

### SUN2000MA V100R001

# **MODBUS Interface Definitions**

Issue 01

Date 2019-01-02



#### Copyright © Huawei Technologies Co., Ltd. 2019. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

#### **Trademarks and Permissions**

HUAWEI and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

#### **Notice**

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

#### Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base

Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://e.huawei.com

# **Change History**

| Issue | Date       | Description                               |
|-------|------------|-------------------------------------------|
| 01    | 2019-01-02 | This issue is the first official release. |

# **Contents**

| Change History                                                  | ii |
|-----------------------------------------------------------------|----|
| 1 Introduction                                                  | 1  |
| 1.1 Terms and Abbreviations                                     | 1  |
| 1.2 System Requirements                                         | 2  |
| 1.3 Inverter Models and Rated Power                             | 2  |
| 2 Register Definitions                                          | 3  |
| 3 Alarms                                                        | 8  |
| 4 Communication Protocol Overview                               | 10 |
| 4.1 Physical Layer                                              | 10 |
| 4.2 Data Link Layer                                             | 10 |
| 4.2.1 Addressing Mode                                           | 10 |
| 4.2.2 Frame Structure                                           | 10 |
| 4.2.3 Data Encoding                                             | 11 |
| 4.2.4 Interaction Process                                       | 12 |
| 4.3 Application Layer                                           | 12 |
| 4.3.1 Function Code List                                        | 12 |
| 4.3.2 Exception Code List                                       | 12 |
| 4.3.3 Reading Registers (0X03)                                  | 14 |
| 4.3.3.1 Frame Format for a Request from a Master Node           | 14 |
| 4.3.3.2 Frame Format for a Normal Response from a Slave Node    | 14 |
| 4.3.3.3 Frame Format for an Abnormal Response from a Slave Node | 14 |
| 4.3.3.4 Example                                                 | 14 |
| 4.3.4 Writing a Single Register (0X06)                          | 16 |
| 4.3.4.1 Frame Format for a Request from a Master Node           | 16 |
| 4.3.4.2 Frame Format for a Normal Response from a Slave Node    | 16 |
| 4.3.4.3 Frame Format for an Abnormal Response from a Slave Node | 16 |
| 4.3.4.4 Example                                                 | 17 |
| 4.3.5 Writing Multiple Registers(0X10)                          | 18 |
| 4.3.5.1 Frame Format for a Request from a Master Node           | 18 |
| 4.3.5.2 Frame Format for a Normal Response from a Slave Node    | 18 |
| 4.3.5.3 Frame Format for an Abnormal Response from a Slave Node | 19 |

| SUN2000MA                                        |          |
|--------------------------------------------------|----------|
| MODBUS Interface Definitions                     | Contents |
|                                                  |          |
| 4.3.5.4 Example                                  | 19       |
| 4.3.6 Reading Device Identifiers (0X2B)          | 20       |
| 4.3.6.1 Commands for Querying Device Identifiers | 21       |
| 4.3.6.2 Command for Querying a Device List       | 22       |
| 4.3.6.3 Device Description Definitions           | 24       |

# 1 Introduction

This document describes the Modbus protocol used by Huawei inverters and provides standards and constraints for future third-party integration, development, and customization. Huawei inverters comply with the standard Modbus protocol, and this document describes only the information special for Huawei inverters. For other information about Modbus, see the documents about the standard Modbus protocol.

- 1.1 Terms and Abbreviations
- 1.2 System Requirements
- 1.3 Inverter Models and Rated Power

#### 1.1 Terms and Abbreviations

Table 1-1 Terms and Abbreviations

| Name              | Description                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|
| Master node       | During master-slave communication, the party that initiates a communication request is referred to as the master node.  |
| Slave node        | During master-slave communication, the party that responds to a communication request is referred to as the slave node. |
| Broadcast address | Fixed to 0.                                                                                                             |
| Register address  | The address of a register is recorded in two bytes.                                                                     |
| U16               | Unsigned integer (16 bits)                                                                                              |
| U32               | Unsigned integer (32 bits)                                                                                              |
| 116               | Signed integer (16 bits)                                                                                                |
| I32               | Signed integer (32 bits)                                                                                                |
| STR               | String                                                                                                                  |

| Name          | Description                                                         |
|---------------|---------------------------------------------------------------------|
| MLD           | Multiple bytes                                                      |
| N/A           | Not applicable                                                      |
| S             | Second                                                              |
| Epoch seconds | The number of seconds that have elapsed since 1970-01-01 00: 00: 00 |
| RO            | Value can only be read                                              |
| RW            | Value can be read and written                                       |

# 1.2 System Requirements

Software version:SUN2000MA V100R001C00 or later

# 1.3 Inverter Models and Rated Power

Table 1-2 Rated inverter capacity

| Model ID | Model Name       |
|----------|------------------|
| 400      | SUN2000-5 KTL-M0 |
| 401      | SUN2000-5 KTL-M0 |
| 402      | SUN2000-6KTL-M0  |
| 403      | SUN2000-6KTL-M0  |
| 404      | SUN2000-8KTL-M0  |
| 405      | SUN2000-8KTL-M0  |
| 406      | SUN2000-10KTL-M0 |
| 407      | SUN2000-10KTL-M0 |
| 408      | SUN2000-12KTL-M0 |
| 410      | SUN2000-3KTL-M0  |
| 411      | SUN2000-4KTL-M0  |

■ NOTE

The maximum active power (Pmax), maximum reactive power (Qmax), and rated power (Pn) corresponding to each model can be obtained through the register interface.

# **2** Register Definitions

 Table 2-1 Register Definitions

| S<br>N | Signal Name                                                             | Read<br>/Write | Туре | Unit | Gain | Addres<br>s | Quantit<br>y | Scope                                  |
|--------|-------------------------------------------------------------------------|----------------|------|------|------|-------------|--------------|----------------------------------------|
| 1      | Model Name                                                              | RO             | STR  | N/A  | 1    | 30000       | 15           | 1.3 Inverter Models and<br>Rated Power |
| 2      | SN                                                                      | RO             | STR  | N/A  | 1    | 30015       | 10           | N/A                                    |
| 3      | PN                                                                      | RO             | STR  | N/A  | 1    | 30025       | 10           | N/A                                    |
| 4      | Model ID                                                                | RO             | U16  | N/A  | 1    | 30070       | 1            | 1.3 Inverter Models and<br>Rated Power |
| 5      | String Number                                                           | RO             | U16  | N/A  | 1    | 30071       | 1            | N/A                                    |
| 6      | MPPT Number                                                             | RO             | U16  | N/A  | 1    | 30072       | 1            | N/A                                    |
| 7      | Rated power (Pn)                                                        | RO             | U32  | kW   | 1000 | 30073       | 2            | N/A                                    |
| 8      | Maximum<br>active power<br>(Pmax)                                       | RO             | U32  | kW   | 1000 | 30075       | 2            | N/A                                    |
| 9      | Maximum<br>apparent power<br>(Smax)                                     | RO             | U32  | kVA  | 1000 | 30077       | 2            | N/A                                    |
| 10     | Maximum<br>reactive power<br>(Qmax, fed to<br>the power grid)           | RO             | 132  | kVar | 1000 | 30079       | 2            | N/A                                    |
| 11     | Maximum<br>reactive power<br>(Qmax,<br>absorbed from<br>the power grid) | RO             | 132  | kVar | 1000 | 30081       | 2            | N/A                                    |
| 12     | Standalone<br>teleindication                                            | RO             | U16  | N/A  | 1    | 32000       | 1            | Bit 0: standby                         |

| S<br>N | Signal Name      | Read<br>/Write | Type | Unit | Gain | Addres<br>s | Quantit<br>y | Scope                                                                      |
|--------|------------------|----------------|------|------|------|-------------|--------------|----------------------------------------------------------------------------|
|        |                  |                |      |      |      |             |              | Bit 1: grid connection                                                     |
|        |                  |                |      |      |      |             |              | Bit 2: normal grid connection                                              |
|        |                  |                |      |      |      |             |              | Bit 3: grid connection<br>with derating due to<br>power rationing          |
|        |                  |                |      |      |      |             |              | Bit 4: grid connection<br>with derating due to<br>inverter internal causes |
|        |                  |                |      |      |      |             |              | Bit 5: normal stop                                                         |
|        |                  |                |      |      |      |             |              | Bit 6: stop due to faults                                                  |
|        |                  |                |      |      |      |             |              | Bit 7: stop due to power rationing                                         |
|        |                  |                |      |      |      |             |              | Bit 8: shutdown                                                            |
|        |                  |                |      |      |      |             |              | Bit 9: spot check                                                          |
| 13     | Operating status | RO             | U16  | N/A  | 1    | 32002       | 1            | Bit 0: locking status (0: locked; 1: unlocked)                             |
|        |                  |                |      |      |      |             |              | Bit 1: PV connection<br>status (0: disconnected; 1:<br>connected)          |
|        |                  |                |      |      |      |             |              | Bit 2: DSP data collection (0: no; 1: yes)                                 |
| 14     | Alarm 1          | RO             | U16  | N/A  | 1    | 32008       | 1            | 3 Alarms                                                                   |
| 15     | Alarm 2          | RO             | U16  | N/A  | 1    | 32009       | 1            | 3 Alarms                                                                   |
| 16     | Alarm 3          | RO             | U16  | N/A  | 1    | 32010       | 1            | 3 Alarms                                                                   |
| 17     | PV1 Voltage      | RO             | I16  | V    | 10   | 32016       | 1            | N/A                                                                        |
| 18     | PV1 Current      | RO             | I16  | A    | 100  | 32017       | 1            | N/A                                                                        |
| 19     | PV2 Voltage      | RO             | I16  | V    | 10   | 32018       | 1            | N/A                                                                        |
| 20     | PV2 Current      | RO             | I16  | A    | 100  | 32019       | 1            | N/A                                                                        |
| 21     | PV3 Voltage      | RO             | I16  | V    | 10   | 32020       | 1            | N/A                                                                        |
| 22     | PV3 Current      | RO             | I16  | A    | 100  | 32021       | 1            | N/A                                                                        |
| 23     | PV4 Voltage      | RO             | I16  | V    | 10   | 32022       | 1            | N/A                                                                        |
| 24     | PV4 Current      | RO             | I16  | A    | 100  | 32023       | 1            | N/A                                                                        |
| 25     | Input power      | RO             | I32  | kW   | 1000 | 32064       | 2            | N/A                                                                        |
| 26     | Uab              | RO             | U16  | V    | 10   | 32066       | 1            | N/A                                                                        |
| 27     | Ubc              | RO             | U16  | V    | 10   | 32067       | 1            | N/A                                                                        |
| 28     | Uca              | RO             | U16  | V    | 10   | 32068       | 1            | N/A                                                                        |

