Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2011 Lösungen der Klausur 6. August 2011

					_
Diskrete	TT 7 1	1 • 1	1• 1 '	• .	. 1
Luckroto	$1/1/2$ h $r_{\rm C}$	chain	IIAN	1201fc1	t いんへいいん
LUSKIELE	vvallis	unen		$\kappa \in \Pi S$	

Name)		Vor	name	9	Studiengang Diplom Inform. Bachelor BioInf. WirtInf. Lehramt WirtInf. Sitzplatz		Matrikelnummer Unterschrift			
					••••						
Hörsaa	al		R	eihe							
Code:											
			A	llge	mein	еН	inwe	eise			
• Bitte fül	len Sie o	bige	Felde	r in l	Druckl	ouchs	aben	aus	und un	terschrei	ben Sie!
• Bitte sch	reiben S	Sie ni	cht m	it Bl	eistift	oder	in rot	er/gr	üner F	arbe!	
• Die Arbe	eitszeit k	oeträg	gt 90	Minu	iten.						
seiten) d	er betre: enrechni	ffende ingen	en Au mac	fgabe hen.	en einz Der S	utrag chmi	en. A erblat	uf de	m Schi	mierblatt	n (bzw. Rüc bogen könn ılls abgegeb
Hörsaal verla	ssen		von		bi	s	• • • •	/	von	l	ois
Vorzeitig abg	egeben		um								
Besondere Be	emerkun	gen:									
	A1	A2	A3	A4	A5	Σ	Kor	rekto	r		
Erstkorrektu	r										
Zweitkorrektı	ır										

Aufgabe 1 (6 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. Die Menge $\mathcal{B}(\mathbb{R})$ der Borelschen Mengen über \mathbb{R} ist abzählbar.
- 2. Jede aperiodische Übergangsmatrix ist irreduzibel.
- 3. Der Maximum-Likelihood-Schätzwert für den Parameter δ einer Verteilungsdichte $f(x;\delta)$ stellt den wahrscheinlichsten Wert für δ dar.
- 4. Die Summe $X_1 + X_2$ unabhängiger exponentialverteilter Zufallsvariablen X_1 und X_2 ist ebenfalls exponentialverteilt.
- 5. Für die gemeinsame Verteilung $F_{X,Y}$ zweier kontinuierlicher Zufallsvariablen X und Y gilt $F_{X,Y}(x,y) = \Pr[X \leq x, Y \leq y]$.
- 6. Es gibt unendliche Markov-Ketten mit diskreter Zeit, für die alle Zustände transient sind.

Lösung

Für die richtige Antwort und für die richtige Begründung gibt es jeweils einen $\frac{1}{2}$ Punkt.

- 1. Falsch! Begründung: $\mathcal{B}(\mathbb{R})$ enthält alle Intervalle [a, b] mit $a, b \in \mathbb{R}$.
- 2. Falsch! Eine geeignete Diagonalmatrix ist aperiodisch und nicht irreduzibel.
- 3. Falsch! Begründung: δ ist keine Zufallsvariable.
- 4. Falsch! Verweis auf mehrere Übungsaufgaben möglich.
- 5. Wahr! Definition!
- 6. Wahr! Begründung: $p_{i(i+1)} = 1$.

Aufgabe 2 (8 Punkte)

Wir betrachten einen Zufallsprozess, bei dem gleichverteilte Punkte aus dem Bereich $B = \{(x,y) \in \mathbb{R}^2 ; |x| \le 1 - y^2\}$ ausgewählt werden. Die Koordinaten der Punkte sind also gegeben durch kontinuierliche Zufallsvariablen X,Y über $\mathbb{R}^2.$

- 1. Berechnen Sie die gemeinsame Dichtefunktion $f_{X,Y}$! Welchen Zahlenwert besitzt $f_{X,Y}(0,0)$?
- 2. Berechnen Sie für alle $y \leq 0$ die Randverteilung $F_Y(y)$! Welchen Zahlenwert besitzt $F_Y(-\frac{1}{2})$?
- 3. Sind X und Y unabhängig? Begründen Sie Ihre Antwort!

