Non-linear optimization using MapReduce with SystemML

Deepti Pachauri (Mentor-Prithviraj Sen, Manager-Rajasekar Krishnamurthy)

Intern Talk

Overview

- Motivation
- ARIMA

ARIMA(1,0,1)ARIMA(p,0,1)

Optimization

Nelder-Mead

Distributed Nelder-Mead

CG

BFGS

Solver

Jacobi

GMRES

Experimental Results

Motivation ARIMA Optimization Solver Experiments

Motivation

Non-linear optimization is required in many real life problems.

Motivation

Non-linear optimization is required in many real life problems.

Time Series Analysis

Arrivals Departures

Given: Historical data of passenger movements across the airport.

Goal: Predict passenger counts at locations of interest, egimmigration check points, security lines etc.

Why: Proper resource allocation and that makes life easy!!!!!!

ARIMA: AutoRegressive Integrated Moving Average

Give a time series data X_t

An ARIMA(p, d, q) process is expressed as

$$(1 - \sum_{i=1}^{p} \phi_i L^i)(1 - L)^d X_t = (1 + \sum_{i=1}^{q} \theta_i L^i) \epsilon_t$$

where

L is the **lag operator** given by $L^iX_t = X_{t-i}$

 ϕ_i are the autoregressive parameters

 θ_i are the moving average parameters

 ϵ_t are i.i.d. error terms

Goal: Estimate ϕ_i and θ_i for given (p, d, q)

$\mathbf{ARIMA}(\mathbf{1},\mathbf{0},\mathbf{1})$

$$\hat{X}_2 = \phi_1 X_1 + \theta_1 (X_1 - \hat{X}_1)$$

 $\hat{X}_3 = \phi_1 X_2 + \theta_1 (X_2 - \hat{X}_2)$
 $\hat{X}_4 = \phi_1 X_3 + \theta_1 (X_3 - \hat{X}_3)$and so on

ARIMA(1,0,1)

$$\hat{X}_2 = \phi_1 X_1 + \theta_1 (X_1 - \hat{X}_1)$$
 $\hat{X}_3 = \phi_1 X_2 + \theta_1 (X_2 - \hat{X}_2)$
 $\hat{X}_4 = \phi_1 X_3 + \theta_1 (X_3 - \hat{X}_3)$and so on

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ \theta_1 & 1 & 0 & \cdots & 0 \\ 0 & \theta_1 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & 0 & \cdots & \theta_1 & 1 \end{pmatrix} \begin{pmatrix} \hat{X}_1 \\ \hat{X}_2 \\ \hat{X}_3 \\ \vdots \end{pmatrix} = (\theta_1 + \phi_1) \begin{pmatrix} 1 \\ X_1 \\ X_2 \\ \vdots \end{pmatrix}$$

ARIMA(1,0,1)

$$\hat{X}_2 = \phi_1 X_1 + \theta_1 (X_1 - \hat{X}_1)$$

 $\hat{X}_3 = \phi_1 X_2 + \theta_1 (X_2 - \hat{X}_2)$
 $\hat{X}_4 = \phi_1 X_3 + \theta_1 (X_3 - \hat{X}_3)$and so on

For given θ_1 and ϕ_1 , we need to solve

$$A(\theta_1, \phi_1)\hat{X}_t = b(\theta_1, \phi_1)$$

ARIMA(1,0,1)

$$\hat{X}_2 = \phi_1 X_1 + \theta_1 (X_1 - \hat{X}_1)$$

 $\hat{X}_3 = \phi_1 X_2 + \theta_1 (X_2 - \hat{X}_2)$
 $\hat{X}_4 = \phi_1 X_3 + \theta_1 (X_3 - \hat{X}_3)$and so on

For given θ_1 and ϕ_1 , we need to solve

$$A(\theta_1, \phi_1)\hat{X}_t = b(\theta_1, \phi_1)$$

How do we pick correct θ_1 and ϕ_1 for given X_t ?

$$\min_{\theta_1,\phi_1} ||X_t - \hat{X}_t(\theta_1,\phi_1)||_2$$

ARIMA(p, 0, 1)

$$\hat{X}_p = \phi_1 X_{p-1} + \phi_2 X_{p-2} + \phi_3 X_{p-3} + \dots + \theta_1 (X_{p-1} - \hat{X}_{p-1})$$

