

Formale Grundlagen der Informatik

9

Entscheidbarkeit von Problemen Unentscheidbare Probleme Halteproblem • Reduktionen


```
■ \mathcal{L}(REC) = \{L \mid L \text{ ist rekursiv }\}
■ \mathcal{L}(RE) = \{L \mid L \text{ ist rekursiv aufzählbar }\}
= \{L \mid L = G(M) \text{ für eine TM } M \}
= \{L \mid L = L(M) \text{ für eine TM } M \}
```

Folgerung 8.7: $\mathcal{L}(REG) \subseteq \mathcal{L}(REC) \subseteq \mathcal{L}(RE)$

```
Teilmenge nach Lemma 8.7; echt wegen { a^nb^n \mid n \ge 0 }
```

Teilmenge nach Lemma 8.2; *Echtheit heute*

Menge versus Entscheidbarkeitsproblem

• Recap: Eine Menge $L \subseteq \Sigma^*$ ist rekursiv wenn ihre charakteristische Funktion

$$\varphi_L(x) = \begin{cases} 1 & \text{falls } x \in L \\ 0 & \text{falls } x \notin L \end{cases}$$

für alle $x \in \Sigma^*$ Turing-berechenbar ist.

Formulierung als Entscheidbarkeitsproblem:

Eingabe: Wort $w \in \Sigma^*$

Frage: Gilt $w \in L$?

 Umgekehrt definiert jedes Entscheidbarkeitsproblem die Menge aller Eingaben mit Antwort "Ja".

Menge versus Entscheidbarkeitsproblem

Beispiel:

Primzahlproblem:

Eingabe: natürliche Zahl *n*

Frage: Ist *n* eine Primzahl?

 $\{n \in \mathbb{N} \mid n \text{ ist Primzahl}\}$

Entscheidbarkeitsprobleme

 intuitiv: Ja/Nein-Frage, ob Elemente eines Grundbereichs eine gewisse Eigenschaft (Prädikat) haben oder nicht

■ **Eingabe:** kodiert als ein Wort w über einem geeigneten Alphabet Σ (z.B. ein Paar ganzer Zahlen x und y durch bin(x)#bin(y) über $\{0,1,\#\}$)

Ausgabe: 1 falls w eine gewisse Eigenschaft hat

0 sonst

(z.B. 1, falls x und y teilerfremd, sonst 0)

Darstellung durch Eingabe, Frage (Ja/Nein-Frage)

Entscheidbarkeit von Problemen

- Sei L die Menge der Wörter über Σ , die die Eigenschaft haben (für die die Ausgabe 1 ist).
 - Das **Problem** ist **(algorithmisch) entscheidbar**, falls die Menge *L* entscheidbar (d.h. rekursiv) ist.
 - > Also falls die charakteristische Funktion von L Turing-berechenbar ist:

$$\varphi_L(x) = \begin{cases} 1 & \text{falls } x \in L \\ 0 & \text{falls } x \notin L \end{cases}$$

 \triangleright Es gibt also eine TM, die *für alle* Eingabewörter über Σ entweder 0 oder 1 ausgibt (f_M ist **totale** Funktion \longrightarrow TM hält bei allen Eingabewörtern!!!)

Wortproblem

• Sei $L \subseteq \Sigma^*$ eine Sprache. Das **Wortproblem** für L lautet:

Eingabe: Wort $w \in \Sigma^*$

Frage: Gilt $w \in L$?

 \blacktriangleright Das Wortproblem für eine Sprache L ist genau dann entscheidbar, wenn L rekursiv ist.

Die Entscheidbarkeit des Wortproblems hängt davon ab,
 wie L spezifiziert werden wird (DEA / NEA / RA / DTM / NTM / ...).

■ Eingabe: ein Mechanismus M, der eine Sprache $L(M) \in \Sigma^*$ definiert;

ein Wort $w \in \Sigma^*$

Frage: Gilt $w \in L(M)$?

 \triangleright Eingaben sind also Paare (M, w), wobei M geeignet als Wort kodiert ist

- Die Tupel, die einen Automaten (DEA, NEA, DTM, ...) spezifizieren, können als Wörter geschrieben werden, wenn die Tripel $\delta(q_i,a_j)=\delta_{ij}$ hintereinander aufgeschrieben werden.
- Beispiel: Bei $Q = \{q_1, q_2, q_3\}$ und $\Sigma = \{a_1, a_2\}$: $\delta_{11}\delta_{12}\delta_{21}\delta_{22}\delta_{31}\delta_{32}$
- Binäre Kodierungen von Automaten existieren ...

