第十一章 格马布尔代数

格与布尔代数是代类数系统中的又一类重要代数系统。这两个代数系统与第9章讨论的代数系统之间存在着一个重要的区别:在格与布尔代数中,偏序关系具有重要的意义。为了强调偏序关系的作用,我们将分别从偏序关系和代数系统两个方面引入格的概念。

给格附加一定的限制后,格就转化为布尔代数,即布尔代数是一种特殊的格。布尔代数最初是作为为对逻辑思维法则的研究而出现的,创立者是英国哲学家和数学家布尔。自布尔之后,许多数学家对布尔代数的一般化作了许多努力,特别是斯通。他的工作可以说是对现代布尔代数的发展开创了一个新阶段。

1938年,香农发表了《继电器和开关电路的符号分析》一文,为布尔代数在工艺技术中的应用开创了道路,从而出现了开关代数。为了给开关代数奠定基础,于是自然形成了二值布尔代数,即逻辑代数。自香农之后,人们应用布尔代数对电路作了大量研究,并形成了网络理论。

格与布尔代数不仅是代数学的一个分支,而且在近代解析几何,半序空间等方面也都有重要的作用,同时,格与布尔代数在计算机科学中也有十分重要的作用,可直接用于开关理论和逻辑设计、密码学、计算机理论科学等。

① 偏序关系与偏序集

(1) 关系

- ▶ 现实中的"关系":
 - 兄弟关系、长幼关系、同学关系、邻居关系,上下级关系等。
- > 数学上的关系:
 - 例如:集合中元素之间的联系,比如"3小于5","x大于y", "点 a 在 b 与 c 之间"。
- ◆ 例如:火车票与座位之间的对号关系。

设X表示火车票的集合,Y表示座位的集合,则对于任意的 $x \in X$ 和 $y \in Y$,

必定有
$$\begin{cases} x = 5y \text{ f "对号" 关系} \\ x = 5y \text{ 没有 "对号" 关系} \end{cases}$$
 二者之一。

令 R 表示"对号"关系,则上述问题可以表示为 xRy 或 xRy。亦可表示为 $\langle x, y \rangle \in R$ 或 $\langle x, y \rangle \notin R$,因此我们看到对号关系是有序对的集合。

◆ 我们也常用关系对集合的某些元素或全体元素进行排序。例如,使用包含着字母对 $\langle x, y \rangle$ 的关系对字母排序,其中 x 按照字典顺序排在y 的前面。

关系的概念及记号

二元关系,简称关系: 任一有序对的集合即确定了一个关 R, R 中任一有序对 $\langle x, y \rangle$ 可记为 $\langle x, y \rangle \in R$ 或 $x \not k y$ 。不在 R 中的任一有序 对 $\langle x, y \rangle$ 可记为 $\langle x, y \rangle \notin R$ 或 $x \not k y$ 。

例如:
$$R_1 = \{\langle x_1, y_1 \rangle, \langle x_2, y_1 \rangle, \langle x_2, y_2 \rangle\};$$

 $R_2 = \{\langle x, y \rangle \mid x, y$ 是实数且 $x > y\};$
 $R_3 = \{\langle x, y \rangle \mid x$ 是 y 的倍数且 x , y $\epsilon \{1, 2, 3, 4\}\}$
 $= \{\langle 4, 4 \rangle, \langle 4, 2 \rangle, \langle 4, 1 \rangle, \langle 3, 3 \rangle, \langle 3, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 1 \rangle\}_o$

二元关系的记号:

设R是二元关系,则

 $\langle x, y \rangle \in R \Leftrightarrow x 与 y 具有 R 关系 \Leftrightarrow xRy$ 。

- ◆ 设R为定义在A上的二元关系,即R ⊆A×A,如果对于每一个x ∈A,有xRx ($\langle x, x \rangle$ ∈R),则称二元关系R 是自反的。
- ◆ 设 R 为定义在 A 上的二元关系,如果对于每个 $x, y \in A$,每当 xRy 和 yRx,必有 x = y,则称集合 A 上的关系 R 是反对称的。
- ◆ 设R为定义在A上的二元关系,如果对于任意的 $x,y,z\in A$,每当xRy,yRz时就有xRz,称关系R在A上是传递的。

$$R_4 = \{<1, 2>\}$$

 R_1 不是自反的,是反对称的和传递的。

Ro 是自反的, 是反对称的和传递的。

 R_3 是自反的,不是反对称的,是传递的。

 R_4 不是自反的,是反对称的,是传递的。

(2) 偏序关系

设R是集合A上的一个二元关系,如果R具有自反性,反对称性和传递性,那么称R为一个偏序关系;记为 \leq ,并称 $\langle A, \leq \rangle$ 为偏序集。

例如:

- 1. 实数集合R关于它上面的小于等于关系做成一个偏序集〈R, ≪〉。
- 2. 正整数集 \mathbb{Z}^+ 关于整除关系 D 做成一个偏序集 $\langle \mathbb{Z}^+, D \rangle$ 。
- 3. 集合的包含关系使得所考虑的集合全体 S 做成一个偏序集 $\langle S, \subset \rangle$.

(3) 哈斯 (Hasse) 图

- (1) 用小圆圈表示元素,且若 $x \leq y$ 且 $x \neq y$,则y画在x之上。
- (2) 规定: 若 $x \leq v(x \neq v)$ 且没有其它元素 $z(z \neq x, v)$, 使得 $x \leq z$

且 $z \leq y$,则在x与y之间用线段相连。

例如:集合 $A = \{a, b, c, d, e\}$ 在 R 下做成一个偏序集 $\langle A, R \rangle$,这里 $R = \{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle a, e \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle b, e \rangle, \langle c, c \rangle, \langle c, e \rangle, \langle d, d \rangle, \langle d, e \rangle, \langle e, e \rangle \}$ 。

设n为正整数, S_n 是n的全部正因数的集合,则 $< S_n$, |>是偏序集。 $< S_{24}$, |>和 $< S_{30}$, |>的 Hasse 图如下:

(4) 偏序集的最大元和最小元

设<A, \le >为偏序集,如果 A 中有一个元素 a, 对于所有的 A 中元素 x, 都有 $x \le a(a \le x)$, 则称 a 为该偏序集的最大元(最小元)。

♦ 最大(小)元一定唯一。

◆ 上图中偏序集的最大元和最小元是?

(5) 上界和下界

设<A, \le >为偏序集, $\varnothing \ne M \subseteq$ A,若A中存在元素a,对M中任意元素m,都有 $m \le a$ ($a \le m$)。则称a 为M的一个上界(下界)。

例如:右边偏序集中, M的上界为 a, c, d;下界为 b, e, f 结论:

由定义可以看出, M 的上(下) 界未必在 M 中。 另外 M 未必

一定有上(下)界。

(6) 上确界和下确界

设<A, $\le>$ 为偏序集, $\varnothing \ne M \subseteq$ A。 A 中元素 a, 称为 M 的最小上界即上确界(最大下界即下确界),如果 a 是 M 的一个上界(下界),并且对 M 的任意一个上界(下界)x,都有 $a \le x (x \le a)$ 。

左边的偏序集,对于 $M = \{c, d\}$ 无上确

界,下确界为 e。右边的偏序集,对于 M 上确界为 a,下确界为 b。

设 $< P({a, b, c}), \le > \mathbb{E}\{a, b, c\}$ 的幂集关于包含关系构成的偏序集,该偏序集的 Hasse 图如上图。

 $M = \{\{a\}, \{b\}\}\}$: 上确界 $\{\{a, b\}\}$, 下确界为 \emptyset 。

 $M = \{\{a\}, \{a, b\}\}$: 上确界 $\{\{a, b\}\}$, 下确界为 $\{a\}$ 。

 $M=\{\{a\},\{b,c\}\}$ 或 $M=\{\{a\},\{b\},\{c\}\}$:上确界 $\{\{a,b,c\}\}$,下确界为Ø。 $M=\{\{a,b\},\{b,c\}\}$:上确界 $\{\{a,b,c\}\}$,下确界为 $\{b\}$ 。

2)格

在格<S, \le >中,任取 a,b \in S,则 $\{a,b\}$ 的最大下界和最小上界都是惟一存在的,且均属于 S。

- ♦ 用 $a \wedge b$ 表示 $\{a,b\}$ 的最大下界, 称为 $a \leq b$ 的保交;
- ♦ 用aVb表示 $\{a,b\}$ 的最小上界,称为a与b的保联。
- 例 1: (1) 考虑偏序集< Z+, D>, 其中Z+是正整数, D是一个整除关系, 问此偏序集< Z+, D>是否是一个格?
- (2) 设 A 是一个集合,P(A)是 A 的幂集,⊆ 是集合上的包含关系,问此偏序集<P(A), ⊆>是否是一个格?
 - (3) 考虑偏序集 $\langle S_n, D \rangle$, 其中 D 是一个整除关系, S_n 是 n 的所有

定义 2: 设 < S, *, • > 是具有两个二元运算的代数系统,如果运算*和。 满足交换律、结合律和吸收律,则称 < S, *, • > 为格。

把由代数系统定义的格称为代数格。

例 3: 设 A 是一个集合,P(A)是 A 的幂集, \bigcap 和 U 分别是集合的交和并运算,试证明代数系统 $\langle P(A), \bigcap, U \rangle$ 是一个格。

定理1: 偏序格与代数格是等价的。

注意:偏序格与代数格等价,今后就不再区分偏序格与代数格了,而 把它们统称为格。

对于集合L的任何偏序关系"≤", 其逆关系"≥"也是集合L上的偏序关系;

对 L 的任意子集 T, T 在偏序集< L, \leq >中的最大下界和最小上界分别是< L, \geq >中的最小上界和最大下界。

因此偏序集<L, \le >是格当且仅当<L, \ge >是格, 我们称此两个格为 对偶格;

格< L, ≤ >的保联运算与保交运算分别是对偶格< L, ≥>的保交运算和保联运算。

对于格< L, \leq >的任何命题,将保联运算与保交运算分别换成对偶格< L, \geq >的保交运算和保联运算,将命题中的" \leq "换成对偶格< L, \geq >中的" \geq ",得到的一个关于对偶格< L, \geq >中的命题,称

这个命题为对偶命题。

容易证明,关于格<L, ≤ >的任何真命题,其对应的对偶命题在对偶格<L, ≥>中也是真命题,把这个原理称为对偶原理。

性质: 设< L, \leq >是格, " \geq " 是" \leq " 的逆关系。则对任意 a,b,c, $d\in L$, 有

- (1) 自反性: $a \leq a$; $a \geq a$ 。
- (2) 反对称性: $a \le b$ 且 $b \le a \Rightarrow a = b$; $a \ge b$ 且 $b \ge a \Rightarrow a = b$.
- (3) 传递性: $a \le b \perp b \le c \Rightarrow a \le c$; $a \ge b \perp b \ge c \Rightarrow a \ge c$.
- (4) $a \land b \leq a$; $a \lor b \geq a$; $a \land b \leq b$; $a \lor b \geq b$.
- (5) $c \leqslant a \perp c \leqslant b \Rightarrow c \leqslant a \wedge b$; $c \geqslant a \perp c \geqslant b \Rightarrow c \geqslant a \vee b$.
- (6) 交换律: $a \land b = b \land a$; $a \lor b = b \lor a$ 。
- (7) 结合律: $(a \land b) \land c = a \land (b \land c)$; $(a \lor b) \lor c = a \lor (b \lor c)$.
- (8) 吸收律: $a \land (a \lor b) = a$; $a \lor (a \land b) = a$.
- (9) 幂等律: $a \land a = a$; $a \lor a = a$.

- (10) $a \le b \Leftrightarrow a \land b = a \Leftrightarrow a \lor b = b$.
- (11) $a \le b \perp c \le d \Rightarrow a \land c \le b \land d$; $a \le b \perp c \le d \Rightarrow a \lor c \le b \lor d$.
- (12) 保序性: $a \le b \Rightarrow a \land c \le b \land c$: $a \le b \Rightarrow a \lor c \le b \lor c$.
- (13) 分配不等式:

$$a \lor (b \land c) \le (a \lor b) \land (a \lor c);$$

 $a \land (b \lor c) \ge (a \land b) \lor (a \land c).$

(14) 模不等式:

$$a \leq c \Leftrightarrow a \vee (b \wedge c) \leq (a \vee b) \wedge c$$
.

定义 3: 设 < L, *, \circ > 是一个格,如果对任意 $a, b, c \in L$,都有 $a*(b\circ c) = (a*b)\circ (a*c) ,$ $a\circ (b*c) = (a\circ b)*(a\circ c),$

即运算满足分配律,则称<L,*,o>是一个分配格。

- 例 4: (1) 设 A 为任意一个集合,格<P(A), ∩, U>是否是分配格?
- (2) 设 P 为命题公式集合, △与 V 分别是命题公式的合取与析取运算, 格< P, △, V>是否是分配格?

定理2: 所有链都是分配格。

例 5: 说明下图所示的两个格都不是分配格。

例 6: (1) 四个元素以下的格都是分配格;

(2) 五个元素的格仅有两个格是非分配格(例 5 (a)和(b)), 其余三个格(下图 (c), (d)和(e))都是分配格。

定理 3: 设< L, *, o>是分配格, 对于任何 $a, x, y \in L$, 如果 a*x = a*y

且 $a \circ x = a \circ y$, 则 x = y。

定义 4: 设<L, \leq >是一个格, 若存在元素 $a \in L$, 使得对任意 $x \in L$, 都有:

$$a$$
≤ x (x < $$$ a),$

则称 a 为格< L, \le >的全下界(或全上界),分别记 0 (或 1),具有全上界和全下界的格称为有界格。

显然,对任意 $x \in L$,有

$$1 \land x = x \land 1 = x (幺 元), \ 1 \lor x = x \lor 1 = 1 (零 元);$$

 $0 \land x = x \land 0 = 0 (零 元), \ 0 \lor x = x \lor 0 = x (幺 元).$

例如下三个都是有界格。

在格<L, ≤ >中,全下界和全上界分别是集合L的最小元和最大元,由于最大元和最小元的唯一性,有下面的定理:

定理 4: 设<L, \le >是一个格, 若格<L, \le >的全上界和全下界存在, 则必唯一。

定义 5: 设< L, \land , \lor >为有界格, 1 和 0 分别为它的全上界和全下界, $a \in L$ 。如果存在 $b \in L$,使得

$$a \wedge b = 0$$
, $a \vee b = 1$,

则称 b 为 a 的补元,记为 a'。若有界格< L, Λ , V>中的所有元素都存在补元,则称< L, Λ , V>为有补格。

例 7: 如下图有界格, 求其所有元素的补元(如果有的话)。

定理 5: 在有界分配格 (既是有界格又是分配格,简称为有界分配格) <L, \land , \lor >中,如元素 a \in L 有补元存在,则此元素的补元必唯一。

推论: 在有补分配格(既是有补格又是分配格,简称为有补分配格) $< L, \Lambda, \lor >$ 中,每个元素都存在唯一的补元。

定义 6: 称有补分配格<L, \land , \lor >为布尔格。

③ 布尔代数

在有补分配格中,每个元都有补元,而且补元唯一。可以将求元素 的补元作为一种一元运算,则此布尔格<L, \(\L,\)\(\)\)>可记为

$$<$$
L, \land , \lor , \cdot , $0,1>$ \circ

此时, 称< L, \land , \lor , ', 0,1>为布尔代数。因此有:

定义 7: 一个布尔格<L, \(\), \(\> 称为布尔代数。若一个布尔代数的 元素个数是有限的,则称此布尔代数为有限布尔代数,否则称为无限 布尔代数。

布尔代数是有补分配格。有补分配格<L, \(\), \(\)>必须满足它是格、有全上界和全下界、分配律成立、每个元素都有补元存在。显然,全上界1和全下界0可以用下面的同一律来描述:

同一律:在L中存在两个元素 0 和 1,使得对任意 $a \in L$,有 $a \land 1 = a$, $a \lor 0 = a$ 。

补元的存在可以用下面的互补律来描述。

互补律:对任意 $a \in L$,存在 $a' \in L$,使得

$$a \wedge a' = 0$$
, $a \vee a' = 1$.

格可以用交换律、结合律、吸收律来描述。

因此,一个有补分配格就必须满足交换律、结合律、吸收律、分配 律、同一律、互补律。

另外,可以证明,由交换律、分配律、同一律、互补律可以得到结合律、吸收律。所以布尔代数有下面的等价定义:

定义 8: 设< B, *, 。 >是代数系统, 其中*, 。是 B 中的二元运算, 如果对任意 $a,b,c\in B$, 满足

- (1) 交换律: a*b = b*a, $a \circ b = b \circ a$;
- (2) 分配律: $a \circ (b*c) = (a \circ b)*(a \circ c),$ $a*(b \circ c) = (a*b) \circ (a*c);$
- (3) 同一律: 在 B 中存在两个元素 0 和 1,使得对任意 $a \in B$,有 a*1=a, $a \circ 0=a$;
- (4) 互补律: 对任意 $a \in B$, 存在 $a' \in B$, 使得 a*a' = 0. $a \circ a' = 1$.

则称<B,*,o>为布尔代数。通常将布尔代数<B,*,o>记为

$$<$$
 B, *, •, ', 0, 1 > •

为方便起见,也简称 B 是布尔代数。