Trabalho1

July 3, 2020

1 Metodo dos Elementos Finitos

Universidade Federal Fluminense

Disciplina ministrada pelo Prof. Marco Ferro

```
marco.ferro@uol.com.br
```

Aluno Noé de Lima

```
noe_lima@id.uff.br
```

Este trabalho visa aplicar o MEF para resolver uma equação diferencial ordinária de segunda ordem.

Primeiro semestre de 2020

```
[1]: %display latex
from numpy import array,zeros,math,linspace
from scipy.interpolate import interp1d
from scipy.linalg import solve
import matplotlib.pyplot as plt
plt.close('all') # apaga plotagens anteriores
latex.add_to_preamble('\\usepackage[english,brazil]{babel}')
!uname -a
```

Linux DESKTOP-CR708A2 4.19.104-microsoft-standard #1 SMP Wed Feb 19 06:37:35 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux

Contents

1	Met	todo dos Elementos Finitos
	1.1	Exercício Teórico de MEF - 2 Elementos
		1.1.1 Elementos
		1.1.2 Cálculo das Forças Nodais
		1.1.3 Equação final
	1.2	Exercício Prático de Programação
	1.3	Implementação da Solução Analítica (Exata)
	1.4	Implementação do MEF
		1.4.1 Gráfico Comparativo das Soluções

1.1 Exercício Teórico de MEF - 2 Elementos

Dada a Equação Diferencial Ordinária de Segunda Ordem abaixo:

$$\frac{d^2u}{dx} - u = 0\tag{1}$$

Sua solução analítica é:

$$u(x) = \frac{e^x - e^{-x}}{e - e^{-1}} \tag{2}$$

Este exercício consiste em resolver esta equação numericamente utilizando o Método dos Elementos Finitos com 2 elementos, a princípio sem a utilização de programação. O intervalo do domínio utilizado será $0 \le x \le 1$, e as condições de contorno são:

$$\begin{cases} u(0) &= 0 \\ u(1) &= 1 \end{cases}$$

Assim, considerando 2 elementos, temos 3 nós. Cada elemento tem comprimento $h_e = \frac{1}{2}$.

1.1.1 Elementos

Temos os seguintes nós nos elementos:

$$\begin{bmatrix}
u_1 & = & 0 \\
u_2 & = & \frac{1}{2} \\
u_3 & = & 1
\end{bmatrix}$$

Portanto:

$$\begin{cases} 0 & \leq x_1 & \leq \frac{1}{2} \\ \frac{1}{2} & \leq x_2 & \leq 0 \end{cases}$$

Cada elemento tem comprimento $h_e = \frac{1}{2}$. As funções de interpolação serão, então:

$$\phi_1^e(x_e) = \frac{h_e - x_e}{h_e} = \frac{\frac{1}{2} - x_e}{\frac{1}{2}} = 1 - 2x_e$$

e

$$\phi_2^e(x_e) = \frac{x_e}{h_e} = \frac{x_e}{\frac{1}{2}} = 2x_e$$

Matriz de Rigidez dos Elementos Os elementos da Matriz de Rigidez local \mathbf{K}_e são:

$$K_{ij}^e = \int_0^{\frac{1}{2}} \left(\frac{dN_i}{dx_e} \frac{dN_j}{dx_e} + N_i N_j \right) dx_e$$

Assim:

[13/6 -23/12] [-23/12 13/6]

Portanto, a Matriz de Rigidez Local fica:

$$\mathbf{K_e} = \begin{bmatrix} \frac{13}{6} & \frac{-23}{12} \\ \frac{-23}{12} & \frac{13}{6} \end{bmatrix}$$

A Matriz de Rigidez Global sera:

$$\mathbf{K}_{\mathbf{g}} = \begin{bmatrix} K_{11} & K_{12} & 0 \\ K_{21} & K_{22} + K_{11} & K_{12} \\ 0 & K_{21} & K_{22} \end{bmatrix}$$

Portanto:

Ou seja,

$$\mathbf{K_g} = \begin{bmatrix} \frac{13}{6} & -\frac{23}{12} & 0\\ -\frac{23}{12} & \frac{13}{3} & -\frac{23}{12}\\ 0 & -\frac{23}{12} & \frac{13}{6} \end{bmatrix}$$

1.1.2 Cálculo das Forças Nodais

Elemento 1

$$\begin{array}{cccc} f_1^1 & = & -N_1 \frac{d\bar{u}(0)}{dx} & = -\frac{d\bar{u}(0)}{dx} \\ f_2^1 & = & 0 \end{array}$$

Elemento 2

$$\begin{array}{rcl} f_1^2 & = & 0 \\ f_2^2 & = & N_2 \frac{d\bar{u}(1)}{dx} & = \frac{d\bar{u}(1)}{dx} \end{array}$$

Portanto,

$$\vec{f} = \left\{ \begin{array}{l} -\frac{d\vec{u}(0)}{dx} \\ 0 \\ \frac{d\vec{u}(1)}{dx} \end{array} \right\}$$

1.1.3 Equação final

Temos, portanto,

$$\mathbf{K} \cdot \vec{u} = \vec{f}$$

$$\begin{bmatrix} \frac{13}{6} & -\frac{23}{12} & 0\\ -\frac{23}{12} & \frac{13}{3} & -\frac{23}{12}\\ 0 & -\frac{23}{12} & \frac{13}{6} \end{bmatrix} \begin{pmatrix} u_1\\ u_2\\ u_3 \end{pmatrix} = \begin{pmatrix} -\frac{d\bar{u}(0)}{dx}\\ 0\\ \frac{d\bar{u}(1)}{dx} \end{pmatrix}$$

