<u>Топлина</u>

Процеси с идеален газ

2017	Есенно	3	Изстиващ балон (MA). Лесна задача за процес с известно уравнение на състоянието. Включва закон на Стефан-Болцман.		
2019	Пролетно	3	Цилиндър (HT). Задача, изпитваща разбирането на стандартни ключови фрази в термодинамиката ("топлоизолиращ", "топлопровдящ", "топлинно равновесие",). Лошо формулирана – дефинира се топлинен капацитет за необичайни ситуации, при което той ще има странни стойности.		
2018	Пролетно	3.2	Оръдие (USAPhO 2009-A4). Задача с хитро динамично съображение, изискаваща разбиране на първи принцип на ТД и разграничението между работа на тяло и работа върху тяло.		
2021	Пролетно	3	Турбореактивен двигател (МА). Трудна и леко неточна задача върху газови потоци. Изисква предварително разбиране на теорията по темата. При сравняване на състоянието на газа между T_i и T_1 няма друг избор, освен да използвате уравнение на квазистатичен адиабатен процес ($pV^{\gamma}=\mathrm{const}$), въпреки че процесът далеч не е квазистатичен. Аналогично за T_2 и T_e .		
Цикли					
2003	Пролетно	3	КПД (ВИ). Лесна задача върху цикъл с три процеса.		

Цикли							
2003	Пролетно	3	КПД (ВИ). Лесна задача върху цикъл с три процеса.				
2015	Пролетно	2.1	Цикъл на Джаул (MA). Друга стандартна задача.				
2011	Есенно	2	Газова турбина (ВИ). Малко по-дълъг вариант на предишната задача. Като пояснение, в г) се губи работа само в участъка до момент 4, а не при участъка 4-1.				
2008	Есенно	2	Автомобилен двигател (МА). Дълга задача, изискваща дълбо- ко разбиране на топлинните двигатели. Подсказка за неразби- ращите от коли – коляновият вал прави два оборота на цикъл. Имайте предвид също, че изгарянето на горивото е мигновен процес, при който обемът не се променя.				
2009	Есенно	3	Вечен двигател (ВИ). Задача с класическа уловка и ужасни пресмятания, ако не се работи по най-краткия начин. Без да знам тогава за тази задача, съставих същата и я дадох на ППМГ Бургас Challenge 2023, тема за 11-12 клас.				
2004	Пролетно	2	Хладилник (ВИ). Важна задача върху обратен цикъл на Карно. От гледна точка на вашата храна, хладилникът представлява изолирана стая с климатик. Температурата на резервоара (вашата стая) се променя много малко при замразяването.				

Атмосфера, пари и фазови преходи

2015	Пролетно	2.2	Атмосферно налягане в шахта (MA). Лесна задача върху атмосферно налягане.		
2005	Пролетно	2	Образуване на облаци (ВИ). Добро въведение в налягане на наситените пари. Лесна задача, но внимавайте да използвате всички данни от условието.		
2001	Есенно	1	Климатични промени (?). Приятна многостъпкова задача върху нагряване на атмосферата. В решението на в) има изпусната четворка, като двата крайни отговора стават 4 пъти по-големи.		
2023	Пролетно	3	Фазова диаграма (MA). Елементарна задача, но засега единствената на такава тема. Първата подточка е неправилна. Както е обяснено тук, водата в тенджера под налягане въобще не кипи.		
2024	Пролетно	2	Реален газ (MA). Въведение в уравнението на Ван-дер-Ваалс, което дава най-простия модел на реален газ. За доста по-сложни задачи на тази тема, вижте IPhO 2014-2 или USAPhO 2020-В3.		
Топлопроводимост					
2016	Есенно	2	Пренос на топлина през прозорец (MA). Практически полезна задача за топлопроводимост през няколко слоя.		
2006	Пролетно	3	Икономично отопление (ВИ). По-труден вариант на предишната задача. Допълнително има и част върху обратен цикъл на Карно.		
2018	Пролетно	3.1	Планета (USAPhO 2008-A3). Пренос на топлина при сферично симетрична геометрия. Общият поток топлина през повърхностите отново ще се запазва.		
2014	Пролетно	3	Радиоактивна планета (ВИ). По-труден вариант на предишната, с радиоактивност и повече пресмятания.		
2020	Есенно	3	Топлинна леща (ВИ). Красива задача, дадена отново на EuPhO 2023.		
Топлинно излъчване					
2005	Есенно	3	Слънце (МА). Лесна задача върху слънчевата константа.		
2009	Пролетно	3	Реликтово лъчение и константа на Вин (MA). Основна задача с две части, практическа задача върху закон на Планк и извеждане на закона на Вин.		
2007	Пролетно	3	Вега от съзвездието Лира (ВИ). Практическа задача с оценка на грешки. Последната подточка е трудна; тя изисква познаване на закона на Планк и подходяща смяна на променливите в него.		

Повърхностно напрежение

2011	Пролетно	3	Повърхностно напрежение (?). Три полезни малки задачи върху основните идеи.
2024	Есенно	2	Неустойчивост на Плато-Рейли (ВИ). Хубава задача върху формулата на Лаплас за повърхностно напрежение под произволна повърхност. Използва концепцията за пертурбации — въвежда се малко отклонение от равновесния профил с произволна амплитуда A и се търси при какво условие то ще затихне/нарасне. Отговорът съответно не трябва да зависи от A .
2008	Пролетно	3.1	Газова уредба (ВИ). Задача за механично напрежение, което е подобно на повърхностно напрежение, но с едно измерение повече.