Wave transmission – MATLAB project 4

Thin layers coating for wideband matching - eliminating reflections in an air-glass interface:

Project goals:

- 1. To learn the concept of wide-band and wide spectral-angle matching
- 2. To learn how an anti-reflecting glass is made
- 3. To get experience in wide-band calculations in multi-layers transmission lines.

Part I: Quarter wavelength matching layer:

We start with a single quarter wavelength layer which is deposited on the glass.

- A. Design a matching layer for normal incidence at the center frequency f_0 of the visible spectrum, between the lowest frequency (red, $\lambda_1 = 800 [\text{nm}]$) and the highest frequency (violet; $\lambda_2 = 400 [\text{nm}]$). (Note that f_0 is not at 600[nm]). Calculate the relative layer's dielectric coefficient ε_T and width d_T .
- B. Derive the expressions for the reflection coefficient as a function of frequency and angle of incidence. Consider both polarizations.
- C. Calculate and plot the absolute value of the reflection coefficient $\Gamma_{\perp \parallel}(f, \theta^i)$ for all frequencies in the visible spectrum, for all angles of incidence between $-60^{\circ} < \theta^i < 60^{\circ}$, and for both polarizations. Present the results:
 - 1) On 2D color plots in the (f, θ^i) = (frequency, angle) plane for both polarizations.
 - 2) As a function of f for $\theta^i = 0$, and as a function of θ^i for $f = f_0$

Part II: Wide-band, multi-layer, quarter wavelength matching:

We now present a wide-band matching by using several quarter-wavelength layers. The design goal is to obtain a reflection coefficient smaller than some specified value Γ_{max} over the specified frequency and angular bandwidth. The values of the desired Γ_{max} and bandwidth determine the number of layers N. The matching layers below have been designed using Chebyshev polynomials.

D. Below is a table of the relative dielectric constants for an N-layer adapter where N=2, or 3 or 4. Calculate the widths of the layers (the width of each layer is a quarter wavelength at the center frequency f_0 and for normal incidence). Then, repeat item \mathbf{C} above for this structure

N	ε1	ϵ_2	E 3	ε4
2	1.257	1.773	-	-
3	1.131	1.493	1.970	-
4	1.0682	1.301	1.710	2.085

Submission Guidelines

- 1. The project is performed and submitted in pairs, but students who want it may also do it on their own.
- 2. All answers should be explained.
- 3. Attach your code at the end of the report.