Mathematics

Oliver Brady

April 4, 2023

Contents

1	Calculus 1.1 Differentiation								
2	Series								
3	Multivariable Calculus								
4	Linear Algebra								
5	Differential Equations								
6	Par	Partial Differential Equations							
7	Vector Calculus 5								
•	7.1		ators	5					
	1.1	7.1.1	Grad	5 5					
		7.1.2		5 5					
		7.1.2	Div	5 5					
		7.1.3	Laplacian	5 5					
	7.2		al Theorems	5 5					
	1.4	7.2.1	Divergence Theorem	5 5					
		7.2.1	Stokes's Theorem	5 5					
		1.2.2	Stokes & Theorem	5					
8	Fluid Mechanics								
	8.1	Kinen	natics	6					
		8.1.1	Coordinates	6					
		8.1.2	Velocity	6					
		8.1.3	Stagnation Points	6					
		8.1.4	Streamlines	6					
		8.1.5	Particle Paths	7					
		8.1.6	Steady Flow	7					
		8.1.7	Convective Derivative	7					
		8.1.8	Vorticity	8					

9	Nur	nerical	Methods	13
	8.6	Free S	urface Waves	12
	8.5	Vortici	ity Dynamics	12
	8.4	Tow-di	imensional Flow	12
		8.3.2	Conservation of Mass	12
		8.3.1	Reynolds Transport Theorem	12
	8.3	Flow I	Dynamics	12
		8.2.5	Oscillation of a Floating Body	11
		8.2.4	Buoyancy	11
		8.2.3	Hydrostatics	10
		8.2.2	Equations of State	10
		8.2.1	Pressure and Force	9
	8.2	Pressu	re in a Fluid	9
		8.1.12	The Stream Function	9
		8.1.11	Equipotential Surfaces	8
		8.1.10	Velocity Potential	8
		8.1.9	Incompressible Flow	8

- 1 Calculus
- 1.1 Differentiation

- 2 Series
- 3 Multivariable Calculus
- 4 Linear Algebra
- 5 Differential Equations
- 6 Partial Differential Equations

7 Vector Calculus

- 7.1 Operators
- 7.1.1 Grad
- 7.1.2 Div
- 7.1.3 Curl
- 7.1.4 Laplacian
- 7.2 Integral Theorems
- 7.2.1 Divergence Theorem
- 7.2.2 Stokes's Theorem

8 Fluid Mechanics

8.1 Kinematics

8.1.1 Coordinates

Lagrangian $\underline{x}(\underline{a}, t)$: The motion of individual particles is studied; the position \underline{x} of a particle at time t is related to its position at a reference point in time \underline{a} (typically at t = 0).

Eulerian (\underline{x}, t) : The 'flow field' is considered as a whole and the state of a fluid is described in terms of the values at a fixed location \underline{x} and at a fixed time

8.1.2 Velocity

In Cartesian coordinates the velocity of a fluid particle at position $\underline{x}(x,y,z)$ is given by:

$$\underline{u}(x,y,z) = u(x,y,z)\underline{\hat{i}} + v(x,y,z)\underline{\hat{j}} + w(x,y,z)\underline{\hat{k}}$$

8.1.3 Stagnation Points

Stagnation points occur when the velocity vector \underline{u} is equal to $\underline{0}$

$$u = 0$$

$$v = 0$$

$$w = 0$$

8.1.4 Streamlines

A streamline is a curve C drawn at one point in time such that the fluid velocity vector \underline{u} is tangent to C at every point along C.

$$\frac{d\underline{x}}{ds} = \underline{u}$$

$$\frac{dx}{ds} = u, \frac{dy}{ds} = v, \frac{dz}{ds} = w$$

$$\boxed{\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}(=ds)}$$

8.1.5 Particle Paths

Particle path is obtained by solving the initial value problem:

$$\frac{d\underline{x}}{dt} = \underline{u}(\underline{x}, t) , \underline{x} = x_0 \text{ at } t = 0$$

$$\frac{dx}{dt} = u , x(0) = x_0$$

$$\frac{dy}{dt} = v, y(0) = y_0$$

$$\frac{dz}{dt} = w, z(0) = z_0$$

8.1.6 Steady Flow

Steady Flow: The flow velocity vector \underline{u} is independent of time t **Unsteady Flow**: \underline{u} depends on t; the pattern of streamlines changes with t

8.1.7 Convective Derivative

The convective derivative tells us how a property changes as it moves with a flow.

