

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

TOPICWISE: COMPILER DESIGN-2 (GATE - 2019) - REPORTS

OVERALL ANALYSIS COMPARISON REPORT SOLUTION REPORT

ALL(17) CORRECT(8) INCORRECT(2)

Q. 1

Consider the regular expression-token mapping given below:

Regex	Token
ca*b	1
(a b)*b	2
c*	3

Choose the correct output when lexical analyzer scans the following input: "aaabccabbb"

Have any Doubt?

SKIPPED(7)

Correct Option

Solution:

(a)

A 232

aaab \rightarrow 2

 $cc \rightarrow 3$

abbb $\rightarrow 2$

В

132

С

231

D 123

QUESTION ANALYTICS

Q. 2

Given the following attribute grammar:

 $E \rightarrow TE'$

E'.y = E.x

E.x = E'.y

 ${\rm E_1}' \rightarrow + {\rm TE_2}'$

 $\mathsf{E_2'}.y = \mathsf{E_1'}.y + \mathsf{T}.x$

 $\mathbf{E_1'}.x = \mathbf{E_2'}.x$

Which of the following is true?

Have any Doubt ?

Α

Both x and y are inherited attributes

Е

Both x and y are synthesized attributes

С

x is inherited, y is synthesized

 $\label{thm:pageName} \begin{tabular}{lllll} $\it 1$/ is inherited. $\it x$ is svnthesized \\ $\it https://onlinetestseriesmadeeasy.in/madeeasy/index.php?pageName=timeManagementReport&testid=1209&t=a&testType=2 \\ \end{tabular}$

translation of non-terminals on right hand side. So, x is synthesized

Sign out

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

In case of y, the translation on RHS of production is defined in terms of translation of nontern on the left. So, y is inherited. In case of x, translation of nonterminal on the left side of production is defined as function

QUESTION ANALYTICS

Q. 3

Choose the correct sequence of occurrence during compilation process

Character stream \rightarrow parse tree \rightarrow optimized code

Have any Doubt?

Your answer is **Correct**

Solution:

(a)

В Parse tree \rightarrow token stream \rightarrow intermediate code

SDT tree \rightarrow parse tree \rightarrow optimized code

Parse tree \rightarrow 3 address code \rightarrow character stream

QUESTION ANALYTICS

Q. 4

Consider the following statements:

 S_1 : Analysis phase of compiler includes code optimization stage.

S₂: Synthesis phase of compiler is followed by analysis phase.

Have any Doubt?

 S_1 is correct, S_2 is not

 S_2 is correct, S_1 is not

Ashima Garg

Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES S₁ and S₂ are incorrect

Correct Option

Solution:

(d)

Analysis phase {lexical analysis, syntax analysis, semantic analysis} is followed by synthesis phase {intermediate code generation, code optimizer, machine code generation}.

QUESTION ANALYTICS

Q. 5

Consider the following statements:

S₁: In stack allocation, memory is allocated at compile time while in heap allocation, memory is allocated in runtime.

 S_2 : Recursion is supported in stack allocation technique and not supported in static allocation technique. Which of the following is true?

Have any Doubt?

S₁ is correct, S₂ is not

В

Α

 S_2 is correct, S_1 is not

Your answer is **Correct**

Solution:

(b)

In both stack and heap allocation, memory allocated at runtime.

Static allocation does not support recursion. However, in stack allocation, storage is organized as a stack and activation records are pushed and popped as activation begin and end respectively.

С

Both are correct

С

Both are incorrect

QUESTION ANALYTICS

Q. 6

The minimum number of variables required in 3 address code for given expression are $_$ a \times b \times c + d - a + e \times f - g + h

Order of precedence: $\times \times + \times -$; with \times is left associative and +, - are right associative.

Have any Doubt?

3

Correct Option

Solution:

3

$$((((a \times b) \times c) + d) - ((a + (e \times f)) - ((g + h))))$$

 $t1 = a \times b$

 $t1 = t1 \times c$

t1 = t1 + d

 $t2 = e \times f$

t2 = t2 + a

t3 = g + h

t2 = t2 - t3

t1 = t1 - t2

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES **QUESTION ANALYTICS**

Q. 7

The number of inadequate states in SLR(1) parsing table of following grammar are _____. $S \rightarrow V | aSc$

 $V \rightarrow bV \mid d$

Have any Doubt?

Correct Option

0

Solution:

SLR Parser:

Zero inadequate states since no SR conflict or RR conflict is present.

QUESTION ANALYTICS

Q. 8

Consider a stack S given below with elements 1, 2, 3, along with the usual operations of push(), pop() and top() as shown.

