NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3293

CUMULATIVE FATIGUE DAMAGE OF AXIALLY LOADED ALCLAD 75S-T6

AND ALCLAD 24S-T3 ALUMINUM-ALLOY SHEET

By Ira Smith, Darnley M. Howard, and Frank C. Smith

National Bureau of Standards

Washington September 1955

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3293

CUMULATIVE FATIGUE DAMAGE OF AXIALLY LOADED ALCLAD 75S-T6

AND ALCLAD 24S-T3 ALUMINUM-ALLOY SHEET

By Ira Smith, Darnley M. Howard, and Frank C. Smith

SUMMARY

This report presents the results of cumulative-fatigue-damage tests made on 607 specimens machined from alclad 75S-T6 aluminum-alloy sheet 0.064 inch thick and 198 specimens of alclad 24S-T3 and alclad 75S-T6 aluminum-alloy sheet 0.032 inch thick. The tests of the 0.064-inch-thick specimens consisted of 35 different loading conditions and the tests of the 0.032-inch material consisted of 13 different loading conditions. The stress amplitudes used were nominally \$\frac{1}{2}\$16,000 and \$\frac{1}{2}\$17,000 psi, \$\frac{1}{2}\$16,000 and \$\frac{1}{2}\$30,000 psi, \$\frac{1}{2}\$16,000 and \$\frac{1}{2}\$0,000 psi.

The cumulative-damage ratio was calculated as the sum of the ratios of the numbers of cycles applied at the different stress levels to the number of cycles at the same stress level that would cause failure. Seventy-two percent of the average cumulative-damage ratios were within twenty percent of unity, and forty percent were within ten percent of unity. The smallest average cumulative-damage ratio of a group of four similar specimens was 0.568 and the largest, 1.440. The cumulative-damage ratios for the 0.032-inch-thick material showed no systematic variation from those for the 0.064-inch material.

INTRODUCTION

Aircraft structures in service are subjected to stresses of varying amplitudes. It is desirable, therefore, to include the effect of varying stress amplitude in tests for determining the fatigue life of aircraft. It is known (refs. 1 and 2) that, for some ferrous materials, a sequence of stresses of fluctuating amplitude produces pronounced effects on the fatigue properties of these materials. The effects of understressing, overstressing, "coaxing," and sequence loading have been investigated for ferrous materials (refs. 3 to 7). Relatively little work of this type, however, has been done on high-strength aluminum alloys.

Several theories have been advanced in an effort to obtain a relationship between the number of cycles of stress at different stress levels

and the cumulative fatigue damage. Miner (ref. 8) assumed the amount of cumulative fatigue damage under repeated loads at a given stress level to equal the number of loading cycles applied at that stress level expressed as a percentage of the number of cycles to failure at that stress level. A review of previous work led Richart and Newmark (ref. 9) to assume the existence of a damage - cycle-ratio relation during the process of forming a fatigue crack at any overstress. The relationship, in the form of experimentally determined curves, is used to predict damage and failure. Wallgren (ref. 10) assumed a modified expression of the cumulative-damage hypothesis of reference 8 in considering that the sum of the cycle ratios at failure can exceed or fall below unity depending on the material and cycle pattern.

The National Bureau of Standards, under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics, undertook a program of cumulative-fatigue-damage tests on high-strength aluminum-alloy sheet materials to obtain sufficient experimental evidence to determine the usefulness of Miner's method described in reference 8. The present investigation was performed in two parts. The first part consisted of tests of 0.064-inch-thick alclad 758-T6 aluminum-alloy rolled sheet specimens. The data obtained compare cumulative fatigue damage over a wide range of stress-cycle histories. The second part consisted of tests of 0.032-inch-thick alclad 248-T3 and 0.032-inch-thick alclad 758-T6. The results of these tests are included to show the effect on the cumulative damage ratio of:

- (1) Stress amplitude
- (2) Sheet thickness
- (3) Material
- (4) Mean stress

The authors wish to express their appreciation to the staff of the Engineering Mechanics Section of the National Bureau of Standards for their assistance on this work. Particular thanks go to Mr. Timothy O'Connor for his assistance on the tests and to Mr. Samuel Levy and the late Mr. A. E. McPherson for their advice, assistance, and encouragement.

DESCRIPTION OF MACHINES

The tests were performed on two nominally identical lever-type fatigue testing machines (fig. 1) designed and constructed at the National Bureau of Standards (ref. 11). These machines operate at a nominal speed of 1,000 rpm and are capable of automatically applying a periodic sequence of loads of two amplitudes for various predetermined loading patterns. The eccentric crank (fig. 2) is placed in either of two predetermined positions by means of a compressed-air actuated linkage. The air valves

are controlled through a suitable circuit closed by microswitches. After the preset number of cycles has been reached, a disk with lugs driven by a gear reduction box (fig. 3) actuates the microswitches. Specimens are tightly clamped between the jaws and are axially loaded. A desired mean stress is obtained by suitably setting the position of the lever relative to the midpoint of its excursion before the specimen is clamped. Load is measured in terms of bending strain in the lever by means of two wire resistance strain gages located near the extreme fibers of the lever. The output from these gages is passed into a modified SR-4 circuit (ref. 12) which drives a cathode-ray oscillograph. This circuit gives a continuous indication of the force-time relationship in the specimen.

SPECIMENS AND TEST PROCEDURE

The specimens for the cumulative-fatigue-damage tests were machined from alclad 75S-T6 aluminum-alloy rolled sheet 0.064 inch thick and from alclad 24S-T3 and alclad 75S-T6 aluminum-alloy sheet 0.032 inch thick. The static properties of the materials are shown in figure 4.

The specimens were machined to the shape shown in figure 5. Lubricated steel guides (ref. 13) were used to prevent the specimens from buckling during the compression half of the loading cycle.

Since the effects of cumulative damage on the fatigue life of aluminum alloys may be small, it was felt that extreme care should be used to obtain as consistent fatigue data as possible. In an effort to achieve consistent data the following fundamental variables affecting scatter were considered:

- (a) The homogeneity of the material from which the specimens were made
- (b) The consistency of the machining technique used to manufacture the specimens
- (c) The actual size of the specimens after machining, with particular emphasis on the area of the reduced section
- (d) The general appearance of the surface of the specimen immediately before testing with regard to any scratches, nicks, or other accidentally introduced stress-raisers
- (e) The magnitude and distribution of the stress applied to the reduced section of the specimen

In addition to these variables there are, no doubt, many other factors which influence the fatigue life, such as corrosion, systematic

(but unknown) variations in the testing machines, and variations in testing technique. The test program was designed to control the above variables as well as possible.

To minimize variations in the results, all specimens in a given test group were machined from the same sheet of material. A test group consisted of 16 specimens selected from a batch of 22 machined simultaneously. Before testing, each specimen was visually examined for any obvious stress-raisers and if such were found the specimen was rejected. The two outside specimens of each batch, which were burred as a result of machining, were always discarded. Corners of the reduced section of each specimen were rounded lightly by hand with No. O emery paper.

The strain distribution across two typical specimens was checked with Tuckerman optical strain gages during the course of the tests and was found uniform to within 1 percent. The calibration of the machines was checked after each test group. The calibration constants did not change more than 1.5 percent between calibrations. The dynamic load was measured on each specimen and on most specimens at least twice during the test. The assembly of specimen, guides, paper, and lubricants was a modification of that described in reference 13. For the first tests, performed at stresses of ±30,000 and ±40,000 psi, the paper was omitted and extreme care taken to eliminate possible binding of the guides with the specimen. This method was discarded and the following procedure adopted for the remaining tests.

Two strips of copy paper 1 inch wide were soaked for 5 minutes in SAE 40 motor oil. The guide blocks and specimen were covered with a thin coat of Andok M-275 cup grease. The greased blocks were clamped against either side of the specimen with the oiled paper between guide and specimen. The clamp was tight enough to prevent the specimen from sliding under normal hand pressure. The assembly remained clamped for at least 5 minutes to allow grease to squeeze out that would otherwise come out during the course of the test. The guides were loosened, adjusted, and locked. Guides on all specimens were adjusted so that when the specimen was held vertically the guide would not slide under its own weight but would slide under the additional weight of a 0.44-pound jig. The weight of the guide assembly was 0.49 pound. Figure 6 shows a typical specimen ready for test.

The cycle pattern for a given group of tests specifies the number of cycles which the testing machine automatically applies at the first of the two amplitudes for which it is set before switching to the other. The order of tests in each complete test group of 16 specimens for a given cycle pattern was as follows:

(1) A test at the higher stress

(2) A dual-load test applying the higher stress first

(3) A test at the lower stress

(4) A dual-load test applying the lower stress first

This sequence of tests was repeated four times. As a check on possible changes in testing technique of a particular operator with time, one out of every four specimens was tested by an alternate operator.

METHOD OF ANALYSIS

Fatigue tests were performed on 805 specimens in 52 test groups. A normal test group consisted of 16 tests, 4 each to failure at the higher and lower stresses and 8 cumulative-fatigue-damage tests, 4 with the higher stress applied first and 4 with the lower stress applied first. In some cases a test group was used to check or duplicate earlier tests and thus show the scatter between groups. In a few other cases a single test group was used for two loading conditions.

The data were analyzed using Miner's theory (ref. 8). This theory assumes a linear relationship between the amount of damage done to the material at a certain fatigue stress and the number of cycles applied at that stress. It assumes that previous stress history has no effect on the linearity of the relationship. It can be shown that, using these assumptions, the amount of damage done to the material by fatigue stressing at various stress amplitudes can be expressed by:

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \dots + \frac{n_r}{N_r} = \sum_{i=1}^{i=r} \frac{n_i}{N_i} = D$$
 (1)

where

n; total number of cycles of stress applied to material at ith stress

Ni number of cycles at ith stress alone that would cause failure

D cumulative-damage ratio, a value of unity representing failure according to Miner

When only two stresses are considered, equation (1) becomes

$$\left(\sum n_{\rm H}/N_{\rm H}\right) + \left(\sum n_{\rm L}/N_{\rm L}\right) = D \tag{2}$$

where

Tn_H total number of cycles of higher stress

√n_L total number of cycles of lower stress

N_H cycles to failure at higher stress

N_I, cycles to failure at lower stress

n_H cycles at high stress in a cycle pattern

n_{T.} cycles at low stress in a cycle pattern

For these tests $N_{\rm H}$ and $N_{\rm L}$ are averaged values of cycles to failure derived from the four tests to failure at the higher and lower stresses, respectively.

RESULTS

Tests of 0.064-Inch-Thick Alclad 75S-T6 Aluminum Alloy

Six hundred and seven specimens of 0.064-inch-thick alclad 75S-T6 aluminum alloy were tested in thirty-nine test groups and thirty-five different loading conditions. The results of these tests are shown in table 1. Table 2 is a summary of these results.

Nominal-stress-amplitude combinations of $\pm 30,000$ and $\pm 40,000$ psi, $\pm 30,000$ and $\pm 60,000$ psi, $\pm 16,000$ and $\pm 60,000$ psi, $\pm 16,000$ and $\pm 17,000$ psi, and $\pm 16,000$ and $\pm 30,000$ psi were used for the tests.

The cycle patterns were chosen from the equation

$$\epsilon = \frac{n_{\rm H}/N_{\rm H}}{\frac{n_{\rm H}}{N_{\rm H}} + \frac{n_{\rm H}}{N_{\rm L}}} \tag{3}$$

to cover a range of values of ε and thus to show any systematic variation of D with different ratios of high-to-low cycles in a cycle pattern. Figure 7, taken from typical data, shows that there is no systematic variation with different ratios of high-to-low cycles.

The average value of D for similar tests (usually four) in a test group ranged from 0.603 to 1.440. The value of D for individual specimens ranged from 0.373 to 1.911. The average deviation of tests to failure at a single stress was of the same order as the average deviation for the cumulative-damage tests. Test groups 12, 13, 14, and 15 were tested at nominal stress levels of ±30,000 and ±60,000 psi with identical cycle patterns. Average values of D ranged from 0.805 to 0.879 for tests in which the low stress was applied first and from 0.729 to 0.896 for tests in which the high stress was applied first. The scatter of these values for the same cycle pattern suggests that four repetitions (of the sequence of four tests for each test group) are adequate to give consistent average values of D.

Effects of prior dynamic stressing of some aluminum alloys at one stress amplitude on the fatigue strength at a second stress amplitude have been investigated (refs. 14 to 16). The results show a pronounced increase in fatigue life for certain loading conditions. The cycle patterns of test groups 11, 22, 24, 25, 29, and 30 were especially selected to investigate these effects. In test groups 11, 22, 29, and 30, every specimen except one gave cumulative-damage ratios above unity for tests in which the higher stress was applied first. The average values of D ranged from 1.074 to 1.440 and the individual values of D ranged from 0.843 to 1.911; nH ranged from 35.4 to 82.9 percent of the life of the material. There seems to be no systematic variation of D when the lower stress is applied first or for tests performed at nominal stress levels of ±16,000 and ±17,000 psi.

Test group 23 investigated the cumulative-damage effect of short bursts of a very high stress. These tests were performed at nominal stress levels of $\pm 16,000$ and $\pm 60,000$ psi. For the first group of cumulative-damage tests L-Ha (table l(c)) the cyclic sequence was 100,000 cycles at low stress, plus 500 cycles at high stress, plus 100,000 cycles at low stress, plus 500 cycles at high stress, plus the remaining life of the specimen at the lower stress. The second group of cumulative-damage tests L-Hb followed the sequence of 100,000 cycles at the low stress plus 100 cycles at the high stress. This sequence was repeated until failure. The value of D was 0.806 and 0.663, respectively.

Figures 8(a) to 8(c) show the effect on D of the length of cycle pattern. For tests in which the higher stress was applied first an increase in the consecutive cycles applied tends to increase the cumulative-damage ratio. There seemed to be no effect on D for tests in which the lower stress was applied first.

Figure 9¹ presents the cumulative-damage ratios for all the tests. Figure 10 is an S-N diagram of the material. The points were plotted from the data summarized in table 2 on specimens tested to failure at one stress amplitude.

The test groups in figure 9 are not listed in numerical order.

