# Generalized Barycentric Coordinates for Polygonal Finite Elements

#### **Andrew Gillette**

joint work with Chandrajit Bajaj and Alexander Rand

Department of Mathematics University of California, San Diego

http://ccom.ucsd.edu/~agillette/

### Why consider polygonal finite elements?

Theoretical: Discrete Exterior Calculus considerations



- Applied: A new approach to longstanding meshing problems
  - Sliver removal by local remeshing



Canonical adaptive meshing elements



Practical: Generic approach to coding would encompass old and new methods.

### Overview of Approach

linear elements:  $\{\lambda_i\}$  = (triangular) barycentric coordinates



linear elements:  $\{\lambda_i\}$  = *generalized* barycentric coordinates

### Table of Contents

- Types of Generalized Barycentric Coordinates
- 2 Linear Elements
- Quadratic 'Serendipity' Elements
- Vector Elements

### Outline

- Types of Generalized Barycentric Coordinates
- 2 Linear Elements
- Quadratic 'Serendipity' Elements
- 4 Vector Elements

### **Definition**

Let  $\Omega$  be a convex polygon in  $\mathbb{R}^2$  with vertices  $\mathbf{v}_1, \dots, \mathbf{v}_n$ . Functions  $\lambda_i : \Omega \to \mathbb{R}$ ,  $i = 1, \dots, n$  are called **barycentric coordinates** on  $\Omega$  if they satisfy two properties:

- **1** Non-negative:  $\lambda_i \geq 0$  on  $\Omega$ .
- **2** Linear Completeness: For any linear function  $L: \Omega \to \mathbb{R}$ ,  $L = \sum_{i=1}^{n} L(\mathbf{v}_i)\lambda_i$ .

Any set of barycentric coordinates under this definition also satisfies:

- **3** Partition of unity:  $\sum_{i=1}^{n} \lambda_i \equiv 1$ .
- **1** Linear precision:  $\sum_{i=1}^{n} \mathbf{v}_i \lambda_i(\mathbf{x}) = \mathbf{x}$ .
- **1 Interpolation:**  $\lambda_i(\mathbf{v}_j) = \delta_{ij}$ .

### Theorem [Warren, 2003]

If the  $\lambda_i$  are rational functions of degree n-2, then they are unique.

# Many generalizations to choose from ....

- Wachspress
  - ⇒ WACHSPRESS, A Rational Finite Element Basis, 1975.
- Sibson
  - ⇒ SIBSON, A vector identity for the Dirichlet tessellation, 1980.
- Harmonic
  - ⇒ WARREN, Barycentric coordinates for convex polytopes, 1996.
  - ⇒ WARREN, SCHAEFER, HIRANI, DESBRUN,

    Barycentric coordinates for convex sets, 2007.
- Mean value
  - ⇒ FLOATER, Mean value coordinates, 2003.
  - ⇒ FLOATER, KÓS, REIMERS, *Mean value coordinates in 3D*, 2005.

Many more in graphics contexts...

# **Triangulation Coordinates**

Let  $\mathcal{T}$  be a triangulation of  $\Omega$  formed by adding edges between the  $\mathbf{v}_j$  in some fashion. Define

$$\lambda_{i,\mathcal{T}}^{Tri}:\Omega o\mathbb{R}$$

to be the barycentric function associated to  $\mathbf{v}_i$  on triangles in  $\mathcal{T}$  containing  $\mathbf{v}_i$  and identically 0 otherwise. Trivially, these are barycentric coordinates on  $\Omega$ .





### Theorem [Floater, Hormann, Kós, 2006]

For a fixed i, let  $\mathcal{T}_m$  denote any triangulation with an edge between  $\mathbf{v}_{i-1}$  and  $\mathbf{v}_{i+1}$ . Let  $\mathcal{T}_M$  denote the triangulation formed by connecting  $\mathbf{v}_i$  to all the other  $\mathbf{v}_j$ . Any barycentric coordinate function  $\lambda_i$  satisfies the bounds

$$0 \leq \lambda_{i,\mathcal{T}_{m}}^{Tri}(\boldsymbol{x}) \leq \lambda_{i}(\boldsymbol{x}) \leq \lambda_{i,\mathcal{T}_{M}}^{Tri}(\boldsymbol{x}) \leq 1, \quad \forall \boldsymbol{x} \in \Omega.$$

