Mini-Curso de Minizinc (baseado em exemplos)

Claudio Cesar de Sá

Departamento de Ciência da Computação Centro de Ciências e Tecnológias Universidade do Estado de Santa Catarina

24 de agosto de 2016

Sumário (1)

Contextutalização

Problemas e Otimização

Otimização

Programação por Restrições

Histórico

Propósitos

Motivação

Paradigma Declarativo Características do MiniZinc

Instalação e uso

Estrutura de um Modelo

Exemplo Inicial

Elementos da Linguagem

Parâmetros e Variáveis Alguns Operadores Lógicos

Sumário (2)

Outras Características

Exemplos Introdutórios

Um Clássico da PO Teoria dos Conjuntos Construindo Funções e Predicados Função Binária Uso na Lógica Proposicional Uso na Lógica de Primeira-Ordem

Vetores 1D

Problema da soma de subconjuntos Régua de Golomb Função: y=soma(vetor 1D)

Vetores 2D

Quadrado Mágico Problema de Atribuição

Sumário (3)

Os Nadadores Americanos Job–Shop–Schedulling Coloração de Mapas

Melhorando as Buscas

Parâmetro search Restrições Globais

Tópicos Gerais

String e Fix Ainda Conjuntos

Conclusões

Referências Bibliográficas

Notas

- Todos os códigos apresentados se encontram em: https://github.com/claudiosa/CCS/tree/master/minizinc, com o prefixo sbpo_
- Sempre atualizado este tutorial em https://github.com/claudiosa/ CCS/tree/master/minizinc/curso_minizinc
- Metodologia: ensino da linguagem via exemplos apresentando os principais recursos e técnicas
- Agradecimentos a todos da SBPO-2016 pela oportunidade em organizar este material e estudantes da UDESC por testarem parte dele ao longo dos anos.

Problemas × Otimização

Tracar esta figura futuramente

Problemas e Otimização

Complexidade ⇔ Encontrar soluções:

- Problemas complexos de interesse prático (e teórico): NPs ↑
- Tentativas de soluções: diversas direções (teoria) e muitos paradigmas computacionais (práticas)
- Seguem desde um modelo matemático existente a um modelo empírico a ser descoberto. Exemplificando:

Problemas e Otimização

Complexidade ⇔ Encontrar soluções:

- Problemas complexos de interesse prático (e teórico): NPs ↑
- Tentativas de soluções: diversas direções (teoria) e muitos paradigmas computacionais (práticas)
- Seguem desde um modelo matemático existente a um modelo empírico a ser descoberto. Exemplificando:
 - \Box Uma equação de regressão linear: $y = ax^2 + b$
 - □ ... até ...
 - □ Programação genética (evolução de um modelo)
- Problemas apresentam características comuns como: variáveis, domínios, restrições, espaços de estados (finitos e infinitos, contínuos e discretos) ...

Otimização

Complexidade ⇔ Otimização:

 A área de Otimização tem uma divisão: Discreta ou Combinatória e Contínua ou Numérica (funções deriváveis)

Otimização

Complexidade ⇔ Otimização:

 A área de Otimização tem uma divisão: Discreta ou Combinatória e Contínua ou Numérica (funções deriváveis)

Combinatória: Problemas definidos em um espaço de estados finitos (ou infinito mas enumerável)

Numérica: Definidos em subespaços infinitos e não enumeráveis, como os números reais e complexos

 Difícil: problemas que tenham uma ordem maior ou igual a 2^{O(n)} são exponenciais, consequentemente, difíceis!

Como atacar estes problemas?

Técnicas:

Combinatória:

Busca Local

- Métodos Gulosos: busca tipo subida a encosta (hill-climbing), recozimento simulado (simulated annealing), busca tabu, etc.
- Programação Dinâmica
- Programação por Restrições (PR)
- Redes de Fluxo
-

Numérica: Descida do Gradiente

- Gauss-Newton
- Lavemberg-Marquardt
- ·

Programação por Restrições (PR)

Figura: O mar de estados e a filtragem da PR

Onde o objetivo é:

Figura: Operando com regiões específicas ou reduzidas

Redução em sub-problemas:

Figura: Redução de P em outros sub-problemas equivalentes

Construção de modelos e implementações:

Ferramentas: linguagens, tradutores e solvers:

Figura: Linguagens, bibliotecas e solvers de propósitos diversos

Minizinc, tradutores e os solvers:

Figura: Há muitas conversores do MiniZinc para vários $solvers \Rightarrow uma$ proposta unificada

➤ Em 2006 a comunidade de CP *Constraint Programming* discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!

- ➤ Em 2006 a comunidade de CP *Constraint Programming* discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- ➤ O MINZINC é um sub-conjunto do ZINC

- ➤ Em 2006 a comunidade de CP Constraint Programming discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- >> O MINZINC é um sub-conjunto do ZINC
- ➤ Linguagem de modelagem ⇒ paradigma lógico de programação

- ➤ Em 2006 a comunidade de CP *Constraint Programming* discutiu a necessidade de uma linguagem unificada para seus modelos e pesquisas
- → Inicialmente a linguagem ZINC foi criada pelo NICTA, Universidade de Melbourne e Universidade de Monash. Tudo na Austrália!
- ➤ O MINZINC é um sub-conjunto do ZINC
- ➤ Linguagem de modelagem ⇒ paradigma lógico de programação
- ► Minizinc é compilado para o FlatZinc cujo código é traduzido há vários outros solvers

Propósitos

- ➤ Objetivo: resolver problemas de otimização combinatória e PSR (Problemas de Satisfação de Restrições)
- ➤ O objetivo é descrever o problema: **declarar** no lugar de especificar o que o programa deve fazer
- → Paradigma de programação imperativo: como deve ser calculado!
- → Paradigma de programação <u>declarativo</u>: **o que** deve ser calculado!

