Meta-aprendizado

1001513 – Aprendizado de Máquina 2 Turma A – 2022/2 Prof. Murilo Naldi

Agradecimentos

 Pessoas que colaboraram com a produção deste material: Diego Silva

Intel IA Academcy

Problema

Algoritmos de aprendizado de máquina necessitam de dados

- Mas nem sempre existe uma quantidade grande de dados para uma aplicação específica
- Nesses casos, conhecimento do domínio poderia ajudar
 - Talvez extraído de exemplos semelhantes, mas não iguais
 - Talvez esse conhecimento esteja refletido em modelos já treinados

Problema

Adicionalmente, sabemos que:

- Diferentes algoritmos podem obter resultados distintos
 - Para diferentes tipos de dados
- Algoritmos possuem hiper-parâmetros a serem definidos
 - Muitas vezes são difíceis de estimar
 - Exemplo: *k*, limiares, etc...

Meta-aprendizado

No free lunch

Lembrando que (ainda) não há um algoritmo de AM melhor que os outros para todos os cenários

- Depende de como seu viés indutivo se adapta ao problema
 - **Problema** = características dos dados

Meta-aprendizado

O meta-aprendizado foca em resultados anteriores de aprendizado

- Por meio de resultados obtidos em outros conjuntos de dados
 - Experiência E (definição de Mitchell)
- Aprender a relação entre problemas e técnicas de AM

Meta-aprendizado

O meta-aprendizado foca em resultados anteriores de aprendizado

- Pode ser utilizado para:
 - Encontrar o algoritmo apropriado a um problema específico é conhecido como Algorithm Selection Problem (ASP)
 - Encontrar os melhores (hiper-)parâmetros para um algoritmo é conhecido como *Hyper-Parameter* Optimization (HPO)
 - Outros...

Definições

Na recomendação de algoritmos

- Input do treino: Um conjunto de conjuntos de dados (meta-exemplos) com o algoritmo que teve melhor desempenho em cada um (meta-alvos)
 - Os meta-atributos são as descrições desses dados (já explico)
- O modelo gerado após a etapa de meta-treinamento é chamado meta-modelo

Modelo de Rice para ASP

Adaptado de K. A. Smith-Miles, "Cross-disciplinary perspectives on meta-learning for algorithm selection," ACM Comput. Surv., vol. 41, no. 1, pp. 1–25, Dec. 2008. para J. R. Rice, "The algorithm selection problem," Adv. Comput., vol. 15, pp. 65–118, Jan. 1976.

Problema modelo Rice

Alta complexidade do espaço de problemas P e de algoritmos A

Meta-aprendizagem ataca essa questão escolhendo problemas de complexidade variável, ao mesmo tempo em que seleciona algoritmos com vieses distintos

Arcabouço para recomendação de algoritmo

I. Khan, X. Zhang, M. Rehman and R. Ali, "A Literature Survey and Empirical Study of Meta-Learning for Classifier Selection," in IEEE Access, vol. 8, pp. 10262-10281, 2020, doi: 10.1109/ACCESS.2020.2964726.

O que é importante para o meta-aprendizado?

Para um arcabouço de meta-aprendizado é preciso considerar:

- Como/quais serão os meta-atributos?
- Quais são os algoritmos que irão aprender a aprender?
 - Meta-learners
- Qual é o alvo?
 - Meta-target

O que é importante para o meta-aprendizado?

- Simple, Statistical and Information Theoretic
- Complexity based measures
- Model based measures
- Land marking based measures
- Structural Information based measures

- Rule based
- Regression baed
- Instance based
- Multi-Label based
- Link Prediction

- Best Algorithm
- Ranked List
- Multiple Algorithms

I. Khan, X. Zhang, M. Rehman and R. Ali, "A Literature Survey and Empirical Study of Meta-Learning for Classifier Selection," in IEEE Access, vol. 8, pp. 10262-10281, 2020, doi: 10.1109/ACCESS.2020.2964726.

Meta-aprendizado pode ser visto como extrair as características que descrevem os dados e usá-las para aprender novos dados de forma mais eficiente

Pode ser feito de forma:

- direta
 - estatística e estrutural
 - complexidade
 - estrutural
- propriedades de modelos
- landmarking

Caracterização direta

- Simples
 - Número de exemplos, classes e atributos, número de atributos categóricos e numéricos, ...
- Estatísticos
 - Média, desvio padrão, obliquidade, distribuição ...
- Teoria da informação
 - Entropia, informação mútua, auto-valores ...

Sugestão: olhar o https://pypi.org/project/pymfe/

Caracterização direta

- Baseada em complexidade
 - Valor máximo do discriminante de Fisher,
 - Volume de região de sobreposição, linearidade
 - Baseado m vizinhança, fração de pontos de borda
 - Dimensionalidade (com ou sem PCA)
 - Entropia proporção de classes, desbalanceamento

Sugestão: olhar o https://pypi.org/project/pymfe/

Caracterização baseada em modelo

- A ideia é induzir modelos e caracterizar o conjunto de dados por características dos modelos induzidos
- Por exemplo, se induzirmos uma Árvore de Decisão
 - Número de folhas, profundidade, entropia média nas folhas...
- Também é possível estudar quantas vezes um atributo é escolhido para decisão

Sugestão: olhar o https://pypi.org/project/pymfe/

Caracterização baseada em landmarking

- Os conjuntos de dados são caracterizados pelo desempenho de diferentes algoritmos de AM aplicados a eles
 - Acurácia, AUC, recall...

Escolha do meta-leaner (Zhang et. al 2020)

	RQ1	RQ2	RQ3			RQ4			RQ5	RQ6
Ref	Datasets	Criteria	Algo		M	eta Featur	es		Meta learner	Meta target
				SI	PC	MS	LM	STI		
[72]	77	Accuracy	3	✓					KNN	Ranked List
[73]	47	Accuracy	10	\checkmark		\checkmark	\checkmark		KNN	Ranked List
[71]	53	Accuracy+Run Time	10	✓			\checkmark		KNN	Ranked List
[68]	100	Accuracy+Run Time	8	\checkmark					C5.0(Rule Based) Multiple Algorithms
[13]	84	Accuracy+Run Time	13	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	ML-KNN	Multiple Algorithms
[66]	84	Accuracy+Run Time	17	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	KNN	Ranked List
[46]	115	Accuracy+Run Time	22	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	KNN	Ranked List
[6]	84	Accuracy+Run Time	17	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Cluster	Multiple Algorithms
[12]	131	Accuracy+Run Time	21	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Link Pred	Ranked List
[51]	39	Accuracy+Run Time	18	\checkmark			\checkmark		KNN	Ranked List
[67]	80	Accuracy+Run Time	11	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	KNN	Ranked List
[18]	40	Accuracy+Run Time	6	\checkmark	\checkmark				Regression	Best Algorithm
[39]	90	Accuracy+Run Time	5	√	\checkmark	\checkmark	\checkmark		KNN	Ranked List
[57]	53	Accuracy	6	\checkmark	\checkmark	\checkmark	\checkmark		Regression	Best Algorithm
[77]	85	Accuracy	15	✓			\checkmark		Cluster	Multiple Algorithms
[74]	54	Accuracy	9	\checkmark		\checkmark	\checkmark		Regression	Best Algorithm
[75]	65	Accuracy	8	\checkmark			\checkmark		Regression	Best Algorithm
[69]	67	Accuracy+Run Time	10	\checkmark		\checkmark	\checkmark		KNN	Ranked List
[53]	22	Accuracy	22	\checkmark					C4.5(Rule Based) Multiple Algorithms
[76]	57	Accuracy	6	✓					Cluster	Multiple Algorithms

Otimização com meta-aprendizado

Etapas/técnicas baseadas em otimização

Hyper-Parameter Optimization (HPO)

Redes neurais

Reduzir loss function L

- Vetor de parâmetros θ

 $\theta^* \xrightarrow{\text{meta-learning}} \theta^*$ $\nabla \mathcal{L}_3$ $\nabla \mathcal{L}_2$ θ_1^* θ_2^*

Exemplos: Model-Agnostic Meta-Learninghttps://arxiv.org/abs/1703.03400 (MAML), Reptile, etc...

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International conference on machine learning. PMLR, 2017.

Model-Agnostic Meta-Learning (Finn et.al 2017)

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: **while** not done **do**
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient de
 - scent: $\theta_i' = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

Model Applicability Induction (MAI)

- Utiliza meta-aprendizado para determinar se utiliza ou não cada um dos modelos induzidos

V1	V2	V3	V4	V5	Classe	V1	V2	V3	V4	V5	Erro
t	a	c	t	a	membro	t	a	c	t	a	+
t	g	c	t	a	membro	t	g	c	t	\mathbf{a}	_
g	t	a	\mathbf{c}	t	não membro	g	t	a	\mathbf{c}	t	+
a	a	t	t	g	membro	a	a	t	t	g	+
t	c	g	a	t	não membro	t	c	g	a	t	-
a	g	g	g	g	membro	a	g	g	g	g	+

Model Applicability Induction (MAI)

- Utiliza meta-aprendizado para determinar se utiliza ou não cada um dos modelos induzidos

Stacking

Stacking

Score do modelo 3 para a classe 1

A diferença é a substiuição da classe pela meta-classe! \

V1	V2	V3	V4	V5	Classe	$\mathbf{P}_{1,1}$	$\mathbf{P}_{1,2}$	$\mathbf{P}_{2,1}$	$P_{2,2}$	$\mathbf{P}_{3,1}$	${ m P}_{3,2}$	Classe
t	a	c	t	a	Membro	0,51	0,49	0,13	0,87	0,12	0,88	Membro
t	g	c	t	a	Membro	0,19	0,81	0,07	0,93	0,81	0,19	Membro
g	t	a	c	t	Não Membro	0,68	0,32	0,55	0,45	0,69	0,31	Não Membro
a	a	t	t	g	Membro	0,74	0,26	0,66	0,34	0,94	0,06	Membro
t	c	g	a	t	Não Membro	0,62	0,38	0,01	0,99	0,78	0,22	Não Membro
a	g	g	g	g	Membro	0,65	0,35	0,90	0,10	0,55	0,45	Membro

Conjunto de dados original

Conjunto de dados de Nível₁

Por hoje... vocês já sabem

Referências e bibliografia

- K. A. Smith-Miles, "Cross-disciplinary perspectives on meta-learning for algorithm selection," ACM Comput. Surv., vol. 41, no. 1, pp. 1–25, Dec. 2008. para J. R. Rice, "The algorithm selection problem," Adv. Comput., vol. 15, pp. 65–118, Jan. 1976.
- I. Khan, X. Zhang, M. Rehman and R. Ali, "A Literature Survey and Empirical Study of Meta-Learning for Classifier Selection," in IEEE Access, vol. 8, pp. 10262-10281, 2020, doi: 10.1109/ACCESS.2020.2964726.
- Inteligência Artificial Uma Abordagem de Aprendizado de Máquina Katti Faceli, Ana Carolina Lorena, João Gama, Tiago Agostinho de Almeida e André C. P. L. F de Carvalho. Inteligência artificial: uma abordagem de aprendizado de máquina. Segunda edição: LTC, 2021. 304 p. ISBN 9788521637349.