Relation between dust, gas and metallicity in the extended HI disk

Methods

- Current works
 - Calculating total gas surface mass density from THINGS and HERACLES
 - Fitting dust surface mass density from Herschel maps (>100µm)
 - Using Voronoi binning to increase SNR
 - Using modified blackbody model with MCMC for fitting
- Future works
 - Analyzing DGR versus radius
 - Adding metallicity data

Methods

- Current works
 - Calculating total gas surface mass density from THINGS and HERACLES
 - Fitting dust surface mass density from Herschel maps (>100µm)
 - Using Voronoi binning to increase SNR
 - Using modified blackbody model with MCMC for fitting
- Future works
 - Analyzing DGR versus radius
 - Adding metallicity data

Why we need binning?

Voronoi binning

Methods

- Current works
 - Calculating total gas surface mass density from THINGS and HERACLES
 - Fitting dust surface mass density from Herschel maps (>100µm)
 - Using Voronoi binning to increase SNR
 - Using modified blackbody model with MCMC for fitting
- Future works
 - Analyzing DGR versus radius
 - Adding metallicity data

Modified Blackbody model and Herschel maps

Fitting results: trend in parameter space

Fitting results: parameter space

We use the "likelihood function" as:

Prob(Σ, T) ∞ exp(-(data-fit)²/2 σ ²)/ σ ,

thus, In(Prob) has a upper bound as

 $ln(Prob) \le -ln(\sigma)$.

- In this case, upper bound = -4.29, while the value we take have In(Prob) = -5.29
- Still testing parameters to define a "good fitting" according to upper bound

Fitting results: upper bound versus In(Prob)

Fitting results: upper bound versus In(Prob)

Fitting results: (cut at diff = 30)

Fitting results: histogram

Fitting results: DGR

Fitting results: scatter plot

End

Region to fit: HI dominate region

 $N(HI) > 10^{-18} \text{ cm}^{-2} \&$ $N(HI) > 2*N(H_2) \&$ All Herschel maps are not NAN

Calculate uncertainty by variance of region with: not (N(HI) > 10⁻¹⁸ cm⁻²) & The Herschel map is not NAN

Fitting results: exp calculation

[60, 70] → weird high temperature point

 $[55, 55] \rightarrow \text{normal point}$

If D = $a*G^b$, then log(D) = log(a) + b*log(G)