Metody Inżynierii Wiedzy

Łaczenie róznych modeli w celu działania zespołowego Dr inż. Michał Majewski

mmajew@pjwstk.edu.pl

materialy: ftp(public): //mmajew/MIW

Bias (błąd, stronniczość) Variance (wariancja)

Bias (błąd, stronniczość) Variance (wariancja)

Bias - systematyczny błąd np. gdy model jest zbyt uproszczony

Bias (błąd, stronniczość) Variance (wariancja)

wariancja jak bardzo różnią się prognozy modelu, gdy jest uczony na różnych podzbiorach danych treningowych

Drzewo decyzyjne

Drzewo klasyfikacji

Drzewo regresyjne

Drzewo decyzyjne

Dane wejściowe

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Szukamy węzła startowego (korzenia)

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Porównanie wskaźników zanieczyszczeń – wykład 5

Entropia

Dla wszystkich niepustych klas $p(i|t) \neq 0$:

$$I_H(t) = -\sum_{i=1}^{c} p(i|t) \log_2 p(i|t)$$

- Wyrażenie p(i|t) oznacza proporcję pomiędzy próbkami należącymi do klasy i w danym węźle t,
- Entropia będzie wynosiła 0, jeśli wszystkie próbki w węźle będą należały do tej samej klasy,
- Maksymalną wartość osiągnie wtedy, gdy będziemy mieli do czynienia z jednorodnym rozkładem klas,
- Poprzez kryterium entropii próbujemy zmaksymalizować wzajemne informacje w drzewie.

Błąd klasyfikacji

Błąd klasyfikacji możemy określić jako:

$$I_E(t) = 1 - \max\{p(i|t)\}$$

- Jest to kryterium przydatne do przycinania,
- Nie jest zalecane do rozwijania drzewa, ponieważ wykazuje mniejszą czułość na zmiany w rozkładzie prawdopodobieństwa klas wewnątrz węzła.

Wskaźnik Giniego

Wskaźnik Giniego możemy interpretować jako kryterium służące do minimalizowania prawdopodobieństwa nieprawidłowej klasyfikacji:

$$I_G(t) = \sum_{i=1}^{c} p(i|t)(1 - p(i|t)) = 1 - \sum_{i=1}^{c} p(i|t)^2$$

 Podobnie jak w przypadku entropii, wskaźnik Giniego uzyskuje największą wartość, gdy klasy są między sobą idealnie wymieszane; np. dla binarnej konfiguracji klas (c = 2):

$$I_G(t) = 1 - \sum_{i=1}^{c} p(i|t)^2 = 0,5$$

- Wskaźnik Giniego i entropia generują zazwyczaj podobne wyniki,
- Zamiast różnych kryteriów zanieczyszczeń, lepiej jest eksperymentować z różnymi wartościami granicy przycinania.

Dane wejściowe

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Kryteria rozgałęzienia: Wskaźnik Giniego IG Gini impurity

$$I_{G,pop,false} = 1 - \left(\frac{2}{2+1}\right)^2 - \left(\frac{1}{2+1}\right)^2 = 0.444$$

$$I_{G,pop,true} = 1 - \left(\frac{1}{1+3}\right)^2 - \left(\frac{3}{1+3}\right)^2 = 0.375$$

$$I_{G,popcorn} = \left(\frac{4}{4+3}\right) 0.375 + \left(\frac{3}{4+3}\right) 0.444 = 0.405$$

Dane wejściowe

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

$$I_{G.soda}$$
=0.214

Kryteria rozgałęzienia: Wskaźnik Giniego IG Gini impurity

Kryteria rozgałęzienia: Wskaźnik Giniego IG Gini impurity

https://www.youtube.com/watch?v= L39rN6gz7Y Decision and Classification Trees, StatQuest with Josh Starmer

Dane wejściowe

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice	
Yes	Y 9.5	7	No	
Yes	15	12	No	
No	Yes	18	Yes	
No	26.5	35	Yes	
Yes	36.5	38	Yes	
Yes	44	50	No	
No	66.	83	No	

Kryteria rozgałęzienia: Wskaźnik Giniego IG Gini impurity

$$I_{G,9.5,true} = 1 - \left(\frac{0}{1}\right)^2 - \left(\frac{1}{1}\right)^2 = 0$$

$$I_{G,9.5,false} = 1 - \left(\frac{3}{3+3}\right)^2 - \left(\frac{3}{3+3}\right)^2 = 0.5$$

$$I_{G,9.5} = \left(\frac{1}{1+6}\right) 0 + \left(\frac{6}{1+6}\right) 0.5 = \mathbf{0.429}$$

