

Reinforcement Learning for LTL_f/LDL_f Goals: Theory and Implementations

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corso di Laurea Magistrale in Master in Engineering in Computer Science

Candidate

Marco Favorito

ID number 1609890

Thesis Advisor Co-Advisor

Prof. Giuseppe De Giacomo Prof. Daniele Nardi

Academic Year 2017/2018

Thesis defended on 20^{th} July 2018 in front of a Board of Examiners composed by:

Prof. Riccardo Rosati (chairman)

Prof. Silvia Bonomi Prof. Giorgio Grisetti Prof. Massimo Mecella Prof. Daniele Cono D'Elia

Reinforcement Learning for LTL_f/LDL_f Goals: Theory and Implementations Master thesis. Sapienza – University of Rome

 $\ensuremath{{\mathbb C}}$ 2018 Marco Favorito. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

 $Author's\ email:\ favorito.1609890@studenti.uniroma1.it$

Abstract

MDPs extended with $\text{LTL}_f/\text{LDL}_f$ non-Markovian rewards have recently attracted interest as a way to specify rewards declaratively. In this thesis, we discuss how a reinforcement learning agent can learn policies fulfilling $\text{LTL}_f/\text{LDL}_f$ goals. In particular we focus on the case where we have two separate representations of the world: one for the agent, using the (predefined, possibly low-level) features available to it, and one for the goal, expressed in terms of high-level (human-understandable) fluents. We formally define the problem and show how it can be solved. Moreover, we provide experimental evidence that keeping the RL agent feature space separated from the goal's can work in practice, showing interesting cases where the agent can indeed learn a policy that fulfills the $\text{LTL}_f/\text{LDL}_f$ goal using only its features (augmented with additional memory).

Contents

1	Intr	oduction 1
	1.1	Reinforcement Learning
	1.2	Rewarding behaviors
	1.3	Topic of the Thesis
	1.4	Structure of the Thesis
2	LTL_f	ϵ and LDL_f
	2.1	Linear time Temporal Logic (LTL)
		2.1.1 Syntax
		2.1.2 Semantics
	2.2	Linear Temporal Logic on Finite Traces: LTL _f
		2.2.1 Syntax
		2.2.2 Semantics
		2.2.3 Complexity and Expressiveness
	2.3	Regular Temporal Specifications (RE _f)
	2.4	Linear Dynamic Logic on Finite Traces: LDL _f
		2.4.1 Syntax
		2.4.2 Semantics
	2.5	LTL_f and LDL_f translation to automata
		$2.5.1$ ∂ function for LTL _f
		$2.5.2$ ∂ function for LDL _f
		2.5.3 The LDL _f 2NFA algorithm
		2.5.4 Complexity of LTL_f/LDL_f reasoning
	2.6	Conclusions
	2.0	Conordistrino
3	\mathbf{FLI}	OAT 23
	3.1	Introduction
	3.2	Package structure
	3.3	Code examples
	3.4	License
4	\mathbf{RL}	for LTL_f/LDL_f Goals
	4.1	Reinforcement Learning
	4.2	Markov Decision Process (MDP)
	4.3	Temporal Difference Learning
	4.4	Non-Markovian Reward Decision Process (NMRDP)
		4.4.1 Preliminaries
		4.4.2 Find an optimal policy $\bar{\rho}$ for NMRDPs
		4.4.3 Define the non-Markovian reward function \bar{R}
		AAA Using DITI

Contents

Bibliography 6				
8	Con 8.1 8.2 8.3 8.4	Overview	62 62 63 63	
7	Exp 7.1 7.2 7.3	BREAKOUT	55 55 57 58 59 59	
6	RL1 6.1 6.2 6.3	Introduction	50 50 50 51 51 53 54	
5	5.1 5.2 5.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 44 44 45 47 48	
	4.5 4.6 4.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 36 36 38 38 41 42	

Chapter 1

Introduction

This chapter presents the outline of this thesis and summarizes motivations, goals, and achievements.

1.1 Reinforcement Learning

Reinforcement learning is an area of Machine Learning where the learning comes from rewards and punishments (Sutton and Barto, 1998). It is concerned in how the learning entity, the agent, interacting in an environment, should take actions so to maximize the observed reward. The reward signal is observed after each action taken by the agent. The agent chooses actions depending on the current state of the environment. A solution to the reinforcement learning problem is a policy which determines which action should be executed in a given state in order to maximize the long term reward. An algorithm that tackles this kind of problem is called reinforcement learning algorithm.

The problem, due to its generality, is studied in many other disciplines, such as game theory, control theory, operations research, multi-agent system, and many others. Usually, in order to simplify the tractability of the problem, it is assumed that the environment can be modeled as a Markov Decision Process (MDP). An environment behaves like an MDP if the Markov property is satisfied, which means that the state space representation in the algorithm captures enough details so that the optimal decisions can be made when the information about only the current state is available.

Even if the laws that determines the evolution of the systems and the rewards are unknown a priori, it is still possible to solve an MDP by making several simulations and gathering experiences about the visited states, the actions taken and the observed rewards. However, many challenges arise in this settings:

- Exponential state space explosion: due to the feature selection used for the state space encoding, every added feature yields exponential increase in the number of states, hence reducing the tractability of the problem.
- Exploration-Exploitation trade-off: due to the former issue, reinforcement learning algorithm should be designed to avoid exploring irrelevant states in terms of expected reward, while preferring the ones with high expected reward (exploitation). Furthermore, the algorithms should be sensitive to the local optima issue, a well-known in statistical learning literature (exploration).

• Temporal credit assignment: the agent should be able to foresee the effect of his actions (in terms of expected reward), due to the fact that, in many domains, the current reward is influenced by past decisions.

This problems lead to the use of heuristics and approximate solutions. A simple way to do reinforcement learning is to use exploration which is based on the current policy with a certain degree of randomness which deviates from such a policy.

1.2 Rewarding behaviors

In some domains it could be of interest the study of rewards not depending on a single decision (like in MDPs) but depending on a *sequence* of visited states and actions. For instance, we can reward an agent not only by reaching a goal state, but if the goal is reached while satisfying other properties of interest during the simulation or, in other words, if the agent satisfies some target behavior. It is clear that the definition of MDP does not fit this problem, since the optimal decision in the current state depends from the *history of states* that leads to the current state.

This idea of rewarding behaviors has been proposed in (Bacchus et al., 1996), by defining the Non-Markovian Reward Decision Process (NMRDP), a variant of an MDP where the reward does not depend only from one transition of the environment but from a sequence of transitions. In order to specify the desired behaviors that the agent should learn, they defined a temporal logic formalisms called PLTL (Past LTL), which is able to speak about a sequence of property configurations over time, that we call traces. The classic reinforcement learning algorithms does not work on an NMRDP; however, they propose a transformation from NMRDP into an expanded MDP such that the solution of the MDP is also a solution of the original problem. Hence, in order to solve the NMRDP, we can run off-the-shelf RL algorithms over the transformed MDP; the learnt Markovian policy can be easily converted into an optimal policy for the NMRDP.

The trick here is that the transformed MDP is defined over an *expanded state space*, which still contains the original state space but enriches it by labeling every state. The idea is that the labels should keep track in some way the (partial) satisfaction of the temporal formulas. As a result, every state in the transformed state space is replicated multiple times, marking the difference between different (relevant) histories terminating in that state.

A similar transformation has been done in the following works: (Thiébaux et al., 2006) and (Gretton, 2014), where the temporal logic formalism was respectively \$FLTL (a finite LTL with future formulas) and \$*FLTL (a variant of \$FLTL); in (Icarte et al., 2018), where they used Co-Safe LTL formulas (Kupferman and Y. Vardi, 2001; Lacerda et al., 2015); in (Camacho et al., 2017a,b), where they used LTL_f (Linear Temporal Logic over finite traces) (De Giacomo and Vardi, 2013). In (Brafman et al., 2018) the specification of temporal goals is done by LTL_f or LDL_f (Linear Dynamic Logic over finite traces) formulas.

1.3 Topic of the Thesis

In this thesis, we leverage the construction of (Brafman et al., 2018) to define a new problem. Consider a classic reinforcement learning problem defined by an MDP. The agent acts in the state space of the MDP and tries to maximize the reward. We can

think of the features of this state space as *low-level features*, e.g. the coordinates of a robot in a room, informations about the limbs etc.

Now consider that we want to talk about some high-level properties of the environment, e.g. continuing with the example of the robot in the room, we are interested in the status of the window and the door (if they are open or closed). We can define the fluents $open_window$ and $open_door$, respectively. We call the features to determine the status of the fluents high-level features.

Given this setting, we are interested in:

- maximize the reward of the original MDP;
- maximize the reward specified by temporal formulas, expressed in LTL_f/LDL_f , over the fluents

E.g. in the example, a temporal specification could be "eventually open the window, then eventually open the door".

In this work we specify formally the just defined problem, propose the transformation into an MDP and prove the equivalence of the transformation with the original problem. We propose also a way to apply reward shaping techniques to improve the learning in terms of convergence rate. Moreover, we provide an implementation and give experimental evidence of the goodness of our construction.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows:

- In Chapter 2 we describe the notions about temporal logic formalisms, that will be used for temporal goal specifications. We start from LTL, RE and then we move towards LTL_f and LDL_f, upon which our method is built on.
- In Chapter 3 we describe FLLOAT, a software project that implements the translation from LTL_f/LDL_f formulas to equivalent automata. Such translation is an important piece of our approach;
- Chapter 4 is the core of the thesis. We introduce foundational concepts in reinforcement learning, MDPs and algorithm to find a solution. Then we move to NMRDPs and we formally describe our approach.
- In Chapter 5 we apply reward shaping techniques to the setting explained in Chapter 4.
- In Chapter 6 we present a reinforcement learning framework allowing easy implementation of the construction described in Chapter 4 and 5.
- Chapter 7 describes the conducted experiments,5 giving evidence that our approach actually works.
- The thesis is concluded in Chapter 8. This chapter summarizes also the achievements of the thesis and discusses future work.

Chapter 2

LTL_f and LDL_f

In this chapter we introduce the reader to the main important framework for talk about behaviors over time, which gives the foundations for our approach. First we talk about the well known Linear time Temporal Logic (LTL), Propositional Dynamic Logic (PDL) and their main applications; then we go more in deep by presenting a specific formalism, namely Linear Temporal Logic over Finite Traces LTL_f and Linear Dynamic Logic over Finite Traces LDL_f. Finally, we study the translation from LTL_f/LDL_f formulas to Deterministic Finite Automata (DFA). We require the reader to be acquainted with classical logic (Shapiro and Kouri Kissel, 2018) and automata theory (Hopcroft et al., 2000).

2.1 Linear time Temporal Logic (LTL)

Temporal Logic (Goranko and Galton, 2015) is a category of formal languages aimed to talk about properties of a system whose truth value might change over time. This is in contrast with atemporal logics, which can only discuss about statements whose truth value is constant.

Linear time Temporal Logic (Pnueli, 1977), or Linear Temporal Logic (LTL) is such a logic. It is the most popular and widely used temporal logic in computer science, especially in formal verification of software/hardware systems, in AI to reasoning about actions and planning, and in the area of Business Process Specification and Verification to specify processes declaratively.

It allows to express temporal patterns about some property p, like liveness (p will eventually happen), safety (p will never happen) and fairness, combinations of the previous patterns (infinitely often p holds, eventually always p holds).

2.1.1 Syntax

A LTL formula φ is defined over a set of propositional symbols \mathcal{P} and are closed under the boolean connectives, the unary temporal operator O(next-time) and the binary operator $\mathcal{U}(until)$:

$$\varphi ::= A \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \Diamond \varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

With $A \in \mathcal{P}$.

Additional operators can be defined in terms of the ones above: as usual logical operators such as \lor , \Rightarrow , \Leftrightarrow , true, false and temporal formulas like eventually as $\Diamond \varphi \doteq true \mathcal{U} \varphi$, always as $\Box \varphi \doteq \neg \Diamond \neg \varphi$ and release as $\varphi_1 \mathcal{R} \varphi_2 \doteq \neg (\neg \varphi_1 \mathcal{U} \neg \varphi_2)$.

Example 2.1. Several interesting temporal properties can be defined in LTL:

- Liveness: $\Diamond \varphi$, which means "condition expressed by φ at some time in the future will be satisfied", "sooner or later φ will hold" or "eventually φ will hold". E.g., $\Diamond rich$ (eventually I will become rich), $Request \implies \Diamond Response$ (if someone requested the service, sooner or later he will receive a response).
- Safety: $\Box \varphi$, which means "condition expressed by φ , every time in the future will be satisfied", "always φ will hold". E.g., $\Box happy$ (I'm always happy), $\Box \neg (temperature > 30)$ (the temperature of the room must never be over 30).
- Response: $\Box \Diamond \varphi$ which means "at any instant of time there exists a moment later where φ holds". This temporal pattern is known in computer science as fairness.
- Persistence: $\Diamond \Box \varphi$, which stand for "There exists a moment in the future such that from then on φ always holds". E.g. $\Diamond \Box dead$ (at a certain point you will die, and you will be dead forever)
- Strong fairness: $\Box \Diamond \varphi_1 \implies \Box \Diamond \varphi_2$, "if something is attempted/requested infinitely often, then it will be successful/allocated infinitely often". E.g., $\Box \Diamond ready \implies \Box \Diamond run$ (if a process is in ready state infinitely often, then infinitely often it will be selected by the scheduler).

2.1.2 Semantics

The semantics of LTL is provided by (infinite) traces, i.e. ω -word over the alphabet $2^{\mathcal{P}}$.

Definition 2.1. Given a infinite trace π , we define that a LTL formula φ is *true* at time i, in symbols π , $i \models \varphi$ inductively as follows:

$$\begin{split} \pi, i &\models A, \text{ for } A \in \mathcal{P} \text{ iff } A \in \pi(i) \\ \pi, i &\models \neg \varphi \text{ iff } \pi, i \not\models \varphi \\ \pi, i &\models \varphi_1 \land \varphi_2 \text{ iff } \pi, i \models \varphi_1 \land \pi, i \models \varphi_2 \\ \pi, i &\models \Diamond \varphi \text{ iff } \pi, i + 1 \models \varphi \\ \pi, i &\models \varphi_1 \mathcal{U} \varphi_2 \text{ iff } \exists j. (j \geq i) \land \pi, j \models \varphi \land \forall k. (i \leq k < j) \Rightarrow \pi, k \models \varphi_1 \end{split}$$

Similarly as in classical logic we give the following definitions:

Definition 2.2. A LTL formula is *true* in π , in notation $\pi \models \varphi$, if $\pi, 0 \models \varphi$. A formula φ is *satisfiable* if it is true in some π and is *valid* if it is true in every π . φ_1 entails φ_2 , in symbols $\varphi_1 \models \varphi_2$ iff $\forall \pi, \forall i.\pi, i \models \varphi_1 \implies \pi, i \models \varphi_2$.

Now we state an important result:

Theorem 2.1 (Sistla and Clarke (1985)). Satisfiability, validity, and entailment for LTL formulas are PSPACE-complete.

Indeed, Linear Temporal Logic can be thought of as a specific decidable (PSPACE-complete) fragment of classical first-order logic (FOL).

Notice that, a trace π can be seen as a word on a path of a Kripke structure.

Definition 2.3 (Clarke et al. (1999)). a Kripke structure \mathcal{K} over a set of propositional symbols \mathcal{P} is a 4-tuple $\langle S, I, R, L \rangle$ where S is a finite set of *states*, $I \subseteq S$ is the set of *initial states*, $R \subseteq S \times S$ is the *transition relation* such that R is left-total and $L: S \to 2^{\mathcal{P}}$ is a *labeling function*.

A path ρ over \mathcal{K} is a sequence of states $\langle s_1, s_2, \ldots \rangle$ such that $\forall i.R(s_i, s_{i+1})$. From a path we can build a word w on the path ρ by mapping each state of the sequence with L, namely:

$$w = \langle L(s_1), L(s_2), \ldots \rangle$$

In simpler words, a trace of propositional symbols \mathcal{P} is a infinite sequence of combinations of propositional symbols in \mathcal{P} . Moreover, we denote by $\pi(i)$ with $i \in \mathbb{N}$ the labels associated to s_i , i.e. $L(s_i)$.

Example 2.2. In figure 2.1 is depicted an example of Kripke structure \mathcal{K} over $\mathcal{P} = \{p, q\}$ where:

$$S = \{s_1, s_2, s_3\}$$

$$I = \{s_1\}$$

$$R = \{(s_1, s_2), (s_2, s_1), (s_2, s_3), (s_3, s_3)\}$$

$$L = \{(s_1, \{p, q\}), (s_2, \{q\}), (s_3, \{p\})\}$$

Figure 2.1. An example of Kripke structure.

The path $\langle s_1, s_2, s_3, s_3, s_3 \dots \rangle$ yields the following trace π :

$$\pi = \langle L(s_1), L(s_2), L(s_3), L(s_3), L(s_3), \ldots \rangle$$

= $\langle \{p, q\} \{q\}, \{p\}, \{p\}, \{p\}, \ldots \rangle$

2.2 Linear Temporal Logic on Finite Traces: LTL $_f$

Linear-time Temporal Logic over finite traces, LTL_f, is essentially standard LTL (Pnueli, 1977) interpreted over finite, instead of over infinite, traces (De Giacomo and Vardi, 2013). This apparently trivial difference has big impact: as we will see, some LTL formula has a different meaning if interpreted over infinite traces or finite ones.

2.2.1 Syntax

In fact, the syntax of LTL_f is the same of the one showed in Section ??, i.e. formulas of LTL_f are built from a set \mathcal{P} of propositional symbols and are closed under the boolean connectives, the unary temporal operator O(next-time) and the binary operator $\mathcal{U}(until)$:

$$\varphi ::= \phi \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

With $A \in \mathcal{P}$.

We use the standard abbreviations for classical logic formulas:

$$\varphi_{1} \vee \varphi_{2} \doteq \neg(\neg \varphi_{1} \wedge \neg \varphi_{2})$$

$$\varphi_{1} \Rightarrow \varphi_{2} \doteq \neg \varphi_{1} \vee \varphi_{2}$$

$$\varphi_{1} \Leftrightarrow \varphi_{2} \doteq \varphi_{1} \Rightarrow \varphi_{2} \wedge \varphi_{2} \Rightarrow \varphi_{1}$$

$$true \doteq \neg \varphi \vee \varphi$$

$$false \doteq \neg \varphi \wedge \varphi$$

And for temporal formulas:

$$\Diamond \varphi \doteq true \, \mathcal{U} \, \varphi \tag{2.1}$$

$$\Box \varphi \doteq \neg \lozenge \neg \varphi \tag{2.2}$$

$$\bullet \varphi \doteq \neg \circ \neg \varphi \tag{2.3}$$

$$Last \doteq \bullet false$$
 (2.4)

$$End \doteq \Box false$$
 (2.5)

As the reader might already noticed, 2.1 and 2.2 are defined as in Section ??; Equation 2.3 is called *weak next* (notice that on finite traces $\neg O\varphi \not\equiv O\neg \varphi$); 2.4 denotes the end of the trace, while 2.5 denotes that the trace is ended.

Example 2.3. Here we recall Example 2.1 and we see the impact on *Always*, *Eventually Response* and *Persistence* LTL formulas if interpreted on finite traces (i.e. formulas in LTL_f):

- Safety: $\Box A$ means that always till the end of the trace φ holds;
- Liveness: $\Diamond A$ means that eventually before the end of the trace φ holds;
- Response: $\Box \Diamond \varphi$ on finite traces becomes equivalent to last point in the trace satisfies φ , i.e. $\Diamond(Last \land \varphi)$. Intuitively, this is true because $\Box \Diamond \varphi$ implies that at the last point in the trace φ holds (because there are no successive instants of time that make φ true); but if this is the case, then what happens at previous points in the trace does not matter because the formula evaluates always to true, since as we just said φ must hold at the last point in the trace, hence the equivalence with $\Diamond(Last \land \varphi)$.
- Persistence: $\Diamond \Box \varphi$ on finite traces becomes equivalent to last point in the trace satisfies φ , i.e. $\Diamond (Last \land \varphi)$. Analogously to the previous case, the equivalence

holds because $\Diamond\Box\varphi$ implies that at the last point in the trace $\Box\varphi$ holds (and so φ), since we have no further successive instants of time that makes $\Box\varphi$ true. But if this is the case, then what happens at previous points in the trace does not matter because the formula evaluates always to true, since as we just said $\Box\varphi$ (and so φ) must hold at the last point in the trace, hence the equivalence with $\Diamond(Last \wedge \varphi)$.

