Les étudiant-e-s devront être capables :

Prérequis : programmation en assembleur et en C

- de coder dans les règles de l'art un traitement simple en assembleur ARM
- d'utiliser et de reconnaître les différents modes d'adressage présent sur le ARM
- de manipuler correctement les types de base de C
- de coder un algorithme de traitement de données en C
- de coder dans les règles de l'art des appels de fonctions en C
- de décrire le passage d'arguments par valeur et référence lors d'appel de fonction en C
- de différencier les fonctions globales des fonctions locales dans une application en C
- de différencier les variables globales des variables locales et des variables rémanentes dans une application en C
- d'expliquer les conditions pour qu'une fonction C soit réentrante
- de manipuler correctement les types complexes (énumérations, tableaux, structures, unions ...) de C
- de concevoir une interface C permettant d'accéder aux registres d'un périphérique
- de manipuler corrections les pointeurs en C
- de décrire les conversions des types en C
- de manipuler correctement les pointeurs de fonction en C

Remarque: un exemplaire du jeu d'instructions du processeur ARM sera mis à disposition, document « 05 ARM Instruction Set Summary.pdf »

100. Interfaçage assembleur – C

d'utiliser correctement la pile (stack) dans un programme codé en assembleur
de programmer une sous-routine en assembleur ARM en utilisant la pile pour le passage de paramètres et pour les variables locales
de représenter le passage de paramètres à des sous-routines et d'expliquer le retour de valeurs et du résultat pour interfacer avec des programmes écrits en C
de représenter l'image de la pile lors de l'appel d'une sous-routine en assembleur
de coder dans les règles de l'art l'appel de routines développées en C depuis un code en assembleur ARM
de spécifier correctement l'appel de routines en assembleur depuis un code C

de décrire l'utilisation des registres des µP ARM en assembleur

100.07

200. Interruptions

	non aptiono
200.01	d'expliquer les différentes phases de traitement d'une interruption (séquence)
200.02	de classer les types d'interruptions et d'exceptions
200.03	d'expliquer la fonctionnalité de la table des vecteurs d'interruptions sur les processeurs ARM, ainsi que l'implémentation spécifique du μP TI AM335x
200.04	de déterminer le mode de fonctionnement du μP à partir de son registre de statut
200.05	d'expliquer comment l'on peut passer du mode superviseur au mode utilisateur et vice versa et de concevoir le code assembleur permettant ces passages
200.06	de décrire la fonction des pointeurs de piles des différents modes du processeur ARM et de concevoir le code permettant de les initialiser
200.07	de décrire le concept de commutation de contexte, de latence et de gigue
200.08	de décrire le système d'interruption des processeurs ARM et du processeur AM335x (μP (core), INTC, GPIO, etc.)
200.09	d'expliquer les mécanismes d'activation et de désactivation des interruptions matérielles (µP (core), INTC, GPIO, etc.)
200.10	de décrire le principe de niveaux de priorité (µP, INTC et GPIO)
200.11	de décrire la procédure de reconnaissance d'interruption multiple (scrutation, priorisée, vectorisée)
200.12	de décrire et de concevoir un gestionnaire d'interruption (du µP à l'application)
200.13	de programmer une application utilisant une interruption
200.14	de décrire et de concevoir des opérations atomiques
200.15	de simuler des interruptions logicielles et des exceptions
200.16	de simuler des interruptions matérielles
200.17	de décrire le concept de « listener », de le réaliser et de le mettre en œuvre
220. S	ystèmes d'exploitation
220.01	de citer quelques techniques et méthodes de développement pour des systèmes

220.01	de citer quelques techniques et méthodes de développement pour des systèmes embarqués
220.02	de décrire les différents types de systèmes multitâches (systèmes d'exploitation)
220.03	de décrire les différentes composantes d'un noyau
220.04	de décrire les ressources globales, partagées et privées d'un thread
220.05	de décrire les états principaux d'un thread
220.06	de décrire la commutation de contexte entre deux threads
220.07	de concevoir un algorithme de transfert de contexte entre deux threads
220.08	de concevoir l'initialisation du contexte d'un thread

