1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Системы обработки информации и управления (ИУ 5)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

НА ТЕМУ: Прогнозирование рака молочной железы					
СтудентИУ5-63Б		С. А. Некрасов			
(Группа)	(Подпись, дата)	(И.О.Фамилия)			
Руководитель		Ю. Е. Гапанюк			
	(Подпись, дата)	(И.О.Фамилия)			
Консультант					
	(Подпись, дата)	(И.О.Фамилия)			

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ	
	Заведующий	кафедрой
	·	(Индекс)
	«»	(И.О.Фамилия) г.
ЗАДА на выполнение научно-и	АНИЕ исследовательской работ	ъ
по темеПрогнозирование рака молочн	ной железы	
Некрасов Сергей Андреевич		
(Фамилия, и	имя, отчество)	
Направленность НИР (учебная, исследователь	ская, практическая, произ	водственная, др.)
учебная		
Источник тематики (кафедра, предприятие, Н	ИР)кафедра	
График выполнения НИР: 25% кнед., 5	0% кнед., 75% кн	ед., 100% кнед.
Техническое задание решить задачу б дисциплины по выбранной предметной област		
Оформление научно-исследовательской рабо		
Расчетно-пояснительная записка на 31 листе ф Перечень графического (иллюстративного) ма	-	ы, слайды и т.п.)
Дата выдачи задания « _15_ »февраля20	023 г.	
Руководитель НИР		Ю. Е. Гапанюк
Студент	(Подпись, дата)	(И.О.Фамилия) C. А. Некрасов
	(Подпись, дата)	(И.О.Фамилия)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре

Оглавление

Введение2
Задание 3
Описание датасета4
Импорт библиотек 4
Загрузка данных4
Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных5
Построение графиков для понимания структуры данных6
Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения18
Выбор метрик для последующей оценки качества моделей19
Сохранение и визуализация метрик20
Выбор наиболее подходящих моделей для решения задачиклассификации или регрессии20
Формирование обучающей и тестовой выборок на основеисходного набора данных
Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки
Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс- валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы
Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей скачеством baseline-моделей26
Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпараметров на качество моделей и т.д
3аключение29
Список использованных источников информации

Введение

В данном курсовом проекте предстоит выполнить типовую задачу машинного обучения - провести анализ данных, провести некоторые операции с датасетом, подобрать модели, а также подобрать наиболее подходящие гиперпараметры выбранных моделей. Машинное обучение очень актуально в современном мире, оно используется практически во многих сферах. Программист должен подбирать подходящие технологии машинного обучения для достижения наилучших результатов. Чему мы и научимся в этом курсовом проекте. Попробуем не менее пяти видов различных моделей и подберем наилучшую из них на основе выбранных метрик. Также построим вспомогательные графики, которые помогут нам визуально взглянуть на все необходимые показатели.

Задание

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

Описание датасета

Ссылка на датасет: https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset

- 1. id: уникальный идентификатор.
- 2. diagnosis: M злокачественная B доброкачественная (целевой признак).
- 3. radius_mean: радиус долей.
- 4. texture_mean: среднее значение текстуры поверхности.
- 5. perimeter_mean: внешний периметр долей.
- 6. area_mean: средняя площадь долей.
- 7. smoothness_mean: среднее значение уровней гладкости.
- 8. compactness_mean: среднее значение компактности.
- 9. concavity_mean: среднее значение вогнутости.
- 10. concave points_mean: среднее значение вогнутых точек.
- 11. symmetry_mean: среднее значение симметрии.
- 12. fractal_dimension_mean: среднее значение фрактальной размерности.

Использовать будем только вышеперечисленные столбцы.

Импорт библиотек

```
In [86]: import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import random
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.linear_model import LinearRegression, LogisticRegression
         from sklearn.model_selection import train_test_split
         from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
         from sklearn.metrics import accuracy_score, balanced_accuracy_score
         from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import plot_confusion_matrix
         from sklearn.model_selection import GridSearchCV
         from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, median_absolute_error, r2_score
         from sklearn.metrics import roc_curve, roc_auc_score
         from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSVR
         from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz
         from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
         from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor
         from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
         from sklearn.preprocessing import LabelEncoder
         %matplotlib inline
         sns.set(style="ticks")
         import warnings
         warnings.filterwarnings('ignore')
```

Загрузка данных

```
In [87]: #first_data = pd.read_csv('healthcare-dataset-stroke-data.csv')
first_data = pd.read_csv('datasets/breast-cancer.csv')

In [88]: # Удалим дубликаты записей, если они присутствуют
data = first_data.drop_duplicates()
# Также удалим ненужный столбеи-идентификатор
data = data.drop(columns=['id'], axis=1)
# Оставим только медианные значения
data = data.loc[;, 'diagnosis':'fractal_dimension_mean']
```

Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.

