- 4.01 (a) Let X have the discrete topology and Y be an arbitrary topological space. Show that every function $f: X \to Y$ is continuous.
 - (b) Let Y have the trivial topology and X be an arbitrary topological space. Show that every function $f: X \to Y$ is continuous.
- 4.02 Prove Theorem 4.8 : Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set $C \subset Y$.
- 4.09 Let $f,g:X\to Y$ be continuous functions. Assume that Y is Hausdorff and that there exists a dense subset D of X such that f(x)=g(x) for all $x\in D$. Prove that f(x)=g(x) for all $x\in X$.
- 4.13 (a) Let $f_1: X \to Y_1$ and $f_2: X \to Y_2$ be continuous functions. Show that $h: X \to Y_1 \times Y_2$, defined by $h(x) = (f_1(x), f_2(x))$, is continuous as well.
 - (b) Extend the result of (a) to n functions, for n > 2
- 4.14 Show that the addition function, $f: \mathbb{R}^2 \to \mathbb{R}$, given by f(x,y) = x+y, is a continuous function.
- 4.16 Use Example 4.6, Exercises 4.13 and 4.14, and Theorem 4.9 to show that the sum and product of a finite number of continuous functions are also continuous functions. That is, assuming that $f_1, \ldots, f_m : \mathbb{R} \to \mathbb{R}$ are continuous, prove that $S : \mathbb{R} \to \mathbb{R}$ and $P : \mathbb{R} \to \mathbb{R}$, defined by $S(x) = f_1(x) + \ldots + f_m(x)$ and $P(x) = f_1(x)f_2(x) \ldots f_m(x)$, are continuous.
- 4.17 Use Exercise 4.16 to show that every polynomial function $p: \mathbb{R} \to \mathbb{R}$, given by $p(x) = a_n x^n + \ldots + a_1 x + a_0$, is continuous.
- 4.22 Consider all of the possible topologies on the two-point set $X = \{a, b\}$. Indicate which ones are homeomorphic.
- 4.23 Find three different topologies on the three-point set $X = \{a, b, c\}$, each consisting of five open sets (including X and \varnothing), such that two of the topologies are homeomorphic to each other, but the third is not homeomorphic to the other two.
- 4.24 Prove that a bijection $f: X \to Y$ is a homeomorphism if and only if f and f^{-1} map closed sets to closed sets.
- 4.28 Prove each of the following statements, and then use them to show that topological equivalence is an equivalence relation on the collection of all topological spaces:
 - (a) The function $id: X \to X$, defined by id(x) = x, is a homeomorphism.
 - (b) If $f: X \to Y$ is a homeomorphism, then so is $f^{-1}: Y \to X$

- (c) If $f:X\to Y$ and $g:Y\to Z$ are homeomorphisms, then so is the composition $g\circ f:X\to Z$
- 4.29 Show that $\mathbb{R}^2 \{O\}$ in the standard topology is homeomorphic to $S^1 \times \mathbb{R}$.
- 4.32 Show that homeomorphism preserves interior, closure, and boundary as indicated in the following implications:
 - (a) If $f: X \to Y$ is a homeomorphism, then $f(\operatorname{Int}(A)) = \operatorname{Int}(f(A))$ for every $A \subset X$.
 - (b) If $f: X \to Y$ is a homeomorphism, then f(Cl(A)) = Cl(f(A)) for every $A \subset X$.
 - (c) If $f: X \to Y$ is a homeomorphism, then $f(\partial(A)) = \partial(f(A))$ for every $A \subset X$.
- 4.33 Let $X \times Y$ be partitioned into subsets of the form $X \times \{y\}$ for all y in Y. If we let $(X \times Y)^*$ denote the collection of sets in the partition, show that $(X \times Y)^*$ with the resulting quotient topology is homeomorphic to Y.

Summary