Chapitre 20 : Fonctions de plusieurs variables réelles, calcul différentiel

Cadre:

On étudie les fonctions $f: \Omega \to F$ où Ω est un ouvert de E, E et F étant des espaces normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} de dimension finie (certaines parties s'appliquent aux espaces de Banach)

I Topologie et continuité (rappel)

A) Connexité, connexité par arcs

Théorème:

Soit A une partie connexe par arcs de l'espace normé E. Alors les seules parties de A qui sont à la fois ouvertes et fermées dans A sont \emptyset et A.

Autrement dit, une partie connexe par arcs est connexe.

B) Fonctions coordonnées et fonctions partielles

On suppose E et F de dimension finie :

Soit $(\vec{e}_1,...\vec{e}_p)$ une base de E, $(\vec{f}_1,...\vec{f}_n)$ une base de F.

Alors $f: \Omega \to F$ peut s'écrire de manière unique $f = \sum_{k=1}^n F_k \vec{f}_k$ où les F_k sont des applications $F_k: \Omega \to \mathbb{K}$.

Les F_k s'appellent les applications coordonnées de f dans la base $(\vec{f}_1,...\vec{f}_n)$ de f. Remarque :

On verra que f a une propriété analytique P si et seulement si toutes les F_k l'ont.

Soit
$$M_0 \in \Omega$$
, disons $M_0 = \sum_{j=1}^p a_j \vec{e}_j$.

Pour x voisin de a_j $(j \in [1, p])$, $a_1\vec{e}_1 + ... + x\vec{e}_j + ... + a_p\vec{e}_p \in \Omega$, et l'application $g_{M_0,j}: x \mapsto f(a_1\vec{e}_1 + ... + x\vec{e}_j + ... + a_p\vec{e}_p)$ définie au voisinage de a_j s'appelle j-ème application partielle de f en M_0 (relativement à la base $(\vec{e}_1, ... \vec{e}_p)$ de E)

Remarque:

Cette application partielle $g_{M_0,j}$ peut être identifiée à la restriction de f à $M_0 + \mathbb{K}\vec{e}_j$

On verra que si f a une propriété analytique, alors toutes les $g_{M_0,j}$ ont cette propriété, mais que la réciproque est souvent fausse.

Théorème:

Soit $f: \Omega \to F$. Alors:

- (1) f est continue si et seulement si toutes ses fonctions coordonnées le sont (dans une base quelconque de F)
- (2) Si f est continue, alors toutes les fonctions partielles sont continues, mais la réciproque est fausse.

Démonstration:

- (1) Déjà connu
- (2) Si f est continue, alors pour tout $M_0 \in \Omega$ et $j \in [1, p]$, $g_{M_0, j}$ est la composée de l'application $x \mapsto a_1 \vec{e}_1 + ... + x \vec{e}_j + ... + a_p \vec{e}_p$ qui est continue et de f, aussi continue. Donc $g_{M_0, j}$ est continue.

Remarque:

Pour montrer qu'une fonction n'est pas continue, on prend le plus souvent des suites...

C) Cas de la dimension 2 : passage en polaire

Pour étudier $f: \Omega \subset \mathbb{R}^2 \to F$ au voisinage de $(a,b) \in \Omega$, on passe en polaire en posant $x = a + r \cos t$ et $y = b + r \sin t$.

Proposition:

f est continue en (a,b) si et seulement si $f(a+r\cos t,b+r\sin t)$ tend vers f(a,b) quand r tend vers 0, uniformément par rapport à t, c'est-à-dire :

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall r \in [0, \alpha[, \forall t \in \mathbb{R}, ||f(a + r\cos t, b + r\sin t) - f(a, b)|| \le \varepsilon$$

Démonstration:

On a en effet $r = ||(a + r \cos t, b + r \sin t) - (a, b)||_{1} \dots$

Exemple:

Soient $\alpha, \beta > 0$.

On pose
$$f(x, y) = \frac{|x|^{\alpha} |y|^{\beta}}{x^2 + y^2}$$
 si $(x, y) \neq (0, 0)$, et $f(0, 0) = 0$.

On cherche une condition nécessaire et suffisante pour que f soit continue en 0:

On a pour
$$r > 0$$
 et $t \in \mathbb{R}$, $f(r\cos t, r\sin t) - f(0,0) = r^{\alpha+\beta-2} |\cos t|^{\alpha} |\sin t|^{\beta}$

Donc si $\alpha + \beta > 2$, $|f(r\cos t, r\sin t) - f(0,0)|$ tend uniformément vers 0 par rapport à t, donc f est continue en (0,0).

Si $\alpha + \beta \le 2$, $|f(r\cos t, r\sin t) - f(0,0)|$ ne tend pas uniformément vers 0, donc f n'est pas continue en (0,0).

II Dérivée selon un vecteur, dérivée partielle A) Dérivée de f en $A \in \Omega$ selon $u \in E$.

On suppose ici que F et E sont des espaces de Banach, Ω un ouvert de E.

Définition :

Soit $f: \Omega \to F$.

On appelle dérivée de f en A selon $\vec{u} \in E$ le vecteur de F, s'il existe, défini par :

$$D_{\vec{u}}f(A) = \lim_{h \to 0} \frac{f(A + h\vec{u}) - f(A)}{h} \in F$$

NB: comme Ω est ouvert, il existe $\alpha > 0$ tel que $B_{\Omega}(A, \alpha) \subset \Omega$ donc pour $|h||\vec{u}|| < \alpha$, on a $A + h\vec{u} \in \Omega$

Autrement dit, f a une dérivée selon \vec{u} en A si la fonction de variable réelle $h \mapsto f(A + h\vec{u})$ est dérivable en 0.

B) Cas de la dimension finie : dérivée partielle par rapport à une base

Définition:

On note $\mathfrak{B} = (e_1, ... e_p)$ une base de E.

On appelle j-ème dérivée partielle de f en A (pour $j \in [1, p]$) la dérivée $D_{\bar{e}_j} f(A)$, lorsqu'elle existe.

Notation:

On note plutôt cette dérivée $(\partial_{i,\mathfrak{D}} f)(A)$ ou $(\partial_i f)(A)$

Si
$$E = \mathbb{R}^p$$
 et \mathfrak{B} est la base canonique de E , $(\partial_{j,\mathfrak{B}} f)(A)$ est aussi notée $\frac{\partial f}{\partial x_i}(A)$.

Remarque:

Lorsqu'elle existe, $(\partial_{j,x}f)(A)$ est la dérivée en a_j de la j-ème fonction partielle

de
$$f$$
 en A , $g_{A,j}: x \mapsto f(a_1e_1 + ... + xe_j + ... + a_pe_p)$ où $A = \sum_{k=1}^p a_k e_k$.

Conséquence :

Le calcul des dérivées partielles se ramène à celui de la dérivée d'une fonction d'une variable réelle.

Exemple:

On pose pour $(x, y) \in \mathbb{R}^2$, $f(x, y) = e^{x-y} \cos(xy)$

Alors f admet des dérivées partielles par rapport à la base canonique de \mathbb{R}^2 (on dit aussi par rapport à x et y) en tout point et :

$$\frac{\partial f}{\partial x}(x,y) = e^{x-y}\cos(xy) + e^{x-y}(-y\sin(xy)).$$

Lorsque $(\partial_{i,\mathfrak{B}} f)(A)$ existe pour tout $A \in \Omega$, on note $\partial_{i,\mathfrak{B}} f$ l'application $\Omega \to F$. $\partial_{j,\mathfrak{B}} f$ s'appelle la j-ème dérivée partielle de f (par rapport à \mathfrak{B}) $A \mapsto (\partial_{j,\mathfrak{B}} f)(A)$

Théorème:

Soient $f,g:\Omega\to F$ admettant des dérivées partielles en A (par rapport à \mathfrak{B}) et $\lambda\in\mathbb{K}$. Alors $\lambda f+g$ admet des dérivées partielles en A et :

$$(\partial_{i,\mathfrak{B}}(\lambda f + g))(A) = \lambda(\partial_{i,\mathfrak{B}}f)(A) + (\partial_{i,\mathfrak{B}}g)(A)$$

Démonstration :

On se ramène à des fonctions d'une variable.

III Applications différentiables et différentielles

A) Définition

Soient E, F deux espaces de Banach, Ω un ouvert de E.

 $f:\Omega \to F$ est dite différentiable en $A \in \Omega$ lorsqu'elle admet un développement limité à l'ordre 1 au voisinage de A, c'est-à-dire qu'il existe $l \in L_C(E,F)$ tel que

$$f(A + \vec{v}) = f(A) + l(\vec{v}) + o(\|\vec{v}\|)$$

Ou encore
$$\lim_{\vec{v} \to 0} \frac{f(A + \vec{v}) - f(A) - l(\vec{v})}{\|\vec{v}\|} = \vec{0}$$

Théorème:

Soit $f: \Omega \to F$. Si f est différentiable en A, alors elle est continue en A et admet en A une dérivée selon tout vecteur $\vec{u} \in E$, et $(D_{\vec{u}}f)(A) = l(\vec{u})$.

Démonstration:

(1) Soit $\varepsilon > 0$.

Il existe r > 0 tel que $\forall \vec{v} \in E, ||\vec{v}|| < r \Rightarrow ||f(A + \vec{v}) - f(A) - l(\vec{v})||_E \le ||\vec{v}||_E$

Donc si $\|\vec{v}\| < r$, $\|f(A + \vec{v}) - f(A)\|_F \le \|\vec{v}\|_E + \|l(\vec{v})\|_F \le (1 + \|l\|) \|\vec{v}\|_E$

Donc pour
$$\|\vec{v}\|_{E} < \min\left(r, \frac{\varepsilon}{1 + \|l\|}\right)$$
, on a $\|f(A + \vec{v}) - f(A)\|_{F} \le \varepsilon$.

(2) Soit $\vec{v} \in E$. Pour $t \neq 0$ au voisinage de 0, on note

$$\alpha(t) = \frac{f(A+t\vec{v}) - f(A)}{t} - l(\vec{v}).$$

Ainsi,
$$\alpha(t) = \frac{f(A+t\vec{v}) - f(A) - l(t\vec{v})}{t}$$

Si $\vec{v} = \vec{0}$, $\lim_{t \to 0} \alpha(t) = 0$, c'est-à-dire que $(D_{\vec{0}}f)(A)$ existe et vaut $\vec{0} = l(\vec{0})$.

Sinon, pour
$$t \neq 0$$
, $\|\alpha(t)\| = \frac{\|f(A+t\vec{v}) - f(A) - l(t\vec{v})\|}{\|t\vec{v}\|} \|\vec{v}\|$

Comme $\lim_{t\to 0} t\vec{v} = \vec{0}$, par définition de la différentiabilité, on a $\lim_{t\to 0} \alpha(t) = \vec{0}$

Donc $(D_{\vec{v}}f)(A)$ existe et vaut $l(\vec{v})$.

B) Différentielle d'une fonction différentiable

Théorème :

Si f est différentiable en A, alors il existe une unique application linéaire continue $l \in L_C(E,F)$ telle que $f(A+\vec{v}) = f(A) + l(\vec{v}) + o(\|\vec{v}\|)$

Définition:

Cette application s'appelle différentielle de f en A, notée $df_A \in L_C(E, F)$

(Ainsi, $\forall \vec{v} \in E, (df_A)(\vec{v}) = (D_{\vec{v}}f)(A)$)

Démonstration:

l est en effet l'application $\vec{v} \in E \mapsto (D_{\vec{v}}f)(A) \in F$ d'après le théorème précédent.

C) Exemples

• Applications linéaires :

Théorème:

Une application linéaire f est différentiable si et seulement si elle est continue et dans ce cas, pour tout $A \in \Omega$, $df_A = f$.

Démonstration :...

• Application bilinéaire :

Proposition:

Soit $B: E_1 \times E_2 \to F$ bilinéaire continue (on munit $E = E_1 \times E_2$ de la norme produit $\|(x,y)\|_E = \|x\|_{E_1} + \|y\|_{E_2}$)

Alors *B* est différentiable en tout $(a,b) \in E$ et :

$$dB_{(a,b)}: E_1 \times E_2 \to F$$

 $(x,y) \mapsto B(a,y) + B(x,b)$

En effet, pour tout $(x, y) \in E$,

B(a+x,b+y) = B(a,b) + B(a,y) + B(x,b) + B(x,y)

Or, $(x, y) \mapsto B(a, y) + B(x, b)$ est linéaire continue, et il existe $M \ge 0$ tel que $\forall (x, y) \in E, \|B(x, y)\|_{E} \le M \|x\|_{E_1} \|y\|_{E_2}$

Donc
$$\forall (x, y) \in E, ||B(x, y)||_F \le \frac{M}{2} (||x||_{E_1}^2 + ||y||_{E_2}^2) = o(||(x, y)||_E)$$

• Si $E = \mathbb{R}$:

Théorème:

Soit Ω un ouvert de \mathbb{R} , $f: \Omega \to F$.

Alors f est différentiable en $a \in \Omega$ si et seulement si elle est dérivable en a et dans ce cas $f'(a) = df_a(1)$ et $df_a: x \mapsto xf'(a)$

Démonstration:

On suppose f différentiable en a. Alors f(a+x) = f(a) + l(x) + o(|x|), où l est linéaire continue. Comme l est linéaire, on a f(a+x) = f(a) + xl(1) + o(|x|)

Donc f est dérivable en a et $f'(a) = l(1) = df_a(1)$

Si f est dérivable en a, alors f(a+x) = f(a) + xf'(a) + o(x), donc comme $x \mapsto xf'(a)$ est linéaire continue, f est différentiable en a et $df_a : x \mapsto xf'(a)$.

