12 Two equal masses X and Y are moving towards each other on a frictionless air track as shown. The masses make an elastic collision.

Which row gives possible velocities for the two masses after the collision?

	velocity of X	velocity of Y
Α	zero	20 cm s ⁻¹ to the right
В	10 cm s ⁻¹ to the right	10 cm s ⁻¹ to the right
С	20 cm s ⁻¹ to the left	zero
D	30 cm s ⁻¹ to the left	50 cm s ⁻¹ to the right

- 13 Which statement is correct with reference to perfectly elastic collisions between two bodies?
 - A Neither total momentum nor total kinetic energy need be conserved but total energy must be conserved.
 - **B** Total momentum and total energy are conserved but total kinetic energy may be changed into some other form of energy.
 - **C** Total kinetic energy and total energy are both conserved but total momentum is conserved only if the two bodies have equal masses.
 - **D** Total momentum, total kinetic energy and total energy are all conserved.
- **14** Which statement best describes a couple?
 - A a pair of forces of equal magnitude acting in opposite directions which produce rotational motion but not translational motion
 - **B** a pair of forces of equal magnitude acting in opposite directions which produce translational motion but not rotational motion
 - **C** a pair of forces of equal magnitude acting in the same direction which produce rotational motion but not translational motion
 - **D** a pair of forces of equal magnitude acting in the same direction which produce translational motion but not rotational motion