CC3301 - Arquitectura de Computadores Auxiliar 1

Profesor: Luis Mateu Auxiliar: José Astorga

7 de Agosto de 2019

1. Conversor BCD a Display de 7 Segmentos

1.1. Tabla de Verdad

n	x3	x2	x1	x0	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
-	1	0	1	0	X	X	X	X	X	X	X
-	1	0	1	1	X	X	X	X	X	X	X
-	1	1	0	0	X	X	X	X	X	X	X
-	1	1	0	1	X	X	X	X	X	X	X
-	1	1	1	0	X	X	X	X	X	X	X
-	1	1	1	1	X	X	X	X	X	X	X

1.2. Mapas de Karnaugh

Segmento a

$$f_a = x_3 \vee \underline{x_1} \vee x_2 x_0 \vee \neg x_2 \neg x_0$$

Segmento b

$$f_b = \underline{\neg x_2} \vee \underline{\neg x_1} \neg x_0 \vee x_1 x_0$$

Segmento c

$$f_c = \underline{\neg x_1} \vee \underline{x_0} \vee \underline{x_2}$$

Segmento d

$$f_d = x_3 \lor x_1 \neg x_0 \lor \neg x_2 x_1 \lor \neg x_2 \neg x_0 \lor x_2 \neg x_1 x_0$$

Segmento e

x_1x_0 00 01 11 10 00 0 0 1 01 0 0 0 x_3x_2 X11 XXX10 X 0 X

$$f_e = \underline{\neg x_2 \neg x_0} \lor \underline{x_1 \neg x_0}$$

Segmento f

$$f_f = x_2 \neg x_1 \lor \neg x_1 \neg x_0 \lor x_3 \lor x_2 \neg x_0$$

Segmento g

$$f_g = \underline{x_2 \neg x_1} \lor \underline{x_3 \neg x_2} \lor \underline{x_1 \neg x_0} \lor \underline{\neg x_2 x_1}$$

En el archivo P1.circ encontrará la solución realizada en Logisim para esta pregunta.

2. Mapas de Karnaugh

xy/zwv	000	001	011	010	110	111	101	100
00	0	0	0	0	0	0	0	0
01	0	1	0	0	0	0	1	0
11	0	0	0	1	1	1	1	0
10	0	0	0	1	1	1	1	0

$$f = \underline{xw \neg v} \vee \underline{xzv} \vee \neg xy \neg wv$$

3. P2.B control 1 año 2005 (Propuesto)

$$f = \underline{(x \vee \neg y \vee w)} \wedge \underline{(\neg y \vee \neg z)}$$