PERIODIC PERMUTATIONS AND THE SUCCESSOR

B. MILLER

ABSTRACT. We investigate pairs of conjugacy classes of periodic permutations of $\mathbb Z$ whose product contains the successor function.

Introduction

Let $\operatorname{Sym}(X)$ denote the *symmetric group* of all permutations of X. The *orbit* of a point $x \in X$ under a permutation τ of X is given by $[x]_{\tau} = \{\tau^i(x) \mid i \in \mathbb{Z}\}$. We say that τ is almost trivial if $\tau(x) = x$ for cofinitely many $x \in X$, an almost involution if τ^2 is almost trivial, and $(\sigma\text{-})periodic$ if every orbit is finite. Define $\operatorname{C}(\tau) = \sum_{x \in X} 1 - 2/|[x]_{\tau}|$ and $\operatorname{Cl}(\tau) = \{\sigma \circ \tau \circ \sigma^{-1} \mid \sigma \in \operatorname{Sym}(X)\}$. The successor function on \mathbb{Z} is given by $S^{\mathbb{Z}}(i) = i + 1$ for all $i \in \mathbb{Z}$. Here we prove the following:

Theorem A. Suppose that $\rho, \sigma \in \text{Sym}(\mathbb{Z})$ are almost involutions and $S^{\mathbb{Z}} \in \text{Cl}(\rho)\text{Cl}(\sigma)$. Then $C(\rho) + C(\sigma) \geq -1$.

Theorem B. Suppose that $\rho, \sigma \in \text{Sym}(\mathbb{Z})$ are periodic but not almost trivial and ρ or σ is not an almost involution. Then $S^{\mathbb{Z}} \in \text{Cl}(\rho)\text{Cl}(\sigma)$.

The special case of Theorem B where neither ρ nor σ is an almost involution follows from [Mor89, Theorem A]. As far as I am aware, however, the special case where ρ or σ is an almost involution was not previously known. Regardless, the real purpose of this paper is to introduce ideas and language—in the simplest possible context—that can be used to investigate the finite-order elements R and S of the full group of an aperiodic Borel automorphism T with the property that $T \in \mathrm{Cl}(R)\mathrm{Cl}(S)$. This topic will be explored in a future paper.

In §1, we prove Theorem A. In §2, we note a symmetry that removes the need to repeat arguments. In §3, we establish a fact concerning elimination of fixed points. In §4, we describe the simplest finite approximations to pairs $(\rho, \sigma) \in \text{Sym}(\mathbb{Z})^2$ for which $S^{\mathbb{Z}} \in \text{Cl}(\rho)\text{Cl}(\sigma)$. In §5, we use these as building blocks to construct extensions of more general finite approximations. And in §6, we give a self-contained proof of the special case of Theorem B where ρ or σ has finite order.

²⁰¹⁰ Mathematics Subject Classification. Primary 03E15, 28A05, 37B05. Key words and phrases. Conjugate, permutation, successor, symmetric group.

1. The proof of Theorem A

For all $R \subseteq X^2$, define $\operatorname{graph}_R(\tau) = \operatorname{graph}(\tau) \cap R$.

Proposition 1.1. Suppose that \leq is a linear ordering of a finite set F and $\tau \in \operatorname{Sym}(F)$. Then $|\operatorname{graph}_{\succ}(\tau)| \geq 1$ and $|\operatorname{graph}_{\prec}(\tau)| \leq |F| - 1$.

Proof. Let x be the \leq -maximal element of F. Then $x \succeq \tau(x)$, so $|\operatorname{graph}_{\succeq}(\tau)| \geq 1$. But $|\operatorname{graph}(\tau)| = |F|$, thus $|\operatorname{graph}_{\prec}(\tau)| \leq |F| - 1$. \boxtimes

Define $\mathcal{O}(\tau) = \{[x]_{\tau} \mid x \in X\}$. For all sets K of cardinals, define $\operatorname{Per}_K(\tau) = \{x \in X \mid |[x]_{\tau}| \in K\}$ and $\mathcal{O}_K(\tau) = \mathcal{O}(\tau \upharpoonright \operatorname{Per}_K(\tau))$. In this context, we use k and $\geq k$ as shorthand for $\{k\}$ and $\{k, k+1, \ldots, \aleph_0\}$. Put $\operatorname{graph}'_R(\tau) = \operatorname{graph}(\tau \upharpoonright \sim \operatorname{Per}_2(\tau)) \cap R$.

Proposition 1.2. Suppose that τ is an almost involution of a set X and \leq is a binary relation on X whose restriction to each orbit of τ is a linear order. Then $C(\tau) \geq |\operatorname{graph}'_{\prec}(\tau)| - |\operatorname{graph}'_{\succ}(\tau)|$.

Proof. As $|\operatorname{graph}'_{\prec}(\tau)| \leq \sum_{O \in \mathcal{O}_{\geq 3}(\tau)} (|O|-1)$ and $|\operatorname{graph}'_{\succ}(\tau)| \geq |\mathcal{O}_{\geq 3}(\tau)|$ by Proposition 1.1, the desired result follows from the fact that $C(\tau) = \sum_{O \in \mathcal{O}(\tau)} (|O|-2) = \sum_{O \in \mathcal{O}_{\geq 3}(\tau)} (|O|-1) - |\mathcal{O}_{\geq 3}(\tau)| - |\mathcal{O}_{1}(\tau)|.$

Given $\tau_0, \tau_1 \in \operatorname{Sym}(X)$, define $\tau_0 \coprod \tau_1 \in \operatorname{Sym}(X \times 2)$ by $(\tau_0 \coprod \tau_1)(x, k) = (\tau_k(x), k)$ for all k < 2 and $x \in X$. Let \preceq denote any binary relation on $\mathbb{Z} \times 2$ with the property that $(i, k) \preceq (j, k) \iff i \leq j$ for all $i, j \in \mathbb{Z}$ and k < 2. Theorem A follows from Proposition 1.2 and:

Proposition 1.3. Suppose that $\tau_0, \tau_1 \in \text{Sym}(\mathbb{Z})$ and $S^{\mathbb{Z}} = \tau_0 \circ \tau_1$. Then $|\text{graph}'_{\succeq}(\tau_0 \coprod \tau_1)| \leq |\text{graph}'_{\prec}(\tau_0 \coprod \tau_1)| + 1$.

