FISEVIER

Contents lists available at ScienceDirect

# Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb



Research paper

# Ti<sup>3+</sup> self-doped TiO<sub>2</sub> via facile catalytic reduction over Al(acac)<sub>3</sub> with enhanced photoelectrochemical and photocatalytic activities



Jordan Lee<sup>a</sup>, Zhong Li<sup>a</sup>, Liangzhu Zhu<sup>b</sup>, Songhai Xie<sup>c,\*</sup>, Xiaoli Cui<sup>a,\*</sup>

- <sup>a</sup> Department of Materials Science, Fudan University, Shanghai 200433, China
- <sup>b</sup> Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- <sup>c</sup> Department of Chemistry, Fudan University, Shanghai 200433, China

# ARTICLE INFO

# Keywords: Ti<sup>3+</sup> self-doped TiO<sub>2</sub> Synthesis mechanism Catalytic reduction Photocatalytic Photoelectrochemical

# ABSTRACT

In this work, we have shown that aluminium acetylacetonate (Al(acac)<sub>3</sub>) can be used as the catalyst to synthesize  $\mathrm{Ti}^{3+}$  self-doped  $\mathrm{TiO}_2$  ( $\mathrm{Ti}^{3+}$ - $\mathrm{TiO}_2$ ) by sol–gel method in air.  $\mathrm{Ti}^{3+}$ - $\mathrm{TiO}_2$  can be obtained directly and Al(acac)<sub>3</sub> is removed during the annealing process.  $\mathrm{Ti}^{3+}$  concentrates in the surface layer of powders, making a homojunction between  $\mathrm{Ti}^{3+}$ - $\mathrm{TiO}_2$  in the surface layer and  $\mathrm{TiO}_2$  in the bulk. Based on the scheme of Zielger-Natta catalysts and the characterization of the sols and gels of samples, the synthesis mechanism of  $\mathrm{Ti}^{3+}$  is proposed as the combination of steric hindrance effect, Lewis acid-base reaction and crystal field effect and Al(acac)<sub>3</sub> acts as the catalyst in the reaction. Charge generation, charge transport and interface reactions, all of the three crucial strategies of photocatalytic are improved through the self-doped  $\mathrm{Ti}^{3+}$ , resulting in enhanced photocatalytic and photoelectrochemical activities. Compared with the reported methods, this work proposes a simple and novel route for the preparation of  $\mathrm{Ti}^{3+}$ - $\mathrm{TiO}_2$ , which would facilitate the preparation and application of  $\mathrm{TiO}_2$  photocatalyst.

# 1. Introduction

Nowadays, with serious environmental problems and rapid demands for renewable energy, the utilizations of solar energy in environment purification and solar energy conversion have been an ideal and meaningful study [1].  $\rm TiO_2$  is one of the most widely investigated semiconductor photocatalyst due to its advantages of chemical stability, strong redox capacity, nontoxicity and extensive source [2]. However, the wide band gap of anatase  $\rm TiO_2$  (3.2 eV) and high recombination rate of electrons and holes make the utilizations of  $\rm TiO_2$  non-competitive to conventional environment materials. Doping with  $\rm Ti^{3+}$  to modify  $\rm TiO_2$  has become a research hotspot since both light absorbance and charge separation can be improved by  $\rm Ti^{3+}$ , which can also narrow the band gap and enhance electrical conductivity [3]. Meanwhile, this strategy does not introduce new recombination centers or thermodynamic instability as impurity atom or ions doping [4].

Numerous efforts are currently being devoted for preparation of  ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  samples [5–14]. The reported synthesis approaches can be divided into three catagories: reduction of  ${\rm Ti}^{3+}$  source [5–9], growth of  ${\rm Ti}^{3+}$  source under protective gas [10,11] and oxidation of low-valence Ti source [12–14].

Reduction is the most widely used method in Ti<sup>3+</sup>-TiO<sub>2</sub> preparation

[5–9]. For example, Fang et al. [5] fabricated Ti<sup>3+</sup>-TiO<sub>2</sub> via sol-gel by using tetrabutyl orthotitanate (TBOT) as Ti source and NaBH<sub>4</sub> as reducer. The photocatalytic activity was improved owing to enhanced light absorption. Zheng et al. [6] generated Ti<sup>3+</sup>-TiO<sub>2</sub> by hydrothermal method, using TiCl<sub>4</sub> as Ti source and Zn powder as reducer. The excess Zn in TiO<sub>2</sub> could also suppress the oxidization of Ti<sup>3+</sup> in air. Wang et al. [7] annealed TiOF2 films at normal atmosphere to produced TiO2 nanosheet film with bulk/surface defects. Strong reducers, such as NaBH<sub>4</sub> and active metals, could fabricate Ti<sup>3+</sup>-TiO<sub>2</sub> in air, but specific storage condition should be maintained to avoid oxidation-induced failure. Recently, Jiang et al. [8] presented an oleic acid-assisted solvothermal process for fabricating Ti<sup>3+</sup>-TiO<sub>2</sub> on the basis of carbonization of oleic acid under inert gas at 500-900 °C. Saputera et al. [9] obtained blue Ti<sup>3+</sup>-TiO<sub>2</sub> at 500 °C under NO and CO respectively while Lin et al. [10] produced Ti<sup>3+</sup>-TiO<sub>2</sub> nanowires at 800 °C by Al powder under vacuum. In these processes, isolation of air and high temperature may need extra requirements of equipment.

By applying both Ti<sup>3+</sup> and Ti<sup>4+</sup> sources, Ti<sup>3+</sup>-TiO<sub>2</sub> can also be obtained [10,11]. Recently, Zhou et al. [11] used TiCl<sub>3</sub> and titanium isopropoxide to synthesize Ti<sup>3+</sup> self-doped anatase-rutile mixed TiO<sub>2</sub> by hydrothermal method under argon atmosphere. No Ti<sup>3+</sup> peaks were identified in XPS spectra but a strong ESR signal of 1.94 was observed,

E-mail addresses: shxie@fudan.edu.cn (S. Xie), xiaolicui@fudan.edu.cn (X. Cui).

<sup>\*</sup> Corresponding authors.

indicating that  ${\rm Ti}^{3+}$  lies in the bulk of the samples. Hamdy et al. [12] heated commercial anatase  ${\rm TiO}_2$  and  ${\rm Ti}_2{\rm O}_3$  under static gas at 300–900 °C to obtain  ${\rm Ti}^{3+}$ -TiO<sub>2</sub>, they found that its photocatalytic reactivity is twofold larger than that of P25 in the photodegradation of methylene blue.

 ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  can also be prepared from the oxidation of low-valence Ti source, such as metal Ti and  ${\rm TiH}_2$  [12–14]. For example, Liu et al. prepared  ${\rm Ti}^{3+}$  self-doped  ${\rm TiO}_{2-x}$  anatase nanoparticles via oxidation of  ${\rm TiH}_2$  in  ${\rm H}_2{\rm O}_2$  [13–15]. Besides, by employing both Ti powder and TBOT as precursors and hydrofluoric acid as solvent, Cai et al. fabricated  ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  nanosheet through a hydrothermal method at 200 °C [16]. The highest photocatalytic activity was achieved when the molar ratio of metal Ti to TBOT reaches 1:20. The oxidation of low-valence Ti source has the advantage of fabricating  ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  sample in air, which is beneficial to simplify the equipment.

