Digital Standard Cell Library

SAED_EDK90_CORE

DATABOOK

Document #: SAED_EDK90_CORE

Revision : 1.11

Technology: SAED90nm

Process : SAED90nm 1P9M 1.2v / 2.5v / 3.3v

TABLE OF CONTENTS

1.	Introdu	ction	. 13
2.	Genera	Il Information	14
3.	Operati	ng conditions	19
4.	Input si	gnal slope, standard load and drive strengths	19
		aracteristics	
	5.1.	Characterization corners	19
	5.2.	The values of Output Load and Input Slope	22
6.		Standard Library Cells List	
7.	Digital S	Standard Cell Library deliverables	32
		ry structure and file naming conventions	
	Physica	al structure of digital cell	35
10	. De	scriptions of Digital Standard Cells	39
	10.1.	Inverters	
	10.2.	Inverting Buffers	
	10.3.	Non-inverting Buffers	41
	10.4.	Tri-state Non-inverting Buffer w/ High-Active Enable	42
	10.5.	AND	43
	10.6.	NAND	44
	10.7.	OR	45
	10.8.	NOR	46
	10.9.	XOR	47
		XNOR	_
		AND-OR	
		AND-OR-Invert	
	10.13.	OR-AND	
		OR-AND-Invert	
	10.15.	Multiplexer 2 to 1	
	10.16.	Multiplexer 4 to 1	
	10.17.	Decoder 2 to 4	
		Half Adder 1-Bit	
		Full Adder 1-Bit	
		Pos Edge DFF	
		Pos Edge DFF w/Async Low-Active Set	
		Pos Edge DFF w/Async Low-Active Reset	
	10.23.	Pos Edge DFF w/Async Low-Active Set & Reset	
	10.24.	Pos Edge DFF w/ Sync Low-Active Set & Reset	74
		Neg Edge DFF	75
	10.26.	Neg Edge DFF w/Async Low-Active Set	
	10.27.	Neg Edge DFF w/Async Low-Active Reset	
	10.28.	Neg Edge DFF w/Async Low-Active Set & Reset	
	10.29.	Neg Edge DFF w/Async Low-Active Set & Reset, Only Q out	
	10.30.	Neg Edge DFF w/Async Low-Active Set & Reset, Only QN out	
	10.31.	Scan Pos Edge DFF	
		Scan Pos Edge DFF w/Async Low Active Set	
	10.33. 10.34.	Scan Pos Edge DFF w/Async Low Active Reset	
		Scan Pos Edge DFF w/Async Low-Active Set & Reset	
	10.33.	ocali Fus Luye DFF winsylic Luw-Active Set a Reset, Q, QIV a Su Outs	00

10.36.		
10.37.	Scan Neg Edge DFF	
10.38.	Scan Neg Edge DFF w/Async Low-Active Set	88
10.39.	Scan Neg Edge DFF w/Async Low-Active Reset	
10.40.	Scan Neg Edge DFF w/Async Low-Active Set & Reset	90
10.41.	RS-NAND Latch	91
10.42.	High-Active Latch	
10.43.	High-Active Latch w/ Async Low-Active Set	93
10.44.	High-Active Latch w/ Async Low-Active Reset	
10.45.	High-Active Latch w/ Async Low-Active Set & Reset	
10.46.	High-Active Latch w/ Async Low-Active Set & Reset only Q out	96
10.47.	High-Active Latch w/ Async Low-Active Set & Reset only QN out	97
10.48.	Clock Gating cell w/ Latched Pos Edge Control Post	
10.49.	Clock Gating cell w/ Latched Neg Edge Control Post	99
10.50.	Clock Gating cell w/ Latched Pos Edge Control Pre	
10.51.	Clock Gating cell w/ Latched Neg Edge Control Pre	
10.52.	Non-Inverting Delay Line	102
10.53.	Pass Gate	
10.54.	Bi-directional Switch w/ Active Low Enable	
10.55.	Hold 0 Isolation Cell (Logic AND)	
10.56.	Hold 0 Isolation Cell (Logic AND), Always On	
10.57.	Hold 1 Isolation Cell (Logic OR)	
10.58.	Hold 1 Isolation Cell (Logic OR), Always On	
10.59.	Low to High Level Shifter	
10.60.	High to Low Level Shifter	
10.61.	High to Low Level Shifter, single supply	
10.62.	High to Low Level Shifter/ High Activ Enable, single supply	
10.63.	High to Low Level Shifter/ High Activ Enable, Clamp Low, Single supply	
10.64.	Low to High Level Shifter/ Active Low Enable	
10.65.	High to Low Level Shifter/ Active Low Enable	
10.66.	Low to High Level Shifter/ Active Low Enable	
10.67.	High to Low Level Shifter/ Active Low Enable	
	Pos Edge Retention DFF	
	Scan Pos Edge Retention DFF	119
10.70.	, , ,	
10.71.	Neg Edge Retention DFF	
10.72.		
10.73.	, , ,	
10.74.	Pos Edge DFF SR	
10.75.	Pos Edge Retention DFF,w/Async Low Activ Reset	
10.76.	Neg Edge Retention DFF,w/Async Low Active Reset	
10.77.	Pos Edge DFF SR, w/ Async Low-Active Set	
10.78.	Pos Edge DFF SR, w/ Async Low-Active Reset	
10.79.	Pos Edge DFF SR, w/ Async Low-Active Set & Reset	
10.80.	Pos Edge DFF SR, w/ Sync Low-Active Set & Reset	
10.81.	Neg Edge DFF SR	
10.82.	Neg Edge DFF SR, w/ Async Low-Active Set	
10.83.	Neg Edge DFF SR, w/ Async Low-Active Reset	
10.84.	Neg Edge DFF SR, w/ Async Low-Active Set & Reset	135

	10.85.	Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out	
	10.86.	Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out	
	10.87.	Scan Pos Edge DFF SR	
	10.88.	Scan Pos Edge DFF SR, w/ Async Low-Active Set	
	10.89.	Scan Pos Edge DFF SR, w/ Async Low-Active Reset	
	10.90.	Scan Pos Edge DFF SR, w/ Async Low-Active Set & Reset	143
	10.91.	Scan Pos Edge DFF SR, w/ Sync Low-Active Set & Reset	
	10.92.	Scan Neg Edge DFF SR	146
	10.93.	Scan Neg Edge DFF SR, w/ Async Low-Active Set	147
	10.94.	Scan Neg Edge DFF SR, w/ Async Low-Active Reset	
	10.95.	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset	
	10.96.	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out	
	10.97.	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out	
	10.98.	Header Cell	
	10.99.	Header Cell (with SLEEPOUT output)	
		Always on Inverter	
		Always on Non-inverting Buffer	
		Always on Pos Edge DFF, w/ Async Low-Active Reset	
		Always on Neg Edge DFF, w/ Async Low-Active Reset	
		Bus Keeper	
		P-MOSFET	
		N-MOSFET	
		Tie High	
		Tie Low	
		Antenna Diode	
		Decoupling Capacitance	
		Capacitive Load	
ľ	ı. Re	vision history	164

LIST OF TABLES

Table 2.1. Symbols of logic elements' states	
Table 2.2. DC Parameters and measurement conditions of digital cells	14
Table 2.3. AC Parameters and measurement conditions of digital cells	16
Table 3.1. Operating conditions	19
Table 4.1. Definition of drive strength	19
Table 5.1. Base Characterization Corners	20
Table 5.2. Multi-VDD characterization corners	21
Table 5.3 The values used for characterization	22
Table 5.4 The used values for calculating Setup/Hold Times	
Table 6.1. Digital Standard Library Cells List	
Table 7.1. Digital Standard Cell Library deliverables	
Table 8.1 Digital Standard Cell Library file naming conventions	34
Table 8.2 Logic libraries paths and file naming conventions	
Table 9.1. Physical structure dimensions	
Table 10.1. Inverter Truth Table	
Table 10.2. Inverter Electrical Parameters and Areas	
Table 10.3. Inverting Buffer Truth Table	
Table 10.4. Inverting Buffer Electrical Parameters and Areas	۸۲
Table 10.5. Non-inverting Buffer Truth Table	1 0
Table 10.6. Non-inverting Buffer Electrical Parameters and Areas	4
Table 10.7. Tri-state Non-inverting Buffer w/ High-Active Enable Truth Table	
Table 10.8. Tri-state Non-inverting Buffer w/ High-Active Enable Electrical Parameters and Areas	
Table 10.9. AND Truth Table (n=2,3,4)	
Table 10.10. AND Electrical Parameters and Areas	
Table 10.11. NAND Truth Table (n=2,3,4)	44
Table 10.12. NAND Electrical Parameters and Areas	
Table 10.13. OR Truth Table (n=2,3,4)	
Table 10.14. OR Electrical Parameters and Areas	
Table 10.15. NOR Truth Table (n=2,3,4)	46
Table 10.16. NOR Electrical Parameters and Areas	
Table 10.17. XOR Truth Table (n=2,3)	
Table 10.18. XOR Electrical Parameters and Areas	
Table 10.19. XNOR Truth Table (n=2,3)	48
Table 10.20. XNOR Electrical Parameters and Areas	
Table 10.21. AND-OR 2/1 Truth Table	
Table 10.22. AND-OR 2/1 Electrical Parameters and Areas	
Table 10.23. AND-OR 2/2 Truth Table	
Table 10.24. AND-OR 2/2 Electrical Parameters and Areas	50
Table 10.25. AND-OR 2/2/1 Truth Table	
Table 10.26. AND-OR 2/2/1 Electrical Parameters and Areas	51
Table 10.27. AND-OR 2/2/2 Truth Table	52
Table 10.28. AND-OR 2/2/2 Electrical Parameters and Areas	52
Table 10.29. AND-OR-Invert 2/1 Truth Table	53
Table 10.30. AND-OR-Invert 2/1 Electrical Parameters and Areas	53
Table 10.31. AND-OR-Invert 2/2 Truth Table	54
Table 10.32. AND-OR-Invert 2/2 Electrical Parameters and Areas	
Table 10.33. AND-OR-Invert 2/2/1 Truth Table	5
Table 10.34. AND-OR-Invert 2/2/1 Electrical Parameters and Areas	
Table 10.35. AND-OR-Invert 2/2/2 Truth Table	
Table 10.36. AND-OR-Invert 2/2/2 Electrical Parameters and Areas	
Table 10.37. OR-AND 2/1 Truth Table	
Table 10.38. OR-AND 2/1 Electrical Parameters and Areas	
Table 10.39. OR-AND 2/2 Truth Table	
Table 10.40. OR-AND 2/2 Electrical Parameters and Areas	
Table 10.41. OR-AND 2/2/1 Truth Table	
Table 10.42. OR-AND 2/2/1 Electrical Parameters and Areas	
Table 10.43. OR-AND 2/2/2 Truth Table	
TODIO TO. TO. OTT AND BIETE THAN TABLE	

	OR-AND 2/2/2 Electrical Parameters and Areas	
Table 10.45.	OR-AND-INVERT 2/1 Truth Table	61
Table 10.46.	OR-AND-INVERT 2/1 Electrical Parameters and Areas	61
Table 10.47.	OR-AND-INVERT 2/2 Truth Table	62
Table 10.48.	OR-AND-INVERT 2/2 Electrical Parameters and Areas	62
	OR-AND-INVERT 2/2/1 Truth Table	
	OR-AND-INVERT 2/2/1 Electrical Parameters and Areas	
	OR-AND-INVERT 2/2/2 Truth Table	
Table 10.52	OR-AND-INVERT 2/2/2 Electrical Parameters and Areas	64
	Multiplexer 2 to 1 Truth Table	
	Multiplexer 2 to 1 Electrical Parameters and Areas	
	Multiplexer 4 to 1 Truth Table	
	Multiplexer 4 to 1 Fluth Fable	
	Decoder 2 to 4 Truth Table	
Table 10.57.	Decoder 2 to 4 Truth Table	07
	Half Adder 1-Bit Truth Table	
	Half Adder 1-Bit Electrical Parameters and Areas	
	Full Adder 1-Bit Truth Table	
	Full Adder 1-Bit Electrical Parameters and Areas	
	Pos Edge DFF Transition Table	
	Pos Edge DFF Electrical Parameters and Areas	
	Pos Edge DFF w/Async Low-Active Set Transition Table	
	Pos Edge DFF w/Async Low-Active Set Electrical Parameters and Areas	
	Pos Edge DFF w/Async Low-Active Reset Transition Table	
	Pos Edge DFF w/Async Low-Active Reset Electrical Parameters and Areas	
	Pos Edge DFF w/Async Low-Active Set & Reset Transition Table	
Table 10.70.	Pos Edge DFF w/Async Low-Active Set & Reset Electrical Parameters and Areas	73
	Pos Edge DFF w/ Sync Low-Active Set & Reset Transition Table	
Table 10.72.	Pos Edge DFF w/ Sync Low-Active Set & Reset Electrical Parameters and Areas	74
Table 10.73.	Neg Edge DFF Transition Table	75
Table 10.74.	Neg Edge DFF Electrical Parameters and Areas	75
	Neg Edge DFF w/Async Low-Active Set Transition Table	
	Neg Edge DFF w/Async Low-Active Set Electrical Parameters and Areas	
	Neg Edge DFF w/Async Low-Active Reset Transition Table	
	Neg Edge DFF w/Async Low-Active Reset Electrical Parameters and Areas	
	Neg Edge DFF w/Async Low-Active Set & Reset Transition Table	
	Neg Edge DFF w/Async Low-Active Set & Reset Electrical Parameters and Areas	
	Neg Edge DFF w/Async Low-Active Set & Reset, Only Q out Transition Table	
	Neg Edge DFF w/Async Low-Active Set & Reset, Only Q out Electrical Parameters and Areas	
	Neg Edge DFF w/Async Low-Active Set & Reset, Only QN out Transition Table	
	Neg Edge DFF w/Async Low-Active Set & Reset, Only QN out Electrical	
	Scan Pos Edge DFF Transition Table	
Table 10.05.	Scan Pos Edge DFF Electrical Parameters and Areas	۱ ک 2 ا
Table 10.00.	Scan Pos Edge DFF w/Async Low-Active Set Transition Table	ori
Table 10.07.	Scan Pos Edge DFF w/Async Low-Active Set Flanshoff Fable	02
	Scan Pos Edge DFF w/Async Low-Active Reset Transition Table	
	Scan Pos Edge DFF w/Async Low-Active Reset Electrical Parameters and Areas	
	Scan Pos Edge DFF w/Async Low-Active Set & Reset Transition Table	
	Scan Pos Edge DFF w/Async Low-Active Set & Reset Electrical Parameters and Areas	
	Scan Pos Edge DFF w/Async Low-Active Set & Reset, Q, QN & S0 outs Transition Table	
	Scan Pos Edge DFF w/Async Low-Active Set & Reset, Q, QN & S0 outs Electrical Parameters a	
	Scan Pos Edge DFF w/ Sync Low-Active Set & Reset Transition Table	
	Scan Pos Edge DFF w/ Sync Low-Active Set & Reset Electrical Parameters and Areas	
	Scan Neg Edge DFF Transition Table	
	Scan Neg Edge DFF Electrical Parameters and Areas	
	Scan Neg Edge DFF w/Async Low-Active Set Transition Table	
	D. Scan Neg Edge DFF w/Async Low-Active Set Electrical Parameters and Areas	
Table 10.10	1. Scan Neg Edge DFF w/Async Low-Active Reset Transition Table	89

Table 10.102. Scan Neg Edge DFF w/Async Low-Active Reset Electrical Parameters and Areas	
Table 10.103. Scan Neg Edge DFF w/Async Low-Active Set & Reset Transition Table	90
Table 10.104. Scan Neg Edge DFF w/Async Low-Active Set & Reset Electrical Parameters and Areas	
Table 10.105. RS-NAND Latch Transition Table	
Table 10.106. RS-NAND Latch Electrical Parameters and Areas	
Table 10.107. High-Active Latch Transition Table	92
Table 10.108. High-Active Latch Electrical Parameters and Areas	92
Table 10.109. High-Active Latch w/ Async Low-Active Set Transition Table	93
Table 10.110. High-Active Latch w/ Async Low-Active Set Electrical Parameters and Areas	93
Table 10.111. High-Active Latch w/ Async Low-Active Reset Transition Table	
Table 10.112. High-Active Latch w/ Async Low-Active Reset Electrical Parameters and Areas	
Table 10.113. High-Active Latch w/ Async Low-Active Set & Reset Transition Table	
Table 10.114. High-Active Latch w/ Async Low-Active Set & Reset Electrical Parameters and Areas	
Table 10.115. High-Active Latch w/ Async Low-Active Set & Reset only Q out Electrical Parameters and Are	
Table 10.117. High-Active Latch w/ Async Low-Active Set & Reset only QN out Transition Table	
Table 10.117. High-Active Latch w/ Async Low-Active Set & Reset only QN out Electrical Parameters and Al	
Table 10.116. High-Active Latert W. Async Low-Active Set & Neset Only Qiv Out Liesting I alameters and Al	
Table 10.119. Clock Gating cell w/ Latched Pos Edge Control Post Truth Table	
Table 10.120. Clock Gating cell w/ Latched Pos Edge Control Post Electrical Parameters and Areas	
Table 10.121. Clock Gating cell w/ Latched Neg Edge Control Post Truth Table	
Table 10.122. Clock Gating cell w/ Latched Neg Edge Control Post Electrical Parameters and Areas	90
Table 10.123. Clock Gating cell w/ Latched Pos Edge Control Pre Truth Table	
Table 10.124. Clock Gating cell w/ Latched Pos Edge Control Pre Electrical Parameters and Areas	
Table 10.125. Clock Gating cell w/ Latched Neg Edge Control Pre Truth Table	
Table 10.126. Clock Gating cell w/ Latched Neg Edge Control Pre Electrical Parameters and Areas	
Table 10.127. Non-Inverting Delay Line Truth Table	
Table 10.128. Non-Inverting Delay Line Electrical Parameters and Areas	102
Table 10.129. Pass Gate Truth Table	
Table 10.130. Pass Gate Electrical Parameters and Areas	
Table 10.131. Bi-directional Switch w/ Active Low Enable Truth Table	
Table 10.132. Bi-directional Switch w/ Active Low Enable Electrical Parameters and Areas	
Table 10.133. Hold 0 Isolation Cell (Logic AND) Truth Table	
Table 10.134. Hold 0 Isolation Cell (Logic AND) Electrical Parameters and Areas	105
Table 10.135. Hold 0 Isolation Cell (Logic AND), Always On Truth Table	106
Table 10.136. Hold 0 Isolation Cell (Logic AND), Always On Electrical Parameters and Areas	
Table 10.137. Hold 1 Isolation Cell (Logic OR) Truth Table	
Table 10.138. Hold 1 Isolation Cell (Logic OR) Electrical Parameters and Areas	107
Table 10.139. Hold 1 Isolation Cell (Logic OR). Always On Truth Table	108
Table 10.140. Hold 1 Isolation Cell (Logic OR), Always On Electrical Parameters and Areas	108
Table 10.141. Low to High Level Shifter Truth Table	109
Table 10.142. Low to High Level Shifter Electrical Parameters and Areas	109
Table 10.143. High to Low Level Shifter	110
Table 10.144. High to Low Level Shifter Electrical Parameters and Areas	
Table 10.145. High to Low Level Shifter	
Table 10.146. High to Low Level Shifter, Single supply Electrical Parameters and Areas	
Table 10.147. High to Low Level Shifter/High Activ Enable, single supply	
Table 10.148. High to Low Level Shifter/High Activ Enable, Single supply Electrical Parameters and Areas	
Table 10.149. High to Low Level Shifter/High Activ Enable, Clamp Low, Single Supply	
Table 10.150. High to Low Level Shifter/High Activ Enable, Single supply Electrical Parameters and Areas	
Table 10.151. Low to High Level Shifter /Active Low Enable Truth Table	
Table 10.152. Low to High Level Shifter/Active Low Enable Electrical Parameters and Areas	
Table 10.153. High to Low Level Shifter / Active Low Enable Truth Table	
Table 10.154. High to Low Level Shifter/ Active Low Enable Electrical Parameters and Areas	
Table 10.155. Low to High Level Shifter /Active Low Enable Truth Table	
Table 10.156. Low to High Level Shifter/Active Low Enable Electrical Parameters and Areas	116
Table 10.157. High to Low Level Shifter / Active Low Enable Truth Table	117
Table 10.158. High to Low Level Shifter/ Active Low Enable Electrical Parameters and Areas	
Table 10.159. Pos Edge Retention DFF Transition Table	118

	DFF Electrical Parameters and Areas	
Table 10.161. Scan Pos Edge Rete	ention DFF Transition Table	119
Table 10.162. Scan Pos Edge Rete	ention DFF Electrical Parameters and Areas	119
Table 10.163. Scan Pos Edge Rete	ention DFF,w/Async Low Activ Reset Transition Table	120
Table 10.164. Scan Pos Edge Rete	ention DFF,w/Async Low Activ Reset Electrical Parameters and Areas	120
	DFF Transition Table	
	DFF Electrical Parameters and Areas	
Table 10 167 Scan Neg Edge Ret	ention DFF Transition Table	122
Table 10 168 Scan Neg Edge Ret	ention DFF Electrical Parameters and Areas	122
Table 10.160. Scan Neg Edge Ret	ention DFF,w/Async low Activ reset Transition Table	122
	ention DFF Electrical Parameters and Areas	
	Fransition Table	
•	Electrical Parameters and Areas	
	sync Low Activ Reset Transition Table	
	Electrical Parameters and Areas	
	sync Low Activ Reset Transition Table	
	Electrical Parameters and Areas	
Table 10.177. Pos Edge DFF SR, v	w/ Async Low-Active Set Transition Table	127
	w/ Async Low-Active Set	
	w/ Async Low-Active Reset Transition Table	
	w/ Async Low-Active Reset	
Table 10.181. Pos Edge DFF SR, v	w/ Async Low-Active Set & Reset Transition Table	129
	w/ Async Low-Active Set & Reset	
Table 10.183. Pos Edge DFF SR, v	w/ Sync Low-Active Set & Reset Transition Table	131
	w/ Sync Low-Active Set & Reset	
Table 10.185. Neg Edge DFF SR 7	Fransition Table	132
	Electrical Parameters and Areas	
	sync Low-Active Set Transition Table	
	w/ Async Low-Active Set Electrical Parameters and Area	
Table 10.189. Edge Pos Edge DFF	F SR, w/ Async Low-Active Reset Transition Table	134
	w/ Async Low-Active Reset Electrical Parameters and Areas	
	w/ Async Low-Active Set & Reset Transition Table	
	w/ Async Low-Active Set & Reset Electrical Parameters and Areas	
	N/ Async Low-Active Set & Reset, Only Q out Transition Table	
	w/ Async Low-Active Set & Reset, Only Q out Electrical Parameters and A	
Table 10.195. Neg Edge DFF SR.	w/ Async Low-Active Set & Reset, Only QN out Transition Table	138
	w/ Async Low-Active Set & Reset, Only QN out Electrical Parameters and	
Table 10 197 Scan Pos Edge DEF	SR Transition Table	139
	SR Electrical Parameters and Areas	
Table 10 199 Scan Pos Edge DEF	F SR, w/ Async Low-Active Set Transition Table	140
Table 10 200 Scan Pos Edge DEF	F SR, w/ Async Low-Active Set Electrical Parameters and Areas	141
	F SR, w/ Async Low-Active Reset Transition Table	
	F SR, w/ Async Low-Active Reset Electrical Parameters and Areas	
	F SR, w/ Async Low-Active Set & Reset Transition Table	
	F SR, w/ Async Low-Active Set & Reset Electrical Parameters and Areas	
	F SR, w/ Sync Low-Active Set & Reset Transition Table	
	F SR, w/ Sync Low-Active Set & Reset Electrical Parameters and Areas	
	SR Transition Table	
	SR Electrical Parameters and Areas	
	SR, w/ Async Low-Active Set Transition Table	
	SR, w/ Async Low-Active Set Electrical Parameters and Areas	
	SR, w/ Async Low-Active Reset Transition Table	
	SR, w/ Async Low-Active Reset Electrical Parameters and Areas	
	F SR, w/ Async Low-Active Set and Reset Transition Table	
	F SR, w/ Async Low-Active Set & Reset Electrical Parameters and Areas	
Table 10.215. Scan Neg Edge DFF	F SR, w/ Async Low-Active Set & Reset, Only Q out Transition Table	152

Γable 10.216. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out Electrical Parameters	
Areas	153
تنا Table 10.217. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out Transition Table	154
Table 10.218. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out Electrical Paramete	ers
and Areas	154
Fable 10.219. Header Cell Truth Table	155
Fable 10.220. Header Cell Electrical Parameters and Areas	155
Fable 10.221. Header Cell (with SLEEPOUT output) Truth Table	156
Fable 10.222. Header Cell Electrical Parameters and Areas(with SLEEPOUT output)	156
Fable 10.223. Always on Inverter Truth Table	157
Fable 10.224. Always on Inverter Electrical Parameters and Areas	157
Fable 10.225. Always on Non-inverting Buffer Truth Table	157
Fable 10.226. Always on Non-inverting Buffer Electrical Parameters and Areas	157
Fable 10.227. Always on Pos Edge DFF, w/ Async Low-Active Reset Transition Table	158
Table 10.228. Always on Pos Edge DFF, w/ Async Low-Active Reset Electrical Parameters and Areas	159
Table 10.229. Always on Neg Edge DFF, w/ Async Low-Active Reset Transition Table	159
Fable 10.230. Always on Neg Edge DFF, w/ Async Low-Active Reset Electrical Parameters and Areas	160
Fable 10.231. Bus Keeper Truth Table	160
Fable 10.232. P-MOSFET Truth Table	161
Fable 10.233. N-MOSFET Truth Table	161
Fable 10.234. Tie High Truth Table	161
Fable 10.235. Tie Low Truth Table	
Fable 10.236. Antenna Diode Truth Table	162
Fable 11.1. Revision history	164

LIST OF FIGURES

Figure 8.1. Digital standard cell library directory structure	33
Figure 9.1. Physical structure of single height digital standard cells	35
Figure 9.2. Physical structure of double height (low-high-low) digital standard cells (for Always on Cells)	36
Figure 9.3. Physical structure of Level-shifter cells:	37
Figure 9.4. Physical structure of single height digital standard cells (for Retention Flip-Flops and scan Flip-F	Flops)
	38
Figure 9.5. Definition of d _{track}	
Figure 10.1. Logic Symbol of Inverting Buffer	
Figure 10.2. Logic Symbol of Inverting Buffer	
Figure 10.3. Logic Symbol of Non-inverting Buffer	
Figure 10.4. Logic Symbol of Tri-state Non-inverting Buffer w/ High-Active Enable	
Figure 10.5. Logic Symbol of AND	
Figure 10.6. Logic Symbol of NAND	
Figure 10.7. Logic Symbol of OR	
Figure 10.8. Logic Symbol of NOR	
Figure 10.9. Logic Symbol of XOR	
Figure 10.10. Logic Symbol of XNOR	
Figure 10.11. Logic Symbol of AND-OR 2/1	
Figure 10.12. Logic Symbol of AND-OR 2/2	
Figure 10.13. Logic Symbol of AND-OR 2/2/1	
Figure 10.14. Logic Symbol of AND-OR 2/2/2	
Figure 10.15. Logic Symbol of AND-OR-Invert 2/1	
Figure 10.16. Logic Symbol of AND-OR-Invert 2/2	54
Figure 10.17. Logic Symbol of AND-OR-Invert 2/2/1	55
Figure 10.18. Logic Symbol of AND-OR-Invert 2/2/2	
Figure 10.19. Logic Symbol of OR-AND 2/1	
Figure 10.20. Logic Symbol of OR-AND 2/2	
Figure 10.21. Logic Symbol of OR-AND 2/2/1	
Figure 10.22. Logic Symbol of OR-AND 2/2/2	60
Figure 10.23. Logic Symbol of OR-AND-INVERT 2/1	61
Figure 10.24. Logic Symbol of OR-AND-INVERT 2/2	62
Figure 10.25. Logic Symbol of OR-AND-INVERT 2/2/1	
Figure 10.26. Logic Symbol of OR-AND-INVERT 2/2/2	64
Figure 10.27. Logic Symbol of Multiplexer 2 to 1	65
Figure 10.28. Logic Symbol of Multiplexer 4 to 1	66
Figure 10.29. Logic Symbol of Decoder 2 to 4	67
Figure 10.30. Logic Symbol of Half Adder 1-Bit	68
Figure 10.31. Logic Symbol of Full Adder 1-Bit	69
Figure 10.32. Logic Symbol of Pos Edge DFF	70
Figure 10.33. Logic Symbol of Pos Edge DFF w/Async Low-Active Set	7′
Figure 10.34. Logic Symbol of Pos Edge DFF w/Async Low-Active Reset	
Figure 10.35. Logic Symbol of Pos Edge DFF w/Async Low-Active Set & Reset	
Figure 10.36. Logic Symbol of Pos Edge DFF w/ Sync Low-Active Set & Reset	
Figure 10.37. Logic Symbol of Neg Edge DFF	75
Figure 10.38. Logic Symbol of Neg Edge DFF w/Async Low-Active Set	
Figure 10.39. Logic Symbol of Neg Edge DFF w/Async Low-Active Reset	
Figure 10.40. Logic Symbol of Neg Edge DFF w/Async Low-Active Set & Reset	
Figure 10.41. Logic Symbol of Neg Edge DFF w/Async Low-Active Set & Reset, Only Q out	
Figure 10.42. Logic Symbol of Neg Edge DFF w/Async Low-Active Set & Reset, Only QN out	
Figure 10.43. Logic Symbol of Scan Pos Edge DFF	81
Figure 10.44. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Set	
Figure 10.45. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Reset	
Figure 10.46. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Set & Reset	
Figure 10.47. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Set & Reset, Q, QN & S0 outs	
Figure 10.48. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Set & Reset	
Figure 10.49. Logic Symbol of Scan Neg Edge DFF	
Figure 10.50. Logic Symbol of Scan Neg Edge DFF w/Async Low-Active Set	88

			of Scan Neg Edge DFF w/Async Low-Active Reset	
			of Scan Neg Edge DFF w/Async Low-Active Set & Reset	
			of RS-NAND Latch	
			of High-Active Latch	
			of High-Active Latch w/ Async Low-Active Set	
			of High-Active Latch w/ Async Low-Active Reset	
			of High-Active Latch w/ Async Low-Active Set & Reset	
			of High-Active Latch w/ Async Low-Active Set & Reset only Q out	
			of High-Active Latch w/ Async Low-Active Set & Reset only QN out	
			of Clock Gating cell w/ Latched Pos Edge Control Post	
			of Clock Gating cell w/ Latched Neg Edge Control Post	
			of Clock Gating cell w/ Latched Pos Edge Control Pre	
			of Clock Gating cell w/ Latched Neg Edge Control Pre	
			of Non-Inverting Delay Line	
			of Pass Gate	
			of Bi-directional Switch w/ Active Low Enable	
			of Hold 0 Isolation Cell (Logic AND)	
Figure	10.68.	Logic Symbol	of Hold 0 Isolation Cell (Logic AND), Always On	100
			of Hold 0 Isolation Cell (Logic OR)	
			of Hold 0 Isolation Cell (Logic OR), Always On	
			of Low to High Level Shifter	
			of High to Low Level Shifter	
			of High to Low Level Shifter/High Activ Enable, single supply	
			of High to Low Level Shifter/High Activ Enable, Single Supplyof High to Low Level Shifter/High Activ Enable, Clamp Low, Single Supply	
			of Low to High Level Shifter/Active Low Enable	
			of High to Low Level Shifter/Active Low Enable	
			of Low to High Level Shifter/Active Low Enable	
			of High to Low Level Shifter/Active Low Enable	
			of Pos Edge Retention DFF	
			of Scan Pos Edge Retention DFF	
			of Scan Pos Edge Retention DFF,w/Async Low Activ Reset	
			of Pos Edge Retention DFF	
			of Scan Neg Edge Retention DFF	
Figure	10.85.	Logic Symbol	of Scan Neg Edge Retention DFF,w/Async low Activ Reset	123
Figure	10.86.	Logic Symbol	of Pos Edge DFF SR	124
Figure	10.87.	Logic Symbol	of Pos Edge DFF SR	125
			of Pos Edge DFF SR	
Figure	10.89.	Logic Symbol	of Pos Edge DFF SR, w/ Async Low-Active Set	127
Figure	10.90.	Logic Symbol	of Pos Edge DFF SR, w/ Async Low-Active Reset	128
			of Pos Edge DFF SR, w/ Async Low-Active Set & Reset	
			of Pos Edge DFF SR, w/ Sync Low-Active Set & Reset	
Figure	10.93.	Logic Symbol	of Neg Edge DFF SR	132
			of Edge DFF SR, w/ Async Low-Active Set	
			of Pos Edge DFF SR, w/ Async Low-Active Reset	
			of Neg Edge DFF SR, w/ Async Low-Active Set & Reset	
			of Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out	
			of Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out	
			of Scan Pos Edge DFF SR	
			ol of Scan Pos Edge DFF SR, w/ Async Low-Active Set	
			ol of Scan Pos Edge DFF SR, w/ Async Low-Active Reset	
			ol of Scan Pos Edge DFF SR, w/ Async Low-Active Set & Reset	
			ol of Scan Pos Edge DFF SR, w/ Sync Low-Active Set & Reset	
			ol of Scan Neg Edge DFF SR	
			ol of Scan Neg Edge DFF SR, w/ Async Low-Active Set	
			ol of Scan Pos Edge DFF SR, w/ Async Low-Active Reset	
			ol of Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset	
			ol of Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out	
riguie	10.108	7. LUYIU SYIIIDO	ol of Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out	100

SAED_EDK90_CORE - 90nm Digital Standard Cell Library

Figure 10.110. Logic Symbol of Header Cell	155
Figure 10.111. Logic Symbol of Header Cell(with SLEEPOUT output	156
Figure 10.112. Logic Symbol of Always on Inverter	156
Figure 10.113. Logic Symbol of Always on Non-inverting Buffer	157
Figure 10.114. Logic Symbol of Always on Pos Edge DFF, w/ Async Low-Active Reset	158
Figure 10.115. Logic Symbol of Always on Neg Edge DFF, w/ Async Low-Active Reset	159
Figure 10.116. Logic Symbol of Bus Keeper	160
Figure 10.117. Logic Symbol of P-MOSFET	161
Figure 10.118. Logic Symbol of N-MOSFET	161
Figure 10.119. Logic Symbol of Tie High	161
Figure 10.120. Logic Symbol of Tie Low	162
Figure 10.121. Logic Symbol of Antenna Diode	162
Figure 10.122. Logic Symbol of DCAP Decoupling Capacitance	163
Figure 10.123. Logic Symbol of Capasitive Load	163

1. Introduction

This Databook describes possibilities, peculiarities of SAED_EDK90_CORE Digital Standard Cell Library and technical parameters of separate cells included in it. The library is free from intellectual property restrictions. It is one of the components of SAED_EDK90 Educational Design Kit (EDK). SAED_EDK90 EDK is anticipated for the use of educational purposes aimed at training highly qualified specialists in the area of microelectronics in:

- SYNOPSYS Customer Education Services
- SYNOPSYS Global Technical Services
- Universities included in SYNOPSYS University Program

SAED EDK90 is foreseen to support the trainees to better master:

- Advanced design methodologies
- Capabilities of SYNOPSYS tools.

For the use of EDK it is assumed that European or North American bundle of SYNOPSYS EDA tools is available to trainees.

SAED_EDK90_CORE Digital Standard Cell Library is anticipated for designing different integrated circuits (ICs) by the application of 90nm technology and SYNOPSYS EDA tools.

The SAED_EDK90_CORE Digital Standard Cell Library has been built using SAED90nm 1P9M 1.2V/2.5V/3.3V design rules. The library has been created aimed at optimizing the main characteristics of designed ICs by its help. The library includes typical miscellaneous combinational and sequential logic cells for different drive strengths. Besides, the library contains all the cells which are required for different styles of low power (multi-voltage, multi-threshold) designs (www.synopsys.com/products/power/multivoltage-bkgrd.pdf, www.synopsys.com/sps/pdf/optimum_sleep_transistor_vlsi_dat06.pdf). Those are the following: Isolation Cells, Level Shifters, Retention Flip-Flops, Always-on Buffers and Power Gating Cells. The presence of all these cells provides the support of IC design with different core voltages to minimize dynamic and leakage power.

In order to implement multi-threshold low power techniques High-Vt (HVT), Low-Vt (LVT) and Standart-Vt (SVT) versions of the Library exist. The rest of this document covers only SVT cells.

2. General Information

The used symbols of logic elements' states are shown in Table 2.1.

Table 2.1. Symbols of logic elements' states

Symbol	State
L ("0")	LOW Logic Level
H ("1")	HIGH Logic Level
Z	High-impedance State
LH ("0"→"1")	LOW to HIGH Transition
HL ("1"→"0")	HIGH to LOW Transition
Х	Either HIGH or LOW Logic Level

DC parameters and measurement conditions of the elements included in SAED_EDK90_CORE Digital Standard Cell Library are shown in Table 2.2.

Table 2.2. DC Parameters and measurement conditions of digital cells

No	Parameter	Unit	Symbol	Figure	Definition
1	Voltage Transfer Characteristic	-	VTC	V _{OUT} V _{DD} V _{IN}	DC functional dependence between input and output voltages.
2	Output high level voltage (nominal)	>	V _{OHN} =V _{DD}	V _{OUT} V _{DD} V _{OHN} = V _{DD} V _{DD}	Output high voltage at nominal condition, usually equals to V _{DD}
3	Output low level voltage (nominal)	٧	V _{OLN} =0 (V _{OLN} =V _{SS})	V _{OLN} = 0 V _{DD} V _{IN}	Output low voltage at nominal condition, usually V_{OLN} =0

No	Parameter	Unit	Symbol	Figure	Definition
4	Switching point voltage	V	V_{SP}	V _{DD} slope= 1 swp V _{DD} V _{IN}	Point on VTC where V _{OUT} =V _{IN}
5	Output high level minimum voltage	V	V _{OHMIN}	V _{DD} slope=-1 V _{DD} V _{IN}	Highest output voltage at slope= -1.
6	Output low level maximum voltage	V	V _{OLMAX}	V _{OLMAX} slope=-1	Lowest output voltage at slope= -1
7	Input minimum high voltage	V	V _{IHMIN}	V _{OUT} V _{DD} slope=- 1 V _{IHMIN} V _{DD} V _{IN}	Highest input voltage at slope = -1
8	Input maximum low voltage	V	V _{ILMAX}	V _{OUT} V _{DD} V _{OHMIN} slope=-1 V _{ILMAX} V _{DD}	Lowest input voltage at slope = -1
9	High state noise margin	V	NMH= =V _{OHMIN} - V _{IHMIN}	Voltage NMH VIHMIN VIHMIN VILMAX	The maximum input noise voltage which does not change the output state when its value is subtracted from the input high level voltage

No	Parameter	Unit	Symbol	Figure	Definition
10	Low state noise margin	V	NML= =V _{ILMAX} - V _{OLMAX}	Voltage Undefined VIHMIN VILMAX NML VOLMAX	The maximum input noise voltage which does not change the output state when added to the input low level voltage
	Static leakage current	uA	I _{LEAKH}	None	The current consumed when the output is high
11	consumption at output on high state	uA	I _{LEAKL}	None	The current consumed when the output is low
12	Leakage power consumption	pW	P _{LEAKH} = =V _{DD} x I _{LEAKH}	None	The power consumed when the output is high
12	(dissipation) at output	pW	P _{LEAKL} = =V _{DD} x I _{LEAKL}	None	The power consumed when the output is low

AC parameters and measurement conditions of the elements included in SAED_EDK90_CORE Digital Standard Cell Library are shown in Table 2.3.

Table 2.3. AC Parameters and measurement conditions of digital cells

No	Parameter	Unit	Symbol	Figure	Definition
1	Rise transition time	ns	t _R	$\begin{array}{c} V_{DD} \\ 0.9V_{DD} \\ \hline V_{SS} \\ \hline \end{array}$	The time it takes a driving pin to make a transition from kV _{DD} to (1-k)V _{DD} value. Usually k=0.1 (also possible k=0.2, 0.3, etc)
2	Fall transition time	ns	t _F	V_{DD} $0.9V_{DD}$ $0.1V_{DD}$ V_{SS}	The time it takes a driving pin to make a transition from (1-k)V _{DD} to kV _{DD} value. Usually k=0.1 (also possible k=0.2, 0.3, etc)
3	Propagation delay low-to-high (Rise propagation)	ns	t _{PLH} (t _{PR})	0.5V _{DD} OUT	Time difference between the input signal crossing a 0.5V _{DD} and the output signal crossing its 0.5V _{DD} when the output signal is changing from low to high
4	Propagation delay high-to-low (Fall propagation)	ns	t _{PHL} (t _{PF})	OUT 0.5V _{DD} 0.5V _{DD}	Time difference between the input signal crossing a 0.5V _{DD} and the output signal crossing its 0.5V _{DD} when the output signal is changing from high to low

No	Parameter	Unit	Symbol	Figure	Definition
5	Average supply current	uA	$I_{V_{DD}AVG} = \int_{0}^{T} I_{V_{DD}}(t)dt$	None	The power supply current average value for a period (T)
6	Supply peak current	uA	$I_{VDDPEAK} = \\ = max(I_{VDD}(t)) \\ t \in [0;T]$	None	The peak value of power supply current within one period (T)
7	Dynamic power dissipation	pW	P _{DISDYN} = =I _{VDDAVG} x V _{DD}	None	The average power consumed from the power supply
8	Power-delay product	nJ	$PD=P_{DISDYN} x \\ x max \\ (t_{PHL}, t_{PLH})$	None	The product of consumed power and the largest propagation delay
9	Energy-delay product	nJs	ED=PD x x max(t_{PHL} , t_{PLH})	None	The product of PD and the largest propagation delay
10	Switching fall power	nJ	$P_{SWF} = \\ = (C_{LOAD} + C_{OUT} \\ F) X \\ x V_{DD}^{2}/2$	None	The energy dissipated on a fall transition. (C _{OUTF} is the output fall capacitance)
11	Switching rise power	nJ	$P_{SWR} = \\ = (C_{LOAD} + C_{OUT} \\ R) X \\ x V_{DD}^{2}/2$	None	The energy dissipated on a rise transition. (C _{OUTR} is the output rise capacitance)
12	Minimum clock pulse (only for flip- flops or latches)	ns	t _{PWH} (t _{PWL})	CLOCK CUT TPWH	The time interval during which the clock signal is high or low, so that it ensures proper operation of a flip-flop or a latch
13	Setup time (only for flip- flops or latches)	ns	t _{su}	0.5V _{DD} DATA tsu 0.5VbD	The minimum period in which the input data to a flip-flop or a latch must be stable before the active edge of the clock occurs
14	Hold time (only for flip- flops or latches)	ns	t _H	DATA 0.5VoD CLOCK th	The minimum period in which the input data to a flip-flop or a latch must remain stable after the active edge of the clock has occurred
15	Clock-to- output time (only for flip- flops or latches)	ns	t _{CLKQ}	CLOCK 0.5VDD 0.5VDD tclkQ	The amount of time that takes the output signal to change after clock's active edge is applied

No	Parameter	Unit	Symbol	Figure	Definition
16	Removal time (only for flip- flops or latches with asynchronous Set or Reset).	ns	t _{REM}	SET (RESET) 0.5V _{DD} CLOCK tree	The minimum time in which the asynchronous Set or Reset pin to a flip-flop or latch must remain enabled after the active edge of the clock has occurred
17	Recovery time (only for flip- flops and latches with asynchronous Set or Reset)	ns	t _{REC}	O.5V _{DD} SET (RESET) CLOCK 0.5V _{DD} TREC	The minimum time in which Set or Reset must be held stable after being deasserted before next active edge of the clock occurs
18	From high to Z-state entry time, (only for tri-state output cells)	ns	t _{HZ}	None	The amount of time that takes the output to change from high to Z-state after control signal is applied
19	From low to Z- state entry time, (only for tri-state output cells)	ns	t_LZ	None	The amount of time that takes the output to change from low to Z-state after control signal is applied
20	From Z to high-state exit time (only for tri- state output cells)	ns	t _{zн}	None	The amount of time that takes the output to change from Z to high-state after control signal is applied
21	From Z to low- state exit time (only for tri- state output cells)	ns	t _{zL}	None	The amount of time that takes the output to change from Z to low-state after control signal is applied
22	Input pin capacitance	pF	C _{IN}	None	Defines the load of an output pin
23	Maximum capacitance	pF	C_{MAX}	None	Defines the maximum total capacitive load that an output pin can drive

3. Operating conditions

SAED_EDK90_CORE Digital Standard Cell Library is anticipated for 1.2V operation. The used process technology is SAED90nm 1P9M 1.2V/2.5V/3.3V, but only the 1P1M option is used.

The operating conditions of SAED EDK90 CORE Digital Standard Cell Library are shown in

Table 3.1. Operating conditions

Parameter	Min	Тур	Max	Units
Power Supply (VDD) range	0.7	1.2	1.32	V
Operating Temperature range	-40	+25	+125	°C
Operating Frequency (F)	-	300	-	MHz

4. Input signal slope, standard load and drive strengths

Standard load (C_{sl}) has been selected as the input pin capacitance of INVX1 cell. The INVX1 cell itself is tuned to drive 4 loads.

Drive Strength Cell Load X0 $0.5x C_{sl}$ X1 1x C_{sl} X2 2x C_{sl} X3 3x C_{sl} 4x C_{sl} X4 X8 8x C_{sl} 12x C_{sl} X12 X16 16x C_{sl} X24 24x C_{sl} X32 32x C_{sl}

Table 4.1. Definition of drive strength

5. AC Characteristics

5.1. Characterization corners

Composite Current Source (CCS) modeling technology has been applied for characterization to meet the contemporary methods of low power design. The application of that technology supports timing, noise, and power analyses simultaneously with consideration of the relevant nanometer dependencies. It allows meeting the requirements of variation-aware analysis. The characterization results are given for 27 process/voltage/temperature (PVT) conditions shown in Table 5.1 and 45 process/voltage/temperature conditions for multi voltage cells.

Table 5.1. Base Characterization Corners

Corner Name	Process (NMOS proc. – PMOS proc.)	Temperature (°C)	Power Supply (V)	Notes	Library Name Prefix
TTNT1p20v	Typical - Typical	25	1.2	Typical corner	Тур
TTHT1p20v	Typical - Typical	125	1.2	Typical corner	typ_ht
TTLT1p20v	Typical - Typical	-40	1.2	Typical corner	typ_ltl
SSNT1p08v	Slow - Slow	25	1.08	Slow corner	max_nth
SSHT1p08v	Slow - Slow	125	1.08	Slow corner	max_hth
SSLT1p08v	Slow - Slow	-40	1.08	Slow corner	max_lth
FFNT1p32v	Fast - Fast	25	1.32	Fast corner	min_nt
FFHT1p32v	Fast - Fast	125	1.32	Fast corner	min_ht
FFLT1p32v	Fast - Fast	-40	1.32	Fast corner	min
	Middle	Voltage Operatir	ng Conditions		
TTNT0p75v	Typical - Typical	25	0.75	Typical corner	typ_tm
TTHT0p75v	Typical - Typical	125	0.75	Typical corner	typ_htm
TTLT0p75v	Typical - Typical	-40	0.75	Typical corner	typ_ltm
SSNT0p65v	Slow - Slow	25	0.65	Slow corner	max_tm
SSHT0p65v	Slow - Slow	125	0.65	Slow corner	max_htm
SSLT0p65v	Slow - Slow	-40	0.65	Slow corner	max_ltm
FFNT0p85v	Fast - Fast	25	0.85	Fast corner	min_tm
FFHT0p85v	Fast - Fast	125	0.85	Fast corner	min_htm
FFLT0p85v	Fast - Fast	-40	0.85	Fast corner	min_ltm
	Low '	Voltage Operating	g Conditions		
TTNT0p08v	Typical - Typical	25	8.0	Typical corner	typ_ntl
TTHT0p08v	Typical - Typical	125	0.8	Typical corner	typ_htl
TTLT0p08v	Typical - Typical	-40	0.8	Typical corner	typ_ltl
SSNT0p07v	Slow - Slow	25	0.7	Slow corner	max_nt
SSHT0p07v	Slow - Slow	125	0.7	Slow corner	max
SSLT0p07v	Slow - Slow	-40	0.7	Slow corner	max_lt
FFNT0p09v	Fast - Fast	25	0.9	Fast corner	min_ntl
FFHT0p09v	Fast - Fast	125	0.9	Fast corner	min_htl
FFLT0p09v	Fast - Fast	-40	0.9	Fast corner	min_ltl

The Level Shifters were characterized for the foloving corners:

Table 5.2. Multi-VDD characterization corners

_	Process		Power	Power		
Corner	(NMOS proc. –	Temperature	Supply1	Supply2	Notes	Library
Name	`PMOS proc.)	(°C)	(V)	(V)		Name
FFHT1p32v1p32v	Fast-Fast	125	1.32	1.32	Fast corner	min hthh
FFHT1p32v0p90v	Fast-Fast	125	1.32	0.9	Fast corner	min hthn
FFHT0p90v0p90v	Fast-Fast	125	0.9	0.9	Fast corner	min htln
FFNT1p32v1p32v	Fast-Fast	25	1.32	1.32	Fast corner	min nthh
		25	1.32	0.9		min nthn
FFNT1p32v0p90v	Fast-Fast	25			Fast corner	
FFNT0p90v0p90v	Fast-Fast		0.9	0.9	Fast corner	min_ntln
FFLT1p32v1p32v	Fast-Fast	-40	1.32	1.32	Fast corner	min_lthh
FFLT1p32v0p90v	Fast-Fast	-40	1.32	0.9	Fast corner	min_lthn
FFLT0p90v0p90v	Fast-Fast	-40	0.9	0.9	Fast corner	min_ltln
TTHT1p20v1p20v	Typical-Typical	125	1.2	1.2	Typical corner	typ_hthh
TTHT1p20v0p80v	Typical-Typical	125	1.2	0.8	Typical corner	typ_hthn
TTHT0p80v0p80v	Typical-Typical	125	0.8	0.8	Typical corner	typ_htln
TTNT1p20v1p20v	Typical-Typical	25	1.2	1.2	Typical corner	typ_nthh
TTNT1p20v0p80v	Typical-Typical	25	1.2	0.8	Typical corner	typ_nthn
TTNT0p80v0p80v	Typical-Typical	25	0.8	0.8	Typical corner	typ_ntln
TTLT1p20v1p20v	Typical-Typical	-40	1.2	1.2	Typical corner	typ_lthh
TTLT1p20v0p80v	Typical-Typical	-40	1.2	0.8	Typical corner	typ_lthn
TTLT0p80v0p80v	Typical-Typical	-40	0.8	0.8	Typical corner	typ_ltln
SSHT1p08v1p08v	Slow-Slow	125	1.08	1.08	Slow corner	max_hthh
SSHT1p08v0p70v	Slow-Slow	125	1.08	0.7	Slow corner	max_hthn
SSHT0p70v0p70v	Slow-Slow	125	0.7	0.7	Slow corner	max_htln
SSNT1p08v1p08v	Slow-Slow	25	1.08	1.08	Slow corner	max_nthh
SSNT1p08v0p70v	Slow-Slow	25	1.08	0.7	Slow corner	max_nthn
SSNT0p70v0p70v	Slow-Slow	25	0.7	0.7	Slow corner	max_ntln
SSLT1p08v1p08v	Slow-Slow	-40	1.08	1.08	Slow corner	max_lthh
SSLT1p08v0p70v	Slow-Slow	-40	1.08	0.7	Slow corner	max_lthn
SSLT0p70v0p70v	Slow-Slow	-40	0.7	0.7	Slow corner	max_ltln
FFHT1p32v0p85v	Fast-Fast	125	1.32	0.85	Fast corner	min_thm
FFHT0p85v0p85v	Fast-Fast	125	0.85	0.85	Fast corner	min_htmm
FFNT1p32v0p85v	Fast-Fast	25	1.32	0.85	Fast corner	min_nthm
FFNT0p85v0p85v	Fast-Fast	25	0.85	0.85	Fast corner	min_ntmm
FFLT1p32v0p85v	Fast-Fast	-40	1.32	0.85	Fast corner	min_lthm
FFLT0p85v0p85v	Fast-Fast	-40	0.85	0.85	Fast corner	min_ltmm
TTHT1p20v0p75v	Typical-Typical	125	1.2	0.75	Typical corner	typ_hthm
TTHT0p75v0p75v	Typical-Typical	125	0.75	0.75	Typical corner	typ_htmm
TTNT1p20v0p75v	Typical-Typical	25	1.2	0.75	Typical corner	typ_nthm
TTNT0p75v0p75v	Typical-Typical	25	0.75	0.75	Typical corner	typ_ntmm
TTLT1p20v0p75v	Typical-Typical	-40	1.2	0.75	Typical corner	typ_lthm
TTLT0p75v0p75v	Typical-Typical	-40	0.75	0.75	Typical corner	typ_ltmm
SSHT1p08v0p65v	Slow-Slow	125	1.08	0.65	Slow corner	max_hthm
SSHT0p65v0p65v	Slow-Slow	125	0.65	0.65	Slow corner	max_htmm
SSNT1p08v0p65v	Slow-Slow	25	1.08	0.65	Slow corner	max_nthm
SSNT0p65v0p65v	Slow-Slow	25	0.65	0.65	Slow corner	max_ntmm
SSLT1p08v0p65v	Slow-Slow	-40	1.08	0.65	Slow corner	max_lthm
SSNT0p65v0p65v	Slow-Slow	-40	0.65	0.65	Slow corner	max_ltmm

5.2. The values of Output Load and Input Slope

Characterization has been realized for 7 different values of Output Load and 7 different values of Input Slope shown in Table 5.3.

Table 5.3 The values used for characterization

Parameter	Value							
Output Load	0	0.5*C _{sl}	1*C _{sl}	2*C _{sl}	4*C _{sl}	8*C _{sl}	16*C _{sl}	
Input Slope (ns)	0.2*T _{isl}	0.4*T _{isl}	0.8*T _{isl}	1.6*T _{isl}	3.2*T _{isl}	6.4*T _{isl}	12.8*T _{isl}	

The calculation of Setup/Hold times has been realized for 3 different values of Data and Input Slopes shown in Table 5.4.

Table 5.4 The used values for calculating Setup/Hold Times

Parameter		Slope Values (ns)							
Data Input Slope	0.2*T _{isl}	0.4*T _{isl}	0.8*T _{isl}	1.6*T _{isl}	3.2*T _{isl}	6.4*T _{isl}	12.8*T _{isl}		
Data Input Slope Clock Input Slope	0.2*T _{isl}	0.4*T _{isl}	0.8*T _{isl}	1.6*T _{isl}	3.2*T _{isl}	6.4*T _{isl}	12.8*T _{isl}		

6. Digital Standard Library Cell List

SAED_EDK90_CORE Digital Standard Cell Library contains 340 cells in total, the list of which is shown in Table 6.1.

