1) Tragen Sie folgende Punkte im Koordinatensytem ein

$$P_1 = (4|3), P_2 = (-2|5), P_3 = (-2|-3), P_4 = (-1.5|1.5), P_5 = (-2|-4), P_6 = (8|-5)$$

- 2) Stellen Sie für folgende Funktionen Wertetabellen mit folgenden x-Werten -2,1,0,1,2. Der Definitionbereich ist $D = \mathbb{R}$
 - a. y = 3x 1
 - b. y = 4x + 7
 - c. y = 5x 3
 - d. $y = \frac{2}{3}x + 1$
 - e. y = 4x 3
 - f. y = x + 2
 - g. $y = 2x \frac{1}{2}$
 - h. $y = \frac{x}{2} + \frac{1}{2}$
- 3) Zeichnen Sie die Graphen von
 - a. y = 3x 1
 - b. v = 4x + 7
 - c. y = 5x 3
 - d. $y = \frac{2}{3}x + 1$
 - e. y = 4x 3,
 - f. y = x + 2
 - g. $y = 2x \frac{1}{2}$
 - h. $y = \frac{x}{2} + \frac{1}{2}$
- 4) Zeichnen Sie nachfolgende Graphen, von denen 2 Punkte bekannt sind und bestimmen Sie die Gleichung der Funktion
- a. $P_1 = (8|4)$ $P_2 = (10|5)$
- b. $P_1 = (2|3)$ $P_2 = (2|\frac{2}{3})$
- c. $P_1 = (1|3)$ $P_2 = (2|6)$ d. $P_1 = (3|-6)$ $P_2 = (-2|4)$
- 5) Bestimmen Sie die Schnittpunkte folgender Funktionen sowie Schnittpunkte mit der x-Achse und Schnittpunke mit der y-Achse von

 - a. y = 3x 1 und y = 4x + 7b. y = 5x 3 und $y = \frac{2}{3}x + 1$ c. y = 4x 3 und y = x + 2d. $y = 2x \frac{1}{2}$ und $y = \frac{x}{2} + \frac{1}{2}$