• Exercices:

On note $E = M_n(\mathbb{K})$

On cherche les différentielles de $A \mapsto A^2$ (puis $A \mapsto A^m$ pour $m \in \mathbb{N}$), $A \mapsto A^{-1}$ sur $GL_n(\mathbb{K})$.

On note $f: A \mapsto A^2$. Soit $A \in M_n(\mathbb{K})$.

Alors pour $H \in M_n(\mathbb{K})$,

$$f(A+H) = (A+H)^{2} = A^{2} + AH + HA + H^{2}$$
$$= f(A) + l(H) + H^{2}$$

Où *l* est linéaire continue.

On munit *E* d'une norme d'algèbre (par exemple une norme triple associée à une norme quelconque)

Alors
$$\forall H \in M_n(\mathbb{K}), ||H^2|| \le ||H||^2$$

Donc pour
$$||H|| \le \varepsilon$$
, on a $||H^2|| \le \varepsilon ||H||$

Donc
$$H^2 = o(||H||)$$
.

Donc f est différentiable en A et $df_A: H \mapsto AH + HA$

Pour $f: A \mapsto A^m$:

On a pour $H \in M_n(\mathbb{K})$,

$$f(A+H) = (A+H)^m = A^m + A^{n-1}H + ... + AHA^{n-2} + HA^{n-1} + R(H)$$

Où H apparaît au moins deux fois dans chaque terme de R(H), et R(H) a $2^n - n - 1$ termes.

Ainsi, si $A \neq 0$ (pour A = 0 on a $df_A = 0$),

On a pour
$$||H|| \le ||A||$$
, $||R(H)|| \le (2^n - n - 1)||H||^2 ||A||^{n-2} = o(||H||)$.

Pour $f: A \to A^{-1}$ sur $GL_n(\mathbb{K})$ (ouvert)

Différentiabilité en I_n : on note $\| \cdot \|$ une norme d'algèbre.

Pour ||H|| < 1, $-1 \notin \operatorname{sp}(H)$ donc $I_n + H$ est inversible.

On a de plus
$$(I_n + H)^{-1} = \sum_{k=0}^{+\infty} (-1)^k H^k = I_n - H + H^2 \underbrace{\sum_{k=0}^{+\infty} (-1)^k H^k}_{\epsilon(H)}$$

Et
$$\|\varepsilon(H)\| \le \sum_{k=0}^{+\infty} \|H\|^k = \frac{1}{1 - \|H\|}$$

Donc f est différentiable en I_n et $df_{I_n} = -\operatorname{Id}_{M_n(\overline{\mathbb{K}})}$.

Soit $A \in GL_n(\mathbb{K})$.

Alors $A + H = A(I_n + A^{-1}H)$. Donc si $||A^{-1}H|| < 1$, alors A + H est inversible.

On peut prendre $||H|| < \frac{1}{||A^{-1}||}$

On a alors:

$$(A+H)^{-1} = (I_n + A^{-1}H)^{-1}A^{-1}$$

$$= (I_n - A^{-1}H + o(||A^{-1}H||))A^{-1}$$

$$= A^{-1} - A^{-1}HA^{-1} + o(||H||)$$

Donc f est différentiable en tout $A \in GL_n(\mathbb{K})$ et $df_A : H \mapsto -A^{-1}HA^{-1}$.

D) Opérations sur les différentielles

Théorème:

(1) Soit $\Omega \subset E$ ouvert, $A \in \Omega$.

Alors l'ensemble des fonctions $f:\Omega\to F$ différentiables en A est un sous-espace vectoriel de F^{Ω} . De plus, l'application $f\mapsto df_A$ est linéaire, c'est-à-dire :

Si f et g sont différentiables en A et $\lambda \in \mathbb{K}$, alors $f + \lambda g$ est différentiable en A et :

$$d(f + \lambda g)_A = df_A + \lambda dg_A$$

(2) Composition:

Soient $\Omega \subset E$, $\Omega' \subset F$ ouverts, où E, F, G sont des espaces de Banach.

Soient $f: \Omega \to F$, $g: \Omega' \to G$ tels que $f(\Omega) \subset \Omega'$.

On suppose que f est différentiable en $A \in \Omega$, g en B = f(A).

Alors $g \circ f : \Omega \to G$ est différentiable en A, et $d(g \circ f)_A = dg_{f(A)} \circ df_A$

Démonstration :

(1) Si f, g sont différentiables en A, on a :

$$f(A+x) = f(A) + l(x) + o_1(||x||)$$
 et $g(A+x) = g(A) + m(x) + o_2(||x||)$

où $l = df_A$, $m = dg_A$.

Ainsi, pour
$$\lambda \in \mathbb{K}$$
, $(f + \lambda g)(A + x) = (f + \lambda g)(A) + (l + \lambda m)(x) + o(\|x\|)$

Et $l + \lambda m \in L_C(E, F)$

(2) On a:
$$f(A+x) = f(A) + l(x) + o_1(||x||)$$
, $g(B+y) = g(B) + m(y) + o_2(||y||)$

Où *l*, *m* sont linéaires continues.

Donc
$$g \circ f(A+x) = g(B+y)$$
 où $y = l(x) + o_1(||x||)$

Soit
$$g \circ f(A+x) = g(B) + m \circ l(x) + m(o_1(||x||)) + o_2(||l(x) + o_1(||x||)|)$$

En effet, quand x tend vers 0, y tend aussi vers 0 car l est continue.

Reste à montrer que $\mathcal{E}(x) = m(o_1(\|x\|)) + o_2(\|l(x) + o_1(\|x\|)\|)$ est négligeable devant $\|x\|$ quand x tend vers 0.

Pour
$$m(o_1(||x||))$$
: on a $||m(o_1(||x||))||_G \le ||m|| \times ||o_1(||x||)||_E = o(||x||)$

Soit maintenant
$$\varepsilon > 0$$
. Il existe alors $r > 0$ tel que $||x|| < r \Rightarrow ||o_1(||x||)||_E \le ||x||$

Donc pour
$$||x|| < r$$
, $||l(x) + o_1(||x||)||_F \le (||l|| + 1)||x||$

Or, par définition de o_2 , il existe $\alpha > 0$ tel que

$$\forall y \in F, \|y\| < \alpha \Rightarrow \|o_2(\|y\|)\| \le \frac{\varepsilon}{\|l\|+1} \|y\|$$

Donc pour
$$||x|| < \max\left(\frac{\alpha}{1+||l||}, r\right)$$
,

$$\left\|o_2(\left\|l(x)+o_1(\left\|x\right\|)\right\|)\right\| \leq \frac{\mathcal{E}}{1+\left\|l\right\|}\left\|l(x)+o_1(\left\|x\right\|)\right\| \leq \mathcal{E}\left\|x\right\|.$$

Donc $g \circ f$ est différentiable en A, et $d(g \circ f) = m \circ l = dg_{f(A)} \circ df_A$

Corollaire (théorème de la chaîne) :

Soient E, F deux espaces de Banach, $\Omega \subset E$ un ouvert, et $f : \Omega \to F$.

On suppose que f est différentiable en $A \in \Omega$.

Soit $\varphi: I \to \Omega$, où I est un intervalle de \mathbb{R} , tel que $\varphi(t_0) = A$ pour $t_0 \in \mathring{I}$.

On suppose φ dérivable en t_0 .

Alors $f \circ \varphi : I \to F$ est dérivable en t_0 , et :

$$(f \circ \varphi)'(t_0) = df_{\varphi(t_0)}(\varphi'(t_0)) \in F$$

Démonstration :

Comme φ est dérivable en t_0 , elle est aussi différentiable en t_0 , et $d\varphi_{t_0}:\mathbb{R}\to E$. De plus, f est différentiable en $\varphi(t_0)=A$.

Donc $f \circ \varphi$ est différentiable en t_0 , donc dérivable et :

$$(f \circ \varphi)'(t_0) = d(f \circ \varphi)_{t_0}(1) = (df_{\varphi(t_0)} \circ d\varphi_{t_0})(1))$$
$$= df_{\varphi(t_0)}(d\varphi_{t_0}(1)) = df_{\varphi(t_0)}(\varphi'(t_0))$$

E) En dimension finie : matrices Jacobiennes, calcul des dérivées partielles d'un composé

Soient $\mathfrak{B} = (\vec{\varepsilon}_1, ... \vec{\varepsilon}_p)$ une base de E, $\mathfrak{C} = (\vec{\eta}_1, ... \vec{\eta}_n)$ une base de F.

Soit $f: \Omega \subset E \to F$.

On note $f_1, \dots f_n$ les applications coordonnées de f dans ${\mathfrak C}$:

$$\forall M \in \Omega, f(M) = \sum_{j=1}^{n} f_{j}(M) \vec{\eta}_{j}$$

Théorème :

f est différentiable en $A \in \Omega$ si et seulement si toutes les f_j sont différentiables en

Démonstration:

Si f est différentiable en $A \in \Omega$, on a $\forall j \in [1, n], \forall M \in \Omega, f_i(M) = (\vec{\eta}_i^* \circ f)(M)$

Où $(\vec{\eta}_1^*,...\vec{\eta}_n^*)$ est la base duale de \mathfrak{C} . Donc pour $j \in [1,n]$, comme $\vec{\eta}_j^*$ et linéaire continue, elle est différentiable et donc f_j aussi.

Réciproquement, pour $j \in [1, n]$, on aura $l_i \in L_C(E, F)$ tel que

$$f_{j}(A + \vec{v}) = f_{j}(A) + l_{j}(\vec{v}) + o_{j}(\|\vec{v}\|)$$

Alors
$$f(A + \vec{v}) = f(A) + \sum_{i=1}^{n} l_{j}(\vec{v})\vec{\eta}_{j} + \sum_{i=1}^{n} o_{j}(\|\vec{v}\|)\vec{\eta}_{j}$$
, et $\sum_{i=1}^{n} o_{j}(\|\vec{v}\|)\vec{\eta}_{j}$ est toujours

négligeable devant $\|\vec{v}\|$ quand \vec{v} tend vers 0, et $\vec{v} \mapsto \sum_{j=1}^{n} l_j(\vec{v}) \vec{\eta}_j$ est linéaire continue.

Théorème:

On suppose $f: \Omega \to F$ différentiable en $A \in \Omega$. Alors pour $j \in [1, p]$, f admet en A une j-ème dérivée partielle par rapport à \mathfrak{B} qui vaut :

$$(\partial_{j,\mathfrak{B}}f)(A) = (df_A)(\vec{\varepsilon}_j)$$

De plus,
$$\max_{\mathfrak{B},\mathfrak{C}} (df_A) = ((\partial_{j,\mathfrak{B}} f_i)(A))_{\substack{i \in [[1,n]]\\j \in [1,p]}}$$

(La *j*-ème colonne de la matrice est la matrice de $\partial_{i,\mathfrak{D}} f$ dans \mathfrak{C})

Définition:

 $\mathrm{mat}_{\mathfrak{B},\mathfrak{S}}(df_A)$ s'appelle la matrice Jacobienne de f en A, notée $\mathrm{Jac}(f)_A$.

Exemple:

Soit
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
. Si f est différentiable en $M_0 = (x_0, y_0, z_0)$, $(x,y,x) \mapsto (u(x,y,z),v(x,y,z))$

alors sa matrice Jacobienne est:

$$\begin{pmatrix} \frac{du}{dx} & \frac{du}{dy} & \frac{du}{dz} \\ \frac{dv}{dx} & \frac{dv}{dy} & \frac{dv}{dz} \end{pmatrix} \in M_{2,3}(\mathbb{K})$$

Démonstration:

(1) Si f est différentiable en A, alors elle admet une dérivée en A selon tout vecteur, et $(D_{\vec{v}}f)(A) = df_A(\vec{v})$

Donc en particulier sur la base, $(\partial_{i,\mathfrak{D}} f)(A) = df_A(\vec{\epsilon}_i)$

(2) Par définition de la matrice de df_A dans les bases \mathfrak{B} et \mathfrak{C} , la j-ème colonne de cette matrice est constituée des coordonnées de $df_A(\vec{\epsilon}_i)$ dans \mathfrak{C} , c'est-à-dire des coordonnées de $(\partial_{i,\mathfrak{B}}f)(A)$ dans \mathfrak{C} .

Or,
$$f = \sum_{i=1}^{n} f_i \vec{\eta}_i$$
. Donc $(\partial_{j,\mathfrak{B}} f)(A) = \sum_{i=1}^{n} (\partial_{j,\mathfrak{B}} f_i)(A) \vec{\eta}_i$.

Théorème (propriétés des matrices Jacobiennes):

(1) Linéarité : soient $f,g:\Omega\subset E\to F$ différentiables en $a\in\Omega$, $\lambda\in\mathbb{K}$.

Alors $f + \lambda g$ est différentiable en a et $Jac(f + \lambda g)_a = Jac(f)_a + \lambda Jac(g)_a$

(2) Composition:

Soient $f: \Omega \subset E \to \Omega' \subset F$, $g: \Omega' \to G$.

On suppose f différentiable en $a \in \Omega$, g en f(a).

On note \mathfrak{B} une base de E, \mathfrak{C} de F, \mathfrak{D} de G. Alors $g \circ f$ est différentiable en a et $\operatorname{Jac}_{\mathfrak{B},\mathfrak{D}}(g \circ f)_{a} = \operatorname{Jac}_{\mathfrak{G},\mathfrak{D}}(g)_{f(a)} \times \operatorname{Jac}_{\mathfrak{B},\mathfrak{G}}(f)_{a}.$

Démonstration:

Découle des propriétés de la différentielle.

