19 FRENCH REPUBLIC

11 Publication no.: (not to be cited except in the case of copy orders) 2 784 575

NATIONAL INSTITUTE OF INDUSTRIAL PROPERTY PARIS

21 International registration no:

98 12945

51 Int. Cl.⁷: A 61 F 2/16

12

PATENT APPLICATION

A1

- 22 Application date: October 15, 1998
- 30 Priority:

- 71 Applicant(s): MEGAOPTIC GMBH Gesellschaft mit beschränkter Haftung – DE.
- 72 Inventor(s): HANNA KHALIL.
- 43 Date the request was disclosed to the public: April 21, 2000 Bulletin 00/16.
- 56 List of documents cited in the preliminary search report: Refer to the end of this document
- References to other related national documents:
- 73 Holder(s):
- 74 Attorney(s): BOETTCHER FIRM.

ADAPTIVE INTRAOCULAR IMPLANT

57 The adaptive intraocular implant comprises a lens with a central optical part and a peripheral part for holding it in the capsular sac. The peripheral part is one elastically deformable annular piece (1) in the form of a groove open toward the inside with a rear wing (3) in contact with the rear wall and a front wing (2) in contact with the peripheral part resting on the front wall of the capsular sac, the front wing (2) having at least two gabs (4 and 5) in the form of hooks projecting radially from the edge of the wing. The optical part as such is a lens (6) in the form of a disk comprising at least two openings (7 and 8) in its peripheral zone by means of which it is held by the hooks (4, 5) of the annular piece (1). Used in ophthalmology.

[drawing]

The present invention concerns an intraocular implant intended to be implanted in the location and in place of the natural lens following a cataract operation.

The adaptation is the process by which the eye focuses on approaching objects by means of a controlled deformation and an increase in the curve of the surfaces of the lens. The adaptation mechanism derives from the contraction of the ciliary muscle that relaxes the tensions of the zonule and makes it possible for the lens to assume a rounder shape. In contrast, when the eye focuses on an infinite point, the ciliary muscle is relaxed, the zonule is tensed and the lens is under maximum strain, thus assuming a flatter shape. All individuals lose their ability to adapt, generally during their fifties, and have to wear corrective glasses for reading or for close work, this being called presbyopia.

Presbyopia is due to several factors, in particular to the change in all of the components of the adaptive mechanism: hardening of the material forming the lens, which means that this lens is less deformable and a change in its geometry produced by the continuous growing of the lens. These changes make up a large part of the reduction of the adaptation with age and the appearance of presbyopia.

The opacification of the lens is called cataract; this leads to the loss of vision. The most common cause of the cataract is age. The cataract operation with implantation of an intraocular polymer lens is the most common surgical procedure. The opaque lens is withdrawn through a circular, central opening in the anterior capsule, called capsulotomy. The opening is usually from five to six millimeters in diameter and starts at about two millimeters

from the anterior insertion of the zonule. Phacoemulsification is the procedure by which ultrasound is used to fragment the lens material, which is then withdrawn by aspiration. A synthetic polymethlymethacrylate (PMMA) lens or supple and pliable acrylic polymer lens or silicone-based lens is then inserted on the inside of the capsular sac. The refractive power of the intraocular lens is generally chosen to minimize the post-operative refractive deficiency of the patient, but the ability of the lens to focus is fixed, which does not make it possible to obtain an adaptation.

Numerous tests have been carried out to restore, at least partially, the adaptation ability with an intraocular lens. For this reason, the document US 5 607 472 proposes a lens in at least two parts, a first rear part providing the majority of the refractive power to the lens holding, in front of it, a second deformable part that is connected at the center of the first part and which is connected on the circumference to the edge of the capsulotomy. In addition to the fact that this lens is complicated, the connection of the second part at the edge of the opening on the anterior wall of the capsular sac is far from being practiced successfully.

The German company MORCHER has proposed an intraocular lens that is implanted in the capsular sac. This lens comprises a central optical part of around five and one-half millimeters surrounded by a fine skirt extending toward the back of the optical part with the orifices, this skirt being bordered by a circular reinforcement ring with recesses. The total diameter of this implant is ten millimeters. This implant rests against the internal peripheral part of the anterior capsule. Thus, when the zonule exercises tension on the circumference of the capsular sac, by means of the auxiliary muscle, the lens is displaced

toward the back, which changes the refraction of the eye. Clinical evaluation of this technique has shown that the modifications in refractive power of the eye are limited. In addition to this limited adaptive possibility, the implantation procedure requires an incision longer than that needed to implant pliable, non-adaptive lenses.

