Indian Institute of Information Technology Allahabad Convex Optimization (SMAT430C) Tentaive Marking Scheme (Quiz-I)

1. Let
$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, z = 0\}.$$

Solution. The convex hull of
$$D$$
, **conv** $D = D$. [1]

The affine hull of
$$D$$
, aff $D = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}.$ [1]

The conic hull of
$$D$$
 is $\{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$.

(b) Find the interior
$$(D^{\circ})$$
, boundary (∂D) and closure (\overline{D}) of D .

Solution.
$$D^{\circ} = \emptyset$$
, [1]

[3]

Solution.
$$D = \emptyset$$
, [1] $\partial D = D$,

$$\overline{D} = D \cup \partial D = D. \tag{1}$$

Solution. The relative interior of
$$D$$
, relint $D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 < 1, z = 0\},$

The relative boundary of
$$D$$
 is $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z = 0\}.$ [1]

(d) Is the set
$$D$$
 open? Justify your answer. [1]

Solution.
$$\therefore D \neq D^{\circ}, D \text{ is not open.}$$
 [1]

(e) Is the set
$$D$$
 closed? Justify your answer. [1]

Solution.
$$\therefore D = \overline{D}, D \text{ is closed.}$$
 [1]

2. Let
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 be an affine function. Show that the inverse image of a convex set under f is convex. [4]

Solution. Let S be a convex subset of
$$\mathbb{R}^m$$
. Then $f^{-1}(S) = \{x \in \mathbb{R}^n \mid f(x) \in S\}$ [1]

Given any $x_1, x_2 \in f^{-1}(S)$, we have $f(x_1), f(x_2) \in S$.

$$S$$
 is convex, therefore for $\theta \in [0,1]$, $\theta f(x_1) + (1-\theta)f(x_2) \in S$.

$$f$$
 is an affine function, $f(x) = Ax + b$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Therefore,

$$\theta f(x_1) + (1 - \theta)f(x_2) = \theta(Ax_1 + b) + (1 - \theta)(Ax_2 + b) = A(\theta x_1 + (1 - \theta)x_2) + b = f(x) \in S,$$
where $x = \theta x + (1 - \theta)x$

where $x = \theta x_1 + (1 - \theta)x_2$.

$$\Rightarrow x \in f^{-1}(S),$$

 $\Rightarrow f^{-1}(S)$ is convex.

3. Let
$$A = \begin{pmatrix} 2 & -1 & b \\ -1 & 2 & -1 \\ b & -1 & 2 \end{pmatrix}$$
. For what values of b , A is a positive definite matrix. [3]

Solution. A matrix A is positive definite if and only if all leading principle minors are positive.

Clearly
$$\det(2) > 0$$
 and $\det\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} > 0$. [1]

For A to be positive definite, det
$$A > 0 \Longrightarrow -b^2 + b + 2 > 0$$
. [1]

$$\implies (b+1)(b-2) < 0.$$

Hence
$$b \in (-1, 2)$$
. [1]

4. Let A be an
$$m \times n$$
 matrix. Find the dual cone of $\{Ax \mid x \succeq 0\}$

Solution. Let $K = \{Ax \mid x \succeq 0\}$.

$$y \in K^* \iff z^T y \ge 0, \forall z \in K$$

$$\iff (Ax)^T y \ge 0, \forall x \ge 0$$

$$\iff x^T A^T y \ge 0, \forall x \ge 0$$

$$\iff A^T y \ge 0.$$
[1]

Therefore, $K^* = \{y : A^T y \succeq 0\}.$