(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung: 22.03.2006 Patentblatt 2006/12

(21) Anmeldenummer: 00985239.3

(22) Anmeldetag: 22.12.2000

(51) Int Cl.: G02B 13/14 (2006.01) G03F 7/20 (2006.01)

G02B 13/18 (2006.01)

(86) Internationale Anmeldenummer: PCT/EP2000/013148

(87) Internationale Veröffentlichungsnummer: WO 2001/050171 (12.07.2001 Gazette 2001/28)

(54) PROJEKTIONSOBJEKTIV MIT BENACHBART ANGEORDNETEN ASPHÄRISCHEN LINSENOBERFLÄCHEN

PROJECTION LENS COMPRISING ADJACENT ASPHERIC LENS SURFACES
OBJECTIF DE PROJECTION POURVU DE SURFACES DE LENTILLES ASPHERIQUES
DISPOSEES L'UNE A COTE DE L'AUTRE

(84) Benannte Vertragsstaaten: **DE GB NL**

(30) Priorităt: 29.12.1999 US 173523 P 22.01.2000 DE 10002626 04.05.2000 DE 10021739

(43) Veröffentlichungstag der Anmeldung: 25.09.2002 Patentblatt 2002/39

(73) Patentinhaber: Carl Zeiss SMT AG 73446 Oberkochen (DE)

(72) Erfinder:

 SHAFER, David, R. Fairfield, CT 06430 (US)

 SCHUSTER, Karl-Heinz 89551 Königsbronn (DE)

BEIERL, Helmut
 89522 Heidenheim (DE)

(74) Vertreter. Müller-Rissmann, Werner Albrecht et al Carl Zeiss, Patentabteilung 73446 Oberkochen (DE)

(56) Entgegenhaltungen:

EP-A- 0 332 201 EP-A- 0 816 892 EP-A- 0 851 304 EP-A- 1 061 396 EP-A- 1 069 448 EP-A- 1 079 253 DE-A- 19 818 444 US-A- 4 757 354 US-A- 4 861 148 US-A- 5 724 121 US-A- 5 835 285 US-A- 5 990 926

- PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13, 30. November 1999 (1999-11-30) -& JP 11 231219 A (RICOH OPT IND CO LTD), 27. August 1999 (1999-08-27)
- PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03, 31. März 1999 (1999-03-31) -& JP 10 325922 A (NIKON CORP), 8. Dezember 1998 (1998-12-08)

EP 1 242 843 B1

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

[0001] Die Erfindung betrifft ein Projektionsobjektiv gemäß dem Oberbegriff des Patentanspruchs 1.

[0002] Aus der WO 99/52004 (entspricht EP 1 079 253 A1) sind katadioptische Projektionsobjektive bekannt, die eine Vielzahl von asphärischen Linsenoberflächen umfassen. So weist beispielsweise das in Figur 4 dargestellte Projektionsobjektiv bei 15 Linsen 12 asphärische Linsenoberflächen auf. Da die Herstellungskosten von asphärischen Linsenoberflächen mit der in der Mikrolithographie geforderten Genauigkeit sehr hoch sind, dürften diese Objektive aufgrund der vielen erforderlichen asphärischen Linsenoberflächen für den Markt weniger interessant sein. WO 99/52004 offenbart den Oberbegriff von Anspruch 1.

[0003] Aus der EP 332 201 B1 ist ein optisches Projektionssystem insbesondere für die Photolithographie bekannt. Die aus dieser Schrift bekannten Projektionsobjektive umfassen fünf Linsengruppen, wobei die erste, zweite, dritte und fünfte Linsengruppe jeweils nur eine Linse aufweisen. Zum Teil sind die Linsen mit asphärischen Linsenoberflächen versehen, wobei auf einer in der vierten Linsengruppe bildseitig angeordnete asphärische Linsenoberfläche der fünften Linsengruppe folgt.

[0004] Aus der EP 851 304 A2 ist die benachbarte Anordnung von asphärischen Linsenoberflächen in einem Projektionsobjektiv bekannt. Diese asphärischen Linsen sind in radialer Richtung verschiebbar gelagert. Durch die relative Bewegung der Linsen wird das Projektionsobjektiv abgestimmt. Aufgrund der Möglichkeit die Asphären in radialer Richtung gegeneinander zu verschieben sind die asphärischen Linsenoberflächen insbesondere rotationsunsymmetrisch. Aufgrund der beweglichen Lagerung der asphärischen Linsen, dürfte diese Anordnung nicht für jedes Projektionsobjektiv geeignet sein, da insbesondere für kurze Wellenlängen ausgelegte Projektionsobjektive sehr empfindlich aus kleinste Positionsänderungen der einzelnen Linsen reagieren. Es ist davon auszugehen, daß die durch die spezielle Lagerung der Linsen erreichbare Lagestabilität nicht ausreichend ist, um zuverlässig eine gute Abbildungsqualität gewährleisten zu können.

[0005] Aus der DE 198 18 444 A1 ist eine Projektionsoptikvorrichtung mit einem rein refraktivem Projektionsobjektiv bekannt, das sechs Linsengruppen G1 bis G6 umfaßt. Bei diesem Projektionsobjektiv weisen die Linsengruppen G1,G3 und G5positive Brechkraft auf. Die Linsengruppen G2,und G4 weisen negative Brechkraft auf. Für die Korrektur von Abbildungsfehlern weisen einige Linsen, insbesondere in der vierten und fünften Linsengruppe, asphärische Linsenoberflächen auf.

[0006] Aus der DE 199 42 281.8 sind weitere Projektionsbelichtungsobjektive, die sechs Linsengruppen aufweisen, wobei die zweite Linsengruppe und die vierte Linsengruppe negative Brechkraft aufweisen, bekannt. Bei den aus dieser Schrift bekannten Projektionsobjektiven sind Linsen mit asphärischen Linsenoberflächen vorzugsweise in den ersten drei Linsengruppen angeordnet, wobei zwischen den asphärischen Linsenoberflächen eine Mindestzahl von sphärischen Linsenoberflächen angeordnete sind. Dieser Mindestabstand zwischen den asphärischen Linsenoberflächen erschien erforderlich, damit die eingesetzten asphärischen Linsen optimale Wirkung entfalten.

[0007] Aus der US 4,871,237 ist es bereits bekannt, in Abhängigkeit vom barometrischen Druck ein Objektiv abzustimmen und zwar über den Brechungsindex eines Füllgases in Linsenzwischenräumen. Durch eine geeignete Kombination von Zwischenräumen können zum Beispiel sphärische Aberration, Koma und andere Bildfehler korrigiert werden. [0008] Aus der US 5,559,584 ist es bekannt, bei einer Projektionsbelichtungsanlage zur Herstellung mikro strukturierter Bauteile in den Zwischenräumen zwischen einem Wafer und/oder einem Retikel und dem Projektionsobjektiv Schutzgas einzubringen.

[0009] Aus der US 6,075,653 sind Projektionszoomsysteme und Projektoren bekannt, die vier Linsengruppen umfassen. Dieses Projektionsobjektiv weist eine bildseitig angeordnete Linsengruppe G1 auf, die insgesamt negative Brechkraft aufweist und nur aus zwei Negativlinsen besteht.

[0010] Der Erfindung liegt die Aufgabe zugrunde ein Projektionsobjektiv und eine Projektionsbelichtungsanlage sowie ein Verfahren zur Herstellung von mikrostrukturierten Bauteile bereitzustellen, wobei diese im Hinblick auf die Abbildungsqualität und das Auflösungsvermögen verbessert sind. Weiterhin lag der Erfindung die Aufgabe zugrunde die Herstellungskosten zu reduzieren.

[0011] Die Aufgabe der Erfindung wird durch die in den Patentansprüchen 1 und 21 gegebenen Merkmale gelöst.

[0012] Durch die Maßnahme bei einem Projektionsobjektiv mit einer Mehrzahl an Linsen, wobei mindestens zwei benachbart zueinander angeordnete Linsenoberflächen asphärisch sind, die im folgenden mit Doppelasphäre bezeichnet werden, die Doppelasphäre in einem Abstand von mindestens dem maximalen Linsendurchmesser des Objektives entfernt von der Bildebene, insbesondere Waferebene beabstandet anzuordnen wobei der Abstand zwischen den asphärischen Linsenoberflächen der Doppelasphäre maximal dem halben Linsendurchmesser des mittleren Durchmessers der Doppelasphäre wurden die Abbildungsqualitäten eines Projektionsobjektives im Vergleich zu einem Projektionsobjektiv ohne solche Doppelasphären, verbessert werden. Insbesondere konnte bei einem refraktiven Projektionsobjektiv durch den Einsatz von mindestens einer Doppelasphäre die numerische Apertur gesteigert werden, indem der erste Bauch verkürzt wurde, so daß bei konstanter Länge des Projektionsobjektives der dritte Bauch eine Steigerung der numerischen Apertur bei von etwa 0,03 bis 0,05 erfährt.

[0013] Insbesondere bei rein refraktiven Projektionsobjektiven hat sich der Einsatz von Doppelasphären mit einer Anordnung in den ersten drei Linsengruppen als besonders vorteilhaft herausgestellt.

[0014] In Lithographieobjektiven gibt es ausgezeichnete Stellen, die auf schwer beherrschbare Aberrationen besonders gut wirken, wenn sie asphärisiert werden. Gerade dort ist es sinnvoll die Wirksamkeit an der entsprechenden Stell durch eine komplexe Asphärenfunktion besonders effektiv zu nutzen. Prädestiniert ist der Bereich der ersten Taille und das Ende des zweiten Bauches sowie Bereiche hinter der Blende. Da der technischen Realisierung von komplexen Asphären technisch Grenzen gesetzt sind, können die komplexen Asphärenfunktionen mittels Doppelashären realisiert werden. Dadurch wird eine noch weitergehende Korrektur möglich, wobei die Asphären der Doppelasphäre technisch realisierbar sind.

[0015] Weiterhin hat sich als vorteilhaft herausgestellt, als asphärische Linsenoberflächen der Doppelasphäre asphärische Linsenoberflächen vorzusehen, deren Radius der bestpassendsten sphärischen Linsenoberfläche, mit Hüllradius bezeichnet, sich nur wenig unterscheiden. Vorzugsweise weichen die Kehrwerte der Hüllradien oder Radien der Doppelasphären weniger als 30% voneinander ab. Als Bezugswert wird der Kehrwert des betragsmäßig größeren Radius herangezogen.

5 [0016] Es hat sich insbesondere als vorteilhaft herausgestellt, daß sich die Scheitelradien der asphärischen Linsenoberflächen der Doppelasphären in bezug auf den betragsmäßig größeren Scheitelradius um weniger als 30% unterscheiden

[0017] Auf dem Gebiet der Mikrolithographie wird in der Entwicklung das Bestreben verfolgt die Auflösung zu erhöhen. Die Auflösung kann zum einen durch Steigerung der numerischen Apertur, Verwendung von immer kleiner werden Wellenlängen und auch durch Korrektur von auftretenden Abbildungsfehlern gesteigert werden. Für eine Steigerung der bildseitigen numerischen Apertur ist der bildseitig angeordnete letzte Bauch des Objektives zu vergrößern. Problematisch ist jedoch, daß für das Objektiv nur ein fest vorgegebener Bauraum zur Verfügung gestellt werden kann. Um also eine größere numerische Apertur bereitstellen zu können, ist es somit erforderlich in anderen Bereichen des Objektives Bauraum einzusparen.

25 [0018] Es hat sich nun als vorteilhaft herausgestellt, den für die Steigerung der numerischen Apertur erforderlichen Bauraum durch Verkürzung des ersten Bauches bereitzustellen, wobei durch den ersten Bauches insbesondere die Eingangstelezentrie und die Verzeichnung korrigiert wird. Durch die Maßnahme Doppelasphären einzusetzen, ist es möglich, die Eingangstelezentrie sowie die Verzeichnung mit geringen Mitteln und auf kurzer Distanz korrigieren zu können. Durch die Doppelasphäre wird eine variable Einstellung des Ortes auf kurzer Distanz bereitgestellt, wobei durch die Möglichkeit den Ort variieren zu können, die Verzeichnung korrigiert werden kann. Durch die flexible Beeinflußbarkeit des Winkels kann insbesondere die Eingangstelezentrie korrigiert werden.

[0019] Insbesondere durch den Einsatz einer Doppelasphäre bei einem refraktiven Projektionsobjektiv im Bereich der ersten beiden Linsengruppen, also bis einschließlich zur ersten Linsengruppe negativer Brechkraft, werden bereits Korrekturmittel im Eingangsbereich des Objektives bereitgestellt, so daß die in dem dritten Bauch erforderlichen Korrekturmittel für die Gewährleistung einer gleichbleibenden Abbildungsqualität reduziert sind.

[0020] Weiterhin kann durch Vorsehen einer Doppelasphäre im vorderen Bereich des Objektives, insbesondere bis zur 2. Taille, die Anzahl der Linsen reduziert werden. Dies wirkt sich vorteilhaft auf die Herstellungskosten aus.

[0021] Es hat sich zur Verbesserung der Abbildungsqualität bei rein refraktiven Projektionsobjektiven als vorteilhaft herausgestellt asphärischen Linsenoberflächen im vorderen Bereich des Objektives vor der zweiten Taille vorzusehen. So kann beispielsweise bei einer numerischen Apertur von 0,83 die Abweichung von der Wellenfront einer Kugelwelle auf weniger als 6 mλ, bei einem Feld von 8x26 mm² bezogen auf 248nm reduziert werden.

[0022] Durch Druckschwankungen des athmosphärischen Druckes können die Abbildungseigenschaften des Objektives verändert werden. Um solche Druckschwankungen zu kompensieren hat es sich als vorteilhaft herausgestellt, einen Zwischenraum zwischen zwei Linsenoberflächen gezielt mit Druck zu beaufschlagen, so daß Druckänderungen insbesondere des atmosphärischen Druckes ausgeglichen werden können. Weiterhin kann die gezielte Druckbeaufschlagung zur weiteren Verminderung von Abbildungsfehlern genutzt werden.

[0023] Weiterhin hat es sich als vorteilhaft herausgestellt, mindestens eine der Abschlußplatten mit einem Druckmanipulator zu versehen, so daß durch beidseitige Druckbeaufschlagung der jeweiligen Linse bzw. der jeweiligen Platte eine Wölbung der Platte bzw. Linse erzeugt werden kann. So kann bei einer Dreipunktlagerung der Abschlußplatte und Druckbeaufschlagung des Gasraumes gezielt mittels der Durchbiegung der Abschlußplatte die Dreiwelligkeit während des Betriebes korrigiert werden. Mit einer n-Punktlagerung ist somit eine n-Welligkeit korrigierbar.

Durch koaxial angeordnete Aktuatoren, insbesondere Piezos, kann eine in Z-Richtung gerichtete Kraft zur Wölbung der Linse eingeleitet werden, wobei die von den Aktuatoren eingeleitete Kraft auf den Linsenmittelpunkt gerichtet ist.

[0024] Weitere vorteilhafte Maßnahmen sind in weiteren Unteransprüchen beschrieben.

Anhand der folgenden Ausführungsbeispiele wird die Erfindung näher erläutert.

