Devoir à la maison nº 7 : corrigé

Problème 1 — Densité parmi les entiers

Partie I -

- 1. a. On a clairement $\nu_n(\mathbb{N}^*) = n$ et donc $\delta_n(\mathbb{N}^*) = 1$ pour tout $n \in \mathbb{N}^*$. On en déduit que $\delta_n(\mathbb{N}^*) = 1$.
 - **b.** Comme E est fini, il admet un plus grand élément. Posons $N=\max E$. Pour $n\geqslant N,\ \nu_n(E)=N$ et donc $\delta_n(E)=\frac{N}{n}.$ On en déduit que $\delta(E)=0.$
 - c. Pour $k \in \mathbb{N}^*$, $\nu_{2k}(2\mathbb{N}) = k$ et $\nu_{2k+1}(2\mathbb{N}) = k+1$. Par conséquent, pour $n \in \mathbb{N}^*$, $\frac{n}{2} \leqslant \nu_n(2\mathbb{N}) \leqslant \frac{n+1}{2}$ et donc $\frac{1}{2} \leqslant \delta_n(2\mathbb{N}) \leqslant \frac{1}{2} + \frac{1}{2n}$. Par encadrement, $\delta(2\mathbb{N}) = \frac{1}{2}$.
 - d. Les carrés compris entre 1 sont de la forme k^2 avec $1 \leqslant k^2 \leqslant n$ i.e. $1 \leqslant k \leqslant \sqrt{n}$. On a donc $\nu_n(C) = \lfloor \sqrt{n} \rfloor$. On en déduit l'encadrement $\frac{\sqrt{n}-1}{n} < \delta_n(C) \leqslant \frac{\sqrt{n}}{n}$. Par encadrement, $\delta(C) = 0$.
 - e. On a $A \cap [1, 2^{2n}] = \bigcup_{k=0}^{n-1} [2^{2k}, 2^{2k+1}]$. Comme card $([2^{2k}, 2^{2k+1}]) = 2^{2k}$,

$$v_{2^{2n}}(A) = \sum_{k=0}^{n-1} 2^{2k} = \frac{2^{2n} - 1}{3}$$

On a également $A \cap \llbracket 1, 2^{2n+1} \rrbracket = \bigcup_{k=0}^n \llbracket 2^{2k}, 2^{2k+1} \rrbracket$. Donc

$$\nu_{2^{2n+1}}(A) = \sum_{k=0}^{n} 2^{2k} = \frac{2^{2(n+1)} - 1}{3}$$

On a donc $\delta_{2^{2n}}(A) = \frac{2^{2n}-1}{3.2^{2n}}$ et $\delta_{2^{2n+1}}(A) = \frac{2^{2n+2}-1}{3.2^{2n+1}}$. On en déduit que les suites $(\delta_{2^{2n}}(A))$ et $(\delta_{2^{2n+1}}(A))$ convergent respectivement vers $\frac{1}{3}$ et $\frac{2}{3}$. Comme ce sont des suites extraites de $(\delta_n(A))$, cette suite ne converge pas. Ainsi A n'a pas de densité.

f. Remarquons qu'il existe 9^k entiers à k chiffres ne comportant pas de zéro dans leur écriture décimale. On en déduit que pour $p\geqslant 1$, $\nu_{10^p}=\sum_{k=1}^p 9^k=\frac{9^{p+1}-1}{8}$. Soit n un entier et posons $p=\lfloor \log_{10} n\rfloor+1$ de sorte que $n\leqslant 10^p$. On a donc

$$0\leqslant \nu_n(D)\leqslant \frac{9^{p+1}-1}{8}\leqslant \frac{9^{\log_{10}(n)+2}-1}{8}=\frac{81n^{\log_{10}(9)}-1}{8}$$

Par conséquent

$$0\leqslant \delta_{\mathfrak{n}}(D)\leqslant \frac{81\mathfrak{n}^{\log_{10}(9)}-1}{8\mathfrak{n}}$$

Comme $\log_{10}(9) < 1$, on a par encadrement $\delta(D) = 0$.