To remedy the disadvantage of the existing adaptive lenses, which essentially rest in the fact that it is necessary to make a large incision in the cornea in order to be able to introduce such a lens, of which the exterior diameter is often close to ten millimeters, the present invention uses a lens with two parts, i.e., a capsular tension device that supports an optical part, each of them being introduced in succession into the capsular sac.

More specifically, the object of the invention is an adaptive intraocular implant comprising a lens with a central optical part and a peripheral part for holding same in the capsular sac and for transmission to the optical part the forces and displacements of the equatorial part of the capsular sac, resulting from the change in state of the ciliary muscle. According to the invention, the peripheral part is an annular piece in the shape of a groove open toward the interior with a rear wing in contact with the rear wall and a front wing in contact with the remaining peripheral part of the anterior wall of the capsular sac, the anterior wing having at least two tabs in the form of hooks that project radially from the edge of the wing. The optical part itself is a piece in the shape of a disk having at least two openings in its peripheral zone, by means of which it is mounted on the annular piece.

The annular piece, which in normal state has a large diameter, can be folded into a small space

The optical part is then an implant with very reduced diameter (on the order of seven millimeters) which can also be introduced, folded, across this small corneal incision.

In a preferred embodiment of the invention, the anterior wing of the annular part has, in the area of its root, an annular zone with increased flexibility. This zone can be realized by thinning of the wall of the wing at this location. It is understood that, in this way, the optical part is mounted on a wing that is easily mobile in the manner of a lever that transforms deformations of the equatorial part of the capsular sac, due to forces it is subjected to by the zonule, into displacements. They then play the role of a lever which, when the capsular sac is subjected to a tension in the zonule (distance vision), pushes the central optical piece toward the rear, thus modifying the refractive power of the eye in the sense of a decrease making it possible to focus on infinity. In summary, when the ciliary muscle is contracted, i.e., when the zonule is relaxed, the equatorial part of the capsular sac tends to decrease in diameter due to its own elasticity, which forces the groove to open, and in particular forces the front wing to raise up toward the cornea, thus pulling toward the front of the eye the optical part of the lens, in the sense of an increase in the refractive power of the system. Thus it is a case of adaptation to focus on nearby objects.

Other characteristics and advantages of the invention will be seen from the description of one of these embodiments given below by way of non-limiting examples.

Reference will be made to the attached drawings, in which:

so that it can be introduced through a corneal incision of limited length.

- figure 1 is a cross section view of an implant according to the invention,
- figure 2 is an external perspective view of the optical part of the implant,
- figure 3 is a perspective view of the exterior annular piece of the implant forming the tension device for the capsular sac,
- figures 4 and 5 illustrate, in partial cross section, the two states of the implant at the time of close vision (figure 4) and at the time of distance vision (figure 5).

The implant according to the invention shown in figures 1 to 3 comprises two pieces. A first exterior annular piece 1, of which the cross section is in the shape of a groove open towards the interior, which has an anterior wing 2 and a posterior wing 3. The anterior wing 2 has two tabs 4 and 5—in the case of this figure, diametrically opposed—which project toward the interior of the edge of this wing and which are shaped as hooks on the interior of the volume of the groove. These hooks 4 and 5 are intended to retain the optical part of the implant. This optical part is formed by a piece 6 in the form of a disk—in this case biconvex—separated from the annular piece 1. This piece 6 has two holes 7 and 8 crossing through it, in which holes the hooks 4 and 5 can freely be lodged. It can be noted in this regard that the interior shape of the hooks is such that it prevents practically any movement of the optical disk with respect to the hooks along the optical axis in such a way that a displacement of the hooks of which a component extends parallel to this axis involves a corresponding displacement of the optical disk. In the case shown, the interior shape of hooks 4 and 6 is angular to form stops on the part of the disk outside holes 7 and 8 that is lodged on the inside of the hook. It can be seen that the external diameter of piece 6, on the order of seven millimeters, is greater than

the diameter of the edge of the wings 2 and 3, in such a way that when piece 6 is lodged on the inside of the groove, it can not escape spontaneously. The diameters of the edges of the wings 2 and 3 are not equal, the larger diameter being that of the edge of anterior wing 2.

The base of groove 1—i.e., the part that connects the two wings and which has the maximum external diameter (of nine and one-half millimeters to ten millimeters, a diameter that corresponds to the equatorial diameter of the capsular sac of a person in their thirties)—is thicker than that which makes up the wings 2 and 3. The choice of this dimension (9.5-10 mm) makes it possible to take into account the fact that, at the time of the operation, since the patient is generally at least 60 years old, the crystalline lens has a greater volume in comparison to that which it had when the patient was younger. Replacement in the capsular sac of the lens material by the implant of the invention, thus with equatorial diameter smaller than that of the sac at the time of the operation, allows the sac the possibility of retracting partially on the ring. The result of the retraction is based on a decrease in the relaxation of the zonular fibers that the enlargement of the natural lens has caused. As a result, the changes in state of the ciliary muscle are better transmitted to the equatorial part of the capsular sac. In other words, the decrease in this relaxation makes it possible to transmit to the capsule a greater part of the amplitude of the ciliary muscle displacement than that which can be transmitted to the natural capsule that had enlarged.

