# On Average Baby PIH and Its Applications

Yuwei Liu Yijia Chen Shuangle Li Bingkai Lin Xin Zheng

BASICS Lab,
Shanghai Jiao Tong University

# Constraint Satisfaction Problem (qCSP)

- Variables  $X = \{x_1, \dots, x_n\}$
- Alphabet Σ
- Constraints  $\Phi = \{\varphi_1, \cdots, \varphi_m\}$ , each depends on q variables

• Decide: whether it's satisfiable or not.

**NP-Complete.** 

#### The PCP Theorem [AS-ALMSS'98] [Dinur'07]

NP-hard to decide whether a qCSP instance is

• Satisfiable, or

Cannot satisfy s-fraction of constraints simultaneously.

## Relaxation: Multi-Assignment

Assign each variable a set of values.

$$x_1$$
: {1, 5, 7, 9}  
 $\phi_1 = (x_1 x_2, C_1)$   
 $x_2$ : {2, 3, 4}  
 $\phi_2 = (x_2 x_3, C_2)$   
 $x_3$ : {2, 6}  
 $\phi_3 = (x_2 x_4, C_3)$   
 $\phi_4$ : {4, 5, 6, 8}

#### Relaxation: Multi-Assignment

Assign each variable a set of values.

$$x_1$$
: { 1, 5, 7, 9 }  $\varphi_1 = (x_1 x_2, C_1)$   
 $x_2$ : { 2, 3, 4 }  $\varphi_2 = (x_2 x_3, C_2)$   
 $x_3$ : { 2, 6 }  $\varphi_3 = (x_2 x_4, C_3)$   
 $x_4$ : { 4, 5, 6, 8 }

# Relaxation: Multi-Assignment

Assign each variable a set of values.

$$x_1$$
: { 1, 5, 7, 9 }  $\varphi_1 = (x_1 x_2, C_1)$   
 $x_2$ : { 2, 3, 4 }  $\varphi_2 = (x_2 x_3, C_2)$   
 $x_3$ : { 2, 6 }  $\varphi_3 = (x_2 x_4, C_3)$   
 $x_4$ : { 4, 5, 6, 8 }

#### Multi-Assignment PCP [Arora, Moshkovitz, Safra'06]

NP-hard to decide whether a qCSP instance is

- Satisfiable, or
- Cannot satisfy s-fraction of constraints simultaneously even when each variable assigned  $\leq t$  values.

Used to prove NP-hardness of approximating SetCover.

## Parameterized Inapprox. Hypo. (PIH)

• Hypothesis [Lokshtanov, Ramanujan, Saurabh, Zehavi'20]:

No FPT algorithm decide a 2CSP parameterized by k = |X| is:

- Satisfiable, or
- Cannot satisfy s-fraction of constraints simultaneously. (0 < s < 1)

• SOTA: Exponential Time Hypothesis -> PIH. [Guruswami,Lin,Ren,Sun,Wu'24]

Major open problem: W[1]≠FPT -> PIH ?

#### Weaken: Baby PIH [Guruswami,Ren,Sandeep'24]

- No FPT algorithm for deciding a 2CSP parameterized by k = |X|:
  - Being satisfiable, or
  - Cannot satisfy all constraints simultaneously even when **each** variable assigned  $\leq t$  values. (t > 1)

- W[1]≠FPT -> Baby PIH. [Guruswami,Ren,Sandeep'24]
  - Following the method in [Barto, Kozik'22] showing Baby PCP without using PCP Theorem.

#### Weaken: Baby PIH [Guruswami,Ren,Sandeep'24]



#### Question: Average Baby PIH

$$|X| = 4$$
,  $x_1$ : {0, 1, 3, 5, 7, 8, 9}  
 $x_2$ : {2}  
 $x_3$ : {2, 6}  
 $x_4$ : {8}

Total # of values: 7 + 1 + 2 + 1 = 11 = 2.75|X|.

#### Question: Average Baby PIH

• No FPT algorithm for deciding a 2CSP parameterized by k = |X|:

- Being satisfiable, or
- Cannot satisfy all constraints simultaneously even when assigning to X less than t|X| values in total. (t>1)

 $\ell_1$  instead of  $\ell_\infty$ 

Raised in [Guruswami,Ren,Sandeep'24].





No poly-time algorithm approximating max num of assigned values to each variable in 2CSP (Baby PIH)

#### Raised in [GRS24]:

No poly-time algorithm approximating max num of assigned values to all variable in 2CSP (Average Baby PIH)

#### Our result





No poly-time algorithm approximating max num of assigned values to each variable in 2CSP (Baby PIH)

#### **Our work**

No poly-time algorithm approximating max num of assigned values to all variable in 2CSP (Average Baby PIH)

#### W[1]≠FPT — Average Baby PIH

• A reduction for 2CSP instances that:



Can't satisfied when each variable assigned ≤ t values.

