Profesor: Pedro Montero Ayudante: Sebastián Fuentes

Pauta Ayudantía 8 Estructuras Algebraicas

4 de mayo de 2023

Problema 1. Sean $X\subseteq\mathbb{C}^n$ e $Y\subseteq\mathbb{C}^m$ variedades algebraicas afines. Existe una correspondencia

$$\left\{\begin{array}{c} \text{morfismos regulares} \\ \varphi: X \to Y \end{array}\right\} \xleftarrow{\sim} \left\{\begin{array}{c} \text{morfismos de \mathbb{C}-álgebras} \\ \mathscr{O}(Y) \to \mathscr{O}(X) \end{array}\right\}$$

En particular, $X\cong Y$ si y sólo si $\mathscr{O}(X)\cong \mathscr{O}(Y)$.

Demostración. Debemos probar que esta correspondencia es inyectiva y sobreyectiva. Demostremos en primer lugar la inyectividad. Para ello consideremos las funciones coordenadas $y_i : \mathbb{A}^n \to \mathbb{C}, (y_1, \dots, y_n) \mapsto y_i$ que asocia la i-ésima cordenada de un punto en \mathbb{A}^n y consideremos un morfismo regular $\varphi : X \to Y$. Por definición un morfismo regular corresponde a una función de coordenadas polinomiales, es decir, $\varphi(x) = (\varphi_1(x), \dots, \varphi_m(x))$ con $\varphi_i \in \mathbb{C}[X_1, \dots, X_n]$. Evaluando el pullback φ^* en las funciones coordenadas tenemos

$$\varphi^*(y_i) = y_i \circ \varphi = \varphi_i$$

es decir, φ^* está completamente determinada por φ , y por lo tanto esta construcción es inyectiva (pues si tomamos dos morfismos diferentes estos diferirán en alguna coordenada y por lo tanto los pullback serán diferentes). Veamos ahora la sobreyectividad. Sea $\psi: \mathscr{O}(Y) \to \mathscr{O}(X)$ morfismo de \mathbb{C} -álgebras y considerando las funciones coordenadas $y_i \in \mathscr{O}(Y)$ definamos $\varphi_i := \psi(y_i) \in \mathscr{O}(X)$ para cada $i \in \{1, \dots, m\}$. Podemos entonces definir el morfismo regular

$$\varphi: X \to \mathbb{A}^m, \qquad x \mapsto (\varphi_1(x), \dots, \varphi_m(x))$$

y notamos que $\varphi(X) \subseteq Y$ pues si $f \in \mathscr{O}(\mathbb{A}^m)$ se anula en Y, ie, $f \in \mathfrak{I}(Y)$, usando que ψ es morfismo de \mathbb{C} -álgebras:

$$f(\varphi(x)) = f(\psi(y_1)(x), \dots, \psi(y_m)(x)) = \psi(f(y_1, \dots, y_m))(x) = 0$$

así que $\varphi^*(f)(x) = f(\varphi(x)) = 0$ para todo $f \in \mathfrak{I}(Y)$, es decir, tenemos que $\varphi(x) \in V(I(Y)) = \overline{Y} = Y$. Hemos probado así que $\varphi : X \to Y$ define un morfismo de X a Y. Finalmente, notamos que $\psi = \varphi^*$ pues $\varphi^*(y_i) = \varphi_i = \psi(y_i)$ y reutilizando el cálculo anterior tenemos:

$$\varphi^*(f) = f \circ \varphi = \psi(f)$$

Para terminar, notamos que $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$, y por lo tanto si $\varphi : X \xrightarrow{\sim} Y$ es un isomorfismo hay un inversa φ^{-1} para la cual se tiene id $= (\varphi^{-1} \circ \varphi)^* = \varphi^* \circ (\varphi^{-1})^*$ y por lo tanto $\mathscr{O}(X) \cong \mathscr{O}(Y)$.

Problema 2. Considere la variedad afín definida por $X = V(xz - y^2, yz - x^3, z^2 - x^2y) \subseteq \mathbb{A}^3$.

- 1. Demuestre que el mapa $\varphi: \mathbb{A}^1 \to X$ definido por $\varphi(t) = (t^3, t^4, t^5)$ es un morfismo sobreyectivo. *Indicación:* Para la sobreyectividad, si $(x, y, z) \neq (0, 0, 0)$, considere t = y/x.
- 2. Describa el morfismo de \mathbb{C} -álgebras correspondiente al pullback de funciones regulares $\varphi^*: \mathscr{O}(X) \to \mathscr{O}(\mathbb{A}^1)$.
- 3. Demuestre que φ no es un isomorfismo.

