AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application. Listing of Claims:

1. - 22. (Canceled)

23. (Previously presented). A compound of the following formula I, or a pharmaceutically acceptable salt thereof,:

(l)

wherein:

 R^1 and R^2 are each independently selected from the group consisting of H, F, Cl, Br, I, NO₂, CF₃, CN, OCF₃, OH, C₁-C₄alkoxy-, C₁-C₄alkylcarbonyl-, C₁-C₆ alkyl, hydroxy C₁-C₄ alkyl-, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₁₀ cycloalkyl(C₀-C₄alkyl)-, H₂N(C₀-C₄)alkyl-, R⁶HN(C₀-C₄)alkyl-, R⁶RN(C₀-C₄)alkyl-, R⁷S(C₀-C₄)alkyl-, R⁷S(C₀-C₄)alkyl-, R⁷SO₂(C₀-C₄)alkyl-, R⁶NSO₂(C₀-C₄)alkyl-, HSO₃, HO₂C(C₀-C₄)alkyl-, R⁶O₂C(C₀-C₄)alkyl-, and R⁶R⁷NCO(C₀-C₄)alkyl-,

or R¹ and R², when on adjacent carbon atoms, and when taken together are methylenedioxy or ethylenedioxy;

R⁵ is independently selected from H, F, Cl, Br, I, NO₂, CN, CF₃, OCF₃, OH, C₁-C₄alkoxy-, hydroxyC₁-C₄ alkyl-, C₁-C₄ alkylcarbonyl-, CO₂H, CO₂R⁶, CONR⁶R⁷, NHR⁶, and NR⁶R⁷;

 R^6 is selected from H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic (C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy C_0 - C_4 alkyl, oxo, F, Cl, Br, CF₃, NO₂, CN, OCF₃, NH₂, NHR⁷, NR⁷R⁸, SR⁷, S(O)R⁷, SO₂R⁷, SO₂NR⁷R⁸, CO₂H, CO₂R⁷, and CONR⁷R⁸;

 R^7 and R^8 are each independently selected from H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl,

 C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_1 - C_5 alkoxy)carbonyl, aryl(C_0 - C_4 alkyl)-, heterocyclic(C_1 - C_5 alkoxy)carbonyl, heterocyclic sulfonyl and heterocyclic (C_0 - C_4 alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF_3 , CN, and NO_2 ;

or R^6 and R^7 , or R^6 and R^8 , or R^7 and R^8 , when both substituents are on the same nitrogen atom, do or do not form, with the nitrogen atom to which they are attached, a heterocycle selected from 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl, said heterocycle is unsubstituted or substituted with 0-3 groups selected from oxo, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl), heterocyclic(C_0 - C_5 alkyl), aryl(C_1 - C_5 alkoxy)carbonyl, heterocyclic(C_1 - C_5 alkoxy)carbonyl, C_1 - C_6 alkylsulfonyl, arylsulfonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

K is selected from -C(=O)- and -CHR9-;

L is selected from -C(=O), -CHR 9 -, -CR 10 R 11 -, -CR 10 R 11 -(C=O), -HR 15 C-CHR 16 -, and -R 15 C=CR 16 ;

 R^9 is selected from H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF_3 , and NO_2 ;

 R^{10} is selected from H, F, Cl, Br, C_1 - C_6 alkoxy, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

 R^{11} is selected from H, F, Cl, Br, OMe, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-, wherein said aryl or heterocyclic groups are

substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

or R^{10} and R^{11} , when on the same carbon atom, do or do not form, with the carbon atoms to which they are attached, a 3-7 membered carbocyclic or 3-7 membered heterocyclic non-aromatic ring system, said carbocyclic or heterocyclic ring is unsubstituted or substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy C_0 - C_4 alkyl, oxo, F, Cl, Br, CF₃, and NO₂;

R¹² is selected from H, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, monocyclic or bicyclic 5-10 membered heterocyclic(C₀-C₄ alkyl)-, and -CZ¹Z²Z³, provided -CZ¹Z²Z³ is not C₁-C₈ alkyl, wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴:

