RA LAB3 ITDSIU21095

October 15, 2022

1 Problem 1

```
[1]: import pandas as pd, numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import scipy.stats as stats
  import statsmodels.api as sm
  import statsmodels.formula.api as smf
15]: df = pd_read_cgy([CHO1PP27 twt]_gen = []st_beader = None_remes = []the
```

```
[15]: df = pd.read_csv('CH01PR27.txt', sep = '\s+', header = None, names = ['the

→measure of muscle mass', 'age'])

df.head()
```

[15]:		the	${\tt measure}$	of	${\tt muscle}$	${\tt mass}$	age
	0					106	43
	1					106	41
	2					97	47
	3					113	46
	4					96	45

1.1 a.

Prepare a histogram for the ages Xi. What information does your plot provide? Is this plot consistent with the random selection of women from each 10-year age group? Explain.

```
[23]: sns.set_theme() sns.histplot(data=df, x = 'age').set(title='the age beginning with age 40 and opending with age 79');
```


The information the plot provide is a nutritionist randomly selected 15 women from each 10-year age group, beginning with age 40 and ending with age 79. We can noticed that there are a slightly different distribution between these group. However this difference can be accepted and this plot can be consistent with the random selection of women from each 10-year age group.

1.2 b.

Obtain the residuals — and prepare a normal probability plot of the residuals. Does the distribution of the residuals appear to be symmetrical?

```
[24]: X = df['age']
Y = df['the measure of muscle mass']
X_bar = np.mean(X)
Y_bar = np.mean(Y)
X_err = X - X_bar
Y_err = Y - Y_bar
print(X_bar, Y_bar)
X_err.head()
```

59.983333333333334 84.96666666666667

```
[24]: 0 -16.983333
1 -18.983333
```

```
2 -12.983333
3 -13.983333
4 -14.983333
```

Name: age, dtype: float64

```
[25]: A = np.sum(X_err*Y_err)
B = np.sum(X_err**2)
print(A,'\n',B)
```

-9771.03333333333 8210.983333333335

-1.1899955141385823 156.34656425641265

```
[27]: n= len(X)
Y_hat = b0 + b1 * X
resid = Y - Y_hat
```

[34]: stats.probplot(resid, dist="norm", plot = plt);
plt.show();

The distribution of the residuals appear to be symmetrical. However, the distribution in the right top connor and left bottom conner is not symmetrical.

1.3 c.

Plot the residuals —against Yi_hat and also against Xi on separate graphs to ascertain whether any departures from regression model (2.1) are evident. Do the two plots provide the same information? State your conclusions.

[40]: sns.residplot(x=Y_hat,y= resid, data=df);

[41]: sns.residplot(x=X, y=resid, data=df);

The two plots provide the same information. Additionally, there is an outlier in the left top corner in plot 1 and in the right top corner in plot 2

1.4 d.

Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether or not the error variance varies with the level of . Use = 0.01. State the alternatives, decision rule, and conclusion. Is your conclusion consistent with your preliminary findings in part (c)?

```
[43]: model = smf.ols('Y ~ X', data=df)
results = model.fit()
results.summary()
```

[43]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================			
Dep. Variable:	Y	R-squared:	0.750
Model:	OLS	Adj. R-squared:	0.746
Method:	Least Squares	F-statistic:	174.1
Date:	Sat, 15 Oct 2022	Prob (F-statistic):	4.12e-19
Time:	10:21:59	Log-Likelihood:	-210.17
No. Observations:	60	AIC:	424.3
Df Residuals:	58	BIC:	428.5

Df Model:	1
Covariance Type:	nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept X	156.3466 -1.1900	5.512 0.090	28.363 -13.193	0.000	145.313 -1.371	167.381 -1.009
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0.		•	:	2.416 1.208 0.547 319.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

The alternative conclusions are: H0: 1 == 0

Ha: 1!=0

The decision rule is: If $X^2 \le X^2_BP$, conclude H0

If $X^2 >= X^2$ BP, conclude Ha

```
[46]: alpha = 0.01
    resid_square = resid**2
    model_1 = smf.ols('resid_square ~ X', data=df)
    results_1 = model_1.fit()
    results_1.summary()
```