Построение графиков для понимания структуры данных

Out[95]: <seaborn.axisgrid.PairGrid at 0x7f8fcba43970>


```
In [96]: # Убедимся, что целевой признак
              # для задачи бинарной классификации содержит только 0 и 1
             data['diagnosis'].unique()
   Out[96]: array(['M', 'B'], dtype=object)
   In [97]: diagnosis = LabelEncoder()
             code_diagnosis = diagnosis.fit_transform(data["diagnosis"])
data["diagnosis"] = code_diagnosis
data = data.astype({"diagnosis":"int64"})
             np.unique(code_diagnosis)
   Out[97]: array([0, 1])
   In [98]: data['diagnosis'].unique()
   Out[98]: array([1, 0])
 In [99]: # Оценим дисбаланс классов для stroke
           fig, ax = plt.subplots(figsize=(2,2))
           plt.hist(data['diagnosis'])
           plt.show()
            300
            200
            100
                0.0
In [100]: data['diagnosis'].value_counts()
Out[100]: 0
                357
                212
           Name: diagnosis, dtype: int64
In [101]: # посчитаем дисбаланс классов
           total = data.shape[0]
           class_0, class_1 = data['diagnosis'].value_counts()
           Класс 0 составляет 62.7399999999995%, а класс 1 составляет 37.26%.
           Присутствует незначительный дисбаланс классов.
In [104]: def upsample(features, target, repeat):
    features_zeros = features[target == 0]
    features_ones = features[target == 1]
    target_zeros = target[target == 0]
    target_ones = target[target == 1]
               features_upsampled = pd.concat([features_zeros] + [features_ones] * repeat)
               target_upsampled = pd.concat([target_zeros] + [target_ones] * repeat)
               return features_upsampled, target_upsampled
In [105]: # Скрипичные диаграммы для числовых колонок
           sns.violinplot(x=data[col])
```

plt.show()

Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.

```
In [106]: data.dtypes
Out[106]: diagnosis
                                      int64
                                     float64
          radius_mean
                                     float64
          texture mean
          perimeter_mean
                                     float64
                                     float64
          area mean
          smoothness mean
                                     float64
          compactness_mean
                                    float64
          concavity mean
                                     float64
          concave points mean
                                     float64
           symmetry_mean
                                     float64
          fractal_dimension_mean
                                    float64
          dtype: object
```

Категориальный признак "diagnosis" был закодирован ранее, другие категориальные признаки отсутствуют.

```
In [107]: # Числовые колонки для масштабирования
           In [108]: sc1 = MinMaxScaler()
           sc1_data = sc1.fit_transform(data[scale_cols])
In [109]: # Добавим масштабированные данные в набор данных
           for i in range(len(scale_cols)):
               col = scale cols[i]
new_col_name = col + '_scaled'
data[new_col_name] = sc1_data[:,i]
In [110]: data.head()
Out[110]:
               diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean points_mean points_mean
                                                                                                                                         symmetry_mean
                              17.99
                                            10.38
                                                          122.80
                                                                                     0.11840
                                                                                                       0.27760
                                                                                                                       0.3001
                                                                                                                                                  0.2419
                                                                    1001.0
                                                                                                                                  0.14710
                               20.57
                                            17.77
                                                          132.90
                                                                     1326.0
                                                                                                       0.07864
                                                                                                                       0.0869
                                                                                                                                  0.07017
                                                                                                                                                  0.1812
            1
                                                                                     0.08474
                              19.69
            2
                                           21.25
                                                          130.00
                                                                    1203.0
                                                                                     0.10960
                                                                                                      0.15990
                                                                                                                      0.1974
                                                                                                                                  0.12790
                                                                                                                                                  0.2069
            3
                               11 42
                                            20.38
                                                          77 58
                                                                     386.1
                                                                                     0.14250
                                                                                                       0.28390
                                                                                                                       0 2414
                                                                                                                                  0.10520
                                                                                                                                                  0.2597
                               20.29
                                            14.34
                                                          135.10
                                                                     1297.0
                                                                                     0.10030
                                                                                                       0.13280
                                                                                                                       0.1980
                                                                                                                                  0.10430
                                                                                                                                                  0.1809
           5 rows × 21 columns
In [111]: # Проверим, что масштабирование не повлияло на распределение данных for col in scale_cols:
                col_scaled = col + '_scaled'
                fig, ax = plt.subplots(1, 2, figsize=(8,3))
                ax[0].hist(data[col], 50)
ax[1].hist(data[col_scaled], 50)
                ax[0].title.set_text(col)
                ax[1].title.set_text(col_scaled)
                plt.show()
```


