Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination June 2010

Chemistry

CHEM5

Unit 5 Energetics, Redox and Inorganic Chemistry

Monday 28 June 2010 9.00 am to 10.45 am

For this paper you must have:

- the Periodic Table/Data Sheet provided as an insert (enclosed)
- a calculator.

Time allowed

• 1 hour 45 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.
- The Periodic Table/Data Sheet is provided as an insert.
- Your answers to the questions in Section B should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use accurate scientific terminology.

Advice

 You are advised to spend about 1 hour 15 minutes on Section A and about 30 minutes on Section B.

Section A

Answer all questions in the spaces provided.

1 Calcium fluoride occurs naturally as the mineral fluorite, a very hard crystalline solid that is almost insoluble in water and is used as a gemstone.

Tables 1 and 2 contain thermodynamic data.

Table 1

Process	∆H [⊕] / kJ mol ⁻¹
Ca(s) → Ca(g)	+193
$Ca(g) \rightarrow Ca^{+}(g) + e^{-}$	+590
$Ca^{+}(g) \rightarrow Ca^{2+}(g) + e^{-}$	+1150
$F_2(g) \rightarrow 2F(g)$	+158
$F(g) + e^- \rightarrow F^-(g)$	-348

Table 2

Name of enthalpy change	∆ <i>H</i> [⇔] / kJ mol ^{–1}
Enthalpy of lattice dissociation for calcium fluoride	+2602
Enthalpy of lattice dissociation for calcium chloride	+2237
Enthalpy of hydration for F ⁻ ions	-506
Enthalpy of hydration for Cl ⁻ ions	-364
Enthalpy of hydration for Ca ²⁺ ions	-1650

1 (a)	Write an equation, including state symbols, for the process that occurs when the calcium fluoride lattice dissociates and for which the enthalpy change is equal to the lattice enthalpy.	
	(1 ma	ırk)

1 (b) (i)	Define the term standard enthalpy of formation.
	(3 marks)
	(Extra space)
1 (b) (ii)	Write an equation, including state symbols, for the process that has an enthalpy change equal to the standard enthalpy of formation of calcium fluoride.
	(1 mark)
1 (b) (iii)	Use data from the Tables 1 and 2 to calculate the standard enthalpy of formation for calcium fluoride.
	(3 marks) (Extra space)
	Question 1 continues on the next page

1 (c)	Explain why the enthalpy of lattice dissociation for calcium fluoride is greater than that for calcium chloride.
	(2 marks)
1 (d)	Calcium chloride dissolves in water. After a certain amount has dissolved, a saturated solution is formed and the following equilibrium is established.
	$CaCl_2(s)$ \longrightarrow $Ca^{2+}(aq) + 2Cl^{-}(aq)$
1 (d) (i)	Using data from Table 2, calculate the enthalpy change for this reaction.
	(2 marks)
1 (d) (ii)	Predict whether raising the temperature will increase, decrease or have no effect on the amount of solid calcium chloride that can dissolve in a fixed mass of water. Explain your prediction.
	(If you have been unable to obtain an answer to part (d) (i), you may assume that the enthalpy change = -60 kJ mol^{-1} . This is not the correct answer.)
	Effect on amount of solid that can dissolve
	Explanation
	(3 marks)

	Calcium fluoride crystals absorb ultra-violet light. Some of the energy gained is given out as visible light. The name of this process, fluorescence, comes from the name of the mineral, fluorite.
	Use your knowledge of the equation $\Delta E = hv$ to suggest what happens to the electrons in fluorite when ultra-violet light is absorbed and when visible light is given out.
	(2 marks)
	(Extra space)
17	

Turn over for the next question

2	Sodium, aluminium and silicon are solid elements with a silver colour. These elements react with oxygen to form oxides with high melting points. Aluminium is a reactive metal, but it resists corrosion in water because it has a surface coating of aluminium oxide.
2 (a	In terms of its structure and bonding, explain why silicon dioxide has a high melting point.
	(3 marks)
	(Extra space)
2 (t) State the type of bonding in aluminium oxide.
	(1 mark)
2 (0) Write an equation for the reaction of aluminium with oxygen.
	(1 mark)
2 (0	Suggest one property of the aluminium oxide coating that causes aluminium to resist corrosion in water.
	(1 mark)
2 (6	Sodium metal is not resistant to corrosion in water, despite having a surface coating of sodium oxide. Write an equation to show how sodium oxide reacts with water.
	(1 mark)

