Importing Libraries

import numpy as np
import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt

import os

from matplotlib import rcParams

import warnings

In [3]:

In [2]:

warnings.filterwarnings(action='ignore')
warnings.warn('this is a warning!')

Reading the Dataset

In [4]:

data = pd.read_csv(r'C:\Users\Cloud\Desktop\water quality
analysis\Data\water_dataX.csv',encoding='ISO-8859-1',low_memory=False)

Analysing the Data

In [5]:

data.head()

Out[5]:

											Ü	ມເ[ວ]:
	STA TION COD E	LOCATI ONS	STA TE	Te mp	D. O. (m g/l)	P H	CONDUC TIVITY (µmhos/c m)	B. O. D. (mg /l)	NITRAT ENAN N+ NITRIT ENANN (mg/l)	FECA L COLIF ORM (MPN/ 100ml)	TOTAL COLIFOR M (MPN/100 ml)Mean	ye ar
0	1393	DAMAN GANGA AT D/S OF MADHU BAN, DAMAN	DA MA N & DIU	30. 6	6.7	7. 5	203	NA N	0.1	11	27	20 14
1	1399	ZUARI AT D/S OF PT. WHERE KUMBA RJRIA CANAL JOI	GOA	29. 8	5.7	7. 2	189	2	0.2	4953	8391	20 14
2	1475	ZUARI AT PANCHA WADI	GOA	29. 5	6.3	6. 9	179	1.7	0.1	3243	5330	20 14
3	3181	RIVER ZUARI AT	GOA	29. 7	5.8	6. 9	64	3.8	0.5	5382	8443	20 14

	STA FION COD E	LOCATI ONS	STA TE	Te mp	D. O. (m g/l)	P H	CONDUC TIVITY (µmhos/c m)	B. O. D. (mg /l)	NITRAT ENAN N+ NITRIT ENANN (mg/l)	L COLIF ORM (MPN/	TOTAL COLIFOR M (MPN/100 ml)Mean	ye ar
		BORIM BRIDGE										
4	3182	RIVER ZUARI AT MARCAI M JETTY	GOA	29. 5	5.8	7.	83	1.9	0.4	3428	5500	20 14
data	.desc	cribe()										
		year									Oi	ut[6]:
coun	t 199	91.000000										
meai	n 201	0.038172										
sto	d	3.057333										
miı	n 200	03.000000										
25%	6 200	08.000000										
50%	6 201	1.000000										
75%	6 201	3.000000										
max	x 201	4.000000										
data	.info	o()									I	n [7]:
		ex: 1991 umns (tot					90					
#	Colu		.u. 12	COI	umms,	•	Non-	-Null	Count	Dtype		
0 1 2 3 4	LOCA STAT Temp						1991 1991 1991	non non non	 -null -null -null -null	object object object object		

