COMMUNICATION THEORY, Homework Exercise 7 Fall 2023

In order to be converted into a digital signal, an analog signal x(t) is first sampled in the time domain by multiplication with a sampling signal $s_p(t) = \sum_{k=-\infty}^{\infty} p(t-kT_s)$ of period $T_s = 1/f_s$. The resulting sampled signal is therefore $x_s(t) = x(t) s_p(t)$.

- 1) Given that x(t) is a baseband signal of bandwidth W = 100 kHz, determine the minimum value of the sampling frequency f_s required to avoid aliasing, according to the Nyquist sampling theorem.
- 2) Assume any convenient shape of the spectrum of x(t), and draw a sketch of the spectrum of the resulting sampled signal $x_s(t)$, when ideal sampling pulses $p(t) = \delta(t)$ are used, and the sampling frequency is $f_s = 300 \text{ kHz}$.
- 3) Draw a similar sketch to show what happens when the sampling pulses are instead rectangular pulses, $p(t) = B \cdot \prod(Bt)$, with B = 900 kHz.