

Asymptotic connectivity for the network of RNA secondary structures

P. Clote

Biology Department, Boston College, Chestnut Hill, MA 02467, clote@bc.edu

Abstract

Given an RNA sequence \mathbf{a} , consider the network $G = (V, E)$, where the set V of nodes consists of all secondary structures of \mathbf{a} , and whose edge set E consists of all edges connecting two secondary structures whose base pair distance is 1. Define the network *connectivity*, or *expected network degree*, as the average number of edges incident to vertices of G . Using algebraic combinatorial methods, we prove that the asymptotic connectivity of length n homopolymer sequences is $0.473418 \cdot n$. This raises the question of what other network properties are characteristic of the network of RNA secondary structures. Programs in Python, C and Mathematica are available at the web site <http://bioinformatics.bc.edu/clotelab/RNAexpNbors>.

1 Introduction

In [24], Stein and Waterman used generating function theory to determine the asymptotic number of RNA secondary structures. Since that pioneering paper, a number of results concerning RNA secondary structure asymptotics have appeared, including the incomplete list [13, 12, 19, 3, 17, 5, 11, 15, 2, 22, 6, 23, 10, 16, 8].

In contrast to the previous papers, here we consider *network* properties of the ensemble of RNA secondary structures, following the seminal work of Wuchty [30], who showed by exhaustive enumeration of the low energy secondary structures of *E. coli* phe-tRNA, that the corresponding network architecture had *small-world* properties [29]. Small-world networks appear to abound in biology, providing a kind of robustness necessary for the molecular processes of life, as seen in networks of neural connections of *C. elegans* [29], gene co-expression in *S. cerevisiae* [25], metabolic pathways [26, 21], intermediate conformations in tertiary folding kinetics for the protein villin [1], etc.

In this paper, we use algebraic combinatorial methods, and in particular the Flajolet-Odlyzko theorem [7] to prove that the asymptotic expected network connectivity of RNA secondary structures is $0.4734176431521986 \cdot n$. Following [28, 14], *stickiness* is defined to be the probability p that any two positions can pair. For the simplicity of argument, in the homopolymer model, we take stickiness p to be 1; however, minor changes in our C dynamic programming algorithm and in our Mathematica code permit the computation of asymptotic expected connectivity for arbitrary stickiness p .

2 Preliminaries

A secondary structure for a given RNA nucleotide sequence $\mathbf{a} = \mathbf{a}_1, \dots, \mathbf{a}_n$ is a set s of base pairs (i, j) , such that (i) if $(i, j) \in s$ then $\mathbf{a}_i, \mathbf{a}_j$ form either a Watson-Crick (AU,UA,CG,GC) or wobble (GU,UG) base pair, (ii) if $(i, j) \in s$ then $j - i > \theta = 3$ (a steric constraint requiring that there be at least $\theta = 3$ unpaired bases between any two paired bases), (iii) if $(i, j) \in s$ then for all $j' \neq j$ and $i' \neq i$, $(i', j') \notin s$ and $(i, j') \notin s$ (nonexistence of base triples), (iv) if $(i, j) \in s$ and $(k, \ell) \in s$, then it is not the case that $i < k < j < \ell$ (nonexistence of pseudoknots). For the purposes of this paper, following Stein and Waterman [24], we consider the *homopolymer* model of RNA, in which condition (i) is dropped, so that any base can pair with any other base.

Suppose that $\mathbf{a} = \mathbf{a}_1, \dots, \mathbf{a}_n$ is an RNA sequence. If s is a secondary structure of \mathbf{a} , then let N_s denote the number of secondary structures of \mathbf{a} that can be obtained from s by the removal or addition of a single

base pair; i.e. those structures having base pair distance from s of 1. Define the *expected number of neighbors* $\langle N_s \rangle$ by

$$\langle N_s \rangle = \frac{Q}{Z} \quad (1)$$

where $Q = \sum_s N_s$ is the total number N_x of neighbors of all secondary structures s of \mathbf{a} , and Z denotes the total number of secondary structures of \mathbf{a} . Note that Z corresponds to the *partition function* $\sum_s \exp(-E(s)/RT)$ if the energy of every structure is 0.

In [4] we described three algorithms to compute the expected number of neighbors, or *network connectivity*, $\langle N_s \rangle = \sum_s \frac{\exp(-E(s)/RT)}{Z} \cdot N_s$, where Z is the partition function $\sum_s \exp(-E(s)/RT)$ with respect to energy model A (each structure s has energy $E(s) = 0$), model B (each structure s has Nussinov [20] energy $E(s)$ equal to -1 times the number $|s|$ of base pairs in s), and model C (each structure s has energy $E(s)$ given by the Turner energy model [18, 31]).

