SET OPERATIONS AND AGGEREGATE FUNCTIONS

AIM

To perform various set operations, aggregate functions, group by and having clause on the relational database.

CREATE TABLE

```
SQL> CREATE TABLE student2 (
     SID VARCHAR(10),
 3
     SNAME VARCHAR(20),
 4
     SCITY VARCHAR(20)
 5);
Table created.
SQL> CREATE TABLE student3 (
     SID VARCHAR(10),
2
 3
     SNAME VARCHAR(20),
4
     SCITY VARCHAR(20)
 5);
Table created.
SQL> CREATE TABLE employee1 (
 2
     emp id VARCHAR(10),
 3
     emp_name VARCHAR(20),
 4
     emp salary NUMBER(10)
 5);
Table created.
SQL> -- student2 values
SQL> INSERT INTO student2 (SID, SNAME, SCITY) VALUES ('cse11', 'divya',
'coimbatore');
1 row created.
SQL> INSERT INTO student2 (SID, SNAME, SCITY) VALUES ('it11', 'karthik', 'madurai');
```

```
1 row created.
```

SQL> INSERT INTO student2 (SID, SNAME, SCITY) VALUES ('ece11', 'priya', 'trichy');

1 row created.

SQL> INSERT INTO student2 (SID, SNAME, SCITY) VALUES ('eee11', 'vishnu', 'vellore');

1 row created.

SQL> INSERT INTO student2 (SID, SNAME, SCITY) VALUES ('cse12', 'sanjay', 'salem');

1 row created.

SQL> -- student3 values

SQL> INSERT INTO student3 (SID, SNAME, SCITY) VALUES ('cs11', 'meera', 'karur');

1 row created.

SQL> INSERT INTO student3 (SID, SNAME, SCITY) VALUES ('it12', 'ram', 'erode');

1 row created.

SQL> INSERT INTO student3 (SID, SNAME, SCITY) VALUES ('ece12', 'lakshmi', 'chennai');

1 row created.

SQL> INSERT INTO student3 (SID, SNAME, SCITY) VALUES ('eee11', 'vishnu', 'vellore');

1 row created.

SQL> INSERT INTO student3 (SID, SNAME, SCITY) VALUES ('eie11', 'anita', 'cuddalore');

1 row created.

SQL> INSERT INTO student3 (SID, SNAME, SCITY) VALUES ('cse11', 'divya', 'coimbatore');

1 row created.

SQL> INSERT INTO student3 (SID, SNAME, SCITY) VALUES ('it11', 'karthik', 'madurai');

1 row created.

SQL> INSERT INTO student3 (SID, SNAME, SCITY) VALUES ('eee12', 'swetha', 'salem');

1 row created.

SQL> COMMIT;

Commit complete.

UNION KEYWORD

SQL> SELECT * FROM student2

2 UNION

3 SELECT * FROM student3;

SID SNAME SCITY

csell divya coimbatore

it11 karthik madurai

ecell priya trichy

eee11 vishnu vellore

cse12 sanjay salem

cs11 meera karur

it12 ram erode

ece12 lakshmi chennai

eie11 anita cuddalore

eee12 swetha salem

10 rows selected.

UNION ALL KEYWORD

SQL> SELECT * FROM student2

2 UNION ALL

3 SELECT * FROM student3;

SID	SNAME	SCITY
cse11	divya	coimbatore
it11	karthik	madurai

ece11 priya trichy

eee11	vishnu	vellore
cse12	sanjay	salem
cs11	meera	karur
it12	ram	erode
ece12	lakshmi	chennai
eee11	vishnu	vellore
eie11	anita	cuddalore
cse11	divya	coimbatore
SID	SNAME	SCITY
it11	karthik	madurai

13 rows selected.

INTERSECT KEYWORD

eee12 swetha salem

SQL> SELECT * FROM student2

2 INTERSECT

3 SELECT * FROM student3;

SID	SNAME	SCITY	
cse11	divya	coimbatore	
it11	karthik	madurai	
eee11	vishnu	vellore	

MINUS KEYWORD

SQL> SELECT * FROM student2

2 MINUS

3 SELECT * FROM student3;

SID SNAME SCITY

ece11 priya trichy

cse12 sanjay salem

AGGREGATE FUNCTIONS

SQL> -- Insert employee data

SQL> INSERT INTO employee1 (emp_id, emp_name, emp_salary) VALUES ('E001', 'Arun', 50000);

1 row created.

SQL> INSERT INTO employee1 (emp_id, emp_name, emp_salary) VALUES ('E002', 'Divya', 60000);

1 row created.

SQL> INSERT INTO employee1 (emp_id, emp_name, emp_salary) VALUES ('E003', 'Ravi', 45000);

1 row created.

SQL> INSERT INTO employee1 (emp_id, emp_name, emp_salary) VALUES ('E004', 'Swetha', 70000);

1 row created.

SQL> INSERT INTO employee1 (emp_id, emp_name, emp_salary) VALUES ('E005', 'Karthik', 55000);

1 row created.

SQL> INSERT INTO employee1 (emp_id, emp_name, emp_salary) VALUES ('E006', 'Meera', 65000);

1 row created.

SQL> COMMIT;

Commit complete.

MAX

SQL> SELECT MAX(emp salary) AS Maximum Salary FROM employee1;

```
MAXIMUM_SALARY
    70000
MIN
SQL> SELECT MIN(emp salary) AS Minimum Salary FROM employee1;
MINIMUM SALARY
    45000
AVG
SQL> SELECT AVG(emp salary) AS Average Salary FROM employee1;
AVERAGE SALARY
    57500
SUM
SQL> SELECT SUM(emp_salary) AS Total_Salary FROM employee1;
TOTAL SALARY
-----
  345000
COUNT
SQL> SELECT COUNT(*) AS Total Employees FROM employee1;
TOTAL_EMPLOYEES
      6
SECOND MAXIMUM SALARY
SQL> SELECT MAX(emp_salary)
2 FROM employee1
 3 WHERE emp_salary NOT IN (SELECT MAX(emp_salary) FROM employee1);
```

```
MAX(EMP_SALARY)
-----
65000
```

SECOND MINIMUM SALARY

SQL> SELECT MIN(emp salary)

- 2 FROM employee1
- 3 WHERE emp salary NOT IN (SELECT MIN(emp salary) FROM employee1);

MIN(EMP_SALARY)

50000

AGGREGATE FUNCTIONS WITH GROUPBY AND HAVING:

SQL> CREATE TABLE employee1(

- 2 EMP ID VARCHAR2(10),
- 3 EMP NAME VARCHAR2(20),
- 4 EMP_SALARY NUMBER(10),
- 5 DEPARTMENT ID VARCHAR2(10),
- 6 DEPARTMENT NAME VARCHAR2(20)

7);

Table created.

SQL> INSERT INTO employee1 (EMP_ID, EMP_NAME, EMP_SALARY, DEPARTMENT_ID, DEPARTMENT_NAME)

2 VALUES ('E001', 'Arun', 50000, 'D001', 'HR');

1 row created.

SQL> INSERT INTO employee1 (EMP_ID, EMP_NAME, EMP_SALARY, DEPARTMENT_ID, DEPARTMENT_NAME)

2 VALUES ('E002', 'Divya', 60000, 'D002', 'Finance');

1 row created.

SQL> INSERT INTO employee1 (EMP_ID, EMP_NAME, EMP_SALARY, DEPARTMENT ID, DEPARTMENT NAME)

2 VALUES ('E003', 'Ravi', 45000, 'D001', 'HR');

1 row created.

SQL> INSERT INTO employee1 (EMP_ID, EMP_NAME, EMP_SALARY, DEPARTMENT ID, DEPARTMENT NAME)

2 VALUES ('E004', 'Swetha', 70000, 'D003', 'IT');

1 row created.

SQL> INSERT INTO employee1 (EMP_ID, EMP_NAME, EMP_SALARY, DEPARTMENT ID, DEPARTMENT NAME)

2 VALUES ('E005', 'Karthik', 55000, 'D002', 'Finance');

1 row created.

SQL> INSERT INTO employee1 (EMP_ID, EMP_NAME, EMP_SALARY, DEPARTMENT_ID, DEPARTMENT_NAME)

2 VALUES ('E006', 'Meera', 65000, 'D003', 'IT');

1 row created.

SQL> select * from employee1;

EMP_ID EMP_NAME EMP_SALARY DEPARTMENT_DEPARTMENT_NAME

E001	Arun	50000 D001	HR
E002	Divya	60000 D002	Finance
E003	Ravi	45000 D001	HR
E004	Swetha	70000 D003	IT
E005	Karthik	55000 D002	Finance
E006	Meera	65000 D003	IT

6 rows selected.

GROUP BY

AVERAGE SALARY OF EACH DEPARTMENT

SQL> SELECT DEPARTMENT_NAME, AVG(EMP_SALARY) AS AVERAGE_SALARY

2 FROM employee1

3 GROUP BY DEPARTMENT_NAME;

HR 47500

Finance 57500

IT 67500

SQL> -- Only those departments where avg salary > 43000

SQL> SELECT DEPARTMENT NAME, AVG(EMP SALARY) AS AVG SAL

- 2 FROM employee1
- 3 GROUP BY DEPARTMENT NAME
- 4 HAVING AVG(EMP_SALARY) > 43000;

DEPARTMENT_NAME AVG_SAL

HR 47500

Finance 57500

IT 67500

DISTINCT

SQL> select distinct DEPARTMENT NAME from employee1;

DEPARTMENT NAME

HR

Finance

IT

TO FIND THE EMPLOYEES WHO EARN SALARY HIGHER THAN THE AVG SALARY OF THEIR CITY

SQL> SELECT name

- 2 FROM employee1
- 3 WHERE salary > ALL (

4 SELECT AVG(salary)
5 FROM employee1 e
6 WHERE e.address = employee1.address
7);
NAME
Swati
Raju
TO FIND THE NAME OF THE DEDCONG WHO HAVE HIGHED
TO FIND THE NAME OF THE PERSONS WHO HAVE HIGHER
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT
_
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT SQL> SELECT name
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT SQL> SELECT name 2 FROM employee1 e
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT SQL> SELECT name 2 FROM employee1 e 3 WHERE salary > ALL (
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT SQL> SELECT name 2 FROM employee1 e 3 WHERE salary > ALL (4 SELECT AVG(salary)
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT SQL> SELECT name 2 FROM employee1 e 3 WHERE salary > ALL (4 SELECT AVG(salary) 5 FROM employee1
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT SQL> SELECT name 2 FROM employee1 e 3 WHERE salary > ALL (4 SELECT AVG(salary) 5 FROM employee1 6 WHERE dept = e.dept
SALARY THAN THE AVERAGE SALARY OF THEIR DEPARTMENT SQL> SELECT name 2 FROM employee1 e 3 WHERE salary > ALL (4 SELECT AVG(salary) 5 FROM employee1 6 WHERE dept = e.dept

Swati

Raju

CONTENTS	MARKS ALLOTED	MARKS OBTAINED
Aim,Algorithm,SQL,PL/SQL	30	
Execution and Result	20	
Viva	10	
Total	60	

RESULT

Thus various set opertions, aggregate functions, group by and having clause opertions are performed on the relational database.