信息学中的概率统计:作业一

截止日期: 2024 年 9 月 27 日(周五)下课前。如无特殊情况,请不要提交电子版!

第一题

对于 n 个事件 A_1, A_2, \ldots, A_n ,从概率的公理化定义和条件概率的定义出发证明下述结论。

(1) 一般加法公式:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i}A_{j}A_{k}) + \dots + (-1)^{n-1} P(A_{1}A_{2}\dots A_{n}).$$

(2) 一般 Union Bound:

$$P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i)_{\circ}$$

(3) 一般乘法公式: 若 $P(A_1A_2...A_n) > 0$, 有

$$P(A_1 A_2 ... A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 A_2) \cdot ... \cdot P(A_n \mid A_1 A_2 ... A_{n-1})_{\circ}$$

第二题

对于三个事件 A, B 和 C, 若 P(C) > 0, 我们称事件 A 和 B 在事件 C 发生时是条件独立的,当且仅当

$$P(AB \mid C) = P(A \mid C)P(B \mid C).$$

对于下述命题,从概率的公理化定义和条件概率的定义出发给出证明,或给出反例。

- (1) 事件 A 和 B 在事件 C 发生时是条件独立的,且有 0 < P(C) < 1,则事件 A 和 B 在事件 \overline{C} 发生时条件独立。这里,事件 \overline{C} 是事件 C 的对立事件。
- (2) 事件 A 和 B 相互独立,则对于任意事件 C,若 P(C)>0,事件 A 和 B 在事件 C 发生时是条件独立的。
- (3) 事件 A 和 B 相互独立、则事件 A 和事件 \overline{B} 相互独立。这里、事件 \overline{B} 是事件 B 的对立事件。

第三题

在课上,我们考虑了如下球与桶模型: 有 $n \ge 1$ 个球,每个球都等可能被放到 $m \ge 1$ 个桶中的任一个。用 $P_{n,m}$ 表示每个桶中至多有一个球的概率。在课上,我们已经证明了,

$$P_{n,m} \le e^{-\frac{n(n-1)}{2m}} \,.$$

现在, 请证明

$$P_{n,m} \ge e^{-\frac{n(n-1)}{2m}} \cdot \left(1 - \frac{8n^3}{m^2}\right)$$
.

提示:证明对于任意 $0 \le x \le 1/2$,

$$\ln(1-x) \ge -x - x^2.$$

第四题

将一枚骰子投掷 $n \ge 1$ 次,求在 n 次投掷中,六个数字均出现过至少一次的概率。

第五题

某路由器有 A 和 B 两种运行模式。路由器每天有等概率以 A 模式或者 B 模式运行,且每天的运行模式均独立。当以 A 模式运行时,有 90% 的概率网络堵塞,有 10% 的概率网络正常。当以 B 模式运行时,有 10% 的概率网络堵塞,有 90% 的概率网络正常。若某两天观测到网络堵塞,求这两天路由器均以 A 模式运行的概率。

第六题

对于自然数 n, m 和 k, 满足 $m \geq 2k$ 。有 2n 个 $\{1,2,\ldots,m\}$ 的子集 $A_1,B_1,A_2,B_2,\ldots,A_n,B_n\subseteq\{1,2,\ldots,m\}$, 满足

- 对于任意 $1 \le i \le n$, 有 $|A_i| = |B_i| = k$;
- 对于任意 $1 \le i \le n$,有 $A_i \cap B_i = \emptyset$;
- 对于任意 $1 \le i, j \le n$,若 $i \ne j$,有 $A_i \cap B_j \ne \emptyset$ 。
- (1) 考虑一个 $\{1,2,\ldots,m\}$ 的随机排列,每一种排列均等概率出现。对于任意 $1 \le i \le n$,事件 U_i 表示在随机排列中,集合 A_i 中的元素均排在 B_i 前面。证明

$$P(U_i) = \frac{1}{\binom{2k}{k}}.$$

- (2) 证明 $n \leq {2k \choose k}$ 。提示:考虑事件 $\bigcup_{i=1}^n U_i$ 的概率。
- (3) 对于 $n = \binom{2k}{k}$, 构造满足条件的 $A_1, B_1, A_2, B_2, \ldots, A_n, B_n \subseteq \{1, 2, \ldots, m\}$ 。这里 m 可取任意自然数。

信息学中的概率统计:作业二

截止日期: 2024 年 10 月 18 日 (周五) 下课前。如无特殊情况,请不要提交电子版!

