Attorney Docket No.: N1085-90059

Amendments to the Claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

1 1. (Currently Amended) A method for monitoring electron charge effect 2 occurring during semiconductor processing, comprising the steps of: 3 providing a substrate, a layer of n-type conductivity having been created in said 4 substrate: 5 creating a pattern of Local Oxidation of Silicon (LOCOS) regions in said 6 substrate, said pattern of LOCOS being interspersed with exposed regions of said 7 substrate; 8 etching said exposed regions of said substrate using said pattern of LOCOS 9 regions as a hard mask, creating a pattern of elevated LOCOS regions, creating 10 trenches having inside surfaces in said substrate; 11 creating a layer of interlayer oxide over said pattern of LOCOS regions and said 12 inside surfaces of said trenches created in said substrate; 13 depositing a layer of polysilicon over said layer of interlayer oxide: patterning said layer of polysilicon, said patterned layer of polysilicon comprising 14 15 at least one contact point over said substrate, completing creation of a electron charge 16 monitoring device having a surface; 17 providing a semiconductor processing tool, said semiconductor processing tool 18 being designated as being a tool being evaluated for electron charge effect of a process 19 being performed by said tool:

20	positioning said substrate comprising said electron charge monitoring device
21	inside said processing tool in a location and a position being identical with a position
22	and location being occupied by a substrate being processed by said tool;
23	establishing processing conditions of a process as these processing conditions
24	apply for said process and said tool;
25	exposing said electron charge monitoring device to said established processing
26	conditions for a period of time having a measurable duration;
27	terminating said processing conditions;
28	removing said electron charge monitoring device from said semiconductor
29	processing tool; and
30	measuring a voltage required to induce a FN tunneling based current between
31	the at least one contact point of sald patterned layer of polysilicon and said substrate.
1	2. (previously presented) The method of claim 1, said creating a pattern of
2	Local Oxidation of Silicon (LOCOS) regions in said substrate comprising the steps of:
3	depositing a layer of silicon nitride over said substrate;
4	patterning said layer of silicon nitride, creating a mask of silicon nitride over said
5	substrate, elements of said mask being interspersed with exposed regions of said
6	substrate;
7	creating layers of Local Oxidation of Silicon (LOCOS) in said exposed regions of
8	said substrate; and
9	removing said mask of silicon nitride from said substrate.

Attorney Docket No.: E0523-00004

1 3. (previously presented) The method of claim 1, wherein said layer of 2 interlayer oxide is HTO, dry oxide or wet oxide. 1 (original) The method of claim 1, said layer of Interlayer oxide being 2 created to a thickness between about 80 and 300 Angstrom. 1 5. (currently amended) The method of claim 1, said layer of polysilicon being 2 deposited to a thickness within the range of between about 1,500 and 6,000 Angstrom. 1 6. (currently amended) The method as in slaim 1, A method for monitoring 2 electron charge effect occurring during semiconductor processing, comprising: 3 providing a substrate, a layer of n-type conductivity having been created in said 4 substrate; 5 creating a pattern of Local Oxidation of Silicon (LOCOS) regions in said 6 substrate, said pattern of LOCOS being interspersed with exposed regions of said 7 substrate; 8 etching said exposed regions of said substrate using said pattern of LOCOS 9 regions as a hard mask, creating a pattern of elevated LOCOS regions, creating 10 trenches having inside surfaces in said substrate: 11 creating a layer of interlayer oxide over said pattern of LOCOS regions and said 12 inside surfaces of said trenches created in said substrate; 13 depositing a layer of polysilicon over said layer of interlayer oxide; 14 patterning said layer of polysilicon, said patterned layer of polysilicon comprising 15 at least one contact point over said substrate, completing creation of a electron charge 16 monitoring device having a surface;

17

Appl. No. 10/074,881 Amdt. dated 08/24/04 Reply to Office Action of 02/24/2004

17	providing a semiconductor processing tool, said semiconductor processing tool
18	being designated as being a tool being evaluated for electron charge effect of a process
19	being performed by said tool;
20	positioning said substrate comprising said electron charge monitoring device
21	inside said processing tool in a location and a position being occupied by a substrate
22	being processed by said tool;
23	establishing processing conditions of a process as these processing conditions
24	apply for said process and said tool;
25	exposing said electron charge monitoring device to said established processing
26	conditions for a period of time;
27	terminating said processing conditions;
28	removing said electron charge monitoring device from said semiconductor
29	processing tool; and
30	measuring a voltage required to induce a FN tunneling based current between
31	the at least one contact point of said patterned layer of polysilicon and said substrate.
32	said patterned layer of polysilicon comprising a square, said pattern of Local
33	Oxidation of Silicon (LOCOS) regions comprising arrays of LOCOS regions
34	perpendicularly and outwardly extending from each side of said square of said
35	patterned layer of polysilicon.
1	Claims 7-11: (cancelled)
1	12. (currently amended) The method of claim 1, said current induced between
2	said layer of polysilicon and said substrate being <u>about</u> 0.1 μA.