Exemple:

Soit $f: \Omega \subset \mathbb{R}^2 \to \Omega' \subset \mathbb{R}^2$, où α , β sont les fonctions coordonnées de f. $(x,y) \mapsto (\alpha(x,y), \beta(x,y))$

Et
$$g: \Omega' \subset \mathbb{R}^2 \to \mathbb{R}$$

 $(u,v) \mapsto g(u,v)$

On note $h = g \circ f : (x, y) \mapsto g(\alpha(x, y), \beta(x, y))$

On suppose que f est différentiable en (a,b) et g en f(a,b).

Alors h est différentiable en (a,b) et :

$$\operatorname{Jac}(h)_{(a,b)} = \left(\frac{\partial h}{\partial x}(a,b) \quad \frac{\partial h}{\partial y}(a,b)\right) = \operatorname{Jac}(g)_{f(a,b)} \times \operatorname{Jac}(f)_{(a,b)}$$

$$= \left(\frac{\partial g}{\partial u}(f(a,b)) \quad \frac{\partial g}{\partial v}(f(a,b))\right) \times \left(\frac{\partial \alpha}{\partial x}(a,b) \quad \frac{\partial \alpha}{\partial y}(a,b)\right)$$

$$\frac{\partial h}{\partial x} \quad \frac{\partial \alpha}{\partial y} \quad \frac{\partial \alpha}{\partial y} \quad \frac{\partial \beta}{\partial y}(a,b)$$

D'où
$$\frac{\partial h}{\partial x}(a,b) = \frac{\partial g}{\partial u}(f(a,b))\frac{\partial \alpha}{\partial x}(a,b) + \frac{\partial g}{\partial v}(f(a,b))\frac{\partial \beta}{\partial x}(a,b)$$

Théorème (formule de la chaîne):

Soient $f: \Omega \subset E \to \Omega' \subset F$, $g: \Omega' \to G$

On note $\mathfrak{B} = (\vec{\varepsilon}_1, ... \vec{\varepsilon}_p)$ une base de E, $\mathfrak{C} = (\vec{\eta}_1, ... \vec{\eta}_n)$ une base de F.

On peut donc noter, pour $j \in [1, p]$, $f_j : \Omega \to \mathbb{K}$ tels que $f = \sum_{j=1}^p f_j \vec{\eta}_j$.

On suppose que f admet une dérivée partielle $(\partial_{j,\mathfrak{D}}f)(A)$ en $A \in \Omega$, et que g est différentiable en f(A).

Alors $g \circ f$ admet une dérivée partielle $\partial_{i,\mathfrak{B}}(g \circ f)$ en A, et :

$$(\partial_{j,\mathfrak{B}}g \circ f)(A) = \sum_{i=1}^{n} (\partial_{j,\mathfrak{B}}f_i)(A).(\partial_{i,\mathfrak{G}}g)(f(A))$$

Démonstration:

On étudie $\psi: x \in I \mapsto g \circ f(A + x\vec{\eta}_i)$ pour x proche de 0 dans \mathbb{R} .

Les fonctions g et $\varphi: x \mapsto f(A + x\vec{\eta}_j)$ sont différentiables $(g \text{ en } f(A), \varphi \text{ en } 0)$

Donc ψ est différentiable en 0, donc dérivable et :

$$\psi'(0) = dg_{f(A)}(\varphi'(0)) = dg_{f(A)}((\partial_{j,\mathfrak{B}}f)(A))$$

Mais la matrice de ce vecteur est :

 $\underset{\mathfrak{B},\mathfrak{C}}{\operatorname{Jac}}(g)_{f(A)} \times \operatorname{mat}_{\mathfrak{C}}(\partial_{j,\mathfrak{B}}f(A)) \underset{\mathfrak{B},\mathfrak{C}}{\operatorname{Jac}}(g)_{f(A)} \times \operatorname{mat}_{\mathfrak{C}}(\partial_{j,\mathfrak{B}}f(A))$

Où
$$\operatorname{mat}_{\mathfrak{C}}(\partial_{j,\mathfrak{B}}f(A)) = \begin{pmatrix} (\partial_{j,\mathfrak{B}}f_{1})(A) \\ \vdots \\ (\partial_{j,\mathfrak{B}}f_{n})(A) \end{pmatrix}$$

En faisant le produit, on obtient ainsi $(\partial_{j,\mathfrak{B}}g \circ f)(A) = \sum_{i=1}^{n} (\partial_{j,\mathfrak{B}}f_i)(A).(\partial_{i,\mathfrak{C}}g)(f(A))$

Déterminant Jacobien :

On suppose E et F de dimension finie n.

Soit $f: \Omega \subset E \to F$, différentiable en $A \in \Omega$, \mathfrak{B} une base de E, \mathfrak{C} de F.

On appelle Jacobien de f en A relativement aux bases \mathfrak{B} , \mathfrak{C} le scalaire $\mathrm{jac}_{\mathfrak{B},\mathfrak{C}}(f)_A = \mathrm{det}(\mathrm{Jac}(f)_A)$

Remarque:

 $df_A \in L_C(E,F)$ est un isomorphisme si et seulement si $\mathrm{jac}_{\mathfrak{B},\mathfrak{G}}(f)_A \neq 0$

F) Application de classe C^1 .

Cas de la dimension finie :

Soit $f: \Omega \subset E \to F$ où E est de dimension finie, $\mathfrak{B} = (\vec{\varepsilon}_1, ... \vec{\varepsilon}_n)$ est une base de E.

On dit que f est de classe C^1 par rapport à $\mathfrak B$ lorsque pour tout $j \in [1, p]$ et $A \in \Omega$, f admet une j-ème dérivée partielle $(\partial_{j,\mathfrak B}f)(A)$ et si les applications dérivées partielles $\partial_{j,\mathfrak B}f$ sont toutes continues sur Ω .

Remarque:

Il semble que la définition dépend de $\mathfrak B$; on va voir que ce n'est pas le cas :

Théorème:

Soit $f: \Omega \subset E \to F$, \mathfrak{B} une base de E. Les conditions suivantes sont équivalentes :

- (1) f est de classe C^1 par rapport à \mathfrak{B} .
- (2) Pour tout $\vec{u} \in E$ et $A \in \Omega$, f a une dérivée selon \vec{u} en A $(D_{\vec{u}}f)(A) \in F$ et l'application $\Omega \to F$ est continue sur Ω (pour tout $\vec{u} \in E$) $A \mapsto (D_{\vec{u}}f)(A)$
- (3) f est différentiable en tout $A \in \Omega$ et $\Omega \to (L_C(E,F), \| \| \|)$ est continue. $A \mapsto df_A$

Conséquence, remarque:

L'équivalence (2) \Leftrightarrow (1) montre que la caractérisation C^1 ne dépend pas de \mathfrak{B} .

La condition (3) est la vraie définition du caractère C^1 , valable pour des espaces de Banach E et F (pas nécessairement de dimension finie).

Démonstration:

- $(2) \Rightarrow (1)$: ok (il suffit de prendre les vecteurs de la base)
- Si f est différentiable en A, alors pour tout $\vec{u} \in E$, f admet des dérivées $(D_{\vec{u}}f)(A)$ et $(D_{\vec{u}}f)(A) = df_A(\vec{u})$.

Comme $A \mapsto df_A$ est continu, pour $\vec{u} \in E$ fixé, $A \mapsto df_A(\vec{u})$ est continu $(\|df_A(\vec{u}) - df_{A_0}(\vec{u})\| \le \|df_A - df_{A_0}\| \|\vec{u}\|)$

 $-(1) \Rightarrow (3)$:

Lemme:

On note $\mathfrak{B} = (e_1, ... e_n)$ une base de E.

On suppose que $f: \Omega \subset E \to F$ admet des dérivées partielles $(\partial_{j,\mathfrak{B}} f)(M)$ pour M voisin de A, et que les $M \mapsto (\partial_{j,\mathfrak{B}} f)(M)$ sont continus en A.

Alors
$$f$$
 est différentiable en A , et $df_A : \vec{u} = \sum_{j=1}^p u_j e_j \mapsto \sum_{j=1}^p u_j (\partial_{j,\mathfrak{B}} f)(A)$

Démonstration:

On le fait dans le cas où $E = \mathbb{R}^2$ et $F = \mathbb{R}$ (on peut généraliser le résultat mais les notations sont lourdes)

On peut supposer que $A = (0,0) \in \mathbb{R}^2$.

Par hypothèse, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ existent au voisinage de (0,0) et sont continus en (0,0).

On veut montrer que f est différentiable en (0,0) et que

$$df_{(0,0)}: (h,k) \mapsto h \frac{\partial f}{\partial x}(0,0) + k \frac{\partial f}{\partial y}(0,0)$$

On note, pour
$$(h,k) \in \mathbb{R}^2$$
, $\Delta(h,k) = f(h,k) - f(0,0) - h \frac{\partial f}{\partial x}(0,0) - k \frac{\partial f}{\partial y}(0,0)$.

On doit donc montrer que $\Delta(h,k) = o(\|(h,k)\|)$

(Pour F de dimension n, on le montre pour chaque Δ_j défini pour chaque coordonnée, à valeur dans $\mathbb R$; pour E de dimension supérieure à 2, on a plus de termes) On a alors :

$$\forall (h,k) \in \mathbb{R}^2, \Delta(h,k) = f(h,k) - f(h,0) + f(h,0) - f(0,0) - h\frac{\partial f}{\partial x}(0,0) - k\frac{\partial f}{\partial y}(0,0)$$

Soit (h,k) fixé au voisinage de (0,0). D'après le théorème des accroissements finis appliqué à $y \mapsto f(h,y)$, il existe $k_1 \in [0,k]$ tel que $f(h,k) - f(h,0) = k \frac{\partial f}{\partial v}(h,k_1)$

De même, le théorème des accroissements finis appliqué à $x \mapsto f(x,0)$ donne $h_1 \in [0,h]$ tel que $f(h,0) - f(0,0) = h \frac{\partial f}{\partial x}(h_1,0)$

(Si E est de dimension plus grande, on aura une décomposition de Δ plus grande et il faudra appliquer le théorème des accroissements finis suffisamment)

Donc

$$\begin{aligned} \left| \Delta(h,k) \right| &= \left| h \left(\frac{\partial f}{\partial x}(h_1,0) - \frac{\partial f}{\partial x}(0,0) \right) + k \left(\frac{\partial f}{\partial y}(h,k_1) - \frac{\partial f}{\partial y}(h,0) \right) \right| \\ &\leq \left\| (h,k) \right\|_{\infty} \left(\left| \frac{\partial f}{\partial x}(h_1,0) - \frac{\partial f}{\partial x}(0,0) \right| + \left| \frac{\partial f}{\partial y}(h,k_1) - \frac{\partial f}{\partial y}(h,0) \right| \right) \end{aligned}$$

$$(\|(h,k)\|_{\infty} = \max(|h|,|k|))$$

Et la quantité $\left(\left| \frac{\partial f}{\partial x}(h_1, 0) - \frac{\partial f}{\partial x}(0, 0) \right| + \left| \frac{\partial f}{\partial y}(h, k_1) - \frac{\partial f}{\partial y}(h, 0) \right| \right)$ tend vers (0,0) quand

(h,k) tend vers 0 par continuité des applications partielles en (0,0)

D'où le résultat.

Conséquence:

Si f admet sur Ω des dérivées $(\partial_{j,\mathfrak{B}}f)(A)$ en tout point A, et si les $(\partial_{j,\mathfrak{B}}f)$ sont toutes continues, d'après le lemme, f est différentiable en tout $A \in \Omega$.

Reste à montrer que $A \mapsto df_A$ est continue.

Soit \mathfrak{C} une base de F. Il suffit de montrer que $A \mapsto \operatorname{Jac}(f)_A$ est continue, ce qui est vrai car la j-ème colonne de cette matrice est la matrice dans \mathfrak{C} de $(\partial_{j,\mathfrak{D}}f)(A)$, donc dépend continûment de A.

Application:

- Pour $E = \mathbb{R}^n$: toute fonction polynomiale $E \to \mathbb{R}$ est de classe C^1 sur E.

- Soient
$$P,Q \in \mathbb{R}[X_1,...X_n]$$

Alors
$$\Omega = \{(x_1, ..., x_n) \in \mathbb{R}^n, Q(x_1, ..., x_n) \neq 0\}$$
 est un ouvert de \mathbb{R}^n , et:

$$f: \quad \Omega \to \mathbb{R} \quad \text{est de classe } C^1 \text{ sur } \Omega.$$

$$(x_1, ...x_n) \mapsto \frac{P(x_1, ...x_n)}{Q(x_1, ...x_n)}$$

En effet:

Déjà, Ω est ouvert car l'image réciproque d'un ouvert par une application continue (Q)

Pour une fraction rationnelle $f = \frac{P}{Q}$, f admet des dérivées partielles en tout point

$$A \in \Omega$$
, et $\frac{\partial f}{\partial x_j}(A) = \frac{\frac{\partial P}{\partial x_j}(A) \cdot Q(A) - P(A) \cdot \frac{\partial Q}{\partial x_j}(A)}{Q(A)^2}$, continue par rapport à A car rationnelle.

