Telescoping Series

Definition:

Telescoping series is a series whose partial sums cancel off, leaving a fixed number of terms.

Example:

$$\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right)$$

$$=1-\frac{1}{n+1}.$$

KFC

Determine whether they are telescoping series.

(a)
$$(0^{5}-2^{5})$$
 (b) $(1+2)$
 $+(1^{5}-3^{5})$ $+(2+3)$
 $+(2^{5}-4^{5})$ $+(3+4)$
 $+\vdots$ $+[(n-1)^{5}-(n+1)^{5}]$ $+[r+(r+1)]$

Explain whether they are telescoping series. Hence, evaluate the summations.

(a)
$$\sum_{r=1}^{n} \left(\frac{1}{r} - \frac{1}{r+1} \right)$$
 (b) $\sum_{r=1}^{n} \left(\frac{1}{2r-1} - \frac{1}{2r+1} \right)$

Method of Differences

Definition:

Method of differences form telescoping series by using difference between two composite functions.

Evaluate
$$\sum_{r=1}^{n} g(r)$$
, for $r \in \mathbb{N}$, if

(a)
$$g(r) = f(r) - f(r+1)$$
.

(b)
$$g(r) = f(r-2) - f(r)$$
.

Express
$$g(r) = \frac{1}{(r+1)(r+2)}$$
 as partial fractions.

Hence, or otherwise, evaluate
$$\sum_{r=1}^{n} g(r)$$
.

Express
$$g(r) = \frac{1}{(3r-2)(3r+1)}$$
 as partial fractions.

Hence, or otherwise, evaluate $\sum_{r=1}^{n} g(r)$.

Express $\frac{1}{r(r+2)}$ as partial fraction, and use your result to

find
$$S_n = \frac{1}{1 \times 3} + \frac{1}{2 \times 4} + \dots + \frac{1}{n(n+2)}$$
. Hence, find $\lim_{n \to \infty} S_n$.

Evaluate
$$S_n = \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{n(n+1)(n+2)}$$
.

Hence, show that
$$\lim_{n\to\infty} S_n = \frac{1}{4}$$
.

Show that
$$(r+1)^4 - (r-1)^4 = 8r^3 + 8r$$
. Hence,

Show that
$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$
.

Show that $(r+1)! - r! \equiv r \cdot r!$.

Hence, sum the series $1 \cdot 1! + 2 \cdot 2! + ... + n \cdot n!$

Homework

Please attempt all the questions in the following slides.

Questions are to be discussed on the next day of the instruction.

Let
$$S = \frac{2}{1 \times 3} + \frac{2}{3 \times 5} + \frac{2}{5 \times 7} + \dots$$

- (a) Write down the r th term of S, and express it in partial fractions.
- (b) Find S.

Given that
$$T_r = \frac{1}{r^3 - r}$$
.

- (a) Express T_r in partial fractions, and hence find $\sum_{r=2}^{n} T_r$.
- (b) Explain why the series $\frac{1}{6} + \frac{1}{24} + \frac{1}{60} + \dots + \frac{1}{r^3 r} + \dots$ is convergent.

Show that
$$(2r+1)^5 - (2r-1)^5 = 2 + 40r^2 + 80r^4$$
. Hence,

Show that
$$\sum_{r=1}^{n} r^4 = \frac{1}{30} n(n+1)(2n+1)(3n^2+3n-1)$$
.

Simplify
$$\frac{1}{4}r(r+1)(r+2)(r+3) - \frac{1}{4}(r-1)r(r+1)(r+2)$$
.

Hence, find
$$\sum_{r=1}^{n} r(r+1)(r+2)$$
.

Express $\frac{r}{(r-1)(r+1)}$ in partial fractions, and use your

results to sum the series
$$\frac{2}{1\times 3} - \frac{4}{3\times 5} + ... + \frac{(-1)^{n+1}2n}{(2n-1)(2n+1)}$$
.

Find also $\lim_{n\to\infty} S_n$.