Relazione di laboratorio - Calorimetro delle mescolanze

Misura del calore specifico di un corpo metallico e della massa equivalente di un calorimetro

Federico Cesari

1096759

Gruppo 5

Indice

1	Prima presa dati	3	
	1.1 Cilindro metallico	3	
	1.2 Massa d'acqua	4	
	1.3 Analisi errori	4	
2	Seconda presa dati	5	
3	Confronto masse equivalenti e calori specifici	6	
4	Errori sistematici	7	
	4.1 Influenza agitatore	7	
	Errori sistematici 4.1 Influenza agitatore	7	
	Annendice	8	
	5.1 Calcolo T_1 e T_{eq} con covarianze	8	
6	temp	9	

Scopo dellesperienza e aspettative teoriche Strumentazione

1 Prima presa dati

1.1 Cilindro metallico

tabella T1 tabella crescita tabella Teq

Temperatura dell'acqua nel calorimetro in funzione del tempo (cilindro metallico)

 $T_1 = 15.54 \pm 0.01^{-1}$

 $T_{\rm eq} = 17.71 \pm 0.02$

2

²Valore misurato $T_1 = 15.539645 \pm 0.00451$

1.2 Massa d'acqua

Temperatura dell'acqua nel calorimetro in funzione del tempo (cilindro metallico)

$$T_1 = 18.00 \pm 0.01$$
 $T_{\text{eq}} = 20.43 \pm 0.01$

1.3 Analisi errori

 $^{^3}$ Valore rilevato $T_{\rm eq}$ = 20.429 ± 0.002. l'errore è minore della sensibilità del termometro quindi riporto la temperatura con due cifre decimali e come errore la sensibilità.

2 Seconda presa dati

3 Confronto masse equivalenti e calori specifici

4 Errori sistematici

- 4.1 Influenza agitatore
- 4.2 Calore disperso

5 Appendice

5.1 Calcolo T_1 e T_{eq} con covarianze

Al fine di semplificare la ricerca di temperatura iniziale e temperatura di equilibrio è utile traslare i grafici portando l'istante d'immersione (prima del corpo poi della massa d'acqua) sullo 0. In questo modo le due temperature risultano essere semplicemente i termini noti delle rette di best-fit.

Senza ricorrere alla traslazione è possibile ricavare i due valori trovando l'intersezione delle due rette di best-fit con la retta $x = t_i$ istante di immersione. In questo caso però il punto dove le rette intersecano $x = t_i$ dipenderà dai parametri delle due rette \boldsymbol{a} e \boldsymbol{b} , grandezze dipendenti. Perciò nell'errore da associare a T_1 e T_{eq} entrerà in gioco anche la covarianza σ_{ab} :

$$\sigma_T^2 = \left(\frac{\partial T}{\partial a}\right)^2 \sigma_a^2 + \left(\frac{\partial T}{\partial b}\right)^2 \sigma_b^2 + 2\left(\frac{\partial T}{\partial a}\right) \left(\frac{\partial T}{\partial b}\right) \sigma_{ab}$$

con tutte le derivate parziali calcolate in

6 temp

$$\begin{split} m_e &= \frac{m_a' (T_2 - T_e)}{T_e - T_1} - m_a = \frac{m_a' \Delta T_{2e}}{\Delta T_{e1}} - m_a \\ \sigma_{m_e} &= \sqrt{\left(\frac{\partial m_e}{\partial m_a'}\right)^2 \sigma_{m_a'}^2 + \left(\frac{\partial m_e}{\partial \Delta T_{2e}}\right)^2 \sigma_{\Delta T_{2e}}^2 + \left(\frac{\partial m_e}{\partial \Delta T_{e1}}\right)^2 \sigma_{\Delta T_{e1}}^2 + \left(\frac{\partial m_e}{\partial m_a}\right)^2 \sigma_{m_a}^2} \\ &= \sqrt{\left(\frac{\Delta T_{2e}}{\Delta T_{e1}}\right)^2 \sigma_{m_a'}^2 + \left(\frac{m_a'}{\Delta T_{e1}}\right)^2 \sigma_{\Delta T_{2e}}^2 + \left(\frac{m_a' \Delta T_{2e}}{\Delta T_{e1}^2}\right)^2 \sigma_{\Delta T_{e1}}^2 + \sigma_{m_a}^2} \end{split}$$

$$\begin{split} c_x &= \frac{(m_e + m_a)c_a(T_e - T_1)}{m_c(T_2 - T_e)} = \frac{Mc_a}{m_c} \frac{\Delta T_{e1}}{\Delta T_{2e}} \\ \sigma_{c_x} &= \sqrt{\left(\frac{\partial c_x}{\partial M}\right)^2 \sigma_M^2 + \left(\frac{\partial c_x}{\partial c_a}\right)^2 \sigma_{c_a}^2 + \left(\frac{\partial c_x}{\partial m_c}\right)^2 \sigma_{m_c}^2 + \left(\frac{\partial c_x}{\partial \Delta T_{e1}}\right)^2 \sigma_{\Delta T_{e1}}^2 + \left(\frac{\partial c_x}{\partial \Delta T_{2e}}\right)^2 \sigma_{\Delta T_{2e}}^2} \\ &= \sqrt{\left(\frac{c_a}{m_c} \frac{\Delta T_{e1}}{\Delta T_{2e}}\right)^2 \sigma_M^2 + \left(\frac{M}{m_c} \frac{\Delta T_{e1}}{\Delta T_{2e}}\right)^2 \sigma_{c_a}^2 + \left(\frac{Mc_a}{m_c^2} \frac{\Delta T_{e1}}{\Delta T_{2e}}\right)^2 \sigma_{m_c}^2 + \left(\frac{Mc_a}{m_c} \frac{1}{\Delta T_{2e}}\right)^2 \sigma_{\Delta T_{e1}}^2 + \left(\frac{Mc_a}{m_c} \frac{\Delta T_{e1}}{\Delta T_{2e}}\right)^2 \sigma_{T_{2e}}^2} \end{split}$$