Content-Based Recommenders

David Yang xdyang70@gmail.com

Key Idea

Recommend products to a customer similar to previous items rated highly by him/her.

Examples:

- Song: Genre, Style, Artist, Mood...
- Clothing: Style, Brand, Color ...
- Article: Topic, content

Item Profile (Item Feature Vector)

Profile - A Set of Features Describing the Items

- Text (Blog & Article): bag of words, Ida, word2vec
- Audio (Music & Song): time/frequency domains
- Image (Photo and Video): wide & deep network

A Vector: Sparse (symbolic) v.s. Dense (semantic)

User Profile (User Feature Vector)

Endogenous (Customer Segmentation):

- Taste or interest self-reported by the user
- Age, Gender, Education, Location, Language, Device....

Exogenous (Aggregate Item Features):

- Simple: Normalized, Weighted Average
- Sophisticated: PCA, latent factors

A Simple Illustration

A user rated 5 movies directed by Bob and Mary

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Mean
	(Bob)	(Bob)	(Mary)	(Mary)	(Mary)	Rating
Rating (1-5 star)	3	5	1	2	4	3

Then, his/her profile (reflecting director preference)

(Bob, Mary) = (4, 2.3) OR (1, -0.66) [with normalization]

A More Realistic Illustration

Example of Item Features	Υj		Example of User Features	X i	
Category: Business Category: Entertainment	0.0 0.4		Interest: Business Interest: Entertainment	1.0 1.0	
Category: Science	0.1	rres	Interest: Science	0.0	
Words: best Words: worst	0.0 0.2	Features	Words: best Words: worst	0.3	
 Words: Surprise	0.3	Common	 Words: Surprise	0.1	
Doc2Vec		L O	Profile2Vec		
Vec_1	0.9		Vec_1	0.7	
 Vec_100	-0.5		 Vec_100	-0.3	
Other: Length	100		Other: #views	80	
Other: Aging	20		Other: Demographics	30	

Matching User and Item in Feature Vector Space

Matching User and Item Using Predictive Model

Summary of Content-Based Recommenders

Pros

- Simple computing with Intuitive Explanation: (1) do not need data on other users; (2) tailor to unique taste of a user
- Handle "Cold Start": (1) able to recommend new or unpopular items; (2) able to recommend items to new customers (if endogenous features are give)

Cons

- Sometimes, hard to find or extract proper features.
- Overspecification (items outside user's content profile?) & unable to use other user's data (e.g., judgement)
- "Cold Start': new user has no historical items to derive endogenous features.

Example 1

In this example, we will learn how to use Python to extract features from text in describing scientific papers, and build a simple content based recommender system to recommend papers to read.

(see Jupyter Notebook: "Example 1 Content-based Recommender with TF-IDF.ipynb")