数字电路分析与设计

逻辑代数

(1.5, 1.6)

n逻辑代数

- □ 最早于 19 世纪 40 年代提出,约经 100 年以后才真正用在开关电路中。 (布尔代数)
- ü研究客观事物中的逻辑关系,逻辑变量也用字母或符号表示。
- ü 逻辑变量不代表具体数值大小,仅代表两个截然不同的状态。
- ü逻辑的两种状态:数学定义为逻辑 0,逻辑 1。
- ü逻辑代数的三种基本运算:与、或、非。

- n逻辑代数
- ∨逻辑问题的描述方法(1.5.1)
- ∨逻辑代数的基本定律和基本规则(1.5.2)
- ∨逻辑函数的代数法化简(1.6.1)
- ∨逻辑函数的卡诺图法化简(1.6.2)

✓ 逻辑问题的描述方法

- ü逻辑问题有多种描述方法。
- ü 各类方法,有各自的相对适用场合。
- ü某些方法的表述结果并非唯一。
- ü 各类方法之间可以相互转换。(已知某种表示方法,可以推导出相应的其它各种表示方法)

- ❷逻辑问题的描述方法
- ü右图所示开关串并联型控制电路。
- □ 逻辑定义: 开关闭合为逻辑 1、开关断开为逻辑 0; 灯亮为逻辑 1、灯暗为逻辑 0。
- ü表示方法1: 真值表
- $\ddot{\mathbf{U}}$ 表示方法 2: 函数式 L = AC + BC + ABC (开关 AC, 或 BC, 或 ABC 合上, 灯亮)

从真值表直接得到: $L = \overline{ABC} + A\overline{BC} + ABC$

В	\boldsymbol{C}	L
0	0	0
0	1	0
1	0	0
1	1	1
0	0	0
0	1	1
1	0	0
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 1 0

- ❷逻辑问题的描述方法
- ü表示方法3: 电路图

ü表示方法1: 真值表

 $\ddot{\mathbf{u}}$ 表示方法 2: 函数式 L = AC + BC + ABC= (A+B)C

A	В	C	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

❷逻辑问题的描述方法

ü表示方法4:波形图

ü表示方法1: 真值表

ü表示方法2:函数式

ü表示方法3: 电路图

ü表示方法5:卡诺图

\boldsymbol{A}	В	C	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- ✓ 逻辑代数的基本定律和基本规则
 - ü运算定律
 - ü常用公式
 - ü运算规则

Ø运算定律

$$A \cdot 0 = 0 \quad , \quad A + 1 = 1$$

$$\ddot{\mathbf{U}}$$
 $0-1$ 律: $A \cdot 0 = 0$, $A+1=1$ $A \cdot 1 = A$, $A+0 = A$

$$\ddot{\mathbf{U}}$$
 重叠律: $A \cdot A = A$, $A + A = A$

$$\ddot{\mathbf{U}}$$
 互补律: $A \cdot \overline{A} = 0$, $A + \overline{A} = 1$

$$\ddot{\mathbf{u}}$$
 否定之否定律: $\ddot{A} = A$

$$\ddot{\mathbf{U}}$$
 交换律: $A \cdot B = B \cdot A$, $A + B = B + A$

$$\ddot{\mathbf{U}}$$
 结合律: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$, $A + (B + C) = (A + B) + C$

$$\ddot{\mathbf{U}}$$
 分配律: $A \cdot (B+C) = A \cdot B + A \cdot C$, $A+B \cdot C = (A+B)(A+C)$

$$\ddot{\mathbf{u}}$$
 摩根定律: $\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$, $\overline{A + B + C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$

定律的证明:列真值表,利用基本"与"、"或"、"非"逻辑关系穷举。

Ø常用公式

$$A + AB = A$$

$$AB + A\overline{B} = A$$

$$A + \overline{A}B = A + B$$

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

$$AB + \overline{A}C + BCDEF = AB + \overline{A}C$$

$$A \oplus B = \overline{A} \oplus \overline{B}$$

$$A \odot B = \overline{A} \oplus \overline{B}$$

公式的证明:利用逻辑运算定律。

ወ运算规则

ü代入规则:

在任一含有变量 A 的等式中,如果用另一个逻辑函数 F 代替所有的变量 A,则代替后的等式仍然成立。

$$A + \overline{AB} = A + B$$

定义 $F = C + D + E$

$$\downarrow \downarrow$$

$$(C+D+E)+(\overline{C+D+E})B=C+D+E+B$$

❷运算规则

ü对偶规则:

在任一等式两边,"0"→"1"、"1"→"0"、"·"→"+"、"+"、 "+" →"·",变换后等式仍成立。

$$A + B \cdot C = (A + B)(A + C)$$

$$\downarrow A \cdot (B+C) = A \cdot B + A \cdot C$$

基本定律中左右等式成对偶关系。

 \ddot{U} 反变量参数如何处理? $\overline{A+B}$ 的对偶式是? $\overline{A\cdot B}$

❷运算规则

ü 反演规则:

在任一逻辑函数中,"0"→"1"、"1"→"0"、"·"→"+"、"+"→"·",原变量换成反变量,反变量换成原变量,则变换后的函数是原函数的反(演)函数。

$$L = A + \overline{B + \overline{C} + \overline{D + \overline{E}}}$$

v 逻辑函数的代数法化简

ü逻辑函数有多种表示形式,不同形式通过不同的门电路实现。

ü例:

$$L = AB + \overline{AC}$$
 与或表达式(与+或门)
 $= (A+C)(\overline{A}+B)$ 或与表达式(或+与门)
 $= \overline{\overline{AB}}\overline{\overline{AC}}$ 与非表达式(与非门)
 $= \overline{\overline{A}}\overline{\overline{C}}+\overline{\overline{A}}\overline{\overline{B}}$ 或非表达式(或非门)
 $= \overline{\overline{AC}+\overline{AB}}$ 与或非表达式(与或非门)

❷逻辑函数的简化

- □ 简化目标:使一个逻辑函数对应的逻辑电路最简。(逻辑门电路数量、每个门电路的输入端数,均为最少)"与"项、"或"项的项数最少,而每项中的变量数也最少。
- □ 基本简化形式:最简"与—或"表达式。 (与或表达式中的与项数最少,与项中的变量也最少)
- ü常用简化方法:代数法、卡诺图法。
- ü代数法简化依据:基本定律、规则、常用公式; 代数法常用方法:吸收法、配项法、合并法、消去法、冗余法; 代数法化简特点:技巧性强,规律性弱。

【例2.1-1】

化简:
$$L = ABCD + ABD + BCD + ABC + BD + BC$$

解:
$$L = B(ACD + AD + CD + AC + D + C)$$

= $B(C + D)$

代数法化简特点: 技巧性强, 规律性弱。

【例2.1-2】

$$L = ABC\overline{D} + ABD + BC\overline{D} + ABC + BD + B\overline{C}$$

$$= B(AC\overline{D} + AD + C\overline{D} + AC + D + \overline{C})$$

$$= B(A\overline{D} + AD + \overline{D} + A + D + \overline{C})$$

$$= B$$

【例2.1-3】

$$L = AB + BD + ABC$$
$$= AB(1+C) + BD$$
$$= AB + BD$$

【例2.1-4】

$$L = A + A\overline{B}\overline{C} + \overline{A}CD + \overline{C}E + \overline{D}E$$

$$= A(1 + \overline{B}\overline{C}) + \overline{A}CD + \overline{C}E + \overline{D}E$$

