Interpolacja funkcji

Wzór interpolacyjny Czebyszewa

(Wielomiany Czebyszewa)

Załóżmy, że wartości argumentów funkcji interpolowanej mieszczą się w przedziale [-1, 1].

Postulat ten nie ogranicza możliwości wykorzystania wzoru interpolacyjnego Czebyszewa, ponieważ dowolny przedział argumentów [a, b] poprzez podstawienie

$$x^* = \frac{a+b}{2} + \frac{b-a}{2}x$$

normalizuje się do przedziału [-1, 1].

Przykład:

Zbiór węzłów:

$$x_0^* = 4$$
, $x_1^* = 6$, $x_2^* = 7$, $x_3^* = 10$

po podstawieniu:

$$x^* = \frac{a+b}{2} + \frac{b-a}{2}x = 7 + 3x$$

sprowadza się do zbioru:

$$x_0 = -1$$
, $x_1 = -\frac{1}{3}$, $x_2 = 0$, $x_3 = 1$

Funkcje bazowe (tzw. bazę Czebyszewa) stanowi zbiór wielomianów określonych wzorem rekurencyjnym:

$$T_0(x) = 1$$
,
 $T_1(x) = x$,
 $T_{k+1}(x) = 2 \cdot x \cdot T_k(x) - T_{k-1}(x)$

Kilka pierwszych funkcji bazowych określonych wzorem rekurencyjnym wygląda następująco:

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_2(x) = 2x^2 - 1$
 $T_3(x) = 4x^3 - 3x$
 $T_4(x) = 8x^4 - 8x^2 + 1$

Współczynniki wzoru interpolacyjnego Czebyszewa wynikają z układu równań:

$$\begin{bmatrix} T_0(x_0) & T_1(x_0) & \cdots & T_n(x_0) \\ T_0(x_1) & T_1(x_1) & \cdots & T_n(x_1) \\ \cdots & \cdots & \cdots \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$T_0(x_n) & T_1(x_n) & \cdots & T_n(x_n) \end{bmatrix}$$

Przykład:

Dla zbioru punktów (węzłów): (-0.5, 0.25), (0, 0), (1, 1) wyznaczyć wielomian interpolacyjny Czebyszewa.

Jest to wielomian stopnia drugiego w postaci:

$$W(x) = a_0 T_0(x) + a_1 T_1(x) + a_2 T_2(x)$$

czyli:

$$W(x) = a_0 + a_1 x + a_2 (2x^2 - 1)$$

Układ równań sprowadza się do następującego:

$$\begin{bmatrix} 1 & -0.5 & -0.5 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0 \\ 1 \end{bmatrix}$$

skąd otrzymujemy: $a_0 = 0.5$, $a_1 = 0$, $a_2 = 0.5$

$$W(x) = 0.5 + 0.5 \cdot (2x^2 - 1) = x^2$$

UWAGA!

Przy dowolnym doborze węzłów

$$x_i$$
, $i = 0, 1, ..., n$, $x_i \in [-1, 1]$

błąd zaokrągleń związanych z procedurą odwracania macierzy X jest istotnie mniejszy niż w przypadku interpolacji wielomianami w postaci naturalnej.

Przyjęcie siatki węzłów wynikającej z zależności

$$x_i = \cos \frac{(2i+1)\pi}{2n+2}, i = 0, 1, ..., n$$

oraz nieco zmodyfikowanej bazy

$$\Phi = \left[\frac{1}{\sqrt{2}}, \quad x, \quad 2x^2 - 1, \quad 4x^3 - 3x, \quad \dots\right]$$

prowadzi do macierzy X , dla której macierz odwrotną można obliczyć w bardzo prosty sposób

$$X^{-1} = \frac{2}{n+1}X^{\mathrm{T}}$$

Wielomianem interpolacyjnym w tym przypadku będzie więc suma w postaci:

$$W(x) = a_0 T_0(x) + a_1 T_1(x) + a_2 T_2(x) + a_3 T_3(x) + \dots$$

czyli:

$$W(x) = \frac{a_0}{\sqrt{2}} + a_1 x + a_2 (2x^2 - 1) + a_3 (4x^3 - 3x) + \dots$$

zawierająca n+1 nieznanych parametrów.

Przykład:

W przedziale [-1, 1] wybieramy cztery węzły interpolacji: x_0 , x_1 , x_2 , x_3 (n = 3) w ten sposób, że

$$x_i = \cos \frac{(2i+1)\pi}{2n+2} = \cos \frac{(2i+1)\pi}{8}$$

Otrzymujemy:

$$x_0 = 0.924$$
, $x_1 = 0.383$, $x_2 = -0.383$, $x_3 = -0.924$

Załóżmy, że wartości funkcji f(x) w tych węzłach wynoszą:

$$y_0 = 2.224$$
, $y_1 = 1.701$, $y_2 = 3.885$, $y_3 = 6.19$

Bazę interpolacji stanowi zbiór wielomianów:

$$T_0(x) = \frac{1}{\sqrt{2}},$$

$$T_1(x) = x,$$

$$T_2(x) = 2x^2 - 1,$$

$$T_3(x) = 4x^3 - 3x$$

Macierz X:

$$X = \begin{bmatrix} 0.707 & 0.924 & 0.707 & 0.383 \\ 0.707 & 0.383 & -0.707 & -0.924 \\ 0.707 & -0.383 & -0.707 & 0.924 \\ 0.707 & -0.924 & 0.707 & -0.383 \end{bmatrix}$$

