

How to crack the genomes of non-model invertebrates: lessons from coral and rotifer genome projects

Nadège Guiglielmoni

Assemblies of non-vertebrate genomes

Non-vertebrate animals assemblies

Assemblies of non-vertebrate genomes

Non-vertebrate animals assemblies

Two challenging genome assemblies

Two challenging genomes:

- **the coral** *Astrangia poculata*: an undersized assembly initial assembly: 50% of the expected size
- **the rotifer** *Adineta vaga*: an oversized assembly initial assembly: up to 160% of the expected size

Haploid genome size estimation: 453 Mb

Assembly of short reads + CHICAGO + Hi-C: 252 Mb

Iliana Baums

Kathryn Stankiewicz

Picture: Cairns S, Kitahara M (2012) An illustrated key to the genera and subgenera of the Recent azooxanthellate Scleractinia (Cnidaria, Anthozoa)

Datasets:

- Illumina reads \rightarrow 430X
- **Nanopore** reads \rightarrow 15X
- **Hi-C** → 721 million pairs

14 scaffolds

455 Mb

BUSCO completeness: 90.4%

Hi-C contact map of Astrangia poculata

	Old assembly	New assembly
Assembly size (Mb)	252	455
# scaffolds	7848	14
BUSCO completeness (%)	60.2	90.4

→ 15X of Nanopore reads resolved regions that were not solved by 430X Illumina

Expected haploid size 102 Mb

Who Needs Sex (or Males) Anyway? Liza Gross, PloS Biology, 2007

Assembly process

Assembly output

→ Strategy 1: choose a better assembler

Assemblers: Canu, Flye, NextDeNovo, Ra, Raven, Shasta, wtdbg2

- → Strategy 2: select longest reads for assembly
- → Strategy 3: removing uncollapsed haplotypes

Tools: HaploMerger2, purge_dups, purge_haplotigs

2 long-read datasets for *Adineta vaga*: **PacBio** 23.5 Gb, 230X

Nanopore 17.5 Gb, 171X

- → Strategy 1: some assemblers are better at collapsing haplotypes (Ra, wtdbg2)
- → Strategy 2: read filtering can improve structure
- → Strategy 3: haplotigs-purging tools work better combined with specific assemblers ex: Flye + purge_dups, wtdbg2 + purge_haplotigs
- → Haplotigs-purging tools can be combined for better results

Example of Hi-C scaffolding with **instaGRAAL**

6 chromosome-level scaffolds

Longest reads + Ra

Perspectives

→ Long reads can efficiently build structurally correct haploid assemblies

Perspectives

- → Long reads can efficiently build structurally correct haploid assemblies
- → Hi-C scaffolding is a promising technique to obtain chromosome-level scaffolds for non-model invertebrates

Perspectives

- → Long reads can efficiently build structurally correct haploid assemblies
- → Hi-C scaffolding is a promising technique to obtain chromosome-level scaffolds for non-model invertebrates
- → Strategies applied to other genomes projects in IGNITE:
 - the mollusk *Arion vulgaris*, project of Zeyuan Chen
 - 26 chromosome-level scaffolds
 - the chaetognath Flaccisagitta enflata
 - 9 chromosome-level scaffolds

Acknowledgements

<u>Université libre de Bruxelles</u>

Jean-François Flot

Karine van Doninck

Alessandro Derzelle

Antoine Houtain

Paul Simion

PennState University

Iliana Baums

Kathryn Stankiewicz

Ludwig Maximilian Universität

Ramón E. Rivera-Vicéns

Thank you for your attention! Questions?

https://github.com/nadegeguiglielmoni/presentations