This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number :

06-327146

(43) Date of publication of application: 25.11.1994

(51) Int. Cl.

H02J 1/00

(21) Application number: 05-130083

(71) Applicant : CENTRAL RES INST OF

ELECTRIC POWER IND

(22) Date of filing:

07. 05. 1993 (72) Inventor : OKAMURA YUKIHISA

(54) DC POWER COLLECTING/DISTRIBUTING SYSTEM

(57) Abstract:

PURPOSE: To link distributed power supplies efficiently in safety while utilizing DC power effectively.

CONSTITUTION: The DC power collecting/distributing system converts AC power from an AC distribution line 7 into DC power which is fed to a DC distribution line 2 connected with DC loads 1a, 1b. The system comprises a bidirectional power converter 3 for inverting DC power from the DC distribution line 2 into AC power being fed to the AC distribution line 7, a DC-DC converter 4 for converting DC power from a DC generator and feeding to the DC distribution line 2, an AC-DC converter 5

for converting AC power from an AC generator 11 into DC power being fed to the DC distribution line 2,

and a power flow control means 6 for monitoring the DC distribution line 2 and controlling the operation of the bidirectional power converter 3. When a decision is made that the power flow control means 6 generated excessive power on the DC distribution line 2, the bidirectional power converter 3 is operated reversely. The power converter 3 can inverts the excessive power and feed the inverted power reversely on the AC distribution line 7.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection] [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application] [Patent number] [Date of registration] [Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-327146

(43)公開日 平成6年(1994)11月25日

(51)IntCl.5

識別配号

庁内整理番号

FI

技術表示箇所

H02J 1/00

303

7509-5G

客室請求 未請求 請求項の数1 FD (全 4 頁)

(21)出簡番号

(22)出版日

特膜平5-130083

平成5年(1993)5月7日

(71)出版人 000173809

對团法人電力中央研究所

東京都千代田区大手町1丁目6番1号

(72)発明者 岡村 奉書

東京都沿江市岩戸北2-11-1 財団法人

创力中央研究所 狛江研究所内

(74)代理人 弁理士 村瀬 一美

(57) 【要約】

[目的] 分散型電源の安定かつ効率的な運係を行うと ともに、直流による電気の有効な利用を可能とする。

【構成】 直流集配電システムは、直流負荷1a, 1b が接続された直流配電線2と、交流配電線7からの交流を直流に変換して直流配電線2に供給し、直流配電線2からの直流を交流に変換して交流配電線7に供給できる双方向電力変換器3と、度流発電装置10からの直液を変換し直流配電線2に供給できる直流一直流コンパータ4と、交流発電装置11からの交流を直流に変換し直流配電線2に供給する交流一直流コンパータ5と、電線2の監視及び双方向電力変換器3の動作を削御すると、双方向電力変換器3を逆変換器とする。これにより電力コンパータ3で余剰電力を交流変換して交流配電線7に逆送電させる。

(2)

₩₩平6-327146

【特許請求の範囲】 【請求項1】 直流負荷が接続された直流配電線と、交 流記世線からの交流を直流に変換して前記直流記量線に 供給し、あるいは前記直流配電線からの直流を交流に変 換して前記交流記憶線に供給できる双方向電力変換器 と、直流発電装置からの直流を変換して前記直流配電線 に供給する直流一直流コンパータと、交流発電磁量から の交流を直流に変換して前記直流配電線に供給する交流 一位流コンパータと前記位流配電線に余剰電力が発生し たときに前記双方向電力変換器の動作を制御し、前記双 方向電力変換器により前記余剰電力を交流変換して前記 交流配電線に逆送電させるようにした制御手段とを備え たことを特徴とする直流集配電システム。

1

[発明の詳細な説明]

[0001]

【産業上の利用分野】本発明は、直流集記電システムに 関する。更に詳述すると、本発明は電力輸送分野におけ る記憶方式として分散型電源の安定かつ効率的な速係手 設及び症病による戦気の有効な利用学設を与えることが できる底液集配筒システムに関する。

[0002]

【従来の技術】従来の分散型電源の交流配電票への連係 は、太陽光発電、燃料電池及び電力貯蔵装置などの直流 発電装置については直流ー交流インパータを介して、ま た、風力発電、水力発電及び回転機系コージェネレーシ ョンなどの交流発電装置については、回転数を制御する 設置を使用して交流を直接あるいは交流 - 交流コンバー タを介して、それぞれ個別に遠保される方式をとってい

