Assignment 5.3 Exercises: 2, 3, 4, 5, 7, 11

Exercise 5.3.2

Proof. We have that $\overline{f \cdot g}^G = \overline{\overline{f}^G} \overline{g}^G$, so the remainders of f and g do not need to be computed separately. Instead, for $[f] \cdot [g] \in k[x_1, \dots, x_n]/I$, $\overline{f \cdot g}^G$ can be computed. \square

Exercise 5.3.3 We can compute a Grobner basis of I with lex order x > y > z as

$$x^2 - z^{55}, xz^6 - z^{64}, y^3 - z^{54}, yz^6 - z^{24}, z^{67} - z^6,$$

and a basis with grlex order x > y > z as

$$x^9 - x^2y^2z^4, x^2y^7 - x^2z^4, y^9 - x^7, x^7y - x^2z^3, x^4y^4 - x^2z^5, x^5z - y^6, z^6 - x^4y, x^3z^2 - y^3, y^3z - x^2$$

Exercise 5.3.4

Proof. The case where c=0 is trivial. Let $c\in k$ be nonzero, and let $r=\overline{c\cdot f}^G$ be the unique remainder such that cf=q+r for some $q\in I$. It follows that r is a k-linear combination of the monomials in the complement of $\langle \mathrm{LT}(I) \rangle$. We then divide by c to get $f=\frac{q}{c}+\frac{r}{c}$. We have $\frac{q}{c}\in I$ since $c\in k$, and the monomials in $\frac{r}{c}$ are identical as the monomials in r. By Proposition 5.3.1, $\frac{r}{c}=\overline{f}^G$, so $\overline{c\cdot f}^G=c\cdot \overline{f}^G$.

Exercise 5.3.5

(5.3.5a): Let I be defined as in the text, and let $f \in \mathbb{R}[x,y]/I$ be arbitrary. Using Proposition 5.3.4, we have that

$$[f] = c_1[1] + c_2[x] + c_3[y] + c_4[y^2]$$

is a unique representation of f with $c_i \in \mathbb{R}$. Note that the mapping $\phi([f]) = (c_1, c_2, c_3, c_4)^T$ is injective between $\mathbb{R}[x, y]/I$ and \mathbb{R}^4 .

Let $c \in \mathbb{R}$ and let

$$[g] = d_1[1] + d_2[x] + d_3[y] + d_4[y^2] \in \mathbb{R}[x, y]/I.$$

Then

$$\phi([f] + [g]) = \phi((c_1 + d_1)[1] + (c_2 + d_2)[x] + (c_3 + d_3)[y] + (c_4 + d_4)[y^2])$$

$$= (c_1 + d_1, c_2 + d_2, c_3 + d_3, c_4 + d_4)^T = (c_1, c_2, c_3, c_4)^T + (d_1, d_2, d_3, d_4)^T$$

$$= \phi([f]) + \phi([g]),$$

and

$$\phi(c[f]) = \phi(cc_1[1] + cc_2[x] + cc_3[y] + cc_4[y^2]) = (cc_1, cc_2, cc_3, cc_4)^T = c(c_1, c_2, c_3, c_4)^T$$
$$= c\phi([f]).$$

Thus, by definition, ϕ is a linear map, and we conclude that $\mathbb{R}[x,y]/I \simeq \mathbb{R}^4$ by ϕ .

(5.3.5b): Using the given Grobner basis, we express each product as a linear combination of $\{[1], [x], [y], [y^2]\}$ as follows:

$$x \cdot x = 1 \cdot (x^2 + y - 1) - y + 1 \Rightarrow [x] \cdot [x] = -[y] + [1],$$

$$x \cdot y = 1 \cdot (xy - 2y^2 + 2y) + 2y^2 - 2y \Rightarrow [x] \cdot [y] = 2[y^2] - 2[y],$$

$$x \cdot y^2 = y(xy - 2y^2 + 2y) + 2(y^3 - (7/4)y^2 + (3/4)y) + (3/2)y^2 - (3/2)y$$

$$\Rightarrow [x] \cdot [y^2] = (3/2)[y^2] - (3/2)[y],$$

$$y \cdot y^2 = 1 \cdot (y^3 - (7/4)y^2 + (3/4)y) + (7/4)y^2 - (3/4)y \Rightarrow [y] \cdot [y^2] = (7/4)[y^2] - (3/4)[y]$$

$$y^2 \cdot y^2 = (y + 7/4)(y^3 - (7/4)y^2 + (3/4)y) + (37/16)y^2 - (21/16)y$$

$$\Rightarrow [y^2] \cdot [y^2] = (37/16)[y^2] - (21/16)[y].$$

(5.3.5c): $\mathbb{R}[x,y]/I$ is not a field since

$$([x] - 2[y] + 2) \cdot [y] = [xy - 2y^2 + 2y] = 0$$

so [y] is a nonzero divisor in $\mathbb{R}[x,y]$.

