The Art of Proving

Mădălina Erașcu

West University of Timişoara and Institute e-Austria Timişoara bvd. V. Parvan 4, Timişsoara, Romania

madalina.erascu@e-uvt.ro

Outline

Proofs

Proof Rules

Conjunction
Disjunction
Implication
Equivalence
Universal Quantification
Existential Quantification
Indirect Proofs

Example

Exercises

Outline

Proofs

Proof Rules

Conjunction
Disjunction
Implication
Equivalence
Universal Quantification
Existential Quantification
Indirect Proofs

Example

Evereise

A proof is a structured argument that a formula is true.

- ► A tree whose nodes represent proof situations (states)
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - \blacktriangleright Knowledge $K_1, ..., K_n$ are assumed to be true
 - Goal G to be proved wrt knowledge
- The root of the tree is the initial proof situation
 - \blacktriangleright Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
- ▶ G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{\dots \vdash \dots \vdash \dots}{K_1, \dots, K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - One or more substitutions: G is proved, if all substitutions is
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G₁, G₂,
- ▶ Bottom-up rules: focus on $K_1, ..., K_n$; knowledge is extended to $K_1, ..., K_n, K_{n+1}$

A proof is a structured argument that a formula is true.

- ► A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - ► Goal G to be proved wrt knowledge
- The root of the tree is the initial proof situation
- ▶ Knowledge K₁.... K_n axioms of mathematical background theories
- G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{\dots \vdash \dots \vdash \dots}{K_1, \dots, K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - P. One or more substitutions. G is proved, if all subsouls are proved.
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 ,
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - Knowledge $K_1, ..., K_n$ are assumed to be true
- ► The root of the tree is the initial proof situation
- ► Knowledge K = X = axioms of mathematical background theo
- G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{\dots \vdash \dots \vdash \dots}{K_1, \dots, K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - One or more substitutions. G is proved, if all substitutions.
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 ,
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- ► A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - ► Knowledge $K_1, ..., K_n$ are assumed to be true Goal G to be proved wit knowledge
- ► The root of the tree is the initial proof situation
- \triangleright Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
 - ▶ G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{\dots \vdash \dots \vdash \dots}{K_1, \dots, K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - P. One or more substitutions: G is proved, if all subsouls are proved
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 ,
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- ► A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - lacktriangledown Knowledge $K_1, ..., K_n$ are assumed to be true
 - Goal G to be proved wrt knowledge
- The root of the tree is the initial proof situation.
- ▶ Knowledge K₁.....K_n axioms of mathematical backgroups
- G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$K_1, ..., K_n \vdash G$$

- Rule may or may not close the (sub)proof:
 - Property of the company of the compa
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 ,
- ▶ Bottom-up rules: focus on $K_1, ..., K_n$; knowledge is extended to $K_1, ..., K_n, K_{n+1}$

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - ▶ Knowledge K₁,..., K_n are assumed to be true
 ▶ Goal G to be proved wrt knowledge
- ▶ The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
- G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{\dots \vdash \dots \vdash \dots}{K_1, \dots, K_n \vdash G}$$

- Rule may or may not close the (sub)proof
 - Property of the company of the compa
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 ,
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - ► Knowledge K₁, ..., K_n are assumed to be true ► Goal G to be proved wrt knowledge
- The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
 - ▶ G − formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{... \vdash ...}{K_1, ..., K_n \vdash G}$$

- Rule may or may not close the (sub)proof
 - One or more substituations: G is moved, if all subscales
- \triangleright Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 ,
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - ▶ Knowledge K₁, ..., K_n are assumed to be true
 ▶ Goal G to be proved wrt knowledge
- The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
 - ▶ G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{... \vdash ... \qquad ... \vdash ...}{K_1, ..., K_n \vdash G}$$

- Rule may or may not close the (sub)proof
- One or more substituations: G is proved, if all subgoals :
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 ,
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - Knowledge $K_1, ..., K_n$ are assumed to be true
 - ► Goal *G* to be proved wrt knowledge
- The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
- ▶ G − formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{... \vdash ... \qquad ... \vdash ...}{K_1, ..., K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - Zero subsituations: G has been proved, (sub)proof is closed.
 One or more subsituations: G is proved, if all subscale are proved.
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 , ...
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - ▶ Knowledge $K_1, ..., K_n$ are assumed to be true
 - Goal G to be proved wrt knowledge
- ► The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
- ▶ G − formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{... \vdash ... \qquad ... \vdash ...}{K_1, ..., K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - Zero subsituations: G has been proved, (sub)proof is closed.
 - One or more subsituations: G is proved, if all subgoals are proved
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 , ...
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - ▶ Knowledge $K_1, ..., K_n$ are assumed to be true
 - ► Goal *G* to be proved wrt knowledge
- The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
- ▶ G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{... \vdash ... \qquad ... \vdash ...}{K_1, ..., K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - Zero subsituations: G has been proved, (sub)proof is closed.
 - One or more subsituations: G is proved, if all subgoals are proved
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 , ...
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - ▶ Knowledge $K_1, ..., K_n$ are assumed to be true
 - ► Goal *G* to be proved wrt knowledge
- The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
- ▶ G − formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{... \vdash ... \qquad ... \vdash ...}{K_1, ..., K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - Zero subsituations: G has been proved, (sub)proof is closed.
 - ▶ One or more subsituations: G is proved, if all subgoals are proved.
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 , ...
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - Knowledge K₁, ..., K_n are assumed to be true
 Goal G to be proved wrt knowledge
- ▶ The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
 - ▶ G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{... \vdash ... \qquad ... \vdash ...}{K_1, ..., K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - Zero subsituations: G has been proved, (sub)proof is closed.
 - ▶ One or more subsituations: G is proved, if all subgoals are proved.
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 , ...
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - Knowledge K₁,..., K_n are assumed to be true
 Goal G to be proved wrt knowledge
- ▶ The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
 - ▶ G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{... \vdash ... \qquad ... \vdash ...}{K_1, ..., K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - Zero subsituations: G has been proved, (sub)proof is closed.
 - ▶ One or more subsituations: *G* is proved, if all subgoals are proved.
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 , ...
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).
- ▶ Each proof situation consists of knowledge base and a goal: $K_1, ..., K_n \vdash G$
 - Knowledge K₁, ..., K_n are assumed to be true
 Goal G to be proved wrt knowledge
- ▶ The root of the tree is the initial proof situation.
 - ▶ Knowledge $K_1, ..., K_n$ axioms of mathematical background theories
 - ▶ G formula to be proved

Proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations"

$$\frac{... \vdash ... \qquad ... \vdash ...}{K_1, ..., K_n \vdash G}$$

- ▶ Rule may or may not close the (sub)proof:
 - Zero subsituations: G has been proved, (sub)proof is closed.
 - ▶ One or more subsituations: *G* is proved, if all subgoals are proved.
- ▶ Top-down rules: focus on G; G is decomposed into simpler goals G_1 , G_2 , ...
- ▶ Bottom-up rules: focus on K_1 , ..., K_n ; knowledge is extended to K_1 , ..., K_n , K_{n+1}

Outline

Proofs

Proof Rules

Conjunction
Disjunction
Implication
Equivalence
Universal Quantification
Existential Quantification
Indirect Proofs

Example

Evercise

$$\frac{\textit{K} \vdash \textit{G}_1 \quad \textit{K} \vdash \textit{G}_2}{\textit{K} \vdash \textit{G}_1 \land \textit{G}_2}$$

$$\frac{...,~K_1 \wedge K_2, K_1, K_2 \vdash \textit{G}}{...,~K_1 \wedge K_2 \vdash \textit{G}}$$

- ▶ Goal $G_1 \wedge G_2$
 - Create two subsituations with goals G_1 and G_2
- ► Knowledge $K_1 \wedge K_2$
 - ightharpoonup Create one subsituation with K_1 and K_2 in knowledge.

$$\frac{\textit{K} \vdash \textit{G}_1 \quad \textit{K} \vdash \textit{G}_2}{\textit{K} \vdash \textit{G}_1 \land \textit{G}_2}$$

$$\frac{...,\ K_1 \wedge K_2, K_1, K_2 \vdash G}{...,\ K_1 \wedge K_2 \vdash G}$$

- ▶ Goal $G_1 \wedge G_2$
 - ightharpoonup Create two subsituations with goals G_1 and G_2

the goal G_1). We show G_2 : ... (proof continues with the goal G_2

- ► Knowledge $K_1 \wedge K_2$
 - ightharpoonup Create one subsituation with K_1 and K_2 in knowledge

$$\frac{\mathcal{K} \vdash \mathcal{G}_1 \qquad \mathcal{K} \vdash \mathcal{G}_2}{\mathcal{K} \vdash \mathcal{G}_1 \land \mathcal{G}_2}$$

$$\frac{...,\ K_1 \wedge K_2, K_1, K_2 \vdash G}{...,\ K_1 \wedge K_2 \vdash G}$$

- ▶ Goal $G_1 \wedge G_2$
 - Create two subsituations with goals G₁ and G₂.

We have to show $G_1 \wedge G_2$. We show G_1 : ... (proof continues with the goal G_1). We show G_2 : ... (proof continues with the goal G_2)

► Knowledge $K_1 \wedge K_2$

 \triangleright Create one subsituation with K_1 and K_2 in knowledge

$$\frac{\mathcal{K} \vdash \mathcal{G}_1 \quad \mathcal{K} \vdash \mathcal{G}_2}{\mathcal{K} \vdash \mathcal{G}_1 \land \mathcal{G}_2} \qquad \qquad \frac{..., \ \mathcal{K}_1 \land \mathcal{K}_2, \mathcal{K}_1, \mathcal{K}_2 \vdash \mathcal{G}}{..., \ \mathcal{K}_1 \land \mathcal{K}_2 \vdash \mathcal{G}}$$

- ▶ Goal $G_1 \wedge G_2$
 - Create two subsituations with goals G₁ and G₂.

We have to show $G_1 \wedge G_2$. We show G_1 : ... (proof continues with the goal G_1). We show G_2 : ... (proof continues with the goal G_2).

► Knowledge $K_1 \wedge K_2$

 \triangleright Create one substituation with K_1 and K_2 in knowledge

$$\frac{\textit{K} \vdash \textit{G}_1 \quad \textit{K} \vdash \textit{G}_2}{\textit{K} \vdash \textit{G}_1 \land \textit{G}_2}$$

$$\frac{..., \ K_1 \wedge K_2, K_1, K_2 \vdash G}{..., \ K_1 \wedge K_2 \vdash G}$$

- ▶ Goal $G_1 \wedge G_2$
 - Create two subsituations with goals G₁ and G₂.

We have to show $G_1 \wedge G_2$. We show G_1 : ... (proof continues with the goal G_1). We show G_2 : ... (proof continues with the goal G_2).

- ▶ Knowledge $K_1 \wedge K_2$
 - ightharpoonup Create one subsituation with K_1 and K_2 in knowledge

$$\frac{\mathcal{K} \vdash \mathcal{G}_1 \qquad \mathcal{K} \vdash \mathcal{G}_2}{\mathcal{K} \vdash \mathcal{G}_1 \land \mathcal{G}_2}$$

$$\frac{...,\ K_1 \wedge K_2, K_1, K_2 \vdash G}{...,\ K_1 \wedge K_2 \vdash G}$$

- ▶ Goal $G_1 \wedge G_2$
 - Create two subsituations with goals G₁ and G₂.

We have to show $G_1 \wedge G_2$. We show G_1 : ... (proof continues with the goal G_1). We show G_2 : ... (proof continues with the goal G_2).

- ▶ Knowledge $K_1 \wedge K_2$
 - Create one subsituation with K₁ and K₂ in knowledge.

We know $K_1 \wedge K_2$. We thus also know K_1 and K_2 . (proof continues with current goal and additional knowledge K_1 and K_1)

$$\frac{\mathcal{K} \vdash \mathcal{G}_1 \quad \mathcal{K} \vdash \mathcal{G}_2}{\mathcal{K} \vdash \mathcal{G}_1 \land \mathcal{G}_2} \qquad \qquad \frac{..., \ \mathcal{K}_1 \land \mathcal{K}_2, \mathcal{K}_1, \mathcal{K}_2 \vdash \mathcal{G}}{..., \ \mathcal{K}_1 \land \mathcal{K}_2 \vdash \mathcal{G}}$$

- ▶ Goal $G_1 \wedge G_2$
 - Create two subsituations with goals G₁ and G₂.

We have to show $G_1 \wedge G_2$. We show G_1 : ... (proof continues with the goal G_1). We show G_2 : ... (proof continues with the goal G_2).

- ▶ Knowledge $K_1 \wedge K_2$
 - Create one subsituation with K₁ and K₂ in knowledge.

