1. (a) The (global) optimal solution to the problem *contains within it* an (local) optimal solutions to subproblems. For example, LCS.

Note: this is one of the hallmarks of the applicability of dynamic programming.

- (b) $O(\underline{n \cdot 2^m})$ $O(\underline{m \cdot n})$
- (c) $(A_1A_2)((A_3A_4)((A_5(A_6A_7)))$
- 2. (a) **False**. It's only true for a connected graph. First, it's easy to see $|E| = O(|V|^2)$. If the graph is connected, $|E| \ge |V| 1 = \Omega(|V|)$. Therefore, $\Theta(\lg E) = \Theta(\lg V)$.
 - (b) False. In DFS, the vertices are processed in a LIFO order (stack).
 - (c) False. It's true for a DAG (Directed Acyclic Graph).
- 3. Run DFS, if find a back edge, there is a cycle. The run time in this case is O(|V|), not O(|V| + |E|)! If ever see |V| distinct edges, must have seen a back edge because in acyclic undirected forest, $|E| \leq |V| 1$.
- 4.

char	frequency	code	# bits
a	10	111	3
e	15	10	2
i	12	00	2
s	3	11001	5
t	4	1101	4
	13	01	2
\	1	11000	5

Show your work. When you're finished, fill in the column of the table labeled "code" with the binary codeword for each character.

5. (a) For example, for the change of N=55 cents,

greedy:
$$\begin{vmatrix} 50+5\cdot 1 \\ 25+3\cdot 10 \end{vmatrix}$$
 6 coins optimal: $\begin{vmatrix} 25+3\cdot 10 \\ 4 \end{vmatrix}$ 4 coins

- (b) Change(N) = $\min\{\text{Coins}(N), 1 + \text{Coins}(N 50), 2 + \text{Coins}(N 100)\}$
- (c) The optimal solution has to either have 0, 1 or 2 half-dollars in it. The solution finds the best of options. Running time $= 3 \cdot O(N) = O(N)$.