Processos Estocásticos Conceitos, Notação, Exemplos

Ricardo Ehlers ehlers@icmc.usp.br

Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Modelos e Inferência

Um modelo é uma simplificação da realidade (e alguns são úteis)

Quantidades observáveis (podem ser medidas) (parâmetros e variáveis latentes)

Abordagens: Clássica e Bayesiana

Intuição sem base teórica e reflexão em geral resulta em erro.

Dados: os valores observados das quantidades observáveis.

Computação

"A big computer, a complex algorithm and a long time does not equal science." Robert Gentleman.

Aproximações

"Far better an approximate answer to the right question than the exact answer to the wrong question." John Tukey.

Modelos

"All models are wrong, but some are useful." George Box.

O que é um Processo Estocástico?

Exemplo. Um escritório tem 5 linhas telefônicas. Durante um período de tempo as linhas são observadas a intervalos de 2 minutos e anota-se o número de linhas sendo utilizadas no tempo t, X_t , t = 0, 1, 2, ...

- X_0, X_1, X_2, \dots é um *processo estocástico* ou *processo aleatório*.
- Os valores de X_t não podem ser preditos com precisão mas podemos atribuir probabilidades aos seus possíveis valores em cada tempo t.

- Neste exemplo temos um processo estocástico em tempo discreto porque as linhas são observadas em pontos separados (ou discretos) de tempo ao invés de continuamente no tempo.
- ▶ X_0 é o estado inicial e X_t , t = 1, 2, ... é o estado do processo no tempo t.
- No exemplo, cada estado deve ser um inteiro entre 0 e 5.

Definição

Um processo estocástico $\{X(t), t \in T\}$ é uma coleção de variáveis aleatórias.

- Para cada $t \in T$, X(t) é uma variável aleatória.
- Se $T \subseteq \mathbb{R}$ temos um *processo estocástico em tempo contínuo*, por exemplo, $\{X(t), t \geq 0\}$.
- Caso contrário, temos um processo estocástico em tempo discreto, por exemplo, $\{X_t, t = 0, 1, 2, ...\}$.

Se $T \subseteq \mathbb{R}^2$ o processo estocástico é chamado de *Campo Aleatório*.

Definição

O espaço de estados de um processo estocástico é o conjunto de todos os possíveis valores que as variáveis aleatórias X(t) ou X_t podem assumir.

O espaço de estados pode ser,

- discreto, e.g. o número de chamadas que chegam a uma central telefônica a cada 2 horas ou,
- contínuo, e.g. a temperatura do ar em uma localidade observada em intervalos de 1 hora.

Exemplo. Um processo estocástico autoregressivo de ordem 1, AR(1), em tempo discreto pode ser descrito pela equação,

$$X_t = \mu + \phi X_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, \sigma^2).$$

sendo $\epsilon_1, \epsilon_2, \ldots$ uma sequência de variáveis aleatórias independentes e identicamente distribuidas.

Portanto, $\{X_t, t=1,2,\dots\}$ é um processo estocástico em tempo discreto com espaço de estados $\mathbb R$.

Foram simuladas 5 replicações deste processo com $\phi=0.7$, $\mu=0$ e $\sigma^2=1$.

5 replicações simuladas do processo AR(1) com $\phi=$ 0.7, $\mu=$ 0 e $\sigma^2=$ 1.

No exemplo anterior, para μ , σ^2 e ϕ fixos temos os resultados a seguir.

Média e variância condicionais são,

$$E(X_t|X_{t-1}) = \mu + \phi X_{t-1}$$

$$Var(X_t|X_{t-1}) = \sigma^2.$$

Se o processo for estacionário $(-1 < \phi < 1)$ média e variância incondicionais são,

$$E(X_t) = \frac{\mu}{1 - \phi}$$

$$Var(X_t) = \frac{\sigma^2}{1 - \phi^2}.$$

Portanto estamos modelando a média condicional como função de valores passados do processo.

Exemplo. Um processo estocástico autoregressivo condicionalmente heterocesdástico de ordem 1, ARCH(1), em tempo discreto pode ser descrito pela equação,

$$X_t = \mu + \epsilon_t \sqrt{c + \alpha X_{t-1}^2}, \ \epsilon_t \sim N(0, 1).$$

sendo $\epsilon_1, \epsilon_2, \ldots$ uma sequência de variáveis aleatórias independentes e identicamente distribuidas.

Portanto, $\{X_t, t=1,2,\dots\}$ é um processo estocástico em tempo discreto com espaço de estados \mathbb{R} .

Foram simulados 1000 valores deste processo com $\alpha=$ 0.8, $\mu=$ 0 e c= 1.

1000 valores simulados do processo ARCH(1) com $\alpha =$ 0.8, $\mu =$ 0 e c = 1.

Neste exemplo, para μ , c e α fixos temos os resultados a seguir.