- $M = (\{q_1, q_2, \dots, q_k\}, \{a_1, a_2, \dots, a_\ell\}, \{a_1, a_2, \dots, a_\ell, a_{\ell+1}, \dots, a_m\}, \delta, q_1, a_m, \{q_j, q_{j+1}, \dots, q_k\})$
- Kodierungen der Symbole (intuitiv, aber redundant):

$$q_i o 0^i 1$$
 für $1 \le i \le k$, (Zustände) $a_i o 0^i 1^2$ für $1 \le i \le m$, (Bandsymbole) $R o 01^3$ $L o 0^2 1^3$ $(o 01^4$ $) o 0^2 1^4$ $\{ o 01^5$ $\} o 0^2 1^5$

■ Beispiel: $M = (\{q_1, q_2\}, \{0\}, \{0, *\}, (q_1, 0, R)(q_1, *, R)(q_2, 0, R)(q_2, *, R), q_1, *, \{q_2\})$ $\rightarrow \text{Kodierung} \quad \langle M \rangle = 01^4 \, 01^5 \, 010^2 \, 10^2 \, 1^5 \, 01^5 \, 01^2 \, 02^2 \, 1^5 \, 01^2 \, 02^2 \, 1^2 \, 02^2 \, 1^5$ $01^4 \, 010^2 \, 1^2 \, 01^3 \, 0^2 \, 1^4 \, 01^4 \, 010^2 \, 1^2 \, 01^3 \, 0^2 \, 1^4 \, 01^4 \, 0^2 \, 101^2 \, 01^3 \, 0^2 \, 1^4$ $01^4 \, 0^2 \, 10^2 \, 1^2 \, 01^3 \, 0^2 \, 1^4 \, 010^2 \, 1^2 \, 01^5 \, 0^2 \, 10^2 \, 1^5 \, 0^2 \, 1^4$

Das universelle Wortproblem für rekursiv aufzählbare Sprachen:

Eingabe: DTM $M, w \in \Sigma^*$, geschrieben als $\langle M \rangle \langle w \rangle$

Frage: Gilt $w \in L(M)$?

... ist äquivalent zu dem Problem

Eingabe: DTM $M, w \in \Sigma^*$, geschrieben als $\langle M \rangle \langle w \rangle$

Frage: Hält M bei Eingabe w? \longrightarrow Halteproblem für TM

 Entscheidbarkeit des Halteproblems für DTM ist also die Frage, ob die universellen Sprache

$$\boldsymbol{L_u} = \{ \langle M \rangle \langle w \rangle \mid w \in L(M) \}$$

rekursiv ist.

Eigenschaften der universellen Sprache

Satz 9.1. Die universelle Sprache L_u ist rekursiv aufzählbar.

Beweisskizze: Konstruieren eine TM M_u mit $L(M_u) = L_u$ wie folgt:

- 1. Prüfe, ob das Eingabewort von der Form $\langle M \rangle \langle w \rangle$ ist.
- 2. Simuliere die Arbeit von *M* auf der Eingabe *w*.
- 3. Halte, wenn *M* auf der Eingabe *w* hält.

Dann gilt $w \in L(M)$ gdw. $\langle M \rangle \langle w \rangle \in L(M_u)$.

Da $\langle M \rangle \langle w \rangle \in L_u$ gdw. $w \in L(M)$, akzeptiert M_u die Menge L_u .

Eine nicht rekursiv aufzählbare Sprache

Satz 9.2. Es gibt eine Sprache, die nicht rekursiv aufzählbar ist.

Beweis: Konstruieren eine Sprache L_d wie folgt.

unendliche Tabelle:

- i: Index des Wortes w_i in kanonischer Anordnung aller Wörter über {0,1}
- **j**: falls Binärdarstellung von j (nach Ergänzung einer führenden 0) Code einer TM ist, nennen wir diese TM M_i

Eine nicht rekursiv aufzählbare Sprache

Satz 9.2. Es gibt eine Sprache, die nicht rekursiv aufzählbar ist.

