

3 2

Constraint Satisfaction Problems

- Standard search problems:
- State is a "black box": arbitrary data structure
 Goal test can be any function over states
- Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Allows useful general-purpose algorithms with more power than standard search algorithms

CSP Examples

Example: Map Coloring • Variables: WA, NT, Q, NSW, V, SA, T

- Domains: D = {red, green, blue}
- Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

 $\textbf{Explicit: } (\mathsf{WA}, \mathsf{NT}) \in \{(\mathsf{red}, \mathsf{green}), (\mathsf{red}, \mathsf{blue}), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green V=red, SA=blue, T=green}

5 6

Example: N-Queens

4

- Formulation 1:
- Variables: X_{ij}
- Domains: {0, 1}
- Constraints

 $\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$ $\forall i,j,k \ (X_{ij},X_{kj}) \in \{(0,0),(0,1),(1,0)\}$ $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$ $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

7

 $\sum_{i,j} X_{ij} = N$

Example: N-Queens

- Formulation 2:
- Variables: Qi
- Domains: $\{1, 2, 3, ... N\}$

 $\forall i, j \text{ non-threatening}(Q_i, Q_j)$

Explicit: $(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$

Constraint Graphs

9

8

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Sudoku

- Variables: Each (open) square
- Domains:
- {1,2,...,9} Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

(or can have a bunch of pairwise inequality

10 11 12

Varieties of CSPs

- Discrete Variables
 - Finite domains

 - Size d means $\mathrm{O}(d^n)$ complete assignments E.g., Boolean CSPs, including Boolean satisfiability (NP-
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for
 - Linear constraints solvable, nonlinear undecidable
- Continuous variables
- E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
- Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

SA ≠ green

- Binary constraints involve pairs of variables, e.g.:
 - $\mathsf{SA} \neq \mathsf{WA}$
- Higher-order constraints involve 3 or more variables e.g., cryptarithmetic column constraints
- Preferences (soft constraints):

 E.g., red is better than green
 Often representable by a cost for each variable assignment
 Gives constrained optimization problems
 (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

• Many real-world problems involve real-valued variables...

13 14 15

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

What would BFS do?

What would DFS do?

• What problems does naïve search have?

[Demo: coloring -- dfs]

16 17 18

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs

- Idea 1: One variable at a time
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 I.e. consider only values which do not conflict previous assignments
 Might have to do some computation to check the constraints

 - "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n-queens for n ≈ 25

19 20 21

Backtracking Search function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure function RECURSIVE BACKITRACKING (assignment, csp) returns soln failure if assignment is complete their return assignment sol return assignment csp) for each value in ORDER-DOMAN-VALUES(var, assignment, csp) for each value in ORDER-DOMAN-VALUES(var, assignment, csp) of if value is consistent with assignment given CONSTRAINTS[csp] then add {var = value} to assignment result result - RECURSIVE BACKITACKING (assignment, csp) if result \(\neq \) failure then return result $\mbox{remove } \{var = value\} \mbox{ from } assignment$ Backtracking = DFS + variable-ordering + fail-on-violation

[Demo: coloring -- backtracking]

22 23