Filtro Prewitt de detecção de bordas em OpenMP

Alexandre Silvestre Ferreira, Geovane Fedrecheski alexandrefscan@gmail.com, geonnave@gmail.com

Sumário

- Introdução;
- Materiais e Métodos.

Introdução

- Filtragem digital de Imagens geralmente implica em elevado custo computacional;
- Isso motiva a busca por soluções com desempenho otimizado;
- Assim, almejando um speedup significativo, propomos a implementação do filtro Prewitt em OpenMP.

Introdução - O Filtro Prewitt

- O Filtro de Imagens implementado nesse projeto foi o Filtro detector de bordas Prewitt;
- Detectores de bordas são usados, por exemplo, para identificar objetos ou regiões em imagens.

Tecnologias Utilizadas:

- Linguagem de programação: C/C++;
- Biblioteca para manipulação de imagens: Clmg;
- API para processamento paralelo: OpenMP.

A Biblioteca CImg:

- Uma biblioteca pequena escrita em C++ para processamento de imagens;
- Desenvolvida por David Tschumperlé como um projedo de doutorado em 1999;
- Segue as seguintes propriedades: usabilidade, generalidade, portabilidade, simplicidade, extensibilidade e liberdade.

- A princípio estamos convertendo a imagem para escala de cinza antes de filtrar;
- Aplicações como segmentação e detecção de objetos não necessitam de informação sobre a cor.
- Consequência: opera-se o filtro sobre uma única matriz, ao invés de três (R, G e B).

Convolução: a principal operação e que possui maior custo computacional.

1	12	1	9	8	7	11	16
8	5	2	7	9	8	15	20
1	2	3	13	2	8	9	14
3	7	11	9	8	1	7	5
2	3	6	4	6	2	12	3
1	2	1	4	9	3	4	2
2	5	6	10	17	8	12	10
3	9	11	13	15	16	7	6

-

Cada operação de convolução utiliza uma das seguintes máscaras:

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Máscara horizontal

Máscara Vertical

- Soma-se a imagem parcial vertical com a parcial horizontal;
- Em seguida, satura-se o valor dos pixels, caso necessário;

Para paralelizar: usar decomposição em dados:

Obrigado pela Atenção!

Dúvidas?

Sugestões?