Übungen zur Numerik und Modellierung, Wintersemester 2013/14

8. Serie, 08.01.14

Aufgabe 29

Berechnen Sie Näherungswerte für $\int_{\pi/6}^{\pi/2} \frac{1}{\sin x} dx$ mit Hilfe

- a) der (einfachen) Trapezregel b) der zusammengesetzten Trapezregel (Trapezsumme) $T_3(f)$
- c) der (einfachen) Simpsonregel d) der zusammengesetzten Simpsonregel $S_4(f)$ und schätzen Sie jeweils den möglichen Fehler ab.

Aufgabe 30

Bestimmen Sie Näherungen x_n für die Nullstelle von $f: \mathbb{R} \to \mathbb{R}, f(x) := \cos x - x$ mit

- a) dem Bisektionsverfahren und dem Anfangsintervall [0, 1] für n=0,1,...,5,
- b) der regula falsi und dem Anfangsintervall [0,1] für n=0,1,2,3,4,
- c) dem Newton-Verfahren und $x_0 = 0$ für n=1,2,3,4,
- d) dem Sekantenverfahren und $x_0 = 0, x_1 = 1$ für n=2,3,4,5.

Hausaufgaben

Aufgabe 31

- a) Berechnen Sie Näherungswerte für $\int\limits_1^5 \frac{1}{x} \, dx \, (=\ln 5)$ mit Hilfe der Trapezregel und der Simpsonregel und wenden Sie jeweils die zugehörige Fehlerabschätzung an.
- b) Berechnen Sie näherungsweise l
n 5 durch eine Trapezsumme $T_N(f)$, wobei $h=\frac{b-a}{N}$ so zu wählen sei, dass der mögliche Fehler betragsmäßig kleiner als 0.2 sei.
- c) Wie b), aber mit der zusammengesetzten Simpsonregel mit einem geeigneten $h = \frac{b-a}{2N}$.

Aufgabe 32

Bestimmen Sie Näherungen x_n für die Nullstelle von $f: \mathbb{R} \to \mathbb{R}, f(x) := e^x - 2(e-1)x$ mit

- a) dem Bisektionsverfahren und dem Anfangsintervall [0,1] für n=0,1,...,5,
- b) der regula falsi und dem Anfangsintervall [0, 1] für n=0,1,2,3,4,
- c) dem Newton-Verfahren und $x_0 = 1$ für n=1,2,3,4,
- d) dem Sekantenverfahren und $x_0 = 0, x_1 = 1$ für n=2,3,4,5.

Geben Sie jeweils auch $f(x_n)$ und in c) $f'(x_n)$ an und rechnen Sie die Näherungen x_n auf mindestens 6 Stellen genau aus.