# Leveraging Social Context for Modeling Topic Evolution

## UC San Diego

Janani Kalyanam\*, Amin Mantrach\*, Diego Saez-Trumper\*, Hossein Vahabi\* and Gert Lanckriet\*



\*University of California, San Diego, \*Yahoo Labs

#### **Text corpora today**

- Social Media posts every instant
- Constantly evolving corpora
- Free user vocabulary
- Volatile



#### Our idea

- Traditional approaches: Bayesian (like LDA), or NMFbased
- Use textual content

(highly focused)

 Our idea is to use sideinformation

### Our goal

When does side information in the form of community help in modeling topic discovery and evolution?



#### Our approach

 $X^{t}$  is documents-by-words  $II^{t}$  is documents-by-users

$$X^t \approx W^t H^t$$

$$U^t \approx W^t G^t$$

 $H^t \ G'$  each row is a topic/community represented as distribution over words/users

#### **Key assumption**

explains each document in terms of the  $\boldsymbol{W}^t$  underlying latent topics/community.

#### Temporal evolution

$$X^{t} \approx W^{t} M_{T}^{t} H^{t-1}$$

$$H^{t}$$

Communities in the r-1 previous time step (considered known at time-t)

$$U^t \approx W^t M_c^t G^{t-1}$$

 $M_T^t$  Evolution matrix

## Objective function



$$L = \mu L_T + (1 - \mu)L_C + R$$

μ importance parameter

R regularization

#### How to validate?

- Content stable topics;
   Community stable topics;
   Mixed stable topics
- Obtain centroids of representations at time-t
- Cosine similarities for representation at time-t and time-(t+1) for all time
- Average all similarities

## Types of topics



# Experiments

|          | K = 5  | K = 10 | K = 15 | K = 20 |
|----------|--------|--------|--------|--------|
| NDCG     | 0.4081 | 0.4800 | 0.5029 | 0.5129 |
| MAP<br>μ | 0.2653 | 0.3637 | 0.4007 | 0.4173 |
| NDCG     | 0.3699 | 0.4496 | 0.4608 | 0.4138 |
|          |        |        |        |        |

#### **Content Stable**

| NDCG | 0.6888 | 0.6055 | 0.6317 | 0.6623 |
|------|--------|--------|--------|--------|
| MAP  | 0.5655 | 0.4784 | 0.5115 | 0.5559 |
| μ    | 1      | 1      | 0.75   | 0.75   |
| NDCG | 0.3699 | 0.4496 | 0.4608 | 0.4138 |
| MAP  | 0.2191 | 0.3596 | 0.3462 | 0.3420 |

# Stability of M $stability(M) := 1 / n \bullet \Sigma_i abs(\gamma_i)$



