HW-4

DREW MORRIS

Problem 1. Illustrate Theorem 5.2 on the problem from Exercise 2.1.

Proof. Here is the primal problem from Exercise 2.1.

Now we will analyze the dual problem.

This is an optimal solution of the dual problem, thus $\zeta = 15$ is also an optimal solution for the primal problem.

Date: October 2nd 2023.

HW-4 2

Problem 2. Consider the following linear programming problem.

Suppose in solving this problem you arrive at the following dictionary.

$$\zeta = \frac{7}{2} - \frac{1}{4}u_0 + \frac{25}{4}x_1 - \frac{1}{2}u_2 - \frac{3}{2}x_3
x_0 = 3 - \frac{1}{2}u_0 - \frac{3}{2}x_1 + 0u_2 - 3x_3
u_1 = 0 + \frac{5}{4}u_0 - \frac{13}{4}x_1 - \frac{3}{2}u_2 + \frac{27}{2}x_3
u_2 = \frac{5}{2} - \frac{3}{4}u_0 - \frac{5}{4}x_1 + \frac{1}{2}u_2 - \frac{13}{2}x_3$$

Do the following.

- (1) Write the dual problem.
- (2) Which variables are basic/non-basic in the given dictionary?
- (3) Is the primal solution of the given dictionary optimal/degenerate?
- (4) Write down the corresponding dual dictionary.
- (5) Is the dual solution feasible?
- (6) Is the current primal solution optimal?
- (7) For the next primal pivot, which variable will enter/leave under the largest-coefficient rule and will the pivot be degenerate?
- (1) Here is the dual problem.

- (2) x_0, x_1, x_2, x_3 are non-basic and u_0, u_1, u_2 are basic.
- (3) The solution is $\zeta = \frac{7}{2}$ which is feasible but degenerate.
- (4) Here is the corresponding dual dictionary.

HW-43

- (6) The solution of $\zeta = \frac{7}{2}$ is sub-optimal.
- (7) The next primal pivot would yield x_1 as the entering variable and u_1 as the exiting variable. This is a degenerate pivot.

Problem 3. Solve the linear programming problem from Exercise 2.4 using the dual-primal two-phase algorithm.

Proof. The initial primal dictionary is this.

The initial dual dictionary is this (feasible) with the following solution.

Therefore, $\zeta = 3$.

Problem 4. Solve the linear programming problem from Exercise 2.6 using the dual-primal $two\mbox{-}phase\ algorithm.$

Proof. The initial primal dictionary (infeasible) is this.

HW-4 4

The initial dual dictionary (infeasible) is this.

The auxiliary dual dictionary is this with the following solution.

The auxiliary dual problem is unbounded, thus the initial is infeasible.