Lösung

1.
$$F_B = 4 \cdot \int_0^1 (1 - y^2) dy = 4 \cdot \frac{2}{3}$$
.
 $f_{X,Y}(x,y) = \frac{3}{8}$ für alle $(x,y) \in B$,
 $f_{X,Y}(x,y) = 0$ für alle $(x,y) \notin B$ (3 P.)

2. Für -1 < y < 0 gilt $F_Y(y) = \frac{3}{8} \cdot 2 \cdot \int_{-1}^{y} (1 - y^2) dy = \frac{3}{4}y - \frac{1}{4}y^3 + \frac{1}{2}.$ Für y < -1 gilt $F_Y(y) = 0$. $F_Y(-\frac{1}{2}) = \frac{5}{32}$.

3. Nein! Begründung:
$$F_{X,Y}(-\frac{3}{4}, -\frac{1}{2}) = 0 \neq F_X(-\frac{3}{4}) \cdot F_Y(-\frac{1}{2})$$
. (2 P.)

(3 P.)

Aufgabe 3 (8 Punkte)

Wir betrachten einen Zähler Z, der bei Start von 0 beginnend in Schritten von 1 beliebig hoch zählen kann. Die für einen beliebigen Zählschritt i benötigte Zeit $0 < T_i \in \mathbb{R}$ (gemessen in vorgegebenen Zeiteinheiten) sei jeweils unabhängig exponentialverteilt mit gleichem Parameter $\lambda = \frac{1}{2}$.

- 1. Wie groß ist, vom Start aus gerechnet, die erwartete Zeit, bis der Zähler auf 3 hochzählt?
- 2. Berechnen Sie die Wahrscheinlichkeit p, dass der Zähler zum Hochzählen auf den Wert 2 nicht länger als 10 Zeiteinheiten benötigt.
 - Geben Sie dabei den Wert von p durch einen arithmetischen Ausdruck an.
- 3. Sei Z(t) diejenige Zufallsvariable, die für den Zeitpunkt t den Zählerstand angibt. Bestimmen Sie für t = 10 die Dichtefunktion $f_{Z(t)}$ und geben Sie für $\Pr[Z(10) = 4]$ einen arithmetischen Ausdruck an.

<u>Hinweis:</u> In arithmetischen Ausdrücken dürfen bekannte Funktionen der Kombinatorik und die Exponentialfunktion unausgewertet verwendet werden.

Lösung

1.
$$3 \cdot \mathbb{E}[T_1] = 3 \cdot \frac{1}{\lambda} = 6$$
. (2 P.)

2. (siehe Übungsblatt 10)

$$p = F_{T_1 + T_2}(10) = 1 - e^{-\lambda t} - \lambda t e^{-\lambda t} = 1 - e^{-5} - 5e^{-5} = 1 - 6e^{-5}.$$
(3 P.)

3. Z(t) ist Poisson-verteilt mit Parameter $\lambda t = 5$.

$$\Pr[Z(10) = 4] = \frac{(\lambda t)^4}{4!} e^{-\lambda t} = \frac{(5)^4}{4!} e^{-5}.$$
(3 P.)

Aufgabe 4 (8 Punkte)

Sei $X_1, X_2, \ldots, X_i, \ldots$ eine Folge von unabhängigen Bernoulli-verteilten Zufallsvariablen mit gleicher Erfolgswahrscheinlichkeit p, wobei 0 gelte.

- 1. Bestimmen Sie für alle $n \in \mathbb{N}$ reelle Zahlen a_n, b_n , so dass für $Z_n = a_n \cdot (\sum_{i=1}^n X_i) + b_n$ gilt: $\mathbb{E}[Z_n] = 0$ und $\operatorname{Var}[Z_n] = 1$.
- 2. Welchen Zahlenwert besitzt $\lim_{n\to+\infty} \Pr[Z_n \leq 0]$? Begründen Sie Ihre Antwort!
- 3. Sei n=1000. Wir nehmen an, dass n genügend groß ist, um einen approximativen Binomialtest für p ausreichend genau durchführen zu können. Dabei sei die Hypothese $H_0: p \leq \frac{1}{100}$ mit trivialer Alternative $H_1: p > \frac{1}{100}$ gegeben.

