Stat 230: Probability

Lecture 19

Jeremy VanderDoes

University of Waterloo

Friday, June 17th

Review

Example

What do we know about the random variable given one of the following (only (1), or only (2), or ...):

- (1) The distribution (without parameter values)
- (2) The expected value
- (3) The variance
- (4) The median
- (5) The mode

Review

Last we talked about

- (1) R Applications
- (2) Continuous Random Variables pdf

For today:

(1) Properties of the CDF

Reading: Middle of chapter 8

Review

- Monday: TA R tutorial
- Definitions
- R Code Poisson Example

Definition

The CDF of a random variable X is

$$F_X(x) = P(X \le x)$$

If X is continuous with pdf f(x), then

$$F_X(x) = \int_{-\infty}^x f(y) dy$$

Moreover, by the fundamental theorem of calculus,

$$\frac{d}{dx}F_X(x)=f(x).$$

where f(x) is continuous. F(x) is a continuous function.

The CDF for a continuous random variable is much more useful, and less difficult to work with, in terms of computing probabilities related to the random variable:

$$P(a \le X \le b) = F_X(b) - F_X(a) = \int_{-\infty}^b f(y)dy - \int_{-\infty}^a f(y)dy$$
$$= \int_a^b f(y)dy.$$

Properties of the CDF of a continuous random variable:

- (1) F(x) is defined for all real x.
- (2) F(x) is non-decreasing. Plus it's continuous. And it's differentiable except at a countable number of points (which many be 0).
- (3) $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$.
- (4) $P(a \le X \le b) = F(b) F(a)$.

Example

Suppose that X is a continuous random variable with probability density function

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le \sqrt{2}, \\ 0 & \text{otherwise} \end{cases}$$

- (1) Compute $F_X(x)$
- (2) Graph $F_X(x)$
- (3) Compute $P(1/2 \le X < 1)$.