Lecture: Prof. Dr. Christian Fries, Exercises: Dr. Andrea Mazzon, Tutorium: Roland Bachl

Sommersemester 2020

Remark to exercise 1

Suppose without loss of generality that $\{x_1, \ldots, x_n\}$ is already sorted and that $x_n \neq 1$, i.e., $x_1 < x_2 < \cdots < x_n < 1$. It can be seen that in

$$D(\{x_1, \dots, x_n\}) = \max_{a \in \{0, x_1, \dots, x_n\}} \max_{b \in \{x_1, \dots, x_n, 1\}, b > a} \max \left(b - a - \frac{|x_i \in (a, b)|}{n}, \frac{|x_i \in [a, b]|}{n} - (b - a)\right), \quad (1)$$

we don't need to consider $a = x_n$, b = 1. Indeed,

$$\max \left(1 - x_n - \frac{|x_i \in (x_n, 1)|}{n}, \frac{|x_i \in [x_n, 1]|}{n} - (1 - x_n) \right)$$

$$= \max \left(1 - x_n, \frac{1}{n} - (1 - x_n) \right)$$

$$\leq \max \left(1 - (x_n - x_1), \frac{1}{n} \right). \tag{2}$$

But the first value is $\frac{|x_i \in \{x_1, \dots, x_n\}|}{n} - (x_n - x_1)$, so the one we obtain when we consider the closed interval $[x_1, x_n]$, and the second one is smaller or equal than the maximum distance between two consecutive points in $\{x_1, \dots, x_n\}$, that we get when we consider all the possible open interval between two consecutive points in the set.