Fundamental Theorem of Calculus Part 1 and 2 Review

Exam Date: February 25/26, 2021 (FTC Part 1 and Part 2 Quiz on February 23/24, 2021)

Fundament Theorem of Calculus Part 1

Compute $\frac{dy}{dx}$ for the following (No Calculator) I.

$$1. \ \ y = \int_{0}^{x} t^2 dt$$

1.
$$y = \int_{0}^{x} t^{2} dt$$
 2. $y = \int_{0}^{5} \cos(m^{3}) dm$

$$3. \ \ y = \int_{1}^{x^4} t \sin(2t) dt$$

$$4. \ y = \int_{1}^{x} \sqrt{t} \ dt - \int_{1}^{x} \sqrt{t} \ dt$$

$$5. \quad y = \left(\int_{0}^{x} \cos t \, dt\right)^{3}$$

4.
$$y = \int_{1}^{x} \sqrt{t} dt - \int_{4}^{x} \sqrt{t} dt$$
 5. $y = \left(\int_{0}^{x} \cos t dt\right)^{3}$ 6. $\int_{3}^{x} y(t) dt = (9x + 2)(\sqrt[4]{x + 1})$

The graph of the piecewise linear function f is shown below. Let h be the function given by II. $h(x) = \int f(t)dt$ (No Calculator)

- 1. On which interval(s) is h decreasing? Justify.
- 2. Determine the absolute maximum value and the absolute minimum value of h on the interval $-1 \le x \le 9$.
- 3. On which interval(s) is the graph of h concave down? Justify.
- 4. Evaluate $\lim_{n\to\infty} \sum_{n=1}^{n} f\left(4+\frac{3k}{n}\right) \left(\frac{3}{n}\right)$
- Determine the equation of the tangent line to the curve $g(x) = 4 \int_{2}^{x} e^{t^3} dt$ at x = 2. (No Calculator) III.
- Give that $f(x) = 2x \int_{0}^{x} te^{t} dt$, on which interval(s) is f increasing and concave down. IV. (Calculator)
- Given that $g(x) = \int_{-3}^{x} (t^2 4t + 3) dt$, determine the interval(s) where g is decreasing and concave down. V. Justify your answer. (No Calculator)

The continuous function f is defined on the interval $-5 \le x \le 8$. The graph of f, which consists of four line segments, is shown in the figure above. Let g be the function given by $g(x) = 2 + \int_{2}^{x} f(t) dt$

- 1. Determine the value of g(0) and g(8)
- 2. Determine the value of g'(5) and g"(5)
- 3. Determine the interval(s) where the graph of g is decreasing and concave up. Justify.

VΠ.

Graph of f

The figure above shows the graph of the piecewise-linear function f. For $-4 \le x \le 12$, the function g is defined by $g(x) = \int_2^x f(t) dt$.

- (a) Does g have a relative minimum, a relative maximum, or neither at x = 10? Justify your answer.
- (b) Does the graph of g have a point of inflection at x = 4? Justify your answer.
- (c) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \le x \le 12$. Justify your answers.
- (d) For $-4 \le x \le 12$, find all intervals for which $g(x) \le 0$.

- VIII. The function f is defined and differentiable on the closed interval $-4 \le x \le 3$ and satisfies f(0) = -2. The graph of f', the derivative of f, consists of two quarter circles and one line segment, as shown in the figure above.
 - a) Determine the value of f(3) and f(-3).
 - b) On what interval(s) is f increasing? Justify your answer.
 - c) One what interval(s) is the function f decreasing and concave up? Explain.
 - d) State the critical numbers for f on -4 < x < 3. For each critical number, determine if it is a relative maximum, relative minimum, or neither for the function f. Justify.
 - e) Determine the absolute maximum value for the function f on the interval $-4 \le x \le 3$. Justify.
 - f) Must there be a value c such that $f''(c) = -\frac{2}{7}$ in the interval -4 < x < 3? Explain your reasoning.
 - g) Determine the meaning and value of $\frac{1}{7} \int_{-4}^{3} f'(x) dx$.
 - h) Let $g(x) = e^{f(x)}$. Determine the equation of the tangent line to the curve at x = 2.
 - i) Evaluate $\int_{-1}^{0} f''(3x) dx$.
 - j) Evaluate $\int_{-3}^{0} (5 f'(x)) dx$.

