Moller scattering is the result of interactions between electrons. The following diagram shows the geometry of a typical collider experiment that generates Moller scattering data.

Here is the same diagram with momentum and spinor labels.

In center of mass coordinates the momentum vectors are

$$p_{1} = \begin{pmatrix} E \\ 0 \\ 0 \\ p \end{pmatrix} \quad p_{2} = \begin{pmatrix} E \\ 0 \\ 0 \\ -p \end{pmatrix} \quad p_{3} = \begin{pmatrix} E \\ p\sin\theta\cos\phi \\ p\sin\theta\sin\phi \\ p\cos\theta \end{pmatrix} \quad p_{4} = \begin{pmatrix} E \\ -p\sin\theta\cos\phi \\ -p\sin\theta\sin\phi \\ -p\cos\theta \end{pmatrix}$$

where $E = \sqrt{p^2 + m^2}$. The spinors are

$$u_{11} = \begin{pmatrix} E + m \\ 0 \\ p \\ 0 \end{pmatrix} \quad u_{21} = \begin{pmatrix} E + m \\ 0 \\ -p \\ 0 \end{pmatrix} \quad u_{31} = \begin{pmatrix} E + m \\ 0 \\ p_{3z} \\ p_{3x} + ip_{3y} \end{pmatrix} \quad u_{41} = \begin{pmatrix} E + m \\ 0 \\ p_{4z} \\ p_{4x} + ip_{4y} \end{pmatrix}$$

$$u_{12} = \begin{pmatrix} 0 \\ E + m \\ 0 \\ -p \end{pmatrix} \quad u_{22} = \begin{pmatrix} 0 \\ E + m \\ 0 \\ p \end{pmatrix} \quad u_{32} = \begin{pmatrix} 0 \\ E + m \\ p_{3x} - ip_{3y} \\ -p_{3z} \end{pmatrix} \quad u_{42} = \begin{pmatrix} 0 \\ E + m \\ p_{4x} - ip_{4y} \\ -p_{4z} \end{pmatrix}$$

The spinors shown above are not individually normalized. Instead, a combined spinor normalization constant $N = (E + m)^4$ will be used.

The following formula computes a probability density $|\mathcal{M}_{abcd}|^2$ for Moller scattering where the subscripts abcd are the spin states of the electrons.

$$|\mathcal{M}_{abcd}|^2 = \frac{e^4}{N} \left| \frac{1}{t} (\bar{u}_{3c} \gamma^{\mu} u_{1a}) (\bar{u}_{4d} \gamma_{\mu} u_{2b}) - \frac{1}{u} (\bar{u}_{4d} \gamma^{\nu} u_{1a}) (\bar{u}_{3c} \gamma_{\nu} u_{2b}) \right|^2$$

Symbol e is electron charge. Symbols t and u are Mandelstam variables $t = (p_1 - p_3)^2$ and $u = (p_1 - p_4)^2$.

Let

$$a_1 = (\bar{u}_{3c}\gamma^{\mu}u_{1a})(\bar{u}_{4d}\gamma_{\mu}u_{2b})$$
 $a_2 = (\bar{u}_{4d}\gamma^{\nu}u_{1a})(\bar{u}_{3c}\gamma_{\nu}u_{2b})$

Then

$$|\mathcal{M}_{abcd}|^2 = \frac{e^4}{N} \left| \frac{a_1}{t} - \frac{a_2}{u} \right|^2$$

$$= \frac{e^4}{N} \left(\frac{a_1}{t} - \frac{a_2}{u} \right) \left(\frac{a_1}{t} - \frac{a_2}{u} \right)^*$$

$$= \frac{e^4}{N} \left(\frac{a_1 a_1^*}{t^2} - \frac{a_1 a_2^*}{tu} - \frac{a_1^* a_2}{tu} + \frac{a_2 a_2^*}{u^2} \right)$$

The expected probability density $\langle |\mathcal{M}|^2 \rangle$ is computed by summing $|\mathcal{M}_{abcd}|^2$ over all spin states and dividing by the number of inbound states. There are four inbound states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{4} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 |\mathcal{M}_{abcd}|^2$$

$$= \frac{e^4}{4N} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 \left(\frac{a_1 a_1^*}{t^2} - \frac{a_1 a_2^*}{tu} - \frac{a_1^* a_2}{tu} + \frac{a_2 a_2^*}{u^2} \right)$$

