# INTRODUCTION DOCKER

UTOPIOS U U U

**ANTHONY DI PERSIO** 

Comprendre le concept de conteneurs, avantages et inconvénients



#### INSTALLATION DE DOCKER

Installation des outils de Docker, découverte de l'écosystème



#### LES IMAGES & CONTENEURS

Comprendre le concept d'image et de conteneur Docker



#### LE DOCKERFILE

Créer une image et l'instancier en un conteneur Docker



#### TABLE DES MATIÈRES

#### DOCKER VOLUME

Comprendre la persistance des données dans Docker

#### DOCKER-COMPOSE

Comprendre le fonctionnement d'une application multi conteneurs

#### LE NETWORK DOCKER

Appréhender la communication réseau avec Docker

#### LES ORCHESTRATEURS

Introduction à la notion d'orchestrateur de conteneurs

Comprendre le concept de conteneurs, avantages et inconvénients

- Qu'est-ce que Docker ?
  - Le logiciel « Docker » est une technologie de conteneurisation qui permet la création et l'utilisation de conteneurs Linux.
- Le terme « Docker » désigne plusieurs choses
  - le projet d'une communauté Open Source
  - les outils issus de ce projet Open Source
  - l'entreprise Docker Inc. qui constitue le principal soutien de ce projet
  - les outils que l'entreprise prend officiellement en charge

- Donc...? Qu'est-ce que Docker?
  - Le logiciel « Docker » est une technologie de conteneurisation qui permet la création et l'utilisation de conteneurs Linux<sup>®</sup>
  - La communauté Open Source Docker travaille à l'amélioration de cette technologie disponible gratuitement pour tout le monde.
  - L'entreprise **Docker Inc.** s'appuie sur le travail de la communauté Docker, sécurise sa technologie et partage ses avancées avec tous les utilisateurs. Elle prend ensuite en charge les technologies améliorées et sécurisées pour ses clients professionnels.

- À quoi sert **Docker**?
  - Avec la technologie Docker, vous pouvez traiter les conteneurs comme des machines virtuelles très légères et modulaires
  - Ces conteneurs vous offrent une grande flexibilité :
    - ✓ Vous pouvez les créer, déployer des environnements très rapidement
    - ✓ Vous pouvez les copier et déplacer d'un environnement à un autre très facilement
    - ✓ Il vous permet d'optimiser vos applications pour le cloud

- Virtualisation vs Conteneurisation?
  - La virtualisation est la capacité de faire tourner un, ou plusieurs serveur virtuel sur une seule machine physique grâce à un hyperviseur
  - L'hyperviseur permet d'émuler les différentes ressources matérielles d'un serveur physique et permet à des machines virtuelles de les partager
  - Une machine virtuelle possède ses propres ressources matérielles et son propre système d'exploitation

Détails d'une Machine Virtuelle (VM)



- La virtualisation apporte des avantages :
  - Ressources adaptées aux besoins de l'application.
  - > Faciliter de manipulation (Sauvegarde, bascule,...)
  - Réduction des dépenses et réduction d'équipements nécessaires
  - Facilités pour l'administration
- La virtualisation a des inconvénients également :
  - Réduction des performances
  - Multiplication des couches OS

- Virtualisation vs Conteneurisation?
  - Isolation en VM
    - Se fait au niveau matérielle
    - Accès virtuel aux ressources via l'hôte à l'aide de l'hyperviseur
  - Isolation Dans la conteneurisation
    - Se fait au niveau du système d'exploitation
    - Exécution native sur linux et partage du noyau hôte avec les conteneurs

Virtualisation vs Conteneurisation?

Machines Virtuelles



Conteneurs Dockers



- Avantages de Docker
  - ✓ Flexibilité et légèreté grâce au partage du noyau de l'hôte
  - ✓ Scalabilité ou Extensibilité ...

