

SALONI SINGH CSE(AI)-C 202401100300211

Iris Flower Classification

INTRODUCTION

The **Iris Flower Classification** is a classic machine learning problem where the goal is to classify iris flowers into three species:

- 1. Setosa
- 2. Versicolor
- 3. Virginica

based on four numerical features:

- Sepal Length (cm)
- Sepal Width (cm)
- Petal Length (cm)
- Petal Width (cm)

Steps in Classification

1. Data Loading & Preprocessing

- Read the dataset using pandas.
- Check for missing or incorrect values.
- o Encode the species column into numerical labels.

2. Exploratory Data Analysis (EDA)

- Visualize feature relationships using scatter plots and pair plots.
- Check class distribution and correlation between features.

3. Train-Test Split

- Split the dataset into 80% training and 20% testing data.
- Use stratified sampling to maintain class distribution.

4. Model Selection & Training

- Train classifiers like Random Forest, SVM, or KNN.
- Tune hyperparameters for optimal performance.

5. Evaluation

- Use accuracy score, confusion matrix, and classification report.
- Visualize model performance using heatmaps and feature importance graphs.

Why is it Important?

The Iris dataset is widely used for:

- Learning classification algorithms.
- Understanding data preprocessing and visualization.
- Practicing model evaluation and optimization.

METHODOLOGY

The **methodology** for classifying iris flowers involves several key steps, from data collection to model evaluation. Below is a structured approach to solving the problem:

1. Data Collection & Understanding

- The dataset is sourced from UCI Machine Learning Repository and contains 150 samples with 4 features (sepal & petal length/width) and 1 target variable (species).
- The three species to classify are Setosa, Versicolor, and Virginica.

2. Data Preprocessing

- Load the dataset using pandas.
- Check for missing values and handle any inconsistencies.
- **Encode categorical labels** (species) into numerical values using LabelEncoder.

3. Exploratory Data Analysis (EDA)

- Use **descriptive statistics** to summarize the data.
- Visualize relationships using seaborn pair plots and histograms.
- Check for class imbalances or feature correlations.

4. Splitting the Dataset

- Divide the dataset into training (80%) and testing (20%) using train_test_split().
- Use **stratified sampling** to maintain equal class distribution.

5. Model Selection & Training

- Choose classification models like:
 - Random Forest (Ensemble learning)
 - Support Vector Machine (SVM) (Margin-based classification)
 - K-Nearest Neighbors (KNN) (Distance-based classification)
- Train the models on the **training dataset** using fit().

6. Model Evaluation

- Make predictions on the test dataset using predict().
- Assess model performance using:
 - Accuracy Score Measures overall correctness.
 - Confusion Matrix Evaluates false positives/negatives.
 - Classification Report Analyzes precision, recall, and F1-score.
- Visualize performance using heatmaps and feature importance plots.

7. Model Optimization

- Tune hyperparameters using GridSearchCV or RandomizedSearchCV.
- Experiment with different models to find the best-performing classifier.

8. Conclusion & Interpretation

- Summarize findings and compare models.
- Discuss the best model for classifying iris species based on accuracy and performance metrics.

CODE OF THE PROGRAM

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score,
classification_report, confusion_matrix

```
# Load the dataset
file_path = '/content/iris_data.csv'

df = pd.read_csv(file_path)
print("Original Column Names:", df.columns)
```

```
# Ensure 'species' column exists
expected_columns = {'sepal_length', 'sepal_width',
'petal_length', 'petal_width', 'species'}
if not expected columns.issubset(df.columns):
  print("Warning: Expected columns not found. Checking
possible issues...")
  df = pd.read csv(file path, header=None)
  df.columns = ['sepal_length', 'sepal_width', 'petal_length',
'petal_width', 'species']
  print("Columns renamed to:", df.columns)
# Display basic dataset info
print("Dataset Overview:\n", df.head())
print("\nDataset Info:\n")
df.info()
print("\nSummary Statistics:\n", df.describe())
# Encode the target variable
label encoder = LabelEncoder()
```

```
df['species'] = label encoder.fit transform(df['species'])
# Check class distribution before splitting
print("\nClass Distribution:\n", df['species'].value counts())
# Ensure all classes have at least two samples
class_counts = df['species'].value_counts()
if class_counts.min() < 2:
  print("Warning: Some classes have fewer than 2 samples.
Removing them...")
  df = df[df['species'].map(class_counts) >= 2]
# Split data into features and target
X = df.drop(columns=['species'])
y = df['species']
# Handle small class issue by removing stratify if needed
try:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42, stratify=y)
except ValueError:
  print("Stratification failed due to low class counts.
Proceeding without stratify...")
  X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=42)
# Train a RandomForestClassifier with optimized
parameters
model = RandomForestClassifier(n estimators=200,
max depth=5, random state=42)
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f'\nModel Accuracy: {accuracy:.2f}')
```

```
print('\nClassification Report:\n',
classification_report(y_test, y_pred))
# Confusion Matrix
conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d',
cmap='Blues', xticklabels=label_encoder.classes_,
yticklabels=label_encoder.classes_)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
# Visualizing feature importance
feature_importances =
pd.Series(model.feature importances, index=X.columns)
plt.figure(figsize=(8, 5))
feature_importances.nlargest(4).plot(kind='barh',
color='skyblue')
plt.xlabel('Feature Importance')
```

plt.ylabel('Features')

plt.title('Feature Importance in Iris Classification')

plt.show()

OUTPUT

```
🔁 Original Column Names: Index(['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species'], dtype='object')
     Warning: Expected columns not found. Checking possible issues...
     Columns renamed to: Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
               'species'],
             dtype='object')
     Dataset Overview:
                sepal_length
                                            sepal_width
                                                                      petal length \
                 SepalLength
                                            SepalWidth
                                                                      PetalLength

      1
      7.303274553127926
      2.4750252334128063
      2.1760486154633614

      2
      7.556927655410556
      2.987381008530221
      1.9215846218548323

      3
      5.254016373665658
      2.0935160238309827
      3.672563875820435

     4 6.409620271630198 2.2110415805023966 1.812868616156213
                  petal_width
     0
                   PetalWidth
                                       Species
         0.6950029791866986
                                        Setosa
         1.1726148049564784 Versicolor
         0.5504235628446024
                                    Virginica
          1.745372347536642 Versicolor
```

```
Dataset Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21 entries, 0 to 20
Data columns (total 5 columns):
             Non-Null Count Dtype
    Column
    sepal_length 21 non-null
    sepal_width 21 non-null petal_length 21 non-null
                                  object
                                  object
    petal width 21 non-null
                                  object
                  21 non-null
                                  object
4 species
dtypes: object(5)
memory usage: 972.0+ bytes
Summary Statistics:
       sepal_length sepal_width petal_length petal_width species
                                               21
count
                            21
                                         21
                                                     21
unique
top
       SepalLength SepalWidth PetalLength PetalWidth Setosa
freq
```

```
Class Distribution:
species
Name: count, dtype: int64
Warning: Some classes have fewer than 2 samples. Removing them...
Model Accuracy: 0.25
Classification Report:
               precision
                                               support
                   0.00
                            0.00
                                      0.00
                             1.00
                                       0.50
                   0.00
                             0.00
                                       0.00
                                       0.25
   macro avg
                   0.11
                             0.33
                                       0.17
                   0.08
weighted avg
                            0.25
                                       0.12
```


