Countering Adverse Selection by Reducing Information, of the Right Kind

D. Carlos Akkar Nuffield College, University of Oxford

updated paper online soon!

Oxford Economics Research Jamboree
June 2024

- Many risky opportunities are offered to many before someone takes it:
 - The seller of a financial asset can ask many interested buyers
 - Debt seekers have many banks to apply to for credit
 - Entrepreneurs contact many VCs or angel investors for (seed) funding
- Whoever gets an offer must evaluate whether opportunity is good or bad

So: more information \longrightarrow better evaluations \longrightarrow better off evaluators?

- Many risky opportunities are offered to many before someone takes it:
 - The seller of a financial asset can ask many interested buyers
 - Debt seekers have many banks to apply to for credit
 - Entrepreneurs contact many VCs or angel investors for (seed) funding
- Whoever gets an offer must evaluate whether opportunity is good or bad
 - So: more information \longrightarrow better evaluations \longrightarrow better off evaluators?
- But: evaluators face an adverse selection problem:
 - Am I getting opportunity after everyone rejected it? Does this mean it is bad?
- Answer depends on what other evaluators know & do: info. shapes adverse selection
 Maybe: more information

 more adverse selection

 ??

 worse off evaluators?

When does more info. leave evaluators better off in the face of adverse selection?

Important policy question: credit scoring.

ullet Regulators unsure and confused if allowing more info. o better risk evaluations

Internal Ratings Based systems promoted by **Basel II** for "accurate risk measurement" were banned in **Basel III**:

"CVA is a complex risk ... cannot be modelled by banks in a robust and prudent manner..."

"High-Level Summary of Basel III Reforms", Bank of Intl. Settlements

When does more info. leave evaluators better off in the face of adverse selection?

Important policy question: credit scoring.

ullet Regulators unsure and confused if allowing more info. o better risk evaluations

Banks highlighted seeming paradox: wanting better risk evaluation \times curbing use of info.

"[Internal assessments] by banks allow for the most accurate measurement of risk ... Relying on regulators' assessments ... will be rough approximations at best ... a major step backwards"

Kenneth Bentsen, CEO of Global Financial Markets Association

Contribution today: indeed sometimes: more info. \rightarrow worse risk evaluations we will characterise exactly what *kind* of info. creates this problem.

- APPLICANT with quality $\theta \in \{L, H\}$ seeks approval from **one evaluator**.
 - Everyone has prior belief $ho \in (0,1)$ that he is **born** with *High* quality.
- He sequentially visits $n \ge 2$ EVALUATORS, at random order τ .
 - τ is a permutation of $\{1, 2, ..., n\}$, chosen **privately** and **uniformly at random** by applicant.
- EV **approves** \longrightarrow payoff $\mathbb{1}\left\{\theta=H\right\}-c$, $c\in(0,1)$. Game ends, other EV.s get 0 payoff. EV **rejects** \longrightarrow 0 payoff. Applicant keeps applying. If no EV left \rightarrow game ends.

- APPLICANT with quality $\theta \in \{L, H\}$ seeks approval from **one evaluator**.
 - Everyone has prior belief $ho \in (0,1)$ that he is **born** with *High* quality.
- He sequentially visits $n \ge 2$ EVALUATORS, at random order τ .
 - τ is private and $\mathbb{P}(\tau(i) = j) = \frac{1}{n}$ for all $i, j \in \{1, 2, ..., n\}$.
- EV **approves** \longrightarrow payoff $\mathbb{1}\left\{\theta=H\right\}-c$, $c\in(0,1)$. Game ends, other EV.s get 0 payoff. EV **rejects** \longrightarrow 0 payoff. Applicant keeps applying. If no EV left \rightarrow game ends.

- ullet EVs do not know heta or number of applicant's past visits.
- But they receive **private IID signals** x about quality θ :

$$\mathcal{X} \mid \theta \stackrel{ ext{IID}}{\sim} p_{\theta} \qquad \qquad x \in \{s_1, s_2, ..., s_m\} \qquad \qquad s_i = \frac{p_H(s_i)}{p_H(s_i) + p_L(s_i)} < s_{i+1}$$

