

SEQUENCE LISTING

<110> Daniel H. Cohn
Muhammad Faiyaz ul Haque
Lily M. King
Deborah Krakow

<120> GENETIC MARKER FOR
SPONDYLOEPIMETAPHYSEAL DYSPLASIA

<130> 18810-81553

<140> US 09/898,200
<141> 2001-07-02

<150> 09/399,212
<151> 1999-09-17

<160> 33

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2014
<212> DNA
<213> Homo sapiens

<400> 1
ctgctgccgc cgccggcgcc gccgtccctg cgtccttcgg tctctgtcc cgggaccgg 60
ctccggcgca gccagccagc atgtcgggga tcaagaagca aaagacggag aaccaggcaga 120
aatccaccaa tgtatctat caggcccacc atgtgagcag gaataagaga gggcaagtgg 180
tttggacaacgg ggggtgggttc cgaggatgtt ccgtgtggct aacagggttc tctggtgctg 240
gaaaaacaac gataagttt gcccggagg agtaccttgc ctcccatgcc atcccttgtt 300
actccctgga tggggacaat gtccgtcatg gccttaacag aaatctcggaa ttctctcctg 360
gggacagaga gggaaatacc cgccggattt ctgagggtggc taagctgtt gctgtatgt 420
gtctggctgtt cattaccaggc tttatattctc cattcgcaaa ggatcgttag aatgccccca 480
aaatacatga atcagcaggc ctgccattct ttgaaatatt tgtatgtca cctctaaata 540
tttgtgaaag cagagacgtt aaaggccctt ataaaggcgc cagagctggg gagattaaag 600
gatttacaggc tatttatttctt gattatgaga aacctgaaac tcctgagcgt gtgtttaaaa 660
ccaaatttgc cacagttagt gactgtgtcc accaggtgtt ggaacttctg caagagcaga 720
acatttgcacc ttatactata atcaaaagata tccacgaact ctttgtggccg gaaaacaaac 780
ttgaccacgt ccgagcttagt gctgaaactc tcccttcatt atcaattact aagctggatc 840
tccagtggtt ccagggtttt agcgaaggctt gggccactcc cctcaaagggtt ttcattgggg 900
agaaggagta cttacagggtt atgcactttt acaccctgtt agatgatggc gtgtatcaaca 960
tgagcatccc cattgtactt cccgtctctg cagaggataa gacacggctg gaagggtgca 1020
gcaagtttgc cctggcacat ggtggacgga gggtagctat ttacacgtt gctgaattct 1080
atgaacacag aaaagaggaa cgctgttccc gtgttgggg gacaacatgt acaaaacacc 1140
cccatatcaa aatggtgatg gaaagtgggg actggctgtt tggtagggac cttcagggtgc 1200
tggagaaaat aagatgaaat gatgggctgg accaataccg tctgacaccc tggagctca 1260
aacagaaaatg taaagaaaatg aatgtgtatg cgggtttgc attccagggtt cgcacatctg 1320
tccacaatgg ccatggccctg ttgtatgcagg acacctgccc caggctcta gagaggggtt 1380
acaaggacccc ggtccctcta ctacaccctt tggggggctg gaccaaggat gacgtatgtc 1440
ctctagactt gcgatgtt gacgacggcgg ctgtgtccgaa ggaagggttc ctggatccca 1500
agtcaaccat tggttgcattt ccatgttata tgctggcccc acagagggtcc 1560

```

agtggcactg caggtccccgg atgattgcgg gtgccaattt ctacatttgtg gggagggacc 1620
ctgcaggaaat gccccatcct gaaaccaaga aggatctgtt tgaacccact catggggca 1680
aggctttagt catggccccct ggcctcacct ctgtggaat cattccattt cgagtggtcg 1740
cctacaacaa agccaaaaaaa gccatggact tctatgatcc agcaaggcac aatgagttt 1800
acttcatctc aggaactcga atgaggaagc tcgccccggg aggagagaaat cccccagatg 1860
gcttcatggc ccccaaagca tggaaaggccc tgacagatta ttacagggtcc ctggagaaga 1920
actaaggcctt tgggtccaga gtttcttctt gaagtgcctt ttgattacct tttctatTTT 1980
tatgattaga tgctttgtat taaattgtttt ctca 2014

