$$\begin{array}{ll} \text{f } \operatorname{Exam}(A,n): \\ b=1 & \bigodot(i) \\ \text{if } n <= 2: \text{ return } b & \bigodot(i) \\ i=1 & \circleddash(i) \\ \text{while } i \leq 8: \delta & \text{VOLTE} \\ b=b*\operatorname{Exam}(A, n/2) \\ i+1 \\ \text{for } i \text{ in } \operatorname{range}(n-1): \bigwedge \text{ VOLTE} \\ A[i]+aA[i+1] & \varTheta(i) \\ \text{return } b & \varTheta(i) \end{array}$$

- a) Si imposti la relazione di ricorrenza che ne definisce il tempo di esecuzione giustificando dettagliatamente l'equazione ottenuta.
- b) Si risolva la ricorrenza usando due metodi a scelta, dettagliando i passaggi del calcolo e giustificando ogni affermazione.

MET ODO PRINCIPALE

$$g(n) = \Theta(n)$$

METODO ITERATIVO

$$T(n) = \delta^{k} T(A, \frac{m}{2^{k}})$$

 $T(\eta) = 8^{\log_2(\eta)} \cdot \Theta(1) +$

$$= 8^{\kappa} T(A, \frac{M}{2^{\kappa}}) + \sum_{i=0}^{\kappa-1} \delta^{i} \Theta(\frac{M}{2^{i}})$$

$$\sum_{i=0}^{N-1} \delta^i \Theta\left(\frac{M}{2^i}\right)$$

$$\frac{1=0}{2\lambda(n)-1}$$

$$\sum_{i=0}^{\log(n)-1} \Theta\left(\left(\frac{\delta}{2}\right)^{i}\right)$$

$$T(m) = M^3 \Theta(1) + \Theta(m) \sum_{i=0}^{\log(1)} (4^i) = \Theta(m^3) + \Theta(n) \left[\frac{4^{\log(1)} - 1}{3} \right]$$

$$T(n) = \Theta(n^3) + \Theta(n) \left[\frac{1}{3} (n^2 - 1) \right] = \Theta(m^3)$$

$$T(A,n) = \delta T(A, \frac{n}{1}) + \Theta(n)$$

una rotazione di k posizioni verso sinistra, $1 \le k < n$. Ad esempio, per A =[5, 7, 9, 2, 3] il valore di $k \ge 2$ mentre per $A = [9, 2, 3, 5, 7] \ge 4$. Progettare un'algoritmo che, dato l'array A, in tempo $O(\log n)$ restituisca il valore di k. Dell'algoritmo proposto: a) si dia la descrizione a parole; b) si scriva lo pseudocodice; c) si giustifichi il costo computazionale. COME PRIMA COSA, CERCO TRAMITE RICERCA BINARIA L'ELEMENTO DI INDICE C PER CUI A[c-1] > A[c], LA ROTAZIONE FA SI CHE L'ARRAY SIA IN UN LATO CRESCENTE, E NELL'ALTRO DECRESCENTE, QUINDI, CONTROLLANDO L'ELEMENTO SUCCESSIVO AD I, SAPRO' SE SIAMO NELLA PARTE CRESCENTE (VADO A DESTRA) O IN QUELLA DE CRESCENTE (VADO A SINISTRA. SI NOTI CHE ESSENDO LA ROTAZIONE COMPRESA FRA 4 ED M, LA PARTE CRESCENTE SARA' SEMPRE A SINISTRA. SE L'ARRAY E ORDINATO, K = M. UNA VOLTA TRO VATO PICCO L'ELEMENTO, LA ROTATIONE JARA' LEM (A)-i. DEF ESZ(A, i=0, J=LEN(A)-1): i>i-1 E 1>1+1 IF (i== 5): 9(1) RETURN LEN (A); HARRAY GIA ORDINATO $\Theta(1)$ MID = (i+J)//2; # DIVISIONE INTERA $\Theta(i)$ IF ((A[MID-1) > A[MID]) AND (A[MID-1] > A[MID-2]): **-** (9(1) RETURN LEN(A)-MID; - B(1) IF (A[MID] > A[MID-1]): # SIANO NELLA CRESCENTE $-\Theta(i)$ RETURN ESZ(A, MID, J); # VANO A DESTRA - T(^M/₂) RETURN ESZ (A, i, MID-1); # VADO A SINISTRA - 1 ("/2) $T(m) = T(\frac{m}{2}) + \Theta(1)$ ESSENDO RICERCA BINARIA E O (log (n)) METODO PRINCIPALE }(n) = ⊖(1) May, 2 = O(1) SELONDO CASO T(A) = O (3 · Loy (A)) mlog = n = 1

Esercizio 2 (10 punti): Un array A ordinato di n > 1 interi distinti ha subito

Esercizio 3 (10 punti): Progettare un algoritmo che, dato il puntatore alla radice di un albero binario di ricerca T, modifica il valore di ciascun nodo di T in modo che il nuovo valore del nodo risulti la somma di tutte le chiavi(che, in quanto tali, sono tutte distinte) che in T avevano un valore maggiore della sua chiave originaria.

Ad esempio l'albero sulla destra è il risultato dell'applicazione dell'algoritmo sul·l'albero binario di ricerca T riportato a sinistra.

- _ Il costo computazionale dell'algoritmo proposto deve essere $\Theta(n)$ dove n è il _ numero di nodi dell'albero. _ Dell'algoritmo proposto:
 - a) si dia la descrizione a parole;
 - b) si scriva lo pseudocodice;
 - c) si giustifichi il costo computazionale.

• • • •	e2 23 (4)	-			
FARO' UNA VISITA	IN PRE	ORDER DE	L TIPO	FIGLIO D	7F3TRO - N 0 DO -
FIGLIO SINISTRO,					
TRACCIA DEL					
The year	VIIIO NE		7 1 10 614116.		
DEF ES3(NOVO):				
IF (NODO ->	RIGHT):				
	NODO -> RIG	(AT)			
TMP = NOD(
NODO -0 KEY					
SOMMA +=					
IF (NODO -					
E23(NODOSLE	FT);			
ST (m) = T (K)+ T (m	-K-1)+	9(1)		
				K = NODI	SOTTO ALB. 5X
(T(1)=0(1)					
DIMOSTRO PER 505	TITUZIONE	CHE T(m) = (9(n)		
$an \leq T(n) \leq bn$	ξ T(1)	= T (K)+T(M-K	-i) + C		
CASO BASE IP	OT. INDUMIN	A: VM Lm -	am ≤ T	$(m) \leq b$	m
25 d 5 b					