OSNOVE UMETNE INTELIGENCE 2022/23

učenje dreves iz šumnih podatkov rezanje dreves: REP in MEP ocenjevanje učenja

Pridobljeno znanje s prejšnjih predavanj

strojno učenje

- vrste učenja: nadzorovano, nenadzorovano, spodbujevano
- atributna predstavitev podatkov: primeri, atributi, ciljna spremenljivka
- klasifikacijski (diskretna ciljna spremenljivka razred)
 in regresijski problemi (zvezna ciljna spremenljivka označba)
- hipoteze: konsistentnost, splošnost, razumljivost/kompleksnost
- učenje odločitvenih dreves:
 - algoritem TDIDT
 - entropija, ocenjevanje kakovosti atributov z informacijskim prispevkom
- težave z večvrednostnimi atributi (druge mere za kakovost atributov)
- binarizacija atributov
- kratkovidnost algoritma TDIDT

Pregled

- strojno učenje
 - uvod v strojno učenje
 - učenje odločitvenih dreves
 - učenje dreves iz šumnih podatkov (rezanje dreves)
 - ocenjevanje učenja

Prostor hipotez odločitvenih dreves

- zvezni atributi (npr. višina, dolžina, IQ, koncentracija ozona, poraba el. energije, ipd.)
- v vozliščih običajno testiramo primerjavo zveznega atributa z izbrano mejo (večje/manjše)
- takšna odločitvena drevesa delijo prostor na particije (hiper-kvadre), katerih meje so vzporedne koordinatnim osem
- dva primera:

Pristranost na učni množici

- cilj: maksimiziraj pričakovano točnost drevesa (vendar ne na učnih podatkih - pretirano prilagajanje?)
- alternativa uporaba **nevidenih primerov**:
 - izvzamemo posebno množico testnih primerov, če imamo dovolj podatkov (ostane manj podatkov za gradnjo)
 - tipična delitev podatkov: učna množica (70%), testna množica (30%)

Učenje dreves iz šumnih podatkov

- večja drevesa → večje prilagajanje učnih podatkom
- kaj pa, če podatki niso popolni (premalo primerov/ atributov) ali so v učnih primerih napake? Pojavijo se lahko težave:
 - učenje šuma in ne dejanske (skrite) funkcije, ki generira podatke
 - pretirano prilagajanje vodi v prevelika drevesa
 - slaba razumljivost dreves
 - posledica: nižja klasifikacijska točnost na novih/nevidenih podatkih
- pojav pretiranega prileganja (angl. overfitting)
- rešitev: rezanje odločitvenega drevesa
- primer uspeha iz prakse → → → → →

primer iz prakse: lociranje primarnega tumorja (domena *Primary tumor*

	Klas. točnost
Pretirano pril. drevo (150 vozlišč)	41%
Porezano drevo (15 vozlišč)	45%
Privzeta točnost	24,7%
Zdravniki	42%

Rezanje odločitvenih dreves – kako?

- premislek: nižji deli drevesa (bližji listom) predstavljajo večje lokalno prilagajanje učnim podatkom, ki so lahko posledica šuma
- ideja: odstranimo (režemo) spodnje dele drevesa, da dosežemo boljšo posplošitev naučenega drevesa (in klasifikacijsko točnost na nevidenih podatkih)
- primer nizke točnosti drevesa pri skrajnem primeru pretiranega prilagajanja:
 - dva razreda, c_1 in c_2 , $p(c_1) = 0.7$, $p(c_2) = 0.3$
 - privzeta točnost (točnost večinskega razreda) = 0,7
 - drevo, zgrajeno do konca (en primer v vsakem listu)
 - pričakovana točnost:

$$p_{c1} \times CA_{c1} + p_{c2} \times CA_{c2} =$$

= 0,7 × 0,7 + 0,3 × 0,3 = 0,58
(manj kot privzeta točnost!)