| S<br>N | Signal Name                      | Read<br>/Write | Туре | Unit       | Gain | Addres<br>s | Quantit<br>y | Scope                                            |
|--------|----------------------------------|----------------|------|------------|------|-------------|--------------|--------------------------------------------------|
| 29     | Ua                               | RO             | U16  | V          | 10   | 32069       | 1            | N/A                                              |
| 30     | Ub                               | RO             | U16  | V          | 10   | 32070       | 1            | N/A                                              |
| 31     | Uc                               | RO             | U16  | V          | 10   | 32071       | 1            | N/A                                              |
| 32     | Ia                               | RO             | I32  | A          | 1000 | 32072       | 2            | N/A                                              |
| 33     | Ib                               | RO             | I32  | A          | 1000 | 32074       | 2            | N/A                                              |
| 34     | Ic                               | RO             | I32  | A          | 1000 | 32076       | 2            | N/A                                              |
| 35     | Active power peak of current day | RO             | I32  | kW         | 1000 | 32078       | 2            | N/A                                              |
| 36     | Active power                     | RO             | I32  | kW         | 1000 | 32080       | 2            | N/A                                              |
| 36     | Reactive power                   | RO             | I32  | kVar       | 1000 | 32082       | 2            | N/A                                              |
| 37     | Power factor                     | RO             | I16  | N/A        | 1000 | 32084       | 1            | N/A                                              |
| 38     | Frequency                        | RO             | U16  | Hz         | 100  | 32085       | 1            | N/A                                              |
| 39     | Inverter efficiency              | RO             | U16  | %          | 100  | 32086       | 1            | N/A                                              |
| 40     | Cabinet temperature              | RO             | I16  | $^{\circ}$ | 10   | 32087       | 1            | N/A                                              |
| 41     | Insulation resistance            | RO             | U16  | ΜΩ         | 1000 | 32088       | 1            | N/A                                              |
| 42     | Device status                    | RO             | U16  | N/A        | 1    | 32089       | 1            | 0x0000:Idle: Initializing 0x0001:Idle: Detecting |
|        |                                  |                |      |            |      |             |              | ISO 0x0002:Idle: Detecting irradiation           |
|        |                                  |                |      |            |      |             |              | 0x0003:Idle: Grid detecting                      |
|        |                                  |                |      |            |      |             |              | 0x0100:Starting                                  |
|        |                                  |                |      |            |      |             |              | 0x0200:On-grid                                   |
|        |                                  |                |      |            |      |             |              | 0x0201:On-grid: Power limit                      |
|        |                                  |                |      |            |      |             |              | 0x0202:On-grid:self derating                     |
|        |                                  |                |      |            |      |             |              | 0x0300:Shutdown: Fault                           |
|        |                                  |                |      |            |      |             |              | 0x0301:Shutdown:<br>Command                      |
|        |                                  |                |      |            |      |             |              | 0x0302:Shutdown:<br>OVGR                         |
|        |                                  |                |      |            |      |             |              | 0x0303:Shutdown:                                 |

