EXERCÍCIOS (SOUIÇÕES) - MÉTOLOS (Duno H. Gartivas
1- Fundamentos (Somente exercícios de Consulta A	Mateeiais)
2-Moselneem Matemática	
2.1 Pastages 7/ Roby Micks	
Δ) $X_z - X_\Delta \ge \Delta$	
-X4 + X2 >1 -> X4-X2 E1	1)
15	d) $X_a + X_z \ge 3$
b) $x_a + 2x_z > 3$	e) X ₂ 45
Xx + 2xz & 6	X ₁ + X ₂
c) Xz > Xa	
X=-X1 50	
-X1+X5 >0 <-> X1-X5 =0	
	(a) 5.1+44 = 21 (X)
	b) 6.2+4.2 = 18
	b (c) 53+4.15=21 ofina
22 Courses 71 Reison Milks	d) 5.2 +4.1 = 14
FUNÇÃO OBJECTIVO - MAXIMIZA Z = 5X	1 + 4x2 / e) 52+4(-1)=6 (X)
	Restrições
6x1+4x2 € 24 x1+2x2 € 6	5 -X1+X261 X262 X11X220
a) X=1, x=4 61+4.2=22624 1+24=56	Contract of Contra
b) xa-2,xe-2 6.2+4.2=20224 2+2.2=62	
6.3+4.15=24274 3+2.15=66	
d) X1=2, X2=1 6.2+4.1=16624 2+2.1=46	·
e) X1=2, X2=-1 6:2+4:(-1)=8624 2+2:(-1)=06	6 -2+(-1)=-3<1 1<2 220,-1<0

23	Soboas 77 Reda	y MIKKS						
	PARA M1: 6x1+4	1x2 - 62+	-Z= Z.D.					
				de solv	10			
		, , ,		, , , ,	00.8			
	PARLA MZ: XL+Z	2x = 2+ 2.2	= C					
	THUR FIC. MICE			Sem €	iologo I			
				- COM((Solice !			
24	Descento 31 8	Zana Miki						
0-1	2= 25x1+4x	CEDBY II WAS	y . 2					
	2 / 5/1+9/	z , se	$X_1 \in C$					
)45x1+4x	z, se	X1 > 2.					
	1.0							
	La Função Z	té não l	inear?					
25	Os Processos							
	Maximizan Z	= 2x1 +3x2						
	Sujeilo a 10	1X1 + 2X2 + CA	Q					
		5x1+06x2 66						
		8x1 + 10x2 60						
		X1, X2 3						
		11, 12						
26	Frefreber							
	Maléria-Perma	Luceo						
	A 2	do	-	1)ough	de A pel	o meunh	Rock do	Lotal
	B 4	60		_ ^	, loo unio			0-4-0
	Max 240	00		1 Justino	, poe omo		0.	
	10 PC 10							
	Maninizar Joh	+ 50R						
	Maximizar 20A Sujeito a 2A	112 6 260						
	order to a M							
		A & 100	(8)	> 024	- 0'88 > 0			
			י נטיי	· UICK	- 406 00			
		A, 3 30						

27 O investige -5000 de investimento MArimizar Z = 0,05 A + 0,08 B - A Rende 5% (vierb a 4+3 < 5000 -B rande 8% A > 0,25 (A+B) - 075A-025B >0 B 405 (A+B) -> -05A+05B 60 - Maximo 25% na A A > 05B - A-05B > 0 - Máximo 50% no B - A minimo metade B A,B 30 2.8 Oznak Commonity Collect MAXIMZAL Z= 1500 x1 + 1000 x2 Sujeito a X1 + X2 = 30 X, 310 X2310 29 JACK NA CLERN e = estudar d= diversão Marinizar Z= e + 2d Eyjeilo a e+d = 10 e 2 d => e-d 20 d.64 e, d >0 2.60 Show & Sell X -> minutos anúncio Paso 1/2 - Minutos anúmero TV Maximiza X1+25xe 15x1 +300x2 < 10000 X1 3 2x2 => X1-ZX2 30 X1 = 400 XL , X2 30

