RANGKAIAN ELEKTRONIKA II

Penguat Operasional

Mifta Nur Farid, S.T., M.T. miftanurfarid@lecturer.itk.ac.id

Teknik Elektro Institut Teknologi Kalimantan Balikpapan, Indonesia

Maret 8, 2021

Sub-CPMK

Mahasiswa mampu menganalisis rangkaian penguat operasional (C4, P3, A3)

Bahan Kajian

- 1. Konsep dasar penguat operasional;
- 2. Inverting amplifier;
- 3. Noninverting amplifier;
- 4. The Summing Amplifier;
- 5. Voltage Follower.

Gambar. 1: Blok diagram sebuah op amp

Gambar. 2: (a) Simbol dari op amp dan (b) rangkaian ekivalen dari op amp

(b)

Summary Table 16-1 Typical Op-Amp Characteristics				
Quantity	Symbol	Ideal	LM741C	LF157A
Open-loop voltage gain	A _{VOL}	Infinite	100,000	200,000
Unity-gain frequency	$f_{ m unity}$	Infinite	1 MHz	20 MHz
Input resistance	R _{in}	Infinite	2 M Ω	10 12 Ω
Output resistance	R _{out}	Zero	75 Ω	100 Ω
Input bias current	I _{in(bias)}	Zero	80 nA	30 pA
Input offset current	I _{in(off)}	Zero	20 nA	3 рА
Input offset voltage	$V_{\text{in(off)}}$	Zero	2 mV	1 mV
Common-mode rejection ratio	CMRR	Infinite	90 dB	100 dB

Gambar. 3: Perbandingan karakteristik op amp ideal dan op amp standar

Op Amp 741

- Monolitic amp μ A709 tahun 1965 oleh Fairchild Semiconductor
- lacktriangle μ A709 memiliki kekurangan ightarrow dibuatlah μ A741
- Banyak manufaktur yang membuat μ A741:
 - □ ON Semiconductor: MC1741
 - □ Texas Instruments: LM741
 - □ Analog Devices: AD741.
- Istilah umumnya op amp 741

Standar Industri

- Beberapa versi: 741, 741A, 741C, 741E, dan 741N
- Bergantung pada karakteristiknya (voltage gain, temp. range, noise level, dll)
- 741C ($C = Commercial\ grade$) \rightarrow sedikit lebih murah dan paling banyak digunakan
- $A_{VOL} = 100000$, $z_{in} = 2 \text{ M}\Omega$, $z_{o}ut = 75 \Omega$

Standar Industri

Gambar. 4: Op amp 741 pinouts (a) dual-in-line, (b) ceramic flatpak, (c) metal can

Rangkaian Ekivalen dari Op Amp 741

Gambar. 5: Rangkaian ekivalen dari op amp 741

- Input diff amp
- Final Stage
- Active Loading
- Frequency Compensation $C_{in(M)} = (A_v + 1)C_c$

Gambar. 6: Bode plot A_{VOL} 741C ideal

Bias & Offset

Gambar. 7: Penggunaan compensation dan nulling 741C

- Tidak ada input signal \rightarrow input bias dan offset \rightarrow error output
- Error output berkurang ← base resistor yang sama → hanya menghilangkan arus bias tapi tidak arus offset dan tegangan offset
- Solusi: menggunakan rangkaian nulling di datasheet

 f_{unity}

MHz

Gambar. 8: Grafik (a) Common-Mode Rejection Ratio (CMRR), (b) Maximum Peak-to-Peak Output (MPP), dan (c) Open-Loop Voltage Gain A_{VOL} dari 741C

Gambar. 9: (a) Respon ideal dan aktual terhadap tegangan step input, (b) ilustrasi definisi slew rate, (c) $S_R = 0.5 \text{ V}/\mu\text{s}$

• Persamaan slew rate, S_R

$$S_R = \frac{\Delta v_{out}}{\Delta t} \tag{1}$$

Exponential wave meningkat 0.5 V selama 1 mikrodetik pertama:

$$S_R = \frac{\Delta v_{out}}{\Delta t}$$

$$= \frac{0.5 \text{ V}}{1 \mu \text{s}}$$

$$= 0.5 \text{ V}/\mu \text{s}$$

Gambar. 10: (a) Initial slope dari gelombang sinus, (b) distorsi terjadi jika initial slope melebihi slew rate

- lacktriangle Sinyal dan frekuensinya sangat kecil ightarrow slew rate bukan masalah
- lacktriangle Sinyal dan frekuensinya sangat besar ightarrow slew rate akan mendistorsi sinyal ouput

$$S_S = 2\pi f V_p$$

• S_s : initial slope dari gelombang sinus, f: frekuensi, V_p : nilai peak

$$S_S \le S_R$$
 $2\pi f V_p \le S_R$
 $f \le \frac{S_R}{2\pi V_p}$

$$f_{max} = \frac{S_R}{2\pi V_p} \tag{2}$$

f_{max}: power bandwidth atau large-signal bandwidth

•
$$S_R = 0.5 \text{ V}/\mu\text{s} \to 741\text{C}$$

•
$$S_R = 50 \text{ V}/\mu\text{s} \rightarrow \text{LM318}$$

Gambar. 11: Grafik power bandwidth vs. peak voltage

■ Pertanyaan:

□ Berapa tegangan inverting input yang dibutuhkan untuk men-drive op amp 741C hingga saturasi negatif?