In other words, no direct nesting of eventually and always connectives is meaningful in LTL_f , and this contrast what happens in LTL of infinite traces.

Example 2.4. Another remarkable evidence about the relevance of the assumption about finiteness of traces is provided by the DECLARE approach (Pesic and van der Aalst, 2006).

DECLARE is a declarative approach to business process modeling based on LTL interpreted over finite traces. The intuition is to map finite traces describing a domain of interest (e.g. processes) into infinite traces under the assumption that

$$\lozenge end \land \Box (end \Rightarrow \bigcirc end) \land \Box (end \Rightarrow \bigwedge_{p \in \mathcal{P}} \neg p)$$
 (2.6)

which means that the following english statements hold:

- end eventually holds $(end \notin \mathcal{P})$;
- once *end* is true, it is true forever;
- when end is true all other propositions must be false

In other words, every finite trace π_f is extended with an infinite sequence of end, or in symbols $\pi_{inf} = \pi_f \{end\}^{\omega}$. By construction we have that

$$\pi_{inf} \models \Diamond end \land \Box (end \Rightarrow \bigcirc end) \land \Box (end \Rightarrow \bigwedge_{p \in \mathcal{P}} \neg p)$$

Despite it seems a nice construction to adapt LTL on finite traces, in fact it is wrong due to the *next* operator: in an infinite trace a successor state always exists, whereas in a finite one this does not hold. There exists a counterexample showing that the interpretation of LTL formulas on finite traces with the construction just explained is **not** equivalent with proper interpretation over finite traces offered by LTL_f , i.e. in general:

$$\pi_f \{end\}^{\omega} \models \varphi \not \Rightarrow \pi_f \models_f \varphi \tag{2.7}$$

To see why this is the case, consider the DECLARE "negation chain succession" $\square(a\Rightarrow \bigcirc \neg b)$ which requires that at any point in the trace, the state after we see a, b is false. Consider also the finite trace $\pi_f=\{a\}$ and the associated infinite trace $\pi_{inf}=\{a\}\{end\}^{\omega}$ built as explained before. We have that

$$\pi_{inf} \models \Box(a \Rightarrow \bigcirc \neg b)$$

where \models has been defined in 2.1. This is true because there is only one occurrence of a and then end holds forever (and so b does not).

But if the same formula is interpreted on finite traces (namely \models_f):

$$\pi_f \not\models_f \Box (a \Rightarrow \bigcirc \neg b)$$

because the finite trace a is true at the last instant, but then there is no next instance where b is false, so $\bigcirc \neg b$ is evaluated to false and the formula does not hold. The correct way to express "negation chain succession" on finite traces would be $\square(a \Rightarrow \bullet \neg b)$.

The LTL formulas φ that are insensitive to the problem just shown, i.e. such that

$$\pi_f \{end\}^\omega \models \varphi \text{ iff } \pi_f \models_f \varphi \tag{2.8}$$

holds are defined *insensitive to infiniteness* (De Giacomo et al., 2014). This is another important evidence about the the relevance of the finiteness trace assumption.

2.2.2 Semantics

Formally, a finite trace π is a finite word over the alphabet $2^{\mathcal{P}}$, i.e. as alphabet we have all the possible propositional interpretations of the propositional symbols in \mathcal{P} . We can see π as a finite word on a path of a Kripke structure, similarly as we discussed in Section 2.1.2 (but in that case the traces were infinite). Given a finite path $\rho = \langle s_1, s_2, \ldots, s_n \rangle$ on a Kripke structure \mathcal{K} , a finite trace π associated to the path ρ is defined as $\langle L(s_1), L(s_2), \ldots, L(s_n) \rangle$.

We use the following notation. We denote the length of a trace π as $length(\pi)$. We denote the i_{th} position on the trace as $\pi(i) = L(s_i)$, i.e. the propositions that hold in the i_{th} state of the path, with $0 \le i \le last$ where $last = length(\pi) - 1$ is the last element of the trace. We denote by $\pi(i,j)$, the segment of π , the trace $\pi' = \langle \pi(i), \pi(i+1), \ldots, \pi(j) \rangle$, with $0 \le i \le j \le last$

Definition 2.4. Given a finite trace π , we define that a LTL_f formula φ is *true* at time i ($0 \le i \le last$), in symbols $\pi, i \models \varphi$ inductively as follows:

$$\pi, i \models A, \text{ for } A \in \mathcal{P} \text{ iff } A \in \pi(i)$$

$$\pi, i \models \neg \varphi \text{ iff } \pi, i \not\models \varphi$$

$$\pi, i \models \varphi_1 \land \varphi_2 \text{ iff } \pi, i \models \varphi_1 \land \pi, i \models \varphi_2$$

$$\pi, i \models \Diamond \varphi \text{ iff } i < last \land \pi, i + 1 \models \varphi$$

$$\pi, i \models \varphi_1 \mathcal{U} \varphi_2 \text{ iff } \exists j. (i \leq j \leq last) \land \pi, j \models \varphi \land$$

$$\forall k. (i < k < j) \Rightarrow \pi, k \models \varphi_1$$

$$(2.10)$$

Notice that Definition 2.4 is pretty similar to Definition 2.1, except the bounding of indexes in Equation 2.9 and Equation 2.10, to recognize that the trace is ended. Analogously to Definition 2.2 we give the following definitions:

Definition 2.5. A LTL_f formula is *true* in π , in notation $\pi \models \varphi$, if $\pi, 0 \models \varphi$. A formula φ is *satisfiable* if it is true in some π and is *valid* if it is true in every π . φ_1 entails φ_2 , in symbols $\varphi_1 \models \varphi_2$ iff $\forall \pi, \forall i.\pi, i \models \varphi_1 \implies \pi, i \models \varphi_2$.

2.2.3 Complexity and Expressiveness

Thanks to reduction of LTL_f satisfiability (Definition 2.5) into LTL satisfiability for PSPACE membership and reduction of STRIPS planning into LTL_f satisfiability for PSPACE-hardness, as proposed in (De Giacomo and Vardi, 2013), we have this result:

Theorem 2.2 (De Giacomo and Vardi (2013)). Satisfiability, validity and entailment for LTL_f formulas are PSPACE-complete.

About expressiveness of LTL_f , we have that:

Theorem 2.3 (De Giacomo and Vardi (2013); Gabbay et al. (1997)). LTL_f has exactly the same expressive power of FOL over finite ordered sequences.

2.3 Regular Temporal Specifications (RE_f)

In this section we talk about regular languages as a form of temporal specification over finite traces. In particular we focus on regular expressions (Hopcroft et al., 2000).

A regular expression ϱ is defined inductively as follows, considering as alphabet the set of propositional interpretations $2^{\mathcal{P}}$, from a set of propositional symbols \mathcal{P} :

$$\varrho ::= \phi \mid \varrho_1 + \varrho_2 \mid \varrho_1; \varrho_2 \mid \varrho^*$$

where ϕ is a propositional formula that is an abbreviation for the union of all the propositional interpretations that satisfy ϕ , i.e. $\phi = \sum_{\Pi \models \phi} \Pi$ and $\Pi \in 2^{\mathcal{P}}$.

We denote by $\mathcal{L}(\varrho)$ the language recognized by a RE_f expression. We interpret these expression over finite traces, introduced in Section 2.2.2.

Definition 2.6. We say that a regular expression ϱ is true in the finite trace π ifs $\pi \in \mathcal{L}(\varrho)$. We say that ϱ is true at instant i if $\pi(i, last) \in \mathcal{L}(\varrho)$. We say that ϱ is true between instants i, j if $\pi(i, j) \in \mathcal{L}(\varrho)$.

Example 2.5. We recall Example 2.2. The trace resulting from path $\langle s_1, s_2, s_3, s_3, \ldots \rangle$, i.e.

$$\pi = \langle \{p, q\} \{q\}, \{p\}, \{p\}, \{p\}, \dots \rangle$$

belongs to the language generated by the following regular expression:

$$\rho_1 = p \wedge q; q; p^*$$

But also by this one:

$$\varrho_2 = true; q + p; true^*$$

Example 2.6. We can express some of the formulas shown in Example 2.3, and many others, in RE_f :

- Safety: φ^* , equivalent to $\Box \varphi$
- Liveness: $true^*$; φ ; $true^*$, equivalent to $\Diamond \varphi$;
- Response and Persistence: as said before, when interpreted on finite traces, they are equivalent to $\Diamond(Last \land \varphi)$; hence, they can be rewritten in RE_f as $true^*$; φ
- Ordered occurrence: $true^*$; φ_1 ; $true^*$; φ_2 ; $true^*$, equivalent to $\Diamond(\varphi_1 \land \Diamond \Diamond \varphi_2)$ means that φ_1 and φ_2 happen in order;
- Alternating sequence: $(\psi, \varphi)^*$ means that ψ and φ alternate from the beginning of the trace, starting with ψ and ending with φ .

The Alternating sequence is an example of formula that has not a counterpart in LTL_f . More generally, LTL_f (and LTL) are not able to capture regular structural properties on path (Wolper, 1981).

This observation about expressiveness of RE_f is confirmed by Theorem 6 of (De Giacomo and Vardi, 2013), which is a consequence of several classical results (Büchi, 1960; Elgot, 1961; Trakhtenbrot, 1961; Thomas, 1979):

Theorem 2.4 (De Giacomo and Vardi (2013)). RE_f is strictly more expressive than LTL_f

More precisely, RE_f is expressive as *monadic second-order logic* MSO over bounded ordered sequences (Khoussainov and Nerode, 2001).

2.4 Linear Dynamic Logic on Finite Traces: LDL_f

The problem with RE_f is that, although is strictly more expressive than LTL_f , is considered a low-level formalism for temporal specifications. For instance RE_f misses a direct construct for negation and for conjunction. Moreover, negation requires an exponential blow-up, hence adding complementation and intersection constructs is not advisable.

Linear Dynamic Logic of Finite Traces LDL_f (De Giacomo and Vardi, 2013) merges LTL_f with RE_f in a very natural way, borrowing the syntax of PDL (Fischer and Ladner, 1979), a well-known (propositional) logic of programs in computer science. It keep the declarativeness and convenience of LTL_f while having the same expressive power of RE_f .

2.4.1 Syntax

Formally, LDL_f formulas φ are built over a set of propositional symbols \mathcal{P} as follows (Brafman et al., 2017):

$$\varphi ::= tt \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \langle \varrho \rangle \varphi
\varrho ::= \phi \mid \varphi? \mid \varrho_1 + \varrho_2 \mid \varrho_1; \varrho_2 \mid \varrho^*$$

where tt stands for logical true; ϕ is a propositional formula over \mathcal{P} ; ϱ denotes path expressions, which are RE over propositional formulas ϕ with the addition of the test construct φ ? typical of PDL. Moreover, we use the following abbreviations for classical logic operators:

$$\varphi_{1} \vee \varphi_{2} \doteq \neg(\neg \varphi_{1} \wedge \neg \varphi_{2})$$

$$\varphi_{1} \Rightarrow \varphi_{2} \doteq \neg \varphi_{1} \vee \varphi_{2}$$

$$\varphi_{1} \Leftrightarrow \varphi_{2} \doteq \varphi_{1} \Rightarrow \varphi_{2} \wedge \varphi_{2} \Rightarrow \varphi_{1}$$

$$ff \doteq \neg tt$$

And for temporal formulas:

$$[\varrho]\varphi \doteq \neg \langle \varrho \rangle \neg \varphi \tag{2.11}$$

$$End \doteq [true]ff$$
 (2.12)

$$Last \doteq \langle true \rangle End$$
 (2.13)

 $[\varrho]\varphi$ and $\langle\varrho\rangle\varphi$ are analogous to box and diamond operators in PDL; Formula 2.13 denotes the last element of the trace, whereas Formula 2.12 denotes that the trace is ended. Intuitively, $\langle\varrho\rangle\varphi$ states that, from the current step in the trace, there exists an execution satisfying the RE ϱ such that its last step satisfies φ , while $[\varrho]\varphi$ states that, from the current step, all executions satisfying the RE ϱ are such that their last step satisfies φ .

2.4.2 Semantics

As we did in the previous sections, we formally give a semantics to LDL_f (interpreted over finite traces, like LTL_f and RE).

Definition 2.7. Given a finite trace π , we define that a LDL_f formula φ is *true* at time i ($0 \le i \le last$), in symbols $\pi, i \models \varphi$ inductively as follows:

```
\pi, i \models tt
\pi, i \models \neg \varphi \text{ iff } \pi, i \not\models \varphi
\pi, i \models \varphi_1 \land \varphi_2 \text{ iff } \pi, i \models \varphi_1 \land \pi, i \models \varphi_2
\pi, i \models \langle \phi \rangle \varphi \text{ iff } i < last \land \pi(i) \models \phi \land \pi, i + 1 \models \varphi
\pi, i \models \langle \psi? \rangle \varphi \text{ iff } \pi, i \models \psi \land \pi, i \models \varphi
\pi, i \models \langle \varrho_1 + \varrho_2 \rangle \varphi \text{ iff } \pi, i \models \langle \varrho_1 \rangle \varphi \lor \langle \varrho_2 \rangle \varphi
\pi, i \models \langle \varrho_1; \varrho_2 \rangle \varphi \text{ iff } \pi, i \models \langle \varrho_1 \rangle \langle \varrho_2 \rangle \varphi
\pi, i \models \langle \varrho^* \rangle \varphi \text{ iff } \pi, i \models \varphi \lor i < last \land \pi, i \models \langle \varrho \rangle \langle \varrho^* \rangle \varphi \text{ and } \varrho \text{ is not } test-only
```

We say that ϱ is *test-only* if it is a RE_f expression whose atoms are only tests, i.e. ψ ?.

Notice that LDL_f fully captures LTL_f . For every formula in LTL_f there exists a LDL_f formula with the same meaning, namely:

$$\begin{array}{ccc} \operatorname{LTL}_f & \operatorname{LDL}_f \\ & A & \langle A \rangle tt \\ & \neg \varphi & \neg \varphi \\ \\ \varphi_1 \wedge \varphi_2 & \varphi_1 \wedge \varphi_2 \\ & \bigcirc \varphi & \langle true \rangle (\varphi \wedge \neg End) \\ \\ \varphi_1 \mathcal{U} \varphi & \langle (\varphi_1?; true)^* \rangle (\varphi_2 \wedge \neg End) \end{array}$$

Notice also that every RE_f expression ϱ is captured in LDL_f by $\langle \varrho \rangle End$. Moreover, since also the converse holds, i.e. every LDL_f formula can be expressed in RE (by Theorem 11 in (De Giacomo and Vardi, 2013)), the following theorem holds:

Theorem 2.5 (De Giacomo and Vardi (2013)). LDL_f has exactly the same expressive power of MSO

Now we show several LDL $_f$ examples.

Example 2.7. Formulas described in Examples 2.3 and 2.6 can be rewritten in LDL_f as:

- Safety: $[true^*]\varphi$, equivalent to LTL_f formula $\Box \varphi$
- Liveness: $\langle true^* \rangle \varphi$, equivalent to LTL_f formula $\Diamond \varphi$
- Conditional Response: $[true^*](\varphi_1 \Rightarrow \langle true^* \rangle \varphi_2)$, equivalent to LTL_f formula $\Box(\varphi_1 \Rightarrow \Diamond \varphi_2)$
- Ordered occurrence: $\langle true^*; \varphi_1; true^*; \varphi_2; true^* \rangle End$ equivalent to the RE_f expression $true^*; \varphi_1; true^*; \varphi_2; true^*$
- Alternating occurrence: $\langle (\psi; \varphi)^* \rangle End$ equivalent to the RE_f expression $(\psi; \varphi)^*$

Example 2.8. Consider the Example 2.2 and 2.5. ϱ_1 and ϱ_2 are translated into LDL_f as $\langle \varrho_1 \rangle End$ and $\langle \varrho_2 \rangle End$ respectively.

Other LDL_f formulas satisfiable in the Kripke structure K depicted in Figure 2.1 are:

- $\langle p \rangle tt$ by every (non-empty) path, since s_1 is the initial state and we have that $\{p,q\} \models p$
- $\langle q \rangle tt$ as the previous case
- $\langle (p;q); (p;q)^*; p; p^* \rangle tt$ by paths of the form $\rho = s_1, s_2, (s_1, s_2)^{\omega}, s_3, (s_3)^{\omega}$
- $[true^*]\langle p \vee q \rangle tt$ is satisfied for every path, since for every reachable state either p or q are true;

2.5 LTL_f and LDL_f translation to automata

Given an LTL_f/LDL_f formula φ , we can construct a deterministic finite state automaton (DFA) (Rabin and Scott, 1959) \mathcal{A}_{φ} that accept the same finite traces that makes φ true. In order to do this, we proceed in two steps: First we translate LTL_f and LDL_f formulas into (NFA) (De Giacomo and Vardi, 2015). Then the NFA obtained can be transformed into a DFA following the standard procedure of determinization.

Now we recall definitions of NFA and DFA:

Definition 2.8. An NFA is a tuple $\mathcal{A} = \langle \Sigma, Q, q_0, \delta, F \rangle$, where:

- Σ is the input alphabet;
- Q is the finite set of states;
- $q_0 \in Q$ is the initial state;
- $\delta \subseteq Q \times \Sigma \times Q$ is the transition relation;
- $F \subseteq Q$ is the set of final states;

Definition 2.9. A DFA is a NFA where δ is a function $\delta: Q \times \Sigma \to Q$

By $\mathcal{L}(A)$ we mean the set of all traces over Σ accepted by \mathcal{A} .

In the next two subsections we give some definition that will be used in the algorithm; then we describe the algorithm for the translation and give some example.

2.5.1 ∂ function for LTL_f

We give the following definition:

Definition 2.10. The delta function ∂ for LTL_f formulas is a function that takes as input an (implicitly quoted) LTL_f formula φ in NNF and a propositional interpretation Π for \mathcal{P} , and returns a positive boolean formula whose atoms are (implicitly quoted) φ subformulas. It is defined as follows:

$$\partial(A,\Pi) = \begin{cases} true & \text{if } A \in \Pi \\ false & \text{if } A \notin \Pi \end{cases}$$

$$\partial(\neg A,\Pi) = \begin{cases} false & \text{if } A \in \Pi \\ true & \text{if } A \notin \Pi \end{cases}$$

$$\partial(\varphi_1 \wedge \varphi_2,\Pi) = \partial(\varphi_1,\Pi) \wedge \partial(\varphi_2,\Pi)$$

$$\partial(\varphi_1 \vee \varphi_2,\Pi) = \partial(\varphi_1,\Pi) \vee \partial(\varphi_2,\Pi)$$

$$\partial(\circ\varphi,\Pi) = \varphi \wedge \neg End \equiv \varphi \wedge \Diamond true$$

$$\partial(\varphi_1 \mathcal{U} \varphi_2,\Pi) = \partial(\varphi_2,\Pi) \vee (\partial(\varphi_1,\Pi) \wedge \partial(\circ(\varphi_1 \mathcal{U} \varphi_2),\Pi))$$

$$\partial(\Diamond\varphi,\Pi) = \partial(\varphi,\Pi) \vee \partial(\circ\Diamond\varphi,\Pi)$$

$$\partial(\Diamond\varphi,\Pi) = \varphi \vee End \equiv \varphi \vee \Box false$$

$$\partial(\varphi_1 \mathcal{R} \varphi_2,\Pi) = \partial(\varphi_2,\Pi) \wedge (\partial(\varphi_1,\Pi) \vee \partial(\bullet(\varphi_1 \mathcal{R} \varphi_2),\Pi))$$

$$\partial(\Box\varphi,\Pi) = \partial(\varphi,\Pi) \wedge \partial(\bullet\Box\varphi,\Pi)$$

where End is defined as Equation 2.5.

Moreover, we define $\partial(\varphi, \epsilon)$ which is inductively defined as Equation 2.14, except for the following cases:

$$\begin{array}{lcl}
\partial(A,\epsilon) & = & false \\
\partial(\neg A,\epsilon) & = & false \\
\partial(\bigcirc\varphi,\epsilon) & = & false \\
\partial(\bullet\varphi,\epsilon) & = & true
\end{array}$$
(2.15)

Note that $\partial(\varphi, \epsilon)$ is always either *true* or *false*.

