

Micro Commercial Components 21201 Itasca Street Chatsworth

CA 91311

Phone: (818) 701-4933 (818) 701-4939

BC546,B BC547,A,B,C BC548,A,B,C

Features

- Through Hole Package
- 150°C Junction Temperature

Pin Configuration Bottom View

Mechanical Data

Case: TO-92, Molded Plastic Polarity: indicated as above.

Maximum Ratings @ 25°C Unless Otherwise Specified

Charateristic		Symbol	Value	Unit	
Collector-Emitter Voltage	BC546	-	65		
	BC547	V_{CEO}	45	V	
	BC548		30		
Collector-Base Voltage	BC546		80		
	BC547	V_{CBO}	50	V	
	BC548		30		
Emitter-Base Voltage		V_{EBO}	6.0	V	
Collector Current(DC)		I _C	100	mA	
Dayyar Dissination @T =25°C		D	625	mW	
Power Dissipation (@1 A-25	er Dissipation@T _A =25°C P _d 5.0		mW/°C		
Dougr Dissipation@T =25°C		D	1.5	W	
Power Dissipation@1 _C -23	wer Dissipation@T _C =25°C P _d 1.5 VV 12 mW/°C				
Thermal Resistance, Junction to Ambient Air		$R_{ hetaJA}$	200	°CW	
Thermal Resistance, Junction to Case		$R_{ heta$ JC	83.3	°C/W	
Operating & Storage Temperature		T _i , T _{STG}	-55~150	°C	

NPN Silicon Amplifier Transistor 625mW

.020

0.41 3.43 2.42 0.63

3.68 2.67

BC546 thru BC548C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-	•			
Collector–Emitter Breakdown Voltage (I _C = 1.0 mA, I _B = 0)	BC546 BC547 BC548	V _{(BR)CEO}	65 45 30	_ _ _	_ _ _	V
Collector–Base Breakdown Voltage (I _C = 100 μAdc)	BC546 BC547 BC548	V _(BR) CBO	80 50 30	_ _ _		V
Emitter–Base Breakdown Voltage ($I_E = 10 \mu A, I_C = 0$)	BC546 BC547 BC548	V _{(BR)EBO}	6.0 6.0 6.0	_ _ _		V
N CHARACTERISTICS						
DC Current Gain (I _C = 10 μ A, V _{CE} = 5.0 V)	BC547A/548A BC546B/547B/548B BC548C	h _{FE}	_ _ _	90 150 270	_ _ _	_
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC546 BC547 BC548 BC547A/548A BC546B/547B/548B BC547C/BC548C		110 110 110 110 200 420	 180 290 520	450 800 800 220 450 800	
$(I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC547A/548A BC546B/547B/548B BC548C		=	120 180 300	_ _ _	
Collector–Emitter Saturation Voltage (I _C = 100 mA, I _B = 5.0 mA)		V _{CE(sat)}	_		0.3	V
Base–Emitter Saturation Voltage (I _C = 100 mA, I _B = 5.0 mA)		V _{BE(sat)}	_	_	1.0	V
Base–Emitter On Voltage $(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$ $(I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V})$		V _{BE(on)}	0.55 —	_	0.7 0.77	V
MALL-SIGNAL CHARACTERISTICS			•			
Current–Gain — Bandwidth Product $(I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz})$	BC546 BC547 BC548	f _T	150 150 150	300 300 300		MH
Output Capacitance $(V_{CB} = 10 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz})$		C _{obo}	_	1.7	4.5	pF
nput Capacitance (V _{EB} = 0.5 V, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	10	_	pF
Small–Signal Current Gain (I _C = 2.0 mA, V _{CE} = 5.0 V, f = 1.0 kHz)	BC546 BC547/548 BC547A/548A BC546B/547B/548B BC547C/548C	h _{fe}	125 125 125 240 450		500 900 260 500 900	_
Noise Figure (I _C = 0.2 mA, V _{CE} = 5.0 V, R _S = 2 k Ω , f = 1.0 kHz, Δ f = 200 Hz)	BC546 BC547 BC548	NF	_ _ _	2.0 2.0 2.0	10 10 10	dB

·*M*·*C*·*C*·

BC546 thru BC548C

1.0 0.9 8.0 $V_{BE(sat)} @ I_C/I_B = 10$ 0.7 V, VOLTAGE (VOLTS) $V_{BE(on)} @ V_{CE} = 10 V$ 0.6 0.5 0.4 0.3 0.2 $V_{CE(sat)} @ I_C/I_B = 10$ 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 IC, COLLECTOR CURRENT (mAdc)

Figure 1. Normalized DC Current Gain

Figure 2. "Saturation" and "On" Voltages

Figure 3. Collector Saturation Region

Figure 4. Base-Emitter Temperature Coefficient

BC547/BC548

Figure 5. Capacitances

Figure 6. Current-Gain - Bandwidth Product

BC546 thru BC548C

BC547/BC548

Figure 7. DC Current Gain

Figure 8. "On" Voltage

Figure 9. Collector Saturation Region

Figure 10. Base-Emitter Temperature Coefficient

Figure 11. Capacitance

Figure 12. Current-Gain - Bandwidth Product

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.