J. Poland

Risk and Reward

Results Preview

Data

Result

Investment

Suggestively

Systemic

Regression Subsamples

In Sample

Global Result

Conclusion

How to Look Clever and Have Envious Neighbors: Average Volatility Managed Investment

Jeramia Poland

Indian School of Business

August 10, 2018

Results Preview

Data

Investment

Investment Performance

Suggestively

Regression Subsamples

Out of Samp

Conclusio

Background

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Haugen and Heins (1972) and too many others
- Risk Management/Risk Parity funds \approx \$400 billion, 2016
- Variance Management Barraso and Santa-Clara (2015)
- Moreira and Muir (2017) investing more in the market portfolio when last month's market variance was lower and less when it was higher = better performance
 - Variance is positively correlated with future standard deviation (risk) but not return
 - Scaling by variance manages risk without losing return time series
- Empirical exercises manage momentum crashes; increase return for fixed level risk over time span

Central Ideas

- If we are going to manage variance to control/time risk what is the proper way?
- We know that portfolio variance is the weighted summation of asset variances and covariance
- Return to the fundamental make up of portfolio variance for the right signal
- Why does the right signal better control exposure to uncompensated risk
- Pollet and Wilson (2010) demonstrate that stock market portfolio variance (SV) \approx the product of average pairwise correlation (AC) of assets in the market and average asset variance (AV).
- AC is the systemic component, related to changes in aggregate wealth, and correlated with higher returns. AV is not.
- AV is the right management signal it reduces exposure to uncompensated non-systemic risk without reducing returns 35

J. Poland

Results Preview

US Equity Performance

Strategy

AV: 7.89% SV: 6.17% BH: 5.93%

Results Preview

Dat

Results
Investment

Suggestively Systemic

Systemic Regression Subsamples

Out of Sampl Global Result

Conclusio

Equity Performance

Leverage

- Not the only reason either AV or SV management outperforms the buy and hold gains from pulling investment out (months < 1)
- SV needs access to more than 1500% leverage
- AV tops out at $\approx 300\%$
- AV management is cheaper, more practical, less risky (other than variance)

Results Preview

Dat

Results

Performance

Suggestivel Systemic

Subsamples
In Sample
Out of Sample

Asset Results

Conclusio

Not US Equity Performance

Global Equity

- AV better in 8 of 9 international markets
- AV better for globally diversified equity portfolio

Other Asset Classes

- AV better across currency indices
- AV better real estate investment management

This is consistent with the notion that AV management times investment to systemic risk for which investors are compensated and minimizes non-systemic risk.

Results Preview

Dat

Results
Investment
Performance

Suggestively Systemic

Regression Subsamples

Out of Sample Global Results Asset Results

Conclusio

Contribution

Variance Management

- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and for a globally diversified equity portfolio
- AV management works across asset class

Risk Dynamics

- AV comes from returning to the foundation of investment risk
- AV management is better because it responds not just to total risk, but the mix of systemic and non-systemic risk
- AV is related to global non-systematic risk across asset classes

Results Preview

Data

Results
Investment
Performance

Suggestively Systemic

Regression Subsamples In Sample

Out of Sample Global Results Asset Results

Conclusio

Equity Data

Equity Data

Country	Start	Obs	Index	Assets
USA	1926 - 8	1085	CRSP	500
AUS	2000 - 5	212	ASX	200
BRA	1995 - 2	275	iShares MSCI Brazil ETF	60
CHN	2005 - 5	152	CSI 300	300
DEU	1993 - 11	290	HDAX	110
FRA	1993 - 9	292	SBF 120	120
IND	2000 - 5	212	Nifty 50	50
ITA	2003 - 8	173	FTSE MIB	40
JPN	1993 - 6	295	Nikkei	255
UK	1993 - 6	295	FTSE	100
World	1995 - 3	274	MSCI ACWI	1735

J. Poland

Risk and

Results Preview

Data

Results

Investment Performance

Systemic

In Sample
Out of Sampl

Asset Result

Conclusio

Non-Equity Data

Other Asset Data

Index	Start	Obs	Asset Class
Bloomberg US Spot	2005 - 6	158	Currency
Deutsche Bank Currency	2005 - 6	158	Currency
Deutsche Bank Carry	2005 - 6	158	Currency
Deutsche Bank Momentum	2005 - 6	158	Currency
S&P REIT Index	2005 - 6	158	Real Estate
Bloomberg Commodity	2005 - 6	158	Commodities