2.5.2 ∂ function for LDL_f

We give the following definition:

Definition 2.11. The delta function ∂ for LDL_f formulas is a function that takes as input an (implicitly quoted) LDL_f formula φ in NNF, extended with auxiliary constructs F_{ψ} and T_{ψ} , and a propositional interpretation Π for \mathcal{P} , and returns a

positive boolean formula whose atoms are (implicitly quoted) φ subformulas (not including F_{ψ} or T_{ψ}). It is defined as follows:

$$\begin{array}{rclcrcl} \partial(tt,\Pi) & = & true \\ \partial(ff,\Pi) & = & false \\ \partial(\phi,\Pi) & = & a \\ \partial(\varphi_1 \wedge \varphi_2,\Pi) & = & \partial(\varphi_1,\Pi) \wedge \partial(\varphi_2,\Pi) \\ \partial(\varphi_1 \vee \varphi_2,\Pi) & = & \partial(\varphi_1,\Pi) \vee \partial(\varphi_2,\Pi) \\ \partial(\langle \phi \rangle \varphi,\Pi) & = & \begin{cases} \boldsymbol{E}(\varphi) & \text{if } \Pi \models \phi \\ false & \text{if } \Pi \not\models \phi \end{cases} \\ \partial(\langle \varrho^? \rangle \varphi,\Pi) & = & \partial(\varrho,\Pi) \wedge \partial(\varphi,\Pi) \\ \partial(\langle \varrho_1 + \varrho_2 \rangle \varphi,\Pi) & = & \partial(\langle \varrho_1 \rangle \varphi,\Pi) \vee \partial(\langle \varrho_2 \rangle \varphi,\Pi) \\ \partial(\langle \varrho_1 ; \varrho_2 \rangle \varphi,\Pi) & = & \partial(\langle \varrho_1 \rangle \langle \varrho_2 \rangle \varphi,\Pi) \\ \partial(\langle \varrho^* \rangle \varphi,\Pi) & = & \partial(\varphi,\Pi) \vee \partial(\langle \varrho \rangle \boldsymbol{F}_{\langle \varrho^* \rangle \varphi},\Pi) \\ \partial([\varphi] \varphi,\Pi) & = & \begin{cases} \boldsymbol{E}(\varphi) & \text{if } \Pi \models \phi \\ true & \text{if } \Pi \not\models \phi \end{cases} \\ \partial([\varrho_1 ; \varrho_2 \varphi,\Pi) & = & \partial(nnf(\neg \varrho),\Pi) \vee \partial(\varphi,\Pi) \\ \partial([\varrho_1 ; \varrho_2 \varphi,\Pi) & = & \partial([\varrho_1] \varphi,\Pi) \wedge \partial([\varrho_2] \varphi,\Pi) \\ \partial([\varrho_1 ; \varrho_2] \varphi,\Pi) & = & \partial([\varrho_1] [\varrho_2] \varphi,\Pi) \\ \partial([\varrho^*] \varphi,\Pi) & = & \partial(\varphi,\Pi) \wedge \partial([\varrho] \boldsymbol{T}_{\langle \varrho^* \rangle \varphi},\Pi) \\ \partial(\boldsymbol{T}_{\psi},\Pi) & = & true \\ \partial(\boldsymbol{F}_{\psi},\Pi) & = & false \end{cases}$$

where $E(\varphi)$ recursively replaces in φ all occurrences of atoms of the form T_{ψ} and F_{ψ} by $E(\psi)$.

Moreover, we define $\partial(\varphi, \epsilon)$ which is inductively defined as Equation 2.16, except for the following cases:

$$\begin{array}{lcl}
\partial(\langle\phi\rangle\varphi,\epsilon) & = & false \\
\partial([\phi]\varphi,\epsilon) & = & true
\end{array} \tag{2.17}$$

Note that $\partial(\varphi, \epsilon)$ is always either *true* or *false*.

2.5.3 The LDL_f2NFA algorithm

Algorithm 2.1 (LDL_f2NFA) takes in input a LDL_f/LTL_f formula φ and outputs a NFA $\mathcal{A}_{\varphi} = \langle 2^{\mathcal{P}}, Q, q_0, \delta, F \rangle$ that accepts exactly the traces satisfying φ . It is a variant of the algorithm presented in (De Giacomo and Vardi, 2015), and its correctness relies on the fact that every LDL_f/LTL_f formula φ can be associated a polynomial alternating automaton on words (AFW) accepting exactly the traces that satisfy φ and that every AFW can be transformed into an NFA (De Giacomo and Vardi, 2013). The proposed algorithm requires that φ is in negation normal form (NNF), i.e. with negation symbols occurring only in front of propositions.

The function ∂ used in lines 5, 12 and 15 is the one defined in sections 2.5.1 and 2.5.2; whether we are translating a LTL_f or a LDL_f formula, we use the function ∂ from Definition 2.10 and from Definition 2.11, respectively.

Algorithm 2.1. LDL_f2NFA: from LTL_f/LDL_f formula φ to NFA \mathcal{A}_{φ}

```
1: input LDL<sub>f</sub>/LTL<sub>f</sub> formula \varphi
 2: output NFA \mathcal{A}_{\varphi} = \langle 2^{\mathcal{P}}, Q, q_0, \delta, F \rangle
 q_0 \leftarrow \{\varphi\}
 4: F \leftarrow \{\emptyset\}
 5: if (\partial(\varphi, \epsilon) = true) then
             F \leftarrow F \cup \{q_0\}
 6:
 7: end if
 8: Q \leftarrow \{q_0, \emptyset\}
 9: \delta \leftarrow \emptyset
10: while (Q or \delta change) do
11:
             for (q \in Q) do
                   if (q' \models \bigwedge_{(\psi \in q)} \partial(\psi, \Pi)) then
12:
                         Q \leftarrow Q \cup \{q'\}
13:
                         \delta \leftarrow \delta \cup \{(q, \Pi, q')\}
14:
                         if (\bigwedge_{(\psi \in q')} \partial(\psi, \epsilon) = true) then
15:
                                F \leftarrow F \cup \{q'\}
16:
                         end if
17:
                   end if
18:
19:
             end for
20: end while
```

How LDL_f2NFA works

The NFA \mathcal{A}_{φ} for an LDL_f formula φ is built in a forward fashion. Until convergence is reached (i.e. states and transitions do not change), the algorithm visits every state q seen until now, checks for all the possible transitions from that state and collects the results, determining the next state q', the new transition (q, Π, q') and if q' is a final state. Intuitively, the delta function ∂ emulates the semantic behavior of every LTL_f/LDL_f subformula after seeing Π .

States of \mathcal{A}_{φ} are sets of atoms (each atom is a quoted φ subformula) to be interpreted as conjunctions. The empty conjunction \emptyset stands for *true*. q' is a set of quoted subformulas of φ denoting a minimal interpretation such that $q' \models \bigwedge_{(\psi \in q)} \partial(\psi, \Pi)$ (notice that we trivially have $(\emptyset, p, \emptyset) \in \delta$ for every $p \in 2^{\mathcal{P}}$).

The following result holds:

Theorem 2.6 (De Giacomo and Vardi (2015)). Algorithm LDL_f2NFA is correct, i.e., for every finite trace $\pi : \pi \models \varphi$ iff $\pi \in \mathcal{L}(\mathcal{A}_{\varphi})$. Moreover, it terminates in at most an exponential number of steps, and generates a set of states S whose size is at most exponential in the size of the formula φ .

In order to obtain a DFA, the NFA \mathcal{A}_{φ} can be determinized in exponential time (Rabin and Scott, 1959). Thus, we can tranform a LTL_f/LDL_f formula into a DFA of double exponential size.

Example 2.9. In this example we see a run of the Algorithm 2.1 with the LTL_f formula $\Box A$ (A atomic).

0. Set up:

$$q_0 = \{ \Box A \}$$
$$Q = \{ q_0, \emptyset \}$$

$$F = \{q_0, \emptyset\} \quad \text{(because } \partial(\Box A, \epsilon) = true)$$

$$\delta = \{(\emptyset, \{\}, \emptyset), (\emptyset, \{A\}, \emptyset)\}$$

- 1. Iteration: analyze $q = \{ \Box A \}$
 - with $\Pi = \{A\}$ we have

$$\begin{split} q' &\models \bigwedge_{(\psi \in q)} \partial(\psi, \Pi) \\ &\models \partial(\Box A, \Pi) \\ &\models \partial(A, \Pi) \wedge \partial(\bullet \Box A, \Pi) \\ &\models true \wedge ("\Box A" \vee "\Box false") \end{split}$$

Notice that $true \wedge (``\Box A" \vee ``\Box false")$ is a propositional formula with LTL_f formulas as atoms. As a minimal interpretation we have both $q' = \{``\Box A"\}$ and $q' = \{``\Box false"\}$. Since in both cases we have that $\partial(\psi, \epsilon) = true$, at the end of the iteration we have:

$$\begin{aligned} q_0 &= \{ \Box A \} \\ Q &= \{ q_0, \{ \Box false \}, \emptyset \} \\ F &= \{ q_0, \{ \Box false \}, \emptyset \} \\ \delta &= \{ (\emptyset, \{ \}, \emptyset), (\emptyset, \{A\}, \emptyset), \\ (q_0, \{A\}, q_0), (q_0, \{A\}, \{ \Box false \}) \} \end{aligned}$$

• with $\Pi = \{\}$ we have

$$q' \models \bigwedge_{(\psi \in q)} \partial(\psi, \Pi)$$

$$\models \partial(\Box A, \Pi)$$

$$\models \partial(A, \Pi) \wedge \partial(\bullet \Box A, \Pi)$$

$$\models false \wedge ("\Box A" \vee "\Box false")$$

Which is always false. Thus we do not change nothing.

- 2. Iteration: we already analyzed $q = \{\Box A\}$, so we analyze $q = \{\Box false\}$
 - Both with $\Pi = \{\}$ and $\Pi = \{A\}$ we have that:

$$\begin{aligned} q' &\models \bigwedge_{(\psi \in q)} \partial(\psi, \Pi) \\ &\models \partial(\Box false, \Pi) \\ &\models \partial(false, \Pi) \wedge \partial(\bullet \Box false, \Pi) \\ &\models false \wedge (``\Box false" \vee ``\Box false") \end{aligned}$$

Which is always false. Thus we do not change nothing.

The NFA $\mathcal{A}_{\varphi}=\langle 2^{\{A\}},Q,q_0,\delta,F\rangle$ is depicted in Figure 2.2, whereas the associated DFA is in Figure 2.3.

Figure 2.2. The NFA associated to $\Box A.$ G(A) stands for $\Box A$

Figure 2.3. The DFA associated to $\Box A$

Example 2.10. Analogously to what we did in 2.9, we see a run of the Algorithm 2.1, with the LTL_f formula $\Diamond A$ (A atomic).

0. Set up:

$$\begin{aligned} q_0 &= \{ \lozenge A \} \\ Q &= \{ q_0, \emptyset \} \\ F &= \{ \emptyset \} \quad \text{(because } \partial(\lozenge A, \epsilon) = \textit{false)} \\ \delta &= \{ (\emptyset, \{ \}, \emptyset), (\emptyset, \{ A \}, \emptyset) \} \end{aligned}$$

- 1. Iteration: analyze $q = \{ \lozenge A \}$
 - with $\Pi = \{A\}$ we have

$$q' \models \bigwedge_{(\psi \in q)} \partial(\psi, \Pi)$$

$$\begin{split} &\models \partial(\Diamond A, \Pi) \\ &\models \partial(A, \Pi) \vee \partial(\Diamond \Diamond A, \Pi) \\ &\models true \vee (``\Diamond A" \wedge ``\Diamond true") \end{split}$$

Since the propositional formula is trivially true, as a minimal interpretation we have $q' = \emptyset$. Considering that the empty conjunction is considered as *true* (as explained in Section 2.5), at the end of the iteration we have:

$$q_0 = \{ \lozenge A \}$$

$$Q = \{ q_0, \emptyset \}$$

$$F = \{ \emptyset \}$$

$$\delta = \{ (\emptyset, \{ \}, \emptyset), (\emptyset, \{A\}, \emptyset), (q_0, \{A\}, \emptyset) \}$$

• with $\Pi = \{\}$ we have

$$q' \models \bigwedge_{(\psi \in q)} \partial(\psi, \Pi)$$

$$\models \partial(\Diamond A, \Pi)$$

$$\models \partial(A, \Pi) \lor \partial(\Diamond \Diamond A, \Pi)$$

$$\models false \lor (``\Diamond A" \land ``\Diamond true")$$

As a minimal interpretation we have $q' = \{\text{``}\Diamond A\text{''} \wedge \text{``}\Diamond true\text{''}\}$. Since $\partial(\Diamond A, \epsilon) \wedge \partial(\Diamond true, \epsilon) = false \wedge false \neq true$, we do not add q' to the accepting states F. Thus we have:

$$q_{0} = \{ \lozenge A \}$$

$$Q = \{ q_{0}, \emptyset, \{ \lozenge A \land \lozenge true \} \}$$

$$F = \{ \emptyset \}$$

$$\delta = \{ (\emptyset, \{ \}, \emptyset), (\emptyset, \{A\}, \emptyset), (q_{0}, \{A\}, \emptyset), (q_{0}, \{ \}, \{ \lozenge A \land \lozenge true \}) \}$$

- 2. Iteration: we already analyzed $q = \{ \lozenge A \}$, so we analyze $q = \{ \lozenge A \land \lozenge true \}$
 - with $\Pi = \{\}$ we have that:

$$\begin{split} q' &\models \bigwedge_{(\psi \in q)} \partial(\psi, \Pi) \\ &\models \partial(\Diamond A, \Pi) \wedge \partial(\Diamond true, \Pi) \\ &\models [\partial(A, \Pi) \vee \partial(\Diamond \Diamond A, \Pi)] \wedge [\partial(true, \Pi) \vee \partial(\Diamond \Diamond true, \Pi)] \\ &\models [\partial(A, \Pi) \vee (``\Diamond A" \wedge ``\Diamond true")] \wedge [true \vee (``\Diamond true" \wedge ``\Diamond true")] \end{split}$$

$$\models \partial(A,\Pi) \vee ("\Diamond A" \wedge "\Diamond true")$$
$$\models false \vee ("\Diamond A" \wedge "\Diamond true")$$

As in the previous iteration, the minimal model is $q' = \{ \text{``} \lozenge A\text{''} \land \text{``} \lozenge true'' \}$. Hence we add a new transition $(\{\lozenge A \land \lozenge true\}, \{\}, \{\lozenge A \land \lozenge true\})$.

• with $\Pi = \{A\}$ the delta-expansion is the same, except for the last step, where:

$$q' \models true \lor ("\lozenge A" \land "\lozenge true")$$

The formula is always true, hence the minimal model is $q' = \emptyset$ and we add a new transition $(\{ \lozenge A \land \lozenge true \}, \{ \}. \emptyset)$.

The NFA \mathcal{A}_{φ} is then composed by:

$$q_{0} = \{ \lozenge A \}$$

$$Q = \{ q_{0}, \emptyset, \{ \lozenge A \land \lozenge true \} \}$$

$$F = \{ \emptyset \}$$

$$\delta = \{ (\emptyset, \{ \}, \emptyset), (\emptyset, \{ A \}, \emptyset), (q_{0}, \{ A \}, \emptyset), (q_{0}, \{ A \}, \emptyset), (q_{0}, \{ \}, \{ \lozenge A \land \lozenge true \}) (\{ \lozenge A \land \lozenge true \}, \{ \}, \{ \lozenge A \land \lozenge true \})$$

$$(\{ \lozenge A \land \lozenge true \}, \{ \}, \emptyset) \}$$

The NFA $\mathcal{A}_{\varphi} = \langle 2^{\{A\}}, Q, q_0, \delta, F \rangle$ is depicted in Figure 2.4, whereas the associated DFA is in Figure 2.5.

Figure 2.4. The NFA associated to $\Diamond A$. F(A) stands for $\Diamond A$

Example 2.11. We list other examples of \mathcal{A}_{φ} given a LTL_f/LDL_f formula φ , obtained by Algorithm 2.1:

Figure 2.5. The DFA associated to $\Diamond A$

• Conditional Response: the LTL_f formula $\varphi = \Box(A \Rightarrow \Diamond B)$ or equivalently the LDL_f formula $\varphi = [true^*](\langle A \rangle tt \Rightarrow \langle true^* \rangle \langle B \rangle tt)$ translates into the automaton depicted in Figure 2.6.

Figure 2.6. The DFA associated to $\varphi = \Box(A \Rightarrow \Diamond B)$

• Alternating sequence: the LDL_f formula $\varphi = \langle (A; B)^* \rangle End$ translates into the automaton depicted in Figure 2.7.

2.5.4 Complexity of LTL_f/LDL_f reasoning

In this section we study the complexity of LTL_f/LDL_f reasoning (i.e. complexity of problems as defined in Definition 2.5.

Theorem 2.7 (De Giacomo and Vardi (2013)). Satisfiability, validity, and logical implication for LDL_f formulas are PSPACE-complete

Proof. Given a LTL_f/LDL_f φ , we can leverage Theorem 2.6 to solve these problems, namely:

2.6 Conclusions 22

Figure 2.7. The DFA associated to $\varphi = \langle (A;B)^* \rangle End$

- For LTL_f/LDL_f satisfiability we compute the associated NFA (as explained in Section 2.5 (which is an exponential step) and then check NFA for nonemptiness (NLOGSPACE).
- For LTL_f/LDL_f validity we compute the NFA associated to $\neg \varphi$ (which is an exponential step) and then check NFA for nonemptiness (NLOGSPACE).
- For LTL_f/LDL_f logical implication $\psi \models \varphi$ we compute the NFA associated to $\psi \land \neg \varphi$ (which is an exponential step) and then check NFA for nonemptiness (NLOGSPACE).

2.6 Conclusions

In this chapter we provided the logical tools to face other topics in later chapters. We introduced several formal languages that allowed us to introduce \mathtt{LTL}_f and \mathtt{LDL}_f , focusing on their interesting properties. Moreover, we described in detail the procedure for translation from $\mathtt{LTL}_f/\mathtt{LDL}_f$ formulas to DFAs, which yields an effective way to reasoning about $\mathtt{LTL}_f/\mathtt{LDL}_f$ formulas.

Chapter 3

FLLOAT

In this chapter we describe FLLOAT (From LTL_f/LDL_f tO AutomaTa), a software project written in Python. It is a porting of the homonym software project written in Java. It is the implementation of many of the topics described in Chapter 2.

3.1 Introduction

Main features: FLLOAT is a Python library that provides support for:

- Syntax, semantics and parsing of the following logic formalisms:
 - Propositional Logic;
 - Linear Temporal Logic on Finite Traces LTL_f
 - Linear Dynamic Logic on Finite Traces LDL $_f$;
- Conversion from LTL_f/LDL_f formula to NFA, DFA and DFA On-The-Fly

Dependencies: FLLOAT requires Python>=3.5 and depends on the following packages:

- PLY, a pure-Python implementation of the popular compiler construction tools Lex and Yacc. It has been used for the parsing of PL and LTL_f/LDL_f formulas;
- Pythomata, a Python package which provides support for NFA, DFA, determinization and minimization algorithms and reasoning on DFAs. It has been used for deal with \mathcal{A}_{φ} , the equivalent automaton of a LTL_f/LDL_f formula.

Installation: You can find the package on PyPI, hence you can install it with: pip install flloat

Please go here for further details.

3.2 Package structure

The package is structured as follows:

- flloat.py: the main module, it contains the implementation of the translation from LTL_f/LDL_f formulas to automata. The functions implemented here are called from methods of LTL_f/LDL_f formulas.
- base/: contains the abstract definitions used in other modules. The main modules are:
 - Symbol.py and Symbols.py, where have been defined the class Symbol to represent the atomic propositional symbols and the operator symbols;
 - Alphabet.py, which is an abstraction for manage a set of Symbol;
 - Interpretation.py, an abstract class denoting the semantics used for truth evaluation. E.g. for PL the corresponding interpretation is PLInterpretation (a set of Symbol), whereas for LTL_f/LDL_f we have FiniteTrace, which is a list of PLInterpretation.
 - Formula.py, the module containing the base class Formula. Every formula class extends Formula. In this module are defined also AtomicFormula, Operator, BinaryOperator etc., and how to build a syntactic tree.
 - truths.py and nnf.py that provide abstract implementations for truth evaluations of formulas and negation normal form operations.
 - other abstraction definitions that are implemented for each extending subclass.
- syntax/: modules for each formalism (i.e. pl.py, ltlf.py and ldlf.py). In those modules are declared all the classes for representing formulas, implementing their truth evaluation procedure taking into account their correlation (e.g. And is the negative dual of Or, you can define Implies in terms of Not and Or etc.);
- semantics/: modules providing implementations for the semantics. E.g. you can find PLInterpretation and FiniteTrace cited before;
- parser/: modules where are defined the parsers of formulas in PL and LTL_f/LDL_f . They depends on PLY.

