Question 1)

#SAS Code

proc iml;

 $x = \{4512, 1145, 2102\};$

create num_matrix from x;

append from x;

close num_matrix;

run;

proc print data = num_matrix; run;

Obs	COL1	COL2	COL3	COL4
1	4	5	1	2
2	1	1	4	5
3	2	1	0	2

#R

#my_matrix_2 <- rbind(cell_1, cell_2, cell_3)</pre>

cells <- c(4, 5, 1, 2, 1, 1, 4, 5, 2, 1, 0, 2)

my_matrix <- matrix(cells, nrow = 3, ncol = 4, byrow = T)

my_matrix

#Python

import numpy as np

x = np.matrix([[4, 5, 1, 2], [1, 1, 4, 5], [2, 1, 0, 2]])

Χ

```
matrix([[4, 5, 1, 2],
[1, 1, 4, 5],
[2, 1, 0, 2]])
```

Question 2)

#The following calculates log returns and volatility measures of time series data on Automatic Data Processing, Inc. (ADP) stock performance using three different decay factors.

library(tseries)

options("getSymbols.warning4.0"=FALSE)

options("getSymbols.yahoo.warning"=FALSE)

ADPdata <- get.hist.quote('ADP', quote = 'Close')

head(ADPdata)

	Close
1991-01-02	5.402749
1991-01-03	5.303616
1991-01-04	5.204483
1991-01-07	5.154917
1991-01-08	5.055784
1991-01-09	5.055784

##Lagged Log Returns

ADPret <- log(lag(ADPdata)) - log(ADPdata)

head(ADPret)

	Close
1991-01-02	-0.018519046
1991-01-03	-0.018868483
1991-01-04	-0.009569353
1991-01-07	-0.019418082
1991-01-08	0.000000000
1991-01-09	-0.004914163

##Calculated Volatility Measure

ADPvol <- sd(ADPret) * sqrt(250) * 100

<mark>ADPvol</mark>

[1] 24.69478

```
##Exponentially Downweighted Continuous Lookback Window
Vol <- function(d, logrets){</pre>
var = 0
lam = 0
varlist <- c()
for (r in logrets){
 lam = lam*(1 - 1/d) + 1
 var = (1 - 1/lam)*var + (1/lam)*r^2
 varlist <- c(varlist, var)
}
sqrt(varlist)
}
volest <- Vol(10, ADPret)
head(volest)
[1] 0.01851905 0.01870377 0.01595408 0.01703414 0.01480899 0.01332875
volest2 <- Vol(30, ADPret)
head(volest2)
[1] 0.01851905 0.01869754 0.01614490 0.01706619 0.01513238 0.01385249
volest3 <- Vol(100, ADPret)
head(volest3)
[1] 0.01851905 0.01869546 0.01620716 0.01707929 0.01523756 0.01402262
##Plotted Volatility Curves
plot(volest, type = 'I', col = 'black', xlab = 'Time Index: January 1991 - Present', ylab = 'Volatility Estimate',
main = 'ADP, Inc. Log-lagged Stock Return Volatility Curves')
lines(volest2, type = 'l', col = 'blue')
lines(volest3, type = 'I', col = 'red')
legend("topright", c('.90 decay factor', '.967 decay factor', '.99 decay factor'), lty=c(1, 1, 1), col =
c('black', 'blue', 'red'))
```


ADP, Inc. Log-lagged Stock Return Volatility Curves

#The volatility curve with decay factor 0.99 demonstrates substantially smoother features.

Question 3)

attach(Orange)

Mean_Circ_by_Tree <- aggregate(circumference ~ Tree, data = Orange, FUN = mean)

Mean_Circ_by_Tree

	Tree	circumference
1	3	94.00000
2	1	99.57143
3	5	111.14286
4	2	135.28571
5	4	139.28571

Median_Circ_by_Tree <- aggregate(circumference ~ Tree, data = Orange, FUN = median)

Median_Circ_by_Tree

	Tree	circumference
1	3	108
2	1	115
3	5	125
4	2	156
5	4	167

library(ggplot2)

Circ_v_Age_by_Tree <- ggplot(Orange, aes(age, circumference)) + geom_point(aes(color = factor(Tree))) + labs(title = "Circumference|Age by Tree", subtitle = "Tree Type Grouped by Increasing Max Diameter")