- Equilibrium: symmetric strategy and interim belief profile (σ^*, ψ^*) for EVs such that:
 - $\psi^* = \mathbb{P}\left(\theta = H \mid \text{applicant visited me}\right)$ consistent with strategy profile σ^*

$$\psi^* = \frac{\rho \times \mathbb{P} \text{ (app. visits me } | \theta = H, \sigma^*)}{\mathbb{P} \text{ (app. visits me } | \sigma^*)}$$

$$\mathbb{P}_{\psi^*}\left(\theta = H \mid x\right) > c \longrightarrow \text{ approve } \qquad \mathbb{P}_{\psi^*}\left(\theta = H \mid x\right) < c \longrightarrow \text{ reject}$$

- ullet EVs do not know heta or number of applicant's past visits.
- But they receive **private IID signals** x about quality θ :

$$\mathcal{X} \mid \theta \stackrel{\mathrm{IID}}{\sim} p_{\theta}$$
 $x \in \{s_{L}, s_{H}\}$ $s_{i} = \frac{p_{H}(s_{i})}{p_{H}(s_{i}) + p_{L}(s_{i})} < s_{i+1}$

- Equilibrium: symmetric strategy and interim belief profile (σ^*, ψ^*) for EVs such that:
 - $\psi^* = \mathbb{P}\left(\theta = H \mid \text{applicant visited me}\right)$ consistent with strategy profile σ^*

$$\psi^* = \frac{\rho \times \mathbb{P} \text{ (app. visits me } | \theta = H, \sigma^*)}{\mathbb{P} \text{ (app. visits me } | \sigma^*)}$$

$$\mathbb{P}_{\psi^*}\left(\theta = H \mid x\right) > c \longrightarrow \text{ approve } \qquad \mathbb{P}_{\psi^*}\left(\theta = H \mid x\right) < c \longrightarrow \text{ reject}$$

- ullet EVs do not know heta or number of applicant's past visits.
- But they receive **private IID signals** x about quality θ :

$$\mathcal{X} \mid \theta \stackrel{ ext{IID}}{\sim} p_{\theta} \qquad \qquad x \in \{s_1, s_2, ..., s_m\} \qquad \qquad s_i = \frac{p_H(s_i)}{p_H(s_i) + p_L(s_i)} < s_{i+1}$$

- Equilibrium: symmetric strategy and interim belief profile (σ^*, ψ^*) for EVs such that:
 - $\psi^* = \mathbb{P}\left(\theta = H \mid \text{applicant visited me}\right)$ consistent with strategy profile σ^*

$$\psi^* = \frac{\rho \times \mathbb{P} (\text{app. visits me} \mid \theta = H, \sigma^*)}{\mathbb{P} (\text{app. visits me} \mid \sigma^*)}$$

$$\mathbb{P}_{\psi^*}\left(\theta = H \mid x\right) > c \longrightarrow \text{ approve } \qquad \mathbb{P}_{\psi^*}\left(\theta = H \mid x\right) < c \longrightarrow \text{ reject}$$

- EVs do not know θ or number of applicant's past visits.
- But they receive **private IID signals** x about quality θ :

$$\mathcal{X} \mid \theta \stackrel{\text{IID}}{\sim} p_{\theta}$$
 $x \in \{s_1, s_2, ..., s_m\}$ $\frac{\psi^*}{1 - \psi^*} \times \frac{s_i}{1 - s_i} = \frac{\text{posterior}}{1 - \text{posterior}}$

- **Equilibrium:** symmetric strategy and interim belief profile (σ^*, ψ^*) for EVs such that:
 - $\psi^* = \mathbb{P}\left(\theta = H \mid \text{applicant visited me}\right)$ consistent with strategy profile σ^*

$$\psi^* = \frac{\rho \times \mathbb{P}(\text{app. visits me} \mid \theta = H, \sigma^*)}{\mathbb{P}(\text{app. visits me} \mid \sigma^*)}$$

$$\mathbb{P}_{\psi^*}\left(\theta = H \mid x\right) > c \longrightarrow \text{ approve } \qquad \mathbb{P}_{\psi^*}\left(\theta = H \mid x\right) < c \longrightarrow \text{ reject}$$

Main Question and Takeaway

How does more information affect evaluators' equilibrium payoffs?

- Synonymous with selection quality: eqm. payoffs ↑ when false positives & negatives ↓.
- Main difficulty: More info. affects extent of adverse selection → can clawback on payoffs – selection quality.
- Main result: Characterise effect of arbitrary Blackwell improvements of EVs signals.
- Main takeaway: Effect depends on the kind of improvement. Roughly:
 - improving favourable evaluations: good! • improving unfavourable evaluations: eventually bad
 - have different payoff effects

affect applicants differently

Main Question and Takeaway

How does more information affect evaluators' equilibrium payoffs?

