Flip flop

El elemento más importante de la memoria es el **flip flop**, el cual esta constituido por un ensamble de compuertas lógicas. Aunque una compuerta lógica no puede por si misma no tiene capacidad para almacenar, se pueden conectar varias a la vez de tal manera que permitan el almacenamiento para la información.

NAND LATCH

El circuito FF más básico se puede construir a base de dos compuertas **NAND** o dos compuertas **NOR**.

Set	Clear	Output
1	1	No change
0	1	Q=1
1	0	Q=0
0	0	Invalid*

*produces Q=Q=1

(a) (b)

SET=CLEAR=1. Esta condición es el estado normal de reposo y no tiene efecto en el estado de salida. Las salidas Q y Q_ permanecerán en el estado que tenían antes de esta condición de entrada.

SET=0, CLEAR=1. esto siempre, causará que la salida pase a alto **Q=1**, donde permanecerá incluso después de que **SET** retorne a **ALTO**. A esto se le llama **establecimiento** del latch.

SET=1, CLEAR=0. Esto siempre producirá el estado **Q=0**, en el cual la salida permanecerá incluso después que **BORRAR** retorne a **ALTO**. A esto se le llama establecimiento o **reestablecimiento** del latch.

SET=CLEAR=0. Esta condición intenta establecer y borrar el latch al mismo tiempo y puede producir resultados ambiguos. No se debe emplear.

NOR LATCH

Set	Clear	Output
0	0	No change
1	0	Q=1
0	1	Q=0
1	1	Invalid*

^{*}produces Q=Q=0