[46]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================			=======================================
Dep. Variable:	p. Variable: resid_square R-squared:		0.074
Model:	OLS	Adj. R-squared:	0.058
Method:	Least Squares	F-statistic:	4.615
Date:	Sat, 15 Oct 2022	<pre>Prob (F-statistic):</pre>	0.0359
Time: 10:29:57 Log-Likel		Log-Likelihood:	-349.29
No. Observations:	60	AIC:	702.6
Df Residuals:	58	BIC:	706.8
Df Model:	1		
Covariance Type:	nonrobust		
=======================================	=============		=======================================
со	ef std err	t P> t	[0.025 0.975]

-0.956 -165.659 58.593 Intercept -53.5326 56.015 0.343 1.9690 0.917 2.148 0.036 0.134 3.804 ______ Omnibus: 66.573 Durbin-Watson: 2.197 Prob(Omnibus): 0.000 Jarque-Bera (JB): 547.395 Skew: Prob(JB): 1.36e-119 3.051 Cond. No. Kurtosis: 16.481 319.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

```
[48]: SSR_star= sum((results_1.fittedvalues - np.mean(resid_square))**2)
SSR_star
```

[48]: 31833.428951644546

```
[51]: X2_BP = (SSR_star/2) / ((SSE/n)**2)
X2_BP
```

[51]: 3.817124858502205

```
[82]: X2 = stats.chi2.ppf(q=1-0.01,df=1)
p =1- stats.chi2.cdf(x=3.817,df=1)
print(X2,p)
```

6.6348966010212145 0.05073500104800588

Conclusion: to control the alpha risk at 0.01, we require $X^2(0.99;1) = 6.6$. Since $X^2_BP = 3.817 \le 6.63$, we conclude H0, that the error variance is constant.

2 Problem 2:

2.1 a.

```
[72]: sns.scatterplot(x='lot size', y='hours', data=df1, color = 'black');
```


- A linear relation does not appear to be adequate here.
- The regression relation in the scatter-plot appears to be curvilinear here.
- The variability across different X levels appears to be fairly constant, thus a transformation to X is more appropriate here.

2.2 b.

```
[104]: model = smf.ols('y ~ x_new', data=df1)
  results = model.fit()
  results.summary()
```

[104]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	у	R-squared:	0.770
Model:	OLS	Adj. R-squared:	0.768
Method:	Least Squares	F-statistic:	365.7
Date:	Sat, 15 Oct 2022	Prob (F-statistic):	1.29e-36
Time:	11:56:43	Log-Likelihood:	-232.88
No. Observations:	111	AIC:	469.8
Df Residuals:	109	BIC:	475.2
Df Model:	1		
Covariance Type:	nonrobust		

=========						
	coef	std err	t	P> t	[0.025	0.975]
Intercept x_new	1.2547 3.6235	0.639 0.189	1.964 19.124	0.052 0.000	-0.012 3.248	2.521 3.999
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.	570 Jarqu	•	========	2.098 1.160 0.560 12.3

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- 11 11 11
 - The estimated linear regression function for the transformed data is slightly higher than it original.

2.3 c.

[105]: sns.scatterplot(x=x_new, y= y, data =df1);

Conclusion: The scatter-plot shows a reasonably linear relation, the estimated regression line appears to be a good fit to the transformed data.

2.4 d.

```
[109]: x_bar = np.mean(x)
y_bar = np.mean(y)
x_err = x - x_bar
y_err = y - y_bar
print(x_bar, y_bar)

a = np.sum(x_err*y_err)
b = np.sum(x_err**2)
print(a,'\n',b)

b1_2= a / b
b0_2 = y_bar - b1_2*x_bar
print(b1_2, b0_2)

y_hat = b0_2 + b1_2 * x
y_hat_new = b0_2 + b1_2 * x_new
resid1 = y - y_hat_new
sns.residplot(x=y_hat_new, y= resid1,data=df1,color='red');
```

```
11.36936936936937 12.926486486486487 2608.7040540540543 4891.855855855856 0.5332749228355274 6.863486913347429
```


Conclusion The normal probability plot shows that points fall reasonably close to a straight line, with very small tails deviating from the line, suggesting that the distribution of the error terms is approximately normal. These two plots above show a good fit between model and data points. Q - Q plot show the distribution of the residuals appear to be symmetrical.

2.5 e.

2.5.1 Y = 6.863486913347429 + 0.5333 X