НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

- 1. Первообразная, ее общий вид и существование, определение неопределенного интеграла
- 2. Основные свойства неопределенного интеграла
- 3. Таблица простейших интегралов
- 4. Замена переменной в неопределенном интеграле
- 5. Интегрирование по частям в неопределенном интеграле
- 6. Интегрирование рациональных функций
- 7. Метод рационализации: интегрирование функций, рационально зависящих от тригонометрических
- 8. Метод рационализации: интегрирование простейших иррациональностей
- 9. Понятие о неберущихся интегралах

1. Первообразная, ее общий вид и существование, определение неопределенного интеграла

Функция F(x) называется **первообразной** для функции f(x) на интервале (a,b), если

$$F'(x) = f(x), x \in (a,b).$$

Пример 1. Первообразной для функции $f(x) = 2x^3$ на всей числовой оси является $F(x) = \frac{1}{2}x^4$, так как $\left(\frac{1}{2}x^4\right)' = 2x^3$. Первообразной является и функция вида $\frac{1}{2}x^4 + C$, где C— произвольная, но фиксированная постоянная.

Пример 2. Первообразной для функции $f(x) = 1/(1+x^2)$ на промежутке $(-\infty; +\infty)$ является произвольная функция вида $F(x) = \arctan(x+C)$, где C = const, так как $(\arctan(x+C)' = 1/(1+x^2))$. Отметим, что первообразной является и функция вида $-\arctan(x+C)$, где $C_1 = const$.

Таким образом, первообразных у данной функции бесчисленное множество, так как постоянная величина C может принимать любые значения.

Общий вид первообразных. Если F(x) – первообразная для функции f(x) на интервале (a,b), то выражение

$$F(x) + C$$
,

где C = const — произвольная постоянная, описывает общий вид (любую первообразную) для функции f(x) на (a,b).

Таким образом, две различные первообразные для одной и той же функции на одном и том же промежутке могут отличаться только на постоянное слагаемое.

Теорема о существовании первообразной. Если функция y = f(x) непрерывна на данном интервале, то на этом интервале она имеет первообразную.

Определение. Общий вид первообразных для данной функции y = f(x) (на интервале (a,b)) будем называть **неопределенным интегралом** от этой функции (на интервале (a,b)) и обозначать $\int f(x)dx$.

Таким образом,

$$\int f(x)dx = F(x) + C \mid x \in (a,b),$$

где F(x)— произвольная (фиксированная) первообразная для f(x), C — произвольная постоянная.

Операция нахождения неопределенного интеграла для данной функции называется интегрированием этой функции, сама функция f(x) называется подынтегральной функцией, f(x)dx — подынтегральным выражением, x — переменной интегрирования. Интегрирование — операция (с точностью до постоянной), обратная операции дифференцирования. Правильность интегрирования всегда можно проверить дифференцированием.

Найти неопределенный интеграл от функции — это значит найти общий вид первообразных от нее; если неопределенный интеграл для данной функции существует, то такая функция называется **интегрируемой** (на данном интервале).

График первообразной y = F(x) от функции f(x) называется **интегральной кривой** уравнения y' = f(x).

2. Основные свойства неопределенного интеграла

1. Дифференцирование обратно интегрированию:

$$\left(\int f(x)dx\right)' = f(x), \quad d\int f(x)dx = f(x)dx.$$

Производная и дифференциал неопределенного интеграла равны соответственно подынтегральной функции и подынтегральному выражению.

2. Интегрирование (с точностью до постоянной) обратно дифференцированию:

$$\int f'(x)dx = f(x) + C, \int dF(x) = F(x) + C.$$

Неопределенный интеграл от производной некоторой функции равен сумме этой функции и произвольной постоянной; интеграл от дифференциала dF(x) дает F(x) + C.

Отметим, что символы интеграла \int и дифференциала d, применяемые последовательно, взаимно уничтожают друг друга (без учета произвольной постоянной).

