Incremental Computation of Infix Probabilities for Probabilistic Finite Automata

Soon Chan Kwon

Marco Cognetta Yo-Sub Han

Yonsei University, Seoul, Republic of Korea http://toc.yonsei.ac.kr

Problem

We study the problem of *incrementally* computing infix probabilities of strings.

Use the infix probability of w to compute the infix probability of wa.

$$\mathcal{P}(\Sigma^*w\Sigma^*) \to \mathcal{P}(\Sigma^*wa\Sigma^*)$$

Given $w = w_1 w_2 \dots w_n$, calculate the infix probability of each prefix of w.

Previous Approach

Step

·Construct DFA \mathcal{D} for $\Sigma^* w \Sigma^*$

Construct DFA
$$\mathcal{D}$$
 for $\Sigma^* w \Sigma^* = O(|w|)$, Knuth-Morris-Pratt

·Create the automaton
$$\mathcal{D} \cap \mathcal{P}$$

$$O(|Q_{\mathcal{D}}||Q_{\mathcal{P}}|) = O(|w||Q_{\mathcal{P}}|)$$

Time Complexity

$$\mathcal{L}(w)$$
 $w \in L(\mathcal{D})$

$$[\mathcal{D} \cap \mathcal{P}](w) = egin{cases} \mathcal{P}(w), & w \in L(\mathcal{D}) \\ 0, & ext{otherwise} \end{cases}$$

·Compute
$$\sum_{x \in \Sigma^*} [\mathcal{D} \cap \mathcal{P}](x)$$
 $O((|w||Q_{\mathcal{P}}|)^m)$

$$O((|w||Q_{\mathcal{P}}|)^m)$$

Repeat for each prefix of
$$w$$

$$O(|w|(|w||Q_{\mathcal{P}}|)^m)$$

Notation

PFA
$$\mathcal{P} = (Q_{\mathcal{P}}, \Sigma, \{\mathbb{M}_{\mathcal{P}}(c)\}_{c \in \Sigma}, \mathbb{I}_{\mathcal{P}}, \mathbb{F}_{\mathcal{P}})$$

$$\cdot \mathbb{M}_{\mathcal{P}}(c) - |Q_{\mathcal{P}}| \times |Q_{\mathcal{P}}|$$
 transition matrix

$$\cdot \mathbb{I}_{\mathcal{P}} \ - \ 1 imes |Q_{\mathcal{P}}|$$
 initial weight vector $\cdot \mathbb{F}_{\mathcal{P}} \ - \ |Q_{\mathcal{P}}| imes 1$ final weight vector

$$\mathcal{P}(w) = \mathbb{I}_{\mathcal{P}} \prod_{i=1}^{|w|} \mathbb{M}_{\mathcal{P}}(w_i) \mathbb{F}_{\mathcal{P}}$$

State Elimination

Label DFA states 1 to |Q|=n. Add two new states q_0 and q_{n+1} and λ transitions from q_0 to q_1 and final states to q_{n+1} .

 $\alpha_{i,j}^{k}$ = paths leading from state *i* to state *j* that only visit states up to *k*

Eliminate state
$$k$$
: $\alpha_{i,j}^k = \alpha_{i,j}^{k-1} + \alpha_{i,k}^{k-1} (\alpha_{k,k}^{k-1})^* \alpha_{k,j}^{k-1}$

Base cases:
$$\alpha_{i,j}^0=egin{cases} \lambda, & i=0 \land j=1 \ \lambda, & q_i \in F \land j=n+1 \ \{c \mid \delta(q_i,c)=q_k\}, & \text{otherwise}. \end{cases}$$

Unambiguous Regular Expressions

An unambiguous regular expression is one that can only be matched to a string in one way. State elimination on a DFA gives an unambiguous regular expression.

Two regular expressions for all strings containing aa as an infix.

$$(a+b)^*aa(a+b)^*$$

$$aaaaaa$$

$$aaaaaa$$

$$aaaaaa$$

$$b^*a(bb^*a)^*a(a+b)^*$$
 $aaaaaa$
 $baaab$
 $abaab$

Ambiguous

Unambiguous

Regex \rightarrow **Transition Matrix**

We extract a transition matrix from a regular expression.

Regex	Matrix	Regex	Matrix
$\overline{\emptyset}$	0	$R \cup S$	$\mathbb{M}_{\mathcal{P}}(R) + \mathbb{M}_{\mathcal{P}}(S)$
λ	1	RS	$\mathbb{M}_{\mathcal{P}}(R)\mathbb{M}_{\mathcal{P}}(S)$
\boldsymbol{c}	$\mathbb{M}_{\mathcal{P}}(c)$	R^*	$(1-\mathbb{M}_{\mathcal{P}}(R))^{-1}$

$$R$$
 is unambiguous o $\mathbb{IM}_{\mathcal{P}}(R)\mathbb{F} = \sum_{w \in L(R)} \mathcal{P}(w)$

Incrementally Generating Infix Regex

Let $\mathcal{F}(w)$ be the set of strings ending in the <u>first</u> occurrence of w. Thus, $\mathcal{F}(w)\Sigma^* = \Sigma^*w\Sigma^*$.

