TTK4150 Nonlinear Control Systems Lecture 3

Stability

and

Stability analysis of equilibrium points

Previous lecture:

- Fundamental properties
 - Existence and uniqueness of solutions
- Phase plane analysis
 - How to construct phase portraits and interpret these
 - Analytical method
 - Vector field diagrams
 - Computer simulations
 - Local phase plane analysis (nodes, foci, saddle and center points)
 - Periodic orbits and Limit cycles (general, not only in the plane)
 - Existence criteria for periodic orbits in the plane

Outline I

- Previous lecture
- Today's goals
- Literature
- 2 The control problem
 - Introduction
 - Regulation problem
 - Tracking/Servo problem
 - Examples
- 3 Lyapunov stability properties
 - Introduction
 - Stability and instability
 - Asymptotic stability
 - Exponential stability
 - Lyapunov stability analysis

Outline II

- Introduction
- Lyapunov's indirect method

Summary

Next lecture

Today's goals

After this lecture you should...

- Understand how the need for stabilization of equilibrium points arise in control problems
- Lyapunov stability properties
 Know and understand the following stability definitions for autonomous systems
 - Stability
 - Asymptotic stability
 - Exponential stability
 - Global versus local
- Lyapunov stability analysis
 - Lyapunov's indirect method

Literature

Today's lecture is based on

Khalil Section 4.1

Theorem 4.7, Section 4.3

Corollary 4.3, Section 4.7

Part I

The control problem

The control problem

The control problem:

- Given a physical process with
 - inputs (actuators)
 - outputs (sensors)

- Given a set of specifications of the desired system behavior
- Model the physical plant by a set of differential equations
- Design a control law

 Analysis of the closed-loop system

Implement the control law

The Regulation problem: $x_{ref} = constant$

$$\dot{x} = f_p(t, x, u)$$

Control law design

Find

$$u = \gamma(t, x)$$

such that the closed-loop (CL) system

$$\dot{x} = f_p(t, x, \gamma(t, x)) =: f(t, x)$$

has desired behavior.

Desired CL system behavior?

- x_{ref} an equilibrium point
- convergence
- start close ⇒ stay close

Asymptotic stabilization problem

Find $\gamma(t,x)$ such that x_{ref} is an asymptotically stable equilibrium point of $\dot{x} = f(t,x)$.

The Regulation problem: $x_{ref} = constant$

$$\dot{x} = f_p(t, x, u)$$

Control law design

Find

$$u = \gamma(t, x)$$

such that the closed-loop (CL) system

$$\dot{x} = f_p(t, x, \gamma(t, x)) =: f(t, x)$$

has desired behavior.

Desired CL system behavior?

- x_{ref} an equilibrium point
- convergence
- start close ⇒ stay close

Asymptotic stabilization problem

Find $\gamma(t,e)$, $e=x-x_{ref}$, s.t. e=0 is an asymptotically stable equilibrium point of $\dot{e}=f(t,e+x_{ref})$.

The Tracking/Servo problem: $x_{ref}(t)$

Process

$$\dot{x} = f_p(t, x, u)$$

Control law design

Find

$$u = \gamma(t, x)$$

such that the closed-loop (CL) system

$$\dot{x} = f_p(t, x, \gamma(t, x)) =: f(t, x)$$

has desired behavior.

Desired CL system behavior?

- on trajectory ⇒ stay on trajectory
- convergence to trajectory
- start close ⇒ stay close

Asymptotic stabilization problem

Find $\gamma(t,e)$ such that $e=x-x_{ref}(t)=0$ is an asymptotically stable equilibrium point of $\dot{e}=\bar{f}_{p}(t,e,\gamma(t,e))=\bar{f}(t,e)$.

Simulated straight line path following control of a snake robot

Part II

Lyapunov stability

Autonomous systems

$$\dot{x} = f(x), \qquad f: \quad D \subset \mathbb{R}^n \to \mathbb{R}^n$$

$$f \quad \text{locally Lipschitz}$$

x = 0 is the equilibrium point of interest

We will define the following stability properties:

- Stability (Local property)
- Asymptotic stability = Stability + Local convergence
- Exponential stability
 - Region of attraction
- Global asymptotic stability
- Global exponential stability

Definition (Stability)

x = 0 is stable iff

$$\forall \ \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0 \quad s.t. \quad \|x(0)\| < \delta \Rightarrow \|x(t)\| < \varepsilon \quad \forall t \ge 0$$

Visual interpretation (n = 2):

Note: $\forall \ \varepsilon$

Else: Unstable

Pendulum without friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin x_1$$

Pendulum without friction, cont.