- **2. a.** $A \cap [1, a_n] = \{a_1, \dots, a_n\} \text{ donc } \nu_{a_n}(A) = n.$
 - b. La suite $(\delta_{\alpha_n}(A))$ est une suite extraite de la suite $(\delta_n(A))$ car la suite (α_n) est strictement croissante. Elle possède donc la même limite $\delta(A)$. Il suffit de remarquer que $\delta_{\alpha_n}(A) = \frac{n}{\alpha_n}$.
 - c. Si $A \cap \llbracket 1, n \rrbracket = \emptyset$, alors $\nu_n(A) = 0$. De plus, cela signifie qu'aucun des \mathfrak{a}_n n'appartient à $\llbracket 1, n \rrbracket$. En particulier, $\mathfrak{a}_1 > n$. Sinon $A \cap \llbracket 1, n \rrbracket = \{\mathfrak{a}_1, \ldots, \mathfrak{a}_k\}$. Comme $k = \operatorname{card}(\{\mathfrak{a}_1, \ldots, \mathfrak{a}_k\})$, on a donc $k = \nu_n(A)$. Or $\mathfrak{a}_k \in \llbracket 1, n \rrbracket$ donc

 $\mathfrak{a}_{\nu_n(A)} \leq \mathfrak{n}$. De plus, $\mathfrak{a}_{k+1} \notin \llbracket 1, \mathfrak{n} \rrbracket$ donc $\mathfrak{a}_{\nu_n(A)+1} > \mathfrak{n}$.

- $\begin{aligned} \textbf{d.} \ \ &\text{D'après la question précédente}, \ \frac{1}{n} \leqslant \frac{1}{a_{\nu_n(A)}} \ \text{puis} \ \frac{\nu_n(A)}{n} \leqslant \frac{\nu_n(A)}{a_{\nu_n(A)}}. \\ &\text{De même}, \ \frac{1}{a_{\nu_n(A)+1}} < \frac{1}{n} \ \text{puis} \ \frac{\nu_n(A)+1}{a_{\nu_n(A)+1}} < \frac{\nu_n(A)+1}{n} \ \text{et enfin} \ \frac{\nu_n(A)+1}{a_{\nu_n(A)+1}} \frac{1}{n} < \frac{\nu_n(A)}{n}. \\ &\text{La suite} \ (\nu_n(A)) \ \text{est croissante et non majorée puisque A est infini : elle diverge donc vers } +\infty. \ \text{Comme la suite} \ \left(\frac{n}{a_n}\right) \ \text{converge vers l, les suites} \ \left(\frac{\nu_n(A)}{a_{\nu_n(A)}}\right) \ \text{et} \ \left(\frac{\nu_n(A)+1}{a_{\nu_n(A)+1}}\right) \ \text{convergent \'egalement vers l. Par encadrement,} \\ &\lim_{n\to +\infty} \frac{\nu_n(A)}{n} = l \ \text{i.e.} \ \delta(A) = l. \end{aligned}$
- 3. On utilise le résultat de la question précédente.
 - $\mathbf{a.} \ \operatorname{Posons} \ \mathfrak{a}_n = \mathfrak{p} + \mathfrak{n} \mathfrak{q} \ \operatorname{de \ sorte \ que} \ A = \{\mathfrak{a}_n \mid \mathfrak{n} \in \mathbb{N}\}. \ \operatorname{La \ suite} \ (\mathfrak{a}_n) \ \operatorname{est \ strictement \ croissante \ car} \ \mathfrak{q} > 0. \ \operatorname{On} \ \operatorname{a} \ \operatorname{donc} \ \delta(A) = \lim_{n \to +\infty} \frac{\mathfrak{n}}{\mathfrak{a}_n} = \frac{1}{\mathfrak{q}}.$
 - **b.** Posons $a_n = \lfloor n\alpha \rfloor$. On a $a_n \leq n\alpha$ et $a_{n+1} > (n+1)\alpha 1 \geq n\alpha$ car $\alpha \geq 1$. Ainsi la suite (a_n) est strictement croissante. Comme $(n-1)\alpha < a_n \leq n\alpha$, $a_n \sim n\alpha$. Donc $\delta(A) = \lim \frac{n}{a_n} = \frac{1}{\alpha}$.

