

Quick Facts

PARTICIPANTS 1,034

NO. OF 1,332 ENTRIES

PRIZE **€23,000**

KAIZEN

Quick Facts

PARTICIPANTS 355

NO. OF 170 ENTRIES

PRIZE **€23,000**

Quick Facts

PARTICIPANTS 1,034

NO. OF 1,332 ENTRIES

PRIZE **€23,000**

KAIZEN

Why?

- Critical role in energy efficiency
- Optimize operations of chillers, boilers and energy storage systems
- Baseline for flagging potentially wasteful discrepancies

⇒ Forecasting the use of the electrical energy is the backbone of effective operations

Forecasting building energy consumption

Competition Data

- Energy consumption historic for ~200 buildings
- Temperature

Forecasting building energy consumption

Competition Data

- Energy consumption historic for ~200 buildings
- Temperature

Competition Objective

 Forecast Energy consumtption through different horizons

Problem formulation

Engineered features

Feature engineering Cyclical time encoding

Feature engineering Cyclical time encoding

Feature engineering Cyclical time encoding

Problem formulation

Final model

Boosted trees

Boosted trees Decision trees

Boosted trees Decision trees

Boosted treesDecision trees

Boosting

90 kWh

10 kWh

40 kWh

Boosting

90 kWh 10 kWh 40 kWh 10 kWh Prediction
98 kWh 12 kWh 38 kWh 8 kWh Reality

Boosting

Boosting

Boosting

Boosting

Nb of trees

Quick Facts

PARTICIPANTS 1,034

NO. OF 1,332 ENTRIES

PRIZE **€23,000**

TECH WEEK Improve the state of the Art

Create a community

 Provide a solution to a typical Energy problematic

→ This solution can now be used in other context

Why?

- Flexibility in energy management is essential for secure supply and increasing the penetration of renewable sources.
- Energy storage and local production can increase smart building flexibility.
- Time of use tariffs can incite use of energy when it is the most available.

⇒ Algorithms can help battery charging systems to be as efficient as possible

Quick Facts

PARTICIPANTS 355

NO. OF 170 ENTRIES

PRIZE **€23,000**

Competition Description

Competition Data

- Actual Consumption and Production (for 11 buildings)
- Forecast for next 24h
- Grid energy price (sell and buy)

Competition Description

Competition Data

- Actual Consumption and Production (for 11 buildings)
- Forecast for next 24h
- Grid energy price (sell and buy)

Competition Objective

 Plannify a battery usage to save money

Competition Results

Performance Metric

$$Score = \frac{moneyNoBatt - moneySpent}{abs(moneyNoBatt)}$$

where

- $\bullet \; moneyNoBatt$: is the money spent if the site do not have a battery
- moneySpent: is the money spent with a battery controlled by the tested algorithm

Competition Results

Performance Metric

$$Score = \frac{moneyNoBatt - moneySpent}{abs(moneyNoBatt)}$$

where

- $\bullet \; moneyNoBatt$: is the money spent if the site do not have a battery
- moneySpent: is the money spent with a battery controlled by the tested algorithm

Best Competition score: drives 19% savings with a battery.

$$egin{array}{c} \mathbf{minimize} \ [\mathbf{grid}_t]_{t \in [0,24h]} \end{array}$$

$$\sum_{t=0}^{24h} \operatorname{grid}_t imes \operatorname{price}_t$$

$$egin{array}{c} \mathbf{minimize} \ [\mathbf{grid}_t]_{t \in [0,24h]} \end{array}$$

$$\sum_{t=0}^{24h} \operatorname{grid}_t \times \operatorname{price}_t$$

$$grid_t = conso_t - pv_t - battery_t$$

 $egin{array}{c} \mathbf{minimize} \ [\mathbf{grid}_t]_{t \in [0,24h]} \end{array}$

subject to

 $t \in [0,24h]$

 $\sum_{t=0}^{24h} \operatorname{grid}_t \times \operatorname{price}_t$

 $grid_t = conso_t - pv_t - battery_t$

 $battery_t \times \rho < max_power_battery$

 $0 < \text{total_battery}_t + \text{battery}_t < \text{max_capacity_battery}.$


```
egin{array}{l} 	ext{minimize} \ [	ext{grid}_t]_{t \in [0,24h]} \ 	ext{subject to} \ t \in [0,24h] \end{array}
```

$$\begin{split} \sum_{t=0}^{24h} \operatorname{grid}_t \times \operatorname{price}_t \\ \operatorname{grid}_t &= \operatorname{conso}_t - \operatorname{pv}_t - \operatorname{battery}_t \\ \operatorname{battery}_t \times \rho < \operatorname{max_power_battery} \\ 0 < \operatorname{total_battery}_t + \operatorname{battery}_t < \operatorname{max_capacity_battery}. \end{split}$$

<u>Issue:</u> Future consumption and prediction are unknown. We only have forecastings.

Forecasting Error

Scenario based stochastic programming

$$\sum_{t=0}^{24h} \sum_{q=-2}^{2} \operatorname{grid}_t^q imes \operatorname{price}_t$$

Scenario based stochastic programming

$$\sum_{t=0}^{24h} \sum_{q=-2}^{2} \operatorname{grid}_t^q imes \operatorname{price}_t$$

$$\operatorname{grid}_t^q = \operatorname{conso}_t^q - \operatorname{pv}_t^q - \operatorname{battery}_t$$

Scenario based stochastic programming

minimize

 $[\operatorname{grid}_t^q]_{t \in [0,24h], q \in [-2,2]}$

subject to

 $t \in [0, 24h]$

$$q \in [-2,2]$$

$$\sum_{t=0}^{24h} \sum_{q=-2}^{2} \operatorname{grid}_t^q imes \operatorname{price}_t$$

$$\operatorname{grid}_t^q = \operatorname{conso}_t^q - \operatorname{pv}_t^q - \operatorname{battery}_t$$

 $battery_t \times \rho < max_power_battery$

 $0 < \text{total_battery}_t + \text{battery}_t < \text{max_capacity_battery}.$

Results

Scores

Method	Percentage of saving with a battery
Our method	19,6%
1 st competition method	19,4%
2 nd competition method	19,2%
3 rd competition method	19,1

Results

Scores

Method	Percentage of saving with a battery
Our method	19,6%
1 st competition method	19,4%
2 nd competition method	19,2%
3 rd competition method	19,1

Want to go further? https://github.com/kaizen-solutions/power-laws-optimization

- Algorithms driving 19% of savings with a battery
- Algorithms and comparison code are on github

Quick Facts

PARTICIPANTS 355

NO. OF 170 ENTRIES

PRIZE **€23,000**

Conclusion

Business needs

- Business context
- True dataset

Conclusion

Business needs

- Business context
- True dataset

Open Sources

- Understand Solutions
- Formation

Conclusion

Business needs

- Business context
- True dataset

Open Sources

- Understand Solutions
- Formation

Continuous Improvement

- Compare with existing
- Community

Winner solution

Problem formulation WEEK

RAIZEN

Problem formulation