Proof. Define $I, J: \operatorname{graph}(\tau_0 \coprod \tau_1) \to (\mathbb{Z} \times 2)^2$ by

$$I((i,k),(j,k)) = \begin{cases} ((j,k),(i,k)) & \text{if } i,j \in \operatorname{Per}_2(\tau_k) \text{ and} \\ ((i,k),(j,k)) & \text{otherwise} \end{cases}$$

and

$$J((i,k),(j,k)) = ((j-(1-k),1-k),(i+k,1-k))$$

for all $i, j \in \mathbb{Z}$ and k < 2.

Lemma 1.4. $J(\operatorname{graph}(\tau_0 \coprod \tau_1)) \subseteq \operatorname{graph}(\tau_0 \coprod \tau_1)$.

Proof. Suppose that $((i,k),(j,k)) \in \operatorname{graph}(\tau_0 \coprod \tau_1)$. If k = 0, then $\tau_0(i) = j = S^{\mathbb{Z}}(j-1) = (\tau_0 \circ \tau_1)(j-1)$, so $i = \tau_1(j-1)$, thus $J((i,0),(j,0)) = ((j-1,1),(i,1)) \in \operatorname{graph}(\tau_0 \coprod \tau_1)$. If k = 1, then $\tau_1(i) = j$, so $\tau_0(j) = (\tau_0 \circ \tau_1)(i) = S^{\mathbb{Z}}(i) = i+1$, thus $J((i,1),(j,1)) = ((j,0),(i+1,0)) \in \operatorname{graph}(\tau_0 \coprod \tau_1)$.

Lemma 1.5. $J(\operatorname{graph}_{\prec}(\tau_0 \coprod \tau_1)) = \operatorname{graph}_{\succ}(\tau_0 \coprod \tau_1).$

Proof. Note that
$$((i,k),(j,k)) \in \operatorname{graph}_{\prec}(\tau_0 \coprod \tau_1) \iff i < j \iff j - (1-k) \ge i + k \iff J((i,k),(j,k)) \in \operatorname{graph}_{\succ}(\tau_0 \coprod \tau_1).$$

Define $\mathbb{1}_R \colon R \to 2$ by $\mathbb{1}_R(x,y) = 1 \iff x \ R \ y$. The *length* of $((i,k),(j,k)) \in \operatorname{graph}(\tau_0 \coprod \tau_1)$ is given by |((i,k),(j,k))| = |i-j|.

Lemma 1.6. If $((i,k),(j,k)) \in \operatorname{graph}(\tau_0 \coprod \tau_1)$, then $|J((i,k),(j,k))| = |((i,k),(j,k))| + (-1)^{\mathbb{I}_{<}(i,j)}$.

Proof. As $i < j \iff i + k \le j - (1 - k)$, it follows that

$$|(j - (1 - k)) - (i + k)| = (-1)^{\mathbb{I}_{<(i,j)}} ((i + k) - (j - (1 - k)))$$

$$= (-1)^{\mathbb{I}_{<(i,j)}} ((i - j) + 1)$$

$$= |i - j| + (-1)^{\mathbb{I}_{<(i,j)}},$$

which immediately yields the desired result.

Let G be the group generated by I and J. The orbit of ((i,k),(j,k)) under G is given by $[((i,k),(j,k))]_G = \{g \cdot ((i,k),(j,k)) \mid g \in G\}$. Set $\mathcal{O}(G) = \{[((i,k),(j,k))]_G \mid ((i,k),(j,k)) \in \operatorname{graph}(\tau_0 \coprod \tau_1)\}$.

Lemma 1.7. Suppose that $O \in \mathcal{O}(G)$. Then graph'_> $(\tau_0 \coprod \tau_1) \cap O \neq \emptyset$.

Proof. Fix $((i,k),(j,k)) \in O$. We can assume that $((i,k),(j,k)) \notin \operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1)$. By replacing ((i,k),(j,k)) with I((i,k),(j,k)) if necessary, we can therefore assume that $((i,k),(j,k)) \in \operatorname{graph}_{\preceq}(\tau_0 \coprod \tau_1)$. For all $n \in \mathbb{N}$, note that if $((i_n,k_n),(j_n,k_n)) = (I \circ J)^n((i,k),(j,k))$ is in $\operatorname{graph}_{\preceq}(\tau_0 \coprod \tau_1)$, then $J((i_n,k_n),(j_n,k_n)) \in \operatorname{graph}_{\succeq}(\tau_0 \coprod \tau_1)$ and $|J((i_n,k_n),(j_n,k_n))| = |((i_n,k_n),(j_n,k_n))| - 1$ by Lemmas 1.5 and 1.6. If $J((i_n,k_n),(j_n,k_n)) \notin \operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1)$, then $((i_{n+1},k_{n+1}),(j_{n+1},k_{n+1})) \in \operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1)$ for all m < n, then $J((i_n,k_n),(j_n,k_n)) = 0$, in which case $J((i_n,k_n),(j_n,k_n)) \in \operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1)$.

FIGURE 1. A finite orbit of G.

Lemma 1.8. Suppose that $O \in \mathcal{O}(G)$.

- (1) If $|O| < \aleph_0$, then $|\operatorname{graph}'_{\succ}(\tau_0 \coprod \tau_1) \cap O| = |\operatorname{graph}'_{\prec}(\tau_0 \coprod \tau_1) \cap O| = 1$.
- (2) If $|O| = \aleph_0$, then O is a cofinite subset of graph $(\tau_0 \coprod \tau_1)$, $|\operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1) \cap O| = 1$, and $\operatorname{graph}'_{\prec}(\tau_0 \coprod \tau_1) \cap O = \emptyset$.

