Homework 6

Yosef Goren, Andrew Elashkin

January 19, 2023

1

- a. True.
 - Let $M_1 = (S_1, I_1, R_1, L_1), H := \{(s, s) \mid s \in S_1\}.$
 - H is a simulation relation: Let $(s, s') \in H$. by construction s = s', thus they satisfy matching atomic propositions. Furthermore - let f be successor to s, thus f is also a successor to s' and $(f, f) \in H$.
 - Let $s \in I_1$, thus $(s, s) \in H$. So $R_1 \leq R_1$.
- b. False.
 - Assume $AP = \{F_1, F_2\}$ and take the structures:

$$M := (S, I, R, L)$$

$$S := \{i_1, f_1, i_2, f_2\}, I := \{i_1, i_2\},\$$

$$R := \{(i_1, f_1), (i_2, f_2), (f_1, f_1), (f_2, f_2)\}, L := \{(i_j, \emptyset), (f_j, \{F_j\}) \mid j \in \{1, 2\}\}\}$$

$$M' := (S' = \{i', f'\}, I' = \{i'\}, R' = \{(i', f'), (f', f')\}, L' = \{(i', \emptyset), (f', \{F_1\})\}\}$$

- Let $H := \{(i', i_1), (f', f_1)\}$. H is a simulation relation $H \subseteq S' \times S$: Let $(a, b) \in H$. it is easy to see that the atomic propositions match. Also, the only possible successor to a is f' (wether a = i' or a = f'), and the only successor to b is also f_1 , so since $(f', f_1) \in H$ we have that H is indeed a simulation relation.
- Let $s \in I = \{i'\}$, meaning s = i', we have that $(i', i_1) \in H$ and $i_1 \in I_1$, Hence $M' \leq M$.
- Assume towards contrediction that exists H' a simulation relation $\subseteq S \times S'$ and which gives $M \preceq M'$. Then either $\exists s' : (s', i_2) \in H'$ or not.

- If $\exists s': (s', i_2) \in H'$: Consider f_2 - it cannot be that $(x, f_2) \in H'$ since no $x \in S'$ has the atomic proposition F_2 (which f_2 does). Hence $\forall y: (i_2, y) \notin H'$, but this directly contredicts the definition of $M \preceq M'$.
- So the assumption is false and $M \not\preceq M'$.
- Hence the relation is not symmetric.

c. False.

• Consider:

$$M := (S = \{i_1, i_2\}, I = \{i_1, i_2\}, R = \{(i_1, i_1), (i_2, i_2)\}, L = \{(x, \emptyset) \mid x \in S\})$$

$$M' := (S' = \{i'\}, I' = \{i'\}, R' = \{(i', i')\}, L' = \{(x, \emptyset) \mid x \in S\})$$
Let $H_e := \{(i', i_1), (i', i_2)\}, H_c := \{(i_1, i'), (i_2, i')\}.$

- Clearly $M \neq M'$.
- H_e is a simulation relation: The atomic propositions always match since they are always \emptyset . Let $(i', b) \in H_e$. In any case the only successor to b is b, and since i' is also a successor to itself, we have that for any successor to b, there is a matching successor to i' (itself) s.t. $(i', b) \in H_e$.
- $M' \leq M$: We have a simulation relation H_e , and for all initial states $i' \in I'$, we have that $(i', i_2) \in H_e$.
- H_c is a simulation relation: Atomic propositions like before. Let $(a, i') \in H_c$. a is a successor to itself, and i' is the only successor to itself and $(a, i') \in H_c$.
- $M \leq M'$: We have a simulation relation and for each initial state $a \in I$, we have $(a, i') \in H_c$.
- We have seen $M \leq M' \wedge M' \leq M \wedge M \neq M'$.

d. True.

• Let:

$$M_1 = (S_1, I_1, R_1, L_1), M_2 = (S_2, I_2, R_2, L_2), M_3 = (S_3, I_3, R_3, L_3)$$

And assume $M_1 \leq M_2 \wedge M_2 \leq M_3$ denote the simulating relations as $H_{1,2}, H_{2,3}$ repsectively.

• Let $H_{1,3} := \{(a,c) \mid \exists b : (a,b) \in H_{1,2} \land (b,c) \in H_{2,3}\}.$

- $H_{1,3}$ is a simulation relation: Let $(a,c) \in H_{1,3}$. The atomic propositions match by: AP(a) = AP(b) = AP(c). Let a' be a successor to a, then $\exists b'$ a successor of b s.t. $(a',b') \in H_{1,2}$, thus $\exists c'$ a successor of c s.t. $(b',c') \in H_{2,3}$, and by definition: $(a',c') \in H_{1,3}$. To sum up the last conclusion: if a' is a successor of a, then exists some c' a successor of c s.t. $(a',c') \in H_{1,3}$.
- Let $i_1 \in I_1$, thus $\exists i_2 \in I_2$ s.t. $(i_1, i_2) \in H_{1,2}$. Also $i_2 \in I_2 \Rightarrow \exists i_3 \in I_3$ s.t. $(i_2, i_3) \in H_{2,3}$. So by definition of $H_{1,3}$ we have that $(i_1, i_3) \in H_{1,3}$, and $i_3 \in I_3$. Thus $M_1 \leq M_3$.

So we have that $H_{1,3}$ is a simulation relation.