Infinite sequence and series

> Sequence and series

<u>Definition:</u> An ordered set $\{a_1, a_2, a_3, ...\}$ of real numbers is called a sequence of real number <u>OR</u> An infinite sequence of numbers is a function from N to R

• **EXAMPLE** 1) 2,4,6,8,10,12,...,2n,...

Sol: Here
$$F: N \to R$$

Where
$$F(n) = 2n = a_n$$

2)
$$a_n = \sqrt{n}$$
 ,

3)
$$b_n = (-1)^{(n+1)} \frac{1}{n}$$
 ,

$$4) c_n = \frac{n-1}{n}$$

Convergence And Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases

EX:
$$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\}$$

Whose terms approach 0 to n gets large OR we can say an converge to 0 as $n \rightarrow \infty$

On the other hand a sequence like $\{1, -1, 1, -1, ..., (-1)^{n+1}, ...\}$ has only two values 1 and -1 which never converging to a single value

• <u>Definitions:</u> Convergence, Divergence, Limit

Let $\{a_n\}$ be a sequence of real numbers .The sequence $\{a_n\}$ converges to the number L if for every positive number ϵ there exist an integer $|a_n - L| < \epsilon$ whenever $n \ge N$ If no such number L exist then we say that $\{a_n\}$ diverges.

If
$$\{a_n\}$$
 converges to L ,We write $\lim_{n\to\infty} a_n = L$

L is called limit of $\{a_n\}$

Theorem: Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers and let A and B be real numbers.

If
$$\lim_{n\to\infty} a_n = A$$
 and $\lim_{n\to\infty} b_n = B$. Then

- 1) $\lim_{n \to \infty} (a_n \pm b_n) = A \pm B \text{ (sum/difference rule)}$
- 2) $\lim_{n \to \infty} (a_N \cdot b_n) = A \cdot B(\text{product rule})$
- 3) $\lim_{n \to \infty} (K \cdot b_n) = K \cdot B(\text{constant rule})$
- 4) $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{A}{B}$ (quotient rule)
- EXAMPLE: Solve using above theorem

1)
$$\lim_{n\to\infty} \left(-\frac{1}{n}\right)$$

SOLUTION:
$$\lim_{n \to \infty} \left(-\frac{1}{n} \right) = \lim_{n \to \infty} (-1) \left(\frac{1}{n} \right)$$
$$= (-1) \lim_{n \to \infty} \frac{1}{n} \qquad \text{(rule 4)}$$
$$= (-1)(0) \qquad \qquad \left(\lim_{n \to \infty} \frac{1}{n} = 0 \right)$$

Hence,
$$\lim_{n \to \infty} \left(-\frac{1}{n} \right) = 0$$

MONOTONIC SEQUANCE:

- i. $\{a_n\}$ is said to be monotonically increasing if $a_{n+1} \ge a_n$ for all n. And strictly increasing if $a_{n+1} > a_n$, for all n.
- ii. $\{a_n\}$ is said to be monotonically decreasing if $a_{n+1} \le a_n$ for all n. And strictly decreasing if $a_{n+1} < a_n$ for all n.

BOUNDED SEQUENCE:

A sequence $\{a_n\}$ is said to be bounded if there exist numbers m and M such that $m < a_n < M$, for all n.

THE SANDWICH THEOREM FOR SEQUANCE :

Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be sequence of real numbers. If $a_n \leq b_n \leq c_n$ holds for all n beyond some index N, And if $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, Then

$$\lim_{n \to \infty} b_n = L.$$

• EXAMPLES:

1.
$$\lim_{n \to \infty} \left(\frac{\cos n}{n} \right)$$

Solution: We know that

$$\Rightarrow -1 \le \cos n \le 1$$

$$\Rightarrow -\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$$

$$\Rightarrow \lim_{n \to \infty} \left(-\frac{1}{n} \right) \le \lim_{n \to \infty} \left(\frac{\cos n}{n} \right) \le \lim_{n \to \infty} \left(\frac{1}{n} \right)$$

But we know that $\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0$. Thus $\lim_{n \to \infty} \left(\frac{\cos n}{n}\right) = 0$.

