Datum: 14. 9. 2022	SPŠ CHOMUTOV	Třída:
Číslo úlohy:	MĚŘENÍ PARAMETRŮ POLOVODIČOVÝCH PRVKŮ – ZENEROVA DIODA	Jméno: Schöpp Petr

Změřte kapacitu a dynamický odpor Zenerových diod (kapacitu u 8NZ70 a dynamický odpor u KZZ73)

Zapojení:

Kapacita:

Dynamický odpor:

Tabulka použitých přístrojů:

NÁZEV	OZNAČENÍ	PARAMETRY	EVIDENČNÍ ČÍSLO
Zdroj	U	0-36V 2A	LE2 1030
Ochranný odpor	R _o	1Α 250Ω	LE2 436
Reostat	R_p	0,4Α 1450Ω	LE2 467
Potenciometr	Р	1,6Α 105Ω	LE2 432
Miliampérmetr	mA	0-600mA <u> </u>	LE2 2243/7
Voltmetr	V	0-600V <u> </u>	LE 410/5
Číslicový voltmetr	ČV	MX 547	LE2 61
Elektronický voltmetr	EV	BM 579 0-300V	LE2 1549
Generátor	G	20MHz SDG 1020	LE 5078
Odporová dekáda	R_N	0-111 111Ω	LE1 1832
Kapacitní dekáda	C_N	0-1387pF	-
Vazební kondenzátor	C_V	150pF	-
Kondenzátor	C_1	4μF	-
Tlumivka	TL		LE 664

Cívka	L		
Přepínač	PŘ	-	-
Vypínač	VYP	250V 6A	-
Zanaraya diada	70	8NZ70: I _z =70mA U _z =16,2-20V	
Zenerova dioda	ZD	KZZ73: Iz=30mA Uz=7,8-9,8V	-

Teorie:

Kapacita:

Kapacita Zenerovy diody vzniká v důsledku vyčerpání nosičů v oblasti přechodu P-N při polarizaci v závěrném směru. Její hodnota je řádově desítky až stovky pF.

Dynamický odpor:

Pracovní bod při měření je 0,2 I_{Zmax} až I_{Zmax}, proto musíme určit hodnoty R_O, R_P, U. Hodnota dynamického odporu jsou řádově jednotky ohmů.

Postup:

Kapacita:

- 1) Vypínač je rozepnutý a kapacita C_N je na max. hodnotě
- 2) Změnou frekvence uvedeme obvod do rezonance (výchylka EV na max.)
- 3) Zapneme vypínač a pomocí potenciometru nastavíme pracovní bod diody => došlo k rozladění paralelního pracovního obvody
- 4) Změnou kapacity C_N uvedeme obvod znovu do rezonance

Dynamický odpor:

- 1) Přepínač nastaven do polohy 1 (ZD), vypínač je sepnutý, pomocí R_p nastavíme pracovní bod
- 2) Na generátoru nastavíme frekvenci 1kHz a sinusového průběhu (o velikosti 20-60mV)
- 3) Odpor R_N nastavíme na nulu
- 4) Vypneme vypínač a přepneme přepínač do polohy 2 (R_N)
- 5) Zvyšujeme R_N až do okamžiku, než dosáhneme původního napětí

Tabulka hodnot:

Kapacita diody 8NZ70:

U (V)	C ₁ (pF)	C ₂ (pF)	C _{ZD} (pF)
16		1055	332
14		1045	342
12		1020	367
10	1387	995	392
8		950	437
6		875	512
4		790	597
2		550	837

Dynamický odpor diody KZZ73:

I _R (mA)	R _P (Ω)
6	29,8
10	18,2
14	14
18	11,1
22	7,7
26	7,4
30	6

Graf:

Kapacita diody 8NZ70:

Dynamický odpor diody KZZ73:

Výpočty:

Kapacita Zenerovy diody:

$$C_{ZD} = C_1 - C_2 = 1387 - 1055 = 332pF$$

Napětí zdroje a R_P:

$$U = I_{max} * (R_O + R_{TL}) + U_{ZD} = 0.03 * (250 + 78.2) + 8.7 = 18.546V$$

$$R_P = \frac{U - U_{ZD}}{0.2 * I_{Zmax}} - R_O - R_{TL} = \frac{18,546 - 8,7}{0.2 * 0.03} - 250 - 78,2 = 1312,8\Omega$$

Závěr:

Měření proběhlo bez problémů. Hodnoty a výsledná charakteristika vyšla podle očekávání (s jemnými odchylkami, které vyplívají z nepřesností odečtů)

Číslo úlohy :	MĚŘENÍ NA STABILIZÁTORECH	Vaněček Adam
2022	SPŠ CHOMUTOV	A4
Datum :		Třída:

Změřte zatěžovací charakteristiku $U_2 = f(I_2)$, Vypočítejte hodnotu odporu R_a pro dosažení napětí 8V. Zapojení realizujte, případný rozdíl U_2 upravte změnou odporu R_a . Určete proud I_0 .

Schéma zapojení:

1) Měření zatěžovací charakteristika

2) Zapojení pro dosažení jiného než konstrukčního napětí 3) Zdroj konstantního proudu

Použité přístroje:

Název	Označení	Parametry	Ev. Číslo
Zdroj	U	260V/3A	LE 5117
Kondenzátor	Ca	10 000 μF/25V	-
Usměrňovač	$D_1 - D_4$	KY 704	-
Voltmetr	V ₁	0-600V	LE2 1940/1
Voltmetr	V_2	0-600V	LE2 1942/4
Ampérmetr	Α	0-6A	LE2 1939/10
Oddělovací trafo	ОТ	220V, 2x25V	-
Reostat	R _{Z1}	108 Ω/1,8A	LE 5084
Reostat	R _{Z2}	18 Ω / 2,5A	
Stabilizátor	-	7805	-
Odporová dekáda	Ra	111111,1 Ω	LE1 1829
Odporová dekáda	R _b	111111,1 Ω	LE1 1919

Teorie:

Stabilizátor je elektrické zapojení diskrétních součástek, nebo elektronická součástka na principu integrovaného obvodu, která umožňuje stabilizovat výstupní napětí nebo proud, při změnách výstupního napětí a teploty okolí. Na jiných veličinách není obvykle hodnota vstupního napětí závislá, pokud ano, je třeba sledovat i takové vlivy jako je například stárnutí součástek, vliv elektromagnetického rušení a další podobné vlivy. Kromě stabilizačních účinků, každý typ stabilizátoru více či méně snižuje střídavou složku, výstupního napětí a pracuje tedy jako filtr.

Postup:

- A) Měření zatěžovací charakteristika
 - 1) Zapojíme obvod dle příslušného schématu.
 - 2) V katalogu vyhledáme mezní hodnoty.
 - 3) Navrhneme velikost odporu na reostatech, tak abychom mohli provést měření v rozsahu 0,1 1A s neporušenou podmínkou.
 - 4) Nastavujeme proud a odečítáme napětí.
 - 5) Postup opakujeme pro porušenou podmínku.
- B) Dosažení jiného než konstrukčního napětí
 - 1) Zapojíme obvod dle příslušného schématu.
 - 2) R_b zvolíme 150Ω, z toho vypočítáme R_a pro 8V
 - 3) Nastavíme odpory na dekádách, při případném rozdílu $U_{v\acute{y}st}$ (v našem případě 8V) opravíme změnou odporu R_a .
 - 4) Nastavujeme proud a odečítáme napětí.
 - 5) Vypočítáme I₀.

