Reading Notes for

Category Theory by Steve Awodey

Zhi Wang

September 26, 2021

Contents

0	Not	es and Definitions 1		
	0.1	Notes		
1 Categories				
	1.1	Introduction		
	1.2	Functions of sets		
	1.3	Definition of a category		
	1.4	Examples of categories		
		1		
		Functions with fibers of at most 2 elements		
		Functions with finite fiber		
		Functions with infinite fiber		
		2		
		11		
	1.5	Isomorphisms		
		Definition 1.3		
		Theorem 1.6		
		Remark 1.7		
		Test object		
		Too many arrows		
	1.6	Constructions on categories		
		3 The arrow category		
		4 Slice category		

		Definition of $\mathbf{C}/(-)$	4
		Cat to Sets	5
		Principal ideal	5
		Example 1.8	5
	1.7	Free categories	5
		Free monoid	5
		UMP	5
		Free category	5
	1.8	Foundations: large, small, and locally small	5
		Definition 1.12	5
		The category of sets is locally small	5
		The category of small categories is locally small	6
		Non-locally small category	6
	1.9	Exercises	6
	1.0	2	6
		a	6
		b	6
		C	6
		3	6
		C	6
		5	6
		6	6
		7	7
		8	7
			8
		9	8
		С	
		d	8
		10	8
		11	8
		b	8
		14	9
2	Ahs	stract structures	9
_	2.1	Epis and monos	9
	2.1	Example 2.3	9
		Prove h monic implies $ h $ monic	9
		Converse	9
		Example 2.4	9
		2.1.1 Sections and retractions	9
		Definition 2.7	9
			J

	Projective	10
	Epi into projective object splits	10
	More free	10
	AC vs projective	10
	Retract of projective object	10
2.2	Initial and terminal objects	11
	Example 2.11	11
	3 Rings	11
2.3	Generalized elements	11
	Ultrafilter	11
	Prime ideal	11
	Example 2.12	11
	3	11
	Example 2.13	11
	Example 2.14	11
	Natural number is the revealing object	11
	Bijection	12
	Universal Property	12
	Bijection in general	12
	Definition (universal property)	13
	Initial and terminal objects are defined by universal property	14
2.4	Products	15
	Arrows out of the product	15
	Product is defined by universal property	15
	Cumbersome definition	15
	Concise definition	16
	Coproduct is defined by universal property	17
2.5	Examples of products	17
	3	17
	4	17
	6 Lambda calculus	17
	Remark 2.18 "Curry–Howard" correspondence	17
2.6	Categories with products	17
2.7	Hom-sets	17
2.0	Evereigns	17

- 0 Notes and Definitions
- 0.1 Notes
- 1 Categories
- 1.1 Introduction
- 1.2 Functions of sets
- 1.3 Definition of a category
- 1.4 Examples of categories

1

Functions with fibers of at most 2 elements Assume

$$\forall A,B \in \mathbf{C} \, \forall (f \colon A \to B) \, \Big[\forall b \in B \big(\, \big| f^{-1}(b) \big| \leq 2 \big) \iff f \in \mathrm{Hom}_{\mathbf{C}}(A,B) \Big].$$

Given that

$$\forall B \in \mathbf{C} \forall b \in B \left[\left| 1_B^{-1}(b) \right| = 1 \le 2 \right],$$

we know

$$\forall B \in \mathbf{C} \Big[1_B \in \mathrm{Hom}_{\mathbf{C}}(B, B) \Big].$$

Given $\forall A, B, C \in \mathbf{C}, \forall (f \colon A \to B) \, \forall (g \colon B \to C)$

$$\forall b \in B\Big(\left|f^{-1}(b)\right| \leq 2\Big) \land \forall c \in C\Big(\left|g^{-1}(b)\right| \leq 2\Big) \implies \forall c \in C\Big(\left|(g \circ f)^{-1}(c)\right| \leq 4\Big)$$

which means that the composite $g \circ f$ does not necessarily exist in $\operatorname{Hom}_{\mathbf{C}}(A, B)$. Therefore, this is **not** a category.

