Abstract Algebra by Pinter, Chapter 28

Amir Taaki

Abstract

Chapter 28 on Vector Spaces

Contents

1	A. Examples of Vector Spaces	2
	.1 Q1	2
	.2 Q2	2
	.3 Q3	2
	.4 Q4	2
า	P. Francis of Subspaces	3
2	3. Exmples of Subspaces	3
	.1 Q1	
	.2 Q2	3
	.3 Q3	3
	.4 Q4	3
	.5 Q5	3
	.6 Q6	3
3	C. Examples of Linear Independence and Bases	3
	.1 Q1	3
	.2 Q2	3
	.3 Q3	4
	.4 Q4	4
	.5 Q5	4
	3.5.1 a	4
	3.5.2 b	4
	.6 Q6	4
	.7 Q7	4
	.8 Q8	4
		_
4	D. Properties of Subspaces and Bases	5
	.1 Q1	5
	.2 Q2	5
	.3 Q3	5
	.4 Q4	5
	.5 Q5	5
	.6 Q6	5
	.7 Q7	5
	.8 Q8	5
5	E. Properties of Linear Transformations	5
_	.1 Q1	5
	.2 Q2	6
	.3 Q3	6
	.4 Q4	6
	.5 Q5	6
	.6 Q6	6
		•
	.7 Q7	6

	F.]																																				
	6.1		Q	L																								 				 					
	6.2		Q_2^2	2																								 				 					
	6.3																																				
	6.4																																				
7	$\mathbf{G}.$	\mathbf{S}	ur	ns	of	V	e	ct	O	r	\mathbf{S}	р	\mathbf{a}	c€	s																						
	G. 7.1																															 					
	$7.1 \\ 7.2$		Q Q	2								•																 				 					
	7.1		Q: Q: Q:	2																												 					

1 A. Examples of Vector Spaces

1.1 Q1

$$\mathbf{a} = (a_1, \dots, a_n), \mathbf{b} = (b_1, \dots, b_n)$$

$$\mathbf{a} + \mathbf{b} = (a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$$

$$k\mathbf{a} = k(a_1, \dots, a_n) = (ka_1, \dots, ka_n)$$

$$k(\mathbf{a} + \mathbf{b}) = k[(a_1, \dots, a_n) + (b_1, \dots, b_n)]$$

$$= k(a_1 + b_1, \dots, a_n + b_n)$$

$$= (ka_1 + kb_1, \dots, ka_n + kb_n)$$

$$= (ka_1, \dots, ka_n) + (kb_1, \dots, kb_n)$$

$$= k\mathbf{a} + k\mathbf{b}$$

$$(k+l)\mathbf{a} = ((k+l)a_1, \dots, (k+l)a_n)$$

$$= (ka_1 + la_1, \dots, ka_n + la_n)$$

$$= (ka_1, \dots, ka_n) + (la_1, \dots, la_n)$$

$$= k\mathbf{a} + l\mathbf{b}$$

$$k(l\mathbf{a}) = k(la_1, \dots, la_n) = (kla_1, \dots, kla_n)$$

= $(kl)\mathbf{a}$

 $1\mathbf{a} = \mathbf{a}$

1.2 Q2

$$[f+g](x) = f(x) + g(x)$$
$$[af](x) = af(x)$$

All the vector space rules are obeyed.

1.3 Q3

 \mathcal{P}^{\uparrow} is trivially easy to show it obeys the vector space rules.

1.4 Q4

Same for $\mathcal{M}_2(\mathbb{R})$.

2 B. Exmples of Subspaces

2.1 Q1

 $U = \{(a, b, c) : 2a - 3b + c = 0\}$ and let $\mathbf{u} = (a_1, b_1, c_1), \mathbf{v} = (a_2, b_2, c_2) \in U$, then $\mathbf{u} + \mathbf{v} \implies 2a_1 - 3b_1 + c_1 = 2a_2 - 3b_2 + c_2 = 0 \implies 2(a_1 + b_1) - 3(b_1 + b_2) + (c_1 + c_2) = 0 \implies (\mathbf{u} + \mathbf{v}) \in U$. Also $k\mathbf{v} = (ka, kb, kc)$ and $2ka - 3kb + kc = 0 \implies k\mathbf{v} \in U$.

2.2 Q2

Let $\mathbf{u}, \mathbf{v} \in U$, then $\mathbf{u} + \mathbf{v}$ satisfies the conditions, and hence is also in U. Thus U is a closed subspace.

2.3 Q3

For any two functions in $\mathcal{F}(\mathbb{R})$, then $f(1) = 0, g(1) = 0 \implies (f+g)(1) = 0$.