Placement of the implant according to the invention on the inside of the capsular sac consists of folding up on itself the annular piece 1 in such a way as to reduce the space required in cross section in order to make it possible to introduce it into the capsular sac by way of a corneal incision

of small length. Once the piece 1 is in place in the sac due to its own elasticity, it forms a holding element of this sac to adjust its equatorial diameter to a value close to that which the lens had when the patient was around 30 years old. Fastening the equatorial diameter of the capsular sac to this dimension, i.e., limiting its partial retraction, is to place it in an optimal situation to promote the maximum amplitude of the ciliary muscle movements transmitted to this sac by the zonule, as explained above. To obtain this result, an adequate dimension of piece 1 would be chosen, using a pre-operative measurement of the equatorial diameter of the lens (by a known method, e.g. by ultrasound), from which between 0.5 and 0.75 mm would be subtracted to determine the advantageous external diameter of the piece 1.

Then the optical part 6 is put in place by introducing it into the groove 1 and, by means of a special instrument, by forcing the hooks 4 and 5 to the inside of holes 7 and 8.

Naturally, parts 1 and 6 of the implant are made of a supple and pliable material known in and of itself, such as an acrylic polymer or silicone-based polymer. It can be seen in figures 1 and 3 that the backs 4a and 5a of the hooks 4 and 5 are in the extension of the external surface of the anterior wing 2. These hooks can thus mold perfectly to the rest of the anterior wall of the capsular sac. It can also be noted that the connecting zone of the hooks to the wing 2 is made up of a part with slight thickness which creates a sort of pseudo-articulation of the hooks with respect to the annular piece 1. This zone is located at 10 in figure 1 and at 11 in figures 4 and 5. In the embodiment of figures 4 and 5, the effect of the amplifying lever of the movement of the hooks 4 and 5 has been illustrated

at the time of tension in the zonular fibers 13.

Figure 4 is a partial cross section view of the implant according to the invention placed in the capsular sac 12, in the state of adaptation, i.e., in the form taken due to the effect of the elastic retraction of the equatorial zone of the capsular sac due to the fact that zonule 13 is relaxed (ciliary muscle contracted).

Figure 5 shows the state of the implant according to the invention when the ciliary muscle is relaxed, i.e., the zonule 13 is tensed, this tension having the effect of flattening the equatorial zone of the capsular sac 12, this flattening causing a swiveling toward the interior of the groove of the hooks 4 and 5 around the zone of great flexibility 11. It is understood that in this state, the optical part 6 of the implant is pushed back toward the back of the eye, which has an effect on the global power of the system, in the sense of a decrease, which is the case of adaptation to focusing on infinity.

The invention may take other forms of embodiment. For example, more than two (three or four) hooks for mounting the optical piece in the annular piece could be put in place.

CLAIMS

- 1. Adaptive intraocular implant comprising a central optical part and a peripheral part for holding same in the capsular sac and for transmission to the optical part of the forces and displacements of the equatorial part of the capsular sac resulting from changes in state of the ciliary muscle, characterized in that the peripheral part is an annular piece (1) that is elastically deformable and in the shape of a groove that is open towards the interior, with a posterior wing (3) in contact with the posterior wall and an anterior wing (2) in contact with the remaining peripheral part of the anterior wall of the capsular sac, and in that the anterior wing (2) comprises at least two tabs (4 and 5) in the form of hooks projecting radially from the edge of the wing, and in that the optical part itself is a lens (6) in the form of a disk comprising at least two openings (7 and 8) in its peripheral zone, by means of which openings it is held by the hooks (4, 5) of the annular piece (1).
- 2. Intraocular implant according to claim 1, characterized in that the connecting zone (11) of each hook (4, 5) to the anterior wing has increased flexibility.
- 3. Implant according to claim 1 or claim 2, characterized in that the back (4a, 5a) of each hook (4, 5) is located in the extension of the external face of the anterior wing (2).
- 4. Implant according to any one of the preceding claims, characterized in that each hook (4, 5) cooperates with the lens without play in the direction of the optical axis of the implant.
- 5. Implant according to any one of the preceding claims, characterized in that the connecting part (9) of the two wings of the annular piece has a thickness greater than that of the greatest thickness of each of the wings.

