Notation

Rubem Vasconcelos Pacelli rubem.engenharia@gmail.com

Department of Teleinformatics Engineering, Federal University of Ceará. Fortaleza, Ceará, Brazil.

Version: July 24, 2024

Contents

1	ron	t notation
2	Sign	nals and functions
	2.1	Time indexing
	2.2	Common signals
	2.3	Common functions
	2.4	Operations and symbols
	2.5	Digital signal processing
	2.6	Transformations
3	Pro	bability, statistics, and stochastic processes
	3.1	Operators and symbols
	3.2	Stochastic processes
	3.3	Functions
	3.4	Distributions
4	Ma	chine learning, optimization theory, and
	stat	sistical signal processing
	4.1	Matrix Calculus (in denominator layout)
	4.2	Statistics: estimation and detection theory
	4.3	Signals, (hyper)parameters, system performance, and criteria
5	Lin	ear Algebra
	5.1	Common matrices and vectors
	5.2	Indexing
	5.3	General operations
	5.4	Operations with matrices and tensors
	5.5	Operations with vectors
	5.6	Decompositions

	5.7 Spaces and sets
	5.7.1 Common spaces and sets
	5.7.2 Convex sets (or spaces)
	5.7.3 Spaces from matrices or vectors
	5.8 Set operations
	5.9 Inequalities
6	Communication systems
	6.1 Common symbols
	6.2 Fading multipath channels
7	Discrete mathematics
	7.1 Quantifiers, inferences
	7.2 Propositional Logic
	7.3 Operations
8	Vector Calculus
9	Electromagnetic waves
10	Generic mathematical symbols
11	Abbreviations

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars or tuples (the elements
	should be denoted in parentheses
	[44], although some authors also de-
	note them in angle brackets $[12]$)
a, b, c, \dots	Vectors
$\overline{A,B,C,\dots}$	Matrices
A, B, C, \dots	Tensors
$A, B, C, \dots, A, B, C, \dots, A, B, C, \dots$	Sets

2 Signals and functions

2.1 Time indexing

x(t)	Continuous-time t
$x[n],x[k],x[m],x[i],\ldots$	Discrete-time n, k, m, i, \ldots (parenthe-
$x_n, x_k, x_m, x_i, \dots$	sis should be adopted only if there
$x(n), x(k), x(m), x(i), \dots$	are no continuous-time signals in the
	context to avoid ambiguity)
$x[((n-m))_N][33], x((n-m))_N[27]$	Circular shift in m samples within a
	N-samples window

2.2 Common signals

$\delta(t)$	Delta function
$\delta[n], \delta_{i,j}$	Kronecker function $(n = i - j)$
h(t), h[n]	Impulse response (continuous and
	discrete time)
$\tilde{x}[n], \tilde{x}(t)$	Periodic discrete- or continuous-time
	signal
$\hat{x}[n], \hat{x}(t)$	Estimate of $x[n]$ or $x(t)$
$\dot{x}[m]$	Interpolation of $x[n]$

2.3 Common functions

$\mathcal{O}(\cdot), O(\cdot)$	Big-O notation
$\Gamma(\cdot)$	Gamma function
$Q(\cdot)$	Quantization function
$\operatorname{sgn}(\cdot)$	Signum function
$\tanh(\cdot)$	Hyperbolic tangent function

$I_{lpha}(\cdot)$	Modified Bessel function of the first kind and order α
$\binom{n}{k}$	Binomial coefficient

2.4 Operations and symbols

$f:A \to B$	A function f whose domain is A and codomain is B
$\mathbf{f}:A\to\mathbb{R}^n$	A vector-valued function \mathbf{f} , i.e., $n \geq 2$
$f^n, x^n(t), x^n[k]$	<i>n</i> th power of the function f , $x[n]$ or
	x(t)
$f^{(n)}, x^{(n)}(t)$	nth derivative of the function f or
	x(t)
$f', f^{(1)}, x'(t)$	1th derivative of the function f or
	x(t)
$f'', f^{(2)}, x''(t)$	2th derivative of the function f or
	x(t)
$\arg\max [x \in \mathcal{A}] f(x)$	Value of x that minimizes x
$\arg\min [x \in \mathcal{A}] f(x)$	Value of x that minimizes x
$f(\mathbf{x}) = \inf_{\mathbf{y} \in A} g(\mathbf{x}, \mathbf{y})$	Infimum, i.e., $f(\mathbf{x}) =$
$\mathbf{y} \in \mathcal{A}$	$\min \{ g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \mathrm{dom}(g) \},\$
	which is the greatest lower bound of
	this set [10, Appendix A.2.2]
$f(\mathbf{x}) = \sup_{\mathbf{x}} g(\mathbf{x}, \mathbf{y})$	Supremum, i.e., $f(\mathbf{x}) =$
$\mathbf{y} \in \mathcal{A}$	$\max \{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g)\},\$
	which is the least upper bound of
	this set [10, Appendix A.2.2]
$f \circ g$	Composition of the functions f and
	8
*	Convolution (discrete or continuous)
	Circular convolution

2.5 Digital signal processing

$T_s[27], T[33]$	Sampling period
f_s , $F_s[27]$	Sampling frequency (in Hz or sam-
	ples per secod [27, chapter 3]), i.e.,
	$1/T_s$

J	Continuous linear frequency (in Hz).
	Apparently, there is no notation for
	the discrete linear frequency, we use
	ω only. However, in [27], the upper-
	case letters F and Ω are used to de-
	note the continuous-time frequency,
	while the lowercase f and ω denote
	the discrete-time frequency (Oppen-
	heim [33] does not do it!)
Ω [27]	Continuous angular frequency (in
	rad/s), that is, $2\pi f$.
$\Omega_{\scriptscriptstyle S}$	Sampling frequency (in rad/s), i.e.,
	$2\pi f_s$
ω	Discrete angular frequency, i.e., ΩT_s
	[27, eq (3.27)]. As ω is also used to
	denote continuous angular frequency
	outside the DSP context, it is always
	convenient to state that it denotes
	the discrete frequency when it does
W_N	Twiddle factor, $e^{-j\frac{2\pi}{N}}$ [27]
N	Number of samples in the DFT/FFT
$\mathcal{R}_N[n]$	Rectangular window used to cut off
	the discrete sequences [27]
Ω_N [33], B	One-sided effective bandwidth of the
	continuous-time signal spectrum
ω_s [27]	Stop frequency
ω_p [27]	Pass frequency
$\Delta\omega$ [27]	$\omega_s - \omega_p$
$-\omega_c$ [27]	Cutoff frequency
-s(t)	Impulse train
$gdr \left[H(e^{j\omega}) \right] [33]$	Group delay of $H(e^{j\omega})$
$\angle H(e^{j\omega})$ [33]	Phase response of $H(e^{j\omega})$
$H(e^{j\omega})$ [33]	Magnitude (or gain) of $H(e^{j\omega})$
$x_c(t)$ [33], $x(t)$	Continuous-time signal
$x_s(t)$	Sampled version of $x(t)$, i.e., $x(t)s(t)$
$x_r(t)$	Reconstruction of $x(t)$ from interpo-
	lation
$\tilde{x}[n]$	Periodic extension of the the aperi-
	odic signal $x[n]$

2.6 Transformations

|--|

$\overline{\mathrm{DTFT}\left\{\cdot\right\}},\mathrm{DFS}\left\{\cdot\right\},\mathrm{FFT}\left\{\cdot\right\}$	Discrete-time Fourier Transform
	(DTFT), Discrete Fourier Trans-
	form (DFT), Discrete Fourier Series
	(DFS), respectively
$\mathcal{L}\left\{ \cdot \right\}$	Laplace transform
$\overline{\mathcal{Z}\left\{\cdot\right\}}$	z-transform
$\hat{x}(t), \hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (FT) (in angular
	frequency, rad/sec) of $x(t)$
$X(e^{j\omega})$	Discrete-time Fourier transform
	(DTFT) of $x[n]$
$X[k], X(k), X_k$	Discrete Fourier transform (DFT) or
	fast Fourier transform (FFT) of $x[n]$,
	or even the Fourier series (FS) of the
	periodic signal $x(t)$
$\tilde{X}[k], \tilde{X}(k), \tilde{X}_k$	Discrete Fourier series (DFS) of $\tilde{x}[n]$
X(z)	z-transform of $x[n]$

