19 BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift

[®] DE 42 03 460 A 1

DEUTSCHES

PATENTAMT

Aktenzeichen:

P 42 03 460.4

Anmeldetag: 7. 2.92 Offenlegungstag:

27. 8.92

(51) Int. Cl.5:

B 29 C 67/20

B 29 C 43/16 B 32 B 1/06 B 62 D 65/00 B 62 D 29/04 B 62 D 21/00

F16 S 3/00

30 Innere Priorität: 32 33 31 20.02.91 DE 41 05 302.8

(71) Anmelder:

Volkswagen AG, 3180 Wolfsburg, DE

(72) Erfinder:

Thum, Holger Michael, Dipl.-Ing., 3300 Braunschweig, DE

(S) Verfahren zum Herstellen eines trägerartigen Bauteils mit einem Leichtstoffkern

Ein insbesondere als kinetische Energie umsetzender Träger im Fahrzeugbau einsetzbares Bauteil aus einem aus Metall bestehenden Hohlkörper (3) und einem diesen verfestigenden vorgefertigten Leichtstoffkern (2) wird in der Weise hergestellt, daß zunächst der Leichtstoffkern (2) mit einem Mantel (1) aus durch Wärmezufuhr aufschäumbarem Material versehen, in den noch offenen Hohlkörper (3) eingesetzt, dann der Hohlkörper aus mehreren Profilteilen (4, 5) durch Schweißen geschlossen und schließlich die so gewonnene Anordnung einer mit Wärmezufuhr verbundenen Tauchlackierung unterzogen wird. Der Hohlkörper (3) ist mit örtlichen Vorsprüngen (8, 9) zur Halterung des mit dem Mantel (1) versehenen Kerns (2) versehen, so daß zwischen den beiden Teilen (1, 2, 3) Zwischenräume (10) verbleiben, die bei der Tauchlackierung ebenfalls von heißem Lack durchsetzt werden, wodurch der Mantel (1) aufschäumt und für eine kraftübertragende Verbindung zwischen Kern (2) und Hohlkörper (3) gesorgt wird (Figur 1).

Beschreibung

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs.

Betrachtet man den bevorzugten Einsatzfall der Erfindung, nämlich zum Herstellen eines kinetische Energie absorbierenden Trägers für ein Kraftfahrzeug, so besteht dieser aus einem metallenen Hohlkörper, der durch Schweißoperationen aus mehreren Profilteilen, beispielsweise einem U-Profil und einem Deckelprofil, 10 zusammengesetzt ist. Aus der gattungsbildenden DE-OS 22 22 557, B 62 D 29/04, ist es bekannt, zwecks Erzielung einer kontrollierten Aufnahme von kinetischer Energie durch Faltenbeulen einen als Schaumstoffkörper ausgebildeten Leichtstoffkern nach dem Auf- 15 schäumvorgang in den Hohlkörper einzusetzen. Nicht gesagt ist jedoch, wie dieser Leichtstoffkern mit dem Hohlkörper kraftübertragend verbunden wird. Auch ist dieses bekannte Verfahren offensichtlich auf Bauteile beschränkt, deren Form das Einschieben des vorgefer- 20 tigten Leichtbaukerns von einem offenen Ende des Hohlkörpers her ermöglicht, da dieser offenbar bereits vor dem Einsetzen des Kerns fertiggestellt ist. Würde man nämlich den Hohlkörper erst nach dem Einsetzen des Leichtstoffkerns durch Verschweißen der einzelnen 25 Profilteile miteinander zusammensetzen, so bestünde infolge der beim Schweißen erfolgenden Wärmezufuhr die Gefahr der Beschädigung des Kerns.

Die letztgenannte Schwierigkeit würde auch bei dem Verfahren nach der DE-OS 27 47 721, B 62 D 29/04, 30 bestehen, bei dem das Schaummaterial in einen bereits im Hohlkörper befindlichen Beutel aus Kunststoff eingebracht wird, der Klebeverbindungen mit dem Hohlträger herstellen soll. Hinzu kommt, daß dieses Verfahren insbesondere bei längeren Hohlkörpern kompliziert 35 Geeignet ist auch Blähglimmer. ist, da dann zusätzliche Maßnahmen (Druckluftfüllung) zum Aufspreizen des Beutels beim Einbringen des Schaummaterials getroffen werden müssen.