3. Важнейшим свойством неопределенного интеграла является его *линейность*:

1) $\int \alpha f(x) dx = \alpha \int f(x) dx$,	Постоянный множитель	
где $\alpha = const$.	можно выносить за знак не-	
i de a const.	определенного интеграла.	
2) $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$	Неопределенный интеграл	
	от суммы (разности) инте-	
	грируемых функций равен	
	сумме (разности) интегралов	
	этих функций.	

4. Свойство **инвариантности** формул интегрирования. Всякая формула интегрирования сохраняет свой вид при замене независимой переменной любой дифференцируемой функцией от нее, т.е.

$$\int f(x)dx = F(x) + C \Rightarrow \int f(u)du = \int f(u(x))u'(x)dx = F(u(x)) + C ,$$
 где $u = u(x)$ — любая непрерывно дифференцируемая функция от x , в частности,

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C, \text{ где } a \neq 0.$$

3. Таблица простейших интегралов

Пусть u = u(x) — дифференцируемая функция независимой переменной x. Тогда

$1. \int 0 \cdot du = C;$	
$2. \int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C, \text{ где } \alpha \neq -1;$	2a. $\int 1 \cdot du = u + C;$ 26. $\int \frac{1}{\sqrt{u}} du = 2\sqrt{u} + C;$
	2B. $\int \frac{1}{u^2} du = -\frac{1}{u} + C$;
$3. \int \frac{1}{u} du = \ln u + C;$	
$4. \int a^u du = \frac{a^u}{\ln a} + C;$	$4a. \int e^u du = e^u + C;$
$5. \int \sin u du = -\cos u + C;$	
$6. \int \cos u du = \sin u + C;$	
$7. \int \frac{1}{\cos^2 u} du = \operatorname{tg} u + C;$	
$8. \int \frac{1}{\sin^2 u} du = -\operatorname{ctg} u + C;$	
9. $\int \frac{1}{u^2 + a^2} du = \begin{cases} \frac{1}{a} \operatorname{arctg} \frac{u}{a} + C \\ -\frac{1}{a} \operatorname{arcctg} \frac{u}{a} + C_1 \end{cases}$;	9a. $\int \frac{1}{1+u^2} du = \arctan u + C =$ $= -\arctan u + C_1$
$10. \int \frac{1}{\sqrt{a^2 - u^2}} du = \begin{cases} \arcsin \frac{u}{a} + C \\ -\arccos \frac{u}{a} + C \end{cases};$	10a. $\int \frac{1}{\sqrt{1-u^2}} du = \arcsin u + C =$ $= -\arccos u + C_1$
11. $\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left \frac{u - a}{u + a} \right + C;$	11a. $\int \frac{du}{u^2 - 1} = \frac{1}{2} \ln \left \frac{u - 1}{u + 1} \right + C;$
$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left \frac{a + u}{a - u} \right + C;$	$\int \frac{du}{1-u^2} = \frac{1}{2} \ln \left \frac{1+u}{1-u} \right + C;$
12. $\int \frac{du}{\sqrt{u^2 \pm a}} = \ln \left u + \sqrt{u^2 \pm a} \right + C.$	

Пример. Найти неопределенный интеграл с помощью таблицы интегралов:

$$\int \frac{dx}{5x^2 + 1} = \int \frac{dx}{5\left(x^2 + \frac{1}{5}\right)} = \frac{1}{5} \int \frac{dx}{x^2 + \frac{1}{5}} = \frac{1}{5} \int \frac{dx}{x^2 + \left(\sqrt{\frac{1}{5}}\right)^2} = \frac{1}{5} \frac{1}{\frac{1}{\sqrt{5}}} \arctan \frac{x}{\sqrt{5}} + C = \frac{1}{5} \frac{1}{\sqrt{5}} + \frac{1}{5} \frac{1}{\sqrt{5$$

$$= \frac{\sqrt{5}}{5} \arctan \sqrt{5}x + C.$$

Интегрирование, в отличие от дифференцирования с его установленными формальными правилами, в большей степени требует индивидуального подхода к интегрированию рассматриваемой функции.

