Solutions to Test 1

18.303 Linear Partial Differential Equations

Matthew J. Hancock

Oct. 20, 2006

1 Rules

You may only use pencils, pens, erasers, and straight edges. No calculators, notes, books or other aides are permitted. Scrap paper will be provided.

Be sure to show a few key intermediate steps when deriving results - answers only will not get full marks.

2 Given

You may assume the eigenvalues of the Sturm-Liouville problem

$$X'' + \lambda X = 0,$$
 $0 < x < 1$
 $X(0) = 0$ $X(1) = 0$

are $\lambda_n = n^2 \pi^2$ and $X_n(x) = \sin(n\pi x)$, for n = 1, 2, ..., without derivation.

You may also assume the following orthogonality conditions for m, n positive integers:

$$\int_0^1 \sin(m\pi x) \sin(n\pi x) dx = \begin{cases} 1/2, & m = n \neq 0, \\ 0, & m \neq n. \end{cases}$$

$$\int_0^1 \cos(m\pi x) \cos(n\pi x) \, dx = \begin{cases} 1/2, & m = n \neq 0, \\ 0, & m \neq n. \end{cases}$$

3 Question

Consider the following heat problem in dimensionless variables

$$u_t = u_{xx} - bx, 0 < x < 1, t > 0$$

 $u(0,t) = 0, u(1,t) = 0, t > 0$
 $u(x,0) = u_0 0 < x < 1,$

where b > 0 and $u_0 > 0$ are constants. This is the heat equation with a negative source (i.e. extracting heat from the rod).

(a) [3 points] Derive the steady-state (equilibrium) solution

$$u_E(x) = \frac{b}{6}x\left(1 - x^2\right)$$

It is insufficient to simply verify that the solution works.

Solution: The steady-state solution satisfies the PDE and BCs,

$$0 = u_E'' - bx$$

$$u_E(0) = 0 = u_E(1)$$

Integrating the ODE for u_E gives

$$u_E(x) = \frac{b}{6}x\left(x^2 - 1\right)$$

(b) [3 points] Using $u_E(x)$, transform the given heat problem for u(x,t) into the following problem for a function v(x,t):

$$v_t = v_{xx}, \quad 0 < x < 1, \quad t > 0$$
 $v(0,t) = 0, \quad v(1,t) = 0, \quad t > 0$
 $v(x,0) = f(x) \quad 0 < x < 1.$

where f(x) will be determined by the transformation. Write v_t , v_{xx} in terms of u, b, x. State f(x) in terms of u_0 , b and x.

Solution: Writing

$$v\left(x,t\right) = u\left(x,t\right) - u_{E}\left(x\right)$$

we have

$$v_t = u_t$$

$$v_{xx} = u_{xx} - u_E'' = u_{xx} - bx$$

and hence the PDE becomes

$$v_t = v_{xx}$$

The BCs for v are

$$v(0,t) = u(0,t) - u_E(0) = 0 - 0 = 0$$

 $v(1,t) = u(1,t) - u_E(1) = 0 - 0 = 0$

The IC is

$$v(x,0) = u(x,0) - u_E(x) = u_0 - \frac{b}{6}x(x^2 - 1)$$

(c) [10 points] Derive the solution

$$v(x,t) = \sum_{n=1}^{\infty} v_n(x,t) = \sum_{n=1}^{\infty} B_n e^{-n^2 \pi^2 t} \sin(n\pi x)$$

and derive equations for B_n in terms of f(x). Be sure to give the intermediate steps: separate variables, write down problems and solve for X(x) (using information from the Given section), solve for $T_n(t)$, put things together, impose the IC. Use orthogonality of $\sin(n\pi x)$ (see Given section) to find B_n in terms of f(x). Substitute for f(x) from part (b). You may use (without proof) the fact that

$$\int_0^1 x \left(x^2 - 1\right) \sin(n\pi x) \, dx = \frac{6(-1)^n}{\pi^3 n^3}, \qquad \int_0^1 \sin(n\pi x) \, dx = \frac{1 - (-1)^n}{\pi n}$$

Solution: Using separation of variables, we let

$$u\left(x,t\right) = X\left(x\right)T\left(t\right)$$

and substitute this into the PDE to obtain

$$\frac{X''}{X} = \frac{T''}{T} = -\lambda$$

where λ is a constant because the left hand side depends only on x and the middle only depends on t.

The Sturm-Liouville problem for X(x) is

$$X'' + \lambda X = 0;$$
 $X(0) = 0 = X(1)$

whose solution is (given),

$$X_n(x) = \sin(n\pi x), \qquad \lambda_n = n^2 \pi^2.$$

The equations for T(t) are

$$T_n\left(t\right) = B_n e^{-n^2 \pi^2 t}$$

and this gives the solution $v_n(x,t)$ to the PDE

$$v_n(x,t) = X_n(x) T_n(t) = B_n \sin(n\pi x) e^{-n^2 \pi^2 t}$$

for constants B_n . Summing all $v_n(x,t)$ together gives

$$v(x,t) = \sum_{n=1}^{\infty} v_n(x,t) = \sum_{n=1}^{\infty} B_n e^{-n^2 \pi^2 t} \sin(n\pi x)$$

Imposing the IC gives

$$v(x,0) = \sum_{n=1}^{\infty} B_n \sin(n\pi x)$$

Multiplying by $\sin(m\pi x)$ and integrating from x=0 to x=1 gives

$$\int_{0}^{1} v(x,0) \sin(m\pi x) dx = \sum_{n=1}^{\infty} B_n \int_{0}^{1} \sin(n\pi x) \sin(m\pi x) dx$$

