1 Introduction

FiXme Error!

FiXme Error: write intro

1.1 Motivation

FiXme Error!

FiXme Error: write motivation

1.2 Notation

FiXme Error!

FiXme Error: write natation

2 Leading Order Calculations

In leading order we have to consider photon-gluon-fusion (PGF), that is

$$\gamma^*(q) + g(k_1) \to Q(p_1) + \overline{Q}(p_2) \tag{1}$$

with two contributing diagrams depicted in figure 1.

Figure 1: leading order Feynman diagrams

FiXme Error: shift to appendix?

The result can then be written as

$$\hat{\mathcal{P}}_{k}^{\gamma,\mu\mu'}\hat{\mathcal{P}}_{k}^{g,\nu\nu'}\sum_{j,j'=1}^{2}\mathcal{M}_{\mu\nu}^{(0),j}\left(\mathcal{M}_{\mu'\nu'}^{(0),j'}\right)^{*} = 8g^{2}\mu_{D}^{-\epsilon}e^{2}e_{H}^{2}N_{C}C_{F}B_{k,QED} \tag{2}$$

where g and e are the strong and electromagnetic coupling constants respectively, μ_D is an arbitray mass parameter introduced to keep the couplings dimensionless and e_H is the magnitude of the heavy quark in units of e. Further N_C corresponds to the gauge

group $SU(N_C)$ and the color factor $C_F = (N_C^2 - 1)/(2N_C)$ refers to the second Casimir constant of the fundamental representation for the quarks. We then find:

$$B_{QED,VV,F,Pg} = -2 + \frac{2(2m^2 + q^2)s + s'^2}{t_1 u_1} - \frac{2(2m^2 + q^2)m^2 s'^2}{(t_1 u_1)^2} + \epsilon \left\{ -1 + \frac{s^2 - q^2 s'}{t_1 u_1} - \frac{m^2 q^2 s'^2}{t_1^2 u_1^2} \right\} + \epsilon^2 \frac{s'^2}{4t_1 u_1}$$
(3)

$$B_{QED,VV,F,Pk1k1} = -\frac{4q^2}{s'} \left(\frac{s}{s'} - \frac{m^2 s'}{t_1 u_1} \right) \tag{4}$$

$$B_{P,QED} = \frac{1}{2} \left(\frac{t_1}{u_1} + \frac{u_1}{t_1} \right) \left(\frac{2m^2 s'}{t_1 u_1} - 1 - \frac{2q^2}{s'} \right) \tag{5}$$

$$B_{k,QED} = B_{k,QED}^{(0)} + \epsilon B_{k,QED}^{(1)} + \epsilon^2 B_{k,QED}^{(2)}$$
 (6)

3 Next-To-Leading Order Calculations

3.1 One Loop Virtual Contributions

$$M_k^{(1),V} = \hat{\mathcal{P}}_k^{\gamma,\mu\mu'} \hat{\mathcal{P}}_k^{g} \sum_{j} \left[\mathcal{M}_{j,\mu}^{(1),V} \left(\mathcal{M}_{1,\mu'}^{(0)} + \mathcal{M}_{2,\mu'}^{(0)} \right)^* + c.c. \right]$$

$$= 8g^4 \mu_D^{-\epsilon} e^2 e_H^2 N_C C_F C_{\epsilon} \left(C_A V_{k,OK} + 2C_F V_{k,OED} \right)$$
(7)

where $C_{\epsilon} = \exp(\epsilon/2(\gamma_E - \ln(4\pi)))/(16\pi^2)$ and C_A is the second Casimir constant of the adjoint representation for the gluon (that introduces a non-abelian part).

