Sécurité et aide à la décision Programmation linéaire CM 01

Valentin Lemière valentin.lemiere@unicaen.fr

30 janvier 2019

Objectifs du cours

- ► Présenter la programmation linéaire
- Donner les outils de résolution
- Présentation d'un solveur

Modalités de contrôle

- Examen sur table à la fin de la matière
- ▶ N'est qu'une des notes de la matière

1. Programmation linéaire

Programmation linéaire

- Aussi appeler optimisation linéaire
- Cherche le meilleur résultat d'un modèle
- Constitué de contraintes linéaires

Exemple de programme linéaire

- Un fermier possède deux produits pour nourrir ses bêtes
- ► Le produit A coûte 1,5E et donne 50g de protéine et 140g de glucide par kg
- ► Le produit B coûte 0,85E et donne 70g de protéine et 20g de glucide par kg
- ► Chaque bête requiert 255g de protéines et 220g de glucides par jour
- Quelle proportion de produits doit-il donner pour minimiser ses dépenses?

Exemple de programme linéaire

- ▶ alim_A ≥ 0
- ▶ alim_B ≥ 0
- ▶ 50 alim_A + 70 alim_B ≥ 255
- ► 140 alim_A + 20 alim_B ≥ 220
- ▶ min : 1.5 alim_A + 0.85 alim_B

Exemple de programme linéaire

- ightharpoonup alim A = 0
- ▶ alim B = 11
- ightharpoonup Cout = 9.35
- ▶ alim A = 5.1
- ightharpoonup alim B=0
- ightharpoonup Cout = 7.65
- ightharpoonup alim A = 1.1705
- ightharpoonup alim_B = 2.8068
- ightharpoonup Cout = 4.1415

Variables

- Quantité que l'on ne connaît pas et dont on veut la valeur
- Les inconnues
- Variable intermédiaire/supplémentaire
- $A = x + y + z \wedge A < 2x$

Contraintes linéaires

- Que veut-on dire par linéaire?
- Une variable ne peut être multipliée que par un facteur constant, pas une autre variable
- ▶ 4 * Variable : linéaire
- ▶ Var1 * Var2 : non linéaire

Contraintes de borne

- ▶ "On ne peut pas vendre plus de 100 produits ce mois-ci"
- ▶ "On doit envoyer au moins 20 tonnes"
- ▶ produit ≤ 100
- ightharpoonup poids ≥ 20

Contraintes de flot

- ▶ "J'ai 1000 litres et 3 clients C1, C2 et C3 à fournir"
- "J'achète mes disques depuis S1, S2 et S3. Il me faut 5000 disques"
- ightharpoonup C1 + C2 + C3 \leq 1000
- ightharpoonup S1 + S2 + S3 = 5000

Contraintes de ressources

- "Je ne peux avoir que 10000 connecteurs, chaque PC pro que je fais a besoin de 8 connecteurs, et chaque PC familial a besoin de 5 connecteurs"
- ▶ 8 pro + 5 familial ≤ 10000

Contraintes de balance

- ► "L'eau rentre par E1, E2 et E3. Elle doit ressortir par S1 et S2."
- \triangleright E1 + E2 + E3 = S1 + S2
- \triangleright E1 + E2 + E3 S1 S2 = 0

Contraintes souples

- ➤ Si le problème requiert que la contrainte soit satisfaite, ces contraintes sont dites dures
- ▶ Dans certains problèmes, certaines contraintes sont préférées, mais pas nécessaires. Ces contraintes sont dites souples
- Par exemple dans la planification sous préférence, ou un certain nombre de contraintes peuvent être autorisées à être violées, et la qualité de la solution dépend du nombre de contraintes satisfaites

Fonction objectif

- N'est pas une contrainte, mais consiste en une expression linéaire
- Est souvent un coût (quand on minimise) ou un profit (quand on maximise)
- La plupart des solveurs minimisent par défaut
- ► Il peut ne pas y avoir de fonction objectif, le solveur doit donc juste ressortir une solution réalisable, ou répondre si le problème possède (au moins) une solution, mais ces problèmes sont assez rare

Satisfaisabilité

- ▶ Un problème est satisfiable s'il existe au moins une solution
- Si deux contraintes sont inconsistantes, alors le problème n'est pas satisfiable
- ▶ Par exemple les contraintes $x \ge 2$ et $x \le 1$

Solution optimale

- ► La solution optimale est la solution avec la plus petite/grande valeur pour la fonction objectif
- ► Il n'existe pas forcement de solution optimale même si le problème est satisfiable
- Par exemple $x \ge 0$ avec max : x, il est toujours possible d'augmenter la valeur de la solution

2. Résolution

Résolution graphique

Axes

- Variables
- ▶ Avec 2 variables on peut facilement avoir une visualisation
- ► Mais s'applique quelque soit le nombre de variables

Contraintes

- 2 variables : forme des demi-droites
- ▶ 3 variables : forme des demi-plans
- ▶ 4+ variables : forme des demi-hyperplans
- L'équation linéaire forme directement l'équation de la demi-droite

