0308HW_Integration-areas [33 marks]

```
Consider a function f(x) such that \int_1^6 f(x) \mathrm{d}x = 8.
```

Markscheme

```
appropriate approach \it (M1) \it eg 2\int f(x), \ 2(8) \int_1^6 2f(x){
m d}x=16 \it A1 \it N2 \it [2 marks]
```

1b. Find $\int_1^6 \left(f(x) + 2 \right) \mathrm{d}x.$

Markscheme

```
appropriate approach (M1) eg \int f(x) + \int 2, \ 8 + \int 2 \int 2 \mathrm{d} x = 2x \quad \text{(seen anywhere)} \quad \textbf{(A1)} substituting limits into their integrated function and subtracting (in any order) (M1) eg 2(6) - 2(1), \ 8 + 12 - 2 \int_1^6 \left( f(x) + 2 \right) \mathrm{d} x = 18 \quad \textbf{A1} \quad \textbf{N3} [4 marks]
```

2a. Find
$$\int_4^{10} (x-4) \mathrm{d}x \ .$$

correct integration A1A1

e.g.
$$\frac{x^2}{2} - 4x$$
, $\left[\frac{x^2}{2} - 4x\right]_4^{10}$ $\frac{(x-4)^2}{2}$

Notes: In the first 2 examples, award A1 for each correct term.

In the third example, award **A1** for $\frac{1}{2}$ and **A1** for $(x-4)^2$.

substituting limits into **their** integrated function and subtracting (in any order) (M1)

e.g.
$$\left(\frac{10^2}{2}-4(10)\right)-\left(\frac{4^2}{2}-4(4)\right),10-(-8),\frac{1}{2}(6^2-0)$$

$$\int_4^{10}(x-4)\mathrm{d}x=18\quad \textit{A1}\quad \textit{N2}$$

2b. Part of the graph of

$$f(x) = \sqrt{x-4}$$
 , for

 $x \geq 4$, is shown below. The shaded region R is enclosed by the graph of f , the line

x=10 , and the $\emph{x}\text{-axis}.$

The region R is rotated

 360° about the *x*-axis. Find the volume of the solidformed.

[3 marks]

attempt to substitute either limits or the function into volume formula (M1)

e.g.

$$\pi \int_{4}^{10} f^2 dx$$
, $\int_{a}^{b} (\sqrt{x-4})^2$, $\pi \int_{4}^{10} \sqrt{x-4}$

Note: Do not penalise for missing

 π or dx.

correct substitution (accept absence of dx and

 π) (A1)

e.g.
$$\pi \int_4^{10} \left(\sqrt{x-4} \right)^2, \pi \int_4^{10} \left(x-4 \right) \mathrm{d}x, \ \int_4^{10} \left(x-4 \right) \mathrm{d}x$$

volume =

 18π A1 N2

[3 marks]

3. The following diagram shows the graph of $f(x)=\frac{x}{x^2+1}$, for $0\leq x\leq 4$, and the line x=4.

[6 marks]

Let R be the region enclosed by the graph of f , the x-axis and the line x=4.

Find the area of R.

Markscheme

substitution of limits or function (A1)

eg
$$A=\int_0^4 f(x),\;\int rac{x}{x^2+1}\mathrm{d}x$$

correct integration by substitution/inspection A2

 $\frac{1}{2}\ln(x^2+1)$

substituting limits into their integrated function and subtracting (in any order) (M1)

eg
$$\frac{1}{2} \left(\ln(4^2 + 1) - \ln(0^2 + 1) \right)$$

correct working A1

eg
$$\frac{1}{2} \left(\ln(4^2+1) - \ln(0^2+1) \right), \, \frac{1}{2} (\ln(17) - \ln(1)), \, \frac{1}{2} \ln 17 - 0$$

$$A=rac{1}{2}{
m ln}(17)$$
 A1 N3

Note: Exception to \emph{FT} rule. Allow full \emph{FT} on incorrect integration involving a \ln function.

[6 marks]

Let
$$f(x) = x^2$$
 and $g(x) = 3\ln(x+1)$, for $x > -1$.

valid approach (M1)

eg sketch

0, 1.73843

[3 marks]

 $_{
m 4b.}$ Find the area of the region enclosed by the graphs of f and g.

[3 marks]

Markscheme

integrating and subtracting functions (in any order) (M1)

eg
$$\int g - f$$

correct substitution of their limits or function (accept missing

(A1)

eg
$$\int_0^{1.74} g - f$$
, $\int 3 \ln(x+1) - x^2$

Note: Do not award **A1** if there is an error in the substitution.

1.30940

1.31 **A1 N3**

[3 marks]

Let $f(x) = \cos x$, for $0 \le x \le 2\pi$. The following diagram shows the graph of f.

[8 marks]

There are

x-intercepts at $x = \frac{\pi}{2}, \frac{3\pi}{2}$.

The shaded region R is enclosed by the graph of f, the line x=b, where $b>\frac{3\pi}{2}$, and the x-axis. The area of R is $\left(1-\frac{\sqrt{3}}{2}\right)$. Find the value of b.

eg
$$\int_{\frac{3\pi}{2}}^{b} \cos x \mathrm{d}x$$
, $\int_{a}^{b} \cos x \mathrm{d}x$, $\int_{\frac{3\pi}{2}}^{b} f \mathrm{d}x$, $\int \cos x$

correct integration (accept missing or incorrect limits) (A1)

$$eg \ [\sin x]_{\frac{3\pi}{2}}^b, \ \sin x$$

substituting correct limits into their integrated function and subtracting (in any order) (M1)

eg
$$\sin b - \sin\left(\frac{3\pi}{2}\right)$$
, $\sin\left(\frac{3\pi}{2}\right) - \sin b$

$$\sin\!\left(\frac{3\pi}{2}\right) = -1$$
 (seen anywhere) (A1)

setting **their** result from an integrated function equal to $\left(1-\frac{\sqrt{3}}{2}\right)$ - $\it M1$

eg
$$\sin b = -\frac{\sqrt{3}}{2}$$

evaluating
$$\sin^{-1}\Bigl(rac{\sqrt{3}}{2}\Bigr)=rac{\pi}{3}$$
 or $\sin^{-1}\Bigl(-rac{\sqrt{3}}{2}\Bigr)=-rac{\pi}{3}$ (A1)

eg
$$b=\frac{\pi}{3},~-60^{\circ}$$

identifying correct value (A1)

eg
$$2\pi - \frac{\pi}{3}$$
, $360 - 60$

$$b=rac{5\pi}{3}$$
 A1 N3

[8 marks]

© International Baccalaureate Organization 2018

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for Bronx Early College Academy