Lecture 9 Neural Networks

EE-UY 4563/EL-GY 9123: INTRODUCTION TO MACHINE LEARNING

PROF. SUNDEEP RANGAN

Learning Objectives

- ☐ Mathematically describe a neural network with a single hidden layer
 - Describe mappings for the hidden and output units
- ☐ Manually compute output regions for very simple networks
- ☐ Select the loss function based on the problem type
- ☐ Build and train a simple neural network in Keras
- ☐ Write the formulas for gradients using backpropagation
- ☐ Describe mini-batches in stochastic gradient descent

Outline

- Motivating Idea: Nonlinear classifiers from linear features

 Neural Networks
 - Wedian Wetworks
 - Neural Network Loss Function
 - ■Stochastic Gradient Descent
 - ☐ Building and Training a Network in Keras
 - Synthetic data
 - MNIST
 - **□**Tensors
 - ☐ Gradient Tensors
 - **□**Backpropagation Training

Most Datasets are not Linearly Separable

- ☐ Consider simple synthetic data
 - See figure to the left
 - 2D features
 - Binary class label
- Not separated linearly

All code in https://github.com/sdrangan/introml/blob/master/neural/synthetic.ipynb

From Linear to Nonlinear

- □ Idea: Build nonlinear region from linear decisions
- Possible form for a classifier:
 - Step 1: Classify into small number of linear regions
 - Step 2: Predict class label from step 1 decisions

A Possible Two Stage Classifier

- $\Box \text{Input sample: } x = (x_1, x_2)^T$
- ☐ First step: Hidden layer
 - \circ Take $N_H=4$ linear discriminants $z_{H,1}=\pmb{w}_{H,1}^Tx+b_{H,1}$ \vdots $z_{H,N_H}=\pmb{w}_{H,M}^Tx+b_{H,M}$
 - Make a soft decision on each linear region $u_{H,m} = g(z_{H,m}) = 1/(1 + e^{-z_{H,m}})$
- ☐Second step: Output layer
 - \circ Linear step $z_O = w_O^T u_H + b_O$
 - Soft decision: $u_0 = g(z_0)$

Model Block Diagram

- $oxed{\Box}$ Hidden layer: $oldsymbol{z}_H = oldsymbol{W}_H oldsymbol{x} + oldsymbol{b}_H$, $oldsymbol{u}_H = g(oldsymbol{z}_H)$
- \square Output layer: $\mathbf{z}_O = \mathbf{W}_O \mathbf{u}_H + \mathbf{b}_O$, $u_O = g(\mathbf{z}_O)$

Training the Model

- Model in matrix form:
 - Hidden layer: $\boldsymbol{z}_H = \boldsymbol{W}_H \boldsymbol{x} + \boldsymbol{b}_H$, $\boldsymbol{u}_H = g(\boldsymbol{z}_H)$
 - \circ Output layer: $z_O = \boldsymbol{W}_O \boldsymbol{u}_H + \boldsymbol{b}_O$, $u_O = g(z_O)$
- $\Box z_0 = F(x, \theta)$: Linear output from final stage
 - Parameters: $\theta = (W_H, W_O, b_H, b_O)$
- \square Get training data $(x_i, y_i), i = 1, ..., N$
- Define loss function: $L(\theta) \coloneqq \sum_{i=1}^{N} \ln[1 + e^{-y_i z_{O,i}}], \ z_{O,i} = F(x_i, \theta)$ (logistic loss)
- ☐ Pick parameters to minimize loss:

$$\hat{\theta} = \arg\min_{\theta} L(\theta)$$

Will discuss how to do this minimization later

Results

☐ Neural network finds a nonlinear region

□ Plot shows:

• Blue circles: Negative samples

Greed circles: Positive samples

 $_{\circ}\,$ Red color: Classifier soft probability $g(z_{O})$

Visualizing the Hidden Layer Weights

☐ Hidden weights finds lower layer features

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Stochastic Gradient Descent
- ☐ Building and Training a Network in Keras
 - Synthetic data
 - MNIST
- **□**Tensors
- ☐ Gradient Tensors
- Backpropagation Training

General Structure

 \circ *d* = number of features

☐ Hidden layer:

 \circ Linear transform: $oldsymbol{z}_H = oldsymbol{W}_H oldsymbol{x} + oldsymbol{b}_H$

 \circ Soft decision: $oldsymbol{u}_H = g(oldsymbol{z}_H)$

• Dimension: *M* hidden units

□Output layer:

 \circ Linear transform: $oldsymbol{z}_O = oldsymbol{W}_O oldsymbol{u}_H + oldsymbol{b}_O$

• Dimension: K = number of classes / outputs

☐ Can be used for classification or regression

General Neural Net Block Diagram

- ullet Hidden layer: $oldsymbol{z}_H = oldsymbol{W}_H oldsymbol{x} + oldsymbol{b}_H$, $oldsymbol{u}_H = g_{act}(oldsymbol{z}_H)$
- \square Output layer: $\mathbf{z}_O = \mathbf{W}_O \mathbf{u}_H + \mathbf{b}_O$
- \square Response map: $\hat{y} = g_{out}(\mathbf{z}_0)$

