Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologias Engenharia da Computação

Thales L. A. Valente

Disciplina: Linguagens Formais e Autômatos **Código:** EECP0020

27 de maio de 2024

Conteúdo programático

- Elementos de matemática discreta
- Conceitos básicos de linguagens
- Linguagens regulares e autômatos finitos
- Linguagens livres de contexto e autômatos de pilha
- Linguagens sensíveis ao contexto e Máquinas de Turing com fita limitada
- Linguagens recursivas e Máquinas de Turing com finta infinita
- Linguagens recursivamente enumeráveis

Sumário

- Introdução
- Gramática Livre de Contexto
- Árvore de Derivação
- Ambiguguidade
- Simplificação de Gramáticas Livres de Contexto
- Formas normais
- Autômato com Pilha
- Bibliografia

Hierarquia de Chomsky

De acordo com a complexidade relativa das linguagens, Chomsky definiu uma classificação que permite antecipar as propriedades fundamentais das linguagens e vislumbrar os modelos de implementação mais adequados. A Hierarquia de Chomsky é ilustrada abaixo:

Figura: Hierarquia de Chomsky

Linguagens Livres de Contexto ou do tipo 2

- O estudo das Linguagens Livres de Contexto é importante para a Computação, pois:
 - Consegue tratar de questões como parênteses balanceados, contruções bloco-estruturadas, entre outras, típicas de linguagens de programação como Pascal, C, etc.
 - Os algoritmos que implementam as Linguagens Livres de Contexto são relativamente simples e possuem boa eficiência.
 - São bastante utilizados em analisadores sintáticos, tradutores de linguagens e processadores de texto em geral.

Linguagens livres de contexto ou do tipo 2

- O estudo de Linguagens Livres de Contexto pode ser abordado a partir de dois formalismos básicos:
 - Operacional ou reconhecedor: representado por autômatos de pilha.
 - Axiomático ou gerador: representado por gramáticas livres de contexto.

• Uma Gramática Livre de Contexto (GLC) G é uma gramática

$$G = (V, T, P, S)$$

com a restrição de que qualquer regra de produção de P seja da forma $A \to \alpha$, onde A é um não-terminal (variável) e $\alpha \in (V \cup T)^*$.

- A gramática é dita livre de contexto pelo fato de o não-terminal A estar desacompanhado de outros símbolos (terminais e/ou não-terminais), que definiriam o seu "contexto".
 - Note que toda Gramática Regular é Livre de Contexto.

- **Exemplo**: Considere a linguagem $L_1 = \{a^n b^n | n \ge 0\}$.
- A GLC G_1 é tal que $GERA(G_1) = L_1$:

$$G_1 = (\{S\}, \{a, b\}, \{S \rightarrow aSb|S \rightarrow \epsilon\}, S)$$

Por exemplo, a palavra aabb pode ser gerada pela seguinte derivação:

$$S \implies aSB \implies aaSbb \implies aa\epsilon bb \implies aabb$$

• Por que essa gramática é importante em computação?

- **Exemplo**: Considere a linguagem $L_1 = \{a^n b^n | n \ge 0\}$.
- A GLC G_1 é tal que $GERA(G_1) = L_1$:

$$G_1 = (\{S\}, \{a, b\}, \{S \rightarrow aSb|S \rightarrow \epsilon\}, S)$$

Por exemplo, a palavra aabb pode ser gerada pela seguinte derivação:

$$S \implies aSB \implies aaSbb \implies aa\epsilon bb \implies aabb$$

- Por que essa gramática é importante em computação?
 - Porque ela define o duplo balanceamento em linguagens bloco-estruturada e em parênteses balanceados.

- Exemplo: Considere a linguagem L₂ composta pelas expressões aritméticas contendo colchetes balanceados, dois operadores e um operando.
- A GLC G_2 é tal que $GERA(G_2) = L_2$:

$$G_2 = (\{E\}, \{+, *, [,], x\}, P_2, E)$$

$$P_2 = \{E \to E + E | E * E | [E] | x\}$$

• Por exemplo, a palavra [x + x] * x pode ser gerada pela seguinte derivação:

$$E \implies E * E \implies [E] * E \implies [E + E] * E \implies$$

$$[x + E] * E \implies [x + x] * E \implies [x + x] * x$$

• Esta sequência de derivação é única?

 Uma linnguagem é dita Linguagem Livre de Contexto (LLC) ou do Tipo 2 se for gerada por uma Gramática Livre de Contexto.

- Uma maneira alternativa de visualizar a derivação de uma palavra por uma GLC é por meio de Árvore de Derivação, definida abaixo:
 - 1 A raiz é o símbolo inicial da gramática.
 - ② Os **vértices não-folhas** são os não-terminais. Um nó A com filhos X_1 , X_2 e X_3 representam a regra $A \rightarrow X_1 X_2 X_3$.
 - **3** Os **vértices folha** representam terminais ou o ϵ .