In our recent study, we prepared Ti<sup>3+</sup> self-doped TiO<sub>2</sub> microspheres through selective etching the composite Al(acac)<sub>3</sub>/Al-TiO<sub>2</sub>, which was synthesized via facile flame thermal method [17]. Al(acac)<sub>3</sub> has been demonstrated as a special reagent in Ti<sup>3+</sup>-TiO<sub>2</sub> synthesis process. It is well known that Al(acac)<sub>3</sub> is a stable reagent in air and we are highly interested in whether Al(acac)<sub>3</sub> could help to synthesize Ti<sup>3+</sup>-TiO<sub>2</sub> by a general way such as a sol-gel process, which have not been investigated so far. In this work, Ti<sup>3+</sup> heavily self-doped TiO<sub>2</sub> photocatalyst is obtained via sol-gel approach in air with the assistance of Al(acac)3 and it acts as the catalyst in this reaction. The composition of TBOT and Al (acac)<sub>3</sub> is similar to the precursor of Zielger-Natta catalytic because -OH from hydrolyzing intermediate of TBOT is nucleophilic as -Cl from  $TiCl_4$  while -acac from  $Al(acac)_3$  is electrophilic as  $(i-C_4H_9)$  from Al(i-C<sub>4</sub>H<sub>9</sub>)<sub>3</sub>. It is also found that Ti<sup>3+</sup> is not doped uniformly in the samples, with a homojunction between Ti3+-TiO2 in the surface layer and mostly TiO2 in the bulk. Enhanced photoelectrochemical response and photocatalytic activities are demonstrated for the resulted samples on account of wider light absorbance, quicker charge transport and faster interface reaction. By the reference of the scheme of Zielger-Natta catalysts and the characterizations of the sols and gels of samples, the formation mechanism of Ti3+ is proposed as a bimetallic radical process through steric hindrance effect, Lewis acid-base reaction and crystal field effect.

# 2. Materials and methods

# 2.1. Synthesis of samples

All the reagents were obtained from Sinopharm Chemical Reagent Co. Ltd and employed without any further purification. Briefly, 6 mL tetrabutyl orthotitanate (98%, TBOT), 24 mL absolute ethanol (AR), 1.9 mL acetylacetone (AR, Hacac) and a certain amount of aluminium acetyllacetonate (98%, Al(acac) $_3$ ) were mixed and stirred for 1 h to obtain solution A while solution B consisted of 30 mL absolute ethanol and 3.5 mL H $_2$ O. Solution B was dropwise added into solution A by titration funnel under magnetic stirring. Afterwards, the mixed solution was aged for 24 h to form a sol.

The as-prepared sols were dried at 80 °C under an infrared lamp, followed by annealing at 350 °C in air for 2 h to remove Al(acac) $_3$  and synthesize the desired Ti $^3$ +-TiO $_2$  powders directly. Samples with different ratios of Ti $^3$ + were signed as X-TiO $_2$  in which X represented the molar percentage of Al(acac) $_3$  to TBOT in the precursor. To study the electrochemical property of the samples, the corresponding electrodes of samples were fabricated by spinning the sols on the 7 × 8 mm $^2$  fluorine-doped tin oxide (FTO) conducting glasses followed by the same annealing treatment.

For comparison, the undoped  $TiO_2$  (Sample 0- $TiO_2$ ) were prepared through the same procedures without the addition of  $Al(acac)_3$ .

#### 2.2. Characterizations

X-ray diffraction (XRD) was employed to examine the crystalline structure of the photocatalyst on a Bruker D/8 advanced diffractometer using Cu K $\alpha$  radiation. Ti $^3+$  was analyzed by Electron Spin Resonance (ESR) on a Bruker EMX-8/2.7 at X-bond microwave at 100 K. X-ray photoelectron spectroscopy (XPS) was conducted with a RBD upgrated PHI-5000C ESCA system, which was adjusted by the peak of C1s at 284.6 eV. High resolution transmission electron microscopy (HRTEM) image and energy-dispersive X-ray spectrum (EDS) were taken by a Tecnai G2 F20 S-Twin FE-TEM. N $_2$  adsorption-desorption isotherms were characterized by a Tristar II 3020 surface area analyzer. UV – vis diffused reflectance spectroscopy (DRS) was obtained by a UV-3150 UV–vis spectrophotometer with BaSO $_4$  sample disk as the background. Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet Nexus spectrometer with KBr pellets.

# 2.3. Photoelectrochemical and photocatalytic activities measurements

Photoelectrochemical measurements were performed on a three-electrode cell, with Pt plate as counter electrode, saturated calomel electrode (SCE) as reference electrode, the as-prepared corresponding electrodes as working electrode and  $0.5~M~Na_2SO_4$  solution as electrolyte. The electrochemical impedance spectroscopy (EIS) and Mott-Schottky curves (MS) were implemented on a PARSTAT 4000 Potentionstat/Galvanostat EIS analyzer. The frequency of EIS ranged from 100,000~Hz to 0.02~Hz and MS was scanned at 5~mV/s from -1.5~V (vs. SCE) at 1000~Hz. Transient photocurrent was measured by a CHI 660~A electrochemical workstation under the illumination of simulated solar irradiation. The simulated solar irradiation was constructed by a CHF-XM35 Xenon lamp whose infrared wavelengths were filtered by a quartz water channel and the intensity of the UV-vis light was  $84.0~mW/cm^2$ .

Photocatalytic activity measurements were evaluated by the photodegradation of methylene blue (MB) under simulated solar irradiation in a XPA-7 photochemical reactor at 25 °C. Typically, 10 mg samples were dispersed into 10 mL MB solution (5 mg/L) respectively in each quartz tube by ultrasonic treatment. The adsorption-desorption equilibrium was achieved before degradation through stirring the solution in dark for 2 h. During the photocatalytic reaction, all samples were irradiated simultaneously under spinning and magnetic stirring condition. Every 20 min, the concentration of MB solution was measured on a UV-2300 UV-vis absorption spectroscopy.

# 3. Results and discussion

# 3.1. Characterization of samples

Fig. 1a depicts the XRD patterns of samples prepared by using different amount of Al(acac)<sub>3</sub>. All diffraction peaks are well ascribed to anatase  ${\rm TiO_2}$  (JCPDS No. 21-1272) and the crystallinity of powders maintains high even though the molar ratio of Al to Ti reaches 10%. Fig. 1b shows the enlarged (101) XRD peaks of the samples, almost no shift can be observed, indicating that the bulk [18] of the as-prepared powders is composed of  ${\rm TiO_2}$ .

The existence of Ti<sup>3+</sup> is detected by ESR and Ti2p XPS spectra, as shown in Fig. 2. ESR is especially suitable to detect the existence of Ti<sup>3+</sup> for its high sensitivity to species which contain unpaired electrons. As shown in Fig. 2a, the g-value of the signals equals 2.002, which is ascribed to the g-value of surface oxygen vacancies [7,19,20]. With the increasing amount of Al(acac)<sub>3</sub> in the precursors, the intensity of ESR signals also becomes stronger, implying that the content of Ti<sup>3+</sup> increases accordingly. For the undoped TiO<sub>2</sub> sample, almost no ESR signal can be detected owing to the shortage of unpaired electrons. Ti2p XPS spectra disclose the chemical environment of Ti as depicted in Fig. 2b-d. For undoped TiO<sub>2</sub> sample (Fig. 2b), the Ti2p<sub>3/2</sub> and Ti2p<sub>1/2</sub>



Fig. 1. (a) XRD patterns and (b) the enlarged (101) peak of samples prepared by using different amount Al(acac)<sub>3</sub>. (A: anatase).

core level, 458.4 eV and 464.0 eV, should be attributed to Ti-O-Ti bond [21]. The peak of  $Ti2p_{3/2}$  shifts sharply to 457.3 eV for Sample 1- $TiO_2$  (Fig. 2c) and 457.0 eV for Sample 10- $TiO_2$  (Fig. 2d), reconfirming the presence of  $Ti^{3+}$  in the samples [22]. It is worth noting that the peak intensity is associated with  $Ti^{3+}$  is larger than that of  $Ti^{4+}$ , as shown in Fig. 2c–d, implying that  $Ti^{3+}$  is heavily doped in the surface layer in the resultant samples. The possibility that the samples are Al doped  $TiO_2$  is excluded by considering the following three aspects. One is that no signal is ascribed to Al element in the survey spectra of  $Ti^{3+}$ - $TiO_2$ , as shown in Fig. S1. Another is that the binding energy of Ti2p electron of Al doped  $TiO_2$  ought to be larger than  $TiO_2$  [23], which is just opposite

to the variation of the experimental results that is depicted in Fig. 2b–d. The third is that ESR signal of Al doped  $TiO_2$  consists a pair of sextuplets because Al has a nuclear spin of I = 5/2 [24], which is not observed in the ESR results of the as-prepared samples (spectra in Fig. 2a).

