Булевы функции

- ► $B = \{0, 1\}.$
- ▶ Булева функция функция $f: B^n \to B$.

Булевы функции

- ► $B = \{0, 1\}.$
- **▶** Булева функция функция $f: B^n \to B$.
- ightharpoonup Число различных булевых функций от n переменных равно 2^{2^n} .

Доказательство. Рассмотрим всевозможные булевы функции $f(x_1, x_2, \ldots, x_n)$ от n переменных x_1, x_2, \ldots, x_n . Поскольку каждая переменная x_i ($i=1,2,\ldots,n$) может принимать одно из двух значений (0 или 1), то число различных наборов значений переменных x_1, x_2, \ldots, x_n равно 2^n . На каждом из 2^n различных наборов функция $f(x_1, x_2, \ldots, x_n)$ может принимать одно из двух значений (0 или 1). Следовательно, число различных булевых функций от n переменных равно 2^{2^n} .

Число булевых функций от *п* переменных равно **2**²ⁿ

▶ Число функций от 1 переменной равно 4.

Число булевых функций от *п* переменных равно 2²ⁿ

- Число функций от 1 переменной равно 4.
- Число функций от 2 переменных равно 16.

Число булевых функций от *п* переменных равно 2²ⁿ

- ▶ Число функций от 1 переменной равно 4.
- ▶ Число функций от 2 переменных равно 16.
- Число функций от 3 переменных равно 256.

Число булевых функций от *п* переменных равно 2²″

- Число функций от 1 переменной равно 4.
- ▶ Число функций от 2 переменных равно 16.
- Число функций от 3 переменных равно 256.
- Число функций от 4 переменных равно
 2^{2⁴} = 2¹⁶ = 65536.

Число булевых функций от *п* переменных равно **2²**

- Число функций от 1 переменной равно 4.
- ▶ Число функций от 2 переменных равно 16.
- Число функций от 3 переменных равно 256.
- ightharpoonup Число функций от 4 переменных равно $2^{2^4} = 2^{16} = 65536$.
- ightharpoonup Число функций от 5 переменных равно $2^{2^5} = 2^{32} = 4294967296$.

Булевы функции одной переменной

X	0	1
f(x)=0	0	0
f(x) = x	0	1
тождественная функция		
$f(x) = \neg x = \overline{x}$	1	0
отрицание		
f(x)=1	1	1

Булевы функции одной переменной

Χ	0	1
f(x)=0	0	0
f(x) = x	0	1
тождественная функция		
$f(x) = \neg x = \overline{x}$	1	0
отрицание		
f(x) = 1	1	1

Заметим, что $\neg \neg x = x$.

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

$$x \& 0 =$$

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

$$x \& 0 = 0;$$

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

- x & 0 = 0;
- ► *x* & 1 =

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

- x & 0 = 0;
- x & 1 = x;

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

- x & 0 = 0;
- x & 1 = x;
- ► $x \& \neg x =$

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

- x & 0 = 0;
- x & 1 = x;
- ► $x \& \neg x = 0$;

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

- x & 0 = 0;
- x & 1 = x;
- ► $x \& \neg x = 0$;
- ▶ (Идемпотентность) x & x =

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

- x & 0 = 0;
- x & 1 = x;
- ► $x \& \neg x = 0$;
- ▶ (Идемпотентность) x & x = x;

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

- x & 0 = 0;
- x & 1 = x;
- ► $x \& \neg x = 0$;
- ▶ (Идемпотентность) x & x = x;
- ▶ (Коммутативность) x & y = y & x;

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x \& y = x \land y = x \cdot y$	0	0	0	1

- x & 0 = 0;
- x & 1 = x;
- ► $x \& \neg x = 0$;
- ▶ (Идемпотентность) x & x = x;
- ► (Коммутативность) x & y = y & x;
- ► (Ассоциативность) x & (y & z) = (x & y) & z.