2.4 Q4

Two functions which are constant on the interval [0,1] when summed will still be constant, hence it is a closed subspace.

2.5 Q5

 $f(x) = f(-x), g(x) = g(-x) \implies (f+g)(x) = (f+g)(-x)$. Likewise for odd functions.

2.6 Q6

$$f(x) = a_0x + \dots + a_nx^n, g(x) = b_0 + \dots + b_nx^n, f(x) + g(x) = (a_0 + b_0) + \dots + (a_n + b_n)x^n.$$

3 C. Examples of Linear Independence and Bases

3.1 Q1

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = k \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} + l \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} + m \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$0 = k \cdot 0 + l \cdot 0 + m \cdot 1 = m \cdot 1$$

$$\implies m = 0$$

$$0 = k \cdot 0 + l \cdot 1 + m \cdot 1 = l \cdot 1$$

$$\implies l = 0$$

$$0 = k \cdot 1 + l \cdot 1 + m \cdot 1 = k \cdot 1$$

$$\implies k = 0$$

$$1 = k \cdot 1 + l \cdot 1 + m \cdot 1$$

$$= 0 \cdot 1 + 0 \cdot 1 + 0 \cdot 1$$

$$= 0 \neq 1$$

Contradiction.

3.2 Q2

 $a \neq kb$, they are linearly independent. With c = (0, 1, 0, 0) and d = (0, 0, 1, 0) and the vectors, then any element of \mathbb{R}^4 can be represented.

3.3 Q3

$$(1,0,0) = (2,1,1) - (1,1,1)$$
$$(0,1,0) = (1,2,1) - (1,1,1)$$
$$(0,0,1) = (1,1,2) - (1,1,1)$$

Every vector of \mathbb{R} is a linear combination of these vectors

$$\{(1,1,1),(2,1,1),(1,2,1),(1,1,2)\}$$

Since $(1,1,1) = \frac{1}{3}[(2,1,1) + (1,2,1) + (1,1,2)]$, so $\{(2,1,1), (1,2,1), (1,1,2)\}$ is a basis of \mathbb{R}^3 .

3.4 Q4

Any a(x) is a linear combo of elements from $\{1, x, \ldots, x^n\}$. Another basis is $\{k, \ldots, kx^n\}$.

3.5 Q5

3.5.1 a.

There are three variables so the third can be calculated from the first two.

Let x = 1, y = 1, then 3 - 2 + z = 0 or z = -1, so one value of S_1 is (1, 1, -1). Now let x = 0, y = 1, then z = 2 or (0, 1, 2). Both (1, 1, -1) and (0, 1, 2) are linearly independent. That is for any k

$$k_1(1,1,-1) + k_2(0,1,2) \neq 0$$

$$\forall \mathbf{v} = (x, y, z) \in S_1, \exists k_1, k_2 \in \mathbb{R} : \mathbf{v} = k_1(1, 1, -1) + k_2(0, 1, 2)$$

$$\iff \begin{cases} x = k_1 \\ y = k_1 + k_2 \\ z = -k_1 + 2k_2 \end{cases}$$

For each choice of k_1, k_2 above, the equations always have a unique solution.

3.5.2 b.

$$(x+y-z) + (2x - y + z) = 0$$

$$\implies x = 0$$

$$\implies y = z$$

Basis is therefore (0, 1, 1).

3.6 Q6

According to this answer, it is simply any basis for \mathbb{R}^3 such as (0,0,1),(0,1,0),(1,0,0).

$3.7 \quad Q7$

$$\cos 2x = \cos^2 x - \sin^2 x$$

Thus dimension of U is 2.

Since U is a subspace of $\mathcal{F}(\mathbb{R})$ thus the basis is $(\cos^2 x, \sin^2 x)$.

3.8 Q8

Seems that the given vectors are all independent and cannot be reduced, hence they are also the basis.

4 D. Properties of Subspaces and Bases

4.1 Q1

U is a subspace of V, then U has a basis the size of dim U. Since the basis consists of vectors from V, so the basis of U must have fewer or equal elements to the basis of V.

$$\dim U < \dim V$$

4.2 Q2

 $\dim U = \dim V \implies$ they both have basis of matching length \implies they are basis for the same vector space.

4.3 Q3

$$k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2 + \dots + k_n \mathbf{a}_n = 0 : k_i \neq 0 \implies k_1 \mathbf{a}_1 = -(k_2 \mathbf{a}_2 + \dots + k_n \mathbf{a}_n)$$

4.4 Q4

If $\mathbf{a} \neq \mathbf{0}$, then $k\mathbf{a} = 0 \implies k = 0$.