(5.3.5d): We factor and solve the last equation in the Grobner basis G, which results in

$$\frac{1}{4} \cdot y(4y^2 - 7y + 3) = \frac{1}{4} \cdot y(y - 1)(4y - 3) = 0$$

so $y=0,1,\frac{4}{3}$. Back-substituting into the first two equations of G and have that

$$\mathbf{V}(I) = \{(0,1), (0,-1), (1,0), (\frac{3}{4}, -\frac{1}{2})\}.$$

(5.3.5e): Part (ii) of Proposition 7 gives that V(I) has at most 6 points. Part (i) of the proposition gives a better bound since $\mathbb{R}[x,y]/I$ is of dimension 4 so it gives a bound of 4.

Exercise 5.3.7

(5.3.7a): If $\{x^{\alpha}|x^{\alpha}\notin \langle \mathrm{LT}(I)\rangle\}$ contains d elements $x^{\alpha_1},\ldots,c^{\alpha_2}$, Proposition 4 gives that $k[x_1,\ldots,x_n]/I$ is a k-vector space that is isomorphic to $S=\mathrm{Span}(x^{alpha_1},\ldots,x^{alpha_2})$. Since each α_i is distinct, it follows that all x^{α_1} are linearly independent, so S has dimension d. Because S is isomorphic to $k[x_1,\ldots,x_n]/I$, it follows that $k[x_1,\ldots,x_n]/I$ is also of dimension d.

(5.3.7b): We conclude that the number of monomials in the complement of $\langle LT(I) \rangle$ is independent of the choice of monomial order when that number is finite since Proposition 4 and Exercise 5.3.7a are independent of the choice of monomial order.

Exercise 5.3.11

(5.3.11a): We compute a Grobner basis for I with lex order x > y > z as

$$x_z + 3z^2 + z^4 - z^5, y + 3z + 6z^2 + 2z^3 + z^4 - 2z^5, -z - 3z^2 - 3z^3 - z^4 + z^6.$$

Using Theorem 5.3.6, we give the table of monomials m_d of total degree $\leq d$ that are not in $\langle \operatorname{LT}(I) \rangle$ with $1 \leq d \leq 10$:

d	m_d	monomial set M_d
1	2	$\{1,z\}$
2	3	$\left\{1, z, z^2\right\}$
3	4	$\{1, z, z^2, z^3\}$
4	5	$\{1, z, z^2, z^3, z^4\}$
≥ 5	6	$\{1, z, z^2, z^3, z^4, z^5\}$

(5.3.11b): Similarly to part (a), we compute a Grobner basis

$$x - y^2 + z^2$$
, $y^4 - 2y^2z^2 + y + z^4$

and form a table of values:

d	$\mid m_d \mid$	monomial set M_d
1	3	$\{1, y, z\}$
2	6	$\{1, y, z, yz, y^2, z^2\}$
3	10	$\{1, y, z, yz, y^2, z^2, y^2z, yz^2, y^3, z^3\}$
4	14	$\{1, y, z, yz, y^2, z^2, y^2z, yz^2, y^3, z^3, yz^3, y^2z^2, y^3z, z^4\}$
5	6	$\{1, y, z, yz, y^2, z^2, y^2z, yz^2, y^3, z^3, yz^3, y^2z^2, y^3z, z^4, y^3z^2, y^2z^3, yz^4, z^5\}$
6	22	$\{1, y, z, yz, y^2, z^2, y^2z, yz^2, y^3, z^3, yz^3, y^2z^2, y^3z, z^4, y^3z^2, y^2z^3, yz^4, z^5y^3z^3, y^2z^4, yz^5, z^6\}$
7	26	$\{1, y, z, yz, y^2, z^2, y^2z, yz^2, y^3, z^3, yz^3, y^2z^2, y^3z, z^4, y^3z^2, y^2z^3, yz^4, z^5y^3z^3, y^2z^4, yz^5, z^6, yz^4, yz^5, z^6, yz^6, z^6, z^6, z^6, z^6, z^6, z^6, z^6, $
		$\{y^3z^4, y^2z^5, yz^6, z^7\}$
≥ 8	4d-2	$M_d = M_{d-1} \cup \{y^3 z^{d-3}, y^2 z^{d-2}, y z^{d-1}, z^d\}$

(5.3.11c): This is given ad H(d) = 4d - 2 by Exercise 5.3.11b, so H(d) is linear.

(6.3.11d): We compute a Grobner basis $x^2 + y$ and form a table of values:

d	$\mid m_d$	monomial set M_d
1	4	$\{1, x, y, z\}$
2	9	$\{1, x, y, z, xy, xz, yz, y^2, z^2\}$
3	16	$\{1, x, y, z, xy, xz, yz, y^2, z^2, xy^2, xyz, xz^2, y^3, y^2z, yz^2, z^3\}$
≥ 4	$(d+1)^2$	$M_d = m_{d-1} \cup \{xy^i z^k i + k = d - 1\} \cup \{y^m z^n m + n = d\}$

(5.3.11e): It appears that dimension corresponds to the degree of the function H(d), or in other words, each equation in the definition of a variety imposes an additional constraint that reduces the possible dimension by one.