Mobile Security

Contents

- Introduction
- Security functions of GSM
 - Basics and architecture of GSM
 - Security functions
 - Mobility management functions
 - Location based systems
 - Call management
- Security functions of further mobile Systems
 - UMTS
 - Bluetooth
 - WLAN

Mobile network communication vs. fixed networks

- Users are moving / roaming
- On air interface:
 - Limited bandwidth
 - Errors (bit failures, burst errors)
 - Communication breaks (lost connectivity)
- New threads
 - Sniffing / eavesdropping of wireless communication
 - Location finding (direction-finding, sense-finding)

Sensors in mobile devices

- GPS, Location
- WiFi, NFC
- Camera, Microphone
- Motion Sensor (Gyro)
- Compass
- Temperature
- Phonebook
- Internal Storage
- External Storage
- Screen distance
- Fingerprint Sensor
- Adapters for more sensors
 - Personal: heart rate monitors
 - Cars and Houses: CAN bus adapters, smart meter, heater, alarm system

http://blog.digifit.com/wp-content/uploads/2011/02/

Sensors in mobile devices	Explicit	Implicit permissions		
GPS, Location	X			
– WiFi, NFC	X			
 Camera, Microphone 	X			
Motion Sensor (Gyro)		Х		
Compass		X		
 Temperature 				
– Phonebook	X			
 Internal Storage 		X		
 External Storage 	X			
 Screen distance 		X		
 Fingerprint Sensor 	x			

- All permissions to be found at
 - https://developer.android.com/reference/android/Manifest.permission.html

Bildquellen: http://klausbuergle.de/sammelalben_zf.htm https://monoskop.org/File:Echte_Wagner_Margarine_3_Serie_12_Zukunftsfantasien_Bild_4_c1930.jpg

Mobile communication – Classification

1. Types of Mobility

- Terminal Mobility:
 - Example: Mobile Phone
 - Wireless communication
 - Mobile device
- Personal Mobility:
 - Example: Public Terminals
 - Mobile user
 - Location-independent address
 - Special kind of personal mobility: Session Mobility:
 - Session Freezing and reactivation in other location and/or device

Mobile communication – Classification

2. Wave lengths

- Radio [waves] (f = 100 MHz up to several GHz)
- Light [waves] (infrared)
- Sonar [waves] (e.g. acoustic coupler)

3. Cell sizes

_	Pico cells	d < 100 m

Micro cellsd < 1 km

Macro cells d < 20 km

Hyper cells d < 60 km

Overlay cells d < 400 km

Further classifications

- Point-to-point communication, Broadcast (paging services)
- Analogue, Digital systems
- Simplex, Duplex communication channels

Examples for mobile Systems

- Speech communication = mass market
 - 1. Generation: analogue: C-Netz, Cordless Telephone, AMPS
 - 2. Generation: digital: GSM, DCS-1800, DECT
 - 3. Generation: service integration: UMTS/IMT-2000/FPLMTS
 - 4. Generation: LTE
- Satellite services
 - Iridium, Inmarsat, Globalstar, Odyssey
 - GPS (Global Positioning System), Galileo (European satellite navigation system), GLONASS
- Internet (Mobile IP)

Security deficits of existing mobile networks

- Example of security demands: Cooke, Brewster (1992)
 - protection of user data
 - protection of signaling information, incl. location
 - user authentication, equipment verification
 - fraud prevention (correct billing)
- General security demands
 - Confidentiality
 - Integrity
 - Availability
- Mobile network cannot be considered trustworthy

Attacker model

The attacker model defines the maximum strength of an adversary regarding a specific security mechanism

Protection against an omnipotent attacker is impossible.

Attacker model (concrete)

- Outsiders
 - Passive attacks only (confidentiality)
- Insiders
 - Passive and active data modification attacks (integrity)
- Insiders and outsiders
 - Denial of Service attacks on air interface
- Mobile device
 - Trustwothy
- Network components
 - Safe against outsiders, but not against insiders
- Air interface
 - Location-finding (insiders and outsiders)

Global System for Mobile Communication (GSM)

Global System for Mobile Communication (GSM)

- Key features of Global System for Mobile Communication
 - Very high international mobility
 - Worldwide caller ID
 - High geographic coverage
 - High user capacity
 - High speech quality
 - Advanced error correction mechanisms
 - Advanced resource allocation strategies (e.g. FDMA, OACSU)
 - Priority emergency call service
 - Built-in Security functions
 - Subscriber Identity Module (SIM, smart card)
 - 2. Authentication (Mobile station \rightarrow network)
 - 3. Pseudonymization of users on the air interface
 - 4. Link encryption on the air interface

