# Вопрос по выбору Работа 3.2.7 Дробовой шум (эффект Шоттки)

Гаврилин Илья Дмитриевич Б01-101

28 декабря 2022 г.

### Аннотация

В работе изучен шум связанный с дискретностью заряда электрона (шум Шоттки), при помощи него определен элементарный заряд. Изучены проблемы возникающие в процессе определения заряда.

## 1 Теоретические сведения

#### 1.1 Шум Шоттки

В работе используется вакуумный диод, протекание тока в котором связано с движением электронов, излученных на спирали, под действием электрического поля. Переносчиками заряда в данном случае являются электроны, а поэтому ток за короткое время представим как:  $\int Idt = e$  (характерное время  $10^{-8}$  с). В работе рассматривается работа диода в режиме насыщения, когда отсутствует пространственный заряд, а ток зависит от количества электронов, испущенных катодом.

Для обнаружения дробового шума в анодную цепь лампы включена нагрузка — параллельный колебательный контур (рис. 1). Токовый импульс, связанный с про хождением электрона через диод, приводит к зарядке конденсатора C, который входит в состав контура LC R. В контуре возникают электрические колебания. Следующие электроны — в зависимости от фазы колебаний контура — усиливают или ослабляют колебательный процесс. Постепенно в контуре возбуждаются колебания, амплитуда и фаза которых случайным образом меняются во времени. Кроме заряда, связанного с колебательным процессом, на конденсаторе есть, конечно, заряд, возникающий из-за наличия среднего тока. Этот заряд нас интересовать не будет. Среднее значение амплитуды колебаний контура мо жет быть найдено из энергетических соображений. Установившееся значение амплитуды определяется тем, что средняя



Рис. 1: Схема подключения колебательного контура

энергия, которую приносят электроны на конденсатор, равна энергии, которая рассеивается в колебательном контуре.

Пусть при электрических колебаниях в контуре мгновенное значение напряжения на конденсаторе равно

$$U = U_0 cos(\omega t) \tag{1}$$

Тогда после пролета одного электрона заряд на конденсаторе станет равным:

$$q_2 = q_1 + e = CU_0 cos(\omega t) + e \tag{2}$$

Энергия конденсатора рассчитывается по формуле:

$$W = \frac{q^2}{2C} \tag{3}$$

Тогда ее приращение после пролета электрона:

$$\Delta W = \frac{q_2^2 - q_1^2}{2C} = \frac{2CU_0 cos(\omega t) + e^2}{2C} \tag{4}$$



Рис. 2: Принципиальная схема в режиме измерения напряжения шума



Рис. 3: Принципиальная схема в режиме измерения добротности

Пусть в секунду через лампу про ходят N электронов. Полное увеличении средней энергии конденсатора складывается из N слагаемых, определяемых формулой (4). При этом вклад от первого члена формулы обращается в нуль, так как электроны приходят на конденсатор в произвольные моменты времени, а среднее значение  $cos(\omega t)$  равно нулю. Средняя мощность, приносимая электронами на конденсатор, определяется только вторым слагаемым и равна

$$P = N \frac{e^2}{2C} \tag{5}$$

Рассчитаем теперь потери в сопротивлении. Про ходящий через него ток  $I_R$  складывается из постоянного тока  $I_=$  и колебательного тока контура  $I_\approx$ . Выделяемая в сопротивлении мощность в среднем равна

$$\langle P_R \rangle = \langle I^2 R \rangle = R \langle (I_+ + I_{\approx})^2 \rangle$$
 (6)

где угловые скобки обозначают усреднение по времени. Переменная составляющая тока может быть выражена через напряжение на конденсаторе:

$$I_{\approx} = \frac{dq}{dt} = -CU_0 sin(\omega t) \tag{7}$$

Подставим (7) в (6), возведем сумму  $I_{=}$  и  $I_{\approx}$  в квадрат и усредним результат по времени. Замечая, что среднее значение  $\langle sin(\omega t) \rangle = 0$ , а  $\langle sin^{2}(\omega t) \rangle = \frac{1}{2}$ , найдём

$$\langle P_R \rangle = RI_{=}^2 + R \langle I_{\approx}^2 \rangle = RI_{=}^2 + \frac{1}{2}RC^2U_0^2\omega^2$$
 (8)

