فرايندهاي تصادفي

نیمسال دوم ۱۴۰۴-۱۴۰۳

مدرس: دكتر امير نجفي

دانشکدهی مهندسی کامپیوتر

تمرین سری پنچم

- مهلت ارسال پاسخ تا ساعت ۲۳:۵۹ روز مشخص شده است.
- همکاری و همفکری شما در انجام تمرین مانعی ندارد اما پاسخ ارسالی هر کس حتما باید توسط خود او نوشته شده باشد.
- در صورت همفکری و یا استفاده از هر منابع خارج درسی، نام همفکران و آدرس منابع مورد استفاده برای حل سوال مورد نظر را ذکر کنید.
 - لطفا تصویری واضح از پاسخ سوالات نظری بارگذاری کنید. در غیر این صورت پاسخ شما تصحیح نخواهد شد.

مسئلهی ۱۰ (۱۰ نمره)

فرض کنید X_1, X_2, \dots, X_n نمونهای تصادفی از توزیع $\mathcal{N}(\,ullet\,, heta)$ باشند. ما میخواهیم از آمار

$$Y = \sum_{i=1}^{n} |X_i|$$

برای برآورد انحراف معیار $\sqrt{\theta}$ استفاده کنیم.

آ) بگذارید W=cY با یک ثابت C. مقدار C را طوری تعیین کنید که W برآوردگری بدون بایاس برای $\sqrt{\theta}$ باشد.

مسئلهی ۲. (۱۰ نمره)

فرض كنيد فضاى پارامتر طبيعي ⊖ متناهي باشد.

- آ) فرض کنید آمارهٔ T(X) این خاصیت را دارد که برای هر توزیع پیشین روی θ ، توزیع پسین θ تنها از طریق T(X) به X وابسته باشد. نشان دهید T(X) کافی است.
- T(X) کافی باشد، آنگاه برای هر توزیع پیشین، توزیع پسین تنها از طریق T(X) کافی باشد، آنگاه برای هر توزیع پیشین، توزیع پسین تنها از طریق X و ابسته خواهد بود.

مسئلهی ۳. (۱۰ نمره)

فرض کنید X_1, \dots, X_n نمونهای از یک جامعه با یکی از چگالیهای زیر باشد. یک آمارهٔ کافی برای θ بیابید.

آ) چگالی بتا:

$$p_{\theta}(x) = \theta x^{\theta-1}, \quad \bullet < x < 1, \ \theta > \bullet.$$

ب) چگالی ویبول:

$$p_{\theta}(x) = \theta a x^{a-1} \exp(-\theta x^a), \quad a > \bullet$$
 ثابت, $x > \bullet, \theta > \bullet$.

ج) چگالی پارتو:

$$p_{ heta}(x) \; = \; rac{ heta \; a^{ heta}}{x^{ heta+1}}, \quad a > \mbox{.}$$
 ثابت $x > a, \; heta > \mbox{.}$

مسئلهی ۴. (۱۰ نمره)

فرض کنید $N(\theta, 1)$ نامعلوم است. بگذارید X_1, X_2, \dots, X_n نامعلوم است. بگذارید $\psi = P_{\theta}(X_1 > \bullet)$.

- آ) برآوردگر درستنمایی بیشینه $\hat{\psi}$ برای ψ را بیابید.
 - س) بگذارید

$$Y_i = \mathbf{1}\{X_i > {}^{\bullet}\} \quad (i = 1, \dots, n), \qquad \tilde{\psi} = \frac{1}{n} \sum_{i=1}^n Y_i.$$

نشان دهید $\tilde{\psi}$ برآوردگری همگرا (consistent) به ψ است.

ج) توزیع مجانبی هر دو برآوردگر $\hat{\psi}$ و $\tilde{\psi}$ را بیابید و توضیح دهید کدام یک از نظر آماری ارجح است و چرا.

