Question number	Scheme	Marks
8 (a)	$\log_a n = \log_a 3(2n-1)$	M1
	n=3(2n-1)	M1
	$n=\frac{3}{5}$	A1
(1.)(')	3	(3)
(b)(i)	$x = p^3$	B1 (1)
(b)(ii)	$\log_p y - \log_p 2^3 = 4 \Rightarrow \log_p \left(\frac{y}{2^3}\right) = 4 \text{ or } \log_p \left(\frac{y}{8}\right) = 4$	M1
	$\frac{y}{2^3} = p^4 \Longrightarrow \left(y = 2^3 p^4 \text{ or } 8p^4 \right)$	M1
	$xy = 8p^7$	M1A1 (4)
	ALT (b)(ii) $\log_p x + \log_p y - 3\log_p 2 = 4 + 3 \Rightarrow \log_p \left(\frac{xy}{2^3}\right) = 7$	{M1}
	$\frac{xy}{2^3} = p^7$	{M1}
	$xy = 8p^7$	{M1A1}
	,	(4)
Total 8 marks		

Part	Mark	Notes	
(a)		Uses the addition law of logs correctly	
	M1	$\log_a n = \log_a 3 + \log_a (2n - 1) \Longrightarrow \log_a n = \log_a 3(2n - 1)$	
		Accept also $\log_a n = \log_a 3 + \log_a (2n-1) \Rightarrow 0 = \log_a \left(\frac{n}{3(2n-1)}\right) = (\log_a 1)$	
	For obtaining a linear equation from their log equation and attempting to value for n . $n = 3(2n-1) \text{ leading to a numerical value for } n$		
	A1	For $n = \frac{3}{5}$ For $x = p^3$	
(b)(i)	B 1	For $x = p^3$	
(b)(ii)		For stating that $3\log_p 2 = \log_p 8$ or $\log_p 2^3$ and for using the addition law	
	3.7.1	correctly to combine the LHS:	
	M1	$\log_p y - \log_p 2^3 = 4 \Rightarrow \log_p \left(\frac{y}{2^3}\right) = 4 \text{ or } \log_p \left(\frac{y}{8}\right) = 4$	
	M1	Correctly removes logs on both sides to obtain:	
		$\frac{y}{2^3} = p^4 \Longrightarrow \left(y = 2^3 p^4 \text{ or } 8p^4 \right)$	
	M1	For correctly finding the product of their x and their y: $xy = p^3 \times p^4$	
	A1	For the correct answer of $xy = 8p^7$	
	ALT		
	M1	For stating that $3\log_p 2 = \log_p 8$ or $\log_p 2^3$ and states	
		$\log_p x + \log_p y - 3\log_p 2 = 3 + 4$	
		Uses the addition law correctly to combine the LHS	
		$\log_p x + \log_p y - 3\log_p 2 = 4 + 3 \Rightarrow \log_p \left(\frac{xy}{2^3}\right) = 7$	
	M1	Correctly remove logs on both sides to obtain: $\frac{xy}{2^3} = p^7$	
	M1	Correctly rearrange their expression to make xy the subject	
	A1	For the correct answer of $xy = 8p^7$	