Licence 1 de MIAGE **TD : Suites et fonctions dérivables**

Exercice 1 Répondre par Vrai ou Faux

- 1. La somme de deux nombres irrationnels est un irrationnel.
- 2. La somme d'un nombre irrationnel et d'un nombre rationnel est un irrationnel.
- 3. Entre deux nombres réels distincts, il existe toujours un rationnel.
- 4. Entre deux nombres rationnels distincts, il existe toujours un irrationnel.
- 5. L'ensemble des irrationnels est un intervalle de \mathbb{R} .
- 6. Toute partie majorée de \mathbb{R} possède une borne supérieure.
- 7. Si une partie A de \mathbb{R} possède une borne supérieure M, alors tout réel m strictement inférieur à M appartient à A.

Exercice 2 Soit A une partie non vide de \mathbb{R} . On pose

$$-A = \{-x : x \in A\}.$$

1. Si A est majorée, -A est minorée et on a

$$\inf(-A) = -\sup A;$$

2. si A est minorée, -A est majorée et on a

$$sup(-A) = -infA.$$

3. si $A \subset \mathbb{R}_+^*$ alors

$$\sup\left(\frac{1}{A}\right) = \frac{1}{\inf A}.$$

Exercice 3 Soient A et B deux parties non vides de \mathbb{R} . On définit l'ensemble

$$A + B = \{x + y : x \in A \text{ et } y \in B\}.$$

Montrer que:

- 1. si A et B sont majorées alors
 - A + B est majorée et on a

$$\sup(A+B) = \sup A + \sup B;$$

• $A \cup B$ est majorée et on a

$$\sup(A \cup B) = \sup(\sup A, \sup B)$$

- 2. si A et B sont minorées alors
 - A + B est minorée et on a

$$\inf(A+B) = \inf A + \inf B;$$

 $A \cup B$ est minorée et on a

$$\inf(A \cup B) = \inf(\inf A, \inf B).$$

Exercice 4 Déterminer l'ensemble de définition des fonctions f, g, h et i suivantes :

$$f(x) = \sqrt{-x} + \frac{1}{\sqrt{1-x}}$$
 $g(x) = \ln\left(\frac{1+x}{3-x}\right)$ $h(x) = (x+1)^{\frac{1}{x}}$ $i(x) = \arcsin(1-x^2)$.

Exercice 5 Les fonctions f et g suivantes sont-elles prolongeables par continuité en 0?

$$f(x) = x \sin\left(\frac{1}{x}\right)$$
 $g(x) = xE\left(\frac{1}{x}\right)$.

Exercice 6

- 1. Montrer que l'application f définie par $f(x) = \frac{x}{1+|x|}$ est lipschitzienne sur \mathbb{R} .
- 2. Montrer que si g est une application continue sur \mathbb{R} telle que

$$\lim_{x \to -\infty} g(x) = 0 \quad \text{ et } \quad \lim_{x \to +\infty} g(x) = 0,$$

alors q est bornée.

Exercice 7 Montrer que $\forall (a, b) \in \mathbb{R}^2$ tels que 0 < a < b on a

$$\frac{b-a}{b} < \ln\left(\frac{b}{a}\right) < \frac{b-a}{a}.$$

Exercice 8 On considère la fonction f définie par

$$f(x) = \frac{e^{x^2} - 1}{x}$$
 si $x \neq 0$ et $f(0) = 0$.

- 1. Etudier la dérivabilité de f.
- 2. Montrer que f définie une bijection de \mathbb{R} sur \mathbb{R} .