Z¹ is selected from C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₄ alkoxy C₁-C₄ alkyl, aryl(C₀-C₄ alkyl)-, and 4-10 membered heterocyclic (C₀-C₄ alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴:

 Z^2 is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 hydroxyalkyl, C_1 - C_4 alkoxy C_1 - C_4 alkyl, C_1 - C_6 NR¹⁷R¹⁸, aryl(C_0 - C_4 alkyl)-, and 4-10 membered heterocyclic (C_0 - C_4 alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴;

 $Z^3 \text{ is selected from } C_1\text{-}C_8 \text{ alkyl}, \ R^{14}(C_2\text{-}C_4 \text{ alkyl})\text{-}, \ C_2\text{-}C_6 \text{ alkenyl}, \ C_2\text{-}C_6 \text{ alkynyl}, \ C_1\text{-}C_6 \text{ hydroxyalkyl}, \ C_1\text{-}C_4 \text{ alkoxy } C_1\text{-}C_4 \text{ alkyl}, \text{ aryl}(C_0\text{-}C_4 \text{ alkyl})\text{-}, \text{ 4-10 membered heterocyclic } (C_0\text{-}C_4 \text{ alkyl})\text{-}, \ R^{17}\text{O=C}(C_0\text{-}C_4 \text{ alkyl})\text{-}, \ R^{17}\text{OO=C}(C_0\text{-}C_4 \text{ alkyl})\text{-}, \ \text{and } R^{17}R^{18} \text{ NO=C}(C_0\text{-}C_4 \text{ alkyl})\text{-}, \ R^{17}\text{OO=C}(C_0\text{-}C_4 \text{ alkyl})\text{-}, \ R^{18}\text{ NO=C}(C_0\text{-}C_4 \text{ alkyl})\text{-}, \ R^{18}\text{ NO=C}(C_0\text{-}C_0\text{-$

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴;

or Z^1 and Z^2 , when on the same carbon atom, may form, with the carbon atoms to which they are attached, a 3-7 membered carbocyclic or 3-7 membered heterocyclic non-aromatic ring system, said carbocyclic or heterocyclic ring may be substituted with 0-2 substituents independently selected from R^{14} .

 R^{13} is selected from H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylsulfonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_0 - C_4 alkyl)-, aryl(C_1 - C_5 alkoxy)carbonyl, arylsulfonyl, heterocyclic(C_1 - C_5 alkoxy)carbonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

 $R^{14} \text{ is selected from H, } C_1-C_{10} \text{ alkyl}, NO_2, CF_3, CN, F, Cl, Br, } C_1-C_{10} \text{ alkylcarbonyl, haloalkyl, haloalkoxy, } OH, NR^6R^7(C_0-C_4 \text{ alkyl})-, R^6 C(=O)O(C_0-C_4 \text{ alkyl})-, R^6OC(=O)O (C_0-C_4 \text{ alkyl})-, R^6O (C_0-C_4 \text{ alkyl})-, R^6R^7 NC(=O) O(C_0-C_4 \text{ alkyl})-, R^6O(C_0-C_4 \text{ alkyl})-, R^6O(C_0-C_4 \text{ alkyl})-, R^6P^7 NC(=O) (C_0-C_4 \text{ alkyl})-, R^6O(C_0-C_4 \text{ alk$

wherein said aryl groups are substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, and NO₂;

 R^{15} is selected from H, halo, cyano, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, and C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from R¹⁴; and

 R^{16} is selected from H, halo, cyano, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from R¹⁴;

or when R¹⁵ and R¹⁶ are on adjacent carbon atoms, or when R¹⁵ and R¹⁶ are oriented on the same side of the double bond, as depicted in the following structure (III)

 R^{15} and R^{16} do or do not form, with the carbon atoms to which they are attached, a 3-7 membered carbocyclic aromatic or nonaromatic ring system, or a 3-7 membered heterocyclic aromatic or nonaromatic ring system, said carbocyclic or heterocyclic ring is unsubstituted or substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF_3 , and NO_2 ;

