Seasonality

Time Series: Basics

Data: Y_t , where t indexes time, e.g. minute, hour, day, month

Model: $Y_t = m_t + s_t + X_t$

 m_t is a trend component;

 s_t is a seasonality component with known periodicity d ($s_t = s_{t+d}$) such that $\sum_{j=1}^{d} s_j = 0$

 X_t is a stationary component, i.e. its probability distribution does not change when shifted in time

Approach: m_t and s_t are first estimated and subtracted from Y_t to have left the stationary process X_t to be model using time series modeling approaches.

Time Series: Seasonality

- Elimination of Seasonality when there is no Trend
- 1. Estimate seasonality and remove it, or
- 2. Difference the data to remove the seasonality directly.

Seasonality Estimation Methods

- 1. Seasonal Average
- 2. Parametric Regression
 - Fit a mean for each seasonality group (e.g. month) using linear regression
 - Use a cosine-sin curve to fit the seasonal component

Seasonality: Averaging

For k = 1, 2, ..., d, compute the average w_k of

 ${Y_{k+jd}, with \ k+jd \ in \ the \ time \ domain}$

Seasonality: Seasonal Means Model

- Model: $Y_t = \mu + s_t + X_t$ with $\sum_{j=1}^d s_j = 0$
- Approach: Fit a mean for each seasonality group (e.g. month) using linear regression
- ANOVA model: Group k: Y_t for t = k + jd
- Dummy Variables: $C_k = 1$ if t = k + jd and 0 otherwise
- Fit a linear regression model with d-1 dummy variables if a model with intercept or with d dummy variables if a model without intercept

Seasonality: Cosine-Sine Model

Model: $Y_t = \mu + s_t + X_t$ with $\sum_{j=1}^d s_j = 0$

Approach: Assume $s_t = \beta \cos(2\pi f t + \varphi)$ where β is the amplitude, f is the frequency (1/f is the period) and φ is the phase (sets the set the arbitrary origin on the time axis).

- $s_t = \beta \cos(2\pi f t + \varphi) = \beta_1 \cos(2\pi f t) \beta_2 \sin(2\pi f t)$ with $\beta_1 = \beta \cos(\varphi)$ and $\beta_2 = \beta \sin(\varphi)$
- Fit a linear regression: $Y_t \sim \beta_1 \cos(2\pi f t) \beta_2 \sin(2\pi f t)$ where β_1 and β_2 regression coefficients
- If seasonality has multiple frequencies (e.g. month, week), we can use different values of f (two predicting variables for each f)

Time Series: Trend & Seasonality

Step 1. Estimate the trend \widehat{m}_t for $t = q + 1 \dots n - q$

Step 2. Estimate seasonal components:

For k = 1, 2, ..., d, compute the average w_k of

$$\left\{ x_{k+jd} - \widehat{m}_{k+jd}, q < k + jd \le n - q \right\}$$

Then
$$\hat{s}_k = w_k - \frac{1}{d} \sum_{j=1}^{d} w_j$$

Step 3. Re-estimate the trend from the "deseasonalized data"

$$d_t = x_t - \hat{s}_t$$

A new set of estimates \widehat{m}_t of the trend based on the deseasonalized data.

Time Series: Trend & Seasonality (cont'd)

Seasonality: Set the predicting variables

- Dummy variables for the seasonal effects (ANOVA)
- Cosine and sine variables

Trend: Set the approach

- Parametric Regression: Polynomial predicting variables
- Nonparametric Regression

Trend and Seasonality: Joint modeling

- Linear regression: Seasonality predicting variables and polynomial predicting variables in t
- Semiparametric Regression: Nonparametric model for the trend with linear predicting variables for seasonality

Time Series: Trend & Seasonality (cont'd)

• Define
$$\nabla_d Y_t = Y_t - Y_{t-d} = (1 - B^d)Y_t$$

Then apply the differencing operator

•
$$\nabla_d Y_t = \nabla_d m_t + \nabla_d s_t + \nabla_d X_t$$

$$= m_t - m_{t-d} + s_t + s_{t-d} + X_t - X_{t-d}$$

•
$$= m_t - m_{t-d} + X_t - X_{t-d}$$

deseasonalized data.

This method is recommended when the time series is observed over a long period of time to allow for differencing over long periodicities/seasonality