2.1.	<u>1</u> 0/8	empre	gos d	e John					
	Ϋ́	-> ho	ras bj	a 1	Mimmiza a	E = 8x1+	6X2		
		-s hor	, ,	• .	bujerto a				
				`		X2 < 12			
						X ₂ ≥6			
						12 < 10			
					X _L	+Xz 3 20			
						1, X2 3 O			
2.10	L Oil	Co							
			Idia d	0 800 (x 1000)			Demmya	8cã	Dugai
				e Subai (x 1000)	Med	iel	14000	0,2	0,1
						Durisa	30000	0,25	0,6
	Minniw	ja XI+	·Xz		LUB	esficantes	booo	0'T	0,15
		a 0,2xs		14		histiwa attas	8000	0,15	0,1
			+06xz 3			•			
			.+0,15xz >			- Minimo	40% 20	2eñ	
			L+QLXe ?			6 Restrontes			
				Xz) (=> 0,6x2-0,4Xe	0.5				
			, Xz 30						
2.13	- Day	Trades							
	X	Proest	meulo	Phimeira lini	aQa				
	Xz -> 1	Pnoess	mento	alta lecus	logia				
		Carro G.		0.000					
	Minin	niza	x + X	.2					
		V		000 al 6 5×25,0.					
	200		X2 6	0,6(X,+Xz) c>	-06x2+ 0,4	X2 60			
				X2 20					

1.14 Scontag		
X1 - Esg	to k na mytura	
Xz + Rg	ръз 3 na miMura	
Miminut	a Z = 100x1+80x2	
Shows	$2 0.06 \times 1 + 0.03 \times 2 > 0.03$ $0.06 \times 1 + 0.03 \times 2 \le 0.06$	
	0,03 x2 + 0,06x2 > 0,03	
	0,03 x2 + 0,06 x2 ≤ 0,05	
	0,04 x1 +0,03 x2 > 0,03	
	0,04×2 +0,03 ×2 4 0,07	
	$x_1 + x_2 = 1$	
	X4, X2 30	
.15 Pnodução	de Poólies	
X1 -> (vodução de HiA-1	
X1 -> (
X2 -> (1	vodução de Hifi-Z	
X2 -> ()	nodução de HiPi-Z a Z= 16xs+16xz	
X2 -> ()	vodução de HiR-1 nodução de HiFi-Z a $Z = 16x_0 + 16x_2$ L $6x_0 + 4x_2 \le 480 \cdot 09$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ b $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ L $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$ $4x_0 + 6x_2 \leq 480 \cdot 0.88$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ b $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ L $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$ $4x_0 + 6x_2 \leq 480 \cdot 0.88$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ L $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$ $4x_0 + 6x_2 \leq 480 \cdot 0.88$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ L $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$ $4x_0 + 6x_2 \leq 480 \cdot 0.88$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ L $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$ $4x_0 + 6x_2 \leq 480 \cdot 0.88$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ L $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$ $4x_0 + 6x_2 \leq 480 \cdot 0.88$	
X2 -> ()	vodução de HiR-1 nodução de HiR-2 a $\mathcal{E} = 16x_0 + 16x_2$ L $6x_0 + 4x_2 \leq 480 \cdot 0.9$ $5x_0 + 5x_2 \leq 480 \cdot 0.86$ $4x_0 + 6x_2 \leq 480 \cdot 0.88$	

3- Nélos Gentico

3.1 Aplicação do método gráfico

Os processos de produção

Fac Factory

Observations of the constraint of the constrain

4-Mélois Simplex

Unciavois Não

BASICAS

(d

4.1 Bases do Simplex

a) Maximiza
$$dx_1 + 3x_2$$

Sujetto a $x_1 + 3x_2 + 5x_3 = 6$
 $dx_1 + 2x_2 + 6x_3 = 6$
 $dx_1 + 2x_2 + 6x_3 = 6$

