

Министерство науки и высшего образования Российской **Федерации**

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>

Лабораторная работа № 6

Тема: построение и программная реализация алгоритмов численного дифференцирования.

Студент Тартыков Л.Е					
Группа ИУ7-44Б					
Оценка (баллы)					
Преполаватель Градов В М					

Содержание

1. Задание	3
2. Код программы	
3. Результаты работы	
4. Ответы на вопросы при защите лабораторной работы	7

Цель работы: получение навыков построения алгоритма вычисления производных от сеточных функций.

Задание

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой

$$y = \frac{a_0 x}{a_1 + a_2 x}$$

параметры функции неизвестны и определять их не нужно.

X	y	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Вычислить первые разностные производные от функции и занести их в столбцы (1)-(4) таблицы:

- 1 односторонняя разностная производная,
- 2 центральная разностная производная,
- 3- 2-я формула Рунге с использованием односторонней производной,
- 4 введены выравнивающие переменные.

В столбец 5 занести вторую разностную производную.

Код программы

Замечание: данная программа написана на языке Python 3.8 Листинг 1; main.py

from math import pow

```
class Differentiation:
  def init__(self, x, y, h):
     Конструктор
     self.h = h
     self.x = x
     self.y = y
     self. len x = len(x)
     self. len y = len(y)
     self.diff y 1 = [0 \text{ for i in range (self. len } x)]
     self.diff y 2 = [0 \text{ for i in range (self. len } x)]
     self.diff y 3 = [0 \text{ for i in range (self. len } x)]
     self.diff y 4 = [0 \text{ for i in range (self. len } x)]
     self.diff y 5 = [0 \text{ for i in range (self. len } x)]
  def calculate diffenrece(self):
     self.left differnece()
     self.center diffenerce()
     self.second runge diffenrence(1)
     self.aligned variable()
     self.second left diffenrece()
  def left differnece(self):
     Левая разностная производная
     self.diff y 1[0] = 0
     for i in range(1, self. len y):
        self.diff_y_1[i] = (self.y[i] - self.y[i - 1]) / self.h
  def center diffenerce(self):
     Центральная разностная производная
     self.diff y 2[0] = \text{self.diff y } 2[-1] = 0
     for i in range(1, self. len y - 1):
        self.diff_y_2[i] = (self.y[i+1] - self.y[i-1]) / 2 * self.h
  def second runge diffenrence(self, p):
     Вторая формула Рунге с использованием односторонней производной
     y \text{ temp} = [0, 0]
```

```
for i in range(2, self. len y):
        y temp.append((self.y[i] - self.y[i - 2]) / (2 / self.h))
     self.diff y 3[0] = \text{self.diff y } 3[1] = 0
     for i in range(2, len(self.diff y 1)):
        self.diff y 3[i] = self.diff y 1[i] + (self.diff y 1[i] - y temp[i]) / (pow(2, p) - 1)
  def aligned variable(self):
     Выравнивающие переменные
     for i in range(self. len y - 1):
        k = pow(self.y[i], 2) / pow(self.x[i], 2)
        self.diff y 4[i] = k * (((-1 / self.y[i + 1]) - (-1 / self.y[i])) / ((-1 / self.x[i + 1]) - (-1 / self.x[i])))
     self.diff y 4[-1] = 0
  def second left diffenrece(self):
     Вторая одностороняя производная (левая)
     self.diff y 5[0] = \text{self.diff y } 5[-1] = 0
     for i in range(1, self. len y - 1):
        self.diff y 5[i] = (self.y[i-1] - 2 * self.y[i] + self.y[i+1]) / pow(self.h, 2)
  def output(self):
     Вывод таблицы производных на экран
     print(" x | y | 1 | 2 | 3 | 4 | 5")
     print("-" * 70)
     for i in range(self. len x):
        print(" \{0\} | \{1:7.3f\} | \{2:10.3f\} | \{3:10.3f\} | \{4:10.3f\} | \{5:10.3f\} | \{6:10.3f\} |". format(self.x[i], self.y[i], \
             self.diff_y_1[i], self.diff_y_2[i], self.diff_y_3[i], self.diff_y_4[i], self.diff_y_5[i]))
if __name__ == "__main__":
  h = 1
  x = [1, 2, 3, 4, 5, 6]
  y = [0.571, 0.889, 1.091, 1.231, 1.333, 1.412]
  object = Differentiation(x, y, h)
  object.calculate diffenrece()
  object.output()
```

Результаты работы

Заполненная таблица с краткими комментариями по поводу использованных формул их точности

