Dimostrazione numero 1

Test di monotonia di f su un intervallo aperto

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

1. f sia derivabile su (a, b);

Tesi

$$f'(x) > 0 \ \forall x \in A \Rightarrow f$$

è monotona strettamente crescente su A.

$$f'(x) < 0 \ \forall x \in A \Rightarrow f$$

è monotona strettamente decrescente su A.

Dimostrazione

Caso 1 -
$$f'(x) > 0 \ \forall x \in A$$

Siano $x_1, x_2 \in A / a < x_1 < x_2 < b$. Seleziono un sottointervallo chiuso interno ad A. Su $[x_1, x_2]$ applico il **teorema di Lagrange** a f quindi:

$$\exists x_0 \in (x_1, x_2) / f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

essendo $f'(x_0) > 0$ e anche $x_2 - x_1 > 0$ ne segue che:

$$\forall x_1 < x_2 \Rightarrow f(x_2) > f(x_1)$$

quindi f(x) è strettamente monotona crescente. c.v.d.

Caso 2 -
$$f'(x) < 0 \ \forall x \in A$$

Siano $x_1, x_2 \in A / a < x_1 < x_2 < b$. Seleziono un sottointervallo chiuso interno ad A. Su $[x_1, x_2]$ applico il **teorema di Lagrange** a f quindi:

$$\exists x_0 \in (x_1, x_2) / f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

essendo $f'(x_0) < 0$ e $x_2 - x_1 > 0$ ne segue che:

$$\forall x_1 < x_2 \Rightarrow f(x_2) < f(x_1)$$

quindi f(x) è strettamente monotona decrescente. c.v.d.