#buffon/réservoir

XII · 10 Électrons de conduction dans un métal

On admet que les électrons de conduction d'un métal se comportent en bonne approximation comme s'ils étaient *libres* et que seuls les électrons dont l'énergie cinétique est voisine de l'énergie de Fermi E_F participent effectivement à la conduction.

Le franchissement de la surface du métal exige qu'on leur fournisse une certaine énergie appelée historiquement le travail de sortie W_S . C'est cette marche de potentiel $V_0 = E_F + W_S$ qui confine les électrons dans le matériau.

Pour le cuivre, $E_F = 7$ eV et $W_S = 4,6$ eV. En déduire la valeur de la distance δ qui caractérise la décroissance de la probabilité de présence d'un électron au voisinage de la surface et conclure.

XIV · 2 Système à deux niveaux

Un système est formé de N particules interagissant faiblement, chacune d'entre elles pouvant se trouver dans l'un ou l'autre des deux états d'énergie ε_1 ou ε_2 avec $\varepsilon_1 < \varepsilon_2$.

- 1) Sans la calculer explicitement, tracer qualitativement le graphe donnant l'énergie moyenne du système $\langle E \rangle$ en fonction de sa température T. Que vaut $\langle E \rangle$ à haute et basse température? Au voisinage de quelle température le système effectue-t-il sa transition?
- 2) Donner une expression explicite de l'énergie moyenne de ce système. Vérifier que cette expression donne bien une dépendance en température comme établie à la question précédente.
- 3) Sans la calculer explicitement, donner l'allure de la capacité thermique molaire du système en fonction de la température.

$XIV \cdot 11$

On considère un système à trois niveaux d'énergie en équilibre avec un thermostat à la température T.

- Le fondamental d'énergie nulle, n'est pas dégénéré;
- Le premier niveau d'énergie ε est dégénéré deux fois;
- Le deuxième niveau excité est dégénéré quatre fois et son énergie est 2ε .
- 1) Exprimer les probabilités P_0 , P_1 , P_2 d'être dans chaque niveau.
- 2) Étudier les limites haute et basse températures.
- 3) Ordonner P_0 , P_1 , P_2 en fonction de T. Définir une température dite d'inversion T_i .

$XII \cdot 2$

Calculer la longueur d'onde de de Broglie d'un électron et d'un photon de même énergie $E=2~{\rm eV}.$

XIV · 15 Sédimentation; relation de Stokes-Einstein

On disperse N particules identiques, sphériques, de rayon R, de masse volumique μ dans un bécher de section S, rempli d'un liquide de masse volumique $\mu' < \mu$ et de viscosité η . Les particules sont soumises à une force de frottement, due à la viscosité de l'eau, dont l'expression est donnée par la formule de Stokes : $\overrightarrow{f} = -6\pi\eta R \overrightarrow{v}$. On notera (Oz) l'axe vertical ascendant et g la norme du champ de pesanteur terrestre.

On constate que les particules ne tombent pas toutes au fond du récipient, bien qu'elles soient plus denses que l'eau : il y a une compétition entre la sédimentation et la diffusion.

Dans un premier temps (questions 1 à 3), on ne considère que la sédimentation sans prendre en compte la diffusion.

- 1) Quelle est la dimension de la viscosité dynamique η ?
- 2) Déterminer la vitesse limite $\overrightarrow{v_\ell}$ des particules. Quelle est la durée caractéristique d'établissement du régime permanent? On fera apparaître la masse « apparente » des particules : $m_\star = (1 \mu'/\mu)m$.

Le nombre de particules traversant une surface dS orientée par le vecteur normal \overrightarrow{n} entre t et $t+\mathrm{d}t$ est donné par $\overrightarrow{j}\cdot\overrightarrow{n}\mathrm{d}S\mathrm{d}t$, où \overrightarrow{j} est le vecteur densité de flux de particules.

3) Exprimer le vecteur densité de courant de particules associé à ce mouvement de sédimentation, $\overrightarrow{j_{sed}}$ en fonction de la densité n(z) des particules et de la vitesse $\overrightarrow{v_\ell}$.

Il existe une autre contribution au flux de particules : la diffusion des particules en raison de l'inhomogénéité de la concentration. Le vecteur $\overrightarrow{j_{diff}}$ est donné par la loi de Fick : $\overrightarrow{j_{diff}} = -D \ \overline{\text{grad}} (n)$, où D est le coefficient de diffusion.

- 4) Citer deux autres lois analogues à la loi de Fick.
- 5) Quelle est la dimension de coefficient de diffusion D?
- 6) Calculer la densité de particules n(z) à l'altitude z en régime permanent. Commenter. On notera n_0 la densité de particules en z=0.
- 7) L'ensemble étant en équilibre thermique à la température T, exprimer n(z) en utilisant la loi de Boltzmann.
- 8) En déduire une relation, dite de Stokes-Einstein, entre D, η et T.

Cette relation a été établie par A. Einstein en 1905. 1

XIV · 4 Loi de Curie

Dans le modèle du paramagnétisme de Brillouin, chacun des N atomes d'un solide de température T, placé dans un champ magnétique $\overrightarrow{B} = B\overrightarrow{u_z}$, possède un moment magnétique $\mu_z\overrightarrow{u_z}$ dont la projection μ_z ne peut prendre que deux valeurs $\pm \mu$.