- Comment fonctionne la technologie Docker ?
  - La technologie Docker utilise le noyau Linux et des fonctions de ce noyau pour :
    - Séparer les processus afin qu'ils puissent s'exécuter de façon indépendante
  - Elle utilise des fonctionnalités nativement disponibles sur Linux
    - ✓ La création de groupes de contrôle « cgroups »
    - ✓ La création des espaces de noms « namespaces »

- Un conteneurs et un processus linux isolé à l'aide de...
  - Namespaces linux qui sont un mécanisme permettant de limiter l'accès d'un processus
  - Les cgroups linux qui sont des mécanismes permettant de limiter l'accès aux ressources d'un processus
- Quelques exemples de namespaces:
  - Namespace PID
  - Namespace USER
- Quelques exemples de cgroups:
  - cgroup cpuset
  - cgroup memory

- L'utilisation de conteneur n'est pas une technologie récente
  - > Il y a de nombreuses applications qui utilisent ce concept
    - ✓ Chroot sur Unix (1982)
    - ✓ Jail sur BSD (2000)
    - ✓ Conteneurs sur Solaris (2004)
    - ✓ LXC (Linux conteneurs) sur Linux (2008)
- Les conteneurs ne sont pas nouveaux, mais leur utilisation pour déployer facilement des applications l'est.
  - La notoriété de docker vient du fait qu'il a su permettre aux utilisateurs de gérer facilement leurs conteneurs avec une interface en ligne de commande (CLI) très simple

- Docker est composé de :
  - Docker engine
  - Docker-containerd
  - Docker-runc

#### DOCKER CORE ARCHITECTURE



Le fonctionnement de Docker



# 02

# INSTALLATION DE DOCKER

Installation des outils de Docker, découverte de l'écosystème

- Docker peut être installer sur toute type de distribution
  - Windows
  - > Linux
  - MacOS
- Docker est disponible en deux éditions
  - Docker Community Edition (CE)
    - ✓ Idéale pour les développeurs individuels et les petites équipes cherchant à se familiariser avec Docker
  - Docker Enterprise Edition (EE)
    - Conçue pour les équipes de développement d'entreprise et les équipes système.

- Installation de Docker sur Windows
  - hub.docker.com/
- Configuration minimale requise pour une installation Windows
  - Windows 10 64 bits: Pro, Entreprise ou Education (version 15063 ou ultérieure)
  - La **virtualisation** est **activée** dans le **BIOS** (normalement elle est activée par défaut, sinon activer **HyperV**)
  - Au moins 4Go de RAM
- Pour utiliser Docker il vous faut un compte Docker-Hub
  - Une fois inscrit et connecté, Cliquer sur « get Docker » (CE)

Une fois Docker CE téléchargé, procéder à son installation



• Une fois terminée, vous recevrez le message suivant :



Si vous n'avez pas activé Hyper-V, alors Docker s'en chargera



Cliquez sur "OK" pour activer Hyper-V. Par la suite votre machine va automatiquement se redémarrer à la fin de l'activation d'Hyper-V

 Après votre redémarrage, Vous verrez la fenêtre suivante indiquant que le moteur Docker est bien installé



- Dernière étape, lancez votre powershell (ou terminal, CMD) en tant qu'administrateur et exécutez la commande suivante afin de vérifier que votre Docker CE c'est correctement installé
  - \$ docker --version

```
Administrateur: Windows PowerShell

PS C:\Windows\system32> docker --version

Docker version 18.09.2, build 6247962

PS C:\Windows\system32>
```

Docker est maintenant installé sur votre machine

# 03

# LES IMAGES & CONTENEURS

Comprendre le concept d'image et de conteneur Docker

- Qu'est qu'une image Docker?
  - Sur Docker, un conteneur est lancé en exécutant une image.
- Une image est un package qui inclut tout ce qui est nécessaire à l'exécution d'une application
  - Le code
  - L'exécution
  - Les variables d'environnement
  - Les bibliothèques
  - Les fichiers de configuration