Terminology

- \square Hidden variables: the variables \mathbf{z}_H , \mathbf{u}_H
 - These are not directly observed
- ☐ Hidden units: The functions that compute:
 - $v z_{H,i} = \sum_{j} W_{H,ij} x_{j} + b_{H,i}, u_{H,i} = g(z_{H,i})$
 - \circ The function g(z) called the activation function
- □Output units: The functions that compute

$$z_{0,i} = \sum_{j} W_{0,ij} u_{H,j} + b_{0,i}$$

Response Map or Output Activation

- ☐ Last layer depends on type of response
- ■Binary classification: $y = \pm 1$
 - \circ z_0 is a scalar
 - Hard decision: $\hat{y} = \text{sign}(z_0)$
 - Soft decision: $P(y = 1|x) = 1/(1 + e^{-z_0})$
- \square Multi-class classification: y = 1, ..., K
 - $\mathbf{z}_{0} = \left[z_{0,1}, \cdots, z_{0,K}\right]^{T}$ is a vector
 - Hard decision: $\hat{y} = \arg \max_{k} z_{0,k}$
 - \circ Soft decision: $P(y = k|x) = S_k(\mathbf{z}_0)$, $S(\mathbf{z}_0) = \text{softmax}$
- \square Regression: $y \in R^d$

$$\circ \hat{y} = z_0$$

Hidden Activation Function

☐ Two common activation functions

☐Sigmoid:

- $g_{act}(z) = 1/1 + e^{-z}$
- Benefits: Values are bounded
- Often used for small networks

- $\circ g_{act}(z) = \max(0, z)$
- Can add sparsity (more on this later)
- Often used for larger networks
- Esp. in combination with dropout

Number of Parameters

Layer	Parameter	Symbol	Number parameters
Hidden layer	Bias	b_H	N_H
	Weights	W_H	$N_H d$
Output layer	Bias	b_O	K
	Weights	W_O	KN_H
Total			$N_H(d+1) + K(N_H+1)$

☐Sizes:

 $\circ d = \text{input dimension}, N_H = \text{number of hidden units}, K = \text{output dimension}$

 \square N_H = number of hidden units is a free parameter

□ Discuss selection later

Inspiration from Biology

■Simple model of neurons

- Dendrites: Input currents from other neurons
- Soma: Cell body, accumulation of charge
- Axon: Outputs to other neurons
- Synapse: Junction between neurons

Operation:

- Take weighted sum of input current
- Outputs when sum reaches a threshold
- ☐ Each neuron is like one unit in neural network

History

- ☐ Interest in understanding the brain for thousands of years
- □ 1940s: Donald Hebb. Hebbian learning for neural plasticity
 - Hypothesized rule for updating synaptic weights in biological neurons
- □ 1950s: Frank Rosenblatt: Coined the term perceptron
 - Essentially single layer classifier, similar to logistic classification
 - Early computer implementations
 - But, Limitations of linear classifiers and computer power
- □ 1960s: Backpropagation: Efficient way to train multi-layer networks
 - More on this later
- □1980s: Resurgence with greater computational power
- ■2005+: Deep networks
 - Many more layers. Increased computational power and data
 - Enabled first breakthroughs in various image and text processing.
 - Next lecture

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
 - Stochastic Gradient Descent
 - ☐ Building and Training a Network in Keras
 - Synthetic data
 - MNIST
 - **□**Tensors
 - ☐ Gradient Tensors
 - **□**Backpropagation Training

Training a Neural Network

- ☐ Given data: (x_i, y_i) , i = 1, ..., N
- □ Learn parameters: $\theta = (W_H, b_H, W_o, b_o)$
 - Weights and biases for hidden and output layers
- \square Will minimize a loss function: $L(\theta)$

$$\hat{\theta} = \arg\min_{\theta} L(\theta)$$

• $L(\theta)$ = measures how well parameters θ fit training data (x_i, y_i)

Note on Indexing

- ☐ Neural networks are often processed in batches
 - Set of training or test samples
- ■Need notation for single and batch input case
- \square For a single input x
 - $x_i =$ j-th feature of the input
 - $\circ \ z_{H,j}$, $u_{H,j}$, $z_{O,j}$ = j-th component of hidden and output variables
 - \circ H and O stand for Hidden and Output. Not an index
 - Write x, z_0, y if they are scalar (i.e. do not write index)
- \square For a batch of inputs x_1, \ldots, x_M
 - $\circ x_{ij} = \text{j-th feature of the input sample } i$
 - $z_{H,ij}$, $u_{H,ij}$, $z_{O,ij}$ = j-th component of hidden and output variables for sample i

Selecting the Right Loss Function

- ☐ Depends on the problem type
- lacksquare Always compare final output z_{0i} with target y_i

Problem	Target y_i	Output z_{0i}	Loss function	Formula
Regression	y_i = Scalar real	$z_{Oi} = $ Prediction of y_i Scalar output / sample	Squared / L2 loss	$\sum_{i} (y_i - z_{0i})^2$
Regression with vector samples	$\mathbf{y}_i = (y_{i1}, \dots, y_{iK})$	$z_{Oik} = $ Prediction of y_{ik} K outputs / sample	Squared / L2 loss	$\sum_{ik} (y_{ik} - z_{Oik})^2$
Binary classification	$y_{\rm i} = \{0,1\}$	$z_{Oi} = \text{``logit''} \text{ score}$ Scalar output / sample	Binary cross entropy	$\sum_{i} -y_i z_{Oi} + \ln(1 + e^{y_i z_i})$
Multi-class classification	$y_{\rm i}=\{1,\ldots,K\}$	z_{Oik} = "logit" scores K outputs / sample	Categorical cross entropy	$\sum_{i} \ln \left(\sum_{k} e^{z_{Oik}} \right) - \sum_{k} r_{ik} z_{Oik}$

Loss Function: Regression

- ☐ Regression case:
 - y_i = scalar target variable for sample i
 - Typically continuous valued
- ■Output layer:
 - $\circ z_{0i}$ = estimate of y_i
- □ Loss function: Use L2 loss

$$L(\theta) = \sum_{i=1}^{N} (y_i - z_{0i})^2$$

 \square For vector $y_i = (y_{i1}, ..., y_{iK})$, use vector L2 loss

$$L(\theta) = \sum_{i=1}^{N} \sum_{j=1}^{K} (y_{ik} - z_{Oik})^{2}$$

Loss Function: Binary Classification

- ■Binary classification: $y_i = \{0,1\}$ = class label
- □ Loss function = negative log likelihood

$$L(\theta) = -\sum_{i=1}^{N} \ln P(y_i|x_i, \theta), \qquad P(y_i = 1|x_i, \theta) = \frac{1}{1 + e^{-z_{Oi}}}$$

- Output z_{Oi} called the logit score
- \circ z_{0i} scalar.
- ☐ From lecture on logistic regression:

$$-\ln P(y_i|x_i,\theta) = \ln[1 + e^{y_i z_{0i}}] - y_i z_{0i}$$

Called the binary cross-entropy

Loss Function: Multi-Class Classification 1

- $\square y_i = \{1, \dots, K\} = \text{class label}$
- - \circ K outputs. One per class
 - Also called the logit score
- ☐ Likelihood given by softmax:

$$P(y_i = k | \mathbf{x}_i, \theta) = g_k(z_{0i}), \qquad g_k(z_{0i}) = \frac{e^{z_{0,ik}}}{\sum_{\ell} e^{z_{0,ik}}}$$

 $\,{}^{\circ}\,$ Assigns class highest probability with highest logit score

Loss Function: Multi-Class Classification 2

- $\square y_i = \{1, ..., K\}$ = class label
- ☐ Define one-hot coded response

$$r_{ik} = \begin{cases} 1 & y_i = k \\ 0 & y_i \neq k \end{cases}$$

- $\cdot r_i = (r_{i1}, ..., r_{iK})$ is K-dimensional
- Negative log-likelihood given by:

$$L(\theta) = \sum_{i} \ln \left(\sum_{k} e^{z_{Oik}} \right) - \sum_{k} r_{ik} z_{O,ik}$$

Called the categorical cross-entropy

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Stochastic Gradient Descent
- ☐ Building and Training a Network in Keras
 - Synthetic data
 - MNIST
- **□**Tensors
- ☐ Gradient Tensors
- Backpropagation Training

Problems with Standard Gradient Descent

□ Neural network training (like all training): Minimize loss function

$$\hat{\theta} = \arg\min_{\theta} L(\theta), \qquad L(\theta) = \sum_{i=1}^{N} L_i(\theta, x_i, y_i)$$

- $\circ L_i(\theta, x_i, y_i)$ = loss on sample i for parameter θ
- ■Standard gradient descent:

$$\theta^{k+1} = \theta^k - \alpha \nabla L(\theta^k) = \theta^k - \alpha \sum_{i=1}^N \nabla L_i(\theta^k, \mathbf{x}_i, y_i)$$

- \circ Each iteration requires computing N loss functions and gradients
- Will discuss how to compute later
- \circ But, gradient computation is expensive when data size N large

Stochastic Gradient Descent

- ☐ In each step:
 - Select random small "mini-batch"
 - Evaluate gradient on mini-batch
- \square For t = 1 to N_{Steps}
 - ∘ Select random mini-batch $I \subset \{1, ..., N\}$
 - Compute gradient approximation:

$$g^{t} = \frac{1}{|I|} \sum_{i \in I} \nabla L(x_{i}, y_{i}, \theta)$$

$$\label{eq:total_problem} \begin{array}{c} \circ \ \ \text{Update parameters:} \\ \theta^{t+1} = \theta^t - \alpha^t g^t \end{array}$$

SGD Theory (Advanced)

☐ Mini-batch gradient = true gradient in expectation:

$$E(g^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla L(x_i, y_i, \theta) = \nabla L(\theta^t)$$

- \square Hence can write $g^t = \nabla L(\theta^t) + \xi^t$,
 - ξ^t = random error in gradient calculation, $E(\xi^t)=0$
 - \circ SGD update: $\theta^{t+1} = \theta^t \alpha^t g^t = \theta^{t+1} = \theta^t \alpha^t \nabla L(\theta^t) \alpha^t \xi^t$
- **Robins-Munro**: Suppose that $\alpha^t \to 0$ and $\sum_t \alpha^t = \infty$. Let $s_t = \sum_{k=0}^t \alpha^k$
 - \circ Then $\theta^t \to \theta(s_t)$ where $\theta(s)$ is the continuous solution to the differential equation:

$$\frac{d\theta(s)}{ds} = -\nabla L(\theta)$$

- ☐ High-level take away:
 - If step size is decreased, random errors in sub-sampling are averaged out

SGD Practical Issues

☐Terminology:

- \circ Suppose minibatch size is B. Training size is N
- Say there are $\frac{N}{B}$ steps per training epoch

☐ Data shuffling

- Generally do not randomly pick a mini-batch
- In each epoch, randomly shuffle training samples
- Then, select mini-batches in order through the shuffled training samples.
- It is critical to reshuffle in each epoch!