| S<br>N | Signal Name                         | Read<br>/Write | Type | Unit | Gain | Addres<br>s | Quantit<br>y | Scope                                                                                                                                                                                                                                                                                                                                                  |
|--------|-------------------------------------|----------------|------|------|------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                     | /wiite         |      |      |      |             | y            | Communication disconnected 0x0304:Shutdown: Power limit 0x0305:Shutdown: Start manually 0x0306:Shutdown: DC switch OFF 0x0401:Grid dispatch: cos(Phi)-P curve 0x0402:Grid dispatch: Q-U curve 0xA000:Idle: No irradiation 0x0500:Spot-check 0x0501:Spot-checking 0x0600:Inspecting 0X0700:AFCI self-check 0X0800:IV scanning 0X0900:DC input detection |
| 43     | Fault code                          | RO             | U16  | N/A  | 1    | 32090       | 1            | N/A                                                                                                                                                                                                                                                                                                                                                    |
| 44     | Startup time                        | RO             | U32  | N/A  | 1    | 32091       | 2            | Epoch seconds, local time                                                                                                                                                                                                                                                                                                                              |
| 45     | Shutdown time                       | RO             | U32  | N/A  | 1    | 32093       | 2            | Epoch seconds, local time                                                                                                                                                                                                                                                                                                                              |
| 46     | E-Total                             | RO             | U32  | kWh  | 100  | 32106       | 2            | N/A                                                                                                                                                                                                                                                                                                                                                    |
| 47     | E-Day                               | RO             | U32  | kWh  | 100  | 32114       | 2            | N/A                                                                                                                                                                                                                                                                                                                                                    |
| 48     | System Time                         | RW             | U32  | N/A  | 1    | 40000       | 2            | [946684800,<br>3155759999]<br>Epoch seconds, local time                                                                                                                                                                                                                                                                                                |
| 49     | Reactive power compensation (PF)    | RW             | I16  | N/A  | 1000 | 40122       | 1            | (-1,-0.8]U[0.8,1]                                                                                                                                                                                                                                                                                                                                      |
| 50     | Reactive power compensation(Q/S)    | RW             | I16  | N/A  | 1000 | 40123       | 1            | (-1,1]                                                                                                                                                                                                                                                                                                                                                 |
| 51     | Active power derating percent(0.1%) | RW             | U16  | %    | 10   | 40125       | 1            | [0,100]                                                                                                                                                                                                                                                                                                                                                |
| 52     | Active power derating (fixed        | RW             | U32  | W    | 1    | 40126       | 2            | [0,Pmax]                                                                                                                                                                                                                                                                                                                                               |

| S<br>N | Signal Name | Read<br>/Write | Type | Unit | Gain | Addres<br>s | Quantit<br>y | Scope      |
|--------|-------------|----------------|------|------|------|-------------|--------------|------------|
|        | value W)    |                |      |      |      |             |              |            |
| 53     | Power on    | WO             | U16  | N/A  | 1    | 40200       | 1            | N/A        |
| 54     | Power off   | WO             | U16  | N/A  | 1    | 40201       | 1            | N/A        |
| 55     | Time zone   | RW             | I16  | min  | 1    | 43006       | 1            | [-720,840] |

# **3** Alarms

Table 3-1 Alarms List

| SN | Alarm   | Bit | Alarm Name                        | Alarm ID | Severity |
|----|---------|-----|-----------------------------------|----------|----------|
| 1  | Alarm 1 | 0   | High String Voltage               | 2001     | Major    |
| 2  | Alarm 1 | 1   | DC Arc Fault                      | 2002     | Major    |
| 3  | Alarm 1 | 2   | String Reversed                   | 2011     | Major    |
| 4  | Alarm 1 | 3   | PV String Backfeed                | 2012     | Warning  |
| 5  | Alarm 1 | 4   | Abnormal String                   | 2013     | Warning  |
| 6  | Alarm 1 | 5   | AFCI Self-test Fault              | 2021     | Major    |
| 7  | Alarm 1 | 6   | Short circuit between phase to PE | 2031     | Major    |
| 8  | Alarm 1 | 7   | Power Grid Failure                | 2032     | Major    |
| 9  | Alarm 1 | 8   | Grid Undervoltage                 | 2033     | Major    |
| 10 | Alarm 1 | 9   | Grid Overvoltage                  | 2034     | Major    |
| 11 | Alarm 1 | 10  | Unbalanced Grid Voltage           | 2035     | Major    |
| 12 | Alarm 1 | 11  | Grid Overfrequency                | 2036     | Major    |
| 13 | Alarm 1 | 12  | Grid Underfrequency               | 2037     | Major    |
| 14 | Alarm 1 | 13  | Grid Frequency Instability        | 2038     | Major    |
| 15 | Alarm 1 | 14  | Output Overcurrent                | 2039     | Major    |
| 16 | Alarm 1 | 15  | Large DC of Output current        | 2040     | Major    |
| 17 | Alarm 2 | 0   | Abnormal Leakage Current          | 2051     | Major    |
| 18 | Alarm 2 | 1   | Abnormal Ground.                  | 2061     | Major    |
| 19 | Alarm 2 | 2   | Low Insulation Res.               | 2062     | Major    |
| 20 | Alarm 2 | 3   | High Temperature                  | 2063     | Major    |
| 21 | Alarm 2 | 4   | Abnormal Equipment                | 2064     | Major    |

| SN | Alarm   | Bit | Alarm Name                       | Alarm ID | Severity |
|----|---------|-----|----------------------------------|----------|----------|
| 22 | Alarm 2 | 5   | Upgrade Failed                   | 2065     | Minor    |
| 23 | Alarm 2 | 6   | License Expired                  | 2066     | Warning  |
| 24 | Alarm 2 | 7   | Abnormal Monitor Unit            | 61440    | Minor    |
| 25 | Alarm 2 | 8   | Power collector fault            | 2067     | Major    |
| 26 | Alarm 2 | 9   | Abnormal energy storage device   | 2068     | Minor    |
| 27 | Alarm 2 | 10  | Active islanding                 | 2070     | Major    |
| 28 | Alarm 2 | 11  | Passive islanding                | 2071     | Major    |
| 29 | Alarm 2 | 12  | Transient AC overvoltage         | 2072     | Major    |
| 30 | Alarm 2 | 15  | Abnormal PV module configuration | 2080     | Major    |

# 4 Communication Protocol Overview

The ModBus-TCP communication protocol consists of the following layers:

Figure 4-1 Layers of the ModBus-TCP communication protocol



- 4.1 Physical Layer
- 4.2 Data Link Layer
- 4.3 Application Layer

# 4.1 Physical Layer

Communicates over an Ethernet.

