Topologie et calcul différentiel

Table des matières

1.	Topologie des espaces vectoriels normés.	1
	1.1. Espaces vectoriels normés.	1
	1.2. Topologie des espaces vectoriels normés $\cdots \cdots \cdots$	1
2.	Continuité.	3
3.	Suites dans un espace vectoriel normé.	3

1. Topologie des espaces vectoriels normés.

1.1. Espaces vectoriels normés.

Définition 1.1 (Norme). Soit E un espace vectoriel. On appelle norme sur E une fonction $\|\cdot\|: E \to \mathbb{R}$ vérifiant:

- (1) $\forall \lambda \in \mathbb{R}, \forall x \in E, ||\lambda x|| = |\lambda| ||x||,$
- (2) $\forall x \in E, ||x|| = 0 \Rightarrow x = 0$,
- (3) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||.$

Définition 1.2. Soit E un espace vectoriel et $\|\cdot\|$ une norme sur E. On appelle espace vectoriel normé un couple $(E, \|\cdot\|)$.

Proposition 1.3. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, alors :

- $(1) \|0\| = 0,$
- (2) $\forall x \in E, ||x|| \ge 0$,
- (3) $\forall x, y \in E, ||x|| ||y|| \le ||x y|||.$

Démonstration.

- $(1) \|0_E\| = \|0_{\mathbb{R}} * 0_E\| = 0_{\mathbb{R}} * \|0_E\| = 0_{\mathbb{R}}.$
- (2) Soit $x \in E$, $||0|| = ||x x|| \le ||x|| + ||-x|| = 2||x||$ d'où $\forall x \in E$, $||x|| \ge 0$.
- (3) Soit $x, y \in E$. $||x|| = ||x + y y|| \le ||x y|| + ||y|| \Leftrightarrow ||x|| ||y|| \le ||x y||$ et $||y|| = ||y + x x|| \le ||y x|| + ||x|| \Leftrightarrow ||y|| ||x|| \le ||x y||$. Ainsi, $||x - y|| \ge \max(||y|| - ||x||, ||x|| - ||y||) = |||x - y||$.

Proposition 1.4. Soit $(E, \|\cdot\|)$, $F \subset E$ un sous-espace vectoriel. La restriction de $\|\cdot\|$ à F est une norme appelée norme induite.

П

1.2. Topologie des espaces vectoriels normés

Définition 1.5 (boule ouverte/fermée). Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $a \in E, r > 0$. On appelle boule ouverte centrée en a de rayon r la partie $B(a, r) := \{x \in E \mid \|x - a\| < r\}$, et boule fermée centrée en a de rayon r la partie $B_f(a, r) := \{x \in E \mid \|x - a\| \le r\}$.

Définition 1.6 (Ouvert/fermé). Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Soit $U \subset E$, on dit que U est:

- (1) un ouvert de E si $\forall x \in U, \exists r > 0, B(x, r) \subset U$.
- (2) un fermé de E si U^c est un ouvert de E.

Proposition 1.7. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, alors

- (1) \emptyset et E sont ouverts et fermés.
- (2) Une union quelconque d'ouverts est un ouvert.
- (3) Une intersection finie d'ouverts est un ouvert.
- (4) Une union finie de fermés est un fermé.
- (5) Une intersection quelconque de fermés est un fermé.

Démonstration.

