Honors Mathematics III Review — Final

CHEN Xiwen

UM-SJTU Joint Institute

August 7, 2018

Table of contents

Integration in Practice

Integration Over Ordinate Regions Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces
The Normal Vector to Hypersurfaces
Orientation of Hypersurfaces
Scalar Surface Integrals
Flux Through Hypersurfaces

The Theorems of Gauss and Stokes

Summary

Elements
Practical Integration

Integration Over Ordinate Regions

Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces
The Normal Vector to Hypersurfaces
Orientation of Hypersurfaces
Scalar Surface Integrals
Flux Through Hypersurfaces

The Theorems of Gauss and Stokes

Summary

Elements

Practical Integration

Integration Over Cuboids

By Fubini's Theorem, we have

$$\int_{Q} f = \int_{a_{n}}^{b_{n}} \cdots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x_{1}, x_{2}, \dots, x_{n}) dx_{1} dx_{2} \dots dx_{n}.$$

or equivalently,

$$\int_Q f = \int_Q f(x) \mathrm{d}x$$

Integration Over Ordinate Regions

Definitions.

▶ Ordinate region (with respect to x_k): there exists a measurable set $\Omega \subset \mathbb{R}^{n-1}$ and continuous, almost everywhere differentiable functions $\varphi_1, \varphi_2 : \Omega \to \mathbb{R}$ such that

$$U = \{x \in \mathbb{R}^n : x \in \Omega, \varphi_1(\hat{x}^{(k)}) \le x_k \le \varphi_2(\hat{x}^{(k)})\}.$$

Simple region: U is an ordinate region with respect to each $x_k, k = 1, \ldots, n$.

Integration Over Ordinate Regions

For an ordinate region $U \subset \mathbb{R}^n$ with respect to x_k over a measurable set Ω , the indicator function $\mathbb{1}_U$ takes the form

$$\mathbb{1}_{U}(x) = \mathbb{1}_{\Omega} \cdot \mathbb{1}_{[\varphi_{1}(\hat{x}^{(k)}, \varphi_{2}(\hat{x}^{(k)})]}(x_{k}).$$

It then follows that

$$\int_{U} f(x) dx_{1} \dots dx_{n} = \int_{\Omega} \left(\int_{\varphi_{1}(\hat{x}^{(k)})}^{\varphi_{2}(\hat{x}^{(k)})} f(x) dx_{k} \right) d\hat{x}^{(k)}$$

if

$$\int_{\varphi_1(\hat{x}^{(k)})}^{\varphi_2(\hat{x}^{(k)})} f(x) \mathrm{d}x_k$$

exists for every $\hat{x}^{(k)} \in \Omega$.

Integration Over Ordinate Regions

Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces
The Normal Vector to Hypersurfaces
Orientation of Hypersurfaces
Scalar Surface Integrals

The Theorems of Gauss and Stokes

Summary

Elements

Practical Integration

Substitution Rule

3.4.12. Substitution Rule. Let $\Omega \subset \mathbb{R}^n$ be open and $g:\Omega \to \mathbb{R}^n$ injective and continuously differentiable. Suppose that $\det J_g(y) \neq 0$ for all $y \in \Omega$. Let K be a compact measurable subset of Ω . Then g(K) is compact and measurable and if $f:g(K)\to \mathbb{R}$ is integrable, then

$$\int_{g(K)} f(x) \mathrm{d}x = \int_K f(g(y)) \cdot |\det J_g(y)| \mathrm{d}y.$$

Coordinate Systems

► Polar coordinates:

$$x = r \cos \phi$$
, $y = r \sin \phi$, $|\det J(r, \phi)| = r$

Cylindrical coordinates:

$$x = r \cos \phi$$
, $y = r \sin \phi$, $z = \zeta$, $|\det J(r, \phi, \zeta)| = r$

