Chapter 1

Exercise 1.12

For polynomial of degree 3, the std of the error for the training set and the validation set are 31,988.52 and 35,587.52, respectively. As For polynomial of degree 4, the std of the error for the training set and the validation set are 21,824.15 and 37,426.63, respectively. As polynomial increases beyond 2, the higher the accuracy for the training set but errors for the validation set increase. Therefore, the above models do not generalize well from the training set to the validation set. see uploaded excel for result

Exercise 1.13

P(Spam) = 0.25, P(Word|Spam) = 0.4, and P(Word) = 0.125 and using Bayes' theorem $P(Spam|Word) = P(Word|Spam)P(Spam) / {P(Word)} = 0.4 * 0.25 / 0.125 = 0.8$ There is an 80% chance that an email containing the word is spam.

Set up for CH2 question

```
In [1]: #2.13
    # Loading packages

import os

import pandas as pd
import numpy as np

# plotting packages
%matplotlib inline
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as clrs

# Kmeans algorithm from scikit-learn
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
```

Load raw data

```
In [2]: # Load raw data
DATA_FOLDER = './'
raw = pd.read_csv(os.path.join(DATA_FOLDER, 'country risk 2019 data.csv'))
# check the raw data
print("Size of the dataset (row, col): ", raw.shape)
print("\nFirst 5 rows\n", raw.head(n=5))
```

```
Size of the dataset (row, col): (121, 6)
First 5 rows
     Country Abbrev Corruption Peace Legal GDP Growth
0
    Albania
                           35 1.821 4.546
                                                  2.983
                AL
                DΖ
1
    Algeria
                           35 2.219 4.435
                                                  2.553
  Argentina
                AR
                           45 1.989 5.087
                                                 -3.061
                           42 2.294 4.812
                                                 6.000
3
    Armenia
                AM
4 Australia
                ΑU
                           77 1.419 8.363
                                                 1.713
```

Simple exploratory analysis

Print summary statistics

```
# print summary statistics
In [3]:
        print("\nSummary statistics\n", raw.describe())
        print("\nCorrelation matrix\n", raw.corr())
        Summary statistics
                Corruption
                                 Peace
                                             Legal GDP Growth
        count 121.000000 121.000000 121.000000 121.000000
        mean
                46.842975
                             2.001017
                                         5.752529
                                                     2.657529
        std
                18.702499
                             0.461485
                                         1.373932
                                                     2.563741
        min
                15,000000
                             1.072000
                                         2.671000
                                                    -9,459000
        25%
                33.000000
                             1.699000
                                         4.785000
                                                    1.249000
        50%
                41.000000
                             1.939000
                                         5.455000
                                                     2.600000
        75%
                60.000000
                             2.294000
                                         6.488000
                                                     4.000000
                87.000000
                             3.369000
                                         8.712000
                                                     7.800000
        max
        Correlation matrix
                     Corruption
                                              Legal GDP Growth
                                    Peace
        Corruption
                      1.000000 -0.705002 0.938512
                                                     -0.123545
                     -0.705002 1.000000 -0.662233
        Peace
                                                     -0.004428
        Legal
                      0.938512 -0.662233 1.000000
                                                     -0.150369
        GDP Growth -0.123545 -0.004428 -0.150369
                                                      1.000000
```

Plot histogram

```
In [4]: # plot histograms
plt.figure(1)
raw['Corruption'].plot(kind = 'hist', title = 'Corruption', alpha = 0.5)

plt.figure(2)
raw['Peace'].plot(kind = 'hist', title = 'Peace', alpha = 0.5)

plt.figure(3)
raw['Legal'].plot(kind = 'hist', title = 'Legal', alpha = 0.5)

plt.figure(4)
raw['GDP Growth'].plot(kind = 'hist', title = 'GDP Growth', alpha = 0.5)

plt.show()
```


K means cluster

```
In [5]:
       #3 feature
        X_3 = raw[['Peace', 'Legal', 'GDP Growth']]
        X_3 = (X_3 - X_3.mean()) / X_3.std()
        print(X_3.head(5))
                       Legal GDP Growth
              Peace
        0 -0.390081 -0.878158
                              0.126952
        1 0.472352 -0.958948
                              -0.040772
        2 -0.026039 -0.484397
                              -2.230541
        3 0.634871 -0.684553
                                1.303747
        4 -1.261182 1.900001
                              -0.368418
```

Perform elbow method

```
In [6]:
        # https://stackoverflow.com/questions/41540751/sklearn-kmeans-equivalent-of-elbow-meth
        Ks = range(1, 10)
         inertia = [KMeans(i).fit(X_3).inertia_ for i in Ks]
        fig = plt.figure()
         plt.plot(Ks, inertia, '-bo')
         plt.xlabel('Number of clusters')
        plt.ylabel('Inertia (within-cluster sum of squares)')
         plt.show()
```

C:\Users\Junho\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarni ng: KMeans is known to have a memory leak on Windows with MKL, when there are less ch unks than available threads. You can avoid it by setting the environment variable OMP _NUM_THREADS=1.