- 1) À quelle condition peut-on parler de limite haute température avec les valeurs numériques suivantes? $\mu = \mu_B = 9, 3 \cdot 10^{-24} \text{ J/T}$ et B = 1 T et $k_B = 1, 38 \cdot 10^{-23} \text{ J/K}$.
- 2) Quel est le moment magnétique moyen du solide en projection sur l'axe Oz en fonction du champ magnétique et de la température?
- 3) Simplifier l'expression précédente à haute puis à basse températures
- 4) La loi de Curie établie expérimentalement indique que le moment magnétique moyen du solide est proportionnel au champ magnétique et inversement proportionnel à la température. Le modèle de Brillouin est-il en accord avec cette loi empirique?
- 5) Pour certaines substances ferromagnétiques, le champ magnétique engendré par les atomes prend des valeurs notables et ne peut être négligé par rapport au champ extérieur \overrightarrow{B} . L'expression du moment magnétique moyen $\langle \mu \rangle$ est la même que précédemment à condition de remplacer B par $B + \lambda \langle \mu \rangle$, où λ est une constante positive. Grâce à une construction graphique, montrer que le moment magnétique μ_z est non nul même en absence de champ dans une certaine gamme de température. Que se passe-t-il quand on chauffe un aimant?

$XIV \cdot 5$

Les noyaux des atomes d'un solide cristallin ont un spin égal à un. D'après la théorie quantique, chaque noyau peut donc se trouver dans l'un des trois états quantiques décrits par les nombres quantiques m=0, 1 ou -1. Puisque la distribution de charge électrique dans le noyau n'est pas à symétrie sphérique, l'énergie du noyau dépend de l'orientation de son spin par rapport au champ électrique interne au noyau non uniforme : un noyau a la même énergie ε dans l'état m=1 ou m=-1 mais son énergie est nulle dans l'état m=0.

- 1) Donner en fonction de la température, l'expression de la contribution nucléaire à l'énergie interne molaire moyenne du solide. La tracer qualitativement. Préciser les valeurs intéressantes.
- 2) Tracer qualitativement le graphe de la contribution nucléaire à la capacité thermique molaire du solide. La calculer explicitement. Que devient-elle à haute température?

$XII \cdot 7$

Un électron est placé à une distance z d'une plaque métallique confondue avec le plan z=0. On admet qu'il est à l'origine d'une distribution surfacique de charges. La force exercée par la plaque sur l'électron est identique à celle d'une unique charge +e placée en -z.

- 1) En mécanique classique : déterminer la force exercée sur l'électron. En déduire son énergie potentielle. Préciser son comportement et sa trajectoire si sa vitesse initiale est nulle.
- 2) Rappeler l'équation de Schrödinger. On cherche les états stationnaires de l'électron, sous la forme $\psi(z,t)=\varphi(z)g(t)$. Déterminer la forme de g en la choisissant unitaire.
- 3) Déterminer l'équation différentielle vérifiée par φ .
- 4) Montrer que la fonction $z \mapsto cz e^{-kz}$ correspond à un état stationnaire possible. Déterminer k en fonction des constantes du problème. En déduire l'énergie correspondante.
- 5) Calculer la constante c.
- 6) Exprimer D, la distance moyenne entre la plaque et l'électron dans cet état.

$XIV \cdot 8$

On considère un système dont les N atomes peuvent occuper trois niveaux d'énergie : $E_1 = -E$, $E_2 = 0$ et $E_3 = E$ (avec E > 0), en équilibre thermique avec un thermostat à la température T.

- 1) Calculer les nombres N_i , i = 1, 2, 3 d'atomes dans chacun des trois états.
- 2) Commenter les limites haute et basse température. Tracer l'allure des N_i en fonction de la température.
- 3) Calculer l'énergie moyenne ε d'un atome.
- 4) Tracer son évolution en fonction de la température à l'aide de la calculatrice. Commenter.
- 5) Décrire qualitativement l'évolution de la capacité thermique à volume constant $C_V(T)$.

XII · 8 Atome d'hydrogène

On donne la partie spatiale de la fonction d'onde de l'électron d'un atome d'hydrogène, dans un certain état :

 $\varphi(r) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0},$

où a_0 est une constante strictement positive, et où l'on a utilisé les coordonnées sphériques (r, θ, φ) centrées sur le noyau de l'atome.

- 1) Écrire l'équation de schrödinger indépendante du temps pour l'électron dans l'atome d'hydrogène.
- 2) Déterminer a_0 , ainsi que l'énergie E pour que la fonction précédente corresponde à un état stationnaire. Faire l'application numérique.
- 3) Montrer que cette fonction d'onde vérifie bien la condition de normalisation.
- 4) Déterminer le champ électrique $\overrightarrow{E}(r)$ à la distance r du noyau. Le comparer au champ électrostatique crée par le noyau seul. Montrer qu'il y a un effet d'écrantage par l'électron.

Données : expressions du gradient et du laplacien en coordonnées sphériques.

$$\overrightarrow{\operatorname{grad}}(f) = \overrightarrow{\operatorname{d}f} \overrightarrow{u_r} + \frac{1}{r} \frac{\operatorname{d}f}{\operatorname{d}\theta} \overrightarrow{u_\theta} + \frac{1}{r \sin(\theta)} \frac{\operatorname{d}f}{\operatorname{d}\varphi} \overrightarrow{u_\varphi}$$

$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \varphi^2}.$$