Neutron-nuclear Interactions Was 2nd Edition, Section 1

K.G. Field^{1,a},

^a kgfield@umich.edu

¹University of Michigan

Our last lecture we talked about this:

HT-9, no swelling

316-Ti stainless, swelling

Body centered cubic (BCC)

Face centered cubic (BCC)

Units cells are the building blocks of a material

Atoms in a material (periodic arrangement -> lattice)

 All of radiation damage boils down to a common step: collisions between energetic particles and atoms composing a material

Incident
Particle with
Energy

Atoms in a material (periodic arrangement -> lattice)

 All of radiation damage boils down to a common step: collisions between energetic particles and atoms composing a material

Source: T.R. Allen

 All of radiation damage boils down to a common step: collisions between energetic particles and atoms composing a material

Source: T.R. Allen

All of radiation damage boils down to a common step:

collisions between energetic particles and atoms composing a

material

All of radiation damage boils down to a common step:
 collisions between energetic particles and atoms composing a material

Defects
produced from
displacements

Importance of displacement versus fluence for this class

Comparison of yield stress change in 316 stainless steel irradiated in different reactors

Flow chart for radiation damage

Flow chart for radiation damage

Flow chart for radiation damage

Displacement of Atoms in Detail

Part I

Displacement of Atoms

(Radiation Damage Event) Displacement of atoms is primarily evaluated as the <u>radiation</u> <u>damage event</u> which is composed of the following sequence of events:

- 1. The <u>interaction</u> of an energetic particle with a lattice atom
- 2. The <u>transfer of kinetic energy</u> to the lattice atom resulting in the <u>primary knock-on atom</u> (PKA)
- 3. The <u>displacement</u> of the lattice atom from it's lattice site
- 4. The <u>passage</u> of the displaced atom through the structure and the potential accompanying creation of additional knock-on atoms
- 5. The <u>production of a displacement cascade</u>
- 6. The termination of the PKA as an interstitial in the structure

 $\sim 10^{-11} \text{ s}$

Displacement of Atoms in Detail

Part I

Displacement of Atoms

(Radiation Damage Event) Displacement of atoms is damage event which is of events:

Next two lectures

rated as the <u>radiation</u> following sequence

- 1. The <u>interaction</u> or an energetic particle with a lattice atom
- 2. The <u>transfer of kinetic energy</u> to the lattice atom resulting in the <u>primary knock-on atom</u> (PKA)
- 3. The <u>displacement</u> of the lattice atom from it's lattice site
- 4. The <u>passage</u> of the displaced atom through the structure and the potential accompanying creation of additional knock-on atoms
- 5. The <u>production of a displacement cascade</u>
- 6. The termination of the PKA as an interstitial in the structure

 $\sim 10^{-11} \text{ s}$

Outline

- There are four major interacting particles of interest:
 - 1.
 - 2.
 - 3.
 - 4
- From these, there are different types of collisions to consider:
 - 1.
 - 2.
 - 3.
 - 4

Goal: understand the energy transferred to lattice atoms from these interacting particles and the various collision types

Let's first start with neutrons

- Produced from fission and fusion
- Mass similar to proton
- No charge all damage is due to ballistic (hard-sphere) collisions

Energy dependence of neutron flux in various irradiation environments: ITER (DT fusion), HFIR (light water moderated fission), FFTF (sodium moderated fission), and a commercial PWR (light water moderated fission) Source: R.E. Stollerand L.R. Greenwood, J. Nucl. Mater. 271-272 (1999)

Billiard Ball Relaxation Video

https://www.youtube.com/watch?v=pZqkaJDaz2A

How do we determine energy transfer?

• Situation: Incident neutron – target atom interaction

How do we determine energy transfer?

• Situation: Incident neutron – target atom interaction

$$T = f(E_i, m_1, m_2, \theta)$$

Lecture Break: Haida is a type of raspberry developed by crossing two varieties of raspberries in 1959. Name the two crossed varieties.

A two-body collision in laboratory (L) coordinates

- The momentum of the recoiling (displaced) atom is the parameter that determines the damage and thus our first goal of this class is to calculate it.
 - Thus, we first make several simplifying **assumptions**:
 - We'll only consider the asymptotic values of momentum at distances far from the collision
 - Does not violate quantum laws
 - Assume the collision is elastic
 - Velocities are small enough for nonrelativistic mechanics to apply

Principles of
Conservation of
Momentum and
Energy are all that are
required to calculate!

Important equations to remember:

• Momentum:

$$\rho = mv$$

• Energy:

$$E = \frac{1}{2}mv^2$$

• Cosine Law:

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

• Cosine-sine half angle identity:

$$\sin\frac{\gamma}{2} = \sqrt{\frac{1-\cos\gamma}{2}}$$

A visual of a simple two body collision:

Lab coordinates (ℓ) :

Center of Mass Coordinates (c):

m/M: mass

v/V: velocity

E: energy

θ: scattering angle

 α : recoil angle in Lab coord.

φ: scattering angle in COM coord.

A visual of a simple two body collision:

Lab coordinates:

Center of Mass Coordinates

m/M: mass v/V: velocity

E: energy

θ: scattering angle

 α : recoil angle in L coord.

φ: scattering angle in G coord.

Lab coordinates:

If we assume the CM is stationary in COM coordinates, and v_c' and v_c' are in opposite directions but the same plane, we can use our conversation equations to yield:

Center of Mass Coordinates

Lab coordinates:

Center of Mass Coordinates

And using COM:

We now need to know how to get V_{CM} in the lab system:

In the lab system, the recoil atom is at rest before collision and moving to the left in COM, then V_{CM} must be moving to the right with the same speed as V_c , then:

$${V_l'}^2 = {V_{CM}}^2 + {V_c'}^2 - 2V_{CM}V_c'\cos\phi$$

$$V_{cm} = V_c'$$

$$V_l'^2 = 2V_{CM}^2 \cos \phi$$

$$V_{l'}^{2} = \frac{2T}{M} \qquad V_{CM}^{2} = \frac{2}{m} E_{i} \left(\frac{m}{M+m}\right)^{2}$$

Scattering angle (ϕ)

Example problem:

 Calculate the maximum possible energy transferred to an Fe atom from a 1 MeV neutron assuming binary, elastic collisions

Some more discussion:

- Collisions between similar size masses lead to the greatest PKA energy
- All the energy is transferred if the collision is head-on and m=M

Summary

Defects produced from displacements

• Using:

- 1. Momentum conservation
- $V_c = V_c'$ & $v_c = v_c'$
- 2. Kinetic energy conservation
- 3. Velocities in LAB and COM: $V_{CM} = \left(\frac{m}{M+m}\right)v_{CM}$
- 4. Cosines law: ${V_I'}^2 = V_{CM}^2 + V_{C}^2$

$$V_l^{\prime 2} = V_{CM}^2 + V_c^{\prime 2} - 2V_{CM}V_c^{\prime}cos\phi$$

Example problem:

• Assuming it takes 40 eV to displace an Fe atom from it's lattice site, what is the minimum electron energy necessary to displace the iron atom?

Example problem:

 Assuming it takes 40 eV to displace an Fe atom from it's lattice site, what is the minimum electron energy necessary to displace the iron atom?

