COMP108 Data Structures and Algorithms

Graphs (Part II Paths, Circuits, BFS/DFS)

Professor Prudence Wong

pwong@liverpool.ac.uk

2022-23

Undirected graph - Paths and circuits

- In an undirected graph, a path from a vertex u to a vertex v is a sequence of edges $e_1 = \{u, x_1\}, e_2 = \{x_1, x_2\}, \cdots, e_n = \{x_{n-1}, v\}, \text{ where } n \ge 1.$
- ightharpoonup The **length** of this path is n.
- Note that a path from u to v implies a path from v to u in an undirected graph.
- If $u \equiv v$, this path is called a **circuit** (cycle).

- A simple circuit visits an edge at most once.
- An Euler circuit is a circuit visiting every edge exactly once. (NB. A vertex can be repeated.)
- Does every graph has an Euler circuit ?

- A simple circuit visits an edge at most once.
- An Euler circuit is a circuit visiting every edge exactly once. (NB. A vertex can be repeated.)
- Does every graph has an Euler circuit?

- A simple circuit visits an edge at most once.
- An Euler circuit is a circuit visiting every edge exactly once. (NB. A vertex can be repeated.)
- Does every graph has an Euler circuit?

acbdecda

- A simple circuit visits an edge at most once.
- An Euler circuit is a circuit visiting every edge exactly once. (NB. A vertex can be repeated.)
- Does every graph has an Euler circuit?

acbdecda

A simple circuit visits an edge at most once.

An Euler circuit is a circuit visiting every edge exactly once.
 (NB. A vertex can be repeated.)

Does every graph has an Euler circuit ?

no Euler circuit

A trivial condition for Euler circuit

- An undirected graph G is said to be **connected** if there is a path between every pair of vertices.
- ► If G is not connected, there is no single circuit to visit all edges or vertices.
- Being connected is a necessary condition but not sufficient.

Let G be a connected graph.

Lemma

Let \boldsymbol{G} be a connected graph.

Lemma

Let G be a connected graph.

Euler path

Lemma

Lemma

Lemma

Lemma

Lemma

Hamiltonian circuit

- Let G be an undirected graph.
- ► A **Hamiltonian circuit** is a circuit containing every vertex of G exactly once.
- Note that a Hamiltonian circuit may NOT visit all edges.
- Unlike the case of Euler circuits, determining whether a graph contains a Hamiltonian circuit is a very difficult problem. (NP-hard)

Breadth First Search (BFS) - figure adopted from COMP111

Breadth First Search (BFS) - figure adopted from COMP111

Depth First Search (DFS) - figure adopted from COMP111

Depth First Search (DFS) - figure adopted from COMP111

BFS...

BFS - with queue / linked list BFS:

Suppose \boldsymbol{a} is the starting vertex.

BFS: α ,

Suppose \boldsymbol{a} is the starting vertex.

head ightarrow a \diagup \leftarrow tail

BFS - with queue / linked list BFS: a, b,

BFS - with queue / linked list BFS: a, b, d,

BFS: a, b, d, e,

BFS: a, b, d, e, f,

BFS: a, b, d, e, f, h,

BFS: a, b, d, e, f, h, g,

BFS: a, b, d, e, f, h, g, k,

BFS: a, b, d, e, f, h, g, k, c

unmark all vertices choose some starting vertex s mark s and insert s into tail of list L

unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L
while L is nonempty do
begin

unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L
while L is nonempty do
begin
remove a vertex v from head of L

```
unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L
while L is nonempty do
begin
remove a vertex v from head of L
visit v // e.g., print its data
```

end

BFS - pseudo code - with linked list / queue

```
unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L
while L is nonempty do
begin
remove a vertex v from head of L
visit v // e.g., print its data
for each unmarked neighbor w of v do
```

```
unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L
while L is nonempty do
begin
    remove a vertex v from head of L
    visit v // e.g., print its data
    for each unmarked neighbor w of v do
         mark w and insert w into tail of list L
end
```

DFS...

DFS:

Suppose \boldsymbol{a} is the starting vertex.

DFS: a,

DFS: a, b,

DFS: a, b, f,

DFS: a, b, f, c,

DFS: a, b, f, c, e,

DFS: a, b, f, c, e, g,

DFS: a, b, f, c, e, g, k,

 $top \rightarrow b$

d

e

DFS: a, b, f, c, e, g, k,

Suppose a is the starting vertex.

 $top \rightarrow$

e

d

e

DFS: a, b, f, c, e, g, k, d,

Suppose a is the starting vertex.

e

d

e

DFS: a, b, f, c, e, g, k, d, h

DFS: a, b, f, c, e, g, k, d, h

unmark all vertices

unmark all vertices ${\bf push}$ starting vertex ${\bf u}$ onto ${\bf top}$ of ${\bf stack}$ ${\bf S}$

unmark all vertices

push starting vertex *u* onto top of stack *S*while *S* is nonempty do

begin

pop a vertex *v* from top of *S*

```
unmark all vertices

push starting vertex u onto top of stack S

while S is nonempty do

begin

pop a vertex v from top of S

if v is unmarked then

begin
```

end

end

DFS - pseudo code - with stack

```
unmark all vertices
push starting vertex u onto top of stack S
while S is nonempty do
begin
    pop a vertex v from top of S
    if v is unmarked then
    begin
         visit and mark v
    end
```

```
unmark all vertices
push starting vertex u onto top of stack S
while S is nonempty do
begin
    pop a vertex v from top of S
    if v is unmarked then
    begin
        visit and mark v
        for each unmarked neighbor w of v do
    end
end
```

```
unmark all vertices
push starting vertex u onto top of stack S
while S is nonempty do
begin
    pop a vertex v from top of S
    if v is unmarked then
    begin
        visit and mark v
         for each unmarked neighbor w of v do
             push w onto top of S
    end
end
```

Summary

Summary: Traversals

Next: Greedy Algorithms

For note taking