

Chapter 1

DATA REPRESENTATION

Analog vs. Digital

Analog quantities

- can vary over a continuous range of values.
- Examples: voltage, room thermostat

Digital quantities

- represented by symbols called digits.
- Example: digital watch

Digital Number Systems

- Many number systems are in use in digital technology.
- The most common are the decimal, binary, octal, and hexadecimal systems.

Conversion: Base-r to Decimal

Procedure

• Step 1:

Multiply each coefficient with the corresponding power of r.

• Step 2:

Get the sum.

Conversion: Decimal to Base-r

Procedure

• Step 1:

Separate integer from fraction

• Step 2:

Convert integer to base-r

• Step 3:

Convert fraction to base-r

Integer to base-r

- Divide integer by r
- Accumulate remainders

Fraction to base-r

- Multiply fraction by r
- Accumulate integers

Conversion: Binary to octal or hexadecimal

Binary To Octal

Procedure:

Partition binary number into groups of 3 digits

Conversion: Binary to octal or hexadecimal

Binary To Hexadecimal

Procedure:

Partition binary number into groups of 4 digits

Conversion: Octal or hexadecimal to binary

Octal To Binary

Procedure:

• Each octal digit is converted to its 3-digit binary equivalent

Conversion: Octal or hexadecimal to binary

Hexadecimal to Binary

Procedure:

• Each hexadecimal digit is converted to its 4-digit binary equivalent

Fixed-Point Representation

Unsigned Number

- leftmost bit is the most significant bit
- Example:
 - 01001 = 9
 - 11001 = 25

Signed Number

- leftmost bit represents the sign
- Example:
 - 01001= +9
 - 11001= 9

Systems Used to Represent Negative Numbers

Signed-Magnitude representation

 A number consists of a magnitude and a symbol indicating whether the magnitude is positive or negative.

Examples:

$$+85 = 01010101_2$$
 $-85 = 11010101_2$

$$+127 = 011111111_2$$
 $-127 = 111111111_2$

Systems Used to Represent Negative Numbers

Signed-Complement System

- This system negates a number by taking its complement as defined by the system.
- Types of complements:
 - Radix-complement
 - Diminished Radix-complement

Chapter 2

COMPUTER ARITHMETIC

Arithmetic in various Number Systems

- Addition of numbers in any number system
 - Add numbers starting at the least significant digit.
 - Perform addition on numbers of the same number base.
- Subtraction of numbers
 - Must use complements

Binary Addition

- To add binary numbers: (X + Y)
 - Get the SCR of the negative numbers
 - Add the two numbers
 - If the SCR used is:
 - 2's C: Discard end carry
 - 1's C: Add the end carry to the sum

Binary Subtraction

- To subtract binary numbers: (X Y)
 - Take the complement of the subtrahend.
 - Then, add the two numbers.
 - If the complement used is:
 - 1's C: Add the end carry to the sum
 - 2's C: Discard end carry
 - (X Y) >>> X + (complement of Y)

Error Detection

Overflow

 occurs when an arithmetic operation yields a result that is greater than the range's positive limit

Error Detection

- Underflow
 - occurs when an arithmetic operation yields a result that is lesser than the range's negative limit

BCD Addition

- Sum less than or equal to 9
 - Normal binary addition
- Sum greater than 9
 - Add the codes
 - -Add a correction value of 0110 to any sum

Chapter 3

BOOLEAN ALGEBRA, LOGIC FUNCTIONS and LOGIC GATES

Boolean Operations

- AND
 - represented by a dot or the absence of an operator
 - -0 dominates

X	у	ху
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Operations

- OR
 - -represented by a plus sign
 - -1 dominates

x	у	x+y		
0	0	0		
0	1	1		
1	0	Ĩ		
1	1	1		

Boolean Operations

- NOT
 - -represented by a prime
 - inversion or complementation

X	x'
0	1
1	0

Boolean Operations on constants

AND	OR	NOT	
$0 \cdot 0 = 0$	0 + 0 = 0	0' = 1	
0 · 1 = 0	0 + 1 = 1	1' = 0	
1 · 0 = 0	1 + 0 = 1		
1 · 1 = 1	1 + 1 = 1		

Boolean Operations on one variable

AND	OR	NOT	
$A \cdot O = O$	A + O = A	A" = A	
$A \cdot 1 = A$	A + 1 = 1		
$A \cdot A = A$	A + A = A		
$A \cdot A' = 0$	A + A' = 1		

