Contents

0.1	Inferring a three variable Bayesian network												
0.2	Number of Bayesian networks:												

0.1 Inferring a three variable Bayesian network

I reparametrise the joint probability of the graph by replacing the conditional probability P(child|parent) to be the quotient of two joint distirbution $\frac{P(child,parent)}{P(parent)}$. Because P(child|parent) enters the marginalised likelihood as a Beta-Binomial probability, P(parent) enters the term as a Drichlet-Multinomial probability:

$$P(x_k) = \frac{(n!) \Gamma(\sum \alpha_k)}{\Gamma(n + \sum \alpha_k)} \prod_{k=1}^{K} \frac{\Gamma(x_k + \alpha_k)}{(x_k!) \Gamma(\alpha_k)}$$

where $\sum x_k = N$ is the partition of sample into k categories, α_k is the imaginary sample size for each category (also known as prior concentration). This formulation has the advantage of easier coding.

To be consistent with bnlearn and deal, I did discared the multinomial terms in the calculation, leading to

$$P(x_k) = \frac{\Gamma(\sum \alpha_k)}{\Gamma(n + \sum \alpha_k)} \prod_{k=1}^{K} \frac{\Gamma(x_k + \alpha_k)}{\Gamma(\alpha_k)}$$

0.2 Number of Bayesian networks:

A V-variable network has V(V-1)/2 bivariate interaction (edges), each interaction can have 3 possible status (A->B, A<-B, A B). Hence altogether there are $n(V)=3^{V(V-1)/2}$ possible networks. For V=3,n(3)=27 However, for this exercise, the serach space is restircted to the graph set $G=\{\text{no-edge, A-C only, A-C and B-C}\}$.

Figure 1: Graph with two edges but not A-B

Figure 2: Best networks inferred using "bnlearn::pc.stable". Left: Dataset1. Right: Dataset2

0.2.1 Comment on the likelihood-equivalent prior

The likelihood-equivalent prior is set so that the imaginary sample size decreases as data is stratified by more variables. For example, if $P(A=1) \sim Beta(\eta(A_0), \eta(A_1))$, then the imaginary sample size for (A=1) is $\eta(A_1) = 2$. Hence if we then ask for $P(B=1 \mid A=1) \sim Beta(\eta(B_0A_1), \eta(B_1A_1))$, the imaginary η 's must add up to the imageinary sample size of the condition $\mid A=1$, (aka $\eta(B_0A_1) + \eta(B_1A_1) = \eta(A_1) = 2$). Assuming two events are equally probable gives $\eta(B_0A_1) = \eta(B_1A_1) = 1$. For 3 variable, we can deduce $8\eta(ABC) = 4\eta(AB) = 2\eta(A) = \eta(0)$, setting $\eta(ABC) = 1$ gives $\eta(ABC) = 1$, $\eta(AB) = 2$, $\eta(A) = 4$, $\eta(0) = 8$, corresponding to different levels of stratification.

If a likelihood-preserving prior is used, then it is only the correlation structure that determines the relative feasibility of different graphs. Consider the 1-edge and 0-edge examples, the 0-edge example asserts $P(A \mid C = 0) = P(A \mid C = 1) = P(A)$, whereas the 1-edge example implies $P(A \mid C = 0) \neq P(A \mid C = 1)$, allowing an additional degree of freedom. The striking fact is that this additional DOF does not necessarily leads to a better model, in constrast to conventional mixture models where additional components always reduce likelihood. One of the reason is that the partiaion of $A_0 = A_0 =$

0.2.2 Drawbacks of binary bayesian networks

If there are hidden latent variables in the bayes net, for example where the common parent of A and B (which is C) is conceived from the observers, then one will have to consider a graph with hidden variable in order to explain the data. In other words, a graphical prior needs to accommodate additional nodes to explain such data. Even though this is the case, it will be hard to express the case where $n(A_0)=n(B_0)$

0.2.3 Effect of imaginary sample size

Here we consider two imaginary sample sizes $\eta(0) = 8$ and $\eta(0) = 1$. A higher η indicates a sharper distribution of binomial probability θ (Setting $\eta(0) = 1$ implies $\eta(ABC) = 0.125$, $\eta(AB) = 0.25$, $\eta(A) = 0.5$, $\eta(0) = 1$)

The corresponding likelihood are calculated for both datasets (dat1 and dat2, see table 1).

