Multi Instance Multi Label

Lorenzo Niccolai

Fabio Vittorini

lorenzo.niccolai3@stud.unifi.it

fabio.vittorini@stud.unifi.it

Machine Learning

University of Florence, Department of Information Engineering

July 17, 2017

Overview

- SVM
 - Classification
 - SVM
- Multi Instance Learning
 - SIL
 - mi-SVM
 - MI-SVM
- Multi Label Learning
- Multi Instance Multi Label Learning
- Our work
 - Results

Classification problem

Goal: To produce a classifier able to decide whether an object belongs to one or more classes.

Idea: Supervised Learning: Given a dataset of already classified examples, the classifier *learns* a function that solves classification problem.

Dataset is set of classified examples:

$$D = \{(X_i, Y_i) | i \in [1, n]\}$$
$$X_i \in \mathbb{R}^f$$
$$Y_i \in \{-1, +1\}$$

- A vector $x \in \mathbb{R}^f$ represents an object using f relevant features
- A number $y \in \{-1, +1\}$ indicates wether the example belong to target class

While learning the target function, the dataset is divided in *training set* and *test set*.

L. Niccolai, F. Vittorini MIML July 17, 2017

- The idea is to compute the maximum-margin hyperplane $w^Tx + b$ which best separates positive examples from negative examples
- Samples on the margin are called the support vectors

Optimization problem is:

$$argmin_w \frac{1}{2} ||w||^2$$

$$Y_i(w^TX_i+b) \geq 1 \ \forall i \in [1,n]$$

Figure 1: Solution of maximum-margin hyperplane

SVM with slacks

• The examples may not be linearly serparable and so the problem would not have any solutions because constraints are not satisfied. Then we introduce slack variables ξ

Optimization problem becomes:

$$\mathit{argmin}_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

$$y_i(w^Tx_i + b) \ge 1 - \xi_i \ \forall i \in [1, n]$$

 $\xi_i \ge 0 \ \forall i \in [1, n]$

Figure 2: Solution with slacks

Multi instance classification

Motivation:

- Sometimes a complex item can be well represented by a set of instances
- A single instance may belong or not to a class or label (positive or negative)
- An example, or bag, is positive if at least one of its instances is positive, where as a negative bag consists of only negative instances
- A label is provided for the entire bag, not to instances
- We have a semi-supervised learning problem

[1]

Dataset is now a set of bags, where each bag is a set of instances:

$$D = \{ (X_i, Y_i) | i \in [1, n] \}$$
$$X_i = \{ x_{i,k} | k \in [1, k_i], x_{i,k} \in \mathbb{R}^f \}$$

Notice that each bag can be made of any number of instances, but every instance has a fixed number of features f.

Figure 3: Example of images instances refer to "zebra concept"

SIL

The first naive approach makes the following label assignment:

- If an instance belongs to a negative bag, sets its label to -1
- ullet If an instance belongs to a positive bag, sets its label to +1

The resulting problem can be solved using a regular SVM, treating each instance as a whole document.

Using this approach makes almost useless multi-instance formulation.

Instances label assignment:

- ullet If an instance belongs to a negative bag we can say that its label is -1
- If an instance belongs to a positive bag we don't know for sure its label

This leads to 2 new constraints in SVM problem:

$$y_{i,k} = -1 \text{ if } Y_i = -1$$

$$\sum_{k=1}^{k_i} \frac{y_{i,k}+1}{2} \ge 1 \text{ if } Y_i = +1$$

L. Niccolai, F. Vittorini MIML July 17, 2017

Our SVM problem becames the following:

$$\begin{aligned} \min_{Y} \min_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \\ y_{i,k}(w^T x_{i,k} + b) &\geq 1 - \xi_i \ \forall i \in [1, n], k \in [1, k_i] \\ \xi_i &\geq 0 \ \forall i \in [1, n] \\ y_{i,k} &= -1 \ \text{if} \ Y_i = -1 \\ \sum_{k=1}^{k_i} \frac{y_{i,k} + 1}{2} &\geq 1 \ \text{if} \ Y_i = +1 \end{aligned}$$

That is an intractable mixed optimization problem

A feasible algorithm that finds a non optimal solution is the following:

```
MI-SVM (X, Y)

1 y_{i,k} = -1 if Y_i = -1

2 y_{i,k} = +1 if Y_i = +1

3 do

4 Solve regular SVM finding w, b

5 y_{i,k} = sign(w^T x_{i,k} + b) if Y_i = +1

6 Adjust each positive bag to satisfy constraints

7 while (y_{i,k} change)
```

This approach uses directly the dataset in its bag form:

$$argmin_{w,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i$$
 $y_i(max_k w^T x_{i,k} + b) \ge 1 - \xi_i \ \forall i \ s.t. \ Y_i = +1$
 $y_i(w^T x_{i,k} + b) \ge 1 - \xi_i \ \forall i \ s.t. \ Y_i = -1$
 $\xi_i \ge 0 \ \forall i \in [1, n]$

This is possible by selecting a witness from each positive bag.