Uhelmueis

BÁSICAS

	(X_L, X_2)	(S1, S2)	(6,6)	Sim	0
	(Xa, Sa)	(X2, S2)	(z, z)	Sim	6
	(Xa, Sz)	(X2,8r)	(3,-3)	NÃO	_
	(Xz, Sa)	(X2, 52)	(6,-1Z)	NÃO	-
	(X_2, ζ_2)	(X_2, S_2)	(2,4)	SIM	4
	(Sy, S2)	(XL, Xe)	(6/7, R/7)	SIM	6,86 (ókwn!)
d,e)					
	ConstraX₂ 2				
	3.5				
	$_{3}\mathcal{E}$ $Z = 2X_1 + 3X_2 = 48/7$				
	2.5				
	Constraint 1 B =	(0,2)			
	2	$A = \left(\begin{array}{c} 6 \\ 7 \end{array} \right)$, 12		
	1:5		7)		
	1				
	0.5				
	X ₁ D =	= (0,0)	Ç = (2,0)		F
	0	1 2	3	4 5	6

PUNÇÃO

OBJETUO

Brito D B

Viávez?

VALORES

4.2 Osmização poe enmelação de soluções básicas

Mosimips $z = 2x_1 - 4x_2 + 5x_3 - 6x_4$ Legisho a $x_1 + 4x_1 - 2x_3 + 8x_4 + 2x_3 - 6x_4$ Legisho a $x_1 + 4x_1 - 2x_3 + 8x_4 + 2x_3 - 6x_4$ $-x_1 + 2x_2 + 3x_3 + 4x_4 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 \pm 2$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_2 \pm 1$ $-x_1 + 2x_2 + 3x_3 + 4x_4 + 2x_4 + 4$ $-x_1 + x_1 + x_2 + x_3 + x_4 + $	7.2 Ulmizag	as por ensurera	yas de	soluções	basicas					
Legisho a $x_{k+}4x_{k-}-2x_{s}+8x_{4} \le 2$ $-x_{k+}2x_{k+}3x_{s}+4x_{4} \le 2$ $-x_{k+}2x_{k+}3x_{k}+2x_{k+}3x_{k+}3$ $-x_{k+}2x_{k+}3x_{k+}3x_{k+}3$ $-x_{k+}2x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k$										
Legisho a $x_{k+}4x_{k-}-2x_{s}+8x_{4} \le 2$ $-x_{k+}2x_{k+}3x_{s}+4x_{4} \le 2$ $-x_{k+}2x_{k+}3x_{k}+2x_{k+}3x_{k+}3$ $-x_{k+}2x_{k+}3x_{k+}3x_{k+}3$ $-x_{k+}2x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k+}3x_{k+}3$ $-x_{k$	Moximija	Z = 2x2-4x2 +	5x3-6x4		h	Toximpija	, Z= 6	Oxe-4xz +5x3-6	5×4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T T			(=>						
No. 3/A/ONS COLLYTON Z No. 3/A/ONS COLLYTON Z (X_1, X_2) (0, 1/2) -Z (X_2, X_3) (1/2, 10) -Z (X_1, X_3) (8, 3) 31 (01/14mr.!) (8_3, X_4) (0, 1/4) 3/2 (X_2, X_4) (0, 1/4) 3/2 (X_3, X_4) (0, 1/4) 3/2 (X_4, X_4) (0, 1/4) -3/2 (X_3, X_4) (1/3, 8/3) 5/3 (X_4, X_4) (1/4, 3) - (X_3, X_4) (1/4, 0) 3/2 (X_4, X_4) (1/4, 0) -Z (X_4, X_4) (X_4, X_4) (X_4, X_4, X_4, X_4, X_4, X_4, X_4, X_4,										
Ne. Básions Columb Z Ne. Básions Columb Z (χ_{2},χ_{2}) (χ										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VAR BÁSIDAS	Sougho				VAR BA	is loas	Comás	<u> 2</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(XL, XZ)	(0,1/2)	ح-			(Xz)	Ss)	(1/2 10)	-Z	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(X^{r} X^{s})$	(8,3)	31	(okma!		