- Synonymous with selection quality: eqm. payoffs ↑ when false positives & negatives ↓.
- Main difficulty: More info. affects extent of adverse selection → can clawback on payoffs – selection quality.
- Main result: Characterise effect of arbitrary Blackwell improvements of EVs signals.
- Main takeaway: Effect depends on the kind of improvement. Roughly:
 - improving favourable evaluations: good!
 - improving unfavourable evaluations: eventually bad

affect applicants differently

have different payoff effects

- Giving EVs information about **order** au
- EV makes take-it-or-leave-it price offer to applicant
- EVs compete on application costs

ask me after talk!

- σ^* ψ^* means eqm. analysis not straightfwd. But set of eqa. still well behaved:
- The set of equilibria is non-empty & compact.
- There is always adverse selection in eqm.: $\psi^* \leq \rho$
- All eqm. strategies are monotone [given $p_H
 eq p_L$] : $\sigma^*(s_i) > 0 \implies \sigma^*(s_{i+1}) = 1$
- \bullet Eqm. strategies are totally ordered: $\underbrace{\mathsf{most}}_{\mathsf{pointwise}}$ selective \to least selective pointwise highest
- Most (least) selective eqm. \rightarrow highest (lowest) EV payoffs lowest (highest) approval prob.

Information and Equilibrium Payoffs

How does more information change payoffs in most/least selective eqa?

• (the sum of all) EVs payoffs:

$$\Pi(\sigma) := (1-c) \times \rho \times \mathbb{P} \text{ (some EV approves } | \theta = H, \sigma) +$$

$$(-c) \times (1-\rho) \times [1-\mathbb{P} \text{ (all EVs reject } | \theta = L, \sigma)]$$

• With just one EV, classic Blackwell, 1953 result:

Blackwell more informative signal $\stackrel{(\Leftarrow)}{\Longrightarrow}$ \uparrow payoffs for all c, ρ

• Reason: more info. allows higher probabilities of: [approve $\mid \theta = H$] & [reject $\mid \theta = L$]

Information and Equilibrium Payoffs

• What goes wrong with many EVs? Rewrite EV i's payoff $\pi_i \left(= \frac{\Pi}{n} \right)$:

$$\pi_i(\sigma) = \mathbb{P} \text{ (applicant visits } i)$$

$$\times \left[\psi \times (1-c) \times \mathbb{P} \left(i \text{ approves } \mid \theta = H \right) - (1-\psi) \times c \times \left[1 - \mathbb{P} \left(i \text{ rejects } \mid \theta = L \right) \right] \right]$$

• As before, EV i's payoffs depend on probabilities of [approve $\mid \theta = H$] & [reject $\mid \theta = L$]

Information and Equilibrium Payoffs

• What goes wrong with many EVs? Rewrite EV i's payoff $\pi_i \left(= \frac{\Pi}{n} \right)$:

```
\pi_i(\sigma) = \mathbb{P} 	ext{ (applicant visits } i)
\times \left[ \psi \times (1-c) \times \mathbb{P} 	ext{ ($i$ approves } | \theta = H) - (1-\psi) \times c \times [1-\mathbb{P} 	ext{ ($i$ rejects } | \theta = L)] \right]
```

- As before, EV i's payoffs depend on probabilities of [approve $\mid \theta = H$] & [reject $\mid \theta = L$]
- However, also on the red adverse selection terms shaped by others' strategies.
- Other EVs do not internalise the adverse selection they impose onto EV i.
- Maximising individual selection quality \neq maximising **overall** selection quality
- Monotone effect of information on payoffs thus breaks

- Start from binary signals: main intuition and building block to full characterisation
- $x \in S = \{s_L, s_H\}$ more informative when $s_L \downarrow$: stronger evidence for $\theta = L$ and $s_H \uparrow$: stronger evidence for $\theta = H$

Theorem (1)

With a binary signal $x \in \{s_L, s_H\}$, EVs payoffs in the most selective eqm. are weakly:

- increasing with stronger evidence for $\theta = H$; $\uparrow s_H$
- hump shaped in stronger evidence for $\theta = L$; $\downarrow s_L$:
 - increasing when s_L is above a threshold
 - decreasing when s_L is below that threshold
- For least selective eqm: same result, different threshold.

- Start from binary signals: main intuition and building block to full characterisation
- $x \in S = \{s_L, s_H\}$ more informative when $s_L \downarrow$: stronger evidence for $\theta = L$ and $s_H \uparrow$: stronger evidence for $\theta = H$

Sketch Proof:

• How to think about $\downarrow s_L$ marginally?

Sketch Proof:

• How to think about $\downarrow s_L$ marginally? Construct an auxiliary signal $\hat{\mathcal{X}}$.

Sketch Proof:

- How to think about $\downarrow s_L$ marginally? Construct an auxiliary signal $\hat{\mathcal{X}}$.
- Fix EV strat.s: high \rightarrow approve & low \rightarrow reject. Which applicant gets affected?

Sketch Proof:

- How to think about $\downarrow s_L$ marginally? Construct an auxiliary signal $\hat{\mathcal{X}}$.
- Fix EV strat.s: high \rightarrow approve & low \rightarrow reject. Which applicant gets affected?

- Marginal admits: rejected by all $(x = s_L)$ in old signal structure, approved by some $(\hat{x} = \hat{s_H})$ in new.
- Prob. marginal admit has $\theta = H$ depends on how many $\hat{x} = \hat{s_H}$ signals EVs would see.

Sketch Proof:

- How to think about $\downarrow s_L$ marginally? Construct an auxiliary signal $\hat{\mathcal{X}}$.
- Fix EV strat.s: high \rightarrow approve & low \rightarrow reject. Which applicant gets affected?

- Marginal admits: rejected by all $(x = s_L)$ in old signal structure, approved by some $(\hat{x} = \hat{s_H})$ in new.
- Prob. marginal admit has $\theta = H$ depends on how many $\hat{x} = \hat{s_H}$ signals EVs would see. **Answer:** (a.s) one!
- For marginal decrease in s_L , $\mathbb{P}(\hat{x} = \hat{s_H}) \propto \varepsilon \to 0$.
- Multiple $\hat{x} = \hat{s_H}$ has negligible probability.

Sketch Proof:

- How to think about $\downarrow s_L$ marginally? Construct an auxiliary signal $\hat{\mathcal{X}}$.
- Fix EV strat.s: high \rightarrow approve & low \rightarrow reject. Which applicant gets affected?

Whether the marginal admit is profitable:

$$\underbrace{\frac{\rho}{1-\rho}}_{\text{prior}} \times \underbrace{\left(\frac{s_L}{1-s_L}\right)^{n-1}}_{n-1 \text{ low signals}} \times \underbrace{\frac{s_H}{1-s_H}}_{\text{the only high signal}} \stackrel{\leq}{>} \underbrace{\frac{c}{1-c}}_{\text{approval cos}}$$

ullet $s_L\downarrow \implies$ the n-1 low signals >> the single high signal

When is $\downarrow s_L$ Harmful?

- Theorem 1 does not comment on the threshold below which $s_L \downarrow$ hurts.
- Thinking about the marginal admits supplies a candidate for the threshold.
- The marginal admit hurts EVs when $s_L < s_L^{\rm as}$:

$$\underbrace{\frac{\rho}{1-\rho}}_{\text{prior}} \times \underbrace{\left(\frac{s_L^{\text{as}}}{1-s_L^{\text{as}}}\right)^{n-1}}_{n-1 \text{ low signals}} \times \underbrace{\frac{s_H}{1-s_H}}_{\text{the only high signal}} = \underbrace{\frac{c}{1-c}}_{\text{approval cost}}$$

- $s_L \ge s_L^{\rm as} \longrightarrow {\sf adverse \ selection \ poses \ no \ threat}$: EV would approve upon s_H even if she learned all previous EVs saw s_L
- Actual threshold may be lower: $s_L \downarrow \downarrow$ before EVs start rejecting anyone

General Blackwell Improvements and Eqm. Payoffs

• Generalise the idea of replicating Blackwell improvement with auxiliary signal.

Take two signal str.s, $\mathcal{X} \mid \theta \stackrel{\textit{IID}}{\sim} p_{\theta}$ and $\mathcal{X}' \mid \theta \stackrel{\textit{IID}}{\sim} p'_{\theta}$. Joint supp $S \cup S' = \{s_1, s_2, ..., s_M\}$.