Média e variância condicionais são,

$$E(X_t|X_{t-1}) = \mu$$

 $Var(X_t|X_{t-1}) = c + \alpha X_{t-1}^2 = \sigma_t^2$.

Se o processo for estacionário (0 < α < 1) média e variância incondicionais são,

$$E(X_t) = \mu$$

$$Var(X_t) = \frac{c}{1 - \alpha}.$$

Portanto estamos modelando a variância condicional como função de valores passados do processo.

Exemplo. Estes processos estocásticos podem ser generalizados como um processo AR(p),

$$X_t = \mu + \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + \epsilon_t, \ \epsilon_t \sim N(0, \sigma^2)$$

e um processo ARCH(p),

$$X_t = \mu + \epsilon_t \sigma_t, \ \epsilon_t \sim N(0, 1)$$

$$\sigma_t^2 = c + \alpha_1 X_{t-1}^2 + \dots + \alpha_p X_{t-p}^2.$$

Note que σ_t^2 varia no tempo mas não é um processo estocástico.

Exemplo. Seja um processo estocástico ARCH(1) descrito pelas seguintes distribuições de probabilidade condicionais ao longo do tempo,

$$X_t|X_{t-1} \sim N(\mu, c_1 + \alpha_1 X_{t-1}^2)$$
 Regime 1, ou $X_t|X_{t-1} \sim N(\mu, c_2 + \alpha_2 X_{t-1}^2)$ Regime 2.

Definimos um outro processo estocástico em tempo discreto $\{S_t, t=1,2,\dots\}$ tal que,

$$S_t = k$$
, com probabilidade p_k , $k = 1, 2$

com probabilidades de transição,

$$P(S_t = j | S_{t-1} = i) = P_{ij}$$
.

Então $\{S_t, t=1,2,...\}$ é um processo estocástico não observável cujo espaço de estados é o conjunto indicador de regime $\{1,2\}$.

Este processo é denominado uma *cadeia de Markov* de primeira ordem com matriz de transição,

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}.$$

sendo $P_{11} + P_{12} = 1$ e $P_{21} + P_{22} = 1$.

Exemplo. Em um modelo de volatilidade estocástica, a variância condicional de um processo estocástico varia aleatoriamente no tempo. Um possível modelo pode ser descrito pelo par de equações,

$$X_t = \epsilon_t \exp(h_t/2), \ \epsilon_t \sim N(0,1)$$

$$h_t = \mu + \phi(h_{t-1} - \mu) + \eta_t, \ \eta_t \sim N(0,\sigma_\eta^2)$$

sendo $\{\epsilon_t, t=1,2,\dots\}$ e $\{\eta_t, t=1,2,\dots\}$ sequências de variáveis aleatórias independentes e identicamente distribuidas.

Portanto, $\{X_t, t=1,2,\dots\}$ e $\{h_t, t=1,2,\dots\}$ são processos estocásticos em tempo discreto com espaço de estados \mathbb{R} .

Porém h_1, h_2, \ldots são *variáveis latentes* e não são observáveis.

Retornos

Em Finanças, o risco é frequentemente medido em termos de variações de preços de ativos. Seja P_t o preço de um ativo no tempo t.

- A variação de preços entre t-1 e t (sem dividendos pagos) é, P_t-P_{t-1} .
- Variação relativa de preços,

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{P_t}{P_{t-1}} - 1.$$

Retorno composto continuamente, ou log-retorno,

$$r_t = \log\left(\frac{P_t}{P_{t-1}}\right) = \log(1 + R_t).$$

- Retornos tendem a apresentar caudas pesadas com pico mais alto em torno da média.
- ▶ Retornos tendem a apresentar variabilidades diferentes ao longo do tempo.
- Retornos tendem a apresentar variabilidades agrupadas. Retornos grandes tendem a ser seguidos por retornos grandes e retornos pequenos tendem a ser seguidos por retornos pequenos.
- A variabilidade tende a crescer mais seguindo uma queda de preço (retorno negativo) do que após um aumento de preço de mesma magnitude (efeito alavancagem).

Daily foreign exchange rates to the US Dollar

Daily returns of exchange rates to the US Dollar

Preços diários no fechamento de um indice de mercado da Alemanha, 1991-1998 e respectivos retornos.

Indice "Dow Jones Industrial Average" (DJI, dados diários de fechamento ajustados do Yahoo Finance) de 05/01/2000 a 16/04/2021.

Preço de 1 Dólar em Reais desde janeiro 2000 até abril 2021.

Indice BOVESPA diário (fechamento) desde 05/01/2000 até 16/04/2021.

Retornos diários da taxa de câmbio, IBOVESPA E Dow Jones

Indice de Preços ao Consumidor Amplo (IPCA) mensal desde janeiro 1995 até março 2021.

Taxa mensal de poupança e desemprego (EUA) desde julho 1967 até abril 2015.

Dívida Líquida do Setor Público - Saldos mensais em R\$ milhões desde janeiro 1998 até fevereiro 2021.