Exercice : étude de la fonction déterminant :

Déjà, det est de classe C^1 car polynomiale

Détermination de $d \det_{A} \in M_{n}(\mathbb{K})^{*}$

Si on pose
$$A = (a_{i,j})_{\substack{i \in [[1,n]]\\j \in [[1,n]]}}$$
, $\det(A) = f(a_{i,j})_{\substack{i \in [[1,n]]\\j \in [[1,n]]}}$, on a :

$$d \det_{A}(X) = \sum_{(i,j) \in [[1,n] \mid X[1,n]]} x_{i,j} \frac{\partial f}{\partial x_{i,j}}(A) \text{ où } X = (x_{i,j})_{\substack{i \in [[1,n]] \\ j \in [[1,n]]}}$$

Pour $A = I_n$

Calcul de
$$\frac{\partial \det}{\partial x_{i,i}}(I_n)$$
:

Pour
$$(i, j) \in [1, n] \times [1, n],$$

Si
$$i \neq j$$
, alors $\underbrace{\det(I_n + hE_{i,j})}_{\varphi_{i,j}(h)} = 1$

Donc
$$\frac{\partial \det}{\partial x_{i,j}}(I_n) = 0 = \varphi'_{i,j}(0)$$

Si
$$i = j$$
, $det(I_n + hE_{i,i}) = 1 + h$

Donc
$$\varphi'_{i,j}(0) = 1$$

Donc
$$d \det_{I_n} : (x_{i,j})_{\substack{i \in [[1,n]] \\ j \in [[1,n]]}} \mapsto \sum_{(i,j) \in [[1,n]] k[[1,n]]} x_{i,j} \frac{\partial f}{\partial x_{i,j}} (I_n) = \operatorname{Tr}(x)$$

Pour
$$A \in GL_n(\mathbb{K})$$
,

$$\det(A + H) = \det(A) \det(I_n + A^{-1}H)$$

$$= \det(A)(1 + \operatorname{Tr}(A^{-1}H) + o(\|A^{-1}H\|))$$

$$= \det A + \det(A)\operatorname{Tr}(A^{-1}H) + o(\|H\|)$$

(où on a pris une norme d'algèbre quelconque)

Donc la différentielle de det en $A \in GL_n(\mathbb{K})$ est $H \mapsto \det(A)\operatorname{Tr}(A^{-1}H)$

Et pour *A* non inversible :

On remarque qu'en fait pour A inversible,

$$d \det_A : H \mapsto \operatorname{Tr}((\det A) \cdot A^{-1} \times H) = \operatorname{Tr}(^t \operatorname{com}(A) \times H)$$

donc par continuité de l'application et densité de $GL_n(\mathbb{K})$ dans $M_n(\mathbb{K})$, c'est encore valable sur tout $M_n(\mathbb{K})$.

G) Caractère C^k et dérivées partielles d'ordre supérieur à 2.

(En dimension finie)

• Dérivées partielles d'ordre supérieur à 2 :

Si la fonction $f:\Omega\subset E\to F$ admet des fonctions dérivées partielles $\partial_{j,\mathfrak{B}}f:\Omega\to F$ définies sur Ω , on peut s'intéresser à l'existence de dérivées partielles pour ces nouvelles fonctions.

Lorsqu'elles existent, on les appelle dérivées partielles d'ordre 2 de f.

Plus généralement, on peut définir les dérivées partielles d'ordre k pour $k \ge 2$.

Cas particulier :

Si
$$E = \mathbb{R}^n$$
:

Soit $f:(x_1,...x_n)\mapsto f(x_1,...x_n)$. On note les dérivées partielles par rapport à une

base canonique $\frac{\partial f}{\partial x_j}$. Les dérivées partielles d'ordre 2 sont les $\frac{\partial}{\partial x_k} \left(\frac{\partial f}{\partial x_j} \right)$, notées plutôt

$$\frac{\partial^2 f}{\partial x_k \partial x_j}$$

• Théorème d'interversion de Schwarz :

Théorème:

Soit
$$f: \Omega \to F$$
, \mathfrak{B} une base de E , $\mathfrak{B} = (e_1, ... e_n)$

On suppose que $\partial_{j,\mathfrak{B}}(\partial_{k,\mathfrak{B}}f)$ et $\partial_{k,\mathfrak{B}}(\partial_{j,\mathfrak{B}}f)$ existent au voisinage de A et sont continues en A.

Alors
$$\partial_{j,\mathfrak{B}}(\partial_{k,\mathfrak{B}}f)(A) = \partial_{k,\mathfrak{B}}(\partial_{j,\mathfrak{B}}f)(A)$$

Démonstration:

Comme on ne s'intéresse qu'à deux vecteurs de \mathfrak{B} , on peut supposer que $E = \mathbb{R}^2$, et par translation que A = (0,0).

On suppose de plus $F = \mathbb{R}$ (pour alléger les notations)

Soit donc $f: \Omega \in V(0,0) \to \mathbb{R}$.

On va montrer que
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{\substack{(x,y) \to (0,0) \\ xy \neq 0}} \frac{f(x,y) - f(x,0) - f(0,y) + f(0,0)}{xy}$$
, qui

est une limite symétrique en x et y.

(Si F est de dimension plus grande, on le montre pour chaque coordonnée de f) Posons donc pour $(x, y) \in \Omega$, $\Delta(x, y) = f(x, y) - f(x, 0) - f(0, y) + f(0, 0)$

Pour x fixé, on pose $\varphi_x : y \mapsto f(x, y) - f(0, y)$

Ainsi,
$$\forall (x, y) \in \Omega, \Delta(x, y) = \varphi_{x}(y) - \varphi_{x}(0)$$
.

De plus,
$$\varphi_x$$
 est dérivable (on est toujours à x fixé), et φ'_x : $y \mapsto \frac{\partial f}{\partial y}(x,y) - \frac{\partial f}{\partial y}(0,y)$

Soit donc $(x, y) \in \Omega$

D'après le théorème des accroissements finis appliqué à φ_x , il existe $y_1 \in [0, y[$ tel

que
$$\Delta(x, y) = y \varphi'_x(y_1) = y(\frac{\partial f}{\partial y}(x, y_1) - \frac{\partial f}{\partial y}(0, y_1))$$

On applique alors le théorème des accroissements finis à $x \mapsto \frac{\partial f}{\partial y}(x, y_1)$, donc il

existe
$$x_1 \in]0, x[$$
 tel que $\Delta(x, y) = xy \frac{\partial^2 f}{\partial x \partial y}(x_1, y_1)$

Donc pour
$$xy \neq 0$$
, $\frac{\Delta(x,y)}{xy} = \frac{\partial^2 f}{\partial x \partial y}(x_1,y_1) \xrightarrow{(x,y) \to (0,0)} \frac{\partial^2 f}{\partial x \partial y}(0,0)$

(Par continuité)

Et comme Δ est symétrique en x et y, c'est la même chose pour $\frac{\partial^2 f}{\partial y \partial x}(0,0)$, d'où l'égalité.

Attention:

Il existe des fonctions ayant des dérivées partielles d'ordre 2 différentes.

• Fonctions de classe C^k pour $k \ge 2$:

Définition:

 $f:\Omega\subset E\to F$ est dite de classe C^k par rapport à $\mathfrak B$ si elle admet en tout A et pour tout ordre $p\le k$ des dérivées d'ordre p $\partial_{j_n}\partial_{j_{n-1}}...\partial_{j_k}f$ toutes continues sur Ω .

Proposition:

Pour $k \ge 2$, f est de classe C^k par rapport à $\mathfrak B$ si et seulement si elle admet des dérivées partielles d'ordre $1 \ \partial_i f$ qui sont toutes de classe C^{k-1}

Conséquence:

La caractérisation C^k est indépendante de la base choisie.

Remarque

On sait que f est de classe C^1 si et seulement si elle est différentiable en tout $A \in \Omega$ et $A \in \Omega \mapsto df_A \in L_C(E,F)$ est continue.

On en déduit que f est de classe C^p pour $p \ge 2$ si et seulement si elle est différentiable en tout $A \in \Omega$ et $df : A \in \Omega \mapsto df_A \in L_C(E,F)$ est de classe C^{p-1} .

On appellera différentielle d'ordre 2 de f en A l'application :

$$d^2 f_A = d(df)_A \in L_C(E, L_C(E, F))$$

Ainsi, f est de classe C^2 si et seulement si d^2f_A existe en tout point $A \in \Omega$ et $A \mapsto d^2f_A$ est continue.

Interprétation de la formule de Schwarz:

On suppose que $d^2 f : \Omega \to L_C(E, L_C(E, F))$ est continue.

Pour tous $A \in \Omega$ et $\vec{u}, \vec{v} \in E$, $(d^2 f_A(\vec{u}))(\vec{v}) \in F$

Alors d'après le théorème de Schwarz, $(d^2 f_A(\vec{u}))(\vec{v}) = (d^2 f_A(\vec{v}))(\vec{u})$

En effet:

Posons $\varphi(x, y) = f(A + x\vec{u} + y\vec{v}) = (f \circ g)(x, y)$ pour (x, y) au voisinage de (0,0).

Alors φ est de classe C^1 , et on a :

$$\frac{\partial \varphi}{\partial x}(x, y) = d\varphi_{(x, y)}(1, 0)$$

$$= d(f \circ g)_{(x, y)}(1, 0) = (df_{g(x, y)} \circ dg_{(x, y)})(1, 0)$$

$$= df_{A+x\bar{u}+y\bar{v}}(dg_{(x, y)}(1, 0)) = df_{A+x\bar{u}+y\bar{v}}(\bar{u})$$

$$\frac{\partial \varphi}{\partial x}$$
 est dérivable par rapport à y , et $\frac{\partial^2 \varphi}{\partial y \partial x}(x, y) = (d^2 f_{A+x\vec{u}+y\vec{v}}(\vec{v}))(\vec{u})$

En effet

Posons $\psi(x, y) = df_{A+x\vec{u}+y\vec{v}} = (df \circ g)(x, y)$ pour (x, y) au voisinage de (0,0).

On a alors:

$$\frac{\partial \psi}{\partial y}(x,y) = d\psi_{(x,y)}(0,1) = d(df)_{A+x\vec{u}+y\vec{v}} \circ dg_{(x,y)}(0,1)$$
$$= d(df)_{A+x\vec{u}+y\vec{v}}(\vec{v}) = d^2 f_{A+x\vec{u}+y\vec{v}}(\vec{v})$$

Et en posant
$$\varphi_1(x, y) = \frac{\partial \varphi}{\partial x}(x, y) = (\psi(x, y))(\vec{u})$$
,

$$\varphi_1$$
 est le composé de $\psi: V(0,0) \to L_C(E,F)$ et de $\operatorname{Ev}_{\vec{u}}: L_C(E,F) \to F$ $(x,y) \mapsto \psi(x,y)$ $l \mapsto l(\vec{u})$

Or, $\text{Ev}_{\vec{u}}$ est linéaire continu, donc différentiable et $\forall l \in L_C(E, F), d(\text{Ev}_{\vec{u}})_l = \text{Ev}_{\vec{u}}$

Donc $d\varphi_1 = d(Ev_{\bar{u}})_{\psi(x,y)} \circ d\psi_{(x,y)}$

D'où
$$\frac{\partial \varphi_1}{\partial y}(x,y) = \operatorname{Ev}_{\vec{u}} \circ d\psi_{(x,y)}(0,1) = \operatorname{Ev}_{\vec{u}}(\frac{\partial \psi}{\partial y}(x,y)) = (\frac{\partial \psi}{\partial y}(x,y))(\vec{u}),$$

Soit
$$\frac{\partial^2 \varphi}{\partial y \partial x}(x, y) = \frac{\partial \varphi_1}{\partial y}(x, y) = (\frac{\partial \psi}{\partial y}(x, y))(\vec{u}) = (d^2 f_{A + x\vec{u} + y\vec{v}}(\vec{v}))(\vec{u})$$

Et donc en x = y = 0, d'après le théorème de Schwarz :

$$(d^2 f_A(\vec{u}))(\vec{v}) = \frac{\partial^2 \varphi}{\partial x \partial v}(0,0) = \frac{\partial^2 \varphi}{\partial v \partial x}(0,0) = (d^2 f_A(\vec{v}))(\vec{u})$$

• Opérations sur les fonctions C^k :

Théorème:

Une combinaison linéaire et un composé de fonctions de classe C^k sont de classe C^k .

Démonstration:

Par récurrence sur k (pour la composition) :

- Le résultat est déjà vrai pour k = 0.
- Supposons que l'énoncé est établi jusqu'à k-1 pour $k \ge 1$.

Considérons alors $f: \Omega \subset E \to \Omega' \subset F$, $g: \Omega' \to G$ de classe C^k .

Donc f et g sont différentiables en tout point de Ω et Ω' .

Ainsi, $g \circ f$ est différentiable en tout point de Ω , et $d(g \circ f)_A = dg_{f(A)} \circ df_A$

Par hypothèse de récurrence, $A \in \Omega \mapsto dg_{f(A)} \in L_C(F,G)$, qui est composé des applications f et dg, toutes deux de classe C^{k-1} , est de classe C^{k-1} .

df est aussi de classe C^{k-1} .

De plus, l'application $B: L_C(F,G) \times L_C(E,F) \to L_C(E,G)$ est bilinéaire continue, $(\alpha,\beta) \mapsto \alpha \circ \beta$

donc de classe C^{∞} :

Si $B: E_1 \times E_2 \to F$ est bilinéaire continue, alors B est de classe C^{∞} .

En effet

B est différentiable en tout point de $(a_1, a_2) \in E_1 \times E_2$, et

$$dB_{(a_1,a_2)}: E_1 \times E_2 \to F$$

$$(x_1,x_2) \mapsto B(a_1,x_2) + B(x_1,a_2)$$

Donc $dB: E_1 \times E_2 \to L_C(E_1 \times E_2, F)$ est linéaire continue.

Donc dB est différentiable en tout point $(a_1, a_2) \in E_1 \times E_2$ et :

$$\forall (a_1, a_2) \in E_1 \times E_2, d^2 B_{(a_1, a_2)} = dB$$

Donc d^2B est une application constante (qui prend la valeur dB sur $E_1 \times E_2$)

Donc d^2B est différentiable et $\forall (a_1, a_2) \in E_1 \times E_2, d^3B_{(a_1, a_2)} = 0$

C'est-à-dire $d^3B = 0$, qui est de classe C^{∞} .

