Machine learning HW2

B03902071 葉奕廷

1. Logistic regression function

在 Logistic regression 的實作方面,因為其 gradient descent 的更新方式與上次作業的 linear regression 一樣,所以可以輕易地藉由更改上次的 code 實作。

我首先將全部 training data 讀進兩個 numpy array x_train, y_train, x_train 存放 feature y_train 存放 label, array 的每個 row 都是一筆 data。 接著在每次 gradient discent 的時候便可以利用 numpy 提供的矩陣乘法高速的計算出 gradient。 w,b 全部初始值為 1。

```
dw = np.zeros(w.shape,dtype=np.float64) #weight gradient
db = 0. #bias gradient

y = sigmoid(np.dot(x_train,w) + b)
y_err = y_train - y

dw += x_train.T.dot(y_err) #compute gradient
db += y_err.sum() #compute gradient
```

接著我做了簡單的 regularization 並使用 adagrad 去調整 learning rate 來做每次的參數更新,並做了 20000 次更新參數。

```
dw += 0.1 * (np.abs(w)) #regularization
#adagrad
g = g + (dw ** 2)
gb = gb + (db ** 2)
deltaw = (0.1/np.sqrt(g))*dw
deltab = (0.1/np.sqrt(gb))*db
w = w + deltaw
b = b + deltab
```

最後我藉由 numpy.savez 去儲存 model。

2. Another mathod -- Neural Network

2.1 Implement detail

我實作了 2~3 hidden layers 的 Neural Network 做為第二種方法。 選擇 2~3 hidden layers 是因為查的資料發現以單純的 Neural Network 來講 2~3 層就很足夠了。

首先我發現如果想要使用 relu 作為 activation function 的話每一層的 w 的初始化必須使用

numpy.random.randn(# of w) * numpy.sqrt(2.0 / (# of w)) 這個初始化方法否則 train 出來的結果會爛掉,雖然詳細的數學推導我並未細看但是為了在比較 sigmoid 和 relu 時方便我便統一使用了此初始化方法。

```
w0 = np.random.randn(57,neuralnum) * np.sqrt(2.0/(57 * neuralnum))
w1 = np.random.randn(neuralnum,neuralnum) * np.sqrt(2.0/(neuralnum ** 2))
w2 = np.random.randn(neuralnum,5) * np.sqrt(2.0/(neuralnum * 5))
w = np.random.randn(5,1) * np.sqrt(2.0/(5))

b0 = np.zeros((1,neuralnum))
b1 = np.zeros((1,neuralnum))
b2 = np.zeros((1,5))
b = np.zeros(1)
```

Training data 的儲存方面因為與 Logistic regression 一樣便不詳述。而在 neural network 計算 output 的時候也是利用 numpy 的矩陣乘法便可以快速的計算。

```
x = x_train

10 = sigmoid(np.dot(x,w0) + b0)
11 = sigmoid(np.dot(10,w1) + b1)
12 = sigmoid(np.dot(11,w2) + b2)
y = sigmoid(np.dot(12,w) + b)
```

計算 gradient 的部分我實作了知名的演算法 back propagation 去加快計算。

```
#back propagation
#sigmoid(deriv=True) means it output the derivative of sigmoid function
y_error = y_train-y
y_delta = y_error * sigmoid(y,deriv=True)

12_error = y_delta.dot(w.T)
12_delta = 12_error * sigmoid(12,deriv=True)

11_error = 12_delta.dot(w2.T)
11_delta = 11_error * sigmoid(11,deriv=True)

10_error = 11_delta.dot(w1.T)
10_delta = 10_error * sigmoid(10,deriv=True)

dw0 = x.T.dot(10_delta)
dw1 = 10.T.dot(11_delta)
dw2 = 11.T.dot(12_delta)
dw = 12.T.dot(y_delta)
```

