

Sentiment and Semantic Driven Detection: Social Media Filters for Accurate Fake News Identification

Pathik Viramgama, Amartya Chaudhuri, Aditya Dutta, Mishal Patel, Karan Shah

Our goal is to harness cutting-edge machine learning models to accurately classify and analyze news articles, distinguishing between real and fake news to combat misinformation effectively.

Why It Matters

Motivation: In an era where misinformation can spread rapidly, distinguishing real news from fake has become crucial for informed decision-making.

Problem Definition: We tackle the challenge of developing a machine learning tool capable of accurately classifying news articles by their veracity, addressing data biases and the complexities of language.

Datasets In-Depth

Dataset 1: Twitter News Dataset

- > Number of Articles: 44,898
- Article Length Range: 1 to 51,794 characters (Average: 2,469)
- Balance: Almost equal number of real and fake news articles, around a 48.5 / 51.5 split.
- Features: Includes 'title', 'text', 'subject', and 'date' (primary features: 'title', 'text')
- Consideration: Needed careful setting of max_length for sequence padding.

Dataset 2: WELFake News Dataset

- Number of Articles: 72,134 (35,028 real and 37,106 fake)
- Columns: Serial number, Title, Text, Label (0 = fake, 1 = real).
- Source: A merger of four popular news datasets (Kaggle, McIntire, Reuters, BuzzFeed Political) to enhance diversity and prevent over-fitting.
- Utilization: Provides extensive text data for effective machine learning model training.

Models and Methodology

- We applied a multifaceted approach, employing both traditional machine learning and advanced deep learning models: BERT, RoBERTa, GPT-2 for nuanced text analysis, PCA with pycaret for dimensionality reduction, and LSTM for sequence modeling.
- This diversified methodology allows us to not only classify content accurately but also understand the semantic underpinnings of fake vs. real news.

Preliminary Results

- ➤ Our LSTM model excelled in categorizing news types within both Dataset 1 & 2, achieving an accuracy rate of ~95%
- ➤ For fake news detection, BERT and RoBERTa models performed impressively on Dataset 2, with accuracies of 89.78% and 95.6%, respectively.
- ➤ GPT-2 achieved an impressive F1-score of 87% on Dataset 1.
- Machine Learning classifiers with 3-component PCA achieved 90.1% and 91.4% respectively for Dataset1 and Dataset2.

Machine Learning

Model	Accuracy	AUC	Recall	Prec.	F1
Extra Trees Classifier	0.8818	0.9549	0.8714	0.8796	0.8754
Random Forest Classifier	8088.0	0.9502	0.8686	0.8798	0.8741
Light Gradient Boosting Machine	0.8701	0.9462	0.8687	0.8602	0.8644
Gradient Boosting Classifier	0.8675	0.9447	0.8731	0.8525	0.8626
Ada Boost Classifier	0.8604	0.9394	0.8523	0.8544	0.8533
Quadratic Discriminant Analysis	0.8603	0.9379	0.8706	0.8417	0.8559
Ridge Classifier	0.8598	0.0000	0.8668	0.8434	0.8549
Linear Discriminant Analysis	0.8598	0.9383	0.8670	0.8434	0.8550
Naive Bayes	0.8597	0.9387	0.8714	0.8402	0.8555
Logistic Regression	0.8590	0.9384	0.8558	0.8496	0.8526
SVM - Linear Kernel	0.8585	0.0000	0.8762	0.8355	0.8550
K Neighbors Classifier	0.8543	0.9218	0.8473	0.8471	0.8471
Decision Tree Classifier	0.8424	0.8416	0.8232	0.8426	0.8327
Dummy Classifier	0.5235	0.5000	0.0000	0.0000	0.0000

Fig 1: On Dataset 1

GPT-2

	precision	recall	f1-score	support
Fake	0.89	0.90	0.89	4524
True	0.89	0.88	0.89	4289
accuracy			0.88	8813
macro avg	0.90	0.91	0.88	8813
weighted avg	0.90	0.89		8813

	precision	recall	f1-score	support
Fake	0.99	0.98	0.98	224
True	0.98	0.99	0.98	209
accuracy			0.98	433
macro avg	0.98	0.98	0.98	433
weighted avg	0.98	0.98	0.98	433

Fig 2: On Dataset 1

Fig 3: On Dataset 2

LSTM

276/276	25s 89ms/step				
	precision	recall	f1-score	support	
Fake	0.99	0.99	0.99	4524	
True	0.99	0.99	0.99	4289	
accuracy			0.99	8813	
macro avg	0.99	0.99	0.99	8813	
weighted avg	0.99	0.99	0.99	8813	

Fig 4: On Dataset 1

451/451	53s 116ms/step				
	precision	recall	f1-score	support	
Fake	0.93	0.97	0.95	7089	
True	0.97	0.93	0.95	7338	
accuracy			0.95	14427	
macro avg	0.95	0.95	0.95	14427	
weighted avg	0.95	0.95	0.95	14427	

Fig 5: On Dataset 2

BERT

	precision	recall	f1-score	support
0	0.86	0.91	0.89	3213
1	0.92	0.87	0.89	3522
accuracy			0.89	6735
macro avg	0.89	0.89	0.89	6735
weighted avg	0.89	0.89	0.89	6735

Fig	<i>6:</i>	On	Dataset	1
-----	-----------	----	---------	---

	precision	recall	f1-score	support
0	0.99	0.99	0.99	7006
1	0.99	0.99	0.99	7302
accuracy			0.99	14308
macro avg	0.99	0.99	0.99	14308
weighted avg	0.99	0.99	0.99	14308

Fig 7: On Dataset 2

RoBERTa

Accuracy: 0.9992204899777283

Precision: 0.9991550485847064

Recall: 0.999366152545954

F1 Score: 0.9992605894158656

Fig 8: On Dataset 1

```
Epoch 1/3 completed.
Epoch 2/3 completed.
Epoch 3/3 completed.
```

Accuracy: 0.9556192339949678, Precision: 0.9592991169977925, Recall: 0.9533799533799534, F1 Score: 0.9563303761777044

Challenges Encountered and Our Solutions

- We faced challenges related to data bias and computational resources. To mitigate these, we implemented rigorous data preprocessing and augmentation techniques and leveraged cloud computing platforms for efficient model training.
- Overfitting, especially in complex models like BERT, was addressed through regularization strategies and cross-validation, enhancing model robustness.

Future Directions

- Going forward, we plan to expand our dataset collection to include multilingual news sources, improving our model's global applicability.
- We're also exploring the integration of more nuanced semantic analysis techniques and increasing the computational efficiency of our model training processes.
- Our ultimate aim is to develop a real-time fake news detection tool that can be deployed across various media platforms.

Welcoming Questions!

