

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à n'utiliser que pour les
commandes de reproduction)

2 724 274

(21) N° d'enregistrement national :

94 10715

(51) Int Cl⁶ : H 04 B 1/38, H 01 Q 9/04, 23/00

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 07.09.94.

(71) Demandeur(s) : TELEDIFFUSION DE FRANCE —
FR.

(30) Priorité :

(72) Inventeur(s) : TAHANI ABDELKRIM et DEPRIESTER
JEAN JACQUES.

(43) Date de la mise à disposition du public de la
demande : 08.03.96 Bulletin 96/10.

(73) Titulaire(s) :

(56) Liste des documents cités dans le rapport de
recherche préliminaire : Se reporter à la fin du
présent fascicule.

(74) Mandataire : BREVETS RODHAIN ET PORTE.

(54) ANTENNE CADRE, INSENSIBLE A L'EFFET CAPACITIF, ET DISPOSITIF EMETTEUR RECEPTEUR
COMPORTANT UNE TELLE ANTENNE.

(57) Dispositif émetteur récepteur comportant une antenne (2), un émetteur récepteur (1), logé dans un boîtier blindé (11), et un coffret de protection (3) contenant ladite antenne (2) et ledit boîtier blindé (11), ledit dispositif, le boîtier (11) et le coffret (3) comportant chacun une face de préhension (13, 33), applicable contre le corps humain, une face d'interface (14, 34), sensiblement parallèle, et un bord périphérique (15, 35) entre ces deux faces (13, 14 et 33, 34), ledit dispositif étant caractérisé en ce que l'antenne (2) présente une projection orthogonale linéaire sur un plan parallèle à la face de préhension (13).

FR 2 724 274 - A1

**ANTENNE CADRE, INSENSIBLE A L'EFFET CAPACITIF, ET
DISPOSITIF EMETTEUR RECEPTEUR COMPORTANT UNE TELLE
ANTENNE.**

L'invention concerne une antenne, insensible aux 5 influences parasites tels que l'effet de main ou corporel et les effets dus aux masses métalliques.

Elle concerne aussi tout dispositif émetteur et/ou récepteur, notamment portable ou portatif, auquel une telle antenne est particulièrement destinée.

10 Des dispositifs émetteurs récepteurs connus de ce type sont les récepteurs de radiocommunication, de radiotéléphonie ou de radiomessagerie. Le mode de réalisation présenté dans la description concerne un récepteur de radiomessagerie du type mettant en oeuvre le 15 système R.D.S. (Radio Data System) de diffusion de données numériques sur une porteuse d'un signal de radiodiffusion en modulation de fréquence.

Un tel dispositif émetteur et/ou récepteur comporte:

- l'émetteur et/ou le récepteur proprement dit, qui 20 est constitué par toute l'électronique de traitement de l'information enfermée dans un boîtier interne blindé;
- l'antenne émettrice et/ou réceptrice;
- un coffret de protection de l'antenne et du boîtier blindé, conçu généralement dans un plastique dur pour les contenir, selon une forme qui répond à des critères, notamment esthétiques.

Les antennes destinées à de tels émetteurs ou récepteurs font en général appel aux noyaux magnétiques. Autour d'un tel noyau se trouve la bobine résonnante dont les bornes sont reliées par des diodes à capacités variables "varicaps" permettant d'accorder l'antenne à l'émetteur ou au récepteur.

Le format visé, notamment pour la prochaine génération de récepteurs de radiomessagerie, est celui d'une carte de crédit (85*55 mm*mm).

Or, la conception des antennes des dispositifs émetteurs récepteurs actuels comporte des inconvénients limitatifs, parmi lesquels:

- les dimensions et le poids: le volume du noyau magnétique est imposé par la technologie des ferrites, complexe à maîtriser, notamment pour des antennes réceptrices de hautes fréquences;
- le coût: le coût de ce type d'antennes reste élevé par rapport à ce que l'on peut espérer obtenir;
- la fragilité: un choc mécanique ou un champ magnétique intense peut détériorer le noyau et les caractéristiques de ce type d'antennes;
- la bande passante: la bande passante en charge offerte par cette technique est en moyenne 1,5 MHz, or la sélectivité est d'autant meilleure que la bande passante est étroite;
- la directivité: la réception n'est assurée que si le noyau de ferrite est orienté dans la direction

d'émission, ce qui fait des antennes de ce type des antennes unidirectionnelles.