### Harmonic Coordinates

Let  $g_i: \partial\Omega \to \mathbb{R}$  be the piecewise linear function satisfying

$$g_i(\mathbf{v}_j) = \delta_{ij}, \quad g_i \text{ linear on each edge of } \Omega.$$

The **harmonic coordinate** function  $\lambda_i^{\text{Har}}$  is defined to be the solution of Laplace's equations with  $g_i$  as boundary data,

$$\left\{ \begin{array}{ccc} \Delta \left( \lambda_i^{\rm Har} \right) & = & 0, & \text{on } \Omega, \\ \lambda_i^{\rm Har} & = & g_i. & \text{on } \partial \Omega. \end{array} \right.$$

These coordinates are **optimal** in the sense that they minimize the norm of the gradient over all functions satisfying the boundary conditions:

$$\lambda_i^{\mathrm{Har}} = \operatorname{argmin} \left\{ |\lambda|_{H^1(\Omega)} \, : \, \lambda = g_i \, \mathsf{on} \, \, \partial \Omega 
ight\}.$$

### Wachspress Coordinates

Let  $\mathbf{x} \in \Omega$  and define  $A_i(\mathbf{x})$  and  $B_i$  as the areas shown.





Define the Wachspress weight function as

$$w_i^{\mathrm{Wach}}(\mathbf{x}) = B_i \prod_{j \neq i, i-1} A_j(\mathbf{x}).$$

The Wachspress coordinates are then given by the rational functions

$$\lambda_i^{\mathrm{Wach}}(\mathbf{x}) = \frac{w_i^{\mathrm{Wach}}(\mathbf{x})}{\sum_{j=1}^n w_j^{\mathrm{Wach}}(\mathbf{x})}$$

# Sibson (Natural Neighbor) Coordinates

Let P denote the set of vertices  $\{\mathbf{v}_i\}$  and define  $P' = P \cup \{\mathbf{x}\}$ .



$$C_i := |V_P(\mathbf{v}_i)| = |\{\mathbf{y} \in \Omega : |\mathbf{y} - \mathbf{v}_i| < |\mathbf{y} - \mathbf{v}_j|, \forall j \neq i\}|$$
  
= area of cell for  $\mathbf{v}_i$  in Voronoi diagram on the points of  $P$ ,

$$\begin{array}{lcl} D(\mathbf{x}) & := & |V_{P'}(\mathbf{x})| & = & |\{\mathbf{y} \in \Omega : |\mathbf{y} - \mathbf{x}| < |\mathbf{y} - \mathbf{v}_i| \;, \; \forall i\}| \\ & = & \text{area of cell for } \mathbf{x} \text{ in Voronoi diagram on the points of } P'. \end{array}$$

By a slight abuse of notation, we also define

$$D(\mathbf{x}) \cap C_i := |V_{P'}(\mathbf{x}) \cap V_P(\mathbf{v}_i)|.$$

The Sibson coordinates are defined to be

$$\lambda_i^{\mathrm{Sibs}}(\mathbf{x}) := \frac{D(\mathbf{x}) \cap C_i}{D(\mathbf{x})} \qquad \text{ or, equivalently, } \qquad \lambda_i^{\mathrm{Sibs}}(\mathbf{x}) = \frac{D(\mathbf{x}) \cap C_i}{\sum_{j=1}^n D_j(\mathbf{x}) \cap C_j}.$$

### Outline

- Types of Generalized Barycentric Coordinates
- 2 Linear Elements
- Quadratic 'Serendipity' Elements
- 4 Vector Elements

# Optimal Convergence Estimates on Polygons

Let  $\Omega$  be a convex polygon with vertices  $\mathbf{v}_1, \dots, \mathbf{v}_n$ .

