Universitá di Napoli Federico II Analisi Matematica I - Informatica - 03/02/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare e disegnare l'insieme di definizione della seguente funzione:

$$f(x) = \sqrt{\frac{x|x|-1}{x}} + \frac{1}{\log_{1/2}(2^x - 1)}$$

2. Data

$$f(x) = \begin{cases} \frac{\log(x)}{x-1} + 1, & \text{se } x > 1, \\ axe^{x-1}, & \text{se } x \le 1. \end{cases}$$

Dopo aver trovato il valore di $a \in \mathbb{R}$ tale per cui f sia continua, tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x \to 0^+} \left(\frac{x^3 + 3x^2 + 2x}{2x^2 + 2x} \right)^{\frac{2x+2}{x^2 + 2x}}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\sin(x)\cos(x)}{\sin^3(x) + 2\sin^2(x) + 5\sin(x)} dx$$

5. Studiare il carattere della seguente serie

$$\sum_{k=1}^{\infty} \log \left(\frac{k^4 + 2k^2 + k}{k^4 + k} \right)^k$$

Teoria: Svolgere almeno due delle seguenti domande teoriche a scelta:

- 1. Enunciare e dimostrare il Teorema di Fermat. Fornire un esempio di una funzione che ammette un punto stazionario/critico che non sia massimo o minimo.
- 2. Enunciare e dimostrare il Teorema fondamentale del calcolo integrale. Cosa si può dire sulla monotonia di

$$F(x) = \int_2^x \sin^2(t) \ dt$$

3. Dimostrare che la convergenza assoluta di una serie implica la sua convergenza semplice. Fornire un esempio di serie che non converge assolutamente ma converge semplicemente.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 03/03/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \sqrt{\frac{|x^2 - 2x|}{3x - 4x^2 + x^3}}$$

2. Data la funzione

$$f(x) = \log(e^{2x} - 5e^x + 6)$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x\to -\infty}\frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{1-e^{\frac{1}{x}}}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\tan x + 2}{\cos^2(x)(1 - \tan^2(x))} \, dx$$

5. Studiare il carattere della seguente serie

$$\sum_{n=0}^{\infty} \frac{5^n + (-1)^n}{3^{2n} + 2^{3n}}$$

Teoria: Svolgere almeno una delle seguenti domande teoriche a scelta:

- 1. Dimostrare che ogni successione monotona ammette limite. Questa condizione é anche necessaria?
- 2. Enunciare e dimostrare la formula di Taylor con il resto di Peano nel caso di una funzione di classe C^2 . Determinare tale formula per $f(x) = x^2 + \cos(x)$ per $x = \frac{\pi}{2}$.
- 3. Definire l'integrale di Riemann ed indicare le sue proprietá principali.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 3/9/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \log(\log(x)) + \sqrt{e^{2x} - 3e^x + 2}$$

2. Data la funzione

$$f(x) = \frac{\log(x) + 2}{x}$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x \to 2} \frac{3(\sqrt{x^2 - 4x + 5} - 1)}{(x - 2)\sin(x - 2)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\sqrt{x} + 2}{x + 4} \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} \cos(n\pi) \log \left(1 + \frac{1}{n}\right)$$

- 1. Dare la definizione di punto di massimo relativo e assoluto per una funzione f(x). Enunciare il Teorema di Weierstrass e enunciare e dimostrare il Teorema di Fermat. I punti di massimo assoluto per una funzione continua f sono unici? (dimostrarlo o fornire un controesempio).
- 2. Dare la definizione di derivata e discuterne il significato geometrico. Dimostrare che ogni funzione derivabile é continua in un punto. Si puó affermare che ogni funzione continua è derivabile? (dimostrarlo o fornire un controesempio).
- 3. Dimostrare la convergenza di una serie geometrica di ragione x tale che -1 < x < 1. Dimostrare inoltre che la serie armonica é divergente.