# 4.2 Data Link Layer

# 4.2.1 Addressing Mode

M NOTE

The address of device is 0.

#### 4.2.2 Frame Structure

| Data Field  | Length | Description |
|-------------|--------|-------------|
| MBAP Header | 7 byte | Table 4-1   |

| Data Field    | Length | Description |
|---------------|--------|-------------|
| Function Code | 1 byte | N/A         |
| Data          | N byte | N/A         |

**⚠ WARNING** 

A ModBus-TCP frame can contain a maximum of 256 bytes.

The following table describes the format of an MBAP header:

**Table 4-1** MBAP Definitions

| Data Field              | Length<br>(Bytes) | Description                                                                | Master Node                                                         | Slave Node                                                                                                  |
|-------------------------|-------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Transmission identifier | 2                 | Matching identifier<br>between a request<br>frame and a<br>response frames | Assigned by the master node; better be unique for each data frame.  | The identifier of the response frame from the slave node must be consistent with that of the request frame. |
| Protocol type           | 2                 | 0 = Modbus<br>protocol                                                     | Assigned by the master node; 0 by default.                          | The identifier of the response frame from the slave node must be consistent with that of the request frame. |
| Data length             | 2                 | Follow-up data length                                                      | Assigned by the master node based on the actual data frame.         | Assigned by the slave node based on the actual frame length.                                                |
| Logic device ID         | 1                 | 0                                                                          | Assigned by the master node based on the actual data frame request. | The identifier of the response frame from the slave node must be consistent with that of the request frame. |

# 4.2.3 Data Encoding

Modbus uses a big-Endian to represent addresses and data. When multiple bytes are sent, the payload digit leftmost is sent first.

Example:

| Register Size | Value    |
|---------------|----------|
| register size | V WI W C |

| Register Size | Value  |
|---------------|--------|
| 16 bits       | 0x1234 |

The system sends 0x12, and then sends 0x34.

#### 4.2.4 Interaction Process

A communication process is always initiated by a master node. Slave nodes do not initiate communication processes.

A slave node returns one response for each request from the master node. If the master node does not receive any response from the slave node in 5s, the communication process is regarded as timed out.

# 4.3 Application Layer

#### 4.3.1 Function Code List

Table 4-2 Function code list

| <b>Function Code</b> | Meaning                   | Remarks                                                      |
|----------------------|---------------------------|--------------------------------------------------------------|
| 0x03                 | Read registers.           | Supports continuous reading of single or multiple registers. |
| 0x06                 | Write a single register.  | Supports writing into a single register.                     |
| 0x10                 | Write multiple registers. | Supports continuous writing into multiple registers.         |

### 4.3.2 Exception Code List

The exception codes must be unique for each NE type. The names and descriptions are provided in the NE interface document. Different versions of the same NE type must be backward compatible. Exception codes in use cannot be assigned to other exceptions.

Table 4-3 Table of exception codes returned by an NE (0x00–0x8F are for common exception codes)

| Code | Name             | Meaning                                                                                                                                                                                                                                                                               |
|------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x01 | ILLEGAL FUNCTION | The function code received in the query is not an allowable action for the server. This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server is in the wrong state to process a |

| Code | Name                  | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                       | request of this type, for example because it is unconfigured and is being asked to return register values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x02 | ILLEGAL DATA ADDRESS  | The data address received in the query is not an allowable address for the server. More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, the PDU addresses the first register as 0, and the last one as 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 4, then this request will successfully operate (address-wise at least) on registers 96, 97, 98, 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 5, then this request will fail with Exception Code 0x02 "Illegal Data Address" since it attempts to perform operations on registers 96, 97, 98, 99 and 100, and there is no register with address 100. |
| 0x03 | ILLEGAL DATA VALUE    | A value contained in the query data field is not an allowable value for server. This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does not mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the Modbus protocol is unaware of the significance of any particular value of any particular register.                                                                                                                                                                                                                                                                                                                 |
| 0x04 | SERVER DEVICE FAILURE | An unrecoverable error occurred while the server was attempting to perform the requested action.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0x06 | SERVER DEVICE BUSY    | The server does not accept a ModBus request PDU. A client application determines when to resend the request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0x80 | NO PERMISSION         | An operation is not allowed because of a permission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Code | Name | Meaning                                          |
|------|------|--------------------------------------------------|
|      |      | authentication failure or permission expiration. |

# 4.3.3 Reading Registers (0X03)

#### 4.3.3.1 Frame Format for a Request from a Master Node

| Data Field             | Length | Description   |
|------------------------|--------|---------------|
| Function code          | 1 byte | 0x03          |
| Register start address | 2 byte | 0x0000-0xFFFF |
| Number of registers    | 2 byte | 1–125         |

#### 4.3.3.2 Frame Format for a Normal Response from a Slave Node

| Data Field      | Length   | Description |
|-----------------|----------|-------------|
| Function code   | 1 byte   | 0x03        |
| Number of bytes | 1 byte   | 2×N         |
| Register value  | 2xN byte | N/A         |

M NOTE

N indicates the number of registers.