Rezanje odločitvenih dreves

- vprašanja:
 - kako to doseči,
 - kje rezati,
 - kombinatorično število možnih porezanih dreves

Strategije rezanja

- rezanje vnaprej (angl. forward pruning, pre-stopping): uporaba dodatnega kriterija za zaustavitev gradnje drevesa glede na obseg šuma (na podlagi: števila primerov, večinski razred, smiselnost delitve v poddrevesa glede na informacijski prispevek itd.)
 - hitrejše
 - kratkovidno, upošteva samo zgornji del drevesa
- rezanje nazaj (angl. post-pruning): rezanje, ki po gradnji celotnega drevesa, odstrani manj zanesljive dele drevesa (opisujejo šum, zgrajeni iz manj podatkov in z manj informativnimi atributi)
 - počasneje, oblika post-procesiranja
 - upošteva informacijo iz celega drevesa
 - pristopa:
 - rezanje z zmanjševanjem napake (reduced error pruning, REP)
 - rezanje z minimizacijo napake (minimal error pruning, MEP)

♣ Tree		?	×
Name			
Tree			
Parameters			
☑ Induce binary	tree		
Min. number o	f instances in leaves:		2 🕏
☑ Do not split sul	sets smaller than:		5 🕏
☑ Limit the maxir	mal tree depth to:		100 🕏
Classification			
_	jority reaches [%]:		95 💠
	,,		
	Apply Automatically		
_	117		
? 🗎			

Rezanje z zmanjševanjem napake (REP)

- angl. reduced error pruning (REP)
- uporablja posebno rezalno (validacijsko) množico, potrebna primerna velikost za zanesljivost; tipične velikosti pri delitvi podatkov:
 - učna množica (70%), od tega:
 - množica za gradnjo (growing set) 70%
 - rezalna množica (pruning set) 30%
 - testna množica (30%)
- postopek:
 - potuj od listov navzgor (prični s starši listov)
 - za vsako vozlišče v izračunaj **dobitek rezanja**: št. napačnih klasifikacij v drevesu T – št. napačnih klasifikacij v vozlišču v
 - če je dobitek ≥ 0, obreži in nadaljuj postopek s staršem, sicer ustavi postopek

Rezanje z zmanjševanjem napake (REP)

• primer: podane so klasifikacije primerov iz rezalne množice v posameznih vozliščih, uporabi REP:

Legenda:

- [#Yes,#No]
- razred vozlišča
- (zeleno) pravilna klasifikacija
- (rdeče) napačna klasifikacija

Izpitna naloga

naloga, podobna izpitni nalogi (1. izpitni rok, 23. 1. 2019)

2. NALOGA (10t):

Podano je odločitveno drevo na sliki, ki ga uporabljamo za odločanje o nakupu valute Bitcoin. Drevo je zgrajeno iz učnih podatkov, ki imajo atribute: zaupanje (zaupanje v prodajalca – nizko ali visoko), cena (nakupna cena – ugodna ali draga) in den_stanje (lastno denarno stanje – slabo ali dobro). Razred je spremenljivka nakup, ki ima lahko vrednosti "da" (kupimo) ali "ne" (ne kupimo).

Legenda: Vozlišča v drevesu prikazujejo razred (da/ne), delež večinskega razreda in število primerov, ki pripadajo razredu da/ne.

 c) (3t) Z uporabo rezalne množice na desni strani poreži zgornje drevo s postopkom zmanjševanja napake (REP).
 Rezanje prikaži na zgornji skici drevesa.

Legenda oznak v vozliščih:

- večinski razred: da
- vseh primerov v vozlišču: 8
- točnost v vozlišču (delež primerov, ki pripadajo večinskemu razredu v vozlišču) je 4/8=50%

zaupanje	cena	den_stanje	nakup
nizko	draga	dobro	ne
nizko	draga	dobro	ne
nizko	draga	slabo	da
nizko	ugodna	dobro	da
visoko	draga	dobro	ne
visoko	draga	slabo	da
visoko	draga	slabo	ne
visoko	draga	slabo	ne

