Tip: Welcome to the Investigate a Dataset project! You will find tips in quoted sections like this to help organize your approach to your investigation. Once you complete this project, remove these **Tip** sections from your report before submission. First things first, you might want to double-click this Markdown cell and change the title so that it reflects your dataset and investigation.

Project: US Census and FBI Gun Data Analysis

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

Dataset Description

Two datasets have been selected for this analysis. The FBI's National Instant Criminal Background Check System (NCIS) data which contains the number of firearm checks by month, state, and the typecomes; and the U.S. census data which contains information about the population and demographic as of July 1, 2016 and April 1,2010. The NICS is used by to determine whether a prospective buyer is eligible to buy firearms or explosives. Gun shops call into this system to ensure that each customer does not have a criminal record or isn't otherwise ineligible to make a purchase. Both dataset are connected by states, therefore, we can compare the changes in gun registration and population by states.

Question(s) for Analysis

Which states have the highest and the lowest gun registrations? Which states have had the highest growth in gun registrations? What is the overall trend of gun purchases? Is the change in population correlated with the change in gun purchases?

```
In [1]: # Use this cell to set up import statements for all of the packages that you p
lan to use

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline

np.set_printoptions(suppress=True)

# Remember to include a 'magic word' so that your visualizations are plotted i
nline with the notebook. See this page for more:
# http://ipython.readthedocs.io/en/stable/interactive/magics.html
```

```
In [2]: # Upgrade pandas to use dataframe.explode() function.
!pip install --upgrade pandas==0.25.0
```

```
Requirement already up-to-date: pandas==0.25.0 in /opt/conda/lib/python3.6/si te-packages (0.25.0)

Requirement already satisfied, skipping upgrade: pytz>=2017.2 in /opt/conda/l ib/python3.6/site-packages (from pandas==0.25.0) (2017.3)

Requirement already satisfied, skipping upgrade: numpy>=1.13.3 in /opt/conda/lib/python3.6/site-packages (from pandas==0.25.0) (1.19.5)

Requirement already satisfied, skipping upgrade: python-dateutil>=2.6.1 in /opt/conda/lib/python3.6/site-packages (from pandas==0.25.0) (2.6.1)

Requirement already satisfied, skipping upgrade: six>=1.5 in /opt/conda/lib/python3.6/site-packages (from python-dateutil>=2.6.1->pandas==0.25.0) (1.11.0)
```

Data Wrangling

```
In [3]: # Load your data and print out a few lines. Perform operations to inspect data
types and Look for instances of missing or possibly errant data.

df_gun_purchase = pd.read_excel("gun_data[1].xlsx")
df_census_data = pd.read_csv("U.S._Census_Data[1].csv")
```

In [4]: #check for the data structure of the df_gun_purchase

df_gun_purchase.info()

month 12485 non-null object 12485 non-null object state 12461 non-null float64 permit permit_recheck 1100 non-null float64 handgun 12465 non-null float64 12466 non-null float64 long_gun 5500 non-null float64 other 12485 non-null int64 multiple admin 12462 non-null float64 prepawn_handgun 10542 non-null float64 prepawn_long_gun 10540 non-null float64 prepawn other 5115 non-null float64 redemption handgun 10545 non-null float64 redemption_long_gun 10544 non-null float64 redemption other 5115 non-null float64 returned_handgun 2200 non-null float64 returned_long_gun 2145 non-null float64 returned other 1815 non-null float64 rentals handgun 990 non-null float64 rentals_long_gun 825 non-null float64 private sale handgun 2750 non-null float64 private_sale_long_gun 2750 non-null float64 private sale other 2750 non-null float64 return_to_seller handgun 2475 non-null float64 return to seller long gun 2750 non-null float64 return_to_seller_other 2255 non-null float64 12485 non-null int64 totals

dtypes: float64(23), int64(2), object(2)

memory usage: 2.6+ MB

Out[5]:

	month	state	permit	permit_recheck	handgun	long_gun	other	multiple	admin	prep
0	2017- 09	Alabama	16717.0	0.0	5734.0	6320.0	221.0	317	0.0	
1	2017- 09	Alaska	209.0	2.0	2320.0	2930.0	219.0	160	0.0	
2	2017- 09	Arizona	5069.0	382.0	11063.0	7946.0	920.0	631	0.0	
3	2017- 09	Arkansas	2935.0	632.0	4347.0	6063.0	165.0	366	51.0	
4	2017- 09	California	57839.0	0.0	37165.0	24581.0	2984.0	0	0.0	

5 rows × 27 columns

Out[6]:

	month	state	permit	permit_recheck	handgun	long_gun	other	multiple	admin
12480	1998- 11	Virginia	0.0	NaN	14.0	2.0	NaN	8	0.0
12481	1998- 11	Washington	1.0	NaN	65.0	286.0	NaN	8	1.0
12482	1998- 11	West Virginia	3.0	NaN	149.0	251.0	NaN	5	0.0
12483	1998- 11	Wisconsin	0.0	NaN	25.0	214.0	NaN	2	0.0
12484	1998- 11	Wyoming	8.0	NaN	45.0	49.0	NaN	5	0.0

5 rows × 27 columns

Out[7]: 0

```
In [8]: # check sum of all null values in df_gun_purchase dataframe
         df gun purchase.isnull().sum()
Out[8]: month
                                           0
        state
                                           0
        permit
                                          24
        permit_recheck
                                       11385
        handgun
                                          20
                                          19
        long gun
                                        6985
        other
        multiple
                                           0
                                          23
        admin
        prepawn_handgun
                                        1943
        prepawn_long_gun
                                        1945
        prepawn other
                                        7370
        redemption handgun
                                        1940
        redemption_long_gun
                                        1941
        redemption_other
                                        7370
        returned handgun
                                       10285
        returned_long_gun
                                       10340
        returned_other
                                      10670
        rentals handgun
                                      11495
        rentals_long_gun
                                       11660
        private_sale_handgun
                                        9735
        private_sale_long_gun
                                        9735
        private_sale_other
                                        9735
        return_to_seller_handgun
                                       10010
        return_to_seller_long_gun
                                        9735
        return_to_seller_other
                                       10230
        totals
                                           0
        dtype: int64
```

```
In [9]: #check for number of rows and columns in df_gun_purchase
df_gun_purchase.shape
```