Below, we follow reference [4] in deriving the recurrence relations for Q and Z for model A, corresponding to equation equation (1). For $1 \leq i \leq j \leq n$, define the subsequence $\mathbf{a}[i, j] = \mathbf{a}_i, \dots, \mathbf{a}_j$, and define $SS(\mathbf{a}[i, j])$ to be the collection of secondary structures of $\mathbf{a}[i, j]$. Define

$$Q_{i,j} = \sum_{s \in SS(\mathbf{a}[i, j])} N_s. \quad (2)$$

Similarly, let $Z_{i,j} = \sum_{s \in SS(\mathbf{a}[i, j])} 1$; i.e. $Z_{i,j}$ denotes the number of secondary structures of $\mathbf{a}[i, j]$.

BASE CASE: For $j - i \in \{0, 1, 2, 3\}$, $Q_{i,j} = 0$ and $Z_{i,j} = 1$.

INDUCTIVE CASE: Let $BP(i, j, \mathbf{a})$ be a boolean function, taking the value 1 if positions i, j can form a base pair for sequence \mathbf{a} , and otherwise taking the value 0. Assume that $j - i > 3$.

SUBCASE A: Consider all secondary structures $s \in \mathbf{a}[i, j]$, for which j is unpaired. For each structure s in this subcase, the number N_s of neighbors of s is constituted from the number of structures obtained from s by removal of a single base pair, together with the number of structures obtained from s by addition of a single base pair. If the base pair added does not involve terminal position j , then total contribution to $\sum_{s \in SS(\mathbf{a}[i, j])} N_s$ is $Q_{i,j-1}$. It remains to count the contribution due to neighbors t of s , obtained from $s \in SS(\mathbf{a}[i, j])$ by adding the base pair (k, j) . This contribution is given by $\sum_{k=i}^{j-4} BP(k, j, \mathbf{a}) \cdot Z_{i,k-1} \cdot Z_{k+1,j-1}$, where $Z_{i,i-1}$ is defined to be 1. Thus the total contribution to $Q_{i,j}$ from this subcase is

$$Q_{i,j-1} + \sum_{k=i}^{j-4} BP(k, j, \mathbf{a}) \cdot Z_{i,k-1} \cdot Z_{k+1,j-1}.$$

SUBCASE B: Consider all secondary structures $s \in \mathbf{a}[i, j]$ that contain the base pair (k, j) for some $k \in \{i, \dots, j-4\}$. For secondary structure s in this subcase, the number N_s of neighbors of s is constituted from the number of structures obtained by removing base pair (k, j) together with a contribution obtained by adding/removing a single base pair either to the region $[i, k-1]$ or to the region $[k+1, j-1]$. Setting $Q_{i,i-1}$ to be 0, these contributions are given by

$$\sum_{k=i}^{j-4} BP(k, j, \mathbf{a}) \cdot [Z_{i,k-1} \cdot Z_{k+1,j-1} + Q_{i,k-1} \cdot Z_{k+1,j-1} + Z_{i,k-1} \cdot Q_{k+1,j-1}].$$

In the current subcase, the contribution to $Z_{i,j}$ is $\sum_{k=i}^{j-4} BP(k, j, \mathbf{a}) \cdot Z_{i,k-1} \cdot Z_{k+1,j-1}$.

Finally, taking the contributions from both subcases together, it follows that

$$Q_{i,j} = Q_{i,j-1} + \sum_{k=i}^{j-4} BP(k, j, \mathbf{a}) \cdot [2 \cdot Z_{i,k-1} \cdot Z_{k+1,j-1} + Q_{i,k-1} \cdot Z_{k+1,j-1} + Z_{i,k-1} \cdot Q_{k+1,j-1}] \quad (3)$$

$$Z_{i,j} = Z_{i,j-1} + \sum_{k=i}^{j-4} BP(k, j, \mathbf{a}) \cdot Z_{i,k-1} \cdot Z_{k+1,j-1}. \quad (4)$$

a	6
b (...) ..	1
c (...) ..	1
d . (...) ..	2
e (.....) ..	2
f .. (...) ..	1
g ... (...) ..	1
h ((...)) ..	2

Figure 1: (*Left*) All possible secondary structures of the 7-mer homopolymer, where position i can pair with position j provided only that $1 \leq i < j \leq 7$ and $j - i \geq 4$. (*Right*) Graph representation of neighborhood network, where nodes a,b,c,d,e,f,g,h respectively represent the 8 secondary structures in the list. The number of neighbors of each secondary structure is indicated to its right. The expected number of neighbors for the 7-mer is thus $(6 + 1 + 1 + 2 + 2 + 1 + 1 + 2)/8 = 16/8 = 2$.

It follows that the expected number $\langle N_s \rangle$ of neighbors N_s of structures s of **a** is $\frac{Q_{1,n}}{Z_{1,n}}$. Note that the recursion for $Z_{i,j}$ is well-known and due originally to Waterman [27].