Reprenons:

$$B: L_{\mathbb{C}}(F,G) \times L_{\mathbb{C}}(E,F) \to L_{\mathbb{C}}(E,G)$$
 est donc de classe C^{∞} , et $(\alpha,\beta) \mapsto \alpha \circ \beta$

 $d(g \circ f)$ est la composée de $\Omega \to L_C(F,G) \times L_C(E,F)$ et de B, qui sont toutes $A \mapsto (dg_{f(A)},df_A)$

deux de classe C^{k-1}

Donc $d(g \circ f)$ est de classe C^{k-1} par hypothèse de récurrence.

Donc $g \circ f$ est de classe C^k .

H) C^k –difféomorphisme

• Définition :

Soit Ω un ouvert de E, Ω' de F, et $f: \Omega \to \Omega'$.

On dit que f est un homomorphisme lorsqu'elle est bijective et bicontinue, c'est-à-dire que f et f^{-1} sont continues.

On dit que f est un C^k –difféomorphisme (pour $k \ge 1$) lorsqu'elle est bijective et f, f^{-1} sont de classe C^k

(Un homomorphisme serait ainsi un « C^0 -difféomorphisme » – on n'emploie pas ce terme)

Proposition (lien entre df et $d(f^{-1})$):

Soit $f: \Omega \to \Omega'$ un C^k -difféomorphisme.

Alors pour tout $A \in \Omega$, df_A est un isomorphisme bicontinu (c'est-à-dire un homomorphisme linéaire) entre E et F, et :

$$d(f^{-1})_{f(A)} = (df_A)^{-1} \in L_C(F, E)$$

Remarque:

Si $f: \Omega \subset \mathbb{R}^n \to \Omega' \subset \mathbb{R}^p$ où $\Omega \neq \emptyset$ est un C^k –difféomorphisme, alors n = p car df_A est alors un isomorphisme entre \mathbb{R}^n et \mathbb{R}^p .

Démonstration:

On a
$$f^{-1} \circ f = Id_{\Omega}$$
 et $f \circ f^{-1} = Id_{\Omega}$

Comme f et f^{-1} sont différentiables, on a :

$$d(\mathrm{Id}_{\Omega})_{A} = df_{f(A)}^{-1} \circ df_{A}$$

Or,
$$\operatorname{Id}_{\Omega} = (\operatorname{Id}_{E})_{/\Omega}$$
 et Id_{E} , donc $d(\operatorname{Id}_{\Omega})_{A} = \operatorname{Id}_{E}$

Donc
$$df_{f(A)}^{-1} \circ df_A = \mathrm{Id}_E$$

Et de même $df_A \circ df_{f(A)}^{-1} = \operatorname{Id}_F$

Donc df_A est un isomorphisme, et df_A , $df_{f(A)}^{-1}$ sont continues, donc c'est un homomorphisme, et on a bien l'égalité donnée.

• Cas de la dimension 1 : $E = F = \mathbb{R}$.

Rappel:

Soient I, J deux intervalles de \mathbb{R} , $f: I \to J$, $k \ge 1$.

Alors f est un C^k –difféomorphisme lorsque f est bijective, de classe C^k et f^{-1} est de classe C^k .

Théorème (caractérisation des C^k -difféomorphismes):

 $f: I \to J$ est un C^k -difféomorphisme si et seulement si :

- (1) f est de classe C^k .
- (2) f' ne s'annule pas
- (3) f(I) = J (surjective)

NB : ce théorème permet de ne pas avoir à étudier f^{-1} .

Avec (1) et (2), on voit que f est injective et que $f^{-1}: J \to I$ est de classe C^k

• Théorème d'inversion locale (hors programme) :

Soit
$$f: \Omega \subset E \to F$$
 de classe C^k , $A \in \Omega$.

On suppose que df_A est un homéomorphisme de E dans F (c'est-à-dire que df_A est linéaire, bijective, bicontinue)

Alors $f(\Omega)$ est un voisinage de f(A), et il existe un voisinage U de A dans Ω , un voisinage U' de f(A) dans Ω' tels que $f_{U'}:U\to U'$ est un C^k -difféomorphisme.

Autrement dit, sous les hypothèses du théorème, f est un C^k -difféomorphisme au voisinage de A.

Démonstration:

(1) Réductions :

On pose $L = df_A$.

En remplaçant f par $x \mapsto L^{-1}(f(x+A)-f(x))$, on peut supposer que E=F, A=f(A)=0 et $df_A=\mathrm{Id}$.

Par continuité de df en A, il existe $\alpha > 0$ tel que $\forall x \in \Omega, ||x|| \le \alpha \Rightarrow ||df_x - Id|| \le \frac{1}{2}$

Soit B_1 la boule fermée de centre 0 et de rayon α , et g définie par

$$\forall x \in \Omega, g(x) = x - f(x).$$

Ainsi, g est de classe C^1 sur l'intérieur de B_1 , de différentielle nulle en A=0 et $\frac{1}{2}$ -lipschitzienne sur B_1 .

Le calcul de la dérivée de $t \mapsto g(t.N + (1-t).M)$ montre que pour tout $(N,M) \in B_1^2$, $g(N) - g(M) = \int_0^1 dg_{(tN+(1-t)M)}(\overrightarrow{NM})dt = \int_0^1 (\operatorname{Id} - df_{(tN+(1-t)M)})(\overrightarrow{NM})dt$

Et donc
$$\|g(N) - g(M)\| \le \frac{\|\overrightarrow{MN}\|}{2}$$

(2) Maintenant:

Pour $x, x' \in B_1$, on a

$$||f(x) - f(x')|| = ||(g(x') - g(x)) - (x - x')|| \ge ||x - x'|| - \frac{||x - x'||}{2} \ge \frac{||x - x'||}{2}$$

Donc f est injective sur B_1 .

Soit $y \in \overline{B}(f(A), \frac{\alpha}{2})$.

On note $h_y: x \mapsto x - f(x) + y$, définie sur B_1 .

Alors:

 B_1 est complète (car fermée dans un espace complet)

 h_{v} stabilise B_{1} car pour $||x|| \le \alpha$, on a

$$||h_y(x)|| = ||g(x) + y|| \le ||g(x) - g(0)|| + ||y|| \le \frac{||x||}{2} + ||y|| \le \alpha$$

Et g est 1/2-lipschitzienne sur B_1 donc $h_y = g + y$ aussi.

Donc d'après le théorème du point fixe, il existe un unique $x \in B_1$ tel que $h_v(x) = x$ c'est-à-dire tel que f(x) = y.

On pose $\omega = f^{-1}(B_o(0, \frac{\alpha}{2})) \cap B_o(0, \alpha)$. Comme f est continue, c'est un voisinage ouvert de 0, et on a de plus $f(\omega) = B_o(0, \frac{\alpha}{2})$.

En effet, on a déjà $f(\omega) \subset B_o(0,\frac{\alpha}{2})$ par définition de ω . Inversement, si $\|y\| < \frac{\alpha}{2}$, il existe $x \in B_1$ tel que f(x) = y, mais l'inégalité $\|y\| = \|f(x)\| = \|f(x) - f(0)\| \ge \frac{\|x\|}{2}$ montre que $\|x\| < \alpha$ et donc $x \in \omega$. Donc $y = f(x) \in f(\omega)$, d'où l'autre inclusion.

Ainsi, $f: \omega \to B_o(0, \frac{\alpha}{2})$ est continue, bijective. Sa réciproque est de plus aussi continue car lipschitzienne :

Pour
$$y = f(x)$$
, $y' = f(x') \in B_o(0, \frac{\alpha}{2})$, on a:

$$||y-y'|| = ||f(x)-f(x')|| \ge \frac{||x'-x||}{2}$$
, soit

$$\forall (y, y') \in B_o(0, \frac{\alpha}{2}), \left\| f^{-1}(y) - f^{-1}(y') \right\| \le 2 \|y - y'\|.$$

Donc $\hat{f}: \omega \to \omega' = B_o(0, \frac{\alpha}{2})$ est un homéomorphisme; on pose alors $\hat{g} = \hat{f}^{-1}$. \hat{g} est donc déjà continue.

(3) Montrons que \hat{g} est différentiable sur ω' .

Déjà, pour $a \in \omega$, on a $||df_a - Id|| \le \frac{1}{2}$, donc df_a est un automorphisme de E.

Soit $b = \hat{f}(a) \in \omega'$. Pour k tel que $b + k \in \omega'$, on pose $h = \hat{g}(b + k) - a$.

Par continuité de \hat{g} , h tend vers 0 quand k tend vers 0, et comme f est différentiable en a, on a le développement :

$$b + k = f(a + h) = f(a) + df_a(h) + o(h)$$
, c'est-à-dire $k = df_a(h) + o(h)$.

On a donc au voisinage de 0 la majoration : $||k|| \le (|||df_a|| + \frac{1}{2})||h|| \le 2||h||$

Et on peut donc écrire $\hat{g}(b+k) = \hat{f}^{-1}(b) + h = \hat{f}^{-1}(b) + df_a^{-1}(k) + df_a^{-1}(o(k))$

Donc \hat{g} est différentiable en $b = \hat{f}(a)$, de différentielle df_a^{-1} .

(4) Enfin, g est de classe C^k :

L'application $d\hat{g}: a \in \omega' \mapsto d\hat{g}_a \in L(E)$ est de classe C^{k-1} car composée de $df: a \mapsto df_a$ qui est C^{k-1} et de $\varphi \in GL(E) \mapsto \varphi^{-1}$ qui est de classe C^{∞} .

Corollaire (théorème de l'application ouverte) :

Soit $f: \Omega \subset E \to F$ de classe C^1 . On suppose que pour tout $A \in \Omega$, $df_A: E \to F$ est un homéomorphisme (linéaire). Alors f est une application ouverte, c'est-à-dire que pour tout ouvert U de Ω , $f(U) \subset F$ est ouvert.

Démonstration:

Soit $U \subset \Omega$ un ouvert, et $A \in U$

Alors le théorème précédent s'applique à $f_{/U}: U \to F$, de classe C^1 , en A et en particulier, $f(U) = f_{//U}(U)$ est un voisinage de f(A) dans F.

Donc f(U) est voisinage de chacun de ses points.

• Théorème d'inversion globale (caractérisation des difféomorphismes) :

Exemple:

L'exponentielle complexe:

On note
$$E: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (e^x \cos y, e^x \sin y)$.

Alors E est de classe C^{∞} , et pour tout $(x, y) \in \mathbb{R}^2$,

$$\operatorname{Jac}(E)_{(x,y)} = \begin{pmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{pmatrix} \in GL_2(\mathbb{R}) \text{ (de déterminant } e^{2x} \neq 0)$$

Donc $dE_{(x,y)} \in L(\mathbb{R}^2)$ est un automorphisme de \mathbb{R}^2 .

Mais E n'est pas injective, puisque $\forall (x, y) \in \mathbb{R}^2 E(x, y) = E(x, y + 2\pi)$

On peut appliquer le théorème d'inversion locale :

Pour tout $(x,y) \in \mathbb{R}^2$, il existe U voisinage ouvert de (x,y) et U' voisinage ouvert de E(x,y) tels que $E_{/U}: U \to U'$ est un C^{∞} -difféomorphisme. Donc E est un C^{∞} -difféomorphisme local (mais pas global, car non injectif)

On peut appliquer le théorème de l'application ouverte : $E(\mathbb{R}^2)$ est un ouvert de \mathbb{R}^2 (c'est $\mathbb{R}^2 \setminus \{(0,0)\}$)

Théorème d'inversion globale (caractérisation des difféomorphismes) :

Soit $f: \Omega \subset E \to \Omega' \subset F$, où Ω est ouvert, de classe C^k , avec $\Omega' = f(\Omega)$.

On suppose que:

- (1) Pour tout $A \in \Omega$, df_A est un homéomorphisme de E dans F.
- (2) f est injective.

Alors Ω' est un ouvert et $f: \Omega \to \Omega'$ est un C^k -difféomorphisme.

(La réciproque est vraie)

Démonstration :

Déjà, d'après le théorème de l'application ouverte, Ω' est un ouvert.

Comme f est supposée injective, $f: \Omega \to \Omega'$ est bijective et de classe C^k

On doit montrer que $f^{-1}: \Omega' \to \Omega$ est de classe C^k .

Soit
$$B \in \Omega'$$
, et $A = f^{-1}(B)$

On peut appliquer le théorème d'inversion locale en A: il existe un voisinage U ouvert de A, U' de B tels que $f_{U}: U \to U'$ est un C^k -difféomorphisme.

Alors
$$(f^{-1})_{/U'} = (f_U)^{-1}$$
 est de classe C^k

Donc f^{-1} est de classe C^k au voisinage de B, et comme c'est valable pour tout $B \in \Omega$, $f^{-1}: \Omega' \to \Omega$ est de classe C^k .

Exemples:

- En reprenant l'exemple précédent, pour que E soit un C^{∞} -difféomorphisme, on peut prendre $U = \mathbb{R} \times [-\pi, \pi[$

Et
$$E(U) = \mathbb{C} \setminus \mathbb{R}_{-} = \mathbb{R}^2 \setminus \{(x,0), x \in \mathbb{R}_{-}\}.$$

En effet:

E est de classe C^{∞}

Pour tout $(x, y) \in U$, $\text{jac}(E)_{(x,y)} = e^{2x} \neq 0$

E est injective sur U.

En effet, si E(x, y) = E(x', y') pour $(x, y), (x', y') \in U$, alors $e^{x+iy} = e^{x'+iy'}$

Donc $x + iy - (x' + iy) \in 2i\pi \mathbb{Z}$

Donc x = x', et $y - y' \in 2\pi \mathbb{Z}$

Donc comme $y, y' \in]-\pi, \pi[$, on a bien (x, y) = (x', y')

Donc E est bien un C^{∞} -difféomorphisme.