Annual inflation rates (aggregate) for 13 different countries 1970–2013

Pacotes do R utilizados.

- rbcb: R Interface to Brazilian Central Bank Web Services.
- quantmod: Quantitative Financial Modelling Framework.
- ggplot2: A system for declaratively creating graphics.

Processo estocástico uniforme simulado em 2 dimensões.

Taxa de Desemprego por condado nos EUA, 2009.

unemployment by county, 2009

Processos de contagem (processos de Poisson) simulados em 2 dimensões com intensidades 0.02 e 0.1 usando coordenadas geográficas.

Campo aleatório Gaussiano simulado em 2 dimensões usando coordenadas geográficas.

Campo aleatório Gaussiano simulado em 2 dimensões.

Exemplo. Um processo estocástico do tipo *passeio aleatório* em tempo discreto pode ser descrito pela equação,

$$X_t = X_{t-1} + Z_t$$

sendo Z_t uma sequência de variáveis aleatórias independentes e identicamente distribuidas com espaço de estados $\{-1,1\}$ tais que,

$$P(Z_t = 1) = p,$$

 $P(Z_t = -1) = 1 - p.$

Se o processo varia em \mathbb{Z}^2 temos um passeio aleatório em 2 dimensões.

Passeio aleatório em 2 dimensões do exemplo anterior com n=4000 e p=0.5.

Passeio aleatório em 2 dimensões do exemplo anterior com n=4000 e p=0.55.

Passeio aleatório em 2 dimensões do exemplo anterior com n=4000 e p=0.45.

Alguns exemplos de questões envolvendo processos estocásticos

- Como os preços futuros de uma ação negociada na bolsa dependem de seus preços passados?
- Como os movimentos passados da Terra poderiam ser usados para prever terremotos?
- Qual a proporção do tempo em que uma fila está vazia?
- Qual a probabilidade de que um link de uma rede fique congestionado?
- Qual a probabilidade de que um investidor perca todo o seu capital?

Previsões

"Forecasts are always wrong (but we need them anyway)." Rob Hyndman

Processos de Bernoulli.

Processos de Bernoulli: Somas acumuladas.

- A primeira figura mostra sequências de variáveis aleatórias $\{X_t, t=0,1,2,\dots\}$ sendo $X_t=1$ com probabilidade constante p e $X_t=0$ com probabilidade 1-p.
- A segunda figura mostra sequências de variáveis aleatórias $\{S_n = X_1 + \cdots + X_n, n = 0, 1, 2, \dots\}$, com $S_0 = 0$.
- ▶ Note que para n fixo e finito, $S_n \sim \text{Binomial}(n, p)$.

Seja o processo $\{Z_n, n = 0, 1, 2, \dots\}$ definido como,

$$Z_n = Y_1 + \cdots + Y_n, \quad n \geq 1$$

com $Z_0 = 0$.

- Se $Y_1, Y_2,...$ são independentes então $\{Z_n, n = 0, 1, 2,...\}$ tem *incrementos independentes*.
- Se $Y_1, Y_2, ...$ também são identicamente distribuidos então a distribuição de $Z_{n+m} Z_m$ não depende de m.
- Neste caso, $\{Z_n, n = 0, 1, 2, ...\}$ tem *incrementos* independentes e estacionários.

Estas propriedades valem qualquer que seja a distribuição dos $Y_i's$.

Tempo de Sucesso

Sejam $\{X_t, t=0,1,\dots\}$ um processo de Bernoulli e $S_n=X_1+\dots+X_n$ com $S_0=0$.

▶ O processo $\{T_k, k = 0, 1, ...\}$ definido como

$$T_k = \min_n \{S_n \ge k\}, \quad k = 1, 2, \dots$$

com $T_0 = 0$, é o tempo até o k-ésimo sucesso.

• Qual a distribuição de $T_k - T_{k-j}$?

Note que $T_k - T_{k-1}$ é o número de fracassos até ocorrer mais 1 sucesso.

- ▶ $T_k T_{k-1} \sim Geometrica(p)$ que não depende de k.
- ▶ $T_1, T_2 T_1, \dots$ são i.i.d.
- $P(T_k T_{k-1} = j) = p (1-p)^{j-1}.$
- $E(T_k T_{k-1}) = \frac{1}{p}$.
- $Var(T_k T_{k-1}) = \frac{1-p}{p^2}.$

Distribuição de T_k

- $T_k = T_1 + (T_2 T_1) + \cdots + (T_{k-1} T_{k-2}) + (T_k T_{k-1}).$
- ▶ Portanto, $T_k \sim Binomial Negativa(k, p)$.
- Probabilidades,

$$P(T_k = n) = {n-1 \choose k-1} p^k (1-p)^{n-k}, n = k, k+1, \dots$$

- $E(T_k) = \frac{k}{p}.$
- $Var(T_k) = \frac{k(1-p)}{p^2}.$