

MODELING DEFAULT RISK

ALIREZA GHASEMIEH

STUDENT ID: 500925479

TODAY PRESENTATION

PROBLEM

Bank wants to calculate the default risk probability of loan applicants based on their financial history over all other financial institutes

DATASET

application_{train|test}.csv **Total Attributes** Main tables – our train and test 124 * 350k samples 219 Target (binary) • Info about loan and loan applicant at application time -SK_ID_CURR-· - - · - · - - SK_ID_CURR bureau.csv previous_application.csv · Application data of client's Application data from previous previous loans in Home Credit loans that client got from other • Info about the previous loan 38*1.67m 17 * 1.7m institutions and that were parameters and client info at reported to Credit Bureau time of previous application One row per client's loan in · One row per previous Credit Bureau application -SK_ID_PREV-SK_ID_BUREAU SK_ID_PREV POS CASH balance.csv credit card balance.csv bureau balance.csv instalments_payments.csv · Past payment data for each · Monthly balance of · Monthly balance of · Monthly balance of installments of previous credits credits in Credit client's previous client's previous in Home Credit related to loans loans in Home Credit credit card loans in Bureau in our sample Behavioral data Behavioral data Home Credit Behavioral data Behavioral data 8 * 10m 8*13.6m 23 * 3.8m 3 * 27.3m

DATASET

APPROACH

DATASET BALANCING

- Over Sampling
- Under Sampling
- SMOT Method

DATASET PREPARATION (CATEGORICAL VARIABLES)

Own Car	Own Car
Υ	1
N	0
N	0
Υ	1

- Categorical Variables
 - Convert to Binomial Variables
 - Convert to Dummy Variables

Car Model	
Ford	
BMW	
Hyundai	,
Honda	

Car Model_Ford	Car Model _Hyundai	Car Model _Honda	Car Model _BMW
1	0	0	0
0	0	0	1
0	1	0	0
0	0	1	0 9

DATASET PREPARATION (MISSING VALUES)

- Replace with Median for Quantitative Variables
- Replace with Mode for Qualitative Variables
- Remove the Column with 90% Missing value
- Remove Records with Missing Value
- Create an Identification Variable to Mark Missing Values

10

DATASET PREPARATION (OUTLIERS) REPLACE WITH MEDIAN

FEATURE ENGINEERING

FEATURE ENGINEERING

MERGING TABLE BY FEATURE ENGINEERING

- Manual Feature Engineering
 - Merge Categorical Attributes
 - Count, Count Norm

- Count, Mean, Max, Min, Sum
- Automatic Feature Engineering
 - Technique: deep feature synthesis
 - Python Library: Featuretools

DIMENSION REDUCTION

- Missing Values over 90%
- Collinear Variables
- PCA

Removed Columns	Baseline	Manual Feature Engineering	Automatic Feature Engineering
Missing Values over 90%	0	0	0
Collinear Variables	134	224	592
PCA	65	NA	NA
Total Num of Col Bef Rem	333	1143	2221
Total Num of Col aft Rem	134	919	1629

DIMENSION REDUCTION

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

18

EXPLORATORY DATA ANALYSIS (PIE CHART)

EXPLORATORY DATA ANALYSIS (KDE PLOT)

EXPLORATORY DATA ANALYSIS (Correlation with Target – Before & After Feature Engineering)

TARGET	1.000000
EXT_SOURCE_3	0.178919
EXT_SOURCE_2	0.160472
EXT_SOURCE_1	0.155317
DAYS_BIRTH	0.078239
DAYS EMPLOYED	0.074958

PREDICTIVE MODELING

ROC-AUC Assessment Score

1st Model: Logistic Regression

• Score of 0.68035

2nd Model: Random Forest

Score of 0.67508

3rd Model: Application Table and Light Gradient Boosting

• Score of 0.74533

4th Model: Manual Feature Engineering and Light Gradient Boosting

• Score of 0.77445

5th Model: Automated Feature Engineering and Light Gradient Boosting

• Score of 0.74169

MODELING METHODS AND EVALUATION RESULTS

SUMMARY

- Problem
- Dataset
- Approach
 - Data Preparation
 - Feature Engineering
 - Exploratory Data Analysis (EDA)
 - Modeling

- Result
 - EDA Plots
 - Modeling Accuracy Table

THANK YOU

FEATURE IMPORTANCE

ALIGN TRAINING DATASET WITH TEST DATASET

Train Dataset

Col 1	Col 2	Col 3	Col 4	Col 5	Col 6

Test Dataset

Col 1	Col2	Col 3	Col 5	Col 6	Col 4

DATASET PREPARATION (MISSING VALUES)

 Create an Identification Variable to Mark Missing Values

Attr		Attr	Miss_Tag
DATA		DATA	0
NA		NA	1
NA		NA	1
DATA	•	DATA	0
NA		NA	1
DATA		DATA	0