<u>Recall:</u> Determinants indicate how an area (or volume) changes under a matrix transformation:

$$area(T_A(S)) = |det A| \cdot area(S)$$

Note. Any two vectors in \mathbb{R}^2 define a parallelogram:

Notation

$$area(v_1, v_2) = \begin{pmatrix} area & of the parallelogram \\ defined & by v_1 & and v_2 \end{pmatrix}$$

Theorem

If
$$\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$$
 then

$$area(\textbf{v}_1,\textbf{v}_2) = \begin{vmatrix} det \left[\begin{array}{cc} \textbf{v}_1 & \textbf{v}_2 \end{array} \right] \end{vmatrix}$$

Proof.

$$A = \left[v_1 \quad v_2 \right]$$

$$A = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \qquad T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad T_A (\alpha_1) = V_1$$

$$W \longmapsto AW \qquad T_A (\alpha_2) = V_2$$

$$T_A(Q_1) = V_1$$
 $T_A(Q_2) = V_2$

area
$$(V_1, V_2)$$
 = area $(T_A(P))$
= $|\det A| \cdot \text{ area } (P)$
= $|\det A| \cdot 1$
= $|\det A|$

Example.

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$

$$area(v_1, v_2) =$$

$$= \left| \det \begin{bmatrix} 2 & 2 \\ 3 & -2 \end{bmatrix} \right| = \left| -4 - 6 \right|$$

$$= \left| -10 \right| = 10$$

Example. Calculate the area of the parallelogram with vertices at the points (2,1), (5,3), (7,1), (4,-1).

$$V_{1} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \qquad V_{2} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$\text{area } (V_{1}, V_{2}) = | \text{det } [V_{1}, V_{2}]|$$

$$= | \text{det } \begin{bmatrix} 3 & 2 \\ 2 & -2 \end{bmatrix}|$$

$$= | -6 - 4 | = | 0 |$$

Example. Calculate the area of the triangle with vertices at the points (2, 1), (5, 3), (4, -1).

(area of the triangle) = $\frac{1}{2}$ (area of the parallelogram)

$$V_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 $V_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$

area $(V_1, V_2) = |\det \begin{bmatrix} 3 & 2 \\ 2 & -2 \end{bmatrix}| = |-10| = 10$

area triangle = $\frac{1}{2}$ area $(V_1, V_2) = \frac{1}{2} \cdot 10 = 5$

Note. In order to compute areas of other polygons, subdivide them into triangles.

