CHAPTER-11 TRIANGLES

1 Exercise 11.2

Q2. Construct a triangle ABC in which $BC=8cm, \angle B=45^0$ and AB-AC=3.5cm.

Solution:

Let A,B and C are the vertices of the triangle with coordinates. Given BC = 8cm. So the coordinates of vertices B,C are:

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$

Also given $\angle B = 45^{\circ}$, so by finding the coordinates of the other side we can form a required triangle.

The input parameters for this construction are

Symbol	Value	Description
a	8	BC
$\angle B$	45°	$\angle B$ in $\triangle ABC$
k	3.5	AB - AC i.e $c - b$
$\mathbf{e_2}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	Basis vector

Table 1: Parameters

Caluclating Other Coordinate:

$$\mathbf{A} = c \begin{pmatrix} \cos B \\ \sin B \end{pmatrix} \tag{1}$$

We know that

$$c = \frac{1}{2(1 - \frac{a\cos B}{k})} \mathbf{e_2}^{\top} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{-a^2}{k}\\ -k \end{pmatrix}$$
 (2)

$$c = 12 \tag{3}$$

The vertices of $\triangle ABC$ are

$$\mathbf{A} = 12 \begin{pmatrix} \cos 45^{\circ} \\ \sin 45^{\circ} \end{pmatrix} = \begin{pmatrix} 6\sqrt{2} \\ 6\sqrt{2} \end{pmatrix} \tag{4}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{5}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{5}$$

$$\mathbf{C} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$

Construction:

Figure 1: Triangle ABC