1991 non-null object

3 Temp 4 D.O. (mg/l)

```
5
                                           1991 non-null object
     CONDUCTIVITY (µmhos/cm)
 6
                                           1991 non-null object
                                          1991 non-null object
 7
   B.O.D. (mg/l)
   NITRATENAN N+ NITRITENANN (mg/l) 1991 non-null object
9 FECAL COLIFORM (MPN/100ml) 1991 non-null object
10 TOTAL COLIFORM (MPN/100ml) Mean 1991 non-null object
11 year 1991 non-null int64
 11 year
dtypes: int64(1), object(11)
memory usage: 186.8+ KB
data.shape
                                                                             Out[8]:
(1991, 12)
Checking for missing values
                                                                               In [9]:
data.isnull().any()
                                                                              Out[9]:
STATION CODE
                                        False
LOCATIONS
                                        False
STATE
                                        False
                                       False
Temp
D.O. (mg/1)
                                       False
PΗ
                                       False
CONDUCTIVITY (µmhos/cm)
                                      False
B.O.D. (mg/1)
                                       False
NITRATENAN N+ NITRITENANN (mg/l)
                                      False
FECAL COLIFORM (MPN/100ml)
                                       False
TOTAL COLIFORM (MPN/100ml) Mean
                                      False
year
                                        False
dtype: bool
                                                                              In [10]:
data.isnull().sum()
                                                                             Out[10]:
STATION CODE
                                        0
                                        0
LOCATIONS
STATE
                                        0
Temp
                                        0
D.O. (mg/1)
                                        0
                                        0
CONDUCTIVITY (µmhos/cm)
                                        0
B.O.D. (mg/1)
                                        0
NITRATENAN N+ NITRITENANN (mg/l)
                                        0
FECAL COLIFORM (MPN/100ml)
                                        0
TOTAL COLIFORM (MPN/100ml) Mean
                                        0
                                        0
year
dtype: int64
                                                                              In [11]:
data.dtypes
STATION CODE
                                        object
LOCATIONS
                                        object
STATE
                                        object
Temp
                                        object
D.O. (mg/1)
                                        object
                                        object
CONDUCTIVITY (umhos/cm)
                                        object
```

```
B.O.D. (mq/1)
                                     object
                                     object
NITRATENAN N+ NITRITENANN (mg/l)
FECAL COLIFORM (MPN/100ml)
                                     object
TOTAL COLIFORM (MPN/100ml) Mean
                                    object
                                     int64
vear
dtype: object
                                                                        In [12]:
data['Temp']=pd.to numeric(data['Temp'],errors='coerce')
data['D.O. (mg/l)']=pd.to numeric(data['D.O. (mg/l)'],errors='coerce')
data['PH']=pd.to numeric(data['PH'],errors='coerce')
data['B.O.D. (mg/l)']=pd.to numeric(data['B.O.D. (mg/l)'],errors='coerce')
data['CONDUCTIVITY (\u03c4mhos/cm)']=pd.to numeric(data['CONDUCTIVITY
(umhos/cm)'],errors='coerce')
data['NITRATENAN N+ NITRITENANN (mg/l)']=pd.to numeric(data['NITRATENAN N+
NITRITENANN (mg/l)'],errors='coerce')
data['TOTAL COLIFORM (MPN/100ml)Mean']=pd.to numeric(data['TOTAL COLIFORM
(MPN/100ml)Mean'],errors='coerce')
data.dtypes
                                                                       Out[12]:
STATION CODE
                                      object
LOCATIONS
                                      object
STATE
                                      object
                                     float64
Temp
D.O. (mg/1)
                                     float64
                                    float64
CONDUCTIVITY (µmhos/cm)
                                    float64
B.O.D. (mq/1)
                                     float64
NITRATENAN N+ NITRITENANN (mg/l)
                                    float64
FECAL COLIFORM (MPN/100ml)
                                     object
TOTAL COLIFORM (MPN/100ml) Mean
                                    float64
                                       int64
vear
dtype: object
data.isnull().sum()
                                                                       Out[13]:
STATION CODE
                                       0
LOCATIONS
                                       0
STATE
                                       0
                                      92
Temp
                                      31
D.O. (mg/1)
                                      8
CONDUCTIVITY (umhos/cm)
                                      25
B.O.D. (mg/1)
                                      43
NITRATENAN N+ NITRITENANN (mg/l)
                                     225
FECAL COLIFORM (MPN/100ml)
                                      0
                                     132
TOTAL COLIFORM (MPN/100ml) Mean
                                       0
dtype: int64
Fill the Null Values
                                                                        In [14]:
data['Temp'].fillna(data['Temp'].mean(),inplace=True)
data['D.O. (mg/l)'].fillna(data['D.O. (mg/l)'].mean(),inplace=True)
data['PH'].fillna(data['PH'].mean(),inplace=True)
data['CONDUCTIVITY (\u03c4mhos/cm)'].fillna(data['CONDUCTIVITY
(µmhos/cm)'].mean(),inplace=True)
data['B.O.D. (mg/l)'].fillna(data['B.O.D. (mg/l)'].mean(),inplace=True)
```

```
data['NITRATENAN N+ NITRITENANN (mg/l)'].fillna(data['NITRATENAN N+
NITRITENANN (mg/l)'].mean(),inplace=True)
data['TOTAL COLIFORM (MPN/100ml)Mean'].fillna(data['TOTAL COLIFORM
(MPN/100ml)Mean'].mean(),inplace=True)
```

In [15]:

data.drop(["FECAL COLIFORM (MPN/100ml)"],axis=1,inplace=True)

