5.1. Introdução

Este problema tem por objetivo a minimização do custo total do transporte necessário ao abastecimento de n centros consumidores, a partir de m centros fornecedores.

Considerando:

 a_i : quantidade disponível no fornecedor i, i = 1,...,m.

 b_i : quantidade necessária no centro consumidor j, j = 1,...,n

 x_{ij} : quantidade a transportar do centro fornecedor i, para o centro consumidor j;

 c_{ij} : custo do transporte de uma unidade da carga, da origem i (centro fornecedor) para o destino j (centro consumidor);

Pode-se formular o problema de otimização da seguinte forma:

$$min \ Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$s.a. \begin{cases} \sum_{j=1}^{n} x_{ij} = a_{i} \\ \sum_{j=1}^{m} x_{ij} = b_{j} \\ \sum_{i=1}^{n} x_{ij} \ge 0, \quad i=1,...,m; \ j=1,...,n \end{cases}$$

O problema do transporte apresenta, portanto, m restrições de oferta e n restrições de demanda, totalizando m+n restrições de igualdade. O número total de icógnitas x_{ij} é $m \times n$. Uma primeira consequência da definição do problema pode ser observada ao se somar as m restrições de oferta, como também as n restrições de demanda.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{i=1}^{m} a_{i}$$
$$\sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij} = \sum_{j=1}^{n} b_{j}$$

Comparando essas duas equações, conclui-se que a oferta total deve igualar a demanda total, i.e. :

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

5.2. O algoritmo do transporte

Com o objetivo de facilitar o desenvolvimento do algoritmo, apresenta-se o problema de forma simplificada, através dos quadros abaixo :

Quadro de soluções

Destinos	1	•••	n	Oferta das
Origens				origens
1	x_{11}	•••	x_{ln}	a_1
			•••	
m	X_{m1}	•••	\mathcal{X}_{mn}	a_m
Demandas dos	b_I		b_n	
destinos				

Quadro de Custos

Destinos	1	 n	Ofertas
Origens			
1	c_{11}	 c_{1n}	a_1
		•••	
m	C_{m1}	 C_{mn}	a_m
Demandas	b_1	 b_n	

5.2.1. Exemplos de modelos

5.2.1.1. Uma firma construtora precisa transportar postes de concreto, que se encontram armazenados em dois almoxarifados A e B, para atender às necessidades das obras I, II, e III. Sabe-se que:

- a) Os almoxarifados A e B dispõem de 50 e 70 postes, respectivamente.
- b) As obras I, II e III necessitam de 20, 40 e 60 postes, respectivamente.

c) O quadro de custos é o seguinte:

Destinos	I	II	III	Ofertas
Origens				
A	20	15	10	50
В	12	8	16	70
Demandas	20	40	60	120

Pode-se, portanto, formular o problema como segue:

$$\min Z = 20x_{AI} + 15x_{AII} + 10x_{AIII} + 12x_{BI} + 8x_{BII} + 16x_{BIII}$$

$$\begin{cases} x_{AI} + x_{AII} + x_{AIII} = 50 \\ x_{BI} + x_{BII} + x_{BIII} = 70 \end{cases}$$

$$s.a. \begin{cases} x_{AI} + x_{BI} = 20 \\ x_{AII} + x_{BII} = 40 \\ x_{AIII} + x_{BIII} = 60 \end{cases}$$

$$x_{AI}, x_{AII}, x_{AIII}, x_{BI}, x_{BII}, x_{BIII} \ge 0$$

Se, por exemplo, não houver estrada ligando o almoxarifado A ao canteiro da obra III, a variável x_{AIII} deve resultar igual a zero. A fim de garantir esse resultado, assume-se o custo $c_{AIII} = M$, muito maior que as outras grandezas envolvidas no problema.

