Lista-01-parte-1

Prof. Msc. Elias Batista Ferreira Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

Sumário

1	Consumo de energia	2
2	Conversões para o Sistema Métrico (+)	3
3	Custo da Lata de Cerveja (+)	4
4	Cálculo do Delta na Equação de Báskara (+)	5
5	Cálculo do Determinante de uma Matriz Quadrada de Duas Dimensões (+)	6
6	Média de 2 números (+)	7
7	Volume da Pirâmide de Base Hexagonal (+)	8
8	Tempo em segundos (+)	9
9	Arredondamento (++)	10
10	Cálculo da Área de um Triângulo (++)	11
11	Custo Final de um Carro (++)	12
12	Decolagem (++)	13
13	Distância entre dois pontos (++)	15
14	Quatro Algarismos (++)	16
15	Conversão de decimal para binário (+++)	17
16	Número Invertido (+++)	19
17	Valor em Notas e Moedas (+++)	20
18	Sistemas de Equações Lineares (++++)	21

1 Consumo de energia

(+)

Sabendo-se que 100 kW de energia custam 70% do salário mínimo, escreva um algoritmo em Linguagem C que leia o valor do salário mínimo e a quantidade de kW gasta por uma residência. Calcule e imprima:

- o valor em reais de cada kW;
- o valor em reais a ser pago pelo consumo da residência;
- o novo valor a ser pago pela residência com um desconto de 10%.

Entrada

O programa deve ler o valor do salário mínimo e a quantidade de kW gasta por uma residência. Ambos os valores são reais.

Saída

O programa deve imprimir três linhas contento o texto:

Custo por kW: R\$ x.xx Custo do consumo: R\$ x.xx Custo com desconto: R\$ x.xx

Entrada	
81	
3.54	
Saída	
Custo p	oor kW: R\$ 0.57
Custo d	do consumo: R\$2.01
Custo c	com desconto: R\$ 1.81

2 Conversões para o Sistema Métrico (+)

Muitos países estão passando a utilizar o sistema métrico. Faça um programa para executar as seguintes conversões:

- Ler uma temperatura em Fahrenheit e imprimir o equivalente em Celsius ($C = \frac{5(F-32)}{9}$).
- Ler uma quantidade de chuva dada em polegadas e imprimir o equivalente em milímetros (1 polegada = 25.4 mm).

Entrada

O programa deve ler dois valores na entrada: um valor em Fahrenheit e outro valor em polegadas. Ambos os valores são do tipo float. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir duas linhas. Aa primeira contém a frase: O VALOR EM CELSIUS = X, onde X é o valor de temperatura convertido de Fahrenheit para Celsius e deve ter duas casas decimais. A segunda linha deve conter a frase: A QUANTIDADE DE CHUVA E = Y, onde Y é o valor em milímetros correspondente ao valor em polegadas dado como entrada. Y é um valor real (float) e deve ter duas casas decimais. Logo após o valor de Y, o programa deve imprimir o caractere de quebra de linha '\n'.

Entrada
53
120
Saída
O VALOR EM CELSIUS = 11.67
A QUANTIDADE DE CHUVA E = 3048.00

3 Custo da Lata de Cerveja (+)

Um fabricante de latas deseja desenvolver um programa para calcular o custo de uma lata cilíndrica de alumínio, sabendo-se que o custo do alumínio por m² é R\$ 100,00.

Entrada

O programa deve ler dois valores na entrada: o raio e a altura da lata. Ambos os valores correspondem a valores em metros. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir a frase: O VALOR DO CUSTO E = XXX.XX, onde XXX.XX é o valor do custo da lata. Logo após o valor do custo da lata o programa deve imprimir o caractere de quebra de linha '\n'.

Observações

- O seu programa deve utilizar a constante π com o valor aproximado de 3.14159.
- O valor total da área de um cilindro é dada por $A_t = 2A_c + A_l$, onde A_c é a área do círculo, calculada como: $A_c = \pi r^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2\pi ra$, onde r é o raio e a a altura da lata em metros.

