

L Core Project OT2OD030544

O Details

Projects	Name	Award	Publications	Repositories	Analytics
1OT2OD030544-01	Biomedical Data Commons	\$3,229,346.00	38 publications	0 repositories	0 properties
3OT2OD030544-01S1	Workbench (BDCW)				
3OT2OD030544-01S3					
3OT2OD030544-01S2					
3OT2OD030544-01S4					

Publications

Published works associated with this project.

ID	Title	Authors	R C R	SJ R	Cita tion s	Cit./ yea r	Journal	Publ ishe d	Updat ed
34862502 乙 DOI 乙	GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser.	Daniel Petras33 more Mingxun Wang	5. 6 5	0	31	15. 5	Nat Methods	202 2	Dec 1, 2024 (1 mont h ago)
37349305 🖸 DOI 🗹	Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and tem	Ryann M Fame 21 more Maria K Lehtinen	3. 4	0	11	11	Nat Commun	202 3	Dec 1, 2024 (1 mont h ago)
37798473 🖸 DOI 🗗	Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate	Anne Miller 7 more Gary Yellen	3. 3 5	0	11	11	Nat Metab	202 3	Dec 1, 2024 (1 mont h ago)
38286827 2 DOI 2	Loss of Pip4k2c confers liver-metastatic organotropism through insulindependent PI3K-AKT pathway	Meri Rogava 43 more Benjamin Izar	2. 8 1	0	5	5	Nat Cancer	202 4	Dec 1, 2024 (1 mont h ago)

37441265 🗹 DOI 🗹	Contribution of Circulating Host and Microbial Tryptophan Metabolites Toward Ah Receptor Activation.	Ethan W Morgan 12 more Gary H Perdew	2. 1	0	7	7	Int J Tryptophan Res	202 3	Dec 1, 2024 (1 mont h ago)
34721400 🗹 DOI 🗹	Immune Response in Severe and Non- Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechani	Kavitha Mukund 6 more Shankar Subramani am	1. 7 6	0	23	7.6 67	Front Immunol	202 1	Dec 1, 2024 (1 mont h ago)
37815914 🗷	MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate can	Preston D Crowell 23 more Andrew S Goldstein	1. 5 1	0	7	7	Cell Rep	202 3	Dec 1, 2024 (1 mont h ago)
37452018 🗹 DOI 🖸	Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis.	Nozomu Takata 16 more Guillermo Oliver	1. 4 8	0	6	6	Nat Commun	202	Dec 1, 2024 (1 mont h ago)

37515770 ♂ DOI ♂	The stability of the myelinating oligodendrocyte transcriptome is regulated by the nuclear lamina.	Mathilde Pruvost 16 more Patrizia Casaccia	1. 1 4	0	5	5	Cell Rep	202 3	Dec 1, 2024 (1 mont h ago)
38001239 ♂ DOI ♂	IL-1β-mediated adaptive reprogramming of endogenous human cardiac fibroblasts to cells with immun	Jamila H Siamwala 11 more Richard J Gilbert	0. 4 8	0	2	2	Commun Biol	202 3	Dec 1, 2024 (1 mont h ago)
37398141 🗗	Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice.	Adriana C Norris 7 more Todd R Graham	0. 3	0	1	1	bioRxiv	202 3	Dec 1, 2024 (1 mont h ago)
35448980 ♂ DOI ♂	Modular and mechanistic changes across stages of colorectal cancer.	Sara Rahimineja d 2 more Shankar Subramani am	0. 2 7	0	3	1.5	BMC Cancer	202 2	Dec 1, 2024 (1 mont h ago)

37983749 🗗	MetGENE: gene-centric metabolomics information retrieval tool.	Sumana Srinivasan 3 more Shankar Subramani am	0. 1 1	0	1	0.5	Gigascience	202 2	Dec 1, 2024 (1 mont h ago)
37546759 🗗	Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate	Anne Miller 7 more Gary Yellen	0	0	0	0	Res Sq	202 3	Dec 1, 2024 (1 mont h ago)
38172157 🗗 DOI 🗗	Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice.	Adriana C Norris 7 more Todd R Graham	0	0	3	3	Sci Rep	202 4	Dec 1, 2024 (1 mont h ago)
38318337 🖸 DOI 🖸	Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism	Alejandra Vazquez- Medina 6 more Nataliya Chorna	0	0	0	0	Front Microbiol	202 4	Dec 1, 2024 (1 mont h ago)
38102827 🗗	Modeling transcriptional regulation of the cell cycle using a novel cyberneticinspired approach.	Rubesh Raja 5 more Doraiswa	0	0	0	0	Biophys J	202 4	Dec 1, 2024 (1