6. Implant according to any one of the preceding claims, characterized in that the diameter of the lens (6) is less than the internal equatorial diameter of the annular piece (1) and is greater than the diameter of the edge of each wing (2, 3).

[see original for Figures 1-5]

FRENCH REPUBLIC NATIONAL INSTITUTE OF INDUSTRIAL PROPERTY

PRELIMINARY SEARCH REPORT

established on the basis of the latest claims submitted before the beginning of the search

National registration no. FA 563655 FR 9812945

	UPERIT			
DOC	CUMENTS CONSIDERED RELEVAN	' "	ims	
Category	Citation of the document with indication, if needer relevant parts	appli	ed in the cation nined	
Α	EP 0 337 390 A (CESKOSLOVENKA AKAD October 18, 1989 * abstract *			
Α	EP 0 732 090 A (D.W. LANGERMAN) September 18, 1996 * abstract *	1		
Α	FR 2 681 524 A (M.N.A.O.) March 26, 1993 * column 5, line 12 – line 31; figure 4 *	1		
Α	US 4 892 543 A (D.F. TURLEY) January 9, 1990 * column 3, line 43 – line 57; figures 2, 3 *	1	,	
Α	US 5 814 103 A (I. LIPSHITZ ET AL.) September 29, 1998 * column 4, line 30 – line 37; figure 5 *	1		
Α	US 5 800 533 A (H.C. EGGLESTON ET AL. September 1, 1998 * abstract *) 1	1	ECHNICAL AREAS RESEARCHED (Int. Cl.6)
Α	US 5 026 396 A (J.J. DARIN) June 25, 1991 * abstract; figures 2, 5 *	1	A	61F
A ·	US 5 674 282 A (J.S. CUMMING) October 7, 1997 * column 9, line 33 – line 56; figures 2, 3 *	2		
	•			
	Research	n completion date June 7, 1999		Examiner Wolf, C.
C: particularC: particulardocumentA: pertinent	ly relevant by itself ly relevant in combination with another t in the same category with respect to at least one claim or general	T: theory or princip E: patent documen	it having a date which had not t on or a later da ication	invention is based prior to the date of been published until this
technical U: unwritten	background - disclosure			
: inserted o		&: member of the sa	ame family, cor	responding document

Certificate of Accuracy

I, Anne Vong of TransPerfect Translations, Inc. do hereby declare that the following is to the best of my knowledge and belief a true and correct translation of a French document (Patent No.: FR 2 784 575 - A11) into English. Copy of the English translation and source document is attached.

I so declare under penalty of perjury under the laws of the State of California on this 18th day of July 2003.

ATLANTA BOSTON BRUSSELS **CHICAGO DALLAS FRANKFURT** HONG KONG HOUSTON LONDON LOS ANGELES MIAMI MINNEAPOLIS **NEW YORK PARIS** PHILADELPHIA **SAN DIEGO** SAN FRANCISCO

SEATTLE WASHINGTON, DC

TransPerfect Translations, Inc. Los Angeles, California

INSTITUT NATIONAL

DE LA PROPRIÉTÉ INDUSTRIELLE

(21) Nº d'enregistrement national :

PARIS

(51) Int CI7: A 61 F 2/16

DEMANDE DE BREVET D'INVENTION

Α1

- Date de dépôt : 15.10.98.
- 30) Priorité :

- (71) Demandeur(s): MEGAOPTIC GMBH Gesellschaft mit beschränkter Haftung - DE.
- Date de mise à la disposition du public de la demande : 21.04.00 Bulletin 00/16.
- Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- 60 Références à d'autres documents nationaux apparentés:
- (72) Inventeur(s): HANNA KHALIL..
- (73) Titulaire(s) :
- (74) Mandataire(s): CABINET BOETTCHER.

(54) IMPLANT INTRAOCULAIRE ACCOMMODATIF.

L'implant intraoculaire accommodatif comprend une lentille avec une partie optique centrale et une partie pénphérique de maintien de celle-ci dans le sac capsulaire. La phérique de maintien de celle-ci dans le sac capsulaire. La partie périphérique est une pièce (1) annulaire élastiquement déformable en forme de gouttière ouverte vers l'intérieur avec une alle postérieure (3) au contact de la paroi postérieure et une aile antérieure (2) au contact de la partie périphérique restante de la paroi antérieure du sac capsulaire, l'aile antérieure (2) comportant au moins deux pattes (4 et 5) en forme de crochets en saillie radiale du bord de l'aile. La partie optique est quant à elle une lentille (6) en forme de disque comportant au moins deux ouvertures (7 et 8) dans sa zone périphérique au moyen desquelles elle est maintenue par les crochets (4, 5) de la pièce annulaire (1). Application à l'ophtalmologie. Application à l'ophtalmologie.