[0025] Es zeigt:

45

Figur 1: Projektionsbelichtungsanlage;

- Figur 2: Projektionsobjektiv für die Wellenlänge 157 nm mit einer numerischen Apertur von 0,8;
- Figur 3: Projektionsobjektiv für die Wellenlänge 248 nm mit einer numerischen Apertur von 0,83;
- 5 Figur 4: Projektionsobjektiv für die Wellenlänge 248 nm mit einer numerischen Apertur von 0,9;
 - Figur 5: Projektionsobjektiv für die Wellenlänge 193 nm mit der numerischen Apertur 0,85;
 - Figur 6: Projektionsobjektiv für die Wellenlänge 193 nm mit einer numerischen Apertur von 0,9;

10

20

25

30

- Figur 7: Projektionsobjektiv für die Wellenlänge 157nm mit einer numerischen Apertur von 0,9;
- Figur 8: Projektionsobjektiv für die Wellenlänge 193 nm mit einer numerischen Apertur von 0,9; und
- Figur 9: Katadioptrisches Projektionsobjektiv mit Doppelasphäre für die Wellenlänge von 157 nm und mit einer numerischen Apertur von 0,8

[0026] Anhand von Figur 1 wird zunächst der prinzipielle Aufbau einer Projektionsbelichtungsanlage beschrieben. Die Projektionsbelichtungsanlage 1, weist eine Beleuchtungseinrichtung 3 und Projektionsobjektiv 5 auf. Das Projektionsobjektiv 5 umfaßt eine Linsenanordnung 19 mit einer Aperturblende AP, wobei durch die Linsenanordnung 19 eine optische Achse 7 definiert wird. Verschiedene Linsenanordnungen werden nachfolgend anhand der Figuren 2 bis 6 näher erläutert. Zwischen Beleuchtungseinrichtung 3 und Projektionsobjektiv 5 ist eine Maske 9 angeordnet, die mittels eines Maskenhalters 11 im Strahlengang gehalten wird. Solche in der Mikrolithographie verwendete Masken 9 weisen eine Mikrometer-Nanometer Struktur auf, die mittels des Projektionsobjektives 5 bis zu einem Faktor von 10, insbesondere von um den Faktor 4, verkleinert auf eine Bildebene 13 abgebildet wird. In der Bildebene 13 wird ein durch einen Substrathalter 17 positionierte Substrat 15, bzw. ein Wafer, gehalten.

[0027] Die noch auflösbaren minimalen Strukturen hängen von der Wellenlänge λ des für die Beleuchtung verwendeten Lichtes sowie von der bildseitigen numerischen Apertur des Projektionsobjektives 5 ab, wobei die maximal erreichbare Auflösung der Projektionsbelichtungsanlage 1 mit abnehmender Wellenlänge λ der Beleuchtungseinrichtung 3 und mit zunehmender bildseitiger numerischer Apertur des Projektionsobjektives 5 steigt.

[0028] Das in Figur 2 dargestellte Projektionsobjektiv 19 umfaßt sechs Linsengruppen G1 bis G6. Dieses Projektionsobjektiv ist für die Wellenlänge 157 nm ausgelegt. Die erste Linsengruppe G1 wird durch die Linsen L101 bis L103, welche alle Bikonvexlinsen sind, gebildet. Diese erste Linsengruppe weist positive Brechkraft auf. Die letzte Linsenoberfläche dieser Linsengruppe G1, die bildseitig angeordnete ist, ist asphärisiert. Diese Linsenoberfläche wird mit AS 1 bezeichnet. Bei der letzten Linse dieser Linsengruppe G1 handelt es sich um eine bikonvexe Linse, die somit eindeutig der ersten Linsengruppe zuzuordnen ist.

[0029] Die sich an die Linsengruppe G1 anschließende Linsengruppe G2 umfaßt die drei Linsen L104 bis L106, wobei diese Linsengruppe G2 negative Brechkraft aufweist und eine Taille darstellt. Eine objektseitig angeordnete Linsenoberfläche AS2 der Linse L104 ist asphärisch. Weiterhin ist die bildseitig angeordnete Linsenoberfläche der Linse L106 asphärisch. Durch die beiden Linsenoberflächen AS1 und AS2 wird eine Doppelasphäre gebildet.

[0030] Die Linsengruppe G3, die positive Brechkraft aufweist, wird durch die Linsen L107 bis L111 gebildet, wobei die letzte Linsenoberfläche dieser Linsengruppe der Linse L111, die bildseitig angeordnet ist, asphärisiert ist.

[0031] An diese Linsengruppe schließt sich die zweite Linsengruppe G4 negativer Brechkraft an. Diese Linsengruppe G4 wird durch die Linsen L112 bis L115 gebildet.

[0032] Die fünfte Linsengruppe G5 mit den Linsen L116 bis L125, die positive Brechkraft aufweist, umfaßt eine Aperturblende AP, die zwischen der Linse L119 und der Linse L120 angeordnet ist.

[0033] Die sechste Linsengruppe G6 wird durch die Linsen bzw. Platten L126 und L127 gebildet. Bei diesem für die Wellenlänge 157 nm mit einer spektrale Bandbreite der Beleuchtungsquelle von 1,5 pm ausgelegte Objektiv sind die Linsen L113 bis L115 und L119 aus Natriumfluorid. Durch den Einsatz von einem zweiten Material, hier Natriumflourid, können insbesondere chromatische Fehler korrigiert werden. Durch den Einsatz von NaF in der ersten Taille wird der Farbquerfehler wesentlich verringert verringert. Auch der Farblängsfehler wird etwas verringert, wobei durch den Einsatz von NaF in der Linsengruppe G5 der größte Einzelbeitrag zur Korrektur der Farblängsfehler erzielt wird.

[0034] Die sich an die Linsengruppe G4 anschließenden positiven Linsen L116 bis L118 der Linsengruppe G5 sind aus Lithiumflourid. Durch den Einsatz von Lithiumflourid an dieser Stelle im Objektiv wird insbesondere die monochromatische Korrektur erleichtert, da durch den größeren Dispersionsabstand von Lithium- und Natriumflourid als von Kalzium- und Natriumflourid nur kleine Einzelbrechkräfte zur Achromatisierung benötigt werden. Der grundsätzliche Aufbau unterscheidet sich aufgrund der speziellen Materialauswahl nicht so bedeutsam von einem chromatischen Objektiv.

[0035] Die beiden nach der Blende angeordneten positiven Linsen sind ebenfalls aus Lithiumflourid und leisten ebenfalls, wie schon anhand der vor der Blende angeordneten Lithiumlinsen erörtert, einen wichtigen Beitrag zur Korrektur des Farblängsfehlers.

[0036] Die Linse L122, deren beide Oberflächen nahezu im konstantem Abstand zueinander verlaufen, besteht aus Kalziumflourid. Diese Linse ist sehr bedeutsam für die monochromatische Korrektur und hat nur geringen Einfluß auf den chromatische Längsfehler.

[0037] Die letzten drei Linsen der fünften Linsengruppe G5 L123 bis L125 sind aus Lithiumflourid. Diese Linsen liefern zwar einen kleineren aber dennoch sehr wertvollen Beitrag zur Korrektur des Farblängsfehlers.

[0038] Die sechste Linsengruppe umfaßt die Linsen bzw. Planplatten L126 und L127, die aus Kalziumflourid bestehen.
[0039] Dieses Objektiv ist für die Beleuchtung eines Feldes von 8 x 26 mm ausgelegt. Die Baulänge betrat von 0 zu 0' 1000mm. Die numerische Apertur beträgt 0.8.Die genauen Linsendaten sind der Tabelle 1 zu entnehmen.

[0040] Die asphärischen Flächen werden in allen Ausführungsbeispielen durch die Gleichung:

15

40

$$P(h) = \frac{\delta \circ h \circ h}{1 + \sqrt{1 - (1 + K) \circ \delta \circ \delta \circ h \circ h}} + C_1 h^4 + \dots + C_n h^{2n+2} \qquad \delta = 1/R$$

beschrieben, wobei P die Pfeilhöhe als Funktion des Radius h (Höhe zur optischen Achse 7) mit den in den Tabellen angegebenen asphärischen Konstanten C_1 bis C_n ist R ist der in den Tabellen angegebene Scheitelradius.

[0041] Das in Figur 3 dargestellte Projektionsobjektiv umfaßt sechs Linsengruppen G1 bis G6 mit den Linsen L201 bis L225 und einer geteilten Abschlußplatte L226, L227. Dieses Objektiv ist für die Beleuchtungswellenlänge 248nm ausgelegt. Der für dieses Projeküonsobjektiv 19 erforderliche Bauraum beträgt von Objektebene 0 bis Bildebene 0' genau 1000 mm. Bildseitig weist dieses Objektiv 19 eine numerische Apertur von 0,83 auf. Das mittels dieses Projektionsobjektives belichtbare Feld beträgt 8 x 26 mm.

[0042] Die erste Linsengruppe G1 umfaßt die Linsen L201 bis L204,wobei es sich bei den Linsen L201 bis 203 um Bikonvexlinsen handelt.

[0043] Die erste Linse L204 der Linsengruppe G1 weist auf der bildseitigen Linsenoberfläche eine asphärische Form auf. Diese Asphäre wird mit AS bezeichnet.

[0044] Die zweite LinsengruppeG2 umfaßt die drei Linsen L205 bis L207. Diese Linsen weisen bikonkave Form auf, wobei die jeweils zur angrenzenden Linsengruppe gewandte Linsenoberfläche der Linsen L205 und L207 asphärisch sind. Die asphärischen Linsenoberfläche der Linsen L205 wird mit AS2 bezeichnet. Damit wird durch die beiden zueinander gewandten asphärischen. Linsenoberflächen AS und AS2 eine Doppelasphäre gebildet. Die letzte Linse der Linsengruppe G2 ist waferseitig asphärisiert.

[0045] Die dritte Linsengruppe umfaßt die Linsen L208 bis L212. Durch diese Linsengruppe G3 wird ein Bauch gebildet. Die Linse L211 ist auf der bildseitigen Linsenoberfläche asphärisiert.

[0046] Die vierte Linsengruppe G4 wird durch die Linsen L213 bis L215 gebildet, die alle bikonkav ausgebildet sind. Diese Linsengruppe G4 ist die zweite Linsengruppe negativer Brechkraft. Durch diese Linsengruppe wird eine Taille gebildet.

[0047] Die Linsengruppe G5 umfaßt die Linsen L216 bis L225. Zwischen den Linsen L218 und L219 ist eine Aperturblende angeordnet. Die Blendenkrümmung beträgt zwischen Randstrahl an der Blende bei einer numerischen Apertur von 0,83 und dem Schnittpunkt des Hauptstrahls mit der optischen Achse 30,9 mm. Durch diese Linsengruppe wird ein Bauch gebildet.

Die sechste Linsengruppe G6 umfaßt die als Planplatten ausgebildeten Linsen L226 und L227.

[0048] Die genauen Linsendaten dieses Projektionsobjektives 19 sind der Tabelle 2 zu entnehmen. Gegenüber Figur 2 ist die Apertur bei gleichbleibender Baulänge des Objektives von 00' von 1000mm weiter auf 0,83 bei ausgezeichneter Korrektur gesteigert worden.

[0049] Das in Figur 4 gezeigte Projektionsobjektiv umfaßt sechs Linsengruppen mit den Linsen L301 bis L327. Dieses Objektiv ist für die Beleuchtungswellenlänge 248nm ausgelegt und weist eine numerische Apertur von 0,9 auf.

[0050] Die erste Linsengruppe G1 weist die Linsen L302 bis L303 auf. Diese Linsengruppe weist positive Brechkraft auf, wobei die Brechkraft insbesondere der Linsen L302 bis L303 sehr gering ist. Die Brennweite dieser Linsen beträgt bei L302 1077,874mm und bei L303 -92397,86mm.

[0051] An diese Linsengruppe schließt sich eine Linsengruppe negativer Brechkraft G2 an, die durch die drei Linsen L305 bis L307 gebildet wird. Die erste Linsenoberfläche dieser Linsengruppe G2, die bildseitig angeordnete ist, ist asphärisiert und wird mit AS1 bezeichnet. Die der Linsenoberfläche AS1 zugewandte Linsenoberfläche der Linse L305 ist asphärisiert, so daß durch die Linsenoberflächen AS1 und AS2 eine Doppelasphäre gebildet wird. Zwischen diesen asphärischen Linsenoberflächen AS1 und AS2 ist im Gegensatz zum vorangegangenen Ausführungsbeispiel ein deutlich

erkennbarer Abstand vorgesehen. Bei dieser Doppelasphäre wird etwas die äquidistante Anordnung der Flächen AS1 und AS2 verlassen und die Doppelasphäre öffnet sich etwas nach außen.

[0052] Die darauffolgende Linsengruppe G3, die positive Brechkraft aufweist, umfaßt die Linsen L308 bis L311. Diese Linsengruppe G3 beinhaltet eine asphärische Linsenoberfläche, wobei diese asphärische Linsenoberfläche bildseitig auf der Linse L311 angeordnet ist.

[0053] Die zweite Linsengruppe negativer Brechkraft G4 umfaßt die Linsen L312 bis L315, wobei die bildseitig angeordnete Linsenoberfläche der Linse L314 asphärisiert ist.

[0054] Die sich anschließende Linsengruppe G5, die positive Brechkraft aufweist, umfaßt die Linsen L316 bis L325. Zwischen den Linsen L319 und L320 ist die Blende AP angeordnet. Die beiden zueinander gewandten Linsenoberflächen der Linsen L321 und L322 sind asphärisch und werden mit AS3 und AS4 bezeichnet. Durch diese Asphären AS3 und AS4 wird eine Doppelasphäre gebildet, wobei durch die Flächen AS1 und AS2 ein Luftraum eingeschlossen wird. Durch diese Doppelasphäre ist insbesondere die sphärische Abberation und die Sinusbedingung bei hohen Aperturen besser entkoppelt und gut zu korrigieren.

[0055] Die sechste Linsengruppe umfaßt die als dicke Planplatten ausgebildeten Linsen L326 und L327. Der durch diese Planplatten gebildete Zwischenraum ist mit Über- und Unterdruck und/oder mit einem Gas zur Kompensation von Schwankungen des atmosphärischen Druckes beaufschlagbar. Für weitergehende Korrekturmöglichkeiten kann es vorgesehen sein, daß mindestens eine der Planplatten mit oder ohne Brechkraft, also auch als Linse deutlich dünner, unter Druckvariation und Punktlagerung n-Welligkeiten kompensiert. Es könnten auch für eine gezielte Deformation der Linse am Außenumfang angreifende Piezoaktoren vorgesehen sein.

[0056] Die Baulänge dieses Objektives beträgt von Objektebene 0 zu Bildebene 0' 1139,8mm. Die numerische Apertur beträgt bildseitig 0,9 bei einem belichtbaren Feld von 27,2 mm in der Diagonalen. Die genauen Linsendaten sind der Tabelle 3 zu entnehmen.

[0057] Das in Figur 5 dargestellt Projektionsobjektiv 19 umfaßt sechs Linsengruppen G1 bis G6. Dieses Projektionsobjektiv ist für die Wellenlänge 193nm ausgelegt. Die erste Linsengruppe G1 umfaßt die Linsen L401 bis L404. Bereits die erste, objektseitig angeordnete Linsenoberfläche der Linse L401 ist asphärisiert. Diese Asphäre wirkt sich insbesondere positiv auf Schalenverläufe und Verzeichnung bei guter Eingangstelezentrie aus, weil diese Asphäre an dem Ort angeordnet ist, an dem noch die beste Büscheltrennung bei dem hochaperturigen Lithographieobjektiv existiert.

[0058] Die objektseitig angeordnete Linsenoberfläche der Linse L404 ist asphärisch und wird mit AS1 bezeichnet. Durch diese Linsenoberfläche wird zusammen mit der bildseitig angeordneten Linsenoberfläche der Linse L405, die ebenfalls asphärisch ist und die mit AS2 bezeichnet ist, eine Doppelasphäre gebildet. Diese Doppelasphäre wirkt sich insbesondere positiv auf die Schalenverläufe bei gleichzeitiger guter Korrektur der durch die hohe Apertur bedingten Bildfehler aus. Die Flächen AS1 und AS2 der Doppelasphäre weisen mit zunehmendem radialem Abstand von der optischen Achse einen zunehmenden Abstand in Richtung der optischen Achse auf. Diese sich nach außen öffnende Doppelasphäre stellt ein komplexes Korrekturmittel bei mittlerer Büscheltrennung dar.

