エネルギー基本計画

令和3年10月

目次

<u>はじめに</u> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 4
~気候変動問題への対応~	
~日本のエネルギー需給構造の抱える課題の克服~	
~第六次エネルギー基本計画の構造と2050年目標と2030年度目標の関係	\sim
1. 東京電力福島第一原子力発電所事故後10年の歩み・・・・・・・・・・	• 7
(1)福島復興はエネルギー政策を進める上での原点・・・・・・・・・・・	• 7
(2) 今後の福島復興への取組・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 9
2. 第五次エネルギー基本計画策定時からの情勢の変化・・・・・・・・・	1 1
(1) 脱炭素化に向けた世界的潮流・・・・・・・・・・・・・・・	1 1
①地球温暖化の影響と世界の動向	
②我が国のカーボンニュートラル宣言と世界の脱炭素化市場の取り込み	
③再生可能エネルギーに対する世界的な期待の高まりと幅広い産業による脱続	炭素
化エネルギーシステムへの挑戦	
④「経済と環境の好循環」を生み出すためのグリーン成長戦略	
(2) 気候変動問題以外のエネルギーに関係する情勢変化・・・・・・・・	1 5
①米中対立などによる国際的な経済/エネルギー安全保障における緊張感の高	高ま
ŋ	
②新型コロナウイルス感染症拡大の教訓	
③自然災害の頻発・激甚化やサイバー攻撃など、エネルギーの安定供給を脅力	かす
リスクの増大	
④電力自由化と再生可能エネルギー拡大による供給力・投資環境の変化	
⑤新たなテクノロジーの台頭	
3. エネルギー政策の基本的視点 (S+3E) の確認・・・・・・・・・・	1 8
(1) あらゆる前提としての安全性の確保・・・・・・・・・・・・・	
(2) エネルギーの安定供給の確保と強靭化・・・・・・・・・・・・	1 8
(3) 気候変動や周辺環境との調和など環境適合性の確保・・・・・・・・・	
(4) エネルギー全体の経済効率性の確保・・・・・・・・・・・・・	1 9
4. 2050年カーボンニュートラル実現に向けた課題と対応・・・・・・・	
(1) 2050年カーボンニュートラル時代のエネルギー需給構造・・・・・・	
(2) 複数シナリオの重要性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
(3)電力部門に求められる取組・・・・・・・・・・・・・・	0 -
· / — · · / · · · · · · · · · · · · · ·	25

②原子力における対応	
③水素・アンモニア・CCS・CCU/カーボンリサイクルにおける対応	
(4)産業・業務・家庭・運輸部門に求められる取組・・・・・・・・・2	8
①産業部門における対応	
②業務・家庭部門における対応	
③運輸部門における対応	
<u>5. 2050年を見据えた2030年に向けた政策対応</u> ・・・・・・・3	3
(1) 現時点での技術を前提としたそれぞれのエネルギー源の位置付け・・・・3	3
①再生可能エネルギー	
②原子力	
③化石エネルギー	
④水素・アンモニア	
⑤熱	
(2) 2030年に向けたエネルギー政策の基本的考え方・・・・・・・・3	9
(3) 需要サイドの徹底した省エネルギーと供給サイドの脱炭素化を踏まえた電化	•
水素化等による非化石エネルギーの導入拡大・・・・・・・・・4	1
①徹底した省エネルギーの更なる追求	
②非化石エネルギー導入拡大に向けた需要サイドの取組	
(4) 蓄電池等の分散型エネルギーリソースの有効活用など二次エネルギー構造の	吉
度化・・・・・・・・・・・・・・・・・・・・・・・・・・4	7
(5) 再生可能エネルギーの主力電源への取組・・・・・・・・・5	1
①コスト低減とFIT制度からの自立化	
②地域との共生/事業規律の強化	
③系統制約の克服に向けた取組	
④電源別の特徴を踏まえた取組	
(6) 原子力政策の再構築・・・・・・・・・・・・・・・・・6	6 6
①原子力政策の出発点ー東京電力福島第一原子力発電所事故の真摯な反省	
②原子力利用における不断の安全性向上と安定的な事業環境の確立	
③対策を将来へ先送りせず、着実に進める取組	
④国民、自治体、国際社会との信頼関係の構築	
(7) 火力発電の今後の在り方・・・・・・・・・・・・・・7	
(8) 水素社会実現に向けた取組の抜本強化・・・・・・・・・・・7	9
(9) エネルギー安定供給とカーボンニュートラル時代を見据えたエネルギー・鉱気	物
資源確保の推進・・・・・・・・・・・・・・・・・・・・ 8	2
①包括的な資源外交の推進	
②石油・天然ガス等の自主開発の更なる推進	
③アジアLNG市場の創出・拡大	

④我が国の上流開発企業によるCCS等の支援・海外で創出したクレジットの付
加価値化
⑤石油・天然ガス業界における新たな人材育成・獲得
⑥鉱物資源の確保
⑦ 国内の海洋等におけるエネルギー・鉱物資源対策の促進
⑧脱炭素燃料等(水素・アンモニア・合成燃料・CCS・カーボンリサイクル等)
の確保等に向けた取組
(10) 化石燃料の供給体制の今後の在り方・・・・・・・・・・88
①石油・LPガス備蓄の確保
②石油供給体制の維持・移行
③SSによる供給体制確保に向けた取組
④LPガスの供給体制確保
⑤ガス供給の在り方
(11) エネルギーシステム改革の更なる推進・・・・・・・・・・93
①脱炭素化の中での安定供給の実現に向けた電力システムの構築に向けた取組
②ガスシステム改革の進捗とシステムの深化に向けた取組
③効率的な熱供給の推進
④適切かつ公正な事業運営の確保
(12) 国際協調と国際競争・・・・・・・・・・・・・・101
①カーボンニュートラルに向けた米欧等先進国との間での連携・協力
②アジアの現実的なエネルギートランジションに向けた支援
③化石燃料の脱炭素化に向けた国際的な基準やルール形成
④水素・アンモニアの利用拡大に向けた国際協力の推進
⑤世界の原子力安全の向上や原子力の平和利用に向けた国際協力の推進
⑥「東京ビヨンド・ゼロ・ウィーク」による我が国の取組の発信
(13) 2030年度におけるエネルギー需給の見通し・・・・・・・105
6.2050年カーボンニュートラルの実現に向けた産業・競争・イノベーション政
策と一体となった戦略的な技術開発・社会実装等の推進・・・・・・・109
7.国民各層とのコミュニケーションの充実・・・・・・・・・・・126
(1) エネルギーに関する国民各層の理解の増進・・・・・・・・・126
(2) 政策立案プロセスの透明化と双方向的なコミュニケーションの充実・・128

はじめに

東京電力福島第一原子力発電所事故を含む東日本大震災から今年で10年の月日が経過した。10年前の未曾有の大災害は、エネルギー政策を進める上での全ての原点であり、今なお避難生活を強いられている被災者の方々の心の痛みにしっかりと向き合い、最後まで福島復興に取り組んでいくことが政府の責務である。このことはエネルギー政策に携わる者全てがひとときも忘れてはならない。

その上で、第六次のエネルギー基本計画は、気候変動問題への対応と日本のエネルギー需給構造の抱える課題の克服という二つの大きな視点を踏まえて策定する。

【気候変動問題への対応】

気候変動問題は人類共通の喫緊の課題として認識されている。個々の気象災害と 地球温暖化との関係を明らかにすることは容易ではないが、2021年8月に公表 された「気候変動に関する政府間パネル (IPCC) 第6次評価報告書第1作業部 会報告書政策決定者向け要約」によると、極端な高温、海洋熱波、大雨の頻度と強 度の増加などは、地球温暖化の進行に直接関係して拡大すると報告されており、気 候変動問題は世界各国が取り組まなければならない課題である。こうした中、先進 国を始めとして各国は、脱炭素化に向け、技術のみならず、国際的なルール形成の 局面において、自国の産業構造などを踏まえ自国に有利なルール作りに邁進し、ま た、事業者も脱炭素技術を利用した競争力強化に取り組み始めている。21世紀以 降、デジタル技術における覇権争いに、新たに気候変動、脱炭素化を巡る覇権争い の要素も加わり、日本としても国際的なルール作りのみならず、これまで培ってき た省エネルギー技術や脱炭素技術、カーボンニュートラルに資する新たなイノベー ションにより国際的な競争力を高めていくことが求められている。グリーントラン スフォーメーション (GX) やデジタルトランスフォーメーション (DX) といっ た大きな変換のうねりを的確に捉え、将来に向けた積極的な成長戦略を進めること により民間の大胆な投資とイノベーションを促し、雇用の維持・創出を図りなが ら、ポストコロナの時代に対応した社会経済構造へのパラダイムシフトにつなげる ことが不可欠である。

今後の気候変動問題への取組は、産業革命以降形成されてきた産業構造を一変させる可能性を秘めるものであり、変化への対応を誤れば、産業競争力を失いかねない。一方で、日本が国際的なルール作りを先導し、日本が有する脱炭素技術を世界とりわけアジアにおける脱炭素化への課題解決に活かしていけば、新たな成長産業を生み出す契機にもなり得る。

こうした世界的な状況も踏まえ、我が国は2020年10月に「2050年カーボンニュートラル」を目指すことを宣言するとともに、2021年4月には、2030年度の新たな温室効果ガス排出削減目標として、2013年度から46%削減

することを目指し、さらに50%の高みに向けて挑戦を続けるとの新たな方針を示した。

気候変動問題への対応は、これを経済成長の制約やコストとする時代は終わり、 国際的にも、成長の機会として捉える時代に突入し、各国の産業競争力を左右する 重要な要素になっていることを国民一人一人が認識する必要がある。こうした認識 の下、カーボンニュートラルの実現に向けて、あらゆる主体が取り組むことが重要 である。

この気候変動問題への対応の大きなカギを握るのは、エネルギーの需給構造の変革であり、今後のエネルギー政策を考えていく上では、こうした世界的な潮流を議論の前提として意識しなければならない。

【日本のエネルギー需給構造の抱える課題の克服】

気候変動問題に関する世界的な関心が高まる中、日本のエネルギー需給構造は、 大きな変革の途上にある。

高度成長期に構築されたエネルギー設備の高経年化が進む中にあって、自然災害の大規模化といった要因も重なり、高度成長期以降では類を見ない大規模停電を経験し、改めて安定供給の重要さを再認識した。将来にわたる強靱で安定的なエネルギー需給構造の確立に向けては、必要な投資の確保やそれを可能とする事業環境の整備など、官民一体となった取組が引き続き求められる。

一方で、日本の電気料金は震災以降高止まっている。これまでの伝統的な電力多 消費産業に加えて、今後、デジタル化の進展により情報通信産業を始め、社会全体 における新たな電力消費の拡大が見込まれる中、電気料金の抑制は、日本の産業競 争力に直結する重要な課題である。

足下でGDPの2割以上を占めるものづくり産業が将来にわたって日本の産業構造の重要な役割を果たしていくためにも、産業界におけるカーボンニュートラルに向けた取組のみならず、それを支える安定的で安価なエネルギー供給は不可欠である。

安全の確保を大前提としつつ、安定的で安価なエネルギー供給の確保と、気候変動問題への対応を進めるという、これまでもエネルギー政策の大前提とされてきたS+3Eの大原則をこれまで以上に追求していくためにも、あらゆる政策を総動員していかなければならない。

【第六次エネルギー基本計画の構造と2050年目標と2030年度目標の関係】 第六次のエネルギー基本計画は、こうした大きな二つの視点を踏まえて策定され、2050年カーボンニュートラルに向けた長期展望と、それを踏まえた2030年に向けた政策対応により構成し、今後のエネルギー政策の進むべき道筋を示すこととする。 2030年度の新たな温室効果ガス排出削減目標は、2050年カーボンニュートラルと整合的で野心的な目標であり、両者の関係性は新たに以下のように整理される。

すなわち、2030年に向けて今後取り組むエネルギー分野における様々な施策や技術開発は、全て2050年カーボンニュートラルに連なるものとなる。2030年度の新たな削減目標に向けては、既存の技術を最大限活用し、この野心的な目標の実現を目指し、その上で、2050年カーボンニュートラルに向けては、2030年度の目標に向けた取組を更に拡大・深化させエネルギーの脱炭素化を進めつ、現時点では社会実装されていない脱炭素技術について、これを開発・普及させていくこととなる。

一方で、2050年を見据えた様々な技術開発・イノベーションの成否を現時点で正確に予測することは困難であり、2050年に向けては、カーボンニュートラルという野心的な目標を掲げつつ、常に最新の情報に基づき施策、技術開発の重点を決めていくことが求められる。

2050年カーボンニュートラルを目指し、様々な可能性を排除せずに脱炭素化のための施策を展開し、イノベーション実現に向けた技術開発に取り組む中にあっても、常に安全の確保を大前提としつつ、安定的で安価なエネルギー供給を目指すことは当然の前提である。S+3Eを大前提に、2030年度の新たな削減目標や2050年カーボンニュートラルという野心的な目標の実現を目指し、あらゆる可能性を排除せず、使える技術は全て使うとの発想に立つことが今後のエネルギー政策の基本戦略となる。

こうした考え方の整理に立って、今回のエネルギー基本計画を定めることとする。

1. 東京電力福島第一原子力発電所事故後10年の歩み

(1)福島復興はエネルギー政策を進める上での原点

今年、我が国は、東京電力福島第一原子力発電所事故を含む東日本大震災から10年を迎えた。東京電力福島第一原子力発電所事故の経験、反省と教訓を肝に銘じて、エネルギー政策の再出発を図っていくことが今回のエネルギー基本計画の見直しの原点となっている。

依然として、2021年3月時点で2.2万人の被災者が、事故の影響により避難対象となっており、被災された方々の心の痛みにしっかりと向き合い、寄り添い、最後まで福島の復興・再生に全力で取り組むことは、これまで原子力を活用したエネルギー政策を進めてきた政府の責務である。この取組なくしては、今後のエネルギー政策に対する国民の信頼回復はなし得ず、この認識を経済産業省のみならず政府として、確実に後の世代に引き継いでいく必要がある。

その上で、今後も原子力を活用し続ける上では、「安全神話」に陥って悲惨な事態 を防ぐことができなかったという反省を一時たりとも忘れてはならない。

東京電力福島第一原子力発電所事故を経験した我が国としては、2050年カーボンニュートラルや2030年度の新たな削減目標の実現を目指すに際して、原子力については安全を最優先し、再生可能エネルギーの拡大を図る中で、可能な限り原発依存度を低減する。

(福島第一原発の廃炉:オンサイト)

福島第一原発の廃炉は、福島復興の大前提である。福島第一原発事故のような深刻な原子力事故における対策は、世界にも前例のない困難な事業である。そのため、事業者任せにするのではなく、国が前面に立ち、「東京電力ホールディングス(株)福島第一原子力発電所の廃止措置等に向けた中長期ロードマップ」(2019年12月 廃炉・汚染水・処理水対策関係閣僚等会議決定)に基づき、2041~2051年までの廃止措置完了を目標に、国内外の叡智を結集し、一つ一つの対策を安全かつ着実に履行する不退転の決意を持って取り組んでいる。

2019年12月に5度目の改訂を行ったこの「東京電力ホールディングス

(株)福島第一原子力発電所の廃止措置等に向けた中長期ロードマップ」では、現場の状況や廃炉・汚染水・処理水対策の進捗、研究開発等を踏まえ、継続的な見直しを行うことを原則としており、2019年12月に5度目の改訂を行った。この改訂では周辺地域で住民帰還と復興が徐々に進んでいる状況を踏まえ、改めてリスクの早期低減・安全確保を最優先に進めるべく、「復興と廃炉の両立」を大原則として位置付けた。

この大原則の下、廃炉作業は、一歩一歩前進している。第一に、事故炉は冷温停止状態を維持しており、構内の放射線量も大幅に減少するなど、構内の環境が大き

く改善し、構内の約96%で、一般服での作業が可能となった。第二に、凍土壁等の重層的な対策により、汚染水発生量は大幅に減少した(540㎡/日(2014年5月)→140㎡/日(2020年平均))。第三に、使用済燃料プールからの燃料取出しは、3号機と4号機で全て完了した(4号機:2014年12月完了、3号機:2021年2月完了)。第四に、燃料デブリの取出しに向け、炉内調査による状況把握が進展した。福島第一原発の廃炉は先を見通すことの難しい困難な作業であり、個々の作業における遅れなど、新たに判明した現場状況を踏まえて適切に工程を見直し、2041~2051年までの廃炉措置終了を目指して安全かつ着実に進めていく。なお、取り出した燃料デブリの処理・処分方法については、取出し開始後に、その性状の分析等を進めた上で決定する。

(福島の復興・再生:オフサイト)

帰還困難区域を除く全ての地域で避難指示を解除し、避難指示の対象人口・区域の面積は、区域の設定時と比較しておおむね7割減となった(避難指示区域からの避難対象者数:8.1万人(2013年8月)→2.2万人(2021年3月)、避難指示区域の面積:1,150km²(2013年8月)→337km²(2020年4月))。

被災地では、2020年3月に常磐線が全線開通するなど、帰還環境整備が進むとともに、被災事業者の事業・なりわいの再建の動きや、新産業の萌芽が活発化している。例えば、官民合同チームの個別支援等を通じて、2021年5月末時点で約2,700者が事業再開を果たした。2020年3月には、世界最大級の水素製造施設である、福島水素エネルギー研究フィールドが稼働するとともに、福島ロボットテストフィールドが全面的に開所し、2021年5月末時点で、343件の実証実験や55社の地元への進出が実現した。

(2) 今後の福島復興への取組

今後も、福島の復興・再生は政府の最重要課題である。福島が復興を成し遂げる その日まで、福島第一原発の廃炉、帰還困難区域の避難指示解除に向けた取組、自 立的な産業発展に向けた取組など、更なる難題を一つずつ解決していく。

福島第一原発の廃炉については、今後、福島の復興・再生が本格化していく中で、1号機及び2号機の使用済燃料プールからの燃料取出しや、燃料デブリ取出しなど、難易度が極めて高い取組が行われていく。そのため、これまで以上に、「復興と廃炉の両立」を意識した対応を行っていく。その際、国は中長期ロードマップの下、技術的な難易度が高く、国が前面に立つ必要がある研究開発については、引き続き必要な支援を実施する。また、廃炉に関する技術や知見については、国際原子力機関(IAEA)や経済協力開発機構原子力機関(OECD/NEA)等の多国間協力の枠組み、米・英・仏及び露との間での二国間協力の枠組み等を通じて世界と共有し、各国の原子力施設における安全性の向上や防災機能の強化に貢献していく。加えて、国立研究開発法人日本原子力研究開発機構(JAEA)が、楢葉遠隔技術開発センター、廃炉環境国際共同研究センター国際共同研究棟及び大熊分析・研究センターの拠点整備を着実に進め、廃炉に関する技術基盤を確立していく。

さらに、汚染水からトリチウム以外の核種を環境放出の際の規制基準以下まで浄化処理したALPS処理水については、2021年4月に公表した「東京電力ホールディングス株式会社福島第一原子力発電所における多核種除去設備等処理水の処分に関する基本方針」(廃炉・汚染水・処理水対策関係閣僚等会議決定)を踏まえ、厳格な安全性の担保や政府一丸となって行う風評対策の徹底を前提に、東京電力が原子力規制委員会による認可を得た上で、2年程度後を目途に、福島第一原子力発電所において海洋放出を行う。この実現に向けて、2021年4月に新設した「ALPS処理水の処分に関する基本方針の着実な実行に向けた関係閣僚等会議」の下、風評対策や将来に向けた事業者支援、迅速かつ適切な賠償の実現などに、政府一丸となって取り組む。また、汚染水の発生量を可能な限り減少させる取組やトリチウムの分離などについて、新たな技術動向を注視し、現実的に実用化可能な技術があれば、積極的に取り入れていく。

帰還困難区域については、たとえ長い年月を要するとしても、将来的に帰還困難区域の全てを避難指示解除し、復興・再生に責任を持って取り組むとの決意の下、政府一丸となって、特定復興再生拠点区域について、避難指示解除に向けた環境整備を着実に進める。特定復興再生拠点区域外についても、「特定復興再生拠点区域外への帰還・居住に向けた避難指示解除に関する考え方」(令和3年8月31日原子力災害対策本部・復興推進会議)に基づき、2020年代をかけて、帰還意向のある住民が帰還できるよう、帰還に関する意向を個別に丁寧に把握した上で、帰還に必要な箇所を除染し、避難指示解除の取組を進めていく。残された土地・家屋等の扱いについては、地元自治体と協議を重ねつつ、引き続き検討を進めていく。

中間貯蔵施設への除去土壌等の輸送等を着実に実施していくとともに、福島県内の除去土壌等の県外最終処分に向けて、除去土壌の再生利用の推進及び全国での理解酸成活動を行う等、福島の環境再生に引き続き全力で取り組んでいく。

浜通り地域等の自立的な産業発展に向けて、事業・なりわいの再建と、福島イノベーション・コースト構想の一層の具体化による新産業の創出を、引き続き車の両輪として進める。加えて、被災地では人手の確保や来訪者の呼び込みなどの課題が顕在化していることを踏まえ、活力ある地域社会の維持・形成に向けて、帰還促進と併せて、移住等の促進、交流人口の拡大による域外消費の取り込みも進める。

2016年に策定した「福島新エネ社会構想」については、2021年度から当該構想の第2フェーズを迎えるに当たり、再生可能エネルギーと水素を二本柱とし、更なる導入拡大に加え社会実装への展開のフェーズとすることを目指し、本年2月に改定を行った。風力発電を始めとする再生可能エネルギーの県内での更なる導入拡大、地域マイクログリッドなど多様な主体による地域の再生可能エネルギー等を活用した分散型エネルギーシステムの構築、浪江町に開所した「福島水素エネルギー研究フィールド(FH2R)」も活用した水電解装置の更なる大型化・モジュール化に係る技術開発の推進、FH2R等で製造した水素を県内で活用する水素社会実現に向けたモデル構築などを通じ、本構想の実現に向けて取り組む。こうした取組を通じ、2050年カーボンニュートラル実現に不可欠な、再生可能エネルギーの最大限導入や、水素の社会実装に向けた取組など、福島の、そして日本の未来に向けたチャレンジを地域に根付かせていく。

2. 第五次エネルギー基本計画策定時からの情勢の変化

エネルギーを巡る情勢は日進月歩である。前回の計画策定からわずか3年の間に、気候変動問題への一層の関心の高まりに加え、新型コロナウイルス感染症の急拡大による人々の生活の変化、地政学的・地経学的な情勢変化を踏まえた経済安全保障環境の変化などが急速に進んでいる。エネルギー政策も、こうした国内外の動向を踏まえながら進めていくことが時代的な要請となっている。

|(1)脱炭素化に向けた世界的潮流

①地球温暖化の影響と世界の動向

カーボンニュートラルに向けた対応が、世界的な潮流となっている。

近年、世界各地でこれまでになかったような極端な大雨や、記録的な猛暑が頻繁に発生し、洪水や山火事による被害の増加などが懸念されている。例えば、気象庁によれば、2020年の世界の平均気温は、1891年の統計開始以降2番目に高い値となり、2020年の日本の平均気温は、1898年の統計開始以降最も高い値となった。また、「IPCC第6次評価報告書第1作業部会報告書政策決定者向け要約」では、「人間の影響が大気、海洋及び陸域を温暖化させてきたことには疑う余地がない」と報告された。個々の気象災害と地球温暖化との関係を明らかにすることは容易ではないが、同報告書では、人為的な気候変動は、世界中の全ての地域で、多くの気象及び気候の極端現象に既に影響を及ぼしていると報告されており、極端な高温、海洋熱波、大雨の頻度と強度の増加が予測されている。

また、国際的には、2015年12月に開催されたCOP21(国連気候変動枠組条約第21回締約国会議)において、全ての国が参加する公平で実効的な国際枠組みであるパリ協定が採択され、2020年より本格実施に入った。同協定では、今世紀後半に温室効果ガスの人為的な発生源による排出量と吸収源による除去量との間の均衡(世界全体でのカーボンニュートラル)を達成することを目指すこと、世界全体の平均気温の上昇を工業化以前よりも2 $^{\circ}$ C高い水準を十分に下回るものに抑えること並びに1.5 $^{\circ}$ C高い水準までのものに制限する努力を継続すること、主要排出国を含む全ての国が気候変動に対する世界全体での対応に向けたNDCを5年ごとに提出・更新すること、共通かつ柔軟な方法でその実施状況を報告しレビューを受けること等を定めている。

同時に、脱炭素化を軸に、産業政策として、将来の成長産業の核となる技術を押さえるべく国家間・企業間での競争も加速している。迫り来る脱炭素化・デジタル化の波を不可避としてとらえ、先んじて思い切った投資を行うための支援策を国が講じ、基盤となる技術や設備を前もって押さえることで、将来の経済成長・市場獲得に戦略的につなげていくことが求められる。例えば、欧米を中心に、新型コロナウイルス感染症による経済の落ち込みに対する経済対策の中で、気候変動対策を政

策目的に据える「グリーン・リカバリー」の動きが強まっている。また、中国も、 新たな5カ年計画の下で、再生可能エネルギーや原子力などの新たなエネルギー源 の開発を推進する方針を明確化した。

産業界でも、脱炭素社会の到来に向け、グローバル企業を中心として、生き残りをかけてカーボンニュートラルにつながるイノベーションに大規模投資を行い、また、ビジネスモデルの抜本的な転換に挑戦するといった動きも出てきている。投資の面でも、世界中で環境・社会・ガバナンスを重視するESG投資が活況を呈しており、世界的な市場規模は3,500兆円と言われるまでになっている。こうした資金も取り込みながら、企業の戦略的な投資を促していくことは、国の新たな責務となりつつある。

このように国際的にも、温暖化への対応を経済成長の制約やコストとする時代は 終わり、まさに成長の機会と捉える時代に突入している。

②我が国のカーボンニュートラル宣言と世界の脱炭素化市場の取り込み

こうした時代の変化を背景に、2020年10月、我が国は、「2050年カーボンニュートラル」を目指すことを宣言するとともに、2021年4月、2050年カーボンニュートラルと整合的で野心的な2030年度の新たな削減目標を表明した。

2050年までのカーボンニュートラル実現を表明する国と地域は、我が国を含め、120を超えており、これらの国々に先駆けて、カーボンニュートラルへの筋道をいち早く見いだすことができれば、日本と同様の課題を抱える他の国への先例を示すことにつながる。

世界全体の温室効果ガス排出量全体に占める先進国の温室効果ガス排出量の割合は、1990年には約7割であったが、現在では約4割まで低下してきており、先進国と途上国の割合が逆転している。途上国、特にアジア等の新興国は、今後大きな経済成長が見込まれる一方で、エネルギーの多くを未だ化石燃料に依存している。世界全体の排出量を減らしていくには、先進国のみならず、アジア等新興国の脱炭素化が必要となるが、乗り越えるべき課題は日本とも共通する。

そのため、我が国として、持続的な経済成長とカーボンニュートラルの両立に向け、日本の脱炭素技術を活用し、アジア等各国の現実的なトランジションの取組を支援することは、アジアのエネルギー安全保障の確保や、世界とりわけアジアの脱炭素化に貢献するとともに、新たな成長産業を生み出すことにもつながる。

③再生可能エネルギーに対する世界的な期待の高まりと幅広い産業による脱炭素化 エネルギーシステムへの挑戦

近年、再生可能エネルギーの価格は、国内外で大きく低下している。 I E A (国際エネルギー機関)による、2050年にCO2排出量ネット・ゼロを実現するためのシナリオに関するレポート [Net Zero by 2050] によると、2050年には世

界のエネルギー供給の3分の2は再生可能エネルギーになると分析されている。太陽光発電容量は現在から2050年の間に20倍に増加し、風力発電は11倍に増加するとされている(また、IEAの見通しでは、炭素価格は今後上昇していくと見込んでいる)。

こうした再生可能エネルギーへの高まる期待を契機に、再生可能エネルギー・蓄電・デジタル制御技術等を組み合わせた脱炭素化エネルギーシステムへの挑戦が、幅広い産業を巻き込んで加速しつつある。大規模な電力会社やガス会社の中には、再生可能エネルギーを中心とした分散型エネルギーシステムの開発や水素・メタネーションへの挑戦に着手する企業も出始めてきた。需要サイドでも、一部のグローバル企業が電力消費を再生可能エネルギーで100%賄うことを目指しており、日本の子会社やサプライチェーンの取引先等に対して材料調達のためにもかなり厳しい条件を出しつつある。国際的に日本企業が脱炭素化をリードするためにも、需要家のニーズに合わせた形で、再生可能エネルギーの大量導入とその活用を進めることが大きく期待されている。

一方、再生可能エネルギーを大量に導入するには、地域と共生する形での適地の 確保、太陽光や風力などの変動型再生可能エネルギーの増大に伴う調整力の確保等 の電力システムの柔軟性の向上、コストの低減などに取り組んでいく必要がある。

再生可能エネルギーへの期待はかつてなく高まっており、自立化や脱炭素化に向けて、発電効率の向上、脱炭素化された調整力の確保や蓄電システムの開発等による電力システムの柔軟性の向上、分散型ネットワークシステムの確立、コスト低減などの技術革新競争が今後本格化していくことが期待されるとともに、政府としても脱炭素化エネルギーシステムへの挑戦に取り組む企業のニーズに早急に応えていく。

④「経済と環境の好循環」を生み出すためのグリーン成長戦略

積極的に温暖化対策を行うことが、産業構造や社会経済の変革をもたらし、次なる大きな成長につながっていく。こうした「経済と環境の好循環」を実現するため、革新的環境イノベーション戦略(2020年1月 統合イノベーション戦略推進会議決定)も踏まえ、2021年6月に関係府省庁¹が連携し「グリーン成長戦略」を策定した。

産業界には、2050年カーボンニュートラルを見据え、これまでのビジネスモデルや戦略を根本的に変えていく必要がある企業が数多く存在すると考えられる。 これは新しい時代をリードしていくチャンスでもある。大胆な投資をし、イノベー

13

¹ 関係府省庁とは、内閣官房、経済産業省、内閣府、金融庁、総務省、外務省、文部科学省、農林水産省、国土交通省、環境省を指す。なお、本戦略は、上記に掲げた府省庁が、各担当分の記載等を行っている。内閣府は、所掌が多岐にわたるが、経済社会総合研究所及び科学技術・イノベーション推進事務局が、統計・指標や革新的環境イノベーション戦略関連の箇所を担当している。

ションを起こすといった民間企業の前向きな挑戦を、全力で応援するのが、政府の役割である。

エネルギー政策は我が国の成長戦略に直結するとの認識の下、国として、可能な限り具体的な見通しを示し、高い目標を掲げて、民間企業が挑戦しやすい環境を作ることが必要である。産業政策の観点から、水素、燃料アンモニア、カーボンリサイクル、原子力など日本が要素技術で先行する分野や、洋上風力、蓄電池など今後の市場拡大が期待される分野において、高い目標を設定し、あらゆる政策を総動員する。

(2) 気候変動問題以外のエネルギーに関係する情勢変化

①米中対立などによる国際的な経済/エネルギー安全保障における緊張感の高まり

近年、米中の間で、通商問題や先端技術をめぐる競争や新型コロナウイルス感染症対応など様々な分野で厳しく対峙し、それは政治、外交、軍事・安全保障、メディア、教育など多方面にも及び、相手国への非難や制裁の頻発につながっている。そうした米中対立の激化により、アジア太平洋地域における緊張感が高まっており、経済安全保障/エネルギー安全保障の確保の重要性がこれまでになく高まっている。

一方で、太陽光パネルやEVを支える蓄電、デジタル化技術、原子力といった脱炭素化を担う技術分野での中国の台頭は著しい。我が国の太陽光パネルの自国企業による供給は、ここ数年で大きく低下し中国に依存する状況になってきている。こうした状況変化の中、エネルギーのサプライチェーンの中でコア技術を自国で確保し、電動車²や再生可能エネルギー設備に欠かせない銅やレアメタルなどの鍵となる物資を確保することの重要性が増している。そのためには、上流の資源開発から下流の最終製品化、それぞれの過程に必要となる技術を含めたサプライチェーン上の脆弱性の克服に取り組んでいく必要がある。

加えて、我が国の一次エネルギー供給の4割を占める原油の9割を依存する中東においても、大きな変化が生じている。「シェール革命」によるエネルギー面での自立等を背景に、米国の直接的な中東への関与が減少しつつある中で、パワーバランスの変化が生じ、軍事的なプレゼンスを高めるロシアや一帯一路政策により関与を深める中国の存在感が、域内の動きと絡まりながら、地政学的・地経学的な緊張状態が継続している。世界中で脱炭素化が進む中で、生産コストの高い地域での石油の生産を止めれば、中東依存度が高まる可能性もあり、複雑化・不透明化する中東情勢を引き続き注視しつつ、我が国としても中東地域の緊張緩和と情勢安定化に向けて積極的に取り組む必要がある。

こうした国際的な状況の変化も踏まえると、原油の安定供給確保や資源国との関係強化のような伝統的なエネルギー安全保障に加え、エネルギー供給の基盤となる重要な技術分野で、外部からの不正アクセスやサイバー攻撃を防ぎつつ、技術の国産化に取り組みながらエネルギーの国内供給の確保を目指すなど、サプライチェーン全体を俯瞰しながら戦略的な自律性の確保に取り組む必要性が増している。

②新型コロナウイルス感染症拡大の教訓

新型コロナウイルス感染症による様々な環境の変化もエネルギー需給両面に影響を与えており、こうした変化についても今後のエネルギー政策を考える上で考慮していく必要がある。ただし、新型コロナウイルス感染症の拡大によって生じる変化

² 電気自動車、燃料電池自動車、プラグインハイブリッド自動車及びハイブリッド自動車。

を、感染症対策による一時的な変化として捉えるべきか、又は感染症対策とともに デジタル化の流れなどと相まった構造的な変化として捉えるべきかについて、慎重 な見極めが求められる。

まず、需要面では、テレワークの進展や活動の自粛の中、エネルギー需要が全体 として低下する一方で、電力需要は相対的に減少幅が小さいことが報告されてい る。今後、ワクチン接種などにより、経済は再開していくことが予想されるが、一 部の変化は不可逆的なものであると考えられる。

また、供給面では、グローバルサプライチェーンの脆弱さが改めて意識されるきっかけとなった。マスクや人工呼吸器、ワクチンのような国民生活に不可欠な物資でさえ供給不足が生じるという状況を前に、必要物資の自国調達能力の強化の必要性が共有され始めている。また、感染症による需要減と経済の回復期待によって生じた資源価格の乱高下は、上流開発投資が減少している現状とも相まって、将来のエネルギー供給リスクを顕在化させることにもつながっている。

③自然災害の頻発・激甚化やサイバー攻撃など、エネルギーの安定供給を脅かすリ スクの増大

2018年の北海道胆振東部地震における北海道全域の停電(ブラックアウト) や2019年の台風第15号・台風第19号における長期間の停電発生など、ここ 数年、自然災害の頻発・激甚化に伴うエネルギー供給への支障が生じており、災害 時のエネルギー安定供給や早期復旧の体制構築の重要性が増している。

一方で、電力・燃料のエネルギーインフラの高経年化、技術者の高齢化などは進んでおり、強靱なエネルギー供給を支える基盤が脆弱化している。さらに、2020年度冬期に生じた電力需給ひっ迫においては、LNG偏重リスクが顕在化し、適切なエネルギー間ポートフォリオの構築の必要性を再認識させられることとなった。

また、近年、サイバー攻撃の事案が増加傾向にあり、エネルギー分野でのデジタル化の進展も踏まえると、エネルギー関連設備への物理的なダメージを与えかねないリスクが増大している。

こうした課題に対応するために、リスクシナリオの抽出・分析を行うとともに、 エネルギーシステムの強靱化を総合的に進めることが必要となっている。

④電力自由化と再生可能エネルギー拡大による供給力・投資環境の変化

電力自由化の進展に伴い、卸電力市場での取引量が急速に拡大し、電気事業における市場取引の重要性が高まっている。

卸電力市場は、固定価格買取制度(FIT制度)による再生可能エネルギーの導入が大きく寄与し、取引価格が下落する時間帯が増加する一方、需要や燃料の調達状況等によっては価格が急騰する時間帯も出現するなど、大きな価格変動リスクを伴うことが認識されている。

今後、再生可能エネルギーの導入拡大が進み、更なる価格変動リスクが見込まれる中、FIT制度や2022年度から導入されるFIP制度による支援を受けられる電源以外の電源の投資回収の見通しが立てづらい状況となっている。実際に、設備利用率の低下が進む火力発電所を中心に、発電所の新設計画が中止となるなど、電源への新規投資が停滞しており、電源の高経年化が進行している。

こうした中、2018年の北海道胆振東部地震におけるブラックアウトの際や、2020年度冬期に生じた電力需給ひっ迫時には、老朽化した火力発電所が供給力の積み増しに貢献した。一方、足下では、発電事業者の経済合理的な判断の下で、採算性が悪化する火力発電所を中心に電源退出が進行し、供給力が低下傾向にあり、こうした老朽電源に依存し続けることが困難な状況となっている。

2050年カーボンニュートラルの実現に向けては、自由化後においても安定供給に必要な供給力の確保や電源への新規投資がカーボンニュートラルに資する形で行われる市場環境の整備を加速していく必要性が高まっている。

⑤新たなテクノロジーの台頭

新たなテクノロジーの台頭も、注目すべき変化である。デジタル化が進む中で、 データ駆動型社会が不可逆的に進展しており、エネルギー需給の両面に変化を生じ させつつある。

グローバル規模で進む技術革新やサービスの開発・進展とともに、デジタル経済 化が進むことで、省エネルギー性能の向上などの必要な対策がなされないままであ れば、電力需要の増大が一定程度進むことが予想される。これまでも世界はデジタ ル経済の進展に徹底した省エネルギーと技術革新で対応してきたが、引き続きこう した努力をこれまで以上の規模で追求していくことが必要となる。

また、エネルギー分野でも電力需給・ネットワーク技術をコアにした、アグリゲーターなどの新たなプレイヤー・サービスが登場しつつある。地産地消型の再生可能エネルギーの普及やコージェネレーションの普及、蓄電池等の技術革新、AI・IoTの活用などにより、需要サイド主導の分散型エネルギーシステムが一層拡大し、エネルギー需給構造が更に効率的・生産的なものになっていくことも期待される。

3. エネルギー政策の基本的視点(S+3E)の確認

第2章で示したように、前回のエネルギー基本計画策定からわずか3年の間にエネルギーを取り巻く環境は大きく変化し始めており、こうした変化から得られる教訓も踏まえたエネルギー政策を検討する必要がある。

すなわち、エネルギー政策を進める上の大原則としての、安全性(Safety)を前提とした上で、エネルギーの安定供給(Energy Security)を第一とし、経済効率性の向上(Economic Efficiency)による低コストでのエネルギー供給を実現し、同時に、環境への適合(Environment)を図る、S+3Eの視点の重要性は従来と何ら変わりはないが、例えば、新型コロナウイルス感染症の教訓からエネルギー供給においても、サプライチェーン全体を俯瞰した安定供給の確保の重要性が認識されるといった新たな視点も必要となる。

こうした新たな視点を加えつつ、S+3Eの大原則を改めて以下のとおり整理する。

(1) あらゆる前提としての安全性の確保

あらゆるエネルギー関連設備の安全性(Safety)は、エネルギー政策の大前提である。特に原子力については、いかなる事情よりも安全性を全てに優先させ、国民の懸念の解消に全力を挙げる。

また、保安人材の高齢化などによる将来の人材不足への懸念、自然災害の頻発・ 激甚化やサイバー攻撃の複雑化・巧妙化なども踏まえ、原子力はもちろんのことな がら、その他のエネルギー源についても、安全性確保への不断の取組が求められ る。

(2) エネルギーの安定供給の確保と強靭化

我が国は、四方を海に囲まれ、国際連系線がなく、化石資源に恵まれず、地熱は世界第3位のポテンシャルを有する一方で、遠浅の海の面積はイギリスの8分の1、森林を除く平地面積はドイツの半分であり、自然エネルギーを活用する条件も諸外国と異なるなど、エネルギー供給の脆弱性を抱えている。資源調達における交渉力の限界等の課題や、資源国やシーレーンにおける情勢変化の影響などを背景として、供給不安に直面するリスクを常に抱えており、エネルギー安全保障の確保は、我が国の大きな課題であり続けている。