11

2	(f)		Aluminium oxide is amphoteric. It reacts with acids and alkalis.
2	(f)	(i)	Write an equation for the reaction between aluminium oxide and hydrochloric acid.
			(1 mark)
2	(f)	(ii)	Write an equation for the reaction between aluminium oxide and an excess of aqueous sodium hydroxide.
			(1 mark)
2	(g)		Silicon dioxide does not react with hydrochloric acid but it does react with sodium hydroxide. State one property of silicon dioxide that can be deduced from this information and write an equation for its reaction with sodium hydroxide.
			Property
			Equation(2 marks)

Turn over for the next question

3	Transition metal ions can act as homogeneous catalysts in redox reactions. For example, iron(II) ions catalyse the reaction between peroxodisulfate ($S_2O_8^{2-}$) ionicodide ions.	
3 (a)	State the meaning of the term <i>homogeneous</i> .	
		(1 mark)
3 (b)	Suggest why ions from s block elements do not usually act as catalysts.	
		(1 mark)
3 (c)	Write an equation for the overall reaction that occurs, in aqueous solution, betv $S_2O_8^{\ 2^-}$ ions and I^- ions.	/een
		(1 mark)
3 (d)	Give one reason why, in the absence of a catalyst, the activation energy for the reaction between $S_2O_8^{2-}$ ions and I^- ions is high.	Э
		(1 mark)
3 (e)	Write two equations to show how Fe^{2+} ions can catalyse the reaction between $S_2O_8^{2-}$ ions and I^- ions. Suggest one reason why the activation energy for each these reactions is low.	ch of
	Equation 1	
	Equation 2	
	Reason	
	((3 marks)

Turn over for the next question

3 (f)	Explain why Fe ³⁺ ions are as effective as Fe ²⁺ ions in catalysing this reaction.	
	(1 mark)	
		8

4	Transition elements form complex ions with a range of colours and shapes.	
4 (a)	By considering its electron arrangement, state how an element can be classifitransition element.	ed as a
		(1 mark)
4 (b)	Explain the meaning of the term complex ion.	
		(2 marks)
4 (c)	In terms of electrons, explain why an aqueous solution of cobalt(II) sulfate ha colour.	s a red
		(3 marks)
4 (d)	The ligand EDTA ⁴⁻ is shown below.	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4 (d) (i)	Draw circles around the atoms of two different elements that link to a transition	on motal
4 (u) (i)	ion by a co-ordinate bond when EDTA ⁴⁻ behaves as a ligand.	(2 marks)
4 (d) (ii)	Write an equation for the reaction between EDTA ^{4–} and a $[Co(H_2O)_6]^{2+}$ ion. U abbreviation EDTA ^{4–} in your equation.	
		(1 mark)

4	(d) (iii)	Explain why the complex ion, formed as a product of the reaction in part (d) (ii), is more stable than the $[Co(H_2O)_6]^{2+}$ ion.
		(2 marks)
4	(e)	The diagram below shows part of the structure of haemoglobin.
		N N

Haemoglobin contains an iron(II) ion bonded to five nitrogen atoms and one other ligand. The fifth nitrogen atom and the additional ligand are not shown in this diagram.

4 (e) (i) In this diagram, bonds between nitrogen and iron are shown as N→Fe and as N—Fe. State the meaning of each of these symbols.

Meaning of →

4 (e) (ii) State the function of haemoglobin in the blood.

......(1 mark)

4 (e) (iii) With reference to haemoglobin, explain why carbon monoxide is toxic.

(2 marks)

16

The scheme below shows some reactions of copper(II) ions in aqueous solution.W, X, Y and Z are all copper-containing species.

Identify ion W. Describe its appearance and write an equation for its formation from
$[Cu(H_2O)_6]^{2+}$ (aq) ions.

Appearance

Equation	 	 	
			12 marks

5 (b) Identify compound **X**. Describe its appearance and write an equation for its formation from $[Cu(H_2O)_6]^{2^+}(aq)$ ions.

Compound X.....