THEOREM:

The following sin sequences converges to the limit listed below

1)
$$\lim_{n\to\infty}\frac{\ln(n)}{n}=0$$

$$2) \quad \lim_{n \to \infty} (n)^{\frac{1}{n}} = 1$$

3)
$$\lim_{n \to \infty} x^{\frac{1}{n}} = 1 \qquad (For x > 0)$$

4)
$$\lim_{n \to \infty} x^n = 0 \qquad (For |x| < 1)$$

5)
$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x \qquad (Any x)$$

6)
$$\lim_{n \to \infty} \frac{x^n}{n!} = 0 \qquad (Any x)$$

- NOTE: In formulas (3) to (6), x remains fixed as $n \to \infty$
- EXAMPLES:

1)
$$\left(\frac{\ln(n^2)}{n}\right)$$

SOLUTION: Here
$$\lim_{n\to\infty} \left(\frac{\ln(n^2)}{n}\right) = 2 \cdot \lim_{n\to\infty} \left(\frac{\ln(n)}{n}\right)$$
$$= 2 \cdot 0 \qquad (By (1))$$
$$= 0$$

$$2) \left(-\frac{1}{2}\right)^n$$

SOLUTION:
$$\lim_{n \to \infty} \left(-\frac{1}{2} \right)^n = 0$$
 (By (4) where $x = \left(\frac{1}{2} \right)$)

> NON-DECREASING SEQUENCE:

A sequence $\{a_n\}$ with the property that $\{a_n\} \le \{a_{n+1}\}$ for all n is called non-decreasing sequence.

i.e. $a_{n+1} - a_n \ge 0$, $a_n > 0$ for all n

• **EXAMPLES**:

$$1) \ \frac{n^2}{e^n}$$

SOLUTION:
$$a_n = \frac{n^2}{e^n} \Rightarrow a_{n+1} = \frac{(n+1)^2}{e^{n+1}}$$

Now,

$$a_{n+1} - a_n = \frac{(n+1)^2}{e^{n+1}} - \frac{n^2}{e^n}$$

$$= \frac{(n+1)^2 - e \cdot n^2}{e^{n+1}}$$

$$= \frac{n^2 + 2 \cdot n + 1 - e \cdot n^2}{e^{n+1}}$$

$$= \frac{(1-e) \cdot n^2 + 2 \cdot n + 1}{e^{n+1}}$$

$$= \frac{(1-e) \cdot n^2}{e^{n+1}} + \frac{(2 \cdot n)}{e^{n+1}} + \frac{1}{e^{n+1}}$$

$$> 0$$

 $\therefore a_n$ is non – decreasing sequence

$$2) \frac{3^n}{n}$$

SOLUTION:
$$a_n = \frac{3^n}{n}$$
 and $a_{n+1} = \frac{3^{n+1}}{n+1}$

Now,

$$a_{n+1} - a_n = \frac{3^{n+1}}{n+1} - \frac{3^n}{n}$$
$$= 3^n \cdot \left(\frac{3^{n+1}}{n+1} - \frac{3^n}{n}\right)$$
$$= 3^n \cdot \left(\frac{3}{n+1} - \frac{1}{n}\right)$$

$$= 3^{n} \cdot \left(\frac{(3 \cdot n - n - 1)}{n \cdot (n + 1)}\right)$$
$$= 3^{n} \cdot \frac{2 \cdot n - 1}{n \cdot (n + 1)}$$
$$> 0$$

$$\therefore a_{n+1} - a_n > 0 \Rightarrow a_{n+1} > a_n$$

 $\therefore a_n$ is non-decreasing sequence

Now, If
$$a_n = \frac{n}{3^n} \Rightarrow a_{n+1} - a_n < 0$$

$$\Rightarrow a_{n+1} < a_n$$

 a_n is decreasing sequence

SERIES:

<u>DEFINATION</u>: Let $\{a_n\}$ be any sequence of real numbers. An infinite series is the sum of an infinite sequence of number $a_1 + a_2 + a_3 + \cdots + a_{n+\cdots}$

