Corrigé des exercices sur les intégrales

Exercice I:

(a) Soit M(x;y). $M \in C_f \iff y = \sqrt{1-x^2} \iff y \geqslant 0$ et $y^2 = 1-x^2$ $\iff y \geqslant 0$ et $(x-0)^2 + (y-0)^2 = 1^2$, où $(x-0)^2 + (y-0)^2 = 1^2$ est l'équation du cercle de

tre O et de rayon 1. -1 1 x

(b)
$$\int_0^1 \sqrt{1-x^2} dx = \frac{\pi}{4}$$
 est l'aire de la moitié droite du demi-cercle. L'aire d'un cercle de rayon 1 valant $\pi \times 1^2 = \pi$, celle d'un quart de cercle de rayon 1 vaut elle $\frac{\pi}{4}$ d'où $\int_0^1 \sqrt{1-x^2} dx = \frac{\pi}{4}$.

Exercice II:

	Rectangle N°	1	2	3	4		n	1
(a)	Hauteur	0	$\left(\frac{1}{n}\right)^2$	$\left(\frac{2}{n}\right)^2$	$\left(\frac{3}{n}\right)^2$		$\left(\frac{n-1}{n}\right)^2$	Largeur : $\frac{1}{n}$.
	$s_n = \frac{1}{n} \times 0 + \frac{1}{n}$	$\times +$	$\frac{1}{n} \times \left(\frac{1}{n}\right)$	$\right)^2 + \frac{1}{n} \times$	$\left(\frac{2}{n}\right)^2 +$	$\frac{1}{n} \times$	$\left(\frac{3}{n}\right)^2 + \dots +$	$-\frac{1}{n} \times \left(\frac{n-1}{n}\right)^2 =$
	$\frac{1}{n} \left(\frac{1^2}{n^2} + \frac{2^2}{n^2} + \right.$	$\frac{3^2}{n^2}$	$+ + \frac{(n)}{n}$	$\frac{(-1)^2}{n^2} + $	$=\frac{1}{n} \times \frac{1}{r}$	$\frac{1}{n^2} (1$	$^{2} + 2^{2} + 3^{2} +$	$-\dots + (n-1)^2$ =
	$\frac{1}{n^3} \left(1^2 + 2^2 + 3 \right)$	2 +	$\cdots + (n$	$-1)^2\big) =$	$=\frac{1}{n^3}\sum_{k=1}^{n-1}k$	z^2 .		

	Rectangle N°	1	2	3	4		n	1
(b)	Hauteur	$\left(\frac{1}{n}\right)^2$	$\left(\frac{2}{n}\right)^2$	$\left(\frac{3}{n}\right)^2$	$\left(\frac{4}{n}\right)^2$::	1	Largeur : $\frac{1}{n}$.

La différence entre s_n et S_n est de deux termes : le premier de s_n qui est nul, et le dernier de S_n qui vaut $1 \times \frac{1}{n} = \frac{n^2}{n^2} \times \frac{1}{n} = \frac{n^2}{n^3}$. $S_n = s_n + \frac{1}{n} \times 1 = s_n + \frac{n^2}{n^3} = \frac{1}{n^3} \sum_{k=1}^n k^2$.

(c) Initialisation :
$$\sum_{k=1}^{1} k^2 = 1^2 = 1$$
 et $\frac{1(1+1)(2\times 1+1)}{6} = \frac{6}{6} = 1$.

Hérédité : supposons que pour un certain $n \in \mathbb{N}^*$, $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$ alors

$$\sum_{k=1}^{n+1} k^2 = (n+1)^2 + \sum_{k=1}^{n} k^2 = \frac{6(n+1)^2}{6} + \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)[6(n+1) + n(2n+1)]}{6} = \frac{(n+1)[6n+6+2n^2+n]}{6} = \frac{(n+1)[n \times 2n + n \times 3 + 2 \times 2n + 2 \times 3]}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$
 Ceci correspond à ce qu'on obtient par ailleurs en remplaçant n par $n+1$ dans

Ceci correspond à ce qu'on obtient par ailleurs en remplaçant n par n+1 dans $\frac{n(n+1)(2n+1)}{6}$: l'hérédité est donc prouvée.