• **Exemplo**: considere os palavras aabb e [x + x] * x, dos exemplos anteriores. Suas árvores de derivação são, respectivamente:

(a) Duplo desbalanceamento

(b) Expressão aritmética

• **Observação**: uma única árvore de derivação pode representar derivações distintas de uma mesma palavra.

• **Exemplo**: Considere a árvore de derivação abaixo, que representa a derivação da palavra x + x * x:

- A palavra pode ser gerada por diversas derivações, como segue:

 - 4 Etc...

- **Derivação mais à esquerda** de uma árvore de derivação é a sequência de produção aplicada sempre à variável mais à esquerda.
 - O exemplo 1) anterior é uma derivação mais à esquerda.
- Derivação mais à direita de uma árvore de derivação é a sequência de produção aplicada sempre à variável mais à direita.
 - O exemplo 2) anterior é uma derivação mais à direita.

Ambiguidade

- Uma GLC é dita Gramática Ambígua se existe uma palavra que possui mais de uma árvore de derivação.
- **Exemplo**: A palavra x + x * x do exemplo anterior pode ser gerada por árvores de derivação distintas, como ilustrado abaixo:

Ambiguidade

- Ainda considerando o exemplo anterior, note que a palavra x + x * x possui mais de uma derivação à esquerda (à direita):
 - Derivação mais à esquerda:

•
$$E \Rightarrow E + E \Rightarrow x + E \Rightarrow x + E * E \Rightarrow x + x * E \Rightarrow x + x * x$$

•
$$E \implies E*E \implies E+E*E \implies x+E*E \implies x+x*E \implies x+x*x$$

- Derivação mais à direita:
 - $E \Longrightarrow E + E \Longrightarrow E + E * E \Longrightarrow E + E * x \Longrightarrow E + x * x \Longrightarrow x + x * x$
 - $E \implies E*E \implies E*x \implies E+E*x \implies E+x*x \implies x+x*x$
- Alternativamente, linguagem ambígua pode ser definida aquele que possui uma palavra com mais de uma derivação mais à esquerda (direita).

Ambiguidade

- Uma linguagem é **inerentemente ambígua** se qualquer GLC que a define é ambígua.
- Exemplo: A linguagem abaixo é inerentemente ambígua:

$$\{w|w = a^n b^n c^m d^m oua^n b^m c^m d^n, n \ge 1, m \ge 1\}$$

Simplificação de Gramáticas Livres de Contexto

 O material sobre simplificação de Gramáticas Livres de Contexto encontra-se em slides próprios disponíveis no SIGAA.

Formas normais

- O formato das regras das GLCs é muito abrangente. Para impor restrições mais rígidas na definição das regras, podem-se utilizar as chamadas formas normais. Elas são úteis em:
 - Desenvolvimento de alguns algoritmos reconhecedores de linguagens.
 - Prova de alguns teoremas.
- Há duas forms normais mais utilizadas:
 - Forma Normal de Chomsky (FNC).
 - Forma Normal de Greibach (FNB).

• Na FNC, todas as regras da GLC são da forma:

$$A \rightarrow BC$$
 ou $A \rightarrow a$,

com A, B, C variáveis e a terminal.

- Para transformar uma GLC qualquer para a FNC, basta seguir o algoritmo de três passos:
 - Passo 1: Simplificar a gramática.
 - Passo 2: Para regras com lado direito maior ou igual a dois: fazer o lado direito ter exclusivamente variáveis.
 - Passo 3: Para regras com lado direito maior ou igual a três: fazer o lado direito ter exatamente duas variáveis.

$$G_2 = (\{E\}, \{+, *, [,], x\}, P_2, E)$$

$$P_2 = \{E \rightarrow E + E|E * E|[E]|x\}$$

- Passo 1: Simplificar a gramática.
 - A gramática já está simplificada.

$$G_2 = (\{E\}, \{+, *, [,], x\}, P_2, E)$$

 $P_2 = \{E \to E + E | E * E | [E] | x\}$

- Passo 2: Para regras com lado direito maior ou igual a dois: fazer o lado direito ter exclusivamente variáveis.
 - Exceto pela regra $E \rightarrow x$, as demais regras devem ser substituídas:

$$E \to EC_{+}E|EC_{*}E|C_{[}EC_{]}$$

$$C_{+} \to +$$

$$C_{*} \to *$$

$$C_{[} \to [$$

$$C_{1} \to]$$

• **Exemplo**: Transformar a GLC **G**₂ em FNC:

lado direito ter exatamente duas variáveis.

