EE24BTECH11012 - Bhavanisankar G S

QUESTION

Find the area of the region bounded by the curves $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

SOLUTION

FUNCTION	FORM
$g(\mathbf{x})$	$\mathbf{x}^T V \mathbf{x} + 2\mathbf{u}^T$
The points of intersection of the line L	L: x = h +
with the conic section as above are given by $x_i = \mathbf{h} + \kappa_i \mathbf{m}$	
	$\kappa_i = \frac{1}{\mathbf{m}^{\mathrm{T}} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{\mathrm{T}} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \pm \sqrt{1} \right)$

TABLE 0: Formulae Used

Substituting the given values, we have

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \tag{0.1}$$

$$\mathbf{u} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{0.2}$$

$$f = 0 \tag{0.3}$$

(0.4)

Substituting the values, we get the point of intersection as

$$\kappa_i = -\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0+0 \\ 2+-2 \end{pmatrix} \pm \sqrt{\left[\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0+0 \\ 2+-2 \end{pmatrix} \right]^2 + 4(1)}$$
 (0.5)

$$\kappa_i = 2\sqrt{2} \tag{0.6}$$

(0.7)

Hence, the point of intersection is $\begin{pmatrix} 2\sqrt{2} \\ 2 \end{pmatrix}$

Similarly, the other point is given by $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$.

The area bounded by the curve and the line is

$$\int_{2}^{4} (2\sqrt{y}) \, dy = \frac{4}{3} \left(8 - 2\sqrt{2} \right)$$

$$= \frac{\left(32 - 8\sqrt{2} \right)}{3}$$
(0.8)

$$=\frac{(32-8\sqrt{2})}{3}\tag{0.9}$$

(0.10)

Hence the required area is $\frac{32-8\sqrt{2}}{3}$.

Fig. 0.1: A plot of the given question.