5.2.1.2. Oferta maior que demanda

Supondo que o total de postes armazenados no almoxarifado A é 80, em vez de 50, tem-se então um excesso em oferta, igual a 30 postes. A fim de equilibrar o modelo, admite-se uma obra fictícia IV, cuja demanda é de 30 postes. Isso corresponde à restrição de demanda adicional:

$$x_{AIV} + x_{BIV} = 30$$

Além disso, as restrições de oferta devem ser alteradas para:

$$x_{AI} + x_{AII} + x_{AIII} + x_{AIV} = 80$$

 $x_{BI} + x_{BII} + x_{BIII} + x_{BIV} = 70$

Os custos $c_{\rm AIV}$ e $c_{\rm BIV}$ devem ser considerados iguais a zero, uma vez que os 30 postes excedentes devem permanecer nos almoxarifados.

5.2.1.3. Oferta menor que demanda

Admitindo que a quantidade total de postes do almoxarifado A é de 30, em vez de 50, tem-se um déficit de 20 postes. O modelo pode ser equilibrado com a introdução de um almoxarifado fictício C, com capacidade de 20 postes, correspondendo à restrição adicional de oferta:

$$x_{CI} + x_{CII} + x_{CIII} = 20$$

Além disso, as restrições de demanda tornam-se:

$$x_{AI} + x_{BI} + x_{CI} = 20$$

 $x_{AII} + x_{BII} + x_{CII} = 40$
 $x_{AIII} + x_{BIII} + x_{CIII} = 60$

Uma vez que os quantitativos correspondentes ao almoxarifado C não serão transportados, seus custos unitários são todos considerados nulos, não influindo na solução.

5.2.2. Determinação de uma solução inicial

5.2.2.1. Rank do sistema - Teorema

"Qualquer equação do sistema, formado pelo conjunto de restrições de igualdade do modelo do problema do transporte, pode ser obtida por uma combinação linear das equações restantes".

Demonstração:

Seja a k-ésima equação de oferta:

$$\sum_{j=1}^{n} x_{kj} = a_k$$

Somando as demais (m-1) equações de oferta, tem-se:

$$\sum_{\substack{i=1\\i\neq k}}^{m}\sum_{j=1}^{n}x_{ij} = \sum_{\substack{i=1\\i\neq k}}^{m}a_{i}$$

ou ainda:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} - \sum_{j=1}^{n} x_{kj} = \sum_{i=1}^{m} a_i - a_k \tag{*}$$

Somando ainda as *n* equações de demanda, tem-se:

$$\sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij} = \sum_{j=1}^{n} b_{j} \text{ ou}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} b_j = \sum_{i=1}^{m} a_i (**)$$

Considerando a combinação linear resultante da subtração, membro a membro, das equações (**) e (*), fazendo (*)-(**), obtém-se:

$$-\sum_{j=1}^{n} x_{kj} = -a_k$$

ficando portanto demonstrado o teorema. Como consequência, o rank do sistema é (m+n-1) e qualquer base deve possui (m+n-1) variáveis.

O quadro de sol	luções para o	problema ap	resentado em 5.2.1.	1. é o seguinte:
-----------------	---------------	-------------	---------------------	------------------

Destinos	I	II	III	Oferta
Origens				
A	x_{AI}	χ_{AII}	x_{AIII}	50
В	χ_{BI}	χ_{BII}	x_{BIII}	70
Demanda	20	40	60	

O número de variáveis básicas é n+m-1=4. Dentre as seis variáveis do problema, quatro devem ser escolhidas para formar a base inicial. Seja inicialmente o conjunto $\{x_{AII}, x_{AIII}, x_{BII}, x_{BIII}\}$ candidato à base.

Assim, $x_{AI} = 0$ e $x_{BI} = 0$. Portanto, o sistema de equações reduz-se a:

$$x_{AII} + x_{AIII} = 50$$

$$x_{BII} + x_{BIII} = 70$$

$$x_{AII} + x_{BII} = 40$$

$$x_{AIII} + x_{BIII} = 60$$
(Δ)

cuja matriz dos coeficientes é:

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

É fácil observar que qualquer coluna de A pode ser obtida como uma combinação linear das demais, como p.ex.:

$$A_1 = A_2 + A_3 - A_4$$

Portanto, A_1 , A_2 , A_3 e A_4 não formam uma base A e qualquer solução do sistema (Δ) não se constitui em solução básica.

