CLAIMS

What is claimed is:

1	4		
1	1.	An apparatus con	mrising:
_	- •	i iii apparatas con	~~~~~~~

- a plurality of modular exponentiators including a first modular exponentiator and
- 3 a second modular exponentiator; and
- 4 a coupling device interposed between said first modular exponentiator and said
- 5 second modular exponentiator to receive a control signal and to selectively couple said
- 6 first modular exponentiator to said second modular exponentiator in response to a state
- 7 of said control signal.
- 1 2. The apparatus as set forth in claim 1, said apparatus having a first mode of
- 2 operation corresponding to a first state of said control signal wherein said first modular
- 3 exponentiator is operably separated from said second modular exponentiator and a
- 4 second mode of operation corresponding to a second state of said control signal wherein
- 5 said first modular exponentiator is operably coupled to said second modular
- 6 exponentiator via said coupling device.
- 1 3. The apparatus as set forth in claim 2, wherein said first modular exponentiator
- 2 and said second modular exponentiator operate as two n-bit modular exponentiators in
- 3 said first mode of operation and as a single 2n-bit modular exponentiator in said second
- 4 mode of operation, where n is an integer.
- 1 4. The apparatus as set forth in claim 3, wherein n equals 512.
- 1 5. The apparatus as set forth in claim 1, wherein each of said plurality of modular
- 2 exponentiators comprises a modular multiplier to perform a modular multiplication of
- 3 the form A x B mod M, where A, B, and M are all integers.
- 1 6. The apparatus as set forth in claim 5, wherein said modular multiplier comprises
- 2 a Montgomery multiplier.

- 1 7. The apparatus as set forth in claim 5, wherein said modular multiplier comprises
- 2 a systolic array of processing elements.
- 1 8. The apparatus as set forth in claim 1, wherein said a coupling device comprises a
- 2 multiplexer.
- 1 9. An apparatus comprising:
- 2 a plurality of modular multipliers including a first modular multiplier and a
- 3 second modular multiplier;
- 4 a coupling device interposed between said first modular multiplier and said
- 5 second modular multiplier to receive a control signal and to selectively couple said first
- 6 modular multiplier to said second modular multiplier in response to a state of said
- 7 control signal.
- 1 10. The apparatus as set forth in claim 9, said apparatus having a first mode of
- 2 operation corresponding to a first state of said control signal wherein said first modular
- 3 multiplier is operably separated from said second modular multiplier and a second mode
- 4 of operation corresponding to a second state of said control signal wherein said first
- 5 modular multiplier is operably coupled to said second modular multiplier via said
- 6 coupling device.
- 1 11. The apparatus as set forth in claim 10, wherein said first modular multiplier and
- 2 said second modular multiplier operate as two n-bit modular multipliers in said first
- 3 mode of operation and as a single 2n-bit modular multiplier in said second mode of
- 4 operation, where n is an integer.
- 1 12. The apparatus as set forth in claim 11, wherein n equals 512.
- 1 13. The apparatus as set forth in claim 9, wherein each of said plurality of modular
- 2 multipliers comprises a Montgomery multiplier.

- 1 14. The apparatus as set forth in claim 9, wherein each of said plurality of modular
- 2 multipliers comprises a systolic array of processing elements.
- 1 15. The apparatus as set forth in claim 9, wherein said a coupling device comprises a
- 2 multiplexer.
- 1 16. A processor comprising:
- a plurality of modular exponentiators including a first modular exponentiator and
- 3 a second modular exponentiator; and
- 4 a coupling device interposed between said first modular exponentiator and said
- 5 second modular exponentiator to receive a control signal and to selectively couple said
- 6 first modular exponentiator to said second modular exponentiator in response to a state
- 7 of said control signal.
- 1 17. The processor as set forth in claim 16, said processor having a first mode of
- 2 operation corresponding to a first state of said control signal wherein said first modular
- 3 exponentiator is operably separated from said second modular exponentiator and a
- 4 second mode of operation corresponding to a second state of said control signal wherein
- 5 said first modular exponentiator is operably coupled to said second modular
- 6 exponentiator via said coupling device.
- 1 18. The processor as set forth in claim 17, wherein said first modular exponentiator
- 2 and said second modular exponentiator operate as two n-bit modular exponentiators in
- 3 said first mode of operation and as a single 2n-bit modular exponentiator in said second
- 4 mode of operation, where n is an integer.
- 1 19. The processor as set forth in claim 18, wherein n equals 512.
- 1 20. The processor as set forth in claim 16, wherein said a coupling device comprises
- 2 a multiplexer.