220.09	de concevoir un ordonnanceur (scheduler) élémentaire
220.10	de concevoir un mécanisme de synchronisation simple (sémaphore, message queue)
220.11	de décrire les éléments et structures nécessaires à la gestion d'un thread
220.12	de décrire la fonction d'un ordonnanceur (scheduler) élémentaire
220.13	de décrire et concevoir un mécanisme pour la mise en pause d'un thread pour un certain laps de temps
240. E	Intrées/Sorties
240.01	de décrire le concept et la structure générale des entrées/sorties
240.02	de décrire les différents modes et techniques pour piloter des périphériques d'entrées/sorties
240.03	de différencier une programmation interruptive d'une programmation par scrutation d'une entrée (interrupt vs. polling)
240.04	de concevoir et réaliser une application gérant des entrées/sorties en mode interruptif
240.05	de concevoir et réaliser une application gérant des entrées/sorties par scrutation
240.06	de dimensionner (calculer) la taille des tampons d'émission et de réception sous des conditions données
300. A	Architecture générale
300.01	de décrire l'architecture générale des systèmes à microprocesseurs
300.02	de décrire l'architecture générale de l'unité centrale
300.03	de décrire le principe de traitement de l'information
300.04	de citer les différentes architectures selon la classification de Flynn
300.05	de décrire la structure et l'architecture de Von Neuman et Harvard
300.06	de décrire succinctement l'architecture RISC et CISC
300.07	de décrire les différentes mémoires volatiles et permanentes
300.08	de décrire la structure mémoire (layout) d'un programme
300.09	de décrire l'organisation de la mémoire des systèmes embarqués et systèmes on chip
300.10	de représenter des données dans un espace mémoire suivant une numérotation des adresses par byte (8 bits), halfword/short (16 bits) et word/long (32 bits).
300.11	de comparer une organisation de la mémoire de type « Big Endian » et celle d'une organisation « Little Endian »

300.12 d'expliquer l'alignement des données en mémoire

310. Architecture interne

310.01	de décrire l'architecture interne des processeurs ARM
310.02	de décrire les éléments composant la structure interne des processeurs ARM
310.03	de décrire le principe de fonctionnement des processeurs ARM
310.04	d'expliquer les différents modes de fonctionnement du μP ARM (usr, svc, irq,)
310.05	de comprendre la fonction des registres internes des processeurs ARM
310.06	d'expliquer le déroulement d'une instruction assembleur à l'intérieur de la structure du microprocesseur ARM et de la décomposer en cycles de fonctionnement
310.07	d'expliquer le rôle du pipeline et de décrire son principe de fonctionnement
310.08	d'expliquer le comportement du pipeline lors d'un branchement conditionnel

400. Memory Management Unit (MMU)

- 400.02 de décrire l'architecture de la MMU
- 400.03 de décrire les mécanismes de translation d'adresses
- 400.04 de décrire le rôle de la TLB
- 400.05 d'expliquer le concept de pages, tables de pages et tables sur plusieurs niveaux
- 400.06 de configurer les tables de translation de la MMU
- 400.07 de retrouver l'adresse physique à partir de l'adresse virtuelle dans les tables de translation de la MMU
- 400.08 de décrire l'implémentation de la MMU sur le μP TI AM335

410. Mémoire cache

410.01 de décrire la hiérarchie de la mémoire sur des systèmes à µP

- 410.02 de décrire la fonctionnalité (les rôles) d'une mémoire cache
- 410.03 de décrire les 2 principes de localité spatiale et temporelle
- 410.04 de décrire les mécanismes de la mémoire cache (identification d'une ligne, placement d'une ligne, recherche d'une ligne, etc.)
- 410.05 de décrire la différence entre une mémoire cache virtuelle et physique
- 410.06 de décrire l'implémentation de la mémoire cache sur le µP TI AM335x
- 410.07 d'expliquer pourquoi certains algorithmes ont de meilleures ou moins bonnes performances au niveau du µP et de sa mémoire cache
- 410.08 de calculer le nombre de bits du tag en fonction des dimensions de la cache
- 410.09 de décrire l'architecture du mémoire cache (voies, set, lignes, tags, flags,...)

