

جامعـة سيـدي محـمـد بن عبـد الله بغـاس +،۵۸،۱۱۲ (۵،۸۱۲ (۸ ۵۲۸۲ (۵۲۸۲ (۱۸۳۸) UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH DE FES

Module: Mathématique 1

Chapitre 5: Suites

Prof. Mohammed SRATI

Licence d'Éducation

Spécialité: Enseignement Primaire

02-01-2023

Sommaire

3. Suites

- Suites numériques
- Suites arithmétiques
- Suites géométriques

Definition

Une suite numérique est une application u définie d'une partie I de $\mathbb N$ dans $\mathbb R$:

$$u: I \longrightarrow \mathbb{R}$$

 $n \longrightarrow u(n) = u_n.$

Le nombre réel $u(n)=u_n$ s'appelle le terme général de la suite. La suite définie par l'application u est notée $(u_n)_{n\in I}$ ou tout simplement (u_n) si $I=\mathbb{N}$. L'ensemble $\{u(n):n\in I\}$ est appelé ensemble des valeurs de la suite.

Definition

Une suite numérique est une application u définie d'une partie I de $\mathbb N$ dans $\mathbb R$:

$$u: I \longrightarrow \mathbb{R}$$

 $n \longrightarrow u(n) = u_n.$

Le nombre réel $u(n)=u_n$ s'appelle le terme général de la suite. La suite définie par l'application u est notée $(u_n)_{n\in I}$ ou tout simplement (u_n) si $I=\mathbb{N}$. L'ensemble $\{u(n):n\in I\}$ est appelé ensemble des valeurs de la suite.

Exemple

$$u_n = \frac{1}{n+1}$$

 $v_n = (-1)^n, \ n \ge 1.$

Une suite $(u_n)_{n\in\mathbb{N}}$ définie par le couple (a,f), où a est un réel et f une fonction réelle de variable réelle, telle que

$$\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \quad \text{si } n \ge 1 \end{cases}$$

est appelée suite récurrente (simple).

Une suite $(u_n)_{n\in\mathbb{N}}$ définie par le couple (a,f), où a est un réel et f une fonction réelle de variable réelle, telle que

$$\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \quad \text{si } n \ge 1 \end{cases}$$

est appelée suite récurrente (simple).

Définition

On dit que la suite (u_n) converge vers $\ell \in \mathbb{R}$ si

$$\forall \varepsilon > 0 \quad \exists \ N_0 \in \mathbb{N} : n \ge N_0 \Rightarrow \ |u_n - \ell| < \varepsilon,$$

on écrit $\lim_{n\to+\infty}u_n=\ell$ ou $u_n\to\ell$.

Une suite $(u_n)_{n\in\mathbb{N}}$ définie par le couple (a,f), où a est un réel et f une fonction réelle de variable réelle, telle que

$$\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \quad \text{si } n \ge 1 \end{cases}$$

est appelée suite récurrente (simple).

Définition

On dit que la suite (u_n) converge vers $\ell \in \mathbb{R}$ si

$$\forall \varepsilon > 0 \quad \exists \ N_0 \in \mathbb{N} : n \ge N_0 \Rightarrow |u_n - \ell| < \varepsilon,$$

on écrit $\lim_{n\to+\infty}u_n=\ell$ ou $u_n\to\ell$.

Une suite qui ne converge pas est dite divergente.

La suite $(\frac{1}{n+1})$ converge vers 0.

Déterminons la limite de la suite de terme général $u_n = \sqrt{n+1} - \sqrt{n}$. On a

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

La suite $(\frac{1}{n+1})$ converge vers 0.

Déterminons la limite de la suite de terme général $u_n = \sqrt{n+1} - \sqrt{n}$. On a

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

Définition

(Divergence vers $\pm \infty$)

On dit que $(u_n)_{n\in\mathbb{N}}$, une suite réelle, diverge vers $+\infty$ (resp. $-\infty$), si $\forall A>0$, $\exists N_0\in\mathbb{N}$ tel que $\forall n\geqslant N_0$

$$u_n > A$$
 (resp. $u_n < -A$)

La suite $(\frac{1}{n+1})$ converge vers 0.