Проведение корреляционного анализа данных. Формированиепромежуточных выводов о возможности построения моделей машинного обучения.

```
In [112]: # Воспользуемся наличием тестовых выборок,
             # включив их в корреляционную матрицу
            corr_cols_1 = scale_cols + ['diagnosis']
            corr_cols_1
Out[112]: ['radius_mean',
'texture_mean'
              'perimeter_mean',
              'area mean',
              'smoothness mean'
              'compactness mean',
              'concavity mean',
              'concave points_mean',
              'symmetry_mean',
              'fractal dimension mean',
              'diagnosis']
In [113]: scale_cols_postfix = [x+'_scaled' for x in scale_cols]
            corr_cols_2 = scale_cols_postfix + ['diagnosis']
            corr_cols_2
Out[113]: ['radius_mean_scaled'
               texture mean scaled
              'perimeter_mean_scaled',
'area_mean_scaled',
               'smoothness_mean_scaled'
              'compactness_mean_scaled',
              'concavity_mean_scaled',
              'concave points_mean_scaled',
              'symmetry_mean_scaled',
'fractal_dimension_mean_scaled',
              'diagnosis']
In [114]: fig, ax = plt.subplots(figsize=(10,5))
             sns.heatmap(data[corr_cols_1].corr(), annot=True, fmt='.2f')
             ax.set_title('Исходные данные (до масштабирования)')
            plt.show()
                                              Исходные данные (до масштабирования)
                                                                                                                      - 1.0
               radius mean - 1.00
                                              1.00
                                                     0.99
                                                                                  0.82
                                                                                                -0.31
                                                                                                        0.73
              texture_mean - 0.32
                                      1.00
                                                           -0.02
                                                                                         0.07
                                                                                                -0.08
                                                                                                                     - 0.8
           perimeter_mean - 1.00
                                             1.00
                                                     0.99
                                                                                  0.85
                                                                                               -0.26
                                                                                                        0.74
                                                                           0.72
                                                                                         0.18
                 area_mean - 0.99
                                             0.99
                                                     1.00
                                                                                  0.82
                                                                                                -0.28
                                                                                                        0.71
                                                                                                                     -0.6
                                      -0.02
                                                           1.00
         smoothness mean - 0.17
                                                                                                                      - 0.4
        compactness_mean -
                                                                   1.00
                                                                           0.88
                                                                                  0.83
                                             0.72
                                                                   0.88
                                                                          1.00
                                                                                  0.92
                                                                                                0.34
            concavity mean -
                                                                                                                      - 0.2
                                             0.85
      concave points mean -
                              0.82
                                                     0.82
                                                                   0.83
                                                                           0.92
                                                                                  1.00
                                                                                                        0.78
                                                                                                                      - 0.0
           symmetry mean - 0.15
                                                                                         1.00
                              -0.31
                                             -0.26
                                                    -0.28
                                                                                                        -0.01
    fractal dimension mean -
                                      -0.08
                                                                                                1.00
                                                                                               -0.01
                                                                                                       1.00
                  diagnosis -
                              0.73
                                                     0.71
                                                                                   concave points mean
                                                              smoothness mean
                                                                    compactness mean
                                                                            concavity mean
                                 radius mean
                                       bexture mean
                                               perimeter mean
                                                                                          symmetry mean
                                                                                                  fractal_dimension_mean
                                                                                                         diagnosis
```


На основе корреляционной матрицы можно сделать следующие выводы: Корреляционные матрицы для исходных и масштабированных данных совпадают.

Целевой признак классификации "diagnosis" наиболее сильно коррелирует с radius_mean (0.73), perimeter_mean (0.74) и concave points_mean (0.78). Эти признаки обязательно следует оставить в модели классификации.

Выбор метрик для последующей оценки качества моделей.

