### Normalización - 2da. Parte

### 07/Abril/2017



Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

### Normalización - Reglas de Inferencia

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
  - R={E\_CUIL, Nro\_Depto, D\_Nombre}
  - $F = \{E\_CUIL \rightarrow Nro\_Depto, Nro\_Depto \rightarrow D\_Nombre\}$
  - De ambas DFs se puede inferir que E\_CUIL→D\_Nombre
- Inferencia. Una DF  $X \rightarrow Y$  es inferida de o implicada por un conjunto de DFs F de R si se cumple  $X \rightarrow Y$  en toda instancia legal r(R). Es decir, siempre que r(R) satisface F, se cumple  $X \rightarrow Y$
- Clausura. Conjunto de todas las DFs de F más todas las DFs que puedan ser inferidas de F. Se denota como F<sup>+</sup>
  - R={E\_CUIL,Nro\_Depto,D\_Nombre}
  - $F = \{E\_CUIL \rightarrow Nro\_Depto, Nro\_Depto \rightarrow D\_Nombre\}$
  - $F^+ = \{E\_CUIL \rightarrow Nro\_Depto, Nro\_Depto \rightarrow D\_Nombre, E\_CUIL \rightarrow D\_Nombre, ...\}$
- Necesidad. Para calcular F<sup>+</sup> es necesario un método: Reglas de inferencia

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General

Inferencia
Clausura y Equivalencia
Conjunto minimal de DE

### Normalización - Marco General

- Normalización 1era. Parte
  - Concepto DF
  - Problemas de DF y cómo eliminarlos por medio del método de descomposición
  - 1FN, 2FN, 3FN, BCFN
- Normalización 2da. Parte
  - Inferencia de DF
  - Conceptos nuevos: clausura, equivalencia y cubrimiento mínimo
  - Propiedades de la descomposición
  - Algoritmos para el diseño de esquemas

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

### Normalización - Reglas de Inferencia (Cont.)

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como
  - "Axiomas de Armstrong"
    - RI1 (regla reflexiva). Si  $Y \subseteq X$ , entonces  $X \rightarrow Y$
    - RI2 (regla de incremento).  $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
    - RI3 (regla transitiva).  $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- Demostración RI1. Supuestos
  - Y⊂X
  - $t_1, t_2$  existen en una instancia r(R) tal que  $t_1[X]=t_2[X]$

Entonces,  $t_1[Y]=t_2[Y]$  dado que  $Y\subseteq X$ ; por lo tanto  $X\to Y$  en r.

- Demostración RI2. (por contradicción) Supuestos
  - $X \rightarrow Y$  se cumple en r(R)
  - $XZ \rightarrow YZ$  NO se cumple en r(R)

Entonces existen  $t_1$ ,  $t_2$  tal que

- $0 t_1[X] = t_2[X]$
- (2)  $t_1[Y] = t_2[Y]$

Esto no es posible dado que de (1) y (3) se deduce (5)  $t_1[Z]=t_2[Z]$ , y de (2) y (5) se obtiene (6)  $t_1[YZ]=t_2[YZ]$ , contradiciendo (4)

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

## Normalización - Reglas de Inferencia (Cont.)

Demostración RI3. Supuestos

 $\bigcirc$   $X \rightarrow Y$  se cumple en r(R)

 $\bigcirc$   $Y \rightarrow Z$  se cumple en r(R)

Entonces para cualquier  $t_1$ ,  $t_2$  en r(R) tal que  $t_1[X]=t_2[X]$ , debe pasar que (3)  $t_1[Y]=t_2[Y]$  por asunción (1). También se sabe, por (3) y por asunción (2) que  $X\to Z$ . Por lo tanto, RI3 se cumple en r(R).

- Propiedades.
  - Fiable (Sound). Dado F de R, cualquier DF deducida de F utilizando RI1 a RI3, se cumple en cualquier estado r(R) que satisface F
  - Completa (Complete). F<sup>+</sup> puede ser determinado a partir de F aplicando solamente RI1 a RI3
- Reglas de Inferencia Adicionales. (corolarios de Armstrong)
  - RI4 (regla de descomposición o proyección).  $\{X \rightarrow YZ\} \models X \rightarrow Y$
  - RI5 (regla de unión o aditiva).  $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$
  - RI6 (regla pseudotransitiva).  $\{X \rightarrow Y, WY \rightarrow Z\} \models WX \rightarrow Z$

Normalización - 2da, Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DF

### Normalización - Clausura

- Diseño. Típicamente
  - O Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
  - 2 Se utilizan RI1 a RI3 para inferir DFs adicionales
- Punto (2) de manera sistemática
  - determinar conjunto de atributos X que aparecen del lado izq. de DFs de F
  - determinar conjunto Y de todos los atributos que dependen de X
- Clausura de X. Conjunto de atributos que son determinados por X basados en F. Se nota X<sup>+</sup>
- Algoritmo Nro. 1 para determinar  $X^+$

