Листок 3. Пропозициональные формулы - 2.

Определение Булева функция называется самодвойственной, если выполняется равенство $f(1-x_1,1-x_2,\ldots,1-x_n)=1-f(x_1,\ldots,x_n)$. Булева функция называется линейной, если она имеет вид $f(x)=a_0+a_1x_1+a_2x_2+\cdots+a_nx_n \mod 2$, где $a_i\in\{0,1\}$. **DM-ML 1.** (Теорема Поста) Пусть есть набор булевых функций, среди которых есть не монотонная, не сохраняющая ноль (т.е., $f(0,\ldots,0)=1$), не сохраняющая единицу (т.е., $g(1,\ldots,1)=0$), не линейная, не самодвойственная. Докажите, что с помощью композиций этих функций можно получить

- (а) отрицание, константу 1, константу 0;
- (б) любую булеву функцию.
- (в) Докажите, что если набор булевых функций не удовлетворяет условию теоремы Поста, то через композицию этих функций нельзя выразить все булевы функции.

DM-ML 2. Докажите, что у каждой невыполнимой формулы в КНФ, использующей n переменных, есть резолюционное опровержение, состоящие из не более, чем $2^{n+1}-1$ дизъюнктов.

DM-ML 3. В каждую клетку квадрата $n \times n$ поставим свою пропозициональную переменную, затем для каждой клетки, в которой стоит переменная x запишем дизъюнкт $(\neg x \lor u(x) \lor r(x))$, где u(x) — это переменная, которая находится в верхней соседней клетке для x, а r(x) — это перемененная — правый сосед x (если верхнего соседа нет, то u(x) = 0, а если правого нет, то r(x) = 0). Пусть a — переменная, которая стоит в левой нижней клетке, допишем еще дизъюнкт (a). Покажите, что конъюнкция выписанных дизъюнктов — невыполнимая формула и для нее существует резолюционное опровержение длины $O(n^2)$.

DM-ML 4. Как модифицировать рассказанный на лекции алгоритм, проверяющий выполнимость формулы в 2-КНФ, чтобы он за полиномиальное от числа переменных время также выдавал набор значений переменных, который выполняет формулу?

DM-ML 5. Формула в КНФ называется Хорновской, если каждый ее дизъюнкт содержит не более одной переменной без отрицания. Придумайте алгоритм, который за полиномиальное от длины входной формулы время проверит, выполнима ли Хорновская формула.

DM-ML 6. По формуле в 2-КНФ построим ориентированный граф. Вершинами графа будут множество переменных и отрицаний переменных. Для каждого дизъюнкта $(l_1 \lor l_2)$ в графе проводится два ребра из $\neg l_1$ в l_2 и из $\neg l_2$ в l_1 . Докажите, что формула выполнима тогда и только тогда, когда для каждой переменной x вершины x и $\neg x$ находятся в разных компонентах сильной связности (т.е. либо из x нет пути в x, либо из x нет пути в x).

DM-ML 2.3. Докажите, что любую булеву функцию можно выразить, используя только одну бинарную связку: стрелку Пирса \downarrow : результат $a \downarrow b$ совпадает с $\neg (a \lor b)$ или штрих Шеффера \uparrow : результат $a \uparrow b$ совпадает с $\neg (a \land b)$. Покажите, что других таких бинарных связок нет.

DM-ML 2.5. Пусть формула $\phi \to \psi$ является тавтологией. Докажите, что найдется такая формула τ , которая содержит только общие для ϕ и ψ переменные, что формулы $\phi \to \tau$ и $\tau \to \psi$ являются тавтологиями.

DM-ML 2.6. Приведите пример булевой функции от n аргументов, у которой любая дизъюнктивная и конъюнктивная нормальная форма содержит лишь члены (дизъюнкты или конъюнкты) длины n.

DM-ML 2.7. Две формулы, содержащие только переменные и связки \lor , \land и \neg эквивалентны. Докажите, что они останутся эквивалентными, если всюду \lor заменить на \land и наоборот.