

Functional Programming Languages

Johannes Åman Pohjola UNSW Term 3 2022

1

Functional Programming

Many languages have been called functional over the years:

```
JavaScript?
function maxOf(arr) {
  var max = arr.reduce(function(a, b) {
    return Math.max(a, b);
  }); }
```

What do they have in common?

Definitions

Unlike imperative languages, functional programming languages are not very crisply defined.

Attempt at a Definition

A functional programming language is a programming language derived from or inspired by the λ -calculus, or derived from or inspired by another functional programming language.

The result? If it has λ in it, you can call it functional.

In this course, we'll consider *purely functional* languages, which have a much better definition.

Why Study FP Languages?

Think of a major innovation in the area of programming languages.

Monads?

ML, 1973

Haskell, 1991

Garbage Collection?

Software Transactional Memory?

Lisp, 1958

GHC Haskell, 2005

Metaprogramming? **Lisp**, **1958**

Type Inference?

Polymorphism? ML. 1973

Lazy Evaluation?

Functions as Values? Lisp, 1958

Miranda, 1985

4

Purely Functional Programming Languages

The term *purely functional* has a very crisp definition.

Definition

A programming language is *purely functional* if β -reduction (or evaluation in general) is actually a confluence. In other words, functions have to be mathematical functions, and free of *side effects*.

Consider what would happen if we allowed effects in a functional language:

```
count = 0;

f \times = \{count := count + x; return count\};

m = (\lambda y. y + y) (f 3)
```

If we evaluate f 3 first, we will get m = 6, but if we β -reduce m first, we will get m = 9. \Rightarrow not confluent.

Making a Functional Language

We're going to make a language called MinHS.

- Three types of values: integers, booleans, and functions.
- Static type checking (not inference)
- Our Purely functional (no effects)
- Call-by-value (strict evaluation)

In your Assignment 1, you will be implementing an evaluator for a slightly less minimal dialect of MinHS.

Syntax

As usual, this is ambiguous concrete syntax. But all the precedence and associativity rules apply as in Haskell. We assume a suitable parser.

Examples

Example (Stupid division by 5)

```
recfun divBy5 :: (Int \rightarrow Int) x = if x < 5 then 0 else 1 + divBy5 (x - 5)
```

Example (Average Function)

```
recfun average :: (Int \rightarrow (Int \rightarrow Int)) x = recfun avX :: (Int \rightarrow Int) y = (x + y) / 2
```

As in Haskell, (average 15 5) = ((average 15) 5).

We don't need no let

This language is so minimal, it doesn't even need **let** expressions. How can we do without them?

$$\mathbf{let}\ x :: \tau_1 = \mathbf{e}_1\ \mathbf{in}\ \mathbf{e}_2 :: \tau_2 \quad \equiv \quad \left(\mathbf{recfun}\ f :: \left(\tau_1 \to \tau_2\right)\ x = \mathbf{e}_2\right)\ \mathbf{e}_1$$

Abstract Syntax

Moving to first order abstract syntax, we get:

Concrete Syntax	Abstract Syntax
n b if c then t else e e_1 e_2 recfun f :: $(\tau_1 \rightarrow \tau_2)$ $x = e$	(Num n)
Ь	(Lit n)
if c then t else e	(If c t e)
e_1 e_2	(Apply $e_1 e_2$)
recfun $f::(\tau_1 \rightarrow \tau_2) \ x = e$	(Recfun $\tau_1 \ \tau_2 \ f \ x \ e$)
X	(Var x)

What changes when we move to higher order abstract syntax?

- Var terms go away we use the meta-language's variables.
- ② (Recfun τ_1 τ_2 f x e) now uses meta-language abstraction: (Recfun τ_1 τ_2 (f. x. e)).

Working Statically with HOAS

To Code

We're going to write code for an AST and pretty-printer for MinHS with HOAS.

Seeing as this requires us to look under abstractions without evaluating the term, we have to extend the AST with special "tag" values.

Static Semantics

To check if a MinHS program is well-formed, we need to check:

- Scoping all variables used must be well defined
- 2 Typing all operations must be used on compatible types.

Our judgement is an extension of the scoping rules to include types:

The context Γ includes typing assumptions for the variables:

$$x : Int, y : Int \vdash (Plus x y) : Int$$

Static Semantics

$$\Gamma \vdash (\operatorname{Num} n) : \operatorname{Int} \quad \Gamma \vdash (\operatorname{Lit} b) : \operatorname{Bool}$$

$$\frac{\Gamma \vdash e_1 : \operatorname{Int} \quad \Gamma \vdash e_2 : \operatorname{Int}}{\Gamma \vdash (\operatorname{Plus} e_1 e_2) : \operatorname{Int}}$$

$$\frac{\Gamma \vdash e_1 : \operatorname{Bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash (\operatorname{If} e_1 e_2 e_3) : \tau}$$

$$\frac{(x : \tau) \in \Gamma}{\Gamma \vdash (\operatorname{Var} x) : \tau} \quad \frac{\Gamma, x : \tau_1, f : (\tau_1 \to \tau_2) \vdash e : \tau_2}{\Gamma \vdash (\operatorname{Recfun} \tau_1 \tau_2 (f. x. e)) : \tau_1 \to \tau_2}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash (\operatorname{Apply} e_1 e_2) : \tau_2}$$

Let's implement a type checker.

Dynamic Semantics

Structural Operational Semantics (Small-Step)

Initial states: All well typed expressions.

Final states: (Num n), (Lit b), Recfun too!

Evaluation of built-in operations:

$$\frac{e_1 \mapsto e_1'}{(\texttt{Plus} \ e_1 \ e_2) \mapsto (\texttt{Plus} \ e_1' \ e_2)}$$

(and so on as per arithmetic expressions)

Specifying If

$$egin{aligned} & e_1 \mapsto e_1' \ \hline (ext{If } e_1 \ e_2 \ e_3) \mapsto (ext{If } e_1' \ e_2 \ e_3) \ \hline \hline & (ext{If (Lit True)} \ e_2 \ e_3) \mapsto e_2 \ \hline \hline & (ext{If (Lit False)} \ e_2 \ e_3) \mapsto e_3 \ \hline \end{aligned}$$

How about Functions?

Recall that Recfun is a final state – we don't need to evaluate it unless it's applied to an argument.

Evaluating function application requires us to:

- Evaluate the left expression to get a Recfun;
- 2 evaluate the right expression to get an argument value; and
- evaluate the function's body, after supplying substitutions for the abstracted variables.

 $e_1 \mapsto e_1'$