Table 6.1. Digital Standard Library Cell List

No	Cell Description	Cell Name
	Inverters, Buffers	
1	Inverter	INVX0
2	Inverter	INVX1
3	Inverter	INVX2
4	Inverter	INVX4
5	Inverter	INVX8
6	Inverter	INVX16
7	Inverter	INVX32
8	Inverting Buffer	IBUFFX2
9	Inverting Buffer	IBUFFX4
10	Inverting Buffer	IBUFFX8
11	Inverting Buffer	IBUFFX16
12	Inverting Buffer	IBUFFX32
13	Non-inverting Buffer	NBUFFX2
14	Non-inverting Buffer	NBUFFX4
15	Non-inverting Buffer	NBUFFX8
16	Non-inverting Buffer	NBUFFX16
17	Non-inverting Buffer	NBUFFX32
18	Tri-state Non-inverting Buffer w/ High-Active Enable	TNBUFFX1
19	Tri-state Non-inverting Buffer w/ High-Active Enable	TNBUFFX2
20	Tri-state Non-inverting Buffer w/ High-Active Enable	TNBUFFX4
21	Tri-state Non-inverting Buffer w/ High-Active Enable	TNBUFFX8
22	Tri-state Non-inverting Buffer w/ High-Active Enable	TNBUFFX16
23	Tri-state Non-inverting Buffer w/ High-Active Enable	TNBUFFX32
	Logic Gates	
24	AND 2-input	AND2X1
25	AND 2-input	AND2X2
26	AND 2-input	AND2X4
27	AND 3-input	AND3X1
28	AND 3-input	AND3X2
29	AND 3-input	AND3X4
30	AND 4-input	AND4X1
31	AND 4-input	AND4X2
32	AND 4-input	AND4X4
33	NAND 2-input	NAND2X0
34	NAND 2-input	NAND2X1
35	NAND 2-input	NAND2X2

No	Cell Description	Cell Name
36	·	NAND2X4
37	NAND 2-input NAND 3-input	NAND3X0
38	NAND 3-input	NAND3X1
39	NAND 3-input	NAND3X1
40	NAND 3-input	NAND3X4
41	NAND 4-input	NAND4X0
42	NAND 4-input	NAND4X1
43	OR 2-input	OR2X1
44	OR 2-input	OR2X2
45	OR 2-input	OR2X4
46	OR 3-input	OR3X1
47	OR 3-input	OR3X2
48	OR 3-input	OR3X4
49	OR 4-input	OR4X1
50	OR 4-input	OR4X2
51	OR 4-input	OR4X4
52	NOR 2-input	NOR2X0
53	NOR 2-input	NOR2X1
54	NOR 2-input	NOR2X2
55	NOR 2-input	NOR2X4
56	NOR 3-input	NOR3X0
57	NOR 3-input	NOR3X1
58	NOR 3-input	NOR3X2
59	NOR 3-input	NOR3X4
60	NOR 4-input	NOR4X0
61	NOR 4-input	NOR4X1
62	XOR 2-input	XOR2X1
63	XOR 2-input	XOR2X2
64	XOR 3-input	XOR3X1
65	XOR 3-input	XOR3X2
66	XNOR 2-input	XNOR2X1
67	XNOR 2-input	XNOR2X2
68	XNOR 3-input	XNOR3X1
69	XNOR 3-input	XNOR3X2
	Complex Logic Gates	
70	AND-OR 2/1	AO21X1
71	AND-OR 2/1	AO21X2
72	AND-OR 2/2	AO22X1
73	AND-OR 2/2	AO22X2
74	AND-OR 2/2/1	AO221X1

No	Cell Description	Cell Name
75	AND-OR 2/2/1	AO221X2
76	AND-OR 2/2/2	AO222X1
77	AND-OR 2/2/2	AO222X2
78	AND-OR-Invert 2/1	AOI21X1
79	AND-OR Invert 2/1	AOI21X2
80	AND-OR-Invert 2/2	AOI22X1
81	AND-OR-Invert 2/2	AOI22X2
82	AND-OR-Invert 2/2/1	AOI221X1
83	AND-OR-Invert 2/2/1	AOI221X2
84	AND-OR-Invert 2/2/2	AOI222X1
85	AND-OR-Invert 2/2/2	AOI222X2
86	OR-AND 2/1	OA21X1
87	OR-AND 2/1	OA21X2
88	OR-AND 2/2	OA22X1
89	OR-AND 2/2	OA22X2
90	OR-AND 2/2/1	OA221X1
91	OR-AND 2/2/1	OA221X2
92	OR-AND 2/2/2	OA222X1
93	OR-AND 2/2/2	OA222X2
94	OR-AND-Invert 2/1	OAI21X1
95	OR-AND-Invert 2/1	OAI21X2
96	OR-AND-Invert 2/2	OAI22X1
97	OR-AND-Invert 2/2	OAI22X2
98	OR-AND-Invert 2/2/1	OAI221X1
99	OR-AND-Invert 2/2/1	OAI221X2
100	OR-AND-Invert 2/2/2	OAI222X1
101	OR-AND-Invert 2/2/2	OAI222X2
	Multiplexers	
102	Multiplexer 2 to 1	MUX21X1
103	Multiplexer 2 to 1	MUX21X2
104	Multiplexer 4 to 1	MUX41X1
105	Multiplexer 4 to 1	MUX41X2
	Decoders	
106	Decoder 2 to 4	DEC24X1
107	Decoder 2 to 4	DEC24X2
100	Adders and Subtractors	LIADDV4
108	Half Adder 1 bit	HADDX1
109	Half Adder 1 bit Full Adder 1 bit	HADDX2 FADDX1
110 111	Full Adder 1 bit	FADDX1
111		I ADDAE

No	Cell Description	Cell Name	
	D Flip-Flops		
112	Pos Edge DFF	DFFX1	
113	Pos Edge DFF	DFFX2	
114	Pos Edge DFF, w/ Async Low-Active Set	DFFASX1	
115	Pos Edge DFF, w/ Async Low-Active Set	DFFASX2	
116	Pos Edge DFF, w/ Async Low-Active Reset	DFFARX1	
117	Pos Edge DFF, w/ Async Low-Active Reset	DFFARX2	
118	Pos Edge DFF, w/ Async Low-Active Set & Reset	DFFASRX1	
119	Pos Edge DFF, w/ Async Low-Active Set & Reset	DFFASRX2	
120	Pos Edge DFF, w/ Sync Low-Active Set & Reset	DFFSSRX1	
121	Pos Edge DFF, w/ Sync Low-Active Set & Reset	DFFSSRX2	
122	Neg Edge DFF	DFFNX1	
123	Neg Edge DFF	DFFNX2	
124	Neg Edge DFF, w/ Async Low-Active Set	DFFNASX1	
125	Neg Edge DFF, w/ Async Low-Active Set	DFFNASX2	
126	Neg Edge DFF, w/ Async Low-Active Reset	DFFNARX1	
127	Neg Edge DFF, w/ Async Low-Active Reset	DFFNARX2	
128	Neg Edge DFF, w/ Async Low-Active Set & Reset	DFFNASRX1	
129	Neg Edge DFF, w/ Async Low-Active Set & Reset	DFFNASRX2	
130	Neg Edge DFF, w/ Async Low-Active Set & Reset, Only Q out	DFFNASRQX1	
131	Neg Edge DFF, w/ Async Low-Active Set & Reset, Only Q out	DFFNASRQX2	
132	Neg Edge DFF, w/ Async Low-Active Set & Reset, Only QN out	DFFNASRNX1	
133	Neg Edge DFF, w/ Async Low-Active Set & Reset, Only QN out	DFFNASRNX2	
	Scan D Flip-Flops		
134	Scan Pos Edge DFF	SDFFX1	
135	Scan Pos Edge DFF	SDFFX2	
136	Scan Pos Edge DFF, w/ Async Low-Active Set	SDFFASX1	
137	Scan Pos Edge DFF, w/ Async Low-Active Set	SDFFASX2	
138	Scan Pos Edge DFF, w/ Async Low-Active Reset	SDFFARX1	
139	Scan Pos Edge DFF, w/ Async Low-Active Reset	SDFFARX2	
140	Scan Pos Edge DFF, w/ Async Low-Active Set & Reset	SDFFASRX1	
141	Scan Pos Edge DFF, w/ Async Low-Active Set & Reset	SDFFASRX2	
142	Scan Pos Edge DFF, w/ Async Low-Active Set & Reset, Q, QN, & S0 outs	SDFFASRSX1	
143	Scan Pos Edge DFF, w/ Async Low-Active Set & Reset, Q, QN, & S0 outs	SDFFASRSX2	
144	Scan Pos Edge DFF, w/ Sync Low-Active Set & Reset	SDFFSSRX1	
145	Scan Pos Edge DFF, w/ Sync Low-Active Set & Reset	SDFFSSRX2	
146	Scan Neg Edge DFF	SDFFNX1	
147	Scan Neg Edge DFF	SDFFNX2	
148	Scan Neg Edge DFF, w/ Async Low-Active Set	SDFFNASX1	
149	Scan Neg Edge DFF, w/ Async Low-Active Set	SDFFNASX2	
150	Scan Neg Edge DFF, w/ Async Low-Active Reset	SDFFNARX1	

151 Scan Neg Edge DFF, w/ Async Low-Active Reset SDFFNARX2 152 Scan Neg Edge DFF, w/ Async Low-Active Set & Reset SDFFNASRX1 153 Scan Neg Edge DFF, w/ Async Low-Active Set & Reset SDFFNASRX1 154 RS NAND Latch Latches 155 RS NAND Latch LNANDX2 156 High-Active Latch LATCHX1 157 High-Active Latch W/ Async Low-Active Set LASX1 158 High-Active Latch, w/ Async Low-Active Set LASX1 159 High-Active Latch, w/ Async Low-Active Set LASX1 150 High-Active Latch, w/ Async Low-Active Reset LARX1 161 High-Active Latch, w/ Async Low-Active Reset LARX1 161 High-Active Latch, w/ Async Low-Active Reset LARX2 162 High-Active Latch, w/ Async Low-Active Reset LARX2 163 High-Active Latch, w/ Async Low-Active Set & Reset LASX2 164 High-Active Latch, w/ Async Low-Active Set & Reset LASX2 165 High-Active Latch, w/ Async Low-Active Set & Reset LASX2 166 High-Active Latch, w/ Async Low-Active Set & Reset LASX2 167 High-Active Latch, w/ Async Low-Active Set & Reset Only Q out LASRQX1 168 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASRQX2 169 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout LASRQX2 160 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout LASRQX2 161 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout LASRQX2 162 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout LASRQX2 168 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX4 170 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX4 171 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX4 172 Clock Gating cell, w/ Latched Neg Edge Control Post CGLPPSX4 173 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 174 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 175 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 176 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 177 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 178 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 179 Clock Gating cell, w/ Latched Neg Edge Control Po	No	Cell Description	Cell Name
152 Scan Neg Edge DFF, W Async Low-Active Set & Reset SDFFNASRX1 153 Scan Neg Edge DFF, W Async Low-Active Set & Reset SDFFNASRX2 Latches 154 RS NAND Latch LNANDX1 155 RS NAND Latch LNANDX2 156 High-Active Latch LATCHX1 157 High-Active Latch LATCHX2 158 High-Active Latch, W Async Low-Active Set LASX1 159 High-Active Latch, W Async Low-Active Set LASX2 160 High-Active Latch, W Async Low-Active Reset LARX1 161 High-Active Latch, W Async Low-Active Set LASX2 162 High-Active Latch, W Async Low-Active Set LASX2 163 High-Active Latch, W Async Low-Active Set & Reset LARX1 164 High-Active Latch, W Async Low-Active Set & Reset LASX2 165 High-Active Latch, W Async Low-Active Set & Reset LASX1 166 High-Active Latch, W Async Low-Active Set & Reset LASRX1 167 High-Active Latch, W Async Low-Active Set & Reset Only Q out LASROX1 168 High-Active Latch, W Async Low-Active Set & Reset only Q out LASROX2 169 High-Active Latch, W Async Low-Active Set & Reset only Q out LASROX2 160 High-Active Latch, W Async Low-Active Set & Reset only Q out LASROX2 161 High-Active Latch, W Async Low-Active Set & Reset only Q out LASROX2 162 Lock Gating cell, W Latched Pos Edge Control Post CGLPPSX2 163 Clock Gating cell, W Latched Pos Edge Control Post CGLPPSX4 170 Clock Gating cell, W Latched Pos Edge Control Post CGLPPSX4 171 Clock Gating cell, W Latched Pos Edge Control Post CGLPPSX8 172 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 173 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 174 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 175 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 176 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 177 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 178 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 179 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 170 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 171 Clock Gating cell, W Latched Neg Edge Control Post CGLPPSX8 178 Clock Gating cell, W Latche	151	Scan Neg Edge DFF, w/ Async Low-Active Reset	SDFFNARX2
Latches Latches Latches Latches LASYAND Latch RS NAND Latch LNANDX2 LATCHX1 LST RS NAND Latch LNANDX2 LATCHX1 LATCHX1 LATCHX1 LATCHX1 LATCHX2 LBH High-Active Latch, w/ Async Low-Active Set LASX1 LASX2 High-Active Latch, w/ Async Low-Active Set LASX2 LASX2 High-Active Latch, w/ Async Low-Active Set LASX2 LASX2 High-Active Latch, w/ Async Low-Active Set LARX1 LATCHX2 LASX2 LASX2 High-Active Latch, w/ Async Low-Active Set LASX2 LASX2 High-Active Latch, w/ Async Low-Active Reset LARX1 High-Active Latch, w/ Async Low-Active Set & Reset LASX2 High-Active Latch, w/ Async Low-Active Set & Reset LASX2 High-Active Latch, w/ Async Low-Active Set & Reset LASX2 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX1 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX1 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX1 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX1 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX2 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX1 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX1 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX2 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASROX1 High-Active Latch, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating		· · · · · · · · · · · · · · · · · · ·	
Latches SR NAND Latch			
155 RS NAND Latch 156 High-Active Latch 157 High-Active Latch 158 High-Active Latch 159 High-Active Latch, w/ Async Low-Active Set 159 High-Active Latch, w/ Async Low-Active Set 159 High-Active Latch, w/ Async Low-Active Set 159 High-Active Latch, w/ Async Low-Active Reset 160 High-Active Latch, w/ Async Low-Active Reset 161 High-Active Latch, w/ Async Low-Active Reset 162 High-Active Latch, w/ Async Low-Active Set & Reset 163 High-Active Latch, w/ Async Low-Active Set & Reset 164 High-Active Latch, w/ Async Low-Active Set & Reset 165 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 166 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 167 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 168 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 169 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 160 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 161 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 162 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 163 Clock Gating cell, w/ Latched Pos Edge Control Post 164 Clock Gating cell, w/ Latched Pos Edge Control Post 165 Clock Gating cell, w/ Latched Pos Edge Control Post 166 Clock Gating cell, w/ Latched Pos Edge Control Post 170 Clock Gating cell, w/ Latched Neg Edge Control Post 171 Clock Gating cell, w/ Latched Neg Edge Control Post 172 Clock Gating cell, w/ Latched Neg Edge Control Post 173 Clock Gating cell, w/ Latched Neg Edge Control Post 174 Clock Gating cell, w/ Latched Neg Edge Control Post 175 Clock Gating cell, w/ Latched Neg Edge Control Post 176 Clock Gating cell, w/ Latched Neg Edge Control Post 177 Clock Gating cell, w/ Latched Neg Edge Control Post 178 Clock Gating cell, w/ Latched Neg Edge Control Post 179 Clock Gating cell, w/ Latched Neg Edge Control Post 170 Clock Gating cell, w/ Latched Neg Edge Control Post 171 Clock Gating cell, w/ Latched Neg Edge Control Post 172 Clock Gating cell, w/ Latched Neg Edge Control Post 173 Clock Gating cell, w			
155 RS NAND Latch 156 High-Active Latch 157 High-Active Latch 158 High-Active Latch 159 High-Active Latch, w/ Async Low-Active Set 159 High-Active Latch, w/ Async Low-Active Set 159 High-Active Latch, w/ Async Low-Active Set 159 High-Active Latch, w/ Async Low-Active Reset 160 High-Active Latch, w/ Async Low-Active Reset 161 High-Active Latch, w/ Async Low-Active Reset 162 High-Active Latch, w/ Async Low-Active Set & Reset 163 High-Active Latch, w/ Async Low-Active Set & Reset 164 High-Active Latch, w/ Async Low-Active Set & Reset 165 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 166 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 167 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 168 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 169 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 160 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 161 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 162 High-Active Latch, w/ Async Low-Active Set & Reset only Q nout 163 Clock Gating cell, w/ Latched Pos Edge Control Post 164 Clock Gating cell, w/ Latched Pos Edge Control Post 165 Clock Gating cell, w/ Latched Pos Edge Control Post 166 Clock Gating cell, w/ Latched Pos Edge Control Post 170 Clock Gating cell, w/ Latched Neg Edge Control Post 171 Clock Gating cell, w/ Latched Neg Edge Control Post 172 Clock Gating cell, w/ Latched Neg Edge Control Post 173 Clock Gating cell, w/ Latched Neg Edge Control Post 174 Clock Gating cell, w/ Latched Neg Edge Control Post 175 Clock Gating cell, w/ Latched Neg Edge Control Post 176 Clock Gating cell, w/ Latched Neg Edge Control Post 177 Clock Gating cell, w/ Latched Neg Edge Control Post 178 Clock Gating cell, w/ Latched Neg Edge Control Post 179 Clock Gating cell, w/ Latched Neg Edge Control Post 170 Clock Gating cell, w/ Latched Neg Edge Control Post 171 Clock Gating cell, w/ Latched Neg Edge Control Post 172 Clock Gating cell, w/ Latched Neg Edge Control Post 173 Clock Gating cell, w	154		LNANDX1
157 High-Active Latch 158 High-Active Latch, w/ Async Low-Active Set 159 High-Active Latch, w/ Async Low-Active Set 160 High-Active Latch, w/ Async Low-Active Reset 161 High-Active Latch, w/ Async Low-Active Reset 162 High-Active Latch, w/ Async Low-Active Reset 163 High-Active Latch, w/ Async Low-Active Set & Reset 164 High-Active Latch, w/ Async Low-Active Set & Reset 165 High-Active Latch, w/ Async Low-Active Set & Reset 166 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 167 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 168 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 169 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 160 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 161 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 162 High-Active Latch, w/ Async Low-Active Set & Reset only Q out 163 Clock Gating cell, w/ Latched Pos Edge Control Post 164 Clock Gating cell, w/ Latched Pos Edge Control Post 165 Clock Gating cell, w/ Latched Pos Edge Control Post 166 Clock Gating cell, w/ Latched Pos Edge Control Post 176 Clock Gating cell, w/ Latched Pos Edge Control Post 177 Clock Gating cell, w/ Latched Neg Edge Control Post 178 Clock Gating cell, w/ Latched Neg Edge Control Post 179 Clock Gating cell, w/ Latched Neg Edge Control Post 170 Clock Gating cell, w/ Latched Neg Edge Control Post 171 Clock Gating cell, w/ Latched Neg Edge Control Post 172 Clock Gating cell, w/ Latched Neg Edge Control Post 173 Clock Gating cell, w/ Latched Neg Edge Control Post 174 Clock Gating cell, w/ Latched Neg Edge Control Post 175 Clock Gating cell, w/ Latched Neg Edge Control Post 176 Clock Gating cell, w/ Latched Neg Edge Control Post 177 Clock Gating cell, w/ Latched Neg Edge Control Post 178 Clock Gating cell, w/ Latched Neg Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Clock Gating cell, w/ Latched Neg Edge Control Pre 181 Clock Gating cell, w/ Latched Neg Ed		RS NAND Latch	LNANDX2
High-Active Latch, w/ Async Low-Active Set	156	High-Active Latch	LATCHX1
High-Active Latch, w/ Async Low-Active Set	157	High-Active Latch	LATCHX2
High-Active Latch, w/ Async Low-Active Set LASX2	158	High-Active Latch, w/ Async Low-Active Set	LASX1
High-Active Latch, w/ Async Low-Active Reset	159	-	LASX2
High-Active Latch, w/ Async Low-Active Set & Reset	160	-	LARX1
High-Active Latch, w/ Async Low-Active Set & Reset LASRX2	161	High-Active Latch, w/ Async Low-Active Reset	LARX2
High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASRQX1 High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASRQX2 High-Active Latch, w/ Async Low-Active Set & Reset only QN out LASRNX1 High-Active Latch, w/ Async Low-Active Set & Reset only QN out LASRNX1 High-Active Latch, w/ Async Low-Active Set & Reset only QN out LASRNX2 Clocked Gates Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX2 169 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX4 170 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 171 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX16 172 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX2 173 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX2 174 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 175 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 176 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX2 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX2 178 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLPPRX8 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX8 180 Non-inverting Delay Line, 500 ps DELLN1X2 181 Non-inverting Delay Line, 500 ps DELLN1X2 182 Non-inverting Delay Line, 750 ps DELLN3X2 Pass Gate PGX1 184 Pass Gate PGX4 Bi-directional Switch w/ Low-Active Enable BSLEX1	162	High-Active Latch, w/ Async Low-Active Set & Reset	LASRX1
High-Active Latch, w/ Async Low-Active Set & Reset only Q out LASRQX2 High-Active Latch, w/ Async Low-Active Set & Reset only QN out LASRNX1 High-Active Latch, w/ Async Low-Active Set & Reset only QN out LASRNX2 Clocked Gates Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX2 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX4 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX16 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX2 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX16 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX2 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX8 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX8 Delay Lines Delay Lines Non-inverting Delay Line, 250 ps DELLN1X2 Non-inverting Delay Line, 500 ps DELLN1X2 Non-inverting Delay Line, 500 ps DELLN3X2 Pass Gate PGX1 Pass Gate PGX4 Bi-directional Switch w/ Low-Active Enable BSLEX1	163	High-Active Latch, w/ Async Low-Active Set & Reset	LASRX2
High-Active Latch, w/ Async Low-Active Set & Reset only QN out High-Active Latch, w/ Async Low-Active Set & Reset only QN out Clocked Gates 168 Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Neg Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Post Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX2 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX8 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLPPRX8 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX8 Delay Lines Delay Lines 180 Non-inverting Delay Line, 250 ps DELLN1X2 181 Non-inverting Delay Line, 500 ps DELLN2X2 182 Non-inverting Delay Line, 500 ps DELLN3X2 Pass Gate Pass Gate PGX1 Pass Gate PGX2 Pass Gate PGX4 Bi-directional Switches Bi-directional Switches BSLEX1	164	High-Active Latch ,w/ Async Low-Active Set & Reset only Q out	LASRQX1
High-Active Latch, w/ Async Low-Active Set & Reset only QN out Clocked Gates Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX2 169 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX4 170 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 171 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX16 172 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX2 173 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 174 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 175 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX16 176 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX16 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX2 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX8 178 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLPPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 180 Non-inverting Delay Line, 250 ps DELLN1X2 181 Non-inverting Delay Line, 500 ps DELLN1X2 182 Non-inverting Delay Line, 750 ps DELLN3X2 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate Bi-directional Switches Bi-directional Switches Bi-directional Switchey Description Post CGLNPRX1 Bi-directional Switchey BSLEX1	165	High-Active Latch, w/ Async Low-Active Set & Reset only Q out	LASRQX2
Clocked Gates 168 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX2 169 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX4 170 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 171 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 172 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX2 173 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 174 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 175 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 176 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX16 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX2 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX8 178 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 180 Non-inverting Delay Line, 250 ps DELLN1X2 181 Non-inverting Delay Line, 500 ps DELLN2X2 182 Non-inverting Delay Line, 750 ps DELLN3X2 183 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate Bi-directional Switches Bi-directional Switchey BSLEX1	166	High-Active Latch, w/ Async Low-Active Set & Reset only QN out	LASRNX1
Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX2	167	High-Active Latch, w/ Async Low-Active Set & Reset only QN out	LASRNX2
169 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX4 170 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 171 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX16 172 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX2 173 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 174 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 175 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 176 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX16 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX2 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPRX8 178 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX8 180 Non-inverting Delay Line, 250 ps DELLN1X2 181 Non-inverting Delay Line, 500 ps DELLN1X2 182 Non-inverting Delay Line, 750 ps DELLN3X2 183 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate PGX4 Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BSLEX1		Clocked Gates	
170 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX8 171 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX16 172 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX2 173 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 174 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 175 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX16 176 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLPPRX2 177 Clock Gating cell ,w/ Latched Pos Edge Control Pre CGLPPRX8 178 Clock Gating cell ,w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell ,w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell ,w/ Latched Neg Edge Control Pre CGLNPRX8 Delay Lines 180 Non-inverting Delay Line, 250 ps DELLN1X2 181 Non-inverting Delay Line, 500 ps DELLN2X2 182 Non-inverting Delay Line, 750 ps DELLN3X2 Pass Gate PGX1 184 Pass Gate PGX1 185 Pass Gate PGX4 Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BSLEX1	168	Clock Gating cell, w/ Latched Pos Edge Control Post	CGLPPSX2
171 Clock Gating cell, w/ Latched Pos Edge Control Post CGLPPSX16 172 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX2 173 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX4 174 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX8 175 Clock Gating cell, w/ Latched Neg Edge Control Post CGLNPSX16 176 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX2 177 Clock Gating cell, w/ Latched Pos Edge Control Pre CGLPPRX8 178 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX2 179 Clock Gating cell, w/ Latched Neg Edge Control Pre CGLNPRX8 Delay Lines 180 Non-inverting Delay Line, 250 ps DELLN1X2 181 Non-inverting Delay Line, 500 ps DELLN2X2 182 Non-inverting Delay Line, 750 ps DELLN3X2 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate PGX4 Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BSLEX1	169	Clock Gating cell, w/ Latched Pos Edge Control Post	CGLPPSX4
172 Clock Gating cell, w/ Latched Neg Edge Control Post 173 Clock Gating cell, w/ Latched Neg Edge Control Post 174 Clock Gating cell, w/ Latched Neg Edge Control Post 175 Clock Gating cell, w/ Latched Neg Edge Control Post 176 Clock Gating cell, w/ Latched Pos Edge Control Pre 177 Clock Gating cell, w/ Latched Pos Edge Control Pre 178 Clock Gating cell, w/ Latched Pos Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 500 ps 183 Pass Gate 184 Pass Gate 185 Pass Gate 186 Bi-directional Switch w/ Low-Active Enable 186 Bi-directional Switch w/ Low-Active Enable 187 Clock Gating cell, w/ Latched Neg Edge Control Pre 188 CGLNPRX8 188 CGLNPRX8 189 CGLNPRX8 189 CGLNPRX8 180 DELLN1X2 180 DELLN1X2 181 Non-inverting Delay Line, 500 ps 182 DELLN2X2 183 Pass Gate 184 Pass Gate 185 Pass Gate 186 Bi-directional Switches	170	Clock Gating cell, w/ Latched Pos Edge Control Post	CGLPPSX8
173 Clock Gating cell, w/ Latched Neg Edge Control Post 174 Clock Gating cell, w/ Latched Neg Edge Control Post 175 Clock Gating cell, w/ Latched Neg Edge Control Post 176 Clock Gating cell, w/ Latched Pos Edge Control Pre 177 Clock Gating cell ,w/ Latched Pos Edge Control Pre 178 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps 183 Pass Gate 184 Pass Gate 185 Pass Gate 186 Bi-directional Switch w/ Low-Active Enable 186 Bi-directional Switch w/ Low-Active Enable 187 CGLNPSX8 CGLNPSX8 CGLNPRX8 CGLNPRX8 CGLNPRX8 DELLN222 DELLN1X2 DELLN1X2 DELLN1X2 DELLN2X2 DELLN3X2 PASS Gate PGX1 Bi-directional Switches BSLEX1	171	Clock Gating cell, w/ Latched Pos Edge Control Post	CGLPPSX16
174 Clock Gating cell, w/ Latched Neg Edge Control Post 175 Clock Gating cell, w/ Latched Neg Edge Control Post 176 Clock Gating cell ,w/ Latched Pos Edge Control Pre 177 Clock Gating cell ,w/ Latched Pos Edge Control Pre 178 Clock Gating cell ,w/ Latched Pos Edge Control Pre 179 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell ,w/ Latched Neg Edge Control Pre 180 Clock Gating cell ,w/ Latched Neg Edge Control Pre 180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps 183 Pass Gate 184 Pass Gate 185 Pass Gate 186 Bi-directional Switch w/ Low-Active Enable 186 Bi-directional Switch w/ Low-Active Enable 187 CGLNPSX8 188 CGLNPSX8 189 CGLNPSX8 189 CGLNPRX8 189 CGLNPRX8 180 CGLNPSX1 180 C	172	Clock Gating cell, w/ Latched Neg Edge Control Post	CGLNPSX2
175 Clock Gating cell, w/ Latched Neg Edge Control Post 176 Clock Gating cell ,w/ Latched Pos Edge Control Pre 177 Clock Gating cell ,w/ Latched Pos Edge Control Pre 178 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell ,w/ Latched Neg Edge Control Pre 180 Clock Gating cell ,w/ Latched Neg Edge Control Pre 180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps 183 Pass Gate 184 Pass Gate 185 Pass Gate 186 Bi-directional Switch w/ Low-Active Enable 186 Bi-directional Switch w/ Low-Active Enable 187 Clock Gating cell ,w/ Latched Pos Edge Control Pre 188 CGLNPRX8 189 CGLNPRX8 180 CG	173	Clock Gating cell, w/ Latched Neg Edge Control Post	CGLNPSX4
176 Clock Gating cell ,w/ Latched Pos Edge Control Pre 177 Clock Gating cell ,w/ Latched Pos Edge Control Pre 178 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps 183 Pass Gate 184 Pass Gate 185 Pass Gate 186 Bi-directional Switch w/ Low-Active Enable 186 Bi-directional Switch w/ Low-Active Enable 187 CGLPPRX8 CGLPPRX	174	Clock Gating cell, w/ Latched Neg Edge Control Post	CGLNPSX8
177 Clock Gating cell ,w/ Latched Pos Edge Control Pre 178 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps 183 Pass Gate 184 Pass Gate 185 Pass Gate 186 Bi-directional Switch w/ Low-Active Enable 186 Bi-directional Switch w/ Low-Active Enable 187 Clock Gating cell ,w/ Latched Neg Edge Control Pre CGLNPRX8 CGLNPRX2 CGLNPRX2 CBLNPRX2 CBL	175	Clock Gating cell, w/ Latched Neg Edge Control Post	CGLNPSX16
178 Clock Gating cell ,w/ Latched Neg Edge Control Pre 179 Clock Gating cell, w/ Latched Neg Edge Control Pre 180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps 183 Pass Gate 184 Pass Gate 185 Pass Gate 186 Bi-directional Switch w/ Low-Active Enable 186 Selectional Switch w/ Low-Active Enable 187 Clock Gating cell ,w/ Latched Neg Edge Control Pre CGLNPRX2 CGLNPRX2 CGLNPRX2 CGLNPRX2 CGLNPRX2 CGLNPRX2 CGLNPRX2 CBLN1X2 DELLN1X2 DELLN1X2 DELLN2X2 DELLN3X2 Pass Gate PGX1 PGX1 PGX2 PGX4 Bi-directional Switches BSLEX1	176	Clock Gating cell ,w/ Latched Pos Edge Control Pre	CGLPPRX2
179 Clock Gating cell, w/ Latched Neg Edge Control Pre Delay Lines 180 Non-inverting Delay Line, 250 ps DELLN1X2 181 Non-inverting Delay Line, 500 ps DELLN2X2 182 Non-inverting Delay Line, 750 ps DELLN3X2 Pass Gates 183 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BSLEX1	177	Clock Gating cell ,w/ Latched Pos Edge Control Pre	CGLPPRX8
Delay Lines 180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps DELLN2X2 Pass Gates 183 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BELEX1	178	Clock Gating cell ,w/ Latched Neg Edge Control Pre	CGLNPRX2
180 Non-inverting Delay Line, 250 ps 181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps Pass Gates 183 Pass Gate 184 Pass Gate PGX1 185 Pass Gate Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable DELLN1X2 DELLN2X2 DELLN3X2 PGX1 PGX1 PGX2 PGX4	179	Clock Gating cell, w/ Latched Neg Edge Control Pre	CGLNPRX8
181 Non-inverting Delay Line, 500 ps 182 Non-inverting Delay Line, 750 ps Pass Gates 183 Pass Gate 184 Pass Gate 185 Pass Gate Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable DELLN2X2 DELLN3X2 PGX1 PGX1 PGX2 PGX4 Bi-directional Switches BSLEX1		•	
182 Non-inverting Delay Line, 750 ps Pass Gates 183 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable DELLN3X2 PGX1 PGX1 PGX2 PGX4	180	Non-inverting Delay Line, 250 ps	DELLN1X2
Pass Gates 183 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate PGX4 Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BSLEX1	181	Non-inverting Delay Line, 500 ps	DELLN2X2
Pass Gates 183 Pass Gate PGX1 184 Pass Gate PGX2 185 Pass Gate PGX4 Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BSLEX1	182	Non-inverting Delay Line, 750 ps	DELLN3X2
184Pass GatePGX2185Pass GatePGX4Bi-directional Switches186Bi-directional Switch w/ Low-Active EnableBSLEX1		Pass Gates	
185 Pass Gate PGX4 Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BSLEX1	183	Pass Gate	PGX1
Bi-directional Switches 186 Bi-directional Switch w/ Low-Active Enable BSLEX1	184	Pass Gate	PGX2
186 Bi-directional Switch w/ Low-Active Enable BSLEX1	185	Pass Gate	PGX4
		Bi-directional Switches	
187 Bi-directional Switch w/ Low-Active Enable BSLEX2	186	Bi-directional Switch w/ Low-Active Enable	BSLEX1
	187	Bi-directional Switch w/ Low-Active Enable	BSLEX2

No	Cell Description	Cell Name
188	Bi-directional Switch w/ Low-Active Enable	BSLEX4
	Isolation Cells	
189	Hold 0 Isolation Cell (Logic AND)	ISOLANDX1
190	Hold 0 Isolation Cell (Logic AND)	ISOLANDX2
191	Hold 0 Isolation Cell (Logic AND)	ISOLANDX4
192	Hold 0 Isolation Cell (Logic AND)	ISOLANDX8
193	Hold 0 Isolation Cell (Logic AND), Always On	ISOLANDAOX1
194	Hold 0 Isolation Cell (Logic AND), Always On	ISOLANDAOX2
195	Hold 0 Isolation Cell (Logic AND), Always On	ISOLANDAOX4
196	Hold 0 Isolation Cell (Logic AND), Always On	ISOLANDAOX8
197	Hold 1 Isolation Cell (Logic OR)	ISOLORX1
198	Hold 1 Isolation Cell (Logic OR)	ISOLORX2
199	Hold 1 Isolation Cell (Logic OR)	ISOLORX4
200	Hold 1 Isolation Cell (Logic OR),	ISOLORX8
201	Hold 1 Isolation Cell (Logic OR), Always On	ISOLORAOX1
202	Hold 1 Isolation Cell (Logic OR), Always On	ISOLORAOX2
203	Hold 1 Isolation Cell (Logic OR), Always On	ISOLORAOX4
204	Hold 1 Isolation Cell (Logic OR), Always On	ISOLORAOX8
	Level Shifters	
205	Low to High Level Shifter	LSUPX1
206	Low to High Level Shifter	LSUPX2
207	Low to High Level Shifter	LSUPX4
208	Low to High Level Shifter	LSUPX8
209	High to Low Level Shifter	LSDNX1
210	High to Low Level Shifter	LSDNX2
211	High to Low Level Shifter	LSDNX4
212	High to Low Level Shifter	LSDNX8
213	Low to High Level Shifter/ High-Active Enable, Clamp High	LSUPENX1
214	Low to High Level Shifter/ High-Active Enable, Clamp High	LSUPENX2
215	Low to High Level Shifter/ High-Active Enable, Clamp High	LSUPENX4
216	Low to High Level Shifter/ High-Active Enable, Clamp High	LSUPENX8
217	High to Low Level Shifter/ High-Active Enable, Clamp High	LSDNENX1
218	High to Low Level Shifter/ High-Active Enable, Clamp High	LSDNENX2
219	High to Low Level Shifter/ High-Active Enable, Clamp High	LSDNENX4
220	High to Low Level Shifter/ High-Active Enable, Clamp High	LSDNENX8
221	Low to High Level Shifter/ High-Active Enable, Clamp Low	LSUPENCLX1
222	Low to High Level Shifter/ High-Active Enable, Clamp Low	LSUPENCLX2
223	Low to High Level Shifter/ High-Active Enable, Clamp Low	LSUPENCLX4
224	Low to High Level Shifter/ High-Active Enable, Clamp Low	LSUPENCLX8
225	High to Low Level Shifter/ High-Active Enable, Clamp Low	LSDNENCLX1
226	High to Low Level Shifter/ High-Active Enable, Clamp Low	LSDNENCLX2
227	High to Low Level Shifter/ High-Active Enable, Clamp Low	LSDNENCLX4

No	Cell Description	Cell Name
228	High to Low Level Shifter/ High-Active Enable, Clamp Low	LSDNENCLX8
229	High to Low Level Shifter/Single Supply	LSDNSSX1
230	High to Low Level Shifter/Single Supply	LSDNSSX2
231	High to Low Level Shifter/Single Supply	LSDNSSX3
232	High to Low Level Shifter/Single Supply	LSDNSSX4
233	High to Low Level Shifter/High-Active Enable, Single Supply	LSDNENSSX1
234	High to Low Level Shifter/High-Active Enable, Single Supply	LSDNENSSX2
235	High to Low Level Shifter/High-Active Enable, Single Supply	LSDNENSSX4
236	High to Low Level Shifter/High-Active Enable, Single Supply	LSDNENSSX8
230	High to Low Level Shifter/High-Active Enable, Clamp Low, Single	ESDIVENSSA
237	Supply	LSDNENCLSSX1
231	High to Low Level Shifter/High-Active Enable, Clamp Low, Single	
238	Supply	LSDNENCLSSX2
200	High to Low Level Shifter/High-Active Enable, Clamp Low, Single	
239	Supply	LSDNENCLSSX4
200	High to Low Level Shifter/High-Active Enable, Clamp Low, Single	
240	Supply	LSDNENCLSSX8
240	Retention Flip-Flops and scan Flip-Flops	
241	Pos Edge Retention DFF	RDFFX1
242	Pos Edge Retention DFF	RDFFX2
243	Scan Pos Edge Retention DFF	RSDFFX1
244	Scan Pos Edge Retention DFF	RSDFFX2
245	Neg Edge Retention DFF	RDFFNX1
246	Neg Edge Retention DFF	RDFFNX2
247	Scan Neg Edge Retention DFF	RSDFFNX1
248	Scan Neg Edge Retention DFF	RSDFFNX2
249	Scan Pos Edge Retention DFF ,w/ Async Low-Active Reset	RSDFFARX1
250	Scan Pos Edge Retention DFF ,w/ Async Low-Active Reset	RSDFFARX2
251	Scan Neg Edge Retention DFF,w/ Async Low-Active Reset	RSDFFNARX1
252	Scan Neg Edge Retention DFF,w/ Async Low-Active Reset	RSDFFNARX2
253	Pos Edge Retention DFF, w/ Async Low-Active Reset	RDFFARX1
254	Pos Edge Retention DFF, w/ Async Low-Active Reset	RDFFARX2
255	Neg Edge Retention DFF, w/ Async Low-Active Reset	RDFFNARX1
256	Neg Edge Retention DFF, w/ Async Low-Active Reset	RDFFNARX2
200	Retention D Flip-Flops with Save and Restore pins	
257	Pos Edge DFF SR	RDFFSRX1
258	Pos Edge DFF SR	RDFFSRX2
259	Pos Edge DFF SR, w/ Async Low-Active Set	RDFFSRASX1
260	Pos Edge DFF SR, w/ Async Low-Active Set	RDFFSRASX2
261	Pos Edge DFF SR, w/ Async Low-Active Reset	RDFFSRARX1
262	Pos Edge DFF SR, w/ Async Low-Active Reset	RDFFSRARX2
263	Pos Edge DFF SR, w/ Async Low-Active Neset	RDFFSRASRX1
	Pos Edge DFF SR, w/ Async Low-Active Set & Reset	RDFFSRASRX1
264	FUS EUGE DEF SK, W. ASYNC LOW-ACTIVE SET & RESET	NUFFORMORAZ

No	Cell Description	Cell Name	
205	Doe Edge DEE CD and Come Levy Asting Cot 9 Doest	DDEECDCCDV4	
265	Pos Edge DFF SR, w/ Sync Low-Active Set & Reset	RDFFSRSSRX1	
266	Pos Edge DFF SR, w/ Sync Low-Active Set & Reset	RDFFSRSSRX2	
267	Neg Edge DFF SR	RDFFNSRX1	
268	Neg Edge DFF SR	RDFFNSRX2	
269	Neg Edge DFF SR, w/ Async Low-Active Set	RDFFNSRASX1	
270	Neg Edge DFF SR, w/ Async Low-Active Set	RDFFNSRASX2	
271	Pos Edge DFF SR, w/ Async Low-Active Reset	RDFFNSRARX1	
272	Pos Edge DFF SR, w/ Async Low-Active Reset	RDFFNSRARX2	
273	Neg Edge DFF SR, w/ Async Low-Active Set & Reset	RDFFNSRASRX1	
274	Neg Edge DFF SR, w/ Async Low-Active Set & Reset	RDFFNSRASRX2	
275	Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out	RDFFNSRASRQX1	
276	Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out	RDFFNSRASRQX2	
277	Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out	RDFFNSRASRNX1	
278	Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out	RDFFNSRASRNX2	
	Scan Retention D Flip-Flops with Save and Restore pins		
279	Scan Pos Edge DFF SR	RSDFFSRX1	
280	Scan Pos Edge DFF SR	RSDFFSRX2	
281	Scan Pos Edge DFF SR, w/ Async Low-Active Set	RSDFFSRASX1	
282	Scan Pos Edge DFF SR, w/ Async Low-Active Set	RSDFFSRASX2	
283	Scan Pos Edge DFF SR, w/ Async Low-Active Reset	RSDFFSRARX1	
284	Scan Pos Edge DFF SR, w/ Async Low-Active Reset	RSDFFSRARX2	
285	Scan Pos Edge DFF SR, w/ Async Low-Active Set & Reset	RSDFFSRASRX1	
286	Scan Pos Edge DFF SR, w/ Async Low-Active Set & Reset	RSDFFSRASRX2	
287	Scan Pos Edge DFF SR, w/ Sync Low-Active Set & Reset	RSDFFSRSSRX1	
288	Scan Pos Edge DFF SR, w/ Sync Low-Active Set & Reset	RSDFFSRSSRX2	
289	Scan Neg Edge DFF SR	RSDFFNSRX1	
290	Scan Neg Edge DFF SR	RSDFFNSRX2	
291	Scan Neg Edge DFF SR, w/ Async Low-Active Set	RSDFFNSRASX1	
292	Scan Neg Edge DFF SR, w/ Async Low-Active Set	RSDFFNSRASX2	
293	Scan Pos Edge DFF SR , w/ Async Low-Active Reset	RSDFFNSRARX1	
294	Scan Pos Edge DFF SR, w/ Async Low-Active Reset	RSDFFNSRARX2	
295	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset	RSDFFNSRASRX1	
296	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset	RSDFFNSRASRX2	
297	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out	RSDFFNSRASRQX1	
298	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out	RSDFFNSRASRQX2	
299	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out	RSDFFNSRASRNX1	
300	Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out	RSDFFNSRASRNX2	
	Power Gating Cells		
301	Header Cell	HEADX2	
001	1.100001 0011		

No	Cell Description	Cell Name
302	Header Cell	HEADX4
303	Header Cell	HEADX8
304	Header Cell	HEADX16
305	Header Cell	HEADX32
306	Header Cell (with SLEEPOUT output)	HEAD2X2
307	Header Cell (with SLEEPOUT output)	HEAD2X4
308	Header Cell (with SLEEPOUT output)	HEAD2X8
309	Header Cell (with SLEEPOUT output)	HEAD2X16
310	Header Cell (with SLEEPOUT output)	HEAD2X32
010	Always on Cells	TILABEAGE
311	Always on Inverter	AOINVX1
312	Always on Inverter	AOINVX2
313	Always on Inverter	AOINVX4
314	Always on Non-inverting Buffer	AOBUFX1
315	Always on Non-inverting Buffer	AOBUFX2
316	Always on Non-inverting Buffer	AOBUFX4
317	Always on Pos Edge DFF, w/ Async Low-Active Reset	AODFFARX1
318	Always on Pos Edge DFF, w/ Async Low-Active Reset	AODFFARX2
319	Always on Neg Edge DFF, w/ Async Low-Active Reset	AODFFNARX1
320	Always on Neg Edge DFF, w/ Async Low-Active Reset	AODFFNARX2
320	Additional Cells	AODITIVATORE
321	Bus Keeper	BUSKP
322	P-MOSFET (w=1.12 um, l=0.1um)	PMT1
323	P-MOSFET (w=2.24 um, l=0.1um)	PMT2
324	P-MOSFET (w=4.48 um, l=0.1um)	PMT3
325	N-MOSFET (w=0.48 um, I=0.1um)	NMT1
326	N-MOSFET (w=0.96 um, I=0.1um)	NMT2
327	N-MOSFET (w=1.92 um, I=0.1um)	NMT3
328	Tie High	TIEH
329	Tie Low	TIEL
330	Antenna Diode	ANTENNA
331	Decoupling Capacitance	DCAP
332	Capacitive Load	CLOAD1
	Fillers	
333	Single Height Filler Cell 1 grid width	SHFILL1
334	Single Height Filler Cell 2 grid width	SHFILL2
335	Single Height Filler Cell 3 grid width	SHFILL3
336	Single Height Filler Cell 64 grid width	SHFILL64
337	Single Height Filler Cell 128 grid width	SHFILL128
338	Double Height (high-low-high) Filler Cell 2 grid width	DHFILLHLH2
339	Double Height (low-high-low) Filler Cell 2 grid width	DHFILLLHL2
340	Double Height (high-low-high) Level Shifter Filler Cell 11 grid width	DHFILLHLHLS11
) † U	2000.0 Signit (mgm lott mgm) 20101 Omitor I mor Oom 11 gnd Wdth	

7. Digital Standard Cell Library deliverables

Table 7.1. Digital Standard Cell Library deliverables

N	Туре	Description
1	.doc, .txt	Databook / User guide, Layer usage file
2	.sdb, .slib	Symbols
3	.db, .lib	Synthesis
4	.V	Verilog simulation models
5	.vhd	VHDL / Vital simulation models
6	.sp	HSPICE netlists
7	.rcx	Extracted RC netlists for different corners
8	.gds	GDSII layout views
9	.drc, .lvs, .erc	Report files
10	.lef	LEF files
11	.fram, .cel	Fram views, layout views and runset files
12	.plib	Physical compiler views

8. Directory structure and file naming conventions

^{*} See Table 8.2 for details

Figure 8.1. Digital standard cell library directory structure

The Digital Standard Cell Library file naming conventions are shown in Table 8.1 and 8.2, words in parentheses are placeholders for cell types, threshold groups, etc. The interpretation can be found in the notes below the tables.

Table 8.1 Digital Standard Cell Library file naming conventions

N	Filenames	Extn	Example	Description
1	saed90nm(a)	.cdl	saed90nm_hvt.cdl	LVS netlists
3	saed90nm(a)	.edif	saed90nm_hvt.edif	Edif files
4	saed90nm(a)	.gds	saed90nm_hvt.gds	GDSII views
5	cell name(a)	_drcreports _lvsreports	INVX0_drcreports	Report Files
6	saed90nm(a)	.lef	saed90nm_hvt.lef	LEF files
7	saed90nm(a)	.spf	saed90nm_hvt.spf	Extracted RC netlists
8	saed90nm(a)	.v, .tv	saed90nm_hvt.v	Verilog simulation Models
9	saed90nm(a)	.vhd	saed90nm_hvt.vhd	VHDL simulation Models
10	saed90nm(a)	_fr, _dv	saed90nm_fr	MW reference Libraries
11	saed90nm	.sdb, .slib	saed90nm.sdb	Symbol libraries
12	saed90nm(a)	.pdb,.plib	saed90nm.pdb	Physical libraries

Notes: (a) -> _hvt or _lvt or empty (threshold voltage group)

cell name the same as Cell Name in the Table 6.1

Table 8.2 Logic libraries paths and file naming conventions

Cell type	Path	Library name
Isolation cells with Backup power	DSCL/isoao/	saed90nm_(proc)_(tg)_iso.db
Level shifters	DSCL/level_shiers/	saed90nm_(proc)_(tg)_lsh.db
Level shifters (single supply)	DSCL/level_shifters_ss/	saed90nm_(proc)_(tg)_lshss.db
Clock gating	DSCL/clock_gating/	saed90nm_(proc)_cg_(tg).db
Retention cells (single control)	DSCL/retention/	saed90nm_(proc)_rd_(tg).db
Retention cells (single control, asynchronous reset)	DSCL/retention/with_asynchron_reset/	saed90nm_(proc)_rdr_(tg).db
Retention cells with (SAVE/RESTORE control)	DSCL/retention_sr/	saed90nm_(proc)_(tg)_rdsr.db

Notes: (proc) - library name prefix from the Tables 5.1 and 5.2

(tg) - hvt or lvt or empty for denoting svt (threshold voltage group)

DSCL - Digital Standard Cell Library/synopsys/models

9. Physical structure of digital cell

The selection of physical structure of digital cell is aimed at providing maximum cell density in digital designs. It is more important to provide minimal area for the most frequently used cells. In general, these are usually NAND cells with two inputs, and D flip-flops. The width of the power rails has been selected on the basis of acceptable current density given by the design rules, and electromigration. Physical structures, shown in Fig.9.1-9.5, have been used for different cells.

Figure 9.1. Physical structure of single height digital standard cells

Figure 9.2. Physical structure of double height (low-high-low) digital standard cells (for Always on Cells)

Figure 9.3. Physical structure of Level-shifter cells: a. High-to-Low, b.Low-to-High

Table 9.1. Physical structure dimensions

Parameter	Symbol	Value
Cell height	Н	2.88 um
Power rail width	W_1	0.16 um
Vertical grid	W_2	0.32 um
Horizontal grid	W_3	0.32 um
NWell height	W_4	1.68 um
VDDH to VDDL height (Fig. 8.3)	W_5	0.72 um

Figure 9.4. Physical structure of single height digital standard cells (for Retention Flip-Flops and scan Flip-Flops)

d_{track} is the minimum center-to-center distance for metal2 layers (with VIA12)

Figure 9.5. Definition of d_{track}

10. Descriptions of Digital Standard Cells

10.1. Inverters

INVX0, INVX1, INVX2, INVX4, INVX8, INVX16, INVX32

Figure 10.1. Logic Symbol of Inverting Buffer

Table 10.1. Inverter Truth Table

INP	ZN
0	1
1	0

Table 10.2. Inverter Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell			Pov	wer	Area
Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
INVX0	0.5 x Csl	103	25	10	5.5296
INVX1	1 x Csl	100	52	8	6.4512
INVX2	2 x Csl	100	104	30	6.4512
INVX4	4 x Csl	99	209	27	9.216
INVX8	8 x Csl	98	418	14	14.7456
INVX16	16 x Csl	83	837	81	25.8048
INVX32	32 x Csl	98	1674	157	47.0016

10.2. Inverting Buffers

IBUFFX2, IBUFFX4, IBUFFX8, IBUFFX16, IBUFFX32

Figure 10.2. Logic Symbol of Inverting Buffer

Table 10.3. Inverting Buffer Truth Table

INP	ZN
0	1
1	0

Table 10.4. Inverting Buffer Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell Name	Cell Name Cload		Pov	wer	Area
Con Hame		Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
IBUFFX2	2 x Csl	135	131	618	10.1376
IBUFFX4	4 x Csl	162	235	964	12.9024
IBUFFX8	8 x Csl	189	441	3170	18.4320
IBUFFX16	16 x Csl	226	861	6066	31.3344
IBUFFX32	32 x Csl	310	170	14748	56.2176

10.3. Non-inverting Buffers

NBUFFX2, NBUFFX4, NBUFFX8, NBUFFX16, NBUFFX32

Figure 10.3. Logic Symbol of Non-inverting Buffer

Table 10.5. Non-inverting Buffer Truth Table

INP	Z
0	0
1	1

Table 10.6. Non-inverting Buffer Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell Name			Pov	wer	Area
Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		Ps	nW	nW/MHz	(um²)
NBUFFX2	2 x Csl	188	106	582	5.5296
NBUFFX4	4 x Csl	242	209	1502	10.1376
NBUFFX8	8 x Csl	246	418	2877	14.7456
NBUFFX16	16 x Csl	244	835	5191	26.7264
NBUFFX32	32 x Csl	255	173	9719	55.2960

10.4. Tri-state Non-inverting Buffer w/ High-Active Enable

TNBUFFX1, TNBUFFX2, TNBUFFX4, TNBUFFX8, TNBUFFX16, TNBUFFX32

Figure 10.4. Logic Symbol of Tri-state Non-inverting Buffer w/ High-Active Enable

Table 10.7. Tri-state Non-inverting Buffer w/ High-Active Enable Truth Table

ENB	INP	Z
0	0	Z
0	1	Z
1	0	0
1	1	1

Table 10.8. Tri-state Non-inverting Buffer w/ High-Active Enable Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
Cell Name	Cell Name Cload		Pov	wer	Area	
oom ramo		Cload Prop Delay (Av	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)	
TNBUFFX1	1 x Csl	208	897	8295	13.8240	
TNBUFFX2	2 x Csl	227	135	12846	15.6672	
TNBUFFX4	4 x Csl	240	244	30411	18.432	
TNBUFFX8	8 x Csl	293	455	48947	23.9616	
TNBUFFX16	16 x Csl	288	888	94350	37.7856	
TNBUFFX32	32 x Csl	288	175	181834	68.1984	

10.5. AND

AND2X1, AND2X2, AND2X4, AND3X1, AND3X2, AND3X4, AND4X1, AND4X2, AND4X4

Figure 10.5. Logic Symbol of AND

Table 10.9. AND Truth Table (n=2,3,4)

IN1	IN2		INn	Q
0	Χ		Χ	0
Х	0		Х	0
				0
Χ	Χ		0	0
1	1	1	1	1

Table 10.10. AND Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11			Pov	wer	Area	
Cell Name	Cload Prop Delay (A	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	ps	nW	nW/MHz	(um²)
AND2X1	1 x Csl	180	56	6545	7.3728	
AND2X2	2 x Csl	214	108	13906	8.2944	
AND2X4	4 x Csl	277	210	40254	11.0592	
AND3X1	1 x Csl	206	59	8222	8.2944	
AND3X2	2 x Csl	247	109	17706	10.1376	
AND3X4	4 x Csl	319	211	50401	12.9024	
AND4X1	1 x Csl	214	63	8557	10.1376	
AND4X2	2 x Csl	244	115	19124	11.9808	
AND4X4	4 x Csl	323	220	52530	14.7456	

10.6. NAND

NAND2X0, NAND2X1, NAND2X2, NAND2X4, NAND3X0, NAND3X1, NAND3X2, NAND3X4, NAND4X0, NAND4X1

Figure 10.6. Logic Symbol of NAND

Table 10.11. NAND Truth Table (n=2,3,4)

IN1	IN2		INn	QN
0	Χ		Χ	1
Χ	0		Χ	1
				1
Χ	X		0	1
1	1	1	1	0

Table 10.12. NAND Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Call Name	Cload		Pov	wer	Area	
Cell Name			Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)	
NAND2X0	0.5 x Csl	140	38	3583	5.5296	
NAND2X1	1 x Csl	132	78	5208	5.5296	
NAND2X2	2 x Csl	126	157	9191	9.2160	
NAND2X4	4 x Csl	125	314	17902	14.7456	
NAND3X0	0.5 x Csl	128	91	5331	7.3728	
NAND3X1	1 x Csl	192	102	12200	11.9808	
NAND3X2	2 x Csl	212	155	19526	12.9024	
NAND3X4	4 x Csl	241	260	44937	15.6672	
NAND4X0	0.5 x Csl	147	106	5357	8.2944	
NAND4X1	1 x Csl	178	161	15214	12.9024	

10.7. OR

OR2X1, OR2X2, OR2X4, OR3X1, OR3X2, OR3X4, OR4X1, OR4X2, OR4X4

Figure 10.7. Logic Symbol of OR

Table 10.13. OR Truth Table (n=2,3,4)

IN1	IN2		INn	Q
0	0		0	0
1	Х		Χ	1
				1
Х	1		Х	1
Χ	Χ	Χ	1	1

Table 10.14. OR Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
O all Marsa			Pov	wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OR2X1	1 x Csl	171	58	6859	7.3728
OR2X2	2 x Csl	204	110	12934	9.2160
OR2X4	4 x Csl	251	216	34515	11.9808
OR3X1	1 x Csl	184	62	7396	9.2160
OR3X2	2 x Csl	210	115	14574	11.0592
OR3X4	4 x Csl	271	227	40937	13.824
OR4X1	1 x Csl	199	64	7698	10.1376
OR4X2	2 x Csl	231	119	16238	11.9808
OR4X4	4 x Csl	319	227	49239	14.7456

10.8. NOR

NOR2X0, NOR2X1, NOR2X2, NOR2X4, NOR3X0, NOR3X1, NOR3X2, NOR3X4, NOR4X0, NOR4X1

Figure 10.8. Logic Symbol of NOR

Table 10.15. NOR Truth Table (n=2,3,4)

IN1	IN2		INn	QN
0	0		0	1
1	Х		Χ	0
				0
Х	1		Χ	0
Χ	Х	Χ	1	0

Table 10.16. NOR Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
O a III N a sea a	me Cload		Pov	wer	Area	
Cell Name			Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)	
NOR2X0	0.5 x Csl	114	35	4211	5.5296	
NOR2X1	1 x Csl	132	49	619	6.4512	
NOR2X2	2 x Csl	129	98	11085	9.2160	
NOR2X4	4 x Csl	132	197	2952	14.7456	
NOR3X0	0.5 x Csl	118	48	6553	8.2944	
NOR3X1	1 x Csl	153	104	16521	11.9808	
NOR3X2	2 x Csl	167	157	23975	13.8240	
NOR3X4	4 x Csl	200	263	37654	16.5888	
NOR4X0	0.5 x Csl	158	48	368	9.2160	
NOR4X1	1 x Csl	126	119	14991	15.6672	

10.9. XOR

XOR2X1, XOR2X2, XOR3X1, XOR3X2

Figure 10.9. Logic Symbol of XOR

Table 10.17. XOR Truth Table (n=2,3)

IN1	IN2	 INn	Q
0	0	 0	0
Oc	1		
Eve	0		

Table 10.18. XOR Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 " 11			Pov	wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
XOR2X1	1 x Csl	237	89	8702	13.8240
XOR2X2	2 x Csl	251	141	17434	15.6672
XOR3X1	1 x Csl	265	168	21596	22.1184
XOR3X2	2 x Csl	288	224	34276	23.9616

10.10. XNOR

XNOR2X1, XNOR2X2, XNOR3X1, XNOR3X2

Figure 10.10. Logic Symbol of XNOR

Table 10.19. XNOR Truth Table (n=2,3)

IN1	IN2	 INn	QN
0	0	 0	1
Oc	0		
Eve	1		

Table 10.20. XNOR Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11			Pov	wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
XNOR2X1	1 x Csl	136	82	16372	13.8240
XNOR2X2	2 x Csl	151	129	24745	15.6672
XNOR3X1	1 x Csl	229	184	27135	22.1184
XNOR3X2	2 x Csl	252	238	37944	23.9616

10.11. AND-OR

AO21X1, AO21X2 Q=(1&2)|3

Figure 10.11. Logic Symbol of AND-OR 2/1

Table 10.21. AND-OR 2/1 Truth Table

IN1	IN2	IN3	Q
1	1	Χ	1
Х	Х	1	1
0	Х	0	0
Χ	0	0	0

Table 10.22. AND-OR 2/1 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell	Cell Name Cload		Pov Leakage	wer	Area
Name		Prop Delay (Avg)	(VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
AO21X1	1 x Csl	235	59	9703	10.1376
AO21X2	2 x Csl	267	110	21095	11.9808

SYNOPSYS

AO22X1, AO22X2 Q=(1&2)|(3&4)

Figure 10.12. Logic Symbol of AND-OR 2/2

Table 10.23. AND-OR 2/2 Truth Table

IN1	IN2	IN3	IN4	Q
Х	Х	1	1	1
1	1	Χ	Χ	1
0	Х	0	Χ	0
Х	0	0	Χ	0
0	Х	Х	0	0
Χ	0	Χ	0	0

Table 10.24. AND-OR 2/2 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
Cell			Pov	wer	Area	
Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)	
AO22X1	1 x Csl	238	63	10662	11.9808	
AO22X2	2 x Csl	273	114	20865	12.9024	

AO221X1, AO221X2 Q=(1&2)|(3&4)|5

Figure 10.13. Logic Symbol of AND-OR 2/2/1

Table 10.25. AND-OR 2/2/1 Truth Table

IN1	IN2	IN3	IN4	IN5	Q
1	1	Χ	Χ	Χ	1
Х	Х	1	1	Х	1
Χ	Χ	Χ	Χ	1	1
0	X	0	Χ	0	0
Х	0	0	Χ	0	0
0	Х	Х	0	0	0
Χ	0	Χ	0	0	0

Table 10.26. AND-OR 2/2/1 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
Cell			Pov	ver	Area	
Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)	
AO221X1	1 x Csl	289	65	13298	12.9024	
AO221X2	2 x Csl	314	116	24527	14.7456	

AO222X1, AO222X2 Q=(1&2)|(3&4)|(5&6)

Figure 10.14. Logic Symbol of AND-OR 2/2/2

Table 10.27. AND-OR 2/2/2 Truth Table

IN1	IN2	IN3	IN4	IN5	IN6	Q
1	1	Χ	Χ	Χ	Χ	1
Х	Х	1	1	Х	Χ	1
Χ	Χ	Χ	Х	1	1	1
0	Χ	0	Χ	0	Χ	0
0	Χ	0	Χ	Χ	0	0
0	Χ	Χ	0	0	Χ	0
0	Χ	Χ	0	Х	0	0
Χ	0	0	Х	0	Χ	0
Χ	0	0	Χ	Χ	0	0
X	0	Χ	0	0	Χ	0
Χ	0	Χ	0	Χ	0	0

Table 10.28. AND-OR 2/2/2 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
Cell			Pov	wer	Area	
Name	Cload	Cload Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)	
AO222X1	1 x Csl	294	69	14175	14.7456	
AO222X2	2 x Csl	320	120	25846	15.6672	

10.12. AND-OR-Invert

AOI21X1, AOI21X2 QN=!((1&2)|3)

Figure 10.15. Logic Symbol of AND-OR-Invert 2/1

Table 10.29. AND-OR-Invert 2/1 Truth Table

IN1	IN2	IN3	QN
1	1	Х	0
Х	Х	1	0
0	Х	0	1
Х	0	0	1

Table 10.30. AND-OR-Invert 2/1 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
Cell			Pov	wer	Area	
Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)	
AOI21X1	1 x Csl	181	86	13912	11.9808	
AOI21X2	2 x Csl	196	137	16301	12.9024	

SYNOPSYS

QN=!((1&2)|(3&4))

Figure 10.16. Logic Symbol of AND-OR-Invert 2/2 Table 10.31. AND-OR-Invert 2/2 Truth Table

IN1	IN2	IN3	IN4	QN
Χ	Χ	1	1	0
1	1	Х	Х	0
0	Х	0	Х	1
Х	0	0	Х	1
0	Х	Х	0	1
Χ	0	Χ	0	1

Table 10.32. AND-OR-Invert 2/2 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
Cell			Pov	wer	Area	
Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)	
AOI22X1	1 x Csl	204	89	13290	12.9024	
AOI22X2	2 x Csl	235	141	20026	14.7456	

AOI221X1, AOI221X2 QN=!((1&2)|(3&4)|5)

Figure 10.17. Logic Symbol of AND-OR-Invert 2/2/1

Table 10.33. AND-OR-Invert 2/2/1 Truth Table

IN1	IN2	IN3	IN4	IN5	QN
1	1	Х	Х	Х	0
Х	Х	1	1	Х	0
Х	Х	Х	Х	1	0
0	Х	0	Х	0	1
Х	0	0	Х	0	1
0	Χ	Χ	0	0	1
Χ	0	Х	0	0	1

Table 10.34. AND-OR-Invert 2/2/1 Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
Cell	Cload		Pov	wer	Area		
Name		Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
		ps	nW	nW/MHz	(um²)		
AOI221X1	1 x Csl	207	102	14356	14.7456		
AOI221X2	2 x Csl	223	154	19564	15.6672		

AOI222X1, AOI222X2 QN=!((1&2)|(3&4)|(5&6))

Figure 10.18. Logic Symbol of AND-OR-Invert 2/2/2

Table 10.35. AND-OR-Invert 2/2/2 Truth Table

IN1	IN2	IN3	IN4	IN5	IN6	Q
1	1	Χ	Χ	Χ	Χ	1
Χ	Χ	1	1	Х	Χ	1
Χ	Χ	Χ	Х	1	1	1
0	Χ	0	Х	0	Χ	0
0	Х	0	Х	Х	0	0
0	Х	Х	0	0	Х	0
0	Χ	Χ	0	Х	0	0
Х	0	0	Х	0	Χ	0
Χ	0	0	Х	Х	0	0
Х	0	Х	0	0	Х	0
Χ	0	Χ	0	Χ	0	0

Table 10.36. AND-OR-Invert 2/2/2 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell			Pov	wer	Area
Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
AOI222X1	1 x Csl	221	109	13982	15.6672
AOI222X2	2 x Csl	245	161	20441	17.5104

10.13. OR-AND

OA21X1, OA21X2 Q=(1|2)&3

Figure 10.19. Logic Symbol of OR-AND 2/1

Table 10.37. OR-AND 2/1 Truth Table

IN1	IN2	IN3	Q
0	0	Х	0
Х	Х	0	0
1	Х	1	1
Х	1	1	1

Table 10.38. OR-AND 2/1 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell	Cell Name Cload		Pov	wer	Area
Name		Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OA21X1	1 x Csl	252	58	8580	9.2160
OA21X2	2 x Csl	231	111	17418	11.0592

Q=(1|2)&(3|4)

Figure 10.20. Logic Symbol of OR-AND 2/2

Table 10.39. OR-AND 2/2 Truth Table

IN1	IN2	IN3	IN4	Q
0	0	Χ	Χ	0
Х	Х	0	0	0
1	Х	1	Х	1
Х	1	1	Х	1
1	Х	Х	1	1
Χ	1	Χ	1	1

Table 10.40. OR-AND 2/2 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell	Cell Name Cload		Pov	wer	Area
Name		Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OA22X1	1 x Csl	212	63	8038	11.0592
OA22X2	2 x Csl	240	114	17542	12.9024

OA221X1, OA221X2 Q=(1|2)&(3|4)&5

Figure 10.21. Logic Symbol of OR-AND 2/2/1

Table 10.41. OR-AND 2/2/1 Truth Table

IN1	IN2	IN3	IN4	IN5	Q
0	0	Х	Х	Х	0
Χ	Х	0	0	Х	0
Х	Х	Χ	Х	0	0
1	Х	1	Х	1	1
Х	1	1	Х	1	1
1	Х	Х	1	1	1
Х	1	Χ	1	1	1

Table 10.42. OR-AND 2/2/1 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell			Pov	wer	Area
Name		Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OA221X1	1 x Csl	208	71	9239	12.9024
OA221X2	2 x Csl	236	118	20697	14.7456

OA222X1, OA222X2 Q=(1|2)&(3|4)&(5|6)

Figure 10.22. Logic Symbol of OR-AND 2/2/2

Table 10.43. OR-AND 2/2/2 Truth Table

IN1	IN2	IN3	IN4	IN5	IN6	Q
0	0	Χ	Χ	Χ	Χ	0
Χ	Χ	0	0	Х	Х	0
Х	Х	Х	Х	0	0	0
1	Х	1	Х	1	Х	1
1	Х	1	Х	Х	1	1
1	Х	Χ	1	1	Х	1
1	Χ	Χ	1	Х	1	1
Х	1	1	Х	1	Х	1
Χ	1	1	Χ	Х	1	1
Х	1	Х	1	1	Х	1
Χ	1	Χ	1	Χ	1	1

Table 10.44. OR-AND 2/2/2 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell			Pov	wer	Area
Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OA222X1	1 x Csl	200	75	10254	14.7456
OA222X2	2 x Csl	233	120	22829	15.6672

10.14. OR-AND-Invert

OAI21X1, OAI21X2 QN=!((1|2)&3)

Figure 10.23. Logic Symbol of OR-AND-INVERT 2/1

Table 10.45. OR-AND-INVERT 2/1 Truth Table

IN1	IN2	IN3	QN
0	0	Χ	1
Х	Х	0	1
1	Х	1	0
X	1	1	0

Table 10.46. OR-AND-INVERT 2/1 Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Cell			Pov	wer	Area
Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OAI21X1	1 x Csl	159	88	10270	11.0592
OAI21X2	2 x Csl	172	139	15081	11.9808

OAI22X1, OAI22X2 QN=!((1|2)&(3|4))

Figure 10.24. Logic Symbol of OR-AND-INVERT 2/2

Table 10.47. OR-AND-INVERT 2/2 Truth Table

IN1	IN2	IN3	IN4	QN
0	0	Χ	Χ	1
Х	Χ	0	0	1
1	Х	1	Х	0
Х	1	1	Х	0
1	Х	Х	1	0
Χ	1	Χ	1	0

Table 10.48. OR-AND-INVERT 2/2 Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
Cell	Cell Name Cload		Pov	wer	Area
Name		Cload Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OAI22X1	1 x Csl	174	98	10666	12.9024
OAI22X2	2 x Csl	184	150	16509	13.8240

OAI221X1, OAI221X2 QN=!((1|2)&(3|4)&5)

Figure 10.25. Logic Symbol of OR-AND-INVERT 2/2/1

Table 10.49. OR-AND-INVERT 2/2/1 Truth Table

IN1	IN2	IN3	IN4	IN5	QN
0	0	Х	Х	Х	1
Х	Х	0	0	Χ	1
Χ	Х	Χ	Х	0	1
1	Х	1	Х	1	0
Х	1	1	Х	1	0
1	Х	Х	1	1	0
Χ	1	Χ	1	1	0

Table 10.50. OR-AND-INVERT 2/2/1 Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
Cell	Cell Name Cload		Pov	wer	Area
Name		ad Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OAI221X1	1 x Csl	219	101	11136	14.7456
OAI221X2	2 x Csl	239	153	18112	15.6672

OAI222X1, OAI222X2 QN=!((1|2)&(3|4)&(5|6))

Figure 10.26. Logic Symbol of OR-AND-INVERT 2/2/2

IN3 IN4 IN1 IN2 IN5 IN6 QN Χ Χ Χ Χ 0 0 1 Χ Χ 0 0 X X 1 Χ X X X 0 0 1 Χ X 0 X 1 X X 1 1 0 X X 1 1 X 0 X 1 X 1 X 1 0 X Χ Χ 1 1 1 0 X 1 1 X X 1 0 X Χ 1 Χ 1 1 0 1 1 X 1 0

Table 10.51. OR-AND-INVERT 2/2/2 Truth Table

Table 10.52. OR-AND-INVERT 2/2/2 Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
Cell	Cell Name Cload		Pov	wer	Area
Name		Cload Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
OAI222X1	1 x Csl	272	94	11458	15.6672
OAI222X2	2 x Csl	294	144	19106	17.5104

10.15. Multiplexer 2 to 1

MUX21X1, MUX21X2

Figure 10.27. Logic Symbol of Multiplexer 2 to 1

Table 10.53. Multiplexer 2 to 1 Truth Table

S	Q
0	IN1
1	IN2

Table 10.54. Multiplexer 2 to 1 Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
Cell	Cell Name Cload		Pov	wer	Area
Name		d Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
MUX21X1	1 x Csl	223	84	8639	11.0592
MUX21X2	2 x Csl	253	135	17646	12.9024

10.16. Multiplexer 4 to 1

MUX41X1, MUX41X2

Figure 10.28. Logic Symbol of Multiplexer 4 to 1

Table 10.55. Multiplexer 4 to 1 Truth Table

S1	S0	Q
0	0	IN1
0	1	IN2
1	0	IN3
1	1	IN4

Table 10.56. Multiplexer 4 to 1 Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
Cell	Cell Name Cload		Pov	wer	Area
Name		Cload Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
MUX41X1	1 x Csl	250	163	15169	23.0400
MUX41X2	2 x Csl	277	221	27607	24.8832

10.17. Decoder 2 to 4

DEC24X1, DEC24X2

Figure 10.29. Logic Symbol of Decoder 2 to 4

Table 10.57. Decoder 2 to 4 Truth Table

IN2	IN1	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Table 10.58. Decoder 2 to 4 Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11				Pow	ver	Area
Cell Name	Cload	d Output	Prop Delay (Avg) Clk to OUT	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
	1 x Csl	Q0	191	23	543	29.4912
DEC24X1		Q1	189			
DEC24X1		Q2	132			
		Q3	127			
		Q0	162	410		
DEC24X1	2 x Csl	Q1	163		810 3	36.8640
		Q2	161			30.0040
		Q3	229			

10.18. Half Adder 1-Bit

HADDX1, HADDX2

Figure 10.30. Logic Symbol of Half Adder 1-Bit

Table 10.59. Half Adder 1-Bit Truth Table

A0	B0	S0 (sum)	C1 (carry)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Table 10.60. Half Adder 1-Bit Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF																	
Call Name				Pov	ver er	Area												
Cell Name	Cload	load Output	Prop Delay (Avg) Clk to OUT (S0, C1)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic													
			ps	nW	nW/MHz	(um²)												
LIADDV4	I 1 ⊻ (∷SI —	4 0 1	4 0 1	4 0-1	4 0-1	4 0-1	4 0-1	4 0-1	4 0-1	4 0-1	4 0-1	4 0-1	1 v Cal	S0	228	444	8475	45.0070
HADDX1		C1 160	114	618	15.6672													
HADDX2	2 x Csl	S0	251	217	16856	18.4320												
TIADDAZ		Z X CSI C1	188	217	796	10.4320												

10.19. Full Adder 1-Bit

FADDX1, FADDX2

Figure 10.31. Logic Symbol of Full Adder 1-Bit

Table 10.61. Full Adder 1-Bit Truth Table

Α	В	CI	S (sum)	CO (carry)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Table 10.62. Full Adder 1-Bit Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
Oall Marsa				Pow	/er	Area
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (S, CO)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
EADDV4	1 x Csl S	S	205	159	5374	29.4912
FADDX1		CO	226		713	
FADDX2	2 v Col	Csl S CO	226	221	14806	31.3344
	2 x Csl		245		835	31.3344

10.20. Pos Edge DFF

DFFX1, DFFX2

Figure 10.32. Logic Symbol of Pos Edge DFF

Table 10.63. Pos Edge DFF Transition Table

D	CLK	Q	QN
Х	Inactive	No change	No change
1	Rise	1	0
0	Rise	0	1

Table 10.64. Pos Edge DFF Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
				Pow	/er	Area
Cell Name	Cload Out	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
DFFX1	1 x Csl	Q QN	217 193	140	284	24.8832
DFFX2	2 x Csl	Q QN	251 198	206	520	31.3344

10.21. Pos Edge DFF w/Async Low-Active Set

DFFASX1, DFFASX2

Figure 10.33. Logic Symbol of Pos Edge DFF w/Async Low-Active Set

Table 10.65. Pos Edge DFF w/Async Low-Active Set Transition Table

D	SETB	CLK	Q	QN
Χ	0	Х	1	0
Χ	1	Inactive	No change	No change
1	1	Rise	1	0
0	1	Rise	0	1

Table 10.66. Pos Edge DFF w/Async Low-Active Set Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
O all Marra				Pow	ver	Area
Cell Name	Cload Outp	Output	Prop Delay (Avg) Output Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
DFFASX1	1 x Csl	Q	412	152	161	31.3344
	1 X OSI QN		372			
DFFASX2	2 x Csl	Q QN	470 411	213	355	34.0992

10.22. Pos Edge DFF w/Async Low-Active Reset

DFFARX1, DFFARX2

Figure 10.34. Logic Symbol of Pos Edge DFF w/Async Low-Active Reset

Table 10.67. Pos Edge DFF w/Async Low-Active Reset Transition Table

D	RSTB	CLK	Q	QN
Χ	0	Х	0	1
Χ	1	Inactive	No change	No change
1	1	Rise	1	0
0	1	Rise	0	1

Table 10.68. Pos Edge DFF w/Async Low-Active Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11				Pow	/er	Area
Cell Name	Cload Outpo	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
DEFARX1	DFFARX1 1 x Csl	Q	167	164	281	32.2560
DITAIN		QN	326	104	201	02.2000
DFFARX2	2 x Csl	Q	213	221	531	34.0992
		^I QN	345			34.0992

10.23. Pos Edge DFF w/Async Low-Active Set & Reset

DFFASRX1, DFFASRX2

Figure 10.35. Logic Symbol of Pos Edge DFF w/Async Low-Active Set & Reset

Table 10.69. Pos Edge DFF w/Async Low-Active Set & Reset Transition Table

D	SETB	RSTB	CLK	Q	QN	Notes
Χ	0	0	Χ	Х	Х	Not Allowed
X	0	1	X	1	0	
Х	1	0	Х	0	1	
X	1	1	Inactive	No change	No change	
1	1	1	Rise	1	0	
0	1	1	Rise	0	1	

Table 10.70. Pos Edge DFF w/Async Low-Active Set & Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz+, Capacitive Standard Load: Csl=13 fF						
0 " 11				Pow	ver er	Area	
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	nW/MHz	(um²)	
DEEACDVA	4 0-1	Q	212	40=	045	25 0000	
DFFASRX1	1 x Csl	QN	365	167	215	35.0208	
DFFASRX2	2 x Csl	Q	244	271	478	36.8640	
DEFASKAZ	2 x CSI	QN 388		2/1	4/0	30.0040	

10.24. Pos Edge DFF w/ Sync Low-Active Set & Reset

DFFSSRX1, DFFSSRX2

Figure 10.36. Logic Symbol of Pos Edge DFF w/ Sync Low-Active Set & Reset

Table 10.71. Pos Edge DFF w/ Sync Low-Active Set & Reset Transition Table

D	SETB	RSTB	CLK	Q	QN	Notes
Χ	Χ	Χ	Inactive	No change	No change	
0	1	1	Rise	0	1	
1	1	1	Rise	1	0	
X	0	1	Rise	1	0	
X	1	0	Rise	0	1	
Χ	0	0	Rise	X	X	Not Allowed

Table 10.72. Pos Edge DFF w/ Sync Low-Active Set & Reset Electrical Parameters and Areas

	 		·				
	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
0 11 11				Pow	ver	Area	
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	nW/MHz	(um²)	
DEECODYA	4 0-1	Q	206	077	400	00.4770	
DFFSSRX1	1 x Csl	QN	192	977	460	33.1776	
DFFSSRX2	2 x Csl	Q	254	998	501	27 7956	
DEFOSKAZ	2 x CSI	QN	205	990	501	37.7856	

10.25. Neg Edge DFF

DFFNX1, DFFNX2

Figure 10.37. Logic Symbol of Neg Edge DFF

Table 10.73. Neg Edge DFF Transition Table

D	CLK	Q	QN
Χ	Inactive	No change	No change
1	Fall	1	0
0	Fall	0	1

Table 10.74. Neg Edge DFF Electrical Parameters and Areas

Cell Name	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
				Pow	/er	Area
	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
DEENIVA	4 0-1	Q	395	440	000	00.5000
DFFNX1	1 x Csl	QN	365	140	226	28.5696
DFFNX2	2 x Csl	Q	441	240	F27	31.3344
DEFINAZ	Z X USI	QN	399	218	537	31.3344

10.26. Neg Edge DFF w/Async Low-Active Set

DFFNASX1, DFFNASX2

Figure 10.38. Logic Symbol of Neg Edge DFF w/Async Low-Active Set

Table 10.75. Neg Edge DFF w/Async Low-Active Set Transition Table

D	SETB	CLK	Q	QN
Χ	0	Х	1	0
Χ	1	Inactive	No change	No change
1	1	Fall	1	0
0	1	Fall	0	1

Table 10.76. Neg Edge DFF w/Async Low-Active Set Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
0 " 11				Pow	ver	Area	
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	nW/MHz	(um²)	
DEEMA OVA	4 0-1	Q	329	400	0.4	20 4420	
DFFNASX1	1 x Csl	QN	298	129	94	30.4128	
DFFNASX2	2 x Csl	Q	401	191	384	34.0992	
DEFINASAZ	2 x 051	QN	343	191	304	34.0992	

10.27. Neg Edge DFF w/Async Low-Active Reset

DFFNARX1, DFFNARX2

Figure 10.39. Logic Symbol of Neg Edge DFF w/Async Low-Active Reset

Table 10.77. Neg Edge DFF w/Async Low-Active Reset Transition Table

D	RSTB	CLK	Q	QN
Χ	0	Х	0	1
Χ	1	Inactive	No change	No change
1	1	Fall	1	0
0	1	Fall	0	1

Table 10.78. Neg Edge DFF w/Async Low-Active Reset Electrical Parameters and Areas

Cell Name	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
				Pow	ver	Area	
	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	nW/MHz	(um²)	
DEENADY4	1 v Cal	Q	208	140	047	22.2560	
DFFNARX1	1 x Csl	QN	347	149	247	32.2560	
DFFNARX2	2 x Csl	Q	273	206	582	34.0992	
DITIVARAZ	2 / (3)	QN	359	200	302	34.0992	

10.28. Neg Edge DFF w/Async Low-Active Set & Reset

DFFNASRX1, DFFNASRX2

Figure 10.40. Logic Symbol of Neg Edge DFF w/Async Low-Active Set & Reset

Table 10.79. Neg Edge DFF w/Async Low-Active Set & Reset Transition Table

D	SETB	RSTB	CLK	Q	QN	Notes
Χ	0	0	Х	X	X	Not Allowed
Х	0	1	X	1	0	
Х	1	0	Х	0	1	
Х	1	1	Inactive	No change	No change	
1	1	1	Fall	1	0	
0	1	1	Fall	0	1	

Table 10.80. Neg Edge DFF w/Async Low-Active Set & Reset Electrical Parameters and Areas

Cell Name	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
				Pow	ver er	Area
	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
DFFNASRX1	1 x Csl	Q QN	177 365	167	89	35.0208
DFFNASRX2	2 x Csl	Q QN	240 390	270	455	36.8640

10.29. Neg Edge DFF w/Async Low-Active Set & Reset, Only Q out

DFFNASRQX1, DFFNASRQX2

Figure 10.41. Logic Symbol of Neg Edge DFF w/Async Low-Active Set & Reset, Only Q out

Table 10.81. Neg Edge DFF w/Async Low-Active Set & Reset, Only Q out Transition Table

D	SETB	RSTB	CLK	Q	Notes
Χ	0	0	Х	Х	Not Allowed
Х	0	1	Х	1	
Х	1	0	Х	0	
Х	1	1	Inactive	No change	
0	1	1	Fall	0	
1	1	1	Fall	1	

Table 10.82. Neg Edge DFF w/Async Low-Active Set & Reset, Only Q out Electrical Parameters and Areas

Cell Name	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
	Cload			Pow	ver er	Area
		Output	Prop Delay (Avg) Clk to OUT (Q)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
DFFNASRQX1	1 x Csl	Q	168	149	15486	32.2560
DFFNASRQX2	2 x Csl	Q	226	195	23040	34.0992

10.30. Neg Edge DFF w/Async Low-Active Set & Reset, Only QN out

DFFNASRNX1, DFFNASRNX2

Figure 10.42. Logic Symbol of Neg Edge DFF w/Async Low-Active Set & Reset, Only QN out

Table 10.83. Neg Edge DFF w/Async Low-Active Set & Reset, Only QN out Transition Table

D	SETB	RSTB	CLK	QN	Notes
Х	0	0	Х	X	Not Allowed
Х	0	1	X	0	
Х	1	0	Х	1	
X	1	1	Inactive	No change	
0	1	1	Fall	1	
1	1	1	Fall	0	

Table 10.84. Neg Edge DFF w/Async Low-Active Set & Reset, Only QN out Electrical Parameters and Areas

Cell Name	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
				Pow	/er	Area
	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
DFFNASRNX1	1 x Csl QN		361	161	20082	32.2560
DFFNASRNX2	2 x Csl	QN	390	222	36153	34.0992

10.31. Scan Pos Edge DFF

SDFFX1, SDFFX2

Figure 10.43. Logic Symbol of Scan Pos Edge DFF

Table 10.85. Scan Pos Edge DFF Transition Table

D	SI	SE	CLK	Q	QN
Χ	Х	Х	Inactive	No change	No change
1	Χ	0	Rise	1	0
0	Χ	0	Rise	0	1
X	1	1	Rise	1	0
Χ	0	1	Rise	0	1

Table 10.86. Scan Pos Edge DFF Electrical Parameters and Areas

Cell Name	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF									
				Pow	ver	Area				
	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic					
			ps	nW	nW/MHz	(um²)				
SDFFX1	1 x Csl	Q	207	159	340	30.4128				
SDEEVI	I X CSI	QN	185	159	340	30.4126				
SDFFX2	2 x Csl	Q	249	520972	152711	33.1776				
SUFFAZ	2 x USI	QN	199	520972	102711	33.1776				

10.32. Scan Pos Edge DFF w/Async Low-Active Set

SDFFASX1, SDFFASX2

Figure 10.44. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Set

Table 10.87. Scan Pos Edge DFF w/Async Low-Active Set Transition Table

D	SI	SE	SETB	CLK	Q	QN
Χ	Х	Х	0	Χ	1	0
Х	Χ	Χ	1	Inactive	No change	No change
1	Χ	0	1	Rise	1	0
0	Χ	0	1	Rise	0	1
Х	1	1	1	Rise	1	0
Χ	0	1	1	Rise	0	1

Table 10.88. Scan Pos Edge DFF w/Async Low-Active Set Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
				Pow	/er	Area		
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
			ps	nW	nW/MHz	(um²)		
SDFFASX1	1 x Csl Q QN		420 379	159	149	36.8640		
SDFFASX2	2 x Csl	Q QN	476 414	220	364	39.6288		

