Gaia LGaia DR1

参考文献: The Gaia mission. T.Prusti et al.

A&A.595,A1(2016)

Gaia Data Release 1. A.G.A.Brown et al.

A&A 595, A1(2016)

新潟大学大学院自然科学研究科 南 祥平

Gaia とは?

- •ESA(European Space Agency)がHipparcosの後継として2013年12月19日に打ち上げた位置天文衛星
- -2014年7月19日から本観測開始
- ・活動期間は5年(予定)
- •観測点: L₂ポイント

L₂ポイント:制限三体問題の5つの特殊解のうちの1つ

地球~L2ポイントの距離

$$r \approx R \left(\frac{M_E}{3M_S} \right)^{\frac{1}{3}}$$

太陽一地球系

 $R \approx 1.5 \times 10^8 \text{km}$

 $M_E \approx 2 \times 10^{30} \text{kg}$

 $M_S \approx 6 \times 10^{24} \text{kg}$

 $\therefore r \approx 1.5 \times 10^6 \text{km}$

観測量

- ・20.7等級以下のほとんどの天体についての位置、固有運動、 年周視差、Gバンド(330~1050nm)での測光観測、分光観測
- ・2016年9月14日の最初のデータリリース(DR1)が行われた 11億個以上の天体の位置、明るさ 約200万個の天体には年周視差と固有運動も含まれる
- ・ヒッパルコス(測定期間:1989~1993)の精度~1mas

Gaiaの精度~10µas

最終的な年周視差の精度

Gaia の観測の様子(イメージ)

telescopes

along-scan

59 mas

RP-type

forcal plane assembly

basic angle monitor

basic angle はµas(マイクロ角度秒)の精度が要求されるため、常に監視している

sky mapper

二つの望遠鏡のうちどちらから入ってきた情報かを判断

• astrometric field Gバンド(330~1050nm)での測光観測

■ radial-velocity spectrometer 16等級より明るい星の視線速度

scannig law

回転軸の軌道

- •自転周期:6.0h
- ·太陽一回転軸間の角度:45°

観測の分布

β:黄緯

sin <i>β</i>	観測回数
0.025	61
0.075	61
0.125	62
0.175	62
0.225	63
0.275	65
0.325	66
0.375	68
0.425	71
0.475	75
0.525	80
0.575	87
0.625	98
0.675	122
0.725	144
0.775	106
0.825	93
0.875	85
0.925	80
0.975	75

scientific goals

- ・銀河構造 ── 天の川銀河の3次元マップの作成
- •銀河形成、星形成
- ・星の物理と進化
- ・宇宙の距離はしごの向上
- ・太陽系にある小惑星の発見

など

Gaia Data Release 1(DR1)の概要

- •Gaiaの最初のデータリリースが2016年9月14日に行われた。
- ●データは14ヶ月間にGaiaが行なった観測に基づく解析結果
- •このカタログにはGaia archiveのページから誰でもアクセス可能

誰でも使えるGaiaデータ

ESA (ヨーロッパ宇宙機関) が打ち上げた位置天文観測機Gaiaの最初の観測データをまとめたカタログである Gaia Data Release 1 (Gaia DR1) が2016年9月14日に公開されました。このカタログには11億個以上の恒星を中心 とした天体の観測データが載っており、誰でも使うことができます。(ただし、データを入手して解析するのは 自由ですが、研究結果を公開するときにはESAのルールに従がう必要があります。) ここでは、Gaia DR1からのデータの入手方法と解析方法について簡単に説明します。(文責: 西亮一(新海大学))

説明ページへ

Pleiades星団の姿

位置天文のデータ

総計	1,142,679,769		
TGAS(Tycho-Gaia Astrometric Solution)天体	2,057,050		
Hipparcos	93,635		
Tycho-2	1,963,415		
secondary 天体	1,140,622,719		
光度曲線	3194		
セファイド型変光星の光度曲線	599		
琴座 RR 星型変光星の光度曲線	2595		

TGAS(Tycho-Gaia Astrometric Solution)天体

- •Hipparcos計画によって作られたHipparcosカタログ、Tycho-2カタログと、Gaia DR1のデータを組み合わせて解析がなされた天体
- ・位置、明るさ、固有運動、年周視差のデータが含まれる
- ・不確定さ

	All TGAS			Hipparcos		
	10%	50%	90%	10%	50%	90%
位置(mas)	0.20	0.32	0.75	0.20	0.26	0.46
年周視差(mas)	0.24	0.32	0.64	0.23	0.28	0.48
固有運動(mas/yr)	0.72	1.32	3.19	0.04	0.07	0.14

Secondary天体

- ・TGAS天体を除いた天体(位置、明るさのみ)
- ・不確定さは位置に対して10mas程度

年周視差の精度

へびつかい座p分子雲周辺にある星団?

変光星の光度曲線データ

•新たに見つかった変光星

変光星の名前	新たに見つかった数
セファイド型変光星	43(599)
琴座RR星型変光星	343(2595)

・これらの星は南黄極周辺に位置している。 観測の初めの4週間はマゼラン銀河周辺を高頻度で観 測したため。

DR1による大マゼラン銀河の変光星の光度一周期関係

セファイド型変光星

琴座RR星型変光星

測光観測のデータ

測光の精度

全てのGaai DR1天体に対する等級の分布

6等級より明るい星の多くが欠落 ──── Nano-JASMINEで補完

The Gaia sky

Gaia DR1に含まれる全ての天体の2次元マップ

密度が高いのほど白くなっていき、低くなるほど黒くなる。

Gaia astrometryの問題点

•basic angle(主鏡のなす角度)の変化が、予定されていた~1μasに比べて~1masとかなり大きい。

basic angleの残差

DR1時点

Gaia-JASMINE joint meeting (2016年12月)

様々な距離測定機によるプレアデス星団の距離

今後のカタログリリース 2018年4月にDR2が公開される予定