第一题

对于任意 $a \ge 1$,构造**非负**离散随机变量 X,使得 $P(X \ge a \cdot E(X)) = 1/a$ 。

第二题

在课上,我们介绍了 n 重伯努利试验。如果某个随机试验只有两个可能的结果 A 和 \overline{A} ,且 P(A) = p,将试验独立地重复进行 n 次,令 X 表示结果 A 的发生次数。在课上,我们利用二项式系数的性质证明了 E(X) = np。在本题中,我们将用另一种方法计算 E(X) 和 $E(X^2)$ 。

- (1) 对于任意 $t \in \mathbb{R}$, 计算 $E\left(e^{Xt}\right)$ 。
- (2) 对于任意 $t \in \mathbb{R}$, 证明

$$E\left(e^{Xt}\right) = \sum_{i=0}^{\infty} \frac{t^i}{i!} \cdot E(X^i).$$

提示: 对于固定的 $0 \le k \le n$, 考虑对 e^{kt} 应用泰勒公式。

(3) 利用上一问中的结论,计算 E(X) 和 $E(X^2)$ 。提示:令 $f(t)=E\left(e^{Xt}\right)$ 。如何利用上一问中的结论,通过 f(t) 求得 E(X) 和 $E(X^2)$?

第三题

在课上,我们考虑了如下球与桶模型:有n个球,每个球都等可能被放到m个桶中的任一个。在本题中,我们考虑m=n的情况,并假设 $n=m\geq 2$ 。

- (1) 随机变量 X_i 表示第 i 个桶中球的数量。对于任意 $i \in \{1, 2, ..., n\}$,证明 $E(X_i) = 1$ 。
- (2) 对于任意 $i \in \{1, 2, ..., n\}$ 和任意 $1 \le k \le n$, 证明 $P(X_i = k) \le \frac{1}{k!}$.
- (3) 定义随机变量 $Y = \max\{X_1, X_2, \dots, X_n\}$, 证明 $P(Y \ge 4\log_2 n) \le 1/n$ 。提示: 考虑使用 Union Bound。
- (4) 证明 $E(Y) \leq 5 \log_2 n$.

第四题

给定离散随机变量 X, 证明对于任意实数 c, $E((X-c)^2) \ge \text{Var}(X)$ 。

第五题

给定离散随机变量 X,假设其期望 E(X) 和标准差 $\sigma(X)$ 均存在。对于任意实数 m,若满足 $P(X \ge m) \ge 1/2$ 且 $P(X \le m) \ge 1/2$,证明 $|E(X) - m| \le \sqrt{2}\sigma$ 。

第六题

令 $X \sim \pi(\lambda)$, 也即随机变量 X 服从参数为 $\lambda > 0$ 的泊松分布。

- (1) 对于任意实数 t, 计算 $E(e^{tX})$ 。
- (2) 证明对于任意实数 x > 0,

$$P((x/\lambda)^X \ge (x/\lambda)^x) \le \frac{e^{-\lambda}(e\lambda)^x}{x^x}$$
.

(3) 证明对于任意 $x > \lambda$,

$$P(X \ge x) \le \frac{e^{-\lambda}(e\lambda)^x}{x^x},$$

且对于任意 $0 < x < \lambda$,

$$P(X \le x) \le \frac{e^{-\lambda}(e\lambda)^x}{x^x}$$
.

(4) 证明

$$P(|X - \lambda| \ge 0.2\lambda) \le 2 \cdot e^{-0.01\lambda}$$

信息学中的概率统计: 作业三

截止日期: 2024 年 11 月 1 日 (周五) 下课前。如无特殊情况,请不要提交电子版!

第一题

- (1) X 为离散随机变量,且 X 仅取非负整数值。证明 $E(X) = \sum_{x=0}^{+\infty} P(X > x)$ 。
- (2) X 为连续随机变量,且 X 仅取非负实数值。证明 $E(X) = \int_0^{+\infty} P(X > x) dx$ 。

第二题

在 Unix 操作系统中,用随机变量 X 表示一个随机的任务所需的内存。历史数据表明,对于任意实数 $x \ge 1$, $P(X>x)=1/x^{\alpha}$ 。这里 $\alpha \in (0,2)$ 是固定常数。

- (1) 计算随机变量 X 的概率分布函数和概率密度函数。
- (2) 计算 E(X) 和 $E(X^2)$

第三题

(1) 对于任意实数 x > 0, 证明

$$\int_{x}^{+\infty} \frac{t}{x} e^{-t^2/2} dt = \frac{e^{-x^2/2}}{x}.$$

(2) 令 $X \sim N(0,1)$,也即连续随机变量 X 服从标准高斯分布,证明对于任意实数 x > 0,

$$P(X \ge x) \le \frac{e^{-x^2/2}}{x\sqrt{2\pi}}.$$

(3) $\diamondsuit Y \sim N(\mu, \sigma)$, 证明对于任意实数 k > 0,

$$P(|Y - \mu| \le k\sigma) \ge 1 - \frac{e^{-k^2/2}}{k} \cdot \sqrt{\frac{2}{\pi}}.$$