GSM Timeline:

1989 Group Spécial Mobile (ETSI)

1990 GSM Standard

1991 GSM Network in Operation

2000 Transition to 3rd Generation

Architecture of GSM

Network Management

Call Management

Database Management

OMC: Operation and Maintainance Center

HLR: Home Location Register
AuC: Authentication Center
EIR: Equipment Identity Register
MSC: Mobile Switching Center

GMSC: Gateway MSC to fixed network

VLR: Visitor Location Register BSS: Base Station Subsystem BSC: Base Station Controller BTS: Base Transceiver Station

MS : Mobile Station LA : Location Area

Location Management in GSM

- GSM (Global System for Mobile Communication)
 - Distributed storage at location registers
 - Home Location Register (HLR)
 - Visitor Location Register (VLR)
 - Network operator has global view on location information
- Tracking of mobile users is possible

Security deficits of existing mobile networks

- Example of security demands: Cooke, Brewster, 1992
 - protection of user data
 - protection of signaling information, incl. location
 - user authentication, equipment verification
 - fraud prevention (correct billing)
- Security deficits of GSM (selection)
 - Only symmetric cryptography (algorithms no officially published)
 - Weak protection of locations (against outsiders)
 - No protection against insider attacks (location, message content)
 - No end-to-end services (authentication, encryption)
- Summary
 - GSM provides protection against external attacks only.
 - »...the designers of GSM did not aim at a level of security much higher than that of the fixed trunk network.« Mouly, Pautet, 1992

- Home Location Register (HLR): Semi permanent data
 - IMSI (International Mobile Subscriber Identity): max. 15 numbers
 - Mobile Country Code (MCC, 262) +
 Mobile Network Code (MNC, 01/02) +
 Mobile Subscriber Identification Number (MSIN)
 - MSISDN (Mobile Subscriber International ISDN Number): 15 numbers
 - Country Code (CC, 49) +
 National Destination Code (NDC, 171/172) +
 HLR Number + Subscriber Number (SN)
 - Number porting: translation table
 - Subscriber data (name, address, account etc.)
 - Service profile (priorities, call forwarding, service restrictions, e.g. roaming restrictions)

- Home Location Register (HLR): Temporary data
 - VLR address, MSC address
 - MSRN (Mobile Subscriber Roaming Number)
 - CC + NDC + VLR numberVLR number = MSC number + SN
 - Authentication Set, consists of several Authentication Triplets:
 - RAND (128 Bit),
 - SRES (32 Bit),
 - Kc (64 Bit)
 - Billing data later on transferred to Billing Centres

- Visitor Location Register (VLR)
 - TMSI (Temporary Mobile Subscriber Identity)
 - LAI (Location Area Identification)
 - MSRN
 - IMSI, MSISDN
 - MSC-address, HLR-address
 - Copy of Service profile
 - Billing data later on transferred to Billing Centres

- Equipment Identity Register (EIR)
 - IMEI (International Mobile
 Station Equipment Identity): 15 numbers
 - = serial number of mobile station
 - white-lists (valid mobiles, shortened IMEI)
 - grey-lists (mobiles with failures are observed)
 - black-lists (blocked, stolen mobiles)
 - USSD (Unstructured Supplementary Service Data) code for showing IMEI: *#06#

Security functions of GSM

Overview

- 1. Subscriber Identity Module (SIM, smart card)
 - Admission control and crypto algorithms
- 2. Authentication (SIM \rightarrow network)
 - Challenge-Response-Authentication (A3)
- 3. Pseudonymization of users on the air interface
 - Temporary Mobile Subscriber Identity (TMSI)
- 4. Link encryption on the air interface
 - Generation of session key: A8
 - Encryption: A5

Subscriber Identity Module (SIM)

- Specialized smart card
 - Data stored on SIM:
 - IMSI (International Mobile Suscriber Identity)
 - individual symmetric key Ki (Shared Secret Key)
 - PIN (Personal Identification Number): admission control
 - TMSI (Temporary Mobile Subscriber Identity)
 - LAI (Location Area Identification)
 - Cryptographic algorithms:
 - A3: Challenge-Response-Authentication
 - A8: Session Key generation: Kc

Challenge-Response-Authentication

- When initialized by the mobile network?
 - Location Registration
 - Location Update when changing the VLR
 - Call Setup (both directions)
 - Short Message Service

Challenge-Response-Authentication

Algorithm A3

- Implemented on SIM card and in Authentication Center (AuC)
- Cryptographic one way function A3:

Interfaces are standardized, cryptographic algorithm not

Challenge-Response-Authentication

- Specific algorithm can be selected by the network operator
 - Authentication data (RAND, SRES) are requested from AuC by the visited MSC
 - visited MSC: only compares SRES == SRES'
 - visited MSC has to trust home network operator

Pseudonymization on air interface

- TMSI (Temporary Mobile Subscriber Identity)
 - hides from traceability of mobile users by outsiders
 - on air interface: all (unencrypted) transactions from and to mobile user is addressed with TMSI
 - algorithm for TMSI generation is network individual (not standardized)
- Identity Request
 - first contact (home network)
 - after failure
 - IMSI is requested by serving network

Normal case

TMSI used

Session key generation: Algorithm A8

- Session key generation: Algorithm A8
 - implemented on SIM and in Authentication Centre (AuC)
 - cryptographic one-way function
 - interfaces are standardized
 - COMP128: well-known implementation of A3/A8

Link encryption: Algorithm A5

- Link encryption: Algorithm A5
 - implemented in mobile station (not SIM!)
 - standardized algorithms:
 - A5 or A5/1
 - A5* or A5/2 »weak variant« of A5 (deprecated)
 - [A5/3 based on KASUMI (UMTS) with length(Kc)=64 bit]
 - [A5/4 same as A5/3 with length(Kc)=128 bit]
- Security of A5/1 and A5/2
 - Cipher is based on non-linear shift registers
 - Algorithms considered insecure today
 - A5/1 broken by Nohl 2010
 - Attack uses ≈ 2 TByte of pre-calculated rainbow tables

Ciphering Mode Command (GSM 04.08)

8	7	6	5	4	3	2	1	
TI flag	TI value			Protocol discriminator			octet 1	
0	N(SD)		Message type					octet 2
Ciphering Mode Command								octet 3

Cipher mode setting information element

8	7	6	5	4	3	2	1
1	0	0	1	0	0	0	SC=0
	Ciph mode set IEI			Spare	Spare	Spare	SC=1

SC=0: No ciphering

SC=1: Start ciphering

Active Man-in-the-Middle Attack on A5/3

Active Man-in-the-Middle Attack on A5/3 (Variation)

GSM security functions overview

Attacks – Telephone at the expense of others

- SIM cloning
 - Weakness of authentication algorithm

- Interception of authentication data
 - Eavesdropping of internal communication links

- IMSI catcher
 - Man-in-the-middle attack on the air interface

SIM cloning

- Scope
 - Telephone at the expense of others
 - Determine Ki in SIM card
- Attack 1
 - Marc Briceno (Smart Card Developers Association), Ian Goldberg and Dave Wagner (both University of California in Berkeley)
 - http://www.isaac.cs.berkeley.edu/isaac/gsm.html
 - Attack uses a weakness of algorithm COMP128, which implements A3/A8
 - SIM card (incl. PIN) must be under control of the attacker for at least 8-12 hours
 - Needs 2¹⁷ RAND values (≈ 150.000 calculations) to determine Ki (max. 128 bit)
 - 6,25 calculations per second only, due to slow serial interface of SIM card

SIM cloning

- Scope
 - Telephone at the expense of others
 - Determine Ki in SIM card

Source: http://www.ccc.de/gsm/

SIM cloning

- Scope
 - Telephone at the expense of others
 - Determine Ki in SIM card

Attack 2

- Side Channel Attack on SIM card
- Measurement of chip power consumption during authentication reveals Ki
- Attack on the implementation of COMP 128, not the algorithm itself
- Very fast: 500-1000 random inputs used for practical attack
- More reading:
 - Rao, Rohatgi, Scherzer, Tinguely: Partitioning Attacks: Or How to Rapidly Clone Some GSM Cards. Proc. 2002 IEEE Symposium on Security and Privacy, 2002

Interception of authentication data

Scope

- Telephone at the expense of others
- Described by Ross Anderson (University of Cambridge)
- Eavesdropping of unencrypted internal transmission of authentication data (RAND, SRES, Kc) from AuC to visited MSC

Weakness

- GSM standard only describes interfaces between network components.
- They forgot the demand for internal encryption.
- Microwave links are widely used for internal linkage of network components.