It is denoted by $\sum_{n=1}^{\infty} a_n$

The sum of first n terms,

$$S_n = a_1 + a_2 + \dots + a_n$$
 is called n^{th} partial sum.

$$S_1 = a_1$$

$$S_2 = a_1 + a_2$$

$$S_n = a_1 + a_2 + a_3 + \dots + a_n.$$

EXAMPLES: 1)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

2) $\sum_{n=1}^{\infty} \frac{n+1}{n}$
3) $\sum_{n=1}^{\infty} \frac{2 \cdot n}{n+1}$

$$2)\sum_{n=1}^{\infty} \frac{n+1}{n}$$

3)
$$\sum_{n=1}^{\infty} \frac{2 \cdot n}{n+1}$$

DEFINATION: CONVERGENCE OF A SERIES:

If the sequence of partial sum converges to the limitL, we say that series converges and that its sum is L.

We write
$$a_1 + a_2 + a_3 + \dots + a_n = \sum_{n=1}^{\infty} a_n = L$$

If the sequence of partial sums of the series does not converge, we say that the series diverges.

EXAMPLES:1) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$

SOLUTION: We are given
$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$$

Here
$$a_n = \frac{1}{2^{n-1}}$$

$$S_1 = a_1 = 1$$

$$S_2 = a_1 + a_2 = 1 + \frac{1}{2} = \frac{3}{2} = 2 - \frac{1}{2}$$

$$S_3 = a_1 + a_2 + a_3 = 1 + \frac{1}{2} + \frac{1}{4} = 2 - \frac{1}{4}$$

$$S_4 = a_1 + a_2 + a_3 + a_4 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 2 - \frac{1}{8}$$

.

.

.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}}$$

$$\therefore S_n = 2 - \frac{1}{2^{n-1}}$$

Now
$$\lim_{n \to \infty} S_n = 2 - \lim_{n \to \infty} \frac{1}{2^{n-1}}$$

= 2

So $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges to 2.

Hence
$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 2$$
.

$$2)\sum_{n=1}^{\infty}\frac{1}{n\cdot(n+1)}$$

SOLUTION: Here $a_n = \frac{1}{n \cdot (n+1)} = \frac{1}{n} - \frac{1}{n+1}$

So
$$S_1 = a_1 = 1 - \frac{1}{2}$$

$$S_2 = a_1 + a_2 = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = 1 - \frac{1}{3}$$

$$S_3 = a_1 + a_2 + a_3 = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = 1 - \frac{1}{4}$$

.

$$S_n = \frac{1}{n} - \frac{1}{n-1}$$

$$\Rightarrow \lim_{n \to \infty} S_n = 1$$

Thus
$$\sum_{n=1}^{\infty} \frac{1}{n \cdot (n+1)} = 1$$

> GEOMETRIC SERIES:

Geometric series are series of the form

$$a + a \cdot r + a \cdot r^2 + a \cdot r^3 + \dots + a \cdot r^n + \dots = \sum_{n=1}^{\infty} a \cdot r^{n-1}$$

Where a and r (ratio) are fixed real numbers and $a \neq 0$.

EXAMPLES: 1) $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1}$, $r = \frac{1}{2}$

$$(2)\sum_{n=1}^{\infty}\left(-rac{1}{3}
ight)^{n-1}$$
 , $r=-rac{1}{3}$

- **RESULTS:** Let $\sum_{n=1}^{\infty} a \cdot r^{n-1}$ be a geometric series.
 - 1) If |r| < 1 then $\sum_{n=1}^{\infty} a \cdot r^{n-1}$ converges to $\frac{a}{1-r}$ $\therefore \sum_{n=1}^{\infty} a \cdot r^{n-1} = \frac{a}{1-r} \text{ if } |r| < 1.$
 - 2) If $|r| \ge 1$ then the series diverges.
- EXAMPLS: SOLVE THE FOLLOWING

