LECTURE 3: Optimization in Higher Dimensions

- Optimization (maximization/minimization) is of huge importance in data analysis and is the basis for recent breakthroughs in machine learning and big data
- A lot of it is application dependent and there is a vast number of methods developed: we cannot cover them all in this lecture

LECTURE 3: Optimization in Higher Dimensions

- Broadly can be divided into 1st order (derivatives are available, but not Hessian) and 2nd order (approximate Hessian or full Hessian evaluation)
- 0th order: no gradients available: use finite difference to get the gradient or use downhill simplex (Nelder & Mead method). Very slow and we will not discuss them here.

Preparation of Parameters

- Often the parameters are not unconstrained: they may be positive (or negative), or bounded to an interval
- First step is to make optimization unconstrained: map the parameter to a new parameter that is unbounded. For example, if a variable is positive, x > 0, use z = log(x) instead of x.
- One can also change the prior so that it reflects the original prior: $p_{pr}(z)dz = p_{pr}(x)dx$
- If x > 0 has uniform prior in x then $p_{pr}(z) = dx/dz = x = e^z$

General Strategy

- We want to descend down a function J(a) (if minimizing) using iterative sequence of steps at a_t . For this we need to choose a direction p_t and move in that direction: $J(a_t + \eta p_t)$
- A few options: fix η
- line search: vary η until $J(a_t + \eta p_t)$ is minimized
- Trust region: construct an approximate quadratic model for *J* and minimize it but only within trust region where quadratic model is approximately valid

Line Search Directions and Backtracking

- Gradient descent: Gradient $\nabla_a J(a, x_t)$
- Newton: Inverse Hessian H^{-1} times gradient $-H^{-1}$ $\nabla_a J(a)$
- Quasi-Newton: approximate H^{-1} with B^{-1} (SR1 and BFGS)
- Nonlinear conjugate gradient: $p_t = -\nabla_a J(a, x_t) + \beta_t p_{t-1}$, where p_{t-1} and p_t are conjugate
- Step length with backtracking: choose first proposed length
- If it does not reduce the function value reduce it by some factor, check again
- Repeat until step length is ε, at that point switch to gradient descent

Trust Region Method

 Multi-dim parabola method: define approximate quadratic function, but limit the step

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p \qquad \text{s.t. } ||p|| \le \Delta_k$$

- Here Δ_k is trust region radius
- Evaluate at previous iteration and compare the actual reduction to predicted reduction

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

- If ρ_k around 1 we can increase Δ_k
- If close to 0 or negative we shrink Δ_k

- If trust region covers *m* center step there
- Otherwise direction of step changes

Constrained Optimization: Lagrange Multiplier Method

- If the center of m is inside trust region step there
- Otherwise we must solve constrained optimization
- We solve this optimization with Lagrange multiplier method: minimize $f + g^T p + p^T B p + \lambda (p^2 \Delta^2)$ with respect to p and λ . Gradient w.r.t. λ gives the constraint $p^2 = \Delta^2$, thus the constraint is automatically satisfied. This determines the value of λ .
- Minimization with respect to p now includes λp^2
- As a result the step direction is not towards center of *m* when trust region does not cover it: see picture on next slide

Line Search vs. Trust Region

1st Order: Gradient Descent

• We have a vector of parameters a and a scalar loss (cost) function J(a,x,y) which is a function of a data vector (x,y) we want to optimize (say minimize). This could be a nonlinear least square loss function: $J = \chi^2$

$$\chi^{2}(\mathbf{a}) = \sum_{i=0}^{N-1} \left[\frac{y_{i} - y(x_{i}|\mathbf{a})}{\sigma_{i}} \right]^{2}$$

- (Batch) gradient descent updates all the variables at once: $\delta a = -\eta \nabla_a J(a)$: in ML. η is called learning rate
- It gets stuck on saddle points, where gradient is 0 everywhere (see animation later)

Scaling

- Change variables to make surface more circular
- Example: change of dimensions

Stochastic Gradient Descent

- Stochastic gradient descent: do this just for one data pair x_i , y_i : $\delta a = -\eta \nabla_a J(a, x_i, y_i)$
- This saves on computational cost, but is noisy, so one repeats it by randomly choosing data *i*
- Has large fluctuations in the cost function

- This is potentially a good thing: it may avoid getting stuck in the local minima (or saddle points)
- Learning rate is slowly reduced
- Has revolutionized machine learning

Mini-batch Stochastic Gradient

- Mini-batch takes advantage of hardware and software implementations where a gradient w.r.t. to a number of data points can be evaluated as fast as a single data (e.g. mini-batch of N = 256)
- Challenges of (stochastic) gradient descent: how to choose learning rate (in 2nd order methods this is given by Hessian)
- Ravines:

Ravines

Adding Momentum: Rolling down the hill

- We can add momentum and mimic a ball rolling down the hill
- Use previous update as the direction
- $v_t = \gamma v_{t-1} + \eta \nabla_a J(a)$, $da = -v_t$ with γ of order 1 (e.g. 0.9)
- Momentum increases for directions where gradient does not change

Nesterov Accelerated Gradient

• We can predict where to evaluate next gradient using previous velocity update

•
$$v_t = \gamma v_{t-1} + \eta \nabla_a J(a - \gamma v_{t-1}), \delta a = -v_t$$

• Momentum (blue) vs NAG (brown+red=green)

• See https://arxiv.org/abs/1603.04245 for theoretical justification of NAG based on a Bregman divergence Lagrangian

Adagrad, Adadelta, Rmsprop, ADAM, ...

