Digital Systems Design and Laboratory [16. Sequential Circuit Design]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Sequential Logic Design

- ☐ Unit 11: Latches and Flip-Flops
- ☐ Unit 12: Registers and Counters
- ☐ Units 13--15: Finite State Machines
- ☐ Unit 16: Summary
- ☐ Designing a sequential circuit
 - Construct a state graph or state table (Unit 14)
 - Simplify it (Unit 15)
 - Derive flip-flop input equations and output equations (Unit 12)

Outline

- **□** Design Example --- Code Converter
- ☐ Design of Iterative Circuits
- Summary

BCD to Excess-3 Conversion

- ☐ Add 3 to BCD (0--9)
- ☐ Serial I/O with the LSB first

☐ Reset to initial stateafter receiving 4 inputs

BCB wde + 3

X Input (BCD)	Z Output (Excess-3)
$t_3 t_2 t_1 t_0$	$t_3 t_2 t_1 t_0$
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100
7 Others	xxxx
1. 11 19	

" BUD 7 40~9

1. 717 hb others - Don't come

State Graph

X	Z
$t_3 t_2 t_1 t_0$	$t_3 t_2 t_1 t_0$
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111 3y 6b以为.
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100
Others	xxxx

State Table

Time	Input	Present	Next	State	Present	Output
Time	Sequence	State	X = 0	X = 1	X = 0	X = 1
t _o	Reset	Α	В	С	1	0
+	O _{LSB}	В	D	F	1	0
t ₁	1 _{LSB}	С	E	G	0	1
	00 _{LSB}	D	Н	L	0	1
+	01 _{LSB}	E	I	M	1	0
t_2	10 _{LSB}	F	J	N	1	0
	11 _{LSB}	G	K	Р	1	0
	000 _{LSB}	Н	А	Α	0	1
	001 _{LSB}	1	А	Α	0	1
	010 _{LSB}	J	А	-	0	-
+	011 _{LSB}	K	А	-	0	-
t_3	100 _{LSB}	L	А	-	0	-
	101 _{LSB}	M	А	-	1	-
	110 _{LSB}	N	А	-	1	-
	111 _{LSB}	Р	iv. A	-	1	-

State Reduction (1/3)

■ Row matching

- $ightharpoonup M \equiv N \equiv P$
- $ightharpoonup H \equiv I \equiv J \equiv K \equiv L$
 - Use don't cares

Time	Input	Present	resent Next State		Present Output	
Time	Sequence	State	X = 0	X = 1	X = 0	X = 1
t_0	Reset	А	В	С	1	0
+	O _{LSB}	В	D	F	1	0
t ₁	1 _{LSB}	С	E	G	0	1
	OO _{LSB}	D	Н	$\Gamma \rightarrow H$	0	1
	01 _{LSB}	Е	I → H	M	1	0
t_2	10 _{LSB}	F	J → H	$N \rightarrow M$	1	0
	11 _{LSB}	G	$K \rightarrow H$	$P \rightarrow M$	1	0
	000 _{LSB}	Н	А	Α	0	1
	001 _{LSB}		А	А	0	1
	010 _{LSB}	J	А	-	0	-
	011 _{LSB}	K	А	-	0	-
t ₃	100 _{LSB}	L	А	-	0	-
	101 _{LSB}	М	Α	-	1	-
	110 _{LSB}	N	А	-	1	-
	111 _{LSB}	Р	А	-	1	-

State Reduction (2/3)

■ Row matching

$$\triangleright$$
 E \equiv F \equiv G

Timo	Input	Present	Next	State	Present	Output
Time	Sequence	State	X = 0	X = 1	X = 0	X = 1
t _o	Reset	А	В	С	1	0
+	O _{LSB}	В	D	$F \rightarrow E$	1	0
t ₁	1 _{LSB}	С	E	$G \rightarrow E$	0	1
	OO _{LSB}	D	Н	Н	0	1
+	01 _{LSB}	E	Н	M	1	0
t ₂	10 _{LSB}	F	Н	M	1	0
	11 _{LSB}	G	Н	M	1	0
	000 _{LSB}	Н	Α	Α	0	1
	001 _{LSB}	1	А	А	0	1
	010 _{LSB}	J	А	-	0	-
	011 _{LSB}	K	А	-	0	-
t ₃	100 _{LSB}	L	А	-	0	-
	101 _{LSB}	М	Α	-	1	-
	110 _{LSB}	N	Α	-	1	-
	111 _{LSB}	Р	А	-	1	-

State Reduction (3/3)

7 states

Time	Present	Next	State	Present	Output
Tillle	State	X = 0	X = 1	X = 0	X = 1
t _o	А	В	С	1	0
+	В	D	E	1	0
t ₁	С	Е	Е	0	1
+	D	Н	Н	0	1
t ₂	Е	Н	M	1	0
	Н	А	Α	0	1
t ₃	М	А	-	1	~

