QUAND LES ESPACES QUOTIENTS SONT-ILS HAUSDORFF?

Un quotient d'un espace Hausdorff n'a pas besoin d'être Hausdorff.

Exemple

1. Considérons la relation d'équivalence sur $\mathbb R$:

$$x \sim y \qquad \iff \qquad (x \text{ et } y \in \mathbb{Q}) \text{ OU } (x \text{ et } y \in \mathbb{R} \setminus \mathbb{Q}).$$

Donc, rationnel ~ rationnel, irrationnel ~ irrationnel, mais rationnel \not rationnel. Alors, $\mathbb{R}/\sim=\{a,b\}$ muni de la topologie grossière (plus petite). Ainsi, \mathbb{R}/\sim n'est pas Hausdorff.

2. Considérons la relation d'équivalence sur ℝ :

$$x \sim y \iff x \text{ et } y \in \mathbb{R} \setminus \{0\} \text{ et } 0 \sim 0.$$

Ainsi, $\mathbb{R}/\sim=\{a,b\}$ en tant qu'ensemble, mais la topologie est différente

$$\mathcal{T} = \{\emptyset, \{a,b\}, \{a\}\}.$$

C'est l'exemple non trivial le plus simple d'un espace non Hausdorff.

1/17

Théorème

Soit X un espace topologique muni d'une opération continue d'un groupe G. Supposons que

1. $\forall x \in X \quad \exists un voisinage U de x tq \forall g \in G \setminus \{e\}$

$$gU \cap U = L_g(U) \cap U = \varnothing$$
.

2. $O_X \neq O_{X'} \implies \exists un \ voisinage \ U \ de \ x \ et \ un \ voisinage \ U' \ de \ x' \ tq \ \forall g \in G$ on $a \ U \cap gU' = \emptyset$.

Alors, X/G est Hausdorff.

Notons que la propriété 1. implique que X est Hausdorff.

Démonstration.

Désignons $\pi: X \to X/G$ et posons $V = V_X := \pi(U) \subset X/G$, où U est un voisinage comme dans la propriété 1. Considérons

$$\pi^{-1}(V) = \{ y \in X \mid \exists z \in U \text{ tq } y = g \cdot z \} = \bigsqcup_{g \in G} gU.$$

Tout sous-ensemble $gU = L_g(U)$ est ouvert puisque L_g est un homéomorphisme et donc une application ouverte. Alors, $\pi^{-1}(V)$ est ouvert $\iff V$ est ouvert par définition de la topologie quotient. Évidemment, si $U' \subset X$ est ouvert et $U' \subset U$, alors $V' := \pi(U')$ est ouvert dans X/G et $\pi^{-1}(V') = \bigsqcup_{g \in G} gU'.$

Notons que $\pi: U \to V$ est bijective parce que

$$\pi(x) = \pi(x') \implies x' = g \cdot x \in U \cap gU \implies g = e \implies x = x'.$$

Donc, $\pi|_U: U \to V$ est bijective, continue et ouverte $\implies \pi|_U$ est un homéo.

3/17

Démonstration (suite).

Soit $[x] \neq [x'] \implies x \neq x'$. Pour x' on trouve les voisinages U' de x' et x' de x' tq $x: U' \rightarrow V'$ est un homéo et x' et x' et x' et x' de x' peut supposer que

$$U \cap gU' = \emptyset \qquad \forall g \in G.$$

Nous avons

$$V \cap V' \neq \emptyset \iff \pi^{-1}(V) \cap \pi^{-1}(V') \neq \emptyset \iff \exists g \in G \text{ tq } U \cap gU' \neq \emptyset.$$

Ainsi, $V \cap V' = \emptyset \text{ et } X/G \text{ est Hausdorff.}$

Exemple

1. Considérons l'opération de $(\mathbb{Z}, +)$ sur $X = \mathbb{R}$ définie par $(n, x) \mapsto x + n$. Pour un $x \in \mathbb{R}$ quelconque, posons U = (x - 1/4, x + 1/4). Évidemment, pour chaque $n \in \mathbb{Z} \setminus \{0\}$ on a que

$$U \cap nU = (x - 1/4, x + 1/4) \cap (x + n - 1/4, x + n + 1/4) = \emptyset.$$

Alors, la propriété 1. est satisfaite. De la même manière, on peut démontrer la propriété 2. Alors, \mathbb{R}/\mathbb{Z} est un espace Hausdorff.