- Make the learning rate h dependent on a_i
- Use past gradient information to update h
- Example ADAM: ADAptive Momentum estimation

•
$$m_t = \beta_l m_{t-1} + (1 - \beta_l) g_t$$
 $g_t = \nabla_a J(a)$

- $v_t = \beta_2 v_{t-1} + (1 \beta_2) g_t^2$
- bias correction: $m_t' = m_t/(1-\beta_1)$, $v_t' = v_t/(1-\beta_2)$
- Update rule: $\delta a = -\eta/(v_t^{1/2} + \varepsilon)$
- Recommended values $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\varepsilon = 10^{-8}$
- The methods are empirical (show animation)

2nd Order Method: Newton

- We have seen that there is no natural way to choose learning rate in 1st order methods
- But Newton's method provides a clear answer what the learning rate should be:
- $J(a+\delta a) = J(a) + \delta a \nabla_a J(a) + \delta a \delta a' \nabla_a \nabla_{a'} J(a)/2 \dots$
- Hessian $H_{ij} = \nabla_{a i} \nabla_{a j} J(a)$
- At the extremum we we want $\nabla_a J(a) = 0$ so a Newton update step is $\delta a = -H^{-1} \nabla_a J(a)$
- We do not need to guess the learning rate
- We do need to evaluate Hessian and invert it (or use LU): expensive in many dimensions!
- In many dimensions we use iterative schemes to solve this problem

Quasi-Newton

- Computing Hessian and inverting it is expensive, but one can approximate it with a low rank tensor
- Symmetric rank 1 (SR1) $s_k = x_{k+1} x_k$, $y_k = \nabla f_{k+1} \nabla f_k$

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$
 $B_{k+1} s_k = y_k$

• BFGS (rank 2 update, positive definite)

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

• Inverse (Woodburry formula)

$$B_{k+1}^{-1} = (I - \rho_k s_k y_k^T) B_k^{-1} (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T, \qquad \rho_k = \frac{1}{y_k^T s_k}$$

L-BFGS

- For large problems this gets too expensive. Limited memory BFGS updates only based on last *N* iterations (*N* of order 10-100)
- In practice increasing N often does not improve the results
- Historical note: quasi-Newton methods originate from W.C. Davidon's work in 1950s, a physicist at Argonne national lab.

Linear Conjugate Direction

- Is an iterative method to solve Ax = b (so belongs to linear algebra)
- Can be used for optimization: min $\mathbf{J} = \mathbf{x}^{T} \mathbf{A} \mathbf{x} \mathbf{b}^{T} \mathbf{x}$
- Conjugate vectors: $\mathbf{p_i} \mathbf{A} \mathbf{p_i} = \mathbf{0}$ for all *i*, *j* not equal *i*
- Construction similar to Gram-Schmidt (QR), where A plays the role of scalar product norm: $\mathbf{x_{k+1}} = \mathbf{x_k} + \alpha_k \mathbf{p_k}$ where $\alpha_k = -r_k^T \mathbf{p_k} / (\mathbf{p_k}^T A \mathbf{p_k})$ and $r_k = A \mathbf{x_k} b$
- Essentially we are taking a dot product (with **A** norm) of the vector with previous vectors to project it perpendicular to previous vectors
- Since the space is N-dim after N steps we have spanned the full space and converged to true solution, $r_N=0$.

Conjugate Direction

• If we have the matrix **A** in diagonal form so that basis vectors are orthogonal we can find the minimum trivially along the axes, otherwise not

Linear Conjugate Gradient

- Computes $\mathbf{p_k}$ from $\mathbf{p_{k-1}}$
- We want the step to be linear combination of residual $-\mathbf{r}_k$ and previous direction \mathbf{p}_{k-1}
- $\mathbf{p_k} = -\mathbf{r_k} + \beta_k \mathbf{p_{k-1}}$ premultiply by $\mathbf{p_{k-1}^T} \mathbf{A}$
- $\beta_k = (\mathbf{r_k} \mathbf{A} \mathbf{p_{k-1}})/(\mathbf{p_{k-1}} \mathbf{A} \mathbf{p_{k-1}})$ imposing $\mathbf{p_{k-1}}^T \mathbf{A} \mathbf{p_k} = 0$
- Converges rapidly for similar eigenvalues, not so much if condition number is high

Preconditioning

• Tries to improve condition number of **A** by multiplying by another matrix **C** that is simple

$$\hat{x} = Cx$$
.
 $\hat{\phi}(\hat{x}) = \frac{1}{2}\hat{x}^T(C^{-T}AC^{-1})\hat{x} - (C^{-T}b)^T\hat{x}$.
 $(C^{-T}AC^{-1})\hat{x} = C^{-T}b$

