Chapter 3. Voltage & Current laws

- 1. Network topology: Nodes, paths, loops, and branches
- 2. KCL / KVL
- 3. Single-loop / -node-pair circuits
- 4. Series & parallel connections
- 5. Voltage & current division

회로이론-1. 2. Voltage and Current laws

Network topology: Nodes, paths, loops, branches

- Terminologies based on graph theory
 - v Every circuit element can be represented by a branch with two terminals.
 - v Node (마디): A point at which two or more circuit elements have a common connection.
 - v 두 개 이상의 회로소자는 node로 연결된다.
 - v Every circuit element has a pair of nodes at each of its ends.
 - v Branch (가지): A single path in a network, composed of one circuit element and nodes at each end.
 - v A path is a sequence of nodes/branches.
 - ∨ A loop is a closed path
 - † 한 node에서 시작하여 node 반복 없이 시작 node로 다시 돌아오는 폐경로.

회로이론-1. 3. Voltage and Current laws

Nodes, paths, loops, branches

• Example

회로이론-1. 3. Voltage and Current laws

3-3

KCL, Kirchhoff's Current Law

• KCL: Algebraic sum of branch currents entering any node is zero.

회로이론-1. 3. Voltage and Current laws

KCL

- Example 3.1 Find the current through resistor R_{3} , if the voltage source supplies a current of 3 [A].
- Practice 3.1 Find R_A , when $i_x = 3[A]$ and the voltage source delivers 8[A] current.

회로이론-1. 3. Voltage and Current laws

3-5

KVL, Kirchhoff's Voltage Law

• KVL: Algebraic sum of branch voltages around any closed path is zero.

Starting from the node-A, add-up branch voltages while checking the voltage polarities:

$$v_2 + (-v_3) + (-v_1) = 0$$

 $v_2 = v_1 + v_3$

회로이론-1. 3. Voltage and Current laws

KVL

• Example 3.2 Find v_x and i_x .

• Practice 3.2 Find v_x and i_x .

회로이론-1. 3. Voltage and Current laws

3-7

KVL

• Example 3.3 Find v_{R2} and v_x .

• Example 3.4 Find v_x and i_x .

회로이론-1. 3. Voltage and Current laws

Series Connection 직렬 연결

- All elements in a circuit that carry the same current are said to be connected in series.
 - v 직렬 연결된 소자는 동일한 전류 값을 공유한다.
 - ∨하나의 node를 두 개의 branch(혹은 회로소자) 만이 공유할 때 두 소자는 직렬연결 된다.

회로이론-1. 3. Voltage and Current laws

3-9

Parallel Connection 병렬 연결

- Elements in a circuit having a common voltage across them are said to be connected in parallel.
 - ∨ 병렬 연결된 소자는 동일한 전압 값을 공유한다.
 - v 한 쌍의 node를 공유하는 두 개 이상의 branch는 병렬연결 된다.

회로이론-1. 3. Voltage and Current laws

감전 사고

Physiological reactions to current levels in humans

Physiological reaction	Current
Barely perceptive	3 ~ 5 [mA]
Extreme pain	30 ~ 50 [mA]
Muscle paralysis	50 ~ 70 [mA]
Heart stoppage	500 [mA]

감전에 의한 인체의 위험도

- 1. 전류의 크기
- 2. 통전 시간
- 3. 통전 경로
- 4. 전원의 종류

회로이론-1. 3. Voltage and Current laws

- 감전의 위험도 \propto (접촉전압의 크기) \times (감전시간)
- 허용 접촉 전압
 - ✓ 일반 환경: 50 [V]
 - ✓ 젖어 있는 상태: 25 [V]
 - ✓ 물속: 2.5[V] 이하
- 평균 인체 저항: 500 ~ 5,000 [Ω]

3-11

Single-loop circuit

- v A circuit where all circuit elements (or branches) are seriesconnected.
- Example 3.5 Compute powers.

회로이론-1. 3. Voltage and Current laws

Single-node-pair circuit

vA circuit where all branches share a pair of nodes.

• Example 3.6 Compute all circuit variables.

회로이론-1. 3. Voltage and Current laws

3-13

Single-node-pair circuit

• Example 3.7 Find the voltage, v.

• Practice 3.8 Find i_A .

회로이론-1. 3. Voltage and Current laws

Series & parallel connection of sources

- Voltage sources connected in series can be combined into an equivalent voltage source:
 - $v_1 \stackrel{+}{\overset{+}{\smile}}$ $v_2 \stackrel{+}{\overset{-}{\smile}}$ $v_3 \stackrel{-}{\overset{+}{\smile}}$ (a)
- Current sources connected in parallel can be combined into an equivalent current source:

회로이론-1. 3. Voltage and Current laws

3-15

Impossible circuits

 Parallel-connected voltage sources / series-connected current sources

❖ 어떤 전자기기의 전원부는 1.5[V] battery 4개가 병렬연결 되도록 구성되어 있다. 찾아보니, 새 건전지가 2개밖에 없어서, 나머지 2개는 사용하 던 건전지를 사용하였다. 어떤 문제점이 있을까?

회로이론-1. 3. Voltage and Current laws

Series connection of resistors

- 등가 저항 (equivalent resistance)
 - ✓ Terminal a-b에서 바라본 등가저항
 - ✓ 동일한 전류-전압 특성

회로이론-1. 3. Voltage and Current laws

3-17

Series connection of resistors

• Example 3.11 Find i and the power supplied by the 80 [V] voltage source.

Series connection of resistors

• Example 3.12 Find the power supplied by the voltage source.

회로이론-1. 3. Voltage and Current laws

3-19

Parallel connection of resistors

• Two resistors in parallel

$$\vee \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}, \ R_{eq} = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

회로이론-1. 3. Voltage and Current laws

Voltage division

• Resistors in series "share" the applied voltage.

$$v_1=R_1i,\ v_2=R_2i,\ v_1+v_2=v,\ \text{and}\ i=\frac{v}{R_1+R_2}$$
 Thus, $v_1=\frac{R_1}{R_1+R_2}v$ and $v_2=\frac{R_2}{R_1+R_2}v$

• Example 3.13 Find v_x .

회로이론-1. 3. Voltage and Current laws

3-21

Current division

• Resistors in parallel "share" current through them.

$$\downarrow i_1 \qquad \downarrow i_2 \qquad i_1 = \frac{v}{R_1}, \ i_2 = \frac{v}{R_2}, \ i_1 + i_2 = i, \ \text{and} \ v = (R_1 \parallel R_2)i = \frac{R_1 R_2}{R_1 + R_2}i$$

$$\downarrow R_1 \qquad \downarrow R_2 \qquad \text{Thus,} \ i_1 = \frac{R_2}{R_1 + R_2}i \ \text{and} \ i_2 = \frac{R_1}{R_1 + R_2}i$$

• Practice 3.14 Find v_3 .

회로이론-1. 3. Voltage and Current laws

Wheatstone bridge

- How to measure the resistance of medium range: 1 ~ $10^6 [\Omega]$.
 - \vee 4 resistors, R_1 , R_2 , R_a , known, while R_x unknown.
 - v dc voltage source and current detector.

When $i_{ab} = 0$,

- (1) $i_a = i_x$ and $i_1 = i_2$
- (2) $R_a i_a = R_1 i_1$ and $R_x i_x = R_2 i_2$

(3)
$$\frac{R_x}{R_2} = \frac{i_2}{i_x} = \frac{i_1}{i_a} = \frac{R_a}{R_1}$$

$$R_{x} = \frac{R_2}{R_1} R_a$$

회로이론-1. 3. Voltage and Current laws

3-23

Ground, 접지

- A point with zero electrical potential.
 - V Reference to all other voltages

회로이론-1. 3. Voltage and Current laws