$^{35}\text{Al}\,\beta^-$ decay (38.1 ms) 2005Ti11,2001Nu01

Parent: 35 Al: E=0; J^{π}=(5/2)⁺; T_{1/2}=38.1 ms 4; Q(β ⁻)=14170 40; % β ⁻ decay=100.0 35 Al-J $^{\pi}$,T_{1/2}: From Adopted Levels of 35 Al. 35 Al-Q(β ⁻): From 2012Wa38.

2005Ti11,2006AnZW: A 35 Al secondary beam at ≈ 2 pps was produced via the fragmentation of a 78-MeV/nucleon 36 S primary beam and selected by the LISE3 spectrometer at GANIL. A total of 3.46×10^5 35 Al ions were continuously implanted into an NE102A plastic scintillator also for detecting β. The implantation detector was sandwiched between two silicon detectors for monitoring beam and for veto, respectively. Neutrons were detected using the TONNERRE array consisting of 19 plastic scintillator modules (2000Bu33). γ rays were detected using two EXOGAM clover modules and a LEPS detector. Measured E γ , I γ , E $_n$, I $_n$, $\beta\gamma$ -coin, βn -coin, and $\beta n\gamma$ -coin. Deduced the decay scheme consisting of 35 Si and 34 Si levels, 35 Al T $_{1/2}$, decay branching ratios, log ft, B(GT), and β -delayed neutron emission probability. Comparisons with shell-model calculations.

2001Nu01,2002Nu02: Exp 1: A ³⁵Al secondary beam at 8 pps was produced via the fragmentation of a UC target with 1.4 GeV protons at ISOLDE, CERN with subsequent surface-ionization and mass separation. ³⁵Al ions were collected onto a moving tape. β particles were detected using a thin cylindrical plastic scintillator, γ rays were detected using two Ge detectors, and neutrons were detected using eight low-threshold plastic scintillators. Measured Eγ, Iγ, E_n, I_n, βγ-coin, γγ-coin, βn-coin, and βnγ-coin. Deduced the decay scheme consisting of ³⁵Si and ³⁴Si levels, ³⁵Al T_{1/2}, decay branching ratios, log ft, and β-delayed neutron emission probability. Comparisons with shell-model calculations. Exp 2: A lifetime measurement for the 974-keV level in ³⁵Si used a thin plastic scintillator for detecting β and a BaF₂ detector for detecting γ.

Other experimental studies on 35 Al identification, $T_{1/2}$, and β -delayed neutron emission probability: 2017Ha23, 1999YoZW, 1995ReZZ/2008ReZZ, 1989MuZU, 1989Le16, 1988MuZY, 1988Mu08, 1988DuZT, 1988BaYZ, 1987DuZU, 1987BaZI. Theoretical studies involving 35 Al decay: 2018Yo06, 2013Li39. 35 Al also decays to 34 Si by β ⁻n (38% 2) (2005Ti11).

35Si Levels

$J^{\pi \#}$	$T_{1/2}$	Comments
(7/2) ⁻ (3/2) ⁻ (3/2 ⁺) 5/2 ⁺	5.9 ns 6	$T_{1/2}$: From the time spectrum of delayed coincidences in 2001Nu01.
	$(7/2)^{-}$ $(3/2)^{-}$ $(3/2^{+})$	$(7/2)^ (3/2)^ (3/2^+)$ 5.9 ns 6

[†] From a least-squares fit to γ -ray energies if applicable.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft
$(6.48 \times 10^3 \ 4)$	7690	2.7‡ 2	4.47 5
$(6.81 \times 10^3 \ 4)$	7360	2.6 [‡] 2	4.59 5
$(7.84 \times 10^3 \ 4)$	6330	6.8 [‡] 3	4.46 3
$(8.41 \times 10^3 4)$	5760	4.5 [‡] 2	4.78 3

[‡] From measured delayed neutron spectrum in 2005Ti11.

[#] From Adopted Levels.

³⁵Al β⁻ decay (38.1 ms) 2005Ti11,2001Nu01 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(8.98 \times 10^3 \ 4)$	5190	8.9 [‡] <i>3</i>	4.62 3	
$(1.040 \times 10^4 4)$	3770	3.2‡ 2	5.37 4	
$(1.072 \times 10^4 4)$	3450	6.0 [‡] 3	5.16 <i>3</i>	
$(1.103 \times 10^4 4)$	3140	3.3‡ 2	5.48 <i>4</i>	
$(1.200 \times 10^4 \ 4)$	2168.2	16.1 23	5.2 1	Iβ ⁻ : From 2001Nu01. Other: 6.7 9 in 2005Ti11 (only 2168 $γ$ transition is observed).
$(1.320 \times 10^4 4)$	973.88	87.1 26	4.67 <i>3</i>	$I\beta^-$: weighted average of 48 9 in 2001Nu01 and 50 3 in 2005Ti11.
$(1.417 \times 10^4 4)$	0	3.0 [#] 1	6.04 2	

[†] From absolute measurements in 2001Nu01 and/or 2005Ti11 using absolute γ -ray intensities for levels below neutron separation energy and using delayed neutron intensities for levels above.

 $\gamma(^{35}Si)$

Iy normalization: From 2001Nu01.

$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger \ddagger}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	<u>α</u> #	Comments
64.1 3	100	973.88	(3/2+)	909.95	(3/2)	[E1]	0.0368 8	%Iγ=79 B(E1)(W.u.)=3.5×10 ⁻⁴ 4 (2001Nu01).
910.11 <i>30</i>	99.7 19	909.95	$(3/2)^{-}$	0	$(7/2)^{-}$			$\%I\gamma = 78.8 \ 24$
973.78 20	11.8 24	973.88	$(3/2^+)$	0	$(7/2)^{-}$	[M2]		%İy=9.3 18 B(M2)(W.u.)=0.061 7 (2001Nu01).
x1130.4 4	3.2 9							$\%I\gamma = 2.5 \ 8$
1194.2 <i>4</i>	5.3 12	2168.2	$5/2^{+}$	973.88	$(3/2^+)$			$\%I\gamma = 4.2 \ 11$
2168.2 <i>6</i> x5629 <i>3</i>	15 <i>3</i> 2.4 <i>12</i>	2168.2	5/2+	0	(7/2)			$\%I\gamma = 11.9 \ 2I$ $\%I\gamma = 1.9 \ + II - I0$

[†] From 2001Nu01.

[‡] From 2005Ti11 only.

[#] From 2001Nu01 only.

[@] Absolute intensity per 100 decays.

[‡] For absolute intensity per 100 decays, multiply by 0.791 27.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{^{}x}$ γ ray not placed in level scheme.

$^{35}{\rm Al}\,\beta^-$ decay (38.1 ms) 2005Ti11,2001Nu01

Decay Scheme