Boolean Operations On Two or More Variables

• Associative laws
$$A+(B+C) = (A+B)+C$$

$$A(BC) = (AB)C$$

• Distributive laws
$$A(B + C) = AB + AC$$

$$A+(BC) = (A+B)(A+C)$$

- De Morgan's laws
 (A + B)' = A'B'
 (AB)' = A' + B'
- Laws of Absorption
 A + AB = A
 A(A+B) = A

Boolean Functions

- Boolean functions are expressions formed with binary variables and boolean operators
- Representations of boolean functions:
 - algebraic expression
 - -truth table

Minterms and Maxterms for 3 variables

			MINTERM		MAXTERM	
х	у	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m0	x+y+z	MO
0	0	1	x'y'z	m1	x+y+z'	M1
0	1	0	x'yz'	m2	x+y'+z	M2
0	1	1	x'yz	m3	x+y'+z'	M3
1	0	0	xy'z'	m4	x'+y+z	M4
1	0	1	xy'z	m5	x'+y+z'	M5
1	1	0	xyz'	m6	x'+y'+z	M6
1	1	1	xyz	m7	x'+y'+z'	M7

Forms of Boolean Functions

- Canonical Form
 - Sum of minterms

$$F(x,y,z) =$$

$$xyz' + x'yz$$

Product of maxterms

$$F(x,y,z) = (x'+y'+z)(x+y+z')$$

- Standard Form
 - Sum of products

$$F(x,y,z) = xz'+y$$

Product of sums

$$F(x,y,z) = (x+y')z$$

Chapter 4

SIMPLIFICATION of LOGIC CIRCUITS

Ways to simplify Boolean functions

- Boolean Algebra
- Graphical method (Karnaugh Map)
- Tabular method (Quine-McCluskey)

Simplify x'y' + xyz + x'y

Simplify
$$x'y' + xyz + x'y$$

= $x'(y' + y) + xyz$

Comm / Dist.

$$= x'(y' + y) + xyz$$

$$= x' + xyz$$

Comm / Dist.

Inv / Iden

$$= x'(y' + y) + xyz$$

$$= x' + xyz$$

$$= (x' + x)(x' + yz)$$

Comm / Dist.

Inv / Iden

Dist.

$$= x'(y' + y) + xyz$$

$$= x' + xyz$$

$$= (x' + x)(x' + yz)$$

$$= (x' + yz)$$

Comm / Dist.

Inv / Iden

Dist.

Inv / Iden

Simplification: Graphical method

- Karnaugh map (K-map)
 - alternate way of representing Boolean functions
 - a graphical tool for assisting in the general simplification procedure
 - a simpler way to handle most jobs of manipulating logic functions

General Steps of K-Map Simplification

- Express function in canonical form
- Map expression on a K-Map
- Group 1's or 0's
- Determine the minimum expression

AB	0 0	0 1	1 1	10
0 0				
0 1				
1 1				
1 0				

AB	0 0	0 1	1 1	10
0 0	1		1	1
0 1	1			1
1 1	1			1
1 0	1		1	1

AB	0 0	0 1	1 1	10
0 0	1		1	1
0 1	1			1
1 1	1			1
1 0	1		1	1

\ CD	ı			=	B'C + D'
AB	0 0	0 1	1 1	10	
0 0	1		1	1	В'С
0 1	1			1	D'
1 1	1			1	
1 0	1		1	1	

AB CD	0 0	0 1	1 1	10
0 0				
0 1				
1 1				
1 0				

AB	0 0	0 1	1 1	10
0 0	0			
0 1				
1 1				
1 0	0			

AB CD	0 0	0 1	1 1	10
0 0	0			0
0 1				
1 1				
1 0	0			

AB CD	0 0	0 1	1 1	10
0 0	0			0
0 1				
1 1				
1 0	0	0		

AB	0 0	0 1	1 1	10
0 0	0			0
0 1	0			
1 1				
1 0	0	0		

AB	0 0	0 1	1 1	10
0 0	0			0
0 1	0			
1 1	0			
1 0	0	0		

• Simplify (B+C+D) (A+B+C'+D) (A'+B+C+D')
(A+B'+C+D) (A'+B'+C+D) =(A+B+D)(C+D)(A'+B+C)

