HHL - Algorithmus

Alfred Nguyen

Fakultät der Informatik Technische Universität München 85758 Garching, Bavaria

June 2023

Gliederung

Einführung

Mathematische Grundlagen

HHL Algorithmus

Übersicht Der Algorithmus

Einfaches Beispiel

Evaluierung

Laufzeit Laufzeit

Einschränkungen

Zukunftsperspektiven

Anwendungen Variationen Perspektive

Gliederung

Einführung

Mathematische Grundlagen

HHL Algorithmus

Ubersicht

Der Algorithmus

Einfaches Beispiel

Evaluierung

Laufzeit Laufzeit Einschränkunger

Zukunftsperspektiven

Anwendunge Variationen Perspektive

Einführung

Wir haben schon viel über die wichtigsten Algorithmen gehört

- ► Shors-Algorithmus
- ► Grover-Algorithmus

Der HHL-Algorithmus

- erstellt von Aram Harrow, Avinatan Hassidim und Seth Lloyd
- lösen von sehr großen linearen Gleichungen

$$A\vec{x} = \vec{b}$$

Motivation

Es löst grundlegendes Probleme in der Mathematik

- Least square fitting
- Optimierungs Probleme
- Simulationen und Imageprocessing
- **.**..

Kleine Revolution insbesondere bei Quantum Machine Learning

- ▶ HHL als Subroutine oder in erweiterten Form benutzt
- ▶ Approximation mit Computern braucht min *N* Zeitschritte!

Das Problem

Gegeben:

- ightharpoonup A Matrix der Form $n \times n$
- \triangleright \vec{b}

Löse das System:

$$A\vec{x} = \vec{b}$$

HHL verspricht uns einen exponentiellen Speedup!!

Gliederung

Einführung

Mathematische Grundlagen

HHL Algorithmus

Ubersicht Der Algorithmus

Einfaches Beispiel

Evaluierung

Laufzeit Laufzeit Einschränkunger

Zukunftsperspektiven

Anwendunger Variationen Perspektive

Hermitsche Matrix

Sei:

- ightharpoonup A eine $n \times n$ Matrix
- \triangleright A^T das transponierte von A
- $ightharpoonup \overline{A}$ das komplex konjugierter von A
- $ightharpoonup A^{\dagger}$ die Hermitsche Matrix von A

Dann:

$$A = \overline{A^T} = A^{\dagger}$$

Hermitsche Matrix

Beispiel:

$$A = \begin{bmatrix} 2 & 1-i \\ 1+i & 3 \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix}$$

$$\overline{A^T} = \begin{bmatrix} 2 & 1-i \\ 1+i & 3 \end{bmatrix} = A = A^{\dagger}$$

Die Matrix A ist Hermitisch.

Hermitsche Matrix

Falls eines Matrix A nicht Hermitisch ist:

$$A^{\dagger} = \begin{pmatrix} 0 & A \\ \overline{A^T} & 0 \end{pmatrix}$$

Spektralzerlegung

Sei:

- ightharpoonup A eine $n \times n$ Matrix
- ▶ D ist eine Diagonalmatrix aus den Eigenwerten
- U besteht aus den Eigenvektoren von A

$$A = UDU^{T}$$

$$= \begin{bmatrix} U_{1} & U_{2} & \dots & U_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \lambda_{n} \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ \dots \\ U_{n} \end{bmatrix}$$

Spektralzerlegung

Das Inverse von A kann man folgendermaßen berechen:

$$A^{-1} = U^{T}D^{-1}U$$

$$= \begin{bmatrix} U_{1} \\ U_{2} \\ ... \\ U_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1}^{-1} & 0 & 0 & 0 \\ 0 & \lambda_{2}^{-1} & 0 & 0 \\ 0 & 0 & ... & 0 \\ 0 & 0 & 0 & \lambda_{n}^{-1} \end{bmatrix} \begin{bmatrix} U_{1} & U_{2} & ... & U_{n} \end{bmatrix}$$

$$= \begin{bmatrix} U_{1}\lambda_{1}^{-1} \\ U_{2}\lambda_{2}^{-1} \\ ... \\ U_{n}\lambda_{n}^{-1} \end{bmatrix} \begin{bmatrix} U_{1} & U_{2} & ... & U_{n} \end{bmatrix}$$

