Probability Theory

Manik Bhandari

Department of Computer Science Indian Institute of Science Bangalore, India mbbhandarimanik2@gmail.com

Abstract

Notes of Probability Theory mainly from the book *Introduction to Probability Theory by Hoel, Port, Stone.*

- 1 Probability Spaces
- 2 Discrete Random Variables
- 3 Expectation of Discrete Random Variables
 - frequentist approach. Let n be the number of trials and $N_n(x_i)$ be the number of times you observed x_i , then for large n

$$f(x_i) = \frac{N_n(x_i)}{n}.$$

• A random variable X has *finite* expectation if and only if

$$\sum_{i=0}^{i=\infty} |x_i| f(x_i) < \infty,$$

then the expectation is

$$EX = \sum_{i=0}^{i=\infty} x_i f(x_i).$$

Otherwise EX is undefined.

- Quick Expectations to remember: Binomial np, Poisson λ (so is the variance), Geometric $\frac{1-p}{n}$.
- Expectation of a function (if it is finite):

$$E\phi(X) = \sum_{x} \phi(x) f(x)$$

• Properties

$$\begin{split} E(c_1X_1 + c_2X_2 + \ldots) &= c_1EX_1 + c_2EX_2 + \ldots \\ |EX| &\leq E|X| \\ X &\leq Y \implies EX \leq EY \end{split}$$

If P(|X| < M) = 1 then EX < M

if X and Y are independent, E(XY) = (EX)(EY). The converse is not true.

if X is a non negative, integer valued random variable, X has a finite expectation if and only if $\sum_{x=0}^{x=\infty} P(X \geq x)$ converges. Then $EX = \sum_{x=0}^{x=\infty} P(X \geq x)$.

3.1 Moments

- 1. EX^r is defined as the r^th moment. $E(X-\mu)^r$ is defined as the r^th central moment.
- 2. If EX^r exists then EX^k exists for $k \le r$.
- 3. Mean (μ) is the first moment.
- 4. If X and Y have a moment of order r then X + Y also have a moment of order r. And by induction $X_1 + X + 2 + ... + X_n$ also has a moment of order r. (see pg 93 for proof)

Variance. If random variable X has a finite second moment, then

$$VarX = E[(X - EX)^2] \implies VarX = EX^2 - (EX)^2.$$

Variance is a measure of the spread about the mean. Consider (extreme case) when P(X=c)=1. VarX=0 which means that X is not spread about the mean, there is no variance, it is exactly at the mean.

Consider Mean Squared Error (MSE) of a random variable X. We wish to choose an a that minimizes $MSE = E(X-a)^2$. Using calculus this value occurs at a=EX and the value of MSE is VarX. Another way to see this is that $E(X-a)^2 = E(X-\mu)^2 + (\mu-a)^2$ which has a minima at $\mu=a$ and the min. value is the variance.

finding variance. An easy way to find variance is to use probability generating functions.

$$\phi_X(t) = \sum_{x=0}^{x=\infty} f_X(x)t^x$$

$$\implies \phi_{X}^{'}(1) = EX, \phi_{X}^{''}(1) = EX(X-1) \implies VarX = \phi_{X}^{''}(1) - (\phi_{X}^{'}(1))^{2} + \phi_{X}^{'}(1)$$

Standard deviation. $\sigma = \sqrt{VarX}$

Covariance.

- 1. VarX + Y = VarX + VarY + 2E[(X EX)(Y EY)]
- 2. Cov(X,Y) = E[(X EX)(Y EY)] = E(XY) (EX)(EY)
- 3. So VarX + Y = VarX + VarY + 2Cov(X, Y)
- 4. Cov(X,Y) = 0 for independent X,Y. (converse is not true)
- 5. using induction

$$Var(\sum_{i=0}^{i=n} X_i) = \sum_{i=0}^{i=n} VarX_i + 2\sum_{i=0}^{i=n-1} \sum_{j=1}^{j=n} Cov(X_i, X_j).$$

If independent, $Var(\sum_{i=0}^{i=n}X_i)=\sum_{i=0}^{i=n}VarX_i$. And if the variance is common, $Var(\sum_{i=0}^{i=n}X_i)=n\sigma^2$

Correlation coefficient. Measures the degree of dependence.

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{(VarX)(VarY)}}.$$

If X,Y are independent, $\rho=0$ (since Cov(X,Y)=0). ρ is always between -1 and 1 and $|\rho|=1$ only when P(X=aY)=1 (highly dependent).

Theorem 1. The schwarz inequality. Let X and Y have finite second moment. Then

$$E(XY)^2 \le (EX)^2 (EY)^2.$$

The equality holds if and only if P(Y = 0) = 1 or P(X = aY) = 1 for some constant a.

Proof. If P(Y=0)=1, equality holds and P(X=aY)=1, equality holds. Let P(Y=0)<1. $\Longrightarrow EY^2>0$. Consider $E(X-\lambda Y)^2$. Clearly, $0\le E(X-\lambda Y)^2=\lambda^2 EY^2-2\lambda EXY+EX^2$ which is a quadratic in λ . It has a minima at $\lambda=\frac{E(XY)}{EY^2}$. So the minimum value is positive and is given by

$$E(X - \lambda Y)^2 = EX^2 - \frac{[E(XY)]^2}{EY^2} \ge 0.$$

If equality holds then $E[x - \lambda Y] = 0 \implies P(X - \lambda Y = 0) = 1 \implies P(X = \lambda Y) = 1$.

Chebyshev's Inequality. Let X be a non-negative random variable having finite expectation. Let t be a real number, define Y such that Y = 0 if X < t and Y = 1 if X >= t. EY = 0P(Y = t) $(0) + tP(Y = t) = tP(X \ge t)$. Since $X \ge Y$, $EX \ge EY = tP(X \ge t)$

$$\implies P(X \ge t) \le \frac{EX}{t}.$$

Thus

$$P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.$$

This assumes nothing about the distribution of X. Usually you get better bounds if you know something about the distribution of X (apart from it being nonnegative and having finite variance).

Application. Weak Law of Large numbers Let S_n be sum of n random variables having common variance σ^2 . Then $Var(S_n/n) = n\sigma^2/n^2 = \sigma^2/n$. So

$$P(|\frac{S_n}{n} - \mu| \ge \delta) \le \frac{\sigma^2}{n\delta^2} \implies \lim_{n \to \infty} P(|\frac{S_n}{n} - \mu| \ge \delta) = 0$$

for any $\delta > 0$. Which means that you can approximate μ by S_n/n for large n.