Eı	ntrada						
0	.02						
0	.09						
Sa	ıída						
0	VALOR	DO	CUSTO	Ε	=	1.38	

4 Cálculo do Delta na Equação de Báskara (+)

Fazer um programa para ler os valores dos coeficientes A, B e C de uma equação quadrática e calcular e imprimir o valor do discriminante (Δ). O valor de Δ é dado pela fórmula: $\Delta = B^2 - 4AC$.

Entrada

O programa deve ler três valores reais na entrada. O primeiro valor corresponde ao valor do coeficiente *A*, o segundo, do coeficiente *B* e o terceiro, do coeficiente *C*, de uma equação do seguro grau. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DE DELTA E = X, onde X é o valor de delta computado pelo seu programa e deve conter no máximo 2 casas decimais. Após o valor de delta, o programa deve imprimir um caractere de quebra de linha: "\n".

Observação

Para imprimir uma expressão do tipo float com duas casas decimais, você deve usar a formatação %.2f na função de impressão printf(). Supondo que você usou a variável delta para armazenar o valor do discriminante, você poderia imprimir o conteúdo dessa variável com duas casas decimais usando a função de impressão do seguinte modo: printf("%.2f\n", delta);.

Eı	ntrada						
5							
12	2						
4							
Sa	ıída						
0	VALOR	DE	DELTA	Ε	=	64.00	

5 Cálculo do Determinante de uma Matriz Quadrada de Duas Dimensões (+)

Fazer um programa tal que dados os quatro elementos de uma matriz 2×2 , calcule e escreva o valor do determinante desta matriz.

Entrada

O programa deve ler os quatro elementos *a*, *b*, *c* e *d* que formam uma matriz quadrada bidimensional. Há um valor por linha de entrada. Cada valor corresponde a um número real (float).

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DO DETERMINANTE E = X, onde X é o valor do determinante computado pelo seu programa e deve conter no máximo 2 casas decimais. Após o valor do determinante, o programa deve imprimir um caractere de quebra de linha: "\n".

Observações

Dada uma matriz quadrada bidimensional $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, o determinante de M, denotado por det(M) é definido como: det(M) = ad - bc.

Eı	ntrada	
4		
3		
5		
4		
Sa	ıída	
0	VALOR	DO DETERMINANTE E = 1.00

6 Média de 2 números (+)

Faça um programa que leia dois números inteiros e calcule a média deles.

Entrada

O programa deve ler 2 números inteiros.

Saída

O programa deve apresentar a média com 3 casas decimais. //

Observações

Entrada	Saída
2 2	2.000

Entrada	Saída
1 2	1.500

7 Volume da Pirâmide de Base Hexagonal (+)

O volume (V) de uma pirâmide cuja base é um hexágono regular é computado pela Equação 1:

$$v = \frac{1}{3} \cdot A_b \cdot h,\tag{1}$$

onde h é a altura da pirâmide e A_b é a área do hexágono que forma a base da pirâmide. A área do hexágono é computada pela Equação 2:

$$A_b = \frac{3 \cdot a^2 \cdot \sqrt{3}}{2},\tag{2}$$

onde a é o comprimento de uma aresta do hexágono regular.

Entrada

O programa deve ler uma linha com dois números float, separados entre si por um espaço. O primeiro número corresponde à altura da pirâmide e o segundo número corresponde a uma aresta do hexágono que forma a abase da pirâmide. Ambos são valores em metros.

Saída

O programa deve emitir a frase: O VOLUME DA PIRAMIDE E = x METROS CUBICOS, onde x é o valor do volume da pirâmide em metros cúbicos e com duas casas decimais. Ao final da frase o programa deve imprimir o caractere de quebra de linha (\n).

Entrada					
12.0					
8.0					
Saída					
O VOLUME DA	PIRAMIDE	E =	665.11	METROS	CUBICOS

Entrada					
0.45					
0.23					
Saída					
O VOLUME DA	PIRAMIDE	E =	0.02	METROS	CUBICOS

8 Tempo em segundos (+)

Fazer um programa que leia um valor de tempo expresso em horas, minutos e segundos e que converta esse tempo para um valor em segundos.

