Bayesian Decision Theory

Sensor fusion & nonlinear filtering

Lars Hammarstrand

BAYESIAN DECISION PRINCIPLE

- How can we use $p(\theta|y)$ to make decisions?
- Examples of decision problems
 - · How to control a self-driving vehicle.
 - · How to invest money.
 - · Select medicine to give to a patient
 - Estimate a parameter vector (may represent temperature, distance, etc).

Basic principle of Bayesian decision theory

- Minimize expected loss or, equivalently,
- Maximize expected utility.

DECISION THEORY - A TOY EXAMPLE

Choosing a course

- A student wants to decide whether to take a course or not.
- Suppose $\theta \in \{ \text{good course, fair course, bad course} \}$ and

	good course	fair course	bad course
$Pr\{\theta y\}$	0.3	0.3	0.4

· If the loss function is

	good course	fair course	bad course
Take	0	5	30
Not take	20	5	0

should he/she then take the course?

Taking the course 0.3×0+0.3·5+0.4×30 =10.5

Not taking the course 0.3x20+0.3x5+0.4x0 = 7.5

MINIMUM POSTERIOR EXPECTED LOSS

- We often study loss functions $C(\theta, a)$ instead of utility. (Typically, $C \ge 0$.)
- Let $\hat{\theta}$ denote an estimate of θ .

Optimal Bayesian decisions

Minimize the posterior expected loss

$$\hat{\theta} = \arg\min_{a} \mathbb{E} \left\{ C(\theta, a) | y \right\}$$

where $\mathbb{E}\left\{\mathsf{C}(\theta,a)\big|y\right\} = \int_{\Theta} \mathsf{C}(\theta,a)p(\theta|y)\,d\theta$

• Note: y is given (fixed) and θ is random.

SELF-ASSESSMENT

To make an optimal Bayesian decision it is sufficient to know:

- The prior, $p(\theta)$, the likelihood, $p(y|\theta)$, and a loss function $C(\theta, a)$.
- The likelihood, $p(y|\theta)$, and a loss function $C(\theta, a)$.
- The posterior distribution, $p(\theta|y)$, and a loss function, $C(\theta, a)$.

Check all statements that apply.

COMPARISON: BAYES VS FREQUENTIST

Frequentist	Bayes	
heta is fixed and unknown	Uncertainties in θ are described stochastically	
$\Rightarrow heta$ is deterministic	$\Rightarrow heta$ is random	
Maximum likelihood (ML) most famous estimator $\hat{\theta}_{ML} = \arg\max_{\theta} I(\theta y)$	Minimum mean square error and maximum a posteriori estimators, e.g., $\hat{\theta}_{MAP} = \arg\max_{\theta} p(\theta) I(\theta y)$	
Study performance by averaging over y for fixed θ	Make decisions conditioned on the observation <i>y</i> .	

- Note 1: most Bayesians also study frequentist performance.
- Note 2: many frequentists agree that parameters may be random in some situations.