- Une image est un modèle composé de plusieurs couches
  - Ces couches contiennent notre application ainsi que les fichiers binaires et les bibliothèques requises
- Lorsqu'une image est instanciée, son nom est un conteneur
  - Un conteneur est donc une image en cours d'exécution
- Pour mieux comprendre le système de couche, imaginons par exemple qu'on souhaite déployer notre application web dans un serveur LAMP (Linux Apache MySQL PHP)
  - Cette image sera composé de 4 couches
    - Ces couches sont des layers (calques) en lecture seule

- Exemple de serveur LAMP en détail
  - Une couche OS
    - ✓ Pour exécuter Apache, MySQL...
  - Une couche Apache
    - ✓ Pour exécuter le serveur Web
  - Une couche PHP
    - ✓ Interpréteur et Library PHP
  - Une couche MySQL
    - ✓ Contiendra notre SGBD Mysql



- Premières commandes Docker
  - Pour commencer on va d'abord récupérer la liste des commandes possibles
    - √ \$ docker help
- Sur l'ouput de la commande help, nous avons une information d'une grande utilité et vous permettra de gagner beaucoup de temps
  - Run 'docker COMMAND --help' for more information on a command. Exemple la commande docker volume
    - √ \$ docker volume

- Commandes Docker pour de l'information
  - Petit rappel de la commande exécutée précédemment pour vérifier le fonctionnement
    - √ \$ docker --version

Docker version 20.10.5, build 55c4c88

- La commande info permet d'afficher encore plus de détails sur votre installation de Docker
  - √ \$ docker info

```
Debug Mode: false
app: Docker App (Docker Inc., v0.9.1-beta3)
 buildx: Build with BuildKit (Docker Inc., v0.5.1-docker)
 scan: Docker Scan (Docker Inc., v0.6.0)
Containers: 9
Running: 1
Paused: 0
Stopped: 8
Images: 13
Server Version: 20.10.5
Storage Driver: overlav2
 Backing Filesystem: extfs
 Supports d_type: true
 Native Overlay Diff: true
Logging Driver: json-file
Cgroup Driver: cgroupfs
Cgroup Version: 1
Plugins:
Volume: local
 Network: bridge host ipvlan macvlan null overlay
Log: awslogs fluentd gcplogs gelf journald json-file local logentr
ies splunk syslog
Swarm: inactive
Runtimes: runc io.containerd.runc.v2 io.containerd.runtime.v1.linux
```

- Commandes Docker pour la gestion des images
  - Pour lister l'ensemble des images présentes sur votre repos local
    - ✓ \$ docker image ls
    - √ \$ docker images

| REPOSITORY  | TAG    | IMAGE ID     | CREATED    | SIZE   |
|-------------|--------|--------------|------------|--------|
|             |        |              |            | 9      |
| myapp<br>_  | latest | c13d22c29096 | 3 days ago | 415MB  |
| my_lamp     | latest | 8b2d8ac6b226 | 3 days ago | 552MB  |
| volume_test | latest | 6df9cc60aaf6 | 3 days ago | 72.7MB |

Elle nous donne différentes informations

| REPOSITORY                                                                                     | TAG                                                                                                                                        | IMAGE ID                                                                 | CREATED                                              | SIZE                 |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|----------------------|
| Le titre REPOSITORY peut<br>porter à confusion, c'est<br>essentiellement le nom de<br>l'image. | un tag ici est une façon de faire<br>référence à votre image, ils sont<br>utilisés principalement pour<br>affecter une version à une image | L'identifiant de<br>l'image (unique pour<br>chaque image<br>téléchargée) | Date de la<br>dernière<br>modification de<br>l'image | Taille de<br>l'image |

- Commandes Docker pour la gestion des images
  - Supprimer une image (par nom ou id)
    - √ \$ docker rmi < nom\_image ou id\_image>
  - Avec l'option -f pour forcer la suppression
    - √ \$ docker rmi -f < nom\_image ou id\_image>
  - Supprimer toutes les images
    - \$ docker rmi -f \$(docker images -q)

