Synthèses inorganique

Agrégation 2020

Eau de Javel

HYPOCHLORITE DE SODIUM EN SOLUTION ≥ 5 % CL ACTIF

Danger

H314 - Provoque des brûlures de la peau et des lésions oculaires graves

H400 - Très toxique pour les organismes aquatiques

EUH 031 - Au contact d'un acide, dégage un gaz toxique

Nota : Les conseils de prudence P sont sélectionnés selon les critères de l'annexe 1 du réglement

CE n° 1272/2008.

231-668-3

Synthèse industrielle

Cellule à membrane

Cellule à mercure

https://www.eurochlor.org/about-chlor-alkali/how-are-chlorine-and-caustic-soda-made/membrane-cell-process/

Électrosynthèse de l'eau de Javel

Dosage de l'eau de Javel

Dosage de l'eau de Javel

<u>Titrage indirect:</u>

(1) Ajout de KI en excès:

ClO⁻(aq) + 2H⁺(aq) + 2 e- = Cl⁻(aq) + H₂O(l)

$$I^{-}(aq) = I_{2}(aq) + 2e$$

$$Clo^{-}(aq) + 2I^{-}(aq) + 2H^{+}(aq) = Cl^{-}(aq) + I_{2}(aq) + H_{2}O(l)$$

(2) Titrage de I_2 par $S_2O_3^{2-}(aq)$:

$$2 S_2 O_3^{2-}(aq) + I_2(aq) = 2I^-(aq) + S_4 O_6^{2-}(aq)$$

(3) À l'équivalence :

$$n(I_2) = \frac{n(S_2O_3^{2-})}{2} = \frac{[S_2O_3^{2-}] V_{eq}}{2} = n(ClO^-)_{titré}$$

Exemples de complexes

• Nom : $[Cu(H_2O)_6]^{2+}$

• Atome central: Cu

• Ligand : H₂O

Exemples de complexes

• Nom : $[Fe(acac)_3]$

• Atome central: Fe

• Ligand :

Synthèse de $[Fe(acac)_3] = Fe(C_5H_7O_2)_3$

Calcule du rendement

	Fe(Cl) ₃ (s)) +	$-3C_5H_8O_2(I) =$	Fe(C ₅ H ₇ O ₂) ₃ (s)	+	3 Cl ⁻ (aq)	+	3H ⁺ (aq)
t=0	n _o	n_1	0		0		0
t=t _{eq}	n0-ξ	3 ξ	$n_3 = \xi$		3ξ		3ξ

- Réactif limitant : Fe(Cl)₃(s)
- Avancement maximal : $n^{th\acute{e}o}(Fe(C_5H_7O_2)_3) = 1,85 \text{ mmol}$

$$\rho = \frac{n^{exp}(\operatorname{Fe}(C_5H_7O_2)_3)}{n^{th\acute{e}o}(\operatorname{Fe}(C_5H_7O_2)_3)}$$

Spectre du fer(acac)₃

 λ max = 269nm

L'Hémoglobine

Hème et transport du dioxygène

Merci