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Y 9.5	7	No
Yes	15	12	No
No	Yes	18	Yes
No	26.5	35	Yes
Yes	36.5	38	Yes
Yes	44	50	No
No	66.5	83	No
	_		

Obliczamy IG dla każdej granicy

Kryteria rozgałęzienia: **Wskaźnik Giniego IG** Gini impurity

$$I_{G,9.5,true} = 1 - \left(\frac{0}{1}\right)^2 - \left(\frac{1}{1}\right)^2 = 0$$

$$I_{G,9.5,false} = 1 - \left(\frac{3}{3+3}\right)^2 - \left(\frac{3}{3+3}\right)^2 = 0.5$$

$$I_{G,9.5} = \left(\frac{1}{1+6}\right) 0 + \left(\frac{6}{1+6}\right) 0.5 = \mathbf{0.429}$$

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

 $I_{G,popcorn}$ =0.405

Kryteria rozgałęzienia: **Wskaźnik Giniego IG** Gini impurity

 $I_{G,soda}$ =0.214

Dane wejściowe

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Dane wejściowe

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Drzewo decyzyjne – brak danych

Dane wejściowe

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	?	Yes
No	Yes	35	Yes
Yes	?	38	Yes
Yes	No	50	No
No	No	83	No

- Usuwanie rekordów z brakującymi danymi
- Uzupełnianie brakujących danych
- Użycie algorytmów imputacji
- Znaczniki brakujących danych
- Użycie algorytmów uczenia maszynowego do prognozowania brakujących wartości

Kodujemy

public/mmajew/MIW/05/
00_decision tree.py

Losowy las

Losowy las to zbiór drzew decyzyjnych, które są szkolone niezależnie od siebie na losowych podzbiorach danych i/lub losowych podzbiorach cech, a następnie agregowane w celu uzyskania stabilnego i wydajnego modelu klasyfikacji lub regresji.

Dobór liczby drzew w losowym lesie może być ustalony empirycznie przy użyciu walidacji krzyżowej lub za pomocą metod automatycznego strojenia hiperparametrów, takich jak RandomizedSearchCV lub GridSearchCV, w celu znalezienia optymalnej liczby drzew, która zapewnia najlepszą wydajność na zbiorze testowym. Typowe wartości liczby drzew znajdują się w zakresie od kilkudziesięciu do kilkuset, ale ostateczny wybór zależy od charakterystyki danych i złożoności problemu klasyfikacji lub regresji.

Drzewo decyzyjne vs. Losowy las

Drzewo decyzyjne (Decision Tree Classifier)

- ✓ Prostota interpretacji: Drzewa decyzyjne są łatwe do interpretacji i wizualizacji
- ✓ Obsługa zarówno danych kategorycznych, jak i numerycznych
- ✓ Skuteczność w danych o niskiej do średniej złożoności: W przypadku danych o prostszej strukturze, drzewa decyzyjne mogą osiągać dobre wyniki bez konieczności zbyt skomplikowanych procedur.
- Podatność na przeuczenie: Drzewa decyzyjne mają tendencję do tworzenia zbyt skomplikowanych modeli, które dobrze dopasowują się do danych treningowych, ale słabo generalizują na nowe dane.
- Niestabilność: Małe zmiany w danych treningowych mogą prowadzić do znaczących zmian w strukturze drzewa decyzyjnego.

Losowy las (Random Forest Classifier)

- ✓ Odporność na przeuczenie: Losowe lasy agregują wiele drzew, co pomaga w średnich wynikach i zmniejsza wariancję modelu.
- ✓ Skuteczność na dużych zbiorach danych: Losowe lasy dobrze radzą sobie z dużymi zbiorami danych i wieloma cechami
- ✓ Brak potrzeby ręcznego strojenia parametrów: W przeciwieństwie do drzew decyzyjnych, losowe lasy rzadko wymagają ręcznego dostrojenia parametrów
- Mniej interpretowalne: Losowe lasy są mniej interpretowalne niż pojedyncze drzewa decyzyjne
- Zwiększone zużycie zasobów: W porównaniu z pojedynczym drzewem decyzyjnym, losowe lasy mogą wymagać więcej zasobów obliczeniowych ze względu na potrzebę szkolenia i predykcji wielu drzew.

