## Notes on Bi-Quadratic Extensions

## Ken Lee

## Spring 2021

## Proposition - Classification of Bi-Quadratic Extensions

Let  $a,b \in K$  a field of characteristic not 2 and b non-square in K. Let  $K \to L$  be a splitting field of  $(X^2 - a)^2 - b$ . The roots are then  $\pm \sqrt{a \pm \sqrt{b}}$  and we have the tower,



Define the mysterious  $c := a^2 - b$ . Then the following are true :

- 1. Let c be a square in K. Then we have cases :
  - (a) Let either  $2(a+\sqrt{c}), 2(a-\sqrt{c})$  square in K. (We cannot have both since b non-square in K.) Then  $L=K(\sqrt{b})$  and hence  $\mathrm{Aut}_K\,L\cong C_2$ .
  - (b) Let both  $2(a \pm \sqrt{c})$  non-squares in K. Then [L:K]=4 and  $\mathrm{Aut}_K L \cong C_2 \times C_2$ .
- 2. Let c non-square in K. Then we have cases :
  - (a) Let bc square in K. Then [L:K]=4 and  $\operatorname{Aut}_K L\cong C_4$ .
  - (b) Let bc non-square in K. Then [L:K]=8 and  $\operatorname{Aut}_K L\cong D_{2(4)}$ .

*Proof.* Throughout the proof, we use  $\alpha, \alpha'$  to denote  $\sqrt{a} + \sqrt{b}, \sqrt{a} - \sqrt{b}$  respectively. We first give an ansatz of what  $\sigma \in \operatorname{Aut}_K L$  could do by exploiting  $\operatorname{Aut}_K L \hookrightarrow \operatorname{Aut} \{\pm \alpha, \pm \alpha'\}$ . Let  $\sigma \in \operatorname{Aut}_K L$  which we view as a subgroup of the permutations of the roots. We have the cases :

- $-\sigma(\alpha) = \alpha$ . Then  $\sigma(-\alpha) = -\alpha$ . So we have two cases :
  - $\sigma = 1$
  - $\sigma = (\alpha' \alpha')$ , a reflection.

$$-\sigma(\alpha)=\alpha'$$
. Then  $\sigma(-\alpha)=-\alpha'$ . So we have two cases :

- 
$$\sigma = (\alpha \alpha')(-\alpha - \alpha')$$
, a diagonal reflection.

$$- \sigma = (\alpha \alpha' - \alpha - \alpha').$$

 $-\sigma(\alpha)=-\alpha$ . Then we have either:

- 
$$\sigma = (\alpha - \alpha)$$
, a reflection.

$$-\sigma = (\alpha - \alpha)(\alpha' - \alpha') = (\alpha \alpha' - \alpha - \alpha')^2.$$

–  $\sigma(\alpha) = -\alpha'$ . Then either :

- 
$$\sigma = (\alpha - \alpha')(-\alpha \alpha')$$
, a diagonal reflection.

- 
$$\sigma = (\alpha - \alpha' - \alpha \alpha') = (\alpha \alpha' - \alpha - \alpha')^{-1}$$

So we see  $\operatorname{Aut}_K L \cong D_{2(4)}$  when its cardinality is largest, otherwise we obtain subgroups of  $D_{2(4)}$ .

The Galois group  $\operatorname{Aut}_K L$  depends crucially on two things :

(Q1) Are 
$$K(\sqrt{b}) \to K(\alpha)$$
,  $K(\sqrt{b}) \to K(\alpha')$  trivial?

(Q2) Is 
$$K(\alpha) = K(\alpha')$$
?

Considering (Q1), let  $a \pm \sqrt{b}$  is a square in  $K(\sqrt{b})$ . Then we have  $x, y \in K$  such that

$$a \pm \sqrt{b} = (x + y\sqrt{b})^2 = x^2 + by^2 + 2xy\sqrt{b} \Rightarrow a = x^2 + b\left(\frac{\pm 1}{2x}\right)^2$$
  
  $\Rightarrow 0 = x^4 - ax^2 + b/4 \Rightarrow x^2 = \frac{a \pm \sqrt{c}}{2}$ 

where  $c := a^2 - b$ , the discriminant of the quadratic in  $x^2$ , which is not so mysterious afterall.

