Técnicas de Desenho de Algoritmos

Ana Paula Tomás

Desenho e Análise de Algoritmos

Novembro 2017

Técnicas de desenho de algoritmos

- Pesquisa exaustiva (exhaustive search)
- Estratégias ávidas, gananciosas, gulosas (greedy)
- Programação Dinâmica (dynamic programmimng)
- Divisão-e-conquista (Divide-and-conquer)
- . . .

Programação Dinâmica (DP)

- Obtém a solução à custa de soluções de subproblemas (ou de problemas relacionados).
- A construção é muitas vezes realizada por fases (como nos algoritmos de Floyd-Warshall, Bellman-Ford, Dijkstra, Prim).
- Cada subproblema só é resolvido uma vez e a sua solução é memorizada para utilização futura, se necessária.
- DP torna-se particularmente eficiente quando a partilha de subproblemas entre os subproblemas é significativa (não se reduz a "divide-and-conquer").
- Em problemas de otimização: utilizado quando as soluções ótimas têm subestrutura ótima (por exemplo, caminho mínimo de s para t num grafo), mas não só. Habitualmente, começamos por definir uma recorrência para caraterizar o valor ótimo e uma estratégia ótima em função de valores e estratégias para os subproblemas.

Algoritmo de Floyd-Warshall - aplicação de DP

Problema:

Determinar o comprimento do caminho mínimo de s para t, para **todos os pares** $(s,t) \in V \times V$, $s \neq t$.

- Pode ser resolvido usando o algoritmo de Dijkstra
 - Para cada nó v_i (origem), aplicar o algoritmo de Dijkstra para determinar D_{ij}^{\star} , para todo j. Complexidade: $O(|V|(|E|+|V|)\log_2|V|)$.
 - Para grafos densos, com $|E| \in \Theta(|V|^2)$, seria $O(n^3 \log_2 n)$.
- Mas, o algoritmo de Floyd-Warshall (1962), tem complexidade $\Theta(n^3)$.

```
AlgoritmoFloyd-Warshall(D, n)
```

```
Para k \leftarrow 1 até n fazer
Para i \leftarrow 1 até n fazer
Para j \leftarrow 1 até n fazer
Se D[i,j] > D[i,k] + D[k,j] então D[i,j] \leftarrow D[i,k] + D[k,j];
```

Algoritmo de Floyd-Warshall - aplicação de DP

Problema:

Determinar o comprimento do caminho mínimo de s para t, para **todos os pares** $(s,t) \in V \times V$, $s \neq t$.

- Pode ser resolvido usando o algoritmo de Dijkstra
 - Para cada nó v_i (origem), aplicar o algoritmo de Dijkstra para determinar D_{ij}^{\star} , para todo j. Complexidade: $O(|V|(|E|+|V|)\log_2|V|)$.
 - Para grafos densos, com $|E| \in \Theta(|V|^2)$, seria $O(n^3 \log_2 n)$.
- Mas, o algoritmo de Floyd-Warshall (1962), tem complexidade $\Theta(n^3)$.

```
Inicialmente: D_{ii}=0, D_{ij}=d(i,j), se i\neq j e (i,j)\in E; se não, D_{ij}=\infty.
```

```
AlgoritmoFloyd-Warshall(D, n)
```

```
Para k \leftarrow 1 até n fazer

Para i \leftarrow 1 até n fazer

Para j \leftarrow 1 até n fazer

Se D[i,j] > D[i,k] + D[k,j] então D[i,j] \leftarrow D[i,k] + D[k,j];
```

Algoritmo de Floyd-Warshall (cont.)

Seja G = (V, E, d) um grafo dirigido finito, com $d(e) \in \mathbb{R}^+$, para todo $e \in E$. Suponhamos que os nós estão **numerados de** 1 **a** n = |V|

- Seja $D_{ij}^{(k)}$ o valor da distância mínima de i para j em G se os percursos só puderem ter os nós $1, 2, \ldots, k$ como nós intermédios, para cada $k \ge 0$, fixo.
- Para todo $(i,j) \in V \times V$,

$$\begin{array}{lcl} D_{ij}^{(k)} & = & \min(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}), & \text{se } k \geq 1 \\ \\ D_{ij}^{(0)} & = & \begin{cases} d(i,j), & \text{se } i \neq j \land (i,j) \in E \\ \infty & \text{se } i \neq j \land (i,j) \notin E \\ 0 & \text{se } i = j \end{cases} \end{array}$$

- O algoritmo de Floyd-Warshall baseia-se nesta recorrência e no facto de $D_{ij}^{(k+1)} \leq D_{ij}^{(k)}$, o que permite dispensar a construção de matrizes auxiliares.
- A matriz das distâncias mínimas é $D_{ij}^{(n)}$, sendo n = |V|. Notar que, nesse caso, qualquer nó pode ser nó intermédio.

Algoritmo de Bellman-Ford (aplicação de DP)

- G = (V, E, d) pode ter pesos negativos. O algoritmo determina percursos com peso mínimo de um nó origem s para cada nó $v \in V = \{1, 2, ..., n\}$.
- Baseia-se no facto de o número de ramos de um percurso com peso mínimo não exceder n - 1, a menos que o percurso inclua ciclos com peso negativo.
 Nesse caso, não existiria um percurso com peso mínimo (podia diminuir o peso quanto quiser).
- Inclui um passo para verificar se existem ciclos com peso negativo (nesse caso, as distâncias finais não estariam corretas).

```
ALGORITMO BELLMAN-FORD(s, n)

Para cada v \in V fazer dist[v] \leftarrow \infty

dist[s] \leftarrow 0;

Para r \leftarrow 1 até n-1 fazer

Para cada (u, v) \in E fazer

Se dist[v] > dist[u] + d(u, v) então dist[v] \leftarrow dist[u] + d(u, v)

Para cada (u, v) \in E fazer

Se dist[v] > dist[u] + d(u, v) então retorna false; /* ciclos com peso negativo */

retorna true; /* sem ciclos com peso negativo */
```

Algoritmo de Bellman-Ford (adaptado)

Para $d(e) \in \mathbb{R}^+$, a matriz das distâncias mínimas $\tilde{D}_{ij}^{(n-1)}$ para **todos os** (i,j) pode ser definida pela recorrência

$$\begin{split} \tilde{D}_{ij}^{(1)} &= \begin{cases} d(i,j) \text{ se } i \neq j \text{ e } (i,j) \in E \\ \infty, \text{ se } i \neq j \text{ e } (i,j) \notin E \\ 0, \text{ se } i = j. \end{cases} \\ \tilde{D}_{ij}^{(r)} &= \min \{ \tilde{D}_{ik}^{(r-1)} + \tilde{D}_{kj}^{(1)} \mid 1 \leq k \leq n \} \\ &= \min \{ \tilde{D}_{ik}^{(1)} + \tilde{D}_{kj}^{(r-1)} \mid 1 \leq k \leq n \}, \text{ se } r \geq 2 \end{cases}$$

onde $\tilde{D}_{ij}^{(r)}$ é a distância mínima de i para j se o percurso não puder ter mais do que r ramos, para cada $r \geq 1$. Calcula-se como um **produto de matrizes** \otimes em $(\mathbb{R}, \min, +)$, sendo um **método multiplicativo**. Os percursos mínimos têm subestrutura ótima, pelo que $\tilde{D}^{(r+s)} = \tilde{D}^{(r)} \otimes \tilde{D}^{(s)}$ e é dada por

$$(\tilde{D}^{(r)} \otimes \tilde{D}^{(s)})_{ij} = \min_{1 \leq k \leq n} (\tilde{D}^{(r)}_{ik} + \tilde{D}^{(s)}_{kj})$$

Para reduzir o número de multiplicações \otimes de $\Theta(n)$ para $\Theta(\log_2 n)$ podemos usar **o método binário para cálculo de potências**: $x^n = (x^2)^{\lfloor n/2 \rfloor} x^{n\%2} = \prod_{t=0}^{\lfloor \log_2 n \rfloor} (x^{2^t})^{b_t}$, onde b_t é o bit t da representação de n em binário. Por exemplo, $\tilde{D}^{19} = \tilde{D}^{16} \otimes \tilde{D}^2 \otimes \tilde{D}$.