- Passage en polaire :

On note P l'application $P: \mathbb{R}^2 \to \mathbb{R}^2$ $(r,t) \mapsto (r\cos t, r\sin t)$

On cherche un ouvert U maximal tel que $P_{/U}:U\to P(U)$ est un $C^{\infty}-$ difféomorphisme.

Déjà, P est de classe C^{∞} , et pour $(r,t) \in \mathbb{R}^2$.

Et
$$\operatorname{Jac}(P)(r,t) = \begin{pmatrix} \cos t & -r\sin t \\ \sin t & r\cos t \end{pmatrix}$$
. Donc $\operatorname{jac}(P)(r,t) = r$

On suppose r > 0:

Prenons $U = [0, +\infty[\times] - \pi, \pi[$.

Sur *U*, le théorème d'inversion globale s'applique.

En effet, P est de classe C° , le déterminant jacobien ne s'annule pas, et P est injectif.

Donc $P_{U}: U \to P(U)$ est un C^{∞} -difféomorphisme et U' = P(U) est ouvert.

On a
$$P(U) = \mathbb{R}^2 \setminus \{(x,0), x \le 0\}$$
.

De plus, U est maximal, au sens que si on ajoute un ouvert ω à U, $P_{l\omega \cup U}$ n'est plus injectif.

Morale:

Les parties de \mathbb{R}^2 sur lesquelles on peut passer en polaire sont les complémentaires d'une $\frac{1}{2}$ droite passant par O.

Etude de
$$P^{-1}$$
: $U' \rightarrow U$
 $(x,y) \mapsto (r,t) = P^{-1}(x,y)$

On pose
$$P^{-1}(x,y) = (\alpha(x,y), \beta(x,y))$$
. On cherche à calculer $\frac{\partial \alpha}{\partial x}$, $\frac{\partial \alpha}{\partial y}$, $\frac{\partial \beta}{\partial x}$, $\frac{\partial \beta}{\partial y}$.

On a, pour
$$(x, y) \in U'$$
, $\operatorname{Jac}(P^{-1})_{(x, y)} = \begin{pmatrix} \frac{\partial \alpha}{\partial x}(x, y) & \frac{\partial \alpha}{\partial y}(x, y) \\ \frac{\partial \beta}{\partial x}(x, y) & \frac{\partial \beta}{\partial y}(x, y) \end{pmatrix} = (\operatorname{Jac}(P)_{P^{-1}(x, y)})^{-1}$

Or,
$$\operatorname{Jac}(P)_{(r,t)} = \begin{pmatrix} \cos t & -r\sin t \\ \sin t & r\cos t \end{pmatrix}$$

Donc
$$\left(\operatorname{Jac}(P)_{(r,t)}\right)^{-1} = \frac{1}{r} \begin{pmatrix} r\cos t & r\sin t \\ r\sin t & \cos t \end{pmatrix}$$

Donc
$$\frac{\partial \alpha}{\partial x}(x, y) = \cos t = \cos(\beta(x, y)), \frac{\partial \beta}{\partial x}(x, y) = -\frac{\sin t}{r} = \frac{-\sin(\beta(x, y))}{\alpha(x, y)}...$$

Remarque:

On peut déterminer α, β en résolvant :

$$\begin{cases} r\cos t = x \\ r\sin t = y \end{cases}, \text{ c'est-à-dire } \begin{cases} \alpha(x,y) = r = \sqrt{x^2 + y^2} \\ \beta(x,y) = t = \operatorname{Arctan}(y/x) \end{cases} (x > 0)$$

• Composition :

Théorème:

Un composé de C^k -difféomorphismes est un C^k -difféomorphisme.

La réciproque d'un C^k –difféomorphisme aussi.

Démonstration :

Découle de la définition.

Exercice:

On cherche une condition nécessaire et suffisante sur $(a,b) \in \mathbb{R}^2$ pour que $\varphi:(x,y) \mapsto (x+a\sin y,y+b\sin x)$ soit un C^{∞} -difféomorphisme de \mathbb{R}^2 dans \mathbb{R}^2 .

On doit montrer que:

 φ est de classe C^{∞} , son déterminant jacobien ne s'annule pas, que φ est injective et $\varphi(\mathbb{R}^2) = \mathbb{R}^2$.

Déjà, φ est de classe C^{∞} .

On a pour
$$(x, y) \in \mathbb{R}^2$$
, $Jac(\varphi)_{(x,y)} = \begin{pmatrix} 1 & a\cos y \\ b\cos x & 1 \end{pmatrix}$, de déterminant $1 - ab\cos y$

Il faut donc déjà que |ab| < 1.

Cette condition est suffisante : on suppose maintenant que |ab| < 1 :

On considère le système (S) $\begin{cases} x + a \sin y = u \\ y + b \sin x = v \end{cases}$, montrons que le système admet une unique solution pour tous $u, v \in \mathbb{R}$.

On a l'équivalence :
$$(S) \Leftrightarrow \begin{cases} x + a \sin y = u \\ y + b \sin(u - a \sin y) = v \end{cases}$$

Et en notant $g_u: y \mapsto y + b \sin(u - a \sin y)$, on a :

$$\forall y \in \mathbb{R}, g'_u(y) = 1 - ab\cos(u - a\sin y) > 0$$

Donc g_u est strictement croissante. Comme de plus $\lim_{y \to +\infty} g_u(y) = +\infty$ et $\lim_{y \to -\infty} g_u(y) = -\infty$, g_u est une bijection de $\mathbb R$ dans $\mathbb R$.

Donc l'équation $g_u(y) = v$ a une unique solution $y \in \mathbb{R}$ pour tout $v \in \mathbb{R}$

Donc (S) a une unique solution.

Donc f est un C^{∞} -difféomorphisme si et seulement si |ab| < 1

IV Cas des fonctions à valeurs réelles

Soit
$$f: \Omega \subset E \to \mathbb{R}$$
 où E est un espace de Banach.
On note, pour $A, B \in E$, $[A, B] = \{tB + (1-t)A, t \in [0;1]\}$

A) Cas où E est un espace euclidien : gradient

Si f est différentiable en A, alors $df_A \in E'$ est une forme linéaire.

Définition:

On appelle gradient de f en A l'unique vecteur $\overrightarrow{\text{grad}} f(A) \in E$ tel que $\forall \vec{h} \in E, df_A(\vec{h}) = \langle \overrightarrow{\text{grad}} f(A), \vec{h} \rangle$

Remarque:

On a vu que l'existence et l'unicité d'un tel vecteur est aussi valable dans un espace de Hilbert, donc on peut étendre la définition.

Proposition (gradient en base orthonormée de $\it E$) :

Soit $\mathfrak{B} = (\varepsilon_1, ... \varepsilon_p)$ une base orthonormée de (E, <, >).

Si $f: \Omega \subset E \to \mathbb{R}$ est différentiable en A, on a alors $\overrightarrow{\operatorname{grad}} f(A) = \sum_{j=1}^{p} (\partial_{j,\mathfrak{B}} f)(A) \varepsilon_{j}$,

C'est-à-dire que pour tout $\vec{h} = \sum_{j=1}^{p} x_j \varepsilon_j \in E$, on a :

$$df_A(\vec{h}) = < \overrightarrow{\operatorname{grad}} f(A), \vec{h} > = \sum_{j=1}^p x_j (\partial_{j,\mathfrak{B}} f)(A)$$

Démonstration:

Le vecteur convient effectivement.

Remarque:

A $\|\vec{h}\|$ fixé, $df_A(\vec{h})$ est maximal lorsque \vec{h} est dans la direction de $\overrightarrow{\text{grad}}f(A)$

Donc grad f(A) indique la direction dans laquelle la variation de f est maximale.

Exemple:

Exemple:
(1)
$$f_i: \mathbb{R}^n \to \mathbb{R}$$
 (Où \mathbb{R}^n est muni de sa structure euclidienne canonique)
$$\vec{x} = (x_1...x_n) \mapsto x_i$$

Alors f_i est linéaire, continue, donc différentiable et $\forall A \in \mathbb{R}^n$, $df_i(A) = f_i$

Donc $\overrightarrow{\text{grad}} f_i = \varepsilon_i$ (où ε_i est le *i*-ème vecteur de la base canonique)

(2)
$$\det: M_n(\mathbb{R}) \to \mathbb{R}$$
 est de classe C^{∞} , et : $A \mapsto \det A$

$$\forall A \in M_n(\mathbb{R}), \forall H \in M_n(\mathbb{R}) d \det_A(H) = \operatorname{Tr}({}^t \operatorname{com}(A) H)$$

Si on munit $M_n(\mathbb{R})$ du produit scalaire $\langle M, N \rangle = \text{Tr}({}^t M \times N)$, on a alors :

(grad det)(A) = com(A)

Propriété (En dimension 2 : gradient en coordonnées polaires) :

On note E le plan euclidien orienté rapporté à (\vec{i}, \vec{j}) orthonormée.

Soit $f: \Omega \subset E \to \mathbb{R}$ de classe C^1 . On pose, pour (r,t) tel que $(r\cos t, r\sin t) \in \Omega$, $F(r,t) = f(r\cos t, r\sin t).$

Alors F est de classe C^1 et pour tout (r,t) tel que $r\cos t \cdot \vec{i} + r\sin t \cdot \vec{j} \in \Omega$, on a :

$$(\overrightarrow{\text{grad}}f)(r\cos t, r\sin t) = \frac{\partial f}{\partial x}(r\cos t, r\sin t)\vec{i} + \frac{\partial f}{\partial y}(r\cos t, r\sin t)\vec{j}$$
$$= \frac{\partial F}{\partial r}(r, t)\vec{u}_t + \frac{1}{r}\frac{\partial F}{\partial t}(r, t)\vec{u}_{t+\pi/2}$$

Où $\vec{u}_t = \cos t \cdot \vec{i} + \sin t \cdot \vec{j}$.

Démonstration:

On sait que $P:]0,+\infty[\times\mathbb{R} \to \mathbb{R}^2 \setminus \{(0,0)\}]$ est un C^{∞} -difféomorphisme local. $(r,t)\mapsto (r\cos t,r\sin t)$

Pour
$$(x_0, y_0) \in \mathbb{R}^2 \setminus \{(0,0)\}$$
, on note alors (r_0, t_0) tel que
$$\begin{cases} x_0 = r_0 \cos t_0 \\ y_0 = r_0 \sin t_0 \end{cases}$$

Alors P réalise un C^{∞} -difféomorphisme d'un voisinage de (r_0, t_0)

voisinage de
$$(x_0, y_0)$$
, et $Jac(P)_{(r,t)} = \begin{pmatrix} \cos t & -r\sin t \\ \sin t & r\cos t \end{pmatrix}$

On a
$$F(r,t) = f(r\cos t, r\sin t) = (f \circ P)(r,t)$$

Donc:
$$\frac{\partial F}{\partial r}(r,t) = \frac{\partial f}{\partial x} \circ P(r,t) \cdot \cos t + \frac{\partial f}{\partial y} \circ P(r,t) \cdot \sin t$$

Et
$$\frac{1}{r} \frac{\partial F}{\partial t}(r,t) = \frac{\partial f}{\partial x} \circ P(r,t).(-\sin t) + \frac{\partial f}{\partial y} \circ P(r,t).\cos t$$

Donc
$$\begin{cases} \frac{\partial F}{\partial x} \circ P(r,t) = \cos t. \frac{\partial F}{\partial r}(r,t) - \frac{\sin t}{r} \frac{\partial F}{\partial t}(r,t) \\ \frac{\partial F}{\partial y} \circ P(r,t) = \sin t. \frac{\partial F}{\partial r}(r,t) + \frac{\cos t}{r} \frac{\partial F}{\partial t}(r,t) \end{cases}$$

Ainsi,
$$\overrightarrow{\text{grad}} f \circ P(r,t) = \frac{\partial F}{\partial r}(r,t)(\cos t.\overrightarrow{i} + \sin t.\overrightarrow{j}) + \frac{1}{r}\frac{\partial F}{\partial t}(r,t)(-\sin t.\overrightarrow{i} + \cos t.\overrightarrow{j})$$

B) Accroissements finis

• Théorème (formule intégrale) :

Soit Ω un ouvert de E, $A, B \in E$ tels que $[A, B] \subset \Omega$

Soit $f: \Omega \to \mathbb{R}$ de classe C^1 .

Alors
$$f(B) - f(A) = \int_{0}^{1} df_{tB+(1-t)A}(B-A)dt$$

Si l'espace est euclidien (ou de Hilbert),

$$f(B) - f(A) = \int_0^1 \langle \overrightarrow{\text{grad}} f(tB + (1-t)A), B - A \rangle dt$$
$$= \langle \int_0^1 \overrightarrow{\text{grad}} f(tB + (1-t)A) dt, B - A \rangle$$

Démonstration:

On pose $\varphi(t) = f(tB + (1-t)A) = f(A + t(B-A))$ pour $t \in [0,1]$

Alors φ est la composée de $\sigma: t \mapsto tB + (1-t)A$ et de f, qui sont de classe C^1 donc φ est C^1 et $\forall t \in [0,1], \varphi'(t) = (df)_{tB+(1-t)A}(\sigma'(t)) = (df)_{tB+(1-t)A}(B-A)$

Donc
$$f(B) - f(A) = \varphi(1) - \varphi(0) = \int_0^1 \varphi'(t) dt$$

Remarque:

Soit $\alpha:[0;1] \to E$ continue par morceaux, où E est un espace de Hilbert, et $v \in E$.

Alors
$$\int_0^1 <\alpha(t), v>dt = <\int_0^1 \alpha(t)dt, v>$$

Démonstration :

Si E est de dimension finie, il suffit d'en prendre une base et d'utiliser la linéarité de l'intégrale.

Cas général:

On suppose $v \neq 0$ (le cas v = 0 est évident).

Si α est en escalier sur [0,1], on a bien le résultat.