Out[9]: (12485, 27)

```
# check for the datatype of each columns of the df_gun_purchase dataset
In [10]:
         df gun purchase.dtypes
Out[10]: month
                                        object
         state
                                        object
                                       float64
         permit
         permit recheck
                                       float64
         handgun
                                       float64
                                       float64
         long gun
         other
                                       float64
         multiple
                                         int64
         admin
                                       float64
         prepawn handgun
                                       float64
         prepawn long gun
                                       float64
         prepawn other
                                       float64
         redemption handgun
                                       float64
         redemption_long_gun
                                       float64
         redemption_other
                                       float64
         returned handgun
                                       float64
         returned long gun
                                       float64
         returned_other
                                       float64
         rentals handgun
                                       float64
         rentals_long_gun
                                       float64
         private_sale_handgun
                                       float64
         private sale long gun
                                       float64
         private sale other
                                       float64
         return_to_seller_handgun
                                       float64
         return_to_seller_long_gun
                                       float64
         return_to_seller_other
                                       float64
         totals
                                         int64
         dtype: object
In [11]: # check the number of rows and columns in the census dataframe
         df census data.shape
```

Out[11]: (85, 52)

In [12]: # Review the first 5 rows of the dataset

df_census_data.head()

Out[12]:

	Fact	Fact Note	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut
0	Population estimates, July 1, 2016, (V2016)	NaN	4,863,300	741,894	6,931,071	2,988,248	39,250,017	5,540,545	3,576,452
1	Population estimates base, April 1, 2010, (V2	NaN	4,780,131	710,249	6,392,301	2,916,025	37,254,522	5,029,324	3,574,114
2	Population, percent change - April 1, 2010 (es	NaN	1.70%	4.50%	8.40%	2.50%	5.40%	10.20%	0.10%
3	Population, Census, April 1, 2010	NaN	4,779,736	710,231	6,392,017	2,915,918	37,253,956	5,029,196	3,574,097
4	Persons under 5 years, percent, July 1, 2016,	NaN	6.00%	7.30%	6.30%	6.40%	6.30%	6.10%	5.20%

5 rows × 52 columns

In [13]: # Review the last 25 rows of the dataset

df_census_data.tail(25)

Out[13]:

	Fact	Fact Note	Alabama	Alaska	Arizona	Arkansas	California	Colorado
60	Veteran- owned firms, 2012	NaN	41,943	7,953	46,780	25,915	252,377	51,722
61	Nonveteran- owned firms, 2012	NaN	316,984	56,091	427,582	192,988	3,176,341	469,524
62	Population per square mile, 2010	NaN	94.4	1.2	56.3	56	239.1	48.5
63	Land area in square miles, 2010	NaN	50,645.33	570,640.95	113,594.08	52,035.48	155,779.22	103,641.89
64	FIPS Code	NaN	"01"	"02"	"04"	"05"	"06"	"08"
65	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
66	NOTE: FIPS Code values are enclosed in quotes	NaN	NaN	NaN	NaN	NaN	NaN	NaN
67	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
68	Value Notes	NaN	NaN	NaN	NaN	NaN	NaN	NaN
69	1	Includes data not distributed by county.	NaN	NaN	NaN	NaN	NaN	NaN
70	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
71	Fact Notes	NaN	NaN	NaN	NaN	NaN	NaN	NaN
72	(a)	Includes persons reporting only one race	NaN	NaN	NaN	NaN	NaN	NaN
73	(b)	Hispanics may be of any race, so also are incl	NaN	NaN	NaN	NaN	NaN	NaN
74	(c)	Economic Census - Puerto Rico data are not com	NaN	NaN	NaN	NaN	NaN	NaN
75	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
76	Value Flags	NaN	NaN	NaN	NaN	NaN	NaN	NaN
77	-	Either no or too few sample observations were	NaN	NaN	NaN	NaN	NaN	NaN

	Fact	Fact Note	Alabama	Alaska	Arizona	Arkansas	California	Colorado
78	D	Suppressed to avoid disclosure of confidential	NaN	NaN	NaN	NaN	NaN	NaN
79	F	Fewer than 25 firms	NaN	NaN	NaN	NaN	NaN	NaN
80	FN	Footnote on this item in place of data	NaN	NaN	NaN	NaN	NaN	NaN
81	NaN	Not available	NaN	NaN	NaN	NaN	NaN	NaN
82	S	Suppressed; does not meet publication standards	NaN	NaN	NaN	NaN	NaN	NaN
83	X	Not applicable	NaN	NaN	NaN	NaN	NaN	NaN
84	Z	Value greater than zero but less than half uni	NaN	NaN	NaN	NaN	NaN	NaN

25 rows × 52 columns

<class 'pandas.core.frame.DataFrame'> RangeIndex: 85 entries, 0 to 84 Data columns (total 52 columns): Fact 80 non-null object 28 non-null object Fact Note 65 non-null object Alabama 65 non-null object Alaska Arizona 65 non-null object Arkansas 65 non-null object California 65 non-null object Colorado 65 non-null object 65 non-null object Connecticut 65 non-null object Delaware Florida 65 non-null object 65 non-null object Georgia 65 non-null object Hawaii 65 non-null object Idaho Illinois 65 non-null object Indiana 65 non-null object Iowa 65 non-null object Kansas 65 non-null object 65 non-null object Kentucky 65 non-null object Louisiana Maine 65 non-null object 65 non-null object Maryland Massachusetts 65 non-null object 65 non-null object Michigan 65 non-null object Minnesota Mississippi 65 non-null object Missouri 65 non-null object 65 non-null object Montana Nebraska 65 non-null object 65 non-null object Nevada New Hampshire 65 non-null object New Jersey 65 non-null object 65 non-null object New Mexico New York 65 non-null object 65 non-null object North Carolina 65 non-null object North Dakota Ohio 65 non-null object 65 non-null object Oklahoma 65 non-null object **Oregon** Pennsylvania 65 non-null object Rhode Island 65 non-null object South Carolina 65 non-null object South Dakota 65 non-null object 65 non-null object Tennessee 65 non-null object Texas Utah 65 non-null object 65 non-null object Vermont Virginia 65 non-null object Washington 65 non-null object West Virginia 65 non-null object Wisconsin 65 non-null object Wyoming 65 non-null object dtypes: object(52)

memory usage: 34.7+ KB

In [15]: #check for duplication in the census dataset
 print(df_census_data.duplicated().sum())
 df_census_data[df_census_data.duplicated()]

3

Out[15]:

	Fact	Fact Note	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delawai
67	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
70	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
75	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
3 ro	ws × 5	52 colu	mns							
4										•

```
In [16]: # check sum of all null values in census dataset
    null_data = df_census_data.isnull().sum()
    null_data
```

