五、实验结论探讨及分析

参数项目	R(KΩ)	K	Wn	ξ	C(tp)	C (∞)	Mp (%)		tp (s)		ts (s)		响应情况
							理论值	测量值	理论值	测量值	理论值	测量值	
0<ξ<1	50	4	2√5	√5/4	1. 16	1	11	16	0.85	0.87	1. 6	1. 7	衰减震荡
ξ=1	160	1. 25	2. 5	1	无	1		无	Ē	E	1. 9	2.6	单调指数
ξ> 1	200	1	√5	√5/2	无	1		无	Ē	E	2. 9	3. 5	单调指数

$R(K\Omega)$		开环增益 K	稳定性
	30	16. 7	不稳定发散
	41.7	12	临界稳定等幅振荡
	100	5	稳定衰减收敛

实验前由 Routh 判断得 Routh 行列式为:

$$S^3$$
 1 20
 S^2 12 20K
 S^1 (-5K/3)+20 0
 S^0 20K 0

为了保证系统稳定,第一列各值应为正数,所以有

系统稳定 得: 0 < K < 12 ⇒ R > 41.7KΩ 系统临界稳定 K = 12 \Rightarrow $R = 41.7K\Omega$ 系统不稳定 K > 12 \Rightarrow $R < 41.7K\Omega$

评阅	
老师	

中南大學 自动化学院本科生

自动控制原理课程实验报告

班级: 智能 2101 姓名: 钱兴宇 学号: 8207211912 序号: 2 预定: <u>2023. 5. 15</u> 星期 <u>一 节次 上午 3-4</u> 实验: <u>2023. 5. 15</u> 星期 <u>一 节次上午 3-4</u> 地点: 信息楼 309 台号: 2 授课: 赵于前 指导: 赵于前

实验名称: 实验 2: 典型系统的时域响应和稳定性分析

一、实验原理、目的与要求

实验目的:

- 1. 研究二阶系统的特征参量 (ξ、ω) 对过渡过程的影响。
- 2. 研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
- 3. 熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

实验原理:

二阶系统开环传递函数为: $G(S) = \frac{K_1}{T.S(T.S+1)} = \frac{K_1}{S(T.S+1)}$

开环增益为: $K = \frac{K_1}{T_0}$

三阶系统开环传递函数为: $G(S)H(S) = \frac{500/R}{S(0.1S+1)(0.5S+1)} = 500/R$)

特征方程为: $1+G(S)H(S)=0 \Rightarrow S^3+12S^2+20S+20K=0$

二、实验仪器设备及软件(标注实验设备名称及设备号)

PC 机一台, TD-ACC+(或 TD-ACS)实验系统一套。

三、实验线路示图、内容步骤

- 1. 将信号源单元的 "ST" 端插针与 "S" 端插针用 "短路块" 短接。由于每个运放单元 均设置了锁零场效应管,所以运放具有锁零功能。将开关设在"方波"档,分别调节调幅和调频电位器,使得"OUT"端输出的方波幅值为 1V,周期为 10s 左右。
- 2. 典型二阶系统瞬态性能指标的测试
- (1)按模拟电路图 1.2-2 接线,将 1 中的方波信号接至输入端,取 R = 10K。

- (2) 用示波器观察系统响应曲线 C(t), 测量并记录超调 MP, 峰值时间 tp 和调节时间 ts。
- (3)分别按 R = 50K; 160K; 200K; 改变系统开环增益,观察响应曲线 C(t),测量并记录性能指标 MP、tp 和 tS,及系统的稳定性。并将测量值和计算值进行比较(实验前必须按公式计算出)。将实验结果填入表 1.2-1 中。表 1.2-2 中已填入了一组参考测量值,供参照。
- 3. 典型三阶系统的性能
- (1) 按图 1.2-4 接线,将 1 中的方波信号接至输入端,取 R = 30K。

- (2) 观察系统的响应曲线,并记录波形。
- (3) 减小开环增益 (R=41.7K; 100K), 观察响应曲线, 并将实验结果填入表 1.2-3 中。

四、实验数据记录及数据处理

图 1 二阶系统 R=10K

图 2 二阶系统 R=50K

图 3 二阶系统 R=160K

T: 1s/fs CH1: 1wfs CH2: 1wfs

图 4 二阶系统 R=200K

图 5 三阶系统 R=30K

图 6 三阶系统 R=41.7K

图 7 三阶系统 R=100K