Pode-se observar que a dependência linear entre as colunas de A acontece devido ao fato de as variáveis básicas terem sido escolhidas, formando um ciclo fechado no quadro de soluções. Se em vez de x_{AII} fosse escolhida a variável x_{AI} , para pertencer ao conjunto básico, resultaria no sistema:

$$x_{AI} + x_{AIII} = 50$$

$$x_{BII} + x_{BIII} = 70$$

$$x_{AI} = 20$$

$$x_{BII} = 40$$

$$x_{AIII} + x_{BIII} = 60$$

Nesse caso, cinco equações puderam ser formadas com as possíveis variáveis básicas, mas, de acordo com o teorema do item 5.2.2.1., uma dessas equações pode ser desprezada. Com efeito:

$$L_5 = L_1 + L_2 - L_3 - L_4$$

Desprezando então a última equação, a matriz do sistema fica:

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

cujo determinante é

$$|A| = 1.(-1)^{4+3}.$$
 $\begin{vmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} = (-1)(0+1+0-0-0-0) = -1$

Portanto o rank(A) = 4 e o conjunto-solução formado por { x_{AI} , x_{AIII} , x_{BII} , x_{BIII} } é um conjutno básico, i.e., a solução $x_{AI} = 20$, $x_{AIII} = 30$, $x_{BII} = 40$, $x_{BIII} = 30$ é uma solução básica compatível.

REGRA:

A fim de se evitar a formação de ciclos fechados no processo de escolha da provável base inicial, adota-se uma regra de solução para o sistema de restrições, conhecida como "Regra do Noroeste", que consiste dos seguintes passos :

- a) Preencher as células do quadro de soluções, iniciando pela célula superior esquerda, colocando nessa célula a maior quantidade permitida pela oferta e pela demanda correspondentes.
- b) Repita o procedimento para a célula imediatamente à direita, enquanto houver excedente de oferta disponível.
- c) Acabada a oferta, siga para a célula imediatamente abaixo e repita os passos(a) e (b).
- d) O processo termina ao se atingir a célula inferior direita.

Exemplo: Aplicando-se essa regra ao problema do item 5.2.1.1, tem-se:

Destino	I	II	III	Oferta
Origens				
A	20	30		50
В		10	60	70
Demanda	20	40	60	

A solução básica inicial, de acordo com essa regra, seria $x_{AI}=20$, $x_{AII}=30$, $x_{BII}=10,\ x_{BIII}=60\,.$

5.2.2.3. Processo do Custo Mínimo

A regra do Noroeste encontra uma solução básica inicial, sem obedecer a qualquer regra de otimalidade. O processo do custo mínimo leva à obtenção de uma solução básica inicial que, em geral, é melhor do que aquela encontrada pela regra do Noroeste, tendo em vista que se baseia no quadro de custos, conforme os passos a seguir:

- a) Identificar no quadro de custos a célula com o menor valor de c_{ij} e colocar na célula correspondente do quadro de soluções o maior valor permitido pelas ofertas e demandas correspondentes.
- b) Atualizar os valores de oferta e demanda correspondentes e retornar ao passo anterior, até que sejam "zeradas" todas as ofertas e todas as demandas.

Nesse processo, deve-se ainda evitar células que, apesar do custo mínimo, apresentem oferta ou demanda correspondentes nulas, ou que formem um ciclo fechado no quadro de soluções.

Exemplo: Considerando ainda o problema do item 5.2.2.1, tem-se:

qua	idro c	le cus	stos	quadro de soluções					
20	15	10	50	_			50		
12	8	16	70		<i>40</i>		30	$(L_2 - L_4)$	
20	40	60		20	0	60			

A solução básica inicial é $x_{AIII}=50$, $x_{BI}=20$, $x_{BII}=40$, $x_{BIII}=10$, que corresponde a z=1220. Para a solução inicial encontrada pela regra do Noroeste temse z=1890.

5.2.3. Determinação da solução ótima

Obtida a solução básica compatível inicial, deve-se explicitar a função objetivo em função das variáveis não-básicas. Em seguida, o método simplex pode, em princípio, ser aplicado.