第四题

随机变量 X 的分布函数 F(x) 为严格单调增的连续函数,其反函数存在。证明 Y=F(X) 服从 (0,1) 上的均匀分布 U(0,1)。

第五题

对于实数参数 μ 和 b > 0,已知连续随机变量 X 的概率密度函数 f(x) 满足对于任意实数 x,

$$f(x) = c \cdot e^{-|x-\mu|/b}.$$

这里 c 为某个与参数 μ 和 b 有关的常数。

- (1) 计算常数 c 以及 X 的分布函数
- (2) 计算 E(X) 和 Var(X)

第六题

- (1) 若 $X \sim N(0,1)$,对于任意实数 t,计算 $E(e^{tX^2})$
- (2) 对于正整数 n,若 $Y_n \sim \chi^2(n)$,也即 $Y_n \sim \Gamma(n/2,1/2)$ 。对于任意实数 t,计算 $E(e^{tY_n})$
- (3) 若 $X \sim N(0,1)$, 计算 $Y = X^2$ 的概率密度函数

信息学中的概率统计: 作业四

截止日期: 2024 年 11 月 15 日 (周五) 下课前。如无特殊情况,请不要提交电子版!

第一题

一个盒子中有 n 个小球,编号分别为 $1,2,\ldots,n$ 。从盒子中取出 $k \le n$ 个小球,每次等概率从盒子中剩余的小球中取出一个,且每次取完后均不放回。也即,第一次取小球时,每个小球被取出的概率均为 $\frac{1}{n}$ 。第二次取小球时,剩余的 n-1 个小球各自被取出的概率均为 $\frac{1}{n-1}$ 。以此类推,直至一共取出 k 个小球。定义随机变量 X_1,X_2,\ldots,X_k ,其中 X_i ($1 \le i \le k$)表示第 i 次取出小球的编号。

- \mathcal{L} \mathcal{L}
- (2) 计算 $X_1, X_2, ..., X_k$ 的联合分布列。
- (3) 对于 $1 \le i \le k$,计算 X_i 的边际分布列。

(1) 对于 $1 \le i < j \le k$, 判断 X_i 是否与 X_j 相互独立。

- (4) 对于任意 $1 \le i < j \le k$ 和 $1 \le a_i, a_j \le n$, 计算 $P(X_i = a_i \cap X_j = a_j)$ 。
- (5) 利用恒等式 $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$, 对于 $1 \le i \le k$, 计算 $E(X_i)$ 和 $\mathrm{Var}(X_i)$ 。
- (6) 对于 $1 \le i < j \le k$,计算 $Cov(X_i, X_j)$ 。

第二题

将 n 个编号为 $1,2,\ldots,n$ 的小球随机打乱,每一种排列等概率出现。用 π_1,π_2,\ldots,π_n 表示随机打乱后每个位置上小球的编号,也即 π_i 表示随机打乱后,位置为 i 的小球的原始编号。对于 1 < i < n,我们称 i 是一个局部极大值,当且仅当 $\pi_i > \pi_{i-1}$ 且 $\pi_i > \pi_{i+1}$ 。令随机变量 X 表示所有 1 < i < n 中局部极大值的总数量。计算 E(X)。

第三题

令随机变量 $X \sim G(p)$, 也即随机变量 X 服从参数为 p 的几何分布。证明

$$E(X^2) = p + E((X+1)^2)(1-p),$$

$$E(X^3) = p + E((X+1)^3)(1-p),$$

并计算 $E(X^2)$ 和 $E(X^3)$ 。

第四题

令 X_1, X_2, \ldots 为一列同分布的离散随机变量。离散随机变量 N 取正整数值,且 N, X_1, X_2, \ldots ,相互独立。在课上,我们证明了 $E\left(\sum_{i=1}^N X_i\right) = E(N) \cdot E(X_1)$ 。

(1) 给出例子使得

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_i\right) \neq E(N) \cdot \operatorname{Var}(X_1).$$

(2) 证明

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E(N) \cdot \operatorname{Var}(X_{1}) + \operatorname{Var}(N)(E(X_{1}))^{2}.$$

第五题

(1) 对于正整数 r 和实数 $0 ,给定 <math>X \sim NB(1,p)$, $Y \sim NB(r,p)$,也即随机变量 X 服从参数为 1,p 的负二项分布,随机变量 Y 服从参数为 r,p 的负二项分布。若 X 和 Y 相互独立,证明 $X+Y \sim NB(r+1,p)$,也即 X+Y 服从参数为 r+1,p 的负二项分布。提示:使用恒等式

$$\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}.$$

(2) 对于正整数 $r,~X_1,X_2,\ldots,X_r$ 为独立同分布的随机变量,且均服从 G(p),也即参数为 p 的几何分布。证明 $X_1+X_2+\cdots+X_r\sim NB(r,p)$ 。

信息学中的概率统计: 作业五

截止日期: 2024年11月29日(周五)下课前。如无特殊情况,请不要提交电子版!

