UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

JNAM, Facultad de Ingeniería Autor: Santiago Cruz Carlos		21/10/2017 22:31 Titulo:	
sábado, 21 de octubre	sábado, 21 de octubre de 2017, Ciudad Universitaria, México, DF		
	2 de 4		

Titulo:

TITULO: POTENCIA EN CORRIENTE ALTERNA

Al suministrar una tensión senoidal, $v(t) = V_p \cos(\omega t)$ a una impedancia $Z = |Z| \angle \theta$, se establece una corriente $i(t) = I_p \cos(\omega t - \theta)$. La potencia total consumida por la impedancia en el instante t es:

$$\begin{split} p(t) &= v(t)i(t) \\ p(t) &= \left[V_p \cos(\omega t) \right] I_p \cos(\omega t - \theta) \right] \\ p(t) &= V_p I_p \cos(\omega t) \cos(\omega t - \theta) \end{split}$$

Utilizando identidades trigonométricas:

$$p(t) = V_p I_p \frac{1}{2} [\cos(\theta) + \cos(2\omega t - \theta)]$$

El subíndice p significa solamente a amplitud de la señal, o el valor pico.

$$V_{p} = V_{pico}$$

$$V_{rms} = \frac{V_{p}}{\sqrt{2}}$$

$$\sqrt{2}V_{rms} = V_p$$

$$p(t) = \left(\sqrt{2}V_{rms}\right)\left(\sqrt{2}I_{rms}\right)\frac{1}{2}\left[\cos(\theta) + \cos(2\omega t - \theta)\right]$$
$$p(t) = \frac{\sqrt{2}\sqrt{2}}{2}\left(V_{rms}\right)\left(I_{rms}\right)\left[\cos(\theta) + \cos(2\omega t - \theta)\right]$$

$$p(t) = (V_{rms})[I_{rms}][\cos(\theta) + \cos(2\omega t - \theta)]$$

$$p(t) = (V_{rms})(I_{rms})\cos(\theta) + (V_{rms})(I_{rms})\cos(2\omega t - \theta)$$

Titulo:

Observe las componentes de la señal p(t):

$$p(t) = (V_{rms})(I_{rms})\cos(\theta) + (V_{rms})(I_{rms})\cos(2\omega t - \theta)$$

Una constante + una componente senoidal.

	Una constante	Varia con el tiempo
	$p_{_{med}}$	
	Potencia media (activa)	Potencia instantánea (+/-)
p(t)	$(V_{rms})(I_{rms})\cos(\theta)$	$(V_{rms})(I_{rms})\cos(2\omega t - \theta)$

Que pasa si es resistiva la carga, el ángulo theta es cero, el coseno de cero es 1,

	Una constante	Varia con el tiempo
	$p_{{\scriptscriptstyle med}}$	
	Potencia media (activa)	Potencia instantánea (+/-)
p(t)	$(V_{rms})(I_{rms})$	$(V_{rms})(I_{rms})\cos(2\omega t)$