DTFT

Defining
$$\omega = \Omega T$$
 $X(j\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$

Inverse DTFT

$$x[n] = rac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})^{j\omega n} \, dw$$

Magnitude and Phase

$$ig|X(e^{j\omega})ig| = \sqrt{[ext{Im}(X(e^{j\omega}))]^2 + [ext{Re}(X(e^{j\omega})]^2} \ phase X(e^{jw}) = an^{-1}\left(rac{[ext{Im}(X(e^{j\omega}))]}{[ext{Re}(X(e^{j\omega})]}
ight)$$

Frequency Response

$$H(e^{j\omega})=rac{Y(e^{j\omega})}{X(e^{j\omega})}$$

CT → DT

$$x[n] = x(t) \Big|_{t=nT} = x(nT)$$

■ Partial fractions.

f(x)	A B
f(x-a)(x-b)	$\overline{x-a} \stackrel{T}{=} \overline{x-b}$
f(x)	A B
$\overline{(x-a)^2}$	${x-a} + {(x-a)^2}$
f(x)	$A \perp Bx+C$
$(x-a)(x^2+bx+c)$	$\overline{x-a} \stackrel{\top}{=} \overline{x^2+bx+c}$
f(x)	A + B + C
$\frac{(x-a)(x+d)^2}{f(x)}$	$\frac{1}{x-a} + \frac{1}{x+d} + \frac{1}{(x+d)^2}$
f(x)	$A \rightarrow B$
$(x+d)^2$	$\frac{1}{x+d} = \frac{1}{(x+d)^2}$
f(x)	A Bx+C
$\overline{(x-a)(x^2-b^2)}$	$\overline{x+d} \stackrel{\top}{=} \overline{x^2-b^2}$
f(x)	Ax+B $Cx+D$
$(x^2-a)(x^2-b)$	${x^2-a}$ + ${x^2-b}$
f(x)	Ax+B $Cx+D$
$(x^2-a)^2$	$\frac{1}{x^2-a} + \frac{1}{(x^2-a)^2}$

Geometric Series formulas							
Interval	Sum	Condition	Interval	Sum	Condition		
Infinite	$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$	a <1	Finite on [1,N]	$\sum_{k=1}^{N} a^k = \frac{a(1 - a^{N+1})}{1 - a}$	None		
Finite on [0,N]	$\sum_{k=0}^{N} a^k = \frac{1 - a^{N+1}}{1 - a}$	None	Finite on [N ₁ ,N ₂]	$\sum_{k=N_1}^{N_2} a^k = \frac{a^{N_1} - a^{N_2 + 1}}{1 - a}$	None		
Infinite	$\sum_{k=1}^{\infty} a^k = \frac{a}{1-a}$	a <1	Finite on [1,N]	$\sum_{k=1}^{N} k = \frac{N(N+1)}{2}$	None		

Sequence	Transform	ROC
$\delta[n]$	1	All z
$\delta[n-m]$	z^{-m}	$ z > 0$, $m > 0$; $ z < \infty$, $m < 0$
	1	z > a
$a^n u[n]$	$\frac{1 - az^{-1}}{1}$	
	_	
$-a^n u[-n-1]$	$1 - az^{-1}$	z < a
	az^{-1}	
$na^nu[n]$	$\frac{\overline{(1-az^{-1})^2}}{az^{-1}}$	z > a
$-na^nu[-n-1]$	$(1 - az^{-1})^2$	z < a
	$1 - a\cos(b)z^{-1}$	
$a^n \cos(bn)u[n]$	$1 - 2a\cos(b)z^{-1} + a^2z^{-1}$	$\overline{z^{-2}}$ $ z > a $
	$a\sin(b)z^{-1}$	
$a^n \sin(bn)u[n]$	$1 - 2a\cos(b)z^{-1} + a^2z^{-1}$	z > a
Signal	Transform	ROC
$\delta(t)$	1	All s
$\delta(t-T)$	e^{-sT}	All s
$e^{-at}u(t)$	s+a	$\Re\{s\} > -a$
	1	
$\frac{-e^{-at}u(-t)}{t^{n-1}}$	s+a	$\Re\{s\} < -a$
$\frac{t^{n-1}}{e^{-at}u(t)}$	$\frac{1}{(1-1)^n}$	20.5
(n-1)!	$\frac{(s+a)^n}{1}$	$\Re\{s\} > -a$
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$ $-\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$(-t)\bigg rac{1}{(s+a)^n}$	$\Re\{s\} < -a$
(10 1):		$\Re\{s\} < -a$
$e^{-at}\cos(bt)u(t)$	$\overline{(s+a)^2+b^2}$	$\Re\{s\} > -a$

 $\frac{\ln(bt)u(t)}{\ln(s+a)^2+b^2}$ $\Re\{s\}>-a$ Table 9.1: Laplace transforms for common signals $e^{-at}\sin(bt)u(t)$

 $\overline{(s+a)^2+b^2}$