3 Probability, statistics, and stochastic processes

3.1 Operators and symbols

$\mathbf{E}\left[\cdot\right],\mathbf{E}\left[\cdot\right]\left[32\right],E\left[\cdot\right],\mathbb{E}\left[\cdot\right]\left[17\right]$	Statistical expectation operator
$\overline{\cdot}$], \mathbf{E}_{u} [·] [32], E_{u} [·], \mathbb{E}_{u} [·]	Statistical expectation operator with
	respect to u
$\overline{\langle \cdot \rangle}$	Ensemble average
$var [\cdot] [32], VAR[\cdot] [9, 26, 31, 37]$	Variance operator
$\operatorname{var}_{u}\left[\cdot\right]\left[\cdot\right], \operatorname{VAR}_{u}\left[\cdot\right]$	Variance operator with respect to u
$cov[\cdot], COV[\cdot]$	Covariance operator [9]
$\operatorname{cov}_{u}[\cdot], \operatorname{COV}_{u}[\cdot]$	Covariance operator with respect to
	и
μ_x	Mean of the random variable x
μ_{x}, m_{x}	Mean vector of the random variable
	x [13]
μ_n	nth-order moment of a random vari-
	able
$\frac{\sigma_{\chi}^2, \kappa_2}{\mathcal{K}_{\chi}, \mu_4}$	Variance of the random variable x
\mathcal{K}_x, μ_4	Kurtosis (4th-order moment) of the
	random variable x

κ_n	nth-order cumulant of a random vari-
	able
$\rho_{x,y}$	Pearson correlation coefficient be-
	tween x and y
$a \sim P$	Random variable a with distribution
	P
$\overline{\mathcal{R}}$	Rayleigh's quotient

3.2 Stochastic processes

PS: Estimated terms come with a hat above of it

$r_{\scriptscriptstyle X}(au)$ [32], $R_{\scriptscriptstyle X}(au)$	Autocorrelation function of the signal
	x(t) or $x[n]$
$S_x(f), S_x(j\omega)$	Power spectral density (PSD) of $x(t)$
	in linear (f) or angular (ω) frequency
$S_{x,y}(f), S_{x,y}(j\omega)$	Cross PSD of $x(t)$ and $y(t)$ in linear
	or angular (ω) frequency
$\overline{R_x}$	(Auto)correlation matrix of $\mathbf{x}(n)$
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$ [32]
$\overline{\mathbf{R}_{\mathbf{x}\mathbf{y}}}$	Cross-correlation matrix of $\mathbf{x}(n)$ and
	$\mathbf{y}(n)$
$\mathbf{r}_{\mathbf{x}d}$ [25], $\mathbf{p}_{\mathbf{x}d}$ [17]	Cross-correlation vector between
	$\mathbf{x}(n)$ and $d(n)$
$c_x(\tau), C_x(\tau)$	Autocovariance function of the signal
	x(t) or x[n] [32]
$C_x, K_x, \Sigma_x, \text{cov}[x]$	(Auto)covariance matrix of x [9, 26,
	31, 37, 45]
$-\tilde{\mathbf{C}}_{\mathbf{x}}[37]$	Pseudocovariance matrix of x
$\frac{\tilde{\mathbf{C}}_{\mathbf{x}}[37]}{c_{xy}(\tau), C_{xy}(\tau)}$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n] [32]$
$C_{xy}, K_{xy}, \Sigma_{xy}$	Cross-covariance matrix of x and y

3.3 Functions

$Q(\cdot)$	<i>Q</i> -function, i.e., $P[\mathcal{N}(0,1) > x][37]$
$\operatorname{erf}(\cdot)$	Error function [37]
$erfc(\cdot)$	Complementary error function i.e.,
	$\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x) [37]$
P[A]	Probability of the event or set A [31]

$p(\cdot), f(\cdot)$	Probability density function (PDF)
	or probability mass function (PMF)
	[31]
$p(x \mid A)$	Conditional PDF or PMF [31]
$F(\cdot)$	Cumulative distribution function
	(CDF)
$\Phi_{x}(\omega), M_{x}(j\omega), E \left[e^{j\omega x}\right]$	First characteristic function (CF) of
	x [37, 44]
$M_X(t), \Phi_X(-jt), E[e^{tx}]$	Moment-generating function (MGF)
	of x [37, 44]
$\Psi_{x}(\omega), \ln \Phi_{x}(\omega), \ln E\left[e^{j\omega x}\right]$	Second characteristic function
$K_x(t), \ln E\left[e^{tx}\right], \ln M_x(t)$	Cumulant-generating function
	(CGF) of x [26]

3.4 Distributions

$\mathcal{N}(\mu, \sigma^2)$ [34]	Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{CN}(\mu, \sigma^2)$	Complex Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$	Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{CN}(oldsymbol{\mu}, oldsymbol{\Sigma})$	Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\frac{\mathcal{U}(a,b)}{\chi^2(n),\chi^2_n}$	Uniform distribution from a to b
$\chi^2(n), \chi_n^2$	Chi-square distribution with n degree of freedom (assuming that the Gaussians are $\mathcal{N}(0,1)$)
$\operatorname{Exp}(\lambda)$	Exponential distribution with rate parameter λ
$\Gamma(\alpha, \beta)$	Gamma distribution with shape parameter α and rate parameter β
$\Gamma(\alpha, \theta)$	Gamma distribution with shape parameter α and scale parameter $\theta = 1/\beta$
$\operatorname{Nakagami}(m,\Omega)$	Nakagami-m distribution with shape parameter or fading figure m and spread, scale, or shape parameter Ω
Rayleigh(σ)	Rayleigh distribution with scale parameter σ

$\operatorname{Rayleigh}(\Omega)$	Rayleigh distribution with the second
	moment $\Omega = E[x^2] = 2\sigma^2$
$Rice(s, \sigma)$	Rice distribution with noncentrality
	parameter [37, p. 841] s and σ .
	s^2 represent the specular component
	power [37, p. 841]
$\overline{\operatorname{Rice}(\Omega,K),\operatorname{Rice}(A,K)}$	Rice distribution with Rice factor
	$K = s^2/2\sigma^2$ and scale parameter $\Omega =$
	$A = s^{2} + 2\sigma^{2} = 2\sigma^{2}(K+1)$ (\$\Omega\$ is pref-
	ered over A)

4 Machine learning, optimization theory, and statistical signal processing

4.1 Matrix Calculus (in denominator layout)

PS: Estimated terms come with a hat above of it

$\mathbf{g}, \nabla f, \frac{\partial f}{\partial \mathbf{w}}$ $\mathbf{g} \text{ if the gradient vector is } \nabla f \text{ (or } \hat{\mathbf{g}} \text{ if the gradient vector is } \mathbf{g} \text{ [25])}$	Gradient descent vector, used in the steepest descent method, also called gradient descent method or deterministic gradient method. Stochastic gradient descent (SGD) vector, i.e., instantaneous approximation of gradient descent vector
$\mathbf{g}_{\mathbf{x}}, \nabla_{\mathbf{w}} f, \frac{\partial f}{\partial \mathbf{w}}$	Gradient descent vector with respect \mathbf{w} [9]
$\mathbf{J}, \frac{\partial \mathbf{y}^{ op}}{\partial \mathbf{x}}, abla \mathbf{y}^{ op} [25]$	Jacobian matrix.
$ \frac{\mathbf{J}, \frac{\partial \mathbf{y}^{T}}{\partial \mathbf{x}}, \nabla \mathbf{y}^{T} [25]}{\mathbf{H}, \frac{\partial^{2} f}{\partial \mathbf{w}^{2}}, \nabla^{2} f [25], \nabla \nabla f [9]} $	Hessian matrix. The notation ∇^2 is sometimes used in Matrix Calculus to denote the second-order vector derivative. However, it must be avoided since, in Vector Calculus, ∇^2 also denotes the Laplacian operator which in turn may be scalar or vector Laplacian operator depending on whether f is scalar- or vector-valued, respectively. Some discussion about can be found in [5–7]