3.3 Code examples

Parse a LDL $_f$ formula:

```
from flloat.parser.ldlf import LDLfParser

parser = LDLfParser()
formula = "<true*; \( \text{A} \) \( \text{B} \) tt"

# returns a LDLfFormula
parsed_formula = parser(formula)

# prints "<((true)*; (A & B))>(tt)"

print(parsed_formula)
# prints {A, B}

print(parsed_formula.find_labels())
```

Evaluate it over finite traces:

3.4 License 25

Transform it into an automaton (pythomata.DFA object):

```
dfa = parsed_formula.to_automaton(determinize=True)

# print the automaton
dfa.to_dot("./automaton.DFA")
```

Notice: to_dot requires Graphviz. For info about how to use a pythomata.DFA please look at the docs.

The same for a LTL $_f$ formula:

```
from flloat.parser.ltlf import LTLfParser
from flloat.base.Symbol import Symbol
  from flloat.semantics.ldlf import FiniteTrace
  # parse the formula
  parser = LTLfParser()
  formula = "F(A_{\sqcup}\&_{\sqcup}!B)"
  parsed_formula = parser(formula)
  # evaluate over finite traces
10
  t1 = FiniteTrace.fromStringSets([
  {},
12
13 {"A"},
14 {"A"},
  {"A", "B"}
15
  ])
16
  assert parsed_formula.truth(t1, 0)
17
18
  # from LTLf formula to DFA
 dfa = parsed_formula.to_automaton(determinize=True)
  assert dfa.word_acceptance(t1.trace)
```

3.4 License

The software is open source and is released under MIT license.

Chapter 4

RL for LTL_f/LDL_f Goals

4.1 Reinforcement Learning

Reinforcement Learning (Sutton and Barto, 1998) is a sort of optimization problem where an agent interacts with an environment and obtains a reward for each action he chooses and the new observed state. The task is to maximize a numerical reward signal obtained after each action during the interaction with the environment. The agent does not know a priori how the environment works (i.e. the effects of his actions), but he can make observations in order to know the new state and the reward. Hence, learning is made in a trial-and-error fashion. Moreover, it is worth to notice that in many situation reward might not been affected only from the last action but from an indefinite number of previous action. In other words, the reward can be delayed, i.e. the agent should be able to foresee the effect of his actions in terms of future expected reward. Figure 4.1 represent the interaction between the agent and the environment in this setting.

Figure 4.1. The agent and its interaction with the environment in Reinforcement Learning

In the next subsections we introduce some of the classical mathematical frameworks for RL: Markov Decision Process (MDP) and Non-Markovian Reward Decision Process (NMRDP).

4.2 Markov Decision Process (MDP)

A Markov Decision Process (MDP) \mathcal{M} is a tuple $\langle S, A, T, R, \gamma \rangle$ containing a set of states S, a set of actions A, a transition function $T: S \times A \to Prob(S)$ that returns for every pair state-action a probability distribution over the states, a reward

function $R: S \times A \times S \to \mathbb{R}$ that returns the reward received by the agent when he performs action a in s and transitions in s', and a discount factor γ , with $0 \le \gamma \le 1$, that indicates the present value of future rewards. With T(s, a, s') we denote the probability to end in state s' given the action a from s.

The discount factor γ deserves some attention. Its value highly influences the MDP, its solution, and how the agent interprets rewards. Indeed, if $\gamma=0$, we are in the pure greedy setting, i.e. the agent is shortsighted and look only at the reward that it might obtain in the next step, by doing a single action. The higher γ , the longer the sight horizon, or the foresight, of the agent: the far rewards are taken into account for the current action choice. If $\gamma<1$ we are in the finite horizon setting: namely, the agent is intrinsically motivated to obtain rewards as fast as possible, depending on how γ is far from 1. When $\gamma=1$ we are in the infinite horizon setting, which means that the agent considers far rewards as they can be obtained in the next step. In other words, we may think the agent as immortal, since the time the agent spend to reach rewards does not matter anymore.

A policy $\rho: S \to A$ for an MDP \mathcal{M} is a mapping from states to actions, and represents a solution for \mathcal{M} . Given a sequence of rewards $R_{t+1}, R_{t+2}, \ldots, R_T$, the expected discounted return G_t at time step t is defined as:

$$G_t := \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k \tag{4.1}$$

where can be $T = \infty$ and $\gamma = 1$ (but not both).

The value function of a state s, the state-value function $v_{\rho}(s)$ is defined as the expected return when starting in s and following policy ρ , i.e.:

$$v_{\rho}(s) := \mathbb{E}_{\rho}[G_t|S_t = s], \forall s \in S$$
(4.2)

Similarly, we define q_{ρ} , the action-value function for policy ρ , as:

$$q_o(s, a) := \mathbb{E}_o[G_t | S_t = s, A_t = a], \forall s \in S, \forall a \in A$$
 (4.3)

Notice that we can rewrite 4.2 and 4.3 recursively, yielding the *Bellman equation*:

$$v_{\rho}(s) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma v(s')]$$
(4.4)

where we used the definition of the transition function:

$$T(s, a, s') = P(s'|s, a)$$
 (4.5)

We define the *optimal state-value function* and the *optimal action-value function* as follows:

$$v^*(s) := \max_{\rho} v_{\rho}(s), \forall s \in S$$
 (4.6)

$$q^*(s,a) := \max_{\rho} q_{\rho}(s,a), \forall s \in S, \forall a \in A$$

$$\tag{4.7}$$

Notice that with 4.6 and 4.7 we can show the correlation between $v_{\rho}^{*}(s)$ and $q_{\rho}^{*}(s,a)$:

$$q^*(s,a) = \mathbb{E}_a[R_{t+1} + \gamma v_a^*(S_{t+1})|S_t = s, A_t = a]$$
(4.8)

We can define a partial order over policies using value functions, i.e. $\forall s \in S. \rho \ge \rho' \iff v_{\rho}(s) \ge v_{\rho'}(s)$. Now we give the definition of optimal policy:

Definition 4.1. An optimal policy ρ^* is a policy such that $\rho^* \geq \rho$ for all ρ .

Given an MDP \mathcal{M} , a typical reinforcement learning problem is the following: find an optimal policy for \mathcal{M} , without knowing T and R. Notice that instead of explicit specification of the transition probabilities and rewards, the transition probabilities are accessed through a simulator that is restarted many times from a fixed or uniformly random initial state $s_0 \in S$. We call this way of structuring the learning process episodic reinforcement learning. Usually, in episodic reinforcement learning, we require the presence of one or more goal states where the simulation of the MDP ends and the task is considered completed, or a maximum time limit T for the number of action that can be taken by the agent in one single episode, and the overcoming of T determines the end of the episode. Optionally, failure states can be also defined, where the episode end similarly to goal states, but the task is considered failed.

Examples

Many dynamic systems can be modeled as Markov Decision Processes.

Example 4.1 (Gridworld). Perhaps the most simple MDP used as a toy example is *Gridworld*, depicted in Figure 4.2. There are 3×4 cells, i.e. states of the MDP $S = \{s_{11}, s_{12}, \ldots, s_{34}\} \setminus \{s_{22}\}$. The agent can do four actions: A = $\{Right, Left, Up, Down\}$. The initial state is fixed and is $s_0 = s_{11}$ and the agent can move in any of the adjacent and free cells from the current state. Assuming an episodic task, the goal is to reach s_{34} , and s_{24} represent a failure state. The state transition function T can be deterministic, i.e. the agent always succeed in performing actions, or non-deterministic, i.e. the effect of an action is determined by the probabilistic distribution returned by T(s,a). An example of non-deterministic T is to give 90% of success (the agent moves in the chosen direction) and 10% of fail (the agent moves at either the right or left angle to the intended direction). If the move would make the agent walk into a wall (borders of the grid and s_{22}), the agent stays in the same place as before. The reward function R(s, a, s') is defined as -1 if $s' = s_{24}$, as 1 if $s' = s_{34}$, and -0.01 otherwise. The small negative reward given at each transition is a popular mean for reward function design: it is called step reward and its purpose is to encourage the agent to finish the episode as fast as possible, with a priority proportional to the absolute value of the reward. The discount factor γ should be strictly higher than 0 because more than one step is needed to reach the goal state.

3 +1 2 3 4

Figure 4.2. The Gridworld environment

An example of optimal policy is shown in Figure 4.3. As the reader can notice, the arrows represent the action that should be taken in a certain cell, in order to

Figure 4.3. An example of optimal policy for the Gridworld environment

.

maximize the expected return. We observe that the optimal action in s_{13} , according to the policy, is not the one to take the shortest path to the goal, i.e. the Up action . This is because there is a small probability to ens in s_{24} , the failure state, and be punished with a high negative reward. In terms of expected reward, it is better to take the longer path, at the price of collect small negative rewards, but avoiding the risk to fail miserably.

Example 4.2 (**Breakout**). Breakout is a well known arcade videogame developed by Atari. In this work we implemented a clone of the original Breakout. Figure 4.4 shows a screenshot of the game. On the screen there are a paddle at the bottom, many bricks at the top arranged in a grid layout with n rows and m columns (in the figure $3 \times 3 = 9$ bricks), and a ball that is free to move across the screen. The ball bounces when it hits a wall, a brick or the paddle. When the ball hits a brick, that brick is broke down and is removed from the screen. The paddle (the agent) can move left, move right or do nothing. The *goal* is to remove all the bricks, while avoiding that the paddle misses the rebound of the ball (*failure*).

The relevant features are: position of the paddle p_x , position of the ball b_x, b_y , speed of the ball v_x, v_y and status of each brick (booleans) b_{ij} . This features of the system gives all the needed information to predict the next state from the current state. Hence we can build an MDP where: S is the set of all the possible values of the sequence of features $\langle p_x, b_x, b_y, v_x, v_y, b_{11}, \ldots, b_{nm} \rangle$, $A = \{Right, Left, Noop\}$, transition function T determined by the rules of the game. We give reward R(s, a, s') = 10 if a particular brick in s' has been removed for the first time, plus 100 if that brick was the last (i.e. goal reached).

Violation of the Markov property considering a smaller set of features: Notice that considering a strict subset of the set of features for S leads to violate the Markov property of T. Indeed, consider the case when we remove v_x and v_y from the set of features. In this setting, we removed the informations about the dynamics of the system. More precisely, we cannot predict, knowing only the current state, the value of the features b_x and b_y for the next step, because we do not know where the ball is going (up-left, down-right and so on). In order to correctly predict the next position of the ball, we should know whether earlier in the episode the ball was coming from the bottom or from the top. But this fact clearly shows that the Markovian assumption is violated. Similar arguments apply in the case where we remove the status of the bricks b_{11}, \ldots, b_{nm} : indeed, if the ball in the next step is near to a brick, knowing about the status of the brick is determinant to predict if the ball will continue its trajectory (the case when the brick is absent) or it will

Figure 4.4. A screenshot from the videogame BREAKOUT

break down the brick and bounce, changing the direction of its motion (the case when the brick is present).

4.3 Temporal Difference Learning

Temporal difference learning (TD) (Sutton, 1988) refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo (MC) methods, and perform updates based on current estimates, like dynamic programming methods (DP) (Bellman, 1957). We do not discuss MC and DP methods here.

Q-Learning (Watkins, 1989; Watkins and Dayan, 1992) and Sarsa are such a methods. They update Q(s, a), i.e. the estimation of $q^*(s, a)$ at each transition $(s, a) \to (s', r)$. The update rule is the following:

$$Q(s,a) \leftarrow Q(s,a) + \alpha\delta \tag{4.9}$$

where δ is the temporal difference. In Sarsa, it is defined as:

$$\delta = r + \gamma Q(s', a') - Q(s, a) \tag{4.10}$$

whereas in Q-Learning:

$$\delta = r + \gamma \max_{a'} Q(s', a') - Q(s, a)$$
(4.11)

 $\mathrm{TD}(\lambda)$ is an algorithm which uses eligibility traces. The parameter λ refers to the use of an eligibility trace. The algorithm generalizes MC methods and TD learning, obtained respectively by setting $\lambda=1$ and $\lambda=0$. Intermediate values of λ yield methods that are often better of the extreme methods. Q-Learning and Sarsa that has been shown before can be rephrased with this new formalism as Q-Learning(0) and Sarsa(0), special cases of Watkin's $\mathrm{Q}(\lambda)$ and Sarsa(λ) respectively. In this setting, Equation 4.9 is modified as follows:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a) \tag{4.12}$$

Where $e(s, a) \in [0, 1]$, the *eligibility of the pair* (s, a), determines how much the temporal difference δ should be weighted. Sarsa(λ) is reported in Algorithm 4.1, whereas Watkin's Q(λ) in Algorithm 4.2, both in the variants using *replacing eligibility traces* (see line 9 and line 10, respectively).

Algorithm 4.1. Sarsa(λ) (Singh and Sutton, 1996)

```
1: Initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a
2: repeat{for each episode}
        initialize s
3:
        Choose a from s using policy derived from Q (e.g. e-greedy)
 4:
5:
        repeat{for each step of episode}
             Take action a, observe reward r and new state s'
 6:
             Choose a' from s' using policy derived from Q
 7:
8:
            \delta \leftarrow r + \gamma Q(s', a') - Q(s, a)
            e(s,a) \leftarrow 1
                                                                               ▶ replacing traces
9:
            for all s, a do
10:
                 Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)
11:
                 e(s, a) \leftarrow \gamma \lambda e(s, a)
12:
            end for
13:
            s \leftarrow s', \ a \leftarrow a'
14:
        until state s is terminal
15:
16: until
```

4.4 Non-Markovian Reward Decision Process (NMRDP)

For some goals, it might be the case that the Markovian assumption of the reward function R – that reward depends only on the current state, and not on history – does not hold. Indeed, for many problems, it is not effective that the reward is limited to depend only on a single transition (s, a, s'); instead, it might be extended to depend on trajectories (i.e. $\langle s_0, a_0, \ldots, s_{n-1}, a_{n-1}, s_n \rangle$), e.g. when we want to reward the agent for some (temporally extended) behaviors, opposed to simply reaching certain states.

This idea of rewarding behaviors has been proposed by (Bacchus et al., 1996) where they defined a new mathematical model, namely Non-Markovian Reward Decision Process (NMRDP), and showed how to construct optimal policies in this case.

In the next subsections, we give the main definitions to reason in this new setting. Then we show the solution proposed in (Bacchus et al., 1996).

4.4.1 Preliminaries

Now follows the definition of NMRDP, which is similar to the MDP definition given in Section 4.2.

Definition 4.2. A Non-Markovian Reward Decision Process (NMRDP) (Bacchus et al., 1996) \mathcal{N} is a tuple $\langle S, A, T, \overline{R}, \gamma \rangle$ where S, A, T and γ are defined as in the MDP, and $\overline{R}: S^* \to \mathbb{R}$ is the non-Markovian reward function, where $S^* = \{\langle s_0, s_1, \ldots, s_n \rangle_{n \geq 0, s_i \in S}\}$ is the set of all the possible traces, i.e. projection of trajectories $\langle s_0, a_0, \ldots, s_{n-1}, a_{n-1}, s_n \rangle$

Algorithm 4.2. Watkin's $Q(\lambda)$ (Watkins, 1989)

```
1: Initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a
 2: repeat{for each episode}
         initialize s
 3:
         Choose a from s using policy derived from Q (e.g. e-greedy)
 4:
         repeat{for each step of episode}
 5:
 6:
             Take action a, observe reward r and new state s'
             Choose a' from s' using policy derived from Q (e.g. e-greedy)
 7:
             a^* \leftarrow \arg\max_a Q(s', a) (if a' ties for max, then a^* \leftarrow a')
 8:
             \delta \leftarrow r + \gamma Q(s', a^*) - Q(s, a)
 9:
             e(s,a) \leftarrow 1
                                                                                   ▶ replacing traces
10:
             for all s, a do
11:
                 Q(s, a) \leftarrow Q(s, a) + \alpha \delta e(s, a)
12:
                 if a' = a^* then
13:
14:
                      e(s, a) \leftarrow \gamma \lambda e(s, a)
15:
                      e(s,a) \leftarrow 0
16:
                 end if
17:
                 e(s, a) \leftarrow \gamma \lambda e(s, a)
18:
             end for
19:
20:
             s \leftarrow s', \ a \leftarrow a'
         until state s is terminal
21:
22: until
```

Given a trace $\pi = \langle s_0, s_1, \dots, s_n \rangle$, the value of π is:

$$v(\pi) = \sum_{i=1}^{|\pi|} \gamma^{i-1} \bar{R}(\langle s_0, s_1, \dots, s_n \rangle)$$
 (4.13)

where $|\pi|$ denotes the number of transitions (i.e. of actions).

The policy $\bar{\rho}$ in this setting is defined over sequences of states, i.e. $\bar{\rho}: S^* \to A$. The value of $\bar{\rho}$ given an initial state s_0 is defined as:

$$v^{\bar{\rho}}(s) = \mathbb{E}_{\pi \sim \mathcal{N}, \bar{\rho}, s_0}[v(\pi)] \tag{4.14}$$

i.e. the expected value in state s considering the distribution of traces defined by the transition function of \mathcal{N} , the policy $\bar{\rho}$ and the initial state s_0 .

We are interested in two problems, that we will study in the next sections:

- Find an optimal (non-Markovian) policy $\bar{\rho}$ for an NMRDP \mathcal{N} (Definition 4.2);
- Define the non-Markovian reward function for the domain of interest.

4.4.2 Find an optimal policy $\bar{\rho}$ for NMRDPs

The key difficulty with non-Markovian rewards is that standard optimization techniques, most based on Bellman's (Bellman, 1957) dynamic programming principle, cannot be used. Indeed, this requires one to resort to optimization over a policy space that maps histories (rather than states) into actions, a process that would incur great computational expense. (Bacchus et al., 1996) give the definition of a decision problem equivalent to an NMRDP in which the rewards are Markovian. This construction is the key element to solve our problem, i.e. find an optimal policy for an NMRDP.

Equivalent MDP

Now we give the definition of *equivalent MDP* of an NMRDP, and state an important result.

Definition 4.3 (Bacchus et al. (1996)). An NMRDP $\mathcal{N} = \langle S, A, T, \overline{R}, \gamma \rangle$ is equivalent to an extended MDP $\mathcal{M} = \langle S', A, T', R', \gamma \rangle$ if there exist two functions $\tau : S' \to S$ and $\sigma : S \to S'$ such that

- 1. $\forall s \in S : \tau(\sigma(s)) = s;$
- 2. $\forall s_1, s_2 \in S \text{ and } s_1' \in S'$: if $T(s_1, a, s_2) > 0$ and $\tau(s_1') = s_1$, there exists a unique $s_2' \in S'$ such that $\tau(s_2') = s_2$ and $T'(s_1', a, s_2') = T(s_1, a, s_2)$;
- 3. For any feasible trace $\langle s_0, s_1, \ldots, s_n \rangle$ of \mathcal{N} and $\langle s'_0, s'_1, \ldots, s'_n \rangle$ of \mathcal{M} associated to the trajectories $\langle s_0, a_0, \ldots, s_{n-1}, a_{n-1}, s_n \rangle$ and $\langle s'_0, a_0, \ldots, s'_{n-1}, a_{n-1}, s'_n \rangle$, such that $\tau(s'_i) = s_i$ and $\sigma(s_0) = s'_0$, we have $R(\langle s_0, s_1, \ldots, s_n \rangle) = R'(s_{n-1}, a_{n-1}, s'_n)$.