t (hours)	0	2	5	7	8
E(t) (number of entries)	0	400	1300	2100	2300

- IX. A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon (t = 0) and 8 P.M. (t = 8). The number of entries in the box t hours after noon is modeled by a differentiable function E for $0 \le t \le 8$. Values of E(t), the number of entries, at various times t are shown in the table above.
 - a) Use the data in the table to approximate the rate, in entries per hour, at which entries were being deposited at t = 6.
 - b) For 5 < t < 7, must there be at least one time t such that E(t) = 1750? Justify your answer.
 - c) For $2 \le t \le 5$, must there be a time t such that E'(t) = 300? Justify your answer.
 - d) Explain the meaning of $\frac{1}{8} \int_0^8 E(t) dt$ in the context of the problem using the correct units.
 - e) Approximate the value of $\frac{1}{8} \int_0^8 E(t) dt$, including units, using:
 - Right Riemann Sum with 4 subintervals.
 - Left Riemann Sum with 4 subintervals.
 - Midpoint Riemann Sum with 2 subintervals.
 - Trapezoidal Riemann Sum with 2 subintervals.
 - f) If the graph of E is increasing on the interval 0 < t < 8, which of the calculations in part (e) is
 - i) an overestimate? Explain
 - ii) an underestimate? Explain
 - g) Explain the meaning of $\frac{1}{8} \int_0^8 E'(t) dt$ in the context of the problem using the correct units. Calculate the value of $\frac{1}{8} \int_0^8 E'(t) dt$ including units.

X.

х	0	25	30	50
f(x)	4	6	8	12

The values of a continuous function f for selected values of x are given in the table above. What is the value of the left Riemann sum approximation to $\int_0^{50} f(x) dx$ using the subintervals [0, 25], [25, 30], and [30, 50]?

Graph of f

The continuous function f is defined on the closed interval $-6 \le x \le 5$. The figure above shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point (5, 3). It is known that the point $(3, 3 - \sqrt{5})$ is on the graph of f.

- (a) If $\int_{-6}^{5} f(x) dx = 7$, find the value of $\int_{-6}^{-2} f(x) dx$. Show the work that leads to your answer,
- (b) Evaluate $\int_{3}^{5} (2f'(x) + 4) dx$.
- (c) The function g is given by $g(x) = \int_{-2}^{x} f(t) dt$. Find the absolute maximum value of g on the interval $-2 \le x \le 5$. Justify your answer.

Graph of g

The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \le x < 3$, and $g(x) = 2(x-4)^2$ for $3 \le x \le 6$.

- (a) If f(1) = 3, what is the value of f(-5)?
- (b) Evaluate $\int_{1}^{6} g(x) dx$.
- (c) For -5 < x < 6, on what open intervals, if any, is the graph of f both increasing and concave up? Give a reason for your answer.
- (d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.

Answers:

FTC 1

I. 1.
$$\frac{dy}{dx} = x^2$$

$$2. \frac{dy}{dx} = -\cos(x^3)$$

I. 1.
$$\frac{dy}{dx} = x^2$$
 2. $\frac{dy}{dx} = -\cos(x^3)$ 3. $\frac{dy}{dx} = 4x^7 \sin(2x^4)$ 4. $\frac{dy}{dx} = 0$

$$4. \ \frac{dy}{dx} = 0$$

$$5. \frac{dy}{dx} = 3\sin^2 x \cos x$$

6.
$$\frac{dy}{dx} = \frac{9}{4}(x+1)^{\frac{-3}{4}} - \frac{3}{16}(x+1)^{\frac{-7}{4}}(9x+2) + \frac{9}{4}(x+1)^{\frac{-3}{4}}$$

II. 1.
$$-1 < x < 3$$
 since h' = f < 0

2. Abs min
$$h(3) = -0.5$$
 Abs max $h(9) = 5.5$

Abs max
$$h(9) = 5.5$$

3. h is concave down on the interval 5 < x < 9 since h' = f is decreasing on the interval 5 < x < 9

$$4. \int_{4}^{7} f(x) \, dx = 4.5$$

III.
$$y-4=-e^8(x-2)$$

Since f' is positive and decreasing

VI. 1.
$$g(0) = -2$$
 $g(8) = 2$

2.
$$g'(5) = f(5) = 0$$
 $g''(5) = f'(5) = -1$

- 3. g is decreasing and concave up on the interval (-5, -3) since g' = f is negative and increasing on (-5, -3)
- VII. (a) The function g has neither a relative minimum nor a relative maximum at x = 10 since g'(x) = f(x) and $f(x) \le 0$ for $8 \le x \le 12$.
 - (b) The graph of g has a point of inflection at x = 4 since g'(x) = f(x) is increasing for $2 \le x \le 4$ and decreasing for $4 \le x \le 8$.
- (c) g'(x) = f(x) changes sign only at x = -2 and x = 6.

$$\begin{array}{c|cc}
x & g(x) \\
-4 & -4 \\
-2 & -8 \\
6 & 8 \\
12 & -4
\end{array}$$

On the interval $-4 \le x \le 12$, the absolute minimum value is g(-2) = -8 and the absolute maximum value is g(6) = 8.

