

3. In any category with binary products, show directly that

$$A \times (B \times C) \cong (A \times B) \times C.$$

tenstmet an izo. your diagrams (AXB) > C AX (BXC) compose なった AX(BXC) (AXB)XC AXB NIONZ

Given a category \mathbf{C} with objects A and have objects (X, x_1, x_2) , where $x_1 : X \to f : (X, x_1, x_2) \to (Y, y_1, y_2)$ being arrows $y_2 \circ f = x_2$. Show that $\mathbf{C}_{A,B}$ has a terminal object product in \mathbf{C} .	$A, x_2: X \to B$, and with arrows $f: X \to Y$ with $y_1 \circ f = x_1$ and
if $\exists A \times B$. If $T = (X_1 \times X_1 \times X_2) \in C_{A,B}$ $= (A \leftarrow X_1 \times X_2) \in C_{A,B}$	A CAXB B
Suppue y y E C	gives an object in CAIB (A=Y->B) yi MCAB
A Survives Committee	objects = T

17. In any category \mathbf{C} with products, define the $graph$ of an arrow $f:A\to B$ to be the monomorphism
$\Gamma(f) = \langle 1_A, f \rangle : A \rightarrowtail A \times B$
(Why is this monic?). Show that for $\mathbf{C} = \mathbf{Sets}$ this determines a functor $\Gamma: \mathbf{Sets} \to \mathbf{Rel}$ to the category \mathbf{Rel} of relations, as defined in the exercises to Chapter 1. (To get an actual relation $R(f) \subseteq A \times B$, take the image of $\Gamma(f): A \mapsto A \times B$.)
Check det or left inverse gren by first projection
graph of identity is liagano
(mpositor ail) & fogif abst (lib) + f. ch. ye
18. Show that the forgetful functor $U: \mathbf{Mon} \to \mathbf{Sets}$ from monoids to sets is representable. Infer that U preserves all (small) products.
IX€Mon St Hom (X,-) 皇儿
X=Mitral Hom (x,-)=1
X=ferminal Hommon (X, M)
X=N Humm (N,M) = (L(M)
f p f(1)
blc (N=Free (1)), So g. Jospenify fer).