Through the combination of the XRD patterns and XPS spectra, the irregular particles, as shown in Fig. S2, are considered as composites of  ${\rm Ti}^{3+}$  heavily doped  ${\rm TiO}_2$  in the surface layer and undoped  ${\rm TiO}_2$  in the bulk through the following apagogical discussions. It is well known that XPS is a technology of surface analysis (< 10 nm [25]) while XRD characterizes the bulk of materials ( $\sim 2$  µm [16]). If  ${\rm Ti}^{3+}$  distributes uniformly, XRD patterns would be ascribed to Magnéli phase  ${\rm TiO}_{2x}$ 



Fig. 2. (a) ESR spectra of samples prepared by using different amount Al(acac)<sub>3</sub> and Ti2p XPS spectra of Sample (b) 0-TiO<sub>2</sub> (c) 1-TiO<sub>2</sub> and (d) 10-TiO<sub>2</sub>.



Fig. 3. HRTEM image of the as-prepared  ${\rm Ti}^{3+}$ -TiO<sub>2</sub>. Sample 10-TiO<sub>2</sub> is taken as an example.

rather than anatase  ${\rm TiO}_2$  because the signal of  ${\rm Ti}^{3+}$  is stronger than that of  ${\rm Ti}^{4+}$  in the  ${\rm Ti2p}$  XPS spectra [26]. If  ${\rm Ti}^{3+}$  concentrates in the bulk of samples, little signal of  ${\rm Ti}^{3+}$  would be detected in the  ${\rm Ti2p}$  XPS spectra. Unless  ${\rm Ti}^{3+}$  concentrates in the surface layer of powders (Fig. 9), the XRD patterns and XPS spectra will correspond to each other [15]. In addition, the g-value of 2.002 rather than 1.995-1.997 in the ESR spectra also supports this assumption [7,27,28]. It is considered that  ${\rm Ti}^{3+}$  in the surface layer could enhance both light absorbance and charge separation while  ${\rm Ti}^{3+}$  in the bulk could only improve light absorbance [29,30]. The reason why  ${\rm Ti}^{3+}$  concentrates in the surface layer rather than distributes uniformly might be attributed to segregation due to the especially high solubility of  ${\rm Al}({\rm acac})_3$  in ethanol.

The assumption that the samples are homojunctions between  $Ti^{3+}$ - $TiO_2$  in the surface layer and  $TiO_2$  in the bulk is further confirmed by HRTEM image of as-prepared  $Ti^{3+}$ - $TiO_2$ . As shown in Fig. 3, the surface of  $Ti^{3+}$ - $TiO_2$  particles is disordered and its thickness varies from 2 nm to 10 nm, indicating that the lattice of the surface layer is covered by the heavily doped  $Ti^{3+}$ - $TiO_2$  [31,32]. While the bulk of samples displays lattice features, with lattice spacing of 0.345 nm which is ascribed to the (101) plane of anatase  $TiO_2$ . Almost no disordered grain can be found in the bulk, confirming that little  $Ti^{3+}$  species is distributed in the bulk. The uneven distribution of  $Ti^{3+}$  makes the homojunction between  $Ti^{3+}$ - $TiO_2$  in the surface layer and  $TiO_2$  in the bulk.

O1s and C1s XPS spectra of samples are depicted in Fig. S3. As shown in Fig. S3, the peaks of 531.1 eV and 529.7 eV are ascribed to - OH absorbed on the surface and Ti<sup>4+</sup>-O bond of TiO<sub>2</sub> [33]. While a new and large peak is generated at 528.6 eV, as shown in Fig. S3b-c, which can be attributed to an ionic Ti-O bonding for Ti<sup>3+</sup>-TiO<sub>2</sub> [34,35]. It is well known that the density of electron cloud of Ti<sup>3+</sup>-O is denser than that of Ti<sup>4+</sup>-O, decreasing the electron binding energy of both Ti2p and O1s and resulting a high extent of ionicity of Ti-O bonding [36]. Fig. S3d shows the C1s XPS spectra for the resultant sample. The peak of 284.6 eV is the absorbed C for calibration and 288.4 eV is carbonaceous impurities on the surface [37,38].

The peak areas of the Ti  $2p_{3/2}$  and O 1s states are listed in Table 1. It can be observed that the peak area of absorbed -OH on the surface decreases greatly for  $Ti^{3+}$ - $TiO_2$  in contrast to undoped  $TiO_2$ . At the same time, the area ratio of both  $Ti^{3+}$  to  $Ti^{4+}$  and ionic oxygen to covalent oxygen increases, implying that the content of  $Ti^{3+}$  increases with the increasing amount of  $Al(acac)_3$  in the precursors, which corresponds to the information from ESR (Fig. 2a). Furthermore, a constant value could be got from Eq. (1),

**Table 1**Peak areas of the Ti 2p<sub>3/2</sub> and O 1s states in XPS spectra.

| Sample                                                            | Peak Area               |                 |                          |                           |                       |  |  |  |
|-------------------------------------------------------------------|-------------------------|-----------------|--------------------------|---------------------------|-----------------------|--|--|--|
|                                                                   | 458.4 eV                | 457.3 eV        | 531.1 eV                 | 529.6 eV                  | 528.7 eV              |  |  |  |
| 0-TiO <sub>2</sub><br>1- TiO <sub>2</sub><br>10- TiO <sub>2</sub> | 79605<br>49518<br>20939 | 167898<br>84644 | 211876<br>59458<br>65304 | 104796<br>104424<br>81573 | 0<br>172089<br>155133 |  |  |  |

$$\frac{S_{Ti}^{3+}/S_{Ti}^{4+}}{S_{\text{ionicO}}/S_{\text{covalentO}}} \approx 2.1 \tag{1}$$

The value is about 2.1, which confirms the theoretical simulation that one oxygen vacancy occurs with two trivalent ions [39].

The microstructure of the as-prepared Ti<sup>3+</sup>-TiO<sub>2</sub> is characterized by N<sub>2</sub> adsorption-desorption isotherms and EDS elemental mapping. N<sub>2</sub> adsorption-desorption isotherms is employed to characterize the porous structure and specific area of samples. As shown in Fig. S4a, all samples exhibits a type IV nitrogen isotherm with a H2 hysteresis loop, which is ascribed to mesoporous characteristics [40-43]. The pore-size distribution obtained by BJH method from the desorption branch of the isotherm, as shown in Fig. S4b, is in a narrow range of 3-5 nm, which is useful in the photoelectrochemical and photocatalytic process. The specific area obtained by BET method, as illustrated in Table S1, decreases with the introduction of Al(acac)<sub>3</sub> in the precursor. It is negative for improving the photoelectrochemical and photocatalytic activity. EDS elemental mapping is implemented to analyze the element distribution of the as-prepared samples. As shown in Fig. S5a, the asprepared samples are composed of nanoparticles of 10 nm. The mesoporous of the samples detected by N<sub>2</sub> adsorption-desorption isotherms might origins from the gaps between these nanoparticles. Fig. S5b-f illustrates that the samples are composed of Ti, O and trace amounts of C with uniform distribution.

Fig. 4 displays the UV–vis diffuse reflectance spectra of the samples. It is clear that the light absorbance of Ti<sup>3+</sup>-TiO<sub>2</sub> in the visible light region is greatly improved, implying a narrower band gap than that of undoped TiO<sub>2</sub>. The band gaps of the as-prepared Ti<sup>3+</sup>-TiO<sub>2</sub> samples, as shown in Fig. S6, are got through transformed Kubelka-Munk function against photon energy [5,40]. It is found that the band gap of the obtained Ti<sup>3+</sup>-TiO<sub>2</sub> decreases linearly from 3.11 eV to 2.78 eV with the increasing amount of Ti<sup>3+</sup>. Meanwhile, a photograph of two samples is also inserted into Fig. 4. It is clearly that Ti<sup>3+</sup>-TiO<sub>2</sub> is dark gray while



Fig. 4. UV–vis diffuse reflectance spectra of the samples. The insert is the photograph of Sample 0-TiO $_2$  and 10-TiO $_2$ .

undoped  ${\rm TiO_2}$  is white in color. The light absorption could be improved for the resulted sample which is ascribed to the results of UV–vis DRS spectra [23]. The improved absorption of photocatalyst results in enhanced charge generation, which will benefit to a higher photocatalytic activity.