0 [46]		_
Out[16]:		5
	Fact Note Alabama	57 20
	Alaska	20
	Arizona	20
	Arkansas	20
	California	20
	Colorado	20
	Connecticut	20
	Delaware	20
	Florida	20
	Georgia	20
	Hawaii	20
	Idaho	20
	Illinois	20
	Indiana	20
	Iowa	20
	Kansas	20
	Kentucky	20
	Louisiana	20
	Maine	20
	Maryland	20
	Massachusetts	20
	Michigan	20
	Minnesota	20
	Mississippi	20
	Missouri	20
	Montana	20
	Nebraska	20
	Nevada	20
	New Hampshire	20
	New Jersey	20
	New Mexico	20
	New York	20
	North Carolina	20
	North Dakota	20
	Ohio	20
	Oklahoma	20
	Oregon	20
	Pennsylvania	20
	Rhode Island	20
	South Carolina	20
	South Dakota	20
	Tennessee	20
	Texas	20
	Utah	20
	Vermont	20
	Virginia	20
	Washington	20
	West Virginia	20
	Wisconsin	20
	Wyoming	20
	dtype: int64	

In [17]: # check if the last 20 data constitute the null values in census dataset
 null_tail20 = df_census_data.tail(20).isnull().sum()
 null_data == null_tail20

Out[17]:	Fact	True
	Fact Note	False
	Alabama	True
	Alaska	True
	Arizona	True
	Arkansas	True
	California	True
	Colorado	True
	Connecticut	True
	Delaware	True
	Florida	True
	Georgia	True
	Hawaii	True
	Idaho	True
	Illinois	True
	Indiana	True
	Iowa	True
	Kansas	True
	Kentucky	True
	Louisiana	True
	Maine	True
	Maryland	True
	-	
	Massachusetts	True
	Michigan	True
	Minnesota	True
	Mississippi	True
	Missouri	True
	Montana	True
	Nebraska	True
	Nevada	True
	New Hampshire	True
	New Jersey	True
	New Mexico	True
	New York	True
	North Carolina	True
	North Dakota	True
	Ohio	True
	Oklahoma	True
	Oregon	True
	Pennsylvania	True
	Rhode Island	True
	South Carolina	True
	South Dakota	True
	Tennessee	True
	Texas	True
	Utah	True
	Vermont	True
	Virginia	True
	Washington	True
	West Virginia	True
	Wisconsin	True
	Wyoming	True
	dtype: bool	ii ue
	acype, boot	

Data Cleaning

Gun Purchase Dataset:

First, the gun purchase dataset contains information for 50 US states and 5 US territories. The census dataset contains the information for only 50 US states. The first step will be to drop the columns for the 5 US territories from the gun purchase dataset to make it comparable with the census dataset.

Second, the gun purchase dataset contains null values. These values were replaced with zero. The rows were added together and the summed values were compared with original 'totals' column to ensure that the values are the same. Replacing the null values with a different number such as the mean will cause the summed value to be different from the original 'totals' column.

Third, the 'month' column were splitted into year and month column to make it easier to group data by month and year based on data exploration need.

Fourth, switch the values in the 'state' column from uppercase to lower case and convert the spaces to underscore.

Fifth, transpose all the rows in the 'state' column to column and the use the 'total' column as new values for the transposed cells.

Census Dataset

First, drop the 'Fact Note' column and the last 21 rows becuase they have Nan values.

Second, switch the column values from uppercase to lower case and convert the spaces to underscore.

Third, remove "%" from the third row in the dataset. The reason is because the current data type is object and it must be converted to a quantitative data.

```
In [18]:
         #Retrieve the list of all states in the census dataset
          state_list = df_census_data.columns[2:].tolist()
          state list
Out[18]: ['Alabama',
           'Alaska',
           'Arizona',
           'Arkansas',
           'California',
           'Colorado',
           'Connecticut',
           'Delaware',
           'Florida',
           'Georgia',
           'Hawaii',
           'Idaho',
           'Illinois',
           'Indiana',
           'Iowa',
           'Kansas',
           'Kentucky',
           'Louisiana',
           'Maine',
           'Maryland',
           'Massachusetts',
           'Michigan',
           'Minnesota',
           'Mississippi',
           'Missouri',
           'Montana',
           'Nebraska',
           'Nevada',
           'New Hampshire',
           'New Jersey',
           'New Mexico',
           'New York',
           'North Carolina',
           'North Dakota',
           'Ohio',
           'Oklahoma',
           'Oregon',
           'Pennsylvania',
           'Rhode Island',
           'South Carolina',
           'South Dakota',
           'Tennessee',
           'Texas',
           'Utah',
           'Vermont',
           'Virginia',
           'Washington',
           'West Virginia',
           'Wisconsin',
           'Wyoming']
```

```
In [19]:
         # Get the list of states in df_gun_purchase that do not exist in the census da
          taset
         states_gun_data = df_gun_purchase['state'].unique().tolist()
         states = []
         def update_state(data):
             for state in data:
                  if state not in state_list:
                      states.append(state)
         update_state(states_gun_data)
         states
Out[19]: ['District of Columbia',
           'Guam',
           'Mariana Islands',
           'Puerto Rico',
           'Virgin Islands']
```

```
In [20]: #drop the states that do not exist in the census dataset

df_gun_purchase.set_index('state', inplace=True)
    df_gun_purchase = df_gun_purchase.drop(states)
    df_gun_purchase
```

Out[20]:

	month	permit	permit_recheck	handgun	long_gun	other	multiple	admin
state								
Alabama	2017- 09	16717.0	0.0	5734.0	6320.0	221.0	317	0.0
Alaska	2017- 09	209.0	2.0	2320.0	2930.0	219.0	160	0.0
Arizona	2017- 09	5069.0	382.0	11063.0	7946.0	920.0	631	0.0
Arkansas	2017- 09	2935.0	632.0	4347.0	6063.0	165.0	366	51.0
California	2017- 09	57839.0	0.0	37165.0	24581.0	2984.0	0	0.0
Colorado	2017- 09	4356.0	0.0	15751.0	13448.0	1007.0	1062	0.0
Connecticut	2017- 09	4343.0	673.0	4834.0	1993.0	274.0	0	0.0
Delaware	2017- 09	275.0	0.0	1414.0	1538.0	66.0	68	0.0
Florida	2017- 09	10784.0	0.0	39199.0	17949.0	2319.0	1721	1.0
Georgia	2017- 09	12074.0	0.0	10933.0	7982.0	315.0	494	0.0
Hawaii	2017- 09	946.0	0.0	0.0	0.0	0.0	0	0.0
Idaho	2017- 09	5162.0	0.0	3058.0	5241.0	187.0	205	0.0
Illinois	2017- 09	15712.0	71432.0	18290.0	10201.0	0.0	814	0.0
Indiana	2017- 09	18241.0	0.0	16093.0	11332.0	1123.0	597	79.0
lowa	2017- 09	5847.0	1217.0	151.0	2640.0	27.0	1	1.0
Kansas	2017- 09	1567.0	3.0	4518.0	5025.0	306.0	297	0.0
Kentucky	2017- 09	378384.0	0.0	8112.0	7543.0	253.0	543	1.0
Louisiana	2017- 09	1827.0	0.0	10495.0	11573.0	635.0	776	0.0
Maine	2017- 09	783.0	0.0	3026.0	4220.0	179.0	186	1.0
Maryland	2017- 09	2424.0	0.0	3389.0	4897.0	168.0	34	0.0
Massachusetts	2017- 09	7160.0	0.0	4749.0	2808.0	449.0	158	0.0
Michigan	2017- 09	16571.0	19.0	8654.0	10676.0	379.0	163	0.0

