

REDES NEURONALES 2024

Clase 19 parte 1 Lunes 28 de octubre 2024

FAMAF, UNIVERSIDAD NACIONAL DE CÓRDOBA

INSTITUTO DE FÍSICA ENRIQUE GAVIOLA (UNC-CONICET)

J02/11/23 c20p2

REPASO

BACK-PROPAGATION EN RED FEED-FORWARD CON UNA CAPA OCULTA

Buscamos hacer inferencias sobre cierta función desconocida f

$$f:\mathbb{R}^n \to \mathbb{R}^n$$

dado un conjunto de datos etiquetados $\mathcal{L} = \{(\bar{\mathcal{S}}^{\mu}, \bar{\mathcal{I}}^{\mu})\}$ $\mu = \mathcal{I}_{1,2,\dots,P}$

A partir de la expresión del ECM en función de todas las componentes de los vectores $\overline{\mathbf{W}}_{i}$ y $\overline{\mathbf{w}}_{j}$, vamos a aplicar el descenso por el gradiente de una forma muy específica.

$$\begin{split}
& = \frac{1}{2} \sum_{\mu=1}^{\mathfrak{P}} \sum_{i=1}^{\mathfrak{M}} \left[\sum_{i=1}^{\mathfrak{P}} \mathcal{O}_{i}^{\mu} \right]^{2} \\
& = \frac{1}{2} \sum_{\mu=1}^{\mathfrak{P}} \sum_{i=1}^{\mathfrak{M}} \left[\sum_{i=1}^{\mathfrak{P}} \mathcal{O}_{i}^{\mu} \right]^{2}
\end{split}$$

Primero corregimos los pesos sinápticos \overline{W}_i (mayúscula) entre la capa oculta y la capa de salida sin importarnos por los \overline{W}_i (minúscula).

$$W_{ij}^{ij} = W_{ij}^{ij} + \Delta W_{ij}$$

$$\Delta W_{ij} = -\gamma \frac{\partial E}{\partial W_{ij}}$$

$$= \gamma \sum_{\mu=1}^{p} \sum_{z} \left[S_{i}^{\mu} - O_{i}^{\mu} \right] g_{z}^{\mu} (h_{i}^{\mu}) V_{j}^{\mu}$$

$$= \gamma \sum_{\mu=1}^{p} S_{i}^{\mu} V_{j}^{\mu}$$

$$\operatorname{con} \qquad \qquad \operatorname{Z}_{\mu}^{i} = \operatorname{Z}_{i}^{i}(\mu_{\mu}^{i}) \left[\operatorname{Z}_{\mu}^{i} - \operatorname{Q}_{\mu}^{i} \right]$$

Una vez que hemos actualizado todos los parámetros sinápticos de la última capa, pasamos a hacer lo mismo con los parámetros que van de la entrada a la capa oculta, o sea, los $\overline{\mathbf{w}}_{j}$ minúsculos. Para eso calculamos estas componentes del gradiente:

$$\omega_{jk}^{\text{nuevo}} = \omega_{jk}^{\text{viejo}} + \Delta \omega_{jk}$$

donde
$$\Delta \omega_{jk} = - \sqrt[n]{\frac{\partial E}{\partial \omega_{jk}}}$$

$$= \sqrt[n]{\frac{\sum_{\mu=1}^{n} \left[\int_{i}^{\mu} - \mathcal{O}_{i}^{\mu} \right] \int_{2}^{i} \left(h_{i}^{\mu} \right) W_{ij} \int_{2}^{i} \left(h_{ij}^{\mu} \right) \underbrace{\lambda}_{k}^{\mu} } }$$

$$= \sqrt[n]{\frac{\sum_{\mu=1}^{n} \left[\int_{i}^{\mu} - \mathcal{O}_{i}^{\mu} \right] \int_{2}^{i} \left(h_{i}^{\mu} \right) \underbrace{\lambda}_{k}^{\mu} } }$$

$$= \sqrt[n]{\frac{\sum_{\mu=1}^{n} \left[\int_{i}^{\mu} - \mathcal{O}_{i}^{\mu} \right] \int_{2}^{\mu} \left(h_{ij}^{\mu} \right) \underbrace{\lambda}_{k}^{\mu} } }$$

$$= \sqrt[n]{\frac{\sum_{\mu=1}^{n} \left[\int_{i}^{\mu} - \mathcal{O}_{i}^{\mu} \right] \int_{2}^{\mu} \left(h_{ij}^{\mu} \right) \underbrace{\lambda}_{k}^{\mu} } }$$

$$\zeta_{j}^{h} = g'(h_{j}^{h}) \sum_{i} W_{ij} \zeta_{i}^{h}$$

¿Cuántos parámetros tenemos?

$$(N \times L) + (L \times M) = L \times (N + M)$$

Este método se llama *back-propagation* o retro-propagación. Noten que le mostramos el elemento \cente{N} del conjunto de entrenamiento a la red, la información viaja hacia adelante, en dirección a la salida. Con los resultados de las \cente{M} salidas calculamos el error. Con el error primero calculamos las correcciones a los pesos sinápticos \cente{W}_i entre la capa oculta y la capa de salida. Una vez actualizados estos parámetros sinápticos pasamos a corregir los pesos sinápticos \cente{w}_j entre la entrada y la capa oculta.