Entrada

O programa deve ler três linhas na entrada. A primeira contém um valor em horas, a segunda, contém um valor em minutos e a terceira, contém um valor em segundos. Os valores são todos números inteiros.

Saída

O programa deve imprimir uma linha contendo a frase: O TEMPO EM SEGUNDOS E = X, onde X é o valor do tempo convertido em segundos. Após o valor do tempo em segundos, o programa deve imprimir um caractere de quebra de linha: '\n'.

Eı	ıtrada				
5					
12	2				
1					
Sa	ída				
0	TEMPO	EM	SEGUNDOS	E =	18721

9 Arredondamento (++)

Escreva um algoritmo que leia um número real e realize o arredondamento deste número usando 1, 2 e 3 casas decimais. A apresentação do número deve conter, obrigatoriamente 6 casas decimais. As casas decimais posteriores ao dígito arredondado devem conter o valor 0.

Considerações

O arredondamento de um número é uma operação que elimina algarismos de menor significância. A regra de arredondamento aplica-se nos algarismos situados após a posição da quantidade de casas decimais desejada. Ou seja, o processo de arredondamento do número 12.318215 considerando 1 casa decimal deve avaliar os números 18215. Para 2 casas decimais deve-se avaliar os números 8215, e assim por diante.

- Se o algarismo seguinte for menor que 5, então o anterior não se modifica
- Se os algarismo seguinte fore maior ou igual a 5, então o anterior é incrementado

Entrada

O programa deve ler 1 valor real.

Saída

O programa deve imprimir a primeira linha contendo o número arredondado com 1 casa decimal, a segunda com 2 casas decimais e a terceica com 3 casas decimais.

Exemplo

3.1752
Saída
3.200000
3.180000
3.175000
Entrada
0.1825
Saída
0.200000
0.180000
0.183000

Entrada

10 Cálculo da Área de um Triângulo (++)

Desenvolver um algoritmo para ler os comprimentos dos três lados de um triângulo (L_1 , L_2 e L_3) e calcular a área do triângulo.

Considerações

A área de um triângulo pode ser computada pela fórmula:

$$A = \sqrt{T(T - L_1)(T - L_2)(T - L_3)}$$

onde

$$T = \frac{L_1 + L_2 + L_3}{2}$$

A função sqrt () computa a raiz quadrada de uma expressão. Para usar essa função você deve incluir o arquivo de cabeçalho math.h, inserindo a seguinte diretiva de pré-processamento logo no início do seu arquivo com o programa em C: #include < math.h>

Entrada

O programa deve ler três valores reais na entrada, cada um correspondendo ao comprimento de um lado do triângulo. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir uma linha contendo a frase: A AREA DO TRIANGULO E = X, onde X é o valor da área do triângulo e deve conter no máximo 2 casas decimais. Após o valor da área do triângulo, o programa deve imprimir um caractere de quebra de linha: "\n".

Eı	ntrada						
4							
5							
6							
Sa	ıída						
A	AREA	DO	TRIANGULO	E	=	9.92	

11 Custo Final de um Carro (++)

O custo ao consumidor de um carro novo é a soma do custo de fábrica com a porcentagem do distribuidor e dos impostos (aplicados ao custo de fábrica). Supondo que a porcentagem do distribuidor seja de x% do preço de fábrica e os impostos de y% do preço de fábrica, fazer um programa para ler o custo de fábrica de um carro, a percentagem do distribuidor e o percentual de impostos, calcular e imprimir o custo final do carro ao consumidor.

Entrada

O programa deve ler três valores na entrada: o preço de fábrica do carro, o percentual do distribuidor e o percentual de impostos. Cada valor aparece em uma linha de entrada. Todos os valores são do tipo float.

Saída

O programa deve imprimir uma linha, contento a frase O VALOR DO CARRO E = Z, onde Z é o valor do preço final do carro ao consumidor. O valor de Z deve ter duas casas decimais. Após imprimir o valor do preço final, o program deve imprimir o caractere de quebra de linha '\n'.

