Poisson-Verteilung, Poisson-Approximation

Definition 3.1. Eine \mathbb{N}_0 -wertige Zufallsvariable X heißt **Poisson-verteilt** zum Parameter $\lambda > 0$ ($X \sim \text{Pois}(\lambda)$), wenn für alle $k \in \mathbb{N}_0$

$$\mathbf{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

gilt.

Bemerkung. Dass es sich um eine Wahrscheinlichkeitsverteilung handelt, ergibt sich dank der Exponentialreihe:

$$\sum_{k=0}^{\infty} \mathbf{P}(X=k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1.$$

Bevor wir uns damit beschäftigen, in welchen Situationen die Poisson-Verteilung auftritt, beweisen wir eine mathematisch besonders nützliche Eigenschaft.

Lemma 3.2. Seien X_1, X_2 unabhängig, $X_1 \sim \operatorname{Pois}(\lambda_1), X_2 \sim \operatorname{Pois}(\lambda_2)$. Dann gilt:

$$X_1 + X_2 \sim \text{Pois}(\lambda_1 + \lambda_2).$$

Die Summe <u>unabhängiger</u> Poisson-verteilter Zufallsvariablen ist also wieder Poissonverteilt, und <u>der Parameter</u> der Summe ist die Summe der Parameter.

Beweis. $X_1 + X_2$ ist sicher \mathbb{N}_0 -wertig, und es gilt

$$\mathbf{P}(X_1 + X_2 = k) = \sum_{l=0}^{k} \mathbf{P}(X_1 = l) \mathbf{P}(X_2 = k - l) \stackrel{(*)}{=} \sum_{l=0}^{k} e^{-\lambda_1} \frac{\lambda_1^l}{l!} e^{-\lambda_2} \frac{\lambda_2^{k-l}}{(k-l)!}$$
$$= e^{-\lambda_1 - \lambda_2} \frac{1}{k!} \sum_{l=0}^{k} \frac{k!}{l!(k-l)!} \lambda_1^l \lambda_2^{k-l} = e^{-\lambda_1 - \lambda_2} \frac{(\lambda_1 + \lambda_2)^k}{k!}.$$

Dabei haben wir an der Stelle (*) ausdrücklich die Unabhängigkeit von X_1 und X_2 benutzt. Ohne diese Zusatzbedingung ist dieser Schritt im allgemeinen nicht zulässig.

Die praktische Relevanz der Poisson-Verteilung ergibt sich aus folgendem Satz, aus dem folgt, dass viele zufällige Vorgänge in guter Näherung durch Poisson-verteilte Zufallsvariablen beschrieben werden können.

Satz 3.3 (Poissonapproximation). Seien X_1, \ldots, X_n unabhängige $\{0, 1\}$ -wertige Zufalls-variablen mit

$$P(X_i = 1) = 1 - P(X_i = 0) = p_i.$$

Sei $S = X_1 + \cdots + X_n$ und Z Zufallsvariable mit $Z \sim \text{Pois}(\lambda)$ wobei $\lambda = p_1 + \cdots + p_n$. Dann gilt für $A \subset \mathbb{N}_0$:

$$|\mathbf{P}(S \in A) - \mathbf{P}(Z \in A)| \le \sum_{i=1}^{n} p_i^2.$$

Bemerkung. Falls die X_1, \ldots, X_n u.i.v. sind, also $p_i = p$ für ein p, so ist $S \sim \text{Bin}(n, p)$. Für $Z \sim \text{Pois}(\lambda)$ mit $\lambda = np$ gilt wegen $\sum_{i=1}^n p_i^2 = \frac{\lambda^2}{n}$

$$\sup_{A \subset \mathbb{N}_0} |\mathbf{P}(S \in A) - \mathbf{P}(Z \in A)| \le \frac{\lambda^2}{n} = np^2.$$

Korollar 3.4. Sei $0 \le p(n) \le 1$ und $0 \le \lambda$ mit $np(n) \to \lambda$. Sei $S_n \sim \text{Bin}(n, p(n))$ und $Z \sim \text{Pois}(\lambda)$. Dann gilt

$$\sup_{A \subset \mathbb{N}_0} |\mathbf{P}(S_n \in A) - \mathbf{P}(Z \in A)| \to 0 \quad \text{für } n \to \infty.$$

Beweis. Sei $Z_n \sim \text{Pois}(\lambda_n)$ mit $\lambda_n = np(n)$.

