Lectures on Quantum Mechanics

SEM02-2023

Gabriel Balarezo¹

Yachay Tech University School of Nanotechnology and Physical Sciences Urcuqui, Ecuador

 $E ext{-}mail: balarezog961@gmail.com}$

 $^{^1}https://github.com/GabrielBJ$

Contents

Introduction		1
Ι	Time Independent Non-degenerate Perturbation Theory	2
1	Lecture 1 1.1 Method	2
2	Lecture 2 2.1 Two Unknowns	5 7
3	Lecture 3	10

Introduction

Quantum mechanics is certainly the most successful theory of the physical world at small scales. It is also one of the most mysterious.

Some notes here.¹

 $^{^1 \}quad With \ some \ additional \ side- \\ notes$

Time Independent Non-degenerate Perturbation Theory

1 Lecture 1

Suppose we have a "known" system with Hamiltonian, eigenfunctions and eigenenergies H_0 , Ψ_n and E_n respectively.

$$\hat{H}|\Psi_n\rangle = E_n|\Psi_n\rangle$$

where 2

$$\langle \hat{\Psi} | \hat{H} | \hat{\Psi} \rangle = E_n, \quad \langle \Psi_n | \Psi_{n'} \rangle = \delta_{nn'}$$

So that $\{\Psi_n\}$ forms a orthonormal basis over the Hilbert space of H_0 . We apply a perturbative potential \tilde{V}^3 to H_0 , yielding a new Hamiltonian. for the perturbated system,

$$\tilde{H} = \hat{H}_0 + \lambda \tilde{V}, \text{ let } \lambda \in [0, 1]$$
 (1.1)

a "bookkeeping parameter" to keep track of the relative signs of from in order of the perturbated potential.

1.1 Method

Express the wave functions and eigenenergies of the perturbated Hamiltonian $H, \, \tilde{\psi}, \, \tilde{E}_n$ as a power series equation in orders of λ .

$$\tilde{E}_n = \tilde{E}_0^{(0)} + \lambda \tilde{E}_n^{(1)} + \lambda^2 \tilde{E}_n^{(2)} + \dots = \sum_k \lambda^k \tilde{E}_n^{(k)}$$

$$\tilde{\psi}_n = \tilde{\psi}_n^{(0)} + \lambda \tilde{\psi}_n^{(1)} + \lambda^2 \tilde{\psi}_n^{(2)} + \dots = \sum_k \lambda^k \tilde{\psi}_n^{(k)}$$

Now we write the Time independent Schrödinger equation for the perturbated Hamiltonian,

$$\tilde{H}\big|\tilde{\psi}_n\big\rangle = \tilde{E}_n\big|\tilde{\psi}_n\big\rangle \tag{1.2}$$

$$(\hat{H} + \hat{V}) \sum_{k} \lambda^{k} \left| \psi_{n}^{(k)} \right\rangle = \sum_{k} \lambda^{k} \tilde{E}_{n}^{(k)} \sum_{k} \lambda^{k} \left| \psi_{n}^{(k)} \right\rangle \tag{1.3}$$

$$\sum_{k} (\lambda^{k} \hat{H}_{0} + \lambda^{k+1} \hat{V}) \left| \hat{\psi}_{n}^{(k)} \right\rangle = \sum_{k'} \sum_{k} \lambda^{k'+k} \hat{E}_{n}^{(k)} \left| \hat{\psi}_{n}^{(k)} \right\rangle \tag{1.4}$$

² The student may remember the Dirac delta function from his/her Quantum Mechanics I course.

 3 \tilde{V} is very small compared to H_0

3

$$\sum_{k} \left(\lambda^{k} \hat{H}_{0} + \lambda^{k+1} \hat{V} - \sum_{k'} \lambda^{k'+k} \hat{E}_{n}^{(k')} \right) \left| \psi_{n}^{(k)} \right\rangle = 0 \tag{1.5}$$

$$\sum_{k} \lambda^{k} \left(\hat{H}_{0} \middle| \hat{\psi}_{n}^{(k)} \middle\rangle + \underbrace{(1 - \delta_{k0})}_{k \neq 0} \hat{V} \middle| \hat{\psi}^{(k-1)} \middle\rangle - \sum_{k=0}^{k} \hat{E}_{n}^{(k')} \middle| \hat{\psi}_{n}^{(k-k')} \middle\rangle \right) = 0$$
 (1.6)