Functions with finite fiber Assume

$$\forall A, B \in \mathbf{C} \, \forall (f \colon A \to B) \, \Big[\forall b \in B \big(\, \big| f^{-1}(b) \big| \in \mathbb{N} \big) \iff f \in \mathrm{Hom}_{\mathbf{C}}(A, B) \Big].$$

Given that

$$\forall B \in \mathbf{C} \forall b \in B \left[\left| 1_B^{-1}(b) \right| = 1 \in \mathbb{N} \right],$$

we know

$$\forall B \in \mathbf{C} \Big[1_B \in \mathrm{Hom}_{\mathbf{C}}(B, B) \Big].$$

Given $\forall A, B, C \in \mathbb{C}, \forall (f : A \to B) \, \forall (g : B \to C)$

$$\forall b \in B\Big(\left|f^{-1}(b)\right| \in \mathbb{N}\Big) \land \forall c \in C\Big(\left|g^{-1}(b)\right| \in \mathbb{N}\Big) \iff \forall c \in C\Big(\left|(g \circ f)^{-1}(c)\right| \in \mathbb{N}\Big)$$

since the multiplication of finite numbers are finite, and converse is true. This means that the composite $g \circ f$ must exist in $\operatorname{Hom}_{\mathbf{C}}(A, B)$.

Therefore, this **is** a category.

Functions with infinite fiber Since identity map has finite fiber, this is **not** a category.

 $\mathbf{2}$

- graphs and graph homomorphisms
- the real numbers R and continuous functions $R \to R$,
- the natural numbers N and all recursive functions $N \to N$, or as in the example of continuous functions, one can take partial recursive functions defined on subsets $U \subseteq N$

11 Category of data types and programs

Let's define a procedure as Int f(Int a, Int b) return a * b; We have built a morphism/arrow

$$f: Int \times Int \rightarrow Int.$$

An example from computer science: Given a functional programming language L, there is an associated category, where the objects are the data types of L, and the arrows are the computable functions of L ("processes," "procedures," "programs"). The composition of two such programs $X \xrightarrow{f} Y \xrightarrow{g} Z$ is given by applying g to the output of f, sometimes also

CATEGORIES

11

written as

$$g\circ f=f;g.$$

The identity is the "do nothing" program.

Categories such as this are basic to the idea of denotational semantics of programming languages. For example, if $\mathbf{C}(L)$ is the category just defined, then the denotational semantics of the language L in a category \mathbf{D} of, say, Scott domains is simply a functor

$$S: \mathbf{C}(L) \to \mathbf{D}$$

since S assigns domains to the types of L and continuous functions to the programs. Both this example and the previous one are related to the notion of "cartesian closed category" that is considered later.

Figure 1

1.5 Isomorphisms

Definition 1.3 while there are "bijective homomorphisms" between non-isomorphic posets.

The inverse must also be homomorphism?

Theorem 1.6

$$f, h \in \bar{C}, g \circ f, g \circ h \in \bar{D}.$$

If every category (large or small) was isomorphic to a concrete (small) category, what make those large?

The assumption is wrong. Only small categories are isomorphic to a small category. See this: 1.5.

Also see Warning 1.13 that small does not imply concrete and neither is the converse.

Remark 1.7

Test object What does this mean

as Dedekind cuts or as Cauchy sequences). A better attempt to capture what is intended by the rather vague idea of a "concrete" category is that arbitrary arrows $f:C\to D$ are completely determined by their composites with arrows $x:T\to C$ from some "test object" T, in the sense that fx=gx for all such x implies f=g. As we shall see later, this amounts to considering a particular representation of the category, determined by T. A category is then said to be "concrete" when this condition holds for T a "terminal object," in the sense of Section 2.2; but there are also good reasons for considering other objects T, as we see Chapter 2.

Figure 2

Too many arrows If the arrows in the category is too large to form a set, then it might not be isomorphic to a small category?

1.6 Constructions on categories

3 The arrow category

$$\begin{array}{ccc}
A & \xrightarrow{g_1} & A' & \xrightarrow{h_1} & A'' \\
\downarrow^f & & \downarrow^{f'} & & \downarrow^{f''} \\
B & \xrightarrow{g_2} & B' & \xrightarrow{h_2} & B''
\end{array}$$

4 Slice category

Definition of C/(-)

$$\mathbf{C}/(-) \colon \mathbf{C} \to \mathbf{Cat} \colon C \to \mathbf{C}/C \colon g \to g_*.$$

Cat to Sets the forgetful functor $U : \mathbf{Cat} \to \mathbf{Sets}$ that takes a category to its underlying set of objects.