同樣我使用了 adagrad 去調整 learning rate.

```
#adagrad
g0 = g0 + (dw0 ** 2)
g1 = g1 + (dw1 ** 2)
g2 = g2 + (dw2 ** 2)
g = g + (dw ** 2)

deltaw0 = (learnrate/np.sqrt(g0))*dw0
deltaw1 = (learnrate/np.sqrt(g1))*dw1
deltaw2 = (learnrate/np.sqrt(g2))*dw2
deltaw = (learnrate/np.sqrt(g2))*dw
w0 = w0 + deltaw0
w1 = w1 + deltaw1
w2 = w2 + deltaw2
w = w + deltaw

gb0 += np.mean(10_delta, axis=0) ** 2
gb1 += np.mean(1_delta, axis=0) ** 2
gb2 += np.mean(1_delta, axis=0) ** 2
gb2 += np.mean(y_delta, axis=0) ** 2
b0 += (learnrate/np.sqrt(gb0)) ** np.mean(10_delta, axis=0)
b1 += (learnrate/np.sqrt(gb1)) ** np.mean(11_delta, axis=0)
b2 += (learnrate/np.sqrt(gb2)) ** np.mean(12_delta, axis=0)
b += (learnrate/np.sqrt(gb1)) ** np.mean(y_delta, axis=0)
b += (learnrate/np.sqrt(gb1)) ** np.mean(y_delta, axis=0)
```

2.3 Regularization

我嘗試了兩種 regularization 方法,第一種和 logistic regression 一樣是將 gradient 的值加上 @.1 * np.abs(w),第二種則是 Dropout。

第一種方法(以下稱為m1)根據實驗結果看起來沒有什麼顯著的效果,但是若把 $0.1 - \Box$ 氣調高到 0.5 的話便會讓 training 結果變差,因為時間上的考量我便沒有慢慢的試參數了。

在 Dropout 的部分,我發現 Dropout + sigmoid 會在 train 一段時間過後 error 激增,而 Dropout + relu 則是可以穩定的降低error,並且可以觀察到加上 Dropout 比純用 relu 好了一點,並且在使用 Dropout 時 hidden-layer 的數量是 2 or 3 沒有太大影響。

2.4 Neuron Number

根據查到的資料,在每一層 hidden layer 該有多少 neuron 也是大有學問。 我查到主要有三種算法

```
1. # of training sample / (alpha * (# of input neuron)), alpha = 2 \sim 10 2. (2/3) * (# of input neuron) + (# of output neuron) 3. ((# of input neuron) + (# of output neuron))/2 + 1~10
```

並且再根據一些實驗,在沒有使用 Dropout 的情況下 3-hidden layer 的 neuron number 我選擇 30,30,5, 2-hidden layer 則是 31,31。

使用 Dropout 的情況下必須要使用較多 neuron 才會有好的表現,所以在有 Dropout 時 3-hidden layer 和 2-hidde layer 的 neuron number 都是全部 45。

2.5 Experiment data

我使用了 5-fold cross validation 進行 model 的好壞比較,以下是 5 種 model。

- 1. 3-hidden layer NN, activation: sigmoid, regularization: None
- 2. 3-hidden layer NN, activation: sigmoid, regularization: m1
- 3. 2-hidden layer NN, activation: sigmoid, regularization: None
- 4. 2-hidden layer NN, activation: relu, regularization: Dropout

5. logistic regression

3-hidden NN 0.94125 0.93 0.	
2-hidden NN 0.9475 0.91375 0. 2-hidden NN, Dropout 0.92875 0.92 0.	.925 0.915 0.93125 0.9285 8.93 0.91125 0.92875 0.9255 8875 0.92625 0.9275 0.9205 9275 0.93125 0.92125 0.92575 91375 0.92 0.93625 0.92375

其實可以發現如果以 average 來看 model 間並沒有很大的差距,甚至可以說都在誤差範圍以內。 值得一提的就是 2-hidden layer NN without dropout 算是相對表現比較不穩定的一個,應該是 variance 較大的問題。 然後有沒有 m1 regularization 並沒有什麼大差別。 所以我將 model 的選項縮減到

- 1. 3-hidden layer NN without regularization
- 2. 2-hidden layer NN with Dropout
- 3. logistic regression

最後考量 training time 我刷掉 2-hidden layer NN with Dropout 因為若是加了 Dropout,gradient descent 的次數必須從 600 提升到 3500 才能有較好的結果。 然後再依據 kaggle public scoreboard 的結果我認為 3-hidden layer NN 是最好的。

3. Ensemble

在這次我使用了 ensemble 方法中的 bagging 來降低我的 model 的 variance。 我嘗試了 2 種做法

- 1. 使用 bootstrap 取 training data 來 train 20 個 model 進行投票。
- 2. 將 training data 分成 20 份,用第 1~19,1~18,20,1~17,19~20 ・・・份的 training data 去 train 20 個 model 進行投票

我發現第二個做法有較好的結果,猜想是因為這樣子 training data 的 diversity 才夠高。 利用 ensemble 我再在 kaggle public scoreboard 上改善了 0.01的準確度。