1)
$$\sum_{n=1}^{\infty} \frac{1}{9} \cdot \left(\frac{1}{3}\right)^{n-1}$$

SOLUTION: $\sum_{n=1}^{\infty} \frac{1}{9} \cdot \left(\frac{1}{3}\right)^{n-1} = \frac{1}{9} \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n-1}$

$$=\frac{1}{9}\cdot\frac{1}{1-\frac{1}{2}}=\frac{1}{6}$$

$$2) \quad \sum_{n=1}^{\infty} \frac{1}{9} \cdot \left(\frac{1}{3}\right)^{n-1}$$

SOLUTION: Here $a = \frac{2}{5}$, $r = \left(-\frac{1}{3}\right)$

$$\therefore \frac{a}{1-r} = \frac{\frac{2}{5}}{1-\left(-\frac{1}{3}\right)} = \frac{\frac{2}{5}}{1+\left(\frac{1}{3}\right)} = \frac{3}{10}$$
 By result (1)

- **THEOREM:** If $\sum_{n=1}^{\infty} a_n$ converges then $\lim_{n \to \infty} a_n = 0$.
- \rightarrow THE n^{th} TERM TEST FOR DIVERGENCE:

Let $\sum_{n=1}^{\infty} a_n$ be a series. If $\lim_{n \to \infty} a_n$ does not exist or is different from zero then $\sum_{n=1}^{\infty} a_n$ diverges.

- **EXAMPLES: SOLVE THE FOLLOWING**

SOLUTION: Here $a_n = n^2$

$$\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} n^2 \to \infty$$

:By n^{th} term test $\sum_{n=1}^{\infty} n^2$ diverges

 $2) \quad \sum_{n=1}^{\infty} \frac{n+1}{n}$

SOLUTION: Let $a_n = \frac{n+1}{n}$

That is
$$\frac{\lim_{n\to\infty}(n+1)}{n}\to 1\ (\neq 0)$$

Thus $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges.

3) $\sum_{n=1}^{\infty} (-1)^{n+1}$

SOLUTION: Let $a_n = (-1)^{n+1}$

EXAMPLE: TEST THE CONVERGENCE OF $5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$

SOLUTION: Here
$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots$$
 is given

Note that the given series is a geometric series with ratio $r = (-\frac{2}{3})$

Now
$$|r| = \left| -\frac{2}{3} \right| < 1$$

.: The given series is convergent and its sum is

$$\frac{a}{1-r} = \frac{5}{1-\left(-\frac{2}{3}\right)} = \frac{5}{1+\frac{2}{3}} = 3$$

- **THEOREM:** If $\sum a_n = A$ and $\sum b_n = B$ are convergent series, then
 - I. $\sum (a_n + b_n) = \sum a_n + \sum b_n = A + B$ (sum rule)
 - II. $\sum (a_n b_n) = \sum a_n \sum b_n = A B$ (difference rule)
 - III. $\sum k \cdot a_n = k \cdot \sum a_n = k \cdot A$ (any number) (constant multiple rule)

EXAMPLS:

1) Check the convergence of the series $\sum_{n=1}^{\infty} \frac{4^n + 5^n}{6^n}$

SOLUTION: Here
$$a_n = \frac{4^n + 5^n}{6^n} = \left(\frac{4}{6}\right)^n + \left(\frac{5}{6}\right)^n$$
$$= a_n + b_n \quad \text{(say)}$$

Now $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left(\frac{4}{6}\right)^n$ is geometric series and it is

convergent.

Also $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \left(\frac{5}{6}\right)^n$ is convergent geometric series.

Hence $\sum_{n=1}^{\infty} \frac{4^n + 5^n}{6^n}$ is convergent.

 $(\because \sum (a_n + b_n) = \sum a_n + \sum b_n \text{ is convergent})$

EXAMPLES: FIND THE SUMS OF THE FOLLOWING SERIES

a.
$$\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$$

Solution: Here $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}} = \sum_{n=1}^{\infty} (\frac{3^{n-1}}{6^{n-1}} - \frac{1}{6^{n-1}})$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{2^{n-1}} - \frac{1}{6^{n-1}} \right)$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}}$$
 (By difference rule)

$$= \frac{1}{1 - \left(\frac{1}{2}\right)} - \frac{1}{1 - \left(\frac{1}{6}\right)}$$

