Kapitel 1

Erfassung der Zustandsgrößen

1.1 Winkelschätzung

Ein relevantes Problem stellt die Bestimmung der Winkel φ dar welche nur indirekt über die Beschleunigungssensoren ermittelt werden können. Die Messwerte s der Beschleunigungssensoren setzten sich aus der resultierenden Beschleunigung ${}^Aa^{S_i}$ und dem überlagerten Erdbeschleunigungsvektor g zusammen. Zunächst wird der Fall betrachtet, dass die Messachsen der Sensoren mit dem körperfesten Bezugssystem K zusammenfallen.

$$s_i = {}^{A}\boldsymbol{a}^{S_i} + \boldsymbol{g} \tag{1.1}$$

Unter der Annahme, dass der Würfel nicht bewegt wird verschwindet der Einfluss der Beschleunigung ${}^{A}a^{S_{i}}$.

$$\mathbf{s}_{i} = \mathbf{g} = \|\mathbf{g}\| \cdot \begin{pmatrix} -c_{\varphi_{2}} \cdot c_{\varphi_{3}} \\ c_{\varphi_{2}} \cdot s_{\varphi_{3}} \\ -s_{\varphi_{2}} \end{pmatrix}$$

$$(1.2)$$

Nun können die Winkel φ_2 und φ_3 aus den Komponenten des Messvektor s ermittelt werden.

$$\varphi_2 = -asin(\frac{\langle \mathbf{s}_i, \mathbf{k}_3 \rangle}{\|\mathbf{g}\|} \qquad \qquad \varphi_3 = -atan(\frac{\langle \mathbf{s}_i, \mathbf{k}_2 \rangle}{\langle \mathbf{s}_i, \mathbf{k}_3 \rangle}$$
(1.3)

Der Winkel φ_1 kann nicht aus dem Erdbeschleunigungsvektor ermittelt werden. Jedoch schränkt dieser Umstand das Gesamtsystem nicht ein, da die Größe φ_1 keinen Einfluss auf die Systemdynamik hat. Um die Winkelschätzung auf den Fall des bewegten Würfels zu erweitern wird im nächsten Schritt die Beschleunigung ${}^A \boldsymbol{a}^{S_i}$ betrachtet. Da der Würfel eine rein rotatorische Bewegung durchführt genügt die Untersuchung der Winkelbeschleunigung und -geschwindigkeit [Kane S. 30].

$${}^{A}\boldsymbol{a}^{S_{i}} = {}^{A}\boldsymbol{\alpha}^{K} \times \boldsymbol{r}_{S_{i}} + {}^{A}\boldsymbol{\omega}^{K} \times ({}^{A}\boldsymbol{\omega}^{K} \times \boldsymbol{r}_{S_{i}})$$

$$= [{}^{A}\boldsymbol{\alpha}^{K}]_{\times} \cdot \boldsymbol{r}_{S_{i}} + [{}^{A}\boldsymbol{\omega}^{K}]_{\times} \cdot ([{}^{A}\boldsymbol{\omega}^{K}]_{\times} \cdot \boldsymbol{r}_{S_{i}})$$

$$= ([{}^{A}\boldsymbol{\alpha}^{K}]_{\times} + [{}^{A}\boldsymbol{\omega}^{K}]_{\times}^{2}) \cdot \boldsymbol{r}_{S_{i}}$$

$$(1.4)$$

Wird nun die Summe der Beschleunigungswerte s_i berechnet, welche mit dem frei wählbaren Faktor $b_i \in R$ gewichtet werden, ergibt sich

$$\sum_{i=1}^{6} b_{i} \cdot \boldsymbol{s}_{i} = \sum_{i=1}^{6} \left[b_{i} \cdot \left(\left[{}^{A} \boldsymbol{\alpha}^{K} \right]_{\times} + \left[{}^{A} \boldsymbol{\omega}^{K} \right]_{\times}^{2} \right) \cdot \boldsymbol{r}_{S_{i}} + b_{i} \cdot \boldsymbol{g} \right]$$