また、エネルギーの安定供給を確保していく上では、近年の自然災害の頻発・激 甚化によりエネルギー供給が危機に瀕したことや、インフラ設備へのサイバー攻撃 のリスクが高まっていることなども踏まえる必要がある。 こうした課題を克服し、エネルギーの安定供給(Energy Security)を確保するため、多層的に構成されたエネルギーの供給体制が、平時のみならず、危機時にあっても適切に機能する強靱性(レジリエンス)を高めていくことが重要である。

また、新たな脱炭素技術分野の重要性が増しつつあることを踏まえ、これまでのエネルギー自給率に加え、トランジションの観点も踏まえながら、サプライチェーン全体での安定供給体制を確保することの重要性が増している。

(3) 気候変動や周辺環境との調和など環境適合性の確保

環境への適合(Environment)については、前述したように、カーボンニュートラルに向けた対応が世界的な潮流となっており、重要性が急激に増している。

気候変動問題への取組に当たっては、我が国の温室効果ガス排出量の8割以上を 占めるエネルギー分野の取組が特に重要となる。S+3Eのバランスを取りなが ら、エネルギーの脱炭素化に取り組むことは国の責務である。

エネルギーの脱炭素化に当たっては、発電所の建設のための土木・建設工事のための掘削や建設機械の使用等に加え、EVや蓄電池、太陽光パネルなどの脱炭素化を支える鉱物の採掘・加工や製品の製造・運輸過程におけるCO2排出を考慮する必要もあり、エネルギー供給面のみならず、サプライチェーン全体での環境への影響も評価しながら脱炭素化を進めていく観点が重要である。

また、気候変動のみならず、周辺環境との調和や地域との共生も重要な課題であり、エネルギー関連設備の導入・建設、運用、廃棄物の処理・処分に際して、これらへの影響も勘案していく必要がある。

(4) エネルギー全体の経済効率性の確保

エネルギーは、産業活動の基盤を支えるものであり、特に、その供給安定性とコストは、事業活動に加えて企業立地などの事業戦略にも大きな影響を与えるものである。

経済効率性(Economic Efficiency)の向上による低コストでのエネルギー供給を図りつつ、エネルギーの安定供給と環境負荷の低減を実現していくことは、産業界の事業拠点を国内に留め、新たな投資を我が国に呼び込み、我が国が更なる経済成長を実現していく上での前提条件となる。とりわけ、我が国の電気料金は、国際水準に照らして家庭用・産業用ともに高い状況が続いており、日本の国際競争力を左右しかねない状況にある。

一方で、カーボンニュートラルに対応するに当たっては一定の負担増加が想定される。例えば、現時点の技術水準を前提とすれば、既存の電力供給やガス供給などを、脱炭素化された火力や蓄電池等と組み合わせた再生可能エネルギーや水素から作られる燃料などに切り替えることは、コスト上昇の要因となり得る。

産業競争力の維持・強化や国民生活の向上を図り、成長戦略としてカーボンニュートラルに取り組んでいくためには、脱炭素技術の低コスト化のための研究開発とともに、徹底した省エネルギー、需給予測の高度化、AI・IoT等の新たな技術による発電所運転の最適化・更なる効率化、系統制約の克服、調整力の確保等による電力システムの柔軟性向上、規制改革等に取り組み、費用対効果の視点から評価しつつ、エネルギーコストを可能な限り低下させることが不可欠である。

4. 2050年カーボンニュートラル実現に向けた課題と対応

(1) 2050年カーボンニュートラル時代のエネルギー需給構造

気候変動問題が人類共通の喫緊の課題として認識され、先進国を中心として2050年までに自国における温室効果ガスの排出をネットでゼロにする方針を示す中、日本も2020年10月に2050年カーボンニュートラルを宣言した。

2050年カーボンニュートラルが実現した社会を正確に描くことは、技術開発等の可能性と不確実性、国際政治経済を含め情勢変化の不透明性などにより簡単なことではないが、現時点の技術を前提として、大胆に2050年カーボンニュートラルが達成された社会におけるエネルギー需給構造を描くと以下のようなものとなる。

- ・徹底した省エネルギーによるエネルギー消費効率の改善に加え、脱炭素電源により電力部門は脱炭素化され、その脱炭素化された電源により、非電力部門において電化可能な分野は電化される。
- ・産業部門においては、水素還元製鉄、CO2吸収型コンクリート、CO2回収型 セメント、人工光合成などの実用化により脱炭素化が進展する。一方で、高温の 熱需要など電化が困難な部門では、水素、合成メタン、バイオマスなどを活用し ながら、脱炭素化が進展する。
- ・民生部門では、電化が進展するとともに、再生可能エネルギー熱や水素、合成メタンなどの活用により脱炭素化が進展する。
- ・運輸部門では、EVやFCVの導入拡大とともに、CO2を活用した合成燃料の 活用により、脱炭素化が進展する。
- ・各部門においては省エネルギーや脱炭素化が進展するものの、CO2の排出が避けられない分野も存在し、それらの分野からの排出に対しては、DACCS (Direct Air Carbon Capture and Storage) やBECCS (Bio-Energy with Carbon Capture and Storage)、森林吸収源などによりCO2が除去される。

こうした社会の実現に向けては、温室効果ガス排出の8割以上を占めるエネルギー分野の取組が重要となるが、CO2の排出の多いものづくり産業がGDPの2割以上を占める産業構造や、遠浅の海や広大な平地といった自然エネルギーを活用する条件も諸外国と異なることなど、日本の置かれた状況を踏まえても、その実現は容易なものではない。産業界、消費者、政府など国民各層が総力を挙げて取り組まなければ実現へのハードルを越えることはできない。

一方で、カーボンニュートラルへのハードルは世界各国で共通する要素も多く、 このハードルを乗り越える道筋をいち早く見いだすことが世界のカーボンニュート ラルへの取組をリードすることにもつながる。従来の発想を転換し、積極的にカー ボンニュートラルへ向けた取組を行うことで、産業構造や社会経済の変革を産み出し、次なる大きな成長につなげる「経済と環境の好循環」を作っていくことが求められる。

(2) 複数シナリオの重要性

世界に目を向ければ、2050年カーボンニュートラルへの複数のシナリオを示しているEUや英国では、特定のシナリオを目標として定めることなく、カーボンニュートラルに向けた様々な可能性、選択肢を追求する道筋を描いている。電力分野においても、単一のエネルギー源に頼るシナリオではなく、複数のエネルギー源を組み合わせてカーボンニュートラルに向かうシナリオを描いている。2050年という様々な不確実性の先にある未来に対しては、様々な選択肢を用意し、様々な可能性に備えるといった各国の姿勢も参考にしながら、日本も2050年に向けた道筋を描く必要がある。

<EUのシナリオ>

2018年11月に欧州委員会から公表された「A Clean Planet for all」においては、技術の成功に関する長期の不確実性が大きいことや、将来の見通しは技術の進展、消費者の選択、規制により異なった結果をもたらすとの認識の下、複数のシナリオを示しており、その位置付けはビジョンとして捉えられ、具体的なエネルギーミックスの目標を定めてはいない。

シナリオ分析を通じて、農業や運輸、産業などの部門では、現在の技術では排出 ゼロを実現できず、カーボンニュートラルの実現には、植林などの土地利用に加 え、BECCS、DACCSなどの炭素除去技術の活用が不可欠とされ、また、そ れぞれのシナリオでは、EUETS価格(EU排出量取引制度の炭素排出枠価格) の上昇(IEA等の国際機関の見通しでも、炭素価格は今後上昇していくことが見 込まれている)、電化率、電力需要、電力消費の増加と電力消費者価格の上昇が想定 されており、これらの低減には研究開発の進展が必要であることが示されている。

<英国のシナリオ>

英国では、2019年6月に2050年カーボンニュートラル目標が法制化され、その後も2020年12月には「Energy White Paper」における2050年電力分野の将来像など様々な分析が提示されているが、いずれの報告書におけるシナリオについても、2050年に向けて正確な技術や行動を予測することの困難性などから、蓋然性のある予測やあるべき将来像として示したものではなく、英国の政策目標や政策ではないと整理されている。

日本においても、様々な立場の専門家からの意見を踏まえて、2050年の発電量の約 $50\sim60\%$ を太陽光、風力、水力、地熱、バイオマス等の再生可能エネルギー、水素・燃料アンモニア発電を約10%、原子力・CO2回収前提の火力発電を約 $30\sim40\%$ とすることを、議論を深めていくための参考値としたが、いずれ

の電源についても様々な課題があることが明らかになっており、2050年に向けた道筋(シナリオ)を複数描くことの重要性は論を待たない。

2050年のカーボンニュートラルへの道筋では、産業・業務・家庭・運輸・電力部門のあらゆる経済活動に共通して、様々なイノベーションに挑戦・具現化し、新たな脱炭素技術の社会実装を進めていくことが求められる。また、2050年という長期展望については、技術革新等の可能性と不確実性、情勢変化の不透明性が伴い、蓋然性をもった予測が困難であることから、野心的な目標を掲げつつ、常に最新の情報に基づき重点を決めていく複線的なシナリオによるアプローチとすることが適当である。そのため、こうした技術動向や情勢の変化を定期的に把握・検証し、透明な仕組み・手続の下、評価・検討していくことが重要である。

一方で、この野心的な目標を目指す上でも、安定的で安価なエネルギーの供給を確保することは日本の国力を維持・増強するために欠かせない。エネルギーの安定供給においては、エネルギーそのものの自給性、強靱性を高めるのみならず、様々な脱炭素技術を国内で調達できる技術自給率を向上させ、エネルギーの自律性を高めていくことが、化石資源の乏しい日本にとっては不可欠である。

また、EUの2050年カーボンニュートラルに向けたシナリオでも、電力コストが一定程度上昇するとの予測が示されており、また、日本においても複数の機関が2050年カーボンニュートラルに向けては電力コストの上昇を予見しており、エネルギーコスト、電力コストの上昇を可能な限り抑制していく必要がある。

2050年カーボンニュートラルを目指す上でも、安全の確保を大前提に、安定的で安価なエネルギーによって経済活動を支えていかなければならない。

こうした前提に立ち、2050年カーボンニュートラルを実現するために、再生可能エネルギーについては、主力電源として最優先の原則の下で最大限の導入に取り組み、水素・CCUS(Carbon dioxide Capture, Utilization and Storage)については、社会実装を進めるとともに、原子力については、国民からの信頼確保に努め、安全性の確保を大前提に、必要な規模を持続的に活用していく。こうした取組など、安価で安定したエネルギー供給によって国際競争力の維持や国民負担の抑制を図りつつ2050年カーボンニュートラルを実現できるよう、あらゆる選択肢を追求する。

(3)電力部門に求められる取組

様々な経済活動のうち、電力部門においては、再生可能エネルギーや原子力といった実用段階にある脱炭素電源が存在するため、これらの電源を用いて着実に脱炭素化を実現することが求められる。

2050年カーボンニュートラルが実現した社会では、産業・業務・家庭・運輸部門における電化の進展により、電力需要が一定程度増加することが予想される。この電力需要に対応するためにも、全ての電力需要を100%単一種類のエネルギー源で賄うことは困難であり、現時点で実用段階にある脱炭素技術に限らず、水素・アンモニア発電やCCUSによる炭素貯蔵・再利用を前提とした火力発電といったイノベーションを必要とする新たな選択肢を追求していくことが必要となる。

①再生可能エネルギーにおける対応

2050年カーボンニュートラルの実現に向けて、電化の促進、電源の脱炭素化が鍵となる中で、再生可能エネルギーに関しては、S+3Eを大前提に、2050年における主力電源として最優先の原則の下で最大限の導入に取り組む。

最大限の導入を進めるに当たっては、再生可能エネルギーのポテンシャルの大きい地域と大規模消費地を結ぶ系統容量の確保や、太陽光や風力の自然条件によって変動する出力への対応、電源脱落等の緊急時における系統の安定性の維持といった系統制約への対応に加え、平地が限られているといった我が国特有の自然条件や社会制約への対応や、適切なコミュニケーションの確保や環境配慮、関係法令の遵守等を通じた地域との共生も進めていくことが必要である。また、発電コストが国際水準と比較して依然高い状況にある中で、コスト低減を図り、国民負担を最大限抑制することも必要である。

こうした課題に対応するため、送電網に関するマスタープランの策定、蓄電システム等の多様な分散型エネルギーリソース³の導入拡大及び再生可能エネルギーの主力電源化の鍵を握る蓄電池や水素の活用等による脱炭素化された調整力の確保や系統混雑緩和への対応促進、系統の安定性を支える次世代インバータ等の開発を進めるなど、多様なリソースを組み合わせることを通じた電力システムの柔軟性の向上を図る。また、立地制約の克服やコスト低減に不可欠な次世代型太陽電池、浮体式洋上風力発電といった革新技術の開発を進める。さらには、無線送受電技術により宇宙空間から地上に電力を供給する宇宙太陽光発電システム(SSPS)について、エネルギー供給源としての位置付け、経済合理性、他産業への波及等を総合的かつ不断に評価しつつ、地上実証フェーズから宇宙実証フェーズへの移行の検討も含め、研究開発・実証を着実に進める。

_

³ 分散型エネルギーリソースは、変動型再生可能エネルギーやコージェネレーション、燃料電池等の発電設備、蓄電池等の蓄エネ設備、大規模工場や水電解装置等の需要設備に大別され、その規模も小規模から大規模設備まで様々である。

②原子力における対応

東京電力福島第一原子力発電所事故を経験した我が国としては、安全を最優先 し、経済的に自立し脱炭素化した再生可能エネルギーの拡大を図る中で、可能な限 り原発依存度を低減する。

現状、実用段階にある脱炭素化の選択肢である原子力に関しては、世界的に見て、一部に脱原発の動きがある一方で、エネルギー情勢の変化に対応して、安全性・経済性・機動性の更なる向上への取組が始まっている。

我が国においては、更なる安全性向上による事故リスクの抑制、廃炉や廃棄物処理・処分などのバックエンド問題への対処といった取組により、社会的信頼の回復がまず不可欠である。このため、人材・技術・産業基盤の強化、安全性・経済性・機動性に優れた炉の追求、バックエンド問題の解決に向けた技術開発を進めていく。東京電力福島第一原子力発電所事故の原点に立ち返った責任感ある真摯な姿勢や取組こそ重要であり、これが我が国における原子力の社会的信頼の獲得の鍵となる。

③水素・アンモニア・CCS・CCU/カーボンリサイクルにおける対応

2050年カーボンニュートラル実現に向けては、火力発電から大気に排出されるCO2排出を実質ゼロにしていくという、火力政策の野心的かつ抜本的な転換を進めることが必要である。一方で、火力発電は東日本大震災以降の電力の安定供給や電力レジリエンスを支えてきた重要な供給力であるとともに、現時点の技術を前提とすれば、再生可能エネルギーの変動性を補う調整力として重要な機能を保持していることを踏まえ、安定供給を確保しつつ、その機能をいかにして脱炭素電源に置き換えていくかが鍵となる。

このため、火力発電の脱炭素化に向けては、燃料そのものを水素・アンモニアに 転換させることや、排出されるCO2を回収・貯留・再利用することで脱炭素化を 図ることが求められる。

<水素・アンモニアの活用に向けた対応>

水素・アンモニアを燃料とした発電は燃焼時にCO2を排出せず、火力としての調整力、慣性力機能を具備しており、系統運用の安定化にも資する技術であり、ガスタービンやボイラー、脱硝設備等の既存発電設備の多くをそのまま活用できることから、カーボンニュートラル実現に向けた電源の脱炭素化を進める上で有力な選択肢の一つである。水素及びアンモニア発電については、2050年には電力システムの中の主要な供給力・調整力として機能すべく、技術的な課題の克服を進める。

水素の供給量の拡大と供給コストを低減すべく、大規模な国際水素サプライチェーン構築に資する技術開発・実証を、グリーンイノベーション基金も活用しなが

ら、水素発電技術の確立と一体的に行い、2050年にガス火力以下のコストを目指す。

< C C S の活用に向けた対応>

CCS(Carbon dioxide Capture and Storage)については、技術的確立・コスト低減、適地開発や事業化に向けた環境整備を、長期のロードマップを策定し関係者と共有した上で進めていく。CCSの技術的確立・コスト低減に向け、分離回収技術の研究開発・実証を行うとともに、貯留技術や、モニタリングの精緻化・自動化、掘削・貯留・モニタリングのコスト低減等の研究開発を推進する。また、低コストかつ効率的で柔軟性のあるCCSの社会実装に向けて、液化CO2船舶輸送の実証試験に取り組むとともに、CO2排出源と再利用・貯留の集積地とのネットワーク最適化(ハブ&クラスター)のための官民共同でのモデル拠点構築を進めていく。

また、CCSの社会実装に不可欠な適地の開発については、国内のCO2貯留適地の選定のため、経済性や社会的受容性を考慮しつつ、貯留層のポテンシャル評価等の調査を引き続き推進する。また、海外のCCS事業の動向等を踏まえた上で、国内のCCSの事業化に向けた環境整備等の検討を進める。

< C C U / カーボンリサイクルの実現に向けた対応>

CCU (Carbon Capture and Utilization) /カーボンリサイクルは、CO2を資源として捉え、鉱物化や人工光合成等により素材や燃料等へ再利用することで、大気中へのCO2排出抑制が可能となる。また、CO2の分離・回収設備を設置することで、既存の化石燃料の調達体制や設備を活用しつつCO2排出削減に貢献できるという利点も有している。CCU/カーボンリサイクル技術に係る国際的な開発競争が加速している中、我が国としては、「カーボンリサイクル技術ロードマップ」を踏まえて、競争優位性を確保しつつ、コスト低減や用途開発のための技術開発・社会実装、そして国際展開を推進していくことが求められる。

(4)産業・業務・家庭・運輸部門に求められる取組

産業・業務・家庭・運輸部門においては、徹底した省エネルギーによるエネルギー消費効率の改善に加え、脱炭素化された電力による電化という選択肢が採用可能な分野においては電化を進めることが求められる。一方、電化が困難な熱需要や製造プロセスにおいては、水素・合成メタン・合成燃料などの利用や革新的技術の実装が不可欠となる。例えば、水素は、余剰の再生可能エネルギー等の電力を水素に転換し、産業・業務・家庭・運輸部門で活用することで、セクターカップリングによる脱炭素化にも貢献することが可能となる。

他方、エネルギー多消費部門においては、水素還元製鉄、CO2回収型セメント、人工光合成などのイノベーションを実現し抜本的に製造プロセスが転換されなければ、日本全体のカーボンニュートラルの実現はままならない。今後求められるイノベーションの中には、例えば、水素還元製鉄のように、水素による還元プロセスにおける吸熱反応といった課題をどのように克服するかなど、未だ技術的にも完全な解決策が見いだせていない分野も多く、イノベーション実現への挑戦は容易なものではない。イノベーションの実現が日本の産業競争力の源泉となり、世界のカーボンニュートラルへの動きをリードできるよう、今から産業界、政府をあげて取組を加速する必要がある。

また、高温帯の熱需要や製造プロセスにおいては、完璧な脱炭素化が困難な部門も存在するため、最終的に2050年にカーボンニュートラルを目指す上では、DACCSやBECCSなどの炭素除去技術の実装も不可欠となり、これらの技術を追求することも必要となる。

2050年に向けては、コージェネレーション等による更なる熱供給の効率化など確立した技術を最大限活用するとともに、水素・アンモニア発電のように技術的には見通せているものの、需給網を新たに構築するとともにコストの大幅な引下げが必要となる技術、未だ技術的にも未確立であり今から技術開発に取り組むことが求められる技術など、あらゆる選択肢を最大限追求しながら、カーボンニュートラルを目指していくことが求められる。

これらの2050年を見据えたイノベーションの追求に際しては、「グリーン成長戦略」でも示しているように、成長が期待される産業分野を中心として、高い目標を設定し、民間企業が挑戦しやすい環境を整え、あらゆる政策を総動員していくとともに、その進捗をレビューしながら、取り組むべき政策対応について検証・見直しを進めていく。

①産業部門における対応

産業部門の脱炭素化に向けては、徹底した省エネルギーによるエネルギー消費効率の改善に加え、熱需要や製造プロセスそのものを脱炭素化するため、供給サイド

の脱炭素化に併せて需要サイドの電化・エネルギー転換を進めることで、カーボン ニュートラルを目指す。

産業部門においては、製造業で使用される生産設備等が高額である上に、エネルギー消費効率の高い設備や技術は既存技術に比べて更に高額となる。また、設備の耐用年数は一般的に30~40年と長期であることから、2050年カーボンニュートラルを見据えた設備入れ替えのタイミングについて、考慮が必要である。世界的に見ても省エネルギー技術水準の高い日本企業が、2050年カーボンニュートラルに向けて更に省エネルギーを進めるには、更なる投資負担は避けて通れない。また、電化やガス転換といったエネルギー転換を進める上では、生産設備そのものに加えて、受電設備や配管等のインフラ設備の導入も必要となる。

こうした事業者の現状を的確に把握し、課題を克服するため、技術開発を通じた 省エネルギーポテンシャルの開拓や省エネルギー機器・設備の普及拡大を通じた経 済性の向上が必要不可欠であり、規制と支援措置を組み合わせた政策的措置を講じ ていくことが必要である。特に中小企業については省エネルギー診断や関連する情 報提供等も含め、きめ細かに対応していくことが必要である。

<熱需要や製造プロセスそのものの脱炭素化に向けた電化・エネルギー転換>

産業部門の熱需要は低温帯から高温帯まで多岐にわたる。蒸気・温水などによる低温帯の熱需要に対しては、ヒートポンプや電熱線といった電化技術による脱炭素化が考えられるが、設備費用や電気代への対応といったコスト面の課題がある。

また、高温帯の熱需要の中には、赤外線による加熱方式などによる電炉といった 電化技術による脱炭素化が考えられるが、大規模な高温帯の熱需要に対しては、経 済的・熱量的・構造的に対応が困難な場合がある。

こうした経済的・熱量的・構造的に電化が困難な熱需要の脱炭素化に向けては、 熱エネルギーを供給するガスなどを脱炭素化していくことが選択肢となる。

例えば、再生可能エネルギー由来等の水素とCO2を組み合わせることでカーボンニュートラルとみなし得る合成メタン・合成燃料は、既存のインフラや設備を利用可能であるため脱炭素化に向けた投資コストを抑制することができるとともに、電力以外のエネルギー供給源の多様性を確保することでエネルギーの安定供給に資する。他方、合成メタン・合成燃料には大規模化・低コスト化といった課題が存在するため、技術開発や実証に取り組むことが必要である。

需要サイドにおける最適なエネルギー転換に向け、既存インフラ・設備を利用可能な合成メタン・合成燃料の活用など様々な選択肢を追求していく。

産業部門の脱炭素化に向けては様々な課題がある中、水素は水素ボイラーの活用により熱需要の脱炭素化に貢献できるのみならず、水素還元製鉄のように製造プロセスそのものの脱炭素化にも貢献し得るなど、産業部門の脱炭素化を可能とするエネルギー源として期待される。一方で、技術が未確立でありイノベーションが必要な分野が多いといった課題や、国際競争力の観点等から安価かつ大量の水素の供給

が必要となるといった課題が存在するため、利用技術の開発・実証、供給コスト低減にもつながる供給網の拡充や大型輸送船の開発などに今から取り組む。

②業務・家庭部門における対応

業務・家庭部門の脱炭素化に向けては、太陽光発電や太陽熱給湯等の再生可能エネルギーの最大限の活用や、脱炭素化された電源・熱源によるエネルギー転換が求められる。

また、住宅・建築物そのものの断熱性能の強化や、高効率機器・設備の導入も必要となるが、これらの導入も産業部門と同様に、耐用年数が数十年にわたるものがあることから、2050年カーボンニュートラルを見据えた住宅・建築物の建て替えや設備入れ替えのタイミングを考慮することが必要である。

一方で、建材やエネルギー消費機器の性能向上は、一定のレベルを超えると鈍化し、更なる性能向上にはよりコストがかかるといった課題もあり、カーボンニュートラルに向けては、今から性能向上に向けた技術開発などを進めることが求められる。

業務・家庭部門における取組を進める際には、地域や建物毎の特性の違いを踏まえた対策も求められる。例えば、都市部では熱源として都市ガス、地方ではLPガス・灯油が用いられており、エネルギー転換に向けた経路が異なることや、建物種別によっては設備の設置スペースが限定的といった課題を踏まえた対応が必要である。こうした点も踏まえ、需要サイドにおける最適なエネルギー転換の選択肢として、既存インフラ・設備を利用可能な合成メタン・合成燃料の活用など様々な選択肢を追求していくことが重要である。

これらの課題を踏まえつつ、「建築物のエネルギー消費性能の向上に関する法律(建築物省エネ法)」や「エネルギーの使用の合理化等に関する法律(省エネ法)」に基づく規制措置強化と支援措置の組み合わせを通じ、既築住宅・建築物についても、省エネルギー改修や省エネルギー機器導入等を進めることで、2050年に住宅・建築物のストック平均で ZEH^4 ・ ZEB^5 基準の水準の省エネルギー性能が確保⁶されていることを目指す。

 $^{^4}$ ZEH (ネット・ゼロ・エネルギー・ハウス): 20%以上の省エネルギーを図った上で、再生可能エネルギー等の導入により、エネルギー消費量を更に削減した住宅について、その削減量に応じて、①『ZEH』(100%以上削減)、2Nearly ZEH (75%以上100%未満削減)、3ZEH Oriented (再生可能エネルギー導入なし)と定義している。

 $^{^5}$ ZEB(ネット・ゼロ・エネルギー・ビル): 50%以上の省エネルギーを図った上で、再生可能エネルギー等の導入により、エネルギー消費量を更に削減した建築物について、その削減量に応じて、①『ZEB』(100%以上削減)、②Nearly ZEB(75%以上100%未満削減)、③ZEB Ready(再生可能エネルギー導入なし)と定義しており、また、 $30\sim40\%$ 以上の省エネルギーを図り、かつ、省エネルギー効果が期待されているものの、建築物省エネ法に基づく省エネルギー計算プログラムにおいて現時点で評価されていない技術を導入している建築物のうち150分とででは1500 Crientedと定義している。

[「]ストック平均でZEH・ZEB基準の水準の省エネルギー性能が確保」とは、ストック平均

また、デジタル化の進展は、シェアリングなど人・物・金の流れの最適化が進むことなどを通じ、エネルギーの効率的な利用・省エネルギーにも繋がる。例えば、テレワークによる移動に伴うエネルギーの削減や、クラウド化による企業システムの省エネルギー、エネルギーマネジメントシステムの高度化など、デジタル化による省エネルギー効果はあらゆる産業に大きく寄与する。このような観点から、将来の持続可能な社会の構築に向けて、エネルギー消費の効率化・グリーン化とデジタル化は車の両輪として進めていく必要がある。他方、デジタル化の進展により、データ流通量、計算量は急激に増加することが見込まれており、それに伴い、デジタル機器・デジタルインフラのエネルギー消費量が大幅に増加していく可能性が指摘されている。この急激なエネルギー増加を抑えるため、電力消費の大幅な削減が期待される光電融合技術などの革新的省エネルギー技術の開発が進んでおり、こうした新たな技術の活用を拡大することで、データセンターやサーバ、各種ITインフラ、通信機器、半導体等の消費エネルギーの抑制、高性能化を進めていくことが必要である。

③運輸部門における対応

運輸部門の脱炭素化に向けては、自動車の生産、利用、廃棄を通じたCO2排出 削減、物流分野におけるエネルギー効率向上、燃料そのものの脱炭素化に向けた取 組を通じて、カーボンニュートラルを目指す。

まず、運輸部門のCO2排出量の86%を占める自動車のカーボンニュートラル化に向け、燃料・エネルギーのカーボンニュートラル化の取組を通じて、多様な選択肢を追求し、2050年に自動車の生産、利用、廃棄を通じたCO2ゼロを目指す。このため、乗用車については、2035年までに、新車販売で電動車100%を実現できるよう、電動車・インフラの導入拡大、電池等の電動車関連技術・サプライチェーン・バリューチェーンの強化等の包括的な措置を講じる。また、商用車については、8t以下の小型の車について、2030年までに、新車販売で電動車20~30%、2040年までに、新車販売で電動車と合成燃料等の脱炭素燃料の利用に適した車両で合わせて100%を目指し、乗用車と同様に包括的な措置を講じるなど、電動化・脱炭素化を推進する。

CO2排出削減と移動の活性化が同時に実現できるよう、車の使い方の変革による地域の移動課題の解決にも取り組むなど、ユーザーの行動変容や、電動化に対応した新たなサービス・インフラの社会実装を加速する。

同時に自動車以外の分野も含めて、物流分野におけるデジタル化の推進やデータ連携によるAI・IoT等の技術を活用したサプライチェーン全体での大規模な物流効率化、省力化を通じたエネルギー効率向上も進めていくことが必要である。こ

で住宅については一次エネルギー消費量を省エネルギー基準から20%程度削減、建築物については用途に応じて30%又は40%程度削減されている状態。

のため、エネルギー消費原単位の小さい輸送手段への転換を図るモーダルシフトや、共同輸配送、輸送網の集約を推進するほか、サプライチェーン全体での輸送効率化を推進する。また、商用車や港湾を出入する大型車両、船舶等その他輸送分野における水素・アンモニア利用に向け、技術開発や実証に取り組む。具体的には、船舶分野の脱炭素化に向けて、ゼロエミッション船の商業運航を従来の目標である2028年よりも前倒しで実現することを目指し、技術開発・実証に取り組むとともに、国際海事機関(IMO)を通じた省エネルギー・脱炭素化のための国際枠組みの整備を牽引する。加えて、LNG燃料船、水素燃料電池船、EV船を含め、革新的省エネルギー技術やデジタル技術等を活用した内航近代化・運航効率化にも資する船舶の技術開発・実証・導入促進を推進する。また、航空分野の脱炭素化に向けて、①機材・装備品等への新技術導入、②管制の高度化による運航方式の改善、③持続可能な航空燃料(SAF: Sustainable aviation fuel)の導入促進、④空港施設・空港車両のCO2排出削減等の取組を推進するとともに、空港を再生可能エネルギー拠点化する方策を検討・始動し、官民連携の取組を推進する。

また、倉庫や港湾ターミナル等における省エネルギー化・省人化機器や再生可能 エネルギー設備、燃料電池等の導入により、物流施設のゼロエネルギー化を促進す る。

特に、我が国の輸出入の99.6%が経由する国際物流拠点であり、我が国のCO2の排出量の約6割を占める発電、鉄鋼、化学工業等の産業の多くが立地する港湾において、大量かつ安定・安価な水素・燃料アンモニア等の輸入を可能とする受入環境の整備や、脱炭素化に配慮した港湾機能の高度化、臨海部に集積する産業との連携等を通じて、温室効果ガスの排出を全体としてゼロにするカーボンニュートラルポート(CNP)の形成の実現を図る。

燃料の脱炭素化を図っていくことも必要であり、既存の燃料インフラや内燃機関等の設備を利用可能なバイオ燃料や合成燃料等の選択肢を追求していくことも重要である。バイオエタノールやバイオディーゼルについては、引き続き、国際的な導入動向等を踏まえ導入の在り方を検討していく。合成燃料については、技術開発・実証を今後10年で集中的に行うことで、2030年までに高効率かつ大規模な製造技術を確立し、2030年代に導入拡大・コスト低減を行い、2040年までの自立商用化(環境価値を踏まえたもの)を目指す。

また、ジェット燃料の代替燃料であるバイオジェット燃料や合成燃料等のSAFについては、ICAO(国際民間航空機関)における国際航空分野の規制に対応するため、必要な原料の確保やサプライチェーンの構築の観点を踏まえ、技術開発・大規模実証に取り組むとともに、官民で連携して体制構築を行う。

5. 2050年を見据えた2030年に向けた政策対応

2050年カーボンニュートラルという挑戦を背景として、2030年度の温室効果ガス排出削減目標も大幅に引き上げられ、2030年度に2013年度比で46%の削減、さらに50%の高みに向けて挑戦を続けていくことが表明された。

この新たな削減目標は、これまでの目標を7割以上引き上げるものであり、簡単には実現できない。2030年までの9年間で、イノベーションの具現化・社会実装を実現するのは容易なことではなく、既存の技術を最大限活用し、この野心的な目標の実現を目指すことが求められる。

2050年のカーボンニュートラルを見据え、2030年度の新たな削減目標に向けては、既存の発想にとどまらない大胆な政策的措置、方向性を示さなければ、2030年度の新たな目標の達成はおぼつかない。

2030年度の新たな削減目標に向けても、安全の確保を大前提としつつ、安定的で安価なエネルギー供給の確保は、エネルギー政策の大前提となる。足下でOECD諸国の下位に位置するエネルギー自給率を向上させるとともに、電力コストを可能な限り引き下げる取組を進める必要がある。

こうした取組を進める上で、具体的な対策を講じる際にはタイミングを十分考慮しながら進めることが重要であり、例えば、化石火力電源の低減に向けた取組は、 非化石電源の導入拡大や安定供給の確保に向けた対策が十分に講じられていること を確認しながら進めていく。

(1) 現時点での技術を前提としたそれぞれのエネルギー源の位置付け

我が国が、安定したエネルギー需給構造を確立するためには、エネルギー源ごとにサプライチェーン上の特徴を把握し、状況に応じて、各エネルギー源の強みが発揮され、弱みが補完されるよう、各エネルギー源の需給構造における位置付けを明確化することが重要である。これらの強みや弱みは今後の技術の進展に応じて変化し得るが、現時点の技術・制度を前提とすれば、それぞれのエネルギー源の位置付けを以下のように整理することができる。

各エネルギー源は、それぞれサプライチェーン上の強みと弱みを持っている。現時点で安定的かつ効率的なエネルギー需給構造を一手に支えられるような単独の完璧なエネルギー源は存在しないことに鑑みれば、一つのエネルギー源に頼ることはリスクが高く、危機時であっても安定供給が確保される需給構造を実現するためには、エネルギー源ごとの強みが最大限に発揮され、弱みが他のエネルギー源によって適切に補完されるような組み合わせを持つ、多層的な供給構造を実現することが必要である。

①再生可能エネルギー

再生可能エネルギーは、温室効果ガスを排出しない脱炭素エネルギー源であるとともに、国内で生産可能なことからエネルギー安全保障にも寄与できる有望かつ多様で、重要な国産エネルギー源である。S+3Eを大前提に、再生可能エネルギーの主力電源化を徹底し、再生可能エネルギーに最優先の原則で取り組み、国民負担の抑制と地域との共生を図りながら最大限の導入を促す。

具体的には、地域と共生する形での適地確保、コスト低減、系統制約の克服、規制の合理化、研究開発などを着実に進めていく。こうした取組を通じて、国民負担の抑制や、電力システム全体での安定供給の確保、地域と共生する形での事業実施を確保しつつ、導入拡大を図っていく。

(a) 太陽光

平地面積当たりの導入容量が世界一であるなど、これまで、再生可能エネルギーの主力として導入が拡大し、事業用太陽光については発電コストも着実に低減している。同時に、大規模に開発できるだけでなく、個人を含めた需要家に近接したところでの自家消費や地産地消を行う分散型エネルギーリソースとして、レジリエンスの観点でも活用が期待される。一方で、今後の導入拡大に向けては、地域と共生可能な形での適地の確保、更なるコスト低減に向けた取組、出力変動に対応するための調整力の確保や出力制御に関する系統ルールの更なる見直し、立地制約の克服に向け更なる技術革新が必要である。

中長期的には、コスト低減が達成されることで、市場売電を想定した大型電源として活用していくとともに、分散型エネルギーシステムとして昼間のピーク需要を補い、消費者参加型のエネルギーマネジメントの実現等に貢献するエネルギー源としての位置付けも踏まえた導入が進むことが期待される。

(b) 風力

風車の大型化、洋上風力発電の拡大等により、国際的に価格低下が進んでいることから、経済性も確保できる可能性のあるエネルギー源であり、我が国においても今後の導入拡大が期待される。今後、適地の確保や地域との調整、コスト低減に加え、北海道、東北、九州などの適地から大消費地まで効率的に送電するための系統の確保、出力変動に対応するための調整力の確保、系統側蓄電池等の活用などを着実に進める。陸上風力は、適地の確保とコスト低減を引き続き進めていく。また、特に、洋上風力は、大量導入やコスト低減が可能であるとともに、経済波及効果が大きいことから、再生可能エネルギー主力電源化の切り札として推進していくことが必要である。

(c) 地熱

世界第3位の地熱資源量を誇る我が国では、安定的に発電を行うことが可能なベースロード電源を担うエネルギー源である。また、発電後の熱水利用など、エネルギーの多段階利用も期待される。

一方、開発には時間とコストがかかるため、投資リスクの低減、送配電網の整備、地域と共生した開発、関連法令の規制の運用見直しによる事業環境の整備等に取り組み、地域への配慮を前提とした地熱開発の加速化やコスト低減を図り、中長期的な視点も踏まえて持続可能な開発を進めていくことが必要である。

(d) 水力

純国産で、渇水の問題を除き、天候に左右されない優れた安定供給性を持ち、長期的に活用可能なエネルギー源である。また、地域共生型のエネルギー源としての役割を拡大していくことが期待される。このうち、一般水力(流れ込み式)については、運転コストが低く、ベースロード電源として、揚水式については、再生可能エネルギーの導入拡大に当たっても必要な調整電源として重要な役割が期待される。

一方で、2030年までという時間軸で大水力の新規開発は困難であることから、他目的で利用されているダム・導水等の未利用の水力エネルギーの新規開発、デジタル技術を活用した既存発電の有効利用や高経年化した既存設備のリプレースによる発電電力量の最適化・高効率化などを進めていくことが必要である。

(e) バイオマス

木質バイオマスを始めとしたバイオマス発電・熱利用などは、災害時のレジリエンスの向上、地域産業の活性化を通じた経済・雇用への波及効果が大きいなど、地域分散型、地産地消型のエネルギー源として多様な価値を有するエネルギー源である。一方、エネルギー利用可能な木質や廃棄物などバイオマス資源が限定的であること、持続可能性の確保、そして発電コストの高止まり等の課題を抱えることから、各種政策を総動員して、持続可能性の確保を大前提に、バイオマス燃料の安定的な供給拡大、発電事業のコスト低減等を図っていくことが必要である。

輸入が中心となっているバイオ燃料については、国際的な動向や次世代バイオ燃料の技術開発の動向を踏まえつつ、導入を継続することが必要である。

②原子力

原子力は、燃料投入量に対するエネルギー出力が圧倒的に大きく、数年にわたって国内保有燃料だけで生産が維持できる低炭素の準国産エネルギー源として、優れた安定供給性と効率性を有しており、運転コストが低廉で変動も少なく、運転時には温室効果ガスの排出もないことから、安全性の確保を大前提に、長期的なエネルギー需給構造の安定性に寄与する重要なベースロード電源である。

一方で、依然として、原子力発電に対する不安感などにより社会的な信頼は十分に獲得されておらず、また東京電力柏崎刈羽原子力発電所における核物質防護に関する一連の事案など、国民の信頼を損なうような事案も発生するとともに、使用済燃料対策、核燃料サイクル、最終処分、廃炉など様々な課題が存在しており、こうした課題への対応が必要である。

③化石エネルギー

化石エネルギーについては、現時点でエネルギー供給の大宗を担っており、今後も重要なエネルギー源である。一方で、脱炭素化の観点から対応が求められており、CCUS技術や合成燃料・合成メタンなどの脱炭素化の鍵を握る技術を確立し、コストを低減することを目指しながら活用していく。

