

Unstructured Data Analysis Feature Extraction

By

Kathirmani Sukumar

Text Mining Process

Feature Extraction

- Text data is usually unstructured
- Algorithms can understand only understand numbers, vectors or matrixes
- Text data should be converted to structured data to perform useful analysis
- The process of conversion is termed as feature extraction
- Features are used to uniquely define properties of a document
- Single or group of words (which are also called as terms) are referred to as features
 of text document
- Theoretically even sentences or paragraphs are features

Unique terms

Text Data

Extract Terms

Terms or	Term ID
Tokens	טו וווווט
TORCHS	
amazon	1
book	2
of	3
products	4
reviews	5
tablet	6
••••	•••
••••	•••
zeon	10000

Vector Representation

- ▶ Each document is represented as vector of numbers
- lacktriangleright The i^{th} document in the corpus can be mathematically represented as vector

$$D_i = \{tw_{i1}, tw_{i2}, tw_{i3}, tw_{i4}, tw_{i5}, \dots tw_{in}\}$$

- lacktriangle Where tw_{i1} is the frequency of the first term in the i^{th} document
- Vector dimension is equal to number of unique terms in corpus

Document Term Matrix

$$D_{1} = \{tw_{11}, tw_{12}, tw_{13}, tw_{14}, \dots tw_{1n}\}$$

$$D_{2} = \{tw_{21}, tw_{22}, tw_{23}, tw_{24}, \dots tw_{2n}\}$$

$$D_{3} = \{tw_{31}, tw_{32}, tw_{33}, tw_{34}, \dots tw_{3n}\}$$

$$D_{4} = \{tw_{41}, tw_{42}, tw_{43}, tw_{44}, \dots tw_{4n}\}$$

$$\dots$$

$$D_{m} = \{tw_{m1}, tw_{m2}, tw_{m3}, tw_{m4}, \dots tw_{mn}\}$$

		T_1	T_2	T_3	T_4	•••	T_n
L)1	5	0				0
L)2	0	1				0
L)3	0	1				0
L) ₄	0	1				1
•••							1
D	m	1	2				10

Vector Model

Document Term Matrix (DTM)

Vector Representation

- Algorithms uses DTM to represent text documents
- Each column in DTM is a vector representation of a term
- Each row in DTM is a vector representation of a document

Docum	ent Ter	m Matı	rix				
	T_1	T_2	T_3	T_4		T_n	
D_1	5	0				0	
D_2	0	1	•••	•••		0	
D_3	0	1	•••	•••	•••	0	Vector representation of n^{th} term
D_4	0	1	•••	•••	•••	1	n term
						1	
D_m	1	2				10	Vector representation of m^{th} document
							in adeament

Characteristics of DTM

- It is usually a high dimensional matrix (m x n)
 - Ex: Amazon reviews data set with 1000 reviews when represented using DTM, the dimension was 1000 x 16542 (no. of documents x no. of unique terms)
- Most of the values in DTM will be zero, leading to a very sparse matrix
- Sparse matrix -> Mostly zeros

Term Document Matrix

- Term Document Matrix (TDM) is transpose of DTM
- In TDM, rows represents terms and columns represents documents
- Few algorithms uses TDM instead of DTM
 Term Document Matrix

	D_1	D_2	D_3	D_4		D_m
T_1	5	0				1
T_2	0	1				2
T_3						
T_4			•••	•••	•••	•••
T_n	0	1	•••	•••	•••	10

DTM vs TDM

Entity	Document Term Matrix	Term Document Matrix
Row-wise	Every row represents a document	Every row represents a term
Column-wise	Every column represents a term	Every column represents a document
Dimensions	No. of docs vs No. of unique terms (mxn)	No. of unique terms vs No. of docs (nxm)
Applications	Text classification Document clustering, Document similarity, Topic Modelling	Word clustering, word similarity

Terms Frequency

Document Term Matrix

	T_1	T_2	T_3	T_4	 T_n
D_1	5	φ	•••	•••	 0
D_2 D_3 D_4	0	1		•••	 0
D_3	0	1			 0
D_4	0	1			 1
					 0
D_m	1	2			 10

Column sum = Term Frequency

Ex: Frequency of Tn = 11

Document Length

Document Term Matrix

	T_1	T_2	T_3	T_4		T_n	
D_1	5	0				0	
D_2	0	1	•••	•••	•••	0	
D_3	0	1				0	
D_4	0	1				1	
•••			•••	•••	•••	0	
D_m	1	2				10	

Row sum = Document Length

Rank

Rank Table

	T_1	T_2	T_3	T_4		T_n
D_1	5	0				0
D_2	0	1				0
D_3	0	1				0
D_4	0	1			•••	1
•••			•••	•••	•••	0
D_m	1	2				10

Column-wise sum & order Terms

Freq.

Terms

Rank/Frequency Table

Document Term Matrix

Bag of word analysis

Terms	Freq.
wall	200
unit	100
products	58
nook	40
reviews	30

Text Data

Document Term Matrix

Rank / Frequency
Table

Visualization

Wordcloud

• Font size: Based on frequency

 Colors: Generally random. Can be used to represent some category

Layout: Generally random. Can be defined to represent any object

Problems with Unigrams

- ▶ Unigram One word per term
- Contexts of the words might get lost
- Case 1:
 - ► "Good" 100, "Not" 80
 - Actually in corpus it was "Not Good"
 - ▶ Meaning changes. Its actually more negative
- Case 2:
 - ▶ "Wall" 200, "mounted" 170, "issues" 180
 - ▶ It is actually "Wall mounting issues"
 - ▶ Redundant features

Sample Frequency Table

Term	Freq.
Good	100
not	80
Wall	200
Mounting	170
issues	180

N - Grams

- ▶ Unigrams One word per term
 - Example: amazon, nook, tablet, tocuch, screen etc
- ▶ **Bigrams** Two words per term
 - Not good, nook tablet, touch screen etc
- ▶ **Trigrams** Three words per term
 - ▶ Wall mounting issues, bad touch screen, very good service
- ▶ N-Grams N words per term

Example: N-Grams

"The customer service is really good. But the waiting is not that good. I like reading books in nook tablet. Touch screen is really good"

N - Grams	Unique Terms
Unigrams	The, customer, service, is, really, good, but, waiting, not, that, I, like, reading, books, in, nook, tablet, touch, screen
Bigrams	The customer, customer service, service is, is really, really good, good but, but the, the waiting, waiting is, is not, not that, that good,
Trigrams	The customer service, customer service is, service is really, is really good, really good but, good but the, but the waiting,