

FT-840 MANUAL DE OPERAÇÃO

YAESU MUSEN CO., LTD.

Índice

Controle e Conectores do Painel Frontal	04
Painel Traseiro	07
Display do Painel Frontal	08
Funções do Medidor	09
Descrição Geral	10
Especificações	11
Especificações	11
Acessórios e Opcionais	13
FC-10 e FC-800: Acopladores de Antenas Automáticos	13
TCXO-4: Oscilador de Referência de Alta Qualidade	13
SP-6: Alto-Falante com Filtros de Áudio	13
Unidade 747 de FM	14
YH-77ST: Fones de Ouvido Leves	14
FIF-232C: Interface para Sistema CAT	14
Opções de Filtro de FI à Cristal	14
Microfones	15
Instalação da Estação	16
Inspeção Preliminar	16
Fonte de Alimentação CA	16
Alterando a Tensão CA da Fonte de Alimentação FP-800	17
Escolhendo um Local para o Transceptor	17
Aterramento	17
Ajustando o Ângulo do Painel Frontal	18
Considerações Sobre Antenas	18
Instalação Móvel	18
Montagem Móvel	18
Instalação de Antena Móvel	19
Interconexões de Acessórios	19
Backup de Memória	19
Esquema de Pinos de Conectores Conectando Acessórios Externos	20 21
Conectando Acessorios Externos Conectando um Amplificador Linear	22
Ajustes Feitos ao Ligar o Rádio e Combinações de Teclas	22
rijustes renos do Ligar o Radio e Comoniações de recids	22
Operações	24
Começando a Usar o Rádio	24
Ocultando os Números 10 do Dígito de Hz	25
Passos de Sintonia e Varredura	25
Recepção de Cobertura Geral	26
Ajustando a Velocidade de Sintonia	26
Passos de 10 ou 20 Hz nos Modos AM e FM	26 27
Bandas de Radiodifusão em Ondas Curtas	27
Lidando com Interferências	27
Atenuação	27
Seleção de AGC-F	27
Ajuste do Redutor de Ruídos	27
Ajuste de Desvio de FI (IF Shift)	28
Filtros Estreitos de FI para AM e CW	28
Travando o Dial e as Teclas	28

Transmissão	29
Ajustando os Beeps Emitidos por Teclas	29
Acoplamento Automático de Antena	29
Transmissão em SSB	30
Seleção de Tom de Microfone	31
Compressor de Voz de AF	31
Transmissão em CW	31
Conexões de Chave de CW	32
Banda Lateral de CW Reverso	32
Tonalidade de CW e Monitoramento de Tom Lateral	32
Transmissão em AM	33
Display de Offset de Portadora	33
Transmissão em FM	34 34
Repetidora de FM	34 35
Clarificador (Sintonia de Offset do Receptor) Operação em Frequência "Split" e VFO-B	35
Ajuste de Torque do Dial	36
Ajuste de Torque do Diai	30
Funções de Memória	36
Armazenamento em Memória	37
Funções das Teclas DOWN/UP do Painel e do Microfone	38
Checando os Conteúdos de Memórias	38
Operação e Chamada de Memória	39
Modos de Display de Freqüência	39
Funções de Varredura	40
Varredura de Memória (Normal)	41
Modo de Continuação de Varredura	41
Resumo das Funções de Varreduras	41
Varredura em Grupo	42
Varredura Programa para Pular Memórias	43
Ocultando Memórias	43
Varredura de Memória Programada (PMS): Memórias para Fins Especiais P1 – P0	43
Modos Digitais	45
Interconexões de TNC e Unidade Terminal	45
Ajustes de Transmissor	46
Sintonia e Display de Freqüência	46
Rádio-Pacote (Packet) em FM com 1200 Bauds	47
Operação AMTOR e Rádio-Pacote F1 com o Filtro YF-112C de 500 Hz	47
Instalando Acessórios Internos	50
Remoção da Tampa Superior	50
Instalação de Filtro e Unidade de FM	50
TCXO-4: Oscilador de Alta Estabilidade	51
Substituição da Bateria de Lítio	51
Chave BACKUP	51
Sistema CAT	52
Dados Retornados pelo FT-840	53
Organização dos Dados de Atualização de Estado	53
Comandos do CAT	53
Exemplos de Codificação	57

Controles e Conectores do Painel Frontal

- **1. POWER:** Liga e desliga o transceptor. Para evitar picos, certifique-se que ela esteja desligada quando for ligar e desligar a fonte de alimentação DC (fonte de alimentação CA). Em instalações móveis, o transceptor deve estar desligado quando você for ligar ou desligar o motor.
- 2. METER: Determina a função do multímetro durante a transmissão. Pressione-a para mudar a seleção. Os significados das abreviaturas são os seguintes: PO para Potência de Saída ou ALC para Controle Automático de Nível relativo.
- **3. MOX:** Esta tecla serve para ativar manualmente o transmissor. Ela deve estar na posição (não pressionada) para recepção.
- **4. PHONES:** Este conector de ¼ de polegada e 3 contatos serve para fones de ouvido estéreo ou monoaural com plugue de 2 ou 3 contatos. Quando um plugue for inserido nele, o alto-falante será desativado. O áudio será fornecido em ambos os canais de um fone de ouvido estéreo.
- **5. MIC:** Este conector de 8 pinos serve para o Microfone de Mesa MD-1B8 ou MD-1C8, ou para o Microfone de Mão MH-1B8. A impedância adequada para o microfone é 500 a 600 ohms.
- 6. MIC PWR: O controle MIC interno ajusta o nível de entrada do microfone para transmissão em SSB ou AM. O controle RF PWR externo ajusta a potência de saída do transmissor em todos os modos. O ajuste vai de menos de 15 a 100W (15 a 25 W AM).
- 7. AF-3-SOL: O controle interno AF ajusta o volume do receptor no alto-falante ou nos fones de ouvido. O controle externo SQL ajusta o limiar de sinal no qual o receptor é silenciado (e o indicador BUSY desaparece), em todos os modos. Normalmente, este controle é mantido totalmente em sentido anti-horário, exceto durante uma varredura e operação em FM. A varredura irá parar quando o silenciador for aberto.

- **8. ATT / PROC / AGC-F / NB: ATT:** Se houver ruído na banda ou sinais muito fortes estiverem presentes, pressione esta tecla para inserir um atenuador de 12 dB no circuito da ponta para proteger o receptor contra sobrecarga. **PROC:** Ativa o processador de voz nos modos SSB e AM. **AGC-F**: Ajusta o tempo de retardo do Controle Automático de Ganho para recuperação rápida, que pode melhorar a recepção de CW e os sinais de desvanecimento rápido em SSB (QSB). **NB:** Esta tecla é usada para reduzir ruídos causados pelo homem.
- **9. SSB / CW/N / AM/N / FM:** Estas 4 teclas selecionam o modo de operação, que é indicado acima do display de frequência.
- **10. LOCK:** Trava o dial para evitar mudanças acidentais de freqüências. Aparecerá "**LOCK**" na parte de baixo do display quando o dial estiver travado (ele poderá ser girado, mas nada acontecerá). Pressione-a novamente para reativar o dial. Você pode alterar a função desta tecla para travar muitos controles e teclas, ao invés de apenas o dial. Para fazê-lo, segure esta tecla enquanto ligar o transceptor.
- **11. SINTONIZADOR (DIAL):** Sintoniza a freqüência de operação do VFO ou de uma memória chamada. Os incrementos de sintonia são de 10 Hz (100 Hz nos modos AM e FM). As marcas no dial representam 25 incrementos cada, e um giro completo do dial significa 500 incrementos (5 kHz, ou 50 kHz em AM/FM).

12. — FUNCTION —

VFO/M: Alterna a operação entre uma memória e um VFO. Aparecerá **VFO-A** (ou **VFO-B**) ou **MEM** no display à esquerda da freqüência para indicar a seleção atual. Se uma memória exibida tiver sido ressintonizada, pressione esta tecla uma vez para que o display volte aos conteúdos originais de memória, e pressione-a novamente para voltar ao VFO (que foi usado por último).

VFO►M: Quando você estiver recebendo em um VFO ou numa memória ressintonizada, segure esta tecla por ½ segundo para gravar os dados operacionais atuais na memória selecionada. Você ouvirá dois "beeps", e os dados anteriores da memória serão sobrepostos. Quando esta tecla é mantida pressionada depois que uma memória é chamada (sem ressintonia), a memória é "apagada". Repita este procedimento para recuperar a memória.

A/B: Durante a recepção em um VFO, esta tecla alterna operação e display entre VFO-A e VFO-B. Numa memória, ela alterna entre metade frontal e metade traseira.

M▶**VFO:** Pressione esta tecla momentaneamente para exibir no display por três segundos os conteúdos do canal de memória selecionado. Pressione-a por ½ segundo para copiar todos os dados da memória nos VFOs, conforme você ouvir dois "beeps". Os dados anteriores dos VFOs serão sobrepostos.

A=B: Esta tecla copia os conteúdos do display na outra metade do VFO ou da memória. Os conteúdos anteriores da metade de VFO/memória não exibidos no display serão sobrepostos (perdidos!).

SPLIT: Esta tecla ativa a operação do transceptor em freqüência "split". A freqüência exibida no display é usada para recepção, e a outra metade traseira ou do VFO da memória é usada para transmissão. O indicador "**SPLIT**" no lado esquerdo do display ficará aceso enquanto esta função estiver ativa.

FAST: Para sintonia rápida, pressione esta tecla enquanto gira o dial ou pressione a tecla **UP** ou **DOWN**, para aumentar 10 vezes a velocidade da sintonização. Veja todos os passos disponíveis na tabela fornecida mais adiante. Quando a sintonia rápida estiver ativa, o display mostrará "**FAST**" acima dos dígitos de MHz. Você pode configurar esta tecla para que funcione no modo de "pressionar e segurar", ou alternar entre liga/desliga. Para fazê-lo, a mantenha pressionada enquanto você liga o transceptor.

HAM/GEN: Esta tecla determina a função das teclas **DOWN/UP** durante uma recepção em VFO ou numa memória ressintonizada: os passos de GEN são 100 kHz, e os de HAM são de uma banda amadora para a outra.

13. — BAND —

Pressione uma das teclas momentaneamente para descer um subir a freqüência de operação numa banda amadora, ou em 100 kHz (se você estiver recebendo no modo GEN), respectivamente. Pressione **FAST** junto com uma destas teclas para descer ou subir 1 MHz se você estiver recebendo no modo GEN. Mantenha pressionada uma destas duas teclas para subida ou descida contínua.

- **14. CLAR:** Este controle sintoniza a freqüência de offset do clarificador até ±1.25 kHz (ou ±2.50 kHz opcionais), quando ativado pela tecla **CLAR** à sua esquerda. Veja os detalhes operacionais mais adiante.
- **15. SHIFT:** Em modos que não sejam AM e FM, este controle desvia a freqüência central da banda passante de FI da freqüência exibida no display quando é colocado na posição de 12 horas.
- **16. TUNER:** Pressione esta tecla para colocar em linha o acoplador de antena. A recepção não é afetada. Pressione a tecla **START** durante uma recepção numa banda amadora para ativar o transmissor enquanto o acoplador re-acopla a antena para ROE mínima. Os ajustes resultantes serão armazenados nas 31 memórias do acoplador, para chamada automática mais tarde.
- 17. <code>FMEM</code> DOWN / UP: Pressione estas teclas para percorrer todos os canais de memória. Enquanto você estiver fazendo isto no modo VFO, o indicador "MEM" piscará no display, e se nenhuma outra tecla for pressionada dentro de 3 segundos, a atividade voltará ao VFO usado por último.
- **18. SCAN :** No modo VFO com o silenciador fechado, pressione esta tecla para iniciar uma varredura em toda a faixa de freqüência do rádio, e para pausar quando for encontrada uma atividade (de acordo com o modo de retardo de varredura selecionado). Numa operação em canal de memória, pressione esta tecla para rastrear as metades frontais de todas as memórias armazenadas.
- **19. CLAR:** Pressione esta tecla para ativar o offset do receptor (aparecerá "**CLAR**" no display) e chamar o offset que foi sintonizado anteriormente. Para ocultar o display de offset do clarificador, mantenha esta tecla pressionada enquanto você liga o transceptor para ativar a função.
- **20.** Este medidor indica o parâmetro selecionado durante transmissão, e a potência de sinal em unidades "S" durante recepção (na escala de cima). Cada unidade "S" é aproximadamente 6 dB. Veja detalhes mais adiante neste manual.
- 21. : O display indica frequência de operação, offset de clarificador, número de memória e estados especiais. Veja detalhes mais adiante neste manual.

Painel Traseiro

Este conector vermelho fornece 13.5 para alimentar um acessório externo. VDC (pino positivo) em até 200 mA

CUIDADO! A linha não tem fusível. Tome cuidado para não inverter a polaridade ou puxar mais de 200 m4, pois podem ocorrer danos!

para ajustar a compressão do proce-

ssador de voz.

Use este controle

de aúdio de receptor em nível Este conector fornece saída constante para uso com um TNC em rádio-pacote ou outra unidade terminal. O nível de saída é pico de 100 mV em 600 Ohms.

para ajustar a temporização do modo "semi break-in"

em CW.

O controle DELAY serve

tensão de ALC (Controle Automático para evitar superexcitação. A tensão de Nivel) de um amplificador linear, Este conector phono serve para a de ALC é de 0 a - 4 VDC.

e da corrente de circuito fechado é Este conector amarelo serve para tensão de circuito aberto é 13.5 V, (curto-circuitando os contatos). A ativar o transmissor remotamente 15 mA.

externo. Veja a fiação mais adiante.

A tensão de circuito aberto é +5

VDC, e a corrente de circuito

fechado é 0.7 mA.

Este conector de 2 contatos e 1/4"

serve para uma chave de CW, batedores, ou um manipulador

de alimentação coaxial de 50 Ohms a sua antena ou ATU Serve para conectar a linha externo, usando um plugue "M" (UHF, PL-259)

agui para o resfriamento seja bom.

nada bloqueie esta região, pois o

ar deve estar livre para sair por

de resfriamento. Cuide para que

Aqui é a saída de ar do sistema

Não opere o transceptor sem uma antena ou carga fantasma!

YOM! DELAY

conexões no painel traseiro são opcionais.

operação adequada. Todas as outras

ser necessário também para uma

Este conector de 2 contatos tipo min

falante externo, tal como o fornecido

phone fornece áudio para um alto-

no FP-800 ou o SP-6. O alto-falante

para operar o transceptor são força DC (abaixo) e uma antena. Um aterramento adequado é muito recomendado, e pode

Nota: As únicas conexões necessárias

SPKR TONE

4

interno é desativado quando um plugue

é inserido aqui. A impedância é de 4

a 8 Ohms.

ter segurança e desempenho. um bom aterramento, para Conecte este terminal a

mostrado a seguir. Leia "Cuidado!" Este é o conector de força DC de 13.8 Volts. Conecte uma alimenem "Instalação da Estação". tação de 20 A, conforme é

para ajustar o Linear ou Acoplador FL-7000 ou ATU FC-1000, inclu-Este conector de 8 pinos produz indo dados de seleção de banda sinais de controle para o Linear na mesma banda que o FT-840. Este conector de 8 pinos tipo mini DIN serve para FC-10. Veja o Esquema o Acoplador de Antena

Esquema de Pinos, e conexões de

QSK mais adianta.

FC-800. Veja o Esquema tipo mini DIN serve para o Acoplador de Antena Automático Externo

Este conector de 5 pinos

de Pinos mais adiante. Automático Externo de Pinos mais adiante.

FLL (0 e 5 VDC). Esquema de Pinos, dados descritos na seção sobre CAT mais adiante

Este conector de 6 pinos tipo min DIN para entrada/saída permite que o protocolo de sinalização e formatos de FT-840 seja controlado via computador externo. Os níveis de sinais são

> Use este controle para ajustar o nível de tom lateral ouvido durante operação em CW.

P&W Traduções e Radiohaus – FT840RH-013-03052007

Funções do Medidor

Nota: Durante uma recepção, consulte apenas a função S-meter: a escala superior do medidor.

Durante uma transmissão, a função do medidor é determinada pela tecla **METER** que fica à sua esquerda.

Durante uma recepção, a escala "S" indica a potência do sinal de chegada em Unidades "S" à esquerda da escala, e em dB acima de S-9 à direita. Cada Unidade "S" é aproximadamente 6 dB,

A segunda escala, "PO" indica a potência de saída do transmissor, em watts, quando selecionada pela tecla METER que fica na posição (—PO). Esta escala é calibrada para ser a mais exata quando a impedância da antena for 50 Ohms. Consulte apenas os números acima da escala (0 - 150) para o FT-840: os números abaixo se aplicam apenas às versões especiais de baixas potências.

A escala "ALC" indica a tensão do Controle Automático de Nível do transmissor quando selecionada pela tecla METER que fica na posição (ALC). A posição e o movimento da agulha do medidor dão uma boa indicação do desempenho do transmissor. Esta função do medidor é importante para ajustar o controle de ganho do MIC para os modos SSB e AM, e o controle RFPWR para CW e FM. Veja mais adiante as instruções sobre transmissão.

DESCRIÇÃO GERAL

O FT-840 é um transceptor de alto desempenho que fornece 100 watts de potência de saída em todas as bandas amadoras de HF nos modos CW, SSB e FM, e 25 watts de portadora em AM. Ele sintoniza todas as freqüências entre 100 kHz e 30 MHz em passos de 10 Hz. Facilidade de operação e funções flexíveis combinadas em um rádio compacto e confiável que operadores iniciantes e experientes irão gostar.

Seu circuito modular usa componentes montados em superfície em placas de resina composta para que haja confiabilidade e capacidade de aproveitamento. Sintetizadores Diretos Digitais (DDSs) e um codificador giratório magnético permitem uma sintonização suave e silenciosa. A exatidão e a estabilidade de freqüência são garantidas porque ambos os DDSs são acionados por um único oscilador mestre, e o oscilador à cristal com temperatura compensada, TCXO-4, pode ser adquirido para melhorar a estabilidade de ±2ppm entre 0 - +50° C.

O circuito da ponta do receptor do FT-840 é de baixo ruído e alto desempenho. A rejeição de interferência é facilitada pelo esquema único de conversão "crescente/decrescente", e inclui um circuito de Desvio de FI (IF Shift). O filtro à cristal YF-112C opcional pode ser instalado para melhorar a recepção em CW, e um filtro de AM largo também pode ser adquirido para se obter maior fidelidade durante a recepção de radiodifusão.