Cálculo do fecho transitivo de uma relação binária

- Um grafo dirigido G = (V, E) representa uma **relação binária** R definida no conjunto V. O conjunto de ramos corresponde ao conjunto de pares ordenados que definem R (recordar que $R \subseteq V \times V$, por definição).
- R é transitiva se $((x,y) \in R \land (y,z) \in R) \Rightarrow (x,z) \in R$, para todo (x,y,z).
- O fecho transitivo de R denota-se por R⁺ e é a menor relação binária definida em V que é transitiva e contém R. Menor para ⊆.
- Usando a composta de relações, define-se $R^1=R$ e $R^{i+1}=R^iR=RR^i$. É conhecido que:
 - $(x,y) \in R^+$ sse existir um percurso de x para y no grafo de R.
 - $(x, y) \in R^i$ sse existir um percurso de x para y com i ramos no grafo de R, para $i \ge 1$. Prova-se que $R^+ = \bigcup_{i=1}^n R^i$, sendo n = |V|.

Algoritmo de Warshall para cálculo do fecho transitivo

• A matriz da relação binária R é uma matriz de booleanos dada por

$$M_{ij} = \begin{cases} 1 & \text{se } (i,j) \in R \\ 0 & \text{se } (i,j) \notin R \end{cases}$$

- ullet À semelhança do algoritmo de Floyd-Warshall, seja $M_{ii}^{(k)}=1$ se existir algum percurso no grafo de R do nó i para o nó j que, quando muito, use nós numerados até k como nós intermédios.
- Então, $M_{ii}^{(0)} = M_{ii}$ e $(i,j) \in \mathbb{R}^+$ sse $M_{ii}^+ = M_{ii}^{(n)} = 1$, para $V = \{1, \dots, n\}$.

```
ALGORITMO WARSHALL(M, n)
     1 Para k \leftarrow 1 até n fazer

2 Para i \leftarrow 1 até n fazer

3 Para j \leftarrow 1 até n fazer

4 M[i,j] \leftarrow M[i,i] \lor M[i,j]
                 M[i, i] \leftarrow M[i, i] \lor (M[i, k] \land M[k, j]);
```

(Linha 4) explora propriedades de R^+ ; mais eficiente do que $M^{(k)}[i,j] \leftarrow M^{(k-1)}[i,j] \lor (M^{(k-1)}[i,k] \land M^{(k-1)}[k,j])$;

Outra abordagem DP para cálculo do fecho transitivo

- Podemos adaptar ideia do algoritmo de Bellman-Ford.
- Definimos $\tilde{M}_{ij}^{(r)} = 1$ se existir algum percurso no grafo de R do nó i para o nó j com até r ramos, para $r \ge 1$, fixo.
- Recorrência: para todos os pares (i, j) tem-se

$$\tilde{M}_{ij}^{(1)} = M_{ij}$$

$$\tilde{M}_{ij}^{(r)} = \tilde{M}_{ij}^{(r-1)} \vee (\bigvee_{k=1}^{n} (\tilde{M}_{ik}^{(r-1)} \wedge M_{kj})), \quad \text{para } r \geq 2$$

 Podemos avaliar usando o método multiplicativo e adaptar o método binário para reduzir o número de multiplicações, pois

$$\tilde{M}^{(r+s)} = \tilde{M}^{(r)} \otimes \tilde{M}^{(s)}$$

onde o produto de matrizes \otimes é considerado em $(\{0,1\}, \vee, \wedge)$.

• Pontos fixos: Se $\tilde{M}^{(r)} = \tilde{M}^{(r+1)}$, então $\tilde{M}^{(r)} = M^+$. Também, no algoritmo de Bellman-Ford (adaptado), se $\tilde{D}^{(r)} = \tilde{D}^{(r+1)}$, então $\tilde{D}^{(r)} = \tilde{D}^{(n)}$.

Aplicação de DP para obter expressões regulares para AFs – Método de Kleene

Dado um autómato finito $A=(S,\Sigma,\delta,s_1,F)$, com estados numerados de 1 a n, seja $r_{ij}^{(k)}$ a expressão que descreve a linguagem determinada pelos percursos de i para j que passam quando muito por estados intermédios etiquetados com números não superiores a k.

$$r_{ii}^{(0)} = \left\{ egin{array}{ll} arepsilon & sse & ext{não existe qualquer lacete em } i \\ arepsilon + a_1 \ldots + a_p & sse & ext{os lacetes em } i ext{ estão etiquetados com } a_1, \ldots, a_p \end{array}
ight.$$

$$r_{ij}^{(0)} = \begin{cases} \emptyset & \textit{sse} & \text{n\~ao} \ \text{existe qualquer arco} \ (i,j) \\ a_1 + \ldots + a_p & \textit{sse} & a_1, \ldots, a_p \ \text{etiquetam os arcos} \ (i,j) \end{cases}$$

Define-se agora $r_{ij}^{(k)}$, para $k \ge 1$, recursivamente assim:

$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}$$

onde ★ é o (habitual) fecho de Kleene. A expressão que define a linguagem reconhecida pelo autómato é dada por:

Método de Kleene para obter expressões regulares para AFs

Muito trabalhoso...

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* . Se 1 e 2 fossem estados finais seria $r_{11}^{(2)} + r_{12}^{(2)} = b^* + b^*ac^*$.

12 / 36

Algoritmo CYK para decidir se $x \in \mathcal{L}(G)$, para GIC G na forma normal de Chomsky, e $x \in \Sigma^*$

- Para $G = (V, \Sigma, P, S)$ fixa, a complexidade temporal do algoritmo é $O(|x|^3)$, ou seja, é cúbica no comprimento da palavra que se pretende analisar.
- Seja N[i, i + s] o conjunto de variáveis em V que geram a subpalavra $x_i \dots x_{i+s}$ de x, isto é, $N[i, i + s] = \{A \mid A \in V, A \Rightarrow_G^* x_i \dots x_{i+s}\}.$
- Algoritmo CYK:
 - $N[i,i] := \{A \mid A \in V, A \rightarrow x_i\}$, para $1 \le i \le n$ e $N[i,j] := \emptyset$, para todo (i,j), com $i \ne j$.
 - Para cada s entre 1 e n-1 fazer

 Para cada i entre 1 e n-s, considerar N[i,k] e N[k+1,i+s],

 para todo k com $i \le k \le (i+s)-1$. Se existir $(A \to BC) \in P$ com $B \in N[i,k]$ e $C \in N[k+1,i+s]$, acrescentar A a N[i,i+s].
 - A palavra x está em $\mathcal{L}(\mathcal{G})$ se e só se $S \in N[1, n]$.

Algoritmo CYK - aplicação de DP

É usual usar uma matriz, com N[t, t + s] na coluna t e linha #s+1.

