Automatic Speech Recognition

Claude Barras barras@vocapia.com

Master AI - Nov. 2020

- Introduction
- 2 Dynamic Time Warping
- 3 Continuous speech recognition with HMM
- 4 Hybrid HMM and neural systems

- Introduction
- 2 Dynamic Time Warping
- 3 Continuous speech recognition with HMM
- Hybrid HMM and neural systems

Introduction

- Human-machine spoken communication why?
 - Spontaneous, faster than keyboard
 - Hand-free human-machine communication
- What can we extract from speech?
 - Language identification
 - Speaker recognition
 - Speech transcription
 - Information on affective state and health
- Automatic speech recognition (ASR) is complex
 - No space between words (coarticulation)
 - Variable temporal flow
 - Inter- and intra-speaker variability
 - Homophones...

Short history of ASR

- 1960s
 - Dawn of AI: experimental rule-based systems
- 1970s
 - · Pattern recognition: isolated word recognition with DTW
- 1980s
 - Statistical approaches: continuous speech transcription with HMM
- 1990s
 - International evaluation campaigns, corpora collection
- 2000s
 - Rise of DNN
- 2010s
 - Generalization of consumer voice assistants by GAFAM

- 1 Introduction
- 2 Dynamic Time Warping
- 3 Continuous speech recognition with HMM
- Hybrid HMM and neural systems

Isolated word recognition

- Pattern recognition framework
 - R_w reference for each word w
 - X unknown observation
 - D a distance between acoustic segments
 - choose $\tilde{w} = \arg \min_{w} D(X, R_{w})$
- Acoustic segments
 - variable-length sequences of acoustic samples
 - waveform amplitudes too noisy for reliable comparisions
 - replace with a sequence of acoustic vectors (100 vec/sec)
 - 10-15 dim vectors from spectral analysis of 10-30ms frames
- Inter-segments distance D(X, Y) with $X = \{x_i\}_{i=1...N}, Y = \{y_j\}_{j=1...M}$
 - Rely on local inter-vector distance $d(x_i, y_j)$
 - Due to non-linearity, need to find the best alignment
 - Choose best path P for $D(X, Y) = \min_{P} \sum_{(i,j) \in P} d(x_i, y_j)$
 - Combinatorial explosion of problem with segment sizes!

Dynamic Time Warping

- Dynamic programming
 - Shortest path between nodes in a weighted graph
 - Bellman optimality principle: subpath of optimal path is optimal
 - Allow optimal recursive resolution (eg. Dijkstra's shortest path)
- Dynamic Time Warping (DTW)
 - Express the elactic distance D in terms of shortest path in a graph
 - Complexity linear with segment lengths N and M
- Simple algorithm
 - Initialization: $D_{0,0} = 0$, $D_{i,0} = D_{0,j} = \infty$
 - Recurrence: $D_{i,j} = \min_{(k,l) \in prec(i,j)} D_{k,l} + d(x_i, y_j)$ with prec(i,j) a small set of preceding indices
 - Final step: $D(X, Y) = D_{N,M}$
- Application
 - Keyword-based voice command

- 1 Introduction
- 2 Dynamic Time Warping
- 3 Continuous speech recognition with HMM
- Hybrid HMM and neural systems

Statistical paradigm

- Problem
 - Let $X = \{x_1 \dots x_T\} = x_1^T$ the signal
 - Find the best matching possible sentence w*

$$w^* = \arg\max P(w_1^n \mid x_1^T)$$

· Generative view (source through noisy channel) using Bayes rule

$$w^* = \arg \max P(x_1^T \mid w_1^n) P(w_1^n)$$

- Three sub-problems
 - Acoustic model $P(x_1^T \mid w_1^n)$
 - Linguistic model P(w₁ⁿ)
 - Search algorithms for argmax

Continuous speech recognition

- Large vocabulary continuous speech recognition (LVCSR)
 - · Impossible to train a model for each word
 - Instead, select short acoustic units, typically phones in context
 - Select a limited vocabulary V
 - Map each word to its phonetic pronounciation
 - Deterministic or probabilistic model of V*
 - Heuristic search into H ⊂ V*
- Resources and training data
 - x 100h of audio with precise and synchronized manual transcription
 - texts x100M up to 1G words
 - dictionary with pronounciation(s)

Hidden Markov models (HMM)

- Hidden Markov model (HMM)
 - a stochastic state machine with random drawing of acoustic vectors
- defined by
 - S a set of states s_i , with process in state q_t at time t
 - A the inter-state transition matrix

$$a_{i,j} = P(q_t = s_j | q_{t-1} = s_i) = P(s_j | s_i)$$

• *B* the observation distribution into acoustic space X $b_i(x) = P(x|q_t = s_i) = P(x|s_i)$

Hidden Markov models (HMM)

- Decoding, given a HMM model λ
 - Find the most likely sequence of hidden states for X?