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ \theta_1 & 1 & 0 & \cdots & 0 \\ 0 & \theta_1 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & 0 & \cdots & \theta_1 & 1 \end{pmatrix} \begin{pmatrix} \hat{X}_1 \\ \hat{X}_2 \\ \hat{X}_3 \\ \vdots \end{pmatrix} = (\theta_1 + \phi_1) \begin{pmatrix} 1 \\ X_1 \\ X_2 \\ \vdots \end{pmatrix} + \phi_2 \begin{pmatrix} 1 \\ 1 \\ X_1 \\ \vdots \end{pmatrix} + \cdots$$

Summary

$$\min_{ heta,\phi} f(heta,\phi)$$
 subject to $A(heta,\phi)\hat{X}_t = b(heta,\phi)$

where
$$f(\theta, \phi) = ||X_t - \hat{X}_t(\theta, \phi)||_2$$

 Optimization methods to solve the problem: Nelder-Mead, CG, BFGS, L-BFGS.

Downhill simplex method

 $\overline{\textit{Initial point}} \in \mathbb{R}^n$

Downhill simplex method

Simplex n + 1 points

Downhill simplex method

Simplex n + 1 points

Optimization 1: Distributed Nelder-Mead

SystemML: Distribute simplex on multiple machines.

Optimization 1: Distributed Nelder-Mead

SystemML: Distribute simplex on multiple machines.

Optimization 1: Distributed Nelder-Mead

SystemML: Distribute simplex on multiple machines.

- Collect "local best" at each machine.
- Identify "global best"
- Communicate "global best" back to each machine
- Proceed with Nelder-Mead steps i.e., reflection, expansion, contraction
- If no update recorded anywhere, shrink simplex on each machine

Optimization 2: Conjugate Gradient

First-order optimization method

Generate a sequence of points $(\theta^0, \phi^0), (\theta^1, \phi^1), (\theta^2, \phi^2), \cdots$ such that

$$f(\theta^0, \phi^0) \ge f(\theta^1, \phi^1) \ge f(\theta^2, \phi^2), \cdots$$

One possible way to obtain such a sequence is – move along a descent direction of the function $\Delta(\theta, \phi)$

$$(\theta^{k+1}, \phi^{k+1}) := (\theta^k, \phi^k) + t_k \Delta(\theta^k, \phi^k)$$

Optimization 2: Conjugate Gradient

Algorithm

given initial point (θ, ϕ) .

repeat

- Determine descent direction $\Delta(\theta, \phi)$
- Choose a step size t > 0.
- Update $(\theta, \phi) := (\theta, \phi) + t\Delta(\theta, \phi)$.

until stopping criterion is satisfied.

Optimization 2: Conjugate Gradient

Algorithm

given initial point (θ, ϕ) . repeat

- Set $\Delta(\theta, \phi) = -\nabla f$. Use finite difference method to compute ∇f .
- Choose a step size t > 0.

 Backtracking line serach $t := 1, \alpha \in (0, 0.5), \beta \in (0, 1)$ while $f((\theta, \phi) + t\Delta(\theta, \phi)) > f(\theta, \phi) + \alpha t \nabla f^{\top} \Delta(\theta, \phi), \quad t := \beta t$
- Update $(\theta, \phi) := (\theta, \phi) + t\Delta(\theta, \phi)$.

until $||\nabla f||_2 \leq \eta$

Optimization 3

Newton method

Use second order Taylor expansion to obtain the descent direction

$$\Delta(\theta, \phi) = -[Hf]^{-1} \nabla f$$

Hf is the Hessian matrix.

Optimization 3

Newton method

Use second order Taylor expansion to obtain the descent direction

$$\Delta(\theta,\phi) = -[Hf]^{-1}\nabla f$$

Hf is the Hessian matrix. Prohibitively Expensive

Optimization 3:Broyden-Fletcher-Goldfarb-Shanno

Quasi-Newton method

- Approximate Hessian matrix at each iteration by constructing a rank-two update matrix using ∇f .
- Efficiently use Sherman–Morrison formula to obtain inverse of the aprroximate Hessian.

Note: approximate Hessian matrix is denoted by B.