```

<210> 2

<211> 2000

<212> DNA

<213> Mus musculus

<400> 2

gtattctcaa	catcagatata	catgtttgg	aggaagtta	ctaaactctg	aagaattatc	60
atgtctgca	attcaaaaat	gaaccataaa	agagaccagc	aaaaatccac	caatgtggc	120
taccaggccc	atcatgttag	caggaacaag	agaggacaag	tgggtggac	caggggagga	180
ttccgaggat	gtaccgtgt	gctaacaggt	ctctctgg	ctggaaaac	aaccataagc	240
tttgcgttgg	aagagtacct	tgtatctcac	gccatcccat	gttactccct	ggatggggac	300
aatgtccgtc	atggccttaa	taagaacctg	ggattctctg	ccggggaccg	agaagagaat	360
atccgcgg	tcgcggaggt	ggccaagctc	tttgcgcacg	ccggctgtt	ttgcacatcc	420
agctttatct	ctccttttgc	aaaggatcgt	gagaatgccc	gaaaaatcca	cgaatcagca	480
ggactcccg	tcttgagat	ctttgttagat	gccccttaa	atatctgtga	aagccgagac	540
gtaaaaggac	tctacaaaac	agcccggagca	ggagagatta	aagggtttac	aggcatcgat	600
tctgactatg	agaaaacctga	aactccagag	tgtgtgctga	agaccaactt	gtcttcgat	660
agcgaactgt	tgcaacaggt	ggtggaaactt	ttgcaggagc	agaacattgt	accccacacc	720
accatcaaag	gcatccacga	actctttgt	ccagaaaaca	aagtgcgtca	aatccgagct	780
gaggcagaga	ctctcccatc	actaccaatt	accaagctgg	atctgcagt	ggtcagatt	840
ctgagtgaag	gctgggcccc	tcccctcaaa	gcctttatgc	gggagaagga	ataactgc	900
actctacact	tgacactct	actggacgt	ggagtcatca	acatgagtt	tcccattgt	960
ttgcccgtt	ctgcccgtt	caaggcacgg	ctcgaagggt	gcagcaatt	tgccttgat	1020
taclgaagg	ggagggtcgc	tctattacag	gaccctgaat	tctatgagca	tagaaagag	1080
gagcgttgtt	ctcggtgt	gggaacagcc	actgc当地	accccccata	caaattgtt	1140
atggaaatgt	ggactggct	tgttggtgg	gacctacagg	tgctagagag	aataagggtt	1200
gacgtgg	tgaccataa	ccgcctta	cctctggaa	tcaaacagaa	gtgtaaagac	1260
atgaatgt	atgcgtgtt	tgcattccag	ttgcgcata	ctgtccacaa	tggcatg	1320
ctcctgtatc	aggacaccc	ccgcaggctc	ctggagaggg	gttacaagca	cccagtctc	1380
ctgctccacc	ctcttgggg	ctggaccaag	gacgatgacg	tacctctgg	atggaggat	1440
aaacagcatg	cagctgtact	ggagggaaagg	gtcctggatc	ccaaatcaac	tattgttgcc	1500
atcttccat	ctcctatgtt	atacgttgt	cccacagagg	tccagtggca	ttgcagatgc	1560
cgatgatt	caggagccaa	tttctacatt	gtgggttaggg	atcccgagg	aatgccccat	1620
cctgagacaa	agaaaagac	atatgaaccc	acccacgggg	gcaaggctt	gagttggcc	1680
cctggccta	cctctgtgg	aataattccg	ttccgagttt	ctgcctacaa	taaaattaaa	1740
aaggccatgg	acttttatga	tccagcaagg	cacgaggagt	ttgacttcat	ctcaggaact	1800
cgcattgat	agctcgcccc	ggaaggagaa	gatccccag	atggcttcat	ggccccgaaa	1860
gcgtggaaag	tgttgacaga	ttactacagg	tctctggaga	agaccaacta	ggtgctctg	1920
gctctggctt	cttcctcaag	tgctctctga	cgatttttt	tttctat	tgtgatttag	1980
ctgctctgt	tccaattgc					2000