Do the objects form a set? Guaranteed? Is there a category of categories? Yes, because **Cat** is defined as the category of *small* categories. There is no category of all categories. Likewise, there is no "set of all sets" or "class of all classes"

But is \mathbf{C}/C a small category? If and only if \mathbf{C} is small?

Principal ideal the slice category P/p is just the "principal ideal" (what does this mean? what is down arrow?) \downarrow (p) of elements $q \in P$ with $q \leq p$.

Example 1.8 $1 = \{*\}$ is mapped to the distinguished point of sets in **Sets**_{*}.

1.7 Free categories

Free monoid The Kleene closure of A can be thought as

{ Empty word }
$$\sqcup A \sqcup A \times A \sqcup \ldots$$
,

where \times is the Cartesian product.

A free monoid can be thought as some monoid isomorphic to the Kleene closure of some set.

A free monoid can be defined as a monoid whose non-identity elements can be uniquely written as a product of its generating elements?

UMP The mapping $i: A \to |M(A)|$ must be injection because otherwise there is no monoid homomorphism from M(A) to A^* , the Kleene closure.

Free category Does edges and vertices always form a set?

1.8 Foundations: large, small, and locally small Definition 1.12

The category of sets is locally small Given two sets X and Y, an ordered pair $(x,y) \in X \times Y$ can be viewed as an element in $\mathcal{PP}(X \cup Y)$ (by Kuratowski's definition). Therefore, a function $f: X \to Y$ as a subset of $X \times Y$ is an element of $\mathcal{PPP}(X \cup Y)$. In conclusion, the set of all functions from X to Y is a subset of $\mathcal{PPP}(X \cup Y)$, and therefore based on the axiom of replacement and power set, it is a (small) set.

The category of small categories is locally small Since the objects and arrows form two sets, so does their disjoint union.

Therefore, a functor can be viewed as a function between two sets, and therefore **Cat** is locally small.

Non-locally small category Examples

1.9 Exercises

 $\mathbf{2}$

- a Yes, $Rel \cong Rel^{op}$.
- **b** Sets is not isomorphic to its opposite because all terminal objects must be mapped to an initial object as a terminal object in the opposite, than mapped back to a terminal object.

But there are infinite terminal objects in **Sets** (singletons) and only one initial object (the empty set).

c For the whole power set it should be true?

Any subset is mapped to its complement.

This is not necessarily true for a subset of the power set.

3

c There is a bijective monotone function (functor) from a discrete (small) category (which is a poset) to a non-discrete poset category of same objects. But this is not isomorphism.

5

$$F \colon \mathbf{C}/C \to \mathbf{C}^{\to}$$

is the trivial functor which maps arrows to itself.

6

$$C/\mathbf{C} \cong (\mathbf{C}^{\mathrm{op}}/C)^{\mathrm{op}}.$$

The only difference is the objects are arrows with opposite directions.

7 For any positive integer n,

$$F : \mathbf{Sets}/n \to \mathbf{Sets}^n,$$

$$(f : X \to \{a_1, \dots, a_n\}) \mapsto (f^{-1}(a_1), \dots, f^{-1}(a_n)).$$

$$(f \to g) \mapsto (f^{-1}(a_1) \to g^{-1}(a_1), \dots, f^{-1}(a_n) \to g^{-1}(a_n)).$$

- 1. First, the image is contained in the codomain.
- 2. It is a functor.
- 3. It is isomorphism?
- 8 In the preorder category $P(\mathbf{C})$, any information encoded in the arrows is forgotten, only the domain and codomain is kept.

$$i_A \xrightarrow{1_A} A \xrightarrow{f_1} B \xleftarrow{h} C$$

$$1_A \xrightarrow{f} A \xrightarrow{f'} B \xleftarrow{h'} C$$

$$P(1_A) = P(i_A) = 1_A, P(f_1) = P(f_2) = f'.$$

Since any functor preserves domain and codomain, any functor can be mapped as an arrow between two preorder sets.

For example, given two categories C, D, if the functor F maps any arrow in $C(X \to Y)$ to an arrow in $D(F(X) \to F(Y))$, then the it maps the arrow in $P(C)(X \to Y)$ to the arrow in $P(D)(F(X) \to F(Y))$.

The identity is preserved since $A \leq A$, the composite is preserved due to the transitivity $A \leq B \land B \leq C \implies A \leq C$.