$$= A + \overline{A}CD + \overline{C}E + \overline{D}E$$

$$= A + CD + \overline{C}E + \overline{D}E$$

$$= A + CD + \overline{C}DE$$

$$= A + CD + \overline{C}DE$$

【例2.1-5】

$$L = A + AB + \overline{A}C + BD + ACEF + \overline{B}E + DEF$$

$$= A(1 + B + CEF) + \overline{A}C + BD + \overline{B}E + DEF$$

$$= A + C + BD + \overline{B}E + DEF$$

$$= A + C + BD + \overline{B}E$$

【例2.1-6】

$$L = \overline{A} \, \overline{C} + \overline{A} \, \overline{B} + BC + \overline{A} \, \overline{C} \, \overline{D}$$

$$= \overline{A} (\overline{B} + \overline{C} + \overline{C} \, \overline{D}) + BC$$

$$= \overline{A} \, \overline{BC} + BC$$

$$= \overline{A} + BC$$

【例2.1-7】

$$L = ACE + \overline{A}BE + \overline{B}\overline{C}\overline{D} + B\overline{C}E + \overline{C}DE + \overline{A}E$$

$$= E(C + B + D + \overline{A}) + \overline{B}\overline{C}\overline{D}$$

$$= E(\overline{B}\overline{C}\overline{D} + \overline{A}) + \overline{B}\overline{C}\overline{D}$$

$$= E\overline{B}\overline{C}\overline{D} + E\overline{A} + \overline{B}\overline{C}\overline{D}$$

$$= E + E\overline{A} + \overline{B}\overline{C}\overline{D}$$

$$= E + B\overline{C}\overline{D}$$

【例2.1-8】

$$L = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$

$$= A\overline{B}(C + \overline{C}) + (A + \overline{A})B\overline{C} + \overline{B}C + \overline{A}B$$

$$= A\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} + \overline{A}B\overline{C} + \overline{B}C + \overline{A}B$$

$$= \overline{B}C(A + 1) + A\overline{C}(B + \overline{B}) + \overline{A}B(\overline{C} + 1)$$

$$= \overline{B}C + A\overline{C} + \overline{A}B$$

V逻辑函数的卡诺图法化简

- ü代数法化简特点:技巧性强,规律性弱。
- ü卡诺图法化简:有规律。
- ü卡诺图基础:最小项、最大项。

Ø最小项

- □ 针对具有 *n* 个变量的逻辑函数,最小项定义为 *n* 个变量相与。 (每个逻辑变量可以是原变量,也可以是反变量)
- \ddot{U} 针对具有 n 个变量的逻辑函数,最小项的个数为: 2^n 。
- ü例,具有A、B两个变量的逻辑函数,所有的最小项为:

$$\overline{A}\overline{B}$$
 , $\overline{A}B$, $A\overline{B}$, AB

Ü 最小项: *m_i*

- ∅最小项(性质)
- ü针对 n 个变量的任意一组取值,有且仅有一个最小项的值为 1。
- $\ddot{\mathbf{u}}$ 任何两个最小项相与,结果为 $0: m_i \cdot m_j = 0$ 。
- $\ddot{\mathbf{u}}$ 全部最小项的和,结果为 $1:\sum_{i=0}^{2^n-1} m_i = 1$
- $\ddot{\mathbf{u}}$ 相邻项:只差一个变量不同的两个最小项;合并相邻项后,可消去不同的变量。例: $ABC + A\overline{B}C = AC$
- ü标准"与—或"表达式:最小项之和表达式。

例: $L = f(A, B, C) = \overline{ABC} + A\overline{BC} + ABC = m_3 + m_5 + m_7 = \sum m(3, 5, 7)$

Ø最大项

- □ 针对具有 *n* 个变量的逻辑函数,最大项定义为 *n* 个变量相或。 (每个逻辑变量可以是原变量,也可以是反变量)
- $\ddot{\mathbf{u}}$ 针对具有 n 个变量的逻辑函数,最大项的个数为: 2^n 。
- ü例,具有A、B两个变量的逻辑函数,所有的最大项为:

$$A+B$$
 , $A+\overline{B}$, $\overline{A}+B$, $\overline{A}+\overline{B}$

ü 最大项: *M_i*

Ø 最大项(性质)

