# Distributed energy system for resilient community

Yohan Min 2018-05-25

#### Introduction

Climate change recently has caused several interruptions to human society. These events reveal vulnerabilities of the current urban systems. Water, energy and foods are examples to be kept supplied in the unfavorable events to sustain the urban systems. Energy is getting critical to serve the needs of human activities as society becomes complex. Reliability of energy supply has proven to be important especially during emergency situations where medical services are in high demand.

Decentralization of energy production and supply will play an important role to resilient community as it would be more robust in response to the disruptions. Community solar will be studied with respect to economic value and health benefit in response to outages due to disruptions. Installation of solar PV bears cost while it definitely incurs health benefit by keeping energy supply to those who need for their healthy needs. Monte Carlo simulation will be applied to address the uncertainty of conditions e.g., solar radiation, discount rate, energy cost change, etc. while Markov chain model would be used to estimate the change of health conditions and the benefit of an intervention of energy supply to the communities.

# Impact of natural disasters on human health

Environmental changes from human activities are now incurring natural disasters associated with climate change. They include but are not limited to coastal storms, city heat waves, urban flooding and drought. Urbanization and environmental pollution are highly correlated and the proper management of resources and infrastructure planning seems missing in urban form until recently. As a result, people suffer from health issues due to the undesirable events including environmental pollution, which results from inappropriate natural resource management. Those challenges need to be discussed in terms of resilient and sustainable infrastructures to enhance community resilience.

Back in 2017, hurricane Maria left damages in Puerto Rico. The New York times (Robles et al. 2017) showed that additionally over 1,000 deaths for 2 months including the month when the disaster arrived on September 20, occurred in comparison to the past average deaths counts.



Figure 1: Additional deaths in Puerto Rico in 2017 (The New York Times)

This shows that the event most likely affects human health by increasing deaths noticeable compared to the amount of average deaths in the same period last 2 years. The deaths count is not limited to the direct impact from the hurricane but includes indirect influence of the event as well. It would be necessary to study what indirect factors caused the abnormal deaths. The fact that the trend of death seems getting closer to as usual at the end of October, the 2nd month after the hurricane Maria, confirms the natural disaster is somehow the main factor to this remarkable result of deaths.



Figure 2: Average daily deaths for 2 months compared with last 2 years (The New York Times)

Average death in September past 2 years in Puerto Rico is about 645 for a group of respiratory diseases (i.e., Sepsis, Pnuemonia, and Emphysema), diabetes and Alzheimers. In comparison of the amount of deaths to the one in September, 2017 when the hurricane came, the 862 deaths is 217 more than the last 2 years average death in September. Especially respiratory diseases have higher

increase changes, which is assumed to be related to electricity because respiratory patients need it to run their medical devices to get support of breathing. Diabetes patients are also sensitive to electricity because storing insulin needs to avoid heat to protect it's functionality.



Figure 3: Noticeable deaths increases after the hurricane (Data:The New York Times)

174 additional deaths are from these respiratory diseases and diabetes (633 deaths in Sept 2017 as opposed to 439 deaths in Sept 2015). Given the additional 556 deaths during the 1st month of hurricane, 31.29% of the death regarding the disaster is attributed to the respiratory and diabetes deaths. At the same time this increased number of deaths, 174 is the same as 39.64% of the amount of deaths as usual.

## Impact of energy supply on health

Electricity affects more on respiratory patients that mortality and respiratory hospital admissions increases significantly during blackout compared to those with cardiovascular and renal diseases (S. Lin et al. 2011). The Henry J. Kaiser Family Foundation (Michaud 2017) reported that 26 out of 65 hospitals (40%) were still running on emergency power supply such as fuel based generators disconnected to the regular grid by the middle of November, 2 months after the event. Assuming that the causes of deaths from respiratory and diabetes are from electricity blackout due the the damages by the hurricane, electricity could be considered to be the cause to the impact on deaths about 31.29% because respiratory and diabetes, out of 556 additional deaths, contribute 174 deaths.

| Causes of death                         | Sept. 2015 | Sept. 2016 | Sept. 2017 | Pct.<br>change |
|-----------------------------------------|------------|------------|------------|----------------|
| Sepsis                                  | 64         | 61         | 92         | +47            |
| Pneumonia                               | 50         | 55         | 76         | +45            |
| Emphysema and other breathing disorders | 104        | 114        | 156        | +43            |
| Diabetes                                | 221        | 249        | 309        | +31            |
| Alzheimer's and Parkinson's             | 189        | 183        | 229        | +23            |