Нахождение интегралов с помощью тождественных преобразований подынтегрального выражения с использованием основных свойств и таблицы неопределенных интегралов называется *непосредственным интегрированием*.

Если функции $f_1(x), ..., f_n(x)$ интегрируемы в некотором промежутке, то функция $f(x) = f_1(x) \pm ... \pm f_n(x)$ также интегрируема в том же промежутке, причем

$$\int (f_1(x) \pm \ldots \pm f_n(x)) dx = \int f_1(x) dx \pm \ldots \pm \int f_n(x) dx.$$

Замечание. При этом при нахождении интеграла от суммы произвольная постоянная записывается не каждый раз, а лишь один раз, когда исчезает знак последнего интеграла в сумме.

Если числитель подынтегральной функции является производной знаменателя, то интеграл равен логарифму абсолютной величины знаменателя.

$$\int \frac{f'(x)}{f(x)} dx = \int \frac{df(x)}{f(x)} = \int \frac{du}{u} = \ln|u| + C = \ln|f(x)| + C.$$

4. Замена переменной в неопределенном интеграле

Метод замены переменной состоит в преобразовании интеграла $\int f(x)dx$ в другой интеграл $\int g(u)du$, метод интегрирования которого известен, с последующим возращением к исходной переменной.

Существуют две разновидности замены переменной в неопределенном интеграле: вынесение (и внесение) множителя из под знака (под знак) дифференциала.

Правило 1: вынесение множителя из под знака дифференциала (интегрирование подстановкой). Если $x = \varphi(t)$ — монотонная, непрерывно дифференцируемая функция новой переменной t, то

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Правило 2: внесение множителя под знак дифференциала (подведением под знак дифференциала) по формуле

$$\int f(u(x))u'(x)dx = \int f(t)dt$$

После вычисления первообразной, делается обратная подстановка. Этот тип замены переменной по существу повторяет свойство инвариантности формул интегрирования.

Формулы наиболее часто встречающихся дифференциалов

$1. dx = \frac{1}{a}d(ax+b) = \frac{1}{a}d(ax).$	2. $xdx = \frac{1}{2}d(x^2) = \frac{1}{2a}d(ax^2 + b)$.
$3. \frac{1}{x}dx = d(\ln x) = \frac{1}{a}d(a\ln x + b).$	4. $\frac{dx}{\sqrt{x}} = 2d\left(\sqrt{x}\right) = \frac{2}{a}d\left(a\sqrt{x} + b\right).$
$\int \frac{1}{x^2} dx = -d\left(\frac{1}{x}\right).$	$6. e^x dx = d(e^x) = \frac{1}{a}d(ae^x + b).$
$7. \cos x dx = d(\sin x) =$	$8. \sin x dx = -d(\cos x) =$
$=\frac{1}{a}d(a\sin x+b).$	$= -\frac{1}{a}d(a\cos x + b).$
$9. \frac{dx}{\cos^2 x} = d(\operatorname{tg} x).$	$10. \frac{dx}{\sin^2 x} = -d(\operatorname{ctg} x).$
11.	12.
$\frac{dx}{1+x^2} = d\left(\arctan x\right) = -d\left(\arctan x\right).$	$\frac{dx}{\sqrt{1-x^2}} = d\left(\arcsin x\right) = -d\left(\arccos x\right)$

5. Интегрирование по частям в неопределенном интеграле

Метод интегрирования по частям основывается на формуле дифференцирования произведения двух функций.

Формула

$$\int u \, dv = u \, v - \int v \, du$$

называется формулой интегрирования по частям в неопределенном интеграле.

