Homework 1

Problem #1

Decision variables

$$x_1, x_2, \dots, x_{13}$$

Where,

 x_1 is the number of servings of peas

 x_2 is the number of servings of green beans

...

 x_{13} is the number of servings of Jello

Objective function

Minimize total cost

$$0.1 x_1 + 0.12 x_2 + 0.13 x_3 + 0.09 x_4 + 0.10 x_5 + 0.07 x_6 + 0.70 x_7 + 1.20 x_8 + 0.63 x_9 + 0.28 x_{10} + 0.42 x_{11} + 0.15 x_{12} + 0.12 x_{13}$$

Subject to Constraints

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge 1$ (At least one equivalent serving of vegetables is desired)

 $x_7 + x_8 + x_9 \ge 1$ (At least one equivalent serving of meat is desired)

 $x_{10} + x_{11} + x_{12} + x_{13} \ge 1$ (At least one equivalent serving of dessert is desired)

 $x_1 + x_2 + x_3 + 2x_4 + 4x_5 + 5x_6 + 2x_7 + 3x_8 + 3x_9 + x_{10} + x_{11} + x_{12} + x_{13} \ge 5$ (Minimal requirement of carbohydrate)

 $3x_1 + 5x_2 + 5x_3 + 6x_4 + 2x_5 + x_6 + x_7 + 8x_8 + 6x_9 + 3x_{10} + 2x_{11} \ge 10$ (Minimal requirement of vitamins)

 $x_1 + 2x_2 + x_3 + x_4 + x_5 + x_6 + 3x_7 + 5x_8 + 6x_9 + x_{10} \ge 10$ (Minimal requirement of proteins)

 $2 x_4 + x_5 + x_6 + x_7 + 2 x_8 + x_9 \ge 2$ (Minimal requirement of fat)

 $x_i \ge 0$ For i = 1, 2... 13 (non-negativity constraint)

Decision variables

 X_{ij} (Which is the amount or quantity of *i* type of fuel (in tons) to be used at plant *j*)

Where,
$$i = 1, 2, ..., m$$

$$j = 1, 2, ..., n$$

So, there are m*n decision variables

Objective function

There are m types of fuel and each fuel type i costs c_i dollars per ton.

The total cost of fuel type i is

$$c_i * (X_{i1} + X_{i2} + \cdots + X_{in})$$

So, the objective function is:

Minimize total cost of fuel which is,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_i * X_{ij}$$

Subject to Constraints

 $X_{ij} \ge 0$ (Non-negativity constraints)

$$\sum_{i=1}^{m} X_{ij} * a_{ij} \ge b_i$$
 For j = 1, 2...n

(Explanation: The total energy needed at each plant j is b_j . $X_{ij} * a_{ij}$ represents the energy generated by fuel type i at plant j which when summed over all fuel type i gives the total energy generated at plant j. Since plant j needs b_j British thermal units per day, so at least b_j British thermal units of energy should be generated at plant j)

$$\sum_{i=1}^{m} X_{ij} * e_{ij} \leq \gamma_j$$
 For j = 1, 2...n

(Explanation: $X_{ij} * e_{ij}$ represents effluent emission per ton by fuel type i at plant j which when summed over all fuel type i gives the total effluent emission at plant j. Since plant j has meteorological parameter as γ_i , so at most there can be effluent emission of γ_i at plant j.)

 $\sum_{i=1}^{m} \sum_{j=1}^{n} e_{ij} * X_{ij} \le b$ (The level of air pollution in the region is to not exceed b micrograms per cubic meter)

Decision variables

$$x_1, x_2, x_3, x_4$$

Where,

 x_1 is the number of product A to be produced next week

 x_2 is the number of product B to be produced next week

 x_3 is the number of product C to be produced next week

 x_4 is the number of product D to be produced next week

Objective function

Maximize total profit (in \$)

$$18 x_1 + 15 x_2 + 13 x_3 + 14 x_4$$

Subject to Constraints

 $3 x_1 + x_2 + 2 x_3 + x_4 \le 2400$ (Time available for pouting next week is 40 hours = 2400 minutes)

