README for Course-Project

Author/Contact: Sudat Tuladhar / stuladha@go.olemiss.edu

Description:

This project provides a discussion on utilizing reinforcement learning (Q-learning) on a Wireless Sensor Network (WSN) routing based on link reliability. The project presents routing results on static, sparse random and dense random scenario.

Contents

File	Description
sensors.py	Provides sensor layout and assigns channel link quality
q_learning.py	Implements Q_learning algorithm
main_static_1.py	Main application for Static-1 Scenario (link quality fixed)
main_static_2.py	Main application for Static-2 Scenario (link quality fixed but different than above)
main_static_0.py	Main application for Static-0 Scenario (link quality random)
main_random_sparse.py	Main application for Sparse Random Scenario
main_random_dense.py	Main application for Dense Random Scenario

Dependencies (library):

numpy, pandas, matplotlib, seaborn, scipy

Compile and Run:

Scenario Static-1: Sensor Layout Fixed, Link Quality Fixed python main_static_1.py

Scenario Static-2: Sensor Layout Fixed, Link Quality Fixed but different than before

python main_static_2.py

Scenario Sparse Random: Sensor Layout Random and sparse in number, Link Quality random

python main_random_sparse.py

Scenario Dense Random: Sensor Layout Random and dense in number, Link Quality random

python main_random_dense.py

Details:

Find the details in the final report.