Renaming the Column Names

In [16]:

```
data=data.rename(columns = {'D.O. (mg/l)': 'do'})
data=data.rename(columns = {'CONDUCTIVITY (µmhos/cm)': 'co'})
data=data.rename(columns = {'B.O.D. (mg/l)': 'bod'})
data=data.rename(columns = {'NITRATENAN N+ NITRITENANN (mg/l)': 'na'})
data=data.rename(columns = {'TOTAL COLIFORM (MPN/100ml)Mean': 'tc'})
data=data.rename(columns = {'STATION CODE': 'station'})
data=data.rename(columns = {'LOCATIONS': 'location'})
data=data.rename(columns = {'STATE': 'state'})
data=data.rename(columns = {'PH': 'ph'})
```

In [17]:

data

										Oı	ut[17]:
	statio n	location	state	Temp	do	ph	co	bod	na	tc	yea r
0	1393	DAMANGANGA AT D/S OF MADHUBAN, DAMAN	DAMA N & DIU	30.6000	6. 7	7.5	203.	6.9400 49	0.1000	27.0	201
1	1399	ZUARI AT D/S OF PT. WHERE KUMBARJRIA CANAL JOI	GOA	29.8000	5. 7	7.2	189. 0	2.0000	0.2000	8391. 0	201 4
2	1475	ZUARI AT PANCHAWADI	GOA	29.5000 00	6. 3	6.9	179. 0	1.7000 00	0.1000 00	5330. 0	201 4
3	3181	RIVER ZUARI AT BORIM BRIDGE	GOA	29.7000 00	5. 8	6.9	64.0	3.8000	0.5000 00	8443. 0	201 4
4	3182	RIVER ZUARI AT MARCAIM JETTY	GOA	29.5000 00	5. 8	7.3	83.0	1.9000 00	0.4000	5500. 0	201 4
•••											
198 6	1330	TAMBIRAPARA NI AT	NAN	26.2098 14	7. 9	738. 0	7.2	2.7000 00	0.5180 00	202.0	200

	statio n	location	state	Temp	do	ph	co	bod	na	tc	yea r				
		ARUMUGANERI , TAMILNADU													
198 7	1450	PALAR AT VANIYAMBADI WATER SUPPLY HEAD WORK, T	NAN	29.0000 00	7. 5	585. 0	6.3	2.6000	0.1550 00	315.0	200				
198 8	1403	GUMTI AT U/S SOUTH TRIPURA,TRIPU RA	NAN	28.0000 00	7. 6	98.0	6.2	1.2000	1.6230 79	570.0	200				
198 9	9 1404 TRIPURA, TRIPURA, TRIPURA 00 7 91.0 6.5 00 79 562.0 3 CHANDRAPUR, AGARTALA D/S 0F HAORA NAN 29.0000 7. 110. 5.7 1.1000 1.6230 546.0 200														
	TRIPURA CHANDRAPUR, AGARTALA D/S 199 1726 OF HAODA NAN 29.0000 7. 110. 5.7 1.1000 1.6230 546.0 200														
1991 ւ	cows × 1	11 columns													
		/ Index (WQI) Calcu	lation												
aJClac	ulation	of pH								lı	n [18]:				
data['npH']=data.ph.apply	/(lambo	else(8 else	0 if	:(8.6> if(8	=x>=8	.5) or .5) or >=8.6) x>=8.8)	or (6.	x >= 6.8	;)				
(6.7>	>= x >= 6	.5)				else	0)))))							
b)calc	ulation	of dissolved oxygen	l												
data['ndo']=data.do.apply	/(lamb d	else(8 else	0 if		>=5.1 >=x>= f(4>=	4.1) x>=3)		l:	n [19]:				
c)calcı	ulation	of total coliform													
data['nco']=data.tc.apply	(lambo	la x: (1	.00 i	. f (5 >=	:x >= 0)			lı	n [20]:				

else(80 **if**(50>=x>=5)

