Fundamento de Base de Datos

2.- Diseño de base de datos con el modelo E-R

2.1 El proceso de Diseño

- Determinar la finalidad de la base de datos: Este paso inicial es crucial para definir el propósito de la base de datos y guiar el resto del proceso de diseño. Identificar claramente qué información se desea almacenar y cómo se utilizará ayuda a definir las entidades y relaciones necesarias.
- Buscar y organizar la información necesaria: Reúne todos los tipos de información que deseas registrar en la base de datos. Esto incluye nombres de productos, números de pedidos, y cualquier otro dato relevante para el propósito de la base de datos.
- Crear el modelo Entidad-Relación: Utiliza el modelo E-R para describir los datos, las relaciones entre los datos, y la semántica de los datos. Este modelo es útil para representar los significados e interacciones del mundo real en un esquema conceptual. Muchas herramientas de diseño de bases de datos se basan en los conceptos del modelo E-R debido a su utilidad.
- Definir entidades y relaciones: Las entidades representan objetos o conceptos del mundo real que son importantes para la base de datos, como productos o pedidos. Las relaciones describen cómo estas entidades se conectan entre sí, por ejemplo, un pedido puede estar relacionado con un producto.
- Especificar atributos para las entidades: Los atributos son las características o propiedades de las entidades. Por ejemplo, un producto puede tener atributos como nombre, precio, y cantidad en stock.
- Establecer restricciones de dominio y consistencia: Las restricciones de dominio especifican el tipo de datos que puede tener cada atributo (por ejemplo, entero, cadena de texto, fecha). Las restricciones de consistencia aseguran que los datos en la base de datos sean coherentes y válidos.
- Considerar modelos E-R extendidos: Para casos más complejos, puedes necesitar utilizar características extendidas del modelo E-R, como especialización, generalización,

- y herencia de atributos. Estas características permiten modelar relaciones más complejas y específicas entre las entidades.
- Revisar y ajustar el modelo: Una vez que hayas creado el modelo E-R inicial, es importante revisarlo y ajustarlo según sea necesario. Esto puede incluir la adición de entidades o relaciones faltantes, la corrección de errores, y la optimización del diseño para mejorar la eficiencia y la facilidad de uso.

2.2 Modelo Entidad Relación

Un modelo entidad-relación (ER) es un modelo conceptual utilizado en el diseño de bases de datos para representar las entidades relevantes dentro de un sistema y las relaciones entre ellas. En un diagrama entidad-relación, las entidades se representan como rectángulos, las relaciones como líneas conectadas entre las entidades y los atributos como óvalos dentro de las entidades.

Modelo entidad relación

Los modelos entidad relación simplifican los elementos de una base de datos

Fundamentos clave

Ejemplo de modelo de entidad relación de una base de datos de una tienda de suministros

2.3 Diseño con diagramas E-R

El diseño con diagramas entidad-relación (ER) es una técnica fundamental en el diseño de bases de datos y sistemas de información. Estos diagramas representan la estructura de una base de datos, mostrando las entidades (objetos o conceptos), sus atributos (características o propiedades), y las relaciones entre ellas. Los diagramas ER son esenciales para visualizar y planificar la estructura de una base de datos antes de su implementación, facilitando la comprensión y el análisis de los requisitos del sistema.

Componentes de un Diagrama ER

Entidades: Representadas por rectángulos, son los objetos o conceptos que existen en el sistema, como personas, productos, o eventos.

Relaciones: Representadas por diamantes, indican cómo las entidades se relacionan entre sí.

Atributos: Representados por óvalos, son las características o propiedades que describen las entidades.

***Cardinalidad: Define las relaciones en términos de números, indicando cuántas instancias de una entidad están asociadas con instancias de otra entidad.

Ventajas de los Diagramas ER

 Claridad: Facilitan la comprensión de la estructura de la base de datos y las relaciones entre sus componentes.

TES HUIXOUILUCAN

· Flexibilidad: Permiten representar diferentes niveles de detalle, desde el modelo

conceptual hasta el modelo físico, adaptándose a las necesidades específicas del

proyecto.

· Colaboración: Herramientas como Miro y Lucidchart ofrecen funcionalidades para

crear y compartir diagramas ER de manera colaborativa, facilitando el trabajo en equipo.

