Compact implementations of pairings

Anthony Van Herrewege

Day. sup.: Dr. Lejla Batina, Miroslav Knezevic, Dr. Ir. Nele Mentens Prom.: Prof. Dr. Ir. Ingrid Verbauwhede, Prof. Dr. Ir. Bart Preneel Ass.: Prof. Dr. Ir. Wim Dehaene, Dr. Ir. Frederik Vercauteren

22 May 2009

Outline

Outline

- 1 Pairings
- 2 Implementation
- 3 Results

Outline

- 1 Pairings
- 2 Implementation
- 3 Results

Overview

■ Several available pairings:

Weil, Tate, η_T , Ate, . . .

Overview

Several available pairings:

Weil, Tate,
$$\eta_T$$
, Ate, . . .

Bilinearity property:

$$e(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q)$$

Pairings

Overview

■ Several available pairings:

Weil, Tate,
$$\eta_T$$
, Ate, . . .

Bilinearity property:

$$e(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q)$$

Optimized Tate pairing:

$$\begin{split} \hat{e}(P,Q) : E(\mathbb{F}_q)[l] \times E(\mathbb{F}_q)[l] &\mapsto \mu_l \\ \mu_l = \text{group of } l \text{th roots of } \mathbb{F}_{q^k}^* \end{split}$$

■ Identity-based encryption

0

- Identity-based encryption
- Short signatures

- Identity-based encryption
- Short signatures
- Non-interactive key agreement

- Identity-based encryption
- Short signatures
- Non-interactive key agreement
- Tripartite key agreement in 1 round

- Identity-based encryption
- Short signatures
- Non-interactive key agreement
- Tripartite key agreement in 1 round
-

Outline

- 1 Pairings
- 2 Implementation

Restrictions

Implementation

Avoid the use of flip-flops and muxes:

Cell	Area $\left[\frac{\text{gate}}{\text{bit}}\right]$
D flip-flop (reset)	6
D flip-flop (no reset)	5.5
D latch	4.25
3 input MUX	4
2 input XOR	3.75
2 input MUX	2.25
2 input NAND	1
NOT	0.75

MALU - Addition & Reduction in \mathbb{F}_{2^m}

$$R = (T+B \pmod{P_{\mathrm{in}}})_{0:m-2} \ll 1$$

$$mod_{\mathrm{u}} = (T+B \pmod{P_{\mathrm{in}}})_{m-1}$$

MALU - Addition & Reduction in \mathbb{F}_{2^m}

Optimized MALU needs $\Delta = m - (\text{Hamm}(P) - 1)$ less XORs:

\mathbb{F}_{2^m} Multiplication & Addition

\mathbb{F}_{2^m} Multiplication & Addition

No FSM needed, simple logic:

\mathbb{F}_{2^m} Multiplication & Addition

Speed up calculation by daisy-chaining MALUs ($m \mod d!$):

Memory design

Initial design:

$$\bar{t} = O\left(\frac{n^2}{3}\right)$$
 $\bar{w} = O\left(\frac{n^3}{3}\right)$

Memory design

Final design:

$$\overline{t} = O\left(\frac{n}{4}\right)$$
 $\overline{w} = O\left(n\right)$

 \blacksquare Remove reset from registers $\left(-0.5\,\frac{\mathrm{gate}}{\mathrm{bit}}\right)$

- \blacksquare Remove reset from registers $\left(-0.5\,\frac{\rm gate}{\rm bit}\right)$
- Implement clock gating:

- Remove reset from registers $\left(-0.5 \frac{\text{gate}}{\text{bit}}\right)$
- Implement clock gating:

- Remove reset from registers $\left(-0.5 \frac{\text{gate}}{\text{bit}}\right)$
- Implement clock gating:

- Remove reset from registers $\left(-0.5 \frac{\text{gate}}{\text{bit}}\right)$
- Implement clock gating:

Outline

- 3 Results

Runtime

■ FSM with 553 states

Results

Runtime

- FSM with 553 states
- Total n° of clock cycles c for one pairing:

$$c = 21681 + 4322 + 2998 \cdot \left\lceil \frac{m}{d} \right\rceil$$

Runtime

- FSM with 553 states
- Total n° of clock cycles c for one pairing:

$$c = 21681 + 4322 + 2998 \cdot \left\lceil \frac{m}{d} \right\rceil$$

Results

Implementation	Area [gates]		Power @ 10 kHz $[nW]$			
•			Dynamic		Leakage	
Basic No Reset CG 1 CG 2 CG 3	28 876 27 596 27 751 27 713 27 734	96% 96% 96% 96%	512 395 94 59 96	77% 18% 12% 19%	117 107 109 102 110	92% 94% 88% 94%

Synthesis - Continued

Component	Opp. [gates]		
MALU \mathbb{F}_{2m} core	458	1.7%	
Logic Registers Controller	783 962	$\frac{2.8\%}{3.5\%}$	
Logic Registers	$13044\\12487$	$47\% \\ 45\%$	
Total	27 734	100%	

Comparison

	This	Beuchat	
	1 MALU	2 MALUs	et al.
Field	$\mathbb{F}_{2^{163}}$	$\mathbb{F}_{2^{163}}$	$\mathbb{F}_{3^{97}}$
Pairing	Tate	Tate	η_T
Security [bit]	652	652	922
Technology $[\mu m]$	0.13	0.13	0.18
Area [gates]	27430	28155	193765
f[MHz]	10.3	5.44	200
Calc. time $[\mu s]$	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$	46.7
Power $[mW]$	$98.3 \cdot 10^{-3}$	$48.6 \cdot 10^{-3}$	672
Efficiency $\left[\frac{nJ}{\text{bit}}\right]$	7.54	3.73	34.0

Efficiency = $\frac{power \times calc. time}{c}$ bits security

 \blacksquare Very small: $<30 \mathrm{k}$ gates

- Very small: < 30k gates
- Extremely low power: < 220 nA

- Very small: < 30k gates
- Extremely low power: < 220 nA
- Energy efficiency improvement up to more than $25 \times$ possible

- Very small: < 30k gates
- Extremely low power: < 220 nA
- Energy efficiency improvement up to more than $25 \times$ possible

Definitely possible to use in constrained environments

- Very small: < 30k gates
- Extremely low power: < 220 nA
- Energy efficiency improvement up to more than $25 \times$ possible

Definitely possible to use in constrained environments

Example with 3 MALUs:

$$\begin{array}{ll} {\rm Area} = 29 {\rm k~gates} & f = 9.70~{\rm Mhz} \\ {\rm Power} = 100~\mu {\rm A} & {\rm Time} = 19.6~{\rm ms} \end{array}$$

The end

Results

Questions?