To provide concrete intuition for the problem we consider, in Figure 1, we present the list of secondary structures for a homopolymer of length 7, depicted as a network having expected connectivity of 2. In the left panel of Figure 2, we present a histogram for the network connectivity (graph degree or number of neighbors), by analyzing an exhaustively produced list of all 106,633 structures of the 20-mer homopolymer. In the right panel of Figure 2, we present a plot of the *normalized* expected number of neighbors of for homopolymers of length 1 to 1000 nt, obtained by dividing the expected number of neighbors by sequence length. Clearly there appears to be an asymptotic value for the length-normalized expected connectivity, suggesting that it may be possible to formally prove the existence of this asymptotic value, a task to which the remainder of the paper is dedicated.

3 Methods

3.1 Recurrence relation for partition function Z_n

In order to determine asymptotic network connectivity, we now provide similar recursions to those of (3) and (4) for the *homopolymer* model of RNA, where any base (position) i can pair with any other position (base) j , provide only that $1 \leq i + \theta + 1 \leq j \leq n$. Following common convention due to steric constraints, we take θ to be 3. These recursions are the basis of the dynamic programming code we implemented, used to produce Figure 2.

We define $Z_0 = 1$, in order to simplify the recurrence relation for Z_n , defined to be the number of secondary structures for a homopolymer of length n , or equivalently, the *partition function* for the energy model that assigns an energy of 0 to every structure. Moreover, since the empty structure is the only structure for sequences of length 1, 2, 3, 4 = $\theta + 1$, we define $Z_n = 1$ for $0 \leq n \leq 4$. Secondary structures for a homopolymer of length $n > 4$ can be partitioned into two classes: (1) n is unpaired, (2) there is a base pair (k, n) for some $1 \leq k \leq n - 4 = n - \theta - 1$. Thus we have

$$Z_n = \begin{cases} 1 & \text{if } 0 \leq n \leq 4 = \theta + 1 \\ Z_{n-1} + \sum_{k=0}^{n-\theta-2} Z_k \cdot Z_{n-2-k} & \text{if } n \geq 5 = \theta + 2 \end{cases} \quad (5)$$

which is the homopolymer analogue of equation (4). To employ generating function theory, we require a single formula for Z_n , rather than a definition by cases – see p. 66 of [9]. This is easily achieved by (*i*) adding the indicator function $I[n = 0]$, defined to equal 1 if $n = 0$, and otherwise 0, and (*ii*) adding and subtracting the same terms to ensure that k ranges from 0 to $n - 2$, rather than $n - \theta - 2 = n - 5$. Thus

Figure 2: (Left) Histogram of the number of neighbors for all 106,633 secondary structures of the 20-mer homopolymer. The mean is 8.336, the standard deviation is 4.769, the maximum is 136, and minimum is 3. (Right) Plot of the *normalized* expected number of neighbors for homopolymers of length 1 to 1000 nt, obtained by dividing the expected number of neighbors by sequence length. Apparent asymptotic value seems to be ≈ 0.4724 . The main result of this paper is the proof that the asymptotic value is in fact 0.4734176431521986.

equation (5) is equivalent to (6) defined by:

$$\begin{aligned} Z_n &= Z_{n-1} + \sum_{k=0}^{n-2} Z_k \cdot Z_{n-2-k} + I[n=0] - Z_{n-1} \cdot Z_0 - Z_{n-3} \cdot Z_1 - Z_{n-4} \cdot Z_2 \\ &= Z_{n-1} + \sum_{k=0}^{n-2} Z_k \cdot Z_{n-2-k} + I[n=0] - Z_{n-1} - Z_{n-3} - Z_{n-4}. \end{aligned} \quad (6)$$

Let $z = \sum_{n=0}^{\infty} Z_n \cdot x^n$. By multiplying equation (6) by x^n , summing from $n = 0$ to ∞ , we obtain

$$\sum_{n=0}^{\infty} Z_n \cdot x^n = \sum_{n=0}^{\infty} Z_{n-1} \cdot x^n + \sum_{n=0}^{\infty} \sum_{k=0}^{n-2} Z_k \cdot Z_{n-2-k} \cdot x^n - \sum_{n=0}^{\infty} (Z_{n-2} + Z_{n-3} + Z_{n-4} - I[n=0]) \cdot x^n$$

which yields

$$z = xz + x^2 z^2 - zx^2 - zx^3 - zx^4 + 1 \quad (7)$$

Solving the quadratic equation (7) for z , we determine that

$$z = \frac{1 - x + x^2 + x^3 + x^4 \pm \sqrt{1 - 2x - x^2 + x^4 + 3x^6 + 2x^7 + x^8}}{2x^2}.$$