# 3.2. The synthesis mechanism of Ti<sup>3+</sup>-TiO<sub>2</sub>

In order to investigate the formation mechanism of Ti<sup>3+</sup> in the samples. FT-IR spectra were firstly recorded for the sols and gels of two kind samples. As shown in Fig. 5, almost no changes can be found between the sol and gel of each sample, suggesting that little chemical reaction happens from sols to gels. Table 2 summarizes the bond types derived from the FT-IR peaks according to Fig. 5 and the standard bond types of Al(acac)<sub>3</sub> and Hacac from infrared spectrum database from NIST (National Institute of Standards and Technology) Chemistry WebBook, SRD 69. As shown in Table 2, the peaks of the sol/gel of samples are similar to that of Al(acac)<sub>3</sub>, but they are quite inconsistent with that of Hacac. Considering that Ti is the only introduced metal element during the synthesis of undoped TiO2 (Sample 0-TiO2), the spectra of the sol/gel of Sample 0-TiO2 are inferred as the chelation of TBOT and the acetylacetone ligands as illustrated in Fig. 7a [44]. As for the sol/gel of Sample 10-TiO<sub>2</sub> with 10% Al(acac)<sub>3</sub>, two pairs of peaks for the bending vibration of C-H is observed. One pair appear at 1460 cm<sup>-1</sup> and 1386 cm<sup>-1</sup>, which is the same as the standard peaks of Al(acac)<sub>3</sub>. It is ascribed to the Al(acac)<sub>3</sub> which is introduced in the precursor. The other pair appear at 1414 cm<sup>-1</sup> and 1361 cm<sup>-1</sup>, there is a moderate shift from that of the sol/gel of Sample 0-TiO2. Some chemical changes are assumed to occur for the chelation structure of TBOT



Fig. 5. FT-IR spectra of the sols and gels of samples.

Table 2
Bond types of FT-IR spectra of samples and Al(acac)<sub>3</sub>.

| Bond Type     | Wavenumbers (cm <sup>-1</sup> ) |                  |                       |                |  |  |
|---------------|---------------------------------|------------------|-----------------------|----------------|--|--|
|               | 0-TiO <sub>2</sub>              | $10	ext{-TiO}_2$ | Al(acac) <sub>3</sub> | Hacac          |  |  |
| ν ΟΗ          | 3333                            | 3404             |                       |                |  |  |
| $\nu$ C $-$ H | 2926                            | 2923             | 2924                  | 3006/2964/2924 |  |  |
| $\nu$ C=O     | 1574                            | 1593             | 1593                  | 1729/1710      |  |  |
|               | 1530                            | 1529             | 1534                  | 1616           |  |  |
| δ С-Н         | 1426                            | 1460/1414        | 1466                  | 1420           |  |  |
|               | 1357                            | 1386/1361        | 1387                  | 1360           |  |  |
| $\nu$ C $-$ O | 1285                            | 1285             | 1290                  | 1249           |  |  |
|               | 1028                            | 1027             | 1028                  | 1156           |  |  |





Fig. 6. (a) ESR spectrum and (b) XRD pattern of the gel of as-prepared  ${\rm Ti}^{3+}$ -TiO<sub>2</sub>. Sample 10-TiO<sub>2</sub> is taken as an example.

# and acetylacetone.

Fig. 6a shows the ESR spectrum for the gel of Sample 10-TiO<sub>2</sub>. It can be seen that the intensity is three orders of magnitude less than that of the annealed one, as compared to Fig. 2a. Furthermore, both the position and shape of the signal are different. It can be concluded that no Ti<sup>3+</sup> was formed from the sol to gel. Fig. 6b shows XRD pattern of the gel of Sample 10-TiO<sub>2</sub>. It matches well with Al(acac)<sub>3</sub> (JCPDS no. 42-1746), reflecting the presence of Al(acac)<sub>3</sub> in the gel. While the peaks of Al(acac)<sub>3</sub> disappear after annealing, as illustrated in the XRD patterns in Fig. 1a, indicating that the Al(acac)<sub>3</sub> is removed during the annealing process. In view of the weak ESR signal, there should be some substance with unpaired electron in the sols/gels.

Al(OH)(acac)<sub>2</sub> + Hacac  $\rightarrow$  Al(acac)(acac)<sub>2</sub> + HOH  $\rightarrow$  Al(acac)<sub>3</sub> + H<sub>2</sub>O Fig. 7. The growing mechanism of the gel of (a) TiO<sub>2</sub>, (b-d) Ti<sup>3+</sup>-TiO<sub>2</sub> and (e) Al(acac)<sub>3</sub>.

On the foundation of the proof of Ti<sup>3+</sup> and FT-IR results, the growing mechanism of Ti<sup>3+</sup> in our sample is proposed with reference to the research of Zielger-Natta catalysts due to their similar precursor and products composed of Ti<sup>3+</sup>. Tkáč [33–35] studied the reduction mechanism of Zielger-Natta catalysts by ESR and FT-IR systematically and discovered the bimetallic complexes alkylated intermediate. The reactions were proposed as the follows (Eqs. (2) and (3) [45]:

$$TiCl4 + Al(i-C4H9)3 \rightarrow \cdot Cl2TiCl2Al(i-C4H9)2$$
 (2)

$$\cdot \text{Cl}_2\text{TiCl}_2\text{Al}(i\text{-C}_4\text{H}_9)_2 \rightarrow \text{TiCl}_3 + 1/2 (i\text{-C}_4\text{H}_9)_2\text{AlCl}_2\text{Al}(i\text{-C}_4\text{H}_9)_2$$
 (3)

Besides the steric hindrance of -OH and -acac, -OH from hydrolyzing intermediate of TBOT is nucleophilic as Cl from TiCl<sub>4</sub> while -acac from Al(acac)<sub>3</sub> is electrophilic as (i-C<sub>4</sub>H<sub>9</sub>) from Al(i-C<sub>4</sub>H<sub>9</sub>)<sub>3</sub> because of its conjugated  $\pi$  bonds, making the system of TBOT and Al (acac)<sub>3</sub> a Zielger-Natta composition. According to the mechanism of Zielger-Natta catalysts, the scheme is conjectured as shown in Fig. 7a-e. On account of the fact that Al3+ is lewis acid as well as the semidiameter of Al<sup>3+</sup> (0.050 nm) is smaller in contrast to Ti<sup>4+</sup> (0.061 nm). The interaction of Al(acac)<sub>3</sub> and Ti(acac)(OH)<sub>3</sub> gives rise to the exchange of -OH and -acac by coordination bond, which starts the formation of Ti3+. The unstable intermediate product, Ti(acac)2(OH)3Al(acac)2, may quickly decomposes into the radical as 'Ti(acac)  $(OH)_3Al(acac)_2$  and a  $Ti^{4+} \rightarrow Ti^{3+}$  reduction happens accordingly. Under the driving force of the crystal field effect, which transforms hexahedral structure into octahedral structure, the bimetallic Ti-Al radicals grow to crystalline as shown in Fig. 7c [46]. It may be the Ti-Al bimetallic crystalline and the leaving group of Al(acac)<sub>3</sub> that generate the FT-IR signals of the sol/gel of samples with Al(acac)3. The paramagnetism is so little for the gel because the mutual compensation of the free electrons of Ti<sup>3+</sup> with opposed spins [47]. During the annealing process, the organic aluminium evaporates and the crystalline decomposes into  ${\rm Ti}^{3+}\text{-TiO}_2$ , as shown in Fig. 7d. It should be acknowledged that experimental evidences are necessary to confirm this mechanism.

