5. Аппроксимация функций

Очень часто в практической работе возникает необходимость найти в явном виде функциональную зависимость (формулу) $y = \widetilde{y}(x)$ между величинами x и y, которые заданы отдельными парами значений x_i , y_i (таблицей), например, полученными в результате измерений.

Задача восстановления аналитической функции по отдельным значениям называется аппроксимацией. Для получения единственного решения задачи аппроксимации необходимо

- 1. Задать общий вид аппроксимирующей функции, включающий неизвестные параметры (коэффициенты). Вид функции задается, исходя из формы распределения аппроксимируемых значений (расположения точек на графике), из предполагаемой функциональной зависимости, или просто в виде полинома некоторой степени;
- 2. Определить значения параметров на основе заданного критерия близости. Здесь существует два основных подхода интерполяция и сглаживание.

5.1. Интерполяция

Рис. 5.1. График интерполирующей функции проходит через заданные точки.

Для задачи интерполяции критерий близости аппроксимирующей функции $y = \tilde{y}(x)$ к исходным данным x_i , y_i рассматривается как совпадение значений в заданных точках, называемых узлами интерполяции (рис. 5.1), т.е.

$$\widetilde{y}(x_i) = y_i$$
.

Если функция задана в виде полинома, то он называется интер-

поляционным полиномом и может быть записан, например, в форме Лагранжа или Ньютона.

5.1.1. Интерполяционный полином в форме Лагранжа

Пусть на некотором промежутке [a;b] заданы n различных узлов x_1 , x_2 , x_3 , ..., x_n , а также значения некоторой функции y_1 , y_2 , y_3 , ..., y_n в этих узлах. Необходимо построить полином P(x), проходящий через заданные точки, т.е.

$$P(x_i) = y_i$$

Интерполяционный полином Лагранжа имеет следующую формулу:

$$P(x) = L_{n-1}(x) = \sum_{i=1}^{n} y_i l_i(x)$$
 (5.1)

где $l_i(x) = \frac{(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_1)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}$ — фундаментальные поли-

номы Лагранжа. Они удовлетворяют равенствам

$$l_k(x_i) = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}$$
 (5.2)

и зависят лишь от заданных узлов x_i , но не от значений интерполируемой функции y_i .

Пример 5.1. Пусть задана таблица:

			Ta	Таблица 5.1			
\mathcal{X}_{i}	-1	0	1/2	1			
y_{i}	0	2	9/8	0			

Необходимо построить интерполяционный полином Лагранжа, проходящий через заданные точки

Решение. Полином Лагранжа имеет вид:

$$L_3(x) = y_1 l_1(x) + y_2 l_2(x) + y_3 l_3(x) + y_4 l_4(x) =$$

$$= 0 \cdot l_1(x) + 2l_2(x) + \frac{9}{8} l_3(x) + 0 \cdot l_4(x) = 2l_2(x) + \frac{9}{8} l_3(x)$$

Найдем фундаментальные полиномы Лагранжа:

$$l_2(x) = \frac{(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} = \frac{(x + 1)(x - \frac{1}{2})(x - 1)}{(0 + 1)(0 - \frac{1}{2})(0 - 1)} = -2x^3 - x^2 - 2x + 1$$

$$l_3(x) = \frac{(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)} = \frac{(x + 1)(x - 0)(x - 1)}{(\frac{1}{2} + 1)(\frac{1}{2} - 0)(\frac{1}{2} - 1)} = -\frac{8}{3}x^3 + \frac{8}{3}x$$

Подставляя $l_i(x)$ в полином Лагранжа, находим:

$$L_3(x) = 2l_2(x) + \frac{9}{8}l_3(x) = x^3 - 2x^2 - x + 2$$

5.1.2. Интерполяционный полином в форме Ньютона

Интерполяционный полином Ньютона имеет вид:

$$N_{n-1}(x) = \Delta^{0}(x_{1}) + \Delta^{1}(x_{1}, x_{2})(x - x_{1}) + \Delta^{2}(x_{1}, x_{2}, x_{3})(x - x_{1})(x - x_{2}) + \dots$$

$$\dots + \Delta^{n-1}(x_{1}, x_{2}, \dots, x_{n-1})(x - x_{1})(x - x_{2}) \dots (x - x_{n-1})$$
(5.3)

где

$$\Delta^{0}(x_{i}) = y_{i}$$

$$\Delta^{\!1}(x_i,x_k)\!=\!rac{\Delta^{\!0}(x_i)\!-\!\Delta^{\!0}(x_k)}{x_i-x_k}$$
 - разделенная разность первого порядка,

$$\Delta^2(x_i,x_j,x_k) = \frac{\Delta^1(x_i,x_j) - \Delta^1(x_j,x_k)}{x_i - x_k}$$
 - разделенная разность второго порядка,

$$\Delta^3(x_i,x_j,x_l,x_k) = \frac{\Delta^2(x_i,x_j,x_l) - \Delta^2(x_j,x_l,x_k)}{x_i - x_k} - \text{разделенная разность третьего}$$
 порядка и т.д.

Пример 5.2. Построить интерполяционный полином в форме Ньютона, проходящий через точки, заданные таблицей 5.1.