Spherical coordinates:

$$x = r \cos \phi \sin \theta, \quad y = r \sin \phi \sin \theta, \quad z = r \cos \theta$$

$$|\det J(r, \phi, \theta)| = r^2 \sin \theta.$$

Coordinate Systems

▶ Spherical coordinates in \mathbb{R}^n :

$$x_1 = r \cos \theta_1$$

$$x_2 = r \sin \theta_1 \cos \theta_2$$

$$x_3 = r \sin \theta_1 \sin \theta_2 \cos \theta_3$$

$$\vdots$$

$$x_{n-1} = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \cos \theta_{n-1}$$

$$x_n = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \sin \theta_{n-1}$$

$$|\det J(r, \theta_1, \dots, \theta_{n-1})| = r^{n-1} \sin^{n-2} \theta_1 \sin^{n-3} \theta_2 \cdots \sin \theta_{n-2}$$

Note. $r > 0, 0 < \theta_k < \pi, k = 1, \dots, n-2, 0 < \theta_{n-1} < 2\pi$.

The Gauss Integral

The Gauss Integral.

$$\lim_{a\to\infty}I(a):=\int_{-\infty}^{\infty}e^{-x^2/2}\mathrm{d}x=\sqrt{2\pi}.$$

Variants. For k > 0,

$$\int_{-\infty}^{\infty} e^{-kx^2} \mathrm{d}x = \sqrt{\frac{\pi}{k}}.$$

Green's Theorem

Green's Theorem. Let $R \subset \mathbb{R}^2$ be bounded, simple region and $\Omega \supset R$ an open set containing R. Let $F : \Omega \to \mathbb{R}^2$ be continuously differentiable vector field. Then

$$\int_{\partial R^*} F d\vec{s} = \int_{R} \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) dx$$

Physical Interpretation of Green's Theorem

For
$$F = \begin{pmatrix} F_1(x) \\ F_2(x) \end{pmatrix}$$
,

circulation along $\partial R = \int_{\partial R^*} F d\vec{s}$

$$= \int_R \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) dx$$

$$= \int_R \operatorname{rot} F dx$$

$$= \operatorname{integral of circulation density over } R.$$

Physical Interpretation of Green's Theorem

For
$$\tilde{F} = \begin{pmatrix} -F_2(x) \\ F_1(x) \end{pmatrix}$$
,

flux through $\partial R = \int_{\partial R^*} \langle F, N \rangle ds = \int_{\partial R^*} \tilde{F} d\vec{s}$

$$= \int_R \left(\frac{\partial \tilde{F}_2}{\partial x_1} - \frac{\partial \tilde{F}_1}{\partial x_2} \right) dx$$

$$= \int_R \operatorname{div} F dx$$

= integral of flux density over R .

Integration Over Ordinate Regions
Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces

The Normal Vector to Hypersurfaces Orientation of Hypersurfaces Scalar Surface Integrals Flux Through Hypersurfaces

The Theorems of Gauss and Stokes

Summary

Elements Practical Integratior

Tangent Spaces of Surfaces

Definition. Let $S \subset \mathbb{R}^n$ be a parametrized *m*-surface with parametrization $\varphi : \Omega \to S$. Then

$$t_k(p) = \frac{\partial}{\partial x_k} \begin{pmatrix} \varphi_1(x) \\ \vdots \\ \varphi_2(x) \end{pmatrix} \bigg|_{x=\varphi^{-1}(p)}, \qquad k=1,\ldots,m$$

is called the k-th tangent vector of S at $p \in S$ and

$$T_p \mathcal{S} := \operatorname{ran} D\varphi|_{x} = \operatorname{span}\{t_1(p), \ldots, t_m(p)\}$$

is called the *tangent space* to S at p. The vector field

$$t_k: \mathcal{S} \to \mathbb{R}^n, \qquad p \mapsto t_k(p)$$

is called the k-th tangent vector field on S.

Integration Over Ordinate Regions
Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces

The Normal Vector to Hypersurfaces

Orientation of Hypersurfaces Scalar Surface Integrals

Flux Through Hypersurfaces

The Theorems of Gauss and Stokes

Summary

Elements

Practical Integration

The Normal Vector to Hypersurfaces

Definition. Let $S \subset \mathbb{R}^n$ be a hypersurface. Then a unit vector that is orthogonal to all tangent vectors to S at p is called a *unit normal* vector to S at p and denoted by N(p). The vector field

$$N: \mathcal{S} \to \mathbb{R}^n, \qquad p \mapsto N(p)$$

is called the *normal vector field* on S.