Метод интегрирования по частям удобно применять для вычисления интегралов следующих стандартных типов:

- 1) $\int P_n(x)e^{mx}dx$, $\int P_n(x)a^{mx}dx$, $\int P_n(x)\cos(mx)dx$ $\int P_n(x)\sin(mx)dx$, где $m \in R$, $P_n(x)$ многочлен степени n относительно переменной x (в качестве u берем многочлен $u = P_n(x)$);
- 2) $\int P_n(x) \ln(mx) dx$, $\int P_n(x) \arccos(mx) dx$, $\int P_n(x) \arcsin(mx) dx$, $\int P_n(x) \arctan(mx) dx$, $\int P_n(x) \arctan(mx) dx$, $\int P_n(x) \arctan(mx) dx$ (здесь $dv = P_n(x) dx$);
- 3) $\int e^{mx} \cos(\alpha x) dx$, $\int e^{mx} \sin(\alpha x) dx$, где $\alpha \in R$ (дважды интегрируем по частям, полагая $u = e^{mx}$; повторное интегрирование по частям приводит к линейному уравнению, содержащему исходный интеграл, решая которое, находим исходный интеграл).

Замечание. Иногда для получения результата нужно последовательно несколько раз применить интегрирование по частям.

6. Интегрирование рациональных функций

Рациональной функцией (или дробно-рациональной функцией, или рациональной дробью) называется выражение вида $\frac{P_n(x)}{Q_m(x)}$, где $P_n(x)$ и $Q_m(x)$ – многочлены степеней соответственно n и m относительно переменной x .

Рациональная дробь $\frac{P_n(x)}{Q_m(x)}$ называется *правильной*, если степень числителя строго меньше степени знаменателя, т.е. n < m. В противном случае $(n \ge m)$ дробь называется *неправильной*.

Простейшими рациональными дробями называются правильные дроби следующих четырех типов:

I.
$$\frac{A}{x-a}$$
; II. $\frac{A}{(x-a)^k}$, $(k = 2,3,...)$; IV. $\frac{Ax+B}{x^2+px+q}$, $(p^2-4q<0)$; IV. $\frac{Ax+B}{(x^2+px+q)^k}$, $(p^2-4q<0)$, $k = 2,3,...$);

A, B, a, p, q — действительные числа; кроме того, по отношению к дробям вида III и IV предполагается, что трехчлен x^2+px+q не имеет вещественных корней, так что $p^2-4q<0$.

Рациональные дроби I и II типов интегрируются непосредственно с помощью основных правил и таблицы интегралов.

Интеграл от простейшей дроби III типа вычисляется приведением знаменателя к сумме квадратов:

$$x^2 + px + q = \left(x + \frac{p}{2}\right)^2 - \frac{p^2 - 4q}{4} = \left(x + \frac{p}{2}\right)^2 + \frac{4q - p^2}{4}$$
 и последующей заменой $x + \frac{p}{2} = t$.

Интеграл от простейшей дроби IV типа можно найти методом интегрирования по частям с помощью рекуррентных соотношений, понижающих степень в знаменателе дроби или с помощью справочных таблиц неопределенных интегралов.

Всякая неправильная рациональная дробь $\frac{P_n(x)}{Q_m(x)}$ с помощью деления числителя на знаменатель по правилам деления многочленов приводится к виду $\frac{P_n(x)}{Q_m(x)} = L_{n-m}(x) + \frac{R_k(x)}{Q_m(x)}$, где $L_{n-m}(x)$ — многочлен — целая часть дроби $\frac{P_n(x)}{Q_m(x)}$, $R_k(x)$ — остаток при делении, при этом $\frac{R_k(x)}{Q_m(x)}$ — правильная дробь (k < m).

В результате интегрирование неправильной рациональной дроби сводится к интегрированию многочлена $L_{n-m}(x)$ и правильной дроби $\frac{R_k(x)}{Q_m(x)}$.

