Exercise 3 3D Computer Vision

Jingyuan Sha

December 3, 2021

1 Theory

1. let r_1, r_2 be the first column of \mathbf{R}_0 and second column of \mathbf{R}_0 , $\mathbf{x}_0 = (X, Y)$, then \mathbf{x}_1 can be written as follows

 $\mathbf{x}_1 = \mathbf{K}[r_1 r_2 \mathbf{t}_0] \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$

- 2. (a) Since $\mathbf{K}, \mathbf{R}, \mathbf{t}$ are known, thus we can calculate fundamental matrix F.
 - (b) Based on \mathbf{F}, \mathbf{x}_i , we can get epipolar lines \mathbf{l}_i for both images.
 - (c) Determine the corresponding ray of \mathbf{x}_i in each image by epipolar lines and extrinsic matrix.
 - (d) The 3D point X is determined by the intersection of rays.
- 3. Epipole can be computed as follows:

$$\mathbf{e}_0 = \mathbf{P}_0 \mathbf{C}_1, \ \mathbf{e}_1 = \mathbf{P}_1 \mathbf{C}_0$$

The relation between epipolar line and epipole is

$$\mathbf{l}_1 = \mathbf{F}_0 \mathbf{x}_0, \ \mathbf{l}_0 = \mathbf{F}_1 \mathbf{x}_1,$$

4. We can use 8-Point algorithm to compute \mathbf{F} given $n \geq 8$ corresponding points \mathbf{x}_i and $\mathbf{x}_i' i = 1, ..., n$, then the fundamental matrix F is the solution of equation system

$$\mathbf{x}_{i}^{'T}\mathbf{F}\mathbf{x}_{i} = \mathbf{0}, \ 1 \le i \le n \tag{1}$$

5. The fundamental matrix can be computed with intrinsic parameter and poses under equation

$$F = K^{'-T}[t]_{\times}RK^{-1}$$

6. A fundamental matching problem of matching technique is aperture problem. It is make sense to match features in this way when the object moves align with the direction of indicated direction.

1