УДК 544.163.2 DOI 10.26456/vtchem2022.3.14

ИССЛЕДОВАНИЕ ЭЛЕКТРОННОГО СТРОЕНИЯ В МОЛЕКУЛАХ ГОМОЛОГИЧЕСКОГО РЯДА $CH_3(CH_2)_NC\equiv C(CH_2)_NCH_3$

Е.М. Чернова, М.Ю. Орлов, Ю.Д. Орлов

ФГБОУ ВО «Тверской государственный университет», г. Тверь

В рамках квантовой теории атомов в молекуле (QTAIM) рассчитаны характеристики электронной плотности в молекулах гомологического ряда $CH_3(CH_2)_NC\equiv C(CH_2)_NCH_3$. Установлено, что влияние группы $C\equiv C$ распространяется на две ближайшие метиленовые группы.

Ключевые слова: квантовая теория атомов в молекуле (QTAIM), электронная плотность, электроотрицательность, алкины.

Волновая функция и распределение электронной плотности ($\rho(r)$) несет информацию о физико-химических свойствах молекул [1]. Внутримолекулярные взаимодействия, количественное и качественное описание взаимовлияния функциональных групп наиболее удобно рассматривать в рамках «квантовой теории атомов в молекуле» (QTAIM) Р. Бейдера [2]. В QTAIM полная электронная молекулярная плотность $\rho(r)$ может быть разбита на совокупность $\rho_{\Omega}(r)$ «топологических» атомов (Ω) в реальном трехмерном пространстве. Границы атомов Ω определяются из условия равенства нулю потока вектора градиента электронной плотности [2].

Такое представление позволяет соединить классические атомные представления с основными постулатами квантовой механики, и на основе этого синтеза отнести к Ω физические свойства. Данное исследование также актуально для уточнения фрагментации соединений при разработке количественных корреляций «Строение свойсво» [3-6].

Качественное и количественное объяснение взаимного влияния атомов (Ω) и групп атомов (R) в молекуле в рамках классической теории использует такие понятия как индуктивный эффект и электроотрицательность [7, 8].

Нами в продолжении работы по изучению в рамках QTAIM электронного строения углеводородных соединений с кратными связями [9-11] был рассмотрен гомологический ряд $CH_3(CH_2)_NC\equiv C(CH_2)_NCH_3$, где $n=0\div 5$. Оптимизация геометрии молекул была проведена с помощью пакета Gaussian 03 [12] методом DFT с гибридным функционалом B3LYP в базисе 6-311++G(3df,3pd).

Электронные интегральные характеристики атомов (Ω): заряд ($q(\Omega)$), относительная энергия ($E(\Omega)$), объем ($V(\Omega)$) и др., были рассчитаны посредством программы AIMALL [13]. Параметры отдельных «топологических» атомов были суммированы в соответствующие атомные группы CH_3 , CH_2 и $-C\equiv$ (табл. 1-3).

Наиболее информативной характеристикой строения электронной плотности R является его заряд (табл. 1). Данные в таблицах для удобства сравнений электронных параметров R, распределены по столбцам, соответствующим одинаковому удалению от концевых групп. Строение этих молекул является симметричным, поэтому таблица включает параметры атомных групп с одной стороны от С≡С.

Таблица 1 Заряд атомных групп q(R) в соединениях гомологического ряда $CH_3(CH_2)_N C \equiv C(CH_2)_N CH_3, R = CH_3, CH_2, C \equiv (a.e.)$

n	CH ₃ -	-CH ₂ -	-C≡				
0	0.195						-0.195
1	0.033					0.175	-0.208
2	-0.007				0.056	0.160	-0.209
3	-0.007			0.016	0.041	0.159	-0.208
4	-0.012	0.020		0.002	0.040	0.159	-0.209
5	-0.013	0.016	0.005	0.001	0.040	0.159	-0.209

Данные таблицы 1 показывают, что индуктивное влияние группы -С \equiv распространяется на 2 ближайшие CH_2 и изменяет их на 0,159 и 0,040 а.е., соответственно. Воздействие группы CH_3 - распространяется на ближайшую к ней метиленовую группу, как и в алканах [14].