Motivação

O que é um problema combinatório?

Figura: Problema da sequência de visitas

Complexidade × Combinatória

Figura: Contando combinações das variáveis: X e Y

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

 $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem \Rightarrow construir modelos \Rightarrow problemas reais

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem \Rightarrow construir modelos \Rightarrow problemas reais
- **➤ Modelos** ⇔ computáveis!

$$Modelo + Dados = A_1 \wedge A_2 \wedge A_3 \wedge \wedge A_n$$

- $ightharpoonup A_i$: são assertivas declaradas (declarações de restrições) sobre o problema
- ightharpoonup Linguagem \Rightarrow construir modelos \Rightarrow problemas reais
- **➤ Modelos** ⇔ computáveis!
- → Visão lógica: insatisfatível (sem respostas) ou consistente

Resumindo alguns livros e solvers

Figura: Ciclo entre a efetiva busca e a poda, na propagação das restrições

■ Modelagem: imediata à abordagem matemática existente

- Modelagem: imediata à abordagem matemática existente
- Para isto, MUITOS recursos: operadores booleanos, aritméticos, constantes, variáveis, etc

- Modelagem: imediata à abordagem matemática existente
- Para isto, MUITOS recursos: operadores booleanos, aritméticos, constantes, variáveis, etc
- Fortemente tipada

- Modelagem: imediata à abordagem matemática existente
- Para isto, MUITOS recursos: operadores booleanos, aritméticos, constantes, variáveis, etc
- Fortemente tipada
- Dois tipos de dados: constantes e variáveis

Continuando as características:

■ Constantes: são valores fixos — são conhecidos como parâmetros

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um domínio (aqui é o ponto)

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um <u>domínio</u> (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um <u>domínio</u> (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis
- Mas há muitos tipos de dados: *int*, *bool*, *real*, *arrays*, *sets*, etc

Continuando as características:

- Constantes: são valores fixos são conhecidos como parâmetros
- Variáveis: assumem valores sobre um <u>domínio</u> (aqui é o ponto)
- Logo: restringir estes domínios apenas para valores admissíveis
- Mas há muitos tipos de dados: int, bool, real, arrays, sets, etc
- Diferentemente da tipagem dinâmica aqui não existe!

Instalação e uso

Tem evoluído muito nestes últimos anos:

- 1. Tudo tem sido simplificado
- 2. Download e detalhes: http://www.minizinc.org/
- 3. Basicamente: baixar o arquivo da arquitetura desejada, instalar, acertar variáveis de ambiente, *path*, e usar como:

Instalação e uso

Tem evoluído muito nestes últimos anos:

- Tudo tem sido simplificado
- 2. Download e detalhes: http://www.minizinc.org/
- 3. Basicamente: baixar o arquivo da arquitetura desejada, instalar, acertar variáveis de ambiente, path, e usar como:
 - □ Modo console (ou linha de comando) ou
 - $\ \square$ Interface IDE

Resumindo

- ► Modo console: mzn2doc, mzn2fzn, mzn-g12fd, mzn-g12lazy, mzn-g12mip, mzn-gecode, ...
- 1. Edite o programa em um editor ASCII
- Para compilar e executar: mzn-xxxx nome-do-programa.mzn ou escolher um outro solver
- Exemplo como todas soluções:
 mzn-g12fd –all solutions nome-do-programa.mzn
- 4. Detalhes e opções: mzn-g12fd -help

Resumindo

- ► Modo console: mzn2doc, mzn2fzn, mzn-g12fd, mzn-g12lazy, mzn-g12mip, mzn-gecode, ...
- 1. Edite o programa em um editor ASCII
- Para compilar e executar: mzn-xxxx nome-do-programa.mzn ou escolher um outro solver
- Exemplo como todas soluções:
 mzn-g12fd –all _solutions nome-do-programa.mzn
- 4. Detalhes e opções: mzn-g12fd -help
- ➤ Modo IDE: minizinc_IDE ou minizincIDE
- ➤ Na IDE dá para editar e alterar configurações

Estrutura de um Modelo

Includes, imports Seção de Constantes Seção de Variáveis Funções e Predicados Declara Restrições Heurística de Busca Formata as Saídas

Exemplo × Espaço de Estado (EE)

Figura: Obter os pontos do interior do retângulo

Exemplo (1)

```
1 %% Declara constantes
2 int: UM = 1; int: DOIS = 2; int: CINCO = 5;
3 %% Declara variaveis
4 var UM .. 11 : X; %% segue o dominio 1..11
5 var UM 7 : Y;
7 %% As restricoes
  constraint
     Y > DOIS /\ Y < CINCO;
10
  constraint
     X > 3 /\ X < 9;
12
13
14 %%% A busca : MUITAS OPCOES ....
15 solve::int_search([X,Y],input_order,indomain_min,complete) satisfy;
16 %% SAIDAS
17 output [" X: ", show(X), " Y: ", show(Y), "\n"];
```


Saída

```
$ mzn-g12fd -a sbpo_xerek-ygor.mzn
  X: 4 Y: 3
 X: 4 Y: 4
 X: 5 Y: 3
  X: 5 Y: 4
  X: 7 Y: 4
X: 8 Y: 3
  X: 8 Y: 4
```

A ordem dos valores de saída!!!!

Existem basicamente dois tipos de variáveis em Minizinc:

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Variáveis de Restrição: similar a anterior, exceto que o domínio é específico as respostas desejadas do problema

Existem basicamente dois tipos de variáveis em Minizinc:

Parâmetros: quase igual às váriaveis de linguagens de programação comuns. Entretanto, só é permitido atribuir um valor a um parâmetro uma única vez.

Variáveis de Decisão: mais próximo ao conceito de incógnitas da matemática. O valor de uma váriavel de decisão é escolhido pelo Minizinc para atender todas as restrições estabelecidas.