(d)
$$g(x) \le 0$$
 for $-4 \le x \le 2$ and $10 \le x \le 12$.

VIII. a)
$$\int_{0}^{3} f'(x)dx = f(3) - f(0)$$

$$\int_{-3}^{0} f'(x)dx = f(0) - f(-3)$$
$$f(3) = -2$$

$$f(-3) = -2 - \frac{9\pi}{4}$$

b) f is increasing on $\left(-3, \frac{3}{2}\right)$ since

$$f' > 0$$
 on $\left(-3, \frac{3}{2}\right)$.

- c) f is decreasing and concave up on (-4, -3) since f'(x) < 0 and f'(x) is increasing on that interval.
- d) f has critical numbers at x = -3 and $x = \frac{3}{2}$ since f'(x) = 0 at x = -3 and $x = \frac{3}{2}$. f has a relative minimum at x = -3 since f'(x) changes from negative to positive at x = -3. f has a relative maximum at $x = \frac{3}{2}$ since f'(x) changes from positive to negative at $x = \frac{3}{2}$.
- e) EVT application. f will have an absolute max at either the endpoints x = -4, or x = 3, or at the critical numbers of f x = -3, or $x = \frac{3}{2}$.

Endpoints:

Critical Numbers

$$f(3) = -2$$

$$f(-3) = -2 - \frac{9\pi}{4}$$

$$\int_{-4}^{0} f'(x)dx = f(0) - f(-4)$$

$$\int_{0}^{3} f'(x)dx = f\left(\frac{3}{2}\right) - f(0)$$

$$f(-4) = -2 - 2\pi$$

$$f\left(\frac{3}{2}\right) = \frac{1}{4}$$

Therefore, by the EVT f has its absolute maximum at $f\left(\frac{3}{2}\right) = \frac{1}{4}$ on the interval [-4, 3].

- f) No, since f' is not differentiable on the interval -4 < x < 3, then the Mean Value Theorem does not guarantee that there is a value of c in -4 < x < 3 such that $f''(3) = \frac{f'(3) f'(-4)}{3 (-4)} = -\frac{2}{7}$.
- g) $\frac{1}{7} \int_{-4}^{3} f'(x) dx$ represents the average value of f' on the interval [-4, 3].

$$\frac{1}{7} \int_{-4}^{3} f'(x) dx = \frac{1}{7} \left[-\frac{\pi}{4} + \frac{9\pi}{4} + \frac{9}{4} - \frac{9}{4} \right] = \frac{2\pi}{7}$$

h)

$$g(x) = e^{f(x)}$$

$$g'(x) = e^{f(x)} \cdot f'(x)$$

$$g'(2) = e^{f(2)} \cdot f'(2)$$

$$g'(2) = e^{0} \cdot (-1) = -1$$

$$g(x) = e^{f(x)}$$

$$g(x) = e^{f(x)}$$

$$g(x) = e^{f(x)}$$

$$g(x) = e^{f(x)}$$

$$g(2) = e^{f(2)}$$

$$f(2) = 0$$

$$f(2) = 0$$
equation $y - 1 = -1(x - 2)$

i))
$$\int_{-1}^{0} f''(3x) dx \text{ using } u = 3x$$

$$= \int_{-3}^{0} \frac{1}{3} f''(u) du$$

$$= \frac{1}{3} f'(u) \Big|_{-3}^{0}$$

$$= \frac{1}{3} [f'(0) - f'(3)]$$

$$= 1$$

j)
$$\int_{-3}^{0} (5 - f'(x)) dx$$

$$= \int_{-3}^{0} 5 dx - \int_{-3}^{0} f'(x) dx$$

$$= 5 \int_{-3}^{0} - \left[\frac{9\pi}{4} \right]$$

$$= 5(0) - 5(-3) - \frac{9\pi}{4}$$

$$= 15 - \frac{9\pi}{4}$$

IX. a)
$$E'(6) \approx \frac{E(7) - E(5)}{7 - 5} = 400$$
 entries/hour

- b) Since E(t) is differentiable, then E(t) is also a continuous function on $0 \le t \le 8$ and E(5) = 1300 and E(7) = 2100, then by the Intermediate Value Theorem there must be at least one value t, on 5 < t < 7 such that E(t) = 1750.
- c) Since E(t) is a differentiable function and $\frac{E(5) E(2)}{5 2} = 300$, then by the Mean Value Theorem, there must be a value t, in 2 < t < 5 such that $E'(t) = \frac{E(5) E(2)}{5 2} = 300$.
- d) $\frac{1}{8} \int_0^8 E(t) dt$ represents the average number of entries put into the box over the time interval $0 \le t \le 8$ hours.

