作者: 张陈成

学号: 023071910029

K-理论笔记 外微分拾遗

目录

2 插曲: PID 上有限生成模的结构 3

1 模的外积

定义 1 (对称 (反对称) 函数). 给定 R-模 M 与 N. 今取定 $m \in \mathbb{N}_{>1}$ 以及态射 $M^m \stackrel{f}{\longrightarrow} N$.

- 1. 称 f 是对称的,若 $f(x_1,x_2,\ldots,x_m)=f(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(m)})$ 对一切置换 $\sigma\in S_m$ 成立;
- 2. 称 f 是反对称的, 若 $f(x_1, x_2, ..., x_m) = (-1)^{\sigma} f(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(m)})$ 对一切置换 $\sigma \in S_m$ 成立;
- 3. 称 f 是交错的, 若 f 满足以下论断: 若存在 $i \neq j$ 使得 $x_i = x_j$, 则 $f(x_1, x_2, ..., x_m) = 0$.

显然, 反对称等价于"对换改变符号", 亦等价于交错.

定义 2 (模的外积). 给定反对称态射 $M^m \stackrel{f}{\longrightarrow} N$, 则有如下交换图

- 1. $\pi: M^m \to \bigotimes^m M$ 由张量积之范性质保证.
- 2. 对任意反对称态射 $f \in \operatorname{Hom}_R(M^m, N)$, 总有 $\ker(\tilde{f}) \subseteq \langle x_1 \otimes \cdots \otimes x_n \mid$ 存在 $i \neq j$ 使得 $x_i = x_j \rangle =: J$.

从而定义外积 $\bigwedge^m(M) := \frac{\bigotimes^m M}{J}$. 用泛性质语言描述之, 任意 M^m 出发的反对称态射通过 $\bigwedge^m(M)$ 分解.

例 1. $\bigwedge^0(M)\simeq \bigotimes^0(M)\simeq R$, $\bigwedge^1(M)\simeq \bigotimes^1(M)\simeq M$. 记 $I:=(x_i)_{1\leq i\leq n}$ 为 R 的理想, 则 $\bigwedge^n(I)$ 为主理想.

命题 1. 若 M 有限生成, 记其极小生成集大小为 n. 则 $\bigwedge^m(M) = 0$ 对一切 m > n 成立.

命题 2. 若 $\bigwedge^n(M) = 0$, 则对任意 $N \ge n$, 总有 $\bigwedge^N(M) = 0$.

命题 3 (自由模的秩). 对自由模 R^n , 有 $\bigwedge^m(R^n) \simeq R^{\binom{n}{m}}$.

定义 3 (\bigwedge^n 函子). 定义 $\bigwedge^n(-): R-\mathrm{Mod} \to R-\mathrm{Mod}$, 其中

$$\bigwedge^{n}(M \xrightarrow{\varphi} N) = \left[\bigwedge^{n}(\varphi) : \bigwedge^{n}(M) \to \bigwedge^{n}(M), \quad \sum x_{1} \wedge \cdots \wedge x_{n} \mapsto \sum \varphi(x_{1}) \wedge \cdots \wedge \varphi(x_{n})\right].$$

显然 $\bigwedge^n(-)$ 保持结合律以及单位元, 从而是函子.

命题 4 $(\bigwedge^n(-)$ 的右正合性). $\bigwedge^n(-)$ 保持同构以及满射, 但不保持单射.

证明. 根据 $\bigwedge^n(-)$ 的函子性, 其保持同构. 考虑模的基底, $\bigwedge^n(-)$ 显然保持满射. 下给出 $\bigwedge^n(-)$ 不保持单射的例子. 记 I 是环 R 中的非主理想, 则 $I \hookrightarrow R$ 是单射, 但诱导的 $0 \neq \bigwedge^2(I) \to \bigwedge^2(R) = 0$ 显然不是单射. \square

命题 5. 对自由模范畴, 观察秩知 $\bigwedge^k(-)$ 保持单射与满射, 从而正合.

定义 4 (行列式). 对自由模 R^n , 记行列式为同构 det: $\operatorname{End}_R(\bigwedge^n(R^n)) \simeq \mathbb{R}$, 满足

$$\varphi(x) = \det(\varphi) \cdot x.$$

依照 $\bigwedge^n(R^n) = \langle x_1 \wedge \cdots \wedge x_n \rangle$, 从而 $\operatorname{End}_R(\bigwedge^n(R^n)) \simeq R$ 是自然的. 注意到 det 与通常意义的行列式运算相容, 因此 det 是良定义的.

命题 6 (直和结构). $\bigwedge^k(M)$ 与 $\bigwedge^k(N)$ 是 $\bigwedge^k(M \oplus N)$ 的直和项.

证明.考虑复合的恒等映射 $M\stackrel{e}{\to} M\oplus N\stackrel{\pi}{\to} M$,由 $\bigwedge^k(-)$ 的函子性知 $\bigwedge^k(\pi)\circ\bigwedge^k(e)=\mathrm{id}_{\bigwedge^k(M)}$. 此时

$$\ker\left(\bigwedge^k(e)\right)\subseteq\ker\left(\bigwedge^k(\pi e)\right)=\ker\left(\mathrm{id}_{\bigwedge^k(M)}\right)=0.$$

因此 $\bigwedge^k(e)$ 可裂单, 从而 $\bigwedge^k(M)$ 是 $\bigwedge^k(M \oplus N)$ 的直和项.

