华东师范大学期末试卷 (A 卷)

2024-2025 学年第一学期

考试科目:		数据科学与工程数学基础				诎.	任课教师:		树扬
姓	名:						学	号: _	
专	业:					_	班	级: _	
田石 口		() 4. 4. 4. 4. 4. 7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		_	пп		<u> </u>	24 //	河坐上於方
题目	_	(选择题)	_	=	四	二.	六	总分	阅卷人签名
得分									

题 1 (20分)选择题

单选题一道 3 分,多选题一道 5 分,总计 20 分。单选题不选、错选均不得分;多选题不选、错选不得分,少选得 3 分。

- (1) 若 $A = [\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}] \in \mathbb{R}^{m \times n}$,列空间为 Col(A),行空间为 $Col(A^T)$,零空间为 Null(A),左零空间为 $Null(A^T)$ 。下列说法错误的是()
 - (A) $Col(\mathbf{A}^T) \perp Null(\mathbf{A}), Col(\mathbf{A}) \perp Null(\mathbf{A}^T)$
 - (B) $dim(Col(\mathbf{A}^T)) = dim(Col(\mathbf{A})) = rank(\mathbf{A})$
 - (C) 若 $\mathbf{x} \in \mathbb{R}^m$ 在 $Col(\mathbf{A})$ 上的正交投影为 $\pi(\mathbf{x})$,则对 $\forall i = 1, ..., n$ 有 $\mathbf{a}_i^{\mathsf{T}}(\mathbf{x} \pi(\mathbf{x})) = 0$
 - (D) $dim(Null(\mathbf{A}^T)) = n rank(\mathbf{A}), dim(Null(\mathbf{A})) = m rank(\mathbf{A})$

(2) 已知矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 2 & 0 \end{bmatrix}$$
, $(\mathbf{A}\mathbf{A}^T)^{-1} = \begin{bmatrix} 5/9 & 1/9 \\ 1/9 & 2/9 \end{bmatrix}$, 则矩阵 \mathbf{A} 的广义逆是()

(A)
$$\begin{bmatrix} 2/3 & -1/9 \\ 1/3 & 4/9 \\ -1/3 & -1/9 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 4/9 & -1/3 \\ 2/9 & 1/3 \\ -5/9 & -1/3 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 4/9 & -1/9 \\ 2/9 & 4/9 \\ -5/9 & -1/9 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 4/9 & -1/9 \\ 2/9 & 4/9 \\ -5/9 & 1/9 \end{bmatrix}$$

- (3) 下面的集合不是凸集的是()
 - (A) 一条射线, 即 $\{x_0 + \theta v \mid \theta \ge 0, v \ne 0\}$
 - (B) $\exists 0 < r_1 < r_2, \{(x,y) \mid r_1^2 \le (x-x_0)^2 + (y-y_0)^2 \le r_2^2 \}$
 - (C) 设 $||\cdot||$ 是 \mathbb{R}^n 中的范数,r > 0, $\{\mathbf{x} \mid ||\mathbf{x} \mathbf{x_0}|| \le r\}$
 - (D) 多面体 $\{\mathbf{x} | \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}$. 其中 $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{C} \in \mathbb{R}^{p \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m, \mathbf{d} \in \mathbb{R}^p, \mathbf{x} < \mathbf{y}$ 表示向量 \mathbf{x} 的每个分量均小于等于 \mathbf{y} 的对应分量。
- (4) 下列关于向量范数说法错误的是()
 - (A) 设 u 为 n 维单位列向量, I_n 为 n 维单位矩阵, $A = I_n 2uu^T$ 。若 Ax = y,则 $||x||_2 = ||y||_2$
 - (B) 若 $x \in \mathbb{R}^n$,则 $||x||_2 \le ||x||_1 \le n||x||_\infty$
 - (C) 若 $\mathbf{x} \in \mathbb{R}^n$,p > 0,则 $\left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$ 是向量的 l_p 范数
 - (D) $\mathbf{\textit{P}} = (\mathbf{\textit{p}}_1, \mathbf{\textit{p}}_2, ..., \mathbf{\textit{p}}_n) \in \mathbb{R}^{n \times n}$ 为非奇异矩阵,则对于 $\forall \mathbf{\textit{x}} \in \mathbb{R}^n$, $||\mathbf{\textit{Px}}||_1 \leq \max_{1 \leq j \leq n} ||\mathbf{\textit{p}}_j||_1 \cdot ||\mathbf{\textit{x}}||_1$
- (5) 考虑一个线性映射 $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$,其在标准基(基矩阵为单位阵)下的变换矩阵为: $\begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 4 & 2 \end{bmatrix}$ 我们寻找一组新的基下的 Φ 的变换矩阵。令新的基分别为:

$$\tilde{\mathbf{B}} = \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right), \tilde{\mathbf{C}} = \left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)$$

通过计算可得:

$$\tilde{\mathbf{B}}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \tilde{\mathbf{C}}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

请问下面哪项为新的基下的变换矩阵()

$$(A) \frac{1}{2} \begin{pmatrix} -1 & 3 \\ 7 & 1 \\ 5 & 3 \end{pmatrix} \quad (B) \begin{pmatrix} -1 & 3 \\ 7 & 1 \\ 5 & 3 \end{pmatrix} \quad (C) \begin{pmatrix} -5 & 5 \\ 1 & 4 \\ -2 & 5 \end{pmatrix} \quad (D) \frac{1}{2} \begin{pmatrix} -7 & 3 \\ 5 & 1 \\ -1 & 3 \end{pmatrix}$$

- (6) 【多选】设矩阵 $A \in \mathbb{R}^{m \times n}$,它的完全奇异值分解为 $A = U \sum V^T$,紧奇异值分解为 $A = U_r \sum_r V_r^T$,r = rank(A),下列关于 SVD(奇异值分解) 的说法错误的是()
 - (A) 对矩阵 A 的奇异值分解中,U,V矩阵是唯一的
 - (B) $rank(\mathbf{A}) = rank(\mathbf{A}^T \mathbf{A}) = rank(\mathbf{A}\mathbf{A}^T)$
 - (C) A 的奇异值分解可以表示为: $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$ 。在 $r \geq 2$ 时,令 $\mathbf{w} \in \mathbb{R}^n$ 为一个向量且满足: $\mathbf{w} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$,则 $A\mathbf{w} = \alpha \sigma_1 \mathbf{u}_1 + \beta \sigma_2 \mathbf{u}_2$
 - (D) $\forall i = r + 1, ...m, j = 1, ...n, \mathbf{u}_i^T A \mathbf{v}_j \neq 0$
 - (E) 利用截断 SVD 方法,寻找秩为 k (k < r) 的矩阵 $X \in \mathbb{R}^{m \times n}$ 使得 $||A X||_F$ 最小。寻找得到的最优矩阵就是在紧奇异值分解中对 \sum_r 任意地选择 k 个奇异值 σ_i 和其对应的 U_r 、 V_r 中的向量 u_i, v_i ,再将选择到的 $\sigma_i u_i v_i^{\mathsf{T}}$ 累加求和即可。

题 2 (12 分) 完成以下问题:

(1)
$$(4 \, \mathcal{G}) A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 0 & -3 \end{bmatrix}$$
 分别求 A 的 l_1 范数, 1 范数, l_∞ 范数, ∞ 范数

(2) (5 分) 求向量
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 在矩阵 $M = \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 4 & 2 \end{bmatrix}$ 的列空间上的正交投影。

【已知:
$$(M^T M)^{-1} = \frac{1}{72} \begin{bmatrix} 7 & -5 \\ -5 & 7 \end{bmatrix}$$
】

(3) (3 分) 设 $\mathbf{B} \in \mathbb{R}^{n \times n}$, $I \neq n$ 阶单位矩阵, $||\mathbf{B}||$ 是关于 \mathbf{B} 的矩阵 l_2 范数。已 知 $||\mathbf{B}|| < 1$, $I - \mathbf{B}$ 可逆,证明: $(1 - ||\mathbf{B}||) \cdot ||(I - \mathbf{B})^{-1}|| \le n$ 。