[0003] そして、前記各発電装置は、個々にインパ 30 ータあるいはコンパータを介して、または回転教制御塾 世を使用して交流配電線に運係されることにより、その 発電電力を交流配電線に供給することができる。

[0004]

[発明が解決しようとする課題] しかしながら、上述し たような従来の分散型電源の交流配電線への連係である と、次のような欠点が発生する。

- (1) 小規模な分散型電源に発生しやすい出力変動や高 翻波などが交流配電線の能力品質を悪化させること。
- (2) 個々の分散型電影に保護装置をそれぞれ設け、か 40 つ交流記憶線側の保護装置と動作協調をとる必要があっ て、保護装置が多数必要となり、かつ動作協調などの調 窓が困難であること。
- (3) 個々の分散型電旗の運転状況を交流配電線を管理 する事業者が全て監視・制御することが困難なこと。
- 【0005】そこで、本発明は、分散型電源の安定かつ 効率的な連係を行うとともに、直流による電気の有効な 利用を可能とした直流集配電システムを提供することを 目的とする。

[0006]

2

[課題を解決するための手段] かかる目的を達成するた め、本発明の直流集配電システムは、直流負荷が接続さ れた直流記憶線と、交流配電線からの交流を直流に変換 して世流配電線に供給し、あるいは直流配電線からの世 流を交流に変換して交流配電線に供給できる双方向電力 愛機器と、直流発電装置からの直流を変換して直流配電 線に供給する直流一直流コンパータと、交流発電装置か ちの交流を直流に変換して直流配電線に供給する交流ー 直流コンパータと、直流記憶線に余剛能力が発生したと 世に双方向電力変換器の動作を制御し、双方向電力変換 器により余期低力を交流変換して交流配電線に逆送電さ せるようにした制御宇敦とを構えるようにしている。

[0007]

[作用] したがって、交流記憶線とは双方向電力変換器 を介して直流配電線が選係される。また、交流発電套置 及び直流発電装置等の分散型電波からの発電量と直流負 符で消費される電力量とが潮流制御手段により監視され ており、位施負荷の消費電力量より分散型電源の発電量 が大い場合には、在旅配電線2における余期電力を電力 20 コンパータを介して三相交流配電線に逆送筒できる。

[0008]

【実施例】以下、本発明の構成を図面に示す実施例に基 づいて詳細に説明する。

【0009】図1に、本発明の直流集配電システムの実 施例を示す。この直流集記載システムは、直流負荷1 a. 1 b が接続された直流配電器2と、双方向電力変換 器3と、直流-直流コンパータ4と、交流-直流コンパ 一タ5と、潮流制御手段6とを構えている。

[0010] 直流配電線2には、直流負荷1a, 1bが それぞれ接続されるとともに、双方向電力変換器3を介 して三相交流配金線7が接続されている。この三相交流 配電線では、集配用変圧器8を介して三相高圧交流配電 線9に技統されている。また、双方向電力変換器3は、 PWM制御方式を採用した自励式量圧型であって、交流 記憶線7からの交流を直流に変換して前記直流配電線2 に供給し、あるいは直流記憶線2からの直流を交流に変 換して前記交流配電線でに供給できるように構成されて いる。また、直流一直流コンパータ4は、直流配電線2 と直流発電装置10との間に接続されており、かつ直流 発電装置10からの直流を変換して直流配電線2に供給 する数量で、直流発電数量10の発電効率が最適になる ような健圧制御を行えるようになっている。交流一直流 コンパータ5は、 直流配電線2と交流発電装置11との 間に接続されており、かつ交流発電装置11からの交流 を直流に変換して直流配電線2に供給できる装置で、交 流発電装置11の発電効率が最適になるような電圧・周 波数制御を行えるようになっている。湖波制御手段6 は、処理装置6a、交流電圧・電流検出器6b及び直流 電圧検出器6cからなり、交流電圧・電流検出器6b及 50 び直流電圧検出器 6 c からの情報を処理装置 6 a に取り

(3)