On account of the fact that the Al(acac)<sub>3</sub> which participates in the reaction would return back to Al(acac)<sub>3</sub>, as indicated in XRD (Fig. 6b) and FT-IR (Table 2) results of the gels of samples. The destination of Al (acac)<sub>3</sub> is proposed as shown in Fig. 7e. Every leaving group of Al (acac)<sub>2</sub>(OH) would be restored to Al(acac)<sub>3</sub> owing to the existence of Hacac, making Al(acac)<sub>3</sub> acting as the catalyst in the following redox reaction:  ${\rm Ti}^{4+} + {\rm Hacac} \rightarrow {\rm Ti}^{3+} + {\rm acac}$ . The thermodynamic feasibility of this reaction has been proved by Aronne et al. [25]. However, this reaction may be hard to happen in kinetics. On one hand, Sample 0-TiO<sub>2</sub> is produced by TBOT and Hacac, little  ${\rm Ti}^{3+}$  is detected by ESR. On the other hand, Hacac has been used as the anti-hydrolysis agent in undoped  ${\rm TiO}_2$  preparation via sol–gel method for tens of years. It is Al (acac)<sub>3</sub> that catalyzes this reaction and produced heavily doped  ${\rm Ti}^{3+}$   ${\rm TiO}_2$  samples.

# 3.3. Photoelectrochemical and photocatalytic activities of samples

Electrochemical impedance spectroscopy (EIS) is employed to analyze the charge transfer process and interface reaction. Fig. 8a shows the Nyquist plots of as-prepared electrodes under simulated solar irradiation. The plots consist of semicircles at high frequencies and straight lines at low frequencies. It can be seen that the arc semidiameters become smaller greatly for the samples with Ti<sup>3+</sup>, illustrating that the electron transfer resistances decrease with the doping of Ti<sup>3+</sup> in TiO<sub>2</sub>. The equivalent circuit model [48,49] is inserted in Fig. 8a and their impedance elements are analyzed by Z-View. All simulated results are listed in Table 3, where  $R_i$  is internal resistance, CPE is constant phase element,  $R_{ct}$  is the charge transfer at the working electrode/electrolyte interface and  $W_s$  is the Warburg diffusion process in the electrolyte [50]. In view of the fact that the charge transfer at the working electrode/electrolyte interface is limited by the slowest step of the charge transfer, the charge transfer resistance is usually used to characterize the rates of charge transport of carriers in semiconductors [51]. The occurrence of Warburg diffusion process illustrates the changes of species in the electrolyte, which is caused by chemical reactions [52].





Fig. 8. (a) Nyquist plots and the fitting line of as-prepared electrodes under simulated solar irradiation (the insert is the equivalent circuit model) and (b) Mott–Schottky plots of as-prepared electrodes under dark in  $0.5~M~Na_2SO_4$  solution (vs. SCE).

Thus, the Warburg impedance could be used to evaluate the rates of interface reaction indirectly because the concentration diffusion of species can not be faster than interface reaction if an electrochemical process is controlled by diffusion.

Fig. S7 shows the Nyquist plots of as-prepared electrodes under dark and its equivalent circuit model. Owing to the lack of excitation carriers, the charge transfer resistances are the charge transfers between space charge layer and electrolyte. They are so large in contract to those under simulated solar irradiation that the electric double layers are nearly pure capacitances. Although the impedance under dark is sometimes applied to reflect the original property of materials [53], it



 Table 3

 The fitted impedance dates based on equivalent circuit.

| Electrodes                                                                                                      | $R_i (\Omega/\mathrm{cm}^2)$         | CPE-T                                                                                                    | CPE-P                                | $W_s (\Omega/\mathrm{cm}^2)$                                                                           | $R_{ct} (\Omega/\mathrm{cm}^2)$                                                                     |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 0-TiO <sub>2</sub><br>0.125-TiO <sub>2</sub><br>1-TiO <sub>2</sub><br>5-TiO <sub>2</sub><br>10-TiO <sub>2</sub> | 36.1<br>32.7<br>51.9<br>49.6<br>52.0 | $9.4 \times 10^{-6}$ $1.5 \times 10^{-5}$ $3.3 \times 10^{-5}$ $1.3 \times 10^{-5}$ $2.5 \times 10^{-5}$ | 0.82<br>0.78<br>0.78<br>0.78<br>0.82 | $1.41 \times 10^{5}$ $1.37 \times 10^{5}$ $1.08 \times 10^{5}$ $8.2 \times 10^{4}$ $6.3 \times 10^{4}$ | $7.5 \times 10^{4}$ $2.9 \times 10^{4}$ $2.6 \times 10^{4}$ $2.6 \times 10^{4}$ $2.0 \times 10^{4}$ |

could not describe the character during photocatalysis [54,55] because of the lack of photo-induced carrier.

From the data in Table 3, it is confirmed that the Warburg impedance calculated from the straight line at low frequency decreases with the higher ratio of  ${\rm Ti}^{3+}$  in  ${\rm TiO}_2$  and it should be reasonable since  ${\rm Ti}^{3+}$  could act as the active sites [56] in chemical process. The decrease of the Warburg impedance accelerates the rate of interface reactions. As shown in Table 3, the charge transfer resistance ( ${\rm R_{ct}}$ ) also decreases with the increasing density of  ${\rm Ti}^{3+}$  in  ${\rm TiO}_2$ , which benefits the transport of carriers. It is due to the enhanced conductivity of samples deriving from the unpaired electrons introduced by  ${\rm Ti}^{3+}$ . The conductivity of n-type semiconductor judged by the number of electrons is the key factor to charge transport. The increased density of electrons by the presence of  ${\rm Ti}^{3+}$  leads to higher conductivity which is helpful for the transport of electrons and holes.

The density of electrons, as the majority carriers in n-type  $TiO_2$ , is calculated by means of the differential form of Mott–Schottky formula (Eq. (4)),

$$N_d = \frac{2}{\varepsilon \varepsilon_0 e} \frac{d\left(E - E_{fb} - \frac{KT}{e}\right)}{d(1/C^2)} \tag{4}$$

where  $N_d$  is charge carrier densities,  $\varepsilon_0$  is vacuum permittivity (8.854  $\times$  10<sup>-14</sup> F/cm),  $\varepsilon$  is permittivity of anatase TiO<sub>2</sub>, e equals 1.6  $\times$  10<sup>-19</sup> C and  $d(E\text{-E}_{\text{rb}}\text{-kT/e})/d(1/C^2)$  is the reciprocal of the slope of Mott–Schottky curve [57]. As calculated by Eq. (4), the density of electrons increases to 5.713  $\times$  10<sup>18</sup> cm<sup>-3</sup> of Sample 10-TiO<sub>2</sub> (Ti<sup>3+</sup> self-doped TiO<sub>2</sub>) from 3.239  $\times$  10<sup>18</sup> cm<sup>-3</sup> of Sample 0-TiO<sub>2</sub> (undoped TiO<sub>2</sub>).

The value of flat band potential,  $E_{\rm fb}$ , is calculated by the horizontal intercept of the tangent line of Mott–Schottky plots [58,59]. From Fig. 8b, the flat band potential is -0.71 V (vs. SCE) for Sample 10-TiO2, while it is -0.63 V (vs. SCE) for undoped TiO2 (Sample 0-TiO2), which means the conduction band becomes more negative owing to the presence Ti $^{3+}$  for the resultant samples. For n-type semiconductors, the flat band potentials are approximately equal to the bottom of their conduction bands [60]. Now that the surface space charge layer plays a dominant role in the capacitance-voltage characteristics of Mott–Schottky plots [51]. Thus, the calculated flat band potentials can reflect the location of the conduction bands of samples in the surface layer (< 50 nm [61]). The energy band of a semiconductor could be confirmed by the combination of flat band potential from Mott–Schottky

Fig. 9. Schematic of the energy band of as-prepared  ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  with charge migration and separation. Sample 10-  ${\rm TiO}_2$  is taken as an example and the potential has been conversed from vs. SCE into vs. NHE.

curve and band gap from UV-vis DRS spectra. For the as-prepared samples, the energy band of  ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  in the surface layer is got from those of Sample 10-TiO<sub>2</sub> while the undoped  ${\rm TiO}_2$  in the bulk is got from those of Sample 0-TiO<sub>2</sub>. Accordingly, the schematic of the energy band of as-prepared  ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  is obtained as displayed in Fig. 9. VB XPS spectra is employed to confirm the position of valence band. As shown in Fig. S8, the valence band of Sample 10-TiO<sub>2</sub> is -0.50 eV lower than that of Sample 0-TiO<sub>2</sub>, which is consistent with the result of the assumption from Mott–Schottky curve and UV-vis DRS spectra. The energy band of the as-prepared  ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  is formed as a type-II staggered gap, which is to the benefit of charge migration and separation. The  ${\rm Ti}^{3+}$  in the surface layer promotes the light absorption and the homojunction helps speeding up the separation of charge carriers.

