Chromatic Homotopy Theory

Hongxiang Zhao

March 23, 2023

Contents

1	Nota	ations	2
2	Rou	gh Idea of Chromatic Homotopy Theory	2
	Periodicity Theorem Geometric Chromatic Filtration and Telescope Localization		3
			5
5	Thick Category Theorem		8
	5.1	The category $C\Gamma$	8
	5.2	Thick Subcategories	10
Bibliography			11

1 Notations

For a topological space X, let $\pi_*^S(X) :=$ be its stable homotopy groups.

Let S be the sphere spectrum.

Let SG be the Moore spectrum of an abelian group G.

For spaces X,Y, let $[X,Y]_*^S:=\operatorname{colim}[\Sigma^{i+*}X,\Sigma^iY]$ be the stable homotopy groups of maps.

For a homology theory E_* , let \overline{E}_* be the associated homology theory. By abuse of notation, we also denote the coefficient ring by $E_* := E_*(pt)$.

2 Rough Idea of Chromatic Homotopy Theory

In number theory, we have the Sullivan fracture square:

$$\mathbb{Z} \longrightarrow \prod_{p: prime} \mathbb{Z}_p$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Q} \longrightarrow \mathbb{Q} \otimes \left(\prod_{p: prime} \mathbb{Z}_p\right)$$

There is a similar fracture square in homotopy theory. First, we have the similar definition of localization:

Definition 2.1 (*E*-acyclic, *E*-local, *E*-localization). Let E_* be a generalized homology theory. A spectrum X is *E*-acyclic if $E_*(X) = 0$. A space Y is *E*-local if $[X,Y]_* = 0$ for any *E*-acyclic X.

An E-localization of a spectrum X is a map $\eta\colon X\to L_EX$ such that $E_*(\eta)$ is an isomorphism.

Theorem 2.2 (Bousfield). Such L_EX always exists and is functorial in X.

Theorem 2.3. For any spectrum X,

$$X \longrightarrow \prod_{p: prime} L_p X$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{\mathbb{Q}} X \longrightarrow L_{\mathbb{Q}} (\prod_{p: prime} L_p X)$$

where $L_pX := L_{S\mathbb{F}_p}X$, $L_{\mathbb{Q}}X := L_{S\mathbb{Q}}X$ (which is the rationalization of X when X is a CW-complex).

That is, we can get the global information of the spectrum X through p-completion, rationalization and how they are glued together. Also, similar to algebra, the p-completion of the space X can be constructed from the completion of the p-localization of X, i.e., $L_{S\mathbb{Z}_{(p)}}X$. This inspires us to investigate the p-localization of a spectrum X, which turns out to have a nice structure and be computable.

Theorem 2.4 (Chromatic Convergence Theorem). Suppose that X is a p-local spectrum, i.e., it is the p-localization of some spectrum. Then we have $X \cong holimL_nX$, where $L_nX \cong L_{E_n}X$ and E_n is the Morava E-theory (also called Lubin-Tate theory).

Theorem 2.5 (Smash Product Theorem). For any spectrum X, $L_nX \cong X \wedge L_nS$.

Therefore, we can recover the information of X from $L_nX \cong X \wedge L_nS$. Then we are reduced to compute L_nS , which can be decomposed further:

Proposition 2.6. Let K(n) be the Morava K-theory and X be an arbitrary spectrum.

$$L_{n}X \longrightarrow L_{K(n)}X$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{n-1}X \longrightarrow L_{n-1}L_{K(n)}X$$

Therefore, we are reduced to calculate $L_{K(n)}X$, which is somehow related to the equivariant stuff:

Theorem 2.7 (Devinatz-Hopkins). $L_{K(n)}S \cong E_n^{h\mathbb{G}_n}$, where \mathbb{G}_n is called the Morava stabilizer group.