- C) Dosažení konstantního proudu
 - 1) Zapojíme obvod dle příslušného schématu.
 - 2) Vypočítáme hodnotu odporu R₁ pro I₂=0,05A.
 - 3) Měníme odpor R_2 a odečítáme napětí a proud, proud by měl být stále stejný (50mA)

Tabulka naměřených hodnot:

A) Měření zatěžovací charakteristika

Splněná podmínka			Nesplněná podmínka		
U _{vst} (V)	U _{výst} (V)	I(A)	U _{vst} (V)	U _{výst} (V)	I(A)
24	5	0	17,8	5	0
21	5	0,1	15,2	5	0,1
19,2	5	0,2	13,4	5	0,2
17,8	5	0,3	12	5	0,3
16,4	5	0,4	10,8	5	0,4
15,4	5	0,5	9,4	5	0,5
14	5	0,6	8,6	5	0,6
13	5	0,7	7,6	4,9	0,7
11,8	5	0,8	6,6	4,7	0,8
10,8	5	0,9	5,6	3,8	0,9
9,8	5	1	4,8	2,6	1

B) Dosažení jiného než konstrukčního napětí

C) Dosažení konstantního proudu

U _{vst} (V)	U _{výst} (V)	I(A)
26	8	0
23,2	8	0,1
21,4	8	0,2
19,8	8	0,3
18,4	8	0,4
16,2	8	0,5
15,8	8	0,6
14,6	8	0,7
13,4	8	0,8
12,6	8	0,9
11,4	8	1

U (V)	$R_a(\Omega)$	I (mA)
0	0	50
1,9	40	50
4	80	50
6	120	50
8	160	50
10	200	50

 $I_0 = 5,56mA$

Grafy:

A) Měření zatěžovací charakteristika

B) Dosažení jiného než konstrukčního napětí

C) Dosažení konstantního proudu

Příklad výpočtu:

$$\begin{split} &U_2 = U_{jm} * \left(1 + \frac{R_a}{R_b}\right) = > R_a = R_b \left(\frac{U_2}{U_{jm}} - 1\right) = 150 * \left(\frac{8}{5} - 1\right) = 90\Omega \\ &I_0 = \frac{U_{jm} - U_{v \circ st}}{R_a} = \frac{0.5}{90} = 5.56 mA \\ &U_1 = U_{jm} + I_2 * R_2 + 3 = 5 + 0.05 * 200 + 3 = 18V \\ &I_2 = \frac{U_{jm}}{R_1} + I_0 = > R_1 = \frac{U_{jm}}{I_2} = \frac{5}{0.05} = 100\Omega \end{split}$$

Závěr:

Při měření nenastaly žádné komplikace. Charakteristiky odpovídají teoretickým předpokladům.

Datum: 5. 10. 2022	SPŠ CHOMUTOV	Třída:
Číslo úlohy:	PROGRAMOVÁNÍ AMS – AKTIVNÍ FILTRY (KEYSIGHT VEE)	Jméno: Schöpp Petr

Změřte ampliutudově-frekvenční charakteristiku dolní propusti

Zapojení:

Tabulka použitých přístrojů:

	¥/		
NÁZEV	OZNAČENÍ	PARAMETRY	EVIDENČNÍ ČÍSLO
Stabilizovaný zdroj	±15	15V 1A	LE2 1027
Odporová dekáda	R ₁	111 111Ω	LE1 1833
Odporová dekáda	R ₂	11 111 110Ω	LE2 5055
Číslicový voltmetr	ČV	HP 34401A 1000V	LE 103
Generátor	G	HP 33120A 15MHz	LE 104
Kondenzátor	С	0,01μF	-
Operační zesilovač	OZ	MAA 741 (U _{CC} ±3 až ±18)	LE 2381

Teorie:

Dolní propust je filtr, který propouští jen frekvence nižší, než je dělící frekvence. Při nižších frekvencích je impedance kondenzátoru vysoká, a proto nemá vliv. Při vyšších frekvencích se impedance kondenzátoru začne zmenšovat a pomalu ovlivňovat propustnost filtru.