Izpitna naloga

zaupanje	cena	den_stanje	nakup
nizko	draga	dobro	ne
nizko	draga	dobro	ne
nizko	draga	slabo	da
nizko	ugodna	dobro	da
visoko	draga	dobro	ne
visoko	draga	slabo	da
visoko	draga	slabo	ne
visoko	draga	slabo	ne

Rezanje z minimizacijo napake (MEP)

- angl. minimal error pruning (MEP) (Niblett in Bratko, 1986; Cestnik in Bratko, 1991)
- uporablja množico za gradnjo drevesa (in ne ločene rezalne množice)
- cilj: poreži drevo tako, da je ocenjena klasifikacijska napaka minimalna
- za vozlišče v izračunamo:
 - **statično napako** (verjetnost klasifikacije v napačen razred) $e(v) = p(razred \neq C|v)$, C je večinski razred v v
 - **vzvratno napako** (angl. *backed-up error*) $\sum_i p_i E(T_i) = p_1 E(T_1) + p_2 E(T_2) + \cdots$
- režemo, če je statična napaka manjša od vzvratne napake
- napaka optimalno obrezanega drevesa je torej

$$E(T) = \min(e(v), \sum_i p_i E(T_i))$$

 $E(T) = e(v)$, če je v list

 (namesto minimizacije napake E (zgoraj) lahko problem obrnemo in maksimiziramo točnost CA – primer, ki sledi)

Ocenjevanje verjetnosti

- kako oceniti statično napako v vozlišču v?
- primeri uporabe **relativne frekvence** (N št. primerov v vozlišču, n št. primerov, ki pripadajo večinskemu razredu C):
 - $N = 1, n = 1 \rightarrow \text{točnost} = 100\%$
 - $N = 2, n = 1 \rightarrow \text{točnost} = 50\%$? (samo z enim dodatnim primerom)

težave:

- potrebujemo oceno verjetnosti, ki je stabilna tudi pri manjšem številu primerov
- ocena verjetnosti: mera, ki izraža približek prave verjetnosti dogodka in ima zaželene matematične lastnosti, za njo pa ne veljajo nujno osnovni aksiomi s področja verjetnosti
- smiselno je, da ocena verjetnosti upošteva tudi apriorno verjetnost (verjetnost, ki
 jo poznamo o problemu npr. 50% za izid meta kovanca)

Ocenjevanje verjetnosti

boljši oceni verjetnosti:

Laplaceova ocena verjetnosti:

$$p = \frac{n+1}{N+k}$$

n – št. primerov, ki pripadajo razredu C,

N -št. vseh primerov

k – št. vseh razredov

k je problematičen parameter; ocena ne upošteva apriorne verjetnosti

m-ocena verjetnosti

delež upoštevanja apriorne verjetnosti relativne frekvence

$$p = \frac{n + p_a m}{N + m} = p_a \cdot \frac{m}{N + m} + \frac{n}{N} \cdot \frac{N}{N + m}$$

 $p_a\,$ – apriorna verjetnost razreda C

m – parameter ocene (vpliva na delež upoštevanja apriorne verjetnosti)

- malo šuma majhen m malo rezanja / veliko šuma velik m veliko rezanja
- posplošitev Laplaceove ocene za m = k in $p_a = 1/k$

- primer: Bratko: Prolog Programming for Al
- Podano je odločitveno drevo za klasifikacijo v tri razrede (x, y in z) z naslednjimi apriornimi verjetnostmi razredov: $p_a(x) = 0.4$, $p_a(y) = 0.3$, $p_a(z) = 0.3$. Številke v oglatih oklepajih [x, y, z] predstavljajo frekvence primerov v vozlišču, ki pripadajo ustreznim razredom. Obreži drevo s postopkom MEP in vrednostjo m = 8.