warnings.warn(

Exercise 2.13 testing n_init

```
k = 3
In [7]:
        #2.13 testing n init with different number
        #n init=2
        kmeans2 = KMeans(n_clusters=k,n_init=2, random_state=1)
        kmeans2.fit(X_3)
        y2=kmeans2.labels
        print("\n inertia for n_init=2 :", kmeans2.inertia_)
        print(" cluster centers: \n", kmeans2.cluster_centers_)
        #n init=10
        kmeans = KMeans(n_clusters=k, random_state=1)
        kmeans.fit(X 3)
        y = kmeans.labels_
        print("\n inertia for n_init=10:", kmeans.inertia_)
        print("cluster centers: ", kmeans.cluster_centers_)
        print("cluster labels 10: \n", y)
        #n init=20
        kmeans20 = KMeans(n_clusters=k,n_init=20, random_state=1)
        kmeans20.fit(X_3)
        y20=kmeans20.labels
        print("\n inertia for n_init=20 ", kmeans20.inertia_)
        print("cluster centers: \n", kmeans20.cluster_centers_)
        #n_init=30
        kmeans30 = KMeans(n clusters=k,n init=30, random state=1)
```

```
kmeans30.fit(X 3)
y30=kmeans30.labels
print("\n inertia for n_init=30:", kmeans30.inertia_)
print("cluster centers: \n", kmeans30.cluster_centers_)
#n init=50
kmeans50 = KMeans(n_clusters=k,n_init=50, random_state=1)
kmeans50.fit(X_3)
y50=kmeans50.labels
print("\n inertia for n_init=50:", kmeans50.inertia_)
print(" cluster centers: \n", kmeans50.cluster_centers_)
inertia for n init=2 : 169.24242908631018
cluster centers:
[[ 0.53110654 -0.61456608  0.34774502]
[-0.85103491 0.99692377 -0.22524313]
[ 0.70529573 -0.95894794 -3.43893096]]
inertia for n_init=10: 161.1333871005255
cluster centers: [[ 1.22506036 -0.83385901 -1.07842464]
[ 0.23006626 -0.54045468  0.65506397]]
cluster labels 10:
[2\ 2\ 0\ 2\ 1\ 1\ 2\ 2\ 2\ 1\ 2\ 2\ 1\ 0\ 2\ 0\ 2\ 1\ 0\ 1\ 2\ 2\ 1\ 1\ 0\ 1\ 2\ 0\ 2\ 2\ 1\ 2\ 1\ 1
\begin{smallmatrix} 2 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 2 & 0 & 2 & 2 & 1 & 1 & 1 & 1 & 0 & 2 & 0 & 2 & 2 & 2 & 1 & 1 & 1 & 0 & 1 & 2 & 1 & 1 & 1 & 2 & 2 & 2 & 0 & 2 & 0 \\ \end{smallmatrix}
2 0 1 1 1 1 2 0 2 0]
inertia for n_init=20 161.1333871005255
cluster centers:
[[ 1.22506036 -0.83385901 -1.07842464]
[ 0.23006626 -0.54045468  0.65506397]]
inertia for n init=30: 161.1333871005255
cluster centers:
[[ 1.22506036 -0.83385901 -1.07842464]
[ 0.23006626 -0.54045468  0.65506397]]
inertia for n init=50: 161.1333871005255
cluster centers:
[[ 1.22506036 -0.83385901 -1.07842464]
[ 0.23006626 -0.54045468  0.65506397]]
```

Visualize the result (3D plot)

```
In [8]: # set up the color
norm = clrs.Normalize(vmin=0.,vmax=y.max() + 0.8)
cmap = cm.viridis

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

ax.scatter(X_3.iloc[:,0], X_3.iloc[:,1], X_3.iloc[:,2], c=cmap(norm(y)), marker='o')
centers = kmeans.cluster_centers_
```

```
ax.scatter(centers[:, 0], centers[:, 1], c='black', s=100, alpha=0.5)

ax.set_xlabel('Peace')
ax.set_ylabel('Legal')
ax.set_zlabel('GDP Growth')

plt.show()
```


Visualize the result (3 2D plots)

Visualize the result (3 2D plots)

```
In [10]:
         %matplotlib inline
         import matplotlib.pyplot as plt
         figs = [(0, 1), (0, 2), (1, 2)]
         labels = ['Peace', 'Legal', 'GDP Growth']
         colors = ['blue', 'green', 'red']
         for i in range(3):
             fig = plt.figure(i, figsize=(8, 8))
             x_1 = figs[i][0]
             x_2 = figs[i][1]
             plt.scatter(X_3.iloc[:, x_1], X_3.iloc[:, x_2], c=y, s=0, alpha=0)
             plt.scatter(centers[:, x_1], centers[:, x_2], c='black', s=200, alpha=0.5)
             for j in range(X_3.shape[0]):
                  plt.text(X_3.iloc[j, x_1], X_3.iloc[j, x_2], raw['Abbrev'].iloc[j],
                           color=colors[y[j]], weight='semibold', horizontalalignment = 'center'
             plt.xlabel(labels[x_1])
             plt.ylabel(labels[x_2])
         plt.show()
```


List the result

```
In [11]:
    print('3 features')
    result = pd.DataFrame({'Country':raw['Country'], 'Abbrev':raw['Abbrev'], 'Label':y})
    risk = []
    for label in result['Label']:
        if label == 0: risk.append('High')
        if label == 1: risk.append('Low')
        if label == 2: risk.append('Moderate')
        result.insert(3, 'risk for 3 Features', risk)
    with pd.option_context('display.max_rows', None, 'display.max_columns', 4):
        print(result.sort_values('Label'))
    result_3Features = result
```

3 features

3 fe	atures						
	Country	Abbrev	Label	risk	for	3	Features
60	Lebanon	LB	0				High
30	Ecuador	EC	0				High
48	Iran	IR	0				High
61	Liberia	LR	0				High
69	Mexico	MX	0				High
77	Nicaragua	NI	0				High
78	Nigeria	NG	0				High
81	Pakistan	PK	0				High
83	Paraguay	PY	0				High
90	Russia	RU	0				High
92	Saudi Arabia	SA	0				High
99	South Africa	ZA	0				High
108	Trinidad and Tobago	TT	0				High
110	Turkey	TR	0				High
112	Ukraine	UA	0				High
118	Yemen	YE	0				High
27	Democratic Republic of Congo	CD	0				High
19	Chad	TD	0				High
120	Zimbabwe	ZW	0				High
14	Brazil	BR	0				High
16		BI					
	Burundi		0				High
2	Argentina	AR	0				High
51	Italy	IT	1				Low
103	Switzerland	CH	1				Low
49	Ireland	IE	1				Low
102	Sweden	SE	1				Low
86	Poland	PL	1				Low
52	Jamaica	MC	1				Low
53	Japan	JP	1				Low
54	Jordan	JO	1				Low
100	Spain	ES	1				Low
57	Korea (South)	KI	1				Low
58	Kuwait	KW	1				Low
59	Latvia	LV	1				Low
5	Austria	AT	1				Low
13	Botswana	BW	1				Low
62	Lithuania	LT	1				Low
98	Slovenia	SI	1				Low
97	Slovakia	SK	1				Low
65	Malaysia	MY	1				Low
96	Singapore	SG	1				Low
68	Mauritius	MU	1				Low
104	Taiwan	SY	1				Low
45	Iceland	IS	1				Low
44	Hungary	HU	1				Low
75	Netherlands	NL	1				Low
20	Chile	CL	1				Low
87	Portugal	PT	1				Low
9	Belgium	BE	1				Low
23	Costa Rica	CR	1				Low
116	Uruguay	UY	1				Low
25	Cyprus	CY	1				Low
26	Czech Republic	CZ	1				Low
28	Denmark	DK	1				Low
115	United States	US	1				Low
114	United States	GB	1				Low
114	Canada	CA	1				Low
	United Arab Emirates	AE	1				
113	OUTCEN MILAD EMILIATES	AE	Т				Low

