Using CNN for Sentiment Attitudes Extraction from Analytical Texts

N.L. Rusnachenko ¹ N.V. Loukachevitch ²

Bauman Moscow State Technical University, Moscow, Russia kolyarus@yandex.ru

Lomonosov Moscow State University, Moscow, Russia louk_nat@mail.ru

25 April, 2018

Introduction

Microbloging posts (Twitter)

- Limited and short in length;
- ► Mostly user reviews ⇒ considered a single object for analysis.

Analytical articles

▶ Large amount of named entities (NE):

Ukraine, Russia, Russian Federation, ...

- ► Large amount of attitudes between *NE*:
 - Might take several sentences
- Has complicated structure:

<u>Donald Trump</u> accused <u>China</u> and <u>Russia</u> of "playing devaluation of currencies"

Related

Text Analysis Conference (TAC), Knowledge Base Population (KBP) track 1 :

- ▶ Query-based sentiment retrieval task for e_H − entity holder;
- For queried e_H, find all cases when e_H holds sentiment (pos/neg) relation (from/towards) other entity (target)

MPQA 3.0 [DW15]:

- Sentiment attitudes towards entities and events
- Sentence based annotation

¹https://tac.nist.gov/2014/KBP/Sentiment/index.html

Dataset

- ► RuSentRel²[LR18] consisted of analytical articles from Internet-portal inosmi.ru;
- ► Text attitudes manual annotation, sentiment towards *named* entities NE as triplets ⟨Object, Subject, Label⟩, where:
 - ▶ Object *NE* or "author" ³
 - ► Subject NE
 - ▶ Label \in {pos, neg}
- Named entities automatic, recognizer based on CRF methods [ML16];
- ▶ List *S* of synonymous *NE* − manually implemented.

²https://github.com/nicolay-r/RuSentRel

³In this paper considering named entities only

Dataset Statistics

▶ 73 large analytical articles divided into **Training** and **Test** collections (44 in train, 29 in test);

Training collection	Test collection
74.5	137
6.23	14.7
9.33	15.6
194	300
33.3	59.9
	74.5 6.23 9.33 194

Table 1: Statistics of RuSentRel corpus

Sentiment Attitude Extraction

▶ Introducing **context attitude** – a pair of its named entities $\langle NE_1, NE_2 \rangle$ within a context:

... US intends to impose sanctions against Russia ...

- Consider task as follows: given a context attitude, we predict its sentiment label: positive, negative, or neutral.
- ► The act of extraction to select only those of them which were predicted as sentiment (non neutral).
 - How to complete a set of context attitudes?
 - How to predict labels?

Context attitudes equality

Two context attitudes $a_1 = \langle NE_1, NE_2 \rangle$ and $a_2 = \langle NE_3, NE_4 \rangle$ are equal up to synonyms $a_1 \simeq a_2$ when both ends related to the same synonym group $S(\cdot)$:

$$S(NE_1) = S(NE_3) \text{ and } S(NE_2) = S(NE_4)$$
 (1)

Context attitude set

► Consider context attitudes extraction within a single sentence

Avg. per doc.	Training collection	Test collection
unique positive	6.23	14.7
unique negative	9.33	15.6
unique neutral	120	276

Table 2 : RuSentRel text attitudes

Total	Training set	Test set
positive	571	_
negative	735	_
neutral	6584	8024

Table 3: Context attitudes amount

Attitudes classification

Figure 1: PCNN⁴ [ZLCZ15]

⁴https://github.com/nicolay-r/sentiment-pcnn

Attitudes embedding

Figure 2: Attitudes embedding

Convolution

Figure 3: Convolution

$$w = 3$$

$$m = 4 + 2 = 6$$

$$\mathbf{w} \in \mathbb{R}^{w \cdot m}$$

$$W = \{\mathbf{w_1} \dots \mathbf{w_t}\}$$

$$c_j = \mathbf{w} q_{j-w+1:j}$$

$$\mathbf{c} = \{c_1, \dots, c_k\}$$

$$C = \{\mathbf{c}_1, \dots, \mathbf{c}_t\}$$

Original vs. Piecewise max pooling

Figure 4: Original

Figure 5 : Piecewise

Output

Figure 6 : Output

1. *tanh* maxpool **p** activation:

$$d = tanh(\mathbf{p}),$$

2. Output^a:

$$o = W_1d + b$$

 W_1 – hidden layer b – bias

adropout during training

Training

▶ **Input** is a sequence of pairs:

$$\{\langle embedding, label \rangle\}$$

What to train:

$$\{W, W_1, b\}$$

- How to train:
 - ► Passing batches, *size* = 50
 - Error function: cross-entropy loss
 - Optimizer: Adadelta, $\rho = 0.95, \ \epsilon = 10^{-6}$
 - Use dropout, $\rho = 0.5$

Experiments

Table 4 : Results for sentiment attitudes extraction from RuSentRel corpus

precision	recall	$F_1(P,N)$
0.03	0.39	0.05
0.02	0.40	0.04
0.05	0.23	0.08
0.18	0.06	0.09
0.09	0.36	0.15
0.41	0.21	0.27
0.41	0.23	0.31
0.42	0.23	0.31
0.62	0.49	0.55
	0.03 0.02 0.05 0.18 0.09 0.41 0.41 0.42	0.03 0.39 0.02 0.40 0.05 0.23 0.18 0.06 0.09 0.36 0.41 0.21 0.41 0.23 0.42 0.23

CNN vs. PCNN

Conclusion

- Proposed CNN-based models significantly outperforms baselines and performs better than NLP-based approaches (Table 4, experiments);
- ▶ Best result $F_1(P, N) = 0.31$ is quite low \Rightarrow task still remains significantly complicated;
- ▶ Piecewice max pooling prevents from rapid feature reducing ⇒ model trains faster (see Figure 16).
- Increasing amount of convolution filters (trainable features) allows model to train faster;

References I

N. Loukachevitch and N. Rusnachenko, *Extracting sentiment attitudes from analytical texts*, Proceedings of International Conference of Computational Linguistics and Intellectual Technologies Dialog-2018 (2018).

A. Mozharova, V. and V. Loukachevitch, N., Combining knowledge and crf-based approach to named entity recognition in russian, International Conference on Analysis of Images, Social Networks and Texts (2016), 185–195.

References II

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao, *Distant supervision for relation extraction via piecewise convolutional neural networks*, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 1753–1762.