(Geometric series with a = 1 and $r = \frac{1}{2}, \frac{1}{4}$)

$$=2-\frac{6}{5}=\frac{4}{5}$$

Thus
$$\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}} = \frac{4}{5}$$

$$\mathbf{b.} \ \sum_{n=1}^{\infty} \frac{4}{2^n}$$

SOLUTION: Here $\sum_{n=1}^{\infty} \frac{4}{2^n} = 4 \cdot \sum_{n=1}^{\infty} \frac{1}{2^n}$ (constant multiple rule)

$$=4\cdot\left(\frac{1}{1-\left(\frac{1}{2}\right)}\right)$$

(Geometric series with $a = 1 & r = \frac{1}{2}$)

Exercise:

1. Check the convergence of the following

$$I. \qquad \sum_{n=1}^{\infty} \frac{n}{2n+1}$$

Ans: divergent

II.
$$\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}}$$

Ans: divergent

III.
$$\sum_{n=1}^{\infty} n \tan(\frac{1}{n})$$

Ans: divergent

P Series:

The p-series is

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots \text{ is}$$

- 1) Convergent if p > 1 and
- 2) Divergent if $p \le 1$.

> <u>DEFINATION: HARMONIC SERIES</u>

The series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$ is called the harmonic series is divergent. (By above example case p=1)

> COMPARISON TEST:

1) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} c_n$ be two series with no negative terms

a) If $\sum_{n=1}^{\infty} c_n$ is a convergent series with $0 \le a_n \le c_n$ for all $n \ge 1$, then $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} a_n \ge \sum_{n=1}^{\infty} c_n$.

b) If $\sum_{n=1}^{\infty} c_n$ is divergent series with $0 \le c_n \le a_n$ for all $n \ge 1$, then $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} a_n \ge \sum_{n=1}^{\infty} c_n$.

• REMARK:

1. Compare the given series $\sum a_n$ with auxiliary series $\sum c_n$ whose convergence or divergence should already be known to us.

2. Generally $\sum \frac{1}{n^p}$ will be useful as an auxiliary series.

• EXAMPLES:

1. Prove that $\sum_{n=1}^{\infty} \frac{1}{3^{n}+1}$ converges.

SOLUTION: Let
$$a_n = \frac{1}{3^n + 1}$$

Take
$$c_n = \frac{1}{3^n}$$

By the geometric series, we know that the geometric series $\sum_{n=1}^{\infty} \frac{1}{3n}$ converges

Since
$$\frac{1}{3^{n}+1} < \frac{1}{3^{n}}$$
 for $n \ge 1$.

∴By comparison test $\sum_{n=1}^{\infty} \frac{1}{3^{n}+1}$ is also converges.

2. Prove that $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n-1}}$ diverges.

SOLUTION: Let $a_n = \frac{1}{2\sqrt{n}-1}$ and $c_n = 1/2\sqrt{n}$ observation that

$$\frac{1}{2\sqrt{n}-1} > \frac{1}{2\sqrt{n}} \text{ for } n \ge 1.$$

Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a p-series with $p = \frac{1}{2}$ is diverges.

∴By comparison test given series $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}-1}$ is also diverges.

1) THE LIMIT COMPARISON TEST:

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$.

- 1. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- 2. If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

• EXAMPLES:

1. Test the convergence of the series $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots$

SOLUTION: Here
$$a_n = \frac{1}{n \cdot (n+1)} = \frac{1}{n^2 + n}$$

Take
$$b_n = \frac{1}{n^2}$$
 then

$$= \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{(n^2 + n)}$$

$$= \lim_{n \to \infty} \frac{n^2}{n^2 \cdot \left(1 + \frac{1}{n}\right)}$$

$$= \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n})} = 1 \neq 0 \text{ (Finite)}$$

$$\therefore \frac{\lim}{n \to \infty} \frac{a_n}{b_n} = 1$$

Thus by comparison test both $\sum a_n$ and $\sum b_n$ converges or diverges

But
$$\sum b_n = \sum \frac{1}{n^2}$$
 is convergent

Hence $\sum a_n$ is also convergent.

