

ONE-OF-TEN DECODER

The LSTTL/MSI SN54/74LS42 is a Multipurpose Decoder designed to accept four BCD inputs and provide ten mutually exclusive outputs. The LS42 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Multifunction Capability
- Mutually Exclusive Outputs
- · Demultiplexing Capability
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES

HIGH LOW

		HIGH	LOW
<u>A</u> ₀ – A ₃	Address Inputs	0.5 U.L.	0.25 U.L.
0 to 9	Outputs, Active LOW (Note b)	10 U.L.	5(2.5) U.L.

NOTES:

- a) 1 TTL Unit Load (U.L.) = $40 \mu A HIGH/1.6 mA LOW$.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LOGIC DIAGRAM

V_{CC} = PIN 16 GND = PIN 8 ○ = PIN NUMBERS

SN54/74LS42

ONE-OF-TEN DECODER LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC

LOGIC SYMBOL

V_{CC} = PIN 16 GND = PIN 8

SN54/74LS42

FUNCTIONAL DESCRIPTION

The LS42 decoder accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs, as shown by logic symbol or diagram. The active LOW outputs facilitate addressing other MSI units with LOW input enables.

The logic design of the LS42 ensures that all outputs are HIGH when binary codes greater than nine are applied

to the inputs.

The most significant input A_3 produces a useful inhibit function when the LS42 is used as a one-of-eight decoder. The A_3 input can also be used as the Data input in an 8-output demultiplexer application.

TRUTH TABLE

A ₀	A ₁	A ₂	А3	0	1	2	3	4	5	6	7	8	9
L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
Н	Н	L	L	Н	Н	Н	L	Η	Н	Н	Η	Н	Н
L	L	Н	L	Н	Н	Н	Η	L	Н	Н	Η	Н	Н
Н	L	Н	L	Н	Η	Н	Η	Η	L	Н	Η	Η	Н
L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	L	Η	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Η	Н	Η	Η	Н	Н	Η	Η	L
L	Н	L	Η	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	L	Н	Н	Η	Н	Η	Η	Н	Н	Η	Η	Н
L	L	Н	Н	Н	Η	Н	Η	Η	Н	Н	Η	Η	Н
Н	L	Η	Н	Н	Η	Н	Η	Η	Н	Н	Η	Η	Н
L	Н	Н	Н	Н	Н	Н	Η	Η	Н	Н	Η	Н	Н
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

H = HIGH Voltage Level L = LOW Voltage Level

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loн	Output Current — High	54, 74			-0.4	mA
l _{OL}	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS42

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits						
Symbol	Parameter		Min	Тур	Max	Unit	Test C	onditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
\/					0.7	V	Guaranteed Input LOW Voltage for		
VIL	Input LOW Voltage	74			0.8	V	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN$, $I_{IN} = -18 \text{ mA}$		
V	OH Output HIGH Voltage		2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} =		
VOH			2.7	3.5		V	or V _{IL} per Truth	Table	
\/-·	Output I OW Voltage	54, 74		0.25	0.4	٧	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{II} or V _{IH}	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
l					20	μΑ	V _{CC} = MAX, V _{II}	_V = 2.7 V	
lΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
IլL	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
Icc	Power Supply Current				13	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Limits					
Symbol Parameter		Min	Тур	Max	Unit	Tes	st Conditions
^t PLH ^t PHL	Propagation Delay (2 Levels)		15 15	25 25	ns	Figure 2	V _{CC} = 5.0 V C _L = 15 pF
tPLH tPHL	Propagation Delay (3 Levels)		20 20	30 30	ns	Figure 1	C _L = 15 pF

AC WAVEFORMS

Figure 1 Figure 2