Tests of 0.032-Inch-Thick Alclad 24S-T3

and Alclad 75S-T6 Aluminum Alloy

One hundred and ninety-eight specimens of 0.032-inch-thick aluminum alloy were tested in thirteen test groups (thirteen different loading conditions) at nominal-stress-amplitude combinations of ±16,000 and ±30,000 psi. The results of these tests are presented in table 3 and are summarized in table 4. Tests on groups 40 through 45 were made on alclad 24S-T3 and tests on groups 46 through 52 were made on alclad 75S-T6. Figure 11 shows that there is no appreciable variation in the cumulative-damage ratios obtained from the two materials.

The cycle patterns were chosen from equation (3) so that the values of D for the 0.032-inch material could be compared with those for the 0.064-inch material.

The average value of D for these tests varied from 0.568 to 1.218. The value of D for individual specimens in this series ranged from 0.381 to 1.422.

Figure 12 presents an S-N diagram of the materials used. The points were plotted from the data in table 3 for specimens tested at one stress amplitude.

DISCUSSION

A comparison of average values of the cumulative-damage ratio D for the 0.032-inch-thick material with a few average values for the 0.064-inch material is shown in table 5. There is no apparent variation of D with sheet thickness.

Table 5 also shows that, for test groups of comparable cycle patterns, D is about the same for tests performed at mean stresses of 0- and 20,000-psi tension.

The largest average cumulative-damage ratio obtained for a group of four similar specimens was 1.440 in test group 29 and the smallest, 0.568 in test group 41.

From the data of tables 2 and 4, the fatigue life can be predicted, using Miner's cumulative-damage ratio, to within 20 percent 72 percent of the time and to within 10 percent 40 percent of the time regardless of

- (1) The stress amplitude
- (2) The sheet thickness
- (3) The alloy
- (4) The mean stress

Although the present tests indicate relatively little deviation from a cumulative-damage ratio of 1 at failure, it must be remembered that all the tests have been conducted under conditions of nominally uniform stress. For specimens having stress concentrations it is likely that high tensile stresses will cause permanent set and result in beneficial residual stresses in the neighborhood of the stress concentration. For subsequent cycling at lower loads of the same type, an improvement in life may therefore be expected.

CONCLUDING REMARKS

Cumulative-fatigue-damage tests were made on 607 specimens of 0.064-inch-thick alclad 758-T6 aluminum alloy in 35 different loading conditions and on 198 specimens of 0.032-inch-thick alclad 248-T3 and alclad 758-T6 aluminum alloy in 13 different loading conditions. The data presented indicate that, when the materials are stressed as described, the life can be predicted to within 20 percent 72 percent of the time and to within 10 percent 40 percent of the time, using the assumption that the damage is proportional to the ratio of the number of cycles applied at any stress to the number of cycles at the same stress that would cause failure.

There does not seem to be any systematic variation of the aforementioned conclusion with

- (1) The stress amplitudes used
- (2) The sheet thickness used
- (3) The alloy used
- (4) The mean stress applied

There appears to be an increase in the cumulative-damage ratio with an increase in cycle ratio for tests in which the higher stress was applied first. There seems to be no effect, however, for tests in which the lower stress was applied first. The cumulative-damage ratios for these tests were, in general, less than unity.

National Bureau of Standards, Washington, D. C., March 16, 1954.

REFERENCES

- 1. Kommers, J. B.: The Effect of Under-Stressing on Cast Iron and Open-Hearth Iron. Proc. A.S.T.M., vol. 30, pt. II, 1930, pp. 368-383.
- 2. French, H. J.: Fatigue and Hardening of Steels. Trans. Am. Soc. Steel Treating, vol. 21, no. 10, Oct. 1933, pp. 899-946.
- 3. Russell, H. W., and Welcker, W. A., Jr.: Damage and Overstress in the Fatigue of Ferrous Materials. Proc. A.S.T.M., vol. 36, pt. II, 1936, pp. 118-138.
- 4. Kommers, J. B.: The Effect of Overstressing and Understressing in Fatigue. Proc. A.S.T.M., vol. 38, pt. II, 1938, pp. 249-262.
- 5. Kommers, J. B.: The Effect of Overstressing and Understressing in Fatigue. Proc. A.S.T.M., vol. 43, 1943, pp. 749-762.
- 6. Kommers, J. B.: The Effect of Overstress in Fatigue on the Endurance Life of Steel. Proc. A.S.T.M., vol. 45, 1945, pp. 532-541.
- 7. Bennett, J. A.: A Study of the Damaging Effect of Fatigue Stressing on X4130 Steel. Proc. A.S.T.M., vol. 46, 1946, pp. 693-711.
- 8. Miner, Milton A.: Cumulative Damage in Fatigue. Jour. Appl. Mech., vol. 12, no. 3, Sept. 1945, pp. A-159 A-164.
- 9. Richart, F. E., Jr., and Newmark, N. M.: An Hypothesis for the Determination of Cumulative Damage in Fatigue. Proc. A.S.T.M., vol. 48, 1948, pp. 767-798.
- 10. Wallgren, G.: Fatigue Tests With Stress Cycles of Varying Amplitude. Rep. No. 28, The Aero. Res. Inst. of Sweden (Stockholm), 1949.
- 11. Smith, Frank C., Howard, Darnley M., Smith, Ira, and Harwell, Richard: Fatigue Testing Machine for Applying a Sequence of Loads of Two Amplitudes. NACA TN 2327, 1951.
- 12. Howard, Darnley M.: Flexural Fatigue Tests of Wing Beams. Rep. 1350, Nat. Bur. Standards, Dec. 1951.
- 13. Brueggeman, W. C., and Mayer, M., Jr.: Guides for Preventing Buckling in Axial Fatigue Tests of Thin Sheet-Metal Specimens. NACA TN 931, 1944.
- 14. Bennett, John A., and Baker, James F.: Effects of Prior Static and Dynamic Stresses on the Fatigue Strength of Aluminum Alloys. Res. Paper RP2157, Jour. Res., Nat. Bur. Standards, vol. 45, no. 6, Dec. 1950, pp. 449-457.

15. Dolan, T. J., and Brown, H. F.: Effect of Prior Repeated Stressing on the Fatigue Life of 75S-T Aluminum. Preprint 91, A.S.T.M., 1952.

16. Stickley, G. W.: Improvement of Fatigue Life of an Aluminum Alloy by Overstressing. NACA TN 857, 1942.

Table 1.- cumulative-fatigue-damage results for 0.064-inch-thick alclad 75s-th aluminum allox $$\lceil \text{Mean stress}, \ 0 \rceil$$

(a) Nominal stresses, ±30,000 and ±40,000 psi

Specimen	Load sequence (a)	High stress, ksi	low stress, ksi	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	Te	est group 1; cycle	e pattern, 7,000	cycles high a	nd 20,000 cycles low	
m-16 m-20 m-24 m-28	н н н	±42.4 ±43.1 ±42.9 ±43.0 4v. ±42.9		12,780 14,920 11,970 12,620 13,070	0.978 1.141 .916 .965 1.000	2.2 14.1 8.4 <u>3.5</u> ±7.1
m-18 m-22 m-26 m-31	L L L		±30.8 ±30.5 ±31.1 ±30.5 Av. ±30.7	54,430 51,740 47,980 58,470 53,160	1.024 .975 .903 1.100 1.000	2.4 2.7 9.7 10.0 16 .2
m-17 m-21 m-25 m-30	H-L H-L H-L H-L	±42.1 ±43.2 ±42.9 ±42.1 Av. ±42.6	±30.5 ±31.0 ±30.8 ±30.5 ±30.7	29,550 30,710 28,150 31,350 29,940	1.107 1.196 1.000 1.245 1.137	2.6 5.2 12.0 9.4 1 7.3
m-19 m-23 m-27 m-41	L-H L-H L-H	±42.7 ±42.8 ±43.0 ±41.4 ±42.5	±30.8 ±30.8 ±30.9 ±30.0 ±30.6	26,570 26,590 26,650 33,390 28,300	.879 .880 .885 1.032 .919	4.4 4.2 3.7 12.3 16.2
		Test group 2; cy	cle pattern, 10	cycles high a	nd 40 cycles low	
m-64 m-72 m-75 m-78	H H H	±42.5 ±41.5 ±41.6 ±41.6 Av. ±41.8		14,820 14,580 15,640 16,150 15,300	0.969 .953 1.022 1.056 1.000	3.1 4.7 2.2 <u>5.6</u> 13 .9
m-54 m-62 m-76 m-79	L L L		±31.6 ±31.5 ±31.3 ±31.3 Av. ±31.4	47,550 45,150 46,460 53,410 48,140	.988 .938 .965 <u>1.109</u>	1.2 6.2 3.5 10.9 1 5.5
m-56 m-60 m-65 m-73	H-L H-L H-L	±43.0 ±42.3 ±42.8 ±42.3 Av. ±42.6	#31.4 #31.6 #32.1 #31.6 #31.7	26,950 28,940 25,330 26,290 26,880	.800 .859 .752 <u>.781</u> .798	7.6 5.8 2.1 ±4.0
m-71 m-74 m-77 m-81	L-H L-H L-H	±41.4 ±42.5 ±41.8 ±41.7 Av. ±41.8	±31.3 ±31.7 ±31.4 ±31.3 ±31.4	33,500 31,470 34,230 37,380 34,150	.995 .934 1.016 <u>1.110</u> 1.014	1.9 7.9 .2 9.4 ±4.9
	Te	est group 3; cycle	e pattern, 1,000	cycles high a	nd 4,000 cycles low	
m-16 m-20 m-24 m-28	н н н	±42.4 ±43.1 ±42.9 ±43.0 Av. ±42.9		12,780 14,920 11,970 12,620 13,070	0.978 1.141 .916 .965 1.000	2.2 14.1 8.4 <u>3.5</u> ±7.1
m-18 m-22 m-26 m-31	L L L		±30.8 ±30.5 ±31.1 ±30.5 Av. ±30.7	54,430 51,740 47,980 58,470 53,160	1.024 .973 .903 1.100 1.000	2.4 2.7 9.7 10.0 16. 2
m-40 m-46 m-51 m-53	H-L H-L H-L	±43.1 ±42.5 ±42.9 ±43.0 Av. ±42.9	±31.1 ±31.0 ±31.2 ±31.4 ±31.2	30,220 33,350 27,270 30,620 30,370	.927 1.031 .859 .958	1.8 9.2 9.0 1.5 ±5.4
m-38 m-45 m-49 m-52	L-H L-H L-H L-H	±43.2 ±42.3 ±42.6 ±42.9 Av. <u>±42.8</u>	±31.2 ±30.9 ±31.5 ±31.0 ±31.2	33,540 29,650 33,490 34,040 32,680	.977 .884 .976 <u>.989</u> .957	2.1 7.6 2.0 <u>3.3</u> ±3.8

 $^{^{\}rm a}$ H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 755-T6 ALUMINUM ALLOY - Continued

(a) Nominal stresses, ±30,000 and ±40,000 psi - Continued

Specimen	Load sequence	High stress,	Low stress, ksi	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	Te	st group 4; cycle	pattern, 10,000	cycles high a	nd 40,000 cycles low	
m-83 m-88 m-91 m-96	н н н н	±42.1 ±42.0 ±42.2 ±42.1 Av. ±42.1		15,740 15,180 14,520 13,890 14,830	1.061 1.023 .979 .936 1.000	6.1 2.3 6.4 6.4 1 4.2
m-85 m-87 m-93 m-98	L L L		±31.6 ±31.4 ±31.7 ±31.5 Av. ±31.6	41,550 47,810 43,570 47,940 45,220	.919 1.057 .964 1.060 1.000	8.1 5.7 3.6 6.0 1 5.8
m-84 m-89 m-92 m-97	H-L H-L H-L	±42.0 ±42.4 ±42.1 ±42.3 Av. ±42.2	±31.5 ±31.8 ±31.6 ±31.8 ±31.7	^b 27,150 32,580 21,980 19,460 25,290	1.034 1.174 .939 <u>.883</u> 1.007	2.7 16.6 6.8 12.3 ±9.6
m-86 m-90 m-95 m-99	L-H L-H L-H	±42.1 ±42.3 ±42.0 ±41.8 Av. ±42.1	±31.7 ±31.7 ±31.6 ±31.5 ±31.6	c39,400 43,210 41,950 43,200 41,940	.921 1.101 1.016 1.100 1.035	11.0 6.4 1.8 6.3 16.4
		Test group 5	; cycle pattern,	10 cycles high	n and 90 cycles low	
m-104 m-108	Н	±40.4 ±40.4 ±40.4		17,560 15,770 16,670	1.054 .946 1.000	5.4 5.4 ±5.4
m-106 m-110	L		±30.1 ±30.3 Av. ±30.2	53,300 51,480 52,390	1.017 <u>.983</u> 1.000	1.7 1.7 ±1.7
m-105 m-109	H-L H-L	±41.0 ±40.6 Av. ±40.8	±30.9 ±30.4 ±30.7	38,530 38,730 38,630	. 893 . 898 . 896	.3 .2 ±.3
m-103 m-107	L-H L-H	±40.7 ±40.9 Av. ±40.8	±30.7 ±30.6 ±30.7	39,440 38,530 38,990	.914 .893 .904	1.1 1.2 ±1.2
		Test group 6;	cycle pattern,	100 cycles high	and 900 cycles low	
x-la x-5a x-9a x-13a	H H H H	±41.8 ±41.4 ±41.4 ±41.7 Av. ±41.6		15,620 16,310 16,450 16,290 16,170	0.966 1.009 1.018 1.008 1.000	3.4 .9 1.8 .8 ±1.7
x-3a x-7a x-11a x-14a	L L L		±31.0 ±30.8 ±30.8 ±30.9 Av. ±30.9	50,580 54,790 43,590 50,890 49,960	1.012 1.097 .872 1.019 1.000	1.2 9.7 12.8 1.9
x-2a x-6a x-10a x-16a	H-L H-L H-L	±41.3 ±41.0 ±41.2 ±41.7 Av. ±41.3	#30.9 #30.6 #30.7 #31.0 #30.8	34,700 35,060 141,725 37,040 37,130	.841 .851 1.011 <u>.898</u> .900	6.6 5.4 12.3 .2 1 6.1
x-4a x-8a x-12a x-15a	L-H L-H L-H L-H	±41.4 ±41.2 ±41.3 ±42.0 Av. ±41.5	±30.9 ±30.7 ±30.7 ±31.3 ±30.9	37,960 42,990 44,940 38,010 40,980	.917 1.040 1.085 <u>.920</u> .991	7.5 4.9 9.5 7.2 ±7.3

 $^{^{8}}$ H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

bAccidentally changed to low load at 9,560 cycles.