# <i>n</i>	N[1, n]					
#n-1	N[1, n-1]	N[2, n]				
:	:	:	:			
#3	N[1, 3]	N[2, 4]		N[n-2, n]		
#2	N[1, 2]	N[2, 3]		N[n-2, n-1]	N[n-1, n]	
#1	N[1, 1]	N[2, 2]		N[n-2, n-2]	N[n-1, n-1]	N[n, n]
	<i>x</i> ₁	<i>x</i> ₂	• • • •	x_{n-2}	x_{n-1}	X _n

A entrada N[t, t+s] da tabela apresenta o conjunto das categorias possíveis para a subpalavra $x_t \cdots x_{t+s}$ de x. Portanto, carateriza as categorias das subpalavras indicadas na matrix seguinte:

#n	$x_1 \cdot \cdot \cdot x_n$				
#n-1	$x_1 \cdot \cdot \cdot x_{n-1}$	$x_2 \cdot \cdot \cdot x_n$	_		
#3 #2	x ₁ x ₂ x ₃	x2x3x4	 $x_{n-2}x_{n-1}x_n$		
#2	x ₁ x ₂	x2x3	 $x_{n-2}x_{n-1}$	$x_{n-1}x_n$	
#1	<i>x</i> ₁	x ₂	 x_{n-2}	x_{n-1}	×n

Algoritmo CYK - Exemplo

Para GIC G, com $V = \{E, T, F, E_1, E_2, T_1, T_2, T_3, M, S, X, Q, A, B\}$, símbolo inicial E, e seguintes produções:

tem-se $(n+n)*n\in\mathcal{L}(\mathcal{G})$? Sim, porque E ocorre no topo da tabela:

#7	$\{T, E\}$						
#6	Ø	Ø					
#5	$\{F, T, E\}$	Ø	Ø				
#4	Ø	$\{T_3\}$	Ø	Ø			
#3	Ø	{ <i>E</i> }	Ø	Ø	Ø		
#2	Ø	Ø	$\{E_1\}$	$\{T_3\}$	Ø	$\{T_1\}$	
#1	{ <i>A</i> }	$\{E,T,F\}$	{ <i>M</i> }	$\{E,T,F\}$	{ <i>B</i> }	{ <i>X</i> }	$\{E, T, F\}$
	(n	+	n)	*	<u> </u>

Contagem de percursos em grafos

Problema:

Dado um grafo dirigido finito G = (V, E), com n nós numerados de 0 a n - 1, determinar o número de percursos de v_i para v_i , para todos os pares (v_i, v_i) de nós do grafo. Esses valores devem ser guardados numa matriz M, fazendo M[i,j] = -1 se existir uma infinidade de percursos de v_i para v_i .

Resolução:

Seja C_{ii}^k o número de percursos de i para j que apenas podem ter como nós intermédios os numerados até k, com k > -1 fixo. Define-se pela recorrência

$$C_{ij}^{-1} = \begin{cases} 1, \text{ se } (i,j) \in E \\ 0, \text{ se } (i,j) \notin E \end{cases}$$

$$C_{ij}^{k} = C_{ik}^{k-1} \times (C_{kk}^{k-1})^{*} \times C_{kj}^{k-1} + C_{ik}^{k-1}$$

em que \times e + (extensão das operações habituais a $\mathbb{R}_0^+ \cup \{\infty\}$) e \star satisfazem:

$$\begin{array}{ll} 0^{\star}=1 & y^{\star}=\infty, \ \ \text{se} \ y\neq 0 \\ \infty\times 0=0\times \infty=0 & \infty+y=y+\infty=\infty, \ \ \text{para todo} \ y \\ \infty\times y=y\times \infty=\infty, \ \ \text{se} \ y\neq 0 \end{array}$$

Contagem de percursos – Implementação em C

```
Se M_{ii}^{k-1} = -1 ou se M_{ik}^{k-1} \times M_{ki}^{k-1} \neq 0 e algum dos valores M_{ik}^{k-1}, M_{ki}^{k-1} e
M_{\nu\nu}^{k-1} for -1, então M_{ii}^{k} = -1. Nos outros casos, M_{ii}^{k} = M_{i\nu}^{k-1} \times M_{\nu i}^{k-1} + M_{ii}^{k-1}.
void contacaminhos(int n,int M[][MAX])
{ int aux[MAX][MAX], k, i, j;
  for(k=0; k < n; k++) {
    // copia M para aux
    for (i=0; i < n; i++)
        for (j=0; j < n; j++) aux[i][j] = M[i][j];
     // atualiza a contagem
     for (i=0; i < n; i++)
       for (j=0; j < n; j++)
        if (a[i][j] != -1) {
           if (aux[i][k]*aux[k][j])
             if(aux[k][k] || aux[i][k] == -1 || aux[k][j] == -1) M[i][j] = -1;
             else M[i][j] += aux[i][k]*aux[k][j];
```

Caixotes de Morangos - aplicação de DP

O dono de uma pequena cadeia de $(L \geq 1)$ mercearias adquiriu $(C \geq 1)$ caixotes de morangos e tem que decidir quantos caixotes enviar para cada uma das suas lojas, de forma a maximizar o lucro. Devido às características específicas de cada loja (localização, capacidade de armazenamento, número médio de clientes, etc.), o lucro esperado com a venda dos morangos varia, não só de loja para loja, como, também, consoante o número de caixotes enviados para cada loja. É conhecido o lucro do envio de n caixotes para cada uma das lojas, para cada $n \in [0, C]$. Naturalmente, é nulo se não enviar nenhum caixote. Por razões administrativas, cada caixote é indivisível (i.e., o seu conteúdo não pode ser repartido por várias lojas). Não é necessário enviar caixotes para todas as lojas. Como efectuar a distribuição?

Caixotes de Morangos

Exemplo de dados:

```
Na coluna j tem os lucros v_{ii} do envio de i caixotes
3 5
                        para a loja j, com i = 1, 2, ..., C, e j = 1, 2, ..., L.
1.50 2.50 2.00
                        Admitimos ainda que v_{0i} = 0, para todo j.
3.50 5.00 3.00
4.50 5.50 5.50
                        Neste exemplo, tem L=3 lojas e C=5 caixotes.
6.00 5.50 6.00
6.50 5.50 6.00
```

Seja $z_{k,j}$ o lucro ótimo se enviar no total k caixotes para as j primeiras lojas, com k e j fixos. Então, $z_{k,j}$ é definido pela recorrência:

$$\begin{array}{lll} z_{0,j} &=& 0, & \text{para } 1 \leq j \leq L \\ z_{\boldsymbol{k},1} &=& v_{k,1}, & \text{para } 1 \leq k \leq C \\ z_{\boldsymbol{k},j} &=& \max_{0 \leq t \leq k} \left(v_{k-t,j} + z_{t,j-1}\right), & \text{para } 1 \leq k \leq C, \text{ e } 2 \leq j \leq L \end{array},$$

Para $j \ge 2$, calculam-se os lucros das soluções que enviam k-t caixotes à loja j e distribuem otimamente os restantes t pelas lojas numeradas até j-1, para $0 \le t \le k$. A solução de maior valor define $z_{k,i}$.

