

1. Hydrogen Atom Solutions

Practice Set-1

1. The energy levels of the non-relativistic electron in a hydrogen atom (i.e. in a Coulomb potential $V(r) \propto -1/r$) are given by $E_{nlm} \propto -1/n^2$, where n is the principal quantum number, and the corresponding wave functions are given by ψ_{nlm} , where l is the orbital angular momentum quantum number and m is the magnetic quantum number. The spin of the electron is not considered. Which of the following is a correct statement?

[NET JUNE 2011]

- **A.** There are exactly (2l+1) different wave functions ψ_{nlm} , for each E_{nlm} .
- **B.** There are l(l+1) different wave functions ψ_{nlm} , for each E_{nlm} .
- C. E_{nlm} does not depend on l and m for the Coulomb potential.
- **D.** There is a unique wave function ψ_{nlm} for each E_{nlm} .

Solution: The correct option is **(c)**

2. Let ψ_{nlm_l} denote the eigenfunctions of a Hamiltonian for a spherically symmetric potential V(r). The wavefunction $\psi = \frac{1}{4} \left[\psi_{210} + \sqrt{5} \psi_{21-1} + \sqrt{10} \psi_{211} \right]$ is an eigenfunction only of

[NET JUNE 2012]

A.
$$H, L^2$$
 and L_2

B.
$$H$$
 and L_7

C.
$$H$$
 and L^2

D.
$$L^2$$
 and L_7

Solution: $H\psi = E_n\psi$

 $L^2 \psi = l(l+1)\hbar^2 \psi$ and $L_2 \psi \neq m\hbar \psi$.

The correct option is **c**

3. The wave function of a state of the Hydrogen atom is given by,

$$\psi = \psi_{200} + 2\psi_{211} + 3\psi_{210} + \sqrt{2}\psi_{21-1}$$

where ψ_{nlm} is the normalized eigen function of the state with quantum numbers n, l, m in the usual notation. The expectation value of L_z in the state ψ is

[NET DEC 2012]

A.
$$\frac{15\hbar}{6}$$

B.
$$\frac{11}{6}$$

C.
$$\frac{3\hbar}{8}$$

$$\mathbf{D.} \ \ \tfrac{\hbar}{8}$$

Solution: Firstly normalize $\psi, \psi = \frac{1}{\sqrt{16}} \psi_{200} + \frac{2}{\sqrt{16}} \psi_{211} + \frac{3}{\sqrt{16}} \psi_{210} + \frac{\sqrt{2}}{\sqrt{16}} \psi_{21-1}$

$$P(0\hbar) = \frac{1}{16} + \frac{9}{16} = \frac{10}{16}.$$

Probability of getting $(1\hbar)$ i.e. $P(\hbar) = \frac{4}{16}$ and $P(-\hbar) = \frac{2}{16}$.

Now,
$$\langle L_z \rangle = \frac{\langle \psi | L_z | \psi \rangle}{\langle \psi | \psi \rangle} = 0\hbar \times \frac{10}{16} + 1\hbar \times \frac{4}{16} + (-1\hbar) \times \frac{2}{16} = \frac{4}{16}\hbar - \frac{2}{16}\hbar = \frac{2}{16}\hbar = \frac{\hbar}{8}$$

The correct option is **(d)**

4. Let ψ_{nlm} denote the eigenfunctions of a Hamiltonian for a spherically symmetric potential V(r). The expectation value of L_z in the state

$$\psi = \frac{1}{6} \left[\psi_{200} + \sqrt{5} \psi_{210} + \sqrt{10} \psi_{21-1} + \sqrt{20} \psi_{211} \right]$$
 is

[NET DEC 2013]

A.
$$-\frac{5}{18}\hbar$$

B.
$$\frac{5}{6}\hbar$$

D.
$$\frac{5}{18}\hbar$$

Solution:

$$\langle L_z \rangle = \langle \psi | L_z | \psi \rangle = \frac{1}{36} \times 0\hbar + \frac{5}{36} \times 0\hbar + \frac{10}{36} \times (-1\hbar) + \frac{20}{36} (1\hbar) = \frac{10}{36} \hbar = \frac{5}{18} \hbar \quad \because \langle \psi | \psi \rangle = 1$$

