

하이브리드 굴삭기 시스템설계 기술 개발

(최종보고서)

2014.10.31. 주관기관: 두산인프라코어(주)

> 참여기관: (주)두산 모트롤BG 한국기계연구원 IFAS/RWTH Aachen University

산업통상자원부

기술개발사업 최종보고서 초록

1. 일반 현황

사업명		제조기반산업핵심기술개발 사업	기술분류	100604		
과제명(과제번호)		하이브리드 굴삭기 시스템 설계 기술 개발(10031841)				
주관기관	기관 (기업)명	두산인프라코어 (주)	설립일	1937.06.04		
	주소	(401 - 702) 인천광역시 동구 인중로 489				
	대표자 (기관장)	김용성	연락처	02-3398-8024		
	홈페이지	www.doosaninfracore.com	Fax	02-3398-8062		
기술 개발 현황	총괄책임자	박철규	연락처	032-211-8895		
	실무담당자	유승진	연락처 (e-mail)	032-211-8899 seungjin.yoo@doosan.com		
	참여기관 (책임자)	(추)두산 모트롤BG(장동혁), 한국기계연구원(박영준), IFAS/RWTH Aachen Univ.(H. Murrenhoff)				
	총사업비	정부출연금	민간부담금 현금 현물 합계		합계	
	(천원)	2,576,000	615,400	1,960,600	5,152,000	
	총수행 기간	2008.12.01. ~ 2014.09.30.				

2. 기술개발 개요

- o 고유가와 환경문제 및 선진 건설중장비 업체의 하이브리드 굴삭기 시장 선점에 대응 하기 위하여
 - 동력원의 하이브리드화와 선회를 전기구동하는 복합형 하이브리드 동력체계의 설계/ 평가 기술 개발
 - 선진업체 대비 연비 우월성을 확보를 위한 전기-유압식 붐 에너지 회생시스템 개발 및 핵심부품인 유압펌프모터 개발
 - 선회-붐 회생 하이브리드 굴삭기 시작품 제작 및 평가 를 수행함

선회-붐 회생 복합형 하이브리드 굴삭기 시작품

- o 선회-붐 회생 복합형 하이브리드 굴삭기 시작품을 제작하여 기존 엔진식 굴삭기 대비
 - 연비 향상율 35%
 - 작업성능 103.7%
 - CO₂ 저감율 37.1%

를 달성함

3. 개발결과 요약

	그사가 취하다가도 토러가지다 전비 중이 취계 이어되고마다				
키워드	굴삭기, 하이브리드 동력시스템, 연비, 효율, 회생, 유압펌프모터,				
	선회감속기				
	o 선회-붐 회생 복합형 하이브리드 굴삭기 설계 기술 (기존 엔진				
핵심기술	식 굴삭기 대비 35% 이상 연비 향상)				
[액곕기물 	o 붐 에너지 회생용 유압펌프모터 설계/제작/평가 기술				
	o 고감속 선회감속기 설계 기술 (감속비 70)				
	o 22톤 중형 굴삭기용 하이브리드 동력시스템 설계기술 개발 및				
	시작품 제작				
	- 기존 굴삭기 대비 연비 향상율 35%				
	- 작업 성능 100%				
	- CO ₂ 총량 35% 이상 저감				
최종목표	$_{ m O}$ 유압에너지 회생용 유압펌프모터 성능 최적화 및 $_{ m B_{10}}$ $_{ m 10,000hr}$				
4071	신뢰성 확보				
	o 하이브리드 굴삭기용 선회감속기 시제품 제작 및 시험/평가 기				
	술 연구				
	- 감속기 최대 출력토크 : 12,000N.m				
	- 감속기 소음 : 84 dB(A)				
	- 감속기 수명 : B ₁₀ 10,000시간				
	o 선회-붐 회생 복합 <mark>형</mark> 하이브리드 굴삭기 시작품 제작 및 성능				
	평가하여 기존 굴삭기 대비				
GI GI KGI	- 연비 향상율 35%				
KET KET	- 작업 성능 103.7%				
	- CO ₂ 저감율 37.1%				
	등 정량적 목표 달성				
	o 붐 에너지 회생용 유압펌프모터 성능 최적화 및 B ₁₀ 10,000hr				
개발내용 및 결과	신뢰성 확보				
	- 유압펌프모터 최종 시작품 제작 및 공인인증시험을 통하여				
	효율, 동특성, 소음 등 정량적 목표 달성				
	- 가속수명시험을 통하여 B ₁₀ 10,000hr 수명 검증				
	o 고감속 선회감속기 시제품 제작 및 시험/평가를 통하여 정량적				
	목표 달성				
	- 최대 출력토크 : 12,000N.m				
	- 효율 : 94.5 %				
	- 소음 : 82.1 dB(A)				

