In [13]:

```
#Importing Data
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('musk_csv.csv')
```

In [14]:

```
print(df.shape)
df.head(5)
```

(6598, 170)

Out[14]:

	ID	molecule_name	conformation_name	f1	f2	f3	f4	f5	f6	f7	 f158	Ī
0	1	MUSK-211	211_1+1	46	-108	-60	-69	-117	49	38	 -308	ļ
1	2	MUSK-211	211_1+10	41	-188	-145	22	-117	-6	57	 -59	
2	3	MUSK-211	211_1+11	46	-194	-145	28	-117	73	57	 -134	-
3	4	MUSK-211	211_1+12	41	-188	-145	22	-117	-7	57	 -60	-
4	5	MUSK-211	211_1+13	41	-188	-145	22	-117	-7	57	 -60	-

5 rows × 170 columns

In [15]:

```
print(df.molecule_name.describe())
print(df.conformation_name.describe())
```

```
count 6598
unique 102
top NON-MUSK-j146
freq 1044
```

Name: molecule_name, dtype: object

count 6598 unique 6598 top j146_4+5 freq 1

Name: conformation_name, dtype: object

Processing molecule_name

molecule_name has 102 unique values but the name also itself defines whether the chemical is MUSK or NON-MUSK i.e the classification task.

In [16]:

```
#Cleaning molecule name
from tqdm import tqdm
import re
processed_molecular_name = []
for sentance in tqdm(df['molecule_name'].values):
    sentance = re.sub(r"-", " ", sentance)
    sentance = re.sub("\S*\d\S*", "", sentance).strip()
    sentance = re.sub("[^a-zA-Z]+", "", sentance)
    sentance = ' '.join(e.lower() for e in sentance.split())
    processed molecular name.append(sentance.strip())
#adding processed molecule name to dataframe
df['molecule_name_processed'] = processed_molecular_name
#Label Encoding molecule_name_processed to convert it into numerical form
from sklearn.preprocessing import LabelEncoder
LE = LabelEncoder()
df['molecule_name_processed'] = LE.fit_transform(df['molecule_name_processed'])
                                        | 6598/6598 [00:00<00:00, 76756.28
100%
it/s]
```

In [17]:

```
df.head(5)
```

Out[17]:

	ID	molecule_name	conformation_name	f1	f2	f3	f4	f5	f6	f7	 f159	1
0	1	MUSK-211	211_1+1	46	-108	-60	-69	-117	49	38	 52	
1	2	MUSK-211	211_1+10	41	-188	-145	22	-117	-6	57	 -2	ļ
2	3	MUSK-211	211_1+11	46	-194	-145	28	-117	73	57	 -154	ţ
3	4	MUSK-211	211_1+12	41	-188	-145	22	-117	-7	57	 -4	į
4	5	MUSK-211	211_1+13	41	-188	-145	22	-117	-7	57	 -4	ţ

5 rows × 171 columns

Sliptting Data into train(0.8) and test(0.2)

Note :- molecule_name_processed is dropped from the features as it would easily predict the classes.

In [18]:

```
#Seperating features and classes
x = df.drop(['conformation_name', 'class', 'molecule_name', 'ID', 'molecule_name_process
ed'], axis = 1)
y = df['class']

#Converting classes vector (integers) to binary class matrix to use it with categorical
_crossentropy.
from keras.utils import to_categorical
y = to_categorical(y)

#Train Test Split
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, Y_test = train_test_split(x, y, test_size = 0.2, random_state
= 0)
print("Shape of Training Set = ", x_train.shape)
```

Shape of Training Set = (5278, 166)

Standardizing the features

In [19]:

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
x_train = ss.fit_transform(x_train)
x_test = ss.transform(x_test)
```

MLP Model

- 1. MLP Model is chosen as its simple, robust and works well for classification tasks.
- 2. As the data available for training is very less so deeper NN might not work well.
- 3. Dense layers with 64,32,32 units are used along with relu activation function.
- 4. To prevent overfitting I2 regularization and Dropout are used.
- 5. Categorical_crossentropy is used over binary_crossentropy to easily convert probabilistic output to class labels using argmax.

In [21]:

```
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers.normalization import BatchNormalization
from keras.layers import Dropout
from keras import regularizers
import keras
reg = regularizers.12(0.001)
input_dim = x_train.shape[1]
batch size = 64
n_{epoch} = 25
output dim = 2
model = Sequential()
model.add(Dense(64, activation= 'relu',input_shape=(input_dim,), activity_regularizer=r
eg))
model.add(Dropout(0.20))
model.add(Dense(32, activation= 'relu',activity_regularizer = reg))
model.add(Dense(32, activation= 'relu', activity_regularizer = reg))
model.add(Dense(output_dim, activation = "sigmoid"))
model.summary()
model.compile(optimizer = "adam", loss='categorical_crossentropy', metrics=['accuracy'
1)
result = model.fit(x_train,y_train, batch_size=batch_size, epochs=n_epoch, verbose=2, v
alidation_data=(x_test, Y_test))
```

Layer (type)	Output Shape	Param #
dense_9 (Dense)	(None, 64)	10688
dropout_3 (Dropout)	(None, 64)	0
dense_10 (Dense)	(None, 32)	2080
dense_11 (Dense)	(None, 32)	1056
dense_12 (Dense)	(None, 2)	66

Total params: 13,890

```
Trainable params: 13,890
Non-trainable params: 0
Train on 5278 samples, validate on 1320 samples
Epoch 1/25
 - 1s - loss: 1.8836 - acc: 0.7779 - val_loss: 0.9234 - val_acc: 0.8485
Epoch 2/25
 - 0s - loss: 0.7528 - acc: 0.8452 - val_loss: 0.6135 - val_acc: 0.8485
Epoch 3/25
 - 0s - loss: 0.5590 - acc: 0.8452 - val_loss: 0.4936 - val_acc: 0.8485
Epoch 4/25
 - 0s - loss: 0.4567 - acc: 0.8463 - val_loss: 0.4020 - val_acc: 0.8568
Epoch 5/25
 - 0s - loss: 0.3788 - acc: 0.9032 - val_loss: 0.3512 - val_acc: 0.9492
Epoch 6/25
 - 0s - loss: 0.3324 - acc: 0.9416 - val_loss: 0.3048 - val_acc: 0.9538
Epoch 7/25
 - 0s - loss: 0.3003 - acc: 0.9515 - val_loss: 0.2754 - val_acc: 0.9636
Epoch 8/25
 - 0s - loss: 0.2701 - acc: 0.9600 - val_loss: 0.2519 - val_acc: 0.9598
Epoch 9/25
 - 0s - loss: 0.2489 - acc: 0.9665 - val_loss: 0.2334 - val_acc: 0.9712
Epoch 10/25
 - 0s - loss: 0.2371 - acc: 0.9714 - val_loss: 0.2241 - val_acc: 0.9644
Epoch 11/25
 - 0s - loss: 0.2284 - acc: 0.9651 - val_loss: 0.2669 - val_acc: 0.9462
Epoch 12/25
 - 0s - loss: 0.2044 - acc: 0.9740 - val_loss: 0.2162 - val_acc: 0.9614
Epoch 13/25
 - 0s - loss: 0.1929 - acc: 0.9756 - val loss: 0.1826 - val acc: 0.9742
Epoch 14/25
 - 0s - loss: 0.1883 - acc: 0.9754 - val_loss: 0.1970 - val_acc: 0.9682
Epoch 15/25
 - 0s - loss: 0.1825 - acc: 0.9756 - val_loss: 0.1644 - val_acc: 0.9811
Epoch 16/25
 - 0s - loss: 0.1734 - acc: 0.9790 - val loss: 0.1875 - val acc: 0.9712
Epoch 17/25
 - 0s - loss: 0.1732 - acc: 0.9763 - val_loss: 0.1802 - val_acc: 0.9727
Epoch 18/25
 - 0s - loss: 0.1544 - acc: 0.9831 - val_loss: 0.1503 - val_acc: 0.9833
Epoch 19/25
 - 0s - loss: 0.1595 - acc: 0.9797 - val_loss: 0.1707 - val_acc: 0.9742
Epoch 20/25
 - 0s - loss: 0.1618 - acc: 0.9782 - val_loss: 0.1662 - val_acc: 0.9780
Epoch 21/25
 - 0s - loss: 0.1511 - acc: 0.9799 - val_loss: 0.1652 - val_acc: 0.9750
Epoch 22/25
```

