Network-on-Chip Architecture: An Overview

-- Md Shahriar Shamim & Naseef Mansoor

Overview

- Introduction
 - Multi-core chip
 - Challenges
 - Network-on-Chip
- Architecture
 - Regular Topology
 - Irregular Topology
 - Emerging Interconnect
- Conclusion

Multi-core Chips: A Necessity

- Need for explosive computational power
 - Consumer/Entertainment Application
 - Scientific Application
- Increasing clock frequency is not possible as it increases power dissipation

Solution: **Core level Parallelism**, distribute tasks to multiple cores

Challenges: Interconnection of Cores

- Traditional Interconnect architectures are not scalable
 - Delay limit number of cores

Solution: Scalable interconnect infrastructure for communication

Network-on-Chip (NoC)

- Packet based on-chip network
 - Route packets, not wires —Bill Dally, 2000.
- Dedicated infrastructure for data transport
 - Decoupling of functionality from communication
 - A plug-and-play network independent of the cores

NoC infrastructure

Multiple publications in IEEE ISSCC, 2010 from Intel, IBM, AMD, and Sun Microsystems show that multi-core NoC is a reality

Switching

Circuit Switching

- Dedicated path, or circuit, is established over which data packets will travel
- Naturally lends itself to time-sensitive guaranteed service due to resource allocation
- Reservation of bandwidth decreases overall throughput and increases average delays

Packet Switching

- Intermediate routers are now responsible for the routing of individual packets through the network, rather than following a single path
- Provides for so-called best-effort services
- Sharing of resources allows for higher throughput

Switching Methodology

Wormhole Switching

- Message is divided up into smaller, fixed length flow units called flits
- Only first flit contains routing information, subsequent flits follow
- Messages must cross the channel entirety before the channel can be used by another message →decreases channel utilization

Virtual Channels

Allows for several instances of wormhole switching

• Additional buffers are added, which increases overall switch size, but

significantly increases throughput

Typical NoC Packet Format

Header

- routing and network control information.
- In the case of distributed routing the information required is the destination and source addresses
- in the case of source routing the complete routing information is written
- In the case of variable packet size a length field is required

Payload

- Tail
 - sequence number
 - · error control fields such as hamming code or CRC fields

Topology

- Regular topology: Each node has the same number of neighbors.
- Example: 2D mesh, 2D torus
- Irregular topology: For each node, all neighbors of that node have distinct degrees.
- Example: Hierarchical Mesh, Small-world

2D Mesh

- simplest and most popular topology for NoCs.
- Every switch, except those at the edges, is connected to four neighboring switches and one node.

High Average path distance; not scalable

2D Torus

 layout of a regular mesh except that nodes at the edges are connected to switches at the opposite edge via wrap-around routing channels.

Every switch has five ports

•Long links → high delay and high power dissipation; not scalable

Hierarchical Mesh

- Two level Hierarchy
- Bottom layer
 - Mesh Connectivity
- Upper layer
 - Switches grouped into subnets
 - One hub per subnet
 - All switches from one subnet connected to the hub from that subnet
 - Hubs interconnected with each other in mesh fashion

Power hungry Hubs; still has long links

Small World

- Inspired from nature microbial colonies, neural networks and social networks
- Characterized by many short links and few long links

SW Topology Construction

- Small-World topology
 - Inherently fault-tolerant
- Link Insertion
 - Following adjacent probability distribution

$$P(i,j) = \frac{l_{ij}^{-\alpha} f_{ij}^{\beta}}{\sum_{\forall i} \sum_{\forall j} l_{ij}^{-\alpha} f_{ij}^{\beta}}$$

- Few high speed shortcuts.
- Local, shorter links.

Interconnect

- Limitation of Wireline Interconnect
 - Multi-hop wireline communication
 - High Latency and energy dissipation

80% of chip power will be from on-chip interconnects in the next 5 years – ITRS, 2007

Emerging Interconnect Technologies

3D Integration

- Stacking multiple active layers
- Manufacturability
 - Mismatch between various layers
 - Yield is an issue
- Temperature concerns
 - Despite power advantages, reduced footprint increases power density

 Pavlidis et al., "3-D topologies for Networks-on-Chip", IEEE Transactions on Very Large Scale Integration (TVLSI), 2007.

Optical Interconnect

- High bandwidth photonic links for high payload transfers
- Challenges: On-going research
 - On-chip integration of photonic components

 A. Shacham et al., "Photonic Network-on-Chip for Future Generations of Chip Multi-Processors", IEEE Transactions on Computers, 2008.

Wireless Interconnect

Wireless NoC based on

- Low power and high bandwidth wireless interconnects
- Wireless port/wireless interface (WI) consists of transceiver and antenna

Antenna Technology:

- Metal zigzag antennas (mm-wave) are CMOS compatible³
- Transceiver

J. Lin et al., "Communication Using Antennas Fabricated in Silicon Integrated Circuits," IEEE Journal
of Solid-State Circuits, vol. 42, no. 8, August 2007, pp. 1678-1687.

Where should We bet our money???

Comparisons

		3D NoC	Photonic NoC	Wireless NoC
Design Requirements		Multiple layers with active devices	Silicon photonic components	On-chip antenna and transceiver
Performance Gains	Bandwidth	Higher connectivity & less hop count	High speed optical devices and links	Single hop shortcuts
	Lower Power	Shorter average path length	Negligible power dissipation in optical data transport	Energy Efficient wireless transmission
Challenges		 Heat dissipation due to higher power density Fabrication Problem 	 Integration of on- chip photonic components Crosstalk between adjacent wavelengths 	 Limited bandwidth Large area overhead

No Clear Winner!!

Conclusion

- Networks-on-Chip is a natural choice for multicore processors.
- Copper wires are power hungry

 need for alternative interconnects
- NoC research is still in primary stage.
 - Many open research problems
 - Need standardized development approach, better application and traffic models, new optimization techniques

Questions???

www.phdcomics.com