

Microprocessor

5th Week: Port Input Part 1

System sw Lab
HANYANG UNIVERSITY

Review: registers.DDR

- ◆ DDRx (Data Direction Register) configures data direction of port pins.
- \bullet x = A, B, C, D, E, F, G
- ◆ Setting determines whether port pins will be used for input or output.
- ◆ Writing **0** to a bit in DDRx makes corresponding port pin as **input**.
- ◆ Writing 1 to a bit in DDRx makes corresponding port pin as output.
- ◆ Pin number: 7 to 0
- \triangleright Ex1) To make all pins of A as input pins: DDRA = 0b00000000;
- > Ex2) To make all pins of B as output pins : DDRB = 0b111111111;
- \checkmark 0b0000000(binary) = 0x00(hexadecimal) = 0(decimal)
- \checkmark 0b1111111(binary) = 0xFF(hexadecimal) = 255(decimal)

Review: registers.PORT

- ◆ Write data into respective bits in PORTx register.
- x = A, B, C, D, E, F, G
- ◆ Immediately change state of output pins according to data.

> Ex)

DDRB = 0b111111111; //set all pins of B as outputs

PORTB = 0xFF; //write "11111111" on port B

PORTB = 0x00; //write "00000000" on port B

registers.PIN

- ◆ Read data respective bits in PINx register.
- \bullet x = A, B, C, D, E, F, G
- ◆ Automatically stores information values such as switches connected to the outside
- **>** Ex)

DDRB = 0b00000000; //set all pins of B as inputs input_data = PINB; //write PINB's state to variable input_data

switches

- ◆ Switches are electronic components that connect or disconnect the path of electrons.
- ◆ There are 4 kinds of switches in our kit.
 - Push Button
 - DIP Switch
 - Rotary Switch
 - 3 x 4 Keypad -> Next Week

switches

pushButton

- ◆ Normally it is always open(0), but it only closes while it is pressed(1).
- ◆ [Push Button 1:Push Button 8] -> [BT0:BT7]

pushButton.1

```
#include<avr/io.h>
int main(void)
    unsigned char input_data;
    DDRD=0x00;
    DDRB=0xFF;
    while(1)
        input_data = PIND;
        PORTB = input_data;
```

pushButton.2

PORTB -> LED										
MCU	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0		
LED	LED7	LED6	LED5	LED4	LED3	LED2	LED1	LED0		

PORTD -> Push Button										
MCU	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0		
switch	BT7	BT6	BT5	BT4	BT3	BT2	BT1	ВТО		

pushButton.3

dipSwitch

- ◆ Exactly the same as the push button.
- ◆ Below means 0, above means 1.
- ◆ [DIP Switch 1:DIP Switch 8] -> [DIP0:DIP7]

1 1 College Switch

dipSwitch.1

```
#include<avr/io.h>
int main(void)
    unsigned char input_data;
    DDRD=0x00;
    DDRB=0xFF;
    while(1)
        input_data = PIND;
        PORTB = input_data;
```

dipSwitch.2

PORTB -> LED										
MCU	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0		
LED	LED7	LED6	LED5	LED4	LED3	LED2	LED1	LED0		

PORTD -> DIP Switch										
MCU	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0		
switch	DIP7	DIP6	DIP5	DIP4	DIP3	DIP2	DIP1	DIP0		

rotarySwitch

- ◆ 16 inputs -> Waste of pins
- ◆ 16 types can be expressed in 4 bits
- ◆ [0:F(16)] -> 16-to-4 bit encoder -> [R0:R3]

4bit Encoder

encoder.16-to-4

Decoder.4-to-16

rotarySwitch.1

```
#include <avr/io.h>
int main(void)
    unsigned char input_data;
    DDRD = 0x00;
    DDRB = OxFF;
    while(1)
        input_data = PIND & 0x0F;
        PORTB = input_data;
```

rotarySwitch.2

PORTB -> LED										
MCU	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0		
LED	LED7	LED6	LED5	LED4	LED3	LED2	LED1	LED0		

PORTD -> Rotary Switch										
MCU	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0		
switch	Х	Х	Х	Х	R3	R2	R1	R0		

rotarySwitch.3

Computer architecture and system sw Lab

Homework4

- ◆ Write a program that decodes Rotary Switch
- Rotary Switch 0 -> LED 1 0 0 0 0 0 0
- Rotary Switch 1 -> LED 0 1 0 0 0 0 0
- Rotary Switch 2 -> LED 0 0 1 0 0 0 0
- Rotary Switch 3 -> LED 0 0 0 1 0 0 0 0
- Rotary Switch 4 -> LED 0 0 0 0 1 0 0 0
- Rotary Switch 5 -> LED 0 0 0 0 0 1 0 0
- Rotary Switch 6 -> LED 0 0 0 0 0 1 0
- Rotary Switch 7 -> LED 0 0 0 0 0 0 1
- default -> LED 0 0 0 0 0 0 0
- ◆ Due date: 2020.10.10 23:59
- ◆ Upload on your GitLab project, only the C file (only the code)
- ◆ File name : mp_week5_studentNumber.c