Inteligência Artificial

Aula 27- Aprendizagem de Máquina: Classificação ¹

Sílvia M.W. Moraes

Faculdade de Informática - PUCRS

June 13, 2017

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a falar sobre aprendizagem de máquina.
- Este material foi construído com base no material sobre Data Mining dos professores Eamonn Keogh(University of California), Rodrigos Barros, Duncan e Renata de Paris e também nos capítulos:
 - 4 Inteligência Artificial: Uma abordagem de Aprendizagem de Máquina: Facelli e outros.
 - 18 do livro Artificial Intelligence a Modern Approach: Russel
 & Norvig

Sumário

- 1 O que vimos ...
- Revisando: Paradigmas, Tarefas e Processo de Aprendizagem
- Classificação

Aulas anteriores

- Agente Reativos e Cognitivos
- Solução de Problemas: Algoritmos de busca
- Planejamento Clássico
- Introdução à Raciocínio Probabilistico
- Introdução à Aprendizagem de Máquina
 - Pré-processamento
 - Agrupamento

Paradigmas e Tarefas de Aprendizagem

- Paradigma de aprendizagem é definido pela natureza do problema. Tipo de realimentação usada pelo algoritmo para aprender.
 - Podem ser:
 - Supervisionado: aprendizagem de uma função h a partir de exemplos (amostras rotuladas), de entradas (x) e saídas correspondentes (f(x)). Com crítica referente ao erro da saída.
 - Não-supervisionado: aprendizagem a partir de as amostras não são rotuladas. Essa abordagem não usa os atributos de saída. Sem critica, usa regularidades e propriedades estatísticas dos dados.
 - Por reforço: processo de aprendizagem baseado em punição e recompensa. Reforça uma ação positiva e penaliza, uma negativa. Critica apenas de desempenho.

Paradigmas e Tarefas de Aprendizagem

- As tarefas de aprendizagem podem ser: preditivas ou descritivas
 - preditivas: tarefa supervisionada, sua meta é encontrar uma função (modelo ou hipótese) a partir dos dados de treino que possa ser usada para prever um rótulo (classe) ou valor de um novo exemplo.
 - Ex: classificação (rótulos discretos), regressão (rótulos contínuos)

Paradigmas e Tarefas de Aprendizagem

Resumo:

Processo de Descoberta de Conhecimento

- Knowledge Discovery in Databases (KDD): consiste em uma série de passos bem definida cujo meta é transformar dados em conhecimento.
 - (e) Mineração :
 - Usa Algoritmos de aprendizado de máquina
 - Análise de uma séries de dados para compreensão do domínio
 - Resultados compreensíveis e especialmente úteis

Classificação: Conceito

 Objetivo: classificação de dados é o processo de automaticamente atribuir um (single label) ou mais rótulos (multi-label), ditos classes, aos dados.

Características:

- É uma tarefa preditiva, supervisionada que exige que os dados usados para definir o modelo estejam rotulados.
- Os rótulos (classes) são pré-definidos.
- Nessa tarefa, os dados são divididos inicialmente em 2 subconjuntos disjuntos:
 - Conjunto de treinamento: é usado para treinar o algoritmo durante a etapa de fase aprendizagem.
 - Este conjunto é subdividido em 2 novos conjuntos disjuntos:
 - Subconjunto de estimação: usado para selecionar o modelo;
 - Subconjunto **de validação**: usado para testar e validar o modelo.
 - Conjunto de teste: é usado para validar o modelo na fase de generalização (teste final).
- No mínimo, 2 conjuntos: treinamento (~80% das amostras) e teste (~20% das amostras).

- A subdivisão em 3 conjuntos é interessante, pois
 - nos permite avaliar o desempenho de vários modelos candidatos antes de escolhermos o melhor (quando usamos os dois 2 subconjuntos do treinamento).
 - nos resguarda da possibilidade do melhor modelo estar excessivamente ajustado ao subconjunto de validação (essa garantia é dada pelo conjunto de teste).

Validação Cruzada:

- O conjunto de N dados é subdividido em K subconjuntos (K > 1, sendo N divisivel por K).
- O modelo é treinamento todos os subconjuntos, exceto um. O subconjunto deixado de fora é usado para testar e validar o modelo.
- O procedimento é repetido K vezes sempre deixando um subconjunto diferente de fora.

Validação Cruzada:

- O desempenho do modelo é medido pela média do erro quadrado obtido na validação de todas essas K tentativas.
- Mais processamento, mas é vantajoso quando o melhor conjunto de treinamento não é conhecido.