Решение. Расчеты представим в виде таблицы.

$$i$$
 x_i y_i Δ^1 Δ^2 Δ^3
 1 -1 0
 2
 2 0 2
 $-7/4$
 3 $1/2$ $9/8$
 $-9/4$
 4 1 0

$$\Delta^{1}(1,2) = (y_{1} - y_{2})/(x_{1} - x_{2}) = (0-2)/(-1-0) = 2$$

$$\Delta^{1}(2,3) = (y_{2} - y_{3})/(x_{2} - x_{3}) = (2-9/8)/(0-1/2) = -7/4$$

$$\Delta^{1}(3,4) = (y_{3} - y_{4})/(x_{3} - x_{4}) = (9/8 - 0)/(1/2 - 1) = -9/4$$

$$\Delta^{2}(1,2,3) = (\Delta^{1}(1,2) - \Delta^{1}(2,3))/(x_{1} - x_{3}) = (2+7/4)/(-1-1/2) = -5/2$$

$$\Delta^{2}(2,3,4) = (\Delta^{1}(2,3) - \Delta^{1}(3,4))/(x_{2} - x_{4}) = (-7/4 + 9/4)/(0-1) = -1/2$$

$$\Delta^{3}(1,2,3,4) = (\Delta^{2}(1,2,3) - \Delta^{2}(2,3,4))/(x_{1} - x_{4}) = (-5/2 + 1/2)/(-1-1) = 1$$

$$N_{3}(x) = \Delta^{0}(1) + \Delta^{1}(1,2)(x - x_{1}) + \Delta^{2}(1,2,3)(x - x_{1})(x - x_{2}) + + \Delta^{3}(1,2,3,4)(x - x_{1})(x - x_{2})(x - x_{3}) =$$

$$= 0 + 2(x+1) - \frac{5}{2}(x+1)x + 1 \cdot (x+1)x\left(x - \frac{1}{2}\right) = x^{3} - 2x^{2} - x + 2$$

Пример 5.3. Построить интерполяционный полином, проходящий через точки, заданные таблицей 5.1, используя программу Excel.

Порядок решения.

- 1) Ввести таблицу в рабочий лист Excel (обыкновенные дроби вводятся как формулы, т.е. **=9/8**). Выделить ячейки таблицы.
- 2) Вставить диаграмму: **Вставка Диаграммы Точечная точечная** с **маркерами**. На рабочем листе появится график точек таблицы.
- 3) Вызвать контекстное меню (правой кнопкой мыши) одной из точек графика. Выбрать пункт «Добавить линию тренда».

- 4) Выбрать **Полиномиальную** аппроксимацию и установить степень полинома на единицу меньше числа точек, т.е. **3**.
- 5) Отметить «показывать уравнение на диаграмме».
- 6) Закрыть окно настроек. Появляется линия графика интерполирующей функции и соответствующая формула:

$$y(x) = x^3 - 2x^2 - x + 2$$

Рис. 5.2. Результаты интерполяции в программе Excel.

Интерполяционный полином определяется единственным образом независимо от метода его построения. Степень интерполирующего полинома на единицу меньше числа точек

Повышение степени интерполирующего полинома может приводить к появлению нежелательных «осцилляций» функции между узлами интерполяции. Поэтому сложные интерполяционные формулы имеет смысл применять для достаточно гладких функций, о которых известно, что характер изменения функций и производных примерно соответствует характеру изменения интерполирующих полиномов.

5.1.3. Сплайн-интерполяция

Сплайн-интерполяция предполагает представление интерполирующей функции в виде комбинации разных функций, соответствующих отрезкам между соседними узлами. На функции-сплайны накладываются условия непрерывности, т.е. совпадения значений для соседних сплайнов в узле. Условие непрерывности может касаться как функции, так и ее производных, в зависимости от сложности сплайна. Из условий непрерывности определяются коэффициенты сплайнов, которые и задают интерполирующую функцию в целом.

Простейший вид сплайн-интерполяции — ступенчатая интерполяция, функции-сплайны постоянны между узлами. Линейный сплайн непрерывен в узлах интерполяции, первая производная имеет разрывы, вторая и высшие производные не существуют. Для достижения более высокой точ-

ности интерполирования применяют полиномиальные сплайны более высоких степеней. Наиболее широкое применение получил кубический сплайн. Кубический сплайн на каждом отрезке между соседними узлами представляет собой полином 3-й степени, удовлетворяет условию непрерывности вместе со своей первой и второй производной.

Сплайн-интерполяция функции y = y(x), заданной таблицей значений в узлах $(x_i; y_i)$, определяет набор фунций-сплайнов $f_i(x)$, аппроксимирующих y(x) на интервалах $x_{i-1} \le x < x_i$, i = 0, 1, 2, ..., n.

i	X_i	y_i
0	x_0	\mathcal{Y}_0
1	\boldsymbol{x}_1	\mathcal{Y}_1
2	x_2	y_2
	•••	•••
n	\mathcal{X}_n	\mathcal{Y}_n

$$y(x) = \begin{cases} f_1(x) & x_0 \le x < x_1 \\ f_2(x) & x_1 \le x < x_2 \\ \dots & \dots \\ f_n(x) & x_{n-1} \le x < x_n \end{cases}$$

Если применить кубические сплайны, то

$$f_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3.$$
 (5.4)

Введем обозначения $h_i = x_i - x_{i-1}$,

тогда в пределах каждого из сплайнов $0 \le x - x_i < h_i$.

Из условия непрерывности функции f(x) следует 2n уравнений:

$$f_i(x_{i-1}) = y_{i-1}$$

 $f_i(x_i) = y_i$ $i = 1, 2, ..., n$.