Таким образом, мощность, выделяемая в сопротивлении R, — это мощность, которую выделяют в нём постоянный ток диода и ток колебаний, возникающий в контуре из-за дробового шума. Приравняем мощность (5), возбуждаемую электронами в контуре, к мощности теряемой в сопротивлении из-за наличия колебаний:

$$N\frac{e^2}{2C} = \frac{1}{2}R(CU_0\omega)^2\tag{9}$$

Заметив, что  $Ne=I_{\rm a}$ , а амплитудное значение напряжения на конденсаторе U0 связано с эффективным значением  $U_{\rm 9ф\phi}$  обычным соотношением  $U_{\rm 9ф\phi}^2=\frac{U_0^2}{2}$ , найдём для заряда электрона e следующую формулу:

$$e = \frac{2\omega^2 C^3 R U_{\rm s\phi\phi}^2}{I_a} \tag{10}$$

Таким образом, измеряя ток  $I_a$ , проходящий через диод, и среднеквадратичное напряжение шума на контуре  $U_{\rm s d d}^2$ , можно определить заряд электрона. Формула (10) может быть записана через добротность контура. Как известно, добротность контура Q связана с его параметрами формулой

$$Q = \frac{1}{\omega RC} \tag{11}$$

Окончательная формула для расчёта заряда электрона имеет вид

$$e = \frac{2\omega C^2 U_{\text{s}\phi\phi}^2}{I_a Q} \tag{12}$$

# 2 Ход работы

#### 2.1 Проверка квадратичности детектора

#### 2.2 Рассчет заряда электрона

Проведем измерение заряда электрона согласно техническому описанию работы.

| $I_a$ , мА | $I_{\mathrm{д}},\;\mathrm{yc}$ л. ед. | $U_{\rm 9 dp}$ , мкВ | $U_1$ , мкВ | $\Delta I$ , усл. ед. | $U_2$ , мкВ | Q     | $\sigma Q$ |
|------------|---------------------------------------|----------------------|-------------|-----------------------|-------------|-------|------------|
| 1          | 72                                    | 78                   | 0.32        | 12                    | 60          | 187.5 | 4.3        |
|            | 40                                    | 75                   | 0.4         | 17                    | 66          | 165.0 | 4.8        |
|            | 48                                    | 74                   | 0.5         | 36                    | 86          | 172.0 | 4.0        |
|            | 60                                    | 75                   | 0.46        | 40                    | 82          | 178.3 | 4.4        |
|            | 80                                    | 76                   | 0.25        | 18                    | 47          | 188.0 | 4.4        |
| 2          | 40                                    | 100                  | 0.6         | 6                     | 81          | 135.0 | 2.4        |
|            | 50                                    | 96                   | 0.8         | 17                    | 96          | 120.0 | 2.0        |
|            | 60                                    | 96                   | 0.9         | 34                    | 111         | 123.3 | 1.8        |
|            | 70                                    | 96                   | 0.7         | 40                    | 96          | 137.1 | 2.4        |
|            | 90                                    | 99                   | 0.4         | 24                    | 60          | 150.0 | 3.2        |
| 3          | 40                                    | 114                  | 0.96        | 7                     | 105         | 109.4 | 1.5        |
|            | 50                                    | 114                  | 0.94        | 4                     | 96          | 102.1 | 1.5        |
|            | 70                                    | 114                  | 0.8         | 28                    | 96          | 120.0 | 2.0        |
|            | 78                                    | 117                  | 0.84        | 36                    | 99          | 117.9 | 1.8        |
|            | 90                                    | 117                  | 0.5         | 22                    | 66          | 132.0 | 1.8        |
| 4          | 40                                    | 126                  | 2.1         | 22                    | 189         | 90.0  | 2.2        |
|            | 50                                    | 126                  | 0.9         | 16                    | 90          | 100.0 | 1.6        |
|            | 60                                    | 126                  | 0.8         | 24                    | 90          | 112.5 | 1.9        |
|            | 72                                    | 129                  | 0.9         | 34                    | 99          | 110.0 | 1.7        |
|            | 80                                    | 129                  | 0.7         | 28                    | 84          | 120.0 | 2.2        |

Таблица 1: Замер эффективного напряжения контура и добротности при различных значениях накального тока

По полученным значениям проведем усреднение и получим значение заряда электрона. Для расчета заряда электрона будем использовать формулу (12), требуемую емкость и частоту контура запишем с установки: C = 1200 пФ; f = 125 к $\Gamma$ ц.

| $I_a$ , MA | < Q > | $\sigma < Q >$ | $< U_{\rm 9 dp} >$ , MKB | $e \cdot 10^{-20}$ , Кл | $\sigma e \cdot 10^{-20}$ , Кл |
|------------|-------|----------------|--------------------------|-------------------------|--------------------------------|
| 1          | 178.2 | 4.6            | 75.6                     | 7.3                     | 0.8                            |
| 2          | 133.1 | 2.7            | 97.4                     | 8.1                     | 1.1                            |
| 3          | 116.3 | 1.9            | 115.2                    | 8.6                     | 0.9                            |
| 4          | 106.5 | 2.1            | 127.2                    | 8.6                     | 1.0                            |

Таблица 2: Рассчет заряда электрона по значению эффективного напряжения и добротности контура

Итого получаем для заряда электрона значение:  $e = (8.15 \pm 1.1) \cdot 10^{-20} \; \mathrm{K}$ л.

