Functional Analysis Assignment VI

YANG, Ze (5131209043)

May 15, 2016

Problem 1. Show that a normed linear space X is finite dimensional iff its dual X' is finite dimensional

Proof. Show a stronger one: $\dim X = \dim X'$ for finite dimesional $X(\Rightarrow)$ or $X'(\Leftarrow)$. (\Rightarrow) Since X is of finite dimension, it has basis $\{x_j\}$. For aribitrary $x \in X$, $x = \sum_{1}^{n} a_j x_j$. Define $f_j \in X'$ as

$$f_j(x) = a_j$$

By this definition we also have $f_j(x_j) = \delta_{ij}$. And we obtain another vector $(f_1, ..., f_n)$.

Claim: It is a basis of X'.

Proof of Claim: First, for all $f \in X'$, $f(\cdot) = \left(\sum_{j=1}^n f(x_j)f_j\right)(\cdot)$, in the sense that $\forall x \in X$,

$$f(x) = f\left(\sum_{j=1}^{n} a_j x_j\right) = \sum_{j=1}^{n} f(x_j) a_j = \sum_{j=1}^{n} f(x_j) f_j(x) = \left(\sum_{j=1}^{n} f(x_j) f_j\right)(x)$$

Implies that span $\{f_j\}=X'$. Moreover 0 is a linear functional in X' with 0(x)=0 for all $x\in X$. So if given

$$\sum_{j=1}^{n} \lambda_{j} f_{j} = 0$$

$$\Rightarrow \left(\sum_{j=1}^{n} \lambda_{j} f_{j}\right) (x_{j}) = 0(x_{j})$$

$$\Rightarrow \lambda_{j} = 0 \text{ for all } 1 \leq j \leq n$$

$$(1)$$

We conclude that $\{f_j\}$ is the basis of X'.

For another direction (\Leftarrow), just define a vector in X as $f(x_j) = (\sum_{i=1}^n \lambda_i f_i)(x_j) = \lambda_j$, for $\{f_j\}$ be the basis of X', then show $\{x_i\}$ is basis of X in the same fashion.

Problem 2. Let C[0,1] be the Banach space of all real-valued continuous functions $f:[0,1]\to\mathbb{R}$, with norm $||f|| = \max_{x \in [0,1]} |f(x)|.$

- · Show $X = \{f \in C[0,1]; f(0) = 0\}$ is a closed subspace of C[0,1], hence a Banach space.
- · Show that the map $f \mapsto \ell(f) = \int_0^1 f(x) dx$ is a continuous linear functional on X. Compute the norm

$$\|\ell\| = \sup_{\|f\| \le 1, f \in X} |\ell(f)|$$

Is this supremum over closed ball actually as maximum?

Proof. (a) Let $\{f_n\} \subset X$ be a convergent sequence. I.e $||f_n - f|| \to 0$. Hence $\forall \epsilon > 0$, exists N, such that for n > N

$$||f_n - f|| = \max_{x \in [0,1]} |f_n(x) - f(x)| < \epsilon$$

$$\Rightarrow |(f_n - f)(0)| = |f(0)| \le ||f_n - f|| < \epsilon$$
(2)

Since ϵ is arbitrary, we let it goes to 0, and obtain |f(0)| = 0. Hence $f \in X \Rightarrow X$ is closed. Since X is closed, $X \subset C[0,1]$, a Banach space. So X is also a Banach space.

(b) Since f is continuous function on compact set [0,1], it is bounded and attains maximun/minimum. Which implies $|f(x)| \leq ||f|| < C$ for all $x \in [0,1]$. So $\ell(f) = \int_0^1 |f| \leq C$ is also bounded, hence continuous.

$$\|\ell\| = \sup_{\|f\| \le 1, f \in X} |\ell(f)| = \sup_{\|f\| \le 1, f \in X} \left| \int_0^1 f(x) \right|$$
 (3)

The supremum is clearly 1, when f(x) approaches 1 at every x>0. The supremum is not attainable. Because f(0)=0 and f is continuous. That is, $\forall \epsilon>0$, exists δ , such that $|f(x)|<\epsilon$ whenever $0\leq x\leq\delta$. Hence

$$\left| \int_0^1 f(x) \right| \le (1 - \delta) + \delta \epsilon = 1 - \delta(1 - \epsilon) < 1 \tag{4}$$

Problem 3. In Banach space $X = L^{\infty}(\mathbb{R})$, consider the subspace V consisting of all bounded continuous functions

- · Show that there exists a bounded linear functional $\Lambda: L^{\infty}(\mathbb{R}) \to \mathbb{R}$ with $\|\Lambda\| = 1$ such that $\Lambda f = f(0)$ for every bounded continuous function f. However, show that there exists no function $g \in L^{1}(\mathbb{R})$ such that $\Lambda f = \int f g dx$ for every $f \in L^{\infty}(\mathbb{R})$.
- · Conclude that the dual space of $L^{\infty}(\mathbb{R})$ cannot be identified with $L^{1}(\mathbb{R})$.