Given the Definition 4.3, we give the definition of corresponding policy:

Definition 4.4 (Bacchus et al. (1996)). Let \mathcal{N} be an NMRDP and let \mathcal{M} be the equivalent MDP as defined in Definition 4.3. Let ρ be a policy for \mathcal{M} . The corresponding policy for \mathcal{N} is defined as $\bar{\rho}(\langle s_0, \ldots, s_n \rangle) = \rho(s'_n)$, where for the sequence $\langle s'_0, \ldots, s'_n \rangle$ we have $\tau(s'_i) = s_i \ \forall i \ \text{and} \ \sigma(s_0) = s'_0$

From definitions 4.3 and 4.4, and since that for all policy ρ of \mathcal{M} the corresponding policy $\bar{\rho}$ of \mathcal{N} is such that $\forall s. v_{\rho}(s) = v_{\bar{\rho}}(\sigma(s))$, the following theorem holds:

Theorem 4.1 (Bacchus et al. (1996)). Let ρ be an optimal policy for MDP \mathcal{M} . Then the corresponding policy is optimal for NMRDP \mathcal{N} .

The Theorem 4.1 allow us to learn an optimal policy $\bar{\rho}$ for NMRDP by learning a policy ρ over an equivalent MDP, which can be done by resorting on any off-the-shelf algorithm (e.g. see Section 4.3). Moreover, obtaining the corresponding policy for the original NMRDP is straightforward, although in practice is not needed, since it is enough to run the policy ρ over the MDP.

In other words, the problem of finding an optimal policy for an NMRDP reduces to find an optimal policy for an equivalent MDP such that Condition 1, 2 and 3 of Definition 4.3 hold.

4.4.3 Define the non-Markovian reward function R

To reward agents for (temporally extended) behaviors, as opposed to simply reaching certain states, we need a way to specify rewards for specific trajectories through the state space. Specifying a non-Markovian reward function explicitly is quite hard and unintuitive, impossible if we are in a infinite-horizon setting. Instead, we can define *properties* over trajectories and reward only the ones which satisfy some of them, in contrast to enumerate all the possible trajectories.

Temporal logics presented in Section 2.1 gives an effective way to do this. Indeed, in order to speak about a desired behavior, i.e. fulfillment of properties that might change over time, we can define a formula φ (or more formulas) in some suited temporal logic formalism semantically defined over trajectories π , speaking about a set of properties \mathcal{P} such that each state $s \in S$ is associated to a set of propositions $(S \subseteq 2^{\mathcal{P}})$. In this way, a trajectory $\pi = \langle s_0, a_0, \ldots, s_{n-1}, a_{n-1}, s_n \rangle$ is rewarded with r_i iff $\pi \models \varphi_i$, where r_i is the reward value associated to the fulfillment of behaviors signified by φ_i .

4.4.4 Using PLTL

In (Bacchus et al., 1996) the temporal logic formalism is $Past\ Linear\ Temporal\ Logic$ (PLTL), which is a past version of LTL (Section 2.1). As explained before, using the declarativeness of PLTL, is possible to specify the desired behavior (expressed in terms of the properties \mathcal{P}) that should be satisfied by the experienced trajectories and reward only them, hence obtaining a non-Markovian reward function. More formally, given a finite set Φ of PLTL reward formulas, and for each $\phi_i \in \Phi$ a real-valued reward r_i , the temporally extended reward function \bar{R} is defined as:

$$\bar{R}(\langle s_0, s_1, \dots, s_n \rangle) = \sum_{\phi_i \in \Phi: \langle s_0, s_1, \dots, s_n \rangle \models \phi_i} r_i$$
(4.15)

In order to run the actual learning task, (Bacchus et al., 1996) proposed a transformation from the NMRDP to an equivalent MDP with the state space expaneded which allows to label each state $s \in S$. The idea is that the labels should keep track in some way the (partial) satisfaction of the temporal formulas $\phi_i \in \Phi$. A state s in the transformed state space is replicated multiple times, marking the difference between different (relevant) histories terminating in state s.

In this way, they obtained a compact representation of the required history-dependent policy by considering only relevant history, and can produce this policy using computationally-effective MDP algorithms. In other words, the states of the NMRDP can be mapped into those of the expanded MDP, in such a way that corresponding states yield same transition probabilities and corresponding traces have same rewards.

4.5 NMRDP with LTL_f/LDL_f rewards

In this section we explain how to specify non-Markovian rewards with LTL_f/LDL_f formulas (instead of PLTL) and how the associated MDP expansion works (Brafman et al., 2018), analogously to what we saw with PLTL (Section 4.4.4).

The temporally extended reward function \bar{R} is similar to Equation 4.15, but instead of using PLTL formula we use $\text{LTL}_f/\text{LDL}_f$ formulas. Formally, given a set of pairs $\{(\varphi_i, r_i)_{i=1}^m\}$ (where φ_i denotes the $\text{LTL}_f/\text{LDL}_f$ formula for specifying a desired behavior, and r_i denotes the reward associated to the satisfaction of φ_i , and given a (partial) trace $\pi = \langle s_0, s_1, \ldots, s_n \rangle$, we define \bar{R} as:

$$\bar{R}(\pi) = \sum_{1 \le i \le m: \pi \models \varphi_i} r_i \tag{4.16}$$

For the sake of clarity, in the following we use $\{(\varphi_i, r_i)_{i=1}^m\}$ to denote \bar{R} .

Now we describe the MDP expansion for doing learning in this setting, as proposed in (Brafman et al., 2018). Without loss of generality, we assume that every NMRDP \mathcal{N} is reduced into another NMRDP $\mathcal{N}' = \langle S', A', T', R', \gamma \rangle$:

$$S' = S \cup \{s_{init}\}$$

$$A' = A \cup \{start\}$$

$$T'(s, a, s') = \begin{cases} 1 & \text{if } s = s_{init}, a = start, s' = s_0 \\ 0 & \text{if } s = s_{init} \text{ and } (a \neq start \text{ or } s' \neq s_0) \\ T(s, a, s') & \text{otherwise} \end{cases}$$

$$R'(\langle s_{init}, s_0, \dots, s_n \rangle) = R(\langle s_0, s_1, \dots, s_n \rangle)$$

$$(4.17)$$

and s_{init} is the new initial state. In other words, we prefix to every feasible trajectory \mathcal{N} the pair $\langle s_{init}, start \rangle$, denoting the beginning of the episode. We do this for two reasons: allow to evaluate formulas in s_0 and make it compliant with the most general definition of the reward, namely R(s, a, s'), also when there is no true action that is done (i.e. empty trace).

Definition 4.5 (Brafman et al. (2018)). Given an NMRDP $\mathcal{N} = \langle S, A, T, \{(\varphi_i, r_i)_{i=1}^m, \gamma\} \rangle$ (i.e. with non-Markovian rewards specified by $\text{LTL}_f/\text{LDL}_f$ formulas) it is possible to build an $\mathcal{M} = \langle S', A, T', R', \gamma \rangle$ that is *equivalent* (in the sense of Definition 4.3) to \mathcal{N} . Denoting with $\mathcal{A}_{\varphi_i} = \langle 2^{\mathcal{P}}, Q_i, q_{i0}, \delta_i, F_i \rangle$ (notice that $S \subseteq 2^{\mathcal{P}}$ and δ_i is total) the DFA associated with φ_i (see Section 2.5), the equivalent MDP \mathcal{M} is built as follows:

- $S' = Q_1 \times \cdots \times Q_m \times S$ is the set of states;
- $T': S' \times A \times S' \rightarrow [0,1]$ is defined as follows:

$$Tr'(q_1, \dots, q_m, s, a, q'_1, \dots, q'_m, s') = \begin{cases} Tr(s, a, s') & \text{if } \forall i : \delta_i(q_i, s') = q'_i \\ 0 & \text{otherwise;} \end{cases}$$

• $R': S' \times A \times S' \to \mathbb{R}$ is defined as:

$$R'(q_1, \dots, q_m, s, a, q'_1, \dots, q'_m, s') = \sum_{i: q'_i \in F_i} r_i$$

Theorem 4.2 (Brafman et al. (2018)). The NMRDP $\mathcal{N} = \langle S, A, T, \{(\varphi_i, r_i)\}_{i=1}^m, \gamma \rangle$ is equivalent to the MDP $\mathcal{M} = \langle S', A, T', R', \gamma \rangle$ defined in Definition 4.5.

Proof. Recall that every $s' \in S'$ has the form (q_1, \ldots, q_m, s) . Define $\tau(q_1, \ldots, q_m, s) = s$. Define $\sigma(s) = (q_{10}, \ldots, q_{m0}, s)$. We have $\tau(\sigma(s)) = s$, hence Condition 1 is verified. Condition 2 of Definition 4.3 is easily verifiable by inspection. For Condition 3, consider a possible trace $\pi = \langle s_0, s_1, \ldots, s_n \rangle$. We use σ to obtain $s'_0 = \sigma(s_0)$ and given s_i , we define s'_i (for $1 \leq i \leq n$) to be the unique state $(q_{1,i}, \ldots, q_{m,i}, s_i)$ such that $q_{j,i} = \delta(q_{j,i-1}, s_i)$ for all $1 \leq j \leq m$. Moreover, we require that, without loss of generality, every trajectory in the new MDP starts from s_{init} and now have a corresponding possible trace of \mathcal{M} , i.e., $\pi = \langle s'_0, s'_1, \ldots, s'_n \rangle$. This is the only feasible trajectory of \mathcal{M} that satisfies Condition 3. The reward at $\pi = \langle s_0, s_1, \ldots, s_n \rangle$ depends only on whether or not each formula φ_i is satisfied by π . However, by construction of the automaton \mathcal{A}_{φ_i} and the transition function T, $\pi \models \varphi_i$ iff $s'_n = (q_1, \ldots, q_m, s_n)$ and $q_i \in F_i$

Let ρ' be a (Markovian) policy for \mathcal{M} . It is easy to define an *corresponding* policy on \mathcal{N} , i.e., a policy that guarantees the same rewards, by using τ and σ mappings defined in Theorem 4.2 and the result shown in Theorem 4.4.

Obviously, typical learning techniques, such as Q-learning or Sarsa, are applicable on the expanded \mathcal{M} and so we can learn an optimal policy ρ for \mathcal{M} . Thus, an optimal policy for \mathcal{N} can be learnt on \mathcal{M} . Of course, none of these structures is (completely) known to the learning agent, and the above transformation is never done explicitly. Rather, the agent carries out the learning process by assuming that the underlying model is \mathcal{M} instead of \mathcal{N} (applying the fix introduced in Definition 4.17).

Observe that the state space of \mathcal{M}' is the product of the state spaces of \mathcal{N} and \mathcal{A}_{φ_i} , and that the reward R' is Markovian. In other words, the (stateful) structure of the LTL_f/LDL_f formulas φ_i used in the (non-Markovian) reward of \mathcal{N} is compiled into the states of \mathcal{M} .

Why should we use LDL_f

 \mathtt{LDL}_f formalism (introduced in Section 2.4) has the advantage of enhanced expressive power over other proposals, as discussed in (Brafman et al., 2018). Indeed, we move from linear-time temporal logics to \mathtt{LDL}_f , paying no additional (worst-case) complexity costs. \mathtt{LDL}_f can encode in polynomial time \mathtt{LTL}_f , regular expressions (RE) and the past \mathtt{LTL} (PLTL) of (Bacchus et al., 1996). Moreover, \mathtt{LDL}_f can naturally represent "procedural constraints" (Baier et al., 2008), i.e., sequencing constraints expressed as programs, using "if" and "while", hence allowing to express more complex properties.

4.6 RL for LTL $_f$ /LDL $_f$ Goals

In this section we define a particular problem and propose a solution, which is the main theoretical contribution of this work. We call this problem Reinforcement $Learning for LTL_f/LDL_f$ Goals.

4.6.1 Problem definition

the World, the Agent and the Fluents

Let W be a world of interest (e.g. a room, an environment, a videogame). Let W be the set of world states, i.e. the states of the world W. A feature is a function f_j that maps a world state to the values of another domain D_j , such as reals, finite enumerations, booleans, etc., i.e., $f_j: W \to D_j$. Given a set of features $F = \langle f_1, \ldots, f_d \rangle$, the feature vector of a world state w_h is the vector $\mathbf{f}(w_h) = \langle f_1(w_h), \ldots, f_d(w_h) \rangle$ of feature values corresponding to w_h .

Now consider an agent that lives in \mathcal{W} . The agent can interact with \mathcal{W} by executing an action a taken from a set of actions A. Without loss of generality, we assume that such learning agent has a special action stop which deems the end of an episode. Moreover, the agent has its own set of features $F_{ag} = \langle f_1, \ldots, f_d \rangle$, which yields its representation of the world S, where $S \subseteq F_{ag}(W)$ and $F_{ag}(W) = \{\mathbf{f}_{ag}(w)|w \in W\}$. We assume that the agent has a clock which determines the granularity of its acting. At every clock, the agent can do action a and observe both the new state s from the new world state s, namely $s = \mathbf{f}_{ag}(s)$, and a real-valued reward s, that depends only from the transition $s \to_a s$. Finally, we assume that the law that determines the possible next state s given the history

of a trajectory (i.e. the state transition function T) is Markovian, hence it depends only from the current state s and the taken action a. In other words, we can define an MDP $\mathcal{M}_{aq} = \langle S, A, T, R, \gamma \rangle$.

We consider arbitrary $\text{LTL}_f/\text{LDL}_f$ formulas φ_i $(i=1,\ldots,m)$ over a set of fluents \mathcal{F} used for provide a high-level description of the world. We denote by $\mathcal{L}=2^{\mathcal{F}}$ the set of possible fluents configurations. Given a set of feature F_{goal} , a configuration of fluents $\ell_h \in \mathcal{L}$ is formed by the components that assign truth values to the fluents according to the feature vector $\mathbf{f}_{goal}(w_h)$. At every step, the features for fluents evaluations are observed, obtaining a particular configuration $\ell \in \mathcal{L}$. Notice that in general the features for the fluents and for the agent state space may differ. The formula φ_i is selecting sequences of fluents configurations ℓ_1, \cdots, ℓ_n , with $\ell_k \in \mathcal{L}$, whose relationship with the sequences of states s_1, \ldots, s_n , with $s_k \in S$ is unknown.

In other words, a subset of features are used to describe agent states s_h and another subset (for simplicity, assumed disjoint from the previous one) are used to evaluate the fluents in ℓ_h . Hence, given a sequence w_1, \ldots, w_n of world states we get the corresponding sequence of sequences learning agent states s_1, \ldots, s_n and simultaneously the sequence of fluent configurations ℓ_1, \ldots, ℓ_n . Notice that we do not have a formalization for w_1, \ldots, w_n but we do have that for s_1, \ldots, s_n and for ℓ_1, \ldots, ℓ_n .

Oversimplifying, we may say that S is the set of configurations of the low-level features for the learning agent, while \mathcal{L} is the set of configuration of the high-level features needed for expressing φ_i .

Markovian assumption of the state transition function

Now we make the following assumption: that is, the agent actions in A induce a transition distribution over the features and fluents configuration, i.e.,

$$T_{ag}^g: S \times \mathcal{L} \times A \to Prob(S \times \mathcal{L})$$
 (4.18)

This means that the state transition function T_{ag}^g is Markovian, i.e. the probability to end in the next state s' with the next fluents configuration ℓ' depends only from s, ℓ and a (the current agent state, the current fluents configuration and the action taken, respectively).

Such a transition distribution together with the initial values of the fluents ℓ_0 and of the agent state s_0 allow us to describe a probabilistic transition system accounting for the dynamics of the fluents and agent states. In other words, in response to an agent action a_h performed in the current state w_h (in the state s_h of the agent and the configuration ℓ_h of the fluents), the world changes into w_{h+1} from which s_{h+1} and ℓ_{h+1} . This is all we need to proceed.

Notice that we do not assume nothing about the primitive state transitions function over fluents, i.e. the one induced over the set of possible fluents configurations \mathcal{L} . However, it might be the case that the Markovian assumption of the agent state transition function holds, i.e. the probability distribution for the next state ℓ' is fully determined by the current state ℓ and the action a. In that case, the considerations presented in this section still holds, since it is a special case of our general assumptions. We only require that the *joint* transition function in Equation 4.18 satisfies the Markov property.

We are interested in devising policies for the learning agent such that at the end of the episode, i.e., when the agent executes stop, the LTL_f/LDL_f goal formulas φ_i $(i=1,\ldots,m)$ are satisfied. Now we can state our problem formally.

Definition 4.6. We define RL for LTL_f/LDL_f goals, denoted as

$$\mathcal{M}_{ag}^{goal} = \langle S, A, R, \mathcal{L}, T_{ag}^g, \{(\varphi_i, r_i)\}_{i=1}^m \rangle$$

with T_{ag}^g , R and r_i unknown, the following problem: given a learning agent $\mathcal{M}_{ag} = \langle S, A, T, R \rangle$, with T and R unknown and a set $\{(\varphi_i, r_i)\}_{i=1}^m$ of LTL_f/LDL_f formulas with associated rewards, find a (non-Markovian) policy $\bar{\rho}: S^* \to A$ that is optimal wrt the sum of the rewards r_i and R.

Observe that an optimal policy for our problem, although not depending on \mathcal{L} , is guaranteed to satisfy the LTL_f/LDL_f goal formulas.

4.6.2 Examples

--TODO

4.6.3 Reduction to MDP

To devise a solution technique, we start by transforming $\mathcal{M}_{ag}^{goal} = \langle S, A, T_{ag}^g, R, \mathcal{L}, \{(\varphi_i, r_i)\}_{i=1}^m \rangle$ into an NMRDP $\mathcal{M}_{ag}^{nmr} = \langle S \times \mathcal{L}, A, T_{ag}^g, \{(\varphi_i', r_i)\}_{i=1}^m \cup \{(\varphi_s, R(s, a, s'))\}_{s \in S, a \in A, s' \in S} \rangle$ where:

- States are pairs (s, ℓ) formed by an agent configuration s and a fluents configuration ℓ .
- $\varphi_i' = \varphi_i \wedge \Diamond Done$.
- $\varphi_s = \Diamond(s \wedge a \wedge O(Last \wedge s')).$
- T_{aa}^g , r_i and R(s, a, s') are unknown and sampled from the environment.

Formulas φ'_i simply require to evaluate the corresponding goal formula φ_i after having done the action stop, which sets the fluent Done to true and ends the episode. Hence it gives the reward associated to the goal at the end of the episode. The formulas $\Diamond(s \land a \land O(Last \land s'))$, one per (s, a, s'), requires both states s and action a are followed by s' are evaluated at the end of the current (partial) trace (notice the use of Last). In this case, the reward R(s, a, s') from \mathcal{M}_{ag} associated with (s, a, s') is given.

Notice that policies for \mathcal{M}_{ag}^{nmr} have the form $(S \times \mathcal{L})^* \to A$ which needs to be restricted to have the form required by our problem \mathcal{M}_{ag}^{goal} .

A policy $\bar{\rho}: (S \times \mathcal{L})^* \to A$ has the form $S^* \to A$ when for any sequence of n states $\langle s_1 \cdots s_n \rangle$, we have that for any pair of sequences of fluent configurations $\langle \ell'_1 \cdots \ell'_n \rangle$, $\langle \ell''_1 \cdots \ell''_n \rangle$ the policy returns the same action, $\bar{\rho}(\langle s_1, \ell'_1 \rangle \cdots \langle s_n, \ell'_n \rangle) = \bar{\rho}(\langle s_1, \ell''_1 \rangle \cdots \langle s_n, \ell''_n \rangle)$. In other words, a policy $\bar{\rho}: (S \times \mathcal{L})^* \to A$ has the form $\bar{\rho}: S^* \to A$ when it does not depend on the fluents \mathcal{L} . We can now state the following result.

Theorem 4.3. RL for LTL_f/LDL_f goals $\mathcal{M}_{ag}^{goal} = \langle S, A, Tr_{ag}^g, R, \mathcal{L}, \{(\varphi_i, r_i)\}_{i=1}^m \rangle$ can be reduced to RL over the NRMDP $\mathcal{M}_{ag}^{nmr} = \langle S \times \mathcal{L}, A, T_{ag}^g, \{(\varphi_i', r_i)\}_{i=1}^m \cup \{(\varphi_s, R(s, a, s'))\}_{s \in S, a \in A, s' \in S} \rangle$, restricting policies to be learned to have the form $S^* \to A$.

Observe that by restricting \mathcal{M}_{ag}^{nmr} policies to S^* in general we may discard policies that have a better reward but depend on \mathcal{L} . On the other hand, these policies need to change the learning agent in order to allow it to observe \mathcal{L} as well. As mentioned in the introduction, we are interested in keeping the learning agent as it is, apart for additional memory.

