Scilab Textbook Companion for Applied Chemistry by T. Paradkar¹

Created by
Hemin Navinchandra Chheda
B.E.
Electronics Engineering
VESIT
College Teacher
None
Cross-Checked by
Bhavani Jalkrish

June 7, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Applied Chemistry

Author: T. Paradkar

Publisher: Technical Publications, Pune

Edition: 1

Year: 2012

ISBN: 9789350387795

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes		
1	Water	Ę	
3	Lubricants	63	

List of Scilab Codes

Exa 1.1	hardness calculation	5
Exa 1.2	hardness calculation	6
Exa 1.3	hardness calculation	7
Exa 1.4	calculation of Fe2O3 required	7
Exa 1.5	hardness calculation	7
Exa 1.6	hardness calculation	8
Exa 1.7	hardness calculation	9
Exa 1.8	hardness calculation	10
Exa 1.9	hardness calculation by EDTA method	10
Exa 1.10	hardness calculation by EDTA method	11
Exa 1.11	hardness calculation by EDTA method	12
Exa 1.12	hardness calculation by EDTA method	12
Exa 1.13	hardness calculation by EDTA method	13
Exa 1.14	hardness calculation by EDTA method	14
Exa 1.15	hardness calculation by EDTA method	15
Exa 1.16	hardness calculation by EDTA method	16
Exa 1.17	calculation of required lime and soda	16
Exa 1.18	calculation of required lime and soda	17
Exa 1.19	calculation of required lime and soda	18
Exa 1.20	calculation of required lime and soda	19
Exa 1.21	calculation of required lime and soda	20
Exa 1.22	calculation of required lime	21
Exa 1.23	calculation of required soda	21
Exa 1.24	calculation of required lime and soda	22
Exa 1.25	calculation of required lime and soda	23
Exa 1.26	calculation of required lime and soda	24
Exa 1.27	calculation of required lime and soda	25
Exa 1.28	calculation of required lime and soda	26

Exa 1.29	calculation of required lime and soda	27
Exa 1.30	calculation of required lime and soda	28
Exa 1.31	calculation of required lime and soda	29
Exa 1.32	calculation of required lime and soda	30
Exa 1.33	calculation of required lime and soda	31
Exa 1.34	calculation of required lime and soda	32
Exa 1.35	calculation of required lime and soda	33
Exa 1.36	calculation of hardness using Zeolite process	34
Exa 1.37	calculation of hardness using Zeolite process	34
Exa 1.38	Hardwater quantity softened using Zeolite process	35
Exa 1.39	Hardwater quantity softened using Zeolite process	36
Exa 1.40	calculation of hardness using Zeolite process	36
Exa 1.41	calculation of hardness using Zeolite process	37
Exa 1.42	NaCl required for zeolite bed regeneration	37
Exa 1.43	Hardwater quantity softened using Zeolite process	38
Exa 1.44	calculation of hardness using Zeolite process	38
Exa 1.45	calculation of hardness using Zeolite process	39
Exa 1.46	calculation of hardness using Zeolite process	39
Exa 1.47	Hardwater quantity softened using Zeolite process	40
Exa 1.48	calculation of hardness using ion exchange process	40
Exa 1.49	calculation of BOD	41
Exa 1.50	calculation of COD	41
Exa 1.51	hardness calculation using Zeolite process	42
Exa 1.52	calculation of required lime and soda	42
Exa 1.53	hardness calculation	43
Exa 1.54	calculation of required lime and soda	44
Exa 1.55	hardness calculation by EDTA method	45
Exa 1.56	calculation of required lime and soda	46
Exa 1.57	NaCl quantity produced in Zeolite process	47
Exa 1.58	hardness calculation	47
Exa 1.59	calculation of required lime and soda	48
Exa 1.60	hardness calculation by EDTA method	49
Exa 1.61	hardness calculation	50
Exa 1.62	calculation of required lime and soda	51
Exa 1.63	calculation of required lime and soda	52
Exa 1.64	Hardwater quantity softened using Zeolite process	53
Exa 1.65	calculation of hardness using Zeolite process	53
Exa 1 66	calculation of required lime and soda	54

Exa 1.67	hardness calculation by EDTA method	55
Exa 1.68	hardness calculation	55
Exa 1.69	calculation of required lime and soda	56
Exa 1.70	hardness calculation by EDTA method	57
Exa 1.71	hardness calculation by Zeolite method	58
Exa 1.72	hardness calculation by Zeolite process	58
Exa 1.73	hardness calculation by EDTA method	59
Exa 1.74	calculation of required lime and soda	60
Exa 1.75	calculation of required lime and soda	61
Exa 1.76	Hardwater quantity softened using Zeolite process	62
Exa 3.1	Acid value of oil	63
Exa 3.2	Acid value of oil	63
Exa 3.3	Acid value of oil	64
Exa 3.4	Acid value of oil	64
Exa 3.5	Acid value of oil	65
Exa 3.6	Acid value of oil	65
Exa 3.7	Acid value of oil	66
Exa 3.8	Acid value of oil	67
Exa 3.9	Acid value of oil	67
Exa 3.10	Acid value of oil	68
Exa 3.11	Saponification value of oil	68
Exa 3.12	Saponification value of oil	69
Exa 3.13	alcoholic KOH consumed in saponification	69
Exa 3.14	saponification value of oil	70
Exa 3.15	composition of blended oils by saponification	70
Exa 3.16	saponification value of oil	71
Exa 3.17	saponification value of oil	72
Exa 3.18	saponification value of oil	72
Exa 3.19	composition of blended oils by saponification	73
Exa 3.20	composition of blended oils by saponification	73

Chapter 1

Water

Scilab code Exa 1.1 hardness calculation

```
1 //water//
2 //page 1.7 example 1//
3 clc
4 W1=16.8; //Mg(HCO3) 2 in water in mg/L//
5 W2=19; //MgCl2 in water in mg/L//
6 W3=24; //MgSO4 in water in mg/L//
7 W4=29.6; //Mg(NO3) 2 in water in mg/L//
8 W5=04; //\text{CaCO3} in water in mg/L//
9 W6=10; //MgCO3 in water in mg/L//
10 M1=100/146; //multiplication factor of Mg(HCO3) 2//
11 M2=100/95; // multiplication factor of MgCl2//
12 M3=100/120; // multiplication factor of MgSO4//
13 M4=100/148; // multiplication factor of Mg(NO3) 2//
14 M5=100/100; // multiplication factor of CaCO3//
15 M6=100/84; // multiplication factor of MgCO3//
16 P1=W1*M1; //Mg(HCO3)2 in terms of CaCO3 equivalent/
      litre //
17 P2=W2*M2; //MgCl2 in terms of CaCO3 equivalent/litre
18 P3=W3*M3; //MgSO4 in terms of CaCO3 equivalent/litre
```

```
19 P4=W4*M4; //Mg(NO3)2 in terms of CaCO3 equivalent/
    litre//
20 P5=W5*M5; //CaCO3 in terms of CaCO3 equivalent/litre
    //
21 P6=W6*M6; //MgCO3 in terms of CaCO3 equivalent/litre
    //
22 T=P1+P5+P6;
23 printf("\nTemporary hardness is %.1f mg CaCO3
    equivalent/litre",T);
24 P=P2+P3+P4;
25 printf("\nPermanant hardness is %.0f mg CaCO3
    equivalent/litre",P);
```

Scilab code Exa 1.2 hardness calculation

```
1 //water//
2 //page 1.8 example 2//
3 clc
4 W1=7.1; //Mg(HCO3) 2 in water in mg/L//
5 W2=8.1; //Ca(HCO3) 2 in water in mg/L//
6 W3=4.2; //MgCO3 in water in mg/L//
7 W4=10; //CaCO3 in water in mg/L//
8 W5=24; //MgSO4 in water in mg/L//
9 M1=100/146; // multiplication factor of Mg(HCO3) 2//
10 M2=100/162; //multiplication factor of Ca(HCO3) 2//
11 M3=100/84; //multiplication factor of MgCO3//
12 M4=100/100; // multiplication factor of CaCO3//
13 M5=100/120; //multiplication factor of MgSO4//
14 P1=W1*M1; //Mg(HCO3) 2 in terms of CaCO3//
15 P2=W2*M2; //Ca(HCO3)2 in terms of CaCO3//
16 P3=W3*M3; //MgCO3 in terms of CaCO3//
17 P4=W4*M4; //CaCO3 in terms of CaCO3//
18 P5=W5*M5; //MgSO4 in terms of CaCO3//
19 C=P1+P2+P3+P4;
20 printf("\nCarbonate hardness is %.0 f ppm",C);
```

```
21 NC=P5;
22 printf("\nNon-Carbonate hardness is %.0 f ppm", NC);
```

Scilab code Exa 1.3 hardness calculation

```
1 //water//
2 //page 1.9 example 3//
3 clc
4 W1=150; //Ca2+ in water in mg/L//
5 W2=60; //Mg2+ in water in mg/L//
6 M1=100/40; // multiplication factor of Ca2+//
7 M2=100/24; // multiplication factor of Mg2+//
8 P1=W1*M1; //Ca2+ in terms of CaCO3//
9 P2=W2*M2; //Mg2+ in terms of CaCO3//
10 T=P1+P2;
11 printf("\nTotal hardness is %.0f mg/L",T);
```

Scilab code Exa 1.4 calculation of Fe2O3 required

```
1 //water//
2 //page 1.9 example 4//
3 clc
4 H=210.5; //hardness in ppm//
5 M1=100; //molecular weight of CaCO3//
6 M2=136; //molecular weight of FeSO4//
7 M=M1/M2; //multiplication factor of FeSO4//
8 W=H/M; //weight of FeSO4 required //
9 printf("\nFeSO4 required is %.1 f ppm", W);
```

Scilab code Exa 1.5 hardness calculation

```
1 //water//
2 //page 1.10 example 5//
4 W1=32.4; //Ca(HCO3)2 in water in mg/L//
5 W2=29.2; //Mg(HCO3)2 in water in mg/L//
6 W3=13.6; //CaSO4 in water in mg/L//
7 M1=100/162; //multiplication factor of Ca(HCO3)2//
8 M2=100/146; // multiplication factor of Mg(HCO3) 2//
9 M3=100/136; // multiplication factor of CaSO4//
10 P1=W1*M1; //Ca(HCO3)2 in terms of CaCO3//
11 P2=W2*M2; //Mg(HCO3)2 in terms of CaCO3//
12 P3=W3*M3;//CaSO4 in terms of CaCO3//
13 T=P1+P2;
14 printf("\nTemporary hardness is %.0 f ppm",T);
15 P=P3;
16 printf("\nPermanant hardness is %.0f ppm",P);
17 To=T+P;
18 printf("\nTotal hardness is %.0f ppm", To);
```

Scilab code Exa 1.6 hardness calculation

```
1 //water//
2 //page 1.10 example 6//
3 clc
4 W1=14.6; //Mg(HCO3) 2 in water in mg/L//
5 W2=8.1; //Ca(HCO3) 2 in water in mg/L//
6 W3=29.6; //Mg(NO3) 2 in water in mg/L//
7 W4=19; //MgCl2 in water in mg/L//
8 W5=24; //MgSO4 in water in mg/L//
9 M1=100/146; // multiplication factor of Mg(HCO3) 2//
10 M2=100/162; // multiplication factor of Ca(HCO3) 2//
11 M3=100/148; // multiplication factor of Mg(NO3) 2//
12 M4=100/95; // multiplication factor of MgCl2//
13 M5=100/120; // multiplication factor of MgSO4//
14 P1=W1*M1; //Mg(HCO3) 2 in terms of CaCO3//
```

```
15  P2=W2*M2; //Ca(HCO3) 2 in terms of CaCO3//
16  P3=W3*M3; //Mg(NO3) 2 in terms of CaCO3//
17  P4=W4*M4; //MgCl2 in terms of CaCO3//
18  P5=W5*M5; //MgSO4 in terms of CaCO3//
19  T=P1+P2;
20  printf("\nTemporary hardness is %.0 f ppm",T);
21  P=P3+P4+P5;
22  printf("\nPermanant hardness is %.0 f ppm",P);
```

Scilab code Exa 1.7 hardness calculation

```
1 //water//
2 //page 1.11 example 7//
3 clc
4 W1=7.3; //Mg(HCO3)2 in water in mg/L//
5 W2=9.5; //MgCl2 in water in mg/L//
6 W3=16.2; //Ca(HCO3)2 in water in mg/L//
7 W4=13.6; //CaSO4 in water in mg/L//
8 M1=100/146; //multiplication factor of Mg(HCO3) 2//
9 M2=100/95; // multiplication factor of MgCl2//
10 M3=100/162; // multiplication factor of Ca(HCO3) 2//
11 M4=100/136; // multiplication factor of CaSO4//
12 P1=W1*M1; //Mg(HCO3) 2 in terms of CaCO3//
13 P2=W2*M2; //MgCl2 in terms of CaCO3//
14 P3=W3*M3; //Ca(HCO3)2 in terms of CaCO3//
15 P4=W4*M4; //CaSO4 in terms of CaCO3//
16 T = P1 + P3;
17 printf("\nTemporary hardness is %.0 f ppm",T);
18 P=P2+P4;
19 printf("\nPermanant hardness is %.0f ppm",P);
20 To=T+P;
21 printf("\nTotal hardness is %.0f ppm", To);
```

Scilab code Exa 1.8 hardness calculation

```
1 //water//
2 //page 1.12 example 8//
3 clc
4 W1=19; //MgCl2 in water in mg/L//
5 W2=5; //CaCO3 in water in mg/L//
6 W3=29.5; //Ca(HCO3)2 in water in mg/L//
7 W4=13; //CaSO4 in water in mg/L//
8 M1=100/95; //multiplication factor of MgCl2//
9 M2=100/100; // multiplication factor of CaCO3//
10 M3=100/162; //multiplication factor of Ca(HCO3) 2//
11 M4=100/136; // multiplication factor of CaSO4//
12 P1=W1*M1; //MgCl2 in terms of CaCO3//
13 P2=W2*M2; //CaCO3 in terms of CaCO3//
14 P3=W3*M3; //Ca(HCO3)2 in terms of CaCO3//
15 P4=W4*M4; //CaSO4 in terms of CaCO3//
16 \text{ T=P2+P3};
17 printf("\nTemporary hardness is %.2 f ppm",T);
18 P=P1+P4;
19 printf("\nPermanant hardness is %.2 f ppm",P);
20 To=T+P;
21 printf("\nTotal hardness is %.2 f ppm", To);
```

Scilab code Exa 1.9 hardness calculation by EDTA method

```
1 //water//
2 //page 1.15 example 1//
3 clc
4 strength=1.1//in terms of mgs/ml CaCO3//
5 volume=50//volume titrated(ml)//
6 EDTA=38//volume in terms of ml//
7 volume_hardwater=100//volume of hardwater titrated(ml)//
8 EDTA_hardwater=21//volume used to titrate unknown
```

Scilab code Exa 1.10 hardness calculation by EDTA method

```
1 //water//
2 //page 1.16 example 2//
3 clc
4 conc_SH=0.28/1000//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=100//in terms of ml//
7 volume_H=100//in terms of ml//
8 EDTA_SH=28//volume for Std hardwater(ml)//
9 EDTA_H=33//volume for sample hardwater(ml)//
10 AB_EDTA=10//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
     of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample*1000//total hardness per litre(ppm)//
15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
     hardness for given volume //
16 P=P_sample*1000//permanent hardness per litre(ppm)//
17 T = To - P
18 printf("\nTotal Hardness is %.f ppm",To);
```

```
19 printf("\nPermanent Hardness is %.f ppm",P);
20 printf("\nTemporary Hardness is %.f ppm",T);
```

Scilab code Exa 1.11 hardness calculation by EDTA method

```
1 //water//
2 //page 1.17 example 3//
4 conc_SH=1/1000//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=50//in terms of ml//
7 volume_H=50//in terms of ml//
8 EDTA_SH=20//volume for Std hardwater(ml)//
9 EDTA_H=25//volume for sample hardwater(ml)//
10 AB_EDTA=18//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
      of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample *1000 // total hardness per litre (ppm) //
15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
     hardness for given volume //
16 P=P_sample*1000//permanent hardness per litre(ppm)//
17 T = To - P
18 printf("\nTotal Hardness is %.f ppm", To);
19 printf("\nPermanent Hardness is %.f ppm",P);
20 printf("\nTemporary Hardness is %.f ppm",T);
```

Scilab code Exa 1.12 hardness calculation by EDTA method

```
1 //water//
```

```
\frac{2}{\text{page 1.18 example 4}}
3 clc
4 conc_SH=15/1000//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=20//in terms of ml//
7 volume_H=100//in terms of ml//
8 EDTA_SH=25//volume for Std hardwater(ml)//
9 EDTA_H=18//volume for sample hardwater(ml)//
10 AB_EDTA=12//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
      of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample*1000//total hardness per litre(ppm)//
15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
     hardness for given volume //
16 P=P_sample*1000//permanent hardness per litre(ppm)//
17 T = To - P
18 printf("\nTotal Hardness is %.f ppm",To);
19 printf("\nPermanent Hardness is %.f ppm",P);//Final
     answer in book is incorrect//
20 printf("\nTemporary Hardness is %.f ppm",T);//Final
     answer in book is incorrect//
```

Scilab code Exa 1.13 hardness calculation by EDTA method

```
1 //water//
2 //page 1.19 example 5//
3 clc
4 conc_SH=0.5/500//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=50//in terms of ml//
7 volume_H=50//in terms of ml//
```

```
8 EDTA_SH=48//volume for Std hardwater(ml)//
9 EDTA_H=15//volume for sample hardwater(ml)//
10 AB_EDTA=10//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
      of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample*1000//total hardness per litre(ppm)//
15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
     hardness for given volume //
16 P=P_sample*1000//permanent hardness per litre(ppm)//
17 T = To - P
18 printf("\nTotal Hardness is %.1f ppm", To);
19 printf("\nPermanent Hardness is %.2 f ppm",P);
20 printf("\nTemporary Hardness is %.2 f ppm",T);
```

Scilab code Exa 1.14 hardness calculation by EDTA method

```
1 //water//
2 //page 1.20 example 6//
3 clc
4 conc_SH=1/1000//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=50//in terms of ml//
7 volume_H=50//in terms of ml//
8 EDTA_SH=45//volume for Std hardwater(ml)//
9 EDTA_H=25//volume for sample hardwater(ml)//
10 AB_EDTA=15//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
```

Scilab code Exa 1.15 hardness calculation by EDTA method

```
1 //water//
2 //page 1.21 example 7//
4 conc_SH=1/20//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=50//in terms of ml//
7 volume_H=50//in terms of ml//
8 EDTA_SH=1000//volume for Std hardwater(ml)//
9 EDTA_H=7.2//volume for sample hardwater(ml)//
10 AB_EDTA=4//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
     of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample*1000//total hardness per litre(ppm)//
15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
     hardness for given volume //
16 P=P_sample*1000//permanent hardness per litre(ppm)//
17 \quad T = To - P
18 printf("\nTotal Hardness is %.f ppm", To);
19 printf("\nPermanent Hardness is %.f ppm",P);
```

Scilab code Exa 1.16 hardness calculation by EDTA method

```
1 //water//
2 //page 1.22 example 8//
3 clc
4 conc_SH=1.2/1000//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=20//in terms of ml//
7 volume_H=50//in terms of ml//
8 EDTA_SH=35//volume for Std hardwater(ml)//
9 EDTA_H=30//volume for sample hardwater(ml)//
10 AB_EDTA=25//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
     of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample*1000//total hardness per litre(ppm)//
15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
     hardness for given volume//
16 P=P_sample*1000//permanent hardness per litre(ppm)//
17 T = To - P
18 printf("\nTotal Hardness is %.f ppm",To);
19 printf("\nPermanent Hardness is %.1f ppm",P);
20 printf("\nTemporary Hardness is %.1 f ppm",T);
```

Scilab code Exa 1.17 calculation of required lime and soda

```
1 //water//
2 //page 1.31 example 1//
```

```
3 clc
4 Purity_Lime = .90
5 Purity_soda=1
6 W1=136; //amount of CaSO4 in ppm//
7 W2=49; //amount of H2SO4 in ppm//
8 W3=95; //amount of MgCl2 in ppm//
9 W4=60; //amount of MgSO4 in ppm//
10 M1=100/136; // multiplication factor of CaSO4//
11 M2=100/98; // multiplication factor of H2SO4//
12 M3=100/95; //multiplication factor of MgCl2//
13 M4=100/120; // multiplication factor of MgSO4//
14 P1=W1*M1; //in terms of CaCO3//S
15 P2=W2*M2; //in terms of CaCO3//L+S
16 P3=W3*M3;//in terms of CaCO3//L+S
17 P4=W4*M4; //in terms of CaCO3//L+S
18 printf ("We do not take SiO2 since it does not react
       with lime/soda");
19 V=1000000; //volume of water in litres//
20 L=0.74*(P2+P3+P4)*V/Purity_Lime; //lime required in
     mg//
21 L=L/10<sup>3</sup>;
22 printf("\n Amount of Lime required is \%.f g",L);
23 S=1.06*(P1+P2+P3+P4)*V/Purity_soda; //soda required
      in mg//
24 S=S/10<sup>3</sup>;
25 printf("\n Amount of Soda required is \%.f g",S)
```

Scilab code Exa 1.18 calculation of required lime and soda

```
1 //water//
2 //page 1.31 example 2//
3 clc
4 Purity_Lime=.90
5 Purity_soda=.95
6 W1=156; //amount of Mg(HCO3) 2 in ppm//
```

```
7 W2=4.9; //amount of H2SO4 in ppm//
8 W3=23.75; //amount of MgCl2 in ppm//
9 W4=5.6; //amount of NaCl in ppm//
10 W5=111; //amount of CaCl2 in ppm//
11 W6=16.2; //amount of SiO2 in ppm//
12 M1=100/146; // multiplication factor of Mg(HCO3) 2//
13 M2=100/98; // multiplication factor of H2SO4//
14 M3=100/95; // multiplication factor of MgCl2//
15 M5=100/111; // multiplication factor of CaCl2//
16 P1=W1*M1; //in terms of CaCO3//2*L
17 P2=W2*M2; //in terms of CaCO3//L+S
18 P3=W3*M3;//in terms of CaCO3//L+S
19 P5=W5*M5; //in terms of CaCO3//S
20 printf ("We do not take NaCl and SiO2 since they do
      not react with lime/soda");
21 V=50000; //volume of water in litres//
22 L=0.74*(2*P1+P2+P3)*V/Purity_Lime; //lime required in
       mg//
23 L=L/10<sup>3</sup>;
24 printf("\n Amount of Lime required is \%.2 f g", L);
25 \text{ S=1.06*(P2+P3+P5)*V/Purity\_soda;}//\text{soda required in}
      mg//
26 S=S/10<sup>3</sup>;
27 printf("\n Amount of Soda required is %.2 f g",S)
```

Scilab code Exa 1.19 calculation of required lime and soda

```
1  //water//
2  //page 1.32 example 3//
3  clc
4  Purity_Lime=.74
5  Purity_soda=.90
6  W1=73; //amount of Mg(HCO3)2 in ppm//
7  W2=222; //amount of CaCl2 in ppm//
8  W3=120; //amount of MgSO4 in ppm//
```

```
9 W4=164; //amount of Ca(NO3)2 in ppm//
10 M1=100/146; //multiplication factor of Mg(HCO3) 2//
11 M2=100/111; // multiplication factor of CaCl2//
12 M3=100/120; // multiplication factor of MgSO4//
13 M4=100/164; // multiplication factor of Ca(NO3) 2//
14 P1=W1*M1; //in terms of CaCO3//2*L
15 P2=W2*M2; //in terms of CaCO3//S
16 P3=W3*M3; //in terms of CaCO3//L+S
17 P4=W4*M4; //in terms of CaCO3//S
18 V=5000; //volume of water in litres //
19 L=0.74*(2*P1+P3)*V/Purity_Lime; // lime required in mg
      //
20 L=L/10<sup>3</sup>;
21 printf("\n Amount of Lime required is \% f g",L);
22 S=1.06*(P2+P3+P4)*V/Purity_soda; //soda required in
     mg//
23 S=S/10^3;
24 printf("\n Amount of Soda required is %.2 f g",S)
```