MI-SVM algorithm

A feasible algorithm that finds a solution is the following:

```
MI-SVM (X, Y)

1 \bar{x}_i = avg(x_{i,k}) \ \forall x_{i,k} \in X_i positive bag

2 do

3 Assign \bar{\alpha}_i \in [0, C] to each \bar{x}_i

4 Assign \alpha_{i,j} with \sum_{j=1}^{k_i} \alpha_{i,j} \in [0, C] \ \forall x_{i,k} \in X_i negative bag

5 Solve regular SVM finding w, b

6 Find new \bar{x}_i by selecting the best one for each positive bag

7 while (witnesses change)
```

L. Niccolai, F. Vittorini MIML July 17, 2017

Multi label classification

Motivation:

- Sometimes a complex item can be well represented by a set of labels
- Helps single label classification when the concept is more complicated or general

Figure 4: Multi label example

Notation

A set of labels $L = \{y_1, y_2, ... y_l\}$ is given.

Each object contained in the dataset is associated with a set of labels:

$$D = \{ (X_i, Y_i) | i \in [1, n] \}$$

$$X_i \in \mathbb{R}^f$$

$$Y_i = \{ y_{i,h} | h \in [1, h_i], y_{i,h} \in L, h_i \le I \}$$

Solutions [4]:

- Problem transformation
- Algorithm adaptation

Problem transformation

Attempt to convert the multilabel problem in a regular binary task. Two lossy methods:

- Randomly discard each label information except one from each instance
- Remove instances that have actually more than one label

Other solutions:

- Train a binary classifier for each existing combination of labels
- Train a binary classifier for each label (used in this work)

An algorithm adaptation approach

The idea is to focus on ranking rather than binary classification [2]

- Train a classifier $f_l: X \to \mathbb{R}$ for each label
- For each test example sort label list according to predicted rank
- ullet Set size prediction feeding dataset and thresholds $t(X_i)$ to a classifier

$$t(X_i) = argmin_t \{ k \in Y_i \text{ s.t. } f_k(X_i) \leq t \} + \{ k \in \overline{Y}_i \text{ s.t. } f_k(X_i) \geq t \}$$

• Take the best labels according to set size prediction

L. Niccolai, F. Vittorini MIML July 17, 2017 18 / 29

Introduction to MIML

MIML problems combine motivations of multi instance and multi label ones.

Given a set of labels $L = \{y_1, y_2, ... y_l\}$ $D = \{(X_i, Y_i) | i \in [1, n]\}$ $X_i = \{x_{i,k} | k \in [1, k_i], x_{i,k} \in \mathbb{R}^f\}$ $Y_i = \{y_{i,k} | h \in [1, h_i], y_{i,k} \in L, h_i < l\}$

Figure 5: Different learning frameworks

SVM Solution

To allow regular SVMs to solve this problem, we use *problem transformation*.

There are 2 possibilities:

- MIML → MISL → SISL (used in this work)
- MIML \rightarrow SIML \rightarrow SISL

Figure 6: Two possible solutions to implement MIML

Multi label to single label

Excluding lossy approaches, the idea is to train a multi-instance (single label) classifier for each label.

Given a MIML dataset $D = \{(X_i, Y_i) | i \in [1, n]\}$ we produce I datasets as follows:

$$D_{y_j} = \{(X_i, Y_{y_j}) | i \in [1, n]\} \ \forall j \in [1, l]$$

Where

$$Y_{y_j} = \begin{cases} +1 & \text{if } y_j \in Y_i \\ -1 & \text{otherwise} \end{cases}$$

Then we train L regular multi-instance SVMs and collect their results.

Multi instance to single instance

Given one of MISL datasets produced at previous step, we compared the 3 methods previously exposed:

- SII
- MI-SVM
- mi-SVM

They all use a standard SISL SVM as subroutine.

Our work

The aim of our work is to replicate a part of the results of [5] using the **MIML framework** and compare the different metrics.

- We focused on *text categorization* using text documents (*bags*) belonging to categories (*labels*)
- We choose to use multi-instance learning as the bridge between MIML and SISL
- \bullet Bag of words approach to Reuters-21578 dataset
- Multi instance tasks solved with SIL, MI-SVM and mi-SVM approaches

Dataset processing

Documents selection:

- Removed every document with 0 labels
- Removed short documents (less than 30 words)
- Removed randomly documents with 1 label to obtain 2000 examples

Dictionary creation:

- Performed stemming
- 2 Removed stopwords
- Removed rare words keeping 2% of them (about 210)

Multi instance data

- Splitted documents in passages of 50 words max
- Removed empty instances (according to dictionary)

Evaluation criteria

Four criteria are used for performance evaluation:

• hamming loss:

$$hloss_S(h) = \frac{1}{p} \sum_{i=1}^p \frac{1}{|\mathcal{Y}|} |h(X_i) \Delta Y_i|$$

one-error:

one
$$-\operatorname{error}_{S}(h) = \frac{1}{p} \sum_{i=1}^{p} [[\operatorname{arg} \max_{y \in \mathcal{Y}} h(X_{i}, y)] \notin Y_{i}]$$

coverage:

$$coverage_S(h) = \frac{1}{p} \sum_{i=1}^{p} \max_{y \in Y_i} rank^h(X_i, y) - 1$$

• ranking loss:

$$rloss_{S}(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{|Y_{i}| \cdot |\bar{Y}_{i}|} |\{(y_{1}, y_{2}) \in Y_{i} \times \bar{Y}_{i} \text{ s.t. } h(X_{i}, y_{1}) \leq h(X_{i}, y_{2})\}|$$

More metrics

Other metrics used by reference article:

• average precision:

$$avgprec_{S}(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{|Y_{i}|} \sum_{y \in Y_{i}} \frac{|\{y' \mid rank^{h}(X_{i}, y') \leq rank^{h}(X_{i}, y), \ y' \in Y_{i})\}|}{rank^{h}(X_{i}, y)}$$

average recall:

$$\mathit{avgrecl}_{\mathcal{S}}(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{|\{y \mid \mathit{rank}^h(X_i, y) \leq |h(X_i)|, \ y \in Y_i)\}|}{|Y_i|}$$

average F1:

$$avgF1_S(h) = \frac{2 \times avgprec_S(h) \times avgrecl_S(h)}{avgprec_S(h) + avgrecl_S(h)}$$

[3]

	Metrics									
Algorithms	hloss	one-error	coverage	rloss	aveprec	averecl	aveF1			
MimlBoost	.053±.004	.094±.014	.387±.037	.035±.005	.937±.008	.792±.010	.858±.008			
MimlSvm	$.033 \pm .003$	$.066 \pm .011$	$.313 \pm .035$	$.023 \pm .004$	$.956 \pm .006$	$.925 \pm .010$	$.940 \pm .008$			
$MimlSvm_{mi}$	$.041 \pm .004$	$.055 \pm .009$	$.284 \pm .030$	$.020 \pm .003$	$.965 \pm .005$	$.921 \pm .012$	$.942 \pm .007$			
MimlNn	$.038 \pm .002$	$.080 \pm .010$	$.320 \pm .030$	$.025 \pm .003$	$.950 \pm .006$	$.834 \pm .011$.888±.008			
AdtBoost.MH	.055±.005	.120±.017	.409±.047	N/A	.926±.011	N/A	N/A			
RankSvm	$.120 \pm .013$	$.196 \pm .126$	$.695 \pm .466$	$.085 \pm .077$	$.868 \pm .092$	$.411 \pm .059$	$.556 \pm .068$			
MISvm	$.050 \pm .003$	$.081 \pm .011$	$.329 \pm .029$	$.026 \pm .003$	$.949 \pm .006$	$.777 \pm .016$	$.854 \pm .011$			
MI – knn	$.049 \pm .003$	$.126 \pm .012$	$.440 \pm .035$	$.045 \pm .004$	$.920 \pm .007$	$.821 \pm .021$.867±.013			
SIL	.072±.002	.129±.017	.104±.036	.025±.004	.865±.012	.797±.020	.829±.016			
MISVM	$.134 \pm .004$	$.015 \pm .008$	$.666 \pm .054$	$.214 \pm .011$	$.636 \pm .019$	$.425 \pm .008$.509±.011			
mi – SVM	$.111 \pm .003$	$.041 \pm .010$	$.295 \pm .073$	$.121 \pm .013$	$.746 \pm .025$	$.534 \pm .014$.626±.018			

- Scores are quite low, but looking at one-error metric we see that our classifier has potential
- Selected labels' frequencies are 520, 434, 283, 222, 223, 220, 187 over 2000 documents.
- Test repeated for best 2 labels with following results

	Metrics									
Algorithms	hloss	one-error	coverage	rloss	aveprec	averecl	aveF1			
SIL	.099±.007	.141±.005	.005±.001	.005±.001	.998±.001	.948±.006	.972±.003			
MI - SVM	$.182 \pm .007$	$.012 \pm .001$	$.022 \pm .011$	$.022 \pm .011$	$.989 \pm .006$	$.650 \pm .013$	$.785 \pm .010$			
mi – SVM	$.126 \pm .013$	$.036 \pm .012$	$.015 \pm .010$	$.015 \pm .010$	$.993 \pm .005$	$.785 \pm .018$	$.877 \pm .013$			

- [1] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines for multiple-instance learning. In *Advances in neural information processing systems*, pages 577–584, 2003.
- [2] André Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In *Advances in neural information processing systems*, pages 681–687, 2002.
- [3] Mohammad S Sorower. A literature survey on algorithms for multi-label learning. *Oregon State University, Corvallis*, 18, 2010.
- [4] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. *International Journal of Data Warehousing and Mining*, 3(3), 2006.
- [5] Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. Multi-instance multi-label learning. Artificial Intelligence, 176(1):2291–2320, 2012.