	Country	KISK_ZU I9_r	(iiieaiis_ies	uits_vvorksriop_1
80	Oman	OM	1	Low
35	Finland	FI	1	Low
36	France	FR	1	Low
79	Norway	NO	1	Low
88	Qatar	QA	1	Low
39	Germany	DE	1	Low
4	Australia	AU	1	Low
89	Romania	RO	1	Low
76	New Zealand	NZ	1	Low
33	Estonia	EE	1	Low
7	Bahrain	BH	2	Moderate
91	Rwanda	RW	2	Moderate
6	Azerbaijan	AZ	2	Moderate
17	Cameroon	CM	2	Moderate
94	Serbia	RS SL	2 2	Moderate
95 101	Sierra Leone Sri Lanka	LK	2	Moderate Moderate
105	Tanzania	TZ	2	Moderate
	Thailand	TH		Moderate
106 107	The FYR of Macedonia	MK	2 2	Moderate
107	Tunisia	TN	2	Moderate
3	Armenia	AM	2	Moderate
111	Uganda	UG	2	Moderate
117	Vietnam	VI	2	Moderate
1	Algeria	DZ	2	Moderate
93	Senegal	SN	2	Moderate
85	Philippines	PH	2	Moderate
12	Bosnia and Herzegovina	BA	2	Moderate
8	Bangladesh	BD	2	Moderate
43	Honduras	HN	2	Moderate
42	Guatemala	GT	2	Moderate
41	Greece	GR	2	Moderate
40	Ghana	GH	2	Moderate
38	Georgia	GE	2	Moderate
37	Gabon	GA	2	Moderate
46	India	IN	2	Moderate
34	Ethiopia	ET	2	Moderate
31	Egypt	EG	2	Moderate
15	Bulgaria	BG	2	Moderate
29	Dominican Republic	DO	2	Moderate
24	Croatia	HR	2	Moderate
22	Colombia	CO	2	Moderate
21	China	CN	2	Moderate
32	El Salvador	SV	2	Moderate
84	Peru	PE	2	Moderate
47	Indonesia	ID	2	Moderate
55	Kazakhstan	KZ	2	Moderate
82	Panama	PA	2	Moderate
10	Benin	ВЈ	2	Moderate
11	Bolivia	ВО	2	Moderate
74	Nepal	NP	2	Moderate
73 72	Mozambique	MZ	2	Moderate
72 50	Morocco	MA	2	Moderate
50 71	Israel	IL ME	2	Moderate
71 67	Montenegro	ME MB	2 2	Moderate
67 66	Mauritania Mali	MR ML	2	Moderate Moderate
64	Malawi	ML MW	2	Moderate
63	Madagascar	MG	2	Moderate
119	Zambia	ZM	2	Moderate
119	ZamDIa	4۱۰۱	~	nouerate

Kenya KE 2 Moderate
 Moldova FM 2 Moderate
 Albania AL 2 Moderate

```
#countries
In [12]:
         high = 0
         moderate = 0
          low = 0
          for label in result['Label']:
              if label == 0:
                  high += 1
              if label == 1:
                  low +=1
              if label == 2:
                  moderate +=1
          print('\nnumber of high risk countries when n ini =10:',high)
          print('number of moderate risk countries when n ini =10:',moderate)
          print('number of low risk countries when n_ini =10:',low)
          result2 = pd.DataFrame({'Country':raw['Country'], 'Abbrev':raw['Abbrev'], 'Label':y2})
          #countries
          high2 = 0
          moderate2 = 0
          low2 = 0
          for label in result2['Label']:
              if label == 0:
                  high2 +=1
              if label == 1:
                  low2 +=1
              if label == 2:
                  moderate2 +=1
          print('\nnumber of high risk countries when n ini = 2:',high2)
          print('number of moderate risk countries when n ini = 2:',moderate2)
          print('number of low risk countries when n ini = 2:',low2)
          result20 = pd.DataFrame({'Country':raw['Country'], 'Abbrev':raw['Abbrev'], 'Label':y2@
          #countries
          high20 = 0
          moderate20 = 0
          low20 = 0
          for label in result20['Label']:
              if label == 0:
                  high20 +=1
              if label == 1:
                  low20 +=1
              if label == 2:
                  moderate20 +=1
          print('\nnumber of high risk countries when n_ini = 20:',high20)
          print('number of moderate risk countries when n_ini = 20:',moderate20)
          print('number of low risk countries when n ini = 20:',low20)
```

```
number of high risk countries when n ini =10: 22
         number of moderate risk countries when n ini =10: 53
         number of low risk countries when n ini =10: 46
         number of high risk countries when n ini = 2: 70
         number of moderate risk countries when n ini = 2: 4
         number of low risk countries when n ini = 2: 47
         number of high risk countries when n ini = 20: 22
         number of moderate risk countries when n ini = 20: 53
         number of low risk countries when n ini = 20: 46
In [13]: # Silhouette Analysis
          range_n_clusters=[2,3,4,5,6,7,8,9,10]
          for n clusters in range n clusters:
             clusterer=KMeans(n clusters=n clusters, random state=1)
             cluster labels=clusterer.fit predict(X 3)
             silhouette_avg=silhouette_score(X_3,cluster_labels)
             print("For n_clusters=", n_clusters,
                    "The average silhouette score is :", silhouette avg)
         For n clusters= 2 The average silhouette score is: 0.3509139523852161
         For n clusters= 3 The average silhouette score is: 0.3558522334350506
         For n clusters= 4 The average silhouette score is : 0.3372449209416129
         For n_clusters= 5 The average silhouette_score is: 0.34438420977393375
         For n_clusters= 6 The average silhouette_score is: 0.34875382122984605
         For n clusters= 7 The average silhouette score is : 0.3603542108728006
         For n clusters= 8 The average silhouette score is: 0.3394917368960437
         For n clusters= 9 The average silhouette score is : 0.3152647236003266
         For n_clusters= 10 The average silhouette_score is: 0.3090796538425007
```

Answer for Exercise 2.13

With the default n_init= 10, inertia is 161.13 with the cluster centers located at [[1.22 -0.83 -1.07],[-0.85 1.02 -0.23],[0.23 -0.54 0.65]] , with 70 countries in cluster 0(high), 4 countries in cluster 1(low), and 47 countries in cluster 2(moderate) respectively When we lower the n-init =2, the inertia increased to 169.24, which meant the sum of the square increased, worsening. with the cluster centers located at [[0.53 -0.61 0.34],[-0.85 0.99 -0.22],[0.70 -0.95 -3.43]] with 22 countries in cluster 0(high), 53 countries in cluster 1(low), and 46 countries in cluster 2(moderate) respectively If we increase the n_init to 20,30,50 or even higher the inertia and the locations of the cluster center will remain the same as the n_init = 10.

