

Résolution des CSPs continus Julien Alexandre dit Sandretto

Adaptation des algorithmes du discret

Filtrage Quelques propriétés Méthode de branchement

Les algorithmes classiques

Branch & Prune
Branch & Contract

Ibex

TP: écrire un solveur de CSP continus

Adaptation des algorithmes du discret

Deux grands principes pour la résolution des CSPs discrets :

- l'algorithme systématique (avec sa variante de simple retour arrière)
- ▶ le filtrage en fonction de la consistance

Filtrage

Dans le domaine continu : filtrage = contracteurs

Contracter un CSP consiste à remplacer une boîte [x] par une boîte plus petite [x'], telle que l'ensemble solution reste inchangé. C'est à dire, si $\mathcal{S} \subset [x]$, alors $\mathcal{S} \subset [x'] \subset [x]$.

Les propriétés d'un contracteur sont :

- ▶ Contractance : $\forall [x], \quad C([x]) \subset [x]$
- ▶ Correction : $\forall [x], [x] \cap S \subset C([x])$

Les contracteurs peuvent être combinés $C_1(C_2([x]))$ ou embarqués $C_1(C_2,[x])$

Contracteurs

Les contracteurs les plus connus :

- Ctc_{fwd/bwd}([x]), reposant sur la programmation par contrainte (le Forward/Backward)
- Ctc_N([x]), un algorithme de Newton (pour les problèmes carrés), de plus, il prouve l'existence et l'unicité de la solution
- ► Ctc_{FixedPoint}(Ctc, [x]), un contracteur de point fixe. Il appelle itérativement le contracteur Ctc
- Ctc_{cid}(Ctc, [x]), réalise des tranches de [x], appelle Ctc sur chaque tranche, et retourne l'union des résultats.

Quelques propriétés

Un contracteur Ctc est:

- ▶ Monotone si et seulement si $[p] \subset [q] \Rightarrow Ctc([p]) \subset Ctc([q])$
- ▶ Minimal ssi $\forall [p] \in \mathbb{IR}^n$, $Ctc([p]) = [[p] \cap S]$
- ▶ Fin ssi $\forall p \in \mathbb{R}^n$, $Ctc(p) = \{p\} \cap S$
- ▶ Idempotent ssi $\forall [p] \in \mathbb{IR}^n$, Ctc(Ctc([p])) = Ctc([p])
- ▶ plus contractant que Ctc' ssi $\forall [p] \in \mathbb{IR}^n, Ctc([p]) \subset Ctc'([p])$

Méthode de branchement

Algorithmes systématiques du monde discret : génèrer une affectation totale ou partielle

On choisie une valeurs parmi celles possibles dans le domaine et on l'assigne à la variable.

Dans le continu, on ne va évidement pas piocher toutes les valeurs possibles, puisqu'il y en a une infinité

Méthode de branchement

Considérons un domaine continu : [x], alors deux affectations possibles, sans perte de solution, sont $[x_1]$ et $[x_2]$ tels que $[x_1] \cup [x_2] = [x]$.

Cette découpe d'un intervalle en deux intervalles telle que toutes les valeurs possibles sont conservées = **bissection**.

La bissection peut se réaliser au milieu : $[x] = [\underline{x}, m(x)] \cup [m(x), \overline{x}]$ ou à 90% par exemple

Boîte (un vecteur d'intervalles) : choisir la dimension à bissecter (rappel des heuristiques du deuxième cours)

La bissection \Rightarrow le pavage (intérieur ou extérieur) d'un ensemble, ou un arbre de recherche dans le domain initial

Méthode de branchement

Par exemple, parcourir le domaine donné par une boîte $[1,3] \times [1,3]$, après deux bissections (une sur la première dimension et une sur la deuxième) :

Heuristiques de bissection

- ► Choix de la variable à bissecter (LargestFirst, RoundRobin)
- Choix du nombre (pas forcément en 2) ou de l'endroit de la bissection (pas forcément au milieu)

Mais aussi les approches rognage (ou slicer) : découper les bords d'un intervalle et essayer de l'invalider pour l'enlever (3bCid)