مسئلهی ۵. (۱۰ نمره)

فرض کنید X دارای توزیع گاما با پارامترهای $\alpha=4$ و $\alpha=4$ باشد.

- آ) اطلاعات فیشر $I(\theta)$ را بیابید.
- ب) فرض کنید X_1, \dots, X_n نمونه ای تصادفی از $\operatorname{Gamma}(\mathfrak{t}, \theta)$ باشند. برآوردگر بیشینه ی درستنمایی $\hat{\theta}$ را برای θ بیابید و نشان دهید که این برآوردگر کارآمد است.

مسئلهی ۶. (۱۵ نمره)

- آ) فرض کنید X_1, \dots, X_n متغیرهای تصادفی مستقل با توزیع برنولی و پارامتر p باشند.
 - (۱) یک آمارهٔ کافی برای p بنویسید.
- کنید. X_1 و X_1 پیدا کنید. Var(X) = p(1-p) با استفاده از فقط X_1 پیدا کنید.
- (۳) با به کارگیری قضیهٔ رائو-بلکول، یک برآوردگر بدون بایاس بهتر برای p(1-p) به دست آورید.
 - ب) فرض کنید X_1,\dots,X_n متغیرهای تصادفی مستقل با توزیع (λ) باشند، که $\lambda>0$ است.
 - (۱) یک آمارهٔ کافی برای λ بیابید.
- (۲) یک برآوردگر بدون بایاس برای میانگین توزیع $\exp(\lambda)$ بر اساس تنها X_1 پیدا کنید و سپس با به کارگیری قضیهٔ رائو—بلکول آن را بهبود دهید.
 - (٣) واریانس برآوردگر اولیه و برآوردگر بهبود یافته را مقایسه کنید.

مسئلهی ۷. (۱۵ نمره)

فرض کنید Y_1, \ldots, Y_n نمونههای مستقل و همتوزیع باشند:

$$Y_i = \begin{cases} \bullet, & \text{with prob.} \quad \mathsf{N} - \theta, \\ X_i, & \text{with prob.} \quad \theta, \end{cases} \quad X_i \sim \operatorname{Exp}(\beta) \;, \quad \bullet < \theta < \mathsf{N}.$$

مشاهدات ما شامل همه صفرها و مقادیر مثبت $\{Y_i\}$ است. درباره θ به سوالات زیر پاسخ دهید:

- آ) تابع چگالی مشترک $f(y_1,\ldots,y_n\mid\theta)$ را بنویسید و با Neyman Factorization، مجموعه ای از آماره های کافی برای θ را شناسایی کنید.
 - س) نشان دهید

$$N_{\bullet} = \sum_{i=1}^{n} \mathbf{1}\{Y_i = \bullet\}, \qquad S_{+} = \sum_{i=1}^{n} Y_i$$

minimal sufficient

- ج) توضیح دهید چرا S_+ هیچ اطلاعات اضافی دربارهٔ θ ارائه نمی دهد وقتی N. معلوم باشد، اما همچنان باید در آمار حدی کافی ظاهر شود.
 - د) یک برآوردگر بدون بایاس برای θ^{γ} بیابید که کرامر-راو کمینه را برآورده کند و تنها به N وابسته باشد.

مسئلهی ۸. (۱۵ نمره)

فرض کنید σ^{γ} با i.i.d. $\mathbf{X}_1,\dots,\mathbf{X}_n\sim N_p(\mu,\sigma^{\gamma}I_p)$ فرض کنید

$$g(\boldsymbol{\mu}) = \|\boldsymbol{\mu}\|^{\mathsf{Y}}$$

تعریف شده است. به سؤالات زیر پاسخ دهید:

آ) نشان دهید

$$\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}, \quad S = \sum_{i=1}^{n} \|\mathbf{X}_{i} - \bar{\mathbf{X}}\|^{\Upsilon}$$

آماره کامل (complete) و کافی برای μ هستند.

ب) برآوردگر naive

$$Q = \|\mathbf{X}_{\mathsf{1}}\|^{\mathsf{Y}} - p\,\sigma^{\mathsf{Y}}$$

 $\mathbb{E}[Q] = \|\mu\|^{\mathsf{Y}}$ را در نظر بگیرید و ثابت کنید

ج) با استفاده از قضیه رائو-بلکول، برآوردگر

$$\hat{g} = \mathbb{E}[Q \mid \bar{\mathbf{X}}, S]$$

را تعریف و نشان دهید که

$$\hat{g} = \|\bar{\mathbf{X}}\|^{\Upsilon} - \frac{\sigma^{\Upsilon}}{n}.$$

د) واریانسهای ${\rm Var}(\hat{g})$ و ${\rm Var}(Q)$ دا محاسبه کنید و رابطهٔ

$$\operatorname{Var}(\hat{g}) < \operatorname{Var}(Q)$$

را اثبات كنيد.

UMVUE) برای $g(\mu) = \|\mu\|^{\gamma}$ برای (UMVUE) برای $g(\mu) = \|\mu\|^{\gamma}$ است. (UMVUE) برای $g(\mu) = \|\mu\|^{\gamma}$ است. (UMVUE) به معنای "Uniformly Minimum-Variance Unbiased Estimator" یا برآوردگری است که هم بدون بایاس است و هم واریانس آن در میان همهٔ برآوردگرهای بدون بایاس مینیمم است.) همچنین نشان دهید که برای \hat{g} p = 1

مسئلهی ۹. (۱۵ نمره)

فرض کنید i.i.d. X_1, \ldots, X_n با چگالی

$$f_{\theta}(x) = \frac{\Gamma(\Upsilon\theta)}{\Gamma(\theta)^{\Upsilon}} x^{\theta-1} (1-x)^{\theta-1}, \quad {}^{\bullet} < x < 1, \; \theta > {}^{\bullet}.$$

در نظر بگیرید

$$L_i = \ln X_i, \quad R_i = \ln(1 - X_i), \quad \overline{L + R} = \frac{1}{n} \sum_{i=1}^n (L_i + R_i),$$

همچنین برای هر $x>\cdot$ توابع دیگاما و تریگاما را بهترتیب به صورت

$$\psi(x) = \frac{d}{dx} \ln \Gamma(x)$$
 θ $\psi_1(x) = \frac{d^7}{dx^7} \ln \Gamma(x)$

تعريف ميكنيم.

آ) نشان دهید log-likelihood به صورت زیر است:

$$\ell_n(\theta) = n \left[\ln \Gamma(\Upsilon \theta) - \Upsilon \ln \Gamma(\theta) \right] + (\theta - \Upsilon) \sum_{i=1}^n (L_i + R_i),$$

و مشتق آن برابر است با

$$\ell'_n(\theta) = n[\psi(\Upsilon\theta) - \Upsilon\psi(\theta)] + \sum_{i=1}^n (L_i + R_i).$$

ب) ثابت کنید $\ell_n'(\theta)$ به طور صریح در بازه $(ullet, \infty)$ نزولی است و نتیجه بگیرید که معادلهٔ امتیاز یک جواب یکتا دارد:

$$\psi(\Upsilon\hat{\theta}) - \psi(\hat{\theta}) = -\overline{L+R}.$$

. $\hat{\theta}_n \stackrel{p}{\longrightarrow} \theta$. برآوردگر بیشینه درستنمایی باشد آنگاه $\hat{\theta}_n$ برآوردگر بیشینه درستنمایی باشد آنگاه

د) asymptotic normality زیر را نشان دهید:

$$\sqrt{n} (\hat{\theta}_n - \theta_{\bullet}) \xrightarrow{d} \mathcal{N} \Big(\cdot, [\psi_1(\theta_{\bullet}) - \psi_1(\Upsilon \theta_{\bullet})]^{-1} \Big).$$