2. Test the convergence of the series $1 + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \cdots = \sum_{n=1}^{\infty} \frac{1}{2^n - 1}$

SOLUTION: Let
$$a_n = \frac{1}{2^{n}-1}$$

Take
$$b_n = \frac{1}{2^n}$$

Now
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2^n}{(2^n - 1)}$$

$$= \lim_{n \to \infty} \frac{1}{1 - \left(\frac{1}{2^n}\right)} = 1$$

 \therefore By comparison test both $\sum a_n$ and $\sum b_n$ converges or diverges

But
$$\sum b_n = \sum \frac{1}{2^n}$$
 convergent

Hence $\sum a_n$ is convergent.

Exercise:

- 1) Show that $\frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \frac{1}{17} + \cdots$ is convergent
- 2) Check the convergence of the following

I.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$$
 Ans: convergent

II.
$$\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}$$
 Ans: convergent

III.
$$\sum_{n=1}^{\infty} \frac{\log n}{n^2}$$
 Ans: convergent

II.
$$\sum_{n=1}^{\infty} \frac{1}{3^n+1}$$
 Ans: convergent III. $\sum_{n=1}^{\infty} \frac{\log n}{n^2}$ Ans: convergent IV. $\sum_{n=1}^{\infty} \frac{\log n}{\sqrt{n}}$ Ans: divergent

3) Check the convergence of the following

I.
$$\sum_{n=1}^{\infty} \frac{3n^2 + 5n}{7 + n^4}$$
 Ans: convergent

II.
$$\sum_{n=1}^{\infty} \frac{1}{5^{n}-1}$$

Ans: convergent

III.
$$\sum_{n=1}^{\infty} \frac{7}{7n-2}$$

Ans: divergent

IV.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}-1}{n^2+1}$$

Ans: convergent

III.
$$\sum_{n=1}^{\infty} \frac{7}{7n-2}$$
IV.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}-1}{n^2+1}$$
V.
$$\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$$
VI.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+n+1}$$

Ans: divergent

VI.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+n+1}$$

Ans: divergent

THE D ALEMBERT'S RATIO TEST AND CAUCHY'S ROOT TEST:

> THE RATIO TEST:

Let $\sum a_n$ be a series of positive terms and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = k$

Then the series $\sum a_n$ is

- convergent if k < 1(i)
- (ii) divergent if k > 1
- (iii) Test is incomplete if k=1

EXAMPLES: INVESTIGATE THE CONVERGENCE OF THE FOLLOWING **SERIES**

1)
$$\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^n}$$

SOLUTION: Here $a_n = \frac{2^n + 5}{3^n}$

Now
$$\frac{a_{n+1}}{a_n} = \frac{2^n + 5}{3^n} \cdot \frac{3^n}{2^n + 5} = \frac{1}{3} \frac{2^{n+1} + 5}{2^n + 5}$$

$$=\frac{1}{3}\frac{2+\frac{5}{2^n}}{1+\frac{5}{2^n}}$$

Here
$$k = \frac{2}{3} < 1$$

∴By D Alembert's ratio test, the given series is converge

<u>NOTE:</u> It does not mean that $\frac{2}{3}$ is the sum of the series.

The fact.

$$\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}} = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n} + \sum_{n=0}^{\infty} \left(\frac{5}{3}\right)^{n}$$

$$= \frac{1}{1-\left(\frac{2}{3}\right)} + \frac{5}{1-\left(\frac{1}{3}\right)} = 21/2 \qquad (\therefore \text{ Geometric series})$$

i.e.
$$\sum_{n=0}^{\infty} \frac{2^n+5}{3^n} = \frac{21}{2}$$

$$2) \quad \sum_{n=0}^{\infty} \frac{2^n}{n!}$$

SOLUTION: Here
$$a_n = \frac{2^n}{n!}$$

Now
$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2}{n+1}$$

$$\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2}{n+1} = 0 = k(say)$$

∴By Ratio test, the series converges as k < 1.