We know $K_1 \wedge K_2$. We thus also know K_1 and K_2 . (proof continues with current goal and additional knowledge K_1 and K_1)

$$\frac{K, \ \neg G_1 \vdash G_2}{K \vdash G_1 \lor G_2}$$

$$\frac{..., \ K_1 \vdash G \quad ..., \ K_2 \vdash G}{..., \ K_1 \lor K_2 \vdash G}$$

▶ Goal $G_1 \lor G_2$

Create one substituation where G_2 is proved under the assumtion that G_1 does not hole (or vice versa):

► Knowledge $K_1 \lor K_2$

• Create two subsituations, one with K_1 and one with K_2 in knowledge.

$$\frac{K,\ \neg G_1 \vdash G_2}{K \vdash G_1 \lor G_2}$$

$$\frac{..., \ K_1 \vdash G \quad ..., \ K_2 \vdash G}{..., \ K_1 \lor K_2 \vdash G}$$

- ▶ Goal $G_1 \lor G_2$
 - Create one substituation where G₂ is proved under the assumtion that G₁ does not hold (or vice versa):

We have to show $G_1 \vee G_2$. We assume $\neg G_1$ and show G_2 . (proof continues with goal G_2 and additional knowledge $\neg G_1$)

- ▶ Knowledge $K_1 \lor K_2$
 - Create two subsituations, one with K_1 and one with K_2 in knowledge.

$$\frac{K, \ \neg G_1 \vdash G_2}{K \vdash G_1 \lor G_2}$$

$$\frac{..., \ K_1 \vdash G \quad ..., \ K_2 \vdash G}{..., \ K_1 \lor K_2 \vdash G}$$

- ▶ Goal $G_1 \lor G_2$
 - ightharpoonup Create one substituation where G_2 is proved under the assumtion that G_1 does not hold (or vice versa):

We have to show $G_1 \vee G_2$. We assume $\neg G_1$ and show G_2 . (proof continues with goal G_2 and additional knowledge $\neg G_1$)

- ► Knowledge $K_1 \lor K_2$
 - ightharpoonup Create two subsituations, one with K_1 and one with K_2 in knowledge

$$\frac{\mathcal{K},\ \neg G_1 \vdash G_2}{\mathcal{K} \vdash G_1 \lor G_2} \qquad \qquad \frac{...,\ \mathcal{K}_1 \vdash G \quad ...,\ \mathcal{K}_2 \vdash G}{...,\ \mathcal{K}_1 \lor \mathcal{K}_2 \vdash G}$$

- ▶ Goal $G_1 \lor G_2$
 - ightharpoonup Create one substituation where G_2 is proved under the assumtion that G_1 does not hold (or vice versa):

We have to show $G_1 \vee G_2$. We assume $\neg G_1$ and show G_2 . (proof continues with goal G_2 and additional knowledge $\neg G_1$)

► Knowledge $K_1 \lor K_2$

ightharpoonup Create two subsituations, one with K_1 and one with K_2 in knowledge

$$\frac{K, \ \neg G_1 \vdash G_2}{K \vdash G_1 \lor G_2}$$

$$\frac{..., \ K_1 \vdash G \quad ..., \ K_2 \vdash G}{..., \ K_1 \lor K_2 \vdash G}$$

- ▶ Goal $G_1 \lor G_2$
 - Create one substituation where G₂ is proved under the assumtion that G₁ does not hold (or vice versa):

We have to show $G_1 \vee G_2$. We assume $\neg G_1$ and show G_2 . (proof continues with goal G_2 and additional knowledge $\neg G_1$)

- ▶ Knowledge $K_1 \lor K_2$
 - ightharpoonup Create two subsituations, one with K_1 and one with K_2 in knowledge.

We know $K_1 \vee K_2$. We thus proceed by case distinction: Case $K_1 \circ$... (proof continues with current goal and additional knowledge K_1 and additional knowledge $K_2 \circ K_3 \circ K_4 \circ K_4 \circ K_5 \circ K$

$$\frac{K, \ \neg G_1 \vdash G_2}{K \vdash G_1 \lor G_2}$$

$$\frac{..., \ K_1 \vdash G \quad ..., \ K_2 \vdash G}{..., \ K_1 \lor K_2 \vdash G}$$

- ▶ Goal $G_1 \lor G_2$
 - Create one substituation where G₂ is proved under the assumtion that G₁ does not hold (or vice versa):

We have to show $G_1 \vee G_2$. We assume $\neg G_1$ and show G_2 . (proof continues with goal G_2 and additional knowledge $\neg G_1$)

- ▶ Knowledge $K_1 \lor K_2$
 - ▶ Create two subsituations, one with K_1 and one with K_2 in knowledge.

We know $K_1 \vee K_2$. We thus proceed by case distinction: Case K_1 : ... (proof continues with current goal and additional knowledge K_1) Case K_2 : ... (proof continues with current goal and additional knowledge K_2).

$$\frac{\mathcal{K}, \ \neg G_1 \vdash G_2}{\mathcal{K} \vdash G_1 \lor G_2} \qquad \qquad \frac{..., \ \mathcal{K}_1 \vdash G \quad ..., \ \mathcal{K}_2 \vdash G}{..., \ \mathcal{K}_1 \lor \mathcal{K}_2 \vdash G}$$

- ▶ Goal $G_1 \lor G_2$
 - Create one substituation where G₂ is proved under the assumtion that G₁ does not hold (or vice versa):

We have to show $G_1 \vee G_2$. We assume $\neg G_1$ and show G_2 . (proof continues with goal G_2 and additional knowledge $\neg G_1$)

- ▶ Knowledge $K_1 \lor K_2$
 - \triangleright Create two subsituations, one with K_1 and one with K_2 in knowledge.

We know $K_1 \vee K_2$. We thus proceed by case distinction: Case K_1 : ... (proof continues with current goal and additional knowledge K_1). Case K_2 : ... (proof continues with current goal and additional knowledge K_2).

Implication

$$\frac{K, \ G_1 \vdash G_2}{K \vdash G_1 \Rightarrow G_2}$$

$$\frac{... \vdash K_1 \qquad ..., \ K_2 \vdash G}{..., \ K_1 \Rightarrow K_2 \vdash G}$$

- Goal $G_1 \Rightarrow G_2$
 - . Create one subsituation where G_{2} is proved under the assumption that G_{1} holds
- ► Knowledge $K_1 \Rightarrow K_2$
 - ightharpoonup Create two subsituations, one with goal K_1 and one with knowledge K_2 .