Caixotes de Morangos (cont.)

$$\begin{array}{lll} z_{0,j} &=& 0, & \text{para } 1 \leq j \leq L \\ z_{k,1} &=& v_{k,1}, & \text{para } 1 \leq k \leq C \\ z_{k,j} &=& \max_{0 \leq t \leq k} (v_{k-t,j} + z_{t,j-1}), & \text{para } 1 \leq k \leq C, \text{ e } 2 \leq j \leq L \end{array}$$

- Algoritmos baseados em programação dinâmica podem gastar muita memória. É necessário evitar, se possível, gastos de memória excessivos.
- Neste caso, não precisamos de uma matriz $(C+1) \times L$ para guardar $z_{k,j}$, pois $z_{k,j}$ só depende dos valores de $z_{t,j-1}$.
- Bastariam dois *arrays* com C+1 posições, para guardar os valores de $z_{k,j-1}$ e de $z_{k,j}$, para todo k.
- Se analisarmos com mais cuidado, podemos concluir que, de facto, **basta um array** $Z[\cdot]$, sendo $Z[k] = z_{k,j}$, pois $z_{k,j}$ só depende dos valores de $z_{t,j-1}$, para $t \leq k$. Para tal, **na atualização** de Z[k] **para um novo** j, tem de se **começar pelo valor mais alto de** k, tomando $k = C, C 1, \ldots, 2, 1$.

Caixotes de Morangos – *DP construção "bottom-up"*

```
CAIXOTESMORANGOS(V, L, C, Z)

0 | Z[0] \leftarrow 0;

1 | Para k \leftarrow 1 até C fazer Z[k] \leftarrow V[k, 1];

2 | Para j \leftarrow 2 até L fazer

3 | Para k \leftarrow C até 1 com decremento de 1 fazer

4 | Para t \leftarrow 0 até k - 1 fazer /* NB: inicialmente Z[k] é já V[0,j] + Z[k] */

5 | Se V[k - t, j] + Z[t] > Z[k] então

6 | Z[k] \leftarrow V[k - t, j] + Z[t];
```

Complexidade

Passando V e Z por referência e C e L por valor, a **complexidade temporal** é $\Theta(LC^2)$ e a **espacial** (adicional) é $\Theta(C)$. "Adicional" porque não contabiliza o espaço $\Theta(LC)$ ocupado pela matriz de dados V, mas apenas Z.

Justificação (sucinta): A complexidade temporal do ciclo 4-6 é $\Theta(k)$. Logo, para o ciclo 3-6 é $\Theta(\sum_{k=1}^C k) = \Theta(C(C+1)/2) = \Theta(C^2)$ e, portanto, para o ciclo 2-6 é $\Theta(LC^2)$. Assim, o bloco 1-6 tem complexidade $\Theta(C+LC^2) = \Theta(LC^2)$.

Se os dados fossem lidos de um ficheiro e se desse V^T (a transposta de V) em vez de V, o espaço total podia ser $\Theta(C)$. Ver problema da aula prática: Caixotes de Morangos II (não passar V; ler lucro da loja j dentro da função e atualizar Z)

Caixotes de Morangos – *DP construção "bottom-up"*

CaixotesMorangos(V, L, C, Z)

```
0 | Z[0] \leftarrow 0;

1 | Para k \leftarrow 1 até C fazer Z[k] \leftarrow V[k,1];

2 | Para j \leftarrow 2 até L fazer

3 | Para k \leftarrow C até 1 com decremento de 1 fazer

4 | Para t \leftarrow 0 até k-1 fazer /* NB: inicialmente Z[k] é já V[0,j] + Z[k] */

5 | Se V[k-t,j] + Z[t] > Z[k] então

6 | Z[k] \leftarrow V[k-t,j] + Z[t];
```

Complexidade:

Passando V e Z por referência e C e L por valor, a **complexidade temporal** é $\Theta(LC^2)$ e a **espacial** (adicional) é $\Theta(C)$. "Adicional" porque não contabiliza o espaço $\Theta(LC)$ ocupado pela matriz de dados V, mas apenas Z.

Justificação (sucinta): A complexidade temporal do ciclo 4-6 é $\Theta(k)$. Logo, para o ciclo 3-6 é $\Theta(\sum_{k=1}^C k) = \Theta(C(C+1)/2) = \Theta(C^2)$ e, portanto, para o ciclo 2-6 é $\Theta(LC^2)$. Assim, o bloco 1-6 tem complexidade $\Theta(C+LC^2) = \Theta(LC^2)$.

Se os dados fossem lidos de um ficheiro e se desse V^T (a transposta de V) em vez de V, o espaço total podia ser $\Theta(C)$. Ver problema da aula prática: Caixotes de Morangos II (não passar V; ler lucro da loja j dentro da função e atualizar Z)

- O problema "Não lhes dês troco" usa uma **estratégia ávida** (*greedy*) para dar o troco, que nem sempre permite obter o montante pretendido.
- De quantas formas conseguiria obter uma quantia Q dada se não usar essa estratégia? Seja d_k o número de moedas disponíveis de valor v_k , para $1 \le k \le m$. Admita-se que $v_k < v_{k+1}$, para todo k < m.
- Se puder usar apenas moedas de valor v_1, \ldots, v_k , o número de formas $N_{q,k}$ de obter q pode ser definido recursivamente assim:

$$\begin{array}{l} \textit{N}_{0,k} = 1 \text{, para } 1 \leq k \leq \textit{m} \text{ (n\~ao dar moeda nenhuma se } q = 0) \\ \\ \textit{N}_{q,1} = \left\{ \begin{array}{l} 1 \quad \text{se } q > 0 \wedge q\%v_1 = 0 \wedge d_1 \geq \frac{q}{v_1} \\ 0 \quad \text{se } q > 0 \wedge \left(q\%v_1 \neq 0 \vee d_1 < \frac{q}{v_1}\right) \end{array} \right. \\ \\ \textit{N}_{q,k} = \sum_{r=0}^{\min(d_k, \lfloor q/v_k \rfloor)} \textit{N}_{q-rv_k,k-1} \text{, para todo } q > 0 \text{ e } 1 < k \leq \textit{m}. \end{array}$$

O valor procurado é $N_{Q,m}$. Dependendo de Q e dos valores das moedas disponíveis, pode acontecer que nem todos os pares (q, k), com $q \leq Q$, precisem de ser calculados.

Abordagem "Top-Down" com memoização

```
CONTASOLS(v, d, q, k) /* chamar CONTASOLS(v, d, Q, m) para obter N_{Q,m} */
         Se q = 0 então retorna 1;
         Se k=1 então
              Se v[1]\%q \neq 0 \lor d[1] < q/v[1] então retorna 0;
   4
              retorna 1:
   5
         Se N[q, k] já calculado então retorna N[q, k];
   6
         rmax \leftarrow \min(d[k], |q/v[k]|);
   7
         conta \leftarrow 0:
   8
         Para r \leftarrow 0 até rmax fazer
   9
              conta \leftarrow conta + ContaSols(v, d, q - r * v[k], k - 1);
         N[q, k] \leftarrow conta; /* memoriza para uso futuro se necessário */
   10
   11
         retorna conta:
```

Implementação: Definir a tabela N por dicionário (hash-table

Dicionários/Tabelas de dispersão/Arrays associativos – coleção de pares (Chave, Valor

Java: Map, HashMap, TreeMap C++: std::unordered_map, std::map

Abordagem "Top-Down" com memoização

```
CONTASOLS(v, d, q, k) /* chamar CONTASOLS(v, d, Q, m) para obter N_{Q,m} */
         Se q = 0 então retorna 1;
         Se k=1 então
              Se v[1]\%q \neq 0 \lor d[1] < q/v[1] então retorna 0;
   4
              retorna 1:
   5
         Se N[q, k] já calculado então retorna N[q, k];
   6
         rmax \leftarrow \min(d[k], |q/v[k]|);
   7
         conta \leftarrow 0:
   8
         Para r \leftarrow 0 até rmax fazer
   9
              conta \leftarrow conta + ContaSols(v, d, q - r * v[k], k - 1);
   10
         N[q, k] \leftarrow conta; /* memoriza para uso futuro se necessário */
   11
         retorna conta:
```

Implementação: Definir a tabela N por dicionário (hash-table)

Dicionários/Tabelas de dispersão/Arrays associativos – coleção de pares (Chave, Valor).