- \triangleright A^{-1} nur durch Eigenwerten und Eigenvektoren bestimmbar!
- ► Methode im klassischen nicht schneller
- ► für HHL Algorithmus sehr wichtig

Veschränkung

Verschränkte Zustände können nicht durch einzelne Zustände dargestellt werden

$$\left|\Phi\right\rangle \neq\left|\phi\right\rangle \left|\psi\right\rangle$$

Veschränkung

Beispiel:

Nicht Verschränkt

$$|\Phi_1\rangle=rac{1}{\sqrt{2}}(|10\rangle+|11\rangle)$$

$$=\ket{1}\otimesrac{1}{\sqrt{2}}(\ket{0}+\ket{1})=\ket{1}\ket{+}$$

Verschränkt

$$|\Phi_2
angle = rac{1}{\sqrt{2}}(|00
angle + |11
angle)
onumber \
eq |lpha
angle \, |eta
angle$$

Gliederung

Einführung

Mathematische Grundlagen

HHL Algorithmus

Übersicht Der Algorithmus

Einfaches Beispiel

Evaluierung

Laufzeit Laufzeit Einschränkungen

Zukunftsperspektiven

Anwendunger Variationen Perspektive

Vergleich klassische zur quanten Version

Klassisch	Quanten Version
$A\vec{x} = \vec{b}$	$A\ket{x}=\ket{b}$
$\vec{x} = A^{-1}\vec{b}$	$ x\rangle = A^{-1} b\rangle$

Man kann A auch in der Spektralzerlegung darstellen

$$A = \sum_{i=0}^{2^{n_b}-1} \lambda_i |u_i\rangle \langle u_i|$$

$$A^{-1} = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} |u_i\rangle \langle u_i|$$

- $ightharpoonup n_b$ ist die Länge \vec{b}
- $\triangleright \lambda_i$ sind Eigenwerte von A
- $|u_i\rangle$ sind Eigenvektoren von A

 \vec{b} kann in der Eigenbasis von A dargestellt werden

$$|b\rangle = \sum_{j=0}^{2^{n_b}-1} b_j |u_j\rangle$$

- $ightharpoonup b_i$ sind die koeffizienten von \vec{b}
- $|u_i\rangle$ sind Eigenvektoren von A

Setzen wir nun alles ein:

$$|x\rangle = A^{-1} |b\rangle = \left(\sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} |u_i\rangle \langle u_i|\right) \left(\sum_{j=0}^{2^{n_b}-1} b_j |u_j\rangle\right)$$

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} |u_i\rangle \langle u_i| b_j |u_j\rangle$$

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_i\rangle \langle u_i| u_j\rangle$$

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_i\rangle \delta_{ij}$$

Setzen wir nun alles ein (Fort.):

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_i\rangle \,\delta_{ij}$$
$$|x\rangle = A^{-1} |b\rangle = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_j\rangle$$
$$|x\rangle = A^{-1} |b\rangle = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_j\rangle$$

- 1. Ermittle die Eigenwerte und Eigenvektoren von A
- 2. bilde $|b\rangle$ in Eigenbasis A ab
- 3. Invertiert Eigenwerte
- 4. lies das Ergebnis $|x\rangle$ aus

Der Algorithmus

Ablauf

- 1. State Preparation
 - Enkodiere Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittle Eigenwerte und Eigenvektoren
 - ightharpoonup bilde $|b\rangle$ in Eigenbasis A ab
- 3. Ancilla Bit Rotation
 - ► Invertiert Eigenwerte
- 4. Inverse Quantum Phase Estimation
 - löst verschränkte Qubits auf
- 5. Messung
 - liest das Ergebnis $|x\rangle$ aus

Quantum Circuit

- 1. Ancilla (Helfer): a-register
 - Indikator qubit, zeigt ob Zustände verschränkt sind
- 2. Register: c-register
 - beinhaltet die Eigenwerte
- 3. Input: b-register
 - ightharpoonup beinhaltet den Vektor \vec{b}

Quantum Circuit

Wo befindet sich die Matrix A?