Jawaban:

- □ Berdasarkan Gambar 8 (b), MPP = 27 V untuk $R_L = kΩ$
- \square Sehingga tegangan output negatif saturasinya = 13.5 V
- □ Karena $A_{VOL} = 100000$, maka tegangan input yang dibutuhkan:

$$v_2 = \frac{v_{out}}{A_{VOL}}$$

$$= \frac{13.5 \text{ V}}{100000} = 135 \text{ } \mu\text{V}$$

Latihan Soal 2.1

■ Pertanyaan:

□ Berapa tegangan inverting input yang dibutuhkan untuk men-drive op amp 741C hingga saturasi negatif jika $A_{VOL} = 200000$?

- Pertanyaan:
 - □ Berapa common-mode rejection ratio (CMRR) dari 741C ketika frekuensi input-nya adalah 100 kHz?
- Jawaban:
 - $\ \square$ Berdasarkan Gambar 8 (a), CMRR $_{dB} \approx 40~dB$

$$\mathsf{CMRR} = 10^{(\mathsf{CMRR}_{\mathsf{dB}}/20)} = 10^{(40~\mathsf{dB}/20)} = 100$$

Latihan Soal 2.2

■ Pertanyaan:

□ Berapa common-mode rejection ratio (CMRR) dari 741C ketika frekuensi input-nya adalah 10 kHz?

Pertanyaan:

Berapa open-loop voltage gain dari 741C jika frekuensi input-nya adalah 1 kHz ? 10 kHz ? 100 kHz ?

■ Jawaban:

□ Berdasarkan Gambar 8 (c), voltage gain-nya adalah 1000 untuk 1 kHz, 100 untuk 10 kHz, dan 10 untuk 100 kHz.

Pertanyaan:

 \Box Tegangan input ke op amp adalah tegangan fungsi step. Output-nya adalah sebuah waveform eksponensial yang berubah ke 0.25 V dalam 0.1 μ s. Berapa slew rate dari op amp tersebut?

Jawaban:

□ Berdasarkan Persamaan 1

$$S_R = \frac{\Delta v_{out}}{\Delta t} = \frac{0.25 \text{ V}}{0.1 \text{ } \mu\text{s}} = 2.5 \text{ V}/\mu\text{s}$$

Latihan Soal 2.4

Pertanyaan:

 \Box Tegangan input ke op amp adalah tegangan fungsi step. Output-nya adalah sebuah waveform eksponensial yang berubah ke 0.8 V dalam 0.2 μs . Berapa slew rate dari op amp tersebut?

- Pertanyaan:
 - \Box Op amp LF411A dengan slew rate 15 V/ $\mu s.$ Berapa power bandwidth dari tegangan peak output 10 V ?
- Jawaban:
 - □ Berdasarkan Persamaan 2

$$f_{max} = \frac{S_R}{2\pi V_p} = \frac{15 \text{ V}/\mu\text{s}}{2\pi (10 \text{ V})} = 239 \text{ kHz}$$

Latihan Soal 2.5

Pertanyaan:

 $\ \Box$ Op amp LF411A dengan slew rate 15 V/ $\mu s.$ Berapa power bandwidth dari tegangan peak output 200 mV ?

■ Pertanyaan:

- □ Berapa power bandwidth dari:
 - $S_R = 0.5 \text{ V}/\mu\text{s dan } V_p = 8 \text{ V}$
 - $S_R = 5 \text{ V}/\mu\text{s} \text{ dan } V_p = 8 \text{ V}$
 - lacksquare $S_R=50~{
 m V}/\mu{
 m s}~{
 m dan}~V_{
 ho}=8~{
 m V}$

■ Jawaban:

- □ Berdasarkan Gambar 11
 - $f_{max} = 10 \text{ kHz}$
 - $f_{max} = 100 \text{ kHz}$
 - \blacksquare $f_{max} = 1 \text{ MHz}$

Latihan Soal 2.6

- Pertanyaan:
 - □ Berapa power bandwidth dari:
 - \blacksquare $S_R = 0.5 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$
 - $S_R = 5 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$
 - $S_R = 50 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$

Pengantar Inverting Amplifier

- Inverting amplifier: rangkaian op amp paling dasar
- Menggunakan negative feedback untuk menstabilkan keseluruhan voltage gain
- Keseluruhan voltage gain perlu distabilkan karena A_{VOL} sangat besar dan tidak stabil
- 741C memiliki A_{VOL} minimum sebesar 20000 dan A_{VOL} maksimum lebih dari 200000

Gambar. 12: Inverting amplifier

Virtual Ground

Gambar. 13: Konsep virtual ground

- Analisis inverting amplifier lebih mudah
- Berdasarkan op amp ideal:

$$\square R_{in} = \infty \rightarrow i_2 = 0$$

$$\quad \Box \ \, A_{VOL} = \infty \rightarrow \textit{v}_2 = 0 \rightarrow$$

• Karena $i_2 = 0$ maka $i_{R_f} = i_{in}$

Voltage Gain

Gambar. 14: Inverting amplifier memiliki arus yang sama yang melewati kedua resistor

■ Tegangan input:

$$v_{in} = i_{in}R_1$$

■ Tegangan output:

$$v_{out} = -i_{in}R_f$$

■ Penguatan tegangan:

$$A_{v(CL)} = \frac{-R_f}{R_1} \tag{3}$$

Bandwidth

Gambar. 15: Voltage gain yang lebih kecil menghasilkan bandwidth yang lebih besar

Non-inverting Amplifier

Item

Aplikasi Op-Amp

Item

TERIMA KASIH