Unsupervised learning

- no target variable
- multidimensional data
- usually a part of a larger task

How to approach

- What is the goal/question?
 - Can we reduce dimensions while preserving `information`?
 - Are there clusters in the data?
- Select appropriate method for the question.

Goal:

• Can we reduce dimensions, but preserve information?

PCA: intuition

- change axes
- preserve variance

Variance as a measure of 'information'

$$Cov(A, B) = \frac{1}{n-1} \sum_{i=1}^{n} (A_i - \bar{A})(B_i - \bar{B})$$
$$Var(A) = Cov(A, A)$$

Matrix form

$$X = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ a_4 & b_4 & c_4 \end{pmatrix}$$

$$CovMatrix = \frac{1}{n-1}(X - \bar{X})^{t}(X - \bar{X}) = \begin{pmatrix} cov_{11} & cov_{12} & cov_{13} \\ cov_{21} & cov_{22} & cov_{23} \\ cov_{31} & cov_{32} & cov_{33} \end{pmatrix}$$

Eigenvalue decomposition

- PCA for reduction
 - Get principal components
 - Take sufficient number of them

Note: apply after scaling

- PCA to reduce dimensions
 - get new axes
 - project on a subset
- imply that preserving `information` means preserving `variance`
 - might want to preserve something else
- not the only way to reduce dimensions