 R^{17} is selected from H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylsulfonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, hydroxy(C_2 - C_4)alkyl-, C_1 - C_3 alkoxy(C_2 - C_4)alkyl-, (C_0 - C_4 alkyl) amino(C_2 - C_4)alkyl-, aryl(C_0 - C_4 alkyl)-, aryl(C_1 - C_5 alkoxy)carbonyl, arylsulfonyl, heterocyclic(C_0 - C_4 alkyl), heterocyclic(C_1 - C_5 alkoxy)carbonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy C_1 - C_4 alkyl, oxo, F, Cl, Br, CF₃, CN, and NO₂; and

 R^{18} is selected from H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl),

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

or R¹⁷ and R¹⁸, when both are on the same nitrogen atom, may form, with the nitrogen atom to which they are attached, a heterocycle selected from 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl,

said heterocycle may be substituted with 0-3 groups selected from oxo, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, $(C_1$ - C_6 alkylcarbonyl)(C_0 - C_4 alkyl)amino-, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_0 - C_5 alkyl), heterocyclic(C_0 - C_5 alkyl), aryl(C_1 - C_5 alkoxy)carbonyl, heterocyclic(C_1 - C_5 alkoxy)carbonyl, C_1 - C_6 alkylsulfonyl arylsulfonyl and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from CH₃-, alkoxy, F, Cl, Br, CF₃, CN, and NO₂

24. (Previously presented). A compound or pharmaceutically acceptable salt thereof of Claim 23 having the formula,

$$R^{5} \xrightarrow{N}_{O} R^{2}$$

$$R^{7}$$

$$R^{7}$$

$$N^{12}$$

$$R^{13}$$

wherein

 R^1 and R^2 are each independently selected from the group consisting of H, F, Cl, Br, I, NO₂, CF₃, CN, OCF₃, OH, C₁-C₄alkoxy-, and C₁-C₄alkyl-;

R⁵ is selected from the group consisting of H, F, Cl, Br, I, NO₂, CN, CF₃, OCF₃, OH, C₁-C₄alkoxy, and CO₂H; and

R⁷ is selected from hydrogen and C₁-C₈ alkyl.

25. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 24 wherein

R⁵ is H;

R¹ is selected from the group consisting of OCF₃ and C₁-C₄alkoxy;

R² is H; and

R¹³ is hydrogen.

26. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 25 wherein:

K is C(=0); and

L is C(=O).

27. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 26 having the formula,

wherein R^{12} is $-CZ^1Z^2Z^3$.

28. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 27 wherein:

R⁷ is hydrogen; and R¹ is methoxy.

- 29. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 28 wherein Z^1 and Z^2 are independently selected from C_1 - C_8 alkyl.
- 30. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 25 wherein:

K is C(=O) and L is CHR⁹.

31. (Previously presented). A compound or a pharmaceutically acceptable salt thereof of Claim 25 wherein:

K is CHR⁹and L is C(=O).

32. (Previously presented). A compound or a pharmaceutically acceptable salt thereof of Claim 25 wherein:

K is C(=O) and L is -CR¹⁰R¹¹-(C=O).

- 33. (Previously presented). A compound or pharmaceutically acceptable salt thereof, wherein said compound is selected from:
- N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(phenylmethyl)ethanediamide;

N-[1,1-Bis(hydroxymethyl)propyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-(2-Hydroxy-1,1-dimethylethyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-2-methylalanine 1,1-dimethylethyl ester;

N-(2-Hydroxy-1,1-dimethylpentyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-[(2-Hydroxy-1,1-dimethylethyl)amino]-1,1-dimethylethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-(Dimethylamino)-1,1-dimethylethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-(1,1-Diethyl-2-propynyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

