

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DATA SCIENCE

UNIT TEST-I

Class: SE Semester: IV Subject: Operating System

Date:28/02/2023 Time:2.00 PM to 3.30 PM Max marks: 40

Note the following instructions

- 1. Attempt all questions.
- 2. Draw neat diagrams wherever necessary.
- 3. Write everything in Black ink (no pencil) only.
- 4. Assume data, if missing, with justification.

Q1	Attem	pt any	two			Marks	СО	Blooms Taxonomy Level	РО
	A] Def operati	-	erating systetem.	em and expl	[5]	CO1	L2	-	
			yered struct tem with ap		[5]	CO1	L2	-	
	C] Wri	te a de	tailed note o	on system c	[5]	CO1	L2	-	
	- 1	ernel	e following	terms with	[5]	CO1	L2	-	
Q2	Attem	pt any	two						
	algori Preem	thm an	ound Robin of Priority S algorithm to	cheduling ([10]	CO2	L3	PO1	
			Time		Burst Time				
		P1	0	10	5				
		P2 P3	$\frac{1}{2}$	30	2				
		P4	4	40	1				
	proces time.	sses, s Calcul	antt chart f howing the late average Turnaround	eir start ti e waiting					

Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

	B] Sketch 7 State process model and illustrate the states in which a process can be in, and also define the flow in which a particular state can be achieved by the Process.											[10]	CO2	L3	PO1			
	C] Compare user level threads and kernel level threads with example.													[10]	CO2	L3	PO1	
Q3	3 Attempt any one										1							
A] Demonstrate Bankers Algorithm and consider the following system snapshot using data structures in the Banker's algorithm.											[10]	CO3	L3	PO1				
	Process Allocation					Max				Available								
		A	В	С	D	A	В	С	D	A	В	С	D					
	P0	0	0	1	2	0	0	1	2	1	5	2	0					
	P1	1	0	0	0	1	7	5	0									
	P2	1	3	5	4	2	3	5	6									
	P3	0	6	3	2	0	6	5	2									
	P4	0	0	1	4	0	6	5	6									
	Apply Banker's Algorithm and answer the following questions:1. How many resources to type A, B, C and D are there?2. What are the contents of Need matrix?																	
	3. Determine whether the system is in safe state. If yes then state the safe sequence.																	
	B] Demonstrate Producer Consumer problem and discover the solution to it using semaphores.											[10]	CO3	L3	PO1			