Partie II -

1. Notons $A_n = A \cap \llbracket 1, n \rrbracket$ et $B_n = B \cap \llbracket 1, n \rrbracket$. On sait que

$$\operatorname{card}(A_n) + \operatorname{card}(B_n) = \operatorname{card}(A_n \cup B_n) + \operatorname{card}(A_n \cap B_n)$$

c'est-à-dire $\nu_n(A) + \nu_n(B) = \nu_n(A \cup B) + \nu_n(A \cap B)$. On en déduit que $\delta_n(A) + \delta_n(B) = \delta_n(A \cup B) + \delta_n(A \cap B)$. Si trois de ces suites ont une limite, alors la quatrième également et dans ce cas, $\delta(A) + \delta(B) = \delta(A \cap B) + \delta(A \cup B)$.

- **2.** Si A et B sont disjoints, alors $A \cap B = \emptyset$ possède une densité nulle. D'après la question précédente, $A \cup B$ possède une densité et $\delta(A \cup B) = \delta(A) + \delta(B)$.
- **3.** $A \cup \overline{A} = \mathbb{N}^*$ possède une densité égale à 1. $A \cap \overline{A} = \emptyset$ possède une densité nulle. On en déduit que \overline{A} possède une densité et que $\delta(\overline{A}) = 1 \delta(A)$.
- **4.** Soit A un ensemble négligeable et $B \subset A$. On a donc $0 \le \nu_n(B) \le \nu_n(B)$ puis $0 \le \delta_n(B) \le \delta_n(A)$. Par encadrement, B possède une densité et $\delta(B) = 0$. Donc B est également négligeable.
- **5.** $A \cap B$ est une partie de B donc est négligeable i.e. possède une densité nulle. Comme A et B possèdent également une densité, $A \cup B$ possède une densité et $\delta(A \cup B) = \delta(A) + \delta(B) \delta(A \cap B) = \delta$.

Partie III -

1. Si (u_n) converge, (u_{p_n}) converge également vers la même limite puisque (p_n) diverge vers $+\infty$. Réciproquement supposons que (u_{p_n}) converge vers une limite l. Soit $\varepsilon > 0$. Il existe donc $K \in \mathbb{N}^*$ tel que $k \geqslant K \Longrightarrow \|u_{p_k} - l\| < \varepsilon$. Posons $N = p_K$ et donnons-nous $n \geqslant N$. Notons $E = \{k \in \mathbb{N}^* \mid p_k > n\}$. E est une partie non vide de \mathbb{N}^* puisque (p_k) diverge vers $+\infty$. Elle possède donc un plus petit élément. Posons $k_0 = \min E - 1$. On a donc $p_{k_0} \leqslant n < p_{k_0+1} \leqslant p_{k_0} + 1$. D'où $n = p_{k_0}$. De plus, $p_K \geqslant n$ donc $K \notin E$. Ainsi $K < \min E$ i.e. $K \leqslant \min E - 1 = k_0$. Ainsi

$$\|u_n-l\|=\|u_{p_{k_0}}-l\|<\epsilon$$

On en déduit la convergence de (u_n) vers l.

2. Comme B est infini, B est non vide. On a donc $\nu_n(B) \ge 1$ pour n suffisamment grand.

$$\delta_{\mathfrak{n}}(A \cap B) = \frac{\nu_{\mathfrak{n}}(A \cap B)}{\mathfrak{n}} = \frac{\nu_{\mathfrak{n}}(A \cap B)}{\nu_{\mathfrak{n}}(B)} \frac{\nu_{\mathfrak{n}}(B)}{\mathfrak{n}}$$

 $\text{Or } \nu_{\mathfrak{n}}(A \cap B) = \operatorname{card}(A \cap B \cap \llbracket 1, \mathfrak{n} \rrbracket = \operatorname{card}(A \cap \{b_1, \dots, b_{\nu_{\mathfrak{n}}(B)}\} \text{ puisque } \operatorname{card}(B \cap \llbracket 1, \mathfrak{n} \rrbracket) = \nu_{\mathfrak{n}}(B). \text{ Finalement, } \delta_{\mathfrak{n}}(A \cap B) = \delta_{\nu_{\mathfrak{n}}(B)}(A|B)\delta_{\mathfrak{n}}(B).$