• Exemplo: Classificação de tipos de gafanhoto:

• Considerando 5 exemplos de Esperança (tipo de gafanhoto verde) e 5 do Gafanhoto.

Qual o tipo do inseto abaixo ?

 Para viabilizar a classificação, precisamos identificar um conjunto de características que nos permite distinguir as classes dos insetos, tais como:

 Considerando os atributos comprimento do abdômen e das antenas, vamos tentar definir o modelo:

ID do inseto	Comp. do abdômen	Comp. das antenas	Classe do inseto
1	2.7	5.5	Gafanhoto
2	8.0	9.1	Esperança
3	0.9	4.7	Gafanhoto
4	1.1	3.1	Gafanhoto
5	5.4	8.5	Esperança
6	2.9	1.9	Gafanhoto
7	6.1	6.6	Esperança
8	0.5	1.0	Gafanhoto
9	8.3	6.6	Esperança
10	8.1	4.7	Esperança

• Qual a classe do inseto cujo abdômen mede 5.1 e as antenas

 Colocando os atributos em um gráfico, conseguimos observar as classes dos gafanhotos.

 Qual a classe do inseto abaixo cujo abdômen mede 5.1 e as antenas 7.0mm?

- Classificador Linear Simples
- se exemplo desconhecido está acima da linha então classe é Esperança senão classe é Gafanhoto

Classificador Linear

- Classificador Linear Simples:
 - Pode ser um usado em espaços dimensionais maiores
 - Nesse caso, a divisão será feita por um hiperplano.

Classificador Linear

- Classificador Linear Simples:
 - Limitação: resolve apenas problemas cujas classes são linearmente separáveis.

Generalização de um Classificador Linear

- Exemplo: Base de Dados da Planta Iris
 - 150 amostras de Iris Setosa, Virginica e Versicolor (conjunto perfeitamente balanceado)
- Podemos generalizar o classificador linear para problemas de N classes ao ajustar N−1 hiperplanos.
- Neste caso, primeiro aprendemos a linha que (perfeitamente) discrimina entre
 - Setosa e Virginica/Versicolor e,
 - depois, aprendemos a aproximadamente discriminar entre Virginica e Versicolor

 Algoritmo dos k Vizinhos mais Próximos (k-Nearest Neighbour): considera que objetos com características semelhantes pertencem ao mesmo grupo.

- Algoritmo baseado em memória (Lazy: computação adiada para a fase de classificação)
 - Etapa de Treinamento:
 - Não gera modelo: apenas memorização dos dados rotulados
 - Etapa de Generalização:
 - Classifica uma nova amostra levando em consideração os k vizinhos mais próximos.
 - Usa uma medida de distância para calcular a proximidade dos dados vizinhos (distância euclidiana é bem usual).
 - Cada vizinho k próximo ao dado vota em uma classe.
 - A classe mais votada passa a ser a da nova amostra.

```
Inicialização
Preparar o conjunto de dados (treinamento e teste)
Informar o valor de k
Para cada nova amostra do conjunto de teste faça
{
    Calcular a distância para todas as amostras do conjunto de treinamento
    Determinar o conjunto das k amostras mais próximas
    Determinar o rótulo mais representativo entre os k vizinhos
}
retornar o conjunto de teste rotulado
```


Aspectos Positivos

- Treinamento é simples (apenas armazenamento dos objetos rotulados)
- Constrói aproximações locais da função objetivo, pois são diferentes para cada objeto novo que foi classificado
- Aplicável mesmo em problemas complexos.
- Incremental (quando novas amostras de treinamento estão disponíveis, basta memorizá-las)

Aspectos Negativos

- Não gera um modelo
- Dependente da medida de distância (importante normalizar os dados)
- Predição pode ser custosa para muito objetos
- Alta dimensionalidade dos atributos afeta negativamente os algoritmos baseados em distância (quanto maior o número de atributos mais a distância do mais próximo aproxima-se do mais distante).

• Atividade I: Encontre a classe do objeto desconhecido (23), considerando k=3.

Х	У	Classe
		П
7	9	ī
8	9	ō
9	8	ī
5	7	ō
7	7	
8	7	
7	6	
9	6	
9	4	
6	2	
2	5	\bigcirc
4	4	Ŏ
1	3	Ŏ
2	3	Ŏ
3	3	Ŏ
6	3	Ŏ
3	2	Ŏ
1	1	Ŏ
4	1	Ŏ
8	1	Ŏ
9	1	Ŏ
5	2	
	X 57895787996241236314895	