

DELEGAÇÃO REGIONAL DO CENTRO

FICHA 1: ARRAYS

CENTRO DE EMPREGO E FORMAÇÃO PROFISSIONAL DE VISEU

MODALIDADE:	Educação e Formação de Adultos (EFA) EFA NS (Profissional)				
CURSO:	Programador/a Informático/a				
UFCD:	Programação em C/C++ - avançado	CÓDIGO UFCD:	0810		
FORMADOR/A:	Bruno Silva	DATA:			

OBJETIVOS

Saber como trabalhar com estruturas de dados do tipo vetores e matrizes

Um *array* trata-se dum tipo de variável estruturada, constituída por um conjunto de "*células*", identificadas por um "índice" (endereço), e um conjunto dados do mesmo tipo.

Um *array* é um tipo estruturado que pode agrupar numa mesma variável um conjunto de valores do mesmo tipo.

Os arrays podem ser classificados como:

• **Vetores** (Estruturas **uni**dimensionais)

Matrizes (Estruturas multidimensionais)

	Column 0	Column 1	Column 2	Column 3
Row 0	a[0][0]	a[0][1]	a[0][2]	a[0][3]
Row 1	a[1][0]	a[1][1]	a[1][2]	a[1][3]
Row 2	a[2][0]	a[2][1]	a[2][2]	a[2][3]

Vetores (Arrays Unidimensionais)

É possível inserir e ler valores de forma fixa (declarar os valores diretamente na declaração do vetor, desde que indique o número de casas a reservar):

CENTRO DE EMPREGO E FORMAÇÃO PROFISSIONAL DE VISEU

FICHA 1: ARRAYS

```
#include <stdio.h>
#include <stdlib.h>

void main() {
    /* Vetor com 3 elementos automaticamente */
    /* e iniciados com os valores 3, 7, 9 */
    int notasDisciplinas[3] = {3,7,9};

    printf("0 array tem %d elementos!\n", sizeof(notasDisciplinas) / sizeof(int));

    for (int i = 0; i < 3; i++) {
        printf("Posicao do array %d tem o elemento %d\n", i, notasDisciplinas[i]);
    }

    system("PAUSE");
}</pre>
```

Mas, também é possível *pedir quais os valores a inserir a partir do teclado*. Para tal, vamos utilizar uma estrutura de repetição, para introduzir todos os elementos dentro de um vetor (pois a operação é igual para todos os dados a inserir no array unidimensional).

Como tal, vamos ter duas estruturas de repetição em que vamos ter:

- 1 estrutura de repetição para inserir valores no vetor;
- 1 estrutura de repetição para ler os valores do vetor;

```
#include <stdio.h>
#include <stdlib.h>

void main() {
   int notasDisciplinas[10];

   printf("O array tem %d elementos!\n", sizeof(notasDisciplinas) / sizeof(int));

   for (int i = 0; i < 10; i++) {
        printf("Introduza o valor da posicao %d: ", i);
        scanf("%d", &notasDisciplinas[i]);
   }

   for (int i = 0; i < 10; i++) {
        printf("Posicao do array %d tem o elemento %d\n", i, notasDisciplinas[i]);
   }

   system("PAUSE");
}</pre>
```


DELEGAÇÃO REGIONAL DO CENTRO

CENTRO DE EMPREGO E FORMAÇÃO PROFISSIONAL DE VISEU

FICHA 1: ARRAYS

Exercícios

Exercício 1 – Construa um programa para introduzir **5 números num vetor** de forma manual e exibir os mesmos após a inserção da informação.

Exercício 2 – Construa um programa para introduzir **5 números num vetor**, do qual, deve pedir ao utilizador para inserir os números (com uma estrutura de repetição do tipo for). No final, mostre os dados com uma estrutura de repetição e a **média dos valores**.

Exercício 3 – Construa um programa que leia um vetor com 6 números decimais e mostre a quantidade de números negativos e a soma dos números positivos desse vetor.

Exercício 4 – Construa um programa para introduzir uma sequência de **5** números num vetor, (ignorando os valores inferiores a 1), e de seguida, calcula a soma desses números. No final mostre os dados do vetor.

Exercício 5 – Construa um programa para introduzir uma sequência de **5** números num vetor. De seguida, deve percorrer o vetor com os valores inseridos e verificar se existe o número 5.

Exercício 6 – Vamos reaproveitar o exercício anterior e implementar novas funcionalidades, tais como:

- Não deverá introduzir números iguais dentro do vetor (fazer uma função para verificar esta funcionalidade, passando 2 parâmetros de entradas: o vetor e qual o número a inserir) e retornar se existe o valor ou não;
 - Se existir, deve pedir um novo número ao utilizador;
 - Senão, o programa deve inserir o novo valor no vetor;
- No final da inserção de valores no vetor, deve colocar o processo de cálculo da média num procedimento (onde deve receber como parâmetro de entrada o vetor de dados) e mostrar qual foi a mensagem com a média dos números introduzidos.

