

Cubicaciones

Proyecto de Hormigón Armado - Entrega N°3

Integrantes: Mauricio Leal V.

Pablo Pizarro R.

Ignacio Yáñez G.

Profesor: Juan Mendoza V. Auxiliar: Felipe Andrade T.

Fecha de entrega: 24 de octubre de 2018

Santiago, Chile

Índice de Contenidos

Índice de Contenidos

1. Pe	esos involucrados en las losas	1
2. Cu	ubicaciones de elementos	2
3. Pl	anilla resumen	5
4. Co	omentarios y conclusiones	6
Lis	ta de Figuras	
1. 2. 3.	Disposición de capa de estucos en muros	1
Lis	ta de Tablas	
1.	Pesos Volumétricos	2
2.	Pesos por área	2
3.		2
4.	Espesores de losa por piso	3
5.		3
6.		3
7.	Cubicaciones y pesos sísmicos tabiques	4
8.		4
9.	Planilla resumen de cubicaciones	5

1. Pesos involucrados en las losas

Para el cálculo de cubicaciones y pesos que reciben las losas de cada piso se consideran los siguientes elementos:

- Muros y Tabiques.
- Vigas normales, invertidas y semi-invertidas.
- Estuco, Enlucido y Sobrelosa.

Para el caso de los muros, estos deben llevar una capa de estuco tal y como se muestra a continuación:

Figura 1: Disposición de capa de estucos en muros.

Para las vigas, dependiendo de si estas son normales o invertidas, se tendrán dos configuraciones distintas para el estuco y enlucido que estas llevan:

Figura 2: Disposición de estuco y enlucido.

Por último, para las losas, la disposición de enlucido y sobrelosa se ejemplifica a continuación:

Figura 3: Disposición de enlucido y sobrelosa.

2. Cubicaciones de elementos

Características de los materiales
A continuación se muestran los pesos y espesores de los elementos utilizados.

Tabla 1: Pesos Volumétricos.

Elemento	Densidad $[T/m^3]$
$\gamma_{Hormigon}$	2,5
γ_{Estuco}	2,0
$\gamma_{Enlucido}$	2,0
$\gamma_{Sobrelosa}$	1,5

Tabla 2: Pesos por área.

Elemento	Peso $[T/m^2]$
Peso tabique	0.100
Sobrecarga uso vivienda	0.200
Sobrecarga escala uso público	0.400
Sobrecarga estacionamientos	0.500

Tabla 3: Espesores elementos.

Elemento	Espesor (m)
Estuco	0,025
Enlucido	0,02
Sobrelosa	0,05

Cubicaciones Losas

Para la determinación del Peso Sísmico de las losas, se obtienen los siguientes resultados por piso:

Tabla 4: Espesores de losa por piso.

	Espesor (cm)
Piso 1	0,17
Piso 2	0,16
Piso 3	0,16
Piso Tipo	0,16
Cubierta	0,16

Tabla 5: Cubicación y pesos sísmicos losas.

Losa	Espesor (m)	Área losa interior (m2)	Descuento viga (m2)	Área losa interior fi- nal (m2)	Área estaciona- mientos (m2)	Peso Hormigón (T)	Peso En- lucido+SL (T)	SC (T)	PSl Losa (T)
24	0,16	68,70	26,37	42,33	0	27,48	4,87	13,74	46,09
4-23	0,16	410,20	15,17	395,03	0	164,08	45,43	82,04	291,55
3	0,16	410,70	14,93	395,77	0	164,28	45,51	82,14	291,93
2	0,16	177,55	26,77	150,77	255,93	173,39	17,34	86,70	277,42
1	0,17	205,29	38,33	166,96	514,18	305,77	19,20	143,89	468,86
					TOTAL	3952,55	995,50	1967,28	6915,32

• Cubicaciones Muros y Tabiques

Para la determinación de los pesos sísmicos de muros y tabiques en cada piso se obtienen los siguientes resultados:

Tabla 6: Cubicaciones y pesos sísmicos de muros.