Postup:

- 1) Zapojíme obvod dle schématu
- 2) Vypočteme potřebné údaje R₁ a R₂
- 3) Vytvořím program v Keysight VEE
- 4) Spustím program

Výpočty:

Odpory R₁ a R₂:
$$f_D = \frac{1}{2\pi * R_2 * C} = > R_2 = R_1 = \frac{1}{2\pi * f_D * C} = \frac{1}{2\pi * 1000 * 0,01 * 10^{-6}} = 15\ 916\Omega$$

Impedance ve zpětné vazbě:
$$Z=\frac{R_2}{1+2\pi f_D*R_2*C}=\frac{15916}{1+2\pi*1000*0,01*10^{-6}*15916}=7957,9\Omega$$

Výpis programu:

viz poslední strana

Komentář k programu:

- 1, 2: Zadání údajů (R a C)
- 3, 4, 5: Výpočet souřadnic na ose x (jednotlivé frekvence)
- 6: Sdružení souřadnic na ose x do pole
- 7: Sdružení souřadnic na ose y do pole
- 8: Displej typu X vs Y
- 9: Nastavení generátoru (druh signálu sinusový → výstupní impedance → druh napětí VRMS=efektivní hodnota → hodnota napětí
- 10: Měřící smyčka od první do poslední souřadnice na ose x
- 11: Nastavení frekvence generátoru
- 12: Výpočet zesílení
- 13: Hodnota napětí na voltmetru při dané frekvenci
- 14: Zpoždění 0,5s
- 15, 16: Spojení 2 vstupů do jednoho (pouze 1 vstup do data pinu)

Závěr:

Při tomto měření jsem se seznámil s programem Keysight VEE. Změřená charakteristika odpovídá teoretickým předpokladům.

Datum :		Třída:
12.10.2022	SPŠ CHOMUTOV	A4
Číslo úlohy:		Jméno :
4	Impulzně řízený zdroj	Vaněček Adam

Změřte závislost vstupního a výstupního napětí, určete účinnost zdroje a naměřte průběhy napětí v různých částech zdroje.

Schéma zapojení:

		,	
Zdroj	U	0-36V/2A	LE2 1031
Miliampérmetr	mA ₁	0-600mA <u> </u>	LE2 2294/9
Miliampérmetr	mA ₂	0-600mA <u> </u>	LE2 2241/8
Voltmetr	V ₁	0-600V	LE2 2256/3
Voltmetr	V ₂	0-600V	LE2 412/8
Reostat	R ₁	3900 Ω / 0,16Α	LE2 471
Reostat	Rz	1200 Ω / 0,63Α	LE1 373
Tranzistor	Т	NPN KD 501	-
Transformátor	Tr	600 : 600	-
Tlumivka	L	L = 4H	-
Sada diod	D	KY 701F	-
Sada kondenzátorů	С	1 μF ÷ 1000 μF	14
Generátor	G	SDG 1020, 20Mhz	LE 5078
Osciloskop	Osc	Rigol DS 1052E, 50Mhz	LE 5064

Teorie:

Základním principem a současně podstatnou odlišností impulsní regulace od regulace klasické je její spojitost. Výstupní napětí U_S je tedy stabilizováno zásahy výkonového regulačního členu pouze v určitých časově omezených intervalech T_a. U spojitého lineárního regulátoru ovládá odchylka výstupního napětí od jmenovité velikosti (k*U_S - U_{ref}) spojitě a proporcionálně okamžitý "odpor" výkonového regulačního členu tak, aby výstupní napětí U_S bylo konstantní. Z toho vyplívá velká poměrná výkonová ztráta na regulačním členu a malá účinnost. U impulsní regulace pracuje regulační prvek (tranzistor) jako řízený spínač. Proud jím tedy prochází jen po určitý interval pracovního cyklu. Výkonová ztráta je tedy výrazně nižší.

Výhody impulsně regulovaných zdrojů:

- 1) Velká energetická účinnost
- 2) Velké výstupní výkony
- 3) Výhodné konstrukční parametry

Nevýhody impulsně regulovaných zdrojů:

- 1) Kmitočtové rušení
- 2) Dynamické parametry

Postup:

- 1) Zapojíme obvod dle schématu
- 2) Nastavíme generátor na požadované hodnoty (2KHz, obdélníkový signál, posunutí offsetu)
- 3) Nastavíme zdroj tak, abychom dosáhli 24V při nejvyšší možné střídě
- 4) Nastavujeme střídu a odečítáme z měřících přístrojů
- 5) Hodnoty zapisujeme, vypočítáme výkony a účinnost a sestrojíme graf
- 6) Nastavíme střídu na hodnotu 50% a připojíme Ch2 osciloskopu na:
 - a) bázi spínacího tranzistoru
 - b) kolektor tranzistoru
 - c) výstup transformátoru
 - d) nárazový kondenzátor
 - e) zátěž
- 7) Ukládáme naměřené obrazce na osciloskopu

Tabulka naměřených hodnot:

Střída (%)	U ₁ (V)	I ₁ (mA)	U ₂ (V)	I ₂ (mA)	P ₁ (mW)	P ₂ (mW)	η (%)
20	14	1,7	3,6	3,0	23,8	10,6	44,62
25	14	2,6	4,8	3,9	35,7	18,5	51,76
30	14	3,7	5,8	4,7	51,8	27,3	52,63
35	14	5,2	6,9	5,7	72,1	39,0	54,07
40	14	7,6	8,7	7,0	106,4	60,9	57,24
45	14	10,4	10,3	8,4	145,6	86,5	59,42
50	14	14,4	12,2	9,8	201,6	119,6	59,31
55	14	19,4	14,0	11,2	271,6	156,8	57,73
60	14	28,0	17,0	13,8	392,0	234,6	59,85
65	14	19,0	19,6	15,8	266,0	309,7	116,42
70	14	53,0	22,4	18,0	742,0	403,2	54,34
75	14	70,0	23,8	19,0	980,0	452,2	46,14
76	14	74,0	24,0	19,2	1036,0	460,8	44,48
80	14	82,0	22,2	17,8	1148,0	395,2	34,42

Grafy:

a) Zapojení CH2 osciloskopu na bázi tranzistoru

Můžeme si všimnout, že báze po vypnutí zůstává ještě chvíli otevřená. To je způsobeno indukčností z transformátoru. (Červeně Ube).

b) Zapojení CH2 osciloskopu na kolektor tranzistoru

Napětí na tranzistoru odpovídá dvojnásobku napětí zdroje. Z důvodu indukování napětí ze sekundáru do primáru, které se přičítá k napětí zdroje. (Červeně Uce).

c) Zapojení CH2 osciloskopu na výstup transformátoru

Napětí je střídavé. Vidíme zde správné zfázování zdroje.

d) Zapojení CH2 osciloskopu na nárazový kondenzátor

Zde je průběh napětí na nárazovém kondenzátoru, na kterém je částečně vyfiltrované napětí výstupu.

e) Zapojení CH2 osciloskopu na zátěž

Časový průběh výstupního napětí. Je vidět, že napětí je kompletně vyhlazeno.

Příklad výpočtu:

$$\overline{P_1 = U_1 * I_1} = 14 * 1,7 = 23,8 mW$$

$$\eta = \frac{P_2}{P_1} * 100 = \frac{10,6}{23,8} * 100 = 44,62 \%$$

Při měření jsem změřil závislost výstupního napětí na střídě, závislost účinnosti na střídě a průběhy napětí v různých částech obvodu. Z grafu vyplývá, že účinnost je největší okolo 50% střídy.