3 Periodicity Theorem

Due to the discussion in Section 2, from now on we will focus on the case of p-local spectra. There is a sequence of useful homology theories in investigating p-local spectra called the Morava K-theory. They will give a filtration of the category of p-local spectra. The construction is tedious and artificial, so we only display some properties of K(n) here:

Proposition 3.1. For each prime p there is a sequence of homology theories $K(n)_*$ for $n \ge 0$ with the following properties.

(i)
$$K(0)_*(X) = H_*(X; \mathbb{Q})$$
 and $\overline{K(0)}_*(X) = 0$ when $\overline{H}_*(X)$ is all torsion.

- (ii) $K(1)_*(X)$ is one of p-1 isomorphic summands of mod p complex K-theory.
- (iii) $K(0)_* = \mathbb{Q}$ and for n > 0, $K(n)_* = \mathbb{F}_p[v_n^{\pm}]$ where the dimension of v_n is $2p^n 2$. This ring is a graded field in the sense that every graded module over it is free. For each $n \ge 0$, $K(n)_*(X)$ is a module over $K(n)_*$.
- (iv) $K(n)_*(X \times Y) \cong K(n)_*(X) \otimes_{K(n)_*} K(n)_*(Y)$.
- (v) Let X be a p-local finite CW-complex. If $\overline{K(n)}_*(X) = 0$, then $\overline{K(n-1)}_*(X) = 0$.
- (vi) Let X be a p-local finite CW-complex.

$$\overline{K(n)}_*(X) = K(n)_* \otimes_{\mathbb{F}_n} \overline{H}_*(X; \mathbb{F}_p)$$

for n sufficiently large. In particular, it is nontrivial if X is simply connected and not contractible.

Definition 3.2 (Type). A *p*-local finite complex X has **type** n if n is the smallest integer such that $\overline{K(n)}_*(X)$ is nontrivial. If X is contractible, it has **type** ∞ .

Besides the types, Morava K-theories are useful in detecting periodic self-maps of a spectrum, which will give finer structures of the homotopy groups.

Theorem 3.3 (Periodicity theorem). Let X, Y be p-local finite CW-complexes of type n for finite n.

- (i) There is a map $f: \Sigma^{d+i}X \to \Sigma^iX$ for some $i \geqslant 0$ such that $K(n)_*(f)$ is an isomorphism and $K(m)_*(f) = 0$ for $m \neq n$. (We will refer to such a map as a v_n -map) When n = 0 then d = 0, and when n > 0 then d is a multiple of $2p^n 2$.
- (ii) Suppose $h: X \to Y$ is a continuous map. Assume that both have been suspended enough times to be the target of a v_n -map. Let $g: \Sigma^e Y \to Y$ be a self-map as in (i). Then there are positive integers i and j with di = ej such that the following diagram commutes up to homotopy.

$$\begin{array}{ccc}
\Sigma^{di} X & \xrightarrow{\Sigma^{di} h} & \Sigma^{di} Y \\
\downarrow^{g^j} & & \downarrow^{g^j} \\
X & \xrightarrow{h} & Y
\end{array}$$

If we take $h = Id_X$, then the second part of the periodicity theorem says that the v_n -map is unique up to powers.

4 Geometric Chromatic Filtration and Telescope Localization

Theorem 2.4 tells us that there is a filtration of the homotopy group:

$$\mathscr{C}_0^a(X) := \pi_*(X)$$

$$\mathscr{C}_n^a(X) := \ker \left(\pi_*(X) \to \pi_*(L_nX)\right)$$

$$\mathscr{C}_0^a(X) \supset \mathscr{C}_1^a(X) \supset \mathscr{C}_2^a(X) \supset \cdots$$

This is called the algebraic chromatic filtration, but K(n) and E_n are so manufactured. In this section, we are aiming to give a geometric model for this filtration.

Lemma 4.1. Suppose X has type n. Then the cofiber W of the map $f: \Sigma^{d+i}X \to \Sigma^iX$ given by Theorem 3.3 has type n+1.