Creación de un Diagrama ER

· Identificar las Entidades: Comienza identificando las entidades principales del sistema.

• **Definir los Atributos**: Para cada entidad, define sus atributos.

· Establecer las Relaciones: Identifica cómo las entidades se relacionan entre sí y define

las relaciones.

• Determinar la Cardinalidad: Especifica la cardinalidad de las relaciones para asegurar

la integridad de los datos.

· Revisar y Ajustar: Revisa el diagrama para asegurar que representa correctamente el

sistema y realiza ajustes según sea necesario.

Herramientas para Crear Diagramas ER

· Miro: Ofrece plantillas y herramientas intuitivas para crear diagramas ER de manera

colaborativa.

• Lucidchart: Proporciona una plataforma para crear, compartir y colaborar en diagramas

ER, con plantillas listas para usar y funcionalidades avanzadas.

Ejercicios:

Base de datos universitaria

Estudiante: Con atributos como ID, nombre, dirección, correo electrónico.

Profesor: Con atributos como ID, nombre, especialidad, departamento.

Curso: Con atributos como ID, nombre del curso, número de créditos.

Departamento Con atributos como ID, nombre del departamento, ubicación.

Una empresa de venta de productos electrónicos

Cliente: Con atributos como ID, nombre, dirección, correo electrónico, número de teléfono.

Producto: Con atributos como ID, nombre, descripción, precio, cantidad en stock.

Orden: Con atributos como ID, fecha de compra, estado de la orden, total.

Categoría: Con atributos como ID, nombre de la categoría, descripción.

Proveedor: Con atributos como ID, nombre de la empresa, dirección, información de contacto.

Una clínica médica desea desarrollar un sistema de gestión de información para administrar sus operaciones diarias. Se te ha asignado la tarea de diseñar la base de datos para este sistema. La clínica tiene los siguientes requisitos:

Cada paciente tiene un número de identificación único, nombre, dirección, fecha de nacimiento y número de teléfono. Los médicos tienen un número de identificación único, nombre, especialidad y número de teléfono. Las citas tienen un número de identificación único, fecha y hora, médico asignado y paciente asociado. Las historias clínicas tienen un número de identificación único, fecha de creación, paciente asociado y detalles médicos (diagnósticos, tratamientos, prescripciones, etc.).

2.4 Modelo E-R Extendido

Los diagramas de entidad-relación extendida (EER, por sus siglas en inglés) son una versión avanzada de los diagramas de entidad-relación (ER) que se utilizan en el diseño de bases de datos. La extensión que los caracteriza introduce conceptos adicionales que permiten una representación más precisa y flexible de las relaciones y características de los datos en aplicaciones complejas. Aquí te explico los elementos básicos de los diagramas EER y cómo se comparan y contrastan con los diagramas ER estándar.

Elementos Básicos de los Diagramas EER

Entidades y Atributos

- Entidades Fuertes: Son similares a las entidades en los diagramas ER estándar.
 Representan objetos o conceptos con una existencia independiente.
- **Entidades Débiles**: Dependientes de otra entidad para su existencia. Se diferencian porque no tienen suficientes atributos para formar una clave primaria por sí solas.

Relaciones

- Relaciones Regulares: Similares a las relaciones en los diagramas ER, representan las interacciones entre dos o más entidades.
- Relaciones de Especialización/Generalización: Permiten modelar jerarquías de herencia entre entidades, donde una entidad puede ser subdividida en entidades más específicas que comparten algunos atributos con la entidad padre pero también tienen los suyos propios.
- Categorización: Es un caso especial de especialización/generalización donde una entidad puede ser una instancia de una entre varias clases padre, exclusivamente.

Atributos

Atributos Compuestos y Multivalorados: Similar a los ER diagramas, los atributos pueden ser tanto simples (ej. nombre, fecha de nacimiento) como compuestos (ej. dirección) o multivalorados (ej. teléfonos).

Entidad: Persona

· Atributo Compuesto: Nombre

· Primer Nombre

· Segundo Nombre

· Apellido Paterno

· Apellido Materno

En este ejemplo, "Nombre" es un atributo compuesto porque está formado por varios atributos más simples que son partes del nombre completo de una persona. Cada parte del nombre, como "Primer Nombre", "Segundo Nombre", "Apellido Paterno" y "Apellido Materno", son atributos simples que juntos forman el atributo compuesto "Nombre".