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Stochastic Gradient Descent
- ☐ Building and Training a Network in Keras
 - Synthetic data
 - MNIST
- **□**Tensors
- ☐ Gradient Tensors
- **□**Backpropagation Training

Deep Learning Zoo

- Torch
- Caffe
- Theano (Keras, Lasagne)
- CuDNN
- Tensorflow
- Mxnet
- Etc.

Keras Package

- ☐ High-level neural network language
- ☐Runs on top of a backend
 - Much simpler than raw backend language
 - Very fast coding
 - Uniform language for all backend
- ☐ Likely will be incorporated into TF
- □But...
 - Slightly less flexible
 - Not as fast sometimes
- ☐ In this class, we use Keras

Keras Recipe

- ☐ Step 1. Describe model architecture
 - Number of hidden units, output units, activations, ...
- ☐ Step 2. Select and optimizer
- ☐ Step 3. Select a loss function and compile the model
- ☐Step 4. Fit the model
- ☐ Step 5. Test / use the model

Synthetic Data Example

☐ Try a simpler two-layer NN

- Input $x = 2 \dim$
- 4 hidden units
- 1 output unit (binary classification)

Step 0: Import the Packages

- ☐ Install a deep learing backend: Tensorflow, Theano, CNTK, ...
- ☐Then install Keras

```
import keras
Using TensorFlow backend.
```


Step 1: Define Model

```
    Load modules for layers

from keras.models import Model, Sequential
from keras.layers import Dense, Activation
                                                □Clear graph
                                                ☐ Build model
import keras.backend as K
                                                  This example: dense layers
K.clear session()

    Give each layer a dimension, name &

                                                   activation
nin = nx # dimension of input data
nh = 4 # number of hidden units
nout = 1 # number of outputs = 1 since this is binary
model = Sequential()
model.add(Dense(nh, input shape=(nx,), activation='sigmoid', name='hidden'))
model.add(Dense(1, activation='sigmoid', name='output'))
```

Step 2, 3: Select and Optimizer & Compile

- □Adam optimizer generally works well for most problems
 - In this case, had to manually set learning rate
- ☐ Use binary cross-entropy loss
- ☐ Metrics indicate what will be printed in each epoch

Step 4: Fit the Model

```
model.fit(X, y, epochs=10, batch size=100)
Epoch 1/10
400/400 [=========== ] - 0s - loss: 0.8047 - acc: 0.3900
Epoch 2/10
400/400 [=========== ] - 0s - loss: 0.7695 - acc: 0.3900
Epoch 3/10
400/400 [=========== ] - 0s - loss: 0.7428 - acc: 0.3900
400/400 [============ ] - 0s - loss: 0.7223 - acc: 0.3900
Epoch 5/10
400/400 [========== ] - 0s - loss: 0.7027 - acc: 0.4000
Epoch 6/10
400/400 [============= ] - 0s - loss: 0.6895 - acc: 0.5650
Epoch 7/10
400/400 [============= ] - 0s - loss: 0.6814 - acc: 0.6100
Epoch 8/10
400/400 [=========== ] - 0s - loss: 0.6756 - acc: 0.6100
Epoch 9/10
400/400 [=========== ] - 0s - loss: 0.6720 - acc: 0.6100
400/400 [=========== ] - 0s - loss: 0.6694 - acc: 0.6100
```

☐ Use keras fit function

- Specify number of epoch & batch size
- Prints progress after each epoch
 - Loss = loss on training data
 - Acc = accuracy on training data

Fitting the Model with Many Epochs

- ☐ This example requires large number of epochs (~1000)
- □ Do not want to print progress on each epoch
- ☐ Rewrite code to manually print progress
- ☐ Can also use a callback function

```
epoch= 50 loss= 6.6854e-01 acc=0.61000
epoch= 100 loss= 6.6702e-01 acc=0.61000
epoch= 150 loss= 6.5264e-01 acc=0.61000
epoch= 200 loss= 5.9691e-01 acc=0.53500
epoch= 250 loss= 5.4305e-01 acc=0.70500
epoch= 300 loss= 4.8620e-01 acc=0.79000
epoch= 350 loss= 4.1364e-01 acc=0.86250
epoch= 400 loss= 3.6114e-01 acc=0.86250
epoch= 450 loss= 3.3093e-01 acc=0.86750
epoch= 500 loss= 3.1383e-01 acc=0.86750
epoch= 550 loss= 3.0321e-01 acc=0.87250
epoch= 600 loss= 2.9631e-01 acc=0.88000
epoch= 650 loss= 2.9159e-01 acc=0.87750
epoch= 700 loss= 2.8804e-01 acc=0.88250
epoch= 750 loss= 2.8534e-01 acc=0.88750
epoch= 800 loss= 2.8322e-01 acc=0.88250
epoch= 850 loss= 2.8132e-01 acc=0.88750
epoch= 900 loss= 2.7995e-01 acc=0.89000
epoch= 950 loss= 2.7846e-01 acc=0.88500
epoch=1000 loss= 2.7721e-01 acc=0.89000
```

```
nit = 20 # number of training iterations
nepoch per it = 50 # number of epochs per iterations
# Loss, accuracy and epoch per iteration
loss = np.zeros(nit)
acc = np.zeros(nit)
epoch it = np.zeros(nit)
# Main iteration loop
for it in range(nit):
   # Continue the fit of the model
   init epoch = it*nepoch per it
   model.fit(X, y, epochs=nepoch per it, batch size=100, verbose=0)
   # Measure the loss and accuracy on the training data
   lossi, acci = model.evaluate(X,y, verbose=0)
   epochi = (it+1)*nepoch per it
   epoch it[it] = epochi
   loss[it] = lossi
   acc[it] = acci
   print("epoch=%4d loss=%12.4e acc=%7.5f" % (epochi,lossi,acci))
```


