Controle de Sistemas Dinâmicos

Centro Federal de Educação Tecnológica de Minas Gerais 02 de dezembro de 2024

Campus Timóteo

Resolução da lista de exercícios VII

Eliel Vitor Almeida João Pedro Ferreira Duarte Marcos Vinícius de Oliveira Silva

Em sequência, estão os comandos e resoluções das questões da avaliação.

1. Crie as seguintes funções de transferência na forma polinomial:

$$\begin{array}{cccc} \frac{3}{2s+1} & \frac{3}{2s-1} & \frac{5}{(s+2)\cdot(s+5)} \\ \frac{5}{(s-2)\cdot(s-5)} & \frac{5}{s^2+2s+5} & \frac{5}{s^2-2s+5} \\ \frac{5}{s^2+16} & \frac{5}{s^2-16} & \frac{5}{s^2+6s+9} \end{array}$$

- (a) Calcule os pólos de cada função de transferência.
- (b) Plote a resposta ao degrau de cada função de transferência. Use a função step.
- (c) Descreva o comportamento de cada resposta obtida, fale sobre a estabilidade do sistema e relacione este comportamento aos pólos. Comente e conclua.

Em resposta aos itens anteriores:

```
pkg load control;

numerador_A = 3;
denominador_A = [2, 1];

numerador_B = 3;
denominador_B = [2, -1];

numerador_C = 5;
denominador_C = [-2, -5];

numerador_D = 5;
denominador_D = [2,5];

numerador_E = 5;
denominador_E = [1,2,5];
```

```
18 numerador_F = 5;
denominador_F = [1,-2,5];
20
_{21} numerador_G = 5;
_{22} denominador_G = [1,0,16];
_{24} numerador_H = 5;
denominador_H = [1,0,-16];
26
27 numerador_I = 5;
denominador_I = [1,6,9];
29 % Calcular os polos (raizes do denominador)
poles_A = roots(denominador_A);
poles_B = roots(denominador_B);
poles_C = roots(denominador_C);
poles_D = roots(denominador_D);
poles_E = roots(denominador_E);
poles_F = roots(denominador_F);
36 poles_G = roots(denominador_G);
poles_H = roots(denominador_H);
poles_I = roots(denominador_I);
39
40 % Exibir os polos
disp('Polos de A:');
42 disp(poles_A);
44 disp('Polos de B:');
disp(poles_B);
46
47 disp('Polos de C:');
48 disp(poles_C);
50 disp('Polos de D:');
51 disp(poles_D);
disp('Polos de E:');
54 disp(poles_E);
56 disp('Polos de F:');
57 disp(poles_F);
58
59 disp('Polos de G:');
60 disp(poles_G);
61
62 disp('Polos de H:');
63 disp(poles_H);
64
65 disp('Polos de I:');
66 disp(poles_I);
```

```
67
 %Plotar no grafico
 plot_A = tf(numerador_A, denominador_A);
 step(plot_A,10);
 plot_B = tf(numerador_B, denominador_B);
73
 step(plot_B,10);
74
 plot_C = tf(numerador_C,denominador_C);
 step(plot_C,10);
 plot_D = tf(numerador_D, denominador_D);
 step(plot_D,10);
80
 plot_E = tf(numerador_E, denominador_E);
 step(plot_E,10);
83
 plot_F = tf(numerador_F,denominador_F);
 step(plot_F,10);
86
87
 plot_G = tf(numerador_G,denominador_G);
 step(plot_G,10);
89
 plot_H = tf(numerador_H, denominador_H);
 step(plot_H,10);
 plot_I = tf(numerador_I,denominador_I);
95 step(plot_I,10);
```

Sobre os gráficos gerados pelas funções acima com o uso da função step, temos então 1, 2, 3, 4, 5, 6, 7, 8 e 9 como figuras que representam estes gráficos.

Em função das caracteríisticas já estudadas, conseguimos dizer que a presença de pólos reais no lado positivo do plano cartesiano, faz com que o sistema se torne instável, de forma que essa é uma característica comum nestes gráficos que damos como instáveis a seguir.

Verificamos como funções com respostas estáveis, 3, 4, 5 e 9. Agora como instáveis, temos então 1, 2, 6, 7 e 8.

2. Sejam os sistemas representados pelas seguintes funções:

$$G_1 = \frac{1}{2s+1}, \quad G_2 = \frac{1}{s^2 + 0.5s + 1}$$

- (a) Verifique como tais sistemas respondem às seguintes entradas:
 - i. Rampa.
 - ii. Impulso.

Plote o gráfico de cada uma das funções.

Figura 1: Resposta ao degrau 1a

Sobre o código de determinada implementação:

```
pkg load control;
 pkg load symbolic;
  syms s;
 %2a
6
7 figure;
 clf;
 s = tf('s');
g = (1/(2*s +1))*(1/s);
11 step(g);
12 title ("Funcao step com a FT rampa 2a");
13
14 figure;
15 clf;
s = tf('s');
g = (1/(2*s +1))*(1/s);
impulse(g);
19 title ("Funcao impulse com a FT rampa 2a");
20
21 %2b
22 figure;
23 clf;
_{24}|_{s} = tf('s');
g = (1/(s^2 + 0.5*s + 1))*(1/s);
26 step(g);
27 title ("Funcao step com a FT rampa 2b");
```


Figura 2: Resposta ao degrau 1b

```
figure;
figure;
clf;
s = tf('s');
g = (1/(s^2 +0.5*s + 1))*(1/s);
impulse(g);
title ("Funcao impulse com a FT rampa 2b");
```

Os gráficos feitos em resposta ao código gerado, podem ser consultados abaixo, em 10, 11, 12 e 13:

- 3. Considere o sistema com realimentação descrito na figura anexa à atividade:
 - (a) Calcule a função de transferência em malha fechada usando as funções series e feedback.

```
pkg load control;

sys1 = tf([1], [1, 1]);
sys2 = tf([1, 2], [1, 3]);

sysSeries = series(sys1, sys2);

sysFeedback = feedback(sys1, sys2);

disp('Sistema em serie:');
display(sysSeries);
```


Figura 3: Resposta ao degrau 1c

```
disp('Sistema em malha fechada (feedback):');
display(sysFeedback);
```

Em resposta ao item, as seguintes funções de transferência foram retornadas: $y_1=\frac{s+2}{s^2+4s+3}, \ y_2=\frac{s+3}{s^2+5s+5}$

- (b) Obtenha a resposta ao degrau unitário do sistema em malha fechada com a função step e verifique que o valor final da saída é $\frac{2}{5}$.
- 4. Um sistema possui a seguinte função de transferência:

$$\frac{X(s)}{R(s)} = \frac{\frac{20}{z} \cdot (s+z)}{s^2 + 3s + 20} \tag{1}$$

- (a) Obtenha a resposta ao degrau unitário do sistema para o parâmetro z=5, z=10, e z=15.
- (b) Plote as 3 curvas no mesmo gráfico. Compare, comente e conclua.

Figura 4: Resposta ao degrau 1d

Figura 5: Resposta ao degrau 1e

Figura 6: Resposta ao degrau 1f

Figura 7: Resposta ao degrau 1g

Figura 8: Resposta ao degrau 1h

Figura 9: Resposta ao degrau 1i

Figura 10: Resposta com função ${\tt Step}$ à ${\tt FT}$

Figura 11: Resposta com função ${\tt Impulse}$ à FT

Figura 12: Resposta com função ${\tt Step}$ à ${\tt FT}$

Figura 13: Resposta com função Impulse à FT