

Working Sep 27, 2018

Rubella virus real-time RT-PCR 🖘

lan Mackay¹, Judy Northill¹

¹Public Health Virology, Forensic and Scientific Services

dx.doi.org/10.17504/protocols.io.tz9ep96

Public Health Virology, Forensic and Scientific Services

ABSTRACT

A real-time assay for the detection of Rubella virus RNA from clinical samples. This assay was modified from a published method with oligonucleotides updated, a different kit used, and cycling times adjusted accordingly.

EXTERNAL LINK

https://doi.org/10.1016/j.jviromet.2008.01.032

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Hubschen et al. J Virol Methods, 2008. 149:246-250

PROTOCOL STATUS

Working

We use this protocol in our group and it is working

GUIDELINES

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol.

MATERIALS TEXT

Oligonucleotide sequences

	Name	5'-3'
	RubV TAQMAN FWD 2015	TGATACCCAGACCTGTDTTCAC
	RubV TAQMAN REV 2015	GGTCGATGAGGACGTGTAGG
	RubV TAQMAN PRB 2015	6FAM - GAT CACCCAGCACT CCACGCAA - BHQ-1

Reaction set-up

- Assay has been used on both a Rotor-Gene 6000 / Rotor-Gene Q 5-plex using 100-place rotor discs.
 - Total reaction volume is 20μL.
 - Prepare sufficient for number of reaction plus a 'dead volume' usually 2 extra. Adjust as necessary if using a robotic dispenser.

Reagent	Vol (µL) x1	Final reaction concentration
Nuclease free water	4.35	
RubV TAQMAN FWD 2015 200pmol/µl	0.09	900nM
RubV TAQMAN REV 2015 200pmol/μl	0.09	900nM
RubV TAQMAN PRB 2015 100pmol/µl	0.03	150nM

2X Reaction Mix	10	1X
SuperScript® III/Platinum® Taq Mix	0.4	1X
ROX Reference Dye (25µM)	0.04	50nM
TOTAL VOLUME	15	

¹SuperScript® III Platinum® One-Step qRT-PCR® ™ Kit, Cat No. 11732088

₽NOTE

REAGENT

SuperScript ™ III

Platinum ™ One-Step qRT-

PCR Ki

by Life Technologies
Catalog #: 11732088

Dispense 15µL to each reaction well.

Add 5µL of template, extracted RNA, controls or NTC (nuclease-free water).

Total reaction volume is 20µL

Amplification

3 The assay has been optimised and validated for the Rotor-Gene 6000 and Rotor-Gene Q thermocyclers.

PCR

50°C	5min	1X
95°C	2min	1X
95°C	3s	40X
60°C	30sec*	

^{*}Florescence acquisition step

Result Analysis

- 4 The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:
 - 1. A **sigmoidal curve** the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
 - 2. A suitable level of fluorescence intensity as measured in comparison to a positive control (y-axis)
 - 3. A defined threshold (C_T) value which the fluorescent curve has clearly exceeded (Fig.1 arrow) and which sits early in the log-linear phase and is <40 cycles
 - 4. A flat or non-sigmoidal curve or a curve that crosses the threshold with a C_T value >40 cycles is considered a negative result
 - 5. NTCs should not produce a curve

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited