### "Neural" language models



### LMs in MT

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

# What is the probability of a sentence?

- Requirements
  - Assign a probability to every sentence (i.e., string of words)

$$\sum_{\mathbf{e} \in \Sigma^*} p_{\mathrm{LM}}(\mathbf{e}) = 1$$

$$p_{\mathrm{LM}}(\mathbf{e}) \ge 0 \quad \forall \mathbf{e} \in \Sigma^*$$

# n-gram LMs



# Whence parameters?

# Whence parameters? Estimation.

$$p(x \mid y) = \frac{p(x,y)}{p(y)}$$

$$\hat{p}_{\text{MLE}}(x) = \frac{\text{count}(x)}{N}$$

$$\hat{p}_{\text{MLE}}(x,y) = \frac{\text{count}(x,y)}{N}$$

$$\hat{p}_{\text{MLE}}(x \mid y) = \frac{\text{count}(x,y)}{N} \times \frac{N}{\text{count}(y)}$$

$$= \frac{\text{count}(x,y)}{\text{count}(y)}$$

$$p(x \mid y) = \frac{p(x,y)}{p(y)}$$

$$\hat{p}_{\text{MLE}}(x) = \frac{\text{count}(x)}{N}$$

$$\hat{p}_{\text{MLE}}(x,y) = \frac{\text{count}(x,y)}{N}$$

$$\hat{p}_{\text{MLE}}(x \mid y) = \frac{\text{count}(x,y)}{N} \times \frac{N}{\text{count}(y)}$$

$$= \frac{\text{count}(x,y)}{\text{count}(y)}$$

$$p(x \mid y) = \frac{p(x,y)}{p(y)}$$

$$\hat{p}_{\text{MLE}}(x) = \frac{\text{count}(x)}{N}$$

$$\hat{p}_{\text{MLE}}(x,y) = \frac{\text{count}(x,y)}{N}$$

$$\hat{p}_{\text{MLE}}(x \mid y) = \frac{\text{count}(x,y)}{N} \times \frac{N}{\text{count}(y)}$$

$$= \frac{\text{count}(x,y)}{\text{count}(y)}$$

$$\hat{p}_{\text{MLE}}(\texttt{call} \mid \texttt{friends}) = \frac{\text{count}(\texttt{friends call})}{\text{count}(\texttt{friends})}$$

### LM Evaluation

- Extrinsic evaluation: build a new language model, use it for some task (MT, ASR, etc.)
- Intrinsic: measure how good we are at modeling language

We will use perplexity to evaluate models

Given: 
$$\mathbf{w}, p_{\mathrm{LM}}$$

$$\mathrm{PPL} = 2^{\frac{1}{|\mathbf{w}|} \log_2 p_{\mathrm{LM}}(\mathbf{w})}$$

$$0 < \mathrm{PPL} < \infty$$

# Perplexity

- Generally fairly good correlations with BLEU for n-gram models
- Perplexity is a generalization of the notion of branching factor
  - How many choices do I have at each position?
- State-of-the-art English LMs have PPL of ~100 word choices per position
- ullet A uniform LM has a perplexity of  $|\Sigma|$
- Humans do much better
- ... and bad models can do even worse than uniform!

# MLE & Perplexity

- What is the lowest (best) perplexity possible for your model class?
- Compute the MLE!
- Well, that's easy...

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{call} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{call}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

#### START my friends dub me Alex STOP

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{dub} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{dub}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{call} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{call}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

**MLE** 

START my friends dub me Alex STOP

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{dub} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{dub}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

**MLE** 

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{call} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{call}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

MLE -3.65172

#### START my friends dub me Alex STOF

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{dub} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{dub}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

MLE -3.65172

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{call} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{call}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

**MLE** 

-3.65172

-2.07101

#### START my friends dub me Alex STOF

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{dub} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{dub}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

MLE

-3.65172

-2.07101

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{call} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{call}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$  -3.65172 -2.07101 -3.32231

#### START my friends dub me Alex STOP

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{dub} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{dub}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$ 

MLE

MLE

-3.65172

-2.07101

-00

MLE

MLE

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{call} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{call}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$  -3.65172 -2.07101 -3.32231 -0.271271

#### START my friends dub me Alex STOP

 $p(\text{my} \mid \text{START}) \times p(\text{friends} \mid \text{my}) \times p(\text{dub} \mid \text{friends}) \times p(\text{me} \mid \text{dub}) \times p(\text{Alex} \mid \text{me}) \times p(\text{STOP} \mid \text{Alex})$ -3.65172 -2.07101 -\infty -2.54562

