TD1 : Calcul algébrique de base

2018/2019

E3FI Semestre 1

1 Fractions

Quelques rappels sur les règles opératoires connues :

(i)
$$\frac{a}{c} + \frac{b}{c} =$$

(ii)
$$\frac{a}{c} - \frac{b}{c} =$$

(iii)
$$\frac{a}{c} \times \frac{b}{c} =$$

(iv)
$$\frac{a}{c} \div \frac{b}{c} =$$

Exercice 1. Mettre sous forme de fractions irréductible :
$$A)(\frac{1}{12} - \frac{1}{4}) \times \frac{7}{9} \qquad B) \frac{\frac{4}{13}}{\frac{15}{15}} \qquad C) \frac{3}{\frac{5}{15}}$$

$$Exercice 1. Mettre sous forme de fractions irréductible :
$$D) \frac{5}{\frac{3}{15}} \qquad E) \frac{\frac{3}{2}}{\frac{2}{8}} - (\frac{1}{4})^2 \qquad F) \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5}$$

$$G) \frac{64}{49} \times \frac{54}{48} \qquad H) \frac{1}{G^2} \qquad I)(C - D)^2$$

$$J)3 \times (\frac{3}{15} - \frac{4}{12}) - 3 \qquad K)(\frac{1}{2} - 4)^2 - 3 \qquad L) \frac{9}{4} - (1 - \frac{2}{3})$$$$

Exercice 2. Exprimer de manière la plus simple possible les expressions suivantes :

$$\begin{array}{ccccccc} \text{A)} & \frac{x}{2} \times \frac{x+1}{6} \times \frac{4x}{x^2-1} & \text{B)} \frac{a-b}{a} \times \frac{a^2-ab}{5} \times \frac{3a}{a^2-b^2} & \text{C)} \frac{\frac{y}{x-y} - \frac{x}{x+y}}{\frac{x}{x+y} + \frac{y}{y}} \\ \text{D)} \frac{x+3}{5} \times \frac{x+1}{x^2} \times \frac{x}{(x+3)(x+1)} & \text{E)} \frac{1}{a^2-ab} \times \frac{4}{a^2} \times \frac{a^2-b^2}{5} & \text{F)} \frac{\frac{y}{x-1} - \frac{x}{x+1}}{1-\frac{x-1}{x+1}} \end{array}$$

Correction 2. A) $\frac{x^2}{3(x-1)}$, B) $\frac{3a(a-b)}{5(a+b)}$, C)1, D) $\frac{1}{5x}$, E) $\frac{4(a+b)}{5a^3}$, F) $\frac{2x}{x-1}$

2 Developper-Factoriser

On rappel les règles opératoires connues :

(i)
$$k(a+b) = ka + kb$$

(ii)
$$k(a+b+c+d+...) =$$

(iii)
$$k(a-b) =$$

(iv)
$$-(a+b+c+d+...) =$$

(v)
$$(a+b)(c+d) =$$

(vi)
$$(a+b)^2 =$$

(vii)
$$(a - b)^2 =$$

(viii)
$$(a+b)(a-b) =$$

Exercice 3. Démontrer les quatre dernières propriétés en utilisant la première.

Exercice 4. Développer et réduire :

$$\begin{array}{ccc} A) - 3(2x+3) & F)(2x-3)(y+5) \\ B) (2x-3)^2 & G) (a+b)(c+d+e) \\ C) (7x+1)^2 & H) (a+b+c)^2 \\ D) (9x-4)(2x-1)(3x+2) & I) (a+b)^3 \\ E) - 2(2x-4)(4y+5) & J) (2x+3)^3 \end{array}$$

Correction 3. A) -6x - 9, $B)4x^2 - 12x + 9$, $C)49x^2 + 14x + 1$, $D)54x^3 - 15x^2 - 22x + 8$, E)-8xy - 10x + 16y + 20, F)2xy + 10x - 3y - 15, G)ac + ad + ae + bc + bd + bc, $H)a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$, $I)a^3 + 3a^2b + 3ab^2 + b^3$, $J)8x^3 + 36x^2 + 54x + 27$

Correction 4. A) 2(a+3b) B)2(2a-3b) C)a(3+4a) D)5a(1+3b) E)2ab(2b+3a+6c) F)(2x-3)(4x+5) G)2(3x-3b) C)a(3+4a) D)a(3+4a) D)a(3+4a) D)a(3+4a) E)a(3+3b) E)a(3+3a+6c) E) 1)(x+4) H)(3x-9)(-x-10) I) $(x-1)^2$ J) $-(x-1)^2$ K) $(x+1)^2$ L)(5x+3)(5x-3) M) $4a(x^2-4)=4a(x+2)(x-2)$ N(5x-3)(-x-5) O(2x-3)(x-2)

3 **Puissances**

Rappels des règles opératoires connues :

- (i) $a^{-n} =$
- (ii) $a^0 =$
- (iii) $a^1 =$
- (iv) $a^n \times a^m =$
- $(v) \frac{a^n}{a^m} =$
- (vi) $(ab)^n$
- (vii) $(\frac{a}{b})^n =$
- (viii) $(a^n)^m =$

Exercice 6. Donner une idée de démonstration des cinq dernières règles

Correction 5.