(X3)	X4)	(0, 1/4)	3/2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(x_, X4)	(0, 1/4)	-3/2			(X ₃	(82)	(1/3,8/3)	5/3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(XL, SL)	(-4,3)				(Ks)	(s2	(-1, 4)	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(Xa, Sz)	(2,3)	4			(X4	, SL)	(1/4,0)	3/2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(X2, X3)	(4/2,0)	-2				-	(1/4,0)	-3/2	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(χ_{2},χ_{4})	(1/2, o)	-Z						0	
Minimize $Z = X_0 + Z_{X_2} - 3x_3 - Z_{X_4}$ Sujents a $X_{L} + Z_{X_2} - 3x_3 + X_4 = 4$ $X_{L} + Z_{X_2} + X_3 + Z_{X_4} = 4$ $X_{L} + Z_{L} + X_3 + Z_{L} = 4$ $X_{L} + Z_{L} + X_3 + Z_{L} = 4$ $X_{L} + Z_{L} + X_3 + Z_{L} = 4$ $X_{L} + Z_{L} + X_3 + Z_{L} = 4$ $X_{L} + Z_{L} + X_3 + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} + Z_{L} = 4$ $X_{L} + Z_{L} + Z$			-2							
Silento a $x_{1}+2x_{2}-3x_{3}+x_{4}=4$ $x_{1}+2x_{2}+x_{3}+2x_{4}=4$ $x_{1},x_{2},x_{3},x_{4}\geq0$ If the BASIONS COLUÇTION Z (x_{1},x_{2}) $(x_{1},x_{2})/x_{3}-2x_{2}=4$ (x_{1},x_{2}) $(x_{1},x_{2})/x_{3}-2x_{2}=4$ (x_{1},x_{2}) (x_{1},x_{2}) (x_{2},x_{3}) $(x_{1},x_{2})/x_{2}$										
Silento a $x_{1}+2x_{2}-3x_{3}+x_{4}=4$ $x_{1}+2x_{2}+x_{3}+2x_{4}=4$ $x_{1},x_{2},x_{3},x_{4}\geq0$ If the BASIONS COLUÇTION Z (x_{1},x_{2}) $(x_{1},x_{2})/x_{3}-2x_{2}=4$ (x_{1},x_{2}) $(x_{1},x_{2})/x_{3}-2x_{2}=4$ (x_{1},x_{2}) (x_{1},x_{2}) (x_{2},x_{3}) $(x_{1},x_{2})/x_{2}$										
Silento a $x_{1}+2x_{2}-3x_{3}+x_{4}=4$ $x_{1}+2x_{2}+x_{3}+2x_{4}=4$ $x_{1},x_{2},x_{3},x_{4}\geq0$ If the BASIONS COLUÇTION Z (x_{1},x_{2}) $(x_{1},x_{2})/x_{3}-2x_{2}=4$ (x_{1},x_{2}) $(x_{1},x_{2})/x_{3}-2x_{2}=4$ (x_{1},x_{2}) (x_{1},x_{2}) (x_{2},x_{3}) $(x_{1},x_{2})/x_{2}$	Minima	2 - V. +2v-	3, -7	,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$X_{L}, X_{2}, X_{3}, X_{4} \ge 0$ $X_{L}, X_{2}, X_{3}, X_{4} \ge 0$ X_{L}, X_{2}										
ARC BÁSICAS COLUÇÃO Z										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		~L, ~2, ~3, ~	4 20							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	llan zásms	Courtes	7							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					11/v. x.	1/4 2	46			
(x_{2}, x_{4}) $(4, 0)$ 4 (x_{2}, x_{3}) $(2, 0)$ 4 (x_{2}, x_{4}) $(2, 0)$ 4					1 (42,42)	/ / N.+ CX	z=7(
(x_2, x_3) $(z, 0)$ 4 (x_2, x_4) $(z, 0)$ 4										
(x_2, x_4) $(z, 0)$ 4	and the second									
(1/2, 1/4) (1/17, 1/4) —			4							
	(Xs, X4)	(417, 44)								

