Performance analysis

Jeremy Iverson

College of Saint Benedict & Saint John's University

Performance analysis

- how do we reason about parallel algorithms?
- how can we compare two algorithms and determine which is better?
- · how do we measure improvement?

Performance metrics

- execution time (T_p)
- · speedup (S)
- efficiency (E)
- cost (C)

Execution time

Serial (T_s)

• time elapsed between beginning and end of execution

Parallel (T_p)

- time elapsed between beginning of execution and the moment the last processing element finishes execution
- · Adding numbers
- · Dot-product
- Matrix-vector multiplication
- · Matrix-matrix multiplication

Execution time

Speedup

Speedup (
$$S = T_s/T_p$$
)

 the ratio of time taken to solve a problem on a single processing element to the time required to solve the same problem on a parallel computer with p processing elements

6

Speedup

Speedup (
$$S = T_s/T_p$$
)

 the ratio of time taken to solve a problem on a single processing element to the time required to solve the same problem on a parallel computer with p processing elements

Efficiency

Efficiency (E = S/p)

 the ratio of speedup to the number of processing elements the fraction of time for which a processing element is usefully employed

7

Efficiency

Efficiency (E = S/p)

 the ratio of speedup to the number of processing elements the fraction of time for which a processing element is usefully employed

7

Cost

Cost (
$$C = pT_p$$
)

- the sum of the time spent by all processing elements solving the problem
- cost-optimal if $C = T_s$

Cost

Cost (
$$C = pT_p$$
)

- $\boldsymbol{\cdot}$ the sum of the time spent by all processing elements solving the problem
- cost-optimal if $C = T_s$

Exercise — vector addition

$$p = n - not cost-optimal$$

- $T_p = \Theta(\log n)$
- $S = \Theta(\frac{n}{\log n})$
- $E = \Theta(\frac{1}{\log n})$
- $C = \Theta(n \log n)$

p > n — too many processing elements, use less

$$p < n - ?$$

Exercise — vector addition

p = n - not cost-optimal

•
$$T_p = \Theta(\log n)$$

•
$$S = \Theta(\frac{n}{\log n})$$

•
$$E = \Theta(\frac{1}{\log n})$$

•
$$C = \Theta(n \log n)$$

p > n — too many processing elements, use less

n < p — not cost-optimal?

•
$$T_p = \Theta(\frac{n}{p} + \log p)$$

•
$$S = \Theta(\frac{n}{\frac{n}{n} + \log p})$$

•
$$E = \Theta(\frac{n}{n + \log p})$$

•
$$C = \Theta(n + p \log p)$$

Exercise — vector addition

$$p = n - not cost-optimal$$

$$T_p = \Theta(\log n)$$

•
$$S = \Theta(\frac{n}{\log n})$$

•
$$E = \Theta(\frac{1}{\log n})$$

•
$$C = \Theta(n \log n)$$

p > n — too many processing elements, use less

$$n -optimal iff $n = \Theta(p \log p)$$$

·
$$T_p = \Theta(\frac{n}{p} + \log p)$$

•
$$S = \Theta(\frac{n}{\frac{n}{n} + \log p})$$

•
$$E = \Theta(\frac{n}{n + \log p})$$

$$\cdot C = \Theta(n + p \log p)$$

except where otherwise noted, this worked is licensed under creative commons attribution-sharealike 4.0 international license