Análise de Viabilidade de Projetos de Geração de Energia Renovável

Guilherme de Godoi RA237031, Micael Kilmer RA196541 ${\rm Junho~de~2025}$

Sumário

1	Análise Comparativa Estratégica e Organizacional		
	1.1 Tabela Comparativa		
	1.2 Análise qualitativa baseada na tabela		
2	Análise de Viabilidade Econômica		
	2.1 Explicação dos cenários considerados		
	2.2 Valor Presente Líquido (VPL)		
	2.3 Payback		
	2.4 Taxa Interna de Retorno (TIR)		
3	Recomendação Final		

1 Análise Comparativa Estratégica e Organizacional

1.1 Tabela Comparativa

Tabela 1: Comparativo Estratégico entre ESF e EBM

Critério	ESF (Solar)	EBM (Biomassa)		
Análise Interna				
Capex e implantação	Baixo (instalação rápida)	Alto (estruturas elaboradas)		
Custo operacional	Baixo (autônomo)	Alto (logística complexa)		
Exigência de gestão	Baixo (mínima intervenção	Alto (coordenação no local)		
local	humana)			
Manutenção e capa-	Baixo (fácil reposição)	Alto (conhecimentos es-		
citação		pecíficos)		
Escalabilidade	Médio (facilitado mas limi-	Baixo (disponibilidade do		
	tado)	local e recursos)		
Análise Externa				
Disponibilidade de in-	Alto (alta incidência solar	Médio (matéria-prima exis-		
sumos	durante o ano)	tente, porém sujeita a sazo-		
		nalidade)		
Acesso a financia-	Alto (subsídios para essa	Médio (apoio disponível,		
mento	energia)	porém menor)		
Riscos e Benefícios	Baixo impacto negativo, van-	Riscos moderados (possibili-		
Ambientais	tagens claras	dade de emissões)		
Suporte técnico ex-	Alto (tecnologia consolidada)	Médio (profissionais especia-		
terno		lizados)		
Exposição a riscos de	Pequeno (energia estável e	Alto (custos dos insumos e		
mercado	gratuita)	transporte)		

1.2 Análise qualitativa baseada na tabela

A tabela comparativa entre os projetos de energia solar fotovoltaica (ESF) e energia de biomassa (EBM) revela diferenças significativas em aspectos estratégicos e operacionais, que impactam diretamente a viabilidade e atratividade de cada projeto. Concluímos então que a ESF apresenta vantagens qualitativas claras em termos de simplicidade operacional, resiliência a riscos externos e alinhamento com políticas de incentivo à energia renovável. Já a EBM, embora tecnicamente viável, requer condições mais específicas e investimentos contínuos para mitigar seus custos e complexidades.

2 Análise de Viabilidade Econômica

2.1 Explicação dos cenários considerados

Para analisar a viabilidade econômica de cada projeto, foi empregada a técnica de Simulação de Monte Carlo (SMC), com o objetivo de estimar diferentes cenários para os

principais parâmetros que impactam os indicadores financeiros: Valor Presente Líquido (VPL), Payback e Taxa Interna de Retorno (TIR).

A SMC consiste na definição de faixas de variação para os parâmetros-chave e na geração de milhares de simulações com valores aleatórios dentro desses intervalos, permitindo a construção de distribuições de probabilidade dos resultados. Dessa forma, é possível identificar cenários mais prováveis e avaliar a robustez econômica de cada projeto frente às incertezas envolvidas.

Taxa de Juros e Inflação de Custos — Para os parâmetros macroeconômicos — taxa de juros e inflação de custos —, foram utilizados dados históricos do Banco Central do Brasil e do IBGE, abrangendo o período de 2000 a 2025. A partir desses dados, foram calculados intervalos de confiança de 90%, estabelecendo os limites superior e inferior considerados nas simulações. Isso permite incorporar uma visão realista da variabilidade econômica ao longo do tempo.