REPASO DE BACK PROPAGATION

Pseudo-código

- Presentamos 3^t, calculamos primero v luego ot
- Con \overline{O}^{\dagger} y \overline{J}^{\dagger} calculamos $E(\{\overline{W}\})$.
- Con $E(\{\overline{W}\})$ calculamos los valores de las correcciones (i=1,2,...,M) y con ellos $E(\{\overline{W}\})$ los pesos sinápticos \overline{W} que van de la capa oculta a la capa de salida

$$\mathbb{W}_{ij}^{\mathsf{nuevo}} = \mathbb{W}_{ij}^{\mathsf{viejo}} + \mathbb{W}_{ij}$$

Con los $\int_{i}^{j_{i}} (i=1,2,...,N)$ calculamos los $\int_{j}^{j_{i}} (i=1,2,...,M) y$ j=1,2,...,L) y con ellos actualizamos los pesos sinápticos \overline{w}_{j} , que van de la entrada a la capa oculta.

$$\omega_{ij} = \omega_{ij} + \triangle \omega_{ij}$$

El algoritmo **ÉPOCA**

A. Sea
$$\mu = 1$$

- B. Mientras (y \leq p) repetimos
 - 1. Con $\frac{5}{5}$ calculamos \overline{V}
 - 2. Con V[†]calculamos O[†]
 - 3. Con \overline{o}^{\dagger} y $\overline{\mathfrak{I}}^{\dagger}$ calculamos E
 - 4. Con E calculamos $\overline{\zeta}_{i}^{\dagger}$
 - 5. Con $\overline{\mathcal{J}}_{\xi}^{\mathsf{H}}$ calculamos los $\Delta \overline{\mathbf{W}}$ y los acumulamos $\Delta \overline{\mathbf{W}} = \Delta \overline{\mathbf{W}} + \Delta \overline{\mathbf{W}}^{\mathsf{H}}$
 - 6. Con $\overline{d}_{i}^{\dagger}$ calculamos los \overline{d}_{j}
 - 7. Con $\frac{\overline{\zeta}}{j}$ actualizamos los $\Delta \overline{w}$ y los acumulamos

$$\Delta \overline{\omega} = \Delta \overline{\omega} + \Delta \overline{\omega}^{\dagger}$$

- 8. Pasamos al próximo ejemplo N=N+1
- 9. Si H= → actualizamos los W, y w y volvemos a B

Leemos los datos:

- Conjunto de entrenamiento (3)
- Tolerancia tol
- Razón de aprendizaje

Sea t=1

Llamamos a la rutina **ÉPOCA** que devuelve E_{trrain} , \overline{W} y \overline{w}

Con \overline{W} y \overline{w} calculamos E_{test}

Si $E_{test} < tol$ paramos si no hacemos t = t+1

Hasta acá supusimos que actualizamos los acoplamientos sinápticos \overline{W} y \overline{w} después de mostrarle a la red todos los ejemplos del conjunto de entrenamiento, o sea después de una época. Esta forma de actualizar se conoce como actualización en lote (batch).

$$\triangle W_{ij} = \triangle W_{ij}^{(1)} + \triangle W_{ij}^{(2)} + \cdots + \triangle W_{ij}^{(p)}$$

$$\triangle W_{jk} = \triangle W_{jk}^{(1)} + \triangle W_{jk}^{(2)} + \cdots + \triangle W_{jk}^{(p)}$$

Otra posibilidad que no hemos analizado es actualizar todos los pesos sinápticos \overline{W}_i y \overline{w}_i después de presentarle cada ejemplo del conjunto de entrenamiento a la red. Este método se denomina actualización en línea (on line). Es una actualización más fina y precisa pero requiere mucho más cálculo numérico.

Veremos pronto que la forma más adecuada es una actualización en *mini-lotes (mini-batch)*, o sea, algo intermedio entre los métodos en lote y en línea.

EL MÉTODO BACK-PROPAGATION PARA UN NÚMERO ARBITRARIO DE CAPAS OCULTAS

Ahora podemos generalizar el método muy fácilmente para un número arbitrario de capas ocultas

Si queremos actualizar los acoplamientos \overline{w}_{pq} entre la capa q (anterior) y p (posterior)

$$\sum_{n,q} = \left(\sum_{h=1}^{p} \Im_{h} \nabla_{q} \right)$$

$$\mathcal{D}_{i} = g(\Sigma W^{(4)} g(\Sigma W^{(3)} g(\Sigma W$$

Caso1: cuatro neuronas en dos capas (una oculta)

$$V_{\bullet} = g(w_{1} \xi)$$

$$V_2 = g(w_2 \xi)$$

$$O = g(W_1 \ V_1 + W_2 \ V_2)$$
$$= g(W_1 \ g(W_1 \ 5) + W_2 \ g(W_2 \ 5))$$

Caso 2: cuatro neuronas en tres capas (dos ocultas)

$$O = g(w_{3} \ V_{2}) = g(w_{3} g(w_{2} \ V_{1}))$$
$$= g(w_{3} g(w_{2} g(w_{3} g(w_{3} y_{1})))$$