Atributos Derivados: Atributos cuyos valores se derivan de otros atributos o relaciones.

Entidad: Empleado

• Fecha de Nacimiento: 03/04/1985 (atributo simple)

• Fecha Actual: 21/04/2024 (atributo simple)

 Edad: calculado a partir de la diferencia entre la "Fecha Actual" y la "Fecha de Nacimiento".

En este caso, "Edad" es un atributo derivado. Se calcula automáticamente usando la "Fecha de Nacimiento" del empleado y la "Fecha Actual". En una base de datos, esto podría implementarse a través de una función o un procedimiento almacenado que actualiza el valor de "Edad" cada vez que se consulta la entidad o cada vez que la fecha cambia.

Claves

· Clave Primaria: Identificador único para instancias de entidad.

Clave Foránea: Atributo que crea un enlace entre dos entidades, apuntando a la clave primaria de otra entidad.

2.5 La notación E-R con UML

La notación E-R (Entidad-Relación) con UML (Lenguaje Unificado de Modelado) se utiliza para modelar sistemas, especialmente en el diseño de bases de datos y sistemas de software orientados a objetos. UML es un conjunto de notaciones y diagramas estándar que permite modelar distintos tipos de sistemas, incluyendo sistemas de software, hardware, y procesos de negocio. Aunque UML no preescribe un proceso o método estándar para desarrollar un sistema, ofrece una notación estándar y semánticas esenciales para el modelado de sistemas orientados a objetos.

Símbolos físicos de diagramas ER

El modelo de datos físicos es el nivel más detallado de los diagramas entidad-relación y representa el proceso de agregar información a la base de datos. Los modelos ER físicos muestran todas las estructuras de tablas, incluidos nombre de columna, tipo de datos en la columna, restricciones de la columna, clave primaria, clave foránea y relaciones entre tablas.

Tal como se indica a continuación, las tablas son otra forma de representar entidades. Las partes clave de las tablas entidad-relación son las siguientes:

Campos

Los campos representan la parte de una tabla que establece los atributos de la entidad. Los atributos generalmente son vistos como columnas en la base de datos que el diagrama ER modela.

En la imagen anterior, TasadeInterés y CantidaddePréstamo son ambos atributos de la entidad, que están contenidos como campos.

Claves

Las claves son una forma de categorizar atributos. Los diagramas ER ayudan a los usuarios a modelar sus bases de datos por medio de diversas tablas que aseguran que la base de datos esté organizada y sea eficiente y rápida. Las claves se usan para vincular diversas tablas en una base de datos entre sí de la manera más eficiente posible.

Claves primarias

Las claves primarias son un atributo o combinación de atributos que identifican de forma exclusiva una y solo una instancia de una entidad.

Claves extranjeras

Las claves extranjeras son creadas siempre que un atributo se relaciona con otra entidad en una relación de uno a uno o de uno a muchos.

Cada auto solo puede ser financiado por un banco, por lo tanto la clave primaria IdBanco de la tabla Banco se usa como la clave extranjera FinanciadoPor en la tabla Auto. Este IdBanco se puede usar como la clave extranjera para múltiples autos.

Tipos

Tipos se refiere al tipo de datos en el campo correspondiente en una tabla. Tipos también puede referirse a los tipos de entidades, los cuales describen la composición de una entidad; por ejemplo, los tipos de entidad de un libro son autor, título y fecha de publicación.

Entity
Field
Field
Field

Entity		
Key	Field	
Key	Field	
Key	Field	

Entity		
Field	Type	
Field	Туре	
Field	Туре	

Entity			
Key	Field	Type	
Key	Field	Туре	
Key	Field	Туре	

Cardinalidad y ordinalidad

Cardinalidad se refiere al número máximo de veces que una instancia en una entidad se puede relacionar con instancias de otra entidad. Por otra parte, ordinalidad es el número mínimo de veces que una instancia en una entidad se puede asociar con una instancia en la entidad relacionada.

La cardinalidad y la ordinalidad se muestran a través del estilo de una línea y su extremo, según el estilo de notación seleccionado.

Ejemplo de diagrama entidad-relación (Notación UML)

Lindi H | April 23, 2024

