Support Vector Machine XXX

0000000000000000

(Linear) SVM with Hard-margin

Which Separator Do You Pick?

Robustness to Noisy Data

Being robust to noise (measurement error) is good (remember regularization).

Thicker Cushion Means More Robustness

Two Crucial Questions

- Can we efficiently find the fattest separating hyperplane?
- Is a fatter hyperplane better than a thin one?

Pulling Out the Bias

(Linear) SVM with Hard-margin

000000000000000

Before

$$\mathbf{x} \in \{1\} \times \mathbb{R}^d; \mathbf{w} \in \mathbb{R}^{d+1}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}; \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

Pulling Out the Bias

(Linear) SVM with Hard-margin

0000000000000000

Before

$$\mathbf{x} \in \{1\} \times \mathbb{R}^d; \mathbf{w} \in \mathbb{R}^{d+1}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}; \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

After

$$\mathbf{x} \in \mathbb{R}^d; b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d$$
 $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}; \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}$
bias b
signal $= \mathbf{w}^T \mathbf{x} + b$

Hyperplane $h=(b,\mathbf{w})$ h separates the data means:

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$$

Non-linear SVM

(Linear) SVM with Hard-margin

00000000000000000

Hyperplane $h = (b, \mathbf{w})$ h separates the data means:

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$$

By rescaling the weights and bias.

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

Distance to the Hyperplane

• w is normal to the hyperplane (why?)

0000000000000000

Distance to the Hyperplane

Distance to the Hyperplane

(Linear) SVM with Hard-margin

00000000000000000

• w is normal to the hyperplane (why?)

$$\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = \mathbf{w}^T\mathbf{x}_2 - \mathbf{w}^T\mathbf{x}_1 = -b + b = 0$$

Scalar projection:

Non-linear SVM

$$\mathbf{a}^T \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\mathbf{a}, \mathbf{b})$$
$$\Rightarrow \mathbf{a}^T \mathbf{b} / \|\mathbf{b}\| = \|\mathbf{a}\| \cos(\mathbf{a}, \mathbf{b})$$

00000000000000000

• w is normal to the hyperplane (why?)

$$\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = \mathbf{w}^T\mathbf{x}_2 - \mathbf{w}^T\mathbf{x}_1 = -b + b = 0$$

Scalar projection:

$$\mathbf{a}^T \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\mathbf{a}, \mathbf{b})$$
$$\Rightarrow \mathbf{a}^T \mathbf{b} / \|\mathbf{b}\| = \|\mathbf{a}\| \cos(\mathbf{a}, \mathbf{b})$$

• let \mathbf{x}_{\perp} be the orthogonal projection of \mathbf{x} to h, distance to hyperplane is given by projection of $\mathbf{x} - \mathbf{x}_{\perp}$ to \mathbf{w} (why?)

Distance to the Hyperplane

(Linear) SVM with Hard-margin

00000000000000000

• w is normal to the hyperplane (why?)

$$\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = \mathbf{w}^T\mathbf{x}_2 - \mathbf{w}^T\mathbf{x}_1 = -b + b = 0$$

Scalar projection:

$$\mathbf{a}^T \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\mathbf{a}, \mathbf{b})$$
$$\Rightarrow \mathbf{a}^T \mathbf{b} / \|\mathbf{b}\| = \|\mathbf{a}\| \cos(\mathbf{a}, \mathbf{b})$$

• let x_{\perp} be the orthogonal projection of \mathbf{x} to h, distance to hyperplane is given by projection of $\mathbf{x} - \mathbf{x}_{\perp}$ to \mathbf{w} (why?)

$$\begin{aligned} \mathsf{dist}(\mathbf{x},h) &= \frac{1}{\|\mathbf{w}\|} \cdot |\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{x}_\perp| \\ &= \frac{1}{\|\mathbf{w}\|} \cdot |\mathbf{w}^T \mathbf{x} + b| \end{aligned}$$

00000000000000000

$$\operatorname{dist}(\mathbf{x}, h) = \frac{1}{\|\mathbf{w}\|} \cdot |\mathbf{w}^T \mathbf{x} + b| = \frac{1}{\|\mathbf{w}\|} \cdot |y_n(\mathbf{w}^T \mathbf{x} + b)| = \frac{1}{\|\mathbf{w}\|} \cdot y_n(\mathbf{w}^T \mathbf{x} + b)$$

Non-linear SVM

$\mathsf{dist}(\mathbf{x},h) = \frac{1}{\|\mathbf{w}\|} \cdot |\mathbf{w}^T \mathbf{x} + b| = \frac{1}{\|\mathbf{w}\|} \cdot |y_n(\mathbf{w}^T \mathbf{x} + b)| = \frac{1}{\|\mathbf{w}\|} \cdot y_n(\mathbf{w}^T \mathbf{x} + b)$

Fatness

(Linear) SVM with Hard-margin

00000000000000000

= Distance to the closest point

$$\begin{aligned} \mathsf{Fatness} &= \min_n \mathsf{dist}(\mathbf{x}_n, h) \\ &= \frac{1}{\|\mathbf{w}\|} \min_n y_n(\mathbf{w}^T \mathbf{x} + b) \\ &= \frac{1}{\|\mathbf{w}\|} \end{aligned}$$

Maximizing the Margin

• Formal definition of margin:

$$\mathsf{margin:}\ \gamma(h) = \frac{1}{\|\mathbf{w}\|}$$

000000000000000

Formal definition of margin:

$$\mathsf{margin:}\ \gamma(h) = \frac{1}{\|\mathbf{w}\|}$$

• NOTE: Bias b does not appear in the margin.