Demostración.

MAT214 UTFSM

1. Dado que φ es una función polinomial, lo único que se debe verificar es que $\varphi(t) \in X$ para todo $t \in \mathbb{A}^1$. Para ello basta notar que si $x = t^3, y = t^4, z = t^5$ entonces $xz = (t^3)(t^5) = t^8 = y^2, yz = (t^4)(t^5) = t^9 = x^3$ y $x^2y = (t^6)(t^4) = t^{10} = z^2$. Veamos ahora la sobreyectividad. Si (x, y, z) = (0, 0, 0) entonces t = 0 verifica $\varphi(t) = (0, 0, 0)$ así que podemos suponer $(x, y, z) \neq (0, 0, 0)$. De las ecuaciones podemos ver que esto implica $x \neq 0$, y considerando $t = \frac{y}{x}$ tenemos

$$\varphi\left(\frac{y}{x}\right) = \left(\frac{y^3}{x^3}, \frac{y^4}{x^4}, \frac{y^5}{x^5}\right) = \left(\frac{xyz}{yz}, \frac{x^2z^2}{xyz}, \frac{x^2yz^2}{x^2yz}\right) = \left(x, \frac{xz}{y}, z\right) = (x, y, z)$$

2. Dado que el pullback de funciones regulares está definido simplemente por precomposición por φ , este vendrá dado por la fórmula:

$$\varphi^*: \mathscr{O}(X) \to \mathscr{O}(\mathbb{A}^1), \quad f(x,y,z) \mapsto f(t^3,t^4,t^5)$$

3. Basta con notar que el pullback φ no es un isomorfismo, pues sabemos que $X \cong \mathbb{A}^1$ si y sólo si $\mathscr{O}(X) \cong \mathscr{O}(\mathbb{A}^1)$. En este caso, φ^* no es sobreyectivo, pues cualquier polinomio no-constante en su imagen es de grado ≥ 3 . En particular $T \in \mathscr{O}(\mathbb{A}^1)$ no posee preimagen por φ^* .

Problema 3. Sea $X \subseteq \mathbb{A}^n$ variedad afín. Demuestre que existe una biyección

$$\left\{ \begin{array}{c} \mathfrak{m} \subseteq \mathscr{O}(X) \\ \text{ideal maximal} \end{array} \right\} \stackrel{\sim}{\longleftrightarrow} \left\{ \begin{array}{c} \text{Puntos} \\ a \in X \end{array} \right\}$$

Demostración. Notar que tenemos un morfismo sobreyectivo por restricción:

$$\psi: \mathscr{O}(\mathbb{A}^n) \twoheadrightarrow \mathscr{O}(X), \qquad f \mapsto f|_X$$

cuvo kernel corresponde a:

$$\ker(\psi) = \{ f \in \mathcal{O}(\mathbb{A}^n) : \psi(f) = 0 \} = \{ f \in \mathcal{O}(\mathbb{A}^n) : f|_X = 0 \} = \mathfrak{I}(X)$$

y por lo tanto obtenemos un isomorfismo $\mathscr{O}(X) \cong \mathscr{O}(\mathbb{A}^n)/\mathfrak{I}(X)$. Ahora, el Nullstellensatz débil nos dice que hay una biyección entre los puntos de \mathbb{A}^n y los ideales maximales de $\mathscr{O}(\mathbb{A}^n)$. Entonces, todo punto $x \in X$ corresponde a un ideal maximal $\mathfrak{m}_x \subseteq \mathscr{O}(\mathbb{A}^n)$, y de hecho, \mathfrak{m}_x contiene a $\mathfrak{I}(X)$ pues si un polinomio se anula en todo X en particular se anula en x. Ahora, sabemos que existe una biyección entre ideales de $\mathscr{O}(\mathbb{A}^n)$ que contienen a $\mathfrak{I}(X)$ e ideales de $\mathscr{O}(X)$, sin embargo, no sabemos si esta correspondencia preserva ideales maximales. Esto último ocurre, pues uno siempre puede probar que dado un morfismo de anillos sobreyectivo, la imagen y preimagen de un ideal maximal es maximal (ejercicio), por lo que concluimos entonces la demostración.