Déterminons la limite de la suite de terme général $u_n = \sqrt{n+1} - \sqrt{n}$. On a

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

Définition

(Divergence vers $\pm \infty$)

On dit que $(u_n)_{n\in\mathbb{N}}$, une suite réelle, diverge vers $+\infty$ (resp. $-\infty$), si $\forall A>0$, $\exists N_0\in\mathbb{N}$ tel que $\forall n\geqslant N_0$

$$u_n > A$$
 (resp. $u_n < -A$)

Exemple

$$u_n = n^2 + 1$$
, on a $\lim_{n \to +\infty} u_n = +\infty$

Si une suite est convergente, sa limite est unique.

Si une suite est convergente, sa limite est unique.

Exercice Déterminer la limite, si celle-ci existe, des suites suivantes :

$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n - 1}, \ v_n = \frac{n - \sqrt{n^2 + 1}}{n + \sqrt{n^2 - 1}}, \ w_n = 1 + \frac{\sqrt{n}}{n + 1}$$

Suite majorée, minorée, bornée

Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est majorée si $\exists M\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\leq M$.
- $(u_n)_{n\in\mathbb{N}}$ est minorée si $\exists m\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\geq m$.
- $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est majorée et minorée, ce qui revient à dire :

$$\exists M > 0 \quad \forall n \in \mathbb{N} \quad |u_n| \leq M.$$

Suite majorée, minorée, bornée

Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est majorée si $\exists M\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\leq M$.
- $(u_n)_{n\in\mathbb{N}}$ est minorée si $\exists m\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\geq m$.
- $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est majorée et minorée, ce qui revient à dire :

$$\exists M > 0 \quad \forall n \in \mathbb{N} \quad |u_n| \leq M.$$

Exemple

La suite de terme général $u_n = \sin(n)$ est bornée car pour tout $n \in \mathbb{N} \ |u_n| \leqslant 1$.

Toute suite convergente est bornée.

Toute suite convergente est bornée.

Remarque

La réciproque est fausse.

Toute suite convergente est bornée.

Remarque

La réciproque est fausse.

Exemple

La suite $(-1)^n$, $n \ge 1$, est bornée mais n'est pas convergente.

Suites monotones

Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est croissante si $\forall n\in\mathbb{N}$ $u_{n+1}\geq u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est décroissante si $\forall n\in\mathbb{N}$ $u_{n+1}\leq u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est monotone si elle est croissante ou décroissante.

Suites monotones

Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est croissante si $\forall n\in\mathbb{N}$ $u_{n+1}\geq u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est décroissante si $\forall n\in\mathbb{N}$ $u_{n+1}\leq u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est monotone si elle est croissante ou décroissante.

Remarque

Pour étudier la monotonie d'une suite (u_n) , on peut :

- 1. étudier le signe de $u_{n+1} u_n$ pour tout n,
- 2. comparer le quotient $\frac{u_{n+1}}{u_n}$ à 1 (pour tout n), à condition que la suite (u_n) ne comporte pas de termes nuls,
- 3. étudier les variations de la fonction f s'il existe f telle que $f(n) = u_n$.

• Soit (u_n) la suite de terme général $u_n = 3n + 2$. La fonction f définie sur \mathbb{R}^+ par f(x) = 3x + 2 vérifie bien la relation $\forall n \in \mathbb{N}$, $f(n) = u_n$. Cette fonction étant strictement croissante sur \mathbb{R}^+ , la suite (u_n) l'est aussi.

