# CS 314 Principles of Programming Languages

Lecture 2: Syntax Analysis (Scanning)

https://powcoder.com

Add WeChat powcoder

Prof. Zheng Zhang



#### Announcement

- First recitation starts this coming Wednesday
- Homework 1 will be released after lecture 3.
- **My office hour:**Thursday 2pm 3pm at CoRE 315
- TA office hours will be announced soon.

Assignment Project Exam Help

https://powcoder.com

### **Last Class**

- Overview of compilation
- Syntax and semantics
- Formal language definition
- A rule-based rewriting system
- Introduction to regular expression

Assignment Project Exam Help

https://powcoder.com

### Compiler

Recognize legal (and illegal) programs
 Generate correct code
 Manage storage of all variables and code
 Need format for object (or assembly) code

 Assignment Project Exam Help
 https://powcoder.com
 Add WeChat powcoder
 Machine
 Code

Big step up from assembler to higher level notations



### **Pure Compilation**

- Mainly refers to translation
- Take a program in source language, output a program in target language (usually machine code)



### Interpretation

- Interpreter stays around for the execution of the program
- Interpreter is the locus of control during execution



- Most language implementations include a mixture of both compilation and interpretation.
- Common case is compilation or simple pre-processing, followed by interpretation.

### Compiled V.S. Interpreted Languages



- We generally say that:
  - A language is "interpreted" if the initial translator is "simple", or "compiled" if the initial translator is "complicated"
- Very subjective, but a language is still "compiled" if the translator has thorough analysis and non-trivial transformation.

# Syntax and Semantics of Programming Languages

### **Syntax:**

Describes what a legal program looks like

### **Semantics:**

Describes what a correct (legal) program means

Assignment Project Exam Help

https://powcoder.com

# Syntax of Programming Languages

The syntax of programming languages is often defined in two layers: *tokens* and *sentences*.

• tokens - legal combination of characters in the language

Question: How to spell a token (word)?

Assignment Project Exam Help

Answer: Regular expressions

https://powcoder.com

• sentences - legal combinations of takens in the language

Question: How to build correct sentences with tokens?

Answer: (Context - free) grammars (CFG)

### Lexical Analysis (Scott 2.1, 2.2)

### **Character Sequence:**



## Syntax Analysis (Scott, Chapter 2.3)

### **Token Sequence:**



### **Tokens (Scott 2.1, 2.2)**

# **Tokens** (Analogous to *Words of Language*)

- Smallest "atomic" units of further syntax analysis
- Used to build all the other constructs
- Example, in C:

  Assignment Project Exam Help

  Keywords: for if goto volatile...

  = \* / < > == <= >= <> () []; := ., ...

  Number: (Example: 3.14 28 ...)

  Identifier: (Example: b square addEntry ...)

# Formalisms for Lexical and Syntactic Analysis

### Two issues in Formal Languages:

• <u>Language Specification</u> → formalism to describe what a valid program (word/sentence) looks like.

• Language Recognition → formalism to describe a machine and an algorithm that can verifythat/pprogramismalid or not.

## Formalisms for Lexical and Syntactic Analysis

### Two issues in *Formal Languages*:

• <u>Language Specification</u> → formalism to describe what a valid program (word/sentence) looks like.

• <u>Language Recognition</u> → formalism to describe a machine and an algorithm that can verifhttps://ppwcgdencomalid or not.

Add WeChat powcoder

We use regular expression to specify tokens (words)

A syntax (notation) to specify regular languages.

RE p

Language L(p)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

A syntax (notation) to specify regular languages.

RE p

Language L(p)

 $r \mid s$ 

 $L(r) \cup L(s)$ 

Either r or s is a regular expression, i.e. **0**|**11** 

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

A syntax (notation) to specify regular languages.

RE p

Language L(p)

 $r \mid s$ 

 $L(r) \cup L(s)$ 

rs

 $\{RS \mid R \in L(r), S \in L(s)\}$ 

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

A syntax (notation) to specify regular languages.

RE p

Language L(p)

$$r \mid s$$
  $L(r) \cup L(s)$ 
 $rs$   $\{RS \mid R \in L(r), S \in L(s)\}$ 

Assignment Project Exam Help  $L(r) \cup L(rr) \cup L(rrr) \cup ...$  https://powcoder.com

Add WeChat powcoder

A syntax (notation) to specify regular languages.

