Examenul de bacalaureat național 2018 Proba E. c) Matematică M_st -nat

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)-\sqrt{12}=\sqrt{3}(3-1)-2\sqrt{3}=$	3 p
	$=2\sqrt{3}-2\sqrt{3}=0$	2 p
2.	$f(1) = g(1) \Leftrightarrow 1^2 + 2 \cdot 1 + 3 = 1 + a \Leftrightarrow 6 = 1 + a$	3 p
	a = 5	2 p
3.	$x+1=1-2\sqrt{x}+x \Rightarrow 2\sqrt{x}=0$	3 p
	x = 0, care convine	2 p
4.	Cifra sutelor se poate alege în 4 moduri	1p
	Pentru fiecare alegere a cifrei sutelor, cifra zecilor se poate alege în 4 moduri	1p
	Pentru fiecare alegere a primelor două cifre, cifra unităților se poate alege în 3 moduri, deci	2n
	se pot forma $4 \cdot 4 \cdot 3 = 48$ de numere	3 p
5.	$m_{d_1} = a \; , \; m_{d_2} = \frac{1}{4}$	2p
	Dreptele d_1 și d_2 sunt paralele $\Leftrightarrow m_{d_1} = m_{d_2} \Leftrightarrow a = \frac{1}{4}$	3 p
6.	$\sin(\pi - x)\cos(2\pi + x) - \sin(2\pi + x)\cos(\pi - x) = \sin x \cos x - \sin x(-\cos x) =$	3 p
	$= 2 \sin x \cos x = \sin 2x$, pentru orice număr real x	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$M(1) = \begin{pmatrix} -2 & -2 \\ 3 & 3 \end{pmatrix} \Rightarrow \det(M(1)) = \begin{vmatrix} -2 & -2 \\ 3 & 3 \end{vmatrix} = (-2) \cdot 3 - 3 \cdot (-2) =$	3 p
	=-6+6=0	2p
b)	$M(x)-M(2018) = (I_2 + xA)-(I_2 + 2018A) = I_2 + xA - I_2 - 2018A =$	2p
	= $(I_2 + (-2018)A) - (I_2 + (-x)A) = M(-2018) - M(-x)$, pentru orice număr real x	3 p
c)	$(I_2 + mA)(I_2 + nA) = I_2 + mnA \Leftrightarrow I_2 + mA + nA + mnA \cdot A = I_2 + mnA$ şi, cum $A \cdot A = -A$,	3р
	obţinem $m+n-mn=mn$	Sp
	Cum $m ext{ și } n ext{ sunt numere naturale nenule, } m+n=2mn \Rightarrow (m,n)=(1,1)$	2p
2.a)	$x \circ y = 8xy + x + y + \frac{1}{8} - \frac{1}{8} =$	3p
	$=8x\left(y+\frac{1}{8}\right)+\left(y+\frac{1}{8}\right)-\frac{1}{8}=8\left(x+\frac{1}{8}\right)\left(y+\frac{1}{8}\right)-\frac{1}{8}, \text{ pentru orice numere reale } x \text{ $\frac{1}{8}$} i \ y$	2 p
b)	$8\left(x+\frac{1}{8}\right)^2 - \frac{1}{8} = 1 \Leftrightarrow \left(x+\frac{1}{8}\right)^2 = \frac{9}{64}$	3p
	$x = -\frac{1}{2} \text{ sau } x = \frac{1}{4}$	2p

	$f(x \circ y) = 8(8xy + x + y) + 1 = 64xy + 8x + 8y + 1 = (8x + 1)(8y + 1) = f(x) \cdot f(y), \text{ pentru}$	3p
	orice numere reale x și y $f(x \circ y \circ z) = f(x \circ y) \cdot f(z) = f(x) \cdot f(y) \cdot f(z)$, pentru orice numere reale x , y și z	2p

SUBIECTUL al III-lea

SUBII	SUBIECTUL al III-lea (30 de pu		
1.a)	$f'(x) = \frac{1 \cdot (x^2 + 3) - (x + 1) \cdot 2x}{(x^2 + 3)^2} =$	3p	
	$= \frac{-x^2 - 2x + 3}{\left(x^2 + 3\right)^2} = \frac{(1 - x)(x + 3)}{\left(x^2 + 3\right)^2}, \ x \in \mathbb{R}$	2p	
b)	$f(0) = \frac{1}{3}, \ f'(0) = \frac{1}{3}$	2p	
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = \frac{1}{3}x + \frac{1}{3}$	3 p	
c)	$f'(x) < 0$, pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict descrescătoare pe $(1, +\infty)$	3p	
	$1 < \sqrt{2} < \sqrt[3]{3} \Rightarrow f\left(\sqrt{2}\right) > f\left(\sqrt[3]{3}\right)$	2p	
2.a)	$\int_{0}^{3} \frac{x f(x)}{e^{x}} dx = \int_{0}^{3} \frac{x^{2} e^{x}}{e^{x}} dx = \int_{0}^{3} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{3} =$	3р	
	$=\frac{27}{3}-0=9$	2p	
b)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a lui $f \Rightarrow F'(x) = f(x) = xe^x$, $F''(x) = (x+1)e^x$, $x \in \mathbb{R}$	2p	
	$F''(x) < 0$, pentru orice $x \in (-\infty, -1)$, $F''(-1) = 0$ şi $F''(x) > 0$, pentru orice $x \in (-1, +\infty)$, deci F are un singur punct de inflexiune	3 p	
c)	$\mathcal{A} = \int_{0}^{n} f(x) dx = \int_{0}^{n} x e^{x} dx = (x-1)e^{x} \Big _{0}^{n} = (n-1)e^{n} + 1$	3p	
	$(n-1)e^n + 1 = 1 \Leftrightarrow n = 1$	2p	