Sistemas de Inteligencia Artificial *Métodos de Búsqueda No Informados e Informados*Trabajo Práctico Especial 1

Grupo 1 Domingues, Matías Fontanella De Santis, Teresa Martinez Correa, Facundo

Objetivo

Crear un Sistema de Producción para resolver el juego Deep Trip. Fue provisto un motor de inferencia reducido programado en Java, al cual se le hicieron las modificaciones necesarias.

Funcionamiento del Juego

Consiste en un tablero de c columnas y f filas, lleno de fichas de distintos colores. La finalidad es dejar el tablero vacío. Cada vez que se encuentran clusters de tres o más fichas del mismo color, éstos desaparecen y las fichas de más arriba caen. Solamente se puede rotar cualquiera de las filas n lugares.

Implementación del Juego

* Reglas:

En total son $f \cdot c$ reglas definidas de la misma manera: rotar una determinada fila n veces. Cuando una regla no puede aplicarse, se lanza una excepción.

* Función de Costo:

Es constante: g(n) = r, siendo n un nodo cualquiera y r la cantidad de movimientos hecha para llegar al nodo n desde el nodo inicial.

Heurísticas

* Heurística Uno:

Sean n un nodo cualquiera y t la cantidad total de fichas que hay en el tablero de n, se define h_1 de la siguiente manera:

 $h_1(n) = \infty$, si existe un color con menos de 3 fichas en n, $h_1(n) = 0$, si n es el tablero objetivo, o sino $h_1(n) = t/8$

Es admisible.

Heurística Dos:

Sean n un nodo cualquiera, c_1 , c_2 ,..., c_f la cantidad de fichas de cada color (habiendo f colores en el tablero) y t la cantidad total de fichas que hay en el tablero de n, se define h_2 :

 $h_2(n) = \infty$, si existe un color con menos de 3 fichas en n, $h_2(n) = 0$, si n es el tablero objetivo, o sino

$$h_2(n) = \sum_{i=1}^f s(c_i)$$

donde s(c) es la resolución del problema de la moneda para el conjunto de números 3,4 y 5. No es admisible.

* Heurística Tres:

Sean n un nodo cualquiera, c_1 , c_2 ,..., c_f la cantidad de fichas de cada color (habiendo f colores en el tablero) y t la cantidad total de fichas que hay en el tablero de n, se define h_3 :

 $h_3(n) = \infty$, si existe un color con menos de 3 fichas en n, $h_3(n) = 0$, si n es el tablero objetivo, o sino

$$h_3(n) = \sum_{i=1}^f \frac{1}{c_i} \sum_{k=1}^{c_i} |x_k - m_i|$$

donde m_i es el "centro de masa" de los puntos con un determinado color.

Es admisible.

Conclusiones

- El algoritmo DFS es aquel que tarda más en encontrar una respuesta, independientemente de que el tablero tenga o no solución.
- ❖ El algoritmo BFS es mucho más rápido que el anterior (e incluso, a veces, más aún que los algoritmos informados). No obstante, este algoritmo requiere mucha cantidad de memoria.
- El algoritmo IDDFS, es rápido como BFS si el tablero tiene solución, pero es más lento que DFS si no tiene solución.

- ❖ Comparando los algoritmos A* y Greedy entre sí, ambos son más o igual de eficientes que los desinformados. Sin embargo, A* tiende a ser más eficiente y rápido sin importar el tipo de tablero. En ciertos casos, los resultados hechos con Greedy tendían a valores mucho más altos que A*.
- Con respecto a las heurísticas, cualquiera de las tres es útil, aunque las heurísticas 2 y 3 tienden a ser más precisas que la heurística 1. Sin embargo, las heurísticas 1 y 2 son más fáciles de calcular que la 3, y eso hace que el tiempo de procesamiento por nodo sea menor.