CS154

Finishing Minimization,
The Myhill-Nerode Theorem,
and Streaming Algorithms

DFA Minimization Theorem:

For every regular language L', there is a unique (up to re-labeling of states) minimal-state DFA M* such that L(M*) = L'.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M*.

Extending transition function δ to strings

Given M = (Q, Σ , δ , q₀, F), we can extend δ to a function Δ : Q $\times \Sigma^* \rightarrow$ Q that works on strings:

$$\Delta(q, \varepsilon) = q$$

$$\Delta(q, \sigma) = \delta(q, \sigma)$$

$$\Delta(q, \sigma_1 ... \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 ... \sigma_k), \sigma_{k+1})$$

 $\Delta(q, w)$ = the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff $\Delta(q_1, w) \in F \Leftrightarrow \Delta(q_2, w) \notin F$

Extending transition function δ to strings

Given M = (Q, Σ , δ , q₀, F), we can extend δ to a function Δ : Q $\times \Sigma^* \rightarrow$ Q that works on strings:

$$\Delta(q, \epsilon) = q$$

$$\Delta(q, \sigma) = \delta(q, \sigma)$$

$$\Delta(q, \sigma_1 ... \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 ... \sigma_k), \sigma_{k+1})$$

 $\Delta(q, w)$ = the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly one of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state

Fix M = (Q, Σ , δ , q₀, F) and let p, q \in Q

Definition:

State p is distinguishable from state q iff there is $w \in \Sigma^*$ that distinguishes p and q iff there is $w \in \Sigma^*$ so that exactly one of $\Delta(p, w)$, $\Delta(q, w)$ is a final state

State p is *indistinguishable* from state q iff p is not distinguishable from q iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \Leftrightarrow \Delta(q, w) \in F$ Pairs of indistinguishable states are redundant...

Fix M = (Q, Σ , δ , q₀, F) and let p, q, r \in Q

Define a binary relation \sim on the states of M:

 $p \sim q$ iff p is indistinguishable from q

p ≁ q iff p is distinguishable from q

Proposition: ∼ is an equivalence relation

$$p \sim p$$
 (reflexive)

 $p \sim q \Rightarrow q \sim p$ (symmetric)

 $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Fix M = (Q, Σ , δ , q₀, F) and let p, q, r \in Q

Proposition: ~ is an equivalence relation

As a consequence, the relation ~ partitions Q into disjoint equivalence classes

Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

 $L(M) = L(M_{MIN})$

M_{MIN} has no *inaccessible* states

M_{MIN} is *irreducible*

For all states $p \neq q$ of M_{MIN} , p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1)
$$D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not= q \}$$

(2)
$$EQUIV_M = \{ [q] | q \in Q \}$$

Base Case: For all (p, q) such that p accepts and q rejects \Rightarrow p \not q

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

Repeat until no more D's can be added,

Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M_{MIN}

- 1. Remove all inaccessible states from M
- 2. Run Table-Filling algorithm on M to get: EQUIV_M = { [q] | q is an accessible state of M }
- 3. Define: $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$

$$Q_{MIN} = EQUIV_M$$
, $q_{0 MIN} = [q_0]$, $F_{MIN} = \{ [q] \mid q \in F \}$

$$\delta_{MIN}([q], \sigma) = [\delta(q, \sigma)]$$

Claim: $L(M_{MIN}) = L(M)$

Thm: M_{MIN} is the unique minimal DFA equivalent to M

Claim: Suppose $L(M')=L(M_{MIN})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}

Suppose for now the Claim is true.

If M' is a minimal DFA, then M' has no inaccessible states and is irreducible (why?)

So the Claim implies:

Let M' be a minimal DFA for M. Then, there is an isomorphism between M' and the DFA M_{MIN} that is output by MINIMIZE(M). Therefore the Thm holds!

Thm: M_{MIN} is the unique minimal DFA equivalent to M

Claim: Suppose $L(M')=L(M_{MIN})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}

Proof: We recursively construct a map from the states of M_{MIN} to the states of M'

Base Case:
$$q_{0 \text{ MIN}} \mapsto q_0'$$

Recursive Step: If
$$p \mapsto p'$$

$$\downarrow \sigma \qquad \downarrow \sigma \qquad \text{Then } q \mapsto q'$$

Base Case: $q_{0 \text{ MIN}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$ $\downarrow \sigma \qquad \downarrow \sigma \qquad \text{Then } q \mapsto q'$ $q \qquad q'$

Base Case:
$$q_{0 \text{ MIN}} \mapsto q_0'$$

Recursive Step: If
$$p \mapsto p'$$

$$\downarrow^{\sigma} \quad \downarrow^{\sigma} \quad \text{Then } q \mapsto q'$$

Goal: Show this is an isomorphism. Need to prove:

The map is defined everywhere

The map is well defined

The map is a bijection

The map preserves all transitions:

If
$$p \mapsto p'$$
 then $\delta_{MIN}(p, \sigma) \mapsto \delta'(p', \sigma)$

(this follows from the definition of the map!)