$$E(T) = \min(e(v), \sum_i p_i E(T_i)), \ E(T) = e(v), \text{ \'ce je } v \text{ list oziroma}$$

$$\operatorname{CA}(T) = \max(ca(v), \sum_i p_i CA(T_i)), CA(T) = ca(v), \text{ \'ce je } v \text{ list }$$

klasifikacijske točnosti v listih B1, B2 in B3:

$$p(x|B1) = \frac{n+m \cdot p_a(x)}{N+m} = \frac{5+8 \cdot 0.4}{5+8} = \mathbf{0}, \mathbf{6308}$$

$$p(y|B1) = \frac{0+8 \cdot 0.3}{5+8} = 0,1846$$

$$p(z|B1) = \frac{0+8 \cdot 0.3}{5+8} = 0,1846$$

$$p(x|B2) = \frac{0+8\cdot0,4}{1+8} = 0,3556$$

$$p(y|B2) = \frac{1+8\cdot0,3}{1+8} = 0,3778$$

$$p(z|B2) = \frac{0+8\cdot0,3}{1+8} = 0,2667$$

$$p(x|B3) = \frac{1+8\cdot0.4}{3+8} = 0.3818$$

$$p(y|B3) = \frac{0+8\cdot0.3}{3+8} = 0.2182$$

$$p(z|B3) = \frac{2+8\cdot0.3}{3+8} = 0.4$$

- vzvratna točnost v vozlišču B: $\frac{5}{9} \cdot 0.6308 + \frac{1}{9} \cdot 0.3778 + \frac{3}{9} \cdot 0.4 = 0.5257$
- statična točnost v vozlišču B: $p(x|B) = \frac{6+8\cdot0.4}{9+8} = 0,5412, p(y|B) = 0,2, p(z|B) = 0,2588$
- statična točnost je večja od vzvratne točnosti → porežemo
- nadaljujemo z vozliščema C in A ...

 $E(T) = \min(e(v), \sum_i p_i E(T_i)), E(T) = e(v), \text{ če je } v \text{ list}$ oziroma $CA(T) = \max(ca(v), \sum_i p_i CA(T_i)), CA(T) = ca(v),$ če je v list

klasifikacijske točnosti v listih C1, C2 in C3:

$$p(x|C1) = \frac{n+m \cdot p_a(x)}{N+m} = \frac{1+8 \cdot 0,4}{1+8} = \mathbf{0}, \mathbf{4667}$$

$$p(y|C1) = \frac{0+8 \cdot 0,3}{1+8} = 0,2667$$

$$p(y|C1) = \frac{0+8 \cdot 0,3}{1+8} = 0,2667$$

$$p(y|C2) = \frac{3+8 \cdot 0,3}{5+8} = \mathbf{0}, \mathbf{4154}$$

$$p(y|C2) = \frac{2+8 \cdot 0,3}{5+8} = 0,3385$$

$$p(y|C2) = \frac{2+8 \cdot 0,3}{5+8} = 0,3385$$

$$p(z|C3) = \frac{0+8 \cdot 0,4}{4+8} = 0,2667$$

$$p(y|C3) = \frac{0+8 \cdot 0,4}{4+8} = 0,2000$$

$$p(z|C3) = \frac{4+8 \cdot 0,3}{4+8} = 0,5333$$

$$p(x|C2) = \frac{0+8\cdot0,4}{5+8} = 0,2462$$

$$p(y|C2) = \frac{3+8\cdot0,3}{5+8} = 0,4154$$

$$p(y|C2) = \frac{2+8\cdot0,3}{5+8} = 0,3385$$

$$p(x|C3) = \frac{0+8\cdot0,4}{4+8} = 0,2667$$

$$p(y|C3) = \frac{0+8\cdot0,3}{4+8} = 0,2000$$

$$p(z|C3) = \frac{4+8\cdot0,3}{4+8} = 0,5333$$

- vzvratna točnost v vozlišču C: $\frac{1}{10} \cdot 0,4667 + \frac{5}{10} \cdot 0,4154 + \frac{4}{10} \cdot 0,5333 = 0,4677$ statična točnost v vozlišču C:
- p(x|C) = 0.2333, p(y|C) = 0.3000, p(z|C) = 0.4667
- vzvratna točnost je večja od statične točnosti -> ne porežemo
- nadaljujemo z vozliščem A ...