CAccidentally changed to high load at 38,300 cycles.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 75S-T6 ALUMINUM ALLOY - Continued

(a) Nominal stresses, ±30,000 and ±40,000 psi - Continued

Specimen	Load sequence (a)	High stress,	Low stress, ksi	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	(4)	Test group 7; cyc	Le pattern, 1,000 d	cycles high and	9,000 cycles low	
x-19a x-23a x-27a x-2c	Н Н Н	±41.5 ±41.2 ±41.5 ±41.4 Av. ±41.4		12,560 13,650 12,870 13,860 13,240	0.949 1.031 .972 1.047 1.000	5.1 3.1 2.8 4.7 ±3.9
x-17a x-21a x-25a x-1c	L L L		±30.9 ±31.0 ±31.1 ±30.8 Av. ±31.0	43,670 52,160 54,280 53,520 50,910	.858 1.025 1.066 1.051 1.000	14.2 2.4 6.6 <u>5.1</u> ±7.1
x-20a x-24a x-28a x-4e	H-L H-L H-L H-L	±41.5 ±41.8 ±41.4 ±41.5 Av. ±41.6	±30.9 ±31.0 ±30.8 ±30.8 ±30.9	43,550 40,160 49,140 40,320 43,290	1.135 1.021 1.245 1.034 1.109	2.3 7.9 12.3 6.8 1 7.3
x-18a x-22a x-26a x-3c	L-H L-H L-H L-H	±41.3 ±41.3 ±41.4 ±41.4 Av. ±41.4	±30.8 ±30.8 ±30.8 ±30.8 ±30.8	31,720 28,170 36,700 35,240 32,960	.791 .665 .889 .860	1.2 17.0 11.0 7.4 ±9.2
		Test group 8;	cycle pattern, 20	cycles high and	1 30 cycles low	
x-le x-5e x-10e x-17e x-2le	H H H H	±41.5 ±41.5 ±41.3 ±41.7 ±41.5 Av. ±41.5		16,360 14,120 17,010 16,640 12,630 15,350	1.066 .920 1.108 1.084 .823 1.000	6.6 8.0 10.8 8.4 17.7 ±10.3
x-3e x-7e x-13e x-16e x-19e	L L L		±30.2 ±30.2 ±30.3 ±30.5 ±30.7 Av. ±30.4	39,680 41,450 47,000 59,250 50,550 47,590	.834 .871 .988 1.245 1.062 1.000	16.6 12.9 1.2 24.5 6.2 ±12.3
x-2e x-6e x-14e x-18e	H-L H-L H-L	±41.4 ±41.7 ±41.5 ±41.4 Av. ±41.5	±30.0 ±30.3 ±30.2 ±30.2 ±30.2	18,230 21,250 19,450 20,240 19,790	.705 .822 .752 <u>.783</u> .765	7.8 7.5 1.7 2.4 ±4.8
x-4e x-8e x-16d x-15e x-20e	Г-Н Г-Н Г-Н	±41.1 ±41.4 ±41.3 ±41.5 ±41.0 Av. ±41.3	#30.0 #30.2 #30.1 #30.2 #29.8 #30.1	25,630 18,820 21,880 26,130 22,570 23,010	.990 .727 .845 1.010 .872 .889	11.4 18.2 4.9 13.6 1.9 ±10.0
			; cycle pattern, 20	00 cycles high a	nd 300 cycles low	THE PARTY OF
x-13b x-17b x-21b x-25d	H H H	±42.1 ±41.9 ±41.9 ±41.5 Av. ±41.9		13,720 15,140 17,220 15,630 15,430	0.889 .981 1.116 1.013 1.000	11.1 1.9 11.6 1.3 16.5
x-15b x-19b x-23b x-27b	L L L		±31.2 ±31.1 ±31.1 ±31.0 Av. ±31.1	53,280 56,330 59,610 59,110 57,080	.933 .987 1.044 1.036 1.000	6.7 1.3 4.4 3.6 1 4.0
x-14b x-18b x-22b x-26b	H-L H-L H-L	±41.9 ±41.7 ±41.6 ±41.8 Av. ±41.8	±31.5 ±30.8 ±31.0 ±30.9 ±31.1	19,950 28,530 22,600 30,620 25,430	.728 1.040 .826 1.119 .928	21.6 12.1 11.0 20.6 ±16.3
x-16b x-20b x-24b x-28b	L-H L-H L-H L-H	±41.6 ±41.9 ±42.0 ±41.6 Av. ±41.8	±30.9 ±30.8 ±31.2 ±30.8 ±30.9	22,910 25,480 23,860 23,340 23,900	.832 .928 .865 .846 .868	4.1 6.5 .3 <u>2.8</u> 1 3.4

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCIAD 75S-T6 ALUMINUM ALLOY - Continued

(a) Nominal stresses, $\pm 30,000$ and $\pm 40,000$ psi - Concluded

Specimen	Load sequence	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
		t group 10; cyc	le pattern, 2,	000 cycles hi	igh and 3,000 cycles	low
x-ld x-9d x-13d x-lle x-20d	H H H H	±42.1 ±41.3 ±41.6 ±41.6 ±41.3 Av. ±41.6		12,000 15,910 17,980 15,190 15,260 15,270	0.786 1.042 1.178 .995 <u>.999</u> 1.000	21.4 4.2 17.8 .5 .1 18 .8
x-3d x-7d x-11d x-15d x-18d	L L L		±30.8 ±31.0 ±30.9 ±30.9 ±31.1 Av. ±30.9	47,950 55,470 55,580 57,370 54,050 54,080	.887 1.026 1.028 1.061 <u>.999</u> 1.000	11.3 2.6 2.8 6.1 1 14.6
x-2d x-6d x-10d x-14d x-21d	H-L H-L H-L H-L	±42.2 ±41.5 ±41.3 ±41.5 ±41.4 Av. ±41.6	±31.2 ±30.8 ±31.0 ±30.8 ±30.9	20,300 20,920 16,730 21,990 15,800	.765 .806 .673 .876 .612 .746	2.5 8.0 9.8 17.4 18.0 ±11.1
x-4d x-8d x-12d x-16d x-19d	L-H L-H L-H L-H	±41.3 ±41.3 ±41.3 ±41.5 Av. ±41.3	±30.8 ±30.9 ±30.8 ±30.1 ±30.9 ±30.7	22,170 28,940 28,460 21,880 29,190 26,130	.786 1.049 1.018 .781 1.066	16.4 11.6 8.3 16.9 15.4 1 13.3
	Te	st group 11; cy	cle pattern, 1	1,000 cycles	high and low to fai	lure
x-Ac x-Ec x-10c x-13c	H H H	±41.2 ±41.8 ±41.9 ±42.0 Av. ±41.7		12,510 11,950 13,840 14,840 13,290	0.942 .900 1.042 1.117 1.000	5.8 10.0 4.2 11.7 ±7.9
x-9e x-12e x-15e x-17e	L L L		+31.0 +31.2 +30.9 +30.8 Av. +31.0	48,620 56,010 48,500 44,770 49,480	.983 1.132 .980 .905 1.000	1.7 13.2 2.0 9.5 1 6.6
x-Be x-Fe x-1le x-16e	H-L H-L H-L	±41.3 ±41.8 ±42.0 ±41.7 Av. ±41.7	±31.1 ±31.0 ±31.2 ±30.9 ±31.1	21,990 20,640 22,470 31,940 24,260	1.050 1.023 1.060 1.251 1.096	4.2 6.7 3.3 14.1 1 7.1

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 75S-T6 ALUMINUM ALLOY - Continued

(b) Nominal stresses, ±30,000 and ±60,000 psi

Specimen	Load sequence	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
		Test group 1	2; cycle pattern,	10 cycles high	and 90 cycles low	
Ald-18 Ald-6 Ald-7 Ald-8	H H H	±60.4 ±60.5 ±60.5 ±61.5 Av. ±60.7		2,810 2,820 3,420 <u>3,660</u> 3,180	0.884 .887 1.076 1.152 1.000	11.6 11.3 7.6 15.2 ±11.4
Ald-10 Ald-3 Ald-13 Ald-16	L L L		±29.9 ±29.7 ±30.3 ±30.0 Av. ±30.0	68,480 68,910 53,050 50,730 60,290	1.136 1.143 .880 <u>.841</u> 1.000	13.6 14.3 12.0 15.9
Ald-14 Ald-15 Ald-5 Ald-4	H-L H-L H-L	±60.3 ±61.2 ±59.9 ±61.2 Av. ±60.7	±29.7 ±29.9 ±29.5 ±30.0 ±29.8	19,640 16,940 21,340 17,450 18,840	.913 .788 .991 .811 .876	4.2 10.0 13.1 7.4 ±8.7
Ald-19 Ald-11 Ald-17 Ald-12	L-H L-H L-H L-H	±60.5 ±61.1 ±60.9 ±61.1 Av. ±60.9	±29.6 ±30.1 ±30.0 ±29.9 ±29.9	18,140 20,440 17,940 19,340 18,960	.840 .947 .831 .896 .879	4.4 7.7 5.5 1.9 ±4.9
		Test group 1	3; cycle pattern,	10 cycles high	and 90 cycles low	
1-G 9-G 5-G 13-G 17-G	H H H H	±60.0 ±59.6 ±59.1 ±60.0 ±60.5 Av. ±59.8		3,020 2,810 2,900 2,610 3,730 3,010	1.002 .932 .962 .866 1.238	0.2 6.8 3.8 13.4 23.8 ±9.6
3-G 7-G 11-G 14-G	L L L		±30.5 ±30.8 ±30.6 ±30.0 Av. ±30.5	42,060 47,710 35,960 55,270 45,250	.930 1.054 .795 1.221 1.000	7.0 5.4 20.5 22.1 ±13.8
2-G 6-G 10-G 15-G	H-L H-L H-L	±59.5 ±59.6 ±59.6 ±59.5 Av. ±59.6	±30.0 ±29.6 ±29.5 ±29.1 ±29.6	12,420 14,530 12,620 15,230 13,700	.662 .773 .672 .810 .729	9.2 6.0 7.8 11.1 ±8.5
4-G 8-G 12-G 16-G	L-H L-H L-H	±58.8 ±60.0 ±59.8 ±59.1 Av. ±59.4	±29.6 ±29.7 ±29.6 ±29.0 ±29.5	11,500 15,810 15,220 18,910 15,360	.610 .839 .807 <u>1.003</u> .815	25.2 2.9 1.0 23.1 ±13.0
		Test group	14; cycle pattern	, 10 cycles high	and 90 cycles low	
17 6 18 15	н н н	±57.6 ±57.5 ±57.7 ±57.0 Av. ±57.5		5,810 5,280 6,120 5,170 5,600	1.038 .944 1.094 .924 1.000	3.8 5.6 9.4 7.6 ±6.6
9 2 7 19 16	T T T		±28.6 ±28.4 ±28.5 ±28.3 ±28.3 Av. ±28.4	86,565 77,250 60,580 68,150 65,970 71,700	1.207 1.077 .845 .950 <u>.920</u> 1.000	20.7 7.7 15.5 5.0 8.0 ±11.4
13 10 3 12	H-L H-L H-L	±57.2 ±57.8 ±57.0 ±57.3 Av. ±57.3	±28.5 ±28.5 ±28.6 ±28.2 ±28.5	28,720 22,820 24,520 24,220 25,070	.875 .696 .747 <u>.738</u> .764	14.5 8.9 2.2 3.4 ±7.3
5 14 11 4	L-H L-H L-H L-H	±57.3 ±57.6 ±57.0 ±57.4 Av. ±57.3	±28.4 ±28.5 ±28.2 ±28.2 ±28.3	28,700 30,400 22,100 24,610 26,450	.873 .925 .672 .749 .805	8.4 14.9 16.5 7.0 ±11.7

 $^{^{\}rm a}$ H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCIAD 75S-T6 ALUMINUM ALLOY - Continued