(a) 天然ガス

電源の約4割を占め、熱源としての効率性が高く、また、石油と比べて地政学的リスクも相対的に低い。化石燃料の中で温室効果ガスの排出が最も少なく、発電では、コージェネレーションシステムも含めて再生可能エネルギーの調整電源の中心的な役割を果たしている。また、各分野における燃料転換等を通じた天然ガスシフトが進むことにより、環境負荷低減にも寄与する。将来的には、合成メタンを製造するメタネーション等の技術の確立によりガス自体の脱炭素化の実現が見込まれるとともに、CCS等も併せて活用することで、燃焼してもCO2を排出しない水素・アンモニアの原料としての利用拡大も期待されるなど、カーボンニュートラル社会の実現後も重要なエネルギー源である。また、既存の都市ガス導管等のインフラを有効活用し、今後、クレジット等でカーボンニュートラルとみなし得るガス利用の拡大も見込まれる。

一方で、2020年度冬季の需給ひつ迫時における価格高騰といった燃料調達におけるリスクが顕在化したことを踏まえれば、今後、価格変動リスクを抑制するための市場の拡大や供給源多角化などを通じて安定供給性・レジリエンスを向上させるとともに、メタン対策を含むバリューチェーン全体の脱炭素化を図る必要がある。

なお、電源構成における比率は、安定供給の確保を大前提に低減させる。

(b) 石油

引き続き一次エネルギーの約4割を占めており、運輸・民生・電源等の幅広い燃料用途や化学製品など素材用途を持つエネルギー源である。電源としての利用は減少傾向にあるが、代替する電源が出てこない中では、非常時に活用される電源としての役割を担うことが見込まれる。エネルギー密度が高く、最終需要者への供給体制及び備蓄制度が整備されており、可搬性、貯蔵の容易性や災害直後から被災地への燃料供給に対応できるという機動性に利点があるため、災害時にはエネルギー供

給の「最後の砦」となる。調達に係る地政学的リスクは大きいが、平時のみならず 緊急時のエネルギー供給に貢献するエネルギーとして、引き続き、国民生活・経済 活動に不可欠なエネルギー源である。

平時のみならず緊急時にも対応できる強靱な石油供給体制を維持・強化するため、供給源多角化、産油国協力、備蓄等の危機管理の強化や、国内製油所やサービスステーション(SS)の維持、災害時に備えた供給網の一層の強靱化などに取り組む必要がある。

(c) LPガス

約4割の家庭に供給されており、全国的な供給体制に加えて緊急時に供給を維持できる備蓄体制も整備している。また、最終需要者への供給体制及び備蓄制度が整備され、可搬性、貯蔵の容易性に利点があり、石油と同様に「最後の砦」として、平時のみならず緊急時のエネルギー供給に貢献する重要なエネルギー源である。

供給体制の確保に向け、備蓄の着実な実施や中核充填所の強靱化に加え、料金の透明化、業務合理化を通じたコスト抑制などに取り組む必要がある。

(d) 石炭

現時点の技術・制度を前提とすれば、化石燃料の中で最もCO2排出量が大きいが、調達に係る地政学リスクが最も低く、熱量当たりの単価も低廉であることに加え、保管が容易であることから、現状において安定供給性や経済性に優れた重要なエネルギー源である。

今後、石炭火力は、再生可能エネルギーを最大限導入する中で、調整電源としての役割が期待されるが、電源構成における比率は、安定供給の確保を大前提に低減させる。

④水素・アンモニア

水素は、電力分野の脱炭素化を可能とするだけでなく、運輸部門や電化が困難な 産業部門等の脱炭素化も可能とする、カーボンニュートラルに必要不可欠な二次エ ネルギーである。アンモニアについては現在、石炭火力への混焼に向けた実証が進 んでいるが、それに留まらず、専焼化や船舶への活用も検討されている。

各国で水素活用に向けた取組が活発化する中、カーボンニュートラルの実現に向け、技術的な課題の克服、インフラ整備、コストの低減を行い、分野毎に具体的な社会実装を見据えた取組を進める時期に入っている。

また、水素・アンモニアは、多様なエネルギー源から製造することが可能であるため、国内資源の活用を含むエネルギー調達先の多様化を通じ、エネルギー安全保障の強化にも寄与する。余剰の再生可能エネルギー電力等から水素・アンモニアを製造することで、脱炭素電源のポテンシャルを最大限活用することを可能とするだ

けでなく、CCUSと組み合わせることで、化石燃料をクリーンな形で有効活用することも可能とする。

さらに、水素は、熱や電気の供給源となるだけでなく、アンモニアや合成燃料の 製造にも利用されており、需要先の特性に応じて、産業・業務・家庭・運輸・電力 部門において、エネルギーを供給することが可能であることから、カーボンニュー トラル時代において中心的な役割が期待される。

<u>⑤熱</u>

現時点において、我が国の最終エネルギー消費の過半は熱利用を中心とした非電力部門が占めており、2050年カーボンニュートラルを見据え、省エネルギーや燃料転換などにより、更に熱を効率的に利用する必要がある。熱の利用は、個人・家族の生活スタイルや地域の熱源の賦存の状況によって、様々な形態が考えられることから、生活スタイルや地域の実情に応じた、柔軟な対応が可能となる取組が重要である。

熱と電気を組み合わせて発生させるコージェネレーションは、熱電利用を同時に行うことによりエネルギーを最も効率的に活用することができる方法の一つであり、省エネルギー性に加え、ガスなどの既存インフラを活用するため、点在が容易である。また、季節や時間によっては発電容量に一定の余裕がある場合もあり、緊急時における電力供給不足のバックアップや、再生可能エネルギー等の変動電源導入時に必要となる調整電源としての役割も期待できる。また、地域の特性を活かした太陽熱、地中熱、バイオマス熱、雪氷熱、温泉熱、海水熱、河川熱、下水熱等の再生可能エネルギー熱をより効果的に活用していくことも重要である。

(2) 2030年に向けたエネルギー政策の基本的考え方

エネルギーは人間のあらゆる活動を支える基盤である。

安定的で社会の負担の少ないエネルギー供給を実現するエネルギー需給構造の実現は、我が国が更なる発展を遂げていくための前提条件である。

しかしながら、我が国のエネルギー需給構造は脆弱性を抱えており、特に、東京電力福島第一原子力発電所事故を含む東日本大震災後に直面している課題を克服していくためには、エネルギー需給構造の改革を大胆に進めていくことが不可避となっている。

エネルギー政策の推進に当たっては、生産・調達から流通、消費までのエネルギーのサプライチェーン全体を俯瞰し、基本的な視点を明確にして中長期に取り組んでいくことが重要である。

2030年度の新たな削減目標に向けても、エネルギー政策の要諦は、安全性を 前提とした上で、エネルギーの安定供給を第一とし、経済効率性の向上による低コ ストでのエネルギー供給を実現し、同時に、環境への適合を図るため、最大限の取 組を行うことである。

前述のとおり、前回のエネルギー基本計画の策定時点からわずか3年の間に、2018年の北海道胆振東部地震における北海道全域の停電(ブラックアウト)や2019年の台風第15号・台風第19号における長期間の停電発生など、エネルギー供給のリスクが顕在化した。こうした事態への対応をより迅速なものとするため、電気事業法を改正し、災害時における事業者間の連携強化を加速させる措置を講じることなどにより、一定の対応策を講じてきている。また、近年、社会インフラに物理的なダメージを与えるサイバー攻撃により、大規模停電のように生命・財産への脅威となり得るリスクも増大している。

今後、脱炭素化に向けた大きな流れの中で、自然変動性を伴う再生可能エネルギーを大量に既存のネットワークに受け入れ、また、電動自動車の導入拡大や人口減少などによる化石燃料の需要減少といった社会構造の変化、エネルギーインフラに対するサイバー攻撃のリスク増大といった、様々な状況変化に耐え得るエネルギーの安定供給システムを構築していくことが求められる。

また、エネルギーコストについては、2030年に向けて再生可能エネルギー賦課金の増大が予想⁷され、震災以降高止まる産業用、家庭用の電気料金をいかに抑制していくかが重要となる。再生可能エネルギーの発電コストは低減が続いている

39

必要な地域間連系線等の送電網の増強費用等が発生することに留意が必要。

⁷ 再エネ特措法に基づく買取費用は、制度導入当初の利潤配慮期間に認定を受けた事業用太陽光等の案件のうち、早期に稼働した案件の買取期間が徐々に終了し始める2032年度以降、低減に転じる可能性がある。他方、この低減のタイミングや幅は、各電源の発電コストの低減スピードやそれに基づく調達価格等の設定、今後の未稼働案件の稼働状況、新規認定案件の推移等によって変わってくること、またエネルギー供給強靱化法に基づき再生可能エネルギーの導入拡大に

が、現時点の技術やFIT価格、燃料費等を前提にすれば、1kWh当たりの導入コスト(FIT買取費用)は化石燃料などを活用する既存電源の燃料費よりも相対的に高く、今後の再生可能エネルギー導入拡大により増大するFIT買取費用の方が、化石燃料の低減により減少する燃料費よりも大きいと見込まれるため、これをいかに低減させるかが大きな課題となる。

こうした点を踏まえて、以下に2030年に向けたエネルギー政策における具体 的な取組を整理する。

(3) 需要サイドの徹底した省エネルギーと供給サイドの脱炭素化を踏まえた電化・水素化等による非化石エネルギーの導入拡大

我が国のエネルギー消費効率は1970年代の石油危機以降、官民の努力により4割改善し、世界的にも最高水準にある。石油危機を契機として1979年に制定された省エネ法に基づき、エネルギー多消費事業者に対する省エネルギー対策の取組状況の報告等を通じ、省エネルギーを促している。また、エネルギー消費機器等を対象とするトップランナー制度により、製造事業者等に対して、出荷する機器等のエネルギー消費効率の向上を求めている。住宅・建築物については建築物省エネ法に基づき、新築時に省エネルギー基準を満たすような設計を求めるなどの規制措置を講じている。これら法律に基づく規制措置と、予算措置等の効果的な支援策を一体的に講ずることで、より合理的なエネルギー需給構造の実現を目指してきた。

2018年に省エネ法が改正され、複数の事業者が連携した省エネルギー取組を 国が認定し、評価可能とする連携省エネルギー計画制度を創設するとともに、貨物 輸送事業者・荷主・荷物の荷受側の連携強化によって貨物輸送の更なる省エネルギ ーを促進するための荷主の定義の見直し等の措置を講じた。2019年には建築物 省エネ法改正により、建築物における省エネルギー基準適合義務対象を拡大すると ともに、小規模建築物・住宅における省エネルギー基準適合に係る施主への説明義 務化、さらには住宅トップランナー制度の対象拡大等を措置した。これら制度見直 しを通じ、更なる省エネルギーの取組が進むことが期待される。

他方、太陽光発電等の変動型再生可能エネルギーの増加による供給構造の変化、AI・IoT等のデジタル化進展による技術の変化、電力システム改革等による制度の変化等により、エネルギー需給構造が大きく変化してきている。2050年カーボンニュートラル、また、野心的な2030年度の温室効果ガス排出削減目標の実現に向けては、徹底した省エネルギーを進めると同時に、こうした状況変化や供給サイドの脱炭素化を踏まえた、需要サイドの電化・水素化等による非化石エネルギーの導入拡大など、S+3Eに貢献するためのあらゆる取組を促していくための制度的な枠組みの構築が必要である。

①徹底した省エネルギーの更なる追求

(a) 産業

産業部門においては、省エネ法に基づく規制等もあり、エネルギー消費原単位の 改善は進展したものの、近年は足踏みの状態である。鉄鋼業などの一部業種におい ては、世界的に見ても省エネルギー技術の導入が進展しているため、更なる省エネ ルギーには省エネルギーポテンシャルの高い新たな省エネルギー技術の開発や導 入、工場排熱等の未利用エネルギーの活用に向けた取組強化等が必要である。ま た、設備のライフサイクルが長いこと、更新のタイミングが限定的であること、初 期投資が大きく大型設備は投資が進まないこと等が課題としてあげられる。更なる 省エネルギーに向け、引き続き規制と支援の両面で取組強化を図る。

省エネ法では、エネルギー消費原単位年1%改善目標に加え、業種別にエネルギー消費原単位等の目標を設定するベンチマーク制度の導入を進めてきた。同制度は既に産業部門では6業種10分野に導入されたが、事業者等の取組状況や国際的な動向等を踏まえ、ベンチマークの指標や目標値の見直しを行うとともに、対象業種拡大を検討する。また、特定事業者等からの報告に基づく事業者のクラス分け評価制度については、改善が不十分な事業者への対応の強化等、更にメリハリのある執行を進める。

支援措置については、これまでの延長線上にない抜本的な省エネルギーを実現するため、革新的な省エネルギー技術の開発・実用化が重要である。このため、2030年度目標を踏まえた省エネルギーポテンシャルの更なる深掘りを目指すため、経済産業省及びNEDOで策定している「省エネルギー技術戦略2016」(2016年9月)を改定し、省エネルギー技術開発のロードマップとして位置付けながら、工場排熱等の未利用エネルギーの更なる活用を含め、先進的な技術開発・実用化支援・普及拡大に取り組んでいく。また、省エネルギー設備投資等の支援に当たっては、規制と支援も組み合わせつつ確実に省エネルギーを促す。省エネルギーのノウハウが必ずしも十分にない中小企業等の省エネルギー支援については、省エネルギー診断を促しつつ、省エネルギー投資につなげるとともに、省エネルギー対策の立案・実行・レビューまで一貫してサポートできるプラットフォームを各地域に構築するなど、支援体制の整備を引き続き進める。

また、DX化を通じた生産活動最適化による省エネルギー支援等も進めていく。

(b) 業務·家庭

業務・家庭部門において高い省エネルギー効果が期待されるのは、建築物・住宅の省エネルギーである。これまで非住宅建築物については、2020年までに国を含めた新築公共建築物等でZEBを実現することを目指すとともに、住宅については、2020年までにハウスメーカー等が新築する注文戸建住宅の半数以上でZEHを実現することを目指し、実証や導入支援策等を講じてきた。非住宅建築物における2020年目標は達成したものの、新築に占めるZEB普及割合は1%に満たず、住宅については、2019年度の新築注文戸建住宅のZEH割合が約2割と2020年目標の達成は難しい状況である。こうした状況を踏まえ、2030年に向けては、地域や建物種別により特性が異なる点も考慮しつつ、規制と支援の更なる強化に取り組む。

住宅・建築物の省エネルギー化について、建築物省エネ法においては、中規模以上の建築物・住宅について、新築時に省エネルギー基準を満たすよう、建築物には適合義務、住宅には届出義務を、小規模建築物・住宅については、建築主に対する省エネルギー基準適合状況についての説明義務を建築士に課している。さらに、一

定規模以上の住宅供給事業者に対しては、省エネルギー基準より性能の高い住宅を供給することを求める住宅トップランナー制度により省エネルギー住宅普及促進を図っている。これらを通じ、新築住宅及び非住宅建築物の省エネルギー基準適合率は2019年度にはそれぞれ81%、98%に向上した。他方、住宅・建築物の供給サイドでは未だ中小工務店による省エネルギー住宅建築に係る体制や能力、習熟度の向上が課題であり、消費者側では、既存住宅・建築物の改修を含む省エネルギー性能向上に係る費用負担、消費者の認知度やメリットに対する理解が課題として挙げられる。

これらの課題や、2050年カーボンニュートラル実現や2030年度の温室効果ガス排出削減目標の実現に向けて、「脱炭素社会に向けた住宅・建築物の省エネ対策等のあり方検討会」における検討結果も踏まえ、今後、早期に建築物省エネ法における規制措置を強化する。具体的には、建築物省エネ法を改正し、省エネルギー基準適合義務の対象外である住宅及び小規模建築物の省エネルギー基準への適合を2025年度までに義務化するとともに、2030年度以降新築される住宅・建築物について、ZEH・ZEB基準の水準の省エネルギー性能の確保®を目指し、整合的な誘導基準・住宅トップランナー基準の引上げや、省エネルギー基準の段階的な水準の引上げを遅くとも2030年度までに実施する。加えて、規制強化のみならず、公共建築物における率先した取組を図るほか、ZEHやZEBの実証や更なる普及拡大に向けた支援等を講じていく。さらに、既存住宅・建築物の改修・建替の支援や、省エネルギー性能に優れリフォームに適用しやすい建材・工法等の開発・普及、新築住宅の販売又は賃貸時における省エネルギー性能表示の義務化を目指すなどの省エネルギー対策を総合的に促進する。

エネルギー消費機器や断熱材等の建材の性能向上を図ることも重要である。エアコンや給湯器等の機器に加えて、窓ガラス、サッシ、断熱材について、トップランナー制度の対象に位置付け、目標策定時点で最もエネルギー消費効率が優れた製品・建材を参考に目標となる基準を定め、製造事業者等に対し、出荷する製品が目標年度までに当該基準を満たすことを求めている。制度の対象となるエネルギー消費機器については、随時、足下の機器ごとのエネルギー消費効率の改善状況を踏まえ基準を見直しており、近年では照明、乗用自動車、テレビジョン受信機、磁気ディスク装置、ガス・石油温水器、電気温水器等の基準見直しを行うとともに、消費者に対する機器の省エネルギー性能の表示制度の見直しを行った。また、給湯器については、ガス・石油・電気の省エネルギー性能を横断的に評価・表示できるよう制度改正を行った。引き続き、トップランナー制度の対象機器の基準見直しや対象機器拡大に向けた検討を行いつつ、基準未達成事業者に対する措置の検討も含め、

_

⁸ 住宅について、強化外皮基準への適合及び再生可能エネルギーを除いた一次エネルギー消費量を現行の省エネルギー基準値から20%削減。建築物について、再生可能エネルギーを除いた一次エネルギー消費量を現行の省エネルギー基準値から用途に応じて30%又は40%(小規模建築物については20%)削減。

執行強化を図っていく。また、建材についても、2030年度以降新築される住宅・建築物について、ZEH・ZEB基準の水準の省エネルギー性能の確保を目指し、建材トップランナー制度における基準の強化等の検討を進める。加えて、省エネルギー基準の引上げ等を実現するため、建材・設備の性能向上と普及、コスト低減を図る。

運用段階の省エネルギーも重要である。省エネ法ベンチマーク制度において、業務部門では9業種を対象としているが、2020年度には貸事務所業とコンビニエンスストア業のベンチマーク指標・目標値を見直し、これらの業種に更なる省エネルギーを求めることとした。また、昨今では、デジタル化の進展に伴い、日本のデータ流通量は大幅に増加しており、国内のデータセンターにおけるエネルギー消費量は大幅に増えることが見込まれる。このため、省エネルギー型データセンターの普及拡大を促すため、データセンター業のベンチマークの対象化を検討する。今後も、エネルギー消費動向を踏まえつつ、ベンチマークの見直しや対象業種の拡大に取り組む。

家庭部門については、エネルギー小売事業者等による一般消費者への省エネルギー情報の提供が省エネ法上の努力義務とされているが、制度上のインセンティブが少なく十分な情報提供がなされていない可能性がある。このため、省エネ法に基づく「エネルギー小売事業者の省エネガイドライン」を見直し、効果的な省エネルギー情報提供を促すとともに、事業者の取組状況を可視化し、評価するスキームを創設する。また、エネルギー供給事業者等のサードパーティによる一般消費者や中小企業に対する省エネルギー改修や省エネルギー機器導入をより一層促すための措置を設け、取組を進めていく。

また、AI・IoTを活用し、電力需給状況と建物内のエネルギー利用状況を踏まえたエネルギー利用の最適制御を図る、次世代型のエネルギーマネジメントシステムの導入を進めていくための実証等を通じ、住宅・建築物におけるより効率的なエネルギー消費を進めていく。

(c)運輸

運輸部門については、エネルギーの消費の大部分を占めている自動車の省エネルギーや燃料・エネルギーのカーボンニュートラル化が重要であり、脱炭素化に向けて多様な選択肢を追求するとともに、電動車・インフラの導入拡大、電池等の電動車関連技術・サプライチェーン・バリューチェーンの強化等の包括的な措置を講じる。

自動車の燃費規制については、トップランナー制度に基づく燃費基準の下、これまで大幅な燃費の向上が図られてきており、2020年3月には"Well to Wheel"評価で電気自動車、プラグインハイブリッド自動車も対象とした、2030年度を目標年度とする乗用車の新たな燃費基準を定めた。

今後、カーボンニュートラルを目指していく中で、引き続き規制的手法とインセンティブ措置を両輪として取り組んでいく必要があり、技術中立的な燃費規制を活用し、あらゆる技術を組み合わせて、効果的にCO2排出削減を進めていく。

このため、自動車の製造事業者等に対し、新たな燃費基準の達成を通じた新車の 燃費向上を促していく。その際、勧告・公表の運用を見直すことにより、燃費基準 の遵守に向けた執行強化を検討する。

供給サイドだけではなく、需要サイドにおける取組も重要である。省エネ法における荷主や貨物・旅客事業者については、事業者が一定規模以上の物流量や輸送能力を有する場合に報告を義務付けており、工場・事業場における規制同様、エネルギー消費原単位の年1%改善を求めている。他方、荷主規制や貨物・旅客事業者規制については、指標となるエネルギー使用量に係る算定方法の違い等もあり、工場・事業場規制のように省エネルギー取組を適切に評価することができていない。このため、今後、省エネルギー取組を適切に評価・見える化を進めることで、荷主・輸送事業者のインセンティブを強化する。

また、運輸部門の省エネルギー化には、発荷主・輸送事業者・着荷主等が連携して貨物輸送全体の最適化を目指すことも重要である。このため、これら事業者が連携し、物流システムの標準化・共通化、AI・IoT等の新技術導入により、サプライチェーン全体の効率化を実証するとともに、成果として得られる優良事例の横展開を図る。加えて、内航海運については、先進的な省エネルギー化や物流効率化のための技術開発及び実証を行うとともに、船舶の省エネルギー性能等を「見える化」し評価する制度の運用等を行い、省エネルギー船舶の普及を促進する。港湾においては、大量かつ安定・安価な水素・燃料アンモニア等の輸入を可能とする港湾の施設の規模・配置等について検討するとともに、停泊中船舶への陸上電力供給の導入による船舶のアイドリングストップの促進、非常時にも活用可能な自立型水素等電源の導入促進、港湾荷役機械や港湾に出入りする大型車両等の水素燃料化の促進等の取組を推進する。

②非化石エネルギー導入拡大に向けた需要サイドの取組

今後、需要サイドにおけるカーボンニュートラルに向けた取組を加速させるためには、従来の省エネルギー政策に加えて、S+3Eに向け、需要サイドにおいても新たな取組を促す枠組みの構築が必要となる。具体的には、①非化石エネルギーを含む全てのエネルギーの使用の合理化(省エネ法上のエネルギーの定義の見直し)、②需要サイドでの非化石エネルギーの導入拡大(需要の高度化)、③再生可能エネルギー電気有効利用のための需要の最適化、④変動電源の導入拡大に対応した系統安定化に貢献するための需要サイドにおけるレジリエンス強化に向け、省エネ法改正を視野に制度的対応の検討を行う。

現行省エネ法では、国内での化石エネルギーの使用を合理化・効率化することを 目的としており、太陽光由来等の電気や、バイオマス、水素・アンモニア等の非化 石エネルギーの使用は合理化の対象外となっている。他方、例えば水素・アンモニアなどは当面、海外から調達することとなるため、これらを含む非化石エネルギーの使用も合理化することで、2050年カーボンニュートラルの実現だけでなく、エネルギーの安定供給の確保や経済性の向上にもつながる。このため、現行省エネ法の「エネルギー」の定義を見直し、非化石エネルギーを含む全てのエネルギーの使用を合理化の対象とし、総合的なエネルギー消費効率の向上を目指す。これに伴い、現在は火力発電由来とみなしている系統電気の一次エネルギー換算係数を、足下の電源構成を適切に反映した係数に見直すことで、電源の非化石化の状況を需要サイドのエネルギー使用量の評価においても適切に反映する。

その上で、2050年を見据えた需要サイドでの非化石エネルギーの導入拡大に向けては、低炭素社会実行計画やRE100等の一部の民間主導の取組のみならず、産業界全体で中長期的な目標を立て、足下から早期に取組に着手することが必要である。このため、コスト面での障壁や技術面での制約があることに留意しつつも、供給サイドの脱炭素化を踏まえた需要サイドの電化・水素化等による非化石エネルギーの導入拡大に向けて、非化石エネルギーの導入比率の向上を事業者に促すような枠組みの構築を進めていく。

また、近年、太陽光発電等の変動型再生可能エネルギーの拡大により、一部地域では再生可能エネルギー電気の出力制御が実施されるなど、再生可能エネルギーの余剰電力が生じることがあるが、このタイミングに需要をシフト(上げDR)することは、需給一体で見たときにエネルギーの使用の合理化につながる。また、猛暑や厳冬、発電設備の計画外停止等が起因となる需給ひつ迫時等においては、節電要請等の需要の削減(下げDR)が有効な対策の一つとなる。他方、現行省エネ法では、夏冬の昼間の電気需要平準化を一律に需要家に求めており、需給状況に応じて柔軟に需要を創出・削減する枠組みとはなっていない。このため、供給サイドの変動に応じて需要を最適化する枠組みの構築を進めていく。

さらに、変動型再生可能エネルギーの増加に伴い、需要サイドにおいても、系統の安定維持等のレジリエンス強化に貢献する対策を講ずることが必要である。具体的には、系統の周波数低下時に自律的に負荷制御を行う需要サイドの機器(エアコン等)導入や、猛暑や厳冬などに起因する一時的な供給力不足の際の需要サイドのEVやコージェネレーション等のリソース活用を促す対策が必要。こうした取組は、系統全体のレジリエンス強化にも資する。

これら需要サイドの省エネルギーを超えた総合的な対策を位置付けた制度的枠組みについて早急に検討を深め、法改正等必要な措置を講じ、S+3Eを目指しつつ、2050年カーボンニュートラル、2030年度の温室効果ガス排出削減目標に貢献していく。

(4) 蓄電池等の分散型エネルギーリソースの有効活用など二次エネルギー構造の 高度化

再生可能エネルギーのコスト低下やデジタル技術の進展によるエネルギーマネジメントの高度化、レジリエンス強化に対する関心の高まり等により、再生可能エネルギーを始めとする分散型エネルギーリソースの導入拡大は今後も進展が期待される。これに伴い、分散型エネルギーリソースが果たす役割は、これまでの需要家のレジリエンス対応、ピークカット、熱電併給等による省エネルギーなどの自家消費向けに加え、小売電気事業者向けの供給力や一般送配電事業者向けの調整力としての活用などに拡大していくことが期待されている。このため、分散型エネルギーリソースや需要家の電力消費量等のデータを取得するスマートメーターを、2024年までに原則全ての需要家へ導入する。また、電力メーターが取得するデータの種類や計測頻度等を増加させ、電気事業法の特定計量制度に基づく特例計量器のデータや、ガスや水道メーターのデータも取得できる次世代スマートメーターシステムの開発を進め、2030年代早期までに、現在導入を進めているスマートメーターからの置き換えを行い、レジリエンスの向上や系統全体の需給安定化、エネルギーマネジメントの高度化等への活用を進める。

また、分散型エネルギーリソースのうち、調整力の提供や変動する再生可能エネルギーの有効利用を図る上で特に重要となる蓄電池については、レジリエンス向上への関心の高まりやFIT制度の買取期間を終えた住宅用太陽光発電による電力の自家消費に対する経済性の向上を背景に、近年家庭用を中心に導入が進んでいる。家庭用蓄電池においては、日本の市場規模は世界でもトップレベルの水準となっており、今後も市場の拡大が期待されている。再生可能エネルギーの更なる導入促進の観点からは、家庭用のみならず、系統に対する調整力としての活用が期待される業務・産業用や系統用の蓄電池についても、一層の導入拡大が期待されている。

更なる家庭・業務・産業用の蓄電池の普及拡大に向けては、他国と比べても蓄電システムの導入コストが高止まり⁹しているという課題に対処する必要がある。更なるコスト低減のため、蓄電システムから得られる収益により投資回収できる水準として、家庭用蓄電システムは7万円/kWh、業務・産業用蓄電システムは6万円/kWhを2030年度の目標価格¹⁰として設定し、政府による導入支援における価格目標として活用し、価格低減を促進する。また、今後使用済みの車載用蓄電池が増大してくることが見込まれる中で、定置用蓄電池への再利用(リユース)を促進することは、定置用蓄電池のコスト低減にも寄与することが期待できる。このため、リユース蓄電池を使用した場合の蓄電システムの安全性等に関する国際標準化の推進や実証事業による支援により、安全性の確保や性能の信頼性向上を促し、車

 $^{^9}$ 2019年度の工事費を含む蓄電システムの価格の推計値は、家庭用は18.7万円/kWh、業務・産業用は24.2万円/kWh。

¹⁰ 家庭用、業務・産業用ともに、工事費を含めたシステム価格。

載用蓄電池の定置用蓄電池への転用を促進していく。加えて、更なるコスト低減に向けては、国内の生産規模の拡大が必要であることから、製造設備への投資促進のため、家庭用、業務・産業用の合計で2030年に累計約24GWh(2019年度累計の約10倍)となる導入見通しを設定し、将来市場の見通しを産業界とも共有しつつ、国内の定置用蓄電池製造設備の増強に対する支援等を実施していく。また、蓄電池の需要家への円滑な導入に向け、系統連系協議における事務手続きの合理化やユーザー視点での分かりやすい性能評価指標の導入・普及についても検討を進める。

需給調整市場での活用や、再生可能エネルギーの電力市場への統合に伴う蓄電池の重要性の高まりを背景に、蓄電池を活用した新たな事業として、系統に直接接続する大型の系統用蓄電池の特性(瞬動性、出力の双方向性等)を活かし、再生可能エネルギーのインバランス回避や調整力の提供等を行う蓄電事業への参入意思を示す事業者が現れている。現状、コストが高止まりしている定置用蓄電池の導入に対する経済性を改善し導入を拡大する上では、こうした新たなビジネスを促進し、自家消費、調整力、供給力の提供といった多様な使い方(マルチユース)を可能とすることにより、蓄電池が有する価値を顕在化させることも重要となる。このため、系統用蓄電池の電気事業法上の位置付けの明確化や迅速な応答性などの蓄電池の価値を評価し、需給調整市場を始めとする市場で活用するための環境整備等、各種制度課題について対応を進める。また、卸電力市場価格等に連動した電気料金の設定(ダイナミックプライシング)によるEVユーザーの充電ピークシフト誘導を含む、蓄電池を活用した新たなビジネスモデルの実証等を通じて、蓄電池のビジネスレベルでの多様な活用を促す。

分散型エネルギーリソースの活用促進に向けては、蓄電池や再生可能エネルギーといった各種分散型リソースを東ね、適切に市場で分散型リソースの価値を取引することができるアグリゲーターの一層の活躍が必要である。現在のアグリゲーターの主な事業としては、アグリゲーターが工場等の大口需要家に対して需要抑制(下げDR)を指示し、その抑制分を一般送配電事業者等に提供する取組がある。このうち、一般送配電事業者の調整力公募(電源 I '")において、アグリゲーターのDRによる落札は、2021年度は全国で約1.8GW(国内ピーク需要の約150GWの約1%強)に拡大している。2021年1月の需給ひっ迫時においても需要抑制が複数回実施され、電力量不足におけるDRの有効性が一定程度確認されており、今後、大規模電源に対する事業予見性が低下する中で、脱炭素化された調整力として更なる活用が期待されている。なお、電源 I 'は、2024年度以降は容量市場(発動指令電源)に移行予定であり、2024年度向けメインオークションで

⁻

^{11 10}年に1回程度の猛暑や厳寒に対応するための予備力等を一般送配電事業者が公募にて調達するもの。

の発動指令電源(DRを含む)の落札量は約4.2GWとなっており、DRの活用は拡大傾向にある。

また、2021年度より需給調整市場が順次開設、2022年度からはFIP制度の開始やアグリゲーターが電気事業法上に位置付けられる等、関連する制度整備の進展を踏まえ、更なるアグリゲーションビジネスの活性化を推進する 12 。このため、需給調整市場や卸電力市場等において分散型エネルギーリソースが調整力や供給力として評価されるよう市場環境整備を進める。また、太陽光等の再生可能エネルギーの出力を高精度に予測しつつ、生み出される電力を束ねることにより、その変動をならしてインバランスを抑制したり、蓄電池を活用して市場動向に応じて売電したりするといった再生可能エネルギーのアグリゲーション事業を含め、アグリゲーションビジネスの促進に向けた技術実証を推進する。さらに、分散型エネルギーリソースを用いた電力需要のシフト(上げDR)により、再生可能エネルギー会、剰時に電力需要をシフトさせる制御等を通じて、再生可能エネルギーの出力制御の回避や系統混雑緩和を図る取組を進める。上記のように、異なる分散型エネルギーリソースを組み合わせることで、S+3Eの高度化に貢献する。

地域における再生可能エネルギーやコージェネレーション等の分散型エネルギーリソースの活用に向けては、地域における地産地消による効率的なエネルギー利用、レジリエンス強化等にも資するマイクログリッドを含む自立・分散型エネルギーシステムの構築等が期待されている。また、マイクログリッド内でエネルギーの需給を効率的に調整することで、送電系統レベルに流れる電力量が低下すれば、電力ネットワーク設備の増強に関する費用負担や時間の回避、系統運用の効率化にもつながることが期待される。他方、マイクログリッドの構築に向けては、技術面、経済性等の観点で課題がある。また、地域における再生可能エネルギーの導入に際しては、例えば太陽光発電の将来の設備廃棄や景観との調和に関する地域の懸念が顕在化しており、地域と共生しつつ、地域の活性化にも貢献する地産地消に向けた取組も重要である。

このため、地域マイクログリッド構築支援等を通じ、事業者によるマイクログリッド内の需要と分散型エネルギーリソースによる供給の調整に要する基盤技術の構築を進める。また、需給調整機能として重要な蓄電池のコスト低減や、平時に分散型エネルギーリソースを有効活用する取組の促進等により、マイクログリッドの事業性・収益性の向上を図る。さらに、地域マイクログリッド等の構築を着実に進め、その事業性や関係者との調整に関する知見を蓄積し、ガイドライン等を通じた

 $^{^{12}}$ 2030年の電力市場におけるアグリゲーターによる需要抑制を中心としたDRのポテンシャルは、需要抑制の取組が先行している米国と同水準(ピーク電力の6%相当)となると仮定すると、国内のピーク電力(現状:約150GW)に対して約9GWと試算される。また、2020年度までに導入された家庭用太陽光約12GWは2030年度までに卒FITになると想定され、また2022年度以降導入される太陽光発電約11GWが全てFIP又は非FITであると機械的に仮定すると、仮にそれら全てをアグリゲーターが統合できるとした場合、約23GW(電力量の場合、約300億kWh:現状電力需要の約3%)と試算される。

周知や分散型エネルギープラットフォームにおける共有を促進することで、より効率の良い事業運営や、地方公共団体等の関係者間調整の円滑化を促進する。また、地域のレジリエンス強化や地域経済の活性化に資する真の地産地消の推進に向けて、地域と共生し、地域の産業基盤の構築等へ貢献する優良な事業者を顕彰し、その普及を促す。加えて、地産地消等に資する再生可能エネルギーの導入について、所有者不明土地を活用した施設の整備を可能とする仕組みの充実等を図っていく。

(5) 再生可能エネルギーの主力電源への取組

再生可能エネルギーは、世界的には、発電コストが急速に低減し、他の電源と比べてもコスト競争力のある電源となってきており、導入量が急増している。我が国においても、2012年7月のFIT制度の導入以降、10%であった再生可能エネルギー比率は2019年度には18%にまで拡大した。導入容量は再生可能エネルギー全体で世界第6位となり、再生可能エネルギーの発電電力量の伸びは、2012年以降、約3倍に増加するというペースで、欧州や世界平均を大きく上回る等、再生可能エネルギーの導入は着実に進展している。特に、平地面積当たりの太陽光の導入容量は世界一であり、我が国は、限られた国土を賢く活用して再生可能エネルギーの導入を進めてきた。

今後とも、2050年カーボンニュートラル及び2030年度の温室効果ガス排出削減目標の実現を目指し、エネルギー政策の原則であるS+3Eを大前提に、電力部門の脱炭素化に向け、再生可能エネルギーの主力電源化を徹底し、再生可能エネルギーに最優先の原則で取り組み、国民負担の抑制と地域との共生を図りながら最大限の導入を促す。具体的には、地域と共生する形での適地確保や事業実施、コスト低減、系統制約の克服、規制の合理化、研究開発などを着実に進め、電力システム全体での安定供給を確保しつつ、導入拡大を図っていく。

我が国の再生可能エネルギーの発電コストは、着実に低減が進んできてはいるものの、工事費、立地規制等の要因から、国際水準と比較すると依然高い状況にある。また、再生可能エネルギーの導入拡大に伴い、再生可能エネルギー賦課金は2021年度において既に2.7兆円に達すると想定されるなど、今後、国民負担を抑制しつつ導入拡大との両立を図っていく必要がある。このため、再生可能エネルギーのコストを他の電源と比較して競争力ある水準まで低減させ、自立的に導入が進む状態を早期に実現していく。また、再生可能エネルギーの自立化に向けたステップとして、電力市場における需給の状況に応じた行動を再生可能エネルギー発電事業者が自ら取ることを促していくことも重要である。このため、再生可能エネルギーの早期の自立化に向けて、コスト低減や電力市場への統合を積極的に進めていく。

また、FIT制度の導入を契機とした再生可能エネルギーの急速な導入拡大に伴い、様々な事業者の参入が拡大した結果、景観や環境への影響、将来の廃棄、安全面、防災面等に対する地域の懸念が高まっているという事実もある。再生可能エネルギーが長期にわたり安定的に発電する電源として、地域や社会に受け入れられるよう、地域の理解の促進や適正な事業規律の確保、安全面の不安の払拭に努めていく。

さらに、再生可能エネルギーの最大限の導入に向けて、再生可能エネルギーのポテンシャルの大きい地域と大規模消費地を結ぶ系統容量の確保や、太陽光や風力と

いった自然変動電源の出力変動への対応、電源脱落等の緊急時における系統の安定性の維持といった系統制約の克服も非常に重要であり、最大限取り組んでいく。

こうした取組や電源別の特徴を踏まえた取組など、あらゆる取組を総動員することで、国民負担の抑制と地域との共生を図りながら、再生可能エネルギーの最大限の導入を進めていく。なお、再生可能エネルギーの最大限の導入を効果的に進めるに当たっては、それぞれの政策の進捗状況を把握・評価した上で、不断の見直しを行っていく。

①コスト低減とFIT制度からの自立化

FIT・FIP制度は、長期間にわたり、再生可能エネルギーを固定価格で買い取る又は市場価格との差分をプレミアムとして交付し、投資インセンティブを高めて再生可能エネルギーを普及拡大させることにより、再生可能エネルギーのコスト低減を図る措置である。この制度趣旨を前提に、再生可能エネルギーの発電コストの低減及び大量導入に伴う国民負担の増加を最大限抑制するため、FIT・FIP制度における入札制の活用や中長期的な価格目標の設定、当該目標やコスト低減の実動向も踏まえた調達価格及び基準価格の設定、低コスト化に向けた研究開発への支援等を通じて、発電事業者等のコスト低減の取組を促進する。

さらに、FIT認定時の調達価格を維持したまま、長期間運転を開始しない未稼働案件については、調達価格が認定時のコストを前提に算定されたものであり、年々低下する太陽光パネル価格などのコスト低減が反映されず、将来的な国民負担の増大に繋がること、事業者の新規案件開発の意欲を低下させることや系統容量が押さえられてしまうことから、発電事業者に迅速な事業実施を促す仕組みとして、これまで、未稼働案件に対する累次の措置を取ってきた。2020年の「強靱かつ持続可能な電気供給体制の確立を図るための電気事業法等の一部を改正する法律(エネルギー供給強靱化法)」により改正された「電気事業者による再生可能エネルギー電気の調達に関する特別措置法(再エネ特措法、改正後の同法を改正再エネ特措法)」により、新たに認定失効制度を措置し、それらの適切な執行を通じて、国民負担の抑制を目指しつつ、再生可能エネルギーの円滑な導入を実現する。