#### 4.3.3.3 Frame Format for an Abnormal Response from a Slave Node

| Data Field     | Length | Description                 |
|----------------|--------|-----------------------------|
| Function code  | 1 byte | 0x83                        |
| Exception code | 1 byte | See the Exception Code List |

#### 4.3.3.4 Example

A master node sends a request to a slave node (logic device ID: 00) to query register whose address is 32306/0X7E32. The request frame format is as follows:

| Description |                     | Frame data |
|-------------|---------------------|------------|
| MBAP Header | Protocol Identifier | 00         |
|             |                     | 01         |

| Description   |                     | Frame data |
|---------------|---------------------|------------|
|               | Protocol Type       | 00         |
|               |                     | 00         |
|               | Data Length         | 00         |
|               |                     | 06         |
|               | Logic Device ID     | 00         |
| Function Code |                     | 03         |
| Data          | Register Address    | 7E         |
|               |                     | 32         |
|               | Number of Registers | 00         |
|               |                     | 02         |

#### Frame format of a normal response from the slave node:

| Description   |                     | Frame data |
|---------------|---------------------|------------|
| MBAP Header   | Protocol Identifier | 00         |
|               |                     | 01         |
|               | Protocol Type       | 00         |
|               |                     | 00         |
|               | Data Length         | 00         |
|               |                     | 07         |
|               | Logic Device ID     | 00         |
| Function Code |                     | 03         |
| Data          | Number of bytes     | 04         |
|               | Register Value      | 00         |
|               |                     | 00         |
|               |                     | 00         |
|               |                     | 01         |

#### Frame format of an abnormal response from the slave node:

| Description |                     | Frame data |
|-------------|---------------------|------------|
| MBAP Header | Protocol Identifier | 00         |

| Description   |                 | Frame data |
|---------------|-----------------|------------|
|               |                 | 01         |
|               | Protocol Type   | 00         |
|               |                 | 00         |
|               | Data Length     | 00         |
|               |                 | 03         |
|               | Logic Device ID | 00         |
| Function Code |                 | 83         |
| Data          | Error Code      | 03         |

# 4.3.4 Writing a Single Register (0X06)

# 4.3.4.1 Frame Format for a Request from a Master Node

| Data Field       | Length  | Description   |
|------------------|---------|---------------|
| Function code    | 1 byte  | 0x06          |
| Register Address | 2 bytes | 0x0000-0xFFFF |
| Register Value   | 2 bytes | 0x0000-0xFFFF |

#### 4.3.4.2 Frame Format for a Normal Response from a Slave Node

| Data Field       | Length  | Description   |
|------------------|---------|---------------|
| Function code    | 1 byte  | 0x06          |
| Register Address | 2 bytes | 0x0000-0xFFFF |
| Register Value   | 2 bytes | 0x0000-0xFFFF |

# 4.3.4.3 Frame Format for an Abnormal Response from a Slave Node

| Data Field     | Length | Description                 |
|----------------|--------|-----------------------------|
| Function code  | 1 byte | 0x86                        |
| Exception code | 1 byte | See the Exception Code List |

#### 4.3.4.4 Example

A master node sends instruction(register address: 40200/0X9D08) to a slave node whose address is 00. The request frame format is as follows:

| Description   |                     | Frame data |
|---------------|---------------------|------------|
| MBAP Header   | Protocol Identifier | 00         |
|               |                     | 01         |
|               | Protocol Type       | 00         |
|               |                     | 00         |
|               | Data Length         | 00         |
|               |                     | 06         |
|               | Logic Device ID     | 00         |
| Function Code |                     | 06         |
| Data          | Register Address    | 9D         |
|               |                     | 08         |
|               | Register Value      | 00         |
|               |                     | 00         |

Frame format of a normal response from the slave node:

| Description   |                     | Frame data |
|---------------|---------------------|------------|
| MBAP Header   | Protocol Identifier | 00         |
|               |                     | 01         |
|               | Protocol Type       | 00         |
|               |                     | 00         |
|               | Data Length         | 00         |
|               |                     | 06         |
|               | Logic Device ID     | 00         |
| Function Code |                     | 06         |
| Data          | Register Address    | 9D         |
|               |                     | 08         |
|               | Register Value      | 00         |
|               |                     | 00         |

Frame format of an abnormal response from the slave node:

| Description   |                     | Frame data |
|---------------|---------------------|------------|
| MBAP Header   | Protocol Identifier | 00         |
|               |                     | 01         |
|               | Protocol Type       | 00         |
|               |                     | 00         |
|               | Data Length         | 00         |
|               |                     | 03         |
|               | Logic Device ID     | 00         |
| Function Code |                     | 86         |
| Data          | Error Code          | 04         |

# 4.3.5 Writing Multiple Registers(0X10)

# 4.3.5.1 Frame Format for a Request from a Master Node

| Data Field             | Length   | Description   |
|------------------------|----------|---------------|
| Function code          | 1 byte   | 0x10          |
| Register start address | 2 byte   | 0x0000-0xFFFF |
| Number of registers    | 2 byte   | 0x0000-0x007b |
| Number of bytes        | 1 byte   | 2×N           |
| Register value         | 2×N byte | Value         |

Щ NOTE

N indicates the number of registers.