## 3 Обсуждение результатов

Табличное значение заряда электрона в СИ:  $e=1.6\cdot 10^{-19}~{\rm K}_{\rm Л}$  Значение полученное в ходе эксперимента:  $e=(8.15\pm 1.1)\cdot 10^{-20}~{\rm K}_{\rm Л}$ 

Полученное нами значение в 1.96 раза меньше табличного, при этом мы видим что значения замеренные при различных значениях накального тока не противоречат друг другу, что может косвенно говорить о верном ходе замеров.

#### Возможные причины расхождения

- 1) Вероятными могут быть как плохой контакт и другие неисправности установки, однако перед выполнением работы исправность установки была проверена, а в ходе самой работы дополнительно проверили квадратичность детектора.
- 2) В ходе вывода формул мы совершили одну важную оговорку (См. Введение жирный шрифт): мы предположили что лампа работает в режиме насыщения и в пространстве между электродов отсутствуют какие-либо заряды. Отсюда получили предположение что  $Ne = I_a$ , в нашем же случае сравнивая с табличным значение электрона получаем что за выбранный период пролетает только  $\frac{N}{2}$  электронов.

#### Закон "трех-вторых"

В работе исследуется зависимости прямого тока, проходящего через вакуумный диод, в зависимости от напряжения на нем, а именно та часть вольт-амперной характеристики, в которой электронное облако существенно влияет на распределение электрического поля между катодом и анодом.

Распределение потенциала по радиусу внутри диода определяется уравнением Пуассона в цилиндрических координатах:

$$\Delta V = \frac{d^2V}{dr^2} + \frac{1}{r} + \frac{dV}{dr} = -\frac{\rho(r)}{\epsilon_0} \tag{13}$$

При этом плотность заряда  $\rho(r)$  связана с текущим через слой диода толщины l током I формулой  $I=-2\pi r \rho(r)v(r)l$ . При этом из закона сохранения энергии мы легко находим скорость v(r) электронов , прошедших через разность потенциалов V(r):  $\frac{mv^2}{2}=eV(r)$ . Отсюда мы получаем уравнение

$$r\frac{d^2V}{dr^2} + \frac{dV}{dr} = \frac{I}{2\pi\epsilon_0}\sqrt{\frac{m}{2eV}} \tag{14}$$

Однако, в дифференциальном уравнении 2-ого порядка относительно V(r) нам неизвестен ток I, зависящий от V. Для доопределения уравнения будем полагать:

$$\left. \frac{dV}{dt} \right|_{r=r_b} = 0 \tag{15}$$

Наше предположение означает что вблизи катода пространственный заряд электронов полностью экранирует поле анодной разности потенциалов.

Уравнение (14) является нелинейным. Попробуем найти некое частное решение, где  $V_a = V_{a0}$ , при котором ток  $I = I_0$ . Тогда выражения

$$I = I_o \left(\frac{V_a}{Va0}\right)^{3/2}, \qquad V(r) = V_{a0}(r)\frac{V_a}{V_{a0}}$$
 (16)

являются решением уравнения (14), что проверяется подстановкой. В общем виде решение записывается в виде

$$I = \frac{8\sqrt{2}\pi\epsilon_0 l}{9} \sqrt{\frac{e}{m}} \frac{1}{r_a \beta^2} V^{3/2} \tag{17}$$

Это и есть так называемый «закон трех вторых» – ток в вакуумном диоде пропорционален напряжению на нем в степени 3/2. Он справедлив при любой геометрии электродов, если ток не слишком велик (т.е. пока выполнено условие (15)).

Так как нам нужно найти удельный заряд электрона, выпишем в явном виде его из уравнения (17):

$$\frac{e}{m} = \frac{81r_a^2 \beta^4}{128\pi^2 \epsilon_0^2 l^2} \frac{I^2}{V^2} = k \frac{I^2}{V^3} = k \left(\frac{dI}{dV^{3/2}}\right)^2$$
(18)

Таким образом, удельный заряд электрона определяется из отношения квадрата тока к кубу напряжения, умноженный на коэффициент, зависящий от параметров установки.