CAP 5516 Medical Image Computing (Spring 2025)

Dr. Chen Chen
Associate Professor
Center for Research in Computer Vision (CRCV)
University of Central Florida
Office: HEC 221

Web: https://www.crcv.ucf.edu/chenchen/

Email: chen.chen@crcv.ucf.edu

Lecture 12 Efficient Deep Learning (2)

Research Challenges

Research Challenges

Efficient Neural Networks Design

Credit: Vivienne Sze

Network Pruning

Efficient Network Architectures

[MobileNets, ShuffleNets, AdderNet]

Reduce Precision

32-bit float

8-bit fixed

Binary

Knowledge Distillation

Source:

https://towardsdatasciencle.com/knowledgedistillation-simplified-dd4973dbc764

Is Efficient Network the Ultimate Solution?

Adaptive/Dynamic Network for Image Understanding

Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang, Andrew Willis. "Mutualnet: Adaptive convnet via mutual learning from network width and resolution." European Conference on Computer Vision (ECCV), 2020. Oral Presentation.

Yang, Taojiannan, Sijie Zhu, Matias Mendieta, Pu Wang, Ravikumar Balakrishnan, Minwoo Lee, Tao Han, Mubarak Shah, and Chen Chen. "MutualNet: Adaptive convnet via mutual learning from different model configurations." IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), Volume: 45, Issue: 1, 01 January 2023.

Research Problem

Traditional Neural Networks are Static

	MobileNet	ResNet-50	ViT-B/16
Params	4.2M	25.6M	86M
FLOPs	575M	4.1G	17.5G

FLOPs: number of floating-point operations

Traditional neural networks (even efficient networks) are only executable at a specific resource constraint.

In real-world applications, **resource budgets are always changing** with many conditions (e.g., hardware, battery, task priority, etc.).

How to cope with dynamic resources and achieve a trade-off between accuracy and efficiency at inference?

Research Problem

How to cope with dynamic resources and achieve a trade-off between accuracy and efficiency at inference?

Reducing complexity by width without retraining the network, the performance drops dramatically.

Width	1.0)×	0.7	$5 \times$	$0.5 \times$			
re-train	1	×	1	×	1	X		
Acc (%)	70.6	70.6	68.4	14.2	63.3	0.4		

Neural Network: MobileNet

Reducing network width

Research Problem

How to cope with dynamic resources and achieve a trade-off between accuracy and efficiency at inference?

- One possible solution: install all the possible model variants with various resource-accuracy trade-offs in the heterogeneous AI systems
 - Consumes more memory and storage
 - Not scalable

Pruned networks with various pruning ratios

Different models with different sizes

Model	Params	FLOPs
ResNet-50	25.5M	4.1G
MobileNet v1	4.2M	569M
MobileNet v2	3.5M	300M

Motivation

The computational cost of a vanilla convolution = $C_{in} \times C_{out} \times K \times K \times H \times W$

K is the kernel size

C_{in} and C_{out} are the number of input and output channels

Related to the network size

H and *W* are output feature map sizes

➤Related to the input image size

Tuning knobs for computational cost

Motivation

The computational cost of a vanilla convolution = $C_{in} \times C_{out} \times K \times K \times H \times W$

 C_{in} and C_{out} are the number of input and output channels, K is the kernel size, H and W are output feature map sizes.

Objective:

Balancing between network width and input resolution to achieve a good accuracy-efficiency tradeoff at runtime with a single network.

Weight sharing among all the networks

Knowledge distillation

$$loss = loss_{full} + \sum_{i=1}^{3} loss_{sub_i}$$

- The mutual learning scheme involves collaborative learning among an ensemble of networks.
- Sub-networks share weights and optimize together, enabling knowledge transfer.

Gradient Analysis

 Consider two network widths 0.4× and 0.8×, and two resolutions 128 and 192 as an example

Gradient Analysis

 Consider two network widths 0.4× and 0.8×, and two resolutions 128 and 192 as an example

Weight sharing

The gradients of sub-network 0.4× is
$$\frac{\partial l_{W_{0:0.4},I_{R=128}} + \partial l_{W_{0:0.8},I_{R=192}}}{\partial W_{0:0.4}}$$

Gradient Analysis

 Consider two network widths 0.4× and 0.8×, and two resolutions 128 and 192 as an example

The gradients of sub-network 0.4× is

Multi-scale = Network scale + Input scale

Method (MutualNet Inference)

After training, we test the performance of different width-resolution configurations on a Validation Set.