Variáveis de Restrição: similar a anterior, exceto que o domínio é específico as respostas desejadas do problema

Variáveis de Restrição: estas são descobertas dentro de um domínio de valores sob um conjunto de restrições que é o modelo a ser computado!

Exemplos de Variáveis

Exemplo de Parâmetro (variável fixa) em MINIZINC

```
int: parametro = 5;
```


Exemplo de Variável em MINIZINC

```
var 1..15: variavel;
```


Constraints (Restrições)

Restrições podem ser equações ou desigualdades sobre as váriaveis de decisão, de forma a restringir os possíveis valores que estas podem receber.

Constraints (Restrições)

Restrições podem ser equações ou desigualdades sobre as váriaveis de decisão, de forma a restringir os possíveis valores que estas podem receber.

Exemplos de Restrições

```
constraint x > 2;

constraint 3*y - x <= 17;

constraint x != y;

constraint x = 2*z;</pre>
```


Alguns Operadores Lógicos

Operadores Lógicos

- Os operadores lógicos (and, or, not), que existem na maioria das linguagens de programação, também podem ser utilizados em MINIZINC nas restrições.
- Outros importantes conectivos: → (implicação ou if-then) e ↔ (equivalência ou bi-implicação)

Alguns Operadores Lógicos

Operadores Lógicos

- Os operadores lógicos (and, or, not), que existem na maioria das linguagens de programação, também podem ser utilizados em MINIZINC nas restrições.
- Outros importantes conectivos: → (implicação ou if-then) e ↔ (equivalência ou bi-implicação)

Exemplo de Utilização (and)

Exemplo de Utilização (or)

```
constraint (p \/ q) = false;
```


Exemplo de Utilização (not)

```
constraint (not)p = true;
```


Outras Características

Diversos

- Muitas funções, predicados, e restrições prontos
- Boa aderência a list comprehensions
- Suporte integral a vetores

Quermesse da Nossa Escola

Exemplo

A escola local fará uma festa e esta precisa que façamos bolos para vender. Sabemos como fazer dois tipos de bolos. Eis a receita de cada um deles:

Quermesse da Nossa Escola

Exemplo

A escola local fará uma festa e esta precisa que façamos bolos para vender. Sabemos como fazer dois tipos de bolos. Eis a receita de cada um deles:

Bolo de Banana	Bolo de Chocolate		
- 250g de farinha	- 200g de farinha		
- 2 bananas	- 75g de cacau		
- 75g de açúcar	- 150g de açúcar		
- 100g de manteiga	- 150g de manteiga		

Tabela: Insumos de cada bolo

Continuando o enunciado ...

O preço de venda de um Bolo de Chocolate é de R\$4,50 e de um Bolo de Banana é de R\$4,00. Temos 4kg de farinha, 6 bananas, 2kg de açúcar, 500g de manteiga e 500g de cacau. Qual a quantidade de cada bolo que deve ser feita para maximizar o lucro das vendas para a escola?

1. Basicamente temos que encontrar: N_1 (número de bolos de Chocolate) e N_2 (número de bolos de Banana);

- 1. Basicamente temos que encontrar: N_1 (número de bolos de Chocolate) e N_2 (número de bolos de Banana);
- 2. Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;

- 1. Basicamente temos que encontrar: N_1 (número de bolos de Chocolate) e N_2 (número de bolos de Banana);
- 2. Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- 3. Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$

- 1. Basicamente temos que encontrar: N_1 (número de bolos de Chocolate) e N_2 (número de bolos de Banana);
- 2. Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- 3. Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- Sabe-se que UM bolo necessita de quantidades de insumos dado na tabela 1

- 1. Basicamente temos que encontrar: N_1 (número de bolos de Chocolate) e N_2 (número de bolos de Banana);
- 2. Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- 3. Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- 4. Sabe-se que **UM** bolo necessita de quantidades de insumos dado na tabela 1
- 5. Logo, se são N bolos por insumos e respeitando a disponibilidade de cada um, as restrições para ambos os bolos são do tipo:
 - $N_1.qt_{manteiga_{chocolate}} + N_2.qt_{manteiga_{banana}} \leq Manteiga_{disponivel}$

- 1. Basicamente temos que encontrar: N_1 (número de bolos de Chocolate) e N_2 (número de bolos de Banana);
- 2. Tendo os valores N_1 e N_2 , sabemos o nosso lucro máximo, dado o valor por bolo vendido;
- 3. Assim a equação a ser maximizada é: $4500.N_1 + 4000.N_2 = Lucro$
- 4. Sabe-se que **UM** bolo necessita de quantidades de insumos dado na tabela 1
- 5. Logo, se são N bolos por insumos e respeitando a disponibilidade de cada um, as restrições para ambos os bolos são do tipo:
 N₁.qt_{manteiga_{chocolate} + N₂.qt_{manteiga_{banana}} ≤ Manteiga_{disponivel}}
- 6. E estes valores são tomados da tabela 1.

Uma tabela conhecida tipo:

	farinha	cacau	bananas	açucar	manteiga
N ₁ (Choco)	200	75	_	150	150
N ₂ (Banana)	250	_	2	75	100
Disponível	4000	500	6	2000	500

Código desta solução:

```
var 0..100: bc; %Bolo de chocolate: N1
var 0..100: bb; %Bolo de banana: N2
  constraint
     250*bb + 200*bc <= 4000;
  constraint
     2*bb <= 6:
10 constraint
     75*bb + 150*bc <= 2000;
11
12
13 constraint
     100*bb + 150*bc <= 500;
14
15
  constraint
     75*bc <= 500:
17
18
  solve maximize (4500*bc + 4000*bb);
20
21 output[" Choc = ", show(bc), "\t Ban = ", show(bb)];
```



```
$ mzn-g12fd -a sbpo_bolos.mzn
Choc = 0 Ban = 0
Choc = 1 Ban = 0
Choc = 2 Ban = 0
Choc = 3 Ban = 0
Choc = 2 Ban = 2
Finished in 36msec
```

