Computational Intelligence Definition Sheet

Thomas Gabor LMU Munich Maximilian Zorn LMU Munich

Claudia Linnhoff-Popien LMU Munich

winter term 2024/2025

Notation. \mathbb{B} is the set of truth values or Booleans, i.e., $\mathbb{B} = \{0,1\}$. \mathbb{N} is the set of natural numbers starting from zero, i.e., $\mathbb{N} = \{0,1,2,...\}$ so that it holds that $\mathbb{B} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{R} \subset \mathbb{C}$. \mathbb{P} denotes the space of probabilities and \mathbb{F} denotes the space of fuzzy values with $\mathbb{P} = \mathbb{F} = [0;1] \subset \mathbb{R}$ being only discerned for semantic but not mathematical reasons. \mathbb{E} denotes the expected value. $\wp(X) = 2^X$ denotes the power set of X. \mathbb{E} denotes vector or sequence concatenation, i.e., given two vectors $\mathbf{x} = \langle x_1, ..., x_{|\mathbf{x}|} \rangle$ and $\mathbf{y} = \langle y_1, ..., y_{|\mathbf{y}|} \rangle$, $\mathbf{x} + \mathbf{y} = \langle x_1, ..., x_{|\mathbf{x}|}, y_1, ..., y_{|\mathbf{y}|} \rangle$. A vector $\langle x_0, ..., x_{n-1} \rangle$ with length $n \in \mathbb{N}$ can also be written as $\langle x_i \rangle_{0 \leq i \leq n-1}$ for a new iteration variable i. A sequence containing an arbitrary amount of elements from the space X has the type $\langle X \rangle$. \cdot denotes unspecified function arguments $(f(\cdot) = 0)$ is the constant function that always returns zero, e.g.). For any finite set $X = \{x_0, ..., x_n\}$, |X| = n denotes the number of elements in X. For infinite sets, $|X| = \infty$.

Definition 1 (agent). Let \mathcal{A} be a set of actions. Let \mathcal{O} be a set of observations. An agent A can be given via a policy function $\pi: \mathcal{O} \to \mathcal{A}$. Given a time series of observations $\langle o_t \rangle_{t \in \mathcal{Z}}$ for some time space \mathcal{Z} the agent can thus generate a time series of actions $\langle a_t \rangle_{t \in \mathcal{Z}}$ by applying $a_t = \pi(o_t)$.

Algorithm 1 (brute force (policy)). Let \mathcal{A} be a set of actions. Let \mathcal{O} be a set of observations. Let $\Gamma \subseteq (\mathcal{O} \to \mathcal{A}) \to \mathbb{B}$ be a space of goal predicates on policy functions. Let $\gamma \in \Gamma$ be a goal predicate. We assume that the policy space $\Pi \subseteq \mathcal{O} \to \mathcal{A}$ is enumerable, i.e., $\Pi = \langle \pi_i \rangle_{i \in \mathbb{N}}$. Brute force starting from i is given via the function

$$b(i) = \begin{cases} \pi_i & \text{if } \gamma(\pi_i), \\ b(i+1) & \text{otherwise.} \end{cases}$$

If not further specified, the call to b(0) is called brute force search for an agent policy. Usually, an additional termination condition is specified.

Algorithm 2 (random search (policy)). Let \mathcal{A} be a set of actions. Let \mathcal{O} be a set of observations. Let $\Gamma \subseteq (\mathcal{O} \to \mathcal{A}) \to \mathbb{B}$ be a space of goal predicates on policy functions. Let $\gamma \in \Gamma$ be a goal predicate. We assume that the policy space $\Pi \subseteq \mathcal{O} \to \mathcal{A}$ can be sampled from, i.e., $\pi \sim \Pi$ returns a random element from Π . Random search for n samples is given via the function

$$\rho(n) = \begin{cases} \emptyset & \text{if } n = 0, \\ \pi & \text{if } n > 0 \text{ and } \gamma(\pi) \text{ where } \pi \sim \Pi, \\ \rho(n-1) & \text{otherwise.} \end{cases}$$

Definition 2 (optimization). Let \mathcal{X} be an arbitrary state space. Let \mathcal{T} be an arbitrary set called target space and let \leq be a total order on \mathcal{T} . A total function $\tau: \mathcal{X} \to \mathcal{T}$ is called target function. Optimization (minimization/maximization) is the procedure of searching for an $x \in \mathcal{X}$ so that $\tau(x)$ is optimal (minimal/maximal). Unless stated otherwise, we assume minimization. An optimization run of length g+1 is a sequence of states $\langle x_t \rangle_{0 \leq t \leq g}$ with $x_t \in \mathcal{X}$ for all t.