Problem 4. Given a sequence $\{x_n\}$ in Hilbert space H, show that the strong convergence $||x_n - x|| \to 0$ holds if and only if

$$||x_n|| \to ||x||$$
 and $x_n \rightharpoonup x$

Proof. (\Rightarrow) is clear, since strong convergence implies weak convergence and the convergence of norm. (\Leftarrow) Consider

$$||x_n - x||^2 = ||x_n||^2 + ||x||^2 - 2\langle x_n, x \rangle$$

$$\Rightarrow \lim_{n \to \infty} ||x_n - x||^2 = \lim_{n \to \infty} ||x_n||^2 + ||x||^2 - 2\lim_{n \to \infty} \ell(x_n)$$
(5)

Where we denote $\ell(\cdot) = \langle \cdot, x \rangle$, clearly $\ell \in H'$. By weak convergence: $\lim_{n \to \infty} \ell(x_n) = \ell(x) = \langle x, x \rangle = ||x||^2$. By another condition $\lim_{n \to \infty} ||x_n|| = ||x||$. So RHS = $2 ||x||^2 - 2 ||x||^2 = 0$. $\Rightarrow x_n \to x$ strongly, finished the proof.

Problem 5. Consider a bounded sequence of functions $f_n \in L^2[0,T]$. As $n \to \infty$, show that the weak convergence $f_n \to f$ holds iff

$$\lim_{n \to \infty} \int_0^b f_n(x) dx = \int_0^b f(x) dx \text{ For every } b \in [0, T] \quad (\dagger)$$

Proof. (\Rightarrow) if $f_n \rightharpoonup f$, since L^2 is hilbert space, there is linear functional $\ell \in (L^2)'$, where

$$\ell(f_n) = \langle \mathbb{1}_{[0,b]}, f_n \rangle = \int_0^b f_n \tag{6}$$

For all $b \in [0,T]$. So due to weak convergence we have $\lim_{n \to \infty} \int_0^b f_n = \langle \mathbbm{1}_{[0,b]}, f \rangle = \int_0^b f$. (\Leftarrow) Since b is arbitrary, (\dagger) actually implies that $\int \mathbbm{1}_D f_n \to \int \mathbbm{1}_D f$ for any compact $D = [a,b] \subseteq [0,T]$, since $\int \mathbbm{1}_{[a,b]} f = \int (\mathbbm{1}_{[0,b]} - \mathbbm{1}_{[0,a]}) f$, and $\int |\mathbbm{1}_{[a,b]} f| \leq C(b-a)$ by boundedness of f. Then we follow the real-analysis type construction.

- · By linearity, $\int \phi f_n \to \int \phi f$, ϕ is simple function.
- · By monotone convergence thm, this $\int g^{\pm} f_n \to \int g^{\pm} f$, g^{\pm} are positive.

· For arbitrary $g \in L^2$, let $g = g^+ - g^-$, since g is bounded: $\int g f_n \to \int g f$.

All linear functionals on L^2 have such form, so we finish the proof.

Problem 6. Suppose Ω is Lebesgue measurable set and $p \in (1, \infty)$. If $f_n \rightharpoonup f$ in $L^p(\Omega)$ and

$$||f_n||_{L^p} \to ||f||_{L^p}$$

Then show that $f_n \to f$ strongly in $L^p(\Omega)$. How about p = 1?

Proof. (a) (Radon-Riesz) We first state a lemma

lemma. Assume X is a uniformly comvex Banach space, $x_n \rightharpoonup x$ and

$$\limsup_{n \to \infty} \|x_n\| \le \|x\|$$

Then $x_n \to x$ strongly.

Proof of lemma. If x = 0 we are done. Assume $x \neq 0$. Define

$$\lambda_n := \max\{\|x_n\|, \|x\|\} \ y_n := \frac{x_n}{\lambda_n}, \ y := \frac{x}{\|x\|}$$

So we get $\lambda_n \to ||x||$ by the limit sup condition. And for linear functional $\ell \in X'$, we have

$$\lim_{n \to \infty} \ell(y_n) = \lim_{n \to \infty} \ell\left(\frac{x_n}{\lambda_n}\right) = \lim_{n \to \infty} \frac{1}{\lambda_n} \ell(x_n) = \frac{\ell(x)}{\|x\|} = \ell\left(\frac{x}{\|x\|}\right)$$
 (7)

That is, $y_n \rightharpoonup y$. In fact we use $\frac{y_n+y}{2} \rightharpoonup y$ and by theorem

$$||y|| \le \liminf_{n \to \infty} \left\| \frac{y_n + y}{2} \right\| \le \left\| \frac{y_n + 1}{2} \right\| \tag{8}$$

By definition, $||y_n|| \le 1$ and ||y|| = 1. So actually $\lim_{n \to \infty} \left\| \frac{y_n + y}{2} \right\| = 1$. By uniform convexity $\Rightarrow ||y_n - y|| \to 0$, that is $||x_n - x|| \to 0$, finished the proof.