Concusion : par récurrence, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

(d)
$$S_n = \frac{1}{n^3} \sum_{k=1}^n k^2 = \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)(2n+1)}{6n^3} = \frac{(n+1)(2n+1)}{6n^2}$$

$$=\frac{n+1}{6n} \times \frac{2n+1}{n} = \left(\frac{1}{6} + \frac{1}{6n}\right) \left(2 + \frac{1}{n}\right).$$

 $\lim_{n\to +\infty} 6n = +\infty \text{, donc par passage à l'inverse } \lim_{n\to +\infty} \frac{1}{6n} = 0 \text{, donc par somme}$ $\lim_{n\to +\infty} \frac{1}{6} + \frac{1}{6n} = +\infty.$

Or $\lim_{n\to +\infty}\frac{1}{n}=0$, donc par somme $\lim_{n\to +\infty}2+\frac{1}{n}=2$.

Ainsi, par produit $\lim_{n\to+\infty}\left(\frac{1}{6}+\frac{1}{6n}\right)\left(2+\frac{1}{n}\right)=\frac{1}{6}\times 2=\frac{1}{3}$. Donc $\lim_{n\to+\infty}S_n=\frac{1}{3}$. $s_n=S_n-\frac{1}{n}$. Or $\lim_{n\to+\infty}\frac{1}{n}=0$, donc par différence $\lim_{n\to+\infty}s_n=\frac{1}{3}$.

(e) Pour tout $n \in \mathbb{N}^*$, $s_n \leqslant \int_0^1 x^2 dx \leqslant S_n$. Or $\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} S_n = \frac{1}{3}$, donc $n \in \mathbb{N}^*$, $\int_0^1 x^2 dx = \frac{1}{3}$.

Exercice III : Questions indépendantes sur les primitives.

- 1. Pour tout <0, $f(x)=\frac{-1}{-x}$ où -x>0. Donc $f(x)=\frac{v'(x)}{v(x)}$ avec v(x)=-x>0. Donc les primitives sur $]-\infty;0[$ sont les fonctions F de la forme $F(x)=\ln(-x)+c$ où c est une constante.
- 2. Pour tout $x\leqslant 0$, g(x)=-x donc les primitives de g sur $]-\infty;0]$ sont les fonctions H de la forme $H(x)=-\frac{x^2}{2}+c$ où c est une constante.

Pour tout $x \ge 0$, g(x) = x donc les primitives de g sur $[0; +\infty[$ sont les fonctions K de la forme $K(x) = \frac{x^2}{2} + k$ où k est une constante.

Les fonctions G primitives de g sur $\mathbb R$ coı̈ncident avec H et K : il faut donc que K(0)=H(0), c'est-à-dire k=c.

 $\text{Ainsi } G(x) = \begin{cases} -\frac{x^2}{2} + c \text{ si } x < 0 \\ \frac{x^2}{2} + c \text{ sinon} \end{cases} \text{, autrement dit } : G(x) = \frac{x|x|}{2} \text{ où } c \text{ est une constante.}$

3. Pour tout $x\leqslant 1$, $x-1\leqslant 0$ donc h(x)=1-x donc les primitives de h sur $]-\infty;1]$ sont les fonctions G de la forme $G(x)=x-\frac{x^2}{2}+c$ où c est une constante.

Pour tout $x \geqslant 1$, $x-1 \geqslant 0$, donc h(x) = x-1 donc les primitives de h sur $[1; +\infty[$ sont les fonctions K de la forme $K(x) = \frac{x^2}{2} - x + k$ où k est une constante.

Les fonctions H primitives de h sur $\mathbb R$ coı̈ncident avec G et K : il faut donc que G(1)=K(1),

$$\text{c'est-\`a-dire } \frac{1}{2} + c = -\frac{1}{2} + k. \text{ Ainsi } k = 1 + c. \text{ Donc } H(x) = \begin{cases} x - \frac{x^2}{2} + c \text{ si } x < 1 \\ \frac{x^2}{2} - x + 1 + c \text{ sinon} \end{cases} .$$

Remarque : on peut montrer que c'est aussi $H(x)=\frac{(x-1)|x-1|}{2}+\lambda$ où λ est une constante.

Exercice IV:

1. $\cos(2t) = 2(\cos t)^2 - 1$ donc $(\cos t)^2 = \frac{1 + \cos(2t)}{2} = \frac{1}{2} + \frac{1}{2}\cos(2t)$.