Scilab code Exa 1.20 calculation of required lime and soda

```
//water//
//page 1.33 example 4//
clc
Purity_Lime=1
Purity_soda=1
W1=144; //amount of MgCO3 in ppm//
W2=95; //amount of MgCl2 in ppm//
W3=25; //amount of CaCO3 in ppm//
W4=111; //amount of CaCl2 in ppm//
M1=100/84; // multiplication factor of MgCO3//
M2=100/95; // multiplication factor of MgCO3//
M3=100/100; // multiplication factor of CaCO3//
M4=100/111; // multiplication factor of CaCO3//
M4=100/111; // multiplication factor of CaCO3//
M1 P1=W1*M1; // in terms of CaCO3//2*L
```

Scilab code Exa 1.21 calculation of required lime and soda

```
1 //water//
2 //page 1.34 example 5//
3 clc
4 Purity_Lime=1
5 W1=13.6; //amount of CaSO4 in ppm//
6 W2=8.4; //amount of MgCO3 in ppm//
7 W3=05; //amount of CaCO3 in ppm//
8 M1=100/136; // multiplication factor of CaSO4//
9 M2=100/84; //multiplication factor of MgCO3//
10 M3=100/100; // multiplication factor of CaCO3//
11 P1=W1*M1; //in terms of CaCO3//S
12 P2=W2*M2; //in terms of CaCO3//2*L
13 P3=W3*M3; //in terms of CaCO3//L
14 printf ("We do not take KNO3 since it does not react
       with lime/soda");
15 V=5000; //volume of water in litres //
16 L=0.74*(2*P2+P3)*V/Purity_Lime;//lime required in mg
17 L=L/10^3;
```

Scilab code Exa 1.22 calculation of required lime

```
1 //water//
2 //page 1.35 example 6//
3 clc
4 Purity_soda=1
5 W1=5; //amount of CaCO3 in ppm//
6 W2=22.2; //amount of CaCl2 in ppm//
7 W3=2; //amount of MgSO4 in ppm//
8 M1=100/100; // multiplication factor of CaCO3//
9 M2=100/111; // multiplication factor of CaCl2//
10 M3=100/120; // multiplication factor of MgSO4//
11 P1=W1*M1; //in terms of CaCO3//L
12 P2=W2*M2; //in terms of CaCO3//S
13 P3=W3*M3;//in terms of CaCO3//L+S
14 printf ("We do not take Na2SO4 and SiO2 since they
     do not react with lime/soda");
15 V=10000; //volume of water in litres //
16 S=1.06*(P2+P3)*V/Purity_soda; \frac{1}{\sqrt{soda}} required in mg//
17 S=S/10^3;
18 printf("\n Amount of Soda required is %.1f g",S)
```

Scilab code Exa 1.23 calculation of required soda

```
1 //water//
2 //page 1.36 example 7//
3 clc
4 Purity_Lime=1
5 Purity_soda=1
6 W1=10;//amount of CaCO3 in ppm//
7 W2=36.5;//amount of Mg(HCO3)2 in ppm//
```

```
8 W3=19; //amount of MgCl2 in ppm//
9 M1=100/100; // multiplication factor of CaCO3//
10 M2=100/146; // multiplication factor of Mg(HCO3) 2//
11 M3=100/95; // multiplication factor of MgCl2//
12 P1=W1*M1; //in terms of CaCO3//L
13 P2=W2*M2; //in terms of CaCO3//2*L
14 P3=W3*M3; //in terms of CaCO3//L+S
15 printf ("We do not take SiO2 since it does not react
       with lime/soda");
16 V=1000000; //volume of water in litres //
17 L=0.74*(P1+2*P2+P3)*V/Purity_Lime; // lime required in
      mg//
18 L=L/10<sup>3</sup>;
19 printf("\n Amount of Lime required is %.f g",L);
20 S=1.06*(P3)*V/Purity_soda; \frac{1}{\sqrt{soda}} required in mg//
21 S=S/10^3;
22 printf("\n Amount of Soda required is %.f g",S)
```

Scilab code Exa 1.24 calculation of required lime and soda

```
//water//
//page 1.37 example 8//
clc
Purity_Lime=.8
Purity_soda=.9
W1=7.1; //amount of Mg(HCO3)2 in ppm//
W2=8.1; //amount of Ca(HCO3)2 in ppm//
W3=4.195; //amount of MgCO3 in ppm//
W4=10; //amount of CaCO3 in ppm//
M1=100/146; // multiplication factor of Mg(HCO3)2//
M2=100/162; // multiplication factor of Ca(HCO3)2//
M3=100/84; // multiplication factor of MgCO3//
M4=100/100; // multiplication factor of CaCO3//
P1=W1*M1; // in terms of CaCO3//2*L
P2=W2*M2; // in terms of CaCO3//L
```

Scilab code Exa 1.25 calculation of required lime and soda

```
1 //water//
2 //page 1.38 example 9//
3 clc
4 Purity_Lime=.9
5 Purity_soda=.9
6 W1=19; //amount of MgCl2 in ppm//
7 W2=27.2; //amount of CaSO4 in ppm//
8 W3=4.9; //amount of H2SO4 in ppm//
9 W4=6; //amount of AL3+ in ppm//
10 M1=100/95; // multiplication factor of MgCl2//
11 M2=100/136; // multiplication factor of CaSO4//
12 M3=100/49; // multiplication factor of H2SO4//
13 M4=100/18.0018; // multiplication factor of AL3+//
14 P1=W1*M1; //in terms of CaCO3//L+S
15 P2=W2*M2; //in terms of CaCO3//S
16 P3=W3*M3; //in terms of CaCO3//L+S
17 P4=W4*M4; //in terms of CaCO3//L+S
18 V=500000; //volume of water in litres//
19 L=0.74*(P1+P3+P4)*V/Purity\_Lime; //lime required in
     mg//
20 L=L/10<sup>3</sup>;
21 printf("\n Amount of Lime required is \%.2 \, \text{f g}",L);
```

Scilab code Exa 1.26 calculation of required lime and soda

```
1 //water//
2 //page 1.38 example 10//
3 clc
4 Purity_Lime=.9
5 Purity_soda=.95
6 W1=81; //amount of Ca(HCO3)2 in ppm//
7 W2=42; //amount of MgCO3 in ppm//
8 W3=4.1; //amount of NaAlO2 in ppm//
9 W4=3.65; //amount of HCl in ppm//
10 W5=82; //amount of Ca(NO3)2 in ppm//
11 M1=100/162; // multiplication factor of Ca(HCO3) 2//
12 M2=100/84; // multiplication factor of MgCO3//
13 M3=100/82; // multiplication factor of NaAlO2//
14 M4=100/36.5; // multiplication factor of HCl//
15 M5=100/164; // multiplication factor of Ca(NO3) 2//
16 P1=W1*M1; //in terms of CaCO3//L
17 P2=W2*M2; //in terms of CaCO3//2*L
18 P3=W3*M3; //in terms of CaCO3//-L
19 P4=W4*M4; // in terms of CaCO3//L+S
20 P5=W5*M5; //in terms of CaCO3//S
21 printf ("We do not take NaCl since it does not react
       with lime/soda");
22 V=20000; //volume of water in litres//
23 L=0.74*(P1+2*P2+P4-P3)*V/Purity_Lime; //lime required
       in mg//
24 L=L/10<sup>3</sup>;
25 printf("\n Amount of Lime required is \%.2 \, \text{f g}",L);
26 S=1.06*(P4+P5)*V/Purity_soda; //soda required in mg//
```

```
27 S=S/10^3;
28 printf("\n Amount of Soda required is %.3 f g",S)
```

Scilab code Exa 1.27 calculation of required lime and soda

```
1 //water//
2 //page 1.39 example 11//
3 clc
4 Purity_Lime = .85
5 Purity_soda=.9
6 W1=16.2; //amount of Ca(HCO3)2 in ppm//
7 W2=6.8; //amount of CaSO4 in ppm//
8 W3=11.1; //amount of CaCl2 in ppm//
9 W4=6; //amount of MgSO4 in ppm//
10 W5=8.4; //amount of Mg(HCO3)2 in ppm//
11 M1=100/162; //multiplication factor of Ca(HCO3) 2//
12 M2=100/136; // multiplication factor of CaSO4//
13 M3=100/111; // multiplication factor of CaCl2//
14 M4=100/120; // multiplication factor of MgSO4//
15 M5=100/146; //multiplication factor of Mg(HCO3) 2//
16 P1=W1*M1; //in terms of CaCO3//L
17 P2=W2*M2; //in terms of CaCO3//S
18 P3=W3*M3;//in terms of CaCO3//S
19 P4=W4*M4; // in terms of CaCO3//L+S
20 P5=W5*M5; //in terms of CaCO3//2*L
21 printf ("We do not take NaCl since it does not react
       with lime/soda");
22 V=10000; //volume of water in litres //
23 L=0.74*(P1+P4+2*P5)*V/Purity_Lime;//lime required in
      mg//
24 L=L/10<sup>3</sup>;
25 printf("\n Amount of Lime required is %.1f g",L);
26 \text{ S}=1.06*(P2+P3+P4)*V/Purity\_soda;//soda required in}
     mg//
27 S=S/10^3;
```

Scilab code Exa 1.28 calculation of required lime and soda

```
1 //water//
\frac{2}{page} = \frac{1.40}{2} = \frac{12}{2}
3 clc
4 Purity_Lime=.7
5 Purity_soda=.85
6 W1=30.2; //amount of Ca(HCO3)2 in ppm//
7 W2=20.8; //amount of Mg(HCO3)2 in ppm//
8 W3=28.31; //amount of CaCl2 in ppm//
9 W4=8.7; //amount of MgCl2 in ppm//
10 W5=35; //amount of CaSO4 in ppm//
11 W6=6.7; //amount of MgSO4 in ppm//
12 M1=100/162; //multiplication factor of Ca(HCO3) 2//
13 M2=100/146; // multiplication factor of Mg(HCO3) 2//
14 M3=100/111; // multiplication factor of CaCl2//
15 M4=100/95; // multiplication factor of MgCl2//
16 M5=100/136; //multiplication factor of CaSO4//
17 M6=100/120; // multiplication factor of MgSO4//
18 P1=W1*M1; //in terms of CaCO3//L
19 P2=W2*M2; // in terms of CaCO3//2*L
20 P3=W3*M3; //in terms of CaCO3//S
21 P4=W4*M4; //in terms of CaCO3//L+S
22 P5=W5*M5; //in terms of CaCO3//S
23 P6=W6*M6; //in terms of CaCO3//L+S
24 printf ("We do not take Na2SO4 since it does not
      react with lime/soda");
25 V=100000; //volume of water in litres //
26 L=0.74*(P1+2*P2+P4+P6)*V/Purity_Lime; //lime required
       in mg//
27 L=L/10<sup>3</sup>;
28 printf("\n Amount of Lime required is \%.1 \, \text{f g}",L);
29 S=1.06*(P3+P4+P5+P6)*V/Purity_soda; //soda required
```

```
in mg//
30 S=S/10^3;
31 printf("\n Amount of Soda required is %.f g",S)
```

Scilab code Exa 1.29 calculation of required lime and soda

```
1 //water//
\frac{2}{page} = \frac{1.41}{2} = \frac{13}{2}
3 clc
4 Purity_Lime=.8
5 Purity_soda=.85
6 W1=162; //amount of Ca(HCO3)2 in ppm//
7 W2=7.3; //amount of Mg(HCO3)2 in ppm//
8 W3=9.5; //amount of MgCl2 in ppm//
9 W4=36.5; //amount of HCl in ppm//
10 W5=44; //amount of CO2 in ppm//
11 W6=111; //amount of CaCl2 in ppm//
12 W7=60; //amount of MgSO4 in ppm//
13 M1=100/162; //multiplication factor of Ca(HCO3) 2//
14 M2=100/146; // multiplication factor of Mg(HCO3) 2//
15 M3=100/95; // multiplication factor of MgCl2//
16 M4=100/73; // multiplication factor of HCl//
17 M5=100/44; // multiplication factor of CO2//
18 M6=100/111; // multiplication factor of CaCl2//
19 M7=100/120; // multiplication factor of MgSO4//
20 P1=W1*M1; //in terms of CaCO3//L
21 P2=W2*M2; //in terms of CaCO3//2*L
22 P3=W3*M3; //in terms of CaCO3//L+S
23 P4=W4*M4; //in terms of CaCO3//L+S
24 P5=W5*M5; //in terms of CaCO3//L
25 P6=W6*M6; //in terms of CaCO3//S
26 P7=W7*M7; //in terms of CaCO3//L+S
27 printf ("We do not take NaCl since it does not react
       with lime/soda");
28 V=1000000; //volume of water in litres//
```

