A square matrix is *symmetric* if it stays the same after reflecting all of the entries across the top-left-to-bottom-right diagonal. For example, the following matrix is symmetric.

$$\begin{pmatrix}
1 & 3 & 4 \\
3 & 2 & 7 \\
4 & 7 & 5
\end{pmatrix}$$

True or False?

The set of symmetric $n \times n$ matrices is a subspace of $\mathcal{M}_{n \times n}$.

The complex numbers are a vector space.

The following vectors span \mathbb{R}^3 .

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

 \mathcal{P}_2 can be spanned by three polynomials all of which have degree 2.

The following set of vectors in \mathbb{R}^3 is linearly independent.

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\3\\4 \end{pmatrix}, \begin{pmatrix} 3\\4\\5 \end{pmatrix} \right\}$$