General

$$\boxed{\frac{D*}{Dt} = \frac{\partial *}{\partial t} + (\underline{u} \cdot \nabla)* = \frac{\partial *}{\partial t} + u\frac{\partial *}{\partial x} + v\frac{\partial *}{\partial y} + w\frac{\partial *}{\partial z}}$$

Scalar

$$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + (\underline{u}\cdot\nabla)\rho = \frac{\partial\rho}{\partial t} + u\frac{\partial\rho}{\partial x} + v\frac{\partial\rho}{\partial y} + w\frac{\partial\rho}{\partial z}$$

Vector

$$\frac{D\underline{\mathbf{u}}}{Dt} = \frac{\partial\underline{\mathbf{u}}}{\partial t} + (\underline{u} \cdot \nabla)\underline{\mathbf{u}} = \frac{\partial\underline{\mathbf{u}}}{\partial t} + u\frac{\partial\underline{\mathbf{u}}}{\partial x} + v\frac{\partial\underline{\mathbf{u}}}{\partial y} + w\frac{\partial\underline{\mathbf{u}}}{\partial z}$$

8.1.8 Vorticity

Vorticity $\underline{\omega}$ is a measure of the local rotation of fluid particles in flow.

$$\underline{\omega} = \nabla \times \underline{u}$$

$$\nabla \times \underline{u} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix}$$

Irrotational Flow:

$$\underline{\omega} = \underline{0}$$

8.1.9 Incompressible Flow

$$\nabla \cdot \underline{u} = 0$$

When this is true the convective derivative of the fluid density is zero:

$$\frac{D\rho}{Dt} = 0$$

8.1.10 Velocity Potential

For an irrotational flow the velocity can be described as the gradient of a scalar field known as the *Velocity Potential*.

$$\nabla \times u = 0$$

The curl of the gradient of a scalar field is zero:

$$\nabla \times (\nabla \phi) = 0$$
$$u = \nabla \phi$$

If the flow is also incompressible

$$\nabla \cdot \underline{u} = 0$$
$$\nabla \cdot (\nabla \phi) = 0$$

Therefore the velocity potential of an irrotational, incompressible flow satisfies Laplace's Equation:

$$\nabla^2 \phi = 0$$

8.1.11 Equipotential Surfaces

Lines/surfaces of constant ϕ are equipotentials.

The velocity potential can be considered a surface:

$$\phi(x, y, z) = c$$

Let \underline{a} be tangent to the surface, the derivative of ϕ in the direction of \underline{a} :

$$\underline{a} \cdot \nabla \phi = 0$$

Because the derivative of a constant c is zero: $\nabla \phi$ is normal to the surface.

$$\hat{\underline{n}} = \frac{\nabla \phi}{|\nabla \phi|}$$

8.1.12 The Stream Function

Considering incompressible two dimensional flow:

$$\nabla \cdot \underline{u} = 0$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

We can introduce the stream function $\psi(x,y,t)$ such that:

$$\boxed{u = \frac{\partial \psi}{\partial y}, v = -\frac{\partial \psi}{\partial x}}$$

This satisfies the previous equations:

$$\frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} = 0$$

Vorticity of an incompressible two dimensional flow:

$$\underline{\omega} = \nabla \times \underline{u}$$

$$\underline{\omega} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

$$\underline{\omega} = -\frac{\partial^2 \psi}{\partial^2 x} - \frac{\partial^2 \psi}{\partial^2 y}$$

$$\underline{\omega} = -\nabla^2 \psi$$

8.2 Pressure in a Fluid

8.2.1 Pressure and Force

Let the normal vector \underline{n} be pointing into the fluid.

$$\partial \underline{F} = -\partial F \underline{\underline{n}}$$

 ∂F is the force exerted over a small area ∂S

$$p = \lim_{\partial S \to 0} \left(\frac{\partial F}{\partial S} \right)$$
$$\underline{F} = -\int \int_{S} p\underline{n} dS$$

Equations of State 8.2.2

Ideal Gas Law

$$pV = nRT$$

$$\frac{pV}{T} = nR$$

$$V \propto 1/\rho$$

$$\boxed{\frac{p}{\rho T} = constant}$$

Isothermal Gas

For a gas at constant temperature T

Boyle's Law:

$$p \propto \rho$$

$$p\rho^{-1} = p_0 \rho_0^{-1}$$

Adiabatic Gas

Quick fluctuations in pressure (such as in sound waves) are described by the adiabatic law.

$$p\rho^{-\gamma} = c$$

Where γ is the *Polytropic Index*

8.2.3Hydrostatics

The force due to the pressure of the fluid

$$F = -\int \int_{\Omega} pndS$$

 $\underline{F} = -\int \int_S p\underline{n}dS$ Applying the divergence theorem for a scalar: $\underline{F} = -\int \int \int_V \nabla p dV$

$$F = -\int \int \int_{V} \nabla p dV$$

Calculating the weight of the fluid region:

$$\underline{W} = \int \int \int_{V} \rho g dV$$

Since the fluid is stationary, the total force on the fluid is zero

$$\begin{split} \frac{W}{V} + \underline{F} &= 0\\ \int \int \int_{V} \rho \underline{g} dV - \int \int \int_{V} \nabla p dV &= 0\\ \int \int \int_{V} (\rho \underline{g} - \nabla p) dV &= 0\\ \text{Therefore:}\\ \boxed{\rho \underline{g} = \nabla p} \end{split}$$

$$g = -g\underline{\hat{k}}$$

$$\frac{\partial \overline{p}}{\partial z} = -\rho g$$
Integrating gives:
$$p = p_a - \rho gz$$