$$G_2 = (\{E\}, \{+, *, [,], x\}, P_2, E)$$

 $P_2 = \{E \to E + E | E * E | [E] | x\}$

• Passo 3: Para regras com lado direito maior ou igual a três: fazer o

- - As regras $E \to EC_+E|EC_*E|C_1EC_1$ devem ser substituídas:

$$E
ightarrow ED_1|ED_2|C_[D_3]$$
 $D_1
ightarrow C_+E$ $D_2
ightarrow C_*E$ $D_3
ightarrow EC_1$

• **Exemplo**: Transformar a GLC G_2 em FNC:

$$G_2 = (\{E\}, \{+, *, [,], x\}, P_2, E)$$

 $P_2 = \{E \to E + E | E * E | [E] | x\}$

• A gramática G_2' em FNC fica:

$$G_{2}' = (\{E, C_{+}, C_{*}, C_{[}, C_{]}, D_{1}, D_{2}, D_{3}\}, \{+, *, [,], x\}, P_{2}', E)$$

$$P_{2}' = \{E \to ED_{1}|ED_{2}|C_{[}D_{3}|x,$$

$$D_{1} \to C_{+}E, D_{2} \to C_{*}E, D_{3} \to EC_{]},$$

$$C_{+} \to +, C_{*} \to *, C_{[} \to [, C_{[} \to]]\}$$

• Na **FNG**, todas as regras da GLC são da forma:

$$A \rightarrow a\alpha$$
,

com A variável, a terminal e α sequência de variáveis.

- Para transformar uma GLC qualquer para a FNG, basta seguir o algoritmo de seis passos:
 - Passo 1: Simplificar a gramática.
 - Passo 2: Renomear as variáveis em ordem crescente.
 - Passo 3: Transformar as regras para a forma $A_r o A_s \alpha$, para $r \le s$.
 - **Passo 4**: Excluir as recursões da forma $A_r \to A_r \alpha$.
 - Passo 5: Fazer cada regra ter um terminal no início do lado direito.
 - Passo 6: Transformar todas as regra para a forma $A \to a\alpha$, com α composto exclusivamente de variáveis.

$$\mathbf{G} = (\{S, A\}, \{a, b\}, P, S)$$

$$P = \{S \to AA|a, A \to SS|b\}$$

- Passo 1: Simplificar a gramática.
 - A gramática já está simplificada.

$$G = (\{S, A\}, \{a, b\}, P, S)$$

$$P = \{S \to AA|a, A \to SS|b\}$$

- Passo 2: Renomear as variáveis em ordem crescente.
 - As variáveis S, A são renomeadas para A_1 , A_2 , respectivamente. As regras de G ficam como segue:

$$A_1
ightarrow A_2 A_2 |a$$

$$A_2 \rightarrow A_1 A_1 | b$$

$$G = (\{S, A\}, \{a, b\}, P, S)$$

$$P = \{S \to AA|a, A \to SS|b\}$$

- **Passo 3**: Transformar as regras para a forma $A_r \to A_s \alpha$, para $r \le s$.
 - A regra $A_2 \rightarrow A_1 A_1$ precisa ser modificada. Substitui-se A_1 por suas regras, onde necessário. As regras da gramática ficam como segue:

$$A_1
ightarrow A_2 A_2 |a$$

$$A_2 \rightarrow A_2 A_2 A_1 |aA_1| b$$

$$G = (\{S, A\}, \{a, b\}, P, S)$$
$$P = \{S \rightarrow AA|a, A \rightarrow SS|b\}$$

- **Passo 4**: Excluir as recursões da forma $A_r \to A_r \alpha$.
 - A regra $A_2 o A_2 A_2 A_1$ contém uma recursão e precisa ser removida, introduzindo uma variável auxiliar B e incluindo recursão à direita $(B_r o \alpha B_r)$ e acrescentando regras para A_2 finalizando com B. As regras da gramática ficam como segue:

$$A_1
ightarrow A_2A_2|a$$
 $A_2
ightarrow aA_1|b|aA_1B|bB$ $B
ightarrow A_2A_1|A_2A_1B$

• Exemplo: Transformar a GLC G em FNG:

$$G = (\{S,A\},\{a,b\},P,S)$$

$$P = \{S \to AA|a, A \to SS|b\}$$

- Passo 5: Fazer cada regra ter um terminal no início do lado direito.
 - O lado direito das regras da maior variável A2 iniciam por um terminal.
 Substitue-se A2 nas regras necessárias. As regras da gramática ficam como segue:

$$A_1
ightarrow aA_1A_2|bA_2|aA_1BA_2|bBA_2|a$$
 $A_2
ightarrow aA_1|b|aA_1B|bB$

 $B \rightarrow aA_1A_1|bA_1|aA_1BA_1|bBA_1|aA_1A_1B|bA_1B|aA_1BA_1B|bBA_1B$

$$\mathbf{G} = (\{S, A\}, \{a, b\}, P, S)$$

$$P = \{S \to AA|a, A \to SS|b\}$$

- Passo 6: Transformar todas as regra para a forma $A \to a\alpha$, com α composto exclusivamente de variáveis.
 - ullet Para todas as regras, lpha já possui exclusivamente variáveis.