Figure 4: Causes of death based on a month, September (The New York Times)

About 517 in thousands or 15% of 3.5 million Puerto Ricans are diabetics and about 2,800 people die annually due to the disease. Given this abnormal situation, the hurricane interrupted the trend by increasing the number of death, about 150 more people died due to diabetes (estimated with the data). Markov chain transition probability could be constructed to figure out the impact of an interruption of power supply by means of distributed energy system such as solar PV on cost and effectiveness of it. Since diabetes are attributed to about 42% of additional deaths related to electricity due to the disaster (assuming all additional deaths from diabetes and respiratory diseases are from lack of electricity), the impact of introducing distributed energy system (DES) on human health can be addressed by adding the rest of 58% proportionally to the 42% weight.

### Markov model for CEA

Cost effectiveness analysis (CEA) using Markov model would help to see an impact of intervesion of treatment to a system. In a normal condition in Puerto Rico, with the fact that diabetics seldom completely recover, about the portion of 0.01317 diabetics dies ("Number of Diabetes Deaths Per 100,000 Population" 2018); average probability to become diabetics is 0.00232 (Joslin 2018); and annual deaths is about 29,500 (0.0089 of total Puerto Rican population), transition prabability matrix is:

Table 1: Transition Matrix (normal)

|            | nodiabetes | diabetes | death   |
|------------|------------|----------|---------|
| nodiabetes | 0.98949    | 0.00232  | 0.00819 |
| diabetes   | 0.00000    | 0.98683  | 0.01317 |
| death      | 0.00000    | 0.00000  | 1.00000 |

Hurricane changes the transition probability such that about 1,000 deaths are added and about 150 deaths out of the 1,000 deaths are due to the diabetes. Accordingly, a transition prabability in the interrupted situation is:

Table 2: Transition Matrix (interruption)

|            | nodiabetes | diabetes | death     |
|------------|------------|----------|-----------|
| nodiabetes | 0.9891845  | 0.00232  | 0.0084955 |
| diabetes   | 0.0000000  | 0.98650  | 0.0135000 |
| death      | 0.0000000  | 0.00000  | 1.0000000 |

Unexpected events such as hurricanes are assumed to occur with 10% probability (i.e. once 10 years). This prior probability could be changed to lower or higher value given data collection, or experienced information such that posterior probability is kept updated. Since this study will have the time window of 20 years, interrupted transition probability and normal transition one will be combined with an assumption of 10% probability of interruption.



Figure 5: Markov chain for normal and interruption

According to American Diabetes (American Diabetes Association 2018), annually \$327 billion is spent for 30 million diabetics that \$10,900 per one diabetic is approximately estimated. USA public expenditure (excluding private) for health per capita is about \$4,800 in 2016 (OECD 2018). Assuming there is not much change in the value in 2017, the cost analysis can be performed based these cost estimation for 20 years scenario. Utility score for non-Asian, non-Hispanic with annual house income of more than \$40,000 and without diabetes complications is 0.92 and for those other than them would be 0.80 (Zhang et al. 2012). In this regard, considering the socio-economic and demographic characteristics in Puerto Rico, a utility score of 0.80 for diabetes is chosen for

this analysis. Normal scenario (i.e. there is no chance that unexpected events such as hurricane, happens) shows that discounted QALY and discounted cost are getting lower. Interruption scenario which is assumed with 10% increase in health cost with 10% probability of getting the disaster (probably twice in 20 years), shows a similar pattern but a bit slight difference.



Figure 6: Markov trace for normal and interruption

Cost effectiveness ratio such as incremental cost effectiveness ratio (ICER) can present the effectiveness of treatment or changes to the system. Given unit benefit or QALY, how much cost is required for the treatment to the system change will be calculated as below:

$$\frac{Cost_{treated} - Cost_{untreated}}{Benefit_{treated} - Benefit_{untreated}} = ICER = -7.489883 \times 10^4 USD/QALY$$

Since disaster causes increase in cost and decrease in QALY, the ICER, 74.9 thousand dollars is considered to be benefit rather than cost. This means that by supplying uninterrupted power supply to the diabetes patients, the situation would remain the normal condition without the interruption from the undesirable events, thus the value of 74.9 thousand dollars per an unit QALY would be obtained. For the simulated 20 years, the scenario with 10% probability of disasters has 1,723 more deaths, \$676.7 million more cost, and 9,042 less QALY. It is assumed that by supplying uninterrupted power supply, the gap of higher deaths, cost and lower QALY would decrease.

