

Prof. Dr. Björn Sprungk

Faculty of Mathematics and Computer Science Institute of Stochastics

Mathematics of machine learning

Appendix: Probability theory

Winter term 2024/25

What is randomness?

Many processes in nature and everyday life are random:

- Flipping a coin
- Rolling a dice
- Lifespan of a lamp or electronic device
- Payback of loans by bank customers
- Returns of investmens
- Taking a cat picture from the internet

What is randomness?

Many processes in nature and everyday life are random:

- Flipping a coin
- Rolling a dice
- Lifespan of a lamp or electronic device
- Payback of loans by bank customers
- Returns of investmens
- Taking a cat picture from the internet

To describe such situations we consider a basic (and abstract) concept:

Random Experiment

A random experiment is a well-defined and repeatable experiment with a known set of possible outcomes, but beforehand unknown actual outcome.

Mathematical description of randomness

- lacksquare The sample space Ω is the set of all possible outcomes ω of a random experiment, e.g.,
 - Flipping a coin: $\Omega = \{\text{"heads"}, \text{"tails"}\}$
 - Rolling a die: $\Omega = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$
 - Measuring the lifetime of a device: $\Omega = [0, \infty)$

Mathematical description of randomness

- lacktriangle The sample space Ω is the set of all possible outcomes ω of a random experiment, e.g.,
 - Flipping a coin: $\Omega = \{\text{"heads"}, \text{"tails"}\}$
 - Rolling a die: $\Omega = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$
 - Measuring the lifetime of a device: $\Omega = [0, \infty)$
- An event A is a subset possible outcomes $A \subseteq \Omega$. We say the event A occurs if the actual outcome of the random experiment belongs to A: $\omega \in A$
 - Rolling a dice: A = "number of dots is even" = { \square , \square , \square }
 - Lifetime of a device: B = "lifetime exceeds 5" = $(5, \infty)$

Mathematical description of randomness

- lacktriangle The sample space Ω is the set of all possible outcomes ω of a random experiment, e.g.,
 - Flipping a coin: $\Omega = \{\text{"heads"}, \text{"tails"}\}$
 - Rolling a die: $\Omega = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$
 - lacksquare Measuring the lifetime of a device: $\Omega=[0,\infty)$
- An event A is a subset possible outcomes $A \subseteq \Omega$. We say the event A occurs if the actual outcome of the random experiment belongs to A: $\omega \in A$
 - Rolling a dice: $A = \text{``number of dots is even''} = \{ \boxdot, \boxdot, \boxdot \}$
 - Lifetime of a device: B = "lifetime exceeds 5" = $(5, \infty)$
- Given an event A the complementary event A^c is the set of all possible outcomes not belonging A:

$$A^c = \Omega \setminus A = \{ \omega \in \Omega \colon \omega \notin A \}$$

e.g., Rolling a dice: A = "number of dots is even", $A^c = \{ \boxdot, \boxdot, \boxdot \}$

Combining events

We use set-theoretic notation to work with combinations of events A, B:

- \blacksquare $A \cup B$: Union of A and B , i.e., A or B happens
- $\blacksquare A \cap B$: Intersection of A and B , i.e., A and B happens
- $\blacksquare A \subseteq B$: A is a subset of B, i.e., B includes A

Example: Consider rolling a dice as well as the events

$$A =$$
 "number of dots is even" = { \square , \square , \square }, $B =$ "number of dots greater four" = { \square , \square }.

Then

$$A \cup B = \text{``number of dots is even or greater than four''} = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \},$$

$$A \cap B = \text{``number of dots is even and greater than four''} = \{ \boxdot \}.$$

For an (infinite) sequence $A_1,\ A_2,\ldots$ of events of a sample space Ω we define

• their union $\bigcup_{n=1}^{\infty} A_n$ as the event which consists of all outcomes that are in A_n for at least one value of $n=1,2,\ldots$

For an (infinite) sequence $A_1,\ A_2,\ldots$ of events of a sample space Ω we define

- their union $\bigcup_{n=1}^{\infty} A_n$ as the event which consists of all outcomes that are in A_n for at least one value of $n=1,2,\ldots$
- their intersection $\bigcap_{n=1}^{\infty} A_n$, as the event consisting of those outcomes that are in all of the events A_n , $n=1,2,\ldots$

For an (infinite) sequence $A_1,\ A_2,\ldots$ of events of a sample space Ω we define

- their union $\bigcup_{n=1}^{\infty} A_n$ as the event which consists of all outcomes that are in A_n for at least one value of $n=1,2,\ldots$
- their intersection $\bigcap_{n=1}^{\infty} A_n$, as the event consisting of those outcomes that are in all of the events A_n , $n=1,2,\ldots$

Example: If $A_1 = \{1, 2, 3\}, \ A_2 = \{2, 3, 4\}, \ A_3 = \{3, 4, 5\}$, then

$$\bigcup_{n=1}^{3} A_n = \{1, 2, 3, 4, 5\} \quad \text{ and } \quad \bigcap_{n=1}^{3} A_n = \{3\}.$$

For an (infinite) sequence $A_1,\ A_2,\ldots$ of events of a sample space Ω we define

- their union $\bigcup_{n=1}^{\infty} A_n$ as the event which consists of all outcomes that are in A_n for at least one value of $n=1,2,\ldots$
- their intersection $\bigcap_{n=1}^{\infty} A_n$, as the event consisting of those outcomes that are in all of the events A_n , $n=1,2,\ldots$

Example: If $A_1 = \{1, 2, 3\}, A_2 = \{2, 3, 4\}, A_3 = \{3, 4, 5\},$ then

$$\bigcup_{n=1}^{3} A_n = \{1, 2, 3, 4, 5\} \quad \text{ and } \quad \bigcap_{n=1}^{3} A_n = \{3\}.$$

Meaning:

- union $\bigcup_{n=1}^{\infty} A_n$: One of the events A_n happens
- union $\bigcap_{n=1}^{\infty} A_n$: All of the events A_n happen

Axioms of probability

A probability measure $\mathbb P$ assigns to each event A of a sample space Ω a real number $\mathbb P(A)$ called the probability of the event A such that the following three conditions are satisfied

Axioms of probability

A probability measure $\mathbb P$ assigns to each event A of a sample space Ω a real number $\mathbb P(A)$ called the probability of the event A such that the following three conditions are satisfied

 $1. \ 0 \le \mathbb{P}(A) \le 1$

Axioms of probability

A probability measure \mathbb{P} assigns to each event A of a sample space Ω a real number $\mathbb{P}(A)$ called the probability of the event A such that the following three conditions are satisfied

- 1. $0 \leq \mathbb{P}(A) \leq 1$
- 2. $\mathbb{P}(\Omega) = 1$

Axioms of probability

A probability measure \mathbb{P} assigns to each event A of a sample space Ω a real number $\mathbb{P}(A)$ called the probability of the event A such that the following three conditions are satisfied

- 1. $0 \leq \mathbb{P}(A) \leq 1$
- 2. $\mathbb{P}(\Omega) = 1$
- 3. For any sequence of pairwise mutually exclusive events A_1, A_2, \ldots (i.e. $A_i \cap A_j = \emptyset$ for each $i \neq j$):

Axioms of probability

A probability measure $\mathbb P$ assigns to each event A of a sample space Ω a real number $\mathbb P(A)$ called the probability of the event A such that the following three conditions are satisfied

- 1. $0 \leq \mathbb{P}(A) \leq 1$
- 2. $\mathbb{P}(\Omega) = 1$
- 3. For any sequence of pairwise mutually exclusive events A_1, A_2, \ldots (i.e. $A_i \cap A_j = \emptyset$ for each $i \neq j$):

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Axioms of probability

A probability measure $\mathbb P$ assigns to each event A of a sample space Ω a real number $\mathbb P(A)$ called the probability of the event A such that the following three conditions are satisfied

- 1. $0 \leq \mathbb{P}(A) \leq 1$
- 2. $\mathbb{P}(\Omega) = 1$
- 3. For any sequence of pairwise mutually exclusive events A_1, A_2, \ldots (i.e. $A_i \cap A_j = \emptyset$ for each $i \neq j$):

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Frequentist interpretation: If we repeat a random experiment over and over again, then the proportion of time that event A occurs will converge to the value $\mathbb{P}(A)$.

