소음 환경의 공장 상황에서 베어링 결함 검사를 위한 SSA-SL 트랜스포머에 관한 연구

May 18, 2022

학번: 2020712755

학과:스마트팩토리 융합학과

이름 : 이 서영

Paperworks

- 한국통신학회 추계학술발표대회, pp. 144-145, 2021년 11월 ;클래스 편향된 전류 및 진동 데이터를 위한 강건한 특성인자 추출기법
- => 본격적으로 기계시설물 이상감지에 사용하는 진동 데이터에 대한 연구를 시작함
- The 5th International Conference on Emerging Data and Industry 4.0 (EDI40), Volume 201, pp. 519-526, March 22 25, 2022, Porto, Portugal ;Two Phases Anomaly Detection Based on Clustering and Visualization for Plastic Molding Injection Data
- ⇒ 기계시설물 이상감지 및 클래스편향에 관한 연구를 진행함, 특히 문제를 해결하는 AI와 전처리 프레임워크에 대해 심도있게 연구함
- MDPI Electronics Journal (Special Issue: Advances in Fault Dectection/Diagnosis of Electical Power Devices), 11(9), 1504, 7 May 2022; SSA-SLTransformer Bearing Fault Diagnosis under Noisy Factory Environments

Contents

- Introduction
- Related Work
- SSA-SLTransformer 제안
- Experiments and Results
- Conclusion

1. Introduction

기존연구의 한계

-베어링 결함 감지 연구들 중 최신 경향의 인공지능 신경망 모델을 적용한 연구가 부족함

-베어링 결함감지 연구에 적용하는 전처리 기법에 대한 연구가 부족함, 특히 노이즈 관련된 연구가 전무했음

-공장의 다양한 상황을 가정하거나 실제로 실험한 연구가 부족함

Contributions

- -베어링 결함 감지 연구들 중 최신 경향의 인공지능 신경망 모델을 적용한 연구가 부족함
- => 최신 경향을 반영하여 트랜스포머 모델을 연구에 적용함
- -베어링 결함감지 연구에 적용하는 전처리 기법에 대한 연구가 부족함, 특히 노이즈 관련된 연구가 전무했음
- => SSA 알고리즘을 재조명하고, 노이즈에 강건함을 보여줌
- -공장의 다양한 상황을 가정하거나 실제로 실험한 연구가 부족함
- => 베어링 데이터에 노이즈를 섞어서, 공장의 혼잡한 상황을 가정함

2. Related Work

베어링 결함 진단

- 기존의 선행연구는 통계적 방법론과 머신러닝적 접근법이 다수를 이뤘음
- 딥러닝 도입 이후, 베어링 결함 진단과 딥러닝 접근의 수요가 급격히 상승함
- 그 후 RNN, CNN, Autoencoder 계열 인공지능 모델이 주류를 이루었음
- Class imbalanced, few-shot 문제 등 다양한 방법으로 베어링 결함 진단 선행연구가 있었음

출처: Hoang, Duy-Tang, and Hee-Jun Kang. "A survey on deep learning based bearing fault diagnosis." Neurocomputing 335 (2019): 327-335.

Singular Spectrum Analysis

출처: Rodrigues, Paulo Canas, et al. "The decomposition and forecasting of mutual investment funds using singular spectrum analysis." Entropy 22.1 (2020): 83.

LSTM

출처 : Greff, Klaus, et al. "LSTM: A search space odyssey." *IEEE transactions on neural networks and learning systems* 28.10 (2016): 2222-2232.

Vanilla Transformer

출처: Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).

SSA-SLTransformer 제안

아키텍쳐

(b)SLTransformer Phase

MDPI Electronics Journal (Special Issue: Advances in Fault Dectection/Diagnosis of Electical Power Devices), 11(9), 1504, 7 May 2022 ;SSA-SLTransformer Bearing Fault Diagnosis under Noisy Factory Environments

세부 아키텍쳐 설명

- 기존의 Feed Forward를 (a)로 구성함
- Activation Function을 Swish로 선택함

출처: Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." *International conference on machine learning*. PMLR, 2015.

SSA-SLTransformer 최적화 절차

Experiment and Results

실험 환경

Hardware Environment	Software Environment
Intel core I7 - 9750h CPU @ 2.60 GHz 2.59 GHz 32.0 Gb ram, Nvidia GeForce GTX in 3080.	Python 3.8 Tensorflow==2.2.0 Numpy==1.19.2 Pandas==0.24.2 Matplotlib==3.0.2

데이터 셋 설명

- Case Westen Reserve University (CWRU) 베어링 데이터 셋은 베어링 전문 연구를 위해 수집된 베어링 데이터 셋임
- (a)는 베어링 데이터 셋이 수집된 시뮬레이터, (b)는 시뮬레이터의 단면임
- 진동 신호는 16채널 DAT 레코더를 사용하여 수집되고 Matlab 환경에서 후처리 되었음

