

Fachbereich Mathematik und Statistik

Nachklausur zu Computereinsatz in der Mathematik

Name	Vorname	Matrikel-Nr.	Studiengang

Allgemeine Richtlinien:

- 1. Diese Klausur beinhaltet **sechs** verschiedene Aufgaben (Rückseite beachten). Kontrollieren Sie Ihr Exemplar, ein Austauschexemplar kann Ihnen sofort ausgehändigt werden.
- 2. Verwenden Sie für jede Aufgabe ein neues Blatt.
- 3. Schreiben Sie Ihren Namen auf dieses Deckblatt und auf jedes einzelne Aufgabenblatt. Ihre Matrikelnummer muss auf dem Deckblatt erscheinen.
- 4. Schreiben Sie mit Tinte oder Kugelschreiber.
- 5. **Zugelassene Hilfsmittel:** Vorher abgegebener Spickzettel (1 Seite DIN A 4), welcher dieser Klausur beiliegt. Alle anderen Hilfsmittel sind verboten und führen zum Ausschluss von der Klausur.
- 6. Die Klausur dauert 60 Minuten.
- 7. Zum Bestehen sind mindestens 15 Punkte erforderlich.

Viel Erfolg!

Korrektur

	Aufg. 1	Aufg. 2	Aufg. 3	Aufg. 4	Aufg. 5	Aufg. 6	gesamt	Note
Punkte	6	5	5	4	5	5	30	-
erreicht								

Aufgabe 1: (6 Punkte)

a) Welchen Ausdruck erzeugt die folgende Latex-Sequenz?

b) Erstellen Sie ein Latex-Programm (ohne Präambel), das den folgenden Ausdruck erzeugt:

Es sei

$$A = \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{array}\right)$$

eine $n \times n$ - Matrix. Dann wird durch

$$N_E(A) := \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$$

eine Matrixnorm erzeugt.

Aufgabe 2: (5 Punkte)

a) Welches Ergebnis auf dem Bildschirm liefert die folgende Matlab-Sequenz?

```
for i = 1:3
  for j = 1:4
    D(i,j) = i + j;
  end
end
E = D
```

b) Gegeben seien die Matrizen

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 4 & 2 & 1 \end{pmatrix}$$
 und $B = \begin{pmatrix} 2 & 0 & 2 \\ 2 & 2 & 1 \end{pmatrix}$.

Welche Ergebnisse (auf dem Bildschirm) liefern die folgenden Matlab-Befehle?

- (1) A == B
- (2) A.*B
- (3) A*B

Aufgabe 3: (5 Punkte)

Erstellen Sie ein Matlab-Programm, das ein Schaubild mit 4 Unterbildern erzeugt:

Unterbild 1 enthält das Schaubild von $f(t) = \frac{100}{1 + \exp(-3t)}$ im Intervall [0, 10].

Unterbild 2 enthält die Raumkurve $(x(t), y(t), z(t)) = (\cos(10t), \sin(10t), \ln(t)), 1 \le t \le 5.$

Unterbild 3 enthält den Graphen von $h(x,y)=\exp(-x^2-y^2)$ im Bereich $D=\left\{(x,y)\in\mathbb{R}^2:0\leq x\leq 4,\,0\leq y\leq 4\right\}.$

 $Unterbild\ 4$ enthält die folgenden Hörerzahlen einer Vorlesung als Balkendiagramm:

2011	2012	2013	2014
185	140	165	110

Aufgabe 4: (4 Punkte)

Es sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion. Zu jedem festen $N\in\mathbb{N}$ liefert die Trapezregel

$$\frac{b-a}{N} \left(\frac{1}{2} f(a) + \frac{1}{2} f(b) + \sum_{k=1}^{N-1} f\left(a + k \frac{b-a}{N}\right) \right)$$

einen Näherungswert für das Integral $\int_a^b f(x) dx$. Erstellen Sie eine **Matlab**-Funktion Trapez(f,a,b,N) für diese Trapezregel.

Aufgabe 5: (5 Punkte)

a) Gegeben sei die Gleichung $ax^2 + bx + c = 0$ mit $a \neq 0$, $c \neq 0$ und $b^2 - 4ac > 0$. Für jede Lösung gibt es zwei Formeln:

1. Lösung:
$$x_1 := \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \frac{-2c}{b + \sqrt{b^2 - 4ac}} =: y_1$$
,

2. Lösung:
$$x_2 := \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-2c}{b - \sqrt{b^2 - 4ac}} =: y_2$$
.

Welche Formeln sollte man bei der Berechnung (mit dem Computer) der Lösungen von $x^2 + 1000000x + 1 = 0$ verwenden (mit Begründung)?

- b) Die Zahl x hat im Hexadezimalsystem die Darstellung $x=0.A1F\cdot 16^2$. Welche normalisierte Darstellung besitzt x im
 - (1) Dualsystem,
 - (2) Dezimalsystem?

Aufgabe 6: (5 Punkte)

- a) Berechnen Sie mit Maple
 - (1) die Ableitungen f'(x) und $f^{(3)}(x)$ von $f(x) = \cos\left(\sqrt{3x^4 + 10} + \ln(4x^2 + 2)\right)$,
 - (2) die Reihe $\sum_{k=2}^{\infty} \prod_{l=1}^{k} \frac{2}{l} ,$
 - (3) das Integral $\frac{1}{2\pi} \int_{0}^{2} \exp(-t^{2}) dt .$
- b) Welches Ergebnis liefert die folgende Maple-Sequenz?

h :=
$$(x,y) \rightarrow \exp(x^2 + y^2 -10)$$

Diff $(h(x,y),y) = diff(h(x,y),y)$