As a second step, we apply the construction of Section 4.5 and obtain a new MDP learning agent. In such construction, however, because of the triviality of their automata, we do not need to keep track of state φ_s , but just give the reward R(s,a,s') associated to (s,a,s'). Instead we do need to keep track of state of the DFAs \mathcal{A}_{φ_i} corresponding to the formulas φ_i' . Hence, from \mathcal{M}_{ag}^{nmr} , we get an MDP $\mathcal{M}_{ag}' = \langle S', A', Tr'_{ag}, R' \rangle$ where:

- $S' = Q_1 \times \cdots \times Q_m \times S \times \mathcal{L}$ is the set of states;
- $Tr'_{aa}: S' \times A' \times S' \rightarrow [0,1]$ is defined as follows:

$$Tr'_{ag}(q_1, \dots, q_m, s, \ell, a, q'_1, \dots, q'_m, s', \ell') = \begin{cases} Tr(s, \ell, a, s', \ell') & \text{if } \forall i : \delta_i(q_i, \ell') = q'_i \\ 0 & \text{otherwise;} \end{cases}$$

• $R': S' \times A \times S' \to \mathbb{R}$ is defined as:

$$R'(q_1, \dots, q_m, s, \ell, a, q'_1, \dots, q'_m, s', \ell') = \sum_{i:q'_i \in F_i} r_i + R(s, a, s')$$

Finally we observe that the environment gives now both the rewards R(s, a, s') of the original learning agent, and the rewards r_i associated to the formula so has to guide the agent towards the satisfaction of the goal (progressing correctly the DFAs \mathcal{A}_{φ_i}).

By applying Theorem 4.2 we get that NMRDP \mathcal{M}_{ag}^{nmr} and the MDP \mathcal{M}'_{ag} are equivalent, i.e., any policy of \mathcal{M}_{ag}^{nmr} has an equivalent policy (hence guaranteeing the same reward) in \mathcal{M}'_{ag} and vice versa. Hence we can learn policy on \mathcal{M}'_{ag} instead of \mathcal{M}_{ag}^{nmr} .

We can refine Theorem 4.3 into the following one.

Theorem 4.4. RL for LTL_f/LDL_f goals $\mathcal{M}_{ag}^{goal} = \langle S, A, T_{ag}^g, R, \mathcal{L}, \{(\varphi_i, r_i)\}_{i=1}^m \rangle$ can be reduced to RL over the MDP $\mathcal{M}'_{ag} = \langle S', A, T'_{ag}, R' \rangle$, restricting policies to be learned to have the form $Q_1 \times \ldots \times Q_n \times S \to A$.

As before, a policy $Q_1 \times \ldots \times Q_n \times S \times \mathcal{L} \to A$ has the form $Q_1 \times \ldots \times Q_n \times S \to A$ when any ℓ and ℓ' the policy returns the same action, $\rho(q_1, \ldots, q_n s, \ell) = \rho(q_1, \ldots, q_n s, \ell')$.

The final step is to solve our original RL task on \mathcal{M}_{ag}^{goal} by performing RL on a new MDP $\mathcal{M}_{ag}^{new} = \langle Q_1 \times \cdots \times Q_m \times S, A, T_{ag}'', R'' \rangle$ where:

- Transitions distribution T''_{ag} is the marginalization wrt \mathcal{L} of T'_{ag} and is unknown;
- Rewards R'' is defined as:

$$R''(q_1, \dots, q_m, s, a, q'_1, \dots, q'_m, s') = \sum_{i:q'_i \in F_i} r_i + R(s, a, s').$$

• States q_i of DFAs \mathcal{A}_{φ_i} are progressed correctly by the environment.

Indeed we can show the following result.

Theorem 4.5. RL for LTL_f/LDL_f goals $\mathcal{M}_{ag}^{goal} = \langle S, A, T', R, \mathcal{L}, \{(\varphi_i, r_i)\}_{i=1}^m \rangle$ can be reduced to RL over the MDP $\mathcal{M}_{ag}^{new} = \langle Q_1 \times \cdots \times Q_m \times S, A, T_{ag}'', R'' \rangle$ and the optimal policy ρ_{ag}^{new} learned for \mathcal{M}_{ag}^{new} can be reduced to a corresponding optimal policy for \mathcal{M}_{ag}^{goal} .

Proof. From Theorem 4.4, by the following observations. For the sake of brevity, we use \mathbf{q} to denote q_1, \ldots, q_m . Notice also that for all $\ell, \ell' \in \mathcal{L}$, $R'(\mathbf{q}, s, \ell, a, \mathbf{q}', s', \ell') = R''(\mathbf{q}, s, a, \mathbf{q}', s')$.

We show that the values of $v_{ag}^{\rho}(q_1,\ldots,q_m,s,\ell)$, i.e. the state value function for \mathcal{M}'_{ag} (for simplicity v^{ρ} , unless otherwise stated), for some policy ρ , do not depend on ℓ or, in other words, it is necessary that $\forall \ell_1,\ell_2.v^{\rho}(q_1,\ldots,q_m,s,\ell_1) = v^{\rho}(q_1,\ldots,q_m,s,\ell_2)$. Finally, we notice that $\forall \ell.v_{ag}^{\rho,new} = v_{ag}^{\rho}$

From Equation 4.4 we have:

$$v_{\rho}(\mathbf{q}, s, \ell) = \sum_{\mathbf{q}', s', \ell'} P(\mathbf{q}', s', \ell' | \mathbf{q}, s, \ell, a) [R'(\mathbf{q}, s, \ell, a, \mathbf{q}', s', \ell') + \gamma v_{\rho}(\mathbf{q}', s', \ell')] = \sum_{\mathbf{q}', s', \ell'} P(\mathbf{q}', s', \ell' | \mathbf{q}, s, \ell, a) [R''(\mathbf{q}, s, a, \mathbf{q}', s') + \gamma v_{\rho}(\mathbf{q}', s', \ell')]$$
(4.19)

Using the equivalence between R' and R'', as already pointed out. Notice that we can compute \mathbf{q}' from \mathbf{q} and ℓ' , hence we do not need ℓ . In other words:

$$P(\mathbf{q}', s', \ell' | \mathbf{q}, s, \ell, a) = P(\mathbf{q}', s', \ell' | \mathbf{q}, s, a)$$

Equation 4.19 becomes:

$$\sum_{\mathbf{q}',s',\ell'} P(\mathbf{q}',s',\ell'|\mathbf{q},s,a) [R''(\mathbf{q},s,a,\mathbf{q}',s') + \gamma v_{\rho}(\mathbf{q}',s',\ell')]$$
(4.20)

At this point, we see that v^{ρ} does not depend from ℓ , hence we can safely drop ℓ as argument for v_{ρ} , obtaining v_{ag}^{ρ} . Indeed, from 4.20:

$$\sum_{\mathbf{q}',s'} [R''(\mathbf{q},s,a,\mathbf{q}',s') + \gamma v_{ag}^{\rho,new}(\mathbf{q},s)] \sum_{\ell'} P(\mathbf{q}',s',\ell'|\mathbf{q},s,a) =$$

$$\sum_{\mathbf{q}',s'} P(\mathbf{q}',s'|\mathbf{q},s,a)[R''(\mathbf{q},s,a,\mathbf{q}',s') + \gamma v_{ag}^{\rho}(\mathbf{q}',s')] =$$

$$v_{aq}^{\rho}(\mathbf{q},s)$$

$$(4.21)$$

Where in 4.21 we marginalized the distribution $P(\mathbf{q}', s', \ell'|\mathbf{q}, s, a)$ over ℓ' . From Definition 4.1 of optimal policy, we can reduce an optimal policy ρ_{ag}^{new} to a policy of the form $\rho'_{ag}: Q_1 \times \cdots \times Q_m \times S \to A$ that is optimal for \mathcal{M}'_{ag} (since the state value function of \mathcal{M}^{new}_{ag} , after dropping the argument ℓ , and of \mathcal{M}'_{ag} are equivalent). From Theorem 4.4 the thesis.

It is worth to remark that in the resulting MDP \mathcal{M}_{ag}^{new} the explicit presence of the fluents configuration ℓ has been removed. Rather, the dependency is compiled into the expanded state space $Q_1 \times \ldots Q_m \times S$, where Q_1, \ldots, Q_m are the automata state spaces associated to the formulas φ_i .

4.6.4 An episodic goal-based view

Here we clarify how the actual transition model works in the final MDP \mathcal{M}_{ag}^{new} . We focus on the episodic view, where the learning process is organized in episodes. Recall that the state space of \mathcal{M}_{ag}^{new} is $Q_1 \times \ldots Q_m \times S$, where Q_i is the set of states of \mathcal{A}_{φ_i} , the automaton associated to the $\text{LTL}_f/\text{LDL}_f$ formula φ_i (see Section 2.5). Moreover we consider two cases: when there exists a subset of states $S_{goal} \subseteq S$ that we call goal states, such that every transition in those state make the task completed and hence the end of the episode; and when there are no goal states, but the task is to maximize the obtained reward, until a maximum number of steps is reached. E.g. in Gridworld presented in Example 4.1, we can defined s_{34} as a goal state. However nothing prevent us to set a maximum number of time steps, and let the agent learn how to collect reward as much as possible in a limited amount of time.

Now we give the following definition:

Definition 4.7. Let \mathcal{M}_{ag}^{goal} be our problem and \mathcal{M}_{ag}^{new} its transformation into and MDP, as defined in Theorem 4.5 and let $\mathbf{s} = \langle q_1, \dots, q_m, s \rangle \in Q_1 \times Q_1 \times \dots Q_m \times S$. Given an observation $s' \in S$ and $\ell' \in \mathcal{L}$, we define the *successor state of* \mathbf{s} as $\mathbf{s}' = \langle q'_1, \dots, q'_m, s' \rangle$, where $q'_i = \delta_i(q_i, \ell')$.

A reinforcement learning episode in this setting works as follows. Assume that the MDP has a dummy initial state s_{init} and a dummy action start, as defined for NMRDPs in 4.17. In this construction, the dummy initial state in the expanded state space is $(q_{0,0}, q_{1,0}, \ldots, q_{m,0}, s_{init})$. The first action taken by the agent is start, which allow the agent to observe the true initial world state w_0 . From w_0 , the agent extract the features to determine the state $s_0 \in S$ and the fluents configuration $\ell_0 \in \mathcal{L}^{-1}$. The successor state is $(q'_0, q'_1, \ldots, q'_m, s_0)$. Then the agent might take a new action, observe another world state w', extract $s' \in S$ and $\ell' \in \mathcal{L}$, and compute the q_i as before. The sequence reiterates until the end of the episode.

Consider a generic state $\mathbf{s} = \langle q_1, \dots, q_m, s \rangle \in Q_1 \times Q_1 \times \dots Q_m \times S$ and a transition to $\mathbf{s}' = \langle q'_1, \dots, q'_m, s' \rangle$. For each new state q'_i of automaton \mathcal{A}_{φ_i} , the following might happen:

- 1. $q'_i = q_i$, i.e. the state is not changed;
- 2. $q'_i \neq q_i$, and from q'_i it is still possible to reach a final state;
- 3. $q'_i \neq q_i$, and from q'_i any final state cannot be reached;

If, for some \mathcal{A}_{φ_i} , we are in case 3, then the constraint specified by φ_i is violated, hence we call \mathbf{s}' a failure state. We say that \mathbf{s} is a goal state if $\forall i.q_i \in F_i$, i.e. every current state q_i is in an accepting state of the automaton \mathcal{A}_{φ_i} . Instead, if the underlying MDP is a goal-based one (e.g. $S_{goal} \neq \emptyset$) then \mathbf{s} is a goal state if $s \in S_{goal}$.

Let s the last state of the trace of the current episode. The *stopping condition*, i.e. the condition that determines the end of the episode, depending from s, is:

$$failure_state(s) \lor goal_state(s) \lor exceeded_time_limit$$

The reward R(s, a, s') is collected after each taken action, and it is summed with r_i for every satisfied φ_i at the last state of the episode.

¹Observe that the first transition is "artificial", and in many cases, both s_0 and ℓ_0 are known to the experimenter. The explanation presented here is aimed to clarify the underlying mathematical construction.

4.7 Conclusions 42

Remark about the stopping condition: notice that the presence of failure_state(s) in the stopping condition is not strictly needed. Indeed, in the general case, the agent still tries to learn an optimal policy in terms of observed rewards, regardless if the temporal goal at some point of the episode cannot be satisfied anymore (i.e. a failure state for some automaton \mathcal{A}_{φ_i} is reached). However, we can think of failure_state(s) as a way to avoid parts of simulations that are not of interest, since the trajectory is "compromised" in terms of satisfaction of LTL_f/LDL_f formulas.

Summary

In the following we summarize the results of this section:

- We defined a new problem: Reinforcement Learning for LTL_f/LDL_f Goals \mathcal{M}_{ag}^{goal} (Definition 4.6). In a nutshell, from an existing MDP we introduced temporal goals defined by LTL_f/LDL_f formulas about fluents \mathcal{L} observed from the world. A solution for this problem is a (non-Markovian) policy that is optimal in terms of rewards and such that satisfies the LTL_f/LDL_f specifications.
- We gave an equivalent formulation of \mathcal{M}_{ag}^{goal} , the NMRDP \mathcal{M}_{ag}^{nmr} , and observe that the original problem can be reduced to this formulation (Theorem 4.3).
- We applied the construction shown in Section 4.5, yielding \mathcal{M}'_{ag} , and by using Theorem 4.2 we stated Theorem 4.4, showing that \mathcal{M}^{goal}_{ag} can be reduced to \mathcal{M}'_{ag}
- Finally, by proving Theorem 4.5, we showed that we can do reinforcement learning over the equivalent MDP \mathcal{M}_{ag}^{new} by simply dropping the fluents ℓ from the state space. The optimal policy for \mathcal{M}_{ag}^{new} can be transformed to a solution for the original problem \mathcal{M}_{ag}^{goal} .

4.7 Conclusions

In this chapter we introduced the topic of Reinforcement Learning, as well as foundational definitions (MDP, policy ρ , state-value function v_{ρ}) and algorithms (Q-Learning, Sarsa). Then we presented the notion of NMRDP and a technique to built an equivalent MDP, by specifying non-Markovian reward function with $\text{LTL}_f/\text{LDL}_f$ formalisms. Finally, we defined and studied a new problem, Reinforcement Learning for $\text{LTL}_f/\text{LDL}_f$ goals, and proposed a reduction that yields an equivalent MDP which can be used to solve the original problem. An episodic goal-based view of the final MDP is provided.

Chapter 5

Automata-based Reward shaping

In this chapter we discuss a method to improve exploration of the state space and improve the convergence rate in the setting studied in Section 4.6, in particular in the construction \mathcal{M}_{ag}^{new} . Indeed, the state space of the original MDP \mathcal{M}_{ag} is expanded in order to implicitly label the states with relevant histories for the satisfaction of LTL_f/LDL_f formulas, which in general makes harder to learn an optimal policy in \mathcal{M}_{ag}^{new} wrt \mathcal{M}_{ag} , due to a bigger state space. Moreover, the introduction of temporal goals makes things harder, because the agent has to find a proper behavior that satisfies all the goals. In general, proper behaviors are harder to find, and require more exploration of the state space.

Reward Shaping is a general method, well-known in the literature of Reinforcement Learning, used to deal with big state spaces and sparse rewards, and trying to address the temporal credit assignment problem, i.e. to determine the long-term consequences of actions. It consists in provide additional reward to the learning agent. In this chapter we propose a technique to apply reward shaping in our setting.

The chapter is structured as follows: in the first section we explain the reward shaping theory, in particular the requirements for theoretical guarantees of policy invariance under reward transformation. Then we show how apply reward shaping on the automata transitions associated to LTL_f/LDL_f formulas φ_i , both in *off-line* variant (i.e. when the automaton is built *before* the beginning of the learning process) and *on-the-fly* variant (i.e. when the automaton is built *during* the learning process).

5.1 Reward Shaping Theory

Reward shaping is a well-known technique to guide the agent during the learning process and so reduce the time needed to learn. The idea is to supply additional rewards in a proper manner such that the optimal policy is the same of the original MDP.

More formally, consider as example the temporal difference in SARSA after a transition $s \rightarrow_a s'$, presented in Equation 4.10:

$$\delta = R(s, a, s') + \gamma Q(s', a') - Q(s, a) \tag{5.1}$$

Reward shaping consists in defining the shaping function F(s, a, s') and sum it

to the environment reward R(s, a, s'), namely:

$$\delta = R(s, a, s') + F(s, a, s') + \gamma Q(s', a') - Q(s, a)$$
(5.2)

In the following sections we will discuss two way to define F(s, a, s').

5.1.1 Potential-Based Reward Shaping

We give the definition of potential-based shaping function (PBRS).

Definition 5.1 (Ng et al. (1999)). Let any S, A, γ and any shaping function $F: S \times A \to \mathbb{R}$ be given. We say F is a potential-based shaping function if there exists a real-valued function $\Phi: S \to \mathbb{R}$ such that for all $s \in S, a \in A, s' \in S$

$$F(s, a, s') = \gamma \Phi(s') - \Phi(s) \tag{5.3}$$

Notice that in Equation 5.1 the action does not affect the value of F(s, a, s'), hence sometime we write F(s, s').

In (Ng et al., 1999) it has been shown the following theorem:

Theorem 5.1 (Ng et al. (1999)). Given an MDP $\mathcal{M} = \langle S, A, T, R, \gamma \rangle$ and a potential based shaping function F (Definition 5.1). Then, consider the MDP $\mathcal{M}' = \langle S, A, T, R+F, \gamma \rangle$, i.e. the same of \mathcal{M} but applying reward shaping. Then, the fact that F is a potential-based reward shaping function is a necessary and sufficient condition to guarantee consistency with the optimal policy. In particular:

- (Sufficiency) if F is a potential-based shaping function, then every optimal policy in \mathcal{M}' is optimal in \mathcal{M} .
- (Necessity) if F is not a potential-based shaping function (e.g. no such Φ exists satisfying 5.3), then there exists T and R such that no optimal policy in \mathcal{M}' is optimal in \mathcal{M} .

In poor words, potential-based reward shaping of the form $F(s, a, s') = \gamma \Phi(s') - \Phi(s)$, for some $\Phi: S \to \mathbb{R}$, is a necessary and sufficient condition for policy invariance under this kind of reward transformation, i.e. the optimal and near-optimal solutions of \mathcal{M} are preserved when considering \mathcal{M}' .

5.1.2 Dynamic Potential-Based Reward Shaping

A limitation of PBRS is that the potential of a state does not change dynamically during the learning. This assumption often is broken, especially if the reward-shaping function is generated automatically.

Equation 5.3 can be extended to include also the time as parameter of the potential function Φ , while guaranteeing policy invariance. Formally:

$$F(s, t, a, s', t') = \gamma \Phi(s', t') - \Phi(s, t)$$
(5.4)

where t and t' are respectively the time when visiting s and s'. In this case, we call this technique dynamic potential-based reward shaping (DPBRS).

The shaping function in the form 5.4 guarantees policy invariance, as shown in Theorem 5.1. To show why this is the case, consider the expected discounted return for an infinite sequence of states (Definition 4.1):

$$G = \sum_{k=0}^{\infty} \gamma^k R_k \tag{5.5}$$

If we apply dynamic potential-based reward shaping to Equation 5.5 we have:

$$G_{\Phi} = \sum_{k=0}^{\infty} \gamma^{k} (R_{k} + F(s_{k}, t_{k}, s_{k+1}, t_{k+1}))$$

$$= \sum_{k=0}^{\infty} \gamma^{k} (R_{k} + \gamma \Phi(s_{k+1}, t_{k+1}) - \Phi(s_{k}, t_{k}))$$

$$= \sum_{k=0}^{\infty} \gamma^{k} R_{k} + \sum_{k=0}^{\infty} \gamma \Phi(s_{k+1}, t_{k+1}) - \sum_{k=0}^{\infty} \Phi(s_{k}, t_{k})$$

$$= G + \sum_{k=1}^{\infty} \gamma \Phi(s_{k}, t_{k}) - \sum_{k=1}^{\infty} \Phi(s_{k}, t_{k}) - \Phi(s_{0}, t_{0})$$

$$= G - \Phi(s_{0}, t_{0})$$

Hence, any expected reward with reward shaping is the same of the one without reward shaping but a negative shift equal to $\Phi(s_0, t_0)$, i.e. a constant that does not depend from the actions taken. This means that the policy cannot be affected by the shaping function.

