## Austism\_screening

Chi Ting Low 6/29/2018

```
library(mlr) #machine learning
## Loading required package: ParamHelpers
library(foreign) #reading arff file
library(Amelia) #checking missing values
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.5, built: 2018-05-07)
## ## Copyright (C) 2005-2018 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(tidyverse) #ggplots
## -- Attaching packages -----
## √ ggplot2 2.2.1
                     √ purrr
                               0.2.5
## \sqrt{\text{tibble } 1.4.2} \sqrt{\text{dplyr}} 0.7.5
## \sqrt{\text{tidyr}} 0.8.1 \sqrt{\text{stringr}} 1.3.1
## √ readr
           1.1.1
                     √ forcats 0.3.0
## -- Conflicts ------ tidyverse_c
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(dplyr) #data manipulation
library(knitr) #for pretty table
library(PerformanceAnalytics) #for correlation
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
##
       first, last
## Attaching package: 'PerformanceAnalytics'
```

```
## The following object is masked from 'package:graphics':
##
## legend
library(corrr) #for correlation ntework
library(rpart.plot)

## Loading required package: rpart
set.seed(1234) #reproducible research
#reading data
data <- read.arff('Autism-Child-Data.arff')

#plot missing values
missmap(data)</pre>
```

## **Missingness Map**



As presented in the result it shows that there is only 1% of the data is missing. Therefore, it will be removed.

```
#remove missing values
data.na <- na.omit(data)

#rename variables
colnames(data.na) <- c("A1_Score", "A2_Score", "A3_Score", "A4_Score", "A5_Score", "A6_Score", "A7_Score
#summarize of the data</pre>
```

| name     | type   | na | mean | $\operatorname{disp}$ | median | mad | $\min$ | max | nlevs |
|----------|--------|----|------|-----------------------|--------|-----|--------|-----|-------|
| A1_Score | factor | 0  | NA   | 0.3145161             | NA     | NA  | 78     | 170 | 2     |

kable(summarizeColumns(data.na))

| name                | type                     | na | mean     | disp      | median | mad    | min | max | nlevs |
|---------------------|--------------------------|----|----------|-----------|--------|--------|-----|-----|-------|
| A2_Score            | factor                   | 0  | NA       | 0.4838710 | NA     | NA     | 120 | 128 | 2     |
| A3_Score            | factor                   | 0  | NA       | 0.2540323 | NA     | NA     | 63  | 185 | 2     |
| A4_Score            | factor                   | 0  | NA       | 0.4274194 | NA     | NA     | 106 | 142 | 2     |
| A5_Score            | factor                   | 0  | NA       | 0.2459677 | NA     | NA     | 61  | 187 | 2     |
| A6_Score            | factor                   | 0  | NA       | 0.2862903 | NA     | NA     | 71  | 177 | 2     |
| A7_Score            | factor                   | 0  | NA       | 0.3750000 | NA     | NA     | 93  | 155 | 2     |
| A8_Score            | factor                   | 0  | NA       | 0.4798387 | NA     | NA     | 119 | 129 | 2     |
| A9_Score            | factor                   | 0  | NA       | 0.4596774 | NA     | NA     | 114 | 134 | 2     |
| A10_Score           | factor                   | 0  | NA       | 0.2661290 | NA     | NA     | 66  | 182 | 2     |
| age                 | $\operatorname{numeric}$ | 0  | 6.427419 | 2.3864441 | 6      | 2.9652 | 4   | 11  | 0     |
| gender              | factor                   | 0  | NA       | 0.2983871 | NA     | NA     | 74  | 174 | 2     |
| ethnicity           | factor                   | 0  | NA       | 0.5645161 | NA     | NA     | 2   | 108 | 10    |
| jundice             | factor                   | 0  | NA       | 0.2459677 | NA     | NA     | 61  | 187 | 2     |
| austim              | factor                   | 0  | NA       | 0.1814516 | NA     | NA     | 45  | 203 | 2     |
| $contry\_of\_res$   | factor                   | 0  | NA       | 0.8024194 | NA     | NA     | 0   | 49  | 46    |
| $used\_app\_before$ | factor                   | 0  | NA       | 0.0241935 | NA     | NA     | 6   | 242 | 2     |
| result              | numeric                  | 0  | 6.366936 | 2.3427110 | 7      | 2.9652 | 0   | 10  | 0     |
| $age\_desc$         | factor                   | 0  | NA       | 0.0000000 | NA     | NA     | 248 | 248 | 1     |
| relation            | factor                   | 0  | NA       | 0.1411290 | NA     | NA     | 1   | 213 | 5     |
| Class_ASD           | factor                   | 0  | NA       | 0.4919355 | NA     | NA     | 122 | 126 | 2     |

```
#recode the variable
data.na$gender <- recode(data.na$gender, m = 'Male', f = 'Female')
data.na$Class_ASD <- recode(data.na$Class_ASD, YES = 'Yes', NO = 'No')
data.na$austim <- recode(data.na$austim, yes = 'Yes', no = 'No')
data.na$jundice <- recode(data.na$jundice, yes = 'Yes', no = 'No')

#plot the data for exploratory analysis
autism <- ggplot(data.na, aes(x = Class_ASD, fill = austim)) + geom_bar(stat = 'count', position = 'dod autism + labs(x = 'Class/ASD', y = 'Frequency') + guides(fill = guide_legend(title = "Autism"))</pre>
```



