

CENTRO DE CIENCIAS BÁSICAS

DEPARTAMENTO DE SISTEMAS ELECTRÓNICOS

ACADEMIA DE ELECTRÓNICA Analógica

Nombre del Estudiante:		Fecha:		
Materia:	Electrónica II	Carrera:	ISC	
Profesor:	Ricardo González Reynoso	Semestre:	7 ° B	
Periodo:	() Enero – Junio (x) Agosto - Diciembre	Aciertos:		
Tine de Evener	Parcial: 1°() 2°() 3°(x)	Calificación		
Tipo de Examen:	Otro:	Calificación:		

Instrucciones:

- Escribir TODO el desarrollo del problema en el examen,
- Resultados sin justificación matemática NO serán válidos.

Si el ckto se alimenta con 20 Volts, diseñe el circuito de disparo, considerando que las condiciones de encendido en la compuerta se dan a la mitad de las escalas ahí indicadas

Valor:

2 Pts.

Considere en primera instancia que el SCR esta encendido. Cuál es el resultado de aumentar el valor de la resistencia progresivamente en éste arreglo......¿Por qué?

Valor: 1 Pts.

Diseñe un circuito basado en optotransistor para que se comporte de la siguiente manera:(considere la corriente del led infrarrojo en 10mA)

Valor: 2 Pts.

Valor:

3 Pts.

VIN	VOUT
+3V	-15V
-3V	+15V

Calcule cuántos grados de cambio de fase esta presente en el Voltaje del capacitor, en comparación con el Voltaje total en la red de la serie RC, asumiendo una frecuencia de 45 Hz y un ajuste del potenciómetro como ahí se indica.

Un motor de un 1HP (746 vatios), es alimentado con un voltaje de 120 Volts. Sabemos que Vatios/Voltaje = corriente. El encendido/apagado de éste motor es controlado por un microcontrolador que trabaja a 3.3 V y para ello se utiliza arreglo basado en opto-triac.

Se tiene dos posibles triacs de potencia para elegirse:

2n6075A y el BT08 y se muestran características de cada uno de ellos.

a)Elija el Triac para éste diseño

b)Elija el arreglo basado en opto-triac

c)Elija un valor conveniente de Rin para conectarse con la salida del microcontrolador.

Valor: 2Pts.

BT08 Series

8A TRIACs

4-Quardrant Triacs (standard & logic level)

Main features

Symbol	Value	Unit
I _{T(RMS)}	8	Α
V _{DRM} /V _{RRM}	600	V
I _{GT(Q1)}	10 to 35	mA

Electrical characteristics (T_i = 25℃, unless otherwise specified)

Test conditions	Quadrant			BT08		Unit
	Quadrant		10	25	35	Unit
	1 - 11 - 111	MAY	10	25	35	m 1
/ _D = 12V RL=100 ohm	IV	IVIAA.	25	50	70	mA
	ALL	MAX.		1.5		٧
/		I - II – III IV	D = 12V RL=100 ohm	10 I - II - III IV MAX. 10 25	D = 12V RL=100 ohm 10 25 10 25 25 50	10 25 35 1 - -

Para el 2n6075A

Characteristic	Symbol	Min	Тур	Max	Unit
*Peak Blocking Current (V _D = Rated V _{DRM} , gate open, T _J = 25°C) (T _J = 110°C)	IDRM	11	11	10 2	μA mA
*On-State Voltage (Either Direction) (I _{TM} = 6 A Peak)	Vтм	ı	1	2	Volts
*Peak Gate Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 Vdc, R _L = 100 Ohms, T _J = -40°C) MT2(+), G(+); MT2(-), G(-) All Types MT2(+), G(-); MT2(-), G(+) (Main Terminal Voltage = Rated V _{DRM} , R _L = 10 k ohms, T _J = 110°C)	V _{GT}	1.1	1.4 1.4	2.5 2.5	Volts
MT2(+), G(+); MT2(-), G(-) All Types MT2(+), G(-); MT2(-), G(+)		0.2 0.2	1 1	1 1	

2N6071A,B* 2N6073A,B* 2N6075A,B*

> TRIACS 4 AMPERES RMS 200 thru 600 VOLTS

QUADRANT (See Definition Below) IV IGT Type @ T_J mΑ mΑ mΑ mΑ 2N6071A +25°C 5 5 5 10 Gate Trigger Current (Continuous dc) (Main Terminal Voltage = 12 Vdc, RL = 100 ohms) 2N6073A -40°C 20 20 20 30 Maximum Value 2N6075A +25°C 3 3 3 5 2N6071B 2N6073B -40°C 15 15 20 2N6075B

Elija el arreglo:

the director IEDEO Descriptions d'Data

VCC Rin 1 MOC3010 6 180 2.4 k 120 V 60 Hz MOC3011 4 0.1 μF C1 60 Hz

Figure 7. Resistive Load

Figure 8. Inductive Load with Sensitive Gate Triac (IGT \leq 15 mA)

Figure 9. Inductive Load with Non–Sensitive Gate Triac (15 mA < IGT < 50 mA)

Recuerde que en el led infrarrojo de la entrada de control:

Characteristic	Symbol	Min	Тур	Max	Unit
INPUT LED					
Reverse Leakage Current (V _R = 3 V)	IR	_	0.05	100	μА
Forward Voltage (I _F = 10 mA)	V _F	_	1.15	1.5	Volts