

Evaluating regularized modeling methods for calculating functional connectivity

McKenzie Paige Hagen^{1, 2, io}, Ariel Rokem^{1, 3}, Kris Bouchard²

¹ Department of Psychology, University of Washington ³ eScience Institute, University of Washington ² Lawrence Berkeley National Lab

Background

- Functional MRI (fMRI) is used to non-invasively study the human brain.
- **Functional connectome:** the statistical relationship between every pair of distinct brain regions.[1]
- cute little diagram
- jkfd;a
- this is space for a diagram
- The majority of the fMRI literature uses the Pearson Correlation between two brain regions to calculate the functional connectome.
- Pearson Correlation connectomes are theoretically, psychometrically, and empirically flawed.
- We investigate using regularized models as alternatives to Pearson Correlations.

Do functional connectomes calculated with regularized methods overcome the drawbacks of Pearson connectomes?

Methods

Data: Human Connectome Project - Openly available, high quality MRI dataset of 1,000+ "healthy" young adults.

• Current analyses use 100 randomly selected participants as discovery dataset.

Statistics: calculated connectomes using three methods: Pearson Correlation, LASSO regularization, and Union of Intersections (UofI) regularization framework.

• **UofI:** UofI uses a two step ensemble process to perform model estimation and selection to fit sparse, stable, and accurate models [2]

Connectomes evaluatedOh using characteristics desirable for empirical analyses using functional connectomes: sparsity, reliability, correlation with motion ("qcfc"), and identifiability ("fingerprinting").

Data Management

Incosnistent file naming and directory organization can impede data sharing. Enter: the Brain Imaging Data Structure specification.

Neuroimaging data is large, which can cause issues even with high performance computing. - Datalad enables

Preliminary Results

Example connectomes. LASSO and UoI matrices are (necessarily due to regularization) *more sparse* than Pearson Correlations, and UoI eliminates spurious low magnitude connections.

Selection ratio. Here is an interesting caption.

Captionssss title Caption.

this is another caption

Acknowledgements

Data were provided by the Human Connectome Project, WU-Minn Consortium.

References

- 1. H. E. Wang *et al.*, *Front. Neurosci.* (2014).
- 2. P. S. Sachdeva et al., J. Neurosci. Methods (2021).