Cálculo de pH

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1	Ácidos e Bases Fracos1.1 Habilidades	1
2	Ácidos e Bases Polipróticos	1
	2.1 Habilidades	1

1 Ácidos e Bases Fracos

- 1. Constante de ionização.
- 2. Grau de ionização.
- 3. pH de soluções de ácidos e bases fracos.
- 4. Hidrólise.
- 5. pH de soluções salinas.

1.1 Habilidades

- Calcular o pH de soluções de ácidos e bases fracos.
- Calcular o grau de ionização de ácidos e bases fracos.
- Calcular a constante de ionização em função do pH.
- Calcular o pH de soluções salinas de hidrólise ácida ou básica.

2 Ácidos e Bases Polipróticos

- 1. pH de soluções de ácidos polipróticos.
- 2. Soluções de sais de ácidos polipróticos.
- 3. Curva de distribuição de espécies em função do pH.

2.1 Habilidades

- Calcular o pH de soluções de ácidos polipróticos.
- Calcular o pH de soluções de sais anfipróticos.
- Calcular a concentração de todos os íons em solução em função do pH.

Problemas

PROBLEMA 1

O pH de uma solução 0.2 mol L^{-1} de ácido crotônico, C_3H_5COOH , em água é 2.7.

Assinale a alternativa que mais se aproxima do pKa do ácido.

A 2,0

B 2,6

c 3,5

D 4,7

E 6,3

PROBLEMA 2

O pH de uma solução 0,12 mol $\rm L^{-1}$ de ácido cloroso, $\rm HClO_2,$ em água é 1,5.

Assinale a alternativa que mais se aproxima do pKa do ácido.

A 0,79

B 1,0

c 1,3

D 1,6

E 2,0

PROBLEMA 3

O pH de uma solução de ácido nitroso, HNO2, em água é 2,5.

Assinale a alternativa que mais se aproxima da concentração inicial do ácido.

A $0,026 \, \text{mol} \, L^{-1}$

B $0.039 \, \text{mol} \, \text{L}^{-1}$

c $0,060 \, \text{mol} \, \text{L}^{-1}$

D $0,091 \, \text{mol} \, L^{-1}$

E $0,14 \, \text{mol} \, \text{L}^{-1}$

Dados

• $K_a(HNO_2) = 4.3 \times 10^{-4}$

PROBLEMA 4

O pH de uma solução de metilamina, CH₃NH₂, em água é 12.

Assinale a alternativa que mais se aproxima da concentração inicial da base.

A $0,18 \, \text{mol} \, L^{-1}$

B $0,23 \, \text{mol} \, L^{-1}$

 $c = 0.30 \, \text{mol} \, L^{-1}$

D $0.39 \, \text{mol} \, \text{L}^{-1}$

E $0.51 \, \text{mol} \, \text{L}^{-1}$

Dados

• $K_b(CH_3NH_2) = 3.6 \times 10^{-4}$

PROBLEMA 5

Considere uma solução 0,2 mol ${\rm L}^{-1}$ em ácido acético, CH $_3$ COOH.

Assinale a alternativa que mais se aproxima do grau de desprotonação do ácido acético na solução.

A 0,79 %

B 0,95%

c 1,1%

D 1,4%

E 1,7 %

^{*}Contato: gabriel.braun@pensi.com.br, (21) 99848-4949

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

PROBLEMA 6

Considere uma solução 3,7 \times $10^{-3}\, mol\, L^{-1}$ em ácido lático, CH₃CH(OH)COOH.

Assinale a alternativa que mais se aproxima do grau de desprotonação do ácido acético na solução.

A 11%

B 17%

c 25 %

D 38%

E 58%

Dados

• $K_a(CH_3CH(OH)COOH) = 8,4 \times 10^{-4}$

PROBLEMA 7

Assinale a alternativa que mais se aproxima do pH de uma solução $0.08 \text{ mol } L^{-1}$ em ácido acético.