Proof. For each m, we have a long exact sequence:

$$\cdots \to \overline{K(m)}_t(\Sigma^{d+i}X) \stackrel{f_*}{\to} \overline{K(m)}_t(\Sigma^iX) \to \overline{K(m)}_t(W) \to \overline{K(m)}_{t-1}(\Sigma^{d+i}X) \stackrel{f_*}{\to} \cdots$$

When m < n, $\overline{K(m)}_*(\Sigma^{d+i}X) = \overline{K(m)}_*(\Sigma^dX) = 0$, so $\overline{K(m)}_*(W) = 0$. When m = n, f_* are isomorphisms, so $\overline{K(m)}_*(W) = 0$ again. When m = n + 1, $f_* = 0$, so $\overline{K(m)}_*(W) = \overline{K(m)}_{*-1}(\Sigma^{d+i}X)$ is nontrivial by Proposition 3.1.

Proposition 4.2. Let X be a CW-complex and $X_{(p)} := L_{S\mathbb{Z}_{(p)}}X$. Then $\overline{E}_*(X_{(p)}) \cong \overline{E}_*(X) \otimes \mathbb{Z}_{(p)}$. If X is finite, $X_{(p)}$ is also finite.

Suppose X is a p-local complex. Then each element $x \in \pi_k^S(X)$ has infinite order or order p^i for some i. If y has infinite order, then it has a nontrivial image in $\pi_k^S(X) \otimes \mathbb{Q}$, which is left for rational homotopy theory.

On the other hand, if x has order p^i for some i, then the composite (Here we omit the suspension for simplicity)

$$S^k \stackrel{p^i}{\to} S^k \stackrel{x}{\to} X$$

is null-homotopic. Technically, we localize at p here. Then x factors through the cofiber W(1) of $p^i \colon S^k_{(p)} \to S^k_{(p)}$. Note that the sphere spectrum has type 0 and the map p^i is a v_0 -map. Thus,

W(1) has type 1. Therefore, it admits a v_1 -map $f_1 \colon \Sigma^{d_1} W(1) \to W(1)$. Hence, we have the following diagram:

$$S_{(p)}^{k} \xrightarrow{p^{i}} S_{(p)}^{k} \xrightarrow{y} X$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

If the composite of g_1 and all powers of f_1 are not null-homotopic, then g_1 has a nontrivial image in $v_1^{-1}[W(1), Y]_*^S$, which is the colimit

$$[W(1), X]_*^S \xrightarrow{f_1^*} [\Sigma^{d_1}W(1), X]_*^S \xrightarrow{f_1^*} [\Sigma^{2d_1}W(1), X]_*^S \xrightarrow{f_1^*} \cdots$$

On the other hand, if $g_1 f_1^{i_1}$ is null-homotopic for some i_1 . Let W(2) be the cofiber of the map $f_1^{i_1}: \Sigma^{d_1 i_1} W(1) \to W(1)$. Iterating this process we get a diagram:

Definition 4.3 (Geometric chromatic filtration). If an element $x \in \pi_*^S(X)$ extends to a p-local complex W(n) of type n, then x is v_{n-1} -torsion. If in addition x does not extend to a p-local complex of type n+1, it is v_n -periodic. The **geometric chromatic filtration** of $\pi_*^S(X)$ is the decreasing family of subgroups consisting of the v_n -torsion elements for various $n \ge 0$.

Conjecture 4.4 (Telescope Conjecture). *The algebraic chromatic filtration is the same with the geometric chromatic filtration.*

Finally, we want to talk about why this conjecture is called "telescope" and interpret the geometric filtration in the viewpoint of Bousfield localization.

Definition 4.5 (Telescope of a self-map). Let $f: \Sigma^d X \to X$ be a self-map. Then the **telescope** of f is the homotopy colimit

$$\hat{X} := f^{-1}X := \operatorname{hocolim} \big(X \xrightarrow{\Sigma^{-d}f} \Sigma^{-d}X \xrightarrow{\Sigma^{-2d}f} \Sigma^{-2d}X \xrightarrow{\Sigma^{-3d}f} \cdots \big)$$

By Theorem 3.3(ii), \hat{X} is independent of the choice of f, since the v_n -maps are unique up to powers.

