HW4 ANSWER

CH6

6.

s ⁶	1	-6	1	-6
s ⁵	1	0	1	
s ⁴	-6	0	-6	
s ³	-24	0	0	ROZ
s ²	3	-6		
S ¹	-144/ε	0		
s ⁰	-6			

Even (4): 2 rhp; 2 lhp; Rest (2): 1 rhp; 1 lhp; Total: 3 rhp; 3 lhp

9.

The characteristic equation is:

$$1 + \frac{K(s-1)}{s(s+2)(s+3)} = 0$$

Or

$$s^{3} + 5s^{2} + (6+K)s - K = 0$$

$$s^{3} \quad 1 \quad 6+K$$

$$s^{2} \quad 5 \quad -K$$

$$s^{1} \quad \frac{6K+30}{5} \quad 0$$

$$s^{0} \quad -K \quad 0$$

Therefore -5 < K < 0.

25.

The characteristic equation is $1 + \frac{K(s+5)}{s(s+1)(s+3)} = s^3 + 4s^2 + (K+3)s + 5K = 0$

s ³	1	3 + K
s ²	4	5K
s ¹	$\frac{12-K}{4}$	0
s ⁰	5K	0

- a. Stable for 0 < K < 12.
- b. The system will oscillate when K=12.

c. When K=12 the third row becomes a row of zeros, the auxiliary equation is $Q_a(s)=4s^2+60$. The poles on the $j\omega$ axis are $s=\pm j\sqrt{15}$ so the oscillation frequency is $\sqrt{15}$ rad/sec.

38.

$$T(s) = \frac{K(s+1)(s+10)}{s^3 + (5.45+K)s^2 + (11.91+11K)s + (43.65+10K)}$$

s ³	1	11.91+11K
s ²	5.45+K	43.65+10K
s ¹	$\frac{11K^2 + 61.86K + 21.26}{5.45 + K}$	0
s ⁰	43.65+10K	0

For stability, - $0.36772 < K < \infty$. Stable for all positive K.

CH7

4.

Reduce the system to an equivalent unit feedback system by first moving 1/s to the left past the summing junction. This move creates a forward path consisting of a parallel pair $\left(\frac{1}{s}+1\right)$ in cascade with a feedback loop consisting of $G(s)=\frac{3}{s+4}$ and H(s)=2. Thus,

$$G_e(s) = \left(\frac{s+1}{s}\right) \left(\frac{3/(s+4)}{1+24/(s+4)}\right)$$

Hence the system is Type 1, and the steady-state errors are as follows:

Steady state error for 10u(t) = 0

Steady state error for $10tu(t) = \frac{10}{K_v} = \frac{10}{3/28} = 93.33$

Steady state error for $10t^2u(t) = \infty$

One way to solve the problem is obtain $T(s)=\frac{6}{s^3+6s^2+11s+18}$ using any method. Then

$$E(s) = (1 - T(s))R(s) = \frac{s^3 + 6s^2 + 11s + 12}{s^3 + 6s^2 + 11s + 18}R(s).$$

When
$$r(t)=20u(t)$$
, $e_{ss}=\lim_{s\to 0}sE(s)=\frac{12}{18}(20)$ =13.3333= $\frac{20}{1+K_P}$. Solving we get $K_P=0.5$

When
$$r(t)=20tu(t)$$
, $e_{ss}=\lim_{s\to 0}sE(s)=\infty$. So $K_v=0$.

When
$$r(t) = 20t^2u(t)$$
, $e_{ss} = \lim_{s \to 0} sE(s) = \infty$. So $K_a = 0$.

Since $K_P = 0.5$, $K_v = 0$, $K_a = 0$ this is a type 0 system.

19.

a. Type 0

b. E(s) =
$$\frac{R(s)}{1 + G(s)}$$
. Thus, $e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{12/s}{1 + \frac{K(s^2 + 6s + 6)}{(s + 5)^2(s + 3)}} = \frac{12}{1 + 0.08K}$.

 $\mathbf{c.} \ \mathbf{e}(\infty) = \infty$, since the system is Type 0.

25.

a. For 20% overshoot,
$$\zeta$$
 = 0.456. Also, K_v = 1000 = $\frac{K}{a}$. Since $T(s) = \frac{K}{s^2 + as + K}$, $2\zeta\omega_n$ = a, and $\omega_n = \sqrt{K}$. Hence, a = 0.912 \sqrt{K} . Solving for a and K, K = 831,744, and a = 831.744.

b. For 10% overshoot,
$$\zeta = 0.591$$
. Also, $\frac{1}{K_V} = 0.01$. Thus, $K_V = 100 = \frac{K}{a}$. Since

$$T(s)=\frac{K}{s^2+as+K}\quad\text{, }2\zeta\omega_n=\text{a, and }\omega_n=\sqrt{K}\quad\text{. Hence, a = 1.182}\sqrt{K}\quad\text{. Solving for a}$$
 and K, K = 13971 and a = 139.71.

Produce a unity-feedback system:

Thus,
$$G_e(s) = \frac{\frac{(s+1)}{s^2(s+2)}}{1 + \frac{(s+1)(K-1)}{s^2(s+2)}} = \frac{s+1}{s^3 + 2s^2 + (K-1)s + (K-1)}$$
. Error = 0.001 = $\frac{1}{1 + K_p}$.

Therefore, $K_p = 999 = \frac{1}{K-1}$. Hence, K = 1.001001.

Check stability: Using original block diagram, T(s) =
$$\frac{\frac{(s+1)}{s^2(s+2)}}{1+\frac{K(s+1)}{s^2(s+2)}} = \frac{s+1}{s^3+2s^2+Ks+K}.$$

Making a Routh table:

s ³	1	K
s ²	2	K
s ¹	<u>K</u>	0
s ⁰	K	0

Therefore, system is stable and steady-state error calculations are valid.