In our previous result (HW4 problem 3), we have already shown that L^p is uniformly convex for $p \ge 2$. And now that $||f_n||_{L^p} \to ||f||_{L^p}$, we have

$$\limsup_{n \to \infty} \|f_n\|_{L^p} = \|f\|_{L^p} \le \|f\|_{L^p}$$

Apply the lemma, we obtain the desired result.

(b) It is not the case for p=1. We let $\Omega=[0,2\pi], f_n:=\sin(nx)+1$. Then clearly $f_n\rightharpoonup 1$;

$$||f_n||_{L^1} = \int_0^{2\pi} |\sin(nx) + 1| = 2\pi$$

but

$$||f_n - 1||_{L^1} = \int_0^{2\pi} |\sin(nx)| = 4$$

Problem 7. Exercise 1. Show

$$y_K = \sum_{k=1}^{K} x_{n_k}(t) < 4$$

Exercise 2. If a sequence $\{x_n\} \subset \ell^1$ converges weakly, then it converges strongly.

Exercise 3. If a sequence of points $\{x_n\}$ in normed linear space satisfies

- 1. $\{x_n\}$ are uniformly bounded, i.e. $|x_n| \leq c$.
- 2. $\lim_{n\to\infty} \ell(x_n) = \ell(x)$ for a set of ℓ dense in X'.

Then $x_n \rightharpoonup x$.

Proof. (Ex.1) Draw a plot of $x_n(t)$, since $n_{k+1} > 2n_k$, for any $t \in [0,1]$, there exists an M > 0 such that $\frac{1}{n_M} < t < \frac{2}{n_M}$, hence $t > \frac{1}{n_M} > \frac{2}{n_{M+1}}$. So

$$\sum_{k=1}^{K} x_{n_k}(t) \leq \sum_{k=1}^{\max\{M,K\}} x_{n_k}(t)$$

$$= \left(\sum_{k=1}^{M} + \sum_{k=M}^{\max\{M,K\}}\right) x_{n_k}(t)$$

$$= 2 - n_M t + \sum_{k=1}^{M-1} n_k t$$

$$< 2 - n_M \frac{1}{n_M} + \sum_{k=1}^{M-1} \frac{n_M}{2^{M-1-k}} \frac{2}{n_M}$$

$$= 1 + \frac{4}{2^M} \sum_{k=1}^{M-1} 2^k = 5\left(1 - \frac{1}{2^M}\right) < 5$$
(9)

(Well...I didn't work out 4, but the purpose of this is just deducing an upper bound of y_K , so I think 5 is just fine.)

Proof. (Ex.2) Let $\{y^{[n]}\}\subset \ell^1$ be a sequence that converges weakly. WLOG $y^{[n]}\rightharpoonup 0$. We argue by contradiction.

Assume $y^{[n]}$ does not converge to 0 in norm, i.e. $\exists \epsilon > 0$, such that

$$\left\| \boldsymbol{y}^{[n]} - 0 \right\| \ge 5\epsilon$$

By previous result we have known $(\ell^1)' = \ell^{\infty}$.

We consider $y^{[0]} = (y_1^{[0]}, y_2^{[0]}...) \in \ell^1$, there exists n_0 s.t. $\sum_{k \geq n_0+1} |y_k^{[0]}| < \epsilon$; which implies that $\sum_{k=0}^{n_0} |y_k^{[0]}| > 3\epsilon - \epsilon = 4\epsilon$.

 $\sum_{k=0}^{\infty} |y_k^{-1}| > 3\epsilon - \epsilon - 4\epsilon.$ Now for this fixed n_0 , pick $\mathbf{y}^{[1]} = (y_1^{[1]}, y_2^{[1]}...) \in \ell^1$, s.t. $\sum_{k=0}^{n_0} |y_k^{[1]}| < \epsilon$. Moreover, there exists $n_1 > n_0$ such that $\sum_{k \ge n_1 + 1} |y_k^{[1]}| < \epsilon$. Hence

$$\sum_{k=n_0+1}^{n_1} |y_k^{[1]}| = \left\| \boldsymbol{y}^{[1]} \right\| - \sum_{k=0}^{n_0} |y_k^{[1]}| - \sum_{k \geq n_1} |y_k^{[1]}| \geq 5\epsilon - \epsilon - \epsilon = 3\epsilon$$

