

# **SECURITY**

Authentizität und Verbindlichkeit

June 3, 2023



Marc Stöttinger

Authenticity is the bedrock of cryptography, for without it, even the strongest encryption is worthless.

Bruce Schneier

### INTEGRITÄT UND AUTHENTIZITÄT DURCH MESSAGE AUTHENTICATION CODES

#### → Bedrohung:

- → Integrität: Mallory ändert die Nachricht
- → Authentizität: Mallory fälscht eine Nachricht und gibt sich als Alice aus

#### → Ziele:

- → Integrität: Bob kann prüfen, ob die Nachricht verändert wurde
- → Authentizität: Bob kann prüfen, ob die Nachricht von Alice stammt



### WIESO REICHT INTEGRITÄT NICHT AUS?

- → Integrität garantiert nur, dass Veränderungen erkannt werden, z.B Fehler bei der Übertragung.
  - → Mit einer Prüfsumme kann jeder den Ciphertext auf Fehler überprüfen.
- → Es ist keine Aussage über eine Verfälschung möglich
  - → Die Prüfsumme kann jeder selber berechnen
  - → Bei einem verschlüsselten Ciphertext ist nicht bekannt, woher der Ciphertext stammt oder ob dieser authentisch ist.
- → Es wird ein Mechanismus benötigt, dass die Prüfsumme nur mit Kenntnis eines Geheimnisse berechnet werden kann.



### MESSAGE AUTHENTICATION CODES (MACS)

- → Message Authentication Code (MAC) nutzen Hashfunktionen und symmetrische Verschlüsselungsverfahren zusammen mit symmetrischen Schlüsseln, um Integrität und Authentizität zu gewährleisten
  - → Schnell, da symm. Verschlüsselung und Hashfunktionen genutzt werden
  - → Unverbindlich, da der Schlüssel beiden Parteien bekannt ist
- → Benötigte Eigenschaften eines MAC Verfahrens:
  - → Einwegeigenschaft: Der Schlüssel darf nicht aus MAC und Nachricht bestimmbar sein
  - → Schwache Kollisionsresistenz: Keine andere Nachricht mit gleichem Schlüssel und gleicher MAC darf effizient berechenbar sein



#### BEKANNTE MAC-ALGORITHMEN

→ Es existieren spezielle MAC-Konstruktionen, um ein MAC-Verfahren aus einer Hashfunktion oder einem symmetrischen Verschlüsselungsverfahren zu konstruieren

| Verfahren                          | Schlüssellänge                                               | Kommentar                                                                                      |
|------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Hash-based MAC (HMAC)              | Blockgröße der Hashfunktion (z.B. 256-bit bei SHA2-256)      | Gute Sicherheit, da starke Kollisionsresistenz, allerdings vergleichsweise langsam             |
| Blockchiffre Modi<br>GMAC und CMAC | Schlüssellänge der<br>Blockchiffre (z.B. 128 bei<br>AES-128) | In bestimmten Fällen geringe Kollisionsresistenz                                               |
| Blockchiffre Modus<br>GCM          | Schlüssellänge der<br>Blockchiffre (z.B. 128 bei<br>AES-128) | In bestimmten Fällen geringe Kollisionsresistenz,<br>bietet aber zusätzlich Verschlüsselung an |

### MESSAGE AUTHENTICATION CODES (MACS) SICHERHEIT HASHFUNKTIONEN

- → MACs via Hashfunktionen sind sicher, da:
  - → Einweg: Schlüssel kann nicht aus MAC und Nachricht berechnet werden
  - → Schwache Koll.: Andere Nachricht mit gleichem MAC und Schlüssel schwer findbar
  - → Je nach verwendeter Hashfunktion ist eine Maskierung der Digest notwendig