また、再生可能エネルギーの自立化に向けて、FIP制度の導入等を通じて、発電事業者による創意工夫を引き出し、再生可能エネルギーの電力市場への統合を進めることが重要である。2020年の再エネ特措法改正によって導入されるFIP制度は、発電事業者が他の電源と同様に卸電力取引市場や相対取引で自ら売電し、市場価格を踏まえて算定される一定のプレミアムを受け取る制度である。この制度によって、市場での取引において、電力の需給状況や市場価格を意識して効率的な発電・売電を促すとともに、市場価格を踏まえつつ、予見可能性に配慮した算定方法で算出されるプレミアムによる支援を担保することで、投資回収の予見可能性も確保していく。また、FIP制度の適用対象を電源毎の状況や事業環境を踏まえつつ、徐々に拡大するとともに、FIT制度の下で事業を行う発電事業者が希望する

場合には、FIP制度へ移行することを認めることとした。こうした取組により、 再生可能エネルギーの電力市場への統合が進むことで、電力システム全体のコスト 低減、再生可能エネルギーの発電予測の精度の向上、蓄電池等の活用による発電・ 売電のタイミングを工夫する取組やアグリゲーションビジネスといった関連ビジネ スの発展も期待される。

また、地域に賦存する再生可能エネルギーの地産地消は、災害時のエネルギーの安定供給の確保や地域活性化の観点から重要である。このため、現行のFIT制度の基本的な枠組を当面維持する対象については、単なる導入に留まらず、レジリエンスの強化やエネルギーの地産地消に資するよう、認定の要件として、電源の特性に応じて自家消費や地域一体的な電源の活用を促す「地域活用要件」を設定する。

②地域との共生/事業規律の強化

地域と共生する再生可能エネルギーの導入実現のため、事業の開始から終了まで 一貫して、適正かつ適切に再生可能エネルギー発電事業の実施が担保され、地域からの信頼を確保することが不可欠である。

こうした観点から、2016年の再工ネ特措法の改正においては、条例を含む関係法令遵守を新たに認定基準として設けた。また、再工ネ特措法に基づく事業計画策定ガイドラインにおいて、住民との適切なコミュニケーションを努力義務としたほか、地域の懸念も踏まえながら、随時の運用見直しにもこれまで取り組んできた。

しかし、FIT制度の導入を契機として、規模や属性も異なる様々な事業者による参入が急速に拡大してきた太陽光発電を中心に、安全面、防災面、景観や環境への影響、将来の廃棄等に対する地域の懸念は依然として存在しており、こうした懸念を払拭し、責任ある長期安定的な事業運営が確保される環境を更に構築することが必要である。

(a) 地元理解の促進に向けた取組

再生可能エネルギー発電事業について地域が情報を把握するための仕組みとして、2016年の再エネ特措法改正に基づき、発電設備の識別番号、認定事業者名、発電設備の出力等の情報については、経済産業省ホームページにおいて公表されている。今後、事業者の適正で地域の理解を得た事業の実施を更なる地域住民等に対する情報提供等により促していくため、改正再エネ特措法に基づき、2022年度から、公表情報の拡大を措置する。具体的には、発電設備の稼働・未稼働の状況等を新たに公表することとする。

また、FIT制度開始以降、大量に再生可能エネルギー設備の導入が進んだこともあり、地方自治体による抑制的な条例やガイドラインの策定数が増加している。例えば、再生可能エネルギーに係る市町村等が制定する条例の中で、再生可能エネルギー発電設備の設置に関し、2020年度までに制定された抑制区域や禁止区域

を規定している条例は、2016年度までに比べて約4倍に増加した。こうした状況を踏まえ、再エネ特措法においては、条例を含む関係法令遵守を認定基準とし、地域の実情に応じた条例への違反に対し、再エネ特措法に基づく指導、改善命令、必要に応じて認定取消しが可能となっている。そのため、全国の自治体の再生可能エネルギー発電設備の設置に関する条例等の制定状況やその内容について網羅的に調査・分析し、各地の条例に関するデータベースを構築するとともに、地域の実情に応じた条例や効果を上げている条例などのグッドプラクティスについても取りまとめ、各自治体における地域の実情に応じた条例等の策定等を後押ししていく。

さらに、再工ネ特措法の施行に当たっては、地域の実情を理解している地方自治体との連携が重要である。そのため、2018年10月に全ての都道府県を集めた地域連絡会等を設置し、現在までに4回開催している。条例による取組やグッドプラクティスの横展開に当たっては、引き続きこの枠組も活用し、地方自治体との連携の強化に取り組んでいく。

加えて、2021年に改正された「地球温暖化対策の推進に関する法律(地球温暖化対策推進法、改正後の同法を改正地球温暖化対策推進法)」において、地域における円滑な合意形成を図りつつ、適正に環境に配慮し、地域に貢献する再生可能エネルギーの導入を促進する仕組みを設けることとされている。環境省を始めとする関係省庁が連携してこの仕組みの活用を進めるとともに、人材・情報・資金の観点から、国が地域の取組に対し、継続的・包括的に支援するスキームを構築し、環境影響や地域とのコミュニケーション等にも配慮しつつ、地域共生型・裨益型の再生可能エネルギー導入を進めていく。

(b) 開始から終了まで一貫した適正な事業実施の確保

再生可能エネルギー発電事業が地域に根差した長期安定的な事業として定着し、地域の信頼を確保するためには、開始から終了まで一貫した適正な事業実施を担保する必要がある。再エネ特措法では、2017年4月の改正法施行以降、認定事業者に対し、設置する設備に標識・柵塀等の設置を義務付けている。2018年11月には、標識・柵塀等の設置義務について注意喚起が行われたほか、資源エネルギー庁に対して標識・柵塀等が未設置との情報が寄せられた案件については、その都度、必要に応じ、口頭指導や現場確認を行っている。しかし、依然として標識・柵塀等の未設置に関する情報は寄せられていることから、より多くの事案に対応するため、通報案件への対応体制を強化していく。

また、太陽光発電事業の発電設備について、発電事業終了後に放置・不法投棄されるリスクを低減させることが必要である。改正再エネ特措法及びその関係法令等において、10kW以上の全ての事業用太陽光発電設備の廃棄等費用について、原則として源泉徴収的な外部積立てを求め、長期安定発電の責任・能力を担うことが可能であり、かつ確実な資金確保が可能であると認められる事業者に対しては内部積立てを認める形で、廃棄等費用の確実な積立てを担保する制度を創設した。今

後、本制度を着実に実施すべく、太陽光発電事業の認定事業者を始めとする関係者 が本制度の趣旨を正しく認識して着実に実施していくよう、必要な情報の周知・広 報やシステム上の整備を進めていく。

(c) 安全の確保

近年の台風や大雨等に伴う自然災害の頻発・激甚化と、それに伴う再生可能エネルギー発電設備の事故により、再生可能エネルギー発電設備の安全性に対する社会的関心が高まる中、こうした環境変化を適切に捉え、安全対策を進めていくことが重要である。

こうした状況を踏まえ、再生可能エネルギー発電設備の中でも特に設置件数や事故件数の増加が顕著な太陽光発電設備について、これまで電気設備の技術基準等で技術要件(支持物強度の確保、傾斜地における土砂災害対策等)を定めていたところ、設備形態の多様化対応や民間規格等の柔軟な連携を可能とするため、新たに太陽光発電に特化した技術基準を新設(2021年4月1日施行)した。

また、改正電気事業法に基づき小出力発電設備についても、しっかりと事故報告を求めていくこととしており、こうした取組を通じ、適正な事業実施を求めていくとともに、今後、小出力発電設備の保安管理の実態把握に努めていく。

③系統制約の克服に向けた取組

再生可能エネルギーの最大限の導入に向けては、系統制約への対応が不可欠である。脱炭素化の要請がより一層強まる一方、首都直下地震等の大規模災害も見込まれる中、全国の送電ネットワークを、再生可能エネルギーの大量導入等に対応しつつ、レジリエンスを抜本的に強化した次世代型ネットワークに転換していくことが重要となる。加えて、自然変動電源(太陽光・風力)の導入量の増加に伴い、必要となる調整力が増大する一方、現状においては調整電源として火力発電等に依存しているため、調整力の脱炭素化を進めつつ、普及拡大を進めることが不可欠となる。また、従来の系統の安定性は、同期電源(火力、水力、原子力等)によって維持されてきたが、今後は、系統に占める非同期電源(太陽光・風力・蓄電池等)の割合が高まる中、系統の安定性を引き続き維持するための方策が重要となる。再生可能エネルギーの主力電源化を進める上で、これらの系統制約を解消していく必要がある。

(a) 再生可能エネルギー大量導入に向けた系統制約への対応

従来、我が国の電力系統の整備状況は、再生可能エネルギーの立地ポテンシャルを踏まえたものに必ずしもなっておらず、再生可能エネルギーの導入量の増加に伴い、系統制約が顕在化している。そのため、今後、更に再生可能エネルギーを大量導入していくためには、十分な送電容量を確保するべく、系統増強や接続、利用の在り方を抜本的に変革することが重要である。

連系線等の基幹系統の増強に向けては、全国の再生可能エネルギーのポテンシャルを踏まえつつ、電力融通の円滑化によるレジリエンス向上に向けて、全国大での広域連系系統の形成を計画的に進めるためのマスタープランを策定する。その際には、将来の連系を検討している電源も含めて、各電源のポテンシャルの着実な把握を通じて、効率的かつ計画的な系統増強を行う。また、洋上風力を始めとする再生可能エネルギーのポテンシャルの大きい北海道等から、大消費地まで送電するための直流送電システムを計画的・効率的に整備すべく検討を加速する。その際、経済効果の大きさや経済安全保障の視点等も踏まえつつ、国内設備投資の促進策等についても検討していく。

また、ローカル・配電系統については、今後、各一般送配電事業者が策定する投資計画が、送配電設備の確実な増強等の観点から、必要な投資量が確保されていることを確認しながら、計画的かつ効率的に増強等を進めていく。加えて、その計画が最適なものとなるように、基幹系統におけるマスタープランを参考に増強規律の在り方等について検討を進める。なお、増強時の費用負担に関しては、ローカル系統等の整備と費用負担・接続の在り方を一体的に検討し、少なくともローカル系統に関しては原則一般負担化する方向で、一定の方向性を速やかに取りまとめる。

一方で、系統の増強には一定程度の時間を要することから、系統の増強と並行しながら既存系統を最大限に活用することが必要。そのため、「日本版コネクト&マネージ」として、想定潮流の合理化、緊急時用の枠の開放、送電線混雑時の出力制御を条件に新規接続を許容するノンファーム型接続により、運用容量の引上げを進めてきた。

今後も引き続き運用容量を開放するために、ノンファーム型接続の適用範囲をロ 一カル系統まで早期に拡大するとともに、配電系統についても、遅くとも2022 年度までに分散型エネルギーリソースを活用したNEDOプロジェクトにおいて要 素技術等の開発・検証を進め、その結果を踏まえて社会実装に向けた方向性を取り まとめ、速やかな展開を目指す。また、気象条件等に基づいて系統の容量を動的に 扱うダイナミックレーティングの導入によって系統の空き容量の拡大を目指す。加 えて、現行の先着優先のルール上は、ノンファーム型接続の電源の増加が予想され る中で、新規参入したノンファーム型接続の電源は、系統の空き容量が無い時間帯 においては、従来から接続している石炭火力等より先に出力制御を受けることにな る。今後は、再生可能エネルギーが石炭火力等より優先的に基幹系統を利用できる ように、メリットオーダーを追求した市場を活用する新たな仕組み(市場主導型: ゾーン制やノーダル制)への見直しと早急な実現を目指すこととし、必要な制度面 やシステム面の検討を進めながら、当面は、S+3Eの観点から、CO2対策費 用、起動費、系統安定化費用といったコストや、運用の容易さを踏まえ、送配電事 業者の指令により電源の出力を制御する再給電方式の導入に向けた系統利用ルール の見直しを進める。また、上位系統の容量制約の対策に向けて、ディマンドリスポ ンス等、同地域内の分散型エネルギーリソースの有効活用を進める。

(b) 自然変動電源の出力変動への対応

今後、自然変動電源(太陽光・風力)の導入が拡大することに伴い、出力変動が増大することが予想されるが、系統を安定的に運用するためには、電気の需要と供給を常に一致させるための対応を強化する必要がある。我が国は、島国であるという地理的特徴に加えて、自然変動電源の中でも、昼夜の発電の変動幅の大きい太陽光を中心に導入が進んでいるため、時間帯によっては出力変動への対応をより高度に行う必要がある。今後、安定供給を確保しつつ自然変動電源の更なる導入を進めていくため、周期が短い変動から長い変動まで、それぞれの変動に応じた調整力を効率的かつ効果的に確保し、需給バランスを維持する方策を強化するなど、電力システムの柔軟性を高めていくことが必要となる。

当面は火力発電・揚水発電を活用しつつ、更なる蓄電池の普及拡大に向けた取組 や、需給調整市場の開設により、より広域的、効率的な調整力の調達を進めるとと もに、市場の更なる活用に向けた検討を進める。

また、需要が少ない時期などを中心に、太陽光等の発電がピークとなる日中の時 間帯において、需給バランス維持を図りつつ、安定供給を確保した上で再生可能エ ネルギーの導入拡大を進めるためには、各電源の特性を踏まえた出力制御を適切に 行っていくことが重要になる。今後、再生可能エネルギーの導入を進める中で、出 力制御が発生するエリアの拡大や、出力制御量が増大する可能性がある中、再生可 能エネルギーの出力制御量を最大限低減、効率化するため、連系線の増強等による 地域間の融通やディマンドリスポンスの活用促進、再生可能エネルギー発電事業者 に電力需給を意識させる取組(FIP制度)の導入、デジタル技術を活用した出力 制御の高度化などを推進する。また、需給制約による出力抑制時の優先給電ルール については、S+3Eの観点からのメリットオーダーの徹底や、CO2対策費用、 起動費、系統安定化費用といったコストや、運用の容易さを踏まえつつ、最低出力 の状況等を精査した上で、火力発電の最低出力運転の基準引下げの可能性などにつ いても検討していく。さらに、電力システムの柔軟性を重視し、調整力の脱炭素化 が求められる中、蓄電池、水電解装置などについて、コスト低減などを通じて実用 化に向けた取組を進めるとともに、系統用蓄電池の電気事業法への位置付けの明確 化や市場の整備などの取組を進める。

さらには、再生可能エネルギーの電力市場への統合を見据え、卒FIT電源やFI P電源などの非FIT再生可能エネルギーへの出力制御に一定の金銭的精算をする ことも含めて、再生可能エネルギーの出力制御が発生した場合の更なる対応策を早急 に検討する。

なお、出力制御量の予見可能性を高め、事業者が投資判断と円滑なファイナンスができるようにするためにも、系統情報について、可能な限りリアルタイムに近く、30分値で電源別にビジュアル化して公開・提供する方針で見直しを進める。また、火力の燃料種別の情報公開についても速やかに検討する。

(c) 系統の安定性維持

今後、直流で発電される自然変動電源の導入拡大に伴い、電子機器であるインバータによって直流の波形で発電された電気を交流の波形に形成する非同期電源(太陽光・風力・蓄電池等)の系統に占める割合が高まる中、足下から系統の安定性を確保するためのデジタル技術等を活用した系統運用高度化に向けた取組を進める必要がある。具体的には、当面は同期電源の運転によって安定性を維持しつつ、同期調相機等の設置や疑似慣性機能等を具備したインバータの導入などのための技術開発や制度的な検討を進めることで、同期発電機の減少に伴う慣性力不足等の技術的な要因により、系統の突発的なトラブル時に生じる広範囲の停電リスク等の低減を図る。

特に配電系統では、単体は小規模でも、局所的に大量の変動型再生可能エネルギーが導入されることに伴い、電圧等の電力品質の維持・管理がより難しくなることから、その前提となる各種データ把握・収集・管理方法の高度化を含めた対応が求められることになる。そのため、想定潮流等の予測技術や送電時の電力ロスの削減などのデータ分析技術の高度化等を進めるとともに、自然変動電源や蓄電池、各電力設備から系統の状態監視に必要なデータをリアルタイムに収集・分析・統合し、状況変化に応じた最適な管理・制御を可能にするための検討・取組を行う。

④電源別の特徴を踏まえた取組

(a)太陽光

太陽光発電については、国土に占める平地面積が世界の主要国の中でも小さいながらも、国土面積当たりの設備導入容量が世界一となるなど、限られた国土の中で導入拡大を進めてきたことで、我が国の再生可能エネルギーの主力として世界第3位の累積導入量まで伸びた。また、自家消費や地産地消を行う分散型エネルギーリソースとして、地域におけるレジリエンスの観点でも活用が期待され、更なる導入拡大が不可欠である。

一方で、太陽光発電の年間導入量はFIT制度導入当初に比べ低下している。この要因として、まず、急激な導入拡大によって地域でのトラブルが発生したことや、近年、自然環境や景観の保全を目的として、再生可能エネルギー発電設備の設置に抑制的な条例の制定が増加するなど、導入拡大に向けた制約が大きくなり、地域と共生しながら安価に事業が実施できる適地が不足していることが挙げられる。さらに、FIT制度導入後、急激な拡大に産業全体の成熟が追いついていない中で、賦課金による国民負担の増大が生じたこと等を踏まえ、買取価格の引下げや事業規律の強化等を実施し、産業の適正化を図ってきたことも要因の一つと考えられる。

また、太陽光発電は、系統への接続において日中しか発電できないことや発電量が天候に左右されるなどの特性を持つ一方で、火力発電等の発電所に比べて比較的

容易かつ短時間で設置が可能であることから、電源設置と系統整備の時期のずれから系統制約が顕在化している。

こうした中で、更なる導入拡大に当たっては、適正な事業者による地域と共生した事業実施を図り、地域における前向きな合意形成を促した形で、適地の確保を進めることが重要である。加えて、一層のコスト低減を進めて他の電源と比較して遜色ない競争力のあるコスト水準となること、蓄電池等との組み合わせにより長期安定的な電源として成熟していくことが期待される。

そのため、地域と共生した導入を推進する観点から、例えば、改正地球温暖化対 策推進法に基づき、地方自治体が再生可能エネルギー導入の数値目標とこれを踏ま えた具体的な再生可能エネルギー促進区域の設定(ポジティブゾーニング)を推進 することにより、適地の確保を進めていく。また、農地についても、優良農地の確 保を前提に、荒廃農地を再生利用する場合の要件緩和、再生困難な荒廃農地の非農 地判断の迅速化や農用地区域からの除外の円滑化について国が助言すること等によ り、営農が見込まれない荒廃農地への再生可能エネルギーの導入拡大や発電と営農 が両立する営農型太陽光発電等による導入の拡大を進める。加えて、空港等のイン フラ空間等を活用した太陽光発電の導入拡大を図る。また、住宅・建築物について は、「脱炭素社会に向けた住宅・建築物の省エネ対策等のあり方検討会」における検 討結果も踏まえ、2050年において設置が合理的な住宅・建築物には太陽光発電 設備が設置されていることが一般的となることを目指し、これに至る2030年に おいて新築戸建住宅の6割に太陽光発電設備が設置されることを目指す。その実現 に向け、例えば、新築の庁舎その他政府の新設する建築物について、新築における 太陽光発電設備を最大限設置することを徹底するとともに、既存ストックや公有地 等において可能な限りの太陽光発電設備の設置を推進するなど、国も率先して取り 組む。加えて、民間部門においてもZEH・ZEBの普及拡大や既存ストック対策 の充実等を進めるべく、あらゆる支援措置を検討していく。

加えて、発電コストが国際水準と比較して未だ高い水準にあるため、更なるコスト低減等を進めつつ、FIT制度等の支援から自立化を進めることが必要である。このため、発電コストの低減に向けて、FIT・FIP制度における入札制や中長期的な価格目標の活用を通じて、発電事業者等のコスト低減の取組を促進する。また、自家消費やエネルギーの地産地消を行う分散型電源としての活用に向けて、負担の公平性に十分に留意しつつ、FIT・FIP制度を前提としない自家消費モデルや需要家等が遠隔地に発電設備を設置し長期契約等に基づき受電する仕組み等の新たな導入モデルの推進などの環境整備や、自家消費に資する蓄電池の自立的普及に向けた価格低減を進める。さらに、FIP制度やFIT買取期間の満了した住宅用太陽光発電等の活用により、自然変動電源のアグリゲーションビジネスの活性化を促し、太陽光発電の自立に向けた環境整備を図る。

加えて、主流となっている既存の太陽電池は、価格の低減等が進んではいるものの、設置に技術的な制約のある屋根の耐荷重の小さい既築の建築物や建物の壁面等

に設置が困難という制約がある。これらの技術的制約を克服可能な次世代型太陽電池の実用化と海外市場も視野に新市場の創出を図るため、次世代太陽電池や関連製品の社会実装に向けた研究開発・実証事業等に取り組んでいく。

2012年度のFIT制度の開始から導入が加速した太陽光発電設備が発電事業終了後に放置・不法投棄されるのではないかといった不安や景観、環境への影響などの地域からの懸念の声に対応するため、再エネ特措法の施行に当たっての都道府県との連携強化を進めていく。また、改正再エネ特措法による廃棄等費用積立制度の運用に基づく将来の使用済みパネルの適正な廃棄・処理に向けた取組も引き続き推進する。

(b) 風力

風力発電の導入に当たっては、陸上については、開発しやすい平野部での適地が減少しつつあり、洋上については、遠浅な海が広がっている欧州に比べて急深な地形・複雑な地層であるなどの日本の地理的特性がある中で、適地を確保していく必要がある。また、案件の形成後、導入までには、地元との調整や環境アセスメントのほか、立地のための各種規制・制約への対応が必要となり、時間を要している。さらに、風力の適地と現在の送電網への接続余地が必ずしも合致しなくなってきているという指摘もある。

北海道、東北、九州を始めとする風力発電の適地を最大限効率的に活用するため、農林地と調和・共生のとれた活用を目指しつつ、風力発電設備の導入をより短期間で円滑に実現できるよう、規制・制度の合理化に向けた取組を引き続き進める。具体的には、陸上風力について、改正地球温暖化対策推進法に基づき、地方自治体が再生可能エネルギー導入の数値目標とこれを踏まえた具体的な再生可能エネルギー促進区域の設定(ポジティブゾーニング)を推進することなどにより、適地の確保を進めていく。さらに、環境アセスメントの対象となる第1種事業の風力発電所の規模について「1万kW以上」から「5万kW以上」に引き上げる措置等を進めるとともに、地域の環境特性を踏まえた、効果的・効率的なアセスメントに係る制度的対応の在り方を検討し、また、保安林の解除に係る事務の迅速化・簡素化を図る。

また、国際水準と比較して、我が国の風力発電の発電コストは依然高く、コスト低減を進めていく必要がある。そのため、FIT制度における中長期的な価格目標の実現を目指し、「海洋再生可能エネルギー発電設備の整備に係る海域の利用の促進に関する法律(再エネ海域利用法)」に基づく公募制度や技術開発等を通じて、発電事業者等のコスト低減の取組を促進する。

特に、洋上風力発電については、世界的にはコストの低減と導入拡大が急速に進んでおり、我が国においても、再エネ海域利用法に基づく公募制度により競争環境を整備することにより、今後のコスト低減と導入拡大が見込まれる。さらに、事業規模は数千億円、部品数が数万点と裾野の広い産業であり、関連産業への経済波及

効果が期待される。一方で、急拡大するアジア市場が取り込めるような競争力ある サプライチェーンの構築には、これまでの国内の風車メーカー撤退等の経緯を総括 し、海外企業との連携や国内外の投資を呼び込むような市場の予見可能性の確保も 必要である。このため、2020年12月に洋上風力の産業競争力強化に向けた官 民協議会において定めた「洋上風力産業ビジョン(第1次)」に基づき、洋上風力の 大量導入と関連産業の競争力強化の「好循環」を実現する。

まずは、魅力的な国内市場の創出に政府としてコミットすることで、国内外から の投資の呼び水とする。具体的には、政府として年間100万kW程度の区域指定 を10年継続し、2030年までに1,000万kW、2040年までに浮体式も 含む3,000万kW~4,500万kWの案件を形成13することを目指す。この 目標の実現には、再エネ海域利用法に基づき、着実に案件形成を進めていくことが 不可欠である。このため、初期段階から政府や地方自治体が関与し、より迅速・効 率的に風況等の調査、適時に系統確保等を行う仕組み(日本版セントラル方式)を 確立するべく、官民の適切な役割分担も含めた検討を進める。加えて、系統や港湾 等のインフラ整備を計画的に進めていく。具体的には、導入目標の実現に貢献する 系統整備のマスタープランの策定により、国による「プッシュ型」の増強に着手す る。例えば、洋上風力発電の適地から大需要地に運ぶための海底の長距離直流送電 線の検討や、より多くの再生可能エネルギーを送電網に接続する仕組みについて、 ローカル・配電系統への全国展開に必要な技術開発等を進めるとともに、再生可能 エネルギーが石炭火力等より優先的に基幹系統を利用できるように、当面は、S+ 3 Eの観点から、メリットオーダーを追求しつつも、СО2対策費用、起動費、系 統安定化費用といったコストや、運用の容易さを踏まえ、送配電事業者の指令によ り電源の出力を制御する再給電方式の導入に向けた系統利用ルールの見直しを進め る。また、大型風車の設置・維持管理に必要な基地港湾を着実に整備するととも に、将来的な我が国の基地港湾に求められる機能等の検討を進める。

このような施策による国内市場の創出を呼び水として、競争力があり強靱なサプライチェーンを形成することが、電力安定供給や経済波及効果といった観点から重要である。この点、風車については、現時点では国内に製造拠点はないが、陸上風力等の経験等から技術力を有する国内部品メーカーの潜在力や国内のものづくり基盤がある。このため、産業界では、コスト低減や産業競争力強化に向けた目標を設定し、実現に向けた取組を進めている。政府としても、サプライチェーンの形成に向けて、設備投資へのインセンティブの付与、グローバルなビジネスマッチングの促進、各省と連携した規制改革等による事業環境の改善、人材育成の取組等を進める。

さらに、気象・海象が似ており、市場拡大が見込まれるアジア展開を目指すこと が重要である。そこで、競争力強化に向けて必要となる要素技術を特定するため 2

¹³ 再エネ特措法に基づく認定量。

021年4月に策定した「洋上風力の産業競争力強化に向けた技術開発ロードマップ」に基づき、着床式・浮体式それぞれの国内外の動向、日本の特性や強み等を踏まえた次世代の技術開発に取り組む。特に、サプライチェーン構築に不可欠な風車や中長期的に拡大の見込まれる浮体式等については、要素技術開発を加速化し、長期間にわたる技術開発・実証等を一気通貫で支援する取組等を行う。また、政府間の協力関係の構築と国内外の企業の連携を促し、海外での洋上風力事業への参画等を検討する日本企業をFSや実証、ファイナンスで支援しつつ、浮体式の安全評価手法の国際標準化等を進める。

(c) 地熱

日本の地熱資源のポテンシャルは世界第3位であるが、地熱発電の開発には、時間とコストがかかること、地熱資源の有望地域が一部地域に偏在していることによる開発適地や系統接続の制約、地元との調整や開発のための各種規制への対応等の課題があり、他国と比べるとそのポテンシャルを十分に活かしきれていない。地熱発電のベースロード電源としての価値を活かしつつ、中長期的には競争力ある自立化した電源とするためには、こうした課題を克服していく必要がある。

このため、地熱発電の導入をより短期間・低コストで、かつ円滑に実現できるよう、自治体における勉強会の開催や温泉事業者に対するモニタリングの実施等を通じた地域の理解促進、投資リスク及びコスト低減のためのリスクマネーの供給、探査技術の高度化等の掘削成功率や掘削効率の向上に資する技術開発などの取組を進める。

また、地熱開発の加速化のため、地熱資源の約8割が存在する自然公園内を中心に、独立行政法人石油天然ガス・金属鉱物資源機構(JOGMEC)自らが地熱資源の調査を行い、調査データ等を広く事業者に提供するとともに、掘削した井戸については、事業者の求めに応じて引き継ぐことで、事業者の開発リスクと開発コストの更なる低減を図る。また、自然環境や温泉事業者への配慮を前提に、関係省庁と連携し、自然公園法や温泉法、森林法等の規制の運用の見直し等を行う。あわせて、環境省は、2021年4月に表明した「地熱開発加速化プラン」に基づき、改正地球温暖化対策推進法に基づく促進区域の設定の促進、温泉モニタリングなどの科学データの収集・調査や円滑な地域調整を進めることを通じて、最大2年程度のリードタイムの短縮と全国の地熱発電施設数の2030年までの倍増を目指す。

加えて、2050年に向けては、抜本的な地熱発電の導入拡大を実現するため、 革新的な新たな技術開発にも取り組む。従来の地熱発電よりも更に地下深く(5km程度)にある超臨界状態の熱水資源を活用することで、従来に比べて大規模な地熱発電が可能となる。超臨界地熱資源は、超高温・超高圧であることに加えて、従来の地熱資源よりも酸性濃度が高いなどの特徴があり、抗井やタービン等の設備の腐食対策を講じる必要がある。このため、こうした地下深くの熱水資源を活用するための大深度の掘削技術やケーシング、配管等の部材・素材の要素技術開発等を行 う。さらに、有限な温泉・地熱資源の適切な管理に関する新たな制度に関して、現 状把握した上で論点を整理し、検討する。

地熱発電は、発電後の熱水利用など、エネルギーの多段階利用も期待される。例えば、地熱発電所の蒸気で作った温水が近隣のホテルや農業用ビニールハウスなどで活用され、地域のエネルギー供給の安定化を支える役割を担っている。こうした地域と共生した持続可能な開発を引き続き進めるとともに、地熱資源を活用し、農林水産業や観光等の産業振興に取り組む自治体を「地熱モデル地区」として選定・発信する。

さらに、アジア等の我が国と類似の海外の火山帯における地熱資源調査や発電事業等を行うことで知見を蓄積し、国内における地熱資源の探査や開発に活かしていくとともに、地熱発電用のタービンの世界シェア約7割を持つ我が国企業の強みを活かし、地熱発電技術の海外展開を促進する観点から、JOGMECの役割も含めた政策的支援の強化について検討する。

(d) 水力

水力発電は、安定した出力を長期的に維持することが可能な脱炭素電源として重要であり、昨今の気候変動対策やカーボンニュートラルの動きから、水力発電の価値を見直し、水力発電利活用を推進する国際的な機運が高まっている。しかし、開発リスクが高く、新規地点の開拓が難しいことに加え、河川環境に関連する地域の合意や系統制約などの課題が存在する。地域の治水目的などと併せて地域との共生やコスト低減を図りつつ、自立化を実現していくためには、こうした課題を克服していく必要がある。そのため、中小水力発電の導入検討段階等で必要となる流量調査や基本・詳細設計の作成、地元理解の促進等について支援することで、新規事業者の参入を図るほか、産業界におけるコスト低減の実現を促進する。その際、既に関係者によって収集されたデータも存在することから、それらのデータの複数関係者間での共有、地域との連携の観点からの地元自治体との一層の連携に配意する。さらに、自治体主導の下、新規の水力発電の導入を促進する有望地点や水系の情報を積極的に活用する枠組の構築を検討する。

また、ダム・導水路などに設定されている既存の水力発電設備の多くは、高度経済成長期から1990年代にかけての設計・解析・加工技術が未発達の時代に建設されたため、現在では利用可能なデジタル技術が十分に活用されておらず、設備保護のため十分に余裕を持った安全率(設備余力)が設定されている。デジタル技術の活用などにより、設備・地域の安全を確保しながら、ダム・導水路などの発電における環境負荷や費用の低減を図る。その際、ダム・導水路などの既存インフラを所管する省庁と連携強化を図るとともに、既存設備のリプレース等による最適化・高効率化や発電利用されていない既存ダムなどへの発電機の設置などを進め、発電電力量の増加を図る。加えて、現在研究が進められている長時間流入量予測などの

デジタル技術の活用等により、効率的に貯水運用を行うことで、水力エネルギーの 有効活用を進める。

以上のような対応について、関係者が明確なスケジュールや役割分担の下で連携 して取り組むことができるよう、水力発電の利活用改善に関する方向性を示す。

(e) バイオマス

バイオマス発電は、災害時のレジリエンスの向上、地域産業の活性化を通じた経済・雇用への波及効果が大きいなど、地域分散型、地産地消型のエネルギー源として多様な価値を有するエネルギー源である。

一方で、他の再生可能エネルギーと異なり燃料が必要であり、発電コストの大半を燃料費が占めているという特徴がある。このため、バイオマス発電の導入拡大に向けては、限りあるバイオマス燃料の安定調達と持続可能性を確保しつつ、燃料費の低減を進めることが課題となる。こうした課題を克服し、地域での農林業等と合わせた多面的な推進を目指していくことが期待される。

こうした中で、特に国産木質バイオマス燃料の供給拡大に向け、バイオマス関係 省庁が連携して早生樹や広葉樹等の燃料材に適した樹種の選定や、地域に適した育 林手法等の実証、木質バイオマス燃料の品質規格の策定等による市場取引の活性化 等の取組を推進し、燃料費の低減と燃料材が重要な収益機会になりつつある林業者 の経営の安定化の両立を図る。

また、バイオマス燃料の持続可能性を確保するため、FIT・FIP制度においては、環境、社会、労働、ガバナンスの観点に加え、食料との競合、ライフサイクル温室効果ガスの排出量等の観点について専門的・技術的な検討を踏まえ策定する持続可能性基準を満たした燃料を利用することを求めていく。加えて、既に認定を受けた案件について、事業計画に沿った事業を行っていないことが確認された場合、再エネ特措法に基づき指導、改善命令、必要に応じて認定取消しを行い、適切に事業を行うことを求めていく。

さらに、バイオマス発電及び熱利用等について、森林資源の保続が担保された形での木質バイオマスの熱利用・熱電併給に向けた施策を推進するとともに農山漁村再生可能エネルギー法等を通じて積極的に推進し、農林漁業の健全な発展と調和のとれた再生可能エネルギーの導入を進めていく。加えて、家畜排せつ物、下水汚泥、食品廃棄物などのバイオマスの利用や、耕作放棄地等を活用した燃料作物バイオマスの導入やコスト低減を進める。

特に、大規模なバイオマス発電を中心に、競争を通じてコスト低減が見込まれる ものについては、安定的かつ持続可能な燃料調達を前提に、FIT・FIP制度に 基づく入札制を通じて、コスト効率的な導入を促す。

(f) 再生可能エネルギー熱

再生可能エネルギー熱は地域性の高い重要なエネルギー源であることから、下水 汚泥・廃材によるバイオマス熱などの利用や、運輸部門における燃料となっている 石油製品を一部代替することが可能なバイオ燃料の利用、廃棄物処理における熱回 収を、経済性や地域の特性に応じて進めていくことが重要である。

太陽熱、地中熱、雪氷熱、温泉熱、海水熱、河川熱、下水熱等の再生可能エネルギー熱について、熱供給設備の導入支援を図るとともに、複数の需要家群で熱を面的に融通する取組への支援を行うことで、再生可能エネルギー熱の導入拡大を目指す。

(6) 原子力政策の再構築

①原子力政策の出発点-東京電力福島第一原子力発電所事故の真摯な反省

東京電力福島第一原子力発電所事故について、政府及び原子力事業者が、いわゆる「安全神話」に陥り、悲惨な事態を招いたことを片時も忘れず、真摯に反省するとともに、女川、東海第二など重大な事故に至らなかった原子力発電所を含めた様々な経験を教訓として、このような事故を二度と起こさないよう努力を続けていかなければならない。

政府としては、東京電力を始め多くの関係者と協力し、福島の復興・再生に全力を挙げて取り組み、これまでに帰還困難区域を除く全ての地域での避難指示の解除などを行ってきた。しかし、一方では、発生から10年が経過した現在も、約2.2万人の人々が避難指示の対象となっており、事故収束に向けた取組も道半ばの状況である。

また、依然として、国民の間には原子力発電に対する不安感や、原子力政策を推進してきた政府・事業者に対する不信感・反発が存在し、原子力に対する社会的な信頼は十分に獲得されていない。こうした中で、東京電力柏崎刈羽原子力発電所において発生した核物質防護に関する一連の事案を始め、国民の信頼を損なうような事案が発生した。

政府や事業者は、こうした現状を正面から真摯に受け止め、原子力の社会的信頼の獲得に向けて、最大限の努力と取組を継続して行わなければならない。また、東京電力福島第一原子力発電所事故の教訓を踏まえて、そのリスクを最小限にするため、万全の対策を尽くす。その上で、万が一事故が起きた場合には、国は関係法令に基づき、責任をもって対処する。

②原子力利用における不断の安全性向上と安定的な事業環境の確立

低廉かつ安定的な電力供給や地球温暖化といった長期的な課題に対応していくことが求められる中で、国民からの社会的な信頼を獲得し、安全確保を大前提に、原子力の利用を安定的に進めていくためにも、再稼働や使用済燃料対策、核燃料サイクル、最終処分、廃炉等の原子力事業を取り巻く様々な課題に対して、総合的かつ責任ある取組を進めていくことが必要である。

いかなる事情よりも安全性を全てに優先させ、国民の懸念の解消に全力を挙げる前提の下、原子力発電所の安全性については、原子力規制委員会の専門的な判断に委ね、原子力規制委員会により世界で最も厳しい水準の規制基準に適合すると認められた場合には、その判断を尊重し原子力発電所の再稼働を進める。その際、国も前面に立ち、立地自治体等関係者の理解と協力を得るよう、取り組む。

原子力事業者を含む産業界は、自主的に不断に安全を追求する事業体制を確立 し、原子力施設に対する安全性を最優先させるという安全文化の醸成に取り組む必 要がある。国はそれを可能とする安定的な事業環境の整備等必要な役割を果たしていく。

原子力事業者は、二度と原子力事故は起こさないとの強い意思を持ち、原子力のリスクを適切にマネジメントするための体制を整備するとともに、確率論的リスク評価(PRA)等の客観的・定量的なリスク評価手法を高度化し、リスク情報を活用した意思決定(RIDM)に向けた基盤整備と現場での実践に取り組む。また、安全管理体制について相互に指摘しあうピア・レビュー活動の実績を積み重ねることで、事業者間における相互の切磋琢磨を促し、継続的な安全性向上につなげていくことなどが求められる。メーカー等も含めた事業者間の連携組織が、産業界の継続的な安全性向上活動をリードする中核として、他団体や学術界などと連携しつつ、取り組むべき技術共通課題について、ガイドライン策定等を通じて取組方針を示し、各事業者のコミットを得て実行状況を継続的に確認していく。こうした安全性向上へ向けた取組を強化するに際しては、原子力規制委員会との積極的な意見交換等を行い、原子力に係る安全規制やその中長期的な在り方と整合的になるよう取り組む必要がある。

核セキュリティ確保は原子力事業の基本であり、核セキュリティ文化の醸成と核物質防護対策の徹底に常に取り組むことが求められる。規制基準への適合はもとより、機微情報の管理を徹底した上で、事業者間で核物質防護体制を相互に指摘し合うことで、自主的に対策強化を図る新たな仕組みを構築する。加えて、サイバーセキュリティについても、産業界のガイドラインに基づき、各発電所での対策徹底に取り組む。

こうした方針の下、原子力事業者を始めとした産業界は、新たな連携体制として「再稼働加速タスクフォース」を立ち上げ、外部専門家を含め人材や知見を集約し、審査中の泊、島根、浜岡、東通、志賀、大間及び敦賀において、原子力規制委員会による設置変更許可等の審査及び原子力事業者による使用前事業者検査の的確かつ円滑な対応、現場技術力の維持・向上を進める。加えて、原子力事業者自らが、立地地域との信頼関係の構築に向けて、日頃から地域に根差したリスクコミュニケーションを積み重ねていくとともに、国も前面に立ち、科学的知見やデータ等に基づき、エネルギーをめぐる状況や原子力を取り巻く課題等について丁寧な説明を尽くし、立地自治体等関係者の理解と協力を得るよう、取り組む。

一方、東日本大震災後に原子力発電所の停止期間が長期化していることを踏ま え、メーカー等も含めた事業者間の連携組織が中心となり、保全活動の充実や設計 の経年化対策、製造中止品の管理等に取り組むとともに、安全性を確保しつつ長期 運転を進めていく上での諸課題について、官民それぞれの役割に応じ、検討する。