Teoria dos Conjuntos (1)

Há várias funções prontas:

 $A \cup B$, $A \cap B$, \overline{A} , etc

```
set of int: A = {4,5,7,13};
2 set of int: B = 1 .. 3 union {7} union {13}; %% DOM descontinuos
3 %set of int: B = \{1,2,3,7,13\}:
  var set of 1 .. 100 : Var_Uniao;
  var set of 1 .. 100 : Var_Inters ;
7 var bool : Var Bool:
  var int X_Var:
  constraint Var_Uniao = B union A;
11
  constraint Var Inters = B intersect A:
13
  constraint Var_Bool \leftarrow (7 \text{ in A}) / (7 \text{ in B}); \%\% = ou \leftarrow >
15
  constraint true <-> (X_Var in A) /\ (X_Var in B);
17
```


Teoria dos Conjuntos (2)

========

Funções e Predicados (1)

Exemplo: $y = x^3$

```
int: n = 3;
2 var int: z1:
  var int: z2;
  function var int: pot_3_F(var int: n) = n*n*n;
  predicate pot_3_P(int: n, var int: res) =
           res = n*n*n;
  constraint
       z1 = pot_3F(n);
11
12
  constraint
      n 'pot_3_P' z2; %% ou como na LPO pot_3_P(n,z2);
14
15
  solve satisfy;
17
  output ["n: ", show(n), "\n", "z1: ", show(z1), "\n",
         "z2: ", show(z2), "n"];
19
```



```
$ mzn-g12fd -a minizinc/sbpo_funcao_01.mzn
n: 3
z1: 27
z2: 27
------
```


Teste de paridade (1)

Exemplo: $f_{paridade}(5) = false$, $f_{paridade}(6) = true$

```
int : X = 5 ; %% constantes
int : Y = 6:
3 var bool : var_bool_01;
4 var bool : var bool 02:
  %%% Temos if-then-else-endif e NENHUMA VARIAVEL LOCAL
  function var bool : testa_paridade(int : N) =
       if((N mod 2) == 0)
8
           then
            true
10
           else
11
           false
12
        endif;
13
14
  constraint
16
     var_bool_01 == testa_paridade(X);
17
  constraint
     var_bool_02 == testa_paridade(Y);
19
20
  /* OR var_bool_O1 == ((x mod 2) == 0);
21
```


Teste de paridade (2)

```
Exemplo: f_{paridade}(5) = false, f_{paridade}(6) = true
```


========

```
$ mzn-g12fd -a minizinc/sbpo_funcao_02.mzn
CTE_X = 5 CTE_Y = 6
VAR_B01 = false
VAR_B02 = true
------
```

52 of 108

Uso na Lógica Proposicional (1)

Exemplos:

- Modus-Ponens: $x \land x \rightarrow y \vdash y$
- Modus-Tollens: $\sim y \land x \rightarrow y \vdash \sim x$

```
1 var bool : x:
var bool : y;
  var bool : PhiO1;
  var bool : PhiO2;
                             %% MODUS PONENS
  constraint
       ((x /\
       (x \rightarrow y)) \rightarrow y
         <-> Phi01 :
  constraint
                                          %% MODUS TOLLENS
       ((not y /\
12
      (x \rightarrow y)) \rightarrow not x)
13
      <-> Phi02 ;
14
```


Uso na Lógica Proposicional (2)


```
$ mzn-g12fd -a minizinc/sbpo_interp_MP_MT.mzn
X: false Y: false MP:Phi01: true
X: false Y: false MT:Phi02: true
X: true Y: false MP:Phi01: true
X: true Y: false MT:Phi02: true
X: false Y: true MP:Phi01: true
X: false Y: true MT:Phi02: true
X: true Y: true MP:Phi01: true
X: true Y: true MT:PhiO2: true
```


Interpretação na Lógica de Primeira-Ordem

Sejam as FPO abaixo:

- Exemplo 01: $\forall x \exists y \ (y < x)$
- Exemplo 02: $\exists x \ \forall y \ (x < y)$
- Exemplo 03: $\forall x \exists y \ (x^2 == y)$
- Exemplo 04: $\exists x \ \forall y \ (x^2! = y)$
- Avalle a validade para os domínios: $D_x = \{2,3,4\}$ e $D_y = \{3,4,5\}$

Interpretação na Lógica de Primeira-Ordem (1)

```
1 % Declarando dominio das variaveis
2 set of int: A = \{2, 3, 4\}; %% X eh um conjunto do tipo int
  set of int: B = {3, 4, 5};  %% inicializado com {2, 3, 4}
  function bool: exemplo_01(set of int: x, set of int: y) =
                   forall (i in x)
6
                    (exists (i in v)
7
                      (i < i);
9
  function bool: exemplo_02(set of int: x, set of int: y) =
                   exists (i in x)
11
12
                    (forall (j in v)
13
                     (i < i));
14
  function bool: exemplo_03(set of int: x, set of int: y) =
                   forall (i in x)
16
                    (exists (j in v)
17
                      pow(i,2) == i);
18
19
  function bool: exemplo_04(set of int: x, set of int: y) =
                    exists (i in x)
21
                     (forall (j in v)
22
```


Interpretação na Lógica de Primeira-Ordem (2)


```
$ mzn-g12fd -a minizinc/sbpo_interp_FOL.mzn
Exemplo 01: false
Exemplo 02: true
Exemplo 03: false
Exemplo 04: true
------
```

========

Vetores (ou Arrays) Unidimensional ou 1D

Vetores 1D

```
• Seja int : n = 7;
```

```
array[1..n] of int : vetor01; (constante)
```

```
■ array[1..n] of {0,1,2,3} : vetor02; (constante)
```

array[1..n] of var { 0,1 } : vetor03; (variável)