<210> 3

<211> 20

<212> DNA

<213> Homo sapiens

<400> 3		
tggaccaagg atgacgtatgt		20
<210> 4		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<400> 4		
cgaaaagatg gcaacaatgg		20
<210> 5		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<400> 5		
ctggtgctgg aaaaacaacg		20
<210> 6		
<211> 22		
<212> DNA		
<213> Homo sapiens		
<400> 6		
tgcgaaatgga gaaataaagc tg		22
<210> 7		
<211> 615		
<212> PRT		
<213> Homo sapiens		
<400> 7		
Met Ser Gly Ile Lys Lys Gln Lys Thr Glu Asn Gln Gln Lys Ser Thr		
1 5 10 15		
Asn Val Val Tyr Gln Ala His His Val Ser Arg Asn Lys Arg Gly Gln		
20 25 30		
Val Val Gly Thr Arg Gly Gly Phe Arg Gly Cys Thr Val Trp Leu Thr		
35 40 45		
Gly Leu Ser Gly Ala Gly Lys Thr Thr Ile Ser Phe Ala Leu Glu Glu		
50 55 60		
Tyr Leu Val Ser His Ala Ile Pro Cys Tyr Ser Leu Asp Gly Asp Asn		
65 70 75 80		
Val Arg His Gly Leu Asn Arg Asn Leu Gly Phe Ser Pro Gly Asp Arg		
85 90 95		
Glu Glu Asn Ile Arg Arg Ile Ala Glu Val Ala Lys Leu Phe Ala Asp		
100 105 110		
Ala Gly Leu Val Cys Ile Thr Ser Phe Ile Ser Pro Phe Ala Lys Asp		
115 120 125		
Arg Glu Asn Ala Arg Lys Ile His Glu Ser Ala Gly Leu Pro Phe Phe		
130 135 140		
Glu Ile Phe Val Asp Ala Pro Leu Asn Ile Cys Glu Ser Arg Asp Val		
145 150 155 160		
Lys Gly Leu Tyr Lys Arg Ala Arg Ala Gly Glu Ile Lys Gly Phe Thr		
165 170 175		

