004162611

WPI Acc No: 1984-308150/ 198450

XRAM Acc No: C84-131337 XRPX Acc No: N84-229745

Titrant for determn. of small amt. of water - contg. sulphur dioxide, iodine and n-heterocyclic amine with at least two hetero-atoms for

stability

Patent Assignee: RIEDEL DE HAEN AG (RIED)

Inventor: SCHOLZ E

Number of Countries: 011 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

EP 127740 A 19841212 EP 80103174 A 19801222 198450 B

EP 127740 B 19860528 198622

Priority Applications (No Type Date): EP 84103174 A 19830405 Patent Details:

Patent No-Kind Lan Pg Main IPC Filing Notes

EP 127740 A G 13

Designated States (Regional): AT BE CH DE FR GB IT LI LU NL SE EP 127740 B G

Designated States (Regional): AT BE CH DE FR GB IT LI LU NL SE

Abstract (Basic): EP 127740 A

Titrant for the determn. of small amts. of water contains an amine (I), SO2 and I2 and a solvent, (I) being a 5-6 membered (substd.) heterocyclic cpd. with min. 2 hetero-atoms, at least one of which is a N atom (morphine is excluded).

The molar ratio of (I):SO2 pref. is 10-0.3:1. The SO2 can be mixed with an acid, pref. a carboxylic acid in 20:1 to 1:5 molar ratio. (I) may be substd. by 1, 2 or 3 1-4C alkyl or 1,2 or 3 phenyl gps. or one benzo gp. and pref. contains 2 N hetero-atoms. Imidazole and its derivs. are esp. suitable.

USE/ADVANTAGE - The titrant is used for the quantitative determn. of small amts.of water by the Karl-Fischer method or as electrolyte for coulometric determn. of water in solids or liquids. It uses an amine which is toxically acceptable as possible, instead of pyridine and has high storage stability. It can be used in two-component form, with a stability of at least 2 years, or one-component form, which is stable for ca. 1 year. The end point of the titration is easily recognised visually by a colour change from colourless to brown. In automatic (voltametric or dead-stop indication, very stable end prods. are formed, giving high accuracy.

0/2

Abstract (Equivalent): EP 127740 B

Titration agent for the determination of small amounts of water, containing a heterocyclic amine, sulphur dioxide and iodine as well as a waterfree low molecular weight alcohol as solvent, characterised in that the amine is imidazole, thiazole, pyrimidine, triazine or a substitution product thereof.

(1) Veröffentlichungsnummer:

0 127 740

A1

12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84103174.3

(51) Int. Cl.3: G 01 N 31/16

(22) Anmeldetag: 22.12.80

- 30 Priorität: 20.10.80 DE 3039511
- (43) Veröffentlichungstag der Anmeldung: 12.12.84 Patentblatt 84/50
- Benannte Vertragsstaaten:
 AT BE CH DE FR GB IT LI LU NL SE
- Weröffentlichungsnummer der früheren Anmeldung nach Art. 76 EPÜ: 0 035 066
- 7) Anmelder: RIEDEL-DE HAEN AKTIENGESELLSCHAFT Wunstorfer Strasse 40 D-3016 Seelze 1(DE)
- (72) Erfinder: Scholz, Eugen, Dr. Silberweg 8 D-3008 Garbsen(DE)
- (74) Vertreter: Beck, Bernhard et al, HOECHST AKTIENGESELLSCHAFT Zentrale Patentabteilung Postfach 80 03 20 D-6230 Frankfurt/Main 80(DE)

- (54) Titrationsmittel zur Bestimmung geringer Wassermengen und Verfahren zu seiner Anwendung.
- (5) Zur quantitativen bestimmung geringer Wassermengen dient das Karl-Fischer-Reagenz, das als wesentliche Bestandteile Schwefeldioxid, Jod und Pyridin enthält. Der Ersatz von Pyridin durch bestimmte Stickstoffbasen ist vorteilhaft. Besonders geeignet sind dazu stickstoffbaltige Heterocyclen. Insbesondere Imidazole. Das pyridinfreie Titrationsmittel ist durch eine hohe Lagerstabilität ausgezeichnet; es ist als Zweikomponenten-Reagenz und als Einkomponenten-Reagenz verwendbar.

EP 0 127 740 A1

A u s s c h e i d u n g

aus Europäischer Patentanmeldung Nr. 80 108 106.8

HOE 80/D 002 BK

Dr.EG/mk

Titrationsmittel zur Bestimmung geringer Wassermengen und Verfahren zu seiner Anwendung

Die Erfindung bezieht sich auf ein Titrationsmittel zur Bestimmung geringer Wassermengen, das ein Amin, Schwefeldioxid und Jod sowie ein Lösungsmittel enthält, und seine Verwendung zur Bestimmung des Wassergehaltes von Festsub-5 stanzen oder Flüssigkeiten.

Die maßanalytische Bestimmung des Wassergehaltes von Flüssigkeiten und festen Körpern wurde bekanntlich von Karl
Fischer entwickelt; sie beruht auf der Oxidation von

Schwefeldioxid durch Jod in Gegenwart von Wasser nach der
Gleichung

$$2 H_{2}O + SO_{2} + J_{2} \implies H_{2}SO_{4} + 2 HJ$$

- und die Reaktion wird üblicherweise in wasserfreiem Methanol durchgeführt. Das Reagenz besteht aus einer Lösung von 790 g Pyridin, 192 g flüssigem Schwefeldioxid und 254 g Jod in 5 1 wasserfreiem Methanol (vgl. Angew. Chemie 48 (1935), 394). Da diese Lösung nicht lagerstabil ist, wird in der Praxis meist ein Zweikomponentenreagenz verwendet, das einerseits aus einer Lösung von Schwefeldioxid und Pyridin in Methanol und andererseits aus einer Lösung von Jod in Methanol besteht.
 - 25 Ferner ist bereits bekannt, daß an Stelle von Pyridin zwar auch andere Stickstoffbasen verwendet wurden, aber keine Vorteile zeigten, z.B. Chinolin, Anilin, Dimethylanilin, Tri-n-butylamin und Triethanolamin. Die Stabilität einiger mit diesen Basen hergestellter Reagenzien ist unzureichend; das Triethanolamin enthaltende Reagenz zersetzt sich bereits bei der Herstellung. Das Molverhältnis von Pyridin zu Schwefeldioxid ist mindestens 3: 1, und im Falle des

Tri-n-butylamins sind nahezu 4 Mol notwendig (Vgl. J. Amer. Chem. Soc. 1939, 2407). Weitere Amine, di als Pyridin-Ersatz dienen sollten, sind Ethanolamin und Hexamethylentetramin; diese Amine sollen jedoch den Nachteil

- 5 haben, daß sie keinen stabilen Titrationspunkt anzeigen oder störende Ausfällungen verursachen (vgl. Analytic. Chem. 28 (1956), 1166). Dieses modifizierte KF-Reagenz diente zur Bestimmung von Wasser in Oxidationsmitteln, Reduktionsmittel und Aminen.
- Weiterhin ist bekannt, daß stark basische Amine Pyridin in Karl-Fischer-Reagentien ersetzen können, wenn das Molver-hältnis SO₂: Amin mindestens 1: 1 ist. Dabei wurden die aliphatischen Amine Morpholin, Diethanolamin und Isopropyl-
- amin verwendet. Die KF-Reagenzien wurden als Einkomponentenreagentien und insbesondere als Zweikomponentenreagentien verwendet (vgl. Fresenius Z. Anal. Chem. 303 (1980), 203).
- Aufgabe der Erfindung ist nun die Bereitstellung eines Reagenzes, das zur Bestimmung geringer Wassermengen geeignet ist, an Stelle von Pyridin ein toxikologisch möglichst unbedenkliches Amin enthält und lagerstabil ist.
- Die Erfindung betrifft ein Titrationsmittel zur Bestimmung geringer Wassermengen, enthaltend ein Amin, Schwefeldioxid und Jod sowie ein Lösungsmittel, und ist dadurch gekennzeichnet, daß das Amin eine fünfgliedrige oder sechsgliedrige, gegebenenfalls substituierte, heterocyclische Ver-
- 30 bindung mit mindestens 2 Heteroatomen ist, wobei mindestens 1 Heteroatom ein Stickstoffatom ist (wobei Morpholin ausgenommen ist).

Die erfindungsgemäß als Aminbase im Titrationsmittel enthaltene heterocyclische Verbindung weist fünf oder sechs Ringglieder auf und ist gegebenenfalls substituiert, vorzugsweise mit 1, 2 oder 3 Alkylresten mit 1 bis 4 Kohlenstoffatomen oder mit 1, 2 oder 3 Phenylresten oder mit einer Benzogruppe; die heterocyclische Verbindung enthält mindestens 2, vorzugsweise 2 oder 3 Heteroatome, von denen mindestens eins ein Stickstoffatom ist. (Hierbei ist die sechsgliedrige heterocyclische Verbindung Morpholin ausgenommen.) Besonders geeignet ist eine fünfgliedrige, gegebenenfalls substituierte, heterocyclische Verbindung mit 2 Stickstoffatomen als Heteroatomen. Das Molverhältnis von heterocyclischer Verbindung zu Schwefeldioxid liegt normalerweise im Bereich von 10: 1 bis 0,3: 1, vorzugsweise von 2: 1 bis 0,5: 1.

Als heterocyclische Verbindung eignet sich insbesondere Imidazol oder ein Imidazolderivat, vorzugsweise eine Verbindung der Formel

15

20

in der R, R¹ und R² gleich oder verschieden sind und jeweils ein Wasserstoffatom, einen niederen, vorzugsweise 1 bis 4 Kohlenstoffatome aufweisenden Alkylrest oder einen 25 Phenylrest bedeuten.

Beispiele für erfindungsgemäß verwendete heterocyclische Verbindungen sind vor allem Imidazol, 1-Methylimidazol, 1-Ethylimidazol, 1-Propylimidazol, 1-Butylimidazol, 2-Methylimidazol, 2-Ethylimidazol, 2-Propylimidazol, 2-Butylimidazol, 4-Methylimidazol, 4-Butylimidazol, 1,2-Dimethylimidazol, 1,2,4-Trimethylimidazol, 1-Phenylimidazol, 2-Phenylimidazol und Benzimidazol, ferner Imidazolin, 2-Methylimidazolin (Lysidin), 2-Phenylimidazolin sowie

35 Thiazol, 2-Methylthiazol, 2-Ethylthiazol, 4-Methylthiazol, 4-Ethylthiazol, 2-Phenylthiazol, 4-Phenylthiazol und Benzothiazol sowie Pyrimidin, 4-Methylpyrimidin, 4-Ethylpyrimidin, 1,3,5-Triazin und 1,2,4-Triazin.

Als Lösungsmittel für die Reaktionskomponenten des erfindungsgemäßen Titrationsmittels wird ein wasserfreier niedermolekularer Alkohol, vorzugsweise Methanol oder Ethylenglykolmonomethylether, verwendet; er wird in einer Menge von 2 bis 50 Mol, vorzugsweise 5 bis 20 Mol, verwendet (bezogen auf 1 Hol Amin).

Das Schwefeldioxid kann auch im Gemisch mit einer Säure, vorzugsweise einer Carbonsäure, eingesetzt werden. Das 10 Molverhältnis von Schwefeldioxid zu Säure beträgt dabei 20:1 bis 1:5 und vorzugsweise 2:1 bis 1:2. Als Säuren sind beispielsweise Ameisensäure, Oxalsäure, Schwefelsäure, Jodwasserstoffsäure und insbesondere Essigsäure geeignet.

