

planetmath.org

Math for the people, by the people.

closed point

Canonical name ClosedPoint

Date of creation 2013-03-22 16:22:24 Last modified on 2013-03-22 16:22:24

Owner jocaps (12118) Last modified by jocaps (12118)

Numerical id 9

Author jocaps (12118)
Entry type Definition
Classification msc 54A05

Let X be a topological space and suppose that $x \in X$. If $\{x\} = \overline{\{x\}}$ then we say that x is a *closed point*. In other words, x is closed if $\{x\}$ is a closed set.

For example, the real line \mathbb{R} equipped with the usual metric topology, every point is a closed point.

More generally, if a topological space is http://planetmath.org/T1 T_1 , then every point in it is closed. If we remove the condition of being T_1 , then the property fails, as in the case of the Sierpinski space $X = \{x, y\}$, whose open sets are \emptyset , X, and $\{x\}$. The closure of $\{x\}$ is X, not $\{x\}$.