- $\ddot{\mathbf{u}}$ 针对 n 个变量的任意一组取值,有且仅有一个最大项的值为 $\mathbf{0}$ 。
- $\ddot{\mathbf{u}}$ 任何两个最大项相或,结果为 1: $M_i + M_j = 1$ 。
- $\ddot{\mathbf{u}}$ 全部最大项的与,结果为 $\mathbf{0}$: $\prod_{i=0}^{2^{n}-1} M_{i} = 0$
- ü 相邻项: 只差一个变量不同的两个最大项; 合并相邻项后,可消去不同的变量。 例: $(A+B+C)\cdot(A+B+\overline{C})=A+B$
- ü标准"或—与"表达式:最大项之与表达式。

例:
$$L = f(A, B, C) = (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

= $M_0 \cdot M_1 \cdot M_2 \cdot M_4 \cdot M_6 = \prod M(0, 1, 2, 4, 6)$

❷ 最小项~最大项

ü 针对 n 个变量的任意一组取值,最小项最大项互反:

$$m_i = \overline{M_i}$$
 , $M_i = \overline{m_i}$

例,3 变量逻辑函数: $m_0 = \overline{A}\overline{B}\overline{C} = \overline{A+B+C} = \overline{M_0}$

ü 任意逻辑函数, 既可以写成"与—或", 也可以写成"或—与"表达式:

$$\sum m_i = \prod M_j$$

例,3变量逻辑函数: $L = \sum m(3,5,7) = \prod M(0,1,2,4,6)$

❷卡诺图

- ü逻辑功能的另一种表格表示形式。
- ü通常按二维形式排列。
- ü 行(X)列(Y)方向变量按格雷码编码。
- $\ddot{\mathbf{u}}$ 针对具有 n 个变量的逻辑函数,有 2^n 个小方格,一一对应 2^n 个最小项。

Ø卡诺图 (二变量)

<u></u>	B	\overline{B}	В
11	\overline{A}	$\overline{A}\overline{B}$	$\overline{A} B$
_	$A \bigg $	$A \overline{B}$	A B

AB	$\overline{A}\overline{B}$	$\overline{A}B$	AB	$A\overline{B}$
	$\overline{A}\overline{B}$	$\overline{A}B$	AB	$A\overline{B}$

AB	00	01	11	10
	m_0	m_1	m_3	m_2

Ø卡诺图 (三变量)

BO	C 00	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

AB	8C 000	001	011	010	110	111	101	100
	m_0	m_1	m_3	m_2	m_6	m_7	m_5	m_4

Ø卡诺图(四/五变量)

AB	00	01	11	10	AB
00	m_0	m_1	m_3	m_2	00
01	m_4	m_5	m_7	m_6	01
11	m_{12}	m_{13}	<i>m</i> ₁₅	m_{14}	11
10	m_8	<i>m</i> ₉	m_{11}	m_{10}	10

\setminus CI	DE							
AB	000	001	011	010	110	111	101	100
00	m_0	m_1	m_3	m_2	m_6	m_7	m_5	m_4
01	m_8	m_9	m_{11}	m_{10}	m_{14}	m_{15}	m_{13}	m_{12}
11	m_{24}	m_{25}	m_{27}	m_{26}	m_{30}	m_{31}	m_{29}	m_{28}
10	<i>m</i> ₁₆	<i>m</i> ₁₇	<i>m</i> ₁₉	m_{18}	m_{22}	m_{23}	m_{21}	m_{20}

Ø卡诺图 (表示逻辑函数)

ü探究:如何用卡诺图表示一逻辑函数。

ü步骤:

逻辑函数写成标准的与或(最小项之和)表达式; 画出 n 变量卡诺图(假设原逻辑函数为 n 变量); 表达式中所有最小项对应的卡诺图小方格填1; 卡诺图中剩余小方格填0; 填好后的图形就是该逻辑函数的卡诺图。

【例2.2-1】

画出逻辑函数 L = f(A, B, C) = AC + BC 所对应的卡诺图。

解:逻辑函数写成标准的与或(最小项之和)表达式;

$$L = AC + BC = A\overline{B}C + ABC + \overline{A}BC + ABC$$
$$= A\overline{B}C + ABC + \overline{A}BC$$

画出 n 变量卡诺图;

L A BC	C 00	01	11	10
0	0	0	1	0
1	0	1	1	0

表达式中所有最小项对应的卡诺图小方格填1;

卡诺图中剩余小方格填0;

填好后的图形就是该逻辑函数的卡诺图。

【复例2.2-1】

画出逻辑函数 L = f(A, B, C) = AC + BC 所对应的卡诺图。

解:逻辑函数写成标准的与或(最小项之和)表达式;

$$B = 1 \perp \!\!\! \perp C = 1$$

C = 1

画出 n 变量卡诺图;

表达式中所有最小项对应的卡诺图小方格填1;

$$AC: A = 1 \perp \!\!\! \perp C = 1$$

$$BC: B = 1 \perp \!\!\! \perp C = 1$$

卡诺图中剩余小方格填0;

填好后的图形就是该逻辑函数的卡诺图。

【例2.2-2】

画出逻辑函数 $L = f(A, B, C, D) = \overline{BC} + BCD + AC\overline{D} + \overline{BC}\overline{D} + \overline{ABC} + \overline{ABD}$ 所对应的卡诺图。

解:	$L_{\setminus CI}$	\mathbf{O}			
	AB	00	01	11	10
	00	1	0	1	1
	01	1	1	1	0
	11	0	0	1	1
	10	1	0	1	1

4变量逻辑函数中 仅含3个变量的与项占2个小方格; 仅含2个变量的与项占4个小方格; 仅含1个变量的与项占8个小方格。

用卡诺图化简逻辑函数的基本思路

Ø卡诺图 (表示逻辑函数)

ü探究:如何用卡诺图表示一逻辑函数。

ü步骤:

逻辑函数写成标准的与或(最小项之和)表达式; 画出 n 变量卡诺图(假设原逻辑函数为 n 变量); 表达式中所有最小项对应的卡诺图小方格填1;

卡诺图中剩余小方格填0;

填好后的图形就是该逻辑函数的卡诺图。

ü 针对:已知逻辑函数(或最小项)表达式;要求对二~十进制的转换十分熟悉。

CI AB	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	<i>m</i> ₁₅	m_{14}
10	m_8	m_9	m_{11}	m_{10}

- ∅卡诺图(化简逻辑函数)
- ü 化简依据:相邻两个小方格代表的最小项只差一个变量;可以合并此两相邻项成一项,从而消去一个变量。
- Ü两个相邻最小项合并可消去一个变量;四个相邻最小项合并可消去二个变量;八个相邻最小项合并可消去三个变量;十六个相邻最小项合并可消去四个变量。
- ü相邻项:几何相邻或轴对称相邻。
- ü不适合包含五个以上逻辑变量的逻辑函数简化。

❷卡诺图(化简逻辑函数:相邻项合并)

- ü右图所示4变量卡诺图。
- *u m*₅ 的相邻项:*m*₄、*m*₁、*m*₇、*m*₁₃

合并
$$m_5$$
、 m_1 : $\overline{ABCD} + \overline{ABCD} = \overline{ACD}$

合并
$$m_5$$
、 m_7 : $\overline{ABCD} + \overline{ABCD} = \overline{ABD}$

合并
$$m_5$$
、 m_{13} : $\overline{ABCD} + AB\overline{CD} = B\overline{CD}$

AB CI	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	<i>m</i> ₁₅	m_{14}
10	m_8	m_9	m_{11}	m_{10}