Или

$$a_i = y_{i-1} (5.5)$$

$$a_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_i$$
 $i = 1, 2, ..., n.$ (5.6)

Из условия непрерывности 1-й производной функции f(x) следует n-1 уравнений:

$$f_i'(x_i)=f_{i+1}'(x_i)$$
 $i=1,\ 2,\ ...,\ n-1.$
 Т.к. $f_i'=b_i+2c_i(x-x_{i-1})+3d_i(x-x_{i-1})^2$, то
$$b_i+2c_i(x_i-x_{i-1})+3d_i(x_i-x_{i-1})^2=b_{i+1}$$
 или

$$b_i + 2c_i h_i + 3d_i h_i^2 - b_{i+1} = 0 i = 1, 2, ..., n-1. (5.7)$$

Из условия непрерывности 2-й производной функции f(x) следует n-1 уравнений:

уравнения:
$$f_{i}^{"}(x_{i}) = f_{i+1}^{"}(x_{i}) \qquad i = 1, 2, ..., n-1.$$

$$T.к. f_{i}^{"} = 2c_{i} + 6d_{i}(x - x_{i-1}), \text{ то}$$

$$2c_{i} + 6d_{i}(x_{i} - x_{i-1}) = 2c_{i+1} \text{ или}$$

$$c_{i} + 3d_{i}h_{i} - c_{i+1} = 0 \qquad i = 1, 2, ..., n-1.$$

$$(5.8)$$

Получаем 2n + (n-1) + (n-1) = 4n-2 уравнения относительно 4n неизвестных. Оставшиеся два уравнения задают, фиксируя значения производных на концах кривой, например так:

$$f''(x_0) = 0$$
 $f''(x_n) = 0$,

или

$$c_1 = 0 (5.9)$$

$$c_n + 3d_n h_n = 0. (5.10)$$

Полученные уравнения представляют собой систему линейных алгебраических уравнений относительно 4n неизвестных a_i , b_i , c_i , d_i , (i=0, 1, ..., n).

Эту систему можно привести к более удобному виду. Из условия (5.5) сразу можно найти все коэффициенты a_i . Далее из (5.8)-(5.10) получим

$$d_i = \frac{c_{i+1} - c_i}{3h_i}, \quad i = 1, 2, ..., n - 1, \quad d_n = -\frac{c_n}{3h_n}.$$
 (5.11)

Подставим эти соотношения, а также значения $a_i = y_{i-1}$ в (5.6) и найдем отсюда коэффициенты

$$b_{i} = \frac{y_{i} - y_{i-1}}{h_{i}} - \frac{h_{i}}{3} (c_{i+1} + 2c_{i}), \qquad i = 1, 2, ..., n-1,$$

$$b_{n} = \frac{y_{n} - y_{n-1}}{h_{n}} - \frac{2}{3} h_{n} c_{n}.$$
(5.12)

Учитывая выражения (5.11) и (5.12), исключаем из уравнения (5.7) коэффициенты d_i и b_i . Окончательно получим следующую систему уравнений только для коэффициентов c_i :

$$c_1 = 0, \qquad c_{n+1} = 0,$$

$$h_{i-1}c_{i-1} + 2(h_{i-1} + h_i)c_i + h_ic_{i+1} = 3\left(\frac{y_i - y_{i-1}}{h_i} - \frac{y_{i-1} - y_{i-2}}{h_{i-1}}\right),\tag{5.13}$$

$$i = 2,3,...,n$$
.

Матрица этой системы трехдиагональная, т.е. ненулевые элементы находятся лишь на главной и двух соседних с ней диагоналях, расположенных сверху и снизу. Для ее решения целесообразно использовать метод прогонки. По найденным из системы (5.13) коэффициентам c_i легко вычислить коэффициенты d_i , b_i .

Пример 5.4. Построить кубический сплайн для функции $f(x) = \sin(\pi x)$ на отрезке [0; 2], используя разбиения отрезка n = 10 частей. Найти значение в точке x = 0.48.

Решение. В ячейках A1:N1 запишем обозначения столбцов как в

таблице.

	Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р	
1	i	Х	h	у	d1	a1	b1	c1	u	٧	С	а	b	d			
2	0	0,000		0,000													
3	1	0,200	0,200	0,588							0	0,000	3,1387	-4,9954			
4	2	0,400	0,200	0,951	-3,368	0,000	0,800	0,200	-0,250	-4,210	-2,9972	0,588	2,5393	-3,0873			
5	3	0,600	0,200	0,951	-5,449	0,200	0,800	0,200	-0,267	-6,143	-4,8496	0,951	0,9699	-1E-07	80,0	0,9976	
6	4	0,800	0,200	0,588	-5,449	0,200	0,800	0,200	-0,268	-5,652	-4,8496	0,951	-0,97	3,0873			
7	5	1,000	0,200	0,000	-3,368	0,200	0,800	0,200	-0,268	-2,997	-2,9972	0,588	-2,539	4,9954			
8	6	1,200	0,200	-0,588	0,000	0,200	0,800	0,200	-0,268	0,803	-3E-07	0,000	-3,139	4,9954			
9	7	1,400	0,200	-0,951	3,368	0,200	0,800	0,200	-0,268	4,297	2,99723	-0,588	-2,539	3,0873			
10	8	1,600	0,200	-0,951	5,449	0,200	0,800	0,200	-0,268	6,149	4,84962	-0,951	-0,97	3E-07			
11	9	1,800	0,200	-0,588	5,449	0,200	0,800	0,200	-0,268	5,653	4,84962	-0,951	0,9699	-3,0873			
12	10	2,000	0,200	0,000	3,368	0,200	0,800	0,000	0,000	2,997	2,99723	-0,588	2,5393	-4,9954			
13											0						

1) Построим таблицу значений функции.