【提示:
$$I = (I - \mathbf{B})^{-1} \cdot (I - \mathbf{B}) = (I - \mathbf{B})^{-1} - (I - \mathbf{B})^{-1} \mathbf{B}$$
,则 $(I - \mathbf{B})^{-1} = I + (I - \mathbf{B})^{-1} \mathbf{B}$ 】

题 3 (17分)

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 2 & 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 3 & 1 \\ 0 & 4 & -2 \\ 2 & 1 & -1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 17 \\ 6 \\ 1 \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$$

- (1) (2分)矩阵 A 能否进行 QR 分解,为什么?直接写出结论及原因即可。
- (2) (6分) 求矩阵 B的 QR 分解。
- (3) (5 分) 利用 (2) 中的分解结果来求解方程组 $\mathbf{B}\mathbf{x} = \mathbf{c}$
- (4) (4分)利用正规化方程组,求解 \mathbf{A} 和 \mathbf{d} 所对应的最小二乘问题 $\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} \mathbf{d}||_2$ 的全部解。【对正规化方程组的求解方法不限】

题 4 (15 分)

(1) (6 分) 给定矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 2 & 3 \\ 4 & 2 & -2 \end{bmatrix}$$
, 分别求其完全 SVD 和紧 SVD。
【已知: $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} 18 & 9 & -9 \\ 9 & 17 & 8 \\ -9 & 8 & 17 \end{bmatrix}$, $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ 的特征值 $\lambda_1 = 27, \lambda_2 = 25, \lambda_3 = 0$, 特征向量为 $\mathbf{q}_1 = \begin{bmatrix} -2 & -1 & 1 \end{bmatrix}^T, \mathbf{q}_2 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T, \mathbf{q}_3 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T$ 】

- (2) (4 分) 假设 M 是任意一个非奇异 $n \times n$ 的矩阵,已知其奇异值分解 (SVD) 为 $M = U \Sigma V^{\mathsf{T}}$, 其中 $U = [u_1, u_2, \cdots, u_n]$, $\Sigma = \mathrm{diag}(\sigma_1, \sigma_2, \cdots, \sigma_n)$, V = $[v_1, v_2, \cdots, v_n]$ 。请写出 *M* 的逆矩阵的 SVD 分解。
- (3) (5 分) 已知矩阵 $M \in \mathbb{R}^{m \times n}$ 的元素非负, r = rank(M), 其奇异值分解为 $M = U \Sigma V^{\top}$, $\sharp \vdash U = [u_1, u_2, \cdots, u_r]$, $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_r)$, $V = U \subseteq V$ $[\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r]$ 。求拼接矩阵 $\mathbf{A} = \begin{bmatrix} O & \mathbf{M} \\ \mathbf{M}^T & O \end{bmatrix}$ 的非零特征值和其对应的特征 向量。【结果用 u_i, v_i, σ_i 相关形式表示】

题 5 (19分)

- (1) (2 分) 已知 $\mathbf{X} \in \mathbb{R}^{n \times n}$ 非奇异,求证: $d(\mathbf{X}^{-1}) = -\mathbf{X}^{-1}d\mathbf{X}\mathbf{X}^{-1}$ 。
- (2) (5 分) 利用迹微分法求函数 $f(\mathbf{X}) = Tr(\mathbf{X}^{\mathsf{T}}\mathbf{X}^{-1}\mathbf{A})$ 关于变量 \mathbf{X} 的梯度矩阵, 其中 $\mathbf{X} \in \mathbb{R}^{n \times n}$ 非奇异, $\mathbf{A} \in \mathbb{R}^{n \times n}$ 是常数矩阵。
- (3) (7分) 考虑一个两层的全连接神经网络:

$$y = f(x) = \text{ReLU}(A_2(\text{ReLU}(A_1x + b_1)) + b_2)$$

ReLU 的含义: 若
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
,则 ReLU(\mathbf{x}) = $\begin{bmatrix} \operatorname{ReLU}(x_1) \\ \vdots \\ \operatorname{ReLU}(x_n) \end{bmatrix}$,其中

$$ReLU(x_i) = \begin{cases} 0, & \text{if } x_i < 0 \\ x_i, & \text{if } x_i \ge 0 \end{cases}$$