#### 4.3.5.2 Frame Format for a Normal Response from a Slave Node

| Data Field          | Length  | Description   |
|---------------------|---------|---------------|
| Function code       | 1 byte  | 0x10          |
| Register address    | 2 bytes | 0x0000-0xFFFF |
| Number of registers | 2 bytes | 0x0000-0x007b |

# 4.3.5.3 Frame Format for an Abnormal Response from a Slave Node

| Data Field     | Length | Description                 |
|----------------|--------|-----------------------------|
| Function code  | 1 byte | 0x90                        |
| Exception code | 1 byte | See the Exception Code List |

#### 4.3.5.4 Example

A master node sends an instruction to a slave node whose address is 00 to set (register address: 40118/0X9CB6) to 2, and set (register address: 40119/0X9CB7) to 50. The request frame format is as follows:

| Description   |                     | Frame data |
|---------------|---------------------|------------|
| MBAP Header   | Protocol Identifier | 00         |
|               |                     | 01         |
|               | Protocol Type       | 00         |
|               |                     | 00         |
|               | Data Length         | 00         |
|               |                     | 0B         |
|               | Logic device ID     | 00         |
| Function Code |                     | 10         |
| Data          | Register Address    | 9C         |
|               |                     | В6         |
|               | Number of Registers | 00         |
|               |                     | 02         |
|               | Number of Bytes     | 04         |
|               | Register Value      | 00         |
|               |                     | 02         |
|               |                     | 00         |
|               |                     | 32         |

Frame format of a normal response from the slave node:

| Description |                     | Frame data |
|-------------|---------------------|------------|
| MBAP Header | Protocol Identifier | 00         |

| Description   |                     | Frame data |
|---------------|---------------------|------------|
|               |                     | 01         |
|               | Protocol Type       | 00         |
|               |                     | 00         |
|               | Data Length         | 00         |
|               |                     | 06         |
|               | Logic device ID     | 00         |
| Function Code |                     | 10         |
| Data          | Register Address    | 9C         |
|               |                     | B6         |
|               | Number of Registers | 00         |
|               |                     | 02         |

Frame format of an abnormal response from the slave node:

| Description   |                     | Frame data |
|---------------|---------------------|------------|
| MBAP Header   | Protocol Identifier | 00         |
|               |                     | 01         |
|               | Protocol Type       | 00         |
|               |                     | 00         |
|               | Data Length         | 00         |
|               |                     | 03         |
|               | Logic Device ID     | 00         |
| Function Code |                     | 90         |
| Data          | Error Code          | 04         |

# 4.3.6 Reading Device Identifiers (0X2B)

This command code allows reading identifiers and added packets that are relevant to the physical and function description of the remote devices.

Simulate the port of the read device identifier as an address space. This address space consists of a set of addressable data elements. The data elements are objects to be read, and the object IDs determine these data elements.

A data element consists of three objects:

- Basic device identifier: All objects of this type are mandatory, such as the manufacturer name, product code, and revision version.
- Normal device identifier: Except the basic data objects, the device provides additional
  and optional identifiers and data object description. Normal device identifiers define all
  types of objects according to standard definitions, but the execution of this type of
  objects is optional.
- Extensive device identifier: Except the basic data objects, the device provides additional and optional identifiers and special data object description. All these data objects are related to the device.

**Table 4-4** Reading Device Identifiers

| Object ID | Object Name or<br>Description | Туре                   | M/O | Category  |
|-----------|-------------------------------|------------------------|-----|-----------|
| 0x00      | Manufacturer name             | ASCII character string | M   | Basic     |
| 0x01      | Product code                  | ASCII character string | M   |           |
| 0x02      | Main revision                 | ASCII character string | M   |           |
| 0x03-0x7F | N/A                           | N/A                    | N/A | Normal    |
| 0x80-0xFF | N/A                           | N/A                    | N/A | Extensive |

#### 4.3.6.1 Commands for Querying Device Identifiers

 Table 4-5 Request frame format

| Data Field      | Length (Byte) | Description |
|-----------------|---------------|-------------|
| Function code   | 1             | 0x2B        |
| MEI type        | 1             | 0x0E        |
| ReadDeviId code | 1             | 01          |
| Object ID       | 1             | 0x00        |