Macierz odwrotna:

$$X^{-1} = \frac{1}{2}X^{\mathrm{T}} = \begin{bmatrix} 0.345 & 0.354 & 0.354 & 0.354 \\ 0.462 & 0.191 & -0.191 & -0.462 \\ 0.354 & -0.354 & -0.354 & 0.354 \\ 0.191 & -0.462 & 0.462 & -0.191 \end{bmatrix}$$

skąd po obliczeniu otrzymujemy wartości współczynników:

$$a_0 = 4.95$$
, $a_1 = -2.25$, $a_2 = 1$, $a_3 = 0.25$

Postać wielomianu jest następująca:

$$W(x) = 4.95 \frac{1}{\sqrt{2}} - 2.25 x + (2x^2 - 1) + 0.25(4x^3 - 3x)$$

Po uproszczeniu otrzymujemy:

$$W(x) = x^3 + 2x^2 - 3x + 2.5$$

Interpolacja trygonometryczna

Rozważać będziemy ciągłą i okresową funkcję f(x) o okresie 2π, dla której znamy zbiór jej wartości w 2n+1 węzłach.

Jako bazę interpolacji przyjmujemy zbiór funkcji trygonometrycznych:

$$\Phi = \left[\frac{1}{\sqrt{2}}, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots, \sin(nx), \cos(nx)\right]$$

Wielomianem interpolacyjnym w tym przypadku będzie więc suma w postaci:

$$W(x) = \frac{a_0}{\sqrt{2}} + b_1 \sin(x) + a_1 \cos(x) +$$

$$+ b_2 \sin(2x) + a_2 \cos(2x) + \dots +$$

$$+ b_n \sin(nx) + a_n \cos(nx)$$

zawierająca 2n+1 nieznanych parametrów.

Najbardziej istotny dla praktyki jest przypadek interpolacji funkcji określonej na zbiorze równoodległych węzłów $x_i \in [0, 2\pi]$

dobranych w następujący sposób:

$$x_i = \frac{2 i \pi}{2n + 1}, i = 0, 1, ..., 2n$$

czyli:

$$x_0 = 0$$
, $x_1 = \frac{2\pi}{2n+1}$, ..., $x_{2n} = \frac{4n\pi}{2n+1}$

Warunek interpolacji prowadzi do układu równań

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & 1 & \dots & 0 & 1 \\ \frac{1}{\sqrt{2}} & \sin(x_1) & \cos(x_1) & \dots & \sin(nx_1) & \cos(nx_1) \\ \dots & \dots & \dots & \dots & \dots \\ \frac{1}{\sqrt{2}} & \sin(x_{2n}) & \cos(x_{2n}) & \dots & \sin(nx_{2n}) & \cos(nx_{2n}) \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ b_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Współczynniki pierwszego wiersza macierzy X wynikają z wartości funkcji sin(kx) i cos(kx) dla $x_0=0$.

Przedstawiony układ równań dla odpowiednio dobranych węzłów interpolacji rozwiązuje się natychmiastowo, ponieważ macierz odwrotną można obliczyć w bardzo prosty sposób:

$$X^{-1} = \frac{2}{2n+1} X^{\mathrm{T}}$$

Przykład:

Zbiór następujących węzłów przybliżyć wielomianem trygonometrycznym (n=3):

	1	2	3	4	5	6	7
X	0	0,898	1,795	2,693	3,590	4,488	5,386
У	0	5,478	9,344	11,598	12,242	11,274	8,695

Współrzędne " x " dla węzłów obliczono ze wzoru:

$$x_i = \frac{2 i \pi}{2n + 1}$$

Bazę interpolacji stanowi zbiór funkcji:

$$\Phi = \left[\frac{1}{\sqrt{2}}, \sin(x), \cos(x), \sin(2x), \cos(2x), \sin(3x), \cos(3x)\right]$$

Tworzymy macierz X , której postać wynikowa jest następująca :

$$X = \begin{bmatrix} 0.707 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0.707 & 0.782 & 0.623 & 0.975 & -0.223 & 0.434 & -0.901 \\ 0.707 & 0.975 & -0.223 & -0.434 & -0.901 & -0.782 & 0.623 \\ 0.707 & 0.434 & -0.901 & -0.782 & 0.623 & 0.975 & -0.223 \\ 0.707 & -0.434 & -0.901 & 0.782 & 0.623 & -0.975 & -0.223 \\ 0.707 & -0.975 & -0.223 & 0.434 & -0.901 & 0.782 & 0.623 \\ 0.707 & -0.782 & 0.623 & -0.975 & -0.223 & -0.434 & -0.901 \end{bmatrix}$$

Elementy macierzy X mnożymy przez 2 / 7, otrzymaną macierz transponujemy i obliczamy współczynniki wzoru interpolacyjnego:

$$a_0 = 11.845,$$
 $b_1 = -1.336,$
 $a_1 = -4.923,$
 $b_2 = -0.513,$
 $a_2 = -1.961,$
 $b_3 = -0.147,$
 $a_3 = -1.491$