

GBI Tutorium Nr. 41

Foliensatz 02

Vincent Hahn - vincent.hahn@student.kit.edu | 1. November 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

1 Besprechung des 1. Übungsblattes

Vollständige Induktion

Wörter und Alphabete

3 Vollständige Induktion

Alphabete

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Ein Alphabet ist eine endliche, nichtleere Menge an "Zeichen" oder "Symbolen".

- $A = \{a, b, d\}$
- $B = \{3, 9, V, k\}$
- Der ASCII-Zeichensatz

Wörter

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Ein Wort über einem Alphabet A ist eine Folge von Zeichen aus A.

- $A = \{H, a, I, o, u, W, e, t\}$ enthält das Wort Hallo Welt
- ...

Menge aller Wörter

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die Menge aller Wörter über einem Alphabet A sind alle Wörter, in denen nur Zeichen aus A enthalten sind. Dies wird als A^* geschrieben.

Beispiele

Alphabet set $A = \{a, b\}$, dann enthält A*:

- a
- b
- aa
- ab
- ba
- . . .

Konkatenation von Wörtern

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die Konkatenation zweier Worte w_1 und w_2 aus den Alphabeten A und B wird geschrieben als $w_1 \circ w_2 \in (A \cup B)$

- $A = \{B, e, t\}$ enthält das Wort $w_1 = Bett$
- $B = \{w, a, n, z, e\}$ enthält das Wort $w_2 = wanze$
- $w_1 \circ w_2 = Bettwanze \neq w_2 \circ w_1 = wanzeBett$
- $A \cup B = \{B, e, t, w, a, n, z\}$ (*e* nur einmal!)

Konkatenation von Wörtern

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die Konkatenation zweier Worte w_1 und w_2 aus den Alphabeten A und B wird geschrieben als $w_1 \circ w_2 \in (A \cup B)$

- $A = \{B, e, t\}$ enthält das Wort $w_1 = Bett$
- $B = \{w, a, n, z, e\}$ enthält das Wort $w_2 = wanze$
- $w_1 \circ w_2 = Bettwanze \neq w_2 \circ w_1 = wanzeBett$
- $A \cup B = \{B, e, t, w, a, n, z\}$ (*e* nur einmal!)

Konkatenation von Wörtern

Vincent Hahn – vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die Konkatenation zweier Worte w_1 und w_2 aus den Alphabeten A und B wird geschrieben als $w_1 \circ w_2 \in (A \cup B)$

- $A = \{B, e, t\}$ enthält das Wort $w_1 = Bett$
- $B = \{w, a, n, z, e\}$ enthält das Wort $w_2 = wanze$
- $w_1 \circ w_2 = Bettwanze \neq w_2 \circ w_1 = wanzeBett$
- $A \cup B = \{B, e, t, w, a, n, z\}$ (*e* nur einmal!)

Mehrfachkonkatenation

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Beispiel

w sei ein Wort (zum Beispiel über dem vorherigen Alphabet A).

- w = Bett
- w³ = BettBettBett

Das leere Wort

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Das leere Wort wird mit ϵ geschrieben und hat die Länge 0.

Beispiele

Das leere Wort ist nicht das Leerzeichen.

$$\bullet \circ \mathsf{W} \circ \epsilon = \mathsf{W}$$

Wortlänge

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die Länge eines Wortes w gibt die Anzahl der darin enthaltenen Zeichen an. Gekennzeichnet wird dies mit dem "Pipe-Symbol" |w|.

$$|w^k| = k \cdot |w|$$

$$|\epsilon|=0$$

$$|w_1 \circ w_2| = |w_1| + |w_2|$$

Wortlänge

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die Länge eines Wortes w gibt die Anzahl der darin enthaltenen Zeichen an. Gekennzeichnet wird dies mit dem "Pipe-Symbol" |w|.

$$|w^k| = k \cdot |w|$$

$$|\epsilon|=0$$

$$|w_1 \circ w_2| = |w_1| + |w_2|$$

Wortlänge

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die Länge eines Wortes w gibt die Anzahl der darin enthaltenen Zeichen an. Gekennzeichnet wird dies mit dem "Pipe-Symbol" |w|.

$$|w^k| = k \cdot |w|$$

$$|\epsilon|=0$$

$$|w_1 \circ w_2| = |w_1| + |w_2|$$

Wortlänge

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die Länge eines Wortes w gibt die Anzahl der darin enthaltenen Zeichen an. Gekennzeichnet wird dies mit dem "Pipe-Symbol" |w|.

$$|w^k| = k \cdot |w|$$

$$|\epsilon| = 0$$

$$|w_1 \circ w_2| = |w_1| + |w_2|$$

Präfix und Suffix

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition: Präfix

Ein Präfix ist ein beliebig langer Teil am Anfang eines Wortes. a ist ein Präfix von w, falls gilt: $w = a \circ b$.

10/15

Präfix und Suffix

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition: Präfix

Ein Präfix ist ein beliebig langer Teil am Anfang eines Wortes. a ist ein Präfix von w, falls gilt: $w = a \circ b$.

Definition: Suffix

Ein Suffix ist ein beliebig langer Teil am Ende eines Wortes. b ist ein Suffix von w, falls gilt: $w = a \circ b$.

10/15

Aufgaben

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Aufgabe

Gegeben sei das Alphabet $A = \{0, 1\}$.

- Welche Worte befinden sich in A⁵?
- Ist auch das leere Wort darin enthalten?
- Was ist der Unterschied zwischen $A^2 \times A^2$ und $A^2 \cdot A^2$?

Aufgaben

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Aufgabe

Gegeben sei das Alphabet $A = \{0, 1\}.$

- Welche Worte befinden sich in A⁵?
- Ist auch das leere Wort darin enthalten?
- Was ist der Unterschied zwischen $A^2 \times A^2$ und $A^2 \cdot A^2$?