- Soit (u_n) la suite de terme général $u_n = 3n + 2$. La fonction f définie sur \mathbb{R}^+ par f(x) = 3x + 2 vérifie bien la relation $\forall n \in \mathbb{N}, f(n) = u_n$. Cette fonction étant strictement croissante sur \mathbb{R}^+ , la suite (u_n) l'est aussi.
- Soit (u_n) la suite de terme général $u_n = n^2$. Pour tout $n \in \mathbb{N}^*$

$$u_{n+1} - u_n = (n+1)^2 - n^2 = (n+1-n)(n+1+n) = 2n+1 > 0.$$

La suite (u_n) est donc strictement croissante.

- Soit (u_n) la suite de terme général $u_n = 3n + 2$. La fonction f définie sur \mathbb{R}^+ par f(x) = 3x + 2 vérifie bien la relation $\forall n \in \mathbb{N}, f(n) = u_n$. Cette fonction étant strictement croissante sur \mathbb{R}^+ , la suite (u_n) l'est aussi.
- Soit (u_n) la suite de terme général $u_n=n^2$. Pour tout $n\in\mathbb{N}^*$

$$u_{n+1} - u_n = (n+1)^2 - n^2 = (n+1-n)(n+1+n) = 2n+1 > 0.$$

La suite (u_n) est donc strictement croissante.

Theorem

- Toute suite croissante et majorée est convergente.
- Toute suite décroissante et minorée est convergente.

- Une suite croissante et qui n'est pas majorée tend vers $+\infty$.
- Une suite décroissante et qui n'est pas minorée tend vers $-\infty$.

- Une suite croissante et qui n'est pas majorée tend vers $+\infty$.
- Une suite décroissante et qui n'est pas minorée tend vers $-\infty$.

Exemple

• La suite de terme général $u_n = \frac{1}{n}$ pour $n \ge 1$ est décroissante et minorée donc convergente.

- Une suite croissante et qui n'est pas majorée tend vers $+\infty$.
- Une suite décroissante et qui n'est pas minorée tend vers $-\infty$.

Exemple

- La suite de terme général $u_n = \frac{1}{n}$ pour $n \ge 1$ est décroissante et minorée donc convergente.
- La suite de terme général $u_n = e^n$ est croissante mais pas majorée donc est une suite divergente.

Opération élémentaires sur les suites convergentes

Propriétés

Soient (u_n) , (v_n) deux suites réelles. Si (u_n) converge vers l_1 et (v_n) converge vers l_2 . Alors

- La suite $(u_n + v_n)$ converge vers $l_1 + l_2$.
- 2 La suite produit $(u_n v_n)$ converge vers $l_1 l_2$.
- **3** La suite $(|u_n|)$ converge vers $|l_1|$.
- Si $l_1 \neq 0$, alors il existe un entier N tel que $u_n \neq 0$ si $n \geq N$ et la suite $\left(\frac{1}{u_n}\right)_{n \geq N}$ converge vers $\frac{1}{l_1}$.

Propriétés d'ordre des suites réelles convergentes

Propriétés

• Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes telles que : $\forall n\in\mathbb{N}$, $u_n\leq v_n$. Alors

$$\lim_{n\to+\infty}u_n\leq\lim_{n\to+\infty}v_n$$

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}u_n=+\infty$ et $\forall n\in\mathbb{N}, v_n\geq u_n$. Alors $\lim_{n\to+\infty}v_n=+\infty$.

- **①** Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente telle que : $\forall n\in\mathbb{N}$, $u_n\geq 0$. Alors $\lim_{n\to +\infty}u_n\geq 0$.
- ② Attention : $si(u_n)_{n\in\mathbb{N}}$ est une suite convergente telle que : $\forall n\in\mathbb{N}, u_n>0$, on ne peut pas affirmer que la limite est strictement positive mais seulement que $\lim_{n\to+\infty}u_n\geq 0$. Par exemple la suite $(u_n)_{n\in\mathbb{N}}$ donnée par

$$u_n = \frac{1}{n+1}$$

est à termes strictement positifs, mais converge vers zéro.

