Устройство процессора

Иван Викторович Михайлов

итмо, кт

imihajlow@gmail.com

18.03.2015

Цифровая электроника

Логические уровни

0 и 1.

Физические параметры зависят от среды передачи данных.

Логические уровни

Figure 3: Standard Logic Levels

TTL

CMOS

CMOS NAND gate

Асинхронная логика

Элементарная логика

Мультиплексор

Демультиплексор

ALU (арифметико-логическое устройство)

ALU (арифметико-логическое устройство)

Синхронная логика

Триггер

Триггер

Регистр

Статическая память

Статическая память

Динамическая память

Динамическая память

Процессор

Процессор

CISC/RISC

- CISC (complex instriction set computer) набор сложных инструкций;
- RISC (reduced instriction set computer) набор простых инструкций.

Микрокод

Сложная инструкция (ADD AX, [BX + 4 * ESI + n])

Указатель на микропрограмму.

Микрооперации

Сложная инструкция (ADD AX, [BX + 4 * ESI + n])

Одна или несколько внутренних RISC-инструкций.

Конвейер

Конвейер

	T1	T2	Т3	T4	T5	T6	T7	T8	T9	
	Opc∞de	Dec∞de	Address	Values	Compute	Store	Instruction #1			
•		Opcode	Decode	Address	Values	Compute	Store	Instruction #2		
			Opcode	Decode	Address	Values	Compute	Store	Instructio	n#3
				Opcode	Decode	Address	Values	Compute	Store	

Суперскалярная архитектура

Больше одной инструкции за такт.

Кэш

Подсказки для кэширования

- PREFETCHh mem8 загрузить в кэш. h:
 - Т0 − 1 или 2 уровень
 - Т1 2 уровень
 - Т2 2 уровень
 - NTA "non-temporal" собираемся использовать данные только раз.
- PREFETCHW mem8 кэширование для записи.
- PREFETCHWT1 mem8 Т1 для записи.

Управление кэшированием

- CLFLUSH mem8 записать из кэша в память.
- WBINVD сбросить весь кэш в память и очистить кэш (invalidate).
- INVD очистить кэш без записи (может потерять данные).

Переупорядочение и барьеры

Барьеры:

- LFENCE все чтения завершатся до этой инструкции;
- SFENCE все записи завершатся до этой инструкции;
- MFENCE любые операции с памятью завершатся до этой инструкции.

Что почитать

- The Art of Assembly Language (3, 4, 5)
- AMD System Programming (7)

Конец.