Only the first solution

$$z_1 = \frac{1 - x + x^2 + x^3 + x^4 - \sqrt{1 - 2x - x^2 + x^4 + 3x^6 + 2x^7 + x^8}}{2x^2} \quad (8)$$

has the property that the coefficients of its Taylor expansion correspond to the values of Z_n , as determined by dynamic programming (see program at web site). In particular, using Mathematica, we obtain

$$\begin{aligned} z_1 &= 1 + x + x^2 + x^3 + x^4 + 2x^5 + 4x^6 + 8x^7 + 16x^8 + 32x^9 + 65x^{10} + 133x^{11} + 274x^{12} + 568x^{13} + \\ &\quad 1184x^{14} + 2481x^{15} + 5223x^{16} + 11042x^{17} + 23434x^{18} + 49908x^{19} + 106633x^{20} + O(x)^{21} \end{aligned}$$

which can be compared with the values determined by our dynamic programming implementation:

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Z_n	1	1	1	1	2	4	8	16	32	65	133	274	568	1184	2481	5223	11042	

3.2 Recurrence relation for the number of neighbors Q_n

Let Q_n denote the total number N_s of nearest neighbors of all secondary structures s of a homopolymer of length n . The homopolymer analogue of equation (3) is as follows:

$$Q_n = \begin{cases} 0 & \text{if } n = 0, 1, 2, 3, 4 \\ Q_{n-1} + \sum_{k=0}^{n-2} 2Z_k Z_{n-2-k} + Q_k Z_{n-2-k} + Z_k Q_{n-2-k} & \text{else.} \end{cases} \quad (9)$$

If we assume that $Z_n = 0 = Q_n$ for $n < 0$, then it follows from equations (9) and (5), that we can express Q_n by the formula

$$Q_n = Q_{n-1} + \sum_{k=0}^{n-5} 2Z_k Z_{n-2-k} + Q_k Z_{n-2-k} + Z_k Q_{n-2-k}. \quad (10)$$

Next, we add and subtract the same terms in order to ensure that the upper bound in the previous summation is $n - 2$. This yields

$$\begin{aligned} Q_n = & Q_{n-1} + \sum_{k=0}^{n-2} 2Z_k Z_{n-2-k} + Q_k Z_{n-2-k} + Z_k Q_{n-2-k} \\ & - 2(Z_{n-2} \cdot Z_0 + Z_{n-3} \cdot Z_1 + Z_{n-4} \cdot Z_2) - (Q_{n-2} \cdot Z_0 + Q_{n-3} \cdot Z_1 + Q_{n-4} \cdot Z_2) \\ & - (Z_{n-2} \cdot Q_0 + Z_{n-3} \cdot Q_1 + Z_{n-4} \cdot Q_2) \end{aligned} \quad (11)$$

which simplifies to

$$\begin{aligned} Q_n = & Q_{n-1} + \sum_{k=0}^{n-2} 2Z_k Z_{n-2-k} + Q_k Z_{n-2-k} + Z_k Q_{n-2-k} \\ & - 2(Z_{n-2} + Z_{n-3} + Z_{n-4}) - (Q_{n-2} + Q_{n-3} + Q_{n-4}). \end{aligned} \quad (12)$$

Multiply each term of equation (12) by x^n and summing from $n = 0$ to ∞ , to obtain

$$\begin{aligned} \sum_{n=0}^{\infty} Q_n \cdot x^n = & \sum_{n=0}^{\infty} Q_{n-1} \cdot x^n + \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n-2} 2Z_k Z_{n-2-k} \right) + \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n-2} Q_k Z_{n-2-k} \right) + \\ & \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n-2} Z_k Q_{n-2-k} \right) - \sum_{n=0}^{\infty} 2(Z_{n-2} + Z_{n-3} + Z_{n-4}) - \sum_{n=0}^{\infty} (Q_{n-2} + Q_{n-3} + Q_{n-4}). \end{aligned} \quad (13)$$

Let $q = \sum_{n=0}^{\infty} Q_n x^n$ and $z = \sum_{n=0}^{\infty} Z_n x^n$. Then from (13) we have

$$q = xq + 2x^2z^2 + x^2qz + x^2zq - 2x^2z - 2x^3z - 2x^4z - qx^2 - qx^3 - qx^4. \quad (14)$$

From equations (7) and (14), we have

- $z^2x^2 = z - zx + zx^2 + zx^3 + zx^4 - 1$
- $q = xq + 2x^2z^2 + 2x^2qz - 2x^2z - 2x^3z - 2x^4z - qx^2 - qx^3 - qx^4$

from which we eliminate the variable z to obtain the following quadratic equation in variable q ,

$$\begin{aligned} 4x^5 = & q^2x^2 (1 - 2x - x^2 + x^4 + 3x^6 + 2x^7 + x^8) + \\ & q (2 - 6x + 2x^2 + 2x^3 + 2x^4 - 2x^5 + 6x^6 - 2x^7 - 2x^8 - 2x^9). \end{aligned} \quad (15)$$

Solving for q , we determine that only the solution

$$\begin{aligned} q2 &= (-1 + 3x - x^2 - x^3 - x^4 + x^5 - 3x^6 + x^7 + x^8 + x^9 + \\ &\quad \sqrt{(1 - 6x + 11x^2 - 4x^3 - 3x^4 - 6x^5 + 15x^6 - 16x^7 + x^8 + 2x^9 + 9x^{10} - \\ &\quad 8x^{11} + 7x^{12} + 6x^{13} + 5x^{14} + 3x^{16} + 2x^{17} + x^{18})}) / (x^2 - 2x^3 - x^4 + x^6 + 3x^8 + 2x^9 + x^{10}) \end{aligned} \quad (16)$$

is possible, since its Taylor expansion is

$$q2 = 2x^5 + 6x^6 + 16x^7 + 40x^8 + 96x^9 + 228x^{10} + 532x^{11} + 1230x^{12} + 2826x^{13} + 6464x^{14} + 14742x^{15} + 33546x^{16} + 76216x^{17} + 172968x^{18} + 392228x^{19} + 888932x^{20} + O(x)^{21}.$$

These values agree with those from the following table that were obtained by our dynamic programming implementation.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Q_n	0	0	0	0	0	2	6	16	40	96	228	532	1230	2826	6464	14742	33546	76216

3.3 Flajolet-Odlyzko theorem

Having determined the formulas for $z1$ [resp. $q2$] in equation (8) [resp. equation (16)], we use the following theorem of Flajolet and Odlyzko [7] to determine the asymptotic coefficients of Z_n [resp. Q_n] in the Taylor expansion of the generating function $z1$ [resp. $q2$].

Following standard convention, let $[x^n]f(x)$ denote the n th coefficient in the Taylor expansion of $f(x)$. The following theorem is stated as Corollary 2, part (i) of [7] on page 224.

Theorem 1 (Flajolet and Odlyzko) *Assume that $f(x)$ has a singularity at $x = \rho > 0$, is analytic in the rest of the region $\Delta \setminus 1$, depicted in Figure 3, and that as $x \rightarrow \rho$ in Δ ,*

$$f(x) \sim K(1 - x/\rho)^\alpha. \quad (17)$$

Then, as $n \rightarrow \infty$, if $\alpha \notin 0, 1, 2, \dots$,

$$f_n = [x^n]f(x) \sim \frac{K}{\Gamma(-\alpha)} \cdot n^{-\alpha-1} \rho^{-n}$$

where Γ denotes the Gamma function.

In Section 3.4, we determine the asymptotic value of $[x^n]q2 = Q_n$, and in the following Section 3.5, we determine the asymptotic value of $[x^n]z1 = Z_n$. The ratio of these values then yields the asymptotic expected number of neighbors, or *network connectivity* for the homopolymer model of RNA.

3.4 Asymptotic number of neighbors

Let P denote the polynomial under the radical of equation (16), i.e.

$$P = 1 - 6x + 11x^2 - 4x^3 - 3x^4 - 6x^5 + 15x^6 - 16x^7 + x^8 + 2x^9 + \dots \quad (18)$$

$$9x^{10} - 8x^{11} + 7x^{12} + 6x^{13} + 5x^{14} + 3x^{16} + 2x^{17} + x^{18}. \quad (19)$$

There are 4 real roots and 14 imaginary roots of P ; however, the root of the smallest modulus (absolute value) is the real root

$$\rho = 0.436911127214519 \approx 0.436911. \quad (20)$$

Now $q2$ can be expressed in the form $q2 = G + H$, where $G = \frac{G_{num}}{G_{denom}}$ and $H = \frac{\sqrt{P}}{G_{denom}}$, and where

$$\begin{aligned} G_{num} &= (-1 + 3x - x^2 - x^3 - x^4 + x^5 - 3x^6 + x^7 + x^8 + x^9) \\ G_{denom} &= x^2 (1 - 2x - x^2 + x^4 + 3x^6 + 2x^7 + x^8). \end{aligned} \quad (21)$$

Figure 3: The shaded region Δ where, except at $x = \rho$, the generating function $f(x)$ must be analytic. Here $\rho = 1$. Figure taken from Lorenz et al. [17].

One notes that ρ is a root of both G_{num} and G_{denom} , so their ratio is well-defined; as well, clearly 0 is a root of G_{denom} . It follows that both 0 and ρ are singularities of the function q_2 (recall that in complex analysis, the square root of 0 is a singularity).