As the short example above shows, the full expressions for the $V_{k,OK}, V_{k,QED}$ are quite complicated and too long to be presented here, nevertheless the arising poles are quite compact:

$$V_{k,OK} = -2B_{k,QED} \left(\frac{4}{\epsilon^2} + \left(\ln(-t_1/m^2) + \ln(-u_1/m^2) - \frac{2m^2 - s}{s} \ln(\chi) \right) \frac{2}{\epsilon} \right) + O(\epsilon^0)$$
(8)

$$V_{k,QED} = -2B_{k,QED} \left(1 + \frac{2m^2 - s}{s} \ln(\chi) \right) \frac{2}{\epsilon} + O(\epsilon^0)$$
(9)

The above results already include the mass renormalization that we have performed onshell, so all ultra-violet poles have been removed. For the renormalization of the strong coupling we use the $\overline{\rm MS}_m$ scheme defined in [1] and so the full (remaining) renormalization can be achieved by

$$\frac{d^2 \sigma_k^{(1),V,ren.}}{dt_1 du_1} = \frac{d^2 \sigma_k^{(1),V}}{dt_1 du_1} + \frac{\alpha_s(\mu_R^2)}{4\pi} \left[\left(\frac{2}{\epsilon} + \gamma_E - \ln(4\pi) + \ln(\mu_R^2/m^2) - \ln(\mu_D^2/m^2) \right) \beta_0^f + \frac{2}{3} \ln(\mu_R^2/m^2) \right] \frac{d^2 \sigma_k^{(0)}}{dt_1 du_1} \qquad (10)$$

$$= \frac{d^2 \sigma_k^{(1),V}}{dt_1 du_1} + 4\pi \alpha_s(\mu_R^2) C_\epsilon \left(\frac{\mu_D^2}{m^2} \right)^{-\epsilon/2} \left[\left(\frac{2}{\epsilon} + \ln(\mu_R^2/m^2) \right) \beta_0^f + \frac{2}{3} \ln(\mu_R^2/m^2) \right] \frac{d^2 \sigma_k^{(0)}}{dt_1 du_1} \qquad (11)$$

with μ_R the renormalization scale introduced by the RGE, $\beta_0^f = (11C_A - 2n_f)/3$ the first coefficient of the beta function and n_f the number of total flavours (i.e. $n_{lf} = n_f - 1$ active (light) flavours and one heavy flavour). The double poles occurring in $V_{k,OK}$ are introduced by the diagrams FiXme Error: do when the soft and collinear singularities coincide.

FiXme Error!

The partonic cross section is given by

$$d\sigma_{k,g}^{(1),V} = \frac{1}{2s'} \frac{1}{2} E_k(\epsilon) b_k(\epsilon) M_k^{(1),V} dP S_2$$
 (12)

3.2 Single Gluon Radiation

In next-to-leading order we have to consider the following process:

$$\gamma^*(q) + g(k_1) \to Q(p_1) + \overline{Q}(p_2) + g(k_2)$$
 (13)

All contributing diagrams are depicted in figure FiXme Error: do and the result can be written as

FiXme Error!

$$\hat{\mathcal{P}}_{k}^{\gamma,\mu\mu'}\hat{\mathcal{P}}_{k}^{g} \sum_{i,i'} \mathcal{M}_{j,\mu}^{(1),g} \mathcal{M}_{j',\mu'}^{(1),g^{*}} = 8g^{4}\mu_{D}^{-2\epsilon}e^{2}e_{H}^{2}N_{C}C_{F}\left(C_{A}R_{k,OK} + 2C_{F}R_{k,QED}\right)$$
(14)

and it will depend on ten kinematical invariants:

$$s = (q + k_1)^2$$
 $t_1 = (k_1 - p_2)^2 - m^2$ $u_1 = (q - p_2)^2 - m^2$ (15)

$$s = (q + k_1)^2 t_1 = (k_1 - p_2)^2 - m^2 u_1 = (q - p_2)^2 - m^2 (15)$$

$$s_3 = (k_2 + p_2)^2 - m^2 s_4 = (k_2 + p_1)^2 - m^2 s_5 = (p_1 + p_2)^2 = -u_5 (16)$$

$$t' = (k_1 - k_2)^2 (17)$$

$$u' = (q - k_2)^2$$
 $u_6 = (k_1 - p_1)^2 - m^2$ $u_7 = (q - p_1)^2 - m^2$ (18)

from which only five are independent as can be seen from momentum conservation $k_1+q=$ $p_1 + p_2 + k_2$ and s, t_1, u_1 match to their leading order definition.

