MACHINE LEARNING

Dr Ioannis Patras i.patras@qmul.ac.uk

ECS708 Machine Learning

Slide no: 1

Course Format

- 12 weeks, 2 (+1 occasionally) hours of lectures per week
- 2 coursework assignments organised in 6 lab sessions of 2 hrs each as follows:
 - · 2hrs lab sessions for part 1 of assignment X
 - 2hrs lab sessions for part 2 of assignment X
 - · 2hrs lab sessions for assessment of part1 and part2
- Assesment: 80% final exam, 20% coursework

ECS708 Machine Learning

Recommended texts

- Kevin Murphy. Machine Learning. A probabilistic perspective. MIT Press. http://www.cs.ubc.ca/~murphyk/MLbook/
 - [Main book for the module]
- D. Barber: Bayesian Reasoning and Machine Learning [Comprehensive, a bit advanced, free online pdf]
- Duda, Hart and Stork: Pattern Classification (2001) [Good, comprehensive]
- Bishop: Pattern Recognition and Machine Learning (2006) [Good and reasonably affordable.]
- Barber (2002). [Thorough coverage of Probability, RVs, etc.]

ECS708 Machine Learning

Slide no: 3

Machine Learning

 Use of "intelligent" techniques for analysis and processing of signals and data.

Applications include:

- Spam Filtering
- Stock market prediction
- · Autonomous vehicles
- Medical diagnosis
- Search engines (google search, google image search)
- Speech recognition
- · News grouping, Ad placement
- Netflix recommendations

ECS708 Machine Learning

A Few Quotes

- "A breakthrough in machine learning would be worth ten Microsofts" (Bill Gates, Chairman, Microsoft)
- "Machine learning is the next Internet" (Tony Tether, former director, DARPA)
- "Machine learning is the hot new thing" (John Hennessy, President, Stanford)
- "Web rankings today are mostly a matter of machine learning" (Prabhakar Raghavan, former Dir. Research, Yahoo)
- "Machine learning is going to result in a real revolution" (Greg Papadopoulos, former CTO, Sun)

ECS708 Machine Learning

Slide no: 5

Machine Learning by examples

Classification

ECS708 Machine Learning

Example training images for each orientation

ECS708 Machine Learning

Machine Learning by examples

Regression

ECS708 Machine Learning

Facial landmark localisation

https://www.youtube.com/watch?v=ONnobin5GBs

ECS708 Machine Learning

Slide no: 11

Machine Learning by examples

Clustering

ECS708 Machine Learning

Machine Learning by examples

Ranking

Slide no: 15

ECS708 Machine Learning

http://www.tiltomo.com/

ECS708 Machine Learning

Slide no: 17

Machine Learning by examples

Recommendation

ECS708 Machine Learning

Recommendation systems

Netflix competition (www.netflixprize.com)
Machine learning competition with \$1m prize

ECS708 Machine Learning

Types of Learning Problems

- Supervised Learning Regression, Classification
- Unsupervised Learning Clustering
- Reinforcement Learning Policy learning

ECS708 Machine Learning

Slide no: 21

Supervised Learning: learn a prediction function

Learning a function f when the target is known for the training data.

Given
$$\{(x_i, y_i)\}^{\wedge} N_{\{i=1\}}$$
, $x_i \in X, y_i \in Y$
Learn $f: X \to Y$

House price prediction [R] Stock market prediction [R] Categorizing (Classification).

Supervised Learning (regression)

Learn to predict the price of a house (target) given the size of the house (features)

ECS708 Machine Learning

Slide no: 23

Supervised Learning (classification)

Learn to predict the whether a tumour of a given size (feature) is malignant or not (target)

ECS708 Machine Learning

Unsupervised Learning

Categorise these LEGO bricks into groups
Can you write an algorithm to explain how you grouped them?

No explicit target
was given.
Reduce dimensions
Compress data
Visual Hierarchies

Unsupervised Learning (clustering)

Given the size and hue/colour (features) of several fruits, group them into clusters

ECS708 Machine Learning

Reinforcement Learning

CRAIG SWANSON @ WWW. PERSPICUITY. CO.

- LEGO example. Choose 2 blocks one after the other, and I'll tell you how well you've done.
- A kind of denuded supervised learning where you just have a hotter/colder signal, not the complete right answer. Its as if I give you an exam and a mark, but never the model answers. At least there is more guidance than with unsupervised learning.

Reinforcement Learning

Given the outcome (reward) of previous checkers games, learn the move (action) you should make given a checkerboard configuration (state).

ECS708 Machine Learning

Other ways for Classifying Machine Learning Methods

Parametric Methods: Learn a low dimensional set of parameters, e.g. weights in a neural network, throwing away the training data points.

Non-parametric: Keeps the training data points throughout, e.g. k-nearest neighbor methods.

Think of the whole of ML like this

Feature Selection: Pre-process the data based on domain specific/expert knowledge.

Model: Choose a machine to make the prediction using these features.

Cost Function: Write an equation that describes how good or bad your model is doing.

Minimize cost function: Write an algorithm to minimize/maximize your cost function, preferably provably so.

Generalization: Check that you have not overfitted or underfitted the data, e.g. the football predicting octopus.

Techniques

Techniques covered in ECS708 include:

- · Probability and Random Variables
- Neural Networks
- · Bayesian Inference
- Clustering
- Hidden Markov Models (HMMs)
- Principal Components Analysis, Independent Component Analysis

ECS708 Machine Learning

Slide no: 31

Probability and Random Variables

• Probability of an event (set of possible outcomes):

$$P(A) \ge 0$$

$$P(\Omega)=1$$

 $P(A \cup B) = P(A) + P(B)$ if A, B mutually exclusive

- Random Variables $X: \Omega \rightarrow IR$
 - Distribution function $F_X(x) = P(X \le x)$
 - Density function (pdf) $f_X(x) = \frac{d}{dx} F_X(x)$

(More familiar as p(x))

ECS708 Machine Learning

Neural Networks

Adjust "weight" parameters in a network of simple calculating units to produce desired behaviour.

ECS708 Machine Learning

Slide no: 33

Statistical Inference

Use of probability theory to estimate the "best" answer Uses estimate of prob. of observation ${\bf x}$ given classes ω_i

$$p(x \varpi_i)$$

1) Maximum Likelihood – Choose $\max_i p(x \square \omega_i)$

E.g. Classification of Fish:

2) Use Bayes Theorem:

$$p(\omega_i \square x) = \frac{p(x \square \omega_i) p(\omega_i)}{p(x)}$$

Choose $\max_{i} p(\omega_{i} \square x)$

salmon sea buss

by

liphness

[After all, we have x and want to know ω_i]

ECS708 Machine Learning

Clustering

- Collecting together "similar" observations or signals.
- E.g. cluster similar documents, music, bacteria,... Issues:
- Similarity measures to use?
- · Same / different sized clusters?
- How many clusters?

ECS708 Machine Learning

Slide no: 35

Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs)

- Statistical model of speech utterances
- We don't "see" the states ("hidden"), only their output
- Choose the most probable word given the utterance

Blind Sources Separation - want to "unmix" observed signals that contain more than one source signal – the "Cocktail Party Problem"

ECS708 Machine Learning