加えて、メーカー等も含めた事業者間の連携組織が中心となり、トラブル低減に 向けた技術共通課題の検討体制の構築や照射脆化等の経年劣化に係る継続的な知見 拡充、安全性を確保しつつ定期事業者検査の効果的・効率的な実施や運転サイクル の長期化を図るための技術的検討が始められており、こうした取組を引き続き進める。

原子力事業者は、高いレベルの原子力技術・人材を維持し、今後増加する廃炉を円滑に進めつつ、東京電力福島第一原子力発電所事故の発生を契機とした規制強化に対し迅速かつ最善の安全対策を講じ、地球温暖化対策やベースロード電源による安定的な供給に貢献することが求められている。このため、国は、電力システム改革によって競争が進展した環境下においても、原子力事業者がこうした課題に対応できるよう、海外の事例も参考にしつつ、事業環境の在り方について引き続き検討を進める。また、電力システム改革等の進展の状況を踏まえながら、引き続き、バックエンドも含めた安定的な事業環境の確立に向けて、必要な対応に取り組む。

東京電力福島第一原子力発電所の廃炉や、今後増えていく古い原子力発電所の廃炉を安全かつ円滑に進めていくためにも、高いレベルの原子力技術・人材を維持・発展することが必要である。また、東京電力福島第一原子力発電所事故後も、国際的な原子力利用は拡大を続ける見込みであり、特にエネルギー需要が急増する中国やインド、新興国において、その導入拡大の規模は著しい。我が国は、事故の経験も含め、原子力利用先進国として、安全や核不拡散及び核セキュリティ分野、地球温暖化対策の観点からの貢献が期待されており、また、周辺国の原子力安全を向上すること自体が我が国の安全を確保することとなるため、多様な社会的要請を踏まえた技術開発等を通じて高いレベルの原子力人材・技術・産業基盤の維持・強化を図るとともに、再稼働や廃炉等を通じた現場力の維持・強化が必要である。

廃炉等に伴って生じる廃棄物の処分については、低レベル放射性廃棄物も含め、 発生者責任の原則の下、原子力事業者等が処分場確保に向けた取組を着実に進める ことを基本としつつ、処分の円滑な実現に向け、国として、必要な研究開発を推進 するなど、安全確保のための取組を促進する。

安全かつ円滑に廃止措置を進めていく上では、廃棄物の処理の最適化も必要である。海外事業者の豊富な実績や技術を国内作業に活かすことが重要であり、国内において適切かつ合理的な方法による処理が困難な大型機器については、関連する国際条約や再利用に係る海外の実例等を踏まえ、相手国の同意を前提に有用資源として安全に再利用される等の一定の基準を満たす場合に限り例外的に輸出することが可能となるよう、必要な輸出規制の見直しを進める。また、クリアランス物については、廃止措置の円滑化や資源の有効活用の観点から、更なる再利用先の拡大を推進するとともに、今後のフリーリリースを見据え、クリアランス制度の社会定着に向けた取組を進める。

原子力損害賠償制度については、万が一、原子力事故が発生した場合における被害者保護に万全を期すため、2018年に「原子力損害の賠償に関する法律」の一部を改正し、損害賠償の迅速かつ適切な実施を図るための予めの備え、和解等に基づく本賠償開始前の被害者への賠償の早期実現のための措置等を講じた。また、賠償制度の見直しについては、東京電力福島第一原子力発電所事故に係る賠償の実情

や電力システム改革等を踏まえ、適切な賠償を迅速に実施することを前提に、原子力事業者及び国の役割分担も考慮した上で、被害者への賠償に係る国民負担の最小化、原子力事業者の予見可能性の確保といった観点も踏まえつつ、引き続き、総合的に検討を進め、必要な措置を講ずる。

原子力防災体制の構築・充実については、道路整備等による避難経路の確保等を含め、政府全体が一体的に取り組み、これを推進する。災害対策基本法及び原子力災害対策特別措置法の規定により、防災基本計画及び原子力災害対策指針等に基づき策定される地域防災計画・避難計画について、「地域原子力防災協議会」の枠組みの下、国と関係地方公共団体等が一体となって、地域ごとに具体的に解決すべき課題を検討し、その計画の具体化・充実化を進める。これらの地域防災計画・避難計画を含む地域の「緊急時対応」については、原子力災害対策指針等に照らし、具体的かつ合理的であることを同協議会において確認し、さらに、内閣総理大臣を議長とする「原子力防災会議」で了承していく。策定後も、最新の知見を積極的に取り入れながら、地方公共団体等の関係者と連携し、訓練等を通じた継続的な改善を行うとともに、原子力災害対策要員を育成する。また、原子力災害時の対応力を向上させるため、防災業務関係者に対する研修等も実施していく。

③対策を将来へ先送りせず、着実に進める取組

これまで原子力を利用してきた結果、現在、約19,000tの使用済燃料が存在し、管理容量の約8割に達している。原子力利用に伴い確実に発生するものであり、将来世代に負担を先送りしないよう、現世代の責任として、その対策を確実に進めることが不可欠である。このため、使用済燃料対策を抜本的に強化し、総合的に推進する。

高レベル放射性廃棄物については、国が前面に立って最終処分に向けた取組を進める。2017年7月には、最終処分に係る「科学的特性マップ」を公表し、これを契機に、全国で対話活動を展開している中、北海道寿都町と神恵内村で文献調査を開始した。国民理解・地域理解を深めていくための取組を継続する。

最終処分に至るまでの間、使用済燃料を安全に管理することは核燃料サイクルの 重要なプロセスであり、使用済燃料の貯蔵能力の拡大へ向けて政府の取組を強化す る。あわせて、将来の幅広い選択肢を確保するため、放射性廃棄物の減容化・有害 度低減などの技術開発を進める。

核燃料サイクル政策については、これまでの経緯等も十分に考慮し、関係自治体 や国際社会の理解を得つつ、再処理やプルサーマル等を推進するとともに、中長期 的な対応の柔軟性を持たせる。

- (a) 使用済燃料問題の解決に向けた取組の抜本強化と総合的な推進
- (ア) 高レベル放射性廃棄物の最終処分に向けた取組の抜本強化

最終処分の実現に向けては、廃棄物を発生させた現世代の責任として将来世代に 負担を先送りしないよう、「特定放射性廃棄物の最終処分に関する基本方針」(20 15年5月閣議決定)に基づき、国が前面に立って取り組むこととした。取組に当 たっては、最終処分事業の実現が社会全体の利益であるとの認識に基づき、その実 現に貢献する地域に対し、敬意や感謝の念を持つとともに、社会として適切に利益 を還元していく必要があるとの認識が、広く国民に共有されることが重要である。 2017年7月、「科学的特性マップ」を公表し、これを契機に、原子力発電環境整 備機構(NUMO)とともに全国で対話活動を展開している中、2020年11 月、北海道寿都町と神恵内村で文献調査を開始した。調査に当たっては、「対話の 場」等のあらゆる機会を通じ、地域の声を踏まえつつ、周辺市町村等も含めた対話 活動を推進する。その中で、地層処分事業の安全確保の考え方や地域の未来等につ いて、議論を丁寧に重ね、検討を深めていただけるよう、最大限取り組む。この 際、地域との共生が重要であることを踏まえ、将来のまちづくりに資する、必要な 情報の収集・分析や、適切な支援制度の活用促進等に積極的に取り組む。引き続 き、地域の理解と協力を得ながら、全国のできるだけ多くの地域において地層処分 事業に関心を持っていただくとともに、調査を受入れていただけるよう、対話活動 を積極的に行う。その中で、国は、地域の理解活動の状況を踏まえ、調査の実施等 について関係自治体へ主体的に申し入れるものとする。

高レベル放射性廃棄物については、i)将来世代の負担を最大限軽減するため、長期にわたる制度的管理(人的管理)に依らない最終処分を可能な限り目指す、ii)その方法としては現時点では地層処分が最も有望である、との国際認識の下、各国において地層処分に向けた取組が進められている。我が国でも、科学的知見の蓄積を踏まえた継続的な検討を経て、地層処分することとしている。NUMOは、最新の技術開発動向を踏まえた処分事業の安全確保のための考え方やその手法を「包括的技術報告書」としてとりまとめた。他方、その技術的信頼性に関する専門的な評価が国民に十分には共有されていない状況を引き続き解消していくことが重要である。このため、国、NUMO、JAEA等の関係機関が、全体を俯瞰して、総合的、計画的かつ効率的に技術開発を着実に進める。この際、幌延の深地層研究施設等における研究成果を十分に活用していく。あわせて、地層処分を前提に取組を進めつつ、可逆性・回収可能性を担保し、今後より良い処分方法が実用化された場合に将来世代が最良の処分方法を選択できるようにする。

このような考え方の下、地層処分の技術的信頼性について最新の科学的知見を定期的かつ継続的に評価・反映するとともに、将来に向けて幅広い選択肢を確保し、柔軟な対応を可能とする観点から、使用済燃料の直接処分など代替処分オプションに関する調査・研究を着実に推進する。あわせて、処分場を閉鎖せずに回収可能性を維持した場合の影響等について調査・研究を進め、処分場閉鎖までの間の高レベル放射性廃棄物の管理の在り方を具体化する。

処分事業の実現に必要な知見を拡充する観点から、研究成果の発展や人材の継承に取り組むほか、国内外の研究基盤の相互活用を推進するなど、地域の理解を得ながら、国内外の関係機関との連携を進める。また、対話活動においても、共通の課題を抱える各国と知見や経験の共有を図り、国内の取組に活用していく。

また、廃棄物の発生者としての基本的な責任を有する原子力事業者は、国やNU MOの取組を踏まえ、地域に根ざした理解活動を主体的かつ積極的に行うとともに、最終処分場の必要性について、広く国民に対し説明していくことが求められる。

(イ) 使用済燃料の貯蔵能力の拡大

廃棄物を発生させた現世代として、高レベル放射性廃棄物の最終処分へ向けた取組を強化し、国が前面に立ってその解決に取り組むが、そのプロセスには長期間を必要とする。その間も、原子力発電に伴って発生する使用済燃料を安全に管理する必要がある。このため、使用済燃料の貯蔵能力を強化することが必要であり、安全を確保しつつ、それを管理する選択肢を広げることが喫緊の課題である。こうした取組は、対応の柔軟性を高め、中長期的なエネルギー安全保障に資することになる。

このような考え方の下、使用済燃料の貯蔵能力の拡大を進める。具体的には、発電所の敷地内外を問わず、新たな地点の可能性を幅広く検討しながら、中間貯蔵施設や乾式貯蔵施設等の建設・活用を促進する。

政府は、2015年10月の最終処分関係閣僚会議において、「使用済燃料対策に関するアクションプラン」を策定した。同プランに基づき、原子力事業者は使用済燃料対策推進計画を策定し、取組を進めてきた結果、2020年秋以降、伊方や玄海における発電所構内の乾式貯蔵施設や、むつ中間貯蔵施設が原子力規制委員会から規制基準に基づく許可を得るなど、貯蔵能力の拡大に向けた具体的な取組が進展している。これらの取組に加え、事業者間の一層の連携強化を進めることも使用済燃料対策の柔軟性を確保する上で大きな意義があり、事業者全体の課題として対応を進める必要がある。国もこうした使用済燃料対策について、前面に立って主体的に対応し、立地自治体の意向も踏まえながら、関係者の理解の確保等に最善を尽くして取り組んでいく。

(ウ) 放射性廃棄物の減容化・有害度低減のための技術開発

使用済燃料については、既に発生したものを含め、長期にわたって安全に管理しつつ、適切に処理・処分を進める必要があること、長期的なリスク低減のため、その減容化・有害度低減が重要であること等を十分に考慮して対応を進める必要がある。こうした課題に的確に対応し、その安全性、信頼性、効率性等を高める技術を開発することは、将来、使用済燃料の対策の柱の一つとなり得る可能性があり、その推進は、幅広い選択肢を確保する観点から、重要な意義を有する。

このため、放射性廃棄物を適切に処理・処分し、その減容化・有害度低減のための技術開発を推進する。具体的には、高速炉や、加速器を用いた核種変換など、放射性廃棄物中に長期に残留する放射線量を少なくし、放射性廃棄物の処理・処分の安全性を高める技術等の開発を国際的な人的ネットワークを活用しつつ推進する。また、最終処分に係る検討・進捗状況を見極めつつ、最終処分と減容化等技術開発や、関連する国際研究協力・研究人材の育成などの一体的な実施の可能性について、引き続き検討を進める。

(b) 核燃料サイクル政策の推進

(ア) 再処理やプルサーマル等の推進

我が国は、資源の有効利用、高レベル放射性廃棄物の減容化・有害度低減等の観点から、使用済燃料を再処理し、回収されるプルトニウム等を有効利用する核燃料サイクルの推進を基本的方針としている。

核燃料サイクルについては、六ヶ所再処理工場の竣工遅延などが続いてきた。また、もんじゅについては、廃止措置への移行を決定した。このような現状を真摯に受け止め、事業を安全に進める上で直面する課題を一つ一つ解決することが重要である。その上で、使用済燃料の処理・処分に関する課題を解決し、将来世代のリスクや負担を軽減するためにも、高レベル放射性廃棄物の減容化・有害度低減や、資源の有効利用等に資する核燃料サイクルについて、これまでの経緯等も十分に考慮し、引き続き関係自治体や国際社会の理解を得つつ取り組むこととし、再処理やプルサーマル等を推進する。

核燃料サイクルの中核となる六ヶ所再処理工場とMOX燃料工場が2020年に原子力規制委員会から規制基準に基づく許可を得たところであり、安全確保を大前提に、関係事業者による支援も含め、これらの施設の竣工と操業に向けた準備を官民一体で進める。

また、平和的利用を大前提に、核不拡散へ貢献し、国際的な理解を得ながら取組を着実に進めるため、利用目的のないプルトニウムは持たないとの原則を引き続き堅持し、プルトニウム保有量の削減に取り組む。これを実効性あるものとするため、「我が国におけるプルトニウム利用の基本的な考え方」(2018年原子力委員会決定)を踏まえ、プルトニウムの回収と利用のバランスを十分に考慮しつつ、2016年に新たに導入した再処理等拠出金法の枠組みに基づく国の関与等によりプルトニウムの適切な管理と利用を行う。原子力事業者は、地元理解を前提に、稼働する全ての原子力発電所を対象にプルサーマルが導入できるよう検討を進めて、2030年度までに、少なくとも12基の原子力発電所でプルサーマルの実施を目指す計画を示しており、引き続き、事業者間の連携・協力を深めつつ、プルサーマルを一層推進する。

あわせて、使用済MOX燃料の処理・処分の方策については、使用済MOX燃料の発生状況とその保管状況、再処理技術の動向、関係自治体の意向などを踏まえな

がら、引き続き2030年代後半の技術確立を目途に研究開発に取り組みつつ、検討を進める。また、「高速炉開発の方針」(2016年12月原子力関係閣僚会議決定)及び「戦略ロードマップ」(2018年12月原子力関係閣僚会議決定)の下、米国や仏国等と国際協力を進めつつ、高速炉等の研究開発に取り組む。

もんじゅについては、「もんじゅの廃止措置に関する基本方針」(2017年6月「もんじゅ」廃止措置推進チーム決定)に基づき、安全の確保を最優先に、着実かつ計画的な廃止措置に責任を持って取り組む。その際、立地地域の住民や国民の理解を得るための取組を引き続き進めることとし、廃止措置と並行して、国は地元の協力を得ながら、福井県敦賀エリアを原子力・エネルギーの中核的研究開発拠点として整備していく。もんじゅにおいてこれまで培われてきた人材や様々な知見・技術に加え、廃止措置中に得られる知見・技術については、将来の高速炉研究開発において最大限有効に活用する。

(イ) 中長期的な対応の柔軟性

核燃料サイクルに関する諸課題は、短期的に解決するものではなく、中長期的な対応を必要とする。また、技術の動向、エネルギー需給、国際情勢等の様々な不確実性に対応する必要があることから、対応の柔軟性を持たせることが重要である。特に、今後の原子力発電所の稼働量とその見通し、これを踏まえた核燃料の需要量や使用済燃料の発生量等と密接に関係していることから、こうした要素を総合的に勘案し、高レベル放射性廃棄物の減容化・有害度低減、資源の有効利用の観点やコスト、関係自治体の意向等も考慮しつつ、状況の進展に応じて戦略的柔軟性を持たせながら対応を進める。

④国民、自治体、国際社会との信頼関係の構築

(a) 東京電力福島第一原子力発電所事故を踏まえた広聴・広報

東京電力福島第一原子力発電所事故から10年が経過した今もなお、国民の間に ある原子力に対する不信・不安は払拭できておらず、エネルギーに関わる行政・事 業者に対する信頼は依然として低い。また、行政に対して、原子力に対する正確で 客観的な情報提供を求める声もある。

この状況を真摯に受け止め、その反省に立って信頼関係を構築するためにも、原子力に関する丁寧な広聴・広報を進める必要がある。このため、国が前面に立ち、原子力立地地域のみならず、これまで電力供給の恩恵を受けてきた消費地も含め、幅広い層を対象として理解確保に向けた取組を強化していく。その際、原子力が持つリスクや事故による影響を始め、事故を踏まえて整備した規制基準や安全対策の状況、重大事故を想定した防災対策、原子力の経済性、放射性廃棄物の処分等のバックエンドの取組、エネルギー政策の現状、地球温暖化対策への貢献、国際動向など、様々なテーマに関して、科学的根拠や客観的事実に基づいて、受け手のニーズに合致し、より伝わりやすくなるよう工夫を重ねていく。同時に、全国で説明会や

講演会を開催するのみならず、双方向の対話形式や、ウェブ、ソーシャルネットワーキングサービス(SNS)などの広報手法も活用して、情報を発信するとともに、各地域のオピニオンリーダーや多様なステークホルダーとの丁寧な対話活動を展開するなど、効果的な理解活動を推進する。福島第一原発の廃炉についても、廃炉現場の視察や地域住民との座談会等の機会を通して、双方向のコミュニケーションを丁寧に行うことで、地域の理解を得ながら進めていく。

また、世代を超えて丁寧な理解増進を図るため、原子力に関する教育の充実を図る。

(b) 立地自治体等との信頼関係の構築

我が国の原子力利用は、原子力立地地域の関係者の安定供給に対する理解と協力に支えられてきた。今後も原子力利用を進めていく上で、立地地域との共生に向けた取組が必要不可欠である。

立地地域は、地域資源の開発・観光客の誘致といった地域振興や、避難道路の整備、防災体制の充実など、独自の様々な課題を抱えている。こうした課題に真摯に向き合い、産業振興や住民福祉の向上、防災対策のための予算措置、原子力発電施設等立地地域の振興に関する特別措置法の活用なども含めて、関係府省庁が連携して、解決に向けた取組を進めていく。

他方で、稼働停止やその長期化、建設停止、再稼働、運転延長、廃炉等の状況変化により、立地地域では経済的・社会的な影響も生じているなど、当該地域の将来へ向けた見通しが立て難くなっている。こうした立地地域の将来への不安の払拭に向けて、国は、立地地域との丁寧な対話を通じた認識の共有・信頼関係の深化に取り組むとともに、産業の複線化や新産業・雇用の創出も含めて、各地域の要望に応じて立地地域の「将来像」を共に描く枠組み等を設け、それぞれの実態に即した支援を進める。

例えば、40年超となる運転が進む福井県嶺南地域では、将来像の検討・実現に向けた「共創会議」を立ち上げた。同会議では、福井県の「嶺南Eコースト計画」とも連携し、原子カリサイクルビジネスへの支援や、「もんじゅ」サイトで進められる新たな試験研究炉の整備による研究開発・人材育成、関連企業の誘致等も含めて、国が主体的に関係省庁で連携して取組を進めていく。

また、各地域では、農林水産業のICT化を通じた付加価値向上やブランド強化、観光やワーケーションの誘致拡大、自然エネルギーの利活用等、地域資源等の強みを活かした「産業の複線化」の動きも進みつつある。

こうした先進事例・ノウハウを共有し、全国大での議論を深めながら、地域の実情に応じて様々な政策ツールを組み合わせて提案するなど、支援の在り方も高度化させていく。また、原子力事業者にも、地域社会の一員として、立地地域の様々な課題解決に資する誠実な対応はもとより、将来像の検討・実現に向けた主体的な貢献を求めていく。

(c) 世界の原子力平和的利用と核不拡散・核セキュリティへの貢献

東京電力福島第一原子力発電所事故は、周辺国を含む国際社会に大きな不安をも たらしていることから、IAEA等の場を活用し、国際社会との対話を強化し、迅 速かつ正確な情報発信を行う。世界においては、原子力発電を将来的に廃止するこ とを決めた国や地域もある一方、原子力の利用を掲げている国が多く存在すること も事実である。特に、我が国を取り巻く中国、東南アジア、インドを始めとする新 興国における原子力発電の導入は今後も拡大していく見込みであり、こうした中 で、我が国の高いレベルの技術・人材の維持・発展という観点に鑑みつつ、東京電 力福島第一原子力発電所事故の経験から得られた教訓を国際社会と共有すること で、世界の原子力安全の向上や原子力の平和的利用、核不拡散及び核セキュリティ 分野において積極的な貢献を行うとともに、地球温暖化対策に貢献していくことは 我が国の責務であり、世界からの期待でもある。我が国としてはIAEA基準等の 原子力安全の国際標準の策定に積極的に貢献することが重要である。加えて、原子 力技術を提供するに際し、公的金融を付与する場合には、原子力安全条約及び I A EA基準を参照した安全確保等に関する配慮の確認を行いつつ、事故の経験と教訓 に基づき、安全性を高めた原子力技術と安全文化を共有していくことで、世界の原 子力安全の向上に貢献する。

また、非核兵器国としての経験を活かして、IAEAの保障措置の強化や厳格な輸出管理を通じた核不拡散及び核セキュリティ・サミット等の成果やIAEAを中心とする継続的な努力を通じた国際的な核セキュリティの強化に積極的に貢献する。特に、核不拡散分野においては、核燃料の核拡散抵抗性の向上や、保障措置技術や核鑑識・検知の強化等の分野における研究開発において国際協力を進め、核不拡散の取組を強化していくことが重要である。我が国としては、米仏等の関係国との協力の下、こうした取組を進めていく。さらに、政府は、IAEA等国際機関と連携しつつ、原子力新規導入国に対する人材育成・制度整備支援等を一元的に実施していく。

(7)火力発電の今後の在り方

火力発電は、1960年代の原油輸入自由化による石炭火力から石油火力へのシ フトや、1970年代のオイルショックや環境問題等によるLNG火力の活用拡大 などを経ながら、戦後の高度経済成長を強く牽引し、長い間、貴重な電力供給源と して活躍してきた。また、東日本大震災以降の電力の安定供給や災害時等における 電力レジリエンスを支えてきた、重要な供給力である。火力発電は、太陽光や風力 の出力変動を吸収し、需給バランス調整を行う調整力や、急激な電源脱落などにお ける周波数の急減を緩和し、ブラックアウトの可能性を低減する慣性力といった機 能により電力の安定供給に貢献しており、再生可能エネルギーの更なる導入拡大が 進む中で、当面は再生可能エネルギーの変動性を補う調整力・供給力としても必要 である。一方で、野心的な2030年度の新たな温室効果ガス排出削減目標の実現 に向けては、安定供給を大前提に、再生可能エネルギーの瞬時的・継続的な発電電 力量の低下にも対応可能な供給力を持つ形で設備容量を確保しつつ、できる限り電 源構成に占める火力発電比率を引き下げていくことが基本となる。その際、安定供 給の確保を前提として、火力発電の脱炭素化に向けた環境対応に取り組みつつ、環 境対応下での火力の競争力の強化・経済効率性の向上といった課題に取り組んでい く必要がある。

安定供給については、火力発電の保持する機能を代替する技術(蓄電池、水素等)の普及が不十分なまま、火力発電の設備利用率低下や高経年化、採算性の悪化による休廃止が進むことで、足下の供給力が不足するおそれが高まっている。火力の設備容量や設備利用率の低下による事業環境の悪化、燃料不足リスクがある中、安定供給に必要な供給力を確保するため、電源の退出防止策や燃料確保の取組強化に向けた検討を進めるとともに、容量市場により中長期的に必要な設備容量を確保する。また、安定供給を確保しつつ、脱炭素火力に向けた転換を進めるに当たっては、化石火力の各燃料種が持つ一長一短の特徴を踏まえて、適切なポートフォリオを確保することが重要である。石油火力の休廃止や非効率石炭火力のフェードアウトが進み、LNG火力への比重が高まる火力ポートフォリオとなり得る中で、中東情勢の変化等によるシーレーンリスクや中国を中心としたアジアの燃料需要増加による獲得競争激化に伴う調達リスク、発電量当たりのCO2排出量、備蓄性・保管の容易性といったレジリエンス向上への寄与度等の観点から、適切な火力のポートフォリオを維持していく。

環境対応については、火力発電由来のCO2排出量を着実に削減するとともに、 火力発電が具備する機能を代替する技術や脱炭素化する技術の開発・普及等を加速 度的に推進していく必要がある。このため、従来からのCO2排出量削減に向けた 取組として、「電気事業における低炭素社会実行計画」に基づくCO2排出係数目標 に向けた電力業界の自主的取組に加え、小売事業者に対して販売電力量に占める非 化石電源比率目標を設定する「エネルギー供給事業者による非化石エネルギー源の 利用及び化石エネルギー原料の有効な利用の促進に関する法律(高度化法)」の規制や、発電事業者に対して火力発電の発電効率目標を設定する省エネ法の規制によって、CO2排出量の削減に向けた取組を着実に推進する。さらに、今後は、2050年カーボンニュートラル実現を見据えた上で、適切な火力ポートフォリオを構築しながら、次世代化・高効率化を推進しつつ、非効率な火力のフェードアウトに着実に取り組むとともに、脱炭素型の火力発電への置き換えに向け、アンモニア・水素等の脱炭素燃料の混焼やCCUS/カーボンリサイクル等の火力発電からのCO2排出を削減する措置(アベイトメント措置)の促進や、火力運用の効率化・高度化のための技術開発・導入環境整備の推進に取り組む。

具体的には、非効率な火力、特に非効率な石炭火力については、省エネ法の規制強化により最新鋭のUSC(超々臨界)並みの発電効率(事業者単位)をベンチマーク目標として設定する。その際、アンモニア等について、発電効率の算定時に混焼分の控除を認めることで、脱炭素化に向けた技術導入の促進につなげていく。こうした規制的措置に加え、容量市場については、2025年度オークションから、一定の稼働率を超える非効率な石炭火力発電に対して、容量市場からの受取額を減額する措置を導入することで、非効率石炭火力のフェードアウトを着実に推進していく。また、脱炭素化を見据えつつ、次世代の高効率石炭火力発電技術である石炭ガス化複合発電(IGCC)や石炭ガス化燃料電池複合発電(IGFC)などの技術開発等を推進する。

また、アンモニア・水素等の脱炭素燃料の火力発電への活用については、2030年までに、ガス火力への30%水素混焼や、水素専焼、石炭火力への20%アンモニア混焼の導入・普及を目標に、実機を活用した混焼・専焼の実証の推進、技術の確立、その後の水素の燃焼性に対応した燃焼器やNOxを抑制した混焼バーナーの既設発電所等への実装等を目指す。こうした取組を通じ、2030年時点では国内で水素の年間需要を最大300万t、うちアンモニアについては年間300万t(水素換算で約50万t)の需要を想定する。また、2030年度の電源構成において、水素・アンモニアで1%程度を賄うことを想定する。また、CCUS/カーボンリサイクルについては、2030年に向けて、技術的課題の克服・低コスト化を図ることが不可欠であり、CCSの商用化を前提に2030年までに導入することを検討するために必要な適地の開発、技術開発、輸送実証、事業環境整備、できるだけ早期のCCS Ready導入に向けた検討に取り組むなどCCUS/カーボンリサイクルの事業化に向けた環境整備を推進する。これらの取組を通じて、安定供給に必要な設備を維持しつつ、火力発電由来のCO2排出量を着実に削減する。

経済効率性の向上について、電力自由化の下、再生可能エネルギーの更なる導入拡大が進む中で、火力は設備利用率の低下、高経年化、事業環境の悪化が今後も進む可能性がある。こうした競争的環境において、今後、火力の競争力を強化していくためには、2050年カーボンニュートラルに向けた脱炭素化への対応が必要不可欠であり、環境対応下で競争力をもつ、脱炭素化に対応した新規電源の導入が必

要となる。このため、カーボンニュートラル実現と安定供給の両立に資する新規投資を促進する方法について詳細検討を加速化させていく。また、既存設備においても、これまで現場技術者の長年の経験に基づく、きめ細かな運転管理が行われてきたが、近年、電力自由化の中で競争的環境に置かれており、より効率的な事業運営が必要である。加えて、脱炭素化に向けては、調整力としての柔軟な運転(幅広い負荷変動への対応)が求められ、こうした運用の高度化に係る取組を強化する必要がある。このため、運転・保守の効率化によるコスト削減やより柔軟な運用等に向けて、AI・IoTを活用した火力発電の運用の最適化・自動化や負荷変動対応や機動性に優れた火力技術開発等の取組を促進する。

こうした課題に取り組む中でも、立地地域との共生という観点は重要であり、特に非効率石炭火力のフェードアウトに当たっては、石炭火力が地方税収(固定資産税、法人事業税等)、運輸・運転・保守等における雇用、地元企業への外注等を通じて地元経済に貢献している中で、将来的に発生するおそれのある地域経済や雇用への影響等を踏まえながら、地域の実情等に応じて、脱炭素化に向けたエネルギー転換等のトランジションの促進を検討していくことが必要である。

また、途上国の実効的な脱炭素化については、2020年12月に経協インフラ戦略会議で決定された「インフラシステム海外展開戦略2025」において、相手国のニーズを深く理解した上で、風力、太陽光、地熱等の再生可能エネルギーや水素、エネルギーマネジメント技術、CCUS/カーボンリサイクルなどのCO2排出削減に資するあらゆる選択肢の提案や、パリ協定の目標達成に向けた長期戦略など脱炭素化に向けた政策の策定支援を行い、途上国の実効的な脱炭素化を促していくことを基本方針とした。その上で、石炭火力輸出支援については、2021年6月のG7コーンウォール・サミットにおける首脳コミュニケに基づき、政府開発援助、輸出金融、投資、金融・貿易促進支援等を通じた、排出削減対策が講じられていない石炭火力発電への政府による新規の国際的な直接支援を2021年末までに終了することとした。

相手国のエネルギー政策や気候変動政策に関与を深めることで、脱炭素化を促すというこの基本方針を踏まえて取組を進め、脱炭素社会の実現をリードしていく。

(8) 水素社会実現に向けた取組の抜本強化

水素が日常生活や産業活動で普遍的に利用される「水素社会」を実現するためには、水素を新たな資源と位置付け、様々なプレイヤーを巻き込んで社会実装を進めていく必要がある。日本は世界初の水素の国家戦略である「水素基本戦略」(再生可能エネルギー・水素等関係閣僚会議決定)を2017年12月に策定し、以後着実に水素社会実現に向けた取組を実施してきたが、近年は多くの国・地域が水素をカーボンニュートラル達成に不可欠なエネルギー源と位置付け、戦略策定やその取組を強化している。カーボンニュートラル時代を見据え、水素は、電化が難しい熱利用の脱炭素化、電源のゼロエミッション化、運輸、産業部門の脱炭素化、合成燃料や合成メタンの製造、再生可能エネルギーの効率的な活用など多様な貢献が期待できるため、その役割は今後一層拡大することが期待される中、日本が引き続きこの分野を国際的にもリードしていくためにも、その取組を一層強化する必要がある。また、水素から製造されてきたアンモニアについても、既存の肥料等の原料用途に加えて、火力発電への混焼や専焼、船舶を含む輸送や工業での活用等の新たな用途についても検討が進んでいる。

水素社会実現を通じて、カーボンニュートラルを達成するためには、水素の供給コスト削減と、多様な分野における需要創出を一体的に進める必要がある。そのために、現在一般的な水素ステーションにおいて、100円/Nm3で販売されている水素の供給コストを、2030年に30円/Nm3(CIF価格)、2050年には20円/Nm3以下に低減し、長期的には化石燃料と同等程度の水準までコストを低減することを目指す。同時に、現在約200万 t/年と推計される水素供給量を2030年に最大300万 t/年、2050年には2,000万 t/年程度に拡大することを目指す。

他方、燃料アンモニアについては、複数の発電事業者が2030年までの燃料アンモニアの火力発電への混焼を計画しているなど、2030年時点では年間300万 t(水素換算で約50万 t)規模、2050年には年間約3,000万 t(同約500万 t)の国内需要を想定している。こうした活用拡大に向けては、市場価格の高騰を防ぎつつ安定的に必要量を確保することが重要となる。そのため、燃料アンモニアの調達、生産、輸送・貯蔵、利用、ファイナンス等において、コスト低減を図るとともに、必要な燃料アンモニアを安定的に供給できる体制を構築することで、2030年には、Nm3当たり10円台後半(熱量等価水素換算)での供給を目指す。

安価な水素・アンモニア等を長期的に安定的かつ大量に供給するためには、海外で製造された安価な水素の活用と国内の資源を活用した水素の製造基盤の確立を同時に進めていくことが重要である。そのため、2030年までに国際水素サプライチェーン及び、余剰再生可能エネルギー等を活用した水電解装置による水素製造の商用化の実現を目指し、水素運搬船を含む各種輸送・供給設備の大型化や港湾にお

ける受入環境の整備、水電解装置の大型化・モジュール化等に関する技術開発の支援とともに、水素・アンモニアについて、公的金融機関やJOGMECによる資源開発や積出港の整備のリスク低減に資するファイナンススキームの活用や整備の検討、余剰電力などの安価な電力の活用を促進する制度整備も併せて行う。また、更なる水素供給コストの低減や大量の水素の効率的製造に向けて、光触媒や、高温ガス炉等の高温熱源を活用した水素製造など、革新的な水素製造技術開発・基礎研究に対する支援も進めていく。燃料アンモニアについても、各工程における高効率化に向けた技術開発や、燃料アンモニア普及後には生産時に排出されるCO2のより効率的な抑制を図るための技術開発及び環境整備を進めていく。

水素需要量の拡大を実現するためには、各部門における取組を加速化する必要がある。まず運輸部門については、FCVの更なる導入拡大に向けて、その導入支援と水素ステーションの戦略的整備を両輪で行いつつ、燃料電池トラックや水素・アンモニアの直接燃焼や、燃料電池も活用できる船舶、燃料電池鉄道車両等への用途拡大に向けた技術開発や実証、大規模充填能力を有するステーションの開発・導入に関する支援などを行う。また、航空機分野では、水素の直接利用だけでなくSAFのうち、水素から製造する合成燃料の活用も期待されることから、機体及び合成燃料の製造技術開発も後押しし、航空機部門の脱炭素化を進める。

発電部門における水素利用は、大量の水素需要が見込めることから水素需要拡大の推進役と位置付けられる。このため、専焼用燃焼器の技術開発や大型器による発電の実機実証を着実に進めつつ、高度化法等において、アンモニアとともに非化石価値を適切に評価し、2030年までの社会実装を加速する。

産業部門については、水素・アンモニアともに工業用の原料や産業プロセスで必要となる高温の熱源として期待されているが、水素還元製鉄を始めとする製造プロセスの大規模転換や、水素を使う産業向け工場設備、水素等の燃焼特性に合わせたバーナー、大型・高機能ボイラー等の技術開発・実証を行う必要がある。

民生部門については、世界に先駆けて商用化を実現した家庭用燃料電池については、販売価格も、PEFC(固体高分子型燃料電池)の場合、販売開始時の300万円超から、100万円を切る水準まで低下しており、レジリエンスの強化にも資することから累積導入量が40万台を超え、市場における自立的な普及が見通せる時期に入っている。今後も更なる普及を促進すべく、業務・産業用の定置用燃料電池も含め、更なる技術開発等を通じた一層のコスト削減や、電力系統において供給力・調整力として活用するための実証支援等の燃料電池の持つポテンシャルを最大限活用できる環境整備を推進する。また今後はカーボンニュートラル時代を見据え、非常時にも活用可能な定置用燃料電池における水素の直接利用も念頭に、純水素燃料電池の導入支援も行っていく。

運輸、民生等の多様な分野での水素による脱炭素化を可能とするキーデバイスである燃料電池は、我が国がこれまで技術で世界をリードしてきたが、水素の利活用に向けて各国が取り組む中、技術開発競争も激化しており、今後の市場拡大を見据

え、競争力強化に向けた取組を加速していく必要がある。このため、日本の競争優位を維持し、燃料電池のコスト低減を通じた社会実装を実現する観点から、①基礎研究を含む要素技術の研究開発強化、②多用途展開支援及び設備投資促進に伴う供給能力強化を通じた規模の経済の活用、③協調領域での標準化を含むFCメーカー等の更なる協力関係構築といった取組を官民一体となって取り組んでいく。

こうした取組は個別に実施するだけでなく、統合的に行うことが、その相乗効果を引き出す上で重要である。また、長期の水素需要に不確実性が伴い、大規模なインフラ投資に踏み出しにくい中でも水素供給を拡大するには、既存インフラを最大限活用しつつ供給拡大が可能で、極力、需要と供給が隣接する地域等をモデルとし、水素利用をまず促していくことが望ましい。このため、グリーンイノベーション基金も活用し、これまでの国際水素サプライチェーン構築に向けた技術開発や、福島や山梨における再生可能エネルギーを活用した大規模な水素製造の実証の成果等も踏まえつつ、①国際水素サプライチェーン等による大量の水素供給とその臨海部等での大規模な活用や、②水電解装置等を用いた自家消費、周辺地域での利活用など、既存インフラや需要と供給の隣接する地域特性を最大限活用した社会実装モデルを創出し、効率良く知見を蓄え、水素利用量の増大を図ることを目指す。また、モデル創出に当たっては、水素バリューチェーン推進協議会などの民間団体や、地域における水素の社会実装に向けた民間の動きとも連携して進めていくこととする。

カーボンニュートラルに向け幅広い分野で脱炭素化に貢献できる水素の利活用については、地域における副生水素や再生可能エネルギーなど多様な資源から製造できるという水素の特性を生かし、福島を始めとして自治体等で地産地消型の取組が進められている。こうした取組は地域レベルの脱炭素化の実現に資するだけでなく、地域のエネルギー自給率の向上や地方創生にもつながる取組として重要であり、地域レベルでの先進的な水素社会モデルの構築に向け、地域の資源等を活用した水素の供給とその面的な利用に向けた取組を支援する。

水素に関する規制改革については、これまで燃料電池自動車・水素ステーションの導入を目的としたものを着実に実施してきたところであるが、今後も燃料電池車に関する規制の一元化などの検討を着実に進めるとともに、運輸部門に加えて、各分野における水素の社会実装の進捗に併せて、その検討対象を拡大し、安全の確保を前提に規制の合理化を検討する。同様に、燃料電池自動車や水素ステーションの関連機器等、水素関連技術の実用化に併せて進めてきた国際標準化についても、国際水素サプライチェーンや商用車向けの水素充填技術の開発など水素の活用先の拡大を見据えた様々な技術開発が進展する中で、我が国の技術的な優位性の確保と海外市場への展開の促進の観点から、取組を強化していく。

また、世界各国でのカーボンニュートラル実現に向けた機運の高まりも背景に、 改めてカーボンニュートラル時代における水素の役割を踏まえた上で、水素基本戦 略を改定する。

(9) エネルギー安定供給とカーボンニュートラル時代を見据えたエネルギー・鉱 物資源確保の推進

カーボンニュートラルへの道筋に様々な不確実性が存在する状況においても、エネルギー・セキュリティの確保に関しては一切の妥協は許されず、必要なエネルギー・資源を安定的に確保し続けることが国家の責務である。昨今の中東情勢の変化や新興国の需要拡大、シーレーンの不安定化、戦略物資を巡る国際的な緊張の高まり等も踏まえると、石油・天然ガスや金属鉱物資源等の海外権益獲得や国内資源開発を通じた安定供給確保は、国民生活及び経済活動の観点から重要であり、引き続き確実に達成する必要がある。