Proof. By Lemma 1.7, there exists $((i,k),(j,k)) \in \operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1) \cap O$. For all $n \in \mathbb{N}$, note that if $((i_n,k_n),(j_n,k_n)) = (I \circ J)^n((i,k),(j,k))$ is in $\operatorname{graph}_{\succeq}(\tau_0 \coprod \tau_1)$, then Lemma 1.5 ensures that $J((i_n,k_n),(j_n,k_n)) \in \operatorname{graph}_{\prec}(\tau_0 \coprod \tau_1)$. And if $J((i_n,k_n),(j_n,k_n)) \notin \operatorname{graph}'_{\prec}(\tau_0 \coprod \tau_1)$, then $((i_{n+1},k_{n+1}),(j_{n+1},k_{n+1})) \in \operatorname{graph}_{\succ}(\tau_0 \coprod \tau_1)$.

Suppose now that n is the least natural number with the property that $J((i_n, k_n), (j_n, k_n)) \in \operatorname{graph}'_{\prec}(\tau_0 \coprod \tau_1)$. Then ((i, k), (j, k)) is in $\operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1) \cap O$, $J((i_n, k_n), (j_n, k_n))$ is in $\operatorname{graph}'_{\prec}(\tau_0 \coprod \tau_1) \cap O$, and the pairs of the form $J((i_m, k_m), (j_m, k_m))$ and $((i_{m+1}, k_{m+1}), (j_{m+1}, k_{m+1}))$, for m < n, are in $\operatorname{Per}_2(\tau_0 \coprod \tau_1)^2$ and make up the rest of O, so (1) holds.

If there is no $n \in \mathbb{N}$ for which $J((i_n, k_n), (j_n, k_n)) \in \operatorname{graph}'_{\prec}(\tau_0 \coprod \tau_1)$, then ((i, k), (j, k)) is in $\operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1) \cap O$ and the pairs of the form $J((i_n, k_n), (j_n, k_n))$ and $((i_{n+1}, k_{n+1}), (j_{n+1}, k_{n+1}))$, for $n \in \mathbb{N}$, are in $\operatorname{Per}_2(\tau_0 \coprod \tau_1)^2$ and make up the rest of O, so $\operatorname{graph}'_{\prec}(\tau_0 \coprod \tau_1) \cap O = \emptyset$. A straightforward induction shows that $(i_{2n}, j_{2n}, k_{2n}) = (i + n, j - n, k)$ and $(i_{2n+1}, j_{2n+1}, k_{2n+1}) = (i + (n+k), j - (n+(1-k)), 1-k)$ for all $n \in \mathbb{N}$, so $\operatorname{graph}(\tau_0 \coprod \tau_1) \setminus O \subseteq (\{i, i+1, \ldots, j\} \times 2)^2$, thus (2) holds. \boxtimes

As at most one orbit of G can be cofinite, Lemma 1.8 ensures that $|\operatorname{graph}'_{\succeq}(\tau_0 \coprod \tau_1)| = |\mathcal{O}(G)| \leq |\operatorname{graph}'_{\prec}(\tau_0 \coprod \tau_1)| + 1.$

2. Symmetry

We use $f: X \hookrightarrow Y$ to denote a partial injection of X into Y. For all $\sigma: \mathbb{Z} \hookrightarrow \mathbb{Z}$, define $\overline{\sigma}: \mathbb{Z} \hookrightarrow \mathbb{Z}$ by $\overline{\sigma}(i) = -\sigma^{-1}(-i)$ for all $i \in \mathbb{Z}$.

Proposition 2.1. Suppose that $\sigma \colon \mathbb{Z} \hookrightarrow \mathbb{Z}$. Then $\sigma = \overline{\overline{\sigma}}$.

Proof. If
$$i \in \mathbb{Z}$$
, then $\overline{\overline{\sigma}}(i) = -(\overline{\sigma})^{-1}(-i)$, so $\overline{\sigma}(-\overline{\overline{\sigma}}(i)) = -i$. But $\overline{\sigma}(-\overline{\overline{\sigma}}(i)) = -\sigma^{-1}(\overline{\overline{\sigma}}(i))$, so $i = \sigma^{-1}(\overline{\overline{\sigma}}(i))$, thus $\sigma(i) = \overline{\overline{\sigma}}(i)$.

Proposition 2.2. Suppose that $\rho, \sigma \colon \mathbb{Z} \hookrightarrow \mathbb{Z}$. Then $\overline{\rho \circ \sigma} = \overline{\sigma} \circ \overline{\rho}$.

Proof. Observe that

$$(\overline{\sigma} \circ \overline{\rho})(i) = -\sigma^{-1}(-(-\rho^{-1}(-i)))$$

$$= -(\sigma^{-1} \circ \rho^{-1})(-i)$$

$$= -(\rho \circ \sigma)^{-1}(-i)$$

$$= \overline{\rho \circ \sigma}(i)$$

for all $i \in \mathbb{Z}$.

Define $\mathcal{F} = \{ (\rho \colon \mathbb{Z} \hookrightarrow \mathbb{Z}, \sigma \colon \mathbb{Z} \hookrightarrow \mathbb{Z}) \mid \rho \circ \sigma = S^{\mathbb{Z}} \upharpoonright \operatorname{dom}(\rho \circ \sigma) \}.$

Proposition 2.3. $(\rho, \sigma) \in \mathcal{F} \iff (\overline{\sigma}, \overline{\rho}) \in \mathcal{F}$.