For linear elements, an optimal convergence estimate has the form

$$\underbrace{\left\| u - \sum_{i=1}^{n} u(\mathbf{v}_{i}) \lambda_{i} \right\|_{H^{1}(\Omega)}}_{\text{approximation error}} \leq \underbrace{C \operatorname{diam}(\Omega) |u|_{H^{2}(\Omega)}}_{\text{optimal error bound}}, \quad \forall u \in H^{2}(\Omega). \tag{1}$$

The **Bramble-Hilbert lemma** in this context says that any  $u \in H^2(\Omega)$  is close to a first order polynomial in  $H^1$  norm.

VERFÜRTH, A note on polynomial approximation in Sobolev spaces, Math. Mod. Num. An., 2008. DEKEL, LEVIATAN, The Bramble-Hilbert lemma for convex domains, SIAM J. Math. An., 2004.

For (1), it suffices to prove an  $H^1$ -interpolant estimate over domains of diameter one:

$$\left\| \left\| \sum_{i=1}^n u(\mathbf{v}_i) \lambda_i \right\|_{H^1(\Omega)} \le C_I \|u\|_{H^2(\Omega)}, \quad \forall u \in H^1(\Omega).$$
 (2)

For (2), it suffices to **bound the gradients** of the  $\{\lambda_i\}$ , i.e. prove  $\exists C_{\lambda} \in \mathbb{R}$  such that

$$||\nabla \lambda_i||_{L^2(\Omega)} \le C_{\lambda}. \tag{3}$$

# Geometric Hypotheses for Convergence Estimates

To bound the gradients of the coordinates, we need estimates of the geometry.



Let  $\rho(\Omega)$  denote the radius of the largest inscribed circle. The **aspect ratio**  $\gamma$  is defined by

$$\gamma = \frac{\mathsf{diam}(\Omega)}{\rho(\Omega)} \in (2,\infty)$$



Three possible geometric conditions on a polygonal mesh

• G1. Bounded aspect ratio: There exists  $\gamma^* < \infty$  such that

$$\gamma < \gamma^*$$

• **G2.** *Minimum edge length:* There exists  $d_* > 0$  such that

$$|\mathbf{v}_{i} - \mathbf{v}_{i-1}| > d_{*}$$

• G3. *Maximum interior angle:* There exists  $\beta^* < \pi$  such that

$$\beta_i < \beta^*$$

# Summary of convergence results

#### Theorem

In the table below, any necessary geometric criteria to achieve the optimal convergence estimate are denoted by N. The set of geometric criteria denoted by S in each row are sufficient to guarantee estimate.

GILLETTE, RAND, BAJAJ *Error Estimates for Generalized Barycentric Interpolation*, Advances in Computational Mathematics, accepted, 2011.

|              |                        | G1           | G2        | G3        |
|--------------|------------------------|--------------|-----------|-----------|
|              |                        | aspect ratio | min. edge | max angle |
| Triangulated | $\lambda^{	ext{Tri}}$  | -            | -         | S,N       |
| Wachspress   | $\lambda^{	ext{Wach}}$ | S            | S         | S,N       |
| Sibson       | $\lambda^{ m Sibs}$    | S            | S         | -         |
| Harmonic     | $\lambda^{ m Har}$     | S            | -         | -         |
|              |                        |              |           |           |

# Implication of convergence results



### Outline

- Types of Generalized Barycentric Coordinates
- 2 Linear Elements
- Quadratic 'Serendipity' Elements
- 4 Vector Elements

### From linear to quadratic elements

A naïve quadratic element is formed by products of linear element basis functions:



$$\{\lambda_i\}$$
 — pairwise  $\rightarrow$   $\{\lambda_a\lambda_b\}$ 



Why is this naïve?

- For an *n*-gon, this construction gives  $n + \binom{n}{2}$  basis functions  $\lambda_a \lambda_b$
- The space of quadratic polynomials is only dimension 6:  $\{1, x, y, xy, x^2, y^2\}$
- Conforming to a linear function on the boundary requires 2 degrees of freedom per edge ⇒ only 2n functions needed!

#### **Problem Statement**

Construct 2n basis functions associated to the vertices and edge midpoints of an arbitrary n-gon such that a quadratic convergence estimate is obtained.

# Prior work - Quadrilateral serendipity elements



For quadrilaterals, the 'serendipity' element for **rectangles** has long been known to provide quadratic convergence.

