Deep Q-Learning for Reducing Traffic Delay

Based on

Human-level control through deep reinforcement learning

Volodymyr Mnih1*, Koray Kavukcuoglu1*, David Silver1*, Andrei A. Rusu1, Joel Veness1, Marc G. Bellemare1, Alex Graves1, Martin Riedmiller1, Andreas K. Fidjeland1, Georg Ostrovski1, Stig Petersen1, Charles Beattie1, Amir Sadik1, Ioannis Antonoglou1, Helen King1, Dharshan Kumaran1, Daan Wierstra1, Shane Legg1 & Demis Hassabis1

ABHINAV SUNDERRAJAN

Ramp metering

TUMCREATE

Control the flow of vehicles along an on-ramp of an expressway using traffic lights to:-

- Minimize delay along the main line expressway and the ramps.
- 2) Avoid shock waves due merging of vehicles.
- 3) Minimize accidents and collisions to increase safety.

Source: Parsons Brinckerhoff.

Environment

TUMCREATE

13 km stretch of P.I.E (Pan Island Expressway) in central Singapore with all on ramps and off ramps.

GOAL

TUMCREATE

Find a ramp metering policy which minimizes the total delay experienced by all vehicles over a simulated time horizon of K timesteps.

Traffic Emulator Model

Stochastic Cell transmission Model macroscopic traffic simulation of P.I.E section with all on off ramps

Total number of cells in the simulated stretch of the expressway is 212

Algorithm 1 CTM based macroscopic predictive simulation.

```
1: while t < K do
         for each c_i \in \mathbb{C} do
 2:
             update sending and receiving potentials.
 3:
         for each c_i \in \mathbb{C} do
             update outflow.
 5:
         for each c_i \in \mathbb{C} do
             update number of vehicles.
             update density.
 8:
        for each c_i \in \mathbb{C} do
 9:
             update average speed v_i
10:
             update the maximum number of vehicles N_i^{max}
11:
        t = t + k.T_{ctm}
12:
```

Traffic Emulator State and Action

- ❖ State of the emulator at time t is defined in terms of state of each cell $c_i ∈ C$ is defined as $\frac{n_t}{n_M a x_t}$ which represents the ratio of the number of vehicles in c_i to the maximum number of vehicles that can be accommodated in c_i .
- \clubsuit The number of actions that can be taken at each state is $2^4 = 16$
 - Number of controllable on ramps =4
 - ☐ Each traffic light at these on ramps can be either R or G.
 - ☐ Hence total number of actions is 2⁴
 - \Box Generally speaking if number of ramps = ρ then number of actions is 2^{ρ}

Traffic Emulator Reward

TUMCREATE

- ❖ The traffic lights at all on ramps change phase (or continue to be in the same phase) every 12 seconds. Note that the simulation time step is 4 seconds.
- \diamond Delay for all cells $c_i \in C$ at time step k is defined as

$$r(k+1) = \begin{cases} 100.0, & \text{if } k = K \text{ and } D_{total}^{noRM} > D_{total} \\ -\omega_1 \sum_{c_i \in \mathbb{C}} d_i(k), & \text{otherwise} \end{cases}$$
(4)

Here D^{noRM} is the total delay over K time-steps when there is no ramp metering while D represents the delay with ramp metering as suggested by the neural network.

- Thus the goal of the reinforcement learning game is to take an action which minimizes the delay over K time steps and perform better than the baseline of no ramp metering.
- ❖ Hence each episode consist of $\frac{K}{12}$ < s, a, r', s', a' > state action pairs.

Training

TUMCREATE

Algorithm 1 Deep Q learning for adaptive ramp metering control.

