IN THE CLAIMS

Please amend claims 4, 5, 7, 12 and 23; and add claims 24 and 25, as follows:

- 1 4. (Amended) The electrophotographic developing type reproduction apparatus of in claim
 2 1, further comprised of said chopping means comprising an AND gate having a first input port
 3 coupled to receive said converted data and a second input port coupled to [received] receive said
 4 second clock signal.

 6. (Amended) The electrophotographic developing type reproduction apparatus of claim
 2 1, further comprised of mode selecting means enabling a user to [externally] change a
 3 characteristic of said second clock signal.
 - 7. (Amended) The electrophotographic developing type reproduction apparatus of claim 1, comprised of:

1

6

first means for generating a local clock signal; and second means for generating said second clock signal by dividing said local clock signal in [dependence upon] response to a dividing ratio component [of] accompanying said input data.

P53706 \$2. (Amended) A method for controlling a light signal in an electrophotographic developing type reproduction apparatus, said method comprising the steps of: generating converted data by converting input data to be printed into video data, in accordance with a first clock signal, and for transmitting the converted video data in response to a horizontal synchronization signal exhibiting a predetermined time interval; generating chopped data by dividing the converted data in dependence upon a second clock signal; supplying beam data for controlling generation of said light signal by a light source element in response to said chopped data; and generating said horizontal synchronization signal in dependence upon a beam 10 detection signal obtained [from] by detecting said light signal. 11 (Amended) The apparatus of claim 18, comprised of said clock signal generating means comprising: means for generating a local clock signal exhibiting a first plurality of pulses

characterized by a local frequency;

first means for generating said first clock signal by dividing pulses of said local clock signal to provide a second plurality of pulses characterized by a second frequency; and

second means for generating said second clock signal by dividing said pulses of [said] said local clock signal in dependence upon said dividing ratio data, to provide a third plurality of pulses characterized by a third frequency established in dependence upon said dividing

ratio_data.

8

An apparatus for printing video data, comprising:

2	data bus means for providing input video data and for providing dividing ratio data;
3	clock signal generating means for generating a first clock signal and for generating
4 .	a second clock signal, said second clock signal exhibiting a characteristic depending upon said
5	dividing ratio data, said clock signal generating means comprising:
6	means for generating a local clock signal exhibiting a first plurality of
7	pulses characterized by a local frequency;
8	first means for generating said first clock signal by dividing pulses of said
9	local clock signal to provide a second plurality of pulses
10	characterized by a second frequency; and
11	second means for generating said second clock signal by dividing said
12	pulses of said local clock signal in dependence upon said dividing
18	ratio data, to provide a third plurality of pulses characterized by a
14	third frequency established in dependence upon said dividing ratio
15	data;
16	data transmitting means for converting said input video data into serial video data
17	in response to said first clock signal, and for transmitting said serial video data in response to a
18	horizontal synchronization signal;
19	logic means for providing chopped video data in dependance upon said serial video
20	data and said second clock signal;
21	printing control means for generating beam data in response to said chopped video
22	data; and
23	beam scanning means for providing a laser beam for defining images corresponding
24	to said beam data and for generating a beam detection signal derived from scanning of said laser

25

beam;

26 27 said printing control means generating said horizontal synchronizing signal in dependence upon said beam detection signal.

1

- A method for controlling a light signal in an electrophotographic developing type reproduction apparatus, said method comprising the steps of:

3

generating converted data by converting input data to be printed into video data, in accordance with a first clock signal, and for transmitting the converted video data in response to a horizontal synchronization signal exhibiting a predetermined time interval;

generating chopped data by dividing the converted data in dependence upon a second clock signal, the second clock signal having a frequency higher than the first clock signal wherein the second clock signal being an integer multiple of a frequency of the first clock signal, the chopped data being generated by applying the converted data to a first input port of an AND gate data and applying the second clock signal to a second input port of the AND gate, said chapped data being output from an output port of said AND gate;

11

12

13

10

changing a characteristic of the second clock signal in response to a selection made by a user of the reproduction apparatus;

14

supplying beam data for controlling generation of said light signal by a light source element in response to said chopped data; and

16

17

15

generating said horizontal synchronization signal in dependence upon a beam detection signal obtained from said light signal.