Let I be the inclusion, then $P \circ I = 1$ but $I \circ P \neq 1$.

9

 \mathbf{c}

$$a \rightarrow a: 1_a,$$

 $a \rightarrow b: e,$
 $b \rightarrow b: 1_b,$
 $b \rightarrow c: f,$
 $c \rightarrow c: 1_c,$
 $a \rightarrow c: f \circ e, q,$

$$(1.1)$$

d The only arrow related to d is 1_d .

$$a \to a: 1_a, (he)^n, (gfe)^n,$$

$$b \to b: 1_b, (eh)^n, (egf)^n,$$

$$c \to c: 1_c, (feg)^n.$$

$$a \to b: e \circ (a \to a); b \to a: (h \vee gf) \circ (b \to b).$$

10 Can you have a directed graph with only 1 vertex, but 6 edges on the same vertex? or only 2 vertices and 3 edges for each direction connecting these?

11

b Assume
$$\forall A \in \mathbf{Sets} \,\exists !i_A \colon A \to |M(A)|$$
 as UMP, then $\forall (f \colon A \to B) \,\exists !i_B \circ f \,\exists !M(f)$

such that the following diagram commutes.

$$\mathbf{Mon} \qquad M(A) \xrightarrow{\exists! M(f)} M(B)$$

Sets
$$|M(A)| \xrightarrow{|M(f)|} |M(B)|$$

$$\downarrow_{i_A} \qquad \downarrow_{i_B \circ f} \qquad \downarrow_{i_B} \uparrow \qquad \downarrow_{i_B} \uparrow$$

Let $f = 1_A$, and B = A. Since $1_{|M(A)|} \circ i_A = i_A \circ 1_A$ and $|1_{M(A)}| = 1_{|M(A)|}$, therefore $M(1_A) = 1_{M(A)}$.

Associativity:

Mon
$$M(A) \xrightarrow{\exists! M(f)} M(B) \xrightarrow{\exists! M(g)} M(C)$$

Sets
$$|M(A)| \xrightarrow{|M(f)|} |M(B)| \xrightarrow{|M(g)|} |M(C)|$$

$$A \xrightarrow{i_B \circ f} B \xrightarrow{i_C \circ g} i_C \uparrow$$

$$A \xrightarrow{f} B \xrightarrow{q} C$$

14 TODO

2 Abstract structures

2.1 Epis and monos

Example 2.3

Prove h monic implies |h| monic

$$h\bar{x} \neq h\bar{y} \implies |h|x \neq |h|y$$

due to UMP of M(1). (If |h|x = |h|y, then there exists non-unique maps $h\bar{x}, h\bar{y}$ corresponding it, which contradicts UMP.)

Converse If $f, g: X \to M$ are any distinct homomorphisms, then $|f|, |g|: |X| \to |M|$ are distinct functions. The converse is true, only if there is a monoid homomorphism corresponding to the underlying function. This is to say, function to monoid homomorphism mapping is injective but not surjective.

Example 2.4 Because there is at most 1 arrow between 2 objects!

2.1.1 Sections and retractions

Definition 2.7 A is "smaller" than X.

Functors preserve split epis and split monos, but do not preserve all the epis.

Projective What does projective mean?

Epi into projective object splits Let P be the projective object and $e: E \rightarrow P$ the epi. Since 1_P must exist, therefore by definition of projective object, $\exists m$ such that

$$P \xrightarrow{\exists m} P$$

$$\downarrow e$$

$$P \xrightarrow{1_P} P$$

Therefore e splits and m is mono (by definition of split epi).

More free Projective objects may be thought of as having a more "free" structure, thus permitting "more arrows".

I guess this means: for any epi and any arrow from a projective object sharing the codomain, there must be another arrow from the projective object to the domain of the epi, so there will be "more" arrows than "necessary".

AC vs projective If all epis are split, then all objects are projective. Because for any epi $e: E \to X$ there is a mono $m: X \to E$ such that $em = 1_X$, therefore for any $f: P \to X$, there must be $\bar{f} = m \circ f$ such that the following diagram commutes.

$$P \xrightarrow{f} X \xrightarrow{1_X} X$$

It follows that free objects in many (but not all!) categories of algebras then are also projective.

Retract of projective object Let R be a retract of a projective object P, and let $rs = 1_R$. Then given any epi $e: E \to X$, and any $f: R \to X$, the following diagram must commute.

