SI231b: Matrix Computations

Lecture 14: Eigenvalue Revealing Decomposition

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 26, 2022

MIT Lab, Yue Qiu

Recap: Algebraic and Geometric Multiplicity

Algebraic Multiplicity

- ► Characteristic polynomial $p(\lambda) = \prod_{i=1}^{n} (\lambda \lambda_i)$
- lacktriangle denote μ_i as the number of repeated eigenvalues of λ_i $(i=1,\,\ldots,\,\,k)$

$$p(\lambda) = (\lambda - \lambda_1)^{\mu_1} (\lambda - \lambda_2)^{\mu_2} \cdots (\lambda - \lambda_k)^{\mu_k},$$

with $\mu_1 + \mu_2 + \cdots + \mu_k = n$ and λ_i is distinct with λ_j .

 \blacktriangleright μ_i is called the algebraic multiplicity of the eigenvalue λ_i

Geometric Multiplicity

- ightharpoonup every λ_i can have more than one eigenvector (scaling not counted)
- eigenspace \mathcal{E}_{λ_i} associated with λ_i , $\mathcal{E}_{\lambda_i} = \mathcal{N}(\mathbf{A} \lambda_i \mathbf{I})$
- $ightharpoonup \gamma_i = \dim(\mathcal{E}_{\lambda_i})$ is called the geometric multiplicity of the eigenvalue λ_i

Fact: $\mu_i \geq \gamma_i$ for each λ_i .

MIT Lab. Yue Qiu

Outline

- ► Defective Eigenvalues and Matrices
- Diagonalization
- ► Similarity Transformation
- Schur Decomposition
- ► Eigenvalues of Hermitian Matrices

Defective Eigenvalues and Matrices

Lemma 1: the algebraic multiplicity of an eigenvalue λ_i is at least as great as its geometric multiplicity, i.e., $\mu_i \geq \gamma_i$.

You need to prove this.

Defective Eigenvalue

An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity is a defective eigenvalue.

Defective Matrix

A matrix that has one or more defective eigenvalues.

Examples: consider the following matrices (A nondefective, B defective)

$$\mathbf{A} = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 2 & 1 & \\ & 2 & 1 \\ & & 2 \end{bmatrix}$$

Diagonalization

Theorem 1: An $n \times n$ matrix **A** is nondefective if and only if it has an eigenvalue decomposition

$$\mathbf{A} = \mathbf{V} \wedge \mathbf{V}^{-1},$$

with $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and the k-th column of **V** being the eigenvector \mathbf{v}_k associated with λ_k .

Hint: you need the following lemma to prove the theorem

Lemma 2: Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and suppose that the eigenvalues $\lambda_1, \ldots, \lambda_n$ are ordered such that $\{\lambda_1, \dots \lambda_k\}$, $k \leq n$, is the set of all distinct eigenvalues of **A**. Also, let \mathbf{v}_i be any eigenvector associated with λ_i . Then $\mathbf{v}_1, \dots, \mathbf{v}_k$ must be linearly independent.

From Theorem 1, another term for nondefective is diagonalizable.

MIT Lab. Yue Qiu

Properties of Eigenvalue Decomposition

If **A** admits an eigenvalue decomposition, the following properties can be shown (easily):

- $\blacktriangleright \ \det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$
- $\blacktriangleright \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_{i}$
- ▶ the eigenvalues of \mathbf{A}^k are $\lambda_1^k, \ldots, \lambda_n^k$
- ▶ A is nonsigular if and only if A does not have zero eigenvalues
- ightharpoonup suppose that m f A is also nonsingular. Then, $m f A^{-1} = V \Lambda^{-1} V^{-1}$

Note: the first three properties does not require the eigenvalue decomposition to prove.

MIT Lab, Yue Qiu

Similarity Transformation

For $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), if $\mathbf{T} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is nonsingular, the map $\mathbf{A} \mapsto \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$ is called a similarity transformation of \mathbf{A} .

Theorem 2 If **T** is nonsingular, then **A** and $T^{-1}AT$ have the same

- ► characteristic polynomial
- eigenvalues
- ► algebraic multiplicity
- geometric multiplicity

Hint: using characteristic polynomial to show.

MIT Lab, Yue Qiu

Schur Decomposition

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, the Schur decomposition of \mathbf{A} is given by

$$A = QTQ^H$$
,

where **Q** is unitary $(\mathbf{Q}^H\mathbf{Q} = \mathbf{I})$, and **T** is upper-triangular.

Property: Since $\bf A$ and $\bf T$ are similar, the eigenvalues of $\bf A$ appear on the diagonal of $\bf T$.

Theorem 3: Every square matrix **A** has a Schur decomposition.

Hint: applying induction to prove.

Eigenvalues of Hermitian Matrices

Real Eigenvalues

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be Hermitian $(\mathbf{A} = \mathbf{A}^H)$, then

- 1. the eigenvalues $\lambda_1, \ldots, \lambda_n$ of **A** are real
- suppose that λ_i's are ordered such that {λ₁,...,λ_k} is the set of all distinct eigenvalues of **A**. Also, let **v**_i be any eigenvector associated with λ_i. Then **v**₁,...,**v**_k must be orthonormal.

Remark:

the above results apply to real symmetric matrices, recall that

$$\mathbf{A} = \mathbf{A}^T \Rightarrow \mathbf{A} = \mathbf{A}^H$$
.

Corollary:

▶ for a real symmetric matrix, all eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ can be chosen as real

Diagonalization of Hermitian Matrices

Theorem 4: Every Hermitian matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ has an eigenvalue decomposition given by

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H$$

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary $(\mathbf{V}^H \mathbf{V} = \mathbf{I})$, $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i. Also, if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, \mathbf{V} is an orthogonal matrix.

Hint: can you use Schur decomposition to prove this?

Remark:

• does not require the assumption of $\mu_i = \gamma_i$ for all λ_i

Corollary:

▶ If **A** is Hermitian or real symmetric, $\mu_i = \gamma_i$ for all λ_i (no. of repeated eigenvalues = no. of linearly independent eigenvectors)

Eigenvalue Revealing Decomposition

Factorize a matrix to a form in which eigenvalues are explicitly displayed

- ▶ Diagonalization, $\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1}$, exists if and only if \mathbf{A} is nondefective.
- ▶ Schur decomposition, $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^H$ always exists.
- ► Jordan canonical form, **A** = **SJS**⁻¹ always exists (will not be introduced in our lecture), where

$$\mathbf{J} = egin{bmatrix} \mathbf{J}_1 & & & & & \ & \mathbf{J}_2 & & & & \ & & \ddots & & & \ & & & \ddots & & \ & & & \mathbf{J}_k \end{bmatrix}$$

with

$$\mathbf{J}_i = egin{bmatrix} \lambda_i & & & & & \ & \lambda_i & & & \ & & \ddots & & \ & & & \lambda_i \end{bmatrix}, \quad ext{or} \quad \mathbf{J}_i = egin{bmatrix} \lambda_i & 1 & & & & \ & \lambda_i & \ddots & & \ & & \ddots & 1 & & \ & & \lambda_i \end{bmatrix}$$

Readings

You are supposed to read

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013.

Chapter 7.1, 8.1