Exercice 7. Mettre sous la forme a^n , avec $a \in \mathbb{N}$ le plus petit possible.

Correction 6. A) 2^{-6} B) 2^{-12} C) 5^{3} D) 2^{-22} E) 2^{10} F) 1 G) 10^{-11} H) 2^{5} I) 2^{-6} J) 3^{12} K) 3^{-21} L) 10^{4}

Exercice 8. Mettre sous la forme
$$a^nb^n$$
 avec $a \in \mathbb{N}$ et $b \in \mathbb{N}$ les plus petits possible : $A \ \ \, \frac{8}{9} \ \ \ \, B) \ \, \frac{100}{27^3} \ \ \, C) \ \, \frac{81^{-3}}{0,001} \ \ \, D) \ \, \frac{\frac{8}{9}}{27^{-3}} \times (\frac{1}{16})^{-4} \times (\frac{1}{\frac{1}{2}})^3 \ \ \, E) \ \, \frac{25}{5^{-3}} \times \frac{10}{100^2} \times \frac{1}{8} \ \ \, F)0,1 \times 4 \times \frac{1}{10 \times 10^0} \times \frac{5^2}{5^{-3}} \ \,$

Correction 7. A) $2^3 \times 3^{-2}$ B) $2^2 \times 5^2 \times 3^6$ C) $3^{-12} \times 10^3$ D) $\frac{2^3}{3^2} \times 3^9 \times 2^4 \times 8^4 \times 2^3$ E) $2^{-6} \times 5^2$ F) 5^3

Exercice 9. Rappeler dans quels cas on change le sens d'une équation

Exercice 10. Résoudre les équations et les inéquations suivantes :

A)
$$4x - 3 = 1 - 3x$$
 B) $5x - 4 = 2 - x$
C) $-3x + 2 < -x + 4$ D) $-5x + 4 > 4x + 2$
E) $-2(4x + 2) < 4(x - 3)$ F) $(x + 1)^2 \ge (x - 1)^2$
G) $2x - p \ne 4(x - p) + p$ H) $5a - 3 \le 2a + x$
I) $4x + 6a > -(a - x)$ J) $2x + 3 \ne 6(x - 3) - 8$

Correction 8. A) $x=\frac{4}{7}$ B) x=1 C) x>1 D) $x<\frac{2}{9}$ E) $x>\frac{2}{3}$ F) Après avir developper on trouve $x\geq 0$ G)On trouve $x\neq p$ donc $x\in\mathbb{R}\{p\}$ H) $3a-3\leq x$ I) $x\geq -\frac{-7a}{3}$ J) $x\neq \frac{29}{4}$

Exercice 11. Donner l'ensemble des solutions des équations et inéquations suivantes :

A)
$$(2x-3)(5-x) = 0$$
 B) $(4x-3)^2 = 0$
C) $4x^2 - 9 = 0$ D) $\frac{2x-3}{(4x-8)(3x+5)} > 0$
E) $\frac{x^2-1}{2x+3} = 0$ F) $\frac{1-4x}{x+3} < 0$
G) $\frac{(2x-3)^2}{4} \ge 0$ H) $\frac{x^2+2x+1}{(3-x)(x^2+1)} < 0$

Correction 9. A) $\{\frac{3}{2};5\}$ B) $\{\frac{3}{4}\}$ C) $\{-\frac{3}{2};\frac{3}{2}\}$ D) $]-\frac{5}{3};\frac{3}{2}[\cup 2,+\infty[$ E) $\{-1;1\}$ F) $]-\infty;-3[\cup]\frac{1}{4};=\infty[$ G) \mathbb{R} H) $]3;+\infty[$

Exercice 12. Rappeler, suivant le signe de a, l'ensemble des solutions de l'équation $X^2=a$

- si a > 0, l'ensemble dees solutions est : S =
- $\ si\ a = 0,\ l'ensemble\ des\ solutions\ est: S =$
- si a < 0, l'ensemble des solutions est : S =

Démontrer ces trois propriétés.

Correction 10. $x^2 - a = (x - \sqrt{a})(x + \sqrt{a})$

Exercice 13. $R\'{e}soudre$ les $\'{e}quations$ suivantes :

A)
$$x^2 = -3$$
 B) $x^2 = 5$ C) $x^2 = 0$
D) $(x+1)^2 = -3$ E) $(2x-3)^2 = 2$ F) $(3x-2)^2 = -4$
G) $9x^2 - 4 = 0$ H) $(4x+2)^2 = 0$ I) $8 \times (2x-1)^2 = 4$

 $\textbf{Correction 11.} \ \ A) \ \varnothing \ \ B) \ \ \{-\sqrt{5}; \sqrt{5}\} \ \ C) \{0\} \ \ D) \ \varnothing \ \ E) \{\frac{-\sqrt{2}+3}{2}, \, \frac{-\sqrt{2}+3}{2}\} \ \ F) \ \varnothing \ \ G) \{\frac{-2}{3}; \frac{2}{3}\} \ \ H) \frac{-1}{2} \ \ I) \{\frac{2-\sqrt{2}}{4}; \frac{2+\sqrt{2}}{4}\} \ \ F \in \mathbb{C} \}$