16CSCN01I: Introduction to Computer Networks

Lecture 1: Logistics and Introduction

Dr. Amal ElNahas

Course Objectives

- As Computer Networking is turning 50's, we need to:
 - Understand the principles of computer networking. Communications networks are central to almost every modern computer system.
 - See how these principles apply to the Internet
 - Hopefully being able (soon) to figure out what good things, exciting challenges lie ahead (how can we do better)

Topics Covered

- This is an introductory course, so we will go through many thing: Applications, topology, delays, routing, congestion,
- Text book:
 - "Data Communications and Networking", 4th edition,
 B. Forouzan
 - "Computer networking: a top down approach", 5th edition,
 J.Kurose
- Topics covered:
 - Overview
 - Data communication
 - Layering approach
 - Network models
 - ISO/OSI model
 - Internet model (TCP/IP)
 - Application layer
 - Transport layer
 - Network layer

How to Pass This Course?

- Brain
- Hard work
- MOTIVATION

How to Pass This Course?

- Attend
- Ask questions
 —
 (follow the flowchart)
- Benefit from office hours

Important Note

- These slides are not meant to be comprehensive lecture notes! They
 are only remarks and pointers. The material presented here is not
 sufficient for studying for the course
- Your main sources for studying are:
 - Your own lecture notes
 - Reference book

Course Assessment Tools

In-class test

Lab test

Final-term exam

Course Assessment Tools

■ In-class test 20% (week 8)

• Lab test 20% (week 12)

Final-term exam60%

Important Questions

- What is computer network and what is the network architecture?
- What are the different types of networks? (LAN, WAN, MAN,....)
- What is the Internet and how it works?
- How can computers communicate? (protocols)

What is a Computer Network?

- Recursive definition:
 - 2 or more computers connected by a link (each called a node)
 - 2 or more networks connected by 2 or more nodes

Benefits:

Communication Model in Networks

Network Components

Links

Coaxial Cable

Interfaces

Ethernet card

Wireless card

Switches/routers

Large router

How to Connect

Direct connectivity:

a. Point-to-point

b. Multipoint

How to Connect

• Indirect connectivity:

Networks Types

- Depending on one's perspective, we can classify networks in different ways:
 - Based on transmission media: Wired (coaxial cables, fiber-optic cables) and Wireless
 - Based on network size: LAN and WAN (and MAN)
 - Based on management method: Peer-to-peer and Client/Server
 - Based on topology (connectivity): Bus, Star, Ring,...
 -

Transmission Media

Wireless

Networks Size

- Local Area Networks (LAN)
 - Nodes within small geographic region (home, business, school)
 - Limited by no. of computers and distance covered
- Wide Area Networks (WAN)
 - Uses long-range telecommunication links to connect 2 or more LANs/computers housed in different places far apart.

Networks Size

- Other types:
 - Metropolitan Area Networks (MAN)
 - Campus Area Network (CAN)
 -

Network Management (architecture)

- Peer-to-peer (P2P)
 - Most common in home networks

- Client/server
 - Most common in Internet

- Every node connected to every other node
- Link only carries data between two
- devices only
 Expensive (more cabling) with many redundant connections

- •Each computer has a cable connected to a single point (hub, switch or router)
- •All signals transmission through the hub; if down, entire network down
- Depending on the intelligence of hub, two or more computers may send message at the same time
- •Inexpensive and easy to install
- Used mainly in LANs

- Every node has exactly 2 neighbors
- All messages travel in one direction
- Typical way to send data:

- Token passing
 •Expensive and difficult to install
- Offers high bandwidth

What's the Internet: "nuts and bolts" view

- millions of connected computing devices: hosts = end systems
- running network apps
- communication links
 - fiber, copper, radio, satellite
- routers: forward packets (chunks of data)
- Protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, FTP,...

What's a protocol?

a human protocol and a computer network protocol:

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Protocol "Layers"

Networks are complex! many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

Is there any hope of *organizing* structure of network?

ISO/OSI Reference Model

Established in 1947, the <u>International Standards Organization</u> (*ISO*) is a multinational body dedicated to worldwide agreement on international standards. An ISO standard that covers all aspects of network communications is the <u>Open Systems Interconnection</u> (*OSI*) model. It was first introduced in the late 1970s. It is composed of 7 layers

ISO/OSI Reference Model

Interaction between layers in the OSI model

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: host-host data transfer
 - TCP, UDP
- Network (internet): routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - PPP, Ethernet
- physical: bits "on the wire"

OSI vs TCP/IP Layers

Networking: A Top-Down Approach

To be continued