Χ	0	0	1	1
У	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

$$\rightarrow x \lor 0 =$$

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

$$ightharpoonup x \lor 0 = x;$$

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

- $ightharpoonup x \lor 0 = x;$
- $\rightarrow x \lor 1 =$

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

- $ightharpoonup x \lor 0 = x;$
- $> x \lor 1 = 1;$

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

- $ightharpoonup x \lor 0 = x;$
- $x \lor 1 = 1;$
- $ightharpoonup x \lor \neg x =$

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

- $ightharpoonup x \lor 0 = x;$
- $x \lor 1 = 1;$
- $ightharpoonup x \lor \neg x = 1;$

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

- \triangleright $x \lor 0 = x;$
- $x \lor 1 = 1;$
- $ightharpoonup x \lor \neg x = 1;$
- ▶ (Идемпотентность) $x \lor x =$

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

- $ightharpoonup x \lor 0 = x;$
- $x \lor 1 = 1;$
- $ightharpoonup x \lor \neg x = 1;$
- ▶ (Идемпотентность) $x \lor x = x$;

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

- \triangleright $x \lor 0 = x;$
- $x \lor 1 = 1;$
- $ightharpoonup x \lor \neg x = 1;$
- ightharpoonup (Идемпотентность) $x \lor x = x$;
- ightharpoonup (Коммутативность) $x \lor y = y \lor x$;

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x\vee y$	0	1	1	1

- \triangleright $x \lor 0 = x;$
- $x \lor 1 = 1;$
- $ightharpoonup x \lor \neg x = 1;$
- **▶** (Идемпотентность) $x \lor x = x$;
- ► (Коммутативность) $x \lor y = y \lor x$;
- ► (Ассоциативность) $x \lor (y \lor z) = (x \lor y) \lor z$.

Законы двойственности: $\neg(x \lor y) = \neg x \& \neg y$

Х	0	0	1	1
У	0	1	0	1
$x \vee y$	0	1	1	1
$\neg(x \lor y)$	1	0	0	0
$\neg X$	1	1	0	0
$\neg y$	1	0	1	0
$\neg x \& \neg y$	1	0	0	0

Законы двойственности: $\neg(x \lor y) = \neg x \& \neg y$

Х	0	0	1	1
У	0	1	0	1
$x \vee y$	0	1	1	1
$\neg(x \lor y)$	1	0	0	0
$\neg \chi$	1	1	0	0
$\neg y$	1	0	1	0
$\neg x \& \neg y$	1	0	0	0

Следовательно, $x \lor y = \neg(\neg x \& \neg y)$.

Законы двойственности: $\neg(x \& y) = \neg x \lor \neg y$

X	0	0	1	1
У	0	1	0	1
x & y	0	0	0	1
$\neg(x \& y)$	1	1	1	0
$\neg X$	1	1	0	0
$\neg y$	1	0	1	0
$\neg x \lor \neg y$	1	1	1	0

Законы двойственности: $\neg(x \& y) = \neg x \lor \neg y$

Х	0	0	1	1
У	0	1	0	1
x & y	0	0	0	1
$\neg(x \& y)$	1	1	1	0
$\neg \chi$	1	1	0	0
$\neg y$	1	0	1	0
$\neg x \lor \neg y$	1	1	1	0

 $\neg(x \& y)$

Χ	0	0	1	1
У	0	1	0	1
x & y	0	0	0	1
$\neg(x \& y)$	1	1	1	0
$\neg X$	1	1	0	0
$\neg y$	1	0	1	0
$\neg x \lor \neg y$	1	1	1	0

$$\neg(x \& y) = \neg(\neg\neg x \& \neg\neg y)$$

X	0	0	1	1
У	0	1	0	1
x & y	0	0	0	1
$\neg(x \& y)$	1	1	1	0
$\neg \chi$	1	1	0	0
$\neg y$	1	0	1	0
$\neg x \lor \neg y$	1	1	1	0

$$\neg(x \& y) = \neg(\neg\neg x \& \neg\neg y) = \neg\neg(\neg x \lor \neg y)$$

Χ	0	0	1	1
У	0	1	0	1
x & y	0	0	0	1
$\neg(x \& y)$	1	1	1	0
$\neg X$	1	1	0	0
$\neg y$	1	0	1	0
$\neg x \lor \neg y$	1	1	1	0

$$\neg(x \& y) = \neg(\neg\neg x \& \neg\neg y) = \neg\neg(\neg x \lor \neg y) = \neg x \lor \neg y.$$

