# 中間テスト向け 重要ポイントの解説

### まとめ

- ・講義での演習問題、小テストを中心に出題します。
- 問題を解くには、原理、手法を理解していることが必要。従って、演習問題、小テストは必ず自分で解いてみること。
- ・テストは100点満点。ただし中間試験なので、(原則)50点 満点として換算の予定です。

### 2進数→10進数への変換

- ▶ 問題1
  - ▶ 2進数(00011011)₂を10進数に変換せよ.
- ▶ 解答

$$1 \times 2^4 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 \leftarrow$$
 この式が基本  
= 16 + 8 + 2 + 1  
= 27

### 16進数→10進数への変換

- ▶ 問題2
  - ▶ 16進数(0D3B)₁6を10進数に変換せよ.
- ▶ 解答

$$(D)_{16} \times 16^2 + (3)_{16} \times 16^1 + (B)_{16} \times 16^0$$
  
=  $13 \times 256 + 3 \times 16 + 11$ 

= 3387

▶ 16進数では、A~Fは、10進数の10~15となる。

### 10進数→2進数への変換

- ▶ 問題3
  - ▶ 10進数(95)₁0を2進数に変換せよ.
- ▶ 解答
  - **(1011111)**<sub>2</sub>



### 10進数→16進数への変換

- ▶ 問題4
  - ▶ 10進数(95)10を16進数に変換せよ.
- ▶ 解答
  - ▶ (5F)<sub>16</sub>

# 補足

▶ 2進数と16進数の対応関係



2進数4ビットを 16進数1桁で表記できる

### 2進数→10進数への変換(少数)

- ▶ 問題5
  - ▶ 2進数(00011011.1001)₂を10進数に変換せよ.
- ▶ 解答

$$1 \times 2^4 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-4} \leftarrow この式が基本$$
  
= 16 + 8 + 2 + 1 + 0.5 + 0.0625  
= 27.5625

2進数の場合、小数点以下の値は10進数では下記となる。

| I桁目は | 0.5    | (2-1)      |
|------|--------|------------|
| 2桁目は | 0.25   | (2-2)      |
| 3桁目は | 0.125  | $(2^{-3})$ |
| 4桁目は | 0.0625 | $(2^{-4})$ |

### 10進数→2進数への変換(少数)

- ▶ 問題6
  - ▶ 10進数(95.6875)₁0を2進数に変換せよ.
- ▶ 解答
  - ▶ 整数部は、(1011111)<sub>2</sub> (問題3参照のこと)
  - ▶ 小数部は, (0.1011)2
  - **)** よって、(1011111.1011)<sub>2</sub>

整数部と少数部に分けて求める。 整数部は除算、小数部は乗算(右)



### 1の補数表現

- ▶ 問題7
  - ▶ (00101011)2の1の補数を求めよ.
- ▶ 解答
  - **(11010100)**<sub>2</sub>



### 2の補数表現

- ▶ 問題8
  - ▶ (00101011)2の2の補数を求めよ.
- ▶ 解答
  - **(11010101)**<sub>2</sub>



### 1バイトの2進数の10進表現範囲(2の補数)

### ▶ 問題9

1バイトの2進整数が表現できる10進数の範囲を示せ、 ここで、2進整数は、2の補数表現を用いるものとする。

### ▶ 解答

· -128~127

| 2進数       | 10進数 |
|-----------|------|
| 1111 1111 | -1   |
|           |      |
| 1000 0000 | -128 |
| 0111 1111 | 127  |
|           |      |
| 0000 0000 | 0    |

### 10進数の浮動小数点数表現への変換

- ▶ 問題1 解答
  - ▶ ANSI/IEEE標準規格に基づき, (-0.75)₁₀の単精度の浮動小数点数表現を, 以下の手順に従って求めよ.
  - 1. (-0.75)₁0は, 符号はマイナスで, 絶対値は(0.75)₁0である.
  - 2. (0.75)10を2進数で表すと, (0.11)2である.
  - 3. (0.11)<sub>2</sub>を,正規化すると, (1.1)<sub>2</sub>× 2<sup>-1</sup>である.
  - 4. したがって、仮数部には、隠しビットを除いた23ビット

#### 

が格納される.

5. 一方,指数部を(127)<sub>10</sub>でバイアスすると(126)<sub>10</sub>になり,これを8ビットの符号なし整数で表すと

#### 0 1 1 1 1 1 1 0

になる.

よって、(-0.75)<sub>10</sub>の単精度の浮動小数点表現は、以下のようになる。

### 浮動小数点数表現の10進数への変換

- ▶ 問題2 解答
  - ANSI/IEEE標準規格に基づき、以下に示される単精度の浮動小数点数が表現している10進数の値を、以下の手順に従って求めよ。



- 1. 符号ビットは1であり、マイナスであることを示している.
- 2. 仮数部に格納された値は (0.25)<sub>10</sub> であり, これに隠しビットによる (1.0)<sub>10</sub> を加えると (1.25)<sub>10</sub> になる.
- 3. 指数部に格納された値は(129)<sub>10</sub>であり、これからバイアス値(127)<sub>10</sub> を引くと(2)<sub>10</sub>になる.
- 4. よって, 求める値は,  $(-1.25)_{10} \times 2^2 = (-5.0)_{10}$  になる.