Exercise 2.14 A) 4 features

```
In [14]: #4 feature
X_4 = raw[['Corruption','Peace', 'Legal', 'GDP Growth']]
```

```
X 4 = (X 4 - X 4.mean()) / X 4.std()
        print(X 4.head(5))
        print(' ')
          Corruption
                       Peace
                                Legal GDP Growth
           -0.633230 -0.390081 -0.878158
                                      0.126952
           -0.633230 0.472352 -0.958948
                                      -0.040772
        1
        2
           -0.098542 -0.026039 -0.484397
                                      -2.230541
        3 -0.258948 0.634871 -0.684553
                                      1.303747
            1.612460 -1.261182 1.900001
                                      -0.368418
In [15]: #4 feature
        kmeans_4 = KMeans(n_clusters=k,n_init=10, random_state=1)
        kmeans 4.fit(X 4)
        y 4 = kmeans 4.labels
        print("inertia for 4 features ", kmeans_4.inertia_)
        print("cluster centers: ", kmeans 4.cluster centers )
        print("cluster labels: ", y 4)
        inertia for 4 features 194.4046655009297
        cluster centers: [[ 1.17949284 -0.89877793 1.12417837 -0.26007806]
         [-0.49863571 0.17066495 -0.47838646 0.5929059 ]
         [-0.88356071 1.22506036 -0.83385901 -1.07842464]]
        100
         1 2 0 0 0 0 1 2 1 2]
        print('4 features')
In [16]:
        result = pd.DataFrame({'Country':raw['Country'], 'Abbrev':raw['Abbrev'], 'Label':y_4})
        #countries
        high4 = 0
        moderate4 = 0
        low4 = 0
        for label in result['Label']:
           if label == 0:
               low4 +=1
           if label == 1:
               moderate4 +=1
           if label == 2:
               high4 += 1
        print('number of high risk countries:',high4)
        print('number of moderate risk countries:', moderate4)
        print('number of low risk countries:',low4)
        print('\n')
        risk = []
        for label in result['Label']:
           if label == 0: risk.append('Low')
           if label == 1: risk.append('Moderate')
           if label == 2: risk.append('High')
        result.insert(3, 'risk for 4 Features', risk)
        with pd.option_context('display.max_rows', None, 'display.max_columns', 4):
            print(result.sort values('Label'))
        result 4Features = result
```

4 features

number of high risk countries: 22 number of moderate risk countries: 58 number of low risk countries: 41

	Country	Abbrev	Label	risk	for	4	Features
51	Italy	IT	0				Low
33	Estonia	EE	0				Low
35	Finland	FI	0				Low
36	France	FR	0				Low
39	Germany	DE	0				Low
45	Iceland	IS	0				Low
49	Ireland	IE	0				Low
53	Japan	JP	0				Low
57	Korea (South)	KI	0				Low
59	Latvia	LV	0				Low
62	Lithuania	LT	0				Low
65	Malaysia	MY	0				Low
68	Mauritius	MU	0				Low
75	Netherlands	NL	0				Low
76	New Zealand	NZ	0				Low
79	Norway	NO	0				Low
80	Oman	OM	0				Low
86	Poland	PL	0				Low
87	Portugal	PT	0				Low
88	Qatar	QA	0				Low
104	Taiwan	SY	0				Low
96	Singapore	SG	0				Low
97	Slovakia	SK	0				Low
98	Slovenia	SI	0				Low
103	Switzerland	CH	0				Low
100	Spain	ES	0				Low
113	United Arab Emirates	AE	0				Low
28	Denmark	DK	0				Low
102	Sweden	SE	0				Low
26	Czech Republic	CZ	0				Low
114	United Kingdom	GB	0				Low
115	United States	US	0				Low
25	Cyprus	CY	0				Low
4	Australia	AU	0				Low
5	Austria	AT	0				Low
23	Costa Rica	CR	0				Low
116	Uruguay	UY	0				Low
20	Chile	CL	0				Low
9	Belgium	BE	0				Low
13	Botswana	BW	0				Low
18	Canada	CA	0				Low
29	Dominican Republic	DO	1				Moderate
10	Benin	ВЈ	1				Moderate
11	Bolivia	ВО	1				Moderate
73	Mozambique	MZ	1				Moderate
12	Bosnia and Herzegovina	BA	1				Moderate
74	Nepal	NP	1				Moderate
72	Morocco	MA	1				Moderate
71	Montenegro	ME	1				Moderate
109	Tunisia	TN	1				Moderate
107	The FYR of Macedonia	MK	1				Moderate
84	Peru	PE	1				Moderate
106	Thailand	TH	1				Moderate