Preço da Energia Para o preço da energia elétrica (R\$/MWh), também foram considerados dados históricos de mercado, com foco nas regiões específicas de cada projeto: a Região Nordeste para a planta solar fotovoltaica (ESF), localizada em Juazeiro (BA), e a Região Sul para a planta de biomassa (EBM), localizada em Chapecó (SC). Esses dados foram obtidos por meio da Câmara de Comercialização de Energia Elétrica (CCEE), contemplando variações sazonais e conjunturais do mercado livre de energia.

Eficiência Operacional A eficiência operacional das plantas é determinada pela natureza tecnológica de cada projeto. A planta ESF apresenta eficiência média estimada de 25%, devido à intermitência da fonte solar e às limitações físicas dos painéis fotovoltaicos. Mesmo em uma região de alta insolação, como Juazeiro (BA), a geração efetiva de energia ao longo do ano tende a alcançar aproximadamente um quarto da capacidade instalada. Por outro lado, a planta EBM, baseada em cogeração a partir de biomassa, possui operação contínua e controlada, com maior aproveitamento térmico e energético, o que justifica uma eficiência estimada de 85%.

Custo Variável A diferença entre os custos variáveis de operação está associada à natureza da fonte de energia. A usina solar (ESF) utiliza o sol como recurso gratuito e abundante, limitando seus custos operacionais à manutenção leve e à limpeza dos painéis. Já a usina de biomassa (EBM) depende da aquisição, transporte, armazenamento e combustão de material orgânico, além de exigir operação técnica especializada. Essas características explicam o custo variável significativamente mais elevado da planta EBM.

Com base nesses parâmetros e suas respectivas faixas de variação, foram estruturados os cenários para as simulações de Monte Carlo, fornecendo uma visão estatística abrangente do desempenho potencial de cada projeto.

2.2 Valor Presente Líquido (VPL)

Figura 1: Distribuição do VPL via Simulação de Monte Carlo

2.3 Payback

2.4 Taxa Interna de Retorno (TIR)

3 Recomendação Final

Com base nas análises realizadas, o comitê técnico recomenda o investimento no projeto **ESF** — planta de energia solar fotovoltaica localizada em Juazeiro (BA). Essa recomendação fundamenta-se no desempenho superior da ESF em todas as métricas financeiras avaliadas, bem como em sua leve vantagem nos aspectos estratégicos e operacionais.

- Valor Presente Líquido (VPL): O projeto ESF apresentou um VPL médio superior ao da EBM, com praticamente 100% dos cenários simulados resultando em valores positivos. Em contraste, o projeto EBM demonstrou um VPL médio negativo, indicando menor atratividade econômica.
- Payback: A planta solar obteve consistentemente prazos de retorno inferiores a 10 anos em todas as simulações. Já o projeto de biomassa revelou maior risco: aproximadamente 23% das simulações indicaram que o investimento nunca se pagaria, e apenas cerca de 10% resultaram em payback inferior a 10 anos.
- Taxa Interna de Retorno (TIR): A TIR média da ESF superou em 12% a da EBM, evidenciando maior rentabilidade esperada para o investidor.
- Vantagens Estratégicas e Operacionais:
 - Custos e Simplicidade: Capex e custos operacionais reduzidos, baixa exigência de gestão local e manutenção simplificada.

- Resiliência: Menor exposição a riscos de mercado (energia estável e gratuita) e maior escalabilidade.
- Sustentabilidade: Alinhamento com políticas globais de energia limpa, baixo impacto ambiental e acesso a subsídios.
- Riscos Mitigados): A ESF não depende de cadeias complexas de suprimentos (como biomassa) e tem suporte técnico consolidado, reduzindo incertezas.

Diante da robustez financeira, das vantagens operacionais e do cenário favorável à energia solar, o projeto ESF emerge como a alternativa mais segura e lucrativa para a organização. Recomenda-se priorizar sua implementação, garantindo assim retorno sustentável e alinhamento com tendências futuras do setor energético.