else (60 **if**(500>=x>=50)

```
else 0)))))
d)calculation of B.D.O
                                                                                   In [21]:
data['nbdo'] = data.bod.apply(lambda x: (100 if (3>=x>=0)
                                     else(80 if(6>=x>=3)
                                        else (60 if(80>=x>=6)
                                             else(40 if(125>=x>=80)
                                                 else ((())))))
e)calculation of electric conductivity
                                                                                   In [22]:
data['nec']=data.co.apply(lambda x:(100 if(75 >= x >= 0)
                                     else(80 if(150>=x>=75)
                                        else (60 if(225>=x>=150)
                                             else(40 if(300>=x>=225)
                                                 else ((())))))
f)calculation of nitrate
                                                                                   In [23]:
data['nna']=data.na.apply(lambda x:(100 if(20>=x>=0)
                                     else(80 if(50>=x>=20)
                                        else (60 if(100>=x>=50)
                                             else(40 if(200>=x>=100)
                                                 else (0))))))
Calculation of Water Quality Index WQI
data['wph']=data.npH*0.165
data['wdo']=data.ndo*0.281
data['wbdo']=data.nbdo*0.234
data['wec'] = data.nec*0.009
data['wna']=data.nna*0.028
data['wco']=data.nco*0.281
data['wqi']=data.wph+data.wdo+data.wbdo+data.wec+data.wna+data.wco
data
                                                                                  Out[24]:
     st
     at
         locatio
                 sta
                      Te
                          d
                                      bo
                                                      b
                                          na
                                               tc
                                                          \mathbf{e}
                                                             n
                                                                    d
     io
                                      d
                                                      d
                                                                        d
                 te
                              h
                     mp
                                  0
                                                                            c
     n
         DAMA
                 D
         NGAN
                  A
         GA AT
                 M
                                     6.9
                                          0.1
                      30.
                          6
                                                             1
    13
         D/S OF
                              7.
                                  0
                                     40
                                          00
                                                      6
                                                         6
                                                                    8.
                                                                        4.
                                                                                      4.
                 Α
                                                                6
                                               7.
                     600
                                                             0
         MADH
                 N
                                 3.
                                      04
                                          00
                                                      0
                                                         0
                                                                    1
                          7
                     000
         UBAN,
                 &
                                       9
         DAMA
                 DΙ
             N
                 U
         ZUARI
                                  1
                                     2.0
                                          0.2
                                                                1
                                                                                      7
                  G
                     29.
                          5
                                                      1
                                                             1
                              7.
                                  8
                                          00
                                                         6
    13
         AT D/S
                                      00
                                                                6
                                                                    2.
                                                                        3.
                                                                                      6.
                                               8
                  O
                     800
                                                      0
                              2
                                                         0
                                                                    4
         OF PT.
                                 9.
                                      00
                                           00
                                                                        4
                          7
                     000
                  Α
         WHER
                                  0
                                       0
                                           0
```

Ε

else(40 **if**(10000>=x>=500)

	st at io n	locatio n	sta te	Te mp	d o	p h	c o	bo d	na	tc	 n b d o	n e c	n n a	w p h	w d o	w b d o	w e c	w n a	w c o	w q i
		KUMB ARJRI A CANA L JOI								1. 0										
2	14 75	ZUARI AT PANC HAWA DI	G O A	29. 500 000	6 . 3	6. 9	1 7 9. 0	1.7 00 00 0	0.1 00 00 0	5 3 3 0. 0	 1 0 0	6 0	1 0 0	1 3	2 8. 1 0	2 3. 4 0	0 5 4	2 . 8	1 1. 2 4	7 9. 2 8
3	31 81	RIVER ZUARI AT BORI M BRIDG E	G O A	29. 700 000	5 8	6. 9	6 4. 0	3.8 00 00 0	0.5 00 00 0	8 4 4 3. 0	 8 0	1 0 0	1 0 0	1 3	2 2. 4 8	1 8. 7 2	0 9 0	2 . 8	1 1. 2 4	6 9. 3 4
4	31 82	RIVER ZUARI AT MARC AIM JETTY	G O A	29. 500 000	5 8	7.	8 3. 0	1.9 00 00 0	0.4 00 00 0	5 5 0 0. 0	 1 0 0	8 0	1 0 0	1 6 5	2 2. 4 8	2 3. 4 0	0 7 2	2 . 8	1 1. 2 4	7 7. 1 4
1 9 8 6	13 30	TAMB IRAPA RANI AT ARUM UGAN ERI, TAMI LNAD U	N A N	26. 209 814	7 9	7 3 8. 0	7. 2	2.7 00 00 0	0.5 18 00 0	2 0 2. 0	 1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 . 9 0	2 . 8	1 6. 8 6	7 2. 0 6
1 9 8 7	14 50	PALA R AT VANI YAMB ADI WATE R SUPPL Y HEAD	N A N	29. 000 000	7 . 5	5 8 5. 0	6. 3	2.6 00 00 0	0.1 55 00 0	3 1 5. 0	 1 0 0	1 0 0	1 0 0	0	2 8. 1 0	2 3. 4 0	0 . 9 0	2 . 8	1 6. 8 6	7 2. 0 6