Gly Ile Asp Ser Asp Tyr Glu Lys Pro Glu Thr Pro Glu Arg Val Leu
 180 185 190
 Lys Thr Asn Leu Ser Thr Val Ser Asp Cys Val His Gln Val Val Glu
 195 200 205
 Leu Leu Gln Glu Gln Asn Ile Val Pro Tyr Thr Ile Ile Lys Asp Ile
 210 215 220
 His Glu Leu Phe Val Pro Glu Asn Lys Leu Asp His Val Arg Ala Glu
 225 230 235 240
 Ala Glu Thr Leu Pro Ser Leu Ser Ile Thr Lys Leu Asp Leu Gln Trp
 245 250 255
 Val Gln Val Leu Ser Glu Gly Trp Ala Thr Pro Leu Lys Gly Phe Met
 260 265 270
 Arg Glu Lys Glu Tyr Leu Gln Val Met His Phe Asp Thr Leu Leu Asp
 275 280 285
 Asp Gly Val Ile Asn Met Ser Ile Pro Ile Val Leu Pro Val Ser Ala
 290 295 300
 Glu Asp Lys Thr Arg Leu Glu Gly Cys Ser Lys Phe Val Leu Ala His
 305 310 315 320
 Gly Gly Arg Arg Val Ala Ile Leu Arg Asp Ala Glu Phe Tyr Glu His
 325 330 335
 Arg Lys Glu Glu Arg Cys Ser Arg Val Trp Gly Thr Thr Cys Thr Lys
 340 345 350
 His Pro His Ile Lys Met Val Met Glu Ser Gly Asp Trp Leu Val Gly
 355 360 365
 Gly Asp Leu Gln Val Leu Glu Lys Ile Arg Trp Asn Asp Gly Leu Asp
 370 375 380
 Gln Tyr Arg Leu Thr Pro Leu Glu Leu Lys Gln Lys Cys Lys Glu Met
 385 390 395 400
 Asn Ala Asp Ala Val Phe Ala Phe Gln Leu Arg Asn Pro Val His Asn
 405 410 415
 Gly His Ala Leu Leu Met Gln Asp Thr Cys Arg Arg Leu Leu Glu Arg
 420 425 430
 Gly Tyr Lys His Pro Val Leu Leu His Pro Leu Gly Gly Trp Thr
 435 440 445
 Lys Asp Asp Asp Val Pro Leu Asp Trp Arg Met Lys Gln His Ala Ala
 450 455 460
 Val Leu Glu Glu Gly Val Leu Asp Pro Lys Ser Thr Ile Val Ala Ile
 465 470 475 480
 Phe Pro Ser Pro Met Leu Tyr Ala Gly Pro Thr Glu Val Gln Trp His
 485 490 495
 Cys Arg Ser Arg Met Ile Ala Gly Ala Asn Phe Tyr Ile Val Gly Arg
 500 505 510
 Asp Pro Ala Gly Met Pro His Pro Glu Thr Lys Lys Asp Leu Tyr Glu
 515 520 525
 Pro Thr His Gly Gly Lys Val Leu Ser Met Ala Pro Gly Leu Thr Ser
 530 535 540
 Val Glu Ile Ile Pro Phe Arg Val Ala Ala Tyr Asn Lys Ala Lys Lys
 545 550 555 560
 Ala Met Asp Phe Tyr Asp Pro Ala Arg His Asn Glu Phe Asp Phe Ile
 565 570 575
 Ser Gly Thr Arg Met Arg Lys Leu Ala Arg Glu Gly Glu Asn Pro Pro
 580 585 590
 Asp Gly Phe Met Ala Pro Lys Ala Trp Lys Val Leu Thr Asp Tyr Tyr
 595 600 605
 Arg Ser Glu Met Asp Lys Asn