❷卡诺图(化简逻辑函数:相邻项合并)

- ü右图所示4变量卡诺图。
- $\ddot{\mathbf{u}}$ m_1 的相邻项: m_0 、 m_3 、 m_5 、 m_9
- $\ddot{\mathsf{u}}$ 合并 m_1 、 m_0 : $\overline{A}\overline{B}\overline{C}$

合并 m_1 、 m_3 : \overline{ABD}

合并 m_1 、 m_5 : \overline{ACD}

合并 m_1 、 m_9 : \overline{BCD}

AB CI	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	<i>m</i> ₁₅	m_{14}
10	m_8	m_9	m_{11}	m_{10}

❷卡诺图(化简逻辑函数:相邻项合并)

- ü右图所示4变量卡诺图。
- $\ddot{\mathbf{u}}$ m_0 的相邻项: m_1 、 m_4 、 m_2 、 m_8
- $\ddot{\mathsf{u}}$ 合并 m_0 、 m_1 : $\overline{A}\overline{B}\overline{C}$

合并 m_0 、 $m_4:\overline{A}\overline{C}\overline{D}$

合并 m_0 、 m_2 : $\overline{A}\overline{B}\overline{D}$

合并 m_0 、 m_8 : \overline{BCD}

AB CI	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	<i>m</i> ₁₅	m_{14}
10	m_8	m_9	m_{11}	m_{10}

∅卡诺图(化简逻辑函数:相邻项合并)

ü右图所示4变量卡诺图。

$$\ddot{\mathbf{u}}$$
 合并 m_1 、 m_3 与 m_5 、 m_7 : \overline{AD} 合并 m_1 、 m_3 与 m_0 、 m_2 : \overline{AB} 合并 m_1 、 m_3 与 m_9 、 m_{11} : \overline{BD}

 $\ddot{\mathbf{u}}$ 合并 m_0 、 m_2 与 m_8 、 m_{10} : $\overline{B}\overline{D}$

AB CI	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	<i>m</i> ₁₅	m_{14}
10	m_8	m_9	m_{11}	m_{10}

- ❷卡诺图(化简逻辑函数:原则和规律)
- ü包围圈越大,消去变量越多,但只能对 2ⁿ 个相邻小方块实施包围。
- □ 小方块可以被重复包围(利用重叠律),但每一个包围圈中至少应有一个小方块未曾被其它包围过。
- ü可包围卡诺图中1的小方块,得到原函数的最简"与—或"表达式;
- 二次求反之后,可以得到原函数的最简"与非—与非"表达式,可全部用"与非"门实现。
- ü可包围卡诺图中 0 的小方块,得到原函数的最简"或—与"表达式;
- 二次求反之后,可以得到原函数的最简"或非—或非"表达式,可全部用"或非"门实现。

【例2.3-1】

用卡诺图化简: $L = f(A, B, C, D) = \overline{BC} + BCD + AC\overline{D} + \overline{BC}\overline{D} + \overline{ABC} + \overline{ABD}$

结论: $L = AC + \overline{BD} + CD + \overline{ABC}$

【例2.3-2】

用卡诺图化简: $L = f(A, B, C, D) = \sum m(1,3,4,5,6,7,9,12,14,15)$

结论: $L = BC + \overline{AD} + \overline{BD} + \overline{BCD}$

【例2.3-3】

用卡诺图化简: $L = f(A, B, C, D) = ABC + ABD + A\overline{C}D + \overline{C}\overline{D} + A\overline{B}C + \overline{A}C\overline{D}$

解:

结论: $L = A + \overline{D}$

【例2.3-4】

用卡诺图化简: $L = f(A, B, C, D) = \overline{ABD} + \overline{ABCD} + \overline{ABCD} + \overline{ABC} + \sum m(7,10,13,14,15)$

解:

结论: $L = \overline{ABD} + \overline{ACD} + ABD + AC\overline{D}$

【例2.3-5】

用卡诺图化简: $L = f(A, B, C) = A\overline{B} + BC + AC$ 成最简与或、或与表达式。

解:	L A BC	C 00	01	11	10	L A	C 00	01	11	10
	0	0	0	1	0	0	0	0	1	0
	1	1	1	1	0	1	1	1	1	0

圈 1 ,得最简与或表达式: $L = A\overline{B} + BC$

二次求反后,得:
$$L = \overline{AB} \cdot \overline{BC}$$

圈 0 ,得最简或与表达式:
$$L = (A+B)(\overline{B}+C)$$

二次求反后,得:
$$L = \overline{A + B} + \overline{B + C}$$

反函数表达式: $\overline{L} = f(A, B, C) = \overline{A}\overline{B} + B\overline{C}$

- ❷卡诺图(化简逻辑函数:原则和规律)
- ü包围圈越大,消去变量越多,但只能对 2ⁿ 个相邻小方块实施包围。
- · 山小方块可以被重复包围(利用重叠律),但每一个包围圈中至少应有一个小方块未曾被其它包围过。
- **ü** 可包围卡诺图中1的小方块,得到原函数的最简"与—或"表达式; 二次求反之后,可以得到原函数的最简"与非—与非"表达式,可全 部用"与非"门实现。
- **ü** 可包围卡诺图中 0 的小方块,得到原函数的最简"或—与"表达式; 二次求反之后,可以得到原函数的最简"或非—或非"表达式,可全 部用"或非"门实现。

Ø约束条件

ü约束项(无关项):实际中,输入端不可能出现的最小项。

ü例:

在 BCD 编码中, 4 位二进制的十六组编码中, 只选其中 10 组; 另外代码作约束项处理(电路中限制这些组合不出现)。

ü例:

十字路口的交通控制灯(红、绿、黄),指挥机动车是否可以通行; 红灯亮,不能通行;绿灯亮,可以通行;黄灯亮,应停车; 在控制灯正常运行时,不允许同时有两个或两个以上的灯亮; 即:两个或两个以上的灯亮的情况应受到制约(约束)。

Ø约束条件(表示方法)

ü以十字路口的交通控制灯为例。

A: 红灯,B: 绿灯,C: 黄灯,Z: 机动车; 灯亮为 1,灯暗为 0; 机动车可以通行为 0,停车为 1。

- ü右图所示真值表
 - " \times "表示约束项(无关项),分别对应: \overline{ABC} , \overline{ABC} , \overline{ABC} , \overline{ABC}
- ü 函数表示法: $Z = f(A,B,C) = \overline{ABC} + A\overline{BC}$ 约束条件: $\overline{ABC} + A\overline{BC} + AB\overline{C} + ABC = 0$

或者: $Z = f(A, B, C) = \sum m(1,4) + \sum d(3,5,6,7)$

A	В	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	×
1	0	0	1
1	0	1	×
1	1	0	×
1	1	1	×

【例2.4】

用卡诺图化简: $L = f(A, B, C, D) = \sum m(2,3,4,5,9,10,12,15) + \sum d(0,1,6,11,13)$

解:

结论: $L = B\overline{C} + \overline{B}C + AD$

▼本节作业

- □ 习题 1 (P52) (不含卡诺图化简)17、18.2、20增加画波形图和卡诺图、21.1/3/5、22
- ü 习题 1 (P53) (卡诺图化简) 23.2/4、24.2/4、27.1/2

ü 提示:

- 17题,两个函数的对偶式和反函数式都需要写出;
- 18题,要求用代数法证明;
- 20 题,相当于写出用逻辑问题的所有描述方法;
- 22 题,两个函数的最小最大项都需要写出,写成 m_i 、 M_i 格式即可;
- 24 题 4,约束条件表明,C不能等于D;
- 27 题,所谓最少量,即要求用卡诺图化简。