Experiments and Results

 EDM이라는 기계시설물을 통해 시뮬레이터에 강제적인 압력을 주어 결함을 만들고, 결함 데이터를 수집함

Label	Numbers
Normal	4244
Ball	4860
Inner Race	4862
Outer Race	8529

Train	Test	Validation
60%	20%	20%

Denoise with SSA

- 가우시안 백색 노이즈 데이터 시각화 자료
- Inner Race 결함 중 하나의 예시, Original Data 시각화 자료

- 노이즈와 Original Data 를 합친 시각화 자료

- SSA가 노이즈를 분해하고 데이터를 재구성한 결과물

Denoise with SSA (L = 200)

Denoise with SSA (L = 20)

(1) Denoise with SSA

L값이 충분하지 않아 노이즈가 잘 분해되지 않음을 확인

Denoise with SSA (L = 100)

(1) Denoise with SSA

L=20 보다 준수한 성능으로 노이즈를 분해함을 확인 그러나 원본 노이즈에 비해 부족함을 확인

Swish activation function

- BERT 논문에서 저자는 ReLU대신 GeLU를 사용하는 이유로, underbound가 깊기때문에 gradient vanishing이 덜 생기는 것이라 주장함
- Text Generation 분야보다 시간적인 특성이 더 중요한 시계열 데이터이므로 좀 더 gradient vanishin이 덜할 것이라 예상되는 Swish를 제시하여 time series 속성 feature를 잘 전달할 수 있을것이라 기대함

Metrics

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F1 - score = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Results (첫번째 실험)

- 첫번째 실험은, 노이즈가 섞이지 않은 CWRU 데이터에 인공지능 모델을 학습함
- 높은 성능이 나올 것으로 예상하고 예상한 결과를 내놓음
- 그러나 이는 실제 공장 상황에서 비현실적인 상황

Results (첫번째 실험)

Model	SVM	CNN	LSTM	Transformer	SLTransformer
Accuracy	64.32	85.69	90.15	93.47	95.54
F1-score	57.44	84.44	89.72	92.31	94.47

Table 1 – 첫번째 실험 Accuracy와 F1-score 표.

- 첫번째 실험은, 노이즈가 섞이지 않은 CWRU 데이터에 인공지능 모델을 학습함
- 높은 성능이 나올 것으로 예상하고 예상한 결과를 내놓음
- 그러나 이는 실제 공장 상황에서 비현실적인 상황

Results (두번째 실험)

Results (두번째 실험)

Model	-4dB	-2dB	0dB
SVM	42.95	57.43	64.32
CNN	53.21	75.42	85.69
LSTM	55.76	79.21	90.15
Transformer	65.00	83.01	93.47
SLTransformer	69.89	85.40	95.54

Table 2 – SSA 알고리즘 미적용 Accuracy 표.

Model	-4dB	-2dB	0dB
SVM	54.79	55.44	57.44
CNN	59.44	61.15	84.44
LSTM	61.55	64.31	89.72
Transformer	64.16	68.51	92.31
SLTransformer	68.13	74.10	94.47

Table 3 – SSA 알고리즘 미적용 F1-score 표.

- 전체적으로 성능이 하락했음을 확인
- 노이즈에 취약함을 확인

Results (세번째 실험)

- · 세번째 실험은 노이즈가 섞인 데이터를에 SSA 전처리를 진행함
- SSA를 거치고 나서 준수한 성능을 낼 것을 예상

Results (세번째 실험)

Model	-4dB	-2dB	0dB
SVM	50.10	60.98	65.33
CNN	67.00	80.95	86.88
LSTM	81.10	85.97	91.25
Transformer	83.55	87.42	94.17
SLTransformer	85.55	89.95	96.55

Table 4 – SSA 알고리즘 적용 Accuracy 표.

Model	-4dB	-2dB	0dB
SVM	49.98	59.15	64.17
CNN	65.43	79.95	85.79
LSTM	77.42	82.44	90.01
Transformer	82.11	85.17	93.15
SLTransformer	84.00	86.37	95.33

Table 5 – SSA 알고리즘 적용 F1-score 표.

- 노이즈를 잘 해결했음을 확인

Sungkyunkwan University States 1398

Conclusion

연구결과 & 향후 연구 계획

연구결과:

- -최신 경향을 반영하여 트랜스포머 모델을 연구에 적용함
- -SSA 알고리즘을 재조명하고, 노이즈에 강건함을 보여줌
- -베어링 데이터에 노이즈를 섞어서, 공장의 혼잡한 상황을 가정함
- -3건의 실험을 진행, 일반 CWRU 데이터셋에 SLTransformer가 준수한 성능을 내는 것을 확인
- -두번째 실험에서 인공지능 모델이 노이즈에 취약함을 확인
- -세번째 실험에서 SSA가 노이즈 문제를 해결함을 확인

향후 연구 계획:

본 연구의 목적은 실제 공장환경을 가정한 연구, 실제 공장에서 센서로 데이터를 수집 후 본 프레임워크가 잘 작동하는지 확인하는 것이 목표

지금까지 발표를 들어주셔서 감사합니다.