Java: Map, HashMap, TreeMap C++: std::unordered_map, std::map

Problema: Supondo que se tem um número não limitado de moedas de valores 200, 100, 50, 20, 10, 5, 2, e 1, qual é o **número mínimo** de moedas necessário para formar uma quantia Q?

- Abordagem de programação dinâmica é ineficiente.
- Prova-se que a **estratégia greedy** que consiste em começar por **usar a moeda de valor mais alto** $v_k \geq Q$ **o número máximo de vezes que puder** (isto é, $n_k = \lfloor Q/v_k \rfloor$ vezes) e aplicar a mesma estratégia para obter a quantia $Q n_k v_k$ restante, determina a **solução ótima**, em O(m), sendo m o número de tipos de moedas existentes.

Para garantir O(m), é importante usar $Q - n_k v_k$ em vez de dar uma moeda v_k e aplicar a estratégia a $Q - v_k$. Note que O(Q) é $O(2^{\log_2 Q})$ e, portanto, é exponencial no tamanho da representação de Q (input) em binário (assumido no modelo RAM para análise assintótica).

Demonstração de que a estratégia greedy determina a solução ótima

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se $x_{100}^* > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^* \le 1$. Analogamente se conclui que: $x_{50}^* \le 1$, $x_{10}^* \le 1$, e $x_{1}^* \le 1$.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^* \le 2$. Analogamente, $x_2^* \le 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$ $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.
- Tem-se $\sum_{i=1}^k v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* tem exatamente o mesmo valor que a solução greedy.

NB: A estratégia *greedy* apresentada não seria correta para, por exemplo, $V=\{1,300,1000\}$, Q=1200, Q=

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se x₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x₁₀₀ ≤ 1.
 Analogamente se conclui que: x₅₀ ≤ 1, x₁₀ ≤ 1, e x₁* ≤ 1.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^* \le 2$. Analogamente, $x_2^* \le 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$ $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.
- Tem-se $\sum_{i=1}^k v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* tem exatamente o mesmo valor que a solução greedy.

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se $x_{100}^* > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^* \le 1$. Analogamente se conclui que: $x_{50}^* \le 1$, $x_{10}^* \le 1$, e $x_{1}^* \le 1$.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^* \le 2$. Analogamente, $x_2^* \le 2$.
- Não pode ter simultaneamente $x_2^* = 2$ e $x_1^* = 1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^* + x_1^* \le 4$. Também não tem simultaneamente $x_{20}^* = 2$ e $x_{10}^* = 1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.
- Tem-se $\sum_{i=1}^k v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* tem exatamente o mesmo valor que a solução greedy.

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se $x_{100}^* > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^* \le 1$. Analogamente se conclui que: $x_{50}^* \le 1$, $x_{10}^* \le 1$, e $x_1^* \le 1$.
- Se $x_{20}^{\star} > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} \leq 2$. Analogamente, $x_{2}^{\star} \leq 2$.
- Não pode ter simultaneamente $x_2^\star=2$ e $x_1^\star=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^\star+x_1^\star\leq 4$. Também não tem simultaneamente $x_{20}^\star=2$ e $x_{10}^\star=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.
- Tem-se $\sum_{i=1}^k v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* tem exatamente o mesmo valor que a solução greedy.

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se $x_{100}^* > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^* \le 1$. Analogamente se conclui que: $x_{50}^* \le 1$, $x_{10}^* \le 1$, e $x_{1}^* \le 1$.
- Se $x_{20}^{\star} > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} \leq 2$. Analogamente, $x_{2}^{\star} \leq 2$.
- Não pode ter simultaneamente $x_2^\star=2$ e $x_1^\star=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^\star+x_1^\star\leq 4$. Também não tem simultaneamente $x_{20}^\star=2$ e $x_{10}^\star=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.
- Tem-se $\sum_{i=1}^k v_i \chi_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* tem exatamente o mesmo valor que a solução greedy.

Demonstração de que a estratégia greedy determina a solução ótima

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se $x_{100}^* > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^* \le 1$. Analogamente se conclui que: $x_{50}^* \le 1$, $x_{10}^* \le 1$, e $x_{1}^* \le 1$.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^* \le 2$. Analogamente, $x_2^* \le 2$.
- Não pode ter simultaneamente $x_2^\star=2$ e $x_1^\star=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^\star+x_1^\star\leq 4$. Também não tem simultaneamente $x_{20}^\star=2$ e $x_{10}^\star=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.
- Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* tem exatamente o mesmo valor que a solução greedy.

NB: A estratégia greedy apresentada não seria correta para, por exemplo, $V = \{1, 300, 1000\}$ Q = 1200.

Problema da mochila (knapsack problem)

a) Knapsack binário

maximizar $\sum_{i=1}^{n} v_i x_i$ sujeito a

$$\left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \{0, 1\} \end{array} \right. \quad \left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right.$$

b) Knapsack inteiro

maximizar $\sum_{i=1}^{n} v_i x_i$ sujeito a $\begin{cases} \sum_{i=1}^{n} p_i x_i \leq L \\ \sum_{i=1}^{n} p_i x_i \leq L \end{cases}$

c) Knapsack fracionário

 $\begin{aligned} & \text{maximizar} \sum_{i=1}^{n} v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ & \forall i \ x_i \leq u_i \land x_i \in \mathbb{R}_0^+ \end{array} \right. \end{aligned}$

Exemplo

(a) Para um limite de carga L=80Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? ($x_2=1, x_4=x_5=1$) (b) E, se puder transportar vários idênticos? ($x_3=5, x_4=1$) (c) E, se puder fracioná-los, sendo o valor e o peso proporcionais à fracção que leva, não podendo exceder um limite máximo dado para cada tipo? ($x_3=30, x_4=25, x_5=20, x_2=5$)

Problema da mochila (*knapsack problem*)

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \quad x_i \in \{0,1\} \end{array} \right. \end{aligned}$$

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^{n} v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ & \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{array}{lll} \max \min \operatorname{zar} \sum_{i=1}^n v_i x_i & \max \operatorname{zar} \sum_{i=1}^n v_i x_i & \max \operatorname{zar} \sum_{i=1}^n v_i x_i \\ \operatorname{sujeito} \ \operatorname{a} & \operatorname{sujeito} \ \operatorname{a} & \operatorname{sujeito} \ \operatorname{a} & \operatorname{sujeito} \ \operatorname{a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \mathbb{Z}_0^+ \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \leq u_i \wedge x_i \in \mathbb{R}_0^+ \end{array} \right. \end{array}$$

Exemplo

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? ($x_2 = 1, x_4 = x_5 = 1$) (b) E, se puder

Problema da mochila (*knapsack problem*)

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \quad x_i \in \{0,1\} \end{array} \right. \end{aligned}$$

$$\begin{array}{ll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \quad x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{aligned} & \mathsf{maximizar} \sum_{i=1}^n v_i x_i \\ & \mathsf{sujeito} \ \mathsf{a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \ x_i \leq u_i \land x_i \in \mathbb{R}_0^+ \end{array} \right. \end{aligned}$$

Exemplo

р	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	90	82	37	61	70
и	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? $(x_2 = 1, x_4 = x_5 = 1)$ (b) E, se puder

Problema da mochila (*knapsack problem*)

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \quad x_i \in \{0,1\} \end{array} \right. \end{aligned}$$

$$\begin{array}{ll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \quad x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{array}$$

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \ x_i \leq u_i \land x_i \in \mathbb{R}_0^+ \end{array} \right. \end{aligned}$$

Exemplo

	p	peso (Kg)	42	32	12	20	27
-	V	valor (u.m.)	90	82	37	61	70
	и	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? $(x_2 = 1, x_4 = x_5 = 1)$ (b) E, se puder transportar vários idênticos? ($x_3 = 5$, $x_4 = 1$) (c) E, se puder fracioná-los, sendo o valor e o

Problema da mochila (*knapsack problem*)

a) Knapsack binário

- b) Knapsack inteiro
- c) Knapsack fracionário

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \quad x_i \in \{0,1\} \end{array} \right. \end{aligned}$$

$$\begin{array}{ll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \quad x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{array}$$

$$\begin{aligned} & \text{maximizar } \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \ \ x_i \leq u_i \land x_i \in \mathbb{R}_0^+ \end{array} \right. \end{aligned}$$

Exemplo

p	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	90	82	37	61	70
и	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? $(x_2 = 1, x_4 = x_5 = 1)$ (b) E, se puder transportar vários idênticos? ($x_3 = 5$, $x_4 = 1$) (c) E, se puder fracioná-los, sendo o valor e o peso proporcionais à fracção que leva, não podendo exceder um limite máximo dado para cada tipo? $(x_3 = 30, x_4 = 25, x_5 = 20, x_7 = 5)$

Problema da mochila (*knapsack problem*)

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \quad x_i \in \{0,1\} \end{array} \right. \end{aligned}$$

$$\begin{aligned} & \text{maximizar } \sum_{i=1}^{n} v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ & \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{array}{lll} \max \min \operatorname{zar} \sum_{i=1}^n v_i x_i & \max \operatorname{zar} \sum_{i=1}^n v_i x_i & \max \operatorname{zar} \sum_{i=1}^n v_i x_i \\ \operatorname{sujeito} \ \operatorname{a} & \operatorname{sujeito} \ \operatorname{a} & \operatorname{sujeito} \ \operatorname{a} & \operatorname{sujeito} \ \operatorname{a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \mathbb{Z}_0^+ \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \leq u_i \wedge x_i \in \mathbb{R}_0^+ \end{array} \right. \end{array}$$

Exemplo

p	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	90	82	37	61	70
и	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? $(x_2 = 1, x_4 = x_5 = 1)$ (b) E, se puder transportar vários idênticos? ($x_3 = 5$, $x_4 = 1$) (c) E, se puder fracioná-los, sendo o valor e o peso proporcionais à fracção que leva, não podendo exceder um limite máximo dado para cada tipo? $(x_3 = 30, x_4 = 25, x_5 = 20, x_2 = 5)$

Problema da mochila fracionário (linear knapsack problem)

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^{n} v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ & \forall i \ x_i \leq u_i \land x_i \in \mathbb{R}_0^+ \end{array} \right. \end{aligned}$$

Algoritmo greedy que calcula uma solução ótima para knapsack fracionário:

Assumindo que os itens estão ordenados por ordem decrescente de valor por unidade de recurso despendida (ou seja, por v_i/p_i), levar a maior quantidade possível do primeiro item (isto é, $x_1 = \min(u_1, L/p_1)$) e aplicar a mesma estratégia para $i \geq 2$, com peso máximo $L - x_1$.

Exemplo (
$$L = 80$$
, solução ótima: $x_3 = 30$, $x_4 = 25$, $x_5 = 20$, $x_2 = 5$)

p	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	90	82	37	61	70
и	máximo (Kg)	35	60	30	25	20
v/p	rendimento (u.m/Kg)	2.14	2.56	3.08	3.05	2.59

4□ > 4♠ > 4 ≥ > 4 ≥ > ≥ 90

Matróides pesados e Algoritmos Greedy

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$. O par (S, \mathcal{F}) designa-se por **matróide** sse satisfizer para todo A e B:

- (Hereditariedade) se $B \in \mathcal{F}$ e $A \subseteq B$ então $A \in \mathcal{F}$.
- (Extensão) Se $A, B \in \mathcal{F}$ e |A| < |B| então $A \cup \{x\} \in \mathcal{F}$, para algum $x \in B$.

Os elementos de $\mathcal F$ designam-se por *subconjuntos independentes*.

Propriedade: Os conjuntos independentes maximais (para ⊆) têm o mesmo cardinal.

Um matróide pesado é um matróide (S, \mathcal{F}) com uma função de peso $w : S \to \mathbb{R}^+$, sendo $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

Exemplos de matróides:

- S = {colunas da matriz de coeficientes de um sistema AX = b},
 F = {subconjuntos de colunas de A linearmente independentes}.
- Para G = (V, E) grafo finito não dirigido, S = E e $F = \{florestas de E\}$

O problema da **determinação de** $A \in \mathcal{F}$ **com peso** w(A) **máximo** pode ser resolvido pelo **"algoritmo greedy trivial"**: partir de $A = \emptyset$ e, tomando os elementos $x \in S$ por ordem decrescente de peso, inserir $x \in A$ se $A \cup \{x\} \in \mathcal{F}$.

Exemplos de Aplicação - Otimização em matróide pesados

- Exemplo 1: Determinar árvore geradora de peso máximo/mínimo Algoritmo de Kruskal
- Exemplo 2: Localizar observadores em rotundas para determinar os volumes de tráfego q_{ij} , da entrada i para a saída j, para todos os pares (i,j)
 - São dados os volumes totais O_i e D_j e ainda o que passa frontalmente a uma entrada F_1 . Assume-se que os veículos não estacionam no anel de circulação. Se colocar observador para q_{ij} tem um custo c_{ij} . Minimizar o custo total.
- Exemplo 3: Dado um conjunto finito de tarefas unitárias cada uma com um prazo limite (deadline) d_j e uma penalização c_j se ultrapassar esse prazo, determinar a ordem pela qual as tarefas serão realizadas de forma a minimizar o custo (penalização) total.

Exemplos de Aplicação - Otimização em matróide pesados

- Exemplo 1: Determinar árvore geradora de peso máximo/mínimo Algoritmo de Kruskal
- Exemplo 2: Localizar observadores em rotundas para determinar os volumes de tráfego q_{ij} , da entrada i para a saída j, para todos os pares (i,j)
 - São dados os volumes totais O_i e D_j e ainda o que passa frontalmente a uma entrada F_1 . Assume-se que os veículos não estacionam no anel de circulação. Se colocar observador para q_{ij} tem um custo c_{ij} . Minimizar o custo total.
- Exemplo 3: Dado um conjunto finito de tarefas unitárias cada uma com um prazo limite (deadline) d_j e uma penalização c_j se ultrapassar esse prazo, determinar a ordem pela qual as tarefas serão realizadas de forma a minimizar o custo (penalização) total.