(Assume c square in K) (One of  $2(a\pm\sqrt{c})$  square in K) Suppose  $2(a+\sqrt{c})$  square in K. Then  $K(\alpha)=K(\sqrt{b})$ . Since  $\alpha\alpha'=\sqrt{c}\in K$ , we hence have  $L=K(\alpha,\alpha')=K(\sqrt{b})$ . As for the Galois group, since [L:K]=2, we cannot have any 4-cycles in  $\operatorname{Aut}_K L$ . This leaves the identity, the reflections and  $(\alpha-\alpha)(\alpha'-\alpha')$ . Any automorphism fixing  $\sqrt{b}$  or  $\alpha$  or  $\alpha'$  must be identity since  $L=K(\sqrt{b})=K(\alpha)=K(\alpha')$ . This leaves the identity and two reflections diagonal reflections. Finally, which reflection is in  $\operatorname{Aut}_K L$  hinges on which of  $\alpha+\alpha'$  or  $\alpha-\alpha'$  is in K. This is the other significance of  $2(a+\sqrt{c}):(\alpha+\alpha')^2=2(a+\sqrt{c})$ . So by assumption  $\alpha+\alpha'\in K$ . Now if  $(\alpha-\alpha')(\alpha'-\alpha)\in\operatorname{Aut}_K L$ , we would have  $\alpha-\alpha'\in K$  and hence  $\alpha\in K$ , a contradiction. Thus,  $\operatorname{Aut}_K L$  is generated by  $(\alpha-\alpha')(-\alpha-\alpha')$ .

The above argument can be repeated instead with assuming  $2(a-\sqrt{c})$  is a square in K. Then everything is the same until the last step, where we find  $\operatorname{Aut}_K L$  is generated by  $(\alpha - \alpha')(-\alpha \alpha')$  instead.

(Both  $2(a\pm\sqrt{c})$  non-square in K) Both  $a\pm\sqrt{b}$  are not squares in  $K(\sqrt{b})$ , so  $K(\sqrt{b})\to K(\alpha), K(\sqrt{b})\to K(\alpha')$  are both degree 2. But again  $\alpha\alpha'=\sqrt{c}\in K$ , so  $L=K(\alpha,\alpha')=K(\alpha)=K(\alpha')$  and hence [L:K]=4. Any automorphism fixing  $\alpha$  or  $\alpha'$  must be identity, so this excludes the non-diagonal reflections. Since  $(\alpha\pm\alpha')^2=2(a\pm\sqrt{c})$ , we have at least three sub-K-extensions  $K(\sqrt{b}), K(\alpha\pm\alpha')$ . By Galois theory, this gives at least three subgroups of  $\mathrm{Aut}_K L$  with index 2. It thus cannot be the case that  $\mathrm{Aut}_K L$  is generated by the 4-cycles, and hence  $\mathrm{Aut}_K L$  is generated by the diagonal reflections, isomorphic to  $V_4$ .

(c non-square in K) The extensions  $K(\sqrt{b}) \to K(\alpha), K(\sqrt{b}) \to K(\alpha')$  must be order 2. The question is (Q2). After thinking for a while, a thing one might try is the following:

Lemma. Let F be a field with non-even characteristic. Let  $r,s\in F$  with s non-square in F. Then  $\sqrt{r}\in$  $F(\sqrt{s})$  if and only if rs or r is a square in F.

*Proof.*  $(\Rightarrow)$  Let  $r=(x+y\sqrt{s})^2$  with  $x,y\in F$ . We get  $r=x^2+sy^2$  and 0=2xy. So either  $r=x^2$  or  $rs=(sy)^2$ .  $(\Leftarrow)\ r=x^2/s=(x/\sqrt{s})^2$ .

$$(\Leftarrow) \ r = x^2/s = (x/\sqrt{s})^2.$$

So we have  $\alpha' \in K(\alpha) = K(\sqrt{b})(\alpha)$  if and only if  $c = \alpha \alpha'$  or  $a - \sqrt{b}$  square in  $K(\sqrt{b})$ . The latter implies  $(a-\sqrt{c})/2$  is a square in K and hence  $\sqrt{c} \in K$ , a contradiction. So  $K(\alpha') = K(\alpha)$  if and only if c is a square in  $K(\sqrt{b})$ . But this is if and only if  $\sqrt{c} \in K(\sqrt{b})$ , which by another application of the lemma, is equivalent to bc or c being a square in K. The latter is again false by assumption, so we have  $K(\alpha) = K(\alpha')$  if and only if bc is a square in K.

(bc is a square in K) We have  $L = K(\alpha) = K(\alpha')$  and [L:K] = 4. Again, any automorphism fixing  $\alpha$  or  $\alpha'$ must be identity so we are left with the rotations and the diagonal reflections. If  $\operatorname{Aut}_K L$  is generated by the diagonal reflections, then  $[K(\alpha \pm \alpha') : K]$  would be order two and hence  $\min(\alpha \pm \alpha', K) = X^2 - 2(a \pm \sqrt{c})$ , in particular  $\sqrt{c} \in K$ , a contradiction. So  $\operatorname{Aut}_K L$  is generated by a 4-cycle.

(bc is non-square in K) Covered.