Module 10 - MOLP

Exploratory Data Analysis

In this section, you should perform some data analysis on the data provided to you. Please format your findings in a visually pleasing way and please be sure to include these cuts:

- Choose a visualization method (expect 7 nodes and ~24 arcs):
 - Make a visual graph of your data on a map (coordinates should be within US borders)
 - https://mymaps.google.com/
 - Find a map with latitude/longitude and place them approximately
 - Any alternative that gives the same effect
 - Make a visual graph of your data like what we saw for the sample problem
 - https://excalidraw.com
 - https://mermaid.live
 - https://dreampuf.github.io/GraphvizOnline
 - Powerpoint

Model Formulation

Write the formulation of the model into here prior to implementing it in your Excel model. Be explicit with the definition of the decision variables, objective function, and constraints. For this problem, I am only asking that you perform the model formulation for the MOLP model. **MIN:0**

 $\begin{aligned} W_1(\ ((X_1*C_1)+(\ X_2*C_2)+..\ (X_{24}*C_{24}))-\ 148,117/\ 148,117) &\leq Q \\ W_2(\ ((X_1*D_1)+(\ X_2*D_2)+..\ (X_{24}*D_{24}))-\ 107,790/\ 107,790) &\leq Q \\ W_3(\ ((X_1*E_1)+(\ X_2*E_2)+..\ (X_{24}*E_{24}))-\ 3,235/\ 3235) &\leq Q \\ W_4(\ ((X_1*CN_1)+(\ X_2*CN_2)+..\ (X_{24}*CN_{24}))-\ 6,150/6,150) &\leq Q \end{aligned}$

Valeria Santoni

Nodes

$$-X_{14} - X_{16} - X_{17} + X_{31} + X_{41} \ge -9665$$
 Node 1

$$-X_{25} - X_{26} + X_{52} + X_{72} \ge 1245$$
 Node 2

$$-X_{31} - X_{36} - X_{37} + X_{43} + X_{53} + X_{63} + X_{73} \ge 1632$$
 } Node 3

$$-X_{41} - X_{43} - X_{45} + X_{14} + X_{54} + X_{64} + X_{74} \ge 1279$$
 } Node 4

$$-X_{52} - X_{53} - X_{54} - X_{56} + X_{25} + X_{65} + X_{75} \ge 1994$$
 } Node 5

$$-X_{63} - X_{64} - X_{65} - X_{67} + X_{16} + X_{26} + X_{36} + X_{56} + X_{76} \ge 1990$$
 } Node 6

$$-X_{72} - X_{73} - X_{74} - X_{75} - X_{76} + X_{17} + X_{37} + X_{67} \ge 1525$$
} Node 7

$$X1,...X24 \ge 0 X1,...X24 = Int$$

Model Optimized for Equally Weighted Objectives

Implement your formulation into Excel and be sure to make it neat. This section should include:

- A screenshot of your optimized final model (formatted nicely, of course)
- A text explanation of what your model is recommending
- Update your graph from the EDA section to indicate which arcs are used

