

Advanced Technical Information

HiPerFET™ Power MOSFETs Q-Class

IXFH 75N10Q IXFT 75N10Q

 V_{DSS} = 100 V I_{D25} = 75 A $R_{DS(op)}$ = 20 m Ω

 $t_{rr} \leq 200 ns$

N-Channel Enhancement Mode Avalanche Rated, High dv/dt Low Gate Charge and Capacitances

Symbol	Test Conditions	Maximun	n Ratings
V _{DSS} V _{DGR}	T_J = 25°C to 150°C T_J = 25°C to 150°C; R_{GS} = 1 M Ω	100 100	V
V _{GS} V _{GSM}	Continuous Transient	±20 ±30	V
I _{D25}	T _c = 25°C	75	A
I _{DM}	$T_c = 25$ °C, pulse width limited by T_{JM}	300	Α
I _{AR}	$T_c = 25$ °C	75	А
E _{AR}	T _C = 25°C	30	mJ
E _{AS}	$T_c = 25^{\circ}C$	1.5	J
dv/dt	$I_{S} \leq I_{DM}, di/dt \leq 100 \text{ A/}\mu\text{s}, V_{DD} \leq V_{DSS},$ $T_{J} \leq 150^{\circ}\text{C}, R_{G} = 2 \Omega$	5	V/ns
$\overline{P_{D}}$	T _C = 25°C	300	W
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C
T_L	1.6 mm (0.062 in.) from case for 10 s	300	°C
$\overline{M_{d}}$	Mounting torque	1.13/10	Nm/lb.in.
Weight	TO-247 AD TO-268	6 4	g g

Symbol (T. = 25°C.				naracteristic Values Typ. Max.			
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		100	- 71		V	
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4 \text{ mA}$		2.0		4	V	
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±100	nΑ	
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$			25 1	μA mA	
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$ Pulse test, $t \le 300 \mu\text{s}, \text{ duty}$	cycle d ≤2 %			20	mΩ	

TO-268 (IXFT) Case Style

Features

- IXYS advanced low gate charge process
- International standard packages
- Low gate charge and capacitance
 - easier to drive
 - faster switching
- Low R_{DS (on)}
- Unclamped Inductive Switching (UIS) rated
- Molding epoxies meet UL 94 V-0 flammability classification

Advantages

- Easy to mount
- Space savings
- High power density

Symbol	Test Conditions $(T_{_{\rm J}}=25^{\circ}{\rm C},$		otherwi	istic Va se spec Max.	
g _{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ pulse test}$	30	45		S
C _{iss} C _{oss} C _{rss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		3700 1300 425		pF pF pF
$egin{pmatrix} egin{pmatrix} egi$	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$ $R_{G} = 4.7 \Omega \text{ (External)}$		31 65 65 28		ns ns ns
$egin{pmatrix} \mathbf{Q}_{g(on)} & & \ & \mathbf{Q}_{gs} & \ & \mathbf{Q}_{gd} & \end{pmatrix}$	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25}$		140 30 65	180	nC nC nC
R _{thJC}	(TO-247)		0.25	0.42	KW

Source-Drain Diode

Characteristic Values

I _s	V _{GS} = 0 V		75	Α
I _{sm}	Repetitive;		300	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0 \text{ V}$, Pulse test, $t \le 300 \mu\text{s}$, duty cycle $d \le 2 \%$		1.5	V
t _{rr} Q _{RM} I _{RM}		0.85 8	200	ns μC Α

Min Recommended Footprint

TO-247 AD Outline

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Mill	imeter	Inc	Inches		
	Min.	Max.	Min.	Max.		
Α	4.7	5.3	.185	.209		
A,	2.2	2.54	.087	.102		
$\mathbf{A}_{2}^{'}$	2.2	2.6	.059	.098		
b	1.0	1.4	.040	.055		
b₁	1.65	2.13	.065	.084		
b ₂	2.87	3.12	.113	.123		
С	.4	.8	.016	.031		
D	20.80	21.46	.819	.845		
Е	15.75	16.26	.610	.640		
е	5.20	5.72	0.205	0.225		
L	19.81	20.32	.780	.800		
L1		4.50		.177		
ØP	3.55	3.65	.140	.144		
Q	5.89	6.40	0.232	0.252		
R	4.32	5.49	.170	.216		
s	6.15	BSC	242	BSC		

TO-268 Outline

MY2	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.193	.201	4.90	5.10	
A1	.106	.114	2.70	2.90	
A2	.001	.010	0.02	0.25	
Ь	.045	.057	1.15	1.45	
b2	.075	.083	1.90	2.10	
С	.016	.026	0.40	0.65	
C2	.057	.063	1.45	1.60	
D	.543	.551	13.80	14.00	
D1	.488	.500	12.40	12.70	
E	.624	.632	15.85	16.05	
E1	.524	.535	13.30	13.60	
е	.215 BSC		5.45 BSC		
Н	.736	.752	18.70	19.10	
L	.094	.106	2.40	2.70	
L1	.047	.055	1.20	1.40	
L2	.039	.045	1.00	1.15	
L3	.010	.010 BSC		0.25 BSC	
L4	.150	.161	3.80	4.10	

IXYS reserves the right to change limits, test conditions, and dimensions.