

CHEMISTRY

Chapter 1

LEVEL

Unidades Químicas de Masa

CHEMISTRY

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

(>)

03. HelicoPractice

04. HelicoWorKshop

كاكSabes que tan grande es el número de Avogadro?

Si pudieras viajar a la velocidad más alta posible, la velocidad de la luz (300.000 km/s), te tomaría alrededor de 62 mil millones de años el recorrer el N_A de kilómetros

 $N_A = 6$, 022.10^{23} unidades estructurales / mol

MOTIVATING STRATEGY

Unidad de masa atómica

Es una unidad de masa muy pequeña utilizada para expresar la masa de los átomos en términos de la masa de un átomo del isótopo 12 del carbono. Se define como la doceava parte de la masa del átomo de carbono-12 cuando este no está enlazado a ningún otro átomo

HELICO THEORY

Unidad de masa atómica

Es una unidad de masa que permite expresar la masa de la materia nanoscópica como átomos, moléculas, protones, neutrones, entre otros.

Unidades: uma o u

1uma
$$\equiv$$
 1,66 · 10⁻²⁴g \equiv 1,66 · 10⁻²⁷kg

El mol

Es la cantidad de sustancia que contiene tantas unidades estructurales (átomos, iones, moléculas, electrones, etc.) como átomos están contenidos en 12 gramos de C-12. Dicho cantidad se conoce como número de Avogadro (N_A o N_O).

 $N_{\Delta} = 6$, 022.10²³ unidades estructurales / mol

1 mol de átomos de helio = $6,022.10^{23} \approx 6.10^{23}$ átomos de helio

1 mol de moléculas de $H_2O \approx 6.10^{23}$ moléculas de H_2O

5 mol de moléculas de $H_2O \approx 30.10^{23}$ moléculas de H_2O

Masa Molecular (\overline{M})

Llamado también peso molecular.

Indica la masa de una molécula en uma.

Ejemplo

Determine la masa de una molécula de etano C₂H₆.

Datos: m.A. (uma): C=12; H=1

Resolución

$$\overline{M}$$
C₂H₆= $2 \times 12 + 6 \times 1 = 30$ uma

Cálculo del Número de Moles (n)

Recuerda:

moles de átomos= n

moles de moléculas = n

$$n = \frac{masa(g)}{\overline{M}} = \frac{\#particulas}{N_A}$$

Ejemplo

Determine la masa de una aleación formada por 4 mol de cobre y 15 mol de zinc.

Datos: mA (uma): Cu = 63,5; Zn = 65

$$nCu = 4 \text{ mol Cu}$$

$$nCu = \frac{m}{mA Cu}$$

$$4 = \frac{m}{63, 5} \qquad mCu = 254 \text{ g}$$

$$nZn$$
 = 15 moles de Zn
 $nZn = \frac{m}{mAZn}$
 mCu = 254 g
 $15 = \frac{m}{65}$ mZn = 975 g

m total =

254 g +

975 g

1229 g

Resolución de Problemas

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

¿Cuánto es la masa molar del fósforo blanco (P₄) es:

Dato: m.A.(P)=31u

A) 31 uma B) 31 g 124 uma D) 124g

E) 62 g

Resolución:

Se usa la siguiente fórmula

$$\overline{M} = \Sigma m.A.$$

$$\overline{M}=4(31)$$

$$\overline{M} = 124 uma$$

RECORDEMOS

Para determinar la masa molar usamos la siguiente fórmula

$$\overline{M} = \Sigma m.A.$$

Respuesta:

 \overline{M} = 124 uma

Determine la masa de 5 mol de átomos de fósforo.

A) 3,2 g B) 6,2g

C) 115g D) 124 g

Resolución:

DATOS

n = 5 mol

$$\overline{M} = 31 \text{ g/mol}$$

$$m=155~g$$

$$n = \frac{masa(g)}{\overline{M}}$$

$$nP = \frac{m}{mAP}$$

$$5=\frac{m}{31}$$

RECORDEMOS

Para determinar los moles usamos:

$$\mathbf{n} = \frac{masa(g)}{\overline{M}}$$

$$m=155 g$$

m = 155 gRespuesta:

Determine la masa en gramos de 4 mol de Calcio

Dato: P.A Ca = 40

Resolución:

$$n = \frac{masa(g)}{m.A.} = \frac{\# \text{átomos}}{N_0}$$

$$4 = \frac{m}{40}$$

$$m = 160g = 1,6 \times 102 g$$

RECORDEMOS

Para determinar el número de átomos usamos:

$$n = \frac{masa(g)}{m.A.} = \frac{\# \acute{a}tomos}{N_0}$$

Respuesta:

El gas propano es un gas licuado del petróleo, es decir, un gas obtenido de los yacimientos del petróleo y del gas natural que se transforma en líquido para su distribución y uso doméstico o industrial. No obstante, la definición del propano suele variar dependiendo de la naturaleza del tema. Podrás encontrar información diciendo que el gas propano es un elemento o un compuesto en relación a su fórmula química, pero también, definiéndolo como un combustible o como un gas licuado. Un recipiente cerrado contiene 88 g de C3H8 y 180 g de C2H6. Calcule el número de moles totales de la mezcla.

Resolución:

$$n(C3H8) = \frac{masa(g)}{\overline{M}}$$

$$n(C3H8) = \frac{88 g}{44 g/mol}$$

$$n(C3H8) = 2 mol$$

$$n(C2H6) = \frac{masa(g)}{\overline{M}}$$

$$n(C2H6) = \frac{180 g}{30g/mol}$$

$$n(C2H6) = 6 \text{ mol}$$

RECORDEMOS

Para determinar los moles usamos:

$$n = \frac{masa(g)}{\overline{M}}$$

Respuesta:

n(totales) = 8 moles

El etano es un hidrocarburo alifático alcano con dos átomos **n**e carbono, de fórmula C₂H₆. En condiciones normales es gaseoso y un excelente combustible. Su punto de ebullición está en -88 °C. Se encuentra en cantidad apreciable en el gas natural. El gas se mezcla bien con el aire, se forman fácilmente mezclas explosivas. El etano tiene un poder calorífico inferior y superior igual a 21,2 y 23,4 MJ/L. Determine la masa de 1,2 x 10^{24} molécula de etano (C₂ H₆).

Datos: PA(C = 12; H = 1)

B)
$$6 \times 10^{23}$$
 g

C)
$$6 \times 10^{-23}$$
 §

A) 30 g B)
$$6 \times 10^{23}$$
 g C) 6×10^{-23} g D) 5×10^{-23} g

Resolución:

Se usa la siguiente fórmula

$$\frac{\text{masa}(\mathbf{g})}{\overline{M}} = \frac{\#\text{mol}\acute{\text{e}}\text{culas}}{N_0}$$

$$\frac{\mathbf{masa(g)}}{\mathbf{30}} = \frac{1,2 \times 1024}{6 \times 10^{23}}$$

$$masa = 60 g$$

RECORDEMOS

Para determinar el número de moléculas usamos:

$$\frac{masa(g)}{\overline{M}} = \frac{\#mol\acute{e}culas}{N_0}$$

Respuesta:

Problemas Propuestos

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

Determinar la masa de una molécula de etano (C_2H_6) Dato : PA (C=12, H=1).

- a) 30 g b) 6×10^{23} c) 6×10^{-23}
- d) $5x 10^2$ e) $5x 10^{-23}$

Un recipiente cerrado contiene 88 g de y 180 g .Calcule el número de moles de la mezcla.

a)4

e) 10

- b) 5 c)6
- d) 8

 \bigcirc

¿Cuántos átomos posee 81 g de Aluminio. (Al: Z=13; A=27)

- a) $3N_o$ b) $14N_o$
- c) 39N_o

- d) 42 N_o
- e) 81N_o

M

El calcio es el mineral más abundante que se encuentra en el cuerpo humano. Los dientes y los huesos son los que contienen la mayor cantidad. Los tejidos corporales, las neuronas, la sangre y otros líquidos del cuerpo contienen el resto del calcio. ¿Cuántos neutrones posee 120 g de calcio (Z = 20; A = 40)?

- a) 60N_o
- b) 40N_o

c) 30N_o

- d) 20 N_o
- e) 10N_o

El etano es un hidrocarburo alifático alcano con dos átomos de carbono, de

fórmula C2H6 En condiciones normales es gaseoso y un excelente combustible. Su punto de ebullición está en -88 °C. Se encuentra en cantidad apreciable en el gas natural. El gas se mezcla bien con el aire, se forman fácilmente mezclas explosivas. El etano tiene un poder calorífico inferior y superior igual a 21,2 y 23,4 MJ/L. Determine la masa de una molécula de etano (C2H6). Datos: PA(C = 12; H = 1)

- a) 30 g b) 6×10^{23} g c) 6×10^{-23} g
- d) 5 × **10**²³g e) 40 g

