Submission 4.1

Jonas Wechsler

November 2014

1. P_0 : If only one student has a black card, they know that they are the only one with a black card because they do not see anybody else with a black card.

Assume that it takes exactly k repetitions for k students with black cards.

Consider k + 1 students with black cards, and an individual A who has a black cards. After k turns, all the other students with black cards say nothing, so A can infer that he has a black card, and will say yes on the next turn.

2. $P_0: 1^3 + 5 * 1 = 6, \frac{6}{6} = 1 \land 1 \epsilon \mathbb{N}$ $P_k: \text{Assume } k^3 + 5k \text{ is divisible by 6.}$ $P_{k+1}: (k+1)^3 + 5(k+1)$ $k^3 + 3k^2 + 3k + 1 + 5k + 5$ $k^3 + 3k^2 + 8k + 6$ $(k^3 + 5k) + 3k(k+1) + 6$

A sum of numbers that are multiples of 6 is also a multiple a multiple of 6. We have already assumed that $k^3 + 5k$ is a multiple of 6 and we have already shown that 6 is a multiple of 6. If k is even, then 3k is a multiple of 6, so 3k(k+1) is also a multiple of 6. If k is odd, then k+1 is even and 3(k+1) is a multiple of 6. So, 3k(k+1) is a multiple of 6. Because the expression $(k^3 + 5k) + 3k(k+1) + 6$ is a multiple of 6, it is also divisible by 6.

3. P_0 : 6 can be represented with 3 2 cent coins.

Assume n cents can be represented with 2 and 7 cent coins.

There are 2 cases for n+1. If n+1 is even, it can be represented with 2 cent coins. If n+1 is odd, then n+1-7 is even, and can be represented with 2 cent coins and a 7 cent coin.

4. $P_0: |1| \leq |1|$

$$P_k$$
: Assume $|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$

$$P_{k+1}: |x_1+x_2+\ldots+x_n+x_{n+1}| \leq |x_1|+|x_2|+\ldots+|x_n|+|x_{n+1}|$$

In the case that x_{n+1} is negative, $|x_1+\ldots+x_n| \ge |x_1+\ldots+x_{n+1}|$, and $|x_1|+\ldots+|x_n| \le |x_1|+\ldots+|x_{n+1}|$, meaning that $|x_1+\ldots+x_{n+1}| \le |x_1|+\ldots+|x_{n+1}|$. In the case that x_{n+1} is zero, $P_{k+1}=P_k$. In the case that x_{n+1} is positive, $|x_1+\ldots+x_n|+|x_{n+1}| = |x_1+\ldots+x_{n+1}|$, so $|x_1+\ldots+x_{n+1}| \le |x_1|+\ldots+|x_{n+1}|$.

5. $P_0: (1+x)^1 \ge 1+x$

$$P_k$$
: Assume $(1+x)^n \ge 1 + nx$

$$P_{k+1}: \quad (1+x)^{(n+1)} \ge 1 + nx$$

$$(1+x)^{(n+1)} \ge 1 + (n+1)x$$

$$(1+x)(1+x)^{n} \ge 1 + xn + x$$

$$(1+x)(1+x)^{n} \ge (1+x) + nx$$

$$(1+x)^{n} + x(1+x)^{n} \ge x + 1 + nx$$

 $x(1+x)^n \ge x$, because $(1+x)^n \ge 1$, so if $(1+x)^n \ge 1 + nx$, then $(1+x)^n + x(1+x)^n \ge x + 1 + nx$.

1

6. (a) s(k) is a function. $dom(s) = \mathbb{N} \ge 1$ $codom(s) = \mathbb{R} > 0$

$$\begin{array}{ll} e-s(k) &= \sum\limits_{i=0}^{\infty} \frac{1}{i!} - \sum\limits_{i=0}^{k} \frac{1}{i!} \\ &= \sum\limits_{i=k+1}^{\infty} \frac{1}{i!} \\ &= \frac{1}{(k+1)!} + \frac{1}{(k+2)(k+1)!} + \frac{1}{(k+3)(k+2)(k+1)!} \\ \text{where } n>1, \frac{1}{k+n} < \frac{1}{k+1} \text{ therefore} \\ &= \frac{1}{(k+1)!} + \frac{1}{(k+1)(k+1)!} + \frac{1}{(k+1)^2(k+1)!} > \text{the previous statement.} \\ \text{therefore } e-s(n) < \frac{1}{(n+1)!} (\frac{1}{(n+1)} + \frac{1}{(n+1)^2} + \ldots) \\ &\frac{1}{k!} < \frac{1}{(k+1)!} \frac{1}{(k+1)^{k+1}} \text{ because } k! > (k+1)! \text{ and } \frac{1}{(k+1)!} < 1 \text{ and } \frac{1}{(k+1)^{k+1}}. \end{array}$$

(c) Because an infinite geometric series $\sum_{i=0}^{n} a * r^n$ can be written as $\frac{a}{1-r}$, the infinite geometric series in this problem can be written as.

in this problem can be written as.
$$e-s(k) < \frac{1}{(k+1)!} \frac{1}{1-\frac{1}{k+1}} < \frac{1}{(k+1)!} \frac{1}{\frac{1}{k+1}} < \frac{1}{\frac{1}{(k+1)!}} \frac{1}{\frac{1}{k+1}} < \frac{1}{(k+1)!} \frac{1}{\frac{1}{k+1}} < \frac{1}{(k+1)!} \frac{1}{\frac{1}{k+1}} < \frac{1}{k*k!}$$

- (d) If $r = \frac{m}{n}$, $n!e = n!\frac{m}{n} = (n-1)!m$ and $n!s(n) = n!\sum_{i=0}^{n} \frac{1}{i!} = \sum_{i=0}^{n} \frac{n!}{i!}$. At this point, the denominator always cancels out with a portion of the numberator, because $n \ge i$.
- (e) $e-s(n)<\frac{1}{n!*n}$ where $n\epsilon\mathbb{N}$, so $n!(e-s(n))<\frac{1}{n}$, which means n!(e-s(n)) ranges from $\{\frac{1}{1},\frac{1}{2},...,\frac{1}{\infty}=0\}$, or from [0,1] and n!(e-s(n)) must be positive because $\mathbf{s}(\mathbf{n})$ is smaller than \mathbf{e} and \mathbf{n} is a natural number, therefore it ranges from [0,1] however n!(e-s(n))=n!*e-n!(s(n)) and both of those are integers if $e=\frac{m}{n}$, so n!(e-s(n)) must be an integer. therefore n!(e-s(n)) must be an integer between 0,1