$O(\cdot)$ ("Big-Oh") notation

CMSC 250

Logistics / Reminders

- All grades for graded assignments on ELMS.
 - Stats in yesterday night's announcement.
- HW 06 posted yesterday!
 - Quite long; please begin asap!
- Today: Big-Oh notation.
- Thursday: intro to proofs

A loop example

```
for(i = 1 to n)
  for(j=1 to i)
  print "Hello";
```

How fast will this run (as a function of n?)

Roughly n steps

Roughly n^2 steps

Roughly $n \cdot \log_2 n$ steps

Something Else

A loop example

```
for(i = 1 to n)
  for(j=1 to i)
  print "Hello";
```

How fast will this run (as a function of n?)

$$1 + 2 + \dots + n = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2} \approx n^2$$

What do we care about?

- Do we care about $\frac{n^2}{2} + \frac{n}{2}$ as opposed to "roughly" n^2 ?
 - No, (mathematical reason): because n^2 grows much faster than the other terms and thus dominates the expression.
 - No, (CompSci reason): The constant of $^{1}/_{2}$ doesn't matter because of Moore's Law: Every year and a half, computers double in speed. The formula of the partial sum S_{n} of the arithmetic progression, of course, doesn't change.

How to define "roughly" n^2 ?

- We won't care about multiplicative constants of n^2 , like $\frac{n^2}{2}$, $\frac{n^2}{3}$, $2 \cdot n^2$.
- We also don't care about "small" values of n.
- How do we pin down our apathy formally?
 - With "Big-oh" notation: O(·) (LaTeX: \mathcal{0})
- We know that 132 also covers "Big-Oh" notation.
 - We define it rigorously using quantifiers.

Formal definition of "Big-Oh"

- Let f(n), g(n) be functions of n.
- We say one of the following:
 - f(n) is O(g(n)) (common and the Epp way)
 - $f(n) = \mathcal{O}(g(n))$ (also common)
 - $f(n) \in \mathcal{O}(g(n))$ (rare)
 - $f(n) \le \mathcal{O}(g(n))$ (avoid this)

if, and only if,

$$(\exists n_0 \in \mathbb{N}, c \in \mathbb{R}^{>0})[(\forall n \ge n_0)[f(n) \le c \cdot g(n)]]$$

Formal definition of "Big-Oh"

- Let f(n), g(n) be functions of n.
- We say one of the following:

```
• f(n) is O(g(n)) (common and the Epp way)
```

```
• f(n) = \mathcal{O}(g(n)) (also common)
```

```
• f(n) \in \mathcal{O}(g(n)) (rare)
```

if, and only if,

•
$$f(n) \le \phi(g(n))$$
 (avoid this)

```
That's why we suggest that you avoid this notation: easy to confuse the inequalities.
```

$$(\exists n_0 \in \mathbb{N}, c \in \mathbb{R}^{>0})[(\forall n \ge n_0)[f(n)] \le c \cdot g(n)]]$$

Formal definition of "Big-Oh"

- Let f(n), g(n) be functions of n.
- We say one of the following:

```
• f(n) is \mathcal{O}(g(n)) (the Epp way)

• f(n) = \mathcal{O}(g(n))

• f(n) \leq \mathcal{O}(g(n)) (avoid this)

That's why we suggest that you avoid this: easy to
```

$$(\exists n_0 \in \mathbb{N}, c \in \mathbb{R}^{>0})[(\forall n \ge n_0)[f(n)] \le c \cdot g(n)]]$$

• Intuitively: Starting with a natural number n_0 , the graph of $c \cdot g(n)$ bounds the graph of f(n) from above.

Choice of n_0 , c

$$(\exists n_0 \in \mathbb{N}, c \in \mathbb{R}^{>0})[(\forall n \ge n_0)[f(n) \le c \cdot g(n)]]$$

- $n \ge n_0$ says: We won't care about small values of n (let n grow as much as we want).
- c > 0 says: The constants (like 1/3, 1/2, 5) don't matter (but it's better if they're small).

