Tutorial #6: Derivation of Back-propagation Formulas for a 4-layer Neural Network (with Softmax units and ReLU)

Instructions

Given the deep neural network architecture below, write all the formulas required for updating the weights in the network. Use Gradient Descent, on-line learning method.

Neural network architecture:

- 2 inputs
- 2 outputs
- 2 hidden layers
- Activation function for output nodes: **Softmax**
- Activation function for all hidden nodes= ReLU

Formula for calculating the output of the softmax units

1.
$$o_{F_1} = \frac{\exp(netInput_{F_1})}{\exp(netInput_{F_1}) + \exp(netInput_{F_2})}$$

2.
$$o_{F_2} = \frac{\exp(netInput_{F_2})}{\exp(netInput_{F_1}) + \exp(netInput_{F_2})}$$

Updating Weights leading into the output nodes

3.
$$\delta_{F_1} = (o_{F_1} - d_{F_1})$$

4.
$$W_{h_{21}F_1} = W_{h_{21}F_1} - \eta \delta_{F_1} o_{h_{21}}$$

5.
$$W_{h_{22}F_1} = W_{h_{22}F_1} - \eta \delta_{F_1} o_{h_{22}}$$

6.
$$\delta_{F_2} = (o_{F_2} - d_{F_2})$$

7.
$$W_{h_{21}F_2} = W_{h_{21}F_2} - \eta \delta_{F_2} o_{h_{21}}$$

159740, Studies in Intelligent Systems

Tutorial #6: Derivation of Back-propagation Formulas for a 4-layer Neural Network (with Softmax units and ReLU)

8.
$$W_{h_{22}F_2} = W_{h_{22}F_2} - \eta \delta_{F_2} o_{h_{22}}$$

Updating weights leading into the nodes at hidden layer 2

9. ///
$$\delta_{h_{21}} = o_{h_{21}} (1 - o_{h_{21}}) \times \sum_{j=1}^{m} \delta_{F_{j}} W_{h_{21}F_{j}}$$

If $(h_{21} \le 0)$
 $\partial_{h_{21}} = 0$

Else

 $\partial_{h_{21}} = \sum_{j=1}^{m} \left(\partial_{F_{j}} * W_{h_{21}F_{j}}\right)$

End If

10.
$$W_{h_{11}h_{21}} = W_{h_{11}h_{21}} - \eta \delta_{h_{21}} o_{h_{11}}$$

11.
$$W_{h_{12}h_{21}} = W_{h_{12}h_{21}} - \eta \delta_{h_{21}} o_{h_{12}}$$

12. ///
$$\delta_{h_{22}} = o_{h_{22}} (1 - o_{h_{22}}) \times \sum_{j=1}^{m} \delta_{F_{j}} W_{h_{22} F_{j}}$$

$$\begin{aligned} &\text{If } (\mathsf{h}_{22} <= 0) \\ &\partial_{h22} = 0 \\ &\text{Else} \\ &\partial_{h22} = \sum_{j=1}^m \left(\partial_{F_j} * W_{h_{22}F_j}\right) \\ &\text{End If} \end{aligned}$$

$$\begin{aligned} &\textbf{13.}\ W_{h_{1}h_{22}} = W_{h_{1}h_{22}} - \eta \delta_{h_{22}} o_{h_{11}} \\ &\textbf{14.}\ W_{h_{12}h_{22}} = W_{h_{12}h_{22}} - \eta \delta_{h_{22}} o_{h_{12}} \end{aligned}$$

Updating weights leading into the nodes at hidden layer 1

15.
$$||\delta_{h_{11}} = o_{h_{11}}(1 - o_{h_{11}}) \times \sum_{j=21}^{22} \delta_{h_j} W_{h_{11}h_j}||$$

If
$$(h_{11} \le 0)$$
 $\partial_{h11} = 0$
Else
 $\partial_{h11} = \sum_{j=21}^{22} \left(\partial_{h_j} * W_{h_{11}h_j} \right)$
End If

159740, Studies in Intelligent Systems

Tutorial #6: Derivation of Back-propagation Formulas for a 4-layer Neural Network (with Softmax units and ReLU)

16.
$$W_{x_1h_{11}} = W_{x_1h_{11}} - \eta \delta_{h_{11}} x_1$$

17.
$$W_{x_2h_{11}} = W_{x_2h_{11}} - \eta \delta_{h_{11}} x$$

17.
$$W_{x_2h_{11}} = W_{x_2h_{11}} - \eta \delta_{h_{11}} x_2$$
18. $W_{h_{12}} = o_{h_{12}} (1 - o_{h_{12}}) \times \sum_{j=21}^{22} \delta_{h_j} W_{h_{12}h_j}$

If
$$(h_{12} \le 0)$$

 $\partial_{h_{12}} = 0$

Else

$$\partial_{h12} = \sum_{j=21}^{22} \left(\partial_{h_j} * W_{h_{12}h_j} \right)$$

End If

19.
$$W_{x_1h_{12}} = W_{x_1h_{12}} - \eta \delta_{h_{12}} x_1$$

20.
$$W_{x_2h_{12}} = W_{x_2h_{12}} - \eta \delta_{h_{12}} x_2$$