# **Shift-Share IV**

MIXTAPE TRACK



## Roadmap

Shift-Share IV

Approach

Cautions

Recentered IV

#### Approach

A shift-share instrument takes the form  $Z_i = \sum_n s_{in} g_n$  for a set of shocks  $g_n$  and a set of exposure shares  $s_{in} \geq 0$  (for each i)

# Approach

A shift-share instrument takes the form  $Z_i = \sum_n s_{in} g_n$  for a set of shocks  $g_n$  and a set of exposure shares  $s_{in} \ge 0$  (for each i)

- Bartik (1991): national industry employment growth  $g_n$ , local industry employment shares  $s_{in}$  for regions i
- Autor et al. (2013): increase in (non-U.S.) Chinese import growth across manufacturing industries  $g_n$ , local employment shares  $s_{in}$
- Card (2009): growth of immigrant inflows across origin countries  $g_n$ , local immigrant shares  $s_{in}$

## Approach

A shift-share instrument takes the form  $Z_i = \sum_n s_{in} g_n$  for a set of shocks  $g_n$  and a set of exposure shares  $s_{in} \ge 0$  (for each i)

- Bartik (1991): national industry employment growth  $g_n$ , local industry employment shares  $s_{in}$  for regions i
- Autor et al. (2013): increase in (non-U.S.) Chinese import growth across manufacturing industries  $g_n$ , local employment shares  $s_{in}$
- Card (2009): growth of immigrant inflows across origin countries  $g_n$ , local immigrant shares  $s_{in}$

The literature has taken two econometric approaches to such  $Z_{i...}$ 

#### **Exogenous Shares**

Goldsmith-Pinkham et al. (2020) consider the shocks  $g_n$  as fixed numbers and consider the "exogeneity" of the shares:  $E[s_{in}\varepsilon_i] = 0$ 

- Often regressions are run in first-differences, so this is like DD-IV
- The twist here is we have many instruments: In Autor et al. (2013) there are 398 industries n (and 1, 444 regional observations!)

#### **Exogenous Shares**

Goldsmith-Pinkham et al. (2020) consider the shocks  $g_n$  as fixed numbers and consider the "exogeneity" of the shares:  $E[s_{in}\varepsilon_i]=0$ 

- Often regressions are run in first-differences, so this is like DD-IV
- The twist here is we have many instruments: In Autor et al. (2013) there are 398 industries n (and 1,444 regional observations!)

They propose tools to measure the "importance" of different share IVs ("Rotemberg weights") and discuss other subtlies in estimation

- Kind of like judge IV, except with known "leniency"  $g_n$
- Can check (many) overidentifying restrictions, pre-trends, etc

# Rotemberg Weights for Card (2009) Exposure Shares



Source: Goldsmith-Pinkham et al. (2020)

## **Exogenous Shocks**

Borusyak et al. (2022) consider the shocks  $g_n$  as exogenous, (quasi-randomly assigned + excludable), conditional on the shares

- E.g. different industries saw higher/lower import growth from China for reasons unrelated to local U.S. employment trends
- Need a "shock-level law of large numbers" (i.e. many shocks)

# **Exogenous Shocks**

Borusyak et al. (2022) consider the shocks  $g_n$  as exogenous, (quasi-randomly assigned + excludable), conditional on the shares

- E.g. different industries saw higher/lower import growth from China for reasons unrelated to local U.S. employment trends
- Need a "shock-level law of large numbers" (i.e. many shocks)

They propose tools to test for shock exogeneity (e.g. balance/ pre-trend checks) and quantify the extent of identifying variation

- No overidentifying restrictions: a single instrument  $g_n$ , as if we were running an "industry-level" IV regression
- Also show how to relax exogeneity to hold conditional on some observed shock-level confounders

#### Caution 1: Incomplete Shares

In some shift-share applications exposure weight sum  $S_i = \sum_n s_{in}$  varies across observations i

ullet E.g. in Autor et al. (2013), the total manufacturing share  $S_i$  varies

#### Caution 1: Incomplete Shares

In some shift-share applications exposure weight sum  $S_i = \sum_n s_{in}$  varies across observations i

• E.g. in Autor et al. (2013), the total manufacturing share  $S_i$  varies

Borusyak et al. (2022) show this can be a problem if you only want to leverage variation in the shocks and not also in  $S_i$ 

- Intuitively, if  $E[g_n|s]=\mu$  then  $E[Z_i|s]=E\left[\sum_n s_{in}g_n|s\right]=\mu S_i$ , so the "expected instrument" varies non-randomly across observations
- If  $S_i$  is correlated with  $arepsilon_i$ , this non-random variation can create bias

## Addressing Incomplete Shares

An easy fix to incomplete shares is to control for  $S_i = \sum_n s_{in}$ 

- Alternatively, construct shares such that  $S_i = 1$  for everyone
- The former may be more powerful if  $X_i = \sum_n s_{in} \tilde{g}_{in}$  for  $S_i \neq 1$

## Addressing Incomplete Shares

An easy fix to incomplete shares is to control for  $S_i = \sum_n s_{in}$ 

- Alternatively, construct shares such that  $S_i = 1$  for everyone
- The former may be more powerful if  $X_i = \sum_n s_{in} \tilde{g}_{in}$  for  $S_i \neq 1$

If other controls are needed to make the shocks as-good-as- random (e.g. time dummies, to isolate within-period variation) then  $S_i$  needs to be added as an *interaction* with them

 In Autor et al. (2013), this means interacting the manufacturing sum-of-shares with period FE...