#### ANGRIFF GEGEN HMACS MIT VORANGESTELLTEM GEHEIMNIS

Alice

Mallory

Bob

$$x = (x_1, \dots, x_n)$$
 abgefangen 
$$x_0 = (x_1, \dots, x_n, x_{n+1})$$
 
$$m' = h(k||x_1, \dots, x_n, x_{n+1})$$
 
$$m_0 = h(m||x_{n+1})$$

Valide MAC, da  $m'=m_0$ 

#### HASH-BASED MAC

- $\rightarrow$  Die [HMAC] Konstruktion sollte immer eine Padding-Mask nutzen, um die Hashfunktion f(x) in einen HMAC zu wandeln:  $HMAC_K(x) = h[(K^+ \oplus opad)|h[(K^+ \oplus ipad)|x]]$
- $\rightarrow$  Konstanten ipad und opad werden als Padding-Masken genutzt.
- $\rightarrow K$  wird auf die Blockgröße des Hash aufgefüllt und  $K^+$  bezeichnet



## MESSAGE AUTHENTICATION CODES (MACS) SICHERHEIT SYM. VERSCHLÜSSELUNG

- → MACs via symmetrischer Verschlüsselungsverfahren sind sicher, da:
  - $\rightarrow$  **Einweg**: Schlüssel kann nicht aus Plaintext  $P=x_1,\ldots,x_n$  und Ciphertext C=m berechnet werden
  - $\rightarrow$  Schwache Koll.: Jeder Plaintext P wird in einen zufälligen und eindeutigen Ciphertext C unter fixem Schlüssel k verschlüsselt.



Quelle: Christoph Paar, Jan Pelz: Kryptografie verständlich, 2016, Springer

### BLOCKCHIFFRE BETRIEBSMODI GALOIS COUNTER MODE (GCM)

- → Konstruktion um Blockchiffre in MAC-Verfahren umzuwandeln
- $\rightarrow$  Mulitplikationskonstante  $H = ENC_k(0)$
- → ADD zusätzliche Authentisierungsdaten
- → T ist der Authentisierungstoken, der als MAC genutzt werden kann.



#### DISKUSSION IN KLEINEN GRUPPEN

### Sind MACS uneingeschränkt vertrauenswürdig?

Einen Gruppe von Freunden hat einen symmetrischen Schlüssel miteinander getauscht, um sich gegenseitig via AES-GCM sichere und vertrauenswürdige Nachrichten zu schicken. Was für ein Problem könnte in diesem Setting entstehen?

#### Verbindlichkeit

Überlegen Sie sich einen Fall, in dem das oben identifizierte Problem zum Tragen kommen kann.

### INTEGRITÄT, AUTHENTIZITÄT UND VERBINDLICHKEIT

#### → Bedrohung:

- → Integrität: Mallory ändert die Nachricht
- → Authentizität: Mallory fälscht eine Nachricht und gibt sich als Alice aus
- → Nicht-Abstreitbarkeit: Alice bestreitet eine Nachricht an Bob gesendet zu haben

#### → Ziele:

- → Integrität: Bob kann prüfen, ob die Nachricht verändert wurde
- → Authentizität: Bob kann prüfen, ob die Nachricht von Alice stammt
- → Nicht-Abstreitbarkeit: Bob kann gegenüber einer vertrauenswürdigen, dritten Instanz nachweisen, dass eine Nachricht von Alice stammt



#### DIGITALE SIGNATUREN

- → Digitales Pendant zur handgeschriebenen Unterschrift
  - ightarrow Zu einer öffentlichen Nachricht m soll es eine digitale Signatur sig geben
- → Anforderungen an ein digitales Signaturverfahren:
  - 1. Jeder muss die Signatur von *sig* zu *m* verifizieren können
  - 2. Nur Alice darf eine gültige Signatur sig zur Nachricht m erzeugen
- → Vergleich mit Anforderungen bei Verschlüsselung mit asymmetrischer Kryptogtaphie:
  - 1. Jeder darf eine Nachricht an Alice verschlüsseln können
  - 2. Nur Alice darf den Ciphertext entschlüsseln können