• Exemplo: Transformar a GLC G em FNG:

$$G = (\{S, A\}, \{a, b\}, P, S)$$

$$P = \{S \rightarrow AA|a, A \rightarrow SS|b\}$$

A gramática G' em FNG fica:

$$m{G'} = (\{A_1, A_2, B\}, \{a, b\}, P', A_1)$$
 $m{P'} = \{A_1 o aA_1A_2|bA_2|aA_1BA_2|bBA_2|a,$
 $A_2 o aA_1|b|aA_1B|bB,$
 $B o aA_1A_1|bA_1|aA_1BA_1|bBA_1|aA_1A_1B|bA_1B|aA_1BA_1B|bBA_1B\}$

- A classe das Linguagens Livres de Contexto pode ser reconhecida por Autômatos com Pilha.
 - Possui uma pilha como memória auxiliar.
 - Possui a facilidade de não-determinismo.

 Formalmente, um Autômato com Pilha Não-determinístico (APN), ou simplesmente Autômato com Pilha (AP) M é uma 6-tupla:

$$M = \{\Sigma, Q, \delta, q_0, F, V\}$$

onde:

- Σ: alfabeto de símbolos de entrada.
- *Q*: conjunto finito de estados do autômato.
- δ : função programa da forma:

$$\delta: Q \times (\Sigma \cup p\{\epsilon,?\}) \times (V \cup \{\epsilon,?\}) \rightarrow 2^{Q \times V^*}$$

- q_0 : estado inicial, tal que $q_0 \in Q$.
- F: conjunto de estados finais, tal que $F \subset Q$.
- V: alfabeto da pilha.

• Graficamente, a função programa pode ser representada como:

- Algumas observações quanto à função programa podem ser feitas:
 - A função δ pode ser total.
 - O símbolo ϵ na leitura indica a facilidade de não determinismo da fita ou da pilha.
 - O símbolo ϵ na gravação indica que nenhuma gravação é realizada na pilha (e não move a cabeça).
 - O símbolo ? pode indicar, a depender da posição:
 - Na leitura da fita: a palavra foi toda lida?
 - Na leitura da pilha: a pilha estah vazia?

- Um Autômato com Pilha pode parar aceitando ou rejeitando a entrada ou ficar em um loop infinito, como segue:
 - Um dos autômatos alternativos assume um estado final: o autômato pára e a palavra é aceita;
 Todos os caminhos alternativos reigitam a entrada; o autômato pára e
 - Todos os caminhos alternativos rejeitam a entrada: o autômato pára e a palavra é rejeitada e;
 - Pelo menos um caminho alternativo está e loop infinito e o demais rejeitam (ou estão em loop infinito também): o autômato está em loop infinito.

• **Exemplo**: A linguagem $L = \{a^n b^n | n \ge 0\}$ é reconhecida pelo seguinte autômato:

• **Exemplo**: A linguagem $L = \{ww^r | w \in \{a, b\}^*\}$ é reconhecida pelo seguinte autômato:

• **Exemplo**: A linguagem $L = \{a^n b^m a^{n+m}\}$ é reconhecida pelo seguinte autômato:

- A partir de uma Linguagem Livre de Contexto na Forma Normal de Greibach (regras da forma $A \to a\alpha$, com α uma sequência de variáveis), pode-se construir a Autômato com Pilha correspondente como segue:
 - Seja G = (V, T, P, S) uma GLC na FNG;
 - Seja $M = (T, \{q_0, q_1, q_f\}, \delta, q_0, \{q_f\}, V)$, onde:
 - $\delta(q_0, \epsilon, \epsilon) = \{(q_1, S)\}$
 - $\delta(q_1, a, A) = \{(q_1, \alpha) | A \rightarrow a\alpha \in P\}$
 - $\delta(q_1,?,?) = \{(q_f,\epsilon)\}$
- O Autômato com Pilha G resultante é ilustrado abaixo:

• **Exemplo**: A linguagem $L = \{a^n b^n | n \ge 1\}$ é gerada pela seguinte gramática:

$$G = (\{S, B\}, \{a, b\}, P, S)$$
$$P = \{S \rightarrow aB | aSB, B \rightarrow b\}$$

• A linguagem *L* é reconhecida pelo seguinte autômato:

Bibliografia

- MENEZES, Paulo B. Linguagens formais e autômatos. 6^a ed. Porto Alegre: Bookman, 2011.
 - Capítulos 5.

Dúvidas?