Input string: $1/2 \times 3 \times 4$

The number of elements will remain in the stack after the parsing of above input string according to the above SDT rules _____. [push(x): insert x into stack, pop(): remove top most element of stack, top(): print top most element of stack without removing]

FAQ Have any Doubt?

Ashima Garg (Enroll User)

Sign out

Ashima Garg

Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

QUESTION ANALYTICS

Q. 9

Given the 3-address code for a basic block:

Num	Instruction	Meaning		
1	Ld <i>a</i> , <i>T</i> ₁	$T_1 \leftarrow a$		
2	Ld b, T ₂	$T_2 \leftarrow b$		
3	Ld c, T ₃	$T_3 \leftarrow c$		
4	Ld d, T ₄	$T_4 \leftarrow d$		
5	Add T ₁ , T ₂ , T ₅	$T_5 \leftarrow T_1 + T_2$		
6	Add T ₅ , T ₃ , T ₆	$T_6 \leftarrow T_3 + T_5$		
7	$\operatorname{Add} T_{6'} T_{4'} T_7$	$T_7 \leftarrow T_6 + T_4$		
8	ST T ₇ , a	$a \leftarrow T_7$		

The number of registers that are needed to allocate this basic block with no spills are _____

Have any Doubt?

4

Your answer is Correct4

Solution:

4

$$\begin{split} R_1 &\leftarrow a \\ R_2 &\leftarrow b \\ R_3 &\leftarrow c \\ R_4 &\leftarrow d \\ R_2 &\leftarrow R_1 + R_2 \\ R_3 &\leftarrow R_3 + R_2 \\ R_4 &\leftarrow R_3 + R_4 \\ a &\leftarrow R. \end{split}$$

So, 4 registers are needed.

QUESTION ANALYTICS

Q. 10

Consider the following SDT:

Consider the following SDT:	
$A \rightarrow A \times B$	{1}
$A\toE$	${A.val = E.val}$
$B \rightarrow C + D$	{2}
$C \rightarrow C - D$	${C.val = C.val + D.val}$
$D \rightarrow D - E$	${D.val = D.val + E.val}$
$E \to E/F$	{3}
$F \to G$	${F.val = G.val}$
A, B, C, D, E, F, $G \rightarrow id$	${A.val = id.num}$
	B.val = id.num
	C.val = id.num
	D.val = id.num
	E.val = id.num
	F.val = id.num
	G.val = id.num

Fill 1,2,3 so that the string $6 \times 4 - 3 - 5/4 + 12$ outputs 32

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

¥=11

MY TEST

BOOKMARKS

8

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

(4)

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES E.val = E.val + F.val

R

 $A.val = A.val \times B.val$

B.val = C.val - D.val

E.val = E.val + F.val

C

A.val = A.val/B.val

 $B.val = C.val \times D.val$

E.val = E.val + F.val

Your answer is Correct

Solution:

(c)

D

A.val = A.val/B.val

B.val = C.val/D.val

 $E.val = E.val \times F.val$

QUESTION ANALYTICS

Q. 11

Consider the following statements:

 S_1 : During a program execution, stack is used for dynamic memory allocation and heap is used for static memory allocation.

S₂: During a program execution, heap is stored in main memory and stack is present in secondary memory.

S₃: During a program execution, access to heap memory variables is slower as compared to accessing variables allocated on stack.

 S_4 : During a program execution, in a multithreaded situation, each thread has its own stack and share a common heap memory.

Which of the following are true?

Solution Video | Have any Doubt ? |

F

S₁ and S₃ only

В

S₁ and S₄ only

C

 S_3 and S_4 only

 5_1 : Stack and neap is used for dynamic memory allocation.

 S_2 : Heap and stack both are present in main memory.

S₃: Access to heap memory variables is slower as compared to accessing variables allocate stack. Because to access a heap memory variable we need access pointer variable first. S_4 : In a multithreaded situation, each thread has its own stack and share a common heap men

Sign out

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

S₂ and S₃ only

QUESTION ANALYTICS

Q. 12

What would be the output of following program for static and dynamic scoping respectively?

```
int main() \{x = 23; f(); g(); \}
void f() {int x = 22; int y = 99; h();}
```

void
$$g()$$
 {int $x = 45$; int $z = 23$; $h()$;}

```
void h() {printf("%d\n", x);}
```

Have any Doubt?

