ME 303 Winter 2021

Tutorial 02

1. Fixed point iterations

Suppose we have a function f(x) and we want to determine x^* such that $f(x^*) = 0$, then we first rearrange the equation

$$f(x) = 0 \Rightarrow x = q(x)$$

There are many ways to do this. Then,

- Arrange f(x) = 0 so we have x = g(x)
- Pick x_0 and set $x_{new} = x_0$
- Begin iterations set n = 1, then $x_n = g(x_{n-1})$
- Loop until $|x_n x_{n-1}| < \text{tol}$

This algorithm will converge to x^* if your initial guess x_0 is not too far from the optimal point where the following relation is valid

$$\left| \frac{dg}{dx} \right|_{x=x_0} < 1$$

- (a) It is of interest to find the smallest positive root of $x^2 = 4 4x^3$ using MATLAB.
 - 1. From a sketch, show that the root is near x = 0.9.
 - 2. Try a direct iteration (fixed-point iteration) with the rearrangement $x = (4 4x^3)^{1/2}$ and explain what happens.
 - 3. Try a direct iteration with the rearrangement $x = ((4-x^2)/4)^{1/3}$

University of Waterloo Page 1 of 2

2. Bisection method

The bisection method is one of the simplest algorithms fo finding roots of non-linear equations. It works by creating successively smaller and smaller intervals which contain the root of the equation. Suppose that f is a continuous function on the interval [a, b] with f(a) > 0 and f(b) < 0, then by the intermediate value theorem, there is some c with $a \le c \le b$ with f(c) = 0. So to approximate c we define x_0 as the midpoint of the interval, so that $x_0 = (a + b)/2$. Now, if $f(x_0) = 0$, then x_0 is the solution. However, if this is not the case, then we need to modify the interval based on x_0 . Specifically, if $f(x_0) > 0$ then we replace a with x_0 , i.e., $a = x_0$. Similarly, if $f(x_0) < 0$ then we replace a with a0, i.e., a1, i.e., a2, i.e., a3, i.e., a4, i.e., a5, i.e., a5, i.e., a5, i.e., a6, i.e., a7, i.e., a8, i.e., a8, i.e., a9, i.e., a9

- Choose a and b so that f(a) > 0 and f(b) < 0
- Set n=0, define $x_0=a$, and choose an acceptable error level $\epsilon>0$
- Begin iterations
 - 1. n = n + 1
 - 2. $x_n = \frac{a+b}{2}$
 - 3. if $|f(x_n)| < \epsilon$, STOP
 - 4. if $|f(x_n)| > 0$, then $a = x_n$
 - 5. if $|f(x_n)| < 0$, then $b = x_n$
- Loop
- (a) Use bisection method by hand to obtain the root of $f(x) = e^{-x} + \ln(x)$. Do 4 iterations and round the numbers to 4 decimal places (4DP).
- (b) Write a MATLAB code which uses the bisection method to solve $f(x) = \pi$ where $f(x) = x^{2/3}$ for $0 \le x$. Suppose we have a tolerance of the form $\epsilon = 10^{-n}$, determine the value of n which gives an approximation accurate to 6 decimal places (6DP). The true value to 6DP is 5.568328, when
 - 1. a = 4.5, b = 6, and the termination condition $|f(x_n)| < \epsilon$ is used
 - 2. a = 4.5, b = 6, and the termination condition $|x_n x_{n-1}| < \epsilon$ is used
 - 3. a = 4.5, b = 6, and the termination condition $|b a| < \epsilon$ is used

Which termination condition required the smallest value of n? What termination condition was the easiest to ensure that you get the accuracy you want?

University of Waterloo Page 2 of 2