Since 1.6 is true for any value of λ , it must hold for each power of λ separately:

$$\mathcal{O}(1)_{k=0} = \hat{H} \left| \hat{\psi}_{n}^{(0)} \right\rangle + (1 - \delta_{k0}) \hat{V} \left| \hat{\psi}_{n}^{(-1)} \right\rangle$$

$$= \sum_{k'=0}^{0} \hat{E}_{n}^{(k')} \left| \hat{\psi}_{n}^{(0-k')} \right\rangle$$

$$\Longrightarrow \hat{H}_{0} \left| \hat{\psi}_{n}^{(0)} \right\rangle = \hat{E}_{n}^{(0)} \left| \hat{\psi}_{n}^{(0)} \right\rangle$$

$$\left\langle \psi_{n} \middle| \underbrace{H_{0}}_{\text{hermitian}} \left| \hat{\psi}_{n}^{(0)} \right\rangle = \hat{E}_{n}^{(0)} \left\langle \psi_{n} \middle| \hat{\psi}_{n}^{(0)} \right\rangle$$

$$\left\langle \psi_{n'} \middle| \hat{H}_{0}^{\dagger} = E_{n'} \left\langle \psi_{n'} \middle|$$

$$(E_{n'} - \hat{E}_{n}^{(0)}) \left\langle \psi_{n'} \middle| \hat{\psi}_{n}^{(0)} \right\rangle = 0$$

So,

$$\hat{E}_n^{(0)} = E_n \text{ or } \left\langle \psi_n \middle| \hat{\psi}_n^{(0)} \right\rangle = 0 \tag{1.7}$$

If the system \hat{H}_0 is nondegenerate:

$$\Longrightarrow \left| \hat{\psi}_n^{(0)} \right\rangle = \left| \psi_n \right\rangle$$

If the system is degenerate, then:

$$\hat{H}_0 | \psi_{n'} \rangle = E_n | \psi_{n'} \rangle$$
 for $n' \in \{n, \dots, n+k\}$

Then:

$$\left|\hat{\psi}_{n}^{(0)}\right\rangle = \sum_{k'=0}^{k} C_{n+k'} \left|\psi_{n+k'}\right\rangle$$

$$\hat{E}_{n} = E_{n} \mathcal{O}(\lambda)$$

$$\left|\hat{\psi}_{n}\right\rangle = \left|\psi_{n}\right\rangle + \mathcal{O}(\lambda)$$

$$\mathcal{O}(\lambda): \hat{H}_{0} \left|\hat{\psi}_{n}^{(1)}\right\rangle + \hat{V} \left|\hat{\psi}_{n}^{(0)}\right\rangle = E_{n}^{(0)} \left|\hat{\psi}_{n}^{(1)}\right\rangle + \hat{E}_{n}^{(1)} \left|\hat{\psi}_{n}^{(0)}\right\rangle$$

multiply by $\langle \psi_{n'} |$:

$$\langle \psi_{n'} | \hat{H}_0 | \hat{\psi}_n^{(1)} \rangle + \langle \psi_{n'} | \hat{V} | \hat{\psi}_n^{(0)} \rangle = E_n^{(0)} \langle \psi_{n'} | \hat{\psi}_n^{(1)} \rangle + \hat{E}_n^{(1)} \langle \psi_{n'} | \hat{\psi}_n^{(0)} \rangle$$
$$\langle \psi_{n'} | \hat{H}_0 = E_{n'} \langle \psi_{n'} |$$

4

$$\left|\hat{\psi}_{n}^{(0)}\right\rangle = \left|\psi_{n}\right\rangle \text{ (non-degenerate)}, \quad \hat{E}_{n}^{(0)} = E_{n}$$

$$(E_{n'} - E_{n})\left\langle\psi_{n'}\middle|\hat{\psi}_{n}^{(1)}\right\rangle + \left\langle\psi_{n'}\middle|\hat{V}\middle|\psi_{n}\right\rangle = \hat{E}_{n}^{(1)}\delta_{n'n} \tag{1.8}$$

if $\mathbf{n}' = \mathbf{n}$:

$$(E_{n'} - E_{n}) \langle \psi_{n'} | \hat{\psi}_{n'}^{(1)} \rangle + \langle \psi_{n'} | \hat{V} | \psi_{n} \rangle = \hat{E}_{n}^{(1)} \delta_{n'n}$$