Integration Over Ordinate Regions
Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces
The Normal Vector to Hypersurfaces
Orientation of Hypersurfaces
Scalar Surface Integrals

The Theorems of Gauss and Stokes

Summary

Elements Practical Integration

Orientation of Hypersurfaces

Definitions.

- ▶ A hypersurface $S \subset \mathbb{R}^n$ such that it admits a continuous normal vector field is said to be *orientable*.
- ▶ A choice of direction for the normal vector field is called an *orientation of* S.
- ▶ A hypersurface that is the boundary of a measurable set $\Omega \subset \mathbb{R}^n$ with non-zero measure is said to be a *closed surface*.
- A closed hypersurface is said to have *positive orientation* if the normal vector field is chosen so that the normal vectors point *outwards* from Ω.

Integration Over Ordinate Regions
Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces
The Normal Vector to Hypersurfaces
Orientation of Hypersurfaces

Scalar Surface Integrals

Flux Through Hypersurfaces

The Theorems of Gauss and Stokes

Summary

Elements

Practical Integration

The Metric Tensor

Definition. Let $S \subset \mathbb{R}^n$ be an m-surface with parametrization φ and tangent vector fields t_1, \ldots, t_m . Then $G \in \operatorname{Mat}(m \times m; \mathbb{R})$ given by

$$G := \begin{pmatrix} \langle t_1, t_1 \rangle & \cdots & \langle t_1, t_m \rangle \\ \vdots & \ddots & \vdots \\ \langle t_m, t_1 \rangle & \cdots & \langle t_m, t_m \rangle \end{pmatrix}$$

is said to be the *metric tensor* on S with respect to φ . The coefficients

$$g_{ij} := \langle t_i, t_j \rangle, \qquad i, j = 1, \dots, m,$$

are called the *metric coefficients* of *G*.

Scalar Surface Integrals

Definition. Let $f: \mathcal{S} \to \mathbb{R}$ be a potential function. \mathcal{S} is a parametrized m-surface with parametrization $\varphi: \Omega \to \mathcal{S}, \Omega \subset \mathbb{R}^m$. Then the **(s-calar) surface integral of** f **over** \mathcal{S} is defined as

$$\int_{\mathcal{S}} f \, \mathrm{d}A := \int_{\Omega} f \circ \varphi \sqrt{g(x)} \, \mathrm{d}x$$

Integration Over Ordinate Regions
Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces
The Normal Vector to Hypersurfaces
Orientation of Hypersurfaces
Scalar Surface Integrals
Flux Through Hypersurfaces

The Theorems of Gauss and Stokes

Summary

Elements
Practical Integration

Flux Through Hypersurfaces

Definition. Ley $F:\mathbb{R}^{n+1}\to\mathbb{R}^{n+1}$ be a vector field defined in a neighborhood of a hypersurface $\mathcal S$ with parametrization $\varphi:\Omega\to\mathbb{R}^{n+1},\,\Omega\subset\mathbb{R}^n$. Then we define the *flux of F through* $\mathcal S$ by

$$\begin{split} \int_{\mathcal{S}} F \mathrm{d} \vec{A} &:= \int_{\mathcal{S}} \langle F, N \rangle \mathrm{d} A \\ &= \int_{\Omega} \langle F \circ \varphi(x), N \circ \varphi(x) \rangle \sqrt{g(x)} \mathrm{d} x_1 \ldots \mathrm{d} x_n \end{split}$$

Admissible Regions

Definitions.

- ▶ A subset $R \subset \mathbb{R}^n$ is called a *region* if it is open and (pathwise) connected.
- ▶ A region $R \subset \mathbb{R}^n$ is said to be *admissible* if it is bounded and its boundary is the union of a finite number of parametrized hypersurfaces whose normal vectors point outwards from R.
- ▶ A hypersurface $S \subset \mathbb{R}^3$ with parametrization $\varphi : R \to S$ is said to be *admissible* if
 - 1. the interior $\operatorname{int} R$ is an admissible region in \mathbb{R}^2 with an oriented boundary curve ∂R^* and
 - 2. R is closed, i.e., $R = \overline{R}$.