Наиболее электроотрицательными группами в исследованном гомологическом ряду являются концевые группы CH_3 - и группа $-C\equiv$, они стягивают на себя электронную плотность с соседних CH_2 групп. Шкала групповых электроотрицательностей для гомологических рядов алкинов примет вид:

$$\chi(-CH_2-) < \chi(-CH_3) < \chi(-C\equiv) < \chi(-C\equiv CH)$$

Здесь $\chi(CH_2)$ — электроотрицательность «стандартной» или невозмущенной группы CH_2 . Следует отметить, что значения зарядов стандартных групп CH_3 и CH_2 , найденные в настоящей работе, соответствуют [14], а параметры -С≡СН заимствованы из [9].

В таблице 2 представлены относительные энергии атомных групп CH_3 , CH_2 и $-C\equiv$ в гомологическом ряду $CH_3(CH_2)_nC\equiv C(CH_2)_nCH_3$.

Таблица 2 Относительная энергия атомных групп $\Delta E(R)$ в соединениях гомологического ряда $CH_3(CH_2)_nC\equiv C(CH_2)_nCH_3$, $R=CH_3$, CH_2 , $-C\equiv (\kappa \not \bot x \not)$ моль)

n	CH ₃ -	-CH ₂ -	-C≡				
0	290						60
1	50					290	10
2	0				80	240	10
3	0			40	40	240	0
4	0		40	0	40	240	0
5	0	40	0	0	40	240	0

Относительные энергии определяются выражением ΔE =Ect-E, где Ect — полная энергия стандартной группы в этом гомологическом ряду. В данной работе «стандартное» значение энергии группы CH_2 равно -39,326 а.е., группы CH_3 — -39,926, а группы -C= — - 38,229 .

Необходимость рассмотрения относительных энергий вызвана сильной зависимостью полной энергии от вириального коэффициента в квантовых расчетах, который в свою очередь сильно зависит от количества атомов в исследуемой молекуле [15].

Анализ относительных энергий атомных групп показал, что влияние концевых групп CH_3 сказывается на энергии ближайшей CH_2 , увеличивая ее энергию на 40 кДж/моль. Воздействие серединной группы $-C\equiv$ приводит к увеличению энергии двух CH_2 групп на 240 и 40 кДж/моль.

Таблица 3 Объем атомных групп V(R) в соединениях гомологического ряда $CH_3(CH_2)_NC\equiv C(CH_2)_NCH_3$, $R=CH_3,CH_2$, $C\equiv (\mathring{A}^3)$

n	CH ₃ -	-CH ₂ -	-C≡				
0	32.2						16.7
1	32.9					23.2	16.5
2	33.0				23.5	23.1	16.5
3	33.0			23.6	23.4	23.1	16.5
4	33.1		23.6	23.5	23.4	23.1	16.5
5	33.1	23.7	23.5	23.5	23.4	23.1	16.5

Зачнения объёмов групп «стандартных» CH_3 и CH_2 соответствуют найденным ранее для н-алканов [14]. Влияние CH_3 приводит к изменению объема ближайшей CH_2 на 0,2 Å 3 . Влияние -C группы сказывается на объеме двух CH_2 на 0,4 и 0,1 Å 3 .

Для сравнения различия индуктивных эффектов распространяющихся с одной или с двух сторон от группы $C \equiv C$ нами были рассмотрены данные по молекуле $CH_3(CH_2)5C \equiv CH$, соответствующие параметры атомных групп приведены в таблице 4

Таблица 4

Параметры электронного строения СН≡С(СН₂)₅СН₃

	CH≡C	CH_2	CH_2	CH_2	CH_2	CH ₂	CH ₃
q, a.e.	-0.237	0.173	0.048	0.004	0.008	0.017	-0.011
ΔЕ, кДж/моль	0	240	4	0	0	40	0
V Å ³	42.5	23.0	23.3	23.4	23.4	23.6	33.0

Полученные результаты показывают различие в индуктивном влиянии групп $C \equiv C$ на атомы углеводородной цепи R для $HC \equiv CR$ и $RC \equiv CR$. По видимому это связано с трансформацией электронного строения самой группы $C \equiv C$ при переходе от $HC \equiv CR$ к $RC \equiv CR$.

