Q5-Smoke Status Recognition

This Task can be basically regarded as a binary classification problem. To have a more accurate result, Ensembling Machine Learning methods are always the first choice. Thus, I use the XGBOOST algorithm to tackle this binary classification problem.

Data Manipulation and Analysis

Firstly, I do some data manipulation and analysis to have a deep understanding of our dataset. The total training sample counts 159256, and there are some samples containing the missing value.

Missing Value Detection

train_data.isna().any	y()
id	False
age	False
height(cm)	True
weight(kg)	False
waist(cm)	True
eyesight(left)	True
eyesight(right)	True
hearing(left)	False
hearing(right)	True
systolic	False
relaxation	False
fasting blood sugar	False
Cholesterol	False
triglyceride	False
HDL	False
LDL	False
hemoglobin	False
Urine protein	True
serum creatinine	False
AST	False
ALT	False
Gtp	False
dental caries	False
smoking	False
dtype: bool	

Figure 1 Missing Value Detection

We can also know the label distribution on the training data

Smoke or not smoke

```
train_data.loc[:, "smoking"].value_counts()

smoking
0 69924
1 54489
Name: count, dtype: int64
```

Figure 2 Lable Distribution

The label distribution is very close to Evenly distributed among 0 and 1

XGBoost

Before applying xgboost to classify the data, I compute the variance of each variable to see their impact on the prediction

```
train data.var(axis="rows").sort values()
hearing(right) 2.279696e-02
hearing(left) 2.3363640.00
                     2.336364e-02
hearing(left)
                     3.237491e-02
serum creatinine
Urine protein 1.202260e-01 eyesight(right) 1.549680e-01 dental caries 1.590846e-01
                     1.609193e-01
eyesight(left)
                      2.461541e-01
smoking
                      2.046216e+00
hemoglobin
height(cm)
                      7.806539e+01
                      8.008402e+01
waist(cm)
relaxation
                     8.100408e+01
                      9.235558e+01
AST
                      1.402979e+02
age
weight(kg)
                      1.578561e+02
systolic
                       1.617646e+02
                       1.953425e+02
fasting blood sugar 2.326450e+02
                      3.367029e+02
ALT
LDI
                      7.838664e+02
Cholesterol
                      8.088124e+02
                      9.812823e+02
triglyceride
                      4.398388e+03
                       2.115335e+09
id
dtype: float64
```

Figure 3 Variance

Except id, The triglyceride variate largely among all the training sample. In addition, The ability of hearing is close for all the participants.

Grid Search for best parameters

I simply use the grid search method to search for the best parameters of xgboost classifier with 5-fold cross validation

• Learning rate: {0.1, 0.05, 0.01, 0.2}

• Number of estimators: {100, 200, 300, 400}

• Max Depth: {3, 5, 7}

And I also try some features selection and engineering to increase the quality of the training set.

Firstly, I try to remove the features with loweset variance.

Figure 4 Feature Importance and ROC Curve(remove features with low variance)

Average AUC on Validation dataset is 0.8674.

Secondly, I also try not to drop the missing value in training samples, which means I retain all the participants in my training sample.

Figure 5 Feature Importance and ROC Curve(without Dropna)

Lastly, I drop all the missing value in my dataset and apply the xgboost algorithm.

Figure 6 Feature Importance and ROC Curve(Dropna)

This time, the AUC on validation dataset is 0.87002.

Finally, I use xgboost with the best paramters to infer on test dataset and save the results.