

Solver: HiGHS

Sumário

- História
- Características
- Utilização
- Exemplos
- Sibliografia
- 6 Fim

História

• HiGHS - high performance software for linear optimization

Lucas Murilo, Victor Ribeiro Solver: HiGHS ABRIL DE 2025 3/27

História

- The University of Edinburgh
- Julian Hall, Ivet Galabova, Filippo Zanetti, Yanyu Zhou, Ben Champion

Lucas Murilo, Victor Ribeiro Solver: HiGHS ABRIL DE 2025 4/27

Propósito

Solver (serial e paralelo), para modelos em larga escala e esparsos de: programação linear (PL), programação inteira mista (MIP) e programação quadrática (QP).

- **PL**:
 - Simplex
 - ► Ponto Interior
 - Método de Gradiente Híbrido Primal-Dual

Lucas Murilo, Victor Ribeiro Solver: HiGHS ABRIL DE 2025 5/27

Licença

- MIT
 - Gratuito
 - ▶ Open Source : Disponível no GitHub

Linguagem

- C++11
- Inteface para linguagens : C, C#, FORTRAN, Julia, Python.

Instalação

Python:

pip

pip install highspy

• C++:

Clonar repositório

git clone https://github.com/ERGO-Code/HiGHS.git

Construir/compilar com cmake a biblioteca

cd HiGHS

cmake -S. -B build

cmake - -build build - -parallel

Utilização

importando o modulo

import highspy

instânciando e inicializando o objeto

h = highspy.Highs()

Utilização: Lendo e Salvando Modelos

Lendo um modelo do tipo (CPLEX) LP

filename = 'model.lp' status = h.readModel(filename)

Salvando um modelo do tipo (CPLEX) LP

status = h.writeModel('model.lp')

Utilização: Adicionando Variável de Decisão

método addVariable

x0 = h.addVariable(lb = 0, ub = 4)

lb: limite inferior da variável.

ub : limite superior da variável.

Utilização: Adicionando Restrição

método addConstr

 $h.addConstr(5 \le x0 + 2*x1 \le 15)$

Utilização: Tipo de Função Objetivo

método minimize

h.minimize(x0 + x1)

método maximize

h.maximize(x0 + x1)

Utilização: Rodando e Obtendo as Soluções

método run

h.run()

métodos para soluções

solution = h.getSolution()

basis = h.getBasis()

info = h.getInfo()

 $model_status = h.getModelStatus()$

Exemplo 0: Window Glass

Fábrica	Tempo de produção por lote (h) Produto		Tempo de produção disponível por semana
	1 2		(horas)
	•		(110143)
1	'	U	4
2	0	2	12
3	3	2	18
Lucro por lote	<i>US</i> \$ 3.000	<i>US</i> \$ 5.000	

• Determinar quais devem ser as taxas de produção para ambos produtos, de modo a maximizar o lucro total, sujeito às restrições de capacidade produtiva de cada fábrica.

Lucas Murilo, Victor Ribeiro Solver: HiGHS ABRIL DE 2025 15/27

Exemplo 0: Window Glass - Código

Código

```
x1 = h.addVariable(lb = 0, ub = 4)

x2 = h.addVariable(lb = 0, ub = h.inf)

h.addConstr(  2*x2 <= 12)
```

h.addConstr(
$$3*x1 + 2*x2 \le 18$$
)

$$h.maximize(3*x1 + 5*x2)$$

Solução

$$[x1, x2] = [2.0, 6.0]$$

$$(Z) = 36.0 \mid (Z \times 1000) = 36,000.0$$

Exemplo 1: Dieta

Vitamina	Leite (litro)	carne (kg)	Peixe (kg)	Salada (100g)	Requisito nutricional min.
Α	2 mg	2 mg	10 mg	20 mg	11 mg
С	50 mg	20 mg	10 mg	30 mg	70 mg
D	80 mg	70 mg	10 mg	80 mg	250 mg
Custo	R\$ 2,0	R\$ 4,0	R\$ 1,5	R\$ 1,0	

 O objetivo é minimizar o custo. Formular o problema para otimização dos recursos envolvidos.