ه) با توجه به اینکه $\frac{1}{Y}=\mathbb{E}[X]=\frac{1}{Y}$ و $\mathbb{E}[X]=\frac{1}{Y}$ نخمین MOM زیر را در نظر بگیرید:

$$\tilde{\theta}_n = \frac{1}{\Lambda \hat{V}_n} - \frac{1}{\Upsilon}, \quad \hat{V}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \frac{1}{\Upsilon})^{\Upsilon}.$$

نشان دهید

$$\sqrt{n} \left(\tilde{\theta}_n - \theta_{\bullet} \right) \xrightarrow{d} N(\bullet, \Upsilon \Lambda (\Upsilon \theta_{\bullet} + \Upsilon)^{\Upsilon}).$$

و) واریانسهای هر دو برآوردگر را مقایسه کرده و نشان دهید $\hat{\theta}_n$ از نظر آماری به صورت asymptotically کاراتر از $\hat{\theta}_n$ است.

مسئلهی ۱۰. (۱۵ نمره)

فرض کنید $\{N_t: t \geq 0\}$ فرآیند یواسون غیرهمگن روی بازهٔ $\{N_t: t \geq 0\}$ باشد با شدت

$$\lambda(t; \alpha, \beta) = \alpha e^{\beta t}, \quad \alpha > \bullet, \ \beta \in \mathbb{R},$$

و فرض کنید زمانهای وقوع رویداد تا افق ثابت $T> \bullet$ عبارت باشند از (T_1,\dots,T_{N_T}) . برای استنباط پارامتر $\theta=(\alpha,\beta)$

- آ) تابع درستنمایی مشترک $L(\alpha, \beta)$ برای دادهٔ مشاهده شده را بدست آورید و نشان دهید \log -likelihood آن در پارامترهای بازتبدیل شده $(\ln \alpha, \beta)$ به طور صریح مقعر است.
- ب) برآوردگر بیشینهٔ درستنمایی $(\hat{\alpha}_T,\hat{eta}_T)$ را محاسبه کنید و ثابت کنید که این برآوردگرها بیشینه کنندههای یکتای درستنمایی هستند.
- ج) با فرض $\infty \to T$ ، همگرا بودن و asymptotic normality و اثبات کنید. به ویژه ماتریس اطلاعات فیشر $I(\alpha,\beta;T)$ را محاسبه کرده و نشان دهید

$$\sqrt{T} \left[(\hat{\alpha}_T, \hat{\beta}_T) - (\alpha, \beta) \right] \stackrel{d}{\to} N(\bullet, I(\alpha, \beta)^{-1}).$$

مسئلهی ۱۱. (۱۵ نمره)

فرض کنید X و Y متغیرهای تصادفی باشند با مشخصات زیر:

$$P(Y = \bullet) = \bullet - P(Y = \bullet) = \alpha, \quad \alpha \in (\bullet, \bullet),$$

$$X \mid Y = {}^{\bullet} \sim N({}^{\bullet}, \sigma^{{}^{\bullet}}), \qquad X \mid Y = {}^{\setminus} \sim N(\mu, \sigma^{{}^{\bullet}}).$$

- . $P(Y = 1 \mid X = x)$ توزیع شرطی Y را با توجه به X بیابید، یعنی Y
 - ب) فرض کنید از این جمعیت، نمونهای i.i.d. به صورت

$$(X_i, Y_i), \quad i = 1, \ldots, n$$

در اختیار دارید. تابع درستنمایی را بنویسید و برآوردگرهای بیشینهی درستنمایی $\hat{\sigma}_n^{\Upsilon}$ و $\hat{\sigma}_n^{\Upsilon}$ را بیابید.

ج) توزیعهای مجانبی $\hat{\alpha}_n$ ، $\hat{\alpha}_n$ و $\hat{\sigma}_n^{\gamma}$ را بیان کنید.

مو فق باشید:)