Performance vs Epoch

☐ Can observe loss function slowly converging

800 1000

Step 5. Visualizing the Decision Regions

- □ Feed in data $x = (x_1, x_2)$ over grid of points in $[0,1] \times [0,1]$
- ☐ Use predict to observe output Type equation here.for each input point

```
\squarePlot outputs u_0 = sigmoid(z_0)
```

```
# Limits to plot the response.
xmin = [0,0]
xmax = [1,1]

# Use meshgrid to create the 2D input
nplot = 100
x0plot = np.linspace(xmin[0],xmax[1],nplot)
x1plot = np.linspace(xmin[0],xmax[1],nplot)
x0mat, x1mat = np.meshgrid(x0plot,x1plot)
Xplot = np.column_stack([x0mat.ravel(), x1mat.ravel()])

# Compute the output
yplot = model.predict(Xplot)
yplot_mat = yplot[:,0].reshape((nplot, nplot))

# Plot the recovered region
plt.imshow(np.flipud(yplot_mat), extent=[xmin[0],xmax[0],xmin[0],xmax[1]], cmap=plt.cm.Reds)
plt.colorbar()
```


Visualizing the Hidden Layers

- ☐ Create a new model with hidden layer output
- Feed in data $x = (x_1, x_2)$ over $[0,1] \times [0,1]$
- ☐ Predict outputs from hidden outputs

In-Class Exercise

☐Go to demo on github

Now try to have a neural network learn the relation y=f(x).

- · Clear the keras session
- · Create a neural network with 4 hidden units, 1 output unit
- · Use a sigmoid activation for the hidden units and no output activation
- Compile with mean_squared_error for the loss and metrics
- · Fit the model
- · Plot the predicted and true function

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Stochastic Gradient Descent
- ☐ Building and Training a Network in Keras
 - Synthetic data

- ■Tensors
- ☐ Gradient Tensors
- **□**Backpropagation Training

Recap: MNIST data

- □ Classic MNIST problem:
 - Detect hand-written digits
 - Each image is 28 x 28 = 784 pixels
- □ Dataset size:
 - 50,000 training digits
 - 10,000 test
 - 10,000 validation (not used here)
- □Can be loaded with sklearn and many other packages

Simple MNIST Neural Network

□784 inputs, 100 hidden units, 10 outputs

```
nin = X.shape[1] # dimension of input data
nh = 100  # number of hidden units
nout = int(np.max(y)+1)  # number of outputs = 10 since there are 10 classes
model = Sequential()
model.add(Dense(nh, input_shape=(nin,), activation='sigmoid', name='hidden'))
model.add(Dense(nout, activation='softmax', name='output'))
```

model.summary()		
Layer (type)	Output Shape	Param #
hidden (Dense)	(None, 100)	78500
output (Dense)	(None, 10)	1010
Total narams: 79 510		

Total params: 79,510 Trainable params: 79,510 Non-trainable params: 0

Fitting the Model

- □Run for 20 epochs, ADAM optimizer, batch size = 100
- ☐ Final accuracy = 0.972
- □ Not great, but much faster than SVM. Also CNNs we study later do even better.

```
opt = optimizers.Adam(lr=0.001) # beta 1=0.9, beta 2=0.
model.compile(optimizer=opt,
           loss='sparse categorical crossentropy',
           metrics=['accuracy'])
model.fit(Xtr, ytr, epochs=10, batch size=100, validation data=(Xts,yts))
 FDOCU //IA
 50000/50000 [============] - 3s - loss: 0.0474 - acc: 0.9868 - val loss: 0.0886 - val ac
 c: 0.9717
 Epoch 8/10
 50000/50000 [============= ] - 3s - loss: 0.0440 - acc: 0.9884 - val loss: 0.0875 - val ac
 c: 0.9718
 Epoch 9/10
 50000/50000 [============] - 2s - loss: 0.0393 - acc: 0.9903 - val loss: 0.0872 - val_ac
 c: 0.9732
 Epoch 10/10
              0.9718
```


Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Stochastic Gradient Descent
- ☐ Building and Training a Network in Keras
 - Synthetic data
 - MNIST
- Tensors
 - ☐ Gradient Tensors
 - ☐ Backpropagation Training

What is a Tensor?

