Clase 15 - Algoritmos y complejidad

IIC1001 - Algoritmos y Sistemas Computacionales

Cristian Ruz – cruz@uc.cl Lunes 27-Mayo-2024

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

Contenidos

12

Algoritmos

Contenidos

12

Algoritmos

12, Miércoles 29-Mayo

12, Miércoles 29-Mayo 2024, 17:30

- Multiplexores / demultiplexores (sumadores, restadores, etc)
- ALU (instrucciones, registros)
- · Instrucciones en computador (ejecución, flujo)
- · Sistemas operativos (procesos, memoria)
- · Complejidad algorítmica

Contenidos

12

Algoritmos

Algorithm 4 Selection Sort

```
1: for i = 1 to n - 1 do
      min = i
2:
      for j = i + 1 to n do
3:
          // Find the index of the i^{th} smallest element
4:
          if A[j] < A[min] then
5:
              min = j
6:
          end if
7:
8:
       end for
       Swap A[min] and A[i]
9:
10: end for
```

```
INSERTION-SORT (A)
   for j = 2 to A. length
       kev = A[i]
       // Insert A[j] into the sorted sequence A[1...j-1].
       i = j - 1
       while i > 0 and A[i] > key
6
           A[i + 1] = A[i]
           i = i - 1
       A[i+1] = kev
8
```

```
BUBBLESORT(A)

1 for i \leftarrow 1 to length[A]

2 do for j \leftarrow length[A] downto i + 1

3 do if A[j] < A[j - 1]

4 then exchange A[j] \leftrightarrow A[j - 1]
```

IN	$ISERTION ext{-}SORT(A)$	cost	times
1	for $j \leftarrow 2$ to length[A]	c_1	n
2	do $key \leftarrow A[j]$	c_2	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1 j-1]$.	0	n - 1
4	$i \leftarrow j-1$	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow key$	c_8	n-1

Notación asintótica nos permite establecer el comportamiento de un algoritmo "en el largo plazo"

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0\}$$
.

Notación asintótica nos permite establecer el comportamiento de un algoritmo "en el largo plazo"

- $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.
- $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.
 - $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

Growth of functions.

Function	Input size					
	1	10	100	1000	1,000,000	
$\lg(n)$	0	3.32	6.64	9.97	19.93	
n	1	10	100	1000	1,000,000	
$n \ln(n)$	0	33.22	664.39	9965.78	1.9×10^{7}	
n^2	1	100	10,000	1,000,000	10^{12}	
n^3	1	1000	1,000,000	10 ⁹	10^{18}	
2^n	2	1024	1.3×10^{30}	10^{301}	$10^{10^{5.5}}$	
n!	1	3,628,800	9.33×10^{157}	4×10^{2567}	$10^{10^{6.7}}$	

