计算理论 Homework 2 3190 10 2196 展翼 8

Pbo 2.1.1

e (L(M) if and only if the initial state is one of the final states

- ·It s ∈ F (s, e) # n (q, e) can be (s, e) # o (s, e)
 because s is a final state, e ∈ L(M)
- · If $s \notin F$, then (s,e) can not transfer to any other states, $e \notin L(M)$

Question 2.1.2

- have same (c) The strings which start by a and have same numbers of a and b. and the continuous a's numbers should not be more than 2
- of which should not be continuous that make a prefix one symbol appears 2 times more than the other

Question 1.1.3

(c)

P74

Q 2.2.2

(a) a*

(b) a (baubaa)* (buba)

(b) $k = \begin{cases} \{9_0 \ 3, \ 9_1, 9_2, 9_4 \ 3, \ 9_5 \ 9_5 \ 3, \ 9_6, 9_5 \$

Q 2.2.10

we transform state 9 to 5.93, because they have no equialization states, there would be a bijection from k to k'. Δ to δ , 5 to 5' and F to F', it will be the same

P 83

0 2.3.7

- (a) $a \times b (b a \times b a^*)^*$
- (b) ((aub)(aub))*
- (c) (aub)* abaa (aub)*
- (d) $(a \cup \phi^*)(b \alpha^* \alpha)^* (b \cup \alpha)^*$

P90

2 2.4.5

(a) If L is regular, then we can construct a regular Li=Lna*bba*

suppose a string Length & L > K satisfy the pumping theorem construct $S = a^kbha^k \in L$, xyz = S then y must be $a^{\frac{3}{4}} \stackrel{?}{?} > but <math>x^ny^nz = a^{k+(n-1)\frac{3}{4}}bba^k \notin L$, S^0 L is not regular

Q 2.4.3

- (a) false, Z* is regular
- (b) False empty set
- LC) True L is regular two then so is LL
- id) False it need to record infinite state
- (e) True LNLR is regular
- it) talse
- in take same with (d)