Lab 9. Arithmetic Logic Unit

Write code for Arithmetic Logic Unit (ALU). ALU performs all arithmetic and logical operations on 32 bit long operands. The result is also 32 bit long.

You are asked to write ALU that performs the following operations:

all ALU operations

I-type

001 000	addi	addi rt rs imm	rt = rs + sxt(imm)
001 001	addiu	addiu rt rs imm	rt = rs + sxt(imm)
001 010	slti	slti rt rs imm	$rt = (rs < sxt(imm) ? 1_{32} : 0_{32})$
001 011	sltiu	sltiu rt rs imm	$rt = (rs < sxt(imm) ? 1_{32} : 0_{32})$
001 100	andi	andi rt rs imm	$rt = rs \wedge zxt(imm)$
001 101	ori	ori rt rs imm	$rt = rs \lor zxt(imm)$
001 110	xori	xori rt rs imm	$rt = rs \oplus zxt(imm)$
001 111	lui	lui rt imm	$rt = imm0^{16}$

000000 100 000	add	add rd rs rt	rd = rs + rt
000000 100 001	addu	addu rd rs rt	rd = rs + rt
000000 100 010	sub	sub rd rs rt	rd = rs - rt
000000 100 011	subu	subu rd rs rt	rd = rs - rt
000000 100 100	and	and rd rs rt	$rd = rs \wedge rt$
000000 100 101	or	or rd rs rt	$rd = rs \lor rt$
000000 100 110	xor	xor rd rs rt	$rd = rs \oplus rt$
000000 100 111	nor	nor rd rs rt	$rd = \overline{rs \vee rt}$
Test-and-Set Operation	n		
000000 101 010	slt	slt rd rs rt	$rd = (rs < rt ? 1_{32} : 0_{32})$
000000 101 011	sltu	sltu rd rs rt	$rd = (rs < rt ? 1_{32} : 0_{32})$

R-type

Table 1

<u>For additional Hints see the Lab 8 Hints.ppt file attached or read chapter 7 from Pr. Wolfgang's Book.</u>

Your module should have the following inputs and outputs:

Inputs:

<u>i</u> - if it is 1, we have immediate type instruction.

SrcA - 32 bit long. This is the left operand

SrcB - 32 bit long. This is the right operand

<u>af</u> - 4 bit long. This is alu control signals. af decides which arithmetic or logic operation should be performed. <u>Table 2</u> specifies values of af for corresponding instructions.

Outputs:

<u>Alures</u> – 32 bit long. This is the result of the arithmetic/logic operation performed on SrcA and SrcB.

Zero – This is zero flag. It is 1 if the alures is 0.

<u>Neg</u> – this is negative flag. It is 1 if alures is 0 and we have signed operation <u>ovfalu</u> – this is overflow flag. It is 1 if operation caused overflow. And we had signed operation.

- 1) I Type Instructions: Write code that can perform all I type operations from Table 1
- 2) R Type Instructions: Write code that can perform all R type operations from Table 1
- Flags: Write code that evaluates correct values for zero, neg and ovfalu flags.
- 4) <u>Simulation & Verification</u>: Write testbench for your design. Generate Waveforms and explain in your reports why do you think your design works correctly. Write Report in Template

If you want your module to be <u>ELEGANT</u> and worthy of international standards, I suggest using Figure 39, Lemma 39 and 40 from Pr. Wolfgang's Book (System Architecture An Ordinary Engineering Discipline by Wolfgang J. Paul).

Good Luck

ALU CONTROL SIGNAL (af) VALUES AND CORRESPONDING OPERATIONS

af[3:0]	i	alures[n-1:0]	ovfalu
0000	*	$a+_n b$	$[a] + [b] \notin T_n$
0001	*	$a+_n b$	0
0010	*	an b	$[a] - [b] \notin T_n$
0011	*	an b	0
0100	*	a∧b	0
0101	*	$a \lor b$	0
0110	*	$a \oplus b$	0
0111	0	$\overline{a \vee b}$	0
0111	1	$b[n/2-1:0]0^{n/2}$	0
1010	*	$0^{n-1}([a] < [b] ? 1 : 0)$	0
1011	*	$0^{n-1}(\langle a \rangle < \langle b \rangle ? 1:0)$	0

Table 2