Universitá di Napoli "Federico II" Analisi Matematica I - Informatica - 4/3/2020

	ESERCIZI	PUNTEGGIO
Nome e Cognome:	1	
Nome e Cognome.	2	
Matricola:	3	
Watt Cola.	4	
	5	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \log_4\left(\sqrt{\frac{x+2}{x-2}} - 3\right)$$

2. Tracciare il grafico della seguente funzione

$$f(x) = (x^2 + 1) e^{\frac{1}{x}},$$

determinando dominio, limiti, asintoti e monotonia.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{\sqrt{1 + 2x + x^2} - \sin x - \cos x}{\log(1 + x) + \log(1 - x)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{x - 2\sqrt{x} - 4}{(x - \sqrt{x})(x - 4)} \, dx$$

5. Studiare il comportamento della seguente serie

$$\sum_{n=1}^{\infty} \frac{n^2 - n}{2n + 2} (1 - e^{-\frac{1}{n^2}})$$

Universitá di Napoli "Federico II" Analisi Matematica I - Informatica - 5/2/2020

	ESERCIZI	PUNTEGGIO
Nome e Cognome:	1	
Nome e Cognome.	2	
Matricola:	3	
Wati Icola.	4	
	5	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \arcsin\left(\log_2\left(\frac{x+1}{x-1}\right)\right)$$

2. Tracciare il grafico della seguente funzione

$$f(x) = \frac{x^2}{\sqrt{x^2 - 2}},$$

determinando dominio, limiti, asintoti e monotonia.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{\sin^2(x) + \log(\cos^2(x))}{(1 - e^{-x^2})^2}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{4e^{2x} - 9e^x}{e^{2x} - 6e^x + 10} \, dx$$

5. Studiare il comportamento della seguente serie

$$\sum_{n=2}^{\infty} \frac{(n+1)^n - n\cos(n)}{(3n)^n + n^2\log n}$$

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 5/7/2023

ESERCIZI PUNTEGGIO

TOTALE

	1	
Nome e Cognome:	2	
Nome e Cognome.	3	
Matricola:	4	
Watticola.	5	
	6	
	TEORIA	

1. Determinare l'insieme di definizione della seguente funzione

$$f(x) = \frac{|x|}{\log_2(16 - 2x^2)}$$

2. Data la funzione

$$f(x) = \sqrt{4x^2 - x},$$

tracciarne un grafico di massima determinando dominio, limiti e asintoti.

3. Trovare (se esistono) il massimo e minimo della seguente funzione

$$f(x) = \frac{1 - e^{x^2}}{x^2},$$

sull' intervallo [-1, 1].

4. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{2x - \sin(2x)}{\sqrt[3]{1 + 3x^3} - 1}.$$

5. Calcolare il seguente integrale definito

$$\int_{1}^{2} \frac{\log(x+1)}{x^2} \, dx$$

6. Studiare la convergenza semplice ed assoluta della seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \frac{5^n + (n+1)!}{10^n + (n+2)!}$$

- 1. Il teorema della permanenza del segno per le funzioni continue.
- 2. Il teorema del confronto e del confronto asintotico per le serie.
- 3. La derivata della funzione composta e della funzione inversa.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 5/10/2020

	ESERCIZI	PUNTEGGIO
Nome e Cognome:	1	
Nome e Cognome.	2	
Matricola:	3	
Wati Koia.	4	
	5	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \arccos\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-1\right)$$

2. Tracciare il grafico della seguente funzione

$$f(x) = x + \log\left(\frac{e^x}{e^x - 1}\right),\,$$

determinando dominio, limiti, asintoti, monotonia, estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{e^{\sqrt{x}} - \sqrt{x} - \cos\sqrt{x}}{\log(1 - 2\tan x)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{1 - \log x}{(x+1)^2} \, dx$$

5. Studiare il comportamento della seguente serie

$$\sum_{n=1}^{\infty} \left(\frac{1}{3n} - \frac{1}{3n+5} \right)$$

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 5/10/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \arccos\left(\frac{x^2}{x^2 - 4}\right)$$

2. Data la funzione

$$f(x) = \frac{e^{2x} + 1}{e^x - 1}$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to -1} \frac{\tan^2(x+1)}{1 + x - \log(x+2)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{2\sin x \cos x}{\cos^2(x) + 4\cos x + 4} \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{1 + \frac{1}{n}} - 1 \right)$$

- 1. Enunciare e dimostrare la formula di Taylor con resto di Peano.
- 2. Dare la definizione di integrale definito e di integrale indefinito per una funzione continua f definita su un intervallo [a,b]. Enunciare e dimostrare la formula di integrazione per parti.
- 3. Dimostrare che la successione $a_n = \left(1 + \frac{1}{n}\right)^n$ ammette limite provando che è una successione monotona crescente e limitata. Una successione monotona (non necessariamente limitata) ammette sempre limite? Una successione limitata (ma non necessariamente monotona) ammette sempre limite? Motivare le risposte.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 6/7/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \frac{\sqrt[4]{\log^2(x) - 1}}{x^2 - 5x + 6}$$

2. Data la funzione

$$f(x) = 1 + \exp\left(\frac{x^2}{|x| - 2}\right)$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali. Non occorre lo studio della derivata seconda.