X	0	0	1	1
У	0	1	0	1
x & y	0	0	0	1
$\neg(x \& y)$	1	1	1	0
$\neg X$	1	1	0	0
$\neg y$	1	0	1	0
$\neg x \lor \neg y$	1	1	1	0

 $\neg(x \& y) = \neg(\neg\neg x \& \neg\neg y) = \neg\neg(\neg x \lor \neg y) = \neg x \lor \neg y.$ Следовательно, $x \& y = \neg(\neg x \lor \neg y).$

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
$x \lor y$	0	0	1	1	1	1	1	1
$(x \lor y) \& z$	0	0	0	1	0	1	0	1
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
$x \& z \lor y \& z$	0	0	0	1	0	1	0	1

$$x \& y \lor z = \neg \neg (x \& y \lor z)$$

$$x \& y \lor z = \neg \neg (x \& y \lor z) = \neg (\neg (x \& y) \& \neg z)$$

$$x \& y \lor z = \neg \neg (x \& y \lor z) = \neg (\neg (x \& y) \& \neg z) = \neg ((\neg x \lor \neg y) \& \neg z)$$

$$x \& y \lor z = \neg \neg (x \& y \lor z) = \neg (\neg (x \& y) \& \neg z) = \neg ((\neg x \lor \neg y) \& \neg z) = \neg (\neg x \& \neg z \lor \neg y \& \neg z)$$

$$x \& y \lor z = \neg \neg (x \& y \lor z) = \neg (\neg (x \& y) \& \neg z) = \neg ((\neg x \lor \neg y) \& \neg z) = \neg (\neg x \& \neg z \lor \neg y \& \neg z) = \neg (\neg x \& \neg z) \& \neg (\neg y \& \neg z)$$

$$x \& y \lor z = \neg \neg (x \& y \lor z) = \neg (\neg (x \& y) \& \neg z) = \neg ((\neg x \lor \neg y) \& \neg z) = \neg (\neg x \& \neg z \lor \neg y \& \neg z) = \neg (\neg x \& \neg z) \& \neg (\neg y \& \neg z) = (\neg \neg x \lor \neg \neg z) \& (\neg \neg y \lor \neg \neg z)$$

$$x \& y \lor z = \neg \neg (x \& y \lor z) = \neg (\neg (x \& y) \& \neg z) = \neg ((\neg x \lor \neg y) \& \neg z) = \neg (\neg x \& \neg z \lor \neg y \& \neg z) = \neg (\neg x \& \neg z) \& \neg (\neg y \& \neg z) = (\neg \neg x \lor \neg \neg z) \& (\neg \neg y \lor \neg \neg z) = (x \lor z) \& (y \lor z)$$

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x+y=x\oplus y=x\dot{\vee}y$	0	1	1	0

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x+y=x\oplus y=x\dot{\vee}y$	0	1	1	0

$$x + 0 =$$

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x + y = x \oplus y = x \dot{\vee} y$	0	1	1	0

$$x + 0 = x;$$

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x+y=x\oplus y=x\dot{\vee}y$	0	1	1	0

$$x + 0 = x$$
;

$$x + 1 =$$

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x + y = x \oplus y = x \dot{\vee} y$	0	1	1	0

$$x + 0 = x$$
;

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x + y = x \oplus y = x \dot{\vee} y$	0	1	1	0

