Lesson 25. Optimization with Equality Constraints, cont.

1 Overview

- Last time: the Lagrange multiplier method for optimization problems with one equality constraint
- Today: multiple equality constraints

2 The Lagrange multiplier method – m equality constraints

minimize/maximize
$$f(x_1,...,x_n)$$

subject to $g_1(x_1,...,x_n) = c_1$
 \vdots
 $g_m(x_1,...,x_n) = c_m$

• **Step 1.** Introduce Lagrange multipliers $\lambda_1, \ldots, \lambda_m$ for each equality constraint and form the Lagrangian function Z:

$$Z(x_1,...,x_n,\lambda_1,...,\lambda_m) = f(x_1,...,x_n) + \lambda_1[c_1 - g_1(x_1,...,x_n)] + \cdots + \lambda_m[c_m - g_m(x_1,...,x_n)]$$

• **Step 2.** Find the critical points by solving the system of equations implied by the first-order necessary condition:

$$\nabla Z(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=0$$

- **Step 3.** Classify each critical point as a local minimum or local maximum by applying the second-order sufficient condition:
 - The bordered Hessian matrix \overline{H} is

$$\overline{H} = \begin{bmatrix} 0 & 0 & \cdots & 0 & \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\ 0 & 0 & \cdots & 0 & \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \frac{\partial g_m}{\partial x_1} & \frac{\partial g_m}{\partial x_2} & \cdots & \frac{\partial g_m}{\partial x_n} \\ \frac{\partial g_1}{\partial x_1} & \frac{\partial g_2}{\partial x_1} & \cdots & \frac{\partial g_m}{\partial x_1} & \frac{\partial^2 Z}{\partial x_1^2} & \frac{\partial^2 Z}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 Z}{\partial x_1 x_n} \\ \frac{\partial g_1}{\partial x_2} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_m}{\partial x_2} & \frac{\partial^2 Z}{\partial x_2 \partial x_1} & \frac{\partial^2 Z}{\partial x_2^2} & \cdots & \frac{\partial^2 Z}{\partial x_2 x_n} \\ \vdots & \vdots \\ \frac{\partial g_1}{\partial x_n} & \frac{\partial g_2}{\partial x_n} & \cdots & \frac{\partial g_m}{\partial x_n} & \frac{\partial^2 Z}{\partial x_n \partial x_1} & \frac{\partial^2 Z}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 Z}{\partial x_n^2} \end{bmatrix}$$

• The *i*th bordered leading principal minor of \overline{H} — denoted by $|\overline{H}_i|$ — is the determinant of the square submatrix formed by the first m+i rows and columns of \overline{H}

• Let $(a_1,, a_n)$ be a critical point found in Step 2. Then	
(i) $f(a_1, a_2,, a_n)$ is a local minimum if	
$ \overline{H}_{m+1} , \overline{H}_{m+2} , \dots, \overline{H}_n $ all have the same sign as $(-1)^m$	
(ii) $f(a_1, a_2,, a_n)$ is a local maximum if	
$ \overline{H}_{m+1} $ has the same sign as $(-1)^{m+1}$ and $ \overline{H}_{m+1} , \overline{H}_{m+2} , \ldots, \overline{H}_n $ alternate in sign	
Example 1. Use the Lagrange multiplier method to find the local optima of	
minimize/maximize x_3 subject to $x_1 + x_2 + x_3 = 12$ $x_1^2 + x_2^2 - x_3 = 0$	
• In this problem, $n = \boxed{\hspace{1cm}}$ and $m = \boxed{\hspace{1cm}}$	
Step 1. Introduce the Lagrange multipliers $\lambda_1, \ldots, \lambda_m$ and form the Lagrangian function Z .	
ullet The Lagrangian function Z is	
Step 2. Find the critical points. • The gradient of Z is	
• The first-order necessary condition tells us that the critical points must satisfy	

Solving this	system of equations, we	e find that there as	e two critical poi	nts:
Classify th	e critical points as a loca	al minimum or lo	cal maximum.	
	d Hessian is			
		_		
he bordere	ed Hessian at the critical	$1 \text{ point } (x_1, x_2, x_3,$	$(\lambda_1, \lambda_2) = (2, 2, 8, 4)$	4/5, -1/5 is
he bordere	d leading principal min	nors $ H_{m+1} $, $ H_{m+2} $	$, \dots \text{ of } H(2, 2, 8) $, 4/5, –1/5) are
herefore,				

The bordered Hes	sian at the critical point $(x_1, x_2, x_3, \lambda_1, \lambda_2) = (-3, -3, 18, 6/5, 1/5)$ is	
The bordered lead	ling principal minors $ \overline{H}_{m+1} $, $ \overline{H}_{m+2} $, of $\overline{H}(-3, -3, 18, 6/5, 1/5)$ are	
Therefore,		

Example 2. Use the Lagrange multiplier method to find the local optima of

minimize/maximize
$$x_1^2 + x_2^2 + x_3^2$$

subject to $3x_1 + x_2 + x_3 = 5$
 $x_1 + x_2 + x_3 = 1$