	month	permit	permit_recheck	handgun	long_gun	other	multiple	admin	ı
state									
Minnesota	2017- 09	25645.0	0.0	4862.0	12677.0	346.0	273	0.0	
Mississippi	2017- 09	1362.0	0.0	6260.0	6035.0	206.0	405	0.0	
Missouri	2017- 09	791.0	0.0	16993.0	14395.0	1050.0	991	0.0	
Montana	2017- 09	1076.0	0.0	2395.0	4878.0	140.0	216	3.0	
Nebraska	2017- 09	3036.0	113.0	110.0	1989.0	11.0	4	0.0	
Nevada	2017- 09	1952.0	0.0	3992.0	2509.0	251.0	237	0.0	
New Hampshire	2017- 09	2795.0	0.0	4410.0	3248.0	132.0	3	2.0	
New Jersey	2017- 09	0.0	0.0	3985.0	3040.0	140.0	0	0.0	
Massachusetts	1998- 11	0.0	NaN	4.0	39.0	NaN	0	0.0	
Michigan	1998- 11	579.0	NaN	3.0	443.0	NaN	0	0.0	
Minnesota	1998- 11	9.0	NaN	27.0	280.0	NaN	3	0.0	
Mississippi	1998- 11	0.0	NaN	286.0	491.0	NaN	7	0.0	
Missouri	1998- 11	0.0	NaN	116.0	458.0	NaN	4	0.0	
Montana	1998- 11	0.0	NaN	101.0	98.0	NaN	2	0.0	
Nebraska	1998- 11	88.0	NaN	1.0	96.0	NaN	1	0.0	
Nevada	1998- 11	0.0	NaN	75.0	76.0	NaN	8	0.0	
New Hampshire	1998- 11	0.0	NaN	8.0	46.0	NaN	1	0.0	
New Jersey	1998- 11	0.0	NaN	20.0	53.0	NaN	2	2.0	
New Mexico	1998- 11	0.0	NaN	86.0	121.0	NaN	4	0.0	
New York	1998- 11	0.0	NaN	40.0	279.0	NaN	0	0.0	
North Carolina	1998- 11	524.0	NaN	87.0	695.0	NaN	4	0.0	
North Dakota	1998- 11	0.0	NaN	20.0	38.0	NaN	0	0.0	

	month	permit	permit_recheck	handgun	long_gun	other	multiple	admin
state								
Ohio	1998- 11	0.0	NaN	502.0	434.0	NaN	16	0.0
Oklahoma	1998- 11	0.0	NaN	259.0	361.0	NaN	13	0.0
Oregon	1998- 11	0.0	NaN	153.0	186.0	NaN	5	0.0
Pennsylvania	1998- 11	0.0	NaN	5.0	8.0	NaN	4	0.0
Rhode Island	1998- 11	0.0	NaN	13.0	23.0	NaN	2	0.0
South Carolina	1998- 11	0.0	NaN	0.0	6.0	NaN	0	0.0
South Dakota	1998- 11	0.0	NaN	8.0	66.0	NaN	0	0.0
Tennessee	1998- 11	0.0	NaN	19.0	85.0	NaN	3	0.0
Texas	1998- 11	0.0	NaN	1384.0	1349.0	NaN	60	1.0
Utah	1998- 11	0.0	NaN	98.0	169.0	NaN	0	0.0
Vermont	1998- 11	0.0	NaN	23.0	35.0	NaN	0	1.0
Virginia	1998- 11	0.0	NaN	14.0	2.0	NaN	8	0.0
Washington	1998- 11	1.0	NaN	65.0	286.0	NaN	8	1.0
West Virginia	1998- 11	3.0	NaN	149.0	251.0	NaN	5	0.0
Wisconsin	1998- 11	0.0	NaN	25.0	214.0	NaN	2	0.0
Wyoming	1998- 11	8.0	NaN	45.0	49.0	NaN	5	0.0

11350 rows × 26 columns

In [21]: #Reset the ondex of the df_gun_purchase

df_gun_purchase = df_gun_purchase.reset_index()

```
In [22]: # replace all Nan in df_gun_purchase dataset with zeros

df_gun_purchase.fillna(0,inplace=True)
df_gun_purchase
```

Out[22]:

	state	month	permit	permit_recheck	handgun	long_gun	other	multiple	ac
0	Alabama	2017- 09	16717.0	0.0	5734.0	6320.0	221.0	317	
1	Alaska	2017- 09	209.0	2.0	2320.0	2930.0	219.0	160	
2	Arizona	2017- 09	5069.0	382.0	11063.0	7946.0	920.0	631	
3	Arkansas	2017- 09	2935.0	632.0	4347.0	6063.0	165.0	366	
4	California	2017- 09	57839.0	0.0	37165.0	24581.0	2984.0	0	
5	Colorado	2017- 09	4356.0	0.0	15751.0	13448.0	1007.0	1062	
6	Connecticut	2017- 09	4343.0	673.0	4834.0	1993.0	274.0	0	
7	Delaware	2017- 09	275.0	0.0	1414.0	1538.0	66.0	68	
8	Florida	2017- 09	10784.0	0.0	39199.0	17949.0	2319.0	1721	
9	Georgia	2017- 09	12074.0	0.0	10933.0	7982.0	315.0	494	
10	Hawaii	2017- 09	946.0	0.0	0.0	0.0	0.0	0	
11	Idaho	2017- 09	5162.0	0.0	3058.0	5241.0	187.0	205	
12	Illinois	2017- 09	15712.0	71432.0	18290.0	10201.0	0.0	814	
13	Indiana	2017- 09	18241.0	0.0	16093.0	11332.0	1123.0	597	
14	lowa	2017- 09	5847.0	1217.0	151.0	2640.0	27.0	1	
15	Kansas	2017- 09	1567.0	3.0	4518.0	5025.0	306.0	297	
16	Kentucky	2017- 09	378384.0	0.0	8112.0	7543.0	253.0	543	
17	Louisiana	2017- 09	1827.0	0.0	10495.0	11573.0	635.0	776	
18	Maine	2017- 09	783.0	0.0	3026.0	4220.0	179.0	186	
19	Maryland	2017- 09	2424.0	0.0	3389.0	4897.0	168.0	34	
20	Massachusetts	2017- 09	7160.0	0.0	4749.0	2808.0	449.0	158	
21	Michigan	2017- 09	16571.0	19.0	8654.0	10676.0	379.0	163	
22	Minnesota	2017- 09	25645.0	0.0	4862.0	12677.0	346.0	273	

