Interpolation: Interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points.

For example, for an unknown function f(x), few data points are given as under.

Х	y=f(x)
Argument	Entry
0	0
1	0.8415
2	0.9093
3	0.1411
4	-0.7568
5	-0.9589
6	-0.2794

Find/estimate/interpolate the value of y=f(x) for x=2.5.

If I plot a graph for the above mentioned data point, it would look something like:

Linear interpolation: One of the simplest methods is linear interpolation (sometimes known as lerp). Consider the above example of estimating f(2.5). Since 2.5 is midway between 2 and 3, it is reasonable to take f(2.5) midway between f(2) = 0.9093 and f(3) = 0.1411, which yields **0.5252**.

Generally, linear interpolation takes two data points, say (x_a, y_a) and (x_b, y_b) , and the interpolant is given by:

$$y = y_a + (y_b - y_a) [(x-x_a) / (x_b-x_a)]$$

Let us try to evaluate the value of y for x=2.5 with $(x_a,y_a)=(2,0.9093)$ and $(x_b,y_b)=(3,0.1411)$. y = 0.9093 + (0.1411 - 0.9093)[(2.5-2) / (3-2)] =**0.5252**

Its quick and easy but not precise.

Interpolation Methods

Metho	d Name	Conditi	on	Remark		
Newton	Forward	Subsequent v	alues of x	If the value of x lies in the		
Interpolation	Method	are at equal d	listance	forward of the table		
Newton	Backward			If the value of x lies in the		
Interpolation Method				backward of the table		
Binomial	Interpolation			Used for finding the		
Method				missing terms in the table		
				of X		
LaGrange's	Interpolation	Subsequent v	alues of x			
Method		are at	unequal			
		distance				

Example 1:

3	K	y=1	f(x)
\mathbf{x}_0	3	y o	180
X ₁	5	y 1	150
X ₂	7	y ₂	120
X 3	9	y 3	90

Find/estimate/interpolate the value of y=f(x) for x=4.

Can we apply Newton Forward Interpolation Method? Yes. Why? Because $x_1-x_0 = x_2-x_1 = x_3-x_2 = x_n-x_{n-1}=h=2$

Now,
$$u = \frac{x - x_0}{h} = \frac{4 - 3}{2} = 0.5$$

 $y = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u - 1)}{2!} \Delta^2 y_0 + \frac{u(u - 1)(u - 2)}{3!} \Delta^3 y_0 + \dots + \frac{u(u - 1)(u - 2)...(u - n + 1)}{n!} \Delta^n y_0$

	Α	В	С	D	Е	F	G
1	x=	4					
2	h=	2					
3	u=	0.5					
4)	(y=1	f(x)			
5	x_0	3	y ₀	180	Δу	Δ^2 y	Δ^3 y
6				Δ y _{0 =}	-30		
7	x_1	5	y ₁	150	$\Delta^2 y_0 =$		
8					-30	$\Delta^3 y_0 =$	0
9	x_2	7	y ₂	120		0	
10					-30		
11	X ₃	9	y ₃	90			
12							
13	y=	165					

$$y = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots + \frac{u(u-1)(u-2)...(u-n+1)}{n!} \Delta^n y_0$$

$$y = 165$$

Example 2:

13

y= 15.4688

2	X	y=1	f(x)
x ₀	2	y o	14.5
X ₁	3	y ₁	16.3
X ₂	4	y ₂	17.5
X ₃	5	y 3	18

Find/estimate/interpolate the value of y=f(x) for x=2.5.

Can we apply Newton Forward Interpolation Method? Yes. Why? Because x_1 - x_0 = x_2 - x_1 = x_3 - x_2 = x_n - x_{n-1} =h=1

$$\begin{split} y &= y_0 + \frac{u}{1!} \Delta \ y_0 + \frac{u \ (u-1)}{2!} \Delta^2 \ y_0 + \frac{u \ (u-1)(u-2)}{3!} \Delta^3 \ y_0 + + \frac{u \ (u-1)(u-2)...(u-n+1)}{n!} \Delta^n \ y_0 \\ y &= 15.4688 \end{split}$$

Example 3:

	х	y=	f(x)
X 0	0	y o	0
X ₁	1	y ₁	0.8415
X ₂	2	y ₂	0.9093
X 3	3	y 3	0.1411
X ₄	4	y 4	-0.7568
X 5	5	y 5	-0.9589
X ₆	6	y 6	-0.2794

Find/estimate/interpolate the value of y=f(x) for x=2.5.

