Reg. No.															
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

Fourth Semester

21CSE224T - COMPUTER ARCHITECTURE

(For the candidates admitted from the academic year 2022-2023 onwards)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

 Part - B and Part - C should be answered in answered.

(ii)	Part - B and Part - C should be answer	ered in answ	ver booklet.	•			
Time: 3	Max. Marks: 75						
	Marks	BL	со	РО			
1	1	2	1	2			
1.	Find the BCD (Binary Coded Decir (A) 1000 0100		100 0100				
	(C) 1000 1001	` ,	001 1100				
` 2	Reflected binary code is also known	1	1	1	1		
, 	(A) Binary code		ray code				
	(C) Ascii code	• •	CD code				
	(C) Albeit Code	(D) D(CD code				
3.	A NOR gate is logically equivalent	•		1	2	1	2
	(A) Invertor	(B) X					
-	(C) AND	(D) X(OR				
4.	4. Find the result of adding 1101 and 1011 in binary						2
	(A) 10000)110				
	(C) 11111	(D) 11	000				
5	Mnemonics refer to	1	1	2	1		
5.	(A) Instruction	(B) Pro	noram				-
	(C) Assembler	• •	achine language				
	(C) Historica	(D) 1VI	acimic language				
6.	Two important fields of an instructi	1	1	2	1		
	(A) Opcode and input data	(B) Op	perand and memory	. •			
	(C) Only operant not opcode	(D) Bo	oth opcode and operand				
7.	Which is the first step in the evoluti	1	1	2	1		
	(A) Machine learning		igh level language				
	(C) Assembly language		oded language				
8	Floating point representation is used	l to store		1	1	2	ı
0.	(A) Boolean values (B) Real integers						
	(C) Whole numbers	(D) Int	•				
0	•	1	2	•			
9.	Which operation is typically not per	1	1	3	1		
	(A) Addition		ogical AND				
Page 1 of 3	(C) Multiplication	(ט) טמ	ata Transfer	18MF4-2	1CSE	224T	

10.	Ψ,	roup of bits that tells the compu	ter to	perform a specific operation is	1	1	3	2
	(A)	Micro-operation	` /	Accumulator				
	(C)	Register	(D)	Instruction code				
11.		ch type of instruction is used to al cansferring control to another part		ne sequence of program execution	1	2	3	2
	-	Arithmetic instruction						
	` '	Branch instruction		Data transfer instruction	•			
12.	Whi	ch of the following is not a hazard	d enc	ountered in pipelined processors?	1	2	3	2
	(A)	Data hazard	(B)	Instruction hazard				
	(C)	Control hazards	(D)	Pipeline hazards				
13.	Whi	ch memory has less access time?			1	2	4	2
	• •	Cache memory	` ′	Magnetic core memory				
	(C)	Random access memory	(D)	Auxiliary memory				
14.	Whi	ch of the statement refers to the a	ssoci	ative memory?	1	1	4	1
	(A)	The data are accessed sequentially	(B)	The data is used as an address				
	(C)	The address of data is generated	(D)	The address of data is supplied				
		by CPU		by user				
15.	5. Size of the virtual memory depends on							1
		Address line		Data space				
	(C)	Disc space	(D)	Memory				
16.		ch mechanism is used for access puter system?	sing]	I/O (Input / Output) devices in a	1	2	4	2
	(A)	Direct Memory Access (DMA)						
	(C)	Interrupts	(D)	Cache memory				
17.		ut are the basics of input / output o			1	2	5	2
	(A)	-	(B)	Executing arithmetic and logical				
	((1)	registers	(D)	operations Managing mamaginally action				
	(C)	Communicating with external device	(D)	Managing memory anocation				
18.	The	number of clock cycle per second	d is re	eferred as	1	2	5	2
		Clock speed		Clock rate				
	, ,	Clock timing	(D)	Clock frequency				
19.	The	input / output devices are also kn	own	as	1	1	5	1
٠.		Framework	(B)	Peripherals				
	(C)	Firmware	(D)	Software				
20.	Whi	ch instruction set architecture inc			1	1	5	1
	` '	X86	` '	MIPS				
	(C)	Power PC	(D)	ARM				

$PART - B (5 \times 8 = 40 Marks)$ Marks BL. CO PO Answer ALL Ouestions 21. a. Differentiate between BCD and XS-3 codes. Perform the operations using XS-3 codes. $(544)_{10} + (278)_{10}$ (OR) b. Explain universal gates also discuss how basic gates can be realized using 8 3 NAND and NOR gate. 8 2 2 22. a. Explain the various addressing modes with suitable example. (OR) 2 1 b. Describe the role of buses in any system for which purpose they are used. Explain different types of buses with suitable examples. 23. a. Discuss the role of (IR) instruction register? Write the steps used to execute IR and also discuss the operations performed by using instruction register. (OR) b. Compare hardwired control unit and microprogrammed control unit. 2 8 2 24. a. Briefly explain about different types of pipeline hazards with suitable examples. (OR) b. Explain mapping functions in cache memory to determine how memory blocks are placed in cache. 25. a. Explain instruction level parallel processing and its challenges. (OR) 2 3 b. Compare Arm 5 and Arm 7 series processors with features and application. CO PO Marks RI. $PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Question 15 26. Draw the typical block diagram of a DMA controller and explain how it is used for direct data transfer between memory and peripherals. 2 2 15 27. Evaluate: X = (A - B) * (((-D * E) | F) | G) using all four types of addressing instructions.

非非非非非