$$\implies \hat{E}_{n}^{(1)} = \left\langle \psi_{n} \middle| \hat{V} \middle| \hat{\psi}_{n}^{(1)} \right\rangle$$

$$\hat{E}_{n} = E_{n} + \left\langle \psi_{n'} \middle| \hat{V} \middle| \hat{\psi}_{n}^{(1)} \right\rangle + \mathcal{O}(\lambda^{2})$$

$$\left| \hat{\psi}_{n} \right\rangle = \left| \psi_{n} \right\rangle + \mathcal{O}(\lambda) \tag{1.9}$$

if $n' \neq n$:

$$(E_{n'} - E_n) \langle \psi_{n'} | \hat{\psi}_n^{(1)} \rangle = -\langle \psi_{n'} | \hat{V} | \psi_n \rangle + \hat{E}_n^{(1)} \delta_{n'n}^{(1)}$$

$$\langle \psi_{n'} | \hat{\psi}_n^{(1)} \rangle = \frac{\langle \psi_{n'} | \hat{V} | \psi_n \rangle}{E_n - E_{n'}}$$

$$(1.10)$$

Since $\{\psi_n\}$ forms an orthonormal basis,

$$\Longrightarrow \sum_{n'} \left| \psi_{n'} \right\rangle \left\langle \psi_{n'} \right| = 1$$
 Identity matrix

$$\left|\hat{\psi}_{n}^{(1)}\right\rangle = \mathbb{1}\left|\hat{\psi}_{n}^{(1)}\right\rangle = \sum_{n'}\left|\psi_{n'}\right\rangle\left\langle\psi_{n'}|\hat{\psi}_{n}^{(1)}\right\rangle$$

$$= \sum_{n'=n}\frac{\left\langle\psi_{n'}|\hat{V}|\psi_{n}\right\rangle}{E_{n} - E_{n'}}\left|\psi_{n'}\right\rangle \tag{1.11}$$

Since $|\hat{\psi}_n^{(0)}\rangle = |\psi_n\rangle$, then $|\hat{\psi}_n^{(1)}\rangle$ cannot depend on $|\psi_n\rangle$.

Lecture 2 5

2 Lecture 2

In the previous lecture we defined the perturbed hamiltonian as: 4 1.1 as:

 $\tilde{H} = \hat{H}_0 + \lambda \hat{V}$

⁴ \tilde{H} : perturbed hamiltonian, \hat{H}_0 : unperturbed hamiltonian, λ : bookkeeping parameter, \hat{V} : perturbing potential.

Definition 2.1. since \hat{V} needs to be smaller than \hat{H}_0 , λ keeps track of this, i.e., dependence on \hat{V} .

Writing the Schrödinger equation:

$$(\hat{H}_o + \lambda \hat{V})\hat{\psi}_n = \tilde{E}_n \tilde{\psi}_n$$

 \tilde{E}_n and $\tilde{\psi}_n$ are eigenenergies and wavefunctions for the perturbated hamiltonian.

Expand \tilde{E}_n and $\tilde{\psi}_n$ in power of λ :

$$\tilde{E}_{n} = \hat{E}_{n}^{(0)} + \lambda \tilde{E}_{n}^{(1)} + \lambda^{2} \tilde{E}_{n}^{(2)} + \mathcal{O}(\lambda^{3})$$

$$\tilde{\psi}_{n} = \hat{\psi}_{n}^{(0)} + \lambda \tilde{\psi}_{n}^{(1)} + \lambda^{2} \tilde{\psi}_{n}^{(2)} + \mathcal{O}(\lambda^{3})$$

Substitute for \tilde{E}_0 and $\tilde{\psi}_n$ into the (SE) and collect terms of like powers of λ .

$$\mathcal{O}(1): \hat{H}_0 \middle| \tilde{\psi}_n^{(0)} \middle\rangle = \tilde{E}_0^{(0)} \middle| \psi_n^{(0)} \middle\rangle$$

multiply by $\langle \psi_{n'} |$:

$$\langle \psi_{n'} | \hat{H}_o | \tilde{\psi}_n^{(0)} \rangle = \tilde{E}_o^{(0)} \langle \psi_{n'} | \psi_n^{(0)} \rangle$$

 $\hat{H}_o = H_o^{\dagger}$ since \hat{H}_o is hermitian.