### REp

Language L(p)

$$r \mid s$$

$$L(r) \cup L(s)$$

$$\{RS \mid R \in L(r), S \in L(s)\}$$

**/**+

Assignment Project Exam Help  $L(r) \cup L(rr) \cup L(rrr) \cup ...$  https://powcoder.com

$$r^* (r^* = r^+ \mid \epsilon)$$

 $\begin{array}{c} \mathbf{Add} \ \mathbf{WeChat} \ \mathbf{powcoder} \\ \{\epsilon\} \ \mathbf{L}(r) \ \mathbf{L}(rr) \ \mathbf{U} \dots \end{array}$ 

Any number of r's concatenated.

(s)

L(s)

A syntax (notation) to specify regular languages.

### REp

### Language L(p)

 $r \mid s$ 

 $L(r) \cup L(s)$ 

rs

 $\{RS \mid R \in L(r), S \in L(s)\}$ 

**/**+

Assignment Project Exam Help  $L(r) \cup L(rr) \cup L(rrr) \cup ...$  https://powcoder.com

$$r^* (r^* = r^+ \mid \epsilon)$$

 $\begin{array}{c} \mathbf{Add} \ \mathbf{WeChat} \ \mathbf{powcoder} \\ \{\epsilon\} \end{array} ) \longrightarrow$ 

Any number of r's concatenated.

(s)

L(s)

 $\{\mathbf{a}\}$ 

A RE can simply be a letter from the alphabet  $\Sigma$  or an empty string  $\epsilon$ 

RE Language

a|bc {a, bc}

 $(\mathbf{b}|\mathbf{c})\mathbf{a}$  {ba, ca}

a € {a} Assignment Project Exam Help

a\*|b https://powcoder.com

ab\*
Add WeChat powcoder

ab\*|c<sup>+</sup>

 $(a|b)^*$ 

(0|1)\*0

RE Language a|bc {a, bc} (b|c)a{ba, ca} **{a}** a є Assignment Project Exam Help a\*|b Here: / and + and Add WeChat powcoder ab\* ab\*|c<sup>+</sup>  $(a|b)^*$ (0|1)\*0

| RE      | Language                                      |  |
|---------|-----------------------------------------------|--|
| a bc    | {a, bc}                                       |  |
| (b c)a  | {ba, ca}                                      |  |
| a €     | {a} Assignment Project Exam Help              |  |
| a* b    | Here./pavaralerran} $\cup$ {b}                |  |
| ab*     | Add WeChat powcoder {a, ab, abb, abbb, abbb,} |  |
| ab* c+  |                                               |  |
| (a b)*  |                                               |  |
| (0 1)*0 |                                               |  |

RE Language a|bc {a, bc}  $(\mathbf{b}|\mathbf{c})\mathbf{a}$ {ba, ca} **{a}** a€ Assignment Project Exam Help a\*|b Here: / above a relation  $\cdots \} \cup \{b\}$ Add WeChat powcoder {a, ab, abb, abbb, abbb, ...} ab\* ab\*|c<sup>+</sup>  $\{a, ab, abb, abbb, abbb, \ldots\} \cup \{c, cc, ccc, \ldots\}$  $(a|b)^*$ (0|1)\*0

| RE                 | Language                                                 |  |
|--------------------|----------------------------------------------------------|--|
| a bc               | {a, bc}                                                  |  |
| (b c)a             | {ba, ca}                                                 |  |
| a €                | {a} Assignment Project Exam Help                         |  |
| a* b               | Here: $/$ powardence $\dots \} \cup \{b\}$               |  |
| ab*                | Add WeChat powcoder {a, ab, abb, abbb, abbbb,}           |  |
| ab* c <sup>+</sup> | $\{a,ab,abb,abbb,abbb,\ldots\} \cup \{c,cc,ccc,\ldots\}$ |  |
| (a b)*             | {ε, a, b, aa, ab, ba, bb, aaa, aab,}                     |  |
| (0 1)*0            |                                                          |  |

| RE      | Language                                       | Concatenation has                     |  |
|---------|------------------------------------------------|---------------------------------------|--|
| a bc    | {a, bc} →                                      | higher precedence over alternation  . |  |
| (b c)a  | {ba, ca}                                       | over alternation  .                   |  |
| a є     | {a} Assignment Project Exam Help               |                                       |  |
| a* b    | Here://payvaraler.com} $\cup$ {b}              |                                       |  |
| ab*     | Add WeChat powcoder {a, ab, abb, abbb, abbbb,} |                                       |  |
| ab* c+  | {a, ab, abb, abbb, abbbb, } ∪ {c,cc,ccc,}      |                                       |  |
| (a b)*  | {ε, a, b, aa, ab, ba, bb, aaa, aab,}           |                                       |  |
| (0 1)*0 | binary numbers ending in 0                     |                                       |  |