Ou,

Rearrumando temos a seguinte equação:

$$\begin{bmatrix} 1 & -\frac{23}{12} & 0 \\ 0 & \frac{13}{3} & 0 \\ 0 & -\frac{23}{12} & -1 \end{bmatrix} \begin{Bmatrix} \frac{d\bar{u}(0)}{dx} \\ u_2 \\ \frac{d\bar{u}(1)}{dx} \end{Bmatrix} = - \begin{Bmatrix} \frac{13}{6} \\ -\frac{23}{12} \\ 0 \end{Bmatrix} u_1 - \begin{Bmatrix} 0 \\ -\frac{23}{12} \\ \frac{13}{6} \end{Bmatrix} u_3$$

$$K' = \begin{bmatrix} 1 & -23/12 & 0 \end{bmatrix}$$
 $\begin{bmatrix} 0 & 13/3 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & -23/12 & -1 \end{bmatrix}$

$$f' = (0, 23/12, -13/6)$$

u' = (529/624, 23/52, 823/624)

Logo,

$$\begin{bmatrix} 1 & -\frac{23}{12} & 0\\ 0 & \frac{13}{3} & 0\\ 0 & -\frac{23}{12} & -1 \end{bmatrix} \begin{Bmatrix} \frac{d\bar{u}(0)}{dx} \\ u_2 \\ \frac{d\bar{u}(1)}{dx} \end{Bmatrix} = \begin{Bmatrix} 0 \\ \frac{23}{12} \\ -\frac{13}{6} \end{Bmatrix}$$

Portanto,

$$\frac{d\bar{u}(0)}{dx} = \frac{529}{624} = 0,8478$$

$$u_2 = \frac{23}{52} = 0,4423$$

$$\frac{d\bar{u}(1)}{dx} = \frac{823}{624} = 1,3189$$

1.2 Exercício Prático de Programação

Os códigos a seguir resolvem o problema que consiste em criar um programa na linguagem Python para resolver, numericamente, a equação da Seçao anterior no domínio $x \le 0 \le 1$, utilizando para tanto, o Método dos Elementos Finitos. Entre os parâmetros de entrada, deverá estar o números de elementos para discretizar o sistema (malha), para, então, comparar o erro pencentual das soluções em relação à solução analítica.

1.3 Implementação da Solução Analítica (Exata)

```
[5]: def yexata(x): return (math.exp(1)**(x)-math.exp(1)**(-x))/(math.exp(1)-math.exp(-1))
```

1.4 Implementação do MEF

Na implementação do Método dos Elementos Finitos, os seguintes dados de entrada são necessários:

- Limites do Domínio
- Condições de Contorno (Dirichlet)
- Número de Elementos na Malha

Assim, a função retorna dois vetores:

- O Domínio discretizado
- A solução nos nós da Malha

A solução dos pontos intermediários é dada por interpolação simples entre os nós adjascentes.

```
[6]: def mefn(a, b, ua, ub, n):
         x = array(linspace(a,b,n+1)) # Domínio
         # f = array([linspace(0,0,n+1)]).transpose() # Vetor de força nodal (matriz_1)
      →coluna de zeros)
         K = zeros([(n+1),(n+1)]) # Matriz de Rigidez Global
         he = (b-a)/n \# Subdominio
         for i in range(n): # Montagem da Matriz de Rigidez Global
             K[i,i] += (1/he) + (he/3)
             K[i,i+1] += (-1/he)+(he/6)
             K[i+1,i] += (-1/he)+(he/6)
             K[i+1,i+1] += (1/he)+(he/3)
         # Rearranjo do Sistema
         # f = ua*K[:,0] + ub*K[:,n] # Implementação alternativa com inicialização
      \rightarrow de f
         f = -ua*K[:,0] - ub*K[:,n]
         K[:,0] *= 0
         K[:,n] *= 0
         K[0,0] = 1.
         K[n,n] = -1.
         # Solução do Sistema
         u = solve(K,f) # Vetor de solução
         u[0], u[n] = ua, ub # Substituição de du(a)/dx e du(b)/dx por u(a) e u(b)
         return x, u
```

1.4.1 Gráfico Comparativo das Soluções

Para comparar as soluções, será utilizada uma função para entrar com o número de elementos e gerar o gráfico comparativo

```
[7]: def interpol(xd,yd,x): # Função para interpolar u linearmente entre os nós
return interp1d(xd,yd,kind='linear')(x)
def plotmef(n, nplot): # Função que plota nplot pontos discretizados em n
→ elementos

a,b = 0,1 # Limites de Integração

ua,ub = yexata(a),yexata(b) # Condições de Contorno

xd,yd = mefn(a,b,ua,ub,n)

x = linspace(0.,1.,11)

u = interpol(xd,yd,x)

y = yexata(x)

ref = int(len(x)/2)
erro = 100*(y[ref]-u[ref])/y[ref]
return x,u,erro
```

```
[8]: nel = [1,2,3,5,10,100]
amostra = 50
```

```
comp = linspace(0,1,amostra)
plt.figure(1)
plt.title('Gráfico Comparativo')
plt.xlabel('x')
plt.ylabel('u(x)')
for e in nel:
    x,u,erro = plotmef(e,amostra)
    plt.plot(x,u,label='MEF '+str(e)+' - Erro='+str(round(erro,3))+'%')
plt.plot(comp,yexata(comp),'k--',label='Solução Exata')
plt.legend()
plt.show()
```

Gráfico Comparativo

