

Computational Ocean Acoustics

- Ray Tracing
- Wavenumber Integration
- Normal Modes
- Parabolic Equation

Wavenumber Integration

- Range-independent Integral Transform solution
- Exact depth-dependent solution
- Numerical issues:
 - Numerical stability of depth solution
 - Evaluation of inverse transforms
- Example: Pekeris waveguide
 - Relation to Normal Mode solution

Horiztonally stratified environment

Wavenumber Integration Techniques

Integral Transform Solution

Helmholtz Equation for Displacement Potentials

$$\left[\nabla^2 + k_m^2(z)\right] \psi_m(r,z) = f_s(z,\omega) \frac{\delta(r)}{2\pi r} ,$$
 Medium wavenumber: $k_m(z) = \frac{\omega}{c(z)}$

13.853

Hankel Transform Pair

$$f(r,z) = \int_0^\infty f(k_r,z) J_0(k_r r) k_r dk_r ,$$

$$f(k_r,z) = \int_0^\infty f(r,z) J_0(k_r r) r dr ,$$

Integral Transform Solution

Depth-separated Wave Equation

$$\[\frac{d^2}{dz^2} - \left[k_r^2 - k_m^2(z) \right] \] \psi_m(k_r, z) = \frac{f_s(z)}{2\pi} ,$$

Superposition Principle

$$\psi_m(k_r, z) = \underbrace{\hat{\psi}_m(k_r, z)}_{\text{Source}} + \underbrace{A_m^+(k_r) \, \psi_m^+(k_r, z) + A_m^-(k_r) \, \psi_m^-(k_r, z)}_{\text{Homogeneous Solution}},$$

Homogeneous Fluid Layers

$$c = \sqrt{\frac{K}{\rho}}$$

$$k_m(z) = k_m = \omega/c$$

Depth Solutions

$$\phi^+(k,z) = e^{ik_z z}$$
 Downward Propagating $\phi^-(k,z) = e^{-ik_z z}$ Upward Propagating $k_z = \sqrt{k_m^2 - k_r^2}$ Vertical wavenumber

Layers without Sources

$$\phi(r,z) = \int_0^\infty \left[A^- e^{-ik_z z} + A^+ e^{ik_z z} \right] J_0(k_r r) k_r dk_r.$$

2 Unknowns

Layers without Sources

$$\phi(r,z) = \int_0^\infty \left[A^- e^{-ik_z z} + A^+ e^{ik_z z} \right] J_0(k_r r) k_r dk_r.$$

Interface Condition Parameters

Vertical Particle Displacements

$$w(r,z) = \frac{\partial \phi}{\partial z}$$

$$= \int_0^\infty \left[-ik_z A^- e^{-ik_z z} + ik_z A^+ e^{ik_z z} \right] J_0(k_r r) k_r dk_r,$$

Vertical Normal Stress

$$\sigma_{zz}(r,z) = -p(r,z)
= K \nabla^2 \phi(r,z)
= -\rho \omega^2 \phi(r,z)
= -\rho \omega^2 \int_0^\infty \left[A^- e^{-ik_z z} + A^+ e^{ik_z z} \right] J_0(k_r r) k_r dk_r .$$

Homogeneous Fluid Layers

Simple Point Source

$$f_s(z,\omega) = S_\omega \, \delta(z - z_s)$$

$$\hat{\phi}(k_r, z) = \frac{S_\omega}{4\pi} \frac{e^{ik_z|z - z_s|}}{ik_z},$$

Displacements and Stresses

$$\widehat{w}(r,z) = \frac{S_{\omega}}{4\pi} \int_0^{\infty} \operatorname{sign}(z - z_s) e^{ik_z|z - z_s|} J_0(k_r r) k_r dk_r$$

$$\widehat{\sigma}_{zz}(r,z) = -\frac{S_{\omega} \rho \omega^2}{4\pi} \int_0^{\infty} \frac{e^{ik_z|z - z_s|}}{ik_z} J_0(k_r r) k_r dk_r$$

Point source in n²-linear fluid medium

Gradient Fluid Layers

$$k_m^2(z) = \omega^2(az+b) ,$$

Depth-separated Wave Equation

$$\left[\frac{d^2}{dz^2} - \left[k_r^2 - \omega^2(az+b)\right]\right]\phi(k_r, z) = 0.$$

Depth-Solutions

$$\phi^{+}(k_{r}, z) = \operatorname{Ai}(\zeta),$$

$$\phi^{-}(k_{r}, z) = \operatorname{Ai}(\zeta) - i \operatorname{Bi}(\zeta),$$

$$\zeta = (\omega^{2}a)^{-2/3} \left[k_{r}^{2} - \omega^{2}(az + b)\right].$$

See Fig 10.6 and 10.7, "Bessel Functions of Fractional Order," in Abramowitz, M. and Stegun, I. *Handbook of Mathematical Functions*. Mineola NY: Dover, 1965