<210> 8
<211> 617
<212> PRT
<213> Mus musculus

<400> 8
Met Ser Ala Asn Phe Lys Met Asn His Lys Arg Asp Gln Gln Lys Ser
1 5 10 15
Thr Asn Val Val Tyr Gln Ala His His Val Ser Arg Asn Lys Arg Gly
20 25 30
Gln Val Val Gly Thr Arg Gly Gly Phe Arg Gly Cys Thr Val Trp Leu
35 40 45
Thr Gly Leu Ser Gly Ala Gly Lys Thr Thr Ile Ser Phe Ala Leu Glu
50 55 60
Glu Tyr Leu Val Ser His Ala Ile Pro Cys Tyr Ser Leu Asp Gly Asp
65 70 75 80
Asn Val Arg His Gly Leu Asn Lys Asn Leu Gly Phe Ser Ala Gly Asp
85 90 95
Arg Glu Glu Asn Ile Arg Arg Ile Ala Glu Val Ala Lys Leu Phe Ala
100 105 110
Asp Ala Gly Leu Val Cys Ile Thr Ser Phe Ile Ser Pro Phe Ala Lys
115 120 125
Asp Arg Glu Asn Ala Arg Lys Ile His Glu Ser Ala Gly Leu Pro Phe
130 135 140
Phe Glu Ile Phe Val Asp Ala Pro Leu Asn Ile Cys Glu Ser Arg Asp
145 150 155 160
Val Lys Gly Leu Tyr Lys Arg Ala Arg Ala Gly Glu Ile Lys Gly Phe
165 170 175
Thr Gly Ile Asp Ser Asp Tyr Glu Lys Pro Glu Thr Pro Glu Cys Val
180 185 190
Leu Lys Thr Asn Leu Ser Ser Val Ser Asp Cys Val Gln Gin Val Val
195 200 205
Glu Leu Leu Gln Glu Gln Asn Ile Val Pro His Thr Thr Ile Lys Gly
210 215 220
Ile His Glu Leu Phe Val Pro Glu Asn Lys Val Asp Gln Ile Arg Ala
225 230 235 240
Glu Ala Glu Thr Leu Pro Ser Leu Pro Ile Thr Lys Leu Asp Leu Gln
245 250 255
Trp Val Gln Ile Leu Ser Glu Gly Trp Ala Thr Pro Leu Lys Gly Phe
260 265 270
Met Arg Glu Lys Glu Tyr Leu Gln Thr Leu His Phe Asp Thr Leu Leu
275 280 285
Asp Asp Gly Val Ile Asn Met Ser Ile Pro Ile Val Leu Pro Val Ser
290 295 300
Ala Asp Asp Lys Ala Arg Leu Glu Gly Cys Ser Lys Phe Ala Leu Met
305 310 315 320
Tyr Glu Gly Arg Arg Val Ala Leu Leu Gln Asp Pro Glu Phe Tyr Glu
325 330 335
His Arg Lys Glu Glu Arg Cys Ser Arg Val Trp Gly Thr Ala Thr Ala
340 345 350
Lys His Pro His Ile Lys Met Val Met Glu Ser Gly Asp Trp Leu Val
355 360 365

Gly Gly Asp Leu Gln Val Leu Glu Arg Ile Arg Trp Asp Asp Gly Leu
 370 375 380
 Asp Gln Tyr Arg Leu Thr Pro Leu Glu Leu Lys Gln Lys Cys Lys Asp
 385 390 395 400
 Met Asn Ala Asp Ala Val Phe Ala Phe Gln Leu Arg Asn Pro Val His
 405 410 415
 Asn Gly His Ala Leu Leu Met Gln Asp Thr Arg Arg Arg Leu Leu Glu
 420 425 430
 Arg Gly Tyr Lys His Pro Val Leu Leu Leu His Pro Leu Gly Gly Trp
 435 440 445
 Thr Lys Asp Asp Asp Val Pro Leu Glu Trp Arg Met Lys Gln His Ala
 450 455 460
 Ala Val Leu Glu Glu Arg Val Leu Asp Pro Lys Ser Thr Ile Val Ala
 465 470 475 480
 Ile Phe Pro Ser Pro Met Leu Tyr Ala Gly Pro Thr Glu Val Gln Trp
 485 490 495
 His Cys Arg Cys Arg Met Ile Ala Gly Ala Asn Phe Tyr Ile Val Gly
 500 505 510
 Arg Asp Pro Ala Gly Met Pro His Pro Glu Thr Lys Lys Asp Leu Tyr
 515 520 525
 Glu Pro Thr His Gly Gly Lys Val Leu Ser Met Ala Pro Gly Leu Thr
 530 535 540
 Ser Val Glu Ile Ile Pro Phe Arg Val Ala Ala Tyr Asn Lys Ile Lys
 545 550 555 560
 Lys Ala Met Asp Phe Tyr Asp Pro Ala Arg His Glu Glu Phe Asp Phe
 565 570 575
 Ile Ser Gly Thr Arg Met Arg Lys Leu Ala Arg Glu Gly Glu Asp Pro
 580 585 590
 Pro Asp Gly Phe Met Ala Pro Lys Ala Trp Lys Val Leu Thr Asp Tyr
 595 600 605
 Tyr Arg Ser Glu Met Asp Lys Thr Asn
 610 615

