The Glaciolacustrine Sediment Record of Cariboo Lake, BC: Implications for Holocene Fluvial and Glacial Watershed Dynamics

Alex Cebulski & Dr. Joseph Desloges

Background

- Alpine environments & climate change
- Changes Include:
 - Volume & area of glacier extent
 - The production, connectivity, and delivery of sediment
- Environmental proxies in glaciated watersheds
 - Ice cores
 - Dating of material in glacier forefields
 - Glaciolacustrine sediment cores

Background

 Regional climate comparison of various glaciolacustrine sediment study sites

(Doughty et al., 1997)

(Hodder et al., 2006)

Purpose: To determine if the distal glacier-fed sediment record from Cariboo Lake provides a proxy of past geomorphic and hydroclimatic change

Objectives:

- 1. Determine the mechanisms that control the production, connection, and transport of sediment
- Analyze the sediment record of Cariboo Lake and determine if it reflects changes in past watershed activity
- Compare the Cariboo Lake sediment record to other regional climate proxies

Study Site

Cariboo Lake, British Columbia

Study Site

Cariboo Lake, British Columbia

Study Site

Cariboo Lake, British Columbia

Sub-Bottom Acoustic Survey

- Sub-Bottom Acoustic Survey
- CTD water column characteristics

- Sub-Bottom Acoustic Survey
- CTD water column characteristics
- 20 Ekman surficial cores (~10 cm length)
 - Laminae thickness measurements
 - Organic content
 - Sediment grain diameter
 - Provide a spatial record

- Sub-Bottom Acoustic Survey
- CTD water column characteristics
- 20 Ekman dredge cores (~ 10 cm length)
 - Laminae thickness measurements
 - Organic content
 - Sediment grain diameter
 - Provide a spatial record
- 4 Vibrocores (~ 4 m length)
 - Laminae thickness measurements
 - Organic content
 - Sediment grain diameter
 - AMS radiocarbon analysis
 - Provide a temporal record

Results: Sub-Bottom Acoustics Transects

Sub-Bottom Acoustics: Transect C

Sediment Thickness Map

Ekman Surficial Sediment Record

Ekman Grain Size Diameter

Vibro Core Location Map

Long Core Bottoms

N. D. N. D.

AD 450 - 525

AD 150 - 200

Distance From Cariboo River Delta (km)

3.75 5.50

7.55

10.75

Sediment Yield Comparison

Cariboo Lake: 🔷

6.35-7.59 Mg·km⁻²·a⁻¹

2.4% Perm. Snow Cover

Thank you for your time!

Acknowledgements

- Funding provided by the University of Toronto.
- Lab assistance by Anna Soleski, Selina Amaral, Mike Gorton, George Kretschmann, and Yanan Liu at the University of Toronto.

 Field support provided by Michael Allchin, Laszlo Enyedy, and Caitlin Langford at University of Northern British Columbia via the Quesnel River Research Centre.