Proof. Note that if $i \in \mathbb{Z}$ and $\rho, \sigma \colon \mathbb{Z} \hookrightarrow \mathbb{Z}$, then $(\rho \circ \sigma)(i) = i + 1 \iff (\rho \circ \sigma)^{-1}(i+1) = i \iff \overline{\rho \circ \sigma}(-i-1) = -i$, so the desired result follows from Proposition 2.2.

Let $(i_0 \ i_1 \ \cdots \ i_n)$ denote the permutation of $\{i_m \mid m \leq n\}$ sending i_m to i_{m+1} for all m < n.

Proposition 2.4. Suppose that $n \ge 1$, $(i_m)_{m \le n}$ is strictly increasing, $\rho = (i_0 \ i_1 \ \cdots \ i_n)$, and $\sigma = (-i_n \ -i_{n-1} \ \cdots \ -i_0)$. Then $\rho = \overline{\sigma}$.

Proof. If
$$m < n$$
, then $\overline{\sigma}(i_m) = -\sigma^{-1}(-i_m) = -(-i_{m+1}) = i_{m+1}$.

3. Eliminating fixed points

For all $k \in \mathbb{N}$, let par(k) denote the remainder when k is divided by two. For all $\rho, \sigma \in \text{Sym}(X)$, set $\delta(\rho, \sigma) = \{x \in X \mid \rho(x) \neq \sigma(x)\}$ and

$$\operatorname{Mal}(\rho, \sigma) = \{ x \in \operatorname{Per}_{\mathbb{N}+3}(\sigma) \mid |[x]_{\sigma} \setminus \operatorname{Per}_{1}(\rho)| = 1 \}.$$

Proposition 3.1. Suppose that $m \ge 1$, ρ and σ are permutations of a set X, and $\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_{2\mathbb{N}+n}(\sigma)$ is empty or infinite for all $n \ge 3$. Then there exist $\rho', \sigma' \in \operatorname{Sym}(X)$ such that:

- (1) $\rho \circ \sigma = \rho' \circ \sigma'$,
- (2) $\delta(\rho, \rho') = \delta(\sigma^{-1}, (\sigma')^{-1}) = \operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_1(\rho),$
- (3) $\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_1(\rho) \subseteq \operatorname{Per}_m(\rho')$, and
- (4) $\forall n \geq 3 \operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_n(\sigma) \subseteq \operatorname{Per}_n(\sigma')$.

Proof. Define $Y = \operatorname{Mal}(\rho, \sigma)$ and $Z = Y \setminus \operatorname{Per}_1(\rho)$. For all $n \geq 3$, set $Y_n = \operatorname{Per}_{2\mathbb{N}+n}(\sigma) \cap Y$ and $Z_n = \operatorname{Per}_{2\mathbb{N}+n}(\sigma) \cap Z$. Fix an equivalence relation F_4 on Z_4 whose classes all have cardinality m^2 , as well as $\pi_{0,1}, \pi_{0,2} \in \operatorname{Sym}(Z_4)$, whose graphs are contained in F_4 , such that the orbits of $\pi_{0,1}, \pi_{0,2}$, and $\pi_{0,3} = (\pi_{0,1} \circ \pi_{0,2})^{-1}$ all have cardinality m. For all $n \in (\mathbb{N}+3) \setminus \{4\}$, fix an equivalence relation F_n on Z_n whose classes all have cardinality m, fix $\pi_{\operatorname{par}(n),n-2} \in \operatorname{Sym}(Z_n)$ whose orbits coincide with the equivalence classes of F_n , and set $\pi_{\operatorname{par}(n),n-1} = \pi_{\operatorname{par}(n),n-2}^{-1}$. Then the support of $\pi = \operatorname{id}_{X \setminus (Y \setminus Z)} \cup \bigcup_{n \geq 1, p < 2} \sigma^n \circ \pi_{p,n} \circ \sigma^{-n}$ is $Y \setminus Z$, so $\rho' = \rho \circ \pi$ and $\sigma' = \pi^{-1} \circ \sigma$ satisfy conditions (1)–(3).

Lemma 3.2. Suppose that $\ell < n$. Then

$$(\sigma')^{\ell} \upharpoonright Z_n = (\sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_n. \tag{*}$$

Proof. The case $\ell = 0$ is trivial. If $\ell > 0$ and (*) holds at $\ell - 1$, then

$$(\sigma')^{\ell} \upharpoonright Z_{n} = (\sigma' \circ (\sigma')^{\ell-1}) \upharpoonright Z_{n}$$

$$= (\sigma' \circ \sigma^{\ell-1} \circ \pi_{\operatorname{par}(n),\ell-1}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_{n}$$

$$= (\pi^{-1} \circ \sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell-1}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_{n}$$

$$= (\sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell}^{-1} \circ \sigma^{-\ell} \circ \sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell-1}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_{n}$$

$$= (\sigma^{\ell} \circ \pi_{\operatorname{par}(n),\ell}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_{n},$$

so (*) also holds at ℓ .

For all $n \geq 3$, set $Y'_n = \operatorname{Per}_n(\sigma) \cap Y$ and $Z'_n = \operatorname{Per}_n(\sigma) \cap Z$. Lemma 3.2 ensures that $Y'_n = \bigcup_{\ell < n} \sigma^{\ell}(Z'_n) = \bigcup_{\ell < n} (\sigma')^{\ell}(Z'_n)$ and

 \boxtimes

$$\begin{split} (\sigma')^n \upharpoonright Z_n' &= (\sigma' \circ (\sigma')^{n-1}) \upharpoonright Z_n' \\ &= (\sigma' \circ \sigma^{n-1} \circ \pi_{\operatorname{par}(n),n-1}^{-1} \circ \cdots \circ \pi_{\operatorname{par}(n),1}^{-1}) \upharpoonright Z_n' \\ &= (\sigma' \circ \sigma^{n-1}) \upharpoonright Z_n' \\ &= (\sigma' \circ \sigma^{-1}) \upharpoonright Z_n' \\ &= \operatorname{id}_{Z_n'}, \end{split}$$

so condition (4) also holds.

