Д. А. Асонов, Т. Н. Романова

Пермский государственный национальный исследовательский политехнический университет, г. Пермь asonov.dmtr@gmail.com

УТИЛИЗАЦИЯ ТЕПЛА ЦОД

В статье рассматривается специфика работы Центров обработки данных (ЦОД), примеры использования сбросной низкопотенциальной тепловой энергии от ЦОД, перспективы использования тепла ЦОД российских объектов.

Ключевые слова: *ЦОД*; *IT-оборудование*; *утилизация тепла*; *тепловая* энергия

D. A. Asonov, T. N. Romanova

Perm National Research Polytechnic University, Perm

DATA CENTERS HEAT UTILIZATION

The article discusses the work specifics of the data center, examples of the use of low-potential heat energy from the data center, the prospects for the use of heat from Russian data centers.

Keywords: data center; IT equipment; heat utilization; heat energy

В настоящее время вопрос энергосбережения стоит очень остро. При реализации различных проектов необходимо обосновывать эффективность принятых решений. Проекты центров обработки данных не являются исключением. Центры обработки данных (ЦОД, дата-центры) — огромные помещения, где размещены мощные серверы, связанные высокоскоростными сетями. Основная функция данных центров: получение, обработка, хранение и передача полного объема информации. По конструкции и внешнему виду они похожи на большие заводы, которые ежесекундно перерабатывают петабайты информации.

[©] Асонов Д. А., Романова Т. Н., 2019

Одним из способов энергосбережения является утилизация теплоты, выделяемой серверами и другим ІТ-оборудованием.

Общая теплоотдача от ЦОД — это сумма значений тепловыделений компонентов ЦОД, в том числе — IT-оборудования (основной источник теплоизбытков), источников бесперебойного питания (ИБП), устройств распределения электропитания, освещения и персонала (рисунок).

Тепловыделения от ЦОД

Традиционно емкость ЦОД измеряется числом стоек и средней мощностью стойки, а не количеством IT-оборудования. Небольшие

ЦОД выделяют до 300 кВт тепла, средние — до 1 МВт, крупные — до 5 МВт. Мощность мега-ЦОД может превышать 20 МВт. При рядной архитектуре стойка занимает $2-3 \text{ м}^2$. При средней мощности 7 кВт удельные тепловыделения составят около 3 кВт/м^2 [1].

Также стоит отметить, что помимо энергетического и экономического факторов, существует еще и экологический. Он связан с тем, что в большинстве случаев тепло от ЦОД выбрасывается в атмосферу.

В России суммарная установленная мощность серверного оборудования коммерческих ЦОД составляет порядка 600 МВт; получается, что в окружающую среду поступает тепловая энергия в количестве $6.8\cdot10^9$ кВт·ч/год, что эквивалентно сжиганию $1.36\cdot10^9$ м³ природного газа. Если считать, что корпоративные ЦОД в России выбрасывают приблизительно такое же количество тепла, то речь идет о цифре порядка $3\cdot10^9$ м³ [2].

Однако остается открытым вопрос, где использовать это тепло? Самым простым решением является использование тепла ЦОД на

собственные нужды, т. е. на обогрев собственных помещений. В данном варианте отсутствует связь с государством, а следовательно никаких преград в реализации проектов не будет. Второй по популярности вариант это использование тепла от ЦОД для подогрева приточного воздуха для вентиляции офисных помещений. Есть несколько и нестандартных идей. Например, использовать тепло для обогрева теплиц или для подогрева воды, которая будет использоваться для полива в сельском хозяйстве.

Рассмотрим несколько примеров реализации использования тепла от ЦОД.

Дата-центр «Яндекса» в Финляндии в городе Мянтсяле. В датацентре есть возможность использования вытяжного горячего воздуха для нагрева теплоносителя и его передачи в муниципальную теплосеть города Мянтсяля. Температура воды на теплообменника составляет 30-40 °C. После этого вода попадает в станцию подогрева, которая оборудована тепловыми насосами (ТН), ДО нормативной. Для целью повышения температуры муниципалитета такое решение оказалось дешевле, чем строить дополнительную котельную для новых районов города.

Дата-центр Bahnhof Thule в центре Стокгольма. ЦОД является самым крупным дата-центром в стране и обладает интересной схемой использования тепла ЦОД. Основным элементом системы охлаждения являются три ТН, соединенных последовательно, как на холодной, так и на теплой стороне. ТН одновременно выполняют роль, как центрального отопления, так и центрального охлаждения.

В России ситуация не располагает к развитию данного направления в энергосбережении. Во-первых, энергоносители в стране стоят относительно дешево; во-вторых, воздух на выходе с температурой 30–40 °C является низкопотенциальным источником энергии и его достаточно сложно утилизировать; в-третьих, часто ЦОД расположены вне жилых кварталов (децентрализовано), а, следовательно, использовать это тепло можно только на собственные нужды ЦОД, т. к. транспортировка данного теплоносителя в нашем климате нецелесообразна из-за значительных тепловых потерь; в-

четвертых, в России мало проработанной законодательной основы и инфраструктурной базы для сложных проектов с утилизацией тепла. Обобщая перечисленные причины, можно сделать вывод, что в России выделяющееся тепло ЦОД будет по-прежнему сбрасываться в окружающую среду.

Количество и мощность ЦОД в мире растет, что приводит к росту энергопотребления, а значит и увеличению количества тепловыделений. На данном этапе развития специалистам в нашей стране необходимо накапливать опыт по утилизации тепла от ЦОД, следить за проектами, которые уже реализованы и успешно эксплуатируются за рубежом. Резюмируя все выше сказанное, можно сделать вывод, что тепло, генерируемое ЦОД – это продукт, который должен использоваться, а не выбрасываться в атмосферу.

Список использованных источников

- 1. Хомутский Ю. Почему центры обработки данных охлаждают отдельно? Общие требования и особенности СКВ ЦОД // Мир климата. 2017. № 104. С. 92–97.
- 2. Спасский А. А., Сушенцева А. В. Высокоэффективные решения для систем охлаждения с использованием фрикуллинга и рекуперации тепла на базе оборудования CLIMAVENETA // Холодильная техника. 2016. № 2. С. 41–45.
- 3. Хомутский Ю. Удивительные, но настоящие: энергоэффективные системы охлаждения действующих и проектируемых ЦОД в России и за рубежом // Мир климата. 2018. № 111. С. 90–93.
- 4. Как Яндекс строил дата-центр с нуля. Блог компании Яндекс. 2015. [Электронный ресурс]. URL: https://habr.com/ru/company/yandex/blog/258823/ (дата обращения: 19.11.2019).
- 5. Центры обработки данных в России: проблемы и перспективы// ABOK. 2018. № 7. С. 28–33.
- 6. Пузаков В. С. Облачные технологии энергоемкий потребитель или эффективный источник теплоснабжения? // Энергосбережение. 2018. № 3. С. 48–55.
- 7. Нил Расмуссен. Расчет технических требований для общего охлаждения в центрах обработки данных : информ. статья № 25 / American Power Conversion. [Электронный ресурс]. URL: http://www.aboutdc.ru/docs/t15/WP25_RU.pdf (дата обращения: 19.11.2019).