The CSE Machine

Programming Languages Lecture 7

Adeesha Wijayasiri

Evaluation of RPAL Programs

 Need an algorithm to complete the operational semantic specification of RPAL

Introducing the CSE Machine

- C Control
 - a sequence of operations
- S Stack
 - operands
- E Environment
 - Initially, PE (Primitive Environment)
 - Updated as evaluation proceeds
- PE: a mapping from names to objects and operations.

CSE Machine programs: control structures

- Flatten the RPAL program's ST into a "control structure"
- Done using a simple pre-order tree traversal.

Example

- Evaluate -2 ** (a-b), in an environment in which (somehow) a=6 and b=1.
- Flattened control structure: y neg y y ** 2 y - a b.
- Place this control structure on the Control of the CSE Machine.

Example: Evaluate -2 ** (a-b), in an environment in which a=6 and b=1.

CONTROL	STACK	ENV
γ neg γ γ ** 2 γ γ - a b		PE
γ neg γ γ ** 2 γ γ - a	1	
$\gamma \operatorname{neg} \gamma \gamma ** 2 \gamma \gamma$ -	6 1	
$\gamma \operatorname{neg} \gamma \gamma ** 2 \gamma \gamma$	Minus 6 1	
$\gamma \operatorname{neg} \gamma \gamma ** 2 \gamma$	Minus6 1	
$\gamma \operatorname{neg} \gamma \gamma ** 2$	5	
$\gamma \operatorname{neg} \gamma \gamma **$	2 5	
$\gamma \operatorname{neg} \gamma \gamma$	Exp 2 5	
$\gamma \operatorname{neg} \gamma$	Exp2 5	
γ neg	32	
γ	Neg 32	
	-32	

CSE Machine Operation (informally)

- 1. Remove right-most item from control.
- 2. If a name, look it up in the CE (current environment), push onto the stack.
- 3. If γ , then
 - rator = pop(stack)
 - rand = pop(stack)
 - push(apply(rator,rand), stack)
- 4. Stop if control is empty: value on the stack is the result.

Notes

- Minus: function that subtracts its second argument from its first one.
- Minus6: a function that subtracts its argument from 6.
- Exp, likewise: the exponentiation function.
- Exp2: function that raises 2 to the power of its argument.

Notes (cont'd)

- Notice difference between "neg" (a name), and "Neg" (the actual operator).
- Control contains gammas (and lambdas) and names. Stack contains "real" values.

Generating Control Structures

- Begin with CS (control structure) δ_0 :
- Perform a pre-order traversal of the standardized tree.
- For each node:
 - a. If a name, add it to the current CS.
 - b. If a γ , add it to the current CS.
 - c. If a λ , add $<\lambda$ k x> to the current CS.
 - k: new index; x: λ's left child.
 - Generate control structure δ_k : traverse the λ 's right child.

Generating Control Structures

- We use a single symbol to represent a λ -expression, both on the control, and on the stack. The symbol is <i λ k x>.
 - i: environment,
 - k: CS of the function's body,
 - x: the function's bound variable.
- The λ -expression becomes a λ -closure when its environment is determined, when it is placed on the stack.

Examples

• Three examples of generating control structures.

Examples of Control Structure Generation:

Example 1:

Applicative expression Control Structures

$$(\lambda x.x-1)4 * 2 \qquad \delta_0 = \gamma \gamma * \gamma \lambda_1^x 4 2$$

$$\delta_1 = \gamma \gamma - x 1$$

Example 2:

Applicative expression

Control Structures

$$(\lambda x.\lambda w.x+w)$$
 5 6

$$\delta_0 = \gamma \gamma \lambda_1^{x} 5 6$$

$$\delta_1 = \lambda_2^{w}$$

$$\delta_2 = \gamma \gamma + x w$$

Example 3:

Applicative expression

Control Structures

$$(\lambda x.1+(\lambda w.-w)x)[(\lambda z.2*z)7] \qquad \delta_0 = \gamma \lambda_1^x \gamma \lambda_2^z 7$$

$$\delta_1 = \gamma \gamma + 1 \gamma \lambda_3^w x$$

$$\delta_2 = \gamma \gamma * 2 z$$

$$\delta_3 = \gamma \text{ neg } w$$

Operation of the CSE Machine

- Five rules
- Process driven by TOP symbol on the control.
- Need environment markers, on the Control and Stack.
- Every environment is linked to a previously created (but not necessarily currently active) environment.
- Thus, environment structure is a tree.