В ячейки **A2:A12** запишем значение индекса i = 0, 1, ..., 10.

В ячейку **B2** запишем **0**, а в **B3** запишем **0,2**. Выделим **B2:В3** и маркером заполнения протянем вниз до **B12**.

В ячейку C3 запишем формулу =B3-B2 и маркером заполнения протянем вниз до C12.

В ячейку **D2** запишем формулу = \sin (3,1415926*B2), выделим **D2** и маркером заполнения протянем вниз до **D12**.

2) Вычислим коээфициенты системы 2.9.

В ячейку **E4** запишем формулу =3*(D4-D3)/C4-3*(D3-D2)/C3 и маркером заполнения протянем вниз до **E12**.

В ячейку F4 запишем 0, в ячейку F5 запишем =C4 и маркером заполнения протянем вниз до F12.

В ячейку G4 запишем формулу =2*(C3+C4) и маркером заполнения протянем вниз до G12.

В ячейку **H4** запишем формулу = **C4** и маркером заполнения протянем вниз до **H12**.

3) Вычислим прогоночные коэффициенты (прямой ход прогонки).

В ячейку **I4** запишем формулу =**H4**/(**F4*I3**+**G4**) и маркером заполнения протянем вниз до **I12**.

В ячейку **J4** запишем формулу =(**E4-F4*J3**)/(**F4*I3**+**G4**) и маркером заполнения протянем вниз до **J12**.

4) Вычислим коэффициенты сплайна (обратный ход прогонки).

В ячейки **K3** и **K13** запишем **0**. В ячейку **K12** запишем формулу =**I12*K13+J12** и маркером заполнения протянем вверх до **K4**.

В ячейку L3 запишем формулу =D2 и маркером заполнения протянем вниз до L12.

В ячейку M3 запишем формулу =(D3-D2)/C3-(K4+2*K3)*C3/3 и маркером заполнения протянем вниз до M12.

В ячейку N 3 запишем формулу =(K4-K3)/3/C3 и маркером заполнения протянем вниз до N12.

5) Вычислим значение сплайна.

Точка x = 0,48 попадает в отрезок [0,4; 0,6]. Следовательно, нужно использовать строку i = 3. Поэтому запишем в ячейку **O5** формулу =**0,48-0,4**, в ячейку **P5** формулу =**L5+M5*O5+K5*O5^2+N5*O5^3**.

Получим значение **0,9976**. Точное значение $\sin(0,48\pi)=0,998026...$

Следовательно, погрешность равна 0,0004.

Пример 5.5. Найти значение функции y(x), заданной таблично, в точке x = 1,324 с помощью кубического сплайна. Использовать подпрограмму-функцию, реализующую интерполяцию кубическими сплайнами на VBA в Excel (рис. 5.3).

X	1	1,1	1,2	1,4
y	1	0,7513	0,5787	0,3644

Порядок решения.

- 1) Вставить в проект VBA стандартный модуль: в главном меню редактора VBA выбрать Insert→Module.
- 2) Ввести подпрограмму-функцию spline3 (рис. 5.3) в стандартный модуль проекта VBA. Теперь функция spline3 доступна в табличном процессоре Excel через мастер функций.
- 3) Ввести данные таблицы в столбцы Excel. Ввести значение, для которого необходима интерполяция в ячейку **A7**.
- 4) Через мастер функций (или вводом текста) вставить функцию spline3 в ячейку **B7**. У функции spline3 два аргумента: первый диапазон ячеек, содержащий таблицу данных **\$A\$2:\$B\$5**, второй адрес ячейки, содержащий значение, для которого необходима интерполяция, т.е. **A7**.

	Α	В
1	X	У
2	1	1
3	1,1	0,7513
4	1,2	0,5787
5	1,4	0,3644
6		
7	1,324	=spline3(\$A\$2:\$B\$5;A7)

5) В ячейке В7 получаем результат интерполяции 0,436284991.

```
Function spline3(xy As Range, t As Double) As Double
 n = xy.Rows.Count
 ReDim a(n), b(n), c(n + 1), d(n)
 ReDim x(n) As Double, y(n) As Double, h(n) As Double
 ReDim a1(n), b1(n), c1(n), d1(n), u(n), v(n)
 For i = 1 To n
   x(i) = xy.Cells(i, 1).Value
   y(i) = xy.Cells(i, 2).Value
 Next
 For i = 1 To n
   h(i) = x(i) - x(i - 1)
 Next
 For i = 2 To n
   a1(i) = h(i - 1)
   b1(i) = 2 * (h(i - 1) + h(i))
   c1(i) = h(i)
   d1(i) = 3*((y(i)-y(i-1))/h(i)-
         (y(i-1)-y(i-2))/h(i-1))
 Next
 a1(2) = 0
 c1(n) = 0
 For i = 2 To n
   u(i) = -c1(i) / (a1(i)*u(i-1)+b1(i))
   v(i) = (d1(i)-a1(i)*v(i-1)) / (a1(i)*u(i-1)+b1(i))
 Next
 c(1) = 0
 c(n + 1) = 0
 For i = n To 2 Step -1
   c(i) = u(i) * c(i + 1) + v(i)
 Next
 For i = 1 To n
   a(i) = y(i-1)
   d(i) = (c(i + 1) - c(i)) / (3 * h(i))
   b(i) = (y(i)-y(i-1))/h(i)-h(i)/3*(c(i+1)+2*c(i))
 Next
 For k = 1 To n
   If x(k-1) \le t And t \le x(k) Then GoTo L2
 L2: S = a(k) + b(k) * (t - x(k - 1)) + __
         c(k) * (t - x(k - 1)) ^2 +
         d(k) * (t - x(k - 1)) ^ 3
 spline3 = S
End Function
```