Example of finding n_0 , c

- Proof that $3n^2 4n + 100$ is $\mathcal{O}(n^2)$ (find appropriate n_0 , c)
 - For c = 3,

$$3n^{2} - 4n + 100 \le 3n^{2}$$

$$\Leftrightarrow n \ge 25$$

$$\Rightarrow n_{0} = 25$$

• We found a pair (n_0, c) so we are done

Example of finding n_0 , c

- Proof that $3n^2 4n + 100$ is $\mathcal{O}(n^2)$ (find appropriate n_0 , c)
 - For c = 3, $3n^2 4n + 100 \le 3n^2 \Leftrightarrow n \ge 25 \Rightarrow n_0 = 25$
 - We found a pair (n_0, c) so we are done
- $3n^2 4n + 1000$ is $\mathcal{O}(n^3)$

True

False

Something Else

Example of finding n_0 , c

- Proof that $3n^2 4n + 1000$ is $\mathcal{O}(n^2)$ (find appropriate n_0 , c)
 - For c = 3, $3n^2 4n + 100 \le 3n^2 \Leftrightarrow n \ge 25 \Rightarrow n_0 = 25$
 - We found a pair (n_0, c) so we are done
- $3n^2 4n + 1000$ is $O(n^3)$

For
$$c = 3$$
, $3n^2 - 4n + 100 \le 3 \cdot n^3 \Leftrightarrow 3n^3 - 3n^2 + 4n - 100 \ge 0$
Valid for $n \ge 4$

True, but stupid

- $3n^2 4n + 1000$ is $\mathcal{O}(n^3)$: Statement is true, but stupid!
 - Reason: We can easily make a stronger statement. E.g.

$$3n^2 - 4n + 1000$$
 is $O(n^2)$

Here by stronger we mean "more accurate", or "tighter"

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^4)$

True and interesting

True but Stupid

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^4)$ F

True and interesting

True but Stupid

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^4)$ F

• $6n^5 - 4n^4 - 3n^2 + 1000$ is $\mathcal{O}(n^{4.9})$

True and interesting

True but Stupid

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^4)$ F

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^{4.9})$ F

True and interesting

True but Stupid

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^4)$ F

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^{4.9})$ F

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^5)$

True and interesting

True but Stupid

- $6n^5 4n^4 3n^2 + 1000$ is $\mathcal{O}(n^4)$ F
- $6n^5 4n^4 3n^2 + 1000$ is $\mathcal{O}(n^{4.9})$ F
- $6n^5 4n^4 3n^2 + 1000$ is $\mathcal{O}(n^5)$ **TA**

True and interesting

True but Stupid

- $6n^5 4n^4 3n^2 + 1000$ is $\mathcal{O}(n^4)$ F
- $6n^5 4n^4 3n^2 + 1000$ is $\mathcal{O}(n^{4.9})$ F
- $6n^5 4n^4 3n^2 + 1000$ is $\mathcal{O}(n^5)$ TAI
- $6n^5 4n^4 3n^2 + 1000$ is $\mathcal{O}(n^{5.1})$

True and interesting

True but Stupid

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^4)$ F

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^{4.9})$ F

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^5)$ TA

•
$$6n^5 - 4n^4 - 3n^2 + 1000$$
 is $\mathcal{O}(n^{5.1})$ TBS

True and interesting

True but Stupid

Polynomial vs Exponential

• n^{10} is $O(2^n)$?

n	n^{10}	2^n
10	10,000,000,000	1,024
20	10,240,000,000,000	1,048,576
30	590,490,000,000,000	1,073,741,824
40	10,485,760,000,000,000	1,099,511,627,776
:	o o o	0 0 0

True and interesting

True but Stupid

Polynomial vs Exponential

• n^{10} is $\mathcal{O}(2^n)$

n	n^{10}	2^n
10	10,000,000,000	1,024
20	10,240,000,000,000	1,048,576
30	590,490,000,000,000	1,073,741,824
40	10,485,760,000,000,000	1,099,511,627,776
	e e	•

True and interesting

True but
Stupid

- 1. Induction (messy because of $(n + 1)^{10}$ term)
- 2. Calculus (next slide)

For c = 1,
$$n_0 \ge 59$$
, OR
For c = 10, $n_0 \ge 55$ OR....