Table 3: Cost-Effectiveness of discounted QALY and cost

|              | d.qaly   | t.cost   |
|--------------|----------|----------|
| Normal       | 11651.72 | 57345362 |
| Intervention | 11648.98 | 57550435 |



Figure 7: Comparion of the 2 scenarios for QALY and health cost

How much would it cost to have uninterrupted power supplies to those in need during the hardships? For the sake of simple analyses, it is assumed that all the hospitals in Puerto Rico are accessible by all the citizens for a short time and solar PV system on roof of each hospital can serve uninterrupted power supply to the local people even during the undesirable events. Considering there are 65 hospitals in Puerto Rico, it would be necessary to estimate upfront cost and break even period of installation of DES to hospitals. One hospital approximately deals with 1.14 deaths in the month when the event happened and the 74 additional deaths of diabetics occurring in the month when the disaster landed. With the fact that respiratory patients are 58% and diabetics are 42% covering the additional deaths which is assumed to be due to the lack of electricity, one hospital would take about additional 2.7 deaths occurring during the month of the disaster.

# PV system configuration in a hospital

One hospital, Puerto Rico hospital San Gerardo was chosen for this study. The area of roof of Puerto Rico hospital San Gerardo where the designed PV system will sit on is estimated 2,675 square meter.



Figure 8: Roof area of Puetro rico Hospital San Gerardo

Solar panels were chosen mainly based on the estimated capacity and efficiency. A model with  $320\mathrm{W}$ , 19% efficiency (i.e., platinum) and the size of  $1640 \times 1000 \times 40$  was selected because most of common solar panels in the market are from  $250\mathrm{W}$  to  $320\mathrm{W}$  and approximately around  $5.4\mathrm{ft} \times 3\mathrm{ft}$  or  $1.64\mathrm{m} \times 1\mathrm{m}$  (In case of 60 cells). Solar panel size is related to weights, and regulations and the related market tends to standardize size and capacity of solar panels (PowerScout 2018). Array type for the PV installation was assumed to be fixed open rack, which means the panel direction and degree of tilt will be fixed permanently once installed on the site.

Table 4: PV System configuration for PV \*

| Description                                                  | Value             |
|--------------------------------------------------------------|-------------------|
| Lat (deg N):                                                 | 18.05             |
| Long (deg W):                                                | 66.62             |
| DC System Size (kW):                                         | 508.3             |
| Module Type:                                                 | Premium           |
| Array Type:                                                  | Fixed (open rack) |
| Array Tilt (deg):                                            | 20                |
| Array Azimuth (deg):                                         | 180               |
| System Losses:                                               | 14.08             |
| Invert Efficiency:                                           | 96                |
| DC to AC Size Ratio:                                         | 1.2               |
| Average Cost of Electricity Purchased from Utility (\$/kWh): | 0.225             |
| Capacity Factor (%)                                          | 17.4              |

<sup>\*</sup> Source: NREL, http://pvwatts.nrel.gov/pvwatts.php

Through the PVwatts calculator estimation (http://pvwatts.nrel.gov/pvwatts.php), the PV capac-

ity is estimated to 508.3 kW in DC which is converted to 609.96 kW in AC with the assumption of 1.2 ratio considering the weather condition and the characteristics of the roof of the hospital (i.e., roof area, no shadow, pain, 180 degree of azimuth, and 20 degree of tilt).

