Chap 9 : Structures algébriques (I)

I. Groupes

Groupe (G, *): * associative, élément neutre $e_{_{g}}$, tout élément de G admet un inverse

Sous groupe
$$(H, *) \Leftrightarrow \begin{cases} H \neq \emptyset \\ \forall (x, y) \in H^2, x * y \in H, \ x^{-1} \in H \end{cases} \Leftrightarrow \begin{cases} H \neq \emptyset \\ \forall (x, y) \in H^2, x * y^{-1} \in H \end{cases}$$

Preuves: Composition par e_G, x⁻¹... dans H et dans G

E ensemble quelconque, $S(E) = \{\text{bijections de } E \text{ dans } E\}$ $(S(E), \circ) \text{ est un groupe}$

Morphisme de groupe $\varphi: (G,*) \to (H,\Box)$ (groupes)

$$\forall (x, y) \in G^2$$
, $\varphi(x * y) = \varphi(x) \square \varphi(y)$

$$\varphi(e_G) = e_H \qquad \varphi(x^{-1}) = (\varphi(x))^{-1}$$

 $arphi(G_{\scriptscriptstyle 0})$ sous groupe de $H \qquad arphi^{\scriptscriptstyle -1}(H_{\scriptscriptstyle 0})$ sous groupe de G

Si φ et ψ morphismes de groupes (de G dans H et de H dans K), $\psi \circ \varphi$ morph. gpe de G dans K

Noyau d'un morphisme de groupes $\varphi: G \to H: \ker \varphi = \varphi^{-1}(\{e_H\})$ C'est un sous-groupe de G

 φ injective *ssi* ker $\varphi = \{e_G\}$

Isomorphisme : φ morph. gpe bijectif, φ^{-1} morph. de gpe (en réalité, la 1^e condition implique la 2^e)

Automorphisme = isomorphisme de G dans G

 $Aut(G,*) = Aut(G) = \{automorphismes de groupe de G\}$

 $(Aut(G), \circ)$ est un groupe

 $(G \times H, \cdot), (x, y) \cdot (x', y') = (x * x', y \square y')$: groupe

 $(H_i)_{i \in I}$ sous-groupes de $(G, *) \Rightarrow \bigcap_i H_i$ sous groupe de G

 $H_1 \cup H_2$ sous-groupe de G $ssi\ H_1 \subset H_2$ ou $H_2 \subset H_1$

Preuves: composer

II. Anneaux

Anneau $(A,+,\times)$: (A,+) groupe commutatif, élément neutre 0_A , \times associative, distributive /+, \times admet un élément neutre 1_A (B,+) sous groupe de (A,+)B sous anneau ssi $\langle B \rangle$ stable par \times $|1_A \in B|$

 φ morphisme d'anneau de $(A,+,\times)$ dans (B,\oplus,\otimes) :

$$\varphi(x+y) = \varphi(x) \oplus \varphi(y)$$

$$\varphi(x \times y) = \varphi(x) \otimes \varphi(y)$$

$$\varphi(1_A) = 1_B$$

$$\ker \varphi = \varphi^{-1}(\{0_{\scriptscriptstyle \Delta}\})$$

$$I \subset A$$
 idéal (bilatère) de A si : - $(I,+)$ sous groupe de $(A,+)$ - $\forall x \in I, \forall y \in A, \quad x \times y \in I \quad y \times x \in I$

 φ morphisme d'anneaux $\Rightarrow \ker \varphi$ est un idéal de A

Si $1_A \in I$ ou I contient un élément inversible par \times , I = A

$$\bigcap_{i \in I} I_j$$
 idéal de A

$$I_1+I_2=\{x+y,x\in I_1,y\in I_2\} \text{ id\'eal de A}$$

H sous-groupe de $\mathbb{Z} \Leftrightarrow H = a\mathbb{Z} \ (a \in \mathbb{N})$

$$\Leftrightarrow$$
 H idéal de $\mathbb Z$

$$\Rightarrow$$
 \mathbb{Z} est un anneau principal

Preuve: comme H groupe, H admet une partie dans \mathbb{N}^* , on prend $a = \min(H \cap \mathbb{N}^*)$. Double inclusion:

récurrence (aℤ contenu dans H), division euclidienne → r<a (minimum) → aℤ=H

A est intègre si :
$$xy = 0_A \Rightarrow (x = 0_A \text{ ou } y = 0_A)$$

$$A^* = \{x \in A, x \text{ inversible par } \times \}$$

$$(A^*,\times)$$
 est un groupe

$$\mathbb{Z}^* = \{-1; +1\}$$

III. Corps

Corps $(\mathbb{K},+,\times):(\sqsubset,+,\times)$ anneau, tout élément de $\mathbb{K}\setminus\{0_{\mathbb{K}}\}=\mathbb{K}^*$ est inversible par \times

Sous corps $K: \begin{cases} (K,+) \text{ sous-groupe de } (\mathbb{K},+), \\ (K\setminus\{0_{_K}\},\times) \text{ sous-groupe de } (\mathbb{K}^*,\times) \end{cases}$

 φ morphisme de corps : idem morphisme d'anneau

Un corps est toujours intègre.

Un idéal d'un corps est soit $\{0_{\mathbb{K}}\}$, soit \mathbb{K}

IV. Quelques résultats

$$a \in A$$
 anneau. $\forall n \in \mathbb{N}$, on note $a^n = \begin{cases} 1 \text{ si } n = 0 \\ a \times a^{n-1} \text{ si } n \ge 1 \end{cases}$

$$et na = \begin{cases} 0 \text{ si } n = 0\\ a + (n-1)a \text{ si } n \ge 1 \end{cases}$$

$$(x, y) \in A^2$$

$$(x, y) \in A^2$$
 Si $xy = yx$, alors pour tout $k \in \mathbb{N}$, $x^k y = yx^k$

Binôme de Newton : $(A, +, \times)$ anneau, $(x, y) \in A^2$ tels que xy = yx,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Preuve : récurrence et triangle de Pascal

Formule de Bernouilli :
$$(A, +, \times)$$
 anneau, $(x, y) \in A^2$ tels que $xy = yx$, $x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^k y^{n-1-k}$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}$$

Preuve : somme télescopique

Caractéristique d'un corps : θ $n \mapsto n \cdot 1_{\mathbb{K}}$ morphisme de groupe $\Rightarrow \ker \theta$ ss-gpe de \mathbb{Z}

Si θ injectif, $\ker \theta = \{0_{\mathbb{Z}}\}$, on dit que \mathbb{K} est de caractéristique nulle

Sinon, $\ker \theta = \alpha \mathbb{Z}$, et \mathbb{K} a pour caractéristique α

On n'écrit $\frac{1}{r}$ que pour un corps commutatif