- x + 0 = x;
- ► $x + 1 = \neg x$;
- \rightarrow x + x =

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x + y = x \oplus y = x \dot{\vee} y$	0	1	1	0

- x + 0 = x;
- ► $x + 1 = \neg x$;
- > x + x = 0;

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x + y = x \oplus y = x \dot{\vee} y$	0	1	1	0

- x + 0 = x;
- ► $x + 1 = \neg x$;
- ► x + x = 0;
- ightharpoonup (Коммутативность) x + y = y + x;

X	0	0	1	1
У	0	1	0	1
$f(x,y) = x + y = x \oplus y = x \dot{\vee} y$	0	1	1	0

- > x + 0 = x;
- ► x + x = 0;
- ightharpoonup (Коммутативность) x + y = y + x;
- ightharpoonup (Ассоциативность) x + (y + z) = (x + y) + z;

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x+y=x\oplus y=x\dot{\vee}y$	0	1	1	0

- x + 0 = x;
- ► $x + 1 = \neg x$;
- ► x + x = 0;
- ightharpoonup (Коммутативность) x + y = y + x;
- ightharpoonup (Ассоциативность) x + (y + z) = (x + y) + z;
- ightharpoonup Если x & y = 0, то x + y =

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x+y=x\oplus y=x\dot{\vee}y$	0	1	1	0

- > x + 0 = x;
- ► $x + 1 = \neg x$;
- ► x + x = 0;
- ightharpoonup (Коммутативность) x + y = y + x;
- ightharpoonup (Ассоциативность) x + (y + z) = (x + y) + z;
- ightharpoonup Если x & y = 0, то $x + y = x \lor y$.

$x + y = x \& \neg y \lor \neg x \& y$

X	0	0	1	1
У	0	1	0	1
$\neg y$	1	0	1	0
<i>x</i> & ¬ <i>y</i>	0	0	1	0
$\neg \chi$	1	1	0	0
¬ <i>x</i> & <i>y</i>	0	1	0	0
$x \& \neg y \lor \neg x \& y$	0	1	1	0

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
x + y	0	0	1	1	1	1	0	0
(x+y) & z	0	0	0	1	0	1	0	0
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
x & y + x & z	0	0	0	1	0	1	0	0

$$x \& y + x \& z =$$

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
x + y	0	0	1	1	1	1	0	0
(x+y) & z	0	0	0	1	0	1	0	0
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
x & y + x & z	0	0	0	1	0	1	0	0

$$x \& y + x \& z = x \& y \& \neg(x \& z) \lor x \& z \& \neg(x \& y) =$$

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
x + y	0	0	1	1	1	1	0	0
(x+y) & z	0	0	0	1	0	1	0	0
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
x & y + x & z	0	0	0	1	0	1	0	0

$$x \& y + x \& z = x \& y \& \neg(x \& z) \lor x \& z \& \neg(x \& y) = x \& y \& (\neg x \lor \neg z) \lor x \& z \& (\neg x \lor \neg y) =$$

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
x + y	0	0	1	1	1	1	0	0
(x+y) & z	0	0	0	1	0	1	0	0
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
x & y + x & z	0	0	0	1	0	1	0	0

$$x \& y + x \& z = x \& y \& \neg(x \& z) \lor x \& z \& \neg(x \& y) = x \& y \& (\neg x \lor \neg z) \lor x \& z \& (\neg x \lor \neg y) = x \& y \& \neg x \lor x \& y \& \neg z \lor x \& z \& \neg x \lor x \& z \& \neg y =$$

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
x + y	0	0	1	1	1	1	0	0
(x+y) & z	0	0	0	1	0	1	0	0
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
x & y + x & z	0	0	0	1	0	1	0	0

$$x \& y + x \& z = x \& y \& \neg(x \& z) \lor x \& z \& \neg(x \& y) = x \& y \& (\neg x \lor \neg z) \lor x \& z \& (\neg x \lor \neg y) = x \& y \& \neg x \lor x \& y \& \neg z \lor x \& z \& \neg x \lor x \& z \& \neg y = 0 \lor x \& y \& \neg z \lor 0 \lor x \& z \& \neg y =$$