Scilab code Exa 1.30 calculation of required lime and soda

```
1 //water//
\frac{2}{page} = \frac{1.42}{2} = \frac{14}{2}
3 clc
4 Purity_Lime=1
5 Purity_soda=1
6 W1=222; //amount of CaCl2 in ppm//
7 W2=296; //amount of Mg(NO3)2 in ppm//
8 W3=324; //amount of Ca(HCO3)2 in ppm//
9 W4=196; //amount of H2SO4 in ppm//
10 M1=100/111; // multiplication factor of CaCl2//
11 M2=100/148; // multiplication factor of Ca(HCO3) 2//
12 M3=100/162; // multiplication factor of MgCO3//
13 M4=100/98; // multiplication factor of H2SO4//
14 P1=W1*M1; //in terms of CaCO3//S
15 P2=W2*M2; //in terms of CaCO3//L+S
16 P3=W3*M3;//in terms of CaCO3//L
17 P4=W4*M4; // in terms of CaCO3//L+S
18 printf ("We do not take organic matter since it does
       not react with lime/soda");
19 V=50000; //volume of water in litres //
20 L=0.74*(P2+P3+P4)*V/Purity_Lime; //lime required in
     mg//
21 L=L/10<sup>3</sup>;
22 printf("\n Amount of Lime required is \%.f g",L);
```

Scilab code Exa 1.31 calculation of required lime and soda

```
1 //water//
\frac{2}{page} = \frac{1.43}{2} = \frac{15}{2}
3 clc
4 Purity_Lime = .85
5 Purity_soda=.95
6 W1=12.5; //amount of CaCO3 in ppm//
7 W2=8.4; //amount of MgCO3 in ppm//
8 W3=22.2; //amount of CaCl2 in ppm//
9 W4=9.5; //amount of MgCl2 in ppm//
10 W5=33; //amount of CO2 in ppm//
11 W6=7.3; //amount of HCl in ppm//
12 W7=16.8; //amount of NaHCO3 in ppm//
13 M1=100/100; // multiplication factor of CaCO3//
14 M2=100/84; // multiplication factor of MgCO3//
15 M3=100/111; // multiplication factor of CaCl2//
16 M4=100/95; // multiplication factor of MgCl2//
17 M5=100/44; // multiplication factor of CO2//
18 M6=100/73; // multiplication factor of HCl//
19 M7=100/168; // multiplication factor of NaHCO3//
20 P1=W1*M1; //in terms of CaCO3//L
21 P2=W2*M2; // in terms of CaCO3//2*L
22 P3=W3*M3; //in terms of CaCO3//S
23 P4=W4*M4; //in terms of CaCO3//L+S
24 P5=W5*M5; // in terms of CaCO3//L
25 P6=W6*M6; //in terms of CaCO3//L+S
26 P7=W7*M7; //in terms of CaCO3//L-S
27 V=1000000; //volume of water in litres//
28 L=0.74*(P1+2*P2+P4+P5+P6+P7)*V/Purity_Lime; //\lim e
```

```
required in mg//
29 L=L/10^3;
30 printf("\n Amount of Lime required is %.f g",L);
31 S=1.06*(P3+P4+P6-P7)*V/Purity_soda;//soda required
    in mg//
32 S=S/10^3;
33 printf("\n Amount of Soda required is %.f g",S)
```

Scilab code Exa 1.32 calculation of required lime and soda

```
1 //water//
\frac{2}{page} = \frac{1.44}{4} = \frac{16}{2}
3 clc
4 Purity_Lime=1
5 Purity_soda=1
6 W1=8.1; //amount of Ca(HCO3)2 in ppm//
7 W2=7.5; //amount of Mg(HCO3)2 in ppm//
8 W3=13.6; //amount of CaSO4 in ppm//
9 W4=12; //amount of MgSO4 in ppm//
10 W5=2; //amount of MgCl2 in ppm//
11 M1=100/162; // multiplication factor of Ca(HCO3) 2//
12 M2=100/146; //multiplication factor of Mg(HCO3) 2//
13 M3=100/136; // multiplication factor of CaSO4//
14 M4=100/120; // multiplication factor of MgSO4//
15 M5=100/95; //multiplication factor of MgCl2//
16 P1=W1*M1; // in terms of CaCO3//L
17 P2=W2*M2; //in terms of CaCO3//2*L
18 P3=W3*M3; //in terms of CaCO3//S
19 P4=W4*M4; // in terms of CaCO3//L+S
20 P5=W5*M5; //in terms of CaCO3//S
21 printf ("We do not take NaCl since it does not react
       with lime/soda");
22 V=50000; //volume of water in litres //
23 L=0.74*(P1+2*P2+P4+P5)*V/Purity_Lime; //lime required
       in mg//
```

```
24 L=L/10^3;
25 printf("\n Amount of Lime required is %.2 f g",L);
26 S=1.06*(P3+P4+P5)*V/Purity_soda;//soda required in mg//
27 S=S/10^3;
28 printf("\n Amount of Soda required is %.2 f g",S)
```

Scilab code Exa 1.33 calculation of required lime and soda

```
1 //water//
\frac{2}{page} = 1.45 example \frac{17}{p}
3 clc
4 Purity_Lime = .9
5 Purity_soda=.95
6 W1=155; //amount of Mg(HCO3) 2 in ppm//
7 W2=23; //amount of MgCl2 in ppm//
8 W3=5; //amount of H2SO4 in ppm//
9 W4=111; //amount of CaCl2 in ppm//
10 M1=100/146; //multiplication factor of Mg(HCO3) 2//
11 M2=100/95; //multiplication factor of MgCl2//
12 M3=100/98; // multiplication factor of H2SO4//
13 M4=100/111; // multiplication factor of CaCl2//
14 P1=W1*M1; // in terms of CaCO3//2*L
15 P2=W2*M2; // in terms of CaCO3//L+S
16 P3=W3*M3; //in terms of CaCO3//L+S
17 P4=W4*M4; //in terms of CaCO3//S
18 printf ("We do not take NaCl and Na2SO4 since they
      do not react with lime/soda");
19 V=50000; //volume of water in litres //
20 L=0.74*(2*P1+P2+P3)*V/Purity_Lime; // lime required in
      mg//
21 L=L/10<sup>3</sup>;
22 printf("\n Amount of Lime required is \%.2 f g",L);//
      Final answer in book is incorrect//
23 S=1.06*(P2+P3+P4)*V/Purity_soda;//soda required in
```

```
mg//
24 S=S/10^3;
25 printf("\n Amount of Soda required is %.2 f g",S)//
Final answer in book is incorrect//
```

Scilab code Exa 1.34 calculation of required lime and soda

```
1 //water//
\frac{2}{page} = \frac{1.45}{2} = \frac{18}{7}
3 clc
4 Purity_Lime=.9
5 Purity_soda=.95
6 W1=81; //amount of Ca(HCO3)2 in ppm//
7 W2=95; //amount of MgCl2 in ppm//
8 W3=68; //amount of CaSO4 in ppm//
9 W4=146; //amount of Mg(HCO3)2 in ppm//
10 W5=49; //amount of H2SO4 in ppm//
11 M1=100/162; // multiplication factor of Ca(HCO3) 2//
12 M2=100/95; // multiplication factor of MgCl2//
13 M3=100/136; // multiplication factor of CaSO4//
14 M4=100/146; // multiplication factor of Mg(HCO3) 2//
15 M5=100/98; // multiplication factor of H2SO4//
16 P1=W1*M1; //in terms of CaCO3//L
17 P2=W2*M2; // in terms of CaCO3//L+S
18 P3=W3*M3;//in terms of CaCO3//S
19 P4=W4*M4; //in terms of CaCO3//2*L
20 P5=W5*M5; //in terms of CaCO3//L+S
21 printf ("We do not take SiO2 since it does not react
       with lime/soda");
22 V=50000; //volume of water in litres //
23 L=0.74*(P1+P2+2*P4+P5)*V/Purity_Lime; //lime required
       in mg//
24 L=L/10<sup>3</sup>;
25 printf("\n Amount of Lime required is \%.2 \, \text{f g}",L);
26 S=1.06*(P2+P3+P5)*V/Purity_soda; //soda required in
```

```
\frac{mg}{2} 27 S=S/10^3; 28 printf("\n Amount of Soda required is %.2 f g",S)
```

Scilab code Exa 1.35 calculation of required lime and soda

```
1 //water//
\frac{2}{page} = 1.46 example \frac{19}{p}
3 clc
4 Purity_Lime = .95
5 Purity_soda=.9
6 W1=81; //amount of Ca(HCO3)2 in ppm//
7 W2=73; //amount of Mg(HCO3)2 in ppm//
8 W3=68; //amount of CaSO4 in ppm//
9 W4=95; //amount of MgCl2 in ppm//
10 W5=14.8; //amount of Mg(NO3)2 in ppm//
11 W6=14.7; //amount of H2SO4 in ppm//
12 M1=100/162; // multiplication factor of Ca(HCO3) 2//
13 M2=100/146; // multiplication factor of Mg(HCO3) 2//
14 M3=100/136; // multiplication factor of CaSO4//
15 M4=100/95; // multiplication factor of MgCl2//
16 M5=100/148; // multiplication factor of Mg(NO3) 2//
17 M6=100/98; // multiplication factor of H2SO4//
18 P1=W1*M1; // in terms of CaCO3//L
19 P2=W2*M2; //in terms of CaCO3//2*L
20 P3=W3*M3; //in terms of CaCO3//S
21 P4=W4*M4; //in terms of CaCO3//L+S
22 P5=W5*M5; //in terms of CaCO3//L+S
23 P6=W6*M6; //in terms of CaCO3//L+S
24 V=1000000; //volume of water in litres //
25 L=0.74*(P1+2*P2+P4+P5+P6)*V/Purity_Lime; //lime
      required in mg//
26 L=L/10<sup>3</sup>;
27 printf("\n Amount of Lime required is \%.1 \, \text{f g}",L);
28 S=1.06*(P3+P4+P5+P6)*V/Purity_soda; //soda required
```

```
in mg//
29 S=S/10^3;
30 printf("\n Amount of Soda required is %.1f g",S);
```

Scilab code Exa 1.36 calculation of hardness using Zeolite process

```
1 //water//
2 //page 1.50 example 1//
3 clc
4 volume_hardwater=10000//in litres//
5 volume_NaCl=5000//Volume of NaCl in litres//
6 conc_NaCl=1170/10000//% NaCl consumed by zeolite bed
     //
  Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by
     zeolite bed per litre //
  total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
     consumed by zeolite bed//
  CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/
     lit)//
10 H=CaCO3_equivalent/volume_hardwater//Hardness of
     water (gms/lit)//
11 Hardness=H*1000//Hardness of water(mg/lit) or ppm//
12 printf("\nHardness of water sample is %.f ppm",
     Hardness);
```

Scilab code Exa 1.37 calculation of hardness using Zeolite process

```
1 //water//
2 //page 1.50 example 2//
3 clc
4 volume_hardwater=75000//in litres//
5 volume_NaCl=1500//Volume of NaCl in litres//
```

```
6 conc_NaCl=1.170/100//% NaCl consumed by zeolite bed
    //
7 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by
    zeolite bed per litre//
8 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
    consumed by zeolite bed//
9 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/lit)//
10 H=CaCO3_equivalent/volume_hardwater//Hardness of
    water(gms/lit)//
11 Hardness=H*1000//Hardness of water(mg/lit) or ppm//
12 printf("\nHardness of water sample is %.f ppm",
    Hardness);
```

Scilab code Exa 1.38 Hardwater quantity softened using Zeolite process

```
1 //water//
2 //page 1.51 example 3//
3 clc
4 Hardness=300//Hardness of water(mg/lit) or ppm//
5 H=Hardness/100//Hardness of water(gms/lit)//
6 volume_NaCl=75//Volume of NaCl//
7 conc_NaCl=75//% NaCl consumed by zeolite bed//
8 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by zeolite bed per litre//
9 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
10 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/lit)//
11 volume_hardwater=CaCO3_equivalent/H
12 printf("\nQuantity of water softened using zeolite bed is %.f litres",volume_hardwater);
```

Scilab code Exa 1.39 Hardwater quantity softened using Zeolite process

```
1 //water//
2 //page 1.51 example 4//
3 clc
4 Hardness=400//Hardness of water(mg/lit) or ppm//
5 H=Hardness/100//Hardness of water(gms/lit)//
6 volume_NaCl=100//Volume of NaCl//
7 conc_NaCl=60//% NaCl consumed by zeolite bed//
8 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by
     zeolite bed per litre //
9 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
     consumed by zeolite bed//
10 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/
     lit)//
11 volume_hardwater=CaCO3_equivalent/H
12 printf("\nQuantity of water softened using zeolite
     bed is %.f litres", volume_hardwater);
```