Fop1 Acc

reso	o/width	1.0x	0.95x	0.9x	0.85x	0.8x	0.75x	0.7x	0.65x	0.6x	0.55x	0.5x	0.45x	0.4x	0.35x	0.3x	0.25x
2	224	72.4	71.7	71.1	70.4	69.8	69.1	68.3	67.2	66	64.6	63.1	61.6	59.5	57.2	55.3	53.6
	192	70.9	70.6	70.2	69.7	69.1	68.4	67.5	66.7	65.5	63.8	62.2	60.8	58.5	56.6	54.6	52.7
	160	68.6	68.5	68.1	67.7	67.2	66.5	65.6	64.7	63.5	61.8	60.3	58.9	56.6	54.4	52.4	50.1
	128	64	64	64	63.8	63.1	62.5	61.6	60.6	59.5	57.6	56.1	54.3	52.1	50.1	47.7	45.5

IFLOPs

reso/width	1.0x	0.95x	0.9x	0.85x	0.8x	0.75x	0.7x	0.65x	0.6x	0.55x	0.5x	0.45x	0.4x	0.35x	0.3x	0.25x
224	569	518	466	421	366	325	287	249	217	1 <i>77</i>	1 49	124	100	80	64	41
192	418	380	342	309	269	239	211	183	159	130	109	91	73	59	47	30
160	290	265	239	215	187	166	146	127	111	90	76	63	51	41	32	21
128	186	1 <i>7</i> 0	152	138	120	106	94	81	71	58	49	40	32	26	21	13

MobileNetv1 backbone

Method (MutualNet Inference)

After training, we test the performance of different width-resolution configurations on a Validation Set.

Choose the best one under a given constraint (FLOPs or latency).

	reso/width	1.0x	0.95x	0.9x	0.85x	0.8x	0.75x	0.7x	0.65x	0.6x	0.55x	0.5x	0.45x	0.4x	0.35x	0.3x	0.25x
Acc	224	72.4	71.7	71.1	70.4	69.8	69.1	68.3	67.2	66	64.6	63.1	61.6	59.5	57.2	55.3	53.6
lop1 A	192	70.9	70.6	70.2	69.7	69.1	68.4	67.5	66.7	65.5	63.8	62.2	60.8	58.5	56.6	54.6	52.7
0	160	68.6	68.5	68.1	67.7	67.2	66.5	65.6	64.7	63.5	61.8	60.3	58.9	56.6	54.4	52.4	50.1
	128	64	64	64	63.8	63.1	62.5	61.6	60.6	59.5	57.6	56.1	54.3	52.1	50.1	47.7	45.5

	reso/width	1.0x	0.95x	0.9x	0.85x	0.8x	0.75x	0.7x	0.65x	0.6x	0.55x	0.5x	0.45x	0.4x	0.35x	0.3x	0.25x
'n	224	569	518	456	421	366	325	287	249	217	177	149	124	100	80	64	41
2	192	418	380	312	309	269	(239)	211	183	159	130	109	91	73	59	47	30
Σ	160	290	265	239	215	187	166	146	127	111	90	76	63	51	41	32	21
	128	186	170	152	138	120	106	94	81	71	58	49	40	32	26	21	13

MobileNetv1 backbone

Top1 Acc

Method (MutualNet Inference)

For deployment, we only need to **deploy one model and the FLOPs- Acc query table**. Then we can adjust the model configuration according to different resource constraints.

ImageNet dataset: 1.2 million training images and 50,000 validation images in 1000 categories

MobileNet v1

ImageNet dataset: 1.2 million training images and 50,000 validation images in 1000 categories

Significantly outperforms state-of-the-art methods over the whole Acc-FLOPs spectrum

Comparison with individually trained networks

Comparison with individually trained networks

Training multiple networks will significantly increase the training cost

Comparison with individually trained networks

Outperforms individually trained models at different FLOPs constraints

Analysis

The Accuracy-FLOPs curves are based on MobileNet v1 backbone

Results – Detection and Segmentation

COCO Dataset: 118K training images and 5K validation images in 80 object categories.

COCO object detection and instance segmentation

Results – Detection and Segmentation

Code is available at https://github.com/taoyang1122/MutualNet

Dynamic Networks – Research Extensions

Spatial-temporal domain (e.g., video action recognition)

Yang, Taojiannan, Sijie Zhu, Matias Mendieta, Pu Wang, Ravikumar Balakrishnan, Minwoo Lee, Tao Han, Mubarak Shah, and Chen Chen. "MutualNet: Adaptive convnet via mutual learning from different model configurations." IEEE Transactions on Pattern Analysis and Machine Intelligence 45, no. 1 (2023): 811-827.

Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric Segmentation

Wang, Wenxuan, Chen Chen, Jing Wang, Sen Zha, Yan Zhang, and Jiangyun Li. "Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric Segmentation." In European Conference on Computer Vision (ECCV), pp. 506-522. Cham: Springer Nature Switzerland, 2022.

Motivation

Is it necessary to run the same (heavy) model on all the slices to achieve good segmentation results?

Motivation

Research Question

• Is it possible to achieve dynamic inference with adjustable network structures for better accuracy and efficiency trade-offs by considering the characteristics of the input data (e.g., the level of segmentation difficulty of each image slice)?