### 基本論理回路

- ▶ 問題1 解答
  - NAND素子を用いて実現したNOT素子を以下に示す。
  - 以下に示す真理値表を完成させよ。



| 入力値 I | $M_1$ | M <sub>2</sub> | 出力値 O |
|-------|-------|----------------|-------|
| 0     | 0     | 0              | 1     |
| 1     | 1     | 1              | 0     |

基本論理素子(NOT、AND、NAND、OR、NOR、ExOR、ExNOR)については 真理値表を書けるようにしておくこと。

### 基本論理回路

- ▶ 問題2 解答
  - ▶ NAND素子を用いて実現したAND素子を以下に示す.
  - 以下に示す真理値表を完成させよ。



| 入力值 I <sub>1</sub> | 入力值 I <sub>2</sub> | М | 出力値 O |
|--------------------|--------------------|---|-------|
| 0                  | 0                  | 1 | 0     |
| 0                  | 1                  | 1 | 0     |
| 1                  | 0                  | 1 | 0     |
| 1                  | 1                  | 0 | 1     |

# 基本論理回路

- ▶ 問題3 解答
  - ▶ NAND素子を用いて実現したOR素子を以下に示す.
  - 以下に示す真理値表を完成させよ。



| 入力值 I <sub>1</sub> | 入力值 I <sub>2</sub> | $M_1$ | $M_2$ | 出力値 O |
|--------------------|--------------------|-------|-------|-------|
| 0                  | 0                  | 1     | 1     | 0     |
| 0                  | 1                  | 1     | 0     | 1     |
| 1                  | 0                  | 0     | 1     | 1     |
| 1                  | 1                  | 0     | 0     | 1     |

### 2x1マルチプレクサの真理値表

- ▶ 問題4 解答
  - 右に示す2×1マルチプレクサの 真理値表を完成させよ。



| $D_0$ | $D_1$ | S | S' | $M_0$ | $M_1$ | Q |
|-------|-------|---|----|-------|-------|---|
| 0     | 0     | 0 | 1  | 0     | 0     | 0 |
| 0     | 1     | 0 | 1  | 0     | 0     | 0 |
| 1     | 0     | 0 | 1  | 1     | 0     | 1 |
| 1     | 1     | 0 | 1  | 1     | 0     | 1 |
| 0     | 0     | 1 | 0  | 0     | 0     | 0 |
| 0     | 1     | 1 | 0  | 0     | 1     | 1 |
| 1     | 0     | 1 | 0  | 0     | 0     | 0 |
| 1     | 1     | 1 | 0  | 0     | 1     | 1 |

# 1ビットの大小比較器の真理値表

- ▶ 問題5 解答
  - ▶ 右に示す1ビット大小比較器の真理値表を完成させよ



| $D_0$ | $D_1$ | М | Р | Q | R |
|-------|-------|---|---|---|---|
| 0     | 0     | 1 | 0 | 1 | 0 |
| 0     | 1     | 0 | 1 | 0 | 0 |
| 1     | 0     | 0 | 0 | 0 | 1 |
| 1     | 1     | 0 | 0 | 1 | 0 |

### SRフリップフロップ

- ▶ 問題2 解答
  - ▶ 下左図のSRフリップフロップに、下右図のタイミングチャートに示されるような信号Rと信号Sが入力されるものとする。信号QとQの状態変化を記入せよ。





### Dラッチ

- ▶ 問題3 解答
  - 下左図のDラッチに、下右図のタイミングチャートに示されるような信号 Dと信号Cが入力されるものとする.信号R、信号S、信号Qの状態変化 を記入せよ。





### 組み合わせ回路のメモリ実装

### ▶ 問題2 解答

下図の組み合わせ回路を、 メモリを用いて実現したい。メモリに格納すべき値を、 右表に記入せよ。



| 格納データ          |
|----------------|
| $Q_3Q_2Q_1Q_0$ |
| 1000           |
| 1 1 1 0        |
| 1 1 1 0        |
| 1010           |
| 1110           |
| 1010           |
| 1010           |
| 1 1 1 0        |
| 0 1 1 0        |
| 0010           |
| 0010           |
| 0 1 1 0        |
| 0010           |
| 0 1 1 0        |
| 0 1 1 0        |
| 0011           |
|                |

23

# PLA (Programmable Logic Array)

### 問題3 解答

▶ 下左図の真理値表で示される組み合わせ回路を、下右図のPLAにて構成したい、接続する必要のある交点に、黒丸を記入せよ、なお、未接続配線は、論理値0とする。

0 プログラム可能 ANDアレイ 0 0 0 000 0 0 0  $Q_3$ プログラム可能 ORアレイ