 $\mathbf{\alpha}$

La présente invention concerne un implant intraoculaire destiné à être implanté aux lieu et place du cristallin naturel à la suite d'une opération de cataracte.

5

L'accommodation est le processus par lequel l'oeil met au point sur les objets rapprochés au moyen d'une déformation contrôlée et d'une augmentation de la courbure des surfaces du cristallin. Le mécanisme d'accommodation parvient de la contraction du muscle ciliaire qui 10 relâche les tensions de la zonule et permet au cristallin de prendre une forme plus ronde. A l'inverse, lorsque l'oeil met au point à l'infini, le muscle ciliaire est relâché, la zonule est sous tension et la lentille est sous une contrainte maximale prenant ainsi une forme plus plate. 15 Tous les individus perdent leur aptitude à accommoder généralement au cours de la cinquantaine et doivent porter des verres correcteurs pour lire ou pour des travaux rapprochés, ceci étant appelé la presbytie.

La presbytie est due à plusieurs facteurs, 20 notamment au changement de toutes les composantes de l'appareil accommodatif : durcissement du matériau formant le cristallin qui fait que ce cristallin est moins déformable et changement dans sa géométrie produit par la croissance continue du cristallin. Ces changements comptent pour 25 une grande part dans la réduction de l'accommodation avec l'âge et la survenance de la presbytie.

L'opacification du cristallin est appelée cataracte ; cela conduit à la perte de la vision. La cause la plus commune de la cataracte est l'âge. L'opération de la 30 cataracte avec implantation d'une lentille intraoculaire en polymère est la procédure chirurgicale la plus commune. La lentille opaque est retirée au travers d'une ouverture circulaire et centrale sur la capsule antérieure appelée capsulorhexis. L'ouverture est habituellement de cinq à six millimètres en diamètre et commence environ à deux millimètres de l'insertion antérieure de la zonule. La phacoémulsification est le procédé par lequel on fragmente par
ultrasons le matériau cristallinien qui est ensuite retiré
par aspiration. Une lentille synthétique en polymétylmétacrilate (PMMA) ou souple et pliable en polymère acrylique
ou à base de silicone est ensuite insérée à l'intérieur du
sac capsulaire. La puissance optique de la lentille
intraoculaire est généralement choisie pour minimiser la
déficience réfractive post-opératoire du patient mais le
pouvoir de mise au point de la lentille est fixe, ce qui ne
permet pas d'obtenir une accommodation.

De nombreux essais ont été tentés pour restaurer au moins partiellement l'aptitude à l'accommodation avec une lentille intraoculaire. C'est ainsi que le document US 5 607 472 propose une lentille en au moins deux parties, une première partie postérieure apportant la principale fraction de puissance optique à la lentille portant devant elle une seconde partie déformable qui est reliée au centre à la première partie et qui est reliée en périphérie au 20 bord de l'ouverture de capsulorhexis. Outre le fait que cette lentille est complexe, la liaison de la seconde partie au bord de l'ouverture de la paroi antérieure du sac capsulaire est loin d'être pratiquée avec succès.

La société allemande MORCHER a proposé une le la lentille intraoculaire qui est implantée dans le sac capsulaire. Cette lentille comprend une partie optique centrale d'environ cinq millimètres et demi entourée par une jupe fine s'étendant vers l'arrière de la partie optique avec des orifices, cette jupe étant bordée par un anneau de renforcement circulaire avec des encoches. Le diamètre total de cet implant est de dix millimètres. Cet implant porte contre la partie interne périphérique de la capsule antérieure. Ainsi, quand la zonule, par l'intermédiaire du muscle auxiliaire, exerce une tension sur la circonférence du sac capsulaire, la lentille est déplacée

vers l'arrière, ce qui change la réfraction de l'oeil. L'évaluation clinique de cette technique a fait apparaître que les modifications du pouvoir réfractif de l'oeil sont limitées. En plus de cette possibilité limitée d'accommoder, la procédure d'implantation demande une incision plus longue que celle nécessaire à implanter des lentilles pliables non accommodatives.

Pour pallier l'inconvénient des lentilles accommodatives existantes qui résident principalement dans le fait qu'il convient de pratiquer une incision large dans la cornée pour pouvoir introduire une telle lentille dont le diamètre extérieur et souvent voisin de dix millimètres, la présente invention met en oeuvre une lentille en deux parties à savoir un tendeur capsulaire qui supporte une partie optique l'un et l'autre étant introduit successivement dans le sac capsulaire.