Arithmetics of probability

- $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$
- $\mathbb{P}(\varnothing) = 0 \quad \text{(impossible event)}$
- $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ (monotonicity)
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B) \quad (\text{additivity})$
- $\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mathbb{P}(A_n)$ (Union bound)

Arithmetics of probability

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

$$\mathbb{P}(\emptyset) = 0$$
 (impossible event)

$$A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$$
 (monotonicity)

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \quad (additivity)$$

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$
 (Union bound)

Example: For a fair die we have $\mathbb{P}(\boxdot) = \mathbb{P}(\boxdot) = \ldots = \mathbb{P}(\boxdot) = \frac{1}{6}$. Consider now

A= "number of dots is even" = $\{\boxdot,\boxdot,\boxdot,\boxdot\}$, B= "number of dots is greater four" = $\{\boxdot,\boxdot\}$. Then:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{2}{3}$$

Independence

Two events are called independent if and only if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

- Often we are interested in the outcome of a certain quantity related to a random experiment, e.g.,
 - \blacksquare Rolling two dice: "sum of dots", i.e., with realizations in $\{2,3,\ldots,12\}$
 - \blacksquare Flipping a coin: "number of tries until first time heads" with realizations in $\{1,2,3,...\}$
 - \blacksquare Production of steel bars: "Young's modulus" with realizations in $(0,\infty)$

- Often we are interested in the outcome of a certain quantity related to a random experiment, e.g.,
 - \blacksquare Rolling two dice: "sum of dots", i.e., with realizations in $\{2,3,\ldots,12\}$
 - Flipping a coin: "number of tries until first time heads" with realizations in $\{1, 2, 3, ...\}$
 - lacksquare Production of steel bars: "Young's modulus" with realizations in $(0,\infty)$
- These are examples of (real-valued) random variables

- Often we are interested in the outcome of a certain quantity related to a random experiment, e.g.,
 - Rolling two dice: "sum of dots", i.e., with realizations in $\{2, 3, ..., 12\}$
 - lacksquare Flipping a coin: "number of tries until first time heads" with realizations in $\{1,2,3,...\}$
 - lacksquare Production of steel bars: "Young's modulus" with realizations in $(0,\infty)$
- These are examples of (real-valued) random variables
- \blacksquare Mathematically, a random variable X is a mapping

$$X \colon \Omega \to \mathbb{R}$$

i.e., a random variable X assigns to each outcome of a random experiment a real number.

- Often we are interested in the outcome of a certain quantity related to a random experiment, e.g.,
 - Rolling two dice: "sum of dots", i.e., with realizations in $\{2, 3, ..., 12\}$
 - lacksquare Flipping a coin: "number of tries until first time heads" with realizations in $\{1,2,3,...\}$
 - \blacksquare Production of steel bars: "Young's modulus" with realizations in $(0,\infty)$
- These are examples of (real-valued) random variables
- lacktriangle Mathematically, a random variable X is a mapping

$$X \colon \Omega \to \mathbb{R}$$

i.e., a random variable X assigns to each outcome of a random experiment a real number.

■ An actual outcome $x = X(\omega) \in \mathbb{R}$, $\omega \in \Omega$, of a random variable X is called a realization of X.

Discrete random variables:

Can take only a countable number of values

Discrete random variables:

- Can take only a countable number of values
- Countable means that all values can be indexed by (a subset of) the positive integers.