Use the Casimir trick to replace sums over spins with matrix products.

$$f_{11} = \frac{1}{N} \sum_{abcd} a_1 a_1^* = \operatorname{Tr} \left((\not p_3 + m) \gamma^{\mu} (\not p_1 + m) \gamma^{\nu} \right) \operatorname{Tr} \left((\not p_4 + m) \gamma_{\mu} (\not p_2 + m) \gamma_{\nu} \right)$$

$$f_{12} = \frac{1}{N} \sum_{abcd} a_1 a_2^* = \operatorname{Tr} \left((\not p_3 + m) \gamma^{\mu} (\not p_1 + m) \gamma^{\nu} (\not p_4 + m) \gamma_{\mu} (\not p_2 + m) \gamma_{\nu} \right)$$

$$f_{22} = \frac{1}{N} \sum_{abcd} a_2 a_2^* = \operatorname{Tr} \left((\not p_4 + m) \gamma^{\mu} (\not p_1 + m) \gamma^{\nu} \right) \operatorname{Tr} \left((\not p_3 + m) \gamma_{\mu} (\not p_2 + m) \gamma_{\nu} \right)$$

Hence

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4} \left(\frac{f_{11}}{t^2} - \frac{f_{12}}{tu} - \frac{f_{12}^*}{tu} + \frac{f_{22}}{u^2} \right)$$

Run "moller-scattering-1.txt" to verify the Casimir trick.

The following momentum formulas are equivalent to the Casimir trick. (Recall that $a \cdot b = a^{\mu} g_{\mu\nu} b^{\nu}$)

$$f_{11} = 32(p_1 \cdot p_2)(p_3 \cdot p_4) + 32(p_1 \cdot p_4)(p_2 \cdot p_3) - 32m^2(p_1 \cdot p_3) - 32m^2(p_2 \cdot p_4) + 64m^4$$

$$f_{12} = -32(p_1 \cdot p_2)(p_3 \cdot p_4) + 16m^2(p_1 \cdot p_2) + 16m^2(p_1 \cdot p_3) + 16m^2(p_1 \cdot p_4)$$

$$+ 16m^2(p_2 \cdot p_3) + 16m^2(p_2 \cdot p_4) + 16m^2(p_3 \cdot p_4) - 32m^4$$

$$f_{22} = 32(p_1 \cdot p_2)(p_3 \cdot p_4) + 32(p_1 \cdot p_3)(p_2 \cdot p_4) - 32m^2(p_1 \cdot p_4) - 32m^2(p_2 \cdot p_3) + 64m^4$$

In Mandelstam variables $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$, and $u = (p_1 - p_4)^2$ the formulas are

$$f_{11} = 8s^2 + 8u^2 - 64sm^2 - 64um^2 + 192m^4$$

$$f_{12} = -8s^2 + 64sm^2 - 96m^4$$

$$f_{22} = 8s^2 + 8t^2 - 64sm^2 - 64tm^2 + 192m^4$$

High energy approximation

When $E \gg m$ a useful approximation is to set m=0 and obtain

$$f_{11} = 8s^2 + 8u^2$$
$$f_{12} = -8s^2$$
$$f_{22} = 8s^2 + 8t^2$$

For m = 0 the Mandelstam variables are

$$s = 4E^{2}$$

$$t = -2E^{2}(1 - \cos \theta)$$

$$u = -2E^{2}(1 + \cos \theta)$$

It follows that

$$t^2u^2 = 16E^8\sin^4\theta$$

The corresponding expected probability density is

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4} \left(\frac{f_{11}}{t^2} - \frac{f_{12}}{tu} - \frac{f_{12}^*}{tu} + \frac{f_{22}}{u^2} \right)$$

$$= \frac{e^4}{4t^2u^2} \left(u^2 f_{11} - tu f_{12} - tu f_{12}^* + t^2 f_{22} \right)$$

$$= \frac{e^4}{4t^2u^2} \left(u^2 \left(8s^2 + 8u^2 \right) + 16s^2 tu + t^2 \left(8s^2 + 8t^2 \right) \right)$$

$$= \frac{e^4}{64E^8 \sin^4 \theta} \left(256E^8 \cos^4 \theta + 1536E^8 \cos^2 \theta + 2304E^8 \right)$$

$$= \frac{4e^4}{\sin^4 \theta} \left(\cos^4 \theta + 6 \cos^2 \theta + 9 \right)$$

$$= 4e^4 \frac{\left(\cos^2 \theta + 3 \right)^2}{\sin^4 \theta}$$

Run "moller-scattering-2.txt" to verify.

