ΠΑΠΑΔΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ 4140

2Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΣΤΗΝ ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ

ΕΡΩΤΗΣΗ 1

Αν τα δεδομένα μας ακολουθούν την εκθετική κατανομή, η πιθανότητα να γίνει η παρατήρηση x_i είναι $p_\lambda(x_i)=f(x_i;\lambda)=\lambda\cdot e^{-\lambda\cdot x_i}$, όπου χρησιμοποιείται η παράμετρος λ ως υποδείκτης για να υποδηλώσουμε την εξάρτηση της πιθανότητας από αυτήν.

Αν οι παρατηρήσεις x_1 , x_2 , ..., x_n είναι ανεξάρτητες μεταξύ τους, τότε η πιθανότητα να πραγματοποιηθούν είναι $\prod_{i=1}^n p_\lambda(x_i) = \prod_{i=1}^n \lambda \cdot e^{-\lambda \cdot x_i}$.

Επειδή αυτή είναι μία έκφραση των δεδομένων x_1 , x_2 , ..., x_n και της παραμέτρου λ και επειδή τα δεδομένα μας είναι γνωστά και ψάχνουμε τιμή για το λ, μπορούμε να δούμε την έκφραση ως συνάρτηση του λ. Ορίζουμε, λοιπόν, τη συνάρτηση πιθανότητας $L(\lambda;x) = \prod_{i=1}^n p_\lambda(x_i)$.

Πρέπει να βρούμε την τιμή του λ για την οποία μεγιστοποιείται η συνάρτηση $L(\lambda;x)$. Αυτή ταυτίζεται με την τιμή του λ για την οποία μεγιστοποιείται η συνάρτηση $LL(\lambda;x)=ln(L(\lambda;x))$, αφού η συνάρτηση ln() είναι αύξουσα, το οποίο σημαίνει ότι οι τιμές που μεγιστοποιούν την ln(f(x)) μεγιστοποιούν και την f(x), $\forall f(x)$. Είναι βολικό να βρούμε την τιμή μέσω της $LL(\lambda;x)$.

$$LL(\lambda;x) = ln(L(\lambda;x)) = ln(\prod_{i=1}^{n} \lambda \cdot e^{-\lambda \cdot x_i}) = \sum_{i=1}^{n} ln(\lambda \cdot e^{-\lambda \cdot x_i}) = \sum_{i=1}^{n} (ln(\lambda) + ln(e^{-\lambda \cdot x_i})) = \sum_{i=1}^{n} (ln(\lambda) - \lambda \cdot x_i)$$

Για να βρούμε το μέγιστο της $LL(\lambda;x)$, πρέπει να βρούμε την τιμή της λ για την

οποία
$$\frac{dLL}{d\lambda} = 0 \Leftrightarrow \sum_{i=1}^{n} (\frac{d}{d\lambda} ln(\lambda) - \frac{d}{d\lambda} (\lambda \cdot x_i)) = 0 \Leftrightarrow \sum_{i=1}^{n} (\frac{1}{\lambda} - x_i) = 0 \Leftrightarrow \frac{n}{\lambda} - (x_1 + x_2 + \ldots + x_n) = 0 \Leftrightarrow \lambda = \frac{n}{x_1 + x_2 + \ldots + x_n}.$$