0000000000000000

• Formal definition of margin:

$$\mathsf{margin:}\ \gamma(h) = \frac{1}{\|\mathbf{w}\|}$$

- NOTE: Bias b does not appear in the margin.
- Objective maximizing margin:

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to:
$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T\mathbf{x}_n+b) = 1$$

00000000000000000

• Formal definition of margin:

margin:
$$\gamma(h) = \frac{1}{\|\mathbf{w}\|}$$

- ullet NOTE: Bias b does not appear in the margin.
- Objective maximizing margin:

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to:
$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$$

• An equivalent objective:

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$ for $n = 1, \dots, N$

$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$ subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$ for $n = 1, \dots, N$

Training Data:

(Linear) SVM with Hard-margin

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

What is the margin?

00000000000000000

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$$
 for $n = 1, \dots, N$

Non-linear SVM

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \Rightarrow \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

$$\begin{cases} (1) + (3) & \to w_1 \ge 1 \\ (2) + (3) & \to w_2 \le -1 \end{cases} \Rightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} = \frac{1}{2} (w_1^2 + w_2^2) \ge 1$$

00000000000000000

Example - Our Toy Data Set

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$ for $n = 1, \dots, N$

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \Rightarrow \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

$$\begin{cases} (1) + (3) & \to w_1 \ge 1 \\ (2) + (3) & \to w_2 \le -1 \end{cases} \Rightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} = \frac{1}{2} (w_1^2 + w_2^2) \ge 1$$

Thus: $w_1 = 1, w_2 = -1, b = -1$

0000000000000000

$$\bullet \text{ Given data } X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

Optimal solution

$$\mathbf{w}^* = \begin{bmatrix} w_1 = 1 \\ w_2 = -1 \end{bmatrix}, b^* = -1$$

 Optimal hyperplane $q(\mathbf{x}) = sign(x_1 - x_2 - 1)$

0000000000000000

• Given data $X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$

Optimal solution

$$\mathbf{w}^* = \begin{bmatrix} w_1 = 1 \\ w_2 = -1 \end{bmatrix}, b^* = -1$$

- Optimal hyperplane $g(\mathbf{x}) = \operatorname{sign}(x_1 x_2 1)$
- margin: $\frac{1}{\|w\|} = \frac{1}{\sqrt{2}} \approx 0.707$

Example - Our Toy Data Set

(Linear) SVM with Hard-margin

0000000000000000

$$\bullet \text{ Given data } X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

Optimal solution

$$\mathbf{w}^* = \begin{bmatrix} w_1 = 1 \\ w_2 = -1 \end{bmatrix}, b^* = -1$$

- Optimal hyperplane $q(\mathbf{x}) = sign(x_1 - x_2 - 1)$
- margin: $\frac{1}{\|w\|} = \frac{1}{\sqrt{2}} \approx 0.707$

For data points (1), (2) and (3) $y_n(\mathbf{x}_n^T \mathbf{w}^* + b^*) = 1$

Example - Our Toy Data Set

(Linear) SVM with Hard-margin

0000000000000000

$$\bullet \text{ Given data } X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

Optimal solution

$$\mathbf{w}^* = \begin{bmatrix} w_1 = 1 \\ w_2 = -1 \end{bmatrix}, b^* = -1$$

- Optimal hyperplane $q(\mathbf{x}) = sign(x_1 - x_2 - 1)$
- margin: $\frac{1}{\|w\|} = \frac{1}{\sqrt{2}} \approx 0.707$

For data points (1), (2) and (3) $u_n(\mathbf{x}_n^T\mathbf{w}^* + b^*) = 1$ Support Vectors

00000000000000000

$$\min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2} \mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$$

Non-linear SVM

subject to:
$$A\mathbf{u} \geq \mathbf{c}$$

$$\mathbf{u}^* \leftarrow QP(Q, \mathbf{p}, A, \mathbf{c})$$

(Q=0) is linear programming.)

http://cvxopt.org/examples/tutorial/qp.html

$$\min_{h,w} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

00000000000000000

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} \qquad \qquad \min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2}\mathbf{u}^TQ\mathbf{u} + \mathbf{p}^T\mathbf{u}$$

Non-linear SVM

subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1, \forall n$

subject to:
$$A\mathbf{u} \ge \mathbf{c}$$

$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \in \mathbb{R}^{d+1} \Rightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} = [b, \mathbf{w}^T] \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \mathbf{u}$$

Maximum Margin Hyperplane is QP

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

(Linear) SVM with Hard-margin

00000000000000000

$$\min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2} \mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$$

subject to:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1, \forall n$$

subject to:
$$A\mathbf{u} \geq \mathbf{c}$$

$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \in \mathbb{R}^{d+1} \Rightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} = [b, \mathbf{w}^T] \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \mathbf{u}$$

$$Q = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix}, \mathbf{p} = \mathbf{0}_{d+1}$$

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

00000000000000000

$$\min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2} \mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$$

subject to:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1, \forall n$$

subject to:
$$A\mathbf{u} \geq \mathbf{c}$$

$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \in \mathbb{R}^{d+1} \Rightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} = [b, \mathbf{w}^T] \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \mathbf{u}$$

Non-linear SVM

$$Q = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix}, \mathbf{p} = \mathbf{0}_{d+1}$$

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 = [y_n, y_n\mathbf{x}_n^T]\mathbf{u} \ge 1 \Rightarrow \begin{bmatrix} y_1 & y_1\mathbf{x}_1^T \\ \vdots & \vdots \\ y_N & y_N\mathbf{x}_N^T \end{bmatrix} \mathbf{u} \ge \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

00000000000000000

$$\min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2} \mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$$

subject to:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1, \forall n$$

subject to:
$$A\mathbf{u} \geq \mathbf{c}$$

$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \in \mathbb{R}^{d+1} \Rightarrow \frac{1}{2}\mathbf{w}^T\mathbf{w} = [b, \mathbf{w}^T] \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \mathbf{u}$$

$$Q = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix}, \mathbf{p} = \mathbf{0}_{d+1}$$

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 = [y_n, y_n\mathbf{x}_n^T]\mathbf{u} \ge 1 \Rightarrow \begin{bmatrix} y_1 & y_1\mathbf{x}_1^T \\ \vdots & \vdots \\ y_N & y_N\mathbf{x}_N^T \end{bmatrix}\mathbf{u} \ge \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} y_1 & y_1 \mathbf{x}_1^T \\ \vdots & \vdots \\ y_N & y_N \mathbf{x}_N^T \end{bmatrix}, \boldsymbol{c} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Exercise:

(Linear) SVM with Hard-margin

00000000000000000

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

Non-linear SVM

Show the corresponding $Q, \mathbf{p}, A, \mathbf{c}$.

Exercise:

(Linear) SVM with Hard-margin

00000000000000000

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

Show the corresponding $Q, \mathbf{p}, A, \mathbf{c}$.

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{p} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, A = \begin{bmatrix} -1 & 0 & 0 \\ -1 & -2 & -2 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Back To Our Example

Exercise:

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

Non-linear SVM

Show the corresponding $Q, \mathbf{p}, A, \mathbf{c}$.

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{p} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, A = \begin{bmatrix} -1 & 0 & 0 \\ -1 & -2 & -2 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Use your QP-solver to give

$$\boldsymbol{u}^* = [b^*, w_1^*, w_2^*]^T = [-1, 1, -1]$$

Link to Regularization

(Linear) SVM with Hard-margin

000000000000000

$$\min_{\mathbf{w}} \ E_{in}(\mathbf{w})$$
 subject to: $\mathbf{w}^T \mathbf{w} \leq C$

	optimal hyperplane	regularization
minimize	$\mathbf{w}^T\mathbf{w}$	E_{in}
subject to	$E_{in}=0$	$\mathbf{w}^T \mathbf{w} \leq C$

Section 2

Dual Problem of SVM

Duimal Dualdan

$$\begin{aligned} \min_{\mathbf{w}} & f(\mathbf{w}) \\ \text{s.t.} & g_i(\mathbf{w}) \leq 0, \quad i = 1, \dots, k \\ & h_i(\mathbf{w}) = 0, \quad i = 1, \dots, l \end{aligned}$$

Primal and Dual in Optimization

Primal Problem

$$\min_{\mathbf{w}} f(\mathbf{w})
\text{s.t.} \quad g_i(\mathbf{w}) \le 0, \quad i = 1, \dots, k
h_i(\mathbf{w}) = 0, \quad i = 1, \dots, l$$

Generalized Lagrangian

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(w) + \sum_{i=1}^{k} \boldsymbol{\alpha}_{i} g_{i}(w) + \sum_{i=1}^{l} \boldsymbol{\beta}_{i} h_{i}(\mathbf{w})$$

Primal and Dual in Optimization

Primal Problem

$$\min_{\mathbf{w}} f(\mathbf{w})$$

s.t. $g_i(\mathbf{w}) \le 0, \quad i = 1, ..., k$
 $h_i(\mathbf{w}) = 0, \quad i = 1, ..., l$

Generalized Lagrangian

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(w) + \sum_{i=1}^{k} \boldsymbol{\alpha}_{i} g_{i}(w) + \sum_{i=1}^{l} \boldsymbol{\beta}_{i} h_{i}(\mathbf{w})$$

Dual Problem

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}:\boldsymbol{\alpha}_i\geq 0} \min_{\mathbf{w}} \mathcal{L}(\mathbf{w},\boldsymbol{\alpha},\boldsymbol{\beta})$$

Primal and Dual in Optimization

Primal Problem

$$\min_{\mathbf{w}} f(\mathbf{w})$$

s.t. $g_i(\mathbf{w}) \leq 0, \quad i = 1, ..., k$
 $h_i(\mathbf{w}) = 0, \quad i = 1, ..., l$

Generalized Lagrangian

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(\mathbf{w})$$

Dual Problem

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}:\boldsymbol{\alpha}_i\geq 0} \min_{\mathbf{w}} \mathcal{L}(\mathbf{w},\boldsymbol{\alpha},\boldsymbol{\beta})$$

Under some "certain assumptions", there must exist $\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*$ so that \mathbf{w}^* is the solution to the primal problem, $\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*$ are the solution to the dual problem. (check more details in https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf).

KKT Conditions

Assuming these "certain assumptions" are satisfied, the optimal solutions \mathbf{w}^* , α^* and β^* satisfy the **Karush-Kuhn-Tucker (KKT)** conditions. which are as follows:

$$\frac{\partial}{\partial \mathbf{w}_{i}} \mathcal{L}\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right) = 0, i = 1, \dots, d$$

$$\frac{\partial}{\partial \boldsymbol{\beta}_{i}} \mathcal{L}\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right) = 0, i = 1, \dots, l$$

$$\boldsymbol{\alpha}_{i}^{*} g_{i}\left(\mathbf{w}^{*}\right) = 0, i = 1, \dots, k$$

$$g_{i}\left(\mathbf{w}^{*}\right) \leq 0, i = 1, \dots, k$$

$$\boldsymbol{\alpha}_{i}^{*} > 0, i = 1, \dots, k$$

Back to the SVM: Dual Problem

SVM: Primal

$$\min_{b,\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to:
$$y_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1$$
 for $n=1,\ldots,N$

Back to the SVM: Dual Problem

SVM: Primal

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to: $y_n\left(\mathbf{w}^T\mathbf{x}_n + b\right) \geq 1$ for $n = 1, \dots, N$

We can write the constraints as

$$g_n(\mathbf{w}) = -y_n \left(\mathbf{w}^T \mathbf{x}_n + b \right) + 1 \le 0$$

Back to the SVM: Dual Problem

SVM: Primal

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to: $y_n\left(\mathbf{w}^T\mathbf{x}_n + b\right) \geq 1$ for $n = 1, \dots, N$

We can write the constraints as

$$g_n(\mathbf{w}) = -y_n \left(\mathbf{w}^T \mathbf{x}_n + b \right) + 1 \le 0$$

Lagrangian

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{m} \boldsymbol{\alpha}_n \left[y_n \left(\mathbf{w}^T \mathbf{x}_n + b \right) - 1 \right]$$

SVM Dual: KKT Conditions

Lagrangian

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{m} \boldsymbol{\alpha}_n \left[y_n \left(\mathbf{w}^T \mathbf{x}_n + b \right) - 1 \right]$$

Lagrangian

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{m} \boldsymbol{\alpha}_n \left[y_n \left(\mathbf{w}^T \mathbf{x}_n + b \right) - 1 \right]$$

KKT conditions:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \mathbf{w} - \sum_{n=1}^{N} \boldsymbol{\alpha}_n y_n \mathbf{x}_n = 0$$
 (1)

$$\frac{\partial}{\partial b} \mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{n=1}^{N} \boldsymbol{\alpha}_n y_n = 0$$
 (2)

$$\alpha_n g_n(\mathbf{w}) = 0, i = 1, \dots, N \tag{3}$$

$$g_n\left(\mathbf{w}\right) \le 0, i = 1, \dots, N \tag{4}$$

$$\alpha_n \ge 0, i = 1, \dots, N \tag{5}$$

SVM Dual

From Eq. (1), we have

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n \tag{6}$$

F F (1)

From Eq. (1), we have

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n \tag{6}$$

Replace Eq. (6) back to the Lagrangian:

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{n=1}^{N} \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{n, m=1}^{N} y_n y_m \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m \mathbf{x}_n^T \mathbf{x}_m - b \sum_{n=1}^{N} \boldsymbol{\alpha}_n y_n$$

E E (1)

From Eq. (1), we have

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n \tag{6}$$

Replace Eq. (6) back to the Lagrangian:

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{n=1}^{N} \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{n, m=1}^{N} y_n y_m \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m \mathbf{x}_n^T \mathbf{x}_m - b \sum_{n=1}^{N} \boldsymbol{\alpha}_n y_n$$

From Eq. (2), the last term must be zero, so we obtain

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \sum_{n=1}^{N} \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{n,m=1}^{N} y_n y_m \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m \mathbf{x}_n^T \mathbf{x}_m$$

The Dual problem for SVM now becomes

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \ \sum_{n=1}^N \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m$$
 subject to
$$\sum_{n=1}^N y_n \boldsymbol{\alpha}_n = 0, \boldsymbol{\alpha}_n \geq 0, \forall n$$

Non-linear SVM

which is also a QP problem.

After we solve the dual problem and denote $lpha^*$ as the optimal of the dual problem.

• We can obtain the primal solution:

$$\mathbf{w}^* = \sum_{n=1}^N y_n \boldsymbol{\alpha}_n^* \mathbf{x}_n$$

where for support vectors $\alpha_n > 0$ (why?)

SVM Dual: Prediction

After we solve the dual problem and denote $lpha^*$ as the optimal of the dual problem.

• We can obtain the primal solution:

$$\mathbf{w}^* = \sum_{n=1}^N y_n \boldsymbol{\alpha}_n^* \mathbf{x}_n$$

where for support vectors $\alpha_n > 0$ (why?)