Теорема. Пусть $\frac{P_n(x)}{Q_m(x)}$ — правильная рациональная дробь (n < m), где, не ограничивая общности, считаем, что коэффициент при старшей степени x в многочлене $Q_m(x)$ равен 1. Пусть далее

$$Q_m(x) = (x-a)^{\alpha} ... (x-b)^{\beta} (x^2 + px + q)^{\gamma} ... (x^2 + rx + s)^{\delta}$$

разложение многочлена $Q_m(x)$ на произведение неприводимых (над множеством R действительных чисел) множителей, где a,...,b — действительные корни $Q_m(x)$, $x^2 + px + q,...,x^2 + rx + s$ — квадратные трехчлены, не имеющие действительных корней. Тогда имеет место следующее *теоретическое разложение* (с неопределенными коэффициентами) правильной рациональной функции в сумму простейших рациональных дробей:

$$\frac{P_{n}(x)}{Q_{m}(x)} = \frac{A_{1}}{x-a} + \frac{A_{2}}{(x-a)^{2}} + \dots + \frac{A_{\alpha}}{(x-a)^{\alpha}} + \frac{B_{1}}{x-b} + \frac{B_{2}}{(x-b)^{2}} + \dots + \frac{B_{\beta}}{(x-b)^{\beta}} + \frac{M_{1}x + N_{1}}{x^{2} + px + q} + \frac{M_{2}x + N_{2}}{(x^{2} + px + q)^{2}} + \dots + \frac{M_{\gamma}x + N_{\gamma}}{(x^{2} + px + q)^{\gamma}} + \dots + \frac{K_{1}x + L_{1}}{x^{2} + rx + s} + \dots + \frac{K_{\delta}x + L_{\delta}}{(x^{2} + rx + s)^{\delta}},$$
(1)

где A_1 , A_2 ,..., A_{α} , B_1 , B_2 ,..., B_{β} , M_1 , N_1 , M_2 , N_2 ,..., M_{γ} , N_{γ} , K_1 , L_1 ,..., K_{δ} , L_{δ} — некоторые действительные числа— неизвестные коэффициенты, подлежащие определению.

Из формулы (1) следует, что линейным множителям знаменателя $Q_m(x)$ соответствуют простейшие дроби I и II типов, а квадратным множителям — III и IV типов, при этом число простейших дробей, соответствующих данному множителю, равно степени, с которой этот множитель входит в разложение знаменателя дроби.

Например, правильная дробь $\frac{x+7}{x^2(x+2)(x^2+7x+16)}$ предста-

вима в виде суммы четырех простейших дробей:

$$\frac{x+7}{x^2(x+2)(x^2+7x+16)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2} + \frac{Dx+E}{x^2+7x+16}.$$

Для нахождения неопределенных коэффициентов A_1 , A_2 ,..., L_δ в равенстве (1) можно применить **метод неопределенных коэффициентов** (**метод сравнения коэффициентов**). Суть метода:

1. В правой части равенства (1) приведем к общему знаменателю $Q_m(x)$, в результате получим тождество $\frac{P_n(x)}{Q_m(x)} = \frac{S(x)}{Q_m(x)}$, где S(x)—многочлен с неопределенными коэффициентами.

2. Так как в полученном тождестве знаменатели равны, то равны (тождественно) и числители:

$$P_n(x) \equiv S(x) \,. \tag{2}$$

3. Приравнивая коэффициенты при одинаковых степенях x в обеих частях тождества (2), получим систему линейных алгебраических уравнений, из которой определяются искомые коэффициенты $A_1, A_2, \ldots, L_{\delta}$.

Для нахождения неопределенных коэффициентов A_1 , A_2 ,..., L_δ в равенстве (1) применяют также *метод частных значений* аргу-

мента: после получения тождества (2) аргументу x придают конкретные значения столько раз, сколько неопределенных коэффициентов (обычно полагают вместо x значения действительных корней многочлена $Q_m(x)$).

Формула (1) справедлива для любого конечного числа линейных и квадратичных множителей, входящих в разложение знаменателя правильной дроби, и называется разложением правильной рациональной дроби $\frac{P_n(x)}{Q_m(x)}$ на сумму простейших дробей с вещественными коэффициентами.