Entrada: DFs F de R; subconjunto de atributos X de R

- 1.  $X^{+} := X$
- 2. repetir
- 3.  $viejoX^+ := X^+$
- 4. Para cada  $DF Y \rightarrow Z en F$  hacer
- 5. Si  $Y \subseteq X^+$  entonces  $X^+ = X^+ \cup Z$
- 6. hasta( $X^+ = viejoX^+$ )

Normalización - 2da. Parte

Introducción
Propiedades de la Descomposición
Algoritmos para el Diseño de Esquemas

Marco General
Inferencia
Clausura y Equivalencia

# Normalización - Reglas de Inferencia (Cont.)

Demostración RI4.

(2)  $YZ \rightarrow Y$  (usando RI1 y tomando que  $Y \subseteq YZ$ )

 $3 \times Y$  (usando RI3 sobre (1) y (2)

Demostración RI5.

3  $X \rightarrow XY$  (usando RI2 sobre (1) incrementando con X; notar que XX = X)

 $\bigvee XY \rightarrow YZ$  (usando RI2 sobre (2) incrementando con Y)

5  $X \rightarrow YZ$  (usando RI3 sobre (3) y (4))

Demostración RI6.

 $\bigcirc$   $X \rightarrow Y$  (hipótesis)

 $\bigcirc$  *WY* $\rightarrow$ *Z* (hipótesis)

3  $WX \rightarrow WY$  (usando RI2 sobre (1) incrementando con W)

 $wx \rightarrow z$  (usando RI3 sobre (3) y (2))

- Decidir si es verdadero o falso
  - $\bullet$   $X \rightarrow A \lor Y \rightarrow B$ , entonces  $XY \rightarrow AB$  verdadero
  - $XY \rightarrow A$ , entonces  $X \rightarrow A$  o  $Y \rightarrow A$  falso (; ejemplo?)

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

# Normalización - Clausura (Cont.)

- Eiemplo.
  - R=(idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad)
  - F=-

DF1:  $idClase \rightarrow \{CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad\},$ 

DF2: CodigoCurso→Puntos,

DF3:  $\{CodigoCurso, Instrumento\} \rightarrow \{Libro, Aula\},\$ 

DF4: Libro→Editor,
DF5: Aula→Capacidad

}

- Aplicando el algoritmo para obtener X<sup>+</sup>
  - {idClase} += {idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad} = R
  - {CodigoCurso}<sup>+</sup>={CodigoCurso,Puntos}
  - {CodigoCurso,Instrumento}<sup>+</sup>=

{ CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad }

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

### Normalización - Equivalencia

- Cubrimiento. Dados E y F conjuntos de DFs, F cubre a E si  $(\forall df \in E)df \in F^+$
- Equivalencia. Dados E y F conjuntos de DFs, F y E son equivalentes si  $F^+=E^+$ , es decir, si F cubre a E y E cubre a F
- Ejercicio. Decir si los siguientes conjuntos de DFs son equivalentes
  - $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
  - $G = \{A \rightarrow CD, E \rightarrow AH\}$
- Procedimiento. Para determinar si F cubre a G, calcular, para cada DF X→Y de G, X<sup>+</sup> con respecto a F. Luego verificar si este X<sup>+</sup> incluye los atributos en Y. Similar razonamiento para verificar si G cubre a F

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

## Normalización - Conjunto Minimal de DFs (Cont.)

Algoritmo Nro. 2 Búsqueda de un cubrimiento minimal F para un conjunto de DFs E

```
Entrada: Conjunto de DFs E
```

Normalización - 2da. Parte

Introducción
Propiedades de la Descomposición
Algoritmos para el Diseño de Esquemas

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

### Normalización - Conjunto Minimal de DFs

- lacktriangle ightarrow Se explico cómo expandir F a  $F^+$
- ← Se quiere ver el camino inverso, reducir F a su expresión minimal
- Atributo Extraño. Atributo que puede ser removido sin alterar la clausura del conjunto de DFs.
- Formalmente. Sea  $X \rightarrow A$  en F,  $Y \subset X$  es extraño si F implica lógicamente  $(F \{X \rightarrow A\} \cup \{(X Y) \rightarrow A\}$
- Características de un Conjunto de DFs para ser minimal
  - ① Cada DF de F debe poseer un solo atributo en su lado derecho
  - No es posible reemplazar niguna DF  $X \rightarrow A$  de F por  $Y \rightarrow A$ , siendo  $Y \subset X$ , y seguir teniendo un conjunto de DFs equivalente a F
  - No es posible remover niguna DF de F y seguir teniendo un conjunto de DFs equivalente a F
- Intuitivamente. F minimal es un conjunto canónico y sin redundancia
- Cubrimiento minimal. Un cubrimiento minimal de F es un conjunto minimal de DFs (en forma canónica y sin redundancia) que es equivalente a F.
- Existencia. Siempre es posible hallar al menos un cubrimiento minimal F para cualquier conjunto de DFs E usando el siguiente algoritmo

