Outline

- Higher order random effects
- Example on longitudinal analysis

Higher-order Random Effects

- Random intercept model implies block-specific intercepts but a common treatment effect.
- Recall a simple mixed-effects model:

$$y_{ij} = \beta_0 + \beta_1 x_i + \mu_j + \varepsilon_{ij},$$

= $(\beta_0 + \mu_j) + \beta_1 x_i + \varepsilon_{ij}, i = 1, ..., m$ (blocks), $j = 1, ..., r$ (treatments),

where $\beta_0 + \beta_1 x_i$ represents the fixed effect, $\mu_j \sim_{\text{i.i.d.}} N(0, \sigma_a^2)$ represents random intercept, and $\varepsilon_{ij} \sim_{\text{i.i.d.}} N(0, \sigma_e^2)$ represents measurement error.

Extend the above model to random intercept and random slope model:

$$y_{ij} = (\beta_0 + \mu_i) + (\beta_1 + \gamma_i)x_i + \varepsilon_{ij},$$

with additional parameters representing random slope $\gamma_j \sim_{\text{i.i.d}} N(0, \sigma_b^2)$, where $\{\gamma_j\}$, $\{\mu_j\}$ and $\{\varepsilon_{ij}\}$ are all independent with each other.

Longitudinal data

- Repeated measures data consist of measurements of a response (and possibly some covariates) on several experimental (or observational) units.
- Longitudinal data are repeated measures data in which the observations are taken over time.
- ▶ We wish to characterize the response over time within subjects and the variation in the time trends between subjects.
- ▶ We are interested in modeling the variability in the population from which the subjects were chosen.
- ▶ Less interested in comparing the **particular subjects** in the study.

Sleep deprivation study (Belenky et al. 2003)

- ► This laboratory experiment measured the effct of sleep deprivation on cognitive performance.
- ► There were 18 subjects, chosen from a population of long-distance truck drivers, in the 10 day trial.
- ► These subjects were restricted to 3 hours sleep per night during the trial.
- On each day of the trial, each subject's reaction time was measured. The reaction time reported in average of several measurements for that subject within a day.
- ► These data are balanced in that each subject is measured the same number of times and on the same occasions.

Sleep deprivation study

- ► A data frame with 180 observations on the following 3 variables.
 - Reaction: Average reaction time (ms)
 - Days: Number of days of sleep deprivation
 - Subject: Subject number on which the observation was made.

```
library(ggplot2)
library(lme4)
## Warning: package 'lme4' was built under R version 3.4.4
## Loading required package: Matrix
data(sleepstudy)
str(sleepstudy)
## 'data.frame': 180 obs. of 3 variables:
  $ Reaction: num 250 259 251 321 357 ...
  $ Days : num 0 1 2 3 4 5 6 7 8 9 ...
   $ Subject : Factor w/ 18 levels "308", "309", "310", ...: 1 1 1 1 1 1 1 1 1 1 ...
```

Plotting the data at the subject level

```
temp <- split(sleepstudy, sleepstudy$Subject)
sMeans <- lapply(temp, function(x){mean(x[, 1])})
oIndex <- order(unlist(sMeans))
d <- sleepstudy
d$Subject <- factor(d$Subject,
levels = names(sMeans)[oIndex])</pre>
```

Plotting the data at the subject level

```
ggplot(d, aes(x = Days, y = Reaction)) + geom_point() +
facet_wrap( ~ Subject) + stat_smooth(method="lm", se=FALSE)
```


Initial observations

- ▶ In most cases, a simple linear regression provides an adequate fit to the within subject data.
- ▶ Patterns of some subjects deviate from linearity but the deviations are neither widespread nor consistent in form.
- There is considerable variation in the intercept (estimated reaction time without sleep deprivation) across subjects and in the slope (increase in reaction time per day of sleep deprivation).

