

CS489/698: Intro to ML

Lecture 01: Perceptron

Outline

Announcements

Perceptron

Projects

Next

Outline

Announcements

Perceptron

Projects

Next

Announcements

- Enrollment
 - Undergrad (CS489): talk to your advisors
 - Grad (CS698): already long waiting list...
- Computer Resource
 - Email me a project plan to get a <u>sharcnet</u> account

Yao-Liang Yu

Assignment 1 unleashed tonight

Outline

Announcements

Perceptron

Projects

Next

Spam filtering example

	and	viagra	the	of	nigeria	У
x ¹	1	1	0	1	1	+1
\mathbf{x}^2	0	0	1	1	0	-1
\mathbf{x}^3	0	1	1	0	0	+1
\mathbf{x}^4	1	0	0	1	0	-1
x ⁵	1	0	1	0	1	+1
x ⁶	1	0	1	1	0	-1

- Training set $(X = [x^1, x^2, ..., x^n], y = [y_1, y_2, ..., y_n])$
 - \mathbf{x}^i in $X = \mathbb{R}^d$: instance i with d dimensional features
 - y_i in Y = {-1, 1}: instance i is spam or ham?
- Good feature representation is of uttermost importance

Batch vs. Online

- Batch learning
 - Interested in performance on test set X'
 - Training set (X, y) is just a means
 - Statistical assumption on X and X'
- Online learning
 - Data comes one by one (streaming)
 - Need to predict y before knowing its true value
 - Interested in making as few mistakes as possible
 - "Friendliness" of the sequence $(\mathbf{x}^1, \mathbf{y}_1), (\mathbf{x}^2, \mathbf{y}_2), \dots$
- Online to Batch conversion

Linear threshold function

• Find (w, b) such that for all i:

$$y_i = sign(\langle \mathbf{w}, \mathbf{x}^i \rangle + b)$$

- w in Rd: weight vector for the separating hyperplane
- b in R: offset (threshold, bias) of the separating hyperplane

sign: thresholding function

$$\operatorname{sign}(t) = \begin{cases} 1, & t > 0 \\ -1, & t \le 0 \end{cases}$$

Simplification

$$\langle \mathbf{w}, \mathbf{x} \rangle + b = \left\langle \begin{pmatrix} \mathbf{w} \\ b \end{pmatrix}, \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix} \right\rangle$$

Padding constant 1 to the end of each x

Also denote as w...

$$y \cdot \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle) = \operatorname{sign}(\langle \mathbf{w}, y\mathbf{x} \rangle)$$

- Pre-multiply each x with its label y
- Find w such that $A^Tw > 0$

$$A = [\mathbf{a}^1, \dots, \mathbf{a}^n]$$

$$\mathbf{a}^i = egin{pmatrix} y_i \mathbf{x}^i \ y_i \end{pmatrix}$$
 waterlo

Perceptron [Rosenblatt'58]

WATERLOO

The perceptron algorithm

Algorithm 1: The perceptron algorithm (Rosenblatt 1958)

```
Input: A \in \mathbb{R}^{(d+1) \times n}, threshold \delta \geq 0, initialize \mathbf{w}_0 \in \mathbb{R}^{d+1} arbitrarily

1 repeat

2 | select some column a of A;

3 | if \langle \mathbf{a}, \mathbf{w}_t \rangle \leq \delta then

4 | \mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{a}; // update only when making a mistake

5 | t \leftarrow t+1
```

- Typically $\delta = 0$, $\mathbf{w}_0 = \mathbf{0}$ • <a, w> = y(<x, w>+b) < 0 iff y \neq sign(<x, w>+b) prediction
- Lazy update: if it ain't broke, don't fix it

$$\langle \mathbf{a}, \mathbf{w}_{t+1} \rangle = \langle \mathbf{a}, \mathbf{w}_t + \mathbf{a} \rangle = \langle \mathbf{a}, \mathbf{w}_t \rangle + \|\mathbf{a}\|_2^2 > \langle \mathbf{a}, \mathbf{w}_t \rangle$$

Yao-Liang Yu

12

Does it work?

	and	viagra	the	of	nigeria	у
x ¹	1	1	0	1	1	+1
x ²	0	0	1	1	0	-1
x ³	0	1	1	0	0	+1
\mathbf{x}^4	1	0	0	1	0	-1
x ⁵	1	0	1	0	1	+1
x ⁶	1	0	1	1	0	-1

- $w_0 = [0, 0, 0, 0, 0], b_0 = 0$, pred on \mathbf{x}^1 undefined
- $w_1 = [1, 1, 0, 1, 1], b_1 = 1, pred 1 on x^2, wrong$
- $w_2 = [1, 1, -1, 0, 1], b_2 = 0$, pred on \mathbf{x}^3 undefined
- $w_3 = [1, 2, 0, 0, 1], b_3 = 1, pred 1 on x^4, wrong$
- $w_4 = [0, 2, 0, -1, 1], b_4 = 0, pred 1 on x^5, correct$
- $w_4 = [0, 2, 0, -1, 1], b_4 = 0, pred -1 on x^6, correct$

$$b \leftarrow b + y$$

9/12/17

Perceptron Convergence Theorem

Theorem (Block'62; Novikoff'62). Assume there exists some \mathbf{w} such that $A^T\mathbf{w} > 0$, then the perceptron algorithm converges to some \mathbf{w}^* . If each column of A is selected indefinitely often, then $A^T\mathbf{w}^* > \delta$.