己知:

$$A_1 = \begin{bmatrix} 2 & 3 \\ -2 & 1 \\ 3 & -1 \end{bmatrix}, A_2 = \begin{bmatrix} 3 & -1 & 0 \\ 1 & -2 & 2 \end{bmatrix}, \boldsymbol{b}_1 = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}, \boldsymbol{b}_2 = \begin{bmatrix} -7 \\ 3 \end{bmatrix}$$

假设输入为 $\mathbf{x} = (-1, 2)^T$,并且对应的真实输出为 $\hat{\mathbf{y}} = (0, 1)^T$,采用平方 损失 $L = \frac{1}{2} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2$ 。试计算函数 L 关于 \mathbf{b}_1 的梯度。

(4) (5 分) 卷积是常用的数学运算,运算过程中,卷积核矩阵 F 在输入矩阵 X 上滑动,卷积核每滑动到与输入矩阵的某一子矩阵重叠时,卷积核与该子

矩阵对应位置元素相乘再累加,得到输出结果在该位置的值。以步长(每次滑动的距离)等于 1 为例,其得到输出矩阵 0 的过程和公式如图所示。

已知,输入
$$\mathbf{X} = \begin{bmatrix} 3 & 1 & 2 \\ 7 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = (x_{ij})_{3\times 3}$$
,卷积核 $\mathbf{F} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = (f_{ij})_{2\times 2}$

根据卷积过程易得输出 $\mathbf{O} = \begin{bmatrix} 0 & 4 \\ 14 & 9 \end{bmatrix}$, $L = Loss(\mathbf{O})$ 是关于 \mathbf{O} 的某种损失函数。现在假设 $\frac{\partial L}{\partial \mathbf{O}} = \begin{bmatrix} 3 & 7 \\ 6 & 8 \end{bmatrix}$,请据此求解 $\frac{\partial L}{\partial x_{11}}$ 和 $\frac{\partial L}{\partial \mathbf{X}}$

题 6 (17分)

- (1) (5 分) 判断函数 $f(\mathbf{x}) = \max(\|\mathbf{A}\mathbf{x} + \mathbf{b}\|_2, \sqrt{\mathbf{x}^T \mathbf{x}}) + \frac{1}{2}\mathbf{x}^T \mathbf{P}\mathbf{x}$ (其中 $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m, \mathbf{P}$ 为 n 阶半正定矩阵)是否为凸函数,并说明理由。
- (2) (4 分) 考虑优化问题 $minf(\mathbf{x}) = x_1^2 + 4x_1x_2$,从初始点 $\mathbf{x}^{(0)} = (1,0)^T$ 出发,写出用梯度下降法迭代一步的过程,迭代时采用精确线搜索方法。
- (3) (4 分) 利用二阶最优性条件找到问题 $minf(\mathbf{x}) = x_1^2 + 4x_2^2 + 2x_1x_2$ 的全局最优解。
- (4) (4 分) 证明 $f(\mathbf{x}) = (\prod_{k=1}^{n} x_k)^{\frac{1}{n}}$,($\mathbf{x} \in \mathbb{R}^n \perp x_i > 0$) 是凹函数。

【提示,已知:

$$\nabla f(\mathbf{x}) = \left(\frac{f(\mathbf{x})}{nx_1}, \frac{f(\mathbf{x})}{nx_2}, \dots, \frac{f(\mathbf{x})}{nx_n}\right)^{\top}, \quad \nabla^2 f(\mathbf{x}) = -\frac{f(\mathbf{x})}{n^2} \begin{vmatrix} \frac{n-1}{x_1^2} & -\frac{1}{x_1x_2} & \dots & -\frac{1}{x_1x_n} \\ -\frac{1}{x_2x_1} & \frac{n-1}{x_2^2} & \dots & -\frac{1}{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{x_nx_1} & -\frac{1}{x_nx_n} & \dots & \frac{n-1}{x_n^2} \end{vmatrix}.$$