

Chapter 11

Output Analysis for a Single Model

Contents

- Types of Simulation
- Stochastic Nature of Output Data
- Measures of Performance
- Output Analysis for Terminating Simulations
- Output Analysis for Steady-state Simulations

Purpose

- Output analysis: examination of the data generated by a simulation
- Objective:
 - Predict performance of system
 - Compare performance of two (or more) systems
- If θ is the system performance, the result of a simulation is an estimator $\hat{\theta}$
- The precision of the estimator $\hat{\theta}$ can be measured by:
 - $oldsymbol{\cdot}$ The standard error of $\hat{ heta}$
 - The width of a confidence interval (CI) for θ

Purpose

- Purpose of statistical analysis:
 - To estimate the standard error and/or confidence interval
 - To figure out the number of observations required to achieve a desired error or confidence interval
- Potential issues to overcome:
 - Autocorrelation, e.g., arrival of subsequent packets may lack statistical independence.
 - Initial conditions, e.g., the number of packets in a router at time 0 would most likely influence the performance/delay of packets arriving later.

Types of Simulations

Types of Simulations

- Two types of simulation:
 - Terminating (transient)
 - Non-terminating (steady state)

Types of Simulations:

Terminating Simulations

- Terminating (transient) simulation:
 - Runs for some duration of time $T_{E'}$ where E is a specified event that stops the simulation.
 - Starts at time 0 under well-specified initial conditions.
 - Ends at the stopping time T_E .
 - Bank example: Opens at 8:30 am (time 0) with no customers present and 8 of the 11 teller working (initial conditions), and closes at 4:30 pm (Time $T_E = 480$ minutes).
 - The simulation analyst chooses to consider it a terminating system because the object of interest is one day's operation.
 - T_E may be known from the beginning or it may not
 - Several runs may result in T_E^1 , T_E^2 , T_E^3 ,...
 - Goal may be to estimate $E(T_E)$

Types of Simulations:

Non-terminating Simulations

- Non-terminating simulation:
 - Runs continuously or at least over a very long period of time.
 - Examples: assembly lines that shut down infrequently, hospital emergency rooms, telephone systems, network of routers, Internet.
 - Initial conditions defined by the analyst.
 - Runs for some analyst-specified period of time T_E .
 - Objective is to study the steady-state (long-run) properties of the system, properties that are not influenced by the initial conditions of the model.
- Whether a simulation is considered to be terminating or non-terminating depends on both
 - The objectives of the simulation study and
 - The nature of the system

Types of Simulations

- Whether a simulation is considered to be terminating or non-terminating depends on both
 - The objectives of the simulation study and
 - The nature of the system

- Model output consist of one or more random variables because the model is an input-output transformation and the input variables are random variables.
- M/G/1 queueing example:
 - Poisson arrival rate = 0.1 per time unit and service time ~ $N(\mu = 9.5, \sigma^2 = 1.75^2)$.
 - System performance: long-run mean queue length, $L_O(t)$.
 - Suppose we run a single simulation for a total of 5000 time units
 - Divide the time interval [0, 5000) into 5 equal subintervals of 1000 time units.
 - Average number of customers in queue from time (j-1)1000 to j(1000) is Y_j .

$$L_{Q} = \frac{\lambda^{2}}{\mu(\mu - \lambda)} = \frac{\rho^{2}}{1 - \rho}$$

- M/G/1 queueing example (cont.):
 - Batched average queue length for 3 independent replications:

		Replication			
Batching Interval	Batch <i>j</i>	Y_{1j}	Y_{2j}	Y_{3j}	
[0, 1000)	1	3,61	2,91	7,67	
[1000, 2000)	2	3,21	9,00	19,53	Across replication
[2000, 3000)	3	2,18	16,15	20,36	/
[3000, 4000)	4	6,92	24,53	8,11	
[4000, 5000)	5	2,82	25,19	12,62	
[0, 5000)		3,75	15,56	13,66	

- Inherent variability in stochastic simulation by the stochastic simulation and across different replication and across different replication.
- The average across 3 replications, $Y_{1\bullet}$, $Y_{2\bullet}$, G can be regarded as independent observations, but averages Y_{11} , ..., Y_{15} , are not.