Схема разложения правильной рациональной дроби на простейшие. Метод неопределенных коэффициентов

·	
Этапы	Пример для дроби $\frac{x^2+1}{(x-1)^2(x^2+2x+3)}$
1. Знаменатель уже разложен на мно- жители, поэтому запишем теорети- ческое разложение дроби на простей- шие	$\frac{x^2+1}{(x-1)^2(x^2+2x+3)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+2x+3}$
2. Правую часть получившегося равенства приведем к общему знаменателю	$\frac{x^2+1}{(x-1)^2(x^2+2x+3)} = \frac{A(x-1)(x^2+2x+3)}{(x-1)^2(x^2+2x+3)} + \frac{B(x^2+2x+3)+(Cx+D)(x-1)^2}{(x-1)^2(x^2+2x+3)}$
3. Приравняем числители получившихся дробей с одинаковыми знаменателями, раскроем скобки и приведем подобные члены	$x^{2} + 1 = A(x-1)(x^{2} + 2x + 3) + B(x^{2} + 2x + 3) +$ $+ (Cx + D)(x-1)^{2}$ $x^{2} + 1 = A(x^{3} + x^{2} + x - 3) + B(x^{2} + 2x + 3) +$ $+ C(x^{3} - 2x^{2} + x) + D(x^{2} - 2x + 1)$

4. Приравнивая ко-
эффициенты при
одинаковых степе-
нях
$$x$$
, получаем
систему уравнений
для нахождения
неопределенных
коэффициентов
 A, B, C, D . Реша-
ем эту систему x^3
 x^2
 x^2
 x^3
 x^2
 x^2
 x^2
 x^3
 x^2
 x^2
 x^3
 x^2
 x^2
 x^3
 x^2
 x^2
 x^3
 x^2
 x^3
 x^2
 x^3
 x^2
 x^3
 x^3
 x^3
 x^2
 x^3
 x^4
 x^4

Метод частных значений

Этапы	Пример для дроби $\frac{x^2 + x - 1}{x^3 - x^2 - 2x}$
ложение этои правильной дроби на простейшие 3. Правую часть получившегося ра-	$\frac{x^{3} - x^{2} - 2x = x(x^{2} - x - 2) = x(x - 2)(x + 1)}{\frac{x^{2} + x - 1}{x^{3} - x^{2} - 2x}} = \frac{x^{2} + x - 1}{x(x - 2)(x + 1)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x + 1}$ $\frac{x^{2} + x - 1}{x^{3} - x^{2} - 2x} = \frac{x^{2} + x - 1}{x^{3} - x^{2} - 2x} =$
венства приведем к общему знаменателю 4. Приравняем числители получивщихся дробей	$= \frac{A(x-2)(x+1) + Bx(x+1) + Cx(x-2)}{x(x-2)(x+1)}$ $x^2 + x - 1 = A(x-2)(x+1) + Bx(x+1) + Cx(x-2)$

5. Для определения коэффициентов
$$A, B, C$$
 придаем неизвестной x частные значения, например значения, совпадающие c действительными корнями знаменателя дроби

6. Запишем разложение данной дроби на простейшие $\frac{x^2 + x - 1}{x^3 - x^2 - 2x} = \frac{1/2}{x} + \frac{5/6}{x - 2} - \frac{1/3}{x + 1}$.

Алгоритм интегрирования рациональной функции

- 1. Представляем рациональную функцию в виде суммы многочлена и правильной рациональной функции (если она неправильная). Для этого числитель делим на знаменатель (например, «уголком»).
- 2. Раскладываем знаменатель полученной правильной рациональной функции на неприводимые множители (линейные и квадратичные, не имеющие действительных корней).
- 3. Записываем теоретическое разложение полученной правильной рациональной функции на простейшие.
 - 4. Находим неопределенные коэффициенты.
- 5. Интегрируем рациональную функцию, представленную в виде суммы многочлена и простейших рациональных функций по стандартным правилам интегрирования.

7. Метод рационализации: интегрирование функций, рационально зависящих от тригонометрических

Рациональной функцией R(u,v) овух переменных u и v называется отношение $\frac{P(u,v)}{Q(u,v)}$ многочленов P(u,v) и Q(u,v) двух переменных u и v.