Fit simple linear regression and get CI of the slope and intercepts

```
library(reshape)
```

```
##
## Attaching package: 'reshape'
## The following object is masked from 'package:Matrix':
##
##
       expand
out <- lapply(temp, function(x){lm1 <- lm(x[, 1] \sim x[, 2]); confint(lm1)})
sMeans <- unlist(lapply(out, function(x){x[1, 1]}))</pre>
oIndex <- order(sMeans)
#Order in increasing order of intercept
out <- out[oIndex]
dd <- melt(out)
dd2 <- dd
levels(dd2$X1)[levels(dd2$X1)=="(Intercept)"] <- "Intercept"</pre>
levels(dd2$X1)[levels(dd2$X1)=="x[, 2]"] <- "Slope"
dd2$L1 <- factor(dd2$L1)
for (k in 1:length(oIndex)){
    levels(dd2$L1) [levels(dd2$L1) == names(sMeans) [oIndex] [k] <- k
}
dd2$L1 <- factor(dd2$L1, levels = 1:18)
```

Subject-level estimates of slopes and intercepts

```
ggplot(dd2, aes(x = value, y = L1)) + geom_line() +
facet_wrap( - X1, scales = "free") + scale_y_discrete(labels=names(sMeans)[oIndex]) + labs(y = "Subject")
```


A model with random effects for intercept and slope

- ▶ Let *y_{ii}* denote subject *i*, day *j*.
- ▶ We will treat day as a numerical variable.
- ▶ Fixed effects model: $y_{ij} = \beta_0 + \beta_1 X_{ij} + \epsilon_{ij}$.
- Mixed effects model with both random intercept and random slope:

$$y_{ij} = \beta_0 + \beta_1 X_{ij} + b_{i1} + b_{i2} X_{ij} + \epsilon_{ij}$$

with

$$(b_{i1}, b_{i2}) \sim \mathcal{MVN}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}\right)$$

 $(b_{i1}, b_{i2}) \perp \epsilon_{ij}$
 $(b_{i1}, b_{i2}) \perp (b_{i'1}, b_{i'2}), i \neq i'$

▶ In general σ_{12} need not be zero.

A model with random effects for intercept and slope

```
fm1 <- lmer(Reaction - Days + (Days | Subject), sleepstudy)
summary(fm1)</pre>
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
     Data: sleepstudy
##
##
## REML criterion at convergence: 1743.6
##
## Scaled residuals:
      Min
              10 Median
                               30
                                     Max
## -3.9536 -0.4634 0.0231 0.4634 5.1793
##
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## Subject (Intercept) 612.09 24.740
                       35.07 5.922
##
            Days
                                         0.07
## Residual
                        654 94 25 592
## Number of obs: 180, groups: Subject, 18
##
## Fixed effects:
              Estimate Std. Error t value
## (Intercept) 251.405
                            6.825
                                   36.84
## Davs
               10.467
                          1.546 6.77
##
## Correlation of Fixed Effects:
       (Intr)
## Davs -0.138
```

A model with random effects for intercept and slope

- ► (Days | Subject) generates a vector valued random effect (intercept and slope) for each of the 18 levels of the Subject factor
- ▶ It is not clear whether there is any systematic relationship between a subject's random slope effect and the random intercept effect.
- ▶ The estimated correlation is also pretty small.

Visualize prediction intervals for both random effects

```
library(sjPlot)
sjp.lmer(fm1, sort = "(Intercept)")
```

Plotting random effects...

A model with uncorrelated random effects

Use two random effect terms with the same grouping factor and different left hand sides.

```
fm2 <- lmer(Reaction ~ Days + (1 | Subject) + (0 + Days | Subject), sleepstudy)
summary(fm2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Davs + (1 | Subject) + (0 + Davs | Subject)
     Data: sleepstudy
##
## REML criterion at convergence: 1743.7
##
## Scaled residuals:
      Min 10 Median 30
                                     Max
## -3.9626 -0.4626 0.0204 0.4653 5.1860
##
## Random effects:
## Groups
             Name
                       Variance Std Dev
## Subject (Intercept) 627.50
                                25.050
## Subject.1 Davs 35.86
                                5 989
## Residual
                        653.58
                                25 565
## Number of obs: 180, groups: Subject, 18
##
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 251.405 6.885 36.514
## Davs
              10.467
                         1.560 6.711
##
## Correlation of Fixed Effects:
       (Intr)
## Davs -0.184
```

Compare the two models

Model fm1 contains model fm2 (fm2 is a version of fm1 where the correlation, hence the covariance, between the two random effects is set to 0.

Parsimonious fm2 is preferred (pval > 0.05). Consistent with the AIC and BIC results (smaller better).

See https://arxiv.org/pdf/1406.5823.pdf for more details on mixed effect models.