<u>CLASE 17</u>: EXPONENCIALES Y LOGARITMOS

· funcions exponenciales: a>0

La función expohencial en bose a es la función:

• Ey: •
$$\alpha = 3$$

 $f_3(x) = 3^x$
 $f_3(2) = 3^2 = 9$ $f_3(-1) = 3^1 = \frac{1}{3}$
 $f_3(\frac{1}{4}) = 3^{1/4} = \sqrt[4]{3}$ $f_3(0) = 3^0 = 1$

$$0 = \frac{1}{5}$$

$$f_{\frac{1}{5}}(x) = \left(\frac{1}{5}\right)^{x} = \frac{1}{5^{x}} = 5^{-x}$$

$$f_{\frac{1}{5}}(z) = \left(\frac{1}{5}\right)^{2} = \frac{1}{25} \quad f_{\frac{1}{5}}(-1) = \left(\frac{1}{5}\right)^{-1} = 5$$

- No incluime 01 < 0: par ejemple, 6: 0 = -3, entonce $\int_{-3}^{2} (\frac{1}{2}) = (-3)^{\frac{1}{2}} = \sqrt{-3}$ mo sohé de finido en los reales.
- · Recordemo algunos propriedades de las exponenciales: see a >0,

$$0 = 1, \alpha = 0$$
 $0 = 1$

$$\cdot \alpha^{-x} = \frac{1}{\alpha^{x}} = \left(\frac{1}{\alpha}\right)^{x} \cdot \alpha^{xy} = (\alpha^{x})^{y}$$

$$f_{\alpha}(-x) = f_{\alpha}(x)^{-1}$$

$$f_{\infty}(x+y) = f_{\infty}(x) f_{\infty}(y)$$

· Dishiquimo dos casos:

1- a>1: a >1, th>0

 $f_{\alpha}(x+h) = \alpha^{x+h}$ $= \alpha^{x} \alpha^{h} ; h>0$ $> \alpha^{x} = f_{\alpha}(x)$

=> fa le behichemente aeciente si a>1

En porhicular, es inyectiva.

2.- $a \in (0,1)$: $a^h < 1$, th > 0 $f_{\infty}(x+h) = a^x a^h ; h > 0$ $< a^x = f_{\infty}(x)$

=> fa es cohéchemente decreciente vi a < (0,1)

En pontionlor, es inyectiva.

$$f_{\mathbf{u}}: \mathbb{R} \longrightarrow (0,\infty) \\
 x \longmapsto \alpha^{\mathbf{x}}$$

1- a>1:

2.
$$-\alpha \in (0,1)$$
: $f_{\alpha}(x) = \alpha^{x} = \left(\frac{1}{\alpha}\right)^{-x} = f_{\frac{1}{\alpha}}(-x)$

Ej:
$$0 = 2$$

$$2^{X} = X + 1 \implies X = 0, X = 1$$

$$0 = 4$$

$$4^{X} = X + 1 \implies X = 0, X = -\frac{1}{2}$$

Por la homba, "debe" existir une buse 2 < 01 < 4 que separe las des situaciones entencies.

En sole coro, la curva de fa intersecta la techa gnis 50lo en el punho (0,1).

Esta bose se conoce como e y f_e se Comoce como exponencial natural o simplemente exponencial.

$$f_e(x) = e^x$$
 (e>1)

· Bhogremos el nobr de e:

La pendiente del trojo rado os eh-1.

Si h so muy muy pequeño, enhonce

$$\frac{e^{h}-1}{h} \simeq 1$$
 (= pendienk de y=x+1)

Probemos con dishinter boses:

$$a=2$$
, $\frac{2^{h}-1}{h} = 0.7$

•
$$\alpha = 4$$
, $\frac{4^{h}-1}{h} \approx 1.4$

$$\alpha = 3$$
, $\frac{3^{1}-1}{h} \approx 1.1$

$$0 = 2.5$$
, $\frac{(7.5)^{h}-1}{h} \approx 0.9$

$$a=2.7$$
, $\frac{(2.4)^{h}-1}{h} \approx 1$ -> $e \approx 2.7$

- · Obs: e es un número irracional
- · Recordamos que

$$f_{\alpha}: \mathbb{R} \longrightarrow (0,\infty)$$
 (0,00) (0,00,041)
 $\chi \longmapsto \alpha^{\chi}$

es biyectiva.

Pa la hondo, here une función inversa.

· DEF: See ax, a \$1.

El logentimo en bose a se define como la inverse de la exponencial en base a.

$$log_a = f_a^{-1}$$

Es decir,

$$\log_{\alpha}(y) = x \iff \alpha^{x} = y$$

$$\log_{\mathfrak{n}}: (0,\infty) \longrightarrow \mathbb{R}$$

$$y \longmapsto \log_{\mathfrak{n}}(y)$$

· = : 0=3

$$\log_3(\frac{1}{27}) = -3$$
 ye gre $3^{-3} = \frac{1}{27}$

- · Obs: loge se cono le como le granhmo hahual y se denoha lm.
- $\frac{\mathcal{D}_{bs}}{\mathcal{D}_{a}}$: $\log_{a}(\alpha^{x}) = x$, $\forall x \in \mathbb{R}$ $\alpha^{\log_{a}(y)} = y$, $\forall y \in (0, \infty)$
- · Algunos propiedado:
 - $\log_{\alpha}(xy) = \log_{\alpha}(x) + \log_{\alpha}(y)$, $\forall x,y \in (0,\infty)$
 - · log (x°) = c log (x), txelo, co)
 - . $\log_{n}\left(\frac{1}{x}\right) = -\log_{n}(x)$, $\forall x \in (0, \infty)$

· Grafia:

1 - <u>a>1</u>:

