

Figure 8.20. Center-based density.

Figure 8.21. Core, border, and noise points.

8.4.2 The DBSCAN Algorithm

Given the previous definitions of core points, border points, and noise points, the DBSCAN algorithm can be informally described as follows. Any two core points that are close enough—within a distance *Eps* of one another—are put in the same cluster. Likewise, any border point that is close enough to a core point is put in the same cluster as the core point. (Ties may need to be resolved if a border point is close to core points from different clusters.) Noise points are discarded. The formal details are given in Algorithm 8.4. This algorithm uses the same concepts and finds the same clusters as the original DBSCAN, but is optimized for simplicity, not efficiency.

Algorithm 8.4 DBSCAN algorithm.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

Time and Space Complexity

The basic time complexity of the DBSCAN algorithm is $O(m \times \text{time to find points in the } Eps\text{-neighborhood})$, where m is the number of points. In the worst case, this complexity is $O(m^2)$. However, in low-dimensional spaces, there are data structures, such as kd-trees, that allow efficient retrieval of all