Let $e: \langle \mathcal{X} \rangle \times (\mathcal{X} \to \mathcal{T}) \to \mathcal{X}$ be a possibly randomized or non-deterministic function so that the optimization run $\langle x_t \rangle_{0 \le t \le g}$ is produced by calling e repeatedly, i.e., $x_{t+1} = e(\langle x_u \rangle_{0 \le u \le t}, \tau)$ for all $t, 1 \le t \le g$, where x_0 is given externally (e.g., $x_0 =_{def} 42$) or chosen randomly (e.g., $x_0 \sim \mathcal{X}$). An optimization process is a tuple $(\mathcal{X}, \mathcal{T}, \tau, e, \langle x_t \rangle_{0 < t < g})$.

Definition 3 (optimization (policy)). Let $\mathcal{X} = \Pi$ be a policy space. Let $\mathcal{D} = (\Pi, \mathcal{T}, \tau, e, \langle x_t \rangle_{0 \leq t \leq g})$ be an optimization process according to Definition 2. \mathcal{D} is called a policy optimization process.

Algorithm 3 (simulated annealing). Let $\mathcal{D} = (\mathcal{X}, \mathcal{T}, \tau, e, \langle x_u \rangle_{0 \leq u \leq t})$ be an optimization process. Let *neighbors* : $\mathcal{X} \to \wp(\mathcal{X})$ be a function that returns a set of neighbors of a given state $x \in \mathcal{X}$. Let $\kappa : \mathbb{N} \to \mathbb{R}$ be a temperature schedule, i.e., a function that returns a temperature value for each time step. Let $A : \mathcal{T} \times \mathcal{T} \times \mathbb{R} \to \mathbb{P}$ with $\mathbb{P} = [0;1] \subset \mathbb{R}$ be a function that returns an acceptance probability given two target values and a temperature. Commonly, we use

 $A(Q, Q', K) = e^{\frac{-(Q'-Q)}{K}}$

for $\mathcal{T} \subseteq \mathbb{R}$. The process \mathcal{D} continues via simulated annealing if e is of the form

$$e(\langle x_u \rangle_{0 \le u \le t}, \tau) = x_{t+1} = \begin{cases} x'_t & \text{if } \tau(x'_t) \le \tau(x_t) \text{ or } r \le A(\tau(x_t), \tau(x'_t), \kappa(t)), \\ x_t & \text{otherwise,} \end{cases}$$

where $x'_t \sim neighbors(x_t)$ and $r \sim \mathbb{P}$ are drawn at random for each call to e.

Definition 4 (population-based optimization). Let \mathcal{X} be a state space. Let \mathcal{T} be a target space with total order \leq . Let $\tau: \mathcal{X} \to \mathcal{T}$ be a target function. A tuple $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_t \rangle_{0 \leq t \leq g})$ is a population-based optimization process iff $X_t \in \wp^*(\mathcal{X})$ for all t and $E: \langle \wp^*(\mathcal{X}) \rangle \times (\mathcal{X} \to \mathcal{T}) \to \wp^*(\mathcal{X})$ is a possibly randomized, non-deterministic, or further parametrized function so that the population-based optimization run is produced by calling E repeatedly, i.e., $X_{t+1} = E(\langle X_u \rangle_{0 \leq u \leq t}, \tau)$ where X_0 is given externally or chosen randomly.

Definition 5 (population-based optimization (alternate)). An optimization process $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_t \rangle_{0 \leq t \leq g})$ is called population-based iff \mathcal{X} has the form $\mathcal{X} = \wp^*(\mathcal{Y})$ for some other state space \mathcal{Y} .

Algorithm 4 (basic evolutionary algorithm). Let $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_u \rangle_{0 \leq u \leq t})$ be a population-based optimization process. The process \mathcal{E} continues via an evolutionary algorithm if E has the form

$$E(\langle X_u \rangle_{0 \le u \le t}, \tau) = X_{t+1} = selection(X_t \uplus variation(X_t))$$

where selection and variation are possibly randomized or non-deterministic functions so that for any $X \in \wp^*(\mathcal{X})$ it holds that $|selection(X)| \leq |X|$ and $|selection(X \uplus variation(X))| = |X|$.

