Design and Analysis of Algorithms

L37: Traveling Salesman Problem Dynamic Programming

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - Sec 5.1, 5.2, 5.4, 5.8, <u>5.9</u>
- Text book 1: Levitin
 - -Sec 8.2-8.4
- RI: Introduction to Algorithms
 - Cormen et al.
- https://onlinelibrary.wiley.com/doi/full/10.1002/net.21864
- https://www.youtube.com/watch?v=-JjA4BLQyqE
- https://www.tutorialspoint.com/design_and_analysis_of_algorithms_travelling_salesman_problem.htm

Travelling Salesman Problem

- Known as Held-Karp algorithm
 - Proposed in 1962 to solve TSP
- TSP problem:
 - Find a tour of all cities in a country (assuming all cities are reachable)
 - The tour should visit each city only once
 - Tour should end at starting city, and
 - Tour should be of minimum distance. (cost)

Example 1:TSP problems

- You are organizing a function at your home and you would like to invite your friends for the same.
 - Starting from your home, you need to visit each friend's house to personally invite.
 - The route/distance from one house to another house is known.
 - The up and down time taken to travel between two houses is not same i.e. depends upon travel direction
 - e.g. some one way roads, pot-holed roads etc
- Goal: Find the shortest (time) route.

Example 2:TSP problems

- A robotic arm needs to tighten the screw/bolts on a machine.
 - There are different points where screw/bolts needs to be tightened
 - Robotic arm can reach from any screw/bolt position to another screw/bolt position.
 - The time taken to tighten to a bolt is constant so can be ignored. Time taken by robotic arm varies.
 - Interested in time taken by robotic arm when moving
- Goal: Find the optimal path for robot arm to tighten all the bolts and return to its start point.

TSP Problem

- Given directed graph G = (V, E) with n > 1 edges,
 - Cost of each directed edge (i,j) is given as $C_{ij} \ge 0$
 - Cost is considered as ∞ when edge is not defined
 - A tour of G is a directed simple cycle that includes every vertex in the graph
 - The cost of a tour is the sum of cost of edges on the tour.
 - Traveling Salesman Problem is to find the tour of minimum cost.
- For simplicity, we assume tour starts at v=1

TSP Problem

- Brute force approach
 - Enumerate all permutations of n nodes
 - Compute the cost corresponding to each permutation
 - Find the permuation with minimum cost.
 - Time complexity: (n!)
- TSP is an NP-Hard problem
 - Can we do better though still exponential, e.g. \circ (2n) \circ (nn) > \circ (n!) > \circ (2n)
 - Subset problems are easier compared to permutations
 - k^n is always better than n! (for n>k).
 - Subset problem leads to dynamic programming approach

TSP Problem: Dynamic Programming

- Let start vertex s=1, and thus tour ends at 1 too.
- Every tour consists of
 - An edge e_{1k} , for some $k \in V \{1\}$, and
 - A path from k to 1 going thru each vertex v in V exactly once other than k and 1 i.e. $v \in V \{1, k\}$.
- If the tour is optimal, then
 - path from k to 1 must be a shortest path going thru all vertices in $V \{1, k\}$.
 - Essentially, principle of optimality holds

TSP Problem: Dynamic Programming

- g(i,S): denotes the length of shortest path
 - starting from vertex i,
 - going thru all vertices in S
 - terminating at vertex 1.
- Goal: compute g (1, V-{1})
 - denotes the length of optimal salesperson tour
- Principle of optimality:

```
g(1, V-\{1\}) = \min_{2 \le k \le n} \{c_{1k}+g(k, V-\{1, k\})\}....(1)
```

Generalizing above for i∉S

$$g(i, S) = \min_{j \in S} \{c_{ij} + g(j, S - \{j\})\}$$
(2)