Exercice : Montrer, que l'application $F: \mathbb{R} \to S^1$ definie par $F(t) = (\cos 2\pi t, \sin 2\pi t)$ induit un homéomorphisme $f: \mathbb{R}/\mathbb{Z} \to S^1$.

2. Considérons l'opération de \mathbb{Z}^2 sur $X = \mathbb{R}^2$ définie par $((n,m),(x,y)) \mapsto (x+n, y+m)$.

Exercice : Montrer, que l'espace quotient $\mathbb{R}^2/\mathbb{Z}^2$ est Hausdorff et que l'application $F: \mathbb{R}^2 \to S^1 \times S^1$ definie par

$$F(x, y) = (\cos 2\pi x, \sin 2\pi x, \cos 2\pi y, \sin 2\pi y)$$

induit un homéomorphisme $f: \mathbb{R}^2/\mathbb{Z}^2 \to S^1 \times S^1$.

5/17

Exemple (suite)

3. Considérons l'opération de $\mathbb{Z}_2 = \{\pm 1\}$ sur $X = S^n$ définie par $\varepsilon \cdot x = (\varepsilon x_0, \dots, \varepsilon x_n)$.

Pour tout $x \in S^n$ il existe évidemment un j tq $x_j \neq 0$. Si $x_j > 0$, on peut poser

poser $U_X := S^n \cap \{x_j > 0\}$, qui est ouvert. De plus, $U_X \cap -U_X = \emptyset$. Si $x_j < 0$, on peut choisir $U_X := S^n \cap \{x_j < 0\}$. Ça démontre la propriété 1. La propriété 2. est à vous de démontrer comme exercice. Ainsi, S^n/\mathbb{Z}_2 est Hausdorff.

 S^n/\mathbb{Z}_2 est clairement le plan projectif \mathbb{RP}^2 , càd que le plan projectif est un espace Hausdorff.

LE TORE (REVISITÉ)

Considérons l'opération de \mathbb{Z}^2 sur $X = \mathbb{R}^2$ comme dans l'exemple 2.

Exercice

Montrer que le carré $R := [0,1] \times [0,1]$ contient au moins un représentant de toute classe d'équivalence. En plus, chaque $(x,y) \in (0,1) \times (0,1)$ est l'unique représentant de sa classe d'équivalence.

Visuellement, il y a une bijection entre le tore et $S^1 \times S^1$. On a démontré déjà qu'en fait, c'est un homéomorphisme.

7/17

ESPACES CONNEXES

Intuitivement un espace est connexe s'il ne tombe pas en plusieurs morceaux.

Définition

Un espace topologique X est dit connexe si

$$X = U \cup V$$
 et $U \cap V = \emptyset$ \Longrightarrow $U = \emptyset$ ou $V = \emptyset$

lorsque *U* et *V* sont ouverts.

Si X n'est pas connexe, il existe des ouverts $U \neq \emptyset$ et $V \neq \emptyset$ tq

$$X = U \cup V$$
 et $U \cap V = \emptyset$ \Longrightarrow $U = X \setminus V$ est fermé.

Bien sûr, $V = X \setminus U$ est fermé aussi. Donc, U et V sont ouverts et fermés simultanément.

Exemple (non-exemples)

- $(X, \mathfrak{T}^{discr})$ n'est pas connexe (au moins si X contient au moins 2 points) : $X = \{x_0\} \cap (X \setminus \{x_0\})$.
- $(0,1) \cup (1,2)$ n'est pas connexe.

Lemme

Soit $A \subset X$ un sous-espace d'un espace topologique. Les assertions suivantes sont équivalentes :

- 1. A est connexe par rapport a la topologie induite;
- 2. Pour tous ouverts U_1 U_2 de X tg

$$A \subset U_1 \cup U_2$$
 et $U_1 \cap U_2 \cap A = \emptyset$, (*)

on a soit $A \subset U_1$, soit $A \subset U_2$.

Démonstration.