We write $\rho \cong \sigma$ to indicate that ρ and σ are isomorphic.

Proposition 3.3. Suppose that $m \geq 1$, ρ and σ are permutations of a set X, $\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_{2\mathbb{N}+n}(\sigma)$ is empty or infinite for all $n \geq 3$, and $|\operatorname{Per}_m(\rho)| \geq |\operatorname{Mal}(\rho, \sigma)|$. Then there exist $\rho', \sigma' \in \operatorname{Sym}(X)$ such that $\rho \circ \sigma = \rho' \circ \sigma'$, $\rho' \cong \rho \upharpoonright \sim (\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_1(\rho))$, and $\sigma' \cong \sigma$.

Proof. Proposition 3.1 yields $\rho', \sigma' \in \operatorname{Sym}(X)$ such that $\rho \circ \sigma = \rho' \circ \sigma'$ and $|\mathcal{O}_{\kappa}(\rho)| \sim (\operatorname{Mal}(\rho, \sigma) \cap \operatorname{Per}_{1}(\rho))| = |\mathcal{O}_{\kappa}(\rho')|$ and $|\mathcal{O}_{\kappa}(\sigma)| = |\mathcal{O}_{\kappa}(\sigma')|$ for all cardinals κ .

4. Building blocks

For all $i, j \in \mathbb{Z}$, we slightly abuse the usual notation by using (i, j), [i, j), (i, j], and [i, j] to denote the corresponding intervals of integers. Set $\mathcal{F}(i, j] = \{(\rho, \sigma) \in \mathcal{F} \mid \rho \colon (i, j] \hookrightarrow (i, j] \text{ and } \sigma \colon (i, j) \hookrightarrow (i, j)\}$, noting that $\forall (\rho, \sigma) \in \mathcal{F}(i, j] \text{ dom}(\rho \circ \sigma) = (i, j - 1]$.

Proposition 4.1. If i < j and $(\rho, \sigma) \in \mathcal{F}(i, j]$, then $\rho(j) = i + 1$.

Proof. Observe that
$$\rho((i, j-1]) = (\rho \circ \sigma)((i, j-1]) = (i+1, j].$$

Set $\mathcal{F}[i,j) = \{(\rho,\sigma) \in \mathcal{F} \mid \rho : (i,j) \hookrightarrow (i,j) \text{ and } \sigma : [i,j) \hookrightarrow [i,j)\}$, this time noting that $\forall (\rho,\sigma) \in \mathcal{F}(i,j] \ S^{\mathbb{Z}}(j-1) \notin \operatorname{rng}(\rho)$, and therefore $\forall (\rho,\sigma) \in \mathcal{F}(i,j] \ \operatorname{dom}(\rho \circ \sigma) = [i,j-1)$.

 \boxtimes

FIGURE 2. The extension provided by Proposition 4.2.

Proposition 4.2. Suppose that $n \geq 1$, $(i_m)_{m \leq n}$ is strictly increasing, $\forall m < n \ (\rho_m, \sigma_m) \in \mathcal{F}(i_m, i_{m+1}], \ \rho = \bigcup_{m < n} \rho_m, \ and \ \sigma = (i_0 \ i_1 \ \cdots \ i_n) \cup \bigcup_{m < n} \sigma_m$. Then $(\rho, \sigma) \in \mathcal{F}[i_0, i_n + 1)$.

Proof. As $[i_0, i_n) = \{i_m \mid m < n\} \cup \bigcup_{m < n} (i_m, i_{m+1} - 1]$, it follows that $(\rho, \sigma) \in \mathcal{F}[i_0, i_n + 1) \iff \forall i \in [i_0, i_n) \ (\rho \circ \sigma)(i) = i + 1$ $\iff \forall m < n \ (\rho \circ \sigma)(i_m) = i_m + 1$ $\iff \forall m < n \ \rho(i_{m+1}) = i_m + 1$ $\iff \forall m < n \ \rho_m(i_{m+1}) = i_m + 1$,

so Proposition 4.1 yields the desired result.

FIGURE 3. The extension provided by Proposition 4.3.

Proposition 4.3. Suppose that $n \geq 1$, $(i_m)_{m \leq n}$ is strictly increasing, $\forall m < n \ (\rho_m, \sigma_m) \in \mathcal{F}[i_m, i_{m+1}), \ \rho = (i_0 \ i_1 \ \cdots \ i_n) \cup \bigcup_{m < n} \rho_m$, and $\sigma = \bigcup_{m < n} \sigma_m$. Then $(\rho, \sigma) \in \mathcal{F}(i_0 - 1, i_n]$.

Proof. By Propositions 2.1, 2.3, 2.4, and 4.2.

Proposition 4.4. Suppose that $i \in \mathbb{Z}$. Then $(\emptyset, id_{\{i\}}) \in \mathcal{F}[i, i+1)$ and $(id_{\{i\}}, \emptyset) \in \mathcal{F}(i-1, i]$.

Proof. As $[i,i) = (i-1,i-1] = \emptyset$, the definitions of $\mathcal{F}[i,i+1)$ and $\mathcal{F}(i-1,i]$ yield that $(\rho,\sigma) \in \mathcal{F}[i,i+1) \iff (\rho = \emptyset \text{ and } \text{dom}(\sigma) = \{i\})$ and $(\rho,\sigma) \in \mathcal{F}(i-1,i] \iff (\text{dom}(\rho) = \{i\} \text{ and } \sigma = \emptyset)$.

8 B. MILLER

FIGURE 4. Building blocks from Propositions 4.5 and 4.6.

Proposition 4.5. Suppose that i < j are integers. Then the pair $(id_{(i,j)}, (i \ i+1 \ \cdots \ j-1))$ is in $\mathcal{F}[i,j)$.