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de <u>DFs</u>

## Normalización - Conjunto Minimal de DFs (Cont.)

- Ejemplo 1. Sea un conjunto de DFs E={B→A,D→A,AB→D}. Encontrar el cubrimiento minimal de E denominado F
  - Paso (1) Todas las DFs de E están en forma canónica. No es necesario hacer ningún cambio
  - Paso (2) Hay que determinar si  $AB \rightarrow D$  posee algún atributo extraño en su lado izquierdo. Esto es. si puede ser reemplazado por  $A \rightarrow D$  o  $B \rightarrow D$ 
    - Aplicando RI2 a B→A, incrementándolo con B, se obtiene BB→AB
      que equivale a (i) B→AB; Adicionalmente se tiene la DF (ii) AB→D
    - Aplicando la RI3 (transitiva) sobre (i) y (ii), se obtiene B→D. Así, AB→D puede ser reemplazada por B→D
    - El conjunto original E puede ser reemplazado por otro equivalente  $E' = \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$
    - No es posible otra reducción ya que todos los lados izquierdos poseen un solo atributo
  - Paso (3) Usando RI3 (transitiva) sobre B→D y D→A, se infiere B→A. Por lo tanto B→A es redundante y puede ser eliminada de E'
  - Cubrimiento minimal de E.  $F = \{B \rightarrow D, D \rightarrow A\}$

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

# Normalización - Conjunto Minimal de DFs (Cont.)

- Ejemplo 2. Sea un conjunto de DFs E={A→BCDE,CD→E}. Encontrar el cubrimiento minimal de E denominado F
  - Paso (1) Al pasar todas las DFs de E a la forma canónica, se obtiene:  $E = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, CD \rightarrow E\}$
  - Paso (2) Hay que determinar si CD→E posee algún atributo extraño en su lado izquierdo. Esto no sucede ya que las DFs C→E / D→E no pueden ser derivadas de las otras DFs
  - Paso (3) Vericamos si alguna DF es redundante. Dado que A→CD y CD→E, por RI3 (transitiva) A→E es redundante.
  - Cubrimiento minimal de E.  $F = \{A \rightarrow BCD, CD \rightarrow E\}$  (combinando partes derechas)

Normalización - 2da, Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Preservación de atributos Preservación de DFs Lossless Join

### Normalización - Insuficiencia de formas normales

- **Descomposición.** Es la descomposición de R en un conjunto de esquemas  $D = \{R_1, R_2, ..., R_m\}$  de R
- Propiedad deseable Nro. 1. Se desea preservación de atributos

$$\bigcup_{i=1}^m R_i = R$$

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

### Normalización - Clave de una Relación

**Algoritmo Nro. 3** Búsqueda de una clave K de R a partir de un conjunto de DFs

Entrada: Relación R y un Conjunto de DFs F de R

- 1 K⋅-R
- Para cada atributo A∈K

Computar  $(K-A)^{+}$  con respecto a F

 $Si(K-A)^+$  contiene todos los atributos de R entonces  $K:=K-\{A\}$ 

 Algoritmo determina una sola de las CK. Depende fuertemente de la manera en que son removidos los atributos

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Preservación de atributo Preservación de DFs Lossless Join

### Normalización - Preservación de DFs

- Propiedad deseable Nro. 2. Si  $X \rightarrow Y$  en F, es deseable que o bien aparezca en algún esquema  $R_i$  de D o bien pueda ser inferida de las DFs de algún esquema  $R_i$
- Importante. No es necesario que las DFs de F aparezcan en las Ri de D. Es suficiente que la unión de las DFs de cada Ri de D sea equivalente a F
- Proyección. Dado un conjunto de DFs F de R, la proyección de F sobre R<sub>i</sub>, denotado como π<sub>R<sub>i</sub></sub>(F) donde R<sub>i</sub> es un subconjunto de R, es el conjunto de DFs X→Y en F<sup>+</sup> tal que los atributos (X∪Y)⊂R<sub>i</sub>
- Preservación de DFs. La descomposición  $D=\{R_1,R_2,...,R_m\}$  de R preserva dependencias con respecto a F si la unión de las proyecciones de F de cada  $R_i$  de D es equivalente a F. Es decir, si  $(\pi_{R_1}(F)\cup...\cup\pi_{R_m}(F))^+=F^+$

Normalización - 2da. Parte



Preservación de DFs

# Normalización - Preservación de DFs (Cont.)

LOTES\_1A id\_Nacional Provincia id\_Provincial Zonificación DF1 DF5

Descomposición Boyce-Codd FN (BCFN).