第一题

给定二维随机变量 X,Y。证明 $\mathrm{Corr}(X,Y)=\pm 1$ 当且仅当存在实数 $a\neq 0,b$,使得 P(Y=aX+b)=1。 提示:利用结论(无需证明),若随机变量 Z 满足 $\mathrm{Var}(Z)=0$,则 P(Z=E(Z))=1。

第二题

对于 $\sigma_1 > 0$, $\sigma_2 > 0$, $-1 < \rho < 1$, 二维随机变量 $U, V \sim N(0, 0, \sigma_1^2, \sigma_2^2, \rho)$ 。本题中,我们将计算 $E(\text{ReLU}(U) \cdot \text{ReLU}(V))$ 。这里, $\text{ReLU}(x) = \max\{x, 0\}$ 。

设二维随机变量 $(X,Y) \sim N(0,0,1,1,\rho)$,令二维随机变量 (R,Θ) 满足 $R \geq 0, \Theta \in [0,2\pi]$,且

$$\begin{cases} X = R \cdot (\sqrt{1 - \rho^2} \cdot \cos \Theta + \rho \cdot \sin \Theta) = R \cdot \sin(\arccos \rho + \Theta) \\ Y = R \sin \Theta \end{cases}$$

- (1) \diamondsuit $x = r \cdot (\sqrt{1-\rho^2} \cdot \cos\theta + \rho \cdot \sin\theta), y = r \sin\theta$ 。 验证 $x^2 + y^2 2\rho xy = r^2(1-\rho^2)$ 。
- (2) 计算 R, Θ 的联合密度函数, R 和 Θ 的各自的边际密度函数, 并判断 R 和 Θ 的独立性。
- (3) 计算 $E(ReLU(X) \cdot ReLU(Y))$ 。提示: 利用结论 (无需证明)

$$\int_0^{+\infty} x^3 e^{-x^2/2} dx = 2,$$

$$\int_0^{\pi - \arccos \rho} (\rho \cdot \sin^2 \theta + \sqrt{1 - \rho^2} \sin \theta \cos \theta) d\theta = \frac{1}{2} \left(\rho (\pi - \arccos \rho) + \sqrt{1 - \rho^2} \right).$$

- (4) 验证 $(\sigma_1 X, \sigma_2 Y)$ 与 (U, V) 服从相同的分布。
- (5) 计算 $E(\text{ReLU}(U) \cdot \text{ReLU}(V))$ 。

第三题

在课上我们考虑了如下矩阵 $A \in \mathbb{R}^{n \times n}$: 对于任意 $1 \leq i,j \leq n,\ A_{i,j} \sim N(0,1),\$ 且不同元素相互独立。计算 $E(\operatorname{trace}(A^3))$ 和 $E(\operatorname{trace}(A^4))$ 。提示:首先考虑 n=1 的情况,并参考作业三第六题。

第四题

(1) 令 X_1, X_2, \ldots, X_n 为独立同分布随机变量,且 $X_i \sim N(0,1)$ 。令 $Y = \sum_{i=1}^n X_i^2$ 。对于任意实数 $t \in [0,1/4)$,证明

$$E(e^{t(Y-n)}) \le e^{2t^2n} \,.$$

提示: 首先考虑 n=1 的情况,并参考作业三第六题,以及作业一第三题的提示。

(2) 对于任意 $0 \le \Delta < 1$, 证明

$$P(Y \ge (1+\Delta)n) \le e^{-n\Delta^2/8}$$
.

提示:根据 $0 \le \Delta < 1$,选择合适的 t 使得 $t \in [0,1/4)$,并使用马尔可夫不等式。

(3) 对于任意 $0 \le \Delta < 1$, 证明

$$P(Y \le (1 - \Delta)n) \le e^{-n\Delta^2/8}$$

信息学中的概率统计: 作业六

截止日期: 2024 年 12 月 13 日 (周五) 下课前。**如无特殊情况,请不要提交电子版!** 注意: 本次作业第六题为附加题,正确解决该题目本次作业可以得到额外 30% 的分数。

第一题

- (1) 使用马尔可夫不等式,给出 $P(X \ge a/\lambda)$ 的上界。
- (2) 使用切比雪夫不等式,证明 $P(X \ge a/\lambda) \le \frac{1}{(a-1)^2}$ 。
- (3) 使用 Chernoff Bound, 证明 $P(X > a/\lambda) < a \cdot e^{-a+1}$ 。
- (4) 计算 $P(X \ge a/\lambda)$ 的准确值。

