Anneaux et Arithmétique - Contrôle continu 3

L3, semestre 2 (2012-2013)

Université Rennes I

Durée: 1h30 heure

Calculatrices et documents interdits. Justifiez toutes vos réponses, une rédaction détaillée est attendue.

Exercice 1

a) Soit $f: A \to B$ un morphisme d'anneaux entre deux anneaux commutatifs A, B. Soit $I \subset B$ un idéal engendré par un ensemble fini $y_1, ..., y_k$. Soient $x_1, ...x_k$ des préimages par f des $(y_i)_{1 \le i \le k}$. Montrez que l'idéal $f^{-1}(I)$ est l'idéal engendré par $\ker(f)$ et $x_1, ...x_k$.

b) Montrez que $\mathbb{Z}[X]/(7, X-1)$ est isomorphe à $\mathbb{Z}/7\mathbb{Z}$.

<u>Problème</u>

Si X est un espace topologique, on note $C^0(X)$ l'ensemble des fonctions continues de X dans \mathbb{R} . On rappelle le résultat de topologie suivant :

Lemme 1 (Tietze-Urysohn) Soient X, Y deux espaces compacts, avec $Y \subset X$. Pour toute fonction $f \in C^0(Y)$, il existe une fonction $g \in C^0(X)$ qui prolonge f, c'est à dire $g_{|Y} = f$.

Dans tout le problème, X est un espace topologique compact, non vide. On n'hésitera pas à supposer pour simplifier certaines réponses que X est un espace métrique, bien que cela ne soit pas nécessaire.

- 1) Montrez que $C^0(X)$, muni de l'addition et la multiplication ponctuelle de fonctions, est un sous-anneau de $\mathcal{F}(X,\mathbb{R})$, l'anneau des fonctions de X dans \mathbb{R} .
- 2) Soit $Y \subset X$ un sous-ensemble fermé de X. On considère l'application de restriction :

$$R_Y: C^0(X) \to C^0(Y)$$

 $f \mapsto f_{|Y}.$

et on note $\mathcal{I}(Y) = \{ f \in C^0(X) : \forall y \in Y, f(y) = 0 \}$. Montrez que R_Y est un morphisme d'anneaux, et que $\mathcal{I}(Y)$ est un idéal.

- 3) Montrez que $C^0(X)/\mathcal{I}(Y)$ est isomorphe à $C^0(Y)$.
- 4) Montrez que, si X contient exactement 2 points, $C^0(X)$ n'est pas intègre.
- 5) Montrez que $C^0(X)$ est intègre si et seulement si X est réduit à un point, et que dans ce cas, $C^0(X)$ est un corps.
- 6) Pour $Y\subset X$ un fermé, montrez que les trois propriétés suivantes sont équivalentes :
 - 1. $\mathcal{I}(Y)$ est maximal.
 - 2. $\mathcal{I}(Y)$ est premier.
 - 3. Y est un point.
- 7) Pour I un idéal de $C^0(X)$, on note $\mathcal{V}(I) = \bigcap_{f \in I} f^{-1}(0)$. Montrez que $\mathcal{V}(I)$ est compact. Montrez que $I \subset \mathcal{I}(\mathcal{V}(I))$.
- 8) Montrez que pour $Y \subset X$ fermé, $\mathcal{V}(\mathcal{I}(Y)) = Y$.
- 9) Soit I un idéal tel que $\mathcal{V}(I) = \emptyset$.
- a) Montrez que pour tout $x \in X$, il existe $f \in I$ et un ouvert U contenant x tels que f ne s'annule pas sur U.
- b) En déduire qu'il existe une famille finie de fonctions $F \subset I$ telle que $\cap_{f \in F} f^{-1}(0) = \emptyset$.

- 10) Même hypothèses et notations que le 9), montrez, en considérant $\sum_{f \in F} f^2$, que $I = C^0(X)$.
- 11) En déduire que les idéaux maximaux de $C^0(X)$ sont exactement les $\mathcal{I}(\{x\})$, pour x parcourant X.
- 12) Dans cette question et cette question seulement, on suppose que X est l'intervalle $[0;1]\subset\mathbb{R}$. Soit I l'ensemble des fonctions continues qui s'annulent sur l'intervalle $[0,\epsilon]$ pour un certain $\epsilon>0$ dépendant de la fonction. Montrez que I est un idéal. Décrivez $\mathcal{V}(I)$, et montrez que $I\neq\mathcal{I}(\mathcal{V}(I))$.
- 13) Soit Y un compact de X, montrez que $\mathcal{I}(Y)$ est un sous-espace vectoriel fermé de $C^0(X)$ pour la topologie de la convergence uniforme sur $C^0(X)$.
- 14*) Soit I un idéal de $C^0(X)$. Montrez que pour tout voisinage ouvert U de $\mathcal{V}(I)$, il existe $f \in I$ telle que f = 1 sur le complémentaire de U, et $|f| \leq 1$. Montrez que si I est fermé pour la topologie de la convergence uniforme, alors $I = \mathcal{I}(\mathcal{V}(I))$. (Nullstellensatz dans le cas des fonctions continues)