STRANG, FIX, An analysis of the finite element method, 1973. HUGHES, The finite element method, 1987.

The technique works more generally for **affine** mappings of the reference element to a physical element ('affine' = preserves collinearity and ratios of distances)





For **non-affine** meshes of quadrilaterals, however, the serendipity construction is known to provide sub-optimal convergence.

ARNOLD, BOFFI, FALK, *Approximation by Quadrilateral Finite Elements*, Mathematics of Computation, 2002.

# Failure for non-affine reference element mappings

| Mapped | biquadratic | elements |
|--------|-------------|----------|
|--------|-------------|----------|

|                               | square mesnes                                                  |                                                    |                                 |                                                                |                                                     | trapezoidai mesnes              |                                 |                                                    |                                 |                                                                |                                                      |                                 |
|-------------------------------|----------------------------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------------------|------------------------------------------------------|---------------------------------|
|                               | $\ u-u_h\ _{L^2}$                                              |                                                    |                                 | $\left\   abla (u-u_h)  ight\ _{L^2}$                          |                                                     |                                 | $\left\ u-u_{h} ight\ _{L^{2}}$ |                                                    |                                 | $\left\  \nabla (u - u_h) \right\ _{L^2}$                      |                                                      |                                 |
| n                             | err.                                                           | %                                                  | rate                            | err.                                                           | %                                                   | rate                            | err.                            | %                                                  | rate                            | err.                                                           | %                                                    | rate                            |
| 2<br>4<br>8<br>16<br>32<br>64 | 3.5e-02<br>4.4e-03<br>5.5e-04<br>6.9e-05<br>8.6e-06<br>1.1e-06 | 2.877<br>0.360<br>0.045<br>0.006<br>0.001<br>0.000 | 3.0<br>3.0<br>3.0<br>3.0<br>3.0 | 4.5e-01<br>1.1e-01<br>2.8e-02<br>7.1e-03<br>1.8e-03<br>4.4e-04 | 37.253<br>9.333<br>2.329<br>0.583<br>0.146<br>0.036 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 7.1e-04<br>8.7e-05<br>1.1e-05   | 3.951<br>0.475<br>0.058<br>0.007<br>0.001<br>0.000 | 3.1<br>3.0<br>3.0<br>3.0<br>3.0 | 5.9e-01<br>1.5e-01<br>3.7e-02<br>9.2e-03<br>2.3e-03<br>5.7e-04 | 48.576<br>12.082<br>3.017<br>0.753<br>0.188<br>0.047 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0 |

#### Serendipity elements

|                               | square meshes                                                  |                                                    |                                 |                                     |                                                     | trapezoidal meshes              |                                                                |                                                    |                                 |                                                                |                                                      |                          |
|-------------------------------|----------------------------------------------------------------|----------------------------------------------------|---------------------------------|-------------------------------------|-----------------------------------------------------|---------------------------------|----------------------------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------------------|
|                               |                                                                |                                                    |                                 | $\ u-u_h\ _{L^2}$ $\ u-u_h\ _{L^2}$ |                                                     |                                 |                                                                | $\ \nabla(u-u_h)\ _{L^2}$                          |                                 |                                                                |                                                      |                          |
| n                             | err.                                                           | %                                                  | $_{\rm rate}$                   | err.                                | %                                                   | $_{\rm rate}$                   | err.                                                           | %                                                  | $_{\mathrm{rate}}$              | err.                                                           | %                                                    | $_{\mathrm{rate}}$       |
| 2<br>4<br>8<br>16<br>32<br>64 | 3.5e-02<br>4.4e-03<br>5.5e-04<br>6.9e-05<br>8.6e-06<br>1.1e-06 | 2.877<br>0.360<br>0.045<br>0.006<br>0.001<br>0.000 | 3.0<br>3.0<br>3.0<br>3.0<br>3.0 | 2.8e - 02                           | 37.252<br>9.333<br>2.329<br>0.583<br>0.146<br>0.036 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 5.0e-02<br>6.7e-03<br>9.7e-04<br>1.6e-04<br>3.3e-05<br>7.4e-06 | 4.066<br>0.548<br>0.080<br>0.013<br>0.003<br>0.001 | 2.9<br>2.8<br>2.6<br>2.3<br>2.1 | 6.2e-01<br>1.8e-01<br>5.9e-02<br>2.3e-02<br>1.0e-02<br>4.9e-03 | 51.214<br>14.718<br>4.836<br>1.890<br>0.842<br>0.401 | 1.8<br>1.6<br>1.4<br>1.2 |

ARNOLD, BOFFI, FALK, Approximation by Quadrilateral Finite Elements, 2002.