	Countr	yRisk_201	9_kmeans	_results_Workshop_1
70	Moldova	FM	1	Moderate
85	Philippines	PH	1	Moderate
8	Bangladesh	BD	1	Moderate
7	Bahrain	BH	1	Moderate
89	Romania	RO	1	Moderate
105	Tanzania	TZ	1	Moderate
91	Rwanda	RW	1	Moderate
6	Azerbaijan	AZ	1	Moderate
93	Senegal	SN	1	Moderate
94	Serbia	RS	1	Moderate
95	Sierra Leone	SL	1	Moderate
3	Armenia	AM	1	Moderate
1	Algeria	DZ	1	Moderate
82	Panama	PA	1	Moderate
117	Vietnam	VI	1	Moderate
15	Bulgaria	BG	1	Moderate
47	Indonesia	ID	1	Moderate
31	Egypt	EG	1	Moderate
			1	
32	El Salvador	SV		Moderate
34	Ethiopia	ET	1	Moderate
24	Croatia	HR	1	Moderate
37	Gabon	GA	1	Moderate
38	Georgia	GE	1	Moderate
22	Colombia	CO	1	Moderate
40	Ghana	GH	1	Moderate
41	Greece	GR	1	Moderate
42	Guatemala	GT	1	Moderate
43	Honduras	HN	1	Moderate
44	Hungary	HU	1	Moderate
21	China	CN	1	Moderate
46	India	IN	1	Moderate
67	Mauritania	MR	1	Moderate
0	Albania	AL	1	Moderate
50	Israel	IL	1	Moderate
66	Mali	ML	1	Moderate
64	Malawi	MW	1	Moderate
63	Madagascar	MG	1	Moderate
111	Uganda	UG	1	Moderate
119	Zambia	ZM	1	Moderate
58	Kuwait	KW	1	Moderate
17	Cameroon	CM	1	Moderate
55	Kazakhstan	KZ	1	Moderate
54	Jordan	JO	1	Moderate
52	Jamaica	JM	1	Moderate
101	Sri Lanka	LK	1	Moderate
56	Kenya	KE	1	Moderate
112	Ukraine	UA	2	High
108	Trinidad and Tobago	TT	2	High
118	Yemen	YE	2	High
110	Turkey	TR	2	_
				High
60	Lebanon	LB	2	High
92	Saudi Arabia	SA	2	High
2	Argentina	AR	2	High
14	Brazil	BR	2	High
16	Burundi	BI	2	High
19	Chad	TD	2	High
27	Democratic Republic of Congo	CD	2	High
30	Ecuador	EC	2	High
99	South Africa	ZA	2	High
48	Iran	IR	2	High
. •	11 011		_	8.,

```
69
                             Mexico
                                         MX
                                                  2
                                                                     High
77
                                                  2
                          Nicaragua
                                         NΙ
                                                                     High
78
                            Nigeria
                                         NG
                                                  2
                                                                     High
                                         PΚ
                                                  2
81
                           Pakistan
                                                                     High
                                         PY
                                                  2
83
                           Paraguay
                                                                     High
                                                  2
90
                             Russia
                                         RU
                                                                     High
61
                            Liberia
                                         LR
                                                  2
                                                                     High
120
                           Zimbabwe
                                         ZW
                                                                     High
```

```
In [17]: for i in range(len(result_3Features)):
    if result_3Features.iloc[i]['risk for 3 Features'] != result_4Features.iloc[i]['risk changed from ',result_3Features']
Hungary risk changed from Low to Moderate
```

```
Hungary risk changed from Low to Moderate Jamaica risk changed from Low to Moderate Jordan risk changed from Low to Moderate Kuwait risk changed from Low to Moderate Romania risk changed from Low to Moderate
```

Answer for 2.14 A)

when we compare the high-risk cluster between the four features and three features, we can see that there is no difference; all the high-risk countries remain the same (22 countries); this is because the Corruption and Legal risk index are highly correlated(0.938512) according to the correlation matrix. Hence adding corruption did not affect the number or members of the high-risk countries. But it does have some effects on the lower-risk countries. I have observed five additional countries that have moved from low to moderated risk: Hungary, Jamaica, Kuwait and Romania. As a result, moderate-risk countries have increased from 53 to 58, while low-risk countries have decreased from 46 to 41.

Exercise 2.14 B)

```
In [18]: from sklearn.cluster import AgglomerativeClustering
    data=X_3

# ward:minimizes the variance of the distances of all the observations of the two sets
    model_ward = AgglomerativeClustering(n_clusters=3, linkage='ward')
    clusters_ward = model_ward.fit_predict(data)
    cluster_centers_ward = []
    for i in range(model_ward.n_clusters):
        cluster_points_ward = data[clusters_ward==i]
        cluster_centers_ward.append(np.mean(cluster_points_ward, axis=0))
    agg_clustering_ward = AgglomerativeClustering(n_clusters=3, linkage='ward')
    agg_clustering_ward.fit(X_3)
    cluster_labels_ward = agg_clustering_ward.labels_
    print('Ward Method:\n','cluster_centers: \n',cluster_centers_ward)
```

```
print('cluster labels:')
print(cluster labels ward,'\n')
# complete: maximum distance between all the observations of the two sets.
model complete = AgglomerativeClustering(n clusters=3, linkage='complete')
clusters complete = model complete.fit predict(data)
cluster centers complete = []
for i in range(model complete.n clusters):
    cluster points complete = data[clusters complete==i]
    cluster_centers_complete.append(np.mean(cluster points complete, axis=0))
agg clustering complete = AgglomerativeClustering(n clusters=3, linkage='complete')
agg_clustering_complete.fit(X_3)
cluster labels complete = agg clustering complete.labels
print('\n Complete Method:\n','cluster centers: \n',cluster centers complete)
print('cluster labels:')
print(cluster_labels_complete,'\n')
# average: average distance between all the observations of the two sets.
model average = AgglomerativeClustering(n clusters=3, linkage='average')
clusters average = model average.fit predict(data)
cluster centers average = []
for i in range(model average.n clusters):
   cluster points average = data[clusters average==i]
   cluster_centers_average.append(np.mean(cluster_points_average, axis=0))
agg clustering average = AgglomerativeClustering(n clusters=3, linkage='average')
agg clustering average.fit(X 3)
cluster labels average = agg clustering average.labels
print('\n Average Method:\n','cluster centers: \n',cluster centers average)
print('cluster labels:')
print(cluster_labels_average,'\n')
# single: minimum distance between all the observations of the two sets.
model single = AgglomerativeClustering(n clusters=3, linkage='single')
clusters single = model single.fit predict(data)
cluster centers single = []
for i in range(model single.n clusters):
    cluster points single = data[clusters single==i]
    cluster centers single.append(np.mean(cluster points single, axis=0))
agg clustering single = AgglomerativeClustering(n clusters=3, linkage='single')
agg clustering single.fit(X 3)
cluster_labels_single = agg_clustering_single.labels_
print('\n Single Method:\n','cluster centers: \n',cluster centers single)
print('cluster labels:')
```

```
Ward Method:
cluster centers:
[Peace
         0.135708
Legal
       -0.361024
GDP Growth
       0.321242
dtype: float64, Peace
                -1.015364
Legal
       1.246616
GDP Growth
       -0.240331
dtype: float64, Peace
                1.758263
Legal
       -1.145015
GDP Growth
       -1.091385
dtype: float64]
cluster labels:
0 2 1 1 0 0 0 2 0 2
Complete Method:
cluster centers:
[Peace
        -0.478015
Legal
       0.408516
GDP Growth
       -0.134457
dtype: float64, Peace
                0.949074
Legal
       -1.117131
GDP Growth
       -3.841728
dtype: float64, Peace
                0.969513
       -0.803741
Legal
GDP Growth
       0.605844
dtype: float64]
cluster labels:
2 2 0 0 0 0 2 2 0 1]
Average Method:
cluster centers:
[Peace
        -0.231978
Legal
       0.155798
GDP Growth
       0.165188
dtype: float64, Peace
                0.705296
Legal
       -0.958948
GDP Growth
       -3.438931
dtype: float64, Peace
                1.978951
Legal
       -1.152619
GDP Growth
       -0.341292
dtype: float64]
cluster labels:
0200000201]
Single Method:
cluster centers:
```

