"וְצָׁזַלְרִי" אוֹדָלָאל מוֹ 14 בֹאַזוֹלִן" (יוווֹקֹאל מוֹ 14)

חלוקת חדרים ושכר-דירה Fair Rent Division

אראל סגל-הלוי

חלוקת שכר דירה

נתונים:

- R דירה עם n חדרים ודמי-שכירות נתונים -
- קבוצה של n שותפים השוכרים את הדירה. \bullet
- האתגר: להחליט מי יגור איפה, וכמה ישלם, כך שלא תהיה קנאה. הפלט הדרוש הוא:
- .X_i לכל שחקן i מתאימים חדר אחד -
 - .p(j) מתאימים מחיר = לכל חדר j מתאימים מחיר -
- ללא קנאה: אף שותף לא מעדיף את החבילה (חדר+מחיר) של שותף אחר.

קיום חלוקת-חדרים ללא קנאה

הנחה: קיים "מחיר גבוה מדי".

הגדרה: מחיר גבוה מדי הוא מחיר כלשהו T, כך שאם המחיר של חדר כלשהו ≥ T, והמחיר של חדר כלשהו ≥ T, והמחיר של חדר אחר כלשהו ≥ T, אז אף שחקן לא בוחר בחדר עם מחיר ≥ T.

הערה: אם השחקנים קוואזיליניאריים, אז קיים מחיר גבוה מדי – למשל הערך הגבוה ביותר ששחקן כלשהו מייחס לחדר כלשהו.

משפט: אם קיים מחיר גבוה מדי, אז יש השמה +תימחור ללא קנאה. ===>

- הגדרה: סימפלקס = אוסף הנקודות במרחב, שסכום הקואורדינטות שלהן שווה 1.
 - לדוגמה: סימפלקס במרחב 3-ממדי הוא משולש:

• הגדרה: סימפלקס = אוסף הנקודות במרחב, שסכום הקואורדינטות שלהן שווה 1.

- .עבור n=2 **קטע**
- עבור n=3 משולש.
- . עבור n=4 טטראדר
- •באופן כללי סימפלקס.

קיום חלוקת-חדרים ללא קנאה

משפט: אם קיים מחיר גבוה מדי, אז יש השמה +תימחור ללא קנאה.

הוכחה: נבנה את **סימפלקס התימחורים**. כל נקודה בסימפלקס, עם קואורדינטות (x₁,...,x₀), מתאימה לתימחור עם:

$$p_j = T - (Tn-R) x_j$$

כאשר T הוא מחיר גבוה מדי.

הערה: בכל נקודה, סכום כל המחירים הוא בדיוק R.

:n=3, R=3000, T=4000 דוגמה עם

$$p_j = T - (Tn-R)*x_j$$

$$F_1 = (-5000, 4000, 4000)$$

$$(-2000, 1000, 4000)$$

$$(100, 900, 2000)$$

$$F_2 = (4000, -5000, 4000) F_3 = (4000, 4000, -5000)$$

$$(4000, -900, -100)$$

נחלק את סימפלקס התימחורים לסימפלקסונים; ניתן כל קודקוד לשחקן; נשאל אותו איזה חדר הוא מעדיף בתימחור המתאים לקודקוד.

(Sperner's Lemma) הלמה של ספרנר

.n אונחה: באינדוקציה על •

בסיס: n=2. נסתכל על הצלע בין F_1 ל- f_2 . המספרים מתחילים ב-1 ומסתיימים ב-2, ולכן מספר המעברים הוא איזוגי.

(Sperner's Lemma) הלמה של ספרנר

צעד: נגדיר "חדר" = סימפלקסון \mathbf{v} עם n צמתים; "**דלת**" = סימפלקסון $n-1, \dots, 1$ צמתים, ותויות n-1לפי הנחת האינדוקציה, מספר A:3 הדלתות על השפה הוא איזוגי. בכל חדר עם דלת, יש: א. דלת אחת – אם התוית מול C:3 א. דלת אחת – אם - ואז זה סימפלקסון מגוון; או-nn ב. m שתי m בלתות – אם התוית מול הדלת אינה מספר הדלתות החיצוניות [איזוגי] + מספר הדלתות בחדרים מסוג ב [זוגי] + מספר הדלתות בחדרים מסוג א = מספר הדלתות כפול 2 = מספר זוגי. לכן מספר החדרים מסוג א איזוגי. ***

המספור המתקבל מקיים את התנאי של ספרנר! לכן קיים סימפלקסון מגוון.

לכן קיים תימחור שבו (בקירוב) כל שותף רוצה חדר אחר --> תימחור ללא קנאה. מימוש:

חלוקת-חדרים ללא קנאה: חישוב

הנחה: כל הדיירים הם קוואזיליניאריים.

הקלט: מטריצה $n \times n$ המתארת את ערכי החדרים לכל אחד מהדיירים:

1	2	3	חדר →
v11	v12	v13	דייר 1
v21	v22	v23	דייר 2
v31	v32	v33	דייר 3

הפלט: השמה X, תימחור p.

:i, j אין קנאה: לכל שני שחקנים

$$V_i(X_i) - p(X_i) \geq V_i(X_j) - p(X_j)$$

קנאה וסכום-ערכים משפט 1: *בכל* השמה ללא קנאה, *סכום הערכים* של הדיירים בחדרים שהם גרים בהם הוא מקסימלי.