Proof. If i+1=j, then this follows from Proposition 4.4. Otherwise, Proposition 4.4 ensures that $(\mathrm{id}_{\{k\}},\emptyset) \in \mathcal{F}(k-1,k]$ for all $k \in (i,j)$, so Proposition 4.2 yields the desired result.

Proposition 4.6. Suppose that $m \geq 1$ and $(i_k)_{k < m}$ is a strictly increasing sequence of integers. Then the pair

$$((i_0 \ i_1 \ \cdots \ i_{m-1}) \cup \bigcup_{k < m-1} \operatorname{id}_{(i_k, i_{k+1})}, \bigcup_{k < m-1} (i_k \ i_k + 1 \ \cdots \ i_{k+1} - 1))$$

is in $\mathcal{F}(i_0 - 1, i_{m-1}].$

Proof. If m = 1, then this follows from Proposition 4.4. Otherwise, $(id_{(i_k,i_{k+1})}, (i_k i_k + 1 \cdots i_{k+1} - 1)) \in \mathcal{F}[i_k, i_{k+1})$ for all k < m - 1 by Proposition 4.5, so Proposition 4.3 yields the desired result.

5. Extension

Given $n \geq 3$ and $\rho, \sigma \colon X \hookrightarrow X$, we say that a fixed point x of ρ is n-malleable if $x \in \operatorname{Per}_n(\sigma)$, $[x]_{\sigma} \subseteq \operatorname{dom}(\rho)$, and $[[x]_{\sigma} \setminus \operatorname{Per}_1(\rho)] = 1$.

Figure 5. The extension provided by Proposition 5.1.

Proposition 5.1. Suppose that i < j, $m \ge 2$, $n_k \ge 3$ for all k < m-2, and $(\rho, \sigma) \in \mathcal{F}[i, j)$. Then there exists $(\rho', \sigma') \in \mathcal{F}(i-1, j+\sum_{k < m-2} n_k]$ such that:

- ρ' is obtained from ρ by adding a single cycle of length m and $n_k 1$ n_k -malleable fixed points for all k < m 2.
- σ' is obtained from σ by adding a cycle of length n_k for all k < m 2.

Proof. Recursively define $i_0 = i$, $i_1 = j$, and $i_k = i_{k-1} + n_{k-2}$ for all $2 \le k \le m-1$. Set $(\rho_0, \sigma_0) = (\rho, \sigma)$. For all $1 \le k \le m-2$, Proposition 4.5 ensures that $(\rho_k, \sigma_k) = (\mathrm{id}_{(i_k, i_{k+1})}, (i_k \ i_k + 1 \ \cdots \ i_{k+1} - 1))$ is in $\mathcal{F}[i_k, i_{k+1})$. So $(\rho', \sigma') = ((i_0 \ i_1 \ \cdots \ i_{m-1}) \cup \bigcup_{k \le m-2} \rho_k, \bigcup_{k \le m-2} \sigma_k)$ is in $\mathcal{F}(i_0 - 1, i_{m-1}]$ by Proposition 4.3. But $i_0 - 1 = i - 1$ and $i_{m-1} = j + \sum_{k \le m-2} n_k$.
⊠

FIGURE 6. The extension provided by Proposition 5.2.

Proposition 5.2. Suppose that i < j, $m \ge 3$, $n_k \ge 3$ for all k < m-3, and $(\rho, \sigma) \in \mathcal{F}[i, j)$. Then there exists $(\rho', \sigma') \in \mathcal{F}(i-1, j+1+\sum_{k < m-3} n_k]$ such that:

- ρ' is obtained from ρ by adding a single cycle of length m and $n_k 1$ n_k -malleable fixed points for all k < m 3.
- σ' is obtained from σ by adding a fixed point and a cycle of length n_k for all k < m 3.

Proof. Recursively define $i_0 = i$, $i_1 = j$, $i_2 = j + 1$, and $i_k = i_{k-1} + n_{k-3}$ for all $3 \le k \le m - 1$. Set $(\rho_0, \sigma_0) = (\rho, \sigma)$. For all $1 \le k \le m - 2$, Proposition 4.5 ensures that $(\rho_k, \sigma_k) = (\mathrm{id}_{(i_k, i_{k+1})}, (i_k i_k + 1 \cdots i_{k+1} - 1))$ is in $\mathcal{F}[i_k, i_{k+1})$. So $(\rho', \sigma') = ((i_0 i_1 \cdots i_{m-1}) \cup \bigcup_{k \le m-2} \rho_k, \bigcup_{k \le m-2} \sigma_k)$ is in $\mathcal{F}(i_0 - 1, i_{m-1}]$ by Proposition 4.3. But $i_0 - 1 = i - 1$ and $i_{m-1} = j + 1 + \sum_{k \le m-3} n_k$.

FIGURE 7. The extension provided by Proposition 5.3.

Proposition 5.3. Suppose that i < j, $n \ge 3$, $n_k \ge 3$ for all k < n - 3, and $(\rho, \sigma) \in \mathcal{F}(i, j]$. Then there exists $(\rho', \sigma') \in \mathcal{F}[i - 2 - \sum_{k < n - 3} (n_k + 1), j + 1)$ such that:

• ρ' is obtained from ρ by adding n-2 cycles of length two and n_k-1 n_k -malleable fixed points for all k < n-3.

10 B. MILLER

• σ' is obtained from σ by adding a single fixed point, a cycle of length n, and a cycle of length of n_k for all k < n - 3.

Proof. Recursively define $i_{n-1} = j$, $i_{n-2} = i$, $i_{n-3} = i - 2$, and $i_k = i_{k+1} - (n_k + 1)$ for all $k \le n - 4$. Set $(\rho_{n-2}, \sigma_{n-2}) = (\rho, \sigma)$. For all $k \le n - 3$, Proposition 4.6 implies that

 $(\rho_k, \sigma_k) = (\mathrm{id}_{(i_k+1, i_{k+1})} \cup (i_k+1 \ i_{k+1}), (i_k+1 \ i_k+2 \ \cdots \ i_{k+1}-1))$ is in $\mathcal{F}(i_k, i_{k+1}]$. So $(\rho', \sigma') = (\bigcup_{k \le n-2} \rho_k, (i_0 \ i_1 \ \cdots \ i_{n-1}) \cup \bigcup_{k \le n-2} \sigma_k)$ is in $\mathcal{F}[i_0, i_{n-1}+1)$ by Proposition 4.2. But $i-2-\sum_{k < n-3} (n_k+1) = i_0$ and $j+1=i_{n-1}+1$.

FIGURE 8. The extension provided by Proposition 5.4.

Proposition 5.4. Suppose that i < j, $m \ge 2$, $n \ge 2$, $n_{k,\ell} \ge 3$ for all k < m-1 and $\ell < n-2$, and $(\rho,\sigma) \in \mathcal{F}(i,j]$. Then there exists $(\rho',\sigma') \in \mathcal{F}[i-\sum_{\ell \le n-2}(1+\sum_{k \le m-1}n_{k,\ell}),j+1)$ such that:

- ρ' is obtained from ρ by adding n-2 cycles of length m and $n_{k,\ell}-1$ $n_{k,\ell}$ -malleable fixed points for all k < m-1 and $\ell < n-2$.
- σ' is obtained from σ by adding a cycle of length n and a cycle of length $n_{k,\ell}$ for all k < m-1 and $\ell < n-2$.

Proof. Recursively define $i_{n-1} = j$, $i_{n-2} = i$, $i_{m-1,\ell} = i_{\ell+1}$, $i_{k,\ell} = i_{k+1,\ell} - n_{k,\ell}$, and $i_{\ell} = i_{0,\ell} - 1$ for all $k \leq m-2$ and $\ell \leq n-3$. Set $(\rho_{n-2}, \sigma_{n-2}) = (\rho, \sigma)$. For all $\ell \leq n-3$, Proposition 4.6 implies that the pair $(\rho_{\ell}, \sigma_{\ell})$, given by $\rho_{\ell} = (i_{0,\ell} i_{1,\ell} \cdots i_{m-1,\ell}) \cup \bigcup_{k < m-1} \mathrm{id}_{(i_{k,\ell},i_{k+1,\ell})}$ and $\sigma_{\ell} = \bigcup_{k < m_{\ell} - 1} (i_{k,\ell} i_{k,\ell} + 1 \cdots i_{k+1,\ell} - 1)$, is in $\mathcal{F}(i_{\ell}, i_{\ell+1}]$. So Proposition 4.2 yields that $(\rho', \sigma') = (\bigcup_{\ell \leq n-2} \rho_{\ell}, (i_0 i_1 \cdots i_{n-1}) \cup \bigcup_{\ell \leq n-2} \sigma_{\ell})$ is in $\mathcal{F}[i_0, i_{n-1} + 1)$. But $i - \sum_{\ell < n-2} (1 + \sum_{k < m-1} n_{k,\ell}) = i_0$ and $j + 1 = i_{n-1} + 1$. ⋈

We say that a fixed point x of ρ is anti-malleable if $x \in \operatorname{Per}_2(\sigma)$, $[x]_{\sigma} \subseteq \operatorname{dom}(\rho)$, and $[x]_{\sigma} \setminus \operatorname{Per}_1(\rho) = 1$.

FIGURE 9. The extension provided by Proposition 5.5.

Proposition 5.5. Suppose that i < j, $m \ge 2$, $n \ge 3$, $n_{k,\ell} \ge 3$ for all k < m-1 and $\ell < n-3$, and $(\rho,\sigma) \in \mathcal{F}(i,j]$. Then there exists $(\rho',\sigma') \in \mathcal{F}[i-1-\sum_{\ell \le n-3}(1+\sum_{k\le m-1}n_{k,\ell}),j+1)$ such that:

- ρ' is obtained from ρ by adding a single anti-malleable fixed point, n-3 cycles of length m, and $n_{k,\ell}-1$ $n_{k,\ell}$ -malleable fixed points for all k < m-1 and $\ell < n-3$.
- σ' is obtained from σ by adding a cycle of length n and a cycle of length $n_{k,\ell}$ for all k < m 1 and $\ell < n 3$.

Proof. Recursively define $i_{n-1} = j$, $i_{n-2} = i$, $i_{n-3} = i-1$, $i_{m-1,\ell} = i_{\ell+1}$, $i_{k,\ell} = i_{k+1,\ell} - n_{k,\ell}$, and $i_{\ell} = i_{0,\ell} - 1$ for all $k \leq m-2$ and $\ell \leq n-4$. Set $(\rho_{n-2}, \sigma_{n-2}) = (\rho, \sigma)$. For all $\ell \leq n-3$, Proposition 4.6 implies that the pair $(\rho_{\ell}, \sigma_{\ell})$, given by $\rho_{\ell} = (i_{0,\ell} i_{1,\ell} \cdots i_{m-1,\ell}) \cup \bigcup_{k < m-1} \mathrm{id}_{(i_{k,\ell}, i_{k+1,\ell})}$ and $\sigma_{\ell} = \bigcup_{k < m-1} (i_{k,\ell} i_{k,\ell} + 1 \cdots i_{k+1,\ell} - 1)$, is in $\mathcal{F}(i_{\ell}, i_{\ell+1}]$. So $(\rho', \sigma') = (\bigcup_{\ell \leq n-2} \rho_{\ell}, (i_0 i_1 \cdots i_{n-1}) \cup \bigcup_{\ell \leq n-2} \sigma_{\ell})$ is in $\mathcal{F}[i_0, i_{n-1} + 1)$ by Proposition 4.2. But $i - 1 - \sum_{\ell < n-3} (1 + \sum_{k < m-1} n_{k,\ell}) = i_0$ and $j + 1 = i_{n-1} + 1$.