2.
$$\int_0^{\frac{\pi}{4}} (\cos t)^2 dt = \int_0^{\frac{\pi}{4}} \frac{1}{2} + \frac{1}{2} \cos(2t) dt = \left[\frac{1}{2}t + \frac{1}{2} \times \frac{1}{2} \sin(2t) \right]_0^{\frac{\pi}{4}}$$
$$= \frac{1}{2} \times \frac{\pi}{4} + \frac{1}{4} \sin\left(2\frac{\pi}{4}\right) - \frac{1}{2} \times 0 - \frac{1}{4} \sin(2 \times 0) = \frac{\pi}{8} + \frac{1}{4} \sin\frac{\pi}{2} - \frac{1}{4} \sin 0 = \frac{\pi}{8} + \frac{1}{4}.$$

Exercice V:

1.

(a)

(b) On lit graphiquement deux solutions : $x \approx 0,79$ et $x \approx 3,92$.

(a) Les solutions de l'équation $\sin x = \cos x$ sont représentées par des points dont l'ordonnée est égale à l'abscisse, ils sont donc situés sur la droite

2. d'équatio

d'équation y=x. Les solutions sont $x=\frac{5}{4}\pi$ et $x=\frac{\pi}{4}$.

(b) $\cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \text{ et } \cos\left(\frac{5}{4}\pi\right) = \sin\left(\frac{5}{4}\pi\right) = -\frac{\sqrt{2}}{2}.$

Les courbes se coupent donc aux points de coordonnées $\left(\frac{\pi}{4}; \frac{\sqrt{2}}{2}\right)$ et $\left(\frac{5}{4}\pi; -\frac{\sqrt{2}}{2}\right)$.

3. (a) Sur l'intervalle $\left[\frac{\pi}{4}; \frac{5}{4}\pi\right]$, la courbe de \cos est en dessous de celle de \sin , donc $A = \int_{\frac{\pi}{4}}^{\frac{5}{4}\pi} \sin x - \cos x \, dx = \left[-\cos x - \sin x\right]_{\frac{\pi}{4}}^{\frac{5}{4}\pi} = -\cos\left(\frac{5}{4}\pi\right) - \sin\left(\frac{5}{4}\pi\right) - \left[-\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{4}\right)\right]$ $A = -\left(-\frac{\sqrt{2}}{2}\right) - \left(-\frac{\sqrt{2}}{2}\right) - \left[-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right] = 4\frac{\sqrt{2}}{2} = 2\sqrt{2}$ unités d'aires.

(b) L'unité d'aire vaut $1,5^2=2,25\text{cm}^2$. Donc $A=2\sqrt{2}\times 2,25\approx 6,36\text{cm}^2$.

Exercice VI:

1. (a) $\lim_{x\to 0^+}\frac{1}{x}=+\infty$ et $\lim_{x\to 0^+}\ln x=-\infty$ donc par produit, $\lim_{x\to 0^+}g(x)=-\infty$.

D'après le cours, $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{\ln x}{x} = 0.$

(b) $g'(x) = \frac{\frac{1}{x} \times x - \ln x \times 1}{x^2} = \frac{1 - \ln x}{x^2}$. $x^2 \ge 0 \text{ donc } g'(x) \text{ est du signe de } 1 - \ln x$.

x	0		e		$+\infty$
g'(x)		+	0	_	
g(x)		$-\infty$	$\frac{1}{e}$	7	0

(c) Soit $x \in]0; +\infty[$. $g(x) > 0 \Leftrightarrow \frac{\ln x}{x} \times x > 0 \times x \text{ car } x > 0.$

(d) $\lim_{x\to 0^+} g(x) = -\infty$ donc la courbe de g admet l'axe des ordonnées comme asymptote.

 $\lim_{x \to +\infty} g(x) = 0$ donc la courbe de g admet l'axe des abscisses comme asymptote.

g admet pour maximum $\frac{1}{e}$ en x=e donc la courbe de g admet une tangente horizontale au point de coordonnées $\left(e;\frac{1}{e}\right)$.

Enfin comme g(1) = 0, la courbe de g coupe l'axe des abscisses au point d'abscisse 1.