Foram introduzidas algumas características novas que os apreciadores de CW vão gostar. A função de banda lateral reversa de CW lhe permite mudar o ponto de portadora do receptor (offset) para livrar-se de QRM e não ter que ressintonizar sinais quando for mudar de LSB para CW (o que é muito conveniente quando se trabalha nos 40 metros e abaixo). Se você usar um decodificador de CW ou um TNC multi-modo, o offset de BFO ajustável lhe permitirá combinar a tonalidade de CW com a usada pelo seu rádio para melhorar a cópia em CW.

O microprocessador de 16 bits do FT-840 é programado para dar ao operador a interface de controle mais simples possível. Dois VFOs (A/B) independentes para cada banda (20 no total) guardam suas configurações de modos e freqüências. Cem memórias armazenam todos os dados dos VFOs, em um total de 220 conjuntos de freqüências, modos e outras seleções. As funções flexíveis de varreduras permitem que todas as 100 memórias, ou apenas as selecionadas, sejam livremente sintonizadas ou rastreadas. A varredura em grupo lhe permite organizar suas memórias em 10 grupos, e apenas os canais de varredura dentro de um grupo selecionado. Além disso, 10 memórias especiais também lhe permitem limitar a faixa de sintonia/varredura entre suas freqüências armazenadas. O modo de continuação de varredura pode ser selecionado entre as opções: varredura por retardo de tempo ou varredura por retardo de portadora. A velocidade de varredura também pode ser ajustada.

Outras funções importantes incluem: redutor de ruídos, silenciador em todos os modos, medidor multi-função e um compressor de voz de AF que lhe permite aumentar a média de potência do seu sinal em SSB e AM.

O FT-840 pesa menos de 5 kg, e seu ventilador termicamente controlado permite a máxima saída do transmissor sem qualquer protuberância no painel traseiro, facilitando o acesso aos controles e conectores do mesmo.

A escolha de 2 acopladores de antenas automáticos externos simplifica em um toque de tecla a operação com uma única antena. O FC-10 é um acoplador automático e compacto que combina com o tamanho e a aparência do FT-840, além de se encaixar bem na sua estação. A simples conexão de 2 cabos em seu FT-840 é tudo que se precisa para operar. No caso de aplicações mais exigentes, o acoplador FC-800 pode ser instalado fora do ponto de alimentação da antena (ou no porta-malas do seu carro para uso móvel) para se obter o melhor desempenho. Os 2 acopladores automáticos são controlados pelo painel frontal do transceptor.

Outros acessórios incluem: Fonte de Alimentação FP-800 com Alto-Falante; Alto-Falante Externo SP-6 com filtros de áudio; suporte para montagem Móvel MMB-20; Fone de Cabeça YH-77ST; Microfone de Mesa MD-1C8 e Microfone de Mão MH-1B8.

Antes de ligar o cabo de força, você deve ler cuidadosamente a seção sobre Instalação, prestando atenção aos avisos para evitar danos em seu transceptor. Depois da instalação, por favor, leia a seção sobre Operação, consultando os diagramas de painel no final do manual para obter os detalhes que se fizerem necessários. Este manual deve ser lido quando você estiver sentado na frente do FT-840, para que você possa experimentar cada controle e função conforme for descrito(a).

ESPECIFICAÇÕES

GERAL	
Faixa de Freqüência de Recepção:	100 kHz – 30 MHz
Faixa de Freqüência de Transmissão:	160 – 10 metros em Bandas Amadoras
Estabilidade de Freqüência:	±10 ppm (ou 500 Hz FM), de 0 - +40° C e ±2 ppm
	(ou ±300 Hz FM), de 0 - +50° C (com opção de
	TCXO-4)
Modalidades:	USB, LSB (J3E), CW (A1A), AM (A3E), FM (F3E)
Passos de Sintonia de Freqüência:	10 Hz/ 100 Hz (CW, SSB) 100 Hz/ 1 kHz (AM, FM)
Impedância de Antena:	50 ohms nominal
Temperatura de Operação:	-10 - +50° C
Tensão de Alimentação:	13.5 V DC ±10%, terra negativo
Consumo de Energia (aproximado):	1.2 A rx (sem sinal)
	20 A tx (100 watts)
Dimensões (LAP):	238 x 93 x 243 mm
Peso (aproximado):	4.5 kg

TTD A MARKET OF TO			
TRANSMISSÃO			
Potência de Saída:	Ajustável em até 100 watts (25 watts de portadora AM)		
Tipos de Modulação:	SSB: Balanceado, portadora filtrada		
	AM: Baixo nível (estágio inicial)		
	FM: Reatância variável		
Máximo Desvio de FM:	±2.5 kHz		
Radiação de Harmônicos:	> 50 dB abaixo da saída em pico		
	45 dB (10, 18 MHz)		
Radiação de Espúrios:	> 40 dB abaixo da saída em pico		
Supressão de Portadora de SSB:	> 40 dB abaixo da saída em pico		
Supressão de Banda	Pelo menos 50 dB abaixo da saída de pico em		
Lateral Indesejada:	modulação de 1.5 kHz		
Resposta de Áudio (SSB):	Não mais de –6 dB a partir de 400 – 2600 Hz		
IMD de 3 ^a Ordem:	-25 dB @ 100 watts PEP, 14.2 MHz		
Impedância de Microfone:	500 a 600 ohms		
Para operar em FM, é necessário instalar a Unidade 747 de FM opcional.			

RECEPÇÃO			
Tipo de Circuito:	Super-heteródino de dupla conversão		
Freqüências Intermediárias:	1 ^a : 47.055 MHz		
	2 ^a : 8.215 MHz		
	3 ^a : 455 kHz (FM)		
G 11 11 1 / 10 1D GDT	0 ID 4 VERVAG ID GDIAD)		

Sensibilidade: (para 10 dB S/N, 0 dB μ = 1 μ V FM 12 dB SINAD)

Freqüência →	150 – 250	250 - 500	0.5 1.8	1.8 – 30
Modo (BW) ↓	kHz	kHz	MHz	MHz
SSB, CW	< 5 μV	< 2 μV	< 1 µV	< 0.25 µV
(2.4 kHz)				
AM (6 kHz)	< 40 µV	< 16 µV	< 8 μV	< 1 µV
FM (28–30 MHz)	_	_		< 0.5 µV
(8 kHz)				·

Seletividade: (-6/ -60 dB): ruído de 3 dB ou melhor

Modos	Mínimo 6 dB BW	Máximo 60 dB BW
CW Estreito (opcional)	500 Hz	1.8 kHz
SSB, CW, AM Estreito	2.2 kHz	5.0 kHz
AM Largo (opcional)	6 kHz	14 kHz (-50 dB)
FM (opcional)	8 kHz	19 kHz

Sensibilidade de Silenciador:	$1.8 - 30 \text{ MHz}$ (CW, SSB, AM): $< 2.0 \mu\text{V}$		
	$28 - 30 \text{ MHz (FM)}: < 0.32 \mu\text{V}$		
Rejeição de FI	(1.8 – 30 MHz): 60 dB ou melhor		
Rejeição de Imagem:	(1.8 – 30 MHz): 70 dB ou melhor		
Desvio de FI:	±1.2 kHz		
Passos/Faixa de	±1.25 kHz/ 20 Hz		
Sintonia do Clarificador:	±2.50 kHz/ 10 Hz		
Máxima Potência	Pelo menos 1.5 watts em 4 ohms com < 10% de Distorção		
de Saída de Áudio:	Harmônica Total (THD)		
Impedância da Saída de Áudio:	4 a 8 ohms		

Especificações sujeitas a mudanças, por razões de aperfeiçoamento técnico, sem aviso ou obrigação.

ACESSÓRIOS E OPCIONAIS

Acessórios Fornecidos: Microfone de Mão (1)

Cabo DC com Fusível (1)

Fusível de 20 Amperes (1)

Opções:

FC-10: Acoplador de Antena Automático Externo

O FC-10 é um acoplador de antena automático, compacto e fácil de usar projetado para combinar com o FT-840 em termos de tamanho e aparência. Por ser pequeno, ele pode ficar perto do FT-840 sem ocupar muito espaço na sua estação. O FC-10 requer apenas 2 conexões de cabo no painel traseiro do transceptor, e é totalmente controlado pelo painel frontal do FT-840.

FC-800: Acoplador de Antena Automático

O acoplador FC-800 (remoto externo) casa impedâncias de até 3:1 com o transmissor. A operação é controlada pelo painel frontal. O FC-800 é ligado ao painel traseiro, e pode ser montado no ponto de alimentação da antena para evitar perdas na linha de alimentação.

TCXO-4: Oscilador de Referência de Alta Qualidade

Para aplicações e ambientes especiais onde estabilidade extra é essencial, o oscilador à cristal com temperatura compensada TCXO-4 é uma substituição de 2 ppm (de 0 a +50 °C) para o oscilador de referência.

SP-6: Alto-Falante com Filtros de Áudio

Filtros passa-baixa e passa-alta selecionáveis com um grande alto-falante complementam as características de áudio do FT-840, com sua escolha de 12 diferentes combinações de filtragem de áudio. Podem ser usados 2 terminais de entrada para múltiplos transceptores, e uma tecla no painel frontal serve para selecioná-los. Um conector de fone no painel frontal pode ser usado para aproveitar os filtros de áudio com fones de ouvido.

Unidade 747 de FM:

Com esta unidade instalada e configurada, você pode receber e transmitir em FM banda estreita, como ocorre numa operação Amadora via repetidora e em modo simplex nos 10 metros em 29.9 MHz.

YH-77ST: Fones de Ouvido Leves

Transdutores duplos de Samário Cobalto com sensibilidade de 103 dB/mW (2 dB @ 1 kHz, 35 ohms) formam o par perfeito para o FT-840, tirando máximo de vantagem do espetacular desempenho de áudio.

FIF-232: Interface para Sistema CAT

Para controlar seu FT-840 através da porta serial RS-232C de um computador pessoal externo, use a Interface FIF-232C para converter os níveis de TLL requeridos pelo transceptor em níveis de RS-232C requeridos pela porta serial. Um cabo vem incluído para as conexões entre o transceptor e a FIF-232 (o cabo para computador deve ser fornecido separadamente). A FIF-232 inclui sua própria fonte de alimentação.

Opções de Filtro de FI à Cristal:

Para obter mais seletividade de receptor de CW, o filtro à cristal de 8 pólos YF-112C de 500 Hz pode ser instalado na 2ª FI de 8.215 MHz do FT-840. O YF-112ª de 6 kHz também pode ser instalado para melhorar a recepção de AM.

Microfones

Combinando com as características elétricas e estéticas do FT-840, o Microfone de Mão MH-1B8 e o Microfone de Mesa MD-1C8 possuem impedância de 600 ohms, e incluem teclas **UP/DWN** para varredura e tecla **PTT**. O MH-1B8 tem também um seletor de característica de áudio de transmissão com 2 posições, e o MD-1C8 tem um seletor com 3 posições. As características típicas de áudio com diferentes ajustes de teclas estão nos gráficos a seguir.

P&W Traduções e Radiohaus – FT840RH-013-03052007

INSTALAÇÃO DA ESTAÇÃO

Inspeção Preliminar

Examine bem o transceptor logo depois que você abrir sua embalagem. Confirme se todos os controles e as teclas funcionam livremente, e veja se o gabinete foi danificado. Confira se todos os acessórios estão incluídos. Se você achar algum dano, o documente e imediatamente entre em contato com a empresa de despacho (ou com o revendedor, se você comprou o rádio no mercado de balcão). Guarde tudo que foi usado na embalagem no caso de você precisar enviar o rádio para serviço.

Se você comprou acessórios internos opcionais separadamente, os instale seguindo as instruções em "Instalando Acessórios Internos" na seção "Operações" deste manual. Esta seção descreve primeiro a instalação de estação base, seguida por instalação móvel e interconexões com acessórios externos.

Fonte de Alimentação CA

O FT-840 opera em 13.5 V DC, terra negativo. Para instalações de estação base, nós recomendamos a Fonte de Alimentação FP-800 que foi projetada para esta finalidade, e que inclui um grande alto-falante para o transceptor, e também ventilador próprio. Você pode usar outra fonte DC capaz de fornecer 20 amperes em 13.5 V DC com o cabo DC fornecido, mas você deve tomar muito cuidado para não fazer uma conexão com polaridade invertida. Veja o quadro "Cuidado" abaixo.

CUIDADO!

Danos permanentes pode ocorrer se o transceptor receber uma tensão errada. Sua garantia não cobre danos causados pelo uso de CA, DC com polaridade invertida ou DC fora da especificação de 13.5 V ±10%.

Se você for usar uma fonte de alimentação que não seja a FP-800, verifique se o conector de alimentação DC para o transceptor é compatível com os requerimentos do FT-840. Outros fabricantes produzem fontes com conectores fisicamente compatíveis, mas cujas fiações são diferentes: isto danifica seriamente o FT-840!

Se você for conectar a FP-800 ao FT-840, antes de conectar a força, verifique a etiqueta na traseira da FP-800 que indica a tensão de rede CA para a qual a fonte está ajustada. Se a tensão de rede CA estiver fora da especificação, a conexão da entrada do primário do transformador dentro da fonte deverá ser ajustada para a tensão de operação, e o fusível da FP-800 deverá ser trocado. Será preciso soldar a entrada de alimentação CA (detalhes a seguir). Portanto, você deverá ser auxiliado por seu revendedor caso você não tenha experiência neste tipo de trabalho. *Conexões erradas causam sérios danos e não são cobertas pela garantia.*

Verifique se a fonte de alimentação está corretamente ajustada antes de ligar a energia. Se você tiver alguma duvida sobre o procedimento, peça ajuda ao seu revendedor. Verifique também se o fusível que está no porta-fusível do painel traseiro da FP-800 é o adequado para a tensão local:

Tensão de Rede CA	Capacidade de Fusível
100 – 117	8 A
200 – 234	4 A

Alterando a Tensão CA da Fonte de Alimentação FP-800 (Sem a Marca CE)

- Desconecte o cabo AC da traseira da FP-800, e o cabo DC do FT-840.
- □ Remova os 8 parafusos que prendem a tampa superior.
- Desolde os fios do transformador, e faça uma nova solda para a tensão requerida, conforme indicado a seguir.
- □ Troque o fusível que está no porta-fusível no painel traseiro por um fusível de ação rápida, de 8 A (para 100 117 V AC) ou 4 A (para 200 234 V AC).
- □ Confira cuidadosamente seu trabalho, e recoloque a tampa superior com seus 8 parafusos. Altere a marca de tensão na etiqueta do painel traseiro da FP-800, e recoloque o cabo CA, se necessário.

IMPORTANTE!
Se você mudar a
tensão CA, deverá
mudar o fusível no
porta-fusível do
painel traseiro. Não
use um fusível de
ação lenta. Altere
também a marca de
tensão na etiqueta do
painel traseiro para
que combine com o
novo ajuste de
tensão.

Quando você tiver certeza de que a tensão CA para a qual a fonte está ajustada combina com sua tensão de rede, e que o fusível correto está instalado no porta-fusível, ligue o cabo DC da fonte no conector do painel traseiro. Não ligue o cabo da fonte de alimentação à tomada da parede antes de terem sido feitas todas as outras interconexões do transceptor.

Escolhendo um Local para o Transceptor

Para garantir que os componentes durem muito tempo, cuide para que haja bastante ventilação em torno do gabinete do transceptor. O sistema de resfriamento do FT-840 deve ficar livre para puxar ar frio para dentro na lateral do transceptor, e expelir ar quente pelo painel traseiro. Não coloque o transceptor em cima de outro equipamento que gere calor, tal como um amplificador linear, e não coloque equipamento, livros ou papéis em cima do transceptor. Coloque-o numa superfície plana e dura. Evite locais com respiradouros e janelas que possam expor o transceptor a luz solar direta, principalmente em climas quentes.

Aterramento

Para obter proteção contra choque e o desempenho adequado, ligue o terminal **GND** do painel traseiro do transceptor a um bom aterramento em terra, usando um cabo trançado pesado com o comprimento mais curto possível. *Não use linhas de gás como conexão de aterramento*. Todos os outros equipamentos da estação devem ser conectados ao mesmo cabo de aterramento, da maneira mais próxima possível. Se você usa um computador perto do FT-840, ou junto com ele, terá que testar o equipamento de ambos para eliminar o ruído do computador no receptor.

Ajustando o Ângulo do Painel Frontal

Se na sua estação o FT-840 ficar muito abaixo do nível dos olhos, você poderá ajustar a frente do transceptor. O chicote no fundo do FT-840 pode ser dobrado para este fim.

Considerações Sobre Antenas

Qualquer antena que for conectada ao FT-840 deve ter uma linha de alimentação coaxial com impedância de 50 ohms, e também um pára-raios bem aterrado. Os acopladores FC-10 e FC-800 casam antenas com ROE de até 3:1 ou mais em bandas amadoras para o transmissor. Contudo, o melhor desempenho para recepção e transmissão resultará de uma antena que forneça uma carga resistiva não balanceada de 50 ohms na freqüência de operação. Uma antena que não for ressonante na freqüência de operação pode apresentar uma ROE muito alta para o casamento adequado com o acoplador, em cujo caso a antena deve ser reajustada, ou deve ser usado um acoplador de antena manual de grande alcance. Se o acoplador não conseguir abaixar a ROE até um nível aceitável, e você tentar transmitir, o resultado será uma redução automática na potência de saída e ocorrerão maiores perdas na linha de alimentação. Operar em tais condições desperdiça potência e causa TVI, RFI e resposta de RF: é melhor instalar outra antena projetada para tal banda. Se sua antena tiver um ponto de alimentação balanceado e você usar uma linha de alimentação balanceada, instale um transformador balun entre a linha de alimentação e o conector de antena do transceptor.

Instalação Móvel

Um cabo de força DC com fusível (20 A) para instalação móvel é fornecido junto com o transceptor. Por favor, leia "Cuidado!" nesta seção antes de conectar a força. Conecte o cabo DC diretamente à bateria do veículo, e não à ignição ao circuito de acessório. Passe o cabo o mais longe possível dos cabos da ignição, e corte qualquer excesso (a partir da ponta da bateria) para minimizar perdas por queda de tensão. Se o cabo não for longo o bastante, use um cabo trançado isolado bitola #12 AWG para esticá-lo, mas não mais do que o necessário. Siga o procedimento abaixo para conectar o cabo:

- □ Antes de conectar o cabo, meça a tensão através dos terminais da bateria com o motor funcionando rápido o bastante para gerar uma carga. Se for acima de 15 volts, o regulador de tensão do veículo deverá ser ajustado para reduzir a tensão de carga antes de você prosseguir.
- Com a ponta do cabo que vai para o rádio desconectada, ligue o fio **VERMELHO** ao terminal **POSITIVO**, e o fio **PRETO** ao terminal **NEGATIVO**. Verifique se as conexões nos terminais da bateria estão firmes, e lembre-se de verificá-las periodicamente para ver se estão se soltando, oxidadas ou corroídas.
- □ Certifique-se que a tecla **POWER** do transceptor esteja desligada, e ligue o cabo DC ao conector molex de 6 pinos no painel traseiro.

