Teoría de números algebraicos Tarea 6

Alexey Beshenov (alexey.beshenov@cimat.mx) 8 de octubre de 2020

Ejercicio 6.1. Para un campo cuadrático $\mathbb{Q}(\sqrt{d})$ encuentre n tal que $\mathbb{Q}(\sqrt{d}) \subset \mathbb{Q}(\zeta_n)$.

Solución. Tenemos $\sqrt{-1} \in \mathbb{Q}(\zeta_4)$ y $\sqrt{\pm 2} \in \mathbb{Q}(\zeta_8)$. Si p es un primo impar, sabemos que $\sqrt{p^*} \in \mathbb{Q}(\zeta_p)$, donde $p^* = (-1)^{\frac{p-1}{2}}p$ (véase la tarea 3). Si $p \equiv 3 \pmod{4}$, de todos modos $\sqrt{p} \in \mathbb{Q}(\zeta_{4p})$. Ahora si d es un entero libre de cuadrados, podemos factorizarlo como $\pm 2^e p_1 \cdots p_s$, donde e = 0, 1 y los p_i son impares, y las consideraciones de arriba nos dicen que $\mathbb{Q}(\sqrt{d})$ es un subcampo de $\mathbb{Q}(\zeta_{8p_1\cdots p_s})$.

Este es un caso particular del teorema de Kronecker–Weber que afirma que cualquier campo abeliano K/\mathbb{Q} se encaja en un campo ciclotómico. \square

Ejercicio 6.2. Para $K=\mathbb{Q}(\sqrt[4]{2},i)$ calcule el grupo $\mathrm{Gal}(K/\mathbb{Q})$ y describa los subcampos de K.

Solución. Primero hay que ver que K/\mathbb{Q} es una extensión de Galois. Esto se sigue del hecho de que K es el campo de descomposición del polinomio

$$x^4 - 2 = (x - \sqrt[4]{2})(x + \sqrt[4]{2})(x - i\sqrt[4]{2})(x + i\sqrt[4]{2}).$$

Se trata del compositum de campos $\mathbb{Q}(\sqrt[4]{2})$ y $\mathbb{Q}(i)$, y como una base de K sobre \mathbb{Q} podemos tomar

$$1,\, 2^{1/4},\, 2^{1/2},\, 2^{3/4},\, i,\, i2^{1/4},\, i2^{1/2},\, i2^{3/4}.$$

Hay dos automorfismos evidentes: $\sigma\colon \sqrt[4]{2}\mapsto i\sqrt[4]{2}$ de orden 4 y $\tau\colon i\mapsto -i$ de orden 2 (la conjugación compleja). Calculamos que $\sigma\tau=\tau\sigma^3\neq\tau\sigma$. De estas consideraciones se ve que σ y τ generan un grupo de 8 elementos que será isomorfo al grupo diédrico D_4 (también conocido como D_8). Aquí está el diagrama de subgrupos. Hay 5 subgrupos de índice 4 y 3 subgrupos de índice 2.

Es un poco trabajoso, pero no es muy difícil calcular uno por uno los subcampos fijos correspondientes.

(Para verificar los cálculos, note que $\zeta_8=rac{\sqrt{2}}{2}+irac{\sqrt{2}}{2}$.)

Ejercicio 6.3. Consideremos el campo bicuadrático $K=\mathbb{Q}(\sqrt{-3},\sqrt{5})$.

- 1) Describa cómo los primos racionales se factorizan en \mathcal{O}_K .
- 2) Calcule la densidad de primos que corresponden a cada tipo de descomposición.

Solución. En K tenemos tres subcampos cuadráticos:

$$F_1 = \mathbb{Q}(\sqrt{-3}), \quad F_2 = \mathbb{Q}(\sqrt{5}), \quad F_3 = \mathbb{Q}(\sqrt{-15}).$$

La descomposición en F_i se determina por los símbolos de Legendre correspondientes. Todo depende del resto de p módulo 15:

$$\left(\frac{-3}{p}\right) = \begin{cases} +1, & p \equiv 1 \pmod{3}, \\ -1, & p \equiv 2 \pmod{3}; \end{cases}$$

$$\left(\frac{5}{p}\right) = \begin{cases} +1, & p \equiv 1, 4 \pmod{5}, \\ -1, & p \equiv 2, 3 \pmod{5}; \end{cases}$$

$$\left(\frac{-15}{p}\right) = \begin{cases} +1, & p \equiv 1, 2, 4, 8 \pmod{15}, \\ -1, & p \equiv 7, 11, 13, 14 \pmod{15}. \end{cases}$$

La extensión K/\mathbb{Q} es de Galois, así que e_p f_p $g_p=4$. Primero podemos ver qué pasa con los primos ramificados. Tenemos $K=F_1F_2$ y los disciminantes son $\Delta_{F_1}=-3$, $\Delta_{F_2}=5$, así que $\Delta_K=3^2\cdot 5^2$, y los primos ramificados en K son 3 y 5.

