myPackage Weed Example

Liang

07-30-2011

1 Example for Weed Data

Load myPackage
require(myPackage)
myPackage_hello_world()

1. Load and plot Weed data.

data(datWeed)
n <- nrow(dat)
YRaw <- dat[,3]
locRaw <- dat[,1:2]
locRaw.u <- unifLoc(locRaw)
plotData(YRaw, locRaw)</pre>

2. Randomly choose 60 observations as training data

```
set.seed(111)
ind <- sample(1:n, 60, replace=FALSE)
L <- rep(1, length(ind))
Y <- YRaw[ind]
loc <- locRaw.u[ind,]
plotData(Y/L, loc, size=c(0.3, 3.7))</pre>
```

- 3. Tuning and run MCMC algorithm: optimal acceptance rates for S1 and m are around 0.55 and 0.40 for s and a.
 - Single chain generation

• Multiple chain generation with parallel computing

4. Examine chains and diagnostics

```
require(coda)
## for covariance matrix parameters
chn1 <- cbind(sigma=res.m$s, phi=res.m$a)
chn1.mcmc <- mcmc(chn1); dim(chn1.mcmc)
summary(chn1.mcmc)</pre>
```

```
plot(chn1.mcmc, auto.layout = TRUE)
crosscorr.plot(chn1.mcmc)
autocorr.plot(chn1.mcmc)
effectiveSize(chn1.mcmc)
geweke.diag(chn1.mcmc, frac1=0.1, frac2=0.5)
heidel.diag(chn1.mcmc, eps=0.1, pvalue=0.05)
## for coefficients
if(is.matrix(res.m$m)){
  beta.mcmc <- mcmc(t(res.m$m))</pre>
  } else beta.mcmc <- mcmc(res.m$m)</pre>
plot(beta.mcmc, auto.layout = TRUE)
crosscorr.plot(beta.mcmc)
autocorr.plot(beta.mcmc)
## for latent variables
S.mcmc <- mcmc(t(res.m$S))</pre>
dim(S.mcmc)
plotACF(S.mcmc)
crosscorr.plot(S.mcmc)
```


Trace of phi

Density of sigma

Density of phi

5. Select the remaining locations as predicting locations

```
ind.left <- setdiff(1:n, ind)
ind.p <- ind.left
locp <- locRaw.u[ind.p,]
Lp <- rep(1, nrow(locp))</pre>
```

6. Predict and plot data

 $\begin{array}{c} (black\ circle = training,\ red\ circle = predicted,\ green\ circle = actual;\ the\ size\ of\ circles\\ indicates\ the\ value\ of\ response) \end{array}$

7. Model checking

- # model checking procedure was ran on high performance computing cluster;
- # and the code is too long to be included here

Transformed Residuals

.....

0.0

-2

0

2

Weed data

	"expnt"	"explt"
$\hat{m{eta}}$	4.07	(4.35, 0.10, -1.51)
$\hat{\sigma}$	1.09	1.22
$\hat{\phi}$	0.17	0.19
p-value	0.315	0.004
rej. rate	0.005	1.00

Weed data vs. "expnt"

Normal Q-Q Plot