And therefore f lifts across e to $\overline{f \circ r} \circ s$.

2.2 Initial and terminal objects

Example 2.11

3 Rings In **Rings** (commutative with unit), the ring \mathbb{Z} of integers is initial.

For any finite rings, they might not be homomorphic to other finite rings of different size (e.g., \mathbb{F}_q).

 \mathbb{Z} is the smallest infinite ring. Since 0 must be mapped to 0 and so is 1, there exists a unique ring homomorphism from \mathbb{Z} .

2.3 Generalized elements

Ultrafilter a filter F is an ultrafilter just if for every element $b \in B$, either $b \in F$ or $\neg b \in F$, and not both (exercise!).

Prime ideal Ring homomorphisms $A \to Z$ into the initial ring Z play an analogous and equally important role in algebraic geometry. They correspond to so-called prime ideals, which are the ring-theoretic generalizations of ultrafilters.

Example 2.12

3

$$f = g \iff f1_C = g1_C.$$

Example 2.13 Hom(X, -) is always a functor, and functors always preserve isos.

Example 2.14

Natural number is the revealing object

For any $x \in |M|$, there is a function $x: * \mapsto x$. To make the diagram commute, $|\bar{x}|(i(*)) = x$.

This uniquely corresponds to a monoid homomorphism $\bar{x}: i(*) \mapsto x$. Therefore, every element in |M| can be reached by a monoid homomorphism from M(1). And \mathbb{N} is isomorphic to M(1).

Bijection From above, we clearly see that different x correspond to different monoid homomorphism $\bar{x}: i(*) \mapsto x$, and exactly one for each. Therefore

$$|\operatorname{Hom}_{\mathbf{Sets}}(1,|M|)| \le |\operatorname{Hom}_{\mathbf{Mon}}(M(1),|M|)|.$$

On the other hand, for any monoid homomorphism $f: M(1) \to M$, there is uniquely $x = |f| \circ i$ which makes the diagram commute. Different f must correspond to different x, otherwise it contradicts the UMP axiom.

Universal Property

Bijection in general

Proposition 2.1. Given a commutative diagram in category C

$$A \xrightarrow{f} B$$

$$\downarrow^{g}$$

$$C$$

there exists a unique commutative diagram in C

$$A \xrightarrow{f} B \downarrow_{g}$$

$$\exists !h \searrow \downarrow g$$

$$C$$

where h is uniquely determined as $g \circ f$.

Proof. Given the definition of commutative diagram, if h exist, it must be $g \circ f$ (uniqueness).

Given the axiom of category, $g \circ f$ must exist if both f and g exist (existence).

Remark. Therefore, such edge can be arbitrarily added or deleted without loss of generality.

Remark. Note that g is uniquely determined by f and h if and only if f is epi.

$$A \xrightarrow{f} B \qquad A^{\exists f \Longrightarrow \exists ! f} B$$

$$\downarrow \exists g \Longrightarrow \exists ! g \qquad \downarrow g$$

$$C \qquad C$$

Definition (universal property). Let $F: \mathbf{C} \to \mathbf{D}$ be a functor between categories \mathbf{C} and \mathbf{D} , and let $X \in \text{ob}(\mathbf{D}), A, A' \in \text{ob}(\mathbf{C})$.

A universal morphism from X to F is a unique pair $(A, u : X \to F(A))$ in D such that any morphism of the form $f : X \to F(A')$ in D, there exists a unique morphism $h : A \to A'$ in C such that $f = F(h) \circ u$, i.e., the following diagram commutes:

$$\mathbf{C}$$
 $A \longrightarrow \exists ! h \longrightarrow A'$

$$\mathbf{D} \qquad F(A) \xrightarrow{\exists F(h)} F(A')$$

$$\downarrow \downarrow \qquad \qquad \qquad \qquad X$$

A universal morphism from F to X is a unique pair $(A, u : F(A) \to X)$ in D such that any morphism of the form $f : F(A') \to X$ in D, there exists a unique morphism $h : A' \to A$ in C such that $f = u \circ F(h)$, i.e., the following diagram commutes:

$$\mathbf{C} \qquad \qquad A \leftarrow -\frac{\exists!h}{} - -- A'$$

Proposition 2.2. Given two locally small categories \mathbb{C} and \mathbb{D} , if $(A, u: X \to F(A))$ is a universal morphism from X to F, then $\forall A' \in ob(\mathbb{C})$ there is a bijection for hom-sets

$$\operatorname{Hom}_{\mathbf{C}}(A, A') \cong \operatorname{Hom}_{\mathbf{D}}(X, F(A')).$$