Discrete random variables:

- Can take only a countable number of values
- Countable means that all values can be indexed by (a subset of) the positive integers.
- Thus, also countably infinite number of outcomes is possible

Discrete random variables:

- Can take only a countable number of values
- Countable means that all values can be indexed by (a subset of) the positive integers.
- Thus, also countably infinite number of outcomes is possible

Continous random variables:

Discrete random variables:

- Can take only a countable number of values
- Countable means that all values can be indexed by (a subset of) the positive integers.
- Thus, also countably infinite number of outcomes is possible

Continous random variables:

Can take a continuum of values

Discrete random variables:

- Can take only a countable number of values
- Countable means that all values can be indexed by (a subset of) the positive integers.
- Thus, also countably infinite number of outcomes is possible

Continous random variables:

- Can take a continuum of values
- Uncountably infinite number of outcomes

Discrete random variables:

- Can take only a countable number of values
- Countable means that all values can be indexed by (a subset of) the positive integers.
- Thus, also countably infinite number of outcomes is possible

Continous random variables:

- Can take a continuum of values
- Uncountably infinite number of outcomes
- lacktriangle E. g. lifetime of a car which may be any value within $(0,\infty)$

Discrete random variables:

- Can take only a countable number of values
- Countable means that all values can be indexed by (a subset of) the positive integers.
- Thus, also countably infinite number of outcomes is possible

Continous random variables:

- Can take a continuum of values
- Uncountably infinite number of outcomes
- lacksquare E. g. lifetime of a car which may be any value within $(0,\infty)$

In general, mixtures of the two may occur (not considered here)

Working with random variables

lacktriangle In the following we consider probabilities of events related to a random variable X such as

$$\mathbb{P}(X = x) = \mathbb{P}(\{\omega \in \Omega \colon X(\omega) = x\})$$

Working with random variables

■ In the following we consider probabilities of events related to a random variable X such as

$$\mathbb{P}(X = x) = \mathbb{P}(\{\omega \in \Omega \colon X(\omega) = x\})$$

■ Example: Rolling two fair dice we consider X as the "sum of dots". Now here $\omega = [\blacksquare, \boxdot]$ denotes the outcome of the random experiment with first dice being black (showing 4) and second dice being (showing 6). Then

$$\begin{split} \mathbb{P}\left(X=4\right) &= \mathbb{P}\big(\left\{ \begin{array}{c} \left[\bullet, \bullet \right], \left[\bullet, \bullet \right], \left[\bullet, \bullet \right] \right\} \big) \\ &= \mathbb{P}\big(\begin{array}{c} \left[\bullet, \bullet \right] \right) + \mathbb{P}\big(\begin{array}{c} \left[\bullet, \bullet \right] \right) + \mathbb{P}\big(\begin{array}{c} \left[\bullet, \bullet \right] \right) \\ & \\ \end{array} \big) \\ &= \mathbb{P}\big(\begin{array}{c} \bullet \end{array} \big) \cdot \mathbb{P}\big(\begin{array}{c} \bullet \end{array} \big) + \mathbb{P}\big(\begin{array}{c} \bullet \end{array} \big) \cdot \mathbb{P}\big(\begin{array}{c} \bullet \end{array} \big) \cdot \mathbb{P}\big(\begin{array}{c} \bullet \end{array} \big) \cdot \mathbb{P}\big(\begin{array}{c} \bullet \end{array} \big) \\ &= \frac{1}{12} \end{split}$$

Can you explain this calculation?