Wird als Unitary in die Phase Estimation enkodiert.

$$U=e^{iAt}$$

State Preparation

Wir starten im 0 Zustand

$$|\Psi_0
angle=|0
angle_b\ |0
angle_c\ |0
angle_a$$

State Preparation

Nun werden wir \vec{b} als Quantenzustand $|b\rangle$ kodieren, indem wir die Elementen von \vec{b} den Amplituden von $|b\rangle$ zuordnen.

$$ec{b} = egin{pmatrix} b_0 \ b_1 \ ... \ b_n \end{pmatrix} \Leftrightarrow b_0 \ket{0} + b_1 \ket{1} + ... + b_n \ket{n} = \ket{b}$$

State Preparation

Dann erhalten wir:

$$|\Psi_1
angle=|b
angle_b\ |0...0
angle_c\ |0
angle_a$$

Quantum Phase Estimation

Wir wenden QPE an, um die Eigenwerte von A zu erhalten. Dann erhalten wir:

$$\ket{\Psi_2} = \ket{b}_b \ket{\widetilde{\lambda_j}}_c \ket{0}_a$$

Rotation des Ancilla Bits

- lacktriangle Ancilla-Bit $|0
 angle_a$ wird anhand der Eigenwerte $|\widetilde{\lambda}_j
 angle$ rotiert
- hat eine Fehlerwahrscheinlichkeit, da Operation nicht unitär

Ancilla-Qubit wird gemessen und kollabiert zu

- 1. $|0\rangle$: Ergebnis wird verworfen, Berechnung wird wiederholt
 - wir haben verschränkte Qubits
 - dies wird Amplitudenverstärkung genannt (wie Grover)
- 2. $|1\rangle$: Ergebnis wird akzeptiert

Rotation des Ancilla Bits

$$|\Psi_3\rangle = |b\rangle_b |\widetilde{\lambda}\rangle_c |??\rangle_a$$

Das a-Register befindet sich nun in einer Superposition

Gehen wir davon aus, dass unsere Ancilla-Qubit auf $|1\rangle$ kollabiert.

$$|\Psi_{3}\rangle = |b\rangle_{b} |\widetilde{\lambda}\rangle_{c} \, \widetilde{\lambda^{-1}} \, |1\rangle_{a}$$

Dann erhalten wir:

$$|\Psi_{3}\rangle=|b\rangle_{b}\,|\widetilde{\lambda}\rangle_{c}\,\widetilde{\lambda^{-1}}\,|1\rangle_{a}$$

Uns fällt auf, dass wir schon sehr nah an unserem Ergebnis sind

$$|\Psi_3\rangle = |b\rangle_b |\widetilde{\lambda}\rangle_c \widetilde{\lambda^{-1}} |1\rangle_a \qquad \qquad |x\rangle = A^{-1} |b\rangle = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} b_i |u_i\rangle$$

- ▶ Eigenwerte sind invertiert λ^{-1} .
- ▶ aber b-Register mit c-Register verschränkt
- müssen den Zustand auflösen
- ▶ alle bisherigen Schritte rückgäng machen (IQPE)

Inverse Quantum Phase Estimation

Dann erhalten wir:

$$|\Psi_4\rangle = |x\rangle_b |0...0\rangle_c |1\rangle_a$$

Measurment

- $|x\rangle_h$ kann nicht elemntweise ausgelesen werden
- ▶ können Informationen durch eine Messung *M* ermittlen

$$E(x) := \langle x | M | x \rangle$$

Measurment

Dann erhalten wir:

$$|x\rangle \Rightarrow E(x) = \langle x|M|x\rangle$$

Gliederung

Einführung

Mathematische Grundlagen

HHL Algorithmus

Ubersicht Der Algorithmus

Einfaches Beispiel

Evaluierung

Laufzeit Laufzeit Einschränkungen

Zukunftsperspektiven

Anwendunge Variationen Perspektive

Einfaches Beispiel

Matrix A und Vektor \vec{b} :

$$A = \begin{pmatrix} 1 & -\frac{1}{3} \\ -\frac{1}{3} & 1 \end{pmatrix}$$

Klassische Lösung

$$\vec{x} = \begin{pmatrix} \frac{3}{8} \\ \frac{9}{8} \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Verhältnis der Lösung:

$$\frac{|x_0|^2}{|x_1|^2} = \frac{\frac{9}{64}}{\frac{81}{64}} = \frac{1}{9}$$

Einfach Beispiel

Eigenvektoren von A sind:

$$\vec{u_0} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

$$\vec{u_1} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$|u_0\rangle = \frac{-1}{\sqrt{2}} |0\rangle + \frac{-1}{\sqrt{2}} |1\rangle$$

$$|u_1\rangle = \frac{-1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

Einfach Beispiel

Eigenvektoren enkodiert in die Quanten Version

$$N=4$$
 $\widetilde{\lambda_j} = N\lambda_j t/2\pi$
 $t = 3\pi/4$

Eigenvektoren von A sind:

$$\begin{split} \lambda_0 &= \frac{2}{3} \\ \widetilde{\lambda_0} &= \frac{4*\frac{2}{3}*\frac{3\pi}{4}}{2\pi} = \frac{4*2*3\pi}{3*4*2\pi} = 1 \\ &|\widetilde{\lambda_1}| = \frac{4*\frac{4}{3}*\frac{3\pi}{4}}{2\pi} = \frac{4*4*3\pi}{3*4*2\pi} = 2 \\ &|\widetilde{\lambda_0}\rangle = |01\rangle \end{split}$$

State Preparation

- 1. Anzahl Qubit for a-register: 1
- 2. Anzahl Qubits für das c-Register: N=2
- 3. Anzahl Qubits für \vec{b} : $n_b = log_2(N) = log_2(2) = 1$

State Preparation

- $ightharpoonup \vec{b}$ wird als Quantenzustand $|b\rangle$ kodiert
- in unserem Fall ist es sehr einfach

$$ec{b} = egin{pmatrix} 0 \ 1 \end{pmatrix} \Leftrightarrow \ket{b} = 0\ket{0} + 1\ket{1} = \ket{1}$$

State Preparation

Wir starten im 1 Zustand

$$|\Psi_1\rangle = |0\rangle_b \ |00\rangle_c \ |0\rangle_a = |1000\rangle$$

Quantum Phase Estimation

Wir führen QPE aus:

$$\begin{aligned} |\Psi_{2}\rangle &= |b\rangle_{b} |\widetilde{\lambda}_{j}\rangle_{c} |0\rangle_{a} = \sum_{j=0}^{2^{1}-1} b_{j} |u_{j}\rangle |\widetilde{\lambda}_{j}\rangle |0\rangle \\ &= \left(-\frac{1}{\sqrt{2}} |u_{0}\rangle |01\rangle + \frac{1}{\sqrt{2}} |u_{1}\rangle |10\rangle\right) |0\rangle \end{aligned}$$

- **b**-register: Zustand $|b\rangle$ in Eigenbasis von A: $|u_0\rangle$ or $|u_1\rangle$
- ightharpoonup jeweilige Koeffizienten: $b_0=rac{-1}{\sqrt{2}}$ and $b_1=rac{1}{\sqrt{2}}$
- lacktriangle c-register: Eigenwerte $|\widetilde{\lambda}_0\rangle$ und $|\widetilde{\lambda}_1\rangle$ enkodiert als $|01\rangle$ und $|10\rangle$
- ightharpoonup a-register: ancilla Qubit $|0\rangle$

Quantum Phase Estimation

Wir erhalten:

$$|\Psi_2\rangle = \left(-\frac{1}{\sqrt{2}}|u_0\rangle|01\rangle + \frac{1}{\sqrt{2}}|u_1\rangle|10\rangle\right)|0\rangle$$

Ancilla Roation - Eigenwerte invertieren

Wir invertieren das Ancilla Qubit:

$$\sum_{j=0}^{2^{1}-1} b_{j} |u_{j}\rangle |\widetilde{\lambda}_{j}\rangle \left(\sqrt{1 - \frac{C^{2}}{\widetilde{\lambda}_{j}^{2}}} |0\rangle + \frac{C}{\widetilde{\lambda}_{j}} |1\rangle\right)$$

$$= \left(-\frac{1}{\sqrt{2}} |u_{0}\rangle |01\rangle (|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}} |u_{1}\rangle |10\rangle\right) \left(\sqrt{1 - \frac{1}{4}} |0\rangle + \frac{1}{2} |1\rangle\right)$$

