At this stage of our project we will try to determine the linear regression & significance between different variables in every of our scenarios. Also we will try to represent our data combined with the interval of confidence in a single plot.

At first, we have tried to get results for the scenario of:

2011: Births Ratio ~ New House Starts Ratio (aggregated quartiles, divided with population 2011)

However, the significance seems to be low.

```
Call:
lm(formula = ratiobirths ~ ratiohouses, data = test)
Residuals:
Min
           1Q
                  Median
                                 3Q
                                           Max
-0.0019917 -0.0009174 0.0002464 0.0007987 0.0020400
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0110886 0.0003248 34.136
                                           <2e-16 ***
ratiohouses -0.1891242 0.0850545 -2.224
                                           0.0339 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.001075 on 30 degrees of freedom
Multiple R-squared: 0.1415,
                                 Adjusted R-squared: 0.1129
F-statistic: 4.944 on 1 and 30 DF, p-value: 0.03385
```


Also, the same variables for 2013, seem to have also low significance.

2013: Births Ratio \sim New House Starts Ratio (aggregated quartiles, divided with population of 2013)

```
call:
lm(formula = ratiobirths ~ ratiohouses, data = test)
Residuals:
      Min
                  1Q
                         Median
                                        3Q
                                                 Max
-0.0021394 -0.0006743 0.0001916 0.0008032 0.0021240
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0097650
                     0.0004554
                                21.443
                                         <2e-16 ***
ratiohouses 0.1286290 0.1408104
                                 0.913
                                          0.368 null
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.001033 on 30 degrees of freedom
Multiple R-squared: 0.02706, Adjusted R-squared: -0.005369
F-statistic: 0.8345 on 1 and 30 DF, p-value: 0.3683
```


But why there is a serious difference in the slope of the two linear models between years 2011, 2013?

- From our data, we can see that there was a rise in house building starts in 2013 compared to 2011. This might be the reason that the slope has become positive.

2013				Q 2011	
ratiohouses ⁼	ratiobirths =	pop2011	ratiobirths2011	ratiohouses2011	
0.0034614876	0.011009821	222460	0.011723456	0.0012991100	
0.0038871863	010462816	253650	0.010624877	0.0074906367	
0.0019692149	0.009553702	116200	0.009939759	0.0012220310	
0.0033162976	0.008052243	88930	0.008377375	0.0053284606	
0.0026381652	0.011254257	477940	0.011633259	0.0013181571	
0.0034906396	0.010725429	51500	0.010951456	0.0004077670	

Regarding our second scenario, the results are presented below:

2011: Cannabis new clients presenting at specialist drug treatment services ratio ~Number of degree holders ratio (divided with population of 2011)

For our bad luck, slope has low significance

```
Call:
lm(formula = cannabisratio ~ degreeratio, data = test)
Residuals:
                      Median
                10
                                   3Q
                                            Max
-0.036962 -0.022061 -0.007906 0.011441 0.102306
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0870389 0.0186883 4.657 0.0000657 ***
degreeratio -0.0016528 0.0008366 -1.976
                                           0.0578
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.03089 on 29 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.1186,
                              Adjusted R-squared: 0.08824
F-statistic: 3.903 on 1 and 29 DF, p-value: 0.05778
```

The plot of cannabis client ratio – Number of degree holders ratio.

To sum up, we realize that both of our previous scenarios might have been good ideas to examined, but in the end, **they didn't have a serious significance in their linear models.**

For this reason we had to find this kind of scenario, which it could provide us two variables that can have a serious significance in a linear model.

Finally, we have decided to use as dependent variable the "Total Labour Costs per Head", as we believe that is a serious indicator which can have an effect on many other variables.

We have tried several combinations with other variables, in order to find strong significance.

Below you can find a list of them*:

Degree Holders ratio

Employment/Unemployment ratio

Total Labour Costs per Head with: Total Earnings median

Smokers percent Pay Gap Ratio

*In the annex of this document you could find more analysis on each variable

After several trials we have achieved a high significance with the variable:

Business Births per year (confirmed with VAT & PAYE registrations)

2011: Total Labour Costs per Head ~ Business Births (divided with population of 2011)

Call:

lm(formula = labourratio2011 ~ registratio2011, data = test)

Residuals:

Min 1Q Median 3Q Max -0.0047121 -0.0016446 0.0004222 0.0012095 0.0106267

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.006862 0.002288 -2.998 0.00541
registratio2011 3.529811 0.593758 5.945 0.00000163