seen in the graph, it shows that participants with no Autism is also evenly distributed as identified as  $\operatorname{ASD}$  or not  $\operatorname{ASD}$ 

```
gender <- ggplot(data.na, aes(x = Class_ASD, fill = gender)) + geom_bar(stat = 'count', position = 'dod
gender + labs(x = 'Class/ASD', y = 'Frequency') + guides(fill = guide_legend(title = "Gender"))</pre>
```



The graph shows that male are morel likely to identified as ASD.

```
jundice <- ggplot(data.na, aes(x = jundice, fill = Class_ASD)) + geom_bar(stat = 'count', position = 'd
jundice + labs(x = 'Jundice', y = 'Frequency') + guides(fill = guide_legend(title = "Class/ASD"))</pre>
```



The graph shows that participants identified as ASD does not born with jundice

```
#show the total number of ethnicity
eth = table(data.na$ethnicity)
kable(eth)
```

| Var1           | Freq |
|----------------|------|
| Asian          | 46   |
| Black          | 14   |
| Hispanic       | 7    |
| Latino         | 8    |
| Middle Eastern | 26   |
| Others         | 14   |
| Pasifika       | 2    |
| South Asian    | 21   |
| Turkish        | 2    |
| White-European | 108  |

Majority of the particiapant are White European.

```
ethnicity <- ggplot(data.na, aes(x = ethnicity, fill = Class_ASD)) + geom_bar(stat = 'count', position ethnicity + labs(x = 'Ethnicity', y = 'Frequency') + guides(fill = guide_legend(title = "Autism")) + th
```



