Let \	/ be	a C-vector	space	and	V To	a Clinear mag
which	Z IS	idempotent	: 7	=1		

(a) Show that one has a Gredorspace decomposition $V = \pi(V) \oplus (1-\pi)V$

where $\pi(V) = im(\pi)$

and $(1-\pi)(V) = \ker(\pi)$

(6) Deduce that dimp (in(tr)) = Trace (tr) (assume dimp V finite here)

(c) Show that for any representation $G \xrightarrow{p} GL(V)$

of a finite group G on a (finite dimensional) C vector space V,

the averageing map

 $\begin{array}{c}
\sqrt{T_6} \\
V \longrightarrow \frac{1}{|G|} \sum_{G \in G} p(G)(V)
\end{array}$

is idempotent, and has image $m(\pi_{\vec{k}}) = \sqrt{9}$

the G-fixed subspace

(d) Deduce that in the setting of (c) one has $din_{\mathbb{C}}(V^{G}) = \frac{1}{1GI} \sum_{\sigma \in G} Trace(\rho_{G})$ (used in lecture)

(e) Use (d) to prove Burnside's Lemma: When a group G pennutes a finite set X, the number of G-orbits on X is IGI SEG | {xeX: S(x)=x}|

(HINT: Consider a vector space V with Glossis lex 3xeX and $\sigma(e_x) = e_{\sigma(x)}$.
What is $\dim_{\mathbb{C}}(V^G)$? Can you compute Trace $V(\sigma)$ for $\sigma \in G$?

2	Let $V = \mathbb{C}^2$ with \mathbb{C} -basis $\{b, \omega\}$
	and Von = (Von) where (Von) has C basis ? es Ist [M]
	having action of En positionally via o(visovn)= 6/100 @Vota).
	(a) Prove that a permutation of EGn has o(es) = es
	In subset I is a union of the goes or o
	(b) Deduce that $\sum_{k=0}^{n} q^k \text{ Trace}(von)^{(G)} = \prod_{k=0}^{n} (1+q^{(C)})$. (used in lecture)
	(100) Uh (1/80) 1 front in bothure
3	Recall the map (Ven) & Uk > (Ven) k+1 defined in lecture.
	TE (M):
	(a) Prove that Up commutes with the Gn-action on Von (a) Prove that Up commutes with the Gn-action on Von (a) Prove that Up commutes with the Gn-action on Von (a) Prove that Up commutes with the Gn-action on Von (a) Prove that Up commutes with the Gn-action on Von (a) Prove that Up commutes with the Gn-action on Von (a) Prove that Up commutes with the Gn-action on Von (a) Prove that Up commutes with the Gn-action on Von (a) Prove that Up commutes with the Gn-action on Von (b) (a) Prove that Up commutes with the Gn-action on Von (b) (a) Prove that Up commutes with the Gn-action on Von (b) (a) Prove that Up commutes with the Gn-action on Von (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	(b) Prove that the map (V&n) Re+1 De+1, (V&n) &
	er -> Se([M]):8
	is actually the transpose/adjoint map Det = Ut with respect to
	(c) Explain why this implies Dky Uk and Uki Dk are both
	symmetric and nonnegative definite (all eigenvalues ≥0)
	(c) Explain why this implies $D_{k+1}U_k$ and $U_{k-1}D_k$ are both symmetric and nonnegative definite (all eigenvalues ≥ 0) (d) Prove that $(D_{k+1}U_k - U_{k-1}D_k)(e_s) = (n-2k)(e_s) for any S \in (M_k),$
	(e) Explain why this implies Dkn Uk is postove definite for k=2. (e) Explain why this implies Dkn Uk is injective for k=2 (used in)
	(e) Explain why this implies Dkn Uk is postave definite for k = 2. (f) Explain why this implies Uk is injective for k = 2 (lecture)

Let $|\Lambda| := \lambda_1 + \lambda_2 + \dots + \lambda_k$, so that the rank-generating-function for $2^{\text{lkl}}/G$ is $r_0 + r_1 q + r_2 q^2 + \dots + r_n q^n = \sum_{\text{such } \Lambda} q |\Lambda| = \frac{1}{DEFN} \left[\frac{k+l}{k} \right]_g$ called a q-binomial coefficient.

(a) Prove the
$$q$$
-Pascal recurrences (here $N:=k+l$, or $l:=N-k$)
$$\begin{bmatrix} N \\ k \end{bmatrix}_q = q^k \begin{bmatrix} N-1 \\ k \end{bmatrix}_q + \begin{bmatrix} N-1 \\ k-1 \end{bmatrix}_q$$

$$\begin{bmatrix} N \\ k \end{bmatrix}_q = \begin{bmatrix} N-1 \\ k \end{bmatrix}_q + q^{N-k} \begin{bmatrix} N-1 \\ k-1 \end{bmatrix}_q$$

(b) Prove the formula
$$[N]_q = \frac{[N]!_q}{[k]!_q} = \frac{[N]!_q}{[k]!$$

(c) Prove that when $g = p^d$ is the power of a prime, and hence the cardinality of a finite field \mathbb{F}_g , $\begin{bmatrix} N \end{bmatrix}_g = \#\{k-\text{dimensional } \mathbb{F}_q | \text{mear subspaces of } \mathbb{F}_q^N \}.$