Ответы на зачет по теории вероятностей

Воейко Андрей

2022

1 Классическое и статистическое определение вероятности события.

Определение. Классическое определение вероятности события:

$$P(A) = \frac{m}{n},$$

где P(A) — вероятность события A, n — число испытаний, m — число благоприятных исходов.

Определение. Статиситическое определение вероятности события:

$$P(A) = \lim n \to \infty \frac{m}{n},$$

где P(A) — вероятность события A, n — число испытаний, m — число благоприятных исходов.

2 Теорема сложения вероятностей несовметсных событий.

Теорема. Пусть веротность события A равна P(A), а события B-P(B), причем события A и B несовметсны. Тогда вероятность суммы двух этих событий P(A+B) равна P(A)+P(B).

Доказательство. Пусть было произведено n испытаний, из которых m_A благоприятствовали A, а m_B-B . Тогда

$$P(A+B) = \frac{m_A + m_B}{n} = \frac{m_A}{n} + \frac{m_B}{n} = P(A) + P(B).$$

Ч.Т.Д.

3 Независимость событий. Условная вероятность.

3.1 Независимость событий.

Определение. Независимыми называются такие два события, наступление одного из которых не влияет на вероятность наступления другого.

3.2 Условная вероятность.

Определение. Условной вероятностью называют вероятность наступления события B при условии наступления события A. Обозначают:

$$P_A(B)$$
 или $P(A|B)$.

При этом

$$P_A(B) = \frac{m_{AB}}{m_A} = \frac{m_{AB}/n}{m_A/n} = \frac{P(AB)}{P(B)}.$$

4 Теорема умножения вероятностей

Теорема. Вероятность произведения событий A и B равна произведению вероятностей $P(A) \cdot P_A(B)$. Доказательство.

$$P(A) \cdot P_A(B) = \frac{m_A}{n} \cdot \frac{m_{AB}}{m_A} = \frac{m_{AB}}{n}.$$

Если события независимы, то $P_A(B) = P(B)$. Тогда

$$P(AB) = P(A) \cdot P_A(B) = P(A) \cdot P(B).$$

5 Теорема сложения вероятностей совместных событий.

Теорема. Если два события A и B совместны, то вероятность суммы этих событий P(A+B) равна P(A)+P(B)-P(AB). Доказательство.

$$P(A) + P(B) - P(AB) = \frac{m_A}{n} + \frac{m_B}{n} - \frac{m_{AB}}{n} = \frac{m_A + m_B - m_{AB}}{n}.$$

Поскольку $AB \subset A$ и $AB \subset B$, при сложении $m_A + m_B$ мы учтем m_{AB} два раза. Поэтому, $m_A + m_B - m_{AB}$ — это и есть искомое нами количество благоприятных для A + B исходов. Поэтому $P(A + B) = \frac{m_A + m_B - m_{AB}}{n} = P(A) + P(B) - P(AB)$.