U.H.B.C. Chlef

A.U. 2015/2016

Faculté des Sciences

Niveau: 1^{ère} Master/ Option: M.A.S.

Département des maths

Module: Processus Stochastiques 1

EXAMEN DE RATTRAPAGE (2HEURES)

I) Questions de cours :

1. Soit une chaîne de Markov irréductible récurrente à espace d'états finis. $N_n(i)$: le nombre de visites de l'état dans l'intervalle du temps de 0 à n.

- Ecrire $\lim_{n\to\infty} \frac{N_n(i)}{n}$ en fonction de la loi stationnaire.

2. Soit $(N_t)_{t\geq 0}$ un processus de Poisson de paramètre λ , et S_n l'instant du n^{tème} arrivée.

- Donner la loi des variables aléatoires suivantes et leurs moyennes (espérances) respectives:

$$N_t$$
, $N_t - N_s$ $(s \le t)$, $S_{n_{\uparrow \overline{\Lambda}}} S_{\gamma \gamma 1}$, S_n

Considérons une chaîne de Markov $\{X_n; n=0,1,2,...\}$ d'espace d'état $E=\{1,2,3\}$, donnée par la matrice de

$$P = \begin{bmatrix} 0.6 & 0.4 & 0 \\ 0.2 & 0.5 & 0.3 \\ 0 & 0.1 & 0.9 \end{bmatrix}$$

1. Tracer le diagramme des transition de cette chaîne.

2. Sachant que la chaîne démarre de $X_0=1$, trouver la probabilité que $X_2=2$.

3. Déterminer les différentes classes de communication. En déduire l'existence et l'unicité de la loi stationnaire.

4. Trouver la loi stationnaire.

5. Soit $Y_n = X_n - X_{n-1}$, donc on a trois (3) cas: $Y_n = 1 \text{ indique que la } n^{i reme} \text{ transition était à droite, } (A \rightarrow 2, 2 \rightarrow 3)$ $Y_n = 0 \text{ indique qu'il s'agissait d'une auto-transition, } (A \rightarrow A, 2 \rightarrow 3)$ $Y_n = -1 \text{ indique qu'elle était à gauche.} \qquad (1 \rightarrow 1, 3 \rightarrow 2)$

 $P(Y_n = 1)$

(Indication: utiliser la loi de probabilité totale et la loi stationnaire).

[6]6. La suite $(Y_n)_{n\geq 0}$ est-elle une chaîne de Markov? Justifier la réponse.

(Indication: calculer $P(Y_n = 1/Y_{n-1} = 1, Y_{n-2} = 1)$ et $P(Y_n = 1/Y_{n-1} = 1)$ pour n suffisemment grand).

7. Sachant que la $n^{i\hat{e}me}$ transition était à droite $(Y_n=1)$, trouver la probabilité que l'état précédent était "1" (X_n) (Indication: utiliser la règle de Bayes pour n suffisemment grand).

III) Processus de Poisson:

Des clients arrivent à un service suivant un processus de Poisson $(N_t)_{t\in\mathbb{R}_+}$ de paramètre $\lambda = 3/heure$.

1. Quelle est la probabilité pour qu'aucun client arrive entre 8 : 00 et 10 : 00 du matin?. ?(2)

2. Quel est le nombre moyen des arrivées entre 8 : 00 et 10 : 00 du matin?

3. Quelle est l'heure espérée (à quelle heure) du 5^{ième} arrivée après 8 : 00? $f(S_5) = \frac{5}{3}$ 4. Supposons que dients arrivent entre 8 : 00 et 10 : 00 du matin.

) - Déterminer la probabilité pour qu'au moins un client arrive dans la première heure (8:00 et 9:00 du)tin)?

I. Questions de cours:

1. $\lim_{n\to+\infty} \frac{N_n(i)}{n} = \pi_i = \lim_{n\to\infty} P(X_n = i)$. Car la la stationnaire existe est onique.