Closed Hypersurfaces in \mathbb{R}^3

Definition. Let $\mathcal{S} \subset \mathbb{R}^3$ be an admissible hypersurface with parametrization $\varphi: R \to \mathcal{S}$. Let $\partial R^* = \mathcal{C}_1^* \cup \mathcal{C}_2^* \cup \cdots \cup \partial_k^*$, where each \mathcal{C}_i^* is an oriented smooth curve in \mathbb{R}^2 and all \mathcal{C}_i^* are pairwise disjoint.

lacktriangle We say that φ *annihilates* a chain of curves $\mathcal{C}_{i_1} \cup \cdots \cup \mathcal{C}_{i_j}$ if

$$\int_{\varphi(\mathcal{C}_{i_1}\cup\cdots\cup\mathcal{C}_{i_j})}1\mathrm{d}s=0.$$

- ▶ If φ annihilates ∂R , S is said to be a *closed surface*.
- ▶ Denote by $\mathcal{C}' \subset \partial R$ the largest chain of curves that is annihilated by φ . If $\mathcal{C}' \neq \partial R$ we say that \mathcal{S} is a *surface with boundary* and define

$$\partial \mathcal{C} := \varphi(\partial R \setminus \mathcal{C}').$$

Closed Hypersurfaces in $\ensuremath{\mathbb{R}}^3$

Examples.

Stokes's Theorem in \mathbb{R}^3

3.6.7. Stokes's Theorem. Let $\Omega \subset \mathbb{R}^3$ be an open set, $\mathcal{S} \subset \Omega$ a parametrized, admissible surface in \mathbb{R}^3 with boundary $\partial \mathcal{S}$ and let $F:\Omega \to \mathbb{R}^3$ be a continuously differentiable vector field. Then

$$\int_{\partial \mathcal{S}^*} F d\vec{s} = \int_{\mathcal{S}^*} \operatorname{rot} F d\vec{A}$$

with positive orientation and normal vectors pointing in the direction of the thumb of the right hand if the four fingers point in the direction of the tangent vector to $\partial \mathcal{S}^*$.

Gauss's Theorem

3.6.9. Gauss's Theorem. Let $R \subset \mathbb{R}^n$ be an admissible region and $F : \overline{R} \to \mathbb{R}^n$ a continuously differentiable vector field. Then

$$\int_{R} \operatorname{div} F \, \mathrm{d}x = \int_{\partial \mathcal{R}^*} F \, \mathrm{d}\vec{A}$$

Green's Identities

- 3.6.13. Green's Identities. Let $R \subset \mathbb{R}^n$ be an admissible region and $u, v : \overline{R} \to \mathbb{R}$ be twice continuously differentiable potential functions. Then we have:
 - ► Green's first identity:

$$\int_R \langle \nabla u, \nabla v \rangle \mathrm{d}x = -\int_R u \cdot \Delta v \mathrm{d}x + \int_{\partial R^*} u \frac{\partial v}{\partial n} \mathrm{d}A.$$

► Green's second identity:

$$\int_{R} (u \cdot v - v \cdot u) dx = \int_{\partial R^{*}} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) dA.$$

Integration Over Ordinate Regions
Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces
The Normal Vector to Hypersurfaces
Orientation of Hypersurfaces
Scalar Surface Integrals
Flux Through Hypersurfaces

The Theorems of Gauss and Stokes

Summary

Elements

Practical Integration

Scalar line element:

$$\mathrm{d}s = |\gamma'(t)|\mathrm{d}t.$$

Line integral of potential f along C^* :

$$\int_{\mathcal{C}^*} f \mathrm{d} s = \int_I (f \circ \gamma)(t) \cdot |\gamma'(t)| \mathrm{d} t.$$

