

Modellbildung unter Unsicherheit Evidenzen und Dempsters Regel

Einordnung in die Vorlesungsstruktur

Die Dempster-Shafer Regel - Alternative zur Wahrscheinlichkeitsrechnung

Evidenztheorie Betrachtet insgesamt unbekannte Sachverhalte, für die

objektiv richtige Teilinformationen gegeben sind

→ Evidenzen

Nachteil der Wahrscheinlichkeitstheorie: $P(A) + P(\neg A) = 1$

Unwissenheit kann nicht modelliert werden!

Voraussetzung für die Evidenztheorie:

Menge $\Omega = \{A_1, ..., A_n\}$ von Alternativen

- (1) Alternativenmenge ist vollständig
- (2) Alternativen schließen sich gegenseitig aus

 $Pot(\Omega)$ = Menge der Teilmengen von Ω = Potenzmenge

Ein Beispiel

Kriminalfall - Am Tatort sind Haare und Blutspuren zu finden

Die Dempster-Shafer Regel

"Je mehr Information. desto kleiner m(A)"

Definition: Basismaß

Ein Basismaß für Ω ist eine Abbildung

m: Pot(
$$\Omega$$
) \rightarrow [0,1] mit $m(\emptyset) = 0$ und $\sum_{X \subseteq \Omega} m(X) = 1$

Die **Belief - Funktion** B (akkumulierte Evidenz)

$$\mathsf{B} = \mathsf{B}_\mathsf{m} : \mathsf{Pot}(\Omega) \to [0,1] \quad \mathsf{mit} \; \mathsf{B}(\mathsf{X}) = \sum_{\mathsf{Y} \subset \mathsf{X}} \mathsf{m}(\mathsf{Y})$$

Es gilt :
$$m({A1,A2}) = B({A1,A2}) - B({A1}) - B({A2})$$

Plausibilität

$$PI(X) := \sum_{X \cap Y \neq \emptyset} m(Y)$$

"Zweifel an X"

$$Zw(X) = B(\Omega \setminus X)$$

"Oberste Wahrscheinlichkeit von X" $B^*(X) = 1 - Zw(X)$

$$B^*(X) = 1 - Zw(X)$$

X ist "fokal" wenn m(X) > 0; Die Vereinigung aller fokalen Elemente heißt **Kern** von B

"Unwissenheit über X" $B^*(X) - B(X)$

Bayes-B-Funktion :
$$B(X) + B(\Omega \setminus X) = 1$$
 für alle $X \subseteq \Omega$

Die Dempster-Shafer Regel

Inferenz bedeutet: A) Akkumulation mit anderen Evidenzen

B) Verwendung von Regeln, die entweder ganz sicher, oder nur mit einer Evidenz versehen sind

Dempsters Regel

$$m_1$$
"+" $m_2(H) = \sum_{H=X \cap Y} m_1(X) \cdot m_2(Y)$

(1) $m_1 \oplus m_2 (\emptyset) = 0$

 m_1 und m_2 heißen "unvereinbar", wenn $\sum_{\varnothing=X\cap Y} m_1(X) \cdot m_2(Y) = K = 1$

Für unvereinbare Evidenzen ist die Akkumulation nicht definiert

Die Dempster-Shafer Regel

Nochmal am Beispiel ...

Verdachtsperson Max Ernst Karl	Haarfarbe blond blond braun	Blutgruppe A AB B
Fritz	blond	Α
Heinz	braun	0
Emil	blond	Α
Ludwig	braun	В
Kurt	braun	0

Seien für m₁ die fokalen Mengen definiert als:

$$m_1(braun) = 0.6 \quad m_1(\Omega) = 0.4$$

Evidenz m₂ liefere

$$m_2(Blutgruppe \neq 0) = 0,7$$

 $m_2(\Omega) = 0,3$

Was erhalten wir durch akkumulierte Evidenz?

$$\begin{array}{lll} m_1 \oplus m_2 \; (\Omega) & = 0.4 \; ^*0.3 = 0.12 \\ m_1 \oplus m_2 \; (braun) & = 0.6 \; ^*0.3 = 0.18 \\ m_1 \oplus m_2 \; (Blutgruppe \neq 0) & = 0.4 \; ^*0.7 = 0.28 \\ m_1 \oplus m_2 \; (\{Ludwig,Karl\}) & = 0.6 \; ^*0.7 = 0.42 \\ \end{array}$$

Evidenzen

Was bedeutet "plausibel"?

Was ist eine fokale Menge?

Was ist die Besonderheit der Evidenztheorie?

Die Theorie in aller Kürze ... nun die "Praxis"!

Einordnung in die Vorlesungsstruktur

Emotionale InteraktionEmotionen und Computer?

Motivation

Wie kann man sich eine Anwendung vorstellen in der **Emotion** und **Computer** in Zusammenhang stehen?