Рис. 5.3. Подпрограмма-функция, реализующая интерполяцию кубическими сплайнами на VBA в Excel.

5.2. Сглаживание. Метод наименьших квадратов

Задача аппроксимации функции может ставиться, когда исходные данные содержат погрешности (рис. 5.4а), повторы (рис. 5.4б) или очень большое количество точек (рис. 5.4в). В этих случаях аппроксимация на основе интерполяции не имеет смысла или невозможна.

Рис. 5.4. Аппроксимация функции сглаживанием.

Для задачи аппроксимации сглаживанием критерий близости аппроксимирующей функции $y = \tilde{y}(x)$ к исходным данным x_i , y_i рассматривается как минимальное отклонение значений в заданных точках. Количественно отклонение может быть оценено различными способами. Наибольшее распространение получил метод наименьших квадратов (МНК), согласно которому необходимо минимизировать сумму квадратов:

$$S = \sum_{i=1}^{n} (\widetilde{y}(x_i, a) - y_i)^2 \rightarrow \min$$
 (5.14)

где x_i , y_i — значения данных $\tilde{y}(x_i,a)$ — значение аппроксимирующей функции в точке x_i ; n — число данных, a— незвестные параметры. Задача сводится к нахождению экстремума функции параметров S(a).

Линейная аппроксимация. В случае линейной формулы $\tilde{y}(x) = ax + b$ сумма квадратов (5.14) принимает вид:

$$S(a,b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \rightarrow \min$$
 (5.15)

Функция (5.15) имеет минимум в точках, в которых частные производные от S по параметрам a и b обращаются в нуль, т.е.

$$\frac{\partial S(a,b)}{\partial a} = 0, \qquad \frac{\partial S(a,b)}{\partial b} = 0$$

$$\sum_{i=1}^{n} 2(ax_i + b - y_i)x_i = 0$$

$$\sum_{i=1}^{n} 2(ax_i + b - y_i) = 0$$
(5.16)

$$a\sum_{i=1}^{n} x_{i}^{2} + b\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i} y_{i}$$

$$a\sum_{i=1}^{n} x_{i} + bn = \sum_{i=1}^{n} y_{i}$$
(5.17)

Решая систему уравнений (5.17), получим значения a и b уравнения $\widetilde{y}(x) = ax + b$.

Пример 5.6. Подобрать аппроксимирующий полином первой степени $\tilde{y}(x) = ax + b$ для данных

			Ta	Гаолица 5.3.		
\mathcal{X}_{i}	0	1	2	4		
$\overline{y_i}$	0,2	0,9	2,1	3,7		

Решение. Для удобства вычисленные значения расположим в таблице.

Таблица 5.4. x_i^2 i $x_i y_i$ X_i y_i 1 0 0.2 0 0.01 0,9 1 0,9 2,1 4 4,2 4 3,7 16 14,8 7 6,9 21 19,9

Система для определения коэффициентов имеет вид:

$$\begin{cases}
21a + 7b = 19,9 \\
7a + 4b = 6,9
\end{cases}$$
(5.18)

Решая систему (5.18), получим следующие значения параметров: a = 0.894, b = 0.160. Следовательно, искомый полином имеет вид:

$$\tilde{y}(x) = 0.894x + 0.160$$
.

Полиномиальная аппроксимация. В случае выбора зависимости в виде полинома, например, 2-й степени $\tilde{y}(x) = ax^2 + bx + c$ и (5.14) принимает вид:

$$S(a,b,c) = \sum_{i=1}^{n} (ax_i^2 + bx_i + c - y_i)^2 \rightarrow \min$$
 (5.19)

Функция (5.19) имеет минимум в точках, в которых частные производные от S по параметрам a, b, c обращаются в нуль, т.е.:

$$\frac{\partial S(a,b,c)}{\partial a} = 0, \qquad \frac{\partial S(a,b,c)}{\partial b} = 0, \qquad \frac{\partial S(a,b,c)}{\partial c} = 0 \tag{5.20}$$

В результате дифференцирования и элементарных преобразований для определения параметров получают систему из трех линейных уравнений с тремя неизвестными:

$$2\sum_{i=1}^{n} (ax_{i}^{2} + bx_{i} + c - y_{i})x_{i}^{2} = 0$$

$$2\sum_{i=1}^{n} (ax_{i}^{2} + bx_{i} + c - y_{i})x_{i} = 0$$

$$2\sum_{i=1}^{n} (ax_{i}^{2} + bx_{i} + c - y_{i}) = 0$$

$$4DDU$$

$$a\sum_{i=1}^{n} x_{i}^{4} + b\sum_{i=1}^{n} x_{i}^{3} + c\sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i}^{2}y_{i}$$

$$a\sum_{i=1}^{n} x_{i}^{3} + b\sum_{i=1}^{n} x_{i}^{2} + c\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i}y_{i}$$

$$a\sum_{i=1}^{n} x_{i}^{2} + b\sum_{i=1}^{n} x_{i} + cn = \sum_{i=1}^{n} y_{i}$$
(5.21)

Решая систему линейных уравнений (5.21), получим значения параметров a, b и c функции $\tilde{y}(x) = ax^2 + bx + c$.

Пример 5.7. Используя МНК, построить зависимость вида $\tilde{y}(x) = ax^2 + bx + c$, аппроксимирующую следующие табличные значения:

				Ta	блица 5.5.
X_i	-2	-1	0	1	2
y_i	6	2	-1	-2	-1

Решение. Расчеты представим в виде таблицы.

Таблица 5.6.

							1112000.01
i	\mathcal{X}_{i}	\mathcal{Y}_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$
1	-2	6	4	-8	16	-12	24
2	-1	2	1	-1	1	-2	2
3	0	-1	0	0	0	0	0
4	1	-2	1	1	1	-2	-2
5	2	-1	4	8	16	-2	-4
$\sum_{i=1}^{n}$	0	4	10	0	34	-18	20

Тогда система линейных уравнений (5.21) относительно значений a, b и c примет вид:

$$\begin{cases} 34a + 0b + 10c = 20\\ 0a + 10b + 0c = -18\\ 10a + 0b + 5c = 4 \end{cases}$$
 (5.22)

систему (5.22), получим следующие значения параметров a = 0.857; b = -1.800; c = -0.914. Таким образом, искомый полином имеет вид:

 $\tilde{y}(x) = 0.857x^2 - 1.8x - 0.914$

Таблица 5.7.

$$i$$
 x_i
 y_i
 $\widetilde{y}(x_i)$
 $(y_i - \widetilde{y}(x_i))^2$

1 -2 6 6,114 0,012

2 -1 2 1,743 0,066

3 0 -1 -0,914 0,007

4 1 -2 -1,857 0,020

5 2 -1 -1,086 0,007

0,112

Пример 5.8. Используя программу Excel, построить функцию вида $\tilde{y}(x) = ax^2 + bx + c$, аппроксимирующую значения из таблицы 5.5:

Порядок решения.

- 6) Ввести таблицу в рабочий лист Excel (рис. 5.5). Выделить ячейки таблицы.
- 7) Вставить диаграмму: Вставка Диаграммы Точечная точечная с маркерами. На рабочем листе появится график точек табли-ЦЫ.

Рис. 5.5. Добавление линии тренда в точечную диаграмму.

- 8) Вызвать контекстное меню (правой кнопкой мыши) одной из точек графика. Выбрать пункт «Добавить линию тренда».
- 9) Выбрать «**Полиномиальная**№ аппроксимация и установить степень полинома, равной **2** (рис. 5.6).
- 10) Отметить «показывать уравнение на диаграмме».

Рис. 5.6. Настройка параметров линии тренда.

11) Закрыть окно настроек. Появляется линия графика аппроксимирующей функции и соответствующая формула (рис. 5.7):

$$y(x) = 0.8571x^2 - 1.8x - 0.9143$$

Рис. 5.7. Результаты аппроксимации.

Аппроксимация линеаризацией. Многие нелинейные функции, зависящие от двух параметров, можно линеаризовать путем замены переменных. Для этого необходимо подобрать такое преобразование исходной зависимости $y(x) = \varphi(x, a, b)$, в результате которого она приобретает линейный вид Y = AX + B. Далее решается задача линейной аппроксимации для новой зависимости, и вычисленные коэффициенты A и B пересчитываются в a и b.

Таблица 5.8. Таблица замены переменых для метода линеаризации данных

		Линеаризованная	Заме	на перемен	іных и кон	стант
№	Функция	форма $Y = AX + B$	X	Y	а	b
1.	$y = \frac{a}{x} + b$	$y = a\frac{1}{x} + b$	$\frac{1}{x}$	У	A	В
2.	$y = \frac{a}{x+b}$	$y = \frac{-1}{b}(xy) + \frac{a}{b}$	xy	У	$-\frac{B}{A}$	$-\frac{1}{A}$
3.	$y = \frac{x}{ax + b}$	$\frac{1}{y} = b\frac{1}{x} + a$	$\frac{1}{x}$	$\frac{1}{y}$	В	A
4.	$y = a \ln x + b$	$y = a \ln x + b$	$\ln x$	y	A	В
5.	$y = be^{ax}$	$ \ln y = ax + \ln b $	X	ln y	A	$e^{^B}$
6.	$y = bx^a$	$ \ln y = a \ln x + \ln b $	$\ln x$	ln y	A	$e^{\scriptscriptstyle B}$

Пример 5.9. Используя МНК, построить функцию вида $\tilde{y}(x) = bx^a$, аппроксимирующую следующие табличные значения:

			<u>l</u> a	Таолица 5.9.		
\mathcal{X}_{i}	1,5	2,5	3,3	4		
y_i	9	31	66	108		

Решение. Расчеты представим в виде таблицы.

Таблица 5.10.

