

FACULDADE DE TECNOLOGIA SENAC RIO						
Curso: Análise e Desenvolvimento de Sistemas		Semestre letivo: 2022.2				
Unidade Curricular: Estatística Aplicada		Módulo: 3				
Professor: Agnaldo Cieslak		Data:				
Competências a serem avaliadas:	Indicadores	de Competência:				
 Desenvolver sistemas computacionais aplicando boas práticas de Qualidade de Software 	Aplica as técnicas de tratamento estatístico de dados e informações importantes para o processo de tomada de decisão.					
Alunos:		Conceito:				

Tarefa de recuperação ciclo 1

Orientações:/

- Responder nesta folha na área de folha de respostas.
- A tarefa será executada individualmente.
- Usar suas próprias palavras na resposta de cada pergunta.

1) Uma faculdade apresentava, no final do ano, o seguinte quadro:

PERÍODOS	MATRÍCULAS		
PERIODOS	MARÇO	NOVEMBRO	
10	480	175	
20	458	456	
30	436	430	
40	420	42 0	
Total	1.794	1.781	

Há dois períodos de matrículas no ano. Considerar que em novembro é feita rematrícula de veteranos e matrícula de novos alunos. Qual a taxa de ingresso de novos alunos para o próximo ano? Qual a taxa de evasão/reprovação da faculdade, considerando período dos alunos? Demonstrar os cálculos detalhados.

Taxa de ingresso: 475/1781 = 26,67%;

Taxa de evasão: (480-456+458-430+436-420)/ 1794= 68/1794 = 3,79%

- 2) Para cada situação descrita abaixo, marque o tipo de amostragem a que se refere:
 - a) Obter uma amostra representativa, de 10%, de uma população de 200 alunos de uma escola. 1º) Numerar os alunos de 1 a 200; 2º) Escrever os números de 1 a 200 em pedaços de papel e colocálos em uma urna; 3º) Retirar 20 pedaços de papel, um a um, da urna, formando a amostra da população. Nesta técnica de amostragem, todos os elementos da população têm a mesma probabilidade de serem selecionados: 1/N, onde N é o número de elementos da população.

() Amostragem aleatória sistemática
 (X) Amostragem aleatória simples
 () Amostragem por conglomerados

b) Estudar a população de uma cidade, dispondo apenas do mapa dos quarteirões da cidade. Neste caso, não temos a relação dos moradores da cidade, restando o uso dos subgrupos heterogêneos. Para realizar o estudo estatístico sobre a cidade, realizaremos os seguintes procedimentos: 1º) Numerar os quarteirões de 1 a n; 2º) Escrever os números de 1 a n em pedaços de papel e colocá-los em uma urna; 3º) Retirar um pedaço de papel da urna e realizar o estudo sobre os elementos do quarteirão selecionado.

() Amostragem aleatória sistemática
 () Amostragem aleatória simples
 (X) Amostragem por conglomerados

c) Obter uma amostra de 80 casas de uma rua que contém 2000 casas. Nesta técnica podemos realizar o seguinte procedimento: 1º) Como 2000 dividido por 80 é igual a 25, escolhemos, por um método aleatório, um número entre 1 e 25, que indica o primeiro elemento selecionado para a amostra. 2º)Consideramos os demais elementos, periodicamente, de 25 em 25. Se o número sorteado entre 1 e 25 for o número 8, a amostra será formada pelas casas: 8ª, 33ª, 58ª, 83ª, 108ª, etc.

(x) Amostragem aleatória sistemática
() Amostragem aleatória simples
() Amostragem por conglomerados

3) Uma empresa petrolífera desenvolveu um óleo lubrificante para uso nos carros de Fórmula 1. Nos testes, o óleo foi submetido a trabalhar em dois níveis de temperatura, conforme tabela, durante um período de 10h. Ao longo deste período foram coletadas duas amostras, sendo tamanho 10 para a temperatura de 60°C e tamanho 9 para a temperatura de 80°C. Utilizando seus conhecimentos prévios de estatística, calcule as medidas estatísticas solicitadas e responda o que se pede.

Temperatura °C	Rendimento %				
60	69,0	65,4	67,2	67,8	66,4
	68,1	63,8	65,4	66,0	65,8
80	63,0	65,4	60,2	61,5	59,8
	66,1	56,8	64,5	61,0	XXX

a) Calcular as medidas estatísticas de tendência central: média, mediana e moda para cada temperatura. Os cálculos devem estar demonstrados.

Cálculos:

Média: (66,49%; 62,03%); mediana: (66,20%; 61,50%); moda:

(65,40%; amodal)

Comentários sobre os resultados alcançados:

b) Calcule as medidas estatísticas de posição relativa (separatrizes) Q1, Q2, Q3, D2.

Cálculos:

Q1: (65,40%; 60,20%); Q2: (66,20%; 61,50%); Q3: (67,80%; 64,50%); D2: (65,40%; 59,80%)

Comentários:

c) Dado que a variância das medidas são respectivamente 2,38% na temperatura de 60° e 9% para a temperatura de 80°C, calcular as medidas estatísticas de variabilidade: Amplitude R, Desvio padrão S e Coeficiente de variação CV para s duas temperaturas:

Cálculos:

$$5^2 = 7.38$$
 $5^2 = 9$

R: (5,20%; 9,30%); S²: (2,38%; 9,00%); S: (1,54%; 3,00%); CV: (2,39%; 4,84%)

Comentários:

- d) Faça uma interpretação das medidas estatísticas encontradas sobre o rendimento do óleo nas duas temperaturas testadas, suas variações e sua constância de resultados.
- e) Plotar o gráfico boxplot para as duas temperaturas:

Amplitude
$$R = X_{(n)} - X_{(1)}$$

Variância
$$s^2 = \sum_{i=1}^n \frac{(x_i - \overline{x})^2}{n-1}$$

Desvio Padrão
$$s=\sqrt{s^2}=\sqrt{\sum_{i=1}^n \frac{(x_i-\overline{x})^2}{n-1}}$$

Coeficiente de variação
$$\%CV = \frac{S}{\overline{X}} \cdot 100$$

Indicador de homogeneidade de dados CV ≤ 15% → baixa dispersão em relação à média 15%<CV < 30% → média dispersão em relação à média CV ≥ 30% → alta dispersão em relação à média

Folha de resolução: