Zeus Banking Trojan - Analysis

John Tolomay

Static Analysis	2
VirusTotal	
PeStudio	
Capa	
Cutter	
Dynamic Analysis	
Process Monitor (Procmon)	
Conclusion	
Source	

Static Analysis

Used 7-Zip to unfold the zip file and it contains a suspicious file disguised as a pdf named invoice_2318362983713_823931342io.pdf.exe.

VirusTotal

Submitting the sample to VirusTotal shows that it has been flagged as malicious by 65/72 vendors. This displays the category they flagged it as and also how they named the sample.

PeStudio

stamps		
compiler-stamp	Mon Nov 25 10:32:03 2013 (UTC)	
debug-stamp	n/a	
resource-stamp	n/a	
import-stamp	n/a	
export-stamp	Mon Nov 25 10:32:01 2013 (UTC)	
names		
file	c:\users\administrator\desktop\invoice_2318362983713_823931342io.pdf.exe	
debug	n/a	
export > original-file-name	corect.com	
version	n/a	
manifest	n/a	
.NET > module	n/a	
certificate > program-name	n/a	

Submitting the file to PeStudio shows that the malware was compiled in November of 2013. This screenshot also displays an interesting URL, corect.com. corect.com is a Romanian website, but otherwise gave no interesting results.

raw-address (begin)	0x00000400	0x0000BA00	0x0001E400
raw-address (end)	0x0000BA00	0x0001E400	0x0001EE00
raw-size (251904 bytes)	0x0000B600 (46592 bytes)	0x00012A00 (76288 bytes)	0x00000A00 (2560 bytes)
virtual-address	0x00001000	0x0000D000	0x00020000
virtual-size (250379 bytes)	0x0000B571 (46449 bytes)	0x000128B1 (75953 bytes)	0x0000084D (2125 bytes)

The file has about the same raw-size and virtual-size, meaning there is no compression or "packing" to obfuscate the malware.

group (12)	value (1416)
-	corect.com
1111111	AsksmaceaglyBubuPulsKaifTeasMistPeelGhisPrimChaoLyreroeno
	KERNEL32.MulDiv
i e	BagsSpicDollBikeAzonPoopHamsPyasmap
	KERNEL32.SetCurrentDirectory
	BardHolyawe
-	SHLWAPI.SHFreeShared
-	BathEftsDawnvilepughThroCymakohloverMitefuzerat
	SHLWAPI.PathMakeSystemFolder
-	BemaCadsPodsWavyCedeRads ioOustPerefenom
-	USER32.SetDlgItemText
-	BullbonyaweeWaitsnugTierDriblibye
-	KERNEL32.VirtualQuery
-	CameValeWauler
-	USER32.IsIconic
85 111111	CedeSalsshulLimyThroliraValeDonabox
-	USER32.CreateCaret
-	CellrotoCrudUntohighCols
A.F	KERNEL32.CreateFile
	DenyLubeDunssawsOresvarut
2	SHLWAPI.PathRemoveFileSpec
-	DragRoutflusCrowPeatmownNewsyaksSerfmare
-	USER32.DestroyIcon
8	Dumpcotsavo
-	USER32.SetDlgItemInt
	DungBadebankBangGelthoboCocaBozotsksWheyVaryShoghoseNipsCadisi
-	USER32.EndPaint
(i+0)))	ExitRollWoodGumsgamaSloerevsWussletssinkYearZitiryesHypout
-	USER32.GetClassInfo
	FociTalcileador
	KERNEL32.ConvertDefaultLocale

This is a small portion of the list of strings used by the sample, which includes URLs, file paths, API calls, etc. In this screenshot, there are legit KERNEL32 function calls surrounded by gibberish strings.

flag (18)	label (75)	group (12)	value (1416)	
×	import	windowing	AllowSetForegroundWindow	
×	import	sharing	GetClipboardOwner	
x	import	sharing	GetClipboardData	
×	import	sharing	EnumClipboardFormats	
×	import	sharing	DdeQueryNextServer	
x	-	sharing	GlobalAddAtom	
×	-	reconnaissance	GetEnvironmentVariable	
x	-	reconnaissance	GetEnvironmentVariable	
×	import	memory	VirtualQueryEx	
x		input-output	VkKeyScan	
×	import	hooking	GetAsyncKeyState	
×	import	file	WriteFile	
x	-	file	PathRenameExtension	
×	-	file	FindNextFile	
x	import	execution	GetCurrentThread	
×	-	execution	WinExec	
x	-	console	GetConsoleAliasExesLength	
×		-	SetCurrentDirectory	
-	import	windowing	UpdateWindow	
-	import	windowing	IsWindowEnabled	
B		windowing	CallWindowProc	
-	-	windowing	GetWindowTextLength	
-	import	synchro	DeleteCriticalSection	
-	import	resource	SizeofResource	
-	import	reconnaissance	GetLogicalDrives	
-	import	reconnaissance	GetTickCount	
-	-	reconnaissance	GetDriveType	
-	import	memory	LocalUnlock	
-	import	memory	HeapFree	
-	<u>import</u>	memory	LocalAlloc	
-	import	memory	LocalFree	

List of API calls from the sample, with the "x" flagging it as possibly malicious.

Libraries the malware uses.

Capa

Capa references the MITRE ATT&CK framework and claims the malware's objective is to avoid detection by virtualized/sandboxed environments.

Cutter

By using Cutter, we can see the hashes of the malicious file as well as the libraries it uses and other analysis information.

The assembly code from the malware entry shows these API calls. The malware calls GetTickCount, which says how long the machine has been powered on for, which enforces the theory that this malware is trying to detect a virtualized environment.

0x0043397c 0x00433981 0x00433982 0x00433983	push outsd insb jae	<pre>0x43686769 ; 'ighC' dx, dword [esi] byte es:[edi], dx 0x433985</pre>
0x00433985	dec	ebx

The string CellrotoCrudUntohighCols comes right before a function call, KERNEL32.CreateFileA. This assembly code shows a section of the string being pushed ('ighC'). The function call comes very close after, in the highlighted line.

Dynamic Analysis

Initial observation: The file deletes itself once executed, likely after establishing persistence.

Process Monitor (Procmon)

This data from Procmon shows all the operations that the malicious file performed. It also created randomly named files in the C:\Users\...\Google\Desktop\Install directory.

More files are being created in the C:\Program Files (x86)\...\Desktop\Install directory, specifically a file called exe.etadpUelgooG, which is the reverse of GoogleUpdate.exe. This is likely the malware's attempt to obfuscate the file from security software.

In this screenshot, there are more reversed file/folder names that the malware is setting as values in the registry. In the first row, the value in Google Update is being set by one of the files it created in the filesystem. It is possible that the malware establishes persistence in the registry through Google Update.

Conclusion

In the static analysis of the malicious sample, we found the entire list of strings used in the sample, which contains API calls, URLs, and gibberish that are suspected to be obfuscated function names, given its close proximity to legit function calls. One of the capabilities of the sample is the detection of a sandboxed environment. This is likely so it can avoid being analyzed. By using Cutter, you can see the assembly code of the malware, showing what functions were called and when. GetTickCount was used by the malware to see how long the machine has been powered on for, likely to see if it is being run in a virtualized environment. In the dynamic analysis, Process Monitor was used to see what operations were being performed by the malicious program. Files of random names were created in the filesystem and the Google Update registry value was set to one of the malicious files it created. This was likely the mechanism for establishing persistence.

Source

Analyzing the Zeus Banking Trojan - Malware Analysis Project 101