Soma dos Subconjuntos

Vetor 1D: (Subset Sum Problem

Seja o conjunto de números $\{2,3,5,7\}$. Encontre um subconjunto que satisfaça uma soma para um dado valor. Exemplo: k=9

Subconjunto	Soma
{}	0
{2}	2
$\{2, 3\}$	5
$\{2, 3, 5\}$	10
$\{2,3,5,7\}$	17

Complexidade: $2^n = 16$, onde n é o número de elementos do conjunto

Soma dos subconjuntos (Subset Sum Problem) (1)

```
int: n = 7; % total de elementos do vetor
int: K = 15: %% Soma do sub-set
4 array[1..n] of var 0..1 : X_DEC;
  array[1...n] of int : V_Valores;
  V Valores = [3, 4, 5, 7, 9, 10, 1]:
  var int total_VALOR;
10
  constraint
   total_VALOR = sum([X_DEC[i] * V_Valores[i] | i in 1..n ]);
12
                   sum( i in 1..n ) (X DEC[i]* V Valores[i]);
    % nt
13
14
15 constraint
    total_VALOR == K;
16
17
  % minimize ou maximize ALGO
  solve satisfy;
20
  output ["Total VALOR: " ++ show(total VALOR) ++"\n"++
           "Seleciona: " ++ show( X_DEC ) ++ "\n\t " ,
22
```


Soma dos subconjuntos (Subset Sum Problem) (2)

```
show( V_Valores ) ];
```



```
$ mzn-g12fd -a minizinc/sbpo_sub_set_sum.mzn
Total_VALOR: 15
Seleciona: [1, 0, 1, 1, 0, 0, 0]
          [3, 4, 5, 7, 9, 10, 1]
Total VALOR: 15
Seleciona: [0, 0, 1, 0, 0, 1, 0]
          [3. 4, 5, 7, 9, 10, 1]
Total_VALOR: 15
Seleciona: [1, 1, 0, 1, 0, 0, 1]
          [3, 4, 5, 7, 9, 10, 1]
Total VALOR: 15
Seleciona: [0, 0, 1, 0, 1, 0, 1]
          [3, 4, 5, 7, 9, 10, 1]
Total_VALOR: 15
Seleciona: [0, 1, 0, 0, 0, 1, 1]
          [3, 4, 5, 7, 9, 10, 1]
```


Régua de Golomb

(a) 4 marcas (ordem-4) e a maior distância

entre duas marcas (comprimento: 6)
65 of 108

Vetor 1D: Régua de Golomb (1)

```
1 include "globals.mzn";
2 %% GOLOMB mas n itens a serem escolhidos e repetidos
int: n = 3; %% NUM de PEDACOS
4 int: m = 6: %% TAMANHO 0 .. 6
6 array[1..n] of var O..m : regua; %% TAMANHO dos PEDACOS
  array[1..(n+1)] of var O..m : regua SAIDA: %% APENAS para OUT
  constraint %% pedacos maior que 0
      forall(i in 1 .. n) ( regua[i] > 0 );
10
11
  %% Differentes e decrescente PEDACOS/medidas
13 constraint
    alldifferent ( regua ); %% /\ decreasing( regua );
14
15
16 %% Differentes medidas/PEDACOS entre TODOS os CORTES
17 constraint
      forall(i in 1 .. n-2) (
18
        forall(j in i+1 .. n) (regua[ i ] != regua[ j ]) );
19
20
21 constraint %% CRITERIO DE REGUA OTIMA
         sum([regua[i] | i in 1..n] ) == m;
22
```

Vetor 1D: Régua de Golomb (2)

```
23
  constraint %% formatando uma saida
      regua_SAIDA[1] == 0 /\
25
      forall(i in 1 .. n) (
26
      regua_SAIDA[i+1] == regua_SAIDA[i] + regua[i]
27
      );
28
29
  % minimize ou maximize ALGO
  solve
          satisfy;
32
33 output
34 [" Tamanho dos cortes: "]++[show(regua[i])++" | "|i in 1 .. n]++
35 [" A REGUA: "]++[show(regua_SAIDA[j] ) ++" | " | j in 1 .. n+1 ];
```



```
$ mzn-g12fd -a sbpo_golomb_ruler.mzn
 Tamanho dos cortes: 1 | 3 | 2 | A REGUA: 0 | 1 | 4 | 6 |
 Tamanho dos cortes: 1 | 2 | 3 | A REGUA: 0 | 1 | 3 | 6 |
 Tamanho dos cortes: 2 | 3 | 1 | A REGUA: 0 | 2 | 5 | 6 |
 Tamanho dos cortes: 2 | 1 | 3 | A REGUA: 0 | 2 | 3 | 6 |
 Tamanho dos cortes: 3 | 2 | 1 | A REGUA: 0 | 3 | 5 | 6 |
 Tamanho dos cortes: 3 | 1 | 2 | A REGUA: 0 | 3 | 4 | 6 |
========
```


Criando funções, variáveis locais e escopo (1)

Exemplo: y=soma(vetor 1D)

```
1 var int: y;
  %% EQUIVALE ao sum( i in 1..n ) (vetor_1d[i]);
  function var int: sum array 1D(array[int] of var int: x 1D) =
   let{
        int : n = length(x_1D);
         array[1..n] of var int : temp;
                                        %%%% C_1
7
        constraint
        temp[1] == x_1D[1];
        constraint
                                        %%%% C 2
      forall(i in 2..n)
10
          (temp[i] == temp[i-1] + x_1D[i]);
11
        } in temp[n]; %%% Valor acumulado e RETORNO
12
13
  constraint
        v = sum arrav 1D([3,4,-7,17,13,0]);
15
16
  solve satisfy:
  output [" SOMA: " ++ show(v), "\n",
18
         " Lim Inf: ", show(lb_array([3,4,-7,17,13,0])), "\n",
19
         " Lim Sup: ", show(ub_array([3,4,-7,17,13,0]))];
20
```


========

```
$ mzn-g12fd -a sbpo_my_sum_vetor_1D.mzn
SOMA: 30
Lim Inf: -7
Lim Sup: 17
------
```

70 of 108

Vetores Bi-dimensionais ou 2D

Motivação

- As matrizes são essenciais em alguns problemas. Exemplo: job-shop problem
- Bi-dimensional (tem nomes especiais)
- A rigor MiniZinc estende a idéia para vetores n-ários (n-dimensões)

Vetores Bi-dimensionais ou 2D (1)

Representação

```
array[1..3, 1..2] of int : A;
  \mathbf{A} = [| 4, 5]
    0, 9
        | 5, 8 |];
  array[1..2, 1..3] of int : B;
  B = array 2d(1...2, 1...3,
               [9,8,-3,5,-5,7]):
  array[1..2, 1..3, 1..2] of int : C;
  C = array3d(1...2, 1...3, 1...2,
                 [9, -5, 3, 5, 6, 8,
12
                19, 12, -13, 17, -15, 18]);
13
14
  solve satisfy;
16
  output [show2d(A), "\n", show2d(B), "\n", show3d(C)];
```

```
$ mzn-g12fd -a minizinc/sbpo_ilustra-2D.mzn
[| 4, 5 |
  0, 9
  5, 8 |]
[| 9, 8, -3 |
   5, -5, 7 |]
[| 9, -5|
   3, 5
    6, 8 |,
  | 19, 12 |
   -13, 17
   -15, 18 | |]
```


Vetores 2D

Quadrado Mágico

- Um quadrado mágico é uma matriz $N \times N$ onde os somatórios das linhas, colunas e diagonais (principal e secundária) são todos iguais a um valor K. Além disso, os elementos da matriz devem ser diferentes entre si, com valores de 1 a N^2-1 .
- Um quadrado mágico de ordem 4 (N=4) é dado por:

16	3	2	13	
5	10	11	8	
9	6	7	12	
4	15	14	1	

• Onde $K = \frac{N(N^2+1)}{2}$ (valor mágico), para N=4 tem-se K=34

Quadrado Mágico (1)

```
int: N = 4:
2 float: Kte = ceil(N*(N*N +1 )/2); %% Coercao float -> int ou floor
3
4 set of int : Index = 1..N:
  array[Index, Index] of var 1 .. (N*N)-1: mat;
7
  constraint forall(i in Index) %% LINHAS
           (mat[i,1] + mat[i,2] + mat[i,3] + mat[i,4] = Kte);
9
10
  constraint forall(j in Index) %% COLUNAS
12
           (mat[1,j] + mat[2,j] + mat[3,j] + mat[4,j] = Kte);
13
  constraint % Diagonal 1...
14
     mat[1,1] + mat[2,2] + mat[3,3] + mat[4,4] = Kte:
15
16
17 constraint % Diagonal 2 ...
     mat[4,1] + mat[3,2] + mat[2,3] + mat[1,4] = Kte:
18
19
  constraint %% alldifferent differente
   forall(i in Index, j in Index, k in i...N, l in j...N)
21
      (if (i!= k \ / \ j != 1)
22
```

Quadrado Mágico (2)

```
then mat[i,j] != mat[k,1]
23
        else
        true
25
        endif);
26
27
28
  solve satisfy;
29
  %%% obs na formatacao
  output[show_int(5,mat[i,j]) ++
          if j==N then "\n" else " " endif |
32
             i in 1..N, j in 1..N];
33
```


Uma Saída:

```
$ mzn-g12mip sbpo_quadrado_magico.mzn
9     7     4     14
4     14     5     11
11     5     10     8
10     8     15     1
```

PS: solver mzn-g12mip

\$ mzn-gecode sbpo_quadrado_magico.mzn
 4 5 11 14
 7 15 3 9
 8 2 14 10
 15 12 6 1

PS: solver mzn-gecode

Vetores 2D

Problema de Atribuição

Seja uma matriz de peso:

Mulheres Homens	M_1	M_2	<i>M</i> ₃	M_4	M_5
H_1	1	11	13	7	3
H_2	6	5	2	8	10
$\overline{H_3}$	6	3	9	4	12
H_4	32	17	6	18	11
H_5	1	3	4	1	5

- Como obter pares (H_i, M_j) tal que cada mulher/homem tenham **um único** companheira(o) apenas!
- Estende-se a idéia para: máquinas × trabalhadores, processos × tarefas, tradutores × linguagens, etc.

Vetores 2D: Problema de Atribuição

Figura: Matriz e o Grafo Bi-partido

Problema de Atribuição (1)

```
int: linhas = 4; int: cols = 5;
  %%%% m_PESO = MATRIZ DEFINIDA NO FINAL do arquivo
5 array[1..linhas, 1..cols] of int: m_PESO;
  array[1..linhas, 1..cols] of var 0..1: x; %% x: MATRIZ DE DECISAO
7 var int: f CUSTO:
  constraint %% exatamente UMA escolha por linha
   forall(i in 1..linhas) (
10
          sum(j in 1..cols) (x[i,j]) == 1);
11
12
13 constraint %% exatamente O ou UMA escolha por coluna
    forall(j in 1..cols) (
14
          sum(i in 1..linhas) (x[i,j]) <= 1 );</pre>
15
16
  constraint %% Uma funcao CUSTO ou objetivo
17
    f_CUSTO = sum(i in 1..linhas, j in 1..cols) (x[i,j]*m_PESO[i,j]);
18
19
20 solve maximize f_CUSTO;
21
output ["f_custo: ", show(f_CUSTO), "\n", show2d(x)];
```


Problema de Atribuição (2)

Saída:

.....

MUITAS SAIDAS ATE ESTA COTA

```
f_custo: 43
[| 1, 0, 0, 0, 0 |
0, 1, 0, 0, 0 |
0, 0, 0, 0, 1 |
0, 0, 0, 1, 0 |]
```

f custo: 44

```
[| 0, 0, 0, 0, 1 | 0, 1, 0, 0, 0 | 1, 0, 0, 0, 0 | 0, 0, 0, 1, 0 |]
```

Vetores 2D

Os Nadadores Americanos

	Time (seconds)						
Swimmer	Free	Breast	Fly	Back			
Gary Hall	54	54	51	53			
Mark Spitz	51	57	52	52			
Jim Montgomery	50	53	54	56			
Chet Jastremski	56	54	55	53			

Figura: Do livro do $\it Operations Research: Applications and Algorithms - Wayne L. Winston$

Problema de Atribuição (1)

Nadadores Americanos

```
1 include "alldifferent.mzn":
  int : N = 4;
  array[1..N] of var 1..N: vetDecisao: %% VETOR Decisao 1D
  var int: T_min:
  array[1..N,1..N] of int: tempo_NADADORES;
8
  tempo_NADADORES = array2d(1..N, 1..N,
                             Γ54.54.51.53.
10
                             51,57,52,52,
11
                             50,53,54,56,
12
                             56.54.55.531):
13
14
  constraint alldifferent(vetDecisao);
16
  constraint
     T_min = sum(i in 1..N)(tempo_NADADORES[i, vetDecisao[i]]);
18
     %% Melhorar aqui
19
20
  solve minimize T_min;
```


Problema de Atribuição (2)

Nadadores Americanos

```
$ mzn-g12fd -a minizinc/sbpo_nadadores.mzn
Menor tempo: 212
 Atribuicao (vetDecisao): [3, 1, 4, 2]
1:3-> 51
2:1->51
3:4->56
4:2-> 54
Menor tempo: 207
 Atribuicao (vetDecisao): [3, 4, 1, 2]
1:3-> 51
2:4->52
3:1->50
4:2->54
```


Vetores 2D

Problema de Job-Shop-Schedulling

Tarefas	(J_i)		Sequência			Tempo em <i>M_j</i>		
	1	M_1	M ₂	М3	3	3	3	
	2	M_1	Мз	M_2	2	3	4	
	3	M_2	M_1	M_3	3	2	1	

Job-Shop-Schedulling

Figura: Uma solução !

Job-Shop-Schedulling

Ver código completo em:

 $\verb|https://github.com/claudiosa/CCS/minizinc/sbpo_job_shop.mzn|\\$

Partes do Código 1/3:

```
%% um limite para todos as tarefas tenham terminado
int: END_TIME =
    sum([job_time[j,k] | j in jobs, k in machines])+100;
%% A menor duração eh o maior tempo de uma tarefa
var 0..END TIME:
  min_duration =
        max([job_end[j, k] | j in jobs, k in machines]);
% Evita inicializacoes com valores negativos
constraint
  forall(j in jobs, k in machines)
         (iob_start[j,k] >= 0 );
%% Final de uma tarefa e o seu inicio + duracao
constraint
forall(j in jobs, k in machines)
    (job\_end[j,k] = job\_start[j,k] + job\_time[j,k]);
90 of 108
```


Partes do Código 2/3:

Partes do Código 3/3:


```
$ mzn-g12fd -a sbpo_job_shop.mzn
job_start =
[| 2, 5, 8 |
   0, 8, 2
   5, 0, 11 |]
job_end =
[| 5, 8, 11 |
   2, 11, 6
   8, 2, 12 |]
t_{end} = 12
             MUITAS RESPOSTAS COM ESTA COTA
SATDA DETALHADA:
JOB 1: 2..5 5..8 8..11
JOB 2: 0..2 8..11 2..6
JOB 3 : 5..8 0..2 11..12
========
```


Vetor 2D – Grafos

Figura: Coloração de Mapas - Regiões da Itália

Coloração de Mapas (1)

```
int: n=8; %% REGIOES
int: c=4; %% CORES
4 array [1..n, 1..n] of int : Adj; %% Matriz Adjacencia
  array [1..n] of var 1..c : Col; %% Saida
  constraint
    forall (i in 1..n, j in i+1..n)
       (if Adj[i,j] == 1 then Col[i] != Col[j] else true endif);
10
  solve satisfy;
12
  output [show(Col)];
14
  Adj = [|0,1,0,0,0,0,0,0]
15
      11,0,1,1,1,0,0,0
16
         | 0,1,0,1,0,0,0,0
17
         10,1,1,0,1,1,0,0
18
         10,1,0,1,0,1,1,0
19
         |0,0,0,1,1,0,1,1
20
         10,0,0,0,1,1,0,0
21
         [0,0,0,0,0,1,0,0];
22
```


Coloração de Mapas (2)

```
%% Regioes da Italia
%% 1 Friuli Venezia Giulia
%% 2 Veneto
%% 3 Trentino Alto Adige
%% 4 Lombardy
%% 5 Emilia-Romagna
%% 6 Piedmont
%% 7 Liguria
%% 8 Aosta Valley
%% CONEXOES
```


Saída:

\$ mzn-gecode sbpo_coloracao_mapas.mzn
[2, 1, 2, 3, 2, 1, 3, 2]
UMA SAIDA

Melhorando as Buscas

Práticas nos experimentos

- Usar restrições globais ⇒ tem muitas!
- Restrições complexas. Exemplo: restrições reifadas, restrições entubadas $(y = f(x) \Leftrightarrow x = g(x))$
- Comece com domínios reduzidos e vá aumentando gradativamente ao testar seus modelos ⇒ comece pequeno
- Variar as estratégias de buscas (eis a PR!) ⇒ ponto de exploração