第二题

在课上,我们介绍了随机变量的收敛性。设 $\{X_n\}$ 为一列随机变量,X为另一随机变量。如果对于任意 $\epsilon > 0$,有

$$\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1,$$

则称 $\{X_n\}$ 依概率收敛于 X,写作 $X_n \stackrel{P}{\to} X$ 。在本题中,我们将介绍随机变量的另一种收敛性。 设 $\{X_n\}$ 为一列随机变量,X 为另一随机变量。如果 $P(\lim_{n\to\infty} X_n \to X) = 1$,也即对于任意 $\epsilon > 0$,

$$\lim_{n \to \infty} P\left(\bigcup_{m=n}^{\infty} |X_m - X| \ge \epsilon\right) = 0,$$

则称 $\{X_n\}$ 几乎必然收敛于 X,写作 $X_n \xrightarrow{a.s.} X$ 。

- (1) 令 $\{X_n\}$ 为一列相互独立的随机变量,且 $X_n \sim B(1,1/n)$ 。证明 $\{X_n\}$ 依概率收敛于 0,但 $\{X_n\}$ 不几 乎必然收敛于 0。
- (2) 令 $\{X_n\}$ 为一列独立同分布的随机变量, $X_n \sim B(1,p)$ 。令 $Y_n = \frac{1}{n} \sum_{i=1}^n X_n$ 。证明 $Y_n \xrightarrow{a.s.} p$ 。

第三题

某个不使用随机性的计算机程序 A,为了输出正确结果,该程序需要对另一计算机程序 B 进行 T 次调用,每次调用使用可能不同的输入,且每次调用使用的输入可能依赖于之前对程序 B 的调用返回的结果。程序 A 使用对程序 B 的 T 次调用返回的结果以输出最终结果 θ 。具体来说,假设对程序 B 进行 T 次调用返回的结果为 $\omega_1,\omega_2,\ldots,\omega_T$,在正确得到 $\omega_1,\omega_2,\ldots,\omega_T$ 的前提下,程序 A 总是能输出正确的结果 θ 。

现有计算机程序 B'。在同样的输入下,程序 B' 以 2/3 的概率返回与程序 B 相同的结果,以 1/3 的概率返回不同的结果。现在,在没有程序 B,仅有程序 A 和程序 B' 的情况下,设计一个方案,以 $1-\delta$ 的概率得到正确结果 θ 。该方案对程序 A 和程序 B' 的调用次数应与 T 和 $\log(1/\delta)$ 为多项式关系。

第四题

在课上, 我们用 Chernoff bound 证明了下述不等式: 若 $X \sim B(n,p)$, 则

$$P(X \ge E(X) + n\epsilon) \le e^{-2n\epsilon^2}$$

$$P(X \le E(X) - n\epsilon) \le e^{-2n\epsilon^2}$$

在本题中,我们将对二项分布证明另一版本的 Chernoff bound。

- (1) 证明 $M_X(t) \le e^{(e^t-1)\cdot E(X)}$ 。提示: 使用不等式 $1+x \le e^x$ 。
- (2) 证明对于任意 $\epsilon > 0$,

$$P(X \ge (1+\epsilon)E(X)) \le \left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{E(X)};$$

对于任意 $0 < \epsilon < 1$,

$$P(X \le (1 - \epsilon)E(X)) \le \left(\frac{e^{-\epsilon}}{(1 - \epsilon)^{1 - \epsilon}}\right)^{E(X)}$$
.

提示:参考作业二第六题。

(3) 利用 (2) 中的结论,重新证明作业二第二题 (3)。也即,有 n 个球,每个球都等可能被放到 m = n 个桶中的任一个。令 X_i 表示第 i 个桶中球的数量, $Y = \max\{X_1, X_2, ..., X_n\}$ 。证明 $P(Y \ge 4 \log_2 n) \le 1/n$ 。

第五题

在课上,我们证明了下述结论: 对于任意向量 $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$,令 $A \in \mathbb{R}^{k \times d}$ 为随机矩阵,A 的不同元素 独立同分布且均服从 N(0,1), $k = O(\log n/\epsilon^2)$,则以至少 1/2 的概率,对于任意 $1 \leq i, j \leq n$,

$$(1-\epsilon)\|x_i - x_j\|^2 \le \left\|\frac{1}{\sqrt{k}}A(x_i - x_j)\right\|^2 \le (1+\epsilon)\|x_i - x_j\|^2,$$