e) RRS
$$\frac{1}{8} \int_0^8 E(t) dt \approx \frac{1}{8} [2(400) + 3(1300) + 2(2100) + 1(2300)] = 1400$$
 1400 entries

LRS
$$\frac{1}{8} \int_0^8 E(t) dt \approx \frac{1}{8} [2(0) + 3(400) + 2(1300) + 1(2100)] = 737.5$$
 738 entries

MRS
$$\frac{1}{8} \int_0^8 E(t) dt \approx \frac{1}{8} [5(400) + 3(2100)] = 1037.5$$
 1038 entries

TRS
$$\frac{1}{8} \int_0^8 E(t) dt \approx \frac{1}{8} \left[\frac{5(0+1300)}{2} + \frac{3(1300+2300)}{2} \right] = 1081.25$$
 1081 entries

f) The right Riemann sum is an over approximation, since E is increasing on the interval 0 < t < 8The left Riemann sum is an under approximation, since E is increasing on the interval 0 < t < 8 g) $\frac{1}{8} \int_0^8 E'(t) dt$ represents the average rate that the entries are put into the box in entries/hour over the time interval $0 \le t \le 8$ hours.

$$\frac{1}{8} \int_0^8 E'(t) dt$$

$$= \frac{1}{8} [E(8) - E(0)]$$

$$= \frac{1}{8} [2300 - 0]$$

$$= 287.5 \quad entries / hour$$

X. 290____

XI. (a)
$$\int_{-6}^{5} f(x) dx = \int_{-6}^{-2} f(x) dx + \int_{-2}^{5} f(x) dx$$
$$\Rightarrow 7 = \int_{-6}^{-2} f(x) dx + 2 + \left(9 - \frac{9\pi}{4}\right)$$
$$\Rightarrow \int_{-6}^{-2} f(x) dx = 7 - \left(11 - \frac{9\pi}{4}\right) = \frac{9\pi}{4} - 4$$

(b)
$$\int_{3}^{5} (2f'(x) + 4) dx = 2 \int_{3}^{5} f'(x) dx + \int_{3}^{5} 4 dx$$
$$= 2(f(5) - f(3)) + 4(5 - 3)$$
$$= 2(0 - (3 - \sqrt{5})) + 8$$
$$= 2(-3 + \sqrt{5}) + 8 = 2 + 2\sqrt{5}$$

$$\int_{3}^{5} (2f'(x) + 4) dx = [2f(x) + 4x]_{x=3}^{x=5}$$

$$= (2f(5) + 20) - (2f(3) + 12)$$

$$= (2 \cdot 0 + 20) - (2(3 - \sqrt{5}) + 12)$$

$$= 2 + 2\sqrt{5}$$

On the interval $-2 \le x \le 5$, the absolute maximum value of g is $g(5) = 11 - \frac{9\pi}{4}$.

XII. (a)
$$f(-5) = f(1) + \int_{1}^{-5} g(x) dx = f(1) - \int_{-5}^{1} g(x) dx$$

= $3 - \left(-9 - \frac{3}{2} + 1\right) = 3 - \left(-\frac{19}{2}\right) = \frac{25}{2}$

(c) The graph of
$$f$$
 is increasing and concave up on $0 < x < 1$ and $4 < x < 6$ because $f'(x) = g(x) > 0$ and $f'(x) = g(x)$ is increasing on those intervals.

(b)
$$\int_{1}^{6} g(x) dx = \int_{1}^{3} g(x) dx + \int_{3}^{6} g(x) dx$$

$$= \int_{1}^{3} 2 dx + \int_{3}^{6} 2(x - 4)^{2} dx$$

$$= 4 + \left[\frac{2}{3} (x - 4)^{3} \right]_{x=3}^{x=6} = 4 + \frac{16}{3} - \left(-\frac{2}{3} \right) = 10$$

(d) The graph of f has a point of inflection at x = 4 because f'(x) = g(x) changes from decreasing to increasing at x = 4.