LOTES\_1AX LOTES\_1AY id\_Nacional Zonificación id\_Provincial Zonificación Provincia

- ¿Esta descomposición preserva atributos? ¡Sí!
- ¿Esta descomposición preserva DFs? ¡NO! Se pierde DF 2

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Preservación de DFs

## Normalización - Preservación de DFs (Cont.)

• Ejemplo 3.





### Afirmación Nro. 1

Siempre es posible encontrar una descomposición D con preservación de DFs con respecto a F tal que cada  $R_i$  en D se encuentre en 3FN

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Preservación de DFs Algoritmos para el Diseño de Esquemas Normalización - Preservación de DFs (Cont.) • Ejemplo 2. LOTES id\_Nacional | Provincia | id\_Provincial | Zonificación | Precio\_m2 | Tasa\_Impuesto DF2 DF3 DF4 Descomposición en 2FN. LOTES\_1 LOTES 2 id\_Nacional Provincia id\_Provincial Zonificación Precio\_m2 Provincia Tasa\_Impuesto DF1 DF3



Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

**Lossless Join** 

Normalización - 2da. Parte

Normalización - 2da. Parte

### Normalización - Lossless Join

- Lossless Join informalmente. El cumplimiento de esta propiedad no permite la generación de tuplas espúreas cuando se realiza un NATURAL JOIN entre las relaciones resultantes de una descomposición
- Lossless Join formalmente. Una descomposición  $D = \{R_1, R_2, ..., R_m\}$  de R posee la propiedad lossless join con respecto al conjunto de DFs F de R si, para todo estado r(R) que satisface F, se cumple que  $\bowtie(\pi_{R_1}(r),...,\pi_{R_m}(r))=r$

# Normalización - Lossless Join (Cont.)

• Algoritmo Nro. 4 Chequeo de propiedad Lossless Join

**Entrada:** R, descomposición  $D = \{R_1, R_2, ..., R_m\}$  de R y un conjunto de DFs F

- 1. Crear una matriz S con una fila i por cada R; en D, y una columna j por cada atributo A; en R
- 2. Para todo i,j asignar  $S(i,j)=b_{ii}$  /\*cada  $b_{ii}$  es un elemento distinto de la matriz\*/

Si  $A_i \in R_i$  entonces  $S(i,j) = a_i$  /\*distingue a elementos que pertenecen a la relación  $R_i$ \*/

4. Repetir hasta que un loop completo no genere cambios en S

Para cada  $X \rightarrow Y$  en F

Para todas las filas fs en S que <u>tienen los mismos valores</u> en los atributos de X

Hacer que los atributos en fs para cada columna y de Y tengan el mismo valor de la siguiente manera

Si alguna de las fs en y tiene un simbolo a entonces asignarlo al resto de las fs en y

Sino elegir arbitrariamente un simbolo b de fs en y y asignarlo al resto de las fs en y

5. Si alguna fila de S posee la totalidad de elementos a entonces es lossless join, caso contrario no lo es

Normalización - 2da, Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

# Normalización - Lossless Join (Cont.)

- Eiemplo 1. Sean
  - R={E\_CUIL,E\_Nombre,P\_Número,P\_Nombre,P\_Ubicación,Horas}
  - $R_1 = EMP = \{E\_CUIL, E\_Nombre\}$
  - R<sub>2</sub>=PROY={P\_Número,P\_Nombre,P\_Ubicación}
  - R<sub>3</sub>=TRABAJA\_EN={E\_CUIL,P\_Número,Horas}
  - $D = \{R_1, R_2, R_3\}$
  - F={ E\_CUIL→E\_Nombre; P\_Número→{P\_Nombre;P\_Ubicación};  $\{E\_CUIL, P\_Número\} \rightarrow Horas;\}$
  - Paso 1.

|                | E_CUIL | E_Nombre | P_Número | P_Nombre | P_Ubicación | Horas |
|----------------|--------|----------|----------|----------|-------------|-------|
| $R_1$          |        |          |          |          |             |       |
| $R_2$          |        |          |          |          |             |       |
| R <sub>3</sub> |        |          |          |          |             |       |

Paso 2.

|                | E_CUIL          | E_Nombre        | P_Número        | P_Nombre        | P_Ubicación     | Horas           |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $R_1$          | b <sub>11</sub> | b <sub>12</sub> | b <sub>13</sub> | b <sub>14</sub> | b <sub>15</sub> | b <sub>16</sub> |
| $R_2$          | b <sub>21</sub> | b <sub>22</sub> | b <sub>23</sub> | b <sub>24</sub> | b <sub>25</sub> | b <sub>26</sub> |
| R <sub>3</sub> | b <sub>31</sub> | b <sub>32</sub> | b <sub>33</sub> | b <sub>34</sub> | b <sub>35</sub> | b <sub>36</sub> |

Paso 3.