		mi Ramkrishn a							mont h ago)
38544285 乙 DOI 乙	Repeated exposure to eucalyptus wood smoke alters pulmonary gene and metabolic profiles in male L	Samuel J Cochran 11 more Kymberly M Gowdy	0	0	0	0	Toxicol Sci	202 4	Dec 1, 2024 (1 mont h ago)
38844817 乙 DOI 乙	Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage crosstalk, promoting immunos	Tommaso Scolaro 36 more Massimilia no Mazzone	0	0	4	4	Nat Cancer	202 4	Dec 1, 2024 (1 mont h ago)
39143213 亿 DOI 亿	Mitochondrial complex I promotes kidney cancer metastasis.	Divya Bezwada 36 more Ralph J DeBerardi nis	0	0	2	2	Nature	202 4	Dec 1, 2024 (1 mont h ago)
39300135 🗹	Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes.	Xiaomei Sun 12	0	0	0	0	Nat Commun	202 4	Dec 1, 2024 (1

		more Zhen Zou							mont h ago)
39420002 🗗	Methionine-SAM metabolism-dependent ubiquinone synthesis is crucial for ROS accumulation in ferro	Chaoyi Xia 13 more Yang Wang	0	0	0	0	Nat Commun	202 4	Dec 1, 2024 (1 mont h ago)
38826219 ♂ DOI ♂	Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can	Sara Rahimineja d 2 more Shankar Subramani am	0	0	0	0	Res Sq	202 4	Dec 1, 2024 (1 mont h ago)
39206133 🗗	Phosphate availability conditions caspofungin tolerance, capsule attachment and titan cell format	Xianya Qu 7 more James W Kronstad	0	0	1	1	Front Fungal Biol	202 4	Dec 1, 2024 (1 mont h ago)
38975764 🗗	Taurine modulates host cell responses to <i>Helicobacter pylori</i> VacA toxin.	Mandy D Westland 5 more Timothy L Cover	0	0	0	0	Infect Immun	202 4	Dec 1, 2024 (1 mont h ago)

Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord.	Nishama De Silva Mohotti5 more Meredith D Hartley	0	0	0	0	J Proteome Res	202 4	Nov 30, 2024 (1 mont h ago)
Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei	Ashay O Patel 2 more Shankar Subramani am	0	0	0	0	J Alzheimers Dis Rep	202 3	Dec 1, 2024 (1 mont h ago)
Matrix Linear Models for connecting metabolite composition to individual characteristics.	Gregory Farage 5 more Śaunak Sen	0	0	0	0	bioRxiv	202 3	Dec 1, 2024 (1 mont h ago)
Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonar	Nicolas Philip 20 more Karthik Suresh	0	0	2	2	Am J Physiol Lung Cell Mol Physiol	202 4	Dec 1, 2024 (1 mont h ago)
	the Extent of Remyelination in the Brain and Spinal Cord. Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei Matrix Linear Models for connecting metabolite composition to individual characteristics. Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial	Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord. Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei Matrix Linear Models for connecting metabolite composition to individual characteristics. Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonar De Silva Mohotti5 more And Mohotti5 more Shankar Subramani am Gregory Farage5 more Śaunak Sen Nicolas Philip20 more Karthik	Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord. Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei Matrix Linear Models for connecting metabolite composition to individual characteristics. Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonar De Silva Mohotti5 more Meredith D Hartley Ashay O Patel2 more Shankar Subramani am Gregory Farage5 more Śaunak Sen Nicolas Philip20 more Karthik	Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord. Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei Matrix Linear Models for connecting metabolite composition to individual characteristics. Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonar De Silva Mohotti5 more Meredith D Hartley Ashay O Patel2 more Shankar Subramani am Gregory Farage5 more Śaunak Sen Nicolas Philip20 more Karthik	Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord. Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei Matrix Linear Models for connecting metabolite composition to individual characteristics. Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonar De Silva Mohotti5 more Meredith D Hartley Ashay O Patel2 more Shankar Subramani am Gregory Farage5 more Saunak Sen Nicolas Philip20 more Karthik	Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord. Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei Matrix Linear Models for connecting metabolite composition to individual characteristics. Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonar De Silva Mohotti5 more Meredith D Hartley Ashay O Patel2 more Shankar Subramani am Gregory Farage5 more 5 aunak Sen Nicolas Philip20 more Karthik	Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord. Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei Matrix Linear Models for connecting metabolite composition to individual characteristics. Micolas Philip20 more Saunak Sen Nicolas Philip20 more Karthik De Silva Mohotti 8	Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord. Ashay O Patel2 more Shankar Subramani am Matrix Linear Models for connecting metabolite composition to individual characteristics. Barty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonar De Silva Mohotti Shore Shore Shore Shore Shankar Subramani am De Silva Mohotti Shore Shankar Subramani am De Silva Mohotti Shore Shankar Subramani am De Silva Mohotti Shore Shankar Subramani am De Silva Nohotti Shore Shankar Subramani am De Silva Nohotti Shore Shankar Subramani am De Silva Nohotti Shankar Shankar Subramani am De Silva Nohotti Shankar Shankar Subramani am De Silva Nohotti Shankar Shankar Shankar Subramani am Dis Rep Di