В качестве метрик для решения задачи классификации будем использовать: Метрики, формируемые на основе матрицы ошибок:

Метрика precision: Доля верно предсказанных классификатором положительных объектов, из всех объектов, которые классификатор верно или неверно определил как положительные.

Метрика recall (полнота): Доля верно предсказанных классификатором положительных объектов, из всех действительно положительных объектов.

Метрика F1-мера: Для того, чтобы объединить precision и recall в единую метрику используется $F\beta$ -мера, которая вычисляется как среднее гармоническое от precision и recall:

Метрика ROC AUC:

Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика.

Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

В качестве количественной метрики используется площадь под кривой - ROC AUC (Area Under the Receiver Operating Characteristic Curve). Чем ниже проходит кривая тем меньше ее площадь и тем хуже качество

классификатора.

Для получения ROC AUC используется функция roc_auc_score.

Сохранение и визуализация метрик

Разработаем класс, который позволит сохранять метрики качества построенных моделей и реализует визуализацию метрик качества.

```
In [116]: class MetricLogger:
                     __init__(self):
self.df = pd.DataFrame(
                def
                        {'metric': pd.Series([], dtype='str'),
                          'alg': pd.Series([], dtype='str'),
'value': pd.Series([], dtype='float')})
                def add(self, metric, alg, value):
                     Добавление значения
                    # Удаление значения если оно уже было ранее добавлено self.df.drop(self.df['metric']==metric)&(self.df['alg']==alg)].index, inplace = True)
                     # Добавление нового значения
                     temp = [{'metric':metric, 'alg':alg, 'value':value}]
                     self.df = self.df.append(temp, ignore_index=True)
                def get_data_for_metric(self, metric, ascending=True):
                     Формирование данных с фильтром по метрике
                     temp_data = self.df[self.df['metric']==metric]
                    temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
return temp_data_2['alg'].values, temp_data_2['value'].values
                def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
                     Вывод графика
                     array_labels, array_metric = self.get_data_for_metric(metric, ascending)
                     fig, ax1 = plt.subplots(figsize=figsize)
                     pos = np.arange(len(array_metric))
                    rects = ax1.barh(pos, array_metric,
align='center',
                                        height=0.5,
                                        tick_label=array_labels)
                     ax1.set_title(str_header)
                     for a,b in zip(pos, array_metric):
                         plt.text(0.5, a-0.05, str(round(b,3)), color='white')
```

Выбор наиболее подходящих моделей для решения задачиклассификации или регрессии.

Для задачи классификации будем использовать следующие модели:

- Логистическая регрессия
- Метод ближайших соседей
- Метод опорных векторов
- Дерево решений
- Случайный лес
- Градиентный бустинг

Формирование обучающей и тестовой выборок на основеисходного набора данных.

```
In [117]: X_train, X_test, y_train, y_test = train_test_split(data, data.diagnosis, random_state=1)
In [118]: X_train.shape, y_train.shape, X_test.shape, y_test.shape
Out[118]: ((426, 21), (426,), (143, 21), (143,))
```

Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.

```
In [119]: # Модели
             'SVC :SVC(probability=True),
                                 'Tree':DecisionTreeClassifier(),
                                 'RF':RandomForestClassifier(),
                                 'GB':GradientBoostingClassifier()}
In [120]: # Сохранение метрик
              clasMetricLogger = MetricLogger()
In [121]: # Отрисовка ROC-кривой
             def draw_roc_curve(y_true, y_score, ax, pos_label=1, average='micro'):
                  fpr, tpr, thresholds = roc_curve(y_true, y_score, pos_label=pos_label)
                   roc_auc_value = roc_auc_score(y_true, y_score, average=average)
                   #plt.figure()
                   lw = 2
                  ax.plot(fpr, tpr, color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc_value)
                  lw=lw, label='ROC curve (area = %0.2f)' % roc_auc_v.
ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
ax.set_xlim([0.0, 1.05])
ax.set_xlim([0.0, 1.05])
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.set_title('Receiver operating characteristic')
ax.legend(loc="lower right")
In [122]: def clas_train_model(model_name, model, clasMetricLogger):
                 model.fit(X_train, y_train)
                  # Предсказание значений
                 Y_pred = model.predict(X_test)
                  # Предсказание вероятности класса "1" для гос аис
                 Y pred proba temp = model.predict proba(X test)
                  Y_pred_proba = Y_pred_proba_temp[:,1]
                 precision = precision_score(y_test.values, Y_pred)
                 recall = recall_score(y_test.values, Y_pred)
f1 = f1_score(y_test.values, Y_pred)
                 roc_auc = roc_auc_score(y_test.values, Y_pred_proba)
                 clasMetricLogger.add('precision', model_name, precision)
clasMetricLogger.add('recall', model_name, recall)
clasMetricLogger.add('f1', model_name, f1)
clasMetricLogger.add('roc_auc', model_name, roc_auc)
                 cmap=plt.cm.Blues, normalize='true')
                  fig.suptitle(model_name)
                 plt.show()
In [123]: for model_name, model in clas_models.items():
                 clas_train_model(model_name, model, clasMetricLogger)
```


Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.

```
In [124]: X_train.shape
Out[124]: (426, 21)
In [125]: n_range_list = list(range(0,1250,50))
           n_range_list[0] = 1
In [126]: n_range = np.array(n_range_list)
           tuned_parameters = [{'n_neighbors': n_range}]
           tuned_parameters
Out[126]: [{'n_neighbors': array([ 1, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200])}]
 In [127]: %%time
            clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5, scoring='roc_auc')
            clf_gs.fit(X_train, y_train)
            CPU times: user 1.44 s, sys: 2.54 s, total: 3.98 s
Out[127]: GridSearchCV(cv=5, estimator=KNeighborsClassifier(),
                   param_grid=[{'n_neighbors': array([ 1, 50, 100, 150, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200])}],
                                                                         50, 100, 150, 200, 250, 300, 350, 400, 450, 500,
                          scoring='roc_auc')
In [128]: # Лучшая модель
           clf_gs.best_estimator_
Out[128]: KNeighborsClassifier(n neighbors=200)
In [129]: # Лучшее значение параметров
           clf_gs.best_params_
Out[129]: {'n_neighbors': 200}
In [130]: clf_gs_best_params_txt = str(clf_gs.best_params_['n_neighbors'])
           clf_gs_best_params_txt
Out[130]: '200'
In [131]: # Изменение качества на тестовой выборке в зависимости от К-соседей
           plt.plot(n_range, clf_gs.cv_results_['mean_test_score'])
Out[131]: [<matplotlib.lines.Line2D at 0x7f8ff0dbe7f0>]
```


Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей скачеством baseline-моделей.

Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков сделать выводы форме текстового И В Рекомендуется графиков построение обучения валидации, значений И влияния гиперпараметров на качество моделей и т.д.

```
In [134]: # Μεπρυκυ κανεςπβα Μοδεπυ
clas_metrics = clasMetricLogger.df['metric'].unique()
clas_metrics

Out[134]: array(['precision', 'recall', 'f1', 'roc_auc'], dtype=object)

In [135]: # Ποςπροων εραφυκυ Μεπρυκ κανεςπβα Μοδεπυ
for metric in clas_metrics:
    clasMetricLogger.plot('Μετρυκα: ' + metric, metric, figsize=(7, 6))
```


Вывод: Исходя из приведенных метрик, видим, что 4 модели: градиентный бустинг, дерево, логистическая регрессия и случайный лес показывают одинаково высокий результат.

Заключение

В данном курсовом проекте мы выполнили типовую задачу машинного обучения. Провели анализ данных, преобразовали готовый датасет под наши потребности, подобрали модели, а также подобрали наиболее подходящие гиперпараметры.

В данном проекте были закреплены все знания, полученные в курсе лекций и на лабораторных работах. Часть информации была найдена в различных открытых источниках в интернете.

Проделанная работа вызвала интерес к предмету и дальнейшей работе в этой сфере, которая является одной из самых перспективных и актуальных в современном мире.

Список использованных источников информации

- 1. Документация программной библиотеки Seaborn на языке Python[Электронный ресурс]. URL: https://pandas.pydata.org/docs/
- 2. Документация программной библиотеки Pandas на языке Python [Электронный ресурс]. URL: https://seaborn.pydata.org/
- 3. Методические указание по разработке НИРС, опорный пример [Электронный ресурс]. URL: https://github.com/ugapanyuk/courses_current/wiki/TMO_NIRS
- 4. Репозиторий курса "Технологии машинного обучения", бакалавриат, 6 семестр [Электронный ресурс]. URL: https://github.com/ugapanyuk/courses_current/wiki
- 5. Kaggle [Электронный ресурс]. URL: https://www.kaggle.com/