PL1 algèbre linéaire deuxième session 2013-2014 durée 2H.

Documents non autorisés, aucun appareil électronique n'est autorisé y compris la calculatrice.

1) Mettre la matrice suivante sous forme échelonnée réduite:

$$\begin{pmatrix} 1 & 4 & 0 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -29 \\ 0 & 1 & 0 & -8 \\ 0 & 0 & 1 & -3 \end{pmatrix}$$

- 2) Résoudre le système homogène suivant: $\begin{cases} x + 2y + z = 0 \\ 3x + y + 3z = 0 \\ x y + z = 0 \end{cases}$ 3) Soit M = $\begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix}$ le resuivant: $\begin{cases} x + 2y + z = 0 \\ 3x + y + 3z = 0 \\ x y + z = 0 \end{cases}$
 - 3) Soit $M = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 3 \\ 1 & -1 & 1 \end{pmatrix}$ la matrice standard de l'application f, déduire du 2) une base de Kerf (on rappelle qu'une base d'un sous-espace vectoriel de \mathbb{R}^3 est ensemble de vecteurs de \mathbb{R}^3).
- 4) Grâce au théorème du rang, calculer la dimension de Imf.

$$\sqrt{5}$$
 Calculer C = $\begin{vmatrix} 1 & 4 & -2 \\ 2 & -1 & 2 \\ -1 & 2 & 3 \end{vmatrix}$ - 45?

- 6) On considère le système suivant à 2 équations et 2 inconnues réelles: $\begin{cases} x + 3y = 3 + c \\ 3x + y = -3 c \end{cases}$ avec $c \in \mathbb{R}$, après avoir remarqué que ce système peut se mettre sous la forme matricielle $A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 + c \\ -3 c \end{pmatrix}$ vous expliquerez pourquoi le nombre de solutions ne dépend pas de la valeur de $c \in \mathbb{R}$.
- 7) Calculer les déterminant Δ_x et Δ_y des formules de Cramer. A2 / A2
- 8) En déduire la valeur de x et de y grâce aux formules de Cramer. -3/2 / 9/2
- 9) On considère $\mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3, quelle est la dimension de $\mathbb{R}_3[X]$?
- 10) Montrer que la famille 1, X, X^2 , X^3 est libre dans $\mathbb{R}_3[X]$.
- 11) En déduire , grâce à un théorème du cours que vous citerez, que c'est une base de $\mathbb{R}_3[X]$.

12) Montrer grâce au pivot de Gauss et à la matrice
$$C = \begin{pmatrix} 1 & 0 & 3 \\ -1 & 1 & -5 \\ 2 & 1 & 4 \end{pmatrix}$$
 que la famille de vecteurs $\left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix} \right\}$ est de rang 2.

FIN.