# Regular Expressions for Programming Languages

Let *letter* stand for A | B | C | . . . | Z Let *digit* stand for 0 | 1 | 2 | . . . | 9

Assignment Project Exam Help

https://powcoder.com

# Regular Expressions for Programming Languages

Let *letter* stand for A | B | C | . . . | Z Let *digit* stand for 0 | 1 | 2 | . . . | 9

digit<sup>+</sup> Assignment Project Exam Help integer constant:

https://powcoder.com letter(letter | digit)\* Add WeChat powcoder identifier:

real constant: digit\*.digit<sup>+</sup>

## Formalisms for Lexical and Syntactic Analysis

### Two issues in Formal Languages:

• <u>Language Specification</u> → formalism to describe what a valid program (word/sentence) looks like.

• <u>Language Recognition</u> → formalism to describe a machine and an algorithm that can verifythat/pprogramismalid or not.

Add WeChat powcoder

We use finite state automata to recognize regular language

### Finite State Automata



Assignment Project Exam Help
A Finite-State Automaton is a quadruple: < S, s, F, T >
https://powcoder.com
S is a set of states, e.g., {\$0,\$1,\$2,\$3}

s is the start state, e.g., So WeChat powcoder

- F is a set of final states, e.g., {S3}
- T is a set of labeled transitions, of the form (state, input)  $\rightarrow$  state formally,

$$S \times \Sigma \longrightarrow S$$

## Regular Expressions for Programming Languages

Let *letter* stand for A | B | C | . . . | Z Let *digit* stand for 0 | 1 | 2 | . . . | 9

digit<sup>+</sup> Assignment Project Exam Help integer constant:

https://powcoder.com letter(letter | digit)\* Add WeChat powcoder identifier:

real constant: digit\*.digit<sup>+</sup>

### Example 1:

### **Integer Constant**

RE: digit<sup>+</sup>



### Example 2:

#### **Identifier**

RE: letter(letter | digit)\*

Assignment Project Exam Help

https://powcoder.com

### Example 2:

#### **Identifier**

RE: letter(letter | digit)\*



### Example 3:

### Real constant

RE: digit\*.digit<sup>+</sup>

Assignment Project Exam Help

https://powcoder.com

### Example 3:

#### Real constant

RE: digit\*.digit<sup>+</sup>



### **Finite State Automata**

Transitions can be represented using a transition table:



An FSA *accepts* or *recognizes* an input string N **iff** there is some path from start state to a final state such that the labels on the path spell N.

### **Finite State Automata**

Transitions can be represented using a transition table:



An FSA *accepts* or *recognizes* an input string N **iff** there is some path from start state to a final state such that the labels on the path spell N.

Lack of entry in the table (or no arc for a given character) indicates an *error*—*reject*.

## **Practical Recognizers**

- Recognizer should be a deterministic finite automaton (DFA)
- Read until the end of a token
- Report errors (error recovery)
  Assignment Project Exam Help

https://powcoder.com

### **Practical Recognizers**

"identifier" regular expression:

*letter* → (a | b | c | ... | z | A | B | C | ... | Z)  

$$digit$$
 → (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)  
 $id$  → letter (letter | digit)\*

Assignment Project Exam Help

https://powcoder.com

## **Practical Recognizers**

"identifier" regular expression:
$$letter \rightarrow (a \mid b \mid c \mid ... \mid z \mid A \mid B \mid C \mid ... \mid Z)$$

$$digit \rightarrow (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9)$$

$$id \rightarrow letter (letter \mid digit)*$$

Recognizer for "identifier": https://powcoder.com











### **Next Lecture**

### Things to do:

• Read Scott, Chapters 2.3 - 2.5

Assignment Project Exam Help

https://powcoder.com