MLE

MLE

 $p(\text{my} \mid \text{START}) \times p(\text{friends} \mid \text{my}) \times p(\text{call} \mid \text{friends}) \times p(\text{me} \mid \text{call}) \times p(\text{Alex} \mid \text{me}) \times p(\text{STOP} \mid \text{Alex})$ -3.65172 -2.07101 -3.32231 -0.271271 -4.961

#### START my friends dub me Alex STOP

 $p(\text{my} \mid \text{START}) \times p(\text{friends} \mid \text{my}) \times p(\text{dub} \mid \text{friends}) \times p(\text{me} \mid \text{dub}) \times p(\text{Alex} \mid \text{me}) \times p(\text{STOP} \mid \text{Alex})$ -3.65172 -2.07101 -\infty -2.54562 -4.961

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{call} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{call}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$   $= -3.65172 \qquad -2.07101 \qquad -3.32231 \qquad -0.271271 \qquad -4.961 \qquad -1.96773$ 

#### START my friends dub me Alex STOP

MLE

 $p(\text{my} \mid \text{START}) \times p(\text{friends} \mid \text{my}) \times p(\text{dub} \mid \text{friends}) \times p(\text{me} \mid \text{dub}) \times p(\text{Alex} \mid \text{me}) \times p(\text{STOP} \mid \text{Alex})$ -3.65172 -2.07101 -\infty -2.54562 -4.961 -1.96773

MLE

 $p(\text{my} \mid \text{START}) \times p(\text{friends} \mid \text{my}) \times p(\text{call} \mid \text{friends}) \times p(\text{me} \mid \text{call}) \times p(\text{Alex} \mid \text{me}) \times p(\text{STOP} \mid \text{Alex})$  -3.65172 -2.07101 -3.32231 -0.271271 -4.961 -1.96773

#### START my friends dub me Alex STOP

 $p(\texttt{my} \mid \texttt{START}) \times p(\texttt{friends} \mid \texttt{my}) \times p(\texttt{dub} \mid \texttt{friends}) \times p(\texttt{me} \mid \texttt{dub}) \times p(\texttt{Alex} \mid \texttt{me}) \times p(\texttt{STOP} \mid \texttt{Alex})$   $-2.54562 \qquad -4.961 \qquad -1.96773$ 

MLE assigns probability zero to unseen events

### Zeros

- Two kinds of zero probs:
  - Sampling zeros: zeros in the MLE due to impoverished observations
  - Structural zeros: zeros that should be there. Do these really exist?
- Just because you haven't seen something, doesn't mean it doesn't exist.
- In practice, we don't like probability zero, even if there is an argument that it is a structural zero.

# Smoothing

Smoothing an refers to a family of estimation techniques that seek to model important general patterns in data while avoiding modeling noise or sampling artifacts. In particular, for language modeling, we seek

$$p(\mathbf{e}) > 0 \quad \forall \mathbf{e} \in \Sigma^*$$

We will assume that  $\Sigma$  is known and finite.

## Add- $\alpha$ Smoothing

$$\mathbf{p} \sim \text{Dirichlet}(\boldsymbol{\alpha})$$
 $x_i \sim \text{Categorical}(\mathbf{p}) \quad \forall 1 \leq i \leq |\mathbf{x}|$ 

Assuming this model, what is the most probable value of  $\mathbf{p}$ , having observed training data  $\mathbf{x}$ ?

(bunch of calculus - read about it on Wikipedia)

$$p_x^* = \frac{\operatorname{count}(x) + \alpha_x - 1}{N + \sum_{x'} (\alpha_{x'} - 1)} \quad \forall \alpha_x > 1$$

## Add- $\alpha$ Smoothing

- Simplest possible smoother
- Surprisingly effective in many models
- Does not work well for language models
- There are procedures for dealing with 0 < alpha < I</li>
- When might these be useful?

### Interpolation

"Mixture of MLEs"

$$\hat{p}( ext{dub} \mid ext{my friends}) = \lambda_3 \hat{p}_{ ext{MLE}}( ext{dub} \mid ext{my friends}) \ + \lambda_2 \hat{p}_{ ext{MLE}}( ext{dub} \mid ext{friends}) \ + \lambda_1 \hat{p}_{ ext{MLE}}( ext{dub}) \ + \lambda_0 rac{1}{|\Sigma|}$$

Where do the lambdas come from?

## Discounting

Discounting adjusts the frequencies of observed events downward to reserve probability for the things that have not been observed.

Note  $f(w_3 | w_1, w_2) > 0$  only when  $count(w_1, w_2, w_3) > 0$ 

We introduce a discounted frequency:

$$0 \le f^*(w_3 \mid w_1, w_2) \le f(w_3 \mid w_1, w_2)$$

The total discount is the zero-frequency probability:

$$\lambda(w_1, w_2) = 1 - \sum_{w'} f^*(w' \mid w_1, w_2)$$

### Back-off

#### Recursive formulation of probability:

$$\hat{p}_{\text{BO}}(w_3 \mid w_1, w_2) = \begin{cases} f^*(w_3 \mid w_1, w_2) & \text{if } f^*(w_3 \mid w_1, w_2) > 0 \\ \alpha_{w_1, w_2} \times \lambda(w_1, w_2) \times \hat{p}_{\text{BO}}(w_3 \mid w_1, w_2) & \text{otherwise} \end{cases}$$

"Back-off weight"

Question 1: how do we discount?

# Kneser-Ney Discounting

- State-of-the-art in language modeling for 15 years
- Two major intuitions
  - Some contexts have lots of new words
  - Some words appear in lots of contexts
- Procedure
  - Only register a lower-order count the first time it is seen in a backoff context
  - Example: bigram model
    - "San Francisco" is a common bigram
    - But, we only count the unigram "Francisco" the first time we see the bigram "San Francisco" we change its unigram probability

### **Back-off**

#### Recursive formulation of probability:

$$\hat{p}_{\text{BO}}(w_3 \mid w_1, w_2) = \begin{cases} f^*(w_3 \mid w_1, w_2) & \text{if } f^*(w_3 \mid w_1, w_2) > 0 \\ \alpha_{w_1, w_2} \times \lambda(w_1, w_2) \times \hat{p}_{\text{BO}}(w_3 \mid w_1, w_2) & \text{otherwise} \end{cases}$$

"Back-off weight"

Question 1: how do we discount?

Question 2: how many parameters?





Braaaains



#### Braaaains

"While the brain metaphor is intriguing, it is also distracting and cumbersome to manipulate mathematically. We therefore switch to using more concise mathematical notation."

(Goldberg, 2015)





## "Neurons"



## "Neurons"







## "Neurons"

















What about probabilities? Let each  $y_i$  be an outcome.





What about probabilities? Let each  $y_i$  be an outcome.







Look familiar?

What about probabilities? Let each  $y_i$  be an outcome.











$$\boldsymbol{z} = g(\boldsymbol{y}^{\top} \mathbf{V})$$



$$egin{aligned} oldsymbol{z} &= g(oldsymbol{y}^{ op} \mathbf{V}) \ oldsymbol{z} &= g(h(oldsymbol{x}^{ op} \mathbf{W})^{ op} \mathbf{V}) \end{aligned}$$



$$egin{aligned} oldsymbol{z} &= g(oldsymbol{y}^{ op} \mathbf{V}) \ oldsymbol{z} &= g(h(oldsymbol{x}^{ op} \mathbf{W})^{ op} \mathbf{V}) \ oldsymbol{z} &= g(\mathbf{V}h(\mathbf{W} oldsymbol{x})) \end{aligned}$$



$$egin{aligned} oldsymbol{z} &= g(oldsymbol{y}^{ op} \mathbf{V}) \ oldsymbol{z} &= g(h(oldsymbol{x}^{ op} \mathbf{W})^{ op} \mathbf{V}) \ oldsymbol{z} &= g(\mathbf{V}h(\mathbf{W} oldsymbol{x})) \end{aligned}$$

#### Note:

if 
$$g(x) = h(x) = x$$

$$z = \underbrace{(\mathbf{V}\mathbf{W})}_{\mathbf{U}} x$$

## Design Decisions

- How to represent inputs and outputs?
- Neural architecture?
  - How many layers? (Requires nonlinearities to improve capacity!)
  - How many neurons?
  - Recurrent or not?
- What kind of non-linearities?

## Representing Language

- "One-hot" vectors
  - Each position in a vector corresponds to a word type
  - Sequence of words, sequence of vectors
  - Bag of words: multiple vectors
- Distributed representations
  - Vectors encode "features" of input words (character n-grams, morphological features, etc.)

### Training Neural Networks

- Neural networks are supervised models you need a set of inputs paired with outputs
- Algorithm
  - Run for a while
    - Give input to the network, see what it predicts
    - Compute loss(y,y\*) and (sub)gradient with respect to parameters. Use the chain rule, aka "back propagation"
    - Update parameters (SGD, AdaGrad, LBFGS, etc.)
- Algorithm is automated, just need to specify model structure

## Bengio et al. (2003)

$$p(\mathbf{e}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-n+1}, \dots, e_{i-1})$$

$$p(e_i \mid e_{i-n+1}, \dots, e_{i-1}) =$$



# Bengio et al. (2003)

|                     | n | С | h   | m  | direct | mix | train. | valid. | test. |
|---------------------|---|---|-----|----|--------|-----|--------|--------|-------|
| MLP1                | 5 |   | 50  | 60 | yes    | no  | 182    | 284    | 268   |
| MLP2                | 5 |   | 50  | 60 | yes    | yes |        | 275    | 257   |
| MLP3                | 5 |   | 0   | 60 | yes    | no  | 201    | 327    | 310   |
| MLP4                | 5 |   | 0   | 60 | yes    | yes |        | 286    | 272   |
| MLP5                | 5 |   | 50  | 30 | yes    | no  | 209    | 296    | 279   |
| MLP6                | 5 |   | 50  | 30 | yes    | yes |        | 273    | 259   |
| MLP7                | 3 |   | 50  | 30 | yes    | no  | 210    | 309    | 293   |
| MLP8                | 3 |   | 50  | 30 | yes    | yes |        | 284    | 270   |
| MLP9                | 5 |   | 100 | 30 | no     | no  | 175    | 280    | 276   |
| MLP10               | 5 |   | 100 | 30 | no     | yes |        | 265    | 252   |
| Del. Int.           | 3 |   |     |    |        |     | 31     | 352    | 336   |
| Kneser-Ney back-off | 3 |   |     |    |        |     |        | 334    | 323   |
| Kneser-Ney back-off | 4 |   |     |    |        |     |        | 332    | 321   |
| Kneser-Ney back-off | 5 |   |     |    |        |     |        | 332    | 321   |

## Devlin et al. (2014)

- Turn Bengio et al. (2003) into a translation model
- Conditional model; generate the next English word conditioned on
  - The previous n English words you generated
  - The aligned source word, and its m neighbors

$$p(\mathbf{e} \mid \mathbf{f}, \mathbf{a}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-2}, e_{i-1}, f_{a_i-1}, f_{a_i}, f_{a_i+1})$$

$$p(e_i \mid e_{i-2}, e_{i-1}, f_{a_i-1}, f_{a_i}, f_{a_i+1}) =$$



# Devlin et al. (2014)

| BOLT Test                 |       |        |  |  |  |  |
|---------------------------|-------|--------|--|--|--|--|
|                           | Ar-En |        |  |  |  |  |
| :                         | BLEU  | % Gain |  |  |  |  |
| "Simple Hier." Baseline   | 33.8  | -      |  |  |  |  |
| S2T/L2R NNJM (Dec)        | 38.4  | 100%   |  |  |  |  |
| Source Window=7           | 38.3  | 98%    |  |  |  |  |
| Source Window=5           | 38.2  | 96%    |  |  |  |  |
| Source Window=3           | 37.8  | 87%    |  |  |  |  |
| Source Window=0           | 35.3  | 33%    |  |  |  |  |
| Layers=384x768x768        | 38.5  | 102%   |  |  |  |  |
| Layers=192x512            | 38.1  | 93%    |  |  |  |  |
| Layers=128x128            | 37.1  | 72%    |  |  |  |  |
| Vocab=64,000              | 38.5  | 102%   |  |  |  |  |
| Vocab=16,000              | 38.1  | 93%    |  |  |  |  |
| Vocab=8,000               | 37.3  | 83%    |  |  |  |  |
| Activation=Rectified Lin. | 38.5  | 102%   |  |  |  |  |
| Activation=Linear         | 37.3  | 76%    |  |  |  |  |

## Summary of neural LMs

- Two problems in standard statistical models
  - We don't condition on enough stuff
  - We don't know what features to use when we condition on lots of structure
- Neural networks let us condition on a lot of stuff without an exponential growth in parameters
- But: they are just reparameterized probability distributions. **Probability is central.**

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

$$= \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-1}, ..., e_1) \times \prod_{j=1}^{|\mathbf{f}|} p(f_j \mid f_{j-1}, ..., f_1, \mathbf{e})$$

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

$$= \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-1}, ..., e_1) \times \prod_{j=1}^{|\mathbf{f}|} p(f_j \mid f_{j-1}, ..., f_1, \mathbf{e})$$

Conditional language model

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

$$= \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-1}, ..., e_1) \times \prod_{j=1}^{|\mathbf{f}|} p(f_j \mid f_{j-1}, ..., f_1, \mathbf{e})$$

Conditioned on entire sentence!
With direct multinomial
parameterizations (n-gram models, IMB
Model I), we had to make independence
assumptions for this to work.

$$p(\mathbf{e}, \mathbf{f}) = p_{LM}(\mathbf{e}) \times p_{TM}(\mathbf{f} \mid \mathbf{e})$$

$$= \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-1}, ..., e_1) \times \prod_{j=1}^{|\mathbf{f}|} p(f_j \mid f_{j-1}, ..., f_1, \mathbf{e})$$

