Let A, B, and C be sets. Use the definition of set equality to prove that

$$(A-C) \cap (C-B)=0$$

PROOF

- 1. Let $x \in (A-C) \cap (C-B)$
 - a. Using the definition of intersection, x is in the intersection when it is in both sets (duh)

i.
$$x \in (A-C) \land x \in (C-B)$$

b. Using the definition of the difference A-C we know that x is in A and x is not in C

i.
$$x \in A \land \neg(x \in C) \land x \in C \land \neg(x \in B)$$

c. Negation law for propositions

i.
$$x \in A \land G \land \neg (x \in B)$$

- d. Domination law
 - i. G
- e. Emptyset doesn't contain elements, so statement $x \in 0$ is false always.
- f. By definition of subset, we show that $(A-C) \cap (C-B) \subseteq 0$
- 2. Empty set is a subset of every set
 - a. $0\subseteq (A-C)$
- 3. Conclusion:
 - a. Since $(A-C) \cap (C-B) \subseteq 0$ and $0 \subseteq (A-C)$, the two sets have to be the same

 $(A-C) \cap (C-B)=0$