Theorem (Théorème de gendarme)

Soient $(u_n)_n$, $(v_n)_n$ et $(w_n)_n$ trois suites réelles telles que :

$$u_n \le v_n \le w_n$$
 pour tout $n \in \mathbb{N}$.

On a:

Etudier la suite de terme général

$$u_n=2+\frac{\sin(n)}{n+2}.$$

On a

$$-1 \leqslant \sin(n) \leqslant 1 \ \forall n \in \mathbb{N}$$

 \Rightarrow

$$\frac{-1}{n+2} \leqslant \frac{\sin(n)}{n+2} \leqslant \frac{1}{n+2} \ \forall n \in \mathbb{N}$$

 \Rightarrow

$$2 + \frac{-1}{n+2} \le 2 + \frac{\sin(n)}{n+2} \le 2 + \frac{1}{n+2} \quad \forall n \in \mathbb{N}.$$

$$Or \lim_{n \to \infty} 2 + \frac{-1}{n+2} = \lim_{n \to \infty} 2 + \frac{1}{n+2} = 2$$
, ce qui implique

$$\lim_{n\to\infty}2+\frac{\sin(n)}{n+2}=2.$$

Si
$$\lim_{n\to+\infty}u_n=l$$
, $\lim_{n\to+\infty}w_n=l'$, et $l\neq l'$, on ne peut rien dire de v_n .

 $Si \lim_{n \to +\infty} u_n = l$, $\lim_{n \to +\infty} w_n = l'$, et $l \neq l'$, on ne peut rien dire de v_n .

Exemple

$$u_n = -2 + \frac{1}{n}, \quad w_n = 2 + \frac{1}{n}.$$

$$\lim_{n \to +\infty} u_n = -2, \quad \lim_{n \to +\infty} w_n = 2$$

Si on prend $v_n = \frac{1}{n}$, on a: $\lim_{n \to +\infty} v_n = 0$ et $u_n \le v_n \le w_n$. Si on prend $v_n = (-1)^n$ n'a pas de limite bien que : $u_n \le v_n \le w_n$. **Exercice.** Déterminer par comparaison (théorème de gendarme) la limite, si celle-ci existe, des suites suivantes

$$u_n = 1 + \frac{\sin(n^2)}{n+1}, \ \ v_n = \frac{2n + (-1)^n}{2n+1}, \ \ w_n = \frac{n^2 + (-1)^n \sqrt{n}}{n^2 + n + 1}.$$

Remarquer que $-1 \leqslant (-1)^n \leqslant 1$ pour tout $n \in \mathbb{N}$.

On dit que deux suites réelles (u_n) et (v_n) sont adjacentes si :

- 1. La suite (u_n) est croissante.
- 2. La suite (v_n) est décroissante.
- 3. La suite $(u_n v_n)$ converge vers 0.

On dit que deux suites réelles (u_n) et (v_n) sont adjacentes si :

- 1. La suite (u_n) est croissante.
- 2. La suite (v_n) est décroissante.
- 3. La suite $(u_n v_n)$ converge vers 0.

Exemple

 $u_n = \frac{-1}{n}$ et $v_n = \frac{1}{n}$ sont deux suites adjacentes, car la première est croissante, la seconde est décroissante et leur différence est nulle.

Si (u_n) et (v_n) sont deux suites adjacentes alors elles convergent vers la même limite.

Si (u_n) et (v_n) sont deux suites adjacentes alors elles convergent vers la même limite.

Exercice. On considère les suites (u_n) et (v_n) définies comme suit

$$u_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}, \quad v_n = u_n + \frac{1}{nn!}$$

$$u_n = \sum_{k=1}^n \frac{1}{k^2}, \quad v_n = u_n + \frac{1}{n}$$

$$u_n = \sum_{k=1}^n \frac{1}{k^3}, \quad v_n = u_n + \frac{1}{n^2}$$

Montrer que les suites (u_n) et (v_n) sont adjacentes.

