МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Организация ЭВМ и системы»

Тема: Трансляция, отладка и выполнение программ на языке Ассемблер

Студента гр. 1383	Панов М.Ю.
Преподаватель	Ефремов М.А

Санкт-Петербург

2022

Цель работы.

Научиться работать с системой dos и с программами на ассемблере.

Задание.

1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h). Выполняемые функцией действия и задаваемые ей параметры - следующие: - обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$"; - требуется задание в регистре ah номера функции, равного 09h, а в регистре dx - смещения адреса выводимой строки; - используется регистр ах и не сохраняется его содержимое. 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными. 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm. 4. Протранслировать программу с помощью строки > masm hello1.asm с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля. 5. Скомпоновать загрузочный модуль с помощью строки > link hello1.obj с созданием карты памяти и исполняемого файла hello1.exe. 6. Выполнить программу в автоматическом режиме путем набора строки > hello1.exe убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе. 7. Запустить выполнение программы под управлением отладчика с помощью команды > afd hello1.exe 4 Записать начальное содержимое сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды. Обычные команды выполняются по F1 (Step), а вызовы обработчиков прерываний (Int) - по F2 (StepProc), чтобы не входить внутрь обработчика прерываний. Продвижение по сегментам экранной формы отладчика выполняется с помощью клавиш F7 – F10 (up, down, left, right).

Перезапуск программы в отладчике выполняется клавишей F3 (Retrieve). Выход из отладчика - по команде Quit. Результаты прогона программы под управлением отладчика должны быть представлены в виде, показанном на примере одной команды в табл. 1, и подписаны преподавателем.

Выполнение работы.

Программа была отредактирована под личные данные. Программа была протранслированна с созданием объектного файла hello1.obj и файла листинга hello1.lst. После компоновки hello1.obj создается исполняемый файл hello1.exe. При выполнении программы в автоматическом режиме программа выводит "Вас приветствует ст.гр.1383 - Панов М.Ю.", после чего запускаем программу в отладчике.

Начальное содержимое сегментных регистров:

CS=1A05; DS=19F5; ES1=19F5; SS=1A0B;3

Результат прогона программы hello1.exe в отладчике:

Адрес команды	Символический код команды	16-ричный код команды	•	е регистров и памяти.
			до выполнения	после выполнения
0010	mov AX, 1A07	B8 07 1A	(AX)=0000 (IP)=0010	(AX)=1A07 (IP)=0013
0013	mov DS, AX	8E D8	(DS)=19F5 (IP)=0013	(DS)=1A07 (IP) =0015
0015	mov DX, 0000	BA 00 00	(IP)=0015	(IP)=0018
0018	mov AX, 09	B4 09	(AX)=1A07 (IP)=0018	(AX)=0907 (IP)=001A

001A	int 21	CD 21	(IP)=001A	(IP)=001C
001C	mov AH, 4C	B4 4C	(AX)=0907 (IP)=001C	(AX)=4C07 (IP)=001E
001E	int 21	CD 21	(AX)=4C07 (CX)=0055 (DS)=1A07 (IP)=001E	(AX)=0000 (CX)=0055 (DS)=19F5 (IP)=0010

При выполнении программы HELLO2.exe в автоматическом режиме выводится сообщение "Hello Worlds!

Student from 1383 - Panov Mikhail"

Начальное содержимое сегментных регистров:

CS=1A0B; DS=19F5; ES=19F5; SS=1A05;

Адрес команды	·	код	Содержимое регистров и ячеек памяти.	
		команды	до выполнения	после выполнения
0005	PUSH DS	1E	(SP)=0018 (IP)=0005 Stack: +0 0000 +2 0000 +4 0000 +6 0000	(SP)=0016 (IP)=0006 Stack: +0 19F5 +2 0000 +4 0000 +6 0000
0006	SUB AX, AX	2B C0	(IP)=0006	(IP)=0008

0008	PUSH AX	50	(SP)=0016 (IP)=0008 Stack: +0 19F5 +2 0000 +4 0000 +6 0000	(SP)=0014 (IP)=0009 Stack: +0 0000 +2 19F5 +4 0000 +6 0000
0009	mov AX, 1A07	B8 07 1A	(AX)=0000 (IP)=0009	(AX)=1A07 (IP)=000C
000C	mov DS, AX	8ED8	(DS)=19F5 (IP)=000C	(DS)=1A07 (IP)=000E
000E	mov DX, 0000	BA 00 00	(IP)=000E	(IP)=0011
0011	CALL 0000	E8 EC FF	(SP)=0014 (IP)=0011 Stack: +0 0000 +2 19F5 +4 0000 +6 0000	(SP)=0012 (IP)=0000 Stack: +0 0014 +2 0000 +4 19F5 +6 0000
0000	MOV AH,09	B4 09	(IP) = 0000 (AX) = 1A07	(IP) = 0002 (AX) = 0907
0002	INT 21	CD 21	(IP) = 0002	(IP) = 0004
0004	RET	C3	(IP) = 0004 (SP) = 0012 Stack: +0 0014 +2 0000 +4 19F5 +6 0000	(IP) = 0014 (SP) = 0014 Stack: +0 0000 +2 19F5 +4 0000 +6 0000
0014	MOV DX,0010	BA 10 00	(IP) = 0014 (DX) = 0000	(IP) =0017 (DX) = 0010

0017	CALL 0000	E8 E6 FF	(SP) = 0014 (IP) = 0017 Stack: +0 0000 +2 19F5 +4 0000 +6 0000	(SP) = 0012 (IP) = 0000 Stack: +0 001A +2 0000 +4 19F5 +6 0000
0000	MOV AH,09	B4 09	(IP) = 0000	(IP)= 0002
0002	INT 21	CD 21	(IP) = 0002	(IP) = 0004
0004	RET	C3	(SP) = 0012 (IP) = 0004 Stack: +0 001A +2 0000 +4 19F5 +6 0000	(SP) = 0014 (IP) = 001A Stack: +0 0000 +2 19F5 +4 0000 +6 0000
001A	RET Far	СВ	(IP) = 001A (CS) = 1A0B (SP) = 0014 Stack: +0 0000 +2 19F5 +4 0000 +6 0000	(IP) = 0000 (CS) = 19F5 (SP) = 0018 Stack: +0 0000 +2 0000 +4 0000 +6 0000
0000	INT 20	CD 20	(AX) = 0907 (CX) = 007B (DX) = 0010 (CS) = 19F5 (DS) = 1A07 (IP) = 0000	(AX) = 0000 (CX) = 0000 (DX) = 0000 (CS) = 0000 (DS) = 19F5 (IP) = 0005

Выводы.

В ходе работы были изучены способы трансляции, отладки и запуска программ на ассемблере.

Исходный код

HELLO1:

DOSSEG ; Задание сегментов под ДОС

.MODEL SMALL ; Модель памяти-SMALL(Малая)

.STACK 100h ; Отвести под Стек 256 байт

. DATA ; Начало сегмента данных

Greeting LABEL BYTE ; Текст приветствия

DB 'Вас приветствует ст.гр. 1383 - Панов М.Ю.', 13, 10, '\$'

.CODE ; Начало сегмента кода

mov ax, @data ; Загрузка в DS адреса начала

mov ds, ах ; сегмента данных

mov dx, OFFSET Greeting ; Загрузка в dx смещения

; адреса текста приветствия

DisplayGreeting:

mov ah, 9 ; # функции ДОС печати строки

int 21h ; вывод на экран приветствия

mov ah, 4ch ; # функции ДОС завершения программы

int 21h ; завершение программы и выход в ДОС

END

HELLO2:

EOFLine EQU '\$' ; Определение символьной константы

```
"Конец строки"
; Стек программы
ASSUME CS:CODE, SS:AStack
AStack
          SEGMENT STACK
     DW 12 DUP('!') ; Отводится 12 слов памяти
AStack
          ENDS
; Данные программы
DATA
          SEGMENT
; Директивы описания данных
HELLO
          DB 'Hello Worlds!', 0AH, 0DH, EOFLine
GREETING DB 'Student from 1383 - Panov Mikhail - $'
DATA
          ENDS
; Код программы
CODE
          SEGMENT
; Процедура печати строки
WriteMsg PROC NEAR
     mov AH,9
```

int 21h; Вызов функции DOS по прерыванию

ret

WriteMsg ENDP

; Головная процедура

Main PROC FAR

push DS ;\ Сохранение адреса начала PSP в стеке

sub AX,AX ;> для последующего восстановления по

push AX ;/ команде ret, завершающей процедуру.

то АХ, ДАТА ; Загрузка сегментного

mov DS,AX ; регистра данных.

mov DX, OFFSET HELLO ; Вывод на экран первой

call WriteMsg ; строки приветствия.

mov DX, OFFSET GREETING; Вывод на экран второй

call WriteMsg ; строки приветствия.

ret ; Выход в DOS по команде,

; находящейся в 1-ом слове PSP.

Main ENDP

CODE ENDS

END Main