

OF

AD A051742

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

84-IN. PROPELLANT CARTRIDGES AND GRAINS Volume II — Propellant Test Data

Terry V. O'Hara Joseph B. Henry Wendell A. Stephen

United Technologies Corporation Chemical Systems Division P. O. Box 358 Sunnyvale, CA 94088

30 November 1977

Final Report for Period November 1975 — November 1977 Approved for public release, distribution limited

AFPRO Chemical Systems Division P. O. Box 358 Sunnyvale, CA 94088

Prepared for

AIR FORCE ROCKET PROPULSION LABORATORY **Director of Science and Technology** Air Force Systems Command Edwards Air Force Base, CA 93523

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented inventions that may in any way be related thereto.

FOREWARD

This report was submitted by United Technologies/Chemical Systems Division, P.O. Box 358, Sunnyvale, CA 94086, under Contract No. F04611-76-C-0010, Job Order No. 305909 JM with the Air Force Rocket Propulsion Laboratory, Edwards AFB, CA 93523.

This report has been reviewed by the Information Office/XOJ and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public, including foreign nations. This technical report has been reviewed and is approved for publication; it is including foreign publication;

THOMAS I. KINSEL

Project Manager

CLARK W. HAWK

Acting Branch Chief

FOR THE COMMANDER

CHARLES R. COOKE

Director, Solid Rocket Division

SECURITY CLASSIFICATION OF THIS PAGE (When Date	Entered)	
(19) REPORT DOCUMENTATION		READ INSTRUCTIONS BEFORE COMPLETING FORM
AFRPL TR-77-92	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		S TYPE OF REPORT & RESIDE COVERED
84-INCH PROPELLANT CARTRIDGES AND	CRAINS 1 9	Final rept. November 1975 - November 197
Volume II. Propellant Te		CSD-2579-FR
7. AUTHOR(s)	2	8. CONTRACT OR GRANT NUMBER(s)
Terry V. O'Hara Wendell A. Ste	phen 15	F94611-76-C-8010
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
United Technologies Corporation Chemical Systems Division V P. O. Box 358, Sunnyvale, CA 9408	8	JON 305909 JM (16 3\$5 9)
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Rocket Propulsion Labora	tory/MKBS 1	30 Nove 1977
Edwards Air Force Base, CA 93523	Oscar.	13. NUMBER OF BASE 274P.
AFPRO, Chemical Systems Division	nt from Controlling Office)	Unclassified
P. O. Box 358		15a. DECLASSIFICATION/DOWNGRADING
Sunnyvale, CA 94088		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distr	ibution unlimited	
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES		
This report is presented in three volume I - Technical Discussion Volume II - Propellant Test Discussion Volume III - Appendices	on ata	
19. KEY WORDS (Continue on reverse side if necessary a HTPB Propellant	char Loaded C	
High Solids Loaded Propellant	Propellant Ch	aracterization
UTP-18,803A ELSH Loaded Cartridges	84-Inch Cartr	idge
20. ABSTRACT (Continue on reverse side if necessary an	d identify by block number)	
This document reports the results of cartridges with UTP-18,803A propell ballistic and mechanical property of 730,000 lbs of propellant is present is provided.	obtained from cas lant (90% solids, data obtained dur	21% aluminum, HTPB). Both ing the production of over

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

CONTENTS

Section		Page
1.0	INTRODUCTION	3
2.0	CSD BALLISTIC AND MECHANICAL PROPERTY TEST DATA AND DATA CORRELATIONS	4
2.1	Five-Gallon Preproduction Batches	5
2.2	400-Gallon Preproduction Batch (Batch 400-1450)	15
2.3	Production Run No. 1 (Batches 400-1454 through 400-1465)	21
2.4	Production Run No. 2 (Batches 400-1468 through 400-1479)	33
2.5	Production Run No. 3 (Batches 400-1480 through 400-1491)	47
2.6	Production Run No. 2A (Batches 400-1495 through 400-1503)	59
2.7	Production Run No. 3A (Batches 400-1505 through 400-1515)	69
2.8	Production Run No. 4 (Batches 400-1516 through 400-1526)	81
2.9	Production Run No. 5 (Batches 400-1527 through 400-1537)	99
2.10	Production Run No. 6 (Batches 400-1539 through 400-1543)	109
2.11	Production Run No. 7 (Batches 400-1546 through 400-1557)	117
2.12	Production Run No. 8 (Batches 400-1574 through 400-1582)	135
2.13	Production Run No. 9 (Batches 400-1588 through 400-1600)	145
2.14	Production Run No. 10 (Batches 400-1606 through 400-1615)	157
2.15	Production Run No. 11 (Batches 400-1620 through 400-1629)	167
3.0	AP PARTICLE SIZE DISTRIBUTIONS	76
4.0	FIFTEEN-POUND BATES TEST DATA	200
5.0	SEVENTY-POUND BATES TEST DATA BYIS White Section	264

ACCESSION for

RTIS White Section ROSE Bust Section DIMANHOUNDED DISTIFICATION DISTIFICATION DISTIFICATION ROSE BUST RESERVICEN/AVAILABILITY CODES BUST RESERVICEN/AVAILABILITY RESERVICEN/AVAILAB

1.0 INTRODUCTION

Volume II of the final report presents a compilation of all the ballistic and mechanical property test data for UTP-18,803A obtained under contract No. F04611-76-C-0010. The data presented here are those which were used in the statistical data summaries presented in section 4.2.1 of Volume I.

Because of the large amount of data available, the presentation of the data in this volume has been categorized into four main topics for ease of reference.

Volume II Section No.	Data Description
2.0	CSD Ballistic and Mechanical Property Test Data and Data Correlation - This section presents the test data obtained by CSD for each batch of propellant. Both ballistic (LSBR, CSBR, 4-lb motor) and physical property data are presented. Correlations between CSD and AFRPL test data are given. All test data are given by batch number and grouped by pro- duction run number.
3.0	AP Particle Size Distribution - The AP particle size distributions in terms of cumulative percentages are given for both the ground and unground AP. These data were used to establish the AP grind ratio for those batches where D ₄₃ was used as the propellant burning rate control. Data are presented by batch number.
4.0	Fifteen-Pound BATES Test Data - This section presents a plot of the pressure and thrust duty cycles for each of the 15-1b BATES motors test fired by AFRPL. The primary ballistic parameters for each test are also tabulated. The data are presented by batch number.
5.0	Seventy-Pound BATES Test Data - This section presents a plot of the pressure and thrust duty cycles for each of the 70-1b BATES motors test fired by AFRPL. The primary ballistic parameters for each test are also tabulated. The data are presented by batch number.

2.0 CSD BALLISTIC AND MECHANICAL PROPERTY TEST DATA AND DATA CORRELATIONS

This section presents the test data obtained by CSD for each batch of UTP-18,803A produced under contract No. F04611-76-C-0010. Both the ballistic (LSBR, CSBR, 4-1b motor) and mechanical property test data are presented. The ballistic correlations between the CSD and AFRPL test data are also given. All test data are presented by production run and batch number.

SECTION 2.1 FIVE-GALLON PREPRODUCTION BATCHES

Five Gallon Preproduction

4-LB MOTOR

18803A DATA

Batch	Grind Ratio	NCO /OH	r1000 in/sec	r ₁₄₀₀	Exponent η	Burning Rate Constant	One Sigma
5-1711	65/35	.86	.415	.487	.472	.01591	1.8
5-1712	60/40	.86	.439	.538	.603	.00682	1.8
5-1713	55/45	.86	.489	.594	.583	.00867	2 pt
5-1714	65/35	.83	.411	.490	.522	.01116	2.2
5-1715	60/40	.83	.442	.530	.543	.01038	1.2
5-1716	55/45	.83	.482	.577	.534	.01209	2 pt
5-1717	65/35	.80	.413	.496	.547	.00943	3.2
5-1718	60/40	.80	.457	.554	.573	.00872	3.6
5-1719	55/45	.80	.473	.581	.610	.00700	2 pt

Five Gallon Preproduction

Project 2579 UTP 18803A 4# Motor Burn Rate Data

	<u>s/n</u>	ps1	in/sec
Batch 5-1711	13	1428	.495
	09	757	.369
	19	951	.397
Batch 5-1712	11	1920	.655
	17	831	.398
	12	1103	.456
Batch 5-1714	22	1472	.508
parent y 171	01	956	.392
	20	751	.360
Batch 5-1713	15 0	verpressurizatio	n, nozzle ejected
Date. 5 2110	27	1483	.614
	23	969	.479
Batch 5-1715	5	827	.402
	24	1061	.450
	25	1843	.618
Batch 5-1716	21	934	.465
	10	1395	.576
	3	Moto	or blew
Batch 5-1717	08	721	.354
	02	906	.377
	06	1493	.520
Batch 5-1718	18	825	.421
	26	1072	.456
	16	2034	.694
Batch 5-1719	07	962	.462
	04	1342	.566
	14	Moto	or blew

2C MICRO (2 X 4) MOTOR

UTP 18803A

Ba	tch	Grind Ratio	NCO /OH	r ₁₀₀₀	r ₁₄₀₀ in/sec	Exponent η	Burning Rate Constant	One Sigma %
5-1	711	65/35	.86	.445	.508	.397	.0287	2.4
5-1	712	60/40	.86	.482	.593	.615	.00688	2.1
5-1	713	55/45	.86	.522	.686	.814	.00189	3.1
5-1	714	65/35	.83	.484	.586	.573	.00926	2 pt
5-1	715	60/40	.83	.467	.580	.641	.00560	4.61
5-1	716	55/45	.83	.499	.723	1.11	.00024	9.4
5-1	717	65/35	.80	.442	.5096	.423	.02385	2 pt
5-1	718	60/40	.80	.477	.573	.543	.01123	0.3
5-1	719	55/45	.80	.531	.772	1.106	.00026	2 pt

Project 2579 UTP 18803A 5-Gallon Matrix

		AP	
NCO /OH	65/35	60/40	55/45
.86	5-1711	5-1712	5-1713
.83	5-1714	5-1715	5-1716
.80	5-1717	5-1718	5-1719

Motor Summary (2 x 4)

	s/N	Web	Pc	<u> </u>
Batch 5-1711	10	.2503	1358	.507
	18	.2446	788	.412
	8	.2585	951	.424
Batch 5-1712	5	.2564	1798	.697
	3	.2481	895	.458
	16	.2437	1110	.502
Batch 5-1713	7	.2545	1067	.561
	14	.2559	2208	1.011
	9	.2474	1490	.697
Batch 5-1714	13	0510	1005	.05
	10	.2518	1005	.485
	15	.2524	1703	.656
Batch 5-1715	2	.2415	1189	.495
241011 3 1713	6	.2465	888	.448
	11	.2537	1998	.742
Batch 5-1716	19	.2544	2213	1.259
	27	.25	957	.506
	22	.25	1375	.635
	0.4		730	.387
Batch 5-1717	24		1409	.511
	26		1409	.311
Batch 5-1718	1	.2455	1098	.504
	12	.2453	1235	.534
	4	.2525	830	.431
Batch 5-1719	20		986	.523
D- COLL 3 - 1/12/	21		1544	.859
				,