<210> 9
 <211> 1845
 <212> DNA
 <213> Homo sapiens

<400> 9
 atgtcgggga tcaagaagca aaagacggag aaccagcaga aatccaccaa tgttagtctat 60
 caggccccacc atgtgagcag gaataagaga gggcaagtgg ttggacaacag ggggtgggttc 120
 cgaggatgta ccgttggtc aacaggtctc tctggtgctg gaaaaacaac gataagttt 180
 gccttggagg agtaccttgt ctccccatgcc atcccttggtt actccctgga tggggacaat 240
 gtccgtcatg gccttaacag aaatctcgga ttctctccctg gggacagaga ggaaaaatatc 300
 cggccggattt ctgagggtggc taagctgttt gctgatgctg gtctggctcg cattaccagc 360
 ttatattctc cattcgcaaa gatatcgtag aatgcccgc aaatacatga atcagcagg 420
 ctgccattct ttgaaatatt tgttagatgca cctctaaata ttttgtgaaag cagagacgta 480
 aaaggccctct ataaaagggc cagagctggg gagattaaag gatttacagg tattgattct 540
 gattatgaga aacctgaaac tcctgagcgt gtgcattaaa ccaatttgc cacagtgagt 600
 gactgtgtcc accaggtagt ggaacttctg caagagcaga acattgtacc ctatactata 660
 atcaaagata tccacgaact ctttgtgcgc gaaaacaaac ttgaccacgt ccgagctgag 720
 gctgaaactc tcccttcatt atcaattact aagctggatc tccagtgggt ccaggtttt 780
 agcgaaggct gggccactcc cctcaaaggt ttcatgcggg agaaggagta cttacaggtt 840
 atgcactttg acaccctgct agatgatggc gtgatcaaca tgagcatccc cattgtactg 900

cccgtctctg cagaggataa gacacggctg gaagggtgca gcaagttgt cctggcacat 960
 ggtggacgga gggtagctat cttacgagac gctgaattct atgaacacag aaaagaggaa 1020
 cgctgttccc gtgttgggg gacaacatgt acaaaaacacc cccatatcaa aatggtgatg 1080
 gaaagtgggg actggcttgt tggtgagac cttcaggtgc tggagaaaaat aagatggaat 1140
 gatgggctgg accaataccg tctgacactt ctggagctca aacagaaaatg taaaagaaaatg 1200
 aatgctgtatcg cggtgtttgc attccagtttgc caaatccctg tccacaatgg ccatgccctg 1260
 ttgtatgcagg acacctgccc caggctccta gagaggggct acaagcaccc ggtcctccta 1320
 ctacacccttc tggccggctg gaccaaggat gacgatgtgc ctctagactg gcggatgaaag 1380
 cagcacgcgg ctgtgtcga ggaaggggtc ctggatccca agtcaaccat tggccatc 1440
 ttccgtctc ccatgttata tgctggcccc acagaggcttcc agtggcactg caggtcccg 1500
 atgattgcgg gtgcatttctt ctacattgtg gggagggacc ctgcaggaat gccccatcct 1560
 gaaacccaaga aggatctgtt tgaacccact catggggca aggtcttgag catggccct 1620
 ggcctcacct ctgtgaaat cattccatc cgagtggctg cctacaacaa agccaaaaaaaa 1680
 gccatggact tctatgatcc agcaaggcac aatgatgtt acttcatctc aggaactcga 1740
 atgaggaagc tcgcccggga aggagagaat cccccagatg gcttcatggc ccccaaagca 1800
 tggaaaggcttcc tgacagatta ttacaggtcc ctggagaaga actaa 1845