Simplification: Quine-McCluskey

- Advantages
 - Specific step by step procedure
 - Can be applied to problems with many variables
 - Suitable for machine computation

Simplification: Quine-McCluskey

- Steps
 - Construct prime implicants table
 - Construct prime implicants chart
 - Select all essential prime implicants
 - Select a minimal cover from the remaining prime implicants

Constructing Prime Implicants Table

- List terms in a column using their binary representation
 - Group terms so that each group contains minterms with the same number of 1's
 - Place groupings which differ by only one literal adjacent to one another

- 1 0001
- 3 0011
- <u>7</u> 0111
- 8 1000
- 14 1110
- 15 1111

• Simplify $F = \sum_{m=1}^{\infty} m(1,3,7,8,14,15)$

		(Col	lumn 1
1	0001	1		0001
3	0011	8	3	1000
7	0111			
8	1000	3	3	0011
14	1110			
15	1111	7	7	0111
		1	4	1110
		1	5	1111

Constructing Prime Implicants Table

- Perform exhaustive search for logically adjacent terms between adjacent groups
 - Each term should be checked off
 - Combine each pair of terms into a single term replacing the differing literal with '-'
 - Repeat procedure until no further terms can be created
 - All unchecked terms are prime implicants

• Simplify $F = \sum_{m=1}^{\infty} m(1,3,7,8,14,15)$

	Column 1	Column 2
1 0001	1 0001	
3 0011	8 1000	
7 0111		
8 1000	3 0011	
14 1110		
15 1111	<i>7</i> 0111	
	14 1110	
	15 1111	

• Simplify $F = \sum_{m=1}^{\infty} m(1,3,7,8,14,15)$

	Column 1			Column 2	
0001	1	0001	\checkmark	1,3	00-1
0011	8	1000			
0111					
1000	3	0011	$\sqrt{}$		
1110					
1111	7	0111			
	14	1110			
	15	1111			
	0011	0001 1 0011 8 0111 1 1000 3 11110 7 14	0001 1 0001 0011 8 1000 0111 1000 3 0011 1110	0001 1 0001 √ 0011 8 1000 0111 1000 3 0011 √ 1110 1111 7 0111 14 1110	0001 1 0001 √ 1,3 0011 8 1000 0111 1000 3 0011 √ 1110 1111 7 0111 14 1110

		Column 1		Column 2		
1	0001	1	0001	\checkmark	1,3	00-1
3	0011	8	1000			
7	0111				3,7	0-11
8	1000	3	0011	$\sqrt{}$		
14	1110					
15	1111	7	0111	$\sqrt{}$		
		14	1110			
		15	1111			

		Column 1			Column 2	
1	0001	1	0001	\checkmark	1,3	00-1
3	0011	8	1000			
7	0111				3,7	0-11
8	1000	3	0011	$\sqrt{}$		
14	1110				7,15	-111
15	1111	7	0111	$\sqrt{}$		
		14	1110			
		15	1111	1		

		Column 1		Column 2	
1	0001	1	0001 √	1,3	00-1
3	0011	8	1000		
7	0111			3,7	0-11
8	1000	3	0011 √		
14	1110			7,15	-111
15	1111	7	0111 √	14,15	111-
		14	1110 √		
		15	1111 √		

• Simplify $F = \sum m(1,3,7,8,14,15)$

		Column 1		Column 2	
1	0001	1	0001 √	1,3	00-1
3	0011	8	1000		
7	0111			3,7	0-11
8	1000	3	0011 1		
14	1110			7,15	-111
15	1111	7	0111 √	14,15	111-
		14	1110 √		
		1 5	1111 ./		

Prime
implicants:
AB'C'D'
A'B'D
A'CD
BCD
ABC

Construct Prime Implicants Chart

- Terms are listed horizontally
- Prime implicants are listed vertically
- Place an X whenever a prime implicant covers a minterm

Example 15 3 7 8 14 1000 8 1,3 00-1 3,7 0-11 7,15 -111 14,15 111-

Example 3 14 15 8 1000 8 X 1,3 00-1 X X 3,7 0-11 X X 7,15 -111 X X 14,15 111-X X

Select Essential Prime Implicants

Select Essential Prime Implicants

Select Essential Prime Implicants

Select Minimum Cover 15 1000 0-11 X 7,15 -111 14,15-111-

Minimum Expression

- Essential prime implicants + the prime implicants that cover the columns that were not removed
- Hence

$$-F = AB'C'D' + A'B'D + ABC$$

Select Minimum Cover 15 1000 0-11 X *7*,15 -111 14,15 1111-

Minimum Expression

- Essential prime implicants + the prime implicants that cover the columns that were not removed
- Hence

$$-F = AB'C'D' + A'B'D + ABC + BCD$$

AB	0 0	0 1	1 1	1 0
0 0				
0 1				
1 1				
1 0				

AB CD	0 0	0 1	1 1	1 0
0 0		0	0	0
0 1	0			
1 1	0			
1 0		0		

AB	0 0	0 1	1 1	1 0
0 0	1	0	0	0
0 1	0	1	1	1
1 1	0	1	1	1
1 0	1	0	1	1

AB CD	0 0	0 1	1 1	1 0
0 0	1	0	0	0
0 1	0	1	1	1
1 1	0	1	1	1
1 0	1	0	1	1

AB	0 0	0 1	1 1	1 0
0 0		0	0	0
0 1	0	1	1	1
1 1	0	1	1	1
1 0	1	0	1	1

AB	0 0	0 1	1 1	1 0
0 0	1	0	0	0
0 1	0	1	1	1
1 1	0	1	1	1
1 0	1	0	1	1

AB CD	0 0	0 1	1 1	1 0
0 0		0	0	0
0 1	0	1	1	1
1 1	0	1	1	1
1 0	1	0	1	1

AB	0 0	0 1	1 1	1 0
0 0	1	0	0	0
0 1	0	1	1	1
1 1	0	1	1	1
1 0	1	0	1	1

= B'C'D' + BD + BC + AC

Don't Care conditions

- The unspecified minterms (maxterms) of an incompletely specified function
- An X inside a map represents a don't care condition

Don't Care conditions

- There are 2 cases when this occurs.
 - The input combination never occurs
 - E.g. The BCD code does not use the 6 remaining codes.
 - The input combinations are expected to occur, but we do not care what the outputs are

Representation of Don't Cares

• e.g: $F(W,X,Y,Z) = \sum m(0,1,2,4,6,7,8,10)$ $d(W,X,Y,Z) = \sum d(12,13,14,15)$

It could also be represented as:
 F(W,X,Y,Z) = ∑m(0,1,2,4,6,7,8,10)
 + ∑d (12,13,14,15)

• Simplify $F = \sum m(1,3,7,14,15) + d(8)$

• Simplify $F = \sum m(1,3,7,14,15) + d(9,11)$

•	F(A,B,C,D) =	$\Sigma m(0,2,4,8,9,12) +$
		Σd (6,13,15)

<u> 2</u> ,	AB	0 0	0 1	11	1 0
<u> </u>	0 0				
٥	0 1				
<u></u>	1 1				
<u> </u>	1 0				

•	F(A,B,C,D) =	$\Sigma m(0,2,4,8,9,12) +$
		Σd (6,13,15)

20	AB	0 0	0 1	1 1	1 0
-0	0 0	1			1
9	0 1	1			
<u> </u>	1 1	1			
<u>.</u>	1 0	1	1		

•	F(A,B,C,D) =	$\Sigma m(0,2,4,8,9,12) +$
		Σd (6,13,15)

AB CD	0 0	0 1	1 1	1 0	
0 0	1			1	
0 1	1			X	
1 1	1	X	X		
1 0	1	1			

•	F(A,B,C,D) =	$\Sigma m(0,2,4,8,9,12) +$
		Σd (6,13,15)

AB	0 0	0 1	1 1	1 0
0 0	1			1
0 1	1			X
1 1	1	Х	X	
1 0	1	1		

•	F(A,B,C,D) =	$\Sigma m(0,2,4,8,9,12) +$
		Σd (6,13,15)

AB	0 0	0 1	1 1	1 0
0 0	1			1
0 1	1			X
1 1	1	X	X	
1 0	1	1		

• $F(A,B,C,D) = \sum m(0,2,4,8,9,12) + \sum d(6,13,15)$

AB	0 0	0 1	1 1	10
0 0	1			1
0 1	1			X
1 1	1	X	Х	
1 0	1	1/		

• $F(A,B,C,D) = \sum m(0,2,4,8,9,12) + \sum d(6,13,15)$

•
$$F(A,B,C,D) = \sum m(0,2,4,8,9,12) + \sum d(6,13,15) = A'D' + AC'$$