For asymptotics, the term $\frac{G_{num}}{G_{denom}}$ can be neglected, since $\lim_{x \rightarrow \rho} \frac{G_{num}}{G_{denom}} = -2.963617606602476$; thus it follows that $[x^n]q_2 = [x^n]\frac{\sqrt{P}}{G_{denom}}$. However, the Flajolet-Odlyzko theorem cannot be applied to the function $f = \frac{\sqrt{P}}{G_{denom}}$, since ρ is not the dominant singularity, as $0 < \rho$. To address this issue, we define $G_{num1} = G_{num}$ and $G_{denom1} = G_{denom}/x^2$, hence

$$\begin{aligned} G_{num1} &= (-1 + 3x - x^2 - x^3 - x^4 + x^5 - 3x^6 + x^7 + x^8 + x^9) \\ G_{denom1} &= (1 - 2x - x^2 + x^4 + 3x^6 + 2x^7 + x^8). \end{aligned} \quad (22)$$

Now we can apply Theorem 1 to the function $f_1 = x^2 \cdot f = \frac{\sqrt{P}}{G_{denom1}}$, for which ρ is the dominant singularity. First, we factor $(1 - x/\rho)$ out from P .

$$\frac{P}{1 - x/\rho} = 1 - 3.71121x + 2.50581x^2 + 1.73529x^3 + 0.971726x^4 - 3.77592x^5 + 6.3577x^6 - \quad (23)$$

$$1.44854x^7 - 2.3154x^8 - 3.29948x^9 + 1.44816x^{10} - 4.68545x^{11} - 3.72404x^{12} - \quad (24)$$

$$2.52356x^{13} - 0.775919x^{14} - 1.77592x^{15} - 1.06471x^{16} - 0.436911x^{17}. \quad (25)$$

Second, we factor $(1 - x/\rho)$ out from G_{denom1} .

$$\begin{aligned} \frac{G_{denom1}}{1 - x/\rho} &= 1 + 0.288795x - 0.339007x^2 - 0.775919x^3 - 0.775919x^4 - 1.77592x^5 - \\ &\quad 1.06471x^6 - 0.436911x^7. \end{aligned} \quad (26)$$

It follows from (23) and (26) that

$$\frac{\sqrt{P}}{G_{denom1}} = \frac{(1 - x/\rho)^{-1/2} \cdot \sqrt{P/(1 - x/\rho)}}{G_{denom1}/(1 - x/\rho)} \quad (27)$$

$$\frac{\sqrt{P/(1 - x/\rho)}}{G_{denom1}/(1 - x/\rho)}(\rho) = 0.11422693623949792. \quad (28)$$

and so $\frac{\sqrt{P}}{G_{denom1}} = 0.11422693623949792 \cdot (1 - x/\rho)^{-1/2}$. If we define $K = 0.11422693623949792$, then it follows that $f_1 = \frac{\sqrt{P}}{G_{denom1}} \sim K(1 - x/\rho)^{-1/2}$, and by applying Theorem 1 for $\alpha = -1/2$, we have the following asymptotic result.

Lemma 1 The asymptotic value of the n th coefficient $[x^n](x^2 q2)$ in the Taylor expansion of $x^2 \cdot \sum_{n=0}^{\infty} Q_n x^n$ is $\frac{0.06444564758689844 \cdot 2.2887949921884863^n}{\sqrt{n}}$.

PROOF. We have

$$\begin{aligned}[x^n](x^2 q2) &= [x^n](f1) \sim \frac{K}{\Gamma(-\alpha)} \cdot n^{-\alpha-1} \cdot \rho^{-n} \\ &= \frac{0.11422693623949792}{\Gamma(1/2)} \cdot n^{-1/2} \cdot 0.436911127214519^{-n} \\ &= \frac{0.06444564758689844 \cdot 2.2887949921884863^n}{\sqrt{n}} \square\end{aligned}\tag{29}$$

3.5 Asymptotic number of structures

We now proceed similarly to determine the asymptotic value of the Taylor coefficients of $x^2 \cdot \sum_{n=0}^{\infty} Z_n x^n$. Now let P denote the polynomial under the radical of equation (8), i.e.

$$P = 1 - 2x - x^2 + x^4 + 3x^6 + 2x^7 + x^8.\tag{30}$$

There are 2 real roots and 6 imaginary roots of P ; however, the root of the smallest modulus (absolute value) is the real root

$$\rho = 0.436911127214519 \approx 0.436911,\tag{31}$$

identical the the value from equation (20). Then $z1$ can be expressed in the form $z1 = G + H$, where $G = \frac{G_{num}}{G_{denom}}$ and $H = \frac{\sqrt{P}}{G_{denom}}$, and where

$$\begin{aligned}G_{num} &= (1 - x + x^2 + x^3 + x^4) \\ G_{denom} &= 2x^2.\end{aligned}\tag{32}$$

Note that ρ is not a root of either G_{num} or G_{denom} , so their ratio is well-defined; as well, clearly 0 is a root of G_{denom} . It follows that both 0 and ρ are singularities of the function $z1$ (recall that in complex analysis, the square root of 0 is a singularity).