Scilab code Exa 1.40 calculation of hardness using Zeolite process

```
1 //water//
2 //page 1.52 example 5//
3 clc
4 volume_hardwater=100000//in litres//
5 volume_NaCl=400//Volume of NaCl in litres//
6 conc_NaCl=100//% NaCl consumed by zeolite bed//
7 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by zeolite bed per litre//
8 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
9 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/lit)//
10 H=CaCO3_equivalent/volume_hardwater//Hardness of water(gms/lit)//
```

```
11 Hardness=H*100//Hardness of water(mg/lit) or ppm// 12 printf("\nHardness of water sample is \%.1 \, f \, mg/L", Hardness);
```

Scilab code Exa 1.41 calculation of hardness using Zeolite process

```
1 //water//
2 //page 1.52 example 6//
3 clc
4 volume_hardwater=800//in litres//
5 volume_NaCl=40//Volume of NaCl in litres//
6 conc_NaCl=110//\% NaCl consumed by zeolite bed//
7 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by
     zeolite bed per litre //
8 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
     consumed by zeolite bed//
  CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/
     lit)//
10 H=CaCO3_equivalent/volume_hardwater//Hardness of
     water (gms/lit)//
11 Hardness=H*100//Hardness of water(mg/lit) or ppm//
12 printf("\nHardness of water sample is %.2 f ppm",
     Hardness);
```

Scilab code Exa 1.42 NaCl required for zeolite bed regeneration

```
1 //water//
2 //page 1.53 example 7//
3 clc
4 volume_hardwater=1//in litres//
5 CaCl2=4.5//Hardness of water(gms/lit)//
6 moles_NaCl=2;//Na3Ze giving NaCl and CaZe//
7 mol_wt_NaCl=58.5;
```

```
8 mol_wt_Na3Ze=111;
9 NaCl=CaCl2*moles_NaCl*mol_wt_NaCl/mol_wt_Na3Ze;
10 printf("\Quantity of NaCl produced is %.2f gm", NaCl);
;
```

Scilab code Exa 1.43 Hardwater quantity softened using Zeolite process

```
1 //water//
2 //page 1.53 example 8//
3 clc
4 Hardness=500//Hardness of water(mg/lit) or ppm//
5 H=Hardness/100//Hardness of water(gms/lit)//
6 volume_NaCl=100//Volume of NaCl//
7 conc_NaCl=120//% NaCl consumed by zeolite bed//
8 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by
     zeolite bed per litre//
9 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
     consumed by zeolite bed//
10 CaCO3_equivalent=total_wt*50/58.48//in terms of (gms
     /lit)//
11 volume_hardwater=CaCO3_equivalent/H
12 printf("\nQuantity of water softened using zeolite
     bed is %.f litres", volume_hardwater);
```

Scilab code Exa 1.44 calculation of hardness using Zeolite process

```
1 //water//
2 //page 1.54 example 9//
3 clc
4 volume_hardwater=4500//in litres//
5 volume_NaCl=30//Volume of NaCl in litres//
6 Wt_per_Litre=100//% NaCl consumed by zeolite bed//
```

```
7 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
      consumed by zeolite bed//
8 CaCO3_equivalent=total_wt*50/58.55//in terms of (gms
      /lit)//
9 H=CaCO3_equivalent/volume_hardwater//Hardness of
      water(gms/lit)//
10 Hardness=H*1000//Hardness of water(mg/lit) or ppm//
11 printf("\nHardness of water sample is %.f ppm",
      Hardness);
```

Scilab code Exa 1.45 calculation of hardness using Zeolite process

```
//water//
//page 1.54 example 10//
clc
volume_hardwater=3500//in litres//
volume_NaCl=25//Volume of NaCl in litres//
Wt_per_Litre=100//% NaCl consumed by zeolite bed//
total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/lit)//
H=CaCO3_equivalent/volume_hardwater//Hardness of water(gms/lit)//
Hardness=H*1000//Hardness of water(mg/lit) or ppm//
printf("\nHardness of water sample is %.1f ppm",
Hardness);
```

Scilab code Exa 1.46 calculation of hardness using Zeolite process

```
1 //water//
2 //page 1.55 example 11//
3 clc
```

```
4 volume_hardwater=15000//in litres//
5 volume_NaCl=120//Volume of NaCl in litres//
6 Wt_per_Litre=30//% NaCl consumed by zeolite bed//
7 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
8 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/lit)//
9 H=CaCO3_equivalent/volume_hardwater//Hardness of water(gms/lit)//
10 Hardness=H*1000//Hardness of water(mg/lit) or ppm//
11 printf("\nHardness of water sample is %.1f ppm", Hardness);
```

Scilab code Exa 1.47 Hardwater quantity softened using Zeolite process

```
1 //water//
2 //page 1.55 example 12//
3 clc
4 Hardness=480//Hardness of water(mg/lit) or ppm//
5 H=Hardness/100//Hardness of water(gms/lit)//
6 volume_NaCl=300//Volume of NaCl//
7 conc_NaCl=150//% NaCl consumed by zeolite bed//
8 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by zeolite bed per litre//
9 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
10 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/lit)//
11 volume_hardwater=CaCO3_equivalent/H
12 printf("\nQuantity of water softened using zeolite bed is %.f litres",volume_hardwater);
```

Scilab code Exa 1.48 calculation of hardness using ion exchange process

Scilab code Exa 1.49 calculation of BOD

```
//water//
//page 1.72 example 1//
clc
vol_init=50//initial volume of sample in ml//
vol_fin=80//final volume of sample in ml//
D0b=840//dissolved O2 present in effluent sample
before incubation in ppm//
D0i=230//dissolved O2 present in effluent sample
after incubation in ppm//
DF=vol_fin/vol_init//dilution factor//
BDD=(D0b-D0i)*DF//in ppm//
printf("\nBiological Oxygen Demand(BOD) of the
sample is %.f ppm",BOD);
```

Scilab code Exa 1.50 calculation of COD

```
1 //water//
2 //page 1.73 example 2//
```

```
3 clc
4 Vb=27//volume of ferrous ammonium sulphate in blank
        experiment in ml//
5 Vt=6.5//volume of ferrous ammonium sulphate in test
        experiment in ml//
6 N=0.1//concentration in Normals//
7 Ve=25//volume of water sample taken in test in ml//
8 COD=(Vb-Vt)*N*8/Ve//in ppm//
9 printf("\nChemical Oxygen Demand(COD) of the sample
        is %.3 f ppm", COD);
```

Scilab code Exa 1.51 hardness calculation using Zeolite process

```
1 //water//
2 //page 1.84 example 2//
3 clc
4 volume_hardwater=800//in litres//
5 volume_NaCl=40//Volume of NaCl in litres//
6 conc_NaCl=110//% NaCl consumed by zeolite bed//
7 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by
     zeolite bed per litre//
8 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
     consumed by zeolite bed//
  CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/
     lit)//
10 H=CaCO3_equivalent/volume_hardwater//Hardness of
     water (gms/lit)//
11 Hardness=H*100//Hardness of water(mg/lit) or ppm//
12 printf("\nHardness of water sample is %.2 f ppm",
     Hardness);
```

Scilab code Exa 1.52 calculation of required lime and soda

```
1 //water//
2 //page 1.84 example 3//
3 clc
4 Purity_Lime = .9
5 Purity_soda=.95
6 W1=81; //amount of Ca(HCO3)2 in ppm//
7 W2=42; //amount of MgCO3 in ppm//
8 W3=4.1; //amount of NaAlO2 in ppm//
9 W4=3.65; //amount of HCl in ppm//
10 W5=82; //amount of Ca(NO3)2 in ppm//
11 M1=100/162; //multiplication factor of Ca(HCO3) 2//
12 M2=100/84; // multiplication factor of MgCO3//
13 M3=100/82; // multiplication factor of NaAlO2//
14 M4=100/36.5; // multiplication factor of HCl//
15 M5=100/164; // multiplication factor of Ca(NO3) 2//
16 P1=W1*M1; //in terms of CaCO3//L
17 P2=W2*M2; //in terms of CaCO3//2*L
18 P3=W3*M3;//in terms of CaCO3//-L
19 P4=W4*M4; //in terms of CaCO3//L+S
20 P5=W5*M5; //in terms of CaCO3//S
21 printf ("We do not take NaCl since it does not react
       with lime/soda");
22 V=20000; //volume of water in litres //
23 L=0.74*(P1+2*P2+P4-P3)*V/Purity\_Lime; //lime required
       in mg//
24 L=L/10<sup>3</sup>;
25 printf("\n Amount of Lime required is \%.2 \, \text{f g}",L);
26 \text{ S=1.06*(P4+P5)*V/Purity\_soda;}//\text{soda required in mg//}
27 S=S/10^3;
28 printf("\n Amount of Soda required is %.3 f g",S)
```

Scilab code Exa 1.53 hardness calculation

```
1 //water//
2 //page 1.84 example 1//
```

```
3 clc
4 W1=32.4; //Ca(HCO3)2 in water in mg/L//
5 W2=29.2; //Mg(HCO3) 2 in water in mg/L//
6 W3=13.6; //CaSO4 in water in mg/L//
7 M1=100/162; // multiplication factor of Ca(HCO3) 2//
8 M2=100/146; //multiplication factor of Mg(HCO3) 2//
9 M3=100/136; // multiplication factor of CaSO4//
10 P1=W1*M1; //Ca(HCO3)2 in terms of CaCO3//
11 P2=W2*M2; //Mg(HCO3)2 in terms of CaCO3//
12 P3=W3*M3; //CaSO4 in terms of CaCO3//
13 T=P1+P2;
14 printf("\nTemporary hardness is %.0 f ppm",T);
15 P=P3;
16 printf("\nPermanant hardness is %.0 f ppm",P);
17 To=T+P;
18 printf("\nTotal hardness is %.0f ppm", To);
```

Scilab code Exa 1.54 calculation of required lime and soda

```
1 //water//
2 //page 1.85 example 3//
3 clc
4 Purity_Lime = .85
5 Purity_soda=.9
6 W1=16.2; //amount of Ca(HCO3)2 in ppm//
7 W2=6.8; //amount of CaSO4 in ppm//
8 W3=11.1; //amount of CaCl2 in ppm//
9 W4=6; //amount of MgSO4 in ppm//
10 W5=8.4; //amount of Mg(HCO3)2 in ppm//
11 M1=100/162; //multiplication factor of Ca(HCO3) 2//
12 M2=100/136; // multiplication factor of CaSO4//
13 M3=100/111; // multiplication factor of CaCl2//
14 M4=100/120; // multiplication factor of MgSO4//
15 M5=100/146; //multiplication factor of Mg(HCO3) 2//
16 P1=W1*M1; //in terms of CaCO3//L
```

```
17 P2=W2*M2;//in terms of CaCO3//S
18 P3=W3*M3;//in terms of CaCO3//S
19 P4=W4*M4;//in terms of CaCO3//L+S
20 P5=W5*M5;//in terms of CaCO3//2*L
21 printf ("We do not take NaCl since it does not react with lime/soda");
22 V=10000;//volume of water in litres//
23 L=0.74*(P1+P4+2*P5)*V/Purity_Lime;//lime required in mg//
24 L=L/10^3;
25 printf("\n Amount of Lime required is %.1f g",L);
26 S=1.06*(P2+P3+P4)*V/Purity_soda;//soda required in mg//
27 S=S/10^3;
28 printf("\n Amount of Soda required is %.2f g",S)
```

Scilab code Exa 1.55 hardness calculation by EDTA method

```
1 //water//
2 //page 1.85 example 4//
4 conc_SH=15/1000//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=20//in terms of ml//
7 volume_H=100//in terms of ml//
8 EDTA_SH=25//volume for Std hardwater(ml)//
9 EDTA_H=18//volume for sample hardwater(ml)//
10 AB_EDTA=12//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
     of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample*1000//total hardness per litre(ppm)//
```