Der Test liefere $\sum_{i=1}^{n} X_i = 25$.

Kann die Hypothese H_0 mit Signifikanz $\alpha = 0.001$ abgelehnt werden, wenn wir annehmen, dass für das Quantil $z_{1-\alpha}$ der Wert $z_{1-\alpha} = 3.1$ gilt? Begründung!

Lösung

1. Gleichungen:

$$\mathbb{E}[Z_n] = a_n \cdot n \cdot p + b_n = 0 \quad \text{und} \quad \text{Var}[Z_n] = a_n^2 \cdot n \cdot p(1-p) = 1.$$

$$\text{Daraus:} \quad a_n = \frac{1}{\sqrt{np(1-p)}} \quad \text{und} \quad b_n = -\sqrt{\frac{np}{1-p}}.$$

$$(3 \text{ P.})$$

2. $\lim_{n \to +\infty} \Pr[Z_n \le 0] = \frac{1}{2}.$

Begründung: die Verteilung von Z_n konvergiert gegen die Standardnormalverteilung Φ mit $\Phi(0) = \frac{1}{2}$.

(2 P.)

3. Antwort: Ja.

Ablehnungskriterium: $Z_n > z_{1-\alpha} = 3,1.$

Mit $p = \frac{1}{100}$ und $\sum_{i=1}^{n} X_i = 25$ gilt

$$Z_n = a_n \cdot \left(\sum_{i=1}^n X_i\right) + b_n$$

$$= \frac{25 - 1000 \cdot \frac{1}{100}}{\sqrt{1000 \cdot \frac{1}{100} \cdot \frac{99}{100}}}$$

$$= 5 \cdot \sqrt{\frac{10}{11}}.$$

Es gilt
$$5 \cdot \sqrt{\frac{10}{11}} > 3.1$$
. (3 P.)

Aufgabe 5 (10 Punkte)

Sei $(X_t)_{t\in\mathbb{N}_0}$ eine endliche (zeit)homogene Markov-Kette mit diskreter Zeit über der Zustandsmenge $S=\{0,1,2,3,4\}$. Die positiven Übergangswahrscheinlichkeiten seien durch das folgende Übergangsdiagramm gegeben:

- 1. Geben Sie die Menge der transienten Zustände der Markov-Kette an.
- 2. Sei T_{01} die Übergangszeit vom Zustand 0 in den Zustand 1. Bestimmen Sie $\Pr[T_{01} = n]$ für alle $n \in \mathbb{N}$!
- 3. Berechnen Sie die Ankunftswahrscheinlichkeit f_{01} !
- 4. Berechnen Sie die erwartete Übergangszeit $h_{14}!$

Lösung

1.
$$\{0,1,2,3\}$$
. (1 P.)

2.
$$\Pr[T_{01} = 1] = \frac{1}{2}$$
, $\Pr[T_{01} = 3] = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{32}$.
Für alle übrigen n gilt $\Pr[T_{01} = n] = 0$. (3 P.)

3. Aus der Dichte von T_{01} oder mit Hilfe eines Gleichungssystems:

$$f_{01} = p_{01} + p_{00}f_{01} + p_{02}f_{21} + p_{03}f_{31} + p_{04}f_{41}$$

$$= \frac{1}{2} + \frac{1}{2}f_{21},$$

$$f_{21} = \frac{3}{4}f_{31},$$

$$f_{31} = \frac{1}{4}.$$

Es folgt
$$f_{21} = \frac{3}{16}$$
, $f_{01} = \frac{19}{32}$. (3 P.)

4. Mit Hilfe eines Gleichungssystem:

$$\begin{array}{rcl} h_{14} & = & 1 + p_{10}h_{04} + p_{11}h_{14} + p_{12}h_{24} + p_{13}h_{34} \\ & = & 1 + h_{24} , \\ h_{24} & = & 1 + \frac{3}{4}h_{34} , \\ h_{34} & = & 1 + \frac{1}{4}h_{14} . \end{array}$$

Es folgt
$$h_{34} = \frac{24}{13}$$
, $h_{24} = \frac{31}{13}$, $h_{14} = \frac{44}{13}$. (3 P.)