 \mathcal{X}' differs from \mathcal{X} by a local MPS at s_i if:

General Blackwell Improvements and Eqm. Payoffs

Local mean preserving spreads characterise Blackwell improvements

$$\mathcal{X}+[\mathsf{finitely\ many\ local\ MPS}]\ =\ \mathcal{X}'\ \iff\ \mathcal{X}'$$
 is Blackwell more informative than \mathcal{X}

- Slight refinement of Rothschild and Stiglitz, 1970 for discrete signals.
- Theorem 2 will characterise how payoffs move after a local MPS.
- Local allows to control how eqm. evolves with more info.

General Blackwell Improvements and Eqm. Payoffs

Theorem (2)

Let \mathcal{X}' differ from \mathcal{X} by a local MPS at s_i . EVs' payoffs in the most (least) selective eqm. are:

- **1** weakly higher under \mathcal{X}' if $x = s_i$ leads to approvals under σ ; $\sigma(s_i) = 1$,
- 2 weakly lower under \mathcal{X}' , if:
 - 1 $x = s_i$ leads to rejections under σ ; $\sigma(s_i) = 0$, and
 - 2 adverse selection poses a threat at signal s_{i+1}

details on this condition

- "Adverse selection poses a threat" \equiv "marginal admit is harmful" in binary case
- Likelier to hold when $s_{i+1} \downarrow$, $\rho \downarrow$, $c \uparrow$, $n \uparrow$
- Condition depends on eqm. strategies.
- We can give a *sufficient condition* for payoff decrease with eqm. free implementation.

Thank You!

and please check back soon for updated paper!

Contribution to Literature

Observational Learning:

Bikhchandani, Hirshleifer, and Welch, 1992, Banerjee, 1992, Smith and Sørensen, 2000

Add: imperfectly observed history + only rejections are passed on

Censored/Biased Information (Mis)Aggregation:

Broecker, 1990, Lockwood, 1991, Herrera and Hörner, 2013, Board, Meyer-ter-Vehn, and Sadzik, 2023, Cavounidis, 2022, Bobtcheff, Levy, and Mariotti, 2022

Information Aggregation and Sampling/Solicitation Curse in Search:

Lauermann and Wolinsky, 2016 and 2017, Ekmekci and Lauermann, 2019

Novel Q in all three lit.s: how does ↑ DMs info. affect selection quality away from asymptote?

• σ^* ψ^* means possibly multiple eqa. But set of eqa. still well behaved.

Proposition

The set of equilibrium strategies is non-empty and compact. Furthermore:

- **1** all eqm. strategies are monotone; $\sigma^*(s_i) > 0 \implies \sigma^*(s_{i+1}) = 1$. [when $p_H \neq p_L$]
- 2 eqm. strategies are pointwise totally ordered;

either
$$\sigma^{**}(s_i) \geq \sigma^*(s_i)$$
 or $\sigma^{**}(s_i) \leq \sigma^*(s_i)$ for all $s_i \in S$

- 3 all eqa. exhibit adverse selection : $\psi^* \leq \rho$.
- Compact and totally ordered → the lowest (most selective) and highest (least selective) eqm. strategies.

Selective eqa. reduce approval chances for applicant. What do they mean for ${\ensuremath{{\rm EV}}}$ payoffs?

• (the sum of) Evaluators' equilibrium payoffs:

$$\begin{split} \Pi(\sigma) := & (1-c) \times \rho \times \mathbb{P} \left(\text{some EV approves} \mid \theta = H, \sigma \right) + \\ & (-c) \times (1-\rho) \times \left[1 - \mathbb{P} \left(\text{all EVs reject} \mid \theta = L, \sigma \right) \right] \end{split}$$

• Different virtues: more selective \rightarrow filter *Low* quality approvals less selective \rightarrow secure *High* quality approvals

Selective eqa. reduce approval chances for applicant. What do they mean for EV payoffs?

• (the sum of) Evaluators' equilibrium payoffs:

$$\Pi(\sigma) := (1 - c) \times \rho \times \mathbb{P} \text{ (some EV approves } | \theta = H, \sigma) +$$
$$(-c) \times (1 - \rho) \times [1 - \mathbb{P} \text{ (all EVs reject } | \theta = L, \sigma)]$$

- Different virtues: more selective \rightarrow filter *Low* quality approvals less selective \rightarrow secure *High* quality approvals
- This trade-off is always resolved in favour of more selective eqa.:

Proposition

Let σ^* be an eqm. strategy, and σ^{**} be a less selective monotone strategy; $\sigma^{**} > \sigma^*$.

