The Complexity of Black-Box Mechanism Design with Priors

Evangelia Gergatsouli¹, Brendan Lucier², Christos Tzamos¹

¹University of Wisconsin-Madison ²Microsoft Research

ACAC, Athens, Greece, August 2019

Introduction

Previous and New Results

Lower Bound Construction

Conclusion - Open Problems

- n agents, m items
- Agent i has private value v_i(S) for set S of items
- Feasibility constraint
 F (e.g. at most 2 items per agent)
- ► Goal: allocate items to maximize welfare

Mechanism \mathcal{M} : Given reported values \mathbf{v}' decide:

- n agents, *m* items
- Agent i has private value v_i(S) for set S of items
- Feasibility constraint
 F (e.g. at most 2 items per agent)
- Goal: allocate items to maximize welfare

Mechanism \mathcal{M} : Given reported values \mathbf{v}' decide:

ightharpoonup Allocation rule A: how to give out items

- n agents, m items
- Agent i has private value v_i(S) for set S of items
- Feasibility constraint
 F (e.g. at most 2 items per agent)
- Goal: allocate items to maximize welfare

Mechanism \mathcal{M} : Given reported values \mathbf{v}' decide:

ightharpoonup Allocation rule A: how to give out items

- ▶ *n* agents, *m* items
- Agent i has private value v_i(S) for set S of items
- Feasibility constraint
 F (e.g. at most 2 items per agent)
- ► Goal: allocate items to maximize welfare

Mechanism \mathcal{M} : Given reported values \mathbf{v}' decide:

ightharpoonup Allocation rule \mathcal{A} : how to give out items

- n agents, m items
- Agent i has private value v_i(S) for set S of items
- Feasibility constraint
 F (e.g. at most 2 items per agent)
- ► Goal: allocate items to maximize welfare

Mechanism \mathcal{M} : Given reported values \mathbf{v}' decide:

- ightharpoonup Allocation rule A: how to give out items
- ▶ Payment rule \mathcal{P} : Who pays what

Algorithmic problem: Find allocation rule \mathcal{A} that maximizes welfare Can we turn this into truthful mechanism?

Algorithmic problem: Find allocation rule ${\mathcal A}$ that maximizes welfare Can we turn this into truthful mechanism?

Algorithmic problem: Find allocation rule \mathcal{A} that maximizes welfare Can we turn this into truthful mechanism?

- ▶ If \mathcal{A} maximizes welfare *exactly* in poly-time Implement the allocation of \mathcal{A} + charge suitable payments \rightarrow VCG is truthful! [Vickrey 1961, Clarke 1971, Groves 1973]
- ightharpoonup If ${\cal A}$ only approximately maximizes welfare

Algorithmic problem: Find allocation rule \mathcal{A} that maximizes welfare Can we turn this into truthful mechanism?

- If $\mathcal A$ maximizes welfare exactly in poly-time Implement the allocation of $\mathcal A$ + charge suitable payments
 - → VCG is truthful! [Vickrey 1961, Clarke 1971, Groves 1973]
- ightharpoonup If ${\mathcal A}$ only approximately maximizes welfare
 - \rightarrow VCG is not truthful!
 - o There may not exist $\mathcal P$ such that $\mathcal M(\mathcal A,\mathcal P)$ is truthful.
 - ightarrow Goal: find a modified allocation \mathcal{A}' and truthful payments?

Is designing truthful ${\cal M}$ harder than the algorithmic problem?

Algorithmic problem: Find allocation rule \mathcal{A} that maximizes welfare Can we turn this into truthful mechanism?

- If $\mathcal A$ maximizes welfare exactly in poly-time Implement the allocation of $\mathcal A$ + charge suitable payments
 - → VCG is truthful! [Vickrey 1961, Clarke 1971, Groves 1973]
- lackbox If ${\mathcal A}$ only approximately maximizes welfare
 - \rightarrow VCG is not truthful!
 - ightarrow There may not exist $\mathcal P$ such that $\mathcal M(\mathcal A,\mathcal P)$ is truthful.
 - \rightarrow Goal: find a modified allocation \mathcal{A}' and truthful payments?

Is designing truthful $\mathcal M$ harder than the algorithmic problem? One possible answer: Black Box reductions!

Someone gives us ${\mathcal A}$ that

- Returns feasible allocations
- Has some welfare guarantee

Someone gives us ${\cal A}$ that

- Returns feasible allocations
- Has some welfare guarantee

We implement $\mathcal{M}(\mathcal{A}', \mathcal{P})$ s.t.

- ► Returns feasible allocations
- ightharpoonup Have comparable welfare to ${\cal A}$
- ▶ Is incentive compatible (DSIC/BIC...)

Someone gives us ${\cal A}$ that

- Returns feasible allocations
- Has some welfare guarantee

Can we implement $\mathcal{M}(\mathcal{A}', \mathcal{P})$ s.t ?

- ► Returns feasible allocations
- ightharpoonup Have comparable welfare to ${\cal A}$
- ▶ Is incentive compatible (DSIC/BIC...)

Someone gives us ${\cal A}$ that

- Returns feasible allocations
- ► Has some welfare guarantee

Can we implement $\mathcal{M}(\mathcal{A}', \mathcal{P})$ s.t ?

- ► Returns feasible allocations
- ightharpoonup Have comparable welfare to ${\cal A}$
- ► Is incentive compatible (DSIC/BIC...)

Many different flavours to the problem:

1. Worst Case performance **vs** Average Performance when $v_i \sim \mathcal{D}$

Someone gives us A that

- Returns feasible allocations
- ► Has some welfare guarantee

Can we implement $\mathcal{M}(\mathcal{A}', \mathcal{P})$ s.t ?

- ► Returns feasible allocations
- ightharpoonup Have comparable welfare to \mathcal{A}
- ► Is incentive compatible (DSIC/BIC...)

Many different flavours to the problem:

- 1. Worst Case performance **vs** Average Performance when $v_i \sim \mathcal{D}$
- 2. Achieving \mathcal{A} 's welfare exactly \mathbf{vs} approximately

Someone gives us A that

- Returns feasible allocations
- ► Has some welfare guarantee

Can we implement $\mathcal{M}(\mathcal{A}', \mathcal{P})$ s.t ?

- ► Returns feasible allocations
- ightharpoonup Have comparable welfare to \mathcal{A}
- ► Is incentive compatible (DSIC/BIC...)

Many different flavours to the problem:

- 1. Worst Case performance **vs** Average Performance when $v_i \sim \mathcal{D}$
- 2. Achieving A's welfare exactly **vs** approximately
- 3. Truthfulness: DSIC **vs** BIC (*Bayesian Incentive Compatible* \rightarrow truthful in expectation over other agents reports)

Previous Results

Can we find such a reduction from mechanism design to algorithm design?

Flavours of the problem studied:

preserve worst case approx.

► Prior-Free Settings

Cannot find reduction to get DSIC Mechanism even for single parameter [Chawla et al 2012]

▶ Bayesian Settings ($v_i \sim \mathcal{D}$)

- ► Can find **BIC** Mechanism, **single**-parameter [Hartline, Lucier 2010]
- \triangleright Can find ϵ -**BIC** Mechanism, **multi**-parameter [Hartline et al 2011 and Bei, Huang 2011]
- ► Can find **BIC** Mechanism, **multi**-parameter [Dughmi et al 2017]

preserve **expected** welfare within ε

What's left to do?

- The picture so far
 - ▶ X DSIC reduction, worst-case performance, single-parameter
 - ▶ ✓ BIC reduction, expected performance, multi-parameter

What's left to do?

- The picture so far
 - ▶ X DSIC reduction, worst-case performance, single-parameter
 - ▶ ✓ BIC reduction, expected performance, multi-parameter
- Some questions still remain:
 - 1. Can we find a "stronger than BIC" reduction that preserves expected welfare, even for single-parameter agents?

What's left to do?

- The picture so far
 - ▶ X DSIC reduction, worst-case performance, single-parameter
 - ▶ ✓ BIC reduction, expected performance, multi-parameter
- Some questions still remain:
 - 1. Can we find a "stronger than BIC" reduction that preserves expected welfare, even for single-parameter agents?
 - Previous BIC results: runtime is polynomial in typespace* size.
 → example: additive agent, with independent values over each item, typespace is exponential.

Can we avoid runtime dependence on typespace? \rightarrow get a BIC reduction that runs in time poly(n,m)?

*Typespace:

discrete: possible different input profiles

continuous: support size of $\mathcal D$

Main Results (Informal)

- ▶ X No BIC reduction, even for single additive agent over independent items, with subexponential query complexity
- ▶ X No MIDR reduction even for single parameter settings, with subexponential query complexity
 - \rightarrow MIDR \subseteq DSIC \subseteq BIC

Main Results (Informal)

- ▶ X No BIC reduction, even for single additive agent over independent items, with subexponential query complexity
- ► X No MIDR reduction even for single parameter settings, with subexponential query complexity
 - \rightarrow MIDR \subseteq DSIC \subseteq BIC

* $\mathbf{X} = \mathcal{M}$ degrades welfare by a polynomial factor with subexponential queries to \mathcal{A}

Up next: intuition for second result.

Lower Bound for MIDR transformations

- Objective: maximize welfare
- ► Single-parameter setting with *n* agents
- ▶ For every agent: $v_i \in \{0,1\}$, outcome $\in \{0,1\}$

Definition 1 (MIDR)

 \mathcal{A} is MIDR if for every $\mathbf{v}, \mathbf{v}' : \mathbb{E}_{\mathcal{A}(\mathbf{v})}[\mathbf{v} \cdot \mathcal{A}(\mathbf{v})] \ge \mathbb{E}_{\mathcal{A}(\mathbf{v}')}[\mathbf{v} \cdot \mathcal{A}(\mathbf{v}')]$ Essentially: $\mathcal{A}(\mathbf{v})$ is best outcome for \mathbf{v} in \mathcal{A} 's range.

Lower Bound for MIDR transformations

- Objective: maximize welfare
- ► Single-parameter setting with *n* agents
- ▶ For every agent: $v_i \in \{0,1\}$, outcome $\in \{0,1\}$

Definition 1 (MIDR)

 \mathcal{A} is MIDR if for every $\mathbf{v}, \mathbf{v}' : \mathbb{E}_{\mathcal{A}(\mathbf{v})}[\mathbf{v} \cdot \mathcal{A}(\mathbf{v})] \geq \mathbb{E}_{\mathcal{A}(\mathbf{v}')}[\mathbf{v} \cdot \mathcal{A}(\mathbf{v}')]$ Essentially: $\mathcal{A}(\mathbf{v})$ is best outcome for \mathbf{v} in \mathcal{A} 's range.

Theorem 1

For any MIDR black-box transformation \mathcal{M} with sub exponential query complexity there exists an algorithm \mathcal{A} and distribution \mathcal{D} such that $\mathrm{WEL}(\mathcal{M}_{\mathcal{A}}) \leq \frac{\mathrm{WEL}(\mathcal{A})}{\mathrm{poly}(n)}$.

Construction Details

Construction: family of algorithms \mathcal{A}_{ST} , distribution \mathcal{D} such that \mathcal{M} degrades welfare

- ▶ Input distribution \mathcal{D} : $x_i = 1$ w.p. $1/(\sqrt{n})$,
- ▶ Uniformly random hidden sets S, T of size $\sim O(\sqrt{n})$ with "big enough" intersection $|S \cap T|$
- Algorithm $A_{ST}(x) = x$ or 0 depending on xServe everyone with value 1 **or** serve no one. Example:

$$A_{S,T}(x) = x: 0010101 \rightarrow 0010101 \checkmark$$

 $A_{S,T}(x) = 0: 0010101 \rightarrow 0000000$

Illustration of Allocation

- ▶ If x is too large then $A_{ST}(x) = \emptyset$
- ▶ If x is not too large and has no intersection with S and T, then $A_{ST}(x) = x$

Illustration of Allocation

If x is not too large then:

- ▶ If $|x \cap T|$ is large, and $|x \cap S|$ is small then $A_{ST}(x) = \emptyset$
- ightharpoonup else $A_{ST}(x) = x$

Lemma 1

 ${\cal A}$ has high expected welfare ($\Omega(\sqrt{n}))$

Lemma 2

 ${\mathcal M}$ has polynomially lower welfare than ${\mathcal A}$ $(O(n^{1/4}))$

Lemma $1 + \text{Lemma } 2 \rightarrow \text{Theorem } 1$

Lemma 1

 ${\mathcal A}$ has high expected welfare $(\Omega(\sqrt{n}))$

Proof Idea.

 $A_{ST}(x) = x$ almost always, result follows from concentration using construction of S, T and D

Lemma 2

 ${\cal M}$ has polynomially lower welfare than ${\cal A}$ $({\it O}(n^{1/4}))$

Lemma $1 + \text{Lemma } 2 \rightarrow \text{Theorem } 1$

Lemma 2

 ${\cal M}$ has polynomially lower welfare than ${\cal A}$ $(O(n^{1/4}))$

Proof Idea.

Prove in 3 steps:

1. $A_{ST}(T) = 0$, and \mathcal{M} cannot find set S with subexponentially many samples, so it cannot find an output with high welfare for T.

Note: we don't use any truthfulness constraint here

Lemma 2

 \mathcal{M} has polynomially lower welfare than \mathcal{A} $(O(n^{1/4}))$

Proof Idea.

2. **Idea**: Because of MIDR, $\mathcal{M}_{\mathcal{A}}(S)$ can't return an outcome with high welfare for T. However, on input S, we cannot find $T \to \text{must}$ reduce welfare throughout.

Lemma 2

 \mathcal{M} has polynomially lower welfare than \mathcal{A} $(O(n^{1/4}))$

Proof Idea.

2. **Idea**: Because of MIDR, $\mathcal{M}_{\mathcal{A}}(S)$ can't return an outcome with high welfare for T. However, on input S, we cannot find $T \to \text{must}$ reduce welfare throughout.

 M_A(x) gives low welfare (for any input x) Idea: Cannot decide if x is the set S or not

Second Result

- ► Objective: maximize WEL
- ► Single additive agent, *n* items

Theorem 2

For any DSIC black-box transformation \mathcal{M} with sub exponential query complexity, there exists an algorithm \mathcal{A} and distribution \mathcal{D} such that $\mathrm{WEL}(\mathcal{M}_{\mathcal{A}}) \leq \frac{\mathrm{WEL}(\mathcal{A})}{\mathrm{poly}(n)}$

Note: for single agent, $DSIC = BIC \Rightarrow$ same result for BIC

Proof follows similarly to MIDR reduction, but

► Instead of MIDR condition, uses a characterization of BIC allocation rules due to [Hartline, Kleinberg, Malekian 2011]

Conclusion and Open Problems

Black-box reductions:

reducing mechanism design to algorithm design.

Existing black-box reductions are for BIC mechanisms, and have polynomial dependence on typespace

We showed two negative results

- Remove polynomial dependence on typespace
 Even for single additive agent over independent types
- Change BIC requirement → strengthen BIC to MIDR
 X Even for single parameter settings

Conclusion and Open Problems

Black-box reductions:

reducing mechanism design to algorithm design.

Existing black-box reductions are for BIC mechanisms, and have polynomial dependence on typespace

We showed two negative results

- Remove polynomial dependence on typespace
 X Even for single additive agent over independent types
- Change BIC requirement → strengthen BIC to MIDR
 X Even for single parameter settings

Open problem: Can we strengthen BIC to DSIC, while preserving expected welfare? [Chawla et al 2012]

Conclusion and Open Problems

Black-box reductions:

reducing mechanism design to algorithm design.

Existing black-box reductions are for BIC mechanisms, and have polynomial dependence on typespace

We showed two negative results

- Remove polynomial dependence on typespace
 X Even for single additive agent over independent types
- Change BIC requirement → strengthen BIC to MIDR
 X Even for single parameter settings

Open problem: Can we strengthen BIC to DSIC, while preserving expected welfare? [Chawla et al 2012]

Thank you!