Input = digit entered Output = unlocked?

Input = digit entered Output = unlocked?

Sa_old	Sb_old	In	Sa_new	Sb_new	Out
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	0	1

Sa = MSB of state In = bit entered

Sb = LSB of state Out = unlocked?

\ In Sa Sb	0	1
00	1	0
01	0	0
11	11 0	
10	1	0

new LSB

\ In Sa Sb	0	1
00	0	0
01	0	0
11	0	1
10	0	0

Out

(¬Sa ∧ Sb ∧ In) ∨ (Sa ∧ ¬Sb ∧ ¬In)

 $(\neg Sb \land \neg In)$

(Sa ∧ Sb ∧ In)

Sa = old MSB, Sb = old LSB