EDUCODE, Brussels 27-29 August 2018

Programming with MicroPython on the pyboard

Christine Spindler – George Robotics Ltd The company behind MicroPython

Agenda

- (1) What is MicroPython?
- (2) How everything started
- (3) First program with

MicroPython on pyboard

- (4) Dive into Temperature sensor
- (5) What is coming next!

Motivation for MicroPython

Electronics circuits now pack an enormous amount of **functionality** in a tiny package

Need a way to **control** all these sophisticated devices.

MicroPython

- allows beginners to do things they couldn't do before
- Professionals be an order of magnitude more productive
- Building devices easier and more accessible

Python IEEE

What is MicroPython?

A **powerful** and **modern** language large community made to run on constrained/embedded systems

MicroPython is

- a complete reimplementation of Python
- Designed to be efficient with resources
- Designed to run bare metal

MicroPython includes

- A compiler, runtime and familiar REPL
- Support for basic libraries (modules), most with an 'u'
- Extra modules to control hardware

Difference Embedded SW Engineer & SW Developer

- Knowing the hardware
- PC vs. PCB
- How many lines of code?
- Different debugging
- Controlling and managing the hardware

2013 Crowdfunding via Kickstarter

Micro Python: Python for microcontrollers

by Damien George

2016 MicroPython in school

- BBC micro:bit project
 brought 1 Mio units to
 7 year old children in the UK
- 2nd Kickstarter ESP8266 support
- New Logo

Facts & Figures

- MicroPython is a public project on GitHub with 6900 stars
- ranking in the top of 100 most popular C/C++ projects

- Contributions come from many people (200+) with many different systems leads to: more robust code and build system
- more Features and supported hardware
- active forum

Real World applications

- Traffic management device certified by national institute of metrology (state: in production)
- Contact-free opto-electronic measurement system for medical use (state: international certification in progress)

Maker Projects

Remote, wireless weather station network

Quadrocopter

In your bag

- pyboard lite enables a high performance processor with low power capabilities
- Red Temperature/Humidity sensor HDC1080
- Jumper Wire with male headers
- MicroUSB cable
- STICKERS

The pyboard lite Pin layout

pyboard lite is Low Power

1			
>>	Power cons	umption	
	Running at	96 MHz	23 mA
	Idling at 96	MHz	5 mA
	Running at	48 MHz	13 mA
) }	Idling at 48	MHz	4 mA
18/	Sleep full Raretention	ΔM	180 uA
	Deepsleep retention or		6 uA

- SD card reader
- Micro USB connector power and data
- No additional power supply needed
- 4 LED red, green, orange, blue
- 2 switches USR and RST
- Internal flash: 512k RAM
- Frequency 96MHz
- 10 pins: 30
- 18 PWM
- 16 A/D
- 7 indepentent timers
- 3 UART
- 2 I2C
- 2 SPI
- Power supply input range on V+/VBAT: 3.6V-16V

NO IDE needed

3 ways to use a pyboard

- from file main.py
- Remote script
- **REPL** promt

Plug it in

All machines

please connect your pyboard with the MicroUSB cable

PYBFLASH

5 files

- boot.py
 executed when the pyboard boots up
- main.py
 contains your python program
- README.txt
- Pybcdc.inf Windows driver for serial USB
- HDC1080_logdata.py driver for the Temperature Sensor

Getting started

LINUX

Removable medium: PYBFLASH

Ubuntu: mount automatically and pop-up with the pyboard folder

Manually mount

Isblk → list of connected drivers mount /dev/sdb1

(sdb1 needs to be replaced by the appropriate device)

- Opening the pyboard USB drive
- Editing main.py
- Resetting the pyboard

MAC & LINUX OS

MAC

- open a terminal
- screen /dev/tty.usbmodem*
- CTRL-A CTRL- for exit screen

LINUX

- picocom /dev/ttyACM0
- rshell

main.py

open main.py in text editor

```
#main.py - put your code here
import pyb
pyb.LED(4).on()
```

- pyb module contains all functions and classes of the pyboard
- save and close main.py
- eject/unmount the pyboard USB drive
- now press reset button

Part I

First program with Switch and LED

```
# pyboard to flash the LEDs!
import time
import pyb

while True:
    if pyb.Switch().value():
        pyb.LED(1).on()
    else:
        pyb.LED(1).off()
    time.sleep_ms(50)
```

push the USR button on the

Part II

- Connecting Temperature Sensor with Jumper Wires
- Four wires to connect the I2C sensor temperature board
- Look at the pyboard sheet. Two connections

SCL: clock line to synchronize data

SDA: data line

GND and VCC to 3V

Temperature & Humidity

- Logging Temperature and Humidity data in a .txt file on the pyboard internal flash
- Or to an SD-card

Programming with MicroPython by Nicholas H. Tollervey

Why is MicroPython special

- Python is easy to learn and understand
- To get the most out of your application with mixing code, even assembler and C
- for beginners and advanced users
- MIT license free to use for private and industrial
- Tools instead of toys for teaching

micropython.org
docs.micropython.org
christine@micropython.org
forum.micropython.org
store.micropython.org