CUIDADO!

Em instalações móveis, tenha certeza de que a tecla POWER está desligada sempre que você for dar partida ou desligar o motor, para evitar danos causados por transientes de comutação.

Montagem Móvel

O Suporte para Montagem Móvel MMB-20 permite que o transceptor seja facilmente colocado e retirado do veículo. Instruções completas são fornecidas junto com o suporte, que pode ser montado acima ou abaixo do transceptor.

Suporte para Montagem Móvel MMB-20

Instalação de Antena Móvel

Por favor, leia "Considerações Sobre Antenas" neste manual visto que elas se aplicam igualmente às antenas móveis e de base. O Acoplador de Antena Remoto FC-800 é particularmente preferido numa estação móvel, onde elementos de antenas curtos possuem larguras de bandas muito estreitas. Certifique-se que a blindagem do coaxial da antena esteja firmemente aterrada no corpo do carro no ponto de alimentação da antena se for usar vertical carregado em base.

Interconexões de Acessórios

Os diagramas a seguir mostram as interconexões de acessórios externos. Se você tiver alguma duvida sobre acessórios ou conexões de equipamentos, aconselhe-se com seu revendedor.

Backup de Memória

A chave **BACKUP** de memória que fica dentro do furo no centro do painel inferior é ligada de fábrica, para que os dados de VFO e memória sejam retidos quando o transceptor é desligado. A corrente de backup é pequena, e não é necessário desligar a chave **BACKUP** a menos que o transceptor vá ficar guardado por muito tempo.

Após aproximadamente 5 anos, o transceptor pode não mais reter as memórias (embora sua operação não seja afetada), e a bateria de lítio deverá ser trocada. Peça ao seu revendedor para trocar a bateria, ou peça que ele lhe ensine como trocá-la. Veia "Chave BACKUP" na secão "Instalando Acessórios Internos".

Chaves Localizadas no Fundo do FT-840

Esquema de Pinos de Conectores

BAND DATA (DADOS DE BANDA)	CAT
1. +13.5 V 2. TX GND 3. GND 4. BAND DATA A 5. BAND DATA B 6. BAND DATA C 7. BAND DATA D 8. LINEAR	6 2. SERIAL OUT 3. SERIAL IN 4. PTT 5. S. /PO 6. NC
ACOPLADOR 1 (usado com FC-800)	ACOPLADOR 2 (usado com FC-10)
1. GND 2.+13.5V 3. DATA 4. GND 5. GNDED BY FC-800	1. +13.5V 2. TX GND 3. GND 4. DATA IN 5. DATA OUT 6. TUNER SENSE 7. RESET 8. TX INH
PHONES (FONES)	KEY (MANIPULADOR)
SINAL (R) SINAL (L) GND (TERRA)	MANIPULADOR GND (TERRA)
PLUGUE RCA	EXT SPKR (ALTO-FALANTE EXTERNO)
SINAL ou (+) GND (TERRA) ou (-)	GND (TERRA)

Conectando Acessórios Externos

Amplificador Linear FL-7000

Amplificador Linear de Outro Tipo (Não QSK)

Conectando um Amplificador Linear

Em todos os amplificadores lineares, conecte a saída ALC do linear ao conector **EXT ALC** na traseira do transceptor. Depois que você fizer as conexões de chaveamento de T/R e RF descritas a seguir, provavelmente precisará ajustar o nível de saída de ALC do linear para que não seja sobrecarregada pelo FT-840. O manual do seu linear deve ensinar como proceder.

Se você for usar um FL-7000 com o FT-840, use o cabo CT-11 opcional para obter seleção automática de banda para o linear, bem como controle do chaveamento de T/R. Se for usar outro linear, e se ele puder ser sintonizado com menos de 1500 mA de tensão DC abaixo de 150 V, você poderá conectar a linha de chaveamento de T/R para o linear ao pino 2 do conector **BAND DATA**, e a saída de ativação do excitador do linear ao pino 8 do conector **BAND DATA**. Esta linha deve ser mantida alta (+5 a 15 V) para impedir a transmissão até o linear estar pronto para a excitação pelo FT-840. Se seu amplificador linear requerer mais de 1500 mA ou usar mais de 150 V para o chaveamento do relê de T/R, você terá que fornecer um relê mecânico/transistor de interface (tal como a caixa de relê FRB-757), controlado pelo pino 2.

CUIDADO!

O FT-840 foi projetado para uso e fácil conexão com o FL-7000, quando é requerida uma operação com amplificador linear. Nós recomendamos o uso de um relê de T/R para operar com todos os outros amplificadores que ultrapassarem as especificações de tensão e corrente descritas a seguir. O uso dos pinos 2 e 8 do conector BAND DATA para outros amplificadores não funcionará a menos que os sinais de linha sejam cuidadosamente combinados, e poderão ocorrer danos de outra forma. Sua garantia não cobre danos causados por conexões inadequadas neste conector. Portanto, se você tiver alguma dúvida, use somente o conector TX GND.

Chaveamento de T/R do Amplificador Linear no FT-840

Ajustes Feitos ao Ligar o Rádio e Combinações de Teclas

Ao pressionar e segurar certas teclas *enquanto você liga o FT-840*, você pode personalizar funções conforme desejar, e executar algumas funções para solucionar problemas. Outras funções também podem ser selecionadas e, para chamá-lo, mantenha pressionada a tecla **FAST** enquanto pressiona outras teclas descritas a seguir. Os padrões estão em *itálico*.

Funções ao Ligar o FT-840	Segure Esta Tecla	Comentários
Ativar/Desativar a emissão de "beeps"	A = B	Pressione uma tecla para saber se beeps
pelo teclado.		são emitidos.
Exibir no display o Offset de BFO ou a	—BAND—	Offset de BFO adicionado à frequência
Frequência de Portadora no modo CW.	DOWN	de CW. Afeta somente o display.
Ativar/Desativar o Dígito de 10 Hz no	—BAND—	Afeta somente o display.
lado direito do display.	UP	
Ativar/Desativar a tecla FAST, ou	FAST	Aparece "FAST" no display quando
seleciona-la somente quando pressionada.		ativa.
Exibir/ocultar o Offset de Receptor do	CLAR	Afeta somente o display.
Clarificador.		
Selecionar clarificador largo/estreito.	-MEM¬ UP	±2.5 kHz ou ±1.25 kHz
Ajustar o Desvio (Shift) de Repetidora (0		O desvio é exibido no display. Use o
a 500 kHz, padrão de 100 kHz).	FM	dial ou DOWN/UP para mudar em
Pressionar FM novamente após o ajuste.		passos de 1 kHz.
Selecionar o ponto (banda lateral) de		Ativa o offset de LSB para recepção de
portadora normal/reverso para recepção	CW/N	CW (USB é o padrão).
de CW.		
Exibir/ocultar o canal de memória no	VFO▶M	Afeta somente o display.
display durante operação em VFO.		
Apagar todas as Memórias e colocar as	∟MEM¬	Padrão de VFOs e Memória 1 em 7.000
configurações em seus padrões de	DOWN + UP	MHz, LSB.
fábrica.		
Modo de Continuação de Varredura:		Há sempre uma pausa depois que o
Sempre após 5 segundos de pausa, ou	SCAN	silenciador se fecha antes da
somente depois que o silenciador se		continuação de varredura.
fechar.		
		Aparecerá " LOCK " no display quando
Selecionar o Modo de Trava: Somente o	LOCK	teclas estiverem bloqueadas. As teclas
Dial, ou Botões e Teclas.		MOX e POWER não podem ser
		bloqueadas.

Combinações para a Tecla FAST	Segure FAST e Pressione	Comentários
Ajustar a Freqüência de Áudio dos Beeps (310 a 1700 Hz, 880 Hz é o padrão). Pressionar AM/N novamente quando terminar.	AM/N	Você ouvirá beeps duplos repetitivos, e a freqüência de beep em Hz será exibida no display durante o ajuste.
Exibir no display/ajustar velocidade de varredura PMS/VFO.	VFO/M	Velocidade de varredura ajustável entre 1 – 200, 10 é o padrão.
Exibir no display/selecionar a Freqüência de Tom CTCSS (a partir de tons padrão, 88.5 Hz é o padrão). Pressionar FM novamente quando terminar.	FM	Frequência de tom exibida em Hz no display. Use o dial ou as teclas DOWN/UP para selecionar.
Ajustar o Offset de Portadora de BFO para modo CW.	CW/N	Ajusta o offset entre 400 – 1000 Hz, e o tom lateral de CW também combina com o offset.
Programar a Memória Atual para que seja pulada durante uma Varredura de Memória (pular/não pular).	SCAN	Afeta somente a varredura de memória. "SKIP" aparecerá quando esta função estiver ativa.

OPERAÇÕES

Começando a Usar o Rádio

Enquanto você lê esta seção, consulte as figuras dos painéis para ver os locais e as funções dos controles e dos conectores. Antes de ligar o transceptor pela primeira vez, verifique se a tensão de alimentação está correta, e se aterramento e antena estão conectados das maneiras descritas na seção "*Instalação da Estação*". Em seguida, pré-ajuste os seguintes controles:

POWER e MOX: Desligadas ();

MIC, RF PWR, SQL: Todas em sentido anti-horário (mínimo);

AF: Na posição de 10 horas;

CLAR: Na posição de desligada (OFF);

SHIFT: Na posição de 12 horas.

Conecte seu microfone e/ou chave de CW ou manipulador, e depois pressione a tecla **POWER**. O medidor e o display se acenderão. No lado esquerdo do painel, se as teclas **ATT** ou **PROC** estiverem pressionadas, pressione-as para desativá-las.

Estude o display durante alguns minutos. Você verá "VFO-A" ou "VFO-B" no lado esquerdo, e a freqüência de operação em dígitos grandes no centro (se você não vir um indicador de VFO, pressione a tecla VFO/M no lado direito). No lado direito do display, você verá um pequeno número de canal de memória com 2 dígitos (o padrão é "01").

Use as teclas (à direita do dial) para selecionar uma banda para a qual sua antena foi projetada. Estas teclas executam várias funções diferentes:

□ Pelo padrão (o modo de passo para amador), durante recepção em um VFO, elas vão de uma banda amadora para outra. A mudança de bandas automaticamente armazena a freqüência atual, de modo que **DOWN** e **UP** sempre te levam de volta para a freqüência usada por último em cada banda (se ela estiver dentro da faixa de 500 kHz da banda amadora). A banda de 10 metros tem 2 bandas amadoras de 1 MHz (veja tabela abaixo).

Bandas Amadoras

Banda	Faixa de Freqüência (MHz)
160	1.800 - 2.000
80	3.500 - 4.000
40	7.000 - 7.500
30	10.000 - 10.500
20	14.000 – 14.500
17	18.000 – 18.500
15	21.000 – 21.500
12	24.500 – 25.000
10	28.000 - 29.700

Se a tecla **HAM/GEN** tiver sido pressionada (para ativar o modo de Sintonia de Cobertura Geral), aparecerá "**GEN**" à esquerda da freqüência no display, e as teclas **DOWN** e **UP** percorrerão em incrementos de 100 kHz (ou de 1 MHz se a sintonia rápida (FAST) estiver ativa conforme descrito a seguir).

Detalhes completos sobre as teclas **DOWN** e **UP** serão mostrados numa tabela mais adiante.

Exemplo: Digamos que você sintonizou 7.000 MHz, e quer mudar para 21.200 MHz.

- Primeiro, verifique se "GEN" aparece no lado esquerdo do display. Se sim, pressione a tecla HAM/GEN.
- □ Pressione a tecla **UP** 4 vezes para mudar para a freqüência usada por último na banda de 15 metros.
- □ Use o dial para sintonizar 21.200. Porém, se a freqüência atual estiver mais distante que 100 kHz, você poderá salva-la como referencia pressione **HAM/GEN** novamente para que "**GEN**" apareça, e pressione as teclas **DOWN** e **UP**, conforme for necessário, para entrar em 100 kHz. Em seguida, use o dial. Quando você quiser mudar de banda novamente, lembre-se de pressionar **HAM/GEN** para que "**GEN**" desapareça.

Pressione a tecla de modo (à esquerda do dial) correspondente ao modo no qual você quer operar – por enquanto, sugerimos SSB: **USB** se você selecionou uma banda acima de 10 MHz, ou **LSB** caso contrário. O modo selecionado será indicado em cima da freqüência no display.

Ajuste o controle **AF** em um nível de volume confortável, e sintonize pela banda um pouco com o dial para pegar o jeito (se você quiser ajustar o torque, veja as instruções mais adiante nesta seção). Para obter passos de sintonia mais rápidos (x 10), pressione a tecla **FAST** no lado direito do dial, para ativar o indicador "**FAST**" abaixo dos dígitos de MHz no display.

Ocultando os Números 10 do Dígito de Hz

Se você prefere ocultar os números 10 de Hz no display de freqüência, você pode ativar e desativar tal dígito segurando a tecla —**BAND**— up enquanto liga o rádio. Repita este processo para ocultar o dígito. Os passos de sintonia são serão afetados.

Passos de Sintonia e Varredura

Controle ↓	Modo ⇒	LSB, USB, CW	AM e FM
Dial, Teclas UP/DWN	Normal	10 Hz	100 Hz
do Microfone.	Com tecla FAST	100 Hz	1 kHz
Teclas	Normal	100 kHz	100 kHz
DOWN/UP	Com tecla FAST	1 MHz	1 MHz
Um giro do dial*	Normal	10 kHz	100 kHz
	Com tecla FAST	100 kHz	1 MHz

^{*} Para dividir a velocidade de sintonia, mova a tecla deslizante \$2003.

A tecla **FAST** normalmente é ativada/desativada quando pressionada, mas se você a segurar pressionada enquanto liga o FT-840, ela se tornará momentânea, e você terá que segurá-la enquanto sintoniza. A tabela acima mostra todos os passos de sintonia disponíveis em cada modo. Se seu microfone tiver teclas **UP** e **DWN**, você poderá usá-las para sintonizar em passos de 10 ou 100 Hz. A tecla **FAST** do microfone imita a tecla **FAST** do painel frontal.

Recepção de Cobertura Geral

Você já deve ter notado que pode sintonizar fora de uma das bandas amadoras (fora do segmento de 500 kHz que inclui cada banda amadora), independentemente de **GEN** ou passo para amadores estar selecionado para as teclas —**BAND**— **DOWN** e **UP**. Porém, o transmissor (e o acoplador de antena) são desativados em tais freqüências. Se você tentar transmitir, os indicadores ainda aparecerão, mas não haverá potência de saída de RF.

Ajustando a Velocidade de Sintonia

As velocidades de sintonia padrão do FT-840 estão na tabela da página anterior, e são selecionadas pela tecla **FAST**. Para dividir a velocidade de sintonia (kHz por giro do dial) para todos os modos, mova a tecla deslizante S2003, que é acessada através do pequeno furo no fundo do rádio mostrado na figura à direita. Use um objeto longo não-metálico para mover a tecla. O tamanho do passo de sintonia não será afetado.

Passos de 10 ou 20 Hz nos Modos AM e FM

Quando for mudar os modos de SSB ou CW para AM ou FM, a operação inicialmente ficará na mesma freqüência, mesmo se ela não for um múltiplo de 100 Hz. Assim que você sintonizar, a freqüência de operação pulará para cima ou para baixo até o passo de 100 Hz mais próximo. Porém, o clarificador sintoniza em passos de 10 ou 20 Hz (selecionáveis) em todos os modos. Portanto, se você precisar de resolução de sintonia fina no modo AM ou FM, ative o clarificador (veja "Clarificador (Sintonia de Offset do Receptor)" na seção "Operações".

O sistema de chamada de banda amadora ignora tais freqüências. Se você selecionar uma banda amadora e depois sintonizar fora da banda, a freqüência que não for amadora será perdida quando você mudar de banda. Quando você voltar à banda original, verá que ela voltou à freqüência (de banda amadora) em que estava quando tal banda foi anteriormente selecionada.

Não se preocupe com isto: qualquer freqüência exibida no display sempre pode ser armazenada numa memória (conforme descrito antes neste manual) para que seja re-chamada rapidamente mais tarde. Quando você se familiarizar com as memórias, você achará isto bem conveniente: cada memória pode ser sintonizada como um VFO, e armazenada novamente sem ter que passar pelo VFO.

Além do que foi dito acima, a recepção de cobertura geral oferece tudo que há nas freqüências amadoras, e é também uma fonte interessante de musica internacional, noticias e entretenimento. Veja a seguir tabela com as bandas de Radiodifusão em Ondas Curtas internacionais.

Bandas de Radiodifusão em Ondas Curtas

Banda	Freqüência (MHz)	Banda	Freqüência (MHz)
LW (Ondas Longas)	.150 – .285	31	9.35 – 9.90
MW (Ondas Médias)	.520 - 1.625	25	11.55 – 12.05
120	2.300 - 2.495	21	13.60 - 13.90
90	3.20 - 3.40	19	15.10 – 15.70
75	3.90 - 4.00	16	17.55 – 17.90
60	4.75 - 5.20	_	18.90 – 19.30
49	5.85 - 6.20	13	21.45 – 21.85
41	7.10 - 7.75	11	25.67 – 26.10

Lidando com Interferências

O FT-840 tem funções especiais que eliminam muitos tipos de interferências que você pode encontrar nas bandas de HF. As condições do mundo real mudam constantemente, e o melhor ajuste para os controles é uma arte que requer familiarização com os tipos de interferências e os efeitos de alguns controles. Portanto, as seguintes informações são diretrizes gerais para situações típicas, e um ponto de partida para sua própria experiência.

Os controles foram descritos na ordem em que você os ajustaria depois de mudar de banda. Haverá uma exceção, se houver ruído de impulso, em cujo caso você precisará ativar o redutor de ruídos (descrito a seguir) antes de fazer outros ajustes. Duas funções especiais, "Banda Lateral de CW Reverso" e "Offset de Portadora de BFO" serão descritas mais adiante em "Transmissão em CW" nesta seção.

Atenuação

O circuito de entrada de Rádio Freqüência do receptor do FT-840 tem alta sensibilidade para sinais fracos. Um atenuador de 12 dB pode ser usado através da tecla **ATT**, quando pressionada.