4.5 Q5

$$\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}, k_1\mathbf{a}_1+\cdots+k_n\mathbf{a}_n\neq\mathbf{0} \implies k_1\mathbf{a}_1+\cdots+k_i\mathbf{a}_i\neq\mathbf{0}$$

because otherwise if $k_{i+1} = \cdots = k_n = 0$, then not all k in $k_1 \mathbf{a}_1 + \cdots + k_n \mathbf{a}_n$ are zero yet it equals $\mathbf{0}$. So any subset of an independent set is also independent.

A set of dependent vectors still remains dependent when contained in a larger set because

$$k_1\mathbf{a}_1 + \dots + k_n\mathbf{a}_n + 0b_1 + \dots + 0b_n = \mathbf{0}$$

4.6 Q6

$$k(\mathbf{a} + \mathbf{b}) + l(\mathbf{b} + \mathbf{c}) + m(\mathbf{a} + \mathbf{c}) = \mathbf{0}$$

$$k\mathbf{a} + k\mathbf{b} + l\mathbf{b} + l\mathbf{c} + m\mathbf{a} + m\mathbf{c} = \mathbf{0}$$

$$(k+m)\mathbf{a} + (k+l)\mathbf{b} + (l+m)\mathbf{c} = \mathbf{0}$$

$$\implies k+m = k+l = l+m = 0$$

So $\{a + b, b + c, a + c\}$ is linearly independent as well.

4.7 Q7

Both have the same number of elements so we just need to show that it is linearly independent to prove it's a basis of V.

 $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ is a basis and so is linearly independent. Thus multiply the elements by k, they remain linearly independent.

4.8 Q8

V is spanned by $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ so every vector in V including $\{\mathbf{b}_1, \dots, \mathbf{b}_m\}$ is a linear combo of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$. Argument also works both ways.

5 E. Properties of Linear Transformations

5.1 Q1

$$\mathbf{a}, \mathbf{b} \in U : h(\mathbf{a}) = h(\mathbf{b}) = \mathbf{0} \implies \mathbf{a}, \mathbf{b} \in \ker h$$

 $\implies h(\mathbf{a}) + h(\mathbf{b}) = \mathbf{0} = h(\mathbf{a} + \mathbf{b})$
 $\implies \mathbf{a} + \mathbf{b} \in \ker h$

so $\ker h$ is a subspace of U.

5.2 Q2

$$k_a h(\mathbf{a}) + k_b h(\mathbf{b}) = h(k_a \mathbf{a} + k_b \mathbf{b}) \in \operatorname{ran} h$$

5.3 Q3

 $\ker h = \{\mathbf{0}\} \implies h(\mathbf{a}) = \mathbf{0} \text{ then } a = \mathbf{0} \implies h(\mathbf{a}) = h(\mathbf{b}) = \mathbf{0} \text{ then } \mathbf{a} = \mathbf{b} \text{ and so } h \text{ is injective.}$

Likewise if h is injective then $h(\mathbf{a}) = h(\mathbf{0}) \implies \mathbf{a} = 0$, thus ker $h = \{\mathbf{0}\}$.

5.4 Q4

$$\mathbf{a} \in \mathcal{N} \implies \mathbf{a} = k_1 \mathbf{a}_1 + \dots + k_r \mathbf{a}_r$$

 $h(\mathbf{a}) = \mathbf{0} = k_1 h(\mathbf{a}_1) + \dots + k_r h(\mathbf{a}_r)$

$$b \in U \implies \mathbf{b} = k_1 \mathbf{a}_1 + \dots + k_r \mathbf{a}_r + k_{r+1} \mathbf{a}_{r+1} + \dots + k_n \mathbf{a}_n$$

$$\implies h(\mathbf{b}) = (k_1 h(\mathbf{a}_1) + \dots + k_r h(\mathbf{a}_r)) + k_{r+1} h(\mathbf{a}_{r+1}) + \dots + k_n h(\mathbf{a}_n)$$
$$= \mathbf{0} + k_{r+1} h(\mathbf{a}_{r+1}) + \dots + k_n h(\mathbf{a}_n)$$

5.5 Q5

If $\{h(\mathbf{a}_{r+1}), \dots, h(\mathbf{a}_n)\}$ is linearly independent, then $k_{r+1}h(\mathbf{a}_{r+1}) + \dots + k_nh(\mathbf{a}_n) = \mathbf{0} \implies k_{r+1} = \dots = k_n$.

If the vector is dependent, then there is a combination of the vectors that equals $\mathbf{0}$ and so they are part of the null space.

5.6 Q6

The vectors from r+1 to n are linearly independent, and span \mathcal{R} , so they are also a basis. Since they are a basis, the number of vectors is n-r and this is also the dimension of $\mathcal{R} = \operatorname{ran} h$.