5.1.3 Relevant considerations about PBRS

Here we talk about some issues in PBRS described in Section 5.1.1 (analogous considerations can be made for DPBRS described in Section 5.1.2), described in (Grzes and Kudenko, 2009; Grzes, 2010; Grześ, 2017). In particular, we focus on:

- the presence of the discount factor γ in Equation 5.3;
- the value of $\Phi(s)$ when s is a terminal state.

The discount factor γ

In order to guarantee policy invariance, γ in Equation 5.3 must be equal to the discount factor of the MDP. Observe that, in general, this does not imply a *speed-up in learning time*. Indeed in (Grzes, 2010; Grzes and Kudenko, 2009) several issues of PBRS have been described, when $\gamma < 1$, that worsen the learning. In particular, it might happen that for some chosen value of $\Phi(s)$, the shaping function does not give a meaningful reward signal, e.g. near to the goal state, instead of a positive reward, a negative one signal is given to the learner, which is obviously a counterproductive choice.

In (Grzes, 2010) has been proposed an alternative approach to PBRS, which simply sets $\gamma = 1$ in Equation 5.3, namely:

$$F(s, a, s') = \Phi(s') - \Phi(s) \tag{5.6}$$

It has be proven that this approach does not guarantee policy invariance, i.e. the policy learned over the MDP with reward shaping in general is not equivalent to the original MDP. In the same work, it has been shown experimental evidence of the goodness of the new approach, even in the pathological cases with $\gamma < 1$. So using PBRS with $\gamma_{rs} = 1$, even if the discount factor of the MDP $\gamma_{mdp} \neq 1$, "works", although the invariance of the policy is not guaranteed anymore.

The value of terminal state $\Phi(s)$

In (Pratt, 1976a) has been explained that the potential function in any terminal state (i.e. in any state where the episode terminates), must be 0 in order to guarantee policy invariance.

In Figure 5.1 is depicted a particular scenario in which the violation of this requirement over potential-based reward shaped learning leads to a different policy than non-shaped learning. In particular, without reward shaping the optimal policy from s_i would choose g_2 instead of g_1 , since $r_{g_2} = 100 > r_{g_1} = 0$. However, after applying reward shaping, the reward for the transition $s_i \rightarrow_{a_1} g_1$ is $r_{g_1} = 1000$, which is higher than the one from $s_i \rightarrow_{a_1} g_2$, which is $r_{g_2} = 110$. This time, the optimal policy should prefer the transition towards g_1 , although the *true* optimal policy (i.e. with no reward shaping) should prefer the transition towards g_2 .

Figure 5.1. An example that shows why the potential function over terminal state must be 0.

More formally, consider the return of the sequence \bar{s} , similarly as Equation 4.1:

$$G(\bar{s}) := \sum_{k=0}^{N-1} \gamma^k R(s_k, s_{k+1})$$
 (5.7)

If we apply PBRS, it becomes:

$$G_{\Phi}(\bar{s}) = \sum_{k=0}^{N-1} \gamma^{k} (R(s_{k}, s_{k+1}) + F(s_{k}, s_{k+1}))$$

$$= \sum_{k=0}^{N-1} \gamma^{k} (R(s_{k}, s_{k+1}) + \gamma \Phi(s_{k+1}) - \Phi(s_{k}))$$

$$= \sum_{k=0}^{N-1} \gamma^{k} R(s_{k}, s_{k+1}) + \sum_{k=1}^{N} \gamma^{k} \Phi(s_{k}) - \sum_{k=0}^{N-1} \gamma^{k} \Phi(s_{k})$$

$$= G(\bar{s}) + \sum_{k=1}^{N-1} \gamma^{k} \Phi(s_{k}) + \gamma^{N} \Phi(s_{N}) - \sum_{k=1}^{N-1} \gamma^{k} \Phi(s_{k}) - \Phi(s_{0})$$

$$= G(\bar{s}) + \gamma^{N} \Phi(s_{N}) - \Phi(s_{0})$$
(5.8)

The term $\Phi(s_0)$ cannot alter the policy since does not depend from any action executed; on the other hand, the term $\gamma^N \Phi(s_N)$ depends on actions, since the

terminal state depends from the previous transitions, hence this term can modify the optimal policy. This happens whenever $\Phi(s_N) \neq 0$, where s_N is any state in which an episode ends, namely goal states, failure states and states where the episode ends due to the time limit exceeded.

A simple solution to this problem is to require that $\Phi(s_N) = 0$ whenever the reinforcement learning trajectory is terminated at state s_N . Notice that if in other trajectories the same s_N is visited, $\Phi(s_N)$ might be different from 0. The only requirement is that if s is a terminal state, then $\Phi(s) = 0$.

Example 5.1. Recalling Example 4.1, we can apply PBRS by defining a potential function that measures how far the agent is from the goal. As heuristic, we can use the *Manhattan distance* between the current position and the goal state. More formally, considering s_{34} the goal state and s_{ij} the current state, we define:

$$\Phi(s) = -[(3-i) + (4-j)]$$

It is easy to see that the nearer the agent to the goal state, the higher the potential function evaluated in the state of the agent. For instance, if the current state is s_{11} , $\Phi(s_{11}) = -5$, whereas in s_{33} (which is nearer to the goal), $\Phi(s_{33}) = -1$. With this definition, transition from s_{11} to s_{12} (which makes the agent closer to the goal) evaluates $F(s_{11}, s_{12}) = \Phi(s_{12}) - \Phi(s_{11}) = -4 - (-5) = +1$, whereas for transition $s_{33} \to s_{32}$ (which makes the agent more distant to the goal), $F(s_{33}, s_{32}) = (-2) - (-1) = -1$.

In the following sections, we will take into account the topics just described in designing a reward shaping strategy for our setting.

5.2 Off-line Reward shaping over \mathcal{A}_{φ}

In this part we propose an automatic way to apply reward shaping in the setting presented in Section 4.6. Recall that the state space of \mathcal{M}_{ag}^{new} is $Q_1 \times \ldots Q_m \times S$, where Q_i is the set of states of \mathcal{A}_{φ_i} , the automaton associated to the LTL_f/LDL_f formula φ_i (see Section 2.5).

The basic intuition about our approach is that every step toward the satisfaction of a goal formula φ_i should be rewarded, analogously as it is done in reward shaping for classical goals (see Example 5.1). Hence, for a given temporal specification φ_i we should assign to every $q \in Q_i$ a potential function that is, to some extent, inversely proportional to the distance from any final state.

Given a (minimal) automaton \mathcal{A}_{φ} from a LTL_f/LDL_f formula φ and its associated reward r, Algorithm 5.1 shows how the potential function is build from \mathcal{A}_{φ} . This operation is made off-line, i.e. before the learning process. Then we associate automatically to the states of the DFA a potential function $\Phi(q)$ whose value decreases proportionally with the minimum distance between the automaton state q and any accepting state. By construction, potential-based reward shaping with this definition of the potential function gives a positive reward when the agent performs an action leading to a q' that is one step closer to an accepting state, and a negative one in the opposite case. Notice that, by construction, $G(\bar{s}) = G_{\Phi}(\bar{s})$, where G_{Φ} is defined in Equation 5.8. Indeed, $\gamma^N \Phi(s_N) = 0$ because we take into account the issue explained in Section 5.1.3, and $\Phi(s_0) = 0$ by construction of the Algorithm 5.1.

In the actual implementation of the Algorithm 5.1, $\Phi(q)$ can be computed by least-fix point over the automaton \mathcal{A}_{φ} , i.e. starting from the accepting states and then explore the states from the nearest to the farthest ones.

Algorithm 5.1. Off-line Reward Shaping over \mathcal{A}_{ω}

```
1: input: (minimal) automaton \mathcal{A}_{\varphi}, reward r
 2: output: potential function \Phi: Q \to \mathbb{R}
 3: Let sink be the sink state after the completion of \mathcal{A}_{\varphi}
 4: Let n_{q_0} be minimum number of hops to reach an accepting state from q_0
 5: for q \in Q do:
         Let n_q be minimum number of hops to reach an accepting state from q
 6:
         if n_{q_0} \neq 0 then
\Phi(q) \leftarrow \frac{n_{q_0} - n_q}{n_{q_0}} \cdot r
                                                             \triangleright i.e. if q_0 is NOT an accepting state
 7:
 8:
 9:
              \Phi(q) \leftarrow (n_{q_0} - n_q) \cdot r
10:
         end if
11:
12: end for
13: Let n_{max} the maximum number of hops to reach an accepting state
14: \Phi(sink) \leftarrow \frac{n_{q_0} - n_{max}}{n_{q_0}} \cdot r if n_{q_0} \neq 0 else (n_{q_0} - n_{max}) \cdot r
15: return \Phi
```

5.3 On-The-Fly Reward shaping

Reward shaping can also be used when the DFAs of the LTL_f/LDL_f formulas are constructed on-the-fly (Brafman et al., 2018) so as to avoid to compute the entire automaton off-line. To do so we can rely on dynamic reward shaping (see Section 5.1.2). The idea is to build \mathcal{A}_{φ} progressively while learning. During the learning process, at every step, the value of the fluents $\ell \in \mathcal{L}$ is observed and the successor state q' of the current state q of the DFA on-the-fly is computed. Then, the transition and the new state just observed are added into the built automaton at time t, $\mathcal{A}_{\varphi,t}$, yielding $\mathcal{A}_{\varphi,t'}$. The potential function Φ for $\mathcal{A}_{\varphi,t'}$ is recomputed for the new version of the automaton. In this case, the shaping function takes the following form:

$$F(q, t, a, q', t') = \Phi(q', t') - \Phi(q, t)$$
(5.9)

i.e. the dynamic reward shaping in Equation 5.4 but taking into account the issue presented in Section 5.1.3 where $\Phi(q,t)$ is a variant of the off-line case, but computed on the automaton $\mathcal{A}_{\varphi,t}$. In the following we explain how Φ in the on-the-fly case differs from the one shown in Section 5.2.

Details about $\Phi(q,t)$

There is an important issue which has not yet been pointed out. In the off-line variant described in Section 5.2, we apply reward shaping at every transition by knowing the full automaton \mathcal{A}_{φ} ; however, in the on-the-fly variant, at the beginning of the learning task we have an "empty" automaton, i.e. only the initial state with no transition from it. Let assume that after an action the automaton makes a move from the initial state. How can we assign a positive/negative shaping reward on the transition if we do not know the goodness of the transition? And if during a simulation we discover an accepting state, there could be a nearer accepting state that has not yet been discovered, but in order to reach it we should first discover other intermediate states. How to allow the agent to discover it while not fixing on the only known accepting states?

It is clear that, the farther the learning task goes, the more accurate will be the shaping rewards, because every observed transition of the automaton during the

activity of the agent is stored and eventually the entire automaton will be explored. However, some paths ending in an accepting state are not fully explored, so how to encourage the agent, in our setting, to explore those paths?

In order to determine $\Phi(s,t)$ for a given $A_{\varphi,t}$, we consider the same computations of Algorithm 5.1 but considering the leaves (wrt the initial state) of the automaton as accepting state. In this way, even if a path does not end in an accepting state, its following is still rewarded. It could be wrongly rewarded, since the path might lead to a failure state. However, the dynamic reward shaping theory states that until the potential-based condition is preserved, also the optimal and near-optimal solutions are preserved; moreover, eventually, once the final state of the path is discovered, the reward for that path will assume the right values.

The search for the leaves states is done through Depth-First Search, while the computation is the same of the Algorithm 5.1.

It is easy to see that:

Theorem 5.2. Automata-based reward shaping, both in off-line and on-the-fly variants, preserves optimality and near-optimality of the MDP solutions.

Proof. For the off-line case, the shaping-reward function Φ is, by construction, potential based, hence fulfilling the premises of theorems in (Ng et al., 1999) and (Grześ, 2017). Also for the on-the-fly variant, we observe that our construction is compliant with the requirements defined in (Devlin and Kudenko, 2012).

Chapter 6

RLTG

In this chapter we describe RLTG (Reinforcement Learning for Temporal Goals), a software project written in Python. It is the reference implementation of many of the topics described in Chapter 4 and Chapter 5.

6.1 Introduction

Main features: RLTG is a Python framework that allows you to:

- Setup a classic reinforcement learning task by using OpenAI Gym environments.
- Modularization of a reinforcement learning system: definition of Environment, Agent, Brain, Policy, allowing for easy extension;
- Support for Sarsa(λ) and Q(λ) with ϵ -greedy policy.
- Support for LTL_f/LDL_f goal specifications, as described in Section 4.6.

Dependencies: RLTG requires Python>=3.5 and depends on the following packages:

- FLLOAT, described in Chapter 3;
- Gym OpenAI, a toolkit for developing and comparing reinforcement learning algorithms. It offers a useful abstraction of reinforcement learning environments.

Installation: You can find the package on PyPI, hence you can install it with: pip install rltg

6.2 Package structure

The package is structured as follows:

• agents/: contains multiple packages and modules to build the learning agent.

- brains/: it contains Brain.py, the basic abstraction of the reinforcement learning algorithm, as well as TDBrain.py, the implementation of Temporal Difference learning (see Section 4.3);
- parameters/ and policies/ contain implementations for eligibility traces and ϵ -greedy policy;
- feature_extraction.py: it contains classes for feature extraction like
 FeatureExtractor. They leverage the Space abstraction provided by
 OpenAI Gym. Here you can find many types of state spaces supported.
- Agent.py, the module that contains the Agent abstraction, defining the abstract methods for interact with the environment (e.g. observe for observing the new environment state, step for choose an action). It needs a FeatureExtractor and a Brain.
- TemporalEvaluator.py, which implements the temporal goal specified by an LTL_f/LDL_f formula.
- logic/: contains the implementations of reward shaping as described in Section 5.2 and 5.3. The main modules are CompleteRewardAutomaton.py, for the implementation of Off-line Reward Shaping, and PartialRewardAutomaton.py, for the On-the-fly Reward Shaping.
- trainers/: contains the implementation of a highly-customizable training loop, e.g. you can specify under which conditions the training should stop, you can visually render the agent during the learning and you can pause/resume the learning. The GenericTrainer is used for classic reinforcement learning, whereas TGTrainer is used for temporal goal reinforcement learning.

6.3 Code examples

6.3.1 Classic Reinforcement Learning

Here we will see an example of reinforcement learning task using RLTG with the OpenAI Gym environment Taxi-v2 (Dietterich, 1998), available here.

Listing 6.1. Classic Reinforcement Learning using RLTG

```
import gym
  from rltg.agents.RLAgent import RLAgent
3
  from rltg.agents.brains.TDBrain import Sarsa
  from rltg.agents.feature_extraction \
   import IdentityFeatureExtractor
  from rltg.agents.policies.EGreedy import EGreedy
  from rltg.trainers.GenericTrainer import GenericTrainer
  from rltg.utils.GoalEnvWrapper import GoalEnvWrapper
  from rltg.utils.StoppingCondition\
   import AvgRewardPercentage
11
  def taxi_goal(*args):
13
    reward = args[1]
14
    done = args[2]
15
    return done and reward == 20
16
17
```

```
if __name__ == '__main__':
     env = gym.make("Taxi-v2")
19
     env = GoalEnvWrapper(env, taxi_goal)
20
21
     observation_space = env.observation_space
     action_space = env.action_space
23
     print(observation_space, action_space)
     agent = RLAgent(
       IdentityFeatureExtractor(observation_space),
26
       Sarsa(observation_space, action_space,
27
         EGreedy (0.1), alpha=0.1, gamma=0.99, lambda_=0.0)
28
29
     tr = GenericTrainer(
31
32
       env,
       agent,
33
       n_episodes=10000
34
       stop_conditions=(
         AvgRewardPercentage(window_size=100, target_mean=9.0)
37
38
     tr.main()
```

Now we analyze some of the APIs provided by RLTG:

- In line 19 we defined the environment by OpenAI Gym APIs. In line and 20 we wrapped with a function that make it *goal-based*.
- In line 25 we defined our reinforcement learning agent. We had to specify a FeatureExtractor, i.e. which features of the state provided from the environment we consider relevant, and a Brain, i.e. the responsible for the learning of the policy. In particular:
 - IdentityFeatureExtractor extends FeatureExtractor and it simply get the entire state space from the environment, without modifying it; It requires the observation state space of the environment to do some sanity checks.
 - Sarsa extends TDBrain, and implements $Sarsa(\lambda)$ (see Section 4.3). It requires:
 - * the observation space where the algorithm learns (in this case is the same of the one provided by the environment);
 - * the action space from where actions can be selected;
 - * the behavior policy (in this case ϵ -greedy policy with $\epsilon = 0.1$.
 - * the learning rate $\alpha = 0.1$, the discount factor $\gamma = 0.99$, the eligibility trace parameter $\lambda = 0$.
 - In line 31 we configured the manager of the training task. GenericTrainer, which extends from Trainer, is configured by the environment env and the agent agent defined before, the maximum number of episodes n_episodes and the stop conditions. AvgRewardPercentage with parameters window_size = 100 and target_mean = 9.0 means that we will stop the training if in the last 100 episodes an average reward of 9.0 is observed.

If you run the script, you will get some statistics for each episode, e.g. the number of explored states, the total reward observed, if the goal has been reached.

6.3.2 Temporal goal Reinforcement Learning

Now we will see how to use RLTG for a temporal goal specified by a LTL_f/LDL_f formula. In particular, we will use the BREAKOUT environment, presented in Example 4.2 and that we will further describe in Chapter 7. In the next, we show an excerpt of this script:

Listing 6.2. Temporal Goal Reinforcement Learning using RLTG

```
. . .
2
  . . .
3
      __name__ == '__main__':
4
     env = GymBreakout(brick_cols=3, brick_rows=3)
5
6
     gamma = 0.999
     on_the_fly = False
8
     reward_shaping = False
9
     agent = TGAgent(
       BreakoutNRobotFeatureExtractor(env.observation_space),
       Sarsa(None, env.action_space, policy=EGreedy(0.1),
13
         alpha=0.1, gamma=gamma, lambda_=0.99
14
       ),
       [BreakoutCompleteColumnsTemporalEvaluator(
         env.observation_space, bricks_rows=env.brick_rows,
         bricks_cols=env.brick_cols, left_right=True,
18
         gamma=gamma, on_the_fly=on_the_fly)
19
       ],
20
       reward_shaping=reward_shaping
21
22
23
     tr = TGTrainer(env, agent, n episodes=2000,
24
       stop_conditions=(GoalPercentage(100, 0.2),),
25
26
27
     stats, optimal_stats = tr.main()
28
```

Observe that:

- In Listing 6.1 we used RLAgent, while in this case, in line 11, we use TGAgent. The arguments provided in the constructors are the same of the previous example except for an additional argument which is the list of TemporalEvaluator (line 16). Notice that this definition of list of temporal goals is compliant with Definition 4.6. We do not discuss here details about this particular temporal evaluator, i.e. BreakoutCompleteColumnsTemporalEvaluator. Observe that we can specify if the temporal evaluator should use a off-line automaton or a on-the-fly automaton by the boolean parameter on_the_fly. Finally, notice the reward_shaping flag to toggle automata-based reward shaping (Section 5.2 and 5.3).
- Another difference is in using TGTrainer instead of GenericTrainer. This version is more specialized to deal with the setting explained in Section 4.6. The signature of the constructor is the same of GenericTrainer. Notice that in this particular case we used GoalPercentage(100, 0.2), which means

6.4 License 54

we require the agent have reached the goal at least 20 times in the last 100 episodes.

6.4 License

The software is open source and is released under MIT license.

Chapter 7

Experiments

In this chapter we give experimental evidence of the goodness of our approach, discussed mainly in Chapter 4 and 5, by using the implementations presented in Chapter 3 and 6. For each considered environment, we give a formal description in the framework of MDPs and assign temporal goals to be satisfied, as explained in earlier chapters.

7.1 BREAKOUT

In this section we use the BREAKOUT environment (already presented in Example 4.2). We first show how the combination of temporal goals is successfully learnt by the agent. Then, we show a benchmarking between the use of off-line reward shaping, on-the-fly reward shaping and no reward shaping.