	X1 3	(2	Y1	,	12														
Units Shipped From	Latitude I	ongitude To	Lati	tude	Longitude	Euclidean Distance	Transpotation Method	Binary	Congestion Level	Binary	Cost per Unit Shippe	1	Nodes	Inflow	Outflow	Net Flow	Supply/demand	Distance	
5587.055468	1 37.5	-102.5	4 :	39.79	-101.09		Wind-powered Ships	0	8	1	1 1		1 Butter Pecan Bluff	0	9665	-9665	-9665		
1990	1 37.5	-102.5	6 -	41.57	-89.35	13.77	Diesel Rail	1	. 2	Б	0 9		2 Candyfloss Countryside	1245		1245	1245		
2087.944532	1 37.5	-102.5		38.11	-112.36		Cargo Ships (Heavy Fuel Oil)		. 8	3	1		3 Coconut Cream Cove		682.055468				
0	2 44.03	-117.68		37.94	-102.2		Diesel Rait	1	9	1	1 1		4 Honeycomb Highlands		4308.05547				
0	2 44.03	-117.68		41.57	-89.35		Electric/Hybrid Trucks	0	8	9	1		5 Lollipop Lagoon	1994					
0	3 30.63	-116.43		37.5	-102.5		Cargo Ships (Heavy Fuel Oil)	1	. 2	В	0 14		6 Marshmallow Meadows	1990					
0	3 30.63	-116.43		41.57	-89.35		Diesel Rail	1	7	В	1 (7 Pineapple Pop Paradise	2770					
682.0554675	3 30.63	-116.43		38.11	-112.36		Electric/Hybrid Trucks		8	9	1 1		Objectives		Target value				Weighted Deviation %
0	4 39.79	-101.09		37.5	-102.5		Electrified Rail	C	9	5	1 2		Total Transportation Cos						39.8%
2314.055468	4 39.79	-101.09		30.63	-116.43		Wind-powered Ships	0	7	В	1 10		Total Distance Traveled		\$107,790.5				15.4%
1994	4 39.79	-101.09		37.94	-102.2		Air Freight	1	. 7	В	1 1		Eco- Friendliness	\$7,317					126.2%
0	5 37.94	-102.2		44.03	-117.68		Diesel Rail	1	9.	2	1 1		Minimize Congestion	\$ 13,910	6150	\$ 7,760	126.18%	1	126.2%
0	5 37.94	-102.2		30.63	-116.43		Electrified Rail	C	7.	3	1 1								
0	5 37.94	-102.2		39.79	-101.09		Diesel Trucks	1	. 8	D	1		Objective						
0	5 37.94	-102.2		41.57	-89.35		Cargo Ships (Heavy Fuel Oil)	1	9	5	1 10		MiniMax	126%					
0	6 41.57	-89.35		30.63	-116.43		Wind-powered Ships	C	10		1 2								
0	6 41.57	-89.35		39.79	-101.09		Cargo Ships (Heavy Fuel Oil)	1	10		1 1								
0	6 41.57	-89.35		37.94	-102.2		Air Freight	1	10		1 2								
0	6 41.57	-89.35		38.11	-112.36		Air Freight	1	. 3	В	0 2:								
1245	7 38.11	-112.36		44.03	-117.68		Diesel Rail	1	10	1	1 19								
0	7 38.11	-112.36		30.63	-116.43		Cargo Ships (Heavy Fuel Oil)	1	. 8	В	1 1								
0	7 38.11	-112.36		39.79	-101.09		Air Freight	1	9	5	1 2								
0	7 38.11	-112.36		37.94	-102.2		Slow Steaming Cargo Ships		10		1 1								
0	7 38.11	-112.36	6 -	41.57	-89.35	23.27	Air Freight	1	. 3	D	0 23								

Recommendation:

This model recommends a shipping strategy that minimizes the maximum deviation across four objectives: Total Transportation Cost, Total Distance Traveled, eco-friendliness and Minimize Congestion. The optimal solution or MiniMax results in a 126% deviation from the target values, meaning the model is focusing on reducing the worst-case scenario across these objectives. It suggests using a combination of transportation methods, such as cargo ships and air freight, to balance cost efficiency, distance, and congestion.

Valeria Santoni

Model with Stipulation

Please copy the tab of your original model before continuing with the next part to avoid messing up your original solution.