Table 5: Estimated variables for simulation \*

|                         | Value       |
|-------------------------|-------------|
| Area(sqm)               | 2675.000    |
| Capacity(kWAC)          | 609.960     |
| Install $cost(\$/watt)$ | 3.380       |
| Total cost(k\$)         | 2061.665    |
| Avg.elec.cost(\$/kWh)   | 0.225       |
| Annual discount rate    | 0.060       |
| * Solar-Estimate, Solar | calculator. |

Solar-Estimate, Solar calculator, https://www.solar-estimate.org/

Installation cost (i.e. cost per watt, \$/watt) including purchase of panel, labor cost, or any administration work, are set based on state in the US. This is because it is hard to compare the cost of installation depending upon the different characteristics of installation environment such as different home size, PV system and labor cost. By introducing installation cost per watt, the upfront cost is roughly estimated regardless of the differences. In case of Puerto Rico, the installation cost is approximately \$3.38/watt. Total installation cost is accordingly estimated to \$2061.66 in thousands for 508.3 kW DC PV system. This upfront cost could be adjusted with government incentives or tax credits if applicable. Average cost of electricity in Puerto Rico is recently (Dec. 2017) \$0.225/kWh according to US Energy Information Administration (eia 2018). This value will be used to analyze the designed PV system in this study.

### Monte Carlo simulation for NPV and DPP

AC energy produced through the PV system is estimated 773,790 kWh per year. These estimated values are set as a baseline to compare with probabilistic analysis. AC energy production and electricity cost rate every year are uncertain such that there are always worse or better scenarios in the prediction. That being said, these variables were set with a uniform distribution with extreme boundaries (i.e. minimum and maximum). Average rate increase for the cost of electricity is 8% according to the historical trend. Annual maintenance cost for solar PV system is set to \$7.5/kW (Vella 2016).

A simulation model was developed based on 20 years with interest rate of 6%. To figure out the system performance, Net Present Value (NPV) and Discounted Payback Periods (DPP) were estimated with the 100 times of run of Monte Carlo simulation.

Table 6: Estimation of electricity generation\*

| Month | AC System Output(kWh) | Solar Radiation (kWh/m^2/day) | Plane of Array Irradiance (W/m^2) | DC array Output (kWh) | Value (\$)    |
|-------|-----------------------|-------------------------------|-----------------------------------|-----------------------|---------------|
| 1     | 65134.28              | 5.35                          | 165.86                            | 67906.08              | 14,642.19     |
| 2     | 62801.10              | 5.78                          | 161.70                            | 65453.79              | 14,117.69     |
| 3     | 70190.34              | 5.78                          | 179.21                            | 73173.96              | 15,778.79     |
| 4     | 64682.86              | 5.58                          | 167.28                            | 67554.09              | $14,\!540.71$ |
| 5     | 63301.67              | 5.26                          | 163.00                            | 66115.14              | $14,\!230.22$ |
| 6     | 62131.98              | 5.27                          | 158.08                            | 64864.30              | 13,967.27     |
| 7     | 67817.48              | 5.60                          | 173.66                            | 70777.88              | 15,245.37     |
| 8     | 65064.41              | 5.42                          | 167.90                            | 67956.07              | 14,626.48     |
| 9     | 64051.39              | 5.48                          | 164.27                            | 66844.64              | $14,\!398.75$ |
| 10    | 63160.16              | 5.27                          | 163.40                            | 65924.01              | $14,\!198.40$ |
| 11    | 61077.93              | 5.21                          | 156.30                            | 63694.29              | 13,730.32     |
| 12    | 64376.89              | 5.31                          | 164.49                            | 67147.05              | $14,\!471.93$ |
| Total | 773790.50             | 65.29                         | 1985.15                           | 807411.30             | 173948.12     |

\* Source: NREL, http://pvwatts.nrel.gov/pvwatts.php



Figure 9: Annual electricity generation and cost estimation (1 simulation)

# Cash flow of the PV system



Figure 10: Cash flow and NPV from electricity generation

Average NPV is \$2.37 in millions with  $0.1 \times 10^6$  standard deviation and average DPP is 10.48 years with 0.18 standard deviation. With 90% confidence interval, NPV is between \$2.36 in millions and \$2.39 in millions. DPP is between 10.45 years and 10.51 years. This means net present value for 20 years is highly profitable and within 11 years, the upfront cost could be paid off. This shows installation PV in Puerto Rico has higher NPV and lower DPP. This is mainly because the electricity price in Puerto Rico is higher than any other states such that saving electricity expedites the DPP and higher NPV.