Quando você estiver procurando sinais fracos numa banda silenciosa, a tecla **ATT** deverá ser desativada para que obtenha sensibilidade máxima. Esta situação ocorre durante momentos silenciosos nas freqüências acima de 20 MHz, e quando se usa uma antena pequena em outras bandas.

Se você perceber intermodulação, ou se os sinais que você quer ouvir forem muito fortes, pressione a tecla **ATT**. Assim, você reduzirá a potência de todos os sinais (e ruídos) em 12 dB (aproximadamente 2 Unidades "S") e tornará mais confortável a recepção, o que é importante principalmente em longos QSOs.

Seleção de AGC-F (Controle Automático de Ganho – Recuperação Rápida)

Quando você estiver sintonizando numa banda em busca de sinais, a tecla **AGC-F** deverá ser mantida na posição de abaixada (—), para que o ganho do receptor se recupere mais rapidamente após a sintonia de sinais fortes. Depois que um sinal for sintonizado, a menos que ele seja muito fraco, você achará mais confortável a recepção com AGC lento (—).

Ajuste do Redutor de Ruídos

O circuito redutor de ruídos do FT-840 reduz pulsos largos e estreitos, e também o nível de interferência estática causada por tempestades elétricas. Pressione a tecla **NB** para ativar o redutor de ruídos. Se você ouvir ruído de pulso, basta pressionar a tecla **NB**. Se o redutor de ruídos distorcer um sinal que você estiver escutando, desative-o para obter melhor clareza de recepção.

Ajuste de Desvio de FI (IF Shift) (Não Usado nos Modos AM e FM)

Depois que você sintonizar um sinal que pretende ouvir por algum tempo, se você ouvir interferência de freqüências próximas, use o controle **SHIFT** para eliminara interferência. Gire o controle **SHIFT** para a esquerda ou direita a partir de sua posição central para abaixar ou subir a freqüência.

Pressione a tecla **LOCK** embaixo do dial (aparecerá "**LOCK**" no display) antes de ajustar o controle **SHIFT**, porque uma ressintonia acidental iria invalidar seu ajuste (principalmente em CW de largura de banda estreita). Quando você estiver pronto para ressintonizar uma nova freqüência, pressione **LOCK** novamente para liberá-la, e recoloque o controle **SHIFT** em sua posição normal (no centro).

Travando o Dial ou as Teclas

Normalmente, quando a tecla **LOCK** é pressionada, apenas o dial é bloqueado (ele gira, mas não faz nada). Se você quiser que ela trave também as teclas (exceto ela mesma, **MOX** e **METER**), desligue o transceptor e a segure enquanto o liga novamente. Use esta função para evitar que seus ajustes sejam acidentalmente alterados.

Filtros Estreitos de FI para AM e CW

Quando pressionada uma vez (ao mudar de modo), a tecla **AM/N** seleciona passos de sintonia de 100 Hz e a largura de banda de estreita AM de 2.4 kHz. No caso de sinais de AM mais fracos, ou onde houver interferência de canal adjacente, esta largura de banda de FI é um compromisso entre rejeição de interferência e fidelidade. Para melhorar a recepção de AM, o filtro largo à cristal YF-112C pode ser instalado. Ele oferece a mais alta fidelidade, e é melhor em radiodifusões fortes de AM (especialmente música). Após a instalação, ele será automaticamente selecionado quando a tecla **AM/N** for pressionada. O filtro estreito de 2.4 kHz será selecionado quando a tecla **AM/N** for pressionada uma segunda vez (aparecerá "NAR" no topo do display).

Para melhorar ainda mais a recepção de sinais de AM sob tais condições, passe para um modo SSB (na banda lateral que tiver a recepção mais clara). Além da escolha da melhor banda lateral, você ganha vários benefícios do controle **SHIFT**. Depois de selecionar a melhor banda lateral (modo LSB ou USB), você terá que sintonizar na portadora para evitar distorção: gire o controle **SHIFT** todo em sentido horário para LSB ou em sentido anti-horário para USB. Faça uma sintonia fina até o sinal soar estável e natural, e recoloque o controle **SHIFT** na sua posição central (ou onde ele obtiver melhor áudio e supressão de interferência).

Pressione a tecla **CW/N** uma vez para selecionar a largura de banda de FI padrão de 2.4 kHz, também usada para SSB. Com o filtro estreito de FI de 500 Hz YF-112C opcional instalado, pressione a tecla **CW/N** outra vez para selecionar este filtro, e aparecerá "NAR" no topo do display. A largura de banda de 2.4 kHz serve para dar uma "vista larga" durante uma sintonização, mas depois de achar um sinal interessante e o centralizar na banda passante, a seleção estreita otimizará a seletividade. A próxima seção sobre transmissão lhe dará mais detalhes sobre operação em CW.

Transmissão

O FT-840 transmite dentro dos segmentos de 500 kHz das bandas amadoras acima de 1.8 MHz, e entre 28 a 30 MHz. Quando sintonizador entre 1.5 e 1.8 MHz, o acoplador não funcionará, e quando sintonizado em qualquer outra freqüência (de cobertura geral), o transmissor será desativado. Você deve limitar suas transmissões às freqüências autorizadas pela sua licença, e para as quais sua antena foi projetada.

A tentativa de transmitir fora da banda faz aparecer o indicador **TX**, mas não haverá saída no transmissor. O transmissor ficará desativado também quando uma varredura for interrompida (descrito mais adiante), porque o pressionamento da tecla PTT durante uma varredura faz com que ela pare.

Quando você transmitir numa banda amadora, o FT-840 perceberá potência refletida no conector da antena. Se um descasamento de impedância causar muita potência refletida, o transmissor reduzirá a potência de saída até um nível nominal (em torno de 5 watts). Embora isto evite que o transceptor seja danificado, nós recomendamos que você *não transmita sem ter uma antena adequada conectada em seu conector*.

Ajustando os Beeps Emitidos por Teclas

Normalmente, quando uma tecla é pressionada no painel frontal, é emitido um "beep". Seu volume não depende do volume do receptor, e pode ser ajustado pelo potenciômetro **SIDE TONE** no painel traseiro.

Se você quiser mudar a tonalidade dos beeps, segure a tecla **FAST** (à direita do dial) enquanto pressiona a tecla **AM/N**. Isto fará com que o display mostre a freqüência do emissor de beeps em Hz, e você ouvirá beeps duplos. Gire o **DIAL** para ajustar a tonalidade dos beeps (310 – 1700 Hz). Quando terminar, pressione a tecla **AM/N** novamente para voltar à operação normal.

Você pode também desativar (ou reativar) a emissão de beeps. Para fazê-lo, pressione a tecla **A=B** enquanto liga o transceptor.

Acoplamento Automático de Antena

Os acopladores de antenas automáticos FC-10 e FC-800 simplificam o primeiro ajuste do transmissor. Depois de usar o acoplador uma vez numa banda, ele chamará os ajustes anteriores na memória (o acoplador tem 31 memórias próprias) durante uma recepção, sempre que você sintonizar na mesma parte da banda novamente. Quando você for usar o acoplador pela primeira vez numa antena, nós recomendamos que você ajuste o controle **RF PWR** na posição de 12 horas ou mais para manter pelo menos 10 watts disponíveis para o processo de sintonia. Tudo que você precisa fazer é garantir que sua freqüência de transmissão esteja livre de outros sinais. Se você quiser monitorar a ação do acoplador, pressione a tecla **METER** (na posição — **PO**).

Se "**SPLIT**" aparecer no display à esquerda da freqüência, pressione a tecla **SPLIT** no lado direito do painel para desativar a operação split por enquanto.

Quando tiver certeza que você está numa freqüência de transmissão válida, e que o canal não tem outros sinais, pressione a tecla **START** no canto direito do painel. O indicador "**TUNER**" aparecerá, indicando que o acoplador automático está ativo, aparecerá "**WAIT**" (Aguarde) no canto direito superior do display, e o indicador "**TX**" no lado esquerdo do display ficará aceso enquanto o acoplador estiver buscando os ajustes de acoplamento adequados.

Se a ROE estiver sendo monitorada por um medidor externo, você verá o acoplador selecionar a leitura mais baixa possível. Quando o indicador "WAIT" (Aguarde) sumir do display (menos de 30 segundos), você estará pronto para transmitir (supondo que o indicador "HI SWR" (ROE Alta) não tenha aparecido).

Depois que você usar o acoplador de antena, o indicador "TUNER" ficará no display (a menos que você pressione a tecla TUNER para desativá-lo). Se o acoplador achar um casamento, o indicador "WAIT" (Aguarde) piscará quando você mudar de freqüência (enquanto recebe), porque o microprocessador principal reporta a mudança de freqüência para o co-processador do acoplador (a recepção não será afetada). O co-processador do acoplador compara a freqüência atual com suas memórias, e re-acopla a antena na nova faixa se tiver ajustes anteriores armazenados para tal faixa. Porém, quando você conectar uma antena nova pela primeira vez, o acoplador não terá os ajustes corretos armazenados em tais memórias. Você terá que "treinar" o acoplador, pressionando a tecla START sempre que você for mudar para uma nova faixa de freqüência.

IMPORTANTE!

Quando o FC-10 for usado, se o indicador "**HI SWR**" (ROE Alta) aparecer em qualquer momento, o acoplador não será capaz de casar sua antena na freqüência exibida no display. Você terá que sintonizar outra freqüência, ou reparar/trocar sua antena ou linha de alimentação.

Transmissão em SSB

Para transmitir no modo LSB ou USB:

- □ Verifique se o indicador de modo adequado aparece acima da freqüência, e se a tecla **METER** está na posição (■ ALC). O medidor mostrará a tensão do controle automático de nível quando você transmitir. Esta é uma resposta negativa para os amplificadores do transmissor que evita sobrecarga nos finais (ALC mais alto indica maior redução de amplificação de RF).
- □ Se esta for a primeira vez que você está transmitindo em SSB no FT-840, pré-ajuste o controle **MIC** na posição de 12 horas, e **RF PWR** em sentido horário.
- □ Confirme se o display mostra a freqüência na qual você quer transmitir.
- Ouça atentamente na freqüência para ter certeza que você não irá interferir em outras estações. Se você tiver uma opção de acoplador de antena automático, pressione **START** para acoplar a antena.
- Depois que "**WAIT**" (Aguarde) sumir do display, pressione a tecla PTT do seu microfone e dê seu indicativo (para identificar sua transmissão) ou fazer sua chamada. Você verá o medidor flutuar conforme você falar.

NOTA: Para ajustar o controle **MIC** para ter uma indicação adequada de ALC no medidor, a ROE tem que estar abaixo de 1.5:1. Caso contrário, o medidor de ALC poderá funcionar inadequadamente.

Para achar o melhor ajuste do controle **MIC** para seu microfone, comece com ele em total sentido anti-horário (no mínimo) e ajuste-o enquanto o controle **RF PWR** estiver em máximo sentido horário. Fale no microfone (em seu nível normal de voz) de modo que o medidor não deflexione além da faixa média (a ponta superior da faixa azul de ALC) nos picos de voz. Normalmente, será a posição de 10 horas no caso do microfone MH-1B8 ou MD-1C8.

Pressione a tecla **METER** (posição — **PO**) e ajuste o controle **RF PWR** para menos potência de saída, conforme é indicado na escala central do medidor. Nós recomendamos o uso da potência mais baixa possível para manter comunicações confiáveis — não só por cortesia para outras estações, mas também para minimizar o consumo de potência e a possibilidade de causar RFI e TVI, e para maximizar a vida do equipamento.

Seleção de Tom de Microfone

Antes de ajustar o processador de voz, ajuste a tecla seletora no seu microfone para obter a característica de áudio desejada. Os ajustes com numerações mais altas suprimem freqüências baixas. Veja "Microfones" em "Acessórios e Opções".

Compressor de Voz de AF

Depois que você achar o ajuste certo para o controle **MIC** (com potência total) e selecionar a característica de tom para o microfone, você poderá ativar o compressor de voz para aumentar a potência média do seu sinal. O ajuste de **RF PWR** não afetará o ajuste do processador de voz.

- □ Com a tecla **METER** colocada na posição (■ **ALC**), pressione a tecla **PROC** à direita. Fale no microfone e ajuste um pouco o controle **MIC**, se necessário, de modo que a agulha do medidor fique dentro da zona ALC azul na escala inferior.
- O controle **COMP** no painel traseiro (a haste mais perto do conector **13.5 V DC** vermelho) ajusta o grau de compressão. Este controle é pré-ajustado na fábrica na posição de 12 horas, que fornece aproximadamente 10 dB de compressão de voz para uma tonalidade de voz média. Fazê-lo para obter mais compressão pode distorcer seriamente seu sinal. Portanto, ele deve ser ajustado somente se você tiver como monitorar o transmissor. Você pode fazer isto com um receptor externo, se tiver um, ou pedindo que uma outra estação te mande reportagens de sinais conforme você o ajustar.
- □ Se você ajustar o controle **COMP**, deverá verificar novamente seu ajuste do controle **MIC** descrito no passo acima.

Transmissão em CW

A transmissão em CW no FT-840 requer que você tenha uma chave de CW simples ou um manipulador eletrônico conectado ao conector **KEY** no painel traseiro. O transmissor não precisa de muitos ajustes: basta você usar o controle **RF PWR** para ajustar sua potência de saída.

- □ Com o modo CW selecionado, comece pressionando a tecla **METER** (posição **PO**).
- Ajuste o controle **RF PWR** na potência de saída desejada. Note que se você selecionar menos de potência de saída máxima e colocar a tecla **METER** na posição **ALC**, o medidor irá deflexionar além da zona de ALC. Isto é normal, e não indica um sinal degradado.
- □ Solte a tecla para voltar a receber.

Como cortesia do circuito interno, você está usando CW no modo "semi break-in", no qual o transmissor permanece em transmissão exceto durante as pausas do seu envio. Você pode ajustar o "tempo de espera" durante o qual o transmissor fica ativo depois que você pára de enviar. Para fazê-lo, ajuste o potenciômetro **DELAY** no painel traseiro (veja "*Painel Traseiro*").

Banda Lateral de CW Reverso

Quando você trocar de modo entre CW e USB, poderá notar que a freqüência do sinal recebido continua igual (mesmo que o display de freqüência do painel mude um pouco). Note também que em CW e USB, a tonalidade de um sinal recebido *diminui* conforme você *aumenta* a freqüência do dial.

Porém, a mudança entre LSB e CW requer a ressintonia do sinal desejado. Isto pode ser inconveniente se você gosta de trabalhar nas bandas de HF mais baixas (40 metros e abaixo) onde o modo LSB é usado.

Tonalidade de CW e Monitoramento de Tom Lateral

No FT-840, o offset de BFO (ou a "tonalidade" de CW conforme é também conhecido) pode ser variado entre 400 – 1000 Hz (700 Hz é o padrão). Isto significa que um sinal de CW sintonizado para uma tonalidade correspondente a este offset será centralizado na banda passante de FI do ser receptor.

O offset de frequência exibido no display para o modo CW, e o tom lateral ouvido no altofalante enquanto sua chave de CW está fechada, também podem ser ajustados para que combinem com o offset de BFO. Se você estiver usando um TNC multímodo ou um decodificador de CW, você irá querer ajustar o offset de BFO para que combine com o usado pelo seu equipamento (alguns controladores multímodos requerem uma tonalidade de 800 Hz para que se tenha uma ótima recepção em CW).

Para mudar o tom lateral e o offset de CW, segure a tecla **FAST** enquanto pressiona a tecla **CW/N**, para que seja exibido no display o atual offset ("tonalidade").

Você pode usar o **DIAL** ou as teclas —**BAND**— **UP** / **DOWN** para selecionar o offset desejado. Pressione **CW/N** novamente para salvar o ajuste e voltar ao display normal.

NOTA: O volume do tom lateral pode ser ajustado pelo potenciômetro "SIDE TONE" no painel traseiro.

Para eliminar a necessidade de ressintonia neste caso, o lado de injeção de portadora de CW do receptor pode ser mudado para o lado alto (o mesmo usado para o modo LSB). Para fazê-lo, segure a tecla **CW/N** enquanto liga o transceptor. Quando você usar a banda lateral "reversa" para recepção de CW, você poderá livremente alternar entre LSB e CW depois que sintonizar uma estação desejada sem ter que ressintonizar. Note que nos modos LSB e CW, a tonalidade do sinal recebido *aumenta* com a freqüência do dial (uma boa maneira para confirmar se você está usando a banda lateral reversa). Para que o receptor volte à banda lateral (superior) padrão para recepção de CW, repita a seqüência executada ao ligar o rádio (**POWER** + **CW/N**).

Um importante benefício desta característica é a rejeição de QRM. Se houver QRM numa estação de CW, tente usar a banda lateral "reversa" e ressintonizar o sinal.

Operação de Banda Lateral de CW Reversa

Transmissão em AM

A potência de saída do transmissor no modo AM é limitada em 25 watts (portadora), e a tentativa de ajustá-la em um nível mais alto não terá nenhum efeito. Depois de ajustar o nível de potência, você poderá ter que ajustar o controle **MIC** para evitar sobremodulação. Este ajuste será mais baixo do que o ajuste ótimo de SSB.

- O processador de voz pode ser usado no modo AM, mas por enquanto, certifique-se que a tecla **PROC** esteja desativada, para não confundir os ajustes.
- Com o modo **AM** selecionado, pressione a tecla **METER** (posição **PO**). Pressione a tecla PTT e gire o controle **RF PWR** até o nível desejado (lembre-se que a potência de saída do transmissor está limitada em 25 watts no modo AM).
- □ Enquanto fala no microfone, ajuste o controle **MIC** até o ponto onde o medidor começar a *deflexionar um pouco*. Não coloque o controle **MIC** muito alem deste ponto em sentido horário, ou seu sinal será distorcido.
- □ Reduza o controle **RF PWR**, conforme for necessário, até o nível de saída desejado.

Display de Offset de Portadora

Quando você for alternar entre os modos SSB e CW, a freqüência exibida no display mudará de acordo com a quantidade determinada pelo offset de BFO (portadora) para cada modo especifico (1.5 kHz para SSB e 700 Hz para CW, por exemplo).

Se você prefere que o display de freqüência *permaneça o mesmo* quando for mudar de modo, segure a tecla —**BAND**— **DOWN** enquanto liga o transceptor. O display mostrará sua verdadeira (suprimida) freqüência de portadora (sem refletir o offset de BFO). Repita este passo para voltar ao display padrão.

Transmissão em FM

Para transmitir em FM, o único controle com o qual você deve se preocupar é o **RF PWR**. O ganho de microfone para FM é pré-ajustado internamente e não precisa de ajuste depois que sai da fábrica. Coloque a tecla **METER** na posição — **PO**, e ajuste o controle **RF PWR** para a saída desejada enquanto transmite. Para evitar, superaquecimento, se você precisar de potência máxima, mantenha suas transmissões em *três minutos ou menos*, com o mesmo tempo para recepção.

Repetidora de FM

O FT-840 tem várias funções específicas para operação em repetidoras de FM acima de 29 MHz. Para localizar tais repetidoras, você pode perguntar no canal de chamada (29.6 MHz) ou tente múltiplos de freqüências entre 29.62 e 29.68 MHz.

Quando você achar uma repetidora, pressione a tecla **FM** uma vez para "–" desvio (shift) (para transmitir baixo da sua freqüência de recepção), aparecerá "**TONE**" para indicar que o codificador de tom CTCSS subaudível foi automaticamente ativado. Pressione **FM** novamente para selecionar "+" desvio (shift), mas este não é usado acima de 29.6 MHz. Pressione-a novamente para voltar ao modo simplex.

Experimente uma rápida transmissão de identificação para ter certeza que você tem o desvio certo (por padrão, o FT-840 automaticamente transmite um tom subaudível de baixo nível em 88.5 Hz durante transmissões via Repetidoras de FM, para acessar as repetidoras que o requerem).

Depois que você fizer um contato via repetidora, você poderá armazenar na memória ajustes de freqüência, modo, CTCSS/desvio (shift) de repetidora para chamá-los mais tarde.

Se uma repetidora usar um offset diferente do padrão de 100 kHz, você poderá mudar o offset do FT-840. Para fazê-lo, desligue e ligue o transceptor enquanto segura a tecla **FM**. Isto exibirá o offset, que pode ser ajustado entre 0 e 500 kHz usando o dial (veja a seguir). Pressione **FM** novamente quando terminar.

ID**Ö**...

Se você achar uma repetidora que requer um tom CTCSS diferente de 88.5 Hz, você poderá selecionar outro tom. Para fazê-lo, segure a tecla **FAST** enquanto pressiona FM, gire o dial e pressione **FM** novamente (para aceitar).

88.5

O tom que você selecionar servirá apenas para o VFO atual, mas poderá ser armazenado na memória.

	Tons	CTCSS	6 (Hz)	
67.0	100.0	131.8	173.8	218.1
71.9	103.5	136.5	179.9	225.7
77.0	107.2	141.3	186.2	233.6
82.5	118.8	146.2	192.8	241.8
88.5	123.0	151.4	203.5	250.3
94.8	127.3	162.2	210.7	

Clarificador (Sintonia de Offset do Receptor)

A tecla **CLAR** e o controle **CLAR** no lado direito do painel frontal permitem que você desvie a freqüência de recepção em ± 1.25 kHz a partir da que foi originalmente exibida (e usada para transmissão), em passos de 10 Hz (veja quadro a seguir). Siga os seguintes passos, se desejar, para se familiarizar com os controles do clarificador:

- Pressione a tecla **CLAR** e observe que "**CLAR**" aparecerá no lado direito do display. Se um offset de clarificador tiver sido sintonizado antes, o display de freqüência desviará em conformidade. Gire o controle **CLAR**, e note que o display de freqüência mudará. Pressione a tecla **CLAR** novamente várias vezes: a freqüência de operação voltará ao seu ajuste "não clarificado" quando o clarificador estiver desativado, e adicionará o offset (apenas para a freqüência de recepção) quando o clarificador estiver ativo.
- □ Com o clarificador ativo, pressione a tecla **PTT** e note que a freqüência de transmissão permanecerá igual à do display de freqüência original (isto é, sem offset).

O clarificador é usado tipicamente quando você está em contato com uma estação cujas derivas de transmissor (ou talvez vocês não estivessem na mesma freqüência quando você começou). Você não precisa mudar sua freqüência de transmissão, porque isto forçaria a outra estação e ressintonizar – você só tem que reajustar seu receptor. Para fazê-lo, pressione a tecla **CLAR** para ativar o clarificador, e cuidadosamente ressintonize seu sinal com o controle **CLAR**.

Quando você terminar sua conversa, deverá se lembrar de pressionar a tecla CLAR novamente para desativar o clarificador. Você pode também querer apagar o offset (ajustando o controle **CLAR**) antes de desativá-lo.

Faixa de Clarificador e Opções de Display

A faixa de sintonia padrão do clarificador (±1.25 kHz em passos de 10 Hz) pode ser *duplicada* para ±2.50 kHz (em passos de 20 Hz),. Para fazê-lo, segure a tecla **MEM UP** enquanto liga o transceptor. Para ativar/desativar o display de offset de RX de **CLAR**, segure a tecla **CLAR** enquanto liga o rádio. Repita os passos acima para ativar as funções e voltar aos ajustes padrão.

Operação em Frequência "Split" e VFO-B

O **VFO-B** funciona exatamente como o **VFO-A**, embora um seja independente do outro. Você pode usar o **VFO-B** como uma memória para fins gerais "instantaneamente chamadas". No FT-840, o **VFO-B** tem dois objetivos importantes: dobrar a capacidade de armazenamento da memória (descrita na próxima seção), e facilitar a operação em freqüência "split" (recepção em um **VFO**, e transmissão no outro). O caso especial da operação via repetidora de FM em freqüência split usa algumas funções próprias, descritas anteriormente. Se a diferença nas freqüências de transmissão e recepção for menor que 2.5 kHz, o uso do clarificador será a abordagem mais fácil.

Use as teclas **A/B**, **A=B**, **SPLIT** e **M▶VFO** no lado direito do display para ajustar os 2 VFOs:

- □ **A/B** alterna a operação entre os 2 VFOs, sem afetar os conteúdos de ambos.
- □ **A=B** copia os conteúdos do **VFO-** (**A** ou **B**) atualmente exibido no display no outro (**B** ou **A**, respectivamente), sobrepondo os conteúdos do VFO não exibido no display.
- □ **SPLIT** ativa o VFO "oculto" para transmissão.
- □ **M**▶**VFO** copia nos VFOs um par de freqüências armazenadas numa memória, quando pressionada por ½ segundo (até você ouvir o beep duplo). Isto será descrito na próxima seção sobre chamada e armazenamento de memória.

Para operar em "split", você precisa primeiro carregar os VFOs com as freqüências e os modos de transmissão e recepção desejados(as). Ajuste seu modo e sua freqüência para transmissão, pressione A/B e ajuste seu modo e sua freqüência para recepção. Você pode usar a tecla A/B para checar sua freqüência de transmissão enquanto recebe (para evitar uma transmissão desnecessária). Depois que os VFOs forem ajustados, pressione a tecla SPLIT. Aparecerá "SPLIT" no lado esquerdo do display, e quando você transmitir, a freqüência no display mudará para o outro VFO (e indicador de modo, se for diferente). Os conteúdos dos 2 VFOs podem ser armazenados numa memória para uma futura operação com o mesmo par de freqüências, descrito a seguir.

Ajuste de Torque do Dial

Se o dial estiver muito apertado ou solto, e se você tiver uma chave Allen de 2 mm (5/64"), você poderá ajustar seu torque.

- □ Puxe o anel de borracha do dial.
- □ Localize o furo na margem do dial, e use a chave Allen para soltar o parafuso acessado através do furo. Solte apenas o bastante para que o dial seja retirado da haste.
- Gire a mola de tensão da haste exposta no sentido anti-horário para soltar o troque, ou no sentido horário para apertá-lo.
- Recoloque o dial, aperte o parafuso e recoloque o anel de borracha.

Funções de Memória

Cada uma das 100 memórias do FT-840, 01 a 90, e P1 a P0, armazena um par de freqüências e modos, além das seleções de FI larga/estreita (para os modos CW e AM), ajustes de offset e ativação/desativação de clarificador, e estado de freqüência split. Quando você chamar uma memória, um conjunto destes parâmetros operacionais será exibido, e o outro conjunto será oculto. Para simplificar, nós vamos nos referir ao conjunto de parâmetros exibido como *metade frontal* da memória, e o conjunto oculto como *metade traseira*. Estas 2 metades, frontal e traseira, são alternadas pela tecla **A/B**, assim como você pode alternar entre **VFO-A** e **VFO-B** quando estiver operando em um VFO (embora o display não indique qual metade é qual, como faz no caso dos VFOs). Como na operação de VFO, você pode operar no modo "split" com as 2 metades, recebendo pela frente e transmitindo por trás; você pode sintonizar livremente e mudar de modo ou os ajustes de clarificador da metade que estiver exibida durante a recepção. Você pode também copiar um par de ajustes de uma memória para a outra. Na verdade, você pode fazer quase tudo com as 2 metades de uma memória, assim como pode fazer com os VFOs A/B, exceto por algumas diferenças de passos de sintonia, varredura (apenas a frente pode ser rastreada) e memórias para fins especiais P1 – P0 descritas mais adiante.

Armazenamento em Memória

O FT-840 permite que você armazene os ajustes de um ou *dois* VFO(s) no canal de memória (metades frontal e traseira) indicado pelos pequenos números no lado direito do display. Para armazenar apenas o VFO exibido, pressione e segure a tecla **VFO**M por ½ segundo (você ouvirá 2 beeps). A metade frontal da memória irá conter o que você inseriu, e a metade traseira manterá o que foi inserido antes (ou o ajuste padrão de fábrica de 7.000 MHz).

Para copiar os conteúdos dos *dois* VFOs (A e B) nas duas "metades" do numero de memória atual, pressione a tecla SPLIT (aparecerá "SPLIT" no display) antes de segurar a tecla VFO►M como antes. Vamos começar com um simples exemplo para armazenar apenas a freqüência atual no display na metade frontal de uma memória (vamos descrever mais adiante neste manual como armazenar na metade traseira o VFO não exibido no display).

Exemplo: Para armazenar 14.250 MHz de um VFO na memória 10.

- □ Pressione VFO/M, se necessário, para que apareça "VFO-A" ou "VFO-B" à direita. Selecione o modo desejado, sintonize o display na frequência desejada (14.250.00) usando as teclas HAM/GEN e —BAND— DOWN / UP para mudar as bandas e sintonizar em passos de 100 kHz, e depois o dial conforme for necessário.
- Pressione as teclas <code>FMEM</code> DOWN ou UP momentaneamente de modo que apareça "MEM" piscando no lado esquerdo inferior do display de freqüência, e dentro de 3 segundos use as teclas <code>FMEM</code> DOWN ou UP para percorrer os canais de memória até aparecer "10" (memória desejada) em pequenos dígitos no lado direito. Se nada foi armazenado lá antes, o display de freqüência estará vazio (conforme mostra a figura abaixo).

□ Segure a tecla **VFO**►**M** por ½ segundo até ouvir 2 beeps. Para confirmar que a entrada foi armazenada, pressione a tecla **VFO**/**M** para exibir a memória no display (veja abaixo).

Embora tenhamos ignorado isto, lembre-se que quando nós armazenamos o VFO exibido, o oculto não foi armazenado na metade traseira da mesma memória. Você poderia ter pressionado a tecla **SPLIT** depois de ajustar os 2 VFOs nas freqüências desejadas antes de armazena-los numa memória. Ambos são gravados na memória, sobrepondo o que tiver sido armazenado lá antes. Além disso, o estado de ativação/desativação e offset de clarificador para os 2 VFOs também são armazenados na memória (esteja ou não ativado o clarificador).

Funções das Teclas DOWN/UP do Painel e do Microfone

	Teclas —BAND—	Teclas ┌MEM┐	Tecla UP/DWN
MODO	DOWN ✓/ UP 🛕	DOWN Vou UP▲	do Microfone
	do Painel Frontal	do Painel Frontal	
	Modo HAM:	Entram no modo de	Duplica o DIAL
VFO-A	Percorrem a banda amadora	checagem de memória	principal para
ou VFO-B	Modo GEN:	("MEM" piscará). Percorrem	varredura de VFO**
	Passos de 100 kHz/1 MHz	canais de memória acima/	sintonia de VFO.
		abaixo.	
	M-TUNE	Percorrem canal de memória	Percorre canal de
MEM	VFO-A ou VFO-B	(acima/abaixo).	memória. Varredura
			de memória**.
		Entram no modo de	Duplica o DIAL
		checagem de memória	principal para sintonia
M-TUNE	Igual a VFO-A ou VFO-B.	("MEM" piscará). Percorrem	de freqüência de
		canais de memória acima/	memória.
		abaixo.	
PMS	Igual a VFO-	A ou VFO-B.	Igual à tecla MEM .

^{**} Pressione e segure a tecla **UP/DWN** (> ½) segundo para iniciar a varredura.

Checando os Conteúdos de Memórias

Antes de armazenar ou chamar uma memória, você irá querer checar seus conteúdos. Se você estiver operando em um VFO, você poderá pressionar **VFO/M** para chamar a memória usada por último, mas isto tem desvantagens: qualquer operação em andamento será interrompida porque sua freqüência mudará, o acoplador de antena (se instalado) ressintonizará, e você terá que pressionar **VFO/M** novamente para voltar ao VFO. Isto não funcionará também se você estiver operando numa memória ressintonizada: você perderá todos os ajustes alterados! Portanto, o FT-840 mostra no display os conteúdos (frontais) das memórias sem afetar a operação atual de VFO (ou memória ressintonizada), e requer apenas o toque de uma tecla. Nós chamamos isto de *checagem de memória*, e você já o fez no exemplo anterior.

Você ativa a checagem de memória quando pressiona momentaneamente as teclas VFO►M, M►VFO ou 「MEM」 DOWN / UP. Conforme você viu acima, "MEM" piscará no lado esquerdo do display quando os indicadores de modo e freqüência mudarem para mostrar os conteúdos da memória selecionada por último. Se você não tocar nada mais, o display voltará automaticamente para seus atuais parâmetros operacionais após 3 segundos. Pressione as teclas 「MEM」 DOWN ou UP no painel frontal antes de terminarem os 3 segundos para selecionar a exibição no display da metade frontal de cada uma das 100 memórias. Pressione estas teclas para reiniciar o temporizador de 3 segundos, e enquanto você estiver mudando de canais, o modo de checagem de memória continuará.

Durante a checagem de memórias, o número da memória aparecerá no lado direito do display (ao invés do digito de freqüência de 10 Hz, se você o tiver ativado). Quando você selecionar uma memória vazia, os indicadores de modo e o display de freqüência ficarão vazios (exceto pelos decimais).

A checagem de memória não mostra tudo que você armazenou; ela mostra apenas a *metade* frontal visível da memória. Para exibir no display a freqüência, o modo e os ajustes de clarificador armazenados do outro VFO, você terá que chamar a memória e pressionar a tecla **A/B**. Quando você for armazenar memórias com a intenção de usar as duas metades (frontal e traseira), seria bom relacioná-las de modo que você possa reconhecer ambas mais tarde quando aparecerem apenas os conteúdos da metade frontal.

Operação e Chamada de Memória

Para chamar dados armazenados numa memória para operação, você pode copiá-los nos VFOs, ou mudar a operação dos VFOs para as memórias. Visto que você pode livremente sintonizar qualquer memória, copiá-la nos VFOs apenas te dá a vantagem da indicação do display de **VFO-A** ou **VFO-B**.

Mantenha pressionada a tecla **M▶VFO** por ½ segundo para copiar os dados do canal de memória atual nos VFOs. Pressione-a momentaneamente para ver os conteúdos da memória, sem sobregravar os dados do VFO. De outra forma, quando você pressionar e segurar esta tecla, você perderá os conteúdos anteriores dos 2 VFOs, e se você estava recebendo em um VFO, a operação mudará para a freqüência e o modo copiado(a) da memória (e então no VFO).

Modos de Display de Frequência

Display de VFO com dígito de 10 Hz ativado

Pressione VFO/M para entrar no modo MEM. Display do modo MEM exibe memória 10 com a mesma frequência.

Toque o dial ou as teclas **UP/DWN** do microfone para entrar no modo M-TUNE.

Display do modo M-TUNE exibindo a memória 10 ressintonizada (+10 Hz). Pressione VFO/M uma vez para cancelar as mudanças e voltar ao modo MEM, e pressione-a novamente para voltar ao modo VFO.

Em muitos casos, você achará mais conveniente mudar a operação do VFO para a memória, pressionando a tecla **VFO/M**. Este método lhe permite deixar os ajustes dos VFOs inalterados, para que você possa chamá-los instantaneamente apenas pressionando **VFO/M** novamente.

Quando você estiver operando numa memória (se você não a tiver ressintonizado), "MEM" aparecerá no lado esquerdo do display (no lugar de "VFO-A" ou "VFO-B"), e você poderá pressionar as teclas DOWN/UP no painel (ou no microfone) para selecionar qualquer memória armazenada anteriormente para operação. Você não pode ativar a checagem de memória ou copiar a memória chamada diretamente em outra memória, visto que a função da tecla VFO>M muda conforme será descrito mais adiante em "Apagando Memórias".

Display de Canal de Memória

No ajuste padrão, a seleção do canal de memória atual aparece no canto direito inferior do display durante operação de VFO e de memória. Se você prefere que o display de canal apareça apenas durante uma operação de memória, segure a tecla **VFO** menquanto liga o transceptor. Repita o mesmo procedimento para cancelar a mudança.

Porém, há um modo fácil de se fazer esta tecla funcionar como nos VFOs, e re-obter a função de checagem de memória: se você mudar a freqüência, o modo ou os ajustes de clarificador, ou se pressionar a tecla A/B para alternar entre as metades frontal e traseira, "MEM" será substituído pode "M-TUNE" no display. Neste modo de *sintonia de memória*, as funções de várias teclas são diferentes das do modo de chamada de memória normal: as teclas DOWN/UP selecionam bandas amadoras ou passos de 100 kHz (como quando se opera nos VFOs). As teclas do microfone imitam a função do dial ao invés das teclas DOWN/UP do painel frontal, e a tecla VFO/M cancela qualquer mudança na memória e te leva de volta ao modo de chamada de memória ("MEM" no display novamente), ao invés de mudar para os VFOs. Veja na tabela da página 38 as funções das teclas DOWN/UP.

O modo de sintonia de memória torna a operação nas memórias 01 a 90 tão flexíveis quanto a operação nos VFOs. Se você quiser salvar as mudanças em um canal de memória, siga o mesmo procedimento usado para armazenar os VFOs em memória: Pressione VFO>M momentaneamente e as teclas rMEM7 DOWN / UP para selecionar outra memória (se quiser), ou segure VFO>M por ½ segundo até ouvir o beep duplo (para sobregravar a memória atual com os dados ressintonizados). A rotulagem da tecla VFO>M é um tanto enganadora aqui: os ajustes de VFO, ocultos neste ponto, não estão envolvidos nesta operação visto que os ajustes da memória chamada tomaram seu lugar.

