The Price of Gold: Impacts of Artisanal Gold Mining on Deforestation in the Brazilian Amazon

Anna Cailotto and Francesca Heinrich

WU

May 2025

Outline

- Research Question
- 2 Data
- Methodology
- Results

Research Question

To what extent does artisanal mining contribute to deforestation in the Legal Amazon, and what is the magnitude of direct and indirect effects?

Data

Main sample covers 136 municipalities in the Legal Amazon from 2002 until 2022:

- Artisanal and Industrial Mining (MapBiomas 2024)
- Land cover and land use change statistics (MapBiomas 2024)
- Gold Price in USD (World Bank)

Gold Prices and Mining in Brazil: 1985–2023

Garimpo extraction

Legal Amazon in 2022

First Difference Regression

First Difference Panel Regression:

$$\Delta deforestation_{it} = \beta \Delta mining_{it} + \gamma \Delta X_{it} + \lambda_t + \varepsilon_{it}$$

! Endogeneity in $\Delta mining_{it}$: use Shift-Share IV strategy

Two-Stage Estimation

Two-Stage Estimation:

1 IV Specification:

$$B_{it} = z_{i,t=0} p_{t-n}$$

- $z_{i,t=0}$: municipality *i*'s share of total artisanal mining area in 2001 (t=0)
- p_{t-n} : change in gold price with a time lag of $n \in \{1, 2, 3, 4\}$
- First Stage:

$$\Delta mining_{it} = \delta B_{it} + \gamma \Delta X_{it} + \lambda_t + u_{it}$$

Second Stage:

$$\Delta deforestation_{it} = \beta \widehat{\Delta mining}_{it} + \gamma \Delta X_{it} + \lambda_t + \varepsilon_{it}$$

First Stage Results

Table 1: First Stage Estimates

	t-1	t-2	t-3	t-4
Bartik	20.178	23.283	22.388+	19.186*
	(15.293)	(13.836)	(10.816)	(8.680)
	(0.202)	(0.108)	(0.052)	(0.039)
Num.Obs.	2489	2489	2489	2489
R2	0.034	0.083	0.123	0.124
R2 Adj.	0.023	0.072	0.113	0.114
R2 Within	0.019	0.068	0.110	0.110
R2 Within Adj.	0.016	0.065	0.107	0.108
Std.Errors	by: year	by: year	by: year	by: year
FE: year	X	X	X	Χ

Second Stage Results

Table 2: Second Stage Estimates

t-1	t-2	t-3	t-4
17.597*	10.946**	9.570**	9.645***
(8.380)	(3.807)	(2.517)	(2.437)
(0.049)	(0.009)	(0.001)	(i0.001)
2489	2489	2489	2489
-0.289	-0.016	0.019	0.017
-0.303	-0.028	0.008	0.006
-0.339	-0.056	-0.020	-0.021
-0.344	-0.059	-0.023	-0.025
by: year	by: year	by: year	by: year
X	Χ	X	X
	17.597* (8.380) (0.049) 2489 -0.289 -0.303 -0.339 -0.344 by: year	17.597* 10.946** (8.380) (3.807) (0.049) (0.009) 2489 2489 -0.289 -0.016 -0.303 -0.028 -0.339 -0.056 -0.344 -0.059 by: year by: year	17.597* 10.946** 9.570** (8.380) (3.807) (2.517) (0.049) (0.009) (0.001) 2489 2489 2489 -0.289 -0.016 0.019 -0.303 -0.028 0.008 -0.339 -0.056 -0.020 -0.344 -0.059 -0.023 by: year by: year by: year

Mining drives extensive deforestation in the Brazilian Amazon

Abstract

Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil's Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boundaries, causing 11,670 km² of deforestation between 2005 and 2015. This extent represents 9% of all Amazon forest loss during this time and 12 times more deforestation than occurred within mining leases alone. Pathways leading to such impacts include mining infrastructure establishment, urban expansion to support a growing workforce, and development of mineral commodity supply chains. Mininginduced deforestation is not unique to Brazil; to mitigate adverse impacts of mining and conserve tropical forests globally, environmental assessments and licensing must considered both on- and off-lease sources of deforestation.

Sonter, L.J., Herrera, D., Barrett, D.J. et al. Mining drives extensive deforestation in the Brazilian Amazon.

Thanks for your attention.