						- ****	пца 5.10.
i	\mathcal{X}_{i}	\mathcal{Y}_i	$X_i = \ln x_i$	$Y_i = \ln y_i$	X_i^2	X_iY_i	$\widetilde{y}(x_i)$
1	1,5	9	0,405	2,197	0,164	0,891	8,81
2	2,5	31	0,916	3,434	0,840	3,147	32,08
3	3,3	66	1,194	4,190	1,425	5,002	64,75
4	4	108	1,386	4,682	1,922	6,491	105,35
$\sum_{i=1}^{n}$			3,902	14,503	4,351	15,530	

Система для определения коэффициентов имеет вид:

$$\begin{cases}
4,351A + 3,902B = 15,530 \\
3,902A + 4B = 14,503
\end{cases}$$
(5.23)

Решая систему (5.23), получим следующие значения параметров: A = 2,538, B = 1,15.

Тогда (табл. 5.8) a = A = 2,538, $b = e^B = e^{1,15} = 3,158$.

Аппроксимирующая функция имеет вид:

$$\tilde{y}(x) = 3.158x^{2.538}$$

Аппроксимация произвольной функцией может быть выполнена в программе Excel с помощью модуля «Поиск решения».

Пример 5.10. Используя программу Excel, построить функцию, аппроксимирующую значения из таблицы:

 x_i 1 1,5 2 2,5 3 3,5 4 y_i 0,3 0,7 1,4 1,9 1,3 0,5 0,3

Порядок решения.

1) Аппроксимирующая функция должна иметь экстремум в виде пика. Выберем следующую функцию, зависящую от трех параметров a_i :

$$\widetilde{y}(x) = a_1 e^{-\frac{(x-a_2)^2}{a_3}};$$

- 2) Ввести в ячейки **A2**, **B2**, **C2** (рис. 5.8) начальные значения параметров a_i , например 1 1 1
- 3) В ячейки **A5:A11** значения x_i
- 4) В ячейки **B5:B11** значения y_i
- 5) В ячейку **C5** формулу аппроксимирующей функции (на ячейки с параметрами абсолютные ссылки):

$$=A2*EXP(-((A5-B2)^2)/C2)$$

- 6) Скопировать формулу в ячейки С6:С11
- 7) В ячейку **D5** формулу квадрата разности: $=(B5-C5)^2$
- 8) Скопировать формулу в ячейки **D6:D11**
- 9) В ячейку **D12** сумму квадратов: =**CYMM(D5:D11)**
- 10) Вызвать окно Поиск решения. В настройках указать:

Установить целевую ячейку

\$D\$12

Равной Изменяя ячейки минимальному значению \$A\$2:\$C\$2

- 11) Нажать кнопку Выполнить.
- 12) Подтвердить сохранение найденного решения.

13) Рабочий лист изменился и содержит решение (рис. 5.8):

$$a_1 = 1,81559$$

$$a_2 = 2,450734$$

$$a_3 = 0,968182$$

Таким образом, аппроксимирующая данные табл. 5.11 функция имеет вид:

$$\tilde{y}(x) = 1.81559e^{-\frac{(x-2.450734)^2}{0.968182}}$$

Графически результаты аппроксимации редставлены на рис. 5.9.

	Α	В	С	D	Е
1	a1	a2	а3		
2	1,815599	2,450734	0,968182		
3			 		
4	Х	у	y~	квадрат разности	
5	1	0,3	0,206516	0,00873931	
6	1,5	0,7	0,713777	0,000189808	
7	2	1,4	1,471935	0,005174633	
8	2,5	1,9	1,811053	0,007911556	; ;
9	3	1,3	1,329506	0,000870603	
10	3,5	0,5	0,582326	0,006777524	
11	4	0,3	0,15218	0,021850689	
12			сумма:	0,051514122	

Рис. 5.8. Аппроксимация данных нелинейной функцией с тремя параметрами с помощью программы Excel.

Рис. 5.9. Результаты аппроксимации функцией с тремя параметрами.

Точность аппроксимации можно оценить среднеквадратической ошибкой

$$s = \sqrt{\frac{\sum_{i=1}^{n} (\widetilde{y}(x_i) - y_i)^2}{n}},$$

которая не должна превышать погрешность исходных данных (рис. 5.4а).

23.
$$\begin{cases} \sin(x+1) + y = 1,2\\ 2x - \cos y = 2 \end{cases}$$

24.
$$\begin{cases} x - \cos(y+1) = 0 \\ y + 2\sin x = -0.4 \end{cases}$$

23.
$$\begin{cases} \sin(x+1) + y = 1,2 \\ 2x = \cos y = 2 \end{cases}$$
25.
$$\begin{cases} \sin x - 2y = 2 \\ \cos(y+1) + x = 0,72 \end{cases}$$
27.
$$\begin{cases} \cos x + 2y = 1,5 \\ x - \sin(y - 0,5) = 1 \end{cases}$$
29.
$$\begin{cases} \sin(x+0,5) + y = 1,5 \\ \cos(y-2) - x = 1 \end{cases}$$

24.
$$\begin{cases} x - \cos(y+1) = 0 \\ y + 2\sin x = -0,4 \end{cases}$$
26.
$$\begin{cases} \cos(y-0.5) + x = 2 \\ \sin x + 2y = 1 \end{cases}$$
28.
$$\begin{cases} \sin(x+1) - 2y = 3 \\ x + \cos y = 2 \end{cases}$$
30.
$$\begin{cases} \cos(x-1) + y = 0.8 \\ x + 4\cos y = 2 \end{cases}$$