(4) 2. NE P(At), NE-NS P(A(4-5)), Sn=15, Ep(A), Sn~16) $E(N_k) = \lambda t$ $(N_k - N_s) = \lambda (t-s)$ $E(S_{n+1} - S_n) = \frac{1}{\lambda}$ $E(S_n) = \frac{1}{\lambda}$

II. Chaînes de Markov:

1) 1. Diagramme de transition: 1 0.2 0.3 ()

1) 2. $\mathbb{R}(X_0 = 2/X_0 = 1) - \mathbb{R} \cdot \mathbb{R}$

1) 2. P(X==2/X=1) = P, P, + P12 P22 = 0.6 . 0.4 + 0.4 .0.5

- la chaire est irreductible et apériodique don la la stationne existe et est orique. (1) 3. Vie seule classe de commication [C===11,234]

M)u. La la stationnaire. TP=T et IT;=1. On trouve: [T = 1/9] [T = 2/9], [T = 6/9]

5. $\lim_{N \to \infty} P(Y_{n}=1) = \int_{(21)}^{1} \pi_{1} P(Y_{n}=1/X_{n-1}=i) = \pi_{1} P_{12} + \pi_{2} P_{23}$

Non. Supposons que la chaîne est à l'était stationnaire (435)

On a : IP (/4=1 / /4-1=1, /4-2=1) = 0 impossible de se déplacer à donite 3 fois. (3 3 états). Your pont. ā droite 3 jois. (3) = P(\frac{1}{4-1}, \frac{1}{4-1}) = \frac{\text{R}(\frac{1}{4-1}, \frac{1}{4-1})}{\text{R}(\frac{1}{4-1}, \frac{1}{4-1})} = \frac{\text{R}(\frac{1}{4-1}, \frac{1}{4-1})}{\text{R}(\frac{1}{4-1}, \frac{1}{4-1})} = \frac{\text{R}_1 \text{R}_1 \text{R}_2}{\text{R}_1 \text{R}_1 \text{R}_2} \frac{\text{T}_1 \text{R}_1 \text{R}_2}{\text{R}_1 \text{R}_1 \text{R}_2}

Par consequent (Yn) 1/20 vict pas une C. M. .

Par la règle de Bayà: P(Xn-=1/Xn=1) = P(Xn=1)P(Xn=1)P(Xn=1)

7. Par la règle de Bayà: P(Xn=-1/Xn=1) = [P(Xn=1)P(Xn=1)P(Xn=1)]P(Xn=1)P(Xn=

Scanned with CamScanner

III. Processos de Aarkon: Posson

3. Temps inter-arrivées depuis $8: no: T_i \sim Exp(A)$ i:1,2,3,45, i.i.d. $E\left(T_i + T_2 + T_3 + T_4 + T_5\right) = S.E(T_i) = 1$

2. Temps with - attracts
$$T_1 = S$$
. $E(T_1) = S$. $E(T_1) = S$. $E(T_2) = S$. $E(T_3) = S$. $E(T_4) = S$.

$$= \frac{5}{3} \text{ heure}$$

$$= \frac{5}{3} \text{ heure}$$

$$= \frac{5}{3} \text{ heure}$$

$$= \frac{9:40}{3} \text{ du matin}$$

$$= \frac{1}{3} \text{ heure}$$

$$= 1 - \frac{P(N_{8-9} = 0, N_{8.10} = 4)}{P(N_{8-10} = 4)}$$

$$= 1 - \frac{\Re(N_{8-9} = 0, N_{8.10} = 4)}{\Re(N_{8-10} = 4)}$$

$$= 1 - \frac{\Re(N_{8-9} = 0, N_{8.10} = 4)}{\Re(N_{8-9} = 0, N_{9-10} = 4)}$$

$$= 1 - \frac{\Re(N_{8-9} = 0, N_{9-10} = 4)}{\Re(N_{9-10} = 4)}$$

$$= 1 - \frac{19(N_{g-g}=0) \cdot 19(N_{g-10}=4)}{19(N_{g-10}=4)}$$