Measures of performance

- Consider the estimation of a performance parameter, θ (or ϕ), of a simulated system.
 - Discrete time data: $\{Y_1, Y_2, ..., Y_n\}$, with ordinary mean: θ
 - Continuous-time data: $\{Y(t), 0 \le t \le T_E\}$ with time-weighted mean: ϕ
- Point estimation for discrete time data.
 - The point estimator:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

• Is unbiased if its expected value is θ , that is if: $E(\theta)$

 $E(\hat{\theta}) = \theta$ Desired

• Is biased if: $E(\hat{\theta}) \neq \theta$ and $E(\hat{\theta}) - \theta$ is called **bias** of

Point Estimator

- Point estimation for continuous-time data.
 - The point estimator:

$$\hat{\phi} = \frac{1}{T_E} \int_0^{T_E} Y(t) dt$$

- Is biased in general where: $E(\hat{\phi}) \neq \phi$
- An unbiased or low-bias estimator is desired.

Point Estimator

- Usually, system performance measures can be put into the common framework of θ or ϕ :
 - Example: The proportion of days on which sales are lost through an out-of-stock situation, let:

$$Y(i) = \begin{cases} 1, & \text{if out of stock on day } i \\ 0, & \text{otherwise} \end{cases}$$

• Example: Proportion of time that the queue length is larger than k_0

$$Y(t) = \begin{cases} 1, & \text{if } L_{Q}(t) > k_{0} \\ 0, & \text{otherwise} \end{cases}$$

Measures of performance: Point Estimator

- Performance measure that does not fit: quantile or percentile: $P(Y \le \theta) = p$
 - Estimating quantiles: the inverse of the problem of estimating a proportion or probability.
 - Consider a histogram of the observed values Y:
 - Find $\hat{\theta}$ such that 100p% of the histogram is to the left of (smaller than) $\hat{\theta}$.
 - A widely used performance measure is the median, which is the 0.5 quantile or 50-th percentile.

- Suppose $X_1, X_2, ..., X_n$ are an independent sample from a normally distributed population with mean μ and variance σ^2 .
- Given the sample mean and sample variance as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

- Then $T = \frac{\overline{X} \mu}{S / \sqrt{n}}$ has Student's *t*-distribution with *n*-1 degrees of freedom
- If c is the p-th quantile of this distribution, then P(-c < T < c) = p
- Consequently

$$P\left(\overline{X} - c\frac{S}{\sqrt{n}} < \mu < \overline{X} + c\frac{S}{\sqrt{n}}\right) = p$$

- To understand confidence intervals fully, distinguish between measures of error and measures of risk:
 - confidence interval versus
 - prediction interval
- Suppose the model is the normal distribution with mean θ_i variance σ^2 (both unknown).
 - Let Y_i be the average cycle time for parts produced on the i-th replication of the simulation (its mathematical expectation is θ).
 - Average cycle time will vary from day to day, but over the long-run the average of the averages will be close to θ .
 - Sample variance across *R* replications:

$$S^{2} = \frac{1}{R-1} \sum_{i=1}^{R} (Y_{i\bullet} - Y_{\bullet \bullet})^{2}$$

Confidence-Interval Estimation

- Confidence Interval (CI):
 - A measure of error.

• Where Y_i are normally distributed. Quantile of the t distribution with R-1 degrees of freedom.

- We cannot know for certain how far $\overline{Y}_{\bullet \bullet}$ is from θ but CI attempts to bound that error.
- A CI, such as 95%, tells us how much we can trust the interval to actually bound the error between $\overline{Y}_{\bullet\bullet}$ and θ .
- The more replications we make, the less error there is in $\overline{Y}_{\bullet \bullet}$ (converging to 0 as R goes to infinity).

- Prediction Interval (PI):
 - A measure of risk.
 - A good guess for the average cycle time on a particular day is our estimator but it is unlikely to be exactly right.
 - PI is designed to be wide enough to contain the actual average cycle time on any particular day with high probability.
 - Normal-theory prediction interval:

$$\overline{Y}_{\bullet \bullet} \pm t_{\frac{\alpha}{2}, R-1} S \sqrt{1 + \frac{1}{R}}$$

- The length of PI will not go to 0 as R increases because we can never simulate away risk.
- Prediction Intervals limit is: $\theta \pm z_{\frac{\alpha}{2}} \sigma$

Output Analysis for Terminating Simulations

Output Analysis for Terminating Simulations

- A terminating simulation: runs over a simulated time interval $[0, T_E]$.
- A common goal is to estimate:

$$\theta = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right), \quad \text{for discrete output}$$

$$\phi = E\left(\frac{1}{T_{E}}\int_{0}^{T_{E}}Y(t)dt\right), \quad \text{for continuous output} \quad Y(t), \quad 0 \le t \le T_{E}$$

 In general, independent replications are used, each run using a different random number stream and independently chosen initial conditions.

Statistical Background

- Important to distinguish within-replication data from acrossreplication data.
- For example, simulation of a manufacturing system
 - Two performance measures of that system: cycle time for parts and work in process (WIP).
 - Let Y_{ij} be the cycle time for the j-th part produced in the i-th replication.
 - Across-replication data are formed by summarizing within-replication data $\overline{Y}_{i\bullet}$

	Within-Replication Data		Across-Rep. Data						
1	Y_{11}	<i>Y</i> ₁₂	• • •	Y_{1n_1}	$\overline{Y}_{1\bullet}$,	S_1^2 ,	H_1		
2	Y_{21}	Y_{22}	• • •	Y_{2n_2}	$\overline{Y}_{2\bullet}$,	S_2^2 ,	H_2		Within replication
: 		:	•	:	<u></u>	\mathbf{c}^2	7.7		performance measure
K	\boldsymbol{Y}_{R1}	Y_{R2}	• • •	Y_{Rn_R}	$\overline{Y}_{R\bullet}$,	\mathfrak{Z}_{R} ,	H_R		
					$\overline{Y}_{\bullet \bullet}$,	S^2 ,	H]}	Across replication performance measure

Statistical Background

Across Replication:

For example: the daily cycle time averages (discrete time data)

• The average:
$$\overline{Y}_{\bullet \bullet} = \frac{1}{R} \sum_{i=1}^{R} Y_{i \bullet}$$

- The sample variance: $S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_{i\bullet} \overline{Y}_{\bullet\bullet})^2$
- The confidence-interval half-width: $H = t_{\frac{\alpha}{2},R-1} \frac{S}{\sqrt{R}}$

• Within replication:

• For example: the WIP (a continuous time data)

• The average:
$$\overline{Y}_{i\bullet} = \frac{1}{T_{E_i}} \int_0^{T_{E_i}} Y_i(t) dt$$

• The sample variance: $S_i^2 = \frac{1}{T_{Ei}} \int_0^{T_{Ei}} \left(Y_i(t) - \overline{Y}_{i\bullet} \right)^2 dt$

Statistical Background

- Overall sample average, $\overline{Y}_{\bullet\bullet}$, and the interval replication sample averages, $\overline{Y}_{i\bullet}$, are always unbiased estimators of the expected daily average cycle time or daily average WIP.
- Across-replication data are independent and identically distributed
 - Same model
 - Different random numbers for each replications
- Within-replication data are not independent and not identically distributed
 - One random number stream is used within a replication

Output Analysis for Terminating Simulations

Confidence Intervals with Specified Precision

• The half-length H of a $100(1-\alpha)\%$ confidence interval for a mean θ , based on the t distribution, is given by:

$$H = t_{\frac{\alpha}{2}, R-1} \frac{S}{\sqrt{R}}$$

$$R \text{ is the number of replications}$$

• Suppose that an error criterion ε is specified with probability 1- α , a sufficiently large sample size should satisfy:

$$P(|\overline{Y}_{\bullet\bullet} - \theta| < \varepsilon) \ge 1 - \alpha$$

- Assume that an initial sample of size R_0 (independent) replications has been observed.
- Obtain an initial estimate S_0^2 of the population variance σ^2 .

$$H = t_{\frac{\alpha}{2}, R-1} \frac{S_0}{\sqrt{R}} \le \varepsilon$$

- Then, choose sample size R such that $R \ge R_0$
- Solving for R

$$R \ge \left(\frac{t_{\alpha/2,R-1}S_0}{\varepsilon}\right)^2$$

• Since $t_{\alpha/2,R-1} \ge z_{\alpha/2}$, an initial estimate for R is given by

$$R \ge \left(\frac{z_{\alpha/2}S_0}{\varepsilon}\right)^2$$
, $z_{\alpha/2}$ is the standard normal distribution.

- Collect $R R_0$ additional observations.
- The $100(1-\alpha)\%$ confidence interval for θ :

$$\overline{Y}_{\bullet\bullet} \pm t_{\alpha/2,R-1} \frac{S}{\sqrt{R}}$$

- Call Center Example: estimate the agent's utilization ρ over the first 2 hours of the workday.
 - Initial sample of size $R_0 = 4$ is taken and an initial estimate of the population variance is $S_0^2 = (0.072)^2 = 0.00518$.
 - The error criterion is $\varepsilon = 0.04$ and confidence coefficient is $1-\alpha = 0.95$, hence, the **final sample size** must be at least:

$$\left(\frac{z_{0.025}S_0}{\varepsilon}\right)^2 = \frac{1.96^2 \times 0.00518}{0.04^2} = 12.44$$

For the final sample size:

R	13	14	15
t _{0.025, R-1}	2,18	2,16	2,14
$(t_{\alpha/2,R-1}S_0/\varepsilon)^2$	15,39	15,1	14,83

- R = 15 is the smallest integer satisfying the error criterion $R \ge \left(\frac{t_{\alpha/2,R-1}S_0}{\varepsilon}\right)^2$ so $R R_0 = 11$ additional replications are needed.
- After obtaining additional outputs, half-width should be checked.

Output Analysis for Terminating Simulations

Quantiles

Quantiles

- Here, a proportion or probability is treated as a special case of a mean.
- When the number of independent replications $Y_1, ..., Y_R$ is large enough that $t_{\alpha/2,R-1} \approx z_{\alpha/2}$, the confidence interval for a probability p is often written as:

 A quantile is the inverse of the probability estimation problem:

Quantiles

- The best way is to sort the outputs and use the $(R \times p)$ -th smallest value, i.e., find θ such that 100p% of the data in a histogram of Y is to the left of θ .
 - Example: If we have R=10 replications and we want the p=0.8 quantile, first sort, then estimate θ by the (10)(0.8) = 8-th smallest value (round if necessary).

```
5.6 ← sorted data
7.1
8.8
8.9
9.5
9.7
10.1
12.2 ← this is our point estimate
12.5
12.9
```

Quantiles

- Confidence Interval of Quantiles: An approximate $(1-\alpha)100\%$ confidence interval for θ can be obtained by finding two values θ_l and θ_u .
 - θ_l cuts off $100p_l\%$ of the histogram (the $R \times p_l$ smallest value of the sorted data).
 - θ_u cuts off $100p_u$ % of the histogram (the $R \times p_u$ smallest value of the sorted data).

where
$$p_{\ell} = p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}}$$

$$p_u = p + z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}}$$

Quantiles

- Example: Suppose R = 1000 replications, to estimate the p = 0.8 quantile with a 95% confidence interval.
 - First, sort the data from smallest to largest.
 - Then estimate of θ by the (1000)(0.8) = 800-th smallest value, and the point estimate is 212.03.
 - And find the confidence interval:

$$p_{\ell} = 0.8 - 1.96 \sqrt{\frac{0.8(1 - 0.8)}{1000 - 1}} = 0.78$$
$$p_{u} = 0.8 + 1.96 \sqrt{\frac{0.8(1 - 0.8)}{1000 - 1}} = 0.82$$

The CI is the 780th and 820th smallest values

- The point estimate is 212.03
- The 95% CI is [188.96, 256.79]

A portion of the 1000 sorted values:

	Output	Rank	
	180.92	779	
p_l	188.96	780	
	190.55	781	
	208.58	799	
	212.03	800 🔇	
	216.99	801	
	250.32	819	
p_u	256.79	820	
	256.99	821	

- Consider a single run of a simulation model to estimate a steady-state or long-run characteristics of the system.
 - The single run produces observations Y_1 , Y_2 , ... (generally the samples of an autocorrelated time series).
 - Performance measure:

$$\theta = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i, \qquad \text{for discrete measure} \qquad \text{(with probability 1)}$$

$$\phi = \lim_{T_n \to \infty} \frac{1}{T_n} \int_0^{T_n} Y(t) dt, \qquad \text{for continuous measure} \qquad \text{(with probability 1)}$$

Independent of the initial conditions.

- The sample size is a design choice, with several considerations in mind:
 - Any bias in the point estimator that is due to artificial or arbitrary initial conditions (bias can be severe if run length is too short).
 - Desired precision of the point estimator.
 - Budget constraints on computer resources.
- Notation: the estimation of θ from a discrete-time output process.
 - One replication (or run), the output data: Y_1 , Y_2 , Y_3 , ...
 - With several replications, the output data for replication r: Y_{r1} , Y_{r2} , Y_{r3} , ...

- Methods to reduce the point-estimator bias caused by using artificial and unrealistic initial conditions:
 - Intelligent initialization.
 - Divide simulation into an initialization phase and data-collection phase.
- Intelligent initialization
 - Initialize the simulation in a state that is more representative of longrun conditions.
 - If the system exists, collect data on it and use these data to specify more nearly typical initial conditions.
 - If the system can be simplified enough to make it mathematically solvable, e.g., queueing models, solve the simplified model to find long-run expected or most likely conditions, use that to initialize the simulation.

- Divide each simulation into two phases:
 - An initialization phase, from time 0 to time T_0 .
 - A data-collection phase, from T_0 to the stopping time T_0+T_E .
 - The choice of T_0 is important:
 - After T_0 , system should be more nearly representative of steady-state behavior.
 - System has reached steady state: the probability distribution of the system state is close to the steady-state probability distribution (bias of response variable is negligible).

- M/G/1 queueing example: A total of 10 independent replications were made.
 - Each replication begins in the empty and idle state.
 - Simulation run length on each replication: $T_0 + T_E = 15000$ time units.
 - Response variable: queue length, $L_Q(t,r)$ (at time t of the r-th replication).
 - Batching intervals of 1000 minutes, batch means

$$Y_{rj} = \int_{(j-1)1000}^{j1000} L_Q(t,r)dt$$

- Ensemble averages:
 - To identify trend in the data due to initialization bias
 - The average corresponding batch means across replications:

$$\overline{Y}_{.j} = \frac{1}{R} \sum_{r=1}^{R} Y_{rj}$$

• A plot of the ensemble averages, $\overline{Y}_{\bullet j}$, versus 1000j, for j=1,2,...,15.

 Cumulative average sample mean (after deleting d observations):

$$\overline{Y}_{\bullet\bullet}(n,d) = \frac{1}{n-d} \sum_{j=d+1}^{n} \overline{Y}_{\bullet j}$$

- Not recommended to determine the initialization phase.
- It is apparent that downward bias is present and this bias can be reduced by deletion of one or more observations.

- No widely accepted, objective and proven technique to guide how much data to delete to reduce initialization bias to a negligible level.
- Plots can, at times, be misleading but they are still recommended.
 - Ensemble averages reveal a smoother and more precise trend as the number of replications, R, increases.
 - Ensemble averages can be smoothed further by plotting a moving average.
 - Cumulative average becomes less variable as more data are averaged.
 - The more correlation present, the longer it takes for $\overline{Y}_{\bullet,j}$ to approach steady state.
 - Different performance measures could approach steady state at different rates.

Error Estimation

- If $\{Y_1, ..., Y_n\}$ are not statistically independent, then S^2/n is a biased estimator of the true variance.
 - Almost always the case when $\{Y_1, ..., Y_n\}$ is a sequence of output observations from within a single replication (autocorrelated sequence, time-series).
- Suppose the point estimator θ is the sample mean

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 $V(\overline{Y}) = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \text{cov}(Y_i, Y_j)$

- Variance of \overline{Y} is very hard to estimate.
- For systems with steady state, produce an output process that is approximately covariance stationary (after passing the transient phase).
 - The covariance between two random variables in the time series depends only on the lag, i.e., the number of observations between them.

- For a covariance stationary time series, $\{Y_1, ..., Y_n\}$:
 - Lag-k autocovariance is: $\gamma_k = \text{cov}(Y_1, Y_{1+k}) = \text{cov}(Y_i, Y_{i+k})$
 - Lag-k autocorrelation is: $\rho_k = \frac{\gamma_k}{\sigma^2}$, $-1 \le \rho_k \le 1$
- If a time series is covariance stationary, then the variance of \overline{Y} is:

$$V(\overline{Y}) = \frac{\sigma^2}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]$$

• The expected value of the variance estimator is:

$$E\left(\frac{S^2}{n}\right) = B \cdot V(\overline{Y}), \quad \text{where } B = \frac{n/c - 1}{n - 1}$$

- (a) $\rho_k > 0$ for most kStationary time series Y_i exhibiting positive autocorrelation.
 - Series slowly drifts above and then below the mean.
- (b) $\rho_k < 0$ for most kStationary time series Y_i exhibiting negative autocorrelation.

(c) Non-stationary time series with an upward trend

The expected value of the variance estimator is:

$$E\left(\frac{S^2}{n}\right) = B \cdot V(\overline{Y}), \quad \text{where } B = \frac{n/c-1}{n-1} \text{ and } V(\overline{Y}) \text{ is the variance of } \overline{Y}$$

- If Y_i are independent $\Rightarrow \rho_k=0$, then S^2/n is an unbiased estimator of $V(\overline{Y})$
- If the autocorrelation ρ_k are primarily positive, then S^2/n is biased low as an estimator of $V(\overline{Y})$
- If the autocorrelation ρ_k are primarily negative, then S^2/n is biased high as an estimator of $V(\overline{Y})$

Replication Method

- Use to estimate point-estimator variability and to construct a confidence interval.
- Approach: make R replications, initializing and deleting from each one the same way.
- Important to do a thorough job of investigating the initial-condition bias:
 - Bias is not affected by the number of replications, instead, it is affected only by deleting more data (i.e., increasing T_0) or extending the length of each run (i.e. increasing T_E).
- Basic raw output data $\{Y_{rj}, r = 1, ..., R; j = 1, ..., n\}$ is derived by:
 - Individual observation from within replication r.
 - Batch mean from within replication r of some number of discrete-time observations.
 - Batch mean of a continuous-time process over time interval j.

	Observations				Replication		
Replication	1	• • •	d	d+1	• • •	n	Averages
1	$Y_{1,1}$	• • •	$Y_{1,d}$	$Y_{1,d+1}$	• • •	$Y_{1,n}$	$\overline{Y}_{1\bullet}(n,d)$
2	$Y_{2,1}$	• • •	$Y_{2,d}$	$Y_{2,d+1}$	• • •	$Y_{2,n}$	$\overline{Y}_{2\bullet}(n,d)$
:	:		•	:		•	:
R	$Y_{R,1}$	•••	$Y_{R,d}$	$Y_{R,d+1}$	•••	$Y_{R,n}$	$\overline{Y}_{R\bullet}(n,d)$
	$\overline{Y}_{\bullet 1}$	•••	$\overline{Y}_{\bullet d}$	$\overline{\mathbf{Y}}_{\bullet(d+1)}$	•••	$\overline{Y}_{\bullet n}$	$Y_{\bullet\bullet}(n,d)$

• Each replication is regarded as a single sample for estimating θ . For replication r:

$$\overline{Y}_{r\bullet}(n,d) = \frac{1}{n-d} \sum_{j=d+1}^{n} Y_{rj}$$

The overall point estimator:

$$\overline{Y}_{\bullet\bullet}(n,d) = \frac{1}{R} \sum_{r=1}^{R} \overline{Y}_{r\bullet}(n,d)$$
 and $E[\overline{Y}_{\bullet\bullet}(n,d)] = \theta_{n,d}$

- If *d* and *n* are chosen sufficiently large:
 - $\theta_{n,d} \sim \theta$.
 - $\overline{Y}_{n}(n,d)$ is an approximately unbiased estimator of θ .

• To estimate the standard error of $\overline{Y}_{\bullet \bullet}$, compute the sample variance and standard error:

• Length of each replication (n) beyond deletion point (d):

$$(n-d) > 10d$$
 or $T_E > 10T_0$

- Number of replications (R) should be as many as time permits, up to about 25 replications.
- For a fixed total sample size (n), as fewer data are deleted $(\downarrow d)$:
 - Confidence interval shifts: greater bias.
 - Standard error of $\overline{Y}_{\bullet\bullet}(n,d)$ decreases: decrease variance.

- M/G/1 queueing example:
 - Suppose R=10, each of length $T_E=15000$ time units, starting at time 0 in the empty and idle state, initialized for $T_0=2000$ time units before data collection begins.
 - Each batch means is the average number of customers in queue for a 1000-time-unit interval.
 - The 1-st two batch means are deleted (d=2).

	Sample Mean for Replication r				
Replication, r	(No Deletion) \vec{Y}_r .(15, 0)	(Delete 1) \tilde{Y}_{r} .(15, 1)	(Delete 2) \bar{Y}_r .(15, 2)		
1	3.27	3.24	3.25		
2	16.25	17.20	17.83		
3	15.19	15.72	15.43		
4	7.24	7.28	7.71		
5	2.93	2.98	3.11		
6	4.56	4.82	4.91		
7	8.44	8.96	9.45		
8	5.06	5.32	5.27		
9	6.33	6.14	6.24		
10	10.10	10.48	11.07		
Ÿ(15, d)	7.94	8.21	8.43		
$\sum_{r=1}^{K} \bar{Y}_r^2$	826.20	894.68	938.34		
S ²	21.75	24.52	25.30		
S	4.66	4.95	5.03		
$S/\sqrt{10} = \text{s.e.}(\vec{Y})$	1.47	1.57	1.59		

$$\overline{Y}_{\bullet \bullet}(15,2) = 8.43$$
 and $s.e.(\overline{Y}_{\bullet \bullet}(15,2)) = 1.59$

• The 95 % CI for long-run mean queue length is:

$$\begin{aligned} \overline{Y}_{\bullet\bullet} - t_{\alpha/2, R-1} & \frac{S}{\sqrt{R}} \le \theta \le \overline{Y}_{\bullet\bullet} + t_{\alpha/2, R-1} & \frac{S}{\sqrt{R}} \\ 8.43 - 2.26(1.59) \le L_Q \le 8.43 + 2.26(1.59) \end{aligned}$$

• A high degree of confidence that the long-run mean queue length is between 4.84 and 12.02 (if *d* and *n* are "large" enough).

Output Analysis for Steady-State Simulation Sample Size

Sample Size

- To estimate a long-run performance measure, θ , within $\pm \varepsilon$ with confidence $100(1-\alpha)\%$.
- M/G/1 queuing example (cont.):
 - We know: $R_0 = 10$, d = 2 deleted and $S_0^2 = 25.30$.
 - To estimate the long-run mean queue length, L_Q , within $\varepsilon = 2$ customers with 90% confidence ($\alpha = 10\%$).
 - Initial estimate:

$$R \ge \left(\frac{z_{0.05}S_0}{\varepsilon}\right)^2 = \frac{1.645^2 \times 25.30}{2^2} = 17.1$$

• Hence, at least 18 replications are needed, next try R = 18,19,...

using
$$R \ge \left(\frac{t_{0.05,R-1}S_0}{\varepsilon}\right)^2$$
. We found that:
 $R = 19 \ge \left(\frac{t_{0.05,19-1}S_0}{\varepsilon}\right)^2 = 1.73^2 \times \frac{25.3}{4} = 18.93$

• Additional replications needed is $R - R_0 = 19 - 10 = 9$.