10.33. Scan Pos Edge DFF w/Async Low-Active Reset

SDFFARX1, SDFFARX2

Figure 10.45. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Reset

Table 10.89. Scan Pos Edge DFF w/Async Low-Active Reset Transition Table

D	SI	SE	RSTB	CLK	Q	QN
Χ	Х	Х	0	Х	0	1
Χ	Χ	Χ	1	Inactive	No change	No change
1	Χ	0	1	Rise	1	0
0	Χ	0	1	Rise	0	1
Χ	1	1	1	Rise	1	0
Χ	0	1	1	Rise	0	1

Table 10.90. Scan Pos Edge DFF w/Async Low-Active Reset Electrical Parameters and Areas

Cell Name	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
				Pow	ver	Area
	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
ODEE A DV4	4 0-1	Q	166	400	200	07 7050
SDFFARX1	1 x Csl	QN	326	192	300	37.7856
SDFFARX2	2 v Col	Q	210	249	543	39.6288
SUFFARAZ	2 x Csl	QN	343	249	04 3	39.0200

10.34. Scan Pos Edge DFF w/Async Low-Active Set & Reset

SDFFASRX1, SDFFASRX2

Figure 10.46. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Set & Reset

Table 10.91. Scan Pos Edge DFF w/Async Low-Active Set & Reset Transition Table

D	SI	SE	SETB	RSTB	CLK	Q	QN
Χ	Х	Х	0	0	Χ	Х	Х
X	Χ	Χ	0	1	X	1	0
Х	Х	Х	1	0	X	0	1
X	Х	Х	1	1	Inactive	No change	No change
1	Х	0	1	1	Rise	1	0
0	Х	0	1	1	Rise	0	1
Х	1	1	1	1	Rise	Х	1
Χ	0	1	1	1	Rise	X	0

Table 10.92. Scan Pos Edge DFF w/Async Low-Active Set & Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
				Pow	/er	Area		
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
			ps	nW	nW/MHz	(um²)		
SDFFASRX1	1 x Csl Q QN		202 362	193	202	40.5504		
SDFFASRX2	2 x Csl	Q QN	231 387	297	451	42.3936		

10.35. Scan Pos Edge DFF w/Async Low-Active Set & Reset, Q, QN & S0 outs

SDFFASRSX1, SDFFASRSX2

Figure 10.47. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Set & Reset, Q, QN & S0 outs

Table 10.93. Scan Pos Edge DFF w/Async Low-Active Set & Reset, Q, QN & S0 outs Transition Table

D	SI	SE	SETB	RSTB	CLK	Q	QN	S0	Notes
Χ	Х	Χ	0	0	Χ	Х	Х	Х	Not Allowed
Χ	Χ	Χ	0	1	Χ	1	0	1	
Χ	Χ	Χ	1	0	Х	0	1	0	
Χ	Χ	Χ	1	1	Inactive	No change	No change	No change	
1	Χ	0	1	1	Rise	1	0	1	
0	Χ	0	1	1	Rise	0	1	0	
Χ	1	1	1	1	Rise	1	0	1	
Χ	0	1	1	1	Rise	0	1	0	

Table 10.94. Scan Pos Edge DFF w/Async Low-Active Set & Reset, Q, QN & S0 outs Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN, S0)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	ver Dynamic	Area		
			ps	nW	nW/MHz	(um²)		
SDFFASRSX1	1 x Csl	Q QN S0	241 363 240	246	1445	42.3936		
SDFFASRSX2	2 x Csl	Q QN S0	289 386	402	1275	45.1584		

10.36. Scan Pos Edge DFF w/ Sync Low-Active Set & Reset

SDFFSSRX1, SDFFSSRX2

Figure 10.48. Logic Symbol of Scan Pos Edge DFF w/Async Low-Active Set & Reset

Table 10.95. Scan Pos Edge DFF w/ Sync Low-Active Set & Reset Transition Table

D	SI	SE	SETB	RSTB	CLK	Q	QN
Χ	Χ	0	0	0	Rise	Х	Х
Х	Χ	0	0	1	Rise	1	0
Х	Χ	0	1	0	Rise	0	1
X	Χ	Χ	Χ	Χ	Inactive	No change	No change
1	Χ	0	1	1	Rise	1	0
0	Χ	0	1	1	Rise	0	1
X	1	1	1	1	Rise	1	0
Χ	0	1	1	1	Rise	0	1

Table 10.96. Scan Pos Edge DFF w/ Sync Low-Active Set & Reset Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,			
0 11 11				Power		Area	
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	nW/MHz	(um²)	
0DEE00DV4	4 0 -1	Q	203	5400	0004	00.0000	
SDFFSSRX1	1 x Csl	QN	191	5169	2821	39.6288	
SDFFSSRX2	2 x Csl	Q	240	5230	2057	12 2152	
SUFFSSRAZ	Z X CSI	QN	199	5230	2057	43.3152	

10.37. Scan Neg Edge DFF

SDFFNX1, SDFFNX2

Figure 10.49. Logic Symbol of Scan Neg Edge DFF

Table 10.97. Scan Neg Edge DFF Transition Table

D	SI	SE	CLK	Q	QN
Χ	Х	Х	Inactive	No change	No change
1	Χ	0	Fall	1	0
0	Χ	0	Fall	0	1
X	1	1	Fall	1	0
Χ	0	1	Fall	0	1

Table 10.98. Scan Neg Edge DFF Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,							
0 11 11	-			Pow	/er	Area					
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic						
			ps	nW	nW/MHz	(um²)					
CDEENV4	1 v Cal	Q	404	450	240	24.0002					
SDFFNX1	1 x Csl	QN	366	153	218	34.0992					
SDFFNX2	2 x Csl	Q	439	263	570	36.8640					
SUFFINAL	2 x CSI	QN	389	203	570	30.0040					

10.38. Scan Neg Edge DFF w/Async Low-Active Set

SDFFNASX1, SDFFNASX2

Figure 10.50. Logic Symbol of Scan Neg Edge DFF w/Async Low-Active Set

Table 10.99. Scan Neg Edge DFF w/Async Low-Active Set Transition Table

D	SI	SE	SETB	CLK	Q	QN
Χ	Х	Х	0	Х	1	0
Χ	Χ	Х	1	Inactive	No change	No change
1	Χ	0	1	Fall	1	0
0	Χ	0	1	Fall	0	1
X	1	1	1	Fall	1	0
Χ	0	1	1	Fall	0	1

Table 10.100. Scan Neg Edge DFF w/Async Low-Active Set Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
0 11 11				Pow	/er	Area
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
SDFFNASX1	1 x Csl	Q QN	220 195	169	156	36.8640
SDFFNASX2	2 x Csl	Q QN	287 248	271	647	39.6288

10.39. Scan Neg Edge DFF w/Async Low-Active Reset

SDFFNARX1, SDFFNARX2

Figure 10.51. Logic Symbol of Scan Neg Edge DFF w/Async Low-Active Reset

Table 10.101. Scan Neg Edge DFF w/Async Low-Active Reset Transition Table

D	SI	SE	RSTB	CLK	Q	QN
Χ	Х	Х	0	Х	0	1
Х	Х	Х	1	Inactive	No change	No change
1	Χ	0	1	Fall	1	0
0	Χ	0	1	Fall	0	1
X	1	1	1	Fall	1	0
Χ	0	1	1	Fall	0	1

Table 10.102. Scan Neg Edge DFF w/Async Low-Active Reset Electrical Parameters and Areas

	Operating	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
Cell Name				Pow	ver	Area			
	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic				
			ps	nW	nW/MHz	(um²)			
CDEENIA DVA	4 0-1	Q	222	475	000	07 7050			
SDFFNARX1	1 x Csl	QN	338	175	233	37.7856			
SDFFNARX2	2 x Csl	Q	148	341	605	39.6288			
SDEFNARAZ	2 x 051	QN	239	J 4 I	005	39.0200			

10.40. Scan Neg Edge DFF w/Async Low-Active Set & Reset

SDFFNASRX1, SDFFNASRX2

Figure 10.52. Logic Symbol of Scan Neg Edge DFF w/Async Low-Active Set & Reset

Table 10.103. Scan Neg Edge DFF w/Async Low-Active Set & Reset Transition Table

D	SI	SE	SETB	RSTB	CLK	Q	QN
Χ	Х	Χ	0	0	Χ	Х	X
X	Χ	Χ	0	1	X	1	0
Х	Х	Χ	1	0	X	0	1
X	Χ	Χ	1	1	Inactive	No change	No change
1	Χ	0	1	1	Fall	1	0
0	Х	0	1	1	Fall	0	1
X	1	1	1	1	Fall	Х	1
Χ	0	1	1	1	Fall	X	0

Table 10.104. Scan Neg Edge DFF w/Async Low-Active Set & Reset Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,			
O all Marra	Cload			Pow	ver er	Area	
Cell Name		Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	nW/MHz	(um²)	
ODEENIA ODVA	4 - 0 - 1	Q	184	400	70	40.5504	
SDFFNASRX1	1 x Csl	QN	367	196	78	40.5504	
SDFFNASRX2	2 x Csl	Q	288	252	626	42 2026	
SUFFNASKAZ	Z X CSI	QN	279	353	020	42.3936	

10.41. RS-NAND Latch

LNANDX1, LNANDX2

Figure 10.53. Logic Symbol of RS-NAND Latch

Table 10.105. RS-NAND Latch Transition Table

RIN	SIN	Q	QN
0	0	X	Х
0	1	1	0
1	0	0	1
1	1	No change	No change

Table 10.106. RS-NAND Latch Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
				Pow	er	Area
Cell Name Cload	Cload	Cload Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
LNANDVA	4 0-1	Q	221	621	0050	40.40=0
LNANDX1	1 x Csl	QN	386		2359	10.1376
LNANDX2 2 x Csl	Q	206	124	5741	18.4320	
LINAINDAZ	2 X USI	QN	300	124	5/41	10.4320

10.42. High-Active Latch

LATCHX1, LATCHX2

Figure 10.54. Logic Symbol of High-Active Latch

Table 10.107. High-Active Latch Transition Table

D	CLK	Q	QN
Х	0	No change	No change
0	1	0	1
1	1	1	0

Table 10.108. High-Active Latch Electrical Parameters and Areas

Table 10:100. Fight Notive Eater Electrical Farameters and Areas								
	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
0 11 11				Pow	ver	Area		
Cell Name Cload	Cload	Cload Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
			ps	nW	nW/MHz	(um²)		
LATCHX1	1 x Csl	Q	219	144	463	22.1184		
LATOTIXT	1 X O31	QN	234	177	7	22.1104		
LATCHX2	2 x Csl	Q QN	254 277	188	681	25.8048		

10.43. High-Active Latch w/ Async Low-Active Set

LASX1, LASX2

Figure 10.55. Logic Symbol of High-Active Latch w/ Async Low-Active Set

Table 10.109. High-Active Latch w/ Async Low-Active Set Transition Table

D	SETB	CLK	Q	QN
Х	1	0	No change	No change
Х	0	Х	1	0
1	1	1	1	0
0	1	1	0	1

Table 10.110. High-Active Latch w/ Async Low-Active Set Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
O all Marra				Pow	ver	Area
Cell Name Cloa	Cload	d Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
LASX1	1 x Csl	Q	223	117	485	24.8832
LAOXI	1 / 031	I X CSI QN	286	117	70	24.0002
LASX2	LASX2 2 x Csl	Q	217	187	656	29.5696
LAGAZ	2 / (03)	QN	320	107	030	29.5090

10.44. High-Active Latch w/ Async Low-Active Reset

LARX1, LARX2

Figure 10.56. Logic Symbol of High-Active Latch w/ Async Low-Active Reset

Table 10.111. High-Active Latch w/ Async Low-Active Reset Transition Table

D	RSTB	CLK	Q	QN
Х	1	0	No change	No change
Х	0	Х	0	1
1	1	1	1	0
0	1	1	0	1

Table 10.112. High-Active Latch w/ Async Low-Active Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11				Pow	/er	Area
Cell Name Cload	Cload	Cload Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
LADV1	1 x Csl	Q	257	440	496	25.8048
LARX1	I X CSI	QN	263	140	490	25.0040
LARX2 2 x (2 x Csl	Q	299	200	658	29.4912
LAIXAZ	2 / (3)	QN	281			29.4912

10.45. High-Active Latch w/ Async Low-Active Set & Reset

LASRX1, LASRX2

Figure 10.57. Logic Symbol of High-Active Latch w/ Async Low-Active Set & Reset

Table 10.113. High-Active Latch w/ Async Low-Active Set & Reset Transition Table

D	SETB	RSTB	CLK	Q	QN
Х	1	1	Χ	Х	Х
Х	0	1	Х	1	0
Х	1	0	Х	0	1
Χ	1	1	0	No change	No change
1	1	1	1	1	0
0	1	1	1	0	1

Table 10.114. High-Active Latch w/ Async Low-Active Set & Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
O all Niasas a				Pov	ver er	Area
Cell Name Cload	Cload	Cload Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	fW/MHz	(um²)
L A ODVA	4 0-1	Q	280	400	400	00.7004
LASRX1	1 x Csl	QN	283	139	426	26.7264
LASRX2 2 x Csl	Q	336	240	F 7 7	31.3344	
LASKAZ	2 x Csl	QN	292	240	577	31.3344

10.46. High-Active Latch w/ Async Low-Active Set & Reset only Q out

LASRQX1, LASRQX2

Figure 10.58. Logic Symbol of High-Active Latch w/ Async Low-Active Set & Reset only Q out

Table 10.115. High-Active Latch w/ Async Low-Active Set & Reset only Q out Transition Table

D	SETB	RSTB	CLK	Q
Х	0	0	Χ	X
Χ	0	1	Х	1
Χ	1	0	Х	0
Χ	1	1	0	No change
1	1	1	1	1
0	1	1	1	0

Table 10.116. High-Active Latch w/ Async Low-Active Set & Reset only Q out Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
Cell Name Cload			Pov	wer	Area
	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
LASRQX1	1 x Csl	252	111	20756	25.8048
LASRQX2	2 x Csl	274	154	29383	26.7264

10.47. High-Active Latch w/ Async Low-Active Set & Reset only QN out

LASRNX1, LASRNX2

Figure 10.59. Logic Symbol of High-Active Latch w/ Async Low-Active Set & Reset only QN out

Table 10.117. High-Active Latch w/ Async Low-Active Set & Reset only QN out Transition Table

D	SETB	RSTB	CLK	QN
Х	0	0	Х	Х
Х	0	1	Х	0
Χ	1	0	Х	1
Х	1	1	0	No change
1	1	1	1	0
0	1	1	1	1

Table 10.118. High-Active Latch w/ Async Low-Active Set & Reset only QN out Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
O all Marra	ell Name Cload		Pov	ver	Area
Cell Name		Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
LASRNX1	1 x Csl	282	132	18467	25.8048
LASRNX2	2 x Csl	306	184	32164	27.6480

10.48. Clock Gating cell w/ Latched Pos Edge Control Post

CGLPPSX2, CGLPPSX4, CGLPPSX8, CGLPPSX16

Figure 10.60. Logic Symbol of Clock Gating cell w/ Latched Pos Edge Control Post

Table 10.119. Clock Gating cell w/ Latched Pos Edge Control Post Truth Table

SE	EN	CLK	GCLK
1	Х	0	0
1	Х	1	1
0	0	0	0
0	0	1	OBS
0	1	0	0
0	1	1	1

Table 10.120. Clock Gating cell w/ Latched Pos Edge Control Post Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
0 11 11			Pov	wer	Area
Cell Name	Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
CGLPPSX2	2 x Csl	149	195	19014	25.8048
CGLPPSX4	4 x Csl	159	306	46177	25.805
CGLPPSX8	8 x Csl	149	528	79156	33.1776
CGLPPSX16	16 x Csl	184	977	177360	47.0016

10.49. Clock Gating cell w/ Latched Neg Edge Control Post

CGLNPSX2, CGLNPSX4, CGLNPSX8, CGLNPSX16

Figure 10.61. Logic Symbol of Clock Gating cell w/ Latched Neg Edge Control Post

Table 10.121. Clock Gating cell w/ Latched Neg Edge Control Post Truth Table

SE	EN	CLK	GCLK
1	Х	0	0
1	Χ	1	1
0	0	0	!OBS
0	0	1	1
0	1	0	0
0	1	1	1

Table 10.122. Clock Gating cell w/ Latched Neg Edge Control Post Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
0 11 11			Pov	wer	Area
Cell Name	Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
CGLNPSX2	2 x Csl	388	163	13283	23.0400
CGLNPSX4	4 x Csl	402	270	37938	23.04
CGLNPSX8	8 x Csl	433	487	123160	31.3344
CGLNPSX16	16 x Csl	490	914	175904	44.2368

10.50. Clock Gating cell w/ Latched Pos Edge Control Pre

CGLPPRX2, CGLPPRX8

Figure 10.62. Logic Symbol of Clock Gating cell w/ Latched Pos Edge Control Pre

Table 10.123. Clock Gating cell w/ Latched Pos Edge Control Pre Truth Table

SE	EN	CLK	ENL
1	Х	0	1
Х	1	0	1
0	0	0	1
Χ	Χ	1	No change

ENL	CLK	GCLK
0	0	0
0	1	0
1	0	0
1	1	1

Table 10.124. Clock Gating cell w/ Latched Pos Edge Control Pre Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
			Pov	wer	Area
Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)
CGLPPRX2	2 x Csl	246	169	18313	21.1968
CGLPPRX8	8 x Csl	209	491	7656	29.4912

10.51. Clock Gating cell w/ Latched Neg Edge Control Pre

CGLNPRX2, CGLNPRX8

Figure 10.63. Logic Symbol of Clock Gating cell w/ Latched Neg Edge Control Pre

Table 10.125. Clock Gating cell w/ Latched Neg Edge Control Pre Truth Table

SE	EN	CLK	ENL
1	Х	1	1
Х	1	1	1
0	0	1	1
Χ	X	0	No change

ENL	CLK	GCLK
0	0	1
0	1	1
1	0	0
1	1	1

Table 10.126. Clock Gating cell w/ Latched Neg Edge Control Pre Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
O all Marra			Pov	ver	Area
Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)
CGLNPRX2	2 x Csl	244	172	18876	23.0400
CGLNPRX8	8 x Csl	260	499	88348	32.2560

10.52. Non-Inverting Delay Line

Figure 10.64. Logic Symbol of Non-Inverting Delay Line

Table 10.127. Non-Inverting Delay Line Truth Table

Table 10.128. Non-Inverting Delay Line Electrical Parameters and Areas

table for Earlies investing Boldy Line Lieuthour Farameters and Albae					
Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: CsI=13 fF					
			Pov	wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps		nW/MHz	(um²)
DELLN1X2	2 x Csl	251	121	1585	14.7456
DELLN2X2	2 x Csl	416	122	711	15.6672
DELLN3X2	2 x Csl	589	140	23431	22.1184

10.53. Pass Gate

PGX1, PGX2, PGX4

Figure 10.65. Logic Symbol of Pass Gate

Table 10.129. Pass Gate Truth Table

INQ1	INN	INP	INQ2	Notes
Х	0	1	Z	
Х	Х	0	Х	Not Allowed
Х	1	Х	Х	Not Allowed
X	1	0	INQ1	

Table 10.130. Pass Gate Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: CsI=13 fF					
			Pov	wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
PGX1	1 x Csl	488	1.8	2966	7.3728
PGX2	2 x Csl	483	3.6	2910	8.2944
PGX4	4 x Csl	482	7.2	6353	10.1376

10.54. Bi-directional Switch w/ Active Low Enable

BSLEX1, BSLEX2, BSLEX4

Figure 10.66. Logic Symbol of Bi-directional Switch w/ Active Low Enable Table 10.131. Bi-directional Switch w/ Active Low Enable Truth Table

INOUT1	ENB	INOUT2
Х	1	INOUT1
Х	0	Z

Table 10.132. Bi-directional Switch w/ Active Low Enable Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11			Pov	wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
BSLEX1	1 x Csl	84	17	3188	7.3728
BSLEX2	2 x Csl	84	34	5897	10.1376
BSLEX4	4 x Csl	82	69	6673	12.9024

10.55. Hold 0 Isolation Cell (Logic AND)

ISOLANDX1, ISOLANDX2, ISOLANDX4, ISOLANDX8

Figure 10.67. Logic Symbol of Hold 0 Isolation Cell (Logic AND)

Table 10.133. Hold 0 Isolation Cell (Logic AND) Truth Table

D	ISO	Q
0	Х	0
Х	0	0
1	1	1

Table 10.134. Hold 0 Isolation Cell (Logic AND) Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 " 11				wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
ISOLANDX1	1 x Csl	186	219	11994	7.3728
ISOLANDX2	2 x Csl	203	380	21809	9.2016
ISOLANDX4	4 x Csl	368	702	70198	11.9808
ISOLANDX8	8 x Csl	258	1356	122438	18.4320

10.56. Hold 0 Isolation Cell (Logic AND), Always On

ISOLANDAOX1, ISOLANDAOX2, ISOLANDAOX4, ISOLANDAOX8

Figure 10.68.Logic Symbol of Hold 0 Isolation Cell (Logic AND), Always On

Table 10.135. Hold 0 Isolation Cell (Logic AND), Always On Truth Table

D	ISO	Q
0	Х	0
1	1	0
1	0	1

Table 10.136. Hold 0 Isolation Cell (Logic AND), Always On Electrical Parameters and Areas

able 10.100. Hold & location Con (Logic 7112), 711ways on Llocation and 711000					
Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11			Pov	wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
ISOLANDAOX1	1 x Csl	186	216	13427	7.3728
ISOLANDAOX2	2 x Csl	203	374	28574	9.2016
ISOLANDAOX4	4 x Csl	381	694	76241	29.4912
ISOLANDAOX8	8 x Csl	258	1333	151380	18.4320

10.57. Hold 1 Isolation Cell (Logic OR)

ISOLORX1, ISOLORX2, ISOLORX4, ISOLORX8

Figure 10.69. Logic Symbol of Hold 0 Isolation Cell (Logic OR)

Table 10.137. Hold 1 Isolation Cell (Logic OR) Truth Table

D	ISO	Q
0	0	0
Χ	1	1
1	Χ	1

Table 10.138. Hold 1 Isolation Cell (Logic OR) Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: CsI=13 fF					
			Pov	wer	Area
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
ISOLORX1	1 x Csl	216	194	7877	7.3728
ISOLORX2	2 x Csl	244	354	15096	9.2160
ISOLORX4	4 x Csl	338	677	38100	11.9808
ISOLORX8	8 x Csl	380	1321	114755	17.5104

10.58. Hold 1 Isolation Cell (Logic OR), Always On

ISOLORAOX1, ISOLORAOX2, ISOLORAOX4, ISOLORAOX8

Figure 10.70. Logic Symbol of Hold 0 Isolation Cell (Logic OR), Always On

Table 10.139. Hold 1 Isolation Cell (Logic OR), Always On Truth Table

D	ISO	Q
0	0	0
0	1	1
1	Χ	1

Table 10.140. Hold 1 Isolation Cell (Logic OR), Always On Electrical Parameters and Areas

Cell Name	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
	Cload	Prop Delay (Avg)	Power		Area
			Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
ISOLORAOX1	1 x Csl	216	528	8991	7.3728
ISOLORAOX2	2 x Csl	244	687	17486	9.2160
ISOLORAOX4	4 x Csl	350	1005	40873	35.0208
ISOLORAOX8	8 x Csl	380	1644	118905	17.5104

10.59. Low to High Level Shifter

LSUPX1, LSUPX2, LSUPX4, LSUPX8

Figure 10.71. Logic Symbol of Low to High Level Shifter

Table 10.141. Low to High Level Shifter Truth Table

IN	OUT
0	0
1	1

Table 10.142. Low to High Level Shifter Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
			Pov	wer	Area
Cell Name	Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz
LSUPX1	1 x Csl	274	257	16925	22.1184
LSUPX2	2 x Csl	299	418	26803	22.1184
LSUPX4	4 x Csl	332	742	53319	25.8048
LSUPX8	8 x Csl	418	1392	242441	36.8640

10.60. High to Low Level Shifter

LSDNX1, LSDNX2, LSDNX4, LSDNX8

Figure 10.72. Logic Symbol of High to Low Level Shifter

Table 10.143. High to Low Level Shifter

IN	OUT
0	0
1	1

Table 10.144. High to Low Level Shifter Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
0 11 11	Cell Name Cload		Pov	wer	Area
Cell Name		Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
LSDNX1	1 x Csl	140	177	6750	33.176
LSDNX2	2 x Csl	188	334	18178	35.0208
LSDNX4	4 x Csl	292	618	32462	40.5504
LSDNX8	8 x Csl	185	1521	73831	58.9824

10.61. High to Low Level Shifter, single supply

LSDNSSX1, LSDNSSX2, LSDNSSX4, LSDNSSX8

Figure 10.73. Logic Symbol of High to Low Level Shifter

Table 10.145. High to Low Level Shifter

Table 10.146. High to Low Level Shifter, Single supply Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
0 "11			Pov	wer	Area
Cell Name	Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz
LSDNSSX1	1 x Csl	140	177	6123	33.176
LSDNSSX2	2 x Csl	188	334	13253	35.0208
LSDNSSX4	4 x Csl	292	618	31854	10.1376
LSDNSSX8	8 x Csl	185	152	75692	58.9824

10.62. High to Low Level Shifter/ High Activ Enable, single supply

LSDNENSSX1, LSDNENSSX2, LSDNENSSX4, LSDNENSSX8

Figure 10.74. Logic Symbol of High to Low Level Shifter/High Activ Enable, single supply

Table 10.147. High to Low Level Shifter/High Activ Enable, single supply

D	Q
0	0
Х	1
1	1

Table 10.148. High to Low Level Shifter/High Activ Enable, Single supply Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
			Pov	wer	Area
Cell Name	Cload	Cload Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
LSDNENSSX1	1 x Csl	140	194	13260	33.176
LSDNENSSX2	2 x Csl	188	528	24043	35.0208
LSDNENSSX4	4 x Csl	313	199	6817	9.216
LSDNENSSX8	8 x Csl	185	1538	71086	58.9824

10.63. High to Low Level Shifter/ High Activ Enable, Clamp Low , Single supply

LSDNENCLSSX1, LSDNENCLSSX2, LSDNENCLSSX4, LSDNENCLSSX8

Figure 10.75. Logic Symbol of High to Low Level Shifter/High Activ Enable, Clamp Low, Single Supply

Table 10.149. High to Low Level Shifter/High Activ Enable, Clamp Low, Single Supply

Table 10.150. High to Low Level Shifter/High Activ Enable, Single supply Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF				
Cell Name Cload			Pov	wer	Area
	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)
LSDNENCLSSX1	1 x Csl	140	202	8826	33.176
LSDNENCLSSX2	2 x Csl	188	536	24323	35.0208
LSDNENCLSSX4	4 x Csl	275	894	46062	19.3536
LSDNENCLSSX8	8 x Csl	185	1564	78200	58.9824

10.64. Low to High Level Shifter/ Active Low Enable

LSUPENX1, LSUPENX2, LSUPENX4, LSUPENX8

Figure 10.76. Logic Symbol of Low to High Level Shifter/Active Low Enable

Table 10.151. Low to High Level Shifter /Active Low Enable Truth Table

IN	EN	OUT
X	1	1
0	0	0
1	0	1

Table 10.152. Low to High Level Shifter/Active Low Enable Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
			Pov	wer	Area	
Cell Name	Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
				ps	nW	nW/MHz
LSUPENX1	1 x Csl	311	432	12791	31.3344	
LSUPENX2	2 x Csl	287	563	22348	37.7072	
LSUPENX4	4 x Csl	250	1195	41203	44.2368	
LSUPENX8	8 x Csl	327	1817	89475	57.1392	

10.65. High to Low Level Shifter/ Active Low Enable

LSDNENX1, LSDNENX2, LSDNENX4, LSDNENX8

Figure 10.77. Logic Symbol of High to Low Level Shifter/Active Low Enable

Table 10.153. High to Low Level Shifter / Active Low Enable Truth Table

IN	EN	OUT
X	1	1
0	0	0
1	0	1

Table 10.154. High to Low Level Shifter/ Active Low Enable Electrical Parameters and Areas

Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 "11			Pov	wer	Area
Cell Name	Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
		ps	nW	nW/MHz	(um²)
LSDNENX1	1 x Csl	133	325	11626	42.3936
LSDNENX2	2 x Csl	157	676	12118	27.648
LSDNENX4	4 x Csl	254	1182	39540	44.2368
LSDNENX8	8 x Csl	273	2594	76265	66.3552

10.66. Low to High Level Shifter/ Active Low Enable

LSUPENCLX1, LSUPENCLX2, LSUPENCLX4, LSUPENCLX8

Figure 10.78. Logic Symbol of Low to High Level Shifter/Active Low Enable

Table 10.155. Low to High Level Shifter /Active Low Enable Truth Table

IN	EN	OUT
X	1	0
0	0	0
1	0	1

Table 10.156. Low to High Level Shifter/Active Low Enable Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
			Pov	wer	Area		
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
		ps	nW	nW/MHz	(um²)		
LSUPENCLX1	1 x Csl	363	270	22244	27.648		
LSUPENCLX2	2 x Csl	388	397	23038	27.648		
LSUPENCLX4	4 x Csl 696		927	64209	47.9232		
LSUPENCLX8	8 x Csl	713	2935	435550	88.4736		

10.67. High to Low Level Shifter/ Active Low Enable

LSDNENCLX1, LSDNENCLX2, LSDNENCLX4, LSDNENCLX8

Figure 10.79. Logic Symbol of High to Low Level Shifter/Active Low Enable

Table 10.157. High to Low Level Shifter / Active Low Enable Truth Table

IN	EN	OUT
X	1	0
0	0	0
1	0	1

Table 10.158. High to Low Level Shifter/ Active Low Enable Electrical Parameters and Areas

Cell Name	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
			Pov	wer	Area		
	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
		ps	nW	nW/MHz	(um²)		
LSDNENCLX1	1 x Csl	145	401	13878	42.3936		
LSDNENCLX2	2 x Csl	176	880	38880	73.728		
LSDNENCLX4	4 x Csl 256		880	38880	75.2544		
LSDNENCLX8	8 x Csl	209	1411	72562	87.696		

10.68. Pos Edge Retention DFF

RDFFX1, RDFFX2

Figure 10.80. Logic Symbol of Pos Edge Retention DFF

Table 10.159. Pos Edge Retention DFF Transition Table

D	CLK	RETN	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	Rise	1	Q2[n]	0	1	Normal mode write 0
1	Rise	1	Q2[n]	1	0	Normal mode write 1
X	Rise	0	Q[n]	Q[n]	QN[n]	Retention mode
X	Fall	Х	Q2[n]	Q[n]	QN[n]	
X	0	Х	Q2[n]	Q[n]	QN[n]	
Χ	1	Χ	Q2[n]	Q[n]	QN[n]	

Table 10.160. Pos Edge Retention DFF Electrical Parameters and Areas

Cell Name	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
				Pow	ver	Area	
	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	fW/MHz	(um²)	
RDFFX1	1 x Csl	Q QN	237 284	635	338	57.96	
RDFFX2	2 x Csl	Q QN	261 327	836	514	58.9824	

10.69. Scan Pos Edge Retention DFF

RSDFFX1, RSDFFX2

Figure 10.81. Logic Symbol of Scan Pos Edge Retention DFF

Table 10.161. Scan Pos Edge Retention DFF Transition Table

D	CLK	SI	SE	RETN	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
X	Rise	0	1	1	Q2[n]	0	1	Normal mode write 0
Χ	Rise	1	1	1	Q2[n]	1	0	Normal mode write 1
0	Rise	Χ	0	1	Q2[n]	0	1	Scan mode write 0
1	Rise	Χ	0	1	Q2[n]	1	0	Scan mode write 1
Χ	Rise	Χ	Χ	0	Q[n]	Q[n]	QN[n]	Retention mode
Χ	Fall	Χ	Χ	Χ	Q2[n]	Q[n]	QN[n]	
Χ	0	Χ	Χ	Χ	Q2[n]	Q[n]	QN[n]	
Х	1	Χ	Χ	Χ	Q2[n]	Q[n]	QN[n]	

Table 10.162. Scan Pos Edge Retention DFF Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,					
Cell Name				Pow	/er	Area			
	Cload		Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic				
			ps	nW	fW/MHz	(um²)			
RSDFFX1	1 v Cel	1 x Csl	1 x Csl	1 x Csl	Q	240	780	417	66.3552
TOBIT 741	1 % 00.	QN	287	7.00		00.0002			
RSDFFX2	2 x Csl	Q	256	981	516	68.1984			
		QN	323						

10.70. Scan Pos Edge Retention DFF,w/Async Low Activ Reset

RSDFFARX1, RSDFFARX2

Figure 10.82. Logic Symbol of Scan Pos Edge Retention DFF,w/Async Low Activ Reset

Table 10.163. Scan Pos Edge Retention DFF,w/Async Low Activ Reset Transition Table

RETN	RSTB	CLK	D	SI	SE	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
1	1	Rise	Х	0	1	Q2[n]	0	1	Scan mode write 0
1	1	Rise	Х	1	1	Q2[n]	1	0	Scan mode write 1
1	1	Rise	0	Х	0	Q2[n]	0	1	Normal mode write 0
1	1	Rise	1	Х	0	Q2[n]	1	0	Normal mode write 1
0	1	Rise	Χ	Χ	Χ	Q[n]	Q[n]	QN[n]	Retention mode
Х	1	Fall	Χ	Χ	Χ	Q2[n]	Q[n]	QN[n]	
X	1	0	Χ	Χ	Χ	Q2[n]	Q[n]	QN[n]	
X	1	1	Χ	Χ	Χ	Q2[n]	Q[n]	QN[n]	
X	0	Χ	Х	Χ	X	0	0	1	Reset

Table 10.164. Scan Pos Edge Retention DFF,w/Async Low Activ Reset Electrical Parameters and Areas

Cell Name	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
			Prop Delay (Avg) Clk to OUT (Q, QN)	Pow	ver	Area	
	Cload	Output		Leakage (VDD=1.32 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	fW/MHz	(um²)	
DODEEA DV4	4 0 1	Q	240	854	404	00.0550	
RSDFFARX1	1 x Csl	QN	287		481	66.3552	
RSDFFARX2	2 x Csl	Q	256	1056	505	68.1984	
RODEFARAZ	2 X USI	QN	323	1056	565	00.1904	

10.71. Neg Edge Retention DFF

RDFFNX1, RDFFNX2

Figure 10.83. Logic Symbol of Pos Edge Retention DFF

Table 10.165. Neg Edge Retention DFF Transition Table

D	CLK	RETN	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	Fall	1	Q2[n]	0	1	Normal mode write 0
1	Fall	1	Q2[n]	1	0	Normal mode write 1
Х	Fall	0	Q[n]	Q[n]	QN[n]	Retention mode
Χ	Rise	Χ	Q2[n]	Q[n]	QN[n]	
Χ	0	Χ	Q2[n]	Q[n]	QN[n]	
Χ	1	Χ	Q2[n]	Q[n]	QN[n]	

Table 10.166. Neg Edge Retention DFF Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
				Pow	ver er	Area	
Cell Name	Cload	Output	Output Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	fW/MHz	(um²)	
RDFFNX1	1 x Csl	Q QN	359 410	663	424	57.1392	
RDFFNX2	2 x Csl	Q QN	373 440	877	568	58.9824	

10.72. Scan Neg Edge Retention DFF

RSDFFNX1, RSDFFNX2

Figure 10.84. Logic Symbol of Scan Neg Edge Retention DFF

Table 10.167. Scan Neg Edge Retention DFF Transition Table

RETN	D	CLK	SI	SE	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
1	Χ	Fall	0	1	Q2[n]	0	1	Scan mode write 0
1	Χ	Fall	1	1	Q2[n]	1	0	Scan mode write 1
1	0	Fall	Χ	0	Q2[n]	0	1	Normal mode write 0
1	1	Fall	Χ	0	Q2[n]	1	0	Normal mode write 1
0	Χ	Fall	Χ	Χ	Q[n]	Q[n]	QN[n]	Retention mode
X	Χ	Rise	Χ	Χ	Q2[n]	Q[n]	QN[n]	
Х	Χ	0	Χ	Χ	Q2[n]	Q[n]	QN[n]	
Χ	Χ	1	Χ	Χ	Q2[n]	Q[n]	QN[n]	

Table 10.168. Scan Neg Edge Retention DFF Electrical Parameters and Areas

	Operating	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF								
0 11 11				Pow	ver	Area				
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic					
			ps	nW	fW/MHz	(um²)				
DODEENVA	4 0-1	Q	363	040	540	00.0550				
RSDFFNX1	1 x Csl	QN	409	810	518	66.3552				
RSDFFNX2	2 x Csl	Q	368	1024	671	68.1984				
RODIFINAZ	2 x CSI	QN	438	1024	071	00.1904				

10.73. Scan Neg Edge Retention DFF,w/Async Low Activ Reset

RSDFFNARX1, RSDFFNARX2

Figure 10.85. Logic Symbol of Scan Neg Edge Retention DFF,w/Async low Activ Reset

Table 10.169. Scan Neg Edge Retention DFF,w/Async low Activ reset Transition Table

RETN	RSTB	D	CLK	SI	SE	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
1	1	Χ	Fall	0	1	Q2[n]	0	1	Scan mode write 0
1	1	Х	Fall	1	1	Q2[n]	1	0	Scan mode write 1
1	1	0	Fall	Χ	0	Q2[n]	0	1	Normal mode write 0
1	1	1	Fall	Χ	0	Q2[n]	1	0	Normal mode write 1
0	1	Х	Fall	Χ	Χ	Q[n]	Q[n]	QN[n]	Retention mode
Χ	1	Х	Rise	Χ	Χ	Q2[n]	Q[n]	QN[n]	
X	1	Х	0	X	Χ	Q2[n]	Q[n]	QN[n]	
Χ	1	Х	1	X	Χ	Q2[n]	Q[n]	QN[n]	
Χ	0	Χ	Χ	Χ	Χ	0	0	1	Reset

Table 10.170. Scan Neg Edge Retention DFF Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,			
Oall Marsa				Pow	er er	Area	
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Leakage (VDD=1.32 V DC, Temp=25 Dec.C)	Dynamic		
			ps	nW	fW/MHz	(um²)	
DODEENADYA	4 0-1	Q	363	000	500	00 0550	
RSDFFNARX1	1 x Csl	QN	409	886	528	66.3552	
RSDFFNARX2	2 x Csl	Q	368	1104	616	68.1984	
RODFFNARAZ	2 X CSI	QN	438	1104	010	00.1904	

10.74. Pos Edge DFF SR

RDFFSRX1, RDFFSRX2

Figure 10.86. Logic Symbol of Pos Edge DFF SR

Table 10.171. Pos Edge DFF SR Transition Table

SAVE	NRESTORE	D	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	1	0	Rise	Q2[n]	0	1	Normal mode write 0
0	1	1	Rise	Q2[n]	1	0	Normal mode write 1
0	X	Χ	Fall	Q2[n]	Q[n]	QN[n]	
0	X	Χ	0	Q2[n]	Q[n]	QN[n]	
0	1	Χ	1	Q2[n]	Q[n]	QN[n]	
1	X	Χ	Χ	Q[n]	Q[n]	QN[n]	Save mode
0	0	Χ	1	Q2[n]	Q2[n]	!Q2[n]	Restore mode
0	0	Χ	0	Q2[n]	Q[n]	QN[n]	

Table 10.172. Pos Edge DFF SR Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Tel cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
0 1				Pow	er	Area
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
RDFFSRX1	1 x Csl	QN	240	616	57568	71.8848
RDFFSRX2	2 x Csl	QN	259	904	107187	70.9632

10.75. Pos Edge Retention DFF,w/Async Low Activ Reset

RDFFARX1, RDFFARX2

Figure 10.87. Logic Symbol of Pos Edge DFF SR

Table 10.173. Pos Edge DFF, w/Async Low Activ Reset Transition Table

CLK	D	RETN	RSTB	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
Rise	0	1	1	Q2[n]	0	1	Normal mode write 0
Rise	1	1	1	Q2[n]	1	0	Normal mode write 1
Rise	Χ	0	1	Q[n]	Q[n]	QN[n]	Retention mode
Fall	Χ	Χ	1	Q2[n]	Q[n]	QN[n]	
0	Х	Χ	1	Q2[n]	Q[n]	QN[n]	
1	Х	Χ	1	Q2[n]	Q[n]	QN[n]	
X	Х	Χ	0	0	0	1	Reset

Table 10.174. Pos Edge DFF SR Electrical Parameters and Areas

Cell Name	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
				Pow	/er	Area
	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
RDFFARX1	1 x Csl	QN	240	713	400	71.8848
RDFFARX2	2 x Csl	QN	259	912	477	70.9632

10.76. Neg Edge Retention DFF,w/Async Low Activ Reset

RDFFNARX1, RDFFNARX2

Figure 10.88. Logic Symbol of Pos Edge DFF SR

Table 10.175. Neg Edge DFF,w/Async Low Activ Reset Transition Table

CLK	D	RETN	RSTB	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
Fall	0	1	1	Q2[n]	0	1	Normal mode write 0
Fall	1	1	1	Q2[n]	1	0	Normal mode write 1
Fall	Χ	0	1	Q[n]	Q[n]	QN[n]	Retention mode
Rise	Χ	Χ	1	Q2[n]	Q[n]	QN[n]	
0	Χ	Χ	1	Q2[n]	Q[n]	QN[n]	
1	Χ	Χ	1	Q2[n]	Q[n]	QN[n]	
X	Х	Χ	0	0	0	1	Reset

Table 10.176. Pos Edge DFF SR Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Tel cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
O all Marra				Pow	er	Area
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
RDFFNARX1	1 x Csl	QN	240	742	445	71.8848
RDFFNARX2	2 x Csl	QN	259	959	529	70.9632

10.77. Pos Edge DFF SR, w/ Async Low-Active Set

RDFFSRASX1, RDFFSRASX2

Figure 10.89. Logic Symbol of Pos Edge DFF SR, w/ Async Low-Active Set

Table 10.177. Pos Edge DFF SR, w/ Async Low-Active Set Transition Table

SAVE	NRESTORE	SETB	CLK	D	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	X	0	Х	Χ	Q2[n]	1	0	SETB mode
0	1	1	Rise	0	Q2[n]	0	1	Normal made write 0
0	1	1	Rise	1	Q2[n]	1	0	Normal mode write 1
0	Χ	1	Fall	Х	Q2[n]	Q[n]	QN[n]	
0	Х	1	0	Х	Q2[n]	Q[n]	QN[n]	
0	1	1	1	Х	Q2[n]	Q[n]	QN[n]	
1	Χ	Χ	Χ	Х	Q[n]	Q[n]	QN[n]	Save mode
0	0	1	1	Х	Q2[n]	Q2[n]	!Q2[n]	Restore mode
0	0	1	0	Х	Q2[n]	Q[n]	QN[n]	

Table 10.178. Pos Edge DFF SR, w/ Async Low-Active Set

	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
O all Massas				Pow	ver er	Area
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
RDFFSRASX1	1 x Csl	QN	340	681	340	80.1792
RDFFSRASX2	2 x Csl	QN	370	948	402	85.7089

10.78. Pos Edge DFF SR, w/ Async Low-Active Reset

RDFFSRARX1, RDFFSRARX2

Figure 10.90. Logic Symbol of Pos Edge DFF SR, w/ Async Low-Active Reset

Table 10.179. Pos Edge DFF SR, w/ Async Low-Active Reset Transition Table

SAVE	NRESTORE	RSTB	CLK	D	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	Х	0	Χ	Χ	Q2[n]	0	1	RSTB mode
0	1	1	Rise	0	Q2[n]	0	1	Normal made write 0
0	1	1	Rise	1	Q2[n]	1	0	Normal mode write 1
0	X	1	Fall	Χ	Q2[n]	Q[n]	QN[n]	
0	X	1	0	Х	Q2[n]	Q[n]	QN[n]	
0	1	1	1	Х	Q2[n]	Q[n]	QN[n]	
1	Х	Χ	Х	Χ	Q[n]	Q[n]	QN[n]	Save mode
0	0	1	1	Χ	Q2[n]	Q2[n]	!Q2[n]	Restore mode
0	0	1	0	Χ	Q2[n]	Q[n]	QN[n]	

Table 10.180. Pos Edge DFF SR, w/ Async Low-Active Reset

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: CsI=13 fF									
O all Manage				Pow	ver er	Area				
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic					
			ps	nW	nW/MHz	(um²)				
RDFFSRARX1	1 x Csl	QN	400	732	27365	73.728				
RDFFSRARX2	2 x Csl	2 x Csl QN 423 105 49245								

10.79. Pos Edge DFF SR, w/ Async Low-Active Set & Reset

RDFFSRASRX1, RDFFSRASRX2

Figure 10.91. Logic Symbol of Pos Edge DFF SR, w/ Async Low-Active Set & Reset

Table 10 181	Pos Edge DEF	SR w/ Asv	nc Low-Active	Set & Rese	t Transition Table
Table 10.101.	I US LUGU DI I	O1 1, W/ / 13)	TIC LOW / TOLIVE	OCL GINGSC	t Hansilion Labic

SAVE	NRESTORE	SETB	RSTB	D	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	Х	Χ	0	Χ	Х	Q2[n]	0	1	RSTB mode
0	Х	0	1	Χ	Χ	Q2[n]	1	0	SETB mode
0	1	1	1	0	Rise	Q2[n]	0	1	Normal mode write 0
0	1	1	1	1	Rise	Q2[n]	1	0	Normal mode write 1
0	Х	1	1	Х	Fall	Q2[n]	Q[n]	QN[n]	
0	Х	1	1	Χ	0	Q2[n]	Q[n]	QN[n]	
0	1	1	1	Χ	1	Q2[n]	Q[n]	QN[n]	
1	Х	Χ	Χ	Χ	Χ	Q[n]	Q[n]	QN[n]	Save mode
0	0	1	1	X	1	Q2[n]	Q2[n]	!Q2[n]	Restore mode
0	0	1	1	Χ	0	Q2[n]	Q[n]	QN[n]	

Table 10.182. Pos Edge DFF SR, w/ Async Low-Active Set & Reset

	Operating Operating Capacitive										
O a III NI a sa a				Pow	ver	Area					
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic						
			ps	nW	nW/MHz	(um²)					
RDFFSRASRX1	1 x Csl	QN	465	749	25930	80.1792					
RDFFSRASRX2	2 x Csl	2 x Csl QN 493 1098 44321									

10.80. Pos Edge DFF SR, w/ Sync Low-Active Set & Reset

RDFFSRSSRX1, RDFFSRSSRX2

Figure 10.92. Logic Symbol of Pos Edge DFF SR, w/ Sync Low-Active Set & Reset

Table 10.183. Pos Edge DFF SR, w/ Sync Low-Active Set & Reset Transition Table

D	SAVE	NRESTORE	SETB	RSTB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
X	0	Х	Х	0	Rise	Q2[n]	0	1	RSTB mode
Х	0	Χ	0	1	Rise	Q2[n]	1	0	SETB mode
0	0	1	1	1	Rise	Q2[n]	0	1	Normal mode write 0
1	0	1	1	1	Rise	Q2[n]	1	0	Normal mode write 1
Χ	0	Х	Χ	Х	Fall	Q2[n]	Q[n]	QN[n]	
Χ	0	X	Χ	Χ	0	Q2[n]	Q[n]	QN[n]	
Χ	0	1	Χ	Χ	1	Q2[n]	Q[n]	QN[n]	
Х	1	X	Χ	Х	X	Q[n]	Q[n]	QN[n]	Save mode
Х	0	0	1	1	1	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Х	0	0	1	1	0	Q2[n]	Q[n]	QN[n]	

Table 10.184. Pos Edge DFF SR, w/ Sync Low-Active Set & Reset

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF												
				Pow	ver er	Area							
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.32 V DC, Temp=25 Dec.C)	Dynamic	Alea							
			ps	nW	nW/MHz	(um²)							
RDFFSRSSRX1	1 x Csl	QN	339	7328	48586	82.0224							
RDFFSRSSRX2	2 x Csl	QN	416	7613									

10.81. Neg Edge DFF SR

RDFFNSRX1, RDFFNSRX2

Figure 10.93. Logic Symbol of Neg Edge DFF SR

Table 10.185. Neg Edge DFF SR Transition Table

D	SAVE	NRESTORE	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	0	1	Fall	Q2[n]	0	1	Normal mode write 0
1	0	1	Fall	Q2[n]	1	0	Normal mode write 1
Χ	0	Х	Rise	Q2[n]	Q[n]	QN[n]	
Χ	0	Х	1	Q2[n]	Q[n]	QN[n]	
Χ	0	1	0	Q2[n]	Q[n]	QN[n]	
X	1	X	Χ	Q[n]	Q[n]	QN[n]	Save mode
Χ	0	0	0	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	0	0	1	Q2[n]	Q[n]	QN[n]	

Table 10.186. Neg Edge DFF SR Electrical Parameters and Areas

	Operating	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
				Pow	er	Area			
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	Alea			
			ps	nW	nW/MHz	(um²)			
RDFFNSRX1	1 x Csl	QN	392	616	370	71.8848			
RDFFNSRX2	2 x Csl	QN	414	905	729	70.9632			

10.82. Neg Edge DFF SR, w/ Async Low-Active Set

RDFFNSRASX1, RDFFNSRASX2

Figure 10.94. Logic Symbol of Edge DFF SR, w/ Async Low-Active Set

Table 10.187. Edge DFF SR, w/ Async Low-Active Set Transition Table

D	SAVE	NRESTORE	SETB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Notes
Х	0	X	0	Х	Q2[n]	1	0	SETB mode
0	0	1	1	Fall	Q2[n]	0	1	Normal mode 0
1	0	1	1	Fall	Q2[n]	1	0	Normal mode 1
Χ	0	X	1	Rise	Q2[n]	Q[n]	QN[n]	
Χ	0	X	1	1	Q2[n]	Q[n]	QN[n]	
Χ	0	1	1	0	Q2[n]	Q[n]	QN[n]	
Χ	1	Х	Χ	Х	Q[n]	Q[n]	QN[n]	Save mode
Χ	0	0	1	0	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	0	0	1	1	Q2[n]	Q[n]	QN[n]	_

Table 10.188. Neg Edge DFF SR, w/ Async Low-Active Set Electrical Parameters and Area

			<u> </u>							
	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF									
O all Niama				Pow	er	Area				
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic					
			ps	nW	nW/MHz	(um²)				
RDFFNSRASX1	1 x Csl	QN	343	688	350	80.1792				
RDFFNSRASX2	2 x Csl									

10.83. Neg Edge DFF SR, w/ Async Low-Active Reset

RDFFNSRARX1, RDFFNSRARX2

Figure 10.95. Logic Symbol of Pos Edge DFF SR, w/ Async Low-Active Reset

Table 10.189. Edge Pos Edge DFF SR, w/ Async Low-Active Reset Transition Table

D	SAVE	NRESTORE	RSTB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Notes
Χ	0	X	0	Χ	Q2[n]	0	1	RSTB mode
0	0	1	1	Fall	Q2[n]	0	1	Normal mode write 0
1	0	1	1	Fall	Q2[n]	1	0	Normal mode write 1
Χ	0	Х	1	Rise	Q2[n]	Q[n]	QN[n]	
Χ	0	Х	1	1	Q2[n]	Q[n]	QN[n]	
Χ	0	1	1	0	Q2[n]	Q[n]	QN[n]	Save mode
Χ	1	X	X	X	Q[n]	Q[n]	QN[n]	Restore mode
Χ	0	0	1	0	Q2[n]	Q2[n]	!Q2[n]	
Χ	0	0	1	1	Q2[n]	Q[n]	QN[n]	

Table 10.190. Pos Edge DFF SR, w/ Async Low-Active Reset Electrical Parameters and Areas

Cell Name	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
	Cload			Pow	ver er	Area
		Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
RDFFNSRARX1	1 x Csl	QN	395	678	28891	77.4144
RDFFNSRARX2	2 x Csl	QN	422	965	51869	77.4144

10.84. Neg Edge DFF SR, w/ Async Low-Active Set & Reset

RDFFNSRASRX1, RDFFNSRASRX2

Figure 10.96. Logic Symbol of Neg Edge DFF SR, w/ Async Low-Active Set & Reset

D	SAVE	NRESTORE	SETB	RSTB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
Х	0	Х	Χ	0	Х	Q2[n]	0	1	RSTB mode
Χ	0	Х	0	1	Χ	Q2[n]	1	0	SETB mode
0	0	1	1	1	Fall	Q2[n]	0	1	Normal mode write 0
1	0	1	1	1	Fall	Q2[n]	1	0	Normal mode write 1
Χ	0	X	1	1	Rise	Q2[n]	Q[n]	QN[n]	
Χ	0	X	1	1	1	Q2[n]	Q[n]	QN[n]	
Χ	0	1	1	1	0	Q2[n]	Q[n]	QN[n]	
Х	1	X	X	X	Χ	Q[n]	Q[n]	QN[n]	Save mode
X	0	0	1	1	0	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Х	0	0	1	1	1	Q2[n]	Q[n]	QN[n]	

Table 10.192. Neg Edge DFF SR, w/ Async Low-Active Set & Reset Electrical Parameters and Areas

Cell Name	Operating	Frequen	ns: VDD=1.2 V DC, To cy: Freq=300 MHz, d Load: Csl=13 fF	emp=25 Deg.C,		
				Pow	ver er	Area
	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
RDFFNSRASRX1	1 x Csl	QN	465	749	25763	80.1792
RDFFNSRASRX2	2 x Csl	QN	496	1084	45211	86.6304

10.85. Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out

RDFFNSRASRQX1, RDFFNSRASRQX2

Figure 10.97. Logic Symbol of Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out

Table 10.193.Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out Transition Table

D	SAVE	NRESTORE	SETB	RSTB	CLK	Q2[n+1]	Q[n+1]	Mode
Χ	0	Χ	Χ	0	Χ	Q2[n]	0	RSTB mode
Χ	0	Χ	0	1	Χ	Q2[n]	1	SETB mode
0	0	1	1	1	Fall	Q2[n]	0	Normal mode write 0
1	0	1	1	1	Fall	Q2[n]	1	Normal mode write 1
Χ	0	X	1	1	Rise	Q2[n]	Q[n]	
Χ	0	X	1	1	1	Q2[n]	Q[n]	
Χ	0	1	1	1	0	Q2[n]	Q[n]	
Χ	1	X	Χ	Χ	Χ	Q[n]	Q[n]	Save mode
Χ	0	0	1	1	0	Q2[n]	Q2[n]	Restore mode
Χ	0	0	1	1	1	Q2[n]	Q[n]	

Table 10.194. Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out Electrical Parameters and Areas

Cell Name	Operating	Frequen	ns: VDD=1.2 V DC, T cy: Freq=300 MHz, d Load: Csl=13 fF	emp=25 Deg.C,		
				Pow	ver er	Area
	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	Alea
			ps	nW	nW/MHz	(um²)
RDFFNSRASRQX1	1 x Csl	Q	205	712	31437	80.1792
RDFFNSRASRXQ2	2 x Csl	Q	245	822	45462	80.1792

10.86. Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out

RDFFNSRASRNX1, RDFFNSRASRNX2

Figure 10.98. Logic Symbol of Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out

Table 10.195. Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out Transition Table

D	SAVE	NRESTORE	SETB	RSTB	CLK	Q2[n+1]	QN[n+1]	Mode
Х	0	Х	Х	0	Х	Q2[n]	0	RSTB mode
Х	0	X	0	1	X	Q2[n]	1	SETB mode
0	0	1	1	1	Fall	Q2[n]	1	Normal mode write 0
1	0	1	1	1	Fall	Q2[n]	0	Normal mode write 1
Х	0	Х	1	1	Rise	Q2[n]	Q[n]	
Х	0	X	1	1	1	Q2[n]	Q[n]	
Х	0	1	1	1	0	Q2[n]	Q[n]	
Х	1	X	X	Х	Χ	Q[n]	Q[n]	Save mode
Х	0	0	1	1	0	Q2[n]	Q2[n]	Restore mode
X	0	0	1	1	1	Q2[n]	Q[n]	

Table 10.196. Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out Electrical Parameters and Areas

Quil Nove	Operating	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
				Pow	/er	Area			
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic				
			ps	nW	nW/MHz	(um²)			
RDFFNSRASRNX1	1 x Csl	QN	462	636	37558	80.1792			
RDFFNSRASRNX2 2 x Csl QN		493	815	74653	80.1792				

10.87. Scan Pos Edge DFF SR

RSDFFSRX1, RSDFFSRX2

Figure 10.99. Logic Symbol of Scan Pos Edge DFF SR

Table 10.197. Scan Pos Edge DFF SR Transition Table

		71: 00a111 00 E	- J -						
D	SAVE	NRESTORE	CLK	SE	SI	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	0	1	Rise	0	Χ	Q2[n]	0	1	Normal mode write 0
1	0	1	Rise	0	X	Q2[n]	1	0	Normal mode write 1
Х	0	Х	Fall	Х	Χ	Q2[n]	Q[n]	QN[n]	
Х	0	X	0	Χ	Χ	Q2[n]	Q[n]	QN[n]	
Х	0	1	1	Χ	Χ	Q2[n]	Q[n]	QN[n]	
Х	0	1	Rise	1	0	Q2[n]	0	1	Scan mode write 0
Х	0	1	Rise	1	1	Q2[n]	1	0	Scan mode write 1
Χ	1	Х	Х	Х	Χ	Q[n]	Q[n]	QN[n]	Save mode
Χ	0	0	1	Χ	Χ	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	0	0	0	Χ	Χ	Q2[n]	Q[n]	QN[n]	

Table 10.198. Scan Pos Edge DFF SR Electrical Parameters and Areas

Cell Name		Operati	ng Conditions: VDD=1 Operating Frequency Capacitive Standard	r: Freq=300 MHz,	eg.C,	
				Pow	ver er	Area
	Cload Outp	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW nW/MHz	
RSDFFSRX1	1 x Csl	QN	239	878	51252	79.2576
RSDFFSRX2	2 x Csl	QN	250	1168	97751	80.1792

10.88. Scan Pos Edge DFF SR, w/ Async Low-Active Set

RSDFFSRASX1, RSDFFSRASX2

Figure 10.100. Logic Symbol of Scan Pos Edge DFF SR, w/ Async Low-Active Set

Table 10.199. Scan Pos Edge DFF SR, w/ Async Low-Active Set Transition Table

D	SI	SE	SAVE	NRESTORE	SETB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
Χ	Χ	Χ	0	Х	0	Χ	Q2[n]	1	0	SETB mode
0	Χ	0	0	1	1	Rise	Q2[n]	0	1	Normal mode write 0
1	Χ	0	0	1	1	Rise	Q2[n]	1	0	Normal mode write 1
Х	Χ	Χ	0	Х	1	Fall	Q2[n]	Q[n]	QN[n]	
Х	Χ	Χ	0	Χ	1	0	Q2[n]	Q[n]	QN[n]	
Х	Χ	Χ	0	1		1	Q2[n]	Q[n]	QN[n]	
X	0	1	0	1	1	Rise	Q2[n]	0	1	Scan mode write 0
X	1	1	0	1	1	Rise	Q2[n]	1	0	Scan mmode write 1
X	Χ	Χ	1	X	Χ	X	Q[n]	Q[n]	QN[n]	Save mode
X	X	Χ	0	0	1	1	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	Χ	Χ	0	0	1	0	Q2[n]	Q[n]	QN[n]	

Table 10.200. Scan Pos Edge DFF SR, w/ Async Low-Active Set Electrical Parameters and Areas

	Operating	Frequen	ns: VDD=1.2 V DC, Te cy: Freq=300 MHz, d Load: Csl=13 fF	mp=25 Deg.C,		
0 " 1 1	Cload			Pow	ver er	Area
Cell Name		Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
RSDFFSRASX1	1 x Csl	QN	355	961	587	90.3168
RSDFFSRASX2	2 x Csl	QN	411	1145	688	98.6112

10.89. Scan Pos Edge DFF SR, w/ Async Low-Active Reset

RSDFFSRARX1, RSDFFSRARX2

Figure 10.101. Logic Symbol of Scan Pos Edge DFF SR, w/ Async Low-Active Reset

Table 10.201. Scan Pos Edge DFF SR, w/ Async Low-Active Reset Transition Table

D	SI	SE	SAVE	NRESTORE	RSTB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
Χ	Χ	Χ	0	Х	0	Χ	Q2[n]	0	1	RSTB mode
0	Χ	0	0	1	1	Rise	Q2[n]	0	1	Normal mode write 0
1	Χ	0	0	1	1	Rise	Q2[n]	1	0	Normal mode write 1
Х	Χ	Χ	0	Х	1	Fall	Q2[n]	Q[n]	QN[n]	
X	Χ	Χ	0	X	1	0	Q2[n]	Q[n]	QN[n]	
X	Χ	Χ	0	1		1	Q2[n]	Q[n]	QN[n]	
Х	0	1	0	1	1	Rise	Q2[n]	0	1	Scan mode write 0
X	1	1	0	1	1	Rise	Q2[n]	1	0	Scan mmode write 1
Х	Χ	Χ	1	X	Χ	X	Q[n]	Q[n]	QN[n]	Save mode
X	X	Х	0	0	1	1	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	Χ	Χ	0	0	1	0	Q2[n]	Q[n]	QN[n]	

Table 10.202. Scan Pos Edge DFF SR, w/ Async Low-Active Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
Call Name				Pow	Area			
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
			ps	nW	nW/MHz	(um²)		
RSDFFSRARX1	1 x Csl	QN	399	938	26428	82.0224		
RSDFFSRARX2	2 x Csl	QN	423	1214	48898	88.4736		

10.90. Scan Pos Edge DFF SR, w/ Async Low-Active Set & Reset

RSDFFSRASRX1, RSDFFSRASRX2

Figure 10.102. Logic Symbol of Scan Pos Edge DFF SR, w/ Async Low-Active Set & Reset

Table 10.203. Scan Pos Edge DFF SR, w/ Async Low-Active Set & Reset Transition Table

D	SI	SE	SAVE	NRESTORE	RSTB	SETB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
X	Χ	Χ	0	Х	0	Х	Х	Q2[n]	0	1	RSTB mode
Χ	Χ	X	0	Х	1	0	Х	Q2[n]	1	0	SETB mode
0	X	0	0	1	1	1	Rise	Q2[n]	0	1	Normal mode write 0
1	Χ	0	0	1	1	1	Rise	Q2[n]	1	0	Normal mode write 1
X	Χ	Χ	0	X	1	1	Fall	Q2[n]	Q[n]	QN[n]	
X	Χ	Χ	0	X	1	1	0	Q2[n]	Q[n]	QN[n]	
X	Χ	Χ	0	1	1	1	1	Q2[n]	Q[n]	QN[n]	
X	0	1	0	1	1	1	Rise	Q2[n]	0	1	Scan mode write 0
X	1	1	0	1	1	1	Rise	Q2[n]	1	0	Scan mmode write 1
X	X	X	1	Х	Х	Х	Х	Q[n]	Q[n]	QN[n]	Save mode
X	X	Х	0	0	1	1	1	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	Χ	Χ	0	0	1	1	0	Q2[n]	Q[n]	QN[n]	

Table 10.204. Scan Pos Edge DFF SR, w/ Async Low-Active Set & Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
O all Niassa	Cload	Output		Pow	Area			
Cell Name			Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
			ps	nW	nW/MHz	(um²)		
RSDFFSRASRX1	1 x Csl	QN	447	202254	22270	89.3952		
RSDFFSRASRX2	2 x Csl	QN	468	1107	43036	96.768		

10.91. Scan Pos Edge DFF SR, w/ Sync Low-Active Set & Reset

RSDFFSRSSRX1, RSDFFSRSSRX2

Figure 10.103. Logic Symbol of Scan Pos Edge DFF SR, w/ Sync Low-Active Set & Reset

Table 10.205. Scan Pos Edge DFF SR, w/ Sync Low-Active Set & Reset Transition Table

D	SI	SE	SAVE	NRESTORE	RSTB	SETB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
X	X	Х	0	Х	0	Х	Rise	Q2[n]	0	1	RSTB mode
X	X	Χ	0	Χ	1	0	Rise	Q2[n]	1	0	SETB mode
0	X	0	0	1	1	1	Rise	Q2[n]	0	1	Normal mode write 0
1	X	0	0	1	1	1	Rise	Q2[n]	1	0	Normal mode write 1
Χ	Χ	Χ	0	Χ	Χ	Χ	Fall	Q2[n]	Q[n]	QN[n]	
Х	Χ	Χ	0	Χ	Χ	Χ	0	Q2[n]	Q[n]	QN[n]	
Х	Χ	Χ	0	1	Χ	Χ	1	Q2[n]	Q[n]	QN[n]	
X	0	1	0	1	1	1	Rise	Q2[n]	0	1	Scan mode write 0
X	1	1	0	1	1	1	Rise	Q2[n]	1	0	Scan mmode write 1
Χ	Χ	Х	1	Х	Х	Х	Х	Q[n]	Q[n]	QN[n]	Save mode
X	Х	Х	0	0	1	1	1	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	Χ	Χ	0	0	1	1	0	Q2[n]	Q[n]	QN[n]	

Table 10.206. Scan Pos Edge DFF SR, w/ Sync Low-Active Set & Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
	Po	Pow	ver er	Aroo		
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	- Area
			ps	nW	nW/MHz	(um²)
RSDFFSRSSRX1	1 x Csl	QN	346	25141 40306		86.6304
RSDFFSRSSRX2	2 x Csl	QN	421	25358	6975	91.2384

10.92. Scan Neg Edge DFF SR

RSDFFNSRX1, RSDFFNSRX2

Figure 10.104. Logic Symbol of Scan Neg Edge DFF SR

Table 10.207.	Scan Ne	ea Edae	DFF SR	Transition	Table
1 4510 10.201.	Courtie	<u> </u>		i i ai ioitioi i	I GDIC

D	SI	SE	SAVE	NRESTORE	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	Χ	0	0	1	Fall	Q2[n]	0	1	Normal mode write 0
1	Χ	0	0	1	Fall	Q2[n]	1	0	Normal mode write 1
Χ	Χ	Χ	0	X	Rise	Q2[n]	Q[n]	QN[n]	
Χ	Χ	Χ	0	X	1	Q2[n]	Q[n]	QN[n]	
Х	Χ	Χ	0	1	0	Q2[n]	Q[n]	QN[n]	
Χ	0	1	0	1	Fall	Q2[n]	0	1	Scan mode write 0
Χ	1	1	0	1	Fall	Q2[n]	1	0	Scan mmode write 1
Χ	Χ	Χ	1	X	Х	Q[n]	Q[n]	QN[n]	Save mode
Χ	Χ	Χ	0	0	0	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	Χ	Χ	0	0	1	Q2[n]	Q[n]	QN[n]	

Table 10.208. Scan Neg Edge DFF SR Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
0 11 11				Pow	ver	Area		
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
			ps	nW nW/MHz		(um²)		
RSDFFNSRX1	1 x Csl	QN	394	891	566	79.2576		
RSDFFNSRX2	SDFFNSRX2 2 x Csl QN 408 1163 960					80.1792		

10.93. Scan Neg Edge DFF SR, w/ Async Low-Active Set

RSDFFNSRASX1, RSDFFNSRASX2

Figure 10.105. Logic Symbol of Scan Neg Edge DFF SR, w/ Async Low-Active Set

Table 10.209. Scan Neg Edge DFF SR, w/ Async Low-Active Set Transition Table

D	SI	SE	SAVE	NRESTORE	SETB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
Х	Х	Х	0	Χ	0	Х	Q2[n]	1	0	SETB mode
0	X	0	0	1	1	Fall	Q2[n]	0	1	Normal mode write 0
1	X	0	0	1	1	Fall	Q2[n]	1	0	Normal mode write 1
Х	Χ	Χ	0	X	1	Rise	Q2[n]	Q[n]	QN[n]	
Χ	Χ	Χ	0	X	1	1	Q2[n]	Q[n]	QN[n]	
Х	Х	Χ	0	1	1	0	Q2[n]	Q[n]	QN[n]	
Х	0	1	0	1	1	Fall	Q2[n]	0	1	Scan mode write 0
Х	1	1	0	1	1	Fall	Q2[n]	1	0	Scan mode write 1
Χ	Х	Х	1	Х	Х	Х	Q[n]	Q[n]	QN[n]	Save mode
X	X	X	0	0	1	0	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	Χ	Χ	0	0	1	1	Q2[n]	Q[n]	QN[n]	

Table 10.210. Scan Neg Edge DFF SR, w/ Async Low-Active Set Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF							
O all Niassa				Pow	ver er	Area		
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic			
			ps	nW nW/MHz		(um²)		
RSDFFNSRASX1	1 x Csl	QN	429	971	639	89.3952		
RSDFFNSRASX2 2 x Csl QN 375 1254 698						94.0032		

10.94. Scan Neg Edge DFF SR, w/ Async Low-Active Reset

RSDFFNSRARX1, RSDFFNSRARX2

Figure 10.106. Logic Symbol of Scan Pos Edge DFF SR, w/ Async Low-Active Reset

Table 10.211. Scan Pos Edge DFF SR, w/ Async Low-Active Reset Transition Table

D	SI	SE	SAVE	NRESTORE	RSTB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
X	Х	Х	0	X	0	Х	Q2[n]	0	1	RSTB mode
0	X	0	0	1	1	Fall	Q2[n]	0	1	Normal mode write 0
1	X	0	0	1	1	Fall	Q2[n]	1	0	Normal mode write 1
Χ	Х	Χ	0	X	1	Rise	Q2[n]	Q[n]	QN[n]	
Χ	Х	Χ	0	Χ	1	1	Q2[n]	Q[n]	QN[n]	
Χ	Χ	Χ	0	1	1	0	Q2[n]	Q[n]	QN[n]	
X	0	1	0	1	1	Fall	Q2[n]	0	1	Scan mode write 0
X	1	1	0	1	1	Fall	Q2[n]	1	0	Scan mode write 1
Χ	Х	Χ	1	Χ	Х	Х	Q[n]	Q[n]	QN[n]	Save mode
Х	Х	Х	0	0	1	0	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	Χ	Χ	0	0	1	1	Q2[n]	Q[n]	QN[n]	

Table 10.212. Scan Pos Edge DFF SR, w/ Async Low-Active Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF						
0 ") ;	Cload			Pow	ver er	Area	
Cell Name		Output	Output Prop Delay (Avg) Leakage (VDD=1.2 V DC, Temp=25 Dec.C)		Dynamic		
			ps	nW	nW/MHz	(um²)	
RSDFFNSRARX1	1 x Csl	QN	415	934	28703	82.0224	
RSDFFNSRARX2	2 x Csl QN 421		1167 52380		847872		

10.95. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset

RSDFFNSRASRX1, RSDFFNSRASRX2

Figure 10.107. Logic Symbol of Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset

Table 10.213. Scan Neg Edge DFF SR, w/ Async Low-Active Set and Reset Transition Table

D	SI	SE	SAVE	NRESTORE	RSTB	SETB	CLK	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
X	X	X	0	X	0	Х	Х	Q2[n]	0	1	RSTB mode
X	X	X	0	X	1	0	X	Q2[n]	1	0	SETB mode
0	X	0	0	1	1	1	Fall	Q2[n]	0	1	Normal mode write 0
1	X	0	0	1	1	1	Fall	Q2[n]	1	0	Normal mode write 1
Χ	Χ	Χ	0	X	1	1	Rise	Q2[n]	Q[n]	QN[n]	
Χ	Χ	Χ	0	X	1	1	1	Q2[n]	Q[n]	QN[n]	
Χ	Χ	Χ	0	1	1	1	0	Q2[n]	Q[n]	QN[n]	
X	0	1	0	1	1	1	Fall	Q2[n]	0	1	Scan mode write 0
X	1	1	0	1	1	1	Fall	Q2[n]	1	0	Scan mmode write 1
Χ	Χ	X	1	Х	Х	Х	Х	Q[n]	Q[n]	QN[n]	Save mode
Х	X	Х	0	0	1	1	0	Q2[n]	Q2[n]	!Q2[n]	Restore mode
Χ	Χ	Χ	0	0	1	1	1	Q2[n]	Q[n]	QN[n]	

Table 10.214. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
	Cload			Pow	ver er	Area
Cell Name		Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	Alea
			ps	nW	nW/MHz	(um²)
RSDFFNSRASRX1	1 x Csl	QN	458	1018 30111		89.3952
RSDFFNSRASRX2	2 x Csl QN		468	1370	35916	94.0032

10.96. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out

RSDFFNSRASRQX1, RSDFFNSRASRQX2

Figure 10.108. Logic Symbol of Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out

Table 10.215. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out Transition Table

D	SI	SE	SAVE	NRESTORE	RSTB	SETB	CLK	Q2[n+1]	Q[n+1]	Mode
Χ	Χ	Χ	0	X	0	Х	Χ	Q2[n]	0	RSTB mode
Х	Χ	Χ	0	X	1	0	Х	Q2[n]	1	SETB mode
0	Χ	0	0	1	1	1	Fall	Q2[n]	0	Normal mode write 0
1	Χ	0	0	1	1	1	Fall	Q2[n]	1	Normal mode write 1
Χ	Χ	Χ	0	Х	1	1	Rise	Q2[n]	Q[n]	
Χ	Χ	Χ	0	X	1	1	1	Q2[n]	Q[n]	
Χ	Χ	Χ	0	1	1	1	0	Q2[n]	Q[n]	
Х	0	1	0	1	1	1	Fall	Q2[n]	0	Scan mode write 0
Х	1	1	0	1	1	1	Fall	Q2[n]	1	Scan mmode write 1
Χ	Х	Χ	1	Х	Χ	Χ	Χ	Q[n]	Q[n]	Save mode
Χ	X	Χ	0	0	1	1	0	Q2[n]	Q2[n]	Restore mode
X	Х	Χ	0	0	1	1	1	Q2[n]	Q[n]	

Table 10.216. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only Q out Electrical Parameters and Areas

	Operating	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
				Pow	ver	Area	
Cell Name	Cload	Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	7 •	
			ps	nW	nW/MHz	(um²)	
RSDFFNSRASRQX1	1 x Csl	Q	219	1035	39351	89.3952	
RSDFFNSRASRQX2	2 x Csl	Q	268	1290	75483	94.0032	

10.97. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out

RSDFFNSRASRNX1, RSDFFNSRASRNX2

Figure 10.109. Logic Symbol of Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out

Table 10.217. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out Transition Table

D	SI	SE	SAVE	NRESTORE	RSTB	SETB	CLK	Q2[n+1]	QN[n+1]	Mode
Х	Χ	Χ	0	Х	0	Х	Χ	Q2[n]	1	RSTB mode
Х	Х	Χ	0	Х	1	0	Х	Q2[n]	0	SETB mode
0	X	0	0	1	1	1	Fall	Q2[n]	1	Normal mode write 0
1	X	0	0	1	1	1	Fall	Q2[n]	0	Normal mode write 1
Х	Х	Χ	0	Х	1	1	Rise	Q2[n]	QN[n]	
Х	Х	Χ	0	X	1	1	1	Q2[n]	QN[n]	
Х	Х	Χ	0	1	1	1	0	Q2[n]	QN[n]	
Χ	0	1	0	1	1	1	Fall	Q2[n]	1	Scan mode write 0
Х	1	1	0	1	1	1	Fall	Q2[n]	0	Scan mmode write 1
Х	Х	Χ	1	Х	Χ	Χ	Χ	Q[n]	QN[n]	Save mode
Х	Х	Χ	0	0	1	1	1	Q2[n]	!Q2[n]	Restore mode
Χ	X	Χ	0	0	1	1	0	Q2[n]	QN[n]	

Table 10.218. Scan Neg Edge DFF SR, w/ Async Low-Active Set & Reset, Only QN out Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
				Pow	ver	Aroo
Cell Name Cload	Cload	Cload Output	Prop Delay (Avg) Clk to OUT (QN)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic	Area
		ps	nW	nW/MHz	(um ²)	
RSDFFNSRASRNX1	1 x Csl	QN	450	857	26299	84.7872
RSDFFNSRASRNX2	2 x Csl	QN	471	1010	51815	84.7872

10.98. Header Cell

HEADX2, HEADX4, HEADX8, HEADX16, HEADX32

Figure 10.110. Logic Symbol of Header Cell

Table 10.219. Header Cell Truth Table

SLEEP	VDDG	VDD	SLEEPQ
0	1	1	0
1	1	hi-z	1

Table 10.220. Header Cell Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: CsI=13 fF				
O all Marra			Pov	wer	Area
Cell Name	Cload	Cload Prop Delay (Avg)		Dynamic	
		ps	nW	nW/MHz	(um²)
HEADX2	2 x Csl	-	0.05	5462	27.6480
HEADX4	4 x Csl	-	0.1	11010	33.1776
HEADX8	8 x Csl	-	0.2	22502	44.2368
HEADX16	16 x Csl	-	0.4	44477	66.3552
HEADX32	32 x Csl	-	0.9	89769	112.4352

10.99. Header Cell (with SLEEPOUT output)

HEAD2X2, HEAD2X4, HEAD2X8, HEAD2X16, HEAD2X32

Figure 10.111. Logic Symbol of Header Cell(with SLEEPOUT output

Table 10.221. Header Cell (with SLEEPOUT output) Truth Table

SLEEP	VDDG	VDD	SLEEPOUT
0	1	1	0
1	1	hi-z	1

Table 10.222. Header Cell Electrical Parameters and Areas(with SLEEPOUT output)

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 "11			Pov	wer	Area	
Cell Name	Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)	
HEAD2X2	2 x Csl	179	107	1011	27.6480	
HEAD2X4	4 x Csl	250	209	2351	33.1776	
HEAD2X8	8 x Csl	366	416	5146	44.2368	
HEAD2X16	16x Csl	513	831	88288	66.3552	
HEAD2X32	32 x Csl	892	1667	510057	112.4352	

10.100. Always on Inverter

AOINVX1, AOINVX2, AOINVX4

Figure 10.112. Logic Symbol of Always on Inverter

Table 10.223. Always on Inverter Truth Table

IN	VDDG	VSS	Q
0	1	0	1
1	1	0	0

Table 10.224. Always on Inverter Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
			Pov	wer	Area	
Cell Name	Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)	
AOINVX1	1 x Csl	161	22	19	22.1184	
AOINVX2	2 x Csl	152	52	17	22.1184	
AOINVX4	4 x Csl	99	209	4	18.432	

10.101. Always on Non-inverting Buffer

AOBUFX1, AOBUFX2, AOBUFX4

Figure 10.113. Logic Symbol of Always on Non-inverting Buffer

Table 10.225. Always on Non-inverting Buffer Truth Table

IN	VDDG	VSS	Q
0	1	0	0
1	1	0	1

Table 10.226. Always on Non-inverting Buffer Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 "11			Pov	wer	Area	
Cell Name	Cell Name Cload	Prop Delay (Avg)	Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	Dynamic		
		ps	nW	nW/MHz	(um²)	
AOBUFX1	1 x Csl	142	55	173	22.1184	
AOBUFX2	2 x Csl	187	108	644	22.1184	
AOBUFX4	4 x Csl	242	200	1395	27.6480	

10.102. Always on Pos Edge DFF, w/ Async Low-Active Reset

AODFFARX1, AODFFARX2

Figure 10.114. Logic Symbol of Always on Pos Edge DFF, w/ Async Low-Active Reset

Table 10.227.	Always on Pos	: Edae DFF. w/	/ Asvnc Low-Active	Reset Transition Table
1 4510 10.227	,		, 10 , 110 E 0 11 , 10 ti 10	1 tooot 1 tallolliol1 table

RSTB	CLK	D	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	Х	Χ	Q2[n]	0	1	RSTB mode
1	Rise	0	Q2[n]	0	1	Normal mode write 0
1	Rise	1	Q2[n]	1	0	Normal mode write 1
1	Fall	Χ	Q2[n]	Q[n]	QN[n]	
1	1	Χ	Q2[n]	Q[n]	QN[n]	
1	0	Χ	Q2[n]	Q[n]	QN[n]	

Table 10.228. Always on Pos Edge DFF, w/ Async Low-Active Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11		Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Pow	Area	
Cell Name	Cload			Leakage (VDD=1.32 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
A O D E E A D V A	1 x Csl	Q	173	164	4114	40.0000
AODFFARX1		QN	337			46.0800
AODFFARX2	2 x Csl	Q	216	221	4503	49.7664
AUDFFARAZ		QN	350	221	4503	49.7004

10.103. Always on Neg Edge DFF, w/ Async Low-Active Reset

AODFFNARX1, AODFFNARX2

Figure 10.115. Logic Symbol of Always on Neg Edge DFF, w/ Async Low-Active Reset

Table 10.229. Always on Neg Edge DFF, w/ Async Low-Active Reset Transition Table

RSTB	CLK	D	Q2[n+1]	Q[n+1]	QN[n+1]	Mode
0	Х	Χ	Q2[n]	0	1	RSTB mode
1	Fall	0	Q2[n]	0	1	Normal mode write 0
1	Fall	1	Q2[n]	1	0	Normal mode write 1
1	Rise	Χ	Q2[n]	Q[n]	QN[n]	
1	1	Χ	Q2[n]	Q[n]	QN[n]	
1	0	Χ	Q2[n]	Q[n]	QN[n]	

Table 10.230. Always on Neg Edge DFF, w/ Async Low-Active Reset Electrical Parameters and Areas

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: Csl=13 fF					
0 11 11		Output	Prop Delay (Avg) Clk to OUT (Q, QN)	Pow	Area	
Cell Name	Cload			Leakage (VDD=1.32 V DC, Temp=25 Dec.C)	Dynamic	
			ps	nW	nW/MHz	(um²)
AODEENIADVA	1 x Csl	Q	174	470	6844	47.0000
AODFFNARX1		QN	343	176		47.9232
AODEENADVO	2 x Csl	Q	210	228	6543	47.9232
AODFFNARX2		QN	227361	220	0043	41.9232

10.104. Bus Keeper

BUSKP

Figure 10.116. Logic Symbol of Bus Keeper

Table 10.231. Bus Keeper Truth Table

10.105. P-MOSFET

PMT1, PMT2, PMT3

Figure 10.117. Logic Symbol of P-MOSFET

Table 10.232. P-MOSFET Truth Table

10.106. N-MOSFET

NMT1, NMT2, NMT3

Figure 10.118. Logic Symbol of N-MOSFET Table 10.233. N-MOSFET Truth Table

10.107. Tie High

TIEH

Figure 10.119. Logic Symbol of Tie High

Table 10.234. Tie High Truth Table

10.108. Tie Low

TIEL

Figure 10.120. Logic Symbol of Tie Low

Table 10.235. Tie Low Truth Table

10.109. Antenna Diode

ANTENNA

Figure 10.121. Logic Symbol of Antenna Diode

Table 10.236. Antenna Diode Truth Table

10.110. Decoupling Capacitance

DCAP

Figure 10.122. Logic Symbol of DCAP Decoupling Capacitance

10.111. Capacitive Load

CLOAD1

Figure 10.123. Logic Symbol of Capasitive Load

11. Revision history

Table 11.1. Revision history

Revision	Date	Change
A.1	06/01/2007	Initial release
A1.1	06/11/2007	 Capacitive Load cell has been added Filler cells have been updated Physical structure of double height (high-low-high) digital standard cells (for Level-Shifter cells: Low-High) has been updated Symbols have been updated Electrical parameters and areas of cells have been updated
A1.2	06/06/2008	 Inverting Buffer cells have been updated Scan Latches cells have been removed Async cells in Retention Flip-Flops and scan Flip-Flops cells have been removed Digital Standard Cell Library deliverables have been updated
A.1.3	11/12/2008	 The following cells have been added: Low to High Level Shifters/ Active Low Enable, High to Low Level Shifters/ Active Low Enable 2 new corners have been added for characterization
A.1.4	27/12/2008	 The table of characterization corners has been updated The table of characterization corners for Low to High Level Shifters has been removed
A.1.5	27/05/2009	- High-VT cells added
A.1.6	11/07/2009	 Low-VT cells added 3 grid width single height filler cell (SHFILL3) added Symbols for TIEH and TIEL have been updated
A.1.7	30/10/2009	 Header cells with SLEEPOUT pin added (HEAD2X*)
A.1.8	28/11/2009	 1 grid width single height filler cell (SHFILL1) added 64 grid width single height filler cell (SHFILL64) added 128 grid width single height filler cell (SHFILL128) added
A.1.9		 Added clamp low level shifter cells Added retention cells with SAVE and NRESTORE pins
A.1.10	30/09/2010	 Added hold 0 Isolation cells (logic AND),always on Added hold 1 Isolation cells (logic OR), always on Added high to low level shifter/single supply cells Added high to low level shifter/high-active enable, single supply cells Added high to low level shifter/high-active enable, clamp low, single supply cells Added scan neg edge retention DFF,with asyncron low-active reset cells

		 Added pos edge retention DFF, with asyncron low-active reset cells Added neg edge retention DFF, with asyncron low-active reset cells
A.1.11	24/01/2011	 Added file naming conventions Updated ISOLANDAO* cell truth table Updated ISOLORAO* cell truth table