Suites arithmétiques

Définition

Une suite (u_n) est dite arithmétique s'il existe un réel r tel que, pour tout entier naturel n

$$u_{n+1} - u_n = r$$
.

Le nombre réel r est appelé la raison de la suite arithmétique (u_n) .

Exemple

• La suite (u_n) définie par : $u_n = 7 - 9n$ est une suite arithmétique. En effet :

$$u_{n+1} - u_n = 7 - 9(n+1) - 7 + 9n = 7 - 9n - 9 - 7 + 9n = -9.$$

La différence entre un terme et son précédent reste constante et égale à -9. (u_n) est une suite arithmétique de raison -9.

Exemple

• La suite (u_n) définie par : $u_n = 7 - 9n$ est une suite arithmétique. En effet :

$$u_{n+1} - u_n = 7 - 9(n+1) - 7 + 9n = 7 - 9n - 9 - 7 + 9n = -9.$$

La différence entre un terme et son précédent reste constante et égale à -9. (u_n) est une suite arithmétique de raison -9.

• La suite (v_n) définie par : $v_n = n^2 + 3$ est-elle arithmétique ?

$$v_{n+1} - v_n = (n+1)^2 + 3 - n^2 - 3 = n^2 + 2n + 1 + 3 - n^2 - 3 = 2n + 1.$$

La différence entre un terme et son précédent ne reste pas constante. (v_n) n'est pas une suite arithmétique.

 $Si(u_n)$ est une suite arithmétique de raison r, alors

$$u_n = u_0 + nr$$
 pour tout $n \in \mathbb{N}$.

Si (u_n) est une suite arithmétique de raison r, alors

$$u_n = u_0 + nr$$
 pour tout $n \in \mathbb{N}$.

Exercice. Considérons la suite arithmétique (u_n) tel que $u_5 = 7$ et $u_9 = 19$.

- **①** Déterminer la raison et le premier terme de la suite (u_n) .
- 2 Exprimer u_n en fonction de n.

Remarque

Soit (u_n) une suite arithmétique de raison r.

Si r = 0 la suite (u_n) est constante.

Si r > 0, la suite (u_n) est strictement croissante.

Si r < 0, la suite (u_n) est strictement décroissante.

Remarque

Soit (u_n) une suite arithmétique de raison r.

Si r = 0 la suite (u_n) est constante.

Si r > 0, la suite (u_n) est strictement croissante.

Si r < 0, la suite (u_n) est strictement décroissante.

Propriétés

Soit (u_n) une suite arithmétique de raison r, alors :

$$S_n = u_0 + u_1 + \ldots + u_n = (n+1)\frac{u_0 + u_n}{2} = (n+1)\frac{2u_0 + nr}{2}$$

Remarque

Soit (u_n) une suite arithmétique de raison r.

Si r = 0 la suite (u_n) est constante.

Si r > 0, la suite (u_n) est strictement croissante.

Si r < 0, la suite (u_n) est strictement décroissante.

Propriétés

Soit (u_n) une suite arithmétique de raison r, alors :

$$S_n = u_0 + u_1 + \ldots + u_n = (n+1)\frac{u_0 + u_n}{2} = (n+1)\frac{2u_0 + nr}{2}$$

Remarque

Si le premier terme de la suite est u_1 , alors

$$S_n = n \frac{u_1 + u_n}{2}.$$

Exemple

• La suite (u_n) définie par $u_n = n$ est arithmétique de raison 1 donc :

$$S_n = 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

• La suite (u_n) définie par $u_n = 2n + 1$ est arithmétique de raison 2 donc :

$$S_n = 1 + 3 + \dots + (2n + 1) = \frac{(n+1)(1+2n+1)}{2} = (n+1)^2.$$

Exercice. (u_n) est une suite arithmétique de premier terme $u_0 = 3$ et de raison 10.