23, 23; 23, 23

22, 45; 22, 45

23, 23; 22, 45

Correct Option

Solution:

Static scoping means that x refers to the x declared innermost scope of declaration. Since declared inside the global scope, the innermost x is the one in the global scope (it has no acce the x's in 'f' and 'g', since it was not declared inside them), so the program prints 23 twice. Dynamic scoping means that x refers to the x declared in the most recent frame of the call s'h' will use the x from either 'f' or 'g', whichever one that called it so the program would prin and 45.

23, 23; 99, 45

QUESTION ANALYTICS

Q. 13

Consider the following control flow graph given below:

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

₼ номе

 ∭ MY TEST

MY PROFILE

BOOKMARKS

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS
STUDENTS ONLY ON BOOK
PACKAGES

A

Block B₁ and B₃ can be combined together to form a basic block.

Block B₂ and B₃ can be combined together to form a basic block.

Block B₅ and B₆ can be combined together to form a basic block.

Block B₄ and B₅ can be combined together to form a basic block.

Correct Option

Solution:

(d)

С

Block B_4 and B_5 can be combined together to form a basic block since block B_5 is just a cond which is repeated till c < d true and B_4 must be executed.

So, B_4 and B_5 can be merged.

QUESTION ANALYTICS

Q. 14

Consider the following grammar G:

 $S \rightarrow Aa|bAc|dc|bda$

 $\mathsf{A} \to \mathsf{d}$

Which of the following is true?

Have any Doubt?

Α

G is SLR(1)

G is LALR(1) but not SLR(1)

Your answer is Correct

Solution:

(b)

Check for SLR(1):

Since here shift-reduce present so check shift(c) \cap follow(A) = ϕ or not i.e. {c} \cap {a, c} $\neq \phi$ Hence, cannot be SLR(1)

No need to design full DFA, check on each state.

Check for LALR:

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

PACKAGES

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK

 $A \rightarrow .d, c$ $5 \rightarrow bda., $$

Since no state present, which only differs is look ahead symbols, hence grammar has LA and LR(1) DFA with same state. So grammar is LR(1), LALR(1) but not SLR(1).

G is LR(1) but not LALR(1)

G is SLR(1), LALR(1) and LR(1)

QUESTION ANALYTICS

Q. 15

Consider the CFG G = {S, {S, U, V, W}, {a, b, c, d}, P} with LL(1) table given below:

 $S \rightarrow UVW$

 $U \rightarrow (S)|aSb|d$

 $V \rightarrow aV \mid \in$

 $W \rightarrow cW \mid \in$

LL(1) Table:

M[T, t]	a	ь	С	đ	()	\$
5	$S \rightarrow UVW$			$S \rightarrow UVW$			
U	U → aSb			$U \to d$	$U \to (S)$		
v	$V \rightarrow aV$						$V \rightarrow \in$
W			$W \rightarrow cW$				W → ∈

The number of entries missing in LL(1) table for given grammar _

Have any Doubt?

6

Correct Option

Solution:

 $First(S) = \{(, a, d\}$ $Follow(S) = \{), b, \$\}$

 $Follow(U) = \{a, c, b, b, \$\}$ $First(U) = \{(, a, d\}$

 $First(V) = \{a, \in\}$ $Follow(V) = \{c, b, b, \$\}$

 $First(W) = \{c, \in\}$ $Follow(W) = \{), b, \$\}$

LL(1) Table:

M[T, t]	a	ъ	с	đ	()	\$
S	$S \to UVW$			$S \rightarrow UVW$	$S \to UVW$		
U	$U \rightarrow aSb$			$U \rightarrow d$	$U \rightarrow (S)$		
v	$\mathrm{V} \to \mathrm{aV}$	$V \to \in$	$V \rightarrow \in$			$V \mathop{\rightarrow} \in$	V → ∈
w		$W\to\!\in$	$W \rightarrow cW$			$W \to \in$	W→∈

Six entries are missing.

Your Answer is 2

QUESTION ANALYTICS

Q. 16

Consider the following grammar:

 $S \rightarrow Aa|bAc|dc|bda$

If given grammar is LALR(1), then the minimum number of states needed for DFA construction is ___

9/10

TOUI GIISWEI IS COITECLT I

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

Solution: 11

LR(1):

Since their is not state which only differs in look ahead symbol, hence given LR(1) DFA is LA DFA. Hence 11 states are needed.

QUESTION ANALYTICS

Q. 17

Consider the grammar given below:

 $S \rightarrow aXab|Y$

 $X \rightarrow bYa \mid \in$

 $Y \rightarrow Sc$

The minimum number of states required to construct LR(1) DFA are _

Have any Doubt?

17

Correct Option

Solution:

17

So total 17 states are needed for LR(1) DFA.

QUESTION ANALYTICS