Redes INFO-281

Universidad Austral de Chile Instituto de informática Dr. Ing. Christian Lazo R.

Etapa 1 Introducción

Qué es Internet?

- Millones de dispositivos computacionales conectados (dispositivos finales).
- Enlaces de comunicación .
 - □ (FO, cobre, radio, satélite).
 - Ancho de banda, retardo, etc.
- Equipos de comunicaciones (routers, switchs).
- Miles de aplicaciones de red.

Qué es Internet?

- Protocolos (control, envío y recepción de mensajes).
 - □ tcp, ip, http, ftp, ppp
- Internet "la red de redes".
 - Red pública, red privada.
 - □ Jerárquica.
- Estándares de Internet
 - □ RFC, IETF.

Qué es Internet?, vista desde el servicio

- Infraestructura de comunicación para aplicaciones distribuidas.
 - Web, email, juegos, comercio, etc
- Servicio de comunicaciones para aplicaciones
 - Servicios orientados a la conexión
 - Servicios no conectados

Qué es un protocolo humano?

- Que hora es?
- Tengo una pregunta.
 - Especifica los mensajes enviados
 - Especifica las acciones de respuesta u otros eventos para los mensajes recibidos.

Qué es un protocolo de red?

- Comunicación entre máquinas.
- Toda la actividad de comunicación en Internet esta gobernada por protocolos de red.
- Define el formato y orden de los mensajes enviados, así como las acciones a realizar cuando estos son recibidos

Una vista a la estructura de la red

- Extremo de la red:
 - Aplicaciones y host.
- Núcleo de la red:
 - Routers y redes de redes
- Medios de acceso físico a la red:
 - □ Enlaces de comunicación.

El Extremo de la red

- Sistemas terminales (hosts)
 - Ejecutan programas de aplicación
 - Web, mail
- Modelo cliente/servidor
 - El cliente pregunta y recibe servicios desde un servidor dedicado
 - Web-server, email-server.
- Modelo Peer to Peer
 - Usa de forma minina (o no usa) servidores dedicados.
 - Skype, Bit-Torrent, KaZaA

Extremo de la red : servicios de Internet

Los desarrolladores de aplicaciones para redes TCP/IP solo deben conocer y decidir que tipo de servicio de comunicación de Internet utilizará su aplicación.

- Servicio orientado a conexión (TCP).
- □ Servicio sin conexión (UDP).

Extremo de la red: servicios orientados a conexión

Objetivo: Transferir datos entre sistemas terminales.

- (TCP) Transmision Control Protocol
- Servicio orientado a la conexión
- Envío de paquetes de control antes de los datos (hola).
- Solo los equipos terminales conocen de esta conexión (conexión ligera).
- HTTP, FTP, SMTP, Telnet, etc.

Servicios de TCP (RFC-793)

- Transmisión fiable y ordenada de paquetes.
 - Reconocimiento de pérdidas y retransmisiones.
- Control de flujo
 - Evita que los "lados" de la conexión se colapsen.
- Control de la congestión.
 - □ Evita la congestión de Internet.
 - Envía mas lento cuando la red esta congestionada.

Extremo de la red: servicios sin conexión

Objetivo: Transferir datos entre sistemas terminales.

- (UDP) User datagram Protocol(RFC 768)
- Servicio no orientado a la conexión. No existe acuerdo previo.
- Transmisión no fiable.
- Sin control de flujo.
- Sin control de la congestión.

Algunas aplicaciones:

Teleconferencia, DNS, Telefonía
 Internet, flujos de audio, flujos
 de video, aplicaciones
 multimedia, etc.

Núcleo de la Red

Malla interconectada de dispositivos de ruteo que permiten la conexión de los sistemas terminales de Internet.

Núcleo de la Red

- ¿Cómo se transfieren los datos entre los routers?
- Conmutación de circuitos
 - □ Circuitos reservados, dedicados a satisfacer una llamada. (telefonía)
- Conmutación de paquetes
 - No existe reserva previa, utilización de recursos bajo demanda.

Ejemplo "restaurante con y sin reserva".

Conmutación de circuitos

- El establecimiento de un circuito cuenta con:
 - □ Tasa de transmisión constante en los enlaces (asegurada).
 - Reserva de recursos en los equipos de comunicación intermedios.
- "Calidad garantizada" los recursos se dividen en partes, si no se asignan entonces no se utilizan.

Conmutación de circuitos

Es necesario establecer el circuito antes del envío de los datos.

Reserva de los recursos desde los extremos de la red (reserva

REAL).

Conmutación de circuitos: FDM y TDM

División de frecuencias (FDM)

División de tiempo (TDM)

Conmutación de circuitos: ejemplo numérico.

- ¿Cuánto tiempo tarda el enviar un archivo de 640.000 bits desde uno nodo A hasta nodo B sobre una red de conmutación de circuitos?
 - □ Todos los enlaces son de 1,536 Mbps.
 - Los enlaces utilizan TDM con 24 particiones /sec.
 - □ El tiempo en establecer el circuito de extremo a extremo es de 500 ms.

Conmutación de circuitos: ejemplo numérico.

- ¿Cuánto tiempo tarda el enviar un archivo de 640.000 bits desde uno nodo A hasta nodo B sobre una red de conmutación de circuitos?
 - □ La tasa de transmisión por cada circuito = 1,536Mbs/24= 64 Kbps.
 - □ El tiempo en el circuito es de 640.000 bits/64Kbps= 10 seg.
 - □ El tiempo en establecer el circuito es de 500 ms.
- Tiempo total en enviar archivo de A hasta B es de 10,5 seg.
 - Esto es independiente del numero de enlaces utilizados.

Conmutación de paquetes

- El nodo origen divide la información en paquetes (audio, video, texto, otros)
- Los paquetes viajan entre el nodo origen y el destino por medio de los enlaces y equipos de comunicación o de ruteo.
- Los paquetes se transmiten a una tasa igual a la tasa de transmisión del enlace.
- Los equipos de comunicación utilizan generalmente un mecanismo de almacenar-y-reenviar para las entradas de los enlaces.

Conmutación de paquetes

Almacenar-y-reenviar:

- El equipo de comunicación debe recibir el paquete completo antes de comenzar a transmitir el primer bit del paquete hacia el siguiente enlace.
- Introducen un retardo de almacenar-y-reenviar en la entrada de cada enlace.
- El retardo es L/R seg. Donde L es el tamaño del paquete en bits y R el ancho de banda del enlace posterior.

Conmutación de paquetes

- L= 7.5 Mbits
- R= 1.5 Mbps

- El retardo es 3L/R seg. (15seg.)
- Donde L es el tamaño del paquete en bits y R el ancho de banda del enlace posterior.

Conmutación de paquetes: multiplexado estadístico

- 2 nodos envían paquetes de un mismo tamaño
- Distinta tasa de envío
- Comparten un enlace de salida común.