|       | E_CUIL         | E_Nombre        | P_Número        | P_Nombre        | P_Ubicación     | Horas           |
|-------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $R_1$ | a <sub>1</sub> | a <sub>2</sub>  | b <sub>13</sub> | b <sub>14</sub> | b <sub>15</sub> | b <sub>16</sub> |
| $R_2$ | $b_{21}$       | b <sub>22</sub> | a <sub>3</sub>  | a <sub>4</sub>  | a <sub>5</sub>  | b <sub>26</sub> |
| $R_3$ | $a_1$          | b <sub>32</sub> | a <sub>3</sub>  | b <sub>34</sub> | b <sub>35</sub> | a <sub>6</sub>  |
|       |                |                 |                 |                 |                 |                 |

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Lossless Join

### Normalización - Lossless Join (Cont.)

#### • Eiemplo 1. Sean

- R={E\_CUIL,E\_Nombre,P\_Número,P\_Nombre,P\_Ubicación,Horas}
- R<sub>1</sub>=EMP\_UBICACION={E\_Nombre,P\_Ubicación}
- R<sub>2</sub>=EMP\_PROY1={E\_CUIL,P\_Número,P\_Nombre,P\_Ubicación,Horas}
- $D = \{R_1, R_2\}$
- F={

 $E\_CUIL \rightarrow E\_Nombre$ :

 $P_N imero \rightarrow \{P_N ombre; P_U bicación\};$  $\{E\_CUIL, P\_Número\} \rightarrow Horas;\}$ 

 Paso 1. E\_CUIL | E\_Nombre | P\_Número | P\_Nombre | P\_Ubicación | Horas

Paso 2.

|       | E_CUIL          | E_Nombre        | P_Número        | P_Nombre        | P_Ubicación     | Horas           |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $R_1$ | b <sub>11</sub> | b <sub>12</sub> | b <sub>13</sub> | b <sub>14</sub> | b <sub>15</sub> | b <sub>16</sub> |
| $R_2$ | b <sub>21</sub> | b <sub>22</sub> | b <sub>23</sub> | b <sub>24</sub> | b <sub>25</sub> | b <sub>26</sub> |
|       |                 |                 |                 |                 |                 |                 |
|       | E CIIII         | E Nombro        | D Númoro        | D Nombro        | D Hhicación     | Horac           |

Paso 3.

- Paso 4. No modifica ningún símbolo b en a
- Paso 5. No hay ninguna fila en S que posea a en la totalidad de valores, por lo tanto la descomposición no es lossless join

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

**Lossless Join** 

## Normalización - Lossless Join (Cont.)

#### • Eiemplo 1. Sean

- R={E\_CUIL,E\_Nombre,P\_Número,P\_Nombre,P\_Ubicación,Horas}
- R<sub>1</sub>=EMP={E\_CUIL,E\_Nombre}
- R<sub>2</sub>=PROY={P\_Número,P\_Nombre,P\_Ubicación}
- R<sub>3</sub>=TRABAJA\_EN={E\_CUIL,P\_Número,Horas}
- $D = \{R_1, R_2, R_3\}$
- F={ E\_CUIL→E\_Nombre; P\_Número→{P\_Nombre;P\_Ubicación};  $\{E\_CUIL, P\_Número\} \rightarrow Horas;\}$
- Paso 4. E\_CUIL→E\_Nombre

|       | E_CUIL          | E_Nombre               | P_Número        | P_Nombre        | P_Ubicación     | Horas           |
|-------|-----------------|------------------------|-----------------|-----------------|-----------------|-----------------|
| $R_1$ | a <sub>1</sub>  | a <sub>2</sub>         | b <sub>13</sub> | b <sub>14</sub> | b <sub>15</sub> | b <sub>16</sub> |
| $R_2$ | b <sub>21</sub> | b <sub>22</sub>        | a <sub>3</sub>  | <b>a</b> 4      | a <sub>5</sub>  | b <sub>26</sub> |
| $R_3$ | $a_1$           | <i>þ</i> ≱≱ <b>a</b> 2 | a <sub>3</sub>  | b <sub>34</sub> | b <sub>35</sub> | a <sub>6</sub>  |

Paso 4. P Número→{P Nombre:P Ubicación}

| _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 |                       |                 |                 |                 |                 |  |  |
|-----------------------------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|--|--|
|                                         | E_CUIL          | E_Nombre              | P_Número        | P_Nombre        | P_Ubicación     | Horas           |  |  |
| $R_1$                                   | a <sub>1</sub>  | <b>a</b> <sub>2</sub> | b <sub>13</sub> | b <sub>14</sub> | b <sub>15</sub> | b <sub>16</sub> |  |  |
| $R_2$                                   | b <sub>21</sub> | b <sub>22</sub>       | a <sub>3</sub>  | a <sub>4</sub>  | a <sub>5</sub>  | b <sub>26</sub> |  |  |
| $R_3$                                   | a <sub>1</sub>  | báź a2                | a <sub>3</sub>  | b≱á a₄          | bás as          | a <sub>6</sub>  |  |  |

