

TRABAJO PRÁCTICO III: Minería de datos

PARTE 02: Clustering (K-Medias y algoritmos jerárquicos)

Introducción:

En este trabajo se abordarán los algoritmos de agrupamiento o *clustering* y las medidas de distancia asociadas a efectos de determinar la similitud de los datos.

En primer lugar, se trabajará con algunas de las medidas de distancia clásicas para variables numéricas como la euclídea, Manhattan y la distancia de Minkowski y otras medidas relacionadas a calcular distancias en variables binarias y categóricas.

Luego, se utilizarán los software **R** y **Weka** con el objetivo de resolver problemas de la disciplina, los cuales son una combinación ejercicios clásicos de minería de datos complementados con ejercicios propuestos por el equipo docente.

Consignas:

 Medidas de distancia. Calcule la distancia entre los siguientes puntos y el centroide (2, 4) utilizando las medidas euclídea, Manhattan y Minkowski (con p = 3):

X	Y
4	8
9	17
3	7

¿Encuentra diferencias relativas entre las diferentes métricas utilizadas y el resultado obtenido? Explique el comportamiento de cada una utilizando gráficas.

2. A continuación, calcule la distancia entre las diferentes variables de tipo categóricas con respecto a la instancia {1, lluvioso, templado, alta, fuerte}:

#	PRONÓSTICO	TEMPERATURA	HUMEDAD	VIENTO
2	lluvioso	Frío	normal	fuerte
3	nublado	Frío	normal	fuerte
4	soleado	templado	alta	leve
5	soleado	Frío	normal	leve
6	lluvioso	templado	normal	leve
7	soleado	templado	normal	fuerte
8	nublado	templado	alta	fuerte
9	nublado	Calor	normal	leve
10	lluvioso	templado	alta	fuerte

¿Cuáles son las instancias más cercanas a la instancia #1?

3. Ahora, y a partir de los datos de la siguiente tabla, agrupe los datos de acuerdo al algoritmo k-medias utilizando la medida *euclídea* y con los puntos A1, A2 y A7 como centroides iniciales.

PUNTO	X	Y
A1	2	10
A2	2	5
A3	8	4
A4	2	7
A5	7	5
A6	6	4
A7	1	2
A8	4	9

4. Implemente en un lenguaje de programación el algoritmo **k-medias** de acuerdo a alguna de las métricas de distancia vistas antes.

- 5. K-means. Se provee un dataset¹ sobre las características internas del núcleo de tres clases de trigo diferentes. Cargue el dataset en una de las herramientas de minería de datos provistas y resuelva:
 - a. Utilice el algoritmo k-medias variando la cantidad de centroides a efectos de agrupar los datos de la manera más eficiente.
 - b. ¿Cuál es la cantidad de grupos que permite un mejor agrupamiento de los datos? ¿Mediante cual métrica puede verificar esto?
 - c. ¿Cuáles son las características más distintivas de cada uno de los cluters resultantes?
- 6. Ahora, trabaje sobre el dataset ds-abandono.xls
 - a. Analice y describa las características más salientes de cada uno de los grupos encontrados por el algoritmo. ¿La información provista responde a criterios lógicos? ¿En qué casos?
 - b. Encuentre la cantidad de grupos que logran el mejor agrupamiento para los datos. Justifique la elección a partir de métricas y gráficas de los conglomerados resultantes.
 - c. Ahora aplique algún algoritmo jerárquico a efectos de agrupar los datos. ¿Cuál nivel se corresponde con el agrupamiento realizado por k-medias en el punto 6) a)?
 - d. ¿El agrupamiento jerárquico permite encontrar una mejor forma de agrupar los datos? Si fuera así, ¿Cuál es ese agrupamiento?
- 7. Algoritmos jerárquicos² (hclust y diana). Incorpore en R nuevamente el dataset del punto 5 y realice las siguientes actividades:
 - a. **Métodos aglomerativos.** Realice el agrupamiento de los datos a través del método aglomerativo. Tenga en cuenta la función *hclust()*.
 - Grafique el resultado y escoja cual es el nivel que mejor agrupa los datos.

² Para trabajar con R utilizando las funciones relacionadas a estos algoritmos previamente deberá instalar la librería **cluster**.

¹ Disponible en https://archive.ics.uci.edu/ml/datasets/seeds

- c. Métodos divisivos. Realice el agrupamiento de los datos a través del método divisivo. Tenga en cuenta la función diana().
- d. Grafique el resultado y escoja cual es el nivel que mejor agrupa los datos.
- e. Comparación. Explique someramente la diferencia entre ambos métodos y compare los resultados encontrados en términos de:
 - I. Los algoritmos,
 - II. Las características de los clusters obtenidos.

Referencias sugeridas:

Data Mining: Practical Machine Learning Tools and Techniques

http://www.cs.waikato.ac.nz/ml/weka/book.html

Cluster Analysis (R)

http://www.statmethods.net/advstats/cluster.html

Data Mining: Concepts and Techniques. Jiawei Han & Micheline Kamber. Morgan Kaufmann. Second Edition. 2006. Chapter 7.