No encryption of internal links

Interception of authentication data

- Scope
 - Identities of users of a certain radio cell
 - Eavesdropping of communications
 - (Telephone at the expense of others)
- Man-in-the-middle attack (Masquerade)
- Weakness
 - No protection against malicious or faked network components
- EP 1 051 053 B1
 - April 2000 by Rohde & Schwarz

IMSI-Catcher

Pictures: Verfassungsschutz, http://www.datenschutz-und-datensicherheit.de/jhrg26/imsicatcher-fox-2002.pdf http://www.heise.de/ct/artikel/Digitale-Selbstverteidigung-mit-dem-IMSI-Catcher-Catcher-2303215.html

IMSI-Catcher: Getting IMSI and IMEI

IMSI-Catcher: Eavesdropping Mobile Originated Calls

IMSI-Catcher: Eavesdropping Mobile Terminated Calls

IMSI-Catcher (1)

All BTS' send a list of frequencies of BCCHs of their neighboring cells and the own LAI

Examples:

- BTS 7: f4, f5, f8; LA 2

- BTS 8: f7, f4, f5, f6, f9; LA 2

BTS 1:	BTS 4:	BTS 7:
f1 / LA 1	f4 / LA 1	f7 / LA 2
BTS 2:	BTS 5:	BTS 8:
f2 / LA 3	f5 / LA 1	f8 / LA 2
BTS 3:	BTS 6:	BTS 9:
f3 / LA 3	f6 / LA 3	f9 / LA 2

IMSI-Catcher (2)

IMSI-Catcher

- receive from BCCH of current cell (5)
 - BTS 5: f1, f2, f3, f4, f6, f7, f8, f9; LA 1
- select any frequency (e.g. f4) and receives from BCCH on f4
 - BTS 4: f1, f2, f5, f8, f7; LA 1
- choose any LAI which differs from actual LAIs in neighborhood (e.g. LA 9)
- send on f4 with high power
 - IMSI-C.: f1, f2, f5, f8, f7; LA 9

BTS 1:	BTS 4:	BTS 7:
f1 / LA 1	f4 / LA 1	f7 / LA 2
BTS 2:	BTS 5:	BTS 8:
f2 / LA 3	f5 / LA 1	f8 / LA 2
BTS 3:	BTS 6:	BTS 9:
f3 / LA 3	f6 / LA 3	f9 / LA 2

IMSI-Catcher (3)

- MS (camps on cell 5)
 - monitors BCCHs of cells 1-9
 - finds best signal on f4 (transmitted by IMSI-Catcher) and learns that cell belongs to a new LA
 - send a LUP request to IMSI-Catcher
- IMSI-Catcher
 - responds with a Identity Request
- MS
 - answers with IMSI and IMEI

BTS 1:	BTS 4:	BTS 7:
f1 / LA 1	f4 / LA 1	f7 / LA 2
BTS 2:	BTS 5:	BTS 8:
f2 / LA 3	f5 / LA 1	f8 / LA 2
BTS 3:	BTS 6:	BTS 9:
f3 / LA 3	f6 / LA 3	f9 / LA 2

IMSI-Catcher (4)

IMSI-Catcher

- sends junk (non-decodable data) on Paging Channel (PCH) and
- sends a frequency list of BTS which do not send the frequency of IMSI-Catcher (f4) in their frequency lists
 - IMSI-C.: f3, f6, f9; LA 9

BTS 1:	BTS 4:	BTS 7:
f1 / LA 1	f4 / LA 1	f7 / LA 2
BTS 2:	BTS 5:	BTS 8:
f2 / LA 3	f5 / LA 1	f8 / LA 2
BTS 3:	BTS 6:	BTS 9:
f3 / LA 3	f6 / LA 3	f9 / LA 2

IMSI-Catcher (5)

MS

- receives junk on PCH and (according to GSM05.05) does a cell reselection:
- MS monitors signal strengths of f3, f6, f9
- changes to the best cell (LUP)

BTS 1:	BTS 4:	BTS 7:
f1 / LA 1	f4 / LA 1	f7 / LA 2
BTS 2:	BTS 5:	BTS 8:
f2 / LA 3	f5 / LA 1	f8 / LA 2
BTS 3:	BTS 6:	BTS 9:
f3 / LA 3	f6 / LA 3	f9 / LA 2