Proof. From the definition of universal morphism, there is a unique $h \in \operatorname{Hom}_{\mathbf{C}}(A, A')$ corresponding each $f \in \operatorname{Hom}_{\mathbf{D}}(X, F(A'))$, and let the mapping be

$$G \colon \operatorname{Hom}_{\mathbf{C}}(X, F(A')) \to \operatorname{Hom}_{\mathbf{C}}(A, A') \colon f \to h$$

such that the definition diagram commutes.

Conversely, for any $g \in \operatorname{Hom}_{\mathbf{C}}(A, A')$, there exists a unique morphism $F(g) \circ u$ (2.1) such that the definition diagram commutes, therefore

$$G': \operatorname{Hom}_{\mathbf{C}}(A, A') \to \operatorname{Hom}_{\mathbf{D}}(X, F(A')): g \to F(g) \circ u$$

is another mapping.

Since the diagram commutes, they must be inverse, i.e.,

$$GG' = 1, G'G = 1.$$

Remark. Different h corresponds to different f because otherwise it contradicts the universal property.

Different f corresponds to different h because the composite $F(g) \circ u$ is uniquely determined by its components F(g) and u. And there is no other morphism $X \to F(A')$ that makes the diagram commute (2.1).

Corollary 2.3. Given two locally small categories \mathbb{C} and \mathbb{D} , if $(A, u \colon F(A) \to X)$ is a universal morphism from F to X, then $\forall A' \in ob(\mathbb{C})$ there is a bijection for hom-sets

$$\operatorname{Hom}_{\mathbf{C}}(A', A) \cong \operatorname{Hom}_{\mathbf{D}}(F(A'), X).$$

Initial and terminal objects are defined by universal property Given a category \mathbf{C} , define a category \mathbf{D} whose objects are equivalent to objects in \mathbf{C} . Define \mathbf{D} such that there is exactly one arrow between any two objects in \mathbf{D} (easy to prove \mathbf{D} is a valid category, see 1.9). Define a functor $F: \mathbf{C} \to \mathbf{D}$ such that for any arrow $f: A \to B$ in \mathbf{C} , the corresponding arrow is the arrow $F(f): F(A) \to F(B)$ in \mathbf{D} (easy to prove F is a functor if \mathbf{D} is a valid category).

Then an initial object I of \mathbb{C} is defined by a universal morphism from F(I) to $F: (I, 1_{F(I)}: F(I) \to F(I))$.

$$\mathbf{C}$$
 $I \xrightarrow{\exists !h} \to A'$

$$\mathbf{D} \quad \xrightarrow{\mathbf{1}_{F(I)}} F(I) \xrightarrow{\exists ! F(h) \atop \neg \neg \neg} F(A')$$

In the definition (2.3), X = F(I), A = I, $u = 1_{F(I)}$.

Because for any object A' in \mathbb{C} , there is exactly one arrow $f: X = F(I) \to F(A')$ in \mathbb{D} , so there exists exactly one arrow from A = I to any object A' in \mathbb{C} (2.2).

A terminal object T of \mathbb{C} is defined by a universal morphism from F to $F(T): (T, 1_{F(T)}: F(T) \to F(T))$

$$\mathbf{C}$$
 $T \leftarrow -\frac{\exists!h}{} - -- A'$

$$\mathbf{D} \quad \stackrel{\mathbf{1}_{F(T)}}{\longrightarrow} F(T) \stackrel{\exists ! F(h)}{\longleftarrow} F(A')$$

In the definition (2.3), $X = F(T), A = T, u = 1_{F(T)}$.

Because for any object A' in \mathbb{C} , there is exactly one arrow $f \colon F(A') \to X = F(T)$ in \mathbb{D} , so there exists exactly one arrow from any object A' to A = T in \mathbb{C} (2.3).

2.4 Products

Arrows out of the product To be sure, they are related to the notion of an "exponential" Y^B , via "currying" $\lambda f: A \to Y^B$; we discuss this further in Chapter 6.