Base Case:
$$q_{0 \text{ MIN}} \mapsto q_0'$$

Recursive Step: If
$$p \mapsto p'$$

$$\downarrow \sigma \qquad \downarrow \sigma \qquad \text{Then } q \mapsto q'$$

The map is defined everywhere

That is, for all states q of M_{MIN} there is *some* state q' of M' such that $q \mapsto q'$

If $q \in M_{MIN}$, there is a string w such that $\Delta_{MIN}(q_{0 MIN}, w) = q$ (Why?)

Let
$$q' = \Delta'(q_0', w)$$
. Then $q \mapsto q'$ (proof by induction on $|w|$)

Base Case:
$$q_{0 \, MIN} \mapsto q_{0}{'}$$
Recursive Step: If $p \mapsto p'$

$$\downarrow \sigma \qquad \downarrow \sigma \qquad Then \ q \mapsto q'$$

$$q \qquad q'$$

The map is well defined Proof by contradiction. Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

We show that q' and q'' are indistinguishable, so it must be that q' = q''

Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

Now suppose q' and q'' are distinguishable...

Base Case:
$$q_{0 \text{ MIN}} \mapsto q_0'$$

Recursive Step: If
$$p \mapsto p'$$

$$\downarrow^{\sigma} \downarrow^{\sigma} \text{ Then } q \mapsto q'$$

The map is onto

Want to show: For all states q' of M' there is a state q of M_{MIN} such that $q \mapsto q'$

For every q' there is a string w such that M' reaches state q' after reading in w

Let q be the state of M_{MIN} after reading in w Claim: $q \mapsto q'$ (proof by induction on |w|)

The map is one-to-one

Proof by contradiction. Suppose there are states $p \neq q$ such that $p \mapsto q'$ and $q \mapsto q'$ If $p \neq q$, then p = q and q = q are distinguishable

How can we prove that two regular expressions are equivalent?

The Myhill-Nerode Theorem

In DFA Minimization, we defined an equivalence relation between states.

We can also define a similar equivalence relation over *strings* and *languages*:

Let
$$L \subseteq \Sigma^*$$
 and $x, y \in \Sigma^*$ $x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \Leftrightarrow yz \in L]$

Define: x and y are indistinguishable to L iff $x \equiv_L y$

Claim: ≡_L is an equivalence relation

Proof?

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$ $x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \Leftrightarrow yz \in L]$

The Myhill-Nerode Theorem:
A language L is regular if and only if
the number of equivalence classes of \equiv_{L} is finite.

Proof (\Rightarrow) Let M = (Q, Σ , δ , q₀, F) be a min DFA for L. Define the relation: $x \sim_M y \Leftrightarrow \Delta(q_0,x) = \Delta(q_0,y)$ Claim: \sim_M is an equivalence relation with |Q| classes

Claim: If $x \sim_M y$ then $x \equiv_L y$

Proof: $x \sim_M y$ implies for all $z \in \Sigma^*$, xz and yz reach the *same state* of M. So $xz \in L \Leftrightarrow yz \in L$, and $x \equiv_l y$

Corollary: Number of equiv. classes of \equiv_L is at most the number of equiv. classes of \sim_M (which is |Q|)

Let
$$L \subseteq \Sigma^*$$
 and $x, y \in \Sigma^*$
 $x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \Leftrightarrow yz \in L]$

(\Leftarrow) If the number of equivalence classes of \equiv_{L} is k then there is a DFA for L with k states

Idea: Build a DFA using equivalence classes of $\equiv_{L}!$ Define a DFA M where

Q is the set of equivalence classes of \equiv_{L} $q_0 = [\epsilon] = \{y \mid y \equiv_{L} \epsilon\}$ $\delta([x], \sigma) = [x \sigma]$ $F = \{[x] \mid x \in L\}$

Claim: M accepts x if and only if $x \in L$

The Myhill-Nerode Theorem gives us a *new* way to prove that a given language is not regular:

L is not regular if and only if there are infinitely many equiv. classes of \equiv_{L}

L is not regular if and only if

Distinguishing set for L
/

There are infinitely many strings w_1 , w_2 , ... so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L: there is a $z \in \Sigma^*$ such that exactly one of w_i z and w_j z is in L

The Myhill-Nerode Theorem gives us a *new* way to prove that a given language is not regular:

Theorem: $L = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof: Consider the infinite set of strings

$$S = \{0, 00, 000, ..., 0^n, ...\}$$

Take any pair (0^m, 0ⁿ) of distinct strings in S

Let $z = 1^m$

Then 0^m 1^m is in L, but 0ⁿ 1^m is *not* in L

That is, all pairs of strings in S are distinguishable

Hence there are infinitely many equivalence classes of \equiv_L , and L is not regular.