Circ_v_Age_by_Tree

Circumference|Age by Tree

Circ_v_Tree_boxplot <- ggplot(Orange, aes(Tree, circumference)) + geom_boxplot() + labs(title = "Boxplot of Circumference|Tree", subtitle = "Tree Type Grouped by Increasing Max Diameter")

Circ_v_Tree_boxplot

Boxplot of Circumference|Tree

Question 4)

#Question 4.1

library(tidyverse)

TEMP <- read_csv("C:/Users/jkras/Desktop/SMU/DDS/Case Study 2/TEMP.csv")

TEMP_2 <- subset(TEMP, grepl("^.+(19|20)",Date))

TEMP_new <- aggregate(TEMP_2\$`Monthly AverageTemp`, by = list(TEMP_2\$Country), FUN = min, na.rm = T)

TEMP_new2 <- aggregate(TEMP_2\$`Monthly AverageTemp`, by = list(TEMP_2\$Country), FUN = max, na.rm = T)

TEMP_min <- subset(TEMP_new, select= x)

colnames(TEMP_min) <- "Minimum"

colnames(TEMP_new2) <- c("Country", "Maximum")

TEMP_Difference <- cbind(TEMP_new2, TEMP_min)</pre>

TEMP_Difference\$Max_Min_Difference <- (TEMP_Difference\$Maximum - TEMP_Difference\$Minimum)

TEMP_20Max_Differences <- TEMP_Difference[order(TEMP_Difference\$Max_Min_Difference, decreasing = T)[1:20],]

TEMP_20Max_Differences

	Country	Maximum	Minimum	Max_Min_Difference
<mark>116</mark>	Kazakhstan		-23,601	49.163
145	Mongolia		-27.294	48.010
181			-29.789	46.682
-	Canada		-28.736	43.532
235			-12.323	42.698
	Turkmenistan		-8.443	40.579
23	Belarus		-16.527	39.338
76			-20.101	39.068
69	Estonia		-16.483	38.815
229	Ukraine		-10.403	38.660
121 161	, ,, , , , , , , ,		-19.161	38.436
161			-14.390	38.342
123	Latvia		-15.784	38.063
143	Moldova	25.231	-12.781	38.012
89	Greenland	0.339	-37.177	37.516
<mark>59</mark>	Denmark	0.699	-36.439	37.138
129	Lithuania	21.791	-15.179	36.970
<mark>217</mark>	Tajikistan	19.363	-16.466	35.829
175	Poland		-13.107	35.616
12	Armenia		-9.982	35.273

```
TEMP_Sorted_Max_Differences <-

TEMP_20Max_Differences[order(TEMP_20Max_Differences$Max_Min_Difference), ]

TEMP_Sorted_Max_Differences$Country <- factor(TEMP_Sorted_Max_Differences$Country, levels = TEMP_Sorted_Max_Differences$Country)
```

library(ggplot2)

```
ggplot(TEMP_Sorted_Max_Differences, aes(x=Country, y=Max_Min_Difference)) +
   geom_bar(stat="identity", width=.5, aes(fill = Country)) +
```

```
labs(title="Ordered Bar Chart",
```

subtitle="Maximum-Minimum Difference in Average Monthly Temperature (C) by Country, since 1900",

```
caption="Case Study 2: Q4, Part I") +
```

theme(axis.text.x = element_text(angle=65, vjust=0.6))

#Question 4.III

CityTemp <- read_csv("C:/Users/jkras/Desktop/SMU/DDS/Case Study 2/CityTemp.csv")

CityTemp_2 <- subset(CityTemp, grepl("^.+(19|20)",Date))

CityTemp_new <- aggregate(CityTemp_2\$`Monthly AverageTemp`, by = list(CityTemp_2\$City), FUN = min, na.rm = T)

CityTemp_new2 <- aggregate(CityTemp_2\$`Monthly AverageTemp`, by = list(CityTemp_2\$City), FUN = max, na.rm = T)

CityTemp_min <- subset(CityTemp_new, select= x)

colnames(CityTemp_min) <- "Minimum"

colnames(CityTemp_new2) <- c("City", "Maximum")</pre>

CityTemp_Difference <- cbind(CityTemp_new2, CityTemp_min)</pre>

CityTemp_Difference\$Max_Min_Difference <- (CityTemp_Difference\$Maximum - CityTemp_Difference\$Minimum)