• Recall Eq.(3) in KKT conditions:

$$\alpha_n g_n(\mathbf{w}) = 0, i = 1, \dots, N$$

$$g_n(\mathbf{w}) = -y_n \left(\mathbf{w}^T \mathbf{x}_n + b \right) + 1$$

• The optimal hyperplane:

$$h(\mathbf{x}) = \mathbf{w}^{*T}\mathbf{x} + b^{*}$$

$$= \sum_{n=1}^{N} y_{n} \boldsymbol{\alpha}_{n}^{*} \mathbf{x}_{n}^{T} \mathbf{x} + b^{*}$$

$$= \sum_{\boldsymbol{\alpha}_{n}^{*} > 0} y_{n} \boldsymbol{\alpha}_{n}^{*} \mathbf{x}_{n}^{T} \mathbf{x} + b^{*}$$

Non-linear SVM

• The optimal hyperplane:

$$h(\mathbf{x}) = \mathbf{w}^{*T}\mathbf{x} + b^{*}$$

$$= \sum_{n=1}^{N} y_{n} \boldsymbol{\alpha}_{n}^{*} \mathbf{x}_{n}^{T} \mathbf{x} + b^{*}$$

$$= \sum_{\boldsymbol{\alpha}^{*} > 0} y_{n} \boldsymbol{\alpha}_{n}^{*} \mathbf{x}_{n}^{T} \mathbf{x} + b^{*}$$

Only Support Vectors Matter

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \sum_{n=1}^N \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m$$
 subject to
$$\sum_{n=1}^N y_n \boldsymbol{\alpha}_n = 0, \boldsymbol{\alpha}_n \geq 0, \forall n$$

$$\mathbf{w}^* = \sum_{n=1}^N y_n \boldsymbol{\alpha}_n^* \mathbf{x}_n$$

Section 3

Non-linear SVM

How to Handle Non-(Linear)Separable Data?

(a) Few noisy data.

(b) Nonlinearly separable.

How to Handle Non-(Linear)Separable Data?

- (a) Tolerate noisy data points: soft-margin SVM.
- (b) Inherent nonlinear boundary: non-linear transformation.

Non-Linear Transformation

$$\begin{aligned} & \Phi_1(\mathbf{x}) = (x_1, x_2) \\ & \Phi_2(\mathbf{x}) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2) \\ & \Phi_3(\mathbf{x}) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3) \end{aligned}$$

Non-Linear Transformation

• Using the nonlinear transform with the optimal hyperplane using a transform $\Phi\colon \mathbb{R}^d \to \mathbb{R}^{\tilde{d}}$:

$$\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$$

Non-Linear Transformation

• Using the nonlinear transform with the optimal hyperplane using a transform $\Phi \colon \mathbb{R}^d \to \mathbb{R}^d$:

$$\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$$

• Solve the hard-margin SVM in the \mathcal{Z} -space $(\tilde{\mathbf{w}}^*, \tilde{b}^*)$:

$$\min_{\tilde{b}, \tilde{\mathbf{w}}} \quad \frac{1}{2} \tilde{\mathbf{w}}^T \tilde{\mathbf{w}}$$
 subject to: $y_n(\tilde{\mathbf{w}}^T \mathbf{z}_n + \tilde{b}) \ge 1, \forall n$

• Using the nonlinear transform with the optimal hyperplane using a transform $\Phi \colon \mathbb{R}^d \to \mathbb{R}^d$:

$$\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$$

Non-linear SVM

0000000000000

ullet Solve the hard-margin SVM in the \mathcal{Z} -space ($\tilde{\mathbf{w}}^*, \tilde{b}^*$):

$$\begin{split} \min_{\tilde{b}, \tilde{\mathbf{w}}} \quad & \frac{1}{2} \tilde{\mathbf{w}}^T \tilde{\mathbf{w}} \\ \text{subject to: } & y_n (\tilde{\mathbf{w}}^T \mathbf{z}_n + \tilde{b}) \geq 1, \forall n \end{split}$$

Final hypothesis:

$$q(\mathbf{x}) = \operatorname{sign}(\tilde{\mathbf{w}}^{*T}\mathbf{\Phi}(\mathbf{x}) + \tilde{b}^*)$$

SVM and non-linear transformation

The margin is shaded in yellow, and the support vectors are boxed.

SVM and non-linear transformation

(a) SVM with Φ_2

The margin is shaded in yellow, and the support vectors are boxed.

 \bullet For Φ_2 , $\tilde{d}_2=5$ and for Φ_3 , $\tilde{d}_3=9$

SVM and non-linear transformation

(a) SVM with Φ_2

(b) SVM with Φ_3

The margin is shaded in yellow, and the support vectors are boxed.

- \bullet For Φ_2 , $d_2=5$ and for Φ_3 , $d_3=9$
- \bullet d_3 is nearly double d_2 , yet the resulting SVM separator is not severely overfitting with Φ_3 (regularization?).

Common SVM Basis Functions

- $\mathbf{z}_k = \text{polynomial terms of } \mathbf{x}_k \text{ of degree } 1 \text{ to } q$
- $\mathbf{z}_k = \text{radial basis function of } \mathbf{x}_k$

$$\mathbf{z}_k(j) = \phi_j(\mathbf{x}_k) = \exp(-|\mathbf{x}_k - \mathbf{c}_j|^2/\sigma^2)$$

• $\mathbf{z}_k = \text{sigmoid functions of } \mathbf{x}_k$

Quadratic Basis Functions

$$\mathbf{\Phi}(\mathbf{x}) = \begin{bmatrix} \frac{1}{\sqrt{2}x_1} \\ \vdots \\ \frac{\sqrt{2}x_d}{x_1^2} \\ \vdots \\ \frac{x_d^2}{\sqrt{2}x_1x_2} \\ \vdots \\ \frac{\sqrt{2}x_1x_d}{\sqrt{2}x_2x_3} \\ \vdots \\ \frac{\sqrt{2}x_{d-1}x_d}{\sqrt{2}x_{d-1}x_d} \end{bmatrix}$$

- Including Constant Term, Linear Terms, Pure Quadratic Terms, Quadratic Cross-Terms
- The number of terms is approximately $d^2/2$.
- You may be wondering what those $\sqrt{2}s$ are doing. You'll find out why they're there soon.

Dual SVM: Non-linear Transformation

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \sum_{n=1}^N \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m y_n y_m \boldsymbol{\Phi}(\mathbf{x}_n)^T \boldsymbol{\Phi}(\mathbf{x}_m)$$
 subject to
$$\sum_{n=1}^N y_n \boldsymbol{\alpha}_n = 0, \boldsymbol{\alpha}_n \geq 0, \forall n$$

Non-linear SVM

0000000000000

$$\mathbf{w}^* = \sum_{n=1}^N y_n \boldsymbol{\alpha}_n^* \Phi(\mathbf{x}_n)$$

- Need to prepare a matrix Q, $Q_{nm} = y_n y_m \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}_m)$
- Cost?

Non-linear SVM

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \sum_{n=1}^N \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m y_n y_m \boldsymbol{\Phi}(\mathbf{x}_n)^T \boldsymbol{\Phi}(\mathbf{x}_m)$$
subject to
$$\sum_{n=1}^N y_n \boldsymbol{\alpha}_n = 0, \boldsymbol{\alpha}_n \geq 0, \forall n$$

$$\mathbf{w}^* = \sum_{n=1}^N y_n \boldsymbol{\alpha}_n^* \Phi(\mathbf{x}_n)$$

- Need to prepare a matrix Q, $Q_{nm} = y_n y_m \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}_m)$
- Cost?
 - We must do $N^2/2$ dot products to get this matrix ready.
 - Each dot product requires $d^2/2$ additions and multiplications, The whole thing costs $N^2d^2/4$.

Non-linear SVM

000000000000

- Constant Term 1
- Linear Terms

$$\sum_{i=1}^{d} 2a_i b_i$$

Pure Quadratic Terms

$$\sum_{i=1}^{d} a_i^2 b_i^2$$

Quadratic Cross-Terms

$$\sum_{i=1}^{d} \sum_{j=i+1}^{d} 2a_i a_j b_i b_j$$

Quadratic Dot Product

• Does $\Phi(\mathbf{a})^T \Phi(\mathbf{b})$ look familiar?

$$\mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b}) = 1 + 2 \sum_{i=1}^d a_i b_i + \sum_{i=1}^d a_i^2 b_i^2 + \sum_{i=1}^d \sum_{j=i+1}^d 2a_i a_j b_i b_j$$

Non-linear SVM

0000000000000

• Does $\Phi(\mathbf{a})^T \Phi(\mathbf{b})$ look familiar?

$$\Phi(\mathbf{a})^T \Phi(\mathbf{b}) = 1 + 2 \sum\nolimits_{i=1}^d a_i b_i + \sum\nolimits_{i=1}^d a_i^2 b_i^2 + \sum\nolimits_{i=1}^d \sum\nolimits_{j=i+1}^d 2a_i a_j b_i b_j$$

Non-linear SVM

0000000000000

• Try this: $(a^Tb+1)^2$

• Does $\Phi(\mathbf{a})^T \Phi(\mathbf{b})$ look familiar?

$$\Phi(\mathbf{a})^T \Phi(\mathbf{b}) = 1 + 2 \sum\nolimits_{i=1}^d a_i b_i + \sum\nolimits_{i=1}^d a_i^2 b_i^2 + \sum\nolimits_{i=1}^d \sum\nolimits_{j=i+1}^d 2a_i a_j b_i b_j$$

• Try this: $(a^Tb+1)^2$

$$\begin{split} (\boldsymbol{a}^T \boldsymbol{b} + 1)^2 &= (\boldsymbol{a}^T \boldsymbol{b})^2 + 2 \boldsymbol{a}^T \boldsymbol{b} + 1 \\ &= \left(\sum_{i=1}^d a_i b_i\right)^2 + 2 \sum_{i=1}^d a_i b_i + 1 \\ &= \sum_{i=1}^d \sum_{j=1}^d a_i b_i a_j b_j + 2 \sum_{i=1}^d a_i b_i + 1 \\ &= \sum_{i=1}^d a_i^2 b_i^2 + 2 \sum_{i=1}^d \sum_{j=i+1}^d a_i a_j b_i b_j + 2 \sum_{i=1}^d a_i b_i + 1 \end{split}$$

• Does $\Phi(\mathbf{a})^T \Phi(\mathbf{b})$ look familiar?

$$\mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b}) = 1 + 2 \sum_{i=1}^d a_i b_i + \sum_{i=1}^d a_i^2 b_i^2 + \sum_{i=1}^d \sum_{j=i+1}^d 2a_i a_j b_i b_j$$

Non-linear SVM

• Try this: $(a^Tb+1)^2$

$$(\mathbf{a}^T \mathbf{b} + 1)^2 = (\mathbf{a}^T \mathbf{b})^2 + 2\mathbf{a}^T \mathbf{b} + 1$$

$$= \left(\sum_{i=1}^d a_i b_i\right)^2 + 2\sum_{i=1}^d a_i b_i + 1$$

$$= \sum_{i=1}^d \sum_{j=1}^d a_i b_i a_j b_j + 2\sum_{i=1}^d a_i b_i + 1$$

$$= \sum_{i=1}^d a_i^2 b_i^2 + 2\sum_{i=1}^d \sum_{j=i+1}^d a_i a_j b_i b_j + 2\sum_{i=1}^d a_i b_i + 1$$

• They're the same! And this is only O(d) to compute!