Para o exemplo tratado anteriormente, tem-se o seguinte quadro, para iniciar o processo de solução pelo método simplex:

	Z	x_{AI}	x_{AII}	x_{AIII}	x_{BI}	x_{BII}	x_{BIII}	b	
Base	1	-20	-15	-10	-12	-8	-16	0	L_0
	0	1	1	1	0	0	0	50	
	0	0	0	0	1	1	1	<mark>70</mark>	L ₂ - L ₄
	0	1	0	0	1	0	0	20	
	0	0	1	0	0	1	0	40	

Base	1	-20	-15	-10	-12	-8	-16	0	
	0	1	1	1	0	0	0	50	
	0	0	-1	0	1	0	1	30	L ₂ - L ₃
	0	1	0	0	1	0	0	20	
	0	0	1	0	0	1	0	40	

Base	1	-20	-15	-10	-12	-8	<mark>-16</mark>	0	$L_0 + \frac{10}{10}L_1 + \frac{16}{16}L_2 + \frac{12}{12}L_3 + 8L_4$
X _{AIII}	0	1	1	1	0	0	0	50	
X_{BIII}	0	-1	-1	0	0	0	1	10	
x_{BI}	0	1	0	0	1	0	0	20	
x_{BII}	0	0	1	0	0	1	0	40	
Base	1	-14	-13	0	0	0	0	1220	500+160+240+320

Uma vez que o problema é de minimização, os coeficientes negativos das variáveis não-básicas na função objetivo garantem que a solução ótima foi alcançada: $x_{AI}=0$, $x_{AII}=0$, $x_{AII}=50$, $x_{BI}=20$, $x_{BII}=40$, $x_{BIII}=10$ e z=1220.

Se o processo fosse inicializado através da regra do Noroeste, ter-se-ia:

Base	1	-20	-15	-10	-12	-8	-16	0	$L_0 + 20L_3$
	0	1	1	1	0	0	0	50	L_1 - L_3
	0	0	0	0	1	1	1	70	
XAI	0	1	0	0	1	0	0	20	
	0	0	1	0	0	1	0	40	
Base	1	0	-15	-10	8	-8	-16	400	$L_0 + 15L_1$
X _{AII}	0	0	1	1	-1	0	0	30	
	0	0	0	0	1	1	1	70	
x_{AI}	0	1	0	0	1	0	0	20	
	0	0	1	0	0	1	0	40	$L_4 - L_1$
Base	1	0	0	5	-7	-8	-16	850	$L_0 + 8L_4$
X _{AII}	0	0	1	1	-1	0	0	30	1
	0	0	0	0	1	1	1	70	L_2 - L_4
	i e	•							i

x_{AI}	0	1	0	0	1	0	0	20	
$\mathbf{x_{BII}}$	0	0	0	-1	1	1	0	10	
Base	1	0	0	-3	1	0	-16	930	$L_0 + 16L_2$
X _{AII}	0	0	1	1	-1	0	0	30	
$\mathbf{x}_{\mathbf{BIII}}$	0	0	0	1	0	0	1	60	
x_{AI}	0	1	0	0	1	0	0	20	
X _{BII}	0	0	0	-1	1	1	0	10	
	Z	XAI	X _{AII}	X _{AIII}	X _{BI}	X _{BII}	X_{BIII}	b	
Base	1	0	0	13	1	0	0	1890	L_0 - 13 L_1
${ m x_{AII}}$	0	0	1	1	-1	0	0	30	
X _{BIII}	0	0	0	1	0	0	1	60	L_2 - L_1
X _{AI}	0	1	0	0	1	0	0	20	
X _{BII}	0	0	0	-1	1	1	0	10	L_4+L_1
Base	1	0	-13	0	14	0	0	1500	L ₀ - 14L ₃
X _{AIII}	0	0	1	1	-1	0	0	30	L_1+L_3
X _{BIII}	0	0	-1	0	1	0	1	30	L_2 - L_3
\mathbf{x}_{AI}	0	1	0	0	1	0	0	20	
X _{BII}	0	0	0	0	0	1	0	40	
Base	1	-14	-13	0	0	0	0	1220	
x _{AIII} *	0	1	1	1	0	0	0	50	
x _{BIII} *	0	-1	-1	0	0	0	1	10	
x _{BI} *	0	1	0	0	1	0	0	20	
x _{BII} *	0	0	1	0	0	1	0	40	