1	21.	A system comprising:		
2		a memory to store data and instructions;		
3		a first processor coupled to said memory to process data and execute instructions;		
4	and			
5		a second processor coupled to said memory, said second processor comprising:		
6		a plurality of modular exponentiators including a first modular		
7		exponentiator and a second modular exponentiator; and		
8		a coupling device interposed between said first modular exponentiator and		
9		said second modular exponentiator to receive a control signal and to selectively		
10		couple said first modular exponentiator to said second modular exponentiator in		
11		response to a state of said control signal.		
1	22.	The system as set forth in claim 21, said second processor having a first mode of		
2	opera	operation corresponding to a first state of said control signal wherein said first modular		
3	exponentiator is operably separated from said second modular exponentiator and a			
4	second mode of operation corresponding to a second state of said control signal wherein			
5	said fi	said first modular exponentiator is operably coupled to said second modular		
6	expon	exponentiator via said coupling device.		
1	23.	The system as set forth in claim 22, wherein said first modular exponentiator and		
2	said s	econd modular exponentiator operate as two n-bit modular exponentiators in said		
3	first n	first mode of operation and as a single 2n-bit modular exponentiator in said second mode		
4	of operation, where n is an integer.			
1	24.	A method comprising:		
2		receiving a control signal;		
3		selectively coupling a first modular exponentiator to a second modular		
4	expor	exponentiator of a plurality of modular exponentiators in response to a state of said		
5	contro	control signal;		

6

receiving a plurality of operands; and

performing a modular exponentiation operation on said plurality of operands				
utilizing said first modular exponentiator and said second modular exponentiator.				
25. The method as set forth in claim 24, wherein selectively coupling a first modular				
exponentiator to a second modular exponentiator of a plurality of modular exponentiators				
in response to a state of said control signal comprises:				
operably separating said first modular exponentiator from said second modular				
exponentiator in a first mode of operation corresponding to a first state of said control				
signal; and				
operably coupling said first modular exponentiator to said second modular				
exponentiator in a second mode of operation corresponding to a second state of said				
control signal.				
26. The method as set forth in claim 25, wherein performing a modular				
exponentiation operation on said plurality of operands utilizing said first modular				
exponentiator and said second modular exponentiator comprises:				
operating said first modular exponentiator and said second modular exponentiator				
as two n-bit modular exponentiators in said first mode of operation and as a single 2n-bit				
modular exponentiator in said second mode of operation, where n is an integer.				
27. A machine-readable medium having a plurality of machine-executable				
instructions embodied therein which when executed by a machine, cause said machine to				
perform a method comprising:				
receiving a control signal;				
selectively coupling a first modular exponentiator to a second modular				
exponentiator of a plurality of modular exponentiators in response to a state of said				
control signal;				

8

9

10

performing a modular exponentiation operation on said plurality of operands

utilizing said first modular exponentiator and said second modular exponentiator.

receiving a plurality of operands; and

6

7

8

9

1

2

4 5

6

signal; and

1	28.	The machine-readable medium as set forth in claim 27, wherein selectively
2	coupli	ng a first modular exponentiator to a second modular exponentiator of a plurality
3	of mod	dular exponentiators in response to a state of said control signal comprises:
4		operably separating said first modular exponentiator from said second modular
5	expone	entiator in a first mode of operation corresponding to a first state of said control

operably coupling said first modular exponentiator to said second modular exponentiator in a second mode of operation corresponding to a second state of said control signal.

29. The machine-readable medium as set forth in claim 28, wherein performing a modular exponentiation operation on said plurality of operands utilizing said first modular exponentiator and said second modular exponentiator comprises:

operating said first modular exponentiator and said second modular exponentiator as two n-bit modular exponentiators in said first mode of operation and as a single 2n-bit modular exponentiator in said second mode of operation, where n is an integer.