Table 7: Average NPV and DPP

|     | Mean       | CI 90%-    | CI 90%+    |
|-----|------------|------------|------------|
| NPV | 2374401.58 | 2357355.54 | 2391447.63 |
| DPP | 10.48      | 10.45      | 10.51      |



Figure 11: Simulation of 100 times for NPV and DPP

# PV system effectiveness including health benefit

Having PV system has economic value as it generates electricity, but also it has a positive impact on health during unexpected events. Health impact on diabetes was caculated with Markov model with cost and QALY in the previous analysis. Inculding this economic value of health benefit from having PV system, would expedite the DPP such that the upfront cost to invest money for the PV system would be paid off earlier and increase NPV during the 20 years time window. Considering the weight portion of diabetes and respiratory diseases (42% of diabetes and 58% of respiratory diseases), annual estimated health benefits are assumed to be 2.38 times of the health benefit of diabetes. After 100 simulations of cash flow of PV investment including health benefit, it turns out that average NPV is about \$2.8 million and average DPP is about 9.7 years.

Table 8: Average NPV and DPP

|     | Mean       | CI 90%-    | CI 90%+    |
|-----|------------|------------|------------|
| NPV | 2837912.35 | 2821714.66 | 2854110.04 |
| DPP | 9.67       | 9.65       | 9.69       |

# Benefits from PV including health



Figure 12: Electricity NPV with health benefit



Figure 13: Simulation of 100 times for NPV and DPP

#### Conclusion

Natural disasters causes negative impact on human health where resilient infrastructure could alleviate the damages. DES such as solar PV can help communities more resilient such that it supplies uninterrupted energy to people in need especially those who rely on electric-operated medical devices. Hurricane Maria left more than 1,000 deaths only for 2 months and about 31.29% of the deaths are due to respiratory diseases and diabetes which seem sensitive to electricity. Two scenarios were simulated by Markov models to analyze the cost-effectiveness ratio for diabetes to figure out the characteristics in normal and interrupted situation. With 10% probability of disaster occurrance in 20 years time window, it is estimated that any measures that help to avoid the interrupted situation, would save 1,723 deaths, \$676.7 million and increase about 9,042 QALY. Including respiratory diseases, the impact would be approximately twice with the fact that diabetes is attributed to 42% while 58% is from respiratory diseases for the deaths assumed to be related to lack of electricity in the event of hurricane Maria. Assuming uninterrupted electricity supply might have reduced the 31.29% of deaths occurring during the event, DES such as solar PV installation was studied in terms of economic cost and benefits.

Lifecycle Costing (LCC) by Monte Carlo simulations considering probabilistic uncertainties of electricity generation and energy market price on an annual basis were analyzed. The simulation shows that NPV is between \$2.36 in millions and \$2.39 in millions and DPP is between 10.45 years and 10.51 years both in 90% confidence interval. By including health benefit to the NPV estimation assuming having PV system will prevent lack of electricity during the undesirable events, the simulation shows that NPV is between \$2.82 in millions and \$2.85 in millions and DPP is between 9.65 years and 9.69 years both in 90% confidence interval. Considering there are 65 hospitals in Puerto Rico like the hospital in this case study, the upfront cost to install the similar type of PV system would be about \$134 million. The burden of upfront cost may be alleviated through tax credits, subsidies or government incentives.

Having solar PV system in hospitals will benefit economic value and furthermore, enhance the health condition by preventing lack of electricity to those in need from disasters. It is estimated that it could save 1,723 deaths and increase 9,042 QALY while saving \$676.7 million considering only diabetes assuming diabetes are sensitive to energy supply and the whole hospitals in Puerto Rico have the DES installed. While this may cost a lot like \$134 million, it will be paid off within 11 years in addition to potentials in health benefit. There would be also significant economic values especially in Puerto Rico where electricity price is the highest among states and saving electricity entails higher benefits.