Product is defined by universal property

Cumbersome definition $\,$ Given a category $\,$ C, and a product diagram in $\,$ C

$$A \xleftarrow{p_1} P \xrightarrow{p_2} B$$

define a copy **D** of **C**, with one additional object, denoted (A, B). The only arrow from (A, B) to itself is the identity arrow $1_{(A,B)}$. There is no arrow from (A, B) to other different objects in **D**. For any object C in **C**, and any arrows

 $f: C \to A, g: C \to B$ in \mathbb{C} , define an arrow $(f,g): C \to (A,B)$ in \mathbb{D} . If, for example, there are 3 arrows $C \to A$, and 2 for $C \to B$ in \mathbb{C} , then there will be 6 for $C \to (A,B)$ in \mathbb{D} .

We now define the composite to make **D** a category. For any $h: D \to C$ in **C** and any $(f,g): C \to (A,B)$ in **D**, $(f,g) \circ h := (f \circ h, g \circ h)$ is an arrow from D to (A,B) because both $f \circ h: D \to A$ and $g \circ h: D \to B$ exist in **C**.

$$D \xrightarrow{h} C$$

$$(f \circ h, g \circ h) \downarrow (f, g)$$

$$(A, B)$$

Easy to show this definition satisfies the associativity requirement.

Let $F: \mathbf{C} \to \mathbf{D}$ be the trivial functor (since \mathbf{D} is just a little bit more than a copy of \mathbf{C}), then a product P is given by the universal morphism from F to (A, B):

$$(P, (p_1, p_2) \colon P \to (A, B)).$$

$$P \leftarrow A'$$

$$(p_1, p_2) \downarrow \qquad (x_1, x_2)$$

$$(A, B)$$

In the definition, 2.3, $X = (A, B), u = (p_1, p_2), A = P, F(A) = P, F(A') = A', F(h) = h, f = (x_1, x_2).$

Note that (A, B) is not an object of \mathbb{C} , so $F(A') = A' \neq (A, B)$, so any arrow $f: A' \to (A, B)$ can be expressed as (x_1, x_2) .

By definition of composite in **D** and uniqueness of composite (2.1), we have $(x_1, x_2) = (p_1 \circ h, p_2 \circ h)$.

Concise definition Given a category \mathbb{C} , define a functor $F \colon \mathbb{C} \to \mathbb{C} \times \mathbb{C}$, where $\mathbb{C} \times \mathbb{C}$ is the product category, as

$$F(A) = (A, A), F(f: A \to B) = (f, f): (A, A) \to (B, B).$$

Then a product P is given by the universal morphism from F to (A, B):

$$(P, (p_1, p_2): (P, P) \to (A, B)).$$

$$(P, P) \xleftarrow{\exists!(h,h)} (A', A')$$

$$(p_1, p_2) \downarrow \qquad \qquad (x_1, x_2)$$

In the definition, 2.3, $\mathbf{D} = \mathbf{C} \times \mathbf{C}, X = (A, B), u = (p_1, p_2), A = P, F(A) = (P, P), F(A') = (A', A'), F(h) = (h, h), f = (x_1, x_2).$

By definition of composite in **D** and uniqueness of composite (2.1), we have $(x_1, x_2) = (p_1 \circ h, p_2 \circ h)$.

Coproduct is defined by universal property Given a category C, define a functor $F: \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ as does 2.4.

Then a coproduct C is given by the universal morphism from (A, B) to F:

$$(C, (i_1, i_2): (A, B) \to (C, C)).$$

$$(C, C) \xrightarrow{\exists!(h,h)} (A', A')$$

$$(i_1, i_2) \uparrow \qquad (x_1, x_2)$$

$$(A, B)$$

In the definition, 2.3, $\mathbf{D} = \mathbf{C} \times \mathbf{C}, X = (A, B), u = (i_1, i_2), A = C, F(A) = (C, C), F(A') = (A', A'), F(h) = (h, h), f = (x_1, x_2).$

2.5 Examples of products

- 3 Check properties
- 4 Greatest lower bound is just min function in totally ordered set.
- **6 Lambda calculus** type theory closed terms = no free variables? $\beta \eta$ -equivalence means $\lambda x.x = \lambda y.y$?

Remark 2.18 "Curry–Howard" correspondence Functor from category of proofs to category of types

- 2.6 Categories with products
- 2.7 Hom-sets
- 2.8 Exercises