Datum: 19. 10. 2022	SPŠ CHOMUTOV	Třída:
Číslo úlohy:	MĚŘENÍ NA OPERAČNÍCH ZESILOAČÍCH I	Jméno: Schöpp Petr

Zapojte a následně změřte základní zapojení operačního zesilovače

Schéma zapojení:

2. Převodník U/U s invertujícím OZ:

1. Převodník U/U s neinvertujícím OZ:

4. Převodník U/I s invertujícím OZ:

3. Převodník U/I s neinvertujícím OZ:

Tabulka použitých přístrojů:

NÁZEV	OZNAČENÍ	PARAMETRY	EVIDENČNÍ ČÍSLO
Stabilizovaný zdroj	±15V / 5V	15V / 5V 1A	LE 1028
Osciloskop	OSC	Rigol DS2072A 70MHz	LE 5081
Miliampérmetr	mA	0-600mA □	LE2 2243/7
Generátor	G	Siglent SDG 1020 20MHz	LE 5080
Odporová dekáda	káda D D D	0-111 111Ω	LE1 1924
	R_1 , R_2 , R_Z	0-111 11112	LE1 1828

Teorie:

- &1. Jakými vlastnosti se OZ blíží ideálním zesilovačům? Velmi vysoké zesílení, vysoký vstupní odpor a malý výstupní odpor
- &2. Vypište z katalogu potřebné charakteristické a mezní parametry OZ MAA 741

Mezni hodnaty:		MAA 741 MAA 748	MAA 741C MAA 748C	
Napájecí napětí Vstupní napětí rozdílové Vstupní napětí¹)	U _{cc} U _{lp} U _l	±3±22 ±30 ±15	±3±18 ±30 ±15	V V V
Napětí mezi vývody (jen MAA 741, MAA 741C) č. 1 a 4 č. 5 a 4 Ztrátový výkon	U _{1/4} U _{1/5} P _{IOI}	±0,5 ±0,5 500	±0,5 ±0,5 500	V V mW
Rozsah pracovních teplot Rozsah skladovacích teplot	$oldsymbol{\hat{v}_{a}}{\hat{v}_{stg}}$	55±125 65±155	0±70 -65±155	တ္

Charakteristickė údaje:	$C_{\rm C} = 0$ $C_{\rm C} = 30$) pF		A 741 A 748		741C 748C	
Platí při U _{cc} = ±15 V, není-li uvedeno jinak			∂ _a =	+25 °C	∂ _a =	+25 °C	
Napěťová nesymetrie vstupů R _s ≦ 10 kΩ Proudová nesymetrie vstupů Vstupní klidový proud Vstupní odpor Napěťové zesilení otevřené smyčky	MAA 741 MAA 748	U _{IO} U _{IO} U _{IO} U _{IO} U _{IO} U _{IB} R _{ISE}	1,5 1,5 10 80 3	<5 <5 <200 <500 >0,3	2 2 10 80 3	<6 <200 <500 >0,3	mV mV nA nA MQ
$R_{\rm L} \ge 2~{\rm k}\Omega,~U_{\rm O} = \pm 10~{\rm V}$ $R_{\rm L} \ge 2~{\rm k}\Omega,~U_{\rm O} = \pm 10~{\rm V}$ Napájeci proud Příkon Rozkmit výstupního napětí $U_{\rm CC} = 22~{\rm V},~R_{\rm L} \ge 2~{\rm k}\Omega$ $U_{\rm CC} = 18~{\rm V},~R_{\rm L} \ge 2~{\rm k}\Omega$	MAA 741 MAA 748	Au Au Icc P UOPP mex UOPP mex	150 000 130 000 1,3 40 ±20	>50 000 >50 000 <2,8 <85 >±17	130 000 120 000 1,3 40 — ±16	>20 000 >20 000 <2,8 <85 >±13	mA mW V

&2.1. Naznačte způsob vytvoření symetrického napájení OZ pomocí dvou stejných zdrojů stejnosměrného napětí.