4.2 Statistics: estimation and detection theory

X	output
w	Parameters
$p(\mathbf{x} \mid \mathbf{w}), l(\mathbf{x} \mid \mathbf{w})[31]$	Likelihood function
$\ln p(\mathbf{x} \mid \mathbf{w})$	Log-likelihood function
$\Lambda(\mathbf{x})[31], \frac{p(\mathbf{x} H_1)}{p(\mathbf{x} H_0)} [28, 31], L(\mathbf{x}) [14,$	Likelihood ratio function (also called
28]	likelihood ratio test (LRT) [28])
$\Lambda_l(\mathbf{x}), \mathcal{L}(\mathbf{x})$ [14], $l(\mathbf{x})$ [28]	Log-likelihood ratio (LLR [28]) func-
	tion
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coeffi-
	cient between x and y
\mathcal{R}_k	kth Decision region
$x(t) \stackrel{m.s.e}{=} y(t)$	x(t) equals $y(t)$ is the mean square er-
	ror sense, that is $E[x(t) - y(t) ^2] = 0$
$x(t) = 1. i. m. \sum_{i=1}^{N} x_i \phi_i(t) [46]$	$\lim_{N\to\infty} \mathbb{E}\left[\left x(t) - \sum_{i=1}^{N} x_i \phi_i(t)\right ^2\right] = 0$
$N{ ightarrow}\infty$	(l.i.m stands for "limit in the mean").
	It is analogous to the $\stackrel{m.s.e}{=}$ notation,
	but denoting that they equal in the
	MSE sense only when $N \to \infty$

4.3 Signals, (hyper)parameters, system performance, and criteria

N	Number of instances/samples/exam-
	$ples[25], i.e., n \in \{1, 2,, N\}$
$N_{ m trn}$	Number of instances in the training
	set, i.e., $n \in \{1, 2,, N_{\text{trn}}\}$
$N_{ m tst}$	Number of instances in the test set,
	i.e., $n \in \{1, 2,, N_{\text{tst}}\}$
$N_{ m val}$	Number of instances in the validation
	set, i.e., $n \in \{1, 2,, N_{\text{val}}\}$
N_e	Number of epochs
N_a	Number os attributes
K [25]	Number of classes (which is the num-
	ber of outputs in multiclass prob-
	lems). Use k to iterate over it
L	Number of layers, i.e., the depth of
	the network. Use l to iterate over it

M_l, m_l [25], J [25]	Number of neurons at the l th layer. You might prefer J in the case of the single-layer perceptron (use j to iterate over it). If you want to iterate through it, a sensible variation of Haykin notation is M_l , where m_l can be used as an iterator. m_0 is the length of the input vector without the bias.
$\mathbf{x}(n), \mathbf{x}_n$	Input signal (in \mathbb{R}^{N_a+1})
$x_0(n)$	Dummy input of the bais, which is usually ± 1 . $+1$ is preferred [9, 25].
$\varphi(\cdot)[25], h(\cdot)[9]$	Activation function
$\varphi(\cdot)[25], h(\cdot)[9]$ $\varphi'(v_{m_l}^{(l)}(n))[25], \frac{\partial y_{m_l}^{(l)}(n)}{\partial v_{m_l}^{(l)}(n)} [25]$	Partial derivative of the activation function with respect to $v_{m_l}^{(l)}(n)$ $(m_l$ neuron at l th layer)
$y_{m_l}^{(l)}(n), \varphi\left(v_{m_l}^{(l)}(n)\right)[25], \mathbf{t}_{m_l}^{(l)}(n)[9]$	Output signal (target) of the m_l th neuron at the l th layer
$\mathbf{y}^{(l)}(n)$	Output signal of the <i>l</i> th layer
	Output of the neural network
	Desired label (in case of supervised learning). For multiclass classification, one-hot encoding is usually used. For binary (scalar) classification, however antipodal encoding, i.e., {-1,1} is more recommended [25].
$e_{m_l}(n)$	Error signal of the neuron m_l at the
	lth layer
$\mathbf{e}(n), \mathbf{d}(n) - \mathbf{y}(n)$ $\mathbf{w}_{m_l}^{(l)}(n), \boldsymbol{\theta}_{m_l}^{(l)}(n)$	Error signal
$\mathbf{w}_{m_{l}}^{(l)}(n), \mathbf{\theta}_{m_{l}}^{(l)}(n)$ $\begin{bmatrix} w_{m_{l},0}^{(l)}(n) & w_{m_{l},1}^{(l)}(n) & \dots & w_{m_{l},m_{l-1}}^{(l)}(n) \end{bmatrix}$	or adaptive filters, the superscript is
	omitted
$w_{m_l,0}^{(l)}(n), b_{m_l}^{(l)}(n)$	Bias (the first term of the weight vector) of the <i>l</i> th layer
$\mathbf{W}(n), \begin{bmatrix} \mathbf{w}(1) & \mathbf{w}(2) & \cdots & \mathbf{w}(N) \end{bmatrix}^{T}$	Matrix of the synaptic weights
$\mathbf{\tilde{W}}(n)$	Matrix of the synaptic weights, but without the bias

$v_{m_l}^{(l)}(n), \mathbf{w}_{m_l}^{(l)\top}(n)\mathbf{y}_{m_{l-1}}^{(l-1)}(n)$	Induced local field or activation potential. At the first layer $\mathbf{y}_{m_0}^{(0)}(n) = \mathbf{x}(n)$ [9]
$\mathbf{v}^{(l)}(n), \mathbf{W}^{(l)}(n)\mathbf{y}_{m_{l-1}}^{(l-1)}(n)$	Vector of the local fields at the l th layer
$\mathbf{w}^{\star}, \mathbf{w}_{o}, \mathbf{\theta}^{\star}, \mathbf{\theta}_{o}$	Optimum value of the parameters, coefficients, or synaptic weights vector (\mathbf{w}^* is also used [9] but it is not recommended as it may be confused with the conjugation operator)
$\delta_{m_l}^{(l)}(n), \frac{\partial \mathscr{E}(n)}{\partial v_{m_l}^{(l)}(n)}$	Local gradient of the m_l th neuron of the l th layer.
$\boldsymbol{\delta}^{(l)}(n)$	Vector of the local gradients of all neurons at the l th layer
$\mathbf{X}, \begin{bmatrix} \mathbf{x}(1) & \mathbf{x}(2) & \cdots & \mathbf{x}(N) \end{bmatrix}$	Data matrix [25]
$\eta(n)$ \mathscr{R}	Learning rate hyperparameter [25]
\mathscr{R}	Bayes risk or average risk [25]
c_{ij}, C_{ij}	Misclassification cost in deciding in
	favor of class \mathcal{C}_i (represented in the subspace \mathcal{H}_i) when the \mathcal{C}_j is the true class (used in Bayes classifiers/detectors) [14, 25]
&. [25] C. [0]	kth class
$\mathcal{C}_k[25], \mathcal{C}_k[9]$ $\mathcal{F}[25], \mathbb{X}[23]$	Training set, i.e., the set $\{\mathbf{x}(n), d(n)\}$ that is used in the training phase.
\mathcal{H}_k	Subspace of the training vector belonging to the class \mathcal{C}_k
\mathcal{H}	Complete space of the input vector, i.e., $\mathcal{H}_1 \cup \mathcal{H}_2 \cup \cdots \mathcal{H}_K$
\mathscr{X} [25]	Set of all vectors in the training, batch, validation, or test dataset that were misclassified
$\mathscr{E}(\mathbf{w}), \mathscr{E}(\mathbf{w}(n)), \mathscr{E}(n)$	Cost function or objective function (the way it is written depends on the purpose of the text)
$J(\mathbf{w}), J(\mathbf{w}(n)), J(n)$	Alternative to the cost function
$\Delta \mathcal{E}(\mathbf{w}(n)), \Delta \mathcal{E}(n), \mathcal{E}(\mathbf{w}(n+1)) - \mathcal{E}(\mathbf{w}(n))$	Cost function or objective function (the way it is written depends on the
$\mathscr{E}_{\mathrm{av}}(\cdot)[25]$	purpose of the text) Error energy averaged over the training sample or the empirical risk
	m ₈ sample of the empirical risk

