Problem 3.2

So we first need to prove that matrix $\Psi = \Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}$ projects any N-dimensional vector v onto the subspace spanned by M columns of Φ (lets denote this subspace as $S(\Phi)$). Here we just assume $(\Phi^{\top}\Phi)^{-1}$ exists (i.e. $\Phi^{\top}\Phi$ is invertible) since it is a part of the definition of the matrix given in the problem condition.

Let us consider any N-dimensional vector v. We need to prove that there exist $\alpha_1 \dots \alpha_M \in \mathbb{R}$ such that $\Psi v = \alpha_1 \varphi_1(D) + \dots + \alpha_M \varphi_M(D)$. If we denote $\alpha = (\alpha_1, \dots, \alpha_M)^\top$, then we need to prove there exists M-dimensional vector α such that $\Phi \cdot \alpha = \Psi v$. We notice now that $\alpha = (\Phi^\top \Phi)^{-1} \Phi^\top v$ is the very vector we are looking for, so it exists, so we proved that Ψ indeed projects v onto the subspace of columns of Φ .

Lets us now consider $w_{ML} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}t$. We need to prove $y = \Phi w_{ML}$ is an orthogonal projection of t onto the subspace of columns of Φ . This means, we need to prove $y - t \perp S(\Phi)$. This is the same as proving that $\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t - t \perp S(\Phi)$.

Consider left part of the statement and multiply it by Φ^{\top} . This gives us $\Phi^{\top}(\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t - t) = (\Phi^{\top}\Phi)(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t - \Phi t = 0$. So, we see that all the columns of Φ are orthogonal with $\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t - t$, which means $\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}t$ is an orthogonal projection of t onto $S(\Phi)$.