Conforme mencionado acima, se você quiser cancelar alguma mudança feita numa memória chamada, pressione **VFO/M** uma vez ("**MEM**" no display novamente), e pressione-a novamente se quiser voltar aos VFOs. As mudanças de modos do display podem ser vistas na página anterior.

A operação "split" pode ser ativada e armazenada numa memória, em cujo caso a metade traseira da memória será usada para transmissão. Similarmente, pressione a tecla **A/B** durante a recepção numa memória para alternar a operação entre metade frontal e metade traseira da memória (não se esqueça que estas funções também ativam a sintonia de memória).

Funções de Varredura

Depois de programar vários canais de memória, você vai querer rastreá-los mais tarde para checar se há atividade em tais freqüências. As 100 memórias do FT-840 são organizadas em 10 grupos, com 10 canais em cada grupo (veja a seguir). Você tem várias opções para varredura destas memórias, e após a seguinte explicação, você poderá determinar qual modo é melhor para suas necessidades operacionais. O FT-840 tem 2 modos básicos de varredura: *Varredura de Memória* e *Varredura em Grupo*. Você pode também escolher o modo como a varredura continuará: *varredura por retardo de tempo* ou *varredura por retardo de portadora*. A velocidade da varredura também pode ser ajustada. As funções de varredura estão resumidas na tabela a seguir.

Varredura de Memória (Normal)

A varredura normal sequencialmente checa todas as memórias *programadas com dados* (memórias vazias ou ocultas serão puladas). Os canais de memória P1– P0 têm duplo objetivo, e são usados com a função PMS (*Varredura de Memória Programada*) que será explicada mais adiante. Porém, eles são selecionados e rastreados da mesma maneira que as outras 90 memórias. Quando você receber numa memória chamada (com "MEM" no display), você poderá rastrear as metades frontais de todas as memórias armazenadas. Para fazê-lo, pressione *momentaneamente* a tecla **SCAN** (< ½ segundo), ou *segure* a tecla **DWN** ou **UP** por ½ segundo para iniciar. Se você quiser que a varredura pare nos sinais, você deverá primeiro ajustar o controle **SQL** para silenciar o receptor (o indicador "**BUSY**" estará apagado) em um canal liberado.

Modo de Continuação de Varredura

Quando for encontrado um sinal forte o bastante para abrir o silenciador (squelch) do receptor, a varredura irá parar em tal canal, e os dois pontos decimais no display de freqüência piscarão. Pelo padrão, o *retardo de portadora* estará ativo e a varredura continuará novamente somente depois que o sinal (portadora) não for mais recebido.

Organização de Canais de Memória

GRUPO 1	GRUPO 2	GRUPO 3	GRUPO 4GRUPO 9	GRUPO 10
dn - 0 1 ~ 10	di-11-20	di-21~30	di-31~40di-81~90	di-21~20

Varredura de Memória

IHÍCIO DA	⇔	=>	⇒⇒
VARREDURA →	di 0.1	di 02	d 03 d 20

Resumo das Funções de Varreduras

Resulto das Funções de Varreduras							
Modo/Função de Varredura	Descrição	Ativado(a) por:					
Varredura de Canal (Normal)	Sequencialmente rastreia até 100 canais de memória disponíveis (de 01 a P0). As memórias vazias ou as programadas para serem puladas em varredura são ignoradas na seqüência de varredura.	Com qualquer canal de memória exibido no display, pressione SCAN momentaneamente (< ½ segundo).					
Varredura de Grupo Selecionado	Sequencialmente rastreia apenas os canais de memória selecionados (no máximo 10) dentro de um único grupo selecionado (ainda aplica-se a regra sobre memórias vazias ou programadas para serem puladas em varredura).	Com qualquer canal de memória dentro do grupo desejado exibido no display, pressione e segure SCAN por > ½ segundo (você ouvirá 2 beeps).					
Modo de Continuação de Varredura: Retardo de Portadora (Carrier Delay)	Pára em um canal de memória ativo, e continua 5 segundos após a queda de portadora.	Segure a tecla SCAN enquanto liga o transceptor para alternar entre a continuação de varredura					
Modo de Continuação de Varredura: Retardo de Tempo (Time Delay)	Pára em um canal de memória ativo durante 5 segundos, e depois continua a varredura.	por retardo de portadora e por retardo de tempo (por retardo de portadora é o padrão).					

PMS (Varredura de	Armazena até 10 pares de limites de frequências inferiores e superiores em memórias para	Programe os ajustes dos 2 VFOs nas metades frontal e traseira de uma memória para fins especiais
Memória Programada)	fins especiais P1– P0. A sintonia de memória e a varredura ficarão	(P1– P0). Ative M-TUNE, e pressione a tecla SCAN para
	dentro de tais limites.	iniciar/parar.
Ajuste da Velocidade de Varredura (para M-TUNE e PMS)	Ajusta a velocidade de varredura para os modos acima, e os valores variam entre 01 (mais rápido) e 200 (mais lento). A velocidade padrão é 10. A função da tecla FAST e os passos de sintonia para cada modo de operação não serão afetados	Pressione VFO/M enquanto segura a tecla FAST .

Alternativamente, você pode selecionar a varredura *por retardo de tempo* segurando a tecla **SCAN** enquanto liga o transceptor. A varredura continuará a parar em um canal ativo como antes, mas imediatamente continuará após 5 segundos, independentemente de qualquer sinal em tal canal. Note que os canais de memória ainda poderão ser rastreados mesmo se o receptor não estiver silenciado (a varredura irá de canal a canal, "experimentando" cada um por 5 segundos). Isto será útil quando você quiser ouvir sinais fracos que de outra forma não seriam fortes o bastante para abrir o silenciador do receptor durante a varredura *por retardo de portadora*. Para voltar ao modo padrão de continuação de varredura por retardo de portadora, basta repetir o procedimento executado ao ligar o transceptor (**SCAN + POWER**).

Varredura em Grupo

Este tipo de varredura permite que você selecione qualquer *grupo* de canais (grupo 1 a grupo 10), e apenas canais de varredura (até 10) dentro de tal grupo. Para executar uma varredura em grupo, basta selecionar *qualquer canal de memória dentro do grupo desejado*, pressionar e segurar a tecla **SCAN** por ½ segundo (até você ouvir 2 beeps). Por exemplo, a seleção de qualquer canal de memória entre 31 – 40 resultará na varredura do grupo 4 (veja a seguir). A varredura em grupo será bastante útil se você quiser organizar seus 100 canais de memória em "blocos" de interesse (isto é, freqüências de repetidoras de FM no grupo 1, canais de chamada de conteste em SSB no grupo 2, freqüências de radiodifusões em AM no grupo 3, etc).

Em ambos os modos de varredura, você pode ter que reajustar o controle **SQL** para evitar que a varredura pare apenas em ruído de fundo. Para interromper a varredura, pressione **SCAN**, a tecla PTT (nenhuma transmissão ocorrerá) ou uma tecla do microfone novamente. Durante uma varredura, lembre-se que a tecla **ATT** também afeta o limiar do silenciador.

Varredura em Grupo

Varredura Programa para Pular Memórias

Depois que você armazenar muitas memórias, você poderá querer excluir algumas delas das varreduras. Você pode marcá-las para que sejam puladas *durante uma Varredura de Canal ou de Grupo* (veja a seguir). Para fazê-lo, chame a memória que deverá ser pulada, e segure a tecla **FAST** no painel frontal (ou no microfone) enquanto pressiona **SCAN** momentaneamente. O indicador "**SCAN**" sumirá abaixo do número de memória à direita. Se você tiver programado uma memória para ser pulada, e quiser incluí-la novamente numa varredura, basta repetir o procedimento de **FAST** + **SCAN**.

Ocultando Memórias

Depois de armazenar muitas memórias, você poderá querer ocultar algumas delas nas operações normais, para simplificar a seleção de outras. Para apagar uma memória exibida no display, enquanto "MEM" estiver no display à esquerda da freqüência, pressione e segure a tecla VFO►M por ½ segundo até ouvir o beep duplo. Mas tome cuidado: se você fizer isto enquanto "M-TUNE" estiver no display – isto é, após a ressintonia da memória, os dados ressintonizados irão sobregravar os dados de memórias originais, mas não serão apagadas. Portanto, se você tiver ressintonizado a memória e não quiser salvar as mudanças, as cancele pressionando VFO/M uma vez, e depois segure VFO►M por ½ segundo.

Enquanto uma memória estiver apagada, não aparecerá nenhum dígito. Enquanto você não sobregravar uma memória apagada, você poderá recuperá-la repetindo o mesmo procedimento usado para apagá-la.

Varredura de Memória Programada (PMS): Memórias para Fins Especiais P1 − P0 Você já deve ter notado que, quando se opera em um VFO ou numa memória ressintonizada, se você pressionar **SCAN**, ou segurar as teclas **DWN/UP** do microfone por ½ segundo, a varredura começará e será interrompida se uma destas teclas for pressionada novamente. Ao ajustar o controle **SQL** de modo que o receptor seja silenciado numa freqüência liberada, a varredura irá parar quando achar um sinal, e continuará de acordo com o modo de Continuação de Varredura programado em "Varredura de Memória" anteriormente.

Você pode também aumentar em 10 o tamanho do passo da varredura. Para fazê-lo, pressione a tecla **FAST** durante uma varredura (ou ativá-lo, se você o tiver programado para que funcione assim).

Velocidade de Varredura

Para ajustar a velocidade da varredura de VFO e PMS, pressione **VFO/M** enquanto segura a tecla **FAST**. Use o **DIAL** principal para ajustar o valor da velocidade de varredura entre 01 (mais rápido) e 200 (mais lento), (10 é o padrão de fábrica). Pressione **VFO/M** para salvar sua configuração e voltar ao display de freqüência.

NOTA: Os passos de sintonia de freqüência para cada modo e a função da tecla **FAST**, descrita antes, não serão afetados.

Se você deixar a varredura continuar indefinidamente, ela reinicializará quando atingir 100 kHz ou 30 MHz, incluindo toda a faixa de cobertura do receptor. Para limitar a varredura a uma faixa de freqüência específica, você poderá usar o limite de varredura programável (que chamamos de *PMS*) incluído nas 10 memórias para fins especiais P1– P0.

Para limitar a faixa de sintonia a uma sub-banda específica, armazene o limite superior e inferior da faixa de freqüência nas metades frontal e traseira de uma das memórias P1 a P0. Em seguida, chame a memória desejada e ative a sintonia de memória. A sintonia e a varredura irão reinicializar nas pontas da faixa armazenada, mantendo a operação dentro da sub-banda de memória programada (veja a figura na página anterior).

Você pode mudar os modos e usar o clarificador como quando você ressintoniza qualquer outra memória, mas não se preocupe em pressionar **A/B** para alternar as metades da memória, ou pressionar as teclas **DOWN/UP**: assim que você tentar sintonizar com o dial os as teclas do microfone, a operação instantaneamente passará para a sub-banda. Se você ativar a transmissão/recepção em modo split, sua freqüência de transmissão será a que você armazenou na metade traseira da memória na qual você começou (P1–P0).

Varredura Programada para Pular Memórias

Varredura PMS e M-TUNE

Exemplo: Use a memória P2 para limitar a sintonia de memória e a varredura PMS à banda WARC em 17 metros.

- □ Pressione VFO/M uma ou duas vezes, se necessário, para exibir "VFO-A" ou "VFO-B" no lado esquerdo do display. Sintonize o limite inferior da banda de 17 metros: 18.068 MHz. Selecione o modo que você pretende usar mais frequentemente (aqui, USB ou CW).
- □ Pressione **A/B** para selecionar o outro VFO, e sintonize o limite superior da banda de 17 metros: 18.168 MHz. Novamente, selecione o modo que você pretende usar (não precisa ser o mesmo), e depois pressione **SPLIT** (para selecionar os dois VFOs).
- □ Pressione VFO►M momentaneamente para ativar a checagem de memória, e pressione as teclas DOWN/UP para selecionar a memória P2 à direita. Em seguida, segure VFO►M por ½ segundo para gravar os dois VFOs nas metades frontal e traseira da memória.
- □ Pressione **VFO/M** para chamar a memória P2, depois *gire o dial* (para ativar a sintonia de memória), ou pressione a tecla **SCAN**.

A varredura e a sintonia de memória ficarão limitadas à faixa entre 18.068 e 18.168 MHz até você pressionar VFO/M para voltar às operações de canal de memória, VFO▶M para copiar numa memória freqüência exibida no display, ou M▶VFO para gravar em um VFO a freqüência exibida no display.

Neste exemplo, note que nós regrávamos a metade traseira de cada memória com dados que não precisávamos. Por esta razão, você pode querer usar as memórias P1 – P0 apenas para operar com limite de sub-banda. Na verdade, se você quiser otimizar o uso desta função com os VFOs independentes de banda, você poderá manter todos os **VFO-A**s (isto é, em cada banda amadora) ajustados no limite inferior da sub-banda que você usa, e todos os **VFO-B**s ajustados no limite superior. Ao usar o procedimento acima para carregar as memórias P1–P0 quando você mudar as bandas, e operar apenas no modo de sintonia de memória nas memórias P1–P0, você pode ter os limites de sub-banda sempre ativados e nunca precisar dos VFOs (exceto para armazenar os limites de banda).

Você não precisa usar os VFOs para configurar ou armazenar limites de sub-banda o tempo todo, e no caso de sub-bandas não amadoras, tais como as bandas de radiodifusão em ondas curtas, você não pode armazenar os limites de sub-banda nos VFOs. Felizmente, visto que a tecla **VFO** M lhe permite copiar entre memórias quando a sintonia de memória está ativa, você pode usar qualquer uma das memórias regulares (01 a 90) para armazenar quaisquer limites de sub-banda.

Modos Digitais

Além da operação em SSB e CW, os modos amadores digitais tais como RTTY, AMTOR, Packet (Rádio-Pacote) e os novos protocolos de dados PacTOR e CLOVER oferecem uma excitante variedade de possibilidades operacionais para serem exploradas. O use destes modos requer que seu transceptor seja conectado a um modem especial conhecido como TNC – "Controlador de Nó Terminal" – e a um computador pessoal.

Interconexões de TNC e Unidade Terminal

As configurações de hardware de modem variam entre os modelos e fabricantes de TNC, mas a interface é basicamente a mesma. Você precisa fornecer áudio do seu transceptor para o TNC, uma linha de PTT para modular o transmissor e uma linha de áudio de transmissão do TNC para o transceptor. Isto requer a construção de um cabo especial para acoplamento (verifique a documentação fornecida com seu TNC para saber quais são os requerimentos).

O FT-840 tem o conector **PTT** no painel traseiro para ativação externa do transmissor (terra para transmissão), e o conector **AF OUT** para o áudio do receptor em nível de linha constante (você pode usar também o áudio do fone de ouvido ou do conector para alto-falante externo, mas isto não é recomendado, visto que o nível de áudio varia conforme o ajuste do controle **VOL**). O áudio de nível de linha em pico no conector **AF OUT** é de aproximadamente 100 mV em 600 ohms, e você poder ter que ajustar o nível de entrada dentro do seu TNC.

O FT-840 usa entrada de tom AFSK (Modulação por Desvio de Freqüência de Áudio) para operações em RTTY, Rádio-Pacote e AMTOR. Os tons de AFSK para a transmissão do seu TNC devem ser injetados através do conector **MIC** no painel frontal. Portanto, um esquema simples de fiação usa os pinos 8 e 6 do conector **MIC** para controle de PTT e transmitir o áudio a partir do TNC, e usa o conector **AF OUT** no painel traseiro para saída do áudio de recepção para o TNC (veja mais adiante). Neste caso, o conector **PTT** no painel traseiro não é usado.

O esquema a seguir mostra a entrada do áudio do transmissor no conector **MIC**. A impedância de entrada no pino 8 é de 600 ohms, e a tensão de entrada em pico deve ser de 20 a 40 mV. Portanto, pode ser preciso ajustar o nível de entrada do seu TNC para fornecer um nível de modulação adequado com o controle de ganho **MIC** na mesma posição que você usa para operar com voz. Você terá que desconectar o microfone durante uma operação no modo de dados. Para não ter que trocar os plugues de microfone e TNC, você pode construir uma simples caixa de comutação na qual poderá conectar seu TNC e microfone.

Interconexões de Rádio-Pacote, TNC, RTTY/AMTOR e Unidade Terminal

Ajustes de Transmissor

Pressione a tecla **AGC-F** para AGC rápido, e a tecla **LSB** para desvio normal. O display mostrará a freqüência de portadora suprimida, então se lembre que seu sinal atual transmitido será desviado abaixo do display pela freqüência (áudio) dos tons AFSK gerados pelo seu TNC.

Antes de transmitir pela primeira vez, pré-ajuste o controle **RF PWR** na posição de 12 horas, e ajuste a tecla **METER** na posição **ALC**. Coloque o transceptor em modo de transmissão através do teclado, e ajuste o controle **MIC** (ou o nível de saída do TNC) para indicação em menos de escala média. Agora, coloque a tecla **METER** na posição **PO**, e ajuste o controle **RF PWR** para a saída de potência desejada.

Sintonia e Display de Freqüência

Conforme foi mencionado acima, o display do transceptor mostra a freqüência de portadora suprimida, da qual você deve subtrair a freqüência de áudio dos tons de AFSK da sua Unidade Terminal ou do seu TNC para encontrar a atual freqüência de operação. Por exemplo, se seu TNC usa tons de 1600 e 1800 Hz, você subtrai a diferença (1700 Hz) do display para encontrar a atual freqüência central do seu sinal transmitido. Além disso, você quer centralizar sua banda passante de áudio do receptor em 1700 Hz. Portanto, você precisa girar o controle **SHIFT** no sentido anti-horário até a posição aproximada de 11 horas (a banda passante de SSB normal é centralizada em torno de 1500 Hz longe da freqüência de portadora). É claro que, se seu TNC ou Unidade Terminal usar tons de freqüências mais altas, você terá que desviar mais a banda passante.

Exemplo: Você quer um QSO em rádio-pacote com uma estação que lhe informou que estará em 14.1013 MHz (às vezes conhecida como a antiga "14.103" de acordo com a convenção TAPR de 1700 Hz), e seu TNC usa tons de 2115/2315 Hz (como os MFJs). Qual freqüência o seu display deve mostrar?

Ao contrário de RTTY e AMTOR, que implica a freqüência de marca quando se ajusta as bordas, as freqüências de rádio-pacote se referem ao centro dos dois tons. Com seu modem, o offset (a diferença) de portadora está no meio entre 2315 e 2115 Hz, ou 2215 Hz. Portanto, se você estiver usando o modo LSB, precisará adicionar este offset na freqüência de QSO especificada para obter sua freqüência exibida no display: 14.10130 + 0.002215 (MHz) = 14.103515, que aparece no display como 14.103.51 ou 14.103.52. Por outro lado, se você estiver usando o modo USB, você irá subtrair o offset, e seu display mostrará 14.099.08 ou 14.099.09.