Cross section

The differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{\langle |\mathcal{M}|^2 \rangle}{64\pi^2 s} = \frac{e^4}{64\pi^2 E^2} \frac{\left(\cos^2 \theta + 3\right)^2}{\sin^4 \theta}$$

Substituting $e^4 = 16\pi^2\alpha^2$ yields

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2} \frac{\left(\cos^2\theta + 3\right)^2}{\sin^4\theta}$$

We can integrate $d\sigma$ to obtain a cumulative distribution function. Recall that

$$d\Omega = \sin\theta \, d\theta \, d\phi$$

Hence

$$d\sigma = \frac{\alpha^2}{4E^2} \frac{\left(\cos^2\theta + 3\right)^2}{\sin^4\theta} \sin\theta \, d\theta \, d\phi$$

Let $I(\xi)$ be the following definite integral.

$$I(\xi) = \frac{4E^2}{2\pi\alpha^2} \int_0^{2\pi} \int_a^{\xi} d\sigma$$

$$= \int_a^{\xi} \frac{(\cos^2 \theta + 3)^2}{\sin^4 \theta} \sin \theta \, d\theta$$

$$= \left(-\cos \theta - \frac{8\cos \theta}{\sin^2 \theta} \right) \Big|_a^{\xi}$$

$$= \cos a + \frac{8\cos a}{\sin^2 a} - \cos \xi - \frac{8\cos \xi}{\sin^2 \xi}, \qquad a \le \xi \le \pi - a$$

Angular support is limited to a > 0 because I(0) and $I(\pi)$ are undefined.

Let C be the normalization constant $C = I(\pi - a)$. Then the cumulative distribution function $F(\theta)$ is

$$F(\theta) = C^{-1}I(\theta), \qquad a \le \theta \le \pi - a$$

The probability of observing scattering events in the interval θ_1 to θ_2 can now be computed.

$$P(\theta_1 \le \theta \le \theta_2) = F(\theta_2) - F(\theta_1)$$

Probability density function $f(\theta)$ is the derivative of $F(\theta)$.

$$f(\theta) = \frac{dF(\theta)}{d\theta} = C^{-1} \frac{dI(\theta)}{d\theta} = C^{-1} \frac{(\cos^2 \theta + 3)^2}{\sin^3 \theta}$$

Run "moller-scattering-3.txt" to draw a graph of $f(\theta)$ for $a = \pi/6 = 30^{\circ}$.

The following table shows the probability distribution for 30° bins $(a = \pi/6 = 30^{\circ})$.

θ_1	θ_2	$P(\theta_1 \le \theta \le \theta_2)$
0°	30°	_
30°	60°	0.40
60°	90°	0.10
90°	120°	0.10
120°	150°	0.40
150°	180°	_

Notes on Eigenmath scripts

In component notation, the trace operators of the Casimir trick become sums over a repeated index, in this case α .

$$f_{11} = \left((\not p_3 + m)^{\alpha}{}_{\beta} \gamma^{\mu\beta}{}_{\rho} (\not p_1 + m)^{\rho}{}_{\sigma} \gamma^{\nu\sigma}{}_{\alpha} \right) \left((\not p_4 + m)^{\alpha}{}_{\beta} \gamma_{\mu}{}^{\beta}{}_{\rho} (\not p_2 + m)^{\rho}{}_{\sigma} \gamma_{\nu}{}^{\sigma}{}_{\alpha} \right)$$

$$f_{12} = (\not p_3 + m)^{\alpha}{}_{\beta} \gamma^{\mu\beta}{}_{\rho} (\not p_1 + m)^{\rho}{}_{\sigma} \gamma^{\nu\sigma}{}_{\tau} (\not p_4 + m)^{\tau}{}_{\delta} \gamma_{\mu}{}^{\delta}{}_{\eta} (\not p_2 + m)^{\eta}{}_{\xi} \gamma_{\nu}{}^{\xi}{}_{\alpha}$$

$$f_{22} = \left((\not p_4 + m)^{\alpha}{}_{\beta} \gamma^{\mu\beta}{}_{\rho} (\not p_1 + m)^{\rho}{}_{\sigma} \gamma^{\nu\sigma}{}_{\alpha} \right) \left((\not p_3 + m)^{\alpha}{}_{\beta} \gamma_{\mu}{}^{\beta}{}_{\rho} (\not p_2 + m)^{\rho}{}_{\sigma} \gamma_{\nu}{}^{\sigma}{}_{\alpha} \right)$$

