Project of LATEX Page 97 to 100

Mohammadamin Raisi Student Number :970087192 Unit : Tehran Shomal - Shahriar

January 12, 2021

Page 2 | Introduction to Automata Theory, Formal Languages and Computation

Solution:

Next State			
Present State	0	1	
$[q_0]$	$[q_0, q_3]$	$[q_0, q_1]$	
$[q_0,q_3]$	$[q_0,q_3,q_4]$	$[q_0,q_1]$	
$[q_0, q_3, q_4]$	$[q_0,q_3,q_4]$	$\left[q_0,q_1,q_4\right]$	
$[q_0,q_1,q_4]$	$[q_0,q_3,q_4]$	$[q_0,q_1,q_4]$	
$[q_0,\!q_1]$	$[q_0,q_3]$	$[q_0,q_1]$	

For simplification, let us replace $[q_0]$ by A, $[q_0,q_3,]$ by B, $[q_0,q_3,q_4]$ by C, $[q_0,q_1,q_4]$ by D, and $[q_0,q_1]$ by E. Here, A is the initial state, and C and D are the final states as they contain the state q_0 . The simplified DFA is

	Next State		
Present State	0		1
A	В		E
В	\mathbf{C}		\mathbf{E}
\mathbf{C}	\mathbf{C}		D
D	\mathbf{C}		D
E	В		\mathbf{E}

6. Convert the following NFA to an equivalent DFA. Solution :

Σ		
States	0	1
q_0	q_0	q_0,q_1
q_1	q_2	q_2
q_0	_	q_1

($[q_0]$ is the initial state and $[q_1]$ is the final state) **Solution:** Conversion is done in the following ways:

\sum		
States	0	1
$[q_0]$	$[q_0]$	$[q_0,q_1]$
$[q_0,q_1]$	$[q_0, q_2]$	$[q_0, q_1, q_2]$
$[q_0, q_1, q_2]$	$[q_0, q_2]$	$[q_0, q_1, q_2]$
$[q_0,q_2]$	$\lfloor q_0 floor$	$\left[q_0,q_1,q_2\right]$

Rename $[q_0]$ as A, $[q_0,q_1]$ as B, $[q_0,q_1,q_2]$ as C, and $[q_0,q_2]$ as D. The beginning state is A, and final states are B and C.

Page 3 | Introduction to Automata Theory, Formal Languages and Computation

Σ		
States	0	1
A	A	В
В	D	\mathbf{C}
\mathbf{C}	D	\mathbf{C}
D	A	С

7. Convert the following NFA to an equivalent DFA. [UPTU 2005]

$\sum_{}$		
States	0	1
p	{q,s}	{q}
q	$\{e\}$	$\{q,r\}$
\mathbf{r}	$\{s\}$	$\{p\}$
\mathbf{s}	Ø	$\{p\}$

where p is the initial state and q and s are the final states. Solution:

Σ		
States	0	1
{p}	$\{q,s\}$	{q}
$\{q\}$	$\{r\}$	$\{q,r\}$
$\{r\}$	$\{s\}$	$\{p\}$
$\{s\}$	Ø	{p}
$\{q,r\}$	$\{r,s\}$	$\{p,q,r\}$
$\{r,s\}$	$\{s\}$	$\{p\}$
$\{p,q,r\}$	$\{q,r,s\}$	$\{p,q,r\}$
$\{q,r,s\}$	$\{r,s\}$	$\{p,q,r\}$
$\{q,s\}$	$\{r\}$	$\{p,q,r\}$
{Ø}	{Ø}	{Ø}

Here $\{p\}$ is the beginning state and $\{q\}$, $\{s\}$, $\{q, r\}$, $\{r, s\}$, $\{p, q, r\}$, $\{q, r, s\}$, and $\{q, s\}$ are the final states. \emptyset is the dead state.

8. Construct a DFA equivalent to the following NDFA given in the following figure. [UPTU 2004]

Page 4 | Introduction to Automata Theory, Formal Languages and Computation

Solution: The tabular representation of the NDFA is

Next State		
Present State	0	1
q_0	q_3	$\{q_0,q_1\}$
q_1	Ø	q_2
q_2	q_2	$\{q_2,q_4\}$
q_3	q_4	Ø
q_4	q_4	q_4

 $(q_0$ is the initial state and q_4 is the final state) The corresponding DFA is

\sum		
States	0	1
q_0	$\{q_3\}$	$\{q_0,q_1\}$
$\{q_3\}$	$\{q_4\}$	$\{\varnothing\}$
$\{q_4\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0,q_1\}$	$\{q_2\}$	$\{q_2,q_4\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2, q_4\}$
$\{q_2,q_4\}$	$\{q_2,q_4\}$	$\{q_2,q_4\}$
$\{\varnothing\}$	$\{\varnothing\}$	$\{\varnothing\}$

Here $\{q_0\}$ is the beginning state, and $\{q_4\}$, and $\{q_0,q_1\}$ are the final states. (Draw a transitional diagram to complete the answer.)

9. Find the minimal DFAs for the language $L = \{a^n b^m, n \ge 2, m \ge 1\}$ Solution: All 'a' will appear before 'b'. There is at least 2 'a' and 1 'b'. The DFA is the following.

10. Design a DFA for the language L = $\{0^m1^n, m \geq 0, n \geq 1\}$ [JNTU 2007]

Solution: All '0's will appear before '1'. There is at least one '1', but the number of '0's may be zero. The DFA is shown in Fig. 3.58.

11. Construct a DFA which accepts the set of all binary strings that, interpreted as the binary representation of an unsigned decimal integer, is divisible by 5.

Fig. 3.58

[WBUT 2008]

Solution: For Mod 5, the remainders are 0, 1, 2, 3, and 4. We can assign the states as q_0 , q_1 , q_2 , q_3 , and q_4 . For any binary string, if we add a bit at LSB, then the previous value becomes doubled. (Let the string be 101. The decimal value is 5. If we add another 1 at LSB, the string becomes 1011. The decimal value of the previous 101 becomes 10.) In general, we can write that 'n' becomes 2n + b, where n is the previous number and b is the added bit.

$$(2n + b) \bmod 5 = 2n \bmod 5 + b \bmod 5$$

As b is either 0 or 1, b mod 5 = b. 2n mod 5 is any one of 0, 1, 2, 3, or 4, i.e., 2 X (state number) + a. For this machine, the input alphabets are 0 and 1.

```
\begin{array}{l} \delta(q_0,\,0) \to 2\times 0 + 0 = 0 \; \text{means} \; q_0 \\ \delta(q_0,\,1) \to 2\times 0 + 1 = 1 \; \text{means} \; q_1 \\ \delta(q_1,\,0) \to 2\times 1 + 0 = 2 \; \text{means} \; q_2 \\ \delta(q_1,\,1) \to 2\times 1 + 1 = 3 \; \text{means} \; q_3 \\ \delta(q_2,\,0) \to 2\times 2 + 0 = 4 \; \text{means} \; q_4 \\ \delta(q_2,\,1) \to 2\times 2 + 1 = 5\%5 = 0 \; \text{means} \; q_0 \\ \delta(q_3,\,0) \to 2\times 3 + 0 = 6\%5 = 1 \; \text{means} \; q_1 \\ \delta(q_3,\,1) \to 2\times 3 + 1 = 7\%5 = 2 \; \text{means} \; q_2 \\ \delta(q_4,\,0) \to 2\times 4 + 0 = 8\%5 = 3 \; \text{means} \; q_3 \\ \delta(q_4,\,1) \to 2\times 4 + 1 = 9\%5 = 4 \; \text{means} \; q_4 \end{array}
```