

Cambridge Assessment International Education

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/21

Paper 2 Theory

May/June 2019

1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 17 printed pages and 3 blank pages.

BLANK PAGE

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the particles shown to answer the questions.

⁷⁹ ₃₅ Br	³⁹ ₂₀ Ca
³⁵ ₁₇ C <i>l</i>	³⁷ 17C <i>l</i> -
³⁷ ₁₇ C <i>l</i>	⁶⁴ ₂₉ Cu
²³ ₁₁ Na	²⁰ ₁₀ Ne
¹⁷ ₈ O	¹⁸ ₈ O ²⁻

Each particle can be used once, more than once or not at all.

(a)	Which particle	has	only 2	20	protons	in	its	nucleus	?
-----	----------------	-----	--------	----	---------	----	-----	---------	---

.....[1]

(b) Which particle has a nucleon number of 35?

.....[1]

(c) Which particle has an electronic structure of 2.8.8?

.....[1]

(d) Which particle is an atom with only 10 neutrons in its nucleus?

.....[1]

(e) Which particle is an atom of a transition element?

.....[1]

[Total: 5]

2 The table shows some of the properties of the elements in Group II of the Periodic Table.

element	proton (atomic) number	atomic radius /nm	melting point /°C
Be	4	0.089	1280
Mg	12	0.136	650
Ca	20	0.174	850
Sr	38	0.191	768
Ва	56	0.198	714
Ra	88		

(a)	Explain why the elements in Group II have similar chemical properties.	
(b)	Explain why it is easier to predict the atomic radius of radium, Ra, than the melting poin radium.	t of
(c)	Magnesium chloride contains Mg^{2+} and Cl^- ions.	
	(i) Write the electronic configuration for a magnesium ion.	
		[1]
	(ii) Magnesium is produced by the electrolysis of molten magnesium chloride.	
	Construct equations for the reactions taking place at the:	
	negative electrode	
	positive electrode.	 [2]
(d)	Magnesium reacts with aqueous copper(II) sulfate in a redox reaction.	
	$Mg(s) + Cu^{2+}(aq) \rightarrow Mg^{2+}(aq) + Cu(s)$	
	Which particle is reduced?	
	Explain your answer.	
		[1]

(e)	Magnesium reacts with steam.
	Name the products of this reaction.
	[1]
(f)	Calcium reacts with cold water.
	Write the equation for this reaction.
	[1]
(g)	Magnesium chloride is a soluble salt.
	Describe how a pure sample of magnesium chloride crystals can be made from magnesium.
	[4]
	[Total: 12]

(a)	Suggest one physical property of molybdenum that is typical of a transition element.
	[1]
(b)	Suggest one chemical property of molybdenum compounds that is typical of compounds of transition elements.
	[1]
(c)	Molybdenum steel is an extremely hard alloy.
	Suggest, using ideas about metallic structure, why molybdenum steel is much harder than pure iron.
	A labelled diagram may help you answer this question.
	[2]
(d)	Molybdenum steel is made by reducing a mixture of ${\rm MoO_3}$ and ${\rm Fe_2O_3}$ with aluminium.
	$MoO_3 + 2Al \rightarrow Mo + Al_2O_3$
	$Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$
	Molybdenum steel contains 20.0% by mass of molybdenum.
	Calculate the mass of ${\rm MoO_3}$ needed to make 1000 g of molybdenum steel.
	Give the answer to three significant figures.
	[The relative atomic mass of molybdenum, Mo, is 96.]
	mass of MoO ₃ g [3]

[Total: 7]

© UCLES 2019 5070/21/M/J/19

Air	is a s	source of many gases.	
(a)	Wh	at is the percentage by volume of nitrogen in dry air?	
(b)	Out	line the separation of oxygen, nitrogen and the noble gases from liquid air.	[1]
(c)	Sta	te one large scale use of nitrogen.	
(d)	Air	contains gaseous pollutants.	[1]
	(i)	Name one gas that contributes to acid rain.	
	(ii)	State one environmental consequence of an increase in the percentage of carbon diox	
	(11)	in the air.	
	(iii)	Describe the source of carbon monoxide in air.	[1]
		[Tota	

Acid	d U is a compound containing carbon, hydrogen and oxygen.	
(a)	A 6.30 g sample of U contains 1.68 g of carbon and 0.14 g of hydrogen.	
	Calculate the empirical formula of U .	
	empirical formula	[3]
(b)	A 0.086 g sample of ${\bf U}$ is completely neutralised by 12.7 cm 3 of 0.150 mol/dm 3 KOH.	
	One mole of U reacts with two moles of KOH.	
	Calculate the relative formula mass of U .	
	relative formula mass	[3]
(c)	What is the molecular formula of U ?	
		[1]
	[Tota	l: 7]

© UCLES 2019 5070/21/M/J/19

Pro	ppanoic acid is a weak acid.	
Cal	lcium hydroxide and calcium oxide are bases.	
(a)	What is the meaning of the term acid in weak acid?	
		[1]
(b)	What is the meaning of the term weak in weak acid?	
		[1]
(c)	Describe how universal indicator can be used to find the pH of dilute propanoic acid	l.
		[1]
(d)	Give a large scale use of calcium hydroxide that depends on its basic character.	
		[1]
(e)	Calcium oxide reacts with water to form calcium hydroxide.	
	The reaction is exothermic.	
	Use ideas about bond breaking and bond forming to explain why the reaction is exc	thermic.
		[2]
		[Total: 6]

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

Ammonium carbonate, $(\mathrm{NH_4})_2\mathrm{CO_3}$, is a white solid which decomposes when heated.