也即令 $F(x) = \frac{1}{\sqrt{k}}Ax$ 为一随机线性变换,则以至少 1/2 的概率,F(x) 保持了每一对 x_i 和 x_j 之间的距离。证明该结论的核心工具是下述引理:对于任意 $x \in \mathbb{R}^d$,

$$P\left((1-\epsilon)\|x\|^{2} \le \left\|\frac{1}{\sqrt{k}}Ax\right\|^{2} \le (1+\epsilon)\|x\|^{2}\right) \ge 1 - 2e^{-k\epsilon^{2}/8}.$$
 (1)

为了证明原结论,对所有可能的 $x = x_i - x_j$ 使用上述结论,并使用 Union bound。

在本题中,我们将证明随机线性变换 $F(x) = \frac{1}{\sqrt{k}}Ax$ 不仅可以保持每一对 x_i 和 x_j 之间的距离,还可以保持每一对 x_i 和 x_j 之间的点积。在本题中,对于向量 $a,b \in \mathbb{R}^d$, $\langle a,b \rangle = a^{\top}b$ 为向量 a = b 的点积。

- (1) 考虑向量 $y_1,y_2,\ldots,y_n\in\mathbb{R}^d$,对于全部 $1\leq i\leq n$,满足 $\|y_i\|=1$ 。令 $A\in\mathbb{R}^{k\times d}$ 为随机矩阵,A 的不同元素独立同分布且均服从 N(0,1), $k=O(\log n/\epsilon^2)$ 。证明以至少 1/2 的概率,下述事件同时成立:
 - 对于任意 $1 \le i \le n$, $(1 \epsilon/4) \|y_i\|^2 \le \left\| \frac{1}{\sqrt{k}} A y_i \right\|^2 \le (1 + \epsilon/4) \|y_i\|^2$;
 - 对于任意 $1 \le i, j \le n$ 且 $i \ne j$, $(1 \epsilon/4)||y_i + y_j||^2 \le \left\|\frac{1}{\sqrt{k}}A(y_i + y_j)\right\|^2 \le (1 + \epsilon/4)||y_i + y_j||^2$.
- (2) 在 (1) 中结论的基础上,证明以至少 1/2 的概率,对于任意 $1 \le i, j \le n$,

$$\left| \left\langle \frac{1}{\sqrt{k}} A y_i, \frac{1}{\sqrt{k}} A y_j \right\rangle - \left\langle y_i, y_j \right\rangle \right| \le \epsilon.$$

(3) 考虑向量 $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ 。注意 x_i 不一定满足 $||x_i|| = 1$ 。证明以至少 1/2 的概率,对于任意 $1 \le i, j \le n$,

$$\left| \left\langle \frac{1}{\sqrt{k}} A x_i, \frac{1}{\sqrt{k}} A x_j \right\rangle - \left\langle x_i, x_j \right\rangle \right| \le \epsilon \|x_i\| \|x_j\|_{\circ}$$

第六题

在课上,我们证明了对于任意 $S_1, S_2, \ldots, S_m \subseteq \{1, 2, \ldots, n\}$,存在 $\chi: \{1, 2, \ldots, n\} \to \{-1, +1\}$,使得对于任意 $1 \le i \le m$,

$$\operatorname{disc}_{\chi}(S_i) = \left| \sum_{j \in S_i} \chi(j) \right| \le O(\sqrt{n \log m}).$$

在本题中,我们将证明存在 $S_1, S_2, \ldots, S_n \subseteq \{1, 2, \ldots, n\}$,对于任意 $\chi: \{1, 2, \ldots, n\} \to \{-1, +1\}$,存在 $1 \le i \le n$ 使得

$$\operatorname{disc}_{\chi}(S_i) = \left| \sum_{j \in S_i} \chi(j) \right| \ge \Omega(\sqrt{n}),$$

也即课上给出的上界 $O(\sqrt{n\log m})$ 几乎是最优的。

(1) 证明下述反集中不等式: $X \sim B(n, 1/2)$, 存在常数 $c_1, c_2 > 0$, 使得

$$P(X \ge n/2 + c_1 \cdot \sqrt{n}) \ge c_2$$
.

提示:该不等式有多种证明方法。一种可能的思路是首先使用定量化的中心极限定理(课上提到的Berry-Esseen 定理)建立二项分布与标准正态分布的联系,之后对标准正态分布证明反集中不等式。

(2) 令 S 为 $\{1,2,\ldots,n\}$ 的子集,对于每个 $j \in \{1,2,\ldots,n\}$, $P(j \in S) = 1/2$,且不同 j 是否被包含在 S 中相互独立。利用(1)中的结论,证明存在常数 $c_3,c_4>0$,对于任意 $\chi:\{1,2,\ldots,n\}\to\{-1,+1\}$,

$$P\left(\left|\sum_{j\in S}\chi(j)\right|\geq c_3\sqrt{n}\right)\geq c_4$$
.

