UNIVERSITY of HOUSTON | ECE

ECE 5397/6397: Intro to Robotics HW 5, Due April 5 Computer vision

his homework may be completed in groups of two.	
opt) Name 2:	
art I iven the Matlab code AutoThreshold.m, fill in the six TODOs to implement image nresholding. Copy the text for these TODOs below. 1. TODO #1	
2. TODO #2	
3. TODO #3	
4. TODO #4	
5. TODO #5	
6. TODO #6	
7. Run your code on the file Duplos.png. Copy Figure 1 below	
art II	
sing the same image, label the connected components using the two-pass algorithm from ection 11.4. Call your file ConnectedComponents.m with function call c = ConnectedComponents(binary_img), where binary_img is a binary image and cc is natrix the size of binary_img with 0 assigned to background pixels and integers to differ onnected components. how a screenshot of the connected components applied to the thresholded Duplo.png	a
ttach your code	
art III	

Compute and label the centroids and orientation of each connected component. Call your code CentroidAndOrientation.m, with function call

[centroids, orientations] = CentroidAndOrientation(cc), where cc is the output from part II. Show an image applied to the output from Part II. Draw the centroids and orientation lines in white.

- Calculate the manipulator Jacobian of the cylindrical robot with spherical wrist manipulator at the position z_6 .
 - a. Write out the J matrix in terms of z_i and o_i .
 - b. Write out the J values. Calculate the cross products. You may use your previous calculations for the A and T matrices.

