Multi-agent Learning

Environments

• Matching pennies game

Matching pennies is classic zero-sum game, where:

- Both players A and B choose an action, Heads or Tails, at the beginning of the game
- Player A wins if it matches the action chosen by player B (i.e., H-H or T-T)
- Player B wins if it chooses a different action than player A (i.e., H-T or T-H)

	$B \rightarrow H$	$B \rightarrow T$
$A \rightarrow H$	1 / -1	-1 / 1
$A \rightarrow T$	-1 / 1	1 / -1

This game can be extended to three players in the following manner:

- Player A wins when matching the choice of player B
- Player B wins when matching the choice of player C
- Player C wins when mismatching the choice of player A

Payoff matrices:

	$B \rightarrow H$	$B \rightarrow T$
$A \rightarrow H$	1	0
$A \rightarrow T$	0	1

	$C \rightarrow H$	$C \rightarrow T$
$B \rightarrow H$	1	0
$B \rightarrow T$	0	1

	$A \rightarrow H$	$A\toT$
$C \rightarrow H$	0	1
$C \rightarrow T$	1	0

• Climbing game

The climbing game is an iconic coordination games. Two agents, each having 3 possible actions will receive a high penalty for miscoordination, having in the end to find one single optimal (coordinated) joint action.

Payoff matrix:

	а	b	С
а	11	-30	0
b	-30	7	0
С	0	6	5

We extended the game to a 3 player setting in the following manner:

- Each player will select an action that is matched against the other 2 players, according to the above payoff matrix.
- Their reward is then the average payoff of those two games.

Setup

In the *mal.py* file you can find the two environments described above, while in *main.py* you can find an outline in which you can plug your implementation of any desired learning algorithm. Alternatively, you also have the *ACAI_mal.ipynb* for anyone wishing to use Jupyter Notebooks.

Assignments

- 1. Implement the simple learning algorithm Independent Q-learning for both players in the Matching Pennies game. What is the policy they end up with. Does it converge? Investigate what happens if you add another player.
- 2. Use the algorithm in the previous assignment on the Climbing game and investigate the policy of the players in the same settings as above (2 players and 3 players).