XEROX OGC

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application:

1. (Currently Amended) An apparatus comprising:

a <u>connector</u> member having at least one of an exterior periphery surface and an interior periphery surface, and a length; <u>the connector member including and</u> a plurality of conductive members comprising a plurality of conductive fibers <u>having a length</u>, the plurality of conductive fibers <u>situated</u> <u>within disposed in a polymer and forming a conductive region situated in relation to adapted to provide current in a surface layer of 1 to 25 microns in at least one of the exterior periphery surface and the interior periphery surface:</u>

wherein the plurality of conductive fibers each having have a first end, a length, a second end, and a diameter in the range of from 0.5 microns to 25 microns the plurality of conductive fibers situated in a conductive composite member having a length and a diameter in the range of from 1 microns to 2 meters; and

a metal coating having a thickness in the range of from .001 microns to 25 microns disposed on at least a portion of the outside surface of a plurality of the conductive composite members;

wherein the plurality of conductive composite members are disposed in the member and are selectively situated <u>located</u> with respect to each other <u>in the connector member</u> and form a matrix configuration including at least one selected dimension between <u>at least a plurality of the conductive composite</u> members; and wherein a polymer is solidified about at least a portion of a periphery of the <u>a plurality of the conductive composite</u> members forming an integral structure.

- 2. (Original) The apparatus of **claim 1** wherein the plurality of conductive fibers are pultruded within the polymer.
- 3. (Original) The apparatus of **claim 2** wherein the plurality of conductive fibers include fibrillated ends extending from a surface of the member.
- 4. (Original) The apparatus of claim 1 wherein at least one of the apparatus and the conductive member is not straight along its length and extends in more than one direction.
- 5. (Original) The apparatus of claim 1 wherein the apparatus includes a lumen.
- 6. (Currently Amended) The apparatus of **claim 1** wherein the apparatus <u>further</u> includes an opening in a wall between the interior and exterior periphery surfaces.
- 7. (Currently Amended) The apparatus of **claim 1** wherein the conductive region is <u>adapted</u> for communication with a circuit.
- 8. (Original) The apparatus of claim 1 wherein the conductive region is exposed at a periphery surface.
- 9. (Original) The apparatus of **claim 1** wherein a plurality of conductive fibers are at least partially coated with an electrically conductive material.

- 10. (Currently Amended) The apparatus of **claim 1** wherein the conductive region is members are at least partially coated with an electrically conductive material.
- 11. (Original) The apparatus of **claim 1** wherein the conductive members comprise a thermally conductive material.
- 12. (Currently Amended) The apparatus of **claim 1**, wherein the apparatus further includes a plurality of non-conductive members comprising non-conductive fibers, the plurality of non-conductive members being disposed in the <u>connector</u> member and associated with the plurality of conductive members.
- 13. (Original) The connector of **claim 1** wherein the metal coating is formed by at least one of vacuum deposition, vapor deposition, electroplated, sputter coating, and electroless plated process.
- 14. (Currently Amended) The apparatus of **claim 1** wherein the conductive member <u>fibers</u> includes at least one of a metal and metal alloy.
- 15. (Currently Amended) The apparatus of claim 1 wherein the <u>plurality of conductive member fibers</u> includes a <u>coating</u> material selected from at least one of nickel, copper, gold, platinum, tungsten, silver, palladium, tin, iron, aluminum, zinc, chromium, lead, brass, nickel/boron, gold/carbon, palladium/nickel, and silver carbon.
- 16. (Original) The apparatus of **claim 14** wherein the metal is an eutectic metal alloy including tin/lead and solder.

- 17. (Original) The apparatus of claim 1 wherein the conductive fibers include carbon and the metal coating has a weight in the range of from 2% to 50% of the weight of the carbon in the conductive member.
- 18. (Original) The apparatus of **claim 1** wherein the conductive region is within 25 microns of at least one of the exterior periphery surface and the interior periphery surface.
- 19. (Original) The apparatus of claim 1 wherein the metal coating has a weight in the range of from 1% to 90% of the weight of the conductive member.
- 20. (Currently Amended) The apparatus of claim 1 wherein the plurality of fibers are metal coated and are pultruded in a resin binder to form a selected cross-sectional shape.
- 21. (Original) The apparatus of **claim 1** wherein the plurality of fibers include carbon and are metal coated and separated from another by at least one of the polymer and an insulating fiber.

22. (Currently Amended) An apparatus comprising:

a composite member comprising a plurality of conductive fibers, each conductive fiber having a length, outside surface, a diameter in the range of from 0.5 microns to 25 microns, a first end and a second end, the composite member having an outside surface and a length; and

a metal coating having a thickness in the range of from 0.001 microns to 10 microns disposed on at least a portion of the outside surface of a plurality of the conductive fibers;

wherein at least one conductive fiber is spaced from another conductive fiber along at least a portion of the length of the composite member; and wherein the composite member includes a polymer resin solidified about at least a portion of a periphery of the plurality of conductive fibers forming an integral structure;

wherein a plurality of the conductive fibers form at least one set of conductive fibers in association with the composite member, the at least one set of conductive fibers having a length and cross sectional area in the range of from less than 0.01 square microns to 1000 square microns and a metal coating having a thickness disposed on at least a portion of an outside surface of the at least one set of conductive fibers; and

wherein the composite member is a connector including an outside surface adapted to provide current in a layer adjacent to the outside surface.

23. (Canceled)

24. (Original) The apparatus of **claim 22** further comprising fibrillated fibers extending from a surface.

- 25. (Original) The apparatus of **claim 22** wherein the fibrillated region has a length in the range from 0.001 mm to 100 mm and is substantially flexible.
- 26. (Original) The apparatus of **claim 22** wherein the fibrillated region comprises an exposed plurality of conductive fibers extending from the member.
- 27. (Original) The apparatus of **claim 22** wherein the apparatus is suitable for use in an RF electric circuit to conduct current in the range of 1 hertz to 100 giga-hertz.