The $2 \rightarrow 3$ *n*-dimensional phase space is given by

$$dPS_3 = \int \frac{d^n p_1}{(2\pi)^{n-1}} \frac{d^n p_2}{(2\pi)^{n-1}} \frac{d^n k_2}{(2\pi)^{n-1}} (2\pi)^n \delta^{(n)}(k_1 + q - p_1 - p_2 - k_2)$$

$$\Theta(p_{1,0}) \delta(p_1^2 - m^2) \Theta(p_{2,0}) \delta(p_2^2 - m^2) \Theta(k_{2,0}) \delta(k_2^2)$$
(19)

This can be solved by writing eq. (19) as product of a $2 \to 2$ decay and a subsequent $1 \to 2$ decay[2]. We find

$$dPS_{3} = \frac{1}{(4\pi)^{n} \Gamma(n-3)s'} \frac{s_{4}^{n-3}}{(s_{4}+m^{2})^{n/2-1}} \left(\frac{(t_{1}u'_{1}-s'm^{2})s'-q^{2}t_{1}^{2}}{s'^{2}} \right)^{(n-4)/2} dt_{1} du_{1} d\Omega_{n} d\hat{\mathcal{I}}$$
(20)

$$= h_3(n) dt_1 du_1 d\Omega_n d\hat{\mathcal{I}} \tag{21}$$

with $d\Omega_n = \sin^{n-3}(\theta_1)d\theta_1\sin^{n-4}(\theta_2)d\theta_2$ and $d\hat{\mathcal{I}}$ taking care of all occurring hat momenta:

$$d\hat{\mathcal{I}} = \frac{1}{B(1/2, (n-4)/2)} \frac{x^{(n-6)/2}}{\sqrt{1-x}} dx \qquad \text{with } x = \hat{p}_1^2 / \hat{p}_{1,max}$$
 (22)

$$\hat{p}_{1,max} = \frac{s_4^2}{4(s_4 + m^2)} \sin^2(\theta_1) \sin^2(\theta_2)$$
(23)

$$\Rightarrow \int d\hat{\mathcal{I}} = 1 \qquad \int d\hat{\mathcal{I}} \, \hat{p}_1^2 = \epsilon \hat{p}_{1,max} + O(\epsilon^2) \tag{24}$$

Again when integrating the phase space angles the expressions become quite lengthy, but the (collinear) pole parts are compact:

$$\frac{s_4}{4\pi(s_4 + m^2)} \int d\Omega_n d\hat{\mathcal{I}} \, C_A R_{k,OK} = -\frac{1}{u_1} B_{k,QED} \begin{pmatrix} s' \to x_1 s' \\ t_1 \to x_1 t_1 \end{pmatrix} P_{k,gg}^H(x_1) \frac{2}{\epsilon} + O(\epsilon^0) \quad (25)$$

with $x_1 = -u_1/(s' + t_1)$ and the hard part of the Altarelli-Parisi splitting functions $P_{k,gg}^H[3, 4]$:

$$P_{G,gg}^{H}(x) = P_{L,gg}^{H}(x) = C_A \left(\frac{2}{1-x} + \frac{2}{x} - 4 + 2x - 2x^2 \right)$$
 (26)

$$P_{P,gg}^{H}(x) = C_A \left(\frac{2}{1-x} - 4x + 2\right)$$
 (27)

The $R_{k,QED}$ do not contain poles. FiXme Error: shift to factorization?

FiXme Error!

From the above expression we can obtain the soft limit $k_2 \to 0$ and separate their calculations:

$$\lim_{k_2 \to 0} \left(C_A R_{k,OK} + 2C_F R_{k,QED} \right) = \left(C_A S_{k,OK} + 2C_F S_{k,QED} \right) + O(1/s_4, 1/s_3, 1/t') \quad (28)$$

$$S_{k,OK} = 2\left(\frac{t_1}{t's_3} + \frac{u_1}{t's_4} - \frac{s - 2m^2}{s_3 s_4}\right) B_{k,QED}$$
 (29)

$$S_{k,QED} = 2\left(\frac{s - 2m^2}{s_3 s_4} - \frac{m^2}{s_3^2} - \frac{m^2}{s_4^2}\right) B_{k,QED}$$
 (30)

Note that the einkonal factors multiplying the Born functions $B_{k,QED}$ neither depend on q^2 nor on the projection k.