The correct option (d)

5. An electron is in the ground state of a hydrogen atom. The probability that it is within the Bohr radius is approximately equal to

[NET JUNE 2014]

Solution:

Solution:
$$\int_0^{a_0} \left| \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0} \right|^2 4\pi r^2 dr = \frac{4\pi}{\pi a_0^3} \int_0^{a_0} r^2 e^{-2r/a_0} dr$$

$$= \frac{4}{a_0^3} \left\{ \left[r^2 e^{-2r/a_0} \left(-\frac{a_0}{2} \right) \right]_0^{a_0} - \left[2r \left(e^{-2r/a_0} \right) \left(-\frac{a_0}{2} \right) \left(-\frac{a_0}{2} \right) \right]_0^{a_0} + \left[2e^{-2r/a_0} \left(-\frac{a_0}{2} \right) \left(-\frac{a_0}{2} \right) \left(-\frac{a_0}{2} \right) \right]_0^{a_0} \right\}$$

$$= \frac{4}{a_0^3} \left[a_0^2 e^{\frac{2a_0}{a_0}} \left(-\frac{a_0}{2} \right) - 2a_0 \left(\frac{a_0^2}{4} \right) e^{-2a_0/a_0} - \frac{a_0^3}{4} e^{-2a_0/a_0} + 2e^{-0} \left(\frac{a_0^3}{8} \right) \right]$$

$$= \frac{4}{a_0^3} \left[-\frac{a_0^3}{2} \frac{1}{e^2} - \frac{a_0^3}{2} \frac{1}{e^2} - \frac{a_0^3}{4e^2} + \frac{a_0^3}{4} \right] = 4 \left[-\frac{5}{4e^2} + \frac{1}{4} \right] = \left[-5 \times \frac{1}{e^2} + 1 \right]$$

$$= \left[-5 \times 0.137 + 1 \right] = \left[-0.685 + 1 \right] = 0.32$$

The correct option is (d)

6. Let ψ_{nlm} denote the eigenstates of a hydrogen atom in the usual notation. The state

$$\frac{1}{5} \left[2\psi_{200} - 3\psi_{211} + \sqrt{7}\psi_{210} - \sqrt{5}\psi_{21-1} \right]$$

is an eigenstate of

[NET DEC 2015]

- **A.** L^2 , but not of the Hamiltonian or L_z
- **B.** the Hamiltonian, but not of L^2 or L_z

C. the Hamiltonian, L^2 and L_z

D. L^2 and L_z , but not of the Hamiltonian

Solution:
$$|\psi\rangle = \frac{1}{5} \left[2\psi_{200} - 3\psi_{211} + \sqrt{7}\psi_{210} - \sqrt{5}\psi_{21-1} \right]$$

 $H|\psi\rangle = -\frac{13.6}{4} |\psi\rangle$

So $|\psi\rangle$ is eigen state of H

But $L^2|\psi\rangle \neq \alpha|\psi\rangle$ and $L_z|\psi\rangle \neq \beta|\psi\rangle$

So $|\psi\rangle$ is not eigen state of L^2 and L_z

The correct option is (b)

7. If the position of the electron in the ground state of a Hydrogen atom is measured, the probability that it will be found at a distance $r \ge a_0$ (a_0 being Bohr radius) is nearest to

[NET DEC 2018]

$$P(a_0 \le r < \infty) = \int_{a_0}^{\infty} r^2 |R_{10}|^2 dr$$

$$R_{10} = \frac{2}{a_0^{3/2}}$$

$$P(a_0 \le r < \infty) = \frac{4}{a_0^3} \int_{a_0}^{\infty} r^2 e^{-\frac{2r}{a_0}} dr = 0.66$$

$$Q(r)$$

$$R_{10} = \frac{2}{a_0^{3/2}}$$

The correct option is (b)

