ENS Rennes - Université de Rennes 1 Magistère - Master 1 Mathématiques

TD 3. Transformée de Fourier

Exercice 1. Calculer les transformées de Fourier des fonctions $L^1(\mathbb{R})$ suivantes :

- 1. $f = \mathbf{1}_{(a,b)}$ pour a < b. Vérifier également que $\hat{f} \notin L^1$
- 2. $f: x \mapsto e^{-zx^2}$ pour Re(z) > 0
- 3. $f: x \mapsto \frac{1}{1+x^2}$

Exercice 2. 1. Soit $f \in L^1(\mathbb{R}^d)$, montrer que \hat{f} est uniformément continue sur \mathbb{R}^d .

2. Soit $f \in L^1(\mathbb{R}^d)$, montrer que $\hat{f}(\xi) \to 0$ quand $|\xi| \to +\infty$.

Exercice 3. Déterminer les fonctions $f \in L^1(\mathbb{R}^d)$ telles que

$$f \star f = f$$

Exercice 4. Soit $f \in L^1(\mathbb{R})$ à support compact, montrer que \hat{f} s'étend en une fonction holomorphe sur tout \mathbb{C} .

Exercice 5. Soit $f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$, montrer que $\hat{f} \in L^2(\mathbb{R}^d)$ et qu'on a

$$\|\hat{f}\|_{L^2(\mathbb{R}^d)} = (2\pi)^{d/2} \|f\|_{L^2(\mathbb{R}^d)}$$

On suivra le schéma de preuve suivant :

1. En posant $\tilde{f}(x)=\overline{f(-x)}$ et $g=f\star \tilde{f}$, justifier que l'identité ci-dessus est équivalente à montrer que

$$(2\pi)^d g(0) = \int_{\mathbb{R}^d} \hat{g}$$

2. Conclure.

Exercice 6. Montrer que $\mathcal{F}: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ est continue. (On rappelle que la topologie dans $\mathcal{S}(\mathbb{R}^d)$ est donnée par la famille de semi-normes indexées par $\alpha, \beta \in \mathbb{N}^d: N_{\alpha,\beta}(f) := \|x^{\alpha}\partial^{\beta}f\|_{\infty}$).

Exercice 7. Soient $f, g \in \mathcal{S}(\mathbb{R}^d)$, montrer qu'on a

$$\int_{\mathbb{R}^d} f \, \overline{g} = (2\pi)^{-d} \int_{\mathbb{R}^d} \hat{f} \, \overline{\hat{g}}$$

Exercice 8. Soient $f \in L^2(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d)$. Montrer que $\hat{f}\hat{g} \in L^2(\mathbb{R}^d)$ et qu'on a l'égalité presque partout : $\hat{f}\hat{g} = f \star g$.

Exercice 9. Pour $n \in \mathbb{N}^*$, on note $g_n = \mathbf{1}_{[-n,n]}$ et $h = g_1 = \mathbf{1}_{[-1,1]}$.

- 1. Calculer explicitement $g_n \star h$ et représenter son graphe.
- 2. Montrer que $g_n \star h$ est la transformée de Fourier d'une fonction $f_n \in L^1(\mathbb{R})$, laquelle vaut (à constante multiplicative près) :

$$f_n = \frac{\sin x \sin nx}{x^2}$$

3. Montrer que $||f_n||_1 \to +\infty$ et conclure que $f \mapsto \hat{f}$ envoie L^1 dans un sous-espace strict de $C_0^0(\mathbb{R})$ (espace des fonctions continues qui tendent vers 0 à l'infini).

Exercice 10. Soit $f \in \mathcal{S}(\mathbb{R}^d)$ vérifiant $||f||_{L^2} = 1$. On note :

$$\langle x \rangle := \int_{\mathbb{R}^d} x |f(x)|^2 dx$$
 et $\langle \xi \rangle := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \xi |\hat{f}(\xi)|^2 d\xi$

1. On suppose dans cette question (et la suivante) que $\langle x \rangle = \langle \xi \rangle = 0$. Justifier la relation :

$$\int_{\mathbb{R}^d} |f|^2 dx = \frac{-1}{d} \int_{\mathbb{R}^d} x \cdot \nabla \left(|f|^2 \right) dx = \frac{-2}{d} \int_{\mathbb{R}^d} x \cdot \operatorname{Re} \left(\overline{f} \nabla f \right) dx$$

Puis calculer

$$\int_{\mathbb{R}^d} |\nabla f|^2 dx$$

2. En déduire que

$$\left(\int_{\mathbb{R}^d} |x|^2 |f(x)|^2 dx \right) \left(\int_{\mathbb{R}^d} |\xi|^2 |\hat{f}(\xi)|^2 \frac{d\xi}{(2\pi)^d} \right) \geqslant \frac{d^2}{4}$$

et étudier les cas d'égalité.

3. On ne suppose plus $\langle x \rangle = \langle \xi \rangle = 0$ et on considère la fonction :

$$g: x \in \mathbb{R}^d \mapsto e^{-i(\langle x \rangle - x) \cdot \langle \xi \rangle} f(\langle x \rangle - x)$$

Exprimer \hat{q} en fonction de \hat{f} et calculer

$$\int_{\mathbb{R}^d} x |g(x)|^2 dx \quad \text{et} \quad \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \xi |\hat{g}(\xi)|^2 d\xi$$

En déduire le principe d'incertitude de Heisenberg :

$$\left(\int_{\mathbb{R}^d} |x - \langle x \rangle|^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}^d} |\xi - \langle \xi \rangle|^2 |\hat{f}(\xi)|^2 \frac{d\xi}{(2\pi)^d}\right) \geqslant \frac{d^2}{4}$$