(b) Nominal stresses, ±30,000 and ±60,000 psi - Continued

Specimen	Load sequence (a)	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
		Test group 15;	cycle pattern, lo	cycles high	and 90 cycles low	
10 19 3 17	н н н н	±59.5 ±59.9 ±59.3 ±59.9 Av. ±59.7		4,170 3,050 4,360 3,600 3,800	1.099 .804 1.149 .949 1.000	9.9 19.6 14.9 5.1 ±12.4
15 20 9 11	L L L		±29.9 ±29.2 ±29.6 ±28.8 Av. ±29.4	74,820 59,030 63,300 60,085 64,310	1.163 .918 .984 .934 1.000	16.3 8.2 1.6 6.4 ±8.1
13 5 12 4	H-L H-L H-L	±59.6 ±60.0 ±59.6 ±59.7 Av. ±59.7	±29.6 ±29.6 ±29.3 ±29.2 ±29.4	21,640 22,050 22,940 22,045 22,170	.875 .891 .927 .891 .896	2.3 .6 3.5 .6 ±1.8
18 2 14 1	L-H L-H L-H L-H	±59.2 ±59.2 ±59.5 ±57.8 Av. ±58.9	±29.3 ±29.4 ±29.5 ±28.5 ±29.2	21,330 21,140 21,930 17,240 20,410	.860 .852 .884 .695 .823	4.5 3.5 7.4 15.6 ±7.8
		Test group 16; c	ycle pattern, 10	O cycles high	and 900 cycles low	
1 5 9 13	H H H	±57.9 ±60.5 ±60.8 ±60.4 Av. ±59.9		2,970 3,560 3,480 3,730 3,440	0.865 1.036 1.013 1.086 1.000	13.5 3.6 1.3 8.6 ±6.7
3 7 11 15	L L L		±29.9 ±30.0 ±30.2 ±29.9 Av. ±30.0	57,800 60,310 60.830 54,130 58,270	.992 1.035 1.044 .929 1.000	.8 3.5 4.4 7.1 ±4.0
2 6 10 14	H-L H-L H-L	±57.9 ±60.4 ±60.9 ±61.2 Av. ±60.1	±28.6 ±29.8 ±29.9 ±29.8 ±29.5	23,050 23,080 20,930 25,070 23,030	1.039 1.048 .935 1.130 1.039	0 .9 10.0 9.1 ±5.0
4 8 12 16	L-H L-H L-H L-H	±60.4 ±60.9 ±60.3 ±60.4 Av. ±60.5	±29.9 ±31.8 ±29.8 ±29.7 ±30.3	20,950 24,990 25,970 19,960 22,970	.921 1.111 1.150 .880 1.015	9.3 9.5 13.3 13.3 ±11.3
	9	Test group 17; cyc	le pattern, 1,00	O cycles high	and 9,000 cycles low	
1 5 10 15	H H H	±61.3 ±61.2 ±60.7 ±60.9 Av. ±61.0		2,820 3,245 3,300 3,660 3,260	0.866 .997 1.014 1.124 1.000	13.4 .3 1.4 12.4 16 .9
2 6 11 17	L L L		±29.9 ±30.1 ±29.7 ±29.9 Av. ±29.9	59,540 64,240 68,250 59,820 62,960	.946 1.020 1.084 .950 1.000	5.4 2.0 8.4 <u>5.0</u> ±5.2
3 7 12 16	H-L H-L H+L	±60.9 ±60.5 ±60.8 ±61.0 Av. ±60.8	±29.9 ±29.7 ±29.7 ±30.0 ±29.8	20,750 24,110 20,550 20,930 21,590	1.130 1.257 1.069 1.186 1.160	2.6 8.4 7.8 2.2 15 .2
8 9 13 18	L-H L-H L-H L-H	±60.6 ±60.9 ±60.8 ±61.4 Av. ±60.9	±29.7 ±29.7 ±29.7 ±29.7 ±29.7	29,500 29,125 29,220 29,540 29,350	1.197 1.081 1.111 1.209 1.150	4.1 6.0 3.4 <u>5.1</u> 1 4.7

a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 75S-T6 ALUMINUM ALLOY - Continued

(b) Nominal stresses, ±30,000 and ±60,000 psi - Continued

Specimen	Load sequence	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	-	Test group 18; cycl	e pattern, 1,000	cycles high and	1 24,000 cycles low	
3-2 3-5 3-12 3-14	н н н н	±60.0 ±60.2 ±60.4 ±60.4 Av. ±60.3		3,910 3,020 3,545 3,470 3,490	1.122 .866 1.017 .995 1.000	12.2 13.4 1.7 .5 ±6.9
3-1 3-6 3-11 3-16	L L L		±29.4 ±29.4 ±29.6 ±29.7 Av. ±29.5	73,770 63,450 74,530 53,700 66,360	1.112 .956 1.123 .809 1.000	11.2 4.4 12.3 19.1 ±11.8
3-3 3-8 3-9 3-17	H-L H-L H-L	±60.8 ±60.5 ±60.5 ±60.3 Av. ±60.5	±29.5 ±29.6 ±29.5 ±29.5 ±29.5	29,610 35,785 29,900 31,965 31,820	.990 1.083 .994 1.025 1.023	3.2 5.9 2.8 -3 ±3.1
3-4 3-10 3-15 3-18	L-H L-H L-H	±60.5 ±60.6 ±60.6 ±61.3 Av. ±60.8	±29.4 ±29.5 ±29.5 ±29.7 ±29.5	39,710 38,770 37,485 42,700 39,670	.870 .856 .837 .915 .870	0 1.6 3.8 5.2 ±2.7
		Test group 19; cy	rcle pattern, 100.	cycles high and	1 2,400 cycles low	
4-1 4-15 4-10 4-13	H H H H	±60.1 ±59.6 ±60.3 ±60.5 Av. ±60.1		2,200 1,960 1,970 2,120 2,060	1.067 .951 .955 1.028 1.000	6.7 4.9 4.5 2.8 ±4.7
4-2 4-6 4-8 4-12	L L L		±29.5 ±29.6 ±29.4 ±29.6 Av. ±29.5	62,765 58,710 53,280 56,240 57,750	1.087 1.017 .923 <u>.974</u> 1.000	8.7 1.7 7.7 <u>2.6</u> ±5.2
4-3 4-7 4-11 4-17	H-L H-L H-L	±60.2 ±60.3 ±61.0 ±58.3 Av. ±60.0	±29.7 ±29.9 ±30.0 ±29.0 ±29.7	24,540 30,080 30,090 32,600 29,330	.892 1.119 1.124 1.219 1.080	18.1 2.8 3.2 11.9 19.0
4-4 4-9 4-14 4-16	L-H L-H L-H L-H	±60.2 ±60.4 ±61.1 ±60.0 Av. ±60.4	±29.6 ±29.7 ±29.8 ±29.3 ±29.6	32,430 27,465 34,940 34,950 32,450	1.137 .974 1.232 1.237 1.145	.7 14.9 7.6 8.0 1 7.8
	- GIVE	Test group 20; cy	cle pattern, 500 c	cycles high and	37,500 cycles low	
5-2 5-6 5-10 5-14	H H H H	±61.3 ±61.6 ±61.1 ±61.5 Av. ±61.4		1.965 2,390 2,160 2,085 2,150	0.914 1.112 1.005 <u>.970</u> 1.000	8.6 11.2 .5 3.0 ±5.8
5-3 5-7 5-11 5-15	L L L		+31.1 +31.0 +30.8 +30.5 Av. ±30.9	43,450 43,810 49,515 52,055 47,210	.920 .928 1.049 1.103 1.000	8.0 7.2 4.9 10.3 1 7.6
5-4 5-8 5-12 5-16	H-L H-L H-L	(b) (b) (b) (b)	±30.7 ±30.4 ±30.5 ±30.5 Av. ±30.5	38,085 37,820 38,210 32,850 36,740	1.066 1.023 1.125 .918 1.033	3.2 1.0 8.9 11.1 16.0
5-5 5-9 5-13 5-17	L-H L-H L-H L-H	(b) (b) (b) (b)	±30.6 ±30.4 ±30.6 ±30.6 Av. ±30.6	37,685 37,810 37,800 37,670 37,740	.880 .939 .934 .873 .907	3.0 3.5 3.0 3.7 ±3.3

⁸ H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.
^bTime was insufficient for dynamic reading. Estimated stress is ±61.4 ksi.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 75S-T6 ALUMINUM ALLOY - Continued

(b) Nominal stresses, ±30,000 and ±60,000 psi - Concluded

Specimen	Load sequence (a)	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	Tes	t group 21; cycl	e pattern, 100	cycles high a	and 7,400 cycles low	
12-1 12-3 12-9 12-13	H H H H	±63.1 ±62.7 ±62.1 ±61.6 Av. ±62.4		2,930 2,690 2,390 2,900 2,730	1.074 .986 .876 1.063	7.4 1.4 12.4 6.3 1 6.9
12-2 12-6 12-10 12-15	L L L		±30.9 ±30.8 ±31.0 ±30.8 Av. ±30.9	46,240 48,500 53,810 55,390 50,990	.907 .951 1.055 1.086 1.000	9.3 4.9 5.5 8.6 1 7.1
12-5 12-8 12-12 12-14	H-L H-L H-L	(c) (c) (c) (c)	±30.9 ±30.3 ±30.9 ±30.8 ±30.7	30,040 37,530 40,240 <u>37,590</u> 36,350	•742 •920 •997 <u>•942</u> •900	17.6 2.2 10.8 4.7 18.8
12-4 12-7 12-11 12-16	L-H L-H L-H L-H	(c) (c) (c)	±30.7 ±30.8 ±30.7 ±31.1 Av. ±30.8	49,735 37,440 29,960 44,940 40,520	1.184 .887 .713 1.069	22.9 7.9 26.0 11.0 ±17.0
Test gro	oup 22; cycle	pattern, 1,500	high + low to f	Cailure, H-L,	and 40,000 low + high	to failure, L-H
1 10 11 14	H H H	±60.9 ±60.2 ±60.2 ±59.9 Av. ±60.3		4,175 3,860 3,790 4,370 4,050	1.031 .953 .936 1.079 1.000	3.1 4.6 6.4 8.0 1 5.5
2 6 9 15	L L L		±29.6 ±29.1 ±29.2 ±29.3 Av. ±29.3	59,980 75,070 77,550 74,770 71,840	.835 1.045 1.079 1.041 1.000	16.5 4.5 7.9 4.1 ±8.2
3 7 12 16	H-L H-L H-L	±60.1 ±60.9 ±59.9 ±60.3 Av. ±60.3	±29.6 ±29.3 ±29.2 ±29.4 ±29.4	53,210 52,280 47,090 55,570 52,040	1.090 1.077 1.005 1.123 1.074	1.5 .3 6.4 <u>4.6</u> ±3.2
4 8 13 17	L-H L-H L-H L-H	(a) (a) (d) ±60.5	±29.8 ±29.3 ±29.4 ±29.6 Av. ±29.5	40,660 40,450 40,650 40,685 40,610	.720 .668 .717 .726 .708	1.7 5.6 1.3 2.5 ±2.8

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

^cTime was insufficient for dynamic reading. Estimated stress is ±62.4 ksi.

drime was insufficient for dynamic reading. Estimated stress is ±60.3 ksi.

NACA IN 3293

(c) Nominal stresses, ±16,000 and ±60,000 psi

Specimen	Load sequence (a)	High stress, ksi	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
					s high + 100,000 low nigh + repeat to fai	
3-2 3-9 3-16 3-14	н н н	±60.4 ±61.0 ±62.3 ±61.3 Av. ±61.3		3,030 3,210 2,660 3,850 2,940	1.031 1.093 .905 <u>.970</u> 1.000	3.1 9.3 9.5 <u>3.0</u> 1 6.2
3-4 3-8 3-17	L L L		±15.2 ±15.6 ±15.2 Av. ±15.3	905,250 3,260,950 1,600,710 1,922,300	.471 1.696 <u>.833</u> 1.000	52.9 69.6 16.7 1 46.4
3-5 3-10 3-12 3-18	L-Ha L-Ha L-Ha L-Ha	(b) (b) (b) (b)	±15.0 ±15.6 ±15.4 ±15.6 Av. ±15.4	200,810 842,700 1,177,780 1,484,130 926,360	.380 .778 .953 1.112 .806	52.9 3.5 18.2 <u>38.0</u> ±28.2
3-7 3-18 3-13 3-15	L-H ₀ L-H ₀ L-H ₀ L-H ₀	(b) (b) (b) (b)	±15.6 ±15.3 ±15.7 ±15.6 Av. ±15.6	700,710 800,750 901,380 700,700 775,890	.602 .671 .775 .602 .663	9.2 1.2 16.9 9.2 ±9.1

 $^{^{\}rm a}$ H, high stress only; L, low stress only; L-Ha and L-Hb, low stress first followed by high stress (these two groups tested to investigate cumulative-damage effect of short bursts of a very high stress).

bTime was insufficient for dynamic reading. Estimated stress is ±61.3 ksi.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 758-T6 ALUMINUM ALLOY - COntinued

(d) Nominal stresses, ±16,000 and ±17,000 psi

Specimen	Load sequence (a)	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	Test gro		attern, 760,000		n to failure at low a	and
6-2 6-6 6-12 6-15	H H H	±17.1 ±17.1 ±17.3 ±17.2 Av. ±17.2		1,532,990 1,928,870 1,182,125 2,234,550 1,719,630	0.891 1.122 .687 1.299 1.000	10.9 12.2 31.3 29.9 ±21.1
6-4 6-7 6-8 6-10	L L L		±16.2 ±16.2 ±16.3 ±16.2 Av. ±16.2	2,718,000 2,012,660 2,436,020 2,583,830 2,437,630	1.115 .826 .999 <u>1.060</u> 1.000	11.5 17.4 .1 6.0 18.8
6-3 6-9 6-13 6-17	H-L H-L H-L	±17.0 ±17.2 ±17.2 ±17.4 Av. ±17.2	#16.1 (b) #16.3 #16.5 #16.3	1,922,180 642,240 2,757,270 850,155 1,542,960	.919 .373 1.261 .479 .758	21.2 50.8 66.4 36.8 ±43.8
6-5 6-11 6-16 6-19	L-H L-H L-H L-H	±17.1 ±17.2 ±17.2 ±17.5 Av. ±17.3	±16.1 ±16.3 ±16.5 ±16.5	1,719,880 2,270,570 1,480,430 2,239,280 1,927,540	.769 1.089 .630 <u>1.071</u> .890	13.6 22.4 29.2 20.3 ±21.4
	Test gro		attern, 500,000		n to failure at low a	and
13-2 13-4 13-10 13-14	H H H	±17.3 ±17.2 ±17.3 ±17.3 Av. ±17.3		2,285,000 1,042,680 1,383,520 946,970 1,414,540	1.615 .737 .978 <u>.669</u> 1.000	61.5 26.3 2.2 33.1 ±30.8
13-3 13-8 13-12 13-16	L L L		±16.3 ±16.3 ±16.4 ±16.4 ±16.4	2,084,990 1,444,320 1,119,280 3,094,980 1,935,890	1.077 .746 .578 1.599 1.000	7.7 25.4 42.2 59.9 ±33.8
13-5 13-7 13-11 13-17	H-L H-L H-L	±17.1 ±17.3 ±17.3 ±17.3 Av. ±17.3	±16.3 ±16.6 ±16.3 (c) ±16.4	1,800,850 1,603,860 2,024,170 919,450 1,587,080	1.025 .924 1.141 <u>.570</u> .915	12.0 1.0 24.7 <u>37.7</u> ±18.9
13-6 13-9 13-13 13-18	L-H L-H L-H L-H	±17.3 ±17.5 (d) ±17.5 Av. ±17.4	±16.3 ±16.4 ±16.5 ±16.4	2,371,140 1,549,380 968,990 2,606,560 1,874,020	1.486 .905 .501 1.652 1.136	30.8 20.3 55.9 45.4 ±38.1

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

bSpecimen failed prior to application of lower load.