	$(NH_4)_2CO_3(s) \rightarrow 2NH_3(g) + CO_2(g) + H_2O(g)$
(a)	A small sample of ammonium carbonate is heated in a test-tube.
	Describe how you will know when all the ammonium carbonate has decomposed.
	[1]
(b)	Calculate the total volume of ammonia and carbon dioxide, measured at room temperature and pressure, formed when 4.80 g of ammonium carbonate is completely decomposed.

	volume of gas	[၂
(c)	Describe a chemical test for the ammonium ion.	
	test	
	observation	
		[2]
(d)	Aqueous ammonium carbonate reacts with dilute hydrochloric acid.	
	Construct the ionic equation, including state symbols, for this reaction.	
		[2]

(e)	Solid ammonium carbonate does not conduct electricity.
	Aqueous ammonium carbonate conducts electricity.
	Explain these two observations.
	[2]
	[Total: 10]

8	A scientist heats a	a sample of	phosphorus(V)	chloride in a	a closed	container.

A dynamic equilibrium is established.

$$\mathsf{PC}\mathit{l}_{5}(\mathsf{g}) \;\; \Longleftrightarrow \;\; \mathsf{PC}\mathit{l}_{3}(\mathsf{g}) \;\; + \;\; \mathsf{C}\mathit{l}_{2}(\mathsf{g})$$

(a)	Des	scribe what is meant by the term dynamic equilibrium.	
		[
(b)	The	pressure of the equilibrium mixture is increased.	
	The	temperature of the equilibrium mixture is kept constant.	
		dict and explain what will happen, if anything, to the composition of the equilibriu ture.	m
	pred	diction	
	exp	lanation	
			 2]
(c)	The	temperature of the equilibrium mixture is increased.	
	The	pressure of the equilibrium mixture is kept constant.	
	(i)	Suggest why the position of equilibrium moves to the right.	
		[1]
	(ii)	Explain why the rate of the reaction increases.	
		[2]

(d)	Draw the 'dot-and-cross' diagram for a molecule of PCl_3 .
	Only include the outer shell electrons.

		[2]
e)	$\mathrm{PC}l_5$ reacts with water to form hydrogen chloride and phosphoric acid, $\mathrm{H_3PO_4}$.	
	Construct an equation for this reaction.	
		[1]
	[Total	: 10]

9 Food packaging produces lots of waste.

This waste includes both plastic and glass.

(a) One of the plastics is the addition polymer poly(propene).

Complete the equation by drawing the partial structure of poly(propene).

(b) Plastic waste is disposed of by combustion.

Construct an equation to show the complete combustion of poly(propene).

Use the empirical formula of poly(propene), CH₂, in the equation.

[2]

(c) Some plastics are biodegradable.

(i) Suggest an advantage of a plastic that is biodegradable.

[41

(ii) The partial structure of a condensation polymer is shown.

Draw the structure of the monomer used to make this polymer.

[1]

[2]

(d)	Glass waste is melted and then made into new objects.
	Use the kinetic particle theory to describe the changes in movement and arrangement of the particles when a solid becomes a liquid.
	[2]
(e)	Glass is made from sand, SiO ₂ .
	Explain, in terms of structure and bonding, why sand has a high melting point.
	[2]
	[Total: 10]

10 Cyclobutane and butene are both hydrocarbons.

(a)	What is meant by the term <i>hydrocarbon</i> ?
	[1]
(b)	Explain why cyclobutane and butene are isomers.
	[1]
(c)	Cyclobutane is saturated and butene is unsaturated.
	Describe a chemical test that can distinguish cyclobutane from butene.
	test
	result for cyclobutane
	result for butene

(d) Calculate the percentage by mass of carbon in butene.

percentage by mass[2]

[3]

(e) Ethene can be converted into ethanoic acid in a two-step process.

C = C	step 1	compound X	step 2	H O // H—C—C
H H		·		ĺ ∖ H OH

(i) Identify compound X.

		[1]
(ii)	Identify the reagent used in step 1.	
		[1]
(iii)	Identify the reagent used in step 2.	
		[1]
	[Total:	10]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

ments
Φ
Ш
ð
<u>a</u>
ap
Ë
<u>ပ</u>
Q
<u>Ş</u> .
ē
₽.
þ
ᆮ

		III/	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon						
		II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ä	bromine 80	53	н	iodine 127	85	At	astatine _						
		>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	polonium –	116		livermorium –			
		>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209						
		2			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ъ	lead 207	114	Εl	flerovium			
		=			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	84	11	thallium 204						
											30	Zu	zinc 65	48	<u>ප</u>	cadmium 112	80	Ρ̈́	mercury 201	112	ű	copernicium			
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -			
	Group										28	Ë	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -			
	Gro										27	ပိ	cobalt 59	45	몺	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -			
			- I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	ΗS	hassium			
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –			
						loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -			
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Οþ	dubnium -			
									atc	rek				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ł	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids				
		=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ba	barium 137	88	Ra	radium			
		_			3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	SP SP	rubidium 85	55	S	caesium 133	87	Ļ	francium -			

Lu Lu	lutetium 175	103	ئ	lawrencium -
02 Yb				
e9 Tm	thulium 169	101	Md	mendelevium –
88 П	erbium 167	100	Fm	fermium -
67 HO	holmium 165	66	Es	einsteinium –
% Dy	dysprosium 163	86	Ç	califomium —
65 Tb	terbium 159	26	益	berkelium -
64 Gd	gadolinium 157	96	Cm	curium –
63 Eu	europium 152	92	Am	americium -
62 Sm	samarium 150	94	Pu	plutonium —
e1 Pm	promethium -	93	d	neptunium -
9 PX		l		
59 Pr	praseodymium 141	91	Ра	protactinium 231
Se Ce	cerium 140	06	Ч	thorium 232
57 La	lanthanum 139	68	Ac	actinium _

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).