DATA COLLECTION

In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [2]: # To Import Dataset sd=pd.read_csv(r"c:\Users\user\Downloads\22_countries.csv")

Out[2]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_naı
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afgh
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	Ει
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albanian
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian dir
4	5	American Samoa	ASM	AS	16	+1 - 684	Pago Pago	USD	US Do
245	243	Wallis And Futuna Islands	WLF	WF	876	681	Mata Utu	XPF	CFP fre
246	244	Western Sahara	ESH	EH	732	212	El-Aaiun	MAD	Morocc Dirha
247	245	Yemen	YEM	YE	887	967	Sanaa	YER	Yemeni
248	246	Zambia	ZMB	ZM	894	260	Lusaka	ZMW	Zambi kwac
249	247	Zimbabwe	ZWE	ZW	716	263	Harare	ZWL	Zimbab Dol
250 rows × 19 columns									

In [3]: # to display top 10 rows
sd.head(10)

Out[3]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_name
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afghani
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	Euro
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albanian lek
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian dinar
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US Dollar
5	6	Andorra	AND	AD	20	376	Andorra la Vella	EUR	Euro
6	7	Angola	AGO	АО	24	244	Luanda	AOA	Angolan kwanza
7	8	Anguilla	AIA	Al	660	+1-264	The Valley	XCD	East Caribbean dollar
8	9	Antarctica	ATA	AQ	10	672	NaN	AAD	Antarctican dollar
9	10	Antigua And Barbuda	ATG	AG	28	+1-268	St. John's	XCD	Eastern Caribbean dollar
4 (•

DATA CLEANING AND PRE_PROCESSING

In [4]: | sd.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 250 entries, 0 to 249 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype		
0	id	250 non-null	int64		
1	name	250 non-null	object		
2	iso3	250 non-null	object		
3	iso2	249 non-null	object		
4	numeric_code	250 non-null	int64		
5	phone_code	250 non-null	object		
6	capital	245 non-null	object		
7	currency	250 non-null	object		
8	currency_name	250 non-null	object		
9	currency_symbol	250 non-null	object		
10	tld	250 non-null	object		
11	native	249 non-null	object		
12	region	248 non-null	object		
13	subregion	247 non-null	object		
14	timezones	250 non-null	object		
15	latitude	250 non-null	float64		
16	longitude	250 non-null	float64		
17	emoji	250 non-null	object		
18	emojiU	250 non-null	object		
<pre>dtypes: float64(2), int64(2), object(15)</pre>					
memory usage: 37 2+ KB					

memory usage: 37.2+ KB

In [5]: # to display summary of statistics sd.describe()

Out[5]:

	id	numeric_code	latitude	longitude
count	250.000000	250.00000	250.000000	250.00000
mean	125.500000	435.80400	16.402597	13.52387
std	72.312977	254.38354	26.757204	73.45152
min	1.000000	4.00000	-74.650000	-176.20000
25%	63.250000	219.00000	1.000000	-49.75000
50%	125.500000	436.00000	16.083333	17.00000
75%	187.750000	653.50000	39.000000	48.75000
max	250.000000	926.00000	78.000000	178.00000

In [6]: #to display colums heading sd.columns

```
'emojiU'],
   dtype='object')
```

EDA and visualization

In [7]: sns.pairplot(sd)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1ebb7bb47f0>


```
In [8]: | sns.distplot(sd['numeric_code'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='numeric_code', ylabel='Density'>

In [9]: sns.heatmap(sd.corr())

Out[9]: <AxesSubplot:>


```
In [10]: sd1=sd[['numeric_code', 'phone_code', 'latitude', 'longitude']]
```

TO TRAIN THE MODEL MODEL BUILDING

we are goint train Liner Regression model; we need to split out the data into two varibles x and y where x is independent on x (output) and y is dependent on x(output) adress coloumn as it is not required our model

```
In [14]: | x= sd1[['numeric_code', 'latitude']]
         y=sd1['longitude']
In [15]: # To split my dataset into training data and test data
         from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [16]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[16]: LinearRegression()
In [17]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]: |print(lr.intercept_)
         15.555017701137126
In [19]:
         coeff= pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[19]:
                       Co-efficient
          numeric_code
                         0.003094
                latitude
                        -0.096791
```

```
In [20]: prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[20]: <matplotlib.collections.PathCollection at 0x1ebbe703430>
          22
          20
          18
          16
          14
          12
          10
                      -100
                 -150
                             -50
                                         50
                                               100
                                                     150
In [21]: |print(lr.score(x_test,y_test))
          -0.024339356129793543
In [22]: |lr.score(x_train,y_train)
Out[22]: 0.0012457965482874922
In [23]: from sklearn.linear_model import Ridge,Lasso
In [24]: dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[24]: Ridge(alpha=10)
In [25]: |dr.score(x_test,y_test)
Out[25]: -0.02433794075950435
In [26]: | dr.score(x_train,y_train)
Out[26]: 0.0012457965401555526
In [27]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[27]: Lasso(alpha=10)
In [28]: la.score(x_test,y_test)
Out[28]: -0.021705256651429528
```

```
In [29]: la.score(x_train,y_train)
Out[29]: 0.0012188590068976657
         ElasticNet
In [30]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[30]: ElasticNet()
In [31]: print(en.coef_)
         [ 0.00308466 -0.09598231]
In [32]: |print(en.intercept_)
         15.545312897663981
In [33]: prediction=en.predict(x_test)
In [34]: print(en.score(x_test,y_test))
         -0.024193767736777616
         Evaluation metric
In [35]: from sklearn import metrics
In [36]: print("mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
         mean Absolute Error: 50.078893917568394
In [37]: | print("mean squared Error:", metrics.mean_squared_error(y_test, prediction))
         mean squared Error: 5067.799058628259
```

In [38]: print("Root mean Absolytre Error:",np.sqrt(metrics.mean_squared_error(y_test,pr

Model Saving

Root mean Absolytre Error: 71.18847560264413

In [39]:	import pickle
In [40]:	<pre>filename="prediction" pickle.dump(lr,open(filename,'wb'))</pre>
	pickle.dump(ir,open(filename, wb'))
In []:	
In []:	
In []:	