Comme $(\delta_n(B))$ a une limite non nulle, on peut écrire $\delta_{\nu_n(B)}(A|B) = \frac{\delta_n(A \cap B)}{\delta_n(B)}$ à partir d'un certain rang. On

en déduit que la suite $(\delta_{\nu_n(B)}(A|B))$ converge vers $\frac{\delta(A\cap B)}{\delta(B)}$. Enfin, $\nu_{n+1}(B)=\nu_n(B)$ si $n+1\notin B$ et $\nu_{n+1}(B)=\nu_n(B)+1$ si $n+1\in B$. On a donc $\nu_n(B)\leqslant \nu_{n+1}(B)\leqslant \nu_n(B)+1$. D'après le lemme, $\delta_n(A|B)$ converge également vers $\frac{\delta(A\cap B)}{\delta(B)}$. Ainsi A possède une densité relative par rapport à B et celle-ci vaut $\frac{\delta(A\cap B)}{\delta(B)}$.

- **3.** a. Soient A un ensemble négligeable et B un ensemble possédant une densité. Comme $A \cap B$ est une partie de A, on déduit de la question II.4 que $A \cap B$ est également négligeable. On a donc $\delta(A \cap B) = \delta(A)\delta(B) = 0$.
 - **b.** Si A et B sont indépendants, alors A, B et $A \cap B$ possèdent une densité et $\delta(A \cap B) = \delta(A)\delta(B)$. D'après la question **III.2**, A possède une densité relative dans B et $\delta(A|B) = \frac{\delta(A \cap B)}{\delta(B)} = \delta(A)$.

Réciproquement, si A possède une densité relative dans B et $\delta(A|B) = \delta(A)$, $A \cap B$ possède une densité et $\delta(A \cap B) = \delta(A|B)\delta(B) = \delta(A)\delta(B)$ d'après la question **III.2**. Ainsi A et B sont indépendants.

- 4. Comme $M_p = \{pn, n \in \mathbb{N}^*\}$, $\delta(M_p) = \frac{1}{p}$ d'après la question **I.2**. $M_p \cap M_q$ est l'ensemble des multiples communs de p et q donc $M_p \cap M_q = M_{p \vee q}$ où $p \vee q$ désigne le ppcm de p et q. Ainsi M_p et M_q sont indépendants si et seulement si $\frac{1}{p \vee q} = \frac{1}{pq}$ i.e. $p \vee q = pq$, ce qui équivaut à p et q premiers entre eux.
- 5. Supposons que A soit négligeable. A_B est une partie de A donc est également négligeable. Ainsi $\delta(A_B) = \delta(A)\delta(B) = 0$. Supposons maintenant que A n'est pas négligebale. Puisque $A_B \cap \{a_1, \ldots, a_n\} = \{a_{b_k} \mid b_k \leqslant n\}$, $\operatorname{card}(A_B \cap \{a_1, \ldots, a_n\}) = \operatorname{card}(\{B \cap [\![1, n]\!]\}) = \nu_n(B)$. Ainsi $\delta_n(A_B|A) = \frac{\nu_n(B)}{n} = \delta_n(B)$. Ainsi A_B possède une densité dans A et $\delta(A_B|A) = \delta(B)$. En reprenant le raisonnement de la question III.2, on montre que $\delta_n(A_B \cap A) = \delta_{\nu_n(A)}(A_B|A)\delta_n(A)$ i.e. $\delta_n(A_B) = \delta_{\nu_n(A)}(A_B|A)\delta_n(A)$. On en déduit que A_B possède une densité et que $\delta(A_B) = \delta(A_B|A)\delta(A) = \delta(B)\delta(A)$.

Remarque. On peut aussi utiliser la question **I.2**. En effet, la suite (a_{b_n}) est croissante et $\frac{n}{a_{b_n}} = \frac{b_n}{a_{b_n}} \frac{n}{b_n}$. La suite $\left(\frac{b_n}{a_{b_n}}\right)$ est extraite de la suite $\left(\frac{n}{a_n}\right)$ et converge donc vers $\delta(A)$. Par ailleurs, la suite $\left(\frac{n}{b_n}\right)$ converge vers $\delta(B)$. Ainsi la suite $\left(\frac{n}{a_{b_n}}\right)$ converge vers $\delta(A)\delta(B)$, ce qui prouve que A_B possède une densité égale à $\delta(A)\delta(B)$.