15

Das erfindungsgemäße Titrationsmittel wird hergestellt durch Lösen des Amins, Schwefeldioxids und Jods in dem Alkohol, gegebenenfalls unter Kühlung auf eine Temperatur von 15 bis 50°C, vorzugsweise auf eine Temperatur von 20 bis 40°C. Dabei beträgt die Menge des Amins 0,1 bis 10 Mol, vorzugsweise 0,5 bis 5 Mol, die Menge des Schwefeldioxids 0,1 bis 10 Mol, vorzugsweise 0,5 bis 3 Mol, und die Menge des Jods 0,01 bis 3 Mol, vorzugsweise 0,1 bis 1 Mol (jeweils bezogen auf einen Liter Lösung). Die Herstellung der Lösung erfolgt in üblicher Weise unter Ausschluß von Luftfeuchtigkeit mit gereinigten Ausgangsmaterialien.

Das erfindungsgemäße Titrationsmittel eignet sich hervorragend zur Bestimmung geringer Wassermengen nach der
Karl-Fischer-Methode. Die Erfindung betrifft demnach auch
ein Verfahren zur quantitativen Ermittlung geringer Wassermengen mit Hilfe eines Reagenzes, das ein Amin, Schwefeldioxid und Jod sowie ein Lösungsmittel enthält, das dadurch
gekennzeichnet ist, daß als Reagenz ein erfindungsgemäßes
Titrationsmittel verwendet wird.

0127740

Mit Hilfe des erfindungsgemäßen Titrationsmittels wird der Wassergehalt von festen oder flüssigen Substanzen ermittelt, z.B. von anorganischen Salzen, organischen Lösemitteln, Fetten, Ölen, Lebensmitteln und pharmazeutischen Präparaten.

5 Das erfindungsemäße Titrationsmittel ist durch eine hohe Lagerstabilität ausgezeichnet. Es eignet sich als Zweikomponenten-Reagenz und auch als Einkomponenten-Reagenz. Als Zweikomponenten-Reagenz besitzt es eine Lagerstabilität 10 von mindestens zwei Jahren. Als Einkomponenten-Reagenz ist es etwa 1 Jahr stabil. Ein besonderer Vorteil des erfindungsgemäßen Titrationsmittels ist die Tatsache, daß es eine hohe Reaktionsgeschwindigkeit ermöglicht (vgl. Anwendungsbeispiel). Ferner zeichnet sich das Titrationsmittel 15 dadurch aus, daß der Endpunkt der Titration beim Farbumschlag von farblos nach braun visuell gut erkennbar ist. Bei Verwendung in handelsüblichen Titrierautomaten mit voltametrischer Indikation oder Dead-stop-Indikation werden sehr stabile Endprodukte erhalten, wodurch eine hohe 20 Genauigkeit der Wasserbestimmung gewährleistet ist. Das Titrationsmittel eignet sich auch als Elektrolyt für die coulometrische Wasserbestimmung.

Die folgenden Beispiele dienen zur Erläuterung der Erfindung. Der Verlauf der Titration nach den Anwendungsbeispielen a), b) und c) wird durch einen handelsüblichen
Titrationsautomaten aufgezeichnet. Die erhaltenen Kurven
sind in der Figur wiedergegeben. Kurve A zeigt die Titration gemäß Anwendungsbeispiel a), Kurve B diejenige gemäß
Anwendungsbeispiel b) und Kurve C diejenige gemäß Anwendungsbeispiel c) (Vergleichsbeispiel).

Beispiel 1

a) In 550 ml Methanol werden 200 g 2-Aminothiazol (2 mol) gelöst. Dann werden unter dauernder Kühlung auf eine Temperatur von 15 bis 20°C 130 g gasförmiges Schwefeldioxid (2,03 mol) eingeleitet (Lösung A). Das Molverhältnis Thiazol: SO₂ beträgt 0,98: 1.