IMSI-Catcher (5)

Result

- MS is back in the network again
- because BTS 3, 6 and 9 do not send f4 in their frequency lists, the MS does not recognize the powerful IMSI-Catcher signal again (and subsequently does not change back to it)

BTS 1:	BTS 4:	BTS 7:
f1 / LA 1	f4 / LA 1	f7 / LA 2
BTS 2:	BTS 5:	BTS 8:
f2 / LA 3	f5 / LA 1	f8 / LA 2
BTS 3:	BTS 6:	BTS 9:
f3 / LA 3	f6 / LA 3	f9 / LA 2

IMSI-Catcher detectors

- AIMSICD
 - https://github.com/CellularPrivacy/Android-IMSI-Catcher-Detector
- SnoopSnitch
 - from SRLabs (Karsten Nohl)
- Darshak
 - TU Berlin
- GSMK CryptoPhone
 - special Smarthone
- IMSI-Catcher-Catcher (ICC)
 - SBA Research (Adrian Dabrowski)

Sources: https://www.privacy-handbuch.de/handbuch_75.htm http://www.heise.de/ct/artikel/Digitale-Selbstverteidigung-mit-dem-IMSI-Catcher-Catcher-2303215.html

- Cell ID
- Network Info II
- Net Monster
- Cell Widget

- Cell ID
- Network Info II
- Net Monster
- Cell Widget

- Cell ID
- Network Info II
- Net Monster
- Cell Widget

- Cell ID
- Network Info II
- Net Monster
- Cell Widget

OpenBTS http://openbts.org

»OpenBTS.org is an open source software project dedicated to revolutionizing mobile networks by substituting legacy telco protocols and traditionally complex, proprietary hardware systems with Internet Protocol and a flexible software architecture. This architecture is open to innovation by anybody, allowing the development of new applications and services and dramatically simplifying the setting up and operation of a mobile network.«

Mobile Communication Security Analysis (Tools)

Osmocom SIMtrace 2

- combination of software, firmware and hardware system
- main purpose: sniff the communication between a phone and a SIM card
- https://osmocom.org/projects/simtrace2/wiki

Turbo SIM: Earlier solution for sniffing communication between SIM and MS (introduced 2004, updated 2007)

https://arstechnica.com/gadgets/2007/08/turbo-sim-add-on-allows-full-iphone-unlocking/

USB charging condom

- USB-A has 4 wires
- cut 2 inner data wires and short-circuit
- connect power wires only

Location Management

- Centralized approach
 - Change of Location Area (LA), i.e. Location Updating, needs communication with HLR (far away from LA)
 - Efficiency: Good at low Location Updating rates
- Used in Mobile IP
 - HLR = Home Agent

Location Management

2-staged approach

- Change of Location Area (LA) changes VLR entry
- VLR serves geographically limited area (VLR-Area)
- Rare changes of VLR-Area changes HLR entry
- Reduced signaling costs in wide area network
- Tradeoff: Delayed call setup (mobile terminated)

Location Management

- Multi-staged storage
 - Many proposals for 3rd Generation Systems (UMTS), never realized in the field
 - Variations: Hierarchical storage, Forwarding strategies

Location Updating Situations

Situations

- a) Change of radio cell
- b) Change of LA
- c) Change of VLR/MSC area
- d) Change of MSC area
- LA 1 (belongs to MSC 1 and VLR 1)
- LA 2 (belongs to MSC 2 and VLR 2)
- LA 3 (belongs to MSC 2 and VLR 2)
- LA 4 (belongs to MSC 3 and VLR 2)

Location Updating: New LA

- New LA, old VLR (TMSI found)
 - Location Updating Request (TMSI, LAI)old
 - Security management
 - Authentication
 - Ciphering Mode
 - TMSI Reallocation
 - Location Updating Accept

Location Updating: New VLR area

Mobile Terminated Call Setup (MTCSU)

MS MSC/VLR PSTN/GMSC Mobile Originated Kanalanforderung an BSS Call Setup CM Service Request Sicherheitsmanagement: Authentikation, Verschlüsselungsmodus Setup Kanalzuweisung bei early-TCH- Assignment Initial Address Message Adress Complete Message Alert Answer Message Kanalzuweisung bei OACSU Connect Data Disconnect Release

Message format GSM 04.08

Protocol discriminator

<u>4321</u>	<u>bit number</u>
0011	call control, packet-mode, connection control and call related SS msgs
0101	mobility management messages
0110	radio resources management messages
1001	short message service messages
1011	non call related SS messages
1111	reserved for tests procedures
All other	values are reserved

Message format GSM 04.08

- Transaction identifier (TI)
 - Used for distinction of parallel activities of MS
 - TI flag:
 - 0: message sent from the originated TI side
 - 1: message sent to the originated TI side
- TI value
 - Number 000...110 (bin: 0...6)
 - 111 reserved

8	7	6	5	4	3	2	1	
TI flag		TI value		Prot	cocol di	scrimin	ator	octet 1
0	N(SD)		Message type				octet 2	
Data						octet 3		
								

Message format GSM 04.08

3 Classes:

- Radio resources management
- Mobility management
- Call control
- N(SD)
 - Sequence number or Extension Bit

Message type (1)

Radio resources management (1)

8 7 6 5 4 3 2 1 bit number	
0 0 1 1 1 Channel establishment messages 0 1 1 ADDITIONAL ASSIGNMENT	
1 1 1 IMMEDIATE ASSIGNMENT	
0 0 1 IMMEDIATE ASSIGNMENT EXTENDED	D
0 1 0 IMMEDIATE ASSIGNMENT REJECT	
0 0 1 1 0 Ciphering messages	
1 0 1 CIPHERING MODE ASSIGNEMT	
0 1 0 CIPHERING MODE COMPLETE	
0 0 1 0 1 Handover messages	
1 1 0 ASSIGNEMT COMMAND	
0 0 0 ASSIGNEMT COMPLETE	
1 1 1 ASSIGNMENT FAILURE	
0 1 1 HANDOVER COMMAND	
1 0 0 HANDOVER COMPLETE	
0 0 0 HANDOVER FAILURE	
1 0 1 PHYSICAL INFORMATION	
0 0 0 1 Channel release messages	
1 0 1 CHANNEL RELEASE	
0 1 0 PARTIAL RELEASE	
1 1 1 PARTIAL RELEASE COMPLETE	
••	•

385

Message type (1)

Radio resources management (2)

```
8 7 6 5 4 3 2 1
                           bit number
. . .
0 \ 0 \ 1 \ 0 \ 0 - - - Paging messages
          0 0 1
                           PAGING REQUEST TYPE 1
          0 1 0
                           PAGING REQUEST TYPE 2
          1 0 0
                           PAGING REQUEST TYPE 3
          1 1 1
                           PAGING RESPONSE
0 0 0 1 1 - - System information messages
          0 0 1
                           SYSTEM INFORMATION TYPE 1
          0 1 0
                           SYSTEM INFORMATION TYPE 2
          0 1 1
                           SYSTEM INFORMATION TYPE 3
          1 0 0
                           SYSTEM INFORMATION TYPE 4
          1 0 1
                           SYSTEM INFORMATION TYPE 5
          1 1 0
                           SYSTEM INFORMATION TYPE 6
0 0 0 1 0 - - Miscellaneous messages
          0 0 0
                           CHANNEL MODE MODIFY
          0 1 0
                           RR-STATUS
          1 1 1
                           CHANNEL MODE MODIFY ACKNOWLEDGE
          1 0 0
                           FREQUENCY REDEFINITION
          1 0 1
                           MEASUREMENT REPORT
          1 1 0
                           CLASSMARK CHANGE
```

Message type (2)

Mobility management

- Bits 7 and 8 (value: 00) reserved as extension bits
- Bit 7: mobile originated only: 1, if sequence number is sent

8 7 6 5 4 3 2 1	bit number
0 x 0 0 Re	egistration messages
0 0 0 1	IMSI DETACH INDICATION
0 0 1 0	LOCATION UPDATING ACCEPT
0100	LOCATION UPDATING REJECT
1 0 0 0	LOCATION UPDATING REQUEST
0 x 0 1 Se	ecurity messages
0 0 0 1	AUTHENTICATION REJECT
0 0 1 0	AUTHENTICATION REQUEST
0 1 0 0	AUTHENTICATION RESPONSE
1 0 0 0	IDENTITY REQUEST
1 0 0 1	IDENTITY RESPONSE
1 0 1 0	TMSI REALLOCATION COMMAND
1 0 1 1	TMSI REALLOCATION COMPLETE
0 x 1 0 Co	onnection management messages
0 0 0 1	CM SERVICE ACCEPT
0 0 1 0	CM SERVICE REJECT
0 1 0 0	CM SERVICE REQUEST
1 0 0 0	CM REESTABLISHMENT REQUEST
0 x 1 1 Co	onnection management messages
0 0 0 1	MM STATUS