In analogy with algebra, this likes

$$M[f^{-1}] = \operatorname{colim}(M \xrightarrow{f} M \xrightarrow{f} M \to \cdots)$$

where M is an R-module and $0 \neq f \in R$.

Definition 4.6 (Telescope Localization). Let $Tel(n) := f_n^{-1}W(n)$, where W(n) is defined as above. Define the **telescope localization** by

$$L_n^f X := L_{Tel(0) \vee \dots \vee Tel(n)} X$$

We will prove that this definition does not rely on the choice of W(n) when we talk more about Bousfield localization. Actually, we can take arbitrary p-local finite CW-complex of type n. That is why we take the p-localization at the beginning of the construction.

Example 4.7. If X is of type n with v_n -self map f, then $L_n^f X \cong \hat{X}$. See [Lur10, Lecture 28, Proposition 1]. That is why this is called the "telescope" localization.

Now suppose $x \in \pi_k(X)$ is v_0 -torsion, i.e., it can factor through W(1) defined above. Due to [Rav92, Proposition 7.2.6], $\hat{S}^k_{(p)} \wedge W(1)$ is contractible, which is similar to $p^{-1}S \otimes S/p = 0$ in algebra. Therefore, W(1) is $\hat{S}^k_{(p)}$ -acyclic. Since $L_0^f X = L_{\hat{S}^k_{(p)}} X$ is $\hat{S}^k_{(p)}$ -local, $[W(1), L_{\hat{S}^k_{(p)}} X] = 0$. Hence, x has trivial image in $\pi_*(X) \to \pi_*(L_n^f X)$. Conversely, $Tel(0) = p^{-1}S_{(p)}$, so $H_*(p^{-1}S_{(p)}) = p^{-1}\mathbb{Z}_{(p)} = \mathbb{Q}$. Therefore, $Tel(0) = S\mathbb{Q} = H\mathbb{Q} = K(0)$. If x has trivial image in $\pi_*(X) \to \pi_*(L_0^f X)$, then it factors through the fiber of $X \to L_0^f X$. Since the fiber is Tel(0)-acyclic, it has type $\geqslant 1$, so x is v_0 -torsion.

This is true for the general case with more knowledge about Bousfield localization. Therefore, under the viewpoint of localization, the geometric chromatic filtration becomes

$$\mathscr{C}_0^g(X) := \pi_*(X)$$

$$\mathscr{C}_n^g(X) := \ker \left(\pi_*(X) \to \pi_*(L_n^f X)\right)$$

$$\mathscr{C}_0^g(X) \supset \mathscr{C}_1^g(X) \supset \mathscr{C}_2^g(X) \supset \cdots$$

And the telescope conjecture says that $\mathscr{C}_n^g = \mathscr{C}_n^a$ or $L_n^f = L_n$ in other word. By above discussions

sion, this is true when n = 0. When n = 1, the case of p > 2 is proved by Miller and the case of p = 2 is proved by Mahowald [Bea19, Part III].

The geometric side is more natural and conceptual while the algebraic side is more manufactured and computable. For example, we do not have a chromatic convergence theorem for $L_n^f X$ and the Adams-Novikov spectral sequence may not converge for $\pi_*(L_n^f X)$, so $\pi_*(L_n^f X)$ is hard to compute.

Now suppose that $x \colon S^k \to X$ is v_n -periodic and that it extends to $g_n \colon W(n) \to X$. Suppose $e \colon S^K \to W(n)$ is the bottom cell in W(n). Then for each i, we have a composition

$$S^{K+d_n i} \stackrel{\Sigma^{d_n i}}{\to} {}^e \Sigma^{d_n i} W(n) \stackrel{f_n^i}{\to} W(n) \stackrel{g_n}{\to} X$$

We can play the same game as above to get a nontrivial element in $\pi_*^S(X)$.

