

مقرر قاعدة البيانات وإدارتها

إعداد/

أ. عبد الباسط عبد الله المصري

القصل الدراسي الثاني ٢١٢:

7 . 7 7/7 . 7 1

وحدات المقرر

- ◄ الوحدة الأولى: مقدمة في قاعدة البيانات.
- ◄ الوحدة الثانية: مخطط الكينونات العلائقية ومخطط الأصناف.
- ◄ الوحدة الثالثة: الاعتمادات الوظيفية والمخطط العلائقي والتطبيع.
 - ◄ الوحدة الرابعة: الجبر العلائقي.
 - ◄ الوحدة الخامسة: لغة التساؤل البنيوي.

التقويم (توزيع العلامات)

- ◄ التعيين الأول ٥%
- ◄ التعيين الثاني ٥%
- ♦ الامتحان النصفى ٣%
- ◄ الامتحان النهائي ٠٣٠
- ◄ الامتحان النهائي العملي ٠ ٣%

محتويات الوحدة الأولى

- ◄ مفاهيم أساسية
- ◄ الأهداف الرئيسية لقواعد البيانات
 - ◄ مراحل تطور قواعد البيانات
- ◄ مكونات نظام ادارة قواعد البيانات

Architecture of DBMS

- ◄ أجزاء برمجيات نظام ادارة قواعد البيانات Modules of DBMS
 - ◄ مراحل تصميم قواعد البيانات
 - ◄ دورة حياة نظام قاعد البيانات

مفاهيم أساسية

◄ قاعدة البيانات (Database):
 جميع البيانات ذات العلاقة التي غالباً ما تخص مؤسسة أو مشروع أو شركة كبيرة.

مفاهيم أساسية..تابع

- Data Base Management System (DBMS) نظام إدارة قواعد البيانات
- مجموعة من البرامج التي تقوم بإدارة قواعد البيانات ومعالجتها بطريقة سهلة وسريعة.
 - تشمل إدارة البيانات:
 - ١) تعريف التركيب المناسب لتخزين البيانات.
 - ٢) تعريف الأسلوب الأنسب لمعالجة البيانات.
 - ٣) تحديد الأساليب الأمنية للمحافظة على البيانات Security.
- ٤) تحديد أساليب حماية البيانات من الضرر في حالة التعطل المفاجئ System Crash.
 - ٥) تحديد أساليب المحافظة على دقة المعلومات وصحتها.

مفاهيم أساسية...تابع

◄ نظام إدارة قواعد البيانات...تابع

Examples Database Management System (DBMS)

Database Package	Icon
Microsoft Access	2007 2010
SQL Server	ŠQL Server
File Maker	FileMaker:
Oracle	ORACLE.

مفاهيم أساسية...تابع

◄ أهمية قواعد البيانات

- ۱) تجنب التكرار غير اللازم للبيانات (Redundancy)
- ٢) تحسين ودقة وتطابق البيانات (Consistency): الأنها محفوظة في مكان واحد والمسؤول عنها شخص واحد DBA.
 - ٣) سهولة المشاركة (Sharing of data)
 - ٤) توحيد المعايير (Standardization): في استخدام البيانات وتسميتها وتعريفها.
- ه) تحسين الشروط الأمنية (Security): بتحديد نظام صلاحية الوصول واستخدام البيانات.
 - ٦) التأكد من صحة البيانات (Integrity): لأن البيانات يتم تحديثها من عدة مستخدمين.
 - ٧) استقلالية البيانات (Independency): فصل البيانات عن البرامج التي تعالجها.
 - أ) الاستقلال الفعلي للبيانات Physical Independency:

قدرة المؤسسة على ترقية الأجهزة التي تستخدمها لتخزين البيانات دون تعطيل قدرة المستخدم النهائي على الوصول إلى البيانات من خلال التطبيقات الموجودة على الحاسوب.

ب) الاستقلال المنطقي للبيانات Logical Independency:

قدرة مسؤولي قاعدة البيانات على إجراء تغييرات على المخطط المنطقي، وإضافة جداول جديدة أو إلحاق الحقول بالجداول الحالية، دون تعطيل وصول المستخدمين النهائيين إلى البيانات.

الأهداف الرئيسية لقواعد البيانات

- ١) تبسيط تصميم وتطوير الأنظمة.
- ٢) تقليل المدة الزمنية للتصميم والتطوير.
- ٣) توثيق البيانات والمعلومات وأسلوب ترابطها.
- ٤) سهولة استخلاص التقارير وتنفيذ الطلبات Queries دون الحاجة للرجوع إلى المبرمجين.

مراحل تطور قواعد البيانات

- ۱) الشبكي Network
- ۲) الهرمي Hierarchical
 - ٣) العلائقي Relational
- ٤) الكيانات Entity-Relationship
- ه) الأسلوب المبني على معنى البيانات Semantic
- ٦) الأسلوب الذي يقوم ببناء البيانات على شكل كينونات Objects

مراحل تطور قواعد البيانات...تابع

- ١) قواعد البيانات الشبكية Network DB
- صبارة عن السجلات ذات الارتباط المتعدد (شبكي).
 - ٥ أقرب قواعد البيانات للواقع.
 - o مثال: CODASYL ص

مراحل تطور قواعد البيانات...تابع

Y) قاعدة البيانات الهرمية Hierarchical DB

- مجموعة مرتبة ومتكررة من نوع واحد من السجلات المركبة على هيئة شجرة Tree.
- أي أن لكل سجل جذر ROOT واحد وأي سجل واحد تتفرع منه هذه الفروع إلى سجلات وهكذا...
 - يمكن تشبيهها بشجرة العائلة (الجد- الابن- الأبناء).
- لا يُسمح في قواعد البيانات الهرمية بأن يكون لأي سجل أكثر من جذر واحد.

مراحل تطور قواعد البيانات...تابع

٣) قواعد البيانات العلائقية Relational Database

- و ظهرت في منتصف السبعينات.
- □ تعتبر من أهم نماذج قواعد البيانات والأكثر انتشاراً
 □ واستخداماً
 - ₀ يتم تمثيل البيانات بشكل جداول مترابطة Tables.
 - o تتكون الجداول من سجلات Records وحقول Fields.
- و يُستخدم الجبر العلائقي Relational Algebra لتمثيل أي طلب من البيانات فيها.

مراحل تطور قواعد البيانات...تابع ٣) قواعد البيانات العلائقية... تابع

مراحل تطور قواعد البيانات...تابع ٣) قواعد البيانات العلائقية... تابع

Database Concepts

۱) المستوى الداخلي/ المادي Internal Level

- یصف أسلوب تخزین البیانات فعلیاً علی وحدات التخزین.
- ر يساعد هذا المستوى نظام التشغيل في اختيار الأسلوب المطلوب لحفظ البيانات والوصول إليها (الأسلوب التتابعي، العشوائي...).

Y) المستوى المفاهيمي/ المنطقي Conceptual/ Logic Level

- المرحلة الوسيطة بين المستوى الخارجي والداخلي في قاعدة البيانات.
- يصف البنية المنطقية للبيانات المخزنة في قاعدة البيانات،
 والممثلة للواقع والعلاقات بطريقة منطقية تناسب استخدامها.
 - يتولى تصميم هذا المستوى مصمم قاعدة البيانات.
 - يحوي على جميع الجداول وخصائصها وعلاقاتها.
- تقوم برمجیات نظام قواعد البیانات بربط الأجزاء المنطقیة مع الأجزاء الفعلیة

Mapping between logical and internal level

٣) المستوى الخارجي External Level

- نيمثل هذا المستوى المستخدم النهائي للبيانات End User
 نيستطيع فيه المستخدمون التخاطب والاتصال، واسترجاع البيانات والمعلومات.
 - يستطيع كل مستخدم أن يتعامل مع جزء من البيانات.
- ینظر کل مستخدم إلى البیانات من خلال شباك لیرى منظر
 View
 - يختلف منظر كل مستخدم عن منظر المستخدم الآخر.

مثال:

تمثيل البيانات الثلاثة: الخارجية والمنطقية والداخلية في نظام جامعة يحتوي على طلبة ومحاضرين ومواد تدريسية.

◄ المستوى الخارجي إيصف كل مستخدم الجزء الخاص به:
 الطالب: يريد معرفة بيانات المقررات الخاصة به: تسجيل المواد- العلامة ... الخ.

العميد: يريد معرفة عنوان كل محاضر.

المحاضر: يريد معرفة المقررات وأوقات تدريسها.

◄ المستوى المنطقي/ يقوم المصمم بتصميم قاعدة البيانات ليشمل جميع البيانات الخاصة بالجامعة: (الطالب، المحاضر، المواد، بيانات تسجيل الطلبة وعلاماتهم والقاعات الدراسية...)، والعلاقات التي تربط هذه البيانات بعضها ببعض.

◄ المستوى الداخلي/ يتم بناء ملف يحتوي على سجلات الطلبة، وملف خاص بالمحاضرين، وملف خاص بالمواد التدريسية، وملف للفصل الحالي مع أسماء الطلبة المسجلين في كل مادة وأوقاتها...الخ.

أجزاء برمجيات نظام ادارة قواعد البيانات Modules of DBMS

- O وصف وتركيب وبناء البيانات وتعريفها Data Definition
 Language (DDL)
- o الأوامر التي يمكن من خلالها معالجة قواعد البيانات Data Manipulation Language (DML)
 - برامج تقوم بعمل النسخ الاحتياطية Backups
- ر برامج تقوم بمراقبة دقة البيانات في حالة تعدد المستخدمين Concurrency Control
- ر برامج تقوم باسترجاع البيانات عن طريق تسجيل التغييرات على البيانات على ملف خاص Log file للاستفادة منه في استرجاع البيانات Recovery.
 - o برامج تراقب أمن وسرية البيانات Security.
 - o برامج تساعد المستخدم على تحضير التقارير Reporter.
- ر برامج تساعد المستخدم على تحضير شاشات الإدخال والإخراج Screen Formatter.
 - o برامج تساعد المستخدم على تحضير طلباته من خلال لغة SQL.

مراحل تصميم قواعد البيانات

- ۱) تحلیل البیانات ِAnalysis Phase
- يقوم بهذه المرحلة شخص يُسمى (محلل النظم).
 - وظائف محلل النظم:
- عمسح نشاطات المؤسسة وجمع البيانات والمعلومات.
 - عتحليل البيانات التي تم جمعها Data Analysis.
- البيانات ببعضها وتفسير معناها (اسم الموظف، رقم الموظف، رقم الموظف، عنوان الموظف، تاريخ ميلاده...)
 - Y) وضع التصميم الرئيسي لقواعد البيانات Design Phase
 - يقوم بهذه المرحلة شخص يُسمى (المصمم).
 - تشمل:

عوضع التصميم المنطقي لقاعدة البيانات Logical Design وضع التصميم الداخلي لقاعدة البيانات Physical Design

دورة حياة نظام قاعدة البيانات Database life cycle

- ١) التصميم الداخلي والمنطقي للبيانات.
- ٢) تعريف التصميم بلغات تعتمد على النظام المستخدم DDL.
- ٣) بناء هيكل عام للبيانات على وحدات التخزين بلغات DML.
- ٤) اعادة التنظيم الداخلي والمنطقي للبيانات
 - . Reorganization
- ه) إجراء صيانة دورية Maintenance: من ٥- ١٠ سنوات.