$\overline{\rho}$	Distance of the margin of separation
	between two classes (Support Vector
	Machine, SVM)
$g(\cdot)$	Discriminant function, i.e., $g(\mathbf{w}^*) = 0$

5 Linear Algebra

5.1 Common matrices and vectors

\mathbf{W}, \mathbf{D}	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
S	Symmetric matrix
J	Jordan matrix
L	Lower matrix
U	Upper matrix; Unitary matrix
C	Cofactor matrix
$\mathbf{C}_{\mathbf{A}}, \operatorname{cof}\left(\mathbf{A}\right)$	Cofactor matrix of A
S	Symmetric matrix
Q	Orthogonal matrix
$\overline{\mathbf{I}_N}$	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
$\overline{1_N}$	N-dimensional ones vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)

5.2 Indexing

$x_{i_1,i_2,,i_N}, [\mathcal{X}]_{i_1,i_2,,i_N}$	Element in the position
	(i_1, i_2, \ldots, i_N) of the tensor \mathcal{X}
$\mathcal{X}^{(n)}$	<i>n</i> th tensor of a nontemporal sequence
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor \mathcal{X}
$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor \mathcal{X}

$X_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor \mathcal{X}
$X_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor \mathcal{X}
$X_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor \mathcal{X}
$X_{:,i_2,:}$	Lateral slices slice of the thrid-order
	tensor \mathcal{X}
$X_{i_3}, X_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

5.3 General operations

$\langle \mathbf{a}, \mathbf{b} \rangle , \mathbf{a}^{\top} \mathbf{b}, \mathbf{a} \cdot \mathbf{b}$	Inner or dot product
$\mathbf{a} \circ \mathbf{b}, \mathbf{a} \mathbf{b}^{ op}$	Outer product
\otimes	Kronecker product
· · ·	Hadamard (or Schur) (elementwise)
	product
.⊙n	nth-order Hadamard power
$\odot \frac{1}{n}$	nth-order Hadamard root
Ø	Hadamard (or Schur) (elementwise)
	division
♦	Khatri-Rao product
\otimes	Kronecker Product
\times_n	n-mode product

5.4 Operations with matrices and tensors

\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^+,\mathbf{A}^\dagger$	Moore-Penrose left pseudoinverse
$\mathbf{A}^{T}, \mathbf{A}^{T}, \mathbf{A}^{t}, \mathbf{A}^{t}$ [41]	Transpose
$\mathbf{A}^{-\top}$	Transpose of the inverse, i.e.,
	$(\mathbf{A}^{-1})^{T} = (\mathbf{A}^{T})^{-1} [22, 36]$
A *	Complex conjugate
A ^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$ \mathbf{A} , \det(\mathbf{A})$	Determinant
$\operatorname{diag}\left(\mathbf{A}\right)$	The elements in the diagonal of A
vec [A]	Vectorization: stacks the columns of
	the matrix A into a long column vec-
	tor

$\overline{\operatorname{vec}_d\left[\mathbf{A}\right]}$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector
$\overline{\operatorname{vec}_{l}\left[\mathbf{A}\right]}$	Extracts the elements strictly below
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec}_{u}\left[\mathbf{A}\right]$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec}_b\left[\mathbf{A}\right]$	Block vectorization operator: stacks
	square block matrices of the input
	into a long block column matrix
unvec (A)	Reshapes a column vector into a ma-
	trix
$\operatorname{tr}\{\mathbf{A}\}$	trace
$\mathbf{X}_{(n)}$	n -mode matricization of the tensor $\mathcal X$

5.5 Operations with vectors

$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhattan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
diag (a)	Diagonalization: a square, diagonal matrix with entries given by the vec-
	tor a

5.6 Decompositions

Λ	Eigenvalue matrix [43]
Q	Eigenvectors matrix; Orthogonal ma-
	trix of the QR decomposition[43]
R	Upper triangular matrix of the QR
	decomposition[43]
U	Left singular vectors[43]
$\overline{\mathrm{U}_r}$	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal

Σ^+	Cincular value matrix of the near
	Singular value matrix of the pseu-
	doinverse [43]
Σ_r^+	Singular value matrix of the pseu-
	doinverse with nonzero singular val-
	ues in the main diagonal
V	Right singular vectors [43]
$\overline{\mathbf{V}_r}$	Right singular nondegenerated vec-
	tors
$eig(\mathbf{A})$	Set of the eigenvalues of A [15, 31,
	36]
$\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots Vert$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor \mathcal{X} from the
	outer product of column vectors of A ,
	В, С,
$\llbracket \lambda; \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots bracket$	Normalized CANDE-
	COMP/PARAFAC (CP) decom-
	position of the tensor \mathcal{X} from the
	outer product of column vectors of
	A, B, C, \dots

5.7 Spaces and sets

5.7.1 Common spaces and sets

$\mathbb R$	Set of real numbers
a,b	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a,b),(a,b]	Half-opened intervals of a real set
	from a to b
\mathbb{C}	Set of complex numbers
$\mathbb{I}, j\mathbb{R}$	Set of imaginary numbers
\mathbb{Q}	Set of rational number
$\mathbb{R}\setminus\mathbb{Q}$	Set of irrational number
\mathbb{Z}	Set of integer number
N	Set of natural numbers
$\overline{\{1,2,\ldots,n\}}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
$\mathbb{B} = \{0, 1\} \ [35]$	Boolean set
Ø	Empty set
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$	Real or complex space (field)

$\mathbb{K}^{I_1 imes I_2 imes \cdots imes I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
	complex) space
$\mathbb{K}_{+}^{I_1 \times I_2 \times \cdots \times I_N}$ [10] [16, sec. 2.1.3]	Nonnegative real (or complex) or-
	thant. The name orthant is the
	higher-dimensional generalization of
	the term <i>quadrant</i> from the classi-
	cal Cartesian partition of \mathbb{R}^2 [16, sec
	2.1.3]
IZ/1 X/2 X ··· X/N [10] [10 0 1 0]	J
$\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}_{-}$ [10] [16, sec. 2.1.3]	Same, but for nonpositive real (or
	complex) orthant.
$\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}$	Positive real (or complex) orthant,
	i.e., $\mathbb{K}_{++} = \mathbb{K}_{+} \setminus \{0\} [10]$
$\mathbb{K}_{-}^{I_1 \times I_2 \times \cdots \times I_N}$	Negative real (or complex) orthant,
	i.e., $\mathbb{K}_{++} = \mathbb{K}_{+} \setminus \{0\} [10]$
U	Universe

5.7.2 Convex sets (or spaces)

\mathbb{S}^n [16, sec. 2.2.2], \mathcal{S}^n [10, sec. 1.6]	Conic set (see [10, p. 35]) of the sym-
	metric matrices in $\mathbb{R}^{n \times n}$
$\mathbb{S}^{n\perp}$ [16, sec. 2.2.2]	Conic set of the skew-symmetric
	(also called antisymmetric) matrices
	in $\mathbb{R}^{n \times n}$
$\mathbb{S}_{+}^{n}, \mathcal{S}_{+}^{n}$ [10, sec. 2.2.5]	Conic set of the symmetric positive
	semidefinite matrices in $\mathbb{R}^{n\times n}$ [10]
$\mathbb{S}_{++}^n, \mathcal{S}_{++}^n$ [10, sec. 2.2.5]	Conic set of the symmetric positive
	definite matrices in $\mathbb{R}^{n\times n}$, i.e., $\mathbb{S}^n_{++}=$
	$\mathbb{S}^n_+ \setminus \{0\} \ [10]$
\mathbb{H}^n (?)	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
conv A [10, p. 34]	Convex hull of the set A
aff A [10, p. 23]	Affine hull of the set A
∂A [16, sec. 2.1.7] bd A [10, appendix	Boundary of the set A
A.2]	
int A [16, sec. 2.1.6.1] [10, p. 2.1.3]	Interior of the set A
rel int A [16, sec. 2.1.6.1]	Relative interior of the set A
relint A [10, p. 2.1.3]	
cl A [10, appendix A.2]	Closure of A
\bar{A} [16, sec. 2.1.6.1]	
\mathcal{R} (?)	Ray
\mathcal{H} (?)	Hyperplane
$\mathcal{H}_{+}, \mathcal{H}_{-}$ [16, sec. 2.4]	Positive/negative halfspace