Corollary. Let $\delta = 0$ and $\mathbf{w}_0 = \mathbf{0}$. Then perceptron converges after at most $(R/\gamma)^2$ steps, where

$$R = \max_{i} ||A_{:i}||_2, \quad \gamma = \max_{\mathbf{w}: ||\mathbf{w}||_2 \le 1} \min_{i} \langle \mathbf{w}, A_{:i} \rangle$$

The Margin

$$\min_{\mathbf{w}^{\star}: A^{\top}\mathbf{w}^{\star} \geq \gamma 1} \frac{\|\mathbf{w}^{\star}\|_{2}^{2}}{\gamma^{2}} = \min_{\mathbf{w}: A^{\top}\mathbf{w} \geq 1} \|\mathbf{w}\|_{2}^{2}$$

$$= \min_{(\mathbf{w}, t): \|\mathbf{w}\|_{2} \leq t, A^{\top}\mathbf{w} \geq 1} t^{2}$$

$$= \min_{(\mathbf{w}, t): \|\mathbf{w}\|_{2} \leq 1, A^{\top}\mathbf{w} \geq \frac{1}{t} 1} t^{2}$$

$$= \min_{\mathbf{w}: \|\mathbf{w}\|_{2} \leq 1, A^{\top}\mathbf{w} > 0} \frac{t^{2}}{\min_{\mathbf{a} \in A} \langle \mathbf{a}, \mathbf{w} \rangle^{2}}$$

$$= \left[\frac{1}{\max_{\mathbf{w}: \|\mathbf{w}\|_{2} \leq 1} \max_{\mathbf{a} \in A} \langle \mathbf{a}, \mathbf{w} \rangle} \right]^{2}$$

$$\text{the margin } \gamma$$

What does the bound mean?

Corollary. Let $\delta = 0$ and $\mathbf{w}_0 = \mathbf{0}$. Then perceptron converges after at most $(R/\gamma)^2$ steps, where

$$R = \max_{i} ||A_{:i}||_2, \quad \gamma = \max_{\mathbf{w}: ||\mathbf{w}||_2 \le 1} \min_{i} \langle \mathbf{w}, A_{:i} \rangle$$

- Treating R and γ as constants, then
 # of mistakes independent of n and d!
- Otherwise may need exponential time...

Can we improve the bound?

But

✓ The larger the margin, the faster perceptron converges

x But perceptron stops at an arbitrary linear separator...

Separable

• Which one do you prefer?

$$\min_{A^{\top}\mathbf{w} \geq 1} \frac{1}{2} \|\mathbf{w}\|_2^2 \quad \approx \quad$$

 $\min_{\mathbf{w}:(\mathbf{w},\mathbf{v}^i)+b)>1} \frac{1}{2} \|\mathbf{w}\|_2^2$

Support vector machines

What if non-separable?

Find a better feature representation

Use a deeper model

Non-Separable

Soft margin

$$\forall \mathbf{w}^*, \forall \gamma > 0, \text{ and } \forall \mathbf{a} \in A: \langle \mathbf{a}, \mathbf{w}^* \rangle \geq \gamma - (\gamma - \langle \mathbf{a}, \mathbf{w}^* \rangle)_{+}$$

Perceptron Boundedness Theorem

- Perceptron convergence requires the existence of a separating hyperplane
 - how to check this assumption in practice?
 - What if it fails? (trust me, it will)

Theorem (Minsky and Papert'67; Block and Levin'70).

The iterates of the perceptron algorithm are always bounded. In particular, if there is no separating hyperplane, then perceptron cycles.

"...proof of this theorem is complicated and obscure. So are the other proofs we have since seen..." --- Minsky and Papert, 1987

When to stop perceptron?

Online learning: never

- Batch learning
 - Maximum number of iteration reached or run out of time
 - Training error stops changing
 - Validation error stops decreasing
 - Weights stopped changing much, if using a diminishing step size η_{t,} i.e., w_{t+1} ← w_t + η_t y_i xⁱ

Multiclass Perceptron

- One vs. all
 - Class c as positive
 - All other classes as negative
 - Highest activation wins: pred = $argmax_c \mathbf{w}_c^T \mathbf{x}$

- One vs. one
 - Class c as positive
 - Class c' as negative
 - Voting

Winnow (Littlestone'88)

Multiplicative vs. additive

Theorem (Littlestone'88). Assume there exists some nonnegative \mathbf{w} such that $A^T\mathbf{w} > 0$, then winnow converges to some \mathbf{w}^* . If each column of A is selected indefinitely often, then $A^T\mathbf{w}^* > \delta$.

Another example: pricing

Selling a product Z to user x with price y = f(x, w)

If y is too high, user won't buy, update w

If y is acceptable, user buy [update w]

How to measure our performance?

Outline

Announcements

Perceptron

Projects

Next

Projects

- Using the perceptron algorithm to solve linear programming (Dunagan and Vempala 2008) or conic programming (Belloni et al. 2009)
- Smooth analysis of the perceptron algorithm (Blum and Dunagan 2002)
- Second-order perceptron (Cesa-Bianchi et al. 2005)
- Forgetron (Dekel et al. 2008)
- Better proof for the boundedness theorem (Amaldi and Hauser 2005)

Outline

Announcements

Perceptron

Projects

Next

Linear regression

- Perceptron is a linear rule for classification
 - y in a finite set, e.g., {+1, -1}
- What if y can be any real number?
 - Known as regression
 - Again, there is a linear rule

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} ||X\mathbf{w} - \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_2^2$$

empirical risk

- Regularization to avoid overfitting
- Cross-validation to select hyperparameter

regularization