Attorney Docket No.: E0523-00004

1	13. (currently amended) A method of creating an electron charge effect
2	monitoring device, comprising the stops of:
3	providing a substrate, a layer of n-type conductivity having been created in said
4	substrate;
5	creating a pattern of Local Oxidation of Silicon (LOCOS) regions in said
6	substrate, said pattern of LOCOS being interspersed with exposed regions of said
7	substrate;
8	etching said exposed regions of said substrate using said pattern of LOCOS
9	regions as a hard mask, creating a pattern of elevated LOCOS regions, creating
10	trenches having inside surfaces in said substrate;
11	creating a layer of interlayer oxide over said pattern of LOCOS regions and said
12	inside surfaces of said trenches created in said substrate;
13	depositing a layer of polysilicon over said layer of interlayer oxide;
14	patterning said layer of polysilicon, said patterned layer of polysilicon comprising
15	at least one contact point over said substrate; and
16	measuring a voltage required to induce a FN tunneling based current between
17	said at least one contact point of said patterned layer of polysilicon and said substrate
18	after said substrate has been exposed to a semiconductor processing tool under known
19	conditions of processing by said semiconductor processing tool.
1	14. (previously presented) The method of claim 13, said creating a pattern of
2	Local Oxidation of Silicon (LOCOS) regions in said substrate comprising the steps of:

3

depositing a layer of silicon nitride over said substrate;

Attorney Docket No.: N1085-90059

4 patterning said layer of silicon nitride, creating a mask of silicon nitride over said 5 substrate, elements of said mask being interspersed with exposed regions of said 6 substrate; 7 creating layers of Local Oxidation of Silicon (LOCOS) in said exposed regions of 8 said substrate; and 9 removing said mask of silicon nitride from said substrate. 1 15. (previously presented) The method of claim 13, wherein said layer of 2 interlayer oxide is HTO, dry oxide or wet oxide. 1 16. (original) The method of claim 13, said layer of interlayer oxide being 2 created to a thickness between about 80 and 300 Angstrom. 1 17. (currently amended) The method of claim 13, said layer of polysilicon 2 being deposited to a thickness within the range of between about 1,500 and 6,000 3 . Angstrom. 1 18. (currently amended) The method of claim 13, A method of creating an 2 electron charge effect monitoring device, comprising: 3 providing a substrate, a layer of n-type conductivity having been created in said 4 substrate; 5 creating a pattern of Local Oxidation of Silicon (LOCOS) regions in said 6 substrate, said pattern of LOCOS being interspersed with exposed regions of said

substrate;

7

0	etching said exposed regions of said substrate using said pattern of LOCOS
9	regions as a hard mask, creating a pattern of elevated LOCOS regions, creating
10	trenches having inside surfaces in said substrate;
11	creating a layer of interlayer oxide over said pattern of LOCOS regions and said
12	inside surfaces of said trenches created in said substrate;
13	depositing a layer of polysilicon over said layer of interlayer oxide;
14	patterning said layer of polysilicon, said patterned layer of polysilicon comprising
15	at least one contact point over said substrate; and
16	measuring a voltage required to induce a FN tunneling based current between
17	said at least one contact point of said patterned layer of polysilicon and said substrate
18	after said substrate has been exposed to a semiconductor processing tool under known
19	conditions of processing by said semiconductor processing tool.
20	said patterned layer of polysilicon comprising a square, said pattern of Local
21	Oxidation of Silicon (LOCOS) regions comprising arrays of LOCOS regions
22	perpendicularly and outwardly extending from each side of said square of said
23	patterned layer of polysilicon.
1	Claims 19-22: (cancelled).
1	23. (previously presented) The method of claim 13, whereby said electron
2	charge effect monitoring device can be recycled by applying an additional step of
3	thermally annealing said substrate, thereby thermally annealing said electron charge
4	monitoring device having been created in and on said substrate.
1	Claims 24-32 (cancelled).

Attorney Docket No.: E0523-00004

33. 1 (newly added) A method for monitoring electron charge effect 2 occurring during semiconductor processing, comprising: 3 forming a monitor wafer having floating gate structures: 4 exposing the monitor wafer to a plasma process; and 5 measuring plasma damage by measuring interlayer oxide electron trap out rate. 1 34. (newly added) The method of claim 33, said measuring interlayer 2 oxide electron trap out rate comprising measuring a voltage required to induce a FN 3 tunneling based current between at least one contact point of said floating gate 4 structures and said monitor wafer. 1 35. (newly added) The method of claim 34, said FN tunneling based 2 current between at least one contact point of said floating gate structures and said 3 monitor wafer being about 0.1 µA. 1 36. (newly added) A method for monitoring electron charge effect 2 occurring during semiconductor processing, comprising: 3 providing a monitor substrate having a layer of n-type conductivity therein and 4 including oxidized regions formed thereover and interspersed with trench regions that 5 each include an opening extending into said monitor substrate, an interlayer oxide layer disposed over said oxidized regions and said trench regions, a patterned polysilicon 6 7 layer disposed over said interlayer oxide layer and comprising at least one contact point 8 over said monitor substrate that forms an electron charge monitoring device having a

surface:

9

10	providing a semiconductor processing tool designated as being evaluated for
11	electron charge effect of a process being performed by said semiconductor processing
12	tool;
13	positioning said monitor substrate inside said semiconductor processing tool in a
14	location and a position generally occupied by a substrate being processed by said
15	semiconductor processing tool;
16	establishing processing conditions for sald process;
17	exposing said electron charge monitoring device to said established processing
18	conditions for a period of time;
19	removing said electron charge monitoring device from said semiconductor
20	processing tool; and
21	measuring a voltage required to induce a FN tunneling based current between
22	the at least one contact point of said patterned layer of polysilicon and said monitor
23	substrate.