Predicting Insurance Claim Severity

Anant Kumar Verma

Introduction

Business Problem

- ☐ Insurance companies need to predict claim severity to optimize pricing and risk assessment.
- □ High claim amounts can impact profitability, while underpricing can lead to losses.

Objective

- Build a predictive model to estimate claim amounts based on vehicle, driver, and policy attributes.
- ☐ Use machine learning techniques to identify key factors influencing claim severity.
- □ Provide actionable insights for improving risk management and pricing strategies.

Dataset Overview

Key Variables in the Dataset

- Policy-related: Policy age, claims history
- ☐ Vehicle-related: Age of car, fuel type, engine power, safety

features

- ☐ Driver-related: Age of policyholder, driving history
- ☐ Geographical & Environmental Factors: Area, population density

Source: kaggle

Exploratory Data Analysis

Heatmap of Correlation Matrix

- ☐ Identified **strong relationships** between variables like

 Customer Demographic, Displacement of Car, and

 claims.
- □ Also seen multi-collinearity among other features which can be seen in dark in heatmap, this shows that a simple
 Linear Regression Model is not a great choice for the data

Visualization of Data

- Number of Claims in 5 years for each customer are one of 0,1,2 or
 3, but considering only these are the only values possible, will create a bias in the model
- Most of the numerical featurescan be standardized
- We can see 3 categories in Length, vehicle is either small, mid or long

Transformations on Data

Variable	Transformation Applied	Reason	Effect
max_torque	Extract numeric values till "N", then standardization	The column contained "Nm" units, making it non-numeric	Enables numerical computation & brings it to a common scale for better model training
max_power	Extract numeric values till "b", then log transformation	The column contained "bhp" units, making it non-numeric & had a skewed distribution	Enables numerical computation, reduces skewness, and improves normality
length, width, height	Extract numeric values till "c", then standardization	The columns contained "cm" units, making them non-numeric	Enables numerical computation & prevents larger values from dominating the model
displacement	Extract numeric values till "c", then log transformation	The column contained "cc" units & had a right-skewed distribution	Converts it to a numerical format & stabilizes variance for better predictions
gross_weight	Standardization	The variable had a large range, requiring scaling	Prevents scale differences from affecting model training
is_esc, is_tpms, etc.	Convert "Yes"/"No" to 1/0	The column was categorical (binary) but should be numeric	Enables model to understand binary categorical variables
area, make, segment, etc.	One-Hot Encoding	The column was categorical with multiple levels	Prevents incorrect ordinal interpretation & allows better categorical representation

Important Features

Model Building

Selected Machine Learning Models

- ☐ Linear Regression (Baseline Model)
- ☐ Random Forest Regressor (Captures non-linearity)
- ☐ Gradient Boosting Regressor (Boosted ensemble for improved accuracy)
- □ Support Vector Regressor (SVR) (Handles complex relationships)
- ☐ XGBoost Regressor (Optimized tree-based model)

Model Evaluation Metrics

Metrics Used for Performance Evaluation:

- ☐ Mean Squared Error (MSE) Measures average squared error.
- Mean Absolute Error (MAE) Shows absolute deviation from actual claims
- □ Root Mean Squared Error (RMSE) Penalizes large errors more than MSE
- □ R-squared (R²) Explains variance captured by the model

Model Evaluation Result

	MSE	RMSE	MAE	R ² Score
Linear Regression	0.069293	0.263235	0.207078	1
Random Forest	1.031695	1.015724	0.25302	1
Gradient Boosting	20682.22	143.8131	104.5614	0.993324
Support Vector Regressor	3929821	1982.378	1224.092	-0.26846
XGBoost	1379.906	37.14708	10.5019	0.999555

Visualization of Results

Visualization of Results

Why Choose XGBoost?

1.High Accuracy & Low Error
R ² Score: 0.9996, indicating a near-perfect fit while avoiding complete overfitting.
☐ MSE: 1379, RMSE: 37.14, MAE: 10.50, showing significantly lower prediction errors compared to Gradient
Boosting and SVR.
2.Better Generalization
\Box While Linear Regression has an R^2 of 1.00, its extremely low errors (MSE = 0.07) suggest overfitting or data
leakage.
☐ XGBoost balances accuracy while maintaining robust generalization.
3. Handles Complex Data Relationships
☐ XGBoost captures non-linear patterns better than Linear Regression and SVR.
Unlike Random Forest, it reduces variance and avoids overfitting through boosting techniques.
4.Efficient & Scalable
XGBoost is optimized for speed and efficiency, making it suitable for large datasets.
☐ It uses regularization (L1/L2) to prevent overfitting.

Key Insights from the Model

How This Supports Pricing & Risk Management

Limitations & Future Improvements

Missing Key Behavioral Data

- ☐ Driving habits (mileage, speeding, accident history) not included.
- ☐ Future improvement: Integrate telematics data.

External Factors Not Considered

- Weather, road conditions, economic factors could refine predictions.
- □ Solution: Incorporating external datasets for a holistic approach.

Explore Advanced Models

☐ Generalized Linear Models (GLM) or deep learning can be used to enhance prediction accuracy.

Thank you

Anant Kumar Verma

Christ University

+91 7453 015 236

anant.kumar@arts.christuniversity.in