また、カーボンニュートラル社会の実現のカギとなる水素やアンモニア、CCSといった脱炭素燃料・技術の導入・拡大には、これまで石油・天然ガスの資源外交で培った中東やロシア等の資源国やアジア等の消費国とのネットワークが重要な基盤となることが見込まれるため、将来を見据えて、今から積極的に取組を開始していく発想が重要となる。また、我が国の石油・天然ガス開発企業には、それら脱炭素燃料・技術の供給等においても、引き続きメインプレイヤーとなることが期待される。

こうした状況を踏まえ、①足下で必要な石油・天然ガス等の更なる安定的な確保、②電化等で需要が拡大するレアメタル等の金属鉱物資源の更なる安定的な確保、③脱炭素燃料・技術の導入・拡大について、資源・燃料政策として一体的に捉え、我が国が資源・エネルギーの安定供給に万全を期しつつ、カーボンニュートラルへの円滑な移行を実現するための包括的な政策を推進する。

また、JOGMECについて、石油・天然ガス、金属鉱物資源等の安定的かつ低廉な供給に加え、水素・アンモニア、CCS等の脱炭素燃料・技術の導入・拡大等のカーボンニュートラル化に資するべく、役割の見直し、リスクマネー供給、技術実証等の機能強化を検討する。

こうした政策を推進する中で、SDGsなど国際社会の共通の理念に貢献できるよう、取組を推進していく。

①包括的な資源外交の推進

資源外交は、これまで主に石油・天然ガスと金属鉱物資源の安定供給確保を目的として展開してきた。カーボンニュートラルに向け、世界の資源・エネルギー情勢はより複雑化・不透明化しており、化石資源に乏しい我が国は、石油・天然ガスと金属鉱物資源等の安定供給確保のため、引き続き資源外交に最大限取り組む必要がある。また、脱炭素燃料・技術の将来的な導入・拡大に向けては、今から積極的に取組を開始していくことが必要である。こうした点を踏まえ、石油・天然ガスと金属鉱物資源の安定供給確保、さらには脱炭素燃料・技術の将来的な確保を一体的に推進すべく、「包括的資源外交」を展開する。その際、従来の二国間の枠組みに加え

て、多国間の枠組みを通じて、エネルギートランジションやレジリエンス強化の必要性などの国際的な世論形成、脱炭素燃料・技術に関する具体的協力案件の組成、 化石燃料の脱炭素化に向けた関係国とのイノベーション協力、メタン対策やクレジット取引等の国際ルール形成にも積極的に関与する。

②石油・天然ガス等の自主開発の更なる推進

石油・天然ガスのほぼ全量を輸入に依存する我が国は、輸入依存度が高いことによる調達における交渉力の限界や、中東情勢等により影響を受けやすいという構造的課題を抱えている。こうした中で、石油・天然ガスの安定供給確保のためには、我が国企業が直接その開発・生産に携わる海外の上流権益確保と国内資源開発を通じた自主開発を進めることが極めて重要である。そのため、我が国として、内閣総理大臣を筆頭とした資源外交やJOGMECによるリスクマネー供給等を通じて、我が国企業による自主開発を推進してきた。

一方、新型コロナウイルス感染拡大に端を発した油価低迷による上流投資の減少、中東情勢の不安定化や南シナ海・東シナ海での緊張の高まりに伴うシーレーンリスクの高まり、さらには2020年10月の2050年カーボンニュートラル宣言や2021年4月の2030年度の新たな温室効果ガス排出削減目標の表明など、石油・天然ガスを取り巻く国内外の情勢は大きく変化した。

こうした中にあっても、石油・天然ガスの安定供給確保の重要性は全く変わるものではなく、むしろ、いかなる情勢変化にも柔軟に対応するための基盤として、世界的な環境意識の高まりも踏まえつつ、自主開発比率を可能な限り高めることの重要性が一層増している。このため、石油・天然ガスの安定供給確保に向けて、引き続き資源外交の推進やJOGMECによるリスクマネーの供給等により、自主開発を推進し、石油・天然ガスの自主開発比率(2019年度は34.7%)を2030年に50%以上、2040年には60%以上に引き上げることを目指す。また、水素・アンモニア・CCSといった脱炭素燃料・技術を含む資源獲得競争を勝ち抜くべく、国際競争力を持った「中核的企業」の創出を引き続き目指しつつ、これらの企業が「総合エネルギー産業」への変革を遂げ、カーボンニュートラル社会を実現するメインプレイヤーとなることも目指す。加えて、水素・アンモニアについても、今後の国内需要の立ち上がり状況等を踏まえて、自主開発目標の対象とすべきか否かについて検討していく。また、石炭の自主開発比率(2019年度は55.7%)は2030年に60%を維持することを目指す。

③アジアLNG市場の創出・拡大

LNGは、原油と同様の方法で備蓄を保持することが困難なことから、調達先の多角化やLNG市場の拡大を進めることが重要である。このため、市場の流動性向上を通じたLNG需給と価格の安定化に向け、2016年5月に策定した「LNG市場戦略」(2016年5月経済産業省策定)に基づいて、第三者への転売等を禁じる仕向地

条項の緩和・撤廃や調達先の多角化等を進めてきた。また、我が国及びアジアのLNGセキュリティを高め、更なる流動性の高い市場を構築する観点から、2017年及び2019年のLNG産消会議において、官民合わせて200億ドルのファイナンス支援と1,000人の人材育成支援をコミットした。さらに、2020年3月に策定した「新国際資源戦略」(2020年3月経済産業省策定)において、2030年度に日本企業の「外・外取引」を含むLNG取引量を1億tとする目標を定めた。こうした取組を通じて、LNG市場の流動性は確実に向上してきたところである。

こうした中、2020年末から2021年初にかけて、寒波に伴う北東アジアのLNG需要増加や、世界各地のLNG供給設備のトラブル多発による供給量低下、パナマ運河の渋滞による輸送日数長期化等が重なり、LNGのスポット価格が一時的に急騰するなど不安定化した。また、2021年にも中国が我が国を抜いて世界一位のLNG輸入国になるとの予測があり、国際的なLNG市場における我が国のプレゼンス低下が懸念される。

こうした状況を踏まえ、国際LNG市場の更なる流動性向上及び国際LNG市場における我が国の影響力維持によるセキュリティ向上の観点から、2030年度に日本企業の「外・外取引」を含むLNG取引量を1億tとすることを目指し、仕向地条項の一層の柔軟化やJOGMECによるリスクマネー供給等を通じた供給源の多角化、アジア各国のLNG需要の創出・拡大への関与等を通じ、流動性が高く厚みのあるアジアLNG市場の創設・拡大に向けた取組を引き続き推進する。また、「LNG市場戦略」を刷新し、国際LNG市場の更なる流動化やレジリエンスの強化、電力・ガス自由化の中での効果的なLNG確保と調達価格安定化、LNGバリューチェーン全体での脱炭素化等に向けて、新たなLNG戦略を早期に策定し、実行する。

④我が国の上流開発企業によるCCS等の支援・海外で創出したクレジットの付加 価値化

世界的な環境意識の高まりにより、資源国政府から上流開発時のCCS実施が求められる事例も出てきており、世界の石油・天然ガス開発企業は上流開発のみならず、再生可能エネルギーや植林、CCS等、脱炭素化に向けた様々な取組を強化している。上流開発におけるCCS実施には、千~数千億円規模という多大な追加コストが発生する一方で、それだけでは収益を生まない。こうしたCCS実施に対する支援や、CCS事業そのものへの何らかの経済性が付加されなければ、他国企業と比較して企業規模が小さい我が国企業は、事業リスクを負えずに上流開発への参画ができず、結果として我が国のエネルギー・セキュリティを損なうおそれがある。このため、JOGMECによるリスクマネー供給や技術開発、実証、人材育成等を通じて、我が国企業の上流開発におけるCCS等脱炭素化対策を支援する。

また、海外の上流開発に伴うCCS等の脱炭素技術に付加価値を付けるためには、 二国間枠組みに定めたルールに則って実施されるプロジェクトからクレジットを得る二国間クレジット制度(JCM)や、民間認証機関が企業の温室効果ガス排出削減 活動に対して発行するボランタリー・クレジット取引が有効と考えられる。他方、現状では、いずれにおいてもCCS事業による温室効果ガス排出削減量の方法論が確立されていないことが課題となっている。また、ボランタリー・クレジットについては、CCS等脱炭素化の取組により我が国企業が海外で創出したクレジットが、我が国の温室効果ガス排出削減目標に貢献できないという課題もある。このため、CCSプロジェクト等の形成を通じた二国間クレジット制度(JCM)における更なるパートナー国の拡大に向けた環境作りや、ボランタリー・クレジット市場におけるCCSのクレジット対象化に向けた国際的な環境整備、我が国企業が海外で創出したクレジットの国内制度における位置付けの検討・明確化等を進めていく。

⑤石油・天然ガス業界における新たな人材育成・獲得

資源小国である我が国にとっては、エネルギー・セキュリティの確保はできて当たり前ではなく、これまで官民の関係者が不断の努力を重ねて、最大限の確保に向けて取り組んできているものである。こうした取組は国民の目には見えづらく、我が国として産業界とともに積極的に発信していく必要がある。

一方で、カーボンニュートラル社会への円滑な移行に向けて必要となる、足下の石油・天然ガスの安定供給確保と将来的な水素・アンモニア・CCSといった脱炭素燃料・技術の確保を同時並行的に推進するためにも、石油・天然ガス業界が長年培ってきたネットワークと経験が引き続き重要な基盤となる。さらに、石油・天然ガス業界には、脱炭素化の取組を積極的に進めて自ら「総合エネルギー産業」への変革を遂げ、カーボンニュートラル社会を実現するメインプレイヤーとなることが期待される。

上記を踏まえ、カーボンニュートラルへの移行に向けたエネルギー・セキュリティ確保のための官民の取組等に関して国民に分かりやすく発信するとともに、抜本的な産業構造転換を支える多様かつチャレンジ精神あふれる人材の獲得を後押しするため、産業界と連携した検討枠組みを創設し、学生等に向けた情報発信等、新たな人材育成・獲得のための具体的方策を検討する。

⑥鉱物資源の確保

鉱物資源は、あらゆる工業製品の原材料として、国民生活及び経済活動を支える 重要な資源であり、カーボンニュートラルに向けて需要の増加が見込まれる再生可 能エネルギー関連機器や電動車等の製造に不可欠である。特に、エネルギーの有効 利用の鍵となる蓄電池、モーター、半導体等の製造には、銅やレアメタル等の鉱物 資源の安定的な供給確保が欠かせない。他方、鉱物資源は、鉱種ごとに埋蔵・生産 地の偏在性、中流工程の寡占度、価格安定性等の状況が異なり、上流の鉱山開発か ら下流の最終製品化までに多様な供給リスクが存在している。

これまで国は、JOGMECを通じた海外権益確保へのリスクマネー供給や資源 探査等を通じて、我が国企業による鉱物資源の安定的な供給確保を支援してきた。 他方、資源ナショナリズムの高まりや開発条件の悪化等により、資源開発リスクは引き続き上昇傾向にある。また、一部のレアメタルについては、上流のみならず中流工程についても特定国による寡占化が進みつつあるという課題もある。このため、引き続きJOGMECを通じた継続的な資源探査や開発に係る正確な情報の収集・発信等に取り組みつつ、特に需要の急増が見込まれ、供給途絶が懸念される鉱種については、リスクマネー支援を強化する。

国内非鉄製錬所は、鉱物資源のサプライチェーンの要として、高品質な金属地金供給、鉱石等の副産物であるレアメタル回収、使用済製品のリサイクルによる資源循環等の重要な機能を担っている。他方、鉱石等の品位の低下や新興国の需要拡大に伴う国際的な競争激化等を背景として、非鉄製錬所を取り巻く環境は厳しい状況となっている。このため、国内製錬所における鉱石等の調達リスクや需要の急激な変動リスク等を低減するための支援を強化することにより、特定国に依存しない強靭なサプライチェーンの構築に取り組む。また、各非鉄製錬所の得意分野を活かしたリサイクル資源の最大限の活用、製錬等のプロセス改善・技術開発による回収率向上、企業間連携・設備導入等による生産性向上等のための投資を促進していく。さらに、海外からの供給リスクを大きく低減するため、レアメタルの使用量低減技術やその機能を代替する新材料開発に向けた取組の更なる支援を行う。

レアメタルの短期的な供給途絶対策である備蓄制度については、需要家のニーズの変化や鉱種ごとの供給動向等も踏まえ、必要な備蓄量を確保するとともに、備蓄鉱種を柔軟に入れ替えるなど、機動的な対応が可能となるよう、不断に制度の改善を行っていく。

こうした施策に加え、首脳・閣僚レベルを始めとする包括的資源外交を重層的に展開することにより、ベースメタルの自給率(2018年度は50.1%)については、引き続き2030年までに80%以上を目指す。さらに、リサイクルによる資源循環を促進することによって、我が国企業が権益を有する海外自山鉱等からの調達確保を合わせて2050年までに国内需要量相当のベースメタル確保を目指す。なお、レアメタルについては、ベースメタル生産の副産物であることが多いこと、権益比率とは関係なくオフテイク権が設定されることが多いことから、一律の自給率目標は設けず、鉱種ごとに安定供給確保に取り組んでいく。

⑦国内の海洋等におけるエネルギー・鉱物資源対策の促進

国内資源開発は、地政学リスクに左右されず安定的なエネルギー供給の確保が可能となることに加え、水素・アンモニアの原料としての利用も視野に、引き続きメタンハイドレートを含む国内資源開発を推進することが重要である。このため、メタンハイドレートについては、「海洋基本計画」(2018年5月閣議決定)に基づき策定された「海洋エネルギー・鉱物資源開発計画」(2019年2月経済産業省策定)において定めた、「2023年度から2027年度の間に民間企業が主導する商業化に向

けたプロジェクトが開始されることを目指す」という目標の中で、可能な限り早期に 成果が得られるよう技術開発等を推進する。

石油・天然ガスについては、三次元物理探査船「たんさ」を用いて、引き続き国内石油・天然ガスの探査(2028年度までにおおむね50,000平方キロメートル)を実施するとともに、有望海域での試掘を機動的に実施する。また、国内外のCCS適地調査や民間企業等による石油・天然ガスの探査に同船を活用するなど、より効果的な探査を実現し、市場競争力を高める。また、我が国の領海・排他的経済水域等に賦存する海底熱水鉱床、コバルトリッチクラスト、マンガン団塊、レアアース泥等の国産海洋鉱物資源については、引き続き国際情勢をにらみつつ、「海洋基本計画」及び「海洋エネルギー・鉱物資源開発計画」に基づき、資源量の把握、生産技術の確立等の取組を推進していく。

<u>⑧脱炭素燃料等(水素・アンモニア・合成燃料・CCS・カーボンリサイクル等)</u> の確保等に向けた取組

2050年カーボンニュートラルに向けて、燃料分野での対応は、①燃焼しても大気中のCO2を増加させないバイオ燃料、水素、アンモニア、合成燃料、合成メタンといった脱炭素燃料と、②化石燃料を利用しながらも大気中のCO2を増加させないCCS、カーボンリサイクルといった脱炭素技術等に大別できる。いずれも社会実装・拡大には、イノベーションの実現が不可欠であり、2050年を見据え、2030年に向けても、その確保等のための計画的な取組が重要である。

具体的には、脱炭素燃料等の社会実装・拡大に向けて、「グリーン成長戦略」で定めた工程表等に沿った低コスト化等の技術開発を推進するとともに、CO2回収・排出量カウントについて考え方を整理し、国際的にルール化等を図っていくことが必要である。特に、水素やアンモニアについては、非化石価値の顕在化等を通じ、事業者の投資予見性が確保される環境整備を図る。その際、水素・アンモニアの市場拡大を図る観点から、再生可能エネルギー由来の水素・アンモニア価格が十分に下がることを待つことなく利用拡大を進めていくという戦略的なアプローチも重要である。CCSについては、長期のロードマップを策定した上で、国内外のCO2貯留適地調査等を実施するとともに、事業化に向けた環境整備等を検討する。

(10) 化石燃料の供給体制の今後の在り方

①石油・LPガス備蓄の確保

石油の国内需要は減少傾向にあっても、中東情勢やアジアでの石油需要の増加等を踏まえると、引き続き石油備蓄の役割は重要であり、石油備蓄水準を維持する。あわせて、緊急時に石油備蓄を一層迅速かつ円滑に放出できるよう、備蓄放出の更なる機動性向上に向け、石油精製・元売各社との連携強化、必要に応じた油種入替、放出訓練や机上訓練、国家石油備蓄基地における必要な設備修繕・改良等を継続する。また、燃料の移行の状況を踏まえ、タンクの有効活用も含め、燃料備蓄の在り方について検討し、アジア地域のエネルギー・セキュリティ確保に向け、産油国やアジア消費国との備蓄協力を進める。

LPガス備蓄についても、大規模災害等に備え、現在の国家備蓄・民間備蓄を合わせた備蓄水準を維持する。危機発生時における機動力の更なる向上に向け、LPガス業界やJOGMECと連携し、国家備蓄放出について、緊急時の想定に応じて、国家備蓄基地からタンカーや内航船等を利用した各地への輸送手段に係る詳細なシミュレーションを実施する。また、災害時の供給体制確保の観点から、自家発電設備等を備えた中核充填所の新設や設備強化を進めるとともに、避難所や医療・社会福祉施設等の重要施設における燃料備蓄などの需要サイドにおける備蓄強化を進める。さらに、緊急時の供給協力を円滑に行う「災害時石油ガス供給連携計画」の不断の見直しを行い、同計画に基づいた訓練を実施する。

②石油供給体制の維持・移行

2030年に向けても、平時のみならず緊急時にも対応できる強靱な石油供給体制を確保することは重要である。このため、国内石油精製設備の立地維持のため、コンビナート内外の事業者間連携、デジタル技術の一層の活用、重油分解能力の向上を通じた原油の有効活用、需要増加が見込まれるアジア等の海外市場への事業展開等を通じた生産性向上や競争力強化の取組を引き続き後押しする。なお、これまで石化シフトや再生可能エネルギー事業への展開等により、石油精製業は総合エネルギー企業化に向けた取組を進めてきたが、より積極的な新事業展開を行い、事業基盤の再構築を推進することが重要である。

また、製油所・油槽所の大規模災害への対応能力の更なる向上に向けて、これまで実施してきた地震・津波対策に加え、特別警報級の大雨・高潮対策を想定した製油所の排水設備の増強等を推進する。さらに、感染症蔓延下における石油の安定供給を確保するため、オペレーターの省力化を実現するデジタル技術の導入など、製油所操業の持続性を高める取組を後押しする。

加えて、既存の燃料インフラや、これまで培ったネットワーク・人材を活かして、石油精製業が、バイオ燃料、水素、合成燃料等の新たな燃料供給にチャレンジするための構造改革やイノベーションを後押しする。また、クリーンな石油精製プ

ロセスに向けて、省エネルギー対策を一層進めるとともに、CO2フリー水素の活用など、製油所の脱炭素化の取組を促進する。

③SSによる供給体制確保に向けた取組

(a) 地域内のエネルギー供給体制の確保

SSは、給油や灯油の配送等を通じて石油製品の供給を担う重要かつ不可欠な社会インフラであり、EV・FCVへのエネルギー供給や合成燃料等の新たな燃料供給を担うことが期待される。

一方で、今後の人口減少や車両の電動化などによる石油製品需要の減少や人手不足の深刻化等により、地域内のSSによる供給体制の維持が課題となっており、それぞれのSSや立地する地域の実情に合わせ、社会インフラとしての機能維持に向けた取組を強化していく必要がある。

石油製品需要の更なる減少が見込まれる中で、SSにおいては石油製品の販売以外の収益の拡大が必要である。また、人手不足対策や新たな事業展開のツールとしてデジタル技術を活用することも重要である。このため、SSが、石油製品の販売に加えて、カーシェア等のモビリティサービスやランドリー等の生活関連サービスも提供する「マルチファンクションSS(多機能SS)」やAI等を活用する「デジタル・トランスフォーメーションSS(DX・デジタル化に対応したSS)」としての発展を目指せるように、SSの経営多角化等の事業再構築やデジタル技術を活用した人手不足対策等を後押しする。

また、電動車の普及に向けてガソリン車と同様に円滑にエネルギー補給できることは重要であるが、EV向け充電サービスやFCV向けの水素ステーションはビジネス性や設置コスト等に課題があるため、SSにおける普及は必ずしも進んでいない。このため、SSが、石油製品の供給を継続しながらEVやFCVへのエネルギー供給も担う「総合エネルギー拠点」としての発展を目指せるように、これらの課題の解決を図っていくことと併せて、SSにおけるEV向け充電器や水素ステーションの併設を後押しする。加えて、SSにおける設備の省エネルギー化や再生可能エネルギー導入を促進していく。

さらに、地域によっては、地域内における更なる石油製品需要の減少や後継者問題等により、地域内のSSの経営が困難になることもあるため、今後の石油製品需要の減少のスピード・規模等を踏まえつつ、地域内の石油供給体制を確保するために必要な施策を検討する必要がある。特に、都市部以外の地域においては、石油製品供給の担い手だけではなく、高齢者向けサービス等の社会的ニーズに対応する担い手も不足しており、SSがこうしたサービスも担う「地域コミュニティインフラ」としての発展を目指せるよう、SSの取組を後押しする。一方で、民間事業者単独によるSSの事業存続が困難なケースにおいては、まずは、民間事業者同士の「協業化」、「経営統合」、「集約化」を進めることが重要であるが、民間事業者の経営努力ではSSの維持が困難な場合には、自治体によるSSの承継や新設による「公設民営」の形で地域内

の石油供給体制を確保することが適切である。このため、SSの事業転換等に伴う集 約化等による地域内の石油供給体制の合理化に加え、自治体と地域内のSSとの平時 からの連携強化や、自治体によるSS承継等に向けた取組についても後押しする。

なお、上記を中心としたSSの前向きな取組の後押しに際しては、官民の緊密な連携が重要である。

(b) SSのレジリエンスの強化

東日本大震災や2016年の熊本地震等の教訓を踏まえ、災害時の停電リスクに対応するために、非常用発電機を備えた中核SS(緊急車両への優先給油を担うSS)や住民拠点SS(一般車両への燃料給油を担うSS)等の整備を進めるとともに、各都道府県の石油組合が47都道府県等の地方自治体と災害時燃料供給協定を締結することにより、SSが各地域において災害時の燃料供給要請に対応する「最後の砦」の役割を果たす体制を構築している。他方、近年頻発する災害等を踏まえ、豪雪や土砂災害等によるSSへの燃料配送の遮断リスク、津波によりSSを喪失するリスク、水害により計量機等の設備が損壊するリスク等への対応や自治体等からの燃料供給要請等に備え、SSの災害対応能力の更なる強化や自治体等の関係機関との連携を強化していく。

(c) 公正かつ透明な石油製品取引構造の確立

石油製品は品質の差別化が難しく、競争は価格面に集中する傾向がある中、石油製品需要の更なる減少に伴い競争が激しくなるとの指摘もあるため、引き続き公正かつ透明な石油製品取引構造の確立に取り組む必要がある。2017年3月に、卸価格の価格差や決定方法の不透明性等についての指摘を踏まえて、公正で透明な取引環境の構築を目的とした「ガソリン適正取引慣行ガイドライン」を策定し、本ガイドラインの浸透を通じて取引慣行の適正化を図ってきたが、引き続き進捗状況を踏まえ、必要に応じてガイドラインの見直しを行う。

なお、一般的に取引上優越した立場にある元売が、取引条件を一方的に決定するなどにより、正常な商慣習に照らして不当に、SS事業者に不利益を与えるなど独占禁止法に違反する疑いのある事案に接した場合には、公正取引委員会と連携し、厳正に対処していく。

④LPガスの供給体制確保

LPガスは、長期的には、家庭部門の電化や地方での人口減少、省エネルギー機器の普及等により、国内需要が減少する可能性があるものの、引き続き平時のみならず緊急時にも対応できるような強靱な供給体制を確保することは重要である。カナダや豪州など調達先を多角化することにより、我が国のエネルギー・セキュリティ向上に取り組むことが必要である。また、温室効果ガス排出削減やLPガス産業

の収益力の向上を目指し、省エネルギーにも資するスマートメーターの導入による 配送合理化などの取組を後押しする。

温室効果ガス排出削減の観点から、ボイラーや発電機等による石油からLPガスへの燃料転換の取組を進める。また、熱電併給においても、より省エネルギーを実現する家庭用燃料電池等のLPガスコージェネレーションや電力需要のピークカットに貢献できるガスヒートポンプ(GHP)等の利用拡大を進める。さらに、LPガスの脱炭素化に向けて、バイオLPガスや合成LPガス(プロパネーション、ブタネーション)等の研究開発や社会実装に取り組む産業界の取組を後押しする。

また、LPガスの取引適正化のため、国の小売価格調査・情報提供の継続に加え、LPガス販売事業者による、ホームページ等の消費者がアクセスしやすい環境を通じた標準的な料金の公表を進める。特に集合賃貸住宅における料金透明化を進めるため、不動産業界等の関係業界と連携した取組を促進していく。

⑤ガス供給の在り方

(a) ガスのレジリエンス強化

ガス導管は埋設されていることから風雨の影響を受けにくく、大部分は耐震性も備えており、継続的な耐震性向上の取組も行われている。このため、近年の台風や大地震などの自然災害時における供給途絶リスクは低く、これまでの災害等による対策の強化を踏まえれば、早期復旧も見込まれる。また、停電対応型のガスコージェネレーションは停電時でも継続的・安定的に電気と熱の併給が可能であり、レジリエンス強化と省エネルギーに資する地域の分散型エネルギーシステムとしての普及拡大が期待される。

エネルギーの安定供給の観点から、エネルギー源・エネルギーネットワークの多様性を確保することが重要であり、ガスインフラのレジリエンスを継続的に強化することが必要である。加えて、最近では、遠隔での検針や開閉栓等を実現するスマートメーターの検討、デジタル技術を活用した新しい安全技術の活用による保安・レジリエンスの向上に向けた取組が、一部のガス事業者において進められている。こうしたデジタル技術の活用促進も含め、更なる耐震性の向上等を通じてレジリエンスの強化に取り組む。

(b) 天然ガスシフトと熱の脱炭素化

我が国の産業・民生部門の消費エネルギーの約6割は熱需要であり、特に産業分野においては電化による対応が難しい高温域も存在しているため、熱需要の脱炭素化の実現に向けて、需要サイドに熱エネルギーを供給するガスの脱炭素化が大きな役割を果たすとともに、需要サイドにおける天然ガスへの燃料転換や天然ガス利用機器の高効率化は熱需要の脱炭素化に向けた選択肢の一つとなる。

天然ガスは化石燃料の中でCO2排出量が最も少ないため、天然ガスへの燃料転換等によって熱需要の低炭素化に貢献できるとともに、供給サイドにおいてメタネーション等の技術が確立すれば、既存インフラや設備を利用可能な合成メタン等が天然ガ

スを代替できるようになるため、燃料転換等を行った需要サイドは将来的に合成メタン等の供給を受けることにより、2050年に向けてコストを抑えつつより円滑な脱炭素化への移行が期待できる。需要サイド・供給サイドそれぞれが熱の低炭素化・脱炭素化に資する取組を進めていくことが重要である。

水素とCO2から合成(メタネーション)された合成メタンは、都市ガス導管等の既存のインフラや設備を利用できるため、ガスの脱炭素化の担い手として大きなポテンシャルを有する。他方、その実用化・低コスト化に向けては、メタネーションの設備大型化や高効率化などの技術開発を進めていく必要がある。また、一部の地域では水素を利用した電気と熱の供給に向けた取組が進められており、将来的に臨海部等の水素導管を整備した地域で水素供給を行うことなども考えられる。クレジットでカーボンオフセットされたLNGの導入や、CO2の分離・回収及び再利用といったCCUS/カーボンリサイクルに関する技術開発も進められている。需要サイドにおけるエネルギー転換の選択肢として、合成メタンなど様々な選択肢を追求していくことが重要である。

2030年には、既存インフラへ合成メタンを1%注入し、その他の手段と合わせてガスの5%をカーボンニュートラル化するとともに、2050年には合成メタンを90%注入し、その他の手段と合わせてガスのカーボンニュートラル化を目指す。ガスのカーボンニュートラル化に向けては、供給サイド・需要サイドの民間企業や政府など様々なステークホルダーが連携して取り組むことが重要であることから、メタネーション推進官民協議会において、技術開発や海外サプライチェーン構築の観点を含め、課題や対応の方向性について検討を進める。

加えて、今後、再生可能エネルギーの主力電源化が進み、余剰電力等から水素や合成メタンを製造するようになれば、ガス導管への注入により電力を貯蔵・活用することが可能となる(Power to Gas、P t o G)とともに、この合成メタン等を活用してガスコージェネレーションにより熱を有効利用しつつ発電を行うこと(Gas to Power、G t o P)を通じて、緊急時における電力供給不足のバックアップや調整電源としての役割も期待できる。このため、分散型エネルギーシステムの中で、デジタル技術を活用しつつ、電気とガスのデータ連携により P t o G と G t o P を適切に行い需給の最適化を図りながら電気とガスの融合を進めるため、P t o Gを実現するための合成メタンや水素製造等の技術開発、G t o P を実現するためのガスコージェネレーションの導入拡大を通じた分散型エネルギーシステムの構築に取り組む。

(11) エネルギーシステム改革の更なる推進

安定供給の確保、料金の最大限の抑制、需要家の選択肢や事業者の事業機会の拡大 をねらいとして、三段階での電力、ガス、熱のエネルギーシステム改革を実施してき た。

電気・熱の自由化から5年、ガスの自由化から4年が経過し、通信、石油といった他分野からの新規参入の増加、電力とガスといった業種やエリアの垣根を越えた連携が進むとともに、新たなサービスメニューの登場や需要家の選択肢の拡大も進んでおり、エネルギーシステム改革の成果は着実に現れている。

2022年4月に予定されているガスの導管部門の法的分離により、一連のシステム改革の工程が基本的に完了するものの、2050年カーボンニュートラルの実現に向けては、エネルギー需給構造のこれまでにない変化への対応が求められていく。

こうした中で、システム改革の成果の更なる追求に加え、安定的、かつ持続可能なエネルギーシステムを構築していけるよう、更なる取組を進める必要がある。

①脱炭素化の中での安定供給の実現に向けた電力システムの構築に向けた取組

2020年4月に実施された発送電分離により、広域系統運用の拡大、小売・発電の全面自由化及び法的分離の方式による送配電部門の中立性の一層の確保を柱とする、電力システム改革の一連の工程は基本的に完了した。

2016年4月に電気の小売全面自由化を開始して以降、新規参入の拡大、多様な料金メニューの提供や料金の低廉化が進展するなど、一定の成果が出ているところである。

他方、自然災害の頻発・激甚化や供給力の低下傾向に伴う安定供給への懸念、再生可能エネルギーの大量導入実現のためのネットワークの次世代化の必要性など、電力システムを取り巻く環境変化とそれに伴う新たな課題が生じてきた。とりわけ、近年、発電を巡る事業環境の悪化等による火力発電所の休廃止が相次いでおり、2020年12月から2021年1月にかけて生じた需給ひつ迫は、断続的な寒波による電力需要の大幅な増加と LNG供給設備のトラブル等に起因したLNG在庫減少によるLNG火力の稼働抑制が主因だったと考えられるが、供給力の低下傾向が構造的背景として存在しており、電力自由化の中で供給力を維持・確保していくことが喫緊の課題となっている。また、既存の電力会社と新規参入者の間の競争関係を含め、より一段深い形で公正な競争環境を整備することも引き続き重要な課題である。

これに加え、2030年度の新たな温室効果ガス排出削減目標、さらには2050年カーボンニュートラルの実現に向けては、電力部門の脱炭素化に向けた取組の一層の加速化が求められており、従来の取組にとどまらず、電力システム全体の脱炭素化を進めていくことが必要である。

電力システム改革は、東日本大震災を背景に、安定供給の確保、電気料金の最大限の抑制、需要家の選択肢及び事業者の事業機会の拡大を目的として進められてきたところであるが、東日本大震災以降、原子力発電所の稼動停止などにより我が国の電気料金は上昇傾向にあり、今後も、再生可能エネルギー賦課金が累積的に積み上がる可

能性があることから、エネルギーコスト面での日本の国際競争力が劣後する懸念が高まっている。このため、再生可能エネルギーのコスト低減、電力システム改革による競争の促進、安全性を大前提とした原発の再稼働などにより、国民の電気料金負担の抑制に努め、国際的にも競争力のある電気料金を実現することで、産業の国際競争力等の確保に繋げていく必要がある。

今後は、これらの新たな課題も踏まえ、脱炭素化の中での安定供給の実現に向け、 電力システムを構築していくことが重要である。

このため、2020年に成立したエネルギー供給強靱化法の措置を含め、以下の取組を進めていく。

(a) 供給力確保のための強化策及び枠組の検討

自由化前は、地域独占と規制料金により費用回収が保証された旧一般電気事業者が、需要に合わせて必要となる発電設備(kW)や燃料(kWh)を計画的に確保していたが、自由化の進展と卸電力市場取引の増加に伴い、短期的な卸電力市場をベースとした競争の中で、採算性の悪化する電源の退出が進展し、新規投資も停滞している。実際に、石油火力は2014年度から2019年度までの5年間で約1,000万kW減少しているなど、経年火力の休廃止が進んでいることに加え、直近の需給見通しでは安定供給に最低限必要とされる予備率の確保が不透明となるなど、供給力の低下に伴う安定供給へのリスクが顕在化している。こうした中、諸外国においても、同様の課題に直面する中、自由化の下で供給力を確保するための仕組みの導入が進展してきているところ¹⁴、我が国においても、野心的な2030年度の新たな温室効果ガス排出削減目標を実現するためには、持続可能な競争・市場環境を確保しつつ、再生可能エネルギーの瞬時的・継続的な発電電力量の低下等にも対応可能な形で、安定供給に必要な供給力の確保に取り組む必要がある。

設備容量(kW)確保の観点では、追加的な供給力の確保や電源の過度な退出の防止に向けた対応策の検討を進めるとともに、4年後に必要な供給力を事前のオークションにより効率的に確保する容量市場について、その着実な運用を行いつつ、効率性の更なる向上に向けて不断の見直しを行う。

非化石電源由来の電気が有する環境価値を取引する非化石価値取引市場について、現行の高度化法上の小売電気事業者への脱炭素電気の調達義務や負担との整合性にも留意しつつ、トラッキング付き証書の大幅な増加、需要家による購入可能化やグローバルに通用する形で取引できる再生可能エネルギー価値取引市場の創設などを含めた制度全体の抜本的な見直しを行う。

調整力 (Δ k W) 確保の観点では、自然変動電源 (太陽光・風力) の導入が拡大し、 出力変動の増大が見込まれる中、調整力を広域的に調達・運用することで需給調整の 効率化を図るため、需給調整市場の整備を着実に進める。

加えて、電源への新規投資が停滞する中、当面は、供給力や調整力を火力発電で賄う必要があるものの、将来的には、水素・アンモニア・CCUS/カーボンリサイク

_

¹⁴ 米国において、現在、小売全面自由化を実施しているのは13州及びワシントンDCである。

ル・水力・地熱・蓄電池・ディマンドリスポンスといった脱炭素電源等により、供給力や調整力を確保する必要があり、電源の建設に係るリードタイムも踏まえると、足下から新規投資を促していくことが重要である。そのため、2050年カーボンニュートラル実現と安定供給の両立に資する新規投資について、複数年間の容量収入を確保することで、初期投資に対し、長期的な収入の予見可能性を付与する方法について、詳細の検討を加速化させていく。

また、電力量(kWh)の安定的な確保の観点から、2020年度冬期の需給ひっ 迫を踏まえ、需給バランスの確認において、設備容量(kW)に加え電力量(kWh) の状況についても評価するとともに、発電事業者による燃料確保の取組強化に向けた検討を進める。

さらに、供給力確保のための枠組について、電力システム改革においては、自由化前の旧一般電気事業者のように一義的に供給力を担保する主体が存在しない中で、電力の広域的運用と市場メカニズムを通じて、効率的に安定供給を確保する電力システムを追求するとともに、小売事業者に供給能力確保義務を課し、市場等を通じて発電に要するコストが適切に賄われる環境整備を進めてきたところである。こうした安定供給確保のための責任・役割の在り方については、電力システム改革設計当初から現在に至るまでの競争・市場環境や電源構成の変化等を踏まえて、改めて検討を行っていく。

(b) 公正で持続可能な競争・市場環境の整備

電気事業者が様々な創意工夫を行い、新たな付加価値を生む競争が活発になされ、 効率的に安定的な電力供給を果たしていくという電力システム改革の狙いを更に追求していくためには、これまでの新規参入促進に向けた施策に加えて、より一段深い 形で公正な競争環境を整備していくことが必要である。

小売全面自由化後、新規参入が急速に拡大した中、市場取引を主として供給力確保を図る小売専業の者も多数参入しており、こうした事業者と発電設備を自ら保有して供給力確保を行う事業者とが混在する市場構造となっている。こうした構造的変化が見られる中、発電と小売を兼業する事業者を含め、発電事業者が安定供給に不可欠な発電設備を電力システム全体の中で確保できるようにしつつ、設備を保有しない小売事業者との間において、実質的に共通の環境下で競争を行えるようにしていくことが重要である。そのため、発電設備を多く保有する支配的事業者の発電・小売事業の在り方について検討を進める観点から、大手電力会社の内外無差別な卸売の実効性を高め、社内・グループ内取引の透明性を確保するためのあらゆる課題(売入札の体制、会計分離、発販分離等)について、総合的に検討していく。

また、これまで新規参入者の電源調達の円滑化や経済合理的な電力供給体制実現のために卸電力市場の活性化に取り組んできたところであるが、その卸電力市場は、自然変動性のある再生可能エネルギーの拡大等を背景に、市場価格が最低価格(0.01円/kWh)となる時間帯が増加する一方、急激に高騰する事象が発生しており、価格変動リスクが増している。実際、2020年度冬期の市場価格高騰においては、小売事業者が供給力を確保できない事態も生じた。その一義的な要因は、電力需給の

ひっ迫に伴い、電力市場において、売り切れ状態が継続的に発生し、スパイラル的に 買い入札価格が上昇したことであるが、背景には、価格急騰まで需給状況等を反映し た適切な価格シグナルが発されていなかったことで、市場参加者である小売事業者が 前もって供給力確保等の取組を行えなかったこともある。そのため、市場価格形成の 予見性を高めるよう、発電情報など市場関連情報の公開の充実に取り組むとともに、 その時点での電気の価値を価格シグナルとして発信し、系統利用者の適切な行動を促 す入札の在り方の検討などを進めていく。また、旧一般電気事業者の内外無差別な電 力卸売をより実効的にするため、卸電力市場に係る旧一般電気事業者の自主的取組 (グロス・ビディング、余剰電力の限界費用ベースでの全量市場供出)の在り方をそ の必要性も含めて検討する。

こうした競争・市場環境整備と並んで、事業者自身が電力システム全体の安定への 寄与を果たすことも重要であり、需要家に対する安定的なサービス継続や経営安定化 の観点からも、事業者が需要管理やリスクヘッジなどの適切な行動を取っていく必要 がある。このため、先物・先渡市場やベースロード市場の活性化やこれらの市場を通 じた事業者のリスク管理の促進などに取り組む。

電力市場を取り巻く環境については今後とも変化していくことが想定される中、電力システム改革の目的の実現に向けて、不断の検討を重ね、持続可能な市場設計を図っていく。

(c) 脱炭素化と安定供給に資する次世代型の電力ネットワークと分散型電力システムの構築

競争促進や供給力確保のための取組に加え、脱炭素化と安定供給に資する次世代型の電力ネットワークや分散型電力システムの構築に向けた取組も進めていく必要がある。再生可能エネルギーの大量導入への対応と電力融通の更なる円滑化のために、全国大での広域連系系統の形成を計画的に進めるべく、海底直流送電などの検討も含めた送電網整備に関するマスタープラン策定の取組を着実かつ迅速に進める。また、基幹系統におけるノンファーム型接続の全国展開や再給電方式の導入など系統利用ルールの見直しを進めつつ、ローカル・配電系統の整備計画策定に加え、ローカル・配電系統におけるノンファーム型接続の適用拡大や市場主導型の系統利用ルールの検討、ダイナミックレーティングの導入など既存系統の有効活用に資する取組を進める。さらに、配電事業の参入促進やアグリゲーションビジネスの活性化に向けた市場環境整備など分散型電力システム構築の推進に取り組む。こうしたシステム構築に向けては新技術の活用なども期待されるため、電力システム全体の高度化を図っていく観点からも、電力データの活用を始め、デジタル技術等による効率化や新ビジネスの展開促進等を進めていく。