2. (a)

(b) L'aire de
$$S$$
 vaut $-\int_{\frac{1}{2}}^{1}g(x)\,dx + \int_{1}^{2}g(x)\,dx = -\left[\frac{1}{2}(\ln x)^{2}\right]_{\frac{1}{2}}^{1} + \left[\frac{1}{2}(\ln x)^{2}\right]_{1}^{2}$
$$= -\left(\frac{(\ln 1)^{2}}{2} - \frac{(\ln \frac{1}{2})^{2}}{2}\right) + \frac{(\ln 2)^{2}}{2} - \frac{(\ln 1)^{2}}{2}$$

$$= -0 + \frac{(-\ln 2)^{2}}{2} + \frac{(\ln 2)^{2}}{2} - 0$$

$$= \frac{(\ln 2)^{2}}{2} + \frac{(\ln 2)^{2}}{2} = (\ln 2)^{2}.$$

(c) L'aire de S vaut $(\ln 2)^2 \times 2, 5^2 \approx 3,00 \text{cm}^2$.

Exercice VII:

Soient
$$I = \int_0^1 x e^{(x^2)} dx$$
, $J = \int_0^1 e^{(x^2)} dx$ et $K = \int_0^1 e^x dx$.

- (a) Pour tout $x \in [0;1]$, $x \leqslant 1$ et x est positif donc $x \times x \leqslant 1 \times x$, ainsi $x^2 \leqslant x$. Or \exp est croissante sur $\mathbb R$, donc $e^{(x^2)} \leqslant e^x$. Pour tout $x \in [0;1]$, $x \leqslant 1$ et $e^{(x^2)}$ est positif donc $xe^{(x^2)} \leqslant e^{(x^2)}$.
- (b) Pour tout $x \in [0;1]$, $xe^{(x^2)} \leqslant e^{(x^2)} \leqslant e^x$.

$$\begin{aligned} &\text{Donc } \int_0^1 x e^{(x^2)} dx \leqslant \int_0^1 e^{(x^2)} dx \leqslant \int_0^1 e^x dx. \text{ Ainsi, } I \leqslant J \leqslant K. \\ &I = \int_0^1 x e^{(x^2)} dx \leqslant \int_0^1 \frac{1}{2} 2x e^{(x^2)} dx = \frac{1}{2} \int_0^1 2x e^{(x^2)} dx \text{ (linéarité)} \\ &\text{donc } I = \frac{1}{2} \left[e^{(x^2)} \right]_0^1 = \frac{1}{2} \left(e^{(1^2)} - e^{(0^2)} \right) = \frac{e-1}{2}. \\ &K = \int_0^1 e^x dx = \left[e^x \right]_0^1 = e^1 - e^0 = e - 1. \text{ Ainsi } \frac{e-1}{2} \leqslant J \leqslant e-1. \end{aligned}$$

Exercice VIII:

Soient a et b deux réels tels que $a \leq b$.

- (a) Pour tout $y \in \mathbb{R}$: si y < 0 alors y < 0 < -y = |y|, sinon y = |y|. Donc pour tout $y \in \mathbb{R}$, $y \leq |y|$.

$$\operatorname{Or} \left| \int_a^b f(x) \, dx \right| = \int_a^b f(x) \, dx \text{ ou } - \int_a^b f(x) \, dx, \text{ donc }$$

$$\operatorname{dans \ tous \ les \ cas} : \int_a^b |f(x)| \, dx \leqslant \left| \int_a^b f(x) \, dx \right|.$$

(b)
$$a = -1$$
, $b = 1$ et $f(x) = x$.
$$\int_{-1}^{1} |f(x)| dx = \int_{-1}^{1} |x| dx = \int_{-1}^{0} |x| dx + \int_{0}^{1} |x| dx = \int_{-1}^{0} -x dx + \int_{0}^{1} x dx \\
= \left[-\frac{x^{2}}{2} \right]_{-1}^{0} + \left[\frac{x^{2}}{2} \right]_{0}^{1} = -\frac{0^{2}}{2} - \left(-\frac{(-1)^{2}}{2} \right) + \frac{1^{2}}{2} - \frac{0^{2}}{2} = \frac{1}{2} + \frac{1}{2} = 1.$$

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} x dx = \left[\frac{x^{2}}{2} \right]_{-1}^{1} = \frac{1^{2}}{2} - \left(-\frac{(-1)^{2}}{2} \right) = \frac{1}{2} - \frac{1}{2} = 0.$$