L'invention a pour but de remédier aux inconvénients ci-dessus en proposant une antenne et un dispositif émetteur récepteur de dimensions et de poids réduits, de faible coût, de solidité améliorée, sans perte de sélectivité, soit de sensibilité supérieure ou égale à 35 dB μ V/m, selon les recommandations de l'organisme TELEVERKET RADIO, moins directifs et surtout moins sensibles aux effets métalliques et corporels.

L'invention concerne à cet effet un dispositif émetteur récepteur comportant une antenne, un émetteur récepteur, logé dans un boîtier blindé, et un coffret de protection contenant ladite antenne et ledit boîtier blindé, ledit dispositif, et par extension le boîtier et le coffret, comportant une face de préhension, applicable contre le corps humain, notamment lorsque le dispositif est porté à la ceinture ou à la poche de chemise ou lorsqu'il est maintenu dans la paume de la main, une face d'interface, sensiblement parallèle, et un bord périphérique entre ces deux faces, l'antenne dudit dispositif récepteur présentant une projection orthogonale linéique sur un plan parallèle à la face de préhension.

Selon un mode de réalisation préférentiel, l'antenne est une antenne à bande étroite et la boucle résonnante est constituée d'une bande de film métallique.

Avantageusement, la bande a une épaisseur et une largeur constantes.

De préférence, la bande est un film en cuivre et l'épaisseur du film est de 100 μ m.

Selon une caractéristique avantageuse de l'invention, la bande encadre le bord périphérique du boîtier blindé.

De préférence, au moins une région de la bande est apposée sur une première région périphérique du coffret de protection, ladite région périphérique encadrant le bord périphérique du boîtier blindé et étant confondue avec ou encadrée par le bord périphérique du coffret de protection.

Avantageusement, la bande est autocollante dans sa 10 région apposée.

Enfin, la largeur de la bande est égale à la profondeur du boîtier blindé en chaque point du bord périphérique.

Selon une caractéristique intéressante, une boucle en court circuit encadre le bord périphérique du boîtier blindé, dans l'espace entre ledit bord périphérique et la bande formant l'antenne.

De préférence, la boucle en court circuit est constituée d'un film métallique.

Avantageusement, au moins une région de la boucle en court circuit est apposée sur une deuxième région périphérique du coffret de protection, ladite deuxième région périphérique encadrant le bord périphérique du boîtier blindé et étant encadrée par ladite première région périphérique dont elle est isolée.

25 La largeur de la bande est égale à la largeur du film métallique constituant la boucle en court circuit.

Selon une autre caractéristique de l'invention, des diodes à capacité variable " varicaps " sont branchées aux bornes de la boucle résonnante constituée par la bande de film métallique.

5 L'invention concerne aussi une antenne résonnante destinée à un tel dispositif récepteur.

D'autres caractéristiques et avantages ressortiront de la description ci-après des dessins annexés dans lesquels:

- la figure 1 est une vue en élévation illustrant la disposition de l'antenne par rapport au boîtier blindé;
- la figure 2 est une vue en élévation illustrant la disposition de l'antenne et du boîtier blindé par rapport au coffret de protection;
- 15 - la figure 3 est une vue en élévation illustrant le montage direct de l'antenne du dispositif récepteur;
- la figure 4 est une vue de face illustrant le montage direct de l'antenne et d'une boucle en court circuit équivalente au plan de masse du boîtier blindé et du récepteur;
- 20 - la figure 5 illustre le circuit électrique équivalent de l'antenne avec un couplage capacitif;
- la figure 6 illustre la variation relative des inductances avec et sans présence de boîtier blindé en fonction de la largeur du film constituant la

bobine pour un cadre de 87*57 mm*mm à la fréquence centrale de la bande F.M. $f_0 = 98$ MHz.

5

♦ ♦ ♦

Le dispositif émetteur récepteur et l'antenne associée conformes à l'invention et tels qu'illustrés, à titre d'exemple, sur les figures 1 à 6 sont notamment destinés à des émetteurs récepteurs portables du type récepteurs de 10 radiomessagerie R.D.S. dont on souhaite diminuer l'encombrement et que l'on souhaite rendre insensibles aux parasites.

