

Department of Computer Engineering

Aim: To implement 2D Transformations: Translation, Scaling, Rotation.

Objective:

To understand the concept of transformation, identify the process of transformation and application of these methods to different object and noting the difference between these transformations.

Theory:

1) Translation –

Translation is defined as moving the object from one position to another position along straight line path. We can move the objects based on translation distances along x and y axis. tx denotestranslation distance along x-axis and ty denotes translation distance along y axis.

Consider (x,y) are old coordinates of a point. Then the new coordinates of that same point (x',y') can be obtained as follows:

$$x' = x + tx$$

$$y' = y + ty$$

We denote translation transformation as P. we express above equations in matrix form as: P' = P + T, where

$$P = \begin{bmatrix} x \\ y \end{bmatrix} \qquad P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \qquad T = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Program:

```
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>

void main()
{
  int gd =DETECT,gm,ch,sx,sy,tx,ty,nx1,nx2,ny1,ny2;
  double r,t;

CSL402: Computer Graphics Lab
```


Department of Computer Engineering

```
initgraph(&gd,&gm,"C:\\TURBOC3\\BGI");
line(100,100,200,100);
printf("Transition ");

printf("enter trans factor \n");
    scanf("%d%d",&tx,&ty);
    nx1=100+tx;
    ny1=100+ty;
    nx2=200+tx;
    ny2=100+ty;
    line(nx1,ny1,nx2,ny2);
    getch();
    closegraph();
}
```

Output -

Department of Computer Engineering

2) Rotation -

A rotation repositions all points in an object along a circular path in the plane centered at the pivot point. We rotate an object by an angle theta. New coordinates after rotation depend on both x and y.

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$

The above equations can be represented in the matrix form as given below

Department of Computer Engineering

```
[x' \ y'] = [x \ y] \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}P' = P \cdot R
```

where R is the rotation matrix and it is given as

$$R = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Program:

```
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>
void main()
int gd =DETECT,gm,ch,sx,sy,tx,ty,nx1,nx2,ny1,ny2;
double r,t;
initgraph(&gd,&gm,"C:\\TURBOC3\\BGI");
line(100,100,200,100);
printf("Rotation ");
printf("enter angle");
  scanf("%lf",&r);
  t=(3.14*r)/180;
  nx1 = (int)(100 + (200-100)*cos(t) - (100-100)*sin(t));
  ny1=(int)(100+(200-100)*sin(t)+(100-100)*cos(t));
  line(100,100,nx1,ny1);
  getch();
  closegraph();
```


Vidyavardhini's College of Engineering & Technology Department of Computer Engineering

Output:
Rotation enter angle90

3) Scaling -

scaling refers to changing the size of the object either by increasing or decreasing. We will

Department of Computer Engineering

increase or decrease the size of the object based on scaling factors along x and y-axis.

If (x, y) are old coordinates of object, then new coordinates of object after applying scaling transformation are obtained as:

$$x' = x * Sx$$

$$y' = y * Sy$$

Sx and Sy are scaling factors along x-axis and y-axis. we express the above equations in matrix form as:

$$[x' \ y'] = [x \ y] \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}$$
$$= [x \cdot S_x \quad y \cdot Sy]$$
$$= P \cdot S$$

Program:

```
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>
void main()
int gd =DETECT,gm,ch,sx,sy,tx,ty,nx1,nx2,ny1,ny2;
double r,t;
initgraph(&gd,&gm,"C:\\TURBOC3\\BGI");
line(100,100,200,100);
printf("Scaling");
printf("enter scaling factor \n");
  scanf("%d%d",&sx,&sy);
  nx1=100+sx;
  ny1=100+sy;
  nx2=200+sx;
  ny2=100+sy;
  line(nx1,ny1,nx2,ny2);
  getch();
  closegraph();
```


Department of Computer Engineering

Output -

Conclusion: Comment on:

1. Application of transformation:

2D transformations are fundamental in computer graphics and image processing.

Translation: Used for moving objects within an image or on a screen, such as dragging and dropping icons.

Scaling: Applied for resizing objects, zooming in/out, or adjusting the size of elements.

Rotation: Essential for tasks like rotating images, elements, or shapes.

2. Difference noted between methods:

Translation: Involves changing the coordinates of an object by adding/subtracting values to its x and y coordinates.

Scaling: Adjusts the size of an object by multiplying its coordinates by scale factors.

Department of Computer Engineering

Rotation: Rotates objects around a specified point (often the origin) by changing their angles.

3. Application t different object:

Translation: Useful for moving text, images, or any graphical element on a screen.

Scaling: Applied to images, fonts, and icons to control their size.

Rotation: Commonly used for rotating images, graphics, and shapes to achieve desired

orientations

CSL402: Computer Graphics Lab