Si p=3, entonces p se ramifica en F_1 y es inerte en F_2 . Esto quiere decir que $2\mid e_3$ y $2\mid f_3$, así que el tipo de descomposición será \mathfrak{p}^2 .

Si p=5, entonces p se ramifica en F_2 y es inerte en F_1 , así que el tipo de descomposición es \mathfrak{p}^2 .

Para los primos no ramificados se cumple $f_p g_p = 4$.

Si p se escinde en uno de los subcampos cuadráticos, pero es inerte en otro, entonces $2 \mid f_p$ y $g_p \ge 2$, así que el tipo de descomposición será $\mathfrak{p}_1 \, \mathfrak{p}_2$, donde f = f' = 2. Los primos correspondientes son los siguientes.

- Si $p \equiv 2, 8 \pmod{15}$, entonces p es inerte en F_1 y F_2 , pero se escinde en F_3 .
- Si $p \equiv 7,13 \pmod{15}$, entonces p se escinde en F_1 , pero es inerte en F_2 y
- Si $p \equiv 11, 14 \pmod{15}$, entonces p es inerte en F_1 y F_3 , pero se escinde en F_2 .

Nos queda el caso de $p\equiv 1,4\pmod{15}$ cuando p se escinde en los tres subcampos cuadráticos. Nos gustaría probar que en este caso la factorización tiene forma $p\mathcal{O}_K=\mathfrak{p}_1\,\mathfrak{p}_2\,\mathfrak{p}_3\,\mathfrak{p}_4$. Esto es equivalente a probar que para todo ideal primo $\mathfrak{p}\subset\mathcal{O}_K$ tal que $\mathfrak{p}\mid p$ se tiene $[\mathcal{O}_K/\mathfrak{p}:\mathbb{F}_p]=1$. En otras palabres, hay que ver que para todo $\alpha\in\mathcal{O}_K$ existe un entero racional $a\in\mathbb{Z}$ tal que $\alpha\equiv a\pmod{\mathfrak{p}}$. Consideremos los ideales $\mathfrak{p}_1=\mathfrak{p}\cap\mathcal{O}_{F_1}$ y $\mathfrak{p}_2=\mathfrak{p}\cap\mathcal{O}_{F_2}$. Estos son ideales primos en \mathcal{O}_{F_1} y \mathcal{O}_{F_2} respectivamente. Por nuestra hipótesis, se tiene $[\mathcal{O}_{F_1}/\mathfrak{p}_1:\mathbb{F}_p]=1$ y $[\mathcal{O}_{F_2}/\mathfrak{p}_2:\mathbb{F}_p]=1$. En otras palabras, cualquier elemento $\alpha\in\mathcal{O}_{F_i}$ es congruente a algún entero racional módulo \mathfrak{p}_i . Ahora $K=F_1F_2$, y todo elemento $\alpha\in\mathcal{O}_K$ tiene forma $\sum_i\alpha_i\beta_i$, donde $\alpha_i\in\mathcal{O}_{F_1}$ y $\beta_i\in\mathcal{O}_{F_2}$. Dado que $\mathfrak{p}\mid\mathfrak{p}_1\mathcal{O}_K$ y $\mathfrak{p}\mid\mathfrak{p}_2\mathcal{O}_K$, sabemos que cada α_i y β_i se reduce a un entero racional módulo \mathfrak{p} , y por ende $\sum_i\alpha_i\beta_i$ cumple con la misma propiedad. Esto termina la prueba.

Notamos que el argumento que acabamos de ver se generaliza al siguiente resultado. Si un primo racional $p \in \mathbb{Z}$ se factoriza en $[K : \mathbb{Q}]$ ideales primos en

 \mathcal{O}_K , entonces se dice que p se escinde completamente en K. Ahora si K es el compositum de F_1 y F_2 , y p se escinde completamente en F_1 y F_2 , entonces este también se escinde completamente en K.