Optimization 3:Broyden-Fletcher-Goldfarb-Shanno

Algorithm

given initial point (θ_0, ϕ_0) and $B_0 = I$. **repeat**

- Determine descent direction $\Delta(\theta_k, \phi_k) = -B_k^{-1} \nabla f$
- Choose a step size $t_k > 0$ Update $(\theta_{k+1}, \phi_{k+1}) = (\theta_k, \phi_k) + t_k \Delta(\theta_k, \phi_k)$
- Set $s_k = t_k \Delta(\theta_k, \phi_k)$
- Calculate $y_k = \nabla f(\theta_{k+1}, \phi_{k+1}) \nabla f(\theta_k, \phi_k)$
- $B_{k+1}^{-1} = B_k^{-1} + \frac{(s_k^\top y_k + y_k^\top B_k^{-1} y_k)(s_k s_k^\top)}{(s_k^\top y_k)^2} \frac{B_k^{-1} y_k s_k^\top + s_k y_k^\top B_k^{-1}}{s_k^\top y_k}$

until stopping criterion is satisfied

Optimization: How do we choose??

Nelder-Mead

Pros: Simple, no derivative required, good for non-convex problems. **Cons:** Local search method – can easily get stuck in local minimum, too many function evaluations required, very slow.

Conjugate Gradient

Pros: Simple.

Cons: Too slow near minimum, ill-defined for non-differentiable

functions.

BFGS

Pros: Works in most cases, fast.

Cons: ill-defined for non-differentiable functions, computationally

expensive (try L-BFGS), do not necessarily converge.

Revisit – Formulation

Summary

$$\min_{ heta,\phi} f(heta,\phi)$$
 subject to $A(heta,\phi)\hat{X}_t=b$

where $f(\theta, \phi) = ||X_t - \hat{X}_t(\theta, \phi)||_2$

Note: $A \in \mathbb{R}^{T \times T}$ and T is large for large time-series.

Solve non-symmetric sparse system of linear equations efficiently?

Solver 1: Jacobi method

Key idea: A = D + R

$$(D+R)\hat{X} = b$$
$$D\hat{X} = b - R\hat{X}$$

Here D is a diagonal matrix with $D_{ii} = A_{ii}$. R constitute off-diagonal entries of A.

Iterate until convergence: $\hat{X}^{k+1} = D^{-1}b - D^{-1}R\hat{X}^k$

Solver 1: Jacobi method

Key idea: A = D + R

$$(D+R)\hat{X} = b$$
$$D\hat{X} = b - R\hat{X}$$

Here D is a diagonal matrix with $D_{ii} = A_{ii}$. R constitute off-diagonal entries of A.

Iterate until convergence: $\hat{X}^{k+1} = D^{-1}b - D^{-1}R\hat{X}^k$

For problem at hand,

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ \theta_1 & 1 & 0 & \cdots & 0 \\ 0 & \theta_1 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & 0 & \cdots & \theta_1 & 1 \end{pmatrix} \begin{pmatrix} \hat{X}_1 \\ \hat{X}_2 \\ \hat{X}_3 \\ \vdots \end{pmatrix} = (\theta_1 + \phi_1) \begin{pmatrix} 1 \\ X_1 \\ X_2 \\ \vdots \end{pmatrix}$$

Motivation ARIMA Optimization Solver Experiment

Solver 1: Jacobi method

Key idea: A = D + R

$$(D+R)\hat{X} = b$$
$$D\hat{X} = b - R\hat{X}$$

Here D is a diagonal matrix with $D_{ii} = A_{ii}$. R constitute off-diagonal entries of A.

Iterate until convergence: $\hat{X}^{k+1} = D^{-1}b - D^{-1}R\hat{X}^k$

For problem at hand

$$D = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}; \quad R = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ \theta_1 & 0 & 0 & \cdots & 0 \\ 0 & \theta_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & 0 & \cdots & \theta_1 & 0 \end{pmatrix}$$

Solver 1: Jacobi method

Key idea: A = D + R

$$(D+R)\hat{X} = b$$
$$D\hat{X} = b - R\hat{X}$$

Here D is a diagonal matrix with $D_{ii} = A_{ii}$. R constitute off-diagonal entries of A.

