Genomics and Bioinformatics: Week 12

3 December 2013

1 Relating protein copy number and binding site occupancies

We are interested in the interaction kinetics of a particular transcription factor (such as $PPAR\gamma$) with a mammalian-size genome. This genome contains a large number of potential binding sites. Each site will have an average occupancy (fraction of cells with the factor bound to the site) which is a function of the available concentration of the factor and the affinity (the dissociation constant K_d or the binding free energy G(S)) of the site for the factor.

The genome (of size G[bp]) can be divided into an accessible part (size M) and an inaccessible part (size G-M). The M accessible potential binding sites are classified by binding affinity (K_d) into k+1 categories ordered from 0 (non-specific background) to k (most specific). There are m_i sites in category no i to which n_i transcription factor proteins are bound:

$$N = \sum_{i=0}^{k} n_i = \text{nb of nuclear TF proteins} \approx 10^3 - 10^4$$
,
 $M = \sum_{i=0}^{k} m_i = \text{size of accessible genome} \approx 10^8 [bp]$,

The factor's DNA binding domain is described by a position-weight matrix $w(p, \alpha)$ where p = 1, ..., L is the position within the domain and $\alpha \in \{A, C, G, T\}$ is the matching base in the DNA. We normalize the matrix w such that

$$w(p,\alpha) = e^{-g(p,\alpha)}$$
, $\max_{\alpha} e^{-g(p,\alpha)} = 1$,

namely the most frequent base α_c at each position has a weight of 1 $(g(p, \alpha_c) = 0)$. A given (accessible) site S has an energy G(S) given by summing the contributions of each position:

$$G(S) = G_c + \sum_{p=1}^{L} g(p, S(p)),$$

where G_c is, by construction, the energy of the consensus site S_c . In terms of statistical weight, this is a product of independent variables:

$$W(S) = W_c e^{-\beta \sum_{p=1}^{L} g(p,S(p))} = \prod_{p=1}^{L} W_c e^{-\beta g(p,S(p))},$$

where $W_c = W(S_c) = \exp(-\beta G_c)$. We can now express the average weight as

$$\overline{W} = \frac{1}{M} \sum_{i=0}^{k} m_i W_c e^{-\beta(G_i - G_c)} = \frac{1}{M} \sum_{i=0}^{k} m_i W_i ,$$

where G_i is a representative energy for sequences in the category i. Introducing the partition function

$$Z(N, \{m_i\}) = \sum_{\{n_i \le m_i \mid \sum n_i = N\}} \prod_{i=0}^k {m_i \choose n_i} W_i^{n_i}.$$

we can obtain the average number of proteins bound to each category of sites by

$$\overline{n}_i = -\frac{1}{\beta} \frac{\partial}{\partial G_i} \log Z(N, \{m_i\}) = W_i \frac{\partial}{\partial W_i} \log Z(N, \{m_i\}).$$

1.1 Excess of proteins over binding sites

In this regime, $M \gg N \gg \sum_{i=1}^k m_i$, we can use an approximation for the contribution from the dominating unspecific sites (category 0):

$$\begin{pmatrix} m_0 \\ n_0 \end{pmatrix} \approx \begin{pmatrix} M \\ N \end{pmatrix} \left(\frac{N}{M} \right)^{N-n_0} ,$$

which yields

$$Z(N, \{m_i\}) \approx \sum_{\{n_i \leq m_i \mid \sum n_i = N\}} {M \choose N} W_0^N \prod_{i=1}^k {m_i \choose n_i} \left(\frac{NW_i}{MW_0}\right)^{n_i}$$
$$= {M \choose N} W_0^N \prod_{i=1}^k \left(1 + \frac{NW_i}{MW_0}\right)^{m_i}.$$

therefore

$$\frac{\overline{n}_i}{m_i} = \frac{\frac{NW_i}{MW_0}}{1 + \frac{NW_i}{MW_0}} \ .$$

1.2 Excess of specific sites over proteins

In this regime, $M \gg m_i \gg N$ (i > 0), and the following approximation using multinomial coefficients:

$$\prod_{i=0}^{k} \binom{m_i}{n_i} \approx \binom{N}{n_0, \dots, n_k} \frac{\prod_{i=0}^{k} m_i^{n_i}}{N!} ,$$

leads to

$$Z(N, \{m_i\}) \approx \frac{1}{N!} \sum_{\{n_i \mid \sum n_i = N\}} {N \choose n_0, \dots, n_k} \prod_{i=0}^k (m_i W_i)^{n_i}$$
$$= \frac{1}{N!} \left(\sum_{i=0}^k m_i W_i\right)^N.$$

therefore

$$\frac{\overline{n}_i}{m_i} = \frac{NW_i}{M\overline{W}} \,. \tag{1}$$

1.3 Fitting quantitative binding data

Suppose next that we know the matrix $w(p,\alpha)$ (as well as $g(p,\alpha) = -\log w(p,\alpha)$) and we have a measure of genome-wide occupancy $\tau(S)$ (e.g. a ChIP-seq density profile). Then the average occupancy τ_i of sites in category i must be related to \overline{n}_i by a simple calibration:

$$\tau_{i} = \frac{1}{m_{i}} \sum_{j=1}^{m_{i}} \tau(S_{j})$$

$$= \lambda \frac{\overline{n}_{i}}{m_{i}} + \mu$$

$$= \lambda \frac{NW_{i}}{M\overline{W}} + \mu$$

$$= \lambda \frac{Ne^{-\beta(G_{i} - G_{c})}}{M\overline{W}/W_{c}} + \mu .$$

In this equation we have applied the approximation (1). Unknown in this expression are the scaling factors β , λ , and μ , which can be optimized by least-square fit. Given β , the average \overline{W}/W_c can be computed by sampling the matrix $w(p,\alpha)$ directly.

N and M must be determined experimentally: N by proteomics, M by ChIP-seq (H3K27ac histone modification) or by mapping DNAse hypersensitive sites.

1.3.1 Procedure

1. Determine the set M of accessible sites in the genome by using a threshold on H3K27ac ChIP-seq data.

- 2. Scan those regions with the matrix $w(p,\alpha)$ and record significant motif scores: $\{a_j\}$.
- 3. Measure the average ChIP-seq τ in a neighborhood of every motif to get $\{\tau_j\}$.
- 4. Fit λ_0 , μ and β by least square optimization of $\tau_j = \lambda_0 a_j^{\beta} + \mu$.
- 5. Estimate the average motif weight by generating random sequences $\{S_j: j=1,\ldots,J\}$ of length L: $\overline{W}/W_c=\frac{1}{J}\sum_{j=1}^J e^{-\beta\sum_{p=1}^L g(p,S_j(p))}$.
- 6. Infer λ from N, M and \overline{W}/W_c as $\lambda = \lambda_0 \frac{M\overline{W}}{NW_c}$.