[Peace

```
Legal
                      -1.117131
         GDP Growth
                      -3.841728
         dtype: float64, Peace
                                        1.228606
         Legal
                       1.411257
         GDP Growth
                       0.032558
         dtype: float64, Peace
                                       -0.045728
         Legal
                       0.004559
         GDP Growth
                       0.098794
         dtype: float64]
         cluster labels:
         # high risk cluster for ward = 2
In [19]:
         print('comparison between ward and kmean')
         for i in range(len(result 3Features)):
              raw label = result 3Features.iloc[i]['Label']
             ward label = agg clustering ward.labels [i]
             if raw label == 0 and ward label == 0:
                  print('raw 0 ward 0 country:' + result_3Features.iloc[i]['Country'])
              elif raw label == 0 and ward label == 1:
                  print('raw 0 ward 2 country:' + result 3Features.iloc[i]['Country'])
          # high risk cluster for complete = 1
          print('\ncomparison between complete and kmean')
          for i in range(len(result 3Features)):
             raw label = result 3Features.iloc[i]['Label']
             complete label = agg clustering complete.labels [i]
             if raw label == 0 and complete label == 0:
                  print('raw 0 ward 0 country:' + result_3Features.iloc[i]['Country'])
             elif raw_label == 0 and complete_label == 2:
                  print('raw 0 ward 2 country:' + result_3Features.iloc[i]['Country'])
          # high risk cluster for average = 2
          print('\ncomparison between average and kmean')
          for i in range(len(result 3Features)):
             raw_label = result_3Features.iloc[i]['Label']
              average label = agg clustering average.labels [i]
             if raw label == 0 and average label == 0:
                  print('raw 0 ward 0 country:' + result_3Features.iloc[i]['Country'])
             elif raw label == 0 and average label == 1:
                  print('raw 0 ward 2 country:' + result 3Features.iloc[i]['Country'])
          # high risk cluster for single = 0
          print('\ncomparison between single and kmean')
          for i in range(len(result 3Features)):
              raw label = result 3Features.iloc[i]['Label']
              single label = agg clustering single.labels [i]
             if raw label == 0 and single label == 1:
                  print('raw 0 ward 0 country:' + result 3Features.iloc[i]['Country'])
             elif raw label == 0 and single label == 2:
                  print('raw 0 ward 2 country:' + result_3Features.iloc[i]['Country'])
```

```
comparison between ward and kmean
raw 0 ward 0 country: Argentina
raw 0 ward 0 country:Brazil
raw 0 ward 0 country: Ecuador
raw 0 ward 0 country:Liberia
raw 0 ward 0 country:Paraguay
raw 0 ward 0 country: Saudi Arabia
raw 0 ward 0 country: South Africa
raw 0 ward 0 country:Trinidad and Tobago
comparison between complete and kmean
raw 0 ward 0 country: Argentina
raw 0 ward 0 country:Brazil
raw 0 ward 2 country:Burundi
raw 0 ward 2 country:Chad
raw 0 ward 2 country:Democratic Republic of Congo
raw 0 ward 0 country: Ecuador
raw 0 ward 2 country:Lebanon
raw 0 ward 0 country:Liberia
raw 0 ward 2 country: Mexico
raw 0 ward 2 country:Nigeria
raw 0 ward 2 country:Pakistan
raw 0 ward 0 country:Paraguay
raw 0 ward 2 country:Russia
raw 0 ward 0 country:Saudi Arabia
raw 0 ward 0 country: South Africa
raw 0 ward 0 country:Trinidad and Tobago
raw 0 ward 2 country: Turkey
raw 0 ward 2 country: Ukraine
raw 0 ward 2 country: Yemen
comparison between average and kmean
raw 0 ward 2 country: Argentina
raw 0 ward 0 country:Brazil
raw 0 ward 0 country: Ecuador
raw 0 ward 2 country:Iran
raw 0 ward 0 country:Liberia
raw 0 ward 2 country:Nicaragua
raw 0 ward 0 country:Paraguay
raw 0 ward 0 country:Saudi Arabia
raw 0 ward 0 country: South Africa
raw 0 ward 0 country:Trinidad and Tobago
raw 0 ward 2 country:Zimbabwe
comparison between single and kmean
raw 0 ward 2 country: Argentina
raw 0 ward 2 country:Brazil
raw 0 ward 2 country:Burundi
raw 0 ward 2 country:Chad
raw 0 ward 2 country:Democratic Republic of Congo
raw 0 ward 2 country: Ecuador
raw 0 ward 2 country:Lebanon
raw 0 ward 2 country:Liberia
raw 0 ward 2 country: Mexico
raw 0 ward 2 country:Nigeria
raw 0 ward 2 country:Pakistan
raw 0 ward 2 country:Paraguay
raw 0 ward 2 country:Russia
raw 0 ward 2 country: Saudi Arabia
```

raw 0 ward 2 country: South Africa

```
raw 0 ward 2 country:Trinidad and Tobago
raw 0 ward 2 country:Turkey
raw 0 ward 2 country:Ukraine
raw 0 ward 2 country:Yemen
```

Answer for 2.14 B)

there are difference between the hierarchical clustering package and the scikit-learn package kmean and the diffidence within high risk cluster are demonstrated on the above cell