Partie IV -

1. Première méthode

Montrons par récurrence sur k que pour tout k-uplet d'ensembles (B_1, \ldots, B_k) vérifiant

$$(*) \qquad \forall I \subset [\![1,k]\!], \ \bigcap_{i \in I} B_i \ \mathrm{a \ une \ densit\acute{e} \ et} \ \delta \left(\bigcap_{i \in I} B_i\right) = \prod_{i \in I} \delta(B_i)$$

 $\bigcap_{i=1}^k \overline{B_i} \text{ possède une densit\'e et } \delta\left(\bigcap_{i=1}^k \overline{B_i}\right) = \prod_{i=1}^k \delta(\overline{B_i}).$

L'initialisation au rang k=1 est évidente. Supposons la propriété vraie à un rang $k\in\mathbb{N}^*$ et montrons-la au rang k+1. Soit donc (B_1,\ldots,B_{k+1}) un k+1-uplet d'ensembles vérifiant la propriété (*). Montrons que le k-uplet $(B_1,\ldots,B_{k-1},B_k\cup B_{k+1})$ vérifie également la propriété (*). Il suffit de vérifier que pour $I\subset \llbracket 1,k-1\rrbracket$,

$$\left(\bigcap_{i\in I}B_i\right)\cap (B_k\cup B_{k+1})$$
 admet une densité et que

$$\delta\left(\bigcap_{i\in I}B_i\right)\cap (B_k\cup B_{k+1})=\left(\prod_{i\in I}\delta(B_i)\right)\delta(B_k\cup B_{k+1})$$

Soit donc $I \subset [1, k-1]$. On a

$$\left(\bigcap_{i\in I}B_i\right)\cap (B_k\cup B_{k+1})=\left(\left(\bigcap_{i\in I}B_i\right)\cap B_k\right)\cup \left(\left(\bigcap_{i\in I}B_i\right)\cap B_{k+1}\right)$$

$$\begin{split} \operatorname{Or}\left(\bigcap_{i\in I}B_i\right) \cap B_k \text{ et } \left(\bigcap_{i\in I}B_i\right) \cap B_{k+1} \text{ ont une densit\'e et} \\ \left(\left(\bigcap B_i\right) \cap B_k\right) \cap \left(\left(\bigcap B_i\right) \cap B_{k+1}\right) = \left(\bigcap B_i\right) \cap B_k \cap B_{k+1} \end{split}$$

a donc également une densité. De plus,

$$\begin{split} \delta\left(\left(\bigcap_{i\in I}B_{i}\right)\cap\left(B_{k}\cup B_{k+1}\right)\right) &= \delta\left(\left(\bigcap_{i\in I}B_{i}\right)\cap B_{k}\right) + \delta\left(\left(\bigcap_{i\in I}B_{i}\right)\cap B_{k+1}\right) \\ &- \delta\left(\left(\bigcap_{i\in I}B_{i}\right)\cap B_{k}\cap B_{k+1}\right) \\ &= \left(\prod_{i\in I}\delta(B_{i})\right)\left(\delta(B_{k}) + \delta(B_{k+1}) - \delta(B_{k})\delta(B_{k+1})\right) \\ &= \left(\prod_{i\in I}\delta(B_{i})\right)\left(\delta(B_{k}) + \delta(B_{k+1}) - \delta(B_{k}\cap B_{k+1})\right) \\ &= \left(\prod_{i\in I}\delta(B_{i})\right)\delta(B_{k}\cup B_{k+1}) \end{split}$$

en appliquant (*) en remplaçant I par $I \cup k, I \cup \{k+1\}$ et $\{k, k+1\}$. On peut donc appliquer l'hypothèse de récurrence au k-uplet $(B_1, \ldots, B_{k-1}, B_k \cup B_{k+1})$. Ainsi

$$\begin{split} \delta(\overline{B_1} \cap \dots \cap \overline{B_{k+1}} &= \delta(\overline{B_1} \cap \dots \cap \overline{B_{k-1}} \cap \overline{B_k \cup B_{k+1}}) \\ &= \delta(\overline{B_1}) \dots \delta(\overline{B_{k-1}}) \delta(\overline{B_k \cup B_{k+1}}) \end{split}$$

Or en utilisant (*) en remplaçant I par $\{k, k+1\}$, on a :

$$\begin{split} \delta(\overline{B_k \cup B_{k+1}}) &= 1 - \delta(B_k \cup B_{k+1}) = 1 - \delta(B_k) - \delta(B_{k+1}) + \delta(B_k \cap B_{k+1}) \\ &= 1 - \delta(B_k) - \delta(B_{k+1}) + \delta(B_k)\delta(B_{k+1}) = (1 - \delta(B_k))(1 - \delta(B_{k+1})) = \delta(\overline{B_k})\delta(\overline{B_{k+1}}) \end{split}$$

ce qui achève la récurrence.