	st at io n	locatio n	sta te	Te mp	d o	p h	c o	bo d	na	tc	•	n b d o	n e c	n n a	w p h	w d o	w b d o	w e c	w n a	w c o	w q i
		WORK , T																			
1 9 8 8	14 03	GUMT I AT U/S SOUT H TRIPU RA,TR IPURA	N A N	28. 000 000	7 6	9 8. 0	6. 2	1.2 00 00 0	1.6 23 07 9	5 7 0. 0		1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 9 0	2 . 8	1 1. 2 4	6 6. 4 4
1 9 8 9	14 04	GUMT I AT D/S SOUT H TRIPU RA, TRIPU RA	N A N	28. 000 000	7	9 1. 0	6. 5	1.3 00 00 0	1.6 23 07 9	5 6 2. 0		1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 9 0	2 . 8	1 1. 2 4	6 6. 4 4
1 9 9 0	17 26	CHAN DRAP UR, AGAR TALA D/S OF HAOR A RIVER , TRIPU RA	N A N	29. 000 000	7 . 6	1 1 0. 0	5. 7	1.1 00 00 0	1.6 23 07 9	5 4 6. 0		1 0 0	1 0 0	1 0 0	0 . 0	2 8. 1 0	2 3. 4 0	0 9 0	2 . 8	1 1. 2 4	6 6. 4 4

1991 rows × 24 columns

Calculation of overall WQI for each year

```
In [25]:
average = data.groupby('year')['wqi'].mean()
average.head()

Out[25]:
year
2003    66.239545
2004    61.290000
2005    73.762689
2006    72.909714
```

Data Visualization

2007 74.233000 Name: wqi, dtype: float64

Univariate analysis

a)displot

sns.displot(data.Temp)
plt.show()

300 250 200 100 -

Temp

sns.displot(data.do)
plt.show()

sns.displot(data.bod)
plt.show()

sns.displot(data.na)
plt.show()

sns.displot(data.year)
plt.show()

sns.distplot(data.npH)
plt.show()

sns.distplot(data.nco)

sns.distplot(data.nec)
plt.show()

In [35]:
plt.pie(data.year.value_counts(),[0.1,0,0,0,0,0,0,0,0,0,0],labels=[2012,2
013,2014,2011,2010,2009,2008,2007,2005,2006,2003,2004],autopct='%1.1f%%')
plt.title('YEAR')
plt.show()

plt.pie(data.wph.value_counts(),[0,0.2,0,0,0],labels=[16.5,0.0,13.2,6.6,9.9
],autopct='%1.1f%%')
plt.title('wph')
plt.show()

plt.pie(data.wec.value_counts(),labels=[0,0.90,0.72,0.54,0.36],autopct='%1.
1f%%')
plt.title('wec')
plt.show()

plt.pie(data.nbdo.value_counts(),labels=[100,60,80,0,40],autopct='%1.1f%%')
plt.title('nbdo')
plt.show()

plt.pie(data.wco.value_counts(),labels=[11.24,16.86,0,22.48,28.10],autopct=
'%1.1f%%')
plt.title('wco')
plt.show()

wco

Bivariate analysis

a)Line plot

sns.lineplot(data.ph,data.do)
plt.show()