Describing random variables

■ **Discrete:** For a discrete random variable X we have the probability mass function (pmf)

$$p_X(x) := \mathbb{P}(X = x)$$

Describing random variables

■ **Discrete:** For a discrete random variable X we have the probability mass function (pmf)

$$p_X(x) := \mathbb{P}(X = x)$$

■ Continuous: For a continuous random variable X we have the probability density function (pdf) $f_X : \mathbb{R} \to [0, \infty)$ defined via

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_X(x) \, dx, \qquad a \le b$$

e.g.,
$$\mathbb{P}(X = x) = 0$$

Describing random variables

■ **Discrete:** For a discrete random variable X we have the probability mass function (pmf)

$$p_X(x) := \mathbb{P}(X = x)$$

■ Continuous: For a continuous random variable X we have the probability density function (pdf) $f_X : \mathbb{R} \to [0, \infty)$ defined via

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_X(x) \, dx, \qquad a \le b$$

e.g.,
$$\mathbb{P}(X = x) = 0$$

■ Both: For any random variable we have the cumulative distribution function (cdf)

$$F_X(x) := \mathbb{P}(X \le x), \qquad x \in \mathbb{R}$$

Describing random variables

■ We have for the two cases

$$F_X(x) = \sum_{y \le x} p_X(y)$$
 or $F_X(x) = \int_{-\infty}^x f_X(y) \, dy$

Describing random variables

We have for the two cases

$$F_X(x) = \sum_{y \le x} p_X(y)$$
 or $F_X(x) = \int_{-\infty}^x f_X(y) \, dy$

Example: pmf and cdf for *X* being the sum of two fair dice:

Moments of random variables

■ The cdf or pmf/pdf completely describes the random behaviour of a random variable

Moments of random variables

- The cdf or pmf/pdf completely describes the random behaviour of a random variable
- Nonetheless, we are often interested in average characteristics of random variables.
- The mean or expectation of a random variable describes its "average value":

$$\mathbb{E}[X] = \sum_{x} x \ p_X(x)$$
 or $\mathbb{E}[X] = \int_{-\infty}^{\infty} x \ f_X(x) \ \mathrm{d}x$

Moments of random variables

- The cdf or pmf/pdf completely describes the random behaviour of a random variable
- Nonetheless, we are often interested in average characteristics of random variables.
- The mean or expectation of a random variable describes its "average value":

$$\mathbb{E}[X] = \sum_{x} x \ p_X(x)$$
 or $\mathbb{E}[X] = \int_{-\infty}^{\infty} x \ f_X(x) \ dx$

■ The variance and standard deviation of a random variable describes its "spread around the mean"

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2], \qquad \mathbb{S}\mathbf{td}[X] = \sqrt{\mathbb{V}[X]}$$

Calculating with moments

Given real-valued random variables X and Y and $a \in \mathbb{R}$ we have

For the mean

$$\mathbb{E}[X \pm Y] = \mathbb{E}[X] \pm \mathbb{E}[Y], \qquad \mathbb{E}[aX] = a\mathbb{E}[X]$$

and for the variance

$$\mathbb{V}[X \pm Y] = \mathbb{V}[X] + \mathbb{V}[Y] \pm 2\mathbb{C}\text{ov}[X, Y], \qquad \mathbb{V}[aX] = a^2\mathbb{V}[X]$$

where $\mathbb{C}ov[X,Y]$ denotes the covariance of X and Y (see later)

Moreover, for functions $g \colon \mathbb{R} \to \mathbb{R}$ we have for the random variable g(X)

$$\mathbb{E}[g(X)] = \sum_{x} g(x) \ p_X(x)$$
 or $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \ f_X(x) \ \mathrm{d}x$

For events $A \subseteq \Omega$ we have for the random variable $\mathbf{1}_A$ (indicator function of set A)

$$\mathbb{P}(A) = \mathbb{E}[\mathbf{1}_A]$$
.

Some common discrete and continuous distributions

Uniform distribution U[n], $n \in \mathbb{N}$

Models, e.g., rolling a fair dice with n faces.

It is defined by

$$X \sim \mathrm{U}[n] \iff \mathbb{P}(X=1) = \mathbb{P}(X=2) = \dots = \mathbb{P}(X=n) = \frac{1}{n}$$

We have

$$\mathbb{E}[X] = \frac{n+1}{2}, \qquad \mathbb{V}[X] = \frac{n^2 - 1}{12}.$$

Bernoulli distribution B(p), 0

Models binary outcomes of a random experiment, e.g., flipping a coin, surviving an accident or producing flawless components.

