Quiz

1. Movimiento armónico simple

Suponga que una masa m se mueve transversalmente (a lo largo del eje y) ignorando los posibles movimientos longitudinales, como se muestra en la figura. Considerando que la tensión T en la cuerda permanece prácticamente constante para pequeños desplazamientos y usando la aproximación $\sin\theta \approx \tan\theta$, escriba una ecuación de la forma $\ddot{y}(t) = -\omega_0^2 y(t)$ que describa dicho movimiento y determine la frecuencia natural de oscilación. Note que la figura describe un plano ortogonal a la dirección de la gravedad.

2. Resorte

Un objeto de 3.0 kg alarga 16 cm un resorte que cuelga verticalmente en equilibrio. Luego el resorte se alarga 3.0 cm más y se libera dándole una velocidad de 0.5 cm/s hacia abajo, determine: (a) la frecuencia del movimiento en Hz, (b) la ecuación que lo describe y (c) discuta que cambia si el objeto de 3.0 kg se reemplaza por uno de 5.0 kg.

Taller Semana 2

1.Barra libre

Una barra de densidad uniforme y longitud L se clava a la pared de tal forma que una longitud α de la barra se encuentra por debajo del clavo. Donde $\alpha \ge L/2$. Calcule el periodo de oscilación para pequeñas oscilaciones.

2. Anillo oscilante

Se cuelga de una puntilla un anillo de densidad uniforme y diámetro d. Para pequeñas oscilaciones calcule el periodo de oscilación.

3. Barril

En la figura se muestra un cilindro de $I_c=(1/2)MR^2$ que puede rodar sin deslizar sobre una superficie cilíndrica Encontrar la frecuencia natural de oscilación ω_c una vez se desplaza el ángulo θ . Muestre que ángulo θ (visto desde O) y el ángulo φ (visto desde CM) están relacionados por la ecuación $\varphi=4\theta$, este resultado le servirá para escribir la ecuación de movimiento. Ignore la fuerza de fricción debida al movimiento. Recuerde que puede usar el método de conservación de energía o el de fuerzas de Newton.