Wir gehen davon aus, dass wir $|1\rangle$ messen.

$$=\sqrt{rac{8}{5}}\left(-rac{1}{\sqrt{2}}\ket{u_0}\ket{01}\ket{1}+rac{1}{2\sqrt{2}}\ket{u_1}\ket{10}
ight)\ket{1}$$

Ancilla Roation - Eigenwerte invertieren

$$=\sqrt{\frac{8}{5}}\left(-\frac{1}{\sqrt{2}}\left|u_{0}\right\rangle \left|01\right\rangle \left|1\right\rangle +\frac{1}{2\sqrt{2}}\left|u_{1}\right\rangle \left|10\right\rangle \right)\left|1\right\rangle$$

Inverse Quantum Phase Estimation

Wir führen IQPE aus:

$$|x\rangle_{b} |00\rangle_{c} |1\rangle_{a}$$

$$|x\rangle_{b} = A^{-1} |b\rangle = \sum_{i=0}^{2^{1}-1} \lambda_{i}^{-1} b_{i} |u_{i}\rangle$$

$$= \lambda_{0}^{-1} b_{0} |u_{0}\rangle + \lambda_{1}^{-1} b_{1} |u_{1}\rangle$$

$$= -\frac{1}{\frac{2}{3}\sqrt{2}} |u_{0}\rangle + \frac{1}{\frac{4}{3}\sqrt{2}} |u_{1}\rangle$$

$$= \frac{2}{3} \sqrt{\frac{8}{5}} \left(-\frac{1}{\frac{2}{3}\sqrt{2}} |u_{0}\rangle + \frac{1}{\frac{4}{3}\sqrt{2}} |u_{1}\rangle \right) |00\rangle |1\rangle$$

Inverse Quantum Phase Estimation

Wegen Normalisierung der Eigenvektoren können wir

$$|u_0\rangle = \frac{-1}{\sqrt{2}}|0\rangle + \frac{-1}{\sqrt{2}}|1\rangle$$

$$|u_1\rangle = \frac{-1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

$$=\frac{1}{2}\sqrt{\frac{2}{5}}\left(\left|0\right\rangle+3\left|1\right\rangle\right)\left|00\right\rangle\left|1\right\rangle$$

$$= \left(\frac{1}{2} \sqrt{\frac{2}{5}} \left|0\right\rangle + \frac{1}{2} \sqrt{\frac{2}{5}} * 3 \left|1\right\rangle\right) \left|00\right\rangle \left|1\right\rangle$$

Ancilla Roation - Eigenwerte invertieren

$$=\left(\frac{1}{2}\sqrt{\frac{2}{5}}\left|0\right\rangle+\frac{1}{2}\sqrt{\frac{2}{5}}*3\left|1\right\rangle\right)\left|00\right\rangle\left|1\right\rangle$$

Measurment

Um die Wahrscheinlichkeit von $|u_0\rangle$ und $|u_1\rangle$ zu erhalten, müssen wir ihre Koeffizienten quadrieren

$$c_0 = \left| \frac{1}{2} \sqrt{\frac{2}{5}} * 1 \right|^2 = \frac{1}{20}$$
$$c_1 = \left| \frac{1}{2} \sqrt{\frac{2}{5}} * 3 \right|^2 = \frac{9}{20}$$

Das Verhältnis im b-Register ist wie erwartet 1:9.

Gliederung

Einführung

Mathematische Grundlagen

HHL Algorithmus

Ubersicht
Der Algorithmus

Einfaches Beispiel

Evaluierung

Laufzeit Laufzeit Einschränkungen

Zukunftsperspektiven

Anwendunger Variationen Perspektive

Laufzeit

Gauß Verfahren

$$\mathcal{O}(N^3)$$

- ▶ nicht der schnellste Algorithmus
- ▶ gleiche constraints sind zu beachten!!