^CSpecimen failed at night.

dSpecimen failed prior to application of higher load.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 758-T6 ALUMINUM ALLOY - Continued

(e) Nominal stresses, ±16,000 and ±30,000 psi

Specimen	Load sequence (a)	High stress, ksi	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
HOW THE		est group 26; cycl	Le pattern, 400 c	cycles high and	1 9,600 cycles low	
lf 7f 12f 16f	H H H	±30.2 ±30.8 ±30.9 ±30.6 Av. ±30.6		54,600 38,270 48,420 40,680 45,490	1.200 .841 1.064 .894 1.000	20.0 15.9 6.4 10.6 ±13.2
3f 5f 9f 10f 17f	L L L		±16.1 ±16.2 ±16.2 ±16.3 ±16.3 Av. ±16.2	1,422,410 1,994,020 2,132,800 2,263,680 1,630,680 1,888,720	.753 1.056 1.129 1.199 .863 1.000	24.7 5.6 12.9 19.9 13.7 ±15.4
2f 8f 13f 18f	H-L H-L H-L	±30.4 ±30.6 ±30.5 ±30.5 Av. ±30.5	±16.3 ±16.2 ±16.5 ±16.3 ±16.3	760,080 820,090 750,080 730,100 765,090	1.056 1.140 1.042 1.015 1.063	.7 7.2 2.0 4.5 1 3.6
4f 11f 14f 19f	L-H L-H L-H	±30.7 ±30.8 ±30.4 ±30.8 Av. ±30.7	±16.4 ±16.4 ±16.4 ±16.4	699,630 739,930 749,900 799,700 747,290	.963 1.025 1.038 1.103 1.032	6.7 .7 .6 6.9 1 3.7
	1	est group 27; cyc	le pattern, 600	cycles high an	d 9,400 cycles low	
Ala-18 Ala-14 Ala-10 Ala-6	H H H H	±29.9 ±29.9 ±29.8 ±29.6 Av. ±29.8		75,645 74,845 68,090 72,730 72,830	1.039 1.028 .935 .998 1.000	3.9 2.8 6.5 .2 ±3.4
Ala-16 Ala-4 Ala-5 Ala-21	r r r		±16.1 ±15.8 ±15.7 ±15.7 Av. ±15.8	1,482,630 789,400 656,600 1,214,920 1,035,890	1.431 .762 .634 1.173 1.000	43.1 23.8 36.6 17.3 ±30.2
Ala-2 Ala-11 Ala-3 Ala-17	H-L H-L H-L	±30.1 ±29.9 ±29.9 ±30.1 Av. ±30.0	±16.2 ±16.1 ±16.0 ±16.0 ±16.1	670,330 520,030 540,330 634,730 591,360	1.164 .901 .939 1.103 1.027	13.3 12.3 8.6 7.4 ±10.4
Ala-19 Ala-7 Ala-20 Ala-13	L-H L-H L-H	±30.0 ±29.8 ±29.9 ±30.1 Av. ±30.0	±16.0 ±16.0 ±15.8 ±15.8 ±15.9	629,770 490,020 539,460 500,070 539,830	1.088 .848 .927 .866 .932	16.7 9.0 .5 7.1 ±8.3
		Test group 28; cyc	cle pattern, 600	cycles high ar	nd 9,400 cycles low	
1-1 1-6 1-14	H H H	±29.0 ±30.1 ±29.6 Av. ±29.6		60,490 65,060 50,258 58,600	1.032 1.110 .858 1.000	3.2 11.0 14.2 19.5
1-2 1-9 1-10	L L		±15.5 ±15.7 ±15.5 ±15.6	1,364;040 1,913,280 2,786,490 2,021,270	.675 .947 <u>1.379</u> 1.000	32.5 5.3 37.8 ±25.2
1-3 1-11 1-13	H-L H-L	±28.9 ±29.4 ±29.6 ±29.3	±15.6 ±15.3 ±15.4 ±15.4	560,260 410,470 378,300 449,680	.838 .618 .565 .674	24.3 8.3 16.2 1 16.3
1-8 1-12 1-15	L-H L-H L-H	±29.8 ±29.6 ±30.0 Av. ±29.8	±15.7 ±15.5 ±15.6 ±15.6	487,000 479,700 489,510 485,400	.718 .710 .721 .716	.3 .8 <u>.7</u> ±.6

 $^{^{\}rm a}$ H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 75S-T6 ALUMINUM ALLOY - Continued

(e) Nominal stresses, ±16,000 and ±30,000 psi - Continued

Specimen	Load sequence (a)	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	Т		le pattern, 40,0		to failure at low, t high, L-H	
9-1 9-5 9-13 9-17	н н н н	±29.5 ±30.0 ±29.3 ±29.4 Av. ±29.6		53,400 62,320 57,640 54,050 56,850	0.939 1.096 1.014 <u>.951</u> 1.000	6.1 9.6 1.4 4.9 1 5.5
9-3 9-4 9-8 9-16	L L L		±15.5 ±15.6 ±15.3 ±15.3 ±15.4	973,500 669,250 928,735 856,610 857,020	1.136 .781 1.084 1.000 1.000	13.6 21.9 8.4 0 ±11.0
9-7 9-11 9-14 9-18 9-20	H-L H-L H-L	±29.3 (b) ±29.5 ±29.2 ±29.5 Av. ±29.4	±15.4 ±15.3 ±15.3 ±15.3 ±15.5 ±15.4	324,060 1,060,740 159,440 735,020 1,074,840 670,820	1.035 1.895 .843 1.515 1.911 1.440	28.1 31.6 41.5 5.2 32.7 ±27.8
9-9 9-12 9-15 9-19	L-H L-H L-H	±29.6 ±29.3 ±29.1 ±29.4 Av. ±29.4	±15.5 ±15.3 ±15.5 ±15.5	524,100 525,080 522,370 523,570 523,780	1.007 1.025 .977 .998 1.002	.5 2.3 2.5 .4 ±1.4
	Te	est group 30; cycl	le pattern, 40,0	00 cycles high	to failure at low	
2-1 2-6 2-10 2-3	H H H	±29.0 ±29.2 ±29.3 ±29.5 Av. ±29.3		60,930 68,370 85,910 69,870 71,270	0.855 .959 1.205 <u>.980</u> 1.000	14.5 4.1 20.5 2.0 ±10.3
2-2 2-7 2-13 2-14	L L L		±15.5 ±15.3 ±15.6 ±15.4 ±15.5	964,250 1,210,360 892,530 2,988,650 1,513,950	.637 .799 .590 <u>1.97</u> 4 1.000	36.3 20.1 41.0 97.4 ±48.7
2-4 2-8 2-5 2-9	H-L H-L H-L	±29.4 ±29.4 ±29.3 ±26.3 Av. ±28.6	±15.3 ±15.4 ±15.3 ±15.3 ±15.3	1,265,490 1,471,740 1,124,040 1,488,100 1,337,340	1.371 1.507 1.277 1.518 1.418	3.3 6.3 9.9 7.1 ±6.7
	Test	t group 31; cycle	pattern, 12,000	cycles high an	d 188,000 cycles low	
15-2 15-6 15-11 15-15	H H H	±29.8 ±30.0 ±30.2 ±30.3 Av. ±30.1		78,670 63,200 69,875 65,120 69,220	1.137 .913 1.010 <u>.941</u> 1.000	13.7 8.7 1.0 <u>5.9</u> 1 7.3
15-4 15-9 15-13 15-17	L L L		#16.2 #16.3 #16.3 #16.2 Av. #16.3	3,849,310 2,014,510 2,838,855 1,615,230 2,579,480	1.492 .781 1.101 .626 1.000	49.2 21.9 10.1 37.4 ±29.7
15-3 15-7 15-12 16-16	H-L H-L H-L	±29.7 ±30.3 ±30.3 ±30.3 ±30.2	±16.0 ±16.3 ±16.4 ±16.3 ±16.3	1,005,260 606,675 538,665 602,120 688,180	1.307 .835 .715 <u>.769</u> .907	44.1 7.9 21.2 15.2 ±22.1
15-5 15-10 15-14 15-18	L-H L-H L-H L-H	±30.2 ±30.2 ±30.2 ±30.2 Av. ±30.2	±16.6 ±16.3 ±16.3 ±16.3 ±16.4	594,480 576,500 590,470 589,840 587,820	.659 .561 .601 <u>.592</u> .603	9.3 7.0 .3 1.8 ±4.6

⁸ H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc. bonly static load readings were taken. Estimated stress is ±29.6 ksi.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 755-T6 ALUMINUM ALLOY - Continued

(e) Nominal stresses, ±16,000 and ±30,000 psi - Continued

Specimen	Load sequence (a)	High stress,	Low stress, ksi	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
		lest group 32; cyc	le pattern, 18,800	cycles low and	1,200 cycles high	
23-3 23-7 23-11 23-17	Н Н Н	±30.4 ±30.3 ±30.5 ±30.5 Av. ±30.4		55,250 66,800 51,690 54,200 56,990	0.970 1.172 .907 <u>.951</u> 1.000	3.0 17.2 9.3 4.9 ±8.6
23-1 23-5 23-9 23-13 23-18	r r r		±16.4 ±16.5 ±16.3 ±16.3 ±16.4	2,028,330 2,271,630 1,014,730 1,218,810 1,136,020 1,533,900	1.322 1.481 .662 .795 <u>.741</u> 1.000	32.2 48.1 33.8 20.5 25.9 2 32.1
23-4 23-8 23-19 23-15	H-L H-L H-L	±30.5 ±30.3 ±30.4 ±30.6 Av. ±30.5	±16.4 ±16.5 ±16.4 ±16.6 ±16.5	600,400 616,665 435,140 580,900 558,280	1.006 1.031 .730 <u>.982</u> .937	7.4 10.0 22.1 4.8 ±11.1
23-2 23-6 23-10 23-14	L-H L-H L-H L-H	±30.4 ±30.3 ±30.2 ±30.1 Av. ±30.3	±16.5 ±16.3 ±16.2 ±16.3 ±16.3	566,030 585,220 479,360 549,620 545,060	• 937 • 970 • 788 • 906 • 900	4.1 7.8 12.4 0.7 16.3
	7	est group 33; cyc	le pattern, 120 cy	cles high and l	,880 cycles low	
14-3 14-7 14-10 14-14	H H H	±30.2 ±30.1 ±30.3 ±29.9 Av. ±30.1		51,830 59,140 64,630 63,040 59,660	0.869 .991 1.083 <u>1.057</u> 1.000	13.1 .9 8.3 <u>5.7</u> ±7.0
14-1 14-5 14-8 14-12	L L L		#16.1 #16.3 #16.2 #16.1 Av. #16.2	2,147,420 2,822,060 1,831,830 1,677,290 2,119,650	1.013 1.331 .864 <u>.791</u> 1.000	1.3 33.1 13.6 20.9 ±17.2
14-4 14-18 14-11 14-15	H-L H-L H-L	±30.0 ±29.8 ±29.9 ±29.9 Av. ±29.9	±16.4 ±16.1 ±16.0 ±16.4 ±16.2	472,160 400,140 512,150 480,080 466,130	.686 .582 .744 <u>.697</u> .677	1.3 14.0 9.9 3.0 ±7.1
14-2 14-6 14-9 14-13	L-H L-H L-H L-H	±29.9 ±30.1 ±30.2 ±29.7 Av. ±30.0	±16.1 ±16.2 ±16.2 ±15.9 ±16.1	569,950 468,020 452,000 479,960 492,480	.825 .678 .655 <u>.695</u> .713	15.7 4.9 8.1 <u>2.5</u> ±7.8
	Te	est group 34; cycle	e pattern, 20,000	cycles high and	80,000 cycles low	
22-3 22-7 22-11 22-15	н н н	±30.5 ±30.1 ±30.4 ±30.0 Av. ±30.3		60,230 52,110 60,550 59,160 58,010	1.038 .898 1.044 1.020 1.000	3.8 10.2 4.4 2.0 ±5.1
22-1 22-5 22-9 22-13	r r r		±16.4 ±16.2 ±16.4 ±16.5 Av. ±16.4	1,701,580 2,538,730 3,214,280 1,922,390 2,344,250	.726 1.083 1.371 .820 1.000	27.4 8.3 37.1 18.0 ±22.7
22-4 22-8 22-12 22-16	H-L H-L H-L	±30.3 ±30.3 ±30.4 ±29.9 ±30.2	±16.3 ±16.2 ±16.6 ±16.1 ±16.3	202,300 200,480 202,840 153,310 189,730	• 797 • 766 • 807 • <u>738</u> • 777	2.6 1.4 3.9 5.0 ±3.2
22-2 22-6 22-10 22-14	L-H L-H L-H L-H	±30.4 ±30.3 ±30.2 ±30.1 Av. ±30.3	±16.5 ±16.4 ±16.3 ±16.3 ±16.4	187,830 193,080 185,970 197,600 191,120	.548 .638 .516 <u>.716</u> .605	9.4 5.5 14.7 18.3 ±12.0

a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 1. - CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCLAD 755-T6 ALUMINUM ALLOY - Continued