Using the given orthogonality condition gives

$$B_m = 2 \int_0^1 f(x) \sin(m\pi x) dx$$

Substituting for f(x) gives

$$B_{m} = 2 \int_{0}^{1} \left(u_{0} - \frac{b}{6}x \left(x^{2} - 1 \right) \right) \sin \left(m\pi x \right) dx$$

$$= 2u_{0} \int_{0}^{1} \sin \left(m\pi x \right) dx - \frac{b}{3} \int_{0}^{1} x \left(x^{2} - 1 \right) \sin \left(m\pi x \right) dx$$

$$= \frac{2u_{0} \left(1 - \left(-1 \right)^{m} \right)}{\pi m} - \frac{2b \left(-1 \right)^{m}}{\pi^{3} m^{3}}$$

(e) [4 points] Prove that the solution v(x,t) is unique. Recall that v(x,t) satisfies

$$v_t = v_{xx}, 0 < x < 1, t > 0$$

 $v(0,t) = 0, v(1,t) = 0, t > 0$
 $v(x,0) = f(x) 0 < x < 1.$

Solution: Consider 2 solutions and define $h(x,t) = v_1(x,t) - v_2(x,t)$. Then h(x,t) satisfies

$$h_t = h_{xx}, \quad 0 < x < 1, \quad t > 0$$

 $h(0,t) = 0, \quad h(1,t) = 0, \quad t > 0$
 $h(x,0) = 0 \quad 0 < x < 1.$

Define the function

$$H\left(t\right) = \int_{0}^{1} h^{2}\left(x, t\right) dx$$

Differentiate in time,

$$\frac{dH}{dt} = \int_0^1 2hh_t dx = \int_0^1 2hh_{xx} dx = 2 |hh_x|_0^1 - 2 \int_0^1 h_x^2 dx = -2 \int_0^1 h_x^2 dx \le 0$$

Also, $H(0) = \int_0^1 0 dx = 0$. And $H(t) \ge 0$. Thus H = 0 for all time, which implies h(x, t) = 0 for all space and time.

Aside: Suppose there was a time t_0 and point x_0 where $h^2(x_0, t_0) > 0$. Then by continuity the integral would not be zero and H(t) > 0 there. Thus h(x, t) = 0 for all space and time.

(g) [2 points] Solve for

$$u(x,t) = u_E(x) + \sum_{n=1}^{\infty} u_n(x,t)$$
(1)

using the earlier transformations.

Solution: Reversing the earlier transformations, we have

$$u(x,t) = u_{E}(x) + v(x,t)$$

$$= \frac{b}{6}x(x^{2} - 1) + v(x,t)$$

$$= \frac{b}{6}x(x^{2} - 1) + \sum_{n=1}^{\infty} B_{n}e^{-n^{2}\pi^{2}t}\sin(n\pi x)$$

(g) [3 points] Based on the definition of $u_n(x,t)$ in Eq. (1), write down what $u_n(x,t)$ is from your solution to (g). Then assume $u_0 = b/\pi^2$ and show that

$$\left| \frac{u_2(x,t)}{u_1(x,t)} \right| \le \frac{1}{12} e^{-3}, \quad t \ge 1/\pi^2.$$

Solution: We have

$$u_n(x,t) = B_n e^{-n^2 \pi^2 t} \sin(n\pi x)$$

and

$$B_1 = \frac{4u_0}{\pi} + \frac{2b}{\pi^3} = \frac{6b}{\pi^3}, \qquad B_2 = -\frac{2b}{8\pi^3}$$

so that

$$\left| \frac{u_2(x,t)}{u_1(x,t)} \right| = \left| \frac{B_2 e^{-4\pi^2 t} \sin(2\pi x)}{B_1 e^{-\pi^2 t} \sin(\pi x)} \right| = \left| \frac{\frac{2b}{8\pi^3} e^{-3\pi^2 t} 2 \sin(\pi x) \cos(\pi x)}{\frac{6b}{\pi^3} \sin(\pi x)} \right|$$
$$= \left| \frac{1}{12} (\cos \pi x) e^{-3\pi^2 t} \right| \le \frac{1}{12} e^{-3\pi^2 t} \le \frac{1}{12} e^{-3}$$

for $t \geq 1/\pi^2$.

(h) [3 points] In (g) you showed that the second term was small compared to the first, so (without proof) write down the first term approximation

$$u(x,t) \approx u_E(x) + A_1 e^{-\pi^2 t} \sin(\pi x)$$

which is expected to be good for $t \ge 1/\pi^2$. Sketch $u = u_0$ and $u = u_E(x)$ for 0 < x < 1 and comment on the physical significance of the sign of A_1 . You may assume $u_0 = b/\pi^2$.

Solution: The first term approximation is

$$u(x,t) \approx u_E(x) + u_1(x,t) = u_E(x) + B_1 e^{-\pi^2 t} \sin(\pi x) = u_E(x) + \frac{6b}{\pi^3} e^{-\pi^2 t} \sin(\pi x)$$

Thus $A_1 = 6b/\pi^2 > 0$, which means the rod cools down to $u_E(x)$. A plot of $u_0 = b/\pi^2$ and $u_E(x)$ is given below, for b = 1.