3. Calcolare il seguente limite

$$\lim_{x \to 3} \frac{\tan^2(x-3)}{\sqrt{x^2 - 6x + 10} - 1}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{1}{x^4} \cos\left(\frac{1}{x}\right) \, dx$$

5. Studiare il carattere della seguente serie

$$\sum_{n=0}^{\infty} \frac{4^n + n!}{5^n + (n+2)!}$$

Teoria: Svolgere almeno una delle seguenti domande teoriche a scelta:

- 1. Dimostrare che ogni successione convergente é limitata. É vero anche il viceversa?
- 2. Enunciare e dimostrare il Teorema di Rolle. Esibire almeno un esempio di come le ipotesi di tale teorema siano ottimali.
- 3. Dare una definizione di primitiva di una funzione. Data f(x) continua, come si determinano tutte le sue primitive?

Universitá di Napoli "Federico II" Analisi Matematica I - Informatica - 8/1/2020

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	6	
	TOTALE	

1. (12 punti) Tracciare il grafico della seguente funzione

$$f(x) = \log\left(\frac{x^2 - 3x + 4}{x^2 - 4x + 4}\right),\,$$

determinando dominio, limiti, asintoti, monotonia e convessitá.

2. (4 punti) Calcolare il seguente limite

$$\lim_{x \to 1} \frac{(x-1)\cos(x-1) - \sin(x-1)}{(\sqrt{x} - 1)\log^2(x)}.$$

3. (4 punti) Calcolare il seguente limite

$$\lim_{x \to -\infty} \left(\frac{x^2 - \sin^2(x)}{x^2 + \cos^2(x)} \right)^{x^2}.$$

4. (4 punti) Calcolare il seguente integrale

$$\int_0^4 (2+\sqrt{x})e^{\sqrt{x}}\,dx$$

5. (4 punti) Calcolare il seguente integrale

$$\int \frac{3x^2 + 2x + 1}{x^3 - 4x^2 + 4x} \, dx$$

6. (4 punti) Studiare il comportamento della seguente serie

$$\sum_{n=1}^{\infty} \frac{3^n + n!}{4^n + n^n}$$

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 08/02/2022

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \arccos(\sqrt{x^2 - 1} - x).$$

2. Tracciare il grafico della seguente funzione

$$f(x) = \sqrt{3-x} |x+2|.$$

In particolare studiarne dominio, limiti significativi, asintoti, derivabilità, monotonia, estremi locali, concavità e flessi.

3. Calcolare il seguente limite

$$\lim_{x \to 1} \frac{\sin(x-1) - x + 1}{1 - \cos(\sqrt{2}(x-1)) - x^3 + 2x^2 - x}.$$

4. Calcolare il seguente integrale indefinito

$$\int \arctan(\sqrt{\sin(x)})\cos(x)\,dx$$

5. Studiare la convergenza della seguente serie

$$\sum_{k=1}^{\infty} \frac{\cos(k\pi)\tan(k^{-2})(k^2+3)}{\log(k+1)+3^k+1}$$

- 1. Dimostrare che la successione $a_n = \left(1 + \frac{1}{n}\right)^n$ ammette limite provando che è una successione monotona crescente e limitata. Una successione monotona (non necessariamente limitata) ammette sempre limite? Una successione limitata (ma non necessariamente monotona) ammette sempre limite? Motivare le risposte.
- 2. Fornire la definizione di funzione continua e di tutti i tipi di discontinuità. Fornire un esempio di funzione per ogni tipo di discontinuità.
- 3. Enunciare e dimostrare il criterio di Leibniz per le serie alternate.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 9/3/2022

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \sqrt{\frac{e^{2x} - 1}{4x^2 - 1}}$$

2. Data la funzione

$$f(x) = \frac{\log(x^2 - 4x + 4)}{x^2 - 4x + 4},$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to 0^+} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{x^4 + x^3 - x^2 - x}{x^3 - 1} \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} n^2 \left(1 - \cos \left(\frac{2n^2}{4n^4 + 3n^3} \right) \right)$$

Teoria: Rispondere ad almeno una tra le seguenti domande teoriche:

- 1. Enunciare e dimostrare il Teorema dei valori intermedi. Si può dedurre che la funzione $f(x) = \log(x+1) + \sin(x)$ assume il valore $\frac{1}{2}$ per qualche $x \in \left[0, \frac{\pi}{2}\right]$? (non è necessario trovare il valore di x)
- 2. Enunciare e dimostrare il Teorema fondamentale del calcolo integrale. Cosa si può dire sulla monotonia di

$$F(x) = \int_0^x -e^{t^2} dt$$

3. Fornire la definizione di serie convergente, divergente e irregolare e dimostrare la condizione necessaria per la convergenza di una serie. Dare un esempio di serie convergente ma assolutamente divergente.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 11/1/2022

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \log_{1/2} \left(\frac{2\sqrt{x} - x}{x+3} \right)$$

2. Data la funzione

$$f(x) = \left| \frac{x^2 - 1}{x^3} \right|$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{x^2 \sin(x^2)}{1 - x^2 - e^{-x^2}}.$$

4. Calcolare il seguente integrale indefinito

$$\int e^{2x} \cos(e^x + 1) \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} \left(\sqrt{\frac{n^3 + 4n^2 + 3n}{n^3 + 4n^2}} - 1 \right)$$

- 1. Definire cosa si intende per successione convergente o divergente. Dimostrare che il limite di una successione, se esiste, è unico.
- 2. Enunciare e dimostrare le regole di derivazione del prodotto e del quoziente di due funzioni derivabili.
- 3. Discutere la convergenza della serie geometrica e della serie armonica generalizzata.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 12/07/2022

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = |x| \arcsin(x-4) + \log_{\frac{1}{2}}(\sqrt{x}-1).$$

2. Data la funzione

$$f(x) = e^{|x^2 - x|},$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia e estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{\sin(x) - e^x + 1}{2(\log(1+x) - x)}$$

4. Calcolare il seguente integrale indefinito

$$\int_0^1 \frac{e^{3x} + e^{2x} + e^x}{e^x + 1} \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{k=1}^{\infty} \frac{\tan(\frac{1}{k})(k^2 + 2k + 1)}{k2^k + 1 + \log(k)}$$

Teoria: Rispondere ad almeno una tra le seguenti domande teoriche:

- 1. Enunciare e dimostrare il teorema sulla convergenza delle successioni monotone. Fornire un esempio di successione convergente e non monotona.
- 2. Enunciare e dimostrare il Teorema fondamentale del calcolo integrale. Cosa si può dire sulla monotonia di

$$F(x) = \int_0^x \log(1 + t^2)e^t dt.$$

3. Discutere la convergenza della serie geometrica.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 13/1/2023

ESERCIZI | PUNTEGGIO

TOTALE

	1	
Nome a Cornema	2	
Nome e Cognome:	3	
Matricola:	4	
Matricola.	5	
	6	
	TEORIA	

1. Determinare l'insieme di definizione della seguente funzione

$$f(x) = \sqrt[4]{\frac{e^{3x} - 1}{x^2 - e^2}}.$$

2. Data la funzione

$$f(x) = \log_2\left(\frac{8x^2 + 3}{x^2 - 16}\right),\,$$

tracciarne un grafico di massima determinando dominio, limiti e asintoti.

3. Trovare il massimo e minimo della seguente funzione

$$f(x) = |\arctan(x^4 - 4x^2)|,$$

sull' intervallo [-4,4].

4. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{2x - 2x\cos x - x^2\sin x}{2\sin x - \sin(2x)}.$$

5. Calcolare il seguente integrale definito

$$\int_{1}^{2} \frac{(2x-6)\log x}{(x^2-6x+10)^2} \, dx$$

6. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=2}^{\infty} \frac{\sqrt{n^4 + 2n^2} - n^2}{n^2 \log n + (-1)^n n}$$

- 1. Enunciare e dimostrare il teorema dei due carabinieri per le successioni.
- 2. Discutere il teorema di Lagrange, con ipotesi, dimostrazione e controesempi.
- 3. Spiegare il criterio del confronto e della radice per le serie numeriche.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 13/3/2023

ESERCIZI | PUNTEGGIO

TOTALE

	1	
Nome e Cognome:	2	
Nome e Cognome.	3	
Matricola:	4	
Wati icola.	5	
	6	
	TEORIA	

1. Determinare l'insieme di definizione della seguente funzione

$$f(x) = \log_5 \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1} - 1 \right)$$

2. Data la funzione

$$f(x) = \left| \frac{2x^2 - 4}{x + 3} \right|,$$

tracciarne un grafico di massima determinando dominio, limiti e asintoti.

