Ablation Study on TD3

(Addressing Function Approximation Error in Actor-Critic Methods)

RL Team Implementation Project Team 11 施奕成、高嘉豪、楊宗穎、謝宏笙

Content

- Introduction (TD3)
- Ablation Study
 - TD3 modules tuning
 - Network architecture
 - Exploration
 - Sampling
 - Training Procedure
- Conclusion

Introduction

- DDPG has some issues (e.g. overestimation)
- TD3 (Twin Delayed Deep Deterministic policy gradient) is proposed
 - Clipped double Q-learning

$$y_1 = r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \pi_{\phi_1}(s')).$$

Target policy smoothing

$$y = r + \gamma Q_{\theta'}(s', \pi_{\phi'}(s') + \epsilon), \ \epsilon \sim \text{clip}(\mathcal{N}(0, \sigma), -c, c),$$

Delayed policy update

Introduction

- Experiments are done with the official released code from the authors
 - (Authors said it doesn't match the code used in the paper anymore)
- Our ablations are done in the following 4 MuJoCo environments
 - o Ant-v3
 - HalofCheetah-v3
 - Hopper-v3
 - Walker2d-v3
- The final results are average of 5 runs with different random seed

TD3 Modules Tuning

- Delayed policy update
- Target action noise
- Double Q

TD3 Modules Ablation

AHE = (TD3 architecture, hyper-parameters and exploration, no DP/TPS/CDQ)

- With the code, environment, and hyper-parameters changed, the modules ablation results from paper don't exactly hold true
- Most agents trained without CDQ suffer more significantly

Paper Paper					Ours				
Method	HCheetah	Hopper	Walker2d	Ant	Method	HCheetah	Hopper	Walker2d	Ant
TD3 AHE	9532.99 8401.02	3304.75 1061.77	4565.24 2362.13	4185.06 564.07	TD3 AHE	$10118.32 \\ 11129.36$	3272.81 1785.28	4956.59 511.73	3821.05 1291.70
AHE + DP AHE + TPS AHE + CDQ	7588.64 9023.40 6470.20	1465.11 907.56 1134.14	2459.53 2961.36 3979.21	896.13 872.17 3818.71	AHE+DP AHE+TPS AHE+CDQ	9857.86 10805.13 9681.62	1723.75 1444.09 3049.95	753.06 1082.89 4179.50	1694.79 1588.60 4185.18
TD3 - DP TD3 - TPS TD3 - CDQ	9590.65 8987.69 9792.80	2407.42 2392.59 1837.32	4695.50 4033.67 2579.39	3754.26 4155.24 849.75	TD3-DP TD3-TPS TD3-CDQ	9425.92 10287.62 11571.69	3322.63 3039.83 2347.96	5290.79 3806.50 1547.19	3977.29 4138.42 2147.88

Network Architecture

- Channel size of two FC layers:
 - Original [256, 256]
 - o Large [400, 300]
 - o Small [128, 128]

- Old DDPG-style:
 - The action in critic network
 only go through 1 layer (instead of 2)

Exploration - Policy Noise

- Gaussian noise vs. Ornstein-Uhlenbeck noise
- Noise scale (variance for Gaussian): 0.1 vs. 0.3

Exploration - Exploration Module

- APN (Adaptive Parameter Noise)
 - Add adaptive noise to the parameters of the neural network policy (rather than to its action space)
- RND (Random Network Distillation)

Random Network Distillation

Parameter Space Noise for Exploration, Plappert et al., ICLR 2018 Exploration by Random Network Distillation, Burda et al., ICLR 2019

Exploration - Exploration Module

 Agents trained with APN show better overall results compared to original and RND

Sampling

- PER (Prioritized Experience Replay)
 - Batch sampling by prioritization in memory.
 - If the TD-error is bigger, that means there still be room for prediction accuracy to rise, then the prioritization is higher.

Sampling

• results w/ PER

Training Procedure

- N-step return
 - Bias-variance tradeoff

Training Procedure

- Data augmentation
 - Gaussian noisy: add Gaussian noisy
 - Random ampilitude scaling (single): multiplies the uniform noisy (scalar)
 - Random ampilitude scaling (multiple): multiplies the uniform noisy (vector)

Training Procedure

Data argumentation may not really helpful

Conclusion

- We tested TD3 algorithm with various hyper-parameters setting and removed/added several modules to see how it perform.
- For certain environments, some modification we made lead to better results while other might not.
- Due to limited time and the number of settings, we didn't do the mix-and-match of different modifications, which may be something to explore later.

Exploration - Warm-up Steps

- At timestep < warm-up steps, a random action is chosen and no update
- Warm-up steps: [25000 (original), 10000, 50000]

