

第十四周.双线性型I

参考:

高等代数学 10.1 对偶空间 10.2 双线性型

15.1. 线性函数

定义: 设V是数域 \mathbb{F} 上的线性空间, $f:V\to\mathbb{F}$ 是一个映射, 满足对于 $\forall \alpha,\beta\in V,c\in\mathbb{F}$, 有 $f(\alpha+\beta)=f(\alpha)+f(\beta)$ 和 $f(c\alpha)=cf(\alpha)$,则f称为V上一个线性函数.

定理: 设V是数域 \mathbb{F} 上的n维线性空间, v_1, \dots, v_n 是一组基, $a_1, \dots, a_n \in \mathbb{F}$. 则存在唯一的一个V上线性函数f满足 $f(v_i) = a_i, i = 1, \dots, n$.

Riesz表示定理: 设V是数域 \mathbb{F} 上的n维内积空间, f是V上一个线性函数,则存在唯一的 $u \in V$ 满足 $\forall v \in V, f(v) = (v, u)$.

令 V^* 是V上全体线性函数构成的线性空间,称为V的共轭空间。当V是有限维空间时, V^* 是V的对偶空间.

15.2. 对偶基

现设 V 是 \mathbb{K} 上的 n 维线性空间, $\{e_1, e_2, \cdots, e_n\}$ 是 V 的一组基, 则 $V \to \mathbb{K}$ 的任一线性函数 f 被它在 V 基上的值唯一确定. 现定义 f_i $(i=1,2,\cdots,n)$ 如下:

$$f_i(e_j) = \delta_{ij}$$
.

这里 δ_{ij} 称为 Kronecker (克罗内克) 符号, 即当 i=j 时, $\delta_{ii}=1; i\neq j$ 时, $\delta_{ij}=0$.

定理: $\{f_1, f_2, \cdots, f_n\}$ 是 V^* 中线性无关的向量组, 组成 V^* 的一组基.

现在引进一个记号 (,):

$$\langle m{f}, m{x}
angle = m{f}(m{x}),$$

15.3. 对偶空间的线性映射

定理 10.1.1 设 V, U 是数域 $\mathbb K$ 上的线性空间, φ 是 $V \to U$ 的线性映射, $\varphi^*: U^* \to V^*$ 是 φ 的对偶映射, 则

(1) 对任意的 $x \in V$ 及任意的 $g \in U^*$, 总成立:

$$\langle \varphi^*(g), x \rangle = \langle g, \varphi(x) \rangle,$$
 (10.1.2)

若 $\widetilde{\varphi}$ 是 $U^* \rightarrow V^*$ 的线性映射且等式

$$\langle \widetilde{\boldsymbol{\varphi}}(\boldsymbol{g}), \boldsymbol{x} \rangle = \langle \boldsymbol{g}, \boldsymbol{\varphi}(\boldsymbol{x}) \rangle$$
 (10.1.3)

对一切 $x \in V, g \in U^*$ 成立, 那么 $\widetilde{\varphi} = \varphi^*$;

(2) 若 V,U 是有限维线性空间,设 $\{e_1,e_2,\cdots,e_n\}$ 是 V 的一组基, $\{f_1,f_2,\cdots,f_n\}$ 是其对偶基; $\{u_1,u_2,\cdots,u_m\}$ 是 U 的一组基, $\{g_1,g_2,\cdots,g_m\}$ 是其对偶

基. 设 φ 在基 $\{e_1, e_2, \cdots, e_n\}$ 和基 $\{u_1, u_2, \cdots, u_m\}$ 下的表示矩阵是 A, 则 φ^* 在基 $\{g_1, g_2, \cdots, g_m\}$ 和基 $\{f_1, f_2, \cdots, f_n\}$ 下的表示矩阵为 A'.

15.4 双线性型

定义 10.2.1 设 U,V 是数域 \mathbb{K} 上的线性空间, $U \times V$ 是它们的积集合. 若存在集合 $U \times V \to \mathbb{K}$ 的映射 g, 适合下列条件:

(1) 对任意的 $x, y \in U, z \in V, k \in \mathbb{K}$,

$$g(\mathbf{x} + \mathbf{y}, \mathbf{z}) = g(\mathbf{x}, \mathbf{z}) + g(\mathbf{y}, \mathbf{z}),$$

 $g(k\mathbf{x}, \mathbf{z}) = kg(\mathbf{x}, \mathbf{z});$

(2) 对任意的 $oldsymbol{x}\in U,\,oldsymbol{z},oldsymbol{w}\in V,\,k\in\mathbb{K},$

$$g(\boldsymbol{x}, \boldsymbol{z} + \boldsymbol{w}) = g(\boldsymbol{x}, \boldsymbol{z}) + g(\boldsymbol{x}, \boldsymbol{w}),$$
 $g(\boldsymbol{x}, k\boldsymbol{z}) = kg(\boldsymbol{x}, \boldsymbol{z}),$

间线四多则

则称 $g \neq U \vdash V$ 上的双线性函数或双线性型.

15.5 双线性型矩阵表示

 $\{e_1,e_2,\cdots,e_m\}$ 与 $\{v_1,v_2,\cdots,v_n\}$ 分别是 U 与 V 的基 g 是定义在 U 和 V 上的双线性型.

$$oldsymbol{A} = egin{pmatrix} g(oldsymbol{e}_1, oldsymbol{v}_1) & g(oldsymbol{e}_1, oldsymbol{v}_2) & \cdots & g(oldsymbol{e}_1, oldsymbol{v}_n) \ g(oldsymbol{e}_2, oldsymbol{v}_1) & g(oldsymbol{e}_2, oldsymbol{v}_2) & \cdots & g(oldsymbol{e}_2, oldsymbol{v}_n) \ & \vdots & & \vdots & & \vdots \ g(oldsymbol{e}_m, oldsymbol{v}_1) & g(oldsymbol{e}_m, oldsymbol{v}_2) & \cdots & g(oldsymbol{e}_m, oldsymbol{v}_n) \end{pmatrix}. \quad \begin{picture}(1,0) \label{eq:alpha} & \# x \in U, y \in V, \ \# x \in U, y \in V, \ \end{picture}$$

$$oldsymbol{x} = \sum_{i=1}^m a_i oldsymbol{e}_i, \,\, oldsymbol{y} = \sum_{j=1}^n b_j oldsymbol{v}_j,$$

则

$$g(oldsymbol{x},oldsymbol{y})=oldsymbol{lpha'}oldsymbol{A}oldsymbol{eta}.$$

以下**错误**的是

- 设 $T:V\to U$ 是有限维空间的线性映射,关于一组基的表示矩阵是列满秩阵A, T^* 是它的对偶映射,则 T^* 是一个满射.
- 设V是 \mathbb{F} 上二维空间,V*是对偶空间, e_1,e_2 是V的一组基, f_1,f_2 是对偶基,则 e_1,e_1+e_2 的对偶基是 f_1,f_1+f_2 .