#### Sum-of-Share Controls in Autor et al. (2013)

Table 4: Shift-Share IV Estimates of the Effect of Chinese Imports on Manufacturing Employment

|                                       | (1)     | (2)          | (3)     | (4)          | (5)          | (6)     | (7)          |
|---------------------------------------|---------|--------------|---------|--------------|--------------|---------|--------------|
| Coefficient                           | -0.596  | -0.489       | -0.267  | -0.314       | -0.310       | -0.290  | -0.432       |
|                                       | (0.114) | (0.100)      | (0.099) | (0.107)      | (0.134)      | (0.129) | (0.205)      |
| Regional controls                     |         |              |         |              |              |         |              |
| Autor et al. (2013) controls          | ✓       | $\checkmark$ | ✓       |              | ✓            | ✓       | ✓            |
| Start-of-period mfg. share            | ✓       |              |         |              |              |         |              |
| Lagged mfg. share                     |         | ✓            | ✓       | $\checkmark$ | $\checkmark$ | ✓       | ✓            |
| Period-specific lagged mfg. share     |         |              | ✓       | $\checkmark$ | $\checkmark$ | ✓       | $\checkmark$ |
| Lagged 10-sector shares               |         |              |         |              | ✓            |         | ✓            |
| Local Acemoglu et al. (2016) controls |         |              |         |              |              | ✓       |              |
| Lagged industry shares                |         |              |         |              |              |         | ✓            |
| SSIV first stage $F$ -stat.           | 185.6   | 166.7        | 123.6   | 272.4        | 64.6         | 63.3    | 27.6         |
| # of region-periods                   | 1,444   | 1,444        | 1,444   | 1,444        | 1,444        | 1,444   | 1,444        |
| # of industry-periods                 | 796     | 794          | 794     | 794          | 794          | 794     | 794          |

Source: Borusyak et al. (2022)

#### Caution 2: Exposure Clustering

Adáo et al. (2019) show another problem with exogenous shocks: conventional robust/clustered SEs may be wrong

- Intuitively, the structure of  $Z_i=\sum_n s_{in}g_n$  may make observations with similar  $s_{i1}\dots s_{in}$  correlated, even when otherwise "far apart"
- They derive non-standard central limit theorems to account for such "exposure clustering" (with R/Stata code)

#### Caution 2: Exposure Clustering

Adáo et al. (2019) show another problem with exogenous shocks: conventional robust/clustered SEs may be wrong

- Intuitively, the structure of  $Z_i = \sum_n s_{in} g_n$  may make observations with similar  $s_{i1} \dots s_{in}$  correlated, even when otherwise "far apart"
- They derive non-standard central limit theorems to account for such "exposure clustering" (with R/Stata code)

Borusyak et al. (2022) build on this theory to propose an alternative approach: estimate the IV at the level of identifying variation (shocks)

- Derive an equivalent regression where the  $g_n$  are used directly as the instrument for shock-level outcomes and treatments
- Standard robust SEs address the exposure clustering problem

## Estimating Shock-Level SSIV Regressions



Install in Stata: ssc install ssaggregate

#### Recentered IV

Remember the "expected instrument" in shift-share IV? It turns out the incomplete shares problem may generalize to related settings

- Network spillover IVs (e.g. Miguel and Kremer 2004)
- Transportation upgrade IVs (e.g. Donaldson and Hornbeck 2016)
- Simulated instruments (e.g. Currie and Gruber 1996)
- Nonlinear shift-share (e.g. Chodorow-Reich and Wieland 2020)

#### Recentered IV

Remember the "expected instrument" in shift-share IV? It turns out the incomplete shares problem may generalize to related settings

- Network spillover IVs (e.g. Miguel and Kremer 2004)
- Transportation upgrade IVs (e.g. Donaldson and Hornbeck 2016)
- Simulated instruments (e.g. Currie and Gruber 1996)
- Nonlinear shift-share (e.g. Chodorow-Reich and Wieland 2020)

Borusyak and Hull (2021) develop a general identification framework for IVs combining multiple sources of variation, w/only some random

Propose "recentering" to avoid bias from non-random "exposure"

Consider a instrument  $Z_i=f_i(g;s)$  for some known mapping  $f_i(\cdot)$  of exogenous shocks g and non-random exposure s

BH show that the expected instrument  $\mu_i = E[f_i(g;s) \mid s]$  is the sole source of bias and the recentered instrument  $Z_i - \mu_i$  is free of bias

Consider a instrument  $Z_i=f_i(g;s)$  for some known mapping  $f_i(\cdot)$  of exogenous shocks g and non-random exposure s