CSE Machine Rules:

	CONTROL	STACK	ENV
Initial State	$e_0 \delta_0$	e_0	$e_0 = PE$
CSE Rule 1 (stack a name)	Name	Ob	Ob=Lookup(Name,e _c) e _c :current environment
CSE Rule 2 (stack <i>λ</i>)	λ _k ^x	${}^{c}\lambda_{k}^{\mathrm{x}}$	e _c :current environment
CSE Rule 3 (apply rator)	γ 	Rator Rand Result	Result=Apply[Rator,Rand]
CSE Rule 4 (apply λ)	$\dots \gamma \\ \dots e_n \delta_k$	${}^{c}\lambda_{k}^{x}$ Rand e_{n}	$e_n = [Rand/x]e_c$
CSE Rule 5 (exit env.)	e _n	value e _n value	

Examples of CSE Machine Operation

• Let's run through the CSE machine, for our 3 examples.

Example 1:

Applicative expression	Control Structures	
$(\lambda x.x-1)4 * 2$	$\delta_0 = \gamma \ \gamma * \gamma \ \lambda_1^{x} \ 4 \ 2$ $\delta_1 = \gamma \ \gamma - x \ 1$	

RULE	CONTROL	STACK	ENV
1	$e_0 \gamma \gamma * \gamma \lambda_1^x 42$	e_0	$e_0 = PE$
1	$e_0 \gamma \gamma * \gamma \lambda_1^x 4$	$2 e_0$	
2	$e_0 \gamma \gamma * \gamma \lambda_1^{x}$	4 2 e ₀	
4	$e_0 \gamma \gamma * \gamma$	$^{0}\lambda_{1}^{x}$ 4 2 e_{0}	
1	$e_0 \gamma \gamma * e_1 \gamma \gamma - x 1$	$e_1 \ 2 \ e_0$	$\mathbf{e}_1 = [4/\mathbf{x}]\mathbf{e}_0$
1	$e_0 \gamma \gamma * e_1 \gamma \gamma - x$	$1 e_1 2 e_0$	
1	$e_0 \gamma \gamma * e_1 \gamma \gamma$ -	$4 \ 1 \ e_1 \ 2 \ e_0$	
3	$e_0 \gamma \gamma * e_1 \gamma \gamma$	- 4 1 e ₁ 2 e ₀	
3	$e_0 \gamma \gamma * e_1 \gamma$	$(-4) 1 e_1 2 e_0$	
5	$e_0 \gamma \gamma * e_1$	$3 e_1 2 e_0$	
1	e ₀ γ γ *	3 2 e ₀	
3	$e_0 \gamma \gamma$	* 3 2 e ₀	
3	$e_0 \gamma$	$(*3) 2 e_0$	
5	e_0	6 e ₀	
		6	

Environment tree:

Example 2:

Applicative expression	Control Structures
(λx.λw.x+w) 5 6	$\delta_0 = \gamma \gamma \lambda_1^{x} 5 6$ $\delta_1 = \lambda_2^{w}$ $\delta_2 = \gamma \gamma + x w$

RULE	CONTROL	STACK	ENV
1	$e_0 \gamma \gamma \lambda_1^x 5 6$	e_0	e ₀ =PE
1	$e_0 \gamma \gamma \lambda_1^x 5$	6 e ₀	
2	$e_0 \gamma \gamma \lambda_1^{x}$	5 6 e ₀	
4	$e_0 \gamma \gamma$	$^{0}\lambda_{1}^{x}$ 5 6 e_{0}	
2	$e_0 \gamma e_1 \lambda_2^W$	e ₁ 6 e ₀	$e_1 = [5/x]e_0$
5	$e_0 \gamma e_1$	$^{1}\lambda_{2}^{W} e_{1} 6 e_{0}$	
4	$e_0\gamma$	$^{\overline{1}}\lambda_{2}^{\mathrm{w}}$ 6 e ₀	
1	$e_0 e_2 \gamma \gamma + x w$	$e_2 e_0$	$e_2 = [6/w]e_1$
1	$e_0 e_2 \gamma \gamma + x$	$6 e_2 e_0$	
1	e ₀ e ₂ γ γ +	5 6 e ₂ e ₀	
3	$e_0 e_2 \gamma \gamma$	$+ 5 6 e_2 e_0$	
3	$e_0 e_2 \gamma$	$(+5)$ 6 e_2 e_0	
5	$e_0 e_2$	$11 e_2 e_0$	
5	e_0	11 e ₀	
		11	

Environment Structure:

Example 3:

Applicative expression	Control Structures
$(\lambda x.1+(\lambda ww)x)[(\lambda z.2*z)7]$	$\delta_0 = \gamma \ \lambda_1^{x} \ \gamma \ \lambda_2^{z} \ 7$ $\delta_1 = \gamma \ \gamma + 1 \ \gamma \ \lambda_3^{w} \ x$ $\delta_2 = \gamma \ \gamma * 2 \ z$ $\delta_3 = \gamma \ \text{neg w}$

RULE	CONTROL	STACK	ENV
1	$e_0 \gamma \lambda_1^{x} \gamma \lambda_2^{z} 7$	e_0	e ₀ =PE
2	$e_0 \gamma \lambda_1^x \gamma \lambda_2^z$	7 e ₀	
4	$e_0 \gamma \lambda_1^{x} \gamma$	$^{0}\lambda_{2}^{z}$ 7 e ₀	
1,1,1	$e_0 \gamma \lambda_1^x e_1 \gamma \gamma * 2 z$	$e_1 e_0$	$e_1 = [7/z]e_0$
3,3	$e_0 \gamma \lambda_1^x e_1 \gamma \gamma$	* 2 7 e ₁ e ₀	
5	$e_0 \gamma \lambda_1^x e_1$	$14 e_1 e_0$	
2	$e_0 \gamma \lambda_1^{x}$	$14 e_0$	
4	$e_0 \gamma$	$^{0}\lambda_{1}^{x}$ 14 e ₀	
1	$e_0 e_2 \gamma \gamma + 1 \gamma \lambda_3^w x$	$e_2 e_0$	$e_2 = [14/x]e_0$
2	$e_0 e_2 \gamma \gamma + 1 \gamma \lambda_3^{W}$	$14 e_2 e_0$	
4	$e_0 e_2 \gamma \gamma + 1 \gamma$	$^{2}\lambda_{3}^{w}$ 14 e_{2} e_{0}	
1,1,3	$e_0 e_2 \gamma \gamma + 1 e_3 \gamma \text{ neg w}$	$\mathbf{e}_{3}\;\mathbf{e}_{2}\;\mathbf{e}_{0}$	$e_3 = [14/w]e_2$
5	$e_0 e_2 \gamma \gamma + 1 e_3$	$-14 e_3 e_2 e_0$	
1,1,3,3	$e_0 e_2 \gamma \gamma + 1$	$-14 e_2 e_0$	
5	$e_0 e_2$	-13 e ₂ e ₀	
5	e_0	-13 e ₀	
		-13	

Environment Structure:

Five CSE Rules (Minimally) Sufficient

- Let's take some shortcuts.
- CSE Rules 6 and 7: Unary and Binary Operators.

Five CSE Rules (Minimally) Sufficient (cont'd)

• In the control structures, abbreviate:

```
yy + to + yy - to - \dots (other binary operators) y \text{ neg to } neg y \text{ not to } not
```

 In other words, DO NOT standardize unops and binops.

Optimizations for the CSE Machine.

CSE Rules 6 and 7: Unary and Binary Operators.

	CONTROL	STACK	ENV
CSE Rule 6 (binop)	binop 	Rand Rand Result	Result=Apply[binop,Rand,Rand]
CSE Rule 7 (unop)	unop 	Rand Result	Result=Apply[unop,Rand]

CSE Rule 8: Conditional

• Do not standardize \rightarrow node. Instead, for B \rightarrow E1 | E 2, generate

• B evaluated first, then β pops the stack, keeps one δ and discards the other.