Exemplos de Aplicação - Otimização em matróide pesados

- Exemplo 1: Determinar árvore geradora de peso máximo/mínimo Algoritmo de Kruskal
- **Exemplo 2:** Localizar observadores em rotundas para determinar os volumes de tráfego q_{ij} , da entrada i para a saída j, para todos os pares (i,j)
 - São dados os volumes totais O_i e D_j e ainda o que passa frontalmente a uma entrada F_1 . Assume-se que os veículos não estacionam no anel de circulação. Se colocar observador para q_{ij} tem um custo c_{ij} . Minimizar o custo total.
- Exemplo 3: Dado um conjunto finito de tarefas unitárias cada uma com um prazo limite (deadline) d_j e uma penalização c_j se ultrapassar esse prazo, determinar a ordem pela qual as tarefas serão realizadas de forma a minimizar o custo (penalização) total.

Para recordar...

$$\begin{cases} x_1 - 4x_2 + 5x_3 - 10x_4 & = & 2 \\ -x_1 + 7x_2 + 2x_3 - 4x_4 & = & 1 \\ 3x_2 + 7x_3 - 14x_4 & = & 3 \\ x_1, x_2, x_3, x_4 \in \mathbb{R} \end{cases}$$

$$A = \left[\begin{array}{rrrr} 1 & -4 & 5 & -10 \\ -1 & 7 & 2 & -4 \\ 0 & 3 & 7 & -14 \end{array} \right]$$

- A matriz A tem característica 2 porque a terceira equação é redundante. car(A) é igual também à dimensão do espaço pelas colunas de A.
- Dos $\binom{n}{2} = \binom{4}{2} = 6$ subconjuntos $\{A_i, A_i\}$, com $i \neq j$, cinco são **bases** do espaço gerado pelas colunas de A. Cada base define uma "forma resolvida".

$$\left\{ \begin{array}{lll} x_1 & = & 6-43/3x_3+86/3x_4 \\ x_2 & = & 1-7/3x_3+14/3x_4 \end{array} \right. & \left\{ \begin{array}{lll} x_1 & = & -1/7+43/7x_2 \\ x_3 & = & 3/7-3/7x_2+2x_4 \end{array} \right. \\ \left\{ \begin{array}{lll} x_1 & = & -1/7+43/7x_2 \\ x_4 & = & -3/14+3/14x_2+1/2x_3 \end{array} \right. & \left\{ \begin{array}{lll} x_2 & = & 1/43+7/43x_1 \\ x_3 & = & 18/43-3/43x_1+2x_4 \end{array} \right. \\ \left\{ \begin{array}{lll} x_2 & = & 1/43+7/43x_1 \\ x_4 & = & -9/43+3/86x_1+1/2x_3 \end{array} \right. & \left\{ \begin{array}{lll} x_3 & = & \dots A_3 \text{ e A linearmente} \\ x_4 & = & \dots ... \text{dependentes} \end{array} \right. \end{array}$$

• Sistema indeterminado. Se se atribuir valores às n - car(A) variáveis **livres**, admite uma única solução para as restantes car(A) variáveis.

Obter os volumes direcionais q_{ij} , para todos os (i,j), com custo total mínimo.

 O_i : total na entrada i; D_j : total na saída j;

 F_k : total na secção frontal a k; I_k : total na secção intermédia k.

O número de variáveis q_{ij} é $|\mathcal{O}| \times |\mathcal{D}|$ mas a caraterística da matriz do sistema é $|\mathcal{O}| + |\mathcal{D}|$ ou $|\mathcal{O}| + |\mathcal{D}| - 1$. Quais dos q_{ij} não serão obtidos por observação, sendo calculados por resolução do sistema?

Obter os volumes direcionais q_{ij} , para todos os (i,j), com custo total mínimo.

- Qualquer uma das equações para os O_i's e D_j's é redundante face às restantes.
 Também, apenas um dos F_k's poderá ser não redundante face aos O_i's e D_j's.
- A caraterística da matriz do sistema é $|\mathcal{O}| + |\mathcal{D}|$ ou $|\mathcal{O}| + |\mathcal{D}| 1$.
- É $|\mathcal{O}| + |\mathcal{D}| 1$ sse a equação que define F_k é $F_k = 0$, para algum k. Isto acontece se a rotunda for do tipo $S^*(D + SE)E^*$, onde S designa saída, E entrada e D sentido duplo.

A.P Tomás, M. Andrade and A. Pires da Costa (2001) Obtaining Origin-Destination Data at Optimal Cost at Urban Roundabouts. In CSOR - EPIA'01.

A.P. Tomás (2002). Solving Optimal Location of Traffic Counting Points at Urban Intersections in CLP(FD). In Proc. MICAI'2002. LNAI 2313, 242-251. http://www.dcc.fc.up.pt/~apt/onlinepapers/micai02.pdf

Sendo r a caraterística da matriz do sistema, queremos escolher os r volumes direcionais **independentes** que **não serão** obtidos por contagem mas deduzidos dos restantes q_{ij} 's e dos volumes totais em seccção (O_i 's, D_j 's e F_k 's), de forma a minimizar o **custo da recolha**.

Exemplos: $custo(q_{ij}) = número de ramos de i para j$

		volumes a observar
SEDE	r=3+2=5	q(4,1)
	$vars = 3 \times 2 = 6$	
DDDE	r=4+3=7	q(1,2) q(2,3) q(3,1) q(4,1) q(4,2)
	nvars $=4 \times 3 = 12$	
DDSE	r = 3 + 3 = 6	q(1,2) q(2,3) q(4,1)
	nvars $=3 \times 3 = 9$	
SSSD	r = 1 + 4 - 1 = 4	
	nvars $=1 \times 4 = 4$	

SSSD é do tipo $S^*(D + SE)E^*$

Se custo total for dado pela soma dos custos da contagem de cada um dos q_{ij} 's, o problema corresponde à determinação da solução de peso máximo num matróide pesado. A solução ótima pode ser determinada pelo "algoritmo greedy trivial".

A rotunda SDSDEE com $c_{ij} = número de ramos de i para j$

Ordem decrescente de custos: $c_{22}=c_{44}=6, c_{54}=c_{21}=c_{43}=5, c_{64}=c_{53}=c_{42}=4, c_{41}=c_{52}=c_{63}=3$,

$$c_{24} = c_{51} = c_{62} = 2, c_{23} = c_{61} = 1$$

- $p'_{ij} = \mathbf{e}_i + \mathbf{e}_{m+j} + \theta_{ij} \mathbf{e}_{m+n+1}$: coluna de q_{ij} no sistema formado pelas equações nas entradas $\mathcal{O} = \{2,4,5,6\}$, saídas $\mathcal{D} = \{1,2,3,4\}$ e secção F_1 . Os \mathbf{e}_t definem a base canónica de \mathbb{R}^{n+m+1} , θ_{ij} é 1 ou 0 (indica se q_{ij} passa em F_1) e $m = |\mathcal{O}|$, $n = |\mathcal{D}|$.
- Para *SDSDEE*, a dimensão da base é $|\mathcal{O}| + |\mathcal{D}| = 8$. p'_{ij} denota p'_{ij} escolhido.