CityTemp_20Max_Differences <-CityTemp_Difference[order(CityTemp_Difference\$Max_Min_Difference, decreasing = T)[1:20],]

CityTemp_20Max_Differences

		City	Maximum	Minimum	Max_Min_Difference
34			26.509		53.281
19		Changchun	26.572	-23.272	49.844
65		Moscow	24.580	-19.376	43.956
86		Shenyang	26.010	-17.035	43.045
<mark>64</mark>		Montreal	23.059	-18.363	41.422
48		Kiev	24.593	-16.191	40.784
<mark>79</mark>	Saint	Petersburg	21.921	-18.589	40.510
96		Toronto	23.181	-15.502	38.683
92		Taiyuan	24.718	-13.116	37.834
73		Peking	28.936	-8.017	36.953
94		Tianjin	28.936	-8.017	36.953
84		Seoul	26.791	-8.992	35.783
<mark>60</mark>		Mashhad	27.226	-8.384	35.610
24		Dalian	25.875	-9.348	35.223
21		Chicago	26.372	-8.590	34.962
93		Tangshan	27.346	-7.487	34.833
71		New York	25.313	-9.147	34.460
6			38.283		34.047
10		Berlin	23.795	-10.125	33.920
43		Jinan	28.389	-5.389	33.778

CityTemp_Sorted_Max_Differences <-CityTemp_20Max_Differences[order(CityTemp_20Max_Differences\$Max_Min_Difference),]

CityTemp_Sorted_Max_Differences\$City <- factor(CityTemp_Sorted_Max_Differences\$City, levels = CityTemp_Sorted_Max_Differences\$City)

ggplot(CityTemp Sorted Max Differences, aes(x=City, y=Max Min Difference)) +

geom_bar(stat="identity", width=.5, aes(fill = City)) +

labs(title="Ordered Bar Chart",

subtitle="Maximum-Minimum Difference in Average Monthly Temperature (C) by City, since 1900",

caption="Case Study 2: Q4, Part III") +

theme(axis.text.x = element_text(angle=65, vjust=0.6))

#Question 4.IV

#Since 1900, the ranges of the maximum-minimum average monthly temperature difference by country and by city are roughly comparable.

#Of note is the larger spread in the top twenty cities (~20 degrees compared to ~14 degrees across the top twenty countries).

#Differences across countries are largely attributable to geographic and climatological differences. Arid, semi-arid, and landlocked humid continental regions with charcteristically large diurnal and seasonal fluctuations are especially prevalent on the list.

#Differences across cities are also partially attributable to the environmental impact of human activity in densely populated regions.

#As some of the listed cities are not situated in the list of countries, one can reasonably conclude that the diversity of climate types in countries with larger geographic landmass is also a factor.

#Question 4.II

SMU_6306-403_DDS_Case-Study-2 Dr. Jack K. Rasmus-Vorrath 8/16/17

US_TEMP <- subset(subset(TEMP, grepl("^.+(199|200|201)",Date)), Country == "United States")

US TEMP\$Fahrenheit <- US TEMP\$`Monthly AverageTemp` * (9/5) + 32

head(US_TEMP\$Fahrenheit)

[1] 29.9786 28.8554 40.0370 48.8840 56.7896 67.6040

US TEMP\$Date <- as.Date(US TEMP\$Date, "%m/%d/%Y")

US_TEMP\$Year <- as.Date(cut(US_TEMP\$Date, breaks = "year"))</pre>

library(scales)

ggplot(data = US_TEMP, aes(Year, Fahrenheit)) +

stat_summary(fun.y = mean, geom = "line", size = 1.5, linetype = "dotted", color = "purple") +

scale x date(labels = date format("%Y"), date breaks = "1 year") +

labs(title="Time Series Line Chart",

subtitle="Average Monthly US Temperature (F), since 1990",

caption="Case Study 2: Q4, Part IIb")