(3) 证明存在 m = O(n) (也即对于某个常数 C, $m \le Cn$) 个集合 $S_1, S_2, \ldots, S_m \subseteq \{1, 2, \ldots, n\}$ 和常数 c > 0, 对于任意 $\chi : \{1, 2, \ldots, n\} \to \{-1, +1\}$, 存在 $1 \le i \le m$ 使得

$$\left| \sum_{j \in S_i} \chi(j) \right| \ge c\sqrt{n} \,.$$

提示: 考虑使用概率证法, 将 S_1, S_2, \ldots, S_m 取为 $\{1, 2, \ldots, n\}$ 独立同分布的随机子集, 并扩展 (2) 中的分析。

(4) 证明当 m = n 时, (3) 中的结论同样成立。

信息学中的概率统计: 作业七

截止日期: 2024 年 12 月 27 日 (周五) 下课前。**如无特殊情况,请不要提交电子版!** 注意: 本次作业第五题第二问为附加题,正确解决该问可以得到额外 15% 的分数。

第一题

给定未知参数 θ 的估计量 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$, 证明

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + (Bias(\hat{\theta}))^2 = Var(\hat{\theta}) + (\theta - E(\hat{\theta}))^2$$

第二题

令总体 X 服从概率密度函数如下的连续分布,其中 $\theta > 0$ 为未知参数,

$$f(x) = \begin{cases} \frac{\theta}{x^2} & x \ge \theta \\ 0 & x < \theta \end{cases}.$$

给定简单随机样本 X_1, X_2, \ldots, X_n , 给出 θ 的最大似然估计量。

第三题

令总体 $X\sim\pi(\lambda)$,也即参数为 λ 的泊松分布, λ 为未知参数。给定简单随机样本 X_1,X_2,\ldots,X_n ,本题中,我们将考虑 $p=e^{-\lambda}$ 的两个不同的估计量。

- (1) 考虑 p 的矩法估计量 $\hat{p}_1 = e^{-\overline{X}}$ 。这里, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 为样本均值。判断 \hat{p}_1 是否为 $p = e^{-\lambda}$ 的最大似然估计(简要说明原因,无需严格证明),判断 \hat{p}_1 是否为无偏估计量,渐进无偏估计量,一致估计量,并计算 \hat{p}_1 的均方误差。提示:参考作业二第六题。
- (2) \diamondsuit $\hat{p}_2 = \frac{1}{n} \sum_{i=1}^n 1_{X_i=0}$ 。这里

$$1_{X_i=0} = \begin{cases} 1 & X_i = 0 \\ 0 & X_i > 0 \end{cases}.$$

判断 \hat{p}_2 是否为无偏估计量,渐进无偏估计量,一致估计量,并计算 \hat{p}_2 的均方误差。

第四题

给定样本 $X_1, X_2, \ldots, X_n \sim N(\mu_1, \sigma_1^2)$, $Y_1, Y_2, \ldots, Y_m \sim N(\mu_2, \sigma_2^2)$, 满足 $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ 相互独立。

- (1) $\diamondsuit \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \ \overline{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i$ 。给出 X Y 服从的分布。
- (2) 假定 σ_1^2 和 σ_2^2 均已知,利用上一问中的结果构造枢轴量并给出 $\mu_1 \mu_2$ 的置信水平为 1α 置信区间。最终结果应依赖于 $\Phi^{-1}(1-\alpha/2)$,其中 $\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$ 为标准正态分布的分布函数。

(3) 同样假定 σ_1^2 和 σ_2^2 均已知,利用 Chernoff bound,给出 $\mu_1 - \mu_2$ 的置信水平为 $1 - \alpha$ 置信区间。最终结果不应依赖于标准正态分布的分布函数。

第五题

在课上,我们考虑了下述模型: 给定 n 台游戏机,第 i 台游戏机的中奖概率为 $0 \le p_i \le 1$,且 p_i 均为未知 参数。在第 t 轮中,选择一台游戏机 $1 \le i \le n$,并观测到结果 $X_t \sim B(1,p_i)$ 。这里 X_1,X_2,\ldots 相互独立。

在课上,我们考虑了下述均匀采样策略:对每台游戏机进行 N 次观测,并返回样本均值最大的游戏机。若取 $N = O(\ln n/\epsilon^2)$),则有 $P(p_o \ge \max p_i - \epsilon) \ge 2/3$,这里 $1 \le o \le n$ 为策略返回的选择。

本题中,我们考虑 n=2 的情况,也即给定两台游戏机,中奖概率分别为 p_1 和 p_2 ,且 p_1 和 p_2 均为未知参数。令 $\Delta=|p_1-p_2|$ 。