It is defined by

$$X \sim B(p) \iff \mathbb{P}(X=0) = 1 - p, \quad \mathbb{P}(X=1) = p$$

We have

$$\mathbb{E}[X] = p, \qquad \mathbb{V}[X] = p(1-p).$$

Binomial distribution Bin(n, p), $0 \le p \le 1$, $n \in \mathbb{N}$

Models the number of successes in a sequence of \boldsymbol{n} independent Bernoulli experiments, each having success probability $\boldsymbol{p}.$

It is denotes by $X \sim \operatorname{Bin}(n,p)$ and defined by

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, \quad k = 0, 1, \dots, n.$$

We have

$$\mathbb{E}[X] = np, \qquad \mathbb{V}[X] = np(1-p).$$

B. Sprungk (TUBAF) Mathematics of machine learning 16

Uniform distribution $U[a, b], a, b \in \mathbb{R}$

Models "pure" randomness within the interval [a,b], i.e., there is no preference which of those values might be the actual outcome.

It is defined by

$$X \sim \mathbf{U}[a, b] \iff f_X(x) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(x)$$

We have

$$\mathbb{E}[X] = \frac{b+a}{2}, \qquad \mathbb{V}[X] = \frac{(b-a)^2}{12}.$$

Normal or Gaussian distribution $N(\mu, \sigma^2)$, $\mu \in \mathbb{R}, \sigma^2 > 0$

Models symmetric deviation from mean value. Appears quite often in nature, i.e., measurement errors, logarithm of conductivities, exchange rates or blood pressure.

$$X \sim N(\mu, \sigma^2) \iff f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

We have

$$\mathbb{E}[X] = \mu, \qquad \mathbb{V}[X] = \sigma^2.$$

Carl F. Gauss (1777 – 1855)

Multivariate Distributions

- We consider now pairs (X,Y) and, more general, tuples (X_1,\ldots,X_n) of random variables.
- \blacksquare For two random variables X and Y we have the joint cumulative distribution function

$$F(x,y) = P(X \le x, Y \le y), \qquad x, y \in \mathbb{R}$$

• If X and Y are discrete we define their joint probability mass function by

$$p(x,y) = P(X=x,Y=y), \qquad F(x,y) = \sum_{s \le x} \sum_{t \le y} p(s,t)$$

■ If X and Y are **continuous** we define their joint probability density function $f: \mathcal{R} \times \mathcal{R} \to [0, \infty)$ by f(x,y), defined for all $x \in \mathcal{R}$ and $y \in \mathcal{R}$ such that for all real numbers $a_1 \leq b_1$, $a_2 \leq b_2$

$$\mathbb{P}(a_1 \le X \le b_1, a_2 \le Y \le b_2) = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \, dy \, dx, \qquad F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) \, dt \, ds$$

19

B. Sprungk (TUBAF) Mathematics of machine learning

Example (Rolling two fair dice)

- We roll two fair dice independently of each other.
- The probability of getting 3 on the red dice and 5 on the black dice is

$$p(3,5) = \mathbb{P}(X=3, Y=5) = \frac{1}{36}.$$

■ The joint pmf is uniformly:

$$p(x,y) =$$

Example (Rolling two fair dice)

- We roll two fair dice independently of each other.
- The probability of getting 3 on the red dice and 5 on the black dice is

$$p(3,5) = \mathbb{P}(X=3, Y=5) = \frac{1}{36}.$$

■ The joint pmf is uniformly:

$$p(x,y) = \mathbb{P}(X = x, Y = y) =$$

Example (Rolling two fair dice)

- We roll two fair dice independently of each other.
- The probability of getting 3 on the red dice and 5 on the black dice is

$$p(3,5) = \mathbb{P}(X=3, Y=5) = \frac{1}{36}.$$

■ The joint pmf is uniformly:

$$p(x,y) = \mathbb{P}(X=x,Y=y) = \begin{cases} \frac{1}{36} & \text{for } x=1,2,\ldots,6\\ & \text{and } y=1,2,\ldots,6\\ 0 & \text{otherwise} \end{cases}$$

Example (Joint density function)

The probability of simultaneously $-4 < X \le 1$ and $-4 < Y \le 2$ is the yellow **volume** under the joint density.