蜂₩平6-327146

込み、処理建匿 6 a が直流記憶線 2 の直流電圧を一定と し、交流配電線7の資流の力率を一定とするよう前記双 方向電力変換器3を制御できるようになっている。すな わち、潮流制御手段6の処理装置6aは、コンピュータ にAD変換器等の周辺装置を設けたもので構成すればよ く、直流配電線2に余期電力が発生して直流電圧が上昇 したときに双方向電力変換器3の動作を制御し、双方向 電力変換器3により余期電力を交流変換して、力率を一 定として三相交流配電線7に逆送電させる裏置である。

【0011】このように構成された放流集配電システム 10 において、直流-直流コンパータ4は、直流発電装置1 0 の発電効率が最適になるように電圧制御を行ってい る。また、交流一直流コンパータ5も、交流発電装置1 1 の発電効率が最適になるように電圧・周波数制御を行 っている。

[0012] このような状態で、潮流制御手段6の処理 装置 6 a は、交流電圧・電流検出器 6 b からの電圧・電 流検出信号と、直流電圧検出器6cからの電圧検出信号 より、交流配電線7の構流と直流配電線2の電圧を監視 している。

【0013】ここで、直流発電装置10及び交流発電装 置11の発電量が直流負荷1a,1bの負荷量より大き く、直流健圧が上昇した場合、処理装置6 a は、双方向 電力変換器3の動作を逆変換器にする。この結果、双方 向電力変換器3の逆変換動作により、直流配電線2から の資流は、交流に変換されて前配交流配電線7に逆送電 されることになる。

[0014]一方、直旋発電装置10及び交流発電裝置 11の発電量が直流負荷1a, 16の負荷量より小さ く、直流電圧が下降した場合、処理装置 B a は、双方向 90 . (3) 交流配電線を管理する事業者は、双方向電力変換 領力変換器3の動作を順変換器にする。この結果、双方 向電力変換器3の順変換動作により、前記三相交流配電 線でからの交流は直流に変換され、電力が矢印との向き に前記直流記憶線2に向かって流れ込むことになる。

[0015] 上記実施例は、直流配電線2を介して多数 多用な分散型電源(例えば、電流発電装置10及び交流 発電装置11)を接続することにより、小規模の分散型 電旅に発生しやすい出力変動や高調波などの配電線の電 力品質を悪化させる要因を均一させることができ、かつ 三相交流配電線7に連保される唯一の装置である双方向 40 4 世流一位流コンパータ 健力変換器 3 において、一括して効率よく三相交流配管 線7に流れ込む電流の力率を改善し、高調波を低減でき

【0016】また、上記実施例は、個々の分散型電源に 保護装置を設置する必要がなく、双方向電力変換器3に のみ保護装置を設置するだけでよいため、保護協調の複 ・雑な関整や保護装置を少なくできる。

【0017】さらに、三相高圧交流配電線9を管理する 電気事業者は、記憶線搬送方式あるいは通信線方式によ り交流記電線に設置された開閉器の遺隔制御などを行っ ているが、これと同様に双方向電力変換器3と通信する ことにより、直流集配電システムの運転状態を監視・制 御することができる。

【0018】尚、上述の実施例は本発明の好適な実施の 一例ではあるがこれに限定されるものではなく本発明の 要旨を逸脱しない範囲において種々変形実施可能であ る。例えば、直流発電装置10の出力電圧が直流配電線 2の電圧に合致すれば、直流一直流コンパータ4を省略 してもよい。

[0019]

【発明の効果】以上の説明より明らかなように、本発明 20 によれば、次のような効果がある。

- (1) 直流配電線介して多数多用な分散型電源を接続 し、三相交流配電線には双方向電力変換器を介して直流 記憶線が接続された構成なので、小規模な分散型電源に 発生しやすい出力変動や高調波などの影響が交流記憶線 に及ばない。
- (2) 個々の分散数電源に保護装置を設ける必要がな く、双方向電力契偽器にのみ保護装置を設けるだけでよ いため、保護装置を少なくでき、かつ動作協調などの調 整が簡単になる。
- 器を介して直流記憶線に接続された分散型電源の運転状 況をまとめて監視・制御することができる。

【図面の簡単な説明】

[図1] 本発明の直流集配戦システムの実施例を示すプ ロック図である。

【符号の説明】

- 1a, 1b 直流負荷
- 2 直流贮電線
- 3 双方向電力変換器
- - 5 交流 一直流コンパータ
 - 6 湖流州御手段

(4)

特開中6-327146

