MATH 5590H FINAL THEOREMS

BRENDAN WHITAKER

Theorem 1. $Inn(G) \cong G/Z(G)$.

Theorem 2. F[x] is an ED.

Theorem 3. F[x]/(f(x)) is a field if and only if f(x) is irreducible.

Theorem 4. Ways to prove a group is abelian:

- (1) Show that the commutator $xyx^{-1}y^{-1}$ of any two elements is trivial.
- (2) Show the group is a direct product of abelian groups.

Theorem 5. If $P \cap Q = 1$, and |PQ| = |G|, then PQ = G.

Theorem 6. If $P \subseteq G$, $P \cap Q = 1$, and PQ = G, then $P \rtimes Q = G$.

Theorem 7. If P, Q are sylow p, q-subgroups of a group G with only two distinct prime factors, and $n_p = 1$, then $P \rtimes Q = G$.

Theorem 8. If $\mathbb{Z}_n = \mathbb{Z}_m \times \mathbb{Z}_k$ and m, k are relatively prime, then we must have $\mathbb{Z}_n = \mathbb{Z}_{mk}$, and if (m, k) = 1, then $\mathbb{Z}_{mk} \cong \mathbb{Z}_m \times \mathbb{Z}_k$.

Theorem 9. If $N \subseteq G$ and both N and G/N are solvable, then G is solvable.

Theorem 10. All p-groups are nilpotent.

Theorem 11. Any subring must be an additive subgroup.

Theorem 12. Any cyclic group of a cyclic group (\mathbb{Z}) is cyclic.

Theorem 13. A homomorphism is injective if and only if its kernel is (0).

Theorem 14. The ideal (1) = R, the whole ring, and the ideal $(0) = \{0\}$ is just the ideal containing only the element 0.

Theorem 15. Ways to show an ideal M is maximal:

- (1) Show that if an ideal I contains M then I = M or I = R, the whole ring.
- (2) Show that R/M is a field.

Theorem 16. An ideal P is prime if and only if the quotient ring R/P is an integral domain.

Corollary 1. See page 685 for information on Noetherian rings, prime ideals, radicals, etc.

Theorem 17. If x is nilpotent then $\phi(x)$ is nilpotent (Exercise 7.3.32).

Theorem 18. If ϕ is surjective, then the preimage of a maximal ideal is maximal.

Theorem 19. Any nonzero ring homomorphism from a field into a ring is injective (Corollary 7.4.10).

Theorem 20. If ϕ is surjective, the image of an ideal is an ideal.

Proof. Let $\phi: R \to S$ be a surjective hom. Then let I be an ideal in R. COnsider $\phi(i)$. We want to show that $\phi(I)s \subseteq \phi(I) \ \forall s \in S$. So since ϕ is sujective, $\exists r \in R$ s.t. $\phi(r) = s$. And note $Is \subseteq I$ since I is ideal. So we have $\phi(Is) = \phi(I)\phi(s) \subseteq \phi(I)$ which tells us that the image is indeed an ideal by definition.

Theorem 21. Any ideal in a commutative, unital ring is a subring.

Theorem 22. $\mathbb{Z}[i], \mathbb{Z}$ are EDs.

Theorem 23. Maximal ideals are always prime.

Theorem 24. In a PID, every nonzero prime ideal is maximal.

Theorem 25. In UFDs, irreducible if and only if prime.

Theorem 26. Primes in the Gaussian integers. Note that the conjugate of any prime is also prime here. A Gaussian integer is prime if and only if: one of a, b is zero and its absolute value is a prime of the form 4k + 3, or both are nonzero and $a^2 + b^2$ is a prime number. Refer to Proposition 18 on page 291.

Theorem 27. Ideals can be principal but not maximal/prime in a PID. Consider $4\mathbb{Z}$. It is not prime in \mathbb{Z} but it is principal.

Theorem 28. Every ideal is the kernel of some ring hom.

Theorem 29. Prime iff the quotient ring is an Integral domain.

Theorem 30. Maximal if and only if the quotient ring is a field.