Pour répondre à de telles caractéristiques, le dispositif émetteur récepteur selon l'invention est formé 15 d'une antenne 2, d'un émetteur récepteur 1 et d'un coffret de protection en plastique dur, formé en deux demi-coques assemblables et contenant ladite antenne 2 et ledit émetteur récepteur 1.

Nous nous plaçons dorénavant dans le cadre de la 20 radiomessagerie R.D.S.: l'émetteur récepteur 1 est un simple récepteur; de même, l'antenne 2 est une antenne de réception, sans que cela change la portée de l'invention.

Le récepteur 1 comprend toute l'électronique de traitement de l'information dans un boîtier blindé 11. Ce 25 boîtier est communément cylindrique de section rectangulaire. Il comporte deux faces dans les plans de section et des bords périphériques selon les génératrices. L'une de ses deux faces est généralement dotée d'organes 12 de commande (interrupteurs, boutons de commande, etc.) 30 ou d'information (afficheur, etc.). La face qui comporte ces organes 12 est dite face d'interface 14 du boîtier blindé 11. L'autre face, opposée, est appliquée contre la corps humain lorsque le dispositif est porté à la ceinture

ou à la poche de chemise et tient généralement dans le creux de la main, le dispositif récepteur étant portable donc préhensible. Cette autre face est dite face de préhension 13 du boîtier blindé 11. Dans notre exemple, ce 5 boîtier est au format d'une carte de crédit (85*55 mm*mm) et sa profondeur, prise sur les bords périphériques, est de 17 mm.

L'ensemble constitué du récepteur 1 et de l'antenne 2 est logé dans un coffret de protection 3 en plastique dur 10 dont le cadre est légèrement supérieur. Ce coffret de protection 3 est conçu notamment selon des critères esthétiques. En une ou plusieurs pièces mais généralement constitué de deux demi-coques solidarisables, il a une forme générale semblable à celle du boîtier blindé 11 15 qu'il contient. Il possède donc une face d'interface 34, une face de préhension 33 et un bord périphérique 35, définis de manière évidente par rapport audit boîtier blindé 11 qu'il contient.

Idéalement, ce coffret comporte sur l'une de ses demi- 20 coques une nervure disposée en périphérie, selon la même orientation et à l'intérieur des bords périphériques 35. Cette nervure comporte une face extérieure, orientée vers les bords périphériques 35, et constituant une première 25 région périphérique 31 du coffret de protection 3, et une face intérieure, orientée vers l'intérieur du coffret 3, et constituant une deuxième région périphérique 32 du coffret de protection 3, isolée de la première par l'épaisseur de plastique constituant la nervure.

Le dispositif récepteur est donc l'ensemble constitué 30 du récepteur 1, de l'antenne 2 et du coffret de protection 3.

L'invention porte principalement sur l'antenne 2 que nous décrivons ci-après. Selon le concept général de l'invention, l'antenne est conçue et mise en oeuvre dans le dispositif récepteur de façon à présenter une surface minimale en regard de la face de préhension. Dans cette application, la projection orthogonale de l'antenne 2 sur un plan parallèle à la face de préhension est linéique.

Sur la figure 1, l'antenne 2 est du type antenne résonante. La boucle résonante 21 de cette antenne est constituée dans un film conducteur 21. Le métal conducteur utilisé est le cuivre. Le film est en bande de largeur 1 et d'épaisseur e égale à 100 µm.

La bande 21 de film conducteur est disposée autour du boîtier blindé 11 qu'elle encadre. La largeur 1 de la bande est disposée selon la profondeur des bords périphériques. Dans la région dans laquelle les deux extrémités de la bande se rejoignent, des diodes à capacités variables "varicaps" 22 aux bornes du film en cuivre permettent d'accorder l'antenne 2 au récepteur 1, selon les montages des figures 3 et 5, connus de l'homme du métier.

Idéalement, le film est conçu autocollant, ce qui permet de coller la bande 21 constituant la boucle résonnante sur le coffret de protection 3, à l'intérieur du bord périphérique 35 ou sur la première ou la deuxième région périphérique 31, 32. Le film peut évidemment n'être que partiellement autocollant, sur une partie de sa largeur 1 ou/et sur des portions de sa longueur.

Les caractéristiques de l'antenne sont définies en partie par les paramètres suivants, évalués après avoir accordé le système sur la fréquence centrale de la bande F.M., $f_0 = 98$ MHz:

paramètres	sigles	unités
section du cadre de la boucle	Section	mm*mm
largeur du cadre	l	mm
Force électromagnétique (f.e.m.)	NV	µV
amplitude du signal relevé au bornes du dipôle-boucle	Nvac	mV
capacité d'accord	C _T	pF
inductance du dipôle-boucle	L	nH
résistance du dipôle-boucle	R	kΩ

Les résultats sont les suivants, pour des sections différentes et une largeur de cadre l de 20 mm:

5

Section (mm*mm)	NV (µV)	Nvac (dBm)	Nvac (mV)	B.P. (MHz)	C _T (pF)	L (nH)	R (kΩ)
225	56,17	-35,5	4,07	0,5	239	11	1,32
256	56,17	-35	4,31	0,5	222,3	11,8	1,42
289	59,5	-33,7	5	0,5	204	12,9	1,55
324	63,75	-32,6	5,63	0,5	187,4	14,1	1,7
361	59,5	-31,3	6,6	0,5	171	15,4	1,86
400	79,34	-29,9	7,75	0,5	155,6	16,9	2,03
1008	125,7	-22	19,25	0,5	73,5	35,9	4,33
2025	223,6	-17,2	33,46	0,5	41,7	63,2	7,63
3025	334,6	-15	43,1	0,5	30,6	86,2	10,4
4000	436	-13,8	49,49	0,5	24,6	107,2	12,9

On n'envisage pas encore de réaliser des antennes dont la section de cadre serait inférieure à 2000 mm*mm.

10 Les résultats sont les suivants, toujours pour l'antenne seule, sans récepteur, pour des largeurs différentes et une section de cadre de 87*57 mm*mm:

I (mm)
4
8
12
16
20
24

Nvac (dBm)
-15,6
-15,2
-14,7
-14,5
-14,5
-14,9

B.P. (MHz)	C _T (pF)	L (nH)	R (kΩ)
0,75	11,5	229,3	18,4
0,75	14,2	185,7	14,9
0,75	16,7	157,9	12,7
0,75	18,5	142,6	11,5
0,75	20,5	128,6	10,3
0,75	21,6	122,1	9,8

Sur la figure 4, la présence d'un récepteur en boîtier blindé d'épaisseur de 17 mm, constitue un plan de masse qui est équivalent à une boucle en court circuit. Cette boucle en court circuit a pour effet de diminuer le facteur de surtension du cadre. En fait, le blindage métallique 11 joue le rôle d'une sorte de réflecteur sur les ondes incidentes. Ceci se traduit par un affaiblissement d'au moins 12 dB du niveau relevé aux bornes du dipôle.

Les résultats sont les suivants, pour l'antenne couplée au récepteur, pour des largeurs différentes et une section de cadre de 87*57 mm*mm:

I (mm)
4
8
12
16
20
24

Nvac (dBm)
-25,9
-26,5
-26,9
-26,5
-26,8
-26,7

B.P. (MHz)	C _T (pF)	L (nH)	R (kΩ)
1,6	16,9	156	5,8
1,75	22,3	118	4
1,85	27	89	3,2
1,85	31	85	2,8
1,85	35	75,4	2,4
1,85	36,7	71,8	2,3

On note de ces résultats que si il n'y a pas réellement de limite inférieure pour la section du cadre, compte tenu des tailles de récepteurs envisagés, il n'y a pas non

plus, à ce stade, d'obstacle à la réalisation d'une antenne au format d'une carte de crédit.

L'affaiblissement du niveau relevé aux bornes du dipôle est compensé par une adaptation des dimensions de l'antenne afin de maximaliser le gain:

l (mm)	$L1$ (nH)	$L2$ (nH)	$\Delta L = (L1 - L2) / L1$ (%)
4	229,3	156	32
8	185,7	118	36,3
12	157,9	89	38,1
16	142,6	85	40,3
20	128,6	75,4	41,3
24	122,1	71,8	41,1

Ces résultats sont représentés figure 6. On note que l'affaiblissement du niveau relevé aux bornes du dipôle est optimal pour une largeur du cadre l supérieure ou égale à la profondeur du récepteur qui est ici de 17 mm. Pour ces valeurs supérieures de la largeur du cadre, la bande passante du système est quasiment constante, la variation relative de la différence des inductances est presque stable et la résistance du dipôle est pratiquement constante.

