AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

1	1.	(Currently Amended) A computer implemented-method of determining lower and
2		upper bounds for a minimum cost of placing data objects onto nodes of a distributed
3		storage system while meeting a performance requirement for a workload comprising
4		the steps of:
5		solving an integer program using a relaxation of binary variables to
6		determine the lower bound, the binary variables having values between zero
7		and one comprising a first subset;
8		for the binary variables in the first subset and until no binary variables
9		remain in the first subset, iteratively performing the steps of:
10		rounding up a first binary variable having a lowest ratio of a cost
11		penalty to a performance reward; and
12		until no binary variables remain in a second subset, iteratively
13		performing the steps of:
14		determining the binary variables in the first subset that may
15		be rounded down without violating a performance constraint,
16		thereby forming the second subset;
17		rounding down one or more second binary variables in the
18		second subset having a zero performance reward; and
19		rounding down a third binary variable in the second subset
20		having a highest ratio of a cost reward to the performance
21		reward if none of the binary variables in the second subset have
22		the zero performance reward; and
23		determining the upper bound according to the binary variables having
24		binary values; and
25		placing the data objects onto the nodes of the distributed storage system
26		using a data placement heuristic selected in accordance with the determined
27		lower and upper bounds.

- 1 2. (Currently Amended) The computer implemented method of claim 1 wherein the integer program comprises the performance constraint and an objective of minimizing a cost.
- 3. (Currently Amended) The computer implemented method of claim 1 wherein the
 integer program models a data placement problem.
- 4. (Currently Amended) The computer implemented method of claim 3 wherein the data placement problem seeks to minimize a cost of placing the data objects onto the nodes of athe distributed storage system while meeting athe performance requirement for athe workload.
- 1 5. (Currently Amended) The computer implemented method of claim 1 wherein the 2 step of rounding up the first binary variable within the first subset further comprises 3 calculating the cost penalty and the performance reward.
- (Currently Amended) The computer implemented-method of claim 5 wherein the
 step of rounding down the one or more second binary variables within the second
 subset further comprises calculating the performance reward.
- 7. (Currently Amended) The computer implemented method of claim 6 wherein the step of rounding down the third binary variable within the second subset further comprises calculating the cost reward.
- 8. (Currently Amended) A computer implemented method of determining bounds
 for a minimum cost comprising the steps of:
 solving an integer program using a relaxation of binary variables to

determine a lower bound for the minimum cost, the relaxation allowing the binary variables to take values over the range of zero to one, a first subset of

6 the binary variables comprising the binary variables having values between

7	zero and one, the integer program modeling a data placement problem which
8	seeks to minimize a cost of placing data objects onto nodes of a distributed
9	storage system while meeting a performance requirement for a workload;
10	until no binary variables remain in the first subset, iteratively performing
11	the steps of:
12	calculating a cost penalty and a performance reward for each of the
13	binary variables in the first subset;
14	rounding up a first binary variable having a lowest ratio of the cost
15	penalty to the performance reward;
16	until no binary variables remain in a second subset, iteratively
17	performing the steps of:
18	determining the binary variables in the first subset that may
19	be rounded down without violating the performance
20	requirement, thereby forming the second subset;
21	calculating a cost reward and the performance reward for
22	each of the binary variables in the second subset;
23	rounding down one or more second binary variables in the
24	second subset having a zero performance reward;
25	rounding down a third binary variable in the second subset
26	corresponding to a highest ratio of a cost reward to the
27	performance reward if none of the binary variables in the
28 .	second subset have the zero performance reward; and
29	determining an upper bound for the minimum cost according to the binary
30	variables having binary values; and
31	placing the data objects onto the nodes of the distributed storage system
32	using a data placement heuristic selected in accordance with the determined
33	lower and upper bounds.

9. (Currently Amended) The computer implemented method of claim 8 wherein the integer program further comprises a storage constraint.

I	10. (Currently Amended) The computer implemented method of claim 9 wherein the
2	step of determining the upper bound for the minimum cost further comprises the steps
3	of:
4	determining a particular node which uses a maximum amount of storage
5	within any evaluation interval; and
6	allocating the maximum amount of storage on all nodes for all evaluation
7	intervals.
1	11. (Currently Amended) The computer implemented method of claim 9 wherein the
2	step of determining the upper bound for the minimum cost further comprises the steps
3	of:
4	determining a maximum amount of storage for each node within any
5	evaluation interval; and
6	allocating the maximum amount of storage on each node for all evaluation
7	intervals.
1	12. (Currently Amended) The computer implemented method of claim 8 wherein the
2	integer program further comprises a replica constraint.
1	13. (Currently Amended) The computer implemented method of claim 12 wherein the
2	step of determining the upper bound for the minimum cost further comprises the steps
3	of:
4	determining a maximum number of replicas for any data object within any
5	evaluation interval; and
5	placing the maximum number of replicas for all data objects for all
7	evaluation intervals.
l	14. (Currently Amended) The computer implemented method of claim 12 wherein the
2	step of determining the upper bound for the minimum cost further comprises the steps
3	of:
ļ	determining a maximum number of replicas for each data object within

