Shenzhen Toby Technology Co., Ltd.

Report No.: TB-MPE164507

Page: 1 of 3

RF Exposure Evaluation FCC ID: 2AAZR-HSD8033A

1. Client Information

Applicant	:	SHENZHEN HIGHSTAR ELECTRICAL CO.,LTD		
Address	•	2F,4&5F,Building6,Ya Lian Highstar Industrial Zone, 5022 Wuhe Avenue,Bantian Street,Longgang District, Shenzhen, China		
Manufacturer	:	SHENZHEN HIGHSTAR ELECTRICAL CO.,LTD		
Address	:	2F,4&5F,Building6,Ya Lian Highstar Industrial Zone, 5022 Wuhe Avenue,Bantian Street,Longgang District, Shenzhen, China		

2. General Description of EUT

Z. General i	76	Scription of Lot			
EUT Name		MINI BLUETOOTH SPEAKER WITH FAN			
Models No.		HSD8033A			
Model Difference		N/A			
Product Description		Operation Frequency:	Bluetooth 4.2(BT): 2402MHz~2480MHz		
		RF Output Power:	GFSK:-3.947dBm π/4-DQPSK: -2.799dBm		
		Antenna Gain:	-0.68dBi PCB Antenna		
Power Supply		DC Voltage Supply from Adapter DC Voltage supplied by Li-ion battery.			
Power Rating	:	Iutput: DC 5.0V 1.5A by adapter DC 3.7V by 2200mAh Li-ion battery			
Software Version		N/A			
Hardware Version	S	N/A			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note: More test information about the EUT please refer the RF Test Report.

TB-RF-074-1. 0

Report No.: TB-MPE164507

Page: 2 of 3

SAR Test Exclusion Calculations

1. FCC: According to KDB 447498 D01 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.

(1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations

1)The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance≤5 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 3.0 for 1-g SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

Report No.: TB-MPE164507

Page: 3 of 3

2. Calculation:

Test sepai	ration: 5mm					1000
		В	luetooth Mode (GFSK)			
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	-3.985	-3±1	-2	0.631	0.196	3.0
2.441	-3.947	-3±1	-2	0.631	0.197	3.0
2.480	-4.958	-4±1	-3	0.501	0.158	3.0
67	The same of the sa	Blue	tooth Mode (π/4-DQPS	K)	601	
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dbm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	-2.925	-2±1	-1	0.794	0.246	3.0
2.441	-2.799	-2±1	-1	0.794	0.248	3.0
2.480	-3.775	-3±1	-2	0.631	0.199	3.0

Test separation: 5mm							
The worst RF Exposure Evaluation							
Total Calculation	Threshold Value						
Value							
0.248	3.0						
	Total Calculation Value						

The worst RF Exposure Evaluation is calculated as 0.248 / cm2 < limit 3.0, So standalone SAR measurements are not required.

----END OF REPORT----