Лекція №7

Регулярні вирази

Визначення

Регулярний вираз \mathbf{R} задає (визначає) мову $\mathbf{L}(\mathbf{R})$.

Мови, які можуть бути задані регулярними виразами, називаються регулярними множинами або регулярними (автоматними) мовами.

Регулярний вираз над алфавітом Т визначається наступними правилами:

- 1. ε є регулярним виразом, що визначає множину { ε }, тобто множину, що містить порожній рядок.
- 2. Якщо а ϵ символом з алфавіту **T**, то цей же символ а ϵ простим регулярним виразом, що визнача ϵ множину {a}, тобто множину, що містить рядок a. У конкретних записах суть позначення "a" (регулярний вираз, рядок або символ) зрозуміла з контексту.
- 3. Якщо A i B регулярні вирази, що визначають мови <math>L(A) i L(B), тоді
 - 1) $A \mid B$ (інше позначення A + B) є регулярним виразом, що визначає мову (множину) $L(A) \cup L(B)$.
 - 2) **АВ** є регулярним виразом, що визначає мову (множину) **L(A) L(B)**, тобто після речення мови **A** безпосередньо слідує речення мови **B**.
 - 3) $A^* \in$ регулярним виразом, що визначає мову (множину) (L(A)) *.

Тобто регулярний вираз характеризується трьома операціями:

- 1) альтернатива;
- 2) конкатенація;
- 3) ітерація.

Алфавіт регулярного виразу складається з наступних елементів:

- 1) a, b, c рядки;
- 2) ε порожній рядок;
- 3) \emptyset порожня множина.

Якщо E_1 і E_2 – регулярні вирази, тоді:

1. Альтернатива двох регулярних виразів E_1 і E_2 позначається:

$$E = E_1 \mid E_2 \text{ ago } E = E_1 + E_2$$

2. Конкатенація двох регулярних виразів E_1 і E_2 позначається:

$$E = E_1 E_2$$

3. Ітерація регулярного виразу E_1 — це багатократне його повторення від 0 до ∞ (можливо жодного разу) і позначається:

$$E = E_1^* = \varepsilon | E_1 | E_1 E_1 | E_1 E_1 ... E_1$$
.

Ітерація регулярного виразу E_1 також може позначатися як $\{E_1\}$, тобто записи E_1 * та $\{E_1\}$ ε еквівалентними.

Прийнято наступні домовленості:

- 1. Унарний оператор * має вищий пріоритет і є лівоасоциатівним.
- 2. Конкатенація має другий пріоритет і є лівоасоціативною.
- 3. Альтернатива (об'єднання) має нижчий пріоритет і є лівоасоциативною.

За таких домовленостей наступні записи є еквівалентними:

(a)
$$|((b)^*(c))| = a | b^* c$$
.

Обидва вирази визначають (задають) множину рядків, яка ϵ або ϵ диним символом а, або декількома символами b (можливо жодного), за якими сліду ϵ ϵ диний символ с.

Два регулярні вирази A і B називаються **еквівалентними** (A = B), якщо вони задають одну і ту ж мову.

Приклади. Розглянемо прості регулярні вирази і мови, що ними визначаються, на алфавіті $T = \{a, b\}.$

- 1. Регулярний вираз а | b задає мову (множину) {a, b}.
- 2. Регулярний вираз $(a \mid b) (a \mid b) = aa \mid ab \mid ba \mid bb$ задає мову (множину) {aa, ab, ba, bb}, тобто множину всіх рядків з a і b довжиною в два символи.
- 3. Регулярний вираз а* задає мову (множину) всіх рядків з будь-якого числа символів а (можливо жодного), тобто { є, а, аа, ааа ...}. Регулярний вираз (а | b)* = (a* b*)* задає мову (множину) всіх рядків, що містять декілька екземплярів а і b (можливо жодного), тобто множину всіх рядків, які можна скласти з а і b.

Приклади регулярних виразів, що задають конструкції мов програмування:

1. Рядки цілих чисел без знаку (мінімум одна цифра):

$$dd^*$$
, де $d = \{0, 1, ..., 9\}$

2. Цілі із знаком або без знаку (мінімум одна цифра):

$$(+ |-|\epsilon)dd*$$

3. Ідентифікатор:

1
$$(1 \mid d)^*$$
, $\exists A = \{A, B, ..., Z, a, b, ..., z\}$

$$d = \{0, 1, ..., 9\}$$

У підрозділі «Регулярні вирази» символ «d» для зручності позначає не перехідну функцію, а множину цифр.

Основні тотожності.

Нехай А, В, С, Е – регулярні вирази, тоді мають місце наступні тотожності:

- 1. $A \mid B = B \mid A$ або A + B = B + A комутативність альтернативи.
- 2. $\emptyset^* = \varepsilon$ тобто ітерацією порожньої множини є порожній рядок.
- 3. $A \mid (B \mid C) = (A \mid B) \mid C$ або A + (B + C) = (A + B) + C асоціативність альтернативи.
- 4. A(BC) = (AB)C асоціативність конкатенації.
- 5. A (B | C) = A B | A C або A (B + C) = A B + A C дистрибутивність конкатенації над альтернативою.
- 6. $E\varepsilon = \varepsilon E = E \varepsilon$ «одиничним» елементом по відношенню до конкатенації.
- 7. $E + \emptyset = E$ $\emptyset \in \text{«нульовим» елементом по відношенню до альтернативи.$
- 8. $(E | \epsilon)^* = E^*$.
- 9. $E \mid E^* = E^*$.
- 10. $E^{**} = E^*$.
- 11. Якщо $E = A E \mid B$, то E = A * B.

