# ML Algorithms NEURAL NETWORKS



# **Class**A Detailed Look At Neural Networks



Topic



Inside a Linear Classifier

Estimating the parameters of a neural network:

Neurons function like logistic classifiers

Linear classifiers can be used to calculate a logistic classifier's parameters

#### Given features x1 and x2

- Binary response: green or blue
- Task: To find a linear decision boundary that best separates the **green** & **blue** dots



Rule: All points to the left of the line will be green while all points to right will be blue



• An infinite number of lines is possible



- An infinite number of lines is possible
- Is black or red the best choice for candidate decision boundaries?



This red line functions as a decision boundary



A binary classifier assigns all points to its right as **blue** and all points to its left as **green** 



#### The classifier makes 1 error here



- Observed color for that point in data is blue
- Classifier thinks this point to be green

#### Here's another classifier



The classifier has misclassified 2 points



- Error measure: The classifier has committed a bigger error with the red circle
- Misclassification measure: Both points are equally erroneously placed



**Qn**. Is misclassifying a **green** point as **blue** the same as misclassifying a **blue** point as **green**?



#### **Cost Function**

Components of a logistic classifier

*y:* the response

*x:* feature vectors

w. weights

 $h(x) = \frac{1}{1 + exp(-w.x)}$ : the sigmoid activation function

Cost Function:  $C = -y \log h(x) - (1 - y) \log(1 - h(x))$ 

#### Cost Function: Example 1

| Observation | x  | у |
|-------------|----|---|
| 1           | -2 | 0 |
| 2           | 5  | 1 |

$$w_0 = -2$$
  
 $w_1 = 1.5$   $C = -y \log h(x) - (1 - y) \log(1 - h(x))$ 

#### Cost Function: Example 1

| Observation | x  | у |
|-------------|----|---|
| 1           | -2 | 0 |
| 2           | 5  | 1 |

$$w_0 = -2$$
  
 $w_1 = 1.5$   $C = -y \log h(x) - (1 - y) \log(1 - h(x))$ 

#### **Observation 1**

$$h(x) = \frac{1}{1 + \exp(-(-2 + 1.5 X - 2))} = \frac{1}{1 + \exp(5)} = 0.01$$

$$Cost = -0 X \log(1 - 0.01) - (1 - 0) \log(1 - 0.01) = 0.02$$

**Exercise**: Calculate the cost for Observation 2



## Cost Function: Example 2

Sum of the costs of all data points is 0.16

| <b>x1</b> | x2  | у | h(x)     | Cost |
|-----------|-----|---|----------|------|
| -2        | 0.5 | 0 | 0.037327 | 0.02 |
| 0         | -2  | 0 | 0.000123 | 0.00 |
| 2.5       | 3.5 | 1 | 0.999999 | 0.00 |
| 1.7       | 1   | 1 | 0.982876 | 0.01 |
| 2         | 0   | 1 | 0.731059 | 0.14 |

$$w_0 = -2$$

$$w_1 = 1.5$$

$$w_2 = 3.5$$

#### **Cost Function**

- Choose the classifier with the minimum cost
- The corresponding weight values are selected to construct the final classifier

• 
$$C = y \log \frac{1}{1 + e^{-w \cdot x}} - (1 - y) \log \left( 1 - \frac{1}{1 + e^{-w \cdot x}} \right)$$

- **x** & **y** is known from the data
- Unknowns:  $\mathbf{w} = [w_1, w_2 w_3, ...]$
- C = C(w)
- Optimum classifier: -minimize C(w) w.r.t w

# Minimizing the Cost Function

Solve the minimization problem to find the optimum logistic classifier

- Minimization Problem: minimize C(w) w.r.t w
- Multivariate Optimization Function

$$C(\mathbf{w}) = \sum_{i=1}^{n} C_i(\mathbf{w}) = \sum_{i=1}^{n} y_i \log \frac{1}{1 + \exp(\mathbf{w}.\mathbf{x}_i)} - (1 - y_i) \log \left(1 - \frac{1}{1 + \exp(\mathbf{w}.\mathbf{x}_i)}\right)$$

## Minimizing the Cost Function

Solve the minimization problem to find the optimum logistic classifier

- Minimization Problem: minimize C(w) w.r.t w
- Multivariate Optimization Function

$$C(\mathbf{w}) = \sum_{i=1}^{n} C_i(\mathbf{w}) = \sum_{i=1}^{n} y_i \log \frac{1}{1 + \exp(\mathbf{w}.\mathbf{x}_i)} - (1 - y_i) \log \left(1 - \frac{1}{1 + \exp(\mathbf{w}.\mathbf{x}_i)}\right)$$

- Find the minimum value of this multivariate function
- Find those values for the weights for which Function C is minimum

# Recap

- Inside a Linear Classifier
- Error for a Classifier
- Cost Function
- Cost Function: Example 1
- Minimizing the Cost Function



#### **JIGSAW ACADEMY**

THE ONLINE SCHOOL OF ANALYTICS