- N-[1-(Hydroxymethyl)cyclopentyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[2-(4-Fluorophenyl)-1,1-dimethylethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide:
- N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]- α -methyltyrosine methyl ester;
- N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-a-methyltryptophan methyl ester;
- N-[1,1-Bis(hydroxymethyl)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]-N-methylethanediamide;
- N-(1,1-Dimethyl-3-oxobutyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(1-methyl-1-phenylethyl)ethanediamide;
- N-(2-Hydroxy-1,2-dimethyl-1-phenylpropyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-2-methylalanine methyl ester;
- -[[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]amino]cyclopropanecarboxylic acid methyl ester;
- N-(1-Ethynylcyclohexyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- (R)-N-[1-(Hydroxymethyl)-1-methylpropyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]-N-methylethanediamide;
- N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-2-methylalanine;
- N-[1,1-Dimethyl-2-oxo-2-(1-piperidinyl)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[1,1-Dimethyl-2-(4-methyl-1-piperazinyl)-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[1,1-Dimethyl-2-(4-morpholinyl)-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- 4-[2-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]amino]-2-methyl-1-oxopropyl]-1-piperazinecarboxylic acid ethyl ester;
- N-[2-[3-(Acetylmethylamino)-1-pyrrolidinyl]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[1,1-Dimethyl-2-[methyl[2-(methylamino)ethyl]amino]-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[1,1-Dimethyl-2-oxo-2-(propylamino)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[1,1-Dimethyl-2-[[2-(methylamino)ethyl]amino]-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[1,1-Dimethyl-2-[[2-(4-morpholinyl)ethyl]amino]-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

- N-[1,1-Dimethyl-2-oxo-2-[[3-(2-oxo-1-pyrrolidinyl)propyl]amino]ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[2-[[2-(1H-Imidazol-4-yl)ethyl]amino]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[2-[[2-(Acetylamino)ethyl]amino]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[2-[[2-(1H-Imidazol-1-yl)ethyl]amino]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[1,1-Dimethyl-2-oxo-2-[[2-(4-pyridinyl)ethyl]amino]ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[1,1-Dimethyl-2-oxo-2-[[(tetrahydro-2-furanyl)methyl]amino]ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[2-[(2-Methoxyethyl)amino]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[2-(Dimethylamino)-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
- N-[2-[4-(2-Methoxyethyl)-1-piperazinyl]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide; and
- N-[1,1-Dimethyl-2-oxo-2-(2-pyridinylamino)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide.
- 34. (Previously presented). A pharmaceutical composition comprising a pharmaceutically acceptable carrier, adjuvant or vehicle and at least one compound of claim 23, or a pharmaceutically acceptable salt thereof, in an amount effective therefor.
- 35. (Withdrawn). A method for the treatment of an IMPDH-associated disorder, comprising the step of administering to a subject in need thereof an amount effective therefor of at least one compound of claim 23 or a pharmaceutically acceptable salt thereof.
- 36. (Withdrawn). The method of claim 35, wherein said IMPDH-associated disorder is selected from an autoimmune disorder, an inflammatory disorder, a cancer or tumor disorder, a DNA or RNA viral replication disease, and allograft rejection.
- 37. (Withdrawn). The method of claim 36, wherein said IMPDH-associated disorder is selected from transplant rejection, rheumatoid arthritis, inflammatory bowel disease, hepatitis B, hepatitis C, herpes simplex type I, and herpes simplex type II.

- 38. (Withdrawn). The method of claim 37, wherein said compound of claim 23, or a pharmaceutically acceptable salt thereof, is administered with one or more of: an immunosuppressant, an anti-cancer agent, an anti-viral agent, an anti-inflammatory agent, an anti-fungal agent, an anti-vascular hyperproliferation compound, or an IMPDH inhibitor other than a compound of claim 23 or a pharmaceutically acceptable salt thereof.
- 39. (Withdrawn). The method of claim 38 wherein said compound of claim 23 or a pharmaceutically acceptable salt thereof, is administered with one or more of: another IMPDH inhibitor; a cyclosporin; CTLA4-Ig; an antibody selected from anti-ICAM-3, anti-IL-2 receptor (Anti-Tac), anti-CD45RB, anti-CD2, anti-CD3 (OKT-3), anti-CD4, anti-CD80, anti-CD86, and monoclonal antibody OKT3; an agent blocking the interaction between CD40 and CD154; a fusion protein constructed from CD40 and/or CD154/gp39; an inhibitor of NF-kappa B function; a non-steroidal antiinflammatory drug (NSAID); a gold compound; an antiviral agent; an antiproliferative; a cytotoxic drug; an TNF- α inhibitor; an anti-TNF antibody; a soluble TNF receptor; and rapamycin (sirolimus or Rapamune); or derivatives thereof.