200

Asymptotic stability

The equilibrium point x = 0 is (locally) asymptotically stable iff

- i) it is stable
- ii) $\exists r > 0$ s.t. $||x(0)|| < r \Rightarrow \lim_{t \to \infty} x(t) = 0$ (Convergence)

Region of attraction

$$B_r = \{ r \in \mathbb{R}^n : ||x|| < r \}$$

Global asymptotic stability

The equilibrium point x = 0 is globally asymptotically stable iff

- i) it is stable
- ii) $\forall x(0)$ $\lim_{t\to\infty} x(t) = 0$

NB: This implies that x = 0 is the only equilibrium point.

Pendulum with friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2$$

Pendulum with friction, cont.

rivergenee

Convergence

$$||x(0)|| < r \Rightarrow \lim_{t \to \infty} x(t) = 0$$

NB!

Convergence \Rightarrow Stability

Vinograd's counter example:

Figure 3.5: State convergence does not imply stability

Exponential stability

The equilibrium point x = 0 is (locally) exponentially stable iff $\exists r, k, \lambda > 0$ such that

$$||x(t_0)|| < r \Rightarrow ||x(t)|| \le k ||x(t_0)|| e^{-\lambda(t-t_0)} \quad \forall t \ge t_0$$

(Local exponential convergence)

Remark

local exponential stability ⇒ local asymptotic stability

Global exponential stability

The equilibrium point x = 0 is globally exponentially stable iff

$$\forall x(t_0)$$
 $||x(t)|| \le k ||x(t_0)|| e^{-\lambda(t-t_0)} \quad \forall t \ge t_0$

(Global exponential convergence)

Part III

Lyapunov stability analysis

How do we analyze the Lyapunov stability properties?

- Definitions
 - If we have solution x(t) = ... OK
- Phase plane analysis (dim x = 2)
 - Phase portrait
 - Local phase plane analysis

of linearized system

Phase portrait \rightarrow local phase portrait of nonlinear system

New method: Lyapunov's indirect method

Lyapunov's indirect method/Linearization method

Theorem 4.7 (Lyapunov's indirect method)

Let x = 0 be an equilibrium point for

$$\dot{x} = f(x)$$
 $f: \mathbb{D} \to \mathbb{R}^n$ is C^1

1) Linearize the system about x = 0, $\dot{x} = Ax$

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & & \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}\Big|_{x=0}$$

2) Find the eigenvalues $\lambda_1(A), \dots, \lambda_n(A)$

Lyapunov's indirect method cont.

Theorem 4.7 (Lyapunov's indirect method) cont.

- 3) a) $\forall i \quad \text{Re}(\lambda_i) < 0 \quad \Rightarrow \quad x = 0$ is locally asymptotically stable
 - b) $\exists i \quad \text{Re}(\lambda_i) > 0 \quad \Rightarrow \quad x = 0 \text{ is unstable}$
 - c) $\forall i \quad \text{Re}(\lambda_i) \leq 0$ $\exists i \quad \text{Re}(\lambda_i) = 0$ ⇒ No conclusion

Comments

- + Simple to use
- Not always conclusive
- Only local results

Lyapunov's indirect method: Example

9

Example

Given

$$\dot{x} = ax - x^3.$$

Analyze the stability properties of the equilibrium point x = 0 using Lyapunov's indirect method.

Corollary 4.3

0

Corollary 4.3, Sec. 4.7

Let x = 0 be an equilibrium point for

$$\dot{x} = f(x)$$
 $f: \mathbb{D} \to \mathbb{R}^n$ is C^1

$$\forall i \quad \operatorname{Re}(\lambda_i) < 0 \quad \Leftrightarrow \quad x = 0 \text{ is (locally) exponentially stable}$$

Summary:

- The need for stabilization of equilibrium points arises in regulation and servo/trajectory tracking control problems
- Lyapunov stability properties
 For autonomous systems
 - Stability
 - Asymptotic stability
 - Exponential stability
 - Global versus local
- Lyapunov stability analysis
 - Lyapunov's indirect method

- How to use Lyapunov's direct method to analyze the stability properties of an equilibrium point.
- Lyapunov's theorems for
 - stability
 - local and global asymptotic stability
 - local and global exponential stability
- Preparation

Khalil Section 4.1

Theorem 4.10, Section 4.5