(e) Nominal stresses, ±16,000 and ±30,000 psi - Continued

Specimen	Load sequence (a)	High stress,	Low stress, ksi	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
		Test group 35; cycl	e pattern, 2,000	cycles high and	8,000 cycles low	
20-3 20-7 20-11 20-15	H H H	±30.4 ±30.6 ±30.7 ±30.9 Av. ±30.7		55,280 41,330 48,380 44,020 47,250	1.170 .875 1.024 .932 1.000	17.0 12.5 2.4 6.8 ±9.7
20-1 20-5 20-9 20-13	L L		±16.4 ±16.3 ±16.5 ±16.4 Av. ±16.4	1,471,360 1,674,460 2,511,580 2,696,790 2,088,550	.704 .802 1.203 1.291 1.000	29.6 19.8 20.3 29.1 1 24.7
20-2 20-8 20-10 20-16	H-L H-L H-L	±30.6 ±30.3 ±30.5 ±30.9 Av. ±30.6	#16.5 #16.4 #16.4 #16.8 #16.5	190,920 181,350 160,710 180,950 178,480	. 896 . 859 . 754 . 851 . 840	6.7 2.3 10.2 1.3 ±5.1
20-4 20-6 20-12 20-14	L-H L-H L-H	±30.1 ±30.3 ±30.7 ±31.0 Av. ±30.5	±16.3 ±16.4 ±16.4 ±16.8 ±16.5	158,070 176,580 169,050 179,680 170,850	.698 .788 .765 <u>.824</u> .769	9.2 2.5 .5 7.2 1 4.9
		Test group 36; cy	cle pattern, 200	cycles high and	800 cycles low	
16-2 16-8 16-12 16-17	Н Н Н	±30.6 ±30.4 ±30.4 ±30.3 Av. ±30.4		60,920 58,420 55,680 49,110 56,030	1.087 1.043 .994 <u>.876</u> 1.000	8.7 4.3 .6 12.4 ±6.5
16-4 16-10 16-14 16-19	L L L		±16.6 ±16.3 ±16.5 ±16.6 Av. ±16.5	2,684,050 2,215,280 2,275,800 1,288,480 2,115,900	1.268 1.047 1.076 .609 1.000	26.8 4.7 7.6 39.1 ±19.6
16-5 16-9 16-13 16-18	H-L H-L H-L	±30.5 ±30.3 ±30.1 ±30.7 Av. ±30.4	±16.7 ±16.5 ±16.3 ±16.6 ±16.5	162,120 170,160 186,140 159,240 169,420	.642 .674 .737 .631 .671	4.3 9.8 6.0 ±5.1
16-7 16-11 16-15 16-20	L-H L-H L-H	±30.3 ±30.3 ±30.4 ±30.2 Av. ±30.3	±16.5 ±16.3 ±16.3 ±16.5 ±16.4	198,920 186,900 168,880 143,870 174,640	.784 .736 .665 .566	14.0 7.0 3.3 17.7 ±10.5
	Te	st group 37; cycle	pattern, 4,250 c	ycles high and	245,480 cycles low	
17-1 17-5 17-6 17-13	н н н	±30.4 ±30.4 ±30.4 ±30.1 Av. ±30.3		56,580 54,610 54,080 55,790 55,270	1.024 .988 .979 1.009	2.4 1.2 2.1 <u>.9</u> ±1.7
17-3 17-7 17-11 17-15	L L L		±16.2 ±15.8 ±16.2 ±16.0 Av. ±16.1	1,722,320 552,240 825,150 1,083,980 1,045,920	1.647 .528 .789 1.036 1.000	64.7 47.2 21.1 3.6 ±34.2
17-2 17-10 17-14 17-17	H-L H-L H-L	±30.4 ±30.2 ±30.1 ±30.0 Av. ±30.2	±16.3 ±15.8 ±16.1 ±15.6 ±16.0	839,160 1,251,210 1,004,430 951,900 1,011,680	1.094 1.604 1.325 1.201 1.306	16.2 22.8 1.5 8.0 ±12.1
17-8 17-12 17-16 17-18	L-H L-H L-H L-H	±30.1 ±30.4 ±30.3 ±30.1 Av. ±30.2	±15.9 ±16.2 ±16.0 ±16.2 ±16.1	1,038,310 995,990 1,114,830 710,210 964,840	1.284 1.193 1.357 .825 1.165	10.2 2.4 16.5 29.2 ±14.6

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 1.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.064-INCH-THICK ALCIAD 758-T6 ALUMINUM ALLOY - Concluded

(e) Nominal stresses, ±16,000 and ±30,000 psi - Concluded

Specimen	Load sequence (a)	High stress,	Low stress, ksi	Cycles to failure	Cumulative-damage ratio, D	Deviation from average percent	D,
	Test	group 38; cycle	pattern, 1,750	cycles high	and 98,250 cycles	low	
5-5 5-9 5-13 5-17	H H H	±30.3 ±30.2 ±30.3 ±30.4 ±30.3		52,620 55,400 55,780 55,610 54,850	0.959 1.010 1.017 1.014 1.000	4.1 1.0 1.7 1.4 1 2.1	
5-6 5-11 5-15 5-18	L L L		±16.3 ±16.2 ±16.0 ±16.1 Av. ±16.2	792,160 1,238,870 1,858,730 2,715,180 1,651,240	.480 .750 1.126 1.644 1.000	52.0 25.0 12.6 64.4 13 8.5	
5-7 5-10 5-14 5-19	H-L H-L H-L	±30.2 ±30.1 ±30.0 ±30.3 Av. ±30.2	±16.1 ±16.1 ±16.2 ±16.4 ±16.2	1,248,660 1,458,350 1,200,120 987,700 1,223,710	1.157 1.346 1.099 <u>.907</u> 1.127	2.7 19.4 2.5 19.5 1 11.0	
5-8 5-12 5-16 5-20	Г-Н Г-Н Г-Н	±29.9 ±30.2 ±30.2 ±30.5 Av. ±30.2	±16.0 ±16.2 ±16.1 ±16.1 ±16.1	1,236,500 946,550 1,089,110 957,260 1,057,360	1.119 .851 .968 .857	17.9 10.3 2.0 9.7 ±10.0	
	Test	group 39; cycl	e pattern, 483	cycles high	and 24,517 cycles 1	OW	
19-1 19-5 19-9 19-13	H H H	±30.6 ±30.1 ±30.2 ±29.9 Av. ±30.2		51,040 46,090 61,970 54,180 53,320	0.957 .864 1.162 <u>1.016</u> 1.000	4.3 13.6 16.2 1.6 ±8.9	
19-3 19-7 19-11 19-15	L L L		±16.4 ±16.5 ±16.4 ±16.2 Av. ±16.4	3,021,420 2,031,220 1,223,430 1,982,970 2,064,760	1.463 .984 .593 .960 1.000	46.3 1.6 40.7 4.0 1 23.2	
19-2 19-6 19-10 19-14	H-L H-L H-L	±30.6 ±30.1 ±30.1 ±30.1	±16.4 ±16.6 ±16.3 ±16.3	1,041,980 1,173,590 1,049,020 1,150,030 1,103,660	.875 .983 .879 .963 .925	5.4 6.3 5.0 4.1 1 5.2	
19-4 19-8 19-12 19-16	L-H L-H	±29.8 ±30.0 ±30.5 ±30.4 Av. ±30.2	±16.2 ±16.6 ±16.4 ±16.2 ±16.4	1,048,270 1,168,500 1,049,650 950,080 1,054,130	.869 .972 .873 .795 .877	.9 10.8 .5 9.4 15.4	

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 2.- SUMMARY TABLE FOR 0.064-INCH-THICK ALCLAD 75S-T6 ALUMINUM ALLOY

	Cycle	pattern	i i i i i	Av	verage	stresse	s,		es to	Average of life,	deviation percent	Cumulativ		Average d	
Test group	Cycles at higher stress,	Cycles at lower stress,	Number of specimens tested	Sing los spec		Dua loa speci	.d.	At high stress,	At low stress,	High- stress specimens	Low- stress specimens	NH (averaged	$\frac{\sum_{N_L}}{N_L}$ values)	H-La	L-Hp
	nH	nL		Н	L	H-La	L-Hp	NH	NL			H-La	Γ-H̄ _p		
			any surfect		Nomi	nal str	ess amp	litudes	, ±30,00	0 and ±40,	000 psi		7		
1	7,000	20,000	16	±42.9	±30.7	±42.6 ±30.7	±42.5 ±30.6	13,070	53,160	±7.1	±6.2	1.137	0.919	±7.3	±6.2
2	10	40	16	±41.8	±31.4	±42.6 ±31.7		15,300	48,140	±3.9	±5.5	.798	1.014	±4.0	±4.9
3	1,000	4,000	8	±42.9	±30.7	±42.9 ±31.2		13,070	53,160	±7.1	±6.2	. 944	.957	±5.4	±3.8
4	10,000	40,000,	16	±42.1	±31.6	±42.2 ±31.7		14,830	45,220	±4.2	±5.8	1.007	1.035	±9.6	±6.4
5	10	90	8	±40.4	±30.2	±40.8 ±30.7		16,670	52,390	±5.4	±1.7	.896	.904	±.3	±1.2
6	100	900	16	±41.6	±30.9	±41.3 ±30.8	±41.5 ±30.9	16,170	49,960	±1.7	±6.4	.900	.991	±6.1	±7.3
7	1,000	9,000	16	±41.4	±31.0	±30.9	±30.8	13,240	50,910	±3.9	±7.1	1.109	.801	±7.3	±9.2
8	20	30	19	±41.5	±30.4	±41.5 ±30.2 ±41.8	±41.3 ±30.1 ±41.8	15,350	47,590	±10.3	±12.3	.765	.889	±4.8	±10.0
9	200	300	16	±41.9	±31.1	±31.1 ±41.6	±30.9	15,430	57,080	±6.5	±4.0	.928	.868	±16.3	±3.4
10	2,000	3,000 To failure	20	±41.6	±30.9	±30.9	±30.7	15,270	54,080	±8.8	±4.6	.746	.940	±11.1	±13.3
11	11,000	at low	12	±41.7	±31.0	±31.1	ess am		49,480 +30,00	±7.9	±6.6	1.096		±7.1	
				T	1	±60.7	±60.9								
12	10	90	16	±60.7	±30.0	±29.8	±29.9	3,180	60,290	±11.4	±14.0	.876	.879	±8.7	\$4.9
13	10	90	17	±59.8	±30.5	±59.6 ±29.6	±59.4 ±29.5	3,010	45,250	±9.6	±13.8	.729	.815	±8.5	±13.0
14	10	90	17	±57.5	±28.4	±57.3 ±28.5	±57.3 ±28.3		71,700	±6.6	±11.4	.764	.805	±7.3	±11.7
15	10	90	16	±59.7	±29.4	±59.7 ±29.4	±58.9 ±29.2	3,800	64,310	±12.4	±8.1	.896	.823	±1.8	±7.8
16	100	900	16	±59.9	±30.0	±60.1 ±29.5	±60.5 ±30.3	3,440	58,270	±6.7	±4.0	1.039	1.015	±5.0	±11.3
17	1,000	9,000	16	±61.0	±29.9		±60.9 ±29.7	3,260	62,960	±6.9	±5.2	1.160	1.150	±5.2	±4.7
18	1,000	24,000	16	±60.3	±29.5		±29.5	3,490	66,360	±6.9	±11.8	1.023		±3.1	±2.7
19	100	2,400	16	±60.1	±29.5		±29.6	2,060	57,750	±4.7	±5.2	1.089	1.145	±9.0	±7.8
20	500	37,500	16	±61.4	±30.9		±30.6	2,150	47,210	±5.8	±7.6	1.033	1	±6.0	±3.3
21	100	7,400	16	±62.4	±30.9		±30.8	2,730	50,990	±6.9	±7.1	.900	THEFT		±17.0
22	(a)	(a)	16	±60.3	±29.3				71,840	±5.5	±8.2	1.074	.708	±3.2	±2.8

^a H-L, loading pattern in which higher stress was applied first.

b L-H, loading pattern in which lower stress was applied first.

CTime was not sufficient to measure dynamic stresses. Value given is that of single-load specimens of same test group.

d 1,500 high to failure at low and 40,000 low to failure at high.

TABLE 2.- SUMMARY TABLE FOR 0.064-INCH-THICK ALCIAD 758-T6 ALUMINUM ALLOY - Concluded

	Cycle	pattern	The same	Ave	erage s		ев,	Cycle		Average of of life,	deviation percent	ratio	, D,	Average do	
Test group	Cycles at higher stress,	Cycles at lower stress,	Number of specimens tested	108	gle- ad cimen	Dus los spec:	ad	At high stress,	At low stress,	High- stress specimens	Low- stress specimens		$\frac{\sum_{N_L}}{N_L}$ d values)	H-Lª	L-Ho
	n _H	n _L		H	L	H-La	L-Hp	NH	NL			H-La	L-Hb		
					Nomi	inal st	tress s	mplitudes,	±16,000 a	and ±60,000) psi				
23	(e)	(e)	15	±61.3	±15.3	(f)	(f)	2,940	1,922,300	±6.2	±46.4		0.663 .806		±9.1 ±28.2
					Nom	inal s	tress a	mplitudes,	, ±16,000 8	and ±17,000	o psi	4 1 1			
24	(g)	(g)	16	±17.2	±16.2	±17.2 ±16.3	±17.3 ±16.4	1,719,630	2,437,630	±21.1	±8.8	0.758	.890	±43.8	±21.4
25	(h)	(h)	16	±17.3	±16.4	±17.3 ±16.4	±17.4 ±16.4	1,414,540	1,935,890	±30.8	±33.8	.915	1.136	±18.9	i±38.1
					Nom	inal s	tress	amplitudes	, ±16,000	and ±30,00	O psi				
26	400	9,600	17	±30.6	±16.2	±30.5 ±16.3	±30.7 ±16.4	45,490	1,888,720	±13.2	±15.4	1.063	1.032	±3.6	±3.7
27	600	9,400	16	±29.8	±15.8		±30.0 ±15.9	72,830	1,035,890	±3.4	±30.2	1.027	.932	±10.4	±8.3
28	600	9,400	12	±29.6	±15.6		±29.8 ±15.6	58,600	2,021,270	±9.5	±25.2	.674	.716	±16.3	±.6
29	(1)	(j)	17	±29.6	±15.4		±29.4 ±15.4	56,850	857,020	±5.5	±11.0	1.440	1.002	±27.8	±1.4
30	40,000	To failure at low	12	±29.3	±15.5	±15.3	1	71,270	1,513,950	±10.2	±48.7	1.418		±6.7	
31	12,000	188,000	16	±30.1	±16.3	±16.3	±30.2 ±16.4	69,220	2,579,480	±7.3	±29.7	.907	.603	±22.1	±4.6
32	1,200	18,800	17	±30.4	±16.4	±16.5	±30.3 ±16.3	56,990	1,533,900	±8.6	±32.1	.937	.900	±11.1	±6.3
33	120	1,880	16	±30.1	±16.2	±16.2	±30.0 ±16.1	59,660	2,119,650	±7.0	±17.2	.677	.713	±7.1	±7.8
34	20,000	80,000	16	±30.3	±16.4	±16.3	±30.3 ±16.4	58,010	2,344,250	±5.1	±22.7	.777	.605	±3.2	±12.0
35	2,000	8,000	16	±30.7	±16.4	±16.5	±30.5 ±16.5	47,250	2,088,550	±9.7	±24.7	. 840	.769	±5.1	±4.9
36	200	800	16	±30.4	±16.5	±16.5	±30.3 ±16.4	56,030	2,115,900	±6.5	±19.6	.671	.688	±5.1	±10.5
37	4,250	245,480	16	±30.3	±16.1	±16.0	±30.2 ±16.1		1,045,920	±1.7	±34.2	1.306	1.165	±12.1	±14.6
38	1,750	98,250	16	±30.3	±16.2	±16.2	±30.2 ±16.1	54,850	1,651,240	±2.1	±38.5	1.127	.949	±11.0	±10.0
39	483	24,517	16	±30.2	±16.4		±30.2 ±16.4		2,064,760	±8.9	±23.2	.925	.877	±5.2	±5.4

a H-L, loading pattern in which higher stress was applied first.

b L-H, loading pattern in which lower stress was applied first.