Problema:

- Um conjunto A de tarefas é independente se todas as tarefas em A podem ser executadas até ao seu deadline. Prova-se que tal acontece se, para todo k ≥ 0, o número de tarefas em A com deadline até k é menor ou igual a k.
- O "Algoritmo greedy trivial" para obter uma solução ótima: ordenar as tarefas por ordem decrescente de penalização (supor que t_1, t_2, \ldots, t_n traduz essa ordem). No início, $S = \emptyset$. Para j de 1 até n, colocar t_j em S desde que $S \cup \{t_j\}$ seja independente.
- As tarefas em S podem ser realizadas sem penalização (por exemplo, se as realizar por ordem crescente de *deadline*). As tarefas em $\mathcal{T} \setminus S$ são realizadas por qualquer ordem (têm sempre penalização).

Problema:

- Um conjunto A de tarefas é independente se todas as tarefas em A podem ser executadas até ao seu deadline. Prova-se que tal acontece se, para todo k ≥ 0, o número de tarefas em A com deadline até k é menor ou igual a k.
- O "Algoritmo greedy trivial" para obter uma solução ótima: ordenar as tarefas por ordem decrescente de penalização (supor que t_1, t_2, \ldots, t_n traduz essa ordem). No início, $S = \emptyset$. Para j de 1 até n, colocar t_j em S desde que $S \cup \{t_j\}$ seja independente.
- As tarefas em S podem ser realizadas sem penalização (por exemplo, se as realizar por ordem crescente de *deadline*). As tarefas em $\mathcal{T} \setminus S$ são realizadas por qualquer ordem (têm sempre penalização).

Problema:

- Um conjunto A de tarefas é independente se todas as tarefas em A podem ser executadas até ao seu deadline. Prova-se que tal acontece se, para todo k ≥ 0, o número de tarefas em A com deadline até k é menor ou igual a k.
- O "Algoritmo greedy trivial" para obter uma solução ótima: ordenar as tarefas por ordem decrescente de penalização (supor que t_1, t_2, \ldots, t_n traduz essa ordem). No início, $S = \emptyset$. Para j de 1 até n, colocar t_j em S desde que $S \cup \{t_j\}$ seja independente.
- As tarefas em S podem ser realizadas sem penalização (por exemplo, se as realizar por ordem crescente de *deadline*). As tarefas em $\mathcal{T} \setminus S$ são realizadas por qualquer ordem (têm sempre penalização).

Problema:

- Um conjunto A de tarefas é independente se todas as tarefas em A podem ser executadas até ao seu deadline. Prova-se que tal acontece se, para todo k ≥ 0, o número de tarefas em A com deadline até k é menor ou igual a k.
- O "Algoritmo greedy trivial" para obter uma solução ótima: ordenar as tarefas por ordem decrescente de penalização (supor que t_1, t_2, \ldots, t_n traduz essa ordem). No início, $S = \emptyset$. Para j de 1 até n, colocar t_j em S desde que $S \cup \{t_j\}$ seja independente.
- As tarefas em S podem ser realizadas sem penalização (por exemplo, se as realizar por ordem crescente de *deadline*). As tarefas em $\mathcal{T}\setminus S$ são realizadas por qualquer ordem (têm sempre penalização).

Exemplo (não matróide pesado): Interval scheduling

Problema: \mathcal{T} é um conjunto de n tarefas. A tarefa t_j teria forçosamente de decorrer no intervalo $[a_j,b_j[$, ou seja, começar no instante a_j e terminar em b_j , para $1 \leq j \leq n$ (notar que $b_j \notin [a_j,b_j[$). Em cada instante, só uma tarefa pode estar a decorrer. Pretende-se **maximizar o número de tarefas realizadas**.

- Não se modela por um matróide pesado.
- A solução ótima pode ser obtida em tempo $O(n \log n)$ por um algoritmo greedy, o qual usa a estratégia "earliest finish first".

```
Ordenar \mathcal{T} por ordem crescente de tempo de finalização; /* Supor que t_1, t_2, \ldots, t_n traduz essa ordem */ S \leftarrow \emptyset; f \leftarrow 0; Para j \leftarrow 1 até n fazer Se a[j] \geq f então S \leftarrow S \cup \{t_i\}; f \leftarrow b[j];
```

Correção: Seja S^* uma solução ótima distinta de S. Sejam k e j as primeiras duas tarefas que as distinguem. Então, t_j (a escolha greedy) pode substituir t_k em S^* , ou seja, $(S^* \setminus \{t_k\}) \cup \{t_j\}$ é também uma solução ótima $(t_j$ não pode crial conflitos pois $b[j] \leq b[k]$). Assim, repetindo, acabamos por conseguir transformar qualquer solução ótima S^* na solução greedy S, pelo que S é ótima.

Exemplo (não matróide pesado): Interval scheduling

Problema: \mathcal{T} é um conjunto de n tarefas. A tarefa t_i teria forçosamente de decorrer no intervalo $[a_i, b_i]$, ou seja, começar no instante a_i e terminar em b_i , para $1 \le j \le n$ (notar que $b_i \notin [a_i, b_i]$). Em cada instante, só uma tarefa pode estar a decorrer. Pretende-se maximizar o número de tarefas realizadas.

- Não se modela por um matróide pesado.
- A solução ótima pode ser obtida em tempo $O(n \log n)$ por um algoritmo greedy, o qual usa a estratégia "earliest finish first".

```
Ordenar \mathcal{T} por ordem crescente de tempo de finalização;
/* Supor que t_1, t_2, \ldots, t_n traduz essa ordem */
S \leftarrow \emptyset; f \leftarrow 0;
Para j \leftarrow 1 até n fazer
  Se a[j] \geq f então
          S \leftarrow S \cup \{t_i\}: f \leftarrow b[i]:
```

• Correção: Seja S^* uma solução ótima distinta de S. Sejam k e j as primeiras duas tarefas que as distinguem. Então, t_i (a escolha greedy) pode substituir t_k em S^* , ou seja, $(S^* \setminus \{t_k\}) \cup \{t_i\}$ é também uma solução ótima $(t_i$ não pode criar conflitos pois b[i] < b[k]). Assim, repetindo, acabamos por conseguir transformar qualquer solução ótima S^* na solução greedy S, pelo que S é ótima.

Exemplo (não matróide pesado): Interval scheduling

Problema: \mathcal{T} é um conjunto de n tarefas. A tarefa t_i teria forçosamente de decorrer no intervalo $[a_i, b_i]$, ou seja, começar no instante a_i e terminar em b_i , para $1 \le j \le n$ (notar que $b_i \notin [a_i, b_i]$). Em cada instante, só uma tarefa pode estar a decorrer. Pretende-se maximizar o número de tarefas realizadas.

- Não se modela por um matróide pesado.
- A solução ótima pode ser obtida em tempo $O(n \log n)$ por um algoritmo greedy, o qual usa a estratégia "earliest finish first".

```
Ordenar \mathcal{T} por ordem crescente de tempo de finalização;
/* Supor que t_1, t_2, \ldots, t_n traduz essa ordem */
\mid S \leftarrow \emptyset; f \leftarrow 0;
Para i \leftarrow 1 até n fazer
  Se a[j] \ge f então
          S \leftarrow S \cup \{t_i\}: f \leftarrow b[i]:
```

• Correção: Seja S^* uma solução ótima distinta de S. Sejam k e j as primeiras duas tarefas que as distinguem. Então, t_i (a escolha greedy) pode substituir t_k em S^* , ou seja, $(S^* \setminus \{t_k\}) \cup \{t_i\}$ é também uma solução ótima $(t_i$ não pode criar conflitos pois $b[j] \leq b[k]$). Assim, repetindo, acabamos por conseguir transformar qualquer solução ótima S^* na solução greedy S, pelo que S é ótima.