- Commandes Docker pour la gestion des images
  - Rechercher une image sur le hub registry
    - √ \$ docker search < nom\_image>
  - > Avec l'option --filter pour trier les images officielles
    - √ \$ docker search < nom\_image > --filter "is-official=true"

| NAME<br>ubuntu     | DESCRIPTION<br>Ubuntu is a Debian-based Linux operating sys… | STARS<br>12334 | OFFICIAL<br>[OK] | AUTOMATED |
|--------------------|--------------------------------------------------------------|----------------|------------------|-----------|
| websphere-liberty  | WebSphere Liberty multi-architecture images                  | 273            | [OK]             |           |
| ubuntu-upstart     | Upstart is an event-based replacement for th                 | 110            | [OK]             |           |
| open-liberty       | Open Liberty multi-architecture images based                 | 46             | [OK]             |           |
| ubuntu-debootstrap | debootstrapvariant=minbasecomponents=m                       | 44             | [OK]             |           |

- Commandes Docker pour la gestion des images
  - Pour télécharger une image à partir du hub
    - \$ docker pull <nom\_image>
  - > Télécharger une version précise (tag)
    - ✓ \$ docker pull ubuntu:16.04
  - > Télécharger la dernière version
    - \$ docker pull ubuntu:latest

- Le Hub Regitry Docker
  - Où est-ce que je peux retrouver la liste des images disponibles ?
    - ✓ Le <u>hub Registry</u>



- Le Hub Regitry Docker
  - Où est-ce que je peux retrouver la liste des images disponibles ?
    - ✓ Le <u>hub Registry</u>



Le Hub Regitry Docker



Le Hub Regitry Docker



- DESCRIPTION: Description de l'image, souvent on retrouve quelques tags, la configuration de votre conteneur (par exemple la config de votre base de données pour une image basé sur du mysql) et les liens github vers les sources du projet.
- REVIEWS : l'avis des utilisateurs
- > TAGS : les différents tags disponible pour cette image

#### Différence entre image et conteneur dans Docker

- Rappel lorsque vous utilisez des fonctionnalités permettant une isolation du processus
  - namespaces
  - cgroups
    - ✓ On appelle cela des conteneurs
- Un conteneur est une instance d'exécution d'une image
  - Plus précisément un conteneur est ce que l'image devient en mémoire lorsqu'elle est exécutée
    - Avec un état, un processus utilisateur...

#### Créer un conteneur

- Créer une instance de notre image avec docker run
  - \$ docker run [OPTIONS] </mage\_Name ou ID>
    - ✓ Exemple: \$ docker run debian:latest
- Cette commande peut être complétées par des options
  - > \$ docker run -tid ubuntu:latest
    - √ \$ docker run --help // <u>Documentation</u>

#### Options de la commande run

- -t: Allouer un terminal tty (terminal virtuel)
- -i: Garder un STDIN ouvert (l'entrée standard, plus précisément l'entrée clavier)
- -d : Exécuter le conteneur en arrière-plan
- -p: Exposer un ou plusieurs ports (mapping)
- --name : donner un nom au container
- --expose : Exposer un port ou une plage de ports
  - on demande au firewall du conteneur de nous ouvrir un port ou une plage de port
- -p ou -publish : Mapper un port déjà exposé, plus simplement ça permet de faire une redirection de port

#### Commandes pour administrer un conteneur

- Pour inspecter un conteneur
  - \$ docker inspect <nom\_conteneur>
- Pour stopper un conteneur Actif
  - \$ docker stop <nom\_conteneur>
- Pour supprimer un conteneur
  - \$ docker rm <nom\_conteneur>

#### Commandes pour administrer un conteneur

- Pour exécuter une commande dans un conteneur
  - \$ docker exec [OPTIONS] < Id ou name > command
- Docker exec peut être également complétée par des options
  - \$ docker exec -tid <nom\_conteneur> bash
- Lister les conteneurs actif
  - > \$ docker container ls ou \$ docker ps
- Lister tous les conteneurs
  - \$ docker container ls -a
    ou
    \$ docker ps -a