

Mutual information is a measure of the mutual dependence of 2 variables.

In other words, the mutual information quantifies the "amount of information" gained about one variable through observing the other variable.

Measures linear and non-linear associations.

$$\mathrm{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x)\,p_Y(y)}
ight)$$

- I is the mutual information
- p(X,Y) is the probability of X and Y occurring together
- p(X) is the probability of X
- p(Y) is the probability of Y

$$\mathrm{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x)\,p_Y(y)}
ight)$$

- If X and Y are independent $\rightarrow p(X,Y) = p(X)p(Y)$ and then MI = 0
- If X is deterministic of Y → MI tends to infinity.

p(X) is the probability of X

$$p(female) = 4 / 8 = 0.5$$

$$p(male) = 4 / 8 = 0.5$$

Gender	Survived
Female	Yes
Female	No
Female	Yes
Female	Yes
Male	Yes
Male	No
Male	No
Male	No

p(X) is the probability of X

$$p(female) = 4 / 8 = 0.5$$

$$p(male) = 4 / 8 = 0.5$$

Gender	Survived
Female	Yes
Female	No
Female	Yes
Female	Yes
Male	Yes
Male	No
Male	No
Male	No

p(Y) is the probability of Y

$$p(survived) = 4 / 8 = 0.5$$

$$p(died) = 4 / 8 = 0.5$$

Gender	Survived
Female	Yes
Female	No
Female	Yes
Female	Yes
Male	Yes
Male	No
Male	No
Male	No

p(Y) is the probability of Y

$$p(survived) = 4 / 8 = 0.5$$

$$p(died) = 4 / 8 = 0.5$$

Survived
Yes
No
Yes
Yes
Yes
No
No
No

p(X,Y) the joint probability

p(female and survived) = 3 / 8 = 0.375

p(female and died) = 1/8 = 0.152

p(male and survived) = 1 / 8 = 0.125

p(male and died) = 3 / 8 = 0.375

Gender	Survived
Female	Yes
Female	No
Female	Yes
Female	Yes
Male	Yes
Male	No
Male	No
Male	No

p(X,Y) the joint probability

p(female and survived) = 3 / 8 = 0.375

p(female and died) = 1/8 = 0.152

p(male and survived) = 1/8 = 0.125

p(male and died) = 3 / 8 = 0.375

Gender	Survived	
Female	Yes	
Female	No	
Female	Yes	
Female	Yes) .
Male	Yes	/
Male	No	
Male	No	
Male	No	

p(X,Y) the joint probability

p(female and survived) = 3 / 8 = 0.375

p(female and died) = 1/8 = 0.152

p(male and survived) = 1/8 = 0.125

p(male and died) = 3 / 8 = 0.375

Gender	Survived	
Female	Yes	
Female	No	
Female	Yes	
Female	Yes)
Male	Yes	
Male	No	
Male	No	
Male	No	

$$\mathrm{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x)\,p_Y(y)}
ight)$$

p(female, survived)
$$\times \log(\frac{p(female, survived)}{p(female) \times p(survived)}) +$$

p(female, died)
$$\times \log(\frac{p(female, died)}{p(female) \times p(died)}) +$$

p(male, survived) x log(
$$\frac{p(male, survived)}{p(male) \times p(survived)}$$
) +

p(male, died)
$$\times \log(\frac{p(male, died)}{p(male) \times p(died)})$$

$$\operatorname{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x) \, p_Y(y)}
ight)$$

p(female, survived)
$$\times \log(\frac{p(female, survived)}{p(female) \times p(survived)}) +$$

p(female, died)
$$\times \log(\frac{p(female, died)}{p(female) \times p(died)}) +$$

p(male, survived) x log(
$$\frac{p(male, survived)}{p(male) \times p(survived)}$$
) +

p(male, died)
$$\times \log(\frac{p(male, died)}{p(male) \times p(died)})$$

$$.375 \times \log(\frac{.375}{.5 \times .5}) +$$

$$.125 \times \log(\frac{.125}{.5 \times .5}) +$$

.125 x log(
$$\frac{0.125}{.5 \times .5}$$
) +

$$.29 \times \log(\frac{.375}{.5 \times .5})$$

$$\mathrm{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x)\,p_Y(y)}
ight)$$