Scilab code Exa 1.56 calculation of required lime and soda

```
1 //water//
2 //page 1.85 example 2//
3 clc
4 Purity_Lime=.7
5 Purity_soda=.85
6 W1=30.2; //amount of Ca(HCO3)2 in ppm//
7 W2=20.8; //amount of Mg(HCO3)2 in ppm//
8 W3=28.31; //amount of CaCl2 in ppm//
9 W4=8.7; //amount of MgCl2 in ppm//
10 W5=35; //amount of CaSO4 in ppm//
11 W6=6.7; //amount of MgSO4 in ppm//
12 M1=100/162; //multiplication factor of Ca(HCO3) 2//
13 M2=100/146; //multiplication factor of Mg(HCO3) 2//
14 M3=100/111; // multiplication factor of CaCl2//
15 M4=100/95; // multiplication factor of MgCl2//
16 M5=100/136; //multiplication factor of CaSO4//
17 M6=100/120; // multiplication factor of MgSO4//
18 P1=W1*M1; //in terms of CaCO3//L
19 P2=W2*M2; // in terms of CaCO3//2*L
20 P3=W3*M3;//in terms of CaCO3//S
21 P4=W4*M4; //in terms of CaCO3//L+S
22 P5=W5*M5; //in terms of CaCO3//S
23 P6=W6*M6; // in terms of CaCO3//L+S
24 printf ("We do not take Na2SO4 since it does not
      react with lime/soda");
```

```
25 V=100000; //volume of water in litres //
26 L=0.74*(P1+2*P2+P4+P6)*V/Purity_Lime; //lime required in mg//
27 L=L/10^3;
28 printf("\n Amount of Lime required is %.1f g",L);
29 S=1.06*(P3+P4+P5+P6)*V/Purity_soda; //soda required in mg//
30 S=S/10^3;
31 printf("\n Amount of Soda required is %.f g",S)
```

Scilab code Exa 1.57 NaCl quantity produced in Zeolite process

```
//water//
//page 1.85 example 1//
clc
volume_hardwater=1//in litres//
CaCl2=4.5//Hardness of water(gms/lit)//
moles_NaCl=2;//Na3Ze giving NaCl and CaZe//
mol_wt_NaCl=58.5;
mol_wt_Na3Ze=111;
NaCl=CaCl2*moles_NaCl*mol_wt_NaCl/mol_wt_Na3Ze;
printf("\Quantity of NaCl produced is %.2 f gm", NaCl);
;
```

Scilab code Exa 1.58 hardness calculation

```
1 //water//
2 //page 1.86 example 1//
3 clc
4 W1=14.6; //Mg(HCO3) 2 in water in mg/L//
5 W2=8.1; //Ca(HCO3) 2 in water in mg/L//
6 W3=29.6; //Mg(NO3) 2 in water in mg/L//
7 W4=19; //MgCl2 in water in mg/L//
```

```
8 W5=24; //MgSO4 in water in mg/L//
9 M1=100/146; //multiplication factor of Mg(HCO3) 2//
10 M2=100/162; // multiplication factor of Ca(HCO3) 2//
11 M3=100/148; // multiplication factor of Mg(NO3) 2//
12 M4=100/95; // multiplication factor of MgCl2//
13 M5=100/120; //multiplication factor of MgSO4//
14 P1=W1*M1; //Mg(HCO3) 2 in terms of CaCO3//
15 P2=W2*M2; //Ca(HCO3)2 in terms of CaCO3//
16 P3=W3*M3; //Mg(NO3)2 in terms of CaCO3//
17 P4=W4*M4; //MgCl2 in terms of CaCO3//
18 P5 = W5 * M5; //MgSO4
                     in terms of CaCO3//
19 T=P1+P2;
20 printf("\nTemporary hardness is %.0 f ppm",T);
21 P = P3 + P4 + P5;
22 printf("\nPermanant hardness is %.0 f ppm",P);
```

Scilab code Exa 1.59 calculation of required lime and soda

```
1 //water//
2 //page 1.86 example 3//
3 clc
4 Purity_Lime=.8
5 Purity_soda=.85
6 W1=162; //amount of Ca(HCO3)2 in ppm//
7 W2=7.3; //amount of Mg(HCO3)2 in ppm//
8 W3=9.5; //amount of MgCl2 in ppm//
9 W4=36.5; //amount of HCl in ppm//
10 W5=44; //amount of CO2 in ppm//
11 W6=111; //amount of CaCl2 in ppm//
12 W7=60; //amount of MgSO4 in ppm//
13 M1=100/162; //multiplication factor of Ca(HCO3) 2//
14 M2=100/146; // multiplication factor of Mg(HCO3)2//
15 M3=100/95; //multiplication factor of MgCl2//
16 M4=100/73; // multiplication factor of HCl//
17 M5=100/44; // multiplication factor of CO2//
```

```
18 M6=100/111; // multiplication factor of CaCl2//
19 M7=100/120; // multiplication factor of MgSO4//
20 P1=W1*M1; //in terms of CaCO3//L
21 P2=W2*M2; //in terms of CaCO3//2*L
22 P3=W3*M3;//in terms of CaCO3//L+S
23 P4=W4*M4; //in terms of CaCO3//L+S
24 P5=W5*M5; //in terms of CaCO3//L
25 P6=W6*M6; //in terms of CaCO3//S
26 P7=W7*M7; //in terms of CaCO3//L+S
27 printf ("We do not take NaCl since it does not react
       with lime/soda");
28 V=1000000; //volume of water in litres //
29 L=0.74*(P1+2*P2+P3+P4+P5+P7)*V/Purity_Lime; //lime
      required in mg//
30 L=L/10^3;
31 printf("\n Amount of Lime required is %.f g",L);
32 \text{ S=1.06*(P3+P4+P6+P7)*V/Purity\_soda;//soda required}
     in mg//
33 S=S/10^3;
34 printf("\n Amount of Soda required is %.f g",S)
```

Scilab code Exa 1.60 hardness calculation by EDTA method

```
1 //water//
2 //page 1.86 example 4//
3 clc
4 conc_SH=0.5/500//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=50//in terms of ml//
7 volume_H=50//in terms of ml//
8 EDTA_SH=48//volume for Std hardwater(ml)//
9 EDTA_H=15//volume for sample hardwater(ml)//
10 AB_EDTA=10//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms of CaCO3_equivalent//
```

Scilab code Exa 1.61 hardness calculation

```
1 //water//
2 //page 1.87 example 1//
4 W1=7.3; //Mg(HCO3) 2 in water in mg/L//
5 W2=9.5; //MgCl2 in water in mg/L//
6 W3=16.2; //Ca(HCO3)2 in water in mg/L//
7 W4=13.6; //CaSO4 in water in mg/L//
8 M1=100/146; //multiplication factor of Mg(HCO3) 2//
9 M2=100/95; // multiplication factor of MgCl2//
10 M3=100/162; //multiplication factor of Ca(HCO3) 2//
11 M4=100/136; // multiplication factor of CaSO4//
12 P1=W1*M1; //Mg(HCO3) 2 in terms of CaCO3//
13 P2=W2*M2; //MgCl2 in terms of CaCO3//
14 P3=W3*M3; //Ca(HCO3)2 in terms of CaCO3//
15 P4=W4*M4; //CaSO4 in terms of CaCO3//
16 \text{ T=P1+P3};
17 printf("\nTemporary hardness is %.0 f ppm",T);
18 P = P2 + P4;
19 printf("\nPermanant hardness is %.0f ppm",P);
20 To=T+P;
```

Scilab code Exa 1.62 calculation of required lime and soda

```
1 //water//
2 //page 1.87 example 2//
3 clc
4 Purity_Lime=1
5 Purity_soda=1
6 W1=222; //amount of CaCl2 in ppm//
7 W2=296; //amount of Mg(NO3)2 in ppm//
8 W3=324; //amount of Ca(HCO3)2 in ppm//
9 W4=196; //amount of H2SO4 in ppm//
10 M1=100/111; // multiplication factor of CaCl2//
11 M2=100/148; // multiplication factor of Ca(HCO3) 2//
12 M3=100/162; // multiplication factor of MgCO3//
13 M4=100/98; //multiplication factor of H2SO4//
14 P1=W1*M1; //in terms of CaCO3//S
15 P2=W2*M2;//in terms of CaCO3//L+S
16 P3=W3*M3; //in terms of CaCO3//L
17 P4=W4*M4; // in terms of CaCO3//L+S
18 printf ("We do not take organic matter since it does
       not react with lime/soda");
19 V=50000; //volume of water in litres //
20 L=0.74*(P2+P3+P4)*V/Purity_Lime; //lime required in
     mg//
21 L=L/10<sup>3</sup>;
22 printf("\n Amount of Lime required is \%.f g",L);
23 S=1.06*(P1+P2+P4)*V/Purity_soda; //soda required in
     mg//
24 S=S/10<sup>3</sup>;
25 printf("\n Amount of Soda required is \%.f g",S)
```

Scilab code Exa 1.63 calculation of required lime and soda

```
1 //water//
2 //page 1.87 example 3//
3 clc
4 Purity_Lime = .85
5 Purity_soda=.95
6 W1=12.5; //amount of CaCO3 in ppm//
7 W2=8.4; //amount of MgCO3 in ppm//
8 W3=22.2; //amount of CaCl2 in ppm//
9 W4=9.5; //amount of MgCl2 in ppm//
10 W5=33; //amount of CO2 in ppm//
11 W6=7.3; // amount of HCl in ppm//
12 W7=16.8; //amount of NaHCO3 in ppm//
13 M1=100/100; // multiplication factor of CaCO3//
14 M2=100/84; // multiplication factor of MgCO3//
15 M3=100/111; // multiplication factor of CaCl2//
16 M4=100/95; // multiplication factor of MgCl2//
17 M5=100/44; // multiplication factor of CO2//
18 M6=100/73; // multiplication factor of HCl//
19 M7=100/168; // multiplication factor of NaHCO3//
20 P1=W1*M1; //in terms of CaCO3//L
21 P2=W2*M2; //in terms of CaCO3//2*L
22 P3=W3*M3;//in terms of CaCO3//S
23 P4=W4*M4; //in terms of CaCO3//L+S
24 P5=W5*M5; //in terms of CaCO3//L
25 P6=W6*M6; //in terms of CaCO3//L+S
26 P7=W7*M7; //in terms of CaCO3//L-S
27 V=1000000; //volume of water in litres//
28 L=0.74*(P1+2*P2+P4+P5+P6+P7)*V/Purity_Lime; //\lim e
      required in mg//
29 L=L/10<sup>3</sup>;
30 printf("\n Amount of Lime required is \%.f g",L);
31 S=1.06*(P3+P4+P6-P7)*V/Purity_soda; //soda required
      in mg//
32 S=S/10^3;
33 printf("\n Amount of Soda required is %.f g",S)
```

Scilab code Exa 1.64 Hardwater quantity softened using Zeolite process

```
1 //water//
2 //page 1.87 example 4//
3 clc
4 Hardness=500//Hardness of water(mg/lit) or ppm//
5 H=Hardness/100//Hardness of water(gms/lit)//
6 volume_NaCl=100//Volume of NaCl//
7 conc_NaCl=120//% NaCl consumed by zeolite bed//
8 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by
     zeolite bed per litre//
9 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
     consumed by zeolite bed//
10 CaCO3_equivalent=total_wt*50/58.48//in terms of (gms
     /lit)//
11 volume_hardwater=CaCO3_equivalent/H
12 printf("\nQuantity of water softened using zeolite
     bed is \%.f litres", volume_hardwater);
```

Scilab code Exa 1.65 calculation of hardness using Zeolite process

```
1 //water//
2 //page 1.88 example 3//
3 clc
4 volume_hardwater=4500//in litres//
5 volume_NaCl=30//Volume of NaCl in litres//
6 Wt_per_Litre=100//% NaCl consumed by zeolite bed//
7 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
8 CaCO3_equivalent=total_wt*50/58.55//in terms of (gms / lit)//
```

Scilab code Exa 1.66 calculation of required lime and soda

```
1 //water//
2 //page 1.88 example 4//
3 clc
4 Purity_Lime=1
5 Purity_soda=1
6 W1=8.1; //amount of Ca(HCO3)2 in ppm//
7 W2=7.5; //amount of Mg(HCO3)2 in ppm//
8 W3=13.6; //amount of CaSO4 in ppm//
9 W4=12; //amount of MgSO4 in ppm//
10 W5=2; //amount of MgCl2 in ppm//
11 M1=100/162; //multiplication factor of Ca(HCO3) 2//
12 M2=100/146; //multiplication factor of Mg(HCO3) 2//
13 M3=100/136; // multiplication factor of CaSO4//
14 M4=100/120; // multiplication factor of MgSO4//
15 M5=100/95; // multiplication factor of MgCl2//
16 P1=W1*M1; // in terms of CaCO3//L
17 P2=W2*M2; //in terms of CaCO3//2*L
18 P3=W3*M3; //in terms of CaCO3//S
19 P4=W4*M4; //in terms of CaCO3//L+S
20 P5=W5*M5; //in terms of CaCO3//S
21 printf ("We do not take NaCl since it does not react
       with lime/soda");
22 V=50000; //volume of water in litres //
23 L=0.74*(P1+2*P2+P4+P5)*V/Purity_Lime; //lime required
       in mg//
24 L=L/10<sup>3</sup>;
25 printf("\n Amount of Lime required is \%.2 \, \text{f g}",L);
```