Il n'est donc pas nécessaire d'augmenter la largeur du cadre l au delà de la profondeur du boîtier blindé 11, que nous avons fixée à 17 mm de façon à satisfaire une bonne compensation de l'affaiblissement du niveau dû à l'intégration du récepteur 1 en boîtier blindé 11, c'est à dire un ΔL proche de 41% et une résistance de source R assez faible et de l'ordre de 2,5 KΩ en couplage direct.

Il est possible de réduire de 75% la résistance du dipôle, au prix d'un affaiblissement de 6 dB du niveau relevé au bornes du dipôle, par un couplage capacitif selon la figure 5. Compte tenu de la résistance des 5 varicaps 22 utilisées pour l'accord, on constate que la résistance de l'antenne 2 vue par le récepteur 1 est voisine de 500Ω à 87,5 MHz, 98 MHz et 108 MHz.

L'invention vise aussi à décorréler la taille de l'antenne 2 de celle du boîtier blindé 11. On propose 10 d'introduire une boucle en court-circuit 16 qui est vue par l'antenne 2 comme le plan de masse du boîtier blindé 11. Cette boucle en court circuit 16 est avantageusement constituée d'un film métallique. Elle simule la présence 15 d'un boîtier blindé qui aurait pour dimensions le cadre de la boucle 16 selon sa section et la largeur du film la constituant selon ses bords.

Avantageusement le film de la boucle en court circuit est autocollant et apposé au moins en partie sur la deuxième région périphérique 32 du coffret de protection 20 3. il est isolé de la bande 21 de l'antenne 2 disposée sur la première région périphérique 31 ou à l'intérieur du bord périphérique 35 du coffret de protection 3.

La largeur du film métallique constituant la boucle en court-circuit est inférieure ou égale à la largeur de la 25 bande 21 de l'antenne 2.

Le récepteur ainsi défini répond favorablement à une sensibilité fixée par les constructeurs à $35 \text{ dB}\mu\text{V/m}$ pour un taux de 80% des messages reçus, le champ émis ayant une amplitude de $50,17 \text{ mV/m}$.

Les dimensions de l'antenne 2 ne sont pas contraintes. Le poids de l'antenne, de l'ordre de 2g, est réduit de façon considérable par rapport à l'art antérieur, selon lequel les antennes pesaient rarement 5 moins de 60g.

Le coût d'industrialisation de cette technique est faible. Elle ne met en oeuvre qu'un film de cuivre 21 et des diodes à capacités variables "Varicaps" 22.

L'antenne 2 n'est pas fragile.

10 La bande passante n'est pas dégradée par rapport à l'art antérieur.

En outre, l'antenne n'est pas influencée par l'environnement auquel elle est soumise.

◆ ◆ ◆

REVENDICATIONS:

1. Dispositif émetteur récepteur comportant une antenne (2), un émetteur récepteur (1), logé dans un boîtier blindé (11), et un coffret de protection (3) contenant ladite antenne (2) et ledit boîtier blindé (11), ledit dispositif, le boîtier (11) et le coffret (3) comportant chacun une face de préhension (13, 33), applicable contre le corps humain, une face d'interface (14, 34), sensiblement parallèle, et un bord périphérique (15, 35) entre ces deux faces (13, *14 et 33, 34), ledit dispositif étant caractérisé en ce que l'antenne (2) présente une projection orthogonale linéique sur un plan parallèle à la face de préhension (13, 33).
5
- 15 2. Dispositif émetteur récepteur selon la revendication 1, caractérisé en ce que l'antenne (2) est une antenne résonnante et en ce que la boucle résonnante est constituée d'une bande (21) de film métallique.
- 20 3. Dispositif émetteur récepteur selon la revendication 2, caractérisé en ce que la bande (21) a une épaisseur (e) et une largeur (l) constantes.
- 25 4. Dispositif émetteur récepteur selon la revendication 3, caractérisé en ce que la bande (21) est un film câblé en cuivre et en ce que l'épaisseur (e) du film est de 100 µm.
5. Dispositif émetteur récepteur selon l'une des revendications 2 à 4, caractérisé en ce que la bande (21) encadre le bord périphérique (15) du boîtier blindé (11).