In [40]:

sns.lineplot(data.co,data.bod)
plt.show()

sns.lineplot(data.na,data.tc)
plt.show()

sns.lineplot(data.npH, data.ndo)
plt.show()

sns.lineplot(data.nco,data.nbdo)
plt.show()

sns.lineplot(data.nec,data.nna)
plt.show()

sns.lineplot(data.wph,data.wdo)
plt.show()

sns.lineplot(data.wbdo,data.wec)
plt.show()

sns.lineplot(data.wna,data.wco)
plt.show()

b)Scatter plot

In [49]:

sns.scatterplot(data.ph,data.bod)
plt.show()

sns.scatterplot(data.co,data.do)
plt.show()

sns.scatterplot(data.bod,data.na)
plt.show()

sns.scatterplot(data.co,data.tc)
plt.show()

sns.scatterplot(data.npH, data.nbdo)
plt.show()

sns.scatterplot(data.nco,data.ndo)
plt.show()

sns.scatterplot(data.nco,data.nna)
plt.show()

sns.scatterplot(data.nbdo,data.nec)
plt.show()

sns.scatterplot(data.wph, data.wec)

sns.scatterplot(data.wdo,data.wbdo)
plt.show()

sns.scatterplot(data.wec,data.wna)
plt.show()

analysis

In [61]:

Multivariate

data.hist(figsize=(17,17))
plt.show()

Label Encoding

from sklearn.preprocessing import LabelEncoder

In [63]:

In [62]:

le=LabelEncoder()

In [64]:

data.location=le.fit_transform(data.location)
data.state=le.fit_transform(data.state)
data.head()

Out[64]:

	sta tio n	loc ati on	st at e	Te m p	d o	p h	со	bod	n a	tc	•	n b d o	n e c	n n a	w p h	w d o	w b do	w e c	w n a	w co	w qi
0	13 93	83	2	30 .6	6 7	7 5	20 3. 0	6.94 004 9	0 . 1	27. 0		60	6	1 0 0	1 6. 5	28 .1 0	14 .0 4	0. 5 4	2. 8	22 .4 8	84 .4 6
1	13 99	664	5 1	29 .8	5 7	7 . 2	18 9. 0	2.00 000 0	0 . 2	83 91. 0		10 0	6	1 0 0	1 6. 5	22 .4 8	23 .4 0	0. 5 4	2.	11 .2 4	76 .9 6
2	14 75	665	5 1	29 .5	6 . 3	6 9	17 9. 0	1.70 000 0	0 1	53 30. 0		10 0	6	1 0 0	1 3. 2	28 .1 0	23 .4 0	0. 5 4	2. 8	11 .2 4	79 .2 8
3	31 81	495	5 1	29 .7	5 8	6 9	64	3.80 000 0	0 . 5	84 43. 0		80	1 0 0	1 0 0	1 3. 2	22 .4 8	18 .7 2	0. 9 0	2. 8	11 .2 4	69 .3 4
4	31 82	496	5 1	29 .5	5 8	7 . 3	83 .0	1.90 000 0	0 4	55 00. 0		10 0	8	1 0 0	1 6. 5	22 .4 8	23 .4 0	0. 7 2	2. 8	11 .2 4	77 .1 4

5 rows × 24 columns

Finding correlation matrix using Heatmap

plt.figure(figsize=(20,20))
sns.heatmap(data.corr(),annot=True)
plt.show()

df=data.drop(['nco','npH','ndo','nbdo','nec','nna','location','state','stat
ion','wph','wdo','wbdo','wec','wna','wco','Temp'],axis=1)

In [67]:

df

Out[67]:

	do	ph	со	bod	na	tc	year	wqi
0	6.7	7.5	203.0	6.940049	0.100000	27.0	2014	84.46
1	5.7	7.2	189.0	2.000000	0.200000	8391.0	2014	76.96
2	6.3	6.9	179.0	1.700000	0.100000	5330.0	2014	79.28

```
do
                              bod
              ph
                     co
                                                     year
                                                            wqi
       5.8
              6.9
                          3.800000
                                   0.500000
                                                     2014
                    64.0
                                             8443.0
                                                           69.34
       5.8
              7.3
                    83.0
                          1.900000
                                   0.400000
                                             5500.0
                                                     2014
                                                           77.14
                     •••
 1986
       7.9
            738.0
                     7.2
                          2.700000
                                   0.518000
                                              202.0
                                                     2003
                                                           72.06
 1987
       7.5
            585.0
                     6.3
                          2.600000
                                   0.155000
                                              315.0
                                                     2003
                                                           72.06
 1988
       7.6
             98.0
                     6.2
                          1.200000
                                   1.623079
                                              570.0
                                                     2003
                                                           66.44
 1989
       7.7
             91.0
                     6.5
                          1.300000
                                   1.623079
                                              562.0
                                                     2003
                                                           66.44
 1990
      7.6
            110.0
                     5.7
                         1.100000
                                                     2003
                                   1.623079
                                              546.0
                                                           66.44
1991 rows × 8 columns
                                                                                        In [68]:
df.to csv('df')
                                                                                        In [69]:
df.corr().wqi.sort_values(ascending=False)
                                                                                       Out[69]:
wqi
          1.000000
do
          0.678756
          0.180629
year
        -0.059461
        -0.104916
СО
        -0.133946
tc
        -0.265051
na
bod
        -0.349332
Name: wqi, dtype: float64
Splitting Dependent and Independent Columns
                                                                                        In [70]:
data.drop(['location','station','state'],axis =1,inplace=True)
                                                                                        In [71]:
data.head()
```