Implication

$$\frac{K, \ G_1 \vdash G_2}{K \vdash G_1 \Rightarrow G_2}$$

$$\frac{... \vdash K_1 \qquad ..., \ K_2 \vdash G}{..., \ K_1 \Rightarrow K_2 \vdash G}$$

- ▶ Goal $G_1 \Rightarrow G_2$
 - \triangleright Create one substituation where G_2 is proved under the assumption that G_1 holds:
 - continues with goal G_0 and additional knowledge G_0
- ► Knowledge $K_1 \Rightarrow K_2$
 - ightharpoons Create two subsituations, one with goal K_1 and one with knowledge K_2

Implication

$$\frac{K, \ G_1 \vdash G_2}{K \vdash G_1 \Rightarrow G_2}$$

$$\frac{... \vdash K_1}{..., K_1 \Rightarrow K_2 \vdash G}$$

- ▶ Goal $G_1 \Rightarrow G_2$
 - ightharpoonup Create one subsituation where G_2 is proved under the assumption that G_1 holds:

We have to show $G_1 \Rightarrow G_2$. We assume G_1 and show G_2 . (proof continues with goal G_2 and additional knowledge G_1)

► Knowledge $K_1 \Rightarrow K_2$

 \triangleright Create two substituations, one with goal K_1 and one with knowledge K_2

$$\frac{\mathcal{K}, \ G_1 \vdash G_2}{\mathcal{K} \vdash G_1 \Rightarrow G_2} \qquad \qquad \frac{... \vdash \mathcal{K}_1 \qquad ..., \ \mathcal{K}_2 \vdash G}{..., \ \mathcal{K}_1 \Rightarrow \mathcal{K}_2 \vdash G}$$

- ▶ Goal $G_1 \Rightarrow G_2$
 - ightharpoonup Create one subsituation where G_2 is proved under the assumption that G_1 holds:

We have to show $G_1 \Rightarrow G_2$. We assume G_1 and show G_2 . (proof continues with goal G_2 and additional knowledge G_1)

► Knowledge $K_1 \Rightarrow K_2$

 \triangleright Create two subsituations, one with goal K_1 and one with knowledge K_2

$$\frac{\mathcal{K}, \ \mathcal{G}_1 \vdash \mathcal{G}_2}{\mathcal{K} \vdash \mathcal{G}_1 \Rightarrow \mathcal{G}_2} \qquad \qquad \frac{... \vdash \mathcal{K}_1 \quad ..., \ \mathcal{K}_2 \vdash \mathcal{G}}{..., \ \mathcal{K}_1 \Rightarrow \mathcal{K}_2 \vdash \mathcal{G}}$$

- ▶ Goal $G_1 \Rightarrow G_2$
 - Create one subsituation where G₂ is proved under the assumption that G₁ holds:

We have to show $G_1 \Rightarrow G_2$. We assume G_1 and show G_2 . (proof continues with goal G_2 and additional knowledge G_1)

- ▶ Knowledge $K_1 \Rightarrow K_2$
 - Create two subsituations, one with goal K₁ and one with knowledge K₂

 K_1). We know $K_1 \Rightarrow K_2$ (proof continues with goal and additional knowledge K_2).

$$\frac{\mathcal{K}, \ \mathcal{G}_1 \vdash \mathcal{G}_2}{\mathcal{K} \vdash \mathcal{G}_1 \Rightarrow \mathcal{G}_2} \qquad \qquad \frac{... \vdash \mathcal{K}_1 \quad ..., \ \mathcal{K}_2 \vdash \mathcal{G}}{..., \ \mathcal{K}_1 \Rightarrow \mathcal{K}_2 \vdash \mathcal{G}}$$

- ▶ Goal $G_1 \Rightarrow G_2$
 - reate one subsituation where G_2 is proved under the assumption that G_1 holds:

We have to show $G_1 \Rightarrow G_2$. We assume G_1 and show G_2 . (proof continues with goal G_2 and additional knowledge G_1)

- ▶ Knowledge $K_1 \Rightarrow K_2$
 - Create two subsituations, one with goal K₁ and one with knowledge K₂.

We know $K_1 \Rightarrow K_2$. We show K_1 : ... (proof continues with goal K_1). We know K_2 : ... (proof continues with current goal and additional knowledge K_2).

$$\frac{\mathcal{K}, \ \mathcal{G}_1 \vdash \mathcal{G}_2}{\mathcal{K} \vdash \mathcal{G}_1 \Rightarrow \mathcal{G}_2} \qquad \qquad \frac{... \vdash \mathcal{K}_1 \quad ..., \ \mathcal{K}_2 \vdash \mathcal{G}}{..., \ \mathcal{K}_1 \Rightarrow \mathcal{K}_2 \vdash \mathcal{G}}$$

- ▶ Goal $G_1 \Rightarrow G_2$
 - ightharpoonup Create one subsituation where G_2 is proved under the assumption that G_1 holds:

We have to show $G_1 \Rightarrow G_2$. We assume G_1 and show G_2 . (proof continues with goal G_2 and additional knowledge G_1)

- ▶ Knowledge $K_1 \Rightarrow K_2$
 - \triangleright Create two subsituations, one with goal K_1 and one with knowledge K_2 .

We know $K_1 \Rightarrow K_2$. We show K_1 : ... (proof continues with goal K_1). We know K_2 : ... (proof continues with current goal and additional knowledge K_2).

$$\frac{K \vdash G_1 \Rightarrow G_2 \qquad K \vdash G_2 \Rightarrow G_1}{K \vdash G_1 \Leftrightarrow G_2}$$

$$\frac{...\vdash (\neg)K_1 \qquad ..., \ (\neg)K_2\vdash G}{..., \ K_1 \Leftrightarrow K_2\vdash G}$$

- ▶ Goal $G_1 \Leftrightarrow G_2$
 - Create two subsituations with implications in both directions as goals

- ► Knowledge $K_1 \Leftrightarrow K_2$
 - ightharpoonup Create two subsituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_2$

$$\frac{K \vdash G_1 \Rightarrow G_2 \qquad K \vdash G_2 \Rightarrow G_1}{K \vdash G_1 \Leftrightarrow G_2}$$

$$\frac{... \vdash (\neg)K_1 \qquad ..., \ (\neg)K_2 \vdash G}{..., \ K_1 \Leftrightarrow K_2 \vdash G}$$

- ▶ Goal $G_1 \Leftrightarrow G_2$
 - Create two subsituations with implications in both directions as goals:

continues with voal $G_1 \Rightarrow G_2$. We show $G_2 \Rightarrow G_3$:.... (proof continues with voal $G_3 \Rightarrow G_4$).

