

Bikes vs Cars

Feladat neve	Bikes vs Cars
Időkorlát	5 másodperc
Memóriakorlát	1 gigabyte

Lundban a kerékpár is nagyon elterjedt közlekedési eszköz, de néha nehéz megoldani, hogy a szűk utcákon az autók és a kerékpárosok is elférjenek. A helyzet javítására a helyi kormányzó teljesen át akarja tervezni a helyi úthálózatot.

A városban N fontos helyszín van (0-tól N-1-ig sorszámozva), amelyek között az emberek gyakran közlekednek. Az emberek két helyszín között úgy közlekednek, hogy egy adott **útvonal**at követnek, ami az egyik helyszínről a másik helyszínre vezető **ut**ak sorozata. Egy jármű (autó vagy kerékpár) akkor közlekedhet egy útvonalon, ha az összes érintett úton a releváns sáv (autósáv illetve kerékpársáv) legalább olyan széles, mint maga a jármű. Minden megépítendő út két fontos helyszínt köt össze, és a minden út teljes szélessége W. Ez a szélesség tetszőlegesen felosztható autós sávra és kerékpársávra. Lundban néhány mérnök nemrégiben feltalálta a 0 szélességű kerékpárokat és autókat is (ezek 0 szélességű sávokon is közlekedhetnek).

A mérnökök megmérték a városban közlekedő autók és kerékpárok szélességét. Minden fontos helyszínpár esetében tudják, hogy melyik a legszélesebb autó és melyik a legszélesebb kerékpár, amelyiknek képesnek kell lennie arra, hogy a két helyszín között közlekedjen. A kormányzó azt is előírta, hogy a két helyszín között nem közlekedhetnek ezeknél az értékeknél szélesebb autók illetve kerékpárok.

A feladatban minden i,j helyszínpárhoz ($0 \le i < j \le N-1$) két értéket kapunk: $C_{i,j}$ -t és $B_{i,j}$ -t, az ott közlekedő legszélesebb autó és kerékpár szélességét.

A feladatunk az, hogy megtervezzük az N helyszínt összekötő úthálózatot. Az utak szélessége egységesen W, de minden s. út esetében eldönthetjük a kerékpársáv szélességét (b_s), ami már meghatározza az autósáv szélességét ($W-b_s$) is. Az úthálózatnak meg kell felelnie a következőknek:

- Lehetőséget kell biztosítani az összes helyszínpár közötti utazásra. Megjegyzés: ehhez szükség lehet 0 szélességű kerékpárra vagy autóra.
- Minden i, j helyszínpár esetében (ahol i < j) csak olyan utakon lehet közlekedni i és j között, amelyeknek a autós sávja legalább $C_{i,j}$ széles. Továbbá $C_{i,j}$ a legnagyobb érték,

- amely rendelkezik ezzel a tulajdonsággal, vagyis az i és j helyek közötti összes útvonalra érvényes, hogy legalább egy úton az autóssáv szélessége legfeljebb $C_{i,j}$.
- Minden i, j helyszínpár esetében (ahol i < j) csak olyan utcákon lehet közlekedni i és j között, amelyek kerékpársávjának szélessége legalább $B_{i,j}$. Valamint $B_{i,j}$ a legnagyobb érték, amely rendelkezik ezzel a tulajdonsággal.

Tudsz segíteni Lund kormányzójának az úthálózat megtervezésében? Mivel a költségvetés korlátozott, legfeljebb 2023 utat építhetsz. Több utat is építhetsz ugyanazon fontos helyszínek között, de nem köthetsz össze egy helyszínt önmagával. Minden út mindkét irányban használható.

Bemenet

A bemenet első sora két egész számot tartalmaz: N-t és W-t, a Lundban található fontos helyszínek számát és a megépíthető utak szélességét. A következő N-1 sor a $C_{i,j}$ értékeket tartalmazza. E sorok közül a j-edik sor tartalmaz minden olyan $C_{i,j}$ értéket, ahol i < j. Tehát az első sor csak a $C_{0,1}$ -t, a második a $C_{0,2}$ -t és a $C_{1,2}$ -t, a harmadik a $C_{0,3}$ -t, a $C_{1,3}$ -t és a $C_{2,3}$ -t és így tovább.