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \sum_{n=1}^N \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m y_n y_m \boldsymbol{\Phi}(\mathbf{x}_n)^T \boldsymbol{\Phi}(\mathbf{x}_m)$$
 subject to
$$\sum_{n=1}^N y_n \boldsymbol{\alpha}_n = 0, \boldsymbol{\alpha}_n \geq 0, \forall n$$

$$\mathbf{w}^* = \sum_{n=1}^N y_n \boldsymbol{\alpha}_n^* \Phi(\mathbf{x}_n)$$

- Need to prepare a matrix Q, $Q_{nm} = y_n y_m \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}_m)$
- Cost?
 - We must do $N^2/2$ dot products to get this matrix ready.
 - ullet Each dot product requires d additions and multiplications.

	$\Phi(\mathbf{x})$	Cost	100dim
Quadratic	$d^2/2$ terms	$d^2N^2/4$	$2.5kN^2$
Cubic	$d^3/6$ terms	$d^3N^2/12$	$83kN^2$
Quartic	$d^4/24$ terms	$d^4N^2/48$	$1.96mN^{2}$
	$\Phi(\mathbf{a})^T\Phi(\mathbf{b})$	Cost	100dim
Quadratic	$(\mathbf{a}^T\mathbf{b}+1)^2$	$dN^2/2$	$50N^{2}$
Cubic	$({\bf a}^T{\bf b}+1)^3$	$dN^2/2$	$50N^{2}$
Quartic	$({\bf a}^T{\bf b}+1)^4$	$dN^2/2$	$50N^{2}$

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \ \sum_{n=1}^N \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m y_n y_m \underbrace{\boldsymbol{\Phi}(\mathbf{x}_n)^T \boldsymbol{\Phi}(\mathbf{x}_m)}_{(\mathbf{x}_n^T \mathbf{x}_m + 1)^5}$$
 subject to
$$\sum_{n=1}^N y_n \boldsymbol{\alpha}_n = 0, \boldsymbol{\alpha}_n \geq 0, \forall n$$

Classification:

$$\begin{split} g(\mathbf{x}) &= \mathsf{sign}(\mathbf{w}^{*T}\mathbf{\Phi}(\mathbf{x}) + b^*) = \mathsf{sign}\left(\sum_{\alpha_n^*>0} y_n \alpha_n^* \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}) + b^*\right) \\ &= \mathsf{sign}\left(\sum_{\alpha_n^*>0} y_n \alpha_n^* (\mathbf{x}_n^T \mathbf{x} + 1)^5 + b^*\right) \end{split}$$

Section 4

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \sum_{n=1}^N \boldsymbol{\alpha}_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \boldsymbol{\alpha}_n \boldsymbol{\alpha}_m y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$$
 subject to
$$\sum_{n=1}^N y_n \boldsymbol{\alpha}_n = 0, \boldsymbol{\alpha}_n \geq 0, \forall n$$

Classification:

$$\begin{split} g(\mathbf{x}) &= \mathrm{sign}(\mathbf{w}^{*T} \mathbf{\Phi}(\mathbf{x}) + b^*) = \mathrm{sign}\left(\sum_{\alpha_n^* > 0} y_n \alpha_n^* \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}) + b^*\right) \\ &= \mathrm{sign}\left(\sum_{\alpha_n^* > 0} y_n \alpha_n^* \underline{K}(\mathbf{x}_n, \mathbf{x}_m) + b^*\right) \end{split}$$

Replacing dot product with a kernel function

- Replacing dot product with a kernel function
- Not all functions are kernel functions!
 - Need to be decomposable $K(\mathbf{a}, \mathbf{b}) = \mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b})$
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^3$ be a kernel function?
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^4 (\mathbf{a} + \mathbf{b})^2$ be a kernel function?

- Replacing dot product with a kernel function
- Not all functions are kernel functions!
 - Need to be decomposable $K(\mathbf{a}, \mathbf{b}) = \mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b})$
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^3$ be a kernel function?
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^4 (\mathbf{a} + \mathbf{b})^2$ be a kernel function?
- Mercer's condition
 - To expand Kernel function $K(\mathbf{a}, \mathbf{b})$ into a dot product, i.e., $K(\mathbf{a}, \mathbf{b}) = \mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b}), K(\mathbf{a}, \mathbf{b})$ has to be positive semi-definite function.

- Replacing dot product with a kernel function
- Not all functions are kernel functions!
 - ullet Need to be decomposable $K(\mathbf{a},\mathbf{b}) = oldsymbol{\Phi}(\mathbf{a})^T oldsymbol{\Phi}(\mathbf{b})$
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^3$ be a kernel function?
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^4 (\mathbf{a} + \mathbf{b})^2$ be a kernel function?
- Mercer's condition
 - To expand Kernel function $K(\mathbf{a}, \mathbf{b})$ into a dot product, i.e., $K(\mathbf{a}, \mathbf{b}) = \mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b})$, $K(\mathbf{a}, \mathbf{b})$ has to be positive semi-definite function.
 - kernel matrix K is always symmetric PSD for any given $\mathbf{x}_1, \dots, \mathbf{x}_N$.