$$= \left(\left[{}^{A} \boldsymbol{\alpha}^{K} \right]_{\times} + \left[{}^{A} \boldsymbol{\omega}^{K} \right]_{\times}^{2} \right) \cdot \sum_{i=1}^{6} b_{i} \cdot \boldsymbol{r}_{S_{i}} + \boldsymbol{g} \cdot \sum_{i=1}^{6} b_{i} .$$

$$(1.5)$$

Werden die Faktoren b_i so gewählt, dass

$$\sum_{i=1}^{6} b_i \cdot \boldsymbol{r}_{S_i} \qquad | \qquad \sum_{i=1}^{6} b_i \neq 0$$
 (1.6)

gilt, folgt

$$\sum_{i=1}^{6} b_i \cdot s_i = g \cdot \sum_{i=1}^{6} \quad \leftrightarrow \quad g = \frac{\sum_{i=1}^{6} b_i \cdot s_i}{\sum_{i=1}^{6} b_i}. \tag{1.7}$$

Somit kann der Einfluss der resultierenden Beschleunigung ${}^{A}a^{S_{i}}$ mittels der Faktoren b_{i} eliminiert werden. Werden n Sensoren verwendet, so muss für die Bestimmung der Faktoren b_{i} das Gleichungssystem

$$\sum_{i=1}^{n} b_i \cdot \boldsymbol{r}_{S_i} = 0 \tag{1.8}$$

gelöst werden, wobei die Nebenbedingung

$$\sum_{i=1}^{n} b_i \neq 0 \tag{1.9}$$

zu beachten ist. Aus dieser Vorgehensweise können Rückschlüsse auf den Entwurf des Würfels gezogen werden. Sind die Ortsvektoren r_{S_i} linear abhängig genügen bereits zwei Sensoren um zwischen der resultierenden Beschleunigung ${}^A a^{S_i}$ und der Erdbeschleunigung g zu unterscheiden. Allerdings schränkt die Forderung nach linearer Abhängigkeiten die konstruktiven Möglichkeiten ein. Werden mehr als zwei Sensoren verwendet entfällt die Notwendigkeit der linearen Abhängigkeiten. Prinzipiell genügen drei Sensoren um die Einflüsse der Beschleunigung ${}^A a^{S_i}$ zu eliminieren.

Die hier verwendeten Beschleunigungssensoren sind von zwei weiteren Einschränkungen betroffen. Zunächst ist die Empfindlichkeit der Messung in z-Richtung gegenüber den xund y-Achsen geringer, weshalb lediglich die letzteren verwendet. Des weiteren stimmen die Messachsen der Sensoren nicht mit dem körperfesten Bezugssystem K überein. Um diese Umstände im Modell auszudrücken werden die drei Messachsen des Sensors als Bezugssystem S_i interpretiert. Unter der Annahme, dass die Messachsen und Vektoren \mathbf{k}_i paarweise orthogonal zueinander stehen kann die Projektionsmatrix $S_i \mathbf{p}^K$ aus dem Aufbau bestimmt werden. Zusätzlich wird die dritte Spalte $S_i \mathbf{p}^K$ durch den Nullvektor ersetzt um die Vernachlässigung der z-Messwerte darzustellen.

$$\mathbf{s}_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} s_{1x} \\ s_{1y} \\ s_{1z} \end{pmatrix} = \begin{pmatrix} \langle \mathbf{s}_{1}, \mathbf{k}_{1} \rangle \\ \langle \mathbf{s}_{1}, \mathbf{k}_{2} \rangle \\ 0 \end{pmatrix}$$
(1.10)

$$\boldsymbol{s}_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} s_{2x} \\ s_{2y} \\ s_{2z} \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{s}_{2}, \boldsymbol{k}_{1} \rangle \\ \langle \boldsymbol{s}_{2}, \boldsymbol{k}_{2} \rangle \\ 0 \end{pmatrix}$$
(1.11)

$$\mathbf{s}_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} s_{3x} \\ s_{3y} \\ s_{3z} \end{pmatrix} = \begin{pmatrix} K \\ \langle \mathbf{s}_{3}, \mathbf{k}_{2} \rangle \\ \langle \mathbf{s}_{3}, \mathbf{k}_{3} \rangle \end{pmatrix}$$
(1.12)

$$\mathbf{s}_{4} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} s_{4x} \\ s_{4y} \\ s_{4z} \end{pmatrix} = \begin{pmatrix} K \\ \langle \mathbf{s}_{4}, \mathbf{k}_{2} \rangle \\ \langle \mathbf{s}_{4}, \mathbf{k}_{3} \rangle \end{pmatrix}$$
(1.13)

$$\mathbf{s}_{5} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} s_{5x} \\ s_{5y} \\ s_{5z} \end{pmatrix} = \begin{pmatrix} \langle \mathbf{s}_{5}, \mathbf{k}_{1} \rangle \\ 0 \\ \langle \mathbf{s}_{5}, \mathbf{k}_{3} \rangle \end{pmatrix}$$
(1.14)

$$\mathbf{s}_{6} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{pmatrix} s_{6} \\ s_{6y} \\ s_{6z} \end{pmatrix} = \begin{pmatrix} \langle \mathbf{s}_{6}, \mathbf{k}_{1} \rangle \\ 0 \\ \langle \mathbf{s}_{6}, \mathbf{k}_{3} \rangle \end{pmatrix}$$
(1.15)

Da die z-Messwerte nicht verwendet werden gibt jeder Sensor nur die Beschleunigung in Richtung zweier Vektoren k_i wieder. Um dieses Problem zu beheben werden die Messwerte jeweils zweier Sensoren zu einem abstrakten Messvektor \tilde{s}_i zusammengefasst. Um hierbei die Auswirkung der Beschleunigungen ${}^A a^{S_i}$ darzustellen wird die Definition

$$\begin{bmatrix} {}^{A}\boldsymbol{\alpha}^{K} \end{bmatrix}_{\times} + \begin{bmatrix} {}^{A}\boldsymbol{\omega}^{K} \end{bmatrix}_{\times}^{2} \equiv \boldsymbol{M} = \begin{bmatrix} \boldsymbol{m}_{1}^{T} \\ \boldsymbol{m}_{2}^{T} \\ \boldsymbol{m}_{3}^{T} \end{bmatrix}$$
(1.16)

verwendet. Die Vektoren \boldsymbol{m}_i^T werden mit dem Ortsvektor des zugehörigen Sensors multipliziert.

$$\tilde{\mathbf{s}}_{1} \equiv \begin{bmatrix} s_{1y} \\ s_{1x} \\ s_{3x} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{1}^{T} \cdot \mathbf{r}_{S_{1}} \\ \mathbf{m}_{2}^{T} \cdot \mathbf{r}_{S_{1}} \\ \mathbf{m}_{3}^{T} \cdot \mathbf{r}_{S_{3}} \end{bmatrix} + \mathbf{g} \qquad \tilde{\mathbf{s}}_{2} \equiv \begin{bmatrix} s_{2y} \\ s_{2x} \\ s_{4x} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{1}^{T} \cdot \mathbf{r}_{S_{2}} \\ \mathbf{m}_{2}^{T} \cdot \mathbf{r}_{S_{2}} \\ \mathbf{m}_{3}^{T} \cdot \mathbf{r}_{S_{4}} \end{bmatrix} + \mathbf{g} \\
\tilde{\mathbf{s}}_{3} \equiv \begin{bmatrix} s_{5x} \\ s_{3y} \\ s_{5y} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{1}^{T} \cdot \mathbf{r}_{S_{5}} \\ \mathbf{m}_{2}^{T} \cdot \mathbf{r}_{S_{3}} \\ \mathbf{m}_{3}^{T} \cdot \mathbf{r}_{S_{5}} \end{bmatrix} + \mathbf{g} \qquad \tilde{\mathbf{s}}_{4} \equiv \begin{bmatrix} s_{6x} \\ s_{4y} \\ s_{6y} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{1}^{T} \cdot \mathbf{r}_{S_{6}} \\ \mathbf{m}_{2}^{T} \cdot \mathbf{r}_{S_{4}} \\ \mathbf{m}_{3}^{T} \cdot \mathbf{r}_{S_{6}} \end{bmatrix} + \mathbf{g}$$