AV Construction

• for month t, with T trading days, $R_{s,T}$ is the daily CRSP market return

•
$$SV_t = \frac{1}{T-1} \sum_{\tau=1}^{T} \left(R_{s,\tau} - \frac{\sum_{\tau=1}^{T} R_{s,\tau}}{T} \right)^2 = \sigma_{S,t}^2$$

- with m assets in the market, AV $_t = \sum_{m=1}^{M} w_{m,t} \sigma_{m,t}^2$
- $W_t = \frac{c}{X}$ is the investment weight on the CRSP market portfolio, where $X \in \{AV_{t-1}, SV_{t-1}\}$
- the constant c_{target} is used to control the volatility of the strategy, matching the buy and hold or targeting 10% or 12% annual return volatility

J. Poland

Risk and Reward

Results

Data

Results

Investment

Performano

Suggestively

Systemic

In Sample

Global Results

Conclusio

Investment Weights

Strategy Investment Weight

1927 1932 1937 1942 1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2017

J. Poland

Risk and Reward

Results

Data

Results

Investment

Performance

Systemic

Regression Subsamples

In Sample
Out of Samp

Conclusion

Investment Weights Again

 $19\dot{2}7\,19\dot{3}2\,19\dot{3}7\,19\dot{4}2\,19\dot{4}7\,19\dot{5}2\,19\dot{5}7\,19\dot{6}2\,19\dot{6}7\,19\dot{7}2\,19\dot{7}7\,19\dot{8}2\,19\dot{8}7\,19\dot{9}2\,19\dot{9}7\,20\dot{0}2\,20\dot{0}7\,20\dot{1}2\,20\dot{1}7$

J. Poland

Risk and

Results Preview

Data

Results

Investment Performance

Suggestively Systemic

Subsamples
In Sample
Out of Sample

Asset Result

Conclusion

Investment Weight Again Again

Portfolio	Target	Mean	St. Dev.	Min	Pctl(25)	Median	Pctl(75)	Max
SV	C ₁₀	0.697	0.762	0.009	0.246	0.512	0.874	8.743
AV	c ₁₀	0.702	0.383	0.018	0.425	0.667	0.915	2.296
SV	c ₁₂	0.841	0.920	0.011	0.297	0.618	1.055	10.552
AV	C ₁₂	0.848	0.463	0.022	0.513	0.805	1.104	2.772
SV	c_{BH}	1.290	1.412	0.017	0.455	0.948	1.619	16.193
AV	c _{BH}	1.301	0.710	0.033	0.787	1.235	1.694	4.253

Results Preview

Data

Results

Investment

Performance

Suggestively Systemic

Systemic Regression

In Sam

Out of Samp Global Result

Asset Results

Conclusio

Performance Measures

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_x 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 =$ Sortino
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains
- Certainty Equivalent Return gain (CER) = Average utility from AV Average utility from SV for mean-variance investor with risk aversion γ

J. Poland

Risk and Reward

Results Preview

Data

Results

Investment Performance

Suggestivel

Systemic

Regression

In Sample Out of Samp

Global Result
Asset Results

Conclusion

Returns

Results Preview

Data

Results

Investment

Performance

Suggestively Systemic

Subsamples
In Sample
Out of Sample
Global Results

Conclusion

Performance

c_{BH}: 1926:07-2016:12

	Return	Sharpe	Sortino	$Kappa_3$	$Kappa_4$
ВН	5.932	0.319	0.129	0.082	0.061
SV	8.598	0.462	0.208	0.132	0.097
AV	9.677***	0.520*	0.225	0.150*	0.112**

J. Poland

Risk and Reward

Results

Data

Results

Investmen

Performance

Systemic

Systemic

Subsamples
In Sample

Out of Sampl

Conclusion

Drawdowns: c_{BH}

Strategy	N	Max DD	Avg DD	Max Length	Avg Length	Max Recovery	Avg Recovery
ВН	82	-84.803	-8.069	188	11.549	154	7.207
SV	65	-63.637	-11.196	246	14.954	135	7.446
AV	87	-60.264	-9.026	205	10.851	135	5.034