Chamber Pressure, psia

SECTION 2.2 400-GALLON PREPRODUCTION BATCH (BATCH 400-1450)

UTP 18803A

CHARACTERIZATION BATCH, 400-1450

4 LB MOTOR DATA 65/35 GRIND RATIO,85 NCO/OH RATIO

Temperature, F		amber ure, psia	Burnin Rate, in	
32	2,	165	0.610	04
32	1,	.580	0.53	39
32	1,	.276	0.456	52
32	1,	.012	0.41	10
32		789	0.364	49
128		947	0.414	48
128	1,	299	0.492	23
128	1,	655	0.56	75
128	1,	989	0.62	19
85	2,	043	0.595	50
85	1,	895	0.583	37
85	1,	437	0.490	06
85	1,	238	0.40	30
85	1,	004	0.417	77
85		802	0.373	35
85	1,	595	0.535	58
Cemperature, F	Composite r1000, in/sec	r ₁₄₀₀ , in/sec	Pressure Exponent	One Sigma, %
32	0.410	0.489	0.522	1.70
128	0.427	0.514	0.550	0.44
85	0.416	0.494	0.510	1.19
πK	0.104 % /°F			
π _P	0.0498/ ^o f			

UTP 18803A QC PROCESSING AND PROPERTIES SUMMARY CHARACTERIZATION BATCH 400-1450

Parameter	Value
Grind ratio	65/35
NCO/OH ratio	0.85
LSBR @ 1000 psig before IPDI, in/sec	0.499
LSBR @ 1400 psig before IPDI, in/sec	0.638
LSBR @ 1000 psig propellant, in/sec	0.467
LSBR @ 1400 psig propellant, in/sec	0.589
IPDI @ 1 hr after addition, wt %	0.39
Viscosity @ 1 hr after IPDI addition, Kp @ 5000 dynes/cm ²	6.98
Max. corrected stress @ 75°F, o°m, psi	120.1
Max. corrected strain @ 75°F, ecm, %	30.7
True strain @ 75°F rupture, ER, %	31.6
Initial tangent modulus, E, psi	1,229

Preceding Page BLANK - FILMED

SECTION 2.3

PRODUCTION RUN NO. 1

(BATCHES 400-1454 THROUGH 400-1465)

FIRST PRODUCTION CASTING UTP-18,803A DATA

	Test Temperaturo F		20	N/A	22	N/A	02	N/A	20		N/A	20	N/A	20
btor Det	Temper													
70 Pound Bates Motor Data	Burning Rate in/sec		.435	N/A	1471	N/A	.477	N/A	r hardwar		N/A	r hardwar	N/A	r hardware
70 Pour	Chamber Pressure, psia		1231	N/A	1313	N/A	1371	N/A	Test motor hardware	parrer	N/A	Test motor hardware failed	N/A	Test motor hardware failed
otor Data	Test Temperature, F		70	02	02	20	70	20	70		70	70	02	70
15 Lb Motor Bates Motor Data	Burning Rate in/sec		.419	.361	627	38.	.453	.407	7777	.373	.374.	977.	. 381	.458
प्रकादा	Chamber Pressure, psta		1162	800	1253	831	1268	895	1243	817	799	1230	833	1251
	Exponent		.425	.486	.493	55:	687	504	. 504		. 501	997.	.523	.511
d	Rate @ 1400 psia, in/sec		757	657.	197	.481	.471	.480	.471		624.	.481	.477	.487
r Data	Test Temperature,		88	88	88	88	88	88	8	8	88	88	88	88
Four Pound Motor Data	Burning Rate in/sec	P Data	.4633	.4011	.3943	.410	.3994	.5170	.4137	.4991	.4162	.4049	.4031	.4172
Four	Chamber Pressure, psia	Questionable P _c Data	1062	1061 1556	1021	1046	1001	1054	1083	1572	1058 1706	966 1653	1015	1033
	Batch	1400-1454	400-1455	400-1456	1571-007	400-1458	400-1459	700-1460	400-1461		400-1462	400-1463	400-1464	400-1465
							22							

FIRST PRODUCTION CASTING UTP 18803A

			LSB	æ	LSBR	×	Four	90 F Four Pound Motor Data	ata
	Batch 400-	Grind	Before IPDI, in/s 1000 psig 14	ore in/sec 1400 psig	After IPDI, in/sec 1000 psig 1400	in/sec 1400 psig	r1000,	r 1400 in/sec	Exponent
	1454	70/30	794.	.589	444	.558	Questiona	Questionable pc data	
	1455	70/30	794	595.	445	.554	.393	.454	.425
	1456	68/32	.473	.600	447	.564	.390	.459	.486
	1457	68/32	694	.598	445	,553	.390	.461	.493
	1458		.473	.607	644	.568	.400	.481	.55
	1459	96/34	. 925	,617	455	.572	.399	.471	687.
23	1460	96/34	.483	.619	760	.587	.405	.480	. 504
	1461		,483	.617	456	.583	.397	.471	. 504
	1462	65/35	.483	.631	,459	.587	.405	64.	.501
	1463	65/35	.481	.624	.456	.581	.411	.481	994.
	1464	66/34	.482	.614	.457	.576	007.	774.	.523
	1465	66/34	.488	.620	459	. 587	.410	.487	.511
	6 batches	66/34	1	1	;	1	.402	847.	.518

UTP 18803A QC PROCESSING AND PROPERTIES SUMMARY PIRST PRODUCTION CASTING

	1465 X Sx	1 66/34	•	1	0.38 0.38 0.0087	5.3 4.99 0.0067	135 120 12.8	33 37.2 4.22	34 38.2 4.41	468 467 97.3
	1464	66/34			0.37	6.5	110	38	39	555
	1463	65/35			0.38	5.5	101	32	32	411
	1462	65/35			0.38	5.7	120	0,	4	526
	400 Gallon Batch 1460 1461	66/34			0.37	8.4	131	38	39	760
	400 Gall 1460	66/34			0.37	8.4	131	04	14	393
	1459	66/34			0.37	8.4	118	37	. 38	399
	1458	66/34		-	0.38	4.5	06	28	53	312
	1457	68/32		-	0.37	4.1	1115	37	38	658
	1456	68/32		1	0.40	4.2	123	07	45	432
	1455	70/30		-	0.38	4.7	128	40	41	587
	1454	70/30	0.85 —	3500-1	0.38	9.0	126	63	44	408
	Parameter	Grind ratio	NCO/OH	Fuel premix number	IPDI @ 1 hr after addition,	Viscosity @ 1 hr after IPDI 2 addition, Kp @ 5000 dynes/cm ²	Max. corrected stress @ 75 F, ocm, psi	Max. corrected strain @ 75°F, ε m, χ	True strain @ 75°F rupture, E _r , %	Initial tangent modulus, E., psi

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

27

SECTION 2.4

PRODUCTION RUN NO. 2

(BATCHES 400-1468 THROUGH 400-1479)

SECOND PRODUCTION CASTING, 65/35 GRIND RATIO UTP-18,803A 4-LB MOTOR DATA, 90°F AVERAGE WEB THICKNESS

00 Psia ta Pts	1,1400 r 1,700	.403 .433 .451	.408 .475 .519	.416	.420	.410	927. 927.	967. 097.	965. .430 .496	.415
800 & 1000 Psia Two Data Pts	GI.	.214	.451	.37	.50		3 15	707	.362	.441
200 Psia	6	6.4	0.1	0.4	0.3	0.5	6.0	1.1	nts	1.3
1000 Psia to 2200 Psia Three Points 1000	r 1700	.398 .486 .545	.496	. 501	. 501	.492	.497	.402	Only Three Points	.417 .488 .534
1000	=1	.602	.584	.604	.536		.612	. 586	Only	997.
1000 & 1500 Two Data Pts 71000	,1400 r1700	.397	.495	.507	.420 .501 .554	.490	.403	.403	.487	.413
1000 Two	۵I	.602	. 58	.618	.524	. 568	.633	.55	.54	.518
00 Psfa ints	6	3.5	1.0	2.2	0.2	2.4	2.4	1.3	1.8	0.7
800 thru 1800 Psia Three Points	1400 r1700	.415 .490 .538	.412 .496 .552	.562	.553	.418 .490	.502	.409 .486 .536	.415	.417
800	c1	.488	.55	F#S:	.515	.470	.569	.512	.491	687.
ta	3	3.1	1.0	1.9	0.5	2.6	2.0	1.9	1.8	1.1
All Data F1000	r1700	.416 .494 .546	.412	.421 .508 .566	.557	.419 .499 .551	.414	.494	.415 .490 .539	.417 .488 .534
	=1	.513	195	195	.526	.516	. 567	.551	167.	.465

:413	501	.504	.419 .476 .512	
35.3		. 381	.378	
1.9		2.5		
, , , , , ,	.558	.498	wo Points	
.612	55	.625	Only Two	
.409	.545	. 546	.502	.406
.543		. 542	588	.574
1.8		1.4	2.1	2.14
.418	.540	.542	.425	.416
.481		.496	.514	.516
3.1		3.1	2.1	2.1
.504	.561	505	.425 .505 .558	.416
.55		. 569	.514	.537
400-1477	84 In Char	400-1478 84 In Char	400-1479 84 In Char	400-1468-1476

UTP-18803A 65/35 GRIND RATIO SECOND PRODUCTION CASTING 90 F FOUR POUND MOTOR

Batch	Burning Re	ate In/Sec/Chambe	er Pressure (psia)	<u>)</u>
400-1468	.3854	.406	.5389	.6106
	812	1036	1657	2070
400-1469	.3761	.411	.5432	.6525
	833	1014	1640	2235
400-1470	. 393	,4292	.5757	.6749
	856	1086	1747	2301
400-1471	. 3768 804	.435 1071	5322 1574	.6299
400-1472	. 3807	.415	.5206	.6145
	790	1043	1555	2032
400-1473	.3827	.4060	.568	.6178
	838	1011	1717	2024
400-1474	.3616	. 3971	.5215	.6472
	771	972	1594	2229
400-1475	.3783 803	4163 1046	.5646 1843	
400-1476	.3781	.4294	.5334	.5974
	808	1078	1639	2002
400-1477	.3815	.4221	.5405	.6780
	804	1062	1674	2289
400-1478	. 3828	.4175	.5392	.6686
	823	1037	1662	2176
400-1479	.3878 814	.4331 1090	.5666 1722	