1:7	gimt	olex co	xur va	uas;	funções	obje	huo			
						9				
a)	Table									Maximize $z = 2x1 + x2 - 3x3 +$
		x1		x3 x4		s2	s3	Z	-	$x1 + 2x2 + 2x3 + 4x4 \le 40$
	s1	1	2	2 4	1	Θ	0	Θ	40	$2x1 - x2 + x3 + 2x4 \le 8$
	s2	2	-1	1 2	9	1	Θ	Θ	8	$4x1 - 2x2 + x3 - x4 \le 10$
	s3	4	-2	1 -	1 0	0	1	Θ	10	TATE ZAZ T NO AT C TO
	z	-2		3 -		0	Θ	1	Θ	
	z = 0 Table		x2 = 0, x3) = θ, x4 :	= θ					
	Table	x1	x2	x3 x4	4 s1	s2	s3	z	-	
	s1	-3	4	0 0) 1	-2	0	Θ	24	
	x4	1		1/2 1	. 0	1/2	0	Θ	4	
	s3	5		3/2 0		1/2	1	Θ	14	
	z	3		.1/2 0		5/2	0	1	20	
			$x^{2} = 0, x^{2}$			-/-	•	•		
	Table								-	
		x1		x3 x4		s2	s3	Z	-	
	x2	-3/4		0 0		-1/2	0	0	6	
	x4	5/8	0 1	1/2 1	1/8	1/4	0	0	7	
	s3	25/8	0 3	3/2 0	5/8	-3/4	1	Θ	29	
	z	3/8		.1/2 0		3/4	0	1	41	
	Z = 4	1; X1 = 0,	, x2 = 6, x	3 = 0, X4	= /					
/(c										
Tal	oleau 1:									Maximize $z = 8x1 + 6x2 + 3x3 -$
	x1	x2	х3	x4	s1	s2	s3	z		$x1 + 2x2 + 2x3 + 4x4 \le 40$
s	1 1	2	2	4	1	Θ	Θ	Θ	40	$2x1 - x2 + x3 + 2x4 \le 8$
s	2 2	-1	1	2	Θ	1	Θ	Θ	8	$4 \times 1 - 2 \times 2 + \times 3 - \times 4 <= 10$
s	3 4	-2	1	-1	Θ	0	1	Θ	10	4x1 - 2x2 + x3 - x4 <= 10
	z -8	-6	-3	2	Θ	Θ	Θ	1	0	
			0, x3 = 0		•	•	•	-	"	
Tab	oleau 2:									
	x1	x2	х3	x4	s1	52	s3	Z		
s	1 0	5/2	7/4	17/4	1	0	-1/4	0	75/2	
S	2 0	Θ	1/2	5/2	Θ	1	-1/2	Θ	3	
	1 1	-1/2	1/4	-1/4	Θ	Θ	1/4	Θ	5/2	
x	z Θ	-10	-1	Θ	θ	Θ	2	1	20	
_			2 = 0, x3			-	-	-	1	
									i	
Z =	oleau 3:		х3	x4	s1	s2	s3	z		
Z =		x2					-1/10	Θ	15	
Z =	oleau 3:	x2	7/10	17/10	2/5	Θ	-,		1	
z =	x1 2 0			17/10 5/2	2/5 0	0	-1/2	Θ	3	
z = Tal	x1 2 0 2 0	1	7/10 1/2	5/2	Θ	1	-1/2			
z = Tak	2 0 2 0 1 1	1 0 0	7/10 1/2 3/5	5/2 3/5	0 1/5	1 0	-1/2 1/5	0	10	
z = Tak	2 0 2 0 1 1 2 0	1 0 0	7/10 1/2	5/2 3/5 17	0 1/5	1	-1/2			
z = Tak	2 0 2 0 1 1 2 0	1 0 0	7/10 1/2 3/5	5/2 3/5 17	0 1/5	1 0	-1/2 1/5	0	10	

