Elliptic Curves Example Sheet 1

Isaac Martin

Last compiled February 10, 2022

EXERCISE 2 Find rational parametrizations for the plane conic $x^2 + xy + 3y^2 = 1$ and for the singular plane cubic $y^2 = x^2(x+1)$.

Proof: We first consider the plane conic $f(x,y) = x^2 + xy + 3y^2 - 1 = 0$ as a curve over \mathbb{R} , and we illustrate the method by which the rational parametrization was found for the sake of the author who will revise these problems prior to the exam. The point (-1,0) is a solution to f(x,y) = 0 and therefore the line y = t(x+1) intersects the curve defined by f at this point. We claim it intersects the ellipse f at exactly one other point for all but a single value of $t \in \mathbb{R}$. This point must satisfy the equation f(x,t(x+1)) = 0, hence

$$f(x,t(x+1)) = x^{2} + x(t(x+1)) + 3(t(x+1))^{2} - 1 = 0$$

$$\iff (x^{2} - 1) + x(t(x+1)) + 3(t(x+1))^{2} = 0$$

$$\iff (x+1) \left[(x-1) + xt + 3t^{2}(x+1) \right] = 0$$

$$\iff x = -1 \quad \text{or} \quad x = \frac{1 - 3t^{2}}{1 + t + 3t^{2}}.$$

Using the latter expression to solve for y in terms of t gives us the potential parameterization

$$x_t = \frac{1 - 3t^2}{1 + t + 3t^2}, y_t = \frac{2t + t^2}{1 + t + 3t^2}.$$

The calculation above proves that $f(x_t, y_t) = 0$, so we need only show that $t \mapsto (x_t, y_t)$ is injective outside of a finite subset of \mathbb{R} . To see this, consider the map $f(\mathbb{R}^2) \setminus \{(-1,0), (-1,1/3)\} \to \mathbb{A}^1$ defined $(x,y) \mapsto \frac{y}{x+1}$ is an inverse to $t \mapsto (x_t, y_t)$ outside except at (-1,0) and (-1,1/3). This means $t \mapsto (x_t, y_t)$ is injective except at these two points, and is therefore a rational parameterization of the curve.

Now consider the plane conic $C: y^2 = x^2(x+1)$, and let $x_t = t^2 - 1$ and $y_t = t(t^2 - 1)$. I claim that $t \mapsto (x_t, y_t)$ is a rational parameterization of C. The map $(x, y) \mapsto y/x$ is an inverse to $t \mapsto (x_t, y_t)$ everywhere except $(x, y) \in \{(\pm 1, 1), (\pm 1, -1), (0, 0)\}$ since

$$\frac{t(t^2-1)}{(t^2-1)} = t$$
 when $t \neq \pm 1$,

hence $t \mapsto (x_t, y_t)$ is injective outside a finite subset of \mathbb{R} . Furthermore,

$$y_t^2 = t^2(t^2 - 1)^2 = (t^2 - 1)^2(t^2 - 1 + 1) = x_t^2(x_t + 1),$$

so $t \mapsto (x_t, y_t)$ is indeed a rational parameterization of C.

EXERCISE 7 Let *E* be an elliptic curve over \mathbb{Q} with Weierstrass equation $y^2 = f(x)$.

(i) Put the curve E_d : $dy^2 = f(x)$ in Weierstrass form.

(ii) Show that if $j(E) \neq 0$, 1728 then every twist of E is isomorphic to E_d for some unique square-free integer d. [A *twist* of E is an elliptic curve E' defined over $\mathbb Q$ that is isomorphic to E over $\overline{\mathbb Q}$.]

EXERCISE 9

- (i) Find a formula for doubling a point on the elliptic curve $E: y^2 = x^3 + ax + b$. [You should fully expand the numerator of each rational function in your answer.]
- (ii) Find a polynomial in x whose roots are the x-coordinates of the points T with $3T = 0_E$. [Hint: Write $3T = 0_E$ as 2T = -T.]
- (iii) Show that the polynomial found in (ii) has distinct roots.

Proof:

(i)

EXERCISE 10 Let C be the plane cubix $aX^3 + bY^3 + cZ^3 = 0$ with $a,b,c \in \mathbb{Q}^*$. Show that the image of the morphism $C \to \mathbb{P}^3$; $(X^3 : Y^3 : Z^3 : XYZ)$ is an elliptic curve E, and put E in Weierstrauss form. [You should try to give an answer that is symmetric under permuting a,b and c.] What is the degree of the morphism from C to E?