6. Dispositif émetteur récepteur selon la revendication 5, caractérisé en ce qu'au moins une région de la bande (21) est apposée sur une première région périphérique (31) du coffret de protection (3), ladite première région périphérique (31) encadrant le bord périphérique (15) du boîtier blindé (11) et étant confondue avec ou encadrée par le bord périphérique (35) du coffret de protection (3).
- 5
7. Dispositif émetteur récepteur selon la revendication 6, caractérisé en ce que la bande (21) est autocollante dans sa région apposée.
- 10
8. Dispositif émetteur récepteur selon l'une des revendications 2 à 7, caractérisé en ce que la largeur (1) de la bande (21) est égale à la profondeur du boîtier blindé (11) en chaque point du bord périphérique (15).
- 15
- 15
9. Dispositif émetteur récepteur selon l'une des revendications 2 à 8, caractérisé en ce qu'une boucle en court circuit (16) encadre le bord périphérique (15) du boîtier blindé (11), dans l'espace entre ledit bord périphérique (15) et la bande (21) formant l'antenne (2).
- 20
10. Dispositif émetteur récepteur selon la revendication 9, caractérisé en ce que la boucle en court circuit (16) est constituée d'un film métallique.
- 25
11. Dispositif émetteur récepteur selon l'une des revendications 9 à 10, caractérisé en ce qu'au moins une région de la boucle en court circuit (16) est apposée sur une deuxième région périphérique (32) du coffret de protection (3), ladite deuxième région
- 30

périphérique (32) encadrant le bord périphérique (15) du boîtier blindé (11) et étant encadrée par ladite première région périphérique (31) dont elle est isolée.

12. Dispositif émetteur récepteur selon la revendication 5 11, caractérisé en ce que la largeur du film métallique constituant la boucle en court circuit (16) est inférieure ou égale à la largeur (1) de la bande (21).

13. Dispositif émetteur récepteur selon l'une des 10 revendications 2 à 12, caractérisé en ce que des diodes à capacité variable " varicaps " (22) sont branchées aux bornes de la boucle résonnante constituée par la bande (21).

14. Antenne résonnante (2) destinée à un dispositif émetteur récepteur selon l'une des revendications 1 à 15 13, caractérisée en ce que la boucle résonnante est constituée par une bande (21) de film métallique aux bornes de laquelle sont branchées des diodes à capacités variables (22).

* * *

1/4

FIG_1

FIG_2

2/4

FIG_3

FIG_4

3/4

FIG_5

FIG_6

RAPPORT DE RECHERCHE
PRELIMINAIRE

établi sur la base des dernières revendications
déposées avant le commencement de la recherche

2724274

N° d'enregistrement
nationalFA 504875
FR 9410715

DOCUMENTS CONSIDERES COMME PERTINENTS		Revendications concerndes de la demande examinée
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	
A	EP-A-0 538 485 (SEIKO EPSON) * colonne 12, ligne 39 - colonne 13, ligne 23 * * colonne 16, ligne 21 - colonne 18, ligne 20; figures 14-26 * ---	1-14
A	IEEE TRANSACTIONS ON BROADCASTING, vol. 34, no.2, Juin 1988 NEW YORK US, pages 159-166, VILLARD, JR. 'INFEERENCE-REDUCING ANTENNAS FOR SHORTWAVE BROADCAST LISTENERS' * page 162 - page 163; figure 2 * ---	1-12
A	EP-A-0 122 485 (NEC) * revendications 1-5; figures 1-11 * ---	1
A	PATENT ABSTRACTS OF JAPAN vol. 5 no. 78 (E-058) ,22 Mai 1981 & JP-A-56 027514 (PIONEER ELECTRONIC) * abrégé * -----	1,13
		DOMAINES TECHNIQUES RECHERCHES (Int. Cl. 6)
		H01Q
1	Date d'achèvement de la recherche 22 Mars 1995	Examinateur Angrabeit, F
EPO FORM LES 0002 (POCUL)	CATEGORIE DES DOCUMENTS CITES	T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons A : membre de la même famille, document correspondant
	X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : pertinent à l'encontre d'un moins une revendication ou arrière-plan technologique général O : divulgation non écrite P : document intercalaire	