Abstract

Fluoranthene derivatives of the general formula I

$$X-\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}\right)_{n}^{R^{4}}$$

$$(I)$$

where the symbols have the following meanings:

10

15

20

25

n

 R^1 , R^2 , R^3 , R^4 , R^5 are each hydrogen, alkyl, an aromatic radical, a fused aromatic ring system, a heteroaromatic radical or $-CH=CH_2$, (E)- or (Z)-CH=CH-C₆H₅, acryloyl, methacryloyl, methylstyryl, -O-CH=CH₂ or glycidyl;

where at least one of the radicals R¹, R² and/or R³ is not hydrogen;

X is an alkyl radical, an aromatic radical, a fused aromatic ring system, a heteroaromatic radical or a radical of the formula (I')

$$\mathbb{R}^3$$
 \mathbb{R}^5 \mathbb{R}^5

or an oligophenyl group;

is from 1 to 10 or, in the case of X = oligophenyl group, 1-20;

with the proviso that R^1 , R^2 , R^3 and X are not at the same time phenyl when R^4 and R^5 are hydrogen. Furthermore, the invention relates to a process for preparing them and the use of fluoranthene derivatives as emitter molecule in organic light-emitting diodes (OLEDs), a light-emitting layer comprising the fluoranthene derivatives of the invention as emitter molecules, an OLED comprising the light-emitting layer of the invention and devices comprising the OLED of the invention.