Visto que a sintonia é crucial para rádio-pacote F1, você deverá ativar a exibição de 10 Hz no display. Para fazê-lo, segure a tecla **UP** enquanto liga o transceptor. Sintonize o transmissor e o receptor dentro de 10 Hz de um sinal para minimizar repetições.

CUIDADO!

Alguns modos digitais (como RTTY) requerem transmissão contínua. Embora o ventilador interno sirva para proteger seu rádio contra aquecimento excessivo, a saída em transmissão contínua durante longos períodos não é recomendada. Principalmente em climas quentes ou úmidos, nós recomendamos a redução de potência para preservar a vida dos componentes. Durante transmissões longas, coloque sua mão na exaustão traseira de vez em quando para garantir que não haja excesso de aquecimento. O método mais seguro é manter a potência de saída em 50 watts ou menos durante longas transmissões.

Rádio-Pacote (Packet) em FM com 1200 Bauds

O ajuste de equipamento para rádio-pacote em FM (acima de 29 MHz) com 1200 bauds é o mesmo feito para rádio-pacote com 300 bauds. Porém, o FT-840 não tem saída de silenciador e o desempenho será melhor em canais ruidosos se seu TNC tiver DCD tipo PLL. A sintonia é menos crítica neste modo, e não requer ajustes especiais. Para transmitir rádio-pacote em FM, basta pressionar a tecla seletora **PO** e ajustar o controle **RF PWR** na potência de saída desejada.

Operação AMTOR e Rádio-Pacote F1 com o Filtro YF-112C de 500 Hz

Pode ser difícil operar em rádio-pacote com 300 bauds, AMTOR e RTTY sob condições de QRM porque o filtro de 500 Hz para CW estreito não está disponível para recepção nos modos SSB necessários para transmissão de AFSK. Você pode simplificar a operação (e evitar a necessidade do filtro de 500 Hz para CW) usando o modo LSB com sua largura de banda de 2.4 kHz para transmissão e recepção, mas a largura de banda larga de FI de receptor não é satisfatória para a recepção de AFSK com desvio estreito sob condições de QRM. Alternativamente, se você tiver o filtro de 500 Hz para CW instalado, você poderá tentar usá-lo para recepção no modo CW e transmissão em um modo SSB (split); mas isto requer o desvio das suas freqüências de transmissão e recepção, junto com outras inconveniências.

A seguir será descrita a operação em FSK no modo split, que você pode tentar para melhorar o desempenho do FT-840 neste modo. *Ele funcionará com alguns TNCs/ algumas Unidades Terminais, mas não com todos(as), dependendo das freqüências de tons AFSK usadas.* Portanto, a Yaesu e seus representantes não garantem que o FT-840 é adequado para esta aplicação.

Conforme foi descrito antes, se você prefere receber no modo LSB (padrão para AFSK de desvio estreito em HF), você terá que girar o controle **SHIFT** no sentido anti-horário de acordo com as freqüências de tons de AFSK. Se você usar o modo USB, precisará girá-lo no sentido horário. Mesmo assim, a banda passante do filtro de FI para SSB (em torno de 2.7 kHz) é mais larga do que o desvio de 170 Hz em RTTY, AMTOR e rádio-pacote em 200 Hz, e o ruído extra não dará um ótimo desempenho sob condições congestionadas de QRM. Porém, no caso de RTTY com desvio largo em 425 ou 850 Hz, o filtro de SSB será melhor.

Depois de fazer alguns QSOs com o filtro de SSB conforme foi descrito antes, se você tiver o filtro de 500 Hz para CW instalado, você poderá tentar ajustar uma operação no modo split. Isto envolve o ajuste de um VFO (ou metade de memória) para recepção usando o filtro de 500 Hz para CW. Infelizmente, se seu TNC usar tons de AFSK altos (centralizados acima de 2 kHz), você poderá não conseguir desviar a FI o bastante. O ajuste inicial é um pouco complicado, mas o resultado pode ser uma melhora de quase 5:1 na relação sinal/ruído em sinais fracos. O FT-840 tem várias funções que impedem o processo de se tornar muito complicado.

Primeiro, você irá desativar no display o offset de BFO para CW. Para fazê-lo, mantenha pressionada a tecla —BAND— DOWN enquanto liga o transceptor. Para confirmar se ele está desativado, altere entre os modos CW e USB: o display não deverá mudar. Além disso, ative a Banda Lateral de CW Reverso descrita antes (a sintonia e o som de CW e LSB devem ser iguais).

Armazene o offset do centro dos seus tons de AFSK no clarificador. Isto lhe permitirá manter os VFOs (ou metades de memórias) de TX e RX na mesma freqüência – o que é importante para a sintonia. Para armazenar o offset, sintonize um múltiplo de 100 kHz, como 14.100.0 MHz. Em seguida, adicione o centro dos seus tons de AFSK (para desvio de 170 Hz, é 2210 Hz para TNCs da marca MFJ) à freqüência exibida no display (ex: 14.100.0 + 0.002.21 = 14.002.21). Desative o clarificador. Quando o ajuste estiver terminado, não toque o controle **CLAR**! O ajuste deve permanecer o mesmo para todas as operações em modo split que usarem tais tons de AFSK.

Pressione a tecla **CW/N**, duas vezes se necessário, para que apareça "**NAR**" e gire o controle **SHIFT** no sentido anti-horário a partir do centro. Se seu TNC tiver um indicador de sintonia, ajuste **SHIFT** de modo que o indicador fique centralizado durante a recepção de apenas ruído de fundo. Dependendo das freqüências de tons de AFSK do seu TNC, e da tolerância dos componentes internos do FT-840, você poderá não conseguir centralizar o indicador de sintonia, mesmo com o controle **SHIFT** todo em sentido anti-horário. Se este for o caso, experimente-o em sentido anti-horário de qualquer forma para ver se a recepção fica melhor do que com o filtro largo.

Com o desvio (shift) e o clarificador ajustados, e o filtro de 500 Hz para CW selecionado, você estará pronto para sintonizar um sinal. Pressione **CLAR** para ativar o clarificador antes de sintonizar (mas não toque o controle do clarificador!). Comece sintonizando um sinal forte, e depois que sua tela mostrar o sinal sendo decodificado, ajuste o controle **SHIFT** para melhorar a cópia.

Na primeira vez que você transmitir em modo "split", nós sugerimos que você responda a um CQ ou chame um BBS, ao invés de iniciar um CQ. Primeiro, pressione a tecla **SPLIT** (aparecerá "**SPLIT**"). Com a estação sintonizada para a melhor cópia, ajuste o VFO alternativo (ou metade de memória) para transmitir em LSB com a freqüência adequada desviada da sua freqüência de recepção (CW), desta forma: pressione **CLAR** para desativar o clarificador, e **LSB** para entrar no modo de transmissão. Em seguida, pressione **A=B** para copiar na metade da memória ou no VFO (TX) oculto a freqüência e o modo exibido no display. Isto ajusta o transmissor. Finalmente, pressione **CLAR** e **CW/N** duas vezes para voltar ao modo/freqüência de recepção. Agora, você pode transmitir.

Novamente, a sequência mágica de teclas que ajusta o transmissor após a sintonia de uma nova frequência é: **CLAR – LSB – A=B – CLAR – CW/N – CW/N**. Você precisará fazer isto toda vez que sintonizar uma nova frequência, então seria bom você anotar esta sequência.

Tente fazer uma conexão com um sinal moderadamente forte em um canal liberado. Se a conexão for muito ruim (muitas repetições), mova o controle **SHIFT** um pouco para esquerda ou direita e veja se as repetições diminuem. Continue desta forma até você encontrar um "ponto doce" (com mínimas repetições) para o controle **SHIFT**, que você deve anotar. Você vai usar este ajuste para todas as operações de AFSK com desvio estreito em LSB.

Última Nota: RFI (Interferência por Radiofreqüência) Gerada por Computador Quando for usar um TNC conectado ao seu transceptor, ou tiver um computador pessoal na sua estação, poderá haver RFI (Interferência por Radiofreqüência) gerada pelo computador.

A CPU de um computador pessoal opera com um oscilador (relógio) controlado por cristal e circuitos de temporização. As freqüências de relógio (clock) comuns incluem 8, 12, 16, 20 e 25 MHz. Além disso, a comutação de dados digitais em alta velocidade usa ondas quadradas, que produzem freqüências harmônicas em ordem ímpar.

A RFI gerada por computador pode aparecer em freqüências aparentemente aleatórias (geralmente, onde uma estação de DX raro está chamando CQ!) em toda a faixa do seu transceptor, e pode soar como um tique-taque ou zumbido que pode mudar conforme você digitar ou trabalhar dentro de um programa. Uma RFI grave pode indicar até S-9 ~ + 10 db acima no S-meter, dificultando a cópia de sinais de voz e tornando virtualmente impossíveis os sinais de dados.

A RFI gerada por computador geralmente resulta da blindagem inadequada do gabinete de um computador ou das conexões de periféricos e entrada/saída. Embora os equipamentos de computadores estejam de acordo com os padrões aprovados sobre emissão de RF, isto não garante que os receptores sensíveis para radioamadorismo não sofram pela RFI de tais equipamentos.

Você pode tomar algumas providências para reduzir ou eliminar a RFI gerada por computador. O primeiro passo é garantir que apenas cabos blindados sejam usados nas conexões entre TNC e transceptor. Cuidadosamente, verifique as conexões de aterramento de RF e reoriente os equipamentos da sua estação em relação ao computador. Mude de lugar seu computador com os periféricos para ver se a RFI é afetada. Em alguns casos, apenas isto basta para resolver o problema.

Se não resolver, as outras providências que você pode tomar incluem a instalação de filtros de linha CA no(s) cabo(s) de força do(s) equipamento(s) sob suspeita, e a colocação de choques toroidais de ferrite para desacoplamento nos cabos de dados/de acoplamento e esferas de ferrite menores nos cabos unifilares.

Como um último recurso, você pode tentar instalar uma blindagem extra dentro do gabinete do computador, usando uma malha/tela condutora ou uma fita condutora. Verifique os "furos" de RF onde há plástico nos painéis frontais do gabinete. Para obter mais informações, consulte guias e publicações radioamadorísticos relacionados às técnicas de supressão de RF.

INSTALANDO ACESSÓRIOS INTERNOS

Esta seção descreve a instalação das opções internas disponíveis para o FT-840. Os filtros à cristal YF-112A e YF-112C podem ser instalados se você remover apenas a tampa superior, mas para instalar o oscilador mestre TCXO-4 primeiro retire a tampa inferior e depois a superior. Esta seção descreve os procedimentos para remoção de tampas, e os procedimentos individuais para cada opção. O bom desempenho das opções depende de uma instalação bem feita. Se você tiver dúvidas sobre os procedimentos depois que ler o que vem a seguir, não hesite em pedir ajuda para seu revendedor Yaseu.

Remoção da Tampa Superior

- □ Desligue o transceptor, e desconecte todos os cabos.
- □ Coloque o rádio na superfície onde for trabalhar com sua parte traseira de frente pra você, e remova os 5 parafusos que prendem a tampa superior (Figura 1). Note que o parafuso traseiro é diferente dos outros (se lembre disso quando for recolocar os parafusos). Erga a tampa para abrir, e desconecte o plugue do cabo do alto-falante de seu conector que vai até o transceptor. Levante a tampa e a retire.

Figura 1: Remoção da Tampa Superior

Instalação de Filtro e Unidade de FM

Os filtros à cristal YF-112C de 500 Hz e YF-112A de 6.0 kHz podem ser instalados para melhorar a seletividade do receptor em CW e AM. Os filtros têm diodos instalados que indicam sua instalação e ativam a seleção no painel frontal. A instalação da Unidade de FM 747 permite a recepção e transmissão em banda estreita.

- □ Consultando a foto à direita, encontre o local da(s) unidade(s) que você vai instalar. Para instalar os filtros e a Unidade de FM, coloqueos na posição indicada na placa de circuito mostrada na Figura 2.
- ☐ Se você for instalar o TCXO-4, continue com os seguintes passos; caso contrário, reconecte o cabo do alto-falante e recoloque a tampa.

Figura 2: Localizando o Filtro e a Unidade de FM

Figura 3: Remoção da Tampa Inferior

TCXO-4: Oscilador de Alta Estabilidade

O TCXO-4 de ± 2 ppm opcional pode ser instalado para substituir o oscilador à cristal padrão de ± 10 ppm.

- ☐ Tire a tampa superior da maneira descrita.
- □ Coloque o transceptor de lado, e remova os 6 parafusos da tampa inferior.
- □ Consultando a Figura 4, encontre o oscilador padrão no centro da placa. Aperte a ponta do apoio de nylon usando um par de alicates de pontas finas, e levante um pouco tal lado do oscilador. Com seu polegar e dois dedos, gentilmente levante o lado oposto da placa, e depois levante toda a unidade.

Figura 4: Instalação do TCXO-4

- □ O TCXO-4 é instalado da mesma maneira. Alinhe os 4 pinos da placa ao conector da unidade, e o pressione firmemente no lugar (até a ponta do apoio de nylon projetar-se através do furo de montagem).
- □ Recoloque a tampa inferior (6 parafusos), desvire o transceptor e recoloque a tampa superior (alça virada para frente) com seus 5 parafusos.

Substituição da Bateria de Lítio

Há uma Bateria de Lítio (BT2001) de 3 volts na placa de circuito inferior do transceptor (Figura 6). Ela guarda os dados memorizados do seu rádio. Esta bateria dura mais de 5 anos. Porém, se for preciso trocá-la, siga os passos abaixo:

Figura 5: Bateria de Lítio

- □ Depois que você retirar as tampas superior e inferior, encontre a bateria. Usando seu dedo, deslize a bateria para dentro (você sentirá uma leve pressão pela mola de montagem), e a mova para cima e para fora de modo que seja ejetada livremente através dos encaixes no suporte de bateria (Figura 5).
- □ Cuidadosamente, observe se a polaridade da bateria com o lado positivo (+) e a informação sobre o tipo de bateria estão viradas para cima. Coloque a nova bateria de maneira inversa.

Chave BACKUP

A chave **BACKUP** fica perto da bateria de lítio (Figura 6). Normalmente, ela fica na posição **ON** para garantir que os dados memorizados sejam preservados (por uma pequena quantidade de força da bateria de lítio) quando o rádio for desligado ou a força DC for removida.

- □ Se você não for usar seu rádio durante muito tempo, coloque esta chave na posição **OFF** para conservar a bateria.
- O rádio deverá estar alimentado quando você for colocar esta chave de volta na posição **ON**, porque isto reduz a demanda de corrente inicial sobre a bateria pelos circuitos do rádio a partir de um estado não alimentado.

Figura 6: Chave BACKUP

NOTA: Os ajustes memorizados serão perdidos e o rádio voltará aos seus padrões de fábrica quando a bateria de backup for desligada. Isto causa o mesmo efeito do procedimento executado ao ligar o rádio descrito anteriormente.

SISTEMA CAT

O Sistema CAT do FT-840 permite que freqüência, modo, VFO, memória e outros ajustes sejam controlados pelo operador através de um computador pessoal externo. Este sistema permite que operações de controles múltiplos sejam automatizadas, podendo ser executadas com simples cliques do mouse ou toques de teclas no teclado do computador.

Dados seriais passam através de níveis de TLL (0 2 +5V) via pinos 2 e 3 de SO (saída serial) e SI (entrada serial) do conector **CAT** no painel traseiro do transceptor, em 4800 bits/seg. Veja na página 20 o esquema de pinos do conector **CAT**. Cada byte enviado tem um bit de início, 8 bits de dados, nenhuma paridade e 2 bits de fim:

Todos os comandos enviados *para* o transceptor devem ter *blocos* com 5 bytes em cada, e até 200 ms entre cada byte. O último byte enviado em cada bloco é o *código de operação da instrução*, e os primeiros 4 bytes de cada bloco são argumentos: parâmetros para tal instrução, ou valores fictícios (para preencher o bloco com 5 bytes):

4º Byte	3° Byte	2° Byte	1° Byte	Código
de Argumento	de Argumento	de Argumento	de Argumento	de Operação

Bloco de Comando com 5 Bytes, enviados da esquerda para direita

Há 24 códigos de operações das instruções para o FT-840, que podem ser vistos na tabela a seguir. Note que várias instruções não requerem parâmetros específicos, mas cada bloco de comando enviado ao transceptor *deve* ter 5 bytes.

O programa para controle de CAT no computador deve construir o bloco de 5 bytes selecionando o código de operação da instrução adequado, organizando os parâmetros, se existentes, e fornecendo bytes de argumentos (fictícios) para preenchimentos (os bytes fictícios podem ter qualquer valor). Os 5 bytes resultantes serão então enviados, *código de operação por último*, para o pino de entrada serial SI do conector **CAT** no transceptor.

Exemplo: Para sintonizar 14.25000 MHz:

- □ Primeiro, determine o código de operação para a instrução desejada (veja os Comandos de CAT na tabela a seguir). Estes códigos de operações devem ser armazenados no programa para que possam ser consultados quando o usuário requerer o comando correspondente. Neste caso, a instrução é "Set Op Freq" (Ajustar Freqüência de Operação), e o código de operação é OAh. A pequena letra "h" após cada valor de byte indica valores (base 16) hexadecimais.
- □ Crie os 4 valores de bytes de argumentos a partir da freqüência desejada, dividindo-a em blocos de 2 dígitos (formato "decimal compactado" BCD). Note que um zero à esquerda será sempre requerido no campo de centena de MHz (e outro no campo de dezena de MHz se for abaixo de 10 MHz).
- □ O bloco de 5 bytes resultante deverá parecer com o mostrado abaixo (novamente, em formato hexadecimal).

Valor de Byte		01h	42h	50h	00h
Conteúdo	Ajuste de Freq.	100 e 10	1 de MHz e	10 e 1	100 e 10
deste byte	de Cód. de Ope.	de MHz	100 de kHz	de kHz	de Hz

□ Envie estes 5 bytes para o transceptor, em *ordem invertida* da mostrada antes – da direita para esquerda – (veja os exemplos mais adiante).

Dados Retornados pelo FT-840

Os comandos Atualização de Estado (Status Update), Registradores de Leituras (Read Flags) e Medidores de Leituras (Read Meter) fazem com que o FT-840 reporte vários ajustes operacionais e internamente armazenados na linha (saída serial) SO:

Atualização de Estado (Status Update) faz o FT-840 retornar toda a sua tabela RAM ou partes dela (até 1941 bytes).

