Simulation of antennas using MMANA program

Laboratory work

Aim of work: get acquainted with the modeling of wire antennas, learn to determine the basic parameters of antennas and change them.

Software: antenna analysis program MMANA (http://mmhamsoft.amateur-radio.ca/mmana/index.htm) is used. **This program consists of four main windows:**

1. Antenna geometry

2. Antenna view

3. Calculation

4. Directivity diagamm (Far Fields)

Workflow

Part 1. Dipole modelling

1. Create a dipole model. In the Geometry window, enter the coordinates of both ends of one wire corresponding to the half-wavelength dipole length L. Ffrequency is.

$$f=350$$
 MHz

$$R = 2.5 \text{ mm}$$

divide the wavelength $\lambda = c / f$ in half $(L = \lambda / 2)$ and the Y coordinates of the antenna ends will be -L / 2 and L / 2:

	X1(m)	Y1(m)	Z1(m)	X2(m)	Y2(m)	Z2(m)	R(mm)	Seg
Initial	0	-0.21425	0	0	0.21425	0	2.5	-1
Optimized	0	-0.20120	0	0	0.20120	0	2.5	-1

Enter the antenna cable radius R specified, select automatic cable segmentation (Seg = -1).

- 2. In the middle of the cable, turn on the Source by typing W1C in the PULSE box.
- 3. View the image of the created model in the View window. Check that the cable length corresponds to the calculated one.
- 4. In the Compute window, set the antenna modeling in Free Space and calculate its parameters (Start).
- 5. Write down the obtained value of the input impedance Zin(R + jX)

and by changing the length of the antenna (symmetrically lengthening or shortening the conductor) find its resonant length when the reactive part is close 0:

$$Lrez = 0.402 \text{ m}$$

 $Z = 72.58 + j0.33$

6. In the Far field plot window, copy the Paint dipole direction diagram. The chart can also be saved via File-Save Far Fields. These charts can then be opened in the program via File-Open Far Fields or Tools-Compare.

7. Investigate the dipole Zin frequency range $\sim 0.1f$... 2-2.5f. To do this, select the Plot button in the Compute window and select or enter the appropriate bandwidth (BW) in the window that appears. Click All points and you will get the R and X curves in the Z window. These curves can be displayed in detail by clicking on the Detailed and Set window and selecting a larger number of added points. Copy the resulting dependencies, move them to Paint, and save.

8. Extend the dipole to $L = \lambda$. Calculate its directional diagram, copy it. Compare with the half-wave dipole diagram. What gain G is obtained by extending the antenna in this way?