# Appendix

Table 9: Cash flow of the PV system (1 simulation)

| Year | Elec.gen(kWh) | Elec.price(\$/kWh) | FV(\$)   | PV(\$)   | NPV(\$)    |
|------|---------------|--------------------|----------|----------|------------|
| 1    | 756803.2      | 0.2433727          | 180144.2 | 169947.4 | -1891717.6 |
| 2    | 809313.8      | 0.2613756          | 207251.5 | 184453.1 | -1707264.5 |
| 3    | 763626.8      | 0.2851824          | 213232.5 | 179034.1 | -1528230.4 |
| 4    | 739056.3      | 0.3116119          | 225485.9 | 178605.9 | -1349624.5 |
| 5    | 782372.9      | 0.3343318          | 256470.5 | 191649.7 | -1157974.8 |
| 6    | 738509.0      | 0.3645356          | 263805.1 | 185972.2 | -972002.7  |
| 7    | 772877.1      | 0.4006138          | 303893.0 | 202106.2 | -769896.5  |
| 8    | 772379.9      | 0.4301195          | 326139.5 | 204623.9 | -565272.5  |
| 9    | 793517.1      | 0.4694382          | 366066.5 | 216674.2 | -348598.3  |
| 10   | 780543.8      | 0.5160311          | 395957.7 | 221100.7 | -127497.6  |
| 11   | 792880.6      | 0.5647753          | 440562.6 | 232082.9 | 104585.3   |
| 12   | 805464.9      | 0.6121416          | 485387.6 | 241222.8 | 345808.1   |
| 13   | 742284.3      | 0.6613015          | 482742.5 | 226328.5 | 572136.6   |
| 14   | 742315.9      | 0.7100172          | 518437.9 | 229305.6 | 801442.1   |
| 15   | 805948.0      | 0.7709265          | 612190.4 | 255445.7 | 1056887.8  |
| 16   | 758613.5      | 0.8395044          | 627174.9 | 246885.1 | 1303772.9  |
| 17   | 735365.9      | 0.9122063          | 660539.9 | 245301.0 | 1549073.9  |
| 18   | 765455.4      | 0.9987887          | 753646.8 | 264035.5 | 1813109.3  |
| 19   | 803276.2      | 1.0795254          | 855622.7 | 282794.4 | 2095903.8  |
| 20   | 792141.5      | 1.1612420          | 907641.6 | 283006.9 | 2378910.7  |

Table 10: PV system cash flow including health benefit (1 simulation)

| Year | Elec.gen(kWh) | Elec.price(\$/kWh) | Health benefit(\$) | PV(\$)   | NPV(\$)     |
|------|---------------|--------------------|--------------------|----------|-------------|
| 1    | 803475.7      | 0.2414901          | 2247.321           | 184587.0 | -1877077.98 |
| 2    | 779832.7      | 0.2587543          | 4188.107           | 185747.4 | -1691330.59 |
| 3    | 741389.2      | 0.2773533          | 5853.719           | 182773.4 | -1508557.24 |
| 4    | 753674.3      | 0.3026571          | 7272.666           | 194184.0 | -1314373.22 |
| 5    | 802593.9      | 0.3277895          | 8470.847           | 212946.5 | -1101426.69 |
| 6    | 776048.6      | 0.3605344          | 9471.776           | 215982.1 | -885444.63  |
| 7    | 805866.4      | 0.3956981          | 10296.786          | 232777.2 | -652667.45  |
| 8    | 775343.9      | 0.4293768          | 10965.217          | 231170.2 | -421497.28  |
| 9    | 790816.2      | 0.4597570          | 11494.592          | 238760.2 | -182737.07  |
| 10   | 745190.9      | 0.5042753          | 11900.767          | 234357.3 | 51620.21    |
| 11   | 808019.8      | 0.5526350          | 12198.087          | 260462.5 | 312082.71   |
| 12   | 798387.3      | 0.6012506          | 12399.510          | 264271.0 | 576353.75   |
| 13   | 799720.8      | 0.6451298          | 12516.733          | 267874.7 | 844228.40   |
| 14   | 758344.2      | 0.7081728          | 12560.305          | 263626.0 | 1107854.40  |
| 15   | 756942.3      | 0.7678073          | 12539.728          | 268552.8 | 1376407.19  |
| 16   | 778296.1      | 0.8413661          | 12463.547          | 283635.0 | 1660042.21  |
| 17   | 752997.1      | 0.9126612          | 12339.443          | 280780.6 | 1940822.83  |
| 18   | 785728.8      | 0.9902674          | 12174.308          | 297770.2 | 2238593.06  |
| 19   | 774377.2      | 1.0846082          | 11974.314          | 302294.6 | 2540887.61  |
| 20   | 811776.5      | 1.1837348          | 11744.985          | 323773.9 | 2864661.53  |