 $8 x_1 + 12 x_2 + 6 x_3 + 7 x_4 \le 4800$ (Time available for cleaning next week is 80 hours = 4800 minutes)

 $10 x_1 + 6 x_2 + 9 x_3 + 7 x_4 \le 4800$ (Time available for grinding next week is 80 hours = 4800 minutes)

 $x_1 + x_2 + x_3 + x_4 \le 1200$ (Time available for inspection next week is 20 hours = 1200 minutes)

 $3 x_1 + 5 x_2 + 3 x_3 + 2 x_4 \le 2400$ (Time available for packing next week is 40 hours = 2400 minutes)

 $x_1 \ge 200$ (At least 200 units of product A must be produced)

 $x_2 \ge 0$ (Non-negativity constraint)

 $x_3 \ge 0$ (N-negativity constraint)

 $x_4 \ge 300$ (At least 300 units of product D must be produced)

(a) Let
$$y_0 = \frac{1}{2x_1 + x_3 + 4x_4 + 3}$$

Also, let

$$x_1y_0 = y_1$$
 $x_2y_0 = y_2$ $x_3y_0 = y_3$ $x_4y_0 = y_4$

Then the reformulation would be as follows:

MAXIMIZE
$$Z = 4y_1 + y_2 - 3y_4 + y_0$$

SUBJECT TO

$$y_1 - 2y_2 + y_3 + 2y_4 - 10y_0 \le 0$$

$$y_2 - y_3 + 5y_4 - 12y_0 \le 0$$

$$y_1 \geq 0, y_2 \geq 0, y_3 \geq 0, y_4 \geq 0$$
 (Non-negativity constraints)

 $y_0 > 0$ (This is because if y_0 is negative then the non-negativity constraints mentioned above won't necessarily hold true and $y_0 = 0$ is not possible because of the way y_0 is defined)

(b) The feasible region is shown in white.

The corner points of the feasible region are: (0, 0), (0, 3), (3, 0) and (1.71, 2.14)

The maximum value of 5 x_1 + 4 x_2 is when x_1 = 1.71 and x_2 = 2.14

The maximum value is 17.14

Decision variables

 x_1, x_2, x_3, x_4

Where,

 x_1 is the amount invested in Stock 1 (in dollars)

 x_2 is the amount invested in Stock 2 (in dollars)

 x_3 is the amount invested in Stock 3 (in dollars)

 x_4 is the amount invested in Stock 4 (in dollars)

Risk Calculation

	Stock 1		Stock 2		Stock 3		Stock 4	
	Return	ABS	Return	ABS	Return	ABS	Return	ABS
Forecast 1	3	0.1	13	7.6	4	1.4	25	5
Forecast 2	1	1.9	4.5	0.9	0.6	2	15	5
Forecast 3	2.75	0.15	1.75	3.65	2.75	0.15	20	0
Forecast 4	4.5	1.6	5	0.4	1.9	0.7	5	15
Forecast 5	3.25	0.35	2.75	2.65	3.75	1.15	35	15
MAD	2.9	0.82	5.4	3.04	2.6	1.08	20	8

Objective function

Minimize RISK

 $0.82 x_1 + 3.04 x_2 + 1.08 x_3 + 8.00 x_4$

Subject to Constraints

Constraint 1: $x_1 + x_2 + x_3 + x_4 \le 100,000$

Explanation: Investment of no more than \$100,000

Constraint 2: $0.1 x_1 + 0.1 x_2 + 0.1 x_3 - 0.9 x_4 \le 0$

Explanation: At least 10% of total investment in Stock 4

 $x_4 \ge 0.1(x_1 + x_2 + x_3 + x_4)$

Constraint 3: $2.8 x_1 + 5.3 x_2 + 2.5 x_3 + 19.9 x_4 \ge 0$

Explanation: Expected return of at least 10% of total amount invested

 $2.9 x_1 + 5.4 x_2 + 2.6 x_3 + 20 x_4 \ge 0.1(x_1 + x_2 + x_3 + x_4)$

Constraint 4: $x_i \ge 0$ For i = 1,2,3,4 (Explanation: Non-Negativity constraints)