Axions detection with LIGO

by article 'Spinning black holes could fling off clouds of dark matter particles' by Adrian Cho, Science Magazine, 22 Feb 2017

Presentation prepared by Dmitriy Fedoriaka

April 8, 2017

Agenda

- What are axions
- How they can be detected
- How they possibly emerge near black holes
- How LIGO can detect axions

Axion

- Hypothetical elementary particle
- Postulated in 1977 o resolve the strong CP problem in QCD (Peccei-Quinn theory).
- Uncharged
- Very light $(m = 10^{-6} \dots 1eV)$
- Possible component of dark matter

Atempts to detext axions (since 2003)

From Sun radiation: Primakoff effect

- From our galaxy: if they actually are dark matter
- No verified positive results yet

Superradiation

- ullet Spinning black hole o accelerating axion
- Resonance if axion's wavelength is equal to diameter of BH
- Annihilation of axion → gravitons

Asimina Arvanitaki, Masha Baryakhtar, Perimeter Institute for Theoretical Physics in Waterloo

Laser Interferometer Gravitational-Wave Observatory

Possible axion detection with LIGO

Spin and mass distribution of merging BH if axions are present

Summary

- Axion is hypothetical, neutral, extremely light particle, needed by QCD
- Existence of axions isn't proven or refuted yet
- LIGO can possibly prove their existence

References

 Spinning black holes could fling off clouds of dark matter particles,

Adrian Cho, Feb 22, 2017,

http://www.sciencemag.org/news/2017/02/ spinning-black-holes-could-fling-clouds-dark-matter-particles

 Black hole mergers and the QCD axion at Advanced LIGO, Asimina Arvanitaki, Masha Baryakhtar, Savas Dimopoulos, Sergei Dubovsky, and Robert Lasenby, Phys. Rev. D 95, 043001 – Published 8 February 2017,

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.043001

- https://en.wikipedia.org/wiki/Axion
- https://ru.wikipedia.org/wiki/LIGO