Programação Linear - método simplex dual Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

12 de novembro de 2020

Dualidade

antes

 Quando não há uma solução (vértice) admissível inicial, usámos a primeira fase do Método das 2 Fases para a obter.

Guião

- O método simplex dual pode ser usado quando existe uma solução (vértice) dual admissível inicial e não existe uma solução primal admissível inicial.
- As regras do método simplex dual garantem que se mantém uma solução dual admissível, enquanto se procura uma solução primal admissível.
- Quando isso acontecer, a solução é óptima, como vimos na teoria da dualidade.

depois

• O método simplex dual é usado no método dos planos de corte, para reoptimizar o quadro depois de inserir um plano de corte.

Método simplex dual

- Estratégia
- Algoritmo
- Exemplo

Método simplex dual: estratégia

Teorema: um quadro simplex é óptimo se a solução:

- for admissível para o problema primal,
- for admissível para o problema dual, e
- obedecer ao teorema da folga complementar.

ou seja: um quadro simplex é óptimo se:

- os coeficientes do lado direito forem todos ≥ 0 ,
- os coeficientes da linha da função objectivo forem
 - todos ≤ 0 num problema de minimização, ou
 - todos ≥ 0 num problema de maximização,
- a matriz identidade existir.

Estratégia:

 Quando existe uma solução admissível para o problema dual, o algoritmo simplex dual mantém a solução admissível para o dual, e procura encontrar uma solução admissível para o primal.

Método simplex dual: como começar?

Para obter a matriz $I_{m \times m}$ no quadro simplex:

• dado um problema de minimização em que $c \ge \widetilde{0}$:

$$min z = cx$$

$$Ax - u = b$$

$$x, u \ge 0$$

resolver:

$$min z = cx$$

$$-Ax + u = -b$$

$$x, u \ge 0$$

O quadro simplex irá apresentar:

- uma solução (primal) não-admissível, porque pode haver elementos do lado direito com valores < 0.
- uma solução dual admissível.

Exemplo (problema de minimização)

• Dado o quadro simplex sem uma matriz identidade $(I_{m \times m})$ e em que os elementos da linha da função objectivo são não-negativos:

	z_D	y_1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
	0	-1	0	3	1	1	12
	0	0	-1	2	2	0	10
z_D	1	0	0	-120	-80	-30	0

• obtém-se a $I_{m \times m}$ multiplicando as equações das restrições por (-1):

	z_D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	-3	-1	-1	-12
<i>y</i> 2	0	0	1	-2	-2	0	-10
z_D	1	0	0	-120	-80	-30	0

A selecção do elemento pivô no método simplex dual destina-se a:

- manter a solução dual admissível (em problemas de minimização, todos os elementos da linha da função objectivo com valor ≤ 0).
- procurar obter uma *solução primal* admissível (todos os elementos do lado direito ≥ 0.)

Algoritmo simplex dual (problema de minimização):

- Vértice dual admissível inicial (todos os coeficientes da linha da função objectivo são não-positivos, i.e., $c \leq \tilde{0}$) (*)
- Repetir
 - Selecção da linha pivô:
 - Coeficiente mais negativo do lado direito
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da coluna pivô:
 - Menor valor absoluto da razão (f.objectivo/linha pivô) negativa $(coef.linha<0)^{(**)}$
 - Se não existir coef.linha <0, problema é impossível.
 - Fazer eliminação de Gauss
- Enguanto (solução não for óptima)
- nota: o elemento pivô tem sempre valor negativo.

^(*) O contrário para problemas de maximização.

^(**) Valor absoluto para se aplicar também em problemas de maximização.

Exemplo: primeira iteração do método simplex dual

	z_D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	-3	-1	-1	-12
<i>y</i> 2	0	0	1	-3 -2	-2	0	-10
z_D	1	0	0	-120	-80	-30	0

- Linha pivô: linha de y_1 (coeficiente mais negativo é -12).
- Coluna pivô: coluna de y_5 (menor valor absoluto das razões negativas é 30):
 - coluna de $y_3 : |-120/-3| = 40$
 - coluna de $y_4 : |-80/-1| = 80$
 - coluna de $y_5: |-30/-1| = 30$

	z_D	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₅	0	-1	0	3	1	1	12
<i>y</i> 2	0	0	1	-2	1 -2	0	-10
z_D	1	-30	0	-30	-50	0	360

Exemplo: restantes iterações do método simplex dual

	z _D	y_1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₅	0	-1	0	3	1	1	12
<i>y</i> 2	0	0	1	-2	-2	0	-10
z_D	1	-30	0	-30	-50	0	360
	z_D	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 5	0	-1	3/2	0	-2	1	-3
<i>y</i> 3	0	0	-1/2	1	1	0	5
z_D	1	-30	-15	0	-20	0	510
	z_D	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 4	0	1/2	-3/4	0	1	-1/2	3/2
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	7/2
z_D	1	-20	-30	0	0	-10	540

Solução óptima.

Método simplex dual: problema impossível

Um problema (primal) é impossível se existir:

- uma linha com um coeficiente negativo do lado direito e com todos os coeficientes das variáveis não-básicas não-negativos (≥0).
- Exemplo:

	z_D	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	3	1	1	-12
<i>y</i> ₂	0	0	1	-2	-2	0	-10
z_D	1	0	0	-120	-80	-30	0

- Nota: na linha de y₁, os coeficientes das variáveis y₃, y₄ e y₅ são ≥ 0 (não há um elemento pivô negativo).
- O problema é impossível, porque nenhum conjunto
 y₁, y₂, y₃, y₄, y₅ ≥ 0 satisfaz a restrição: y₁ + 3y₃ + y₄ + y₅ = -12.
- Neste caso, o problema dual tem uma solução óptima ilimitada (⇒ problema primal impossível, da teoria da dualidade).

Conclusão

- O facto do quadro simplex conter informação sobre as soluções primal e dual permite conceber algoritmos alternativos para encontrar a solução óptima.
- No caso de o quadro inicial não conter uma solução primal admissível inicial, nem uma solução dual admissível inicial requer o uso do método das 2 Fases.

Apêndice

Método Simplex Dual ou 2 Fases?

- O método simplex dual só pode ser usado se os coeficientes da linha da função objectivo do quadro simplex tiverem todos o sinal que devem ter na solução óptima, ou seja, se forem:
 - todos não-positivos (≤0) num problema de minimização, ou
 - todos não-negativos (≥0) num problema de maximização.
- Caso haja algum coeficiente da linha da função objectivo que não tenha o sinal devido, o Método Simplex Dual não pode ser usado, e é necessário recorrer ao Método das 2 Fases, ou seja, usar a primeira fase para obter uma solução admissível inicial para o problema primal, e depois usar o método simplex (primal).

◀ Voltar

Fim