Probability and Statistics (MA6.101)

Monsoon 2021, IIIT Hyderabad 09 November, Tuesday (Lecture 20)

Taught by Prof. Pawan Kumar

Probability

Distributions

Gamma Distribution

The relation between the gamma function and the factorial function is $\Gamma(n) =$ (n-1)!. It is defined as

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \alpha > 0.$$

Some properties of the gamma function are:

- $\begin{array}{ll} \bullet & \int_0^\infty x^{\alpha-1} e^{-\lambda x} dx = \frac{\Gamma(\alpha)}{\lambda^\alpha} \\ \bullet & \Gamma(\alpha+1) = \alpha \Gamma(\alpha) \\ \bullet & \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \end{array}$

Now, a CRV X is said to have a gamma distribution with parameters $\alpha > 0, \lambda >$ 0, written $X \sim \text{Gamma}(\alpha, \lambda)$, if

$$f_X(x) = \begin{cases} \frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} & x > 0\\ 0 & \text{otherwise.} \end{cases}$$

If $\alpha = 1$, we get

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{otherwise,} \end{cases}$$

i.e., $Gamma(1, \lambda) = Exponential(\lambda)$.

Further, the sum of n independent Exponential(λ) CRVs is Gamma(n, λ).

Some properties of the gamma distribution are:

- $E[X] = \frac{\alpha}{\lambda}$ $Var(X) = \frac{\alpha}{\lambda^2}$

Mixed Random Variables

Suppose X is a CRV with the PDF

$$f_X(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & \text{otherwise,} \end{cases}$$

and let Y be an RV such that

$$Y=g(X)=\begin{cases} X & 0\leq X\leq \frac{1}{2}\\ \frac{1}{2} & X\geq \frac{1}{2}. \end{cases}$$

Then Y is a mixed random variable. Its CDF is not continuous, but not in the staircase form either. CDFs of mixed RVs can be written as the sum of the CDFs of a continuous and a discrete RV. In the case of Y, this is

$$F_Y(y) = C(y) + D(y),$$

where

$$C(y) = \begin{cases} \frac{1}{4} & y \le \frac{1}{2} \\ y^2 & 0 \le y \le \frac{1}{2} \\ 0 & y < 0. \end{cases}$$

and

$$D(y) = \begin{cases} \frac{3}{4} & y \ge \frac{1}{2} \\ 0 & y < \frac{1}{2}. \end{cases}$$

We can differentiate the continuous part to get $c(y)=\frac{dC(y)}{dy}$, wherever it is differentiable. If $\{y_1,y_2,\dots\}$ is the set of jump points of D(y), then

$$\int_{-\infty}^{\infty} c(y) + \Sigma_{y_k} P(Y=y_k) = 1.$$

Figure 1: Amal's Art

Figure 2: CDF of Y