&4.1. Jaká je výhoda neinvertujícího OZ proti invertujícímu z hlediska vstupního odporu? U neinvertujícího OZ je vstupní odpor daný vnitřním odporem OZ, zatímco u invertujícího OZ je roven R_1

Postup:

Kapacita:

- 1) Odpovědět na zadané otázky
- 2) Zapojit obvod dle schématu
- 3) U převodníků U/U vhodně zobrazím průběhy na osciloskopu a pomocí jeho funkcí zjistím požadované hodnoty
- 4) U převodníků U/I nastavuji R_z dokud se nezmění hodnota miliampérmetru, poté odečtu hodnotu R_z

Naměřené hodnoty:

1. Převodník U/U s invertujícím zesilovačem

Naměřená hodnota zesílení:

$$A_U = \frac{U_2}{U_1} = \frac{25,74}{2,62} = 9,82$$

Fázový posun = 177,1°

U_{SAT+}= 14,28 V

U_{SAT-}= -13,08 V

2. Převodník U/U s neinvertujícím zesilovačem

Naměřená hodnota zesílení:

$$A_U = \frac{U_2}{U_1} = \frac{24,3}{2,23} = 10,9$$

Fázový posun = 2,88°

U_{SAT-}= -13,22 V

Výpočty:

- &3. Navrhněte hodnoty napájecího napětí a zpětnovazebních odporů pro invertující a neinvertující zesilovač.
- &3.1. Invertující zesilovač
 - U_{CC}= ±15V
 - Pro Au= 10 a R_2 = 100k Ω navrhněte velikost odporu R_1

$$Au = \frac{R_2}{R_1} = R_1 = \frac{R_2}{Au} = \frac{100 * 10^3}{10} = 10k\Omega$$

• Pro ss signál je $R_{VST}=R_1$, jakou hodnotu bude mít odpor R_2 , jestliže chceme vytvořit invertor jehož $R_{VST}=10k\Omega$ $Au=-1=>R_2=R_1=10k\Omega$

&4. Neinvertující zesilovač

- U_{CC}= ±15V
- Pro Au = 11 a R_2 = 100k Ω navrhněte velikost odporu R_1

$$Au = 1 + \frac{R_2}{R_1} = R_1 = \frac{R_2}{Au - 1} = \frac{100 * 10^3}{10} = 10k\Omega$$

&5. Převodník U/I

- U_{CC}= ±15V
- &5.1. Určete velikost odporu R₁, jestliže při vstupním napětí 5V chceme vytvořit z OZ zdroj proudu o velikosti 5mA. $I_2 = \frac{U_1}{R_1} => R_1 = \frac{U_1}{I_2} = \frac{5}{5*10^{-3}} = 1k\Omega$
- &5.2 Ověřte, že velikost I_2 nezávisí na hodnotě odporu R_Z až do určitého R_{Zmax} . Experimentálně zjistěte velikost R_{Zmax} a porovnejte s vypočtenou hodnotou.

$$R_{Zmax} = \frac{U_{SAT}}{I_2} - R_1 = \frac{(12 \text{ až } 14)}{5 * 10^{-3}} - 1000 = 1400 \text{ až } 1800\Omega$$

 $R_{Zreal} = 1760\Omega = vychazí z teoretického rozmezí$

- &5.3. Určete velikost odporu R₁, jestliže při vstupním napětí 5V chceme vytvořit z OZ zdroj proudu o velikosti 5mA. $I_2 = \frac{U_1}{R_1} = > R_1 = \frac{U_1}{I_2} = \frac{5}{5*10^{-3}} = 1k\Omega$
- &5.4. Ověřte, že velikost I_2 nezávisí na hodnotě odporu RZ až do určitého R_{Zmax} . Experimentálně zjistěte velikost R_{Zmax} a porovnejte s vypočtenou hodnotou.

$$R_{Zmax} = \frac{U_{SAT}}{I_2} = \frac{(12 \text{ až } 14)}{5 * 10^{-3}} = 2400 \text{ až } 2800\Omega$$

$$R_{Zreal} = 2490\Omega = vychazí z teoretického rozmezí$$

Závěr:

Měření proběhlo bez problémů. Hodnoty a výsledná charakteristiky odpovídají teoretickým předpokladům, až na fázové posuny, které byly o pár stupňů posunuty.

