Autômatos Finitos NÃO-DETERMINÍSTICOS

- 1) Construa AFN's para as seguintes linguagens sobre {a,b,c}:
 - a) O conjunto de palavras com, no mínimo, 1 ocorrência de abc.
 - b) O conjunto de palavras com, no mínimo, 2 ocorrências de abc.
 - c) $\{w \in \{0,1\}^* \mid |w| \ge 4 \text{ e o penúltimo símbolo é } 1\}$
 - d) $\{w \in \{0,1\}^* \mid 00 \text{ não aparece nos últimos 4 símbolos de w}\}$
- 2) Dada as linguagens, apresente os AFDs. Caso não seja possível desenvolver AFD ou AFND justifique sua resposta:
 - a) $L = \Sigma^* \text{ para } \Sigma = \{a,b\}$
 - b) $L = a para \Sigma = \{a,b\}$
 - c) $L = aa para \Sigma = \{a,b\}$
 - d) $L = a^* para \Sigma = \{a,b\}$
 - e) $L = \{ \} \text{ para } \Sigma = \{a,b\}$
 - f) $L = \{a^nb^n \mid n \ge 0\}$ para $\Sigma = \{a,b\}$
 - g) Conjunto de todas as palavras que não contém aa sobre o alfabeto $\Sigma = \{a,b,c\}$
 - h) Conjunto de todas as palavras sobre $\Sigma = \{a,b,c\}$ onde cada b é seguido de pelo menos um c
 - i) Conjunto de strings sobre $\Sigma = \{a,b\}$ onde o número de a é divisível por 3
 - j) Conjunto de strings sobre $\Sigma = \{0,1\}$ e w tem tamanho ímpar
 - k) $L = \{a^nb^{2m} \mid n>0 \text{ e m} >=0\}$