#### **GENERELLER ABLAUF**

- ightarrow Bob erstellt als erstes ein Private-Public-Schlüsselpaar ( $K_{pr}$  und  $K_{pb}$ )
  - ightarrow  $K_{pr}$  wird benötigt, um die Signatur zu erzeugen
  - $ightarrow ec{K_{pb}}$  wird an Alice geschickt, damit sie die Signatur verifizieren kann
- → Signieren der Nachricht *m*:
  - ightarrow Über einenEinweg- oder Falltür-Funktion $(F_{trap}(\cdot))$  wird s erzeugt:  $F_{trap}(K_{Pr},m) 
    ightarrow S$
  - → Die Falltür Funktion ist im allg. keine Verschlüsselung!  $F_{trap}(K_{Pr}, m) \rightarrow s \neq ENC_{K_{pr}, m} \rightarrow s$
- → Verfifikation der Signatur s:
  - ightarrow Mit einer Verifikationsfunktion wird mit Hilfe von  $K_{pb}$  und m geprüft, ob s valide ist



#### ALICE SENDET VIA RSA SIGNIERTE NACHRICHT AN BOB

Alice Bob

$$K_{pb} = (N,e)$$
 und  $K_{pr} = d \xrightarrow{ ext{Kanall: Sende } K_{pb} = (N,e)}$ 

Signiere 
$$s = m^d \mod N \xrightarrow{\text{Kanal2: } (m, s)}$$
 Berechne  $m' = s^e \mod N$   
Verfizier ob  $m = m'$ 

Signaturprüfung funktioniert, da  $s^e \mod N = m^{ed} \mod N = m$ 

- ightarrow Jede Partei darf  $K_{pb}=(N,e)$  kennen und Signaturen prüfen
- ightarrow Nur Alice kennt  $K_{pr}=(s)$  und kann somit Nachrichten signieren

© Marc Stöttinger Security

16

### RECAP: BOB SENDET VIA RSA VERSCHLÜSSELTE NACHRICHT AN ALICE

Alice

Bob

$$K_{pb} = (N, e)$$
 und  $K_{pr} = d$ 

Kanall: Sende 
$$K_{pb} = (N, e)$$

Entschlüssele 
$$P = C^d \mod N \xleftarrow{\mathsf{Kanal2:}(C)}$$

Verschlüssel 
$$C = P^e \mod N$$
  
Verfizier ob  $m = m'$ 

### Entschlüsselung funktioniert genauso wie bei der Signatur nur

- → Sonderfall für Schulbuch RSA Entschlüsselung entspricht der Signierfunktion!
- → Es ist sehr gefährlich, einfach Schulbuch RSA zu benutzen!

### EXISTENZIELLE FÄLSCHUNG

Alice

Mallory

Bob

$$\overset{(N,e)}{\longleftarrow} K_{pr} = (d), K_{pb} = N, e$$

- 1. Wähle Signatur:  $s \in \mathbb{Z}_N$
- 2. Berechne die Nachricht:

$$\stackrel{(x,s)}{\longleftarrow} m \equiv s^e \mod N$$

Verifikation:

$$m' \equiv s^e \mod N = m$$

Signatur ist valide!

- → Probalisitsche Signaturverfahren verhindern diesen Angriff.
- → Das **RSA-EMSA-PSS** Schema für Signaturen sollte im Fall von RSA genutzt werden

#### DIGITALE SIGNATURVERFAHREN IN DER PRAXIS

- → Weitere Verfahren zur Signaturberechnung existieren:
  - → Digital Signature Algorithm (DSA)
  - → Elliptic Curve DSA (ECDSA)
  - → Elgamal Signatur
  - → Merkle Signatur
- → Für Verbindlichkeit müssen weitere Informationen an den öffentlichen Schlüssel gebunden werden (⇒Zertifikate und PKI im Kapitel Protokolle)