Список литературы

- Hohenberg P., Kohn W. Inhomogeneous Electron Gas // Phys.Rev.B. 1964.
 V. 136, P. 864.
- 2. Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001. 528 с.
- 3. Орлов Ю.Д., Лебедев Ю.А.//Журнал физической химии. 1991. Т. 65. № 2. С. 289.
- 4. Orlov Yu.D., Lebedev Yu.A. //Russian Chemical Bulletin. 1999. T. 48. № 2. C. 286–288.
- 5. Орлов Ю.Д., Зарипов Р.Х., Лебедев Ю.А.//Известия Академии наук. Серия химическая. 1998. № 4. С. 637.
- 6. Орлов М.Ю., Чернова Е.М., Туровцев В.В., Орлов Ю.Д. //Известия Академии наук. Серия химическая. 2014. № 12. С. 2620.
- 7. Верещагин А.Н. Индуктивный эффект. М.: Наука, 1987. 326 с.
- 8. Паулинг Л. Природа химической связи. М.; Л.: Госхимиздат, 1947. 440 с. [Pauling L. Nature of the Chemical Bond. Cornell University Press. 1960
- 9. Ситников В.Н., Чернова Е.М., Туровцев В.В., Орлов Ю.Д. /Вестник Тверского государственного университета. Серия: Химия. 2013. № 15. С. 95–100.
- 10. Чернова Е.М., Ситников В.Н., Туровцев В.В., Орлов Ю.Д.// Вестник Тверского государственного университета. Серия: Химия. 2014. № 2. С. 70–75.
- 11. Чернова Е.М., Ситников В.Н., Туровцев В.В., Орлов Ю.Д. // Вестник Казанского технологического университета. 2014. Т. 17. № 24. С. 13—15
- 12. Frisch M. J. et al. Gaussian 09, Revision C.01. Gaussian, Inc. WallingfordCT. 2010.
- 13. Keith Todd A. AimAll (version 11.12.19, Professional) http://aim.tkgristmill.com.
- 14. Туровцев В.В., Орлов Ю.Д., Лебедев Ю.А. // Журн. физич. химии. 2009. Т. 83, № 2. С. 313–321.
- 15. Mandado M., Vila A., Grana A.M., Mosquera R.A., Cioslowski J.//Chem.Phys.Lett. 2003. V. 371. № 5-6. P. 739–743.

Об авторах:

ЧЕРНОВА Елена Михайловна — кандидат физико-математических наук, заведующая базовой лаборатории общей физики ФГБОУ ВО «Тверской государственный университет» (170100, Тверь, ул. Желябова, 33); e-mail: Chernova.EM@tversu.ru

ОРЛОВ Михаил Юрьевич – старший преподаватель кафедры общей физики, ФГБОУ ВО «Тверской государственный университет» (170100, Тверь, ул. Желябова, 33); e-mail: Orlov.MY@tversu.ru

ОРЛОВ Юрий Димитриевич — доктор химических наук, профессор, заведующий кафедрой общей физики ФГБОУ ВО «Тверской государственный университет» (170100, Тверь, ул. Желябова, 33); e-mail: Orlov.YD@tversu.ru

STUDY OF THE ELECTRONIC STRUCTURE OF B MOLECULES OF THE HOMOLOGOUS SERIES CH3(CH2)NC≡C(CH2)NCH3

E.M. Chernova, M.Yu. Orlov, Yu.D. Orlov

Tver State University, Tver

In the framework of the quantum theory of atoms in a molecule (QTAIM), the parameters of the electron density in molecules of the homologous series $CH_3(CH_2)_nC\equiv C(CH_2)_nCH_3$ are compute. It was found that the influence of group $C\equiv C$ extends to the two nearest methylene groups.

Keywords: quantum theory of atoms in a molecule (QTAIM), electron density, electronegativity, alkynes.