Sentiment analysis Evaluation

Evaluation (binary | Boolean)

"We're addicted and annotated data is our heroine." -?

Gold Labels

aka. Golden Truth, Golden Standard

Human-defined classes/labels for each document

Human judgment Manually labeled Manually annotated

Gold Labels

aka. Golden Truth, Golden Standard

to err is human!

Gold Labels

aka. Golden Truth, Golden Standard

to err is human; to forgive, divine!

"Save This Word! All people commit sins and make mistakes. God forgives them, and people are acting in a godlike (divine) way when they forgive." - An Essay on Criticism, Alexander Pope.

Silver Labels

aka. Silver Truth, Silver Standard

Gold is very expensive!

Finding gold is needs a lot of effort!

automated-defined classes/labels for each document

Machine judgment Machine labeled Machine annotated

Transduction

Transductive Inference

Data has the labels already! E.g., ?

Transduction

Transductive Inference

Data has the labels already! Language Models!

Contingency Table aka. Confusion Matrix

	Gold Positive	Gold Negative
Model Positive	True Positive	False Positive
Model Negative	False Negative	True Negative

Perfect Classifier

	Gold Positive	Gold Negative
Model Positive	N+	0
Model Negative	0	N-

Metrics

A descriptive quantity to show the quality

Single real number (higher better/lower better)
A set of numbers that shows a trend!

Contingency Table aka. Confusion Matrix

		gold standa	rd labels	
		gold positive	gold negative	
system output	system positive	true positive	false positive	$\mathbf{precision} = \frac{tp}{tp+fp}$
labels	system negative	false negative	true negative	
		$\mathbf{recall} = \frac{\mathbf{tp}}{\mathbf{tp+fn}}$		$\mathbf{accuracy} = \frac{tp+tn}{tp+fp+tn+fn}$

Figure 4.4 Contingency table

Contingency Table aka. Confusion Matrix

Precision

High vs. Low

Figure 4.4 Contingency table

What scenarios require high precision?

Recall

High vs. Low

Figure 4.4 Contingency table

What scenarios require high recall?

Precision-Recall

Perfect Classifier

	Gold Positive	Gold Negative
Model Positive	N+	0
Model Negative	0	N-

Precision = $\frac{N+}{(N+)+0}$ = 1.0

Recall=
$$\frac{N+}{(N+)+0}$$
 =1.0

Precision-Recall

Balance Classes ~50% Positive, ~50% Negative

	Gold Positive (50)	Gold Negative (50)
Model Positive		
Model Negative		

Biased Model All are Positive

	Gold Positive (50)	Gold Negative (50)
Model Positive	50	50
Model Negative	0	0

Biased Model All are Positive

	Gold Positive (50)	Gold Negative (50)
Model Positive	50	50
Model Negative	0	0

Precision =
$$\frac{50}{50+50}$$
 = 0.5

Recall=
$$\frac{50}{50+0} = 1.0$$

Precision-Recall

Biased Model All are Negative

	Gold Positive (50)	Gold Negative (50)
Model Positive	0	0
Model Negative	50	50

$$Precision = \frac{0}{0+0} = 0.0$$

Recall=
$$\frac{0}{0+50} = 0.0$$

Precision-Recall

Uniformly Random Model

	Gold Positive (50)	Gold Negative (50)
Model Positive	25	25
Model Negative	25	25

Precision =
$$\frac{25}{25+25}$$
 = 0.5

Recall=
$$\frac{25}{25+25} = 0.5$$

Precision-Recall

Imbalance (Unbalanced) Classes ~10% Positive, ~90% Negative

	Gold Positive (10)	Gold Negative (90)
Model Positive		
Model Negative		

Biased Model All are Positive

	Gold Positive (10)	Gold Negative (90)
Model Positive	10	90
Model Negative	0	0

Biased Model All are Positive

	Gold Positive (10)	Gold Negative (90)
Model Positive	10	90
Model Negative	0	0

Precision =
$$\frac{10}{10+90}$$
 = 0.1

$$Recall = \frac{10}{10+0} = 1.0$$

Precision-Recall

Biased Model All are Negative

	Gold Positive (10)	Gold Negative (90)
Model Positive	0	0
Model Negative	10	90

$$Precision = \frac{0}{0+0} = 0.0$$

Recall=
$$\frac{0}{0+10} = 0.0$$

Precision-Recall

Uniformly Random Model

	Gold Positive (10)	Gold Negative (90)
Model Positive	5	45
Model Negative	5	45

$$Precision = \frac{5}{45+5} = 0.1$$

Recall=
$$\frac{5}{5+5} = 0.5$$

Precision-Recall

Average of Precision and Recall: A Single Metric

$$AVG-PR = \frac{P+R}{2}$$

- Same weights
- Not fair! high precision may discount low recall or vice versa

Average of Precision and Recall: A Single Metric

$$AVG-PR = \frac{P+R}{2}$$

- Same weights
- Not fair! high precision may discount low recall or vice versa

Harmonic AVG-PR =
$$\frac{2}{\frac{1}{P} + \frac{1}{R}} = 2(\frac{P \times R}{P + R})$$

HarmonicMean $(a_1, a_2, a_3, a_4, ..., a_n) = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + ... + \frac{1}{a_n}}$

- Same weights
- Conservative! More toward the lower number.

Average of Precision and Recall: A Single Metric

$$AVG-PR = \frac{P+R}{2}$$

- Same weights
- Not fair! high precision may discount low recall or vice versa

Harmonic AVG-PR =
$$\frac{2}{\frac{1}{P} + \frac{1}{R}} = 2(\frac{P \times R}{P + R})$$

$$HarmonicMean(a_1,a_2,a_3,a_4,...,a_n) = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + ... + \frac{1}{a_n}}$$

- Same weights
- Conservative! More toward the lower number.

Weighted harmonic mean =
$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$
 or $\left(\text{with } \beta^2 = \frac{1 - \alpha}{\alpha} \right)$ $F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$

$$F_{\beta} = \frac{(\beta^{2} + 1)PR}{\beta^{2}P + R} \begin{cases} \beta > 1: favors Recall \\ \beta = 1: 2(\frac{P \times R}{P + R}) \\ 0 \le \beta < 1: favors Precision \end{cases}$$

Curves

Threshold-based Model

$$P(+|x) = 1 - P(-|x)$$

$$P(x) = Sigmoid(f(x))$$

$$P(x) \ge \delta \longrightarrow x$$
 is positive

$$P(x) < \delta \longrightarrow x$$
 is negative

Threshold-based Model δ =0.5

$$P(+|x) = 1 - P(-|x)$$

$$P(x) = Sigmoid(f(x))$$

$$P(x) \ge 0.5 \longrightarrow x$$
 is positive

 $P(x) < 0.5 \rightarrow x$ is negative

Threshold-based Model δ =0.0 \rightarrow Biased Model \rightarrow All are positives

$$P(+|x) = 1 - P(-|x)$$

$$P(x) = Sigmoid(f(x))$$

$$P(x) \ge 0.0 \longrightarrow x$$
 is positive

$$P(x) < 0.0 \rightarrow x$$
 is negative

Threshold-based Model δ =1.0 \rightarrow Biased Model \rightarrow All are negatives

$$P(+|x) = 1 - P(-|x)$$

 $P(x) = Sigmoid(f(x))$
 $P(x) \ge 1.0 \longrightarrow x$ is positive
 $P(x) < 1.0 \longrightarrow x$ is negative

Precision-Recall Curve: Best δ

Precision-Recall Curve: Model Comparison