$B(\mathbf{x}_c, r)$ [11, sec. 2.2.2]	Euclidean ball with radium r and
2	centered at \mathbf{x}_c
\mathcal{E} [11, sec. 2.2.2]	Ellipsoid
C [10, sec. 2.2.3]	Norm cone
K [11, sec. 2.4]	Proper cone
K^* [10, sec. 2.6]	Dual cone
\mathcal{P} [10, sec. 2.2.4]	Polyhedra
S (?)	Simplex
C_{α} [10, sec. 3.1.6]	α -sublevel set
epi f [10, sec. 3.1.7]	Epigraph of the function f
hypo f [10, sec 3.1.7]	Hypograph of the function f

5.7.3 Spaces from matrices or vectors

$\mathrm{span}\left\{\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right\}$	Vector space spanned by the argu-
	ment vectors [22]
$C(\mathbf{A})$, columnspace(\mathbf{A}), range(\mathbf{A}),	Columnspace, range or image, i.e.,
$\operatorname{span} \{\mathbf{A}\}, \operatorname{image}(\mathbf{A})$	the space span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, where
	\mathbf{a}_i is the ith column vector of the ma-
	trix A [32, 43]
$C(\mathbf{A}^{H})$	Row space (also called left
	columnspace) [32, 43]
$N(\mathbf{A})$, nullspace(\mathbf{A}), null(\mathbf{A}), kernel(\mathbf{A}	Nullspace (or kernel space) [32, 43,
	44]
$N(\mathbf{A}^{H})$	Left nullspace
rank A	Rank, that is, $\dim(\operatorname{span}\{A\}) =$
	$\dim \left(\mathrm{C} \left(\mathbf{A} \right) \right) \left[32 \right]$
nullity (A)	Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$

5.8 Set operations

A + B	Set addition (Minkowski sum), i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} + \mathbf{y}, \ \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
	[29]
A - B	Minkowski difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} - \mathbf{y}, \ \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
$A \ominus B$	Pontryagin difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} + \mathbf{y} \in \mathcal{X}, \ \forall \ \mathbf{y} \in \mathcal{Y}\} $ [29]
$A \setminus B, A - B$	Set difference or set subtraction, i.e.,
	$A \setminus B = \{x x \in A \land x \notin B\}$ the set con-
	taining the elements of A that are not
	in B [40]

$A \cup B$	Set of union
$A \cap B$	Set of intersection
$A \times B$	Cartesian product
A^n	$A \times A \times \cdots \times A$
	n times
A^{\perp}	Orthogonal complement of A, e.g.,
•	$N(\mathbf{A}) = C(\mathbf{A}^{T})^{\perp} [10]$
a ⊥ b	a is orthogonal to b
a ∠ b	a is not orthogonal to b
$A \oplus B$	Direct sum, i.e., each $\mathbf{v} \in$
	$\{\sum \mathbf{a}_i \mid \mathbf{a}_i \in S_i, i = 1, \dots, k\}$ has a
	unique representation of $\sum \mathbf{a}_i$ with
	$\mathbf{a}_i \in S_i$. That is, they expand to a
	space. Note that $\{S_i\}$ might not be
	orthogonal each other [22]
$A \stackrel{\perp}{\oplus} B$	Direct sum of two spaces that are or-
	thogonal and span a n -dimensional
	space, e.g., $C(\mathbf{A}^{T}) \stackrel{\perp}{\oplus} C(\mathbf{A}^{T})^{\perp} =$
	\mathbb{R}^n (this decomposition of \mathbb{R}^n is
	called the orthogonal decomposition
	induced by \mathbf{A}) [10]
\bar{A}, A^c	Complement set (given U)
#A, A	Cardinality of A
$a \in A$	a is element of A
$a \notin A$	a is not element of A
F	

5.9 Inequalities

$\mathcal{X} \leq 0$	Nonnegative tensor
$a \leq_K b$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space $\mathbb{R}^n[10]$
$a \prec_K b$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space $\mathbb{R}^n[10]$
$a \leq b$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space
	\mathbb{R}^n .[10]

$\mathbf{a} \prec \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	$\mathbb{R}^n[10]$
$A \preceq_K B$	Generalized inequality meaning that
	${\bf B}-{\bf A}$ belongs to the conic subset K
	in the space $\mathbb{S}^n[10]$
$A \prec_K B$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space $\mathbb{S}^{n}[10]$
$A \leq B$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the positive semidef-
	inite conic subset, \mathbb{S}^n_+ , in the space
	$\mathbb{S}^n[10]$
$A \prec B$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathbb{S}_{++}^n , in the space
	$\mathbb{S}^n[10]$

6 Communication systems

6.1 Common symbols

B	One-sided bandwidth of the base-
	band signal, in Hz
\overline{W}	One-sided bandwidth of the base-
	band signal, in rad/s
N_0	Noise density, in ???
x_i	Real or in-phase part of x
x_q	Imaginary or quadrature part of x
f_c, f_{RF}	Carrier frequency (in Hertz)
f_L	Carrier frequency in L-band (in
	Hertz)
f_{IF}	Intermediate frequency (in Hertz)
f_s	Sampling frequency or sampling rate
	(in Hertz)
T_s	Sampling time interval/duration/pe-
	riod
R	Bit rate
T	Bit interval/duration/period
T_c	Chip interval/duration/period
T_{sy}, T_{sym}	Symbol/signaling[37] interval/dura-
-	tion/period

SRF	Transmitted signal in RF
SFI	Transmitted signal in FI
s, s_l	Lowpass (or baseband) equivalent
	signal or envelope complex of trans-
	mitted signal
r_{RF}	Received signal in RF
r_{FI}	Received signal in FI
r, r_l	Lowpass (or baseband) equivalent
	signal or envelope complex of re-
	ceived signal
φ	Signal phase
ϕ_0	Initial phase
η_{RF}, w_{RF}	Noise in RF
η_{FI}, w_{FI}	Noise in FI
η, w	Noise in baseband
τ	Timing delay
Δau	Timing error (delay - estimated)
arphi	Phase offset
$egin{array}{c} arphi \ \Delta arphi \ f_d \end{array}$	Phase error (offset - estimated)
f_d	Linear Doppler frequency
Δf_d	Frequency error (Doppler frequency -
	estimated)
ν	Angular Doppler frequency
Δν	Frequency error (Doppler frequency -
	estimated)
γ, A	Transmitted signal amplitude
γ_0, A_0	Combined effect of the path loss and
	antenna gain

6.2 Fading multipath channels

$t \stackrel{\mathcal{F}}{\leftrightarrow} \lambda \ [37]$	Support temporal of the signal. λ is obtained after taking the Fourier transform on t .
$\tau \stackrel{\mathcal{F}}{\leftrightarrow} f \ [37]$	Second support temporal of the signal $(c(t))$ varies with with the input at the time τ). f is obtained after taking the Fourier transform on τ .
$c(t,\tau)$ [37]	Complex envelope of the channel response at the time t due to an impulse applied at the $t-\tau$
C(f,t) [37]	Transfer function of $c(t, \tau)$ in τ