Según el teorema de Dirichlet sobre primos en progresiones aritméticas, las densidades son entonces $\frac{3}{4}$ para \mathfrak{p}_1 \mathfrak{p}_2 y $\frac{1}{4}$ para \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_4 .

Ejercicio 6.4. Sea p un número primo y χ el carácter de Dirichlet de orden 2 mód p, definido por el símbolo de Legendre $\chi(n) = \left(\frac{n}{p}\right)$.

- 1) Demuestre que $\exp(g(\chi)\,L(1,\chi))=\prod_n(1-\zeta_p^n)\prod_r(1-\zeta_p^r)^{-1}$, donde $g(\chi)=\sum_{1\leq a\leq p-1}\chi(a)\,\zeta_p^a$, y los productos son sobre los no-residuos y residuos cuadráticos mód p respectivamente.
- 2) Use la parte anterior para calcular $L(1,\chi)$, donde χ es el carácter de orden 2 mód 5. (Para el valor numérico en PARI/GP, basta digitar l fun(5,1))

Solución. Denotemos

$$P = \prod_{n} (1 - \zeta_p^n) \prod_{r} (1 - \zeta_p^r)^{-1}.$$

Tenemos

$$\log P = \sum_{n} \log(1 - \zeta_p^n) - \sum_{r} \log(1 - \zeta_p^r) = \sum_{a} -\chi(a) \, \log(1 - \zeta_p^a).$$

La serie $-\log(1-z)=\sum_{n\geq 1}\frac{z^n}{n}$ converge para |z|<1 y también converge para $z=\zeta_p^r$ (el teorema de Abel). Podemos escribir

$$\log P = \sum_{m \ge 1} \frac{1}{m} \sum_{a} \chi(a) \, \zeta_p^{am}.$$

Ahora ocupamos la identidad para las sumas cuadráticas de Gauss

$$\sum_{a} \chi(a) \, \zeta_p^{am} = g(\chi) \, \chi(m).$$

Entonces,

$$\log P = \sum_{a} \chi(a) \sum_{m \ge 1} \frac{\chi(m)}{m} = g(\chi) L(1, \chi).$$

Esto establece la identidad deseada $\exp(g(\chi) L(1,\chi)) = P$. En particular, si p = 5, calculamos

$$g(\chi) = \zeta_5 - \zeta_5^2 - \zeta_5^3 + \zeta_5^4 = \sqrt{5}$$

У

$$P = \frac{(1 - \zeta_5^2)(1 - \zeta_5^3)}{(1 - \zeta_5)(1 - \zeta_5^4)} = 1 - \zeta_5^2 - \zeta_5^3 = \frac{3 + \sqrt{5}}{2}.$$

Ahora

$$L(1,\chi) = \frac{1}{\sqrt{5}} \log \frac{3 + \sqrt{5}}{2}.$$

Lo podemos confirmar con PARI/GP:

? 1/sqrt(5) * log ((3 + sqrt(5))/2)
% = 0.43040894096400403888943323295060542543
? lfun (5,1)
% = 0.43040894096400403888943323295060542542

De manera similar, si p=3, entonces $g(\chi)=\zeta_3-\zeta_3^2=\sqrt{-3}$ y $P=\frac{1-\zeta_3^2}{1-\zeta_3}=1+\zeta_3=\zeta_6$. Así nos quedamos con la fórmula

$$\exp(2\pi i/6) = \exp(\sqrt{-3}L(1,\chi)).$$

Entonces (módulo $2\pi i\mathbb{Z}$) se cumple $\frac{2\pi i}{6}=i\sqrt{3}\,L(1,\chi)$. De aquí $L(1,\chi)=\frac{\pi}{3\sqrt{3}}$

? lfun (-3,1)
% = 0.60459978807807261686469275254738524409
? Pi/(3*sqrt(3))
% = 0.60459978807807261686469275254738524409

Ejercicio 6.5. Consideremos funciones $f,g\colon\mathbb{Z}_{>1}\to\mathbb{C}$ y las series de Dirichlet correspondientes $F(s)=\sum_{n\geq 1}\frac{f(n)}{n^s}$ y $G(s)=\sum_{n\geq 1}\frac{g(n)}{n^s}$.