- $K(\mathbf{a}, \mathbf{b}) = (\boldsymbol{\alpha} \cdot \mathbf{a}^T \mathbf{b} + \boldsymbol{\beta})^Q$ is an example of a SVM kernel function.
- Beyond polynomials there are other very high dimensional basis functions that can be made practical by finding the right Kernel Function
 - Radial-basis style kernel (RBF)/Gaussian kernel function

$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma \|\mathbf{a} - \mathbf{b}\|^2)$$

Sigmoid functions

2nd Order Polynomial Kernel

$$K(\mathbf{a}, \mathbf{b}) = (\boldsymbol{\alpha} \cdot \mathbf{a}^T \mathbf{b} + \boldsymbol{\beta})^2$$

Gaussian Kernels

$$K(\mathbf{a}, \mathbf{b}) = \exp\left(-\gamma \|\mathbf{a} - \mathbf{b}\|^2\right)$$

Gaussian Kernels

$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma \|\mathbf{a} - \mathbf{b}\|^2)$$

When γ is large, we clearly see that even the protection of a large margin cannot suppress overfitting. However, for a reasonably small γ , the sophisticated boundary discovered by SVM with the Gaussian-RBF kernel looks quite good.

For (a) a noisy data set that linear classifier appears to work quite well, (b) using the Gaussian-RBF kernel with the hard-margin SVM leads to overfitting.

Section 5

Soft-margin SVM

From hard-margin to soft-margin

 When there are outliers, hard margin SVM + Gaussian-RBF kernel result in an unnecessarily complicated decision boundary that overfits the training noise.

From hard-margin to soft-margin

- When there are outliers, hard margin SVM + Gaussian-RBF kernel result in an unnecessarily complicated decision boundary that overfits the training noise.
- Remedy: a soft formulation that allows small violation of the margins or even some classification errors.

 When there are outliers, hard margin SVM + Gaussian-RBF kernel result in an unnecessarily complicated decision boundary that overfits the training noise.

Non-linear SVM

- Remedy: a soft formulation that allows small violation of the margins or even some classification errors.
- Soft-margin: margin violation $\varepsilon_n \geq 0$ for each data point (\mathbf{x}_n, y_n) and require that

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \varepsilon_n$$

• ε_n captures by how much (\mathbf{x}_n, y_n) fails to be separated.

We modify the hard-margin SVM to the soft-margin SVM by allowing margin violations but adding a penalty term to discourage large violations:

$$\begin{aligned} & \min_{b, \mathbf{w}, \boldsymbol{\varepsilon}} & & \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \varepsilon_n \\ & \text{subject to: } & y_n(\mathbf{w}^T \mathbf{x}_n + b) \geq 1 - \varepsilon_n \text{ for } n = 1, \dots, N \\ & & \varepsilon_n \geq 0, \text{ for } n = 1, \dots, N \end{aligned}$$

The meaning of C?

Soft-Margin SVM

We modify the hard-margin SVM to the soft-margin SVM by allowing margin violations but adding a penalty term to discourage large violations:

Non-linear SVM

$$\begin{aligned} & \min_{b, \mathbf{w}, \varepsilon} & \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} \varepsilon_n \\ & \text{subject to: } y_n(\mathbf{w}^T \mathbf{x}_n + b) \geq 1 - \varepsilon_n \text{ for } n = 1, \dots, N \\ & \varepsilon_n \geq 0, \text{ for } n = 1, \dots, N \end{aligned}$$

The meaning of C?

- ✓ When C is large, it means we care more about violating the margin, which gets us closer to the hard-margin SVM.
- When C is small, on the other hand, we care less about violating the margin.

(a)
$$C = 1$$

(b)
$$C = 500$$

Soft Margin and Hard Margin

$$\min_{b, \mathbf{w}, \varepsilon} \quad \underbrace{\frac{1}{2} \mathbf{w}^T \mathbf{w}}_{\text{margin}} + \underbrace{C \sum_{n=1}^{N} \varepsilon_n}_{\text{error tolerance}}$$

subject to:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \varepsilon_n, \varepsilon_n \ge 0, \forall N$$

• We have $\varepsilon_n \geq 0$, and that $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \varepsilon_n \Rightarrow \varepsilon_n \ge 1 - y_n(\mathbf{w}^T\mathbf{x}_n + b)$

• We have $\varepsilon_n \geq 0$, and that $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \varepsilon_n \Rightarrow \varepsilon_n \ge 1 - y_n(\mathbf{w}^T\mathbf{x}_n + b)$

The SVM loss (aka. Hinge Loss) function

$$E_{\mathsf{SVM}}(b, \mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T \mathbf{x}_n + b), 0)$$

- We have $\varepsilon_n > 0$, and that $y_n(\mathbf{w}^T\mathbf{x}_n + b) > 1 - \varepsilon_n \Rightarrow \varepsilon_n > 1 - y_n(\mathbf{w}^T\mathbf{x}_n + b)$
- The SVM loss (aka. Hinge Loss) function

$$E_{\mathsf{SVM}}(b, \mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T \mathbf{x}_n + b), 0)$$

Non-linear SVM

 The soft-margin SVM can be re-written as the following optimization problem:

$$\min_{b,\mathbf{w}} E_{\mathsf{SVM}}(b,\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$