Observações

Entrada				
25000				
12				
30				
Saída				
O VALOR	DO	CARRO	E =	35500.00

12 Decolagem (++)

Escrever um algoritmo que leia a massa (em toneladas) de um avião, sua aceleração (m/s^2) e o tempo (s) que levou do repouso até a decolagem. O programa deve calcular e escrever a velocidade atingida (Km/h), o comprimento da pista (m) e o trabalho mecânico realizado (J) no momento da decolagem.

Dicas

- v = velocidade; a = aceleração; t = tempo;
- m = massa;
- s =espaço percorrido;
- W = trabalho mecânico realizado;
- Um double deve ser lido com "%lf"

- 1 m/s = 3.6 Km/h;
- $\bullet v = a * t;$
- $s = \frac{at^2}{2}$;
- $W = \frac{mv^2}{2}$;
- A massa utilizada no trabalho é em Kg

Entrada

O programa deve ler três linhas de entrada. A primeira linha contém um valor do tipo *double* representando a massa do avião em toneladas. A segunda linha, contém um valor do tipo double correspondente à aceleração de avião. A terceira, linha contém um valor do tipo *double* correspondente ao tempo em segundos gasto na decolagem.

Saída

O programa deve imprimir três linhas. A primeira, contém a frase: VELOCIDADE = x, onde x é o valor da velocidade do avião em Km/h. A segunda, contém a frase: ESPACO PERCORRIDO = y, onde y corresponde ao espaço em metros percorrido pelo avião durante a decolagem. A terceira linha contém a frase: TRABALHO REALIZADO = z, onde z corresponde ao valor do trabalho em Joules, realizado pelo avião durante a decolagem. Os valores de x, y e z devem ser do tipo double e devem conter duas casas decimais e após esses valores deve vir o caractere de quebra de linha \n.

Entrada	
10	
5	
90	
Saída	
VELOCIDADE = 1620.00	
ESPACO PERCORRIDO = 20250.00	
TRABALHO REALIZADO = 1012500000.00	

Entrada 3 30 25 Saída

VELOCIDADE = 2700.00 ESPACO PERCORRIDO = 9375.00 TRABALHO REALIZADO = 843750000.00

13 Distância entre dois pontos (++)

Dados dois pontos A e B, cujas coordenadas $A(x_1,y_1)$ e $B(x_2,y_2)$ serão informadas via teclado, desenvolver um programa que calcule a distância entre A e B.

Entrada

O programa deve ler os quatro valores reais correspondendo às coordenadas dos dois pontos : x_1, y_1, x_2, y_2 , nessa ordem, e um valor por linha.

Saída

O programa deve imprimir uma linha contendo a frase: A DISTANCIA ENTRE A e B = X, onde X é o valor da distância entre os dois pontos e deve conter no máximo 2 casas decimais. Após o valor da distância, o programa deve imprimir um caractere de quebra de linha: '\n'.

Observações

A distância entre dois pontos é computada pela fórmula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Você pode usar a função sqrt() para calcular a raiz quadrada na fórmula da distância. Para computar o quadrado de um valor x você pode usar a função pow(x,2). Para usar essas funções, você precisa colocar #include <math.h> no início do texto do programa.

Eı	Entrada	
3	3	
4	4	
5	5	
6	6	
Sa	Saída	
A	A DISTANCIA ENTRE A e B =	2.83

14 Quatro Algarismos (++)

Dado um número inteiro de três algarismos, construir outro número inteiro de quatro algarismos de acordo com a seguinte regra: os três primeiros algarismos, contados da esquerda para a direita são iguais ao número dado. O quarto algarismo é um digito de controle calculado da seguinte forma: primeiro algarismo + segundo algarismo×3 + terceiro algarismo×5. O dígito de controle é igual ao resto da divisão dessa soma por 7.

Entrada

O programa deve ler uma linha de dados contendo apenas um número com três algarismos.

