10	The	equation of a curve is such that $\frac{d^2y}{dx^2} = 6x^2 - \frac{4}{x^3}$. The curve has a stationary point at $\left(-1, \frac{9}{2}\right)$.	
	(a)	Determine the nature of the stationary point at $\left(-1, \frac{9}{2}\right)$.	[1]
			••••
	(b)	Find the equation of the curve.	[5]
			· • • •
			.
			· • • •
			· • • •
			· • • •

Show that the	curve has no other stationary points.	[3]
	moving along the curve and the y -coordinate of A is increasing	
A point A is n per second.		g at a rate of 5 units
A point A is n per second.	moving along the curve and the y-coordinate of A is increasing	g at a rate of 5 units
A point <i>A</i> is n per second. Find the rate o	moving along the curve and the y-coordinate of A is increasing	g at a rate of 5 units
A point <i>A</i> is n per second. Find the rate o	moving along the curve and the y-coordinate of A is increasing of increase of the x-coordinate of A at the point where $x = 1$.	g at a rate of 5 units
A point <i>A</i> is n per second. Find the rate o	moving along the curve and the y-coordinate of A is increasing of increase of the x-coordinate of A at the point where $x = 1$.	g at a rate of 5 units
A point <i>A</i> is near second. Find the rate of	moving along the curve and the y-coordinate of A is increasing of increase of the x-coordinate of A at the point where $x = 1$.	g at a rate of 5 units
A point <i>A</i> is n per second. Find the rate o	moving along the curve and the y-coordinate of A is increasing of increase of the x-coordinate of A at the point where $x = 1$.	g at a rate of 5 units
A point <i>A</i> is not per second. Find the rate of	moving along the curve and the y-coordinate of A is increasing of increase of the x-coordinate of A at the point where $x = 1$.	g at a rate of 5 units
A point <i>A</i> is near second. Find the rate of	moving along the curve and the y-coordinate of A is increasing of increase of the x-coordinate of A at the point where $x = 1$.	g at a rate of 5 units
A point <i>A</i> is n per second. Find the rate o	moving along the curve and the y-coordinate of A is increasing of increase of the x-coordinate of A at the point where $x = 1$.	g at a rate of 5 units
A point <i>A</i> is n per second. Find the rate o	moving along the curve and the y-coordinate of A is increasing of increase of the x-coordinate of A at the point where $x = 1$.	g at a rate of 5 units