• Solving g (1, V-{1}) requires to solve g (k, V-{1, k}) for all $k\neq 1$

TSP Problem: Dynamic Programming

- $g(i,\emptyset)$ implies shortest path from node i to 1
 - thru an empty set of vertices in \emptyset , i.e.
 - without going thru any vertex
- Thus, $g(i,\emptyset) = c_{i1}, 1 \le i \le n$.
- Using eq (2), we can compute g(i, S) for all S of size 1.
- Thus, then we can compute g(i, S) for all S with |S|=2, and so on
- When, |S| < n-1, then the values of i and S for which g(i, S) is needed are such that $i \ne 1, 1 \not\in S$, and $i \not\in S$.
- Tour construction requires that we maintain node j that minimizes g(i,S) i.e. $\min_{j \in S} \{c_{ij}+g(j,S-\{j\})\}$
 - Let J(i,S) denote this value

TSP Example: Computation

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

- Goal: $q(1, V-\{1\})$
- Power set of {2,3,4}
 Ø, {2}, {3}, {4},
 {2,3}, {2,4}, {3,4}

$$g(1,\emptyset) = c_{11} = 0$$

$$g(2,\emptyset) = c_{21} = 5$$

$$g(3,\emptyset) = c_{31} = 6$$

$$g(4,\emptyset) = c_{41} = 8$$

Compute
$$g(i, S)$$
, for $|S|=1$

$$g(2, {3})=c_{23}+g(3,\emptyset)=9+6=15$$

$$g(2, \{4\}) = c_{24} + g(4, \emptyset) = 10 + 8 = 18$$

$$g(3, \{2\}) = c_{32} + g(2,\emptyset) = 13 + 5 = 18$$

$$g(3, \{4\}) = c_{34} + g(4,\emptyset) = 12 + 8 = 20$$

$$g(4, \{2\}) = c_{42} + g(2, \emptyset) = 8 + 5 = 13$$

$$g(4, \{3\}) = c_{43} + g(3, \emptyset) = 9 + 6 = 15$$

$$J(2, {3})=3, J(2, {4})=4, J{3, {2}}=2$$

$$J(3, {4}) = 4, J(4, {2}) = 2, J(4, {3} = 3)$$

TSP Example: Computation

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

```
g(2, \{3\}) = 15, g(2, \{4\}) = 18, g(3, \{2\}) = 18, g(3, \{4\}) = 20, g(4, \{2\}) = 13, g(4, \{3\}) = 15

Compute g(i, S), for |S| = 2

g(2, \{3, 4\}) = \min\{c_{23} + g(3, \{4\}), c_{24} + g(4, \{3\})\}

= \min\{9 + 20, 10 + 15\} = 25 J(2, \{3, 4\}) = 4

g(3, \{2, 4\}) = \min\{c_{32} + g(2, \{4\}), c_{34} + g(4, \{2\})\}

= \min\{13 + 18, 12 + 13\} = 25 J(3, \{2, 4\}) = 4

g(4, \{2, 3\}) = \min\{c_{42} + g(2, \{3\}), c_{43} + g(3, \{2\})
```

 $=\min\{8+15, 9+18\} = 23$ $J(2, \{3, 4\})=3$

TSP Example: Computation

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

```
g(2, {3,4}) = 25, g(3, {2,4}) = 25, g(4, {2,3}) = 23, 

Compute g(i,S), for |S| = 3

g(1, {2,3,4}) = 

min\{c_{12}+g(2, {3,4}), c_{13}+g(3, {2,4}), c_{14}+g(4, {2,3})\}

=min\{10+25, 15+25, 20+23\}

=35

J(1, {2,3,4}) = 2
```

• Thus, the optimal tour has length 35.

TSP Example: Tour Construction

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

Knowing
$$J(1, \{2, 3, 4\}) = 2$$
,
 $J(2, \{3, 4\}) = 4$, and
 $J(4, \{3\}) = 3$

The optimal tour is 1, 2, 4, 3, 1.

Complexity Analysis

- For the n vertices in the graph,
 - There are 2ⁿ subsets.
- For each subset, two kind of work is done
 - Addition (costs), comparison (to find minimum).
- Computation for each subset
 - go thru each vertex once to find the min cost path
 - for each vertex, check which is the right vertex before it.
 - Thus, work done n².
- Total time complexity: $O(n^22^n)$.

Summary

- Understanding TSP problem
- Application of Dynamic Programming
- Complexity analysis