VERMES MIKLÓS Fizikaversenv 2020. február 28. II. forduló

Vermes Miklós (1905-1990)Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

I feladat

Az $m_1 = 1$ kg és $m_2 = 3$ kg tömegű testeket egy nyújthatatlan, elhanyagolható tömegű, ideális csigán átvetett fonal két végére rögzítjük, amint az ábrán látható. A testek kezdetben azonos szinten találhatók. Ismerve a testek és a felület közötti csúszó súrlódási együtthatót $\mu = 0,1$, valamint a lejtők hajlásszögéit $\alpha_1 = 53,13^0 \text{ (sin}\alpha_1 = 0.8) \text{ és } \alpha_2 = 36,87^0 \text{ (sin}\alpha_2 = 0.6),$ határozzátok meg:

a) a rendszer mozgásirányát, valamint a csiga tengelyére ható erőt

5p

- b) mennyi idő múlva lesz a testek közötti szintkülönbség $\Delta h = 1 m$, feltételezve, hogy a lejtők és a fonal hossza megfelelően nagy **2p**
- c) az m2 változtatható tömeg azon értékeit amelyre a rendszer szabadon engedése után nyugalomban marad. **3p**

II feladat

Egy játszótéren két kisvasút, két koncentrikus kört képez, melyeknek sugarai r = 20 m és R = 30 m. A kisebb sugarú vasúton $l_1 = 10$ m hosszúságú kisvonat $v_1 = 9$ km/h sebességgel halad, míg a nagyobb sugarú vasúton, nagyobb gyerekek számára, $l_2 = 20$ m hosszúságú kisvonat $v_2 = 18$ km/h sebességgel halad. Tudva hogy a vonatok ellentétes irányba mozognak a körökön, határozzátok meg:

- a) a kör középpontjában található irányító mennyi ideig látja a két vonatot egymás mellett elhaladni (a mozdonyok találkozásától az utolsó vagonok egymás mellett történő elhaladásáig)
- b) az első találkozástól a mozdonyvezetők mekkora időt mérnek a következő találkozásig, és az irányító hány fokos szöggel kell elforduljon, hogy maga előtt láthassa az újabb találkozást, az egyik, vagy a másik vonat menetirányába.
- c) az első találkozástól kezdve hány kört ír le mindkét vonat míg mozdonyaik újra ugyanott találkoznak! **3p**

III feladat

Két gyerek egymástól d = 4.8 m távolságra található egy teniszpályán. Az első gyerek a vízszinteshez képest $\alpha = 36.87^{\circ}$ (sin $\alpha = 0.6$, cos $\alpha = 0.8$) szög alatt dob el egy teniszlabdát $v_0 = 10$ m/s sebességgel a második gyerek felé. A második gyerek a teniszlabdát v = 10 m/s sebességgel dobja el függőlegesen felfele. A dobások a talaj szintjéről történnek.

- a) Mekkora időkülönbséggel kell eldobják a gyerekek a labdát ugyanabban a síkban, hogy ezek találkozzanak?
- b) Mekkora a labdák egymáshoz viszonyított (relatív) sebessége a találkozás pillanatában? **3p**
- c) Feltételezve, hogy a labdák földre érve nem gurulnak / pattannak el, és a két mozgás, két egymáshoz nagyon közeli, egymással párhuzamos, különböző síkban történik, számítsátok ki a két labda közötti távolságot amikor a ferdén dobott labda a talajra ér! **3p**