これらのネットワーク増強等について効率化を促しつつ、必要な費用を公平に確保していくため、2023年度に託送料金制度を見直し、レベニューキャップ制度を導入するとともに、S+3Eを大前提に再生可能エネルギーに最優先の原則で取り組むという方針の下で、発電側課金制度の円滑な導入に向けて、導入の要否を含めて引き続き検討を進める。なお、託送料金の仕組みを活用し、原子力事故に係る賠償への備

えに関する負担や廃炉に関する会計制度措置を講じているところであり、こうした自由化後の公益的課題に対する費用回収の取組も着実に進める。

(d) 再生可能エネルギー等の脱炭素電源の調達ニーズの高まりにも対応できる事業・ 市場環境整備

世界的にカーボンニュートラルの動きが加速する中、事業活動やサプライチェーン全体の脱炭素化が国際競争力の観点から重要となっており、産業界を中心とした需要家による再生可能エネルギー等の脱炭素電源の調達・表示ニーズが高まっている。こうしたニーズに対応するには、再生可能エネルギー等の脱炭素電源の一層の拡大に加え、需要家が直接再生可能エネルギー等の脱炭素電源へアクセスすることを可能とする事業環境を整備していくことや、需要家が自ら利用する電気の属性情報を適切に把握することが求められている。

そのため、非化石電源由来の電気が有する環境価値を取引する非化石価値取引市場について、現行の高度化法上の小売電気事業者への脱炭素電源の調達義務や負担との整合性にも留意しつつ、トラッキング付き証書の大幅な増加、需要家による購入可能化やグローバルに通用する形で取引できる再生可能エネルギー価値取引市場の創設などを含めた制度全体の抜本的な見直しを行う。また、小売電気事業者の義務に伴い発生する費用を、需要家の理解の下で適切に負担される仕組みの検討を行う。オフサイト型PPA(需要家の遠隔地からの再生可能エネルギー電気等の直接調達)による他社融通が促進されるよう環境整備を進める。あわせて、FIP制度やアグリゲーター等を通じた再生可能エネルギーの電力市場への統合を促す市場整備などを進め、再生可能エネルギーの活用を促していく。

(e) 災害等に強い電力供給体制の構築

2018年の北海道胆振東部地震におけるブラックアウト事故や2019年の台 風第15号・台風第19号における長期間の停電発生など、自然災害が頻発・激甚化 する中で電力供給に支障が出る事態が生じており、電力レジリエンス向上のための取 組の重要性が増している。

そのため、災害時の電力の安定供給の確保に資する、地域間連系線の増強や、配電事業の参入促進、独立した系統での円滑な電力供給を可能とするマイクログリッドなどの分散型電力システムの構築、無電柱化の推進等の取組を進める。また、災害による停電被害を受けても早期復旧ができるようにするため、災害時連携計画に基づく関係者間の事前の備えの充実と災害時の連携強化、倒木対策の取組等に取り組んでいく。災害は常に想定外の事態が起こり得る中で、こうした対応に終わりはなく、災害から得た教訓を踏まえて電力供給のレジリエンス強化に向けた取組を進めていく。

さらに、複雑化・巧妙化するサイバー攻撃の脅威が日々高まる中、電力分野においても、サイバーセキュリティ向上に向けた不断の取組を進めていく。とりわけ、電力システム改革の進展や分散型電源の広がりを踏まえ、従来のような大手電力会社への対策に加え、新規参入事業者におけるサイバーセキュリティの確保が重要性を増している。このため、小規模発電設備を含めた発電設備設置者に係るサイバーセキュリテ

ィ対策について2020年10月にグリッドコードを規定するとともに、小売電気事業者に係るサイバーセキュリティ対策について2021年2月にガイドラインを策定したところである。これらの取組に加え、今後は、特定卸供給事業者(アグリゲーター)に求められるサイバーセキュリティ対策や次世代スマートメーターに求められるサイバーセキュリティ基準を策定するなど、電力システムのデジタル化の進展も踏まえつつ、電力システムにおけるサイバーセキュリティ対策の一層の強化を進めていく。

②ガスシステム改革の進捗とシステムの深化に向けた取組

ガスシステム改革については、電力システム改革と相まって、ガスが低廉・安全かつ安定的に供給され、消費者に新たなサービスなど多様な選択肢が示されるガスシステムの構築に向け、ガス事業法の改正により、2017年4月からガス小売全面自由化などを実施した。その結果、新規参入が拡大し、新たな料金・サービスメニューが出現するなど一定の成果が出ている(新規参入者のガス販売量シェアは約8%から約15%に増加(2017年4月~2021年3月))。今後は、導管部門の中立性・公平性を高めるため、2022年4月に大手ガス事業者(東京ガス、大阪ガス、東邦ガス)の導管部門の法的分離を着実に実施していく。

(a) 持続可能な競争・市場環境の整備

ガスシステム改革の目的は、安定供給の確保、料金の最大限の抑制、需要家の選択肢や事業者の事業機会の拡大、さらには産業競争力の強化、海外市場の開拓・獲得にあった。ガスシステム改革の成果をより一層あげるための更なる競争促進に加え、2050年のカーボンニュートラル、自然災害の頻発・激甚化、国際的なLNG需給構造の変化等のガスシステムを取り巻く環境の変化やそれに伴う新たな課題の出現に即応し、産業競争力を強化していくため、持続可能な競争・市場環境整備が重要である。

競争の更なる促進に向けては、ガス小売全面自由化の進捗状況も踏まえ、ガスがより低廉に供給されるよう、卸供給を受けやすくする仕組みにより新規参入のないエリア等への参入促進やLNG基地の第三者利用の推進などガス取引の活性化に向けた施策や原料調達の低廉化のための取組についても検討していく。

(b) 脱炭素化に資するガスシステムの構築

脱炭素化に資するガスシステムの構築に向けた取組を進めることも重要であり、 脱炭素化の有望な手段の一つとして考えられているメタネーションを中心に、革新 的な技術開発に取り組みつつガスのカーボンニュートラル化を目指す。クレジット でカーボンオフセットされたLNGを供給するカーボンフリーメニュー等料金以外 の価値を訴求する多様な需要家ニーズが顕在化していることを踏まえ、Jークレジ ット等の活用促進や、国内制度におけるボランタリー・クレジットの位置付けの検 討・明確化等を通じて、新たな需要家ニーズに対応し、更なる需要喚起にもつなが り得る環境整備を進める。

ガスのカーボンニュートラルの達成に向けては、ガス体エネルギーの変遷、需要の量・分布等に応じて最適なネットワークを整備し、供給を行うことが必要である。具体的には、2016年策定の「今後の天然ガスパイプライン整備に関する指針」や、需要の量・分布等に応じた民間事業者の経済性・事業性の判断も踏まえながら、天然ガスパイプライン等のインフラの整備を進めていくことが重要である。

ガスのカーボンニュートラル達成に向けた最適な熱量制度について、脱炭素化の有望な手段の一つとしてメタネーションによる合成メタン(約40MJ/m³)が考えられることも踏まえつつ、制度変更に当たっての対策コスト・移行期間、低炭素化効果、脱炭素技術の進展状況・価格等の事情を総合的に考慮すれば、現時点では移行期間を15~20年として、2045~2050年に標準熱量制(40MJ/m³)へ移行することが最適である。なお、移行する最適な熱量制度については、エネルギー政策全体における都市ガス事業の位置付けや今後の技術開発動向、家庭用燃焼機器の対応状況等を踏まえ、必要に応じて2025年頃に検証を行った上で、2030年に確定する。

ガスシステム改革の推進に当たっては、利用形態の多角化・高度化を促進することが重要な鍵となるが、脱炭素化までの移行期においては、各分野において天然ガス利用を促進することが重要である。メタネーション等の技術が社会実装されれば、ガス導管等既存のインフラを活用可能な合成メタンが天然ガスを代替できるようになるため、燃料転換を行った需要サイドは将来的に合成メタン等の供給を受けることにより、2050年に向けてコストを抑えつつ、脱炭素化へより円滑な移行が期待できる。

例えば、高効率なLNG火力発電所の活用及び非効率石炭火力フェードアウトへの貢献、環境調和性に優れたボイラー、エネルギー効率に優れた工業炉や熱電併給により省エネルギーを実現する天然ガスコージェネレーション、系統電力の需給ピークを緩和するガス空調や船舶等輸送分野での燃料利用の拡大、さらに、燃料電池への水素供給のための原料としての役割も期待される。

(c) エネルギー安定供給に資するガスシステムの構築

安定供給に資するガスシステムの構築に向けて、バリューチェーンの各段階における取組を総合的に進めていくことが必要である。

調達先の多角化に加え、他のガス事業者や電気事業者と調達や輸送面での協力関係を構築することで、安定的かつ柔軟なLNGの調達やコスト低廉化に取り組む事業者も存在しており、エネルギー安定供給確保の観点からは必要に応じてこうした事業者同士の協調を検討することも重要である。

また、再生可能エネルギーの導入拡大に伴う調整力の確保の必要性、自然災害の 頻発・激甚化といった安定供給への懸念に対応し、分散化の促進、調整力、災害等 非常時の電力供給のバックアップといった機能を有するコージェネレーションの導入拡大を始めとして、電力も含めたエネルギーの安定供給に資する取組を検討する。

ガス事業者は総合エネルギー企業として、需要サイドが求める様々なエネルギー供給サービスを行うとともに、事業の多角化等により経営基盤の強化を進め、新事業の国際展開や多様な分野の企業との連携による競争力強化を通じて、エネルギー需要が拡大する国際市場を開拓していく。さらに、地域に根ざしたガス事業者として、地域の需要家が求めるエネルギーやサービスを提供することに加え、地域におけるエネルギーの安定供給の確保や自治体や地域企業との連携により地方創生やSDGsに貢献するとともに、再生可能エネルギーや水素、バイオガスなど地域資源を活用し、脱炭素化に貢献していくことが求められる。

③効率的な熱供給の推進

熱の有効利用に対する関心が高まる中、熱導管を面的に敷設して行う地域型の熱供給、都市再開発事業などに伴いビル単位での事業や生活機能の確保も意識した地点型の熱電一体供給など、冷温熱を供給するサービスの形態も多様化してきているところである。

こうした中、主に高温域を占める産業用に関しては、製造プロセス技術開発、省エネルギー設備の導入促進、コージェネレーションの利用や廃熱カスケード利用促進を行うことが重要である。また、主に低温域を占める民生用に関しては、まずは省エネルギー住宅・建築物の普及により熱需要自体の削減を図るとともに、家庭用燃料電池やヒートポンプなどの省エネルギー機器の普及を促進することが重要である。これらに加えて、引き続き省エネ法による規制を通じて熱の効率的な利用を促進する。

熱供給事業に関するシステム改革により、熱電一体型の熱供給を行うための環境整備が進んだことを踏まえ、コージェネレーションや廃熱等のエネルギーの面的利用を推進する。これにより、地域の省エネルギーの実現に貢献するとともに、災害時のレジリエンス強化やエネルギーの地産地消等を後押しする。

④適切かつ公正な事業運営の確保

国民生活や産業活動を支えるエネルギー事業者は、その果たしている公益的な役割に応じて、社会との信頼関係を築いた上で事業を進めていくことが必要である。一方で、電力・ガス取引監視等委員会が大手電力・ガス会社や新規参入者に対して業務改善勧告や指導を実施した事案が発生するなど、法令等遵守(コンプライアンス)の観点から疑念がもたれる事案が発生している。今後とも、コンプライアンスを重視する健全な組織風土に基づき、適切かつ公正な事業運営を行っていくことが求められる。

(12) 国際協調と国際競争

世界のエネルギー需要は、成長が続くアジアを中心に引き続き増加が見込まれる中、気候変動問題への対応についての世界的な関心の高まりを受け、日本を始めとする多くの国がカーボンニュートラルを表明するなど、先進国のみならず途上国も含め、脱炭素化の流れも加速化しており、資源・エネルギーを巡る国際情勢は、近年、大きく変化している。

このような状況変化も踏まえつつ、化石資源に乏しい日本としては、国際的なサプライチェーン全体を俯瞰しつつ、引き続き、エネルギーの安定供給の確保やエネルギー需給構造の安定化・効率化に取り組むとともに、気候変動問題についても積極的に対応していかなければならない。したがって、石油・天然ガスと金属鉱物資源等の安定供給は重要であるという認識のもと、引き続き資源外交に最大限取り組むとともに、水素やアンモニア、CCSといった脱炭素燃料・技術の将来的な導入・拡大に向けて、これまで取り組んできた資源・エネルギーの安定供給確保と一体的となった「包括的資源外交」を展開する必要がある。

加えて、カーボンニュートラルに向けた国際的な潮流をリードし、2050年カーボンニュートラル実現に向けた革新的な技術開発やその社会実装やルール形成を進めていくことが重要であり、国内市場のみならず、新興国等の海外市場を獲得し、スケールメリットを活かしたコスト削減を通じて国内産業の競争力を強化するとともに、海外の資金、技術、販路、経営を取り込んでいく必要がある。

このため、米欧といった先進国やアジアの新興国、中東その他の資源国等との二国間関係を一層強化・発展させていくとともに、緊急時対応やエネルギートランジションを始め広範なエネルギー政策分野で豊富な蓄積を有するIEAや、IAEAなどの多国間の枠組み、G7、G20、アジア太平洋経済協力(APEC)などの国際的・地域的なフォーラムに積極的に貢献していく。

また、2015年に採択された「持続可能な開発のための2030アジェンダ」では、エネルギー、経済成長と雇用、気候変動等に関する持続可能な開発目標(SDGs)が掲げられており、気候変動対策のみならず、SDGsの達成に貢献していくことが重要である。

上記を踏まえ、以下の通り各地域との協力や各分野での取組を進めていく。

①カーボンニュートラルに向けた米欧等先進国との間での連携・協力

米国・欧州等の先進国との間では、カーボンニュートラル実現のため、エネルギー・環境技術分野でのイノベーション推進、新興国を始めとする第三国における脱炭素化に向けた取組への支援等に取り組んでいく。例えば、米国との間では、2021年4月に開催された日米首脳会談においてとりまとめられた「新たな時代における日米グローバル・パートナーシップ」において、クリーンエネルギーや他の関

連する分野における両国の技術力を最大限に活用することにより、気候変動に対処 し、グリーンで持続可能な世界経済の復興を促進することに合意した。 具体的には、以下のような協力を進めていく。

- ・再生可能エネルギー・省エネルギー技術、グリッドの次世代化、エネルギー貯蔵(蓄電池や長期貯蔵技術等)、スマートグリッド、水素、CCUS/カーボンリサイクル、産業における脱炭素化、革新原子力等のクリーンエネルギー技術に関するイノベーション、開発及び普及における連携・支援
- ・電力系統最適化、ディマンドリスポンス、スマートグリッド、再生可能エネルギー・省エネルギーに関連する気候変動・環境に配慮・適応したインフラの整備・活用の推進
- ・2050年までの地球規模の排出実質ゼロの実現に向けて、再生可能エネルギーを迅速に普及させ、経済の脱炭素化を推進し、地域における多様で野心的かつ現実的な移行の道筋を加速させるため、日米クリーンエネルギーパートナーシップ(JUCEP)や気候変動やクリーンエネルギー分野において両国が連携して国レベルで行う他の活動などにより、インド太平洋地域の国々を含む開発途上国の支援

②アジアの現実的なエネルギートランジションに向けた支援

世界の脱炭素化を実現していく上では、先進国に加え、未だエネルギーの大部分 を化石燃料に依存するアジア等新興国の低炭素化が不可欠である。世界的に化石燃 料事業からのダイベストメントが加速化するなか、世界のカーボンニュートラル実 現に向け、今後エネルギー需要が伸びていくアジア等新興国の持続的な経済成長と 現実的なエネルギートランジションを同時に達成するためには、各国の事情に即し て多様なエネルギー・技術を活用する必要がある。こうした考え方を踏まえて、2 021年6月に開催した日ASEANエネルギー特別大臣会合において、日本の支 援策として、①各国のニーズや実態等を踏まえたエネルギートランジションのロー ドマップの策定支援、②アジア版トランジション・ファイナンスの考え方の策定・ 普及支援、③個別プロジェクトに対するファイナンス支援、④グリーンイノベーシ ョン基金による研究開発・実証支援の成果の活用、⑤脱炭素技術等に関する人材育 成支援、⑥NEDO実証事業、JCM制度等を通じた低炭素技術等の普及展開、⑦ 「アジアCCUSネットワーク」を通じたアジア域内のCCSの知見共有等を含む 「アジア・エネルギー・トランジション・イニシアチブ(AETI)」を提案し、共 同声明に盛り込まれた。今後、AETIを推進するとともに、こうした考え方を世 界全体に広げるため、ASEAN各国と協力し、他のアジア諸国、米国、カナダ、 豪州、中東諸国等との連携を強化していく。

とりわけ、カーボンニュートラルの実現後も重要なエネルギーであるLNGは、 日本企業が強みを持つ分野である。LNG産消会議の継続的な開催やJOGMEC 等によるファイナンス支援、人材育成等を通じたLNG生産国・消費国との連携強化、LNG市場の創設・拡大等により、アジア全体のレジリエンス向上と現実的なエネルギートランジションの推進において、日本が主導権を発揮する。

③化石燃料の脱炭素化に向けた国際的な基準やルール形成

世界の脱炭素化の流れの中で、国際的なルール形成に我が国として関与することも重要である。例えば、欧州委員会は、石油・天然ガス(LNG)・石炭等のメタンリーク対策に向け、2020年10月にメタン戦略を発表し、メタンの排出抑制及び国際的なMRV(温室効果ガス排出量の測定、報告及び検証)の基準策定を進めている。我が国のカーボンニュートラルの実現に向けて、全ての取組を国内のみで実施すると極めて多大なコストがかかる可能性が高いため、日本の技術的優位性を踏まえ、クレジットの活用も含め、海外のリソースを活用するという発想も重要である。

こうした点を踏まえて、メタン対策など化石燃料の脱炭素化や海外の上流開発に おけるCCS等で創出したクレジットの付加価値化など、我が国がリードする分野 を始めとして、国際的な基準やルール形成に積極的に関与する。

④水素・アンモニアの利用拡大に向けた国際協力の推進

新たなエネルギーとして国際的にも注目される水素・アンモニアについては、国内における社会実装に向けた取組のみならず、将来の安定・柔軟・透明な国際市場の形成によるエネルギー安全保障の強化や、我が国が強みとする技術のアジアを含む海外への展開の促進、産油国、産ガス国や新たに水素・アンモニアを供給できる再生可能エネルギー資源国との関係強化の観点から、国際連携・協力を推進することが重要である。

その際、水素等の資源確保・安定調達に向けた資源外交を行うだけでなく、国際市場拡大の観点から、自国の資源ポテンシャルが限定的で将来の水素輸入が見込まれる消費国とも関係を強化し、我が国の優れた水素利用技術の海外展開を促進する。アンモニアについては、長期的に東南アジアを始め世界全体で燃料アンモニアが広く普及することを想定し、2050年に国内含む世界全体で1億t規模の我が国企業による調達サプライチェーン構築を目指す。

また、国際市場形成に重要な水素市場の流動性を高めるためには、再生可能エネルギー由来には留まらない国際的にも整合性のあるクリーンな水素や燃料アンモニアの定義に加え、輸送設備や燃焼設備の国際標準化等を推進する必要があり、二国間での協力に加えて、IPHE(国際水素パートナーシップ)等の多国間の協力枠組みも最大限活用しつつ検討を進める。また、日本発の各国水素担当閣僚間での対話のプラットフォームである水素閣僚会議も活用しながら、世界における水素の利活用拡大に向け、引き続き国際連携を主導していく。

⑤世界の原子力安全の向上や原子力の平和利用に向けた国際協力の推進

国際的な原子力利用は今後も拡大する見込みであり、日本の原子力技術に対する 期待の声が各国から寄せられている。これに応え、日本の技術が世界の脱炭素化に 貢献することが可能である。

このため、国際原子力機関(IAEA)や経済協力開発機構原子力機関(OEC D/NEA)等の多国間協力の枠組み、米・英・仏等との二国間協力の枠組みを通じて、原子力新規導入国等に対して、引き続き、人材育成・基盤整備・原子力技術を含む支援を実施していく。

また、高速炉、小型モジュール炉、高温ガス炉等の革新的技術の研究開発を進めていくに当たっては、米・英・仏・加等の海外の実証プロジェクトと連携した日本企業の取組への積極的支援により、多様な社会的要請に応える選択肢を拡大していく。

⑥「東京ビヨンド・ゼロ・ウィーク」による我が国の取組の発信

「東京ビョンド・ゼロ・ウィーク」として、アジアグリーン成長パートナーシップ閣僚会合、ICEF、RD20、TCFDサミット、水素閣僚会議、カーボンリサイクル産学官国際会議、LNG産消会議、燃料アンモニア国際会議といったエネルギー・環境関連の一連の国際会議を集中的に開催し、カーボンニュートラル実現に向けたトランジションやイノベーションの推進に向けて「経済と環境の好循環」の創出に向け、重要分野における国際的な議論や協力をリードするプラットフォームとして活用していく。

(13) 2030年度におけるエネルギー需給の見通し

今回の新たな2030年度におけるエネルギー需給の見通しは、気候変動問題を 人類共通の喫緊の課題として捉え、先進国を中心として極めて野心的な2030年 の温室効果ガス排出削減目標を掲げ、日本としても、2050年目標と整合的で、 野心的な目標として、2030年度に温室効果ガスを2013年度から46%削減 することを目指し、さらに、50%の高みに向けて挑戦を続けることを表明したこ とを踏まえ、46%削減に向け徹底した省エネルギーや非化石エネルギーの拡大を 進める上での需給両面における様々な課題の克服を野心的に想定した場合に、どの ようなエネルギー需給の見通しとなるかを示すものである。

エネルギー需給の見通しを検討する上でも、北海道胆振東部地震(2018年) や台風第15号・台風第19号(2019年)による大停電などを踏まえれば、エネルギーの安定供給は欠くことのできない要素となる。

このため、例えば、電源構成における化石電源の割合は、今回の見直しで大幅に 引き下げられることとなるが、一方で、非化石電源が十分に導入される前の段階 で、直ちに化石電源の抑制策を講じることになれば、電力の安定供給に支障が生じ かねないため、今回の野心的な道筋に向けた施策の実施に当たっては、安定供給に 支障が出ることのないよう、施策の強度、実施のタイミングなどは十分考慮する必 要がある。

また、エネルギーコストは産業活動の基盤を支えるものであり、事業活動に加えて企業立地などの事業戦略にも大きな影響を与えるものである。このため、エネルギーコストをできる限り低減することは、日本の産業競争力を維持・強化し、更なる経済成長を実現していく上でも重要な課題である。

こうした前提に立って、議論の前提となる2030年度のエネルギーの需要については、経済成長等による足下からのエネルギー需要の増加を見込む中、徹底した省エネルギーの推進により、石油危機後の水準を超える大幅なエネルギー効率の改善を見込む。

具体的には、内閣府「中長期の経済財政に関する試算」(2021年7月)における経済再生ケースの経済成長率、国立社会保障・人口問題研究所による最新の人口推計(中位推計)、主要業種の活動量の推計等を踏まえ、追加的な省エネルギー対策を実施する前の需要を推計した上で、産業部門、業務部門、家庭部門、運輸部門において、技術的にも可能で現実的な省エネルギー対策として考えられ得る限りのものをそれぞれ積み上げ、最終エネルギー消費で6,200万k1程度の省エネルギーを実施することによって、2030年度のエネルギー需要は280百万k1程度を見込む。

このエネルギー需要を満たす一次エネルギー供給は、430百万k1程度を見込み、その内訳は、石油等を31%程度、再生可能エネルギーを22~23%程度、

天然ガスを18%程度、石炭を19%程度、原子力を $9\sim10\%$ 程度、水素・アンモニアを1%程度となる。

電力の需給構造については、経済成長や電化率の向上等による電力需要の増加要因が予想されるが、徹底した省エネルギー(節電)の推進により、2030年度の電力需要は8,640億kWh程度、総発電電力量は9,340億kWh程度を見込む。

その上で、電力供給部門については、S+3Eの原則を大前提に、徹底した省エネルギーの推進、再生可能エネルギーの最大限導入に向けた最優先の原則での取組、安定供給を大前提にできる限りの化石電源比率の引下げ・火力発電の脱炭素化、原発依存度の可能な限りの低減といった基本的な方針の下で取組を進める。

まず、再生可能エネルギーについては、足下の導入状況や認定状況を踏まえつつ、各省の施策強化による最大限の新規案件形成を見込むことにより、3,130億kWh程度の実現を目指す。その上で、2030年度の温室効果ガス46%削減に向けては、もう一段の施策強化等に取り組むこととし、その施策強化等の効果が実現した場合の野心的なものとして、合計3,360~3,530億kWh程度の導入、電源構成では36~38%程度を見込む。なお、この水準は、上限やキャップではない。今後、現時点で想定できないような取組が進み、早期にこれらの水準に到達し、再生可能エネルギーの導入量が増える場合には、更なる高みを目指す。その場合には、CO2排出量やコストなどを踏まえて他の電源がこの水準にとどまらず調整されることとなる。

再生可能エネルギーの導入拡大に当たっては、適地の確保や地域との共生、系統制約の克服、コスト低減などの課題に着実に対応するため、関係省庁が一体となって取り組む。

原子力発電については、CO2の排出削減に貢献する電源として、いかなる事情よりも安全性を全てに優先させ、国民の懸念の解消に全力を挙げる前提の下、原子力発電所の安全性については、原子力規制委員会の専門的な判断に委ね、原子力規制委員会により世界で最も厳しい水準の規制基準に適合すると認められた場合には、その判断を尊重し原子力発電所の再稼働を進め、国も前面に立ち、立地自治体等関係者の理解と協力を得るよう取り組み、電源構成ではこれまでのエネルギーミックスで示した20~22%程度を見込む¹⁵。

火力発電については、再生可能エネルギーの更なる最大限の導入に取り組む中で、当面は引き続き主要な供給力及び再生可能エネルギーの変動性を補う調整力として活用しつつ、非化石電源の導入状況を踏まえながら、安定供給確保を大前提に、非効率石炭のフェードアウトといった取組を進め、火力発電の比率をできる限り引き下げる。その際、エネルギー安全保障の観点から、天然ガスや石炭を中心に

¹⁵ 原子力発電比率は、2030年度時点における電源構成上の見通しを示したものであり、個別の原子力発電所の安全性に関する原子力規制委員会の審査に影響を与えるものではない。

適切な火力ポートフォリオを維持し、電源構成ではLNG火力は20%程度、石炭火力は19%程度、石油火力等は最後の砦として必要最小限の2%程度を見込む。さらに、今後の重要なエネルギー源として期待される水素・アンモニアの社会実装を加速させるため、電源構成において、新たに水素・アンモニアによる発電を1%程度見込む。

これらの需給の見通しが実現した場合、エネルギー起源CO2は、2013年度比で45%程度削減の水準 16 、エネルギーの安定供給を測る指標としてのエネルギー自給率 17 は、2015年に策定した長期エネルギー需給見通しにおいて想定したおおむね25%程度を上回る30%程度の水準 18 を見込む。また、経済効率性を測る指標である電力コスト 19 については、コストが低下した再生可能エネルギーの導入が拡大し、燃料費の基となるIEAの見通しどおりに化石燃料の価格低下が実現 20 すれば、前回想定した電力コスト $(9.2 \sim 9.5 \text{ 兆円})$ を下回る8.6 \sim 8.8 兆円程度の水準を見込む(FIT買取費用は3.7 \sim 4.0 兆円が5.8 \sim 6.0 兆円程度に上昇、燃料費は5.3 兆円が2.5 兆円程度に下落、系統安定化費用は0.1 兆円が0.3 兆円程度に上昇する)。なお、徹底した省エネルギー(節電)の推進による電力需要の減少により、1 kWh当たりの電力コストで見ると、前回想定した9.4 \sim 9.7 円を上回る9.9 円 \sim 10.2 円程度を見込む 21 。化石燃料の価格の見通しは、今後も変動し得るとともに、再生可能エネルギーの導入拡大に伴う統合コスト 22 の増大などにより、更に電力コストが増加する可能性がある。こ

¹⁶ 我が国の温室効果ガス排出削減量は、エネルギー起源CO2排出削減量に加え、非エネルギー起源CO2排出削減量や吸収源対策等を合計したものとなる。

¹⁷ 総合エネルギー統計を基に一次エネルギー供給量に対する国内産出分の割合を算出している。なお、前述のとおり、資源自給率に加え、サプライチェーンの中でコア技術を自国で確保し、その革新を世界の中でリードする「技術自給率」(国内のエネルギー消費に対して、自国技術で賄えているエネルギー供給の程度)を向上させることも重要である。

¹⁸ 総合エネルギー統計ベースで試算すると31%程度、IEAの「World Energy Balances」ベースで試算すると30%程度となる。

¹⁹ 火力発電及び原子力発電に必要な燃料費、FIT制度による買取総額(FIT買取総額)及び系統安定化費用(火力発電の稼働率低下による発電効率の悪化等に伴う費用並びに火力電源の停止及び起動回数の増加に伴う費用の合計額をいう。以下同じ。)の合計額を機械的に試算している。化石燃料の価格はIEAが公表しているWorld Energy Outlookに依拠し、また、2030年度において再生可能エネルギー源を用いて発電された全ての電気がFIT制度の対象であると仮定を置いている。系統安定化費用は、実際の系統の条件により増加する可能性がある。

²⁰ 世界銀行やEIA (米国エネルギー情報局) は、直近の見通しにおいて、化石燃料の価格が上昇すると見込んでいる。

²¹ 「電力コスト」を「発電電力量から送電に伴い損失する電力量等を除いた電力需要量」で機械的に除して算出したものであり、電気料金とは異なる。実際の電気料金は、託送料金なども含まれ、また、電源の稼働状況、燃料価格、電力需要によって大きく左右されるため正確な予測は困難である。

²² 系統安定化費用に、①自然変動電源の発電時に、揚水式水力の動力によって需要を創出することによる費用及び②発電設備を自然変動電源対応のために確保しておくために必要な費用を加えたものをいう。

のため、再生可能エネルギーのコストを低減させ、再生可能エネルギーの自立的な 導入が進む状態の早期の実現に全力で取り組む。

6. 2050年カーボンニュートラルの実現に向けた産業・競争・イノベーション 政策と一体となった戦略的な技術開発・社会実装等の推進

気候変動問題の解決は、従来の取組の延長では実現することが困難であり、世界 全体での取組と非連続なイノベーションが不可欠である。

IPCCが示す2℃以内を実現できる2050年世界全体で温室効果ガス70% 削減のシナリオの実現に向けては、世界で年間7兆ドルの追加費用が必要との試算 23 があり、1.5℃努力目標実現には更なる追加費用が必要となることが見込まれる。特に、今後温室効果ガスの排出が増大していくことが見込まれる新興国で、パリ協定の目標に向けて必要な投資を実行していくための最大の課題は、このコストをいかに引き下げていくかである。

我が国はこれまで、サンシャイン計画等により30年以上かけてイノベーションに取り組み、太陽電池のコストを250分の1にすることに貢献した(世界全体で17兆ドルのコスト削減に相当)。これにより、太陽電池は途上国も含め世界で導入が進み、気候変動対策の重要な手段の一つとなっている。したがって、非連続なイノベーションにより社会実装可能なコストを可能な限り早期に実現することが、世界全体での温室効果ガスの排出削減には決定的に重要である。

これらを実現するためには、巨大な資金、技術力を有するビジネスの力を最大限活用することが重要となる。世界中において脱炭素社会をリードするビジネスの主導権争いが激化している中、民間投資を後押しし、民間企業が保有する240兆円の現預金の活用を促し、ひいては3,500兆円とも言われる世界中の環境関連の投資資金を我が国に呼び込むとともに、日本が国際競争力を持ち得る分野を見極め、優先順位を付けて早期に脱炭素技術の技術開発・社会実装に取り組むことが重要である。こうした観点から、「グリーン成長戦略」を策定し、技術革新を通じて今後の成長が期待される重要な14分野において、高い目標を設定した。洋上風力産業や水素産業といったエネルギー関連の産業についてはもちろん、エネルギー関連以外の産業についても、エネルギー使用の在り方と密接に関連することから、グリーン成長戦略を踏まえて、技術開発・社会実装に取り組んでいく。

また、「グリーン成長戦略」では、成長が期待される14分野ごとに、①年限を明確化した目標、②研究開発・実証、③規制改革・標準化などの制度整備、④国際連携、などを盛り込んだ「実行計画」を策定し、「研究開発」、「実証」、「導入拡大」、「自立商用」の4段階に分けて、各分野の2050年に向けた道筋を示し、目標実現のための具体策やイノベーション要素を整理した。

加えて、分野横断的な政策ツールとして、予算、税、金融、規制改革・標準化等 を総動員していく。予算に関しては、まずは政府が環境投資で一歩大きく踏みこむ ため、過去に例のない2兆円の基金(グリーンイノベーション基金)を創設し、グ

_

²³ 公益財団法人地球環境産業技術研究機構(RITE)のモデルによる試算。

リーン成長戦略の実行計画を策定している重点分野のうち、特に政策効果が大きく、社会実装までを見据えて長期間の継続支援が必要な領域において、具体的な目標とその達成に向けた取組へのコミットメントを示す企業等に対し、今後10年間、革新的技術の研究開発・実証から社会実装までを継続して支援していく。その際、広く国民・社会の関心を喚起するため、国民目線から見て分かりやすい形で、基金で実施するプロジェクトの意義や目標をアピールし、社会全体の変革を促すメッセージを不断に発信していく。税制に関しては、カーボンニュートラルに向けた投資促進税制、研究開発税制、事業再構築・再編等に取り組む企業に対する繰越欠損金の控除上限を引き上げる特例の活用を通じ、民間投資を喚起していく。

金融に関しては、情報開示や着実な低炭素化の取組等の脱炭素への移行の取組を評価するための指針など、金融市場のルール作りを通して、グリーン、トランジション、イノベーションへのファイナンスの呼び込みを図る。

今後の成長の鍵となる革新的な技術等については、民間投資の誘発を前提とした官民協調投資により進めていく「実証フェーズ」の後に、①新技術の需要を創出するような規制強化、②新技術を想定していなかった規制の合理化など、国内の規制・制度を整備する(水素ステーションに関する規制改革、再生可能エネルギーが優先して入るような系統運用ルールの見直し、自動車の電動化推進のための燃費規制の活用やCO2を吸収して造るコンクリート等の公共調達等の検討など)。さらに、温暖化対策に関する国際的なルール形成の競争が激しさを増す中、我が国としても、③新技術を世界で活用しやすくするような国際標準化等に積極的に取り組むことで、我が国の利害や社会事情を国際ルールに反映し、我が国の優れた新技術が正しく評価される環境を作る。

加えて、資源・エネルギーの安定供給確保と一体的となった「包括的資源外交」 を推し進める。

同時に、革新的技術の拡大は、国・地域ごとに多様な環境の差異(エネルギー事情や技術動向等)があることに強く留意し、これらの分野横断的な政策ツールの実行に際しては、アジアなどとの間の地域間連携を進める。

こうした国内外での制度環境整備により、その需要とグリーン投資を拡大し、量産化・価格低減を図る。

< 「グリーン成長戦略」における成長が期待される14分野>

①洋上風力・次世代型太陽光・地熱産業

洋上風力は、大量導入やコスト低減が可能であるとともに、経済波及効果が期待されることから、再生可能エネルギーの主力電源化に向けた切り札である。まずは魅力的な国内市場の創出に政府としてコミットすることで、国内外からの投資の呼び水とする。具体的には、2030年までに1,000万kW、2040年までに

浮体式も含む3,000万kW~4,500万kWの案件形成²⁴を目標とし、再工 ネ海域利用法に基づく案件形成や系統・港湾等のインフラ整備を計画的に進めてい く。加えて、設備投資へのインセンティブ付与や国内外の企業連携の促進、事業環 境整備等を通じて投資を促進することにより、競争力があり強靱な国内サプライチ ェーンを構築する。さらに、アジア展開を見据え、「洋上風力の産業競争力強化に向 けた技術開発ロードマップ」に基づく次世代の技術開発や国際連携等に取り組み、 国際競争に勝ち抜く次世代産業を創造していく。

太陽光発電については、既存の太陽電池では技術的な制約のある壁面等に設置可能なペロブスカイトを始めとした次世代型太陽電池の実用化と海外市場も視野に新市場創出に取り組む。具体的には、産学官が協力して次世代型太陽電池の性能向上に向けた基盤技術の開発やユーザー企業と連携した社会実装に必要な実証等を行い、次世代型太陽電池の市場投入を加速させる。こうした取組を通じ、太陽光発電の利用可能性の拡大を進めるとともに、関連する市場の活性化等を通じ、産業の育成・再構築を図り、地域と共生可能な適地の確保を図る。

地熱発電は、再生可能エネルギーであり、安定的な発電が可能なベースロード電源であることから、国自らが行う開発適地における資源量の調査や事業者に対するリスクマネーの供給、自然公園法や温泉法などの関係法令の規制の運用見直し、地元理解の促進等に取り組む。

また、2050年のカーボンニュートラルの実現に向けては、超臨界地熱発電等の次世代型の地熱発電技術を世界に先駆けて実現し、これまで開発できていなかった地熱資源を開発し、我が国における抜本的な地熱発電の導入を進めるとともに、超臨界地熱資源の探査技術や大深度掘削技術、地上・地下の配管、タービンを含めた発電システム全体をパッケージで海外に売り込むことで、我が国地熱産業における海外展開の更なる拡大に取り組む。

②水素・燃料アンモニア産業

水素は、発電・産業・運輸など幅広く活用されるカーボンニュートラルのキーテクノロジーである。新たな資源と位置付け、乗用車用途だけでなく幅広いプレイヤーを巻き込み、導入量拡大を通じて、2030年に現在の販売価格の1/3以下(30円/Nm3)、2050年に化石燃料に対して十分な競争力を有する水準、すなわち、水素発電コストをガス火力以下(20円/Nm3程度以下)に低減することを目指す。目標量に関しては、2030年に最大300万tの導入、2050年に2,000万t程度の供給量を目指す。

そのためには、供給コスト削減と需要拡大に一体的に取り組む必要がある。供給サイドの取組としては、水電解装置の大型化・モジュール化、水素を大規模に輸送できる国際水素サプライチェーンの構築を実施する。また、需要拡大に向けては、

-

²⁴ 再エネ特措法に基づく認定量。

水素発電の燃焼安定性に係る技術開発・実証、燃料電池自動車の導入支援と水素ステーションの戦略的整備、純水素燃料電池も含めた定置用燃料電池の普及拡大、水素還元製鉄の技術確立等に取り組む。加えて、テーマ横断的な取組として、既存インフラや需要と供給の隣接する地域特性を最大限活用した水素社会モデルの構築を通じて効率良く知見を蓄えるとともに、規制改革、国際標準化等にも取り組む。

燃料アンモニアは、燃焼してもCO2を排出しないゼロエミッション燃料である。

需要面では、石炭火力への20%混焼技術の実機実証を進めつつ、NOx排出量を抑制した高混焼バーナー等、専焼化も見据えた技術開発を行う。また、アンモニアの燃料としての利用を促すため、燃料アンモニアの法制上の位置付けを明確化する。さらに、燃料アンモニアの国際的な流通、活用に向け、引き続き相当程度の石炭火力利用が見込まれる東南アジア等への混焼技術の展開を行いつつ、燃料アンモニアの仕様や燃焼設備におけるNOx排出基準の国際標準化も図る。

供給面では、製造効率向上に向けた技術開発を進めつつ、公的金融機関やJOGMECによるファイナンス支援強化も検討する。2030年には国内で年間300万tの需要を想定し、Nm3当たり10円台後半(熱量等価水素換算)での供給を目指す。さらに、2050年には国内で年間3,000万tの需要を見込む。

