

eNeuro

Figure-ground organization in natural scenes:
Performance of a recurrent neural model compared with neurons of area V2

Giulia D'Angelo, PhD student

eNeuro

Figure-ground organization in natural scenes:
Performance of a recurrent neural model compared with neurons of area V2

Publisher: Society for Neuroscience

Cite Score year 2019: 4.9

What do they do?

What do they do?

What do they do?

Why?

"some current computer vision approaches are able to achieve better performance than our model based on the evaluation metrics described above, but they require extensive training, i.e., tuning of a large number of parameters using large sets of training data. In contrast, our model is built based on first principles and does not require any specific form of training."

Grouping (G) cells

FEEDFORWARD connections

FEEDFORWARD/FEEDBACK connections

Russell, Alexander F., et al. "A model of proto-object based saliency." Vision research 94 (2014): 1-15.

Cell 13id4 (V2) C Α 6 8 6 8 0 D B 10° Time (sec.) Time (sec.)

Square Natural scene

75

0

0

100

200

300

Time (ms)

Zhou, Hong, Howard S. Friedman, and Rüdiger Von Der Heydt. "Coding of border ownership in monkey visual cortex." *Journal of Neuroscience* 20.17 (2000): 6594-6611.

Zhou, Hong, Howard S. Friedman, and Rüdiger Von Der Heydt. "Coding of border ownership in monkey visual cortex." *Journal of Neuroscience* 20.17 (2000): 6594-6611.

300

- different scales of the same computation
- observe mensel beappack of teachermanted of deaths and part of the posterior contractions of the posterior contractions of the posterior of

$$\begin{split} \mathscr{B}^k_{\theta,D}(x,y) = & \ 2\mathscr{S}^k_{\theta,D}(x,y) \\ & \times \frac{1}{1+\exp(-(\sum\limits_{j\geq k}\frac{1}{2^{j-k}}v_{\theta+\pi}(x,y)*\mathscr{G}^j_D(x,y)-\sum\limits_{j\geq k}\frac{1}{2^{j-k}}v_{\theta}(x,y)*\mathscr{G}^j_L(x,y)))} \end{split}$$

$$\mathscr{G}^k_L(x,y) = \left\lfloor \sum_{ heta} \left[\mathscr{B}^k_{ heta,L}(x,y) - \mathscr{B}^k_{ heta+\pi,L}(x,y)
ight] * v_{ heta}(x,y)
ight
floor$$

$$\mathscr{G}^k_D(x,y) = \left| \sum_{ heta} \left[\mathscr{B}^k_{ heta,D}(x,y) - \mathscr{B}^k_{ heta+\pi,D}(x,y)
ight] * v_{ heta}(x,y)
ight|$$

$$egin{aligned} \mathscr{G}^k_L(x,y) &\leftarrow egin{cases} \mathscr{G}^k_L(x,y) & ext{if } \mathscr{G}^k_L(x,y) > \mathscr{G}^k_D(x,y) \ & ext{otherwise} \end{aligned} \ \mathcal{G}^k_D(x,y) &\leftarrow egin{cases} \mathscr{G}^k_D(x,y) & ext{if } \mathscr{G}^k_D(x,y) > \mathscr{G}^k_L(x,y) \ & ext{otherwise} \end{aligned}$$

ONLY ONE CELL IS ACTIVE FOR EACH LOCATION

Bos achiety sumed outse _ + obsentations! Figure-Ground Original Image Edges Grouping

THEY PAN THE MODEL FOR ONLY TO ITERATIONS!

THEY DO UNT MEET TAINING!

Figure-ground organization in natural scenes:

Performance of a recurrent neural model compared with neurons of area V2

Figure-ground organization in natural scenes:

Performance of a recurrent neural model compared with neurons of area V2

ouly with 2 eterations!

Figure-ground organization in natural scenes:

Performance of a recurrent neural model compared with neurons of area V2

Figure-ground organization in natural scenes:

Performance of a recurrent neural model compared with neurons of area V2

POWER OF THE BRAIN

anexade raphertar

Table 1. Statistical analysis

Line	Data structure	Type of test	Power
a	Approximately normal	Bootstrap	p = 0.11
b	Approximately normal	Equivalence test	p = 0.03
c	Normal	Significance of correlation coefficient	p < 0.5

Table 2. F – SCORES

Contour-detection results on the BSDS-500 dataset

	Contour		
	ODS	OIS	AP
Human	0.80	0.80	-
Our approach	0.64	0.65	0.51
gPb-owt-ucm	0.73	0.76	0.73
SE	0.73	0.75	0.77
SRF	0.73	0.74	0.76

onoscode breastar per minode envise quitaset

Table 3.

Figure-ground assignment results

	Figure-ground
	Mean accuracy
Human	83.9%
Our approach	71.5%
SRF	74.7%
Global-CRF	68.9%
2.1D-CRF	69.1%

Figure-ground organization in natural scenes:
Performance of a recurrent neural model compared with neurons of area V2

Figure-ground organization in natural scenes:

Performance of a recurrent neural model compared with neurons of area V2

Code accessibility

https://github.com/brianhhu/FG_RNN

PROS

- good paper, it early be into exprime your • good paper, it early • good paper, it early
- It some to nak man
- est acce that the same of the
- otore sust go aparu tarde

CONS

- experiment bodien, too
 love of bot knows
 which of bos
- no good experimention of the number with authority to our output
- they arely snow I figure work work show they show the second with the second succession.

