

1. Given the function table of a 2-bit shift register, derive the input equation for each D flip-flop of the register and draw the logic diagram of the register.

CLK	S ₁	S_0	$A_1^{+} A_0^{+}$	Register Operation
\	0	0	A_1 A_0	No Change
1	0	1	I_1 I_0	Parallel load
1	1	0	A ₀ SI	Shift left

EX-2

2

§6-4

4. Given the function table and the block diagram of a 4-bit binary up-counter, implement a counter that follows the sequence 0101 through 1011 and then repeats using the *load* input.

Clear	CLK	Load	Count	Function
0	×	×	×	Clear to 0
1	1	1	×	Load inputs
1	1	0	1	Count next binary state
1	1	0	0	No change

EX-5

5

Brief Answers of the Exercises

- 1. $D_1 = S_1'S_0'A_1 + S_1'S_0I_1 + S_1S_0'A_0$, $D_0 = S_1'S_0'A_0 + S_1'S_0I_0 + S_1S_0'SI$
- 2. $FF_0: C_0: CLOCK, D_0 = Q_0'$ $FF_1: C_1: Q_0 \uparrow \Rightarrow Q_0' \downarrow, D_1 = Q_1'$
- 3. $D_1 = Q_1^+ = Q_1 \oplus Q_0'$, $D_0 = Q_0^+ = Q_0'$

EX-6

6