For asymptotics, the term $\frac{G_{num}}{G_{denom}}$ can be neglected, since $\lim_{x \rightarrow \rho} \frac{G_{num}}{G_{denom}} = 2.2887949921884205$; thus it follows that $[x^n]z1 = [x^n]\frac{\sqrt{P}}{G_{denom}}$. However, the Flajolet-Odlyzko theorem cannot be applied to the function $f = \frac{\sqrt{P}}{G_{denom}}$, since 0, rather than ρ , is the dominant singularity. To address this issue, we define $G_{num1} = G_{num}$ and $G_{denom1} = G_{denom}/x^2$, hence

$$\begin{aligned}G_{num1} &= (1 - x + x^2 + x^3 + x^4) \\ G_{denom1} &= 2.\end{aligned}\tag{33}$$

Now we can apply Theorem 1 to the function $f1 = x^2 \cdot f = \frac{\sqrt{P}}{G_{denom1}}$, for which ρ is the dominant singularity. First, we factor $(1 - x/\rho)$ out from P .

$$\frac{P}{1 - x/\rho} = 1 + 0.288795x - 0.339007x^2 - 0.775919x^3 - 0.775919x^4 - 1.77592x^5 - 1.06471x^6 - 0.436911\tag{34}$$

It follows from (34) that

$$\begin{aligned}\frac{\sqrt{P}}{G_{denom1}} &= \frac{(1 - x/\rho)^{1/2} \cdot \sqrt{P/(1 - x/\rho)}}{G_{denom1}} \\ \frac{\sqrt{P/(1 - x/\rho)}}{G_{denom1}}(\rho) &= \frac{\sqrt{P/(1 - x/\rho)}}{2}(\rho) = 0.4825630725501931\end{aligned}\tag{35}$$

and so $\frac{\sqrt{P}}{2} = 0.4825630725501931 \cdot (1 - x/\rho)^{1/2}$. If we define $K = 0.4825630725501931$, then it follows that $f1 = \frac{\sqrt{P}}{2} \sim K(1 - x/\rho)^{1/2}$, and by applying Theorem 1 for $\alpha = +1/2$, we have the following asymptotic result.

Lemma 2 The asymptotic value of the n th coefficient $[x^n](x^2 z_1)$ in the Taylor expansion of $x^2 \cdot \sum_{n=0}^{\infty} Z_n x^n$ is $\frac{0.13612852946880957 \cdot 2.2887949921884863^n}{n^{3/2}}$.

PROOF. We have

$$\begin{aligned}[x^n](x^2 z_1) &= [x^n](f_1) \sim \frac{K}{\Gamma(-\alpha)} \cdot n^{-\alpha-1} \cdot \rho^{-n} \\ &= \frac{0.13612852946880957}{\Gamma(-1/2)} \cdot n^{-3/2} \cdot 2.2887949921884863^n \\ &= \frac{0.13612852946880957 \cdot 2.2887949921884863^n}{n^{3/2}}.\end{aligned}\tag{37}$$

□ We have now established the asymptotic *expected* network connectivity.

Theorem 2 The asymptotic value of the expected number of neighbors is $0.4734176431521986 \cdot n$; i.e. the asymptotic value of $\sum_{n=0}^{\infty} \frac{Q_n}{n Z_n} \cdot x^n$ is 0.4734176431521986 .

PROOF. By Lemmas 1 and 2, we have

$$\begin{aligned}\frac{[x^n]q_2}{[x^n]z_1} &= \frac{[x^n](x^2 \cdot q_2)}{[x^n](x^2 \cdot z_1)} \\ &= \frac{(0.06444564758689844 \cdot 2.2887949921884863^n \cdot n^{-1/2})}{(0.13612852946880957 \cdot 2.2887949921884863^n \cdot n^{-3/2})} \\ &= 0.4734176431521986 \cdot n.\end{aligned}$$

4 Acknowledgements

This research was funded by the National Science Foundation grant DBI-1262439. Akademischer Austauschdienst. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