- (1) $\forall x \in \emptyset, \exists \varepsilon, B(x, \varepsilon) \subset \emptyset$ donc \emptyset est un ouvert et $\emptyset^c = E$ donc E est un fermé. De plus, $\forall x \in \emptyset$ $E, B(x, 1) \subset E$ donc E est un ouvert et $\emptyset = E^c$ est un fermé.
- (2) Soit $(O_i)_{i \in I}$ une famille d'ouverts. Soit $x \in \bigcup_{i \in \{1, \dots, n\}} O_i$, alors $\exists j \in I, x \in O_j$. Or O_j est un ouvert donc $\exists r_j > 0$ tel que $B(x, r_j) \subset O_j \subset \bigcup_{i \in I} O_i$ donc $\bigcup_{i \in I} O_i$ est un ouvert.
- (3) Soit $(O_i)_{i \in \{1,...,n\}}$ une famille d'ouverts. Soit $x \in \bigcap_{i \in \{1,...,n\}}$ alors $x \in O_1,...,x \in O_n$. Or $(O_1,...,O_n)$ sont des ouverts de E donc $\exists (r_i)_{i \in I}$ tels que $B(x,(r_i)_{i \in \{1,...,n\}}) \subset (O_i)_{i \in I}$. Posons $\varepsilon :=$
- $\min(r_1, ..., r_n) > 0. \text{ Alors } B(x, \varepsilon) \subset O_1 \cap ... \cap O_n \text{ donc } \bigcup_{i \in \{1, ..., n\}} C_i \text{ est un ouvert.}$ $(4) \text{ Soit } (C_1, ..., C_n) \text{ une famille de fermés. Alors } \left(\bigcup_{i \in \{1, ..., n\}} C_i\right)^c = \bigcap_{i \in \{1, ..., n\}} (C_i)^c \text{ qui est un}$ ouvert. Ainsi $\bigcup_{i \in \{1,...,n\}} C_i$ est un fermé.
- (5) Soit $(C_i)_{i \in I}$ une famille de fermés. Alors $\left(\bigcap_{i \in I} C_i\right)^c = \bigcup_{i \in I} C_i^c$ qui est un ouvert. Ainsi, $\bigcap_{i \in I} C_i$ est un fermé.

Définition 1.8 (Intérieur). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On appelle intérieur de *S* l'ensemble $\mathring{S} := \{x \in E \mid \exists \varepsilon > 0, B(x, \varepsilon) \subset S\}.$

Définition 1.9 (Adhérence). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On appelle adhérence de S l'ensemble $\overline{S} := \{x \in E \mid \forall \varepsilon > 0, B(x, \varepsilon) \cap S \neq \emptyset.\}.$

Définition 1.10 (Dense). Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $S \subset E$. On dit que S est dense dans $E \operatorname{si} \overline{S} = E.$

Proposition 1.11. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $S \subset E$.

- $(1) \ \overline{S^c} = \left(\stackrel{\circ}{S} \right)_c^c,$ $(2) \ \stackrel{\circ}{S^c} = \left(\overline{S} \right)_c^c,$
- (3) $\mathring{S} \subset S \subset \overline{S}$,
- (4) \mathring{S} est le plus grand ouvert contenu dans S,
- (5) \overline{S} est le plus petit ouvert contenant S.

Proposition 1.12. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$.

- (1) S est un ouvert si et seulement si $S = \mathring{S}$.
- (2) *S* est un fermé si et seulement si $S = \overline{S}$.

Démonstration. A FAIRE

Proposition 1.13. Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- (1) $\forall S, T \subset E, \overline{S \cup T} = \overline{S} \cup \overline{T}.$
- (2) $\forall S, T \subset E, \overline{S \cap T} \subset \overline{S} \cap \overline{T}$.
- (3) $\forall S, T \subset E, S \cap T = \mathring{S} \cap \mathring{T}$.
- (4) $\forall S, T \subset E, S \mathring{\cup} T \supset \mathring{S} \cup \mathring{T}$.

Définition 1.14 (Frontière). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On appelle *frontière* de S par $\partial S := \overline{S} \setminus \mathring{S}$.

Proposition 1.15. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$, alors

- (1) $\partial S = \{x \in E, \forall \varepsilon > 0, B(x, \varepsilon) \cap S \neq \emptyset \land B(x, \varepsilon) \cap S^c \neq \emptyset\}.$
- (2) $\overline{S} = S \cup \partial S$.

S est fermé si et seulement si $\partial S \subset S$.

- (1) *S* est ouverte si et seulement si $\partial S \cap S = \emptyset$.
- (2) ∂S est un fermé.

