Lecture 00

Lect. PhD. Arthur Molnar

to course
Schedule
Objectives
Course conter
Bibliography
Activity and
grading

Introduction to Course

Lect. PhD. Arthur Molnar

Babes-Bolyai University

Overview

Lecture 00

Lect. PhD. Arthur Molna

Introduction
to course
Schedule
Objectives
Course conten
Bibliography
Activity and
grading

- 1 Introduction to course
 - Schedule
 - Objectives
 - Course content
 - Bibliography
 - Activity and grading

Guiding professors

Lecture 00

Lect. PhD. Arthur Molna

Introduction to course

Schedule
Objectives
Course content
Bibliography
Activity and
grading

- Lect. PhD. Arthur Molnar
- Lect. PhD. Radu Gaceanu
- Lect. PhD. Mircea loan-Gabriel
- Lect. PhD. Andrei Mihai
- Assist. Briciu Anamaria
- Assist. Imre Zsigmond
- Assist. Sergiu Nistor

Schedule

Lecture 00

Lect. PhD. Arthur Molna

Introduction to course

Schedule

Objectives

Course content

Bibliography

Activity and

grading

- **Lecture**: 2 hours/week (online)
- **Seminar**: 2 hours/week (physical presence/1 group online)
- Laboratory: 2 hours/week (physical presence/1 subgroup online)
- Consultation: optional, each teacher has a weekly time slot (will be announced on Teams)

Course materials

- Teams, General channel, Files section
- **FP** repository on GitHub Classroom

Contact us

Best way is using **Teams** chat

Objectives

Lecture 00

Lect. PhD. Arthur Molna

ntroduction to course Schedule Objectives Course conten Bibliography Activity and grading

What should you gain from this course?

- Learn key programming concepts
- Learn the basic concepts of software engineering (design, implementation and maintenance of software systems)
- Learn to use basic software tools such as IDE's, documentation generators, testing tools
- Acquire and improve your programming style.
- Learn the basics of programming using the Python language

Course content

Lecture 00

Lect. PhD. Arthur Molna

Introduction
to course
Schedule
Objectives
Course content
Bibliography
Activity and
grading

How is this course organized?

- Programming in the large
- Programming in the small

Programming in the large

Lecture 00

Lect. PhD. Arthur Molna

ntroduction to course Schedule Objectives Course content Bibliography Activity and grading

- Procedural programming
- 2 Modular Programming
- Test Driven Development
- 4 Design Principles for Modular Programs
- User Defined Types and Exceptions
- 6 Introduction to UML
- 7 Design Principles for Object Oriented Programs
- 8 Program Testing. Refactoring.
- Layered architecture. Inheritance.
- Intro to building GUIs

Programming in the small

Lecture 00

Lect. PhD. Arthur Molna

Introduction
to course
Schedule
Objectives
Course content
Bibliography
Activity and
grading

- 11 Recursion
- Computational complexity
- Searching. Sorting
- 14 Problem solving methods

Bibliography

Lecture 00

Lect. PhD. Arthur Molna

Introduction to course Schedule Objectives Course content Bibliography Activity and

- Kent Beck Test Driven Development: By Example; Addison-Wesley Longman, 2002.
- Kleinberg and Tardos Algorithm Design; Pearson Educational; 2014 (http://www.cs.princeton.edu/ wayne/kleinberg-tardos/)
- Martin Fowler Refactoring. Improving the Design of Existing Code; Addison-Wesley, 1999. (http://refactoring.com/catalog/index.html)
- 4 Frentiu, M., H.F. Pop, Serban G. **Programming** Fundamentals; Cluj University Press, 2006
- Online Python resources https://docs.python.org/3/reference/index.html, https://docs.python.org/3/library/index.html, https://docs.python.org/3/tutorial/index.html

Activity and grading

Lecture 00

Lect. PhD. Arthur Molna

Introduction to course Schedule Objectives Course content Bibliography Activity and grading

- 40% Laboratory work (assignments and tests (L)
- 20% Written exam (during exam session) (W)
- 40% Practical test (during exam session) (T)
- **0 0.5p** Seminar activity (bonus to laboratory grade)
- 0 1p Additional laboratory activity (bonus to laboratory grade)

Passing the course

- Mandatory attendance to enter examination during 2022
- **L** grade \geq 5 to enter examination during regular session
- **L**, **T** and **W** grades all ≥ 5 to pass the course

Activity and grading

Lecture 00

Lect. PhD. Arthur Molna

Introduction to course Schedule Objectives Course content Bibliography Activity and grading

Grading example

Suppose your grades are:

- Laboratory 7
- Written 7.50
- Practical 6.80
- Seminar bonus 0.30
- Laboratory bonus 1

Your grade is calculated as: 0.4 * (7 + 0.3 + 1) + 0.2 * 7.5 + 0.4 * 6.8 = 7.54, final grade is 8

About the Practical Exam

Lecture 00

Lect. PhD. Arthur Molna

Introduction to course Schedule Objectives Course content Bibliography Activity and grading

About the Practical Exam

- Only working functionalities are graded
- Everything required for implementation will be studied
- Each problem will be interesting, in its own way
- Getting the extra points during the semester will help improve your grade

Course Rules

Lecture 00

Lect. PhD. Arthur Molna

ntroduction to course Schedule Objectives Course conten Bibliography Activity and grading

- Seminar attendance mandatory (10/14)
- Laboratory attendance mandatory (12/14)
- Without making attendance you can't enter the exam this year!
- Detailed rules for laboratory activities are on the General channel, Files section
- Be honest, solve the graded assignments by yourself, do not plagiarize!