Zu zeigen ist:

$$\sup_{A\subset\mathbb{N}_0}|\mathbf{P}(Z_n\in A)-\mathbf{P}(Z\in A)|\to 0.$$

Wegen $|x^k-y^k| \le k|x-y||x^{k-1}+y^{k-1}|$ für beliebige $x,y\in\mathbb{R}$ und $k\in\mathbb{N}$ (benutzt an der Stelle (*)) gilt:

$$\sup_{A \subset \mathbb{N}_{0}} \left| \sum_{k \in A} e^{-\lambda_{n}} \frac{\lambda_{n}^{k}}{k!} - e^{-\lambda} \frac{\lambda^{k}}{k!} \right| \leq \sum_{k=0}^{\infty} \left| e^{-\lambda_{n}} \frac{\lambda_{n}^{k}}{k!} - e^{-\lambda} \frac{\lambda^{k}}{k!} \right|$$

$$\leq \sum_{k=0}^{\infty} \left| e^{-\lambda_{n}} - e^{-\lambda} \right| \frac{\lambda_{n}^{k}}{k!} + e^{-\lambda} \sum_{k=0}^{\infty} \left| \frac{\lambda_{n}^{k} - \lambda^{k}}{k!} \right|$$

$$\stackrel{(*)}{\leq} \left| e^{-\lambda_{n}} - e^{-\lambda} \right| e^{\lambda_{n}} + e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda_{n}^{k-1} + \lambda^{k-1}}{k!} |\lambda_{n} - \lambda|$$

$$\to \left| e^{\lambda} - e^{\lambda} \right| \cdot e^{\lambda} + e^{-\lambda} |\lambda - \lambda| \left(e^{\lambda} + e^{\lambda} \right) = 0$$

für $n \to \infty$.

In typischen Anwendungen geht es oft um eine große Zahl $n \gg 1$ von Individuen, Partikeln o.ä., von denen jedes eine geringe Wahrscheinlichkeit p_i hat, in einem gegebenen Zeitraum und unabhängig von allen anderen eine bestimmte Aktion (Anfrage an eine Hotline stellen, ein gegebenes Geschäft aufsuchen, radioaktiv zerfallen, ...) zu initiieren:

f.
$$i = 1, ..., n$$
: $\mathbf{P}(i \text{ initiiert Aktion}) = p_i = 1 - \mathbf{P}(i \text{ initiiert Aktion nicht}).$

Beschreiben wir also das zufällige Initiieren der Aktion durch i durch die $\{0,1\}$ -wertige Zufallsvariable $X_i \sim \text{Bin}(1,p_i)$ (1 für "i initiiert die fragliche Aktion", 0 für "i initiiert die Aktion nicht"), so ist die Anzahl der initiierten Aktionen (Anrufe, ankommende Kundschaft, Zerfälle, ...) im gegebenen Zeitraum die Summe S_n der X_i , also im speziellen Fall $p_1 = \cdots = p_n = p$ nach Beispiel 12 Bin(n,p)-verteilt. Da Binomialkoeffizienten für große n sehr schnell so groß werden, dass sie auch mit modernen Rechnern nicht mehr sinnvoll berechnet werden können, sind wir heilfroh, dass wir die Binomialverteilung mit großen n und kleinen p durch die Poissonverteilung approximieren können.

Beispiel 15 (Radioaktiver Zerfall). Ein Stück Erz enthalte 0,24 mg des Isotops ^{238}U , das entspricht ca. $6\cdot 10^{17}$ Uran-238-Kernen. Von diesen hat jeder eine Wahrscheinlichkeit von ca. $4,92\cdot 10^{-18}$, innerhalb einer Sekunde radioaktiv zu zerfallen. Wir haben es also mit der Situation $n=6\cdot 10^{17}$, $p=4,92\cdot 10^{-18}$ zu tun, und die Zahl der in einer Sekunde zu erwartenden Zerfälle ist dann $S\sim \text{Bin}(6\cdot 10^{17},4,92\cdot 10^{-18})$. Es ist nicht leicht, die Wahrscheinlichkeit $\mathbf{P}(S\geq 2)$, dass innerhalb einer Sekunde mindestens 2 Zerfälle stattfinden, zu berechnen.

