Electromagnetic Engineering (EC21006)

Mid Semester Examination

Department of Electronics and Electrical Communication Engineering

Full Marks: 80 Time – 2 hrs

Answer all questions. The marks for the individual questions are indicated on the right.

1. Express the vector

$$\vec{B} = \frac{10}{r} \hat{a}_r + r \cos(\theta) \hat{a}_\theta + \hat{a}_\varphi$$

in the Cartesian and the Cylindrical coordinates. Evaluate $\vec{B}(-3,4,0)$ in the Cartesian coordinate system and $\vec{B}(5,\pi/2,-2)$ in the Cylindrical coordinate system.

[7+7+3+3=20]

2. In a nonmagnetic medium, a propagating electric field is given by the following expression:

$$\vec{E} = 4\sin(2\pi \times 10^7 t - 0.8x)\hat{a}, \quad V/m$$

Evaluate the following:

- (a) The relative permittivity ε_r and the intrinsic impedance η of the medium:
- (b) The time average power carried by the wave.
- (c) The total power crossing 100 cm^2 of the plane 2x + y = 5.

[5+5+10=20]

3. A uniform plane wave propagating in a medium is described by:

$$\vec{E} = 2e^{-\alpha z}\sin(10^8t - \beta z)\hat{a}_v \quad V/m$$

If the medium is characterized by the parameters $\varepsilon_r = 1$, $\mu_r = 20$ and $\sigma = 3 \, mhos / m$, evaluate α , β and the magnetic field \vec{H} .

[4+4+12=20]

4. Prove and explain the power conservation theorem for time-harmonic electromagnetic fields.

[20]