Solutions

- L'ensemble des demi-droites forment un polygone convexe, qui représente l'ensemble des solutions réalisables
- La solution optimale est l'un des sommets du polygone
- ➤ Sauf si le polygone n'est pas fermé dans le sans de la minimisation/maximisation

Outils en ligne

https://www.zweigmedia.com/utilities/lpg/index. html?lang=en 3. Exemple

- Une usine propose deux produits P1 vendu 12E et P2 vendu 8E
- ► Chaque pièce est traitée successivement dans 3 ateliers
- ► Le nombre d'heures-machines par pièce est : P1 (A=3,B=5,C=2), P2(A=1,B=3,C=3)
- ▶ Pour éviter le chômage technique, l'atelier A doit fournir 1200 heures-machines, l'atelier B 3000 heures-machines et l'atelier C 1800 heures-machines
- ➤ Trouver une production permettant d'éviter le chômage technique telle que la production soit équilibrée à 10% près, tout en maximisant les profits

Choix des variables

- Le nombre de produits P1 produit
- ▶ Le nombre de produits P2 produit

Choix des contraintes

- ▶ L'atelier A fourni 1200 heures-machines : 3P1 + 1P2 > 1200
- ▶ L'atelier B fourni 3000 heures-machines : 5P1 + 3P2 ≥ 3000
- ▶ L'atelier C fourni 1800 heures-machines : 2P1 + 3P2 ≥ 1800
- \blacktriangleright La production est équilibrée : 1.1P1 P2 > 0 et -1P1 + 1.1P2 > 0

Choix de la fonction objective

- On veut maximiser les profits
- ► max : 12P1 + 8P2

Le programme linéaire

- ► max : 12P1 + 8P2
- ightharpoonup 3P1 + 1P2 \geq 1200
- ▶ $5P1 + 3P2 \ge 3000$
- ightharpoonup 2P1 + 3P2 \geq 1800
- ▶ 1.1P1 P2 > 0
- ightharpoonup -1P1 + 1.1P2 > 0

Résolution

Solution

- ▶ (361.4458, 397.5904) de valeur 7518.0723
- ▶ (388.2353, 352.9412) de valeur 7482.3529
- La région des solutions n'est pas bornée, il y a pas de solution optimale

4. Utilisation de la PL

Utilisation de la PL

- ▶ De nombreux problèmes en recherche opérationnelle peuvent être exprimé comme des programmes linéaires
- Planification
- Production
- ► Transport
- **.**..

5. PLNE

PLNE

- ► Tous les problèmes ne peuvent pas être modélisés comme des problèmes linéaires
- Notament lorsque les solutions ne peuvent être prises que parmi un ensemble de valeurs
- Programmation Linéaire en Nombre Entier, aussi appelé IP (Integer Programming) ou ILP

MILP

 On parle de MILP (Mixed integer linear programming) quand certaines variables sont contraintes aux entiers, et que d'autres variables sont réelles

- max: y
- ▶ $-x + y \le 1$
- ▶ $3x + 2y \le 12$
- ▶ $2x + 3y \le 12$
- ► x ≥ 0
- ▶ y ≥ 0
- \mathbf{r} $\mathbf{r} \in \mathbb{Z}$
- ightharpoonup $y\in\mathbb{Z}$

- Les solutions entières sont (1, 2) et (2, 2) toute deux avec une valeur de 2
- ► La solution réelle aurait été (1.8, 2.8), son arrondi (2, 3) n'est pas une solution

Méthode de résolution

- ► On ne peut pas résoudre en réel et prendre l'arrondi, car ce n'est pas garanti d'être une solution
- Branch-and-bound, qui divise le problème en plusieurs sous problèmes
- ➤ Via heuristique, la PLNE étant NP-difficile : recuit simulé, hill-climbing ...

6. PL 0/1

PL 0/1

- Les variables ne peuvent prendre que la valeur 0 ou 1
- ▶ Utilisée dans des problèmes de décision

Minimiser le nombre de violations du problème de 2-coloration pour le graphe $G=(\{A,B,C\},\{(A,B),(B,C)\})$.

Minimiser le nombre de violations du problème de 2-coloration pour le graphe $G=(\{A,B,C\},\{(A,B),(B,C)\})$.

Variables:

- ► A1
- ► A2
- ▶ B1
- ▶ B2
- ► C1
- ► C2

Minimiser le nombre de violations du problème de 2-coloration pour le graphe $G=(\{A,B,C\},\{(A,B),(B,C)\})$.

Contraintes:

- A1 + A2 = 1
- ▶ B1 + B2 = 1
- ightharpoonup C1 + C2 = 1
- D1 + D2 = 1

Minimiser le nombre de violations du problème de 2-coloration pour le graphe $G=(\{A,B,C\},\{(A,B),(B,C)\})$.

Contraintes:

- ▶ A1 + B1 $arc11 \le 1$
- ▶ $A2 + B2 arc12 \le 1$
- ▶ B1 + C1 arc21 < 1
- ▶ B2 + C2 $arc22 \le 1$

Minimiser le nombre de violations du problème de 2-coloration pour le graphe $G=(\{A,B,C\},\{(A,B),(B,C)\})$.

Fonction objectif:

ightharpoonup min : arc11 + arc12 + arc21 + arc22