- 1) Demuestre que cuando las series convergen absolutamente en s, se tiene $F(s)\cdot G(s)=\sum_{n\geq 1}\frac{(f*g)(n)}{n^s}$, donde $(f*g)(n)=\sum_{d\mid n}f(d)\,g\left(\frac{n}{d}\right)$.
- 2) Sean $\mu(n)$ la función de Möbius, $\tau(n)$ el número de divisores, $\sigma(n)=\sum_{d\mid n}d$ la suma de divisores, y $\phi(n)$ la función de Euler. Demuestre que

$$\sum_{n \geq 1} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}, \ \sum_{n \geq 1} \frac{\tau(n)}{n^s} = \zeta(s)^2, \ \sum_{n \geq 1} \frac{\sigma(n)}{n^s} = \zeta(s) \, \zeta(s-1), \ \sum_{n \geq 1} \frac{\phi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}.$$

Solución. Usando la convergencia absoluta, podemos cambiar el orden de términos y escribir

$$F(s) \cdot G(s) = \Big(\sum_{m \geq 1} \frac{f(m)}{m^s}\Big) \cdot \Big(\sum_{n \geq 1} \frac{g(n)}{n^s}\Big) = \sum_{m,n \geq 1} \frac{f(m) \, g(n)}{(mn)^s} = \sum_{n \geq 1} \sum_{d \mid n} \frac{f(d) \, g(n/d)}{n^s}.$$

Además, la serie que acabamos de obtener también converge absolutamente en s, dado que

$$\sum_{n \geq 1} \frac{|(f * g)(n)|}{|n^s|} \leq \sum_{n \geq 1} \sum_{d \mid n} \frac{|f(d)| \cdot |g(n/d)|}{|n^s|} = \Bigl(\sum_{m \geq 1} \frac{|f(s)|}{|n^s|}\Bigr) \cdot \Bigl(\sum_{n \geq 1} \frac{|g(s)|}{|n^s|}\Bigr) < \infty.$$

La serie $\zeta(s) = \sum_{n \geq 1} \frac{1}{n^s}$ converge absolutamente para $\mathrm{Re}\, s > 1$, así que la serie $\sum_{n\geq 1}\frac{\mu(n)}{n^s}$ converge absolutamente para $\mathrm{Re}\,s>1$. Denotemos por 1 la función constante $n\mapsto 1$. Tenemos

$$(\mu * 1)(n) = \sum_{d|n} \mu(d) = \begin{cases} 1, & \text{si } n = 1, \\ 0, & \text{si } n > 1. \end{cases}$$

De hecho, escribiendo $n=p_1^{e_1}\cdots p_s^{e_s}$, para n>1, tenemos

$$\sum_{d|n} \mu(d) = \sum_{(e_1, \dots, e_n)} \mu(p_1^{e_1} \cdots p_s^{e_s}),$$

donde $e_i = 0$ o 1. Luego,

$$\sum_{d|n} \mu(d) = 1 - s + \binom{s}{2} - \binom{s}{3} + \dots + (-1)^s = (1 - 1)^s = 0.$$

Para la segunda identidad, calculamos

$$(1*1)(n) = \sum_{d|n} 1 = \tau(n).$$

Entonces, $\zeta(s)^2=\sum_{n\geq 1} \frac{\tau(n)}{n^s}$, y esta serie converge absolutamente para $\mathrm{Re}\,s>1$. Para la tercera identidad, notamos que

$$\zeta(s-1) = \sum_{n \ge 1} \frac{1}{n^{s-1}} = \sum_{n \ge 1} \frac{n}{n^s},$$

y esta serie converge absolutamente para $\operatorname{Re} s > 2$. Calculamos entonces

$$(1*id)(n) = \sum_{d|n} d = \sigma(n).$$

Entonces, $\zeta(s)$ $\zeta(s-1) = \sum_{n \geq 1} \frac{\sigma(n)}{n^s}$, y esta serie converge absolutamente para $\operatorname{Re} s > 2$.

En fin, para la última identidad, calculamos

$$\frac{\zeta(s-1)}{\zeta(s)} = \left(\sum_{m \ge 1} \frac{m}{m^s}\right) \cdot \left(\sum_{n \ge 1} \frac{\mu(n)}{n^s}\right).$$

Ahora

$$(id * \mu)(n) = \sum_{d|n} \mu(d) \frac{n}{d} = \phi(n).$$

Esto se sigue de la fórmula $\sum_{d|n}\phi(d)=n$ y la inversión de Möbius. Entonces, podemos concluir que $\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n\geq 1}\frac{\phi(n)}{n^s}$, y esta serie converge absolutamente para $\mathrm{Re}\,s>2$.