- ► Knowledge $K_1 \Leftrightarrow K_2$
 - ightharpoonup Create two subsituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_2$

$$\frac{K \vdash G_1 \Rightarrow G_2 \qquad K \vdash G_2 \Rightarrow G_1}{K \vdash G_1 \Leftrightarrow G_2}$$

$$\frac{... \vdash (\neg)K_1 \qquad ..., \ (\neg)K_2 \vdash G}{..., \ K_1 \Leftrightarrow K_2 \vdash G}$$

- ▶ Goal $G_1 \Leftrightarrow G_2$
 - Create two subsituations with implications in both directions as goals:

We have to show $G_1 \Leftrightarrow G_2$. We show $G_1 \Rightarrow G_2$: ... (proof continues with goal $G_1 \Rightarrow G_2$). We show $G_2 \Rightarrow G_1$: ... (proof continues with goal $G_2 \Rightarrow G_1$)

► Knowledge $K_1 \Leftrightarrow K_2$

ightharpoons Create two subsituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_1$

$$\frac{K \vdash G_1 \Rightarrow G_2 \qquad K \vdash G_2 \Rightarrow G_1}{K \vdash G_1 \Leftrightarrow G_2} \qquad \qquad \frac{... \vdash (\neg)K_1}{..., K_2}$$

$$\frac{... \vdash (\neg)K_1 \qquad ..., \ (\neg)K_2 \vdash G}{..., \ K_1 \Leftrightarrow K_2 \vdash G}$$

- ▶ Goal $G_1 \Leftrightarrow G_2$
 - Create two subsituations with implications in both directions as goals:

We have to show $G_1\Leftrightarrow G_2$. We show $G_1\Rightarrow G_2$: ... (proof continues with goal $G_1\Rightarrow G_2$). We show $G_2\Rightarrow G_1$: ... (proof continues with goal $G_2\Rightarrow G_1$)

► Knowledge $K_1 \Leftrightarrow K_2$

ightharpoonup Create two subsituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_2$

$$\frac{\textit{K} \vdash \textit{G}_1 \Rightarrow \textit{G}_2 \qquad \textit{K} \vdash \textit{G}_2 \Rightarrow \textit{G}_1}{\textit{K} \vdash \textit{G}_1 \Leftrightarrow \textit{G}_2}$$

$$\frac{... \vdash (\neg)K_1 \qquad ..., \ (\neg)K_2 \vdash G}{..., \ K_1 \Leftrightarrow K_2 \vdash G}$$

- ▶ Goal $G_1 \Leftrightarrow G_2$
 - Create two subsituations with implications in both directions as goals:

We have to show $G_1 \Leftrightarrow G_2$. We show $G_1 \Rightarrow G_2$: ... (proof continues with goal $G_1 \Rightarrow G_2$). We show $G_2 \Rightarrow G_1$: ... (proof continues with goal $G_2 \Rightarrow G_1$)

- ▶ Knowledge $K_1 \Leftrightarrow K_2$
 - lacktriangle Create two subsituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_2$

We know $K_1 \Leftrightarrow K_2$. We show $(\neg)K_1^2 \dots$ (proof continues with goal $(\neg)K_2 \dots (\neg)K_3 \dots (\neg)K$

$$\frac{\mathcal{K} \vdash \mathcal{G}_1 \Rightarrow \mathcal{G}_2 \qquad \mathcal{K} \vdash \mathcal{G}_2 \Rightarrow \mathcal{G}_1}{\mathcal{K} \vdash \mathcal{G}_1 \Leftrightarrow \mathcal{G}_2}$$

$$\frac{... \vdash (\neg)K_1 \qquad ..., \ (\neg)K_2 \vdash G}{..., \ K_1 \Leftrightarrow K_2 \vdash G}$$

- ▶ Goal $G_1 \Leftrightarrow G_2$
 - Create two subsituations with implications in both directions as goals:

We have to show $G_1 \Leftrightarrow G_2$. We show $G_1 \Rightarrow G_2$: ... (proof continues with goal $G_1 \Rightarrow G_2$). We show $G_2 \Rightarrow G_1$: ... (proof continues with goal $G_2 \Rightarrow G_1$)

- ▶ Knowledge $K_1 \Leftrightarrow K_2$
 - Create two subsituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_2$.

We know $K_1 \Leftrightarrow K_2$. We show $(\neg)K_1$: ... (proof continues with goal $(\neg)K_1$). We know $(\neg)K_2$: ... (proof continues with current goal and additional knowledge $(\neg)K_2$).

$$\frac{\textit{K} \vdash \textit{G}_1 \Rightarrow \textit{G}_2 \quad \textit{K} \vdash \textit{G}_2 \Rightarrow \textit{G}_1}{\textit{K} \vdash \textit{G}_1 \Leftrightarrow \textit{G}_2}$$

$$\frac{... \vdash (\neg)K_1 \qquad ..., \ (\neg)K_2 \vdash G}{..., \ K_1 \Leftrightarrow K_2 \vdash G}$$

- ▶ Goal $G_1 \Leftrightarrow G_2$
 - Create two subsituations with implications in both directions as goals:

We have to show $G_1 \Leftrightarrow G_2$. We show $G_1 \Rightarrow G_2$: ... (proof continues with goal $G_1 \Rightarrow G_2$). We show $G_2 \Rightarrow G_1$: ... (proof continues with goal $G_2 \Rightarrow G_1$)

- ▶ Knowledge $K_1 \Leftrightarrow K_2$
 - Create two subsituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_2$.

We know $K_1 \Leftrightarrow K_2$. We show $(\neg)K_1$: ... (proof continues with goal $(\neg)K_1$). We know $(\neg)K_2$: ... (proof continues with current goal and additional knowledge $(\neg)K_2$).

$$\frac{K \vdash G\{x \to x_0\}}{K \vdash \bigvee_{x} G} \qquad (x_0 \text{ new for } K, G) \qquad \frac{..., \bigvee_{x} K, \ K\{x \to T\} \vdash G}{..., \bigvee_{x} K \vdash G}$$

- ► Goal ∀G
 - Introduce new (arbitrarily named) constant x_0 and create one substituation with goal $G[x \to x_0]$.
- ► Knowledge $\forall K$
 - Choose term I to create one subsituation with formula $K\{x \to I\}$ added to the knowledge.

$$\frac{K \vdash G\{x \to x_0\}}{K \vdash \bigvee\limits_{x} G} \qquad (x_0 \text{ new for } K, G) \qquad \qquad \frac{..., \bigvee\limits_{x} K, \ K\{x \to T\} \vdash G}{..., \bigvee\limits_{x} K \vdash G}$$

- ► Goal ∀G
 - Introduce new (arbitrarily named) constant x_0 and create one substituation with goal $G[x \to x_0]$.