1: Initialize replay memory \mathbb{M} with size N. 2: Initialize the neural network (action-value function) Q with weights Θ . 3: Initialize the target action-value function (another neural network) \bar{Q} with weights $\bar{\Theta} \leftarrow \Theta$. 4: repeat 5: Set random flow rates at all source cells. 6: Warm up traffic emulator. 7: for k = 0, K do 8: Get the state s_t from the cell network in emulator. if $random_{double} < \epsilon$ then 9: 10: Select random action a_t 11: else 12: Select action $a_t = argmax_aQ(s_t, a; \theta)$ 13: Observe the reward $r_{t+1} = d(k)$ for the action a_t and the new cell state s_{t+1} 14: Create transition tuple $T = (s_t, a_t, r_{t+1}, s_{t+1})$ 15: if $size(\mathbb{M}) < N$ then 16: Add T to memory M17: else 18: replace first element in M with the tuple T 19: Sample random mini-batch \mathbb{B} from \mathbb{M} For all $T \in \mathbb{B}$ 20: $y_j = \begin{cases} r_j + \gamma \max_a(\bar{Q}(s_{j+1}, a'; \bar{\Theta})) & \text{if } (j+1) < k \\ r_j, & \text{otherwise} \end{cases}$ 21: Use $(y_i - Q(s_i, a_i; \Theta))^2$ for gradient 22: descent with respect to Θ . After C steps, reset $\bar{Q} \leftarrow Q$ 23: 24: until $epoch < epoch_{max}$

Hyper-parameters

TUMCREATE

Hyper Parameter	Value	Description			
number of hidden layers	2	The number of hidden layers in the neural network used for Deep Q-learning. The first hidden layer consists of 200 neurons while the second hidden layer is composed of 150 neurons.			
learning rate	0.00025	Learning rate used by the RMSProp algorithm.			
discount factor	0.98	Discount factor used in Q-learning update.			
Replay memory size	150000	Stochastic gradient descent updates are sampled from this number of recent $(s_t, a_t, r_{t+}, s_{t+1})$ tuples stored in memory.			
mini batch size	32	The batch size used by the stochastic gradient descent (SGD) update of neural network weights.			
rms decay	0.95	Gradient momentum used by the RMSProp algorithm.			
initial exploration	1.0	The initial ϵ in the ϵ greedy evaluation.			
final exploration	0.1	The final ϵ in the ϵ greedy evaluation.			
target network update frequency	50	The frequency with which target network (in number of steps) is evaluated.			

Number of epochs trained=1000

Neural Network

TUMCREATE

```
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(random.nextLong())
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.iterations(1)
.activation("leakyrelu")
.weightInit(WeightInit.RELU)
.learningRate(learningRate)
.updater(Updater.RMSPROP)
.rmsDecay(0.9)
.regularization(true)
.12(2.0e-4)
.list()
.layer(0,
new DenseLayer.Builder().nIn(numOfCells).nOut(204).activation("leakyrelu")
.weightInit(WeightInit.RELU).build())
.layer(1,
new DenseLayer.Builder().nIn(204).nOut(150).activation("leakyrelu")
.weightInit(WeightInit.RELU).build())
.layer(2,
new OutputLayer.Builder(LossFunction.MSE).activation("identity").nIn(150)
.nOut(numOfActions).build()).pretrain(false).backprop(true).build();
```

TESTING

- 1. Generate random flow at the source links with constant mean inter-arrival times.
- 2. Determine the net delay experienced by all vehicles with no ramp metering over K time steps.
- 3. Determine the net delay experienced by all vehicles with the ramp metering strategy determined by the trained neural network i.e. choose the action with the highest assigned probability by feeding forward the current state.
- 4. Compare and plot the results from steps 2 and 3.

RESULTS

TUMCREATE

PROOF OF Q-LEARNING

Without Ramp Metering	With Deep-RL based ramp metering				
1026160	947915				

Source Link ID	Mean IAT				
30633	3800				
82	1400				
29310	1300				
28946	1000				
30790	1400				
37980	1400				
28595	1400				
29152	1000				
29005	1000				
29553	1500				
28613	1500				
31991	800				