Beweis: Konstruieren eine Sprache L_d wie folgt.

unendliche Tabelle:

Tabelleneintrag an Zelle (i, j) ist genau dann eine $\mathbf{1}$, wenn j Code einer TM und diese TM M_j das Wort w_i akzeptiert; sonst $\mathbf{0}$

Einträge in der Diagonalen sind 1, wenn $w_i \in L(M_i)$, sonst 0.

Jniversitati

Eine nicht rekursiv aufzählbare Sprache

- Sei L_d die Sprache aller w_i so dass in der Diagonalen in der i-ten Zeile (also an der Tabellenposition (i, i)) eine 0 steht.
- Annahme: L_d wird von einer TM akzeptiert.
- Es gelte $L_d = L(M_k)$ für ein $k \ge 1$.
- Falls $w_k \in L_d$, dann ist der Eintrag in der Tabelle an Position (k, k) eine 0. Dann gilt also $w_k \notin L(M_k)$, somit $w_k \notin L_d$. Widerspruch!
- Falls $w_k \notin L_d$, dann ist an (k, k) eine 1, also $w_k \in L_d$. Widerspruch!
- ullet Folglich gibt es kein solches k. Also ist L_d nicht rekursiv aufzählbar.

Eigenschaften der universellen Sprache

Satz 9.3. Die universelle Sprache L_u ist nicht rekursiv.

Beweis: Angenommen, die TM E entscheidet $L_u = \{\langle M \rangle \langle w \rangle \mid w \in L(M) \}$.

Konstruieren folgenden Algorithmus, der auf Eingabe w aus $\{0,1\}^*$ so arbeitet:

- 1. Bestimme die Zahl i, sodass $w = w_i$ in der kanonischen Anordnung.
- 2. Schreibe die Binärzahl i (potenziell den Code der TM M_i) vor $w=w_i$.
- 3. Entscheide mit E, ob $0iw \in L_{n}$ gilt oder nicht.
 - \triangleright Antwort ist "Ja", falls i eine TM kodiert und $w_i \in L(M_i)$, sonst "Nein".
 - \triangleright Antwort ist "Ja" gdw. in der Entscheidungstabelle an Position (i, i) eine 1 steht.
 - \triangleright Antwort ist "Ja" gdw. $w_i \in \overline{L_d}$.

Eigenschaften der universellen Sprache

Angenommen, die TM E entscheidet $L_u = \{\langle M \rangle \langle w \rangle \mid w \in L(M) \}$.

Dann ist $\overline{L_d}$ also rekursiv. Widerspruch!

Denn:

- L_d ist nicht rekursiv aufzählbar (Beweis von Satz 9.2).
- L_d ist nicht rekursiv (Lemma 8.2).
- Wenn $\overline{L_d}$ rekursiv wäre, dann auch L_d (Lemma 8.5). Also kann $\overline{L_d}$ nicht rekursiv sein.

Folgerung 9.4. Das Halteproblem für DTMs ist unentscheidbar.

- $\mathcal{L}(REC) = \{ L \mid L \text{ ist rekursiv } \}$
- $\mathcal{L}(RE) = \{ L \mid L \text{ ist rekursiv aufzählbar } \}$

Folgerung 9.5: $\mathcal{L}(\mathsf{REG}) \subset \mathcal{L}(\mathsf{REC}) \subset \mathcal{L}(\mathsf{RE})$ L_u L_d

- $\succeq L_u$ ist nicht entscheidbar, aber semi-entscheidbar: nur korrekte Eingaben werden identifiziert!
- $\succ L_d$ ist nicht semi-entscheidbar.

Reduktionen

- ullet Unentscheidbarkeit des Halteproblems im wesentlichen gezeigt durch Diagonalisierung für L_d .
- Weitere Unentscheidbarkeiten werden meist durch Reduktion von einem bekannten unentscheidbaren Problem (z.B. Halteproblem) gezeigt.
- > Zusammenhang zwischen den Problemen so herstellen, dass gilt:

Wenn das Problem entscheidbar ist, dann ist auch das Halteproblem für TM entscheidbar (Widerspruch!).

Eingabe: zwei DTM M_1 und M_2

Frage: Gilt $L(M_1) = L(M_2)$?