Saída

O programa deve imprimir uma linha contendo a frase: O NOVO NUMERO E = X, onde X é o novo número inteiro com quatro algarismos, seguido por um caractere de quebra de linha: '\n'.

Observações

Eı	ntrada				
12	23				
Sa	ıída				
0	NOVO	NUMERO	Ε	=	1231

15 Conversão de decimal para binário (+++)

Escreva um algoritmo em Linguagem C que leia um número $0 \le n \le 255$ na base decimal e apresente sua representação em binário. Caso o número informado não esteja no intervalo especificado, o programa deve finalizar imprimindo a mensagem "Numero invalido!" na tela. A transformação de um número na base decimal para binária é obtida pela sequência de divisões por 2. O número 123, por exemplo, tem sua representação binária 01111011 porque:

Não é permitido o uso de outras bibliotecas além da stdio.h.

Entrada

O programa deve ler um número inteiro qualquer.

Saída

Caso o número lido esteja fora do intervalo especificado, o programa deve imprimir a mensagem "Numero invalido!" e encerrar. Caso o número lido seja válido, o programa deve apresentar a representação binária de *n* na tela.

Observações

Neste problema, todos os números binários deverão conter 8 bits. O número zero (em decimal), por exemplo, tem sua representação binária 00000000. O número 1 = 00000001, o 2 = 000000010 e assim por diante.

Entrada			
0			
Saída			
00000000			

Entrada	
123	
Saída	
01111011	

Entrada
128
Saída
10000000

16 Número Invertido (+++)

Escreva um programa para ler um número de três dígitos e imprimir o número invertido.

Entrada

A entrada contém apenas um número com três dígitos. Esse número é diferente de zero e não é múltiplo de 10 ou 100.

Saída

A saída deve conter apenas uma linha com o número correspondente ao valor da entrada, com seus dígitos invertidos. Logo após o número, deve ser impresso o caractere de quebra de linha: '\n'.

Entrada
123
Saída
321
Entrada
Entrada 987
987

17 Valor em Notas e Moedas (+++)

Escreva um algoritmo par ler um valor em reais e calcular qual o menor número possível de notas de \$R 100, \$R 50, \$R 10 e moedas de \$R 1 em que o valor lido pode ser decomposto. O programa deve escrever a quantidade de cada nota e moeda a ser utilizada.

Entrada

O programa deve ler uma única linha na entrada, contendo um valor em Reais. Considere que somente um número inteiro seja fornecido como entrada.

Saída

O programa deve imprimir quatro frases, uma em cada linha: NOTAS DE 100 = X, NOTAS DE 50 = Y, NOTAS DE 10 = Z, MOEDAS DE 1 = W, onde X, Y, Z e W correspondem às quantidades de cada nota ou moeda necessárias para corresponder ao valor em Reais dado como entrada. Após cada quantidade, o programa deve imprimir um caractere de quebra de linha: '\n'.

Entrada	a				
46395					
Saída					
NOTAS	DE	100) =	= 46	53
NOTAS	DE	50	=	1	
NOTAS	DE	10	=	4	
MOEDAS	S DE	E 1	=	5	

18 Sistemas de Equações Lineares (++++)

Dado um sistema de equações lineares do tipo:

$$ax + by = c$$
$$dx + ey = f$$

Escreva um programa para ler os valores dos coeficientes: a, b, c, d, e e f e calcular os valores de x e y.

Entrada

O programa deve ler os valores de a, b, c, d, e, f nesta ordem, um valor por linha. Os valores são números reais (float).

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DE X E = z, onde z é o valor da variável x, escrito com duas casas decimais. O programa deve imprimir uma segunda linha contendo a frase: O VALOR DE Y E = w, onde w corresponde ao valor da variável y escrito com duas casas decimais. Ao final da segunda linha o programa deve imprimir um caractere de quebra de linha: '\n'.

Eı	ntrada					
7						
8						
12	2					
3						
5						
9						
Sa	ıída					
0	VALOR	DE	Χ	Ε	=	-1.09
0	VALOR	DE	Y	Ε	=	2.45