Depth-Solutions

$$\phi^{+}(k_{r}, z) = \operatorname{Ai}(\zeta),$$

$$\phi^{-}(k_{r}, z) = \operatorname{Ai}(\zeta) - i \operatorname{Bi}(\zeta),$$

$$\zeta = (\omega^{2}a)^{-2/3} \left[k_{r}^{2} - \omega^{2}(az + b) \right].$$

Homogeneous Solution

$$\phi(r,z) = \int_0^\infty \left\{ \underline{A}^+ \operatorname{Ai}(\zeta) + \underline{A}^- \left[\operatorname{Ai}(\zeta) - i \operatorname{Bi}(\zeta) \right] \right\} J_0(k_r r) k_r dk_r ,$$

2 Unknowns

Gradient Fluid Layers

Displacements and Stresses

$$w(r,z) = -(\omega^{2}a)^{1/3} \int_{0}^{\infty} \left\{ A^{+} \operatorname{Ai}'(\zeta) + A^{-} \left[\operatorname{Ai}'(\zeta) - i \operatorname{Bi}'(\zeta) \right] \right\} J_{0}(k_{r}r) k_{r} dk_{r}$$

$$\sigma_{zz}(r,z) = -p(r,z)$$

$$= -\omega^{2} \int_{0}^{\infty} \left\{ A^{+} \operatorname{Ai}(\zeta) + A^{-} \left[\operatorname{Ai}(\zeta) - i \operatorname{Bi}(\zeta) \right] \right\} J_{0}(k_{r}r) k_{r} dk_{r}$$

Source Contribution

$$\hat{\phi}(r,z) = -\frac{S_{\omega}}{4\pi} \int_0^{\infty} J_0(k_r r) k_r dk_r$$

$$\times \begin{cases}
\frac{2(\omega^2 a)^{-1/3} [\operatorname{Ai}(\zeta_s) - i \operatorname{Bi}(\zeta_s)] \operatorname{Ai}(\zeta)}{\operatorname{Ai}'(\zeta_s) [\operatorname{Ai}(\zeta_s) - i \operatorname{Bi}(\zeta_s)] - \operatorname{Ai}(\zeta_s) [\operatorname{Ai}'(\zeta_s) - i \operatorname{Bi}'(\zeta_s)]}, & a(z - z_s) \leq 0 \\
\frac{2(\omega^2 a)^{-1/3} \operatorname{Ai}(\zeta_s) [\operatorname{Ai}(\zeta) - i \operatorname{Bi}(\zeta)]}{\operatorname{Ai}'(\zeta_s) [\operatorname{Ai}(\zeta_s) - i \operatorname{Bi}(\zeta_s)] - \operatorname{Ai}(\zeta_s) [\operatorname{Ai}'(\zeta_s) - i \operatorname{Bi}'(\zeta_s)]}, & a(z - z_s) \geq 0.
\end{cases}$$

Homogeneous Elastic Layers

Scalar Displacement Potentials

$$u(r,z) = \frac{\partial}{\partial r}\phi(r,z) + \frac{\partial^2}{\partial r\partial z}\psi(r,z),$$

$$w(r,z) = \frac{\partial}{\partial z}\phi(r,z) - \frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r}\psi(r,z),$$

$$\left[\nabla^2 + k_m^2\right] \phi(r, z, t) = 0$$
, $k_m = \omega/c_p$ Compressional waves $\left[\nabla^2 + \kappa_m^2\right] \psi(r, z, t) = 0$, $\kappa_m = \omega/c_s$ Shear waves

Wave Speeds

$$c_p = \sqrt{\frac{\lambda + 2\mu}{\rho}},$$

$$c_s = \sqrt{\frac{\mu}{\rho}}.$$

Integral Representations

$$\begin{array}{ll} \phi(r,z) &=& \int_0^\infty \left[\!\!\! A^-\!\!\! \left[\!\!\! e^{-ik_zz} + \!\!\!\! \left[\!\!\! A^+\!\!\! e^{ik_zz} \right] J_0(k_rr) \, k_r \, dk_r \right., \\ \psi(r,z) &=& \int_0^\infty k_r^{-1} \left[\!\!\!\! \left[\!\!\! B^-\!\!\! \left[\!\!\! e^{-i\kappa_zz} + \!\!\!\! \left[\!\!\! B^+\!\!\! e^{i\kappa_zz} \right] J_0(k_rr) \, k_r \, dk_r \right., \end{array} \right. \end{array} \qquad \textbf{4 Unknowns}$$

Vertical Wavenumbers

$$k_z = \sqrt{k_m^2 - k_r^2} ,$$

$$\kappa_z = \sqrt{\kappa_m^2 - k_r^2} .$$

Boundary Conditions

Table 4.1 Boundary conditions (= : continuous; 0 : vanishing; - : not involved).

Type	Field parameter				
	w	u	σ_{zz}	σ_{rz}	Number of Boundary Conditions
Fluid-vacuum	-	-	0	-	1
Fluid-fluid	=	-	=	-	2
Fluid-solid	=	-	=	0	3
Solid-vacuum	-	-	0	0	2
Solid-solid	=	=	=	=	4

Global Equations and Unknowns

Wavefield Unknowns		Boundary Conditions
0	Vacuum	
4	Elastic Ice Cover	2 3
2	Fluid Water Column	
2	Fluid Codingot Love	2
	Fluid Sediment Layer	3
4	Elastic Sediment Layer	4
2	Elastic Halfspace	•
14 unknowns		14 equations