$$\langle \psi_{n'} | \hat{H}_o^{\dagger} = E_{n'} \langle \psi_{n'} | \text{ (SE) for } \hat{H}_o$$

$$\Longrightarrow E_{n'} \langle \psi_{n'} | \psi_n^{(0)} \rangle = \hat{E}_o^{(0)} \langle \psi_{n'} | \psi_n^{(0)} \rangle$$

$$E_{n'}^{(0)} = E_{n'} \text{ or } \langle \psi_{n'} | \psi_n^{(0)} \rangle = 0$$

$$\mathbb{1} = \sum_{n'} |\psi_{n'}\rangle \langle \psi_{n'}|$$

$$\tilde{\psi}_{n}^{(0)} = \sum_{n'} \left\langle \psi_{n'} \middle| \psi_{n}^{(1)} \right\rangle$$

If E_n is k-level degenerate, then:

$$\left|\tilde{\psi}_{n}^{(0)}\right\rangle = \sum_{n'=n}^{n+k-1} \left\langle \psi_{n'} \middle| \psi_{n}^{(0)} \right\rangle \middle| \psi_{n'} \right\rangle$$

Lecture 2

Consider \hat{H}_o to be nondegenerate:

$$\Longrightarrow E_n^{(0)} = E_n, \quad \left| \left\langle \psi_n | \tilde{\psi}_n^{(0)} \right\rangle \right|^2 = 0$$

$$\sum_{n'=n}^{n+k-1} \left| \left\langle \psi_{n'} | \psi_n^{(0)} \right\rangle \right|^2 = 1$$

Since $\langle \psi_{n'} | \psi_n^{(0)} \rangle = 0$ for $n' \neq n$:

$$\Longrightarrow \left| \tilde{\psi}_{n}^{(0)} \right\rangle = \left| \psi_{n'} \right\rangle$$

The n^{th} eigenenergy of the perturbated system (hamiltonian) \tilde{E}_n is the n^{th} eigenenergy of the unperturbed system to Zeroth order in the perturbation, i.e $\mathcal{O}(\lambda^0) = \mathcal{O}(1)$, $\lambda = 0$.

 \iff If we turn the perturbation off we get the eigenenergy of the unperturbed system.

The n^{th} wavefunction for the perturbed hamiltonian $\tilde{\Psi}_n$ is a linear combination of the unperturbed hamiltonian's degenerate wavefunctions with energy E_n to Zeroth order in the perturbation, i.e $\mathcal{O}(\lambda^0) = \mathcal{O}(1)$ or $\lambda = 0$

$$\Longrightarrow \left| \hat{\psi}_{n}^{(0)} \right\rangle = \sum_{n'=n}^{n+k-1} \left\langle \psi_{n'} \middle| \tilde{\psi}_{n}^{(0)} \right\rangle \middle| \psi_{n'} \right\rangle$$

,where

$$\sum_{n'=n}^{n+k-1} \left| \left\langle \psi_{n'} \middle| \tilde{\psi}_n^{(0)} \right\rangle \right|^2 = 1$$

Even if we "turn off" the perturbation, it can still left the degeneracy of $\{|\psi_n\rangle, \cdots, |\psi_{n+k-1}\rangle\}$ for k-fold degenerate systems, unless the unperturbed wavefunctions are eigenstates of the perturbation.

Assuming \hat{H}_o is non-degenerate

$$\Longrightarrow \left| \left\langle \psi_{n'} \middle| \tilde{\psi}_n^{(0)} \right\rangle \right|^2 = 1$$

wlog $\psi_n = \tilde{\psi}_n^{(0)}$ (Choice of 1 for phase factor).

$$\tilde{E}_n = E_n + \mathcal{O}(\lambda)$$

$$\tilde{\psi}_n = \psi_n + \mathcal{O}(\lambda)$$

Gather together terms of order 1 in λ in the (SE):

$$\mathcal{O}(\lambda): \lambda \left(\hat{H}_o \middle| \tilde{\psi}_n^{(1)} \right) + \hat{V} \middle| \tilde{\psi}_n^{(0)} \right) = \lambda \left(E_n \middle| \tilde{\psi}_n^{(1)} \right) + E_n^{(1)} \middle| \psi_n \right)$$

Set $\lambda = 1$,

$$\hat{H}_o \left| \tilde{\psi}_n^{(1)} \right\rangle + \hat{V} \left| \tilde{\psi}_n^{(0)} \right\rangle = E_n \left| \tilde{\psi}_n^{(1)} \right\rangle + E_n^{(1)} \left| \psi_n \right\rangle$$

This is a recursive equation relating the 1st order corrections in \tilde{E}_n and $\tilde{\psi}_n$ to the Zeroth ordecorrections, in the unperturbed eigenenergy and wavefunction, E_n and ψ_n respectively: the \mathcal{O}^{th} relates the kth order corrections to all previous orders.