- Paso 4.  $\{E\_CUIL, P\_N\'umero\} \rightarrow Horas$  no produce cambios en S
- Paso 4. Nueva vuelta sobre TODAS las DFs F no produce cambios en S
- Paso 5. Última fila de S posee la totalidad de sus valores en a, por lo tanto la descomposición es lossless join

## Normalización - Lossless Join para Descomposición Binaria

- Caso especial. Existe algoritmo más sencillo en caso de descomposición binaria
- Limitación. Sólo descomposición binaria
- Chequeo Lossless Join para descomposición binaria. También denominado NJB (Nonadditive Join Test for Binary Decompositions)
- NJB. Una descomposición  $D=\{R_1,R_2\}$  de R cumple con la propiedad de lossless join, con respecto a un conjunto de DFs F de R sí y sólo sí
  - La DF  $(R_1 \cap R_2 \to R_1 R_2) \in F^+$ , o
  - La DF  $(R_1 \cap R_2 \to R_2 R_1) \in F^+$

Normalización - 2da, Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

## Normalización - Lossless Join para Descomposición Binaria

Ejemplo.



Descomposición 2. (Materia en ambas relaciones)

| •       | ,          | ,              |                   |
|---------|------------|----------------|-------------------|
| Materia | Instructor | <u>Materia</u> | <b>Estudiante</b> |

- La DF  $(R_1 \cap R_2 \to R_1 R_2) \in F^+ \equiv (Materia \to Intructor) \in F^+$ , o
- La DF  $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (Materia \rightarrow Estudiante) \in F^+$
- Descomposición 2 ; Cumple Lossless join? ¡No! porque no cumple con ninguna de las dos condiciones

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Lossless Join

## Normalización - Lossless Join para Descomposición Binaria

Ejemplo.



• Descomposición 1. (Estudiante en ambas relaciones)



- La DF  $(R_1 \cap R_2 \to R_1 R_2) \in F^+ \equiv (Estudiante \to Intructor) \in F^+$ , o
- La DF  $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (Estudiante \rightarrow Materia) \in F^+$
- Descomposición 1 ; Cumple Lossless join? ¡No! porque no cumple con ninguna de las dos condiciones

Normalización - 2da. Parte

Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Lossless Join

# Normalización - Lossless Join para Descomposición Binaria

Ejemplo.



• Descomposición 3. (Instructor en ambas relaciones)

|                                                     | Instructor                                           | <u>Estudiante</u>                                                            |
|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|
| •                                                   |                                                      |                                                                              |
| $(R_0) \subset F^+ = (Instructor \rightarrow Mater$ | ria)∈F <sup>+</sup> 0                                |                                                                              |
|                                                     | $-R_2) \in F^+ \equiv (Instructor \rightarrow Mater$ | $-R_2) \in F^+ \equiv (\mathit{Instructor} \! 	o \! Materia) \in F^+ \; , O$ |

- La DF  $(R_1 \cap R_2 \to R_2 R_1) \in F^+ \equiv (Instructor \to Estudiante) \in F^+$
- Descomposición 3 ¿Cumple Lossless join? ¡Sí! porque se cumple al menos una de las dos condiciones: (Instructor  $\rightarrow$  Materia)  $\in F^+$

Preservación de atributo Preservación de DFs Lossless Join

### Normalización - Lossless Join - Descomposiciones sucesivas

 Recapitulando. En ejemplos previos utilizamos descomposiciones sucesivas al pasar a R a 2FN y luego a 3FN

#### Afirmación Nro. 2

Si se cumplen las siguientes condiciones:

- Una descomposición  $D=\{R_1,R_2,...,R_m\}$  de R cumple la propiedad de lossless join con respecto a F de R
- Una descomposición  $D_i = \{Q_1, Q_2, ..., Q_k\}$  de  $R_i$  cumple la propiedad de lossless join con respecto a la proyección de F sobre  $R_i$

Entonces la descomposición  $D_2=\{R_1,R_2,...R_{i-1},Q_1,Q_2,...,Q_k,R_{i+1},...,R_m\}$  de R cumple con la propiedad lossless join con respecto a F de R

Normalización - 2da, Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

Normalización - 2da. Parte

### Normalización - Algoritmos Diseño 1 - 3FN

Algoritmo Nro. D1 Descomposición en 3FN

Entrada: R universal y un conjunto de DFs F sobre R

- 1. Hallar el cubrimiento minimal G de F (utilizar algoritmo ya dado)
- 2. Para cada lado izquierdo X de cada DF que aparece en GCrear una relación en D con atributos  $\{X \cup \{A_1\} \cup \{A_2\} \cup \ldots \cup \{A_k\}\}$ siendo  $X \rightarrow A_1, X \rightarrow A_2, \ldots, X \rightarrow A_k$  las únicas dependencias

en G con X como lado izquierdo (X es la clave de esta relación)

