Voltera Conductive Ink (100102)

Description

Voltera Conductive Ink is highly conductive, durable, and solderable through both point soldering and reflow. It is specifically formulated for producing 1 or 2-layer circuit boards on bare or soldermask-coated FR4, but also has excellent adhesion and performance on a variety of substrates.

Application Notes Soldering

Use SMD291 flux. For best results, burnish before soldering for 20[s] with supplied abrasive burnishing pad.

180-210°C – excellent solderability and rework. >260°C – not recommended.

Curing

For best results, follow recommendation in Table 4. Shorter cure times (to 15 minutes) have shown good solderability and conductivity, but reduced adhesion.

For curing on the V-One, use automatic bake cycle. Invert the substrate on the baking ledges of the clamps. For a box oven, cure right-side up at 190°C .

Recommended Substrates

- Fibreglass-epoxy or epoxy laminates (FR4, FR1), bare or soldermask-coated
- Polyimide (125[μm])
- Glass (untreated, no coating)

Design recommendations

For circuit board applications with the standard 250 μm nozzle, consider these design recommendations:

- Minimum IC pin-to-pin pitch: 0.65 [mm]
- Minimum 2-terminal package: 0402 (imperial)
- Minimum tracewidth: 8 mil/200 [μm] (recommend 10mil)
- Peak current depends on maximum temperature of the trace due to heat dissipation.
 Consult Figure 1, Appendix B.

Safety and Handling

See MSDS for safety, handling, and disposal information.

Table 1: Physical & Electrical Properties (Post-cure)

Test	Value			
Sheet Resistance:	12 [mΩ/sq]			
(80µm film thickness)				
Resistivity (4-point-probe):	$9.5 \times 10^{-7} [\Omega. \mathrm{m}]$			
Typical cured film thickness:	80 [um]			
Film shrinkage, post-cure:	<30%			
*Bend radius at fracture:	~ 0.5 [cm]			
Joint strength (lbs force):	N/A			
Adhesion (cross-hatch tape test):	No transfer			

^{*}Test fracture on 5mil polyimide

Table 2: Composition Properties

Test	Value		
Viscosity recovery ratio:	> 4.0		
1° Cone and plate, 25°C	Appendix C.1		
Recovery viscosity [Pa. s]:	> 150		
1° Cone and plate, 25°C	Appendix C.2		
Viscosity target [Pa. s]:	> 275 (1 [1/s])		
1° Cone and plate, 25°C	< 50 (100 [1/s])		
	Appendix C.3		
Density:	3.7 [g/mL]		
Clean-up solvent:	Isopropyl Alcohol (99%)		

Table 3: Printing Properties (Printed on FR4)

Test	Value	
Trace spread after print:	< 20%	
Recommended Nozzle ID:	150 – 225 [μm]	
Typical Line Width:	6-10 [mil]	
	150-250 [um]	
** Typical Print Height:	50 – 100 [μm]	
** Typical Feedrate:	300 - 500 [mm/min]	
** Typical Kick:	0.2 [mm]	

^{**} V-One specific settings

Table 4: Processing Parameters

Test	Value		
Curing:	30 [min], 210°C		
Compatible solder:	SnBiAg ₁		
	SnBiAg _{0.4}		
	Sn ₆₂ Pb ₃₆ Ag ₂		
Typical Print Height:	50 – 100 [μm]		
Typical shelf life:	6 months, unopened		
Storage:	$4-10^{\circ}$ C, sealed container.		

Appendix

A. Sheet Resistance

Sheet resistance should be measured by 4-point-probe. See MIL-STD-883H 3.8.11.1.3 for implementation details.

B. Temperature at Target Current

Thermal conductivity of conductive ink is lower than copper. Consult the chart in **Fig 1** for thermal considerations at desired target current I[A], and select trace width based on thermal constraints of your specific application.

Figure 1: Peak temperature at target current. Measured at 2" trace length.

C. Viscosity Test Methods

Viscosity measurements are performed on a cone and plate rotational rheometer/viscometer, 1° cone geometry, 25° C. **Retain all data for further analysis**. Report viscosity parameters from all tests to characterize the sample.

C.1 - Viscosity Recovery Ratio $\eta_{3/2}$

This test requires a rotational rheometer. Viscosity parameters are measured by Rotational Step Test (AKA 3-Interval Thixotropy Test, 3ITT; described by T. Mezger¹). Test program is shown in **Table 5**. Example step test result shown in **Fig 2**. Allow sample to rest for 60[s] after loading.

Start Shear **End Shear** Total time Interval Time [s] Test #points [1/s] [1/s][min] 1 1 1 120 120 3ITT 100 100 2 120 120 6

1

120

120

Table 5: Step Test Program

1

3

¹ Mezger, Thomas G. *The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers.* Sec 11.2.3. Hannover: Vincentz Network, 2006.

Figure 2: Example 3-Interval Step Test with intervals marked

Report viscosity recovery ratio $(\eta_{3/2})$ as the ratio of viscosities at time 360[s] and time 240[s]:

$$\eta_{3/2} = \frac{\eta(t_3)}{\eta(t_2)} = \frac{\eta(t = 360[s])}{\eta(t = 240[s])}$$

C.2 - Recovery Viscosity $\eta(t_2+20[s])$

If test C.1 has been performed, report the viscosity at time 260[s] $\rightarrow \eta(t_2 + 20[s])$.

If test C.1 cannot be performed, follow the program in Table 6. Allow sample to rest for 60 [s] after loading.

Table 6: Recovery Viscosity Test

Test	Interval	Start Shear Rate [1/s]	End Shear Rate [1/s]	Time [s]	Total time [min]
Viscomotor	1	100	100	40	1
Viscometer	2	1	1	20	1

First, shear the sample at shear rate 100 [1/s] for 40 [s] to disrupt the sample structure. Immediately hold the sample at shear rate 1 [1/s] for 20 [s]. Measure viscosity at end of this interval, preferably averaged over 5 [s].

C.3 - Viscosity Targets

If test C.1 has been performed, report the values $\eta(t_1)$ and $\eta(t_2)$.

If a programmable viscometer is not available to perform tests C.1 and/or C.2, this test should still be performed, using a fresh sample for each measurement. Allow samples to rest for 60 [s] after loading.

- 1. Shear sample at 1 [1/s] for 10 [s]. Report viscosity $\eta(\dot{\gamma} = 1)$.
- 2. Shear sample at 100 [1/s] for 10 [s]. Report viscosity $\eta(\dot{\gamma} = 100)$.