

UESTC4004 Digital Communications

Baseband Modulation & Demodulation

Information Representation

- The communication system converts information into electrical/ electromagnetic/optical signals appropriate for the transmission medium.
- Digital systems convert bits (digits, symbols) into signals
 - Computers naturally generate information as characters/bits
 - Analogue signals are converted to bits by sampling and quantizing (A/D conversion)

Digital Communication Transmitter

Structure of Digital Communication Transmitter

Analog to Digital Conversion

Baseband Digital Modulation

Pulse Code Modulation

Figure 2.16 Natural samples, quantized samples, and pulse code modulation. (Reprinted with permission from Taub and Schilling, *Principles of Communications Systems*, McGraw-Hill Book Company, New York, 1971, Fig. 6.5-1, p. 205.)

Coding bits to Waveforms

- The output of the A/D converter is a set of binary bits
- We use pulses to convey a bit of information, e.g.,

- A line coder or baseband binary transmitter transforms a stream of bits into a physical waveform suitable for transmission over a channel
- In baseband systems, binary data can be transmitted using many kinds of pulses

Discussion - What if a different waveform is used?

Compare the two waveforms in terms of Bandwidth and Energy?

Why digital Communications? ... A simple case

Figure 1.1 Pulse degradation and regeneration.

Why Digital Communications?

Easy to regenerate the distorted signal

 Regenerative repeaters along the transmission path can detect a digital signal and retransmit a new, clean (noise free) signal

Two-state (or M-state) signal representation

The input to a digital system is in the form of a sequence of bits (binary or M_ary)

Immunity to distortion and interference

 Digital communication is rugged in the sense that it is more immune to channel noise and distortion

Why Digital Communications?

- Hardware is more flexible
 - Digital hardware implementation is flexible and permits the use of microprocessors, VLSI
- Easier and more efficient to multiplex several digital signals
 - Digital multiplexing techniques are easier to implement than analog techniques
- Encryption and privacy techniques are easier to implement
- However, there are some disadvantages associated with digital communications which
 - Requires reliable "synchronization"
 - Requires A/D conversions at a high rate

Activity

 What feature of Digital Communications do you admire the most and why?

Post your answers on Moodle Forum

https://moodle.gla.ac.uk/mod/forum/discuss.php?d=858857

Digital Signal Nomenclature

Information Source

- Discrete output values e.g., Keyboard
- Analog signal source e.g., output of a microphone

Bits and Byte

- Binary Digit: Fundamental unit of information made up of 2 symbols (0 and 1)
- A group of 8 bits is called byte.

Binary Stream

• A sequence of binary digits, e.g., 10011100101010

Symbol

• A digital message made up of groups of k-bits considered as a unit

Digital Signal Nomenclature

- M ary
 - A digital message constructed with *M* symbols
- Digital Waveform
 - Current or voltage waveform that represents a digital symbol
- Bit Rate
 - Actual rate at which information is transmitted per second
- Baud Rate
 - Refers to the rate at which the signaling elements (symbols) are transmitted, i.e., number of signaling elements per second.
- Bit Error Rate
 - The probability that one of the bits is in error or simply the probability of error

Discussion with examples

- A binary signal is transmitted at 24 Mbits/sec. The same signal is transmitted using 4-level signaling. Calculate the baud rate for 4-level signaling.
- Imagine 10 bits out of 10⁶ received symbols are erroneous. What is the bit error rate if each symbol is made of 6 bits?

Detection of Binary Signal in Gaussian Noise

Detection of Binary Signal in Gaussian Noise

For any binary channel, the transmitted signal over a symbol interval (0,T)
 is:

$$s_i(t) = \begin{cases} s_0(t) & 0 \le t \le T & \text{for a binary } 0 \\ s_1(t) & 0 \le t \le T & \text{for a binary } 1 \end{cases}$$

• The received signal r(t) degraded by noise n(t) and possibly degraded by the impulse response of the channel $h_c(t)$, is

$$r(t) = S_i(t) * h_c(t) + n(t) \quad i = 0,1$$
 (3.1)

Where n(t) is assumed to be zero mean AWGN process

• For ideal distortionless channel where $h_c(t)$ is an impulse function and convolution with $h_c(t)$ produces no degradation, r(t) can be represented as:

$$r(t) = s_i(t) + n(t)$$
 $i = 0,1$ $0 \le t \le T$ (3.2)

んけわら柏noise

Demodulation and Detection

- ■The digital receiver performs two basic functions:
 - □ Demodulation by using matched filter h(t), to recover a waveform to be sampled at t = nT.
 - □ Detection, decision-making process of selecting possible digital symbol

Detection of Binary Signal in Gaussian Noise

- The recovery of signal at the receiver consist of two parts
 - Matched Filter h(t)
 - Reduces the received signal to a single variable z(T)
 - z(T) is called the test statistics
 - Detector (or decision circuit)
 - Compares the z(T) to some threshold level γ_0 , i.e.,

where H_1 and H_0 are the two possible binary hypothesis

Review Questions

- Give some examples of analogue communication systems.
- Why digital communication is more immune to noise than analogue communication?
- Name three features that can be possibly added in digital communication which are not possible to have in analogue communications.
- What are the benefits/disadvantages of using more than 2 waveform levels?