

Funnel Plots

Chris Mainey

Senior Statistical Intelligence Analyst Healthcare Evaluation Data (HED)

Univeristy Hospitals Birmingham NHS FT

www.hed.nhs.uk

1/19

Healthcare Evaluation Data (HED)

www.hed.nhs.uk

- Online hospital benchmarking system
- Statistical models and analysis tools
- Activity, Mortality, Readmissions, Length-of-Stay, Marketshare etc.
- Used by ~60 NHS and other organisations
- Training and support
- Using national NHS HES data

HED R Training

We offer a variety of R training courses, both public or onsite.

- Two day introduction course, public or onsite. (24th-25th March, 9th-10th June)
- We also offer other courses, including:
 - Introduction to R Markdown 26th Feb
 - Machine Learning methods in R 28th 29th April
 - Regression Modelling in R 22nd 23rd September
 - R Essentials 20th October

Discounted price for HED customers

More info, or book at: https://www.hed.nhs.uk/Info/hed-courses.aspx

3 / 10

Overview

- What's a funnel plot?
- What's overdispersion?
- What do we do about it?
- If you are interested (or if we have time):
 - · How to set up and build an R package
 - What I've learned from the process
 - How to publish it to CRAN

https://github.com/chrismainey/FunnelPlotR

Context:

Monitoring Standardised Mortality

- How do we compare between organisations with different patients?
- Direct standardisation:
 - Adjust all to common standard (e.g. European Standard Popn)
- Indirectly Standardised Ratios:
 - Predict an expected rate for each unit, based on average (regression model)
 - Case-mix adjustment

$$SR = \frac{\Sigma(\text{observed deaths})}{\Sigma(\text{predicted deaths})}$$

• Predicted = Expected, but \neq 'preventable'

5/19

Standardised Ratio example

- 10 identical patients:
 - Risk factor of model
 - E.g. age, sex, primary diagnosis etc.
- If these patients had a probability of death of 0.3 (30%)
 - Expected deaths = 10 * 0.3 = 3
- If we then observed 4 deaths:
 - ullet > 1 = higher than expected
 - \bullet < 1 = lower than expected

Question:

How can we present these data appropriately?

Visualising Uncertainty in SMRs

- Confidence intervals
- Statistical process control charts
- Funnel plots (Speigelhalter, 2005a)

\$plot

Funnel plot of NHSDigital's SHMI data Oct18-Spet19

Funnel Limits and Overdispersion

- Plot above is based on Poisson disribution, used for counts
- Poisson distribution has fixed variance, mean and variance = μ :

$$Pr(Y = y) = \frac{\mu^y e^{-\mu}}{y!}$$

where: μ is the expected average count or rate,

- e is Euler's number (the base of the natural logarithm: ~2.71828),
- and y! is the factorial of y.

"Real-world" data isn't perfectly Poisson distributed!

- Causes us to underestimate the error in the data
- Often caused by under-specification, poor parameterisation, clustering, aggregation

9/19

Clustering of organisations

- Regression assume independence
- We've got repeated measurements form the same organsiation.
- Both within trust variation σ
- And between trust variation τ
- Can model with a random-intercept

Traditional regression model has single-intercept

Random-intercepts

11 / 19

z-scores (1)

- Compare different indicators on standard scale
- Scale indicators by their standard deviation: $\frac{Y-Target}{\sigma^2}$
- · This is only valid for normally distributed data
- · Proportions, counts & standardised ratios not normally distributed

Transformations:

- CQC/Spiegelhalter: square-root + Winsorization
- SHMI: natural logarithm + truncation

Dispersion ratio is calculated on winsorised/truncated scores:

$$\phi = \frac{\sum_{i=1}^n Z_i^2}{n}$$

z-scores (2)

The dispersion ratio (ϕ):

- <=1, the set $au^2=0$
- Otherwise:

$$\tau^2 = \frac{(n\phi - (n-1))}{\sum_{i=1}^n W_i - (\sum_{i=1}^n W_i^2 / \sum_{i=1}^n W_i)}$$

Where:

- ullet W_i is $1/\sigma^2$, the within Trust (i) standard deviation
- ϕ is the dispersion ratio

These techniques are imprecise estimates of random intercepts in models

12 / 10

Funnel Plots

- Control limits commonly 95 and 99% (\approx 2 and 3 σ)
- OD issue:
 - Limits are independent of data, and relate to sample size (predicted)
 - Limits are too tight.
- We can inflate them using the τ^2 calculated above.
- Control limits are then, functionally: $1 \pm z * (\frac{\sigma + \tau}{n})$
- Taken >= 99.8% limits

Seeing the plot again:

Poisson limit

Funnel plot of NHSDigital's SHMI data Oct18-Spet19

15/19

Seeing the plot again:

OD adjustment

Funnel plot of NHSDigital's SHMI data Oct18-Spet19

Issues with Funnel Plots

- Are we asking the right question?
- Implicit ranking
- · Which limits do we use?
- Overdispersion
 - Assumed to be clustering
 - Adjustment proposed (Spiegelhalter, 2005b)
 - Alternative used by NHSD (with log/truncation)
- Strictly cross-sectional

We could do it better with a mixed model!

Thank you for your time!

- FunnelPlotR
 - · Available on CRAN.
 - Contributions and bug reports welcome!

https://chrismainey.github.io/FunnelPlotR/ https://github.com/chrismainey/FunnelPlotR

- HED R Training: https://www.hed.nhs.uk/Info/hed-courses.aspx
 - Intro to R
 - Rmarkdown
 - Regression modelling
 - Machine Learning in R

References

- CAMPBELL, M.J., JACQUES, R.M., FOTHERINGHAM, J., MAHESWARAN, R. and NICHOLL, J., 2012. Developing a summary hospital mortality index: retrospective analysis in English hospitals over five years. *BMJ*, **344**, pp. e1001
- KEOGH, B. 2013. Keogh review on hospital deaths published NHSUK [Online]. Department of Health. Available: https://www.nhs.uk/NHSEngland/bruce-keogh-review/Documents/outcomes/keogh-review-final-report.pdf
 [Accessed 13/11/2017 2017].
- LILFORD, R. and PRONOVOST, P., 2010. Using hospital mortality rates to judge hospital performance: a bad idea that just won't go away. *BMJ*, **340**, pp. c2016.
- LILFORD, R., MOHAMMED, M.A., SPIEGELHALTER, D. and THOMSON, R., 2004. Use and misuse of process and outcome data in managing performance of acute medical care: avoiding institutional stigma. *The Lancet*, 363 (9415), pp. 1147-1154.
- SPIEGELHALTER, D., GRIGG, O., KIINSMAN, R., FAREWELL, V., T., TREASURE, T., Risk-adjusted sequential probability ratio tests: applications to Bristol, Shipman, and adult cardiac surgery. I Int J Qual Health Care; 15, pp 7-13
- SPIEGELHALTER, D.J., 2005a. Funnel plots for comparing institutional performance. *Stat Med*, **24** (8), pp. 1185-1202.
- SPIEGELHALTER, D.J., 2005b. Handling over-dispersion of performance indicators. *Qual Saf Health Care*, **14** (5), pp. 347-351 https://www.nhs.uk/NHSEngland/bruce-keogh-review/Documents/outcomes/keogh-review-final-report.pdf