Согласно методу рационализации, ищется подходящая замена переменных, которая приводит рассматриваемый интеграл к интегралу от рациональных функций. О таких заменах говорят, что они *ра*-

ционализируют интеграл.

Интегралы вида $\int R(\sin x, \cos x) dx$ рационализуются с помощью универсальной тригонометрической подстановки

$$u = tg\frac{x}{2}.$$
Тогда
$$\sin x = \frac{2u}{1+u^2}, \cos x = \frac{1-u^2}{1+u^2}, dx = \frac{2du}{1+u^2}.$$

Указанный прием целесообразно использовать для нахождения интегралов вида $\int \frac{dx}{a\cos x + b\sin x + c}$.

Замечание. Метод интегрирования функций $R(\sin x,\cos x)$ с помощью универсальной тригонометрической подстановки $u=\operatorname{tg}\frac{x}{2}$ всегда приводит к интегрированию рациональной функции, но именно в силу своей общности он часто является не наилучшим. На практике применяют и другие, более эффективные в конкретных случаях подстановки.

Частные тригонометрические подстановки

Условие на подынтегральную функцию	Подстановка
$R(\sin x, \cos x)$	
функция $R(\sin x,\cos x)$ нечетна относительна $\sin x$,	
T.e. $R(-u, v) = -R(u, v)$	$\cos x = t$
интеграл имеет вид $\int \sin^m x \cos^n x dx$, где m — нечет-	
ное целое положительное число	
функция $R(\sin x,\cos x)$ нечетна относительна $\cos x$,	$\sin x = t$
T.e. $R(u,-v) = -R(u,v)$	
интеграл имеет вид $\int \sin^m x \cos^n x dx$, где n — нечет-	
ное целое положительное число	
функция $R(\sin x,\cos x)$ удовлетворяет свойству	
R(-u,-v) = R(u,v)	tgx = t
интеграл имеет вид $\int R(\operatorname{tg} x)dx$	

При нахождении интегралов вида $\int \sin^m x \cos^n x dx$, где m и n –

четные целые положительные числа используют формулы понижения степени:

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x), \quad \cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin x \cos x = \frac{1}{2}\sin 2x.$$

При нахождении интегралов $\int \sin(kx)\cos(lx)dx$, $\int \cos(kx)\cos(lx)dx$, $\int \sin(kx)\sin(lx)dx$ используют формулы преобразования произведения тригонометрических функций в сумму

$$\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta)),$$

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta)),$$

$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)).$$

8. Метод рационализации: интегрирование простейших иррациональностей

Интегралы вида $\int R(x, \sqrt[\alpha]{(ax+b)^{\kappa}}, ..., \sqrt[\gamma]{(ax+b)^{p}}) dx$ рационализируются подстановкой

$$ax + b = t^s$$

где s — наименьшее общее кратное всех знаменателей дробей $\frac{k}{\alpha},...,\frac{p}{\gamma}$. Тогда все показатели степени t станут целыми и подынтегральное выражение будет рациональной функцией от t.

Мы познакомились с некоторыми стандартными приемами нахождения неопределенных интегралов. Интегрирование чаще всего может быть выполнено не единственным способом. Владение искусством интегрирования заключается не только в знании методов интегрирования, но и в большей степени в «видении» различных подходов к интегрированию той или иной функции, что обычно приходит с опытом, после рассмотрения многих примеров.

9. Понятие о неберущихся интегралах

Как вытекает из алгоритма интегрирования рациональной функции, интеграл от всякой рациональной функции является функцией элементарной. Элементарными функциями будут и интегралы, полученные методом рационализации. Существуют однако элементарные функции, интегралы от которых элементарными функциями не являются. Такие интегралы принято называть *неберущимися*. В качестве примеров неберущихся интегралов можно привести следующие интегралы:

$$\int e^{-x^2} dx; \int \sin x^2 dx;$$

$$\int \frac{\sin x}{x} dx = six$$
—интегральный синус;
$$\int \frac{\cos x}{x} dx = cix$$
—интегральный косинус.