Die Bemerkung vor dem Korollar besagt nun, dass wir S durch $Z \sim \text{Pois}(\lambda)$ mit $\lambda = np \approx 2,95$ ersetzen dürfen und dabei einen Fehler von höchstens

$$|\mathbf{P}(S \ge 2) - \mathbf{P}(Z \ge 2)| \le \frac{\lambda}{n} = np^2 \approx 1,45 \cdot 10^{-17}$$

machen werden.

Wir berechnen also

$$\mathbf{P}(Z \ge 2) = 1 - \mathbf{P}(Z \le 1) = 1 - \mathbf{P}(Z = 0) - \mathbf{P}(Z = 1)$$
$$= 1 - e^{-\lambda} \left(\frac{\lambda^0}{0!} + \frac{\lambda^1}{1!}\right) = 1 - e^{-2,95}3,95 \approx 0,793$$

und machen einen Fehler von höchstens $1,45 \cdot 10^{-17}$.

3 Poisson-Verteilung, Poisson-Approximation

Wir bemerken noch, dass wir auch ein größeres Stück Erz mit, sagen wir, 24 mg Uran-238 hätten betrachten können. Dann hätten wir $n \approx 6 \cdot 10^{19}$, $\lambda \approx 295$ und einen Fehler von höchstens $1,45 \cdot 10^{-15}$ gehabt. Allerdings wäre dann

$$\mathbf{P}(Z \le 1) = e^{-295}(1 + 295) \approx 2,26 \cdot 10^{-126}$$

gewesen. Hier hätten wir dann eher nach der Wahrscheinlichkeit für $Z \geq 200$ fragen sollen, denn wir hätten (mit Hilfe eines Computers)

$$1 - \mathbf{P}(Z \ge 200) = \mathbf{P}(Z \le 199) \approx 1,82 \cdot 10^{-9}$$

erhalten. Das wäre bei einem Fehler von höchstens 1 1,45 · 10^{-15} schon wieder aussage-kräftig.

Beispiel 16 (Qualitätskontrolle). Sei

$$X_i = \begin{cases} 1 & \text{falls Artikel i fehlerhaft,} \\ 0 & \text{sonst} \end{cases}$$

 $mit \mathbf{P}(X_i = 1) = 0,015.$

Annahme: X_1, \ldots, X_n sind unabhängig identisch verteilt.

Packe Paket mit n Artikeln mit der Forderung

$$q = \mathbf{P}(Paket\ enthält\ 100\ fehlerfreie\ Artikel) \ge 0, 9.$$

Frage: Wie groß muss n sein?

Lösung:
$$q = \mathbf{P}(X_1 + \ldots + X_n \le n - 100) \approx \mathbf{P}(Z \le n - 100) = \sum_{k=0}^{n-100} e^{-np} \frac{(np)^k}{k!}$$
, wo

¹wohlgemerkt: für die schlimmstmögliche Menge – für $\{A=Z^{-1}(\{0,1,\ldots,199\})\}$ dürfte der tatsächliche Fehler noch deutlich kleiner sein.

 $Z \sim \text{Pois}(np)$. Dabei ist nun n nicht fixiert, p = 0,015 hingegen schon. Wähle

$$n = \min\{m : \sum_{k=0}^{m-100} e^{-mp} \frac{(mp)^k}{k!} \ge 0, 9\}.$$

Für die Summe gibt es folgende Ergebnisse:

$$m = 100: 0,22;$$
 $m = 101: 0,55;$ $m = 102: 0,80;$ $m = 103: 0,93.$

Der Approximationsfehler ist $\leq np^2 \approx 0,023$.

Also ist das Ergebnis ist n = 103.

Wir sind noch den Beweis des Satzes schuldig, auf dem unsere bisherigen Überlegungen aufbauten. Dazu benötigen wir noch folgendes Lemma.

Lemma 3.5. Seien U,V zwei Zufallsvariablen auf dem gleichen Wahrscheinlichkeitsraum. Dann gilt für jede Menge A:

$$|\mathbf{P}(U \in A) - \mathbf{P}(V \in A)| \le \mathbf{P}(U \ne V)$$

Man beachte, dass die rechte Seite nur Sinn ergibt, wenn U und V auf dem gleichen Wahrscheinlichkeitsraum definiert sind, die linke Seite hingegen immer.

