# A Logarithmic First Integral for the Logistic On-Site Law in Void Dynamics

Justin K. Lietz

August 26, 2025

#### Abstract

I prove a closed-form constant of motion for the autonomous on-site law

$$\dot{W} = rW - uW^2,$$

which underpins the Reaction-Diffusion (RD) baseline of Void Dynamics. Defining

$$Q(W,t) := \ln \frac{W}{r - uW} - rt,$$

I show that  $\frac{d}{dt}Q = 0$  along solutions on domains where the expression is defined (e.g., 0 < W < r/u). I relate Q to the standard logistic solution, establish domains/branches and limiting behaviors, and explain why a naïve "kinetic+potential" energy is not conserved for this first-order dissipative flow. Finally, I include a minimal, self-contained numerical protocol that verifies machine-precision constancy of Q and exhibits convergence consistent with the time-stepper's order. The note is self-contained and implementation-agnostic.

#### 1 Introduction and main statement

Consider the one-degree-of-freedom, autonomous ordinary differential equation (ODE)

$$\dot{W} = F(W) = rW - uW^2, \qquad r, u \in \mathbb{R}, \ u \neq 0.$$
(1)

In many RD parameterizations one writes  $r = \alpha - \beta$  and  $u = \alpha$ , but this mapping is not needed here. Because (1) is autonomous, time-translation symmetry implies the existence of an implicit first integral. The following explicit invariant holds.

**Proposition 1** (Logarithmic invariant). For any interval on which the expression is defined (e.g., 0 < W < r/u when r/u > 0),

$$Q(W,t) \equiv \ln \frac{W}{r - uW} - rt \tag{2}$$

is constant along any trajectory of  $\dot{W} = rW - uW^2$ .

### 2 Proof

For an autonomous ODE  $\dot{W} = F(W)$ , one has  $dt = \frac{dW}{F(W)}$ . Here

$$\frac{dW}{F(W)} = \frac{dW}{W(r-uW)} = \frac{1}{r} \left( \frac{1}{W} + \frac{u}{r-uW} \right) dW. \tag{3}$$

Integrating both sides gives

$$t + C = \frac{1}{r} \left( \ln|W| - \ln|r - uW| \right), \tag{4}$$

or equivalently,

$$\ln \frac{W}{r - uW} - rt = \text{const.}$$
(5)

Defining Q(W,t) by (2) yields  $\frac{d}{dt}Q = 0$  along solutions of (1). The proof holds on any interval avoiding the simple poles at W = 0 and W = r/u, with a consistent logarithm branch on that interval.

### 3 Relation to the logistic closed-form solution

Separation of variables yields the well-known logistic solution

$$W(t) = \frac{r}{u} \frac{1}{1 + C e^{-rt}}, \qquad C = \frac{r - uW_0}{W_0}, \tag{6}$$

for an initial condition  $W(0) = W_0$  that avoids the poles. Substituting into the invariant gives

$$Q(W(t),t) = \ln\left(\frac{\frac{r}{u}\frac{1}{1+Ce^{-rt}}}{r - \frac{r}{1+Ce^{-rt}}}\right) - rt = \ln\left(\frac{1}{u} \cdot \frac{1}{C}\right),\tag{7}$$

which is constant in time. Thus Q encodes the integration constant (1/C) up to an additive constant  $-\ln u$ ; different branches correspond to the piecewise structure induced by the poles.

## 4 Properties, domains, units, and limits

**Poles and branches.** Q has simple poles at W=0 and W=r/u. On any open interval avoiding these poles, one may select a consistent logarithm branch and obtain a constant Q. Natural intervals are: (i) (0, r/u) when r/u > 0, and (ii)  $(r/u, \infty)$  when r/u > 0. Similar partitions apply when r/u < 0.

**Units.** If W is dimensionless and r, u have units of inverse time, then  $\ln \frac{W}{r-uW}$  is dimensionless while rt is dimensionless, so Q is dimensionless. If one alternatively assigns a scale to W, the same conclusion holds once a reference scale is absorbed.

**Limiting forms.** As  $W \to 0^{\pm}$ :  $Q \sim \ln|W| - \ln|r| - rt$ . As  $W \to (r/u)^{\mp}$ :  $Q \sim -\ln|r - uW| - rt + \text{const.}$ 

**Monotonicity of** W. On (0, r/u) with r, u > 0, W grows monotonically to r/u; on  $(r/u, \infty)$ , W decays monotonically to r/u. The invariant remains constant on each interval separately.

### 5 Numerical verification (self-contained protocol)

**Objective.** Verify that the numerical drift  $\Delta Q \equiv \max_{0 \le n \le N} |Q(W_n, t_n) - Q(W_0, 0)|$  is limited by discretization/round-off and exhibits the expected step-order convergence.