1. \Longrightarrow 2. Soient $U_1, U_2 \in \mathcal{T}_X$ tq (*). Désignons $V_i := U_i \cap A \in \mathcal{T}_A$. Alors,

$$A = V_1 \cup V_2$$
 et $V_1 \cap V_2 = \emptyset$ \Longrightarrow $V_1 = \emptyset$ ou $V_2 = \emptyset$.

Donc, $A \subset U_2$ ou $A \subset U_1$.

2. \Longrightarrow 1. Soient $V_1, V_2 \in \mathcal{T}_A$ tq

$$A = V_1 \cup V_2$$
 et $V_1 \cap V_2 = \emptyset$. $(**)$

Alors, il existe $U_1, U_2 \in \mathcal{T}_X \text{ tq } V_i = U_i \cap A. \ (**) \implies (*) \implies$

 $A \subset U_1$ ou $A \subset U_2$ \Longrightarrow $V_2 = \emptyset$ ou $V_1 = \emptyset$.

9/17

Proposition

[0,1] est connexe.

Démonstration.

Supposons que [0,1] est non-connexe. Alors, $[0,1] = U \cup V$, où $U \neq \emptyset$ et $V \neq \emptyset$ sont ouverts et fermés. En outre, on peut supposer que $0 \in U$.

$$\tau := \sup \{ t \in [0,1] \mid [0,t] \subset U \}.$$

Cas A: $\tau = 1$. Puisque 1 est un point limite de *U* et *U* est fermé, $1 \in U$. Puisque *U* est ouvert, $\exists \varepsilon > 0$ tq $(1 - \varepsilon, 1] \subset U$. De plus, par définition de τ ,

$$[0,1] = [0,t] \cup (1-\varepsilon,1] \subset U \implies V = \emptyset.$$

Contradiction.

Cas B : τ < 1. On peut supposer que τ > 0 (Pourquoi?). La démonstration de cas A implique que $\tau \in U$. Puisque U est ouvert, $\exists \varepsilon > 0$ tq $(\tau - \varepsilon, \tau + \varepsilon) \subset U \Longrightarrow [0, \tau + \varepsilon] \subset U \Longrightarrow \tau \neq \text{sup. Contradiction aussi.}$

Remarque

La même démonstration montre que on fait chaque intervalle

$$[a,b], (a,b], [a,b)$$
 et (a,b) (*)

est connexe. En fait, un sous-ensemble $A \subset \mathbb{R}$ est connexe (par rapport à la topologie induite) ssi A est un intervalle, càd

$$a_0, a_1 \in A, \quad a_0 \leq a_1 \qquad \Longrightarrow \qquad [a_0, a_1] \subset A. \tag{**}$$

Exercice

Montrer que (**) implique que A est l'un des éléments de la liste (*), où on admet aussi des intervalles (semi-)infinis, par exemple $(-\infty, b]$.

11/17

Proposition

Soit $f: X \to Y$ une application continue entre deux espaces topologiques. Si X est connexe, alors $f(X) \subset Y$ est connexe pour la topologie induite.

Démonstration.

Supposons que f(X) soit non-connexe :

$$f(X) = U \cup V$$
, $U, V \in \mathfrak{T}_{f(X)}$, $U \cap V = \emptyset$, $U \neq \emptyset$ et $V \neq \emptyset$.

Par déf. de la top. induite, $\exists \ \tilde{U}, \tilde{W} \in \mathfrak{T}_{\gamma} \text{ tq } U = f(X) \cap \tilde{U} \text{ et } V = f(X) \cap \tilde{V}.$ Puisque f est continue,

$$A := f^{-1}(\tilde{U}) = f^{-1}(U)$$
 et $B := f^{-1}(\tilde{V}) = f^{-1}(V)$

sont ouverts dans X. De plus,

$$X = A \cup B$$
 $A \cap B = \emptyset$, $A \neq \emptyset$ et $B \neq \emptyset$.

puisque

$$X = f^{-1}(f(X)) = f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V) = A \cup B$$

et $U, V \neq \emptyset \implies A, B \neq \emptyset$. Alors, X est non-connexe, une contradiction.

Remarque

Dans cette proposition seulement *X* est supposé être connexe. En particulier, *Y* peut être non-connexe.

