- 1 -

PATENT CLAIMS

comprising beta-quartz Glass-ceramic, keatite solid solutions having a surface roughness 5 without polishing of Ra < 50 nm, a thermal expansion in the temperature range between 20°C and 300°C of $< 1.2 \cdot 10^{-6}/K$, a transmission in the near infrared region at 1050 nm of > 85% for a thickness of 4 mm, and a composition in % by 10 weight, based on the total composition, containing:

	Li ₂ O	3.0-5.5
	Na ₂ O	0-2.5
15	K ₂ O	0-2.0
	Σ Na ₂ O+K ₂ O	0.5-3.0
•	Σ MgO+ZnO	< 0.3
	SrO	0-2.0
	BaO	0-3.5
20	B ₂ O ₃	0-4.0
	Al ₂ O ₃	19.0-27.0
	SiO ₂	55.0-66.0
	TiO ₂	1.0-5.5
	ZrO ₂	0-2.5
25	Σ TiO ₂ +ZrO ₂	3.0-6.0
	P ₂ O ₅	0-8.0
	Fe ₂ O ₃	< 200 ppm
	F .	0-0.6

- and, if appropriate, at least one refining agent, such as As_2O_3 , Sb_2O_3 , SnO_2 , CeO_2 , sulphate and chloride compounds.
- Glass-ceramic according to Claim 1, comprising beta-quartz solid solutions as the main crystal phase, having a thermal expansion in the temperature range between 20°C and 300°C of < 0.5• 10^{-6} K, a transmission in the near infrared

region at 1050 nm of > 87%, preferably > 89% for a thickness of 4 mm, and a composition in % by weight, based on the total composition, containing:

5

•	•	
	Li ₂ O	3.0-5.5
•	·Na ₂ O	0-2.0
	K ₂ O	0-1.5
	Σ Na ₂ O+K ₂ O	0.5-2.5
10	Σ SrO+BaO	< 4.0
v* .	Σ TiO ₂ +ZrO ₂	3.5-5.5
	Σ B ₂ O ₃ + P ₂ O ₅	1.0-8.0
	Fe ₂ O ₃	< 130 ppm
	ŗ F	0-0.3

15

and, if appropriate, at least one refining agent, such as As_2O_3 , Sb_2O_3 , SnO_2 , CeO_2 , sulphate and chloride compounds.

20 3. Glass-ceramic according to Claim 1, having a composition in % by weight, based on the total composition, containing:

	Li ₂ O	3.0-5.0
25	Na ₂ O	0-2.0
	K ₂ O	0-1.5
	Σ Na ₂ O+K ₂ O	0.5-2.0
	Σ SrO+BaO	< 3.0
	B ₂ O ₃ .	0-3.0
30	Al ₂ O ₃	21.0-27.0
•	TiO ₂	1.5-5.5
	Σ TiO ₂ +ZrO ₂	3.5-5.0
	$\Sigma B_2O_3 + P_2O_5$	1.0-8.0

and, if appropriate, at least one refining agent, such as As_2O_3 , Sb_2O_3 , SnO_2 , CeO_2 , sulphate and chloride compounds.

4. Glass-ceramic according to Claim 1, having a composition in % by weight, based on the total composition, containing:

5	Li ₂ O	3.5-5.0
	Na ₂ O	0-2.0
	K ₂ O	0-1.5
	Σ Na ₂ O+K ₂ O	0.5-2.5
	Σ SrO+BaO	1.0-4.0
10	A1 ₂ O ₃	20-25
	SiO ₂	55-63
	TiO ₂	1.5-5.5
	ZrO ₂	0-2.0
	Σ TiO ₂ +ZrO ₂	3.5-5.0
15	P ₂ O ₅	1.0-8.0
	$\Sigma B_2O_3 + P_2O_5$	2.0-8.0

and, if appropriate, at least one refining agent, such as As_2O_3 , Sb_2O_3 , SnO_2 , CeO_2 , sulphate and chloride compounds.

5. Glass-ceramic according to at least one of Claims 1 to 4, in which the mean crystallite size is < 300 nm, preferably < 80 nm.</p>

25

30

20

- 6. Glass-ceramic according to at least one of Claims 1 to 5, which on the surface has a vitreous layer, which is up to 1.5 μ m thick, with increased Na₂O, K₂O and/or SrO, BaO contents, and the increase in the surface roughness during the ceramicization of the glass-ceramic compared to the starting glass is less than 10 nm, preferably less than 5 nm.
- 7. Glass-ceramic according to at least one of Claims 1 to 6, additionally containing at least one coloured oxide which absorbs in the visible region but does not absorb or absorbs only to a slight

extent in the near infrared region, preferably $V_2 O_5$.

- 8. The glass-ceramic as claimed in at least one of Claims 1 to 7, which has a high temperature/time load-bearing capacity with regard to compaction of $< 60 \, \mu m/100 \, mm$ after conditioning at $600 \, ^{\circ}\text{C}$, 200 h.
- 9. Glass-ceramic according to at least one of Claims
 10 1 to 8, which has a high IR transmission of > 85%,
 preferably > 87%, for a thickness of 4 mm, in the
 wavelength range between 900 nm 1800 nm.
- 10. Glass-ceramic according to at least one of Claims
 1 to 9, in which the light transmission of the
 glass-ceramic is > 50%, preferably > 85%, for a
 thickness of 4 mm.
- 11. Glass having a composition in accordance with at least one of Claims 1 to 4.
- 12. Glass according to Claim 11, which has a thermal expansion in the temperature range between 20°C and 300°C of $< 5 \cdot 10^{-6}$ /K, preferably of $< 4.5 \cdot 10^{-6}$ /K and a transformation temperature Tg of > 600°C.
- 13. Glass according to Claim 11 or 12, which has an IR transmission of > 85%, preferably > 87%, for a thickness of 4 mm, in the wavelength range between 900 nm 1800 nm.
- 14. Glass according to Claim 11 or 12, which has a light transmission of > 85% for a thickness of4 mm.
 - 15. Reflector having an inner contour which approaches one or more parabolas, containing glass and/or

glass-ceramic according to at least one of Claims 1 to 14.

- 16. Reflector according to Claim 15, which has an IR-transmitting mirror coating, which preferably contains layer sequences of various oxide layers with different refractive indices, such as SiO₂/TiO₂.
- 10 17. Process for producing a vitreous substrate material, which can be converted into a glass-ceramic comprising beta-quartz and/or keatite solid solutions, for coating with a mirror coating, the shaping taking place via a feeder, in which a molten drop of defined weight is added to a pressing die, and the parabolic contour of the substrate material is pressed using a ram with a smoothed surface.

1

- 20 18. Process according to Claim 17, in which the conversion of the pressed vitreous substrate material into the glass-ceramic containing betaquartz solid solution as the main crystal phase takes place at nucleation temperatures of 630°C to 750°C, for a duration of > 15 min and the crystallization takes place at temperatures of 700°C to 850°C for a duration of > 30 min.
- 19. Process according to Claim 17, in which the pressed vitreous substrate material is converted into a glass-ceramic with keatite solid solution as the main crystal phase at temperatures of from 780°C to 1000°C.
- 35 20. Use of a glass or a glass-ceramic according to at least one of Claims 1 to 19 as substrate material for coating in which, on account of a high

luminous power, a high radiant heat combined with temperature differences has to be tolerated.

21. Use according to Claim 20, as a reflector, in particular a cold-light reflector, substrate material for a mirror coating and supplementary plate in illumination engineering.