Beweis. Es gilt:

$$|\mathbf{P}(U \in A) - \mathbf{P}(V \in A)| = |\mathbf{P}(U \in A, U \neq V) - \mathbf{P}(V \in A, U \neq V)| \le \mathbf{P}(U \neq V).$$

Beweis von Satz 3.3. Die Beweisidee beruht auf sogenannten starken Approximationen (coupling technique). Wir konstruieren Zufallsvariablen Z' und S' auf demselben Wahrscheinlichkeitsraum (bisher waren die Wahrscheinlichkeitsräume, auf denen Z und S definiert waren, weder spezifiziert noch im allgemeinen bekannt), wobei Z' dieselbe Verteilung wie Z hat und S' dieselbe Verteilung wie S. Dann werden sich in der Konstruktion Z' und S' mit hoher Wahrscheinlichkeit nur wenig unterscheiden. In unserem Fall genauer: $\mathbf{P}(Z' \neq S')$ ist klein.

Die Zufallsvariablen Z' und S' werden mit Hilfe der $\{-1\} \cup \mathbb{N}_0$ -wertigen Zufallsvariablen U_1, \ldots, U_n konstruiert.

Seien U_1, \ldots, U_n unabhängig mit

$$\mathbf{P}(U_i = -1) = e^{-p_i} - (1 - p_i),$$

$$\mathbf{P}(U_i = 0) = 1 - p_i,$$

$$\mathbf{P}(U_i = k) = e^{-p_i} \frac{p_i^k}{k!} \quad \text{für } k = 1, 2, \dots$$

Dies ergibt Sinn wegen

3 Poisson-Verteilung, Poisson-Approximation

1.
$$e^{-p_i} - (1 - p_i) \ge 0$$
, da $f(x) = e^x$ konvex ist,

2.
$$\sum_{j=-1}^{\infty} \mathbf{P}(U_i = j) = 1.$$

Nun definieren wir:

$$X_i' = \mathbf{1}_{\{U_i \neq 0\}} = \begin{cases} 1 & \text{falls } U_i \neq 0; \\ 0 & \text{sonst;} \end{cases}$$
$$Z_i' = U_i \mathbf{1}_{\{U_i \geq 0\}} = \begin{cases} U_i & \text{falls } U_i \geq 1; \\ 0 & \text{sonst.} \end{cases}$$

Dann gilt: $\mathcal{L}(X_i') = \mathcal{L}(X_i), \ \mathcal{L}(Z_i') = \text{Pois}(p_i).$ Also

$$S' = X'_1 + \ldots + X'_n \stackrel{Bsp.12}{\sim} \mathcal{L}(S),$$

$$Z' = Z'_1 + \ldots + Z'_n \stackrel{Lemma \ 3.2}{\sim} \operatorname{Pois}(\lambda) = \mathcal{L}(Z)$$

mit $\lambda = \sum_{i=1}^{n} p_i$.

Die Aussage folgt nun aus Lemma 3.5 und der Ungleichung

$$\mathbf{P}(S' \neq Z') \le \sum_{i=1}^{n} p_i^2.$$

Zum Beweis dieser Ungleichung zeige zunächst $\mathbf{P}(X_i' \neq Z_i') \leq p_i^2$:

$$\mathbf{P}(X_i' \neq Z_i') = \mathbf{P}(U_i = -1 \text{ oder } U_i \ge 2)$$

$$= 1 - \mathbf{P}(U_i = 0) - \mathbf{P}(U_i = 1)$$

$$= 1 - (1 - p_i) - e^{-p_i} p_i$$

$$= p_i (1 - e^{-p_i}) \le p_i^2$$

wegen $e^{-p_i} - (1 - p_i) \ge 0$, siehe oben. Hieraus erhält man:

$$\mathbf{P}(S' \neq Z') \le \mathbf{P}(\exists i : X'_i \neq Z'_i) \le \sum_{i=1}^n \mathbf{P}(X'_i \neq Z'_i) \le \sum_{i=1}^n p_i^2.$$