RESULTS

TUMCREATE

12	4254	RGGG	492	5225	GGGR	972	6492	RGGG	1452	8217	GGGR
24	3980	GGGR	504	5349	RGGG	984	6551	RGGG	1464	8215	GGRG
36	3998	RGRR	516	5350	GGGR	996	6611	GGGR	1476	8202	RGGG
48	4049	RGGG	528	5389	GGGR	1008	6620	GGGR	1488	8272	RGGG
60	4086	GRRR	540	5463	GGGR	1020	6665	RGGG	1500	8374	RGGG
72	4086	GRRR	552	5466	RGGG	1032	6717	RGRR	1512	8399	RGRR
84	4129	GRRR	564	5539	RGRG	1044	6731	GGGR	1524	8408	RGRR
96	4120	RGGG	576	5532	RGGG	1056	6765	GGRR	1536	8442	RGRR
108	4143	RGGG	588	5477	GGGR	1068	6802	GGGG	1548	8509	RGGG
120	4164	RGGG	600	5528	GGGG	1080	6847	RGRR	1560	8583	RRGR
132	4214	RGRG	612	5605	GRGG	1092	6938	RGGG	1572	8609	RGGG
144	4203	GGRR	624	5597	RGRG	1104	6957	RGGG	1584	8627	GGGR
156	4219	GGGR	636	5653	RGGG	1116	7037	GGGG	1596	8675	GGGR
168	4254	GGGR	648	5663	GGGR	1128	7106	RGGG	1608	8699	RGGG
180	4318	RGGG	660	5677	GGGR	1140	7117	GGGG	1620	8711	GGGR
192	4377	RGGG	672	5706	RGGG	1152	7122	RGGG	1632	8751	RGGG
204	4359	RGGG	684	5727	GGGR	1164	7268	GGGR	1644	8794	RGRR
216	4391	RGGG	696	5754	GGGR	1176	7300	RGGG	1656	8946	RGGG
228	4448	GGGR	708	5774	RGGG	1188	7312	RGGG	1668	9005	RGGG
240	4464	GRRR	720	5839	RGGG	1200	7326	RGGG	1680	9096	RGGG
252	4529	RGRR	732	5900	GGGR	1212	7384	RGRG	1692	9108	GGGR
264	4587	RGGR	744	5920	GGRR	1224	7439	GGGR	1704	9193	GGGR
276	4641	GGRR	756	5887	GGGR	1236	7504	GGRR	1716	9233	RGGG
288	4730	RGRR	768	5924	GGGR	1248	7582	RGGG	1728	9317	GRRR
300	4761	RGRR	780	5935	GGGR	1260	7588	RGGR	1740	9378	RGGG
312	4766	RGGG	792	5988	GGGG	1272	7608	GRRR	1752	9388	RGGG
324	4721	GGGG	804	6026	GGGR	1284	7643	GGRR	1764	9455	RGGG
336	4780	GGGR	816	6111	GGGR	1296	7601	RGGG	1776	9559	GGGR
348	4841	GGGR	828	6113	GGGR	1308	7687	RGGG	1788	9605	RGGG
360	4856	RGGG	840	6168	GGGR	1320	7760	GGRG	1800	9716	GGGR
372	4884	GGRR	852	6259	GGGG	1332	7806	RGGG			
384	4972	GGGG	864	6261	RGGG	1344	7891	RGGG			
396	5018	GGGR	876	6301	GGGR	1356	7897	GGGG			
408	5056	GGGR	888	6333	GGGR	1368	7945	GGRR			
420	5107	GGGG	900	6413	GGGR	1380	7984	GGGR			
432	5090	GGGG	912	6461	RGGG	1392	7970	GGGR			
444	5156	GGRG	924	6426	RGGG	1404	8012	RGGR			
456	5175	RGGG	936	6436	RGGG	1416	8082	RGGG			
468	5188	RRRG	948	6453	RGRR	1428	8132	GGRR			40
480	5240	RGGG	960	6493	RGRG	1440	8155	RGGG			13

RESULTS

TUMCREATE

50 Random flow rates

CONCLUSION

- 1. The results how that deep reinforcement learning has promise for optimizing traffic flow through control mechanisms such a ramp metering.
- 2. A more suitable emulator (Cellular Automata based) is required to analyze and optimize the effect of other control mechanisms such as variable speed limits, adaptive cruise.
- 3. I have not found a single paper which uses Deep Q learning for traffic flow optimization and more specifically with ramp metering. This is the biggest contribution of this paper.