- (1) 若 Δ 为已知参数且 $\Delta > 0$, 证明采用均匀采样策略并令 $N = O(1/\Delta^2)$, 则有 $P(p_o = \max\{p_1, p_2\}) \ge 2/3$, 这里 o = 1 或 o = 2 为策略返回的选择。
- (2) 若 Δ 为未知参数且 $\Delta > 0$, 设计策略, 使得以至少 2/3 的概率, 下述事件同时成立:
 - $p_o = \max\{p_1, p_2\}$, 这里 o = 1 或 o = 2 为策略返回的选择;
 - 策略的总观测次数与 1/△ 为多项式关系。

本问为附加问,正确解决该问可以得到额外 15% 的分数。

信息学中的概率统计: 作业八

截止日期: 2024年1月3日(周五)期末考试前。

第一题

给定 $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$,其中 $y_i=\alpha+\beta x_i+\epsilon_i$, ϵ_i 相互独立,且 ϵ_i 服从拉普拉斯分布,其概率 密度函数(参考作业三第五题)满足对于任意实数 $x\in\mathbb{R}$,

$$f(x) = \frac{1}{2b}e^{-|x|/b},$$

这里 α, β 和 b > 0 为未知参数。证明 α 和 β 的最大似然估计量为

$$\operatorname{argmin}_{\alpha,\beta} \sum_{i=1}^{n} |y_i - (\alpha + \beta x_i)|$$
.

第二题

给定 $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$,令 $\hat{\alpha}$ 和 $\hat{\beta}$ 为最小二乘估计量, $\hat{y}_i=\hat{\beta}x_i+\hat{\alpha}$ 为 x_i 的预测值, $\overline{x}=\frac{1}{n}\sum_{i=1}^n x_i$, $\overline{y}=\frac{1}{n}\sum_{i=1}^n y_i$ 。证明

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\overline{y} - \hat{y}_i)^2.$$

提示: 利用正规方程, 并证明

$$\hat{y}_i = \overline{y} + \hat{\beta}(x_i - \overline{x}).$$

第三题

给定 $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$,其中 $y_i=\alpha+\beta x_i+\epsilon_i$, ϵ_i 相互独立且 $\epsilon_i\sim N(0,\sigma^2)$ 。沿用第二题中的记号,并令 $s^2=\frac{1}{n-2}\sum (y_i-\hat{y}_i)^2$, $s_{xx}=\sum_{i=1}^n(x_i-\overline{x})^2$ 。

(1) 令

$$q_1 = \left[1/\sqrt{n}, 1/\sqrt{n}, \dots, 1/\sqrt{n}\right]^T \in \mathbb{R}^n,$$

$$q_2 = \left[\frac{x_1 - \overline{x}}{\sqrt{s_{xx}}}, \frac{x_2 - \overline{x}}{\sqrt{s_{xx}}}, \dots, \frac{x_n - \overline{x}}{\sqrt{s_{xx}}}\right]^T \in \mathbb{R}^n.$$

证明存在 $q_3, q_4, \ldots, q_n \in \mathbb{R}^n$, 使得 $q_1, q_2, q_3, q_4, \ldots, q_n$ 为 \mathbb{R}^n 中的一组标准正交基。

- (2) 将 y 视作 \mathbb{R}^n 中的向量。对于 $1 \le i \le n$,令 $z_i = q_i^T y$,也即 $z = Qy \in \mathbb{R}^n$,其中 $Q \in \mathbb{R}^{n \times n}$ 的第 i 行为 $q_i \in \mathbb{R}^n$ 。给出 n 维随机变量 z 服从的分布。提示:计算随机向量 y 的数学期望,并验证其与 q_3, q_4, \ldots, q_n 的正交性。
- (3) 证明 $z_1 = \sqrt{n}\overline{y}$, $z_2 = \sqrt{s_{xx}}\hat{\beta}$ 。

- (4) 利用第二题中提示和结论,证明 $\sum_{i=1}^n (\hat{y}_i \overline{y})^2 = z_2^2$ 及 $(n-2)s^2 = \sum (y_i \hat{y}_i)^2 = \sum_{i=3}^n z_i^2$ 。
- (5) 给出 $(n-2)s^2/\sigma^2$ 服从的分布,并证明 s^2 与 $\hat{\alpha}$ 和 $\hat{\beta}$ 均相互独立。
- (6) 当 $\beta = 0$,给出统计量 $t = \frac{\beta}{\sqrt{s^2/\sqrt{s_{xx}}}}$ 服从的分布。
- (7) 若 σ^2 未知,考虑假设检验问题,原假设 $H_0:\beta=0$,备择假设 $H_1:\beta\neq 0$ 。拒绝域为

$$W = \{((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)) \mid |t| \ge c\},\$$

其中c为待定常数。若显著性水平为 α ,给出c的取值。