$$(1.17)$$

In dieser Darstellung werden die Vektoren \tilde{s}_i mit den Diagonalmatrizen

$$\boldsymbol{B}_{i} = \begin{bmatrix} b_{ix} & 0 & 0 \\ 0 & b_{iy} & 0 \\ 0 & 0 & b_{iz} \end{bmatrix}$$
 (1.18)

multipliziert um die Einflüsse der Beschleunigungen zu eliminieren. Für die Summe der Gewichteten Vektoren gilt

$$\sum_{i=1}^{4} \boldsymbol{B}_{i} \cdot \tilde{\boldsymbol{s}}_{i} = \begin{bmatrix} \boldsymbol{m}_{1}^{T} \cdot \sum_{i=1}^{4} b_{ix} \cdot \boldsymbol{r}_{\tilde{S}_{xi}} \\ \boldsymbol{m}_{2}^{T} \cdot \sum_{i=1}^{4} b_{iy} \cdot \boldsymbol{r}_{\tilde{S}_{yi}} \\ \boldsymbol{m}_{3}^{T} \cdot \sum_{i=1}^{4} b_{iz} \cdot \boldsymbol{r}_{\tilde{s}} \end{bmatrix} + \sum_{i=1}^{4} \boldsymbol{B}_{i} \cdot \boldsymbol{g}$$

$$(1.19)$$

Wenn nun die Matrizen B_i so gewählt werden, dass einerseits

$$\sum_{i=1}^{4} b_{ix} \cdot \mathbf{r}_{\tilde{S}_{xi}} = 0 \qquad \sum_{i=1}^{4} b_{iy} \cdot \mathbf{r}_{\tilde{S}_{yi}} = 0 \qquad \sum_{i=1}^{4} b_{iz} \cdot \mathbf{r}_{\tilde{S}_{zi}} = 0 \qquad (1.20)$$

und andererseits

$$\det\left(\sum_{i=1}^{4} \boldsymbol{B}_{i}\right) \neq 0 \tag{1.21}$$

gelten, ergibt sich für die Summe der Messvektoren \tilde{s}_i

$$\sum_{i=1}^{4} \boldsymbol{B}_{i} \cdot \tilde{\boldsymbol{s}}_{i} = \sum_{i=1}^{4} \boldsymbol{B}_{i} \cdot \boldsymbol{g} \quad \leftrightarrow \quad \boldsymbol{g} = \left(\sum_{i=1}^{4} \boldsymbol{B}_{i}\right)^{-1} \cdot \sum_{i=1}^{4} \boldsymbol{B}_{i} \cdot \tilde{\boldsymbol{s}}_{i}. \quad (1.22)$$

Somit können die Einflüsse der Beschleunigungen ${}^A \boldsymbol{a}^{S_i}$ auf die Messwerte auch bei den Messvektoren $\tilde{\boldsymbol{s}}_i$ eliminiert werden.

1.2 Justierung der Sensoren

Bisher wurden die Anzeigewerte der Sensoren als Beschleunigungswerte betrachtet. Allerdings geben die Sensormodule ihre Messwerte in digitaler 2K-Darstellung aus, weshalb eine Ausgleichsfunktion bestimmt werden muss um die Anzeigewerte in die entsprechende SI-Einheit zu überführen. Im ersten Schritt wird die Annahme getroffen, dass die Anzeigewerte proportional zu den Beschleunigungswerten und von einer systematischen Messabweichung überlagert sind. Um diese Fehler auszugleichen wird ein Polynom erster Ordnung verwendet, welches den digitalen Anzeigewert x als Argument entgegennimmt und den entsprechenden Beschleunigungswert y in m/s^2 zurückgibt.

$$y = p_1 \cdot x + p_2 \tag{1.23}$$

Mit diesem Ansatz muss für jede Messachse der Sensoren