Leverage

	c _{BH} : Constraint - 1.5						
Portfolio	Return	Sharpe	Sortino	Kappa ₃	Kappa ₄		
ВН	5.932	0.319	0.129	0.082	0.061		
SV	6.171	0.467	0.200	0.128	0.091		
AV	7.885***	0.486	0.204	0.133	0.097		

		c _{BH} : Constraint - 3						
Portfolio	Return	Sharpe	Sortino	Kappa ₃	Kappa ₄			
BH	5.932	0.319	0.129	0.082	0.061			
SV	7.606	0.456	0.199	0.129	0.096			
AV	9.677***	0.522**	0.226**	0.150**	0.112**			

Notes: ***, **, and * Significant at the 1, 5, and 10 percent levels. Results

Data

Results

Investment

Performance

Suggestively

Systemic

Subsamples
In Sample
Out of Sample

Out of Sample Global Results Asset Results

Conclusion

Leverage

J. Poland

Risk and Reward

Results Preview

Data

Results

Investment

Performance

Systemic

Regression Subsamples In Sample

Out of Samp Global Result Asset Results

Conclusi

Leverage

Risk averse, mean-variance investors see substantial utility gains switching from the SV to AV managed portfolio and these gains increase with leverage usage and risk aversion

Suggestively Systemic

Regression

AC/AV and Systemic Risk

- Pollet and Wilson (2010) AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"
- AC signal changes in systemic risk when the daily returns used are a good proxy for the "true market" and the market is a significant part of aggregate wealth.
- This is similar to the difference in results between Goval and Santa Clara (2003) and Bali et all (2005) when the latter removes a significant number of daily returns and the forecasting ability of idiosyncratic volatility disappears
- Thus we can run a placebo-like test on a subsample where the daily returns are not representative

Results Preview

Data

Results
Investment
Performance

Suggestively Systemic Regression Subsamples

In Sample Out of Sample Global Results

Conclusion

Subsample Tests

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets
- As much as 13% of market capitalization is not captured by CRSP data as of the 1950s.
- Twice as many firms covering twice as many industries are available at the end of 1962 as compared to the end of 1961.
- As shown in Taylor (2014) the NYSE market was not a significant part of marginal wealth in the US following the Great Depression before the late 1950s.

Suggestively

Systemic Regression Subsamples

Regressions

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)
- Amihud and Hurvich (2004) bias correction
- Omit variance (SV_{t+1}) prediction by AV as it works in both sub-samples
- Goyal and Welch (2008) forecasting relationships maybe unstable and quite sensitive to sample period choice; they may not respond dynamically with the limited information available to investors in real-time and may not explain or support a trading strategy

J. Poland

Risk and Reward

Results Preview

Data

Results
Investment
Performance

Suggestively Systemic

Subsamples In Sample

Out of Sample Global Results Asset Results

Conclus

Return Prediction

1962:07 - 2016:12

			RET_{t+1}		
AV	-0.131 p = 0.166			-0.168** p = 0.020	$\begin{array}{c} 0.016 \\ p = 0.739 \end{array}$
AC		0.047^{***} $p = 0.001$		0.106^{***} $p = 0.0001$	
SV			-0.109 p = 0.746		0.254 $p = 0.893$
Constant	-0.000 $p = 1.000$	-0.000 $p = 1.000$	-0.000 $p = 1.000$	-0.000 $p = 1.000$	-0.000 p = 1.000
N R^2 Adjusted R^2	655 0.017 0.015	655 0.002 0.001	655 0.012 0.010	655 0.027 0.024	655 0.017 0.014

Notes:

^{***}Significant at the 1 percent level.

^{**}Significant at the 5 percent level.

^{*}Significant at the 10 percent level.

Conclus

Return Prediction

1926:08 - 1962:07

			RET_{t+1}		
AV	$\begin{array}{c} 0.061 \\ p = 0.609 \end{array}$			$\begin{array}{c} 0.121 \\ p = 0.741 \end{array}$	0.315 $p = 0.954$
AC		-0.032 p = 0.520		-0.099 p = 0.862	
SV			-0.028 p = 0.418		-0.264** p = 0.052
Constant	-0.0001 $p = 1.000$	p = 1.000	0.00003 $p = 1.000$	p = 0.999	$0.00004 \\ p = 1.000$
N R^2 Adjusted R^2	431 0.004 0.002	431 0.001 -0.002	431 0.001 -0.002	431 0.010 0.005	431 0.026 0.021

Notes:

^{***}Significant at the 1 percent level.