State Assignment

不是在放法

- ☐ To simplify the next state functions
 - ➤ (B,C), (D,E), (H,M) should be adjacent
- ☐ To simplify the output functions
 - ➤ (A,B,E,M), (C,D,H) should be adjacent

Q_1	0	1).
00	Α	В	
01		С	
11	Ι	D	
10	M	Ε	

Time	Present	Next	State	Present	Output
Tille	State	X = 0	X = 1	X = 0	X = 1
t _o	А	В	С	1	0
+	В	D	E	1	0
t ₁	С	Ε	E	0	1
	D	Н	Н	0	1
t ₂	Е	Н	М	1	0
_	Н	Α	Α	0	1
t ₃	М	А	-	1	-

		Next	State	Present	Output
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	X = 1
Α	000	100	101	1	0
В	100	111	110	1	0
С	101	110	110	0	1
D	111	011	011	0	1
Е	110	011	010	1	0
Н	011	000	000	0	1
M	010	000	XXX	1	X
-	001	XXX	XXX	X	X

有相同MUITATE
一种是放在一种

Choose Flip-Flops and Derive Equations

- □ Choose D flip-flops 最级、相解我。
- ☐ Derive flip-flop input & output equations (by K-maps)

$$> D_1 = Q_1^+ = Q_2^+$$

$$\triangleright D_2 = Q_2^+ = Q_1$$

$$\triangleright$$
 D₃ = Q₃⁺ = Q₁Q₂Q₃ + X'Q₁Q₃' + XQ₁'Q₂'

	Z =	X'Q	,' +	XQ_3
--	-----	-----	------	--------

	0.00	Next	State	Present	Output
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	X = 1
A	000	100	101	1	0
В	100	111	110	1	0
С	101	110	110	O	1
D	111	011	011	0	1
E	110	011	010	1	0
Н	011	000	000	0	1
М	010	000	XXX	1	Χ
-	001	XXX	XXX	Х	X

Q	$_{2}Q_{3}^{1}$	0	1	
ancl	00	Α	В	
aps)	01		С	
	11	Н	D	
	10	М	Е	
	,			

\ O.

Q_2Q_3	Q ₁ 00	01	11	10
00	1	1	0	0
01	Х	0	1	Х
11	0	0	1	1
10	1	1	0	Х
		_	7	

Circuit Realization

Outline

- ☐ Design Example --- Code Converter
- **□** Design of Iterative Circuits
- Summary

Sequential Comparator

☐ Iterative circuit for comparing binary numbers

- $> X = X_1 X_2 X_3 ... X_n$
- $> Y = Y_1 Y_2 Y_3 ... Y_n$
- \triangleright Time: $t_1t_2t_3...t_n$

State Table and State Assignment

				1		2727	20 %
Present	Next State				Output		
State	$X_i Y_i = 00$	01	11	10	Z ₁	Z_2	Z ₃
(X=Y) S ₀	S ₀	S ₂	S ₀	$\int S_1$	0	1	0
(X>Y) S ₁	S_1	S ₁	S ₁	S ₁	0	0	1
(X <y) s<sub="">2</y)>	S ₂	S ₂	S ₂	S ₂	1	0	0

A_iB_i	$A_{i+1}B_{i+1}$				Output		
	$X_i Y_i = 00$	01	11	10	Z ₁	Z ₂	Z_3
(X=Y) S ₀	00	10	00	01	0	1	0
(X>Y) S ₁	01	01	01	01	0	0	1
(X <y) s<sub="">2</y)>	10	10	10	10	1	0	0

Choose Flip-Flops and Derive Equations

- ☐ Choose D flip-flops
- ☐ Derive flip-flop input equations and output equations
 - (By the Karnaugh maps)

$$\triangleright A_{i+1} = A_i + X_i'Y_iB_i'$$

$$\triangleright$$
 B_{i+1} = B_i +X_iY_i'A_i'

Output circuit

$$\geq Z_1 = A_{n+1}$$

$$> Z_2 = A'_{n+1}B'_{n+1}$$

$$> Z_3 = B_{n+1}$$

Circuit Realization

Outline

- ☐ Design Example --- Code Converter
- ☐ Design of Iterative Circuits
- **□** Summary

Summary

- ☐ Problem statement
- ☐ "Initial" state graph and table generation
 - ➤ Unit 14
- ☐ State reduction
 - ➤ Unit 15
- ☐ State assignment
 - ➤ Unit 15
- ☐ Choice of flip-flops
 - ➤ Unit 11
- Derivation of flip-flop input equations and output equations
 - ➤ Unit 12
- ☐ Circuit realization and timing chart

Q&A