Relatório TP1 – Algoritmos 2

Henrique Daniel de Sousa

Departamento de Ciência da Computação – Universidade Federal de Minas Gerais

UFMG

1. Introdução

Esse relatório tem o intuito de explicar essa implementação do algoritmo de compressão LZ78 em Python, permite comprimir um arquivo de texto em um arquivo menor com base em padrões que aparecem no texto. O algoritmo é baseado em um dicionário que armazena as substrings já encontradas e seus respectivos índices.

Nessa implementação, usa-se uma trie no algoritmo. Desse modo, como a inserção nos dicionários é uma operação realizada frequentemente em tal aplicação, a trie é uma estrutura que aumenta a eficácia do algoritmo.

2. Implementação

O código em questão foi desenvolvido em Pyhton 3.10.6, com o WSL2 do Windows 10. Foram utilizadas as bibliotecas sys e numpy como suporte para o desenvolvimento.

3. Modelagem

A implementação usa uma classe TrieNode para representar a árvore de prefixos (trie) usada no algoritmo. Essa classe tem um atributo children, que é um dicionário que mapeia cada caractere para um objeto TrieNode que representa o nó filho correspondente, e um atributo index que é o índice do prefixo representado por esse nó.

A função tuple_to_bin converte uma tupla (índice, caractere) em uma string binária. A string binária é composta pelo índice e pelo caractere codificados em binário, cada um ocupando um número fixo de bits especificado pelos parâmetros index_width e char_size.

A função encoded_file grava uma string de bits em um arquivo binário, onde cada byte é representado por 8 bits.

A função lz78_encode recebe uma string de entrada e retorna uma lista de tuplas (índice, caractere), representando a sequência comprimida. Ele também retorna o número mínimo de bits necessários para representar cada índice e cada caractere.

A função lz78_decode recebe uma lista de tuplas (índice, caractere) e retorna a string original.

Finalmente, o código principal verifica os argumentos da linha de comando para determinar se o programa deve ser usado para codificar ou decodificar um arquivo de texto. Se a opção de codificação (-c) for escolhida, o programa lê o arquivo de entrada, comprime-o usando lz78_encode e grava o resultado em um arquivo de saída binário. Se a opção de decodificação (-x) for escolhida, o programa lê o arquivo binário de entrada, decodifica-o usando lz78_decode e grava o resultado em um arquivo de texto.

Em resumo, o código implementa o algoritmo de compressão LZ78 e permite a compressão e descompressão de arquivos de texto usando esse algoritmo.

4. Resultados

Os seguintes resultados foram obtidos através do teste de 10 arquivos de texto, obtidos pelo <u>Projeto Gutenberg.</u>

Arquivo de entrada	Tamanho original	Tamanho do arquivo de saída	Taxa de compressão
karamazov.txt	2014789 bytes	1412597 bytes	1.42
leviathan.txt	413366 bytes	348302 bytes	1.42
metamorphosis.txt	139182 bytes	105486 bytes	1.31
my_life.txt	1277141 bytes	957857 bytes	1.33
notes_from_ underground.txt	262705 bytes	191090 bytes	1.37
quincas_borba.txt	485688 bytes	414092 bytes	1.17
the_great_gatsby.txt	299891 bytes	213082 bytes	1.40
the_odyssey.txt	708411 bytes	562442 bytes	1.25
the_republic.txt	1228326 bytes	893057 bytes	1.37
zarathustra.txt	476786 bytes	404402 bytes	1.17

A taxa de compressão é a razão entre a quantidade de bytes do arquivo original pelo arquivo de saída. Essa razão demonstra quantos bytes do arquivo original são codificados em 1 byte do arquivo comprimido. Em média, o algoritmo apresentou uma taxa de compressão de 1.3.