> CAUCHY ROOT-TEST:

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$, and

Suppose that $\lim_{n \to \infty} (a_n)^{\frac{1}{n}} = L$.

i. If $0 \le L < 1$, then the series converge.

ii. If L > 1, then the series diverge or L is infinite

iii. If L = 1, then test fails

 EXAMPLES: Which of the following series are convergent and which are divergent

$$1) \quad \sum_{n=0}^{\infty} \frac{n^2}{2^n}$$

SOLUTION: Here $a_n = \frac{n^2}{2^n}$

$$\therefore (a_n)^{\frac{1}{n}} = \left(\frac{n^2}{2^n}\right)^{\frac{1}{3}} = \frac{n^{\frac{2}{n}}}{2}$$

$$\therefore \lim_{n \to \infty} (a_n)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^{\frac{2}{n}}}{2} = \frac{1}{2} < 1$$

So by Root test the series is convergent.

2)
$$\sum_{n=0}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2}\right)^n$$

SOLUTION: Here $a_n = \left(\frac{1}{n} - \frac{1}{n^2}\right)^n$

$$\therefore \lim_{n \to \infty} (a_n)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{n} - 1/n^2\right)^{\frac{1}{n}} \to \infty$$

∴By Root-test the series is diverge.

Exercise:

1) Check the convergence of the following

I.
$$\frac{1}{1+2} + \frac{2}{1+2^2} + \frac{3}{1+2^3} + \cdots$$
 Ans: convergent

II.
$$1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \cdots$$
 Ans: convergent

III.
$$\sum_{n=0}^{\infty} \frac{2^n+5}{5^n}$$
 Ans: convergent

III.
$$\sum_{n=0}^{\infty} \frac{2^{n+5}}{5^n}$$
 Ans: convergent

IV. $\sum_{n=0}^{\infty} \frac{n^3+2}{2^{n+2}}$ Ans: convergent

V. $\sum_{n=0}^{\infty} \frac{2^{n-1}}{3^n}$ Ans: convergent

VI. $\sum_{n=1}^{\infty} \frac{2^n}{n^2+1}$ Ans: divergent

V.
$$\sum_{n=0}^{\infty} \frac{2^{n}-1}{3^{n}}$$
 Ans: convergent

VI.
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2+1}$$
 Ans: divergent

2) Check the convergence of the following

I.
$$\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \cdots$$
 Ans: convergent

II.
$$1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \cdots, x > 0$$
 Ans: convergent

III.
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2}\right)^n x^n ; x > 0$$

Ans:
$$x \ge 1 \Rightarrow divergent$$
, $0 \le x < 1 \Rightarrow convergent$

IV.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$$
 Ans: divergent

> ALTERNATIVE SERIES:

A Series with alternate positive and negative terms is known as an alternative series.

LEIBNITZ'S TEST FOR ALTERNATIVE SERIES:

The given alternative series $\sum_{n=0}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$ Converges if all three of the following conditions are satisfied:

- 1) The u_n 's are all positive.
- 2) $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- 3) $u_n \rightarrow 0$.

ABSOLUTE AND CONDITIONAL CONVERGENCE:

> DEFINATION:

• ABSOLUTELY CONVERGENT

A Series $\sum a_n$ converges absolutely if the corresponding series of absolute values, $\sum |a_n|$, converges.

Conditionally convergent:

A Series $\sum a_n$ that converges but $\sum |a_n|$ does not converge it's called conditionally converge.

> THE ABSOLUTE CONVERGENCE TEST:

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

• **EXAMPLES:** SOLVE THE FOLLOWING EXAMPLE

1)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n^2}\right)$$

SOLUTION:

$$\sum_{n=0}^{\infty} (-1)^{n+1} \left(\frac{1}{n^2}\right) = 1 - 1/4 + 1/9 - 1/16 + \cdots$$
, The corresponding

series of absolute value is the convergent series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$$

The original series converges because it converge absolutely.

$$2) \quad \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

SOLUTION:

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \frac{|\sin 1|}{1} + \frac{|\sin 2|}{4} + \cdots,$$

Which converge by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$ because $|\sin n| \le 1$ for every n.

The original series converges absolutely, therefore it converges.