Vectorial line element:

$$\mathrm{d}\vec{s} = \gamma'(t)\mathrm{d}t.$$

The line integral of vector field F along C^* :

$$\int_{\mathcal{C}^*} F \mathrm{d}\vec{s} = \int_{\mathcal{C}^*} \langle F, T \rangle \mathrm{d}s.$$

Volume element: (take spherical coordinates as example.)

$$dx = |\det J_{\Phi}(r, \theta, \varphi)| dr d\theta d\phi.$$

Integration of potentials in a \mathbb{R}^3 region:

$$\int_{\Omega} f = \int_{\Phi^{-1}(\Omega)} f \circ \Phi(r, \theta, \phi) \cdot |\det J_{\Phi}(r, \theta, \varphi)| \mathrm{d}r \mathrm{d}\theta \mathrm{d}\phi.$$

▶ Scalar surface element of a hypersurface in \mathbb{R}^n :

$$dA = |\det(t_1, t_2, \ldots, t_{n-1}, N) \circ \varphi| dx_1 dx_2 \ldots dx_{n-1}.$$

Volume or area of S:

$$|\mathcal{S}| = \int_{\Omega} |\mathrm{det}(t_1, \dots, t_{n-1}, N) \circ \varphi(x)| \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_{n-1}.$$

▶ Infinitesimal surface element of arbitrary surfaces in \mathbb{R}^n :

$$\mathrm{d}A = \sqrt{g(x)}\mathrm{d}x,$$

where

$$G = egin{pmatrix} \langle t_1, t_1
angle & \cdots & \langle t_1, t_m
angle \\ dots & \ddots & dots \\ \langle t_m, t_1
angle & \cdots & \langle t_m, t_m
angle \end{pmatrix} \;\;, \qquad g(x) = \det G(\varphi(x))$$

The scalar (surface) integral of f over S:

$$\int_{\mathcal{S}} f \, \mathrm{d}A = \int_{\Omega} f \circ \varphi(x) \sqrt{g(x)} \, \mathrm{d}x.$$

Vectorial surface element:

$$d\vec{A} = N(\varphi(x)) \cdot \sqrt{g(x)} dx.$$

The flux of F through S integral:

$$\int_{\mathcal{S}} F d\vec{A} = \int_{\Omega} \langle F \circ \varphi(x), N \circ \varphi(x) \rangle \sqrt{g(x)} dx_1 \dots dx_n.$$

Integration Over Ordinate Regions Theorems for Integration

Surfaces and Surface Integrals

Tangent Spaces of Surfaces
The Normal Vector to Hypersurfaces
Orientation of Hypersurfaces
Scalar Surface Integrals
Flux Through Hypersurfaces

The Theorems of Gauss and Stokes

Summary

Elements

Practical Integration

► Ordinate region:

$$\int_{U} f(x) dx_{1} \dots dx_{n} = \int_{\Omega} \left(\int_{\varphi_{1}(\hat{x}^{(k)})}^{\varphi_{2}(\hat{x}^{(k)})} f(x) dx_{k} \right) d\hat{x}^{(k)}$$

Substitution rule:

$$\int_{g(K)} f(x) \mathrm{d} x = \int_K f(g(y)) \cdot |\mathrm{det} J_g(y)| \mathrm{d} y.$$

▶ Green's theorem: (\mathbb{R}^2)

$$\int_{\partial R^*} F d\vec{s} = \int_{R} \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) dx.$$

▶ Stokes's theorem: (\mathbb{R}^3)

$$\int_{\partial \mathcal{S}^*} F \mathrm{d} \vec{s} = \int_{\mathcal{S}^*} \mathrm{rot} \, F \mathrm{d} \vec{A}.$$

▶ Gauss's theorem: (\mathbb{R}^3)

$$\int_{R} \operatorname{div} F dx = \int_{\partial R^*} F d\vec{A}.$$

Green's identities:

$$\int_{R} \langle \nabla u, \nabla v \rangle dx = -\int_{R} u \cdot \Delta v dx + \int_{\partial R^{*}} u \frac{\partial v}{\partial n} dA,$$
$$\int_{R} (u \cdot v - v \cdot u) dx = \int_{\partial R^{*}} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) dA.$$

Thanks for your attention!

Good Luck!