#### DIGITAL SIGNATURE ALGORITHM (DSA) ENTSTEHUNG UND VERWENDUNG

- → Digital Signature Algorithm (DSA) wurde 1994 standardisiert [DSA]
  - → Von der Benutzung von DSA wird mittlerweile abgeraten!
- → Die Sicherheit von DSA beruht auf dem diskreten Logarithmen Problem

| DSA Algorithmus           | Input                | Output                                                           | Durchgeführt von            |
|---------------------------|----------------------|------------------------------------------------------------------|-----------------------------|
| Parametergener-<br>ierung | -                    | Parameter $(p,q,g)$                                              | Vertrauenswürdige<br>Partei |
| Schlüsselgener-<br>ierung | (p,q,g)              | Schlüssel $K_{pb} = y, K_{pr} = x$                               | Alice (Sender*in)           |
| Signieren                 | (p,q,g), x, m        | Signatur $(r,s)$ zu $M$                                          | Alice (Sender*in)           |
| Signieren                 | (p,q,g), x, m, (r,s) | Wurde $(r,s)$ für $M$ von Besitzer $^*$ in von $K_{pb}$ erzeugt? | Bob (Empfänger*in)          |

### DIGITAL SIGNATURE ALGORITHM (DSA) SCHLÜSSELGENERIERUNG

Alice

Parametergenerierung (öffentlich) Wähle eine Primzahl p Wähle eine Primzahl q die p-1 teilt Berechne  $g\equiv h^{(p-1)/q}\mod p$  für ein zufälliges h

Schlüsselgenerierung Wähle x mit  $1 \le x \le q$  Berechne  $y \equiv g^x \mod p$  Setze  $K_{pb} = y$  und  $K_{pr} = x$ 

$$(K_{pb}) = y$$

### DIGITAL SIGNATURE ALGORITHM (DSA) SIGNIEREN UND VERIFIZIEREN

Alice

Boh

Wähle k mit  $1 \le k \le q$ 

Berechne:  $r \equiv (g^k \mod p) \mod q \neq 0$ 

Berechne:  $s \equiv (k^{-1} \cdot (m + r \cdot x)) \mod p) \neq 0$ 

m,(r,s)

Berechne  $u_1 \equiv m \cdot w \mod q$ Berechne  $u_2 \equiv r \cdot w \mod q$ Berechne  $v \equiv (g^{u_1} \cdot y^{u_2} \mod p) \mod q$ 

Berechne  $w \equiv s^{-1} \mod q$ 

Falls  $v = r \rightarrow \text{valide}$ 

### ASYMMETRISCHE VERSCHLÜSSELUNG ELLIPTISCHE KURVEN (1/2)

- → Eine Alternative zu primen Restklassenringen sind elliptische Kurven (ECC)
  - $\rightarrow$  Elliptische Kurve: Menge an Punkten die eine Gleichung erfüllen, z.B.:  $y^2 = x^3 + ax + b$
- $\rightarrow$  Seien A, P zwei Punkte auf einer Kurve mit  $a \cdot P = A$ 
  - $\rightarrow$  **Einfach**: Aus *P* und *a* den Punkt *A* zu berechnen ( $A = a \cdot P$ )
  - $\rightarrow$  **Schwer**: Aus *P* und *A* den Wert *a* zu berechnen (a = P/A)

Punktaddition Kurve 
$$y^2 = x^3 + ax + b$$

Punktmultiplikation Kurve  $y^2 = x^3 + ax + b$ 





Quelle: https://blog.intothesymmetry.com/2019/07/on-isogenies-verifiable-delay-functions.html

### ASYMMETRISCHE VERSCHLÜSSELUNG ELLIPTISCHE KURVEN (2/2)

- → Elliptische Kurven können in Verfahren genutzt werden, die auf dem diskreten Logarithmusproblem basieren
- → Vorteil von elliptischen Kurven ist, dass die Kurven kleinere Bit-Werte besitzen

| Bitlänge<br>Schlüssel | sym. | Bitlänge Primzahl | Bitlänge ECC | Ratio Bitlänge Primzahl /<br>ECC |
|-----------------------|------|-------------------|--------------|----------------------------------|
| 80                    |      | 1024              | 160          | 6,4                              |
| 128                   |      | 3072              | 256          | 12                               |
| 256                   |      | 15360             | 512          | 30                               |