Iterate until convergence: $\hat{X}^{k+1} = D^{-1}b - D^{-1}R\hat{X}^k$

This method is guaranteed to converge given diagonal dominance of *A*

Solver 2: Generalized minimal residual method

Key idea: Krylov subspace

$$k$$
-th Krylov subspace of $A\hat{X} = b$
 $\mathcal{K}_k = span(b, Ab, A^2b, \cdots, A^{k-1}b)$

- GMRES approximate the exact solution of $A\hat{X} = b$ by $\hat{X}^k \in \mathcal{K}_k$
- ullet $\hat{X}^k \in \mathcal{K}_k$ is the vector that minimizes residual

$$r_k = b - A\hat{X}^k$$

Solver 2: Generalized minimal residual method

Algorithm 1 Arnoldi iteration for Q_k

```
Require: A, b
Compute q_1 = \frac{b}{||b||_2}
for i = 1 to k do
v = Aq_i
for j = 1 to i do
S(j,i) = v^{\top}q_j
v = v - S(j,i) * q_j
end for
q_{i+1} = \frac{v}{||v||_2}
S(i+1,i) = ||v||_2
end for
```

Ensure: Orthonormal basis Q_k and upper *Hessenberg* matrix S_k

Solver 2: Generalized minimal residual method

Solution for $A\hat{X} = b$

 $e_1 = (1,0,0,\cdots,0)$

 $|e_1| = ||b||_2 e_1$

 $y_k = S_k(1:k,1:k) \setminus e_1$ We used exact solver here

 $\hat{X}^k = Q_k y_k$ Best solution in \mathcal{K}_k

Our experimental results used **GMRES**

Preliminary results

We present preliminary results with

- Optimization routine BFGS
- Solver GMRES (K_{10})
- Line search backtracking ($\alpha = 0.0001, \beta = 0.9$)

Preliminary results: ARIMA (1,0,1)

Time step-1 hour

X1011

	SystemML	R
ϕ_1	-0.7233	NaN
θ_1	0.6932	NaN

X1157

	SystemML	R
ϕ_1	0.8662	0.8662 ± 0.0189
θ_1	-0.3316	-0.3318 ± 0.0417

Preliminary results: ARIMA (1,0,1)

Time step-1 hour

X1158

		SystemML	R
Ī	ϕ_1	0.9053	0.9976 ± 0.0017
Ĭ	θ_1	-0.5076	-0.014 ± 0.0246

X1178

	SystemML	R
ϕ_1	0.9479	1.0001 ± 0.0006
θ_1	-0.8860	-0.9944 ± 0.0026

Preliminary results: ARIMA(5, 0, 1)

Time step-1 hour

X1157

	SystemML	R
ϕ_1	0.8920	0.892 ± 0.0759
ϕ_2	-0.3264	-0.3265 ± 0.0562
ϕ_3	0.4233	0.4233 ± 0.0313
ϕ_4	-0.3277	-0.3278 ± 0.0399
ϕ_5	0.2202	0.2203 ± 0.0242
θ_1	-0.2133	-0.2133 ± 0.0756

Preliminary results: More

X1011 Time step-15mins

ARIMA(1, 0, 1)

	SystemML	R
ϕ_1	0.2318	0.2315 ± 0.0701
θ_1	-0.0285	-0.028 ± 0.0726

ARIMA(3,0,1)

	SystemML	R
ϕ_1	-0.1549	-0.1381 ± 0.2211
ϕ_2	0.0691	0.0657 ± 0.0472
ϕ_3	0.0391	0.0394 ± 0.0122
θ_1	0.3591	0.3423 ± 0.2212

Summary

- Implemented Serial Nelder-Mead in DML.
- Implemented Distributed Nelder-Mead in DML.
- Implemented CG in DML.
- Implemented BFGS in DML.
- Implemented L-BFGS in DML.
- Implemented GMRES in DML.
- Made useful observations to improve SystemML.

Thank You!

Preliminary results: X1157

Time step-1 hour

ARIMA(2,0,1)

	SystemML	R
ϕ_1	0.0442	0.0184 ± 0.0459
ϕ_2	0.4410	0.4636 ± 0.0389
θ_1	0.7626	0.787 ± 0.0367

$\mathsf{ARIMA}(3,0,1)$

	SystemML	R
ϕ_1	0.2588	0.2585 ± 0.0479
ϕ_2	0.1320	0.1323 ± 0.0398
ϕ_3	0.3413	0.3413 ± 0.0228
θ_1	0.4140	0.4143 ± 0.0481