3. Si ninguna relación en D contiene una clave de R

entonces crear una relación adicional en D que contenga atributos que formen una clave de R (se puede utilizar algoritmo ya dado)

4. Eliminar relaciones redundantes de D. Una relación R de D es redundante si R es una proyección de otra relación S de D

Introducción
Propiedades de la Descomposición
Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

### Normalización - Algoritmos Diseño

- Algortimo D1. Descompone relación universal R cumpliendo:
  - 3FN
  - Preservación de DFs
  - Lossless Join
- Algortimo D2. Descompone relación universal R cumpliendo:
  - BCFN
  - Lossless Join
- No es posible diseñar algoritmo que produzca una descomposición en BCFN con preservación DFs y Lossless Join

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas Algoritmo D1 - 3FN Algoritmo D2 - BCFN

## Normalización - Algoritmos Diseño 1 - 3FN (Cont.)

- Ejemplo 1.
  - $U = \{E\_CUIL, P\_Número, E\_Salario, E\_Teléfono, D\_Número, P\_Nombre, P\_Ubicación\}$
  - $\bullet \quad \textit{F} = \{ \begin{array}{ll} \textit{FD1: E\_CUIL} \rightarrow \{\textit{E\_Salario}, \textit{E\_Teléfono}, \textit{D\_Número}\}, \end{array}$

FD2:  $P_N imero \rightarrow \{P_N ombre, P_U bicación\},$ 

 $FD3: \{E\_CUIL, P\_Número\} \rightarrow \{E\_Salario, E\_Teléfono, D\_Número, P\_Nombre, P\_Ubicación\}\}$ 

- {E\_CUIL,P\_Número} representa una clave de la relación U (por FD3)
- Paso 1. Aplicando algoritmo de minimal cover, en su paso 3 se observa
  - *P\_Número* es atributo extraño en

 $\{E\_CUIL, P\_Número\} \rightarrow \{E\_Salario, E\_Teléfono, D\_Número\}$ 

- $E\_CUIL$  es atributo extraño en  $\{E\_CUIL, P\_N\'umero\} \rightarrow \{P\_Nombre, P\_Ubicaci\'on\}$
- Así, cubrimiento minimal = FD1 y FD2 (FD3 es redundante).

Agrupando atributos con mismo lado izq. en una sola DF:

 $\textit{Cubrimiento minimal G} = \{\textit{E\_CUIL} \rightarrow \{\textit{E\_Salario}, \textit{E\_Teléfono}, \textit{D\_Número}\},$ 

 $P_N imero \rightarrow \{P_N ombre, P_U bicación\}\}$ 

- Paso 2. Producir relaciones R<sub>1</sub> y R<sub>2</sub>
  - R<sub>1</sub>=(<u>E\_CUIL</u>, E\_Salario, E\_Teléfono, D\_Número)
  - R<sub>2</sub>=(P\_Número, P\_Nombre, P\_Ubicación)
- Paso 3. Generar  $R_3$  adicional con clave de U. Obteniendo finalmente:
  - R<sub>1</sub>=(E\_CUIL, E\_Salario, E\_Teléfono, D\_Número)
  - $R_2 = (P\_N \dot{u} mero, P\_N ombre, P\_U bicaci \acute{o} n)$
  - R<sub>3</sub>=(E\_CUIL,P\_Número)

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

# Normalización - Algoritmos Diseño 1 - 3FN (Cont.)

### Ejemplo 2.A.

- *U*={ *id\_Nacional*, *Provincia*, *id\_Provincial*, *Zonificación*}
- F={ FD1: id\_Nacional→{Provincia,id\_Provincial,Zonificación}, FD2:{Provincia,id\_Provincial}→{id\_Nacional,Zonificación}, FD3:Zonificación→Provincia}
- Abreviaremos N=id\_Nacional, V=Provincia, P=id\_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
  - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
     F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
  - Y en su paso 4, se observa que N→Z es redundante (se obtiene por transitividad de N→VP y VP→Z)
  - Así Cubrimiento minimal  $G = \{N \rightarrow VP, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 2. Producir relaciones  $R_1$ ,  $R_2$  y  $R_3$ 
  - $R_1 = (\underline{N}, V, P)$
  - $R_2 = (\underline{V}, \underline{P}, N, Z)$
  - R<sub>3</sub>=(<u>Z</u>,V)
- Paso 4.  $R_3$  y  $R_1$  ambas son proyecciones de  $R_2$ . Por lo tanto, ambas son redundantes
- Así, la descomposición obtenida en 3FN es R<sub>2</sub>=(<u>V,P,N,Z)</u>
  ¡Que es idéntica a la original!