During the photoelectronchemical reaction, both interface reactions from electrode to electrolyte and charge transfers in semiconductors are indispensable. The photocatalytic activities of photocatalysts are controlled by both of them. Now that the calculated value of Warburg impedance is larger than that of electron transfer resistance for every sample, it is assumed that the interface reactions are slower than charge transport of carriers in semiconductors, which is ascribed to the previous study [62]. The acceleration of charge transport and interface reactions could improve the photocatalytic activities.

The photoelectrochemical activity is measured by transient photocurrent curves of electrodes at 0 V (vs. SCE). A Xenon lamp is carried as the simulated solar irradiation. As illustrated in Fig. 10a, when the light is turned on, the current jumps to a high peak and then drops to a stable level. It is the active substances absorbed on the surface that cause the





Fig. 10. (a) Transient photocurrent curves of as-prepared electrodes with 0.5 M  $Na_2SO_4$  solution under UV–vis light irradiation at 0 V (vs. SCE). (b) Photocatalytic activity of samples the samples with different amount  $Tt^{3+}$  in degradation of MB under UV–vis light.

high peak [63]. The photocurrent on/off transients of samples increase linearly for the samples with Ti<sup>3+</sup>, indicating enhanced the photoelectrochemical activity with the introduction of Ti<sup>3+</sup>. For wide-bandgap semiconducting electrodes, the intensity of photocurrent is judged by Eq. (5) [64].

$$J^{2} = (q\varphi_{0}\alpha W_{0})^{2} (V - V_{fb})$$
 (5)

J is the current density, q is the charge transferred per ion,  $\varphi_0$  is the photon flux,  $\alpha$  is the optical absorption, V is the applied potential,  $V_{\rm fb}$  is the flat-band potential and  $W_0$  is the depletion-layer width when  $V-V_{\rm fb}=1$ . The enhanced photoelectrochemical activities of  ${\rm Ti}^{3+}$ - ${\rm TiO}_2$  are the resultant force of higher absorption coefficient ( $\alpha$ ) and quicker charge transport ( $W_0$ ).

The photodegradation of MB is implemented in order to measure its photocatalytic activity. As shown in Fig. 10b, the speed of photodegradation activity is calculated according to  $In(C_0/C) = kt$  since the photodegradation of MB is a pseudo-first-order reaction in kinetic.  $C_0$  is the equilibrium concentration before irradiation and C is the instantaneous concentration during the photocatalytic process. The photodegradation efficiency of  $TiO_2$  is enhanced after doping of  $Ti^{3+}$  and Sample 1- $TiO_2$  and 5- $TiO_2$  show the best photocatalytic activity.

The photocatalytic activity of samples does not improve linearly with the increasing density of Ti<sup>3+</sup> as the photoelectrochemical activity. The reasons might be particle size, crystallinity, surface area and morphology. The as-prepared samples show similar characteristics in particle size, crystallinity and porous structure as shown in Fig. 1, Fig. S2, Fig. S5, and Fig. S4b. Although the specific area of samples are different, it decreases with improvement of photocatalytic activities. The disadvantage of specific area is completely made up by the improvement of charge generation, charge transport and interface reactions caused by Ti<sup>3+</sup> and homojunction, illustrating that the specific area is not the dominant factor for the photocatalytic activities of the as-prepared Ti<sup>3+</sup>-TiO<sub>2</sub>. All of the possibility above have been excluded. The difference of reaction sites between photocatalytic and photoelectrochemical process might be answer to this question [65,66]. For photoelectrochemical process, the oxidation reaction and reduction reaction happen on working electrode and counter electrode respectively. The Ti<sup>3+</sup> on the surface would not act as the recombination center. For photocatalytic process, the oxidation reaction and reduction reaction happen on the same sites. The surface recombination of photoinduced carriers besides Ti<sup>3+</sup> could not be ignored.

# 4. Conclusions

In this work, we have shown that Al(acac)3 can be used as the catalyst to synthesize Ti3+-TiO2 by sol-gel method in air. Ti3+ is heavily doped into TiO2 and there is a homojunction in the samples between Ti<sup>3+</sup> heavily doped TiO<sub>2</sub> in the surface layer and undoped TiO<sub>2</sub> in the bulk. Through the study on the sols and gels of samples and the reference of the mechanism of Zielger-Natta catalysts, the forming mechanism of Ti<sup>3+</sup> is proposed as the combination of steric hindrance effect, Lewis acid-base reaction and crystal field effect. Al(acac)<sub>3</sub> acts as the catalyst in this reaction because every Al(acac)<sub>3</sub> which participates in the reaction would return back to Al(acac)3. UV-vis DRS shows improved light response for resultant samples. Electrochemical impedance spectroscopy measurements indicate that both charge transport and interface reaction improved greatly. Enhanced photoelectrochemical and photocatalytic activities were also demonstrated by the transient photocurrent and photodegradation of MB under UV-vis light. In contrast with the reported methods, this work proposes a novel direction to obtained Ti3+-TiO2 through Al(acac)3 as catalyst and we believe this method could be extended to the preparation of MO<sub>x</sub> (M belongs to IIIB to VIIB elements) with surface oxygen vacancy.

## Acknowledgments

This work has been supported by the Natural Science Foundation of China (No. 21273047) and Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education. The authors appreciate all referees for valuable comments as well. We really appreciate the referee's valuable comments, which have greatly improved the quality of the manuscript.

# Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb.2017.10.057.