A következő N-1 sorban a $B_{i,j}$ értékek szerepelnek, ugyanabban a formátumban, mint a $C_{i,j}$ -k.

Kimenet

Ha nem lehet megépíteni a feltételeknek megfelelő utcahálózatot, akkor a kimenet egyetlen sora "NO" szöveget tartalmazza.

Egyébként a kimenet első sora az M egész számot, az építendő hálózat útjainak számát tartalmazza.

A következő M sor mindegyikébe pedig három egész számot írj ki: u-t, v-t és b-t, amelyek azt jelentik, hogy az u és a v helyszín között egy b szélességű kerékpársáv (és egy W-b szélességű autós sáv) legyen.

Legfeljebb 2023 utat használhatsz. A megépített utaknak meg kell felelniük a következő feltételeknek: $0 \le b \le W$, $0 \le u,v \le N-1$ és $u \ne v$. Több (esetleg különböző szélességű kerékpársávval rendelkező) utat is használhatsz ugyanazon fontos helyszínpárok között.

Ha több megoldás létezik, bármelyiket megadhatod.

Megkötések és pontozás

- 2 < N < 500.
- $1 \le W \le 10^6$.
- $0 \le C_{i,j}, B_{i,j} \le W$ minden $0 \le i < j \le N-1$ esetén.

A megoldásodat tesztesetek csoportjaira tesztelik, minden csoport előre meghatározott pontot ér. Minden csoportban különálló tesztesetek vannak. A tesztcsoportra kapható pontot akkor kapod meg, ha minden egyes tesztesetre helyes megoldást adsz.

Csoport	Pontszám	Korlátok
1	10	Minden $C_{i,j}$ azonos, és minden $B_{i,j}$ azonos, $N \leq 40.$
2	5	Minden $C_{i,j}$ azonos, és minden $B_{i,j}$ azonos.
3	17	$N \leq 40$
4	18	W=1
5	19	Minden $B_{i,j}$ azonos.
6	31	Nincs további megkötés.

Példa

Az első példában az út szélessége 1, és a 0 és 1 helyek között egy legalább 1 szélességű autósávra és egy legalább 1 szélességű kerékpársávra van szükségünk. A megoldásban két különálló út köti össze a helyszíneket, az egyik kerékpársávval, a másik autósávval.

A második példában az út szélessége ismét 1, és minden fontos helyszínpár között egy 1 széles kerékpársávval ellátott útnak kell lennie. Az 1. és a 2. helyszínek, és a 2. és a 3. helyszínek között van egy-egy olyan út, ahol az autósáv szélessége minden út esetében 1. Ez ellentmond annak a ténynek, hogy $C_{1,3}=0$, azaz az 1. és a 3. helyszínek között nem létezhet 1 szélességű autósáv, ami viszont előáll az előbb említett két utat egyszerűen összekapcsolásával. Így nem lehet az elvárásoknak megfelelő úthálózatot építeni.

A harmadik példában az alábbi úthálózat minden feltételt teljesít. Például a 0. és az 5. hely között kell lennie egy olyan útvonalnak, ahol az autóút minimális szélessége $1=C_{0,5}$ (pl. a 0-2-4-5 útvonalat követve), és egy olyan útvonalnak, ahol a kerékpárút minimális szélessége $3=B_{0,5}$ (pl. a 0-3-4-5 útvonalat követve). Ugyanakkor ellenőrizhető, hogy nincs olyan útvonal, aminek a

minimális szélessége ennél szélesebb lenne bármelyik összeköttetésnél. Megjegyezzük, hogy a harmadik mintára sok más megoldás is létezik.

Bemenet	Kimenet
2 1 1 1	2 0 1 0 0 1 1
4 1 0 0 1 0 0 1 1 1 1 1 1	NO
6 6 5 4 4 4 1 1 1 1 1 1 3 1 1 1 5 3 2 2 6 2 3 3 2 5 3 3 2 4 3 4	8 0 1 1 0 2 3 1 2 2 0 3 6 2 4 5 3 4 3 3 5 1 4 5 4