Plus précisément l'invention a pour objet un implant intraoculaire accommodatif comprenant une lentille avec une partie optique centrale et une partie périphérique 20 de maintien de celle-ci dans le sac capsulaire et de transmission à la partie optique des forces et déplacements de la partie équatoriale du sac capsulaire résultant du changement d'état du muscle ciliaire. Selon l'invention, la partie périphérique est une pièce annulaire en forme de 25 gouttière ouverte vers l'intérieur avec une aile postérieure au contact de la paroi postérieure et une aile antérieure au contact de la partie périphérique restante de la paroi antérieure du sac capsulaire, l'aile antérieure comportant au moins deux pattes en forme de crochets en 30 saillie radiale du bord de l'aile. La partie optique est quant à elle une pièce en forme de disque comportant au moins deux ouvertures dans sa zone périphérique au moyen desquelles elle est suspendue à la pièce annulaire.

La pièce annulaire qui, à l'état normal, est de 35 grand diamètre, peut être pliée dans un faible encombrement

afin de pouvoir être introduite au travers d'une incision cornéenne de longueur limitée. La partie optique est alors un implant de diamètre beaucoup plus réduit (de l'ordre de sept millimètres) qui peut être également introduit plié au travers de cette petite incision cornéenne.

Dans un mode de réalisation préféré de l'invention, l'aile antérieure de la partie annulaire comporte au voisinage de sa racine une zone annulaire de flexibilité augmentée. Cette zone peut être réalisée par un amincissement de la paroi de l'aile à cet endroit. On comprend qu'ainsi la partie optique est suspendue à une aile qui est facilement mobile à la manière d'un levier transformant en déplacements les déformations de la partie équatoriale du sac capsulaire dues aux forces qu'elle subit de la part de 15 la zonule. Elles jouent alors le rôle d'un levier qui, lorsque le sac capsulaire est soumis à la tension de la zonule (vision de loin), repousse la pièce centrale optique vers l'arrière, modifiant ainsi la puissance réfractive de l'oeil dans le sens d'une diminution permettant une mise au 20 point à l'infini. En revanche, lorsque le muscle ciliaire est contracté, c'est-à-dire lorsque la zonule est relâchée, la partie équatoriale du sac capsulaire tend à se rétrécir en diamètre par son élasticité propre, ce qui force la gouttière à s'ouvrir, et notamment l'aile antérieure à remonter vers la cornée tirant ainsi vers l'avant de l'oeil la partie optique de la lentille dans le sens d'une augmentation de la puissance réfractive du système. s'agit alors de l'accommodation pour mettre au point sur des objets proches.

D'autres caractéristiques et avantages de l'invention ressortiront de la description d'un de ses modes de réalisation donnés ci-après à titre d'exemples non limitatifs.

Il sera fait référence aux dessins annexés parmi 35 lesquels :

- la figure 1 est une vue en coupe d'un implant conforme à l'invention,
- la figure 2 est une vue extérieure en perspective de la partie optique de l'implant,
- 5 - la figure 3 est une vue en perspective de la pièce annulaire extérieure de l'implant formant tendeur du sac capsulaire,
 - les figures 4 et 5 illustrent en coupe partielle, les deux états de l'implant lors de la vision de près (figure 4) et lors de la vision de loin (figure 5).

L'implant selon l'invention représenté figures 1 à 3 comporte deux pièces. Une première pièce extérieure annulaire 1 dont la section est en forme de gouttière ouverte vers l'intérieur, qui possède une aile antérieure 2 et une aile postérieure 3. L'aile antérieure 2 possède deux pattes 4 et 5, dans le cas de figure diamétralement opposées, qui font saillie à l'intérieur du bord de cette aile et qui sont conformées en crochets à l'intérieur du volume de la gouttière. Ces crochets 4 et 5 20 sont destinés à retenir la partie optique de l'implant. Cette partie optique est formée par une pièce 6 en forme de disque, ici biconvexe, séparée de la pièce annulaire 1. Cette pièce 6 possède deux orifices 7 et 8 traversants dans lesquels peuvent être librement logés les crochets 4 et 5. 25 On notera à ce propos que la forme intérieure des crochets est telle qu'elle empêche pratiquement tout mouvement du disque optique par rapport aux crochets le long de l'axe optique de sorte qu'un déplacement des crochets dont une composante s'étend parallèlement à cet axe entraîne un 30 déplacement correspondant du disque optique. Dans le cas représenté, la forme intérieure des crochets 4 et 6 est anguleuse pour former des butées à la partie du disque extérieure aux orifices 7 et 8 qui est logée à l'intérieur du crochet. On notera que le diamètre extérieur de la pièce 35

6, de l'ordre de sept millimètres, est supérieur au

diamètre du bord des ailes 2 et 3, de sorte que lorsque la pièce 6 est logée à l'intérieur de la gouttière, elle ne peut spontanément s'en échapper. Les diamètres des bords des ailes 2 et 3 ne sont pas égaux, le diamètre le plus grand étant celui du bord de l'aile antérieure 2.