Proof by calculus that n^{10} is $\mathcal{O}(2^n)$

- For c = 1, $n^{10} < 2^n \Leftrightarrow 10 \cdot \log_2 n < n \Leftrightarrow 10 < \frac{n}{\log_2 n}$
- By L' Hospital's Rule, $\frac{n}{\log_2 n} \mapsto +\infty$, therefore this inequality is true.
- For which choices of n and above? We don't tell you. The only thing we tell you is that $10 < \frac{n}{\log_2 n}$ at some point n_0 .
 - An example of a non-constructive proof of existence: $\exists n_0$ such that $(\forall n \geq n_0)[n^{10} < 2^n]$: we do not tell you which this n_0 is nor do we give an algorithm that constructs it!

Polynomial Summary

- Let $a, b \in \mathbb{N}^{\geq 1}$ with a < b. The following hold:
- 1. Any polynomial of degree a is $O(n^a)$ (True and Interesting)
- 2. n^a is $O(n^b)$ (True but stupid)
- 3. n^a is $\mathcal{O}(b^n)$ (for b > 1)
- Note: The above holds even if $a, b \in \mathbb{Q}^{>0}$!

Logs

• $\log^{10^3}(n)$ is $\mathcal{O}(n^{1/20})$

True and interesting

True but Stupid

Logs

- $\log^{10^3}(n)$ is $\mathcal{O}(n^{1/20})$
- Let's pick c=1 and solve through Calculus like before:

$$\log^{10^3} n \le n^{1/20} \Leftrightarrow \log(\log^{10^3} n) < \frac{\log n}{20} \Leftrightarrow$$

$$10^3 \log(\log n) < \frac{\log n}{20} \Leftrightarrow 20 * 10^3 < \frac{\log n}{\log(\log n)}$$

• $\lim_{n \to +\infty} \frac{\log n}{\log(\log n)} = +\infty$ (convince yourselves), so the above inequality holds.

True but Stupid

Log Summary

• Let $a, b \in \mathbb{N}, b > 0$. Then:

$$\log^a n$$
 is $\mathcal{O}(n^b)$

• If $a \leq b$,

$$\log^a n$$
 is $\mathcal{O}(\log^b n)$

Log Summary

• Let $a, b \in \mathbb{N}, b > 0$. Then:

$$\log^a n$$
 is $\mathcal{O}(n^b)$

Could also work for $a, b \in \mathbb{Q}^{\geq 0}$

• If $a \leq b$,

 $\log^a n$ is $\mathcal{O}(\log^b n)$

"Big-Omega" notation $(\Omega(\cdot))$

• Let $n \in \mathbb{N}$ and f(n), g(n) be functions. Then,

$$f(n) = \Omega(g(n)) \Leftrightarrow g(n) = \mathcal{O}(f(n))$$

"Big-Omega" notation $(\dot{\Omega}(\cdot))$

• Let $n \in \mathbb{N}$ and f(n), g(n) be functions. Then,

$$f(n) = \Omega(g(n)) \Leftrightarrow g(n) = \mathcal{O}(f(n))$$

Polynomial Summary (Ω)

- Let $a, b \in \mathbb{N}^{>0}$ with a < b. The following hold:
- 1. Any polynomial of degree a is $\Omega(n^a)$ (True and Interesting)
- 2. n^b is $\Omega(n^a)$ (True but stupid)
- 3. b^n is $\Omega(n^a)$ (for b > 1)

Log Summary (Ω)

• Let $a, b \in \mathbb{N}, b > 0$. Then:

$$n^b$$
 is $\Omega(\log^a n)$

• If $a \leq b$,

 $\log^b n$ is $\Omega(\log^a n)$

"Big Theta" notation $(\Theta(\cdot))$

• Let $n \in \mathbb{N}$ and f(n), g(n) be functions. Then,

$$f(n) = \Theta(g(n)) \Leftrightarrow \left[\left(f(n) = \mathcal{O}(g(n)) \right) \wedge \left(f(n) = \Omega(g(n)) \right) \right]$$

"Big Theta" notation
$$(\Theta(\cdot))$$
 LaTeX: \mathcal{\Theta}

• Let $n \in \mathbb{N}$ and f(n), g(n) be functions. Then,

$$f(n) = \Theta(g(n)) \Leftrightarrow \left[\left(f(n) = \mathcal{O}(g(n)) \right) \wedge \left(f(n) = \Omega(g(n)) \right) \right]$$