Перетворення регулярних виразів до скінченного автомата

Нехай $E, E_1, E_2 – регулярні вирази.$

- ϵ порожній рядок;
- а рядок регулярного виразу;
- S початковий стан автомата;
- F завершальний стан автомата.

Тоді перехід від регулярного виразу до кінцевого автомата буде наступним:

1. Якщо $E = \emptyset$ s пусто F

2. $E = \varepsilon$ S ε

3. E = a S A

 $4. E = E_1 + E_2$

5. $E = E_1 E_2$

6. $E = E_1 *$

3

Приклад. Побудова автомата за регулярним виразом.

Побудуємо автомат для регулярного виразу $\mathbf{E} = (+ |-| \mathbf{\epsilon}) \mathbf{d} \mathbf{d}^*$.

Позначимо частину (+ | – | ϵ) регулярного виразу як E_1 , а частину $d d^* -$ як E_2 , тобто

$$E_1 = (+ |-| \epsilon),$$

 $E_2 = d d^*.$

1.

2.

3. Позначимо частину **d** регулярного виразу E_2 як E_{21} , а частину d^*- як E_{22} , тобто $E_{21}=\mathbf{d},$ $E_{22}=\mathbf{d}^*.$

4.

5.

Регулярні визначення

Для зручності запису регулярним виразам можна давати імена і використовувати ці імена як символи в інших регулярних виразах.

Сукупність декількох (одного або більше) регулярних виразів, яким були дані імена, називається регулярним визначенням, загальний вид якого такий:

$$\begin{aligned} D_1 &\to R_1 \\ D_2 &\to R_2 \\ & \dots \\ D_n &\to R_n, \end{aligned}$$

де D_i – імена регулярних виразів R_i .

Відмітимо, що в регулярних виразах R_i можуть використовуватися вже визначені раніше імена D_i , тобто кожне R_i визначене на множині

$$T\;U\;\{D_1,\,D_2,\,...\;,\,D_{i\text{-}1}\}$$

Щоб відрізняти імена регулярних визначень від символів, записуватимемо ці імена великими буквами.

Приклад 1. Регулярне визначення ідентифікатора.

LETTER
$$\rightarrow$$
 A | B | ... | Z | a | b | ... | z
DIGIT \rightarrow 0 | 1 | 2 | ... | 9
ID \rightarrow LETTER (LETTER | DIGIT)*

Приклад 2. Ціле число.

DIGIT \rightarrow 0 | 1 | 2 | ... | 9 INTNUM \rightarrow DIGIT DIGIT*

Додаткові позначення в регулярних виразах

1. Унарний постфіксний оператор + означа ϵ "один або більше екземплярів".

Якщо R – регулярний вираз, що визначає мову L(R), то R^+ є регулярним виразом, що визначає мову $(L(R))^+$. Оператор $^+$ має той же пріоритет і асоціативність, що й оператор * .

Мають місце дві тотожності:

1)
$$R^* = R^+ | \varepsilon$$

2) $R^+ = R R^*$

Використовуючи цей оператор визначення цілого числа можна записати так:

DIGIT
$$\rightarrow 0 | 1 | 2 | \dots | 9$$

INTNUM \rightarrow DIGIT $^{+}$

2. Унарний постфіксний оператор? означає "один екземпляр або жодного екземпляра".

Позначення R? ϵ скороченим записом $R \mid \epsilon$. Якщо R – регулярний вираз, що опису ϵ мову $L(R) \cup \{\epsilon\}$.

3. Класи символів.

Для скороченого запису деякої множини символів можна використовувати позначення у вигляді **класів символів**.

Клас символів [abc] позначає регулярний вираз a | b | c, тобто

$$[abc] = a | b | c$$

де a, b, c – символи алфавіту.

Клас символів [a-z] позначає регулярний вираз a | b | | z, тобто

$$[a-z] = a | b | ... | z,$$

де $a, b \dots z$ – символи алфавіту.

Приклад. Регулярний вираз ідентифікатора з використанням класів символів:

$$[A-Za-z][A-Za-z0-9]*$$

Обмеженість регулярних виразів

Регулярні вирази мають обмежені описові можливості, тому не всі мови можуть бути описані регулярними виразами.

Характерні конструкції, які не можуть бути описані регулярними виразами:

- 1. Рядки зі збалансованими символами.
 - Наприклад, рядок, який завжди містить однакове число відкриваючих і закриваючих дужок.
- 2. Рядки з повторним входженням одного і того ж підрядка.

Наприклад, αβα.

Більш того, така конструкція не може бути описана навіть контекстно-вільною граматикою.

3. Рядки, в яких один з символів обчислюється по інших символах того ж рядка. Наприклад, так звані рядки Холлеріта:

$$n H a_1 a_2 a_3 ... a_n$$

де кількість символів a_i повинна відповідати десятковому числу n, що стоїть перед символом H.

Висновки:

- 1. Регулярні вирази можуть використовуватися для опису тільки фіксованої або невизначеної кількості повторень якої-небудь конструкції.
- 2. Два довільні числа або два довільні підрядки не можуть порівнюватися в контексті регулярних виразів для визначення, рівні вони чи ні.