

Viola-Jones: Algoritmo para la detección de objetos

Arturo Gascó Compte, Raquel Lázaro Belenguer, Pablo Muñoz Alcaide y Miguel Pardo Navarro

Máster: Sistemas Inteligentes

Asignatura: SJK002 - Computer Vision

Date: 11/12/2023

Principales ventajas de su implementación y aplicación

O5 Inconvenientes
Principales inconvenientes de su implementación y aplicación

O6 Conclusiones

Discusión y conclusiones

01Introducción

Historia y razón del algoritmo Viola-Jones

Origen del algoritmo Viola-Jones

Propuesto en 2001 por Paul Viola y Michael Jones

Origen del algoritmo Viola-Jones

Propuesto en 2001 por Paul Viola y Michael Jones

Motivado por el problema de la detección de caras

Origen del algoritmo Viola-Jones

Propuesto en 2001 por Paul Viola y Michael Jones

Motivado por el problema de la detección de caras Adaptable a la detección de otros objetos o clases

Detección de rostros con Viola-Jones

Detección de ojos con Viola-Jones

Aplicaciones del algoritmo Viola-Jones

Sistemas de vigilancia en tiempo real

Aplicaciones del algoritmo Viola-Jones

Sistemas de vigilancia en tiempo real

Aplicaciones móviles que aplican filtros faciales y redes sociales

Aplicaciones del algoritmo Viola-Jones

Sistemas de vigilancia en tiempo real

Aplicaciones móviles que aplican filtros faciales y redes sociales Identificación biométrica

Sistemas de vigilancia en tiempo real

Widjaja, A. E., Hery, H., & Hareva, D. H. (2021)

Aplicaciones móviles que aplican filtros faciales y redes sociales

Priadana, A., & Habibi, M. (2019)

Identificación biométrica

Ibrahim, S., Jamaluddin, K. R., & Samah, K. a. F. A. (2018)

Explicación del algoritmo Viola-Jones

Descripción general del algoritmo Viola-Jones

Haar Features Integral Image Adaboost ML Cascade classifier

Haar Features Integral Image Adaboost ML Cascade classifier

Edge features

Edge features

Edge features

Center-surround features

Descripción de la Imagen Integral

Haar Features Integral Image Adaboost ML Cascade classifier

1	7	4
3	5	9
5	6	1

Imagen original

1	7	4
3	5	9
5	6	1

Imagen original

1	

1	7	4
3	5	9
5	6	1

Imagen original

1	8	

1	7	4
3	5	9
5	6	1

Imagen original

1	8	12

1	7	4
3	5	9
5	6	1

Imagen original

1	8	12
4		

Imagen integral

1	7	4
3	5	9
5	6	1

Imagen original

1	8	12
4	16	

1	7	4
3	5	9
5	6	1

Imagen original

1	8	12
4	16	29

1	7	4
3	5	9
5	6	1

Imagen original

1	8	12
4	16	29
9		

1	7	4
3	5	9
5	6	1

Imagen original

1	8	12
4	16	29
9	27	

Imagen integral

1	7	4
3	5	9
5	6	1

Imagen original

1	8	12
4	16	29
9	27	41

Imagen integral

Obtención de áreas a partir de la Imagen Integral

1	7	4
3	5	9
5	6	1

Imagen original

1	8	12
4	16	29
9	27	41

Descripción del modelo de Machine Learning Adaboost

Haar Features Integral Image Adaboost ML Cascade classifier

Descripción del clasificador en cascada

Haar Features Integral Image Adaboost ML Cascade classifier

Descripción del clasificador en cascada

Descripción del clasificador en cascada

Principales ventajas de su implementación y aplicación

Principales ventajas del algoritmo Viola-Jones

Fácil implementación

Principales ventajas del algoritmo Viola-Jones

No requiere un gran volumen de datos

Fácil implementación

Principales ventajas del algoritmo Viola-Jones

Fácil implementación

No requiere un gran volumen de datos

Alta interpretabilidad

Fácil implementación

Restringido a clasificación binaria

Restringido a clasificación binaria

Restringido a clasificación binaria

Sensibilidad de rotación del algoritmo Viola-Jones

Restringido a clasificación binaria

Sensible a

rotaciones

Tiempo de entrenamiento muy elevado

Sensible a variaciones de luminosidad

Sensibilidad lumínica del algoritmo Viola-Jones

Discusión y conclusiones

Precisión inferior a fuertes modelos basados en CNN como *DeepFace*

Discusión y conclusiones

Precisión inferior a fuertes modelos basados en CNN como *DeepFace*

Modelo muy eficaz teniendo en cuenta la relativa **poca cantidad de parámetros** que emplea.

Discusión y conclusiones

Precisión inferior a fuertes modelos basados en CNN como *DeepFace*

Modelo muy eficaz teniendo en cuenta la relativa **poca cantidad de parámetros** que emplea.

Es reconocido como un **hito** en la detección de objetos y rostros en el campo de la visión por computador

Gracias por su atención

¿Alguna pregunta?