Description of the Environment: The actions available to the agent are *left*, right and no-action. The relevant features are: position of the paddle p_x , position of the ball b_x , b_y , speed of the ball v_x , v_y and status of each brick (booleans) b_{ij} . This features of the system gives all the needed information to predict the next state from the current state. Hence we can build an MDP where: S is the set of all the possible values of the sequence of features $\langle p_x, b_x, b_y, v_x, v_y \rangle$, $A = \{right, left, no-action\}$, transition function T determined by the rules of the game. We give reward R(s, a, s') = 10 if a particular brick in s' has been removed for the first time, plus 100 if that brick was the last (i.e. environment goal reached).

Temporal goal: The temporal goal (specified by a LTL_f/LDL_f formula) is to remove lines of bricks in a given order. In other words, all bricks on each line of bricks i must be removed before removing all bricks from line j > i. In our experiments we considered the following goals (and combinations of them):

- Break-Cols-(LR|RL): remove columns of blocks from (left to right | right to left).
- Break-Rows-(BT|TB): remove rows of blocks from (bottom to top | top to bottom).

For each temporal goal we give a reward r = 10000 and it is given when the agent fulfilled the temporal goal specified by the formula. The formulas are expressed in

7.1 BREAKOUT **56**

 LDL_f . For example, in Breakout 3x3 (i.e. three rows and three columns of bricks), the formula which specify the just explained temporal goals is:

$$\langle (\neg l_0 \wedge \neg l_1 \wedge \neg l_2)^*; (l_0 \wedge \neg l_1 \wedge \neg l_2); (l_0 \wedge \neg l_1 \wedge \neg l_2)^*; (l_0 \wedge l_1 \wedge \neg l_2); (l_0 \wedge l_1 \wedge \neg l_2)^*; (l_0 \wedge \neg l_1 \wedge \neg l_2)^*; (l_0 \wedge$$

where the fluent l_i means "the i_{th} line has been removed". The automaton associated to the formula in Equation 7.1 is depicted in Figure 7.1. l_i are the fluents of interests, hence $\mathcal{P} = \{l_0, l_1, l_2\}$ and $\mathcal{L} = 2^{\mathcal{P}}$.

Figure 7.1. The automaton associated to the LDL_f formula in Equation 7.1 for BREAKOUT 3x3.

The features for fluents evaluation, for every temporal goal, are the status of each brick (present or removed). Recalling the notation used in Example 4.2: $\langle b_{11}, \ldots, b_{nm} \rangle$.

It is crucial to remark that the evaluation of the fluent from the features is different among the temporal goals above mentioned, despite the formulas are structurally the same (apart from the number of lines to remove). Indeed, thanks to the fluents evaluation phase (i.e. the map from features values to truth of each fluent), the formulas behave differently.

Configurations: The reinforcement algorithm used is $Sarsa(\lambda)$ (e.g. Sarsa with eligibility traces) with ϵ -greedy policy. The values of the parameters are:

- $\lambda = 0.99$
- $\gamma = 0.999$
- $\alpha = 0.1$
- $\epsilon = 0.1$

The experiments are stopped when in the last 100 episodes of optimal runs the agent always achieved both the environment goal and the temporal goals. Notice that this approach may yield a sub-optimal policy, but the found policies always satisfy ${\rm LTL}_f/{\rm LDL}_f$ goals.

7.1 BREAKOUT 57

7.1.1 Optimal policies

Now we show some screenshots of the optimal policies found for some of the temporal goals described before. You can find full recordings at https://www.youtube.com/channel/UChpeOQEtRSKh4uCy5f2XuGA.

Break-Cols-LR

In Figure 7.2 are depicted the highlights of a run of the optimal policy for the goal Break-Cols-LR. As you can notice, the constraint expressed by the formula in Equation 7.1 is satisfied (i.e. the columns of bricks are broken from left to right).

Figure 7.2. A run of the learnt optimal policy for the task BREAK-COLS-LR. From left to right, you can see that the columns are broken in the right order.

Break-Cols-BT

In Figure 7.3 are depicted the highlights of a run of the optimal policy for the goal Break-Cols-BT. The constraint expressed by the formula in Equation 7.1 is satisfied (i.e. the rows of bricks are broken from the bottom to the top).

Figure 7.3. A run of the learnt optimal policy for the task BREAK-COLS-LR. From the bottom to the top, you can see that the rows are broken in the right order.

7.1 BREAKOUT 58

Break-Cols-RL-TB

In Figure 7.4 are depicted the highlights of a run of the optimal policy for the goal BREAK-COLS-RL-TB. Notice that, even in the case of multiple temporal goal, the constraints expressed by the formula in Equation 7.1 are satisfied (i.e. the rows of bricks are broken from the top to the bottom and the columns of bricks are broken from right to left). Furthermore, notice that the formula is the same, but how the fluents are evaluated from the features makes the difference.

Figure 7.4. A run of the learnt optimal policy for the task Break-Cols-LR. From the bottom to the top, you can see that the rows are broken in the right order.

7.1.2 Benchmarking of reward shaping techniques

In this section we report some statistics about the performances of the proposed approach with a focus on automata-based reward shaping. For each configuration we collected the observed reward for each episode, over 10 runs. Each run has a time limit of 10000 episodes. Then we moving averaged the sequences of rewards with a window of size 100, in order to make the curves more smoothed, and averaged the result across all the runs. The plots show this processed sequences over the number of episodes. The colored bands represents the 90% confidence interval taken from bootstrapped re-samples.

We show our results in two parts:

- 1. Comparison of *No Reward Shaping*, *Off-line Reward Shaping* and *On-the-fly Reward Shaping* in Breakout 3x3, 3x4 and 4x4, with temporal goal Break-Cols-LR;
- 2. Comparison of *No Reward Shaping*, *Off-line Reward Shaping* and *On-the-fly Reward Shaping* in Breakout 4x4, with temporal goals Break-Cols-LR, Break-Rows-BT, Break-Cols-LR & Break-Rows-BT;

Different number of bricks and rows

In Figure 7.5 are plotted different statistics by increasing difficulty in the environment, for every variant of reward shaping technique. On the x-axis the number of episodes, on the y-axis the average reward (obtained as explained above). In every case, we can see that the use of reward shaping (both off-line and on-the-fly) speed-up the learning process.

7.2 SAPIENTINO 59

Different temporal goals

In Figure 7.6 Here we show the performances by varying the temporal goals. On the x-axis the number of episodes, on the y-axis the average reward (obtained as explained above). In every case, we can see that the use of reward shaping (both off-line and on-the-fly) speed-up the learning process.

7.2 SAPIENTINO

TODO

7.3 MINECRAFT

TODO

7.3 MINECRAFT 60

(a) BREAKOUT 3x3, BREAK-COLS-LR for three different settings: No RS, Off-line RS and On-the-fly RS

(b) BREAKOUT 3x4, BREAK-COLS-LR for three different settings: No RS, Off-line RS and On-the-fly RS

(c) BREAKOUT 4x4, BREAK-COLS-LR for three different settings: No RS, Off-line RS and On-the-fly RS

Figure 7.5. The results of three settings are reported, namely: BREAKOUT 3x3, 3x4 and 4x4 (7.5a, 7.5b and 7.5c respectively), all of them with temporal goal BREAK-COLS-LR. In every case, we can see that the use of reward shaping (both off-line and on-the-fly) speed-up the learning process.

7.3 MINECRAFT 61

(a) BREAKOUT 4x4, BREAK-COLS-LR for three different settings: No RS, Off-line RS and On-the-fly RS

(b) BREAKOUT 4x4, BREAK-ROWS-BT for three different settings: No RS, Off-line RS and On-the-fly RS

(c) BREAKOUT 4x4, BREAK-COLS-LR & BREAK-ROWS-LR for three different settings: No RS, Off-line RS and On-the-fly RS

Figure 7.6. The results of three settings are reported, namely: BREAKOUT 4x4 with temporal goal BREAK-COLS-LR, BREAK-COLS-BT and BREAK-COLS-LR & BREAK-COLS-BT (7.6a, 7.6b and 7.6c respectively). In every case, we can see that the use of reward shaping (both off-line and on-the-fly) speed-up the learning process.

Chapter 8

Conclusion and Future Work

This chapter summarizes the thesis. It starts with a brief overview of the problem studied. Then we summarize the main contributions of the thesis. A section is dedicated to future directions of research. The document ends with final remarks.

8.1 Overview

This work addresses a particular problem in reinforcement learning. We considered a classical reinforcement learning problem, i.e. an MDP over a set of features of the world, that we called *low-level* features ¹. We are interested in defining non-Markovian rewards over this MDP about some high-level properties of the environment, that we called the *fluents*, determined by some set of *high-level* features of the world.

We considered the cartesian product between the MDP state space and the fluents configurations, which yields, in general, and unknown transition function. In order to proceed, we made a key assumption: that is, the new transition function (i.e. defined both over low-level features and fluents configurations) satisfies the Markov property, i.e. given the current MDP state, the current fluents configuration and the action taken, we have all the informations needed to know the probability of each state to be the next one.

However, due to the non-Markovian property of the additional rewards, we need to transform the new state space in some way such that the learning is actually feasible and such that the learnt policy in this transformed state space is equivalent (in terms of optimality) to the original problem. How this can be effectively achieved is one of the main contribution of this work.

8.2 Summary of Main Contributions

In this section we list the main contribution of the thesis.

• Formal definition and analysis of the problem, as well as design of the transformation of the state space (strongly inspired by Brafman et al. (2018)), allowing the off-the-shelf reinforcement learning algorithms to actually learn

¹We say *low-level* features in the sense that these features are only responsible for the basic interaction of the agent with the environment, but still allowing to maximize the reward, or reach the goal in the MDP. Notice that it is only a way to refer about them, and no assumption nor restriction is made over the MDP state space.

8.3 Future Works 63

the non-Markovian goals (Chapter 4), specified by LTL_f/LDL_f formulas (described in Chapter 2);

- An automatic way to apply reward shaping in this setting, leveraging the particular structure of the transformation (Chapter 5). The idea is, the transitions in the new state space that make a step over the automaton towards an accepting state (or, equivalently, any progression in the satisfaction of the formula) should be rewarded. We dealt with both when the automaton is known a priori and when it is built on-the-fly;
- Implementation of both the translation algorithm from LTL_f/LDL_f formulas to equivalent automata, presented in Chapter 3, and a reinforcement learning framework to set up a RL agent satisfying LTL_f/LDL_f formulas, presented in Chapter 6;
- Experimental evidence that the approach is actually working (Chapter 7).

8.3 Future Works

There are many future directions that can be taken, due to the novelty of the work. Some of them are:

- the Markov assumption of the combined transition function that has been made in Section 4.6.1 is a strong one; however, in many real world cases, the implicit approximation is not enough to effectively model the world. It can be interesting to find an approach that addresses this issues and manages the problem in this harder scenario.
- In this work we prevalently made a theoretical analysis of the problem and we have shown only some application at software level. The proposed framework is more general, and should be validated in many other domains, both simulated and physical ones (e.g. robotics), where there is the need to represent additional high-level knowledge to express complex goals;
- We did not focus our attention over the algorithmic side, but only on how the problem can be properly redefined, and relying on off-the-shelf reinforcement learning algorithms. It might be the case that design of ad-hoc algorithms for this framework yield better performances. For instance, one could think about a better "explicit" exploration policy of the state space, in spite of "implicit" guidance by using reward shaping, and even some adaptation of state-of-the-art techniques, e.g. hierarchical reinforcement learning, curriculum learning, knowledge transfer and so on.
- Finally, it could be of interest to extend this work to the general framework of multi-agent systems and work on the challenges and issues that such extension might lead to.

8.4 Final Remarks

The topic of this work is of crucial importance: the need to face the dichotomy between the control of low-level features and the ability to reason about higherlevel properties of the world is the core issue in many of the fields and applications in artificial intelligence, especially in robotics. This thesis aimed to address this issue 8.4 Final Remarks 64

in a particular case, by a theoretical analysis, but providing actual implementations as support for the proposed approach.

- Fahiem Bacchus, Craig Boutilier, and Adam Grove. Rewarding behaviors. In *PRO-CEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTEL-LIGENCE*, pages 1160–1167, 1996.
- Jorge A. Baier, Christian Fritz, Meghyn Bienvenu, and Sheila A McIlraith. Beyond classical planning: Procedural control knowledge and preferences in state-of-the-art planners. In *Proceedings of the 23rd National Conference on Artificial Intelligence Volume 3*, AAAI'08, pages 1509–1512. AAAI Press, 2008. ISBN 978-1-57735-368-3. URL http://dl.acm.org/citation.cfm?id=1620270.1620321.
- Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition, 1957. URL http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false.
- Ronen Brafman, Giuseppe De Giacomo, and Fabio Patrizi. Ltlf/ldlf non-markovian rewards, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342.
- Ronen I. Brafman, Giuseppe De Giacomo, and Fabio Patrizi. Specifying non-markovian rewards in mdps using ldl on finite traces (preliminary version). CoRR, abs/1706.08100, 2017.
- Richard J. Büchi. Weak secondâĂŘorder arithmetic and finite automata. Mathematical Logic Quarterly, 6(1âĂŘ6):66-92, 1960. doi: 10.1002/malq. 19600060105. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19600060105.
- Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila A. McIlraith. Non-markovian rewards expressed in LTL: guiding search via reward shaping. In SOC, pages 159–160, 2017a.
- Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila A. McIlraith. Decision-making with non-markovian rewards: From ltl to automata-based reward shaping. In *RLDM*, pages 279–283, 2017b.
- Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. *Model Checking*. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.
- Giuseppe De Giacomo and Fabio Massacci. Combining deduction and model checking into tableaux and algorithms for converse-pdl. *Inf. Comput.*, 162(1/2):117–137, October 2000. ISSN 0890-5401. URL http://dl.acm.org/citation.cfm?id=359243.359271.

Giuseppe De Giacomo and Moshe Y Vardi. Linear temporal logic and linear dynamic logic on finite traces. In *IJCAI*, volume 13, pages 854–860, 2013.

- Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for ltl and ldl on finite traces. In *Proceedings of the 24th International Conference on Artificial Intelligence*, IJCAI'15, pages 1558–1564. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832415.2832466.
- Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reasoning on ltl on finite traces: Insensitivity to infiniteness. In *Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence*, AAAI'14, pages 1027–1033. AAAI Press, 2014. URL http://dl.acm.org/citation.cfm?id=2893873.2894033.
- Sam Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In *Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems Volume 1*, AAMAS '12, pages 433–440, Richland, SC, 2012. International Foundation for Autonomous Agents and Multiagent Systems. ISBN 0-9817381-1-7, 978-0-9817381-1-6. URL http://dl.acm.org/citation.cfm?id=2343576.2343638.
- Thomas G. Dietterich. The maxq method for hierarchical reinforcement learning. In *In Proceedings of the Fifteenth International Conference on Machine Learning*, pages 118–126. Morgan Kaufmann, 1998.
- Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions of the American Mathematical Society, 98(1):21–51, 1961. ISSN 00029947. URL http://www.jstor.org/stable/1993511.
- Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs. *Journal of Computer and System Sciences*, 18(2):194 211, 1979. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(79)90046-1. URL http://www.sciencedirect.com/science/article/pii/0022000079900461.
- D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. Technical report, Jerusalem, Israel, Israel, 1997.
- James Garson. Modal logic. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, spring 2016 edition, 2016.
- Valentin Goranko and Antony Galton. Temporal logic. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2015 edition, 2015.
- Charles Gretton. A more expressive behavioral logic for decision-theoretic planning. In *Pacific Rim International Conference on Artificial Intelligence*, pages 13–25. Springer, 2014.
- M. Grzes and D. Kudenko. Theoretical and empirical analysis of reward shaping in reinforcement learning. In 2009 International Conference on Machine Learning and Applications, pages 337–344, Dec 2009. doi: 10.1109/ICMLA.2009.33.
- Marek Grzes. Improving exploration in reinforcement learning through domain knowledge and parameter analysis. PhD thesis, University of York, 2010.

Marek Grześ. Reward shaping in episodic reinforcement learning. In *Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems*, AAMAS '17, pages 565–573, Richland, SC, 2017. International Foundation for Autonomous Agents and Multiagent Systems. URL http://dl.acm.org/citation.cfm?id=3091125.3091208.

- John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages and Computability*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000. ISBN 0201441241.
- Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Teaching multiple tasks to an rl agent using ltl. 2018.
- Bakhadyr Khoussainov and Anil Nerode. *Automata Theory and Its Applications*. Birkhauser Boston, Inc., Secaucus, NJ, USA, 2001. ISBN 3764342072.
- Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Form. Methods Syst. Des., 19(3):291–314, October 2001. ISSN 0925-9856. doi: 10.1023/A:1011254632723. URL https://doi.org/10.1023/A:1011254632723.
- Bruno Lacerda, David Parker, and Nick Hawes. Optimal policy generation for partially satisfiable co-safe ltl specifications. In *Proceedings of the 24th International Conference on Artificial Intelligence*, IJCAI'15, pages 1587–1593. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832415.2832470.
- Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In *Proceedings of the Sixteenth International Conference on Machine Learning*, ICML '99, pages 278–287, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-612-2. URL http://dl.acm.org/citation.cfm?id=645528.657613.
- M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business processes management. In *Proceedings of the 2006 International Conference on Business Process Management Workshops*, BPM'06, pages 169–180, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-38444-8, 978-3-540-38444-1. doi: 10.1007/11837862_18. URL http://dx.doi.org/10.1007/11837862_18.
- Amir Pnueli. The temporal logic of programs. In *Proceedings of the 18th Annual Symposium on Foundations of Computer Science*, SFCS '77, pages 46–57, Washington, DC, USA, 1977. IEEE Computer Society. doi: 10.1109/SFCS.1977.32. URL https://doi.org/10.1109/SFCS.1977.32.
- V. R. Pratt. Semantical consideration on floyo-hoare logic. In 17th Annual Symposium on Foundations of Computer Science (sfcs 1976), pages 109–121, Oct 1976a. doi: 10.1109/SFCS.1976.27.
- V. R. Pratt. Semantical considerations on floyd-hoare logic. Technical report, Cambridge, MA, USA, 1976b.
- Vaughan R. Pratt. A near-optimal method for reasoning about action. *Journal of Computer and System Sciences*, 20(2):231 254, 1980. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(80)90061-6. URL http://www.sciencedirect.com/science/article/pii/0022000080900616.

M. O. Rabin and D. Scott. Finite automata and their decision problems. *IBM J. Res. Dev.*, 3(2):114–125, April 1959. ISSN 0018-8646. doi: 10.1147/rd.32.0114. URL http://dx.doi.org/10.1147/rd.32.0114.

- Stewart Shapiro and Teresa Kouri Kissel. Classical logic. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2018 edition, 2018.
- Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing eligibility traces. *Mach. Learn.*, 22(1-3):123–158, January 1996. ISSN 0885-6125. doi: 10.1007/BF00114726. URL http://dx.doi.org/10.1007/BF00114726.
- A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J. ACM, 32(3):733-749, July 1985. ISSN 0004-5411. doi: 10.1145/3828.3837. URL http://doi.acm.org/10.1145/3828.3837.
- Richard S. Sutton. Learning to predict by the methods of temporal differences. *Machine Learning*, 3(1):9–44, Aug 1988. ISSN 1573-0565. doi: 10.1007/BF00115009. URL https://doi.org/10.1007/BF00115009.
- Richard S. Sutton and Andrew G. Barto. *Introduction to Reinforcement Learning*. MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.
- Sylvie Thiébaux, Charles Gretton, John K. Slaney, David Price, and Froduald Kabanza. Decision-theoretic planning with non-markovian rewards. *J. Artif. Intell. Res. (JAIR)*, 25:17–74, 2006.
- Wolfgang Thomas. Star-free regular sets of ÏL-sequences. *Information and Control*, 42(2):148 156, 1979. ISSN 0019-9958. doi: https://doi.org/10. 1016/S0019-9958(79)90629-6. URL http://www.sciencedirect.com/science/article/pii/S0019995879906296.
- B.A. Trakhtenbrot. Finite automata and the logic of single-place predicates. Sov. Phys., Dokl., 6:753–755, 1961. ISSN 0038-5689.
- Nicolas Troquard and Philippe Balbiani. Propositional dynamic logic. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, spring 2015 edition, 2015.
- Christopher J. C. H. Watkins and Peter Dayan. Q-learning. *Machine Learning*, 8 (3):279–292, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/BF00992698.
- Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, 1989.
- Pierre Wolper. Temporal logic can be more expressive. 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981), pages 340–348, 1981.