 $^{^{\}rm e}$ L-H_a, 100,000 low + 500 high + 100,000 low + 500 high, then to failure at low; L-H_b, 100,000 low + 100 high + repeat to failure.

f ±61.3 and ±15.6 psi with cycle pattern L-H₀ and ±61.3 and ±15.4 psi with cycle pattern L-H_a. The value ±61.3 is that of single-load specimens of same test group, as time was not sufficient for dynamic reading.

^{8 760,000} high to failure at low and 1,350,000 low to failure at high.

h 500,000 high to failure at low and 1,000,000 low to failure at high.

¹Specimen failed prior to application of higher load. (See group 25, table 1(d).)

J 40,000 high to failure at low and 500,000 low to failure at high.

TABLE 3.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.032-INCH-THICK ALCIAD 245-T3 AND ALCIAD 755-T6 ALUMINUM ALLOY

Nominal stresses, ±16,000 and ±30,000 psi

(a) Alclad 24S-T3 aluminum alloy

Specimen	Load sequence	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	(a) Test group	40; Mean stress,	O; cycle pattern,	11,960 cycles	high and 188,040 cycles	low
5-2 5-6 5-12 5-16	н н н	±30.20 ±30.66 ±30.01 ±30.63 Av. ±30.38		63,380 57,630 48,400 60,020 57,360	1.105 1.005 .844 1.046 1.000	10.5 .5 15.6 4.6 ±7.8
5-4 5-9 5-14 5-18	r r r		±16.37 ±16.31 ±16.26 ±15.90 Av. ±16.21	2,717,960 1,827,370 2,143,430 2,044,240 2,183,250	1.245 .837 .982 <u>.936</u> 1.000	24.5 16.3 1.8 6.4 ±12.3
5-3 5-8 5-13 5-20	H-L H-L H-L	±30.01 ±30.46 ±30.53 ±30.59 Av. ±30.40	±15.98 ±16.02 ±15.92 ±16.29 ±16.05	610,410 542,380 397,590 403,900 488,570	1.065 .858 .588 <u>.657</u>	34.5 8.3 25.8 17.0 ±21.4
5-5 5-10 5-15 5-17 5-19 5-7	L-H L-H L-H L-H L-H	±30.66 ±30.53 ±30.70 ±30.50 ±30.67 ±30.66 Av. ±30.62	#16.01 #15.91 #16.13 #15.94 #16.22 #16.05	395,840 564,640 588,610 393,450 588,740 387,740 486,500	.516 .665 .685 .475 .687 <u>.381</u>	9.2 17.1 20.6 16.4 21.0 32.9
	Test group 41	; mean stress, 20,	000 psi; cycle pa	ttern, 8,260 cy	cles high and 41,740 cy	cles low
6-2 6-8 6-14	H H H	±31.73 ±31.53 ±31.70 Av. ±31.65		34,830 28,680 26,270 29,930	1.164 .958 <u>.878</u> 1.000	16.4 4.2 12.2 ±10.9
6-6 6-11 6-17	L L L		±16.66 ±16.60 ±16.75 Av. ±16.67	318,700 235,150 210,650 254,830	1.251 .923 <u>.827</u> 1.000	25.1 7.7 <u>17.3</u> ±16.7
6-3 6-9 6-12 6-15	H-L H-L H-L	±31.39 ±31.74 ±31.65 ±31.78 Av. ±31.64	±16.39 ±16.70 ±16.62 ±16.71 ±16.61	104,860 102,240 101,190 100,360 102,160	1.042 .954 .919 <u>.892</u>	9.5 .2 3.5 6.3 ±4.9
6-7 6-10 6-13 6-18	L-H L-H L-H	±31.54 ±31.70 ±31.63 ±31.73 Av. ±31.65	±16.28 ±16.63 ±16.75 ±16.49 ±16.54	100,250 99,550 99,570 97,330 99,180	.881 .865 .866 <u>.791</u> .851	3.5 1.6 1.8 7.1 ±3.5
	Test group	42; mean stress,	O; cycle pattern,	21,910 cycles 1	nigh and 78,090 cycles	Low
7-3 7-7 7-11 7-15	H H H	±30.96 ±30.96 ±31.15 ±31.29 Av. ±31.09		53,660 56,100 47,090 58,570 53,860	0.996 1.042 .874 1.087 1.000	0.4 4.2 12.6 8.7 16 .5
7-5 7-9 7-13 7-17	L L L		±16.34 ±16.40 ±16.47 ±16.47 Av. ±16.42	1,587,980 1,768,730 1,949,860 1,151,800 1,614,590	1.095 1.208 -713 1.000	1.7 9.5 20.8 28.7 ±15.2
7-4 7-8 7-16 7-19	H-L ±30.96 H-L ±30.54 H-L ±31.48 H-L ±31.12 Av. ±31.03		±15.87 ±16.23 ±16.53 ±16.55 ±16.30	206,370 202,630 121,310 114,110 161,110	1.029 .959 .850 <u>.717</u>	15.7 7.9 4.4 19.3 ±11.8
7-6 7-14 7-18 7-2	L-H L-H L-H L-H	±30.82 ±30.96 ±31.49 ±30.56 Av. 130.96	±16.27 ±16.47 ±16.57 ±16.30 ±16.40	190,590 195,400 189,210 177,980 188,290	. 736 . 825 . 710 . 504 . 694	6.0 18.9 2.3 27.4 ±13.6

⁸ H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 3.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.032-INCH-THICK ALCLAD 24S-T3 AND ALCLAD 75S-T6 ALIMINUM ALLOY - Continued

(a) Alclad 24S-T3 aluminum alloy - Concluded

Specimen	(a) ksi		Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
		3; mean stress, 20,	000 psi; cycle pa	ttern, 15,110 c	ycles high and 9,890 cy	
12-2 12-6 12-10 12-14	н н н	±31.55 ±31.23 ±31.39 ±31.09 Av. ±31.32		23,380 26,090 33,410 30,360 28,310	0.826 .922 1.180 1.072 1.000	17.4 7.8 18.0 7.2 ±12.6
12-4 12-8 12-12 12-17	L L L		#16.28 #16.34 #16.31 #16.37 Av. #16.33	186,860 199,240 202,010 209,190 199,330	.937 1.000 1.013 1.049 1.000	6.3 0 1.3 4.9 13 .1
12-3 12-7 12-11 12-16	H-L H-L H-L H-L	±31.41 ±31.26 ±31.21 ±31.13 Av. ±31.25	±16.02 ±16.27 ±16.39 ±16.43 ±16.28	34,500 38,330 51,770 50,470 43,770	.919 1.055 1.229 1.183 1.097	16.2 3.8 12.0 7.8 ±10.0
12-5 12-9 12-13 12-18	L-H L-H L-H L-H	±31.41 ±31.09 ±31.08 ±31.34 Av. ±31.23	±16.31 ±16.24 ±16.25 ±16.44 ±16.31	48,120 48,370 62,900 49,820 52,300	1.100 1.109 1.323 1.160 1.173	6.2 5.5 12.8 1.1 16 .4
	Test g	roup 44; mean stres	s, 0; cycle patte	ern, 25,400 cycl	es high to failure at	low
11-2 11-8 11-14 11-18	н н н н	±31.59 ±31.35 ±31.31 ±31.31 Av. ±31.39		43,170 42,610 42,540 40,490 42,200	1.023 1.010 1.008 .959 1.000	2.3 1.0 .8 4.1 1 2.1
11-7 11-13 11-17 11-20	L L L		±16.17 ±15.86 ±15.98 ±15.97 Av. ±16.00	1,767,900 2,603,550 2,121,510 1,562,890 2,013,960	.878 1.293 1.053 <u>.776</u> 1.000	12.2 29.3 5.3 22.4 1 17.3
11-6 11-9 11-10 11-12	H-L H-L H-L	±31.81 ±31.48 ±31.45 ±31.35 Av. ±31.52	±16.11 ±16.19 ±16.25 ±15.97 ±16.13	1,139,140 696,690 788,620 1,454,840 1,019,820	1.155 .935 .981 1.312 1.096	5.4 14.7 10.5 19.7 ±12.6
	Te	st group 45; mean s to failure at	tress, 20,000 ps:	i; cycle pattern cycles low to fa	, 23,560 cycles high ilure at high	
1-2 1-17 1-11 1-7	н н н	±30.36 ±30.54 ±30.32 ±30.22 Av. ±30.36		32,580 47,550 37,190 37,820 38,790	0.840 1.226 .959 <u>.975</u> 1.000	16.0 22.6 4.1 2.5 1 11.3
1-5 1-15 1-9 1-19	r r r		±16.12 ±16.38 ±16.44 ±15.89 Av. ±16.21	240,660 285,700 298,630 347,680 293,170	.821 .975 1.019 1.186 1.000	17.9 2.5 1.9 18.6 ±10.2
1-4 1-12 1-8 1-18	H-L H-L H-L	±30.55 ±30.45 ±30.48 ±30.58 Av. ±30.52	±16.54 ±16.65 ±16.51 ±16.82 ±16.63	82,400 162,630 154,480 202,370 150,470	.808 1.081 1.054 1.217 1.040	22.3 3.9 1.3 17.0 ±11.1
1-6 1-10 1-16 1-20	L-H ±30.54 L-H ±50.42 L-H ±50.57 L-H ±30.57 Av. ±30.57		±16.57 ±16.47 ±16.64 ±16.74 ±16.61	178,440 181,710 182,810 184,190 181,790	.654 .738 .766 .802 .740	11.6 .3 3.5 8.4 16 .0

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 3. - CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.032-INCH-THICK ALCIAD 245-T3 AND ALCIAD 755-T6 ALUMINUM ALLOY - Continued

(b) Alclad 75S-T6 aluminum alloy

Specimen	Load sequence	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	Test group	46; mean stress,	0; cycle pattern	, 9,200 cycles h	igh and 140,800 cycles	low
30-2 30-6 30-10 30-20	н н н н	±30.45 ±30.59 ±30.59 ±30.50 Av. ±30.53		37,270 38,600 44,270 42,650 40,700	0.916 .948 1.088 1.048 1.000	8.4 5.2 8.8 4.8 16.8
30-4 30-8 30-12	L L		±16.16 ±16.14 ±16.22 ±16.17	1,019,780 1,022,620 1,313,100 1,118,500	.912 .914 1.174 1.000	8.8 8.6 17.4 ±11.6
30-7 30-11 30-15	H-L H-L H-L	±30.70 ±30.26 ±30.45 Av. ±30.47	±16.18 ±15.89 ±16.22 ±16.10	399,140 462,520 419,990 427,220	1.010 1.285 1.029 1.108	8.9 16.0 7.1 ±10.7
30-9 30-13 30-21	L-H L-H	±30.67 ±30.78 ±29.98 Av. ±30.48	±16.26 ±16.26 ±16.07 ±16.23	574,900 459.330 400,470 478,230	1.167 1.064 -794 1.008	15.8 5.6 21.2 ±14.2
	Test group 47	; mean stress, 20,	000 psi; cycle pa	ttern, 6,200 cy	cles high and 68,800 cyc	cles low
28-2 28-8 28-13 28-18	H H H H	±30.45 ±30.21 ±30.61 ±30.49 Av. ±30.44		34,070 34,130 35,240 32,890 34,080	1.000 1.001 1.034 965 1.000	0 .1 3.4 <u>3.5</u> ±1.8
28-5 28-10 28-15 28-20	L L L		±15.63 ±15.59 ±15.73 ±16.09 Av. ±15.76	587,140 735,750 206,250 355,240 471,100	1.246 1.562 .438 .754 1.000	24.6 56.2 56.2 24.6 ±40.4
28-3 28-9 28-14 28-19	H-L H-L H-L	±30.28 ±30.76 ±30.32 ±30.62 Av. ±30.50	±15.71 ±15.90 ±15.78 ±15.98 ±15.84	226,820 156,530 227,510 228,220 209,770	1.037 .839 1.057 1.078 1.003	3.4 16.4 5.4 7.5 ±8.2
28-6 28-11 28-17 28-21	L-H L-H L-H L-H	±30.41 ±30.28 ±30.63 ±30.45 Av. ±30.44	±15.87 ±15.86 ±15.80 ±15.70 ±15.81	298,370 251,750 223,110 276,930 262,540	1.264 1.041 .928 1.094 1.082	16.8 3.8 14.2 1.1 ±9.0
	Test	group 48; mean st	ress, 0; cycle pa	ttern, 22,500 cy	rcles high and 52,500 cy	rcles low
33-7 33-14 33-18 33-13 33-5	H H H H	±29.40 ±31.36 ±31.18 ±30.93 ±30.06 Av. ±30.59		57,040 46,110 42,430 27,940 56,050 45,910	1.242 1.004 .924 .609 1.221	24.2 .4 7.6 39.1 <u>22.1</u> ±18.7
33-12 33-9 33-16 33-19	L L L		#16.02 #16.17 #15.87 #16.24 Av. #16.08	1,309,440 1,374,520 1,403,060 1,321,730 1,352,200	.968 1.017 1.038 .977 1.000	3.2 1.7 3.8 2.3 ±2.8
33-3 33-8 33-15 33-20			#16.61 #16.50 #15.96 #16.05 #16.28	92,690 92,810 85,440 95,950 91,970	.936 .917 .756 .985 .899	4.1 2.0 15.9 9.6 ±7.9
33-6 33-11 33-17 33-21	L-H L-H L-H L-H	±31.10 ±31.03 ±30.93 ±31.56 Av. ±31.16	±15.92 ±15.83 ±16.01 ±16.21 ±15.99	135,610 134,500 142,150 138,530 137,700	.745 .720 .887 .808	5.7 8.9 12.3 2.3 ±7.3