Datum :		Třída:
2.112022	SPŠ CHOMUTOV	A4
Číslo úlohy :		Jméno :
6	PŘEVODNÍK EFEKTVNÍ HODNOTY NAPĚTÍ	Vaněček Adam

Pomocí programu VEE sestavte program pro měření efektivní hodnoty napětí pro 3 různé průběhy, zároveň v programu vyhodnoťte, zda naměřená hodnota odpovídá rozmezí.

Schéma zapojení:

Použité přístroje:

Název	Označení	Parametry	Ev. Číslo
Zdroj	±U _{cc,} GND	15V, 2A	
Generátor	u_1	HP 33220A	-
Multimetr	u ₂	HP 34401A	-
Převodník ef. hodnoty	Převodník ef. hodnoty	-	LE2 2160

Teorie:

Převodník efektivní hodnoty se skládá z několika operačních zesilovačů a odporů zapojených tak, aby na výstupu byla zobrazena velikost efektivní hodnoty, která je převedena právě ze vstupního signálu. Vstupní hodnoty byly měřeny pro sinusový průběh, trojúhelníkový a čtvercový.

Postup:

- 1) Zapojení dle schématu
- 2) Vypočítáme konstanty pro výpočet efektivní hodnoty z Upp. (č. 15 ve výpisu programu)
- 3) Vytvoříme program
- 4)Zapneme

Tabulka naměřených hodnot:

TYP	F (Hz)	U _{1ef} (V)	U _{2ef} (V)	ΔR (%)	ZÁVĚR
SIN	1000	2,12	2,12	-0,28	OK
SQU	1000	3	2,98	-0,77	OK
TRI	1000	1,73	1,73	-0,29	OK

Příklad výpočtu:

SIN:
$$U1ef = \frac{Upp}{2\sqrt{2}} = \frac{6}{2\sqrt{2}} = 2,12V$$

SQU:
$$U1ef = \frac{Upp}{3\sqrt{2}} = \frac{6}{2} = 3V$$

TRI:
$$U1ef = \frac{Upp}{2\sqrt{3}} = \frac{6}{2} = 1,73V$$

$$\Delta R = \frac{U2ef - U1ef}{U1ef} = \frac{2,98 - 3}{3} = -0,77\%$$

Komentáře k programu:

- 1) Nastavíme základní hodnoty generátoru (f = 1kHz, U = 6V)
- 2) Vytvoříme cyklus s hodnotou od 0 do 2. Tento cyklus řídí jednotlivá měření
- 3)Podle hodnoty cyklu vybereme z pole tvar signálu
- 4) Nastavíme generátor na požadovaný tvar signálu
- 5)Podle hodnoty z cyklu vybereme z pole konstantu pro vzorec pro daný tvar signálu a vypočteme efektivní hodnotu pro napětí generátoru.
- 6)Po zpoždění 1s změříme efektivní hodnotu.
- 7)Z vypočtené a naměřené hodnoty vypočítáme relativní chybu
- 8)Zjistíme, zda je relativní chyba v limitu ±3 % a podle toho vypíšeme OK nebo KO
- 9)Uzel pro výpisy
- 10)Zaokrouhlíme hodnoty
- 11) Nashromáždí data pro tabulku
- 12)Uzel pro tabulku
- 13) Vytvoření jednotlivých řádků
- 14)Tabulka
- 15) Real 64 Array. Vypočítá hodnoty. ($SIN = 2\sqrt{2}$; SQU: 2; $TRI: 2\sqrt{3}$)

Závěr:

Převodník efektivní hodnoty pro tvary signálů sinusový, čtvercový a trojúhelníkový odpovídá toleranci ± 3 %. Žádná z naměřených relativních chyb nepřekročila 1%.

Výpis programu:

Na další straně.