Sinon, soit $\varepsilon > 0$. Il existe alors φ en escalier sur [0;1] tel que $\|\alpha - \varphi\|_{\infty} \le \frac{\varepsilon}{2\|y\|}$.

On a alors:

$$\left| \int_{0}^{1} <\alpha(t), v > dt - < \int_{0}^{1} \alpha(t) dt, v > \right| \le \left| \int_{0}^{1} <\alpha(t) - \varphi(t), v > dt - < \int_{0}^{1} \alpha(t) - \varphi(t) dt, v > \right|$$

$$+ \left| \int_{0}^{1} <\varphi(t), v > dt - < \int_{0}^{1} \varphi(t) dt, v > \right|$$

$$\le \int_{0}^{1} \left| <\alpha(t) - \varphi(t), v > \right| dt + \left| < \int_{0}^{1} \alpha(t) - \varphi(t) dt, v > \right|$$

$$\le \int_{0}^{1} \left\| \alpha(t) - \varphi(t) \right\| \left\| v \right\| dt + \left\| \int_{0}^{1} \alpha(t) - \varphi(t) dt \right\| \left\| v \right\|$$

$$\le \left\| \alpha - \varphi \right\| \|v\| + \|\alpha - \varphi\| \|v\| \le \varepsilon$$

D'où le résultat.

• Inégalité des accroissements finis

Théorème:

Soit $\Omega \subset E$ ouvert convexe, $f: \Omega \subset E \to \mathbb{R}$ de classe C^1 .

(1) On suppose qu'il existe M positif tel que pour tout $A \in \Omega$, $||df_A|| \le M$

Alors
$$\forall A, B \in \Omega, |f(B) - f(A)| \le M ||B - A||_E$$

(2) Si *E* est un espace euclidien (ou de Hilbert) :

On suppose qu'il existe M positif tel que $\forall A \in \Omega, \| \overrightarrow{\operatorname{grad}} f(A) \|_{F} \leq M$.

Alors
$$\forall A, B \in \Omega, |f(B) - f(A)| \le M ||B - A||_E$$

Démonstration :

On a, pour tous $A, B \in \Omega$:

$$|f(B) - f(A)| = \left| \int_0^1 df_{tA + (1-t)B}(B - A) dt \right|$$

$$\leq \int_0^1 |df_{tA + (1-t)B}(B - A)| dt \leq \int_0^1 |||df_{tA + (1-t)B}||| ||B - A|| dt$$

Si E est un espace de Hilbert :

L'application $\varphi: E \to \mathbb{R}$ est linéaire, continue et on a déjà vu que $\|\varphi\| = \|\vec{a}\|_E$.

Le résultat à montrer en découle.

Remarque:

Si Ω est connexe par arcs (non convexe):

On admet que deux points de Ω peuvent être joints par un chemin de classe C^1 (on peut faire un chemin polygonal par morceaux, puis «affiner»... Ou C^1 par morceaux et continue suffit)

Soient $A, B \in \Omega$, $\sigma: [0,1] \to \Omega$ de classe C^1 tel que $\sigma(0) = A$, $\sigma(1) = B$.

Alors pour $f: \Omega \to \mathbb{R}$ de classe C^1 , on a

$$f(B) - f(A) = \int_0^1 \frac{d}{dt} (f \circ \sigma(t)) dt = \int_0^1 df_{\sigma(t)}(\sigma'(t)) dt$$

S'il existe M positif tel que $\forall H \in \Omega, |||df_H||| \le M$, alors

 $\left|f(B)-f(A)\right|\leq M\int_0^1 \left\|\sigma'(t)\right\|dt, \text{ et } \int_0^1 \left\|\sigma'(t)\right\|dt \text{ correspond à la longueur de l'arc }\widehat{AB_\sigma}$

Ainsi,
$$|f(B) - f(A)| \le M.dg_{\Omega}(A, B)$$

Où $dg_{\Omega}(A,B)$ est la distance géodésique de A à B dans Ω , c'est-à-dire la borne inférieure de l'ensemble des longueurs des arcs \widehat{AB}_{σ} pour σ de classe C^1 reliant A et B.

• Application:

Théorème : caractérisation des fonctions constantes sur un ouvert convexe.

Soit Ω un ouvert convexe, $f:\Omega\to\mathbb{R}$. Alors f est constante si et seulement si elle est de classe C^1 et $\forall A\in\Omega, df_A=0$

Complément : c'est valable si Ω est connexe.

Démonstration:

Si f est constante, alors elle a des dérivées partielles nulles donc de classe C^1 .

Et pour tout $A \in \Omega$, on a $\forall \vec{u} \in E, df_A(\vec{u}) = D_{\vec{u}} f(A) = 0$ donc $df_A = 0 \in E'$

La réciproque, c'est l'inégalité des accroissements finis avec M = 0.

Si Ω et seulement connexe :

On suppose que $A \in \Omega$, $df_A = 0$

(Le sens direct est vrai pour la même raison que précédemment)

Soit
$$A_0 \in \Omega$$
, $X = \{B \in \Omega, f(A_0) = f(B)\}$

Comme f est de classe C^1 , elle est continue donc X est fermé dans Ω .

De plus, $X \neq \emptyset$ car $A_0 \in X$.

Enfin, X est ouvert, car pour $B \in X$, il existe r > 0 tel que $B_0(B, r) \subset \Omega$, mais comme une boule est convexe, d'après le point précédent,

$$\forall M \in B_0(B,r), f(M) = f(B) = f(A_0)$$

Donc $B_0(B,r) \subset X$, ce qui montre que X est aussi ouvert, donc $X = \Omega$ puisque Ω est connexe.

• Fonctions convexes sur un ouvert convexe Ω :

Définition:

Une fonction $f: \Omega \to \mathbb{R}$ est dite convexe si

$$\forall (A,B) \in \Omega^2, \forall t \in [0;1], f(t.A + (1-t)B) \le t.f(A) + (1-t)f(B)$$

Rappel:

 $f:I\subset\mathbb{R}\to\mathbb{R}$ de classe C^1 sur l'intervalle I est convexe si et seulement si sa dérivée est croissante.

Remarque:

 $f: \Omega \to \mathbb{R}$ est convexe si et seulement si pour tous $A, B \in \Omega$, $f_{/[A,B]}$ est convexe, ou encore si et seulement si pour tous $A, B \in \Omega$, $t \mapsto f(t.A + (1-t).B)$ est convexe (définie sur [0;1])

En effet:

Si f est convexe, alors $\psi_{A,B}: t \mapsto f(t.A + (1-t).B)$ est la composée de $t \mapsto t.A + (1-t).B$ qui est affine et de f qui est convexe, donc est convexe.

Réciproquement, si $\psi_{A,B}$ est convexe pour tous $A,B \in \Omega$, alors

$$\forall A, B \in \Omega, f(t.A + (1-t).B) = \psi_{A,B}(t) = \psi_{A,B}(t \times 1 + (1-t) \times 0)$$

$$\leq t \underbrace{\psi_{A,B}(1)}_{f(A)} + (1-t) \underbrace{\psi_{A,B}(0)}_{f(B)}$$

Proposition:

Soit $f: \Omega \to \mathbb{R}$ de classe C^1 , Ω un convexe.

Alors f est convexe si et seulement si $\forall (A,B) \in \Omega^2, (df_A - df_B)(A - B) \ge 0$

Démonstration:

On introduit comme précédemment $\psi_{A,B}: t \mapsto f(t.A + (1-t).B)$ définie sur [0;1].

Alors
$$\psi_{A,B}$$
 est de classe C^1 , et $\forall t \in [0;1], \psi'_{A,B}(t) = df_{tA+(1-t)B}(A-B)$

Si f est convexe, alors pour tous $A, B \in \Omega$, $\psi_{A,B}$ l'est c'est-à-dire que $\psi'_{A,B}$ est croissante donc $\psi'_{A,B}(1) - \psi'_{A,B}(0) = (df_A - df_B)(A - B) \ge 0$

Réciproquement, supposons que $\forall (A,B) \in \Omega^2$, $(df_A - df_B)(A-B) \ge 0$; Soient alors $A,B \in \Omega^2$. On a, pour $t,t' \in [0;1]$ avec t' > t,

$$\begin{split} \psi'_{A,B}\left(t'\right) - \psi'_{A,B}\left(t\right) &= (df_{t'A+(1-t')B} - df_{tA+(1-t)B})(A-B) \\ &= (df_{t'A+(1-t')B} - df_{tA+(1-t)B})(\frac{1}{t'-t}(t'A+(1-t')B-tA-(1-t)B)) \\ &= \frac{1}{t'-t}(df_{t'A+(1-t')B} - df_{tA+(1-t)B})(t'A+(1-t')B-tA-(1-t)B) \geq 0 \end{split}$$

Donc ψ'_{AB} est croissante, donc ψ_{AB} est convexe et f aussi.

C) Développements limités et formule de Taylor

• A l'ordre 1 :

Voir différentiabilité.

Théorème:

Soit $f: \Omega \subset E \to \mathbb{R}$ de classe C^1

Alors pour tout $A \in \Omega$, f admet au voisinage de A le développement

$$f(A+H) = f(A) + (df_A)(H) + o(||H||)$$

Si E est de dimension finie, $\mathfrak{B} = (e_1, ... e_p)$ une base de E, alors pour tout

$$H = \sum_{j=1}^{p} h_{j} e_{j} \in E, \ f(A+H) = f(A) + \sum_{j=1}^{p} h_{j} (\partial_{j, \mathfrak{D}} f)(A) + o(\|H\|)$$

Démonstration:

Si f est de classe C^1 , elle est différentiable en tout point.

• Matrice hessienne et différentielle seconde pour E de dimension finie.

Soit $\mathfrak{B} = (\mathcal{E}_1, ... \mathcal{E}_p)$ une base de $E, f : \Omega \to \mathbb{R}$ de classe C^2 .

Pour tout $A \in \Omega$, $df_A \in E^* = E'$ est définie par

$$\forall H = \sum_{j=1}^{p} h_{j} \varepsilon_{j} \in E, df_{A}(H) = \sum_{j=1}^{p} h_{j}(\partial_{j} f)(A)$$

Comme f est de classe C^2 , $df: \Omega \to E^*$ est de classe C^1 , c'est-à-dire que les $\partial_j f$ sont de classe C^1 .

On note $(\mathcal{E}_1^*,...\mathcal{E}_n^*)$ la base duale de \mathfrak{B} .

Ainsi,
$$df_A = \sum_{j=1}^p (\partial_j f)(A) \varepsilon_j^*$$

On cherche les dérivées par rapport à ε_k de $df: A \mapsto df_A$:

On a
$$\forall A \in \Omega, (\partial_k(df))(A) = \sum_{j=1}^p \partial_k(\partial_j f)(A) \varepsilon_j^*$$

Pour
$$\vec{h} = \sum_{j=1}^{p} h_j \mathcal{E}_j$$
, $\vec{k} = \sum_{j=1}^{p} k_j \mathcal{E}_j$, on a ainsi:

$$d^{2} f_{A}(\vec{h}) = \sum_{i=1}^{p} \partial_{i} (df)(A) h_{i} = \sum_{i=1}^{p} \sum_{j=1}^{p} (\partial_{i} \partial_{j} f)(A) h_{i} \mathcal{E}_{j}^{*}$$

Puis
$$d^2 f_A(\vec{h}) = \sum_{i=1}^p \partial_i (df)(A) h_i = \sum_{i=1}^p \sum_{j=1}^p (\partial_i \partial_j f)(A) h_i \varepsilon_j^*$$

De plus, $(d^2f_A(\vec{h}))(\vec{k})$ est symétrique en (\vec{h},\vec{k}) d'après le théorème de Schwarz.

Donc $B_A: (\vec{h}, \vec{k}) \in E^2 \mapsto (d^2 f_A(\vec{h}))(\vec{k}) \in \mathbb{R}$ est une forme bilinéaire symétrique.

La matrice de B_A dans la base \mathfrak{B} , $((\partial_i \partial_j f)(A))_{\substack{i=1...p\\j=1...p}}$ s'appelle matrice hessienne de

f en A relativement à \mathfrak{B} .

Exemple:

Soit $f:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ de classe C^2 . La matrice hessienne de f (relativement à la base canonique) est

$$\begin{pmatrix}
\frac{\partial^2 f}{\partial x^2}(x, y) & \frac{\partial^2 f}{\partial x \partial y}(x, y) \\
\frac{\partial^2 f}{\partial x \partial y}(x, y) & \frac{\partial^2 f}{\partial y^2}(x, y)
\end{pmatrix}$$

• Formule de Taylor à l'ordre 2 :

Théorème:

Soit $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ de classe C^2 , $A \in \Omega$.

Au voisinage de A, f admet le développement limité :

$$f(A+H) = f(A) + \underbrace{\sum_{j=1}^{n} h_{j} \frac{\partial f}{\partial x_{j}}(A)}_{df_{A}} + \underbrace{\frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} h_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(A) \right)}_{(d^{2} f_{A}(H))(H)} + o(\|H\|^{2})$$

Où
$$H = (h_1,...h_n)$$
.

Remarque:

Pour un espace E de Banach, $f: \Omega \subset E \to \mathbb{R}$ de classe C^2 ,

$$f(A+H) = f(A) + df_A(H) + \frac{1}{2}(d^2f_A(H))(H) + o(\|H\|^2)$$

Démonstration:

Soit r > 0 tel que $B_0(A, r) \subset \Omega$.

Pour
$$||H|| < r$$
, posons $\varphi(t) = f(A+tH)$, $t \in [0,1]$.