Les algorithmes classiques

Deux algorithmes de branchement les plus utilisés (dans leur version simple) :

- ▶ Branch & Prune
- ▶ Branch & Contract

Branch & Prune

Traduction directe du génère et teste au domaines continus

Calculer un pavage approximant l'ensemble solution (si il n'est pas vide)

2 types de contraintes sont nécessaires :

- validant un domaine C_{in}, c'est à dire faisant partie de l'ensemble solution et donc une boîte intérieure
- ▶ invalidant un domaine C_{out} , c'est à dire dont aucun point ne fait partie de l'ensemble solution et donc une boîte extérieure

Branch & Prune


```
Require: Stack = \emptyset, Stack_{acc} = \emptyset, Stack_{rei} = \emptyset, Stack_{unc} = \emptyset, [X]_0 \subset \mathbb{R}^{-1}
   Push [X]_0 in Stack
  while Stack \neq \emptyset do
      Pop a [X] from Stack
      if C_{in}([X]) then
         Push [X] in Stack_{acc}
      else if C_{out}([X]) then
         Push [X] in Stack_{rei}
      else if width([X]) > \tau then
         ([X_{left}], [X_{right}]) = Bisect([X])
         Push [X_{left}] in Stack
         Push [X_{right}] in Stack
      else
         Push [X] in Stackung
      end if
  end while
```

Exemple Branch & Prune

Calcul des points faisant partie d'un anneau centré en zéro et dont le rayon est compris entre 1,9 et 2,1

- $\rightarrow \mathcal{X} = \{x, y\}$
- $\mathcal{D} = \{[-5, 5]^2\}$
- $\mathcal{C} = \{x^2 + y^2 \in [1.9, 2.1]\}$

Contrainte de rejet : $x^2 + y^2 \notin [1.9, 2.1]$

Branch & Contract

Utilise le filtrage pour accélérer la résolution

Branch & Contract


```
Require: Stack = \emptyset, Stack_{acc} = \emptyset, Stack_{rei} = \emptyset, Stack_{unc} = \emptyset, [X]_0 \subset \mathbb{R}
  Push [X]_0 in Stack
  while Stack \neq \emptyset do
      Pop a [X] from Stack
      Contract [x] w.r.t. Cin
     if C_{in}([X]) then
         Push [X] in Stack_{acc}
      else if C_{out}([X]) then
         Push [X] in Stack_{rei}
      else if width([X]) > \tau then
         ([X_{left}], [X_{right}]) = Bisect([X])
         Push [X_{left}] in Stack
         Push [X_{right}] in Stack
      else
         Push [X] in Stack_{unc}
      end if
  end while
```

Exemple Branch & Contract

Comparaison arbres de recherche

Effet de la contraction :

- le nombre bien inférieur de bissections nécessaires (plus rapide)
- plus petit arbre de recherche (moins de mémoire)
- une précision supérieure pour un seuil de bissection similaire (plus précis)

Fonctionnalités avancées Ibex


```
Variable x(2):
Function func(x, x[0]+x[1]);
//ou Function func(x,Return(x[1], 2*x[0]);
NumConstraint cst(func, EQ); ou LEQ
CtcFwdBwd ctc(cst);
IntervalVector box(2,Interval(0,1));
ctc.contract(box);
LargestFirst bb(0.01);
pair<IntervalVector, IntervalVector>
              box_bis = bb.bisect(box);
IntervalVector box_first=box_bis.first;
ctc.contract(box_first);
```

TP: écrire un solveur de CSP continus

En utilisant Ibex, programmer un solveur de CSP (idéalement un Branch & Contract) capable de caractériser la solution au problème suivant :

Quels sont les points de $[-3,3]^2\subset\mathbb{R}^2$ qui sont à la fois définis comme étant dans l'image inverse de [-0.1,0.1] par la fonction $f(x,y)=x^4-x^2+4y^2$ et à une distance de [0.9,1.1] du zéro.

Essayez différentes heuristiques pour améliorer la rapidité/qualité.

Solution

Voir fichier cpp

Solution

Image de
$$f(x,y) = x^4 - x^2 + 4y^2$$
:

Solution

Intersection avec cercle:

