USN

				_			
RI	1 2	2	A	I	0	0	7

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

VI Semester B. E. Regular Examinations August-2025

Artificial Intelligence and Machine Learning

GENERATIVE ARTIFICIAL INTELLIGENCE (ELECTIVE)

Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART-A

M BT CO

1	1.1	7771			
-	l 1.1	What is the role of KL-Divergence in training Variational			
	1.0	Autoencoders (VAEs)?	02	2	2
	1.2	What does it mean for a generative model to be "non-			
		deterministic "?	02	1	1
	1.3	Define "Tokenization" in the context of large language models.	02	1	1
	1.4	Mention any two practical applications of diffusion models.	02	1	4
	1.5	How does inpainting differ from traditional image generation in	02	1	4
		GANs?	00	_	
	1.6		02	2	3
	1.7	What is the purpose of noise scheduling in diffusion models?	02	2	4
	1.7	How can latent space interpolation in VAEs be used in face			
	1.0	generation?	02	. 2	2
	1.8	Why are attention-based mechanisms crucial in transformer-		5	
		base generative models?	02	2	1 1
1	1.9	List any two ethical concerns related to synthetic image	-	_	1
		generation using AI.	02	1	5
	1.10	What is the impact of biased training data on generative AI	02	1	ا
		models?	00		_
		models:	02	2	5

PART-B

2	a	Define generative modeling and explain its role in deep learning.			
	_	How does it differ from discriminative modeling? Provide examples of each.	08	2	1
	b	What are Large Language Models (LLMs)? Describe their architecture and training methodology in brief.	08	2	1
3	а	Explain the architecture of a Variational Autoencoder (VAE) with a neat diagram.	06	3	2
	b	Describe the training process of a VAE for generating human face images, including dataset requirements, objective function and sampling steps. OR	10	4	2
4	a b	Describe the architecture of a basic autoencoder, explaining the roles of the encoder and decoder components. Illustrate with a diagram. Demonstrate how smooth interpolation between latent vectors leads to realistic morphing between face images. Discuss its	08	3	2
		implications in creative and medical applications.	08	4	2
					W2681-

5	а	Explain the architecture and working of Generative Adversarial Networks(GANs).	00		
	b	Suggest any four strategies to improve GAN performance and	80	2	1
		training stability.	80	4	2
		OR			
_		OR .		1	
6	а	Compare U-Net and ResNet in the context of content retention			
	b	during style transfer.	08	4	5
		Describe the process of training a Cycle GAN. Include the loss functions used by generator and discriminator.	08	3	0
		generator and discriminator.	08	3	2
7	а	Compare and contrast forward and reverse diffusion process in			
	b	Denoising Diffusion Models (DDMs).	08	4	4
	D	Outline the architecture of a basic diffusion model and explain its training workflow.	00	_	
		100 thatting workhow.	08	3	4
		OR			
8	а	Compare EDMs			
	_	Compare EBMs with traditional likelihood-based generative models in terms of performance and generalization.	08	4	4
	b	What are the major challenges in using diffusion models for high	08	4	4
		resolution image synthesis?	08	4	4
9	-				
9	a	Define statistical parity, equal opportunity and disparate impact.			_
	b	Compare their applicability. Suggest bias mitigation strategies suitable for generative AI	08	2	5
		models used in hiring platforms.	08	5	5
		OR			
10	а	Discuss the working principles of pre-processing, in-processing			
		and post- processing techniques for bias mitigation.	08	3	5
	b	Provide real-world examples of how each type of bias can			
		influence the outputs of generative AI models in applications			
		such as resume generation, image synthesis or LLM-based			
		recommendations.	08	5	5