Probabilidad y estadística

Clase 6

Intervalos de confianza

Motivación

Hasta ahora habíamos visto estimadores puntuales, que, dada un muestra, nos devuelven un único valor $\hat{\theta}$ que se aproxima al valor verdadero del parámetro deseado θ .

Una forma de obtener información sobre la precisión de la estimación, en el caso de que θ sea unidimensional, es proporcionar un intervalo [a(X),b(X)] de manera que la probabilidad de que dicho intervalo contenga el verdadero valor θ sea alta, por ejemplo, 0.95.

Región de confianza

Def: Dada una m.a. \underline{X} con distribución perteneciente a una familia $F_{\theta}(x)$, con $\theta \in \Theta$, una región de confianza $S(\underline{X})$ para θ con nivel de confianza $1-\alpha$ será un conjunto tal que

$$\mathbb{P}(\theta \in S(X)) = 1 - \alpha.$$
 (*)

Obs: θ **no** es aleatorio, lo aleatorio es (*) es $S(\underline{X})$.

Obs: Si $S(\underline{X})=(a(\underline{X}),b(\underline{X}))$ diremos que es un intervalo de confianza.

Si $S(\underline{X}) = (\min(\Theta), b(\underline{X}))$ diremos que es una cota superior.

Si $S(\underline{X}) = (a(\underline{X}), \max(\Theta))$ diremos que es una cota inferior.

Juguemos un poquito

Usemos la siguiente <u>api</u> para entender mejor qué es un IC:

http://rossmanchance.com/applets/2021/confsim/ConfSim.html

Método del pivote

Teorema: Sea \underline{X} una muestra aleatoria con distribución perteneciente a una familia $F_{\theta}(x)$, con $\theta \in \Theta$, y sea $U=g(\underline{X},\theta)$ una variable cuya distribución **no** depende de θ . Sean a y b tales que

$$\mathbb{P}(a \leq U \leq b) = 1 - \alpha$$
. Luego,

$$S(\underline{X}) = \{\theta : a < g(\underline{X}, \theta) \le b\}$$

es una región de confianza para θ . A U se lo llama pivote.

Sea $\underline{X}=(X_1,\ldots,X_n)$ una muestra aleatoria de tamaño n de una población con distribución normal de media μ y varianza 4. Hallar una cota inferior del 95% para μ .

Suponer n=20 y μ =3, simular la muestra y obtener el valor de la cota.

1														
-														
-														
-														
-														
-														
1														
-														
-														
-														
-				-										
-														
-														
							-							

Algunos resultados importantes

Teorema: Sea $\underline{X} = X_1, \dots, X_n$ una m.a. de una distribución $\mathcal{N}(\mu, \sigma^2)$

$$Z = \sqrt{n} rac{(ar{X} - \mu)}{\sigma} \sim \mathcal{N}(0, 1)$$

$$W = \sum_{i=1}^{n} rac{(X_i - \bar{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

V y W son independientes

Si
$$S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-ar{X})^2$$
 , $U=\sqrt{n}rac{(X-\mu)}{S}\sim t_{n-1}$

Obs: en general vale que si $X\sim \mathcal{N}(0,1)$ y $Y\sim \chi_n^2$, con X e Y independientes vale que $\frac{X}{\sqrt{Y/n}}\sim t_n$

Algunos pivotes para variables normales

Dada \underline{X}_n una m.a. de una distribución $\mathcal{N}(\mu, \sigma^2)$ definimos algunos pivotes:

- ullet Para la media con varianza conocida: $U(\underline{X},\mu)=rac{(\overline{X}-\mu)}{\sigma}\sqrt{n}\sim\mathcal{N}(0,1)$
- ullet Para la media con varianza desconocida: $U(\underline{X},\mu)=rac{(\overline{X}-\mu)}{\underline{S}}\sqrt{n}\sim t_{n-1}$
- ullet Para el desvío con media conocida: $U(\underline{X},\sigma)=rac{\sum_{i=1}^n(X_i-\mu)^2}{\sigma}\sim\chi_n^2$
- ullet Para el desvío con media desconocida: $U(\underline{X},\sigma)=rac{\sum_{i=1}^n(X_i-\overline{X})^2}{\sigma}\sim\chi^2_{n-1}$

Dada también \underline{Y}_m una m.a. de una distribución $\mathcal{N}(\lambda,\sigma^2)$ y sea :

- Comparación de medias con varianzas conocidas: $U(\underline{X}, \Delta) = \frac{X Y \Delta}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \mathcal{N}(0, 1)$
- Comparación de medias con varianzas desconocidas e iguales:

$$U(\underline{X},\Delta)=rac{\overline{X}-\overline{Y}-\Delta}{S_p\sqrt{rac{1}{p}+rac{1}{m}}}\sim t_{n+m-2}$$
 , con $S_p^2=rac{(m-1)S_X^2+(n-1)S_Y^2}{n+m-2}$

Dada una muestra aleatoria $\underline{X} = (X_1, ..., X_n)$ de una población con distribución normal con media y varianza desconocidas, hallar el intervalo de confianza de nivel 0.99 para la media de la población.

