

# Simulare examen Algoritmi si structuri de date -Seria 14-

#### I SUBIECTE DE NOTA 4,5

# 1.1 - 0,5pct (0.25 pct pe exercitiu) Exprimati urmatoarele functii in notatia $\theta$

a)  $2^{n+1}$ 

b)  $n^2 lg \sqrt{n}$ 

1.2 - 0.5pct

$$2^{2n} = O(?)$$

# 1.3 - 0.5 pct

Care este inaltimea maxima a unui arbore binar cu n noduri?

# 1.4 - 1 pct

Sa se creeze un arbore echilibrat AVL cu urmatoarele noduri date in aceasta ordine: 20,30,40,10,15,25,45. Sa se stearga apoi nodul 20. (doar arborele final, fara pasi intermediari)

#### 1.5 - 1 pct

Sa se aplice o partitionare de QuickSort pe urmatorul vector: 3,5,7,4,2,1,6 (Explicati pe scurt un pas al partitionarii alese)

#### 1.6 - 1pct

Care este arborele Huffman optim pentru urmatoarele frecvente: B=14, A=10, E=13, S=1, T=9, I=8, N=12, U=6.

# II EXERCITII CU DEMONSTRATII (3 pucnte)

#### 2.1 - 1pct

Demonstrati ca un algoritm de sortare bazat pe comparatii intre chei are cazul mediu  $log_2n!$  si cazul cel mai nefavorabil  $log_2n!$ 

#### 2.2 - 1pct

Rezolvati recurenta T(n) = T(n/3) + T(2n/3) + n. Demonstrati

#### 2.3 - 1pct

Demonstrati ca  $lg(n!) = \theta(nlog(n))$ 

# III EXERCITII CU ALGORITMI (3 puncte)

# 3.1 - 1,5 pct

Se da un vector de n elemente. Sa se decida daca acest vector poate fi reprezentarea in memorie a unui max-heap. Punctajul va fi acordat in functie de timpul de rulare al algoritmului: O(n/2)-(1,5 pct) O(n)-(1 pct) O(f(x)),f(x)>n - (0,5 pct)

# 3.2 - 1,5 pct

Se citeste un numar natural n, si o matrice patratica de dimensiune n. Matricea citita se considera codificarea unei portiuni de teren, unde 0 este teren inaccesibil, iar 1 zona accesibila. Sa de determine cea mai mare portiune de teren accesibil. De exemplu,o zona accesibila de dimensiune 4, este un patrat de 2X2, umplut de 1.



 $O(n^2)$  - 1.5 pct Orice alta metoda in afara de backtracking - 1pct backtracking - 0.5pct