#### Análise da posterior

Se o MCMC rodou conforme esperado temos uma cadeia de valores, nossa distribuição posterior.



## Análise da posterior

Infelizmente nossa análise não está completa. A teoria do MCMC garante que o método atinge a distribuição posterior correta no limite  $n \to \infty$ .

No entanto, rodamos o MCMC por alguns milhões de gerações, o que está BEM longe de  $n \to \infty$ .

Por isso precisamos verificar a convergência das cadeias.

### Análise da posterior

Vamos abordar as análises utilizadas para avaliar os resultados do **MCMC**.

- Burn-in ou queima da cadeia (?).
- Thinning ou rarefação da cadeia.
- Análise de convergência.
- Posterior predictive simulations ou Simulações preditivas da posterior.

A cadeia do MCMC pode ser influenciada mais pelo valor de início do que pela distribuição posterior alvo durante as primeiras gerações.

Nesse caso, a frequência com que valores são amostrados na fase de *burn-in* é diferente do que a frequência alvo.





target distribution depois da retirada do burn-in.



Quanto é necessário retirar de burn-in?



Quanto é necessário retirar de burn-in?



#### Quanto é necessário retirar de burn-in?

Propriedade de Markov garante que o estado inicial seja 'esquecido'. Portanto, nada.



#### Quanto é necessário retirar de burn-in?

A grande maioria das análises retira uma porção da cadeia como *burn-in*. A proporção varia.

Não retirar a fase de *burn-in* quando a análise tem o ponto inicial com base em uma estimativa prévia, como o MLE, faz sentido.



Uma prática comum é verificar a proporção do burn-in usando o gráfico do log(likelihood) pelo número de gerações.



Gerações

O thinning ou rarefação da cadeia é aplicado com o objetivo de diminuir o efeito da autocorrelação entre as gerações do MCMC.

Lembre-se que os passos do MCMC seguem uma distribuição de proposta:



Analisando a série temporal do MCMC podemos observar que as gerações geralmente não são independentes.

A autocorrelação entre as gerações é influenciada pela pela largura dos passos da cadeia.

Quando a distribuição de proposta é estreita (passos curtos) a autocorrelação é maior.





Para aplicar o *thinning* somente cada *k* geração é mantida enquanto todo o resto é descartado.



Embora a aplicação de *thinning* seja comum, a principal justificativa é a economia de memória computacional.

Melhor que aplicar *thinning* seria melhorar a estratégia de proposta para diminiur a autocorrelação sem "jogar resultados fora".

Resultados mostram que a precisão de estimativas baseadas em cadeias sem rarefação é mais alta.

Link and Eaton, Methods in Ecology and Evolution, 2012(3)112-115

Analisar a convergência é importante para certificar que as cadeias não estão amostrando diferentes ótimos locais na superfície de verossimilhança.

A idéia central da convergência é que duas ou mais cadeias chegaram na mesma região vindo de pontos de partida diferentes.



A idéia central da convergência é que duas ou mais cadeias chegaram na mesma região vindo de pontos de partida diferentes.



Ghostbusters (1984)

Três cadeias não convergem.



Três cadeias não convergem.



Exemplo de convergência.



Exemplo de convergência. Cadeia azul fica 'presa' em um outro pico. Sugere melhor exploração com valor início perto dessa região.

Um dos melhores testes de convergência (talvez o melhor!) é o Gelman and Rubin (1992) **R** ou 'potential reduction factor'.

Essa estatística se baseia em uma média ponderada da variância dentro de cada cadeia e entre as cadeias. Quando **R** se aproxima de **1** (limite máximo) a convergência é aceita.

A vantagem desta estatística é que ela estima uma quantidade que estamos diretamente interessados, se as cadeias "contam a mesma história".

Infelizmente as vezes não é possível rodar uma série de cadeias com pontos iniciais distintios.

Existem maneiras de acessar se a cadeia chegou em convergência com base em somente uma análise, no entanto estes métodos são menos precisos.



Valor do parâmetro estabiliza com o número de gerações.

Histograma da posterior dos parâmetros.



baixo mixing baixo ESS



bom mixing boa ESS

#### **Effective Sample Size (ESS)**

O 'tamanho efetivo da amostra' estima o número de amostras independentes resultantes do MCMC.

O ESS é o número "real" de amostras feitas pelo MCMC.





- O **ESS** é o número de amostras que a estimativa do parâmetro está se baseando (assumindo convergência).
- Quando a autocorrelação é grande, precisamos rodar o MCMC por um número maior de gerações para conseguir amostras independentes para estimar os parâmetros.
- Não existe um número mágico para a **ESS**. Quantas amostras parece razoável para estimar seus parâmetros?

Em suma,

# Esteja ALERTA.