Suponer n=50, $\mu=2, \sigma=3$, simular la muestra y calcular el IC resultante de la misma.

- .

1														
-														
-														
-														
-														
-														
1														
-														
-														
-														
-				-										
-														
-														
							-							

1														
-														
-														
-														
-														
-														
1														
-														
-														
-														
-				-										
-														
-														
							-							

Regiones de confianza asintóticas

Def: Sea $\underline{X}_n = X_1, \ldots, X_n$ una m.a de una población con distribución perteneciente a la flía. $F_{\theta}(x)$, con $\theta \in \Theta$. Se dice que $S_n(\underline{X}_n)$ es una sucesión de regiones de confianza de nivel asintótico $1 - \alpha$ si:

$$\lim_{n o\infty}\mathbb{P}_{ heta}(heta\in S_n(oldsymbol{X}_n))=1-lpha$$

Teorema: Sea \underline{X}_n una m.a. de una población con distribución $F_{\theta}(x)$, con $\theta \in \Theta$. Supongamos que para cada n se tiene $U_n = g(\underline{X}_n, \theta)$ que converge en distribución a U, donde U es una v.a. cuya distribución no depende de θ . Entonces si a y b son tales que $\mathbb{P}(a < U < b) = 1 - \alpha$ se tiene que $S_n(\underline{X}_n) = \{\theta : a < U_n < b\}$ es una región de confianza de nivel asintótico $1 - \alpha$ para θ .

Se arroja 50 veces una moneda con probabilidad p de salir cara. Hallar un intervalo de confianza asintótico de nivel 0.95 para p basado en la observación x=50.

1														
-														
-														
-														
-														
-														
1														
-														
-														
-														
-				-										
-														
-														
							-							

1														
-														
-														
-														
-														
-														
1														
-														
-														
-														
-				-										
-														
-														
							-							

IC para la media de una población desconocida

En general, dada una m.a \underline{X}_n de una población desconocida, una buena forma de aproximarse a la media de dicha población es considerar el promedio de las muestras (\bar{X}_n).

Por TCL, sabemos que \bar{X}_n tiende en distribución a una v.a. normal. En particular,

$$rac{ar{X}_n - \mathbb{E}[X]}{\sqrt{var(X)/n}} \stackrel{(a)}{\sim} \mathcal{N}(0,1)$$

Se puede probar que si se desconoce también la varianza de la población (que es lo más común) vale que

$$rac{ar{X}_n - \mathbb{E}[X]}{S/\sqrt{n}} \stackrel{(a)}{\sim} \mathcal{N}(0,1)$$

De un experimento en los efectos de un medicamento para la ansiedad se midió el puntaje en un test de memoria antes y después de tomar el medicamento. A partir de los datos que se encuentran en el archivo Islander_data.csv hallar un IC para la media del tiempo de respuesta después de consumir el medicamento.

1														
-														
-														
-														
-														
-														
1														
-														
-														
-														
-				-										
-														
-														
							-							

1														
-														
-														
-														
-														
-														
1														
-														
-														
-														
-				-										
-														
-														
							-							

Intervalos de confianza aproximados (plug-in)

Intervalos basados en la Normal: $T(\widehat{F}_n) \approx N(T(F), \widehat{\mathfrak{se}}^2)$

Entonces, un intervalo aproximado de nivel $1-\alpha$ está dado por $T(\widehat{F}_n) \pm z_{\alpha/2} \, \widehat{\operatorname{se}}$.

Ejemplo: un intervalo para la media $\mu = T(F) = \int x \, dF(x)$ está dado por $\overline{X}_n \pm z_{\alpha/2}\,\widehat{\text{se}}$. donde $\text{se} = \sqrt{\mathbb{V}(\overline{X}_n)} = \sigma/\sqrt{n}$

Bootstrap: estimar la varianza

La idea es estimar $\mathbb{V}_{\widehat{F}_n}(T_n)$ mediante una simulación:

Real world
$$F \implies X_1, \dots, X_n \implies T_n = g(X_1, \dots, X_n)$$

Bootstrap world $\widehat{F}_n \implies X_1^*, \dots, X_n^* \implies T_n^* = g(X_1^*, \dots, X_n^*)$

Bootstrap Variance Estimation

- 1. Draw $X_1^*, ..., X_n^* \sim \widehat{F}_n$.
- 2. Compute $T_n^* = g(X_1^*, \dots, X_n^*)$.
- 3. Repeat steps 1 and 2, B times, to get $T_{n,1}^*, \ldots, T_{n,B}^*$.
- 4. Let

$$v_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* \right)^2.$$

Bibliografía

- <u>"Notas de Estadística"</u>, Graciela Boente y Víctor Yohai, FCEyN, UBA.
- "All of Statistic: A concise Course in Statistical Inference", Larry Wasserman