### Generalized barycentric quadrilateral elements

- Generalized barycentric coordinates allow for a quadratic serendipity construction on any quadrilateral.
- Since the analysis holds for affine mappings, these serve as reference elements for a wider range of quadrilaterals.
- The trapezoidal meshes satisfy the geometry bounds and hence we can recover the optimal convergence rate.

|     | u-u     | $_h  _{L^2}$ | $  \nabla (u-u_h)  _{L^2}$ |      |  |
|-----|---------|--------------|----------------------------|------|--|
| n   | error   | rate         | error                      | rate |  |
| 2   | 2.34e-3 |              | 2.22e-2                    |      |  |
| 4   | 3.03e-4 | 2.95         | 6.10e-3                    | 1.87 |  |
| 8   | 3.87e-5 | 2.97         | 1.59e-3                    | 1.94 |  |
| 16  | 4.88e-6 | 2.99         | 4.04e-4                    | 1.97 |  |
| 32  | 6.13e-7 | 3.00         | 1.02e-4                    | 1.99 |  |
| 64  | 7.67e-8 | 3.00         | 2.56e-5                    | 1.99 |  |
| 128 | 9.59e-9 | 3.00         | 6.40e-6                    | 2.00 |  |
| 256 | 1.20e-9 | 3.00         | 1.64e-6                    | 1.96 |  |

RAND, GILLETTE, BAJAJ Quadratic Serendipity Finite Element on Polygons Using Generalized Barycentric Coordinates, Submitted, 2011

# Polygonal Quadratic Serendipity Elements

We define matrices  $\mathbb A$  and  $\mathbb B$  to reduce the naïve quadratic basis.

**filled dot** = Lagrangian domain point

= all functions in the set evaluate to 0

except the associated function which evaluates to 1

**open dot** = non-Lagrangian domain point

= partition of unity satisfied, but not Lagrange property



# From quadratic to serendipity

Serendipity basis functions  $\xi_{ij}$  are constructed as a linear combination of pairwise product functions  $\mu_{ab}$ :

$$[\xi_{ij}] = \mathbb{A} \left[ \underbrace{\frac{\mu_{aa}}{\mu_{a(a+1)}}}_{\mu_{ab}} \right] = \left[ \mathbb{I} \ \ c_{ab}^{ij} \right] \left[ \underbrace{\frac{\mu_{aa}}{\mu_{a(a+1)}}}_{\mu_{ab}} \right]$$

The quadratic basis is ordered as follows:

 $\mu_{aa}=$  basis functions associated with vertices  $\mu_{a(a+1)}=$  basis functions associated with edge midpoints  $\mu_{ab}=$  basis functions associated with interior diagonals, i.e.  $b\notin\{a-1,a,a+1\}$ 

- The first two types are left alone, resulting in the identify matrix above.
- The  $c_{ab}^{ij}$  values define how the interior basis functions are added into the boundary basis functions.

# From quadratic to serendipity

We require the serendipity basis to have quadratic approximation power:

- Constant precision (CP):  $\sum_i \xi_{ii} + 2\xi_{i(i+1)} = 1$ .
- Linear precision (LP):  $\sum_{i} \mathbf{v}_{i} \xi_{ii} + 2 \mathbf{v}_{i(i+1)} \xi_{i(i+1)} = \mathbf{x}.$
- Quadratic precision (QP):  $\sum_i \mathbf{v}_i \mathbf{v}_i^T \xi_{ii} + (\mathbf{v}_i \mathbf{v}_{i+1}^T + \mathbf{v}_{i+1} \mathbf{v}_i^T) \xi_{i(i+1)} = \mathbf{x} \mathbf{x}^T.$



- Six constraints (CP, LP, QP)  $\Rightarrow$  six non-zero  $c_{ab}^{ij}$  per column.
- We select (arbitrarily) that  $\mu_{ab}$  contributes to  $\xi_{a,a}$ ,  $\xi_{b,b}$ , and their neighbors.