Marginals

- Describe the randomness of X or Y given a joint distribution of (X,Y)
- **Discrete**: The marginal mass function of *X* is given by:

$$p_X(x) = \mathbb{P}\{X = x\} = \sum_y p(x, y)$$

Continuous: The marginal density function of *X* is given by:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y$$

■ Both: The marginal distribution function of *X* is given by:

$$F_X(x) = \mathbb{P}(X \le x), \qquad F_X(x) = F(x, \infty)$$

- When rolling a fair dice twice the sample space is $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}.$
- Each of the 36 possible outcomes in Ω is equally likely to occur and hence has probability $\frac{1}{36}$.

- When rolling a fair dice twice the sample space is $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}.$
- Each of the 36 possible outcomes in Ω is equally likely to occur and hence has probability $\frac{1}{36}$.
- Suppose now that the first dice shows a **4**. What is the probability that the sum of the two dice is equal to **6**?

- When rolling a fair dice twice the sample space is $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}.$
- Each of the 36 possible outcomes in Ω is equally likely to occur and hence has probability $\frac{1}{36}$.
- Suppose now that the first dice shows a **4**. What is the probability that the sum of the two dice is equal to **6**?
- This is a conditional probability, as it is conditional upon the occurrence of a prior event (4 on the roll of the first dice).

- When rolling a fair dice twice the sample space is $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}.$
- Each of the 36 possible outcomes in Ω is equally likely to occur and hence has probability $\frac{1}{36}$.
- Suppose now that the first dice shows a **4**. What is the probability that the sum of the two dice is equal to **6**?
- This is a conditional probability, as it is conditional upon the occurrence of a prior event (4 on the roll of the first dice).
- There are now 6 equally likely allowed outcomes: (4,1), (4,2), (4,3), (4,4), (4,5), (4,6).

- When rolling a fair dice twice the sample space is $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}.$
- Each of the 36 possible outcomes in Ω is equally likely to occur and hence has probability $\frac{1}{36}$.
- Suppose now that the first dice shows a **4**. What is the probability that the sum of the two dice is equal to **6**?
- This is a conditional probability, as it is conditional upon the occurrence of a prior event (4 on the roll of the first dice).
- There are now 6 equally likely allowed outcomes: (4,1), (4,2), (4,3), (4,4), (4,5), (4,6).
- Only one of them, (4,2) gives a sum equal to **6**. Thus, the answer is $\frac{1}{6}$.
- This is different from the unconditional probability of getting a sum of 6 which is $\frac{5}{36}$!

Let A end B be two events in a sample space Ω with $\mathbb{P}(B) > 0$. The conditional probability of A given B is given by

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
 (1)

Let A end B be two events in a sample space Ω with $\mathbb{P}(B) > 0$. The conditional probability of A given B is given by

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
 (1)

■ In a way conditioning changes the sample space from Ω to B. Hence, the normalisation by $\mathbb{P}(B)$.

Let A end B be two events in a sample space Ω with $\mathbb{P}(B) > 0$. The conditional probability of A given B is given by

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
 (1)

- In a way conditioning changes the sample space from Ω to B. Hence, the normalisation by $\mathbb{P}(B)$.
- It is easy to see that $\mathbb{P}(A) = \mathbb{P}(A \mid \Omega)$.

Let A end B be two events in a sample space Ω with $\mathbb{P}(B) > 0$. The conditional probability of A given B is given by

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
 (1)

- In a way conditioning changes the sample space from Ω to B. Hence, the normalisation by $\mathbb{P}(B)$.
- It is easy to see that $\mathbb{P}(A) = \mathbb{P}(A \mid \Omega)$.