Il suffit enfin de remarquer que (A_1,\ldots,A_k) vérifie (*) puisque pour $I\subset [\![1,k]\!], \bigcap_{i\in I}A_i=\{\mathfrak{np}_1\mid \in \mathbb{N}^*\}$ admet une

densité et que

$$\left(\bigcap_{i\in I} A_i\right) = \frac{1}{\prod_{i\in I} p_i} = \prod_{i\in I} \delta(A_i)$$

On en déduit que

$$\delta\left(\bigcap_{i=1}^{k} \overline{A_i}\right) = \prod_{i=1}^{k} \delta(\overline{A_i}) = \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right)$$

Seconde méthode

Rappelons tout d'abord que $\delta(A_i) = \frac{1}{p_i}$ pour tout $i \in \mathbb{N}^*$. On fait l'hypothèse de récurrence suivante :

$$HR(k):\bigcap_{i=1}^k\overline{A_i} \text{ admet une densit\'e et } \delta\left(\bigcap_{i=1}^k\overline{A_i}\right)=\prod_{i=1}^k\left(1-\frac{1}{p_i}\right).$$

L'initialisation au rang k=1 est évidente. Supposons donc HR(k) pour un certain $k\in\mathbb{N}^*.$

On montre d'abord que $\bigcap_{i=1}^{k+1} \overline{A_i}$ possède une densité dans A_{k+1} .

$$\delta_{\mathfrak{n}}\left(\bigcap_{i=1}^{k}\overline{A_{i}}|A_{k}\right)=\frac{\operatorname{card}\left(\left(\bigcap_{i=1}^{k}\overline{A_{i}}\right)\cap\left\{ jp_{k+1}\mid1\leqslant j\leqslant\mathfrak{n}\right\}\right)}{\mathfrak{n}}$$

Or un entier de la forme jp_{k+1} n'est pas multiple de p_1, \ldots, p_k si et seulement si j n'est pas multiple de p_1, \ldots, p_k . Autrement dit,

$$\operatorname{card}\left(\left(\bigcap_{i=1}^{k}\overline{A_{i}}\right)\cap\{jp_{k+1}\mid 1\leqslant j\leqslant n\}\right)=\nu_{n}\left(\bigcap_{i=1}^{k}\overline{A_{i}}\right)$$
 On a donc $\delta_{n}\left(\bigcap_{i=1}^{k}\overline{A_{i}}|A_{k}\right)=\delta_{n}\left(\bigcap_{i=1}^{k}\overline{A_{i}}\right)$. Ainsi $\bigcap_{i=1}^{k+1}\overline{A_{i}}$ possède une densité dans A_{k+1} et $\delta\left(\bigcap_{i=1}^{k}\overline{A_{i}}|A_{k}\right)=\delta\left(\bigcap_{i=1}^{k}\overline{A_{i}}\right)$.

On en déduit ensuite que
$$\left(\bigcap_{i=1}^{k} \overline{A_i}\right) \cap A_{k+1}$$
 possède une densité et que $\delta\left(\left(\bigcap_{i=1}^{k} \overline{A_i}\right) \cap A_{k+1}\right) = \delta\left(\bigcap_{i=1}^{k} \overline{A_i}\right) \delta(A_{k+1})$.