- b) 85 g (0,67 mol) Jod werden in 1 l Methanol gelöst (Lösung B).
- c) Die Lösungen A + B bilden ein Zweikomponenten-Reagenz.
 Lösung A wird der Probelösung zugesetzt, und mit Lösung B wird titriert.

Beispiel 2

- 10 a) In 700 ml Methanol werden unter Kühlung auf eine Temperatur von 20°C zunächst 120 g (1,86 mol) Schwefeldioxid eingeleitet. Dann werden unter Rühren und Kühlen 300 g (3,65 mol) 2-Methylimidazol so langsam zugesetzt, daß die Temperatur nicht über 30°C ansteigt.

 15 Das Molverhältnis Imidazol: SO₂ beträgt 1,96: 1.
 - b) Lösung B entspricht der Lösung B aus Beispiel 1.

Beispiel 3

20

In 700 g Ethylenglykolmonomethylether werden 204 g (3 mol) Imidazol gelöst. Dann werden 128 g (2 mol) Schwefeldioxid eingeleitet, wobei die Temperatur durch Kühlung zwischen 25 und 30°C gehalten wird. Anschließend werden 100 g (0,8 mol) Jod zugesetzt. Das so erhaltene Einkomponentenreagenz ist ein Jahr lang verwendungsfähig.

Anwendungsbeispiel

a) 20 ml Methanol, das 40 mg Wasser enthält, werden mit
dem nach Beispiel 2 erhaltenen Titrationsmittel unter
Verwendung eines handelsüblichen Titrierautomaten titriert. Die Titration ist nach 80 s beendet (vgl. Fig.
Kurve A). Der Endpunkt der Titration kann auch visuell
bestimmt werden, denn er wird durch einen Farbumschlag
von farblos nach braun angezeigt.

5

- b) Mit einer Lösung nach Beispiel 3 werden unter Verwendung eines Titriergerätes 40 mg Wasser titriert. Die Titration ist nach 190 s beendet und erreicht genau den Sollwert von 40 mg Wasser, der weitere 10 Minuten lang unverändert angezeigt wird (vgl. Fig. Kurve B).
- c) 20 ml Methanol, das 40 mg Wasser enthält, werden unter Verwendung eines handelüblichen Titrierautomaten mit einem bekannten KF-Reagenz, das pro Liter Ethylengly-kolmonomethylether 250 g (3,16 mol) Pyridin, 90 g (1,40 mol) Schwefeldioxid und 140 g (1,10 mol) Jod enthält, titriert. Die Titration ist nur mit einem Titrierautomaten durchführbar, da sie keinen brauchbaren Farbumschlag am Äquivalenzpunkt zeigt. Die Titrationsdauer beträgt 545 s (vgl. Fig. Kurve C); der Endpunkt bleibt nicht konstant.
- d) 20 ml Methanol, das 40 mg Wasser enthält, werden unter Verwendung eines handelüblichen Titrierautomaten mit einem bekannten KF-Reagenz, das pro Liter Methanol 700 g (8,85 mol) Pyridin, 81 g (1,27 mol) Schwefeldioxid und 130 g (1,02 mol) Jod enthält und ein Molverhältnis von Amin zu SO₂ von 7 : 1 aufweist, titriert. Die Titrierzeit beträgt 350 s.

A u s s c h e i d u n g aus Europäischer Patentanmeldung Nr. 80 108 106.8 HOE 80/D 002 BK

Patentansprüche:

5

- 1. Titrationsmittel zur Bestimmung geringer Wassermengen, enthaltend ein Amin, Schwefeldioxid und Jod sowie ein Lösungsmittel, dadurch gekennzeichnet, daß das Amin eine fünfgliedrige oder sechsgliedrige, gegebenenfalls substituierte, heterocyclische Verbindung mit mindestens 2 Heteroatomen ist, wobei mindestens 1 Heteroatom ein Stickstoffatom ist (wobei Morpholin ausgenommen ist).
- 2. Titrationsmittel nach Anspruch 1, dadurch gekennzeichnet, daß das Molverhältnis von heterocyclischer Verbindung zu Schwefeldioxid im Bereich von 10: 1 bis 0.3: 1 liegt.
- 3. Titrationsmittel nach Anspruch 1, dadurch gekennzeichnet, daß die heterocyclische Verbindung eine Verbindung mit 2 Heteroatomen ist, von denen mindestens eins ein Stickstoffatom ist, die gegebenenfalls mit 1, 2 oder 3 Alkylresten mit 1 bis 4 Kohlenstoffatomen oder mit 1, 2 oder 3 Phenylresten oder mit einer Benzogruppe substituiert ist.
- 4. Titrationsmittel nach Anspruch 3, dadurch gekennzeichnet, daß die heterocyclische Verbindung eine Verbindung mit 2 Stickstoffatomen als Heteroatomen ist.
 - 5. Titrationsmittel nach Anspruch 4, dadurch gekennzeichnet, daß die heterocyclische Verbindung Imidazol oder ein Imidazolderivat ist.

6. Titrationsmittel nach Anspruch 1, dadurch gekennzeichnet, daß das Schwefeldioxid im Gemisch mit einer Säure vorliegt, wobei das Molverhältnis von Schwefeldioxid zu Säure 20: 1 bis 1:5 beträgt.

5

- 7. Titrationsmittel nach Anspruch 6, dadurch gekennzeichnet, daß die Säure eine Carbonsäure ist.
- 8. Verfahren zur quantitativen Ermittlung geringer Wassermengen nach der Karl-Fischer-Methode mit Hilfe
 eines Reagenzes, das ein Amin, Schwefeldioxid und Jod
 sowie ein Lösungsmittel enthält, dadurch gekennzeichnet, daß als Reagenz ein Titrationsmittel gemäß einem
 der vorhergehenden Ansprüche verwendet wird.

15

9. Verwendung eines Titrationsmittels gemäß einem der Ansprüche 1 bis 7 als Elektrolyt für die coulometrische Wasserbestimmung.

EUROPÄISCHER RECHERCHENBERICHT

84 10 3174 EP

1	EINSCHLÄGIGE DOKUMENTE Kennzeichnung des Dokuments mit Angabe, sowelt erforderlich, Betrifft				KLASSIFIKATION DER
Categorie		eblichen Teile		nspruch	ANMELDUNG (Int. Cl. 2)
D,A	FRESENIUS ZEITSCANALYTISCHE CHEN September 1980, E. SCHOLZ "Karl Fischer-Reagent: Pyridin", Seiter * Ganzes Dokumer	MIE, Band 303, Heidelberg, BRD ien ohne n 203-207	8	3,6- 3	G 01 N 31/1
A	1977, Amsterdam, VERHOEF et al. 'reaction rate of Fischer Titration Seiten 395-403	Mechanism and the Karl name on Reaction, Kapitel "expense."		.,8,9	
A	DE-B-1 086 918 * Ganzes Dokumer		g)	RECHERCHIERTE SACHGEBIETE (Int. Cl. 3) G 01 N 31/1
				·	·
De	r vorliegende Recherchenbericht wur	de für alle Patentansprüche erstellt.			
Recherchenort BERLIN		Abschlußdatum der Recherche 26-07-1984		Prüter HOFMANN D G	
X: vo Y: vo an A: te O: ni P: Zv	ATEGORIE DER GENANNTEN DI on besonderer Bedeutung allein t on besonderer Bedeutung in Vert inderen Veröffentlichung derselbe chnologischer Hintergrund chtschriftliche Offenbarung wischenliteratur er Erfindung zugrunde liegende T	petrachtet n pindung mit einer D: ir en Kategorie L: a	ach dem A n der Anme us andern	nmeldeda eldung and Grûnden	ent, das jedoch erst am oder tum veröffentlicht worden is geführtes Dokument angeführtes Dokument Patentfamilie, überein- nt