Theorem 1 (no free lunch [1, 2]). As measured by sample efficiency, i.e., the achieved minimal value of τ per evaluations of $\tau(x)$ for some new $x \in \mathcal{X}$ for finite \mathcal{X} , all optimization algorithms perform the same when averaged over all possible target functions τ . So, for any search/optimization algorithm, any elevated performance over one class of problems is exactly paid for in performance over another class.

Definition 6 (multi-objective optimization). Let $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \mathcal{E}, \langle X_u \rangle_{0 \leq u \leq t})$ be an optimization process. \mathcal{E} is a multi-objective optimization process iff the target space \mathcal{T} has the form $\mathcal{T} = \mathcal{T}_0 \times \cdots \times \mathcal{T}_{N-1}$ for some $N \in \mathbb{N}$ with $<_i$ being a total order on \mathcal{T}_i for any $i \in [0; N-1] \subset \mathbb{N}$. Unless stated otherwise, we assume that no single total order on \mathcal{T} is available. However, we can construct a partial order \prec between target values $q, q' \in \mathcal{T}$ so that

$$(g_0, ..., g_{N-1}) \prec (g'_0, ..., g'_{N-1}) \iff \forall i \in [0; N-1] \subset \mathbb{N} : g_i < g'_i,$$

which is sufficient to adapt many standard optimization algorithms.

Definition 7 (Pareto front for optimization). Let $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_u \rangle_{0 \leq u \leq t})$ be a multi-objective optimization process with \prec being a partial order on the multi-objective target space \mathcal{T} .

- A solution candidate x Pareto-dominates a solution candidate x', written $x \prec x'$ (assuming minimization), iff $\tau(x) \prec \tau(x')$.
- A solution candidate x is Pareto-optimal if there exists no other solution candidate $x' \in \mathcal{X}$ so that $x' \prec x$.
- The set of all Pareto-optimal solution candidates in \mathcal{X} is called the Pareto front of \mathcal{X} (w.r.t. \prec).

Algorithm 5 (gradient descent). Let $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, e, \langle x_u \rangle_{0 \leq u \leq t})$ be an optimization process. Let \mathcal{T} be continuous ($\mathcal{T} = \mathbb{R}$, e.g.) and let $\tau' : \mathcal{X} \to \mathcal{T}$ be the first derivative of τ . The process \mathcal{E} continues via gradient descent (with learning rate $\alpha \in \mathbb{R}^+$) if e is of the form

$$e(\langle x_u \rangle_{0 \le u \le t}, \tau) = x_{t+1} = x_t - \alpha \cdot \tau'(x_t).$$

The learning rate α can also be given as a function, usually $\alpha : \mathbb{N} \to \mathbb{R}$, so that $e(\langle x_u \rangle_{0 \le u \le t}, \tau) = x_{t+1} = x_t - \alpha(t) \cdot \tau'(x_t)$.

If the computation of τ' is stochastic, usually because it is derived from a stochastic sampling of data points, this process is called stochastic gradient descent (SGD).

Algorithm 6 (gradient descent (policy)). Let π_{θ} be a policy π that depends on a vector of continuous parameters $\theta \in \Theta$, usually with $\Theta = \mathbb{R}^N$ for some N. Let $\tau : \Theta \to \mathcal{T}$ be a target function on the parameters θ of a policy π_{θ} . Let \mathcal{T} be continuous ($\mathcal{T} = \mathbb{R}$, e.g.) and let $\tau' : \Theta \to \mathcal{T}$ be the first derivative of τ , i.e., $\tau'(\theta) = \frac{\partial \tau(\theta)}{\partial \theta}$. If $\mathcal{E} = (\Theta, \mathcal{T}, \tau, e, \langle x_u \rangle_{0 \leq u \leq t})$ is an optimization process that continues via gradient descent, \mathcal{E} is a process of policy optimization via gradient descent.

References

- [1] No free lunch theorems. http://www.no-free-lunch.org. Accessed 2022-05-10.
- [2] David H Wolpert and William G Macready. No free lunch theorems for optimization. $IEEE\ transactions\ on\ evolutionary\ computation,\ 1(1):67–82,\ 1997.$