Juste Raimbault, doctorant Université Paris VII, UMR Géographie-Cités, sous la direction d'Arnaud Banos (CNRS, UMR Géographie-Cités) et la co-direction de Florent Le Néchet (Université Paris-Est Marne-la-Vallée, Laboratoire Ville Mobilité Transport).

Titre de la thèse proposée: Caractérisation et modélisation de la co-évolution des réseaux de transport et des territoires

Résumé

L'identification d'effets structurants des infrastructures de transports sur la dynamique des territoires reste un défi scientifique ouvert. Cette question est une des facettes des recherches sur la complexité des dynamiques territoriales, au sein desquelles territoires et réseaux de transport seraient en co-évolution. L'objectif de cette thèse est de mettre à l'épreuve cette vision des interactions entre réseaux et territoires, autant sur le plan conceptuel que sur le plan empirique, en les intégrant au sein de modèles de simulation des systèmes territoriaux. La nature intrinsèquement pluri-disciplinaire de la question nous conduit à mener un travail d'épistémologie quantitative, qui permet de dresser une carte du paysage scientifique et une description des éléments communs et des spécificités des modèles traitant la co-évolution entre réseaux et territoires dans chaque discipline. Nous proposons ensuite une définition de la co-évolution, ainsi qu'une méthode de caractérisation empirique, basée sur une analyse de corrélations spatio-temporelles. Deux pistes complémentaires de modélisation, correspondant à des ontologies et des échelles différentes sont alors explorées. A l'échelle macroscopique, nous construisons une famille de modèles dans la lignée des modèles d'interaction au sein des systèmes de villes développés par la Théorie Evolutive des Villes (Pumain, 1997). Leur exploration montre qu'ils capturent effectivement des dynamiques de co-évolution, et leur calibration sur des données démographiques pour le système de villes français (1830-1999) quantifie l'évolution des processus d'interaction comme l'effet tunnel ou le rôle de la centralité. A l'échelle mésoscopique, un modèle de morphogenèse capture la co-évolution de la forme urbaine et de la topologie du réseau. Il est calibré sur les indicateurs correspondants pour la forme et la topologie locales calculés pour l'ensemble de l'Europe. De multiples processus d'évolution du réseau s'avèrent être complémentaires pour reproduire la grande variété des configurations observées, au niveau des indicateurs ainsi que des interactions entre indicateurs. Ces résultats suggèrent de nouvelles pistes d'exploration des modèles urbains intégrant les dynamiques co-évolutives dans une perspective multi-échelles.