Polynomial Summary (9)

- Let $a, b \in \mathbb{N}^{>0}$ with a < b. The following hold:
- 1. Any polynomial of degree a is $\Theta(n^a)$ (True and Interesting)
- 2. n^b is **not** $\Theta(n^a)$ (Since it's not $O(n^a)$)
- 3. b^n is **not** $\Theta(n^a)$ for b > 1, since it is **not** $O(n^a)$
- 4. If f(n) and g(n) are polynomials of the same degree, then $f(n) = \Theta(g(n))$

Log Summary (9)

• Let $a, b \in \mathbb{N}, b > 0$. Then:

 n^b is **not** $\Theta(\log^a n)$ (since it's not $\Theta(\log^a n)$)

Applications

- Used to analyze program runtime.
- Algorithm design:
 - 1. Get the order term (\mathcal{O}) as low as possible.
 - 2. Wittle down the constants as low as possible.
- Example: median finding
 - $\mathcal{O}(n \cdot \log n)$: 1950s
 - $\mathcal{O}(n \cdot \log(\log n))$: 1970
 - O(n) where the constant c is pretty bad: 1973
 - 3*n*: 1976

Applications

- Used to analyze program runtime.
- Algorithm design:
 - 1. Get the order term (\mathcal{O}) as low as possible.
 - 2. Wittle down the constants as low as possible.
- Example: median finding
 - $\mathcal{O}(n \cdot \log n)$: 1950s
 - $\mathcal{O}(n \cdot \log(\log n))$: 1970
 - O(n) where the constant c is pretty bad: 1973
 - 3*n*: 1976

We will do this right now!

Algorithms for coins

- We want to write a computer program that takes as input:
 - 1. An amount of money equal to n cents.
 - 2. Two (2) coins with denominations x and y cents.

and answers "Can I pay n cents using only coins of denomination x and y?

Algorithms for coins

- We want to write a computer program that takes as input:
 - 1. An amount of money equal to n cents.
 - 2. Two (2) coins with denominations x and y cents. and answers "Can I pay n cents using only coins of denomination x and y?
- Mathematically, given $n, x, y \in \mathbb{N}$, x, y co-prime,

$$(\exists ? a, b \in \mathbb{N})[n = ax + by]$$

First algorithm

Assume x < y for simplicity

```
boolean\ function\ f_1(x,y,n)\{ d_{\max} = \lfloor {}^n/y \rfloor \ // \ \text{The whole \#times y = max(x,y) "fits" into n}  for(d=0:d_{\max})\{ if((n-d*y)\equiv 0\ (mod\ x))\{\ // \ \text{Assume unit cost}  return\ \textbf{true}; \} \} return\ \textbf{false}; \}
```

First algorithm

Assume x < y for simplicity

```
boolean function f_1(x, y, n){
     d_{\text{max}} = \lfloor n/y \rfloor // The whole #times y =max(x, y) "fits" into n
      for(d = 0: d_{max}){
            if((n-d*y) \equiv 0 \pmod{x}) \{ // \text{ Assume unit cost } \}
                       return true;
     return false;
                                                 f_1 is:
                                                                             \mathcal{O}(n)
                                                                                                         \mathcal{O}(n^2)
                                                                           \mathcal{O}(\log n)
                                                                                                    Something Else
```

First algorithm

Assume x < y for simplicity

```
boolean function f_1(x,y,n){
     d_{\text{max}} = \lfloor n/y \rfloor // The whole #times y =max(x, y) "fits" into n
     for(d = 0: d_{max})\{
           if((n-d*y) \equiv 0 \pmod{x}){// Assume unit cost
                                                                   The loop will run at most
                    return true;
                                                                   d_{\text{max}} = \lfloor n/y \rfloor times!
     return false;
                                          f_1 is:
                                                                   \mathcal{O}(n)
                                                                                            \mathcal{O}(n^2)
                                                                 \mathcal{O}(\log n)
                                                                                       Something Else
```

(Ungraded) homework for you!