Alors
$$\varphi$$
 est de classe C^2 , et $\forall t \in [0;1], \varphi'(t) = df_{A+tH}(H) = \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(A+tH)$

Puis
$$\varphi''(t) = ((d^2 f_{A+tH})(H))(H) = \sum_{i=1}^n \sum_{j=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j} (A + tH)$$

D'après la formule de Taylor intégral à φ entre 0 et 1,

$$f(A+H) - f(A) - df_A(H) = \varphi(1) - \varphi(0) - \varphi'(0) = \int_0^1 (1-t)\varphi''(t)dt$$

Soit $\varepsilon > 0$. Il existe alors $\alpha \in [0, r]$ tel que

$$\forall H \in E, ||H|| < \alpha \Rightarrow |||d^2 f_{A+H} - d^2 f_A||| < \varepsilon \text{ (car } A \mapsto d^2 f_A \text{ est continue)}$$

Ainsi, pour $||H|| < \alpha$,

$$f(A+H) - f(A) - df_A(H) - \frac{1}{2}(d^2f_A(H))(H) = \int_0^1 (1-t)(\varphi''(t) - (d^2f_A(H))(H))dt$$

Soit:

$$\begin{aligned} &|...| \leq \int_{0}^{1} \left| (d^{2} f_{A+tH}(H))(H) - (d^{2} f_{A}(H))(H) \right| dt \\ &\leq \int_{0}^{1} \left\| (d^{2} f_{A+tH}(H)) - (d^{2} f_{A}(H)) \right\| \times \|H\| dt \\ &\leq \int_{0}^{1} \left\| d^{2} f_{A+tH} - d^{2} f_{A} \right\| \times \|H\|^{2} dt \leq \varepsilon . \|H\|^{2} \\ &\leq \varepsilon \operatorname{car} \|H\| \leq \alpha \end{aligned}$$

D) Extremums

• Condition suffisante d'existence :

Théorème des bornes:

Soit *K* un compact de *E*, non vide, et $f: K \to F$ continue.

Alors f est bornée sur K et atteint ses bornes.

• Condition nécessaire d'extremum sur un ouvert pour une fonction de classe C^1

Théorème:

Soit Ω un ouvert de E, $f:\Omega \to \mathbb{R}$ de classe C^1

On suppose que f atteint en A un extremum local.

Alors $df_A = 0$.

Définition:

Un point A en lequel df_A est nulle est appelé point critique de f.

Si $E = \mathbb{R}^n$: A est un point critique si et seulement si $\forall i \in [1, n], \frac{\partial f}{\partial x_i}(A) = 0$ ou

encore si et seulement si $\overrightarrow{grad} f(A) = \vec{0}$

Corollaire : le théorème s'énonce aussi ainsi :

Tout extremum sur un ouvert d'une fonction de classe C^1 est un point critique.

Démonstration (du théorème):

Si A est un extremum local, alors pour tout $\vec{u} \in E$,

 $\varphi_{\vec{u}}: t \mapsto f(A+t\vec{u}) \in \mathbb{R}$, définie au voisinage de 0, est de classe C^1 , présente un extremum en t=0.

Donc $\varphi'_{\vec{u}}(0) = 0$. Mais $\varphi'_{\vec{u}}(0) = df_A(\vec{u})$

Donc $\forall \vec{u} \in E, df_A(\vec{u}) = 0$, donc $df_A = 0$

Remarque:

Soit $K \neq \emptyset$ un compact de $E, U = \mathring{K}, f : K \to \mathbb{R}$.

On suppose que f est continue sur \mathbb{R} et de classe C^1 sur U.

Alors f présente un maximum et un minimum sur K, qui sont atteints :

- Soit en des points critiques de f
- Soit sur $\partial K = K \setminus U$
- Rappel sur la dimension 1 :

Soit I = [a,b] un segment de \mathbb{R} , $f: I \to \mathbb{R}$ de classe C^2 , et on suppose qu'il existe $x_0 \in [a,b[$ tel que $f'(x_0) = 0$.

Si $f''(x_0) > 0$, alors $f(x_0)$ est un minimum local strict

Si $f''(x_0) < 0$, alors $f(x_0)$ est un maximum local strict

Si $f''(x_0) = 0$, on ne peut rien dire.

(Extremum strict:

Il existe $\alpha > 0$ tel que $\forall x \in [x_0 - \alpha, x_0 + \alpha[\setminus \{x_0\}, f(x) > f(x_0)]$

• Etude au voisinage d'un point critique :

Théorème (hors programme):

Soit $A \in \Omega \subset \mathbb{R}^n$, $f : \Omega \to \mathbb{R}$ de classe C^2 tel que A est un point critique de f.

On note H la matrice hessienne de f en A relativement à la base canonique de \mathbb{R}^n . Alors :

- (1) Si f(A) est un minimum local, alors H est symétrique positive
- (2) Si f(A) est un maximum local, alors H est symétrique négative.
- (3) Si H est définie positive, alors f(A) est un minimum local strict
- (4) Si H est définie négative, alors f(A) est un maximum local strict.

Rappel: H est positive si $\forall U \in M_{n,1}(\mathbb{R}), {}^{t}UHU \geq 0$

Démonstration :

(1) Pour tout $\vec{u} \in \mathbb{R}$, posons $\varphi_{\vec{u}}(t) = f(A + t\vec{u})$ pour t au voisinage de 0.

Alors $\varphi_{\bar{u}}(0)$ est un minimum local de $\varphi_{\bar{u}}$

Comme $\varphi_{\vec{u}}$ est de classe C^2 , $\varphi''_{\vec{u}}(0) \ge 0$.

Or,
$$\varphi''_{\vec{u}}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_i u_j \frac{\partial^2 f}{\partial x_i \partial x_j}$$
 où $\vec{u} = (u_1, ... u_n)$

Donc
$$\varphi''_{\vec{u}}(0) = {}^{t}UHU \ge 0$$
 où $U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$

Donc comme c'est valable pour tout $\vec{u} \in E$, H est bien positive.

(3) On utilise la formule de Taylor à l'ordre 2 :

Prenons
$$\| \|$$
 définie sur \mathbb{R}^n par $\|X\| = \sqrt{tXHX}$

 $(X \mapsto^t XHX)$ est une forme quadratique définie positive)

D'après la formule de Taylor, au voisinage de A, on a :

$$f(A + \vec{u}) = f(A) + \underbrace{df_A(\vec{u})}_{=0} + \frac{1}{2}{}^t UHU + o(\|U\|^2)$$

Donc
$$f(A+\vec{u}) - f(A) = \frac{1}{2}^{t}UHU + o(\|U\|^{2})$$

Ainsi, il existe $\alpha > 0$ tel que $\forall u \in \mathbb{R}^n, ||u|| < \alpha \Rightarrow |o(||U||^2)| < \frac{1}{2} UHU$

Donc pour $||u|| < \alpha$, $f(A+\vec{u}) > f(A)$.

• Description des points critiques :

Définition:

Soit $A \in \Omega$ un point critique de f de classe C^2 . On note H la matrice hessienne de f Si H est définie positive, A est un minimum local strict

Si H est définie négative, A est un maximum local strict.

Si H n'est ni positive ni négative, A est un col, c'est-à-dire que pour tout voisinage V de A, il existe $M, N \in V$ tels que f(M) < f(A) < f(N)

• Cas de la dimension 2 :

Théorème:

Soit $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 , $A \in \Omega$.

On pose
$$p = \frac{\partial f}{\partial x}(A)$$
, $q = \frac{\partial f}{\partial y}(A)$, $r = \frac{\partial^2 f}{\partial x^2}(A)$, $t = \frac{\partial^2 f}{\partial y^2}(A)$, $s = \frac{\partial^2 f}{\partial x \partial y}(A)$

Ainsi, la matrice hessienne de f en A est $H = \begin{pmatrix} r & s \\ s & t \end{pmatrix}$. Alors :

- (1) A est un point critique si et seulement si p = q = 0.
- (2) On suppose que p = q = 0:

Si $\Delta = r.t - s^2 > 0$, alors A est un extremum local strict:

Un minimum local strict si r > 0 (ou r + t > 0)

Un maximum local strict si r < 0 (ou r + t < 0)

Si $\Delta < 0$, alors A est un col.

Si $\Delta = 0$, A est dégénéré : on ne peut en général rien dire.

Démonstration :

Soient λ , μ les deux valeurs propres (réelles) de H. On a alors $\lambda \mu = \det H = \Delta$

Si $\Delta > 0$, on a:

- Soit $\lambda > 0$ et $\mu > 0$ donc H est définie positive donc on a un minimum local strict (et $r + t = \text{Tr}(H) = \lambda + \mu > 0$)
- Soit $\lambda < 0$ et $\mu < 0$ donc H est définie négative donc on a un maximum local strict.

Si $\Delta < 0$, H n'est ni positive ni négative donc A est un col

Si $\Delta = 0$, on peut supposer que $\lambda = 0$:

- Soit $\mu > 0$ et A n'est pas un maximum local
- Soit μ < 0 et A n'est pas un minimum local
- Soit $\mu = 0$ et il n'y a rien à dire (sauf que H = 0)

Proposition:

Soit Ω un ouvert convexe de \mathbb{R}^n , $f:\Omega \to \mathbb{R}$ de classe C^2 .

Alors f est convexe si et seulement si pour tout $A \in \Omega$, $H_A = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(A)\right)_{\substack{i=1..n\\j=1..n}}$ est

symétrique positive.

Démonstration :

La condition est nécessaire :

Si f est convexe, alors pour tous $A, B \in \Omega$, $\varphi_{A,B}: t \mapsto f(t.A + (1-t).B)$ est convexe (car f est convexe et $t \mapsto t.A + (1-t).B$ est affine)

Donc
$$\forall t \in [0,1], 0 \le \varphi''_{A,B}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_i u_j \frac{\partial^2 f}{\partial x_i \partial x_j}(t.A + (1-t).B)$$

Où
$$\vec{u} = A - B = (u_1, ... u_n)$$

Avec t = 1, on obtient $\forall U \in M_{n,1}(\mathbb{R}), {}^{t}UH_{A}U \ge 0$

La condition est suffisante:

Si H_A est symétrique positive, alors $\forall A, B \in \Omega, \forall t \in [0,1], \varphi''_{A,B}(t) \ge 0$ donc $\varphi_{A,B}$ est convexe. En particulier, $\forall t \in [0,1], \varphi_{A,B}(t.1+(1-t).0) \le t.\varphi_{A,B}(1)+(1-t)\varphi_{A,B}(0)$

C'est-à-dire $\forall t \in [0,1], f(t.A + (1-t).B) \le t.f(A) + (1-t).f(B)$

• Laplacien, fonctions sous-harmoniques, principe du maximum.

Pour $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ de classe C^2 et $A \in \Omega$, on pose

$$(\Delta f)(A) = \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}(A) = \text{Tr}(H_{A})$$

Définition:

On dit que f est harmonique lorsqu'elle est de classe C^2 et $\Delta f = 0$, et sous-harmonique lorsque $\forall A \in \Omega, \Delta f(A) \ge 0$

Remarque:

Si f est convexe et de classe C^2 , elle est sous-harmonique (car alors H_A est symétrique positive pour tout $A \in \Omega$, donc $Tr(H_A) \ge 0$)

Exercice:

Soit U un ouvert de \mathbb{R}^n , borné, et $K = \overline{U}$, compact.

Soit $f: K \to \mathbb{R}$, continue sur K et de classe C^2 sur U telle que $\forall A \in U, \Delta f(A) \ge 0$

Alors
$$\sup_{K} f = \sup_{\partial K} f$$

Démonstration:

Si $\forall A \in U, \Delta f(A) > 0$:

Alors d'après le théorème des bornes, il existe $M_0 \in K$ tel que $f(M_0) = \sup_{K} f(M_0)$

Si on avait $M_0 \in U$, alors M_0 serait un point critique et un maximum local. Donc H_{M_0} serait symétrique négative et donc $\Delta f(M_0) = \operatorname{Tr}(H_{M_0}) \leq 0$, ce qui est faux.

Si maintenant $\forall A \in U, \Delta f(A) \ge 0$:

Pour $\varepsilon > 0$, on pose $g_{\varepsilon}(M) = f(M) + \varepsilon \sum_{i=1}^{n} x_{i}^{2}$. Alors g_{ε} est continue sur K.

Sur U, on a $\forall M \in U$, $\Delta g_{\varepsilon}(M) = \Delta f(M) + 2n\varepsilon > 0$

Donc le cas précédent s'applique et pour tout $M \in K$,

$$f(M) \le g_{\varepsilon}(M) \le \sup_{\partial K} g_{\varepsilon}(M)$$

Or, K est borné, donc il existe c > 0 tel que $\forall M \in K, x_1^2 + ... + x_n^2 \le c$ où $M = (x_1, ... x_n)$

Pour $M \in \partial K$, $g_{\varepsilon}(M) \le f(M) + \varepsilon.c$, donc $\forall M \in K, f(M) \le g_{\varepsilon}(M) \le \sup_{\lambda \in K} f + \varepsilon.c$

Comme c'est valable pour tout $\varepsilon > 0$, on a bien $\forall M \in K, f(M) \le \sup_{\partial K} f$

• Exemple : problème de Laplace.

Soit K un compact, $U = \mathring{K}$. Soit $\varphi : \partial K \to \mathbb{R}$, continue.

On cherche s'il existe $f: K \to \mathbb{R}$ continue telle que $f_{/\partial K} = \varphi$ et f est de classe C^2 harmonique sur $U: \Delta f = 0$.

Ce problème a au plus une solution.

Démonstration:

Si f et g sont deux solution, alors f-g est sous—harmonique ($\Delta(f-g)=0\geq 0$) sur U, continue sur K et nulle sur ∂K .

Donc
$$f - g \le \sup_{\partial K} (f - g) = 0$$
, et de même $g - f \le \sup_{\partial K} (g - f) = 0$. Donc $f = g$.