#### Protocol.

- Time-stepper: fixed-step RK4 (or Dormand–Prince with tight tolerances).
- Parameters: e.g., r = 0.15, u = 0.25.
- Initial conditions: sample  $W_0 \in (10^{-3}, r/u 10^{-3})$  and  $W_0 \in (r/u + 10^{-3}, 1 10^{-3})$  to test both sides of the middle pole.
- Time step and horizon:  $dt = 10^{-3}$ ,  $N = 10^{5}$  steps (double precision).

#### Acceptance gates.

- Double precision:  $\Delta Q \leq 10^{-10}$  (RK45 with tight tolerances) or  $\Delta Q \leq 10^{-8}$  (RK4 with  $dt \approx 10^{-3}$ ).
- Single precision:  $\Delta Q \leq 10^{-5}$ .
- Convergence: halving dt reduces  $\Delta Q$  by a factor consistent with the order p of the scheme; a log-log fit of  $\Delta Q$  vs dt yields slope  $p \pm 0.4$  and  $R^2 \ge 0.98$ .

#### Pseudocode (language-agnostic).

- 1) define  $F(W) = r*W u*W^2$
- 2) initialize t=0, W=W0, Q0 = ln(W/(r-uW)) r\*t
- 3) for n in 1..N: advance (W,t) one step by RK4 with step dt
- 4) compute Qn = ln(W/(r-uW)) r\*t and track max |Qn Q0|
- 5) report Q and, if running a step-refinement, the observed slope

**Numerical notes.** Trap underflow/overflow near the poles; reject steps that cross the singularity. The test is most transparent on (0, r/u) for r, u > 0.

### 6 Figures

## 7 Why there is no naïve conserved "energy" here

If one guesses a per-site energy  $H(W, \dot{W}) = \frac{1}{2}\dot{W}^2 + V(W)$ , then

$$\frac{dH}{dt} = \dot{W}(\ddot{W} + V'(W)).$$

In a first-order flow  $\dot{W} = F(W)$ ,  $\ddot{W} = F'(W)\dot{W}$ . Hence

$$\frac{dH}{dt} = \dot{W}(F'(W)\dot{W} + V'(W)),$$

which is not generically zero unless  $\dot{W} \equiv 0$  or V' is tuned to cancel  $F'(W)\dot{W}$  pointwise in time—impossible for a potential that depends only on W. Thus a time-independent Hamiltonian of this simple form is not conserved. The correct conserved quantity is the logarithmic first integral Q arising from autonomy/time-translation symmetry.



Figure 1: Solution overlay for the logistic on-site law: numerical trajectory (fixed-step integrator) versus the closed-form solution. Acceptance: visual agreement across the horizon with parameters shown in the figure filename; stable copy produced by the validator script.

## 8 Discussion and scope

The invariant Q is local (on-site). In spatially extended or coupled systems, Q is generally not conserved site-wise; instead, it serves as a per-node diagnostic for deviations induced by coupling/diffusion. The result is independent of implementation or discretization; it relies only on autonomy of the on-site law and standard calculus.

#### Placement within the canonical RD baseline and context

- Canonical model. The Void Dynamics baseline is reaction–diffusion (RD):  $\partial_t \phi = D\nabla^2 \phi + r\phi - u\phi^2$ . The invariant (2) concerns the on-site (spatially homogeneous) logistic law, corresponding to the D=0 slice; it is local and does not survive generic coupling/diffusion. - Discrete—continuum legitimacy. Time-translation symmetry for autonomous laws guarantees an implicit first integral; evaluating the primitive yields the explicit logarithmic invariant used here. Companion notes cover the discrete-to-continuum mapping and symmetry analysis supporting this logic. - Empirical gates (context). The RD sector is validated independently by two canonical checks: (i) linear dispersion  $\sigma(k) = r - Dk^2$  and its discrete counterpart, and (ii) Fisher–KPP pulled-front speed  $c = 2\sqrt{Dr}$ . These establish the RD baseline into which the on-site invariant is situated. - Scope separation. Finite-speed second-order EFT branches are quarantined; the present note is fully contained within the RD baseline.

**Acknowledgments.** I thank Voxtrium for providing his theory to me and giving me confidence when I saw that it mapped to his work and strengthened my own.



Figure 2: Invariant drift  $\Delta Q(t) = |Q(t) - Q(0)|$  on a log scale. Acceptance: in double precision,  $\max_t \Delta Q \leq 10^{-8}$  for RK4 with  $dt \approx 10^{-3}$ ; in single precision,  $\leq 10^{-5}$ .

# References

- [1] S. H. Strogatz, Nonlinear Dynamics and Chaos, 2nd ed., Westview, 2015.
- [2] C. H. Edwards, D. E. Penney, Differential Equations and Boundary Value Problems, Pearson.
- [3] J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed., Springer, 2002.



Figure 3: Convergence study:  $\Delta Q$  vs. dt on a log–log plot with fitted slope. Acceptance: observed slope within  $\pm 0.2$  of the time-stepper's order (RK4 $\approx$  4; explicit Euler $\approx$  1) with  $R^2 \geq 0.98$ .