Lecture 28: Antithetic variables

Ciaran Evans

Warmup: antithetic sampling

Work with your neighbor on the questions on the handout $\ /\$ course website:

```
https://sta379-\\s25.github.io/practice\_questions/pq\_28\_warmup.html
```

Then we will discuss as a class

- Use Monte Carlo integration to approximate another integral
- Explore variability of two different estimators

```
Warmup: antithetic sampling
                                            BAS - 2 (g(ui)+g(1-4i))
   theta_hat_as <- rep(NA, nsim)
   for(i in 1:nsim){
      u \leftarrow runif(n/2)
      theta hat as[i] \leftarrow sum(g(u) + g(1-u))/n
    (var(theta hat mc) - var(theta hat as))/var(theta hat mc)
   ## [1] 0.9649457
   u <- runif(10000)
   cor(g(u), g(1-u))
                                       of g is manatare
then reduction invariance
   ## [1] -0.9678501
                                       is given by 
(cr (g(u), g(1-u))
```

Antithetic variables

$$\theta = \mathbb{E}[g(U)]$$
 $U \sim \textit{Uniform}(0,1)$

Antithetic sampling:

- ▶ **Theorem:** If g is monotone, then $Cor(g(U), g(1-U)) \le 0$
- ► Sample $U_1, ..., U_{n/2} \stackrel{iid}{\sim} Uniform(0,1)$
- $\widehat{\theta}_{AS} = \frac{1}{n} \sum_{i=1}^{n/2} (g(U_i) + g(1 U_i))$
- Var($\widehat{\theta}_{AS}$) = $\frac{(1+\rho)Var(g(U))}{n}$ where $\rho = Cor(g(U), g(1-U))$

Another example

Suppose we want to approximate the integral

$$\theta = \int\limits_{1}^{\infty} e^{-x} \frac{4}{x^5} dx = \mathbb{E}[e^{-X}]$$
 where X has pdf $f(x) = \frac{4}{x^5}$, $x > 1$.

Simple Monte Carlo:

$$\triangleright X_1,...,X_n \stackrel{iid}{\sim} f$$

$$\widehat{\theta}_{MC} = \frac{1}{n} \sum_{i=1}^{n} e^{-X_i}$$

Question: How do we sample $X_i \sim f$? inverse transform! $F(x) = \frac{1-x^{-1}}{2}$ = $7 + \frac{1}{2} (1-u)^{-1} (u)$

Another example

Suppose we want to approximate the integral

$$\theta = \int_{1}^{\infty} e^{-x} \frac{4}{x^5} dx = \mathbb{E}[e^{-X}]$$

where *X* has pdf $f(x) = \frac{4}{x^5}$, x > 1.

Simple Monte Carlo:

- $V_1,...,U_n \stackrel{iid}{\sim} Uniform(0,1)$
- $X_i = F^{-1}(U_i)$
- $\widehat{\theta}_{MC} = \frac{1}{n} \sum_{i=1}^{n} e^{-X_i} = \frac{1}{n} \sum_{i=1}^{n} e^{-F^{-1}(U_i)}$

Question: Can we use antithetic sampling here?

Another example

Suppose we want to approximate the integral

Fr'(w): (1-u)-14
$$\theta = \int_{1}^{\infty} e^{-x} \frac{4}{x^{5}} dx = \mathbb{E}[e^{-x}]$$

where *X* has pdf
$$f(x) = \frac{4}{x^5}$$
, $x > 1$.

$$\hat{\Theta}_{AS} = \frac{1}{2} \left(g(F'(u;)) + g(F''(1-u;)) \right)$$

Antithetic sampling with inverse transform

Suppose we want to approximate

$$\theta = \mathbb{E}[g(X)]$$
 $X \sim f$

If we can generate X with the inverse transform method, then $X = F^{-1}(u)$

$$\theta = \mathbb{E}[g(F^{-1}(U))]$$
 $U \sim \textit{Uniform}(0,1)$

Antithetic sampling:

- **Theorem:** If g is monotone, then $Cor(g(F^{-1}(U)), g(F^{-1}(1-U))) ≤ 0$
- ► Sample $U_1, ..., U_{n/2} \stackrel{iid}{\sim} Uniform(0,1)$
- $\widehat{\theta}_{AS} = \frac{1}{n} \sum_{i=1}^{n/2} (g(F^{-1}(U_i)) + g(F^{-1}(1-U_i)))$

Your turn

Try antithetic sampling with the inverse transform method:

 $https://sta379-s25.github.io/practice_questions/pq_28.html$

- Start in class
- Welcome to work with a neighbor
- Solutions are posted on the course website