C20 Robust Optimization Example Paper

Kostas Margellos Hilary Term 2020

kostas.margellos@eng.ox.ac.uk

Problems

1. Let $(\delta_1, \ldots, \delta_m)$ be a given m multi-sample used to construct a hypothesis H_m to approximate a target set T. Assume that $T \supseteq H_m$ for any multi-sample. The Probably Approximately Correct (PAC) learning paradigm is summarized in the following statement

$$\mathbb{P}^m \Big\{ \delta_1, \dots, \delta_m : \mathbb{P} \Big(\delta \in T \setminus H_m \Big) \le \epsilon \Big\} \ge 1 - q(m, \epsilon),$$

with $\lim_{m\to\infty} q(m,\epsilon) = 0$.

- (a) What are the random variables and events, and with respect to which probabilities are they measured? Justify your answers in all cases.
- (b) Comment on the roles of ϵ and $q(m,\epsilon)$? Why do we require that $\lim_{m\to\infty}q(m,\epsilon)=0$?
- (c) A decision maker informs you that for this learning problem there exists a compression set with cardinality d < m. Fix any $\beta \in (0,1)$. Determine an upper-bound $\epsilon(m,\beta)$ on $\mathbb{P}\Big(\delta \in T \setminus H_m\Big)$ as a function of m and β , such that, with confidence at least $1-\beta$, the probability that H_m does not agree with T on a new realization δ of the uncertainty is at most $\epsilon(m,\beta)$.

Note that your answer will also depend on d.

2. Consider the following $\min - \max$ uncertain optimization problem

$$\min_{x \in \mathbb{R}^{n_x}} \max_{\delta \in \Delta} f(x, \delta),$$

where x is a vector with n_x decision variables, δ is an uncertain parameter taking values in the set Δ , and f is convex in x. Let δ, \ldots, δ_m be m

independent samples of δ according to a possibly unknown distribution \mathbb{P} , and consider the following $\min - \max$ scenario program

$$\min_{x \in \mathbb{R}^{n_x}} \max_{i=1,\dots,m} f(x, \delta_i).$$

- (a) Perform an epigraphic reformulation of the scenario program, introducing the scalar epigraphic variable $\gamma \in \mathbb{R}$. Provide a mathematical expression for the probability that the constraints of the reformulated problem are violated when a new sample δ is extracted.
- (b) For a given $\epsilon \in (0,1)$, provide an expression for the confidence $1-q(m,\epsilon)$ with which the probability of constraint violation of part (a) is at most equal to ϵ .
- (c) What is the implication of your answer in part (b) on the original $\min \max$ scenario program.
- 3. Consider m samples in \mathbb{R} , i.e., $\delta_1, \ldots, \delta_m$, $i=1,\ldots,m$, extracted according to an unknown probability measure \mathbb{P} . Consider the problem of determining the minimum length interval that contains all samples. See Figure 1 for a pictorial representation.

Figure 1: Minimum width interval.

- (a) Parameterize the interval using either its start- and end-point (denoted by \underline{x} and \overline{x} , respectively in Figure 1), or equivalently, by its center and semi-width length. Show that the problem of determining the minimum length interval enclosing all samples can be written as a convex scenario program.
- (b) Probabilistic robustness: Determine the number of samples m that would be required to guarantee that, with confidence at least $1-10^{-6}$, the probability that a new sample extracted according to $\mathbb P$ lies outside the minimum length interval is at most 5%.

4. Consider m=1650 points with coordinates $(u_i,y_i)\in\mathbb{R}^2$, $i=1,\ldots,m$. The points are extracted independently according to an unknown, contunuous probability measure \mathbb{P} . Consider the problem of determining the minimum width strip that contains all points. See Figure 2 for a pictorial representation¹.

Figure 2: Minimum vertical width strip.

- (a) Consider the parameterization shown in Figure 2, where x_1 denotes the semi-width length, and x_2 , x_3 encode the median line of the strip. Formulate the problem of determining the minimum vertical width strip that contains all points as a convex scenario program, and denote by (x_1^*, x_2^*, x_3^*) its optimal solution.
- (b) Probabilistic robustness: Provide a probabilistic certificate (confidence), with which the probability that a new sample extracted according to \mathbb{P} lies outside the minimum vertical width strip is at most 1%.
- (c) How does the computed confidence compare with the one computed in the minimum radius disk program worked out in the lecture notes? Which result is more conservative and why?
- 5. Let $\delta_1, \ldots, \delta_m$ be m independent samples of an uncertain parameter δ , distributed according to a possibly unknown distribution \mathbb{P} . Consider the

¹Figure taken from "The exact feasibility of randomized solutions of uncertain convex programs", by M. Campi and S. Garatti, SIAM Journal on Optimization, 19(3), 1211-1230, 2008.

following family of autonomous, linear dynamical systems/plants

$$\dot{x}(t) = A(\delta_i)x(t), \text{ for } i = 1, \dots, m,$$
(1)

where $x \in \mathbb{R}^n$ is the system state, and for each realization of the uncertain parameter δ , $A(\delta) \in \mathbb{R}^{n \times n}$ governs its evolution.

Let $\gamma \in \mathbb{R}$, and consider the following minimization program

$$\begin{aligned} \min_{P,\gamma} & \gamma \\ \text{subject to } P \succ 0 \\ & - I \preceq A^\top(\delta_i)P + PA(\delta_i) \preceq \gamma I, \text{ for all } i=1,\dots,m, \end{aligned}$$

where I is an identity matrix with appropriate dimension.

- (a) Quadratic stability: Provide a range of values for γ for the family of plants in (1) to be asymptotically stable.
- (b) What type of probabilistic statement can you offer for the optimal solutions P^*, γ^* of the aforementioned program? Comment on the probability that a new new plant (i.e., a new δ giving rise to $A(\delta)$), is asymptotically stable.

Note that the lower bound -I in the constraint is introduced to ensure boundedness of the solutions, as when the matrix $A^{\top}(\delta_i)P + PA(\delta_i)$ becomes negative for some $i=1,\ldots,m$ (and since it depends linearly on P), γ could drift to negative infinity.

- 6. Figure 3 shows three different scenario programs, each of them with two decision variables x_1 and x_2 . In all cases, each constraint is V-shaped (e.g., 1-norm constraint). The feasibility region for each constraint is outside the shaded part, and the arrow indicates the optimization direction, corresponding to minimizing x_2 .
 - (a) For each case indicate which constraints are of support.
 - (b) Which of those cases correspond to convex minimization programs? How is your answer on the number of support constraints related to convexity?

Figure 3: Different scenario programs with V-shaped constraints.

Justify your answers in all cases.

- 7. Bounds on the expected value of the probability of constraint violation.
 - (a) Consider the minimum width interval of Problem 3. Determine the number of samples that would be required for the expected value of the probability that a new sample lies outside the minimum width interval to be less than or equal to 0.05.
 - (b) Consider now the minimum vertical width strip of Problem 4. Determine the number of samples that would be required for the expected value of the probability that a new sample lies outside the minimum vertical width strip to be less than or equal to 0.01.