- For dat1, the chain network (A-B-C) is the best at ISS=1, the A-B..C network is the best at ISS=8.
- For dat2, the chain network (A-B-C) is the best for ISS=1 and ISS=8

The prediction made by pc.stable is somewhat different (figure 2)

0.2.4 Plot posteiror for P(C|A) in different models

Here I visulise the posterior distribution using dataset 1 only. In order to show how different graphical models lead to different likelihood, I chose to contrast P(C|A) between [A][B][C] (0-edge model) and [A][B][C|A] (1-edge model)

In 0-edge model, P(C|A) = P(C) and the distribution is indifferent for A = 0 and A = 1 (figure 3). The term enters likelihood function as a beta-binomial.

In contrast, the 1-edge model prescribes that $P(A,C) \neq P(A)P(C)$, and two separate distribution must be considered for P(C|A) (figure 4). The $\prod_{C,A} P(C|A)$ term factors out to be $\prod_{C|A=0} P(C|A=0) \prod_{C|A=0} P(C|A=1)$, as the product of two beta-binomial with independent probability but the same prior. It would be interesting to explore the precise condition under which the factored likelihood exceeds the original single beta-binomial. Clearly, the 0-edge model fails to capture the difference between P(C|A=0) and P(C|A=1) (loglik=-194.3, compared to 1-edge loglik=-175.5), but the underlying mathematics remains to be dissected.

Figure 3: P(C|A)=P(C) according to the 0-edge graph, Left: P(C|A=0). Right: P(C|A=1)

Figure 4: P(C|A) needs to be stratified according to the 1-edge graph, Left: P(C|A=0). Right: P(C|A=1)

Table 1: Marginalised likelihood of different network topology

model	myalgo.bde.iss	bnlearn.bde.iss	bnlearn.bic	iss	dat
[A][B][C]	-194.323	-194.323	-195.931	8	dat1
[A][B][C A]	-175.536	-175.536	-176.906	8	dat1
[B][C][A C]	-175.536	-175.536	-176.906	8	dat1
[B][C B][A C]	-168.817	-168.817	-170.591	8	dat1
$\overline{[A][C A][B C]}$	-168.817	-168.817	-170.591	8	dat1
$\overline{[C][A C][B C]}$	-168.817	-168.817	-170.591	8	dat1
$\overline{[A][B][C A:B]}$	-168.819	-168.819	-170.894	8	dat1
[A][B][C]	-196.617	-196.617	-195.931	1	dat1
$\overline{[A][B][C A]}$	-177.715	-177.715	-176.906	1	dat1
[B][C][A C]	-177.715	-177.715	-176.906	1	dat1
$\overline{[B][C B][A C]}$	-171.742	-171.742	-170.591	1	dat1
$\overline{[A][C A][B C]}$	-171.742	-171.742	-170.591	1	dat1
$\overline{[C][A C][B C]}$	-171.742	-171.742	-170.591	1	dat1
$\overline{[A][B][C A:B]}$	-170.894	-170.894	-170.894	1	dat1
[A][B][C]	-195.699	-195.699	-197.408	8	dat2
[A][B][C A]	-180.318	-180.318	-181.025	8	dat2
[B][C][A C]	-180.318	-180.318	-181.025	8	dat2
$\overline{[B][C B][A C]}$	-178.579	-178.579	-179.994	8	dat2
$\overline{[A][C A][B C]}$	-178.579	-178.579	-179.994	8	dat2
$\overline{[C][A C][B C]}$	-178.579	-178.579	-179.994	8	dat2
$\overline{[A][B][C A:B]}$	-180.568	-180.568	-183.104	8	dat2
[A][B][C]	-198.093	-198.093	-197.408	1	dat2
$\overline{[A][B][C A]}$	-181.803	-181.803	-181.025	1	dat2
[B][C][A C]	-181.803	-181.803	-181.025	1	dat2
[B][C B][A C]	-181.165	-181.165	-179.994	1	dat2
[A][C A][B C]	-181.165	-181.165	-179.994	1	dat2
[C][A C][B C]	-181.165	-181.165	-179.994	1	dat2
[A][B][C A:B]	-183.684	-183.684	-183.104	1	dat2