Piso	ex (m)	ey (m)	Lx (m)	Ly (m)	A planta muro (m2)	Área Estuco (m2)	Peso Hormigón Muro (T)	Peso Estuco (T)	Peso Muro + estuco(T)
24	0,2	0,2	26,92	17,6	8,90	2,25	51,20	0,11	51,31
8-23	0,2	0,2	54,48	58,86	22,67	5,69	130,34	0,28	130,63
7	0,25	0,2	54,48	58,86	25,39	5,69	146,00	0,28	146,29
6	0,25	0,25	54,48	58,86	28,34	5,70	162,93	0,28	163,21
5	0,25	0,25	54,48	58,86	28,34	5,70	162,93	0,28	163,21
4	0,25	0,25	54,48	58,86	28,34	5,70	162,93	0,28	163,21
3	0,25	0,25	58,32	58,86	29,30	5,89	168,45	0,29	168,74
2	0,25	0,3	65,35	50,48	31,48	5,82	181,02	0,29	181,31
1	0,25	0,3	69,98	54,98	33,99	6,28	195,44	0,31	195,75
-1	0,25	0,3	78,44	61,53	38,07	7,03	218,90	0,35	219,25
						Total	3535,24	7,06	3542,29

Piso ex (m) ey (m) Lx (m) Ly (m) Área tabiques (m2) Peso Tabique (T) 24 0,20,210,25 8,7 3,79 0,379 19,93 8-23 0,20,260,46 39,19 1,993 7 0,20,239,19 19,93 1,993 60,46 6 0,20,260,46 39,19 19,93 1,993 0,25 0,25 39,19 24,91 2,49 5 $60,\!46$ 4 0,25 0,25 60,46 39,19 24,91 2,49 3 0,25 0,25 60,46 39,19 24,91 2,49 2 0,25 0,336,07 38,720,63 2,06 1 0,25 0,338,11 31,64 19,02 1,90 -1 0,25 0,322,62 10,73 16,9 1,07 48,76 Total

Tabla 7: Cubicaciones y pesos sísmicos tabiques.

Cubicaciones Vigas

Para la determinación de los pesos sísmicos de vigas en cada piso se obtienen los siguientes resultados:

Tabla 8: Cubicaciones y Pesos Sísmicos de vigas.

Piso	Volumen vigas (m3)	Área estuco (m2)	Volumen Estuco (m3)	Peso Hormigón Vigas (T)	Peso Estuco Vigas (T)	Peso Total (T)
24	23,73	242,60	6,07	59,33	12,13	71,46
4-23	14,77	150,72	3,77	36,92	7,54	44,46
3	14,55	148,52	3,71	36,38	7,43	43,81
2	16,18	56,52	1,41	40,45	2,83	43,27
1	19,74	41,16	1,03	49,35	2,06	51,41
			TOTAL	923,96	175,16	1099,13

Planilla resumen 5

3. Planilla resumen

A continuación se entrega un resumen de las cubicaciones anteriores con los parámetros más relevantes.

Tabla 9: Planilla resumen de cubicaciones.

٥	Г	_	_	_	_	_		_		_	_	_	_	_	_	_	_	_	_	_	_	_		
q (T/m2)	2.93	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.10	1.14	1.14	1.15	1.17	1.10	
M rot (T · s2· m)	352.36	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4260.82	4420.06	4581.73	4584.16	4611.18	4686.09	99.8999	
M tras $(T \cdot s2/m)$	20.536	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	44.486	46.149	47.837	47.862	48.144	49.018	48.505	
Ps nivel (T)	201.25	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	435.97	452.26	468.80	469.05	471.81	480.38	475.35	
P muros (T)	51.69	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	132.62	165.20	165.70	165.70	171.23	183.37	
P vigas (T)	71.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	44.46	43.81	43.27	
Ps losa (T)	37.64	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	258.89	259.27	241.57	
I polar (m4)	726.26	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	37835.55	55075.84	
Yg losa (m)	15.60	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	16.26	20.00	
Xg losa (m)	19.07	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	10.25	
Área losa (m2)	42.33	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.03	395.77	406.70	
Altura (m)	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	
Losa	24	23	66	21	50	19	18	17	91	15	14	13	12	11	10	6	8	7	9	20	-4	8	2	

4. Comentarios y conclusiones

- Es posible observar en la tabla resumen 9 que los cortes promedio por pisos son parecidos a los vistos en clase, el cual oscila entre 1 y $1.1 \ T/m^2$ para edificios habitacionales Chilenos de hormigón armado. Un caso interesante es el corte obtenido en el nivel -1 (losa piso 1), el cual dio un corte bajo 1, esto dado la gran área que posee dicha planta.
- El Estuco es uno de los revestimientos finales más usados para embellecer muros y techos; consiste en una masa o pasta muy fina compuesto de un material base: cal, yeso o cemento que se mezcla con otros materiales como polvo de mármol etc.
 - Como recomendación de un fabricante de estuco (Drymix) se debe emplear el material en dos capas no mayores a 1.5cm cada una sobre los muros.
 - Existen muchos tipos de estucos, cada uno utilizado según lo que se requiera. Hay estucos interiores, exteriores y especiales, todos ellos con, compuestos adicionales, espesores tipos y cantidad de manos necesarias distintas.