BH show that the expected instrument  $\mu_i = E[f_i(g;s) \mid s]$  is the sole source of bias and the recentered instrument  $Z_i - \mu_i$  is free of bias

 $\mu_i$  is measured by taking a stand on the shock assignment process

Consider a instrument  $Z_i=f_i(g;s)$  for some known mapping  $f_i(\cdot)$  of exogenous shocks g and non-random exposure s

• BH show that the expected instrument  $\mu_i = E[f_i(g;s) \mid s]$  is the sole source of bias and the recentered instrument  $Z_i - \mu_i$  is free of bias

 $\mu_i$  is measured by taking a stand on the shock assignment process

1. Specify counterfactual shocks  $\tilde{g}^{(1)},\ldots,\tilde{g}^{(K)}$  which were as likely to have occured (by, e.g., permuting the rows of g)

Consider a instrument  $Z_i=f_i(g;s)$  for some known mapping  $f_i(\cdot)$  of exogenous shocks g and non-random exposure s

• BH show that the expected instrument  $\mu_i = E[f_i(g;s) \mid s]$  is the sole source of bias and the recentered instrument  $Z_i - \mu_i$  is free of bias

 $\mu_i$  is measured by taking a stand on the shock assignment process

- 1. Specify counterfactual shocks  $\tilde{g}^{(1)}, \dots, \tilde{g}^{(K)}$  which were as likely to have occured (by, e.g., permuting the rows of g)
- 2. Recompute  $Z_i^{(1)},\dots,Z_i^{(K)}$  for each observation i:  $Z_i^{(k)}=f_i(\tilde{g}^{(k)};s)$

Consider a instrument  $Z_i=f_i(g;s)$  for some known mapping  $f_i(\cdot)$  of exogenous shocks g and non-random exposure s

• BH show that the expected instrument  $\mu_i = E[f_i(g;s) \mid s]$  is the sole source of bias and the recentered instrument  $Z_i - \mu_i$  is free of bias

 $\mu_i$  is measured by taking a stand on the shock assignment process

- 1. Specify counterfactual shocks  $\tilde{g}^{(1)}, \dots, \tilde{g}^{(K)}$  which were as likely to have occured (by, e.g., permuting the rows of g)
- 2. Recompute  $Z_i^{(1)},\dots,Z_i^{(K)}$  for each observation i:  $Z_i^{(k)}=f_i(\tilde{g}^{(k)};s)$
- 3. Average the counterfactual instruments for each i:  $\mu_i = \frac{1}{K} \sum_k Z_i^{(k)}$

Consider a instrument  $Z_i=f_i(g;s)$  for some known mapping  $f_i(\cdot)$  of exogenous shocks g and non-random exposure s

• BH show that the expected instrument  $\mu_i = E[f_i(g;s) \mid s]$  is the sole source of bias and the recentered instrument  $Z_i - \mu_i$  is free of bias

 $\mu_i$  is measured by taking a stand on the shock assignment process

- 1. Specify counterfactual shocks  $\tilde{g}^{(1)},\ldots,\tilde{g}^{(K)}$  which were as likely to have occured (by, e.g., permuting the rows of g)
- 2. Recompute  $Z_i^{(1)},\dots,Z_i^{(K)}$  for each observation i:  $Z_i^{(k)}=f_i(\tilde{g}^{(k)};s)$
- 3. Average the counterfactual instruments for each i:  $\mu_i = \frac{1}{K} \sum_k Z_i^{(k)}$

Besides recentering,  $\mu_i$  can also be controlled for with the original  $Z_i$ 

# Illustration: High-Speed Rail in China, 2007-2016



# Market Access Growth, Computed from Rail Growth



# Expected MA Growth, Assuming Random Rail Timing



## Recentered Market Access Growth = Actual - Expected



#### Recentering Can Matter a Lot Empirically!

|                                  | Unadjusted | Recentered      | Controlled      |
|----------------------------------|------------|-----------------|-----------------|
|                                  | OLS        | IV              | OLS             |
|                                  | (1)        | (2)             | (3)             |
| Panel A. No Controls             |            |                 |                 |
| Market Access Growth             | 0.232      | 0.081           | 0.069           |
|                                  | (0.075)    | (0.098)         | (0.094)         |
|                                  |            | [-0.315, 0.328] | [-0.209, 0.331] |
| Expected Market Access Growth    |            |                 | 0.318           |
| •                                |            |                 | (0.095)         |
| Panel B. With Geography Controls |            |                 |                 |
| Market Access Growth             | 0.132      | 0.055           | 0.045           |
|                                  | (0.064)    | (0.089)         | (0.092)         |
|                                  |            | [-0.144, 0.278] | [-0.154, 0.281] |
| Expected Market Access Growth    |            |                 | 0.213           |
| •                                |            |                 | (0.073)         |
| Recentered                       | No         | Yes             | Yes             |
| Prefectures                      | 274        | 274             | 274             |

Source: Borusyak and Hull (2021)