Definition 4.8 (v_n -periodic family). Given a v_n -periodic element $x \in \pi_*^S(X)$, the element described above for various i > 0 constitute the v_n -periodic family associated with x.

5 Thick Category Theorem

5.1 The category $C\Gamma$

Let $L \cong \mathbb{Z}[x_1, x_2, \cdots]$ be the Lazard ring and G(x, y) be the universal formal group law over L.

Definition 5.1. Let Γ be the group of power series over \mathbb{Z} having the form $\gamma = x + b_1 x + b_2 x + \cdots$ where $b_1, b_2, \dots \in \mathbb{Z}$. Then Γ acts on L by the following. Note that $\gamma^{-1} \Big(G \big(\gamma(x), \gamma(y) \big) \Big) \in FGL(L)$. It is determined by a homomorphism $L \to L$. Since γ is invertible, this endomorphism is an automorphism, which is the desired action.

Let MU be the complex cobordism theory. Then Γ also acts naturally on $MU_*(X)$ compatibly with the action on MU_* .

Remark. According to [Rav92, Section 3.3], this action is an analogy to the action of the group of multiplicative cohomology operations. For example, in the mod 2 case, the action by the total Steenrod square $\sum_{i\geq 0} Sq^i$ is determined by its effect on the generator of $H^1(\mathbb{RP}^\infty; \mathbb{Z}/2\mathbb{Z})$.

Definition 5.2. Let $C\Gamma$ be the category of finitely presented graded L-modules equipped with an action of Γ compatible with its action on L. Let FH be the category of finite CW-complexes and homotopy classes of maps between them.

Therefore, MU_* is a functor from FH to $C\Gamma$, which is more accessible and is the main object in this subsection.

Let $v_n \in L$ denote the coefficient of x^{p^n} in the p-series for the universal formal group law. It can be shown that v_n can serve as a polynomial generator in dimension $2p^n - 2$ [Lur10, Lecture 13, Proposition 1]. Let $I_{p,n} \subset L$ denote the prime ideal (p, v_1, \dots, v_{n-1}) .

Theorem 5.3 (Invariant Prime Ideal Theorem). The only prime ideals in L which are invariant under the action of Γ are the $I_{p,n}$ defined above, where p is a prime integer and $n \in \mathbb{N}$, possibly ∞ . By convention, $I_{p,0} = 0$.

Moreover,
$$(L/I_{p,n})^{\Gamma} = \mathbb{F}_p[v_n]$$
 for $n > 0$ and $L^{\Gamma} = \mathbb{Z}$.

Proof. For references, see [Rav92, Theorem 3.3.6].

Theorem 5.4 (Landweber Filtration Theorem). Every module M in $\mathbb{C}\Gamma$ admits a finite filtration by submodules in $\mathbb{C}\Gamma$ as above in which each subquotient is isomorphic to a suspension (recall these modules are graded) of $L/I_{p,n}$ for some prime p and finite n.

Remark. A finitely generated module M over a Noetherian ring R has a finite filtration with each subquotient equals to R/I for some prime ideal I. Note that L is not Noetherian, but it is a limit of Noetherian rings, so finitely presented modules over it admits similar filtrations. That is why we define $\mathbf{C}\Gamma$ to be the category of such modules.

Corollary 5.5. Suppose M is a p-local module in $C\Gamma$ and $x \in M$.

- (a) If x is annihilated by some power of v_n , then it is annihilated by some power of v_{n-1} , so if $v_n^{-1}M = 0$, then $v_{n-1}^{-1}M = 0$.
- (b) If x is nonzero, then there is an n so that $v_n^k x \neq 0$ for all k, so if M is nontrivial, then so is $v_n^{-1}M$ for all sufficiently large n.
- (c) If $v_{n-1}^{-1}M = 0$, then there is a positive integer k such that multiplication by v_n^k in M commutes with the action of Γ .

(d) Conversely, if $v_{n-1}^{-1}M$ is nontrivial, then there is no positive integer k such that multiplication by v_n^k in M commutes with the action of Γ on x.

Proof. See [Rav92, Corollary 3.3.9].
$$\Box$$

The first two statements are similar to the one of Morava K-theory. In fact, for a finite p-local CW-complex X, $v_n^{-1}\overline{MU}_*(X)_{(p)}=0$ if and only if $\overline{K(n)}_*(X)=0$. One can replace $K(n)_*$ by $v_n^{-1}MU_{(p)}$ in the statement of the periodicity theorem. The third statement is an analogy of the periodicity theorem.

Definition 5.6. A p-local module M in $\mathbb{C}\Gamma$ has **type** n if n is the smallest integer with $v_n^{-1}M$ nontrivial. A homomorphism $f \colon \Sigma^d M \to M$ in $\mathbb{C}\Gamma$ is a v_n -map if it induces an isomorphism in $v_n^{-1}M$ and the trivial homomorphism in $v_m^{-1}M$ for $m \neq n$.

Corollary 5.7. If M in $C\Gamma$ is a p-local module with $v_{n-1}^{-1}M$ nontrivial, then M does admit a v_n -map.

5.2 Thick Subcategories

Definition 5.8 (Thick Subcategory). A full subcategory C of $C\Gamma$ is **thick** is it satisfies that if

$$0 \to M' \to M \to M'' \to 0$$

is a short exact sequence, then M is in \mathbb{C} if and only if M', M'' are in it.

A full subcategory F of FH is **thick** if it satisfies the following axioms:

(a) If

$$X \xrightarrow{f} Y \to C_f$$

is a cofiber sequence in which two of the three spaces are in F, then so is the third.

(b) If $X \vee Y$ is in **F** then so are X and Y.

Using Landweber filtration theorem we can prove that

Theorem 5.9. Let \mathbb{C} be a thick subcategory of $\mathbb{C}\Gamma_{(p)}$, the subcategory of all p-local modules in $\mathbb{C}\Gamma$. Then \mathbb{C} is either all of $\mathbb{C}\Gamma_{(p)}$, or consists of all p-local modules M in $\mathbb{C}\Gamma$ with $v_{n-1}^{-1}M=0$. We denote the latter category by $\mathbb{C}\Gamma_{p,n}$.

Proof. See [Rav92, Theorem 3.4.2].

There is an analogous result about thick subcategories of $FH_{(p)}$.

Theorem 5.10 (Thick Category Theorem). Let \mathbf{F} be a thick subcategory of $\mathbf{FH}_{(p)}$, the category of p-local finite CW-complexes. Then \mathbf{F} is either all of $\mathbf{FH}_{(p)}$, the trivial subcategory or consists of all p-local finite CW-complexes X with $\overline{K(n)}_*(X) = 0$, which is equivalent to say that $v_{n-1}^{-1}\overline{MU}_*(X) = 0$. We denote the latter category by $\mathbf{FH}_{p,n}$.

Therefore, we have two sequences of thick subcategories, where $MU_*(\cdot)$ sends one to the other.

$$\mathbf{FH}_{(p)} = \mathbf{FH}_{p,0} \supset \mathbf{FH}_{p,1} \supset \mathbf{FH}_{p,2} \supset \cdots \supset *$$

 $\mathbf{C\Gamma}_{(p)} = \mathbf{C\Gamma}_{p,0} \supset \mathbf{C\Gamma}_{p,1} \supset \mathbf{C\Gamma}_{p,2} \supset \cdots \supset 0$

References

- [Bea19] Agnes Beaudry, An introduction to chromatic homotopy theory, https://sites.google.com/colorado.edu/agnesbeaudry/links/echt-may-2019, 2019. 4
- [Lur10] Jacob Lurie, Chromatic homotopy theory, https://www.math.ias.edu/~lurie/ 252x.html, 2010. 4.7, 5.1
- [Rav92] Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992. 4, 5.1, 5.3, 5.4, 5.5, 5.7, 5.9