Scilab code Exa 1.67 hardness calculation by EDTA method

```
1 //water//
2 //page 1.88 example 4//
3 clc
4 conc_SH=1/1000//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=50//in terms of ml//
7 volume_H=50//in terms of ml//
8 EDTA_SH=45//volume for Std hardwater(ml)//
9 EDTA_H=25//volume for sample hardwater(ml)//
10 AB_EDTA=15//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
      of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample*1000//total hardness per litre(ppm)//
15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
     hardness for given volume //
16 P=P_sample*1000//permanent hardness per litre(ppm)//
17 T = To - P
18 printf("\nTotal Hardness is %.2 f ppm", To);
19 printf("\nPermanent Hardness is %.2 f ppm",P);
20 printf("\nTemporary Hardness is %.2 f ppm",T);
```

Scilab code Exa 1.68 hardness calculation

```
1 //water//
2 //page 1.89 example 1//
4 W1=19; //MgCl2 in water in mg/L//
5 W2=5; //CaCO3 in water in mg/L//
6 W3=29.5; //Ca(HCO3)2 in water in mg/L//
7 W4=13; //CaSO4 in water in mg/L//
8 M1=100/95; // multiplication factor of MgCl2//
9 M2=100/100; // multiplication factor of CaCO3//
10 M3=100/162; //multiplication factor of Ca(HCO3) 2//
11 M4=100/136; // multiplication factor of CaSO4//
12 P1=W1*M1; //MgCl2 in terms of CaCO3//
13 P2=W2*M2; //CaCO3 in terms of CaCO3//
14 P3=W3*M3; //Ca(HCO3)2 in terms of CaCO3//
15 P4=W4*M4; //CaSO4 in terms of CaCO3//
16 \text{ T=P2+P3};
17 printf("\nTemporary hardness is %.2 f ppm",T);
18 P=P1+P4;
19 printf("\nPermanant hardness is %.2f ppm",P);
20 To=T+P;
21 printf("\nTotal hardness is %.2 f ppm", To);
```

Scilab code Exa 1.69 calculation of required lime and soda

```
//water//
//page 1.89 example 2//
clc
Purity_Lime=.9
Purity_soda=.95
W1=155;//amount of Mg(HCO3)2 in ppm//
W2=23;//amount of MgCl2 in ppm//
W3=5;//amount of H2SO4 in ppm//
W4=111;//amount of CaCl2 in ppm//
M1=100/146;//multiplication factor of Mg(HCO3)2//
M2=100/95;//multiplication factor of MgCl2//
```

```
12 M3=100/98; // multiplication factor of H2SO4//
13 M4=100/111; // multiplication factor of CaCl2//
14 P1=W1*M1; //in terms of CaCO3//2*L
15 P2=W2*M2; // in terms of CaCO3//L+S
16 P3=W3*M3; //in terms of CaCO3//L+S
17 P4=W4*M4; //in terms of CaCO3//S
18 printf ("We do not take NaCl and Na2SO4 since they
      do not react with lime/soda");
19 V=50000; //volume of water in litres //
20 L=0.74*(2*P1+P2+P3)*V/Purity_Lime; // lime required in
      mg//
21 L=L/10<sup>3</sup>;
22 printf("\n Amount of Lime required is \%.2 \, \text{f g}",L);
23 S=1.06*(P2+P3+P4)*V/Purity_soda; //soda required in
     mg//
24 S=S/10^3;
25 printf("\n Amount of Soda required is %.2 f g",S)
```

Scilab code Exa 1.70 hardness calculation by EDTA method

```
1 //water//
2 //page 1.89 example 3//
3 clc
4 conc_SH=1/20//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=50//in terms of ml//
7 volume_H=50//in terms of ml//
8 EDTA_SH=1000//volume for Std hardwater(ml)//
9 EDTA_H=7.2//volume for sample hardwater(ml)//
10 AB_EDTA=4//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of CaCO3 equivalent//
13 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
```

```
hardness for given volume//

14 To=To_sample*1000//total hardness per litre(ppm)//

15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
    hardness for given volume//

16 P=P_sample*1000//permanent hardness per litre(ppm)//

17 T=To-P

18 printf("\nTotal Hardness is %.f ppm",To);

19 printf("\nPermanent Hardness is %.f ppm",P);

20 printf("\nTemporary Hardness is %.f ppm",T);
```

Scilab code Exa 1.71 hardness calculation by Zeolite method

```
1 //water//
2 //page 1.89 example 4//
3 clc
4 volume_hardwater=3500//in litres//
5 volume_NaCl=25//Volume of NaCl in litres//
6 Wt_per_Litre=100//% NaCl consumed by zeolite bed//
7 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
8 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/lit)//
9 H=CaCO3_equivalent/volume_hardwater//Hardness of water(gms/lit)//
10 Hardness=H*1000//Hardness of water(mg/lit) or ppm//
11 printf("\nHardness of water sample is %.1f ppm", Hardness);
```

Scilab code Exa 1.72 hardness calculation by Zeolite process

```
1 //water//
2 //page 1.90 example 5//
3 clc
```

```
4 volume_hardwater=15000//in litres//
5 volume_NaCl=120//Volume of NaCl in litres//
6 Wt_per_Litre=30//% NaCl consumed by zeolite bed//
7 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
8 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/lit)//
9 H=CaCO3_equivalent/volume_hardwater//Hardness of water(gms/lit)//
10 Hardness=H*1000//Hardness of water(mg/lit) or ppm//printf("\nHardness of water sample is %.1f ppm", Hardness);
```

Scilab code Exa 1.73 hardness calculation by EDTA method

```
1 //water//
2 //page 1.90 example 6//
4 conc_SH=1.2/1000//in terms of g/lit//
5 strength_SH=conc_SH*1000//in terms of mgs/lit//
6 volume_SH=20//in terms of ml//
7 volume_H=50//in terms of ml//
8 EDTA_SH=35//volume for Std hardwater(ml)//
9 EDTA_H=30//volume for sample hardwater(ml)//
10 AB_EDTA=25//volume required after boiling(ml)//
11 CaCO3_equivalent_SH=strength_SH*volume_SH//in terms
     of CaCO3 equivalent//
12 one_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH//in terms of
      CaCO3 equivalent//
 To_sample=one_ml_EDTA*EDTA_H/volume_H//total
     hardness for given volume //
14 To=To_sample*1000//total hardness per litre(ppm)//
15 P_sample=AB_EDTA*one_ml_EDTA/volume_H//permanent
     hardness for given volume //
16 P=P_sample*1000//permanent hardness per litre(ppm)//
```

```
17 T=To-P
18 printf("\nTotal Hardness is %.f ppm",To);
19 printf("\nPermanent Hardness is %.1 f ppm",P);
20 printf("\nTemporary Hardness is %.1 f ppm",T);
```

Scilab code Exa 1.74 calculation of required lime and soda

```
1 //water//
2 //page 1.90 example 7//
3 clc
4 Purity_Lime=.9
5 Purity_soda=.95
6 W1=81; //amount of Ca(HCO3)2 in ppm//
7 W2=95; //amount of MgCl2 in ppm//
8 W3=68; //amount of CaSO4 in ppm//
9 W4=146; //amount of Mg(HCO3)2 in ppm//
10 W5=49; //amount of H2SO4 in ppm//
11 M1=100/162; // multiplication factor of Ca(HCO3) 2//
12 M2=100/95; // multiplication factor of MgCl2//
13 M3=100/136; // multiplication factor of CaSO4//
14 M4=100/146; // multiplication factor of Mg(HCO3) 2//
15 M5=100/98; // multiplication factor of H2SO4//
16 P1=W1*M1; //in terms of CaCO3//L
17 P2=W2*M2; // in terms of CaCO3//L+S
18 P3=W3*M3;//in terms of CaCO3//S
19 P4=W4*M4; //in terms of CaCO3//2*L
20 P5=W5*M5; //in terms of CaCO3//L+S
21 printf ("We do not take SiO2 since it does not react
       with lime/soda");
22 V=50000; //volume of water in litres //
23 L=0.74*(P1+P2+2*P4+P5)*V/Purity_Lime; //lime required
       in mg//
24 L=L/10<sup>3</sup>;
25 printf("\n Amount of Lime required is \%.2 \, \text{f g}",L);
26 S=1.06*(P2+P3+P5)*V/Purity_soda; //soda required in
```

```
mg//
27 S=S/10^3;
28 printf("\n Amount of Soda required is %.2 f g",S)
```

Scilab code Exa 1.75 calculation of required lime and soda

```
1 //water//
2 //page 1.90 example 3//
3 clc
4 Purity_Lime = .95
5 Purity_soda=.9
6 W1=81; //amount of Ca(HCO3)2 in ppm//
7 W2=73; //amount of Mg(HCO3)2 in ppm//
8 W3=68; //amount of CaSO4 in ppm//
9 W4=95; //amount of MgCl2 in ppm//
10 W5=14.8; //amount of Mg(NO3)2 in ppm//
11 W6=14.7; //amount of H2SO4 in ppm//
12 M1=100/162; // multiplication factor of Ca(HCO3) 2//
13 M2=100/146; // multiplication factor of Mg(HCO3) 2//
14 M3=100/136; // multiplication factor of CaSO4//
15 M4=100/95; // multiplication factor of MgCl2//
16 M5=100/148; // multiplication factor of Mg(NO3) 2//
17 M6=100/98; // multiplication factor of H2SO4//
18 P1=W1*M1; // in terms of CaCO3//L
19 P2=W2*M2; //in terms of CaCO3//2*L
20 P3=W3*M3; //in terms of CaCO3//S
21 P4=W4*M4; //in terms of CaCO3//L+S
22 P5=W5*M5; //in terms of CaCO3//L+S
23 P6=W6*M6; // in terms of CaCO3//L+S
24 V=1000000; //volume of water in litres //
25 L=0.74*(P1+2*P2+P4+P5+P6)*V/Purity_Lime; //lime
      required in mg//
26 L=L/10<sup>3</sup>;
27 printf("\n Amount of Lime required is \%.1 \, \text{f g}",L);
28 S=1.06*(P3+P4+P5+P6)*V/Purity_soda; //soda required
```

```
in mg// 29 S=S/10^3; 30 printf("\n Amount of Soda required is \%.1 \, \mathrm{f} g",S);
```

Scilab code Exa 1.76 Hardwater quantity softened using Zeolite process

```
1 //water//
2 //page 1.90 example 4//
3 clc
4 Hardness=480//Hardness of water(mg/lit) or ppm//
5 H=Hardness/100//Hardness of water(gms/lit)//
6 volume_NaCl=300//Volume of NaCl//
7 conc_NaCl=150//% NaCl consumed by zeolite bed//
8 Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by
     zeolite bed per litre//
9 total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl
     consumed by zeolite bed//
10 CaCO3_equivalent=total_wt*50/58.5//in terms of (gms/
     lit)//
11 volume_hardwater=CaCO3_equivalent/H
12 printf("\nQuantity of water softened using zeolite
     bed is \%.f litres", volume_hardwater);
```

Chapter 3

Lubricants

Scilab code Exa 3.1 Acid value of oil

```
//lubricants//
//page 3.27 example 1//
clc
wt_oil=4.55//weight f oil saponified(gms)//
volume=2.1//volume of alcoholic KOH consumed to
    neutralize fatty acids(ml)//
normality_KOH=0.02//normality of KOH //
A=volume*normality_KOH*56/wt_oil//formula for acid
    value//
printf("\nAcid value of oil is %.3 f mg/gm",A);
```