We have to show \forall G. Take arbitrary x_0 . We show $G\{x \to x_0\}$ (proof continues with goal $G\{x \to x_0\}$)

- ► Knowledge ∀ *K*
 - ▶ Choose term T to create one substituation with formula $K\{x \to T\}$ added to the knowledge.

$$\frac{K \vdash G\{x \to x_0\}}{K \vdash \bigvee_{x} G} \qquad (x_0 \text{ new for } K, G) \qquad \frac{..., \bigvee_{x} K, \ K\{x \to T\} \vdash G}{..., \bigvee_{x} K \vdash G}$$

- ► Goal ∀G
 - Introduce new (arbitrarily named) constant x_0 and create one substituation with goal $G[x \to x_0]$.

```
We have to show \forall G. Take arbitrary x_0. We show G\{x \to x_0\} (proof continues with goal G\{x \to x_0\})
```

- ► Knowledge $\forall K$
 - ▶ Choose term T to create one substituation with formula K{x → T} added to the knowledge.

- ► Goal ∀G
 - Introduce new (arbitrarily named) constant x_0 and create one substituation with goal $G[x \to x_0]$.

We have to show
$$\forall G$$
. Take arbitrary x_0 . We show $G\{x \to x_0\}$. (proof continues with goal $G\{x \to x_0\}$)

- ► Knowledge $\forall K$
 - ▶ Choose term T to create one substituation with formula $K\{x \to T\}$ added to the knowledge.

- ► Goal ∀*G*
 - Introduce new (arbitrarily named) constant x_0 and create one substituation with goal $G[x \to x_0]$.

We have to show
$$\forall G$$
. Take arbitrary x_0 . We show $G\{x \to x_0\}$. (proof continues with goal $G\{x \to x_0\}$)

- ▶ Knowledge ∀ K
 - ▶ Choose term T to create one substituation with formula $K\{x \to T\}$ added to the knowledge.

We know \forall K and thus also $K\{x \to T\}$ (proof continues with current goal and additional knowledge $K\{x \to T\}$)

$$\frac{K \vdash G\{x \to x_0\}}{K \vdash \bigvee_{x} G} \qquad (x_0 \text{ new for } K, G) \qquad \frac{..., \bigvee_{x} K, \ K\{x \to T\} \vdash G}{..., \bigvee_{x} K \vdash G}$$

- ► Goal ∀*G*
 - Introduce new (arbitrarily named) constant x_0 and create one subsituation with goal $G[x \to x_0]$.

We have to show orall G. Take arbitrary x_0 . We show $G\{x o x_0\}$. (proof continues with goal $G\{x o x_0\}$)

- ▶ Knowledge ∀ K
 - ▶ Choose term T to create one substituation with formula $K\{x \to T\}$ added to the knowledge.

We know $\bigvee_{x} K$ and thus also $K\{x \to T\}$.(proof continues with current goal and additional knowledge $K\{x \to T\}$)

$$\frac{K \vdash G\{x \to x_0\}}{K \vdash \bigvee_{x} G} \qquad (x_0 \text{ new for } K, G) \qquad \frac{\dots, \bigvee_{x} K, \ K\{x \to T\} \vdash G}{\dots, \bigvee_{x} K \vdash G}$$

- ► Goal ∀*G*
 - Introduce new (arbitrarily named) constant x_0 and create one substituation with goal $G[x \to x_0]$.

We have to show $\forall G$. Take arbitrary x_0 . We show $G\{x \to x_0\}$. (proof continues with goal $G\{x \to x_0\}$)

- ▶ Knowledge \(\frac{\foatstyle K}{K} \)
 - ▶ Choose term T to create one subsituation with formula $K\{x \to T\}$ added to the knowledge.

We know $\forall K$ and thus also $K\{x \to T\}$.(proof continues with current goal and additional knowledge $K\{x \to T\}$)

$$\frac{K \vdash G\{x \to T\}}{K \vdash \mathop{\exists}_x G}$$

$$\frac{..., \ K\{x \to x_0\}, \vdash G}{..., \ \exists \ K \vdash G}$$

 (x_0) new for K, G

- ► Goal $\exists G$
 - ▶ Choose term T to create one substituation with goal $G\{x \to T\}$
- ► Knowledge $\exists K$
 - Introduce new (arbitrarily named constant) x₀ and create one subsituation with additional knowledge K{x → x₀}.

$$\frac{K \vdash G\{x \to T\}}{K \vdash \exists G}$$

$$\frac{..., K\{x \to x_0\}, \vdash G}{..., \exists K \vdash G}$$

 (x_0) new for K, G

- ► Goal $\exists G$
 - ▶ Choose term T to create one subsituation with goal $G\{x \to T\}$.

We have to show $\exists G$. It suffices to show $G\{x \to T\}$. (proof continues with goal $G\{x \to T\}$)

- ► Knowledge $\exists K$
 - Introduce new (arbitrarily named constant) x₀ and create one subsituation with additional knowledge K{x → x₀}.

$$\frac{K \vdash G\{x \to T\}}{K \vdash \exists G} \qquad \qquad \frac{\dots, \ K\{x \to x_0\}, \vdash G}{\dots, \ \exists \ K \vdash G} \qquad (x_0) \text{ new for } K, G$$

- ► Goal $\exists G$
 - ▶ Choose term T to create one substituation with goal $G\{x \to T\}$.

We have to show
$$\exists G$$
. It suffices to show $G\{x \to T\}$. (proo continues with goal $G\{x \to T\}$)

► Knowledge $\exists K$

Introduce new (arbitrarily named constant) x_0 and create one subsituation with additional knowledge $K\{x \to x_0\}$.

$$\frac{K \vdash G\{x \to T\}}{K \vdash \exists G} \qquad \qquad \frac{\dots, \ K\{x \to x_0\}, \vdash G}{\dots, \ \exists \ K \vdash G} \qquad (x_0) \text{ new for } K, G$$

- ► Goal $\exists G$
 - ▶ Choose term T to create one substituation with goal $G\{x \to T\}$.

We have to show $\exists G$. It suffices to show $G\{x \to T\}$. (proof continues with goal $G\{x \to T\}$)

► Knowledge $\exists K$

Introduce new (arbitrarily named constant) x_0 and create one substituation with additional knowledge $K\{x \to x_0\}$.

$$\frac{K \vdash G\{x \to T\}}{K \vdash \exists G} \qquad \qquad \frac{\dots, \ K\{x \to x_0\}, \vdash G}{\dots, \ \exists \ K \vdash G} \qquad (x_0) \text{ new for } K, G$$

- ► Goal $\exists G$
 - ▶ Choose term T to create one substituation with goal $G\{x \to T\}$.

We have to show $\exists G$. It suffices to show $G\{x \to T\}$. (proof continues with goal $G\{x \to T\}$)

- ► Knowledge $\exists_x K$
 - Introduce new (arbitrarily named constant) x_0 and create one subsituation with additional knowledge $K\{x \to x_0\}$.

We know $\underset{\times}{\exists} K$. Let x_0 be such that $K\{x \to x_0\}$. (proof continues

with current goal and additional knowledge $K\{ imes o x_0\}$)

$$\frac{K \vdash G\{x \to T\}}{K \vdash \exists G} \qquad \qquad \frac{\dots, \ K\{x \to x_0\}, \vdash G}{\dots, \ \exists \ K \vdash G} \qquad (x_0) \text{ new for } K, G$$

- ► Goal $\exists G$
 - ▶ Choose term T to create one substituation with goal $G\{x \to T\}$.

We have to show $\exists G$. It suffices to show $G\{x \to T\}$. (proof continues with goal $G\{x \to T\}$)

- ► Knowledge $\exists K$
 - Introduce new (arbitrarily named constant) x₀ and create one subsituation with additional knowledge K{x → x₀}.

We know $\exists K$. Let x_0 be such that $K\{x \to x_0\}$. (proof continues with current goal and additional knowledge $K\{x \to x_0\}$)

$$\frac{K \vdash G\{x \to T\}}{K \vdash \exists G \atop x} \qquad \qquad \frac{..., \ K\{x \to x_0\}, \vdash G}{..., \ \exists K \vdash G} \qquad (x_0) \text{ new for } K, G$$

- ► Goal $\exists G$
 - ▶ Choose term T to create one substituation with goal $G\{x \to T\}$.

We have to show \exists G. It suffices to show $G\{x \to T\}$. (proof continues with goal $G\{x \to T\}$)

- ► Knowledge $\exists K$
 - Introduce new (arbitrarily named constant) x₀ and create one subsituation with additional knowledge K{x → x₀}.

We know $\exists\limits_x K$. Let x_0 be such that $K\{x \to x_0\}$. (proof continues with current goal and additional knowledge $K\{x \to x_0\}$)

Show that $\exists \forall P[x,y] \Rightarrow \forall \exists P[x,y].$ (a)

We assume $\exists \forall P[x, y]$ (1) and show $\forall \exists P[x, y]$ (b)

Take y_0 arbitrary. We show $\exists P[x, y]$. (c)

From (1) we know that for some x_0 , $\forall P[x_0, y]$. (2)

From (2) we know $P[x_0, y_0]$. (3)

```
Show that \exists \forall P[x,y] \Rightarrow \forall \exists P[x,y]. (a) We assume \exists \forall P[x,y] (1) and show \forall \exists P[x,y] (b).
```

Take y_0 arbitrary. We show $\exists P[x, y]$. (c)

From (1) we know that for some x_0 , $\forall P[x_0, y]$. (2)

From (2) we know $P[x_0, y_0]$. (3)

```
Show that \exists \forall P[x,y] \Rightarrow \forall \exists P[x,y]. (a) We assume \exists \forall P[x,y] (1) and show \forall \exists P[x,y] (b). Take y_0 arbitrary. We show \exists P[x,y]. (c) From (1) we know that for some x_0, \forall P[x_0,y]. (2)
```

```
Show that \exists \forall P[x,y] \Rightarrow \forall \exists P[x,y]. (a)
```

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

Take
$$y_0$$
 arbitrary. We show $\underset{x}{\exists} P[x, y]$. (c)

From (1) we know that for some x_0 , $\forall P[x_0, y]$. (2)

```
From (2) we know P[x_0, y_0]. (3)
```

Show that
$$\exists \forall P[x,y] \Rightarrow \forall \exists P[x,y]$$
. (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

Take
$$y_0$$
 arbitrary. We show $\exists P[x, y]$. (c)

From (1) we know that for some
$$x_0$$
, $\forall p[x_0, y]$. (2)

From (2) we know
$$P[x_0, y_0]$$
. (3)

Show that $\exists \forall P[x,y] \Rightarrow \forall \exists P[x,y].$ (a)

We assume $\exists \forall P[x, y]$ (1) and show $\forall \exists P[x, y]$ (b).

Take y_0 arbitrary. We show $\exists P[x, y]$. (c)

From (1) we know that for some x_0 , $\forall p[x_0, y]$. (2)

From (2) we know $P[x_0, y_0]$. (3) From (3), we know (c).

Exercises

Show that
$$\left(\exists_x P[x] \right) \land \left(\forall_x P[x] \Rightarrow \exists_y Q[x,y] \right) \Rightarrow \left(\exists_{x,y} Q[x,y] \right).$$

$$\frac{K, \neg G \vdash false}{K \vdash G} \qquad \qquad \frac{K, \neg G \vdash F \qquad K, \neg G \vdash \neg F}{K \vdash G} \qquad \qquad \frac{..., \neg G \vdash \neg K}{K \vdash G}$$

▶ Add $\neg G$ to the knowledge and show a contradiction.

Prove that *false* is *true*.

Prove that a formula *F* is *true* and also prove that it is *fals*.

Prove that some knowledge *K* is *false*, i.e. that ¬*K* is *true*.

(Switches goal *G* and knowledge *K* (negating both)).

Sometimes simpler than a direct proof.

$$\frac{K, \neg G \vdash false}{K \vdash G} \qquad \frac{K, \neg G \vdash F \qquad K, \neg G \vdash \neg F}{K \vdash G} \qquad \frac{..., \neg G \vdash \neg K}{K \vdash G}$$

▶ Add $\neg G$ to the knowledge and show a contradiction.

Prove that false is true. Prove that a formula F is true and also prove that it is false Prove that some knowledge K is false, i.e. that $\neg K$ is true. (Switches goal G and knowledge K (negating both)).

Sometimes simpler than a direct proof.

$$\frac{K, \neg G \vdash false}{K \vdash G} \qquad \frac{K, \neg G \vdash F \qquad K, \neg G \vdash \neg F}{K \vdash G} \qquad \frac{..., \neg G \vdash \neg K}{K \vdash G}$$

▶ Add $\neg G$ to the knowledge and show a contradiction.