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 3.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.032-INCH-THICK ALCIAD 24S-T3 AND ALCIAD 75S-T6 ALUMINUM ALLOY - Continued

(b) Alclad 75S-T6 aluminum alloy - Continued

Specimen	Load sequence (a)	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	Test group 49;	mean stress, 20,0	00 psi; cycle pat	tern, 12,320 cy	cles high and 62,680 c	ycles low
26-1 26-5 26-12 26-18	н н н н	±30.50 ±30.58 ±30.45 ±30.25 Av. ±30.45		30,390 35,400 33,520 26,760 31,520	0.964 1.123 1.063 .849 1.000	3.6 12.3 6.3 15.1 1 9.3
26-3 26-9 26-14 26-17	L L L		±15.84 ±15.73 ±15.89 ±15.85 Av. ±15.83	526,620 534,740 328,510 496,770 471,570	1.116 1.134 .697 1.053 1.000	11.6 13.4 30.3 <u>5.3</u> ±15.2
26-2 26-7 26-13 26-19	H-L H-L H-L H-L	±30.27 ±30.56 ±30.38 ±30.60 Av. ±30.45	±15.87 ±15.85 ±15.85 ±15.99 ±15.89	153,870 87,110 104,600 80,080 106,420	1.171 .908 .952 .685	26.0 2.3 2.5 26.3 ±14.3
26-4 26-10 26-15 26-21	L-H L-H L-H	±30.34 ±30.25 ±30.41 ±30.67 Av. ±30.42	±15.70 ±15.69 ±15.76 ±16.09 ±15.81	147,030 146,750 126,960 139,260 140,000	.954 .945 .634 .707 .810	17.8 16.7 21.7 12.7 ±17.2
	Test group 50;	mean stress, 20,0	00 psi; cycle pat	tern, 22,500 cy	cles high and 52,500 c	ycles low
25-3 25-7 25-13 25-17	н н н	±30.79 ±30.28 ±30.35 ±30.99 Av. ±30.60		20,850 32,190 32,150 27,940 28,280	0.737 1.138 1.137 .988 1.000	26.3 13.8 13.7 1.2 ±13.8
25-8 25-11 25-15 25-19	L L L		±15.90 ±16.03 ±15.92 ±15.78 Av. ±15.91	408,630 453,610 498,950 430,030 447,810	.913 1.013 1.114 .960 1.000	8.7 1.3 11.4 4.0 16 .4
25-4 25-10 25-14 25-18	H-L H-L H-L	±30.75 ±30.23 ±30.78 ±30.50 Av. ±30.57	±15.99 ±15.81 ±15.93 ±15.75 ±15.87	78,510 83,240 89,410 35,410 71,640	1.037 1.204 1.422 .825 1.122	7.6 7.3 26.7 26.5 ±17.0
25-6 25-12 25-16 25-20	L-H L-H L-H L-H	±30.71 ±30.47 ±30.76 ±30.34 Av. ±30.57	±15.91 ±15.57 ±15.92 ±15.69 ±15.77	129,210 132,310 133,580 136,140 132,830	1.092 1.200 1.245 1.335 1.218	10.4 1.5 2.2 9.6 ±5.9
	Test gr	roup 51; mean stres	s, 0; cycle patte	ern, 19,500 cycl	es high to failure at	low
31-2 31-5 31-9 31-17	H H H	±30.57 ±30.42 ±30.46 ±30.32 Av. ±30.44		30,710 37,800 41,640 40,150 37,580	0.817 1.006 1.108 1.069 1.000	18.3 .6 10.8 6.9 1 9.2
31-1 31-7 31-10 31-12	r r r		±16.11 ±15.91 ±15.86 ±15.50 Av. ±15.85	1,341,870 2,028,090 1,768,320 1,130,350 1,567,160	.856 1.294 1.128 <u>.721</u> 1.000	14.4 29.4 12.8 27.9 ±21.1
31-3 31-4 31-6 31-11 31-13 31-14 31-15 31-18	H-L H-L H-L H-L H-L H-L	±30.35 ±30.55 ±30.64 ±30.46 ±30.28 ±30.32 ±30.41 ±30.60 Av. ±30.45	±15.86 ±16.06 ±16.11 ±15.71 ±15.59 ±15.46 ±16.16	815,120 1,046,570 1,040,730 715,780 1,064,180 1,362,480 1,009,280 874,440 991,070	1.021 1.174 1.171 .965 1.186 1.376 1.151 1.065	9.8 3.1 2.8 15.5 4.1 20.8 1.1 6.5 18 .0

⁸ H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 3.- CUMULATIVE-FATIGUE-DAMAGE RESULTS FOR 0.032-INCH-THICK ALCIAD 24S-T3 AND ALCIAD 75S-T6 ALUMINUM ALLOY - Concluded

(b) Alclad 75S-T6 aluminum alloy - Concluded

Specimen	Load sequence (a)	High stress,	Low stress,	Cycles to failure	Cumulative-damage ratio, D	Deviation from average D, percent
	Test group	52; mean stress 20	,000 psi; cycle p	pattern, 18,900	cycles high to failure	at low
32-3 32-2 32-12 32-17	н н н н	±30.57 ±30.61 ±30.56 ±30.47 Av. ±30.55		28,860 27,070 19,150 28,150 25,810	1.118 1.049 .742 1.091 1.000	11.8 4.9 25.8 9.1 ±12.9
32-5 32-6 32-10 32-16	L L L		±15.73 ±15.94 ±15.87 ±15.95 Av. ±15.87	489,580 591,950 441,170 456,380 494,770	.990 1.196 .892 .922 1.000	1.0 19.6 10.8 <u>7.8</u> ±9.8
32-4 32-11 32-18 32-19	H-L H-L H-L H-L	±30.59 ±30.45 ±30.95 ±30.76 Av. ±30.69	±16.04 ±15.94 ±16.00 ±15.86 ±15.96	185,790 195,140 218,600 95,920 173,860	1.069 1.088 1.136 .888 1.045	2.3 4.1 8.7 15.0 ±7.5

^a H, high stress only; L, low stress only; H-L, high stress first followed by low stress, etc.; L-H, low stress first followed by high stress, etc.

TABLE 4.- SUMMARY TABLE FOR 0.032-INCH-THICK ALCIAD MATERIALS

[Nominal stress amplitudes, ±16,000 and ±30,000 psi]

		Cycle 1	pattern		A		stresse	в,		les to	Average of life,		Cumulati ratio		Average d	
Pest group	Nominal mean stress, psi	Cycles at higher stress,	Cycles at lower stress,	Number of specimens tested	10	gle- ad cimen	Dus los spec		At high stress,	At low stress,	High- stress specimens	Low- stress specimens	$\frac{\sum_{n_{\text{H}}}}{n_{\text{H}}}$ (average	$+\frac{\sum_{n_L}}{N_L}$ d values)	H-La	L-H ^b
		nH	n _L		н	L	H-La	L-Ho					H-La	L-Hp		-1110
						0.032-1	nch-thi	ck alcl	ad 24S-T	3 aluminum	alloy					
40	0	11,960	188,040	18	±30.38	±16.21	±30.40 ±16.05	±30.62 ±16.04		2,183,250	±7.8	±12.3	0.792	0.568	±21.4	±19.5
41	20,000	8,260	41,740	14	±31.65	±16.67	±31.64 ±16.61	±31.65 ±16.54	29,930	254,830	±10.9	±16.7	.952	.851	±4.9	±3.5
42	0	21,910	78,090	16	±31.09	±16.42	±31.03 ±16.30	±30.96 ±16.40	53,860	1,614,590	±6.5	±15.2	.889	.694	±11.8	±13.6
43	20,000	15,110	9,890	16	±31.32	±16.33	±31.25 ±16.28	±31.23 ±16.31	28,310	199,330	±12.6	±3.1	1.097	1.173	±10.0	±6.4
1+1+	0	25,400	To failure at low	12	±31.39	±16.00	±31.52 ±16.13		42,200	2,013,960	±2.1	±17.3	1.096		±12.6	
45	20,000	23,560 to failure at low	176,440 to failure at high	16	±30.36	±16.21	±30.52 ±16.63	±30.57 ±16.61	38,790	293,170	±11.3	±10.2	1.040	.740	±11.1	±6.0
						0.032-1	nch-thi	ck alcl	ad 75S-T	6 aluminum	alloy					
46	0	9,200	140,800	13	±30.53	±16.17		±30.48 ±16.23	40,700	1,118,500	±6.8	±11.6	1.108	1.008	±10.7	±14.2
47	20,000	6,200	68,800	16	±30.44	±15.76	±30.50 ±15.84	±30.44 ±15.81	34,080	471,100	±1.8	±40.4	1.003	1.082	±8.2	±9.0
48	0	22,500	52,500	17	±30.59	±16.08	±31.10 ±16.28	±31.16 ±15.99	45,910	1,352,200	±18.7	±2.8	.899	•790	±7.9	±7.3
49	20,000	12,320	62,680	16	±30.45	±15.83	±30.45 ±15.89	±30.42 ±15.81	31,520	471,570	±9.3	±15.2	.929	.810	±14.3	±17.2
50	20,000	22,500	52,500	16	±30.60	±15.91	±30.57 ±15.87	±30.57	28,280	447,810	±13.8	±6.4	1.122	1.218	±17.0	±5.9
51	0	19,500	To failure at low	16	±30.44	±15.85	±30.45 ±15.83		37,580	1,567,160	±9.2	±21.1	1.139		±8.0	
52	20,000	18,900	To failure at low	12	±30.55	±15.87	±30.69		25,810	494,770	±12.9	±9.8	1.045		±7.5	

a H-L, loading pattern in which higher stress was applied first.

b L-H, loading pattern in which lower stress was applied first.

TABLE 5.- COMPARISON OF CUMULATIVE-DAMAGE RATIOS D RESULTING FROM TEST GROUPS USING COMPARABLE PATTERN RATIOS &

Test group	Mean stress, psi	Material (alclad aluminum- alloy sheet)	Material thickness, in.	Pattern ratio, ϵ , $\frac{n_{\rm H}/N_{\rm H}}{\left(n_{\rm H}/N_{\rm H}\right) + \left(n_{\rm L}/N_{\rm L}\right)}$	Cumulative-damage ratio, D, $\frac{\sum_{n_{\text{H}}} n_{\text{H}}}{N_{\text{H}}} + \frac{\sum_{n_{\text{L}}} n_{\text{L}}}{N_{\text{L}}}$ (averaged values)	
					H-La	L-Hp
31	0	Alclad 75S-T6	0.064	0.704	0.907	0.603
40 41 46 47	0 20,000 0 20,000	Alclad 245-T3 Alclad 245-T3 Alclad 758-T6 Alclad 758-T6	.032 .032 .032 .032	.708 .628 .642 .555	.792 .952 1.108 1.003	.568 .851 1.008 1.082
34	0	Alclad 75S-T6	.064	.910	•777	.605
1+2 1+3 1+8 1+9	0 20,000 0 20,000	Alclad 245-T3 Alclad 245-T3 Alclad 755-T6 Alclad 755-T6	.032 .032 .032 .032	.894 .915 .927 .746	.889 1.097 .899 .929	.694 1.173 .790 .810
30	0	Alclad 75S-T6	.064	56% life at H to failure at L	1.418	
1414	0	Alclad 24S-T3	.032	60% life at H to failure at L	1.096	
45	20,000	Alclad 24S-T3	.032	61% life at H	1.040	.740
51	0	Alclad 75S-T6	.032	to failure at L 52% life at H	1.139	
52	20,000	Alclad 758-T6	.032	to failure at L 73% life at H to failure at L	1.045	

a H-L, loading pattern in which higher stress was applied first.
 b L-H, loading pattern in which lower stress was applied first.

Figure 1.- Schematic diagram of side elevation of fatigue testing machines.

Figure 2.- Driving linkages of fatigue testing machines.

NACA TN 3293

L-87945 Figure 3.- Load amplitude control mechanism of fatigue testing machines.

Curve	Material	Young's modulus, psi		Yield stress, psi		Ultimate stress, psi	
		Tension	Compression	Tension	Compression	Tension	Compression
1	0.064-in. alclad 75S-T6	10.21 × 10 ⁶	10.26 × 10 ⁶	76.10 × 10 ³	68.40 × 10 ³	77.80 × 10 ³	
2	0.032-in. alclad 75S-T6	10.10	10.26	70.75	66.20	78.27	
3	0.032-in. alclad 24S-T3	10.47	10.26	50.07	41.27	66.84	

Figure 4.- Stress-strain curves.

Figure 5.- Design of specimen. All dimensions are in inches.

L-87946
Figure 6.- Typical specimen assembled in guides.

Figure 7.- Cumulative-damage ratio versus cycle-pattern ratio.

(a) Nominal stresses, $\pm 30,000$ and $\pm 40,000$ psi.

Figure 8.- Cumulative-damage ratio versus length of cycle pattern. $D = \left(\sum n_H/N_H\right) + \left(\sum n_L/N_L\right) \text{ where } n_H \text{ is the number of consecutive cycles applied at the higher stress, } n_L \text{ is the number of consecutive cycles applied at the lower stress, and } N_H \text{ and } N_L \text{ are the averaged cycles to failure at the higher and lower stress levels, respectively.}$

(b) Nominal stresses, ±30,000 and ±60,000 psi.

Figure 8.- Continued.

(c) Nominal stresses, ±16,000 and ±30,000 psi.

Figure 8.- Concluded.

Figure 9.- Cumulative-damage ratio versus cycle patterns for 0.064-inch material.

Figure 10.- S-N diagram of 0.064-inch-thick alclad 75S-T6 aluminum-alloy sheet. Each point represents a group of tests, normally four (table 2).

Extreme specimens for each H-L test group

Figure 11.- Cumulative-damage ratio versus cycle patterns for 0.032-inch materials. Nominal stress amplitudes, ±16,000 and ±30,000 psi.

퍼

Figure 12.- S-N diagram of 0.032-inch-thick alclad 24S-T3 and alclad 75S-T6 aluminum-alloy sheet. Each point represents a group of tests, normally four (table 4).