5	any evaluation interval; and
6	placing the maximum number of replicas for each data object for all
7	evaluation intervals.
1	15. (Original) A computer readable memory comprising computer code for
2	implementing a method of determining bounds for a minimum cost, the method of
3	determining the bounds for the minimum cost comprising the steps of:
4	solving an integer program using a relaxation of binary variables to
5	determine a lower bound for the minimum cost, the integer program
6	comprising a performance constraint and an objective of minimizing a cost,
7	the binary variables having values between zero and one comprising a first
8	subset;
9	for the binary variables within the first subset and until no binary variables
10	remain in the first subset, iteratively performing the steps of:
11	rounding up a first binary variable having a lowest ratio of a cost
12	penalty to a performance reward; and
13	until no binary variables remain in a second subset, iteratively
14	performing the steps of:
15	determining the binary variables in the first subset that may
16	be rounded down without violating the performance constraint,
17	thereby forming the second subset;
18	rounding down one or more second binary variables in the
19	second subset having a zero performance reward; and
20	rounding down a third binary variable in the second subset
21	having a highest ratio of a cost reward to the performance
22	reward if none of the binary variables in the second subset have
23	the zero performance reward; and
24	determining an upper bound for the minimum cost according to the binary
25	variables having binary values.

(Original) The computer readable memory of claim 15 wherein the integer

1

16.

2 program models a data placement problem. 1 17. (Previously Presented) The computer readable memory of claim 16 wherein the 2 data placement problem seeks to minimize a cost of placing data objects onto nodes 3 of a distributed storage system while meeting a performance requirement for a 4 workload. 1 18. (Previously Presented) The computer readable memory of claim 15 wherein the 2 step of rounding up the first binary variable within the first subset further comprises 3 calculating the cost penalty and the performance reward. 1 19. (Previously Presented) The computer readable memory of claim 18 wherein the 2 step of rounding down the one or more second binary variables within the second 3 subset further comprises calculating the performance reward. 1 20. (Previously Presented) The computer readable memory of claim 19 wherein the 2 step of rounding down the third binary variable within the second subset further 3 comprises calculating the cost reward. 1 21. (Original) A computer readable memory comprising computer code for 2 implementing a method of determining bounds for a minimum cost, the method of 3 determining the bounds for the minimum cost comprising the steps of: 4 solving an integer program using a relaxation of binary variables to 5 determine a lower bound for the minimum cost, the relaxation allowing the 6 binary variables to take values over the range of zero to one, a first subset of 7 the binary variables comprising the binary variables having values between 8 zero and one, the integer program modeling a data placement problem which 9 seeks to minimize a cost of placing data objects onto nodes of a distributed 10 storage system while meeting a performance requirement for a workload; 11 until no binary variables remain in the first subset, iteratively performing

12

the steps of:

13	calculating a cost penalty and a performance reward for each of the
14	binary variables in first the subset;
15	rounding up a first binary variable having a lowest ratio of the cost
16	penalty to the performance reward;
17	until no binary variables remain in a second subset, iteratively
18	performing the steps of:
19	determining the binary variables in the first subset that may
20	be rounded down without violating the performance
21	requirement, thereby forming the second subset;
22	calculating a cost reward and the performance reward for
23	each of the binary variables in the second subset;
24	rounding down one or more second binary variables in the
25	second subset having a zero performance reward;
26	rounding down a third binary variable in the second subset
27	corresponding to a highest ratio of a cost reward to the
28	performance reward if none of the binary variables in the
29	second subset have the zero performance reward; and
30	determining an upper bound for the minimum cost according to the binary
31	variables having binary values.
1	22. (Original) The computer readable memory of claim 21 wherein the integer
2	program further comprises a storage constraint.
1	23. (Original) The computer readable memory of claim 22 wherein the step of
2	determining the upper bound for the minimum cost further comprises the steps of:
3	determining a particular node which uses a maximum amount of storage
4	within any evaluation interval; and
5	allocating the maximum amount of storage on all nodes for all evaluation
6	intervals.

(Original) The computer readable memory of claim 22 wherein the step of

1

24.

2	determining the upper bound for the minimum cost further comprises the steps of:
3	determining a maximum amount of storage for each node within any
4	evaluation interval; and
5	allocating the maximum amount of storage on each node for all evaluation
6	intervals.
1	25. (Original) The computer readable memory of claim 21 wherein the integer
2	program further comprises a replica constraint.
1	26. (Original) The computer readable memory of claim 25 wherein the step of
2	determining the upper bound for the minimum cost further comprises the steps of;
3	determining a maximum number of replicas for any data object within any
4	evaluation interval; and
5	placing the maximum number of replicas for all data objects for all
5	evaluation intervals.
l	27. (Original) The computer readable memory of claim 25 wherein the step of
2	determining the upper bound for the minimum cost further comprises the steps of;
3	determining a maximum number of replicas for each data object within
ļ	any evaluation interval; and
5	placing the maximum number of replicas for each data object for all
ó	evaluation intervals.