

Congratulations! You passed!

received 100%

Latest Submission Grade 100%

To pass 70% or higher

Go to next item

1.

1/1 point

Gradient descent is an algorithm for finding values of parameters w and b that minimize the cost function J.

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$
$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

When $\frac{\partial J(w,b)}{\partial w}$ is a negative number (less than zero), what happens to w after one update step?

- $\bigcirc w$ stays the same
- \bigcirc It is not possible to tell if w will increase or decrease.
- $\bigcirc w$ decreases
- w increases.

The learning rate is always a positive number, so if you take W minus a negative number, you end up with a new value for W that is larger (more positive).

1/1 point

For linear regression, what is the update step for parameter b?

$$igcap_{b=b-lpharac{1}{m}\sum\limits_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})x^{(i)}}$$

$$left b = b - lpha rac{1}{m} \sum_{i=1}^m (f_{w,b}(x^{(i)}) - y^{(i)})$$

The update step is
$$b=b-\alpha \frac{\partial J(w,b)}{\partial w}$$
 where $\frac{\partial J(w,b)}{\partial b}$ can be computed with this expression:
$$\sum_{i=1}^m (f_{w,b}(x^{(i)})-y^{(i)})$$