3. Trovare (se esistono) il massimo e minimo della seguente funzione

$$f(x) = \log(e^x - 2x),$$

sull' intervallo $[0, \frac{3}{2}]$.

4. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - e^{x^2}}{\sin^2(x^2)}.$$

5. Calcolare il seguente integrale definito

$$\int_{1}^{2} \frac{1}{x^2} \left(\frac{x-1}{x} \right)^3 dx$$

6. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \left(\frac{n+2}{n^2 + 3n + 2} \right) \right)$$

- 1. Successioni monotone.
- 2. Il teorema degli zeri per le funzioni continue.
- 3. Il teorema fondamentale del calcolo.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 14/1/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \log_3\left(\frac{x+2}{x-1}\right) + \sqrt[4]{e^{2x} - 3e^x + 2}$$

2. Tracciare il grafico della seguente funzione

$$f(x) = (1 - x^2)e^{-|x|},$$

determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x \to 1} \frac{\sqrt{x} - e^{\frac{x-1}{2}}}{1 - \cos^2(x-1)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \log\left(\frac{x^2 - 4}{x}\right) \, dx$$

5. Studiare il comportamento della seguente serie

$$\sum_{n=1}^{\infty} \left(\frac{n^2 - 1}{n^2} \right)^{n^3}$$

Teoria: Svolgere almeno due delle seguenti domande teoriche a scelta:

- 1. Enunciare e dimostrare il Teorema di Lagrange.
- 2. Enunciare il Teorema degli zeri e dei valori intermedi. L'equazione $x+e^x=0$ ammette soluzioni?
- 3. Enunciare e dimostrare il Teorema della media integrale.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 14/2/2023

ESERCIZI PUNTEGGIO

TOTALE

	1	
Nome e Cognome:	2	
Nome e Cognome.	3	
Matricola:	4	
Wati icola.	5	
	6	
	TEORIA	

1. Determinare l'insieme di definizione della seguente funzione

$$f(x) = \sqrt[6]{\log_{1/4}(3|x| - 6) + 1}.$$

2. Data la funzione

$$f(x) = \arctan\left(\frac{x^2}{4 - x^2}\right),$$

tracciarne un grafico di massima determinando dominio, limiti e asintoti.

3. Trovare il massimo e minimo della seguente funzione

$$f(x) = x^2 e^{-\frac{1}{x^2}},$$

sull' intervallo [-4,4].

4. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{x\sqrt{1-x} + \log(1+x^2) - x}{x^2 - x^4}.$$

5. Calcolare il seguente integrale definito

$$\int_0^{\frac{\pi}{2}} \frac{(3\sin x + 2)\cos x}{\sin^2 x + 5\sin x + 6} \, dx$$

6. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} \left(n \tan \left(\frac{n+2}{3n^2} \right) \right)^n$$

- 1. Il criterio di convergenza di Leibniz.
- 2. Il teorema della permanenza del segno per le funzioni continue.
- 3. La derivata della funzione composta.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 14/6/2023

ESERCIZI PUNTEGGIO

TOTALE

	1	
Nome e Cognome:	2	
Nome e Cognome.	3	
Matricola:	4	
iviati icoia.	5	
	6	
	TEORIA	

1. Determinare l'insieme di definizione della seguente funzione

$$f(x) = \frac{\log_3(x - \sqrt{x - 1})}{x^3 - 1}$$

2. Data la funzione

$$f(x) = \frac{e^{2x} + 4}{e^{2x} - 4},$$

tracciarne un grafico di massima determinando dominio, limiti e asintoti.

3. Trovare (se esistono) il massimo e minimo della seguente funzione

$$f(x) = \frac{\log(1+x^2)}{x^2},$$

sull' intervallo [-e, e].

4. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{\tan(x^2) - x^2}{x - \sin x}.$$

5. Calcolare il seguente integrale definito

$$\int_{3}^{5} \frac{x^3 - 8}{x^3 - 4x} \, dx$$

6. Studiare la convergenza semplice ed assoluta della seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \frac{1}{2n} \right)^{n^2}$$

- 1. Il teorema di Lagrange.
- 2. Il teorema dei due carabinieri.
- 3. Il teorema della media integrale.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 17/06/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \sqrt{\frac{|x^2 - 2x|}{3x - 4x^2 + x^3}}$$

2. Data la funzione

$$f(x) = \log(e^{2x} - 5e^x + 6)$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}{1 - e^{\frac{1}{x}}}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\tan x + 2}{\cos^2(x)(1 - \tan^2(x))} \, dx$$

5. Studiare il carattere della seguente serie

$$\sum_{n=0}^{\infty} \frac{5^n + (-1)^n}{3^{2n} + 2^{3n}}$$

Teoria: Svolgere almeno una delle seguenti domande teoriche a scelta:

- 1. Dimostrare che ogni successione monotona ammette limite. Questa condizione é anche necessaria?
- 2. Enunciare e dimostrare la formula di Taylor con il resto di Peano nel caso di una funzione di classe C^2 . Determinare tale formula per $f(x) = x^2 + \cos(x)$ per $x = \frac{\pi}{2}$.
- 3. Definire l'integrale di Riemann ed indicare le sue proprietá principali.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 18/10/2022

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione

$$f(x) = \sqrt{e^{2x} - 6e^x + 8} + \arccos(x^4 - 1).$$

2. Data la funzione

$$f(x) = \frac{\sqrt{x^2 - 4}}{x},$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia e estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{xe^{x^2} - \sin(x)}{x(1 - \cos(x))}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{e^{4x}}{e^{2x} - 3e^x + 2} \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{k=1}^{\infty} \log \left(\frac{k^3 + k}{k^3 + k - 1} \right)^{k+1}$$

- 1. Dopo aver fornito la definizione di successione convergente, dimostrare l'unicità del suo limite.
- 2. L'equazione $\log(x) = -e^x$ ammette soluzioni? Enunciare il teorema che si è utilizzato per dedurlo.
- 3. Dopo aver definito cosa si intende per serie numerica alternata, enunciare e dimostrare il criterio di Leibniz.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 20/09/2022

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione

$$f(x) = \log\left(x - 1 + \sqrt{x + 5}\right).$$

2. Data la funzione

$$f(x) = \arctan\left(\frac{x^2 + 1}{x}\right),$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia e estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to 1} \left(\frac{x^2 - x}{(x - 1)^3 + (x - 1)} \right)^{\frac{x}{2x - 2}}$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{(\sqrt{\cos(x)} + 1)\sqrt{\cos(x)}\tan(x)}{\cos(x) + 2} dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{k=1}^{\infty} \cos(k\pi) \frac{k^k + k!}{2k^{k+2} + 3^k}$$

- 1. Dare la definizione di derivabilità e discuterne il significato geometrico. Dimostrare che ogni funzione derivabile è continua in un punto. Si può affermare che ogni funzione continua è derivabile? (dimostrarlo o fornire un controesempio).
- 2. Dare la definizione di integrale definito e di integrale indefinito per una funzione continua f definita su un intervallo [a, b]. Enunciare e dimostrare il teorema della media integrale.
- 3. Fornire la definizione di serie convergente, divergente e irregolare. Enunciare e dimostrare il criterio della radice per la convergenza di una serie.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 21/6/2022

ECEDOIAI DIIMEECCIO

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \frac{\sqrt[4]{1 + \log_{1/3}(3x^2 - 12x)}}{|3x - 2|}$$

2. Data la funzione

$$f(x) = 1 - \exp\left(\frac{x^2}{4 - x^2}\right),$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to -2} \frac{x^2 + 4x + 4 - \sin(x^2 + 4x + 4)}{(1 - \cos(x + 2))^3}$$

4. Calcolare il seguente integrale indefinito

$$\int x \log \left(\frac{x^2}{x^2 - 2} \right) \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n-2}{n}\right)^{n^2}$$

- 1. Enunciare e dimostrare il Teorema di Taylor con resto di Peano. Fornire lo sviluppo di Taylor al decimo ordine di $q(x) = \sin(x^2)$;
- 2. Dare la definizione di derivabilità e la sua interpretazione geometrica. Enunciare e dimostrare il teorema di derivazione delle funzioni inverse. Applicarlo per determinare la derivata della funzione $h(x) = \arcsin(x)$;
- 3. L'equazione $e^x + \log(x) + 1 = 0$ ammette una soluzione nell'intervallo $(0, \infty)$? Perchè? Si può provare che tale soluzione è unica?