Le fond de la gouttière 1, c'est-à-dire la partie qui relie les deux ailes et qui a le diamètre extérieur maximal (de neuf millimètres et demi à dix millimètres, diamètre qui correspond au diamètre équatorial du sac 10 capsulaire d'un homme d'une trentaine d'années), est d'une épaisseur plus importante que celle qui constitue les ailes 2 et 3. Le choix de cette dimension (9,5-10mm) permet de prendre en compte le fait qu'au moment de l'opération, le patient étant en général âgé de 60 ans au moins, 15 lentille cristallinienne est d'un volume accru par rapport à celui qu'elle avait lorsque le patient était plus jeune. Le remplacement dans le sac capsulaire du matériau cristallinien par l'implant selon l'invention, donc de diamètre équatorial plus petit que celui du sac au moment de l'opération, laisse au sac la possibilité de se rétracter partiellement sur l'anneau. La conséquence de rétraction réside dans une diminution du relâchement des fibres zonulaires que le grossissement du cristallin naturel avait causé. Il s'ensuit que les changements d'état 25 du muscle ciliaire sont mieux transmis à la partie équatoriale du sac capsulaire. En d'autres termes la diminution de ce relâchement permet de transmettre à la capsule une plus grande partie de l'amplitude du déplacement du muscle ciliaire que celle transmissible à la capsule naturelle qui 30 avait grossi.

La mise en place de l'implant selon l'invention à l'intérieur du sac capsulaire consiste à replier sur elle-même la pièce annulaire 1 de manière à en réduire l'encombrement en section afin de pouvoir l'introduire dans le sac capsulaire par l'intermédiaire d'une incision

35

cornéenne de faible lonqueur. Une fois la pièce 1 mise en place dans le sac du fait de son élasticité propre, celleci forme un élément de maintien de ce sac pour ajuster son diamètre équatorial à une valeur proche de celle que le 5 cristallin avait lorsque le patient était âgé d'une trentaine d'années. Fixer le diamètre équatorial du sac capsulaire à cette dimension, c'est-à-dire limiter rétraction partielle, c'est le placer dans une situation optimale pour bénéficier de l'amplitude maximale des 10 mouvements du muscle ciliaire transmis à ce sac par la zonule, comme expliqué ci-dessus. Pour obtenir ce résultat, on aura choisi une dimension de pièce 1 adéquate, à partir d'une mesure préopératoire du diamètre équatorial cristallin (par une méthode connue, par exemple par 15 ultrason) à laquelle on aura soustrait entre 0,5 et 0,75 mm pour déterminer le diamètre extérieur de la pièce 1 qui convient.

On met ensuite en place la partie optique 6 en l'introduisant dans la gouttière 1 et, au moyen d'un outil spécial, en forçant les crochets 4 et 5 à l'intérieur des orifices 7 et 8.

Bien entendu les parties 1 et 6 de l'implant sont dans un matériau souple et pliable connu en lui-même tel qu'un polymère acrylique ou à base de silicone. On aura 25 remarqué aux figures 1 et 3 que le dos 4a et 5a des crochets 4 et 5 est dans le prolongement de la surface extérieure de l'aile antérieure 2. Les crochets peuvent donc ainsi épouser parfaitement ce qui reste de la paroi antérieure du sac capsulaire. On aura également remarqué 30 que la zone de liaison des crochets à l'aile 2 s'effectue par une partie de faible épaisseur qui constitue une sorte de pseudo-articulation des crochets par rapport à la pièceannulaire 1. Cette zone repérée 10 à la figure 1 et 11 aux figures 4 et 5. Dans le mode de réalisation des figures 4 et 5, on a illustré l'effet de levier amplificateur de

35

mouvement joué par les crochets 4 et 5 lors d'une tension des fibres zonulaires 13.

La figure 4 est une vue en coupe partielle de l'implant selon l'invention mis en place dans le sac 5 capsulaire 12, à l'étant d'accommodation c'est-à-dire dans sa forme prise sous l'effet de la rétraction élastique de la zone équatoriale du sac capsulaire du fait que la zonule 13 est relâchée (muscle ciliaire contracté).

