

Department of Electrical & Computer Engineering ENEE3309 - Communication Systems

Course Assignment

Prepared by:

Mohammad Abu-Shelbaia 1200198

Instructor: Dr. Ashraf Al-Rimawi

Section: 2

Date: January 22, 2023

Contents

1	Que	Questions					
	1.1	Question 1					
	1.2	Question 2					
		1.2.1 Using Python					
		1.2.2 Using Matlab					
	1.3	3 Question 3					
1.4 Question 4		Question 4					

List of Figures

1.1 1.2	Python Plot							
List of Snippets								
1.1	Coefficients Evaluation							
1.2	Plotting using python							
1.3	Plotting using Matlab							
1.4	Evaluating MSE							

1 Questions

1.1 Question 1

First, we need to write the expression in terms of singularity functions.

$$g(t) = \begin{cases} 1 & 0 \le t \le 0.05 \\ -20t + 2 & 0.05 < t \le 0.1 \end{cases}$$

then we can get the coefficients by calculating the following integrals

$$a_0 = \frac{1}{T_0} \int_0^{T_0} g(t)dt \tag{1}$$

$$a_n = \frac{2}{T_0} \int_0^{T_0} g(t) \cos(nw_0 t) dt$$
 (2)

$$b_n = \frac{2}{T_0} \int_0^{T_0} g(t) \sin(nw_0 t) dt$$
 (3)

```
import prettytable as pt
import sympy
from sympy.plotting import plot
import numpy as np
an = \{\}
bn = \{\}
t = sympy.Symbol('t')
for n in range(4):
    w = 2*np.pi*n/0.1
    a = (2/0.1) * (sympy.integrate(sympy.cos(w*t), (t, 0, 0.1/2)) +
sympy.integrate((-20*t + 2)*sympy.cos(w*t), (t, 0.1/2, 0.1)))
    b = (2/0.1) * (sympy.integrate(sympy.sin(w*t), (t, 0, 0.1/2)) +
sympy.integrate((-20*t + 2)*sympy.sin(w*t), (t, 0.1/2, 0.1)))
    an[n] = a
    bn[n] = b
an[0] = an[0]/2
```

Snippet 1.1: Coefficients Evaluation

n	An	Bn
0	0.75000	0.00000
1	-0.20264	0.31831
2	0.00000	0.15915
3	-0.02252	0.10610

1.2 Question 2

in this question, we are asked to plot the approximated signal along with the actual signal on the same graph, we've plotted it using python and using Matlab.

1.2.1 Using Python

Snippet 1.2: Plotting using python

Figure 1.1: Python Plot

1.2.2 Using Matlab

```
t = (0:0.00000001:0.1)';
a0 = 0.75;
a = [-0.20264, 0, -0.02252];
b = [0.31831, 0.15915, 0.10610];
T0 = 0.1;
g = heaviside(t) - 20*(t-T0/2).*heaviside(t-T0/2) + 20*(t -
\rightarrow T0).*heaviside(t-T0);
approx = a0;
for n = 1:3
    approx = approx + a(n)*cos(2*pi*n*t/T0) + b(n)*sin(2*pi*n*t/T0);
end
plot(t, approx, t, g)
xlabel('t')
ylabel('g(t)')
legend('ga(t)','g(t)')
axis([0 0.1 0 2])
```

Snippet 1.3: Plotting using Matlab

Figure 1.2: Matlab Plot

1.3 Question 3

In this question, we are going to evaluate the mean square error for the approximated signal with respect to the actual signal for K = 1, 2, and 3, according to the following equation.

$$MSE = \frac{1}{T_0} \int_0^{T_0} (g(t) - g_a(t))^2 dt$$
 (4)

Snippet 1.4: Evaluating MSE

K	MSE
1	0.104166666666667
2	0.0329741103361289
3	0.0203089623808363

1.4 Question 4

in this question, we are asked to multiply the approximated signal by a carrier, apply a bandpass filter to generate a single side-band signal s(t) and to evaluate its spectrum.

$$c(t) = 10\cos(2\pi(200)t) \tag{5}$$

(6)

 $g_a(t)$ is considered the message signal, its highest frequency $f_m = 30$ Hz. Hence, the band pass filter frequency with bandwidth of 30Hz and the cut-off frequency edges on f_c and $f_c + f_m$ for upper side band or f_c and $f_c - f_m$ for lower side so if we take the upper side the filter will range from [200, 230] Hz.

$$s(t) = 10\cos(2\pi(200t)) * [a_0 + \sum_{n=1}^{3} a_n \cos(nw_0 t) + b_n \sin(nw_0 t)]$$

$$= 10a_0 \cos(2\pi(200t)) + 5a_1 [\cos(2\pi(210)t) + \cos(2\pi(190)t)]$$

$$+ 5a_3 [\cos(2\pi(230)t) + \cos(2\pi(170)t)] + 5b_1 [\sin(2\pi(210)t) + \sin(2\pi(190)t)]$$

$$+ 5b_2 [\sin(2\pi(220)t) + \sin(2\pi(180)t)] + 5b_3 [\sin(2\pi(230)t) + \sin(2\pi(170)t)]$$

$$(7)$$

After applying the band-pass filter any frequency not in range of [200, 230] Hz we can safely delete.

$$s(t) = 10a_0cos(2\pi(200t) + 5a_1[cos(2\pi(210)t)] + 5a_3[cos(2\pi(230)t)] + 5b_1[sin(2\pi(210)t)] + 5b_2[sin(2\pi(220)t)] + 5b_3[sin(2\pi(230)t)]$$
(8)

Taking the Fourier transform to show the spectrum equation.

$$S(f) = 5a_0[\delta(f - 200) + \delta(f + 200)] + 2.5a_1[\delta(f - 210) + \delta(f + 210)]$$

$$+ 2.5a_3[\delta(f - 230) + \delta(f + 230)] - 2.5ib_1[\delta(f - 210) + \delta(f + 210)]$$

$$- 2.5ib_2[\delta(f - 220) + \delta(f + 220)] - 2.5ib_3[\delta(f - 230) + \delta(f + 230)]$$

$$(9)$$