A 3,2

B 4,2

c 5,4

D 7,0

E 9,2

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

PROBLEMA 8

Assinale a alternativa que mais se aproxima do pH de uma solução $0.1~{\rm mol}\,{\rm L}^{-1}$ em ácido tricloroacético.

A 0,52

B 0,62

c 0,75

D 0,91

E 1,1

Dados

• $K_a(CCl_3COOH) = 0.3$

PROBLEMA 9

Considere uma solução 0,06 mol L⁻¹ em amônia, NH₃.

Assinale a alternativa que mais se aproxima do grau de protonação da amônia na solução.

A 1,4%

6 **B** 1,7 %

c 2,1 %

D 2,6%

E 3,3 %

Dados

• $K_b(NH_3) = 1.8 \times 10^{-5}$

PROBLEMA 10

Considere uma solução $0.012 \, \text{mol} \, L^{-1}$ em nicotina, $C_{10} H_{14} N_2$.

Assinale a alternativa que mais se aproxima do grau de protonação da amônia na solução.

A 0,88%

B 1,1%

c 1,4%

D 1,7%

E 2,1%

Dados

• $K_b(C_{10}H_{14}N_2) = 1 \times 10^{-6}$

PROBLEMA 11

 $\bf Assinale$ a alternativa que mais se aproxima do pH de uma solução 0,1 mol $\bf L^{-1}$ em metilamina.

A 2,9

B 4,2

c 5,9

D 8,3

E 12

Dados

• Kb(metilamina).

PROBLEMA 12

Assinale a alternativa que mais se aproxima da concentração de hidróxido de uma solução 0.02 mol L^{-1} em trietilamina.

A $1,7 \,\mathrm{mmol}\,\mathrm{L}^{-1}$

 \mathbf{B} 2,3 mmol \mathbf{L}^{-1}

c 3,0 mmol L⁻

D 4,0 mmol L⁻¹

 \mathbf{E} 5,3 mmol L⁻¹

Dados

• $K_b((C_2H_5)_3N) = 1 \times 10^{-3}$

PROBLEMA 13

Considere as soluções.

1. $HCl\ 1 \times 10^{-5}\ mol\ L^{-1}$

2. CH₃NH₂ 0,2 mol L⁻¹

3. $CH_3COOH 0,2 mol L^{-1}$

4. $C_6H_5NH_2$ 0,2 mol L^{-1}

Assinale a alternativa que relaciona as soluções em ordem *crescente* de pH.

A 3; 1; 2; 4.

B 1; 3; 2; 4.

C 4; 2; 1; 3.

D 4; 3; 1; 2.

E 2; 3; 1; 4.

PROBLEMA 14

Considere as soluções.

1. NaOH $1 \times 10^{-5} \, mol \, L^{-1}$

2. $NaNO_2 0,2 mol L^{-1}$

3. $NH_3 0,2 \text{ mol } L^{-1}$

4. NaCN $0,2 \text{ mol } L^{-1}$

Assinale a alternativa que relaciona as soluções em ordem *crescente* de pH.

A 2; 4; 1; 3.

B 3; 2; 1; 4.

c 1; 4; 2; 3.

D 4; 2; 3; 1.

E 2; 1; 3; 4.

PROBLEMA 15

PROBLEMA 16

PROBLEMA 17

Considere soluções dos sais:

- 1. $Ba(NO_2)_2$
- 2. CrCl₃
- 3. NH₄NO₃
- 4. Na₂CO₃

Assinale a alternativa com a classificação correta das soluções, respectivamente.

- A ácida; básica; ácida; básica.
- B ácida; básica; básica; ácida.
- c ácida; ácida; básica; básica.
- D básica; ácida; básica; ácida.
- E básica; ácida; ácida; básica.

PROBLEMA 18

Considere soluções dos sais:

- 1. AlCl₃
- 2. KNO₃
- 3. NH₄Br
- 4. KF

Assinale a alternativa com a classificação correta das soluções, respectivamente.

- A neutro; básico; ácido; ácido.
- **B** básico; ácido; ácido; neutro.
- c neutro; ácido; ácido; básico.
- D ácido; neutro; ácido; básico.
- E ácido; ácido; neutro; básico.

PROBLEMA 19

Considere soluções dos sais:

- 1. KBr
- 2. AlCl₃
- 3. $Cu(NO_3)_2$
- 4. K₂C₂O₄

Assinale a alternativa com a classificação correta das soluções, respectivamente.

- A ácido; ácido; neutro; básico.
- B básico; neutro; ácido; ácido.
- c ácido; ácido; básico; neutro.
- D ácido; básico; neutro; ácido.
- E neutro; ácido; ácido; básico.

PROBLEMA 20

Considere soluções dos sais:

- 1. $Ca(NO_3)_2$
- 2. CH₃NH₃Cl
- 3. NaCH₃CO₂
- 4. FeCl₃

Assinale a alternativa com a classificação correta das soluções, respectivamente.

- A ácido; ácido; neutro; básico.
- B ácido; ácido; básico; neutro.
- c neutro; ácido; básico; ácido.
- D ácido; básico; neutro; ácido.
- E neutro; básico; ácido; ácido.

PROBLEMA 21

Considere soluções dos sais:

- 1. K₃PO₄
- 2. K₂HPO₄
- 3. KHPO₃
- 4. KH₂PO₄

Assinale a alternativa que relaciona as soluções ácidas.

A 3

B 4

C 1 e 4

D 2 e 4

E 3 e 4

PROBLEMA 22

Considere soluções dos sais:

- 1. Na_2SO_3
- 2. NaHSO₃
- 3. Na₂SO₄
- 4. NaHSO₄

Assinale a alternativa que relaciona as soluções ácidas.

A 3

B 4

C 1 e 4

D 2 e 4

E 3 e 4

PROBLEMA 23

ESCREVER

PROBLEMA 24

ESCREVER

PROBLEMA 25

Assinale a alternativa que mais se aproxima do pH de uma solução $0,2 \text{ mol } L^{-1}$ em nitrato de cobre (II).

A 1,8

B 2,3

c 3,1

D 4,1

E 5,4

Dados

• $K_a(Cu^{2+}) = 3.2 \times 10^{-8}$

PROBLEMA 26

Assinale a alternativa que mais se aproxima da concentração de hidrônio em uma solução 0.07 mol L^{-1} em cloreto de ferro (III).

- A $14 \, \text{mmol} \, \text{L}^{-1}$
- ${f B}$ 20 mmol ${f L}^{-1}$
- **C** 29 mmol L^{−1}

- \mathbf{D} 41 mmol L⁻¹
- E 58 mmol L^{-1}

Dados

• $K_a(Fe^{3+}) = 0.0035$

PROBLEMA 27

Assinale a alternativa que mais se aproxima do pH de uma solução 0,08 mol $\rm L^{-1}$ em ácido acético.

- **A** 1,9
- **B** 2,5
- **c** 3,2
- **D** 4,2
- **E** 5,4

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

PROBLEMA 28

Assinale a alternativa que mais se aproxima do grau de desprotonação de uma solução $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cloreto de anilínio.

- **A** 0,0036%
- **B** 0,0055%
- **c** 0.0084%

- **D** 0,013%
- **E** 0,02 %

Dados

• $K_b(C_6H_5NH_2) = 4.3 \times 10^{-10}$

PROBLEMA 29

Assinale a alternativa que mais se aproxima do pH de uma solução 0,09 mol $\rm L^{-1}$ em acetato de cálcio.

- **A** 2,6
- **B** 3,6
- **c** 5,1
- **D** 7,1
- **E** 10

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

PROBLEMA 30

Assinale a alternativa que mais se aproxima da concentração de ácido fluorídrico em uma solução $0,07~\rm mol~L^{-1}$ em fluoreto de potássio.

- **A** $2.5 \times 10^{-7} \, \text{mol} \, L^{-1}$
- **B** $5.9 \times 10^{-7} \, \text{mol} \, \text{L}^{-1}$
- c $1.4 \times 10^{-6} \, \text{mol} \, L^{-1}$
- **D** $3.3 \times 10^{-6} \, \text{mol} \, \text{L}^{-1}$
- **E** $7.9 \times 10^{-6} \, \text{mol} \, \text{L}^{-1}$

Dados

• $K_a(HF) = 3.5 \times 10^{-4}$

PROBLEMA 31

 $\bf Assinale$ a alternativa que mais se aproxima do pH de uma solução 0,5 mol $\bf L^{-1}$ em cianeto de amônio.

- A 3,4
- **B** 4,7
- **c** 6,6
- **D** 9,2
- **E** 13

Dados

- $K_a(HCN) = 4.9 \times 10^{-10}$
- $K_b(NH_3) = 1.8 \times 10^{-5}$

PROBLEMA 32

Assinale a alternativa que mais se aproxima do pH de uma solução 0,1 mol $\rm L^{-1}$ em acetato de piridínio.

- **A** 2,8
- **B** 3,7
- **c** 5,0
- **D** 6,7
- **E** 9,0

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$ • $K_b(C_5H_5N) = 1.8 \times 10^{-9}$

PROBLEMA 33

Assinale a alternativa que mais se aproxima do pH de uma solução $0,05~{\rm mol}\,{\rm L}^{-1}$ em ácido sulfúrico.

- **A** 0,56
- **B** 0,68
- **c** 0,83
- **D** 1,0
- **E** 1,2

Dados

• $K_{a2}(H_2SO_4) = 0,012$

PROBLEMA 34

Como o ácido sulfúrico, o ácido selênico é forte na primeira desprotonação e fraco na segunda. Uma solução $0,01 \, \text{mol} \, \text{L}^{-1}$ em ácido selênico apresenta pH igual a 1,82.

Assinale a alternativa que mais se aproxima da constante da segunda ionização do ácido selênico.

- **A** 7.6×10^{-3}
- **B** 1.2×10^{-2}
- c 1.9×10^{-2}

- **D** 3.0×10^{-2}
- **E** 4.8×10^{-2}

PROBLEMA 35

Assinale a alternativa que mais se aproxima do pH de uma solução $0,015\,\mathrm{mol}\,\mathrm{L}^{-1}$ em ácido fosfórico, $\mathrm{H}_3\mathrm{PO}_4$.

- **A** 0,82
- **B** 1,0
- **c** 1,3
 - 1,3
- **D** 1,7

E 2,1

Dados

- $K_{a1}(H_3PO_4) = 0,0076$
- $K_{a2}(H_3PO_4) = 6.2 \times 10^{-8}$
- $K_a(H_3PO_4) = 2.1 \times 10^{-13}$

PROBLEMA 36

 $\bf Assinale$ a alternativa que mais se aproxima do pH de uma solução 0,1 mol $\rm L^{-1}$ em ácido sulfônico, $\rm H_2SO_3.$

A 0,98

B 1,2

c 1,5

D 1,9

E 2,3

Dados

•
$$K_{a1}(H_2SO_3) = 0.015$$

•
$$K_{a2}(H_2SO_3) = 1,2 \times 10^{-7}$$

PROBLEMA 37

Considere uma solução $0,2 \text{ mol } L^{-1}$ de ácido sulfídrico, H_2S .

Assinale a alternativa que mais se aproxima da concentração de H_3O^+ , H_2S , HS^- e S^{2-} na soluçoão, respectivamente.

A 0,2 M;
$$1,6 \times 10^{-4}$$
 M; $1,6 \times 10^{-4}$ M; $7,1 \times 10^{-15}$ M.

B
$$7.1 \times 10^{-15} \,\mathrm{M}; \, 1.6 \times 10^{-4} \,\mathrm{M}; \, 1.6 \times 10^{-4} \,\mathrm{M}; \, 0.2 \,\mathrm{M}.$$

c
$$1.6 \times 10^{-4} \,\mathrm{M}; \, 0.2 \,\mathrm{M}; \, 1.6 \times 10^{-4} \,\mathrm{M}; \, 7.1 \times 10^{-15} \,\mathrm{M}.$$

D
$$1.6 \times 10^{-4} \,\mathrm{M}$$
; $7.1 \times 10^{-15} \,\mathrm{M}$; $0.2 \,\mathrm{M}$; $1.6 \times 10^{-4} \,\mathrm{M}$.

E 0,2 M; 1,6
$$\times$$
 10⁻⁴ M; 7,1 \times 10⁻¹⁵ M; 1,6 \times 10⁻⁴ M.

Dados

•
$$K_{a1}(H_2S) = 1.3 \times 10^{-7}$$

•
$$K_{a2}(H_2S) = 7.1 \times 10^{-15}$$

PROBLEMA 38

Considere uma solução $0.5 \, \text{mol} \, L^{-1}$ de glicina protonada, $[\text{NH}_3\text{CH}_2\text{COOH}]^+$.

Assinale a alternativa que mais se aproxima da concentração de $\rm H_3O^+, H_2S, HS^-$ e $\rm S^{2-}$ na soluçoão, respectivamente.

A
$$7.1 \times 10^{-15} \,\mathrm{M}; \, 0.2 \,\mathrm{M}; \, 1.6 \times 10^{-4} \,\mathrm{M}; \, 1.6 \times 10^{-4} \,\mathrm{M}.$$

B
$$1.6 \times 10^{-4}$$
 M; 0.2 M; 1.6×10^{-4} M; 7.1×10^{-15} M.

c
$$1.6 \times 10^{-4} \,\mathrm{M}$$
; $7.1 \times 10^{-15} \,\mathrm{M}$; $0.2 \,\mathrm{M}$; $1.6 \times 10^{-4} \,\mathrm{M}$.

D
$$1.6 \times 10^{-4} \,\mathrm{M}; \, 1.6 \times 10^{-4} \,\mathrm{M}; \, 0.2 \,\mathrm{M}; \, 7.1 \times 10^{-15} \,\mathrm{M}.$$

E
$$1.6 \times 10^{-4} \,\mathrm{M}$$
; $7.1 \times 10^{-15} \,\mathrm{M}$; $1.6 \times 10^{-4} \,\mathrm{M}$; $0.2 \,\mathrm{M}$.

Dados

•
$$K_a(NH_2CH_2COOH) = 1$$

•
$$K_b(NH_2CH_2COOH) = 2$$

PROBLEMA 39

PROBLEMA 40

PROBLEMA 41

PROBLEMA 42

PROBLEMA 43

PROBLEMA 44

PROBLEMA 45

PROBLEMA 46

Problemas cumulativos

PROBLEMA 47

PROBLEMA 48

PROBLEMA 49

PROBLEMA 50

PROBLEMA 51

PROBLEMA 52

PROBLEMA 53

PROBLEMA 54

Gabarito

Problemas

- 1. D
- 2. E
- 3 Δ
- 4. C
- c D
- 6. D
- 7 A
- 8. E
- 9. B
- 10. D
- 11. E
- 12. D
- 13. A
- 14. E
- 16. -
- -0.
- 18. D
- 19. E
- 20. C
- 21. B
- 22. B
- 23. *-*24. *-*
- 25. D
- 26. A
- 27. C
- 28. E
- 20.
- ---
- 30. C

D

- -a c
- 33. E
- 34. B
- 35. E

- 36. **C**
- 37. **C**
- 38. B
- 39. -
- 40. -
- 41. -
- 42. -
- 43. -
- 44. -
- 45. -
- 46. -

Problemas cumulativos

- 47. -
- 48. -
- 49. -
- 50. -
- 51. -
- 52. -
- 53. -
- 54. -