Then:
$$\Pi(\sigma^{**}) \leq \Pi(\sigma^{*})$$

Proposition

Let σ^* be an eqm. strategy and σ^{**} be a more embracive eqm. monotone strategy; $\sigma^{**} > \sigma^*$.

Then:
$$\Pi(\sigma^{**}) \leq \Pi(\sigma^*)$$

Proof Sketch:

- Take eqm. strategy σ^* , and consider marginally more embracive $\sigma^{\varepsilon}\colon ||\sigma^{\varepsilon}-\sigma^*||=\varepsilon$
- Fix the signals all EVs would see if app. visited them all: $\{x_1, x_2, ..., x_n\}$.
- Only app. whose outcome changes: rejected by all under σ^* , approved by some under σ^{ε} .
- If ε is small, he was a.s. rejected by all under σ^* , approved by one under σ^{ε} .
- Bad news: approving is suboptimal for this last EV
- Last step: payoffs are **single crossing** in embraciveness; where $\sigma'' > \sigma' > \sigma$:

$$\Pi(\sigma') \leq \Pi(\sigma) \implies \Pi(\sigma'') \leq \Pi(\sigma')$$

Sketch Proof:

- How to think about $\uparrow s_H$ marginally? Construct an auxiliary signal $\hat{\mathcal{X}}$.
- Fix EV strat.s: high \rightarrow approve & low \rightarrow reject. Which applicant gets affected?

- This time **marginal reject**: approved by some $(x = s_H)$ before, rejected by all $(\hat{x} = \hat{s_L})$ now.
- All EVs must have seen low signals.
- Marginal reject is always good to push out:

$$\underbrace{\frac{
ho}{1-
ho}}_{
m prior} imes \underbrace{\left(\frac{s_L}{1-s_L}\right)^n}_{n ext{ low signals}} < \underbrace{\frac{c}{1-c}}_{
m approval ext{ co}}$$

[actual pf: "strong low signals" is the only relevant case]

When is $\downarrow s_L$ Harmful?

• But until s_L is low enough, EVs might be stuck in an eqm. approving all.

$$\underbrace{\frac{\rho}{1-\rho}}_{\text{prior}} \times \underbrace{\left(\frac{s_L^{\text{mute}}}{1-s_L^{\text{mute}}}\right)}_{\text{one low signal}} = \underbrace{\frac{c}{1-c}}_{\text{approval cost}}$$

- ullet When $s_L \geq s_L^{
 m mute}$, always an eqm: approve all o no adverse selection o approve all
- The marginal admit effect does not kick in until s_L is low enough to eliminate these eqa.

Proposition

Let EVs have a binary signal $x \in \{s_L, s_H\}$. EVs payoffs decrease as $s_L \downarrow$ when:

- $s_L \leq \min \{s_L^{\text{mute}}, s_L^{\text{as}}\}$ in the least selective eqm.
- $s_L \leq s_L^\dagger$ in the most selective eqm., where $s_L^{\rm as} \geq s_L^\dagger \geq \min{\{s_L^{\rm mute}, s_L^{\rm as}\}}$.

Adverse Selection Condition for Theorem 2

For a fixed signal structure \mathcal{X} and strategy σ , adverse selection poses a threat at signal s if:

$$\underbrace{\frac{\rho}{1-\rho}}_{\text{prior}} \times \underbrace{\left(\frac{r_{H}(\sigma)}{r_{L}(\sigma)}\right)^{n-1}}_{n-1 \text{ past rejections}} \times \underbrace{\frac{s}{1-s}}_{\text{last signal is } s} \leq \underbrace{\frac{c}{1-c}}_{\text{approval cost}}$$

Sufficient condition for the most selective eqm. relies only on the local MPS performed:

Proposition

Let \mathcal{X}' differ from \mathcal{X} by a local MPS at s_i . EVs expected payoffs in the most selective eqm. are lower under \mathcal{X}' whenever s_i is a rejection signal under \mathcal{X} (a fortiori: $s_L < s_L^{\mathrm{mute}}$) and:

$$\frac{\rho}{1-\rho} \times \left(\frac{s_i}{1-s_i}\right)^{n-1} \times \frac{s_{i+1}}{1-s_{i+1}} \le \frac{c}{1-c}$$

back to Theorem 2