Lucas Murilo, Victor Ribeiro Solver: HiGHS ABRIL DE 2025 17/27

Código

```
x1 = h.addVariable(lb = 0, ub = h.inf)
x^2 = h.addVariable(lb = 0, ub = h.inf)
x3 = h.addVariable(lb = 0, ub = h.inf)
x4 = h.addVariable(lb = 0, ub = h.inf)
h.addConstr( 2*x1 + 2*x2 + 10*x3 + 20*x4 >= 11 )
h.addConstr(50*x1 + 20*x2 + 10*x3 + 30*x4 >= 70)
h.addConstr(80*x1 + 70*x2 + 10*x3 + 80*x4 \ge 250)
h.minimize(2*x1 + 4*x2 + 1.5*x3 + x4)
```

Solução

$$[x1, x2, x3, x4] = [0.0, 0.0, 0.0, 3.125]$$

 $(Z) = 3.125$

TABELA 2.6 QUANTIDADE DISPONÍVEL DE PETRÓLEO

Tipo de Petróleo	Quantidade Máxima Disponível (Barril/dia)	Custo por Barril/dia (R\$)
1	3.500	19
2	2.200	24
3	4.200	20
4	1.800	27

TABELA 2.7 PERCENTUAIS PARA LIMITES DE QUALIDADE DAS GASOLINAS

Tipo de Gasolina	Especificação	Preço de Venda R\$/Barril		
Superazul	Não mais que 30% de 1 Não menos que 40% de 2 Não mais que 50% de 3	35		
Azul	Não mais que 30% de 1 Não menos que 10% de 2	28		
Amarela	Não mais que 70% de 1	22		

 O objetivo é maximizar o lucro resultante da venda dos diversos tipos de gasolina, abatidos os custos dos diversos tipos de petróleo utilizados.

Variáveis de Decisão: X_{ij} número de barris de petróleo do tipo j, j = 1, 2, 3, 4, que serão destinados à produção da gasolina i, (i = A-gasolina Amarela, Z-gasolina aZul, S-gasolina Superazul).

```
• Função Objetivo: Z = Maximizar {
                                   f(x) =
                                         22(xA1 + xA2 + xA3 + xA4)
                                         +28 (xZ1 + xZ2 + xZ3 + xZ4)
                                         +35 (xS1 + xS2 + xS3 + xS4)
                                         -19(xA1 + xZ1 + xS1)
                                         -24 (xA2 + xZ2 + xS2)
                                         -20 (xA3 + xZ3 + xS3)
                                         -27 (xA4 + xZ4 + xS4)
```


• Restrições associadas à quantidade de petróleo disponível:

Tipo 1:
$$xA1 + xZ1 + xS1 \le 3.500$$

Tipo 2:
$$xA2 + xZ2 + xS2 \le 2.200$$

Tipo 3:
$$xA3 + xZ3 + xS3 \le 4.200$$

Tipo 4:
$$xA4 + xZ4 + xS4 \le 1.800$$

Lucas Murilo, Victor Ribeiro Solver: HiGHS ABRIL DE 2025 22/27

• Restrições associadas às especificações da mistura:

Para a gasolina superazul:

$$xS1 \le 0.3 (xS1 + xS2 + xS3 + xS4)$$

$$xS2 \ge 0.4 (xS1 + xS2 + xS3 + xS4)$$

$$xS3 \le 0.5 (xS1 + xS2 + xS3 + xS4)$$

Para a gasolina azul:

$$xZ1 \le 0.3 (xZ1 + xZ2 + xZ3 + xZ4)$$

$$xZ1 >= 0,1 (xZ1 + xZ2 + xZ3 + xZ4)$$

Para a gasolina amarela:

$$xA1 \le 0.7 (xA1 + xA2 + xA3 + xA4)$$

Lucas Murilo, Victor Ribeiro Solver: HiGHS ABRIL DE 2025 23/27

• Restrições de não negatividade:

$$xA1, xA2, xA3, xA4, xZ1, xZ2, xZ3, xZ4, xS1, xS2, xS3, xS4 >= 0$$

Lucas Murilo, Victor Ribeiro Solver: HiGHS ABRIL DE 2025 24/27

Exemplo 2: Mistura de Petróleo - Código e Solução

Código

```
xA1 = h.addVariable(lb = 0, ub = h.inf)
...
xS4 = h.addVariable(lb = 0, ub = h.inf)
```

h.maximize($22 * (xA1 + xA2 + xA3 + xA4) \dots - 27 * (xA4 + xZ4 + xS4)$)

Solução

```
[xA1, xA2, xA3, xA4] = [0.0, 0.0, 0.0, 0.0]

[xZ1, xZ2, xZ3, xZ4] = [1860.0, 0.0, 4200.0, 140.0]

[xS1, xS2, xS3, xS4] = [1640.0, 2200.0, 0.0, 1660.0]

(Z) = 114200.0
```


Bibliografia

ASSIS, L. *Aula 04 - Método Gráfico.pdf*. Acesso: 25 de Abril de 2025. Disponível em: https://sites.google.com/site/lauraassis/home/courses/cefet/ensino/pl.

GOLDBARG, M. C. Otimização Combinatória E Programação Linear. 2005.

HIGHS, D. https://ergo-code.github.io/HiGHS/stable/. Acesso: 25 de Abril de 2025.

Disponível em: https://ergo-code.github.io/HiGHS/stable/>.