- ☐A multi-dimensional array
- ■Examples:
 - 2D: A grayscale image [height x width]
 - 3D: A color image [height x width x rgb]
 - 4D: A collection of images [height x width x rgb x image number]
- ☐ Like numpy ndarray
- ☐ Basic unit in tensorflow
- Rank or order = Number of dimensions
 - Note: Rank has different meaning in linear algebra

Indexing Tensors

- \square Suppose X is a tensor of order N
- □Index with a multi-index $X[i_1, ..., i_N]$
 - $^{\circ}\,$ May also use subscript: $\mathbf{X}_{i_1,\dots,i_N}$
- \square Example: Suppose X = collection of images [height x width x rgb x image number]
 - X[100,150,1,30] = pixel (100,150) for color channel 1 (green) on image 30
- \square If $i_1 \in \{0, \dots, d_1 1\}, i_2 \in \{0, \dots, d_2 1\}, \dots$ then total number of elements = $d_1 d_2 \dots d_N$

Creating Tensors in Numpy

- Numpy ndarrays = tensors
- ☐ Most numpy function work on tensors naturally

```
# An all zero tensor
shape = (30,50,3)
X = np.zeros(shape)
(30, 50, 3)
```

```
# A random Gaussian tensor
X2 = np.random.normal(size=shape,loc=2,scale=3)
print(np.mean(X2))
print(np.std(X2))
```

1.99450244608 3.00316132041

Indexing Tensors in Numpy

☐ Same indexing applies as in matrices and vectors

To index a single element

```
X2[3,45,1]
```

1.5027214392510062

To index a range

Tensors and Neural Networks

- Need to be consistent with indexing
- \square For a single input x:
 - Input x: vector of dimension d
 - Hidden layer: z_H , u_H : vectors of dimension N_H
 - \circ Outputs: z_0 : dimension z_H
- \square A batch of inputs with M samples:
 - Input x: Matrix of dimension $M \times d$
 - Hidden layer: z_H , u_H : vectors of dimension $M \times N_H$
 - Outputs: z_0 : dimension $M \times K$
- ☐ Can generalize to other shapes of input

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Stochastic Gradient Descent
- ☐ Building and Training a Network in Keras
 - Synthetic data
 - MNIST
- **□**Tensors
- Gradient Tensors
- **□**Backpropagation Training

Recap: Gradient for Scalar Output Function

- \square Consider scalar-valued function f(w)
- \square Vector input w. Then gradient is:

$$\nabla_{w} f(\mathbf{w}) = \begin{bmatrix} \partial f(\mathbf{w}) / \partial w_1 \\ \vdots \\ \partial f(\mathbf{w}) / \partial w_N \end{bmatrix}$$

 \square Matrix input W, size $M \times N$. Then gradient is:

$$\nabla_{w} f(\mathbf{W}) = \begin{bmatrix} \partial f(\mathbf{W})/\partial W_{11} & \cdots & \partial f(\mathbf{W})/\partial W_{1N} \\ \vdots & \vdots & \vdots \\ \partial f(\mathbf{W})/\partial W_{M1} & \cdots & \partial f(\mathbf{W})/\partial W_{MN} \end{bmatrix}$$

☐ Gradient is same size as the argument

Recap 2: Gradient and Linearization

- \square Suppose f(x) is scalar valued.
- \square Linearization property: If $x \approx x_0$,

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$$

☐Inner product:

• Vector *x*:

$$\langle \nabla f(x_0), x - x_0 \rangle = \sum_i \frac{\partial f(x_0)}{\partial x_i} (x_i - x_{0i})$$

Matrix x:

$$\langle \nabla f(x_0), x - x_0 \rangle = \sum_{ij} \frac{\partial f(x_0)}{\partial x_{ij}} (x_{ij} - x_{0,ij})$$

Sum over partial derivatives for all components

Jacobian

- ☐ How do we generalize to vector-valued functions?
- □ Vector valued $f(\mathbf{w}) = [f_1(\mathbf{w}), ..., f_M(\mathbf{w})]^T$, $\mathbf{w} = (w_1, ..., w_N)^T$ ∘ M outputs, N inputs
- ☐ Jacobian is the matrix:

$$\frac{\partial f(w)}{\partial w} = \begin{bmatrix} \partial f_1(\mathbf{w})/\partial w_1 & \cdots & \partial f_1(\mathbf{w})/\partial w_N \\ \vdots & \vdots & \vdots \\ \partial f_M(\mathbf{w})/\partial w_1 & \cdots & \partial f_M(\mathbf{w})/\partial w_N \end{bmatrix}$$

lacksquare Linearization: For $oldsymbol{w} pprox oldsymbol{w}_0$

$$f(\mathbf{w}) \approx f(\mathbf{w_0}) + \frac{\partial f(\mathbf{w_0})}{\partial \mathbf{w}} (\mathbf{w} - \mathbf{w_0})$$

Jacobian Examples

• 2 outputs, 3 inputs.

$$\frac{\partial f(w)}{\partial w} = \begin{bmatrix} w_2 & w_1 & 0\\ 2w_1 & 0 & 3w_3^2 \end{bmatrix}$$