27.
$$\begin{cases} \cos x + 2y = 1,5 \\ x - \sin(y - 0,5) = 1 \end{cases}$$

28.
$$\begin{cases} \sin(x+1) - 2y = 3 \\ x + \cos y = 2 \end{cases}$$

29.
$$\begin{cases} \sin(x+0.5) + y = 1.5 \\ \cos(y-2) - x = 1 \end{cases}$$

30.
$$\begin{cases} \cos(x-1) + y = 0.8 \\ x + 4\cos y = 2 \end{cases}$$

Начальное приближение

31.
$$\begin{cases} \frac{x^2}{m^2} + \frac{4y^2}{m^2} = 1\\ y = \frac{\sqrt{2}}{m}x^2 \end{cases}$$

№5.1. Интерполяция

Построить интерполяционные полиномы Лагранжа и Ньютона по заданным точкам:

1.	X	1	3	4
	У	1	2	1

11.	X	-2	1	2
	y	3	0	2

12.	X	2	3	4
	У	1	0	2

13.	X	1	2	3
	y	1	0	1

14.	X	1	2	3
	V	3	2	4

24.	X	2	3	4
	y	0	-3	-1

25.	X	-1	4	5	
	V	-2	-1	-3	

26.	X	1	3	4
	У	-4	-1	-5

27.	X	0	2	3
	y	-1	-2	-1

m — вариант

№5.2. Интерполяция кубическими сплайнами

Найти значение функций заданных таблично при x = 1,1 с помощью кубического сплайна.

X_{i}	1	2	3	4	5	6	7	8	9	10
1,0	1,0	1,1	0,9	0,9	0,8	1,1	1,0	1,2	1,2	1,1
1,2	2,1	2,2	2,0	1,9	2,0	2,2	2,1	1,8	2,0	1,9
1,4	2,9	3,2	3,0	3,2	2,9	3,2	3,1	3,2	3,0	3,2
1,6	3,8	4,2	3,8	3,8	4,2	4,2	3,8	4,1	3,8	3,8
1,8	5,2	5,2	5,1	5,1	5,2	5,1	5,2	5,2	5,0	4,9
2,0	5,9	6,0	5,8	6,1	5,8	5,9	6,2	6,1	6,1	5,8
X_{i}	11	12	13	14	15	16	17	18	19	20
1,0	0,8	0,8	0,8	1,1	0,8	1,0	0,9	1,2	1,2	1,2
1,2	2,0	2,2	1,8	2,2	1,9	1,8	2,0	2,2	2,2	2,0
1,4	2,8	2,9	2,9	3,0	3,2	2,8	2,8	3,0	3,2	3,2
1,6	4,0	4,0	4,0	4,1	4,1	3,8	3,8	4,0	3,8	4,2
1,8	5,2	5,2	4,9	4,9	5,0	4,8	4,9	4,8	4,8	4,8
2,0	6,0	5,8	6,1	5,9	6,0	5,8	6,2	5,8	6,0	6,1
X_{i}	21	22	23	24	25	26	27	28	29	30
1,0	2,8	3,8	4,8	1,5	6,0	10,0	5,9	0,2	12	0,12
1,2	2,0	3,2	3,8	2,7	4,9	11,8	7,0	2,2	22	0,25
1,4	1,8	2,9	2,9	3,2	4,2	12,8	8,8	2,6	32	0,55
1,6	1,6	3,0	2,0	4,0	4,5	13,5	8,8	2,9	38	0,42
1,8	2,2	4,2	1,9	4,5	5,0	14,3	7,9	3,1	48	0,48
2,0	3,0	4,8	1,1	4,9	6,0	15,0	6,2	3,2	60	0,6

№5.3. Обработка результатов эксперимента

Методом наименьших квадратов найти зависимость между х и у:

1.	х	-1	0	1	2	4
	у	-3	-1	1	3	7

26.
$$\begin{array}{c|ccccc} x & -1 & 2 & 3 & 4 \\ \hline y & -1 & -7 & -9 & -11 \end{array}$$

27.	X	-1	0	2	3
	у	1	4	10	13

28.	х	-1	1	2	4
	у	4	0	-2	-6

№6. Численное интегрирование

Вычислить интеграл, используя квадратурные формулы прямоугольников, трапеций и парабол (Симпсона), при заданном числе интерва-лов *n* :

1.
$$\int_{-2}^{4} (2x^{2} - \sqrt{x+2}) dx$$

$$n = 6$$
2.
$$\int_{-3}^{0} (5x^{2} + x + 1) dx$$

$$n = 6$$
3.
$$\int_{0}^{4} (3x^{2} - \sqrt{x}) dx$$

$$n = 6$$
4.
$$\int_{1}^{4} (x^{3} - \sqrt{x}) dx$$

$$n = 6$$
5.
$$\int_{1}^{4} (7 + x - 2x^{2}) dx$$

$$n = 6$$
6.
$$\int_{0}^{3} (7x^{2} - 3\sqrt{x}) dx$$

$$n = 6$$

$$=6$$
 2. $\int_{0}^{0} (5x^{2} +$

$$3. \qquad \int\limits_0^3 (3x^2 - \sqrt{x}) dx$$

$$n=6$$

$$4. \qquad \int_{1}^{4} (x^3 - \sqrt{x}) dx$$

$$n=6$$

5.
$$\int_{1}^{4} (7 + x - 2x^2) dx$$

$$n=6$$

5.
$$\int_{0}^{3} (7x^2 - 3\sqrt{x}) dx$$

$$n=6$$