Prove that false is true.

Prove that a formula F is true and also prove that it is false. Prove that some knowledge K is false, i.e. that $\neg K$ is true. (Switches goal G and knowledge K (negating both)).

Sometimes simpler than a direct proof

$$\frac{K, \neg G \vdash \textit{false}}{K \vdash G} \qquad \qquad \frac{K, \neg G \vdash F \qquad K, \neg G \vdash \neg F}{K \vdash G} \qquad \qquad \frac{..., \neg G \vdash \neg K}{K \vdash G}$$

▶ Add $\neg G$ to the knowledge and show a contradiction.

Prove that false is true.

Prove that a formula F is *true* and also prove that it is *false*.

Prove that some knowledge K is *talse*, i.e. that $\neg K$ is *true*. (Switches goal G and knowledge K (negating both)).

Sometimes simpler than a direct proof.

Indirect Proofs

$$\frac{K, \neg G \vdash \textit{false}}{K \vdash G} \qquad \qquad \frac{K, \neg G \vdash F \qquad K, \neg G \vdash \neg F}{K \vdash G} \qquad \qquad \frac{..., \neg G \vdash \neg K}{K \vdash G}$$

▶ Add $\neg G$ to the knowledge and show a contradiction.

Prove that false is true.

Prove that a formula F is true and also prove that it is false. Prove that some knowledge K is false, i.e. that $\neg K$ is true. (Switches goal G and knowledge K (negating both)).

Sometimes simpler than a direct proof.

Indirect Proofs

$$\frac{K, \neg G \vdash \textit{false}}{K \vdash G} \qquad \qquad \frac{K, \neg G \vdash F \qquad K, \neg G \vdash \neg F}{K \vdash G} \qquad \qquad \frac{..., \neg G \vdash \neg K}{K \vdash G}$$

▶ Add $\neg G$ to the knowledge and show a contradiction.

Prove that false is true.

Prove that a formula F is true and also prove that it is false. Prove that some knowledge K is false, i.e. that $\neg K$ is true. (Switches goal G and knowledge K (negating both)).

Sometimes simpler than a direct proof.

Outline

Proofs

Proof Rules

Conjunction
Disjunction
Implication
Equivalence
Universal Quantification
Existential Quantification
Indirect Proofs

Example

Evereise

Show that $\exists \forall P[x,y] \Rightarrow \forall \exists P[x,y].$ (a)

We assume
$$\exists \forall P[x,y]$$
 (1) and show $\forall \exists P[x,y]$ (b)

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let
$$y_0$$
 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some
$$x_0$$
, $\bigvee_{v} P[x_0, y]$. (5

From (5), we know
$$P[x_0, y_0]$$
. (6)

From (4), we know
$$\neg P[x_0, y_0]$$
 (7)

Show that
$$\exists \forall P[x,y] \Rightarrow \forall P[x,y]$$
. (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let
$$y_0$$
 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some
$$x_0$$
, $\forall P[x_0, y]$. (5

From (5), we know
$$P[x_0, y_0]$$
. (6)

From (4), we know
$$\neg P[x_0, y_0]$$
 (7)

Show that
$$\exists \forall P[x,y] \Rightarrow \forall P[x,y].$$
 (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction.

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let
$$y_0$$
 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some
$$x_0$$
, $\bigvee_y P[x_0, y]$. (5)

From (5), we know
$$P[x_0, y_0]$$
. (6)

From (4), we know
$$\neg P[x_0, y_0]$$
 (7)

Show that
$$\exists \forall P[x,y] \Rightarrow \forall P[x,y]$$
. (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction.

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let
$$y_0$$
 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some
$$x_0$$
, $\forall P[x_0, y]$. (5)

From (5), we know
$$P[x_0, y_0]$$
. (6)

From (4), we know
$$\neg P[x_0, y_0]$$
 (7)

Show that
$$\exists \forall P[x,y] \Rightarrow \forall P[x,y].$$
 (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction.

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let y_0 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some
$$x_0$$
, $\forall P[x_0, y]$. (5

- From (5), we know $P[x_0, y_0]$. (6)
- From (4), we know $\neg P[x_0, y_0]$ (7)
- From (6) and (7), we have a contradiction

Show that
$$\exists \forall P[x,y] \Rightarrow \forall P[x,y]$$
. (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction.

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let
$$y_0$$
 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some x_0 , $\forall P[x_0, y]$. (5)

- From (5), we know $P[x_0, y_0]$. (6)
- From (4), we know $\neg P[x_0, y_0]$ (7)
- From (6) and (7), we have a contradiction.

Show that
$$\exists \forall P[x,y] \Rightarrow \forall P[x,y]$$
. (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction.

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let
$$y_0$$
 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some
$$x_0$$
, $\forall P[x_0, y]$. (5)

- From (5), we know $P[x_0, y_0]$. (6)
- From (4), we know $\neg P[x_0, y_0]$ (7)
- From (6) and (7), we have a contradiction.

Show that
$$\exists \forall P[x,y] \Rightarrow \forall P[x,y]$$
. (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction.

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let
$$y_0$$
 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some
$$x_0$$
, $\forall P[x_0, y]$. (5)

From (5), we know
$$P[x_0, y_0]$$
. (6)

From (4), we know
$$\neg P[x_0, y_0]$$
 (7)

Show that
$$\exists \forall P[x,y] \Rightarrow \forall P[x,y]$$
. (a)

We assume
$$\exists \forall P[x, y]$$
 (1) and show $\forall \exists P[x, y]$ (b).

We assume $\neg \forall \exists P[x, y]$ (2) and show a contradiction.

From (2), we know
$$\exists \forall \neg P[x, y]$$
. (3)

Let
$$y_0$$
 be such that $\forall \neg P[x, y]$. (4)

From (1) we know for some
$$x_0$$
, $\forall P[x_0, y]$. (5)

From (5), we know
$$P[x_0, y_0]$$
. (6)

From (4), we know
$$\neg P[x_0, y_0]$$
 (7)

Outline

Proofs

Proof Rules

Conjunction
Disjunction
Implication
Equivalence
Universal Quantification
Existential Quantification
Indirect Proofs

Example

Exercises

Exercises

Prove that:

- 1. $((P \Rightarrow Q) \land (R \Rightarrow Q)) \Rightarrow ((P \lor R) \Rightarrow Q)$
- **2.** $((P \Rightarrow Q) \lor (R \Rightarrow Q)) \iff ((P \land R) \Rightarrow Q)$