 \square Example 2: f(w) = Aw

$$\frac{\partial f(w)}{\partial w} = A$$

■ Example 3: Componentwise function: $f(w) = (f_1(w_1), f_2(w_2), ..., f_M(w_M))$

$$\frac{\partial f(w)}{\partial w} = diag(f_1'(w_1), \dots, f_M'(w_M)) = \begin{bmatrix} f_1'(w_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f_M'(w_M) \end{bmatrix}$$

Gradient for Tensors Inputs & Outputs

- \square General setting: y = f(x)
 - \circ x is a tensor or order N
 - \circ **y** is a tensor or order **M**
- \square Gradient tensor: A tensor of order N+M:

$$\left[\frac{\partial f(x)}{\partial x}\right]_{i_1,\dots,i_M,j_1,\dots,j_N} = \frac{\partial f_{i_1,\dots,i_M}(x)}{\partial x_{j_1,\dots,j_N}}$$

- Tensor has the derivative of every output with respect to every input.
- \square Ex: x has shape (50,30), y has shape (10,20,40)
 - $\frac{\partial f(x)}{\partial x}$ has shape (10,20,40,50,30)
 - 10(20)(40)(50)(30) = 1.2(10)^7 elements

Gradient Tensor Linear Approximation

- $\square \text{Suppose } y = f(x)$
 - x is a tensor of shape $(d_1, ..., d_N)$, y is a tensor of shape $(k_1, ..., k_M)$
- \square Linear approximation: If $x \approx x_0$,

$$f(x) \approx f(x_0) + \left| \frac{\partial f(x_0)}{\partial x}, x - x_0 \right|$$

☐Tensor dot product:

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle [i_1, \dots, i_M] = \sum_{j_1=1}^{d_1} \dots \sum_{j_N=1}^{d_N} \boldsymbol{u}[i_1, \dots, i_M, j_1, \dots, j_N] \boldsymbol{v}[j_1, \dots, j_N]$$
 Output index Input indices Sum over

input index

Example Dimensions

- $\square \text{Suppose } y = f(x)$
 - x is a tensor of shape (20,30), y is a tensor of shape (5,10,15)
- ☐ Gradient tensor
 - $\frac{\partial f(x_0)}{\partial x}$ shape (5,10,15,20,30)
- ☐ Tensor dot product:
 - $\left\langle \frac{\partial f(x_0)}{\partial x}, x x_0 \right\rangle$ has shape (5,10,15)
 - Same shape as output

Gradients Tensors vs. Gradients & Jacobians

- \square If f(x) is a M-dim vector and x is an N-vector:
 - Gradient tensor = Jacobian. $\frac{\partial f(x)}{\partial x}$ is dimension M x N
- \square If f(x) is scalar-valued and x is a vector of dimension N:
 - Gradient = $\nabla f(x)$. Dimension = N
 - Gradient tensor = $\frac{\partial f(x)}{\partial x}$. Dimension = 1 x N
- \square If x is a matrix of dimension $M \times N$:
 - Gradient = $\nabla f(x)$. Dimension = $M \times N$
 - Gradient tensor = $\frac{\partial f(x)}{\partial x}$. Dimension = $1 \times M \times N$
- □ Conclusion: Gradient tensors generalize Jacobians and gradients for scalar output functions
 - For scalar output functions, must ignore first dimension.

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Stochastic Gradient Descent
- ☐ Building and Training a Network in Keras
 - Synthetic data
 - MNIST
- **□**Tensors
- ☐ Gradient Tensors
- Backpropagation Training

Stochastic Gradient Descent

- ☐ Training uses SGD
- ☐In each step:
 - Select a subset of sample for minibatch $I \subset \{1, ..., N\}$
 - Evaluate mini-bath loss $L(\theta^t) = \sum_{i \in I} L_i(\theta^t, x_i, y_i)$
 - \circ Evaluate mini-batch gradient $m{g}^t = \sum_{i \in I} \nabla L_i(m{\theta}^t, m{x}_i, m{y}_i)$
 - \circ Take SGD step: $\theta^{t+1} = \theta^t \alpha \boldsymbol{g}^t$
- □Question: How do we compute gradient?

Gradients with Multiple Parameters

- \square For neural net problem: $\theta = (W_H, b_H, W_o, b_o)$
- ☐ Gradient is computed with respect to each parameter:

$$\nabla L(\theta) = [\nabla_{W_H} L(\theta), \nabla_{b_H} L(\theta), \nabla_{W_O} L(\theta), \nabla_{b_O} L(\theta)]$$

☐ Gradient descent is performed on each parameter:

$$W_{H} \leftarrow W_{H} - \alpha \nabla_{W_{H}} L(\theta),$$

$$b_{H} \leftarrow b_{H} - \alpha \nabla_{b_{H}} L(\theta),$$

....

