

Έλεγχος Υποθέσεων

Κωνσταντίνος Μπουγιούκας, MSc, PhD mpougioukas@auth.gr

2024-2025

Στόχοι του σημερινού μαθήματος

Βήματα του ελέγχου υποθέσεων

Τύποι σφάλματος στον έλεγχο υποθέσεων (σφάλμα τύπου Ι και ΙΙ)

Κατανόηση ελέγχου υποθέσεων μέσω παραδείγματος

- Μια στατιστική υπόθεση (statistical hypothesis) είναι ένα ερευνητικό ερώτημα διατυπωμένο με στατιστικούς όρους.
 - Παράδειγμα: το φάρμακο X έχει **επίδραση στην μείωση** της συστολικής αρτηριακής πίεσης.

 Μια στατιστική δοκιμασία ή έλεγχος (statistical test) είναι μια συνάρτηση η οποία μας βοηθάει να αποφασίσουμε εάν απορρίψουμε ή όχι την στατιστική μας υπόθεσή, βασιζόμενοι στο δείγμα.

Έλεγχος υποθέσεων-Βήματα

- 1. Καθορίζεται η μηδενική υπόθεση Η0 (=) και εναλλακτική υπόθεση Η1 (≠).
- 2. Ορίζεται το επίπεδο σημαντικότητας α (συνήθως α=0.05).
- 3. Επιλέγεται μια κατάλληλη **στατιστική δοκιμασία** και υπολογίζεται η τιμή του στατιστικού με βάση τα δεδομένα του δείγματος.
- 4. Σύγκριση της **πιθανότητας p** να έχουμε την συγκεκριμένη τιμή του στατιστικού (ή κάτι πιο ακραίο) θεωρώντας ότι ισχύει η Ho, με το **επίπεδο σημαντικότητας α** (0.05). Στατιστικά σημαντικό αποτέλεσμα (p <0.05).
- 5. Ερμηνεία αποτελεσμάτων.

Έλεγχος υποθέσεων: 1° Βήμα

1. Καθορισμός της μηδενικής και της εναλλακτικής υπόθεσης

Η μηδενική υπόθεση (null hypothesis) (H0) δείχνει ότι δεν υπάρχει επίδραση, διαφορά, ή συσχέτιση, ενώ η εναλλακτική υπόθεση (alternate hypothesis) (H1) ότι υπάρχει.

• Παράδειγμα

H0: το φάρμακο Χ **δεν** έχει επίδραση στην μείωση της συστολικής αρτηριακής πίεσης.

Η1: το φάρμακο Χ έχει επίδραση στην μείωση της συστολικής αρτηριακής πίεσης.

Έλεγχος υποθέσεων: 2° Βήμα

2. Επιλογή επίπεδου σημαντικότητας (significance level) α

Συνήθως: α =0.05 (άλλες συχνές τιμές α=0.1 ή α=0.01 ανάλογα το ερευνητικό ερώτημα)

- Αποτελεί την μέγιστη αποδεκτή πιθανότητα εσφαλμένης απόρριψης της μηδενικής υπόθεσης Ηο.
- Σφάλμα τύπου I (Type I error)

Έλεγχος υποθέσεων: 3° Βήμα

3. Ανάλυση δεδομένων με την επιλογή της κατάλληλης στατιστικής δοκιμασίας (υπολογισμός της στατιστικής τιμής από το δείγμα)

Λαμβάνουμε υπόψη:

- Εάν τα δείγματα είναι ανεξάρτητα ή εξαρτημένα.
- Εάν η κατανομή των δεδομένων στα δείγματα είναι κανονική (normal distribution).

Επιλέγουμε παραμετρικές ή μη-παραμετρικές στατιστικές δοκιμασίες.

Έλεγχος υποθέσεων: 4° Βήμα

4. Σύγκριση της πιθανότητας να έχουμε την συγκεκριμένη τιμή του στατιστικού (ή κάτι πιο ακραίο) με το επίπεδο σημαντικότητας α.

Η p-τιμή (p-value) είναι η πιθανότητα να έχουμε το παρατηρούμενο αποτέλεσμα (ή κάτι πιο ακραίο), εάν η μηδενική υπόθεση Η0 είναι αληθής.

- Εάν **p-τιμή < α**, το αποτέλεσμα είναι στατιστικά σημαντικό. **Απόρριψη** H0.
- Εάν p-value ≥ α, το αποτέλεσμα είναι MH στατιστικά σημαντικό. Δεν μπορούμε να απορρίψουμε την H0.

Όσο μικρότερη είναι η p-τιμή, τόσο μεγαλύτερη είναι η ένδειξη ενάντια της μηδενικής υπόθεσης H0.

Έλεγχος υποθέσεων: 5° Βήμα

5. Ερμηνεία των αποτελεσμάτων

Επικοινωνία των αποτελεσμάτων με ουσιαστικό και κατανοητό τρόπο καθιστά την έρευνα χρήσιμη για άλλους.

Στατιστική σημαντικότητα **Vs** πρακτική (ή κλινική) σημαντικότητα.

Σφάλμα τύπου Ι και ΙΙ

		Στον πληθυσμό από όπου το δείγμα	
		εξάγεται, η μηδενική υπόθεση είναι	
		Αληθής	Ψευδής
		(Δεν υπάρχει διαφορά)	(Υπάρχει διαφορά)
Βασισμένη στο δείγμα η απόφαση είναι	Αποδοχή μηδενικής υπόθεσης	Σωστή απόφαση: 1-α	Σφάλμα τύπου II: β
	Απόρριψη μηδενικής υπόθεσης	Σφάλμα τύπου Ι: α	Σωστή απόφαση: 1-β (ισχύς μελέτης)

Ρίψη κέρματος:

- Ho: Δίκαιο κέρμα, pκ=pr
- Η1: ρκ>ρΓ (μονόπλευρος έλεγχος)

$$\alpha = 0.05$$

N =100 60 φορές κεφαλή

p-τιμή = 0.028

р-тіμή < 0.05. Απόρριψη Но.