Original Dataset

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease	Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	
No	No	No	125	No	Yes	Yes	Yes	180	
Yes	Yes	Yes	180	Yes	No	No	No	125	
Yes	Yes	No	210	No	Yes	No	Yes	167	
Yes	No	Yes	167	Yes	Yes	No	Yes	167	

bootstrap losowa próba z powtórzeniami

"feature bagging" lub "feature subsampling" losujemy losowe podzbiory cech np. kolumny GBC i BA

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	Yes No		167	Yes

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease	
Yes	Yes	Yes	180	Yes	
No	No	No	125	No	
Yes	No	Yes	167	Yes	
Yes	No	Yes	167	Yes	

...i losowo wybieramy kolejne kolumny do analizy

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease	
Yes	Yes	Yes	180	Yes	
No	No	No 125		No	
Yes	No	Yes	167	Yes	
Yes	No	Yes	167	Yes	

I tak mamy losowy las, jak go użyć?

Losowy las – nowy pacjent

https://www.youtube.com/watch?v=J4Wdy0Wc_xQ StatQuest: Random Forests Part 1 - Building, Using and Evaluating

Losowy las – nowy pacjent

https://www.youtube.com/watch?v=J4Wdy0Wc xQ StatQuest: Random Forests Part 1 - Building, Using and Evaluating

Losowy las – testowanie danych

Original Dataset

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease	Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	He Dis
No	No	No	125	No	Yes	Yes	Yes	180	Y
Yes	Yes	Yes	180	Yes	No	No	No	125	1
Yes	Yes	No	210	No	Yes	No	Yes	167	Υ
Yes	No	Yes	167	Yes	Yes	No	Yes	167	Υ

Out-Of-Bag Dataset

Losowy las – na co zwrócić uwagę?

- ☐ Liczba drzew **OVER 9000!!!**
- ☐ Parametry drzewa, np.: maksymalna głębokość, minimalna liczba próbek wymaganych do podziału węzła i minimalna liczba próbek wymaganych w liściu
- Liczba cech
- ☐ Kryterium podziału
- ☐ Różnorodność danych (zwiększenie różnorodności między drzewami)
- ☐ Ocena modelu (OOB, walidacja krzyżowa)
- ☐ Interpretowalność modelu
- ☐ Skalowanie
- Monitorowanie wydajności

Kodujemy

public/mmajew/MIW/05/
01_random forest.py

- znalezienie optymalnego zestawu hiperpłaszczyzn, które mogą skutecznie rozdzielić dane należące do różnych klas lub przewidywać wartości w przypadku regresji.
- * maksymalizacja marginesu między hiperpłaszczyzną a najbliższymi punktami danych różnych klas, zwanych wektorami nośnymi.
- w przypadku nieliniowych zbiorów danych, SVM może stosować tzw. funkcje jądra, które pozwalają na wyznaczenie bardziej skomplikowanych granic decyzyjnych.

https://datatron.com/wpcontent/uploads/2021/05/Support-Vector-Machine.png

Próg, wartość graniczna threshold Maximal Margin Classifier Dane odstające outliers low bias, high variance

Próg, wartość graniczna threshold Soft margin higher bias, Błąd systematyczny na danych treningowych bias lower variance

"Overlapping" klasy w danych treningowych nakładają się. Nie ma jednoznacznej granicy decyzyjnej (hiperpłaszczyzny)

Kodujemy

public/mmajew/MIW/05/
02_SVM_log reg.py

Coding the SVM algorithm in numpy

from sklearn import svm

Uczenie zespołów

Celem metod zespołowych (ensemble methods) jest łączenie różnych klasyfikatorów w jeden meta klasyfikator wykazujący większa skuteczność uogólniania niż każdy ze składowych algorytmów.

Projekt 3 a. (na 5 pkt.)

Szkic: public/mmajew/MIW/05/ 03 VotingClassifier.py

Projekt wykonaj z wykorzystaniem pakietu scikit-learn

- 1. Stwórz zbiór danych za pomocą funkcji make_moons(n_samples = 10000, noise = 0.4).
- 2. Rozdziel uzyskany zestaw danych na podzbiory uczący i testowy przy użyciu metody train_test_split().
- 3.a Wytrenuj klasyfikatory LogisticRegression, SVM oraz RandomForestClassifier i połącz klasyfikatory SVM, LogisticRegression oraz RandomForestClassifier w jeden zespół (VotingClassifier).
- 4. Oceń osiągnięte rezultaty: wyświetl dokładność trenowania i testowania, narysuj kontur decyzji na podstawie predykcji VotingClassifier.

Termin 30.04