Appearance

Equation(3 marks)

5 (c)	Identify ion Y. Describe its appearance and write an equation for its formation from X.
	lon Y
	Appearance
	Equation(3 marks)
5 (d)	Identify compound Z . Describe its appearance and write an equation for its formation from $[Cu(H_2O)_6]^{2+}(aq)$ ions.
	Compound Z
	Appearance
	Equation(3 marks)
5 (e)	Copper metal can be extracted from a dilute aqueous solution containing copper(II) ions using scrap iron.
5 (e) (Write an equation for this reaction and give the colours of the initial and final aqueous solutions.
	Equation
	Initial colour
	Final colour(3 marks)
5 (e) (This method of copper extraction uses scrap iron. Give two other reasons why this method of copper extraction is more environmentally friendly than reduction of copper oxide by carbon.
	Reason 1
	Reason 2(2 marks)

17

Section B

Answer all questions in the spaces provided.

6 Methanol can be regarded as a carbon-neutral fuel because it can be synthesised from carbon dioxide as shown in the equation below.

$$CO_2(g) + 3H_2(g) \Longrightarrow CH_3OH(g) + H_2O(g)$$

Standard enthalpy of formation and standard entropy data for the starting materials and products are shown in the following table.

	CO ₂ (g)	H ₂ (g)	CH ₃ OH(g)	H ₂ O(g)
$\Delta H_{\rm f}^{\ominus}$ / kJ mol ⁻¹	-394	0	-201	-242
S [⊕] /JK ⁻¹ mol ⁻¹	214	131	238	189

6 (a)	Calculate the standard enthalpy change for this reaction.	
		(3 marks)
6 (b)	Calculate the standard entropy change for this reaction.	
		(3 marks)

	Question 6 continues on the next page
	(Extra space)
	(6 marks)
	(If you have been unable to calculate values for ΔH and ΔS you may assume that they are $-61\mathrm{kJmol^{-1}}$ and $-205\mathrm{JK^{-1}}$ mol ⁻¹ respectively. These are not the correct values.)
	Suggest why the industrial process is carried out at a higher temperature than you have calculated.
	Calculate the temperature at which the reaction becomes feasible.
6 (c)	Use your answers to parts (a) and (b) to explain why this reaction is not feasible at high temperatures.

6 (d)	Write an equation for the complete combustion of methanol. Use your equation to explain why the combustion reaction in the gas phase is feasible at all temperatures.	
	(4 marks)	
	(Extra space)	
6 (e)	Give one reason why methanol, synthesised from carbon dioxide and hydrogen, may not be a carbon-neutral fuel.	
	(1 mark)	_
		_

7 The electrons transferred in redox reactions can be used by electrochemical cells to provide energy.

Some electrode half-equations and their standard electrode potentials are shown in the table below.

Half-equation	E [⊕] /V
$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14\text{H}^+(\text{aq}) + 6\text{e}^- \rightarrow 2\text{Cr}^{3+}(\text{aq}) + 7\text{H}_2\text{O}(\text{I})$	+1.33
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0.00
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04

7 (a) Describe a standard hydrogen electrode.

(4 marks)

7 (b)	A conventional representation of a lithium cell is given below. This cell has an e.m.f. of +2.91 V	
	$\mathrm{Li(s)} \mid \mathrm{Li^{+}(aq)} \mid \mid \mathrm{Li^{+}(aq)} \mid \mathrm{MnO_{2}(s)} \; , \; \mathrm{LiMnO_{2}(s)} \mid \mathrm{Pt(s)}$	
	Write a half-equation for the reaction that occurs at the positive electrode of the	nis cell.
	Calculate the standard electrode potential of this positive electrode.	
		(2 marks)
7 (c)	Suggest what reactions occur, if any, when hydrogen gas is bubbled into a sol containing a mixture of iron(II) and iron(III) ions. Explain your answer.	ution
		(2 marks)

Question 7 continues on the next page

7 (d)	A solution of iron(II) sulfate was prepared by dissolving $10.00\mathrm{g}$ of $\mathrm{FeSO_4.7H_2O}$ ($M_r = 277.9$) in water and making up to $250\mathrm{cm^3}$ of solution. The solution was left to stand, exposed to air, and some of the iron(II) ions became oxidised to iron(III) ions. A $25.0\mathrm{cm^3}$ sample of the partially oxidised solution required $23.70\mathrm{cm^3}$ of $0.0100\mathrm{moldm^{-3}}$ potassium dichromate(VI) solution for complete reaction in the presence of an excess of dilute sulfuric acid.	
	Calculate the percentage of iron(II) ions that had been oxidised by the air.	
	(6 marks) (Extra space)	
	(Extra space)	1
	END OF QUESTIONS	
Copyright © 20	010 AQA and its licensors. All rights reserved.	

