CMOS XOR Gate

Stephanie Fournier and Haley Scott

Theory of Operation

- When A is high, and B is low the output Y is high
- When both A and B are high, the output Y is 0
- An XOR gate differs from a simple OR gate, which would output high if both A and B were high

A	В	A'	B'	Y
0	0	1	1	0
1	0	0	1	1
0	1	1	0	1
1	1	0	0	0

Circuit Design Equations

$$Y = A XOR B$$

 $Y = AB' + A'B$

CMOS XOR Gate

Voltages Across the MOSFETS

X	Z
5 V	0 V

SPICE Simulations

Active Pull-Up Network

Active Pull-Up Transient Time Response

Specifications::

- 5 us pulse width
- 10 us period time
- 100 us run time

Propagation time:

0.04 us

Specifications:

- . 50 us pulse width
- 2. 100 us period time
- 3. 1000 us run time

Propagation delay:

• 0.04 us

SPICE Simulations Continued

Resistive Pull-Up Network

Transient Time Response 1k Ohms

Specifications:

- 5 us pulse width
- 10 us period time
- 100 us run time

Propagation delay:

0.5 us

Specifications:

- 500 us pulse width
- 1000 us period time
- 10000 us run time

Propagation Delay:

0.55 us

Circuit Constructed

Results

A	В	A'	В'	Y
0 V	0 V	5 V	5 V	.109 V
5 V	0 V	0 V	5 V	5.01 V
0 V	5 V	5 V	0 V	5.01 V
5 V	5 V	0 V	0 V	.109 V

Observations and Analysis

- Measured truth table aligns with theoretical truth table
- When voltage at the resistor is 0, the voltage = 5-0 so the power is 5^2/R
- When voltage at the resistor is 5, the voltage = 5-5 so the power is 0