Exercise 2.15

```
In [20]: raw_data = {'Country': ['Venezuela'],'Abbrev': ['VN'],'Corruption': [16],'Peace': [2.6
    df = pd.DataFrame(raw_data)
    raw_VN = pd.concat([raw,df],ignore_index = True)
    X_VN = raw_VN
    raw_VN
```

ut[20]:		Country	Abbrev	Corruption	Peace	Legal	GDP Growth
	0	Albania	AL	35	1.821	4.546	2.983
	1	Algeria	DZ	35	2.219	4.435	2.553
	2	Argentina	AR	45	1.989	5.087	-3.061
	3	Armenia	AM	42	2.294	4.812	6.000
	4	Australia	AU	77	1.419	8.363	1.713
	•••						
	117	Vietnam	VI	37	1.877	5.084	6.500
	118	Yemen	YE	15	3.369	2.671	2.113
	119	Zambia	ZM	34	1.805	4.592	2.021
	120	Zimbabwe	ZW	24	2.463	3.738	-7.077
	121	Venezuela	VN	16	2.600	2.895	-35.000

122 rows × 6 columns

```
In [21]: X_VN = raw_VN[['Peace', 'Legal', 'GDP Growth']]
X_VN = (X_VN - X_VN.mean()) / X_VN.std()
print(X_VN.tail(5))
```

In [22]:

Out[22]: <AxesSubplot:title={'center':'GDP Growth'}, ylabel='Frequency'>


```
In [23]: # print summary statistics
print("\nSummary statistics after adding Venezuela\n", raw_VN.describe())
print("\nCorrelation matrix after adding Venezuela\n", raw_VN.corr())
```

```
Summary statistics after adding Venezuela
        Corruption
                         Peace
                                     Legal GDP Growth
count 122.000000 122.000000 122.000000 122.000000
        46.590164
                                 5.729107
mean
                     2.005926
                                             2.348861
                                 1.392486
std
        18.833219
                     0.462763
                                             4.259358
        15.000000
                     1.072000
min
                                 2.671000
                                          -35.000000
25%
        32.250000
                     1.700750
                                 4.726500
                                             1.245250
50%
        41.000000
                     1.945000
                                 5.430000
                                             2.597500
75%
        59.750000
                     2.298500
                                 6.481000
                                             3.998750
max
        87.000000
                     3.369000
                                 8.712000
                                             7.800000
```

Correlation matrix after adding Venezuela

```
Corruption Peace Legal GDP Growth
Corruption 1.000000 -0.709781 0.939526 0.045444
Peace -0.709781 1.000000 -0.667992 -0.096436
Legal 0.939526 -0.667992 1.000000 0.060148
GDP Growth 0.045444 -0.096436 0.060148 1.000000
```

```
In [24]: k = 3
    kmeans_VN = KMeans(n_clusters=k, random_state=1)
    kmeans_VN.fit(X_VN)
    y_VN = kmeans_VN.labels_
    print("inertia after adding Venezuela is", kmeans_VN.inertia_)
    print(' ')
    print("cluster centers after adding Venezuela is: ", kmeans_VN.cluster_centers_)
    print(' ')
```

```
In [25]: norm = clrs.Normalize(vmin=0.,vmax=y_VN.max() + 0.8)
    cmap = cm.viridis
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(X_VN.iloc[:,0], X_VN.iloc[:,1], X_VN.iloc[:,2], c=cmap(norm(y_VN)), marker=
    centers = kmeans_VN.cluster_centers_
    ax.scatter(centers[:, 0], centers[:, 1], c='black', s=100, alpha=0.5)
    ax.set_xlabel('Peace')
    ax.set_ylabel('Legal')
    ax.set_zlabel('GDP Growth')
    plt.show()
```



```
In [26]: %matplotlib inline
    import matplotlib.pyplot as plt

figs = [(0, 1), (0, 2), (1, 2)]
    labels = ['Peace', 'Legal', 'GDP Growth']

for i in range(3):
    fig = plt.figure(i)
    plt.scatter(X_VN.iloc[:,figs[i][0]], X_VN.iloc[:,figs[i][1]], c=cmap(norm(y_VN)),
    plt.scatter(centers[:, figs[i][0]], centers[:, figs[i][1]], c='black', s=200, alph
    plt.xlabel(labels[figs[i][0]])
    plt.ylabel(labels[figs[i][1]])
```



```
In [27]: %matplotlib inline
  import matplotlib.pyplot as plt

figs = [(0, 1), (0, 2), (1, 2)]
  labels = ['Peace', 'Legal', 'GDP Growth']
  colors = ['blue', 'green', 'red']

for i in range(3):
    fig = plt.figure(i, figsize=(8, 8))
    x_1 = figs[i][0]
```



```
print('after adding VN')
In [28]:
          result = pd.DataFrame({'Country':raw_VN['Country'], 'Abbrev':raw_VN['Abbrev'], 'Label
         #countries
         highVN = 0
         moderateVN = 0
         lowVN = 0
         for label in result['Label']:
             if label == 0:
                  lowVN +=1
             if label == 1:
                 moderateVN +=1
             if label == 2:
                  highVN +=1
          print('number of high risk countries:',highVN)
         print('number of moderate risk countries:',moderateVN)
          print('number of low risk countries:',lowVN)
         print('\n ')
         risk = []
         for label in result['Label']:
             if label == 0: risk.append('Low')
             if label == 1: risk.append('Moderate')
             if label == 2: risk.append('High')
          result.insert(3, 'risk after adding VN', risk)
         with pd.option_context('display.max_rows', None, 'display.max_columns', 4):
             print(result.sort_values('Label'))
          result VN = result
```

after adding VN

number of high risk countries: 44 number of moderate risk countries: 1 number of low risk countries: 77