	v1	$(2 + 2x)^{2}$	2 1 1 1		+ 4×4					
		(2 + 2x. 2 + x3 -								
		$x^{2} + x^{3}$								
Table	au 1:									
	x1	x2	х3	x4	s1	s2	s3	Z		
s1	1	2	2	4	1	Θ	Θ	Θ	40	
s2	2	-1	1	2	Θ	1	Θ	Θ	8	
s3	4	-2	1	-1	Θ	Θ	1	Θ	10	
z	-3	1	-3	-4	Θ	0	0	1	Θ	
- 1		, x2 = θ,			•			-	1	
Table	au 2:									
	x1	x2	х3	x4	s1	s2	s3	Z		
s1	-3	4	Θ	Θ	1	-2	Θ	Θ	24	
х4	1	-1/2	1/2	1	Θ	1/2	0	Θ	4	
s3	5	-5/2	3/2	0	Θ	1/2	1	Θ	14	
z	1	-1	-1	0	Θ	2	0	1	16	
- 1		9, x2 = 6								
Table	au 3:									
	x1	x2	х3	x4	s1	s2	s3	Z		
x2	-3/4	1	Θ	Θ	1/4	-1/2	Θ	Θ	6	
х4	5/8	Θ	1/2	1	1/8	1/4	Θ	Θ	7	
s3	25/8	Θ	3/2	Θ	5/8	-3/4	1	Θ	29	
z	1/4	Θ	-1	0	1/4	3/2	0	1	22	
z = 2	2; x1 = 6	0, x2 = 6	i, x3 = 0	x4 = 7					I	
Table	au 4:								I	
	x1	х2	х3	х4	s1	s2	s3	Z		
x2	-3/4	1	Θ	Θ	1/4	-1/2	Θ	Θ	6	
хЗ	5/4	Θ	1	2	1/4	1/2	0	Θ	14	
s3	5/4	Θ	Θ	-3	1/4	-3/2	1	Θ	8	
z	3/2	Θ	Θ	2	1/2	2	Θ	1	36	
z = 3	6; x1 = (0, x2 = 6	i, x3 = 1	4, x4 =	θ				'	

	Minimi	ze z = F	5x1 - 4x	2 + 6x3	- 8x4					
			3 + 4x4		0,					
			+ 2×4 <							
	4x1 - 2	$x^2 + x^3$	3 - ×4 <=	= 10						
Table	au 1:	_	_			_			I	
_	x1	х2	х3	х4	s1	s2	s3	-z		
s1	1	2	2	4	1	Θ	Θ	Θ	40	
s2	2	-1	1	2	θ	1	Θ	Θ	8	
s3	4	-2	1	-1	Θ	Θ	1	Θ	10	
- 53	4	-2	1	-1	0		1	-	10	
-z	5	-4	6	-8	θ	Θ	Θ	1	Θ	
	; x1 = 0	, x2 = 0	, x3 = θ,	x4 = 0						
Table	au 2:								I	
	x1	x2	х3	х4	s1	s2	s3	-z		
s1	-3	4	Θ	θ	1	-2	Θ	Θ	24	
x4	1	-1/2	1/2	1	Θ	1/2	. θ	Θ	4	
_										
s3	5	-5/2	3/2	θ	θ	1/2	1	θ	14	
-z	13	-8	10	θ	θ	4	Θ	1	32	
	32; x1 =	0, x2 =	0, x3 =	0, x4 =	4					
Table	au 3:								ı	
	x1	х2	х3	х4	s1	s2	s3	-z		
x2	-3/4	1	Θ	θ	1/4	-1/2	θ	Θ	6	
x4	5/8	θ	1/2	1	1/8	1/4	Θ	θ	7	
s3	25/8	θ	3/2	θ	5/8	-3/4	1	θ	29	
-z	7	θ	10	θ	2	Θ	Θ	1	80	
z = -	80; x1 =	0, x2 =	6, x3 =	0, x4 =	7					

4.6 Magrama com zesteição imea Soluções háncas possuem uma úmea variável + 0. hosos

Solução ótima: X = 90 , 7= 5.90 = 450 + X2=90/3=30 , 7=-6:30=-180 X1=90, X2=0, X3=0, X4=0, X5=0 X3=90/5=18, E= 3-18=54 6 7-450

X4 = 90/6 = 15 , Z= -5.15 = -75

Xs=90/3=30 , 7=12.30= 360

4.7 Testando variavers entrantes

Maximiza 2= 16x1 + 15x2 Sujeto a 40x1+31x2+51 = 124 $-X_{L} + X_{2} + S_{2} = 1$ $-X_1 + \delta_3 = 3$