#### **Theorem**

Constants  $\{c_{ij}^{ab}\}$  exist for any convex polygon such that the resulting basis  $\{\xi_{ij}\}$  satisfies the CP, LP, and QP requirements.

# Pairwise products vs. Lagrange basis

Pairwise products of barycentric functions do not form a Lagrange basis at interior degrees of freedom:



Translation between these two bases is straightforward and generalizes to the higher dimensional case...

# From serendipity to Lagrange



### Serendipity Theorem



#### Theorem

Given bounds on polygon aspect ratio (G1), minimum edge length (G2), and maximum interior angles (G3):

- ||A|| is uniformly bounded,
- ||B|| is uniformly bounded, and
- The basis  $\{\psi_{ij}\}$  interpolates smooth data with  $O(h^2)$  error.

RAND, GILLETTE, BAJAJ Quadratic Serendipity Finite Element on Polygons Using Generalized Barycentric Coordinates, Submitted, 2011

### Outline

- Types of Generalized Barycentric Coordinates
- Linear Elements
- Quadratic 'Serendipity' Elements
- 4 Vector Elements

### From scalar to vector elements

Barycentric functions are used to define H(curl) vector elements on triangles:



$$\{\lambda_i\} \xrightarrow{\quad \text{Whitney} \quad} \{\lambda_a \nabla \lambda_b - \lambda_b \nabla \lambda_a\}$$



Generalized barycentric functions provide H(curl) elements on polygons:



$$\{\lambda_i\} \xrightarrow{\quad \text{Whitney} \quad} \{\lambda_a \nabla \lambda_b - \lambda_b \nabla \lambda_a\}$$



This idea fits naturally into the framework of **Discrete Exterior Calculus** and suggests a wide range of applications.

GILLETTE, BAJAJ Dual Formulations of Mixed Finite Element Methods with Applications Computer-Aided Design 43:10, pages 1213-1221, 2011.

# Conformity and interpolation properties

**Conformity:** The basis functions  $\{\lambda_i \nabla \lambda_i - \lambda_j \nabla \lambda_i\}$  interpolate an H(curl) function.

Let  $T_E \vec{v}$  denote the tangential projection of  $\vec{v}$  to an edge E.



$$\begin{split} H(\operatorname{curl}\,) &:= \left\{ \vec{v} \in \left( L^2(\Omega) \right)^3 \quad \text{s.t.} \quad \nabla \times \vec{v} \in \left( L^2(\Omega) \right)^3 \right\} \\ \vec{v} \in H(\operatorname{curl}\,) &\iff T_E \vec{v} \in C^0, \quad \forall \text{ edges } E \text{ in mesh} \\ \lambda_k &\equiv 0 \quad \text{on } E \not\ni v_k \\ & \therefore \nabla \lambda_k \perp E \quad \text{on } E \not\ni v_k \\ & \therefore T_E(\lambda_i \nabla \lambda_i) \neq 0 \iff \mathbf{v}_i, \mathbf{v}_i \in E \end{split}$$

**Interpolation:** The basis functions are Lagrange-like for edge integrals.

$$\begin{split} T_{\vec{e_{ij}}}(\nabla \lambda_i) &= \frac{1}{|e_{ij}|}, \quad \text{since the } \lambda_i \text{ are linear on edges.} \\ \int_{e_{ii}} (\lambda_i \nabla \lambda_j - \lambda_j \nabla \lambda_i) \cdot \vec{e_{ij}} &= \frac{1}{|e_{ij}|} \int_{e_{ii}} \lambda_i + \lambda_j &= \frac{1}{|e_{ij}|} \int_{e_{ii}} 1 = 1. \end{split}$$

### **Future directions**

### Future work and open problems

- Extension to 3D generalized barycentric functions.
- Extension to 3D vector interpolation functions on polytopes.
- Implementation in a finite element solver for comparison studies.

### Questions?



Slides and pre-prints available at http://ccom.ucsd.edu/~agillette