Definition

Two events A and B of a sample space Ω are **independent** if the knowledge that B has occurred does not affect the probability that A occurs, i.e.

Let A end B be two events in a sample space Ω with $\mathbb{P}(B) > 0$. The conditional probability of A given B is given by

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
 (1)

- lacksquare In a way conditioning changes the sample space from Ω to B. Hence, the normalisation by $\mathbb{P}(B).$
- lacksquare It is easy to see that $\mathbb{P}(A) = \mathbb{P}(A \mid \Omega)$.

Definition

Two events A and B of a sample space Ω are **independent** if the knowledge that B has occurred does not affect the probability that A occurs, i.e.

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$

or, equivalently,

$$P(A \cap B) = P(A) P(B) \tag{}$$

Otherwise, A and B are called **dependent**.

Important theorems

Let $\Omega = \bigcup_k B_k$ with pairwise exclusive B_k . Then

$$A = (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_k).$$

Law of total probability

Given A and B_1, \ldots, B_k as above we have

$$\mathbb{P}(A) = \mathbb{P}(A \mid B_1) \ \mathbb{P}(B_1) + \mathbb{P}(A \mid B_2) \ \mathbb{P}(B_2) + \dots + \mathbb{P}(A \mid B_k) \ \mathbb{P}(B_k).$$

Bayes' rule

For any two events A,B of the sample space Ω with $\mathbb{P}(B)\neq 0$ we have

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)} \mathbb{P}(A).$$

We flip a fair coin.

- head: we draw ball from left urn
- tail: we draw ball from right urn

We flip a fair coin.

■ head: we draw ball from left urn

■ tail: we draw ball from right urn

What is the conditional probability that the outcome of the toss was "head" given that a white ball was drawn?

We flip a fair coin.

■ head: we draw ball from left urn

■ tail: we draw ball from right urn

What is the conditional probability that the outcome of the toss was "head" given that a white ball was drawn?

Answer: $\frac{\frac{2}{9}}{\frac{67}{198}} \frac{1}{2} = \frac{22}{67}$

Independent random variables

We generalize the concept of independent events to random variables:

Definition

The random variables X and Y are independent if the following equivalent conditions hold for all x and y

- \blacksquare The joint distribution function of X and Y is separable

$$F(x,y) = F_X(x) F_Y(y).$$

■ The probability mass/density functions is separable

$$f(x,y) = f_X(x) f_Y(y).$$

Conditional mass and density function

Definition

For two random variables X and Y with joint probability mass / density function f(x,y) the conditional probability mass / density function of X given Y=y, is defined for all values of Y with $f_Y(y)>0$, by

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

Conditional mass and density function

Definition

For two random variables X and Y with joint probability mass / density function f(x,y) the conditional probability mass / density function of X given Y=y, is defined for all values of Y with $f_Y(y)>0$, by

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

■ In general:

$$f_{Y|X}(y|x) \neq f_{X|Y}(x|y)$$

■ If X and Y are independent, conditioning has no effect:

$$f_{Y|X}(y|x) = f_Y(y), \qquad f_{X|Y}(x|y) = f_X(x).$$

What is the average value we can expect for X, when Y = y?

Definition

The conditional expectation of X, given that Y=y, is defined for all values of Y, such that $f_Y(y)>0$, by

$$\mathbb{E}[X|Y=y]=\sum_x x\,f_{X|Y}(x|y)\qquad\text{(discrete)}$$

$$\mathbb{E}[X|Y=y]=\int_{-\infty}^\infty x\,f_{X|Y}(x|y)\,\mathrm{d}x\qquad\text{(continuous)}$$

It is also called conditional mean.

■ The properties of $\mathbb{E}[X]$ also hold for $\mathbb{E}[X \mid Y = y]$ w.r.t. X.

- \blacksquare Taking the conditional expectation of $f_{Y|X}(y|x)$ for some x.
- This is not always a line!