Prova Parziale di Informatica Teorica - 23/01/2015

- 1. La sottrazione $A \setminus B$ di due insiemi A, B ricorsivamente enumerabili (r.e) è sempre r.e. ?
- 2. Classificare il seguente insieme di numeri naturali, per ogni i dato,

$$M_i = \{n | n \text{ è un multiplo di } i\}$$

3. Dato M_i del punto precedente, definire (se esiste) una funzione h totale e calcolabile tale che, per ogni i,

$$W_{h(i)} = M_i$$

4. Dimostrare che esiste un intero m tale che

$$W_m = M_m$$

ovvero W_m è l'insieme dei multipli del proprio indice m.

5. È possibile calcolare la seguente funzione?

$$f(i) = \min\{n | \varphi_i(n) = 0\}$$

(cioè il piú piccolo input su cui un progamma restitutisce 0 come output).

6. Diciamo che una funzione f contiene un gradino di lunghezza k>1 se è costante nell'intervallo tra n e n+k-1, per qualche n. Classificare il seguente insieme, per k>1 fissato

$$A_k = \{i | \varphi_i$$
 ha un gradino di lunghezza $k\}$

- 7. Classificare il complementare dell'insieme A_k del punto precedente.
- 8. Diciamo che un input m è "significativo" per f, se $f(n) \downarrow$ per ogni $n \leq m$. Diciamo inoltre che f è "regolare", se non converge su nessun input non significativo (cioè, ammesso che $f(n) \uparrow$, allora $f(m) \uparrow$ per ogni $m \geq n$. È possibile definire h calcolabile tale che, per ogni i valgano le due condizioni seguenti?
 - $\varphi_{h(i)}$ è regolare
 - $\varphi_{h(i)}$ coincide con φ_i per tutti gli input significativi di quest'ultima