Import packages

[]	Ļ	1 (cel	l h	ida	len	1																											

Importing data

```
[ ] Ļ3 cells hidden
```

Locating None values

```
[ ] Ļ 2 cells hidden
```

Correct object numerical values

```
[ ] 以 5 cells hidden
```

Searching for Null/NaN values

```
[ ] Ļ3 cells hidden
```

Dropping unnecesary values

	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_built	b€
0	5300000.0	85637	-1.103.782	31.356.362	2154.00	5272.00	1941	
1	4200000.0	85646	-111.045.371	31.594.213	1707.00	10422.36	1997	
2	4200000.0	85646	-111.040.707	31.594.844	1707.00	10482.00	1997	
3	4500000.0	85646	-111.035.925	31.645.878	636.67	8418.58	1930	
4	3411450.0	85750	-110.813.768	32.285.162	3.21	15393.00	1995	

Double-click (or enter) to edit

Correlated variables

```
#Getting the correlation matrix of the data frame
plt.figure(figsize=(10,5))
c= df_drop.corr()
sns.heatmap(c,cmap="BrBG",annot=True)
c
```

	sold_price	zipcode	lot_acres	taxes	year_built	bedrooms	bathr
sold_price	1.000000	-0.047941	0.332954	0.023265	0.099163	0.114050	0.32
zipcode	-0.047941	1.000000	-0.128443	-0.001697	0.014823	0.040643	-0.05
lot_acres	0.332954	-0.128443	1.000000	-0.000569	-0.067181	0.069806	0.05
taxes	0.023265	-0.001697	-0.000569	1.000000	-0.004180	0.005146	0.00
year_built	0.099163	0.014823	-0.067181	-0.004180	1.000000	-0.183764	-0.05
bedrooms	0.114050	0.040643	0.069806	0.005146	-0.183764	1.000000	93.0
bathrooms	0.326405	-0.056332	0.055510	0.008946	-0.051401	0.687501	1.00
sqrt_ft	0.524503	-0.007799	0.107511	0.037633	-0.057688	0.548193	0.66
garage	0.095537	0.092184	-0.070652	0.005666	0.322810	0.038145	90.0
fireplaces	0.384310	-0.018166	0.086382	0.022548	-0.127501	0.145279	0.22
HOA	-0.050562	-0.053586	0.087258	-0.009001	-0.305000	0.147353	30.0

Searching for outliers

```
#Getting the box plots of all numerical variables

df=df_drop

print(df.shape)

sns.boxplot(x=df['sqrt_ft'])

#sns.boxplot(x=df['sold_price'])

#sns.boxplot(x=df['lot_acres'])

#sns.boxplot(x=df['taxes'])

#sns.boxplot(x=df['bedrooms'])

#sns.boxplot(x=df['year_built'])

#sns.boxplot(x=df['garage'])

#sns.boxplot(x=df['fireplaces'])

plt.show()
```

```
(4973, 15)
```



```
##Getting an IQR analysis
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

sold_pric	e :	252500.00
zipcode		32.00
lot_acres	;	1.17
taxes		3283.00
year_buil	.t	19.00
bedrooms		1.00
bathrooms	;	1.00
sqrt_ft		1084.00
garage		1.00
fireplace	.s	2.00
HOA		2005.00

dtype: float64

```
#Based on the plots, we eliminate the significant outliers
df = df[~(df['garage'] > 15)]
df = df[~(df['bathrooms'] == 00)]
df = df[~(df['bathrooms'] > 20)]
df = df[~(df['bedrooms'] > 15)]
df = df[~(df['taxes'] ==0)]
```

```
df.shape
```

(4942, 17)

```
df = df[~(df['lot_acres'] > 500)]
df = df[~(df['lot_acres']==0)]
```

#Plotting in a heat map the correlation matrix once again we notice the following beahvior
plt.figure(figsize=(10,5))
c= df.corr()
sns.heatmap(c,cmap="BrBG",annot=True)

┌ҙ <matplotlib.axes._subplots.AxesSubplot at 0x7f16e76bff50>

Encoding Kitchen features and floor covering

[] I, 4 cells hidden

✓ 0s completed at 5:01 PM