```
- 0s - loss: 0.1539 - acc: 0.9786 - val_loss: 0.1794 - val_acc: 0.9689

Epoch 23/25
- 0s - loss: 0.1438 - acc: 0.9812 - val_loss: 0.1393 - val_acc: 0.9750

Epoch 24/25
- 0s - loss: 0.1375 - acc: 0.9812 - val_loss: 0.1387 - val_acc: 0.9803

Epoch 25/25
- 0s - loss: 0.1357 - acc: 0.9831 - val_loss: 0.1256 - val_acc: 0.9886
```

Plotting and printing Metrics

In [22]:

```
test_loss = result.history['val_loss']
train_loss = result.history['loss']
test_acc = result.history['val_acc']
train_acc = result.history['acc']
n_epoch_lst = list(range(1,n_epoch+1))
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(18,8))
#Plotting Train vs Validation loss
ax1 = plt.subplot(121)
ax1.plot(n_epoch_lst,test_loss, label='Validation_loss' )
ax1.plot(n_epoch_lst,train_loss, label='Training_loss')
plt.legend()
plt.title('Train vs Validation Loss')
#Plotting Train vs Validation Accuracy
ax2 = plt.subplot(122)
ax2.plot(n_epoch_lst,test_acc, label='Validation_Accuracy' )
ax2.plot(n_epoch_lst,train_acc, label='Training_Accuracy')
plt.legend()
plt.title('Train vs Validation Accuracy')
plt.plot()
```

Out[22]:

[]

In [23]:

```
#Printing Training and Validation - Accuracy & Loss
score = model.evaluate(x_test, Y_test, verbose = 0)
print('Validation Loss',score[0])
print('Validation Accuracy',score[1]*100)
print('*'*20)
print('Train loss',train_loss[-1])
print('Train Accuracy',train_acc[-1]*100)
#Predicting classes from validation set
Y pred = model.predict(x test)
#Converting Probabilistic prediction Output to Class labels (Musk or Non-Musk)
Activities = {0:'Non-Musk',1:'Musk'}
y_pred = pd.Series([Activities[y] for y in np.argmax(Y_pred, axis=1)])
y_test = pd.Series([Activities[y] for y in np.argmax(Y_test, axis=1)])
#Confusion Matrix
from sklearn.metrics import confusion matrix
cm=confusion_matrix(y_test, y_pred)
print(cm)
labels=['Musk','Non-Musk']
cm_df = pd.DataFrame(cm,index=labels, columns =labels)
#Confusion Matrix Heatmap
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(8,8))
sns.heatmap(cm_df, annot=True, fmt='d', cmap='cool', linewidth=5)
plt.xlabel('Predicted values')
plt.ylabel('True values')
plt.xticks(rotation=90)
plt.title('Confusion Matrix')
plt.show()
```


In [24]:

#Using classification report to print other metrics (F1-score, Precision, Recall)
from sklearn import metrics
classificationreport = metrics.classification_report(y_test, y_pred)
print(classificationreport)

	precision	recall	f1-score	support
Musk Non-Musk	0.97 0.99	0.95 0.99	0.96 0.99	200 1120
micro avg	0.99	0.99	0.99	1320
macro avg	0.98	0.97	0.98	1320
weighted avg	0.99	0.99	0.99	1320