2.1 Two Unknowns

Use the fact that:

$$\langle \psi_{n'} | \psi_n \rangle = \delta_{n'n}$$
 and $\hat{H}_o | \psi_{n'} \rangle = E_{n'} | \psi_{n'} \rangle$

To obtain equations for $\tilde{E}_n^{(1)}$ and $\tilde{\psi}_n^{(1)}$.

multiply by $\langle \psi_{n'} |$:

$$\left\langle \psi_{n'} \middle| \hat{H}_o^{\dagger} \middle| \tilde{\psi}_n^{(1)} \right\rangle + \left\langle \psi_{n'} \middle| \hat{V} \middle| \tilde{\psi}_n^{(0)} \right\rangle = E_n \left\langle \psi_{n'} \middle| \tilde{\psi}_n^{(1)} \right\rangle + E_n^{(1)} \underbrace{\left\langle \psi_{n'} \middle| \psi_n \right\rangle}_{\delta_{n'n}}$$

$$(E_{n'} - E_n) \left\langle \psi_{n'} \middle| \tilde{\psi}_n^{(1)} \right\rangle + \left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_n \right\rangle = \tilde{E}_n^{(1)} \delta_{n'n}$$
 (2.1)

 $\langle \psi_{n'} | \tilde{\psi}_n^{(1)} \rangle$: Coefficient of $| \psi_{n'} \rangle$.

 $\tilde{E}_n^{(1)}$: First order correction to the eigenenergy.

If n'=n, (2.2.1) yields to: $\tilde{E}_n^{(1)}$

$$\widehat{E}_n^{(1)} = \left\langle \psi_n \middle| \hat{V} \middle| \psi_n \right\rangle$$

is the expectation value of the perturbation in the n^{th} eigenstate of the unperturbed hamiltonian.

If $n' \neq n$, (2.2.1) yields to: coefficients of $|\tilde{\psi}_n^{(1)}\rangle$ and $\lambda = 1$.

$$\left\langle \psi_{n'} | \hat{\psi}_n^{(1)} \right\rangle = \frac{\left\langle \psi_{n'} | \hat{V} | \psi_n \right\rangle}{E_n - E_{n'}}$$

$$\begin{split} \left| \tilde{\psi}_{n}^{(1)} \right\rangle &= \sum_{n' \neq n} \frac{\left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_{n} \right\rangle}{E_{n} - E_{n'}} \middle| \psi_{n'} \right\rangle \\ \tilde{E}_{n} &= E_{n} + \left\langle \psi_{n} \middle| \hat{V} \middle| \psi_{n} \right\rangle + \mathcal{O}(\lambda^{2}) \\ \left| \tilde{\psi}_{n} \right\rangle &= \left| \psi_{n} \right\rangle + \sum_{n' \neq n} \frac{\left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_{n} \right\rangle}{E_{n} - E_{n'}} \middle| \psi_{n'} \right\rangle + \mathcal{O}(\lambda^{2}) \end{split}$$

The first order correction to the eigenenergy is the energy of the perturbation of you stay in the n^{th} eigenstate of the unperturbed system. So V has to be "weak" so that you can remain in $|\psi_n\rangle$ under its action.

Note: if \hat{V} (the perturbation) is an odd function,

$$\Longrightarrow \hat{E}_n^{(1)} = \int d^3\vec{r} \Big| \underbrace{\psi(\vec{r})}_{\text{even}} \Big|^2 \underbrace{\hat{V}(\vec{r},t)}_{\text{odd}} = 0$$

The first order corrections to wavefunctions are proportional to the matrix elements:

$$\langle \psi_{n'} | \hat{V} | \psi_n \rangle$$
,

i.e., that under the action of the perturbation you can transition from n^{th} to $n^{'th}$ eigenstate of the unperturbed hamiltonian and inversely proportional to the difference (energy) between the eigenenergies of the n^{th} and $n^{'th}$ eigenstates of the perturbed hamiltonian.