Out[71]:

	Te m p	d o	p h	co	bod	n a	tc	ye ar	n p H	n d o	•	n b do	n e c	n n a	w p h	w do	w bd o	w e c	w n a	w co	w qi
0	30. 6	6 7	7 5	20 3. 0	6.94 004 9	0 . 1	27. 0	20 14	1 0 0	1 0 0		60	6 0	1 0 0	1 6. 5	28 .1 0	14 .0 4	0. 5 4	2.	22 .4 8	84 .4 6
1	29. 8	5 7	7 2	18 9. 0	2.00 000 0	0 . 2	83 91. 0	20 14	1 0 0	8		10 0	6 0	1 0 0	1 6. 5	22 .4 8	23 .4 0	0. 5 4	2.	11 .2 4	76 .9 6
2	29. 5	6 . 3	6 . 9	17 9. 0	1.70 000 0	0 . 1	53 30. 0	20 14	8 0	1 0 0		10 0	6 0	1 0 0	1 3. 2	28 .1 0	23 .4 0	0. 5 4	2. 8	11 .2 4	79 .2 8
3 29. 5 6 64 3.80 0 84 20 8 8 8 . 80 0 0 3. 4 . 7 9 8 . 2 13 69 7 8 9 0 0 0 5 0 14 0 0 . 80 0 0 3. 4 . 7 9 8 2 0 8 4 4 4 29. 5 7 83 1.90 0 55 20 1 8 . 10 8 1 1 22 23 0. 2 11 77 5 8 3 0 0 0 4 0 14 0 0 . 0 0 0 0 5 8 0 2 8 2 1																					
4	29. 5	5 8	7 . 3		000		00.	20 14	1 0 0	8		10 0	8		6.	.4	.4	0. 7 2	2. 8	11 .2 4	.1
5 ro	ws ×	21	colu	ımns																	
199	1 ro	ws ×	8 c	olum	ns																
df.	to	csv	(' d	f')																In	[68]:
df.	cor	r()	. Wa	i so	ort va	1116	es (as	scen	dino	:=Fa	ıl sı	a)								In	[69]:
Q		_ (/	• " 9	1.50			<i>56</i> (a.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	وعدان	,		-,								Out	t[69]:
wqi do	-			0000 8756																	
уеа	ar			0629																	
ph				9461																	
co tc				4916 3946																	
na		-0	.26	5051																	
boo				9332	: : flo	\ \ \ + 6	5 /1														
					and Inc			t Colı	ımns	5											
dat	- 2 - 4	ron	/ [!	1000	tion'	- 1 c	·+ · + ·	on!	!a+	- a + a	. !]	avi.	s –	1 4,	anl a		Trus.	١		In	[70]:
ual	.a • U.	rob	\ L	±UCa	. C. T. O. I.	, =	, La L _	LOII	, 50	ale	-],	,ax⊥	. –	⊥ , ⊥⊥	тЬтс	.ce=.	rrue	,		ln	[71]:
4 - +	- a h	ر م م ط	<i>(</i>)																		

Out[71]:

data.head()