A la figure 5 on a représenté l'état pris par l'implant de l'invention lorsque le muscle ciliaire est relâché, c'est-à-dire que la zonule 13 est tendue, cette tension ayant pour effet d'aplatir la zone équatoriale du sac capsulaire 12, cet aplatissement provoquant un pivotement vers l'intérieur de la gouttière des crochets 4 et 5 autour de la zone de grande flexibilité 11. On comprend que dans cet état la partie optique 6 de l'implant se trouve repoussée vers l'arrière de l'oeil, ce qui affecte la puissance globale du système dans le sens d'une diminution, ce qui est le cas lors d'une accommodation à l'infini.

L'invention peut prendre d'autres formes de réalisation. Par exemple, on peut mettre en place plus de deux crochets (trois ou quatre) de suspension de la pièce optique dans la pièce annulaire.

REVENDICATIONS

- 1. Implant intraoculaire accommodatif comprenant une partie optique centrale et une partie périphérique de maintien de celle-ci dans le sac capsulaire et de transmis-5 sion à la partie optique des forces et déplacements de la partie équatoriale du sac capsulaire résultant des changements d'état du muscle ciliaire, caractérisé en ce que la partie périphérique est une pièce (1) annulaire en matériau élastiquement déformable en forme de gouttière ouverte vers 10 l'intérieur avec une aile postérieure (3) au contact de la paroi postérieure et une aile antérieure (2) au contact de la partie périphérique restante de la paroi antérieure du sac capsulaire, en ce que l'aile antérieure (2) comporte au moins deux pattes (4 et 5) en forme de crochets en saillie 15 radiale du bord de l'aile et en ce que la partie optique est quant à elle une lentille (6) en forme de disque comportant au moins deux ouvertures (7 et 8) dans sa zone périphérique au moyen desquelles elle est maintenue par les crochets (4, 5) de la pièce annulaire (1).
- 2. Implant intraoculaire selon la revendication l, caractérisé en ce que la zone de raccordement (11) de chaque crochet (4, 5) à l'aile antérieure est de flexibilité augmentée.
- 3. Implant selon la revendication 1 ou la reven-25 dication 2, caractérisé en ce que le dos (4a, 5a) de chaque crochet (4, 5) est situé dans le prolongement de la face externe de l'aile antérieure (2).
- Implant selon l'une des revendications précédentes, caractérisé en ce que chaque crochet (4, 5) coopère
 avec la lentille sans jeu dans la direction de l'axe optique de l'implant.
 - 5. Implant selon l'une des revendications précédentes, caractérisé en ce que la partie de liaison (9) des deux ailes de la pièce annulaire est d'épaisseur supérieure à la plus grande épaisseur de chacune des ailes.

6. Implant selon l'une des revendications précédentes, caractérisé en ce que le diamètre de la lentille (6) est inférieur au diamètre équatorial interne de la pièce annulaire (1) et est supérieur au diamètre du bord de chaque aile (2, 3).

REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL

RAPPORT DE RECHERCHE PRELIMINAIRE

Nº d'enregistrement national

de la PROPRIETE INDUSTRIELLE

établi sur la base des demières revendications déposées avant le commencement de la recherche FA 563655 FR 9812945

atégorie	Citation du document avec indication, en cas de besoln, des parties pertinentes	de	oncemées s la demande (aminée	
A	EP 0 337 390 A (CESKOSLOVENKA AK 18 octobre 1989 * abrégé *	ADEMIE) 1	•	
4	EP 0 732 090 A (D.W. LANGERMAN) 18 septembre 1996 * abrégé *	1		
١	FR 2 681 524 A (M.N.A.O.) 26 mar * colonne 5, ligne 12 - ligne 31 *			
4	US 4 892 543 A (D.F. TURLEY) 9 janvier 1990 * colonne 3, ligne 43 - ligne 57 2,3 *	; figures		
\	US 5 814 103 A (I. LIPSHITZ ET A 29 septembre 1998 * colonne 4, ligne 30 - ligne 37			DOMAINES TECHNIQUES RECHERCHES (Int.CL.6)
1	US 5 800 533 A (H.C. EGGLESTON E 1 septembre 1998 * abrégé *	T AL.)		A61F
\	US 5 026 396 A (J.J. DARIN) 25 j * abrégé; figures 2,5 *	uin 1991 1		
	US 5 674 282 A (J.S. CUMMING) 7 octobre 1997 * colonne 9, ligne 33 - ligne 56 2,3 *	; figures		
	Date d'achévement 7 juin		Wol	Examinateur F, C
X : parti Y : parti autre A : perti	culièrement perlinent à lut seul culièrement perlinent en combinalson avec un c document de la même catégorie [inent à l'encontre d'au moins une revendication [T: théorie ou principe à E: document de brevet à la date de dépôt et de dépôt ou qu'à une D: cité dans la demand: cité pour d'autres rais	bénéficiant d' qui n'a été pu date postérié e sons	une date antérieure bliéqu'à cette date