8.2.4 Buoyancy

Buoyancy is the force exerted on a submerged body due to the pressure of the surrounding static fluid.

$$\underline{B} = -\int \int_S p\underline{n}dS$$
 Applying the divergence theorem for a scalar:
$$\underline{B} = -\int \int \int_V \nabla p dV$$

$$\nabla p = \rho \underline{g}, \ \underline{g} = -g\underline{\hat{k}}$$

$$\underline{B} = \underline{\hat{k}}g\int \int \int_V \rho dV$$

$$\underline{B} = \rho V g\underline{\hat{k}} = m_w g\underline{\hat{k}}$$

Archimedes' Principle – the buoyancy force on a body is equal in magnitude to the weight of fluid that is displaced by the body.

$$V_1 = \text{Volume od displaced water},$$

$$\rho_w = \text{Density of water},$$

$$m_B = \text{Mass of the body}$$

$$\text{At equilibrium:}$$

$$\underline{B} + \underline{W} = 0$$

$$\rho_w V_1 g \hat{\underline{k}} - m_B g \hat{\underline{k}} = \underline{0}$$

$$m_B = \rho_w V_1$$

Center of Mass (Gravity): A theoretical point in the body where the body's total mass (weight) is thought to be concentrated.

Center of Buoyancy: The centre of mass of the displaced water

A floating body is stable if its centre of gravity is below its centre of buoyancy.

8.2.5 Oscillation of a Floating Body

When a floating body is submerged below its equilibrium depth d it begins to oscillate.

Consider a cylindrical body with mass m, circular area A, equilibrium depth d:

$$\begin{split} mz''(t) &= \rho_w g(d-z(t))A - mg \\ &= -\rho_w gz(t)A \\ &= mg\frac{z(t)}{d} \end{split}$$
 Therefore you can form the differential equation:

$$z''(t) = \frac{g}{d}z(t)$$

$$z(0) = -z_0$$
The solution:
$$z(t) = -z_0 \cos(\sqrt{\frac{g}{d}}t)$$

8.3 Flow Dynamics

Reynolds Transport Theorem 8.3.1

$$\frac{d}{dt} \int_{\Omega(t)} F(\underline{x}, t) dV = \lim_{\Delta t \to 0} \left[\int_{\Omega(t + \Delta t)} F(\underline{x}, t + \Delta t) dV - \int_{\Omega(t)} F(\underline{x}, t) dV \right]$$

Using the Taylor series expansion:

$$\textstyle \frac{d}{dt} \int_{\Omega(t)} F(\underline{x},t) dV = \lim_{\Delta t \to 0} [\int_{\Omega(t+\Delta t)} F(\underline{x},t) + \textstyle \frac{\partial F}{\partial t}(\underline{x},t) \Delta t + O(\Delta t)^2 dV - \int_{\Omega(t)} F(\underline{x},t) dV]$$

Let $\Delta\Omega$ be the difference between the regions $\Omega(t)$ and $\Omega(t + \Delta t)$:

$$\frac{d}{dt} \int_{\Omega(t)} F(\underline{x},t) dV = \lim_{\Delta t \to 0} [\int_{\Delta\Omega} F(\underline{x},t) dV + \int_{\Omega(t+\Delta t)} \frac{\partial F}{\partial t}(\underline{x},t) \Delta t + O(\Delta t)^2 dV]$$

Letting U_n be the normal velocity to the boundary $\partial\Omega$

$$\frac{d}{dt} \int_{\Omega(t)} F(\underline{x}, t) dV = \lim_{\Delta t \to 0} \left[\int_{\partial \Omega} F(\underline{x}, t) U_n(\underline{x}, t) \Delta t dS \right] + \lim_{\Delta t \to \infty} \left[\int_{\Omega(t + \Delta t)} \frac{\partial F}{\partial t}(\underline{x}, t) \Delta t dV \right]$$

$$\frac{d}{dt} \int_{\Omega(t)} F(\underline{x}, t) dV = \int_{\partial \Omega} F(\underline{x}, t) U_n(\underline{x}, t) dS + \int_{\Omega(t)} \frac{\partial F}{\partial t} (\underline{x}, t) dV$$

Leibniz's Integral Rule: The rule can be derived from considering a one dimensional case of Reynold's Transport Theorem.

$$\frac{d}{dt} \int_{a(t)}^{b(t)} F(\underline{x}, t) dx = \int_{a(t)}^{b(t)} \frac{\partial F}{\partial t} (\underline{x}, t) dx + F(b(t), t) \frac{db}{dt} - F(a(t), t) \frac{da}{dt}$$

- Conservation of Mass
- 8.4 Tow-dimensional Flow
- 8.5 Vorticity Dynamics
- Free Surface Waves 8.6

9 Numerical Methods