Body Fat Estimator Using Ensemble Methods

E. Mamatha, K. Supriya, S. Ashwitha

Under the esteemed guidance of

Ms. P. Nikitha

Assistant Professor

Bachelor of Technology
Department of Information Technology
BVRIT HYDERABAD College of Engineering for Women

October 8, 2023

Overview

- Introduction
- 2 Literature Survey
- Problem Statement
- Proposed Method
- Modules
- 6 Implementation status
- References
- Thank you

Introduction

 Obesity or excessive body fat is a critical public health problem that can cause several health issues like mood disorders, cardiovascular diseases, respiratory aliments, and digestive issues.

Literature Survey

S. No	Title of the paper	Author(s)	Description
1	Body Fat Prediction using Various Regression Techniques	Nikhil Mahesh, Peeta Basa Pati, K. Deepa, Suresh Yanan - 2023	In this paper, they compare the performance of several ma- chine learning models based on Regression, to predict the body fat percentage.
2	Classification of Obesity Using Several Machine Learning Tech- niques	Jyothi Parsola - 2022	The 3D Scanner techniques like Computed Tomography is used for determining the body fat percentage.

Literature Survey

S.	Title of the paper	Author(s)	Description
No			
3	Hybrid Machine Learn-	Solaf A.	In this paper, they have used
	ing Model for Body	Hussain,	the data selection technique
	Fat Percentage Predic-	Nadire	the "left-out" approach and in-
	tion Based on Sup-	Cavus,	tegrated the physical and emo-
	port Vector Regression	Boran	tional characteristics for body
	and Emotional Aritifi-	Sekeroglu	fat prediction.
	cial Neural Network	- 2021	
4	Prediction of Women	Dr.	The Naive Baye's Algorithm is
	Obesity using Naive	Naveen	used and Women dataset is
	Baye's Algorithm	N, Rak-	collected, based on the risk fac-
		shitha	tors the algorithm worked to
		Kiran P	predict the body fat percent-
		- 2019	age.

Problem Statement

Body fat estimator using ensemble methods for accurate predictions with basic user inputs like age, gender, weight, measurements and calculate the body mass index for facilitating personalized health management and fitness planning.

Proposed Method

 Developing a novel machine learning model that integrates SVR(Support Vector Regression), Random Forest and boosting algorithms (AdaBoost, Gradient Boosting Machine, XG-Boost) for precise and cost-effective body fat percentage prediction.

Modules

- Support Vector Regression: Support Vector Regression (SVR) is a machine learning algorithm used for regression tasks, to predict a continuous target variable.
- Random Forest: Random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy.
- AdaBoost (Adaptive Boosting): The final prediction is made by a weighted sum of the individual weak learner predictions.
- XGBoost (Extreme Gradient Boosting): It incorporates regularization techniques, parallel processing, and a custom loss function to improve model performance.

Implementation

Description		Status
Impoting	necessary	Done
packages,	Collecting	
and loading	data set,	
data preproce		
Ensemble cre	ation and	Yet to be done.
Visualization		

References

 Nikhil Mahesh, Peeta Basa Pati, K. Deepa, Suresh Yanan "Body Fat Prediction using Various Regression Techniques", in IEEE International Conference on Advances in Computing, Communication and Applied Informatics(ACCAI), Aug 2023.

DOI: 10.1109/ACCAI58221.2023.10200647 https://ieeexplore.ieee.org/document/10200647

 Jyoti Parsola "Classification of Obesity Using Several Machine Learning Techniques", in International Journal of Mechanical Engineering Vol. 7 No. 2 February, 2022, DOI: https://doi.org/10.56452/7-2 550 https://kalaharijournals.com/resources

References

- Solaf A. Hussain, Nadire Cavus, Boran Sekeroglu "Hybrid Machine Learning Model for Body Fat Percentage Prediction Based on Support Vector Regression and Emotional Artificial Neural Networks", Volume 11, https://doi.org/10.3390/app11219797 https://www.mdpi.com/20763417/11/21/9797
- Dr. Naveen N, Rakshitha Kiran P "Prediction of Women Obesity using Naive Baye's Algorithm", Volume 6, Issue 2, 2019, PP 12-17, DOI: http://dx.doi.org/10.20431/2349-4859.0602002 https://www.arcjournals.org/pdfs/ijrscse/v6-i2/2.

Thankyou