Die EP 02 47 239 A2, B 62 D 29/04, schließlich beren Leichtbauteils, insbesondere für die Fahrzeugindustrie, bei dem zunächst ein Blech mit einer vernetzten Schicht eines Polyester-, Epoxyd- oder Polyurethanlacks versehen, danach das Blech in die endgültige Form plastvorprodukt getränkten Fasermatten eingelegt werden; anschließend werden die Lagen unter Erwärmung in dem geformten Blechteil gepreßt, wobei die Duroplastvorprodukte in Duroplaste umgewandelt und ausgehärtet werden. Da die gewählten Lacke gute Haftei- 50 genschaften sowohl zum Blech als auch zu den getränkten Fasermatten besitzen, wird ein guter Halt dieser Lagen in dem Blechteil erzielt. Nicht berücksichtigt werden auch hier jedoch Schwierigkeiten, die sich dann ergeben können, wenn ein Hohlkörper aus mehreren 55 Profilteilen durch Verbindungsoperationen zusammengesetzt werden soll, die mit einer Wärmezufuhr einhergehen.

Der Erfindung liegt die Aufgabe zugrunde, ein gattungsgemäßes Verfahren zu schaffen, d. h. ein solches, 60 mit dem ein zwecks Erhöhung der Biegesteifigkeit und/ oder der Faltenbeulkraft beim Crash mit einem Leichtstoffkern versehener, durch Schweißoperationen zusammengesetzter Hohlträger geschaffen wird, bei dem einerseits Beschädigungen des Kerns beim Zusammen- 65 setzen des Hohlträgers vermieden und andererseits möglichst ohne zusätzliche Herstellschritte für eine krastübertragende Verbindung zwischen Leichtstoffkern und Hohlträger gesorgt wird.

Die erfindungsgemäße Lösung dieser Aufgabe besteht in den kennzeichnenden Merkmalen des Patentanspruchs.

Bei der Erfindung wird der Leichtstoffkern, beispielsweise ein Polyurethan- oder Aluminium-Hartschaum, also zunächst mit einem Mantel aus dem durch Wärmezufuhr aufschäumbaren Material (Popcorneffekt) versehen und in den noch nicht geschlossenen Hohlkörper eingelegt. Da durch entsprechende Formgebung von Kern und/oder Hohlkörper die Positionierung des Kerns im Hohlkörper nur durch örtliche Vorsprünge oder dergleichen erfolgt, ist die Wärmeübertragung auf den Kern bei den zum Schließen des Hohlkörpers erforderlichen Verbindungsoperation (Schweißen) minimal, so daß das Kernmaterial nicht beeinträchtigt wird. Zum anderen dienen die durch die nur örtlichen Berührungen zwischen Kern und Hohlkörper bestehenden freien Zwischenräume zwischen beiden dazu, bei der danach erfolgenden Tauchlackierung des Bauteils heißen Lack auch auf den Mantel des Kerns gelangen zu lassen, so daß dadurch das Aufschäumen des Mantels und in dessen Folge die kraftschlüssigen Verbindungen zwischen Kern und Hohlkörper bewirkt werden. Da die Tauchlackierung zum Korrosionsschutz des Hohlkörpers ohnehin erfolgt, erfordert das Aufschäumen des Materials des Kernmantels also keinen zusätzlichen Verfahrensschritt mit Energiezufuhr.

Für den Mantel lassen sich verschiedene Materialien verwenden. Geeignet ist als Ausgang ein Gemisch von Kapseln, die unterschiedliche Komponenten eines Polyurethanmaterials enthalten, die in Mischung bei Wärmezufuhr aufschäumen und härten. Die Kapselwände bestehen aus einem nicht temperaturresistenten Material.

Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens wird im Folgenden anhand der Zeichnung erläutert, deren Figuren Querschnitte durch einen im Fahrzeugbau einsetzbaren Träger zeigen, der in Längsrichschreibt ein Verfahren zur Herstellung eines lackierba- 40 tung des Fahrzeugs verläuft und bei einem Crash kinetische Energie in Verformungsarbeit durch Faltenbeulen umsetzen soll.

Fig. 1 zeigt die Verhältnisse während des Herstellverfahrens nach dem Einsetzen des mit dem aufschäumbagebracht und Lagen aus mit Wärme härtbarem Duro- 45 ren Mantel 1 versehenen Leichtstoffkerns 2 in den allgemein mit 3 bezeichneten, hier aus Eisenwerkstoff bestehenden Hohlkörper, der aus dem U-Profil 4 und dem Deckblech 5 durch Verschweißen der Flanschbereiche 6 und 7 zusammengesetzt ist. An von den Flanschbereichen 6 und 7 und damit den Schweißstellen entfernten Bereichen sind die beiden Profilteile 4 und 5 mit Sicken 8 bzw. 9 zur Bildung von Vorsprüngen versehen, die zur Positionierung des Kerns 2 vor dem Aufschäumen des Materials des Mantels 1 dienen. Durch diese nur örtlichen, von den Schweißstellen und damit den Orten der Wärmezufuhr entfernten Berührungen zwischen Hohlkörper 3 und Kernmantel 1 wird erreicht, daß das Material des Mantels 1 und verständlicherweise auch des Leichtstoffkerns 2 bei der Durchführung der Schweißoperation zum Schließen des Hohlkörpers 3 nicht beeinflußt wird. Außerdem ergeben sich zwischen dem Kern und den Innenwänden des Hohlkörpers 3 freie Zwischenräume 10, die eine Art Wärmeisolation herstellen.

