+880-1309078826 rafat.joy99@gmail.com

Rafat Ashraf Joy

Data Analyst

linkedin.com/in/rajoy99 github.com/rajoy99

EXPERIENCE

ML Engineer (Intern)

Pioneer Alpha

Dhaka, Bangladesh

• Deployed models to web using Flask web framework.

• Gained hands-on experience of Scikit-learn, Keras, PyTorch libraries.

EDUCATION

Bachelor of Science, Computer Science and Engineering,

Shahjalal University of Science and Technology, GPA: 3.50/4.00

Jan 2018 — Dec 2021

SKILLS

Programming Languages Python, C++, Scala, SQL

ML Libraries Pytorch, Tensorflow, Scikit-learn, Xgboost, Catboost

Data Visualization Libraries Matplotlib, Plotly **Databases** MongoDB, MySQL

Web FrameworksFlaskSoftwaresTableau

Others Linux, Git, Bash

PUBLICATIONS

- 1. Joy, R. A. Fine Tuning the Prediction of the Compressive Strength of Concrete: A Bayesian Optimization Based Approach in 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA) (2021), 1–6.
- 2. Joy, R. A. An Interpretable Catboost Model to Predict the Power of Combined Cycle Power Plants in 2021 International Conference on Information Technology (ICIT) (2021), 435–439.

PROJECTS

Customer Churn Prediction Web App

Scikit-learn, Flask, Heroku

• A multi-layer perceptron classifier model runs in the backend of this web app to predict customer churn in context of the telecom industry. The model has attained 96 % accuracy on the test dataset. This project has been deployed to Heroku utilizing Flask web framework.

Estimating Cloud Data Center Workload

Keras, Scala, Optuna, Statsmodel

The dataset used in this project was taken from: TU Delft's business critical cloud workload time series data.
 First, the data was smoothed using 'savitzsky golay' filtering; this step removed the noise. ARIMA was applied
 to estimate the workload using Statsmodel. Then, several deep learning methods: LSTM, RNN, TCN(Temporal
 Convolutional Networks) were applied on the data. Finally, all of the deep learning models were hyper
 parameter tuned using Optuna.

Detection of COVID-19 from Raman spectroscopy

Scikit-learn

 This project applies a LASSO-regularized logistic regression model to detect Covid-19 from Raman spectroscopy data. As the number of features was very large compared to number of observations, we resorted to LASSO regression to avoid overfitting. The model is initialized with a liblinear solver along with L1 (LASSO) penalty, and achieved 97 % accuracy on the test dataset.