	X	1)	(2	Y1	Y2													
Units Shipped	From La	titude	Longitude To	Latitude	Longitude	Euclidean Distance Transpotation Method	Binary	Congestion Level	Binary	Cost per Unit Shipped		Nodes	Inflow	Outflow	Net Flow	Supply/demand	Distance	
5587.055468	1	37.5	-102.5	39.79	-101.09		C	81	1	14		Butter Pecan Bluff	0	9665	-9665			
1990	1	37.5	-102.5	41.57	-89.35	13.77 Diesel Rail	1	1 26	0	9	2	Candyfloss Countryside	1245	0	1245	1245		
2087.944532	1	37.5	-102.5	38.11	-112.36	9.88 Cargo Ships (Heavy Fuel Oil)	1	1 83		. 7		Coconut Cream Cove		682.055468				
0	2	44.03	-117.68	37.94	-102.2	16.63 Diesel Rail	1	91		15	4	Honeycomb Highlands		4308.05547	1279			
0	2	44.03	-117.68	41.57	-89.35			89		. 7		Lollipop Lagoon	1994		1994			
0	3	30.63	-116.43	37.5	-102.5	15.53 Cargo Ships (Heavy Fuel Oil)	1	1 26		14		Marshmallow Meadows	1990		1990			
0	3	30.63	-116.43	41.57	-89.35	29.21 Diesel Rail	1	76		. 6	7	Pineapple Pop Paradise	2770					
682.0554675	3	30.63	-116.43	38.11	-112.36	8.52 Electric/Hybrid Trucks		89		. 17		Objectives		Target value			Weight	Weighted Deviation %
0	4	39.79	-101.09	37.5	-102.5	2.69 Electrified Rail	0	95		. 20		Total Transportation Cost			\$58,904		1	39.8%
2314.055468	4	39.79	-101.09	30.63	-116.43			78		10		Total Distance Traveled	\$124,408.8				1	15.4%
1994	4	39.79	-101.09	37.94	-102.2	2.16 Air Freight	1	1 78		. 19		Eco- Friendliness	\$7,317	\$ 3,235	\$4,082		1	126.2%
0	5	37.94	-102.2	44.03	-117.68	16.63 Diesel Rail	1	92		. 13		Minimize Congestion	\$ 13,910	6150	\$ 7,760	126.18%	1	126.2%
0	5	37.94	-102.2	30.63	-116.43	16.00 Electrified Rail		73	1	18								
0	5	37.94	-102.2	39.79	-101.09	2.16 Diesel Trucks	1	L 80	1	. 8		Objective						
0	5	37.94	-102.2	41.57	-89.35	13.35 Cargo Ships (Heavy Fuel Oil)	1	L 95		. 10		MiniMax	126%					
0	6	41.57	-89.35	30.63	-116.43	29.21 Wind-powered Ships	0	100		. 23								
0	6	41.57	-89.35	39.79	-101.09	11.87 Cargo Ships (Heavy Fuel Oil)	1	105		. 14								
0	6	41.57	-89.35	37.94	-102.2	13.35 Air Freight	1	101		. 20								
0	6	41.57	-89.35	38.11	-112.36		1	1 36	0	21								
1245	7	38.11	-112.36	44.03	-117.68	7.96 Diesel Rail	1	101	1	19								
0	7	38.11	-112.36	30.63	-116.43		1	L 86		11								
0	7	38.11	-112.36	39.79	-101.09		1	L 95		. 22								
0	7	38.11	-112.36	37.94	-102.2	10.16 Slow Steaming Cargo Ships	(103		13								
0	7	38.11	-112.36	41.57	-89.35	23.27 Air Freight	1	30	0	23								

Alter the weights of each objective to add weight to match what matters most to you. Perhaps run a few different scenarios to see how the routes change depending on the weights. When you find a weight mix and solution that satisfies you, please write a justification on why you chose the final model/weights and about how a configured model like yours can be used for scenario planning.

I prioritized Minimize Congestion because I am trying to streamline my distribution network, increasing the weight from 1 to 10. Also, I increased weight in Total making the cost of transportation a higher priority. There was a big difference in Total cost and Target cost so I wanted to better cost control. A higher weight on cost can help you focus on reducing expenses through more cost-effective transportation methods. Reducing the weight on Minimize Congestion and Total Distance could be a conscious decision to allow flexibility in routing decisions.