Elementary Analytic Number Theory

Masum Billal

September 28, 2021

Contents

Notations		•
1	Introduction	1
2	Dirichlet Convolution and Generalization	Ę
List of Acronyms		ę
Glossary		11

iv *CONTENTS*

Notations

- au(n) Number of divisors of n
- $\tau(n)$ Sum of divisors of n
- $\varphi(n)$ Euler's totient function of n

Chapter 1

Introduction

For an introduction, see Apostol.¹ check Mőbius function. Also, see Euler's totient function.

¹Tom M. Apostol: Introduction to analytic number theory. In: Undergraduate Texts in Mathematics (1976). DOI: 10.1007/978-1-4757-5579-4.

Bibliography

Apostol, Tom M.: Introduction to analytic number theory. In: Undergraduate Texts in Mathematics (1976). DOI: 10.1007/978-1-4757-5579-4.

Chapter 2

Dirichlet Convolution and Generalization

We can write the number of divisor function as the following.

$$\tau(n) = \sum_{d|n} 1$$

See Apostol¹

¹Tom M. Apostol: Introduction to analytic number theory. In: Undergraduate Texts in Mathematics (1976). DOI: 10.1007/978-1-4757-5579-4.

6CHAPTER 2. DIRICHLET CONVOLUTION AND GENERALIZATION

Bibliography

Apostol, Tom M.: Introduction to analytic number theory. In: Undergraduate Texts in Mathematics (1976). DOI: 10.1007/978-1-4757-5579-4.

List of Acronyms

 $\varphi(n)$ Euler's totient function

Glossary

Mőbius function $\mu(n)$ is a very important function in number theory.