Nach der Durchführung der Schweißoperationen in den Flanschbereichen 6 und 7 wird das Bauteil in der in Fig. 1 gezeigten Konfiguration einer Tauchlackierung unterzogen, bei der heißer Lack auch in die Zwischenräume 10 eindringt und Wärme in das Material des

Kernmantels 1 überträgt. Das bedeutet, daß dieses Material aufschäumt und der Mantel 1 nunmehr die Zwischenräume 10 erfüllt. Auch zwischen dem Kern 2 und den Sicken bzw. Vorsprüngen 8 und 9 im Hohlkörper 3 liegt eine dünnere Schicht aus dem Mantelmaterial vor.

Mit der Erfindung ist demgemäß ein gattungsgemäßes Verfahren geschaffen, das mit einfachen Mitteln Beschädigungen des Leichtbaukerns beim Zusammenfügen des — demgemäß auch mit komplizierter Form herstellbaren — Hohlkörpers vermeidet und eine kraftübertragende Verbindung zwischen Kern und Hohlkörper sicherstellt.

Patentanspruch

Verfahren zum Herstellen eines Bauteils nach Art eines Trägers, das in einem metallenen Hohlkörper, der durch mit Wärmezufuhr erfolgende Verbindungsoperationen aus Profilteilen zusammengesetzt ist, einen Leichtstoffkern zur Festigkeitserhö- 20 hung enthält, dadurch gekennzeichnet, daß der Leichtstoffkern (2) mit einem Mantel aus durch Wärmezufuhr aufschäumbarem Material versehen und in den Hohlkörper (3) eingesetzt wird, wobei am Kern (2) und/oder am Hohlkörper (3) vorgese- 25 hene örtliche Vorsprünge (8, 9) zwischen beiden freie Zwischenräume (10) sicherstellen, daß dann die Verbindungsoperation unter Ausnutzung der freien Zwischenräume (10) zur thermischen Isolierung sowie eine mit Wärmezufuhr erfolgende 30 Tauchlackierung vorgenommen werden, die das Aufschäumen des Materials des Mantels (1) und dadurch das Ausfüllen der Zwischenräume (10) be-

Hierzu 1 Seite(n) Zeichnungen

33

40

45

50

55

60

Nummer: Int. Cl.⁵: Offenlegungstag:

DE 42 03 460 A1 B 29 C 67/20 27. August 1992

Prodn. of impact-absorbing beam for e.g. car - by placing lightweight core with foaming cover in metal sections, welding them, and hot dip coating to foam up cover, and fill remaining spaces

Patent Number:

DE4203460

Publication date:

1992-08-27

☐ <u>DE4203460</u>

Inventor(s):

THUM HOLGER MICHAEL DIPL ING (DE)

Applicant(s):

VOLKSWAGENWERK AG (DE)

Requested Patent:

Application

Number:

DE19924203460 19920207

Priority Number(s): DE19924203460 19920207; DE19914105302 19910220

IPC Classification:

B29C43/16; B29C67/20; B32B1/06; B62D21/00; B62D29/04; B62D65/00;

F16S3/00

EC Classification:

B62D21/15, B29C44/12G4, B62D29/00F

Equivalents:

Abstract

A beam component is produced by enclosing a lightweight core in a hollow metal body made up of profiled sections hot bonded together, the core being present to raise the mechanical strength. This core has a covering of hot-foaming material; localised changes in the section of the core and/or outer body form spaces between them; the two are then combined together using those spaces for thermal insulation by hot dip-coating which causes the cover material to foam up and fill the spaces. ADVANTAGE - For beam to absorb kinetic energy, e.g., for a vehicle. Its prod. increases stiffness and/or buckling strength in a crash, and does so by welding assembled hollow beams. It avoids damage to the core. It uses minimum number of stages in producing a load-transmitting connection between the lightweight core and hollow beam.

Data supplied from the esp@cenet database - 12

This Page Blank (uspto)

Docket # 2641/207-168

Applic. #__09/666,951

Applicant: BECKMANN

Lerner and Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100 Fax: (954) 925-1101