### ECDSA SCHLÜSSELGENERIERUNG

Parametergenerierung (öfftl.) Wähle eine eine Kurve: E(p,a,b,q,A)E(p, a, b, q, A)E(p, a, b, q, A)

Schülsselgenerierung

Wähle einen Zufallswert d mit 0 < d < q

Berechne B = dA

Setze  $K_{pb} = (p, a, b, q, A, B)$ 

und 
$$K_{pr} = d$$

Alice

$$(K_{pb}) = (p, a, b, q, A, B)$$

Boh

#### ECDSA SIGNIEREN UND VERIFIZIEREN

Alice

Bob

Wähle emphermal  $k_E$  mit  $0 \le k_E \le q$ 

Berechne:  $R = k_E A$ 

Setze:  $r = x_R$ 

Berechne:  $s \equiv (h(x) + d \cdot r)k_E^{-1} \mod q \xrightarrow{(x,r,s)}$ 

Berechne  $w \equiv s^{-1} \mod q$ Berechne  $u_1 \equiv w \cdot h(x)w \mod q$ Berechne  $u_2 = r \cdot w \mod q$ Berechne  $P = u_1A + u_2B$ Falls  $x_P \equiv q \rightarrow \text{valdie}$ 

#### ANGRIFFE AUF SIGNATURVERFAHREN

- $\rightarrow$  Die Sicherheit von ECDSA hängt stark vom Zufallswert K ab:
  - ightarrow Falls k bekannt wird, kann  $K_{pr}=x$  berechnet werden
  - $\rightarrow$  Falls k wiederverwendet wird, kann  $K_{pr} = x$  berechnet werden [PS3]
- $\rightarrow$  Bei ECDSA müssen bestimmte Signaturen abgefangen werden (z.B. s=0 [Orac])
- → RSA Verschlüsselung und Signaturen niemals mit dem gleichen Schlüsselpaar!
  - → Verschlüsselte Nachricht könnte entschlüsselt werden via Anfrage zur Signatur
  - ightarrow Unbeabsichtigte Signatur könnte erzeugt werden via Anfrage zur Entschlüsselung
- → RSA benötigt Paddingverfahren (z.B. RSA-PSS) zur sicheren Signaturerzeugung

#### ASYMMETRISCHE SIGNATURVERFAHREN

- → Direktes Signieren und Verifizieren von großen Nachrichten ist sehr ineffizient
  - $\rightarrow$  Signieren:  $s = k^{-1} \cdot (M + r \cdot r) \mod q$
  - $\rightarrow$  Verifizieren:  $u_1 = M \cdot w \mod q$
- → Analog zur hybrider Verschlüsselung: Große Nachricht mit Hilfsfunktion in einen kleinen, eindeutigen Fingerabdruck umwandeln, der dann signiert wird
- → Anforderung an Hilfsfunktion und Fingerabdruck
  - → Jede Person sollte die Hilfsfunktion berechnen können
  - → Es sollte nicht möglich sein, vom Fingerabdruck auf eine Nachricht zurückzurechnen

#### ZUSAMMENFASSUNG

- → MACs basierend auf Hashfunktionen und symmetrischer Verschlüsselung
- → Besprechung von verschiedenen MAC Verfahren
- → Unterschiede zwischen MACs und digitalen Signaturen
- → Korrekter Einsatz von MACs oder digitalen Signaturen beurteilen
- → Sicherheitsgarantien der Digitalen Signaturen
- → Beziehung zwischen dem RSA Verschlüsselungs- und Signaturverfahren
- → Existierende Digitale Signaturverfahren
- → Elliptischen Kurven gegenüber primen Restklassenringen