**Table 4-6** Frame format for a normal response

| Data Field      | Len<br>gth<br>(By<br>te) | Des<br>crip<br>tio<br>n |
|-----------------|--------------------------|-------------------------|
| Function code   | 1                        | 0x2<br>B                |
| MEI type        | 1                        | 0x0<br>E                |
| ReadDeviId code | 1                        | 01                      |

| Data Field        |              |               | Len<br>gth<br>(By<br>te) | Des<br>crip<br>tio<br>n |
|-------------------|--------------|---------------|--------------------------|-------------------------|
| Consistency level |              |               | 1                        | 01                      |
| More              |              |               | 1                        | N/A                     |
| Next object ID    |              |               | 1                        | N/A                     |
| Number of objects |              |               | 1                        | N/A                     |
| Object list       | First object | Object ID     | 1                        | 0x0<br>0                |
|                   |              | Object length | 1                        | N                       |
|                   |              | Object value  | N                        | N/A                     |
|                   |              |               |                          |                         |

Table 4-7 Object list

| Object ID | Object Name or<br>Description | Description                              | Category |
|-----------|-------------------------------|------------------------------------------|----------|
| 0x00      | Manufacturer name             | HUAWEI                                   | Basic    |
| 0x01      | Product code                  | SUN2000                                  |          |
| 0x02      | Main revision                 | ASCII character string, software version |          |

Table 4-8 Frame format for an abnormal response

| Data Field     | Length (Byte) | Description             |
|----------------|---------------|-------------------------|
| Function code  | 1             | 0xAB                    |
| Exception code | 1             | See Exception Code List |

# 4.3.6.2 Command for Querying a Device List

 Table 4-9 Request frame format

| Data Field    | Length (Byte) | Description |
|---------------|---------------|-------------|
| Function code | 1             | 0x2B        |
| MEI type      | 1             | 0x0E        |

| Data Field      | Length (Byte) | Description |
|-----------------|---------------|-------------|
| ReadDeviId code | 1             | 03          |
| Object ID       | 1             | 0x87        |

**Table 4-10** Frame format for a normal response

| Data Field        |               |               | Len<br>gth<br>(By<br>te) | Des<br>crip<br>tio<br>n |
|-------------------|---------------|---------------|--------------------------|-------------------------|
| Function code     | Function code |               |                          | 0x2<br>B                |
| MEI type          | MEI type      |               |                          | 0x0<br>E                |
| ReadDeviId code   |               |               | 1                        | 03                      |
| Consistency level |               |               | 1                        | 03                      |
| More              |               |               | 1                        | N/A                     |
| Next object ID    |               |               | 1                        | N/A                     |
| Number of objects |               |               | 1                        | N/A                     |
| Object list       | First object  | Object ID     | 1                        | 0x8<br>7                |
|                   |               | Object length | 1                        | N                       |
|                   |               | Object value  | N                        | N/A                     |
|                   |               |               |                          | •••                     |

Table 4-11 Object list

| Object ID | Object Name                        | Туре                                                                 | Description                                                                                                                         |
|-----------|------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0x80-0x86 | Reserved                           |                                                                      | Returns a null object with a length of 0.                                                                                           |
| 0x87      | Number of devices                  | int                                                                  | Returns the number of devices connected to the RS485 address.                                                                       |
| 0x88      | Information about the first device | ASCII character string See the device description definitions below. | Returns information only<br>for the first device if a<br>network element allows<br>only one device to be<br>connected to each RS485 |

| 301120001     | VI /\     |             |
|---------------|-----------|-------------|
| <b>MODBUS</b> | Interface | Definitions |

| Object ID | Object Name                         | Туре | Description |
|-----------|-------------------------------------|------|-------------|
|           |                                     |      | address.    |
| 0x8A      | Information about the second device | N/A  | N/A         |
|           |                                     |      |             |
| 0xFF      | Information about the 120th device  | N/A  | N/A         |

# 4.3.6.3 Device Description Definitions

Each device description consists of all "attribute = value" strings.

Attribute label=%s;...attribute label=%s

For

example: 1 = SUN2000L - XXKTL; 2 = V100R001C00SPC100; 3 = P1.0 - D5.0; 4 = 123232323; 5 = 1; 6 = 1.1

**Table 4-12** Attribute definitions

| Attribute<br>Label | Attribute Name                         | Туре                   | Description                                                                                 |
|--------------------|----------------------------------------|------------------------|---------------------------------------------------------------------------------------------|
| 1                  | Device Model                           | ASCII character string | SUN2000                                                                                     |
| 2                  | Software version                       | ASCII character string | N/A                                                                                         |
| 3                  | Version of the communications protocol | ASCII character string | See the interface protocol version definitions.                                             |
| 4                  | ESN                                    | ASCII character string | N/A                                                                                         |
| 5                  | Device number                          | int                    | 0,1,2,3(Assigned by NE; 0 indicates the master device to which the ModBus card is inserted) |
| 6                  | Character version                      | ASCII character string | N/A                                                                                         |

Table 4-13 Frame format for an abnormal response

| Data Field     | Length (Byte) | Description             |
|----------------|---------------|-------------------------|
| Function code  | 1             | 0xAB                    |
| Exception code | 1             | See Exception Code List |