定理 1 (Künneth 公式). 对 R-模 M 与 N 以及 $n \in \mathbb{N}$, 有如下恒等式

$$\bigwedge^n(M \oplus N) \simeq \bigoplus_{0 \le k \le n} \left(\bigwedge^k(M) \otimes \bigwedge^{n-k}(N) \right).$$

证明. 先定义 $g_i: \bigwedge^k(M) \otimes \bigwedge^{n-k}(N) \to \bigwedge^n(M \oplus N)$ 为如下映射之合成

上述态射自然是良定义的. 反之, 将 $\bigwedge^n(M \oplus N)$ 拆散作 2^n 项求和, 得

$$(m_1, n_1) \wedge \cdots \wedge (m_n, n_n) = \sum_{0 \le k \le n} (-1)^*(m_{i_1}, 0) \wedge \cdots \wedge (m_{i_k}, 0) \wedge (0, n_{j_1}) \wedge \cdots \wedge (0, n_{j_{n-k}}).$$

由此定义 $f_k: \bigwedge^n (M \oplus N) \to \bigwedge^k (M) \otimes \bigwedge^{n-k} (N)$. 往后仅需检验

$$f_i g_j = \delta_{i,j} \cdot \mathrm{id}_{\bigwedge^i(M) \otimes \bigwedge^{n-i}(N)}, \qquad \sum_{0 \le k \le n} g_k f_k = \mathrm{id}_{\bigwedge^n(M \oplus N)}.$$

检验步骤略去.

注 1. 类似地, 有多元情形

$$\bigwedge^{n}(M_{1}\oplus\cdots\oplus M_{m})\simeq\bigoplus_{k_{1}+\cdots+k_{m}=n}\left(\bigwedge^{k_{1}}(M_{1})\otimes\cdots\otimes\bigwedge^{k_{m}}(M_{m})\right).$$

2 插曲: PID 上有限生成模的结构

命题 7. PID 上有限生成无扰模自由.

证明. 主理想整环系 Dedekind 整环, 从而无扰模平坦. 依照 Noether 性, 有限生成模有限展示, 从而是有限生成投射模. 显然 PID 上投射模自由.

注 2. 记 Tor(X) 为 X 的挠子模,则对 PID 上有限生成模 X 总有正合列

$$0 \to \operatorname{Tor}(X) \to X \to \frac{X}{\operatorname{Tor}(X)} \to 0.$$

由于 $\frac{X}{\mathrm{Tor}(X)}$ 无扰动, 故自由, 遂正合列可裂. 因此 $X \simeq \mathrm{Tor}(X) \oplus \frac{X}{\mathrm{Tor}(X)}$.

命题 8 (初等因子组). 取 PID R 上有限生成模 X. 若生成 M = Tor(X) 至少需要 n 个元素,则存在有限序列构成的数组 (e_1, \ldots, e_n) , 使得

$$M \simeq \frac{R}{(p^{e_1})} \times \cdots \times \frac{R}{(p^{e_n})}, \quad e_k = (e_k^1, \dots, e_k^m, 0, \dots), \quad p^{e_k} := \prod p_k^{e_k^i}, \quad e_1 \le e_2 \le \cdots \le e_n.$$

定义 $e_k \le e_{k+1}$ 当且仅当 $e_k^i \le e_{k+1}^i$ 对任意 i 成立.

证明. 取 M 的生成元 $\{m_1,\ldots,m_n\}$,则存在极小的 $e=e_0$ 使得 $p^em_i=0$ 对任意 i 成立. 换言之, $p^e\cdot M=0$. 此时不妨设零化 y_n 所需的极小的 e 同为 e_0 . 此时 $\frac{M}{\langle y_n\rangle}\simeq \frac{R}{\langle p^{e_0}\rangle}$ 为循环模. 遂有

$$0 \longrightarrow \langle y_n \rangle \longrightarrow M \longrightarrow \frac{M}{\langle y_n \rangle} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \sim \qquad .$$

$$0 \longrightarrow \bullet \longrightarrow M \longrightarrow \frac{R}{(p^{e_0})} \longrightarrow 0$$

逐次归纳即可.

命题 9. 如上选取的 (e_1,\ldots,e_n) 是唯一的. 实际上, $\operatorname{ann}_R(\bigwedge^k(M))=(p^{e_k})$.

证明. 依照 Künneth 公式, 有

$$\bigwedge^{k}(M) \simeq \bigoplus_{i_1 + \dots i_n = k} \left(\bigwedge^{i_1} \left(\frac{R}{(p^{e_1})} \right) \otimes \dots \otimes \bigwedge^{i_n} \left(\frac{R}{(p^{e_n})} \right) \right) \simeq \bigoplus \left(\frac{R}{(p^{e_{j_1}})} \otimes \dots \otimes \frac{R}{(p^{e_{i_k}})} \right).$$

最后一处等式是因为对主生成 R-模 N, 总有 $\bigwedge^2(N)=0$. 再依照 $\frac{R}{I}\otimes\frac{R}{J}\simeq\frac{R}{I+J}$, 遂有

$$\bigwedge^{k}(M) \simeq \bigoplus \frac{R}{(p^{e_{j_1}}, \dots, p^{e_{i_k}})} \simeq \bigoplus \frac{R}{(\operatorname{lcm}(p^{e_{j_1}}, \dots, p^{e_{i_k}}))}.$$

从而 $\operatorname{ann}_R\left(\bigwedge^k(M)\right) = \operatorname{ann}_R(R/(p^{e_k})) = (p^{e_k}).$

注 3 (PID 上有限生成模的结构). 对 PID R 上有限生成模 M, 有同构

$$M \simeq R^{\operatorname{rank}(M/\operatorname{Tor}(M))} \oplus \bigoplus_{k \geq 1} \frac{R}{\operatorname{ann}_R\left(\bigwedge^k(M)\right)}.$$