- We wish to reduce condition number of $C^{-T}AC^{-1}$
- Example: incomplete Cholesky $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ by computing only a sparse \mathbf{L}
- Preconditioners are very problem specific

Nonlinear Conjugate Gradient

- Replace \mathbf{a}_k with line search that minimizes \mathbf{J} , and use $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{a}_k \mathbf{p}_k$
- Replace $\mathbf{r_k} = \mathbf{A}\mathbf{x_k} \mathbf{b}$ with gradient of \mathbf{J} : $\nabla_{\mathbf{a}} \mathbf{J}$
- This is Fletcher-Reeves version, Polak-Ribiere modifies β
- CG is one of the most competitive methods, but requires the Hessian to have low condition number
- Typically we do a few CG steps at each *k*, then move on to a new gradient evaluation

CG vs. Gradient Descent

• In 2-d CG has to converge in 2 steps

Gauss-Newton for Nonlinear Least Squares

$$\chi^{2}(\mathbf{a}) = \sum_{i=0}^{N-1} \left[\frac{y_{i} - y(x_{i}|\mathbf{a})}{\sigma_{i}} \right]^{2}$$

$$\frac{\partial \chi^2}{\partial a_k} = -2 \sum_{i=0}^{N-1} \frac{[y_i - y(x_i | \mathbf{a})]}{\sigma_i^2} \frac{\partial y(x_i | \mathbf{a})}{\partial a_k} \qquad k = 0, 1, \dots, M-1$$

$$\frac{\partial^2 \chi^2}{\partial a_k \partial a_l} = 2 \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2} \left[\frac{\partial y(x_i | \mathbf{a})}{\partial a_k} \frac{\partial y(x_i | \mathbf{a})}{\partial a_l} - [y_i - y(x_i | \mathbf{a})] \frac{\partial^2 y(x_i | \mathbf{a})}{\partial a_l \partial a_k} \right]$$

$$\beta_k \equiv -\frac{1}{2} \frac{\partial \chi^2}{\partial a_k}$$
 $\alpha_{kl} \equiv \frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_k \partial a_l}$ $\sum_{l=0}^{M-1} \alpha_{kl} \, \delta a_l = \beta_k$

$$\alpha_{kl} = \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2} \left[\frac{\partial y(x_i | \mathbf{a})}{\partial a_k} \frac{\partial y(x_i | \mathbf{a})}{\partial a_l} \right]$$

Line search in direction δa

 $\alpha_{kl} = \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2} \left[\frac{\partial y(x_i | \mathbf{a})}{\partial a_k} \frac{\partial y(x_i | \mathbf{a})}{\partial a_l} \right]$ We drop 2nd term in Hessian because residual $r = y_i - y$ is small, fluctuates around 0 and because y" may be small (or zero for linear problems)

Gauss-Newton + Trust Region = Levenberg-Marquardt Method

- Solving $\mathbf{A}^{T}\mathbf{A}\delta\mathbf{a} = \mathbf{A}^{T}\mathbf{b}$ is equivalent to minimize $|\mathbf{A}\delta\mathbf{a}-\mathbf{b}|^{2}$
- if trust region is within the solution just solve this equation
- If not we need to impose $||\delta \mathbf{a}|| = \Delta_k$
- Lagrange multiplier minimization equivalent to $(\mathbf{A}^{T}\mathbf{A} + \lambda \mathbf{I}) \ \delta \mathbf{a} = \mathbf{A}^{T}\mathbf{b} \ \text{and} \ \lambda(\Delta ||\delta \mathbf{a}||) = 0$
- For small λ this is Gauss-Newton (use close to minimum), for large λ this is steepest descent (use far from minimum)
- A good method for nonlinear least squares

Summary

- Optimization one of key numerical methods of modern data analysis. Typical examples are nonlinear least square problem and ML parameters (e.g. neural networks etc.)
- If at this point you are confused which methods you should use you are not alone: it depends on application and often the best way to answer is to try
- Some general guidances: if there is a lot of parameters (e.g. ML) and likelihood evaluations are cheap then use 1st order methods

Summary

- If the data is independent and there is a lot of data then use stochastic 1st order methods, e.g. ADAM
- If the likelihood evaluation is slow and number of parameters low use Newton or Gauss-Newton (e.g. Levenberg-Marquardt)
- If likelihood slow and number of parameters large use approximate Newton or Gauss-Newton (e.g. Steihaug with nonlinear CG), or use quasi-Newton (e.g. L-BFGS)
- Choosing a method is not enough: you also need to choose line search method (e.g. backtracking, Wolfe conditions) or trust region determination
- Typically these methods only find local minimum. Non-convex problems are hard: we will look at some stochastic methods (e.g. simulated annealing) in next lecture

Literature

- Numerical Recipes, Press et al., Chapter 9, 10, 15
- Computational Physics, M. Newman, Chapter 6
- Nocedal and Wright, Optimization
- https://arxiv.org/abs/1609.04747