Problemas del Tema 1 Segunda parte

1.- (Ventana de Viviani) Considera la intersección de la semiesfera dada por $x^2 + y^2 + z^2 = 4$, $z \ge 0$ y el cilindro circular recto dado por $(x-1)^2 + y^2 = 1$ (nota que el radio de la esfera es 2 y el radio de la circunferencia que genera al cilindro 1, su mitad, y que el cilindro pasa por (0,0,0), el centro de la esfera). Prueba que la traza la curva $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\alpha(t) = (2\cos^2 t, 2(\cos t)(\sin t), 2\sin t)$ es dicha intersección ¿Es α regular? ¿es α cerrada?

- 2.- Encuentra una parametrización de cada una de las siguientes dos intersecciones de cuádricas:
 - (a) El cilindro circular recto dado por $x^2 + y^2 = 4$ y el cilindro parabólico dado por $z = x^2$.
 - (b) El cilindro parabólico dado por $x=y^2+1$ y el cilindro parabólico dado por $x=z^2$
- 3.- Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva regular de manera que $\{\alpha'(t), \alpha''(t)\}$ sea linealmente independiente para todo $t \in I$. Prueba que sus funciones curvatura y torsión (según nuestro convenio de signo) pueden ser calculadas como sigue:

$$k(t) = \frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3}, \qquad \tau(t) = \frac{\det(\alpha'(t), \alpha''(t), \alpha'''(t))}{|\alpha'(t) \times \alpha''(t)|^2}.$$

- **4.-** Considera $r \in \mathbb{R}$, r > 0, un punto p y un vector v del espacio euclídeo de manera que |p| = |v| = r, $\langle p, v \rangle = 0$ y sea $\gamma : \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\gamma(t) = \left(\cos \frac{t}{r}\right)p + \left(\sin \frac{t}{r}\right)v$
 - (a) Comprueba que está parametrizada por la longitud de arco y que $\gamma''(t) \neq 0$, para todo $t \in \mathbb{R}$.
 - (b) Prueba que su torsión es cero y encuentra el plano de contiene su traza.
 - (c) Prueba que su curvatura es $\frac{1}{r}$.
 - (d) Encuentra un movimiento rígido F de \mathbb{R}^3 de manera que $F \circ \gamma = \beta$, donde $\beta : \mathbb{R} \longrightarrow \mathbb{R}^3$ está dada por $\beta(t) = \left(r\cos\left(\frac{t}{r}\right), r\sin\left(\frac{t}{r}\right), 0\right)$.
- **5.-** (Hélice circular) Sea la curva $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\alpha(t) = (a \cos t, a \sin t, bt)$, donde $a, b \in \mathbb{R}$, a, b > 0.
 - (a) Comprueba que es regular.
 - (b) Interpreta geométricamente el significado de las constantes $a \ y \ b$.
 - (c) Calcula la función longitud de arco desde $t_0=0$.
 - (d) Construye el triedro de Frenet.
 - (e) Calcula sus funciones curvatura y torsión, k y τ . Estudia los comportamientos de k cuando se tiene b fijo pero $a \to \infty$ y de τ cuando a es fijo pero $b \to \infty$. Interprétalos geométricamente.

- **6.-** Sea la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\alpha(t) = (3t t^3, 3t^2, 3t + t^3)$.
 - (a) Comprueba que es regular.
 - (b) Calcula la función longitud de α desde $t_0 = 0$ hasta t = 1.
 - (c) Construye el triedro de Frenet.
 - (d) Calcula los planos osculador, normal y rectificante a α en t=0
 - (e) Calcula sus funciones curvatura y torsión.
- 7.- Para cada función diferenciable $f: \mathbb{R} \longrightarrow \mathbb{R}$ se considera la curva $\alpha_f: \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\alpha_f(t) = (\cos t, \sin t, f(t))$.
 - (a) Comprueba que α_f es regular.
 - (b) Prueba que para cada $t_1, t_2 \in \mathbb{R}, t_1 < t_2$ se cumple $\int_{t_1}^{t_2} |\alpha'(t)| dt \ge t_2 t_1$.
 - (c) Construye el triedro de Frenet.
 - (d) Calcula sus funciones curvatura y torsión.
 - (e) Determina las funciones f para las cuales α_f es una curva plana.
- 8.- Prueba que los enunciados de los problemas números 10 y 11 de la primera parte pueden extenderse para el caso de curvas en el espacio euclídeo ¿Y el del problema 12? es decir, ¿es un segmento de recta o un arco de circunferencia la traza de una curva si y sólo si todas las rectas tangentes equidistan de un punto fijo del espacio?
- 9.- Sea $\alpha:I\longrightarrow\mathbb{R}^3$ una curva parametrizada por la longitud de arco y tal que $\alpha''(t)\neq 0$, para todo $t\in I$. Supongamos además que $\tau(t)\neq 0$, $k'(t)\neq 0$, para todo $t\in I$. Prueba que $\mathrm{Im}(\alpha)$ está contenida en una esfera si y sólo si $R^2+(R')^2T^2$ es constante, siendo $R(t)=\frac{1}{k(t)}$, R' la función derivada de R y $T(t)=\frac{1}{\tau(t)}$.
- **10.-** Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva regular de manera que $\{\alpha'(t), \alpha''(t)\}$ sea linealmente independiente para todo $t \in I$. Considera la nueva curva $\beta: I \longrightarrow \mathbb{R}^3$, dada por $\beta(t) = r \alpha(t)$, con r > 0 real fijo. Relaciona los triedros de Frenet, curvatura y torsión de ambas curvas. Pon algún ejemplo como aplicación de lo obtenido.
- 11.- Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva parametrizada por la longitud de arco y tal que $\alpha''(t) \neq 0$, para todo $t \in I$, y con k > 0, $\tau > 0$. Se considera la curva $\beta(t) = \int_{t_0}^t e_3(s) \, ds$, donde $e_3(t)$ es el vector binormal a α en t.
 - (a) Comprueba que β está parametrizada por la longitud de arco.
 - (b) Construye el triedro de Frenet de β .
 - (e) Calcula las funciones curvatura y torsión, k_{β} y τ_{β} .