MSO 202A: Complex Variables

August-September 2022

Assignment-2

- 1. Show that absolute convergence implies convergence of a series.
- 2. Assume $a_n \neq 0$ except finitely many terms. Show that $1/R = \lim \frac{|a_{n+1}|}{|a_n|}$, provided the limit exists.
- 3. Let $z_n = x_n + \iota y_n$, where $x_n, y_n \in \mathbb{R}$. Show that $\sum z_n$ is convergent if and only if $\sum x_n$ and $\sum y_n$ are convergent. Moreover $\sum z_n = \sum x_n + \iota \sum y_n$. Use this to conclude that $e^{iy} = \cos y + \iota \sin y$, $y \in \mathbb{R}$.
- 4. Given an example to show that $Log(z^n) \neq n Log(z)$.
- 5. Assume that we choose the branch $\sqrt{z} = e^{1/2 \log z}$. Given an example to show that $\sqrt{z_1 z_2} \neq \sqrt{z_1} \sqrt{z_2}$.
- 6. Draw the domain and range of the complex log branches \log_0 , $\log_{2\pi}$, $\log_{-2\pi}$, $\log_{-\pi}$, \log_{π} , $\log_{\pi/4}$. Calculate complex logrithm of -1 using the first 3 branches.

Calculate complex logrithm of 1 using the last 3 branches. Can you do it using the first three branch?

- 7. Where is the function $f(z) = \log_{3\pi/2}(3-5z)$ analytic? What is f(1) and f(0).
- 8. Let $\Omega, U \subseteq \mathbb{C}$ be open sets such that $f: \Omega \to U$ f is bijective analytic with $f'(z) \neq 0$ and $f^{-1} = g$ is continuous. Then show that g is analytic.

(Remark: Think of the situation $U = \mathbb{C}^*$ and $\Omega = \{z | -\pi < y < \pi\}, \quad f(z) = e^z, \quad g = \text{Log.}$ We used this result to prove that Log or any other branch \log_{α} is analytic.)

- 9. Write the following in the form $a + \iota b$.
 - (a) $\log(\text{Log }\iota)$ (b) $(\iota)^{-\iota}$
- 10. Prove or disprove:

$$\lim_{z \to 0} z \sin \frac{1}{z} = 0$$

- 11. Prove that the each of the three series the radius of convergence is 1. Further show the following:
 - (a) Show that $\sum_{n=1}^{\infty} nz^n$ does not converge at any point on the unit circle.
 - (b) Show that $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges at all points on the unit circle except.
 - (c) Show that $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges at all points on the unit circle except at z=1.

- 12. Consider $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = e^{-\frac{1}{x^2}}$ for x > 0 and f(x) = 0 for $x \le 0$. Then:
 - (a) Calculate f', f'', f'''.
 - (b) Prove derivative of $\frac{c}{x^p}e^{-1/x^2}$ consists of sum of terms of similar form. Hence deduce that $f^{(n)}(x)$ consists of sum terms of the form $\frac{c}{x^p}e^{-1/x^2}$ for different $c, p \in \mathbb{N}$.
 - (c) Prove that

$$\lim_{x \to 0} \frac{c}{x^p} e^{-1/x^2} = 0, \quad c, p \in \mathbb{N}.$$

- (d) Deduce that $f^{(n)}(0) = 0$ for all n.
- (e) Thus conclude that f is infinitely differentiable but f can not be represented by a power series.

[Recall: A real function $f: \mathbb{R} \to \mathbb{R}$ is said to be *real analytic* at x_0 if f(x) can be written as a convergent power series $\sum a_n(x-x_0)^n$. We know that any (complex) analytic function is infinitely differentiable BUT there exists infinitely differentiable real valued function which is NOT real analytic.]

13. Prove that if p is a polynomial then

$$\lim_{z \to \infty} |p(z)| = \infty$$

. However,

$$\lim_{z \to \infty} |e^z| \neq \infty.$$

14. Identify the following series as a holomorphic function f(z):

(a)
$$\sum_{n=1}^{\infty} nz^n$$
, (b) $\sum_{n=1}^{\infty} n^2 z^n$, (c) $\sum_{n=1}^{\infty} (-1)^n \frac{z^n}{(2n+1)!}$, (d) $\sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{2^n n!}$

15. Let $f(z) = \frac{1}{z(z-1)}$. Where is the function analytic? Can you write f as a power series around $z = 2\iota$? What is the radius of convergence of this power series?