Te m p	d o	p h	c 0	b o d	na	t c	ye ar	n p H	n d o		n b d o	n e c	n n a	w p h	w d o	w b d	w ec	w n a	w c o	w qi	
0	3 0. 6	6 . 7	7 5	2 0 3. 0	6.9 400 49	0 .	27 .0	2 0 1 4	1 0 0	1 0 0		6 0	6 0	1 0 0	1 6. 5	28 .1 0	1 4. 0 4	0. 5 4	2. 8	2 2. 4 8	8 4. 4 6
1	2 9. 8	5 7	7 2	1 8 9. 0	2.0 000 00	0 . 2	83 91 .0	2 0 1 4	1 0 0	8		1 0 0	6 0	1 0 0	1 6. 5	22 .4 8	2 3. 4 0	0. 5 4	2.	1 1. 2 4	7 6. 9 6
2	2 9. 5	6 . 3	6 9	1 7 9. 0	1.7 000 00	0 . 1	53 30 .0	2 0 1 4	8	1 0 0		1 0 0	6	1 0 0	1 3. 2	28 .1 0	2 3. 4 0	0. 5 4	2.	1 1. 2 4	7 9. 2 8
3	2 9. 7	5 8	6 9	6 4. 0	3.8 000 00	0 5	84 43 .0	2 0 1 4	8	8		8	1 0 0	1 0 0	1 3. 2	22 .4 8	1 8. 7 2	0. 9 0	2. 8	1 1. 2 4	6 9. 3 4
4	2 9. 5	5 8	7 3	8 3. 0	1.9 000 00	0 4	55 00 .0	2 0 1 4	1 0 0	8		1 0 0	8	1 0 0	1 6. 5	22 .4 8	2 3. 4 0	0. 7 2	2.	1 1. 2 4	7 7. 1 4
5 rov	/s ×	21	colu	mns																	
x = df	.il	oc[:,0	:7]	.valu	es														ln	[72].
x.sh	ape																			111	[73]:

Out[73]:

(1991, 7)

In [74]: y=df.iloc[:,-1:].values

In [75]:

y.shape

Out[75]: (1991, 1)

In [76]:

print(x)

[[6.70000000e+00 7.50000000e+00 2.03000000e+02 ... 1.00000000e-01

2.70000000e+01 2.01400000e+03]

[5.70000000e+00 7.20000000e+00 1.89000000e+02 ... 2.00000000e-01

```
[6.30000000e+00 6.9000000e+00 1.79000000e+02 ... 1.00000000e-01
  5.33000000e+03 2.01400000e+03]
 [7.60000000e+00 9.80000000e+01 6.20000000e+00 ... 1.62307871e+00
 5.70000000e+02 2.00300000e+031
 [7.70000000e+00 9.10000000e+01 6.50000000e+00 ... 1.62307871e+00
 5.62000000e+02 2.00300000e+03]
 [7.60000000e+00 1.10000000e+02 5.70000000e+00 ... 1.62307871e+00
  5.46000000e+02 2.00300000e+0311
print(y)
[[84.46]
 [76.96]
 [79.28]
 . . .
 [66.44]
 [66.44]
 [66.44]]
Splitting the Data into Train and Test
                                                                         In [80]:
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x, y, test size =
0.2, random state=10)
                                                                         In [81]:
#Feature Scaling
#from sklearn.preprocessing import StandardScaler
#sc = StandardScaler()
#x_train = sc.fit_transform(x_train)
\#x test = sc.transform(x test)
                                                                         In [82]:
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n estimators = 10, random state = 0)
regressor.fit(x_train, y_train)
y pred = regressor.predict(x test)
Model Evaluation
from sklearn import metrics
print('MAE:',metrics.mean absolute error(y test,y pred))
print('MSE:',metrics.mean squared error(y test,y pred))
print('RMSE:',np.sqrt(metrics.mean squared error(y test,y pred)))
MAE: 0.9425563909774494
MSE: 5.63627572932331
RMSE: 2.374084187497004
                                                                         In [84]:
metrics.r2 score(y test, y pred)
                                                                        Out[84]:
0.9692766700278257
                                                                         In [85]:
import pickle
pickle.dump(regressor,open('wqi.pkl','wb'))
model=pickle.load(open('wqi.pkl','rb'))
                                                                         In [86]:
regressor.predict([[5.7,7.2,189.0,2.000000,0.200000,8391.0,2014]])
```

8.39100000e+03 2.01400000e+03]

Out[86]:
array([76.47])
In [87]:
regressor.predict([[6.7,7.5,203.0,6.940049,0.1,27.0,2014]])
Out[87]:
array([85.306])