- Donner le terme général de (u_n) et calculer u_{20} .
- Calculer la somme $S_{20} = u_0 + u_1 + ... + u_{20}$.

Exercice. (u_n) est une suite arithmétique de premier terme $u_0 = 3$ et de raison 10.

- Donner le terme général de (u_n) et calculer u_{20} .
- Calculer la somme $S_{20} = u_0 + u_1 + ... + u_{20}$.

Exercice. Soit (u_n) la suite défini sur \mathbb{N} , par

$$u_{n+1} = u_n + 3$$
, et $u_0 = 1$

- Justifier que cette suite est arithmétique.
- Calculer u₁, u₂, et u₃.
- Calculer u_n en fonction de n.
- A partir de quel rang la suite u_n est elle supérieur ou égale à 100.

Suites géométriques

Définition

Une suite (u_n) est dite géométrique s'il existe un réel q tel que, pour tout entier naturel n,

$$u_{n+1} = qu_n$$

Le nombre réel q est appelé la raison de la suite géométrique (u_n) .

Suites géométriques

Définition

Une suite (u_n) est dite géométrique s'il existe un réel q tel que, pour tout entier naturel n,

$$u_{n+1} = qu_n$$

Le nombre réel q est appelé la raison de la suite géométrique (u_n) .

Exemple

La suite (u_n) définie par : $u_n = 3 \times 5^n$ est-elle géométrique ?

$$\frac{u_{n+1}}{u_n} = \frac{3 \times 5^{n+1}}{3 \times 5^n} = 5.$$

Le rapport entre un terme et son précédent reste constant et égale à 5. (u_n) est une suite géométrique de raison 5 et de premier terme $u_0 = 3 \times 5^0 = 3$.

Exercice. Montrer que ces suites sont géométriques, et préciser leur raison et leur premier terme.

$$u_n = (-4)^{2n+1}, \ v_n = 2^n \times \frac{1}{3^{n+1}}, \ w_n = (-1)^n \times 2^{3n+1}.$$

Exercice. Montrer que ces suites sont géométriques, et préciser leur raison et leur premier terme.

$$u_n = (-4)^{2n+1}, \ v_n = 2^n \times \frac{1}{3^{n+1}}, \ w_n = (-1)^n \times 2^{3n+1}.$$

Remarque

Si q = 0 tous les termes de la suite sont nuls sauf, peut être, u_0 . Nous supposerons dans la suite que $q \neq 0$.

Soit (u_n) une suite géométrique de raison q, alors :

$$u_n = q^n u_0$$
 pour tout $n \in \mathbb{N}$.

Exercice. Considérons la suite géométrique (u_n) tel que $u_4 = 8$ et $u_7 = 512$.

- **①** Déterminer la raison et le premier terme de la suite (u_n) .
- **2** Exprimer u_n en fonction de n.

Exercice. Considérons la suite géométrique (u_n) tel que $u_4 = 8$ et $u_7 = 512$.

- **①** Déterminer la raison et le premier terme de la suite (u_n) .
- 2 Exprimer u_n en fonction de n.

Propriétés

Soit (u_n) une suite géométrique de raison q, alors :

$$S_n = u_0 + u_1 + \dots + u_n = u_0 \frac{1 - q^{n+1}}{1 - q}$$
 si $q \neq 1$

$$S_n = (n+1)u_0$$
 si $q = 1$.

En particulier, si 0 < |q| < 1 alors $\lim_{n \to +\infty} S_n = u_0 \frac{1}{1-q}$.

Exercice. On considère la suite (u_n) de réels strictement positifs, définie par : $u_0 = 2$, et pour tout $n \in \mathbb{N}$, $\ln(u_{n+1}) = 1 + \ln(u_n)$.

- Exprimer u_{n+1} en fonction de u_n et préciser la nature de la suite u_n .
- Déterminer la monotonie de la suite u_n , et préciser sa limite.
- Exprimer la somme $\sum_{k=0}^{n} u_k$ en fonction de n.