Left Quotient: $R \setminus S = \{y \mid \exists x \in R \text{ s.t. } xy \in S\}$ $\mathcal{F}(wa) = \mathcal{F}(w) \cdot \mathcal{F}(w) \setminus \mathcal{F}(wa)$

$$a) = \mathcal{F}(w) \cdot \mathcal{F}(w) \setminus \mathcal{F}(wa)$$

$$\mathcal{F}(a) = b^* a \qquad \boxed{1} \qquad \boxed{2}$$

$$\mathcal{F}(aa) = b^*a(bb^*a)^*a \xrightarrow{b} \underbrace{a}_{b} \underbrace{2}_{a} \underbrace{3}_{b}$$

Key Idea

$$\alpha_{0,k+1}^{k} = \mathcal{F}(w_{1}w_{2} \dots w_{k}) = \boxed{\alpha_{0,k+1}^{k-1} + \boxed{\alpha_{0,k}^{k-1} \left[(\alpha_{k,k}^{k-1})^{*} \alpha_{k,k+1}^{k-1} \right]}} + \boxed{\beta_{0,k+1}^{k-1} \left[(\alpha_{k,k}^{k-1})^{*} \alpha_{k,k+1}^{k-1} \right]}$$

$$\mathcal{F}(w_{1}w_{2} \dots w_{k-1}) \setminus \mathcal{F}(w_{1}w_{2} \dots w_{k-1}w_{k})$$

$lpha^{0}$						$lpha^{1}$							
	0	1	2	3	4	5		0	1	2	3	4	5
0	Ø	λ	Ø	Ø	Ø	Ø	0	Ø	$\lambda + b^*b$	b^*a	Ø	Ø	Ø
1	Ø	b	\overline{a}	Ø	Ø	Ø	1	Ø	$b + bb^*b$	$a + bb^*a$	Ø	Ø	Ø
2	Ø	b	Ø	a	Ø	Ø	2	Ø	$b + bb^*b$	bb^*a	a	Ø	Ø
3	Ø	Ø	Ø	a	b	Ø	3	\emptyset	\emptyset	\emptyset	a	b	Ø
4	Ø	Ø	\emptyset	Ø	Ø	λ	4	Ø	Ø	Ø	Ø	Ø	λ
5	\emptyset	Ø	\emptyset	\emptyset	\emptyset	Ø	5	Ø	\emptyset	\emptyset	\emptyset	Ø	Ø

$$\mathcal{F}(a) = b^* a$$

$$\mathcal{F}(aa) = b^*a(bb^*a)^*a$$

Algorithm 1: Incremental Infix Probability

Data: PFA \mathcal{P} , String w1 $\mathcal{D} \leftarrow \mathsf{KMP} \; \mathsf{DFA} \; \mathsf{for} \; w$ 2 $n \leftarrow |Q_{\mathcal{D}}|$ $T, T' \leftarrow (n+2) \times (n+2)$ table 4 for $i, j \in [0, n+1]$ do if $(i = 0 \land j = 1) \lor q_i \in F \land j = n+1$ then $T_{i,j} = 1$ for c such that $\delta(q_i,c)=q_j$ do $T_{i,j} = T_{i,j} + \mathbb{M}_{\mathcal{P}}(c)$ 10 $\mathbb{V} \leftarrow \mathbb{I}_{\mathcal{P}}$ 11 for $k \in [1, n]$ do $\mathbb{V} \leftarrow \mathbb{V}(T_{k,k})^* T_{k,k+1}$ $\mid \hspace{0.1cm} \mathsf{yield} \hspace{0.1cm} \mathbb{VM}_{\mathcal{P}}(\mathbf{\Sigma}^{*})\mathbb{F}_{\mathcal{P}}$ for $i,j \in [0,n+1]$ do $T'_{i,j} = T_{i,j} + T_{i,k}(T_{k,k})^* T_{k,j}$

Experimental Results

States	Q =	= 614	Q =	= 1028	Q = 1455		
Infix Length	Incremental	Intersection	Incremental	Intersection	Incremental	Intersection	
1	0.226	0.147	0.857	0.468	2.383	1.079	
2	0.272	0.316	1.072	1.235	3.000	3.112	
3	0.334	0.637	1.327	2.634	3.693	6.997	
4	0.399	1.133	1.586	4.864	4.442	13.250	
5	0.465	1.934	1.855	8.104	5.124	22.357	
6	0.527	3.375	2.088	12.562	5.815	35.065	
7	0.584	4.129	2.347	18.414	6.593	51.709	
8	0.649	5.791	2.591	25.614	7.224	72.512	
9	0.711	7.879	2.851	34.959	7.950	99.347	
Total	4.169	25.342	16.574	108.853	46.224	305.428	

One iteration of the incremental algorithm is much faster than scrapping the computation and starting over (intersection method).

The total time to compute all infixes by the incremental method is less than the time to compute just the longest infix by intersection.

· Mark-Jan Nederhof and Giorgio Satta. Computation of infix probabilities for probabilistic context-free grammars. EMNLP 2011, pp 1213–1221.

• Ronald Book et al. 1971. Ambiguity in graphs and expressions. IEEE Transactions on Computers, 20:149–153.

Future Directions

·Backwards incremental infix computation.

$$\mathcal{P}(\Sigma^* w_i w_{i+1} \dots w_n \Sigma^*) \to \mathcal{P}(\Sigma^* w_{i-1} w_i w_{i+1} \dots w_n \Sigma^*)$$

Time Complexity: $O(|w|^3|Q_P|^m)$

·Streaming incremental infix computation.

Instead of knowing all of w at the beginning, receive characters one-by-one and compute the current infix probability on the fly.

·Two sided incremental infix probability.

In the streaming setting, allow characters to be prepended or appended at will, instead of always being added to the end.

·Incremental infix probability calculation for PCFGs.

The first three can be solved non-incrementally in $O(|w|(|w||Q_{\mathcal{P}}|)^m)$ time using the intersection algorithm. Can we acheive a similar speedup with a modified incremental approach?