### References

- [1] Y. Ma, X.L. Wang, Y.S. Jia, X.B. Chen, H.X. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev. 114 (2014) 9987–10043
- [2] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.
- [3] X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331 (2011) 746–750.
- [4] Y. Zhang, Z. Xing, X. Liu, Z.Z. Li, X.Y. Wu, J.J. Jiang, M. Li, Q. Zhu, W. Zhou, Ti<sup>3+</sup> self-doped blue TiO<sub>2</sub> (B) single-crystalline nanorods for efficient solar-driven photocatalytic performance, ACS Appl. Mater. Interface 8 (2016) 26851–26859.
- [5] W.Z. Fang, M.Y. Xing, J.L. Zhang, A new approach to prepare Ti<sup>3+</sup> self-doped TiO<sub>2</sub> via NaBH<sub>4</sub> reduction and hydrochloric acid treatment, Appl. Catal. B-Environ. 160–161 (2014) 240–246.
- [6] Z.K. Zheng, B.B. Huang, X.D. Meng, J.P. Wang, S.Y. Wang, Z.Z. Lou, Z.Y. Wang, X.Y. Qin, X.Y. Zhang, Y. Dai, Metallic zinc- assisted synthesis of Ti<sup>3+</sup> self-doped TiO<sub>2</sub> with tunable phase composition and visible-light photocatalytic activity, Chem. Commun. 49 (2013) 868–870.
- [7] F.F. Wang, W.N. Ge, T. Shen, B.J. Ye, Z.P. Fu, Y.L. Lu, The effect of bulk/surface defects ratio change on the photocatalysis of TiO<sub>2</sub> nanosheet film, Appl. Surf. Sci. 410 (2017) 513–518.
- [8] B.J. Jiang, Y.Q. Tang, Y. Qu, J.Q. Wang, Y. Xie, C.G. Tian, W. Zhou, H.G. Fu, Thin carbon layer coated Ti<sup>3+</sup>-TiO<sub>2</sub> nanocrystallites for visible-light driven photocatalysis, Nanoscale 7 (2015) 5035–5045.
- [9] W.H. Saputera, G. Mul, M.S. Hamdy, Ti<sup>3+</sup>-containing titania: synthesis tactics and photocatalytic performance, Catal. Today 246 (2015) 60–66.
- [10] H. Yin, T.Q. Lin, C.Y. Yang, Z. Wang, G.L. Zhu, T. Xu, X.M. Xie, F.Q. Huang, M.H. Jiang, Gray TiO<sub>2</sub> nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning, Chem. A–Eur. J. 19 (2013) 13313–13316.
- [11] Y. Zhou, C.H. Chen, N.N. Wang, Y.Y. Li, H.M. Ding, Stable Ti<sup>3+</sup> self-doped anataserutile mixed TiO<sub>2</sub> with enhanced visible light utilization and durability, J. Phys. Chem. C 120 (2016) 6116–6124.
- [12] M.S. Hamdy, W.H. Saputera, E.J. Groenen, G. Mul, A novel TiO<sub>2</sub> composite for photocatalytic wastewater treatment, J. Catal. 310 (2014) 75–83.
- [13] X. Liu, H. Xu, L.R. Grabstanowicz, S.M. Gao, Z.Z. Lou, W.J. Wang, B.B. Huang, Y. Dai, T. Xu, Ti<sup>3+</sup> self-doped TiO<sub>2-x</sub> anatase nanoparticles via oxidation of TiH<sub>2</sub> in H<sub>2</sub>O<sub>2</sub>, Catal. Today 225 (2014) 80–89.
- [14] K. Li, S.M. Gao, Q.Y. Wang, H. Xu, Z.Y. Wang, B.B. Huang, Y. Dai, J. Lu, In-situreduced synthesis of Ti<sup>3+</sup> self-doped TiO<sub>2</sub>/g-C<sub>2</sub>N<sub>4</sub> heterojunctions with high photocatalytic performance under LED light irradiation, ACS Appl. Mater. Interface 7 (2015) 9023–9030.
- [15] K. Li, Z. Huang, X. Zeng, B.B. Huang, S.M. Gao, J. Lu, Synergetic Effect of Ti<sup>3+</sup> and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions, ACS Appl. Mater. Interface 9 (2017) 11577–11586.
- [16] J.H. Cai, Z.A. Huang, K.L. Lv, J. Sun, K.J. Deng, Ti powder-assisted synthesis of Ti<sup>3+</sup> self-doped TiO<sub>2</sub> nanosheets with enhanced visible-light photoactivity, RSC Adv. 4 (2014) 19588–19593.
- [17] J. Lee, X.L. Cui, Facile preparation of Ti<sup>3+</sup> self-doped TiO<sub>2</sub> microspheres with lichilike surface through selective etching, Mater. Lett. 175 (2016) 114–117.
- [18] J. Liu, R.E. Saw, Y.H. Kiang, Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids, J. Pharm. Sci. 99 (2010) 3807–3814.
- [19] L. Liu, X.B. Chen, Titanium dioxide nanomaterials: self-structural modifications, Chem. Rev. 114 (2014) 9890–9918.
- [20] Q.Q. Shang, X. Huang, X. Tan, T. Yu, High activity Ti<sup>3+</sup>-modified brookite TiO<sub>2</sub>/ graphene nanocomposites with specific facets exposed for water splitting, Ind. Eng. Chem. Res. 56 (2017) 9098–9106.
- [21] R.P. Netterfield, P.J. Martin, C.G. Pacey, W.G. Sainty, D.R. Mckenzie, G. Auchterlonie, Ion-assisted deposition of mixed TiO<sub>2</sub>-SiO<sub>2</sub> films, J. Appl. Phys. 66 (1989) 1805–1809.
- $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} \hline P. Chen, A novel synthesis of Ti$^3+$ self-doped $Ag_2O/TiO_2$ (p-n) nano-heterojunctions for enhanced visible photocatalytic activity, Mater. Lett. 163 (2016) 130–133. \\ \hline \end{tabular}$
- [23] D.M.D.L. Santos, J. Navas, A. Sánchez-Coronilla, R. Alcántara, C. Fernández-Lorenzo, J. Martín-Calleja, Highly Al-doped TiO<sub>2</sub>: nanoparticles produced by ball mill method: structural and electronic characterization, Mater. Res. Bull. 70 (2015) 704–711.

