Combinator Parsers

1. Basic

- Parser: A parser is a function that, given an input string, returns a set of possible parses. Each parse is typically a pair consisting of the parsed result and the remaining unparsed portion of the input.
- Combinator: A combinator is a higher-order function that takes one or more parsers as arguments and returns a new parser.

2. Formally defined parsers

Let P be a parser with the type signature:

$$P: \Sigma^* \to \mathcal{P}(\mathcal{R} \times \Sigma^*)$$

where Σ^* is the set of all possible input strings, \mathcal{R} is the set of parse results, and \mathcal{P} denotes the power set.

This means that a parser P takes an input string and returns a set of pairs. Each pair consists of a result and the remaining unparsed part of the input.

3. Combinators

• Choice: The choice combinator alt tries two parsers and returns the result of the first successful parser.

$$alt(P,Q)$$
 def λs .filter results from $(P(s) \cup Q(s))$ (1)

• Sequence: The sequence combinator seq combines two parsers such that the second parser is applied to the remaining input after the first parser succeeds.

$$\operatorname{seq}(P,Q) \operatorname{\mathbf{def}} \lambda s.\{(r_1 \oplus r_2, s'') \mid (r_1, s') \in P(s)$$
 (2)

and
$$(r_2, s'') \in Q(s')$$
 (3)

where \oplus denotes some combination of the results r_1 and r_2 .

• Many: The many combinator many applies a parser zero or more times.

$$many(P) \operatorname{def} \lambda s.\{(results, s') \mid (4)$$

$$P$$
 and s' is the remaining input $\{$

• Many1: The many1 combinator many1 applies a parser one or more times.

$$many1(P) \operatorname{def} \operatorname{seq}(P, many(P))$$
 (7)

• Option: The option combinator opt applies a parser and returns a default value if the parser fails.

$$opt(P, d) \text{ def } \lambda s.\{(r, s) \mid (r, s) \in P(s)\} \cup \{(d, s) \mid \text{if } P(s) \text{ fails}\}$$
 (8)

4. Formal definitions using Category Theory

In category theory, parsers can be modeled as functors between categories. For instance:

- Category of Parsers:
 - Objects: Parsers.
 - Morphisms: Combinators.
- Functorial Composition: A parser combinator can be viewed as a functor that maps parsers to new parsers. For example, the sequence combinator is a functor that maps a pair of parsers to a new parser.

Summary

The mathematical formalism of combinator parsers involves defining parsers as functions that map input strings to sets of parse results and remaining input. Combinators are higher-order functions that combine parsers in various ways. This formalism can be described using set theory, formal language theory, and category theory, providing a rigorous foundation for understanding and designing parser combinators.

Example: Parsing Addition

1. Category of Parsers

Let \mathcal{C} be the category of parsers:

- Objects: Parsers P that parse integers.
- Morphisms: Combinators that combine parsers.

2. Functor definition

Define a functor F that maps a pair of integer parsers to a parser that parses their sum:

$$F: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$$

Given two parsers P_a and P_b that parse integers a and b, the functor F produces a new parser $F(P_a, P_b)$ that parses the sum a + b.

3. Action on objects

Let P_a and P_b be parsers:

$$F(P_a, P_b) = P_{a+b}$$

Where P_{a+b} is a parser that parses the sum a+b.

4. Action on morphisms

Let $\phi: P_a \to P_{a'}$ and $\psi: P_b \to P_{b'}$ be morphisms (combinators):

$$F(\phi, \psi) = \phi \circ \psi$$

Where o denotes the composition of morphisms.

5. Example: Parsing Addition

Consider the parsers P_a and P_b that parse the integers a=3 and b=4. The functor F produces a new parser $F(P_a,P_b)$ that parses the sum:

$$F(P_a, P_b) = P_{3+4}$$

Thus, the parser P_{3+4} parses the integer 7.