	state	month	permit	permit_recheck	handgun	long_gun	other	multiple	ac
23	Mississippi	2017- 09	1362.0	0.0	6260.0	6035.0	206.0	405	
24	Missouri	2017- 09	791.0	0.0	16993.0	14395.0	1050.0	991	
25	Montana	2017- 09	1076.0	0.0	2395.0	4878.0	140.0	216	
26	Nebraska	2017- 09	3036.0	113.0	110.0	1989.0	11.0	4	
27	Nevada	2017- 09	1952.0	0.0	3992.0	2509.0	251.0	237	
28	New Hampshire	2017- 09	2795.0	0.0	4410.0	3248.0	132.0	3	
29	New Jersey	2017- 09	0.0	0.0	3985.0	3040.0	140.0	0	
11320	Massachusetts	1998- 11	0.0	0.0	4.0	39.0	0.0	0	
11321	Michigan	1998- 11	579.0	0.0	3.0	443.0	0.0	0	
11322	Minnesota	1998- 11	9.0	0.0	27.0	280.0	0.0	3	
11323	Mississippi	1998- 11	0.0	0.0	286.0	491.0	0.0	7	
11324	Missouri	1998- 11	0.0	0.0	116.0	458.0	0.0	4	
11325	Montana	1998- 11	0.0	0.0	101.0	98.0	0.0	2	
11326	Nebraska	1998- 11	88.0	0.0	1.0	96.0	0.0	1	
11327	Nevada	1998- 11	0.0	0.0	75.0	76.0	0.0	8	
11328	New Hampshire	1998- 11	0.0	0.0	8.0	46.0	0.0	1	
11329	New Jersey	1998- 11	0.0	0.0	20.0	53.0	0.0	2	
11330	New Mexico	1998- 11	0.0	0.0	86.0	121.0	0.0	4	
11331	New York	1998- 11	0.0	0.0	40.0	279.0	0.0	0	
11332	North Carolina	1998- 11	524.0	0.0	87.0	695.0	0.0	4	
11333	North Dakota	1998- 11	0.0	0.0	20.0	38.0	0.0	0	
11334	Ohio	1998- 11	0.0	0.0	502.0	434.0	0.0	16	
11335	Oklahoma	1998- 11	0.0	0.0	259.0	361.0	0.0	13	

	state	month	permit	permit_recheck	handgun	long_gun	other	multiple	ac
11336	Oregon	1998- 11	0.0	0.0	153.0	186.0	0.0	5	
11337	Pennsylvania	1998- 11	0.0	0.0	5.0	8.0	0.0	4	
11338	Rhode Island	1998- 11	0.0	0.0	13.0	23.0	0.0	2	
11339	South Carolina	1998- 11	0.0	0.0	0.0	6.0	0.0	0	
11340	South Dakota	1998- 11	0.0	0.0	8.0	66.0	0.0	0	
11341	Tennessee	1998- 11	0.0	0.0	19.0	85.0	0.0	3	
11342	Texas	1998- 11	0.0	0.0	1384.0	1349.0	0.0	60	
11343	Utah	1998- 11	0.0	0.0	98.0	169.0	0.0	0	
11344	Vermont	1998- 11	0.0	0.0	23.0	35.0	0.0	0	
11345	Virginia	1998- 11	0.0	0.0	14.0	2.0	0.0	8	
11346	Washington	1998- 11	1.0	0.0	65.0	286.0	0.0	8	
11347	West Virginia	1998- 11	3.0	0.0	149.0	251.0	0.0	5	
11348	Wisconsin	1998- 11	0.0	0.0	25.0	214.0	0.0	2	
11349	Wyoming	1998- 11	8.0	0.0	45.0	49.0	0.0	5	

11350 rows × 27 columns

```
In [23]: # convert the datatype of the 'multiple' column to float

df_gun_purchase['multiple'] = df_gun_purchase['multiple'].astype(float)
df_gun_purchase['multiple'].dtypes
```

Out[23]: dtype('float64')

```
In [24]: # sum all columns in the df_gun_purchase excluding 'totals' column

float_cols = df_gun_purchase.select_dtypes(include=['float']).columns.values.t
    olist()
    df_gun_purchase['new_totals'] = df_gun_purchase[float_cols].sum(axis=1)
    df_gun_purchase['new_totals'].head()
```

Out[24]: 0 32019.0

1 6303.0

2 28394.0

3 17747.0

4 123506.0

Name: new_totals, dtype: float64

Out[25]: array([True])

In [26]: # drop the new_totals column df_gun_purchase.drop("new_totals", axis=1, inplace=True) df_gun_purchase.head()

Out[26]:

	state	month	permit	permit_recheck	handgun	long_gun	other	multiple	admin	prep
0	Alabama	2017- 09	16717.0	0.0	5734.0	6320.0	221.0	317.0	0.0	
1	Alaska	2017- 09	209.0	2.0	2320.0	2930.0	219.0	160.0	0.0	
2	Arizona	2017- 09	5069.0	382.0	11063.0	7946.0	920.0	631.0	0.0	
3	Arkansas	2017- 09	2935.0	632.0	4347.0	6063.0	165.0	366.0	51.0	
4	California	2017- 09	57839.0	0.0	37165.0	24581.0	2984.0	0.0	0.0	

5 rows × 27 columns

```
In [27]: # Split the data in the month column into months and year. This will make it e
          asier to group the total column by year and then, by day
          df gun purchase['year'] = df gun purchase['month'].str[0:4]
          df gun purchase['month'] = df gun purchase['month'].str[-2:]
          df gun purchase['month']
Out[27]: 0
                   09
         1
                   09
         2
                   09
                   09
         3
         4
                   09
         11345
                   11
         11346
                   11
         11347
                   11
         11348
                   11
         11349
                   11
         Name: month, Length: 11350, dtype: object
In [28]: # check if there are missing values
          df gun purchase.isnull().sum()
Out[28]: state
                                        0
         month
                                        0
         permit
                                        0
         permit recheck
                                        0
         handgun
                                        0
         long_gun
                                        0
                                        0
         other
         multiple
                                        0
         admin
                                        0
                                        0
         prepawn_handgun
         prepawn long gun
                                        0
         prepawn other
                                        0
         redemption_handgun
                                        0
         redemption_long_gun
                                        0
                                        0
         redemption other
                                        0
         returned_handgun
         returned long gun
                                        0
         returned_other
                                        0
         rentals_handgun
                                        0
         rentals long gun
                                        0
         private sale handgun
                                        0
         private sale long gun
                                        0
         private sale other
                                        0
         return to seller handgun
                                        0
         return_to_seller_long_gun
                                        0
         return_to_seller_other
                                        0
         totals
                                        0
         year
         dtype: int64
```

```
In [29]: # check if there are duplicates in the df_gun_purchase dataset
         df gun purchase.duplicated().sum()
Out[29]: 0
In [30]: # check the structure of the df gun purchase dataset
         df_gun_purchase.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 11350 entries, 0 to 11349
         Data columns (total 28 columns):
                                       11350 non-null object
         state
                                       11350 non-null object
         month
                                       11350 non-null float64
         permit
         permit recheck
                                      11350 non-null float64
         handgun
                                      11350 non-null float64
         long_gun
                                      11350 non-null float64
         other
                                      11350 non-null float64
         multiple
                                      11350 non-null float64
         admin
                                      11350 non-null float64
         prepawn handgun
                                      11350 non-null float64
         prepawn_long_gun
                                      11350 non-null float64
         prepawn other
                                      11350 non-null float64
         redemption handgun
                                      11350 non-null float64
                                      11350 non-null float64
         redemption long gun
         redemption other
                                      11350 non-null float64
         returned handgun
                                      11350 non-null float64
         returned long gun
                                      11350 non-null float64
         returned_other
                                      11350 non-null float64
         rentals handgun
                                      11350 non-null float64
         rentals_long_gun
                                      11350 non-null float64
         private sale handgun
                                      11350 non-null float64
         private sale long gun
                                      11350 non-null float64
         private sale other
                                      11350 non-null float64
         return_to_seller_handgun
                                      11350 non-null float64
         return_to_seller_long_gun
                                      11350 non-null float64
         return to seller other
                                       11350 non-null float64
         totals
                                       11350 non-null float64
         vear
                                       11350 non-null object
         dtypes: float64(25), object(3)
         memory usage: 2.4+ MB
In [31]:
         # convert the values in state column to lowercase and replace space with under
         score so that it will be easy to join the two dataframes by state.
         new state = []
         for state in df gun purchase["state"]:
             state = state.strip().lower().replace(" ", "_")
             new state.append(state)
```

df gun purchase["state"] = new state

Out[32]:

_		state	year	month	totals
	0	alabama	1998	11	1062.0
	1	alabama	1998	12	35506.0
	2	alabama	1999	01	18049.0
	3	alabama	1999	02	20583.0
	4	alabama	1999	03	19424.0

Out[33]:

	state	totals	year_month
0	alabama	1062.0	1998-11
1	alabama	35506.0	1998-12
2	alabama	18049.0	1999-01
3	alabama	20583.0	1999-02
4	alabama	19424.0	1999-03

```
In [34]: #Group df_gun_purchase by year

total_permit_by_year = new_gun_data.groupby(['year', "month"])["totals"].sum()
    .reset_index(name="totals")
    total_permit_by_year.head()
```

Out[34]:

	year	month	totals
0	1998	11	21174.0
1	1998	12	870202.0
2	1999	01	585569.0
3	1999	02	689867.0
4	1999	03	741234.0

```
In [35]: # Merge the year and month columns. Value grouping has been done

total_permit_by_year['year_month'] = total_permit_by_year["year"].astype(str)+
"-"+total_permit_by_year["month"]
total_permit_by_year.drop(["year","month"], axis=1, inplace=True)
total_permit_by_year.head()
```

Out[35]:

	totals	year_month
0	21174.0	1998-11
1	870202.0	1998-12
2	585569.0	1999-01
3	689867.0	1999-02
4	741234.0	1999-03

Out[36]:

state	year_month	alabama	alaska	arizona	arkansas	california	colorado	connecticut	delawa
0	1998-11	1062.0	145.0	379.0	589.0	2101.0	622.0	80.0	5
1	1998-12	35506.0	3840.0	17074.0	21163.0	65344.0	23176.0	6790.0	208
2	1999-01	18049.0	2278.0	12859.0	11953.0	56953.0	19503.0	6265.0	112
3	1999-02	20583.0	2413.0	14546.0	15348.0	57471.0	22239.0	8069.0	107
4	1999-03	19424.0	3206.0	14992.0	13720.0	68327.0	17287.0	7877.0	131

5 rows × 51 columns

```
In [37]: #drop the year_month column for the new pivot table
gun_data_piv3 = gun_data_piv2.copy("gun_data_piv2")
gun_data_piv3.drop("year_month", axis=1, inplace=True)
```

Out[38]:

	Fact	Fact Note	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Conr
59	Nonminority- owned firms, 2012	NaN	272,651	51,147	344,981	189,029	1,819,107	442,365	:
60	Veteran- owned firms, 2012	NaN	41,943	7,953	46,780	25,915	252,377	51,722	
61	Nonveteran- owned firms, 2012	NaN	316,984	56,091	427,582	192,988	3,176,341	469,524	1
62	Population per square mile, 2010	NaN	94.4	1.2	56.3	56	239.1	48.5	
63	Land area in square miles, 2010	NaN	50,645.33	570,640.95	113,594.08	52,035.48	155,779.22	103,641.89	4

5 rows × 52 columns

Arizona Arkansas California Colorado Connecticut Delav

```
In [39]: # drop the fact note column because the values are NaN and irrelevant for anal
    ysis
    df_census_data.drop('Fact Note', axis=1, inplace=True)
    df_census_data.head()
```

Fact Alabama Alaska

Out[39]:

In [40]:

In [41]:

	1 401	Alabama	Alusku	Alizolia	Aikaiisas	Gamorina	Colorado	Connecticut	Delav
0	Population estimates, July 1, 2016, (V2016)	4,863,300	741,894	6,931,071	2,988,248	39,250,017	5,540,545	3,576,452	952
1	Population estimates base, April 1, 2010, (V2	4,780,131	710,249	6,392,301	2,916,025	37,254,522	5,029,324	3,574,114	897
2	Population, percent change - April 1, 2010 (es	1.70%	4.50%	8.40%	2.50%	5.40%	10.20%	0.10%	6.
3	Population, Census, April 1, 2010	4,779,736	710,231	6,392,017	2,915,918	37,253,956	5,029,196	3,574,097	897
4	Persons under 5 years, percent, July 1, 2016,	6.00%	7.30%	6.30%	6.40%	6.30%	6.10%	5.20%	5.
5 rc	ws × 51 co	lumns							
4									>
<pre># convert the column names to lowercase and replace the spaces with underscore df_census_data.rename(columns=lambda x:x.strip().lower().replace(" ", "_"), in place=True)</pre>									
<pre>new_percent_change = [] for values in df_census_data.iloc[2]:</pre>									

Exploratory Data Analysis

Research Question 1 - What is the distribution of gun purchases across all states between November 1998 and September 2017?

values = values.strip().replace("%", "")

new_percent_change.append(values)
df census data.iloc[2] = new percent change

```
In [42]: #new_gun_data.groupby('state').plot(kind='boxplot');

state_list1 = gun_data_piv2.columns[2:].to_list()
state_list1
ax_5 = gun_data_piv2.boxplot(column=state_list1, figsize=(20,10),rot = 90, grid=False, fontsize=15);
ax_5.set(xlabel = "States", ylabel="Total Gun Purchased", title= 'Gun PurchaseData Distribution by State (November 1998 - September 2017)');
```


From the diagram above, none of the data is normally distributed. Most states, except Kentucky, have outliers. Most states, except Connecticut, Louisiana, New york, and West Virginia have a right-skewed distribution.

Kentucky had the longest boxplot with no outliers. This indicated that gun purchases are more consistent and spread out across all months than in any other states. The median value for Kentucky is higher than the maximum value for other states, except Washinton, Utah, Texas, Pennyslavania, Indiana, Illinois, Florida, California, and North Carolina

North Carolina has two outliers. One of the outliers is an extreme value that stood out from others. This shows that NC had a gun purchase of 54,178 in March 2014, the highest gun purchase among purchase within the period under review.

Research Question 2 - Which states had the highest and the lowest gun purchases between November 1998 and September 2017?

```
In [44]: #Group the total gun purchases by states and plot a bar chat

total_permit2 = new_gun_data.groupby(["state"])["totals"].sum().reset_index(na me="totals")
    sorted_total_permit2 = total_permit2.sort_values(by='totals', ascending=False)

highest_gun_purchase = sorted_total_permit2['totals'].max()
    lowest_gun_purchase = sorted_total_permit2['totals'].min()
    print(highest_gun_purchase,lowest_gun_purchase)
```

29762434.0 197580.0

```
In [43]: ax = sorted_total_permit2.plot( x="state", y="totals", kind="bar",figsize=(20,
8), title = "Total Gun Purchase (November 1998 - September 2017)");
ax.set(xlabel = "State", ylabel = "(Tens of Millions)");
```


Between November 1998 and September 2017, Kentucky had the highest gun purchase with the total of number 29,762,434. Hawaii had the lowest gun purchases with the total number of 197,580.

Research Question 3: What is the overall trend in gun purchase?

```
In [74]: # Plot the line chart to show the overall trend in gun purchase
    ax2 = total_permit_by_year.plot( x="year_month", y="totals", kind="line",figsi
    ze=(20,8), title = "Overall Trend in Gun Purchase (November 1998 - September 2
017)");
    ax2.set(xlabel = "Year", ylabel='Number of Guns');
```


Gun purchase is on the increase. Total gun purchase as of November 1998 was 21,174 and as of September 2017, total gun purchase had increased to 1,856,214. Some spikes can be observed in the line chart below, and an analysis of the dataset shows that gun purchases drops drastically in January of every year followed by growth in gun purchase in subsequent month. December 2015 had the highest total gun purchase with the value of 3,306,435.

```
In [45]: # Check the month with the highest gun purchase
    total_permit_by_year[total_permit_by_year['totals'] == total_permit_by_year.to
    tals.max()]
```

Out[45]:

	totals	year_month
205	3306435.0	2015-12

In [46]:

#Review the months that are responsible for the observed spikes in the line ch art above

total_permit_by_year

Out[46]:

	totals	year_month
0	21174.0	1998-11
1	870202.0	1998-12
2	585569.0	1999-01
3	689867.0	1999-02
4	741234.0	1999-03
5	638299.0	1999-04
6	568781.0	1999-05
7	564521.0	1999-06
8	579263.0	1999-07
9	694469.0	1999-08
10	798738.0	1999-09
11	934384.0	1999-10
12	995378.0	1999-11
13	1247812.0	1999-12
14	628579.0	2000-01
15	695878.0	2000-02
16	725088.0	2000-03
17	606212.0	2000-04
18	526074.0	2000-05
19	539560.0	2000-06
20	533493.0	2000-07
21	675825.0	2000-08
22	773629.0	2000-09
23	835879.0	2000-10
24	888128.0	2000-11
25	993141.0	2000-12
26	633466.0	2001-01
27	665891.0	2001-02
28	719949.0	2001-03
29	583322.0	2001-04
197	1696255.0	2015-04
198	1569096.0	2015-05
199	1517014.0	2015-06
200	1587710.0	2015-07

	totals	year_month
201	1734239.0	2015-08
202	1785086.0	2015-09
203	1967570.0	2015-10
204	2234871.0	2015-11
205	3306435.0	2015-12
206	2538652.0	2016-01
207	2603227.0	2016-02
208	2507513.0	2016-03
209	2134410.0	2016-04
210	1859080.0	2016-05
211	2121693.0	2016-06
212	2185520.0	2016-07
213	1835093.0	2016-08
214	1981896.0	2016-09
215	2324740.0	2016-10
216	2552584.0	2016-11
217	2761141.0	2016-12
218	2030400.0	2017-01
219	2222804.0	2017-02
220	2420835.0	2017-03
221	2035418.0	2017-04
222	1896910.0	2017-05
223	1886240.0	2017-06
224	1731550.0	2017-07
225	1894569.0	2017-08
226	1856214.0	2017-09

227 rows × 2 columns

Research Question 4 - Which states had the highest and the lowest percent change in gun purchase between April 2010 and July 2016?

```
In [47]:
         # Get the indexes of July 2016 and April 2010 and extract the data for the per
          iod
          print(gun data piv2[gun data piv2['year month']=="2016-07"].index[0])
          print(gun data piv2[gun data piv2['year month']=="2010-04"].index[0])
         212
         137
In [48]:
         #Calculate the percentage change in total qun purchased between April 2010 and
          July 2016
          gun_data_piv3.loc['percent_change(%)'] = ((gun_data_piv3.iloc[212] / gun_data_
          piv3.iloc[137])-1)*100
          gun data piv3 min = gun data piv3.loc['percent change(%)'].max()
In [49]: # Plot the chat
          ax3 = gun_data_piv3.loc['percent_change(%)'].plot(kind="bar" , figsize=(20,8),
          title = "Change in Gun Purchase (%) (April 2010 - July 2016)");
          ax3.set(xlabel = "States");
          ax3.set(ylabel = "Percentage");
                                         Change in Gun Purchase (%) (April 2010 - July 2016)
           200
In [50]:
         # Get the min and max values for the percent change in gun purchase
          max_change = gun_data_piv3.loc['percent_change(%)'].max()
          min_change = gun_data_piv3.loc['percent_change(%)'].min()
          print(max change, min change)
```

250.11097019657575 -83.90361181450028

Indiana had the highest percent change in gun purchase with the value of 250.12%. Utah had the lowest percent change in gun purchase with the value of -83.90% for the period between April 2010 and July 2016.

Research Question 5 - Are the changes in population size responsible for the changes in gun purchase?

```
In [51]: # Convert data type from object to float
    population_change = df_census_data.iloc[[2],1:]
    new_float = []
    for values in df_census_data.iloc[[2],1:].values:
        values = values.astype(float)
        new_float.append(values)

    df_census_data.iloc[[2],1:] = new_float
    census_sub = df_census_data.iloc[[2]].set_index("fact")
    census_sub

Out[51]:
    alabama alaska arizona arkansas california colorado connecticut delaware flor
    fact

Population,
```

percent change -April 1, 2010 1.7 4.5 8.4 2.5 5.4 10.2 0.1 6 (estimates base) to July 1, 2016, (V2016)

1 rows × 50 columns

In [52]: #Merge the population change from census dataset with gun purchase change in t
he gun dataset
gun_sub = gun_data_piv3.loc[['percent_change(%)']]
new_dataframe = pd.concat([census_sub,gun_sub], sort=False)
new_dataframe

Out[52]:

state	alabama	alaska	arizona	arkansas	california	colorado	connecticut	delav
Population, percent change - April 1, 2010 (estimates base) to July 1, 2016, (V2016)	1.7	4.5	8.4	2.5	5.4	10.2	0.1	
percent_change(%)	135.328	5.95851	108.083	33.0632	135.564	82.5321	86.8798	2
2 rows × 50 columns								
4								•

In [53]: change_df = new_dataframe.transpose()
 change_df

Out[53]:

	Population, percent change - April 1, 2010 (estimates base) to July 1, 2016, (V2016)	percent_change(%)
state		
alabama	1.7	135.328
alaska	4.5	5.95851
arizona	8.4	108.083
arkansas	2.5	33.0632
california	5.4	135.564
colorado	10.2	82.5321
connecticut	0.1	86.8798
delaware	6	212.3
florida	9.6	192.583
georgia	6.4	104.376
hawaii	5	62.513
idaho	7.4	55.5413
illinois	-0.2	211.942
indiana	2.3	250.111
iowa	2.9	22.8086
kansas	1.9	48.3891
kentucky	2.2	71.8656
louisiana	3.3	207.059
maine	0.2	51.8234
maryland	4.2	74.8856
massachusetts	4	134.111
michigan	0.4	36.6164
minnesota	4.1	64.5782
mississippi	0.7	125.799
missouri	1.7	77.4012
montana	5.4	17.9515
nebraska	4.4	31.1036
nevada	8.9	26.8022
new_hampshire	1.4	89.0899
new_jersey	1.7	139.004
new_mexico	0.011	42.0979
new_york	0.019	48.2618
north_carolina	0.064	88.7373
north_dakota	0.127	46.8062

Population, percent change - April 1, 20	10 (estimates base) to	norcont change(%)
	July 1, 2016, (V2016)	percent_change(///)

state		
ohio	0.007	101.673
oklahoma	0.046	46.1746
oregon	0.068	54.7814
pennsylvania	0.006	71.4203
rhode_island	0.003	97.4979
south_carolina	0.073	126.646
south_dakota	0.063	62.3767
tennessee	0.048	89.318
texas	10.8	95.667
utah	10.4	-83.9036
vermont	-0.2	30.2484
virginia	5.1	-1.27557
washington	8.4	72.1563
west_virginia	-1.2	50.1878
wisconsin	1.6	136.306
wyoming	3.9	14.2537

```
In [54]: # Plot a scatter graph of the relationship

x = new_dataframe.iloc[0].values
y = new_dataframe.iloc[1].values

plt.scatter(x, y)
plt.title('Relationship between Population and Gun Purchase')
plt.xlabel('Population Change(%)')
plt.ylabel('Gun Purchase Change(%)');
```


The scatter plot shows a negative relationship but the strength of the relationship is weak because the data points are dispersed and not clustered together. The correlation coefficient is -0.06611259. Therefore, changes in the population is not really responsible for the increase in gun purchase.

Conclusions

Total gun purchase between April 2010 and July 2016 has increased. This increase is not correlated with the changes in the population. Indiana with the highest percent change in gun purchase of 250.11% only experienced a 2.5% increase in population growth. Also, Utah with the lowest percent change in gun purchase of -83.90% experienced a 10.4% increase in population growth. The correlation coefficient of -0.066 shows there is a weak negative relationship between change in population and gun purchase.

While increase in crime rate could explain the increase in gun purchase, this data is not provided. Information about the crime rate can be obtained from U.S. Crime Rate & Statistics.

Despite the upward trend, January of every year always experience a significant drop in the number of gun purchase. Tight budget due to the holiday shopping in the prior month(December) could be responsible for this drop. A review of consumer spending, or personal consumption expenditures (PCE) data by the US Bureau of Economic Analysis could provide insight on consumer spending in January.

Limitations

The major limitation was combining the data from the two tables based on the state. This is because the state data for the census dataset is located on the columns axis but the state data for the gun purchase data is located on the row axis.

```
In [49]: from subprocess import call
    call(['python', '-m', 'nbconvert', 'Investigate_a_Dataset.ipynb'])
Out[49]: 0
```