Problema 4. Sea X variedad afín en \mathbb{A}^n y sea $f \in \mathcal{O}(X)$. Defina $X_f = \{x \in X \mid f(x) \neq 0\}$.

- (a) Demuestre que X_f es un conjunto abierto de Zariski en X (estos conjuntos se conocen como abiertos principales de X).
- (b) Sea J el ideal en $k[x_1, \ldots, x_n, x_{n+1}]$ generado por $\mathcal{I}(X)$ y $x_{n+1}f 1$, y sea $Y = V(J) \subseteq \mathbb{A}^{n+1}$. Muestre que la proyección $\pi : \mathbb{A}^{n+1} \to \mathbb{A}^n$ en las primeras n coordenadas es un morfismo biyectivo de Y a X_f (por lo que el abierto principal X_f en X puede ser identificado como un conjunto cerrado en algún espacio afín (más grande)).
- (c) Muestre que los abiertos principales de X constituyen una base de la topología.
- (d) Demuestre que $GL_n(\mathbb{C})$ es un conjunto algebraico afín abierto en \mathbb{A}^{n^2} , y que puede verse como un conjunto algebraico afín cerrado en \mathbb{A}^{n^2+1} .

Demostración.

MAT214 UTFSM

(a) Por definición $V(\langle f \rangle)$ es un cerrado de Zariski de \mathbb{A}^n , y entonces $\mathbb{A}^n \setminus V(\langle f \rangle)$ es un abierto. Luego, como $X_f = X \cap (\mathbb{A}^n \setminus V(\langle f \rangle))$ por definición de la topología inducida X_f es abierto de X.

(b) Notar que como $J = \langle I(X), x_{n+1}f - 1 \rangle$, tenemos:

$$Y = \{(x,t) \in \mathbb{A}^n \times \mathbb{A}^1 : g(y) = 0 \quad \forall g \in I(X), f(x)t = 1\} = \left\{ \left(x, \frac{1}{f(x)}\right) \in \mathbb{A}^n \times \mathbb{A}^1 : x \in X \right\}$$

y por lo tanto la proyección $\pi: Y \to X_f, (x,t) \mapsto x$ es un morfismo biyectivo pues tiene inversa $i: X_f \to Y, x \mapsto (x, \frac{1}{f(x)})$ (que, de hecho, no es polinomial).

(c) El hecho que una colección de abiertos constituya una topología de X significa que todo abierto se puede expresar como unión de ellos. Por lo tanto consideramos $U \subseteq X$ abierto y veamos que existe $f_1, \ldots, f_m \in \mathscr{O}(\mathbb{A}^n)$ tal que $U = \bigcup_{i=1}^m X_{f_i}$. Tenemos entonces que si U es un abierto de X, entonces $X \setminus U$ es un cerrado y por lo tanto $I(X \setminus U)$ es un ideal de $\mathscr{O}(X)$. Ahora, como $\mathscr{O}(X) \cong \mathscr{O}(\mathbb{A}^n) \setminus \Im(X)$ es cociente de un anillo noetheriano es también noetheriano y por tanto el ideal $\Im(X \setminus U) = \langle f_1, \ldots, f_m \rangle$ es finitamente generado. Tenemos entonces que:

$$U = X \setminus V(\mathfrak{I}(X \setminus U)) = X \setminus V(f_1, \dots, f_m) = X \setminus \left(\bigcap_{i=1}^m V_{f_i}\right) = \bigcup_{i=1}^m X_{f_i}$$

(d) Notar que, viendo a $\mathrm{GL}_n(\mathbb{C})$ dentro de \mathbb{A}^{n^2} podemos caracterizarlo como:

$$\operatorname{GL}_n(\mathbb{C}) = \{ A \in \mathbb{A}^{n^2} : \det(A) \neq 0 \} = \mathbb{A}^{n^2} \setminus V(\det)$$

y por lo tanto $GL_n(\mathbb{C})$ corresponde a un abierto de Zariski puesto que det : $\mathbb{A}^{n^2} \to \mathbb{C}$ es una función polinomial de las entradas de la matriz y por tanto define una función regular en \mathbb{A}^{n^2} . Dado que $GL_n(\mathbb{C})$ puede ser definido por una sola ecuación corresponde a un abierto principal de \mathbb{A}^{n^2} y por la parte (b) está en biyección con un cerrado de \mathbb{A}^{n^2+1} .