X1, X2, S1, S2, S3 20

Constraint 3

1.	2:1.						Maximize $z = 16x1 + 15x$
- A (o uter	acoes	vs E-				40x1 + 31x2 <= 124
							-x1 + x2 <= 1
							x1 <= 3
Tablea		2	-1	-2	-2	_	
\rightarrow	x1	х2	s1	s2	s3	Z	
s1	40	31	1	Θ	Θ	Θ	124
s2	-1	1	0	1	Θ	Θ	1
s3	1	0	Θ	0	1	Θ	3
z		-15		Θ	Θ	1	0
		, x2 = 6)			'	
Tablea		3	-1	-3	c2	_	
\rightarrow	x1	х2			s3	Z	
s1	Θ	31	1	Θ	-40	Θ	4
s2	Θ	1	Θ	1	1	Θ	4
x1	1	0	0	0	1	Θ	3
z	Θ	-15	Θ	0	16	1	48
		3, x2 =	Θ			'	
Tablea		ν3	c1	63	.2	_	
	x1		s1			z	<u> </u>
х2	0			0	-40/31	Θ	4/31
s2	Θ	0	-1/31	1	71/31	Θ	120/31
x1	1	0	Θ	0	1	Θ	3
Z	Θ	0	15/31	0	-104/31	1	1548/31
		x1 = 3,	x2 = 4/31	l			
Tablea		ν3	c1	63	c ²	-	
\rightarrow	x1	х2	s1	s2	s3	Z	
х2	Θ	1	1/71	40/71	Θ	0	164/71
s3	Θ	0	-1/71	31/71	1	0	120/71
x1	1	0	1/71	-31/71	Θ	Θ	93/71
z	Θ	0	31/71	104/71	Θ	1	3948/71
z = 39	48/71;	x1 = 93/	71, x2 =	164/71			1

b) l'encoree os poulos E→C→A. Lo 2 iterações

Tableau 1:

c) O cartério de essolha da racejável intrante (maior impacto na função objetivo é uma hevasística. A experiência mostra que, em média, esse cartério é mais eficiente. No entando, ele <u>Não</u> garante o menor número de iteraGaes para chegar m polução ótima!

Minimize z = -16x1 - 15x2 40x1 + 31x2 <= 124 -x1 + x2 <= 1x1 <= 3

d) Mesmas iterações, modando o hinal da linha z (função objetivo)!

	x1	x2	51	s2	s3	-z	
		2		-2	-2	_	
Table	au 2:						
z = 0	; x1 = 0	, x2 = 0					
-z	-16	-15	0	Θ	Θ	1	Θ
s3	1	Θ	Θ	Θ	1	Θ	3
s2	-1	1	Θ	1	Θ	Θ	1
	ı						l .

 s2
 0
 1
 0
 1
 1
 0
 4

 x1
 1
 0
 0
 0
 1
 0
 3

 -z
 0
 -15
 0
 0
 16
 1
 48

 z = -48; x1 = 3, x2 = 0

x2	Θ	1	1/31	0	-40/31	0	4/31
	x1	x2	s1	s2	s3	-z	
	au 3:	J, XL -					
7 = -	48; x1 =	3. x2 =	Θ			- 1	
-z	Θ	-15	0	Θ	16	1	48
	_					_	

s2	Θ	Θ	-1/31	1	71/31	0	120/31
x1	1	Θ	Θ	0	1	0	3
-z	Θ	0	15/31	0	-104/31	1	1548/31
z = -	1548/31;	x1 = 3,	x2 = 4/3	1			'
Tableau 4:							
	x1	x2	s1	s2	s3	-z	
x2	Θ	1	1/71	40/71	0	0	164/71
s3	Θ	Θ	-1/71	31/71	1	Θ	120/71
x1	1	Θ	1/71	-31/71	Θ	Θ	93/71
-z	Θ	Θ	31/71	104/71	0	1	3948/71

z = -3948/71; x1 = 93/71, x2 = 164/71