 $[\]ensuremath{^{**}\mathsf{Significant}}$ at the 5 percent level.

^{*}Significant at the 10 percent level.

Out of Sample Stats

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken 2004

• MSE-F =
$$T \times \frac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2)}{MSFF_x}$$

• MSE-F = F-type test for significance in squared residual

ENC-HLN Harvey, Lebourne and Newbold 1998

- Optimal forecast = $\hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- $\lambda =$ measure of the optimal combination of forecasts

J. Poland

Risk and Reward

Results Preview

Data

Results

Performance

Suggestively Systemic

Regression

In Sample

Out of Sample Global Results

Asset Results

Conclusion

Out of Sample Results

Table: Sample 1939:12 to 2016:12

	DM	MSE-F	ENC-HLN
AC_{t+1}	1.604*	46.251***	1**
SV_{t+1}	1.041	21.57***	0.956**
AV_{t+1}	3.104***	198.267***	1***
RET_{t+1}	-2.027	-8.702	0

Notes:

***, **, and * Significant at the 1,

5, and 10 percent levels.

J. Poland

Risk and

Results

Data

Investment

Suggestively Systemic

Systemic

Subsam

Out of Sample

Global Results
Asset Results

Conclusio

Robust Out of Sample Results

Table: Sample 1939:12 to 2016:12

Stat	Variable	DM	ENC-HLN
R_T	SV_{t+1}	8.874***	1.838***
R_T	RET_{t+1}	29.124***	4.871***
A_T	SV_{t+1}	2.647***	0.949***
A_T	RET_{t+1}	13.347***	1.68***

Notes: ***,**, and * Significant at the 1, 5, and 10 percent levels.

 These results compare the use AV to SV in forecasting not case either is good (RET) but AV is better

Results Preview

Data

Investment
Performance

Suggestively Systemic

In Sample
Out of Sample
Global Results

Conclusion

Global Equity

- If AV management times investment to compensated risk because it changes in response to changes in systemic vs non-systemic risk it should work outside the US
- World AV and SV are market cap weighted averages of country values, US included

		١V	S	SV		ВН	
Country	RET	Sharpe	RET	Sharpe	RET	Sharpe	
AUS	12.477	0.981	11.993	0.943	7.805	0.614	
BRA	11.000	0.291	9.037	0.240	6.163	0.164	
CHN	27.381	0.868	24.926	0.790	12.286	0.390	
DEU	11.064	0.537	7.633	0.371	5.399	0.262	
FRA	7.243	0.404	6.128	0.341	4.904	0.273	
IND	14.893	0.633	12.256	0.521	11.460	0.487	
ITA	3.838	0.194	3.912	0.198	1.451	0.073	
JPN	1.375	0.068	0.129	0.006	-0.775	-0.038	
UK	6.591	0.485	5.984	0.441	5.111	0.376	
World	8.604	0.551	8.306	0.536	4.484	0.290	

Results Preview

Data

Result

Investment

Performano

Suggestively Systemic

Subsamples
In Sample
Out of Sampl

Global Results Asset Results

Conclusio

Global Equity Again

Drawdown Statistics

		AV			SV		ВН			
Country	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery	
AUS	-6.302	7.174	3.348	-5.322	9.263	5.421	-6.318	8.600	4.550	
BRA	-8.059	9.560	4.208	-17.469	15.235	5.500	-15.064	17.067	4.286	
CHN	-9.511	10.333	5.917	-10.074	10.583	3.727	-19.374	27.400	2.000	
DEU	-11.051	10.625	5.783	-12.587	16.812	9.933	-10.706	17.125	12.333	
FRA	-10.263	14.111	5.941	-15.260	18.267	10.214	-11.590	19.071	15.077	
IND	-8.170	6.500	2.885	-12.545	12.467	5.733	-10.862	8.318	4.500	
ITA	-14.625	19.500	2.143	-18.174	22.571	2.333	-8.919	15.400	1.667	
JPN	-30.655	72.750	41.750	-78.514	294.000	175.000	-40.792	148.00	2.000	
UK	-6.060	11.609	4.652	-7.872	14.158	8.158	-6.018	10.560	7.240	
World	-6.982	9.909	7.333	-9.776	12.500	7.059	-8.209	10.091	6.429	