[0059] Die Linse L404 geh\u00f6rt bereits der zweiten Linsengruppe, die die Linsen L405 bis L407 umfa\u00dft, an. Diese zweite Linsengruppe weist negative Brechkraft auf.

[0060] Die ersten Linsen L402 bis L405 weisen eine besonders geringe Brechkraft $f_{L402} = 1397,664$ mm, $f_{L403} = 509,911$ mm, $f_{L404} = 1371,145$ mm und $f_{L405} = -342,044$ mm auf. Eine weitere asphärische Linsenoberfläche ist bildseitig auf der Linse L407 vorgesehen.

[0061] Die darauffolgende Linsengruppe G3, die positive Brechkraft aufweist, umfaßt die Linsen L408 bis L413. Die Linsen L409 weist objektseitig eine asphärische Linsenoberfläche auf und die Linsen L413 ist bildseitig mit einer asphärischen Linsenoberfläche versehen. Die Asphäre L413 hat einen positiven Einfluß auf die Koma höherer Ordnung und auf die 45° Strukturen. Der zwischen den Linsen L411 und 412 vorgesehen Luftraum ist nahezu äquidistant.

[0062] Die Linsengruppe G4, die negative Brechkraft aufweist, wird durch die Linsen L414 bis L416 gebildet, wobei die Linse L415 bildseitig eine asphärische Linsenoberfläche aufweist. Diese asphärische Linsenoberfläche wirkt in einer guten Mischung auf apertur- und feldabhängige Bildfehler, insbesondere bei Objektiven mit einer hohen Apertur.

[0063] Die darauffolgende Linsengruppe G5 wird durch die Linsen L417 bis L427 gebildet. Zwischen den Linsen L420 bis L421 ist eine Blende AP angeordnet. Die auf die Blende AP folgende Linsenoberfläche der Linse L422 ist asphärisiert. Mit diese Asphäre wird es möglich die Korrektur der sphärischen Aberration, ohne andere Bildfehler zu beeinflussen, durchgeiuhrt. Dazu ist es aber notwendig bei anwesendheit von deutlicher Blendenkrümmung, daß die asphärische Fläche in den Bereich einer Schiebeblende hineinragt.

[0064] Weiterhin sind die zueinander gewandten Linsenoberflächen der Linsen L423 und L424 die mit AS3 und AS4 bezeichnet werden, asphärisiert. Durch diese nachfolgende Doppelasphäre ist insbesondere eine gute aplanatische Korrektur für höchste numerische Apertur möglich. Es ist also die gleichzeitige Korrektur der sphärischen Aberration und der Erfüllung der Sinusbedingung möglich.

[0065] Die Linsengruppe G6 wird durch die Linsen L428 bis L429, die als Planplatten ausgebildet sind, gebildet. Es kann wiederum vorgesehen sein, daß der Zwischenraum zwischen den planparallelen Platten 428 und 429 mit einem Fluid beaufschlagbar ist.

[0066] Als Linsenmaterial ist Quarzglas vorgesehen, wobei es zur Verminderung der chromatischen Aberration vorgesehen sein kann, daß die Linsen L408 und L409 sowie L413 aus Kalziumflourid bestehen. Zur Verminderung des Compaction-Effektes aufgrund der hohen Strahlungsbelastung kann es vorgesehen sein, für die kleinere oder für beide planparallelen Platten L428 und L429 als Material Kalziumflourid vorzusehen. Auffällig ist weiterhin bei diesem Projektionsobjektiv, däß der maximale Durchmesser der Linsengruppe G3 einen größeren maximalen Durchmesser als die Linsengruppe G5 mit 398mm aufweist. Dieses Objektiv ist sehr gut korrigiert und die Abweichung von der Wellenfront einer idealen Kugelwelle ist > = 1,2 m\(\lambda\) bezogen auf 193nm. Der Abstand zwischen Objektebene 0 und Bildebene 0' beträgt 1188,1 mm und das belichtbare Feld beträgt 8 x 26 mm. Die genauen Linsendaten sind der Tabelle 4 zu entnehmen.

[0067] Das in Figur 6 dargestellte Projektionsobjektiv umfaßt die Linsengruppen G1 bis G6 mit den Linsen L501 bis L530, wobei für L529 und 530 Planplatten vorgesehen sind. Dieses Projektionsobjektiv ist für die Wellenlänge 193nm ausgelegt und weist eine numerische Apertur von 0,9 auf. Der Abstand zwischen Objektebene 0 und Bildebene 0' beträgt 1174,6 mm. Das belichtbare Feld umfaßt eine Größe von 8 x 26 mm. Makroskopisch betrachtet unterscheidet sich dieses Projektionsobjektiv von dem anhand von Figur 5 beschriebenen Projektionsobjektiv nicht. Wiederum weisen insbesondere die Linsen L502 und L503 geringe Brechkraft auf. Die Linse L510 ist hier, wie auch in dem vorangegangenen anhand von Figur 5 beschriebenen Projektionsobjektivs, insbesondere für die Quadratenkorrektur vorgesehen.

[0068] Abgesehen von den planparallelen Platten L529 und L530 bestehen alle Linsen L501 bis L528 aus Quarzglas. Auch dieses Projektionsobjektiv ist sehr gut korrigiert und die Abweichung von der idealen Wellenfront einer Kugelwelle ist < als 3,0 mλ, bezogen auf 193nm. Die Linsen L510, L515, L522 weisen eine geringe Brechkraft auf. Die genauen Linsendaten sind der Tabelle 5 zu entnehmen. Die Wirkung der asphärischen Flächen entsprechen prinzipiell den anhand von Fig.5 beschriebenen Wirkungen, wobei die Wirkungen aufgrund der höheren numerischen Apertur von 0,9 noch stärker sind.

20

[0069] Das in Figur 7 für die Wellenlänge 157nm dargestellte Projektionsobjektiv umfaßt sechs Linsengruppen mit den Linsen L601 bis L630 mit den planparallelen Platten L629 und L630. Die Baulänge dieses Projektionsobjektives beträgt von Objektebene 0 bis zur Bildebene 0' 997,8 mm, wobei ein Feld von 7 x 22 mm belichtbar ist. Die numerische Apertur dieses Objektives beträgt 0,9. Als Linsenmaterial ist Kalziumflourid vorgesehen. Eine weitere Korrektur von Farbfehlern ist durch den Einsatz von Bariumflourid als Linsenmaterial für die Linsen L614 bis L617 erreichbar. Die Abweichung von der Wellenfront einer idealen Kugelwelle ist < 1,8 mλ bezogen auf 157nm. Da makroskopisch betrachtet der Aufbau des in Figur 7 dargestellten Projektionsobjektives sich von den anhand von Figur 5 und Figur 6 beschreibung zu Figur 5 verwiesen. Die exakten Linsendaten sind der Tabelle 6 zu entnehmen.

[0070] Das in Figur 8 dargestellte Projektionsobjektiv umfaßt 6 Linsengruppe G1-G6. Die erste Linsengruppe umfaßt die Linsen L701-L704, wobei die Linse L701 objektseitig und die Linse L704 bildseitig eine asphärische Linsenoberfläche aufweisen. Diese erste Linsengruppe weist nur Linsen positiver Brechkraft auf, die annähernd identischen Durchmessers sind.

[0071] Die darauf folgende zweite Linsengruppe G2, die negative Brechkraft aufweist, umfaßt die Linsen L705 - L708. Die Linse L705 weist auf der der Linse L704 zugewandten Seite eine asphärische Linsenoberfläche auf, mit AS2 bezeichnet. Durch die beiden asphärischen Linsenoberflächen AS1 und AS2 wird eine Doppelasphäre 21 gebildet. Diese Doppelasphäre ist zum Wafer durchgebogen und öffnet sich schwach in radialer Richtung. Weiterhin weist die Linse L708 bildseitig eine asphärische Linsenoberfläche auf.

[0072] Die dritte Linsengruppe G3 mit den Linsen L709 - L714 weist positive Brechkraft auf. Diese Linsengruppe umfaßt zwei asphärische Linsen L710 und L714. Der zwischen den Linsen L712 und L713 ausgebildete Luftspalt weist nahezu konstante Dicke auf.

[0073] Die vierte Linsengruppe G4 umfaßt nur zwei Negativlinsen L715 und L716, durch die eine Taille gebildet wird. Die Linse L715 ist bildseitig mit einer asphärischen Linsenoberfläche versehen.

[0074] Die fünfte Linsengruppe mit den Linsen L717 - L727 weist positive Brechkraft auf. Zwischen der Linse L720 und L721 ist die Blende AP angeordnet. In dieser Linsengruppe ist eine weitere Doppelasphäre 21 vorgesehen, die durch die beiden asphärischen Linsenoberflächen AS3 und AS4 der Linsen L723 und L724 gebildet wird. Weitere asphärische Linsenoberflächen sind auf der Linse L721 objektseitig und auf der Linse L727 bildseitig angeordnet.

[0075] An diese Linsengruppe schließt sich die letzte Linsengruppe G6, die durch die beiden planparallelen Platten L728 und L729 gebildet wird, an. Durch die zueinander gewandten Oberflächen der Planplatten L728 und L729 wird ein Zwischenraum 25, der mit Druck beaufschlagbar ist, gebildet.

[0076] Dieses Projektionsobjektiv ist für die Wellenlänge 193 nm ausgelegt und weist eine numerische Apertur von 0,9 auf. Der Abstand zwischen Objektebene 0 und Bildebene 0 - beträgt 1209,6 mm. Mit diesem Projektionsobjektiv ist ein Feld von 10,5 x 26 mm belichtbar. Die maximale Abweichung von der idealen Wellenfront einer Kugelwelle beträgt 3,0 mλ bezogen auf 193nm. Diese Abweichung wurde mittels dem Programmcode CODE V ermittelt. Die genauen Linsendaten sind der Tabelle 7 zu entnehmen.

[0077] In Figur 9 ist ein katadioptrisches. Projektionsobjektiv das für die Wellenlänge 157 nm ausgelegt ist, dargestellt.

Mit diesem Projektionsobjektiv ist ein Feld von 22 x 7 mm belichtbar. Die numerische Apertur beträgt 0,8. Bei diesem Projektionsobjektiv bestehen alle Linsen als Kalziumfluorid. Die erste Linse L801 ist bildseitig mit einer asphärischen Linsenoberfläche versehen. Diese Asphäre liefert insbesondere einen wertvollen Beitrag zur Korrektur der Verzeichnung. [0078] Über den Spiegel SP1 wird die Strahlung umgelenkt und trifft auf die Linse negativer Brechkraft L802. Die darauffolgende Linse L803 ist auf der im Strahlengang bildseitig angeordneten Linsenseite mit einer asphärischen Linsenoberfläche versehen. Diese Asphäre liefert einen besonders wertvollen Beitrag zur Korrektur von der sphärischen Aberration.

[0079] Die von der Linse L803 ausbreitende Strahlung wird an dem Spiegel SP2 zurückreflektiert und passiert die Linsen L803 und L802 in umgekehrter Reihenfolge, bevor sie durch Reflektion am Spiegel SP3 zur Linse L804, die auf einer mit der Linse L801 gemeinsamen optischen Achse angeordnet ist, zugeführt wird. Zwischen dem Spiegel SP3 und L804 entsteht ein Zwischenbild Z1. Die darauffolgenden Linsen L805 und L806 weisen an den zueinander gewandten Oberflächen asphärische Linsenoberflächen AS1 und AS2 auf. Durch diese Asphären wird eine Doppelasphäre gebildet. Weiterhin umfaßt das Objektiv die Linsen L807 - L818 wobei die Linsen L812, L814, L816 und L818 bildseitig mit einer asphärischen Linsenoberfläche versehen sind und die Linse L817 objektseitig mit einer asphärischen Linsenoberfläche versehen ist. Durch die asphärischen Linsenoberflächen der Linsen L816 und L817 wird eine Doppelasphäre gebildet.

Bezugszeichenliste

[0080]

20

10

15

- 1. Projektionsbelichtungsanlage
- 3. Belichtungseinrichtung
- 5. Projektionsobjektiv
- 7. Optische Achse 9 Maske
- 25 11. Maskenhalter
 - 13. Bildebene
 - 15. Substrat, Wafer
 - 17. Substrathalter AP = Aperturblende 19 Linsenanordung L = Linsen
 - 19. Maximaler Radius
- 30 21. Doppelasphären
 - 23. Abstand zwischen asphärischen Linsenoberflächen der Doppelasphären
 - 25 Zwischenraum

<i>3</i> 5	TABELLE 1 M1197a					
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157	1/2 FREIER
					nm	DURCHMESSER
	0	unendlich	32.000000000	N2	1.00000320	54.410
40		unendlich	3.386300000	N2	1.00000320	61.189
40	L101	331.163350000	17.963900000	CaF2	1.55B40983	63.195
		-319.616060000	1.476400000	N2	1.00000320	63.531
	L102	766.337390000	17.162600000	CaF2	1.55840983	63.346
		-447.357070000	0.750000000	N2	1.00000320	62.932
45	L103	308.080750000	26.167800000	CaF2	1.55840983	61.274
		-256.921560000AS	0.781900000	N2	1.00000320	59.279
	104	-199.459070000AS	7.000000000	CaF2	1.55840983	59.017
		115.459900000	26.055700000	N2	1.00000320	53.978
	L105	-155.555940000	7.000000000	CaF2	1.55840983	54.017
50		181.538670000	32.685400000	N2	1.00000320	57.637
	L106	-105.047550000	7.623100000	CaF2	1.55840983	59.819
		-6182.626690000AS	16.767300000	N2	1.00000320	74.788
	L107	-441.263450000	27.098000000	CaF2	1.55840983	83.940
55		-151.990780000	2.318200000	N2	1.00000320	88.568
	L108	-613.725250000	45.372400000	CaF2	1.55840983	103.501
		-150.623730000	2.560000000	N2	1.00000320	107.663

EP 1 242 843 B1

	taesetzt

		5.5.5.		ile lortgeser		
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157	1/2 FREIER
	L109	1648.391330000	42.538400000	CaF2	nm 1.55840983	DURCHMESSER 119.260
5	LIUS	-255.166800000	2.852600000	N2	1.00000320	120.183
	L110	154.432580000		CaF2		
	LITO	1162.400830000	47.915200000		1.55840983	110.475
	1444		0.929300000	N2	1.00000320	107.883
	L111	261.100680000	20.383600000	CaF2	1.55840983	98.431
10	1440	614.726380000AS	0.867900000	N2	1.00000320	93.917
	L112	359.575500000	7.168800000	CaF2	1.55840983	89.668
		126.930570000	40.754900000	N2	1.00000320	76.782
	L113	-253.190760000	7.000000000	NAF	1.46483148	74.969
15		132.038930000	28.180300000	N2	1.00000320	67.606
	L114	-338.990070000	7.611900000	NAF	1.46483148	67.535
		222.374240000	39.202700000	N2	1.00000320	68.722
	L115	-109.896940000	7.095700000	NAF	1.46483148	69.544
		705.107390000	19.428900000	N2	1.00000320	84.312
20	L116	-706.158480000	29.677100000	LIF	1.47810153	90.890
		-180.715990000	5.740400000	N2	1.00000320	95.248
	L117	1725.475600000	35.904100000	LIF	1.47810153	112.495
		-263.017160000	0.750000000	N2	1.00000320	114.191
	L118	619.827930000	64.044600000	LIF	1.47810153	121.296
25		-197.026470000	0.750100000	N2	1.00000320	121.844
	L119	-195.861770000	7.00000000	NAF	1.46483148	121.626
		-469.620100000	0.750000000	N2	1.00000320	123.300
		unendlich	0.750600000	N2	1.00000320	122.405
30	L120	640.893310000	25.458500000	LIF	1.47810153	123.549
		-1089.937900000	0.980400000	N2	1.00000320	123.525
	L121	322.108140000	34.102200000	LIF	1.47810153	121.602
		-1728.500990000	31.928200000	N2	1.00000320	120.573
	L122	-234.494140000	46.273400000	CaF2	1.55840983	119.587
35		-251.236960000	0.974700000	N2	1.00000320	121.785
	L123	171.211410000	29.502800000	LIF	1.47810153	103.953
		452.301450000	0.887100000	N2	1.00000320	101.542
	L124	126.180740000	28.831400000	LIF	1.47810153	88.565
40		223.894010000	0.796800000	N2	1.00000320	83.098
40	L125	132.333150000	25.819300000	LIF	1.47810153	76.140
		477.745080000	6.457300000	N2	1.00000320	70.847
	L126	unendlich	59.682500000	CaF2	1.55840983	69.261
		Unendlich	0.838600000	N2	1.00000320	33.343
45	L127	unendlich	4.000000000	CaF2	1.55840983	32.211
	LIZI	Unendlich	12.000810000	N2	1.00000320	29.804
	L128			INC	1.00000320	
	L120	unendlich	0.000000000			13.603