CSE Rule 8: Conditional.

	CONTROL	STACK	ENV
CSE Rule 8 (Conditional)	\ldots δ_{then} δ_{else} β \ldots δ_{then}	true	
	\ldots $\delta_{\textit{then}}$ $\delta_{\textit{else}}$ β \ldots $\delta_{\textit{else}}$	false	

Example:

Applicative expression	Control Structures
$(\lambda n.n < 0 \rightarrow -n \mid n)$ (-3)	$\delta_0 = \gamma \ \lambda_1^n \text{ neg } 3$ $\delta_1 = \delta_2 \ \delta_3 \ \beta < n \ 0$ $\delta_2 = \text{neg } n$

 $\delta_3 = \mathbf{n}$

RULE	CONTROL	STACK	ENV
1	$e_0 \gamma \lambda_1^n \text{ neg } 3$	e_0	e_0 =PE
7	$e_0 \gamma \lambda_1^n$ neg	$3 e_0$	
2	$e_0 \gamma \lambda_1^n$	-3 e ₀	
4	$e_0 \gamma$	$^{0}\lambda_{1}^{n}$ -3 e_{0}	
1,1	$e_0 e_1 \delta_2 \delta_3 \beta \leq n 0$	$e_1 \ e_0$	$e_1 = [-3/n]e_0$
6	$e_0 \ e_1 \ \delta_2 \ \delta_3 \ eta <$	$-3 \ 0 \ e_1 \ e_0$	
8	$e_0 \ e_1 \ \delta_2 \ \delta_3 \ \beta$	true $e_1 e_0$	
1,7	$e_0 e_1 \text{ neg n}$	$e_1 e_0$	
5,5	$e_0 e_1$	$3 e_1 e_0$	
		3	

CSE Rules 9 and 10: Tuples

- Do not standardize "tau". Instead, for a tuple of the form (E1, E2, ..., En), generate the control structure tau_n E1 ... En.
- tau_n will:
 - 1. Pop the top n values from the stack,
 - 2. Create a new n-tuple,
 - 3. Push the tuple on the stack.
- Note: tuple elements are evaluated right-to-left.

CSE Rules 9 and 10: Tuples.

	CONTROL	STACK	ENV
CSE Rule 9 (tuple formation)	$\dots \tau_n$	$V_1 \dots V_n \dots $ $(V_1,\dots,V_n) \dots$	
CSE Rule 10 (tuple selection)	γ 	$(V_1,,V_n)$ I V_I	

CSE Rule 11: n-ary Functions

- Do not standardize the "," node.
- Instead,
 - For $\lambda(x,y)$.E, simply allow multiple bindings in one environment.

CSE Rule 11: n-ary functions.

	CONTROL	STACK	ENV
CSE Rule 11 (n-ary function)	$ \gamma \\ e_m \delta_k$	${}^c\lambda_k^{V_1,\ldots,V_n}$ Rand e_m	e_m =[Rand $1/V_1$] [Rand n/V_n] e_c

Example:

Applicative expression	Control Structures
$(\lambda(x,y).x+y)(5,6)$	$\delta_0 = \gamma \lambda_1^{x,y} \tau_2 5 6$ $\delta_1 = + x y$

RULE	CONTROL	STACK	ENV
1,1	$e_0 \gamma \lambda_1^{x,y} \tau_2 56$	e_0	e_0 =PE
9	$e_0 \gamma \lambda_1^{x,y} \tau_2$	$5.6 e_0$	
2	$e_0 \gamma \lambda_1^{x,y}$	$(5,6) e_0$	
11	$e_0 \gamma$	${}^{0}\lambda_{1}^{x,y}$ (5,6) e_{0}	
1,1	$e_0 e_1 + x y$	$e_1 e_0$	$e_1 = [5/x][6/y]e_0$
6	$e_0 \ e_1 +$	$5 6 e_1 e_0$	
5,5	$e_0 e_1$	11 $e_1 e_0$	
		11	

Thank You!

REFERENCES

- Programming Language Pragmatics by Michael L. Scott. 3rd edition.
 Morgan Kaufmann Publishers. (April 2009).
- Lecture Slides of Dr.Malaka Walpola and Dr.Bermudez