	o 최근 고유가 기조의 지속으로 건설기계의 연비가 고객의 Key
	Buying Factor로 자리 잡았고 Rental 업체의 비율이 증가하는
	추세임을 고려할 때 하이브리드 건설기계 시장의 성장 가능성
	이 매우 높음
	o 중형급 굴삭기 이상은 2014년부터 TIER 3의 NOx 및
	PM(Particulate Matter) 배출량보다 1/10 수준으로 줄어든 TIER
	4 배기규제를 적용받는 등 환경규제가 강화되고 있음
	o 일본 업체를 필두로 한 건설기계 선진업체의 경우, 하이브리드
	또는 에너지 손실 저감기술을 적용한 장비를 개발 완료하였거
	나 시험 중에 있음
기술개발 배경	O 본 과제에서 개발하는 선회 회생 복합형 하이브리드 동력시스
	템 설계/평가 기술 및 붐 에너지 회생시스템 기술은 선진업체
	대비 우월한 연비성능을 지니기 위한 하이브리드 굴삭기의 핵
	시기술인
	o 붐 에너지 회생용 유압펌프모터는 복합형 하이브리드 체계뿐
	만 아니라 향후 직렬형(Series type) ¹⁾ 하이브리드 체계에서도
	반드시 필요한 핵심 기술임
	o 하이브리드용 고감속 선회감속기는 선회 회생 복합형 하이브
	리드 굴삭기에서 선회전동기의 소형화를 위하여 반드시 필요
	한 부품임
	o 선회 회생 복합형 하이브리드 굴삭기 및 선회-붐 회생 복합형
	하이브리드 굴삭기는 국내 최초로 신규 개발되었음
	o 특히, 선회-붐 회생형 하이브리드 굴삭기는 전 세계적으로 상
KEIT	용화 사례가 없는 기술임
	o 핵심부품인 엔진보조전동기, 선회전동기, 전력변환장치,
	Ultra-capacitor, 고감속 선회감속기, 유압펌프모터는 국내 참여
핵심개발 기술의 의의	기관에서 설계/제작되었음 (해외 참여기관인 RWTH Aachen
	Univ.는 시뮬레이션 기반 붐 회생시스템 효율화, UC의 전기/열
	적 모델링 및 시험 등을 기반 기술을 수행함)
	o 해외 수출 비중이 85%에 달하는 국내 건설기계 산업 현황을
	고려할 때 향후 하이브리드 건설기계 시장 성숙 시 해외에서
	선진업체와의 경쟁력 확보 및 시장 확대를 위하여 반드시 확
	보되어야 하는 기술/제품임
	o 하이브리드 굴삭기 개발을 통해 축적된 기술은 향후 굴삭기
적용 분야	외 휠로더(Wheel Loader), 스키드 스티어 로더(Skid Steer
	Loader), 도저(Dozer) 등 건설중장비 뿐만 아니라 상용차 등에
	도 적용 가능함

¹⁾ 일본 Kobelco 건기 등은 1990년대 말부터 NEDO (New Energy & industrial technology Development Organization) 과제를 통하여 Series 형 하이브리드 굴삭기를 복합형보다 먼저 개발하였음

7. 제품 사진

선회-붐 회생 복합형 하이브리드 굴삭기 시작품

유압펌프모터 최종 시작품

고감속 선회감속기 최종 시작품