5.7 Q7

Null space of h is r and ranh is n-r, so total is n, which is the domain of h.

5.8 Q8

If h is injective, then every element of U maps to a single element of V. Thus the codomain dimension is higher or equal to the domain's. They are equal so therefore h is surjective.

Likewise if h is surjective, then every element contains a preimage in the domain. The value $\mathbf{0} \in V$ has a single preimage so the nullspace is $\{\mathbf{0}\}$ and the range of h is n-1. Thus the domain dimension is n, and so the function is injective since domain and codomain are equal.

6 F. Isomorphism of Vector Spaces

6.1 Q1

$$k_1h(\mathbf{a}_1) + \dots + k_rh(\mathbf{a}_r) = \mathbf{0} = h(k_1\mathbf{a}_1 + \dots + k_r\mathbf{a}_r)$$

since h is injective, then the null space is $\{0\}$.

$$k_1\mathbf{a}_1 + \dots + k_r\mathbf{a}_r = \mathbf{0}$$

but $\{\mathbf{a}_1, \dots, \mathbf{a}_r\}$ is linearly dependent so

$$k_1 = \dots = k_r = 0$$

so $\{h(\mathbf{a}_1,\ldots,h(\mathbf{a}_r))\}$ is linearly independent.

6.2 Q2

Looking from google the dimension of a null space which is $\{0\}$ is 0 since it has no basis.

From 28E7

$$\dim U = \dim \mathcal{N} + \dim (\operatorname{ran} h)$$
$$= 0 + (r - 0)$$
$$= r$$

since h is injective and dim $(\operatorname{ran} h) = r$.

Likewise if the range of h is $r = \dim U$, then the kernel of h is a single element and the quotient group has the same structure as U.

6.3 Q3

Either h maps to $\{0\}$ or h is isomorphic.

If h is injective (every image of h has a single preimage) or surjective (every element of V has a preimage for h), then because $\dim U = \dim V$, then h is an isomorphism.

6.4 Q4

$$V = \{k_1 \mathbf{a}_1 + \dots + k_n \mathbf{a}_n : k_i \in F\}$$

where $\{a_1, \ldots, a_n\}$ is the basis of V. Which is all the possible n-dimensional vectors over F.

$$V \cong F^n$$

7 G. Sums of Vector Spaces

7.1 Q1

T+U and $T\cap U$ are closed with respect to addition and scalar multiplication.

Let $\mathbf{a} \in T \cap U$, $k \in F$, then

$$k\mathbf{a} \in T, k\mathbf{a} \in U$$

7.2 Q2

For every $\mathbf{c} \in V$, $\mathbf{c} = \mathbf{a} + \mathbf{b} : \mathbf{a} \in T$, $\mathbf{b} \in U \implies V = T + U$.

Since **c** is uniquely expressible in terms of **a** and **b** then this means $T \cap U = \{0\}$.

This works both ways. If every element of V is expressed as T + U and $T \cap U = \{0\}$ then every element $\mathbf{c} = \mathbf{a} + \mathbf{b}$.

7.3 Q3

T has a basis $T=(\mathbf{t}_1,\ldots,\mathbf{t}_k)$ and since T is a subspace of V, this can be extended to $V=(\mathbf{t}_1,\ldots,\mathbf{t}_k,\mathbf{u}_1,\ldots,\mathbf{u}_{n-k})$. It is easily seen that $(\mathbf{u}_1,\ldots,\mathbf{u}_{n-k})$ forms an independent basis and so

$$\mathbf{v} = a_1 \mathbf{t}_1 + \dots + a_k \mathbf{t}_k + b_1 \mathbf{u}_1 + \dots + b_{n-k} \mathbf{u}_{n-k}$$
$$= (a_1 \mathbf{t}_1 + \dots + a_k \mathbf{t}_k) + (b_1 \mathbf{u}_1 + \dots + b_{n-k} \mathbf{u}_{n-k})$$

$$\implies$$
 $\mathbf{v} = \mathbf{t}' + \mathbf{u}'$

7.4 Q4

$$T = T \cap U + T \cap U^c$$

$$U = T \cap U + U \cap T^c$$

$$T + U = T \cap U + T \cap U^c + U \cap T^c$$

$$\dim T = \dim(T \cap U) + \dim(T \cap U^c)$$
$$\dim U = \dim(T \cap U) + \dim(U \cap T^c)$$

$$\dim(T+U) = \dim(T\cap U) + (\dim T - \dim(T\cap U)) + (\dim U - \dim(T\cap U))$$

= \dim T + \dim U - \dim(T\cap U)