Selvstudie 2

Jonathan Strandberg
18 mar 2019

Problem 10.2

An AR model has AR characteristic polynomial

$$(1 - 1.6x + 0.7x^2)(1 - 0.8x^{12})$$

a) Is the model stationary?

$$1 - 1.6x + 0.7x^2 - 0.8x^{12} + 1.28x^{13} - 0.56x^{14}$$

```
coeff <- c(1,-1.6,0.7,0,0,0,0,0,0,0,0,0,0,0,0.8,1.28,-0.56)
roots <- polyroot(coeff)
sapply(roots , norm , type="2")</pre>
```

```
## [1] 1.018769 1.018769 1.018769 1.018769 1.018769 1.018769 1.018769 ## [8] 1.018769 1.018769 1.018769 1.018769 1.018769 1.195229
```

arima.sim(list(ar = coeff[-1]), n = 1000) # Kan ikke køre ('ar' part of model is not stationary)

Ingen rødder på enhedscirklen \Leftrightarrow stationær

b) Identify the model as certain seasonal ARIMA model.

Problem 10.7

Suppose that the process $\{Y_t\}$ develops according to $Y_t = Y_{t-4} + e_t$ with $Y_t = e_t$ for t = 1, 2, 3, 4

a) Find the variance function for $\{Y_t\}$

$$Var[Y_t] = ceiling \left(\frac{t}{4}\right)^2 \sigma_e^2$$

- b) Find the autocorrelation function for $\{Y_t\}$
- c) Identify the model for $\{Y_t\}$ as a certain seasonal ARIMA