Message type (3)

Call control (1)

- Bits 7 and 8 (value: 00) reserved as extension bits
- Bit 7: mobile originated only: 1, if sequence number is sent
- Nationally specific messages: next octets contain message

8 7 6 5 4 3 2 1 bit number
0 x 0 0 0 0 0 0 Escape to nationally
specific message types 0 x 0 0 Call establishment messages
0 0 0 1 ALERTING 1 0 0 0 CALL CONFIRMED
0 0 1 0 CALL PROCEEDING 0 1 1 1 CONNECT
1 1 1 1 CONNECT ACKNOWLEDGE 1 1 1 0 EMERGENCY SETUP
0 0 1 1 PROGRESS
0 1 0 1 SETUP 0 x 0 1 Call information phase messages 0 1 1 1 MODIFY
1 1 1 1 MODIFY COMPLETE
0 0 1 1 MODIFY REJECTED 0 0 0 0 USER INFORMATION
•••

Message type (3)

Call control (2)

- Bits 7 and 8 (value: 00) reserved as extension bits
- Bit 7: mobile originated only: 1, if sequence number is sent

8 7 6 5 4 3 2 1	bit number
•••	
0 x 1 0 Call clear	ing messages
0 1 0 1	DISCONNECT
1 1 0 1	RELEASE
	RELEASE COMPLETE
$0 \times 1 1 Miscellane$	ous messages
1 0 0 1	CONGESTION CONTROL
1 1 1 0	NOTIFY
1 1 0 1	STATUS
0 1 0 0	STATUS ENQUIRY
0 1 0 1	START DTMF
0 0 0 1	STOP DTMF
0 0 1 0	STOP DTMF
ACKNOWLEDGE	
0 1 1 0	START DTMF
ACKNOWLEDGE	
0 1 1 1	START DTMF REJECT

Movement profiling in GSM

Variants:

- Access HLR and VLR data (insiders only)
- Direction finding (German: »Peilung«)

Protection:

- Privacy protection of database entries
- Direct Sequence Spread Spectrum

Access HLR and VLR data

Direction finding with directional antennas

Location Based Services

Terminal-based locating

- Global Positioning System (GPS)
 - Accuracy: 10...100 m
 - Location time: up to 30 sec
- Assisted-GPS (A-GPS)
 - GPS signals re-broadcasted by BTS
 - Increased location speed (and accuracy)
- Observed Time Difference (OTD)
 - BTS1 ... BTS3 send a location signal
 - Received after Δt_1 , Δt_2 and Δt_3 by MS
 - If $\Delta t_i == \Delta t_j$ then OTD=0

Location Based Services

- Network-based locating
 - Time of Arrival (TOA)
 - Mobile station sends signal
 - BTS receive signal after Δt_i (i=1,2,3)
 - Cell of Origin (COO)
 - Cell-ID is associated with geographic location
 - Accuracy: 100 m ... 35 km

Spread Spectrum Systems

- Radio communication between military divisions
 - $-\$ Sender sends on frequency f_0 with bandwidth B

Problems:

- $\,-\,$ Spectrum analyzer detects energy around f_0 and directional antennas locate source of signal
- Jammer may interfere communication

Transmision model Spread Spectrum Systems

Spreading

- Data is modulated with high-bandwidth spreading sequence:
 - Walsh functions (orthogonal codes)
 - Pseudo-Noise-Sequence (PN-Code)

Spreading

- Data is modulated with high-bandwidth spreading sequence:
 - Walsh functions (orthogonal codes)
 - Pseudo-Noise-Sequence (PN-Code)
- Spectral spreading of signal
- Dispersion of energy on a large frequency spectrum

De-Spreading

Spread data interfered by (random) noise

De-Spreading

Spread data interfered by (random) noise

- Spectral spreading of noise
- De-spreading of data

Missing end-to-end-Services in GSM

- Speech channels of GSM are not bit transparent channels
 - Lossy compression of speech channels
- Use data channel for additional end-to-end encryption
 - As an external add-on (e.g. GSM TopSec Med)
 - As integrated service (e.g. GSM TopSec GSM)
 - Both is not GSM standards conform add-on.
 - Users need compatible devices or software on MS

Signaling of channel type (speech, data) in GSM

Bit transparent data channel for end-to-end speech encryption

Example:

TopSec MED

(Rohde&Schwarz): external device bluetooth connected to mobile phone

Bit transparent data channel – internal use for end-to-end enc.