$\alpha(t,\tau)$ [37]	A+++:
$\alpha(l,\tau)$ [37]	Attenuation of $c(t,\tau)$, i.e., $c(t,\tau) = \alpha(t,\tau)e^{e\pi f_c\tau}$
D (A) [07]	
$R_c(au_1, au_2,\Delta t)$ [37]	
	$c(t,\tau)$, i.e., $R_c(\tau_1,\tau_2,\Delta t) =$
	$\mathbb{E}\left[c^*(t,\tau_1),c^*(t+\Delta t,\tau_2)\right]$
$R_c(\tau, \Delta t)$ [37]	Autocorrelation function of $c(t, \tau)$ as-
	suming uncorrelated scattering
$R_c(\tau), R_c(\tau, \Delta t)\big _{\Delta t=0}$ [37]	Multipath intensity profile or delay
	power spectrum
$R_C(\Delta f, \Delta t), R_C(f_1, f_2; \Delta t),$	Spaced-frequency, spaced-time corre-
$\mathrm{E}\left[C(f_1,t),C(f_2,t+\Delta t)\right],$	lation function $(\Delta f = f_2 - f_1)$
$\mathcal{F}_{\tau}\left\{R_{c}(\tau,\Delta t)\right\}$ [21]	
$R_C(\Delta f), \qquad R_C(\Delta f, \Delta t)\Big _{\Delta t=0} \qquad [37],$	Spaced-frequency correlation func-
$\mathcal{F}\left\{R_c(au)\right\}$ [21]	tion
$(\Delta f)_c$	Coherence bandwidth of $c(t)$, that
	is, the frequency interval in which
	$R_C(\Delta f)$ is nonzero [37]
T_m	Multipath spread of the channel, that
	is, the time interval in which $R_c(\tau)$ is
	nonzero $(T_m \approx 1/(\Delta f)_c)$ [37]
$\left. \left. \left$	Spaced-time correlation function [37]
$S_C(\lambda)$ [37], $\mathcal{F}\{R_C(\Delta t)\}$ [21]	Doppler power spectrum
$(\Delta t)_c$	Coherence time of $c(t)$, that is, the
	time interval in which $R_C(\Delta t)$ is
	nonzero [37]
B_m	Multipath spread of the channel, that
	is, the frequency interval in which
	$S_c(\lambda)$ is nonzero $(B_d \approx 1/(\Delta t)_c)$ [37]
$S_C(\tau,\lambda)$ [37], $\mathcal{F}_{\Delta f,\Delta t} \left\{ R_C(\Delta f,\Delta t) \right\}$	Scattering function
[21]	

7 Discrete mathematics

7.1 Quantifiers, inferences

\forall	For all (universal quantifier) [24]
3	There exists (existential quantifier)
	[24]
∄	There does not exist [24]
∃!	There exists an unique [24]
\exists_n	There exists exactly n [40]
€	Belongs to [24]

∉	Does not belong to [24]
·:	Because [24]
<u> ,:</u>	Such that, sometimes that parenthe-
	ses is used [24]
$\overline{}$,,(\cdot)	Used to separate the quantifier with
	restricted domain from its scope, e.g.,
	$\forall x < 0 (x^2 > 0) \text{ or } \forall x < 0, x^2 > 0$
	[24]
·.	Therefore [24]

7.2 Propositional Logic

$\neg a$	Logical negation of a [40]
$a \wedge b$	Conjunction (logical AND) operator
	between a and $b[40]$
$a \lor b$	Disjunction (logical OR) operator be-
	tween a and $b[40]$
$a \oplus b$	Exclusive OR (logical XOR) operator
	between a and $b[40]$
$a \rightarrow b$	Implication (or conditional) state-
	ment[40]
$a \leftrightarrow b$	Bi-implication (or biconditional)
	statement, i.e., $(a \rightarrow b) \land (b \rightarrow a)$
	[40]
$a \equiv b, a \iff b, a \Leftrightarrow b$	Logical equivalence, i.e., $a \leftrightarrow b$ is a
	tautology[40]

7.3 Operations

a	Absolute value of a
log	Base-10 logarithm or decimal loga-
	rithm
ln	Natual logarithm
$\operatorname{Re}\left\{ x\right\}$	Real part of x
$\operatorname{Im}\left\{ x\right\}$	Imaginary part of x
۷٠	Phase (complex argument)
$x \mod y$	Remainder, i.e., $x - y \lfloor x/y \rfloor$, for $y \neq 0$
x div y	Quotient [40]
$x \equiv y \pmod{m}$	Congruent, i.e., $m \setminus (x - y)$ [40]
$\operatorname{frac}(x)$	Fractional part, i.e., $x \mod 1$ [24]
$a \ b \ [24, Section 4.1], \ a \ b \ [40]$	b is a positive integer multiple of $a \in$
	\mathbb{Z} , i.e., $\exists ! \ n \in \mathbb{Z}_{++} \mid b = na$

a \(b \) [24, Section 4.1], a \(b \) [40]	b is not a positive integer multiple of
	$a \in \mathbb{Z}$, i.e., $\not\exists n \in \mathbb{Z}_{++} \mid b = na$
[.]	Ceiling operation [24]
[.]	Floor operation [24]

8 Vector Calculus

$\nabla f[42], \operatorname{grad} f[38]$	Vector differential operator (Nabla
	symbol), i.e., ∇f is the gradient of
	the scalar-valued function f , i.e., f :
	$\mathbb{R}^n o \mathbb{R}$
t,(u,v)	Parametric variables commonly used,
	t for one variable, (u, v) for two vari-
	ables[42]
$\frac{1(x, y, z) [38], \mathbf{r}(x, y, z) [42], x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{1(t)}$	Vector position, i.e., (x, y, z) .
$-\mathbf{l}(t)$	Vector position parametrized by t ,
	i.e., $(x(t), y(t), z(t))$ [38, 42]
l'(t), dl/dt	First derivative of $\mathbf{l}(t)$, i.e., the
	tangent vector of the curve
	(x(t), y(t), z(t)) [42]
$\mathbf{u}(t)[30] \ \mathbf{T}(t)[42], \ dl(t)[38]$	Tangent unit vector of $\mathbf{l}(t)$, i.e.,
	$\mathbf{u}(t) = \mathbf{l}'(t)/ \mathbf{l}'(t) $
$\mathbf{n}(t), \left(\frac{y'(t)}{ l'(t) }, -\frac{x'(t)}{ l'(t) }\right)$	Normal vector of $\mathbf{l}(t)$, i.e.,
$\langle \cdot \rangle \langle \mathbf{I}(t) \cdot \mathbf{I}(t) \rangle$	$\mathbf{n}(t) \perp \mathbf{T}(t)[42]$
\overline{C}	Contour that traveled by $l(t)$, for $a \le 1$
	$t \le b$ [42]
L, L(C)	Total length of the contour C
	(which can be defined the vector
	l, parametrized by t), i.e., $L_C =$
	$\int_a^b \mathbf{l}'(t) \mathrm{d}t[42]$
s(t)	Length of the arc, which can be de-
	fined by the vector \mathbf{l} and t , that is,
	$s(t) = \int_{a}^{t} \mathbf{l}'(u) \mathrm{d}u \ (s(b) = L)[42]$
ds	Differential operator of the length of
	the contour C , i.e., $ds = \mathbf{l}'(t) dt$ [42]
$\int_C f(\mathbf{l}) \mathrm{d}s, \int_a^b f(\mathbf{l}(t)) \mathbf{l}'(t) \mathrm{d}t$	Line integral of the function $f: \mathbb{R}^n \to$
$JC \circ C = Ja \circ C \circ J \cap C \circ C$	\mathbb{R} along the contour C . In the context
	of integrals in the complex plane, it
	is also called "contour integral"
θ [38]	Angle between the contour C and the
	vector field F

$ \int_{C} \mathbf{F} \cdot d\mathbf{l}, \ \int_{a}^{b} \mathbf{F}(\mathbf{l}(t)) \cdot \mathbf{l}'(t) dt \ [8, 42], \int_{C} \mathbf{F} \cdot \mathbf{u} ds, \int_{C} \mathbf{F} \cos(\theta) ds \ [38] $ $ \int_{C} \mathbf{F} \cdot d\mathbf{u} \ [38] $	Line integral of vector field ${\bf F}$ along the contour C
	In the field of electromagnetics, it is common to apply the line integral between the vector field \mathbf{F} and the unit vector $\mathbf{u}(t)$. Therefore, this line integral may appear as well
$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F}, \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d\mathbf{l}$	Alternative notation to the line integral, where the parametric variable t goes from a to b , making r goes from $\mathbf{l}(a) = \mathbf{a}$ to $\mathbf{l}(b) = \mathbf{b}$ [8]
\oint_C, \oint_C	C. The arrow indicates the contour integral orientation, which is counterclockwise, by default. In the context of integrals in the complex plane, it is also called "closed contour integral".
$\#_S$	Surface integral over the closed surface S
$\overline{1(u,v)}$	Vector position $(x(u, v), y(u, v), z(u, v))$ parametrized by (u, v)
$\overline{-1_u}$	$(\partial x/\partial u, \partial y/\partial u, \partial z/\partial u)$
$\overline{l_{\nu}}$	$(\partial x/\partial v, \partial y/\partial v, \partial z/\partial v)$
$\mathrm{d}A$	Differential operator of a 2D area (denoted by D or R) in the \mathbb{R}^2 domain. This differential operator can be solved in different ways (rectangular, polar, cylindric, etc) [42]
D,R	Integration domain in which $\mathrm{d}A$ is integrated, i.e., $\iint_D f \mathrm{d}A$. R is preferred when the integration domain is a rectangle, while D is used when it has nonrectangular shape [42]
S	Smooth surface $S \subset \mathbb{R}^3$, i.e., a 2D area in a 3D space
$\mathrm{d}S$, $ \mathbf{l}_u \times \mathbf{l}_v $ $\mathrm{d}A$	Differential operator of a 2D area in a 3D domain (an surface). Note that $dS = \mathbf{l}_u \times \mathbf{l}_v dA$ should be accompanied with the change of the integration interval(from S to D)

$A(S), \iint_S dS, \iint_D \mathbf{l}_u \times \mathbf{l}_v dA$	Area of the surface S parametrized by
	(u, v), in which dA is the area defined
	in the D domain (which is form by
	the u -by- v graph)
$\mathrm{d}V$	Differential operator of a shape vol-
	ume (denoted by E) in \mathbb{R}^3 domain,
	i.e., $\iiint_E dV = V$
E	Integration domain in which dV is in-
	tegrated, i.e., $\iiint_E f dV$ [42]
$V, \iint_D f \mathrm{d}A, \iiint_E f \mathrm{d}V$	Volume of the function f over the re-
***	gions D (in the case of double inte-
	grals) or E (in the case of triple inte-
	$\operatorname{grals})$
$\frac{\iint_{S} f \mathrm{d}S, \iint_{D} f \mathbf{l}_{u} \times \mathbf{l}_{v} \mathrm{d}A}{\mathbf{n}(u, v), \frac{\mathbf{l}_{u}(u, v) \times \mathbf{l}_{v}(u, v)}{ \mathbf{l}_{u}(u, v) \times \mathbf{l}_{v}(u, v) }}$	Surface integral over S
$\mathbf{n}(u,v), \frac{\mathbf{l}_u(u,v)\times\mathbf{l}_v(u,v)}{ \mathbf{l}_u(u,v)\times\mathbf{l}_v(u,v) }$	Normal vector of of the smooth sur-
$ \mathbf{u}(u,v)\wedge\mathbf{v}(u,v) $	face S
$\iint_{\mathbf{S}} \mathbf{F} \cdot \mathbf{n} \mathrm{d}S, \iint_{\mathbf{S}} \mathbf{F} \cdot \mathrm{d}\mathbf{S},$	Flux integral of vector field \mathbf{F} through
***	the smooth surface S ($\mathbf{n} dS \triangleq d\mathbf{S}$)
$ \frac{\iint_D \mathbf{F} \cdot (\mathbf{l}_u \times \mathbf{l}_v) dA}{\oint \!$	Flux integral of vector field ${f F}$ through
$\iint_D \mathbf{F} \cdot (\mathbf{l}_u \times \mathbf{l}_v) \mathrm{d}A$	the smooth and closed surface S
JJD (u V)	$(\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S})$
$\nabla \times \mathbf{F}$, curl \mathbf{F}	Curl (rotacional) of the vector field F
$\nabla \cdot \mathbf{F}, \operatorname{div} \mathbf{F}$	Divercence of the vector field F
$\nabla^2 f, \nabla \cdot (\nabla f), \Delta f,$	Scalar Laplacian operator (per-
$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$	formed on a scalar-valued function
	$f: \mathbb{R}^n \to \mathbb{R}$
$\overline{\nabla^2 \mathbf{F}, \nabla \times \nabla \times \mathbf{F} - \nabla (\nabla \cdot \mathbf{F}), \Delta \mathbf{F}}$	Vector Laplacian operator (per-
$(\partial^2 \mathbf{F}/\partial x^2, \partial^2 \mathbf{F}/\partial y^2, \partial^2 \mathbf{F}/\partial z^2)$	formed on a vector field, i.e., a
	vector-valued function, $\mathbf{F}: \mathbb{R}^n \to$
	\mathbb{R}^n). ∇^2 denotes the scalar (vector)
	Laplacian if the function is scalar-
	valued (vector-valued). The notation
	Δ must be avoided as it is overused
	in many contexts
	III IIIaily Collocato

9 Electromagnetic waves

Φ	Electric flux (scalar) (in V m)
H	Magnetic field vector (in A/m)
В	Magnetic flux density vector (in
	$Wb/m^2 = T$
Φ[chengFieldWaveElectromagneticM282]tic flux	

$q_{\rm f}, q_{\rm free}, Q_{\rm free}[19]$ Free electric charge (in C) $q_{\rm b}, q_{\rm bound}, Q_{\rm bound}[19]$ Bound electric charge (in C) $q, q_{\rm f} + q_{\rm b}$ Electric charge (in C) $\rho_{\rm f}[1], \rho_{\rm free}$ [19]Free electric charge density $\rho_{\rm b}[1], \rho_{\rm bound}$ [19]Electric charge density (it can be in C/m³, C/m² or C/m depending whether it is a volume, surface, or line shapes) $f[38], F[2]$ Electrostatic force (Coulomb force), (in kg m/s²). ε Electric permittivity(in F/m). If the medium is isotropic, it is a scalar. If it is anisotropic, it is a tensor. [38] ε_r Relative electric permittivity or dielectric constant (in F/m) [38] ε_0 Electric permittivity in vacuum, $8.854 \times 10^{-12} \text{F/m}$ [38] E Electric field vector (in V/m) σ Electric conductivity (in S/m) $J, J_e[39]$ Electric current density vector (in A/m)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
f[38], F[2] Electrostatic force (Coulomb force), (in kg m/s²). ε Electric permittivity(in F/m). If the medium is isotropic, it is a scalar. If it is anisotropic, it is a tensor. [38] ε_r Relative electric permittivity or dielectric constant (in F/m) [38] ε_0 Electric permittivity in vacuum, $8.854 \times 10^{-12} \text{F/m}$ [38] E Electric field vector (in V/m) σ Electric conductivity (in S/m) J, $J_e[39]$ Electric current density vector (in
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $
$\begin{array}{ccc} & \text{it is anisotropic, it is a tensor. [38]} \\ \boldsymbol{\varepsilon_r} & \text{Relative electric permittivity or dielectric constant (in F/m) [38]} \\ \boldsymbol{\varepsilon_0} & \text{Electric permittivity in vacuum,} \\ \boldsymbol{\varepsilon_0} & \text{8.854} \times 10^{-12} \text{F/m [38]} \\ \mathbf{E} & \text{Electric field vector (in V/m)} \\ \boldsymbol{\sigma} & \text{Electric conductivity (in S/m)} \\ \mathbf{J}, \mathbf{J}_e[39] & \text{Electric current density vector (in V/m)} \\ \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E Electric field vector (in V/m) σ Electric conductivity (in S/m) J , $J_e[39]$ Electric current density vector (in
$\mathbf{J}, \mathbf{J}_e[39]$ Electric current density vector (in
A / 2\
$ m A/m^2)$
\mathbf{J}_m [chengFieldWaveElectromagnetics1989]zation current density vector
(in A/m^2)
D Electric flux density, electric dis-
placement, or electric induction vec-
tor (in C/m^2)
U Electric potential energy
$V[\mathbf{chengFieldWaveElectromagnetic}]$ potential (in voltage, V).
3], $\Phi[38]$ However, keep in mind that there is
a subtle difference between both def-
initions [4]
$\Phi_E[20], \oiint_S \mathbf{E} \mathrm{d}\mathbf{S}$ Electric flux (in V m)
$\Phi_D[19], \Psi[38], \oiint_S \mathbf{D} \mathrm{d}\mathbf{S}$ Electric flux (D -field flux)
P Electric polarization of the material
(in C/m^2)
χ_e Electric susceptibility (for linear and
isotropic materials)
- ,
μ Magnetic permeability μ_0 Magnetic permeability in vacuum

10 Generic mathematical symbols

	Q.E.D.
	Equal by definition
:=, ←	Assignment [40]
<i>≠</i>	Not equal
∞	Infinity
j	$\sqrt{-1}$

11 Abbreviations

wrt.	With respect to
st.	Subject to
iff.	If and only if
EVD	Eigenvalue decomposition, or eigen-
	decomposition [32]
SVD	Singular value decomposition
CP	CANDECOMP/PARAFAC

References

- URL: https://en.wikipedia.org/wiki/Electric_displacement_ field#Definition.
- [2] URL: https://en.wikipedia.org/wiki/Coulomb%27s_law.
- [3] URL: https://en.wikipedia.org/wiki/Electric_potential.
- [4] URL: https://physics.stackexchange.com/a/300937/368410.
- [5] Libavius (https://math.stackexchange.com/users/1020990/libavius). Which is the correct vector calculus notation for the Hessian? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/4560326 (version: 2023-02-15). eprint: https://math.stackexchange.com/q/4560326. URL: https://math.stackexchange.com/q/4560326.
- [6] maple (https://math.stackexchange.com/users/51601/maple). Does the symbol ∇² has the same meaning in Laplace Equation and Hessian Matrix? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1353761 (version: 2022-07-29). eprint: https://math.stackexchange.com/q/1353761. URL: https://math.stackexchange.com/q/1353761.
- [7] Rubem Pacelli (https://math.stackexchange.com/users/817590/rubem-pacelli). Ambiguity over the notation ∇²: vector Laplacian operator (Vector Calculus) vs. second directional derivative (Matrix Calculus). Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/4693212 (version: 2023-05-05). eprint: https://math.stackexchange.com/q/4693212. URL: https://math.stackexchange.com/q/4693212.
- [8] TM Apostol. Calculus, 2nd Edn., Vol. 2. 1967.

- [9] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine Learning. Vol. 4. 4. Springer, 2006. ISBN: 978-0-387-31073-2.
- [10] Stephen Boyd, Stephen P. Boyd, and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.
- [11] Stephen Boyd and Lieven Vandenberghe. "Additional Exercises for Convex Optimization". In: ().
- [12] Gerd Brewka. Artificial Intelligence—a Modern Approach by Stuart Russell and Peter Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ. Vol. 11. Mar. 1996. URL: https://www.cambridge.org/core/product/identifier/S0269888900007724/type/journal_article (visited on 01/21/2023).
- [13] Robert Grover Brown and Patrick YC Hwang. Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions. 1997.
- [14] Charles Casimiro. Lecture notes in Statistical Signal Processing. 2019.
- [15] Rama Chellappa and Sergios Theodoridis. Signal Processing Theory and Machine Learning. Academic Press, 2014. ISBN: 0-12-396502-0.
- [16] Jon Dattorro. Convex Optimization & Euclidean Distance Geometry. Lulu. com, 2010. ISBN: 0-615-19368-4.
- [17] Paulo SR Diniz. Adaptive Filtering: Algorithms and Practical Implementation. Nowell, MA: Kluwer Academic Publishers, 2002.
- [18] Paulo SR Diniz, Eduardo AB Da Silva, and Sergio L Netto. *Digital Signal Processing: System Analysis and Design*. Cambridge University Press, 2010. ISBN: 1-139-49157-1.
- [19] Example Wikipedia Page. URL: https://en.wikipedia.org/wiki/ Gauss%27s_law#Equation_involving_the_D_field.
- [20] Example Wikipedia Page. URL: https://en.wikipedia.org/wiki/Flux# Electric_flux.
- [21] Andrea Goldsmith. Wireless Communications. Cambridge university press, 2005. ISBN: 0-521-83716-2.
- [22] Gene H Golub and Charles F Van Loan. Matrix Computations. JHU press, 2013. ISBN: 1-4214-0859-7.
- [23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. Illustrated edição. Cambridge, Massachusetts: The MIT Press, Nov. 18, 2016. ISBN: 978-0-262-03561-3.
- [24] Ronald L Graham et al. "Concrete Mathematics: A Foundation for Computer Science". In: *Computers in Physics* 3.5 (1989), pp. 106–107. ISSN: 0894-1866.
- [25] Simon Haykin. Neural Networks and Learning Machines, 3/E. Pearson Education India, 2009. ISBN: 93-325-8625-X.

- [26] Simon S Haykin. *Adaptive Filter Theory*. Pearson Education India, 2002. ISBN: 81-317-0869-1.
- [27] Vinay K Ingle and John G Proakis. *Digital Signal Processing Using MAT-LAB*. Cole Publishing Company, 2000.
- [28] Steven M. Kay. Fundamentals of Statistical Processing, Volume 2: Detection Theory. Pearson Education India, 2009.
- [29] Basil Kouvaritakis and Mark Cannon. "Model Predictive Control". In: Switzerland: Springer International Publishing 38 (2016).
- [30] Erwin Kreyszig, K Stroud, and G Stephenson. Advanced Engineering Mathematics. Vol. 9. John Wiley & Sons, Inc. 9 th edition, 2006 Page 2 of 6 Teaching methods ..., 2008.
- [31] Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical Engineering. 3rd. Upper Saddle River, NJ: Prentice Hall, 2007. ISBN: 978-0-13-147122-1.
- [32] Josef Nossek. Adaptive and Array Signal Processing. 2015.
- [33] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing: International Edition. 3ª edição. Upper Saddle River Munich: Pearson, Nov. 12, 2009. ISBN: 978-0-13-206709-6.
- [34] Athanasios Papoulis et al. *Probability, Random Variables and Stochastic Processes.* 4th ed. edição. Boston: McGraw-Hill Education, 2001. ISBN: 978-0-07-366011-0.
- [35] Ian Parberry. Circuit Complexity and Neural Networks. MIT press, 1994.

 URL: https://books.google.com.br/books?hl=en&lr=&id=Mc3sIKru91wC&
 oi=fnd&pg=PR9&dq=Circuit+Complexity+and+Neural+Networks&ots=
 jJJyyZf-Ie&sig=pXP7VlnDM1PWlJs17kvIZ3UFqD0 (visited on 04/22/2024).
- [36] Kaare Brandt Petersen and Michael Syskind Pedersen. "The Matrix Cookbook". In: *Technical University of Denmark* 7.15 (2008), p. 510.
- [37] John Proakis and Masoud Salehi. Digital Communications. 5th ed. Boston: Mc Graw Hill, Jan. 1, 2007. ISBN: 978-0-07-295716-7.
- [38] Simon Ramo, John R. Whinnery, and Theodore Van Duzer. Fields and Waves in Communication Electronics. John Wiley & Sons, 1994.
- [39] Charles Rino. The theory of scintillation with applications in remote sensing. John Wiley & Sons, 2011.
- [40] Kenneth H Rosen. "Discrete Mathematics and Its Applications (7Th Editio)". In: William C Brown Pub (2011).
- [41] Shayle R Searle and Andre I Khuri. *Matrix Algebra Useful for Statistics*. John Wiley & Sons, 2017. ISBN: 1-118-93514-4.
- [42] James Stewart. Calculus. Cengage Learning, 2011. ISBN: 1-133-17069-2.
- [43] Gilbert Strang et al. *Introduction to Linear Algebra*. Vol. 3. Wellesley-Cambridge Press Wellesley, MA, 1993.

- [44] Sergios Theodoridis. *Machine Learning: A Bayesian and Optimization Perspective*. 2nd ed. Academic Pr, 2020. ISBN: 978-0-12-818803-3.
- [45] Harry L Van Trees. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, 2002. ISBN: 0-471-09390-4.
- [46] Harry L. Van Trees. Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory. John Wiley & Sons, 2004. ISBN: 978-0-471-22108-1. DOI: 10.1002/0471221082.