Devre Teorisi Deneyleri 3. Deney

Çevre Akımları ve Düğüm Gerilimleri

1. Çevre Akımları Yöntemi ile Devre Çözümü (Mesh Current Analysis):

- 1. Şekil 6'daki devreye göre, Göz Akım Metodu (mesh current method)'nu kullanarak aşağıdaki belirtilen akımları hesaplayınız:
 - Göz akımları Ia, Ib, ve Ic.
 - I1, I2, I3, I4 ve I5 akımlarını (Ia, Ib, ve Ic akımlarını kullanarak).
- 2. Şekil 6'da verilen devreyi aşağıdaki devre parametrelerini kullanarak simülasyon aracında gerçekleyiniz ve elde edilen ölçümlerle Tablo 5'i doldurunuz.

Devre parametreleri: R1 = 220
$$\Omega$$
, R2 = 220 Ω , R3 = 100 Ω , R4 = 100 Ω , R5 = 470 Ω , V1=5v

Tablo 5

٠	I ₁ (mA)	I ₂ (mA)	I ₃ (mA)	I ₄ (mA)	I ₅ (mA)
	8,45	16,2	1,85	14,4	10,3

2. Düğüm Gerilimleri Yöntemi ile Devre Çözümü

- 1. Sekil 7'deki devreye göre, Düğüm Gerilimleri Yöntemini kullanarak tüm kollardaki akım değerlerini hesaplayınız.
- 2. Şekil 7'de verilen devreyi aşağıdaki devre parametrelerini kullanarak simülasyon aracında gerçekleyiniz ve elde edilen ölçümlerle Tablo 6'yı doldurunuz.

Devre parametreleri: R1 = 6Ω , R2 = 4Ω , R3 = 12Ω , V1=24v, V2 = 8v

Tablo 6						
I ₁ (A)	I ₂ (A)	I ₃ (A)				

