Machine Learning Assignment 1 Aakanksha Darekar 202200733

A1 09

Problem Statement

Preprocess an unclean dataset (Titanic) by performing the following steps:

- Identify and handle missing values.
- Encode categorical variables.
- Normalize/standardize numerical data.
- Identify and remove duplicate records.

Last 2 points not done

Perform exploratory data analysis (EDA) to understand the dataset.

Python code:

```
import pandas as pd
import numpy as np
import seaborn as sns
file path = ("C:/Users/Maithili/Downloads/titanic.csv")
data = pd.read csv(file path)
print("Initial Dataset Overview:")
print(data.head())
  Initial Dataset Overview:
    PassengerId Survived Pclass \
                   0
           1
            2
  1
                     1
                            1
            3
                     1
                            3
  3
             4
                     1
                            1
  4
                     0
                            3
                                         Name
                                                 Sex
                                                     Age SibSp \
                          Braund, Mr. Owen Harris
                                                male 22.0
  1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
                                                             1
                           Heikkinen, Miss. Laina female
                                                     26.0
                                                             0
         Futrelle, Mrs. Jacques Heath (Lily May Peel) female
                                                     35.0
                                                male 35.0
  4
                         Allen, Mr. William Henry
                            Fare Cabin Embarked
    Parch
                  Ticket
                A/5 21171 7.2500 NAN
  0
        0
        0
                 PC 17599 71.2833
                                 C85
                                           C
        0 STON/02. 3101282 7.9250
                                 NaN
                  113803 53.1000 C123
                  373450 8.0500 NaN
```

```
print("\nMissing Values Before Handling:")
print(data.isnull().sum())
 Missing Values Before Handling:
 PassengerId
 Survived
                 0
 Pclass
                 0
 Name
                 0
                 0
 Sex
 Age
               177
 SibSp
                0
 Parch
                 0
 Ticket
                 0
 Fare
                 0
 Cabin
               687
 Embarked
                 2
 dtype: int64
data['Age'].fillna(data['Age'].median(), inplace=True)
data['Embarked'].fillna(data['Embarked'].mode()[0], inplace=True)
data['Cabin'].fillna('Unknown', inplace=True)
                                                           import pandas as pd
                                                           import matplotlib.pyplot as plt
                                                           import seaborn as sns
print("\nMissing Values After Handling:")
print(data.isnull().sum())
                                                           # Load the Titanic dataset (replace 'titanic.csv' with
                                                           your actual file path)
                                                           df = pd.read_csv('titanic.csv')
 Missing Values After Handling:
 PassengerId
 Survived
               0
                                                           # Display basic dataset information
 Polass
                                                           print("Initial Dataset Info:")
 Name
                                                           print(df.info())
 Sex
 Age
                                                           # Identify and remove duplicate records
 SibSp
                                                           print("\nChecking for duplicates...")
 Parch
 Ticket
                                                           duplicates = df.duplicated().sum()
               0
 Fare
                                                           print(f"Number of duplicate records: {duplicates}")
 Cabin
               0
 Embarked
                                                           # Remove duplicates
 dtype: int64
                                                           df = df.drop duplicates()
                                                           print("Duplicates removed.")
categorical columns = ['Sex', 'Embarked', 'Cabin']
                                                           # Perform Exploratory Data Analysis (EDA)
label encoders = {}
                                                           print("\nSummary Statistics:")
                                                           print(df.describe())
for col in categorical columns:
     le = LabelEncoder()
                                                           # Count missing values
     data[col] = le.fit_transform(data[col])
                                                           print("\nMissing Values:")
     label encoders[col] = le
                                                           print(df.isnull().sum())
numerical columns = ['Age', 'Fare']
                                                           # Visualizing missing values
scaler = StandardScaler()
                                                           plt.figure(figsize=(10, 6))
data[numerical columns] = scaler.fit transform(datas[heatenapoali.isrollomnos]ap='viridis', cbar=False)
                                                           plt.title("Missing Values Heatmap")
                                                           plt.show()
                                                           # Visualize survival distribution
                                                           plt.figure(figsize=(6, 4))
                                                           sns.countplot(x='Survived', data=df, 2
                                                           palette='coolwarm')
```

plt.title("Survival Count")

plt show()

print("\nDataset Overview After Preprocessing:") print(data.describe())

Dataset Overview After Preprocessing:						
	PassengerId	Survived	Pclass	Sex	Age	\
count	891.000000	891.000000	891.000000	891.000000	8.910000e+02	
mean	446.000000	0.383838	2.308642	0.647587	2.272780e-16	
std	257.353842	0.486592	0.836071	0.477990	1.000562e+00	
min	1.000000	0.000000	1.000000	0.000000	-2.224156e+00	
25%	223.500000	0.000000	2.000000	0.000000	-5.657365e-01	
50%	446.000000	0.000000	3.000000	1.000000	-1.046374e-01	
75%	668.500000	1.000000	3.000000	1.000000	4.333115e-01	
max	891.000000	1.000000	3.000000	1.000000	3.891554e+00	
	SibSp	Parch	Fare	Cabin	Embarked	
count	891.000000	891.000000	8.910000e+02	891.000000	891.000000	
mean	0.523008	0.381594	3.987333e-18	130.744108	1.536476	
std	1.102743	0.806057	1.000562e+00	36.024237	0.791503	
min	0.000000	0.000000	-6.484217e-01	0.000000	0.000000	
25%	0.000000	0.000000	-4.891482e-01	147.000000	1.000000	
50%	0.000000	0.000000	-3.573909e-01	147.000000	2.000000	
75%	1.000000	0.000000	-2.424635e-02	147.000000	2.000000	
max	8.000000	6.000000	9.667167e+00	147.000000	2.000000	

plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.show()


```
sns.histplot(data['Age'], kde=True, bins=30)
plt.title('Age Distribution')
plt.xlabel('Age (Standardized)')
plt.show()
```


data['Sex'] = data['Sex'].replace({1: 'male', 0: 'female'})
sns.barplot(x='Sex', y='Survived', data=data)
plt.title('Survival Rate by Gender')
plt.xlabel('Gender')
plt.ylabel('Survival Rate')
plt.show()


```
data['Pclass'] = data['Pclass'].replace({1: 'A', 2: 'B', 3: 'C'})
sns.barplot(x='Pclass', y='Survived', data=data, order=['A', 'B', 'C'])
plt.title('Survival Rate by Passenger Class')
plt.xlabel('Passenger Class')
plt.ylabel('Survival Rate')
plt.show()
```


Finding outliers

Before standardization

```
plt.figure(figsize=(8, 6))
sns.boxplot(x=data['Age'] * scaler.scale_[0] + scaler.mean_[0], color ="red")
# Reverse standardization
plt.title('Boxplot for Age (Actual Values)')
plt.xlabel('Age')
plt.show()
```


After standardization

```
plt.figure(figsize=(8, 6))
sns.boxplot(x=data['Age'])
plt.title('Boxplot for Age')
plt.xlabel('Age (Standardized)')
plt.show()
```