50 ASPHAERISCHE KONSTANTEN

[0081]

55

Asphäre der Linse L103

K -0.8141

C1 -1.93290250e-007

C2 4.16659320e-011

Tabelle fortgesetzt

	G	
5	Asphäre der Linse L C3 -4.778852506 C4 3.28605790e C5 -1.035379106 C6 2.39743010e C7 0.00000000e C8 0.00000000e C9 0.00000000e	e-015 -019 e-022 -026 +000
15	Asphäre der Linse L1 K -1.0887 C1 1.57414760e C2 1.63099500e	-008
	C3 -4.85048550e	-015
	C4 9.48501060e	019
20	C5 -2.37918310e	-022
	C6 3.60692700e-	026
	C7 0.00000000e-	+000
	C8 0.00000000e-	+000
25	C9 0.00000000e-	+000
30	Asphäre der Linse L1 K 4235.0115 C1 1.16160120e- C2 -1.37360280e C3 -1.75181710e C4 1.56917750e-	-007 -011 -016 -019
35	C5 -1.57135270e	
	C6 5.89614270e-	
	C7 0.00000000e-	
	C8 0.00000000e-	
40	C9 0.00000000e-	+000
	A 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Asphäre der Linse L1	11
	K 0.0000	ooó.
45	C1 1.35782560e- C2 -2.31506660e	
	C3 2.14831120e- C4 -7.84495330e	
	C5 -4.23732680e	
50	C6 1.17366430e-	
	C7 0.00000000e	
	C8 0.00000000e4	
	C9 0.0000000e-	
55	33 0.00000000	300

[0082] Brechzahl und Wellenlänge sind gegenüber Luft angegeben.

EP 1 242 843 B1

TA	REI	IF	2 M	115	50a

_	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 248.38 nm	1/2 FREIER DURCHMESSER
5	0	unendlich	32.000000000	Luft	0.99998200	54.410
		unendlich	0.750000000	Luft	0.99998200	61.498
	L201	359.203085922	16.544139898	SI02	1.50837298	62.894
		-367.814285018	0.750000000	Luft	0.99998200	63.342
10	L202	376.906582229	16.424149202	SIO2	1.50837298	63.744
		-370.266896435	0.750000000	Luft	0.99998200	63.552
	L203	623.868133301	12.000921336	SIO2	1.50837298	62.201
		-558.943539628	4.488271401	Luft	0.99998200	61.489
	L204	-593.881163796	10.597937240-	SIO2	1.50837298	60.233
15		-258.275165583AS	1.300130829	Luft	0.99998200	59.503
	L205	-195.528496730AS	7.000000000	SIO2	1.50837298	59.067
		114.970814112	27.465616009	Luft	0.99998200	54.855
	L206	-150.593037892	7.000000000	SIO2	1.50837298	55.023
20		203.788990073	29.227930343	Luft	0.99998200	59.359
	L207	-116.847756998	7.000000015	SIO2	1.50837298	60.888
		-	26.431412586	Luft	0.99998200	74.043
		1029423.850607139AS				
	L208	-433.333706324	29.900058462	SIO2	1.50837298	89.733
25		-145.855178517	0.750000000	Luft	0.99998200	93.351
	L209	-740.439232493AS	44.983538148	SIO2	1.50837298	108.655
		-155.998681446	0.750000000	Luft	0.99998200	111.280
	L210	730.369450038	38.596890643	SIO2	1.50837298	120.834
30		-339.830855552	0.750000000	Luft	0.99998200	121.150
	L211	159.417768241	52.577878183	SIO2	1.50837298	112.765
		457732.591606731AS	0.780542469	Luft	0.99998200	110.299
	L212	190.812012094	23.738591831	SIO2	1.50837298	94.787
		115.677643950	40.245663292	Luft	0.99998200	77.717
35	L213	-412.140976525	7.000000000	SIO2	1.50837298	76.256
	•	151.701098214	27.102188582	Luft	0.99998200	69.619
	L214	-319.487543080	7.000000000		SIO2 1.50837298	69.443
		236.707933198	42.112032397	Luft	0.99998200	70.193
40	L215	-105.934259216	8.769693914	SIO2	1.50837298	71.068
,,,		680.231460994	17.681829203	Luft	0.99998200	88.650
	L216	-517.056865132	36.235608441	SIO2	1.50837298	91.923
		-185.271735391	0.764865888	Luft	0.99998200	100.651
	L217	2262.402798068	44.431825566	SIO2	1.50837298	119.658
45		-267.329724617	8.198939895	Luft	0.99998200	123.247
	L218	1103.186796189	40.827914599	SIO2	1.50837298	133.839
		-364.593909045	8.280602730	Luft	0.99998200	134.570
		unendlich	-3.250000000	Luft	0.99998200	133.180
50	L219	620.770366318	25.036239346	SIO2	1.50837298	134.241
50		-1858.943929157	0.750000000	Luft	0.99998200	134.164
	L220	329.635686681	40.854820783	SIO2	1.50837298	132.227
		-1181.581276955	31.972595866	Luft	0.99998200	131.156
	L221	-249.799136729	10.000000000	SIO2	1.50837298	130.229
55		6484.262988004	5.619260320	Luft	0.99998200	130.672
	L222	-2574.687141000	38.775298966	SIO2	1.50837298	130.696
		-254.665255526	0.750000000	Luft	0.99998200	130:891

EP 1 242 843 B1

	T-1-9-5-6-0					
	LINICEN	DADIEN		beile fortgesetzt	DDECHZALII DEL	1/0 EDELED
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 248.38 nm	1/2 FREIER DURCHMESSER
	L223	203.341746230	25.4098270	006 SIO2	1.50837298	110.728
5		463.496973555 '	0.75000000		0.99998200	108.517
	L224	118.263098967	37.2478586		1.50837298	92.529
		191.067427473	0.75363738		0.99998200	84.037
	L225	137.671384625	24.8595898		1.50837298	78.934
10		507.533271700	6.69335905		0.99998200	74.624
	L226	unendlich	55.7683696		1.50837298	72.833
		unendlich	0.80000000		0.99998200	35.729
	L227	unendlich	4.0000000		1.50837298	34.512
	CLL,	unendlich	11.9999700		0.99998200	31.851
15	L228	unendlich	0.00000000		1.00000000	13.602
	LZZO	unendiich	0.0000000	50	1.0000000	13.002
	ASPHAERISO	CHE KONSTANTEN				
20	[0083]					
			Asphäre	e der Linse L204		
			•	-0.7780		
				-1.91000417e-007		
25				4.02870297e-011		
	C3 -5.55434626e-015					
				1.68245178e-019		
				2.20604311e-023		
				8.09599744e-027		
30				0.00000000e+000		
				0.00000000e+000		
				0.00000000e+000		
<i>3</i> 5		-				
		•	Asphäre	e der Linse L205		
			K	-0.4166		
			C1	5.25344324e-008		
40				1.26756433e-011	•	
			C3	-5.25489404e-015		
			C4	7.04023970e-019		
	•		C5	-1.04520766e-022		
			C6	2.06454806e-026		
45			C7	0.00000000e+000		
				0.00000000e+000		
			C9	0.00000000e+000		
50				d1: 1 007		
				der Linse L207		
				-2116959451.7820		
				1.25171476e-007		
				-1.53794245e-011		
55				-3.12532578e-016		
			C4 2	2.00967035e-019		

C5 -2.05026124e-023

Tabelle fortgesetzt

Asphäre der Linse L207

C6 7.81326379e-028

Asphäre der Linse L211

K 0.0000

C1 2.78321477e-009

C2 5.89866335e-014

C3 1.19811527e-017

C4 -7.81165149e-022

C5 1.66111023e-026

C6 -1.60965484e-031

[0084] Brechzahl und Wellenlänge sind in Luft bestimmt worden.

5

10

15

. TABELLE 3 M1222a

20	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 248.380nm	1/2 FREIER DURCHMESSER
	0	unendlich .	32.000000000	L710		54.410
		unendlich	0.750000000	L710		62.206
25	L301'	12444.588054076	17.524945114	SIO2	1.50837298	62.427
23		-167.739069307	0.765384867	L710	0.99998200	63.213
	L302	1202.845295516	8.943027554	SIO2	1.50837298	63.724
		-1004.036633539	0.757676170	L710	0.99998200	63.750
	L303	235.865591780	9.298971429	SIO2	1.50837298	63.464
30		231.568686620	24.888929767	L710	0.99998200	62.457
	L304	-148.910928631	11.307968350	S102	1.50837298	62.393
		-106.056725042AS	11.531057240	L710	0.99998200	63.087
	L305	-135.467082619AS	7.000000000	SIO2	1.50837298	60.496
35		236.063635384	11.820516442	L710	0.99998200	61.104
33	L306	-1613.154189634	7.000000000	SIO2	1.50837298	61.565
		222.732790977	38.103480975	1,710	0.99998200	63.842
	L307	-93.477889742	7.004909948	SIO2	1.50837298	64.855
		10625258.126273967AS	25.183324680	L710	0.99998200	84.949
40	L308	-313.395232213	37.921288357	SIO2	1.50837298	94.853
		-140.728421777	2.422311655	L710	0.99998200	102.129
	L309	-882.714069478AS	62.983288381	SIO2	1.50837298	129.319
		-162.454752849	0.750000000	L710	0.99998200	131.820
45	L310	372.954030958	61.566328910	SIO2	1.50837298	148.956
45		-446.221051696	0.750000000	L710	0.99998200	148.766
	L311	159.626550846	68.423222152	SIO2	1.50837298	126.219
		6881.817080351AS	0.754846049	L710	0.99998200	121.302
	L312	1035.238560782	11.490813397	SIO2	1.50837298	116.908
50		181.491627420	22.008897360	L710	0.99998200	97.838
	L313	508.638145894	7.024491847	SIO2	1.50837298	96.444
		144.727315074	42.480962349	L710	0.99998200	85.818-
	L314	-315.769132147	7.000000000	SIO2	1.50837298	85.132
		168.042488686AS	60.840114041	L710	0.99998200	82.384
55	L315	-110.641058959	7.0000000.00	SIO2	1.50837298	82.821
		460.993264759	26.383956624	L710	0.99998200	108.073
	L316	-573.887503383	33.664255268	SIO2	1.50837298	111.503

	Tabelle fortgesetzt					
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI	1/2 FREIER
					248.380nm	DURCHMESSER
5		-189.203245467	0.750000000	L710	0.99998200	115.508
3	L317	-4374.531790288	33.200388364	SIO2	1.50837298	144.129
		-365.840916872	0.750000000	L710	0.99998200	146.400
	L318	53-67.437754049	32.001020330	SIO2	1.50837298	162.024
		-556.194479444	0.857496674	L710	0.99998200	163.414
10	L319	1425.923295786	68.540751990	SIO2	1.50837298	172.847
		-318.608860176	8.280602730	L710	0.99998200	173.674
		unendlich	-3.250000000	L710	0.99998200	165.236
	L320	524.088279104	18.000000000	SIO2	1.50837298	164.278
15		896.107746530	0.750000000	L710	0.99998200	163.371
15	L321	447.468508944	50.493798307	SI02	1.50837298	161.574
		-849.886554129	37.700767601	L710	0.99998200	160.560
	L322	-277.232722440 .	15.000000000	SIO2	1.50837298	159.396
		-359.067701243AS	13.800352685	L710	0.99998200	159.582
20	L323	-283.705002828AS	20.143173981	SIO2	1.50837298	158.903
		-264.293409160	0.750000000	L710	0.99998200	159.923
	L324	182.924856302	28.086938401	SIO2	1.50837298	124.917
		293.542915952	0.750000000	L710	0.99998200	122.192
25	L325	138.051507251	29.667601165	SIO2	1.50837298	107.973
25		206.495592035	4.518697859	L710	0.99998200	103.815
	L326	137.608373914	37.703252491	SI02	1.50837298	93.169
		2008.206929102AS	6.230615100	L710	0.99998200	88.838
	L327	79833.713358573	27.734587521	SIO2	1.50837298	83.516
30		unendlich	5.000000000	L710	0.99998200	62.961
	L328	unendlich	25.000000000	SIO2	1.50837298	52.694
		unendlich	10.000000000	L710	0.99998200	34.137
	L329	unendlich	0.000000000			13.605
	L710 = Luft	bei 710 Torr = 950 mbar				

ASPHAERISCHE KONSTANTEN

[0085]

35

40	Asphi	äre der Linse L304
	K	-1.5058
	C1	-1.86740544e-007
	C2	3.71500406e-011
45	СЗ	-8.38153156e-015
	C4	1.06034402e-018
	C5	-7.88993246e-023
	C6	2.81358334e-027
	C7	0.00000000e+000
50	C8	0.00000000e+000
	C9	0.00000000e+000
55	•	äre der Linse L305
	K	-1.3497
	C1	9.59200710e-008

	Tabelle fortgesetzt			
	Asphäre der Linse L305			
	C2 3.31187872e-011			
5	C3 -1.02270060e-014			
	C4 1.45048880e-018			
	C5 -1.18276835e-022			
	C6 5.49446108e-027			
	C7 0.0000000e+000			
10	C8 0.0000000e+000			
	C9 0.00000000e+000			
	Asphäre der Linse L307			
15	K -2342767185776735500000000000000000			
	C1 1.13856265e-007			
	C2 -9.18910043e-012			
	C3 -2.09482944e-016			
20	C4 8.75414269e-020			
	C5 -6.71659158e-024			
	C6 1.94896163e-028			
	C7 0.00000000e+000			
25	C8 0.00000000e+000			
	C9 0.00000000e+000			
	Asphäre der Linse L311			
30	K 0.0000			
	C1 1.36987424e-008			
	C2 -6.69820602e-013			
	C3 2.24912373e-017			
35	C4 -5.16548278e-022			
	C5 4.05832389e-027			
	C6 3.25008659e-032			
	C7 0.00000000e+000			
40	C8 0.0000000e+000 C9 0.0000000e+000			
*	C9 0.00000000e+000			
	Asphäre der Linse L314			
45	K 0.0000			
	C1 -3.81602557e-009			
	C2 -1.32998252e-012			
	C3 0.0000000e+000			
	C4 -3.24422613e-021			
50	C5 3.55600124e-025			
	C6 -2.11130790e-029			
·	C7 0.0000000e+000			
	00 00000000 000			

0.00000000e+000

0.00000000e+000

C8

C9

55

	Asph	äre der Linse L322
	K	0.0000
	C1	2.20018047e-011
5	C2	-6.06720907e-016
	C3	-1.85544385e-019
	C4	1.99332533e-023
	C5	-1.25615823e-028
10	C6	5.72017494e-033
	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000
15		
	Asph	äre der Linse L323
	K	0.0000
	C1	2.59747415e-011
20	C2	1.15845870e-015
	C3	2.93792021e-019
	C4	-5.20753147e-024
	C5	5.15087863e-028
	C6	-3.68361393e-033
25	C7	0.00000000e+000
	C8	0.0000000e+000
	C9	0.00000000e+000
30		
	Aspha	äre der Linse L326
	К	0.0000
	C1	2.53574810e-008
	C2	1.14136997e-012
35	C3	-2.09898773e-016
	C4	1.80771983e-020
	C5	-8.70458993e-025
	C6	1.83743606e-029
40	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

TAE	EII	FA	111	450a

	IADELLE 4 IVI 1450a							
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI	1/2 FREIER		
					193.304nm	DURCHMESSER		
	0	unendlich	32.000000000	L710	0.99998200	54.410		
50		unendlich	0.700000000	L710	0.99998200	61.369		
	L401	1072.135967906AS	17.638366552	SIO2	1.56028895	62.176		
		-274.850778792	10.038841436	HE	0.99971200	62.804		
	L402	-195.160258125	9.677862773	S102	1.56028895	62.822		
55		-159.034954419	15.411706951	HE	0.99971200	63.649		
	L403	-409.040910955	11.634800854	SIO2	1.56028895	62.424		
		-184.929247238	18.878098976	HE	0.99971200	62.549		
	L404	-86.928681017	9.000000000	SIO2	1.56028895	61.870		

EP 1 242 843 B1

-				
12	hel	0	fortaes	atzt

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI	1/2 FREIER
		04.0000007040	0.550005044		193.304nm	DURCHMESSER
5	1.405	-81.003682870AS	3.559685814	HE	0.99971200	63.469
	L405	-105.055795110AS	6.000000000	SIO2	1.56028895	60.375
		-237.059668556	7.135710642	HE	0.99971200	61.325
	L406	-170.390902140	6.000000000	SIO2	1.56028895	61.152
		179.617978310	40.187039625	HE	0.99971200	64.312
10	L407	-108.910057000	6.000000000	SIO2	1.56028895	66.769
		10000.000000000AS	23.032466424	HE	0.99971200	84.010
	L408	-482.423484275	35.657870541	SIO2	1.56028895	98.271
		-166.024534852	0.712083613	HE	0.99971200	104.636
15	L409	-5301.825985682AS	59.184134830	SIO2	1.56028895	129.868
		-219.603781546	1.964238192	HE	0.99971200	135.616
	L410	-407.514819861	25.000000000	SIO2	1.56028895	141.192
		-275.650807138	2.073256156	HE	0.99971200	143.933
	L411	812.482278880	41.728126549	SIO2	1.56028895	150.437
20		2085.321083022	11.867512800	HE	0.99971200	150.588
	L412	1989.395979432	66.189720990	SIO2	1.56028895	151.170
		-336.825131023	2.208063283	HE	0.99971200	151.249
	L413	161.751335222	66.140524993	SI02	1.56028895	121.860
25		-7743.125302019AS	0.732008617	HE	0.99971200	115.257
25	L414	2700.830058670	8.000000000	SIO2	1.56028895	112.928
		175.482298866	18.681794864	HE	0.99971200	94.204
	L415	330.479176880	8.000000000	SIO2	1.56028895	91.933
		215.492418517	37.734500801	HE	0.99971200	86.259
30	L416	-263.077268094	6.000000000	SIO2	1.56028895	83.596
		119.453498304AS	66.406324570	HE	0.99971200	77.915
	L417	-126.431526615	6.000000000	S102	1.56028895	80.395
		1627.715124622	24.178532080	HE	0.99971200	96.410
	L418	-517.066851877	30.987035837	SIO2	1.56028895	105.371
35		-242.666474401	0.70000000	HE	0.99971200	113.249
	L419	-737.673536297	30.292644418	SI02	1.56028895	124.350
		-270.925750340	0.70000000	HE	0.99971200	128.112
•	L420	-1051.979110054	27.301344542	SIO2	1.56028895	137.231
40		-363.545320262	0.711035404	HE	0.99971200	139.644
	L421	914.456821676	50.497126159	SIO2	1.56028895	148.531
		-500.741001160	10.000000000	HE	0.99971200	149.700
	L422	unendlich	-5.000000000	HE	0.99971200	146.693
		353.826401507AS	22.748234242	SIO2	1.56028895	147.721
45	L423	529.864238000	1.376970242	HE	0.99971200	146.294
		422.718681400	57.709521396	SIO2	1.56028895	146.003
	L424	-733.506899438	31.321473463	HE	0.99971200	143.238
		-261.264462802	15.000000000	SIO2	1.56028895	138.711
50	L425	-292.145870649AS	18.942285163	HE	0.99971200	139.089
		-225.638240671AS	19.098948274	SIO2	1.56028895	136.464
	L426	-230.537827019	0.700000000	HE	0.99971200	138.299
		246.284141218	23.038665896	SI02	1.56028895	114.892
	L427	400.381969987	0.704537226.	HE	0.99971200	110.931
55		131.458744675	28.653621426	SI02	1.56028895	98.090
	L428	200.500973816	0.708148286	HE	0.99971200	93.130
		139.428371855	36.540725215	SIO2	1.56028895	87.103

	jesetzt

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 193.304nm	1/2 FREIER DURCHMESSER
5	L429	1188.104646109AS	8.107454155	HE	0.99971200	79.764
		unendlich	25.934594077	CaF2	1.50143563	72.791
	L430	unendlich	5.000000000	L710	0.99998200	54.980
		unendlich	25.000000000	CAF2HL	1.50143563	46.911
	L431	unendlich	10.000000000	L710	0.99998200	29.741
10		unendlich	0.000000000			13.603
	L710 = Luf	t bei 710 Torr				

	ASPHAERISCHE KONSTANTEN		
15	[0086]		
		Asph	näre der Linse L401
		K	0.0000
20		C1	7.64628377e-008
20		C2	6.87967706e-013
		СЗ	6.32367166e-017
	·	C4	4.65534082e-020
		C5	-1.74760583e-023
25		C6	3.25143184e-027
		C7	-2.97366674e-031
		C8	0.0000000e+000
		C9	0.0000000e+000
30			
			näre der Linse L404
		K	-1.3306
		C1	-2.46704917e-007
<i>3</i> 5		C2	1.00943626e-011
		C3	-6.88338440e-015
		C4	1.00927351e-018
		C5	-1.37371749e-022
40		C6	9.94732480e-027
		C7	-6.46127195e-031
	•	C8	0.0000000e+000
		C9	0.0000000e+000
45			•
		Asph	äre der Linse L405
		ĸ	-1.1682
•		C1	8.44108642e-008
50		C2	6.67934072e-012
30		СЗ	-5.16053049e-015
		C4	8.51835178e-019
		C5	-9.37525700e-023
		C6	3.80738193e-027
<i>5</i> 5		C7	-7.58518933e-035
		C8	0.0000000e+000
		C9	0.0000000e+000

	Asphäre der Linse L407
	K 0.0000
_	C1 8.18369639e-008
5	C2 -9.75131236e-012
	C3 3.85197305e-016
	C4 1.05024918e-020
	C5 -3.84907914e-024
10	C6 3.28329458e-028
	C7 -1.16692413e-032
	C8 0.0000000e+000
	C9 0.00000000e+000
15	
	Asphäre der Linse L409
	K 0.0000
	C1 4.21547093e-009
	C2 -2.05810358e-013
20	C3 -2.19266732e-018
	C4 -7.83959176e-023
	C5 6.55613544e-027
	C6 -7.33103571e-032
25	C7 -2.15461419e-036
	C8 0.00000000e+000 C9 0.0000000e+000
	C5 0.00000000e+000
30	
	Asphäre der Linse L413
	K 0.0000
	C1 1.39800416e-008
ac	C2 -1.91505190e-013
35	C3 -1.26782008e-017
	C4 9.937782OOe-022
	C5 -5.55824342e-026
	C6 1.85230750e-030
40	C7 -2.83026055e-035
	C8 0.00000000e+000
	C9 0.00000000e+000
45	Asphäre der Linse L416
	K 0.0000
	C1 -1.87949694e-008
	C2 -4.87119675e-012
50	C3 -5.90009367e-017
	C4 -5.76749530e-021
	C5 -3.07189672e-025
	C6 4.51160541e-029
	C7 -5.02037364e-033
55	C8 0.0000000e+000
	C9 0.0000000e+000

		ohäre der Linse L421
	K	-0.0073
5	C1	1.63581145e-010
	C2	-7.80915457e-015
	C3	6.72460331e-021
	C4	5.33479719e-025
	C5	2.82144185e-028.
10	C6	-6.16219372e-033
	C7	2.37157562e-037
	C8	0.00000000e+000
	C9	0.00000000e+000
15		
	A	
		phäre der Linse L424
	K C1	0.0000
	C2	1.28367898e-010
20	C2	-1.18938455e-014 -1.84714219e-019
	C3	4.28587779e-023
	C5	-1.39213579e-027
	C6	2.04883718e-032
25	C7	-3.36201584e-037
	C8	0.000000000e+000
	C9	0.00000000e+000
	Ca	0.000000000
30		
30	Asr	häre der Linse L425
	K	0.0000
	C1	-2.31584329e-010
	C2	2.47013162e-014
35	СЗ	1.13928751e-018
	C4	-1.24997826e-023
	C5	-9.59653919e-028
	C6	1.46403755e-032
40	C7.	-1.23684921e-037
	C8	0.00000000e+000
	C9	O.OOOOOOOe+000
		•
45	Asp	häre der Linse L428
	K	0.0000
	C1	2.79193914e-008
	C2	5.72325985e-013
50	СЗ	-1.69156262e-016
	C4	1.45062961e-020
	C5	-7.24157687e-025
	C6	1.59130857e-029
	C7	9.07975701e-035
55	C8	0.00000000e+000
	C9	0.00000000e+000

TABELLE 5 M1558a

LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI	1/2 FREIER
5 0	114 5		1740	193.304nm	DURCHMESSER
5 0	unendlich	32.000000000	L710	0.99998200	54.410.
	unendlich	0.700000000	L710	0.99998200	61.800
L501	1062.826934956AS	17.734965551	SIO2	1.56028895	62.680
	-280.649155373	9.921059017	HE	0.99971200	63.358
₁₀ L502	-198.612797944	9.733545477	SIO2	1.56028895	63.454
	-157.546275141	15.417407860	HE	0.99971200	64.281
L503	-400.277413338	11.803054495	SIO2	1.56028895	63.163
	-182.515287485	19.059582585	HE	0.99971200	63.316
L504	-86.486413985	9.00000000	SIO2	1.56028895	62.723
15	-79.976798205AS	3.314115561	HE	0.99971200	64.356
L505	-102.262183494AS	6.00000000	SIO2	1.56028895	61.260
	-275.242312561	7.844485351	HE	0.99971200	62.494
L506	-191.274205909	6.000000000	SIG2	1.56028895	62.450
20	180.723494008	40.175681177	HE	0.99971200	65.811
L507	-108.539011643	6.000000000	SIO2	1.56028895	67.752
	10000.000000000AS	23.009626916	HE	0.99971200	86.379
L508	-481.040730284	35.657298256	SIO2	1.56028895	100.931
	-165.828518942	0.700000000	HE	0.99971200	106.719
25 L509	-5243.952853546AS	59.233771719	SIO2	1.56028895	134.666
. 20.	-218.541408733	2.123657562	HE	0.99971200	139.441
L510	-402.136827778	25.000000000	SIO2	1.56028895	145.856
	-276.854279724	1.637353303	HE	0.99971200	148.618
L511	796.304534481	36.805305429	SIO2	1.56028895	156.741
	2360.950907095	10.808883416	HE	0.99971200	157.059
L512	2256.926430541	60.789786196	SI02	1.56028895	157.684
	-336.450738373	0.801676910	HE	0.99971200	157.856
L513	161.617552542	66.152351274	S102	1.56028895	125.624
35	-6835.350709889AS	0.744366824	HE	0.99971200	121.362
L514	2851.162473443	8.000000000	SIO2	1.56028895	118.726
	173.208226906	18.750820117	HE	0.99971200	97.559
L515	318.351302869	8.000000000	SIO2	1.56028895	95.703
40	214.643166184	38.151364608	HE	0.99971200	89.760
L516	-261.549915460	6.00000000	SIO2	1.56028895	88.331
	119.510683982AS	66.550546342	HE	0.99971200	82.116
L517	-126.322271364	6.000000000	SIO2	1.56028895	83.464
	1722.207555551	24.185704173	HE	0.99971200	102.415
45 L518	-506.819064828	30.988960270	SIO2	1.56028895	111.113
	-242.042046428	0.70000000	HE	0.99971200	118.861
L519	-728.789614455	30.297084361	SIO2	1.56028895	132.704
	-269.518093553	0.700000000	HE	0.99971200	135.576
L520 50	-1024.754284774	27.306923440	SIO2	1.56028895	147.201
	-361.037355343	0.700000000	HE	0.99971200	149.061
L521	929.096482269	49.082091976	SIO2	1.56028895	161.109
	-497.886578908	15.000000000	HE	0.99971200	161.854
	unendlich	-10.000000000	HE	0.99971200	158.597
₅₅ L522	352.973470359AS	22.735479730	SIO2	1.56028895	159.957
•	529.864238000	1.119499649	HE	0.99971200	158.688
L523	422.718681400	57.532074113	SIO2	1.56028895	158.278

Tabel					
DICKEN GLÄSER BRECHZAHL BEI					
		193.304nm			
37.317449332	HE	0.99971200			
15.000000000	SIO2	1.56028895			
10.000000400		0.00074000			

1/2 FREIER DURCHMESSER

156.533

34.253

13.603

5	L524	-261.165349728	15.000000000	SIO2	1.56028895	155.119
		-292.11944 79 59AS	18.962883498	HE	0.99971200	156.043
	L525	-226.263316842AS	19.009003051	SI02	1.56028895	155.000
		-231.163516914	0.700000000	HE	0.99971200	157.710
10	L526	245.306778718	23.024380018	SIO2	1.56028895	124.547
		403.694577141	0.700000000	HE	0.99971200	121.262
	L527	132.188567375	28.647981266	SI02	1.56028895	10.4.696
		199.679919884 4	0.700019350	HE	0.99971200	101.254
45	L528	138.967602414	36.537553325	SIO2	1.56028895	93.617
15		1194.093826692AS	8.108769689	HE	0.99971200	89.148
	L529	unendlich	25.923824338	CaF2	1.50143563	82.715
	• .	unendlich	5.000000000	L710	0.99998200	63.301
	L530	unendlich	25.000000000	CaF2	1.50143563	52.976

L710

0.99998200

10.000000000

0.000000000

L710 = Luft bei 710 Torr

ASPHAERISCHE KONSTANTEN

[0087]

L531

20

25

LINSEN

RADIEN

-733.230538894

unendlich

unendlich

	Aspl	näre der Linse L501
00	K	0.0000
30	C1	7.79889739e-008
	C2	5.96475035e-013
	C3	5.73397945e-017
	C4	5.38600405e-020
35	C5	-2.08145188e-023
	C6	4.05094979e-027
	C7	-3.79132983e-031
	C8	0.00000000e+000
40	C9	0.00000000e+000

Asphäre der Linse L504

•	
K	-1.3308
C1	-2.46633450e-007
C2	1.00446806e-011
C3	7.00686898e-015
C4	9.90840734e-019
C5	-1.31781718e-022
C6	9.28901869e-027
C7	-6.52628587e-031
C8	0.00000000e+000
C9	0.00000000e+000

55

45

50

		^ on	hära darlinaa LEOE
		K	häre der Linse L505
		C1	-1.1513
		C2	8.27765089e-008 7.00992841e-012
5		C3	-5.19825762e-015
		C4	8.12467102e-019
		C5	
		C6	-8.31805913e-023 2.18925711e-027
10		C7	1.11778799e-031
		C8	0.00000000e+000
		C9	0.00000000e+000
		C ₃	0.0000000000000000000000000000000000000
15		A	d!:! F07
			näre der Linse L507
		K	0.0000
		C1	8.22829380e-008
		C2	-9.72735758e-012
20		C3	3.85643753e-016
		C4	1.01114314e-020
		C5	-3.91221853e-024
		C6	3.39732781e-028
25		C7	-1.20135313e-032
		C8	0.00000000e+000
		C9	0.00000000e+000
		A le	.= da!: 1500
30			are der Linse L509
		K C1	0.0000
		C2	9.14637283e-009 -2.13253257e-013
		C3	
35		C4	-2.08003643e-018 -7.83152213e-023
		C5	
		C6	5.30015388e-027 -2.59321154e-033
		C7	-2.59321154e-033
40		C8	0.00000000e+000
40		C9	0.00000000e+000
		Cs	0.0000000000000000000000000000000000000
		Annh	
45		Aspr K	näre der Linse L513
		C1	0.0000
		C2	1.39567662e-008
		C3	-2.05760928e-013 -1.29919990e-017
50		C4	
50		C5	1.00302455e-021
		C6	-5.58828742e-026
		C6	1.79594589e-030
			-2.49374487e-035
55		C8 C9	0.00000000e+000 0.00000000e+000
		Ca	0.00000000e+000

	Asp	häre der Linse L516
	K	0.0000
	C1	-1.82058286e-008
5	C2	-4.87410470e-012
	C3	-5.89919068e-017
	C4	-4.04061992e-021
	C5	-6.60202054e-025
10	C6	9.31855676e-029
	C7	-7.48573635e-033
	C8	0.00000000e+000
	C9	0.00000000e+000
15		
	Asp	häre der Linse L522
	K	-0.0071
	C1	1.64455895e-010
20	C2	-7.76483415e-015
	` С3	8.29256873e-021
	C4	-5.46990406e-025
	C5	3.42070772e-028
	C6	-8.24545949e-033
25	C7	2.57783363e-037
	C8	0.00000000e+000
	C9	0.00000000e+000
30		
		häre der Linse L524
	K	0.0000
	C1	1.18780021e-010
35	C2	-1.18823445e-014
	C3	-1.80162246e-019
	C4	4.08343213e-023
	C5	-1.42735407e-027
	C6	2.34804331e-032
40	C7	-3.79018523e-037
	C8 C9	0.00000000e+000 0.00000000e+000
	30	0.0000000000000000000000000000000000000
45	Aen	häre der Linse L525
	K	0.0000
	C1	-2.15560895e-010
	C2	2.44929281e-014
50	C3	1.12359306e-018
50	C4	-1.29749910e-023
	C5	-1.00106399e-027
	C6	1.88165471e-032
	C7	-2.01557723e-037
55	C8	0.00000000e+000
	C9	0.00000000e+000
	09	J. J

Asphäre der Linse L528					
K	0.0000				
C1	2.73896476e-008				
C2	6.17281255e-013				
C3	-1.75474902e-016				
C4	1.56329449e-020				
C5	-8.82259694e-025				
C6	2.92948124e-029				
C7	-4.01055770e-034				
C8	0.00000000e+000				
C9	0.00000000e+000				

TABELLE 6 M1587a

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157.629nm	1/2 FREIER DURCHMESSER
20	0	unendlich	27.171475840	N2	1.00031429	46.200
		unendlich	0.602670797	N2	1.00031429	52.673
	L601	900.198243311AS	15.151284556	CaF2	1.55929035	53.454
		-235.121108435	9.531971079	N2	1.00031429	54.049
25	L602	-167.185917779	8.294716452	CaF2	1.55929035	54.178
25		-132.673519510	14.020355779	N2	1.00031429	54.901
	L603	-333.194588652	9.893809820	CaF2	1.55929035	53.988
		-155.450516203	15.930502944	N2	1.00031429	54.132
	L604	-73.572316296	7.641977580	CaF2	1.55929035	53.748
30		-68.248613899AS	2.881720302	N2	1.00031429	55.167
	L605	-86.993585564AS	5.094651720	CaF2	1.55929035	52.580
		-238.150965327	5.379130780	N2	1.00031429	53.729
	L606	-165.613920870	5.094651720	CaF2	1.55929035	53.730
<i>35</i>		153.417884485	34.150169591	N2	1.00031429	56.762
33	L607	-92.061009990	5.094651720	CaF2	1.55929035	58.081
		8491.086261873AS	19.673523795	N2	1.00031429	74.689
	L608	-407.131300451	30.380807138	CaF2	1.55929035	87.291
		-140.620317156	0.761662684	N2	1.00031429	91.858
40	L609	-4831.804853654AS	50.269660218	CaF2	1.55929035	117.436
		-192.197373609	1.688916911	N2	1.00031429	121.408
	L610	-367.718684892	21.227715500	CaF2	1.55929035	127.704
		-233.628547894	2.224071019	N2	1.00031429	129.305
45	L611	709.585855080	28.736922725	CaF2	1.55929035	137.016
45		1238.859445357	9.120684720	N2	1.00031429	137.428
	L612	1205.457051945	49.281218258	CaF2	1.55929035	138.288
		-285.321880705	1.625271224	N2	1.00031429	138.379
	L613	137.549591710	56.718543740	CaF2	1.55929035	108.652
50		-4380.301012978AS	0.623523902	N2	1.00031429	106.138
	L614	2663.880214408	6.792868960	CaF2	1.55929035	103.602
		149.184979730	15.779049257	N2	1.00031429	84.589
	L615	281.093108064	6.792868960	CaF2	1.55929035	83.373
		184.030288413	32.341552355	N2	1.00031429	77.968
55	L616	-222.157416308	5.094651720	CaF2	1.55929035	77.463
		101.254238115AS	56.792834221	N2	1.00031429	71.826
	L617	-106.980638018	5.094651720	CaF2	1.55929035	72.237

EP 1 242 843 B1

Tabelle fortgesetzt

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157.629nm	1/2 FREIER DURCHMESSER
5		1612.305471130	20.581065398	N2	1.00031429	89.760
5	L618	-415.596135628	26.398111993	CaF2	1.55929035	96.803
		-204.680044631	0.713343960	N2	1.00031429	103.409
	L619	-646.696622394	25.867340760	CaF2	1.55929035	116.636
		-231.917626896	0.766268682	N2	1.00031429	118.569
10	L620	-790.657607677	23.400482872	CaF2	1.55929035	128.806
		-294.872053725	0.721402031	N2	1.00031429	130.074
	L621	786.625567756	40.932308205	CaF2	1.55929035	141.705
		-431.247283013	12.736629300	N2	1.00031429	142.089
15		unendlich	-8.491086200	N2	1.00031429	134.586
15	L622	295.022653593AS	20.185109438	CaF2	1.55929035	139.341
		449.912291916	0.619840486	N2	1.00031429	137.916
	L623	358.934076212	48.662890509	CaF2	1.55929035	136.936
		-622.662988878	30.955714157	N2	1.00031429	135.288
20	L624	-224.404889753	12.736629300	CaF2	1.55929035	134.760
		-251.154571510AS	16.079850229	N2	1.00031429	134.853
	L625	-193.582989843AS	16.510083506	CaF2	1.55929035	134.101
		-198.077570749	0.880353872	N2	1.00031429	136.109
05	L626	206.241795157	19.927993542	CaF2	1.55929035	101.240
25		338.140581666	0.925956949	N2	1.00031429	97.594
	^ L627	111.017549581	24.580089962	CaF2	1.55929035	85.023
		169.576109839	0.777849447	N2	1.00031429	81.164
	L628	117.982165264	31.161065630	CaF2	1.55929035	75.464
30		921.219058213AS	6.934980174	N2	1.00031429	69.501
	L629	unendlich	22.260797322	CaF2	1.55929035	63.637
		unendlich	4.245543100	N2	1.00031429	48.606
	L630	unendlich	21.227715500	CaF2	1.55929035	41.032
ar		unendlich	8.491086200	N2	1.00031429	26.698
35		unendlich	0.00000000		1.00000000	11.550

[0088] Wellenlänge und Brechzahl sind gegenüber Vakuum angegeben.

ASPHAERISCHE KONSTANTEN

[0089]

	Aspl	näre der Linse L601
45	K	0.0000
	C1	1.28594437e-007
	C2	8.50731836e-013
	СЗ	1.16375620e-016
	C4	2.28674275e-019
50	C5	-1.23202729e-022
	C6	3.32056239e-026
	C7	-4.28323389e-030
	C8	0.00000000e+000
55	C9	0.00000000e+000

	Asphäre der Linse L604
	K -1.3312
	C1 -4.03355456e-007
5	C2 2.25776586e-011
	C3 -2.19259878e-014
	C4 4.32573397e-018
	C5 -7.92477159e-022
10	C6 7.57618874e-026
	C7 -7.14962797e-030
	C8 0.00000000e+000
	C9 0.00000000e+000
15	
	Asphäre der Linse L605
	K -1.1417
	C1 1.33637337e-007
20	C2 1.56787758e-011
	C3 -1.64362484e-014
	C4. 3.59793786e-018
	C5 -5.11312568e-022
	C6 1.70636633e-026
25	C7 1.82384731e-030
	C8 0.00000000e+000
	C9 0.00000000e+000
30	
	Asphäre der Linse L607
	K 0.0000
	C1 1.34745120e-007
35	C2 -2.19807543e-011
	C3 1.20275881e-015
	C4 4.39597377e-020
	C5 -2.37132819e-023
•	C6 2.87510939e-027
40	C7 -1.42065162e-031
	C8 0.00000000e+000
	C9 0.00000000e+000
45	
	Asphäre der Linse L609
	K 0.0000
	C1 6.85760526e-009
	C2 -4.84524868e-013
50	C3 -6.28751350e-018
	C4 -3.72607209e-022
	C5 3.25276841e-026
	C6 -4.05509974e-033
55	C7 -3.98843079e-035
	C8 0.0000000e+000
	C9 0.0000000e+000

		häre der Linse L613
	K	0.0000
5	C1	2.24737416e-008
3	C2	-4.45043770e-013
	C3	-4.10272049e-017
	C4	4.31632628e-021
	C5	-3.27538237e-025
10	C6	1.44053025e-029
	C7	-2.76858490e-034
	C8	0.00000000e+000
	C9	0.00000000e+000
15		
		näre der Linse L616
	K	0.0000
	C1	-2.83553693e-008
20	C2	-1.12122261e-011
	C3	-2.05192812e-016
	C4	-1.55525080e-020
	C5	-4.77093112e-029
25	C6	8.39331135e-028
	C7	-8.97313681e-032
	C8	000000000e+000
	C9	0.00000000e+000
30		
30		-= doublines 1 000
	Aspl	iare der Linse L622
	Aspi K	näre der Linse L622 0.0421
	•	
	ĸ	0.0421
35	К С1	0.0421 7.07310826e-010
35	K C1 C2	0.0421 7.07310826e-010 -2.00157185e-014
35	K C1 C2 C3	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020
35	K C1 C2 C3 C4	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024
<i>35</i>	K C1 C2 C3 C4 C5	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027
	K C1 C2 C3 C4 C5 C6	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032
	K C1 C2 C3 C4 C5 C6	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036
	K C1 C2 C3 C4 C5 C6 C7	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.000000000e+000
	K C1 C2 C3 C4 C5 C6 C7 C8 C9	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000
40	K C1 C2 C3 C4 C5 C6 C7 C8 C9	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000
40	K C1 C2 C3 C4 C5 C6 C7 C8 C9	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000
40	K C1 C2 C3 C4 C5 C6 C7 C8 C9	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000
45	K C1 C2 C3 C4 C5 C6 C7 C8 C9	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000 näre der Linse L624 0.0000 3.02835805e-010 -3.90484062e-014
40	K C1 C2 C3 C4 C5 C6 C7 C8 C9	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000 näre der Linse L624 0.0000 3.02835805e-010 -3.90484062e-014 -3.22339189e-019
45	K C1 C2 C3 C4 C5 C6 C7 C8 C9 Aspl K C1 C2 C3 C4	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000 häre der Linse L624 0.0000 3.02835805e-010 -3.90484062e-014 -3.22339189e-019 1.64516979e-022
45	C1 C2 C3 C4 C5 C6 C7 C8 C9 Aspl K C1 C2 C3 C4 C5	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000 näre der Linse L624 0.0000 3.02835805e-010 -3.90484062e-014 -3.22339189e-019 1.64516979e-022 -8.51268614e-027
45	C1 C2 C3 C4 C5 C6 C7 C8 C9 Aspl K C1 C2 C3 C4 C5 C6	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000 näre der Linse L624 0.0000 3.02835805e-010 -3.90484062e-014 -3.22339189e-019 1.64516979e-022 -8.51268614e-027 2.09276792e-031
45	K C1 C2 C3 C4 C5 C6 C7 C8 C9 C4 C5 C6 C7	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000 0.0000000000
45	C1 C2 C3 C4 C5 C6 C7 C8 C9 Aspl K C1 C2 C3 C4 C5 C6	0.0421 7.07310826e-010 -2.00157185e-014 -9.33825109e-020 1.27125854e-024 1.94008709e-027 -6.11989858e-032 2.92367322e-036 0.00000000e+000 0.00000000e+000 näre der Linse L624 0.0000 3.02835805e-010 -3.90484062e-014 -3.22339189e-019 1.64516979e-022 -8.51268614e-027 2.09276792e-031

	Asphäre der Linse L625
	K 0.0000
	C1 -3.99248993e-010
5	C2 5.79276562e-014
	C3 3.53241478e-018
	C4 -4.57872308e-023
	C5 -6.29695208e-027
10	C6 1.57844931e-031
	C7 -2.19266130e-036
	C8 0.00000000e+000
	C9 0.00000000e+000
15	
(
	Asphäre der Linse L628
	K 0.0000
	C1 4.40737732e-008
20	C2 1.52385268e-012
	C3 -5.44510329e-016
	C4 6.32549789e-020
	C5 -4.58358203e-024
	C6. 1.92230388e-028
25	C7 -3.11311258e-033
	C8 0.00000000e+000
	C9 0.0000000e+000

30

TABELLE 7 M1630a

	TABELLE / M1630a					
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 193.304nm	1/2 FREIER DURCHMESSER
35	0	unendlich	32.989007360	L710	099998200	56.080
		unendlich	2.050119724	L710	09998200	63.700
	L701	1292.577885893AS	17.083079028	SIO2	156028995	64.846
		-320.912994055	6.356545111	HE	099971200	65.549
	L702	-222.076099367	9.996105426	SIO2	15028895	65.651
40		-173.186007383	14.918724377	HE	09971200	66.515
	L703	-465.289541055	12.849128877	SI02	156028895	65.892
		-190.575077708	24.825544140	HE	099971200	66.089
	L704	-88.003869940	9.278158320	SI02	1502895	64.773
45		-80.342454766AS	3.110021891	HE	099971200	66.529
40	L705	-104.692897461AS	6.185438880	S102	150200	63.593
		687.929853355	8.052826671	HE	099971200	65.986
	L706	-4211.039282601	6.185438880	SI02	1502895	66.833
		191.063416206	42.178241931	HE	099971200	69.389
50	L707	-115.620656932	6.185438880	SIO2	156028895	71.596
		10919.608812170AS	23.544585745	HE	099971200	91.649
	L708	-462.245785462	36.857934334	SI02	1,56028895	105.419
		-166.710127403	0.922637637	HĖ	099971200	110.921
55	L709	-2362.175430424AS	61.803635845	SIO2	15028835	140.744
55		-209.701792909	1.020714627	HE	099971200	144.651
	L710	-389.602200799	25.772662000	SIO2	1502895	151.693
		-307.008965979	0.721634536	HE	099971200	156.014

EP 1 242 843 B1

Tabe	11-	£		-++
rabe	ne .	IUH	ues	ezi

			Iabei	ie iurigeseizi		
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI	1/2 FREIER
					193.304nm	DURCHMESSER
5	L711	629.229001456	46.511934207	SIO2	155028895	167.044
5		-859.369679090	24.151857437	HE	099971200	167.077
	L712	-877.205712077	30.754166393	S102	155025695	164.429
		-357.572652646	4.953800031	HE	099971200	164.440
	L713	168.111512940	68.382989629	S102	150028885	129.450
10		unendlich	0.000000000	HE	099971200	125.021
	L714	unendlich	8.247251840	SI02	15002005	125.021
		149.672876100AS	23.428435757	HE	099971200	98.369
	L715	167.316121704	0.000000000	SIO2	15002005	92.117
45		167.316121704	46.368104843	HE	099971200	92.117
15	L716	-276.014955570	6.185438880	SIO2	150020006	90.583
		122.032488640AS	68.057116286	HE	099971200	84.260
	L717	-131.026926440	6.185438880	SIO2	15002005	85.665
		1443.442379280	24.936997937	HE	022271200	105.177
20	L718	-570.720178737	31.985422479	SIO2	156026695	114.725
		-251.966065824	0.742435413	HE	099971200	122.318
	L719	-792.022948046	31.395737994	SIO2	15002095	136.726
		-284.699402375	0.732480789	HE	099971200	139.887
	L720	-1399.992577177	28.528105133	SIO2	155028895	152.678
25		-405.074653331	0.721634536	HE	099971200	154.617
	L721	969.181518515	52.876050649	SIO2	155026535	166.429
		-498.113891823	15.463597200	HE	099971200	167.335
		unendlich	-10.309064800	HE	099971200	163.661
30	L722	369.912797108AS	22.457291722	SI02	155026695	164.702
		546.240476474	0.759815621	HE	099971200	163.421
	L 723	435.783427872	59.712335014	SIO2	15002005	163.043
		-757.138748183	38.604277894	HE	099971200	161.173
	L 72 4	-268.662949002	15.463597200	SIO2	155028895	159.696
35		-299.983850179AS	20.130367113	HE	099971200	160.684
	L725	-232.880394011AS	19.892839003	SI02	155029995	159.263
		-238.077482924	0.721634536	HE	099971200	162.099
•	L726	238.488298578	23.631362631	SI02	155028885	127.621
40		378.766536032	0.721634536	HE	099971200	124.291
	L727	136.105324171	29.608483074	SI02	1502335	108.001
		205.107042559	0.785819222	HE	0.9997.1200	104.429
	L728	143.303538802	37.757018324	SI02	15028835	96.584
		1247.979376087AS	8.449273703	HE	099971200	91.946
45	L729	unendlich	26.717587971	CaF2	150143333	85.145
		unendlich	5.154532400	L710	099998200	65.152
	L730	unendlich	25.772662000	CaF2	150143883	54.537
		unendlich	10.309064800	L710	099998200	35.251
50	L731	unendlich			ammo	14.020
	L710 = Luf	t bei 710 Torr				

L710 = Luft bei 710 Torr

ASPHAERISCHE KONSTANTEN

55 [0090]

	As	phäre der Linse L701
	K	0.0000
	C1	6.70377274e-008
	C2	6.84099199e-013
5	C3	1.05733405e-016
	C4	3.37349453e-020
	C5	-7.15705547e-024
	C6	5.09786203e-028
10	C7	-6.46970874e-033
	C8	0.00000000e+000
	C9	0.00000000e+000
	00	0.0000000000000000000000000000000000000
15	Asr	ohäre der Linse L704
	K	-1.3610
	C1	-2.19369509e-007
	C2	7.67800088e-012
20	C3	-6.07796875e-015
20	C4	7.90645856e-019
	C5	-9.11112500e-023
•	C6	5.68885354e-027
	C7	-4.26463481e-031
25	C8	0.00000000e+000
	C9	0.00000000e+000
30	Asp	häre der Linse L705
	K	-1.2060
	C1	8.09444891e-008
	C2	4.80824558e-012
35	C3	-4.20373603e-015
35	C4	5.60648644e-019
	C5	-4.51520330e-023
	C5 C6	-4.51520330e-023 1.54505188e-027
	C6 C7	
40	C6 C7 C8	1.54505188e-027
40	C6 C7	1.54505188e-027 5.00741161e-032
40	C6 C7 C8 C9	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000
45	C6 C7 C8 C9	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000
	C6 C7 C8 C9	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 ohäre der Linse L707 0.0000
	C6 C7 C8 C9	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 ohäre der Linse L707 0.0000 7.63455153e-008
	C6 C7 C8 C9 Asp K C1 C2	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 ohäre der Linse L707 0.0000 7.63455153e-008 -8.56292259e-012
	C6 C7 C8 C9 Asp K C1 C2 C3	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 0häre der Linse L707 0.0000 7.63455153e-008 -8.56292259e-012 3.01669569e-016
	C6 C7 C8 C9 Asp K C1 C2 C3 C4	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 0.0000000000
45	C6 C7 C8 C9 Asp K C1 C2 C3 C4 C5	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 0häre der Linse L707 0.0000 7.63455153e-008 -8.56292259e-012 3.01669569e-016 9.61573017e-021 -2.67588216e-024
45	C6 C7 C8 C9 Asp K C1 C2 C3 C4 C5 C6	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 0.0000000000
45	C6 C7 C8 C9 Asp K C1 C2 C3 C4 C5 C6	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 0.000000000000000 7.63455153e-008 -8.56292259e-012 3.01669569e-016 9.61573017e-021 -2.67588216e-024 2.05728418e-028 -6.45595651e-033
45	C6 C7 C8 C9 Asp K C1 C2 C3 C4 C5 C6	1.54505188e-027 5.00741161e-032 0.00000000e+000 0.00000000e+000 0.0000000000

	A = l=	# d1: 1.700
	Aspn K	äre der Linse L709
		0.0000
5	C1	3.23214391e-009
	C2	-1.67326019e-013
	C3	-4.26702152e-019
	C4	-5.66712884e-023
	C5	-1.24256704e-028
10	C6	1.64124726e-031
	C7	-4.41379927e-036
	C8	0.00000000e+000
	C9	0.00000000e+000
15		
	Aanbi	ëro dorlingo l 714
	K	äre der Linse L714
	C1	0.0000 -1.63753926e-009
·	C2	
20	C2	2.54837542e-013 8.79430055e-018
	C3	9.19127213e-022
,	C5	-7.01950932e-026
	C6	1.17918461e-029
25	C7	-8.74308763e-034
	C8	0.00000000e+000
	C9	0.00000000e+000
	Ca	0.0000000000000000000000000000000000000
30		
	Asphä	ire der Linse L716
	ĸ	0.0000
	C1	-1.54725313e-008
	C2	-4.26275476e-012
35	СЗ	-1.01484275e-016
	C4	8.37843426e-022
	C5	-1.29202167e-024
	C6	1.71820044e-028
40	C7	-1.05335330e-032
	C8	0.00000000e+000
	C9	0.00000000e+000
45		
•	Asphä	are der Linse L722
	K	-0.0331
	C1	2.56540619e-011
	C2	-6.98183157e-015
50	C3	7.92101859e-021
	C4	-5.85807569e-025
	C5	2.42288782e-028
	C6	-5.79467899e-033
55	C7	1.63689132e-037
	C8	0.00000000e+000
	C9	0.00000000e+000

	Asphäre der Linse L724
	K 0.0000
	C1 8.90820785e-011
5	C2 -1.06772804e-014
	C3 -1.68281363e-019
	C4 3.04828021e-023
	C5 -1.01185483e-027
10	C6 1.61617917e-032
	C7 -2.40582729e-037
	C8 0.0000000e+000
	C9 0.0000000e+000
15	
	Asphäre der Linse L725
	K 0.0000
	C1 -1.97757640e-010
20	C2 2.05110497e-014
	C3 8.96864099e-019
	C4 -9.85543257e-024
	C5 -7.12993590e-028
	C6 1.30146671e-032
25	C7 -1.36102788e-037
	C8 0.0000000e+000
	C9 0.0000000e+000
30	
	Asphäre der Linse L728
	K 0.0000
	C1 2.55097376e-008
35	C2 5.47467657e-013
33	C3 -1.43568713e-016
•	C4 1.17677649e-020
	C5 -5.95320448e-025
	C6 1.71763367e-029
40	C7 -1.94556007e-034
	C8 0.00000000e+000
	C9 0.00000000e+000

TARFI	IF	R I	61

	IADELLE 8 L01					
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI	1/2 FREIER
					157.13 nm	DURCHMESSER
	0	unendlich	34.000000000		1.00000000	82.150
50		unendlich	0.100000000		1.00000000	87.654
	L801	276.724757380	40.000000000	CaF2	1.55970990	90.112
		1413.944109416AS	95.000000000		1.00000000	89.442
	SP1	unendlich	11.000000000		1.00000000	90.034
		unendlich	433.237005445		1.00000000	90.104
55	L802	-195.924336384	17.295305525	CaF2	1.55970990	92.746
		-467.658808527	40.841112468		1.00000000	98.732
	L803	-241.385736441	15.977235467	CaF2	1.55970990	105.512

EP 1 242 843 B1

Tabelle fortgesetzt

	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157.13 nm	1/2 FREIER DURCHMESSER
_		-857.211727400AS	21.649331094	- <u>-</u>	1.00000000	118.786
5	SP2	unendlich	0.000010000		1.00000000	139.325
		253.074839896	21.649331094		1.0000000	119.350
	L803'	857.211727400AS	15.977235467	CaF2	1.55970990	118.986
		241.385736441	40.841112468		1.0000000	108.546
10	L802'	467.658808527	17.295305525	CaF2	1.55970990	102.615
		195.924336384	419.981357165		1.0000000	95.689
	SP3	unendlich	6.255658280		1.00000000	76.370
		unendlich	42.609155219		1.00000000	76.064
	Z 1	unendlich	67.449547115		1.0000000	73.981
15	L8.04	432.544479547	37.784311058	CaF2	1.55970990	90.274
		-522.188532471	113.756133662		1.0000000	92.507
	L805	-263.167605725	33.768525968	CaF2	1.55970990	100.053
		-291.940616829AS	14.536591424		1.00000000	106.516
20	L806	589,642961222AS	20.449887046	CaF2	1.55970990	110.482
		-5539.698828792	443.944079795		1.00000000	110.523
	L807	221.780582003	9.000000000	CaF2	1.55970990	108.311
		153.071443064	22.790060084		1.00000000	104.062
	L808	309.446967518	38.542735318	CaF2	1.55970990	104.062
25		-2660.227900099	0.100022286		1.00000000	104.098
	L809	23655.354584194	12.899131182	CaF2	1.55970990	104.054
		-1473.189213176	9.318886362		1.00000000	103.931
	L810	-652.136459374	16.359499814	CaF2	1.55970990	103.644
30		-446.489459129	0.100000000		1.00000000	103.877
	L811	174.593507050	25.900313780	CaF2	1.55970990	99.267
		392.239615259AS	14.064505431		1.00000000	96.61.0
		unendlich	2.045119392		1.00000000	96.552
	L812	7997.306838492	16.759051656	CaF2	1.55970990	96.383
35		318.210831711	8.891640764		1.00000000	94.998
	L813	428.724465129	41.295806263	CaF2	1.55970990	95.548
		3290.097860119AS	7.377912006		1.00000000	95.040
	L814	721.012739719	33.927118706	CaF2	1.55970990	95.443
40		-272.650872353	6.871397517		1.00000000	95.207
	L815	131.257556743	38.826450065	CaF2	1.55970990	81.345
		632.112566477AS	4.409527396		1.00000000	74.847
	L816	342.127616157AS	37.346293509	CaF2	1.55970990	70.394
		449.261078744	4.859754445	•	1.00000000	54.895
45	L817	144.034814702	34.792179308	CaF2	1.55970990	48.040
		-751.263321098AS	11.999872684		1.00000000	33.475
	0,	unendlich	0.000127776		1.0000000	16.430

50 ASPHAERISCHE KONSTANTEN

[0091]

55

Asphäre der Linse L801

K 0.0000

C1 4.90231706e-009

C2 3.08634889e-014

Tabelle fortgesetzt

Asphäre	der	Linse	L801

C3 -9.53005325e-019
C4 -6.06316417e-024
C5 6.11462814e-028
C6 -8.64346302e-032
C7 0.00000000e+000
C8 0.00000000e+000
C9 0.00000000e+000

Asphäre der Linse L803

Κ 0.0000 C1 -5.33460884e-009 9.73867225e-014 C2 СЗ -3.28422058e-018 C4 1.50550421e-022 C5 0.00000000e+000 C6 0.00000000e+000 C7 0.00000000e+000 C8 0.00000000e+000 C9 0.00000000e+000

Asphäre der Linse L803

0.0000 Κ C1 5.33460884e-009 C2 -9.73867225e-014 СЗ 3.28422058e-018 C4 -1.50550421e-022 C5 0.00000000e+000 C6 0.00000000e+000 C7 0.00000000e+000 C8 0.00000000e+000 C9 0.00000000e+000

Asphäre der Linse L805

Κ 0.0000 C1 2.42569449e-009 C2 3.96137865e-014 СЗ -2.47855149e-018 C4 7.95092779e-023 C5 0.00000000e+000 C6 0.00000000e+000 **C7** 0.00000000e+000 0.00000000e+000 C8 0.00000000e+000 C9

55

5

10

15

20

25

30

35

40

45

50

	Asphäre der Linse L806
	K 0.0000
	C1 -6.74111232e-00
	C2 -2.57289693e-01
5	C3 -2.81309020e-018
	C4 6.70057831e-023
	C5 5.06272344e-028
	C6 -4.81282974e-032
10	C7 0.0000000e+000
	C8 0.0000000e+000
	C9 0.00000000e+000
15	
	Asphäre der Linse L811
	K 0.0000
	C1 2.28889624e-008
	C2 -1.88390559e-014
20	C3 2.86010656e-017
	C4 -3.18575336e-021
	C5 1.45886017e-025
	C6 -1.08492931e-029
25	C7 0.0000000e+000
	C8 0.0000000e+000
	C9 0.00000000e+000
30	Asphäre der Linse L813
	K 0.0000
	C1 3.40212872e-008
	C2 -1.08008877e-012
	C3 4.33814531e-017
35	C4 -7.40125614e-021
	C5 5.66856812e-025
	C6 0.00000000e+000
	C7 0.00000000e+000
40	C8 0.0000000e+000
	C9 0.00000000e+000
	Asphäre der Linse L815
45	K 0.0000
	C1 -3.15395039e-008
	C2 4.30010133e-012
	C3 3.11663337e-016
50	C4 -3.64089769e-020
50	C5 1.06073268e-024
	C6 0.0000000e+000
	C7 0.0000000e+000
	C8 0.0000000e+000
55	C9 0.0000000e+000
	33 0.0000000000000000000000000000000000

		Asphäre der Linse L816
		K 0.0000
		C1 -2.16579623e-008
5		C2 -6.67182801e-013
		C3 4.46519932e-016
		C4 -3.71571535e-020
		C5 0.00000000e+000
10		C6 0.0000000e+000
		C7 0.00000000e+000
		C8 0.00000000e+000
		C9 0.00000000e+000
15		
		Asphäre der Linse L817
		K 0.0000
		C1 2.15121397e-008
20		C2 -1.65301726e-011
		C3 -5.03883747e-015
		C4 1.03441815e-017
		C5 -6.29122773e-021
		C6 1.44097714e-024
25		C7 0.00000000e+000
		C8 0.00000000e+000
		C9 O.OOOOOOOe+000
30		
	Pa	tentansprüche
	1.	Projection achievant along Objects have A and aritain an Bildelana Along to the Mahamata and Linear and a total
	١.	Projektionsobjektiv mit einer Objektebene 0 und mit einer Bildebene 0' mit einer Mehrzahl an Linsen, wobei mindestens zwei benachbart zueinander angeordnete Linsenoberflächen asphärisch sind, die im folgenden als Doppela-
ar		sphäre bezeichnet werden, die Doppelasphäre in einem Abstand von mindestens dem maximalen Linsendurch-
<i>35</i>		messer (D2) des Objektivs von der Bildebene 0' beabstandet angeordnet ist dadurch gekennzeichnet, dass der
		Abstand (23) zwischen den asphärischen Linsenoberflächen der Doppelasphäre (21) kleiner als der halbe Linsen-
		durchmesser des gemittelten Linsendurchmessers der Doppelasphäre (21) ist,
		und dass
40		mittels der Doppelasphären (21) eine numerische Apertur von mindestens 0,8 bereit gestellt wird.
	2.	Praialtianachialtiu nagh Angrusah 1
	۷.	Projektionsobjektiv nach Anspruch 1, dadurch gekennzeichnet, dass
		es refraktiv ist und mindestens fünf Linsengruppen (G1 - G5) enthält.
45	_	
	3.	Projektionsobjektiv nach Anspruch 2
		dadurch gekennzeichnet, dass

50

nur zwei Linsen negativer Brechkraft umfasst.

4. Projektionsobjektiv nach Anspruch 3, dadurch gekennzeichnet, dass

auch die zweite Linsengruppe negativer Brechkraft maximal zwei Linsen negativer Brechkraft aufweist.

zwei der Linsengruppen negative Brechkraft haben und mindestens eine dieser Linsengruppen negativer Brechkraft

5. Projektionsobjektiv nach Anspruch 4,

dadurch gekennzeichnet, dass

in der zweiten Taille eine asphärische Linsenoberfläche angeordnet ist.

6. Projektionsobjektiv nach Anspruch 4 oder 5,

dadurch gekennzeichnet, dass

in einer Linsengruppe (G5) positiver Brechkraft, in der eine Blende (AP) angeordnet ist, mindestens eine Linse (L720, L722, L723) mit einer asphärischen Linsenoberfläche vorgesehen ist.

7. Projektionsobjektiv mindestens nach Anspruch 2,

dadurch gekennzeichnet, dass

die asphärische Linsenoberflächen (AS1 und AS2, AS3 und AS4) auf verschiedenen Linsen (L) angeordnet sind.

10 8. Projektionsobjektiv nach Anspruch 2,

dadurch gekennzeichnet, dass

alle asphärischen Linsen (L104, L105, L107, L111, L203, L204, L206, L211) vor der zweiten Taille (G4) angeordnet sind.

9. Projektionsobjektiv mindestens nach Anspruch 2,

dadurch gekennzeichnet, dass

zwischen den asphärischen Linsenoberflächen der Doppelasphäre (AS1 - AS4) ein Luftspalt (23) gemessen auf der optischen Achse (7) von maximal 20% ihres gemittelten Radiusses vorgesehen ist.

20 10. Projektionsobjektiv mindestens nach Anspruch 1, 2 oder 7,

dadurch gekennzeichnet, dass

die benachbart angeordneten asphärischen Linsenoberflächen (AS1-AS4) in einem äquidistanten Abstand voneinander angeordnet sind.

25 11. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche 2 - 10, dadurch gekennzeichnet, dass

in den ersten drei Linsengruppen (G1 bis G3) mindestens eine Doppelasphäre (21) angeordnet ist.

12. Projektionsobjektiv mindestens nach Anspruch 1, 2 oder 7,

30 dadurch gekennzeichnet, dass

sich die Radien der am besten passenden sphärischen Linsenoberflächen einer Doppelasphäre, die der jeweiligen asphärischen Linsenoberfläche (AS1 bis AS4) zugeordnet ist, um weniger als 30 % voneinander unterscheiden, wobei von dem vom Betrag größeren Radius ausgegangen wird.

13. Projektionsobjektiv mindestens nach Anspruch 1,2 oder 7,

dadurch gekennzeichnet, dass sich die Scheitelradien der am besten passenden sphärischen Linsenoberflächen einer Doppelasphäre, die der jeweiligen asphärischen Linsenoberfläche (AS1 bis AS4) zugeordnet ist, um weniger als 30 % voneinander unterscheiden, wobei von dem vom Betrag größeren Radius ausgegangen wird.

14. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet, dass

sich die Durchmesser der ersten 13 Linsenoberflächen nahezu nicht, vorzugsweise um weniger als 10 %, unterscheiden.

15. Projektionsobjektiv mindestens nach Anspruch 2 oder 7,

dadurch gekennzeichnet, dass

die ersten 13 Linsenoberflächen einen Durchmesser (D1) aufweisen, der kleiner als 40 % des maximalen Durchmessers (D2) von Linsen des Objektives (5) ist.

50 16. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet dass,

mittels der Doppelasphären (21) eine numerische Apertur von mindestens 0,9 bereit gestellt wird.

17. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet, dass

55

durch zwei Linsenoberflächen ein mit Fluid beaufschlagbarer Zwischenraum gebildet wird.

18. Projektionsobjektiv mindestens nach Anspruch 1 oder 2,

dadurch gekennzeichnet, dass

mindestens 40 % der Linsen, vorzugsweise 60% der Linsen, sphärisch sind.

- 19. Projektionsobjektiv nach Anspruch 2,
 - dadurch gekennzeichnet, dass

mindestens 60 % der Linsen sphärisch sind.

- 20. Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass
- das Projektionsobjektiv in einer Projektionsbelichtungsanlage der Mikrolithographie enthalten ist.
 - 21. Verfahren zur Herstellung mikrostrukturierter Bauteile bei dem ein mit einer lichtempfindlichen Schicht versehenes Substrat (15) mittels einer Maske (9) und einer Projektionsbelichtungsanlage (1) mit einer Linsenanordnung (19) nach mindestens einem der Ansprüche 1 bis 19 durch ultraviolettes Laserlicht belichtet wird und gegebenenfalls nach Entwickeln der lichtempfindlichen Schicht entsprechend einem auf der Maske enthaltenen Muster strukturiert wird.

Claims

20

15

5

- 1. Projection objective having an object plane 0 and having an image plane 0' with a plurality of lenses, at least two lens surfaces arranged adjacent to one another being aspheric and denoted below as a double asphere, the double asphere being arranged spaced apart from the image plane 0' at a distance of at least the maximum lens diameter (D2) of the objective, **characterized in that** the distance (23) between the aspheric lens surfaces of the double asphere (21) is smaller than half the lens diameter of the averaged lens diameter of the double asphere (21), and in that a numerical aperture of at least 0.8 is provided by means of the double aspheres (21).
- Projection objective according to Claim 1, characterized in that it is refractive and includes at least five lens groups (G1-G5).

30

25

- Projection objective according to Claim 2, characterized in that two of the lens groups have negative refractive power, and at least one of these lens groups of negative refractive power comprises only two lenses of negative refractive power.
- Projection objective according to Claim 3, characterized in that the second lens group of negative refractive power also has at most two lenses of negative refractive power.
 - Projection objective according to Claim 4, characterized in that an aspheric lens surface is arranged in the second waist.

40

- Projection objective according to Claim 4 or 5, characterized in that at least one lens (L720, L722, L723) with an
 aspheric lens surface is provided in a lens group (G5) of positive refractive power in which a diaphragm (AP) is
 arranged.
- Projection objective at least according to Claim 2, characterized in that the aspheric lens surfaces (AS1 and AS2, AS3 and AS4) are arranged on different lenses (L).
 - 8. Projection Objective according to Claim 2, characterized in that all the aspheric lenses (L104, L105, L107, L111, L203, L204, L206, L211) are arranged upstream of the second waist (G4).

50

- 9. Projection objective at least according to Claim 2, **characterized in that**, measured on the optical axis (7), an air gap (23) of at most 20% of the mean radius of the double asphere (AS1-AS4) is provided between the aspheric lens surfaces of said double asphere.
- 55 **10.** Projection objective at least according to Claim 1, 2 or 7, **characterized in that** the adjacently arranged aspheric lens surfaces (AS1-AS4) are arranged at an equidistant spacing from one another.
 - 11. Refractive projection objective according to at least one of the preceding claims 2-10, characterized in that at least

one double asphere (21) is arranged in the first three lens groups (G1 to G3).

- 12. Projection objective at least according to Claim 1, 2 or 7, **characterized in that** the radii of the most suitable spherical lens surfaces of a double asphere which is assigned to the respective aspherical lens surface (AS1 to AS4) differ from one another by less than 30%, the starting point being the radius of larger absolute value.
- 13. Projection objective at least according to Claim 1, 2 or 7, **characterized in that** the vertex radii of the most suitable spherical lens surfaces of a double asphere which is assigned to the respective aspheric lens surface (AS1 to AS4) differ from one another by less than 30%, the starting point being the radius of larger absolute magnitude.
- 14. Projection objective according to at least one of the preceding claims, characterized in that the diameters of the first 13 lens surfaces virtually do not differ from one another, preferably doing so by less than 10%.
- 15. Projection objective at least according to Claim 2 or 7, characterized in that the first 13 lens surfaces have a diameter (D1) which is smaller than 40% of the maximum diameter (D2) of lenses of the objective (5).
- **16.** Projection objective according to at least one of the preceding claims, **characterized in that** a numerical aperture of at least 0.9 is provided by means of the double aspheres (21).
- 20 17. Projection objective according to at least one of the preceding claims, characterized in that two lens surfaces form an interspace to which fluid can be applied.
 - 18. Projection objective at least according to Claim 1 or 2, characterized in that at least 40% of the lenses, preferably 60% of the lenses, are spherical.
 - 19. Projection objective according to Claim 2, characterized in that at least 60% of the lenses are spherical.
 - 20. Projection objective according to at least one of Claims 1 to 19, characterized in that the projection objective is included in a microlithography projection exposure machine.
 - 21. Method for producing microstructured components, in the case of which a substrate (15) provided with a photosensitive layer is exposed to ultraviolet laser light by means of a mask (9) and a projection exposure machine (1) having a lens arrangement (19) according to at least one of Claims 1 to 19, and, if appropriate, after development of the photosensitive layer, patterned in accordance with a pattern contained on the mask.

Revendications

5

10

15

25

30

35

40

45

55

- 1. Objectif de projection qui présente un plan d'objet 0 et un plan d'image 0' ainsi que plusieurs lentilles, dans lequel au moins deux surfaces de lentilles agencées au voisinage l'une de l'autre sont non sphériques et forment ce qui, à la suite, est appelé double asphère, dans lequel la distance entre cette dernière et le plan d'image 0' est au moins égal au diamètre maximal (D2) de lentille de l'objectif, caractérisé en ce que la distance (23) entre les surfaces asphériques de lentille de la double asphère (21) et en ce qu'au moyen de la double asphère (21), on obtient une ouverture numérique d'au moins 0,8.
- 2. Objectif de projection selon la revendication 1, caractérisé en ce qu'il est réfringent et comprend au moins cinq groupes de lentilles (G1 G5).
- 3. Objectif de projection selon la revendication 2, caractérisé en ce que deux des groupes de lentilles présentent un pouvoir réfringent négatif et au moins un de ces groupes de lentilles à pouvoir réfringent négatif ne présente que deux lentilles à pouvoir réfringent négatif.
 - 4. Objectif de projection selon la revendication 3; caractérisé en ce que le deuxième groupe de lentilles à pouvoir réfringent négatif ne présente également au maximum que deux lentilles à pouvoir réfringent négatif.
 - Objectif de projection selon la revendication 4, caractérisé en ce qu'une surface asphérique de lentille est agencée dans le deuxième étranglement.

- 6. Objectif de projection selon les revendications 4 ou 5, caractérisé en ce qu'au moins une lentille (L720, L722, L723) qui présente une surface asphérique est prévue dans un groupe de lentilles (G5) à pouvoir réfringent positif dans lequel est agencé un filtre (AP).
- Objectif de projection au moins selon la revendication 2, caractérisé en ce que les surfaces asphériques de lentille (AS1 et AS2, AS3 et AS4) sont agencées sur différentes lentilles (L).
 - Objectif de projection selon la revendication 2, caractérisé en ce que toutes les lentilles asphériques (L104, L105, L107, L111, L203, L204, L206, L211) sont agencées en amont du deuxième étranglement (G4).
 - 9. Objectif de projection au moins selon la revendication 2, caractérisé en ce qu'un interstice d'air (23) qui, mesuré sur l'axe optique (7), représente au plus 20 % du rayon moyen de la double asphère (AS1 AS4) est agencé entre les surfaces asphériques de lentille de cette dernière.
- 15 10. Objectif de projection au moins selon les revendications 1, 2 ou 7, caractérisé en ce que les surfaces asphériques de lentille (AS1 AS4) agencées au voisinage les unes des autres le sont de façon équidistante.
 - 11. Objectif réfringent de projection selon l'une au moins des revendications précédentes 2 à 10, caractérisé en ce qu'au moins une double asphère (21) est agencée dans les trois premiers groupes de lentilles (G1 à G3).
 - 12. Objectif de projection au moins selon les revendications 1, 2 ou 7, caractérisé en ce que les surfaces sphériques les plus appropriées de lentille d'une double asphère, dont chacune est associée à une surface asphérique de lentille (AS1 à AS4), ont des rayons qui diffèrent les uns des autres de moins de 30 % du rayon le plus grand.
- 25 13. Objectif de projection au moins selon les revendications 1, 2 ou 7, caractérisé en ce que les surfaces sphériques les plus appropriées de lentille d'une double asphère, dont chacune est associée à une surface asphérique de lentille (AS1 à AS4), ont en leur sommet des rayons qui diffèrent les uns des autres de moins de 30 % du rayon le plus grand.
- 30 14. Objectif de projection selon l'une au moins des revendications précédentes, caractérisé en ce que les diamètres des 13 premières surfaces de lentilles ne diffèrent presque pas et de préférence de moins de 10 %.
 - 15. Objectif de projection au moins selon les revendications 2 ou 7, caractérisé en ce que les 13 premières surfaces de lentilles ont un diamètre (D1) inférieur à 40 % du diamètre de lentille maximal (D2) de l'objectif (5).
 - **16.** Objectif de projection selon l'une au moins des revendications précédentes, **caractérisé en ce qu'**on obtient une ouverture numérique d'au moins 0,9 au moyen des doubles asphères (21).
- 17. Objectif de projection selon l'une au moins des revendications précédentes, caractérisé en ce que deux surfaces de lentilles forment un espace intermédiaire qui peut être alimenté en fluide.
 - 18. Objectif de projection au moins selon les revendications 1 ou 2, caractérisé en ce qu'au moins 40 % et de préférence au moins 60 % des lentilles sont sphériques.
- 45 19. Objectif de projection selon la revendication 2, caractérisé en ce qu'au moins 60 % des lentilles sont sphériques.
 - 20. Objectif de projection selon au moins l'une des revendications 1 à 19, caractérisé en ce qu'il fait partie d'une installation d'éclairage de projection pour microlithographie.
- 21. Procédé de fabrication de composants microstructurés, dans lequel on éclaire un support (15) muni d'une surface photosensible à travers un masque (9) et à la lumière laser ultraviolette avec une installation d'éclairage de projection (1) qui présente un agencement (19) de lentilles selon l'une au moins des revendications 1 à 19 et, éventuellement après avoir développé la couche photosensible, on structure ce support selon un motif présent sur le masque.

55

10

20

35

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.