6. The proof of Theorem B

For all integers i < j, set $\mathcal{F}_0(i,j) = \mathcal{F}[i,j)$ and $\mathcal{F}_1(i,j) = \mathcal{F}(i,j]$.

Theorem 6.1. Suppose that $m \geq 2$, $\rho, \sigma \in \text{Sym}(\mathbb{Z})$ are periodic, and $\text{Per}_m(\rho)$ and $\text{Per}_{\geq 3}(\sigma)$ are infinite. Then $S^{\mathbb{Z}} \in \text{Cl}(\rho)\text{Cl}(\sigma)$.

Proof. Fix an enumeration $(\pi_n, O_n)_{n \in \mathbb{N}}$ of the pairs of the form (π, O) , where $\pi \in \{\rho, \sigma\}$ and $O \in \mathcal{O}(\pi)$. Then there exist an infinite set $N \subseteq \mathbb{N}$ and p < 2 such that $\pi_n = \sigma$, $\operatorname{par}(|O_n|) = p$, and $3 \leq |O_n| \leq |O_{n+1}|$ for all $n \in N$. Fix $n_{-1} \in N$, set $N_0 = \mathbb{N} \setminus \{n_{-1}\}$, and apply Proposition 4.5 to find $i_0 < j_0$ and $(\rho_0, \sigma_0) \in \mathcal{F}[i_0, j_0)$ such that every point of $\operatorname{dom}(\rho_0)$ is an n_{-1} -malleable fixed point and σ_0 is a cycle of length $|O_{n_{-1}}|$.

12 B. MILLER

Suppose that k is a natural number for which we have found $i_k < j_k$, a cofinite set $N_k \subseteq \mathbb{N}$, and $(\rho_k, \sigma_k) \in \mathcal{F}_{\text{par}(k)}(i_k, j_k)$. If $k \in 2\mathbb{N}$, then let n_k be the least element of N_k for which $(\pi_{n_k} = \rho \text{ and } |O_{n_k}| \ge 2)$ or $(\pi_{n_k} = \sigma, |O_{n_k}| = 1, \text{ and } m \ge 3)$. If $k \in 4\mathbb{N} + 1$, then let n_k be the least element of N_k for which $(\pi_{n_k} = \sigma, |O_{n_k}| = 1, \text{ and } m = 2)$, $(\pi_{n_k} = \sigma \text{ and } |O_{n_k}| = 2)$, or $(\pi_{n_k} = \rho \text{ and } |O_{n_k}| = 1)$. And if $k \in 4\mathbb{N} + 3$, then let n_k be the least element of N_k for which $\pi_{n_k} = \sigma$ and $|O_{n_k}| \ge 3$. Propositions 5.1–5.5 ensure that, for some $\ell_k \in \mathbb{N}$ and all $F_k \subseteq N \cap (N_k \setminus \{n\})$ of cardinality ℓ_k , there exist $i_{k+1} < i_k$, $j_{k+1} > j_k$, and $(\rho_{k+1}, \sigma_{k+1}) \in \mathcal{F}_{\text{par}(k+1)}(i_{k+1}, j_{k+1})$ such that:

- ρ_{k+1} is obtained from ρ_k by adding cycles of length m and $|O_n|-1$ $|O_n|$ -malleable fixed points for all $n \in F_k$, as well as a cycle of length $|O_{n_k}|$ if $\pi_{n_k} = \rho$ (which is an anti-malleable fixed point if $|O_{n_k}| = 1$).
- σ_{k+1} is obtained from σ_k by adding a cycle of length m for all $n \in F_k$, as well as a cycle of length $|O_n|$ if $\pi_{n_k} = \sigma$.

Set $N_{k+1} = N_k \setminus (F_k \cup \{n_k\})$.

Define $\rho_{\infty} = \bigcup_{k \in \mathbb{N}} \rho_k$ and $\sigma_{\infty} = \bigcup_{k \in \mathbb{N}} \sigma_k$. As $(i_k)_{k \in \mathbb{N}}$ is strictly decreasing and $(j_k)_{k \in \mathbb{N}}$ is strictly increasing, these are permutations of \mathbb{Z} whose composition is $S^{\mathbb{Z}}$. As $\ell_k \geq 1$ for all $k \in 4\mathbb{N} + 3$, it follows that $|\mathrm{Mal}(\rho_{\infty}, \sigma_{\infty}) \cap \mathrm{Per}_{2\mathbb{N} + n}(\sigma_{\infty})| \in \{0, \aleph_0\}$ for all $n \in 2\mathbb{N} + p$. And clearly $\mathrm{Mal}(\rho_{\infty}, \sigma_{\infty}) \cap \mathrm{Per}_{2\mathbb{N} + (1-p)}(\sigma_{\infty}) = \emptyset$. As the fact that $\bigcap_{k \in \mathbb{N}} N_k = \emptyset$ ensures that $\rho_{\infty} \upharpoonright \sim (\mathrm{Mal}(\rho_{\infty}, \sigma_{\infty}) \cap \mathrm{Per}_1(\rho_{\infty})) \cong \rho$ and $\sigma_{\infty} \cong \sigma$, Proposition 3.3 yields conjugates ρ' of ρ and σ' of σ for which $\rho' \circ \sigma' = \rho_{\infty} \circ \sigma_{\infty} = S^{\mathbb{Z}}$.

The special case of Theorem B where ρ or σ has finite order follows from Propositions 2.1 and 2.3 and Theorem 6.1. As almost involutions have finite order, the full version therefore follows from [Mor89, Theorem A].

References

[Mor89] G. Moran, Conjugacy classes whose square is an infinite symmetric group, Trans. Amer. Math. Soc. **316** (1989), no. 2, 493–522.

B. MILLER, 1008 BALSAWOOD DRIVE, DURHAM, NC 27705 Email address: glimmeffros@gmail.com URL: https://glimmeffros.github.io