Ethnicity

As

shown in the graph, Asian and White European have the highest frequenct of identified as Austism.

```
#selecting relevant variable
data.selected \leftarrow data.na[,c(1:12,14,15,17,18,20,21)]
data.selected$relation <- as.character(data.selected$relation)</pre>
data.selected$relation[data.selected$relation == 'Health care professional'] <- 0</pre>
data.selected$relation[data.selected$relation == 'Parent'] <- 1</pre>
data.selected$relation[data.selected$relation == 'Relative'] <- 2</pre>
data.selected$relation[data.selected$relation == 'self'] <- 3</pre>
data.selected$relation[data.selected$relation == 'Self'] <- 3</pre>
#recode the factor variable
data.selected$gender <- recode(data.selected$gender, Male = 0, Female = 1)</pre>
data.selected$jundice <- recode(data.selected$jundice, No = 0, Yes = 1)</pre>
data.selected$austim <- recode(data.selected$austim, No = 0, Yes = 1)</pre>
data.selected$used_app_before <- recode(data.selected$used_app_before, no = 0, yes = 1)
data.selected$Class_ASD <- recode(data.selected$Class_ASD, No = 0, Yes = 1)</pre>
#unfactor data
data.selected$A1_Score <- as.numeric(data.selected$A1_Score)</pre>
data.selected$A2_Score <- as.numeric(data.selected$A2_Score)</pre>
data.selected$A3_Score <- as.numeric(data.selected$A3_Score)</pre>
data.selected$A4_Score <- as.numeric(data.selected$A4_Score)</pre>
data.selected$A5_Score <- as.numeric(data.selected$A5_Score)</pre>
data.selected$A6_Score <- as.numeric(data.selected$A6_Score)</pre>
data.selected$A7_Score <- as.numeric(data.selected$A7_Score)</pre>
```

```
data.selected$A8_Score <- as.numeric(data.selected$A8_Score)
data.selected$A9_Score <- as.numeric(data.selected$A9_Score)
data.selected$A10_Score <- as.numeric(data.selected$A10_Score)
data.selected$relation <- as.numeric(data.selected$relation)
data.selected$Class_ASD <- as.numeric(data.selected$Class_ASD)

#correlation
chart.Correlation(data.selected, histogram = T, cex = 30)</pre>
```



#correlation network
data.selected %>% correlate() %>% network\_plot(colors = 'red')



As presented in the correlation, it shows that there is highest correlation between the items/questionnaire with ASD. As this can be seen in the correlation network plot.

```
#factor data
data.selected$A1_Score <- as.factor(data.selected$A1_Score)</pre>
data.selected$A2_Score <- as.factor(data.selected$A2_Score)</pre>
data.selected$A3_Score <- as.factor(data.selected$A3_Score)</pre>
data.selected$A4_Score <- as.factor(data.selected$A4_Score)</pre>
data.selected$A5_Score <- as.factor(data.selected$A5_Score)</pre>
data.selected$A6_Score <- as.factor(data.selected$A6_Score)</pre>
data.selected$A7_Score <- as.factor(data.selected$A7_Score)</pre>
data.selected$A8_Score <- as.factor(data.selected$A8_Score)</pre>
data.selected$A9_Score <- as.factor(data.selected$A9_Score)</pre>
data.selected$A10_Score <- as.factor(data.selected$A10_Score)</pre>
data.selected$gender <- as.factor(data.selected$relation)
data.selected$jundice <- as.factor(data.selected$relation)</pre>
data.selected$austim <- as.factor(data.selected$relation)</pre>
data.selected$used_app_before <- as.factor(data.selected$relation)</pre>
data.selected$relation <- as.factor(data.selected$relation)</pre>
data.selected$Class_ASD <- as.factor(data.selected$Class_ASD)</pre>
#machine learning classification
#spliting data
n = nrow(data.selected)
train.set = sample(n, size = 2/3*n)
test.set = setdiff(1:n, train.set)
#making ml task
classif.task <- makeClassifTask(data = data.selected, target = 'Class_ASD')</pre>
```

```
#using decision tree algorithm
lrn <- makeLearner('classif.randomForest', predict.type = 'prob')

#train the model
model <- train(lrn, classif.task, subset = train.set)

#predict
pred <- predict(model, classif.task, subset = test.set)

#performance of prediction
performance <- performance(pred, measures = list(fpr, tnr, mmce, acc, mcc))
performance</pre>
```

```
## fpr tnr mmce acc mcc ## 0 1 0 1 1
```

By using random forest algorithm, it shows that it can perfectly predicted all the variable in the test set. This may be occurrence of overfitting because the sample size is small.

```
df = generateThreshVsPerfData(pred, measures = list(fpr, tpr, mmce, acc))
plotThreshVsPerf(df)
```



plotROCCurves(df)



## calculateConfusionMatrix(pred)

```
## true 0 1 -err.-
## 0 39 0 0
## 1 0 44 0
## -err.- 0 0
```