Introducción a Electrónica Aplicada I

Guillermo Riva, Fernando Cagnolo, Guillermo Gilberto, Martin Guido

21 de Marzo 2024

Contenido

- Evolución de la electrónica
- Tipos de señales: analógicas y digitales
- Sistemas electrónicos
- Clasificación de sistemas electrónicos
- Sensores y actuadores
- Especificaciones

Evolución de la Electrónica

- 1904 Invención del triodo de vacío
- 1906 Desarrollo del diodo de punto de contacto de estado sólido
- 1907 a 1927 Desarrollo de los primeros circuitos de radio con diodos y triodos
- 1920 Receptor superheterodino de Armstrong
- 1925 Demostración de la televisión.
- 1925 Desarrollo del dispositivo de efecto de campo
- 1933 Modulación de FM de Armstrong
- 1940 Desarrollo del radar
- 1947 Invención del transistor de silicio
- 1950 Demostración de la televisión color
- 1952 Invención del transistor unipolar de efecto de campo
- 1958 Desarrollo del primer circuito integrado

Señales Electrónicas

 Analógicas: intervalo continuo de amplitudes en función del tiempo

 Digitales: sólo valores discretos de amplitud en función del tiempo, con niveles lógicos de 0 (bajo) y 1 (alto)

Tipos de Fuente de Señal

Fuentes de corriente y de tensión

Fig. 1.1 Dos representaciones alternativas de una fuente de señales: (a) la forma de Thévenin y (b) la forma de Norton.

En el primer caso Rs es muy baja, y en el segundo caso Rs es muy elevada

Notación

Definición	Cantidad	Subindice	Ejemplo
Valor de cd de la señal	Mayúscula	Mayúscula	$V_{ m D}$ $v_{ m d}$ $v_{ m D}$ $V_{ m d}$
Valor de ca de la señal	Minúscula	Minúscula	
Valor instantáneo total de la señal (cd y ca)	Minúscula	Mayúscula	
Variable compleja, fasor o valor rms de la señal	Mayúscula	Minúscula	

Sistemas Electrónicos

Arreglo de dispositivos y componentes electrónicos que tiene un conjunto definido de entradas y salidas.

En el receptor de radio la antena funciona como un sensor.

Ambos sistemas toman la señal de un sensor, la procesan, y producen una salida que excita a un actuador.

Por lo general, la salida de un sensor es analógica y de muy bajo nivel y la entrada de un actuador también

(b) Instrumento indicador de temperatura

Clasificación de Sistemas Electrónicos

La forma como se procesa una señal en un sistema electrónico depende de la naturaleza de las señales de entrada, de los requerimientos de salida de los actuadores y de los requerimientos globales de funcionamiento.

Existen sistemas electrónicos:

- Comunicaciones
- Biomédicos
- Instrumentación
- Control

Sensores y Actuadores

- Sensores: producen una salida eléctrica en función de una magnitud física
 - Micrófonos
 - Potenciómetros
 - Fototransistores
 - Termistores y termopares para medir temperatura

- Actuadores: producen una salida no eléctrica a partir de una señal eléctrica
 - Calentadores resistivos
 - Diodos emisores de luz
 - Solenoides
 - Motores eléctricos
 - Parlantes
 - Transductores ultrasónicos

Un sistema electrónico se diseña para que realice ciertas funciones. El **desempeño** se evalúa en función de la *tensión, corriente, impedancia,* y *potencia* en la entrada y salida. Los **parámetros de desempeño** son:

 Respuesta transitoria: señal de salida que genera un circuito en función de la señal de entrada. Se especifican los tiempos de retraso td, de levantamiento tr, de encendido tenc, de caída tf y de apagado tap.

• <u>Distorsión</u>: la señal se distorsiona en amplitud, frecuencia o fase mientras pasa por el sistema electrónico.

Recorte t (en s) t (en s) (a) Onda senoidal (b) Recorte Distorsión armónica Distorsión de cruce t (en s) t (en s) (c) Distorsión de cruce (d) Distorsión armónica

• Intervalo de frecuencias o ancho de banda: varía según la aplicación.

Tipo de señal	Ancho de banda
Señales sísmicas	1 a 200 Hz
Electrocardiogramas	0.05 a 100 Hz
Señales de audio	20 Hz a 15 kHz
Señales de video	cd a 4.2 MHz
Señales de radio am	540 a 1600 kHz
Señales de radar	1 a 100 MHz
Señales de televisión VHF	54 a 60 MHz
Señales de radio fm	88 a 806 MHz
Señales de televisión UHF	470 a 806 MHz
Señales de teléfono celular	824 a 891.5 MHz
Señales de televisión vía satélite	3.7 a 4.2 GHz
Señales de comunicación por microondas	1 a 50 GHz

• <u>Especificaciones de CD y de pequeña señal</u>: esto incluye la tensión de la fuente de alimentación de CC, las corrientes de polarización, la disipación de potencia, la ganancia de tensión, entre otros.

Referencias

• Rashid. Circuitos Microelectrónicos: Análisis y Diseño. Thomson Learning, 2000

Sedra, Smith. Circuitos Microelectrónicos. 4º Ed, Oxford University Press, 2002

Datos de Contacto

Ing. Guillermo Riva

griva@frc.utn.edu.ar

Ing. Fernando Cagnolo

fjcagnolo@hotmail.com

Ing. Guillermo Gilberto

<u>lguillermo.gilberto@gmail.com</u>

Ing. Martin Guido

rmartin.guido@gmail.com