Registradores de Leituras (Read Flags) obtêm apenas os 3 primeiros bytes (os Registradores de Estados) na tabela RAM, e mais 2 bytes extras "de preenchimentos" (08h e 41h).

Medidores de Leituras (Read Meter) retornam a deflexão do medidor (0 – 0FFh) repetida em 4 bytes, seguidos por um byte "de preenchimento" (0F7h).

Cada byte retornado pode ser retardado por um intervalo determinado pelo comando *Controle de Fluxo (Pacing)* (0 a 255 ms em passos de 1 ms). Este retardo será inicialmente zero até o comando *Controle de Fluxo (Pacing)* ser enviado. Isto permite que os dados retornados sejam lidos e processados até mesmo por computadores muito lentos. Porém, você deve ajustá-lo do modo mais curto que seu computador permitir, para minimizar a inconveniência do retardo. Na pior das hipóteses, quando o rádio tiver que retornar todos os 1941 bytes de dados internos, aproximadamente 1.4 segundos será necessário com um retardo de comprimento "0" selecionado, mas quase 3 *minutos* serão requeridos se o retardo máximo for selecionado!

Organização dos Dados de Atualização de Estado

Os 1941 bytes dos dados de Atualização são organizados da maneira mostrada mais adiante. Além do comando *Registradores de Leituras (Read Flags)*, diferentes porções destes dados podem ser retornadas em blocos de 1, 18, 19 ou 1941 bytes, dependendo dos parâmetros do comando de *Atualização (Update)* enviado pelo computador. Os detalhes destes comandos seguem as descrições dos dados.

Comandos do CAT

Legenda:

Envie todos os comandos na ordem inversa da que foi mostrada! Os comandos que duplicam uma tecla do painel frontal estão em letras maiúsculas. As variáveis de parâmetros são chamadas de forma que reflitam seus formatos: por exemplo, "CH" indica um número de memória, de 1 a 64h (decimal 1 a 100). "—" indica um byte de preenchimento. O valor não é importante, mas deve estar presente para preencher o bloco com exatamente 5 bytes. Os códigos de operações são listados nos formatos hexadecimal e decimal – apenas um byte de código de operação pode ser realmente enviado.

Comando	Cód. Ope.		Bytes de Parâmetro			,	Descrição de Parâmetro
Comando	hex	(dec)	1	2	3	4	Descrição de l'arameno
SPLIT	01	1	T			15.5	Ativa ON (T=1) e desativa OFF (T=0) a operação de TX/RX em Split.
Recall Memory (Chamar Memória)	02	2	СН	949			Chama o Canal (CH) do número de memória: 1 a 64h correspondem às memórias 1 a P0
VFO - M	03	3	СН	P2			Display de código para Canal de memória (P2=0), Oculta Canal (P2=1) ou Desoculta Canal (P2=2).
LOCK (TRAVAR)	04	4	P				Trava/destrava o dial ou o painel (P=1/0).
A/B	05	5	٧			-	Seleciona a operação no VFO-A (V=0) ou no VFO-B (V=1).
M ➤ VFO	06	6	СН				Copia o Canal (CH) de memória (1 a 64h) no VFO usado por último.
UP (PARA CIMA)	07	7	00h	S			Sobe o display atual em 100 kHz (S=0) ou em 1 MHz (S=1).
DOWN (PARA BAIXO)	08	8	00h	S			Igual a UP, mas percorre para baixo.
CLAR	09	9	C				Clarificador ativado ON/ desativado OFF (C=1/0).
Set Op. Freq. (Ajustar Freq. de Ope.)	OAh	10	FI	F2	F3	F4	Nova frequência de operação em F1 - F4, no formato BCD: veja exemplo no texto.
MODE (MODO)	OCh	12	M				Valores M: LSB=0, USB=1, CW largo=2, CW estreito=3, AM largo=4, AM estreito=5. FM=6 ou 7.
HAM/GEN	ODh	13	HG		•	-	Seleciona as funções de passos de HAM/GEN (H/G=0/1).
Pacing (Controle de Fluxo)	OEh	14	N				Adiciona o retardo de N-milisegundos (0-0FFh) entre os bytes dos dados retornados pelo rádio.
PTT	OFh	15	T	•			Transmissor ativado ON (T=1) ou desativado OFF (T=0).
Status Update (Atualização de Estado)	10h	16	U			СН	Instrui o rádio para retornar 1, 18, 19 ou 1941 bytes de dados de Atualização o Estado. O Canal será significativo apenas quando U1=4. Veja o texto.
TUNER (ACOPLADOR)	81h	129	T				Ativa ON (T=1) ou desativa OFF (T=0) o acoplador de antena.
START (INICIAR)	82h	130					Inicia o acoplador de antena.
RPT/T	84h	132	R				Seleciona simplex (R=0), - desvio (R=1), ou + desvio (R=2).
A=B	85h	133					Copia os dados do VFO (A ou B) no outro VFO (B ou A, respectivamente).
Memory Scan Skip Varre. Prog. p/ Pular Mem.)	8Dh	141	СН	T			Para Canal de memória (1-64h), pula (T=1) ou inclui (T=0) numa varredura.
Step Op Freq. (Passo de Freq. de Ope.)	8Eh	142	D				Sobe (D=0) ou desce (D=1) a frequência de operação, passo mínimo (10 ou 100 Hz).
Read Meter (Medidor de Leitura)	OF7h	247					Instrui o rádio para retornar indicação de medidor digitalizada (4 bytes repetidos, e 0F7h).
Rptr Offset (Offset de Repetidora)	OF9h	249	00h	S2	S3	S4	Ajusta o offset para desvios de Repetidora, os valores válidos são 0-500,000 Hz (formato BCD, em S2-S4). O parâmetro 1 deve ser zero, S2 deve ser 0, 1 o 2. S3 é 1 ou 10 de kHz, S4 é 10 e 100 de Hz.
Read Flags Registradores de Leituras)	OFAh	250	100	•	•	•	Instrui o rádio para retornar 24 Registradores de Estados de 1 bit (5 bytes, veja as páginas seguintes).

Todos os 1941 Bytes dos Dados de Atualização de Estado (Enviados da Esquerda para Direita)

Registradores	M	Registro de Dado	Dados do	Dados do
(Flags)		de Operação	VFO-A	VFO-B
3	1	19 bytes	9 bytes	9 bytes
(A)	(B)	(C)	(D)	(E)

(A) Bytes de Flag (Registrador)

Os 3 primeiros bytes são tratados como 24 campos de registradores de 1 bit: uma função será ativada (on) se um bit for ajustado (1), e desativado (off) se for reajustado (0). Muitas das funções representadas por estes registradores correspondem ao display do rádio.

Primeiro Byte de Flag (Registrador)

Bit 0: LOCK está ativo (= display)

Bit 1: Operação de GEN (= display)

Bit 2: Operação SPLIT (= display)

Bit 3: Checagem de Memória (M CK) em andamento

Bit 4: Sintonia de Memória (M TUNE) ativa

Bit 5: Operação MEM (= display)

Bit 6: VFO-B em uso para transmissão ou recepção

Bit 7: Operação de VFO A ou B (= display)

Segundo Byte de Flag (Registrador)

Bit 0: Linha de PTT fechada pelo comando de CAT

Bit 1: Varredura de memória está em pausa

Bit 2: Varredura em andamento (pausada ou não)

Bit 3: Não usado

Bit 4: Não usado

Bit 5: Sintonia de Acoplador de Antena (WAIT)

Bit 6: ROE alta (= display)

Bit 7: Varredura/Sintonia Rápida (FAST) está ativa

(B) Quarto Byte: Número de Memória

O 4º byte do dado de Atualização tem um valor binário entre 0 e 63h (decimal 99), indicando o atual número de memória -1 (ou a memória selecionada por último, se você estiver operando em um VFO). Nota: P1=54h, p0=63h.

(C) Registros de Dados de 19 Bytes

O Número de Memória é seguido por um registro de 19 bytes que define as atuais condições operacionais. Isto é, os 2 VFOs se a operação estiver em um VFO, ou as metades frontal e traseira da memória atual se estiver operando numa memória.

Formato de Registro de Dados de 19 Bytes

1 byte	9 bytes	9 bytes
Registrador	VFO-A ou Metade	VFO-B ou Metade
de Memória	Frontal da Memória	Traseira da Memória

Registradores de Estados de Memória (1 Byte)

Este byte está no cabeçalho de cada Registro de Dados de 19 bytes. Bits 0 a 5 não são usados. O Bit 6 será ajustado se a função SPLIT estiver ativa na memória, e o Bit 7 será ajustado se a memória estiver vazia.

Registro de Dados de VFO/Memória (9 Bytes)

A estrutura de um registro de Dado de VFO/Memória de 9 bytes está detalhado na tabela a seguir. Cada byte na tabela é identificado por seu offset desde o início (endereço base) do registro, visto que o mesmo formato de registro de 9 bytes é também usado em outro lugar.

Formato de Registro de Dado de VFO/Memória de 9 Bytes

Offset	Conteúdos e Formato do Campo de Byte					
0	Seleção de BPF: 0 a 09h binário					
1 – 3	Bytes 1 – 3: Freqüência base em 10 de Hz (sem offset de clarificador/repetidora).					
	Valor binário entre 10000 – 3000000. Byte 1 é MSB.					
4 – 5	Não usado					
6	Modo: 0=LSB, 1=USB, 2=CW, 3=AM, 4=FM					
7	Não usado					
8	Registradores de Operação de VFO/Memória (veja a seguir)					

Registradores de Operação de VFO/Memória

Cada bit neste campo significa um estado exclusivo para um VFO ou metade de memória.

Bit 0: A frequência não é um múltiplo de 100 Hz (operação em AM ou FM)

Bit 1: Modo SSB (0: LSB, 1: USB)

Bit 2: Memória programada com SKIP durante varredura

Bit 3: - Desvio (Shift) de Repetidor (apenas para FM)

Bit 4: + Desvio (Shift) de Repetidora (apenas para FM)

Bit 5: Não usado

Bit 6: O modo atual é AM NARrow (Estreito)

Bit 7: O modo atual é CW NARrow (Estreito)

(D) e (E) Dados de VFO-A e VFO-B (9 bytes x 2)

Depois que for enviado o Registro de Dado de 19 bytes para a operação atual, serão enviados dois Registros de Dados de VFO/Memória de 9 bytes; um para cada VFO. O formato de cada um destes registros é o mesmo descrito acima, e na verdade, quando se opera em um VFO, os valores destes registros são idênticos aos dois registros de 9 bytes incluídos no Registro de Dado de 19 bytes para a operação atual.

(F) Registros de Dados de Memória

Depois dos dois registros de 9 bytes para os VFOs, são enviados os Registros de Dados de 19 bytes: uma para cada memória, começando com a memória 01. Cada registro de dado de memória é construído da maneira descrita anteriormente para os Registros de Dados de 19 bytes.

Seleção de Dado de Atualização de Estado

O 1º e o 4º parâmetros do comando Atualização de Estado (Status Update) seleciona diferentes porções de Dados de Estados para serem retornados, do seguinte modo ("U" é o 1º parâmetro, "CH" é o 4º):

Parâmetros	Dados Retornados	Referência
		(veja páginas anteriores)
U = 0	Todos os 1941 bytes	A
U = 1	Número de Memória	В
U = 2	Registro de Dado de	С
	Operação de 19 Bytes	
U = 3	Dado de VFO-A e	D e E
	VFO-B de 18 Bytes	
	Registro de Dado de Memória de 19 Bytes	
U = 4, $CH = 1 - 64h$	para Canal de Memória	F

Note que, em muitos casos, você precisará apenas ler o Registro de Dado de Operação de 19 bytes (com o primeiro parâmetro = 2), visto que todos os outros comandos de CAT afetam apenas este dado (exceto VFO > M e Memory Scan Skip).

Dados de Registrados de Leituras

O comando *Registrador de Leitura (Read Flag)* recupera os (primeiros) 3 Bytes de Registrador (flag) do Dado de Estado. O transceptor responde ao comando *Registrador de Leitura (Read Flag)* retornando os Bytes de Registrador (flag) descritos antes, além de 2 bytes com os valores constantes de 08h e 41h (nesta ordem), conforme é mostrado aqui:

1° Byte de Flag 2° Byte de Flag	3° Byte de Flag	Fictício (08h)	Fictício (41h)
---------------------------------	-----------------	----------------	----------------

Dado de Medidor de Leitura

O envio do comando Medidor *de Leitura (Read Meter)* faz o transceptor retornar uma indicação de deflexão de medidor digitalizada, entre 0 e 0FFh (na prática, o valor mais alto retornado seria em torno de 0F0h). Quatro cópias deste valor são retornadas, junto com um byte constante (0F7h), do seguinte modo:

Byte de Medidor	Ryte de Medidor	Ryte de Medidor	Byte de Medidor	0F7h
Byte de Medidoi	byte de Medidoi	Byte de Medidoi	Byte de Medidoi	01./11

Durante uma recepção, é retornada a deflexão de potência de sinal. Durante uma transmissão, é retornada a deflexão de nível de potência de saída.

Exemplos de Codificação

Embora a Yaesu Musen Company não ofereça programas para controle de CAT (devido à variedade de computadores incompatíveis usados por seus clientes), veja a seguir alguns exemplos de funções de entrada/saída do CAT, em linguagem BASIC. Note que todas as variações do BASIC podem não suportar alguns dos comandos, em cujo caso algoritmos alternativos poderão ter que ser desenvolvidos para duplicar as funções dos mostrados.

Enviando um Comando

Depois que a porta serial do computador for "aberta" para 4800 bauds, 8 bits de dados e 2 bits de fim sem paridade, como dispositivo de entrada/saída #2, qualquer comando de CAT poderá ser enviado. Porém, se você determinar que seu computador precisa de tempo extra para processar os dados retornados pelo transceptor, você deverá enviar o comando *Controle de Fluxo (Pacing)* primeiro. Eis um exemplo do comando *Controle de Fluxo (Pacing)* ajustando um retardo de 2 ms:

PRINT #2,

CHR\$(0);CHR\$(0);CHR\$(2);CHR\$(&HE);

Note que o código de operação da instrução é enviado por último, o primeiro (MSB) parâmetro é enviado antes dele, e o parâmetro LSB (ou fictício) é enviado primeiro. Os parâmetros são enviados na ordem inversa da ordem em que aparecem na tabela de comandos do CAT. Note também que neste e nos exemplos seguintes, nós enviamos zeros como bytes fictícios; embora isto não seja necessário. Se você decidir enviar comandos através de uma matriz de 5 bytes, os valores dos parâmetros fictícios não precisarão ser apagados.

Usando o mesmo exemplo mostrado anteriormente, o seguinte comando pode ser usado para ajustar a freqüência do display para 14.25000 MHz:

```
PRINT #2, CHR$(&H00); CHR$(H50);
CHR$(&H42); CHR$(&H01); CHR$(&HA);
```

Observe aqui que os valores de BCD podem ser enviados apenas antes dos dígitos decimais com "&H" neste exemplo. Porém, em um programa real, você pode preferir converter a variável de frequência decimal do programa em sequência de ASCII, e depois converter a sequência em caracteres através de uma tabela de consulta.

Se você enviar um parâmetro que esteja fora da faixa para a função pretendida, ou não estiver entre os valores legais especificados para tal função, o FT-840 não deverá fazer nada. Portanto, você poderá alternar entre seu envio de comandos regulares ou grupos de comandos e um comando *Registrador de Leitura (Read Flag)* ou *Atualização (Update)*, deixando o transceptor informar ao computador se tudo que foi enviado até então foi aceito e executado conforme se esperava.

Lembre-se que alguns comandos especificam "binário", ao contrário dos parâmetros no formato BCD. Você pode enviar parâmetros binários sem passar pelo processo de conversão da seqüência de caractere/hexadecimal. Por exemplo, o parâmetro CH na tabela de Comandos é binário. Você pode fazer o FT-840 chamar a memória 29 (decimal) da seguinte maneira:

PRINT #2, CHR\$(0);CHR\$(0);CHR\$(0);CHR\$(29);CHR\$(2)

Lendo Dados Retornados

O processo de leitura é facilmente executado através de um ciclo (loop), armazenando os dados de chegada em uma matriz, que pode então ser processada depois que todos os bytes esperados tiverem sido lidos na matriz. Para ler o medidor:

```
FOR I=1 A 5

MDATA(I) = ASC(INPUT$(1,#2))

NEXT I
```

Lembre-se que os dados de medidores possuem 4 bytes idênticos, seguidos por um byte de preenchimento. Portanto, nós precisamos apenas ver um byte para obter todas as informações que este comando oferece. Nós devemos ler todos os 5 bytes (ou 1, 18, 19 ou 1941 no caso do dado de Atualização). Depois de ler todos os dados, nós podemos selecionar os bytes que nos interessam na matriz (MDAT, no exemplo acima).

NOTA SOBRE DIREITOS AUTORAIS DE TRADUÇÃO:

Embora o texto original em inglês seja de domínio público, a tradução não é. Portanto, nenhuma parte dela pode ser copiada, editada, reproduzida, distribuída, usada para fins comerciais ou encaminhada para terceiros em forma de arquivo ou impressa. Ela pode ser usada **somente** pela pessoa que adquirir uma cópia autorizada, e que está devidamente identificada nos pedidos arquivados.

Se esta tradução for encontrada em mãos de terceiros, aquele que a adquiriu originalmente será responsabilizado por sua distribuição indevida e não autorizada, pois o mesmo está associado ao código de identificação relacionado ao manual adquirido. Todos os direitos autorais do manual original no qual se baseou esta tradução pertencem ao seu respectivo fabricante.

Tradutora: Paula Estevão da Silva (<u>pestraducao@terra.com.br</u>)
Revisor: Walter Facury Júnior (PY4ORL) (<u>cybermanuals@yahoo.com.br</u>)
Radiohaus: www.radiohaus.com.br

YAESU MUSEN CO., LTD.
4-8-8 Nakameguro, Meguro-Ku, Tokyo 153-8644, Japan YAESU U.S.A.
17210 Edwards Rd., Cerritos, CA 90703, U.S.A.
YAESU EUROPE B.V.
P.O. Box 75525 1118 ZN, Schiphol, The Netherlands YAESU UK LTD.
Unit 12, Sun Valley Business Park, Winnall Close Winchester, Hampshire, SO23 0LB, U.K.
YAESU GERMANY GmbH
Am Kronberger Hang 2, D-65824 Schwalbach, Germany

YAESU HK LTD. 11th Floor Tsim Sha Tsui Centre, 66 Mody Rd., Tsim Sha Tsui East, Kowloon, Hong Kong

0002c-ZA