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

## Normalización - Algoritmos Diseño 1 - 3FN (Cont.)

#### Ejemplo 2.B.

- U={id\_Nacional, Provincia, id\_Provincial, Zonificación}
- $$\begin{split} \bullet & F = \{ \ FD1: \ id\_Nacional \rightarrow \{ Provincia, id\_Provincial, Zonificación \}, \\ & FD2: \{ Provincia, id\_Provincial \} \rightarrow \{ id\_Nacional, Zonificación \}, \\ & FD3: Zonificación \rightarrow Provincia \} \end{split}$$
- Abreviaremos N=id\_Nacional, V=Provincia, P=id\_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- cubrimiento minimal alternativo: Cubrimiento minimal  $G = \{N \rightarrow PZ, VP \rightarrow N, Z \rightarrow V\}$
- Resultado.
  - $\bullet$   $R_1=(N,P,Z)$
  - $\bullet$   $R_2=(V,P,N)$
  - R<sub>3</sub>=(<u>Z</u>,V)
- Observaciones.
  - Se preservan las DFs
  - Se encuentran en BCFN

  - 4 R<sub>2</sub> es importante ya que mantiene las dos CK juntas
  - $R_2$  mantiene la DF  $VP \rightarrow N$  que se perdería si eliminamos dicha relación

Introducción
Propiedades de la Descomposición
Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

# Normalización - Algoritmos Diseño 1 - 3FN (Cont.)

### Ejemplo 2.B.

- U={id\_Nacional, Provincia, id\_Provincial, Zonificación}
- F={ FD1: id\_Nacional→{Provincia,id\_Provincial,Zonificación}, FD2:{Provincia,id\_Provincial}→{id\_Nacional,Zonificación}, FD3:Zonificación→Provincia}
- Abreviaremos N=id\_Nacional, V=Provincia, P=id\_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
  - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
  - Y en su paso 4, de manera alternativa, se observa que  $VP \rightarrow Z$  es redundante (se obtiene por transitividad de  $VP \rightarrow N$  y  $N \rightarrow Z$ )
  - También  $N \rightarrow V$  es redundante (transitividad de  $N \rightarrow Z$  y  $Z \rightarrow V$ )
  - Así, se obtiene un cubrimiento minimal alternativo: Cubrimiento minimal  $G=\{N \rightarrow PZ, VP \rightarrow N, Z \rightarrow V\}$
- Paso 2. Producir relaciones R<sub>1</sub>, R<sub>2</sub> y R<sub>3</sub>
  - $R_1 = (\underline{N}, P, Z)$
  - $R_2 = (\underline{V}, \underline{P}, N)$
  - $R_3=(\underline{Z},V)$
- Paso 4. Ninguna es proyecciones de otra. Por lo tanto, es el resultado final ¡Pero difiere del ejemplo anterior!

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

# Normalización - Algoritmos Diseño 1 - 3FN

### Conclusiones.

- Con el algoritmo, partiendo del mismo conjunto de DFs, se puede generar más de un diseño (Ejemplo 2.A. vs Ejemplo 2.B.)
- En algunos casos, algoritmo puede producir diseños que cumplen con BCFN (incluyendo relaciones que mantienen la preservación de DFs)

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

# Normalización - Algoritmos Diseño 2 - BCFN

• Algoritmo Nro. D2 Descomposición en BCFN

```
Entrada: R universal y un conjunto de DFs F sobre R

1. D:={R}
2. Mientras (∃Q∈D) Q no cumple BCFN{
    Seleccionar Q∈D que no cumple BCFN;
    Encontrar DF X → Y en Q que no cumple con BCFN;
    ReemplazarQ en D por la siguientes dos relaciones: (Q−Y) y (X∪Y);
```

En base a la propiedad NJB (descomposición binaria) y a la Afirmación Nro. 2
 D cumple con la propiedad lossless join

Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

## Normalización - Bibliografía

 Capítulo 15 (hasta 15.3 inclusive) Elmasri/Navathe - Fundamentals of Database Systems, 7th Ed., Pearson, 2015.



Normalización - 2da. Parte

Introducción Propiedades de la Descomposición Algoritmos para el Diseño de Esquemas

Algoritmo D1 - 3FN Algoritmo D2 - BCFN

### Normalización - Algoritmos Diseño 2 - BCFN

- Ejemplo.
  - R={ <u>Estudiante</u>, <u>Materia</u>, Instructor}
  - F={ FD1:{Estudiante,Materia}→Instructor, FD2:Instructor→Materia}
- Aplicando el algoritmo se obtiene
  - R<sub>1</sub>=(<u>Estudiante</u>, <u>Instructor</u>)
  - R<sub>2</sub>=(<u>Instructor</u>, Materia)

### Importante

La teoría de lossless join se basa en la asunción de que no existen valores NULL en los atributos de JOIN