38313293 (? DOI (?	Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers.	Maloyan Alina 4 more Sushil Kumar	0	0	0	0	Res Sq	202 4	Dec 1, 2024 (1 mont h ago)
38926365 2	METTL3-mediated chromatin contacts promote stress granule phase separation through metabolic repr	Chen Wang 17 more Rugang Zhang	0	0	0	0	Nat Commun	202 4	Dec 1, 2024 (1 mont h ago)
38161977 2	Gut microbiota and metabolites in estrus cycle and their changes in a menopausal transition rat m	Ruoxi Dai 5 more Yan Sun	0	0	0	0	Front Endocrinol (Lausanne)	202 3	Dec 1, 2024 (1 mont h ago)
38165806 2	Metabolic reprogramming by histone deacetylase inhibition preferentially targets NRF2-activated t	Dimitris Karagianni s 11 more Chao Lu	0	0	2	2	Cell Rep	202 4	Dec 1, 2024 (1 mont h ago)
38813868 Z	Fetal growth delay caused by loss of non-canonical imprinting is resolved late in pregnancy and c	Ruby Oberin 14 more	0	0	1	1	Elife	202 4	Dec 1, 2024 (1

					Patrick S Western							mont h ago)
3925780 DOI 🗗	<u>04</u> 🗷	Structural and so of phosphorylati enzymes identifi	ion on metab		Tigist Y Tamir15 more Forest M White	0	0	0	0	bioRxiv	202 4	Dec 1, 2024 (1 mont h ago)
3930590 DOI 🗹	<u>05</u> 🗷	DRMY1 promote morphogenesis sustaining the tr sig			Repositor Kong10 riesmasseciated Adrienne H K		h is pro	oj e ct.	3	Dev Cell	202 4	Dec 12, 2024 (2 weeks
Name	De	escription	Stars	Watchers	s Forks	l:	ssues	PI	Rs	Commits	Co	ntrib.
					Moblama							
												Dec 1
3865167	75 ८	A nested case-co	ontrol study o		d L Rahman	^	^	2	^	l-4 C	202	Dec 1, 2024
3865167 Name	75 🖸 Tags		-			^ Licen	se l	് Readme	-	Contributing		2024
				:	Rahman		se l	് Readme	.			2024

PR "Pull request", a draft change (new feature, bug fix, etc.) to a repo. Closed/Open Resolved/unresolved. Average time issues/pull requests stay open for before being closed. Avg Issue/PR Nabeel Only the main/default branch is considered for metrics like #gf commits. # of dependencies is totaled from all manifests in repo, direct and transitive, e.g. package.json + package-lock.json. **Analytics** Traffic metrics of websites associated with this project. Publications (cumulative) **Notes** Total: 38

Jul

2023

Jul

2024

2022

2021

Jul