Aufgaben

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Aufgabe

Gegeben sei das Alphabet $A = \{0, 1\}$.

- Welche Worte befinden sich in A⁵?
- Ist auch das leere Wort darin enthalten?
- Was ist der Unterschied zwischen $A^2 \times A^2$ und $A^2 \cdot A^2$?

Vollständige Induktion

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Definition

Die vollständige Induktion ist eine mathematische Beweismethode, mit der die Gültigkeit einer Aussage für alle natürlichen Zahlen bewiesen werden kann.

Vollständige Induktion

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Vorgehen

Eine Behauptung ist gegeben.

- Induktionsanfang IA: Zeige die Gültigkeit der Behauptung für das erste Element.
- Induktionsvoraussetzung IV: Wir wissen, dass die Behauptung für ein beliebiges, aber festes Element n gilt.
- Induktionsschritt IS: Prüfe die Gültigkeit für ein darauffolgendes Element n+1.

Vollständige Induktion

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Vorgehen

Eine Behauptung ist gegeben.

- Induktionsanfang IA: Zeige die Gültigkeit der Behauptung für das erste Element.
- Induktionsvoraussetzung IV: Wir wissen, dass die Behauptung für ein beliebiges, aber festes Element n gilt.
- Induktionsschritt IS: Prüfe die Gültigkeit für ein darauffolgendes Element n + 1.

Vollständige Induktion

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Vorgehen

Eine Behauptung ist gegeben.

- Induktionsanfang IA: Zeige die Gültigkeit der Behauptung für das erste Element.
- Induktionsvoraussetzung IV: Wir wissen, dass die Behauptung für ein beliebiges, aber festes Element n gilt.
- Induktionsschritt IS: Prüfe die Gültigkeit für ein darauffolgendes Element n + 1.

Vollständige Induktion

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Vorgehen

Eine Behauptung ist gegeben.

- Induktionsanfang IA: Zeige die Gültigkeit der Behauptung für das erste Element.
- 2 Induktionsvoraussetzung IV: Wir wissen, dass die Behauptung für ein beliebiges, aber festes Element n gilt.
- Induktionsschritt IS: Prüfe die Gültigkeit für ein darauffolgendes Element n + 1.

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$1+2+3+\cdots+n=\frac{n\cdot(n+1)}{2}$$

Beweis

- ① IA: n = 1: Oben einsetzen, passt: 1 = 1
- \bigcirc *IV*: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- **3** *IS*: $k \to k + 1$:
 - Links: $1 + 2 + \dots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$
 - Rechts: $\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$
- Oie Behauptung stimmt.

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$1+2+3+\cdots+n=\frac{n\cdot(n+1)}{2}$$

Beweis

- ① IA: n = 1: Oben einsetzen, passt: 1 = 1.
- IV: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- ③ *IS*: $k \to k + 1$:

Links:
$$1 + 2 + \dots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$$

Rechts:
$$\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$$

Oie Behauptung stimmt

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$1+2+3+\cdots+n=\frac{n\cdot(n+1)}{2}$$

Beweis

- \blacksquare IA: n = 1: Oben einsetzen, passt: 1 = 1.
- IV: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- ③ *IS*: $k \to k + 1$:

Links:
$$1 + 2 + \dots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$$

Rechts:
$$\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$$

Oie Behauptung stimmt

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$1+2+3+\cdots+n=\frac{n\cdot(n+1)}{2}$$

Beweis

- \blacksquare IA: n = 1: Oben einsetzen, passt: 1 = 1.
- IV: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- **3** *IS*: $k \to k + 1$:
 - Links: $1 + 2 + \dots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$
 - Rechts: $\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$
- Oie Behauptung stimmt.

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$1+2+3+\cdots+n=\frac{n\cdot(n+1)}{2}$$

Beweis

- ① IA: n = 1: Oben einsetzen, passt: 1 = 1.
- IV: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses *n* möchte ich nun *k* nennen, einfach so :-)
- **3** *IS*: $k \to k + 1$:
 - Links: $1 + 2 + \cdots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$
 - Rechts: $\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$
- Die Behauptung stimmt.

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2 \land x_0 = 0 \Leftrightarrow x_n = 2 n$$

Lösung

- ① IA: n = 0
- 2 /V:
- ③ *IS*:

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2 \land x_0 = 0 \Leftrightarrow x_n = 2 n$$

Lösung

IA: n = 0. $x_0 = 0$ (nach Vorgabe) und $2 \cdot 0 = 0$ (die rechte Seite)

2 /V:

3 15

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2 \land x_0 = 0 \Leftrightarrow x_n = 2 n$$

Lösung

- ① IA: n = 0. $x_0 = 0$ (nach Vorgabe) und $2 \cdot 0 = 0$ (die rechte Seite)
- ② IV: "Für ein beliebiges, aber festes n gilt die obige Behauptung: $x_n = 2 n$ "
- 3 /S

Übung

Vincent Hahn - vincent.hahn@student.kit.edu

Besprechung des 1. Übungsblattes

Wörter und Alphabete

Vollständige Induktion

Behauptung

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2 \land x_0 = 0 \Leftrightarrow x_n = 2 n$$

Lösung

- **1** IA: n = 0. $x_0 = 0$ (nach Vorgabe) und $2 \cdot 0 = 0$ (die rechte Seite)
- ② IV: "Für ein beliebiges, aber festes n gilt die obige Behauptung: $x_n = 2 n$ "
- **③** IS:

Rechte Seite: $x_{n+1} = 2(n+1)$.

Linke Seite: $x_{n+1} = x_n + 2 \stackrel{\text{IV}}{=} 2 n + 2$