$$q_{1,T}^* = \arg\max q_{1,T} P(q_{1,T}|x_{1,T},\lambda)$$

- Dynamic programming resolution with Viterbi algorithm
- Compute $P(X|\lambda)$?
 - Forward-backward algorithm (variant of Viterbi)
 - Allow to select the best-matching model
- Training of model
 - Given a set of sequences $\{X_k\}$, optimize the model parameters

$$\lambda^* = \arg\max_{\lambda} \sum_{k} P(X_k|\lambda)$$

- Expectation-Maximization Baum-Welch iterative algorithm
- Improve the model at each iteration (may get stuck in local extremum)

Acoustic modeling

- Compute P(X|W) with generative HMM models
 - Each phone has a left-to-right topology for temporal causality
 - Few states, each corresponding to a short acoustic segment
 - Generation of acoustic vectors with Gaussian mixture models (GMM)
 - Model of sentence by hierarchically embedding words and phonemes

Acoustic modeling

Triphones

- 40 phones => 64.000 triphones in left/right context: impossible to model all properly
- Tying of states (sharing parameters) for similar contexts using linguistic rules
- Model size: 10.000 shared states x 16 Gaussians x 2 (mean + diagonal covariance) x 39 (dimension of acoustic vectors) > 10M param
- Adaptation of acoustic models
 - Multi-speaker acoustic models trained on a large database
 - Need to adapt them to speaker and/or acoustic conditions
 - Unsupervised adaptation (without transcripts) more convenient
 - Various approaches: VTLN (vocal tract length normalization), MAP (Maximum a posteriori), MLLR (Maximum likelihood linera regression)...

Linguistic modeling (LM)

- Formal grammars
 - Rules covering all possible sentences
 - Suited to artificial languages or very constrained domains
- Probablilistic grammars
 - n-gram model
 - Data-based, simple but relying on large corpora
- n-gram
 - Formally, $P(W) = \prod_{i=1}^{n} P(w_i | w_1 \dots w_{i-1})$
 - Untractable, so limit to short-term history
 - 1 word for bigram: $P(W) \simeq \prod_{i=1}^{n} P(w_i|w_{i-1})$
 - 2 words for trigram: $P(W) \simeq \prod_{i=1}^{n} P(w_i|w_{i-1}, w_{i-2})$
 - Maximum likelihood estimation through counts of words sequences
 - LM quality measured through perplexity (related to model entropy)
 - Limitations related to Zipf law (few frequent words, frequent rare words)
 - LM needs to predict unseen word sequences
 - Workaround is model smoothing through interpolation or back-off

HMM decoding

- Viterbi algorithm
 - Embed acoustic HMM and linguistic n-gram
 - Potentially huge search graph
 - · Rely on dynamic programming, but not enough
 - Heuristics needed to prune the graph: eg. beam search (discard hypothesis too far from the current best one)
 - Careful balance between speed and accuracy (avoid too much pruning)
- Multi-step decoding
 - Produce n-best hypothesis rather than 1-best
 - First output a word graph (lattice) allow a fast rescoring with better models
 - Compress the graph accross time in a consensus network

- 1 Introduction
- 2 Dynamic Time Warping
- 3 Continuous speech recognition with HMM
- 4 Hybrid HMM and neural systems

Neural networks for ASR

- Lot of research since the 1990s with multilayer perceptron (MLP) and recurrent networks
 - Bourlard, Robinson, Bengio, Gallinari, Waibel...
- No significant gain compared to "standard" probabilistic systems (GMM/HMM) for years
- Integration into SOTA systems for linguistic (>2002) and acoustic (>2006)
- Decoding mostly relying on dynamic programming (Viterbi or similar) with development of CTC (connectionist temporal classification) (Graves, 2006).

Neural networks for ASR

- Neural Linguistic models
 - Proposed by Y. Bengio in 2001
 - Integration into LIMSI since 2002 combined with n-gram
 - Significatif gain (5% relative gain in accuracy)
- Neural acoustic models
 - Hybrid systems MLP/HMM
 - Estimation of phonetic posterior probabilities by a MLP from the acoustic features
 - MLP output replaces the GMM in a HMM state
 - Another solution: features output from the MLP are combined with standard acoustic features (MFCC)

The rest of the system is usually a standard HMM

Hybrid acoustic system - an example VOCAPIA

- TRAP-DCT (Grezl & Fousek, 2008)
- Input: 19 bands x 25 coefficients
- 3rd layer (bottleneck): 39 coefficients + PCA (decorrelation)
- 4th layer (output): phonetic states probabilities

Neural networks for ASR

- Important development of neural approaches with deep networks (DNN)
 - convolutive networks (CNN) connected to a spectral bank filter
 - recurrent network (Bi-LSTM = bi-directionnal long-short-term memory networks) for audio stream
 - applied to consumer voice assistants, keyword detection, speaker recognition, speech synthesis
 - efficient software toolkits for generic DNN (TensorFlow, PyTorch...) or dedicated to speech recognition (Kaldi).
- Examples
 - https://machinelearning.apple.com/2017/10/01/hey-siri.html
- Recent trend towards end-to-end (E2E) ASR
 - New DNN architectures: encoder-decoder with attention (Transformer)
 - http://iscslp2018.org/images/T4_Towards%20end-to-end%20speech% 20recognition.pdf