Buffering Cost

Capacity	Time	Inventory	Production System	
Low	Low	Low	Home production (a.k.a. putting-out system)	
Low	High	Low	Dedicated make-to-stock (mass production)	
Low	Low	High	Dedicated make-to-order, Home cooking	
Low	High	High	Restaurant	
High	Low	Low	Craft production, Process plant (continuous mfg)	
High	High	Low	Shared make-to-stock (discrete part mfg)	
High	Low	High	Shared make-to-order (job shop), Doctor's office	
High	High	High	Trauma unit at hospital, Additive manufacturing	

- Low capacity cost \Rightarrow *dedicated* capacity for a single product
- High capacity cost ⇒ capacity that is shared between multiple products
 - requiring set-ups/changeovers between production of batches of each product

Simple Service/Make-to-Order System

- Service and make-to-order systems do not carry FGI
- Producer makes one decision:
 - 1. Production rate (a.k.a. capacity/design of system)
- Control logic for producer:
 - If customer/order is waiting, produce;
 otherwise, shutdown production.
- Customer/order fulfilment process:
 - Wait for order to be produced (getting a discount in price based on wait time)

Service and Make-to-Order Systems

Determine production rate that maximizes total profit:

$$\max_{r_e} TP = (p-c)(1-gt_{CT})r_d - kr_e$$
where
$$r_e = \text{capacity of production system}$$

$$p = \text{unit sales price}$$

$$c = \text{unit operating cost}$$

$$g = \text{delay discount factor}$$

$$t_{CT}(r_e) = \text{cycle time of production system}$$

$$r_d = \text{departure rate}$$

$$k = \text{capital cost per unit of capacity}$$

Delay Discount

 $(1-gt_{CT})$ = discount applied to unit profit due to delay estimated by cycle time

 $g = \text{delay discount factor } (0 \le g \le 1)$

 $t_{CT}(r_e)$ = cycle time (single machine), require $r_e > r_a \ge r_d$ so all demand satisfied

$$= \underbrace{t_{CT_q}}_{\text{queuing time process time}} + \underbrace{t_e}_{\text{process time}} = \underbrace{\left(\frac{c_a^2 + c_e^2}{2}\right)}_{\text{variability}} \underbrace{\left(\frac{u}{1 - u}\right)}_{\text{time}} \underbrace{t_e}_{\text{time}} + t_e \quad \text{(more later)}$$

= cycle time (single machine + Poisson demand and processing)

$$= \left(\frac{1+1}{2}\right) \left(\frac{\left(r_a/r_e\right)}{1-\left(r_a/r_e\right)}\right) \left(\frac{1}{r_e}\right) + \left(\frac{1}{r_e}\right) = \left(\frac{r_a}{r_e-r_a}\right) \left(\frac{1}{r_e}\right) + \left(\frac{1}{r_e}\right)$$

where $u = \text{utilization} = r_a/r_e$, for single machine (more later)

 t_e = effective process time = $1/r_e$, for single machine (more later)

 c_a^2, c_e^2 = squared coefficient of variation of demand and processing (more later)

= 1, for Poisson demand and processing

Delay Discount Factor

- In model, discount represents the reduction in unit operating profit for time demand waits to be filled/completed
 - Easier to estimate the deduction in unit price, then convert to profit
- Can estimate using "percent-reduction interval" method: given t_g when delay discount results in x_g -percent reduction in the original price p, find (price discount factor) g':

$$g't_g p = x_g p \Rightarrow g't_g = x_g \Rightarrow g' = \frac{x_g}{t_g}$$

Convert price reduction to unit profit reduction to get g:

$$(p-c)g = pg'$$

$$(p-c)g = p\left(\frac{x_g}{t_g}\right) \Rightarrow g = \frac{px_g}{(p-c)t_g}, \text{ and } t_g = \frac{px_g}{(p-c)g}$$

- Important: t_g should be in same time units as t_{CT}

Example: Delay Discount Factor

- Assume p = \$100 and c = \$60
 - Low discount: If one year delay results in 80% price discount

$$t_g = 1 \text{ yr} \Rightarrow g = \frac{px_g}{(p-c)t_g} = \frac{100(0.8)}{100-60} = 2$$

- High discount: If 15 min delay results in 80% price discount

$$t_g = \frac{15}{60} = 0.25 \text{ hr} \Rightarrow g = \frac{100(0.8)}{(100 - 60)0.25} = 8$$

Service and Make-to-Order Systems

Assume single-machine Poisson and $r_a = r_d$

$$t_{CT}(r_e) = \left(\frac{r_d}{r_e - r_d}\right) \left(\frac{1}{r_e}\right) + \left(\frac{1}{r_e}\right)$$
$$TP(r_e) = \left(p - c\right) \left[1 - g t_{CT}(r_e)\right] r_d - k r_e$$

Taking
$$\frac{dTP(r_e)}{dr_e} = 0$$
 and solving for r_e : $r_e^* = r_d + \sqrt{\frac{(p-c)gr_d}{k}}$

$$r_e^* = r_d + \sqrt{\frac{(p-c)gr_d}{k}}$$

Example:
$$r_d = 10, p = \$70, c = \$50, g = 0.01, k = \$1$$

$$r_e^* = 10 + \sqrt{\frac{(70 - 50)0.01(10)}{1}} = 11.41$$

Estimating Cost Data

- Cost inputs needed for model: p, c, and k
- Assume hour base time unit
 H = annual operating hours = 50 week/yr x 40 hr/week = 2000 hr/yr
- Unit sales price (p): assume given
- Unit operating cost (c): top-down: known annual OC and known demand F, then c = OC/Fbottom-up: sum of raw material, labor, and energy cost per unit
- Unit capital cost (k):

```
top-down: known K and known r_e then k=(K/H)/r_e if r_e not known, then can estimate from known r_d and estimated u, where r_d = \text{(Annual Demand)/H} r_e = r_d/u
```

bottom-up: m identical machines, $k r_e = k_i m$, k_i = machine i cost (was assuming m = 1 in simple Poisson model, but still can est. CT for m > 1)

Example Cost Data

 Can use top-down approach since data from a similar production system known and can be used to estimate costs for new production system

	Α	В	С	D	E
1	Cost of Capital	(<i>i</i>)	4%		0.04
2	Economic Life	(N, yr)	5		5
3	Annual Demand	(q/yr)	10,000		10000
4	Sale Price	(p,\$/q)	70		70
5	Investment Cost	(IV,\$)	59,000		59000
6	Salvage Percentage		25%		0.25
7	Salvage Value	(SV, \$)	14,750		=C5*C6
8	Eff. Investment Cost	(IV ^{eff} , \$)	46,877		=C5-C7*(1+C1)^(-C2)
9	Cost Cap Recovery	(K,\$/yr)	10,530		=C8*(C1/(1-(1+C1)^(-C2)))
10	Annual Operating Hours	(<i>H</i> , hr/yr)	2,000		2000
11	Known Departure Rate	$(r_d, q/hr)$	5.00		=C3/C10
12	Estimated Utilization	(<i>u</i>)	0.95		0.95
13	Estimated Capacity	$(r_e, q/hr)$	5.26		=C11/C12
14	Capital Cost per Unit	(k, \$/q)	1.00		=(C9/C10)/C13
15	Operating Cost	(OC, \$/yr)	500,000		500000
16	Oper Cost per Unit	(c,\$/q)	50		=C15/C3