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
x + y	0	0	1	1	1	1	0	0
(x+y) & z	0	0	0	1	0	1	0	0
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
x & y + x & z	0	0	0	1	0	1	0	0

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
x + y	0	0	1	1	1	1	0	0
(x+y) & z	0	0	0	1	0	1	0	0
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
x & y + x & z	0	0	0	1	0	1	0	0

$$x \& y + x \& z = x \& y \& \neg(x \& z) \lor x \& z \& \neg(x \& y) = x \& y \& (\neg x \lor \neg z) \lor x \& z \& (\neg x \lor \neg y) = x \& y \& \neg x \lor x \& y \& \neg z \lor x \& z \& \neg x \lor x \& z \& \neg y = 0 \lor x \& y \& \neg z \lor 0 \lor x \& z \& \neg y = x \& y \& \neg z \lor x \& z \& \neg y = x \& (y \& \neg z \lor z \& \neg y) =$$

X	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
x + y	0	0	1	1	1	1	0	0
(x+y) & z	0	0	0	1	0	1	0	0
x & z	0	0	0	0	0	1	0	1
y & z	0	0	0	1	0	0	0	1
x & y + x & z	0	0	0	1	0	1	0	0

$$x \& y + x \& z = x \& y \& \neg(x \& z) \lor x \& z \& \neg(x \& y) = x \& y \& (\neg x \lor \neg z) \lor x \& z \& (\neg x \lor \neg y) = x \& y \& \neg x \lor x \& y \& \neg z \lor x \& z \& \neg x \lor x \& z \& \neg y = 0 \lor x \& y \& \neg z \lor 0 \lor x \& z \& \neg y = x \& y \& \neg z \lor x \& z \& \neg y = x \& (y \& \neg z \lor z \& \neg y) = x \& (y + z)$$

Импликация: $\mathbf{x} \to \mathbf{y} = \neg \mathbf{x} \lor \mathbf{y}$

Х	0	0	1	1
У	0	1	0	1
$X \rightarrow Y$	1	1	0	1
$\neg x$	1	1	0	0
$\neg x \lor y$	1	1	0	1

Эквивалентность

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

Эквивалентность

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- lacktriangle (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;

X	0	0	1	1
У	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ▶ (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;
- \triangleright $x \leftrightarrow y$

X	0	0	1	1
у	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ► (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ► (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;

X	0	0	1	1
у	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ► (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;
- ► $x \leftrightarrow y = \neg(x + y) = \neg(x \& \neg y \lor \neg x \& y) = \neg(x \& \neg y) \& \neg(\neg x \& y)$

X	0	0	1	1
у	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ► (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;
- ► $x \leftrightarrow y = \neg(x + y) = \neg(x \& \neg y \lor \neg x \& y) = \neg(x \& \neg y) \& \neg(\neg x \& y) = (\neg x \lor \neg \neg y) \& (\neg \neg x \lor \neg y)$

X	0	0	1	1
у	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ► (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;
- ▶ $x \leftrightarrow y = \neg(x + y) = \neg(x \& \neg y \lor \neg x \& y) = \neg(x \& \neg y) \& \neg(\neg x \& y) = (\neg x \lor \neg \neg y) \& (\neg \neg x \lor \neg y) = (\neg x \lor y) \& (x \lor \neg y)$

X	0	0	1	1
y	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ► (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;
- ▶ $x \leftrightarrow y = \neg(x + y) = \neg(x \& \neg y \lor \neg x \& y) = \neg(x \& \neg y) \& \neg(\neg x \& y) = (\neg x \lor \neg \neg y) \& (\neg \neg x \lor \neg y) = (\neg x \lor y) \& (x \lor \neg y) = \neg x \& x \lor y \& x \lor \neg x \& \neg y \lor y \& \neg y$

