Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 4

Piotr Chachuła, Cezary Dudkiewicz, Piotr Roszkowski

Spis treści

	I. Projekt	
1.	Weryfikacja punktu pracy	3
	1.1. Opis postępowania	
2.	Odpowiedzi skokowe	4
	2.1. Wyznaczanie odpowiedzi skokwych . . 2.2. Wyznaczanie charakterystyki statycznej procesu . 2.3. Wzmocnienie statyczne . .	4
3.	Przekształcenie odpowiedzi skokowej	7

Część I

Projekt

1. Weryfikacja punktu pracy

1.1. Opis postępowania

W celu sprawdzenia poprawności wartości sygnałów $U_{\rm pp}$ i $Y_{\rm pp}$ pobudzono obiekt sterowaniem o wartości $U_{\rm pp}=2,0$ i sprawdzeniu czy stabilizuje się on w punkcjie pracy $Y_{\rm pp}=0,8$. Do symulacji wyjscia obiektu użyto udostępnionej funkcji symulacja_obiektu4Y. Do testów napisano skrypt PROJ1_1.m. Wyniki przedstawiono poniżej.

1.2. Wyniki

Zgodnie z przewidywaniami wyjscie obiektu ustaliło się na wartości $Y_{\rm pp}=2,0.$ Punkt pracy ustalony jest więc poprawnie.

Rys. 1.1. Odpowiedź obiektu na sterowanie
i $U_{\rm pp}=0.8$

2. Odpowiedzi skokowe

2.1. Wyznaczanie odpowiedzi skokwych

W celu wyznaczenia odpowiedzi skokowej obiekt, znajdujący się w punkcie pracy (tzn. $U_{pp}=2.0,Y_{pp}=0.8$) pobudzoną różną zmianą wartoci sterowań. Rysunek 2.1 przedstawia odpowiedź obiektu na jego różne wartosci.

2.2. Wyznaczanie charakterystyki statycznej procesu

Aby wyznaczyć charakterystykę statyczną procesu przeprowadzono analogiczne działania co w rozdziałe 1. Tym razem przy użyciu skryptu PROJ1_2.m dla wielu wartosci $U_{\rm pp}$ wyznaczono odpowiadające im $Y_{\rm pp}$ oraz z ich pomocą utworzono wykres 2.2. Jak widać charakterystyka statyczna obiektu jest liniowa, a co za tym idzie obiekt jest liniowy.

2.3. Wzmocnienie statyczne

Wzmocnienie statyczne, czyli stosunek pomiędzy zmianą wartosci wyjscia i zmianą wartosci sterowania w stanie ustalonym. Aby ją wyznaczyć można na przykład znaleźć nachylenie charakterystyki statycznej do osi OX, czyli np.:

$$K_{\text{stat}} = \frac{y(U_{\text{max}}) - y(U_{\text{min}})}{U_{\text{max}} - U_{\text{min}}}$$
(2.1)

W przypadku tak wykreślonej charakterystyki, wzmocnienie statyczne jest równe tangensowi kąta α pomiędzy prostą a osią OX.

$$K_{\text{stat}} = \frac{1,239 - 0,361}{2,8 - 1,2} \approx 0,549$$
 (2.2)

2. Odpowiedzi skokowe 5

Rys. 2.1. Odpowiedzi procesu na skokowe zmiany sterowania w momencie k=11 $\,$

Rys. 2.2. Charakterystka statyczna $\boldsymbol{y}(\boldsymbol{u})$ symulowanego procesu

3. Przekształcenie odpowiedzi skokowej

Aby uzyskać znormalizowaną odpowiedź skokową, należy przerzutować ją względem punktu pracy oraz wielkosci skoku, a także przesuąć chwilę skoku sterowania do chwili k=0 (z chwili k_{skok}). Do tego celu można użyć wzoru:

$$s_i = \frac{s_{i+k_{skok}} - Y_{pp}}{\Delta U} \tag{3.1}$$

Wyznaczono ją przy użyciu skrpytu PROJ1_3.m (dla odpowiedzi skokwej przy $\Delta u=0.5$). Następnie przycięto ją do miejsca w którym osiąga 0,995 swojej maksymalnej wartosci. Długosc tej odpowiedzi jest przyjętym horyzontem dynamiki tego obiektu i jest równy 120. Wynik działania przedstawiony jest na rysunku 3. Odpowiedź ta zostanie użyta do zaprojektowania regulatora DMC.

Rys. 3.1. Postać przeksztal
conej odpowiedzi skokowej symulowanego obiektu ze zmianą sterowania w momencie
 $\mathbf{k}{=}0$