Time Series Line Chart

Case Study 2: Q4, Part IIb

```
US_YR_mean <- aggregate(US_TEMP$Fahrenheit, by = list(US_TEMP$Year), FUN = mean)

colnames(US_YR_mean) <- c("Year", "Yr_Mean_Fahrenheit")

US_YR_Diff <- diff(US_YR_mean$Yr_Mean_Fahrenheit)

US_YR_Difference <- as.numeric(c("NA", US_YR_Diff))

US_Yearly_Mean_Diff <- cbind(US_YR_mean, US_YR_Difference)

colnames(US_Yearly_Mean_Diff)[3] <- "Yearly_Mean_Difference"
```

head(US_Yearly_Mean_Diff)

	Year	Yr_Mean_Fahrenheit	Yearly_Mean_Difference
	1 1990-01-01	49.13885	NA
į	2 1991-01-01	49.08860	-0.05025
	3 1992-01-01	48.30140	-0.78720
	4 1993-01-01	47.96105	-0.34035
ı	5 1994-01-01	48.68660	0.72555
(6 1995-01-01	48.79580	0.10920

US_Yearly_Mean_Diff[which.max(US_Yearly_Mean_Diff\$Yearly_Mean_Difference),]

```
Year Yr_Mean_Fahrenheit Yearly_Mean_Difference
24 2013-01-01 52.3348 1.86485
```

Question 5)

def convert_to_fahrenheit(celsius):

temp = celsius.split()

c = [float(i) for i in temp]

f = [(i * 9 / 5 + 32) for i in c]

print('The conversions from Celsius to Fahrenheit are: ', *f)

def convert to celsius(fahrenheit):

temp = fahrenheit.split()

f = [float(i) for i in temp]

c = [((i - 32) * 5 / 9) for i in f]

print('The conversions from Fahrenheit to Celsius are: ', *c)

```
def convert():
 while True:
 try:
 user input = input('From what do you want to convert (C, F, or Q to quit)?: ')
     if user input == 'celsius' or user input == 'c' or user input == 'C' or user input == 'Celsius':
   print('To convert a temperature from Celsius to Fahrenheit:')
   celsius = input('CELSIUS as a (sequence of space-separated) number(s): ')
   convert_to_fahrenheit(celsius)
elif user input == 'fahrenheit' or user input == 'f' or user input == 'F' or user input ==
'Fahrenheit':
    print('To convert a temperature from Fahrenheit to Celsius:')
        fahrenheit = input('FAHRENHEIT as a (sequence of space-separated) number(s): ')
    convert_to_celsius(fahrenheit)
     elif user input == 'q' or user input == 'Q' or user input == 'Quit' or user input == 'quit':
        print('Quitting now')
        break
   else:
    raise ValueError
 except ValueError:
 print('Choose C, F, or Q. Insert temperatures as space-separated numbers.')
 continue
convert()
```

[Trial Run]

runfile('C:/Users/jkras/Desktop/Fahrenheit-Celsius Converter.py', wdir='C:/Users/jkras/Desktop')

From what do you want to convert (C, F, or Q to quit)?: c

To convert a temperature from Celsius to Fahrenheit:

CELSIUS as a (sequence of space-separated) number(s): 34 35 36

The conversions from Celsius to Fahrenheit are: 93.2 95.0 96.8

From what do you want to convert (C, F, or Q to quit)?: f

To convert a temperature from Fahrenheit to Celsius:

FAHRENHEIT as a (sequence of space-separated) number(s): 35 36 37

From what do you want to convert (C, F, or Q to quit)?: ooga booga

Choose C, F, or Q. Insert temperatures as space-separated numbers.

From what do you want to convert (C, F, or Q to quit)?: " "

Choose C, F, or Q. Insert temperatures as space-separated numbers.

From what do you want to convert (C, F, or Q to quit)?:

Choose C, F, or Q. Insert temperatures as space-separated numbers.

From what do you want to convert (C, F, or Q to quit)?: celsius

To convert a temperature from Celsius to Fahrenheit:

CELSIUS as a (sequence of space-separated) number(s): 24 25 26

The conversions from Celsius to Fahrenheit are: 75.2 77.0 78.8

From what do you want to convert (C, F, or Q to quit)?: fahrenheit

To convert a temperature from Fahrenheit to Celsius:

FAHRENHEIT as a (sequence of space-separated) number(s): 57 58 59

The conversions from Fahrenheit to Celsius are: 13.888888888889 14.4444444444445 15.0

From what do you want to convert (C, F, or Q to quit)?: quit

Quitting now