3. Cálculo proposicional. Semântica e metateoria

Os seguintes exercícios e problemas são adaptados a partir do livro *Lógica e Aritmética*, de Augusto Franco de Oliveira, 3ª edição, Gradiva.

1. **(I)** Três indivíduos, aqui designados por A, B e C, suspeitos de um crime, fazem os seguintes depoimentos, respectivamente:

 ϕ : – B é culpado, mas C é inocente;

 ψ : – Se A é culpado, então C é culpado;

 θ : – Eu estou inocente, mas um dos outros dois é culpado.

- (a) Os três depoimentos são compatíveis?
- (b) Algum dos depoimentos é consequência dos outros dois?
- (c) Construa deduções correspondentes à alínea anterior.
- (d) Supondo os três réus inocentes, quem mentiu?
- (e) Supondo que todos disseram a verdade, quem é inocente e quem é culpado?
- (f) Supondo que os inocentes disseram a verdade e os culpados mentiram, quem é inocente e quem é culpado?

2. **(I)**

(a) Mostre que um conjunto

$$\Sigma = \{\phi_1, \dots, \phi_n, \neg \psi\}$$

é incompatível se e só se $\phi_1, \ldots, \phi_n \vDash \psi$ (ou, equivalentemente, que o conjunto Σ é compatível sse $\phi_1, \ldots, \phi_n \nvDash \psi$). Mais geralmente, para qualquer conjunto Γ e qualquer fórmula ϕ ,

 $\Gamma \cup \{\neg \phi\}$ é incompatível se e só se $\Gamma \vDash \phi$.

(b) Prove que, se Γ é incompatível, então para qualquer ϕ , $\Gamma \vDash \phi$.

3. (I) Mostre que:

(a) um conjunto Γ é contraditório se e só se é trivial, no sentido: para toda a fórmula ϕ .

$$\Gamma \vdash \phi$$
;

- (b) se Γ é consistente, então, para qualquer fórmula ϕ , um dos conjuntos $\Gamma \cup \{\phi\}$, $\Gamma \cup \{\neg \phi\}$ é consistente.
- 4. (I) Mostre que o conjunto

$$\Gamma = \{ p, \ (\neg p \lor q) \land r, \ \neg q \lor \neg r \}$$

é inconsistente, derivando uma contradição com hipóteses em Γ , no sistema **DN**.

5. **(I)** Enuncie e demonstre propriedades análogas às do exercício 2 substituindo em toda a parte "\(= \)" por "\(\cdot _{\text{DN}} \)", "compatível" por "consistente" e "incompatível" por "contraditório", respectivamente.

6. **(I)**

- (a) Demonstre, utilizando (\mathbf{MV}_G) , a propriedade seguinte, que é outra versão da referida propriedade: (\mathbf{MV}_G) Para todo o conjunto Γ de fórmulas, se Γ é compatível, então Γ é consistente.
- (b) Demonstre, utilizando a propriedade de completude semântica generalizada, que se Γ é consistente, então Γ é compatível. [Sugestão: 2 (b).]
- (c) Prove que para qualquer conjunto Γ e qualquer fórmula ϕ , $\Gamma \cup \{\neg \phi\}$ é consistente se e só se $\Gamma \nvdash \phi$ (equivalentemente, $\Gamma \cup \{\neg \phi\}$ é inconsistente sse $\Gamma \vdash \phi$).
- (d) Prove, utilizando apenas noções semânticas, que para qualquer conjunto Γ e qualquer fórmula ϕ , $\Gamma \cup \{\neg \phi\}$ é compatível se e só se $\Gamma \nvDash \phi$ (equivalentemente, $\Gamma \cup \{\neg \phi\}$ é incompatível sse $\Gamma \vDash \phi$).
- 7. (I) Discuta a possibilidade de definir alguns dos conectivos à custa de outros, economizando, assim, na lista dos símbolos primitivos

de \mathcal{L}^0 , nomeadamente nos casos indicados a seguir:

- (a) Definir \wedge , \rightarrow à custa de \neg , \vee ;
- (b) definir \vee , \rightarrow à custa de \neg , \wedge ;
- (c) definir \vee , \wedge à custa de \neg , \rightarrow ;
- (d) definir o conectivo de disjunção exclusiva $\dot{\lor}$ à custa dos conectivos \neg , \land , \lor .

[Por exemplo, pode-se definir

$$\phi \wedge \psi = \neg (\neg \phi \vee \neg \psi),$$

pois as fórmulas $\phi \land \psi$ e $\neg(\neg \phi \lor \neg \psi)$ são lógica e dedutivamente equivalentes.]

8. **(I)**

- (a) Quantas funções booleanas n-árias $(n \ge 0)$ existem? E quantos conectivos generalizados n-ários?
- (b) Determine todos os conectivos generalizados binários (além dos já conhecidos).
- (c) Mostre que os conjuntos $\{\neg, \land\}$, $\{\neg, \lor\}$, $\{\neg, \rightarrow\}$, são funcionalmente completos (exercício 6).
- (d) Mostre que $\{\land, \lor\}$ não é funcionalmente completo. [Sugestão: fórmulas construídas só com \land , \lor são sempre verdadeiras para todas as valorações que atribuem o valor 1 a todos os p_i 's.]
- (e) Os **conectivos de Sheffer** são os conectivos binários de rejeição \downarrow ["nemnem", $\phi \downarrow \psi = \neg(\phi \lor \psi)$] e de incompatibilidade \uparrow ["negação conjunta", $\phi \uparrow \psi = \neg(\phi \land \psi)$]. Mostre que os conjuntos $\{\downarrow\}$, $\{\uparrow\}$ são funcionalmente completos, mas $\{\dot{\lor}\}$ não é funcionalmente completo.
- (f) Mostre que os únicos conectivos binários Π tais que $\{\Pi\}$ é funcionalmente completo são os conectivos de Sheffer.
- 9. (a) **(I)** Obtenha fórmulas logicamente equivalentes a

i.
$$p \leftrightarrow q$$
;

ii.
$$p \rightarrow \neg q \lor r$$
;

iii.
$$p \rightarrow q \rightarrow r \rightarrow s$$
;

iv.
$$p \wedge (\neg q \vee r)$$
;

v.
$$p \vee (q \neg (r \wedge s))$$
,

respectivamente, nas formas normal conjuntiva e disjuntiva.

(b) **(I)** Determine equivalentes mais simples para as fórmulas

i.
$$(p \rightarrow q) \land p$$
;

ii.
$$(p \rightarrow q) \lor \neg p$$
;

iii.
$$(p \rightarrow q) \rightarrow q$$
;

iv.
$$p \to (p \land q)$$
;

v.
$$(p \land q) \lor p$$
.