p(female, survived)
$$\times \log(\frac{p(female, survived)}{p(female) \times p(survived)}) +$$

p(female, died)
$$\times \log(\frac{p(female, died)}{p(female) \times p(died)}) +$$

p(male, survived) x log(
$$\frac{p(male, survived)}{p(male) \times p(survived)}$$
) +

p(male, died)
$$\times \log(\frac{p(male, died)}{p(male) \times p(died)})$$

$$MI = 0.13$$

No association

p(X,Y) the joint probability

p(female and survived) = 2 / 8 = 0.25

p(female and died) = 2 / 8 = 0.25

p(male and survived) = 2 / 8 = 0.25

p(male and died) = 2 / 8 = 0.25

Gender	Survived
Female	Yes
Female	No
Female	Yes
Female	No
Male	Yes
Male	No
Male	Yes
Male	No

$$\operatorname{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x) \, p_Y(y)}
ight)$$

p(female, survived)
$$\times \log(\frac{p(female, survived)}{p(female) \times p(survived)}) +$$

p(female, died)
$$\times \log(\frac{p(female, died)}{p(female) \times p(died)}) +$$

p(male, survived) x log(
$$\frac{p(male, survived)}{p(male) \times p(survived)}$$
) +

p(male, died)
$$\times \log(\frac{p(male, died)}{p(male) \times p(died)})$$

$$.25 \times \log(\frac{.25}{.5 \times .5}) +$$

$$.25 \times \log(\frac{.25}{.5 \times .5}) +$$

$$.25 \times \log(\frac{.25}{.5 \times .5}) +$$

$$.25 \times \log(\frac{.25}{.5 \times .5})$$

$$\mathrm{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x)\,p_Y(y)}
ight)$$

p(female, survived)
$$\times \log(\frac{p(female, survived)}{p(female) \times p(survived)}) +$$

p(female, died)
$$\times \log(\frac{p(female, died)}{p(female) \times p(died)}) +$$

p(male, survived) x log(
$$\frac{p(male, survived)}{p(male) \times p(survived)}$$
) +

p(male, died)
$$\times \log(\frac{p(male, died)}{p(male) \times p(died)})$$

$$0.0 = 1M$$

Deterministic

p(X,Y) the joint probability

p(female and survived) = 4/8 = 0.5

p(female and died) = 0 / 8 = 0

p(male and survived) = 0/8 = 0

p(male and died) = 4/8 = 0.5

Gender	Survived
Female	Yes
Male	No

$$\operatorname{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x) \, p_Y(y)}
ight)$$

p(female, survived)
$$\times \log(\frac{p(female, survived)}{p(female) \times p(survived)}) +$$

p(female, died)
$$\times \log(\frac{p(female, died)}{p(female) \times p(died)}) +$$

p(male, survived) x log(
$$\frac{p(male, survived)}{p(male) \times p(survived)}$$
) +

p(male, died)
$$\times \log(\frac{p(male, died)}{p(male) \times p(died)})$$

$$.5 \times \log(\frac{.5}{.5 \times .5}) +$$

$$0 \times \log(\frac{0}{.5 \times .5}) +$$

$$0 \times \log(\frac{0}{.5 \times .5}) +$$

$$.5 \times \log(\frac{.5}{.5 \times .5})$$

$$oxed{ \mathrm{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x) \, p_Y(y)}
ight)}$$

p(female, survived)
$$\times \log(\frac{p(female, survived)}{p(female) \times p(survived)}) +$$

p(female, died)
$$\times \log(\frac{p(female, died)}{p(female) \times p(died)}) +$$

p(male, survived) x log(
$$\frac{p(male, survived)}{p(male) \times p(survived)}$$
) +

p(male, died)
$$\times \log(\frac{p(male, died)}{p(male) \times p(died)})$$

THANK YOU

www.trainindata.com