- Modify the previous program such that it outputs (returns, prints, whatever) all the different possibilities for $a, b \in \mathbb{N}$ such that n = ax + by
- Does anything change in terms of $\mathcal{O}(\cdot)$?
 - Can we make any statements about $\Omega(\cdot)$ or $\Theta(\cdot)$?

Generalization

- Can we build a program that does a similar thing for 3 coins?
- Given $n, x, y, z \in \mathbb{N}$, x, y, z co-prime, the program should answer

$$(\exists ? a, b, c \in \mathbb{N})[n = ax + by + cz]$$

• We are also interested in the **efficiency** of this program $(\mathcal{O}(\cdot))!$

• Given *n*, *x*,

We are als

ns?

nswer

 $(\cdot))!$

Second algorithm

```
• Assume x < y < z for simplicity
boolean function f_2(x,y,z,n){
   e_{\text{max}} = |n/z| // The whole #times z = \max(x, y, z) "fits" into n
    for(e = 0: e_{max}){
        d_{max} = |n^{-e}/y| // The whole # times y = \max(x, y) "fits" into n - e
        for(d=0:d_{max})
                if((n-ez-dy) \equiv 0 \pmod{x}) { // Assume unit cost
                       return true;
    return false;
```

• Assume x < y < z for simplicity

```
boolean function f_2(x,y,z,n)
    e_{\text{max}} = |n/z| // The whole #times z = \max(x, y, z) "fits" into n
    for(e = 0: e_{max}){
         d_{max} = |n^{-e}/y| // The whole # times y = \max(x, y) "fits" into n - e
         for(d=0:d_{max})
                   if((n-ez-dy) \equiv 0 \pmod{x}) \{ // \text{ Assume unit cost } \}
                           return true;
                                       f_2 is:
                                                             \mathcal{O}(n)
                                                                                   \mathcal{O}(n^2)
    return false;
                                                           \mathcal{O}(\log n)
                                                                               Something Else
```

• Assume x < y < z for simplicity

Both loops will run at most n^2/zy times!

```
boolean function f_2(x,y,z,n)
    e_{\text{max}} = \lfloor n/z \rfloor // The whole #times z = \max(x, y, z) "fits" into n
     for(e = 0; e_{max})
         d_{max} = \lfloor n-e/y \rfloor // The whole # times y = \max(x, y) "fits" into n - e
         for(d=0:d_{max}){
                    if((n-ez-dy) \equiv 0 \pmod{x}) \{ // Assume unit cost \}
                             return true;
                                        f_2 is:
                                                               \mathcal{O}(n)
                                                                                       \mathcal{O}(n^2)
    return false;
                                                              \mathcal{O}(\log n)
                                                                                  Something Else
```

(Ungraded) homework for you

- 1. Modify algorithm to produce the NUMBER of ways n can be written as a sum of x's and y's.
- 2. Modify to produce HOW n can be written as x's and y's.

- f_2 is $\mathcal{O}(n^2)$
 - constant = $\frac{1}{zy}$
 - Good if z, y large
 - Intuition: for large $z,y,\ e_{max}=\lfloor n/z\rfloor$ and $d_{max}=\lfloor (n-e)/y\rfloor$ are small, so the loops don't run for many steps!
 - Bad if z, y small \otimes

- f_2 is $\mathcal{O}(n^2)$
 - constant = $\frac{1}{zy}$
 - Good if z, y large
 - Intuition: for large $z,y,\ e_{max}=\lfloor n/z\rfloor$ and $d_{max}=\lfloor (n-e)/y\rfloor$ are small, so the loops don't run for many steps!
 - Bad if z, y small \otimes

CAN WE DO BETTER?

- f_2 is $\mathcal{O}(n^2)$
 - constant = $\frac{1}{zy}$
 - Good if z, y large
 - Intuition: for large $z,y,\ e_{max}=\lfloor n/z\rfloor$ and $d_{max}=\lfloor (n-e)/y\rfloor$ are small, so the loops don't run for many steps!
 - Bad if z, y small \otimes

CAN WE DO BETTER?

Third algorithm

- We will present another algorithm for the three coin problem, which runs in $\mathcal{O}(n)$
- It uses memoization/dynamic programming.
- Interesting point: In CS, often easier to solve a harder problem that the problem at hand.
 - In this case, we can **efficiently** find <u>all</u> i between 0 and n such that i can be written as $a_i x + b_i y + c_i z$ for $a_i, b_i, c_i \in \mathbb{N}$!

