ジャンル:線形代数 難易度: Normal

□問題の概要

微分方程式と正定値対称に関する問題です. 何がテーマなのかよくわからない問題です. 多次元に拡張したロジスティック関数なんじゃないですかね(適当).

特に(3)などは試験中ではよくわからなくなる気がするので,数学強者でない限りはあまり解かない気がします.

(1)

 $\dot{L}(x') < 0 \ (\forall x' \in \mathbf{X}_n \setminus \{x^*\})$ と $CA + A^TC$ が不定値であることが同値であることを示す.

$$\left.\dot{L}(x) = \frac{\mathrm{d}}{\mathrm{d}t}L(x(t))\right|_{t=0} = \sum_{i=1}^n \frac{\partial L}{\partial x_i} \frac{\partial x_i}{\partial t} \bigg|_{t=0} = \sum_{i=1}^n c_i \bigg(-\frac{x_i^*}{x_i} + 1\bigg) x_i \bigg(v_i + \sum_{j=1}^n a_{ij} x_j\bigg)$$

ここで $x_i(0)=x_i$ と置いた. x_i^* は $F_i(x_i^*)=0$ となるので, $v_i=-\sum_{j=1}^n a_{ij}x_j^*$

$$\begin{split} \dot{L}(x) &= \sum_{i=1}^n c_i(x_i - x_i^*) \left(\sum_{j=1}^n a_{ij} \big(x_j - x_j^* \big) \right) \\ &= \sum_{i,j} (x_i - x_i^*) c_i a_{ij} \big(x_j - x_j^* \big) \\ &= \frac{1}{2} \sum_{i,j} (x_i - x_i^*) c_i a_{ij} \big(x_j - x_j^* \big) + \frac{1}{2} \sum_{i,j} \big(x_j - x_j^* \big) c_j a_{ji} (x_i - x_i^*) \\ &= (x - x^*)^T \frac{CA + A^TC}{2} (x - x^*) \end{split}$$

 $CA+A^TC$ が負定値ならば, $\dot{L}(x)<0$ は自明. 逆は, 任意の $y\in\mathbb{R}^n\setminus\{0\}$ に対し, ある $\lambda>0$ と, ある $x\in \mathbf{X}_n\setminus\{x^*\}$ が存在して $y=\lambda(x-x^*)$ と表すことができることを示せばよい. すると, 任意の $x\in \mathbf{X}_n\setminus\{x^*\}$ で $\dot{L}<0$ ならば, 任意の $y\in\mathbb{R}^n\setminus\{0\}$ に対して $y^T(CA+A^TC)y<0$ なので, $CA+A^TC$ は負定値である.

△注意

xの範囲が $\mathbf{X}_n\setminus\{x^*\}$ と \mathbb{R}^n ではないので, $x-x^*$ がすべての方向を向くことができることを示す必要がある. 少なくとも, 軽く言及する必要はあるだろう.

ちなみに、 $x^TAx = x^T\frac{A+A^T}{2}x$ ($\forall x$) なので, 行列の定値性は対称行列でなくとも, 行列の対称要素を使えば定義することができる.

(2)

$$\begin{split} \nabla H_w(z) &= \left(w_1 z_1, w_2 z_2, ..., w_n z_n\right)^T = W z \\ \frac{\mathrm{d}z(t)}{\mathrm{d}t} &= \sum_{i=1}^n \frac{\partial z}{\partial x_i} \frac{\partial x_i}{\partial t} = \sum_{i=1}^n x_i \left(\sum_{j=1}^n a_{ij} \big(x_j - x_j^*\big)\right) \\ &= x \cdot A(x - x^*) = x^T A z = X A z \\ &= X A W^{-1} W z = (Z + X^*) A W^{-1} \nabla H_w(z) \end{split}$$

よって, $G(z) = (Z + X^*)AW^{-1}$.

(3)

(2) より,

$$\frac{\mathrm{d}H_w(z(t))}{\mathrm{d}t} = \nabla H_w(z(t)) \cdot \frac{\mathrm{d}z(t)}{\mathrm{d}t} = \nabla H_w(z)^T (X^* + Z) A W^{-1} \nabla H_w(z)$$

まず、w は正ベクトルから選ぶので、z(t)=0 でない限りは、 $\nabla H_w(z)$ は非零のベクトルとなる. いま、 $(X^*+Z)AW^{-1}$ の部分にも z に依存する項が入っていることが、単純な解析ができない要因である.ここでのポイントは、開近傍は任意であるから、適当に Z を小さくすれば、Z の方はオーダーの意味で無視できるということである.

開近傍を十分小さくとることで Z が $O(\varepsilon)$ となるようにする.

$$\frac{\mathrm{d}H_w(z(t))}{\mathrm{d}t} = \nabla H_w(z)^T X^* A W^{-1} \nabla H_w(z) + \nabla H_w(z)^T Z A W^{-1} \nabla H_w(z)$$

ここで $\nabla H_w(z)=(w_1z_1,w_2z_2,...,w_nz_n)$ であったことを思い出せば, $\nabla H_w(z(t))$ も $O(\varepsilon)$ である. $\frac{\mathrm{d}H_w(z(t))}{\mathrm{d}t}$ の第一項は $O(\varepsilon^2)$, 第二項は $O(\varepsilon^3)$ より, 開近傍を十分小さくとれば, 第二項は第一項に比べて無視できる.

そこで以下第一項のみ考える.

$$\nabla H_{w}(z)^{T} X^{*} A W^{-1} \nabla H_{w}(z) = \nabla H_{w}(z)^{T} W^{-1} W X^{*} A W^{-1} \nabla H_{w}(z)$$

 $\nabla H_w(z(t))W^{-1}$ も,z(t)=0 でない限り正であることに注意する. これは, X^*AW^{-1} を条件式が使いやすい WX^*A と書き換えるために行った.

$$= \nabla H_w(z)^T W^{-1} \Bigg(\frac{W X^* A + A^T X^* W}{2} \Bigg) W^{-1} \nabla H_w(z)$$

これは、行列が対称になるように変形した。 さて問題の条件から $CA+A^TC$ は負定値である。 ここで $WX^*=C$ となるように選べば、 $\frac{\mathrm{d}H_w(z(t))}{\mathrm{d}t}$ の第一項は負の値になる。 第二項が 0 の ε 近傍では第一項に比べて無視できることから、 $WX^*=C$ が一つの解となる.明示的に書けば、

$$w_i = \frac{c_i}{x_i}$$

となる. ここで, x_i^* は問題文の条件から x^* が正ベクトルであるので割ることに問題はない.