Variando as Buscas

Parâmetro search

```
solve :: int_search(Var_Exp, Sel_VAR, Sel_DOM, estrategia)
    satisfy (ou minimize ou maximize);
```

Formato Geral:

```
int_search(Var_Exp, Sel_VAR, Sel_DOM, estrategia)
bool_search(Var_Exp, Sel_VAR, Sel_DOM, estrategia)
set_search(Var_Exp, Sel_VAR, Sel_DOM, estrategia)
```

Escolha da variável: input_order, first_fail, smallest, largest, dom_w_deg

- input_order: a ordem que vão aparecendo
- first_fail: variável com o menor tamanho de domínio
- anti_first_fail: oposto da anterior
- smallest: variável com o menor valor no domínio
- largest: variável com o maior valor no domínio

Variando as Buscas

Parâmetro search

Escolha do valor no domínio:

indomain_min, indomain_max, indomain_median, indomain_random,
indomain_split, indomain_reverse_split

Exemplificando, considere o domínio: $\{1, 3, 4, 18\}$

- indomain_min: 1, 3, ...
- indomain_max: 18, 4, ...
- indomain_median: 3,4, ...
- indomain_split: x <= (1+18)/2; x > (1+18)/2
- indomain_reverse_split: x > (1+18)/2; $x \le (1+18)/2$

Exemplo Search (1)

```
1 include "globals.mzn";
2 int : N = 4:
  array[1..N] of var 1..7 : x;
  constraint
         alldifferent(x) /\ increasing (x);
  constraint
         sum(x) == 13;
  ann: Selec_VAR; %% CRIANDO TIPOS - ann
11
  ann: Selec_DOM:
12
  solve :: int_search(x, Selec_VAR, Selec_DOM, complete)
            satisfy;
14
15
  %%%% Vah modificando AQUI
  Selec_VAR = dom_w_deg; %% dom_w_deg, first_fail, largest
18 Selec_DOM = indomain_min; %%
```

- ann: cria um tipo de anotação no código
- Atenção: cuidar das compatibilidades entre o parâmetro search e o backend utilizado.

Saída:

```
$ time(mzn-g12fd -a sbpo_var_val_choice.mzn)
x = array1d(1..4, [1, 2, 3, 4]);
x = array1d(1..4, [1, 2, 3, 5]);
x = array1d(1..4, [1, 2, 3, 6]);
x = array1d(1..4, [1, 2, 3, 7]);
x = array1d(1..4, [1, 2, 4, 5]);
x = array1d(1..4, [1, 2, 4, 6]);
x = array1d(1..4, [1, 3, 4, 5]);
----- %%% REMOVIDOS ENTRE AS RESPOSTAS ACIMA
real 0m0.158s
user 0m0.076s
sys 0m0.012s
```


Restrições Globais

include "globals.mzn"; muito úteis:

- Restrições de escalonamento: disjunctive, cumulative, alternative;
- Restrições de ordenamento: decreasing, increasing, sort, etc
- Restrições extensionais: regular, regular_nfa, table;
- Restrições de empacotamento: bin_packing, bin_packing_capa,
- Restrições de entubamento (channeling): int_set_channel, inverse, link_set_to_booleans, etc
- Restrições de genéricas—l: all_different, all_disjoint (uso em conjuntos), all_equal, nvalue, etc
- Restrições de genéricas—II: arg_max, arg_min, circuit, disjoint, maximum, member, minimum, network_flow, network_flow_cost, range, partition_set, sliding_sum, etc

String e Fix (1)

Nota:

- Verifica se a variável está fixada e faz uma coerção de tipos
- Coerções possíveis: boo2int, int2float, set2array

Saída

Voltando aos Conjuntos (1)

```
1 include "globals.mzn";
2 int : K = 7:
3 int: num_sets = 4; %%
4 set of int : U = 0..10: %% UNIVERSO
5 %% N conjuntos em y_sub[1] ate y_sub[N]
6 array[1 .. num_sets] of var set of U : v_sub;
  %% BY HAKAN
  predicate set_sum(var set of int: s, var int: the_sum) =
     the sum = sum(i in ub(s)) (bool2int(i in s) * i);
10
11
  function var int: sum_SET(var set of int: SET) =
13
      %sum(i in ub(s)) ( bool2int(i in s) * i): %%% OU
      sum([bool2int(i in SET) * i | i in ub(SET)]); % 1 * i
14
15
16 constraint
   forall(i in 2..num_sets) (
17
        card(y_sub[i]) == card(y_sub[i-1]) /  %(card(y[i]) <= 4 / 
18
       K == sum_SET(v_sub[i-1]) / 
19
       set_sum(v_sub[i], K));
20
21
22 constraint
```


Voltando aos Conjuntos (2)

Nota:

- Nem todos os solvers estão preparados para os recursosde set
- Poderosos e trabalhosos

Saída

```
$ mzn-g12fd -a sbpo_mais_conjuntos.mzn
y_sub = array1d(1..4, [{0,1,6}, {0,2,5}, {0,3,4}, {1,2,4}]);
y_sub = array1d(1..4, [{0,1,6}, {0,2,5}, {1,2,4}, {0,3,4}]);
    ALGUMAS MUITAS SAIDAS
y_sub = array1d(1...4, [3...4, {2,5}, {0,7}, {1,6}]);
_ _ _ _ _ _ _ _ _ _
y_sub = array1d(1...4, [3...4, {2,5}, {1,6}, {0,7}]);
```


Conclusões

- 1. Formulação matemática pprox código MiniZinc
- 2. Declarativo ⇒ escrever "o que" e muito direto
- 3.
- 4.
- Exemplos de mais códigos:

 - Ш
 - □ https://github.com/MiniZinc/ (cuidado)

Referências Bibliográficas

ALGUM BIBTEX aqui....