- [1] G. R. Bowman and V. S. Pande. Protein folded states are kinetic hubs. *Proc. Natl. Acad. Sci. U.S.A.*, 107(24):10890–10895, June 2010.
- [2] W.Y. C. Chen, J. Qin, C. Reidys, and D. Zeilberger. Efficient counting and asymptotics of k-noncrossing tangled diagrams. *Electr. J. Comb.*, 16(1), 2009.
- [3] P. Clote. Combinatorics of saturated secondary structures of RNA. *J. Comput. Biol.*, 13(9):1640–1657, November 2006.
- [4] P. Clote. Expected degree for RNA secondary structure networks. *J Comp Chem*, 2014.
- [5] P. Clote, E. Kranakis, D. Krizanc, and B. Salvy. Asymptotics of canonical and saturated RNA secondary structures. *J. Bioinform. Comput. Biol.*, 7(5):869–893, October 2009.
- [6] P. Clote, Y. Ponty, and J. M. Steyaert. Expected distance between terminal nucleotides of RNA secondary structures. *J Math Biol.*, 0(O):O, October 2011.
- [7] P. Flajolet and A. M. Odlyzko. Singularity analysis of generating functions. *SIAM Journal of Discrete Mathematics*, 3:216–240, 1990.
- [8] E. Fusy and P. Clote. Combinatorics of locally optimal RNA secondary structures. *J Math Biol.*, 0(O):O, December 2012.

[9] R.L Graham, D.E. Knuth, and O. Patashnik. *Concrete Mathematics - A Foundation for Computer Science*. Addison-Wesley, 1989.

[10] H. S. Han and C. M. Reidys. The 5'-3' distance of RNA secondary structures. *J. Comput. Biol.*, 19(7):867–878, July 2012.

[11] Hillary S. W. Han and Christian M. Reidys. Stacks in canonical RNA pseudoknot structures. *Mathematical Biosciences*, 219(1):7–14, May 2009.

[12] Christian Haslinger and Peter F. Stadler. Rna structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties. *Bulletin of Mathematical Biology*, 61(3):437–467, May 1999.

[13] Ivo L. Hofacker, Peter Schuster, and Peter F. Stadler. Combinatorics of RNA secondary structures. *Discrete Appl. Math.*, 88(1-3):207–237, 1998.

[14] Ivo L. Hofacker, Peter Schuster, and Peter F. Stadler. Combinatorics of RNA secondary structures. *Discr. Appl. Math.*, 88:207–237, 1998.

[15] Emma Y. Jin and Christian M. Reidys. On the decomposition of k-noncrossing RNA structures. *Advances in Applied Mathematics*, 44(1):53–70, January 2010.

[16] T. J. Li and C. M. Reidys. Combinatorics of RNA-RNA interaction. *J. Math. Biol.*, 64(3):529–556, February 2012.

[17] W. A. Lorenz, Y. Ponty, and P. Clote. Asymptotics of RNA shapes. *J. Comput. Biol.*, 15(1):31–63, 2008.

[18] D.H. Matthews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. *J. Mol. Biol.*, 288:911–940, 1999.

[19] M. E. Nebel. Combinatorial properties of RNA secondary structures. *J. Comput. Biol.*, 9(3):541–573, 2002.

[20] R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary structure of single stranded RNA. *Proceedings of the National Academy of Sciences, USA*, 77(11):6309–6313, 1980.

[21] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabasi. Hierarchical organization of modularity in metabolic networks. *Science*, 297(5586):1551–1555, August 2002.

[22] C. M. Reidys, F. W. Huang, J. E. Andersen, R. C. Penner, P. F. Stadler, and M. E. Nebel. Topology and prediction of RNA pseudoknots. *Bioinformatics*, 27(8):1076–1085, April 2011.

[23] C. Saule, M. Regnier, J. M. Steyaert, and A. Denise. Counting RNA pseudoknotted structures. *J. Comput. Biol.*, 18(10):1339–1351, October 2011.

[24] P. R. Stein and M. S. Waterman. On some new sequences generalizing the Catalan and Motzkin numbers. *Discrete Mathematics*, 26:261–272, 1978.

[25] V. Van Noort, B. Snel, and M. A. Huynen. The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. *EMBO Rep.*, 5(3):280–284, March 2004.

[26] A. Wagner and D. A. Fell. The small world inside large metabolic networks. *Proc. Biol. Sci.*, 268(1478):1803–1810, September 2001.

[27] M. S. Waterman. Secondary structure of single-stranded nucleic acids. *Studies in Foundations and Combinatorics, Advances in Mathematics Supplementary Studies*, 1:167–212, 1978.

[28] M. S. Waterman. *Introduction to Computational Biology*. Chapman and Hall/CRC, 1995.

[29] D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world' networks. *Nature*, 393(6684):440–442, June 1998.

- [30] S. Wuchty. Small worlds in RNA structures. *Nucleic. Acids. Res.*, 31(3):1108–1117, February 2003.
- [31] T. Xia, Jr. J. SantaLucia, M.E. Burkard, R. Kierzek, S.J. Schroeder, X. Jiao, C. Cox, and D.H. Turner. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. *Biochemistry*, 37:14719–35, 1999.