Laufzeit

Classical

Conjugate gradient descent

$$\mathcal{O}(\kappa slog\left(\frac{1}{\epsilon}\right)N)$$

- N := is number of variables in linear system
- $\kappa = \frac{\lambda_{max}}{\lambda_{min}}$: condition number

Quanten Version

HHL

$$\mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

- $ightharpoonup \epsilon :=$ is the accuracy
- s := is s-sparse matrix: each row has at most s nonzero entries

Laufzeit

Classical

Quanten Version

Conjugate gradient descent

HHL

$$\mathcal{O}(\kappa s log\left(\frac{1}{\epsilon}\right) N) \qquad \qquad \mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

$$\Rightarrow \mathcal{O}(N) \qquad \qquad \Rightarrow \mathcal{O}(log(N))$$

Takeaway

- ▶ exponentialer speed up $\mathcal{O}(N)$ vs $\mathcal{O}(\log(N))$
- klassischer algorithmus hat bessere Fehlerabhängigkeit: $log(\frac{1}{\epsilon})$ vs $\frac{1}{\epsilon}$

Einschränkungen

- 1. einfache Zustandsvorbereitung des Vektors \vec{b} zum Quantenzustand $|b\rangle$
- 2. niedrige condition number κ
- 3. A muss s-sparse sein
- 4. nicht jeder Eintrag von $|x\rangle$ auslesbar
- 5. Der Ressourcenbedarf sehr hoch

Einschränkungen

- 1. niedrige condition number (es ist außerdem nicht einfach κ im vorhinein zu ermitteln)
- 2. muss s-sparse sein
- 3. einfache Zustandsvorbereitung des Vektors \vec{b} zum Quantenzustand $|b\rangle$
 - wenn man $|b\rangle$ klassisch lesen/schreiben muss, ist der Geschwindigkeitsgewinn weg, da $|b\rangle$ N Einträge hat \rightarrow qram
- 4. nicht jeder Eintrag von $|x\rangle$ auslesbar
 - Nachbearbeitung muss erfolgen
 - ▶ nur $log_2(n)$ Qubits -¿ nur eine Näherung
 - statistische Informationen möglich (Verhältnis, Bereiche großer Einträge, ...)
- 5. Der Ressourcenbedarf sehr hoch
 - Shors Algorithmus ist dem HHL-Algorithmus sehr ähnlich (aufgrund von QPE)
 - untere Grenze von 4000 logischen Qubits (2048bit RSA)
 - d.h. millionen physikalischer Qubits (für Fehlerkorrektur)

Gliederung

Einführung

Mathematische Grundlagen

HHL Algorithmus

Ubersicht Der Algorithmus

Einfaches Beispiel

Evaluierung

Laufzeit Laufzeit Einschränkungen

Zukunftsperspektiven

Anwendungen Variationen Perspektive

Anwendungen

Hauptproblem

- ► Hauptproblem: gibt keinen vollständigen Vektor aus
- ► Aber einige Probleme können mit dieser Methode gelöst werden:

Anwendungen

Machine Learning: Least-Square-Fitting

- Datenanpassung mit Least Square Fitting
- durch Berechnung einer Schätzung der inversen Matrix

Analysis of Large Sparse Electrical Networks

- Elektrizitätsnetz vielen verbundenen Komponenten
- geringe Anzahl Verbindungen zwischen den Komponenten
- Berechnung des Widerstands durch approximation von Erwartungswerten

Es wäre wichtig, mehr Anwendungen zu finden, welche den Anforderungen entsprechen.

Anwendung in IT-Security

HHL in der IT-Security

- in erster Linie nur für Lösen von linearen Systemen
- nicht direkt mit IT-Security verbunden
- aber Potenzial als Subroutine angewendet zu werden

Mögliche Anwendungen

- secure multi-party computation
- zero-knowledge proofs
- cryptographic key generation and management
- big data analysis/pattern recognition (für Betrugserkennung)

Variationen

Modifikationen und Optimierung

- ▶ QRAM zur Vorbereitung von |b⟩
- kein Ancilla-Bit erforderlich unter bestimmten Voraussetzungen
- lacktriangle Variable time amplitude amplification um condition number κ zu verbessern

Perspektive

- ▶ Großer Einfluss im Bereich Quantum Machine Learning
- noch keine bahnbrechenden Anwendungen (wie z.B. Shors Algorithmus zum Brechen von RSA)
- aber viel aktive Forschung um neue Verbesserungen im Algorithmus zu finden
- > zeigt deutlichen Fortschritt in der Quantencomputing Welt