概率论与数理统计期末考试模拟题(四)

一、填空题(每空3分,共18分)
1. 设 A, B 互不相容, $P(A) = 0.3, P(B) = 0.5$,则 $P(\bar{B} \bar{A}) =$
2. 设 X 服从二项分布 $B(2,p)$, Y 的分布律为 $P\{Y=k\}=(1-p)^{k-1}p$, $k=1,2,\cdots$,
若已知 $P(X \ge 1) = \frac{5}{9}$,则 $D(Y) =$.
3. 设随机变量(<i>X</i> , <i>Y</i>)服从区域 $G = \{(x, y) x^2 + y^2 \le 1\}$ 上的均匀分布,则
$P\left(\min(X,Y) \ge -\frac{1}{2}, \max(X,Y) \le \frac{1}{2}\right) = -\frac{1}{2}.$
4. 若 X_1, X_2, X_3 独立同分布, $P(X_n = 1) = \frac{1}{4}$, $P(X_n = -1) = \frac{3}{4}$, $Y_n = X_n X_{n+1}$, $n = 1,2$
则 $P(Y_2 = 1 Y_1 = 1) = $
5. 若有一个容量为 11 的样本,其样本均值为 2,样本二阶原点矩为 10,则样本
方差为
6. 设 (X_1, X_2, \dots, X_5) 是取自总体 $N(0,1)$ 的样本,统计量 $T = \frac{X_1 + X_2}{\sqrt{c(X_3 + X_4)^2 + X_5^2}}$,则当
$C = _$ 时, T 服从 $t(2)$ 分布.
二、单项选择题(每题3分,共15分)
1. 设随机变量 X 的分布函数 $F(x) = 0.4\Phi(x) + 0.6\Phi(x - 1)$, $\Phi(x)$ 为标准正态分
布函数,则 $E(X) = ($).
(A) 0 (B) 0.4 (C) 0.5 (D) 0.6
2. 将长为1米的木棍随机截成两段,则此两段长度的相关系数等于().
(A) -1 (B) 0 (C) 0.5 (D) 1
3. 设随机变量 $X_i \sim \begin{pmatrix} -1 & 0 & 1 \\ 1/4 & 1/2 & 1/4 \end{pmatrix}$, $i = 1, 2$, 且满足 $P(X_1 + X_2 = 0) = 1$,则
$P(X_1 = X_2) = ().$
(A) 0 (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) 1
4. 设 $\{X_n\}_{n=1}^{+\infty}$ 独立同分布于 Poisson 分布 $P(\lambda)$, $S_n = \sum_{i=1}^n X_i$,记 $\Phi(x)$ 为标准正态
分布函数,则有().
(A) $\lim_{n\to\infty} P\left(\frac{S_n - n\lambda}{n\lambda} \le x\right) = \Phi(x)$ (B) $\lim_{n\to\infty} P\left(\frac{S_n - n\lambda}{\sqrt{n}\lambda} \le x\right) = \Phi(x)$
(C) $\lim_{n\to\infty} P\left(\frac{S_n - n\lambda}{\sqrt{n\lambda}} \le x\right) = \Phi(x)$ (D) $\lim_{n\to\infty} P\left(\frac{S_n - \lambda}{\sqrt{n\lambda}} \le x\right) = \Phi(x)$

- 5 下面说法中正确的是().
 - ① 样本均值是总体期望的无偏估计
 - ② 样本 k 阶原点矩是总体 k 阶原点矩的无偏估计
 - ③ 样本方差是总体方差的无偏估计
 - ④ 样本 k 阶中心矩是总体 k 阶中心矩的无偏估计

- (A) (1)2(3) (B) (1)3(4) (C) (1)2(4) (D) (1)2(3(4))

三、(10分)设某地区移动、电信、联通的用户比例为4:3:2,一份对运营商的 抽样调查数据表明:移动、电信、联通的好评率分别为80%、60%、70%.现从这 些数据资料中任取一位用户的评价,

- (1) 求该评价为好评的概率;
- (2) 若该评价是好评, 求该用户是电信用户的概率.

四、(10 分) 设
$$F(x) = \begin{cases} 0, & x < -1, \\ a + b \arcsin x, & -1 \le x < 1, \\ 1, & x \ge 1, \end{cases}$$

- (1) a,b满足什么条件时,F(x)为某随机变量的分布函数?
- (2) 若F(x)为连续型随机变量的分布函数,求a,b.

五、(10 分)设X服从参数为 λ 的指数分布,Y = [X] + 1, [x]为不超过x的最大整 数. (1) 求Y的分布: (2) 求在已知Y = 2的条件下,X的条件概率密度.

六、(12 分) 设随机变量 ξ , η 独立同分布, $\xi \sim U\left(-\frac{\pi}{3},\frac{\pi}{3}\right)$.

(1) 求 $\xi + \eta$ 的概率密度; (2) 若 $X = \xi \cos \eta$, $Y = \xi \sin \eta$, 问X, Y是否不相关? 七、(10分)设总体X的密度

$$f(x) = \begin{cases} a|x-\mu|, \ \mu-\theta \leq x \leq \mu+\theta, \\ 0, & \text{其它}, \end{cases}, \ (X_1,X_2,\cdots,X_n)$$
为取自总体 X 的样本.

(1) 求a:

(2) 若 μ 已知, 求 θ 的矩估计量.

八、(15 分)设 (X_1, X_2, \dots, X_n) 是取自总体 $X \sim N(\mu, \sigma^2)$ 的样本.

- (1) 若 μ 已知, σ^2 未知, 求 σ^2 的极大似然估计量;
- (2) 若 μ 已知,由(1)构造 σ 的置信水平为95%的双侧置信区间;
- (3) 若已知 $\sigma = 2$, 考虑如下的假设检验问题,

$$H_0: \mu = 2$$
 vs $H_1: \mu = 3$

检验由拒绝域 $W = \{\bar{x} \geq 2.8\}$ 确定, 当n = 36时, 求检验犯两类错误的概率. $(用\Phi(\cdot)$ 表示,不用计算)