 $\text{Puisque} \bigcap_{i=1}^k \overline{A_i} \text{ est l'union disjointe de } \bigcap_{i=1}^{k+1} \overline{A_i} \text{ et } \left(\bigcap_{i=1}^k \overline{A_i}\right) \cap A_{k+1} \text{ et que ces trois ensembles possèdent une densit\'e}:$

$$\begin{split} \delta\left(\bigcap_{i=1}^{k+1}\overline{A_i}\right) &= \delta\left(\bigcap_{i=1}^{k+1}\overline{A_i}\right) - \delta\left(\left(\bigcap_{i=1}^{k}\overline{A_i}\right)\cap A_{k+1}\right) \\ &= \delta\left(\bigcap_{i=1}^{k+1}\overline{A_i}\right)(1 - \delta(A_{k+1}) = \prod_{i=1}^{k+1}\left(1 - \frac{1}{p_i}\right) \end{split}$$

2. Soit $N \in \mathbb{N}^*$. Soit p_k le plus grand nombre premier et M la plus grande puissance intervenant dans les décompositions en facteurs premiers des entiers de 1 à N. Pour $i \in [1,k]$

$$\frac{1}{1 - \frac{1}{p_i}} = \lim_{n \to +\infty} \sum_{m=0}^n \frac{1}{p_i^m} \geqslant \sum_{m=0}^M \frac{1}{p_i^m}$$

On en déduit que

$$\frac{1}{P_k} = \prod_{i=1}^k \frac{1}{1 - \frac{1}{p_i}} \geqslant \prod_{i=1}^k \sum_{m=0}^M \frac{1}{p_i^m} = \sum_{(m_1, \dots, m_k) \in [\![0, M]\!]^k} \frac{1}{p_1^{m_1} \dots p_k^{m_k}}$$

Par définition de k et M, on retrouve tous les entiers de 1 à N parmi les entiers $p_1^{m_1} \dots p_k^{m_k}$ lorsque m_1, \dots, m_k décrivent [0, M]. Ainsi $\frac{1}{P_k} \geqslant \sum_{n=0}^N \frac{1}{n}$. On démontre classiquement que la suite $\left(\sum_{m=0}^n \frac{1}{m}\right)_{n \in \mathbb{N}^*}$ diverge vers $+\infty$. Ceci montre que la suite $\left(\frac{1}{P_k}\right)_{k \in \mathbb{N}^*}$ n'est pas majorée. Par ailleurs, cette suite est croissante puisque pour tout $i \in \mathbb{N}^*$, $0 < 1 - \frac{1}{p_i} < 1$. On en déduit que $\left(\frac{1}{P_k}\right)_{k \in \mathbb{N}^*}$ diverge vers $+\infty$, ce qui prouve que la suite $(P_k)_{k \in \mathbb{N}^*}$ converge vers 0.

- 3. Pour $j \geqslant k+1$, p_j est premier avec les p_i pour $1 \leqslant i \leqslant k$ donc appartient à $\bigcap_{i=1}^k \overline{A_i}$. On a donc $\nu_n(\mathbb{P}) \leqslant k+\nu_n\left(\bigcap_{i=1}^k \overline{A_i}\right)$ dès que $n > p_k$. Ainsi $\delta_n(\mathbb{P}) \leqslant \frac{k}{n} + \delta_n\left(\bigcap_{i=1}^k \overline{A_i}\right)$ pour $n > p_k$. En passant à la limite supérieure, on obtient l'inégalité demandée.
- $\textbf{4.} \ \text{Puisque } \limsup_{\substack{n \to +\infty \\ n \to +\infty}} \delta_n(\mathbb{P}) \leqslant P_k, \ \text{on a en faisant tendre } k \ \text{vers } +\infty, \ \limsup_{\substack{n \to +\infty \\ n \to +\infty}} \delta_n(\mathbb{P}) \leqslant 0. \ \text{Comme par ailleurs, } \delta_n(\mathbb{P}) \geqslant 0 \\ \text{pour tout } n \geqslant 1, \ \text{on a \'egalement } \liminf_{\substack{n \to +\infty \\ n \to +\infty}} \delta_n(\mathbb{P}) \geqslant 0. \ \text{Puisque } \liminf_{\substack{n \to +\infty \\ n \to +\infty}} \delta_n(\mathbb{P}) \leqslant \limsup_{\substack{n \to +\infty \\ n \to +\infty}} \delta_n(\mathbb{P}), \ \text{on a } \limsup_{\substack{n \to +\infty \\ n \to +\infty}} \delta_n(\mathbb{P}) = \lim\sup_{\substack{n \to +\infty \\ n \to +\infty}} \delta_n(\mathbb{P}) = 0 \ \text{et donc } (\delta_n(\mathbb{P})) \ \text{converge vers 0, ce qui signifie que } \mathbb{P} \ \text{est de densit\'e nulle.}$