Can we apply Newton Forward Interpolation Method? Yes. Why? Because x_1 - x_0 = x_2 - x_1 = x_3 - x_2 = x_n - x_{n-1} =h=1

Now,
$$u = \frac{x - x0}{h} = \frac{2.5 - 0}{1} = 2.5$$

4	Α	В	С	D	E	F	G	Н	1	J
1	x=	2.5								
2	h=	1								
3	u=	2.5								
4	х		y:	=f(x)						
5	x ₀	0	y o	0	Δу	Δ^2 y	Δ^3 y	Δ^4 y	Δ^5 y	Δ^6 y
6				Δ y ₀₌	0.8415					
7	X ₁	1	y ₁	0.8415	$\Delta^2 y_0 =$	-0.7737				
8					0.0678	$\Delta^3 y_0 =$	-0.0623			
9	x ₂	2	y ₂	0.9093		-0.836	$\Delta^4 y_0 =$			
10					-0.7682		0.7063	$\Delta^5 y_0 =$	-0.6494	
11	x ₃	3	y ₃	0.1411		-0.1297		0.1192	$\Delta^6 y_0 =$	-0.1095
12					-0.8979		0.8255		-0.7589	
13	x_4	4	Y ₄	-0.7568		0.6958		-0.6397		
14					-0.2021		0.1858			
15	x ₅	5	y ₅	-0.9589		0.8816				
16					0.6795					
17	X ₆	6	y ₆	-0.2794						
18										
19	y=	0.45946								

$$y = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots + \frac{u(u-1)(u-2)...(u-n+1)}{n!} \Delta^n y_0$$

$$y = 0.45946$$

Example 4:

	•				
Ν	/larks	Number of Students			
X 0	30-40	y o	31		
X ₁	40-50	y ₁	42		
X ₂	50-60	y ₂	51		
X 3	60-70	y 3	35		
X ₄	70-80	Y ₄	31		

Find/estimate/interpolate the number of students who obtain marks between 40 to 45 from the above table.

h = length of the interval = 10

x = we would first find the values below 45 (i.e. <math>x=45) (and then subtract 31 [below 40] from it to get the answer for range 40 to 45)

 $x_0 = 40$ (below 40)

Now, $u = \frac{x - x_0}{x} = \frac{45 - 40}{10} = 0.5$

A B C D E F G H 1	140	10W, u = h = 10										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Α			D	Е	F	G	Н			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			x=	45	between 4	0 to 45					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			h=	10							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3			u=	0.5							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	x		y=1	f(x)							
7 x_1 =below 50 50 y_1 73 $\Delta^2 y_0 = 9$ 8 51 $\Delta^3 y_0 = -25$ 9 x_2 =below 60 60 y_2 124 -16 $\Delta^4 y_0 = 37$ 10 35 12 11 x_3 =below 70 70 y_3 159 -4 12 13 x_4 =below 80 80 y_4 190	5	x ₀ = below 40	40	y ₀	31	Δу	Δ^2 y	Δ^3 y	Δ^4 y			
8 51 $\Delta^3 y_0 =$ -25 9 x_2 =below 60 60 y_2 124 -16 $\Delta^4 y_0 =$ 37 10 35 12 11 x_3 =below 70 70 y_3 159 -4 -4 12 31 31 -4 13 x_4 =below 80 80 y_4 190 -25	6				Δ y _{0 =}	42						
9 x_2 =below 60 60 y_2 124 -16 $\Delta^4 y_0$ = 37 10 35 12 11 x_3 =below 70 70 y_3 159 -4 12 31 13 x_4 =below 80 80 y_4 190	7	x ₁ =below 50	50	y ₁	73	$\Delta^2 y_0 =$	9					
10 35 12 11 x ₃ =below 70 70 y ₃ 159 -4 12 31 13 x ₄ =below 80 80 y ₄ 190	8					51	$\Delta^3 y_0 =$					
11 x ₃ =below 70 70 y ₃ 159 -4 12 31 13 x ₄ =below 80 80 y ₄ 190	9	x ₂ =below 60	60	y ₂	124		-16	$\Delta^4 y_0 =$	37			
12 31 31 31 31 31 31 31 31 31 31 31 31 31	10					35		12				
13 X ₄ =below 80 80 y ₄ 190	11	x ₃ =below 70	70	y ₃	159		-4					
	12					31						
	13	x ₄ =below 80	80	y ₄	190							
14	14											
y'= 47.86719 48	15			y'=	47.86719	48						
y= 16.86719 17	16			y=	16.86719	17						

$$y' = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots + \frac{u(u-1)(u-2)...(u-n+1)}{n!} \Delta^n y_0$$

$$y' = 48$$

Answer y = 48 (below 45) -31 (below 40) = 17 (between 40 to 45)

Lagrange's Interpolation Method/Formula

Applicable even if the	he values of x	care not at	equal distance	(unlike to	Newton's	Forward/E	ackward
interpolation formu	la)						