X	у	1	2	3	4	5
1	0.571	0	0	0	0.408	0
2	0.889	0.318	0.260	0	0.247	-0.116
3	1.091	0.202	0.171	0.144	0.165	-0.062
4	1.231	0.140	0.121	0.109	0.118	-0.038
5	1.333	0.102	0.090	0.083	0.089	-0.023
6	1.412	0.079	0	0.068	0	0

где 1 - односторонняя разностная производная (не можем вычислить первое значение сетки)

$$y'_{n} = \frac{y_{n} - y_{(n-1)}}{h} + O(h)$$
,

2 - центральная разностная производная (не можем вычислить первое и последнее значения сетки)

$$y'_{n} = \frac{y_{(n+1)} - y_{(n-1)}}{2h} + O(h^{2})$$
,

3- 2-я формула Рунге с использованием односторонней производной (не можем вычислить первое и второе значения сетки)

$$y'_0 = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$
,

4 - введены выравнивающие переменные (не можем вычислить последнее значение сетки).

$$yx' = \frac{\eta_{\xi'} \xi_{x'}}{\eta_{y'}} = \frac{\eta_{\xi'} y^2}{x^2}$$

5 - вторая разностная производная (не можем вычислить первое и последнее значения сетки); обладает достаточно большой погрешностью

$$y''_n = \frac{y_{(n+1)} - 2y_n + y_{(n-1)}}{h^2} + O(h^2)$$

6

Ответы на вопросы при защите лабораторной работы

1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной y'_N в крайнем правом узле x_N .

$$\begin{cases} y_{(n-1)} = y_n - \frac{h}{1!} y'_n + \frac{h^2}{2!} y''_n + O(h^3) \\ y_{(n-2)} = y_n - \frac{2h}{1!} y'_n + \frac{(2h)^2}{2!} y''_n + O(h^3) \end{cases}$$

Первую строку системы домножаем на 4 и вычитаем вторую

$$4 y_{(n-1)} - y_{(n-2)} = 3 y_n - 2 hy'_n + O(h^3)$$

$$y'_{n} = \frac{3y_{n} - 4_{(n-1)} + y_{(n-2)}}{2h} + O(h^{2}) \dot{c}$$

2. Получить формулу порядка точности $O(h^2)$ для второй разностной производной y''_0 в крайнем левом узле x_0 .

Используем разложение в ряд Тейлора

$$\begin{cases} y_1 = y_0 - \frac{h}{1!} y'_0 + \frac{h^2}{2!} y''_0 + \frac{h^3}{3!} y'''_0 + O(h^4) \\ y_2 = y_0 - \frac{2h}{1!} y'_0 - \frac{(2h)^2}{2!} y''_0 + \frac{(2h)^3}{3!} y'''_0 + O(h^4) \\ y_3 = y_0 - \frac{3h}{1!} y'_0 - \frac{(3h)^2}{2!} y''_0 + \frac{(3h)^3}{3!} y'''_0 + O(h^4) \end{cases}$$

Получим выражение для у''₀:

$$y''_0 = \frac{-y_3 + 4y_2 - 5y_1 + 2y_0}{h^2} + O(h^2)$$

3. Используя 2-ую формулу Рунге, дать вывод выражения (9) из Лекции №7 для первой производной у'₀ в левом крайнем узле

$$y'_0 = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$

Используем вторую формулу Рунге:

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{(p+1)})$$

Левая крайняя производная:

$$y_0' = \frac{y_1 - y_2}{h} + O(h) \Rightarrow p = 1$$

Тогда имеем:

$$\Phi(h) = \frac{y_1 - y_0}{h}$$

$$\Phi(mh) = \frac{y_m - y_0}{mh} \Rightarrow \Phi(2h) = \frac{y_2 - y_0}{2\lambda}$$

$$y'_0 = \Phi(h) + \Phi(h) - \Phi(2h) + O(h^2) = \frac{-y_2 + 4y_1 - 3y_0}{2h} + O(h^2)$$

$$y_0' = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$

4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной у' $_0$ в крайнем левом узле x_0 .

Используем вторую формулу Рунге:

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1}$$

$$y_0' = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2) \Rightarrow p = 2$$

Тогда имеем:

$$\Phi(h) = \frac{-3y_0 + 4y_1 - y_2}{h}$$

$$\Phi(2h) = \frac{-3y_0 + 4y_2 - y_4}{4h}$$

$$y'_0 = \Phi(h) + \frac{\Phi(h) - \Phi(2h)}{3} + O(h^3) = \frac{y_4 - 12y_2 + 32y_1 - 21y_0}{12h} + O(h^3)$$

$$y_0' = \frac{-21 y_0 + 32 y_1 - 12 y_2 + y_4}{12 h} + O(h^3)$$