LAB 01 Exercise

2023.03.08

Outline

- Architecture Overview
- Sort
- Signed/Unsigned
- Ascending/Descending
- Calculation

Architecture Overview

Sort

7elements → 16 comparators

Signed/Unsigned

- opt[0] = 1 : regarded as signed value
- opt[0] = 0 : regarded as unsigned value

<u>signed</u>	unsigned		
$3 \rightarrow 011$	111 →	7	
$2 \rightarrow 010$	1 10 →	6	
$1 \rightarrow 001$	1 01 →	5	
$0 \rightarrow 000$	1 00 →	4	
-1 → 111	011 →	3	
-2 → 110	0 10 →	2	
-3 → 101	0 01 →	1	
-4 → 100	0 00 →	0	

5-bit signed comparators

4-bit unsigned comparators

assign lv0_s0[6:3] = opt[0] ? {~in_lv0_s0[3], in_lv0_s0[2:0]} : in_lv0_s0;

Ascending/Descending

- opt[1] = 1 : descending order
- opt[1] = 0 : ascending order

original structure

complex control signals are needed to handle the same score problem

Ascending/Descending

- opt[1] = 1 : descending order
- opt[1] = 0 : ascending order

<u>descending</u> <u>as</u>		asce	cending	
7 → 111		000	\rightarrow	0
$6 \rightarrow 110$		001	\rightarrow	1
$5 \rightarrow 101$		010	\rightarrow	2
4 → 100		011	\rightarrow	3
$3 \rightarrow 011$		100	\rightarrow	4
$2 \rightarrow 010$		101	\rightarrow	5
$1 \rightarrow 001$		110	\rightarrow	6
$0 \rightarrow 000$		111	\rightarrow	7

arrange scores in descending order
= arrange complement of scores in
ascending order

assign in_lv0_s0 = opt[1] ? ~in_s0 : in_s0;

Merge Scores & IDs

original

```
assign bigger_score = in_s0 > in_s1;
assign bigger_id = bigger_score || (in_s0 == in_s1) && (in_id0 < in_id1)

assign out_s0 = bigger_score ? in_s0 : in_s1;
assign out_s1 = bigger_score ? in_s1 : in_s0;
assign out_id0 = bigger_id ? in_id0 : in_id1;
assign out_id1 = bigger_id ? in_id1 : in_id0;</pre>
```

optimized

```
assign lv0\_s0[2:0] = 3'd0; \leftarrow |D|
assign lv0\_s0[6:3] = opt[0] ? {\sim in\_lv0\_s0[3], in\_lv0\_s0[2:0]} : in\_lv0\_s0; \leftarrow Score
assign lv1\_s0 = lv0\_s0 < lv0\_s6 ? lv0\_s0 : lv0\_s6;
assign lv1\_s6 = lv0\_s0 < lv0\_s6 ? lv0\_s6 : lv0\_s0;
```

Optimized Sort

Calculation

- passing score = μ a
- passing conditions (original)
 - A. score $\geq 0 \rightarrow (\text{score} * (a + 1) + b) \geq \text{passing_score}$
 - B. score $< 0 \rightarrow (\text{score} / (a + 1) + b) > \text{passing_score}$

7 comparators

7 multipliers

7 dividers

14+1 adders

Calculation

- passing score = μ a
- passing conditions (optimized)
 - A. score \Rightarrow 0 \Rightarrow score \Rightarrow (passing_score b + a) / (a + 1)
 - B. score < 0 \rightarrow score > (passing_score b) * (a + 1) a

14 comparators

1 multipliers

1 dividers

4 adders

Area Report

```
Number of ports:
                                          60
Number of nets:
                                         772
Number of cells:
                                         699
Number of combinational cells:
                                         698
Number of sequential cells:
Number of macros/black boxes:
Number of buf/inv:
                                         146
Number of references:
                                          37
Combinational area:
                                13801.233805
Buf/Inv area:
                                 1456.963253
Noncombinational area:
                                    0.000000
Macro/Black Box area:
                                    0.000000
Net Interconnect area:
                           undefined (No wire load specified)
Total cell area:
                                13801.233805
Total area:
                           undefined
```

The End

Thanks for listening:)