	Country	Abbrev	Label	risk	after	adding VN
0	Albania	AL	0			Low
78	Nigeria	NG	0			Low
77	Nicaragua	NI	0			Low
74	Nepal	NP	0			Low
73	Mozambique	MZ	0			Low
72	Morocco	MA	0			Low
71	Montenegro	ME	0			Low
70	Moldova	FM	0			Low
69	Mexico	MX	0			Low
67	Mauritania	MR	0			Low
81	Pakistan	PK	0			Low
66	Mali	ML	0			Low
63	Madagascar	MG	0			Low
61	Liberia	LR	0			Low
120	Zimbabwe					
		ZW	0			Low
58	Kuwait	KW	0			Low
56	Kenya	KE	0			Low
55	Kazakhstan	KZ	0			Low
54	Jordan	J0	0			Low
52	Jamaica	JM	0			Low
50	Israel	IL	0			Low
64	Malawi	MW	0			Low
48	Iran	IR	0			Low
82	Panama	PA	0			Low
84	Peru	PE	0			Low
119	Zambia	ZM	0			Low
118	Yemen	YE	0			Low
117	Vietnam	VI	0			Low
112	Ukraine	UA	0			Low
111	Uganda	UG	0			Low
110	Turkey	TR	0			Low
109	Tunisia	TN	0			Low
108	Trinidad and Tobago	TT	0			Low
107	The FYR of Macedonia	MK	0			Low
83	Paraguay	PY	0			Low
106	Thailand	TH	0			Low
101	Sri Lanka	LK	0			Low
99	South Africa	ZA	0			Low
95	Sierra Leone	SL	0			Low
94	Serbia	RS	0			Low
93	Senegal	SN	0			Low
92	Saudi Arabia	SA	0			Low
91	Rwanda	RW	0			Low
90	Russia	RU	0			Low
85	Philippines	PH	0			Low
105	Tanzania	TZ	0			Low
47	Indonesia	ID	0			Low
60	Lebanon	LB	0			Low
21	China	CN	0			Low
27	Democratic Republic of Congo	CD	0			Low
46	India	IN	0			Low
29	Dominican Republic	DO	0			Low
30	Ecuador	EC	0			Low
20	Lcuador	LC	Ð			LOW

	Country	yKiSK_2019	_kiiieaiis_ie	suits_vvorksnop_1
31	Egypt	EG	0	Low
32	El Salvador	SV	0	Low
19	Chad	TD	0	Low
17	Cameroon	CM	0	Low
34	Ethiopia	ET	0	Low
16	Burundi	BI	0	Low
14	Brazil	BR	0	Low
12	Bosnia and Herzegovina	BA	0	Low
22	Colombia	CO	0	Low
11	Bolivia	ВО	0	Low
38	Georgia	GE	0	Low
10	Benin	ВЈ	0	Low
8	Bangladesh	BD	0	Low
7	Bahrain	BH	0	Low
40	Ghana	GH	0	Low
41	Greece	GR	0	Low
42	Guatemala	GT	0	Low
6	Azerbaijan	AZ	0	Low
43	Honduras	HN	0	Low
3	Armenia	AM	0	Low
2	Argentina	AR	0	Low
1	Algeria	DZ	0	Low
37	Gabon	GA	0	Low
24	Croatia	HR	0	Low
121	Venezuela	VN	1	Moderate
25	Cyprus	CY	2	High
102	Sweden	SE	2	High
103	Switzerland	CH	2	High
104	Taiwan	SY	2	High
62	Lithuania	LT	2	High
59	Latvia	LV	2	High
9	Belgium	BE	2	High
39	Germany	DE	2	High
57	Korea (South)	KI	2	High
36	France	FR	2	High
53	Japan	JP	2	High
4	Australia	AU	2	High
113	United Arab Emirates	AE	2	High
114	United Kingdom	GB	2	High
115	United States	US	2	High
116	Uruguay	UY	2	High
51	Italy	IT	2	High
44	Hungary	HU	2	High
49	Ireland	IE	2	High
5	Austria	AT	2	High
100	Spain	ES	2	High
13	Botswana	BW	2	High
98	Slovenia	SI	2	High
79		NO	2	High
80	Norway Oman	OM	2	High
76	New Zealand	NZ	2	High
23	Costa Rica	CR	2	
23 75	Netherlands	NL	2	High High
75 28	Denmark	DK	2	High High
	Chile			High
20	Poland	CL PL	2 2	High
86 87		PL PT	2	High
87 88	Portugal		2	High
	Qatar	QA PO		High
89 69	Romania	RO MLI	2 2	High
68	Mauritius	MU	2	High

```
CA
18
                             Canada
                                                  2
                                                                      High
                                          ΕE
                                                  2
                                                                      High
33
                            Estonia
65
                           Malaysia
                                         MY
                                                  2
                                                                      High
15
                                          BG
                                                  2
                           Bulgaria
                                                                      High
35
                                          FΙ
                                                  2
                            Finland
                                                                      High
                                                  2
96
                          Singapore
                                          SG
                                                                      High
97
                           Slovakia
                                         SK
                                                  2
                                                                      High
                     Czech Republic
                                         CZ
                                                  2
                                                                      High
26
45
                            Iceland
                                          IS
                                                  2
                                                                      High
```

```
#countries
In [29]:
          high VN = 0
          moderate VN = 0
          low VN = 0
          for label in result VN['Label']:
              if label == 0:
                  low VN +=1
              if label == 1:
                  moderate VN +=1
              if label == 2:
                  high VN +=1
          print('after adding Venezuela')
          print('number of high risk countries:',high_VN)
          print('number of moderate risk countries:', moderate VN)
          print('number of low risk countries:',low VN)
```

```
after adding Venezuela
number of high risk countries: 44
number of moderate risk countries: 1
number of low risk countries: 77
```

```
For n_clusters= 2 The average silhouette_score is: 0.3860706397862347

For n_clusters= 3 The average silhouette_score is: 0.4060901042248943

For n_clusters= 4 The average silhouette_score is: 0.3808812129650175

For n_clusters= 5 The average silhouette_score is: 0.330518549682561

For n_clusters= 6 The average silhouette_score is: 0.3458206705941977

For n_clusters= 7 The average silhouette_score is: 0.35975995710106656

For n_clusters= 8 The average silhouette_score is: 0.34113116069185917

For n_clusters= 9 The average silhouette_score is: 0.3286221418241615

For n_clusters= 10 The average silhouette score is: 0.32181439409640594
```

Answer for 2.15

Venezuela's features are relatively extreme compared to the rest of the data set. After adding Venezuela to the data set, the standard deviation and mean of the new data set have shifted by a fair amount across the four features, almost doubling the standard deviation for GDP. As the result, the new data point(Venezuela) becomes a cluster center itself and others were relocated to higher or lower risk sector, and as the result of that it actually improve the inertia from 161.13

to 147.57. Given the above observations, I have concluded that the K-mean is highly sensitive to outliers.

In []: