Scilab Textbook Companion for Heat And Mass Transfer by E. R. G. Eckert And R. M. Drake¹

Created by
Abhishek Sharma
B tech
Chemical Engineering
IIT BHU
College Teacher
Mrs Bhawna Verma
Cross-Checked by

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Heat And Mass Transfer

Author: E. R. G. Eckert And R. M. Drake

Publisher: McGraw Hill Book Company

Edition: 2

Year: 1957

ISBN: 978-0070189249

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Introduction	5
3	Steady heat conduction	9
4	Unsteady heat conduction	16
6	Flow along surfaces and its channels	22
7	Forced convection in laminar flow	24
8	Forced convection in turbulent flow	26
10	Special heat transfer processes	30
11	Free convection	32
12	Condensation and evaporation	34
14	Heat exchange by radiation	36
16	Mass transfer	41

List of Scilab Codes

Exa 1.1	Thermal resistance
Exa 1.2	Overall heat transfer coefficient
Exa 1.3	Heat exchanger
Exa 3.1	Heat exchanger
Exa 3.2	Finned heated surfaces
Exa 3.3	Rectangular fins
Exa 3.4	Minimum width fins
Exa 3.5	Wall with heat sources
Exa 3.6	2D steady state conduction
Exa 4.1	Unsteady state conduction
Exa 4.2	Lag of thermometer
Exa 4.3	Infinite flat plate
Exa 4.4	Semi infinite solid
Exa 4.5	Periodic heat conduction
Exa 4.6	Semi infinite solid
Exa 4.7	depth of penetration
Exa 6.1	Laminar flow
Exa 6.2	turbulent boundary layer
Exa 7.1	Plate in longitudinal flow
Exa 8.1	Analogy between momentum and heat
Exa 8.2	Flow in a tube
Exa 8.3	plane plate in longitudinal flow
Exa 10.1	Dimensional analysis
Exa 11.1	Laminar heat transfer
Exa 12.1	Film coefficient
Exa 12.2	Vertical wall
Exa 14.1	Radiation between two walls
Exa 14.2	Radiation of flames

Exa 14.3	Heat transfer coefficient for radiation	38
Exa 16.1	Diffusion	41
Exa 16.2	Evaporation rate	42
Exa 16.3	Evaporation of water into air	43

Introduction

Scilab code Exa 1.1 Thermal resistance

```
1 clc();
2 clear;
4 // To calculate the overall thermal resistance and
     overall heat transfer coefficient
6 b = 0.5/12;
                                          Thickness of
     iron wall in ft
                                       // Thermal
7 k = 30;
     conductivity in Btu/hr-ft
                                       // Heat transfer
  h1 = 2;
      coefficient in Btu/hr-ft
9 h2 = 2;
                                       // Heat transfer
      coefficient in Btu/hr-ft
10 R = (1/h1)+(1/h2)+(b/k);
                                       // Overall
     thermal resistance * Area in hr-F/Btu ie. (R/A)
11 U = 1/R;
                                       // Overall heat
     transfer coeficient in Btu/hr-ft^2-F
12
13 printf("The overall thermal resistance is %.4f/A hr-
     F/Btu/A, where A is the area of wall n, R);
```

```
14 printf(" The overall heat transfer coefficient is %d Btu/hr-ft^2-F", round(U));
```

Scilab code Exa 1.2 Overall heat transfer coefficient

```
1 clc();
2 clear;
4 // To calculate the thermal resistance
                                            Thickness of
6 b1 = 0.5/12;
     iron wall in ft
7 b2 = 0.0005/12;
                                             Thickness of
      air gap in ft
8 b3 = 1/12;
                                            Thickness of
      aluminium wall in ft
9 k1 = 30;
                                            Thermal
      conductivity in Btu/hr-ft^2-F
10 \text{ k2} = 0.015;
                                            Thermal
      conductivity in Btu/hr-ft^2-F
                                            Thermal
11 k3 = 118;
      conductivity in Btu/hr-ft^2-F
12 R = (b1/k1)+(b2/k2)+(b3/k3);
                                         // Thermal
      resistance * Area
13
14 printf ("The overall thermal resistance of composite
      wall is %f/A hr-F/Btu, A being the area of wall
      in ft^2, R);
```

Scilab code Exa 1.3 Heat exchanger

```
1 clc();
2 clear;
```

```
4 // To calculate the size of heating surface
6 \text{ m1} = 100;
                                              // Flow rate of
       water in lb/hr
7 \text{ ta1} = 50;
                                               // Initial
      temperature of water in F
8 \text{ ta2} = 170;
                                               // Final
      temperature of water
                                               // Heat
9 \text{ Cp1} = 1;
      capacity of water in Btu/lb-F
10 \text{ te1} = 330;
                                               // Initial
      temperatutre in flue gases in F
                                               // Mass flow
11 m2 = 400;
      rate of flue gases in lb/hr
                                               // Heat
12 \text{ Cp2} = .25;
      capacity of flue gases in Btu/lb-F
13 q = m1*Cp1*(ta2-ta1);
                                                 Heat
      absorbed by water in Btu
14 te2 = te1-q/(m2*Cp2);
                                               // Final
      temperature of flue gases in F
15 U = 20;
                                               // Overall heat
       transfer in Btu/hr-ft^2-F
16
17 // For parallel flow
18 delte = te1-ta1;
                                               // Flue
      tempearture difference in F
19 \text{ delta} = \text{te2-ta2};
                                               // Water
      temperature difference in F
20
21 // Seeing the value of delte/delta=7, we can attain
      the value of a
22 	 a1 = 0.77;
23 \text{ deltm} = (\text{delte} + \text{delta})/2;
                                               // Arithmetic
      mean in F
24 \text{ LMTD1} = a1*deltm;
                                                // Log mean
      temperature diffference
25 \quad A1 = q/(U*LMTD1);
                                               // Area in ft<sup>2</sup>
```

```
26 printf ("The area of heat exchanger for parallel flow
       is \%.2 f ft<sup>2</sup> \n ",A1);
27
28 // for counterflow
29 delte = te1-te2;
                                               // Flue
      tempearture difference in F
                                               // Water
30 \text{ delta} = \text{tal-ta2};
      temperature difference in F
31
32 // Seeing the value of delte/dela=1, a=1.
33 \ a2 = 1;
34 \text{ LMTD2} = a2*deltm;
                                                 // Log mean
      temperature diffference
35 \quad A2 = q/(U*LMTD2);
                                                 // Area in ft
      ^2
  printf("The area of heat exchanger for counterflow
      flow is \%.2 \, f ft<sup>2</sup> \n ",A2);
37
38 // For cross flow
                                               // Flue
39 delte = te1-ta1;
      tempearture difference in F
                                               // Water
40 delta = te2-ta2;
      temperature difference in F
41
42 // Seeing the value of delta/delte=0.143, we can
      attain the value of a=0.939
43 \quad a3 = 0.939;
44 \text{ deltm} = (\text{delte} + \text{delta})/2;
                                              // Arithmetic
      mean in F
45 \text{ LMTD3} = a3*deltm;
                                               // Log mean
      temperature diffference
                                              // Area in ft<sup>2</sup>
46 \quad A3 = q/(U*LMTD3);
47 printf ("The area of heat exchanger for cross flow is
       \%.2 f ft^2 n ,A3);
```

Steady heat conduction

Scilab code Exa 3.1 Heat exchanger

```
1 clc();
2 clear;
4 // To calculate the length of the well
                                         // diameter of
6 d = 0.06/12;
     the thermometer in ft
7 h = 18.5;
                                         // heat teansfer
       coefficient in Btu/hr-ft^2-F
8 k = 32;
                                         // Thermal
      conductivity in Btu/hr-ft^2-F
9 s = 0.036/12;
                                         // thickness of
      wall in ft
10 m = sqrt(h/(k*s));
                                         // parameter
11
12 // Error is less than 0.05\% of the dfference between
      the gas temperature and the tube well
      temperature. Hence a=m∗l
13
                                         // a=m∗1
14 \ a = 6;
                                         // Length of
15 \quad 1 = a/m;
```

```
well in ft
16 printf("The length of well is %.2f ft",1)
```

Scilab code Exa 3.2 Finned heated surfaces

```
1 clc();
2 clear;
4 // To determine the effectiveness of iron fins of
     0.14 inch thickness
5 // For heat transfer to air
                              // Thickness of iron fins
6 b = 0.12/12;
     in ft
7 k = 33;
                              // Mean thermal
     conductivity of iron in Btu/hr-ft^2
  Hamin = 2;
                              // Minimum heat ransfer
      coefficient with air in Btu/hr-ft^2-F
9 \text{ Hamax} = 20;
                              // Minimum heat ransfer
      coefficient with air in Btu/hr-ft^2-F
10 // Inserting the higher value of heat transfer
     coefficient
11 m1 = 2*k/(Hamax*b);
                             // Characteristic value
12 // haracteristic value is quite high
13 printf ("Since m = \%d, hence the heat transfer from
     iron fins to air is advantageous \n",m1);
14
15 // For heat transfer to water
16
17 \text{ Hwmin} = 100;
                                // Minimum heat ransfer
      coefficient with air in Btu/hr-ft^2-F
18 \text{ Hwmax} = 1000;
                                // Minimum heat ransfer
      coefficient with air in Btu/hr-ft^2-F
19 // Inserting the higher value of heat transfer
      coefficient
20 m2 = 2*k/(Hwmax*b);
                       // Characteristic value
```

Scilab code Exa 3.3 Rectangular fins

```
1 clc();
2 clear;
4 // To study the effect of adding fins to the
      cylindrical barrel of an air cooled engine
6 11 = 3/12;
                                            // Length of
      fins in ft
7 12 = 4/12;
8 h = 50;
                                           // Heat transfer
       coefficient in Btu/hr-ft-F
                                           // Thermal
9 k = 28;
     conductivity in Btu/hr-ft-F
                                           // Cylinder wall
10 \text{ T1} = 250;
       temperature in F
11 T2 = 70;
                                           // Air
      temperature in F
12 \text{ th} = T1-T2;
                                           // Temperature
      difference
                                           // Thickness of
13 b = 0.09/12;
      fins in ft
14 \text{ m} = 2*h/(b*k);
                                           //
      Characteristic parameter
15 // Seeing the value of length and m, yhe bessel
      functions can be found out
16
17 I2 = 188/7.26;
                                             // Magnitudes
      of bessel functions
18 \quad I0 = 41.0/5.45;
```

```
19 I1 = 37.2/5.45;
20 \text{ K2} = 0.0;
21 \text{ KO} = 0.0022/5.45;
22 \text{ K1} = 0.0024/5.45;
23
24 	ext{ q1} = 2*\%pi*0.27*k*sqrt(m)*th*(I2*12*m*K1*11-K2*12*m*
      I1*11)/(144*(I2*12*sqrt(m)*K0*11*sqrt(m)+K2*12*
      sqrt(m)*I0*l1*sqrt(m)));
25 // Heat loss by finned surface
26 	 q2 = 0.27/144*2*\%pi*3*h*th;
                                            // heat loss
      from barred surface
27
28 printf ("the heat loss from the cylindrical barrel in
       presence of fins is %d Btu/hr \n ",q1);
29 printf ("the heat loss from the bare cylindrical
      barrel is %d Btu/hr \n ",q2)
```

Scilab code Exa 3.4 Minimum width fins

```
1 clc();
2 clear;
4 // To study the effect of adding fins to the
      cylindrical barrel of an air cooled engine
                                           // Length of
6 11 = 3/12;
      fins in ft
7 12 = 4/12;
8 h = 50;
                                          // Heat transfer
       coefficient in Btu/hr-ft-F
9 k = 28;
                                          // Thermal
     conductivity in Btu/hr-ft-F
                                          // Cylinder wall
10 \text{ T1} = 250;
       temperature in F
11 T2 = 70;
                                          // Air
```

```
temperature in F
12 \text{ th} = T1-T2;
                                           // Temperature
      difference
                                           // Thickness of
13 b = 0.09/12;
      fins in ft
14 \text{ m} = 2*h/(b*k);
      Characteristic parameter
15 // Seeing the value of length and m, yhe bessel
      functions can be found out
16
17 I2 = 188/7.26;
                                              // Magnitudes
      of bessel functions
18 \quad I0 = 41.0/5.45;
19 I1 = 37.2/5.45;
20 \text{ K2} = 0.0;
21 \text{ KO} = 0.0022/5.45;
22 \text{ K1} = 0.0024/5.45;
23
24 	ext{ q1} = 2*\%pi*0.27*k*sqrt(m)*th*(I2*12*m*K1*11-K2*12*m*
      I1*11)/(144*(I2*12*sqrt(m)*K0*11*sqrt(m)+K2*12*
      sqrt(m)*I0*l1*sqrt(m)));
25 // Heat loss by finned surface
26 	 q2 = 0.27/144*2*\%pi*3*h*th;
                                            // heat loss
      from barred surface
27
28 printf ("the heat loss from the cylindrical barrel in
       presence of fins is \%d Btu/hr \n ",q1);
29 printf ("the heat loss from the bare cylindrical
      barrel is %d Btu/hr \n ",q2)
```

Scilab code Exa 3.5 Wall with heat sources

```
1 clc;
2 clear;
3
```

```
4 // To find the tempearure difference in the plane
      wall with heat sources
5 d1 = 0.55;
                                        // Inside diameter
      of copper wire
6 d2 = 0.8;
                                        // Outside
      diameter of copper wire
7 \text{ phi} = 0.6;
                                        // Fraction of
      copper in wire
                                           Current density
8 i = 1300;
      in conductors in amp/in^2
9 p = 9.5*10^{(-6)};
                                        // Specific
     resistance in ohm-in^2/ft
10 h = 4;
                                        // Heat transfer
      coefficient on both sides ofcoil
                                        // Thermal
11 k = 0.2;
      conductivity of coil in Btu/hr-ft-F
12 \text{ TO} = 70;
                                        // Temperature of
      air in degF
13 // Considering it as a plane wall with a thickness
      of 0.25 ft
14 b = 0.125;
                                        // half the
      thickness of wall in ft
15 \quad 1 = 0.0625;
                                        // Distance
      between the two walls
16 q = j*j*p*phi*144*3.412;
                                        // Generation of
      heat in Btu/hr-ft-F
17 th0 = (4730*1*1/(2*k))+(4730*1/h);
      Teperature difference in F
  t0 = T0 + th0;
                                        // Temperature at
      the center in F
19
20 printf ("The temperature at the centre of the pool is
      \%.1 f \operatorname{degF} \n",t0);
```

Scilab code Exa 3.6 2D steady state conduction

```
1 clc();
2 clear;
4 // To determine the shape factor for the heat flow
      through a square duct whose surface temperatures
      are constant
5
6 // Since the duct is symmetrical. Only one of the
      corners is to be considered
7 \text{ Nc} = 20;
                                 // Number of heat flow
      lanes
  Nr = 7;
                                 // Number of temperature
      increments
9 S = Nc/Nr;
                                 // Shape factor
10 printf("The Shape factor for heat flow through
      square duct is \%.2 f \n ",S);
11 printf("And the heat transfer through conduction is
     \%.2 \text{ f } \text{ kL}(t1-t2)",S);
```

Unsteady heat conduction

Scilab code Exa 4.1 Unsteady state conduction

```
1 clc();
2 clear;
4 // To measure an unsteady state temperature with a
      thermometer and half value time
6 // Half value time is the time within which the
      initial difference etween the true and indicated
      temperature is reduced to half its initial value
8 1 = 0.01/2;
                                          // Length of
      cylindrical tube in ft
                                          // Thermal
9 a = 0.178;
      diffusivity in ft<sup>2</sup>/hr
                                          // Thermal
10 k = 5;
     conductivity in Btu/hr-ft-F
                                          // Heat
      transfer coefficient in Btu/hr-ft^2-F
                                          // Biot number
12 Bi = h*1/k;
14 // For half time
```

Scilab code Exa 4.2 Lag of thermometer

```
1 clc();
2 clear;
4 // To calculate the lag of thermometer used in
      initial example while the oven is heating
6 r = 0.01;
                                           // Radius of
      cylindrical tube in ft
7 a = 0.178;
                                          // Thermal
      diffusivity in ft<sup>2</sup>/hr
                                          // Thermal
8 k = 5;
     conductivity in Btu/hr-ft-F
                                          // Heat
     transfer coefficient in Btu/hr-ft^2-F
                                          // Rate of
10 s = 400;
     temperature change
11 tlag = r*k*s/(2*a*h);
12
13 printf ("The lag of thermometer while the oven is
      heating at the rate of 400F/hr is %.1f F", tlag);
```

Scilab code Exa 4.3 Infinite flat plate

```
1 clc();
2 clear
```

```
4 // To find the time required for the billet to
      remain in the oven
5
6 A = 2;
                                             // Length of
      steel billet in ft
7 B = 2;
                                                 Breadth of
      billet in ft
8 \ C = 4;
                                                 Height of
      billet in ft
9 \text{ To} = 70;
                                                 Initial
      temperature of billet n F
10 \text{ Tf} = 750;
                                                 Maximum
      temp. of billet in F
11 T = 700;
                                                 Temperature
       for which time has to be found out
                                             // Thermal
12 k = 25;
      conductivity in Btu/hr-ft^2-F
                                                 Thermal
13 \ a = 0.57;
      diffusivity in ft<sup>2</sup>/hr
                                              // Heat
14 h = 100;
      transfer coeff. in Btu/hr-ft
15
16 BiA = h*A/k;
                                             // Biot number
17 BiB = h*B/k;
18 BiC = h*C/k;
19 t = 1.53;
                                            // Assumed
      temperature in F
20 \text{ s1} = a*t/A^2;
                                             // Parameters
21 	 s2 = a*t/B^2;
22 	 s3 = a*t/C^2;
23
24 // Seeing the values of Bi and s and comparing from
      the table
25
  // T/Toa=0.302 and T/Tob=0.805 and (T/Toa)^2*T/Toc
      =0.0735
27
```

28 printf("The time required for the centre temperature to reach 700 F under the conditions specified in the problem is t=\%.2 f hr",t);

Scilab code Exa 4.4 Semi infinite solid

```
1 clc();
2 clear;
4 // To calculate the time needed to estabilish a
      steady state temperature distribution in the
      walls and in the room
5 \text{ tf} = 70;
                                          // Final
      temperature of the wall in F
6 \text{ hi} = 1.2;
                                          // Inner heat
      transfer coefficint of wall i Btu/hr-ft^2-degF
                                           // Outer heat
7 \text{ ho} = 3.0;
      transfer\ coefficient\ in\ Btu/hr-ft^2-degF
                                           // Thermal
8 a = 0.012;
      diffusivity in ft<sup>2</sup>/hr
9 x = 1.3;
                                          // Thickness of
      wall in ft
10
11 // Assuming the rate of heat trasfer to the inside
      of a wall is constant
12 // And since the wall is divided into six sections
13 delx = x/6;
                                         // Thickness of
      sections in ft
14 t = (delx)^2/(2*a);
                                           // time
      required in hr
15 printf("the time needed to estabilish a steady state
       temperature distribution in the walls and in the
       room is %.2 f hr",t);
```

Scilab code Exa 4.5 Periodic heat conduction

```
1 clc();
2 clear;
4 // To calculate the depth and yearly temperature
     fluctuations penetrate the ground
6 = 0.039;
                                                  //
     thermal diffusivity of claylike soil
  to = 24:
     time for daily fluctuations in hr
8 x = 1.6*sqrt(%pi*a*to);
     depth of penetration for daily fluctuation in ft
9 xy = sqrt(365)*x;
     depth of penetration for yearly fluctuation in ft
10
11 printf("The depth of penetration for daily
     fluctuation is %.2f ft and depth of penetration
     for yearly fluctuation is %.2f ft",x, xy);
```

Scilab code Exa 4.6 Semi infinite solid

Scilab code Exa 4.7 depth of penetration

```
1 clc();
2 clear;
4 // To calculate the depth of penetration of the
      temperature oscillation into the cylinder wall
6 \text{ rpm} = 2000;
      Revolutions per minute of motor
7 a = 0.64;
                                              // Thermal
      diffusivity in ft<sup>2</sup>/hr
8 \text{ to} = 1/(60*\text{rpm});
                                              // Period of
      oscillation in hr
9 x = 1.6*sqrt(%pi*a*to);
                                              // depth of
      penetration in hr
10 printf ("the depth of penetration of the temperature
      oscillation into the cylinder wall is %.5f ft",x)
```

Flow along surfaces and its channels

Scilab code Exa 6.1 Laminar flow

```
1 clc();
2 clear;
3
4 //****Data****//
5 x = 4/12; // [thickness of plate, inch]
6 v = 33; // [fps]
7 n = 15.4*10^(-5); // [kinematic viscosity, feet^2/s]
8 //*********//
9
10 Re = v*x/n; // [Reynold's number]
11 delta = 4.64*x*12/sqrt(Re); // [Boundary layer thickness, ft]
12 printf("Boundary layer thickness at 4 in. distance is %.4 f in.", delta);
```

Scilab code Exa 6.2 turbulent boundary layer

```
1 clc();
2 clear;
4 // To calculate the thickness of turbulent boundary
     layer at a distance of 12 inch
5 x = 12/12;
                                         // Distance
     from leading edge in ft
6 v = 33;
                                         // Stream
     flowing velocity in ft
                                         // kinematic
7 n = 15.4*10^{(-5)};
      viscosity, feet^2/s
9 Re = v*x/n;
                                         // reynolds
     number
10 delta = 0.376*x/(Re^0.2);
                                         // Boundary
     layer thickness, ft
11 delb = 0.036*delta*12;
                                         // Turbulent
     layer thickness, in
12 printf("The turbulent boundarty layer thickness is \%
      .3 f ft, delb);
```

Forced convection in laminar flow

Scilab code Exa 7.1 Plate in longitudinal flow

```
1 clc();
2 clear;
5 // to calculate the heat transferv coefficient for a
       plate in an air stream
                                    // distance from
7 x = 4/12;
      leading edge in ft
                                    // air velocity in fps
8 u = 33;
9 \text{ Ts} = 125;
10 \text{ Tw} = 255;
                                    // surface temperature
      in F
11 k = 0.0178;
                                    // Thermal conductivity
       in Btu/hr-ft-F
12 \text{ Re} = 46600;
                                    // Reynolds number
                                    // Prandtls number
13 \text{ Pr} = 0.695;
14
15 Nu = 0.332*Re^{.5*Pr^{(1/3)}}; // Nusselt number
```

```
// Local heat transfer
16 h = Nu*k/x;
     coefficient
                                  // Heat transfer
17 \text{ ha} = h*12;
      coefficient average
                                  // Width of plate in ft
18 \ b = 1;
                                  // Length of plate
19 x = 4/12;
20
21 q = ha*b*x*(Ts-Tw);
                                  // Heat loss in Btu/hr
22
23 printf("The heat transfer coefficient for a plate in
       an air stream is \%.2 f Btu/hr-ft^2-F ",h);
```

Forced convection in turbulent flow

Scilab code Exa 8.1 Analogy between momentum and heat

```
1 clc();
2 clear;
4 // To find the amount of heat transferred to the air
6 \text{ Tw} = 200;
                                       // Wall
      temperature in F
7 \text{ delp} = 14.2;
                                       // Pressure
      pressure in lb/in^2
8 d = 0.8/12;
                                       // Diameter in ft
9 R = delp*%pi*d^2/4;
                                       // resistance of
      tube
                                       // bulk
10 Tb = 137;
      temperature of wall in F
11
12 q = R*32.2*0.24*3600*(Tw-Tb)/100; // Heat loss
      in Btu/hr
13 printf ("The heat loss from the tube well to the air
      when the plate is heated to a temperature of 200
```

Scilab code Exa 8.2 Flow in a tube

```
1 clc();
2 clear;
4 // To find the extent of heating of water and heat
      transfer
6 d = 0.24/12;
                                     // Diameter of tubes
      in ft
7 1 = 24/12;
                                     // Length of tubes
     in ft
8 v = 3;
                                     // velocity of
     cooling water in ft/sec
9 T = 140;
                                     // Temperature of
     cooling water in F
10 n = 0.514*10^-5;
                                     // Kinematic
      viscosity in ft^2/sec
11 \text{ Pr} = 3.02;
                                     // Prandtls number
                                     // Thermal
12 k = 0.376;
      conductivity in Btu/hr-ft-F
                                     // Reynolds number
13 Re = d*v/n;
14 A = 1.5;
                                     // Experimental
      constant
15 // Turbulent flow
16 // Greater part of the flow is developed , A=1.5
     from the table
17
18 St = 0.0384*(v*d/n)^-(1/4)/(1+A*(v*d/n)^-(1/8)*(Pr
     -1)); // Strantons number
19 Nu = Re*Pr*St;
                                                   //
      Nusselt number
```

Scilab code Exa 8.3 plane plate in longitudinal flow

```
1 clc();
2 clear;
4 // To find the heat transfer coefficient at x = 12
      in.
6 \text{ Tp} = 176;
                                   // Temperature of plate
      in F
  Ta = 68;
                                   // Tempearture of air
     stream in F
  Tm = (Tp+Ta)/2;
                                   // Maen temperature in
      \mathbf{F}
9 u = 30;
                                      Velocity in fps
10 n = 19.45*10^-5;
                                   // Dynamic visosity in
      ft^2/sec
                                   // Velocity in fps
11 v = 30;
                                   // Prandtls number
12 \text{ Pr} = 0.703;
                                   // distance in ft
13 \times = 12/12;
14 k = 0.0162;
                                   // Thermal conductivity
       in Btu/hr-ft^2-F
15 Re = v*x/n;
                                  // Reynolds number
16 // The boundary layer must be laminar or turbulent
17
18 St = 0.0296*(Re)^-(1/5)/(1+1.75*0.87*(Re)^-(1/10)*(
      Pr-1)); // Strantons number
19 Nu = Re*Pr*St;
                                                 // Nusselt
       number
```

```
// Heat
20 h = Nu*k/x;
      transfer coefficient
21
22 printf("The heat transfer coefficient of heating of
      water for laminar is %.2f Btu/hr-ft^2-F",h)
23
24 // If the flow is laminar
25 \text{ Nu1} = 0.332*Re^(1/2)*Pr^(1/3);
                                                  //
      Nusselt number
26 \text{ h1} = \text{Nu1*k/x};
                                                  // Heat
      transfer coefficient
27 printf(" \n The heat transfer coefficient for
      turbilent layer is %.2f Btu/hr", h1);
```

Special heat transfer processes

Scilab code Exa 10.1 Dimensional analysis

```
1 clc();
2 clear;
4 // To calculate the heat transfer coefficient from
      the plate to the air
6 \text{ Tw} = 196;
                                    // Temperature of plate
      in F
7 \text{ Ts} = 79;
                                    // Temperature of the
      air in F
8 u = 587;
                                    // velocity in air in
      fps
                                    // Length of plate in
9 x = 4/12;
      ft
10 \quad n = 20.4*10^-5;
                                    // Kinematic velocity
                                    // Specific heat
11 \text{ Cp} = 1200;
      capacity
12 Re = u*x/n;
                                    // Reynolds number
13 r = 0.845;
                                    // Temperature recovery
       factor
14 \text{ tr} = Ts+r*u*u/Cp;
                                    // Dynamic temperature
```

```
in F
15 \text{ Pr} = 0.697;
                                   // Pradtls number
                                   // Density in lb/ft^3
16 p = 0.0657;
                                   // Corresponding
17 t = 144.1;
     temperature in F
18 St = 0.0296*(Re)^-(1/5)/(1+1.75*0.87*(Re)^-(1/10)*(
      Pr-1));
19 // Strantons number
20
                                       // Heat transfer
21 h = p*u*St*3600;
      coefficient
                                      // Average heat
22 \text{ hav} = 1.215*h;
      transfer coefficient
23
24 printf("The heat transfer coefficient from the palte
       to the air is \%.1 \, f \, Btu/hr-ft^2-F, hav);
```

Free convection

Scilab code Exa 11.1 Laminar heat transfer

```
1 clc();
2 clear;
4 // To calculate the local heat transfer coefficient
6 \text{ Ts} = 200;
                                                Temperature
     of steam in F
7 \text{ Ta} = 68;
                                            // Air
      temerature in F
8 n = 24.21*10^{-5};
                                            // Kinematic
     viscosity in ft<sup>2</sup>/sec
9 k = 0.0181;
                                            // Thermal
      conductivity in Btu/hr-ft-F
10 g = 32.2;
                                            // Gravity
                                            // Expansion
11 b = 1/528;
     coefficient
12 x = 8/12;
                                            // Distance
     from lower end
13 th = Ts-Ta;
                                            // Temperature
      difference in F
14 Gr = g*b*th*x^3/(n^2);
                                            // Grashops
```

Condensation and evaporation

Scilab code Exa 12.1 Film coefficient

```
1 clc();
2 clear;
   // To calculate the heat transfer coefficient
6 L = 1029;
                                   // Heat of evaporation
     in Btu/lb
                                   // Kinematic viscosity
7 n = 0.654*10^{-5};
      in Btu/hr-ft-F
8 p = 62;
                                   // density in lb/ft^3
9 k = 0.367;
                                   // Thermal conductivity
       in Btu/hr-ft^2-F
10 g = 32.2;
                                   // Gravity
11 \times = 3/12;
                                   // Distance from upper
      edge in ft
                                   // Saturation
12 \text{ ts} = 114;
      temperature in F
13 \text{ tw} = 105;
                                   // Wall temperature in
      \mathbf{F}
14
15 h = (g*k^3*p*L*3600/(4*n*x*(ts-tw)))^0.25;
```

Scilab code Exa 12.2 Vertical wall

```
1 clc();
2 clear;
3
    // To calculate the heat exchange by radiatiojn
       between two walls
6
   t1 = 2500;
                                   // Temperature of
       saturated steam in F
    t2 = 600;
                                   // External
       temperature of tube walls in F
                                   // Emmisivity of tube
    e = 0.8;
       wall arrangement
9
    p = 0.87;
                                   // Emperical factor
                                   // Area of the wall in
10
    A = 148.5;
        ft<sup>2</sup>
                                   // Stephens boltzmanns
    s = 0.173*10^-8;
11
        constant
    q = s*e*A*p*(((t1+460)^4)-((t2+460)^4)); // heat
12
        loss in Btu/hr
13
    printf ("The heat exchange per unit area is %.2f Btu
      /hr",q);
```

Heat exchange by radiation

Scilab code Exa 14.1 Radiation between two walls

```
1 clc();
2 clear;
3
    // To calculate the heat exchange by radiation
       between two walls
   t1 = 212;
                                     // Temperature of
       contents in the bottle in F
                                     // Ambient
    t2 = 68;
       temperature in F
    e = 0.02;
                                     // Emmisivity of
       silver
10
    e12 = 1/(2/e-1);
                                     // Exchange factor
     s = 0.173*10^-8;
                                     // Stephens
11
        boltzmanns constant
12
13
    q = s*e12*((t1+460)^4-(t2+460)^4);
                                         // Heat loss
       in Btu/hr
    printf("The heat flow per unit area of the inner
14
       wall is \%.2 f Btu/hr-ft<sup>2</sup>, q);
```

Scilab code Exa 14.2 Radiation of flames

```
1 clc();
2 clear;
    // To calculate the heat exchange by radiation
       between two walls
   t1 = 2500;
                                     // Temperature of
       saturated steam in F
    t2 = 600;
                                     // Temperature of
      tube wall in F
    p = 0.87;
                                      // Emperical factor
    A = 148.5;
                                     // Area of tube
       walls
10
    A1 = 168.8;
                                     // Area of walls
       lined with cooling tubes
11
    e = 0.8;
                                    // Emmisivity of
       silver
12
     s = 0.173*10^-8;
                                     // Stephens
        boltzmanns constant
13
    q = p*s*e*A*((t1+460)^4-(t2+460)^4);
                                               // Heat
14
       loss in Btu/hr
    L = 649.4;
                                                // Latent
15
       heat of vapourization in Btu/lb
16
    m = q/L;
       Generation of steam in lb/hr
17
    A2 = A1*\%pi/2;
                                                // Area of
        tube in ft<sup>2</sup>
                                                // Heat
18
    h = q/A2;
       absorption rate
    printf ("The heat absorption per square foot of tube
19
        area is %d Btu/hr-ft^2",h);
```

Scilab code Exa 14.3 Heat transfer coefficient for radiation

```
1 clc();
2 clear;
4 // To find the division of the heating surface
   t1 = 2500;
                                    // temperature of
       contenets of the bottle in F
                                    // Ambient
    t2 = 600;
       temperature in F
    e1 = 0.048;
                                    // Interchange factor
       in 1800 F
    e2 = 0.044;
                                    // Interchange factor
       in 600 F
    e = 0.94;
                                    // Emmisivity of
       walls
    p = 1;
                                    // Emperical factor
10
                                    // Shape factor
11
   F = 2*0.88;
12
    s = 0.173*10^-8;
                                    // Stephens
       boltzmanns constant
13
14
    h = s*e*p*F*((t1+460)^4-(t2+460)^4)/(pi*(t1-t2));
    // Heat transfer coefficient
15
16
17
18
    // Heat transfer for the tubes within the
       convective surface
    // Radiation of CO2 and waterin the combustion
19
       gases
    L = 0.5;
                                     // Eqivalent length
20
       of gas layer
    Tg = 1800;
                                     // Gas temperature
21
       in F
    Tw = 600;
                                     // Surface
22
```

```
temperature of tubes in F
23
24
    // From the table the emmisivity of carbon dioxide
       can be known
25
    ec1 = 0.06;
                                     // Emmmisivity of
       CO<sub>2</sub> at 1800F
    ec2 = 0.055;
                                     // Emmisivity of Co2
26
        at 600F
    ew = 0.8;
27
                                     // Emmisivity of
       tube wall
    qc = s*ew*p*(ec1*(Tg+460)^4-ec2*(t2+460)^4);
28
    // Heat loss by carbon dioxide in Btu/hr
29
30
  // From the table the emmisivity of water can be
     known
    eh1 = 0.0176;
                                        // Emmmisivity of
32
       water at 1800F
    eh2 = 0.0481;
                                        // Emmisivity of
33
       water at 600F
    qh = s*ew*p*(eh1*(Tg+460)^4-eh2*(t2+460)^4);
34
    // Heat loss by water in Btu/hr
35
36
                                         // Heat heat flow
37
    qg = qc + qh;
        by gas radiation
    hg = qg/(Tg-t2);
                                         // Heat transfer
38
       coeffcoent by gas radiation
39
    printf("The heat transfer coefficient by gas
       radiation is %.2f Btu/hr-ft^2 \n",hg);
40
    // Heat transfer by convection can be found out
41
       using values iun the table
    hc = 8.14;
42
                                          // Heat transfer
        by convection in Btu/hr-ft^2-F
     printf(" The heat transfer coefficient by gas
43
        radiation is \%.2 f Btu/hr-ft<sup>2</sup>\n",hc);
44
    ht = hc + hg;
                                         // Total heat
45
       transfer coefficient for convective surface
```

46
47 printf("The covective surface have greater heat transfer coefficients than the radiating surface . Therefore it is advantageous to line the whole combustion chamber with narrowly spaced cooling tubes");

Mass transfer

Scilab code Exa 16.1 Diffusion

```
1 clc();
2 clear;
4 // To calculate the siffusion coefficient
                                    // Constant
   T = 87.5;
      temperature of tube
    p1 = 0.6543;
                                    // Saturation pressure
        in psi
    p = 14.22;
                                    // Ambient pressure
    e = 5.165*10^-5;
                                    // Rate of evaporation
        in lb/hr
    A = 0.755;
                                    // Area of tube in in
10
                                    // Mass flux in lb/hr-
11
   m = e * 144/A;
       \mathrm{ft} \hat{\ } 2
12
    M = 18.0165;
                                    // Molecular weight of
        water
                                    // Gas constant
    R = 1545/M;
13
    1 = 2.527/12;
                                    // Length of tube in
       f t
```

Scilab code Exa 16.2 Evaporation rate

```
1 clc();
2 clear;
4 // To calculate the amount of water evaporated per
      hour per square feet from the water surface
6 u = 10;
                                // Flow of air stream in
      fps
                                // Relative humidity
7 r = 33.3;
                                // Temperature in Rankine
8 T = 519;
9 p = 0.1130;
                                // Partial pressure of
     water vapour
10 x = 4/12;
                                // Water surface in the
     wind direction
11 n = 15.99*10^-5;
                                // Kinematic viscosity
12 k = 0.0149;
                                // Thermal conductivity
     in Btu/hr-ft-F
13 Re = u*x/n;
                                // reynolds number
14 D = 1.127;
                                // Diffusion coefficient
     in ft<sup>2</sup>/sec
                                // Gas constant in
15 R = 85.74;
      Imperial in Imperial units
16
17 hd =0.664*Re^0.5*(n*3600/D)^(1/3)*D/x;
                                                         //
       Heat transfer coefficient
18 \text{ Pr} = 0.710;
                                                 //
      Prandtls number
19 Nu = 0.664*sqrt(Re)*Pr^{(1/3)};
```

Scilab code Exa 16.3 Evaporation of water into air

```
1 clc();
2 clear;
4 // To determine the specific heat of air
                                       // Pressure in psi
6 p = 14.7;
  Tb = 68;
                                       // Dry bulb
     temperature in F
                                       // Wet bulb
8 \text{ Tw} = 50;
     temperature in F
10 // In the enthalpy-specific heat diagram, the
     isotherm 50F in the supersaturated region must be
      extended until it intersects the isotherm 68F.
11 // The point of intersection gives the state of
     moist air and its specific heat capacity can be
     read
                                     // Specific heat
12 s = 0.0037;
     capacity
13
14 printf ("The specific humidity of air is %.4f lb of
```

water per pound of dry air",s);