Adjustment Theory I Winter Term 2023/24

Chair of Geodesy and Adjustment Theory

Prof. Dr.-Ing. Frank Neitzel, Dr.-Ing. Sven Weisbrich

Exercise 4: Propagation of observation errors - part II - Propagation of variances and covariances -					
Group:	Surname, First name:	Matriculation number:	Signature*:		
* With my signature I declare that I was involved in the elaboration of this homework.					
Submission until: 01.12.2023					

Objective

This exercise deals with the propagation of variances of uncorrelated observations for one or two unknown parameters.

Task 1:

The three sides $a=3.00\,\mathrm{m},\ b=4.00\,\mathrm{m}$ and $c=5.00\,\mathrm{m}$ of a triangle are determined with a standard deviation of $\sigma=2\,\mathrm{cm}.$

- Calculate the area A of the triangle as well as the standard deviation s_A
 - Set up the functional relationship.
 - Create a flowchart for the design matrices.
 - Use the Heron's formula to determine the area *A*:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

where *s* is the semiperimeter of the triangle:

$$s = \frac{a+b+c}{2}$$

Task 2 (Homework):

The polar coordinates of two points, listed in Table 1, were obtained with a standard deviation of $\sigma_s=0.001~\mathrm{m}$ and $\sigma_t=0.1~\mathrm{gon}$. As a reminder Figure 1 gives you an overview about the relationship between polar and Cartesian coordinates.

Table 1: Measured polar coordinates

ID	Distance s [m]	Angle t [gon]
1	8.000	0.00
2	6.000	100.00

• Calculate the distance between the two points and its standard deviation.

Figure 1: Polar vs. Cartesian coordinates

Task 3 (Homework):

Two huge water tanks are connected via a small pipe as depicted in Figure 2. At the moment no water can flow because the valve is closed. The radius r_i as well as the water level H_i for each water tank is given in Table 2 and they were obtained with a standard deviation of $\sigma_r = \sigma_H = 1~\mathrm{cm}$. In order to reduce the pressure in water tank 2 the valve will be opened and water can flow from water tank 2 to water tank 1.

• Calculate the new amount of water at each water tank and their standard deviations.

Table 2: Measurements

Water tank	Radius r_i [m]	Water level H_i [m]
1	10.00	8.00
2	14.000	12.00

Figure 2: Water tanks