Ejercicio 1

Filtro

1.1 Introducción

1.2 Análisis de sensibilidades

1.2.1 Celda Sallen-Key Pasabandas

$$w_0 = \sqrt{\frac{\frac{r_1}{r_3} + 1}{c1\,c2\,r1\,r2}};\,Q = \frac{\sqrt{\frac{r_1}{r_3} + 1}}{\sqrt{\frac{c1\,r_1}{c2\,r_2} - \left(\frac{r_1\,r_2}{r_3\,r_2} - 1\right)\sqrt{\frac{c2\,r_2}{c1\,r_1}} + 1}};\,G = \frac{\frac{r_2}{r_3} + 1}{\frac{r_1\left(\frac{c_1}{c_2} + 1\right)}{r_2} - \frac{r_1\,r_2}{r_3\,r_2} + 1};$$

Parámetro	R_1	R_2	R_3	R_4	r_a	r_b	C_1	C_2
$\begin{bmatrix} S_x^G \\ S_x^{w_0} \\ S_x^Q \end{bmatrix}$	$ \begin{array}{r} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{array} $	$ \begin{array}{r} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{array} $	-1 $-\frac{1}{2}$ 0	0 0 1	$ \begin{array}{r} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{array} $	$ \begin{array}{r} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{array} $	$ \begin{array}{r} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{array} $	$ \begin{array}{c c} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \end{array} $

1.2.2 Celda Sallen-Key Pasa-altos

Figura 1.1: Celda Sallen-Key Pasa-altos

Obtenemos analíticamente las expresiones de las sensibilidades relativas de Q para algunos componentes:

$$S_{C_1}^Q = -\frac{c1-c2}{2\,(c1+c2)}$$

$$S_{C_2}^Q = \frac{c1-c2}{2(c1+c2)}$$

El resto de las sensibilidades derivan directamente valores numéricos, por lo que reemplazando las expresiones anteriores por los valores teóricos de los componentes, obtenemos:

Parámetro	R_1	R_2	C_1	C_2
$S_x^{w_0} \ S_x^Q$	$-\frac{1}{2} \\ -\frac{1}{2}$	$-\frac{1}{2} \\ \frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$

1.2.3 Celda Sallen-Key Pasa-altos con factor ganancia

Figura 1.2: Celda Sallen-Key Pasa-altos con factor ganancia

Obtenemos analíticamente las expresiones de las sensibilidades relativas para Q y para G para algunos componentes:

$$\begin{split} S_{R_1}^Q &= -\frac{\operatorname{cl} \operatorname{rl} \operatorname{r3} + \operatorname{c2} \operatorname{rl} \operatorname{r3} + \operatorname{c2} \operatorname{r2} \operatorname{r4}}{2\operatorname{cl} \operatorname{rl} \operatorname{r3} + \operatorname{c2} \operatorname{rl} \operatorname{r3} + \operatorname{c2} \operatorname{r2} \operatorname{r4}} \\ S_{R_2}^Q &= \frac{\operatorname{cl} \operatorname{rl} \operatorname{r3} + \operatorname{c2} \operatorname{rl} \operatorname{r3} + \operatorname{c2} \operatorname{r2} \operatorname{r4}}{2\operatorname{cl} \operatorname{rl} \operatorname{r3} + \operatorname{c2} \operatorname{r2} \operatorname{r4}} \\ S_{R_3}^Q &= -\frac{\operatorname{c2} \operatorname{r2} \operatorname{r4}}{\operatorname{r3} \left(\operatorname{r1} \left(\operatorname{cl} + \operatorname{c2}\right) - \frac{\operatorname{c2} \operatorname{r2} \operatorname{r4}}{\operatorname{r3}}\right)} \\ S_{R_4}^Q &= \frac{\operatorname{c2} \operatorname{r2} \operatorname{r4}}{\operatorname{r3} \left(\operatorname{r1} \left(\operatorname{cl} + \operatorname{c2}\right) - \frac{\operatorname{c2} \operatorname{r2} \operatorname{r4}}{\operatorname{r3}}\right)} \\ S_{C_1}^Q &= -\frac{\operatorname{c1} \operatorname{r1} \operatorname{r3} - \operatorname{c2} \operatorname{r1} \operatorname{r3} + \operatorname{c2} \operatorname{r2} \operatorname{r4}}{2\operatorname{c1} \operatorname{r1} \operatorname{r3} + \operatorname{c2} \operatorname{r2} \operatorname{r4}} \\ S_{C_2}^Q &= \frac{\operatorname{c1} \operatorname{r1} \operatorname{r3} - \operatorname{c2} \operatorname{r1} \operatorname{r3} + \operatorname{c2} \operatorname{r2} \operatorname{r4}}{2\operatorname{c1} \operatorname{r1} \operatorname{r3} + \operatorname{c2} \operatorname{r2} \operatorname{r4}} \\ S_{R_3}^Q &= -\frac{\operatorname{r4}}{\operatorname{r3} + \operatorname{r4}} \\ S_{R_4}^Q &= \frac{\operatorname{r4}}{\operatorname{r3} + \operatorname{r4}} \end{split}$$

El resto de las sensibilidades derivan directamente valores numéricos, por lo que reemplazando las expresiones anteriores por los valores teóricos de los componentes, obtenemos:

Parámetro	R_1	R_2	R_3	R_4	C_1	C_2
S_x^G	0	0			0	0
$S_x^{\widetilde{w}_0}$	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$

1.2.4 Celda Tow-Thomas

Figura 1.3: Celda Tow-Thomas

Se despeja la transferencia total del sistema:

$$H(s) = -\frac{{\rm R_1\,R_4\,r_b}}{{\rm R_3\,(C_1\,C_2\,R_1\,R_2\,R_4\,R_b\,s^2 + C_2\,R_1\,R_2\,r_a\,s + R_4\,r_b)}}$$

De la cual se despejan los siguientes parámetros:

$$w_0 = \sqrt{\frac{r_b}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot r_a}}; \ Q = \sqrt{\frac{C_1 \cdot r_b}{C_2 \cdot R_1 \cdot R_2 \cdot r_a}}; \ G = -\frac{R_1}{R_4};$$

Para la ganancia, obtenemos las sensibilidades con respecto a todos los componentes:

Parámetro	R_1	R_2	R_3	R_4	r_a	r_b	C_1	C_2
S_x^G	1,	0	-1	0	0_1	0	0	0
$S_x^{w_0}$	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2} \mid$
S_x^{ω}	$-\frac{1}{2}$	$-\frac{1}{2}$	U	1	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$