<210> 10
 <211> 1851
 <212> DNA
 <213> Mus musculus

<400> 10

atgtctgcaa atttcaaaaat gaaccataaa agagaccagc aaaaatccac caatgtggc 60
 taccaggccc atcatgtgag caggaacaag agaggacaag tgggtggAAC caggggagga 120
 ttccgaggat gtacctgtg gtaaacaggt ctctctgggt ctggggaaaac aaccataagc 180
 tttgctttgg aagagtacct tttatctcac gccatcccat gttactccct ggatggggac 240
 aatgtccgtc atggccttaa taagaacctg ggattctctg ccggggaccg agaagagaat 300
 atccgcgggaa tcgcggaggt gccaagctc tttggcgcacg cccgccttgtt ttgcacacc 360
 agctttatctt ctcctttgc aaaggatcgt gagaatgccc gaaaaatcca cgaatcagca 420
 ggactcccgt tctttgagat cttttagat gcgcctttaa atatctgtga aagccgagac 480
 gtaaaaaggac tctacaaacg agcccgagca ggagagatta aagggtttac aggcatcgat 540
 tctgactatg agaaacactt aactccagag tttgtgtcga agaccaactt gtcttcagta 600
 agcgactgtg tgcaacaggt ggtggaaactt ttgcaggagc agaacattgt accccacacc 660
 accatcaaag gcatccacga actctttgtg ccagaaaaca aagtgcata aatccgagct 720
 gaggcgagaga ctctccatc actaccaatt accaagctgg atctgcagtg ggtgcagatt 780
 ctgagtgaaag gctggccac tccctctaaa ggctttatgc gggagaagga atacttgc 840
 actctacact tcgactactt actggacgat ggagtcatac acatgagtat tccctattgt 900
 ttggccgttt ctgcccgttca caaggcacgg ctgcagggt gcagcaatt tgcccttgatg 960
 tacgaagggtc ggagggtcgc tctattacag gaccctgaat tctatgagca taggaaagag 1020
 gagcgttggt ctcgtgtgt gggAACAGCC actgcaacgc acccccataat caaaatgggt 1080
 atggaaaatgtt gggactggc ttgttgggtgaa gacccatggc tgctagagag aataagggtgg 1140
 gacgatgggc tggaccataa ccccttacg cctctggaa tcaaacagaa gtgtaaagac 1200
 atgaatgtgtt atgcccgtt tgcattccat ttgcgcatac ctgtccacaa tggcatgcc 1260
 ctctgtatgc aggacaccccg ccgcaggctc ctggagaggg gttacaagca cccagtcctc 1320
 ctgctccacc ctctttgggg ctggaccaag gacgatgacg tacctctggaa atggaggatg 1380
 aaacagcatg cagctgtact ggaggaaagg gtcctggatc ccaagtcaac tatttttgc 1440
 atctttccat ctcctatgtt atacgctgtt cccacagagg tccagtggca ttgcagatgc 1500
 cggatgattt caggagccaa tttctacatt gtgggttaggg atcccgagg aatgccccat 1560
 cctgagacaa agaaagaccc atatgaaccc acccacgggg gcaagggtctt gaggatggcc 1620
 cctggcctta ctcctgtggaa aataattccg ttccgagtttgc tggcttacaa taaaattaaa 1680
 aaggccatgg acttttatgtt tccagcaagg cacgaggatg ttgacttcat ctcaggaact 1740
 cgcattggaa agctcgcccc ggaaggagaa gatccccat atggcttcat ggccccgaaa 1800
 gcgtggaaag tggatggacaga ttactacagg tctctggaga agaccaacta g 1851

<210> 11		
<211> 21		
<212> DNA		
<213> Homo sapiens		
<400> 11		
gcccagccagc atgtcgaaaa t		21
<210> 12		
<211> 24		
<212> DNA		
<213> Homo sapiens		
<400> 12		
acctgaaact cctgagcgtg tgct		24
<210> 13		
<211> 21		
<212> DNA		
<213> Homo sapiens		
<400> 13		
gatgtgcctc tagactggcg g		21
<210> 14		
<211> 24		
<212> DNA		
<213> Homo sapiens		
<400> 14		
gagcacttca gaaagaaaact ctgg		24
<210> 15		
<211> 21		
<212> DNA		
<213> Homo sapiens		
<400> 15		
catccgccag tctagaggca c		21
<210> 16		
<211> 21		
<212> DNA		
<213> Homo sapiens		
<400> 16		
aggtgtcaga cggtatttgt c		21
<210> 17		
<211> 23		
<212> DNA		
<213> Homo sapiens		
<400> 17		
gtcactcact gtggacaaat tgg		23