Data

Results
Investment

Suggestively Systemic

Subsamples
In Sample
Out of Sample
Global Results

Conclusio

Global Equity Again Again

Trading Costs

		AV					
Country	RET	$ \Delta\omega $	Break Even	RET	$ \Delta\omega $	Break Even	RET _{BH}
AUS	12.477	0.486	80.139	11.993	0.466	74.914	7.805
BRA	11.000	0.253	159.118	9.037	0.623	38.462	6.163
CHN	27.381	0.305	412.715	24.926	0.538	195.972	12.286
DEU	11.064	0.499	94.545	7.633	0.581	32.052	5.399
FRA	7.243	0.468	41.656	6.128	0.536	19.041	4.904
IND	14.893	0.710	40.316	12.256	0.507	13.097	11.460
ITA	3.838	0.448	44.366	3.912	0.603	33.991	1.451
JPN	1.375	0.442	40.518	0.129	0.551	13.675	-0.775
UK	6.591	0.473	26.113	5.984	0.509	14.287	5.111
World	8.604	0.439	78.113	8.306	0.642	49.586	4.484

Results Preview

Data

Results
Investment
Performance

Suggestively Systemic

Regression

In Sample

Out of Samp Global Resul

Asset Results

Conclusio

Asset Classes

- If AV management times to changes systemic vs non-systemic risk, equity AV should provide a management signal for more than equities
- Moriera and Muir (2017) show that equity SV does not work as a signal for currency investment
- World AV and SV used with c calculated to match buy and hold for each index

	AV		S	V	ВН	
Index	RET	Sharpe	RET	Sharpe	RET	Sharpe
Bloomberg Dollar	1.324	0.170	0.606	0.078	-0.296	-0.038
DB Currency	1.195	0.272	-0.668	-0.152	-0.244	-0.056
DB Carry	1.440	0.134	-0.361	-0.033	-2.071	-0.192
DB Mom	1.942	0.214	0.413	0.045	1.095	0.120
S&P REIT	26.706	0.995	14.980	0.558	5.302	0.198
Bloomberg Commodity	-5.579	-0.303	-6.431	-0.349	-5.279	-0.286

J. Poland

Risk and

Results Preview

Data

Result

Investment

Performano

Suggestively Systemic

Regression Subsamples In Sample Out of Sample

Asset Results

Conclusion

Asset Classes Again

Drawdown Statistics

	AV			SV			ВН		
Index	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery
Bloomberg Dollar	-8.393	29.000	12.750	-10.632	39.333	21.333	-13.565	60.000	27.000
DB Currency	-2.236	9.750	2.667	-10.471	59.500	20.500	-8.839	59.500	41.500
DB Carry	-7.336	14.250	7.375	-33.972	121.000	98.000	-30.332	60.000	21.000
DB Mom	-4.748	11.900	3.300	-14.679	59.000	17.000	-12.278	38.333	18.333
S&P REIT	-7.692	4.400	1.800	-15.016	9.455	5.000	-17.004	15.143	9.286
Bloomberg Commodity	-9.784	12.222	2.111	-31.116	39.000	12.333	-26.638	39.333	4.333

J. Poland

Risk and

Results Preview

Data

Result

Investment

Performano

Suggestively Systemic

Subsamples
In Sample
Out of Sampl

Asset Results

Conclusi

Asset Classes Again Again

Trading Costs

	AV						
Index	RET	$ \Delta\omega $	Break Even	RET	$ \Delta\omega $	Break Even	RET _{BH}
Bloomberg Dollar	1.324	0.411	32.846	0.606	0.620	12.126	-0.296
DB Currency	1.195	0.430	27.851	-0.668	0.482	-7.339	-0.244
DB Carry	1.440	0.427	68.600	-0.361	0.510	27.947	-2.071
DB Mom	1.942	0.441	16.010	0.413	0.599	-9.501	1.095
S&P REIT	26.706	0.592	301.254	14.980	0.807	99.908	5.302
Bloomberg Commodity	-5.579	0.460	-5.430	-6.431	0.555	-17.285	-5.279

Results Preview

Data

Results

Investment Performance

Suggestively Systemic

In Sample Out of Sample Global Results

Conclusion

Conclusion

- AV management is better than SV: higher returns, better ratios, lower costs
- AV management is better because it times moving in and out of investments to changes in systemic risk which is compensated and non-systemic risk which is not
- As such, AV management is a useful signal both globally and across assets classes where SV management does not perform
- Thank you