Table 11: Scenario in normal with QALY and cost

| i  | nodiabetes | diabetes  | death     | sum  | d.qaly    | d.cost  |
|----|------------|-----------|-----------|------|-----------|---------|
| 0  | 1000.0000  | 0.000000  | 0.00000   | 1000 | 1000.0000 | 4800000 |
| 1  | 989.4900   | 2.320000  | 8.19000   | 1000 | 935.2321  | 4504566 |
| 2  | 979.0905   | 4.585062  | 16.32448  | 1000 | 874.6516  | 4227137 |
| 3  | 968.8002   | 6.796167  | 24.40361  | 1000 | 817.9883  | 3966630 |
| 4  | 958.6181   | 8.954278  | 32.42759  | 1000 | 764.9894  | 3722023 |
| 5  | 948.5431   | 11.060344 | 40.39660  | 1000 | 715.4185  | 3492359 |
| 6  | 938.5739   | 13.115299 | 48.31084  | 1000 | 669.0542  | 3276735 |
| 7  | 928.7095   | 15.120062 | 56.17048  | 1000 | 625.6894  | 3074302 |
| 8  | 918.9487   | 17.075537 | 63.97575  | 1000 | 585.1305  | 2884263 |
| 9  | 909.2906   | 18.982613 | 71.72682  | 1000 | 547.1963  | 2705867 |
| 10 | 899.7339   | 20.842166 | 79.42391  | 1000 | 511.7172  | 2538408 |
| 11 | 890.2777   | 22.655058 | 87.06722  | 1000 | 478.5347  | 2381224 |
| 12 | 880.9209   | 24.422135 | 94.65697  | 1000 | 447.5003  | 2233689 |
| 13 | 871.6624   | 26.144232 | 102.19335 | 1000 | 418.4753  | 2095219 |
| 14 | 862.5012   | 27.822169 | 109.67658 | 1000 | 391.3298  | 1965262 |
| 15 | 853.4364   | 29.456754 | 117.10688 | 1000 | 365.9422  | 1843299 |
| 16 | 844.4667   | 31.048781 | 124.48447 | 1000 | 342.1990  | 1728844 |
| 17 | 835.5914   | 32.599031 | 131.80957 | 1000 | 319.9938  | 1621440 |
| 18 | 826.8093   | 34.108274 | 139.08239 | 1000 | 299.2272  | 1520655 |
| 19 | 818.1196   | 35.577266 | 146.30317 | 1000 | 279.8062  | 1426086 |
| 20 | 809.5211   | 37.006751 | 153.47212 | 1000 | 261.6436  | 1337354 |

Table 12: Interruption scenario with QALY and cost

| i  | nodiabetes | diabetes  | death     | sum  | d.qaly    | d.cost  |
|----|------------|-----------|-----------|------|-----------|---------|
| 0  | 1000.0000  | 0.000000  | 0.00000   | 1000 | 1000.0000 | 4800000 |
| 1  | 989.4594   | 2.320000  | 8.22055   | 1000 | 935.2033  | 4506813 |
| 2  | 979.0300   | 4.584915  | 16.38508  | 1000 | 874.5977  | 4231325 |
| 3  | 968.7105   | 6.795730  | 24.49378  | 1000 | 817.9127  | 3972483 |
| 4  | 958.4997   | 8.953414  | 32.54684  | 1000 | 764.8951  | 3729296 |
| 5  | 948.3966   | 11.058922 | 40.54445  | 1000 | 715.3082  | 3500830 |
| 6  | 938.4000   | 13.113191 | 48.48680  | 1000 | 668.9304  | 3286207 |
| 7  | 928.5088   | 15.117145 | 56.37410  | 1000 | 625.5544  | 3084599 |
| 8  | 918.7218   | 17.071694 | 64.20654  | 1000 | 584.9862  | 2895228 |
| 9  | 909.0379   | 18.977731 | 71.98434  | 1000 | 547.0445  | 2717361 |
| 10 | 899.4562   | 20.836136 | 79.70769  | 1000 | 511.5595  | 2550309 |
| 11 | 889.9754   | 22.647775 | 87.37681  | 1000 | 478.3724  | 2393422 |
| 12 | 880.5946   | 24.413499 | 94.99192  | 1000 | 447.3347  | 2246089 |
| 13 | 871.3126   | 26.134147 | 102.55322 | 1000 | 418.3075  | 2107736 |
| 14 | 862.1285   | 27.810544 | 110.06094 | 1000 | 391.1608  | 1977822 |
| 15 | 853.0412   | 29.443499 | 117.51530 | 1000 | 365.7729  | 1855839 |
| 16 | 844.0497   | 31.033812 | 124.91651 | 1000 | 342.0301  | 1741308 |
| 17 | 835.1529   | 32.582268 | 132.26480 | 1000 | 319.8260  | 1633779 |
| 18 | 826.3500   | 34.089639 | 139.56040 | 1000 | 299.0611  | 1532829 |
| 19 | 817.6398   | 35.556686 | 146.80353 | 1000 | 279.6421  | 1438061 |
| 20 | 809.0214   | 36.984155 | 153.99444 | 1000 | 261.4822  | 1349099 |