Computation Graph & Forward Pass

- ☐ Neural network loss function can be computed via a computation graph
- □ Sequence of operations starting from measured data and parameters
- □Loss function computed via a forward pass in the computation graph

$$z_{H,i} = W_H x_i + b_H$$

$$u_{H,i} = g_{act}(z_{H,i})$$

$$z_{O,i} = W_O u_{H,i} + b_O$$

$$\circ L = \sum_{i} L_{i}(z_{0,i}, y_{i})$$

Hidden variable

Observed variable

Trainable variable

Forward Pass Example in Numpy

■Example network:

- \circ Single hidden layer with N_H hidden units, single output unit
- Sigmoid activation, binary cross entropy loss

```
def loss(X,y,theta):
    """
    Computes loss function for neural network
    with sigmoid activation, binary cross-entropy loss
    """
    # Unpack parameters
    Wh, bh, Wo, bo = theta

# Hidden Layer
    Zh = X.dot(Wh) + bh[None,:]
    Uh = 1/(1+np.exp(-Zh))

# Output Layer
    Zout = Uh.dot(Wo) + bo[None,:]
    Uout = 1/(1+np.exp(-Zout))

# Loss function
    f = np.sum(-y*Zout + np.log(1+y*Zout))
    return f
```

```
nh = 4
             # number hidden units
nin = 2
             # input dimension
nout = 1
             # output dimension
nsamp = 100 # number samples in batch
# Random data
X = np.random.randn(nsamp,nin)/np.sqrt(nin)
y = (np.random.rand(nsamp) < 0.5).astype(float)
# Random weights
Wh = np.random.randn(nin,nh)
bh = np.random.randn(nh)
Wo = np.random.randn(nh,nout)
bo = np.random.randn(nout)
# Compute loss
f = loss(X,y,[Wh,bh,Wo,bo])
```


Chain Rule

☐ How do we compute gradient?

☐ Consider a three node computation graph:

$$y = h(x), z = g(y)$$

• So
$$z = f(x) = g(h(x))$$

• What is
$$\frac{\partial z}{\partial x}$$
?

☐ If variables were scalars, we could compute gradients via chain rule:

$$\frac{\partial z}{\partial x} = \frac{\partial f(x)}{\partial x} = \frac{\partial g(y)}{\partial y} \frac{\partial h(x)}{\partial x}$$

■What happens for tensors?

Tensor Chain Rule

□ Consider Tensor case:

- x has shape $(n_1, ..., n_N)$,
- $\circ y$ has shape $(m_1, ..., m_M)$
- \circ z has shape $(r_1, ..., r_R)$

□Compute gradient tensors:

- $\circ \frac{\partial g(z)}{\partial z}$ has shape $(r_1, ..., r_R, m_1, ..., m_M)$
- $\frac{\partial h(x)}{\partial x}$ has shape $(m_1, ..., m_M, n_1, ..., n_N)$

☐ Tensor chain rule:

$$\frac{\partial z}{\partial x} = \frac{\partial f(x)}{\partial x} = \left| \frac{\partial g(z)}{\partial z}, \frac{\partial h(x)}{\partial x} \right|$$

Tensor dot product over dimensions $(m_1, ..., m_M)$.

Gradients on a Computation Graph

- □ Backpropagation: Compute gradients backwards
 - Use tensor dot products and chain rule
- ☐ First compute all derivatives of all the variables
 - $\circ \partial L/\partial z_0$
 - $\partial L/\partial u_H = \langle \partial L/\partial z_O, \partial z_O/\partial u_H \rangle$

 - $\circ \partial L/\partial x = \langle \partial L/\partial z_H, \partial z_H/\partial x \rangle$
- ☐ Then compute gradient of parameters:
 - $\partial L/\partial W_O = \langle \partial L/\partial W_O, \partial z_O/\partial W_O \rangle$
 - $\circ \ \partial L/\partial b_O = \langle \partial L/\partial z_O \, , \partial z_O/\partial b_O \rangle$
 - \circ $\partial L/\partial W_H = \langle \partial L/\partial W_H, \partial Z_H/\partial W_H \rangle$
 - $\circ \partial L/\partial b_H = \langle \partial L/\partial z_H, \partial z_H/\partial b_H \rangle$

Back-Propagation Example (Part 1)

☐ Continue our example:

- \circ Single hidden layer with N_H hidden units, single output unit
- Sigmoid activation, binary cross entropy loss
- ∘ *M* samples, *d* input dimension

Loss node:

$$\circ \ L = \sum_i L_i(z_{O,i}, y_i)$$

Back-Propagation Example (Part 2)

\square Node z_0

$$varphi z_O = u_H W_O + b_O$$

☐Gradient:

$$\circ \frac{\partial z_{O,ik}}{\partial u_{H,ij}} = W_{O,jk}$$

Other partial derivatives are zero

■Apply chain rule:

Back-Propagation Example (Part 3)

\square Node z_0

$$varphi z_O = u_H W_O + b_O$$

□Gradient:

$$\circ \frac{\partial z_{O,ik}}{\partial W_{O,jk}} = u_{H,ij}$$

Other partial derivatives are zero

■Apply chain rule:

$$\frac{\partial L}{\partial W_{O,jk}} = \sum_{i} \frac{\partial L}{\partial z_{O,ik}} \frac{\partial z_{O,ik}}{\partial W_{O,jk}} = \sum_{i} \frac{\partial L}{\partial z_{O,ik}} u_{O,ij}$$

$$\frac{\partial L}{\partial W_{O}} = u_{H}^{T} \frac{\partial L}{\partial z_{O}} \text{ (dimension } N_{H} \times K)$$

☐ Similarly obtain

$$\circ \ \frac{\partial L}{\partial b_O} = 1^T \frac{\partial L}{\partial z_O} \ (\text{dimension } K)$$

Back-Propagation Example (Part 4,...)

■Will be done in class

■Summary:

- Forward pass: Compute hidden nodes and loss
- Backward pass: Compute gradients