Sample Size

- An alternative to increasing R is to increase total run length T_0+T_E within each replication.
- Approach:
 - Increase run length from (T_0+T_E) to $(R/R_0)(T_0+T_E)$, and
 - delete additional amount of data, from time 0 to time $(R/R_0)T_0$.

- Advantage: any residual bias in the point estimator should be further reduced.
- However, it is necessary to have saved the state of the model at time T_0+T_E and to be able to restart the model.

Batch Means

Batch Means for Interval Estimation

- Using a single, long replication:
 - Problem: data are dependent so the usual estimator is biased.
 - Solution: batch means.
- Batch means: divide the output data from 1 replication (after appropriate deletion) into a few large batches and then treat the means of these batches as if they were independent.
- A continuous-time process, $\{Y(t), T_0 \le t \le T_0 + T_E\}$:
 - k batches of size $m = T_E/k$, batch means:

$$\overline{Y}_{j} = \frac{1}{m} \int_{(j-1)m}^{jm} Y(t+T_{0}) dt \quad j=1,2,...,k$$

- A discrete-time process, $\{Y_i, i = d+1, d+2, ..., n\}$:
 - k batches of size m = (n d)/k, batch means:

$$\overline{Y}_{j} = \frac{1}{m} \sum_{i=(j-1)m+1}^{jm} Y_{i+d} \quad j = 1, 2, \dots, k$$

Batch Means for Interval Estimation

$$\underbrace{Y_1,...,Y_d}_{\text{deleted}},\underbrace{Y_{d+1},...,Y_{d+m}}_{\overline{Y_1}},\underbrace{Y_{d+m+1},...,Y_{d+2m}}_{\overline{Y_2}}, \ldots ,\underbrace{Y_{d+(k-1)m+1},...,Y_{d+km}}_{\overline{Y_k}}$$

 Starting either with continuous-time or discrete-time data, the variance of the sample mean is estimated by:

$$\frac{S^2}{k} = \frac{1}{k} \sum_{j=1}^{k} \frac{\left(\overline{Y}_j - \overline{Y}\right)^2}{k - 1} = \sum_{j=1}^{k} \frac{\overline{Y}_j^2 - k\overline{Y}^2}{k(k - 1)}$$

- If the batch size is sufficiently large, successive batch means will be approximately independent, and the variance estimator will be approximately unbiased.
- No widely accepted and relatively simple method for choosing an acceptable batch size m. Some simulation software does it automatically.

The Art of Data Presentation

The art of data presentation

- Always get the following statistical sample data
 - Min
 - Max
 - Mean
 - Median
 - Standard deviation
 - CI_low
 - CI_high
 - 1st-quartile
 - 3rd-quartile

Histograms

Box Plot

- Various types of Box Plots
 - Standard
 - Variable-width Box Plot
 - Notched Box Plot
 - Variable-width Notched Box Plot

Box Plot

Box Plot

Mean with confidence interval

Summary

- Stochastic discrete-event simulation is a statistical experiment.
 - Purpose of statistical experiment: obtain estimates of the performance measures of the system.
 - Purpose of statistical analysis: acquire some assurance that these estimates are sufficiently precise.
- Distinguish simulation runs with respect to output analysis:
 - Terminating simulations and
 - Steady-state simulations.
- Steady-state output data are more difficult to analyze
 - Decisions: initial conditions and run length
 - Possible solutions to bias: deletion of data and increasing run length
- Statistical precision of point estimators are estimated by standarderror or confidence interval
- Method of independent replications was emphasized.
- Batch mean for a long run replication
- Art of data representation