To convert the above formulas to Eigenmath code, the γ tensors need to be transposed so that repeated indices are adjacent to each other. Also, multiply γ^{μ} by the metric tensor to lower the index.

$$\gamma^{\beta\mu}_{\ \rho} \rightarrow {\rm gammaT = transpose(gamma)}$$
 $\gamma^{\beta}_{\ \mu\rho} \rightarrow {\rm gammaL = transpose(dot(gmunu,gamma))}$

Define the following 4×4 matrices.

Then for f_{11} we have the following Eigenmath code. The contract function sums over α .

$$(\not\!p_3 + m)^{\alpha}{}_{\beta}\gamma^{\mu\beta}{}_{\rho}(\not\!p_1 + m)^{\rho}{}_{\sigma}\gamma^{\nu\sigma}{}_{\alpha} \rightarrow T1 = contract(dot(X3,gammaT,X1,gammaT),1,4)$$

$$(\not\!p_4 + m)^{\alpha}{}_{\beta}\gamma_{\mu}{}^{\beta}{}_{\rho}(\not\!p_2 + m)^{\rho}{}_{\sigma}\gamma_{\nu}{}^{\sigma}{}_{\alpha} \rightarrow T2 = contract(dot(X4,gammaL,X2,gammaL),1,4)$$

Next, multiply then sum over repeated indices. The dot function sums over ν then the contract function sums over μ . The transpose makes the ν indices adjacent as required by the dot function.

$$f_{11} = \operatorname{Tr}(\cdots \gamma^{\mu} \cdots \gamma^{\nu}) \operatorname{Tr}(\cdots \gamma_{\mu} \cdots \gamma_{\nu}) \quad \rightarrow \quad \operatorname{contract(dot(T1,transpose(T2)))}$$

Follow suit for f_{22} .

$$(\not\!\!p_4 + m)^\alpha{}_\beta \gamma^{\mu\beta}{}_\rho (\not\!\!p_1 + m)^\rho{}_\sigma \gamma^{\nu\sigma}{}_\alpha \quad \rightarrow \quad \text{T1 = contract(dot(X4,gammaT,X1,gammaT),1,4)}$$

$$(\not\!\!p_3 + m)^\alpha{}_\beta \gamma_\mu{}^\beta{}_\rho (\not\!\!p_2 + m)^\rho{}_\sigma \gamma_\nu{}^\sigma{}_\alpha \quad \rightarrow \quad \text{T2 = contract(dot(X3,gammaL,X2,gammaL),1,4)}$$

Then

$$f_{22} = \operatorname{Tr}(\cdots \gamma^{\mu} \cdots \gamma^{\nu}) \operatorname{Tr}(\cdots \gamma_{\mu} \cdots \gamma_{\nu}) \quad o \quad \operatorname{contract(dot(T1,transpose(T2)))}$$

The calculation of f_{12} begins with

$$(\not\!p_3 + m)^\alpha{}_\beta \gamma^{\mu\beta}{}_\rho (\not\!p_1 + m)^\rho{}_\sigma \gamma^{\nu\sigma}{}_\tau (\not\!p_4 + m)^\tau{}_\delta \gamma_\mu{}^\delta{}_\eta (\not\!p_2 + m)^\eta{}_\xi \gamma_\nu{}^\xi{}_\alpha$$

$$\rightarrow \quad \text{T = contract(dot(X3,gammaT,X1,gammaT,X4,gammaL,X2,gammaL),1,6)}$$

Then sum over repeated indices μ and ν .

$$f_{12} = \operatorname{Tr}(\cdots \gamma^{\mu} \cdots \gamma^{\nu} \cdots \gamma_{\mu} \cdots \gamma_{\nu}) \quad o \quad \operatorname{contract}(\operatorname{contract}(\mathtt{T,1,3}))$$