COMP4109 Midterm 1 General Notes

William Findlay
October 11, 2019

1 Types of Cryptography

- symmetric key
 - ▶ shift ciphers
 - ▶ block ciphers
 - ▶ stream ciphers
- asymmetric key (public-private key)
- hashing
- protocols

2 Security Notions Models

- three components of a model
 - 1. attack model
 - ► ciphertext only attack (P) (COA)
 - attacker attempts to decrypt ciphertext to plaintext
 - ▶ known plaintext attack (P) (KPA)
 - attacker knows one or more plaintext-ciphertext pairs
 - ► chosen plaintext attack (A) (CPA)
 - attacker chooses a plaintext and encrypts it to receive ciphertext
 - ► chosen ciphertext attack (A) (CCA)
 - attacker chooses a ciphertext and decrypts it to receive plaintext
 - 2. security goal
 - ▶ (IND) indistinguishability
 - ciphertext should be indistinguishable from random string
 - ► (NM) non-malleability
 - cannot modify ciphertext so it decrypts to another plaintext that makes sense
 - 3. level of security
 - ▶ information theoretic
 - attacker has unlimited resources at their disposal
 - ► complexity theoretic
 - \circ attacker has resources bounded O(p) where p is the security parameter
 - ► computational (realistic)
 - $\circ~$ attacker has the resources of n computers
- two components of a notion
 - ▶ goal + attack model
 - ▶ e.g. IND-COA or NM-COA or IND-KPA, etc.

3 Unicity Distance

- expected minimum length of ciphertext needed to uniquely compute a secret key
- $\bullet \quad \frac{\log_2|K|}{R_L\log_2|P|}$
 - \blacktriangleright where R_L is redundancy of the language
 - ► R_{English} is about 0.75

4 Shift Ciphers

4.1 Caesar Cipher

- choose a key from $\mathbb{Z}_{|P|}$
- $c_i = p_i + k \mod |P|$

4.1.1 Strengths

• none really, this sucks

4.1.2 Weaknesses

- easy to brute force
- weak to frequency analysis

4.2 Affine Cipher

- choose any a and $b \mod 26$
 - ightharpoonup except $a \gcd(a,26)$ must be 1
- k = (a, b) where
 - $E_k(m) = (am + b) \bmod 26$
 - $D_k(c) = a^{-1}(c b) \mod 26$

4.2.1 Strengths

- better than caesar cipher
- two unknowns

4.2.2 Weaknesses

- use frequency analysis to solve for a and b
- not much better than Caesar really

4.3 Substitution Cipher

- permute P to get A
- sub P_i fo A_i

4.3.1 Strengths

• no strengths, don't use this

4.3.2 Weaknesses

- weak to CPA
- · weak to KPA
- · weak to COA
 - ► frequency analysis
 - ▶ exhaustive search won't work though

4.4 Vigenère Cipher

- choose some k_l as a plaintext string of length l
- encrypt $c_i = p_i + k_{i \mod l} \mod |P|$

4.4.1 Strengths

- much better than what we've seen so far
- if the length of the key is equal to the length of the message, very strong

4.4.2 Weaknesses

- can find candidate key lengths by factoring
- weak to frequency analysis
- multiple encryptions with same key opens up attacks

4.5 One-Time Pad

- like Vigenère except:
 - ▶ change key each time
 - ▶ perfect security if key length is equal to message length

4.5.1 Strengths

- perfect security for key length = message length
 - ▶ semantically secure in information theoretic security against COA

4.5.2 Weaknesses

- key can only be used one time
- key length the same as message length is kind of silly
 - ▶ why not just send the message over the secure channel in the first place
 - ▶ very long keys are impractical
- each key needs to be truly random
- · has malleability
 - ▶ no authentication, only confidentiality
- 5 Block Ciphers
- 6 Stream Ciphers
- 7 Hashing Functions
- 8 MACs