הוכחה (Sung and Vlach, 2004): תהי X,P השמת-חדרים ללא קנאה. תהיY השמה אחרת כלשהי. לפי הגדרת קנאה :i לדיירים קוואזיליניאריים, לכל

$$V_i(X_i) - P(X_i) \ge V_i(Y_i) - P(Y_i)$$

i נסכום על כל הדיירים, i בין i

$$\sum (V_i(X_i) - P(X_i)) \ge \sum (V_i(Y_i) - P(Y_i))$$

$$\sum V_i(X_i) - \sum P(X_i) \ge \sum V_i(Y_i) - \sum P(Y_i)$$

בשני הצדדים, סכום המחירים שווה למחיר הדירה:

$$\sum V_i(X_i) \ge \sum V_i(Y_i)$$

קנאה וסכום-ערכים

משפט 2: כל תומחור ללא קנאה יישאר ללא-קנאה לכל השמה ממקסמת-סכום-ערכים.

הוכחה (Sung and Vlach, 2004): תהי X,P השמת-חדרים ללא קנאה. לפי המשפט הקודם, X ממקסמת סכום ערכים. תהי Y השמה אחרת הממקסמת סכום ערכים:

$$\sum V_i(X_i) = \sum V_i(Y_i)$$
$$\sum [V_i(X_i) - P(X_i)] = \sum [V_i(Y_i) - P(Y_i)]$$

:i נתון ש-X ללא קנאה. לכן לפי הגדרת קנאה, לכל

$$V_i(X_i) - P(X_i) \ge V_i(Y_i) - P(Y_i)$$

: iלכן חייב להתקיים שיוויון בכל איבר --- לכל

$$V_{i}(X_{i}) - P(X_{i}) = V_{i}(Y_{i}) - P(Y_{i})$$

חלוקת-חדרים ללא קנאה: חישוב

מסקנה: האלגוריתם הבא מוצא חלוקת חדרים ללא קנאה:

א. מצא חלוקה כלשהי X הממקסמתסכום-ערכים;

ב. מצא תמחור p שאיתו החלוקה X ללא קנאה.

א. מיקסום סכום הערכים

מציאת השמה הממקסמת את סכום הערכים = מציאת שידוך עם משקל מקסימום בגרף דו-צדדי.

דוגמה:

סלון	חדר	מרתף	
35	40	25	דייר א
35	60	40	דייר ב
25	40	20	דייר ג

שידוך עם משקל מקסימום

: גרף דו-צדדי עם משקלים על הקשתות: • **הקלט**: גרף דו

שידוך עם משקל מקסימום

• **הפלט**: שידוך מושלם שמשקלו גדול ביותר:

- **אלגוריתמים**: למשל "האלגוריתם ההונגרי".
 - .networkx יש מימוש בפייתון בספריה

ב. קביעת המחירים

- מצאנו השמה ממקסמת-ערכים. צריך לקבוע מחירים כך שההשמה תהיה ללא קנאה, וסכום המחירים יהיה שווה לשכר-הדירה. איך?
 - בעיית תיכנות ליניארי linear programming.

```
For all i, j:
```

```
w[d[i], i] - p[i] \ge w[d[i], j] - p[j]
```

- אפשר לפתור בעזרת cvxpy –

חלוקת חדרים – בעיית הטרמפיסט

מרתף	סלון	
0	150	דייר א
10	140	דייר ב

משפט: ייתכן שבכל חלוקה ללא קנאה, אחד הדיירים ישלם מחיר שלילי (צריך לשלם לו שיסכים לגור בדירה...)

הוכחה: נניח שיש שני דיירים ושני חדרים, הדירה עולה 100 והערכים הם כמו בטבלה למעלה. כל חלוקה ללא-קנאה ממקסמת סכום ערכים, לכן יש לתת את הסלון לדייר א ואת המרתף לדייר ב. כדי ש-ב לא יקנא, המחיר של הסלון חייב להיות גבוה יותר ב-130 (לפחות). הסכום הוא 100 ולכן: (price martef + 130) + price martef = 100 price martef = -15 המחיר של המרתף חייב להיות שלילי! ***

חלוקת חדרים – בעיית הטרמפיסט

אותו משפט נכון גם כשסכום הערכים של כל דייר שווה למחיר הכולל:

חדר א	חדר ב	חדר ג	חדר ד		
36	34	30	0	דייר א	
31	36	33	0	דייר ב	ß
34	30	36	0	דייר ג	p
32	33	35	0	דייר ד	p

$$p_c \ge 35$$
 [d envies]

$$p_b \ge 33$$
 [d envies]

$$p_a \ge 33$$
 [c envies]

$$p_d \le -1$$
 [sum=100]

חלוקת חדרים – משפט סוּ

- **הנחת הדיירים העניים**: כל דייר מעדיף חדר בחינם על-פני חדר בתשלום.
 - משפט סו. אם מתקיימת הנחת הדיירים העניים, אז קיימת חלוקת חדרים ללא קנאה, שבה כל דייר משלם מחיר חיובי (אין "טרמפיסטים").
- הוכחה. הוכחנו שקיימת נקודה בסימפלקס המתאימה לתימחור ללא קנאה. אילו היה שם מחיר שלילי, אז כל דייר המשלם מחיר חיובי היה מהנא ***

חלוקת שכר דירה – טרילמה

דיירים שמקבלים כסף	קנאה	עובד רק עם "דיירים עניים"	
לא	לא	J	אלגוריתם סוּ והמשולשים
	לא	לא	אלגוריתם סונג-ולאך
לא	J	לא	אלגוריתם סונג-ולאך+ מחיר מינ. 0