**Baby PIH** 

Our work

#### Satisfiable

Can't satisfied when assigning to X less than  $\frac{t}{2}|X|$  values in total.

Average Baby PIH

[Guruswami,Ren,Sandeep'24]

• Error-correcting codes with *overwhelming* (relative) distance



e.g. Reed-Solomon codes.

Any set S of codewords that "collides" on a noticeable fraction of positions.....



Any set S of codewords that "collides" on a noticeable fraction of positions.....



Any set S of codewords that "collides" on a noticeable fraction of positions.....





Theorem(Informal) cf. [Karthik-Navon'21, Lin-Ren-Sun-Wang'23]: For code Enc with relative distance  $1-\delta$ , any set of codewords "collides" on  $\varepsilon m$  positions must have size  $\geq \sqrt{\frac{2\varepsilon}{\delta}}$ .

#### Recall: W[1]≠FPT → Average Baby PIH

• A reduction for 2CSP instances that:



Can't satisfied wheneach variableassigned ≤ t values.

Baby PIH

Our work

#### Satisfiable

Can't satisfied when assigning to X less than  $\frac{t}{2}|X|$  values in total.

Average Baby PIH

[Guruswami,Ren,Sandeep'24]

Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$ as shown.

Variables:  $\Phi_0 \cup \{v_1, \dots, v_m\}$ 



 $W_m$ 

Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.

**Variables**:  $\Phi_0 \cup \{v_1, \dots, v_m\}$ 



Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.



Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.

**Constraints: Equality Check** 



 $\mathsf{ECC}\,\mathit{Enc}\!:\!\Sigma_0\to\Sigma^m$ 

Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.

**Constraints: Equality Check** 



 $\mathsf{ECC}\,\mathit{Enc}\!:\!\Sigma_0\to\Sigma^m$ 

Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.

**Constraints: Equality Check** 



 $\mathsf{ECC}\,\mathit{Enc}\!:\!\Sigma_0\to\Sigma^m$ 

Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.



Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.



Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.



Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.



Input: 2CSP instance

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ 

Output: 2CSP instance  $\Pi$  as shown.



# Completeness



 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ Can't satisfied when **each** variable assigned  $\leq t$  values



 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ Can't satisfied when **each** variable assigned  $\leq t$  values



#### Case 1:

More than  $(1 - \varepsilon)$  fraction of v's, each assigned t + 1 values



 $\exists x_i$  assigned > t different values

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ Can't satisfied when **each** variable assigned  $\leq t$  values

Case 2:

More than  $\varepsilon$  fraction of v's, assigned  $\leq t$  values



 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ Can't satisfied when **each** variable assigned  $\leq t$  values



 $\exists x_i$  assigned > t different values

Case 2: More than  $\varepsilon$  fraction of v's, assigned  $\leq t$  values



 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ Can't satisfied when each variable assigned  $\leq t$  values

 $\varphi_2$ Enc(b') $arphi_{|\Phi_0|}$  $v_1$  $W_1$  $v_2$ 

 $W_2$ 

 $W_m$ 

 $\varphi_1$ 

 $v_m$ 

Case 2:

More than  $\varepsilon$  fraction of v's, assigned  $\leq t$  values

 $\exists x_i$  assigned > t different values

 $\chi_i$ 

Enc(b)

Codewords "collides" on  $\varepsilon m$ positions, must have size ≥

$$\sqrt{\frac{2\varepsilon}{\delta}} > k^{2.01} \gg |\Phi_0|.$$

$$(\delta \leftarrow \frac{1}{k^{4.02}})$$

 $\Pi_0 = (X_0, \Sigma_0, \Phi_0)$ Can't satisfied when **each** variable assigned  $\leq t$  values



 $\Pi$  Can't satisfied when assigning to X less than  $\min(\frac{t}{2}|X|,k^2)$  values **in total**.



#### Conclusion



Hardness of Constant Approximating k-ExactCover

#### Open Question

W[1]≠FPT

Our work

The Average Baby PIH For  $\Pi = (X, \Sigma, \Phi)$  with  $|\Phi| = \omega(|X|)$ 

(Pointed out by reviewers)

The Average Baby PIH For  $\Pi = (X, \Sigma, \Phi)$  with  $|\Phi| = O(|X|)$ 

**Implies** 

The PIH

# Thank You!