X	0	0	1	1
у	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ► (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;

▶
$$x \leftrightarrow y = \neg(x + y) = \neg(x \& \neg y \lor \neg x \& y) = \neg(x \& \neg y) \& \neg(\neg x \& y) = (\neg x \lor \neg \neg y) \& (\neg \neg x \lor \neg y) = (\neg x \lor y) \& (x \lor \neg y) = \neg x \& x \lor y \& x \lor \neg x \& \neg y \lor y \& \neg y = 0 \lor y \& x \lor \neg x \& \neg y \lor 0$$

X	0	0	1	1
у	0	1	0	1
$f(x,y)=x\leftrightarrow y$	1	0	0	1

- ightharpoonup (Коммутативность) $x \leftrightarrow y = y \leftrightarrow x$
- ► (Ассоциативность) $x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$;
- ▶ $x \leftrightarrow y = \neg(x + y) = \neg(x \& \neg y \lor \neg x \& y) = \neg(x \& \neg y) \& \neg(\neg x \& y) = (\neg x \lor \neg \neg y) \& (\neg \neg x \lor \neg y) = (\neg x \lor y) \& (x \lor \neg y) = \neg x \& x \lor y \& x \lor \neg x \& \neg y \lor y \& \neg y = 0 \lor y \& x \lor \neg x \& \neg y \lor 0 = y \& x \lor \neg x \& \neg y.$

Эквивалентность: $x \leftrightarrow y = (x \to y) \& (y \to x)$

X	0	0	1	1
У	0	1	0	1
$X \to Y = \neg X \lor Y$	1	1	0	1
$y \rightarrow x = \neg y \lor x$	1	0	1	1
$x \leftrightarrow y = (x \to y) \& (y \to x)$	1	0	0	1

X	0	0	1	1
У	0	1	0	1
$x \mid y$	1	1	1	0

X	0	0	1	1
У	0	1	0	1
$x \mid y$	1	1	1	0

$$\neg x = x \mid x$$
;

X	0	0	1	1
У	0	1	0	1
$x \mid y$	1	1	1	0

$$\neg x = x \mid x$$
;
(Коммутативность) $x \mid y = y \mid x$;

X	0	0	1	1
У	0	1	0	1
$x \mid y$	1	1	1	0

$$\neg x = x \mid x;$$
 (Коммутативность) $x \mid y = y \mid x;$ $x \& y = \neg(x \mid y) = (x \mid y) \mid (x \mid y);$

Χ	0	0	1	1
У	0	1	0	1
$x \mid y$	1	1	1	0

$$\neg x = x \mid x$$
; (Коммутативность) $x \mid y = y \mid x$; $x \& y = \neg(x \mid y) = (x \mid y) \mid (x \mid y)$; $x \lor y = \neg(\neg x \& \neg y) = \neg x \mid \neg y = (x \mid x) \mid (y \mid y)$.

Х	0	0	1	1
У	0	1	0	1
$x \downarrow y$	1	0	0	0

Х	0	0	1	1
У	0	1	0	1
$x \downarrow y$	1	0	0	0

$$\neg x = x \downarrow x$$
;

X	0	0	1	1
У	0	1	0	1
$x \downarrow y$	1	0	0	0

$$\neg x = x \downarrow x$$
; (Коммутативность) $x \downarrow y = y \downarrow x$;

Х	0	0	1	1
У	0	1	0	1
$x \downarrow y$	1	0	0	0

$$\neg x = x \downarrow x;$$
 (Коммутативность) $x \downarrow y = y \downarrow x;$ $x \lor y = \neg (x \downarrow y) = (x \downarrow y) \downarrow (x \downarrow y);$

Х	0	0	1	1
У	0	1	0	1
$x \downarrow y$	1	0	0	0

$$\neg x = x \downarrow x$$
; (Коммутативность) $x \downarrow y = y \downarrow x$; $x \lor y = \neg (x \downarrow y) = (x \downarrow y) \downarrow (x \downarrow y)$; $x \& y = \neg (\neg x \lor \neg y) = \neg x \downarrow \neg y = (x \downarrow x) \downarrow (y \downarrow y)$.

Выразимость через ¬, &, ∨ 16-ти двухместных б.ф.

X	0	0	1	1
у	0	1	0	1
$0 = x \& \neg x$	0	0	0	0
x & y	0	0	0	1
$\neg(x \to y) = x \& \neg y$	0	0	1	0
x = x & x	0	0	1	1
$\neg(y \to x) = \neg x \& y$	0	1	0	0
<i>y</i> = <i>y</i> & <i>y</i>	0	1	0	1
$x + y = x \& \neg y \lor \neg x \& y$	0	1	1	0
$x \lor y$	0	1	1	1

Выразимость через ¬, &, ∨ 16-ти двухместных б.ф.

X	0	0	1	1
У	0	1	0	1
$x \downarrow y = \neg x \& \neg y$	1	0	0	0
$x \leftrightarrow y = x \& y \lor \neg x \& \neg y$	1	0	0	1
$\neg y$	1	0	1	0
$y \rightarrow x = x \lor \neg y$	1	0	1	1
$\neg X$	1	1	0	0
$x \to y = \neg x \lor y$	1	1	0	1
$x \mid y = \neg x \lor \neg y$	1	1	1	0
$1 = x \vee \neg x$	1	1	1	1

Домашнее задание

- 1. Выразить $x \to y$, x + y и $x \leftrightarrow y$ через стрелку Пирса.
- 2. Выразить $x \to y, \, x + y$ и $x \leftrightarrow y$ через штрих Шеффера.

Зависимость между булевыми функциями

1. коммутативность:

$$x \& y = y \& x$$

$$x \lor y = y \lor x$$

$$x+y=y+x$$

$$x \leftrightarrow y = y \leftrightarrow x$$

$$x \mid y = y \mid x$$

$$x \downarrow y = y \downarrow x$$

2. ассоциативность:

$$x \& (y \& z) = (x \& y) \& z$$

$$x \vee (y \vee z) = (x \vee y) \vee z$$

$$X + (y + z) = (X + y) + z$$

$$x \leftrightarrow (y \leftrightarrow z) = (x \leftrightarrow y) \leftrightarrow z$$

3. дистрибутивность:

$$x \& (y \lor z) = (x \& y) \lor (x \& z)$$

$$x \vee (y \& z) = (x \vee y) \& (x \vee z)$$

$$x \& (y + z) = (x \& y) + (x \& z)$$

Зависимость между булевыми функциями

4. двойственность (законы де Моргана): $\neg(x \& y) = \neg x \lor \neg y$ $\neg(x \lor y) = \neg x \& \neg y$ 5. правила поглощения: $x \& (x \lor y) = x$ $x \lor (x \& y) = x$ $x \& (\neg x \lor y) = x \& y$ $x \vee (\neg x \& y) = x \vee y$ 7. закон двойного отрицания: $\neg \neg X = X$

Зависимость между булевыми функциями

$$x \& \neg x = x \& 0 = x + x = 0$$

 $x \lor \neg x = x \lor 1 = x \leftrightarrow x = x \to x = 1$
 $x \lor x = x \& x = x \lor 0 = x \& 1 = x + 0 = x$
 $x + 1 = x \to 0 = x \leftrightarrow 0 = x \mid x = x \downarrow x = \neg x$
 $x \to y = \neg x \lor y$
 $x \leftrightarrow y = \neg (x + y) = (x \to y) \& (y \to x) = (x \& y) \lor (\neg x \& \neg y)$
 $x + y = \neg (x \leftrightarrow y) = (\neg x \& y) \lor (x \& \neg y)$
 $x \mid y = \neg (x \& y) = \neg x \lor \neg y$
 $x \downarrow y = \neg (x \lor y) = \neg x \& \neg y$