Soluções: Formulação de IPs.

Questão 1 (Investimentos)

Sejam $x_i \in \mathbb{B}$, $i \in P = [7]$ variáveis booleanas, que determinem em quais projetos a empresa vai investir. Seja l_i o lucro do projeto i.

$$\begin{array}{ll} \mathbf{maximiza} & \sum_{i \in P} l_i x_i \\ \mathbf{sujeito} \ \mathbf{a} & \sum_{i \in P} x_i \leq 6, \\ & \sum_{i \in P} x_i \geq 1, \\ & \sum_{i \in$$

Questão 2 (Formulação de Programas Inteiros)

Cobertura por arcos

minimiza
$$\sum_{e \in E} c_e x_e$$
 sujeito a
$$\sum_{u \in N(v)} x_{uv} \ge 1, \qquad \forall v \in V,$$

$$x_e \in \mathbb{B}.$$

Conjunto dominante de arcos

Coloração de grafos Seja n = |V|; uma coloração nunca precisa mais que n cores.

minimiza
$$\sum_{j \in [n]} c_j$$
sujeito a
$$\sum_{j \in [n]} x_{vj} = 1, \qquad \forall v \in V, \qquad (1)$$

$$x_{ui} + x_{vi} \le 1, \qquad \forall \{u, v\} \in E, i \in [n], \qquad (2)$$

$$nc_j \ge \sum_{v \in V} x_{vj}, \qquad \forall j \in [n], \qquad (3)$$

$$x_{vi}, c_j \in \mathbb{B}.$$

- Restrição (1) garante que todo vértice recebe exatamente uma cor.
- Restrição (2) garante que vértices adjacentes recebem cores diferentes.
- Restrição (3) garante que $c_j = 1$ caso cor j for usada.

Clique mínimo ponderado

minimiza
$$\sum_{v \in V} c_v x_v$$
sujeito a $x_u + x_v \le 1$, $\forall \{u, v\} \notin E$, (4) $x_v \in \mathbb{B}$.

Restrição 4 garante que não existe um par de vértices selecionados que não são vizinhos.

Subgrafo cúbico x_e indica a seleção da aresta $e \in E$, e y_v indica se o vértice $v \in V$ ele possui grau 0 (caso contrário grau 3).

$$\begin{aligned} & \mathbf{minimiza} & & \sum_{e \in E} x_e \\ & \mathbf{sujeito} \ \mathbf{a} & & \sum_{e \in N(v)} x_e = 3y_v, \\ & & & \forall v \in V, \\ & & & x_e \in \mathbb{B}, \\ & & & & \forall e \in E, \\ & & & & \forall v \in V. \end{aligned}$$

Questão 3 (Formulação Matemática)

Seja $x_{ijk} \in \mathbb{B}$ um indicador que na casa da linha i e coluna j temos o número k,

$1 \leq i,j,k \leq 5.$ Com isso temos

maximiza	$\sum_{k} kx_{11k}$		
sujeito a	$\sum_{k}^{\kappa} x_{ijk} = 1$	$\forall i,j$	Único número em cada casa
	$\sum_{i}^{k} x_{ijk} = 1$	$\forall i,k$	Digito k uma vez na linha i
	$\sum_{i}^{J} x_{ijk} = 1$	$\forall j,k$	Digito k uma vez na coluna j
	$\sum_{k}^{i} kx_{11k} \ge \sum_{k} kx_{12k} + 1$		Relação entre $(1,1)$ e $(1,2)$
	$\sum_{k}^{n} kx_{13k} \ge \sum_{k}^{n} kx_{14k} + 1$		Relação entre $(1,3)$ e $(1,4)$
	$\sum_{k}^{n} kx_{33k} \le \sum_{k}^{n} kx_{34k} - 1$		Relação entre $(3,3)$ e $(3,4)$
	$\sum_{k}^{n} kx_{51k} \le \sum_{k}^{n} kx_{52k} - 1$		Relação entre $(5,1)$ e $(5,2)$
	$\sum_{k} kx_{54k} \le \sum_{k} kx_{55k} - 1$		Relação entre $(5,4)$ e $(5,5)$
	$x_{ijk} \in \mathbb{B}$.		