Démonstration. TO DO □

2. Continuité.

Définition 2.1 (continue). Soit $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ deux espaces vectoriels normés. Soit $S \subset E$. On dit que $f: S \to F$ est *continue* si :

$$\forall x \in S, \forall \varepsilon > 0, \exists \eta > 0, \forall y \in F, \|x - y\|_{E} \le \eta \Rightarrow \|f(x) - f(y)\|_{E} \le \varepsilon.$$

Proposition 2.2. Soit $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ deux espaces vectoriels normés, $S \subset E$, $f: S \to F$ alors les points suivants sont équivalents :

- (1) f est continue.
- (2) Pour tout ouvert U de F, il existe un ouvert V de E tel que $f^{-1}(U) = V \cap S$,
- (3) Pour tout fermé C de F, il existe un fermé D de E tel que $f^{-1}(C) = D \cap S$.

Démonstration. TO DO □

Remarque 2.3. Formellement la proposition revient à dire que l'image reciproque d'un ouvert par une fonction continue est un ouvert.

Proposition 2.4. Soit $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ deux espaces vectoriels normés, $f: E \to F$ une application linéaire. Les points suivants sont équivalents:

- (1) f est continue.
- (2) f est continue en 0.
- (3) $\exists M \ge 0, \forall x \in E, \|f(x)\|_{E} \le M\|x\|_{E}$.

Démonstration.

- (1) $1 \Rightarrow 2$: f est continue sur E alors elle est continue en 0.
- (2) $2 \Rightarrow 1$: Supposons f continue en 0. Alors il existe $\eta > 0$ tel que $\forall x \in E, \|x\|_E \Rightarrow \|f(x)\|_F \leq 1$. Soit $x \in E \setminus \{0\}$ alors $\left\|f\left(\frac{\eta}{\|x\|_E}x\right)\right\| \leq 1$ d'où $f(x)_F \leq \frac{1}{\eta}\|x\|_E$. Si x = 0 alors $\|f(0)\|_F = 0 \leq \frac{1}{\eta}\|0\|_E$. Donc $M \coloneqq \frac{1}{\eta}$ convient.

(3) A faire.

3. Suites dans un espace vectoriel normé.

Définition 3.1 (Convergente). Soit $\left(E, \|\cdot\|_{E}\right)$, un espace vectoriel normé, $(x_n)_{n\in\mathbb{N}}$ une suité d'éléments de E et $l\in E$. On dit que $(x_n)_n$ tend vers l si $\forall \varepsilon>0, \exists N\in\mathbb{N}, \forall n\geq n_0, n\geq N\Rightarrow \|x_n-l\|\leq \varepsilon$. On dit qu'une suite est *convergente* si elle admet une limite.

Proposition 3.2. Il y a unicité de la limite.

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \text{Supposons} \ x_n \underset{n \to +\infty}{\longrightarrow} l_1, \ \text{et} \ x_n \underset{n \to +\infty}{\longrightarrow} l_2. \\ \text{Soit} \ \varepsilon > 0 \ \text{alors il existe} \ N_1, N_2 \in \mathbb{N} \ \text{tels que} \ n \geq N_1 \Rightarrow \|l_1 - x_n\| \leq \frac{\varepsilon}{2} \ \text{et} \ n \geq N_2 \Rightarrow \|l_2 - x_n\| \leq \frac{\varepsilon}{2} \\ \text{Posons} \ \ n \coloneqq \max(N_1, N_2). \ \ \text{Alors} \ \ \|l_1 - l_2\| \leq \|l_1 + x_n + l_2 - x_n\| \leq \|x_n - l_1\| + \|x_n - l_2\| \leq \varepsilon. \ \ \text{D'où} \\ \|l_1 - l_2\| = 0 \Leftrightarrow l_1 = l_2. \end{array}$

Lemme 3.3. Soit $(E, \|\cdot\|_E)$, un espace vectoriel normé, $(x_n)_{n\in\mathbb{N}}$ une suite dans E convergente. Alors $(x_n)_n$ est bornée.

Proposition 3.4. Soit $(E, \|\cdot\|_E)$, un espace vectoriel normé, et $S \subset E$. Si une suite d'éléments converge alors sa limite est dans \overline{S} .

Corollaire 3.5. Soit $(E, \|\cdot\|_E)$, un espace vectoriel normé, $S \subset E$. S est fermé si et seulement si pour toute suite convergente d'éléments de S, sa limite est dans S.