$$E(T) = \min(e(v), \sum_i p_i E(T_i)), \ E(T) = e(v), \text{ \'ce je } v \text{ list oziroma}$$

$$\operatorname{CA}(T) = \max(ca(v), \sum_i p_i CA(T_i)), CA(T) = ca(v), \text{ \'ce je } v \text{ list }$$

klasifikacijske točnosti CA v podrevesih s koreni v B in C:

$$CA(B) = \max(ca(B), \sum_{i} p_{i}CA(B_{i})) = 0,5412$$

 $CA(C) = \max(ca(C), \sum_{i} p_{i}CA(C_{i})) = 0,4677$

- vzvratna točnost v vozlišču A: $\frac{9}{19} \cdot 0,5412 + \frac{10}{19} \cdot 0,4677 = 0,5025$
- statična točnost v vozlišču A: $p(x|A) = 0.3778, \ p(y|A) = 0.2370, \ p(z|A) = \frac{8+8\cdot0.3}{19+9} = 0.3852$
- vzvratna točnost je večja od statične točnosti ne porežemo

Pregled

- strojno učenje
 - uvod v strojno učenje
 - učenje odločitvenih dreves
 - učenje dreves iz šumnih podatkov (rezanje dreves)
 - ocenjevanje učenja

Ocenjevanje učenja

- kriteriji za ocenjevanje hipotez:
 - točnost (angl. accuracy) (konsistentnost, splošnost)
 - razumljivost (angl. comprehensibility) subjektivni kriterij ali tudi kompleksnost (angl. complexity)

- ocenjevanje točnosti:
 - na učnih podatkih (angl. training set, learning set)
 - na testnih podatkih (angl. testing set, test set)
 - izločimo del učnih podatkov, s katerimi simuliramo ne-videne podatke
 - želimo si, da je testna množica reprezentativna za nove podatke
 - uporabimo lahko intervale zaupanja v oceno uspešnosti na testni množici, ki upoštevajo število testnih primerov
 - na novih (ne-videnih) podatkih (angl. new data, unseen data)
 - na njih bo naučeni sistem dejansko deloval

Ocenjevanje učenja

- nasprotujoča si cilja:
 - potrebujemo čim več podatkov za uspešno učenje
 - potrebujemo čim več podatkov za zanesljivo ocenjevanje točnosti (večje število testnih primerov nam daje ožji interval zaupanja v oceno točnosti)
- rešitev:
 - kadar je učnih podatkov dovolj, lahko izločimo testno množico (angl. holdout test set)
 - alternativa: večkratne delitve na učno in testno množico
- različni načini vzorčenja testnih primerov:
 - naključno, nenaključno (npr. prečno preverjanje)
 - poljubno ali stratificirano (zagotovimo enako porazdelitev razredov kot v učni množici)

Prečno preveranje

- poseben primer večkratnega učenja in testiranja
- k-kratno prečno preverjanje (angl. k-fold cross-validation):
 - celo učno množico razbij na k disjunktnih podmnožic
 - za vsako od k podmnožic:
 - uporabi množico kot testno množico
 - uporabi preostalih k-1 množic kot učno množico
 - povpreči dobljenih *k* ocen točnosti v končno oceno

Prečno preveranje

- v praksi najpogosteje: k=10 (10-kratno prečno preverjanje)
- vplive izbranega razbitja podatkov na podmnožice lahko zmanjšamo tako, da tudi prečno preverjanje večkrat (npr. 10x) ponovimo (torej 10x10=100 izvajanj učnega algoritma) in rezultate povprečimo
- poseben primer prečnega preverjanja je metoda izloči enega (angl. leave-one-out, LOO)
 - k je enak številu primerov (vsaka testna množica ima samo en primer)
 - najbolj stabilna ocena glede učinkov razbitja na podmnožice
 - časovno zelo zamudno, primerno za manjše množice
- iz meritev na vseh podmnožicah je možno izračunati tudi varianco/ intervale zaupanja