18803A SECOND PRODUCTION CASTING

Batch	Before 1000	IPDI 1400	After 1000	IPDI 1400
400-1468	.495	.63	.462	.589
400-1469	.492	.63	.562	.586
400-1470	.494	.63	.464	.586
400-1471	.487	.623	.458	.577
400-1472	.496	638	.463	.587
400-1473	.495	638	.468	,598
400-1474	.495	641	.464	.595
400-1475	.486	626	.462	.583
400-1476	.488	630	.460	.585
400-1477	.487	628	.465	.585
400-1478	.487	630	.457	.587
400-1479	.490	639	.465	.596

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY SECOND PRODUCTION CASTING

Parameter	1468	1469	1470	1471	1472	1473	400 Gal	400 Gallon Batch 1474 1475	1476	1477	1478	1479	×	Sx
Grind ratio	65/35	-		-	-		1					1		
NCO/OH	0.85								1			1		
Fuel premix number	3500-2	1				1		•		1	,	•		
IPDI @ 1 hr after addition, wt χ	0.37	0.37	0.38	0.37	0.37	0.37	0.37	0.38	0.37	0.38	0.38	0.38	0.374	0.005
Viscosity θ 1 hr after IPDI ₂ addition, Kp θ 5000 dynes/cm	7.8	4.9	5.8	0.9	9.0	7.9	9.9	5.6	5.5	5.8	5.6	8.9	6.57	1.12
Max. corrected stress @ 75°F, of, ps1	133	137	141	126	122	121	124	114	120	112	121	111	125.0	8.90
Max. corrected strain @ 75°F, scm, %	53	29	35	59	24	25	32	53	23	30	35	25	29.8	3.61
True strain @ $75^{\circ}F$ rupture, E_{r} , χ	90	30	36	30	56	25	32	53	28	Ħ,	35	56	29.8	3.41
Initial tangent modulus, \mathbf{E}_{o} , psi	666	1081	833	976	196	925	720	976	570	074	572	816	821	158.0

Cartridges lost in 23 May 76 fire

18803A SECOND PRODUCTI	ON	CASTING
------------------------	----	---------

,	,- ,	_
6	5/3	3

Batch	Before 1000	IPDI 1400	After IPDI 1000 1400
400-1468	.495	.63	.462 .589
400-1469	.492	.63	. 5 62 .586
400-1470	.494	.63	.464 .586
400-1471	.487	.623	.458 .577
400-1472	.496	638	.463 .587
400-1473	.495	638	.468 .598
400-1474	.495	641	.464 .595
400-1475	.486	626	.462 .583
400-1476	.488	630	.460 .585
400-1477	.487	628	.465 .585
400-1478	.487	630	.457 .587
400-1479	.490	639	.465 .596

Chamber Pressure, psia

44

SECTION 2.5

PRODUCTION RUN NO. 3

(BATCHES 400-1480 THROUGH 400-1491)

THIRD PRODUCTION CASTING, UTP-18,803A BATCHES 400-1480 THROUGH 1491, 4-LB MOTOR DATA, 90°F

la	6	2 pts	2 pts	2 pts	2 pts	1.2	0.3	0.2	2 pts	2 pts	2 pts	2 pts	2 pts
1000 thru 1700 psta	r,1000 r,1400 r,1700	.394 .478 .533	.490 .543	667:	.414 .489 .539	707:	.538	413	.402 .481 .532	.417 .486 .531	414 484 530	405. 494. 554.	.403
10	al	696.	.523	.593	167:	*	38.	535	.527	.457	997:	585.	.553
	6	2 pts	2 pts	2 pts	2 pts	2.1	1.4	8.0	1.3	0.1	97.0	1.2	2.3
All Deta	,1000 ,1100 ,1700	.394	.490	667:	.414 .489 .539	.415 .489 .537	.415 .486 .533	.419 .496 .546	.412	.417 .486 .531	.417	.416492542	.420
	al	695.	.523	.593	.497	787	.472	667.	.442	757.	.437	567.	.419
	Grind	65/35	65/35	65/35	65/35	65/35	K/99	%/99	×/99	76/39	76/39	96/34	. 1999
	Batch	400-1480	400-1481	400-1482	400-1483	780-1484	400-1485	400-1486	400-1487	400-1488	400-1489	400-1490	400-1491

THIRD PRODUCTION CASTING UTP 18803A BATCHES 400-1480-1491 FOUR MOTOR DATA 90 F

Bat ch 400-	BURNING RATE,	IN/SEC/CHAMBER PRES	SSURE, psia	
1480	0.3998/1024	0.5007/1521		
1481	0.4037/966	0.4809/1350		
1482	0.4024/974	0.4962/1387		
1483	0.4039/952	0.4863/1383		
1484	0.3714/768	0.4091/1014	0.4809/1398	0.5377/1638
1485	0.3681/759	0.4214/1074	0.4829/1398	0.5366/1683
1486	0.3615/736	0.4379/1118	0.5165/1512	0.5538/1738
1487	0.3792/816	0.4207/1088	0.4869/1436	
1488	0.3747/792	0.4323/1085	0.4979/1475	
1489	0.3821/812	0.436/1118	0.4971/1481	
1490	0.3862/848	0.4348/1124	0.5022/1438	
1491	0.4025/872	0.4282/1115	0.5026-1490	

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY THIRD PRODUCTION CASTING

Cartridge lost in 23 May 76 fire

PRODUCTION RUN #3
UTP 18,803A

	AP	LSBR	LSBR Propellant
Batch	Grind Ratio	Pres: C 1000 1400	1000 1400
400-1480	65/35	.493 .632	.462 .588
400-1481	65/35	.497 .634	.464 .588
400-1482	65/35	.497 .640	.468 .592
400-1483	65/35	.493 .635	.462 .587
400-1484	65/35	.492 .634	.461 .588
400-1485	66/34	.485 .623	.463 .589
400-1486	66/34	.487 .621	.461 .581
400-1487	\$6/34	.487 .623	.463 .581
400-1488	66/34	.491 .627	.464 .587
400-1489	66/34	.494 .629	.461 .579
400-1490	66/34	.491 .625	.462 .580
400-1491	66/34	.488 .632	.462 .589

Chamber Pressure, psia

Chamber Pressure, psia

54

Chamber Pressure, psia

SECTION 2.6
PRODUCTION RUN NO. 2A
(BATCHES 400-1495 THROUGH 400-1503)

PRODUCTION CASTING #2A

UTP 18803A

BATCHES 400-1495 THROUGH 1503

76°F

Batch	Grind Ratio	All Data r1000 r1400 r1700	Pressure Exponent	One Standard Deviation, %
400-1495	66/34	0.423 0.507 0.563	0.538	0.4
400-1496	66/34	0.426 0.508 0.563	0.529	1.0
400-1497	66/34	0.419 0.502 0.557	0.540	0.8
400-1498	66/34	0.416 0.499 0.554	0.538	2.1
400-1499	66/34	0.413 0.488 0.537	0.493	1.6
400-1500	66/34	0.416 0.491 0.540	0.492	1.3
400-1501	66/34	0.413 0.482 0.528	0.465	2.1
400-1502	66/34	0.417 0.499 0.553	0.529	1.6
400-1503	66/34	0.418 0.493 0.543	0.490	2.0
Composite of 1495-1503		0.418 0.497 0.550	0.517	2.1

PRODUCTION CASTING #2A

UTP 18803A 66/34 Grird Ratio BATCHES 400-1495 Thru 1503 76°F

	Chamber	Burning
Batch	Pressure, psia	Rate, in/sec
400-1495	1451	.520
	1830	.5829
	879	.3937
	1263	.4793
400-1496	1490	.5297
	1781	.5761
	905	.4068
	1082	.4378
400-1497	1498	.5251
	1789	.5711
	901.5	.3976
	1122	.4411
400-1498	1470	.5229
	1711	.5507
	861	.3893
	1036	.4140
400-1499	1406	.4872
	1682	.5378
	876	. 3933
	1037	.4116
400-1500	1450	.4950
	1760	.5546
	902	.4003
	1070	.4243
400-1501	1434	.4818
	1710	.5378
	849	. 390
	1023	.4074
400-1502	1457	.4983
	1782	.576
	869	. 3895
	1040	.4270
400-1503	1383	.4839
	1730	.555
	861	. 3966
	1024	.4143

PRODUCTION CASTINGS #2A AND 3A

ELSH LSBR Results UTP 18803A

Premix		"C" Propellant		lant	
Batch	1000 psig	1400 psig	100	00 psig	1400 psig
400-1495	0.490	0.632	(0.464	0.591
400-1496	0.493	0.639	(0.468	0.612
400-1497	0.497	0.644	(0.472	0.603
400-1498	0.501	0.642	(.470	0.602
400-1499	0.483	0.623	(.463	0.584
400-1500	0.495	0.634	(.470	0.595
400-1501	0.495	0.632	(.465	0.589
400-1502	0.495	0.638	(.468	0.602
400-1503	0.489	0.639	(.464	0.597
400-1505	0.482	0.620	(.460	0.584
400-1506	0.496	0.634	(.472	0.591
400-1507	0.495	0.634	(.468	0.595
400-1508	0.492	0.650	(.462	0.594
400-1509	0.487	0.632	(.461	0.591
400-1510	0.491	0.635	(.463	0.593
400-1511	0.485	0.618	(.460	0.585
400-1512	0.495	0.628	(.472	0.593
400-1513	0.492	0.632	0	.464	0.593
400-1514	0.494	0.632	(.466	0.585
400-1515	0.494	0.643	C	.467	0.599
		400-1495	400-1499	400-150	3
	MSA 10%	3.0	3.7	3.2	
	50%	9.2	11.0	9.8	
	90%	24	27	26	

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 2A

Parameter	1495	1496	1497	1498	400 G	400 Gallon Batch 1499 1500 150	1501	1502	1503	 ×	Sx
Grind ratio	46/99								1		
NCO/OH	0.85			1					4		
Fuel premix number	3500-3								4		
IPDI @ 1 hr after addition, wt %	0.39	0.45	0.40	0.40	0.39	0.42	0.41	0.40	0.30	0.403	0.01
Viscosity @ 1 hr after IPDI 2 4.9 addition, Kp @ 5000 dynes/cm	2 4.9	8.0	8.0	6.5	5.5	0.9	0.9	7.4	7.1	9.9	1.1
Max. corrected stress at 75°P, o ^c m, psi	172	169	166	179	181	111	174	172	180	174	5.17
Max. correctes strain @ 75°F, cm, %	56	24	24	53	28	28	28	25	31	27.0	5.4
True strain @ 75°F rupture, E _r , %	28	24	54	æ	30	8	30	30	33	28.8	2.99
Initial tangent modulus, E_o , psi	1605	1666	1764	7.721 .	1536	1479	1444	1482	1346	1540	125

Chamber Pressure, psia

64

Chamber Pressure, psia

SECTION 2.7

PRODUCTION RUN NO. 3A

(BATCHES 400-1505 THROUGH 400-1515)

PRODUCTION CASTING #3A

UTP 18803A 66/34 GRIND RATIO

4 LB MOTOR 90 F BATCHES 400-1505-1515

	Bu	rning Rate, in/se	ec		
400 Gallon Batch	@ 1000 psia	0 1400 psia	0 1700 psia	Exponent	<u> </u>
1505	.4036	.4771	.5253	.497	1.4
1506	.4167	.4963	.5490	.520	2.0
1507	.4127	.4903	.5415	.512	1.6
1508	.4173	.4941	.5446	.502	0.6
1509	.4128	.4935	.5470	.531	1.6
1510	.4127	.4920	.5445	.523	0.3
1511	.4121	. 4902	.5419	.516	0.8
1512	.4103	.5009	.5621	.594	2.3
1513	.4213	.5017	.5549	.519	2.0
1514	.4194	.5019	.5566	.534	1.7
1515	.4192	.5030	.5589	.542	0.2
Composite	.4142	. 4949	.5484	. 529	2.0

PRODUCTION CASTING #3A UTP 18803A 66/34 GRIND RATIO BATCH 400-1505-1515 4 LB MOTOR 90°F

400 Gallon Batch					
1505	r, in/sec P, psia	. 3554 760	. 3985 990	.4629 1361	.5223 1630
1506	$\frac{\mathbf{r}}{\mathbf{P}}$, in/sec \mathbf{P} , psia	.3769 801	.4209 1042	.4864 1404	.5812 1831
1507	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3731 800	.4238 1097	.5033 1487	.5558 1747
1508	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3806 826	.4324 1084	.5159 1544	.5538 1734
1509	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3727 813	.4214 1054	.5075 1528	.5605 1720
1510	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3718 823	.4318 1083	.5201 1552	.5457 1716
1511	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3717 808	.4260 1088	.5064 1494	.555 1764
1512	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3786 842	.415 1064	.5060 1458	.597 1826
1513	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3798 795	.4259 1065	.5173 1520	.5687 1721
1514	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3915 854	.4261 1071	.5248 1543	.5727 1752
1515	$\frac{r}{P}$, in/sec $\frac{r}{P}$, psia	.3758 816	.4404 1097	.5201 1496	.5781 1802

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 3A

S X Sx				38 0.389 0.0094	3 5.84 1.46	1 124 9.34*	32.9 2.91	34.0 2.79	6 778 144
1515	1	1	1	0.38	5.3	131	8	8	786
1514	-		1	0.38	6.1	128	36	33	132
1513				0.40	5.3	126	35	*	670
Satch 1512	-			07.0	8.3	132	*	*	111
400 Gallon Batch 510 1511 1512				0.39	6.4	120	32	33	699
1510				0.38	4.5	124	35	36	822
1509			1	0.38	8.4	127	35	%	894
1508			;	0.38	5.5	121	27	30	1057
1507				0.40	8.5	126	31	32	744
1506				0.39	5.7	129	31	32	930
1505	66/34	0.82	3500-4	0.40	3.8	86	98	38	534
Parameter	Grind ratio	исо/он	Fuel premix number	IPDI @ 1 ur after addition, wt %	Viscosity θ 1 hr after IPDI addition, Kp θ 5000 dynes/cm	Max. corrected stress @ 75°P, o'm, psi	Max. corrected strain @ 75°P, cm, %	True strain @ 75°P rupture, Er, %	Initial tangent modulus, $\mathbf{E_o}$, psi

* X = 126 and Sx = 3.92 if eliminate 400-1505

Chamber Pressure, psia

Chamber Pressure, psia

SECTION 2.8

PRODUCTION RUN NO. 4

(BATCHES 400-1516 THROUGH 400-1526)

PRODUCTION CASTING #4

UTP 18803A 68/32 GRIND RATIO

4-LB MOTOR, 90°F, BATCHES 400-1516-1524

400-Gallon Batch	Burn 1000 psia	ning Rate, in/	1700 psia	Exponent	<u>o, z</u>
400-1516	.4014	.4665	.5088	.446	1.2
400-1517	.4046	.4728	.5173	.463	.51
400-1518	.4001	.4762	.5266	.517	.80
400-1519	.4006	.4710	.5171	.481	.28
400-1520	.4061	.4711.	.5133	.441	1.1
400-1521	.4034	.4766	.5248	.496	1.2
400-1522	.4022	.4688	.5122	.456	.96
400-1523	.4020	.4720	.5178	.477	.82
400-1524	.4014	.4728	.5197	.487	1.7
400-1525	.3989	.4693	.5154	.483	. 29
Composite	.4021	.4715	.5168	.473	1.30
1516-1525					
	90°F UTP	18803A 66/34 GR	IND RATIO		
400-1526	.4123	. 4879	.5377	.500	1.52

PRODUCTION CASTING #4 18803 68/32 GRIND RATIO BATCH 400-1516-1524, 4-LB MOTOR, 90°F

400-Gallon		
Batch	r, in/sec	P, psia
1516	.3652	792
	. 3964	1,001
	.4624	1,409
	.4914	1,521
1517	.3675	802
	.4060	1,030
	.4666	1,357
	.4882	1,490
1518	.3663	834
	.3914	978
	.4625	1,297
	.4780	1,425
1519	.3651	820
	.4026	1,019
	.4719	1,410
	.4898	1,510
1520	.3649	769
	.4010	996
	.4598	1,360
	.4995	1,551
1521	.3683	820
	.4000	1,016
	.4786	1,366
	.4983	1,555
1522	.3558	755
	.3997	984
	.4436	1,293
	.5159	1,680
1523	.3657	802
	.3964	1,005
	.4848	1,467
	.5100	1,642
1524	.3599	767
	.3881	985
	.4550	1,316
	.5178	1,638

400-Gallon Batch	r, in/sec	P, psia
1525	.5100	1,650
	.4772	1,460
	.4039	1,031
	. 3558	786
	66/34 Grind Ratio	
1526	.558	1,778
	. 489	1,449
	.411	1,016
	. 3699	787

PRODUCTION CASTING #4 LSBR - UTP. 18,803A

Batch	Pressure	Premix C	Propellant	Ratio	Curative Ratio
400-1516	1000 1400	.480 .621	.453 .572	68/32	0.82
400-1517	1000 1400	.481 .613	.454 .575	68/32	0.82
400-1518	1000 1400	.482 .613	.456 .578	68/32	0.82
400-1519	1000 1400	.481 .605	.448 .564 & .560	68/32	0.82
400-1520	1000 1400	.475 .603	.447 .565	68/32	0.82
400-1521	1000 1400	.472 .603	.445 .562	68/32	0.82
400-1522	1000 1400	.464 .598	.442 .557	68/32	0.82
400-1523	1000 1400	.473 .600	.448 .562	68/32	0.82
400-1524	1000 1400	.473 .598	.444 .560	68/32	0.82
400-1525	1000 1400	.472 .601	.446 .565	68/32	0.82
400-1526	1000 1400	.487 .627	.444 & .443 .561 & .555	66/34	0.82

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 4

Parameter	1516	1517	1518	1519	1520	400 G	400 Gallon Batches	1523	1524	1525	1526	×	Sx
Grind ratio	68/32			-				-		•	66/34		
NCO/OH	0.82		-						-	1	1		
Fuel premix number	3500-5			1					i :		1		
IPDI @ 1 hr after addition, wt %	0.37	0.38	0.37	0.35	0.37	0.34	0.37	0.38	0.37	0.37	0.28	0.359	0.0029
Viscosity θ 1 hr after IPDI addition, Kp θ 5000 dynes/cm	5.3	4.65	4.28	3.43	4.14	4.40	5.57	4.55	4.45	4.45	4.93	4.56	0.0058
Max corrected stress @ 75°F, ocm, ps1	112	116	120	114	1115	110	113	114	113	113	114	114	2.52
Max corrected strain @ 75 F, c ^c x, X	35	31	0,	36	43	35	38	33	36	04	.04	36.7	3.52
True strain @ 75°F rupture, Er, %	35	32	14	38	43	36	39	34	37	17	42	38.0	3.55
Initial tangent Modulus, E., psi	195	649	159	488	897	536	808	653	294	929	999	575	69.5

Chamber Pressure, psia

Chamber Pressure, paia.

AD A051742

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-3

SECTION 2.9

PRODUCTION RUN NO. 5

(BATCHES 400-1527 THROUGH 400-1537)

PRODUCTION CASTING #5

UTP 18803A, 90°F BATCHES 400-1527 THROUGH 1537 FOUR-POUND MOTORS 67/33 GRIND RATIO

Batch	All Data r1000 r1400 41700	Pressure Exponent	One Standard Deviation, %
400-1527	.4130 .4911 .5427	0.515	2.0
400-1528	.4180 .4878 .5332	0.459	0.7
400-1529	.4219 .5005 .5523	0.508	1.9
400-1530	.4222 .5016 .5441	0.512	0.6
400-1532	.4168 .4858 .5306	0.455	0.9
400-1533	.4192 .4847 .5271	0.431	0.6
400-1534	.4241 .4951 .5414	0.4599	0.9
400-1535	.4236 .4956 .5427	0.467	1.4
400-1536	.4213 .4955 .5442	0.482	0.04
400-1537	.4224 .5003 .5517	0.503	1.8
Composite	.4204 .4930 .5410	0.475	1.5

PRODUCTION CASTING #5

UTP 18803A FOUR-POUND MOTOR DATA BATCHES 400-1527 THROUGH -1537 89°F

Batch	Burning Rates	in./sec/Average	e Chamber Pre	ssure, psia
1527	.3976/901	.4268/1128	.4616/1229	.5392/1653
1528	.3680/761	.3936/865	.4612/1265	.5242/1619
1529	.3660/747	.4058/954	.5124/1447	.5378/1663
1530	.3709/767	.3936/886	.4875/1322	.5344/1581
1532	.3590/705	.3881/880	.4983/1477	.5280/1673
1533	.3610/698	.3908/866	.4722/1313	.5053/1538
1534	.3819/792	.4195/992	.5097/1452	.5445/1749
1535	.3707/777	.3989/855	.4804/1279	.5415/1723
1536	.4212/1000	.488/1355	.5582/1793	
1537	.3791/816	.4078/908	.5042/1487	.5778/1808

PRODUCTION CASTING #5

UTP 18803A BATCHES 400-1527 THROUGH -1537 67/33 GRIND RATIO

Batch		Premix C	Final
400-1527	1000	.485	.452
	1400	.616	.589
400-1528	1000	.483	.451
	1400	.627	.577
400-1529	1000	.490	.461
	1400	.626	.583
400-1530	1000	.479	.455
	1400	.618	.574
400-1532	1000	.474	.449
	1400	.608	.573
400-1533	1000	.478	.447
	1400	.609	.572
400-1534	1000	.481	.454
	1400	.613	.570
400-1535	1000	.474	.448
700 1333	1400	.608	.568
400-1536	1000	. 485	.456
400-1550		.617	.581
	1400	.01/	.501
400-1537	1000	.482	.462
	1400	.616	.579

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 5

Parameter	1527	1528	1529	1530	1532	400 Gallon Batch 1533 1534	n Batch 1534	1535	1536	1537	(×)	Sx
Grind ratio	67/33					•				4		
исо/он	0.81	1								Å		
Fuel premix number	3500-5									1		
IDPI @ 1 hr after addition, wt %	0.38	0.38	0.38	0.36	0.38	0.38	07.0	0.36	0.38	0.37	0.377	0.0012
Viscosity @ 1 hr after IPDI addition, Kp @ 5000 dynes/cm	5.3	0.9	6.0	5.3	4.2	4.1	9.4	5.4	6.9	6.4	5.27	0.0087
Max. corrected stress	103	102	104	103	105	104	106	101	100	66	103	2.21
Max. correctes strain @ 75°P, c°m, %	33	34	35	8	39	%	*	38	33	*	35.8	2.10
True atrain @ 75°F rupture, Er, %	33	35	8	07	7	37	35	04	35	34	37.0	2.49
Initial tangent modulus Eo, psi	111	728	592	614	553	621	617	814	529	741	619	87.9

Batch 400-1531 was lost when fire system came on

Chamber Pressure, psia

106

SECTION 2.10

PRODUCTION RUN NO. 6

(BATCHES 400-1539 THROUGH 400-1543)

UTP 18803A 80 F BATCHES 400-1539 THROUGH 1543 FOUR POUND MOTORS 67/33 GRIND RATIO

<u>Batch</u>	Burning Rate, in richard records richard richa	Pressure Exponent	One Standard Deviation, %
400-1539	0.3937 0.4608 0.5047	0.468	0.4
400-1540	0.4114 0.4632 0.4935	0.353	0.8
400-1541	0.4170 0.4816 0.5234	0.428	1.1
400-1542	0.4054 0.4756 0.5216	0.475	0.3
400-1543	0.4072 0.4824 0.5319	0.503	1.8
Composite	0.4063 0.4728 0.5160	0.450	2.3

UTP 18803A FOUR POUND MOTOR DATA

BATCHES 400-1539 THROUGH 1543

80°F

400 Gallon Batch	Burning Rat	te, in/sec	Chamber Pres	ssure, psia
1539	.4092/1126	.3769/898	.4366/1241	.4554/1343
1540	.4195/1085	.4005/912	.45/1306	.4629/1366
1541	.3728/761	.418/1018	.4505/1232	.4832/1370
1542	. 3551/761	. 3954/941	.4654/1342	.4838/1451
1543	.3643/780	.396/982	.4606/1306	.500/1456

UTP 18803A

67/33 GRIND RATIO

Batch		Premix C	Prop
400-1539	1000	.478	.448
	1400	.619	.569
400-1540	1000	.481	.451
	1400	.612	.574
400-1541	1000	.481	.452
	1400	.615	.572
400-1542	1000	.477	.452
	1400	.610	.574
400-1543	1000	.485	.457
	1400	.622	.576

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 6

			70	Ann Callon Batch	o to t		
Parameter	1539	1540	1541	1542	1543	1×	Sx
Grind ratio	67/33				1		
NCO/OH ratio	0.81				1		
Fuel premix number	3500-6 -				4		
IPDI @ 1 hr after addition, wt %	0.40	0.38	0.39	0.38	0.38	0.386	0.0089
Viscosity @ 1 hr after IPDI addition, Kp @ 5000 dynes/cm	4.7	4.6	6.1	7.5	İ	5.73	1.37
Max corrected stress @ 75°F, o m, psi	91	97	105	118	104	103	10.1
Max corrected strain @ 75 ^o F, c ^c m, %	777	53	35	43	35	37.2	6.26
True strain @ 75°F rupture, Er, %	94	59	36	777	35	38.0	96.9
Initial tangent modulus, Eo, psi	359	687	977	416	929	453	74.4

SECTION 2.11

PRODUCTION RUN NO. 7

(BATCHES 400-1546 THROUGH 400-1557)

UTP 18803 A 72 F

BATCHES 400-1546 THROUGH 1557

FOUR POUND MOTORS 68/32 GRIND RATIO

	Burning Rate, in sec		
	1000		One
	r ₁₄₀₀	Pressure	Standard
Batch	r ₁₇₀₀	Exponent	Deviation, %
1546	.4088		
	.4622	.365	1.6
	.4961		
1547	.4145		
	.4841	.461	1.0
	.5294		
1548	.4065		
	.4770	.476	0.9
	.5232		
1549	. 4056		
	.4717	.449	0.9
	.5146		
1550	.4069		
	.4773	.474	0.9
	.5233		
1551	.4096		
	.4790	.464	1.5
	.5240		
1552	.4054		
	. 4746	.468	1.4
	.5197		
1553	.4037		
	.4745	.480	1.5
	.5209		
1554	.4080		
	.4800	. 483	1.1
	.5271		
1555	.4112		
	.4802	.461	2.2
	.5252		
1556	. 3999		
	.4726	.496	1.8
	.5204		
		0	

1557	. 3984		
	. 4665	.469	1.5
	.5110		
Composite	.4061		
	.4756	.469	1.7
	.5209		

UTP 18803A FOUR POUND MOTOR DATA

BATCHES 400-14546-1557

68/32 GRIND RATIO

72 F

400 Gallon Batch	Burning Rate, in sec/Chamber Pressure, psia
1546	.3984/916, .4336/1235, .4733/1447
1547	.4049/942, .4578/1271, .5037/1502
1548	.3527/739, .3868/896, .4329/1177, .4864/1434
1549	.3567/737, .3849/911, .4387/1200, .4833/1459
1550	.3545/740, .3913/924, .4353/1181, .4921/1467
1551	.356/746, .3953/899, .4362/1192, .4979/1494
1552	.3545/749, .3927/921, .4368/1222, .4947/1492
1553	.3602/766, .3806/900, .4256/1156, .5120/1590
1554	.362/767, .3836/907, .4524/1220, .5148/1622
1555	.3644/787, .410/938, .4397/1217, .5255/1675
1556	.3525/753, .387/959, .4388/1252, .5163/1619
1557	.3645/747, .3464/731, .4137/1124, .493/1542

LSBR DATA

	Spec Limits: 0.605-0.646	Spec Limits: 0.570-0.617
Batch	Premix C	<u>Pinal</u>
400-1546	.484	.461
	.619	.576
400-1547	.492 .624	.465 .584
400-1548	.487 .623	.457 .577
100 1510		
400-1549	.482 .620	.458 .579
400-1550	.484	.454
	.609	.573
400-1551	.479	-454
	.607	.574
400-1552	.480 .607	.453 .570
400-1553	.481 .615	. 456 . 576
400-1554	.478	.458
	.611	.578
400-1555	.490	.465
	.623	.585
400-1556	.480 .612	.453 .574
400-1557	.474 .604	.450 .571

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 7

	Parameter	1546	1547	1548	1549	1550	1551	400 Gallon Batch 1552 1553	n Batch 1553	1554	1555	1556	1557	1×1	Š
	Grind ratio	68/32			i						1				
	NCO/OH ratio	0.82	-	1						1			1		
	Fuel Premix number	3200-6		1	i					1					
	IPDI @ 1 after addition, wt %	0.40	0.40	0.38	0.38	0.37	0.38	0.38	0.38	0.38	0.38	0.40	0.38	0.384	0.0099
	Viscosity @ 1 hr after IDPI addition, Kp @ 5000 dynes/cm	6.16	4.14	4.54	4.97	5.34	5.05	7.12	5.72	5.83	6.10	5.43	5.12	5.46	0.008
	Max corrected stress @ 75°P, o ^c m, ps1	134	134	136	131	124	107	104	102	105	122	121	102	119	13.7
	Max corrected strain @ 15° F, ϵ° m, χ	37	32	35	33	35	54	54	22	18	28	34	39	30.1	69.9
122	Initial tangent modulus, E_o , psi	592	902	645	821	726	1056	812	891	1081	875	834	638	908	156
	True strain @ 75°F fupture, E _r , %	37	34	36	34	36	25	56	23	70	59	34	07	31.2	6.35

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

SECTION 2.12

PRODUCTION RUN NO. 8

(BATCHES 400-1574 THROUGH 400-1582)

PRODUCTION CASTING #8 UTP 18803A 67/33 GRIND RATIO AND 0.81 NCO/OH RATIO FOUR POUND MOTORS 80 F

Batch	1000 psia	Burning Rate, in/sec 1400 psia	1700 psia	Exponent	σ, %
400-1574	. 3933	.4606	. 5045	.469	0.9
400-1575	. 3925	.4702	.5218	.537	0.8
400-1576	. 3946	.4706	.5210	.523	1.5
400-1577	. 3982	.4710	.5189	. 499	0.7
400-1578	. 3971	. 4705	.5189	. 504	1.0
400-1579	. 3991	.4813	.5362	.557	1.1
400-1580	. 3964	.4740	. 5255	.532	1.9
400-1581	. 39 44	.4730	. 5252	.539	0.5
00-1582	.3996	.4720	.5197	.495	0.7
Composite	.3956	.4720	.5226	.525	1.45

PRODUCTION CASTING #8 UTP 18803A 67/33 GRIND RATIO AND .81 NCO/OH RATIO FOUR POUND MOTOR DATA, 80°F

Batch	Burning Rate, in/sec/Chamber pressure, psia
400-1574	.3798/927, .4523/1336, .4718/1447, .4523/1385*
400-1575	.3789/941, .504/1585, .5065/1647, .4736/1405, .4994/1547*
400-1576	.3798/925, .5238/1652, .4869/1511, .4894/1501, .4879/1557*
400-1577	.3874/948, .5046/1648, .5218/1700, .4839/1468, .4955/1536*
400-1578	.3888/962, .5016/1534, .5053/1640, .505/1628, .4817/1473*
400-1579	.3934/970, .5223/1605, .5566/1819, .5067/1506, .4799/1441*
400-1580	.396/982, .4949/1465, .5306/1708, .461/1340, .455/1372*
400-1581	.386/965, .459/1320, .5367/1777, .457/1326, .459/1305*
00-1582	.395/971, .4629/1357, .5258/1727, .454/1320, .4624/1324*

All four motors used a fiberglass cartridge except those identified by \star which were steel cartridges.

UTP 18803A

PRODUCTION CASTING #8

TABLE I - LSBR DATA

Batch No.	AP Addition Time, min	Mix Time After IPDI Addition, min	→ Pressure	Premix C	Final
400-1574	43	40	1000 1400	0.490 0.623	0.475
400-1575	55	70	1000 1400	0.505 0.643	0.448 0.582
400-1576	40	40	1000 1400	0.482 0.616	0.451 0.577
400-1577	75	70	1000 1400	0.480 0.612	0.477 _* 0.565
400-1578	35	40	1000 1400	0.480 0.610	0.452 0.569*
400-1579	55	70	1000 1400	0.491 0.619	0.452 0.577
400-1580	65	40	1000 1400	0.490 0.618	0.450 0.576
00-1581	55	70	1000 1400	0.486 0.615	0.452 0.566*
400-1582	48	40	1000 1400	0.478 0.611	0.451 0.570
* Burn rate ou	it of spec. Spec	limits are:		Min	Max
		Premix	к С @ 1400	0.605	0.646
		Final	@ 1400	0.570	0.617

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 8

×S.						.0022	.0049	4.4	2.96	3.31	73.8
ı×						.369	5.29	111	37.6	38.2	999
1582	1	1	1	84	04	.36 (81)	5.70 (81)	П	38	38	618
1581				55	02	.36	5.78 (96)	120	39	07	542
latch 1580				65	04	.38	5.93	125	41	42	537
400 Gallon Batch 1578 1579 158				55	02	.34 (105)	4.93 (105)	119	35	35	635
400				35	07	.36 (81)	5.57 (81)	113	36	36	431
1577				75	02	.35 (101)	4.47 (102)	113	34	35	579
1576				07	04	.39	5.05 (84)	116	42	44	463
1575				55	67.73	.37 (105)	4.86 (100)	120	39	39	603
1574	67/33	0.81	3500-8	43	07	.41	5.34 (60)	111	34	32	634
Parameter	Grind ratio	NCO/OH	Fuel premix number	AP addition time, min	Mix time after IPDI addition, 40 sec	IPDI @ (-min) after addition, .41 wt % (70)	Viscosity @ (-min) after IPDI addition, Kp @ 5000 dynes/cm ²	Max corrected stress @ 75 ⁰ F, o ^c m, psi	Max corrected strain @ 75 ^O F, ε ^C m, %	True strain @ 75°F rupture, Er, %	Initial tangent modulus, E_o , psi
139											

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

SECTION 2.13
PRODUCTION RUN NO. 9
(BATCHES 400-1588 THROUGH 400-1600)

PRODUCTION CASTING #9

UTP 18,803A 67/33 GRIND RATIO AND 0.81 NCO/OH RATIO

FOUR POUND MOTORS, 70°F

Batch	Bu 1000 psia	rning Rate, in/sec 1400 psia	1700 psia	Exponent	, 2
400-1588	. 3948	.4815	.5400	.590	0.27
400-1589	.4046	.4825	.5340	.523	0.50
400-1590	.4035	.4882	.5434	.552	1.53
400-1591	.4078	.4903	.5453	.548	1.54
400-1592	.4046	.4877	.5432	.555	0.62
400-1593	.3993	.4894	.5503	.604	1.27
400-1594	.4036	.4834	.5364	.536	0.00
400-1595	.4084	. 4892	.5428	.536	0.00
400-1596	.4073	.4895	.5443	.546	1.15
400-1597	.4123	.4924	.5455	.527	0.57
400-1598	.4125	.4960	.5517	.548	0.86
400-1599	.4132	.4967	.5523	.547	0.02
400-1600	.4134	.498	.5550	.555	0.62
Composite	.4063	.4898	.5456	.556	1.43

UTP 18,803A PRODUCTION CASTING #9 67/33 GRIND RATIO AND .81 NCO/OH RATIO FOUR POUND MOTOR DATA 70°F

Batch	Burning Rate/in/sec/Chamber Pressure, psia
400-1588	.385/957, .525/1629, .5914/1976
400-1589	.3976/969, .5398/1718, .5527/1832
400-1590	.3700/798, .4107/1030, .5435/1650, .5654/1871
400-1591	.4048/990, .5821/1859, .5904/2017
400-1592	.3686/794, .4027/994, .5535/1737, .590/1992
400-1593	.3649/793, .4126/1064, .5567/1692, .6252/2133
400-1594	.361/776, .4181/1068, .5649/1873
400-1595	.3775/810, .4207/1057, .5459/1718
400-1596	.3848/837, .4258/1087, .5599/1751, 5641/1857
400-1597	.3885/835, .430/1084, .5557/1741, .5634/1826
400-1598	.3746/810, .4298/1074, .5392/1659, .5867/1877
400-1599	.380/820, .4159/1012, .5382/1622, .5859/1893
400-1600	.3832/831, .4173/1014, .5493/1689, .6049/1966

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 9

Parameter						400 G	400 Gallon Batch	Satch							
	1588 1589		1590	1591	1592	1593	1594	1595	1596	1597	1598 1599		1600	ı×ı	Sx
Grind ratio	67/33												Î		
NCO/OH ratio	0.81												Î		
Fuel Premix number	3500-8 —												Î		
IPDI @ 60 min after addition, wt, %	0.40 0.40		0.38	0.38	0.38	0.38 0.40	0.40	0.38	0.38	0.40	0.38	0.39	0.40	0.388	0.0099
Viscosity @ 60 min after proper IPDI addition, Kp @ 5000 dynes/cm	2.71 2.53	2.53	3.18	3.91	3.85	5.19	3.74 4.10		3.24	3.76	3.65	3.74	6.49	3.85	1.03
Max corrected stress @ 75°F, o ^c m, ps1	97	102	101	66	16	92	101	97	86	06	113	116	109	100.9	7.6
Max corrected strain 0 75°F31 $\epsilon^{\rm Cm}$, %	F 31	30	34	36	31	34	36	37	32	29	35	32	56	32.46	3.13
True strain @ 75 $^{\rm O}F$ rupture, 32 Er, %	, 32	30	36	38	32	34	38	37	33	53	34	36	27	33.54	3.48
Initial tangent modulus, E_o , psi	813	952	288	009	769	588	867	199	632	761	952	968	1005	770	153

UTP 18803A PRODUCTION CASTING NO. 9
LIQUID STRAND BURNING RATES

400-Ga1	Premix C LS	BR, in./sec	Propellant I	
Batch	1000 paig	1400 psig	1000 psig	1400 psig
1588	0.489	0.631	0.460	0.583
1589	0.491	0.629	0.471	0.600
1590	0.493	0.631	0.472	0.598
1591	0.493	0.630	0.473	0.598
1592	0.491	0.622	0.466	0.593
1593	0.491	0.626	0.466	0.589
1594	0.490	0.624	0.456	0.589
1595	0.478	0.613	0.469	0.594
1596	0.498	0.631	0.467	0.594
1597	0.492	0.627	0.468	0.598
1598	0.493	0.631	0.470	0.596
1599	0.492	0.632		0.599
1600	0.502	0.639	0.472	0.596

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

SECTION 2.14

PRODUCTION RUN NO. 10

(BATCHES 400-1606 THROUGH 400-1615)

PRODUCTION CASTING #10

FOUR POUND MOTORS

62°F

	Grind		ning Rate,in/se			Standard Deviation
Batch	Ratio	1000 psia	1400 psia	1700 psia	Exponent	Sx, %
400-1606	65/35	.403	.481	.533	.528	.2
400-1607	68/32	.399	.459	.497	.412	.8
400-1608	66/34	.395	.472	.523	.530	.8
400-1609	66/34	.394	.467	.515	.504	.8
400-1610	66/34	.411	.481	.527	.466	.6
400-1611	66/34	.404	.475	.522	.483	1.1
400-1612	66/34	.401	.480	.532	.532	.2
400-1613	66/34	.402	.475	.523	.495	.7
400-1614	66/34	.406	.489	.545	.554	0.1
400-1615	66/34	.402	.469	.513	.459	0.0
Composite of 66/34 Batches	66/34	.400	.477	.528	.522	1.4

UTP 18803A PRODUCTION CASTING NO. 10 FOUR POUND MOTOR DATA 62°F

Batch	Burning Rate, in/sec/Chamber Pressure, psia
400-1606	.3786/849, .4220/1088, .4459/1217, .5085/1551
400-1607	.3693/812, .3993/1012, .4306/1176, .4573/1404
400-1608	.382/887, .3938/986, .4262/1176, .4817/1444
400-1609	.3679/840, .3826/949, .4376/1207, .4670/1415
400-1610	.3706/810, .3887/878, .4606/1263, .487/1452
400-1611	.3637/789, .3955/944, .4266/1151, .4839/1435
400-1612	.3952/921, .3858/931, .4767/1380, .5156/1608
400-1613	.3739/859, .3963/843, .4586/1323, .4905/1472
400-1614	.3782/821, .3881/920, .4567/1238, .4995/1450
400-1615	.3722/804, .4113/1053, .4414/1227, .4680/1395

UTP-18,803A QC PROCESS AND PROPERTIES SUMMARY PRODUCTION CASTING, 400-GALLON BATCH

Parameter	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	ı×ı	Sx
Grind ratio	65/35	68/32	66/34	96/34	66/34	66/34	66/34	66/34	96/34	66/34		
NCO/OH ratio	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81		
Fuel premix number	3500.9	3500.9	3500.9	3500.9	3500.9	3500.9	3500.9	3500.9	3500.9	3500.9	•	
IPDI @ 60 min after addition, %	0.38	0.37	0.38	0.36	0.36	0.38	0.36	0.36	0.36	0.36	0.367	0.367 0.0095
Viscosity @ 60 min after 5.48 IPDI addition, Kp @ 5000 ues/cm ²	5.48	5.14	5.16	5.77	5.20	5.74	6.08	6.89	6.28	6.81	5.845	99.0
Max corrected stress @ 75°F, o ^c m, psia	114	118	112	100	107	66	102	112	114	113	109.1	99.9
Max corrected strain @ 75°F, c ^m , %	42	38	37	36	07	33	38	38	34	39	37.5	2.68
True strain @ 75 $^{\circ}$ F rupture, E, %	44	39	38	38	41	34	39	38	36	07	38.7	2.71
Initial tangent modulus, 746 E_o , psi	746	996	884	902	805	838	828	998	1015	985	863.9	101.4

UTP 18803A PRODUCTION CASTING NO. 10
LIQUID STRAND BURNING RATE

400 Gallon Batch	Premix C 1000 psig	LSBR, in/sec _1400 psig	Propellant 1000 psig	LSBR, in/sec 1400 psig
1606	0.495	0.635	0.466	0.600
1607	0.480	0.613	0.458	0.581
1608	0.487	0.628	0.458	0.589
1609	0.486	0.626	0.463	0.590
1610	0.487	0.625	0.460	0.582
1611	0.487	0.616	0.459	0.582
1612	0.490	0.627	0.467	0.591
1613	0.493	0.625	0.466	0.596
1614	0.495	0.633	0.466	0.593
1615	0.489	0.626	0.466	0.592

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

Chamber Pressure, psia

SECTION 2.15
PRODUCTION RUN NO. 11
(BATCHES 400-1620 THROUGH 400-1629)

PRODUCTION CASTING #11
FOUR POUND MOTORS

68 F

400		Burnin	g Rate, in/s	sec		Standard
Gallon	Grind	1000	1400	1700		Deviation,
Batch	Ratio	psia	psia	psia	Exponent	Sx, %
1620	65/35	.407	.480	. 527	.487	0.4
1621	66/34	.397	.477	.531	. 548	1.1
1622	66/34	.403	.472	.517	.469	.5
1623	66/34	. 392	.469	.520	.531	.5
1624	66/34	. 396	.463	.507	.467	.5
1625	66/34	. 398	.481	.537	.564	.6
1626	66/34	. 396	.466	.512	.482	
1627	66/34	.397	.474	.525	.526	1.2
1628	66/34	.404	.478	.527	.499	.6
1629	66/34	.407	.486	.538	.523	0.4
Composite		.400	.474	.524	.510	1.53

UTP 18803A PRODUCTION CASTING NO. 11 FOUR POUND MOTOR DATA 68 F

Batch	Burning Rate, in/sec/Chamber Pressure, psia
400-1621	.3507/753, .3792/913, .4357/1212, .4837/1414
400-1622	.3592/765, .3878/925, .4552/1283, .4835/1486
400-1623	.3462/755, .3805/955, .4393/1212, .4887/1530
400-1624	.3503/746, .3888/958, .4273/1194, .4635/1393
400-1625	.3591/777, .3900/961, .4491/1253, .4880/1424
400-1626	.3656/783, .3844/937, .4261/1200, .4444/1266
400-1627	.3566/773, .3900/959, .4352/1222, .4836/1431
400-1628	.3681/787, .3953/962, .4502/1225, .4809/1429
400-1629	.395/951, .413/1027, .416/1029, .503/1499
400-1620	.4133/1031, .4523/1244, .488/1450

UTP-18,803A QC PROCESSING AND PROPERTIES SUMMARY PRODUCTION CASTING NO. 11

Parameter	1620	1621	1622	1623	1624	400 Gallon Batch 1625 1626	Batch 1626	1627	1628	1629	IXI	o×
Grind ratio	65/35	66/34	66/34	66/34	66/34	66/34	66/34	96/34	96/34	66/34		
NCO/OH ratio	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81		
Fuel premix number	3500-10	3500-10	3500-10	3500-10	3500-10	3500-10 3500-10 3500-10 3500-10 3500-10 3500-10 3500-10 3500-10 3500-10	3500-10	3500-10	3500-10	3500-10		
IPDI @ 60 min after addition, wt %	0.36	0.34	0.37	0.36	0.34	0.34	0.36	0.36	0.37	0.36	0.356	.0117
Viscosity @ 60 min g after IPDI addition, Kp @ 5000 dynes/cm ²	6.04	6.35	6.36	5.85	7.26	5.86	5.77	5.75	6.71	5.91	6.186	0.49
Max corrected stress @ 75 F, ocm, psi	127	127	126	110	113	106	124	123	128	133	122	8.9
Max corrected strain @ 750F, c ^c m, %	38	34	34	32	36	æ	%	98	37	*	35	2.2
True strain @ 75 $^{\rm O}_{ m F}$ rupture, ${ m E}_{ m r}$, %	38	35	35	34	39	31	'n	37	37	98	98	2.3
Initial tangent modulus, Eo, psi	1062	1100	1104	908	810	952	1010	916	816	886	926	111

ELSH PRODUCTION RUN #11 28-29 SEPT '77

Batch /	Pressure	Premix C	Final	Grind Ratio	Curative Ratio
	1000	.502	.471		
400-1620	1000	.302	.4/1	65/35	0.81
	1400	.635	.403		
	1000	.492	.461		
400-1621	1400	.635	.590	66/34	0.81
400-1622	1000	.495	.466	66/34	0.81
400-1022	1400	.631	.592	00,54	
	1000	.487	.462		
400-1623	1400	.628	.588	66/34	0.81
	1000	.477	.460		
400-1624	1400	.612	.585	66/34	0.81
	1000	.484	.460		
400-1625	1400	.623	.587	66/34	0.81
	1000	.483	.459		
400-1626	1400	.620	589	66/34	0.81
	1000	.486	.467	44124	0.81
400–1627	1400	.627	.590	66/34	0.31
400 1499	1000	.492	.469	66/34	0.81
400-1628	1400	.633	.596	50 /34	0.01
400 1420	1000	.490	.462	66/34	0.81
400-1629	1400	.625	.594	VU/ 34	0.01

3.0 AP PARTICLE SIZE DISTRIBUTIONS

This section presents the AP particle size distributions in terms of cumulative percentages for both the ground and unground AP. The ground AP particle size distributions were determined by MSA and the unground AP particle size distributions were determined by Tyler Screen Analysis. These data were used to establish the AP grind ratio for those batches where D₄₃ was used as the burning rate control. All data are presented by batch number.

3 OF AD

AD A051742

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

4.0 FIFTEEN-POUND BATES TEST DATA

This section presents the test data from the AFRPL 15-1b BATES test firings. The critical ballistic test parameters are tabulated by batch number. Plots of the pressure vs time and thrust vs time are also included and are presented by batch number.

	1514 C12				1512 C11					1506 C11			1503			1499 CII	1498 (11		1496 C11						1461					1457 (11				1450 N/				1450 N/A		Batch No.
	C12185-02-01	C12185-02-01	C12185-02-01	C11479-03-01	C11479-03-01	C11479-03-01	C11479-03-01	C11479-01-01	C11479-01-01	C11479-01-01	C11479-01-01	TT-03-01	C114/9-03-01	C11479-03-01	C11479-03-01	C11479-01-01	C11479-01-01	C11479-01-01	C11479-01-01	C11479-01-01	C12185-01-01	C12185-01-01	C12185-01-01	T1-10-01-01	C114/9-01-01	C11479-01-01	C11479-01-01	C11479-01-01	C11479-02-01	C11479-02-01	C11479-02-01	C11479-02-01	C11479-02-01	A	A	*	2	> >		P/N S/I
	2579-06	2579-06	2579-06	2579-10	2579-10	25/9-10	2579-10	2579-09	2579-09	2579-09	2579-09	80-6/57	2579-08	2579-08	2579-08	2579-07	2579-07	2579-07	2579-07	2579-07	2579-01	2579-01	2579-01	10-6/67	2579-01	2579-01	2579-01	2579-01	2579-02	2579-02	2579-02	2579-02	2579-02	N/A	N/A	N/A	N/A	N/A		S/N Frage
	14.18	14.24	14.2		14.16	14.18	14.22	:	14.2	14.28	14.2	14.04	14.18	14.17	13.9/		14.09	14.07	14.09	14.09	13.93	14.05	14.09	13.86	14.12	14.07	14.1	13.91		13.82	14.22	14.03	14.1	14.01	13.97	13.595	14.13	14.13		Propellant Weight, 1b
	1.095	0.96	1.09	0.303	1.098	0.967	1.098		1.096	0.962	1.099	1.092	0.963	0.965	1.092		0.958	1.095	0.961	1.045	0.970	1.096	0.967	1.106	0.967	1.10	0.963	1.089		0.959	1.092	0.965	1 091	0.961	0.963	0.958	1.093	1.096		Initial Throat Dismeter, in.
	2.4	7.0	2.03	1.1	2.6	6.8	2.4		2.42	7.6	1.4	2.8	7.3	6.5	3.73		2.1	1.69	6.17	1 88	5.5	1.8	5.7	1.77	6.8	1.6	6.5	1.74		5.00	1.94	5.75	1 75	7.2	6.2	6.0	2 2	2.0		Throat Erosion
	8.40	9 496	9.76	9.4	9.618	9.38	9.61		9.625	9.469	9.65	9.766	9.425	9.384	9.634		9.448	9.709	9 446	0 675	9.342	9.674	9.399	9.543	9.324	9.616	9.431	9.805		9.50	9.333	9.76	2	9.429	9.435	9 549	9.630	9.649	1100	Expansion
	2.691	2 126	2.712	2.141	2.71	2.14	2.684		2.688	2 164	2 881	2.677	2.124	2.167	2.684		2.093	2 672	2 108	2 662	2.286	2.755	2 354	2.823	2.353	2.83	2 307	3.424	2. 532	2.032	2.494	2.896		2 218	2 260	2 163	2.769	2.747	yame, sec	Action
	857	1 303	866	1,396	831	1,388	868		849	1 363	70%	1,250	1,364	1.35%	839		1 442	85%	1 395		1,251	25.20	1 220	799	1,243	817	1 768	895	1,233	1 262	1,164	800	.,000	1 333	1 287	1 226	830	833	pressure, para	Average Chamber
	0.492	0.503	0 387	0.490	0.422	0.492	0.386	0.392	0.485	0.366	0 346	0.398	0.502	0 403	0.396	0.303	0.399	0.303	0.399		0.301	0.440	2	0.374	0.444	0.433		0.407	0.4/9	0.365	0.419	0.361	0.400	0.409	0.491	0.385	0.381	0.386	Kate, in./sec	Burning
	5,022	1,041		5,106	5,039	5 100	5,074	4,959	5,007	4,968	4,330	2,042	5,023		4.971	5,189	5,064	5,116	5,015	2,024	5,035	5,015	, ,	5.089	5,087	5,056	, , , ,	5.046	5,040	5,071	5,052	5,015	5,105	5,062	5,071	4,966	5,025	4,991	ft/sec	Measured c*,
	247.9	239.0		247.9	237.4	74.7	239.3	238.4	246.6	236.5	230.4	247.6	246.6		238.0	247.2	238.2	247.7	238.4	243.7	238.0	244.3	13724	237 4	237.4	246.8	2.0.0	2/0 0	246.2	237.8	244.8	237.9	247.7	247.8	247.9	237.5	239.0	239.3	Impulse, sec	Delivered Specific
240.9	240.6	240.5		240.7	230.6	200	240.7	240.7	239.7	240.1	240.5	240.8	240.0		240 2	239.6	239.8	240.5	240.0	240.3	240.3	239.2	240.5	240.9	240.1	241.0	240.5	3.0.5	240.7	240.1	240.5	241.1	241.1	241.7	241.4	240.0	241.6	241.6	HA MC, sec	Isp, 15-deg
0.9122	0.9109	0.9101		0.9113	0.9105	0.5117	0 9117	0.91	0.907	0.909	0.911	0.9114	0.908	0.910		0.907	0.908		0.9085		0.910	0.9054	0.911	0.9115	0.909	0.912	0.9110	,	0.9112	0.9097	0.9111	0.9136	0.9127	0.915	0.9135	0.909	0.915	0 915	HA MC, %	Efficiency Isp, 15-deg

5-LB BATES DATA, 70'

Treceasing rage Deann FILMEN

BEST AVAILABLE COPY

1,12, 1,12		•		•																		
1259-121 14.18 0.992 6.79 9.44 2.796 1.281 0.460 2.000 2.282 2.214 1.215 1.215 1.215 0.460 2.000 2.282 2.214 1.215 1.215 1.215 0.460 2.000 2.282 2.214 1.215 1.215 1.215 0.455 2.215 2.215 2.215 1.215 0.455 2.215 2.215 2.215 1.215 0.455 2.215 2.2	1522 1523 1524 1524 1525	1525	1527	1533	1539	1541	1574	1576	1578	1579	1581	1588	1590	1592	1596	1598	1606	1607	1610	7701	1614	
20 20<	C11479-03-01 C11479-03-01 C11479-03-01 C11479-03-01 C12185-02-01 C12185-02-01	C12185-02-01	C11479-01-01	C12185-03-01	C12185-02-01	C12185-01-01	C11479-01-01	C11479-01-01 C11479-01-01	C11479-01-01	C11479-03-02	C11479-03-02	C11479-01-01	C11479-01-01	C11479-01-01 C11479-02-01	C11479-02-01 C11479-02-01	C12185-01-01	C11479-01-01	C11479-01-01	C11479-01-01	C114/9-01-01	C11479-01-01	
1.096. 6.79 1.097 1.098 1.099 1.099 1.099 1.099 1.099 1.091	2579-11 2579-11 2579-11 2579-08 2579-08	2579-08	2579-13	2579-14	2579-12	2579-10	2579-17	2579-17	2579-17	2579-18	2579-18	2579-18	2579-19	2579-19	2579-20 2579-20	2579-14	2579-21	2579-21	2579-21	2579-22	2579-22	
6.79 1.6.29 1.5.36 1.20 1.5.37 1.20 1.5.39 1.20 1.5.30 1.20 1.5.30 1.20 1.5.30 1.20 1.5.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2	14.22 14.15 14.14 14.2	13.81	14.23	14.15	14.14	14.15	14.05	14.02	14.08	14.08	14.15	14.14	14.03	14.06	13.99	14.04	14.2	14.26	14.09	14.11	14.08	
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.093 0.796 1.097 0.97	0.97	0.963	0.962	0.962	0.961	0.963	1.096 0.963 1.097	1.098	0.966	0.966	0.97	0.964	1.101	1.109	1.101	1.110	1.102	1.099	1.097	1.09	
2.2367 1,283 0.460 5,793 241.2 241.4 2.2775 1,819 0.460 5,005 247.2 241.2 241.4 2.2775 1,234 0.455 4,944 238.6 241.2 241.4 2.2841 783 0.371 4,993 247.2 241.5 2.2841 807 0.372 4,953 237.9 241.2 2.2845 810 0.371 4,991 237.9 241.2 2.297 1,231 0.460 5,015 246.5 241.3 2.297 1,231 0.460 5,015 246.5 241.3 2.297 1,231 0.460 5,015 246.5 241.3 2.297 1,231 0.460 5,015 246.5 241.4 2.299 1,259 0.452 5,004 246.5 241.3 2.209 1,259 0.452 5,084 247.0 240.9 2.209 1,242 0.472 5,181 2	6.2 1.94 6.2 1.4	5.44	6.1	6.28	6.36	6.5	6.4	6.4	1.8	2.227	2.0	7.2	8.7	2.7	1.1 2.4	2.0	19 6	2.3	2.0	. 2.0	2.0	
1,233 0,660 1,234 1,234 1,234 1,234 1,234 1,234 1,234 1,234 1,234 1,234 1,234 1,234 1,235 1,232 1,242 1,259 1,262	9.489 9.72 9.538 9.635 9.345	9.345	9.451	9.445	9.473	9.47?	9.458	9.674	9.648	9.389	9.566 9.363	9.23	9.233	9.41	9.453	9.542	9 366	9.366	9.534	9.59	9.717	7.111
0.460 0.478 0.494 0.478 0.478 0.4944 0.485 0.472 0.4855 4,993 0.472 0.472 0.4855 0.377 0.4997 0.471 237.6 0.377 241.2 0.486 0.371 4,991 237.9 248.0 241.4 0.452 0.452 0.466 0.472 5,004 0.472 5,004 0.472 5,004 0.472 5,004 0.485 0.488 0.388 0.388 0.394 0.388 0.394 0.388 0.395 0.388 0.397 0.388 0.398	2.333 2.841 2.256 2.845 2.845	2.297	2.77	2.309	2.209	2.231	2.255	2.755	2.773	2.227	2.761 2.239	2.209	2.184	2,731	2.764 2.687	2.686	2 835	2,835	2,753	2.70	2.699	2.033
3.905 3.905 2.47.2 2.41.6 4.993 2.47.2 2.41.2 4.993 2.47.2 2.41.2 4.993 2.47.2 2.41.2 4.993 2.47.2 2.41.2 2.41.2 2.41.2 2.953 2.37.9 2.41.2 2.41.4 2.953 2.37.9 2.41.4 2.953 2.37.9 2.41.4 2.953 2.37.9 2.41.4 2.953 2.37.9 2.41.4 2.953 2.37.9 2.41.4 2.953 2.41.6 2.953 2.41.6 2.953 2.41.6 2.953 2.41.6 2.953 2.41.6 2.953 2.41.6 2.953 2.41.6 2.953 2.41.6 2.953 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.954 2.9554 2.9554 2.9554 2.9554 2.9554 2.9555 2.9554 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9555 2.9556 2.9555 2.9555 2.9556	1,282 807 1,323 810	1,231	826 1,259	1,259	1,298	1,342	1,321	838 1,473	908	1,319	1,311	1,313	1,343	831	812 867	846	803	802 898	831	855	860	000
228.9 221.6 227.2 241.2 228.6 241.5 247.2 241.5 247.2 241.5 247.2 241.4 237.9 241.4 237.9 241.4 237.9 241.4 246.8 240.8 246.8 240.8 246.8 240.9 247.6 240.5 248.3 241.8 229.6 241.3 239.9 241.4 242.4 239.9 242.2 241.6 239.4 241.6 239.4 241.6 239.4 241.6 239.5 241.6 239.4 241.6 239.4 241.6 239.5 241.6 239.6 241.6 239.6 241.6 239.6 241.6 239.6 241.6 239.6 241.6 239.6 241.6 239.6 241.7 241.0 239.6 241.6 239.6 241.6 239.6 241.6 239.7 241.9 241.0 239.9 242.2 241.0 239.9 241.5 240.2 241.5 240.2 241.5 240.2 241.5 240.2 242.2	0.455 0.372 0.471 0.371	0.460	0.381	0.454	0.472	0.472	0.470	0.385	0.381	0.477	0.386	0.481	0.485	0.388	0.382	768.0	0.394	0.372	0.381	0.389	0 388	0.388
241.6 241.2 241.2 241.2 241.4 241.4 241.4 241.4 241.6 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 240.0 241.6 241.6 242.3 242.3 241.6 242.3 241.6 241.6 242.3 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.7 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.7 241.6 242.3 241.6 241.6 241.6 241.6 241.6 241.6 241.6 241.6 242.3 241.6 241.6 241.6 241.6 242.3 242.3 242.3 243.6 244.6 244.6 244.6 244.7 244.7 244.7 244.8 244.8 244.8 244.8 244.8 244.8 244.9 246.9 24	5,065 4,953 5,075 4,991	5,015	5,050	4,981	5,028	5,119	5.137	5,039	5.001	5,079	5,015	5,067	5,139	5,032	5,035	5 035	5,03	5,062	5,031	5.054	5,035	5.025
	247.2 237.9 248.0 237.9	246.5	238.8	245.9	247.0	247.6	248.3	239.6	230.2	249.1	239.4	247.6	232.8	239.6	238.8 240.2	330 3	239.2	239.0	238.9	240.8	2/10.0	241.0
	241.2 241.2 241.4 241.6	241.3	241.4	240.8	240.5	240.7	241 8	241.6	242.3	242.4	241.6	241.2	242.2	241.8	241.5	241.4	241.0	241.9	240.2	242.0	1.242	262 2
0.9147 0.9144 0.9144 0.9143 0.9137 0.9137 0.9137 0.9138 0.9138 0.9138 0.9138 0.9119 0.9118	0.9137 0.913 0.914	0.913	0.9135	0.9118	0.910	0.9113			0.916	0.9176	0.915	0.913	0.917	0.915	0.914	0.914	0.912	0.916	0.9095	0.912	0.916	0 917

-LB BATES DATA, 70°F

Preceding Page BLANK - FILMED

BEST AVAILABLE COPY 00 720.00 14621 148B-01 400.00 440.00 480.00 TIME (MILLISECONDS) 5 360.00 NPC2 CHAMBER PRESSLRE PSTILL MO.CO 20.00 OU 00.001 30.00 40.00 (188) 00.08 20.00 ID. DO 0000 00.08

BEST AVAIL TOPY

5.0 SEVENTY-POUND BATES TEST DATA

This section presents the test data from the AFRPL 70-1b BATES test firings. The critical ballistic test parameters are tabulated by batch number. Plots of the pressure vs time and thrust vs time are also included and are presented by batch number.

100	Propellant Cast i 84-in. Cartridge	Cast in	Propellant	Initial Throat	Throat Frosion	Expansion	Action	Action Time Average Chamber		Measured c	Delivered Specific	Isp, 15-deg	
Batch No.	P/N	S/N	Weight, 1b	Diameter, in.	Rate, mils/sec	Patio	Time, sec	Pressure, psia	/sec	ft/sec	Impulse, sec	HA MC, sec	
1450	N/N	N/A	74.19	1.87	3.6	9.443	4.665	881	0.393	5,016	242.2	243.2	
1450	N/A	N/A	73.97	1.653	10	9.385	3.76	1,376	0.490	5,092	249.7	242.7	
1450	N/N	N/A	75.7	1.65	10	9.436	3.915	1,357	0.482	5,093	250.0	243.1	
1455	C11479-02-01	2579-02	75.46	1.65	8.7	9.461	4.335	1,232	0.435	5,124	248.1	242.6	
1457	C11479-02-01	2579-02	73.0	1.65	9.9	9.466	3.954	1,313	0.471	5,150	248.8	242.4	
1459	C11479-01-01	2579-01	73.24	1.65	8.8	9.487	3.810	1,371	0.477	5,144	250.7	243.6	
1496	C11479-01-01	2579-07	73.83	1.65	11.3	9.442	3.570	1,434	0.505	5,199	251.4	243.7	
1498	C11479-01-01	2579-07	73.73	1.655	11.2	9.381	3.616	1,444	0.496	5,144	252.3	244.5	
1500	C11479-03-01	2579-08	75.27	1.651	11.4	9.423	3.55	1,501	0.523	5,148	252.4	244.0	
1506	C11479-01-01	2579-09	75.9	1.663	11.9	9.226	3.784	1,388	0.498	5,020	250.3	243.3	
1508	C11479-01-01	2579-09	75.76	1.65	12.7	9.372	3.577	1,464	0.508	5,106	251.5	243.5	
1540	C12185-02-01	2579-12	73.94	1.654	14.4	11.65	3.933	1,296	0.459	5,125	*	•	
1542	C12185-01-01	2579-10	74.22	1.653	12.76	11.726	3.880	1,328	0.461	5,109	250.8	242.5	

255 AWWREL COPY

Thrust not reported due to 2% difference between channels.