500. Direct Memory Access (DMA)

- 500.01 d'expliquer la fonctionnalité d'un DMA
- 500.02 de décrire le principe et l'architecture DMA
- 500.03 de décrire la fonctionnalité des DMA sur le processeur TI AM335x

6xx. Travaux pratiques et projet intégré

610. Git

- 610.01 de décrire les différentes étapes et opérations pour mettre en place un dépôt Git
- 610.02 de décrire les opérations pour ajouter un nouveau fichier dans un dépôt Git
- 610.03 de décrire les opérations pour synchroniser les dépôts locaux avec le dépôt centralisé
- 610.04 d'expliquer comment traiter les conflits de la synchronisation des dépôts Git

620. Debugging

- 620.01 d'expliquer comment trouver la taille et l'emplacement en mémoire d'une variable
- 620.02 d'expliquer comment trouver la taille d'une application stockée en mémoire

630. Interfaces de communication

- de citer les caractéristiques principales (signaux et protocole) de l'interface de communication UART et de donner un exemple d'utilisation / d'application
- de citer les caractéristiques principales (signaux et protocole) de l'interface de communication I2C et de donner un exemple d'utilisation / d'application
- 630.03 de citer les caractéristiques principales (signaux et protocole) de l'interface de communication SPI et de donner un exemple d'utilisation / d'application

640. GPIO du μP AM3358

- 640.01 de citer les composants mis en œuvre sur le μP AM3358 pour accéder aux broches d'entrée/sortie
- 640.02 de décrire le rôle du multiplexeur PAD-Mux
- 640.03 de décrire le rôle et le principe de fonctionnement du contrôleur d'entrée/sortie GPIO
- 640.04 de décrire le fonctionnement des GPIO en mode interruptif

650. DMTimer du µP AM3358

- 650.01 de décrire le fonctionnement des DMTimer en mode par scrutation
- 650.02 de décrire le fonctionnement des DMTimer en mode interruptif

- de concevoir une fonction permettant de mesurer le temps sur plusieurs années avec une granularité de ~40ns (fréquence 24MHz), ceci par scrutation et par interruption
- de décrire et concevoir un algorithme permettant de mesurer le temps d'exécution de parties de code ou de fonctions

660. Périphériques de la carte d'extension

- 660.01 de décrire le principe de fonctionnement de l'afficheur 7-segments (plusieurs digits)
- 660.02 de concevoir un programme pour piloter l'afficheur 7-segments (plusieurs digits)
- 660.10 de décrire le principe de fonctionnement d'un bouton-poussoir
- de concevoir la machine d'états logicielle pour la détection de changement d'état d'un bouton-poussoir (scrutation)
- 660.20 de décrire le principe de fonctionnement d'un encodeur rotatif
- de concevoir la machine d'états logicielle pour la détection du sens de rotation de l'encodeur rotatif (scrutation)
- 660.22 de concevoir la détection du sens de rotation de l'encodeur rotatif en mode interruptif

670. Click Board OLED-C

- 670.01 de décrire le principe de fonctionnement de l'écran LCD OLED
- 670.02 de décrire le système de codage des couleurs RGB et plus particulièrement RGB565
- de décrire et concevoir les fonctions permettant de dessiner des figures géométriques simples (carré, rectangle)
- 670.04 de décrire et concevoir la fonction permettant de dessiner des caractères ASCII
- 670.05 de décrire et concevoir la fonction permettant d'effectuer une rotation d'image

680. Click Board nRF24 (selon choix fait par l'étudiant)

- de décrire le principe de transmission et réception des trames du nRF24 (adressage, bandes, pipes)
- 680.02 de concevoir une application mettant en œuvre des modules nRF24

690. Click Board RFid (selon choix fait par l'étudiant)

690.01 de concevoir une application mettant en œuvre un module RFid