Kolloquium zur Bachelorarbeit

Referent: Benedikt Lüken-Winkels

Prüfer: Prof. Dr. Henning Fernau

Prof. Dr. Stefan Näher

07. März 2018

Universität Trier

Knotenüberdeckungsproblem

Knotenüberdeckungsproblem - Definition

Knotenüberdeckung

EINGABE: Graph G = (V, E), positive Integer $k \leq |V|$

AUSGABE: $S \subseteq V$ mit $|S| \le k$, sodass jede Kante aus E einen

Endpunkt in S hat.

Graphreduktion

Einfache Reduktionsregeln

Kronenregel

Kronenregel - Algorithmus

```
0 G = (V, E)
 1 M_1 := Maximal Matching von G
 2 \qquad M_1 := \emptyset
 3 \quad \forall e \in E:
 4 M_1 = M_1 \cup e
 5
         Entferne e und N(e) aus der weiteren Betrachtung
   O := nicht gepaarte Knoten in M_1
7 M_2 := maxmimum matching von B = G[O \cup N(O)]
    I := nicht gepaarte Knoten aus O in M_2
9
   I' := \emptyset
10 while I' \neq I
   I' := I
11
12 H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H(uv \in M_2) \}
14 Entferne N(I) aus G
```

Nemhauser-Trotter-Theorem

Für einen Graphen G = (V, E) können zwei disjunkte Mengen C_0 und V_0 gefunden werden, sodass

- 1. C₀ in einer minimalen Knotenüberdeckung von G enthalten ist,
- 2. der Teilgraph $G[V_0]$ eine Knotenüberdeckung der Größe $\leq |V_0|/2$ hat,
- 3. und $VC(G) = VC(G[V_0]) \cup C_0$ gilt.

Nemhauser-Trotter-Theorem

Für einen Graphen G = (V, E) können zwei disjunkte Mengen C_0 und V_0 gefunden werden, sodass

- 1. C₀ in einer minimalen Knotenüberdeckung von G enthalten ist,
- 2. der Teilgraph $G[V_0]$ eine Knotenüberdeckung der Größe $\leq |V_0|/2$ hat,
- 3. und $VC(G) = VC(G[V_0]) \cup C_0$ gilt.

Nemhauser-Trotter-Theorem

Für einen Graphen G = (V, E) können zwei disjunkte Mengen C_0 und V_0 gefunden werden, sodass

- 1. C₀ in einer minimalen Knotenüberdeckung von G enthalten ist,
- 2. der Teilgraph $G[V_0]$ eine Knotenüberdeckung der Größe $\leq |V_0|/2$ hat,
- 3. und $VC(G) = VC(G[V_0]) \cup C_0$ gilt.

- $0 \quad G = (V, E)$
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- $4 \quad C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

0 G = (V, E)1 Bipartiden Graphen erstellen B = (V, V', E')2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$ 3 Maximum Matching M von B bestimmen 4 $C_B := VC(B)$ 5 $C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}$ 6 $V_0 := \{x \in V \mid entweder x \in C_B \text{ oder } x' \in C_B\}$

0 G = (V, E)1 Bipartiden Graphen erstellen B = (V, V', E')2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$ 3 Maximum Matching M von B bestimmen 4 $C_B := VC(B)$ 5 $C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}$

0 G = (V, E)1 Bipartiden Graphen erstellen B = (V, V', E')2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$ 3 Maximum Matching M von B bestimmen 4 $C_B := VC(B)$ 5 $C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}$ 6 $V_0 := \{x \in V \mid entweder x \in C_B \text{ oder } x' \in C_B\}$

0 G = (V, E)1 Bipartiden Graphen erstellen B = (V, V', E')2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$ 3 Maximum Matching M von B bestimmen 4 $C_B := VC(B)$ 5 $C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}$ 6 $V_0 := \{x \in V \mid \text{entweder } x \in C_B \text{ oder } x' \in C_B\}$

0 G = (V, E)1 Bipartiden Graphen erstellen B = (V, V', E')2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$ 3 Maximum Matching M von B bestimmen 4 $C_B := VC(B)$ 5 $C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}$ 6 $V_0 := \{x \in V \mid \text{entweder } x \in C_B \text{ oder } x' \in C_B\}$

- G = (V, E)1 Bipartid
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid \text{ entweder } x \in C_B \text{ oder } x' \in C_B\}$

Zeilen 1-2: *n* ⋅ 2*m*

- $0 \quad G = (V, E)$
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

Zeilen 3-4: $\sqrt{n} \cdot m$ (LEDA:mcb_matching, Hopcroft and Karp)

- 0 G = (V, E)
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid \text{entweder } x \in C_B \text{ oder } x' \in C_B\}$

Zeilen 5-6: $2n + k \cdot d$

- 0 G = (V, E)
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

$$n \cdot 2m + \sqrt{n} \cdot m + 2n + k \cdot d$$

- $0 \quad G = (V, E)$
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid \text{ entweder } x \in C_B \text{ oder } x' \in C_B\}$

$$n \cdot 2m + \sqrt{n} \cdot m + 2n + k \cdot d \Rightarrow O(2mn)$$

NT-Regel - Ergebnisse

Vergleich

Anwendung

Tabelle 1: Anwendung kombinierter Reduktionsregeln

Kombination	Anwendungen ₁	Anwendungen ₂	Anwendungen ₃	Reduktion
K - G ₁	3.63	4.3	-	331.8
G ₁ - K	4.37	3.22	-	331.17
K - NT	0.8	0.38	-	68.28
NT - K	0.45	0.56	-	68.6
G ₁ - NT	1.33	0.017	-	99.87
NT - G ₁	0.28	1.13	-	99.87
K - G ₁ - NT	3.61	4.29	0.11	334.67
K - NT - G ₁	3.6	0.87	3.39	334.83
G ₁ - NT - K	4.36	0.12	3.2	334.17
G ₁ - K - NT	3.61	3.2	0.65	334.16
NT - K - G ₁	0.39	3.44	4.03	335.2
NT - G ₁ - K	0.91	3.42	3.2	334.16

Implementierung

Fazit