- [24] T. Sekiya, Y. Takeda, S. Ohya, T. Kodaira, UV irradiation effect on Al-doped anatase titanium dioxide, Phys. Status Solidi C 8 (2011) 173–176.
- [25] S.J. Geng, S. Zhang, H. Onishi, XPS applications in thin films research, Mater. Technol. 17 (2002) 234–240.
- [26] X.Y. Tao, J.G. Wang, Z.G. Ying, Q.X. Cai, G.Y. Zheng, Y.P. Gan, H. Huang, Y. Xia, C. Liang, W.K. Zhang, Y. Cui, Strong sulfur binding with conducting Magnéli-phase Ti<sub>n</sub>O<sub>2n-1</sub> nanomaterials for improving lithium–sulfur batteries, Nano. Lett. 14 (2014) 5288–5294.
- [27] C.D. Valentin, G. Pacchioni, Reduced and n-type doped TiO<sub>2</sub>: nature of Ti<sup>3+</sup> species, J. Phys. Chem. C 113 (2009) 20543–20552.
- [28] A. Aronne, M. Fantauzzi, C. Imparato, D. Atzei, L.D. Stefano, G. D'Errico, F. Sannino, I. Rea, D. Pirozzi, B. Elsener, P. Pernice, A. Rossi, Electronic properties of TiO<sub>2</sub>-based materials characterized by high Ti<sup>3+</sup> self-doping and low recombination rate of electron–hole pairs, RSC Adv. 7 (2017) 2373–2381.
- [29] Y. Wang, M. Jing, M. Zhang, J.J. Yang, Facile synthesis and photocatalytic activity of platinum decorated TiO<sub>2-x</sub>N<sub>x</sub>: perspective to oxygen vacancies and chemical state of dopants, Catal. Commun. 20 (2012) 46–50.
- [30] H.Y. Li, F.Z. Ren, J.F. Liu, Q.L. Wang, Q.Y. Li, J.J. Yang, Y.X. Wang, Endowing single-electron-trapped oxygen vacancy self-modified titanium dioxide with visiblelight photocatalytic activity by grafting Fe(III) nanocluster, Appl. Catal. B-Environ. 172–173 (2015) 37–45.
- [31] Y.H. Lv, Y.Y. Zhu, Y.F. Zhu, Enhanced photocatalytic performance for the BiPO<sub>4-x</sub> nanorod induced by surface oxygen vacancy, J. Phys. Chem. C 117 (2013) 18520–18528.
- [32] Y.H. Lv, Y.F. Liu, Y.Y. Zhu, Y.F. Zhu, Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO<sub>4</sub> nanorod, J. Mater. Chem. A 2 (2014) 1174–1182.
- [33] X.Y. Zhang, Y.J. Sun, X.L. Cui, Z.Y. Jiang, Carbon-incorporated TiO<sub>2</sub> microspheres: facile flame assisted hydrolysis of tetrabutyl orthotitanate and photocatalytic hydrogen production, Int. J. Hydrogen Energy 37 (2012) 1356–1365.
- [34] A.I. Boronin, S.V. Koscheev, G.M. Zhidomirov, XPS and UPS study of oxygen states on silver, J. Electron. Spectrosc. Related Phenom. 96 (1998) 43–51.
- [35] S. Ladas, S. Kennou, S. Bebelis, C.G. Vayenas, Origin of non-faradaic electrochemical modification of catalytic activity, J. Phys. Chem. 97 (1993) 8845–8848.
- [36] S.G. Neophytides, S. Zafeiratos, S. Kennou, XPS characterization of the electrochemically generated O species on a Au electrode evaporated on Y<sub>2</sub>O<sub>3</sub>-stabilized ZrO<sub>2</sub> (100), Solid State Ion. 136–137 (2000) 801–806.
- [37] U. Gelius, P.F. Heden, J. Hedman, B.J. Lindberg, R. Manne, R. Nordberg, C. Nordling, K. Siegbahn, Molecular spectroscopy by means of ESCA III, Carbon Compounds, Phys. Scr. 2 (1970) 70–80.
- [38] H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO<sub>2</sub> powders as a visible-light sensitive photocatalyst, Chem. Lett. 32 (2003) 772–773.
- [39] C. Gionco, S. Livraghi, S. Maurelli, E. Giamello, S. Tosoni, C.D. Valentin, G. Pacchioni, Al- and Ga-doped TiO<sub>2</sub>, ZrO<sub>2</sub>, and HfO<sub>2</sub>: the nature of O 2p trapped holes from a combined electron paramagnetic resonance (EPR) and density functional theory (DFT) study, Chem. Mater. 27 (2015) 3936–3945.
- [40] Y. Chen, W.Z. Li, J.Y. Wang, Y.L. Gan, L. Liu, M.T. Ju, Microwave-assisted ionic liquid synthesis of Ti<sup>3+</sup> self-doped TiO<sub>2</sub> hollow nanocrystals with enhanced visible-light photoactivity, Appl. Catal. B: Environ. 191 (2016) 94–105.
- [41] J.X. Low, I. Cheng, J.G. Yu, Surface modification and enhanced photocatalytic CO<sub>2</sub> reduction performance of TiO2: a review, Appl. Surf. Sci. 392 (2017) 658–686.
   [42] Y.Q. Zhu, M.W. Shah, C.Y. Wang, Insight into the role of Ti<sup>3+</sup> in photocatalytic
- [42] Y.Q. Zhu, M.W. Shah, C.Y. Wang, Insight into the role of Ti<sup>2+1</sup> in photocatalytic performance of shuriken-shaped BiVO<sub>4</sub>/TiO<sub>2∞</sub> heterojunction, Appl. Catal. B: Environ. 203 (2017) 526–532.
- [43] M.C. Wen, S.S. Zhang, W.R. Dai, G.S. Li, D.Q. Zhang, In situ synthesis of  ${\rm Ti}^{3+}$  self-doped mesoporous  ${\rm TiO}_2$  as a durable photocatalyst for environmental remediation, Chin. J. Catal. 36 (2015) 2095–2102.
- [44] D. Hoebbel, T. Reinert, H. Schmidt, E. Arpac, On the hydrolytic stability of organic ligands in Al-: Ti- and Zr-alkoxide complexes, J. Sol-Gel Sci. Technol. 10 (1997) 115-126
- [45] A. Tkáč, On the theory of activity of Ziegler-Natta catalysts [TiCl<sub>4</sub> + Al(i-C<sub>4</sub>H<sub>9</sub>)<sub>3</sub>] II. Mechanism of the Ti<sup>4+</sup> → Ti<sup>3+</sup> reduction and of the formation of bimetallic complexes studied by infrared spectra analysis, Collect. Czech Chem. Commun. 33 (1968) 2004–2018.
- [46] A. Tkáč, On the theory of activity of Ziegler-Natta catalysts [TiCl<sub>4</sub> + Al(i-C<sub>4</sub>H<sub>9</sub>)<sub>3</sub>]. III. Structure of active centres during heterogeneous polymerization of isoprene, Collect. Czech Chem. Commun. 33 (1968) 3001–3025.
- [47] A. Tkáč, On the theory of activity of Ziegler-Natta catalysts [TiCl<sub>4</sub> + Al(i-C<sub>4</sub>H<sub>9</sub>)<sub>3</sub>]. I. EPR spectra and structure of Ti-Al complexes, Collect. Czech Chem. Commun. 33 (1968) 1629–1647.
- [48] N.A. Garcia-Gomez, H.A. Mosqueda, D.I. Garcia-Gutierrez, E.M. Sanchez, Electrochemical behavior of TiO<sub>2</sub>/carbon dual nanofibers, Electrochim. Acta 116 (2014) 19–25.
- [49] W. Liao, J. Yang, H. Zhou, M. Murugananthan, Y. Zhang, Electrochemically self-doped TiO<sub>2</sub> nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants, Electrochim. Acta 136 (2014) 310–317.
- [50] F. Hao, H. Lin, Y.Z. Liu, J.B. Li, Anionic structure-dependent photoelectrochemical responses of dye-sensitized solar cells based on a binary ionic liquid electrolyte, Phys. Chem. Chem. Phys. 13 (2011) 6416–6422.
- [51] Y. Rambabu, M. Jaiswal, S.C. Roy, Enhanced photoelectrochemical performance of multi-leg TiO<sub>2</sub> nanotubes through efficient light harvesting, J. Phys. D: Appl. Phys. 48 (2015) 295302.
- [52] A. Boudjema, S. Boumaza, M. Trari, R. Bouarab, A. Bouguelia, Physical and photoelectrochemical characterizations of  $\alpha$ -Fe $_2$ O $_3$ . Application for hydrogen production, Int. J. Hydrog. Energy 34 (2009) 4268–4274.
- [53] C. Odetola, L. Trevani, E.B. Easton, Enhanced activity and stability of Pt/TiO<sub>2</sub>/

- carbon fuel cell electrocatalyst prepared using a glucose modifier, J. Power Sources  $294\ (2015)\ 254-263$ .
- [54] V. Spagnol, E. Sutter, C. Debiemme-Chouvy, H. Cachet, B. Baroux, EIS study of photo-induced modifications of nano-columnar TiO<sub>2</sub> films, Electrochim. Acta 54 (2009) 1228–1232.
- [55] A. Chatzitakis, A. Papaderakis, N. Karanasios, J. Georgieva, E. Pavlidou, G. Litsardakis, I. Poulios, S. Sotiropoulos, Comparison of the photoelectrochemical performance of particulate and nanotube TiO<sub>2</sub> photoanodes, Catal. Today 280 (2017) 14–20.
- [56] G. Lu, A. Linsebigler, J.T. Yates, Ti<sup>3+</sup> defect sites on TiO<sub>2</sub>(110): production and chemical detection of active sites, J. Phys. Chem. 98 (1994) 11733–11738.
- [57] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc, 1980.
- [58] H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S. Hwang, A.J. Bard, Factors in the metal doping of BiVO<sub>4</sub> for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation, J. Phys. Chem. C 115 (2011) 17870–17879.
- [59] Y.R. Yang, P. Gao, X.C. Rena, L. Sha, P.P. Yang, J.J. Zhang, Y.J. Chen, L. Yang, Massive Ti<sup>3+</sup> self-doped by the injected electrons from external Pt and the efficient photocatalytic hydrogen production under visible-light, Appl. Catal. B: Environ.

- 218 (2017) 751–757.
- [60] M.X. Sun, X.Y. Zhang, J. Li, X.L. Cui, D.L. Sun, Y.H. Lin, Thermal formation of silicon-doped TiO<sub>2</sub> thin films with enhanced visible light photoelectrochemical response, Electrochem. Commun. 16 (2012) 26–29.
- [61] V.K. Gurugubelli, S. Karmalka, Effective medium theory of the space-charge region electrostatics of arrays of nanoscale junctions, J. Appl. Phys. 119 (2015) 024507.
- [62] J.C. Joyner, J. Reichfield, J.A. Cowan, Factors influencing the DNA nuclease activity of iron cobalt, nickel, and copper chelates, J. Am. Chem. Soc. 133 (2011) 15613–15626.
- [63] K. Yang, C. Meng, L.L. Lin, X.Y. Peng, X. Chen, X.X. Wang, W.X. Dai, X.Z. Fu, A heterostructured TiO<sub>2</sub>-C<sub>3</sub>N<sub>4</sub> support for gold catalysts: a superior preferential oxidation of CO in the presence of H<sub>2</sub> under visible light irradiation and without visible light irradiation, Catal. Sci. Technol. 6 (2016) 829–839.
- [64] M.A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO<sub>3</sub>, J. Appl. Phys. 48 (1977) 1914–1920.
- [65] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535.
- [66] H. Park, W. Choi, Effects of TiO<sub>2</sub> surface fluorination on photocatalytic reactions and photoelectrochemical behaviors, J. Phys. Chem. B 108 (2004) 4086–4093.