Note:

$$\left|\left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_n \right\rangle \right| \ll \left| E_n - E_{n'} \right|$$

Otherwise our expression for the wavefunctions of the perturbed system won't converge.

$$\left|\left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_n \right\rangle \right| \ll \left| E_n - E_{n'} \right|$$

for our application of perturbation theory to apply.

$$\Longrightarrow \lambda \gg 1$$

$$\mathcal{O}(\lambda^2): \hat{H}_o \big| \tilde{\psi}_n^{(2)} \big\rangle + \hat{V} \big| \tilde{\psi}_n^{(1)} \big\rangle = E_n \big| \tilde{\psi}_n^{(2)} \big\rangle + \tilde{E}_n^{(1)} \big| \tilde{\psi}_n^{(1)} \big\rangle + \tilde{E}_n^{(2)} \big| \psi_n \big\rangle$$

Multiply by $\langle \psi_{n'} |$:

$$\left\langle \psi_{n'} \middle| \hat{H}_o \middle| \tilde{\psi}_n^{(2)} \right\rangle + \left\langle \psi_{n'} \middle| \hat{V} \middle| \tilde{\psi}_n^{(1)} \right\rangle = E_n \left\langle \psi_{n'} \middle| \tilde{\psi}_n^{(2)} \right\rangle + \tilde{E}_n^{(1)} \left\langle \psi_{n'} \middle| \tilde{\psi}_n^{(1)} \right\rangle + \tilde{E}_n^{(2)} \left\langle \psi_{n'} \middle| \psi_n \right\rangle$$

$$(E_{n'} - E_n) \langle \psi_{n'} | \hat{\psi}_n^{(2)} \rangle + \langle \psi_{n'} | \hat{V} \sum_{k \neq n} \frac{\langle \psi_k | \hat{V} | \psi_n \rangle}{E_n - E_k} | \psi_k \rangle$$

$$= \langle \psi_n | \hat{V} | \psi_n \rangle \langle \psi_{n'} | \sum_{n=k} \frac{\langle \psi_k | \hat{V} | \psi_n \rangle}{E_n - E_k} | \psi_k \rangle + \tilde{E}_n^{(2)} \delta_{n'n}$$

$$(E_{n'} - E_n) \langle \psi_{n'} | \hat{\psi}_n^{(2)} \rangle + \sum_{k=n} \frac{\langle \psi_k | \hat{V} | \psi_n \rangle \langle \psi_{n'} | \hat{V} | \psi_k \rangle}{E_n - E_k}$$

$$= \frac{\langle \psi_n | \hat{V} | \psi_n \rangle \langle \psi_{n'} | \hat{V} | \psi_n \rangle}{E_n - E_{n'}} \left(1 - \delta_{n'n} \right) + \tilde{E}_n^{(2)} \delta_{n'n}$$

If n' = n:

$$\widehat{E}_{n}^{(2)} = \sum_{k \neq n} \frac{\left| \left\langle \psi_{k} \middle| \hat{V} \middle| \psi_{n} \right\rangle \right|^{2}}{E_{n} - E_{k}}$$

If $n' \neq n$:

$$\left\langle \psi_{n'} \middle| \tilde{\psi}_{n}^{(2)} \right\rangle = \sum_{k \neq n} \frac{\left\langle \psi_{k} \middle| \hat{V} \middle| \psi_{n} \right\rangle \left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_{k} \right\rangle}{(E_{n} - E_{k})(E_{n} - E_{n'})} + \frac{\left\langle \psi_{n} \middle| \hat{V} \middle| \psi_{n} \right\rangle \left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_{n} \right\rangle}{E_{n} - E_{n'}}$$

$$\left| \tilde{\psi}_{n}^{(2)} \right\rangle = \sum_{n' \neq n} \left| \psi_{n'} \right\rangle \left[\frac{\left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_{k} \right\rangle \left\langle \psi_{k} \middle| \hat{V} \middle| \psi_{n} \right\rangle}{(E_{n} - E_{K})(E_{n} - E_{n'})} + \frac{\left\langle \psi_{n'} \middle| \hat{V} \middle| \psi_{n} \right\rangle \left\langle \psi_{n} \middle| \hat{V} \middle| \psi_{n} \right\rangle}{E_{n} - E_{n'}} \right]$$

LECTURE 3

3 Lecture 3