<210> 18	
<211> 21	
<212> DNA	
<213> Homo sapiens	
<400> 18	
cacctcagca atccggcgga t	21
<210> 19	
<211> 20	
<212> DNA	
<213> Mus musculus	
<400> 19	
tctggcacaa agagttcgtg	20
<210> 20	
<211> 22	
<212> DNA	
<213> Mus musculus	
<400> 20	
gccagtttgt aaccgagtat tc	22
<210> 21	
<211> 22	
<212> DNA	
<213> Mus musculus	
<400> 21	
gcaattggat acagagcagc ta	22
<210> 22	
<211> 22	
<212> DNA	
<213> Mus musculus	
<400> 22	
gacaatgtcc gtcatggcct ta	22
<210> 23	
<211> 21	
<212> DNA	
<213> Mus musculus	
<400> 23	
attccccattt tattggccgt t	21
<210> 24	
<211> 21	
<212> DNA	
<213> Mus musculus	
<400> 24	

aacgggcaat acaatggaa t 21

<210> 25
<211> 22
<212> DNA
<213> Mus musculus

<400> 25
gataaaagctg gtgatgcaaa cc 22

<210> 26
<211> 20
<212> DNA
<213> Mus musculus

<400> 26
catgggatgg cgtgagatac 20

<210> 27
<211> 23
<212> DNA
<213> Mus musculus

<400> 27
cataagcttt gcttttgaag agt 23

<210> 28
<211> 21
<212> DNA
<213> Homo sapiens

<400> 28
gcatgtccag acagacacca c 21

<210> 29
<211> 333
<212> DNA
<213> Homo sapiens

<220>
<223> D19Mit13 locus and flanking sequences

<221> misc_feature
<222> (1)...(333)
<223> n = A,T,C or G; at nucleotide positions 23 and 305

<400> 29
ctgactatga gaaacctgaa acnccagagt gtgtgctgaa gaccaacctg tcttcagtaa 60
gcaacagggtg gtggacttt tgccaggagca ggttaggggg tgggttcttgc 120
cagtgtgttc agtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgccgtgtgca tgtgtgtgtg 180
catgtgtgtg tgccgtgtgca tgtgtgtgtg ttgaaagata atctgagttt ctttattccc 240
tgccaatct cagtaactat tgcccaatttc gtttccaca gaacattgta ccccacacca 300
ccatnaaaagg catccacgaa ctctttgtgc cag 333

<210> 30

<211> 18
<212> DNA
<213> Homo sapiens

<220>
<223> Nucleotide positions +1414 through +1431 of PAPSS2 coding sequence

<400> 30

gatcccaagt caaccatt

18

<210> 31
<211> 6
<212> PRT
<213> Homo sapiens

<220>

<223> Partial PAPSS2 peptide sequence; amino acid residues 472 through 477

<400> 31

Asp Pro Lys Ser Thr Ile
1 5

<210> 32
<211> 18
<212> DNA
<213> Homo sapiens

<220>

<221> mutation

<222> (0)...(0)

<223> Nucleotide positions +1414 through +1431 of PAPSS2 coding sequence with mutation c to a at nucleotide position +1424

<400> 32

gatcccaagt aaaccatt

18

<210> 33

<211> 3

<212> PRT

<213> Homo sapiens

<220>

<223> Partial truncated PAPSS2 peptide sequence; amino acid residues 472-474 plus stop at position 475

<400> 33

Asp Pro Lys

1