

SR-71 Inlet Design Issues And Solutions

Dealing With Behaviorally Challenged Supersonic Flow Systems

Tom Anderson

A-12, SR-71 Inlet Designers

Dave Campbell SR-71 Inlet Designer Propulsion Boss

Ben Rich
SR-71 Vehicle and Inlet
Preliminary Design
Propulsion Boss
ADP President

SR-71 Inlet Document

8/19/13

How Supersonic Inlets Work

Details Of The Geometry And Operation Of The SR-71 Mixed Compression Inlet

> By J. Thomas Anderson Technical Fellow Emeritus Lockheed Martin Skunk Works

Copyright Lockheed Martin Corporation ©

SR-71 Nacelle

Inlet Needed To Capture Ram Pressure

Vehicle	Velocity	Mach	Pram	Pram-Pambient
		Number	Pambient	Pambient
Car	70 miles per	0.1	Less than 1.01	Less than .01
	hour			
Airliner	530 miles per	0.8	1.5	.5
	hour			
Fighter	1300 miles per	2.0	7.8	6.8
Max Speed	hour			
SR-71	2130 miles per	3.2	49.4	48.4
	hour			

A Figure Of Merit For Inlet Performance Is Recovery. Recovery Is The Amount Of Ram Pressure That Is Recovered From The Inlet Compression Process. Recovery = P_{t2}/P_{t0}

Inlet Compression Regions

Inlet Configuration Definitions

Inlet Cowl Pressure Distribution

Supersonic Compression Ends With Normal Shock

Supersonic Compression Done Through Compression And Shock Waves

Basic Law Of Physics Continuity

- Everything That Enters The Inlet Must Leave Or Be Stored.
- The Inlet Does Not Act Like A Balloon And Will Not Store Air.
- Therefore Flow In Must Equal Flow Out.

$$-W_{in} = W_{out} = W_{engine} + W_{bleed} + W_{bypass} + W_{leak}$$

- Flow In Is Approximately 200 lbs/sec.
 - Therefore Events Happen <u>VERY</u> Rapidly.

The "Problem"

Subsonic Air

Supersonic Air

Comparison Of Mo=3.2 Started And Unstarted Performance

Inlet Flow Schlierens Show Started And Unstarted Operation

Inlet Started

Inlet Unstarted

Ram Recovery = 0.8 Mass Flow Ratio = 0.8 Ram Recovery = 0.2
Mass Flow Ratio = 0.2

SR-71 Inlet Orientation Facing Into The Wind At Cruise

Nacelle Centerlines

Inlet Cant	$\Delta\delta$ (Downward)	$\Delta\delta$ (Inboard)
Preliminary	6.5 deg.	0 deg.
Final	5.6 deg.	3.2 deg.

Forward Bypass Matches Inlet And Exit Airflow

Inlet Automatic Control System

Variable Geometry Is Required

- Mach Numbers Below Cruise Require Increased Throat Area.
- Internal Flow Areas Must Grow In Order To Restart The Inlet From An Unstarted Condition.
- Therefore Variable Area Internal Geometries Are Required.
- This is Accomplished On The SR-71 By Spike Translation.

Inlet Geometry And Area Distribution

Spike Translation Varies Inlet Area Distribution

Supersonic Diffuser Flow Field

SR-71 Inlet Bleed Regions

Cowl (Shock Trap) Bleed Flows To Nozzle

Centerbody (Porous) Bleed Flows Overboard

Aft Bypass Flows to Nozzle

Inlet Geometric Features

Inlet Diffuser Photos

Nacelle Leakage Test Rig

Backup

Inlet Wind Tunnel Model

Inlet Airflow Paths

Inlet Airflow Paths

Inlet Airflows

Nacelle Thrust Distribution

Inlet Pressure Recovery

Mixed Compression Inlet Characteristics

Inlet Restart Cycle

- ① OPERATING POINT
- ② UNSTART POINT
- ③ UNSTARTED POINT
- 3-4 EXTEND SPIKE OPEN BYPASS
- **4-5** RESTART INLET
- **5-6** RETRACT SPIKE
- 6 1 CLOSE BYPASS