4

Practice Set-2

1. The normalized ground state wavefunciton of a hydrogen atom is given by $\psi(r) = \frac{1}{\sqrt{4\pi}} \frac{2}{a^{3/2}} e^{-r/a}$, where a is the Bohr radius and r is the distance of the electron from the nucleus, located at the origin. The expectation value $\left\langle \frac{1}{r^2} \right\rangle$ is

[GATE 2011]

A.
$$\frac{8\pi}{a^2}$$

B.
$$\frac{4\pi}{a^2}$$

C.
$$\frac{4}{a^2}$$

D.
$$\frac{2}{a^2}$$

Solution:

$$\left\langle \frac{1}{r^2} \right\rangle = \frac{4}{4\pi a^3} \int_0^\infty \frac{1}{r^2} r^2 e^{-\frac{2r}{a}} dr \int_0^\pi \int_0^{2\pi} \sin\theta d\theta d\phi = \frac{2}{a^2}$$

THe correct option is (d)

2. The ground state wavefunction for the hydrogen atom is given by $\psi_{100} = \frac{1}{\sqrt{4\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$, where a_0 is the Bohr radius. The plot of the radial probability density, P(r) for the hydrogen atom in the ground state is

[GATE 2012]

A.

C.

P(r) $\frac{r}{a_0}$

Solution: n: The ground state is given by $\psi_{100}=\frac{1}{\sqrt{4\pi}}\left(\frac{1}{a_0}\right)^{3/2}e^{-r/a_0}$ Radial probability function $P(r)=|\psi|^2r^2=\frac{1}{4\pi}\frac{1}{a_0^3}r^2e^{-2r/a_0}$

The correct option is (\mathbf{d})

3. An electron in the ground state of the hydrogen atom has the wave function $\psi(\vec{r}) = \frac{1}{\sqrt{\pi a_0^3}} e^{-\left(\frac{r}{a_0}\right)}$, where a_0 is constant. The expectation value of the operator $\hat{Q} = z^2 - r^2$, where $z = r\cos\theta$ is (Hint: $\int_0^\infty e^{-ar} r^n dr = \frac{\sqrt{n}}{a^{n+1}} = \frac{(n-1)!}{a^{n+1}}$) [GATE 2014]

A.
$$\frac{-a_0^2}{2}$$

B.
$$-a_0^2$$

C.
$$\frac{-3a_0^2}{2}$$

D.
$$-2a_0^2$$

Solution:

$$\langle \hat{Q} \rangle = \langle z^2 \rangle - \langle r^2 \rangle \Rightarrow a_0^2 - 3a_0^2 = -2a_0^2$$

4. A hydrogen atom is in the state

$$\psi = \sqrt{\frac{8}{21}}\psi_{200} - \sqrt{\frac{3}{7}}\psi_{310} + \sqrt{\frac{4}{21}}\psi_{321},$$

where n, l, m in ψ_{nlm} denote the principal, orbital and magnetic quantum numbers, respectively. If \vec{L} is the angular momentum operator, then the average value of L^2 is \cdots \hbar^2

[GATE 2014]

Solution: If L^2 will measure on state ψ the measurement is $0\hbar^2$, $2\hbar^2$ and $6\hbar^2$ with probability

$$\frac{8}{21}, \frac{3}{7}, \frac{4}{21} \text{ so } \langle L^2 \rangle = 2\hbar^2 \times \frac{3}{7} + 6\hbar^2 \times \frac{4}{21} = 2\hbar^2$$

5. An electric field $\vec{E} = E_0 \hat{z}$ is applied to a Hydrogen atom in n = 2 excited state. Ignoring spin the n = 2 state is fourfold degenerate, which in the $|l,m\rangle$ basis are given by $|0,0\rangle, |1,1\rangle, |1,0\rangle$ and $|1,-1\rangle$. If H' is the interaction Hamiltonian corresponding to the applied electric field, which of the following matrix elements is nonzero?

[GATE 2019]

A.
$$\langle 0, 0 | H' | 0, 0 \rangle$$

B.
$$(0,0|H'|1,1)$$

C.
$$(0,0|H'|1,0)$$

D.
$$\langle 0, 0 | H' | 1, -1 \rangle$$

Solution: The correct option is **(c)**

crafting your future

