院、系领导	۸ ¥
审批并签名	A 仓

广州大学 2013-2014 学年第一学期考试卷

课程:高等数学 I (80 学时)

考 试 形 式: 闭卷考试

学院:______ 专业班级:_____ 学号:_____ 姓名:_____

题 次		1 1	三	四	五	六	七	八	九	+	总分	评卷人
分 数	30	18	6	12	15	9	10				100	
得 分												

一. 填空题(每小题3分,本大题满分30分)

1. 设
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ 2x - 1, & x < 1 \end{cases}$$
, 则 $f(f(e)) = \underline{\qquad}$.
2. 曲线 $y = \frac{x^2 + x}{x^2 - 1}$ 有铅直渐近线_____.

2. 曲线
$$y = \frac{x^2 + x}{x^2 - 1}$$
 有铅直渐近线______.

3. 已知当 $x \rightarrow 0$ 时, $x - \sin x = ax^3$ 是等价无穷小,则常数 $a = ax^3$

4. 设
$$f(x) = \begin{cases} \frac{\ln(1+ax)}{2x}, & x > 0 \\ \sin x + 1, & x \le 0 \end{cases}$$
,则当常数 $a =$ _____时, $f(x)$ 在 $x = 0$ 处连续.

- 6. 曲线 $y = e^{2x}$ 上点 (0. 1) 处的切线方程为 . .
- 7. 曲线 $y = x^3(1-x)$ 的凸区间为 .
- 8. 函数 $\cos x$ 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上的平均值为_____.

9. 设
$$f(x) = \int_{-1}^{x} \sin t^{3} dt$$
,则 $f(1) =$ _____.

10.
$$\lim_{n\to\infty} n(\frac{1}{n^2+1} + \frac{1}{n^2+2^2} + \dots + \frac{1}{n^2+n^2}) = \underline{\hspace{1cm}}$$

二. 解答下列各题(每小题6分,本大题满分18分)

1. 已知
$$y = \frac{x^2}{(1+x)(1-x)}$$
, 求 $y'|_{x=2}$.

2. 设
$$\begin{cases} x = \sin t \\ y = t \sin t + \cos t \end{cases}$$
, 计算
$$\frac{d^2 y}{d x^2} \Big|_{t = \frac{\pi}{4}}.$$

3. 设y(x)是由 $x^2 - y + 1 = e^y$ 所确定的隐函数,求y(x)在x = 0处的导数.

三. (本题满分6分)

证明: 方程 $x^n + x^{n-1} + \dots + x = 1$ (整数n > 1) 在($\frac{1}{2}$, 1) 内有且只有一个根.

四. 计算下列极限(每小题6分,本大题满分12分)

1.
$$\lim_{x\to 0} (\frac{1+x}{\sin x} - \frac{1}{x})$$
.

2.
$$\lim_{x \to +\infty} (1+x^2)^{\frac{1}{\ln x}}$$
.

五. 计算下列积分 (每小题 5分, 本大题满分 15分)

$$1. \int \frac{1}{x^2 + x + 1} \mathrm{d}x.$$

2.
$$\int_0^2 x \sqrt{2x - x^2} \, dx$$
.

$$3. \int_1^{+\infty} \frac{\ln x}{x^2} \mathrm{d}x.$$

六. (本题满分9分)

在(1, e)内求一点 x_0 ,使右图中阴影部分的面积之和为最小.

七. (本题满分10分)

- (1) 已知 f(x) 是连续函数,证明: $\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx;$
- (2) 利用 (1) 的结论,计算 $\int_0^{\pi} x \sin^3 x dx$.