CMPE 561 - Final Presentation NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets

D. Kekulluoglu, G.E. Kaya, G. Yesiltas

Outline

- ☐ Introduction
- ☐ Approach of the Selected Paper
- Our Approach
- ☐ Results of Experiments
- ☐ Conclusion

Introduction

- Given a tweet, decide whether the message is of positive, negative, or neutral sentiment.
- □ SVM classifier to detect sentiment.

Approach of the Selected Paper

- ☐ Each tweet represented as a feature vector made up of:
 - □ Word n-grams
 - ☐ Character n-grams
 - ☐ All caps
 - □ POS
 - Hashtags
 - ☐ Lexicons

- Punctuation
- Emoticons
- ☐ Elongated words
- Clusters
- □ Negation

Results of the Selected Paper

- ☐ Trained on set of 9912 annotated tweets.
- ☐ Tested on 3813 unseen tweets.

	Classifier	Tweets	SMS
Training set:	Majority	26.94	4
	SVM-all	67.20	-
Development set:	Majority	26.85	-
	SVM-all	68.72	_
Test set:	Majority	29.19	19.03
	SVM-unigrams	39.61	39.29
	SVM-all	69.02	68.46

Our Approach

- ☐ Features Used
 - **□** Word n-grams
 - □ POS
 - □ Lexicons
 - ☐ Emoticons
 - □ Negation
- □ For every training tweet extract feature vectors then train the SVM.
- For every test tweet extract feature vectors then predict using SVM.
- ☐ In total 5422 features used for the biggest feature vector. Really sparse

Dataset

- \Box 5345 training tweets, 1506 test tweets
- ☐ In the training set;
 - \Box 1840 positive,
 - \square 2752 neutral,
 - \Box 753 negative.

POS

- Tokens created using CMU Pos Tagger was given with dataset.
- \Box There are 25 tags.
- ☐ Twitter/online-specific tags:
 - ☐ #: hashtag
 - □ @: at-mention
 - →: discourse marker, indications of continuation of a message across
 multiple tweets
 - ☐ U: URL or email address
 - ☐ E: emoticon
- The number of occurrences of each part-of-speech tag is used as feature.

Negation

- ☐ The number of negated context is used as feature.
- Negated context is defined as:
 - □ Starts with a negation word (such as *no*, *don't*, *shouldn't*)
 - □ Ends with one of the punctuation marks: ',', '.', ';', '!', '?'
- The list of negation words was adopted from Christopher Potts' sentiment tutorial.
- □ Negated context also affects n-grams and lexicon feature.

Word N-grams

- ☐ Tokenize training tweets (Outputs of CMU Pos Tagger is used)
- Create a dictionary with all unary, binary and ternary words
- ☐ Prune the features by taking;
 - ☐ Unary words with at least 3 occurrences.
 - □ Binary words with at least 5 occurrences.
 - ☐ Ternary words with at least 7 occurrences.
- Extract features from tweets using these dictionaries.
- We have 5377 features combining these unary, binary and ternary words.
- ☐ For every feature, we look at the tweet;
 - If that feature is in the tweet write the number of occurrences. I.e. "So so so beautiful" has 3 for 'so' feature.
 - \Box Otherwise write 0.
- □ Very sparse feature vectors.

Adjectives

- The idea is instead of using all words for feature vector, use adjectives since they are more descriptive.
- Only unigrams are created.
- □ Same principles as before.
- □ 90% decrease in the feature vector size.
- ☐ Better performance when we took default C for SVM.
- \Box However no significant change when we take the C as 0.005.

Our Approach

- □ Lexicons Used;
 - □ NRC Emotion Lexicon
 - □ MPQA Lexicon
 - ☐ Bing Liu Lexicon
 - □ NRC Hashtag Sentiment Lexicon
 - □ Sentiment140 Lexicon
 - □ DGE Emoticon Lexicon:)

- □ NRC Emotion Lexicon
 - \Box 14,182 words,
 - either negative or positive,
 - □ Score value 1 or -1.
- ☐ MPQA Lexicon
 - □ 8222 words,
 - either negative or positive,
 - \Box Score value 1 or -1.

- ☐ Bing Liu Lexicon
 - □ 4783 negative, 2006 positive words,
 - \Box Score value 1 or -1.
- □ NRC Hashtag Sentiment Lexicon
 - □ 54,129 words, consisting of mostly hashtags.
 - □ Score value is between -5 and 5.

- □ Sentiment140 Lexicon
 - □ 62,468 words, including hashtags, usernames and emoticons
 - Score value is between -5 and 5.
- □ DGE Emoticon Lexicon:)
 - Manually annotated
 - □ Calculated considering the number of occurrences of each emotion in each class.

- □ 4 features extracted from lexicons;
 - \Box total count of tokens in the tweet with score(w, p) > 0;
 - □ total score of the tweet;
 - □ the maximal word score in tweet;
 - \Box the score of the last token in the tweet with score(w, p) > 0;

Classification

- □ SVM
- □ 3 classes; Positive, Negative and Neutral
- \Box C = 0.005 or C = 1
- Extra penalty weight for misclassification for negative tweets because underrepresented
- ☐ Adjectives only features
- **□** DGE Emoticon lexicon

- \Box All word n-grams + POS + SentimentLexicon140 + Negation
- \Box C = 1, no penalty
- \Box Accuracy = 41.10%
- \Box F1 measure = <u>38.32%</u>

- □ All word n-grams + POS + All lexicons (except DGE EmoLex) + Negation
- \Box C = 1, no penalty
- \Box Accuracy = 47.74%
- \Box F1 measure = <u>44.81%</u>

- □ Adjectives unigrams + POS + All lexicons (except DGE EmoLex) + Negation
- \Box C = 1, no penalty
- \Box Accuracy = 52.12%
- \Box F1 measure = **49.14**%

- ☐ All word n-grams + POS + All lexicons (except DGE EmoLex) + Negation
- \Box C = 0.005, no penalty
- \Box Accuracy = 59.56%
- \Box F1 measure = 55.33%

- □ Adjective unigrams + POS + All lexicons (except DGE EmoLex) + Negation
- \Box C = 0.005, no penalty
- \Box Accuracy = 59.56%
- \Box F1 measure = 55.16%

- □ All word n-grams + POS + All lexicons (except DGE EmoLex) + Negation
- \Box C = 0.005, penalty for negative
- \Box Accuracy = 61.82%
- \Box F1 measure = $\underline{59.89\%}$

- Adjective unigrams + POS + All lexicons (except DGE EmoLex) + Negation
- \Box C = 0.005, penalty for negative =
- \Box Accuracy = 61.68%
- \Box F1 measure = $\underline{59.58\%}$

- □ All word n-grams + POS + All lexicons (with DGE EmoLex) + Negation
- \Box C = 0.005, penalty for negative
- \Box Accuracy = 62.28%
- \Box F1 measure = **60.72**%

- □ Adjective unigrams + POS + All lexicons (with DGE EmoLex) + Negation
- \Box C = 0.005, penalty for negative =
- \Box Accuracy = 62.48%
- \Box F1 measure = <u>60.57%</u>

All Results

	Accuracy	F-score
Result #1	41.10	38.02
Result #2	47.74	44.81
Result #3	52.12	49.14
Result #4	59.56	55.33
Result #5	59.56	55.16
Result #6	61.82	59.89
Result #7	61.68	59.58
Result #8	62.28	60.72
Result #9	62.48	60.57

References

- 1. Mohammad, Saif M., Svetlana Kiritchenko, and Xiaodan Zhu. "NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets." *arXiv preprint arXiv:1308.6242* (2013).
- 2. Kökciyan, Nadin, et al. "Bounce: Sentiment classification in Twitter using rich feature sets." *Second Joint Conference on Lexical and Computational Semantics (* SEM)*. Vol. 2. 2013.
- 3. Mohammad, Saif M., and Peter D. Turney. "Crowdsourcing a word–emotion association lexicon." *Computational Intelligence* 29.3 (2013): 436-465.
- 4. Wilson, Theresa, Janyce Wiebe, and Paul Hoffmann. "Recognizing contextual polarity in phrase-level sentiment analysis." *Proceedings of the conference on human language technology and empirical methods in natural language processing.*Association for Computational Linguistics, 2005.
- 5. Hu, Minqing, and Bing Liu. "Mining and summarizing customer reviews." *Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.* ACM, 2004.
- 6. Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
- 7. Gimpel, Kevin, et al. "Part-of-speech tagging for twitter: Annotation, features, and experiments." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2.* Association for Computational Linguistics, 2011.

Thanks for your attention

Any question?