Satz 9.6. Das Äquivalenzproblem für DTM ist unentscheidbar.

Vorbereitung der Reduktion vom Halteproblem für DTM:

	Halteproblem	Äquivalenzproblem
Eingabe	$\langle M \rangle \langle w \rangle$	$\langle M_1 \rangle \langle M_2 \rangle$
Ausgabe ist "Ja", falls	$w \in L(M)$	$L(M_1) = L(M_2)$
Ausgabe ist "Nein", falls	$w \notin L(M)$	$L(M_1) \neq L(M_2)$

Satz 9.6. Das Äquivalenzproblem für DTM ist unentscheidbar.

Beweis:

- Konstruieren M_1 so,
 - dass alle Wörter außer w sofort abgelehnt werden und
 - bei Eingabe w die Arbeit von M auf w simuliert wird.

$$L(M_1) = \begin{cases} \{w\} & \text{falls } w \in L(M) \\ \emptyset & \text{falls } w \notin L(M) \end{cases}$$

- Konstruieren M_2 so, dass $L(M_2) = \{w\}$.
- $ightharpoonup L(M_1) = L(M_2)$ gdw. $w \in L(M)$.
- > Wenn das Äquivalenzproblem entscheidbar ist, dann auch das Halteproblem.
- > Das Äquivalenzproblem für DTM ist unentscheidbar.

- innerhalb der Theorie:
 - z.B. Check, ob Konvertierungen (z.B.
 - von RA in RA oder
 - von DEA in RA oder RA in DEA oder
 - von NTM in DTM ...)

korrekt sind

- in Anwendungen:
 - z.B. Check, ob eine Softwaremigration geglückt ist ...
 - kann für reguläre Sprachen automatisiert werden
 - muss für rekursiv aufzählbare Sprachen in jedem Einzelfall gesondert nachgewiesen werden

• Leerheit für DTM:

■ Eingabe: DTM *M*

• Frage: Gilt $L(M) = \emptyset$?

• **Regularität** für DTM:

■ Eingabe: DTM *M*

• Frage: Gilt $L(M) \in \mathcal{L}(REG)$?

Rekursivität für DTM:

■ <u>Eingabe</u>: DTM *M*

• Frage: Gilt $L(M) \in \mathcal{L}(REC)$?

• Erfüllbarkeit in der Prädikatenlogik:

Eingabe: prädikatenlogischer Ausdruck

$$\forall x. r(x, f(y))$$

Frage: Gibt es eine Interpretation der Symbole des Ausdrucks und eine Belegung der freien Variablen, so dass der Ausdruck wahr ist?

Hilberts 10. Problem

 <u>Eingabe</u>: Polynom in n Variablen mit ganzzahligen Koeffizienten

Frage: Gibt es eine ganzzahlige Lösung?

Hilberts 10. Problem (genauer)

Eingabe: Ganze Zahl $n \ge 1$, Polynom $p(x_1, x_2, ..., x_n) = \sum c_{i_1 i_2 ... i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$ mit ganzzahligen Koeffizienten $c_{i_1 i_2 ... i_n}$

Frage: Gibt es eine Lösung von $p(x_1, x_2, ..., x_n) = 0$ in \mathbb{Z}^n ?

Beispiele:

 $p(x,y,z) = 3xyz^2 + 5xy^2 - 4x^2yz = 0$ hat die Lösung (2,1,1)

 $p(x,y,z) = 2x^4y^2 + 3x^2z^2 + 2y^2z^6 - 1 = 0$

hat keine Lösung, da die ersten drei Summanden 0 oder ≥ 2 sind.

Ein entscheidbarer Spezialfall

Hilberts 10. Problem ist entscheidbar für Polynome in einer Variablen:

$$p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_k x^k$$

- p(x) = 0 gdw. $-c_0 = c_1 x + c_2 x^2 + \dots + c_k x^k$
- \triangleright Jede Lösung für x muss Teiler von c_0 sein.
- \triangleright Es gibt nur endlich viele Teiler von c_0 .
- Poer Entscheidungsalgorithmus bestimmt diese Teiler und setzt sie in die Gleichung ein. Wird so eine Nullstelle von p(x) gefunden, dann ist die Antwort "Ja", sonst "Nein".