• Assume x < y < z for simplicity

```
A[0] = true
for (i = 1 to n) \{
if A[i - x] = true \text{ or } A[i - y] = true \text{ or } A[i - z] = true
A[i] = true
else
A[i] = false
}
```

• Assume x < y < z for simplicity

```
A[0] = true
for (i = 1 to n) \{
if A[i - x] = true \text{ or } A[i - y] = true \text{ or } A[i - z] = true
A[i] = true
else
A[i] = false
}
```

- This is susceptible to out of bounds errors immediately...
 - So we need to improve it.

- If i x < 0 or i y < 0 or i z < 0, we should have A[i x] = false or A[i y] = false or A[i z] = false
- Since we assume that x < y < z, we have that the smallest possible value we can reach for any i is i z.

```
for (i = -z to - 1){
      A[i] = false
A[0] = true
for (i = 1 to n){
     If A[i-x] = true \text{ or } A[i-y] = true \text{ or } A[i-z] = true
             A[i] = true
       else
             A[i] = false
```

```
for (i = -z to - 1){
A[i] = false
Unfortunately, we cannot really index into negative positions of an array.... \otimes
A[0] = true
for (i = 1 to n){
       If A[i-x] = true \text{ or } A[i-y] = true \text{ or } A[i-z] = true
                  A[i] = true
         else
                  A[i] = false
```

```
for (i = 0 \ to \ z - 1){
But we can always shift everything
      A[i] = false \qquad \qquad by z! ©
A[z] = true
for (i = z + 1 \text{ to } n + z){
     If A[i-x] = true \text{ or } A[i-y] = true \text{ or } A[i-z] = true
              A[i] = true
       else
              A[i] = false
```

```
for (i = 0 \text{ to } z - 1)
                                  But we can always shift everything by z! \odot
       A[i] = false
                                  This makes our array from size n to size n + z.
                                  Since n \gg z, space is still O(n)!
A[z] = true
for (i = z + 1 \text{ to } n + z){
      If A[i-x] = true \text{ or } A[i-y] = true \text{ or } A[i-z] = true
               A[i] = true
       else
               A[i] = false
```

```
for (i = 0 \text{ to } z - 1)
                                 But we can always shift everything by z! \odot
       A[i] = false
                                 This makes our array from size n to size n + z.
                                 Since n \gg z, space is still O(n)!
                                 n \gg z also explains why this loop is correct
A[z] = true
for (i = z + 1 \text{ to } n + z){
      If A[i-x] = true \text{ or } A[i-y] = true \text{ or } A[i-z] = true
               A[i] = true
       else
               A[i] = false
```

```
for (i = 0 \text{ to } z - 1){
But we can always shift everything
      A[i] = false \qquad \qquad by z! \odot
A[z] = true
for (i = z + 1 \text{ to } n + z){
     If A[i-x] = true \text{ or } A[i-y] = true \text{ or } A[i-z] = true
              A[i] = true
       else
              A[i] = false
                                       1 ... z-1 z z+1 ... n+z
```

```
for (i = 0 \text{ to } z - 1){
                                                                  \mathcal{O}(n)
                                                                                     \mathcal{O}(\log n)
        A[i] = false
                                   Runtime =...?
                                                                \mathcal{O}(n \cdot \log n)
                                                                                  Something Else
A[z] = true
for (i = z + 1 to n + z){
      If A[i-x] = true \text{ or } A[i-y] = true \text{ or } A[i-z] = true
                 A[i] = true
         else
                 A[i] = false
```

```
for (i = 0 \text{ to } z - 1){
                                                                  \mathcal{O}(n)
                                                                                    \mathcal{O}(\log n)
        A[i] = false
                          z + 1 + n = \mathcal{O}(n)
                               assignments (since
                                                               O(n \cdot \log n)
                                                                                 Something Else
A[z] = true
                               n\gg z)!
for (i = z + 1 \text{ to } z + n){
      If A[i-x] = true \text{ or } A[i-y] = true \text{ or } A[i-z] = true
                 A[i] = true
        else
                 A[i] = false
```