> CONDITIONALLY CONVERGENT SERIES:

Discuss convergence of given $\sum a_n$ using above any applicable test. Derive new series as $\sum b_n = \sum |a_n|$ from given series. Discuss convergence of $\sum b_n$ using above any applicable test. If $\sum a_n$ is convergent and $\sum b_n$ is divergent then given series is conditionally convergent.

- **NOTE:** Infinite series is not absolute convergent and conditionally convergent together.
- **EXAMPLES:** SOLVE THE FOLLOWING EXAMPLE
 - 1. Test the series for absolute or conditional convergent

$$\frac{2}{3} - \left(\frac{3}{4}\right)\left(\frac{1}{2}\right) + \left(\frac{4}{5}\right)\left(\frac{1}{3}\right) - \left(\frac{5}{6}\right)\left(\frac{1}{4}\right) + \cdots$$

SOLUTION: Let
$$u_n = (-1)^{n-1} (\frac{n+1}{n+2} \frac{1}{n})$$

$$\sum_{n=1}^{\infty} |u_n| = \frac{2}{3} - \left(\frac{3}{4}\right) \left(\frac{1}{2}\right) + \left(\frac{4}{5}\right) \left(\frac{1}{3}\right) - \left(\frac{5}{6}\right) \left(\frac{1}{4}\right) + \cdots$$

$$|u_n| = \frac{n+1}{n+2} \frac{1}{n}$$

Let
$$v_n = \frac{1}{n}$$

$$\lim_{n \to \infty} \frac{|u_n|}{v_n} = \lim_{n \to \infty} \frac{n+1}{n+2} = \lim_{n \to \infty} \frac{1+\frac{1}{n}}{1+\frac{2}{n}} = 1$$

And
$$\sum v_n = \sum \frac{1}{n}$$
 is divergent as p=1

By comparision test, $\sum |u_n|$ is also divergent.

Hence, the series is not absolutely convergent

To check the conditional convergence, applying Leibnitz's test,

(i)
$$|u_n| - |u_{n+1}| = \frac{n+1}{n(n+2)} - \frac{n+2}{(n+1)(n+3)}$$

 $= \frac{n^2 + 3n + 3}{n(n+1)(n+2)(n+3)} > 0$ for all n
 $|u_n| > |u_{n+1}|$

(ii)
$$\begin{aligned} &\lim_{n\to\infty}|u_n| = \lim_{n\to\infty}\frac{n+1}{n(n+2)} \\ &= \lim_{n\to\infty}\frac{1+\frac{1}{n}}{1+\frac{2}{n}} = 0 \end{aligned}$$

By lebnitz's test, $\sum u_n$ is convergent.

The series $\sum u_n$ is convergent and $\sum |u_n|$ is divergent.

Hence, the series is conditionally convergent.

Exercise:

- 1) Check the absolute converge of the following
 - i. $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \frac{1}{6} + \cdots$

Ans: convergent but not absolute convergent

ii.
$$1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} - \cdots$$

Ans: Absolute convergent

iii.
$$1 + \frac{1}{2^2} - \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} - \cdots$$

Ans: Absolute convergent

iv.
$$1-2x+3x^2-4x^3+5x^4-\cdots$$

Ans: Absolute convergent

v.
$$\sum \frac{(-1)^{n-1}}{n^p}$$
 $(p > 1)$ Ans: Absolute convergent

2) Check the conditionally converge of the following

(i)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

Ans: conditionally convergent

(ii)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} - \cdots$$

Ans: conditionally convergent

(iii)
$$-\frac{1}{1^p} + \frac{1}{2^p} - \frac{1}{3^p} + \frac{1}{4^p} - \frac{1}{5^p} + \cdots$$

Ans: $p > 1 \Rightarrow Absolute convergent,$

 $p \le 1 \Rightarrow conditionally convergent$

$$(iv)\frac{1}{ln2} - \frac{1}{ln3} + \frac{1}{ln4} - \frac{1}{ln5} + \cdots$$

Ans: conditionally convergent

(v)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + \sqrt{n+1}}$$
 Ans: conditionally convergent