こうした需給双方の取組を通じ、日本主導で、国際的な燃料アンモニアサプライチェーンをいち早く構築する。

③自動車·蓄電池産業

自動車分野においては、サプライチェーン全体でのカーボンニュートラル化を目指し、エネルギーの脱炭素化と併せて、電気自動車・燃料電池自動車等の導入促進、急速充電設備・水素ステーション等の整備、電池の次世代技術開発・製造立地推進、部品サプライヤーや地域経済を支える自動車販売店・整備事業者・SS等への支援など包括的な措置を講じ、電動化を推進する。こうした基本的な考え方の下、例えば、以下のような具体的な取組を進めていく。

・2035年までに、乗用車新車販売で電動車100%を実現できるよう、包括的な措置を講じる。商用車については、8t以下の小型の車について、2030年までに、新車販売で電動車20~30%、2040年までに、新車販売で、電動車と合成燃料等の脱炭素燃料の利用に適した車両で合わせて100%を目指し、車両の導入等の包括的な措置を講じる。8t超の大型の車については、貨物・旅客事業等の商用用途に適する電動車の開発・利用促進に向けた技術実証を進めつつ、2020年代に5,000台の先行導入を目指すとともに、水素や合成燃料等の価格低減に向けた技術開発・普及の取組の進捗も踏まえ、2030年までに、2040年の電動車の普及目標を設定する。

- ・充電・充てんインフラの不足は、電動車普及の妨げとなる。したがって、充電インフラについては、老朽化設備を更新するほか、既存のインフラを有効に活用できるSSにおける急速充電器1万基等、公共用の急速充電器3万基を含む充電インフラを15万基設置し、遅くとも2030年までにガソリン車並みの利便性を実現することを目指す。この際、充電インフラの普及促進や規制緩和等により、最適な配置やビジネス性の向上を進めるとともに、充電設備の普及が遅れている集合住宅に対する導入を促進する。また、充てんインフラについては、燃料電池自動車・燃料電池バス及び燃料電池トラックの普及を見据え、2030年までに1,000基程度の水素ステーションについて、人流・物流を考慮しながら最適な配置となるよう整備するとともに、規制改革に取り組む。バスやトラック等の商用車向けの充電設備や水素ステーションについては、事業所専用の充電・充てん設備も含め、整備を推進する。
- ・自動車の電動化に伴い、エンジン部品サプライヤーが電動部品製造に挑戦する、SS・整備拠点による地域での新たな人流・物流・サービス拠点化やEV ステーション化を進める等の攻めの業態転換・事業再構築を支援する。

蓄電池は、自動車の電動化や再生可能エネルギーの普及に必要となる調整力のカーボンフリー化等のグリーン化や、デジタル化の進展の要となる「新たなエネルギー基盤」である。こうした観点から、蓄電池の国内製造基盤強化に向け、2030年までのできるだけ早期に、国内の車載用蓄電池の製造能力を100GWhまで高め、蓄電池サプライチェーンの強化に向け、蓄電池材料を含めた大規模投資を促す。さらに、家庭用、業務・産業用蓄電池の合計で2030年に累計約24GWhを目指す。

④カーボンリサイクルに係る産業・マテリアル産業

カーボンリサイクルは、CO2を資源として有効活用する技術であり、カーボンニュートラル社会の実現に重要な横断的分野である。日本に競争力があり、コスト低減、社会実装を進めた上で、グローバル展開を目指す。

具体的には、CO2吸収型コンクリートについては、2030年には需要拡大を通じて既存コンクリートと同価格(=30円/kg)を、2050年には防錆性能を持つ新製品を建築用途にも使用可能とすることを目指す。セメントについては、2030年までに石灰石からの排出CO2を100%近く回収するプラントの開発を行うとともに、その技術について 2050年までに国内外で導入を進め市場でのシェア獲得・拡大を図る。

また、カーボンリサイクル燃料分野においては、合成メタンの実用化に向けた技術開発等を進めるとともに、バイオジェット燃料などのSAFについては、203 0年頃の実用化を目標に、製造技術開発と大規模実証に取り組む。輸送機器用等の CO2と水素の合成燃料については、技術開発・実証を今後10年間で集中的に行い、2040年までの自立商用化を目指す。

カーボンリサイクル化学品分野において、人工光合成については、プラスチック原料製造の大規模実証を実施し、汎用プラスチックについては2050年には既製品と同価格(=100円/kg)の実現を目指す。CO2を原料とする機能性化学品等については、2030年に製造技術を確立し、2050年に既製品と同価格を目指すとともに、熱源のカーボンフリー化(バーナーや分解炉の研究開発)等によるナフサ分解炉の高度化を進める。

さらに、CO2分離回収分野において、低コスト化につながる高効率な分離回収技術を開発し、2050年に世界の分離回収市場で年間10兆円の3割シェア実現を目指す。

社会の基盤となる製品の材料を供給するマテリアル産業は、カーボンニュートラルを見据えたものづくり全般のプロセスマネジメントの担い手となり、更なる成長が期待できる産業である。しかし、製造過程でCO2を多排出することが課題であることから、熱源の脱炭素化やプロセスそのものの抜本的な変更等、製造段階での脱炭素化と、川下段階での省エネルギー化への貢献等を通じて、環境性能の高いマテリアルの普及を拡大し、新たな市場の取り込みを図る。

具体的には、鉄鋼業の還元・溶解工程において、エネルギー効率に優れる現行の高炉を有効活用し、水素を用いて鉄鉱石を還元するとともに、高炉排ガスに含まれるCO2を分離・回収し、還元剤に転換して活用することにより、CO2の排出削減が可能となる技術や2050年までの「ゼロカーボン・スチール」の実現を見据え、水素だけで鉄鉱石を還元できる「水素直接還元法」の実現に向けた基礎技術など、世界に先駆けてゼロカーボン・スチールの技術開発・供給を行い、2050年に年間最大約5億t、約40兆円と見込まれるグリーンスチール市場の獲得を目指す。加えて、リサイクルの高度化や省資源化を通じた世界の脱炭素化と資源制約の軽減の両立を実現するため、アルミ展伸材の資源循環率を50%に拡大していく。さらに、製紙業やガラス・セラミックス製造業等においては、高温熱源の非化石燃料化に向けて、燃料転換に必要な製造設備の転換に取り組んでいく。また、石油化学コンビナートにおいても、ナフサ分解炉の技術開発や石油精製プロセスへのCO2フリー水素等の導入を通じて脱炭素化を進める。

これらにより、カーボンニュートラルと我が国のマテリアル産業の更なる成長・ 発展との両立を目指す。

⑤住宅建築物産業・次世代電力マネジメント産業

住宅・建築物分野は家庭・業務部門のカーボンニュートラルに向けて鍵となる分野であり、一度建築されると長期ストックとなる性質上、早急に取り組むべき分野である。

具体的には、住宅を含む省エネルギー基準の適合義務付け等の規制措置の強化、 ZEH・ZEB の普及拡大、省エネルギーリフォーム拡大等を含む既存ストック対 策の充実・強化、長期優良住宅の認定基準の見直し、住宅性能表示制度における上 位等級の設定と2022年度からの運用、住宅・建築物の長寿命化、新築住宅の販 売又は賃貸時における省エネルギー性能表示の義務化を目指すことなどにより、省 エネルギー性能の向上を図っていく。

また、太陽光発電や蓄電池の導入を促進するとともに、創エネポテンシャルの最大化に向け、太陽光発電等の再生可能エネルギー導入を促す制度整備や、ビル壁面等への次世代型太陽電池の導入による住宅・建築物での創エネ拡大に向けた支援措置を講じる。

あわせて、住宅・ビルのエネルギー管理システム(HEMS・BEMS)等を用い、太陽光発電システムの発電量等に合わせた電力需給調整に資するようなエネルギーマネジメントの取組も進めていく。

これらの取組を通じて、高度な省エネルギー・エネルギーマネジメント技術を国内に普及させる市場環境を創造しつつ、海外の市場獲得に向け技術の展開も図っていく。

再生可能エネルギーの大量導入に代表される電力供給構造の変化に伴い、系統混雑や電力品質問題が深刻化することが懸念される。国民負担を抑制しつつカーボンニュートラル社会を実現するためには、こうした課題に効果的に対応すべく、必要となる規制の維持・見直しを行うとともに、発展を続けるデジタル技術を活用し、より高度な電力マネジメントの予測・運用・制御手法をビジネス展開に用いる「次世代電力マネジメント産業」を発展させていくことが重要である。

具体的には、再生可能エネルギー、燃料電池・コージェネレーション等、蓄電池、需要側リソース等の分散型エネルギーリソース(DER)の活用・価値提供を図るビジネスや、DERの増大・活用を前提にした送電・配電系統の運用高度化・設備形成を図る次世代グリッドビジネス、さらには特定地域における両者の融合形態としてのマイクログリッドビジネス、また、それらビジネスを可能にするシステムや機器、データ基盤等のプラットフォームを提供するビジネスの発展に向け、DERの供給力や調整力としての価値や環境価値を取引できる各種市場(スポット市場、時間前市場、需給調整市場、先渡市場、容量市場、再生可能エネルギー価値取引市場等)の市場整備を含めた制度的対応や各種の支援措置を通じた後押しも含め、官民一体となって検討を行い、取組を推進する。

⑥次世代熱エネルギー産業

我が国の産業・民生部門のエネルギー消費量の約6割は熱需要である。こうした 観点から、2050年カーボンニュートラル実現に向け、熱エネルギーの供給源で あるガスの脱炭素化は重要である。ガスの脱炭素化に向けては、再生可能エネルギ ー由来等の水素とCO2から合成(メタネーション)した合成メタンや水素直接利 用など次世代熱エネルギーの活用が重要であり、次世代熱エネルギーの技術開発や社会実装に向けた取組を供給サイドと需要サイドの両面から進めていく。

供給サイドの取組として、2030年には既存インフラへ合成メタンを1%注入し、その他の手段と合わせてガスの5%をカーボンニュートラル化するとともに、2050年までには合成メタンを90%注入し、その他の手段と合わせてガスのカーボンニュートラル化達成を目指す。このため、メタネーションの設備大型化や高効率化等の技術開発に取り組む。また、カーボンニュートラルに資する方向でのCO2のカウント方法の検討や海外サプライチェーン構築を進めていく。こうした取組の在り方について、メタネーション推進官民協議会において官民が一体となって検討を進めるとともに、2050年までに合成メタンを2,500万 t 供給し、合成メタンの価格が現在のLNG価格(40~50円/Nm3)と同水準となることを目指す。加えて、水素直接利用やクレジットでオフセットされたLNG導入、CCUS/カーボンリサイクルの推進に取り組む。

また、ガス事業者が、需要サイドのニーズを踏まえ、デジタルを活用しながら地域での最適なエネルギーの供給・マネジメント等を総合的なサービスとして提供することに加え、脱炭素化メニューなど様々なエネルギー供給サービスの実施や国内外の新市場開拓等の事業展開を通じて、総合エネルギーサービス企業への転換を図ることを促す。

需要サイドの取組として、産業分野における石炭・石油から天然ガスへの燃料転換や天然ガス利用機器の高効率化等を進める。合成メタンが天然ガスを代替することで、需要サイドの円滑な脱炭素化への移行が可能となる。トランジション・ファイナンス推進に向け、ガスを含めた分野別ロードマップを2021年度中に策定する。また、ガス事業者が地域の行政・事業者等と連携しながら地域での水素直接供給のネットワーク形成や課題解決に向けた検討を行い、クレジットでオフセットされたLNGの導入促進やCCUS/カーボンリサイクルの実用化に取り組むことで、需要サイドの脱炭素化ニーズに応じられるようにする。

加えて、ガスインフラの継続的なレジリエンス強化に取り組む。スマートメーターの検討やデジタル技術を活用した保安・レジリエンス向上に向けた取組を推進するとともに、ガスコージェネレーションの導入を促進して分散型エネルギーシステムの構築を図り、デジタル技術活用による地域での最適なエネルギー制御を実現する。

また、地域に根ざしたガス事業者が、地域の需要サイドへの次世代熱エネルギー供給に向け主体的な取組を推進するとともに、業界団体・行政等のサポートを通じて、地域貢献や経営基盤強化を進める。これらにより、地域課題の解決や地域におけるエネルギーの安定供給の確保に貢献する。

⑦原子力産業

原子力については、引き続き、万が一の事故のリスクを下げていくため、過酷事故対策を含めた軽水炉の一層の安全性・信頼性・効率性の向上に資する技術の開発を進めると同時に、放射性廃棄物の有害度低減・減容化、資源の有効利用による資源循環性の向上、再生可能エネルギーとの共存、カーボンフリーな水素製造や熱利用といった多様な社会的要請に応えていく。

現行軽水炉では、中露が政府ファイナンスをバックに市場を席巻しており、米英加を始めとした先進国では小型炉、革新炉に活路を見出し、2030年前後の商用化を目指して大規模政府予算を投入して研究開発を加速している。こうした海外動向も踏まえ、海外の開発プロジェクトに高い製造能力を持つ日本企業も連携して参画するとともに、国内においても、水素製造を含めた多様な産業利用が見込まれ、固有の安全性を有する高温ガス炉を始め、安全性等に優れた炉の追求など、将来に向けた原子力利用の安全性・信頼性・効率性を抜本的に高める新技術等の開発や人材育成を進める。このような取組を支えるため、人材育成や研究開発等に必要な試験研究炉の整備を含め、産学官の垣根を越えた人材・技術・産業基盤の強化を進める。その際、関係省庁が連携して、大学等と地域社会との連携、人材育成等について、先進的な取組や研究成果の横展開・議論を行い、知見・技術の社会実装等も推進する。

具体的な研究開発を進めるに当たっては小型モジュール炉や溶融塩炉を含む革新的な原子炉開発を進める米国や欧州の取組も踏まえつつ、国は長期的な開発ビジョンを掲げ、民間は創意工夫や知恵を活かしながら、多様な技術間競争と国内外の市場による選択を行うなど、戦略的柔軟性を確保して進める。また、核融合エネルギーの実現に向け、国際協力で進められているトカマク方式のITER計画や幅広いアプローチ活動については、サイトでの建設や機器の製作が進展しており、引き続き、長期的視野に立って着実に推進するとともに、技術の多様性を確保する観点から、ヘリカル方式・レーザー方式や革新的概念の研究を並行して推進する。さらに、放射性廃棄物の減容化・有害度低減や、安定した放射性廃棄物の最終処分に必要となる技術開発等を進める。

こうした取組により、2030年までに、民間の創意工夫や知恵を活かしながら、国際連携を活用した高速炉開発の着実な推進、小型モジュール炉技術の国際連携による実証、高温ガス炉における水素製造に係る要素技術確立等を進めるとともに、ITER計画等の国際連携を通じ、核融合研究開発を着実に推進する。

⑧半導体・情報通信産業

情報の利活用、デジタル化が急速に進展する中、カーボンニュートラルは、製造・サービス・輸送・インフラなど、あらゆる分野で電化・デジタル化が進んだ社会によって実現される。したがって、デジタル化・電化の基盤である、半導体・情報通信産業は、グリーンとデジタルを同時に進める上での鍵である。

半導体・情報通信産業のカーボンニュートラルに向けた方針は2つに分かれ、
(a) デジタル化によるエネルギー需要の効率化・省CO2化の促進(グリーンby デジタル)と、(b) デジタル機器・情報通信産業自身の省エネルギー・グリーン化(グリーンofデジタル)の2つのアプローチを車の両輪として各種取組を推進し、2040年に半導体・情報通信産業のカーボンニュートラルを目指す。

具体的には、(a) デジタル化によるエネルギー需要の効率化・省CO2化(グリーンbyデジタル)の観点では、DX推進、グリーンなデータセンターの国内立地推進、次世代情報通信インフラ整備を進めることが重要であり、市場規模の拡大およびそのための各種支援策の検討・実施により、日本が世界一のグリーン・デジタル大国となることを目指していく。

また、(b) デジタル機器・産業の省エネルギー・グリーン化(グリーン o f デジタル)の観点では、幅広い分野で使われているパワー半導体の研究開発、実用化、普及拡大や、グリーンデータセンターの推進に向けた各種技術の開発・実証等の支援、エッジコンピューティング技術の拡大、超分散コンピューティングソフトウェアの開発、光エレクトロニクスの高度化に向けた研究開発等の省エネルギー化・省CO2化・高性能化を進めて、グリーン・デジタル社会の構築を目指していく。

特に、日本が世界に先駆けてグリーンとデジタルが両立した持続可能な社会を構築するためには、「産業のコメ」であり、あらゆる社会・経済活動に深く関係し、データ通信、処理等の根幹を担う半導体やデジタル産業について、時代の変化を正確に捉え、競争力を高めることが必要である。このような背景を踏まえ、経済産業省では、有識者をメンバーとした「半導体・デジタル産業戦略検討会議」を開催し、様々な意見をいただくことで、半導体の競争力強化やデータセンター等のデジタルインフラの強化・最適配置、デジタル社会を支えるデジタル産業の育成などからなる「半導体・デジタル産業戦略」を2021年6月に取りまとめた。今後は、当該戦略を、グリーン成長戦略と共に、着実に実行に移していく。

9船舶産業

これまで我が国は造船・海運業等を中心に、環境性能に優れた船舶・サービスを強みとしていたところ、地球温暖化対策への世界的な関心とともに、そうした船舶・サービスの市場価値も高まっており、ゲームチェンジの時期を迎えているとも言える。この時期を逃すことなく、我が国造船・海運業等が世界に先駆けてゼロエミッション船に係る技術開発に成功すれば、こうした需要を取り込むことができる。また、2050年カーボンニュートラルを目指すに当たり、海外からの輸入が想定されている水素等の脱炭素燃料について、サプライチェーンの大半を海上輸送が担うことが予測されるが、サプライチェーン全体におけるカーボンニュートラルも求められている。

我が国における安定的な海上輸送の確保のためにも、ゼロエミッションの達成に必

類となるLNG²⁵、水素、アンモニア等のガス燃料船等の開発に係る技術力を獲得し、 生産基盤を確立するとともに、国際海事機関(IMO)を通じて関連する国際基準の 整備を主導することにより、我が国造船・海運業の国際競争力の強化及び海上輸送の カーボンニュートラルに向けて取り組む。グリーンイノベーション基金等を活用しつ つ、技術開発を実施することにより、2025年までにゼロエミッション船の実証事 業を開始し、従来の目標である2028年よりも前倒しでゼロエミッション船の商業 運航を実現するとともに、2030年には更なる普及を目指す。また、2050年に おいて、船舶分野における水素、燃料アンモニア等の代替燃料への転換を目指す。

具体的には、現状の出力・重量・サイズの制約を考慮し、遠距離・大型船向けにはまだ世界でも存在していない水素・燃料アンモニアを直接燃焼できるエンジン等の核となる技術の開発・実用化を推進し、近距離・小型船向けには水素燃料電池システムやバッテリー推進システムの普及を促進する。また、その際必要となる高品質な燃料タンク等の機器を安定的かつ効率的に生産する体制の確立などを進める。

また、ゼロエミッション船の普及に向けては、これらの技術開発・実用化の取組と並行して、水素・アンモニア燃料船等に係る安全基準整備などの国際枠組みが必要である。これまで燃費性能規制等の国際ルール作りを我が国が主導してきたところ、引き続き I MOを通じた省エネルギー・脱炭素化のための国際枠組みの整備を牽引する。加えて、内航船省エネルギー格付制度の運用等による省エネルギー・省CO2排出船舶の普及促進に取り組むとともに、内航海運のカーボンニュートラル推進に向けたロードマップを2021年中に策定し、必要な取組を推進する。

⑩物流・人流・土木インフラ産業

全ての社会経済活動の基盤となる物流・人流システムと土木インフラは、国民の生活に不可欠なものであり、環境に配慮した交通ネットワーク等の構築・導入や、建設、維持管理、利活用の各フェーズにおける技術開発、社会実装を通じてカーボンニュートラルを目指す。

港湾においては、大量かつ安定・安価な水素・燃料アンモニア等の輸入を可能とする受入環境の整備や、脱炭素化に配慮した港湾機能の高度化等を通じてカーボンニュートラルポートの形成を図る。

スマート交通については、MaaSの普及促進により、自家用自動車だけに頼ることなく移動しやすい環境を整備するほか、地域公共交通活性化再生法を活用し、まちづくりと連携しつつ、地域交通ネットワークの再編、バリアフリー化の促進等により、

_

²⁵ LNGについては、熱量当たり燃料体積が重油と比べて大きいことや、沸点がマイナスのため 常温で気体であるなど、水素・燃料アンモニアやカーボンリサイクルメタンといったガス燃料と 共通の特徴があり、世界に先駆けて水素・アンモニア燃料船等の早期導入を図るためには、LN G燃料船で技術力(燃料タンク等)を蓄積することが重要となる。また、将来的にカーボンリサイクルメタンの供給が現実的になった際には、LNG燃料船や陸側の燃料供給のインフラ設備が そのまま転用可能となり、実質ゼロエミッションの達成に資することとなる。

地域における公共交通の確保や利便性向上による利用促進を図るとともに、LRT・BRT等のCO2排出の少ない輸送手段の導入を図る。また、第2次自転車活用推進計画に基づき、安全で快適な自転車利用環境の創出を推進する。

グリーン物流の推進については、モーダルシフト等の推進のほか、新技術を活用しながらサプライチェーン全体での輸送の効率化等に取り組む。道路交通流対策を推進するとともに、ダブル連結トラックの普及促進を図るなど物流の効率化を推進する。燃料電池鉄道車両の開発を推進する。また、空港施設・空港車両からのCO2排出削減、空港の再生可能エネルギー拠点化や、管制の高度化による運航方式の改善を推進する。

インフラ・都市空間等でのゼロエミッション化については、道路照明灯の省エネルギー化を推進するとともに、道路管理に必要な電力について、再生可能エネルギーの導入を検討する。下水道では、水処理の省エネルギー化等の新技術の開発を行い、水処理や汚泥処理のより一層の省エネルギー化を進める。都市のコンパクト化、都市内のエリア単位の脱炭素化の取組、都市公園の再生可能エネルギーの導入等を推進する。自然環境が有する多様な機能を活用するグリーンインフラの技術開発や地域への導入支援を進めるとともに、グリーンボンド等を通じたグリーンファイナンスの活用を促進する。

建設施工分野においては、燃費性能に優れた建設機械の普及を図り、動力源を抜本的に見直した革新的建設機械の認定制度を創設し、導入・普及を促進する。

こうした取組について、2021年夏にとりまとめた「国土交通グリーンチャレンジ」等に基づき、民間事業者と連携した技術イノベーションやその実装の加速化を通じ、くらし、まちづくり、交通、インフラにおける分野横断的な脱炭素化等の取組を戦略的に推進する。

①食料·農林水産業

「みどりの食料システム戦略」(2021年5月)に基づき、生産、加工・流通、消費に至るサプライチェーン全体で、革新的な技術・生産体系の開発と社会実装を推進し、2050年までに農林水産業のCO2ゼロエミッション化の実現を目指す。

具体的には、農林業機械・漁船の電化・水素化等や、農畜産業由来の温室効果ガスの削減、農地・海洋における炭素の長期・大量貯蔵といった吸収源の取組、食品ロスの削減等を強力に推進する。また、森林・木材については、人工林の適切な間伐、エリートツリー等を活用した再造林等の森林整備や高層建築物等の木造化に資する建築部材等の開発、利用拡大等に取り組み、森林吸収量の確保・強化を図る。

⑩航空機産業

ICAO(国際民間航空機関)が2020年以降CO2排出量を増加させないとの目標を採択し、IATA(国際航空運送協会)が2050年時点でCO2排出量

を2005年比で半減させる目標を掲げている中、電動化技術、水素技術、バイオジェット燃料などのSAF、機体向け炭素繊維複合材など、航空機分野の低炭素化に向けた我が国航空機製造業の技術的優位性の確立を目指す。

具体的には、航空機の電動化技術については、現在、補助動力用や地上滞在時における電力供給用の蓄電池搭載など用途範囲は限定的であるが、今後は、飛行時の動力や内部システムの作動に係る用途へと拡大していくことが期待されており、将来航空機の市場導入のタイミングに合わせ、航空機向け電池や、モーター、インバータ等、航空機の動力としてのコア技術を2030年以降段階的に技術搭載することを目指し、研究開発を加速する。また、国内の産学官連携を通じて国際標準化も推進していく。

航空機分野の低炭素化の実現には、電動化技術に加えて、水素燃料の活用も期待されており、2020年9月、エアバス社が2035年に水素航空機を導入することを目指すと発表した。我が国企業においても、水素航空機に関する具体的な取組が始動しており、今後、2035年以降の水素航空機の実現に必要となる液化水素燃料貯蔵タンクや水素航空機向けエンジン燃焼器などのコア技術の開発を推進していく。

SAFについては、主な製造技術として、ガス化FT合成技術、ATJ技術、微細藻類培養技術等が挙げられるが、それぞれ技術課題が存在し、小規模な実証段階に留まっている。今後、技術確立とコスト低減を実現するための研究開発、大規模実証を実施し、2030年頃に、コストを現在のジェット燃料と同等の価格まで低減し、実用化を達成する。CO2と水素を原料とする合成燃料についても、資源制約を受けることなく工業的に大量生産することが可能であるという観点から、安定的な供給が可能なSAFのひとつとして期待されるため、技術開発・実証を今後10年間で集中的に行い、2040年までの自立商用化を目指す。また、2025年以降、諸外国においてもSAFの製造・供給が進展していくものと想定されるため、SAFの国際市場の動向に応じて、国内外において、競争力のあるSAFの供給拡大を目指す。

機体向け炭素繊維複合材については、軽量化という観点から運航時における省エネルギー効果は従来の金属材料よりも高い一方で、製造時におけるエネルギー消費は、金属材料より大きい。したがって、自動車等の他分野とも連携を図りながら製造サイクル全体としての排出削減効果を高めるべく、中長期的なリサイクル技術の確立を目指す。また、国内素材メーカー、航空機・エンジンメーカー、宇宙航空研究開発機構等の国立研究開発法人の連携のもと、先端材料に係るデータベース整備や生産技術も含めた必要な技術開発を進め、将来機における搭載技術が選定されるタイミングまでに、国内メーカーが必要な技術レベルを満たすことを目指す。

③資源循環関連産業

3R+Renewableについては、法律や計画整備により技術開発・社会実装

を後押ししている。廃棄物発電・熱利用、バイオガス利用については、既に商用フェーズに入っており普及や高度化が進んでいる。今後、これらの取組について、技術の高度化・効率化、設備の整備、低コスト化、デジタル化等により更なる推進を図り、循環経済への移行も進めつつ、2050年までに温室効果ガスの排出を全体としてゼロにする。

(a) リデュース・リニューアブル

リデュースについて、資源循環の効率化や省CO2化を進めるため、関係者間で使用済製品・素材に関する必要な情報を共有するためのシステムの実証を行う。また、リニューアブル(バイオマス化・再生材利用等)については、更なる再生利用拡大に向け、バイオマス素材の高機能化や用途の拡大・低コスト化のための技術開発・実証、リサイクル技術の開発・高度化、設備の整備、需要創出を進める。

(b) リユース、リサイクル・排ガスの活用

リサイクル性の高い高機能素材やリサイクル技術の開発・高度化、回収ルートの最適化、設備容量の拡大に加え、更なる再使用・再生利用拡大を図る。特に、「プラスチックに係る資源循環の促進等に関する法律」等に基づき、プラスチック使用製品の設計から廃棄物処理に至るまでのライフサイクル全般で、あらゆる主体におけるプラスチック資源循環等の取組を促進するための措置を講じる。同様に、プラスチック以外の分野についても、資源循環の推進について検討を深める。

焼却施設排ガス等の活用については、グリーンイノベーション基金の活用も検討しつつ、廃棄物処理施設からCO2等を回収しやすくするための燃焼制御等や、多様な不純物を含む低濃度の排ガスからのCO2等の分離・回収・利用等、革新的技術の開発や実証事業等を通じたスケールアップ・コスト低減等を図り、実用化・社会実装に向けた取組を進める。

(c) 廃棄物発電、熱利用、バイオガス化、排ガスの固定化

廃棄物発電については、今後のごみ質の大きな変化(プラ割合の減少に伴う生ごみ割合の増加等)による発電効率の低下が懸念されることから、低質ごみ下での高効率エネルギー回収を確保するための技術開発を進める。

また、気候変動緩和策として、継続的に実施する河川等の維持管理において発生する樹木(伐採木・流木等)をバイオマス発電等の再生可能エネルギー資源として利用促進するため、維持管理の効率化や一般廃棄物処理施設等の有効活用の可能性を検討する。

熱利用について、遠方の利用施設に熱供給を行うための蓄熱や輸送技術の向上・コスト低減を促進する。

バイオガス化については、今後のごみ質の大きな変化に伴うメタン化施設の大規模 化を見据えた技術実証事業を進めるとともに、下水道バイオマスの活用拡大のため、 「下水道エネルギー拠点化コンシェルジュ事業」の充実など、地方公共団体における 案件形成促進を2025年度まで集中的に取り組む。

焼却施設排ガス等の固定化については、ごみ焼却炉の排ガス等から分離・回収した CO2を固定化するラボレベルでの技術開発を実施する。

(4)ライフスタイル関連産業

2050年までに、カーボンニュートラルで、かつレジリエントで快適なくらしを実現するため、「国・地方脱炭素実現会議」等における議論を踏まえつつ、ライフスタイルの脱炭素化に取り組んでいく。

(a) 住まいと移動のトータルマネジメント

住まい・移動のトータルマネジメント(ZEH・ZEB、需要側機器(家電、給湯等)、地域の再生可能エネルギーやEV/FCV等の組み合わせを実用化)の手法の確立等を図るとともに、需要近接型再生可能エネルギー電気・熱、直流給電等による住宅・建築物間のネットワーク化、水素等を活用した再生可能エネルギー主力化と整合した調整力の確保、電気・熱・モビリティのセクターカップリングといった技術の実証・社会実装を図っていく。

(b) ナッジ・デジタル化・シェアリングによる行動変容等

ナッジ等の行動科学と先端技術の融合(BI-Tech)の社会実装に向け、今後さらに、行動情報のデジタル化と集約・解析を行う。一人一人に合ったエコで快適なライフスタイルをサポートする、より高度なシステム技術の開発・実装・標準化を行う。

また、これまでの実証の成果も活用しつつ、J-クレジット制度において、申請手続の電子化・モニタリングやクレジット認証手続の簡素化・自動化を図るとともに、ブロックチェーンを活用した取引市場創出の検討を進め、最速で2022年度からの運用開始を目指す。

そのほか、分散型エネルギーシステムを備えたスマートシティの構築を、セキュリティの確保を図りつつ、全国的に推進する。

さらに、地域の再生可能エネルギーを活用したEVのカーシェアリングによる脱炭素型交通や、バッテリー交換式EVとバッテリーステーションを活用した地域貢献型脱炭素物流に係るビジネスモデルの確立と全国レベルでの横展開を推進する。

(c) 観測・モデルに係る科学基盤の充実

CO2排出量のより正確な推定を目指すため、観測・モデリング技術における時空間分解能を高め、気候変動メカニズムの更なる解明や気候変動予測情報の高精度化、観測・監視を継続的に実施し、DIAS等を通じて温室効果ガス観測データ、気候変動予測情報等の更なる利活用を推進し、科学基盤の充実を図る。加えて、観測網と解

析システムを統合し、時空間分解能や推定精度の面で高度化するとともに、生態系を 始めとする地域全体について、温室効果ガス収支を定量化する。

また、人文・社会科学から自然科学までの分野横断的な研究開発を推進し、効果的な技術・施策の導入手法等に係る基盤的知見の充実と、その社会実装を促すため、「カーボンニュートラル達成に貢献する大学等コアリション」を形成し、大学等間及び産学官の連携を強化する。

<カーボンプライシング>

カーボンプライシングなどの市場メカニズムを用いる経済的手法は、産業の競争力強化やイノベーション、投資促進につながるよう、成長に資するものについて躊躇なく取り組む。

国際的に、民間主導でのクレジット売買市場の拡大の動きが加速化していることも踏まえて、我が国における炭素削減価値が取引できる市場(クレジット市場)の厚みが増すような具体策を講じて、気候変動対策を先駆的に行う企業のニーズに早急に答えていく。

具体的には、足下で、Jークレジットや非化石証書などの炭素削減価値を有するクレジットに対する企業ニーズが高まっている情勢に鑑み、まずは、これらのクレジットに係る既存制度を見直し、自主的かつ市場ベースでのカーボンプライシングを促進する。

その上で、炭素税や排出量取引については、負担の在り方にも考慮しつつ、プライシングと財源効果両面で投資の促進につながり、成長に資する制度設計ができるかどうか、専門的・技術的な議論を進める。その際、現下の経済情勢や代替手段の有無等、国際的な動向や我が国の事情、先行する自治体の取組、産業の国際競争力への影響等を踏まえるものとする。

加えて、我が国は、自由貿易の旗手としての指導力を存分に発揮しつつ、これと 温暖化対策を両立する公正な国際ルールづくりを主導する。その際、炭素国境調整 措置に関する我が国としての基本的考え方に基づき、EU等の議論の動向にも注視 し、戦略的に対応する。

また、過去のストックベースでのCO2を削減する、ビョンド・ゼロを可能とする革新的技術を2050年までに確立することを目指し策定した、革新的環境イノベーション戦略を国内外の状況を踏まえ適時適切に見直し、産学官が一体となって推進する。

また、脱炭素化が難しい領域については、森林吸収源対策や、大気中からCO2を固定化するDACCS・BECCSといったネガティブエミッション技術の活用が必要となる。こうしたネガティブエミッション技術について、2050年までの実用化を目指し、技術開発・社会実装を進めていく。

「経済と環境の好循環」を実現させるべく、非連続なイノベーションの創出に向け全力で取り組んでいく。

|7.国民各層とのコミュニケーションの充実|

(1) エネルギーに関する国民各層の理解の増進

エネルギーの選択は、未来の選択に他ならない。国民が適切にエネルギーを選択するには、政府による情報開示や徹底した透明性の確保が何より重要であり、政府はこの点を肝に銘じるべきである。

東日本大震災と福島第一原子力発電所事故以来、原子力発電や事故処理・福島復興を含め、エネルギー全体に対する国民の関心は高まっている。例えば、電力の安定供給に対する懸念から、節電への取組が定着し、災害時対応力を高める観点から、分散型エネルギーシステムに対する関心が高まった。また、原子力発電の使用済燃料の処理・放射性廃棄物の処分の問題や、依然として高い海外資源への依存やエネルギー自給率の低さ、電気料金の上昇など、エネルギー需給構造が抱える課題について、国民の間の認識も深まりつつある。

2050年カーボンニュートラルと2030年度の新たな温室効果ガス排出削減 目標が示されたことを受け、これらの目標に向けて必要となる水素やCO2回収利 用などの革新的技術の実現可能性などにも国民の関心が集まっている。

また、2050年カーボンニュートラルへの挑戦は、産業構造や経済社会の大転換を伴うものであり、その道のりは険しい。こうした野心的目標を達成するには、エネルギー事業者だけでなく、全ての企業、国民一人一人が脱炭素社会という未来に共鳴・共感し、「じぶんごと」として捉えて行動していくことが大前提となる。

こうした中で、我が国のエネルギー事情の全体像を、関心度合いや背景知識の多 寡によらず、誰もが十分に理解し、関心を持って情報に接することができるように するための情報提供が肝要である。政府としても、継続的な改善を図りながら、我 が国が直面するエネルギー事情の理解につながる広報を、積極的に行っていく。

国民各層がエネルギー事情への理解を深める機会を充実させていく上で大きな障害となったのが、政府と事業者における「安全神話」の存在である。「安全神話」は、政府や事業者が設定した基準や条件を満たせば、リスクはゼロとなり、それ以上の理解を必要としないかのような印象を与えることとなった。福島第一原子力発電所事故以前のエネルギー広報はこうした認識を改善することができず、事故後、政府や事業者は、情報共有の在り方、地元とのコミュニケーションに関する問題意識の不足など多くの批判を受けた。政府は、国民からの信頼を低下させることになったことを深く反省しなければならない。

こうした状況を改善するために、国民が自らの関心に基づいて、適切に整理された情報を選択し活用できるよう、科学的知見やデータに基づいた客観的で多様な情報提供の体制を確立し、エネルギーに関する基礎用語、最新の動向やトピックなど政策に関連する情報をできる限り分かりやすく表現するよう継続的に努めていく必要がある。具体的には、資源エネルギー庁ホームページの「スペシャルコンテンツ」やパンフレットなどの各種媒体を活用して、丁寧に発信していく。パンフレットなどについては英語版も作成し、外国に対しても日本のエネルギー事情やエネル

ギー政策について情報発信していく。

また、メディア、民間調査機関や非営利法人等に対する情報提供を積極的に行い、第三者が独自の視点に基づいて情報を整理し、国民に対してエネルギーに関する情報を様々な形で提供することで、国全体としてエネルギーに関する議論が広く行われる環境を整備していく。

さらに、エネルギー事情に関する理解の拡大と深化を得る上で、学校教育の現場 でエネルギーに関する基礎的な知識を教育プログラムの一環として取り上げること は重要である。エネルギーの選択は、理科、社会科、技術・家庭科等といった様々 な教科にまたがる上、「正解」が無い課題でもあり、子供たちが自らの考えを深め、 「じぶんごと」として向き合うことができるテーマでもある。また、エネルギーを 題材とした教育の機会を設け、子供同士のみならず、教職員や地域の人々とも議論 を深めることは、自らのキャリア形成とも関連付けつつ思考を深め、探究を進める ことにも寄与するものである。このような取組を通じて、エネルギーを巡る我が国 の現状について子供の頃から理解することは、大人になりエネルギー政策に主体的 に関与することになった時に、適切な判断をする上で大いに役立つこととなる。さ らに、高等教育段階においてエネルギーを専門分野として学ぶ人材が増え、将来の エネルギー需給構造を支える人材が育成されることが期待できる。こうした点を踏 まえ、エネルギー教育に関する授業展開例や副教材、電力バランスを考えることが できるゲームなどのコンテンツを作成・改善し、ホームページや紙媒体などを通じ て提供していく。加えて、全国各地でエネルギー教育に取り組む教員等の創意工夫 や自発的な取組を後押ししていく。

このような一つ一つの取組を地道に丁寧に行うことを通じて、エネルギーに関する国民各層の理解を深めていく。その結果、国民一人一人の省エネルギーの徹底や、再生可能エネルギーの供給者としてエネルギー供給構造への参加、放射性廃棄物処分の立地選定への関心の高まりなどにつながり、エネルギーに対する国民の主体的な取組が広がっていくことが期待される。

(2) 政策立案プロセスの透明化と双方向的なコミュニケーションの充実

エネルギーを巡る状況の全体像について理解を深めてもらうための最大限の努力を行う一方で、エネルギー政策の立案プロセスの透明性を高め、政策に対する信頼を得ることも重要である。審議会や有識者会合等を通じた政策立案のプロセスは、最大限オープンにし、透明性を高めていく。

また、国民各層との対話を進めていくために、双方向のコミュニケーションを一層強化していく。特に、原子力などエネルギーに係る様々な課題については、内容が専門的で複雑であったり、安全性やリスク、コスト等の説明が難解であったりすることが、理解を妨げる要因となり得ることから、一方的に情報を伝えるだけでなく、自治体や事業者、非営利法人、市民等の多様なステークホルダーが参加する形で、地域のエネルギーの活用のあり方を含めて、全国各地で丁寧な対話や双方向型のコミュニケーションを深め、それぞれの活動においてエネルギーに関することを「じぶんごと」として捉える機会を構築していく。

さらに、大学生や若手社会人などの若年層を対象として、エネルギーについて互いに学び、意見交換し、エネルギーを巡る諸課題の解決につながる新規事業を生み出すための仕組みを構築するとともに、2050年カーボンニュートラルの実現を当事者として担う若年層とのコミュニケーションを深めていく。

こうした対話型の政策立案・実施プロセスを社会に定着させていく取組を様々な 形で進めていく。