Scilab code Exa 3.2 Acid value of oil

```
1 //lubricants//
2 //page 3.28 example 2//
3 clc
4 wt_oil=10//weight f oil saponified(gms)//
5 volume=2.4//volume of alcoholic KOH consumed to neutralize fatty acids(ml)//
```

```
6 normality_KOH=0.02//normality of KOH //
7 A=volume*normality_KOH*56/wt_oil//formula for acid value//
8 printf("\nAcid value of oil is %.3 f mg/g",A);
9 if A<=0.1 then printf("\nAs the acid value is less than 0.1, oil can be used for lubrication");
10 else printf("\nAs the acid value is more than 0.1, oil cannot be used for lubrication");
11 end</pre>
```

Scilab code Exa 3.3 Acid value of oil

```
//lubricants//
//page 3.28 example 3//
clc
vol_oil=20//in ml//
den_oil=0.86//density of oil in g/ml//
wt_oil=vol_oil*den_oil//weight f oil saponified(gms)//
volume=2.5//volume of alcoholic KOH consumed to neutralize fatty acids(ml)//
normality_KOH=0.1//normality of KOH //
A=volume*normality_KOH*56/wt_oil//formula for acid value//
printf("\nAcid value of oil is %.3f mg/g",A);
```

Scilab code Exa 3.4 Acid value of oil

```
1 //lubricants//
2 //page 3.29 example 4//
3 clc
4 vol_oil=10//in ml//
5 den_oil=0.92//density of oil in g/ml//
```

```
6 wt_oil=vol_oil*den_oil//weight f oil saponified(gms)
    //
7 volume=4//volume of alcoholic KOH consumed to
    neutralize fatty acids(ml)//
8 normality_KOH=0.01//normality of KOH //
9 A=volume*normality_KOH*56/wt_oil//formula for acid
    value//
10 printf("\nAcid value of oil is %.3f mg/g",A);
```

Scilab code Exa 3.5 Acid value of oil

```
//lubricants//
//page 3.29 example 5//
clc
vol_oil=9//in ml//
den_oil=0.81//density of oil in g/ml//
wt_oil=vol_oil*den_oil//weight f oil saponified(gms)
//
volume=1.5//volume of alcoholic KOH consumed to
neutralize fatty acids(ml)//
normality_KOH=0.04//normality of KOH //
A=volume*normality_KOH*56/wt_oil//formula for acid
value//
printf("\nAcid value of oil is %.3 f mg/g",A);
```

Scilab code Exa 3.6 Acid value of oil

```
1 //lubricants//
2 //page 3.30 example 6//
3 clc
4 vol_oil=20//in ml//
5 den_oil=0.86//density of oil in g/ml//
```

```
6 wt_oil=vol_oil*den_oil//weight f oil saponified(gms)
    //
7 volume=2.8//volume of alcoholic KOH consumed to
    neutralize fatty acids(ml)//
8 normality_KOH=1/10//normality of KOH //
9 A=volume*normality_KOH*56/wt_oil//formula for acid
    value//
10 printf("\nAcid value of oil is %.3 f mg/g",A);
11 if A<=0.1 then printf("\nAs the acid value is less
    than 0.1, oil can be used for lubrication");
12 else printf("\nAs the acid value is more than 0.1,
    oil cannot be used for lubrication");
13 end</pre>
```

Scilab code Exa 3.7 Acid value of oil

```
1 //lubricants//
2 //page 3.30 example 7//
3 clc
4 vol_oil=7//in ml//
5 den_oil=0.88//density of oil in g/ml//
6 wt_oil=vol_oil*den_oil//weight f oil saponified(gms)
  volume=3.8//volume of alcoholic KOH consumed to
      neutralize fatty acids (ml) //
8 normality_KOH=0.02//normality of KOH //
  A=volume*normality_KOH*56/wt_oil//formula for acid
      value //
10 printf("\nAcid value of oil is \%.2 \text{ f mg/g}", A);
11 if A <= 0.1 then printf("\nAs the acid value is less
      than 0.1, oil can be used for lubrication");
  else printf("\nAs the acid value is more than 0.1,
      oil cannot be used for lubrication");
13
       end
```

Scilab code Exa 3.8 Acid value of oil

```
1 //lubricants//
2 //page 3.31 example 8//
3 clc
4 vol_oil=6//in ml//
5 den_oil=0.91//density of oil in g/ml//
6 wt_oil=vol_oil*den_oil//weight f oil saponified(gms)
7 volume=2.6//volume of alcoholic KOH consumed to
     neutralize fatty acids (ml)//
8 normality_KOH=0.02//normality of KOH //
  A=volume*normality_KOH*56/wt_oil//formula for acid
     value//
10 printf("\nAcid value of oil is %.3 f mg/g",A);
11 if A <= 0.1 then printf("\nAs the acid value is less
     than 0.1, oil can be used for lubrication");
12 else printf("\nAs the acid value is more than 0.1,
      oil cannot be used for lubrication");
13
       end
```

Scilab code Exa 3.9 Acid value of oil

```
1 //lubricants//
2 //page 3.31 example 9//
3 clc
4 wt_oil=1.3//weight f oil saponified(gms)//
5 volume=0.8//volume of alcoholic KOH consumed to neutralize fatty acids(ml)//
6 normality_KOH=0.001//normality of KOH //
7 A=volume*normality_KOH*56/wt_oil//formula for acid value//
```

```
8 printf("\nAcid value of oil is %.5 f mg/g",A);
9 if A<=0.1 then printf("\nAs the acid value is less than 0.1, oil can be used for lubrication");
10 else printf("\nAs the acid value is more than 0.1, oil cannot be used for lubrication");
11 end</pre>
```

Scilab code Exa 3.10 Acid value of oil

```
1 //lubricants//
2 //page 3.31 example 10//
3 clc
4 vol_oil=10//in ml//
5 den_oil=0.91//density of oil in g/ml//
6 wt_oil=vol_oil*den_oil//weight f oil saponified(gms)
     //
  volume=5//volume of alcoholic KOH consumed to
      neutralize fatty acids(ml)//
  normality_KOH=0.02//normality of KOH //
  A=volume*normality_KOH*56/wt_oil//formula for acid
      value//
10 printf("\nAcid value of oil is \%.3 \text{ f mg/g}",A);
11 if A<=0.1 then printf("\nAs the acid value is less
     than 0.1, oil can be used for lubrication");
  else printf("\nAs the acid value is more than 0.1,
      oil cannot be used for lubrication");
13
       end
```

Scilab code Exa 3.11 Saponification value of oil

```
1 //lubricants//
2 //page 3.33 example 1//
3 clc
```

```
4 wt_oil=2.5//weight f oil saponified(gms)//
5 blank=49.0//volume blank titration reading(ml)//
6 back=26.4//volume back titration reading(ml)//
7 volume=blank-back//volume of alcoholic KOH consumed(ml)//
8 normality_KOH=0.4//normality of KOH//
9 S=volume*normality_KOH*56/wt_oil//formula for saponification value//
10 printf("\nSaponification value of oil is %.3f mg/g", S);
```

Scilab code Exa 3.12 Saponification value of oil

```
//lubricants//
//page 3.33 example 2//
clc
wt_oil=5//weight f oil saponified(gms)//
blank=44//volume blank titration reading(ml)//
back=17//volume back titration reading(ml)//
volume=blank-back//volume of alcoholic KOH consumed(ml)//
normality_KOH=0.5//normality of KOH//
s=volume*normality_KOH*56/wt_oil//formula for saponification value//
printf("\nSaponification value of oil is %.1f mg/g", S);
```

Scilab code Exa 3.13 alcoholic KOH consumed in saponification

```
1 //lubricants//
2 //page 3.34 example 3//
3 clc
4 S=180//Saponification value of oil//
```

```
5 wt_oil=1//weight f oil saponified(gms)//
6 blank=50//volume blank titration reading(ml)//
7 normality_KOH=0.4//normality of KOH //
8 volume=S*wt_oil/(normality_KOH*56)//formula for saponification value//
9 back=blank-volume//volume of alcoholic KOH consumed(ml)//
10 printf("\nQuantity of alcoholic KOH required per gram is %.0 f ml",back);
```

Scilab code Exa 3.14 saponification value of oil

```
1 //lubricants//
2 //page 3.35 example 4//
3 clc
4 wt_oil=2.5//weight f oil saponified(gms)//
5 blank=40//volume blank titration reading(ml)//
6 back=20//volume back titration reading(ml)//
7 normality_KOH=0.25//normality of KOH //
8 normality_HCl=.5//normality of HCl//
9 e=normality_HCl/normality_KOH//for equivalence in titration //
10 volume=(blank-back)*e//volume of alcoholic KOH consumed(ml)//
11 S=volume*normality_KOH*56/wt_oil//formula for saponification value//
12 printf("\nSaponification value of oil is %.0 f mg/g", S);
```

Scilab code Exa 3.15 composition of blended oils by saponification

```
1 //lubricants//
2 //page 3.35 example 5//
```

```
3 clc
4 S_C=192//Saponification value of castor oil//
5 wt_oil=16//weight f oil saponified(gms)//
6 blank=45//volume blank titration reading(ml)//
7 back=31.5//volume back titration reading(ml)//
8 volume=blank-back//volume of alcoholic KOH consumed(
     ml) / /
9 N_H=0.5//normality of HCl in titration//
10 V_H=blank//volume of HCl in titration(ml)//
11 V_K=50//volume of KOH in titration(ml)//
12 N_K=N_H*V_H/V_K//normality of KOH for equivalence//
13 S_blended=volume*N_K*56/wt_oil//formula for
     saponification value//
14 printf("\nSaponification value of blended oil is %.2
     f mgs KOH", S_blended);
15 pc_C=(S_blended/S_C)*100
16 printf("\npercentage of castor oil in blend is %.3 f
     percent",pc_C);
```

Scilab code Exa 3.16 saponification value of oil

```
1 //lubricants//
2 //page 3.36 example 6//
3 clc
4 wt_oil=3//weight f oil saponified(gms)//
5 blank=36//volume blank titration reading(ml)//
6 back=12//volume back titration reading(ml)//
7 volume=blank-back//volume of alcoholic KOH consumed(ml)//
8 normality_KOH=0.5//normality of KOH//
9 S=volume*normality_KOH*56/wt_oil//formula for saponification value//
10 printf("\nSaponification value of oil is %.f mg/g",S);
```

Scilab code Exa 3.17 saponification value of oil

```
//lubricants//
//page 3.37 example 7//
clc
wt_oil=1.55//weight f oil saponified(gms)//
blank=20//volume blank titration reading(ml)//
back=15//volume back titration reading(ml)//
volume=blank-back//volume of alcoholic KOH consumed(ml)//
normality_KOH=1/2//normality of KOH//
S=volume*normality_KOH*56/wt_oil//formula for saponification value//
printf("\nSaponification value of oil is %.2f mg/g", S);
```

Scilab code Exa 3.18 saponification value of oil

```
1 //lubricants//
2 //page 3.37 example 8//
3 clc
4 wt_oil=1.25//weight f oil saponified(gms)//
5 blank=50//volume blank titration reading(ml)//
6 back=7.5//volume back titration reading(ml)//
7 volume=blank-back//volume of alcoholic KOH consumed(ml)//
8 normality_KOH=0.1//normality of KOH//
9 S=volume*normality_KOH*56/wt_oil//formula for saponification value//
10 printf("\nSaponification value of oil is %.1f mg/g", S);
```

Scilab code Exa 3.19 composition of blended oils by saponification

```
1 //lubricants//
2 //page 3.38 example 9//
3 clc
4 S_C=188//Saponification value of castor oil//
5 wt_oil=12.3//weight f oil saponified (gms)//
6 blank=45//volume blank titration reading(ml)//
7 back=30.2//volume back titration reading(ml)//
8 volume=blank-back//volume of alcoholic KOH consumed(
     ml)//
9 N=0.5//normality of KOH for equivalence//
10 S_blended=volume*N*56/wt_oil//formula for
     saponification value//
11 printf("\nSaponification value of blended oil is %.2
     f mg/g", S_blended);
12 \text{ pc_C=(S_blended/S_C)}*100
13 printf("\npercentage of castor oil in blend is %.2 f
     percent", pc_C);
```

Scilab code Exa 3.20 composition of blended oils by saponification

```
1 //lubricants//
2 //page 3.38 example 10//
3 clc
4 S_C=191//Saponification value of castor oil//
5 wt_oil=2.5//weight f oil saponified(gms)//
6 blank=40//volume blank titration reading(ml)//
7 back=24//volume back titration reading(ml)//
8 volume=blank-back//volume of alcoholic KOH consumed(ml)//
9 N=0.5//normality of KOH for equivalence//
```