自然科学 II(物理学) 練習問題 (2019)

この問題集について 講義内容に関連する練習問題です. 試験勉強に役立てて下さい. 解答の作成には十分注意を払っていますが, 万が一間違いを発見された場合は shirakura.naoki.se8@is.naist.jp までご連絡お願いします.

わからないときは 講義中の例題を見てみましょう. 問題番号 "練習○-△" は○回目の授業の例題△に対応しています. それでもわからなければ, 気軽にメールで質問して下さい.

資料のダウンロード 全講義の資料,練習問題の配布 URL https://naoki-sh.github.io/documents/physic/

練習 1-1

上図の様な回路を作成したときについて、以下の(1),(2)の場合について(A)合成抵抗値について(B)電力について求めよ、

- (1) $R_1 = 7$, $R_2 = 2$, $R_3 = 2[\Omega]$, E = 16[V]
- (2) $R_1 = 3, R_2 = 0.75, R_3 = 1.5[\Omega], E = 7[V]$
- (3) $R_1 = \frac{5}{6}, R_2 = \frac{1}{2}, R_3 = \frac{1}{4}[\Omega], E = \frac{3}{2}[V]$

練習 1-2

二本の導線を設置し以下の(1)-(4)のように電流を流した。各場合いついて(A)電流 Aが電流 Bの位置につくる磁 東密度 Bの大きさと向き(B)二つの導線に働く力の向きを答えよ。ただし、透磁率 μ_0 と π の記号を解答中に用いて良い。また、図中の→の向きが電流の流れる向きを表す。

- (1) 電流 A: 2[A], 電流 B: 7[A]
- (2) 電流 A: 1[A], 電流 B: 11[A]

練習 2-1

図 (1),(2) の各回路について以下の問いについて答えよ. ただし、内部抵抗は無視するものとする.

- (1) R_0 に流れる電流 I_0
- (2) 電池の起電力 E₁

練習 2-2

抵抗 R_0 に流れる電流が 0[A] になるとき、抵抗 R の値を求めよ、

練習 3-1

以下の(1),(2)の場合について、このとき発生する誘導起電力[V]を求めよ。

- (1) コイルの円の面積 $5[\text{cm}^2]$,巻き数 7,磁石を動かすことによってコイルを貫く磁束密度が 10 秒間に $1[\text{Wb/cm}^2]$ から $9[\text{Wb/cm}^2]$ に増えた場合
- (2) コイルの円の面積 10[cm²], 巻き数 5, 磁石を動か すことによってコイルを貫く磁東密度が 10 秒間に 10[Wb/cm²] から 2[Wb/cm²] に減った場合

練習 3-2

図の様にコイルを配置して, コイル 1 では 10 秒間で 10[A] から 50[A] に電流が増える. コイル 1 の自己インダクタンスを 8[H] とする

- (1) 50[A] の電流によりコイル 1 で発生する磁束 [Wb] は いくらか
- (2) また自己誘導の起電力 [V] はいくらか

コイル1と2の相互インダクタンスを16[H]とすると、

- (4) コイル 1 に電流 50[A] が流れた瞬間コイル 2 を貫く 磁束はいくらか
- (5) 相互誘導の起電力はいくらか

練習 4-1

図のような回路に、交流電源が接続されている。以下の (1),(2) の場合について、時刻が開始点より $\frac{\pi}{6}[s]$ 進んだ時 の電流の値はいくらか

- (1) 交流電源の最大値 V_0 を 1[V], 周波数 f を $\frac{1}{2\pi}[Hz]$, 抵抗 R を $5[\Omega]$
- (2) 交流電源の最大値 V_0 を 5[V], 周波数 f を $\frac{1}{2\pi}[Hz]$, 抵抗 R を $0.2[\Omega]$

練習 4-2

図のような回路に、抵抗 R と自己インダクタンス L を 交流電源に接続する。(A) 回路の合成インピーダンス |Z|, (B) 電流 I(t) の式を記述せよ。

- (1) 交流電源の最大値 V_0 を 4[V], 周波数 f を $\frac{1}{\pi}[Hz]$, 抵抗 R を $1[\Omega]$, 自己インダクタンス L を 4[H]
- (2) 交流電源の最大値 V_0 を 26[V], 周波数 f を $\frac{1}{2\pi}$ [Hz], 抵抗 R を 5[Ω], 自己インダクタンス L を 12[H]

練習 5-1

図のような回路に、抵抗 R とコンデンサ C を交流電源に接続する。(A) 回路の合成インピーダンス |Z|, (B) 電流 I(t) の式を記述せよ。

- (1) 交流電源の最大値 V_0 を 2[V], 周波数 f を $\frac{1}{\pi}[Hz]$, 抵抗 R を $\frac{1}{9}[\Omega]$, 静電容量 C を 1[F]
- (2) 交流電源の最大値 V_0 を 25[V], 周波数 f を $\frac{1}{2\pi}$ [Hz], 抵抗 R を 3[Ω], 静電容量 C を $\frac{1}{4}$ [F]

練習 5-2

図のような回路に、抵抗 R と自己インダクタンス L とコンデンサ C を交流電源に接続する。(A) 回路の合成インピーダンス |Z|, (B) 電流 I(t) の式を記述せよ。

(1) 交流電源の最大値 V_0 を 10[V], 周波数 f を $\frac{1}{2\pi}$ [Hz], 抵抗 R を 1[Ω], 静電容量 C を $\frac{1}{2}$ [F], 自己インダクタンス L を 5[H]

(2) 交流電源の最大値 V_0 を 2[V], 周波数 f を $\frac{1}{\pi}[Hz]$, 抵抗 R を $2[\Omega]$, 静電容量 C を $\frac{1}{4}[F]$, 自己インダクタンス L を 2[H]

練習 6-1

図の様に回路が接続されている. 次の場合について

- (1) 過渡状態における回路電流の式, (2) 時定数 τ の値,
- (3) スイッチを閉じてから時定数 τ だけ時間が経過したときの電流の値を求めよ.

(追記) 図の回路における時定数とは、電流値が約63%まで上昇するのに要する時間を表しているものとする.

(A) 電池の起電力 $E=2[{\rm V}]$, 抵抗 $R=1[\Omega]$, コイルの自己 インダクタンス $L=1[{\rm H}]$

練習 6-2

図の様に回路が接続されている. 次の場合について

- (1) 過渡状態における回路電流の式, (2) 時定数 τ の値,
- (3) スイッチを閉じてから時定数 τ だけ時間が経過したときの電流の値を求めよ.

(追記) 図の回路における時定数とは、電流値が約37%まで低下するのに要する時間を表しているものとする.

(A) 電池の起電力 E =6[V], 抵抗 R=3[Ω], コンデンサの 静電容 C= $\frac{1}{4}$ [H]