--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.002858 on 30 degrees of freedom Multiple R-squared: 0.5409, Adjusted R-squared: 0.5256 F-statistic: 35.34 on 1 and 30 DF, p-value: 0.000001627

2013: Total Labour Costs per Head ~ Business Births (divided with population of 2013)

call:

lm(formula = labourratio2013 ~ registratio2013, data = test)

Residuals:

Min 1Q Median 3Q Max -0.0047400 -0.0017672 0.0003785 0.0015150 0.0124289

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.009070 0.002657 -3.414 0.00186 **
registratio2013 4.226564 0.693581 6.094 1.07e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.00321 on 30 degrees of freedom Multiple R-squared: 0.5381, Adjusted R-squared: 0.5382 F-statistic: 37.13 on 1 and 30 DF, p-value: 1.073e-06

Findings:

From the final two linear models we can assume that the labour costs, on different territories of Scotland, are related positively with the number of new companies.

Annex: Total Labour Costs per Head trials with...

```
1) Unemployment
Call:
lm(formula = labourcosts ~ unemployment, data = test)
Residuals:
  Min
           1Q Median
                         30
                               Max
 -5064 -2311 -1149
                             20846
                       1614
Coefficients:
             Estimate Std. Error t value
                                             Pr(>|t|)
                         2765.81
                                   7.563 0.000000196 ***
(Intercept)
            20918.49
unemployment
                54.42
                          345.17
                                   0.158
                                                0.876
               0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (), 1
Signif. codes:
Residual standard error: 4636 on 30 degrees of freedom
Multiple R-squared: 0.0008277, Adjusted R-squared:
```

F-statistic: 0.02485 on 1 and 30 DF, p-value: 0.8758

2) Degree Holders Ratio

Call:

lm(formula = labour2011 ~ degreeratio2011, data = test)

Residuals:

Min 1Q Median 3Q Max -6143.2 -2362.4 -669.1 1486.4 20016.4

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19176.6 2706.8 7.085 0.0000000706 ***
degreeratio2011 102.2 122.3 0.836 0.41

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4584 on 30 degrees of freedom

Multiple R-squared: 0.02275, Adjusted R-squared: -0.009824

F-statistic: 0.6984 on 1 and 30 DF, p-value: 0.4099

3) Employment Ratio

Call:

lm(formula = labour2011 ~ employmentratio, data = test)

Residuals:

Min 1Q Median 3Q Max -5300.1 -2199.8 -871.5 877.6 20255.3

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -6065.2 16386.5 -0.370 0.714 employmentratio 376.2 224.7 1.674 0.105

Residual standard error: 4435 on 30 degrees of freedom

Multiple R-squared: 0.08543, Adjusted R-squared: 0.054

F-statistic: 2.802 on 1 and 30 DF, p-value: 0.1045

4) Total Earning Ratio

Call:

lm(formula = labour2011 ~ earnmedian, data = test)

Residuals:

Min 1Q Median 3Q Max -7158.8 -2003.9 -316.6 1506.5 13081.9

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10924.82 7492.93 -1.458 0.155226 earnmedian 68.14 15.77 4.321 0.000157 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 3641 on 30 degrees of freedom Multiple R-squared: 0.3837, Adjusted R-squared: 0.3631 F-statistic: 18.67 on 1 and 30 DF, p-value: 0.0001568

5) **Smokers percent**

Call:

lm(formula = labour2012 ~ smoking2012percent, data = test)

Residuals:

Min 1Q Median 3Q Max -4680 -2624 -1441 1093 21617

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18174.5 4276.3 4.250 0.000191 ***
smoking2012percent 175.2 191.8 0.913 0.368263

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 4893 on 30 degrees of freedom

Multiple R-squared: 0.02706, Adjusted R-squared: -0.005368

F-statistic: 0.8345 on 1 and 30 DF, p-value: 0.3683

6) Pay Gap Ratio

Call:

lm(formula = labour2011 ~ paygap2010ratio, data = test)

Residuals:

Min 1Q Median 3Q Max -4702 -2734 -1317 2095 19035

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20346.7 1334.1 15.251 0.000000000000036

paygap2010ratio 176.5 125.2 1.409 0.171

- - -

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 4676 on 25 degrees of freedom

(5 observations deleted due to missingness)

Multiple R-squared: 0.07358, Adjusted R-squared: 0.03652

F-statistic: 1.985 on 1 and 25 DF, p-value: 0.1711

For the elective course of Information Systems Development Symeon Kokovidis April 2017