Birkhoff's Thm. Part 2

Lemma (6.5.13). Let C operation chane over finite domain, Σ set V identities over V. C satisfies Σ iff it satisfies every finite subset of Σ .

 τ -sent. of the form: $\forall \overline{x} \ f(\overline{x}) = g(\overline{x})$, fig turns

Recall: e satisfies set of identities T, if there is t-algebra A with $A \models E$ and $Clo(A) \stackrel{\sim}{=} e$.

Last time: C, D chown with C finite and CEK = PEK YK

>> PED.

"Cant D are

locally isomorphic"

Recall: $l_{\leq k}$ denotes subclone generated by $C^{(1)}u \cdots u C^{(k)}$.

If & and D are orbitrary chances, being boully romarphic does not imply being iromosphic:

Essential k-ary op. of $e: \{C_n: n \in \mathbb{N}_{\geq k}\}$. (And identity, if k=1) Essential k-ary op. of $D: \{c_n^{(k)}: n \in \mathbb{N}_{\geq k} \cup \{\infty\}\}$. (An id., if k=1) Moseover there is a single const. k-ary operation $O^{(k)}$ for all $k \in \mathbb{N}$

Essential operations of l, D:

```
e^{(1)}: id, c_{1}^{(1)}, c_{2}^{(1)}, c_{3}^{(1)}, ...
```

Essential k-any op. of $e: \{C_n: n \in \mathbb{N}_{\geq k}\}$. (And identity, if k=1) Essential k-any op. of $D: \{C_n^{(k)}: n \in \mathbb{N}_{\geq k} \cup \{\infty\}\}$. (An id., if k=1) Moseons there is a single const. k-any operation $O^{(k)}$ for all $k \in \mathbb{N}$

 $\frac{\text{Composition : } \cdot c_{N}^{(k)}(x_{1},...,x_{k}) = c_{N}^{(k)}(x_{\sigma(1)},...,x_{\sigma(k)}) \quad \forall n \geq k \; \forall \sigma \in S_{k}.}{(x_{1},...,x_{k-1}) \mapsto c_{N}^{(k)}(x_{i_{1}},...,x_{i_{k}}) = c_{N}^{(k-1)} \quad \forall n \geq k \; \text{if } \{i_{1},...,i_{k}\} = \{1,...,k-1\}}{(x_{1},...,x_{k-1}) \mapsto c_{N}^{(k)}(x_{i_{1}},...,x_{i_{k}}) = c_{N}^{(k)}(x_{1},...,x_{i_{k}}) = c_{N}^{(k)}(x_{1},...,x_{i_$

In $\mathcal{C}_{\underline{k}}$, $\mathcal{D}_{\underline{k}k}$ all c_n behave in the same way. So any biject. $\alpha: \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ with $\alpha|_{\{1,\dots,k-1\}} = \mathrm{id}$ induces isomosphism:

$$C_{\underline{c}k} \to D_{\underline{c}k}$$
, $C_{i} \mapsto C_{\alpha(i)}$.

⇒ e, D laally isomosphic.

Why C # D?

In D there is seq. of essential specations $(C_{\infty}^{(k)})_{k\in\mathbb{N}}$ with: $C_{\infty}^{(k+1)}(x_1,...,x_k,x_k) = C_{\infty}^{(k)}$, $\forall k$.

In ℓ those is no such chain. $\Rightarrow \ell \not\equiv D$.

Lemma (6.5.13). L'operation chane over finite domain, Σ set δb identities over T. E satisfies Σ iff it satisfies every finite subset of Σ . E is trivial. E: Let Σ be language of Σ (viewed as abstractione) together with const. symbol C_{Γ} for every $\Gamma \in \Gamma$ that appears somewhere in Σ . View Σ as an Σ -structure.

Let $T = Th_{\chi}(\mathcal{C})$. Let $S = \{\psi^{\dagger}(c_{f_1},...,c_{f_k}) : \forall \overline{x} \psi(\overline{x}) \in \mathbb{Z} \text{ built from } f_{(1,...,f_k \in \mathbb{Z})} \}$ Recall: $A \models \forall \overline{x} \psi(\overline{x}) \Leftrightarrow Clo(A) \models \psi^{\dagger}(f_1^A,...,f_k^A)$

Have: CETUF for all finite FSS. Compadrum: 3 IM ETUS.

Let $D := M|_{U_iM_i}$. Easy to check: D is an abstract chone s.t. $D \models S$. I.e. $D \in S$. I.e.

One can also check that: $P_{\leq k} \cong \mathcal{L}_{\leq k} \quad \forall k \quad (\text{Prason: then } M \cong N)$

e donc over finite domain ⇒ e = D.

Corollary (6.5.14) e, e clones. If e is the clone from a finite algebra, then there is clone homom. $e \to e$ iff for all pp-sentences e: $e \models e \to e$ e if e: By Cayley's Thm. e = clo(A) for some e-algebra e. Let e set of identities that hold in e. Given finite e e e with identities built from e: e e there is clone formula e: e

 $\forall \tau$ -algebras $B: B \models \Delta \Leftrightarrow Clo(B) \models \psi_{\Delta}^{\dagger}(\xi_{1}^{B},...,\xi_{k}^{B}).$

- \Rightarrow Clo(A) $\models \psi_{\Delta}^{\dagger}(b_{1},...,b_{k})$, so by assumption: $\mathcal{D} \models \exists x_{1},...,x_{k} \psi_{\Delta}^{\dagger}(x_{1},...,x_{n})$.
- \Rightarrow D satisfies \triangle ; previous Lemma implies, that D satisfies Σ . I.e. there is τ -algebra B with $D \cong Clo(B)$ and $B \models \Sigma$.
- \Rightarrow The natural homom. $Clo(A) \rightarrow Clo(B)$, $t \mapsto t$ emists.