Emotion

Grundlagen: Psychologie und Modelle

Mimikerkennung

KI-Methodik des Bildverstehens: Einsatz der **Evidenztheorie**

Plausibilität(Überraschung) = 0.72

Emotion in Computerspielen Realistische Computergegner

Empathie in interaktiven Systemen

Akzeptanz

Fraunhofer Inst., Rostock

Stressmessung

Fluglotsen

Kern des Lernverhaltens, anpassen der Lehrmethode

Lehr- und Lernsysteme

Produktevaluation

Direktes statt indirektes Feedback

FearNot! EU Projekt

Zukunftsszenario:

Einsatz in Haushalt und Pflege

Akzeptanz von "künstlichen Helfern"

Emotionserkennung

Emotionsdarstellung

Emotionsmodellierung und -inferenz

Motivation

Emotionserkennung

Emotionsdarstellung

Emotionsmodellierung und -inferenz

Mimik

Gestik

Stimme/Sprache

Sprechgeschwindigkeit, Tonhöhe, Stimmqualität, Artikulation, Lautstärke

Ärger

Angst Fröhlichkeit

Physiologische Merkmale

Hautwiderstand, Herzrate, Hirnströme, fMRT, etc.

Motivation

Emotionserkennung

Emotionsdarstellung

Emotionsmodellierung und -inferenz

Sprache Synthetische Sprache mit emotionaler Färbung

Emotion

Paul Ekman
Professor für Psychologie
University of California, San Francisco (emerit.)

- Universeller emotionaler Gesichtsausdruck
- FAST (Facial Affect Scoring Technique) Ekman, Friesen, Tomkins 1971.
- FACS (Facial Action Coding System) Ekman, Friesen 1978

Die Basisemotionen nach Ekman

Mimikklassifikation per Computer

DHBW Stuttgart

FOB = "small" furrowing of browe

LEA = "large" *left eye aperture*

LBD = "large" left browe distance

REA = "large" right eye aperture

RBD = "large" right browe distance

TIL = "small" tilting

HNC = "small" horizontal nose crinkles
VNC = "small" vertical nose crinkles

LCW = "small" left cheek wrinkle

RCW = "small" right cheek wrinkle

MA = "large" mouth aperture

TV = "both" *teeth visible*

Bildverarbeitungstechniken

Woran erkennt man nun eine Emotion?

Überraschung

- angehobenen Brauen
- aufgerissene Augen
- offener Mund
- Stirn in Falten

Oder ... ?

Angst

- angehobene Brauen
- aufgerissene Augen
- vertikale Nasenfalten
- offener Mund
- untere Zahnreihe ist sichtbar

Abbildung psychologischer Erkenntnisse

											0		
	Emotion	FOB	LEA	LBD	REA	RBD	TIL	HNC	VNC	LCW	RCW	MA	TV
Freude {	Joy-1	S	m,s	m	m,s	m	S			m,l	m,l	S	
	Joy-2	S	m,s	m	m,s	m	S			m,l	m,l	m,l	
Überraschung	Surprise	m,l	I	I	I	I	S			m,s	m,s	I	
Ärger/Wut	Anger-1	s,m	m,l	S	m,l	S	S	s,m				S	
	Anger-2	S	m,l	S	m,l	S	S	m,l		s,m	s,m	m,l	u,l,b
Ekel {	Disgust-1	s,m	s,m	m	s,m	m	s,m		s,m	s,m	s,m	S	u
	Disgust-2	s,m	S	s,m	S	s,m	s,m		m,l	s,m	s,m	S	n,u
Angst {	Fear-1	m,l	I	I	I	I	S		m,l	s,m	s,m	s,m	
	Fear-2	m,l	I	I	I	I	S		m,l	s,m	s,m	m,l	l,b
Traurigkeit {	Sorrow-1	m,l	s,m	s,m	s,m	s,m	S		m,l			s,m	
	Sorrow-2	m,l	S	S	S	S	S		m,l			m	
Verachtung {	Disdain-a	s,m	m	m	S	m	s,m			S	m	s,m	n,u,l,b
	Disdain-b	s,m	S	m	m	m	s,m			m	S	s,m	n,u,l,b
s = small, m = medium, l = large n = none, u = upper, l = lower, b = both										= both			

Anwendung der Evidenztheorie

Die Evidenztheorie benötigt eine Menge $\Omega = \{A_1, ..., A_n\}$ von Alternativen (Klassifikation *Hier:* die Menge der Emotionen $\Omega = \{joy-1, joy-2, surprise, ...\}$ Das Basismaß **m**: Pot(Ω) \rightarrow [0,1] mit m(\emptyset) = 0 und Σ m(X) = 1 REA m,s Hier: jede Messung eines Gesichtselements m,s surprise → REA = "large" (right eye aperture) anger1 nı.l anger2 nı,l \rightarrow m₁({surprise, anger1, anger2, fear1, fear2}) = 0.6 s,m Verbleibende $m_1(\Omega) = 0.4 \leftarrow$ Unsicherheit fear1 fear2

- → MA = "large" (mouth aperture)
- → m_2 ({surprise, anger2, joy2, fear2}) = 0.7 ← Zuverlässigkeit $m_2(\Omega) = 0.3$

s,m ..Konfidenz" der Messung

Akkumulation von Evidenzen

Die Evidenztheorie ermöglicht Schlussfolgerung durch Akkumulation von Evidenzen

Akkumulation von Evidenzen

Schritt 3

Validierung

- wie gut ist der menschliche Klassifikator?

Emotionsklassifikation

Beherrschen: Anwenden der Evidenztheorie!

Evidenzen