Examples of E-L eqns.

Eqns. of mobon? $L = ? \qquad \frac{d}{dt} \left(\frac{\partial L}{\partial g}\right) - \frac{\partial L}{\partial g} = 0$ $l = m_1 - kc : l = m_1 x^2$ For $m_2 - x$ coord: $x + l = ui\theta$ $l = m_2$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = m_1 + l = ui\theta$ $l = m_2 + l = ui\theta$ $l = ui\theta$ l

Tensors

Tensors

Tensors

Tensors

Tensor

A is a no. — a scalar — no direction

A it is a vector — Anag. & direction.

Ai

Ai

Tensor of rank 2

| Frank lensor

Sij = 0 if
$$i \neq j$$
 Kronecken delta fn.

l if $i = j$
 $A \cdot B = A_1 B_1 + A_2 B_2$
 $A_i B_i$
 A_i

Any undex that is summed up \longrightarrow is a diamony variable " δij , δij δij

Diff = Aig Balli $ds = dx^2 + dy^2 + dz^2$ $ds^2 = gij dx^2 dx^2$ $dx_i dx_i$ metat tensor $dx_i dx_j$ This slide left blank for whiteboard

$$E = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{B} \times \vec{c})) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{A} \times \vec{C}) \times \vec{D}$$

$$E_i = (\vec{A} \times (\vec{A} \times \vec{C}) \times \vec{D}$$

$$E_i = ($$