Decision network training

 We reduce the channel size of ShuffleNetV2 [24] to get an extremely lightweight classification network as our Decision Network so that its computational overhead is negligible in the entire framework.

$$D = \begin{cases} 0, & P_f < 1\\ argmax((1-\alpha) * S_i + \alpha * softmax(\frac{1}{F_i})) + 1, P_f \geqslant 1 \end{cases}$$
(4)

where S_i and F_i is respectively the Dice Score and FLOPs of candidate model M_i during the model training. P_f denotes the number of foreground pixels (all pixels of segmentation targets). Specifically, if the number of foreground pixels is less than 1 (i.e. $P_f < 1$), the current slice will be considered without any lesion areas, which should be directly skipped (i.e. the corresponding supervision is 0)

Results

Table 1. Performance comparison on BraTS 2019 validation set.

Method	Dice Score (%) ↑			Hausdorff Dist. (mm) ↓			FLOPs (G) ↓	
	\mathbf{ET}	WT	TC	ET	WT	TC	per case	per slice
3D U-Net [11]	70.86	87.38	72.48	5.062	9.432	8.719	1,669.53	13.04
V-Net [27]	73.89	88.73	76.56	6.131	6.256	8.705	749.29	5.85
Attention U-Net [29]	75.96	88.81	77.20	5.202	7.756	8.258	132.67	1.04
Wang et al. [35]	73.70	89.40	80.70	5.994	5.677	7.357	<u>~</u>	_
Chen et al. [8]	74.16	90.26	79.25	4.575	4.378	7.954	=	-
Li et al. [18]	77.10	88.60	81.30	6.033	6.232	7.409	-	-
Frey et al. [12]	78.70	89.60	80.00	6.005	8.171	8.241	<u>≅</u>	_
TransUNet [7]	78.17	89.48	78.91	4.832	6.667	7.365	1205.76	9.42
Swin-UNet [4]	78.49	89.38	78.75	6.925	7.505	9.260	250.88	1.96
TransBTS [36]	78.36	88.89	81.41	5.908	7.599	7.584	333.09	2.60
Ours	79.99	90.13	80.83	4.086	5.826	6.886	77.78	0.61

Results

Fig. 3. The visual comparison of MRI brain tumor segmentation results. The blue regions denote the enhancing tumors, the red regions denote the non-enhancing tumors, and the green ones denote the peritumoral edema.

Results

Liver Tumor Segmentation using CT scans

Table 7. Performance comparison on LiTS 2017 testing set. "P" refers to pre-trained model. Per case and per slice denote the computational cost of segmenting a 3D patient case and a single 2D slice, respectively.

Method	Dice pe	er case (%) ↑	Dice global (%) ↑		FLOPs (G) ↓	
Method	Lesion	Liver	Lesion	Liver	Per Case	Per Slice
U-Net [10]	65.00) <u>=</u>	-	120	(-	-
3D DenseUNet w/o P [19]	59.40	93.60	78.80	92.90	80 7 4	-0
2D DenseUNet w/o P [19]	67.70	94.70	80.10	94.70	17 -2	
2D DenseNet w/ P [19]	68.30	95.30	81.80	95.90	@ <u>#</u>	_
2D DenseUNet w/ P [19]	70.20	95.80	82.10	96.30	N=	-0
I3D [5]	62.40	95.70	77.60	96.00	:-	-
I3D w/ P [5]	66.60	95.60	79.90	96.20	62 <u>14</u>	
Han [14]	67.00	-	-	_	le le	=
Vorontsov et al. [33]	65.00	-	-	1-1	-	-0
TransUNet [7]	61.70	95.40	77.40	95.60	1200.64	9.38
Swin-UNet $[4]$	-	92.70	67.60	91.60	249.60	1.95
TransBTS $[36]$	70.30	96.00	81.50	96.40	330.00	2.58
Ours	70.50	96.10	81.90	96.60	37.12	0.29

Analysis

Fig. 5. The activation ratio of each candidate model for different medical image slices in BraTS 2019 dataset. Skip, M1, M2, M3, M4 denote the operation of directly skip, candidate 1, candidate 2, candidate 3, and candidate 4, respectively.

Any ideas on improving the Med-DANet?

Med-DANet-V2

• Shen, Haoran, Yifu Zhang, Wenxuan Wang, Chen Chen, Jing Liu, Shanshan Song, and Jiangyun Li. "Med-DANet V2: A Flexible Dynamic Architecture for Efficient Medical Volumetric Segmentation." In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 7871-7881. 2024.

Figure 1. The comparison between the previous dynamic network Med-DANet and our proposed Med-DANet V2 (Ours).

Med-DANet-V2

References and resources

- 1. Blalock, Davis, et al. "What is the state of neural network pruning?." *Proceedings of machine learning and systems* 2 (2020): 129-146.
- Liang, Tailin, et al. "Pruning and quantization for deep neural network acceleration: A survey." Neurocomputing 461 (2021): 370-403.
- 3. Gholami, Amir, et al. "A survey of quantization methods for efficient neural network inference." arXiv preprint arXiv:2103.13630 (2021).
- 4. Gou, Jianping, et al. "Knowledge distillation: A survey." *International Journal of Computer Vision* 129.6 (2021): 1789-1819.
- 5. Wang, Lin, and Kuk-Jin Yoon. "Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks." *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2021).
- 6. https://github.com/lilujunai/Awesome-Knowledge-Distillation-for-CV

Thank you!

Question?