We keep doing this and obtain $\{y^{[j]}\}$. Extract n_{j-1} to n_j elements from each $y^{[j]}$, normalize to 1 and concatenate toghther: That is, we take

$$\boldsymbol{x} := \left(0,...,0; \frac{y_{n_0+1}^{[1]}}{|y_{n_0+1}^{[1]}|},..., \frac{y_{n_1}^{[1]}}{|y_{n_1}^{[1]}|}; \frac{y_{n_1+1}^{[2]}}{|y_{n_1+1}^{[2]}|},..., \frac{y_{n_2}^{[2]}}{|y_{n_2}^{[2]}|};.....\right)$$

 $\boldsymbol{x} \in \ell^{\infty}$ and clearly $\|\boldsymbol{x}\|_{\infty} = 1$.

$$|\langle \boldsymbol{x}, \boldsymbol{y}^{[j]} \rangle| = \left| \sum_{k \geq 0} x_k y_k^{[j]} \right|$$

$$\geq \left| \sum_{k=n_{j-1}+1}^{n_j} x_k y_k^{[j]} \right| - \left| \sum_{k \geq n_j+1} x_k y_k^{[j]} \right| - \left| \sum_{k=0}^{n_{j-1}} x_k y_k^{[j]} \right|$$

$$\geq \sum_{k=n_{j-1}+1}^{n_j} |y_k^{[j]}| - ||\boldsymbol{x}||_{\infty} \sum_{k \notin \{n_{j-1}+1,\dots,n_j\}} |y_k^{[j]}|$$

$$\geq 3\epsilon - 1 \cdot (\epsilon + \epsilon) = \epsilon$$

$$(10)$$

Define $\ell(\cdot) := \langle \boldsymbol{x}, \cdot \rangle$. It is clear that $\ell(\boldsymbol{y}^{[j]})$ does not converge to 0. But since $\boldsymbol{y}^{[j]} \rightharpoonup \boldsymbol{0}$, we should have $\lim_{i \to \infty} \ell(\boldsymbol{y}^{[j]}) = \ell(\boldsymbol{0}) = 0$, contradiction.

Proof. (Ex.3) Suppose $||x_n|| < c$. For any $\epsilon > 0$, for any $f \in X'$, we can choose $\{\phi_j\} \in D$, D is dense in X' and such that for j large

$$||f_j - f|| \le \frac{\epsilon}{3c}$$

Due to weak convergece in D, for this ϵ , exists N, for n > N we have $|f_j(x_n) - f_j(x)| < \epsilon/3$ for any $f_j \in D$.

$$|f(x_n) - f(x)| \le |f(x_n) - f_j(x_n)| + |f_j(x_n) - f_j(x)| + |f_j(x) - f(x)|$$

$$\le |f_j(x_n) - f_j(x)| + 2 ||f - f_j|| \cdot |x - x_n|$$

$$\le \frac{\epsilon}{3} + 2 \frac{\epsilon}{3c} \cdot c = \epsilon$$
(11)

Which implies that $x_n \rightharpoonup x$ in X', finished the proof.

Problem 8. Deduce thm 10.5 from 10.6 applied to balls centered at origin $K = B_r : \{x : |x| \le r\}$

Proof. The target is to show that if $x_n \rightharpoonup x$, then

$$||x|| \le \liminf_{n \to \infty} ||x_n||$$

Denote $a := \liminf_{n \to \infty} \|x_n\|$. Now given $x_n \to x$, the norm is bounded: $\|x_n\| \le c$ for some c. Further, we can pick $x_{n_1} \in \{x_n\}$, such that $\|x_{n_1}\| \le a$. If $\{x_n\} \in B_a(0)$ then we are done, just apply theorm 6 on $B_a(0)$ yield the desired result.

Otherwise, $\exists x_{n_2} \in \{x_n\}, x_{n_2} \neq x_{n_1}, \text{ we have } \{x_{n_1}, x_{n_2}\} \in B_{a_2}(0). \text{ Where } a_2 = \max\{a, \|x_{n_2}\|\}.$

...

Continue doing this we obtain a subsequence $\{x_{n_k}\}$, $x_{n_k} \rightharpoonup x$, and $\{x_{n_k}\} \subset B_{a_k}(0)$. So apply theorem 5 yields $x \in B_{a_k}(0)$, \Rightarrow

$$||x|| \leq a_{k}$$

$$\Rightarrow \liminf_{n \to \infty} ||x|| \leq \liminf_{k \to \infty} \max\{a, ||x_{n_{k}}||\}$$

$$\Rightarrow ||x|| \leq \max\{a, \liminf_{k \to \infty} ||x_{n_{k}}||\}$$

$$\Rightarrow ||x|| \leq \max\{a, a\} = a$$
(12)

Finished the proof. \Box