Comme corollaire, on obtient

Théorème (Théorème des valeurs intermédiaires)

Supposons que X est connexe et $f \in C^0(X)$. Si $y_0 := f(x_0) \le y_1 := f(x_1)$, alors toutes les valeurs $y \in [y_0, y_1]$ sont atteintes par f, càd l'équation

$$f(x) = y$$

a une solution pour tout $y \in [y_0, y_1]$.

Démonstration.

Puisque $f(X) \subset \mathbb{R}$ est connexe et $y_0, y_1 \in f(X)$, l'intervalle $[y_0, y_1]$ est contenue dans f(X).

13/17

Ainsi, le théorème des valeurs intermédiaires pour fonctions $f:[a,b] \to \mathbb{R}$ est un corollaire de la connexité de l'intervalle sauf qu'en général les sup et inf ne sont pas toujours atteintes.

Proposition

Être connexe est une propriété topologique, càd

X est connexe et

 \Longrightarrow Y est connexe.

X et Y sont homéomorphes

Démonstration.

Supposons que $f: X \to Y$ est un homéomorphisme. Puisque X et connexe, Y = f(X) est connexe aussi.

Lemme

Un espace topologique X est non-connexe si et seulement s'il existe une fonction continue $f: X \to \{0,1\}$ et surjective (\Leftrightarrow non-constante), où $\{0,1\}$ est muni de la topologie discrète.

Démonstration.

Supposons $\exists f$. Soit $U = f^{-1}(0)$ et $V = f^{-1}(1)$. Evidemment $X = U \cup V$. Puisque $\{0\}$ et $\{1\}$ sont des ouverts de $\{0,1\}$, U et V sont des ouverts de X. Puisque Y est surjective ni Y n'est vide. Donc Y est non-connexe.

Supposons que X est non-connexe. Alors

$$X = U \cup V$$
, $U, V \in \mathcal{T}_X$, $U \cap V = \emptyset$, $U \neq \emptyset$ et $V \neq \emptyset$.

Définissons $f: X \rightarrow \{0, 1\}$ par

$$f(x) = \begin{cases} 0 & \text{si } x \in U, \\ 1 & \text{sinon.} \end{cases}$$

C'est une fonction continue puisque $f^{-1}(0) = U$ et $f^{-1}(1) = V$ sont des ouverts. En outre, f est surjective puisque ni U ni V n'est vide.

15/17

Proposition

Un produit X × Y de deux espaces topologiques est connexe si et seulement si X et Y sont connexes.

Démonstration.

Supposons que $X \times Y$ est connexe. Alors $X = p_1(X \times Y)$ et $Y = p_2(X \times Y)$ sont les images d'applications continues définies sur un espace connexe.

Supposons que X, Y sont connexes et que $F: X \times Y \to \{0, 1\}$ est continue. Puisque $\iota_y: X \to X \times Y$, $\iota_y(x) = (x, y)$, est continue (pourquoi?) $\forall y \in Y$, on a que

$$f_y: X \to \{0, 1\}, \qquad f_y(x) := F(x, y)$$

est continue. Alors, f_y est constante parce que X est connexe. De la même manière,

$$f_X: Y \to \{0, 1\}, \qquad f_X(y) = F(x, y)$$

est constante $\forall x \in X$. Alors, port tout $(x, y), (x', y') \in X \times Y$ on a que

$$F(x,y) = f_X(y) = f_X(y') = F(x,y') = f_{y'}(x) = f_{y'}(x') = F(x',y'),$$

càd que F est constante.

Exemple

- \mathbb{R}^n est connexe;
- Tout rectangle est connexe.

Proposition

Soit X un espace topologique et $A \subset X$ une partie connexe de X. Alors \overline{A} est aussi connexe.

Démonstration.

Soit $f : \overline{A} \to \{0,1\}$ une fonction continue. Alors,

 $f|_{A}:A \to \{0,1\}$ est continue \Longrightarrow $f|_{A}$ est constante $\equiv 1$.

Puisque $(\{0,1\}, \mathcal{T}^{discr})$ est Hausdorff et A est dense dans \bar{A} , il existe au plus une fonction continue $F: \bar{A} \to \{0,1\}$ tq $F|_{A} \equiv 1$. Cette fonction existe bien et est évidemment la fonction constante. Par l'unicité, $f: \bar{A} \to \{0,1\}$ est constante. Donc, \bar{A} est connexe.