Fonctions usuelles

Fonctions hyperboliques

Définition:

 $\forall x \in \mathbb{R}, \qquad \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2} \qquad \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2} \quad \text{et} \quad \operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Propriétés:

 $ch^{2}(x) - sh^{2}(x) = 1$ et $\frac{1}{ch^{2}(x)} = 1 - th^{2}(x)$

Cosinus hyperbolique : $x \mapsto \operatorname{ch}(x)$

Sinus hyperbolique : $x \mapsto \operatorname{sh}(x)$

Tangente hyperbolique : $x \mapsto \operatorname{th}(x)$

Fonctions hyperboliques réciproques

Propriétés: domaines de définition, expressions explicites (à savoir retrouver) et dérivées.

Fonctions trigonométriques réciproques

Propriétés: domaines de définition et dérivées.

$$\arccos: [-1,1] \to [0,\pi]$$

$$(x \in]-1,1[, \arccos'(x) = \frac{-1}{\sqrt{1-x^2}}]$$

$$\arcsin: [-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$\forall x \in]-1,1[, \quad \arccos'(x) = \frac{-1}{\sqrt{1-x^2}} \qquad \quad \forall x \in]-1,1[, \quad \arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \qquad \quad \forall x \in \mathbb{R}, \quad \arctan'(x) = \frac{1}{1+x^2}$$

$$\arctan: \mathbb{R} \to]-\frac{\pi}{2}, \frac{\pi}{2}[$$

$$\forall x \in \mathbb{R}, \quad \arctan'(x) = \frac{1}{1+x^2}$$

 $Arc cosinus : x \mapsto \arccos(x)$

 $\operatorname{Arc\ sinus}: x \mapsto \arcsin(x)$

Arc tangente : $x \mapsto \arctan(x)$