#### Reference

spending.htm.

AmericanDiabetesAssociation. 2018. "2018-Cost-of-Diabetes." http://www.diabetes.org/assets/img/advocacy/20 cost-of-diabetes.jpg.

eia. 2018. "Puerto Rico Profile." https://www.eia.gov/state/print.php?sid=RQ.

Hoogendoorn, Martine, Talitha L. Feenstra, Yumi Asukai, Sixten Borg, Ryan N. Hansen, Sven-Arne Jansson, Yevgeniy Samyshkin, et al. 2014. "Cost-Effectiveness Models for Chronic Obstructive Pulmonary Disease: Cross-Model Comparison of Hypothetical Treatment Scenarios." *Value in Health* 17 (5): 525–36. doi:10.1016/j.jval.2014.03.1721.

Jansson, Stefan P. O., Dan K. G. Andersson, and Kurt Svärdsudd. 2010. "Mortality Trends in Subjects with and Without Diabetes During 33 Years of Follow-up." *Diabetes Care* 33 (3): 551–56. doi:10.2337/dc09-0680.

Joslin. 2018. "Genetics and Diabetes: Are You at Risk?" http://www.joslin.org/info/genetics\_and\_diabetes.html

Lin, Shao, Barbara A. Fletcher, Ming Luo, Robert Chinery, and Syni-An Hwang. 2011. "Health Impact in New York City During the Northeastern Blackout of 2003." *Public Health Reports* 126 (3): 384–93.

Michaud, Josh. 2017. "Public Health in Puerto Rico After Hurricane Maria." The Henry J. Kaiser Family Foundation.

Morgenstern, Paula, Maria Li, Rokia Raslan, Paul Ruyssevelt, and Andrew Wright. 2016. "Benchmarking Acute Hospitals: Composite Electricity Targets Based on Departmental Consumption Intensities?" *Energy and Buildings* 118 (April): 277–90. doi:10.1016/j.enbuild.2016.02.052.

"Number of Diabetes Deaths Per 100,000 Population." 2018. The Henry J. Kaiser Family Foundation.

OECD. 2018. "Health Resources - Health Spending - OECD Data." the OECD. http://data.oecd.org/healthres/heal

PowerScout. 2018. "Common Solar Panel Sizes and Why It Can Matter." PowerScout.

Robles, Frances, Kenan Davis, Sheri Fink, and Sarah Almukhtar. 2017. "Official Toll in Puerto Rico: 64. Actual Deaths May Be 1,052." The New York Times, December.

Vella, Heidi. 2016. "Solar Array Maintenance: Why Are Costs Falling? - Power Technology." https://www.power-technology.com/features/featuresolar-array-maintenance-why-are-costs-falling-4872202/.

Zhang, Ping, Morton B. Brown, Dori Bilik, Ronald T. Ackermann, Rui Li, and William H. Herman. 2012. "Health Utility Scores for People with Type 2 Diabetes in U.S. Managed Care Health Plans." *Diabetes Care* 35 (11): 2250–6. doi:10.2337/dc11-2478.

Zhong, Yue, Pei-Jung Lin, Joshua T. Cohen, Aaron N. Winn, and Peter J. Neumann. 2015. "Cost-Utility Analyses in Diabetes: A Systematic Review and Implications from Real-World Evidence." *Value in Health* 18 (2): 308–14. doi:10.1016/j.jval.2014.12.004.