Example:

TopSec GSM

(Rohde&Schwarz): modified Siemens S35i with Crypto processor, 128 bit encryption

Software solutions for end-to-end encryption

- Historic example: SecureGSM · http://www.securegsm.com
 - For Windows Mobile Smartphones
 - Bit transparent data channel used
 - Asymmetric key agreement (»4Kbit«)
 - Triple encryption with AES, Serpent and Towfish with triple 256 bit session keys

Screenshots: http://www.securegsm.com

Summary of security problems in GSM

Hard

- Weak link encryption protects against outsiders only
- No bit transparent speech channels -> no end-to-end encryption
- Location finding for insiders possible
- Mutual authentication is missing

Further

- Symmetric encryption
- No anonymous network usage possible
- Trust into accounting is necessary

Security functions of further mobile Systems

UMTS and LTE
Bluetooth security
WiFi security

Universal mobile telecommunication system (UMTS)

- Security functions of UMTS -> inspired by GSM security functions
- From GSM
 - Subscriber identity confidentiality (TMSI)
 - Subscriber authentication
 - Radio interface encryption
 - SIM card (now called USIM)
 - Authentication of subscriber towards SIM by means of a PIN
 - Delegation of authentication to visited network
 - No need to adopt standardized authentication algorithms
- Additional UMTS security features
 - Enhanced UMTS authentication and key agreement mechanism
 - Integrity protection of signaling information (prevents false-base-station attacks)
 - New ciphering / key agreement / integrity protection algorithms
 - ... and a few minor features

UMTS Security Architecture

UMTS: Generation of authentication vectors (network side)

AUTN := $SQN \oplus AK \mid \mid AMF \mid \mid MAC$ AV := $RAND \mid \mid XRES \mid \mid CK \mid \mid IK \mid \mid AUTN$

UMTS: Abbreviations

SQN Sequence number
RAND Random number
AMF Authenticated Management Field
K Secret Key

MAC Message authentication code
XRES Expected response

RES Response

CK Cipher key

IK Integrity key

AK Anonymity key

AUTN Authentication token
AV Authentication vector

[...] # of bits

False-base-station attacks possible if attacker can eavesdrop AV on network internal communication lines

UMTS: Authentication function in the USIM (user side)

Verify MAC == XMAC, than verify that SQN is in the correct range

UMTS: Cipher algorithm f8

- Combination of Output Feedback mode (OFB) and counter mode
- First encryption under CK' prevents chosen plaintext attacks (initialization vector is encrypted, KM: key modifier)

UMTS: Integrity algorithm f9: ISO/IEC 9797-1 (MAC algorithm 2)

- Sender and receiver use f9
- Receiver verifies MAC == XMAC

Own base station in UMTS

- Example: Vodafone SuperSignal
 - base station connected via IP with UMTS network
 - femto cell at home, not a repeater

Source: http://www.vodafone.de/business/hilfe-support/umts-basisstation-vodafone-supersignal.html

Long Term Evolution (LTE) Architecture

USIM UMTS Subscriber Identity Module

ME Mobile Equipment

E-UTRAN Evolved UMTS Terrestrial Radio Access Network

MME Mobility Management Entity
HSS Home Subscriber Service

S-GW Serving Gateway

P-GW Packet Data Network Gateway

IP Internet Protocol

Long Term Evolution (LTE)

- Characteristics
 - Traffic channels: Data services only, Speech is realized via Voice-over-IP
 - SMS is realized via signalling messages (similar to GSM)
- Security: inspired and closely related to UMTS
 - Individual symmetric key at USIM and HSS
 - Authentication vector
 - Calculated at USIM and HSS
 - Checked at MME
 - Pseudonymization on air interface:
 - Globally Unique Temporary Identity (GUTI)
 - Data encryption
 - Air interface: Advanced Encryption Standard (AES)
 - Network internal communication: IPSec
 - -> False-base-station attacks: impossible