3.3 Light Quark Processes

In next-to-leading order a new production mechanism enters that is induced by a light quark, so we have to consider the process

$$\gamma^*(q) + q(k_1) \to Q(p_1) + \overline{Q}(p_2) + q(k_2)$$
 (31)

All contributing diagrams are depicted in figure **FiXme Error: do** and the result can be written as

FiXme Error!

$$\hat{\mathcal{P}}_{k}^{\gamma,\mu\mu'}\hat{\mathcal{P}}_{k}^{q,aa'}\sum_{j,j'=1}^{4}\mathcal{M}_{j,\mu a}^{(1),q}\left(\mathcal{M}_{j',\mu'a'}^{(1),q}\right)^{*} = 8g^{4}\mu_{D}^{-2\epsilon}e^{2}N_{C}C_{F}\left(e_{H}^{2}A_{k,1} + e_{L}^{2}A_{k,2} + e_{L}e_{H}A_{k,3}\right)$$
(32)

where e_L denotes the charge of the light quark q in units of e.

The needed $2 \to 3$ phase space has already been calculated in section 3.2, so we can immediately quote the (collinear) poles:

$$\frac{s_4}{2\pi(s_4 + m^2)} \int d\Omega_n d\hat{\mathcal{I}} \, C_F A_{k,1} = -\frac{1}{u_1} B_{k,QED} \left(\begin{array}{c} s' \to x_1 s' \\ t_1 \to x_1 t_1 \end{array} \right) P_{k,gq}(x_1) \frac{2}{\epsilon} + O(\epsilon^0) \quad (33)$$

with $x_1 = -u_1/(s'+t_1)$ and the Altarelli-Parisi splitting functions $P_{k,gq}[3, 4]$:

$$P_{G,gq}(x) = P_{L,gq}(x) = C_F \left(\frac{1}{x} + \frac{(1-x)^2}{x}\right)$$
 (34)

$$P_{P,gq}(x) = C_F(2-x)$$
 (35)

 $A_{k,2}$ does not contain poles and we find $\int dt_1 du_1 \int d\Omega_n d\hat{\mathcal{I}} A_{k,3} = 0$. Note that in the limit $q^2 \to 0$ $A_{k,2}$ will also get collinear poles.

4 Mass Factorization

All collinear poles in the gluonic subprocess can be removed by mass factorization in the following way:

$$s'^{2} \frac{d^{2} \sigma_{k,g}^{(1),fin}(s',t_{1},u_{1},q^{2},\mu_{F})}{dt_{1} du_{1}} = \lim_{\epsilon \to 0} \left[s'^{2} \frac{d^{2} \sigma_{k,g}^{(1)}(s',t_{1},u_{1},q^{2},\epsilon)}{dt_{1} du_{1}} - \int_{0}^{1} \frac{dx_{1}}{x_{1}} \Gamma_{k,gg}^{(1)}(x_{1},\mu_{F}^{2},\mu_{D},\epsilon) \right]$$
(36)

$$(x_1s')^2 \frac{d^2 \sigma_{k,g}^{(0)}(x_1s', x_1t_1, u_1, q^2, \epsilon)}{d(x_1t_1)du_1}$$
 (37)

$$\Gamma_{k,ij}^{(1)}(x,\mu_F^2,\mu_D,\epsilon) = \frac{\alpha_s}{2\pi} \left(P_{k,ij}(x) \frac{2}{\epsilon} + f_{k,ij}(x,\mu_F^2,\mu_D^2) \right)$$
(38)

where $\Gamma_{k,ij}^{(1)}$ is the first order correction to the transition functions $\Gamma_{k,ij}$ for incoming particle j and outgoing particle i in projection k. In the $\overline{\text{MS}}$ -scheme the $f_{k,ij}$ take their usual form and we find

$$\Gamma_{k,ij}^{(1),\overline{\rm MS}}(x,\mu_F^2,\mu_D,\epsilon) = \frac{\alpha_s}{2\pi} P_{k,ij}(x) \left(\frac{2}{\epsilon} + \gamma_E - \ln(4\pi) + \ln(\mu_F^2/m^2) - \ln(\mu_D^2/m^2)\right)$$
(39)

$$=8\pi\alpha_s P_{k,ij}(x)C_{\epsilon} \left(\frac{\mu_D^2}{m^2}\right)^{-\epsilon/2} \left(\frac{2}{\epsilon} + \ln(\mu_F^2/m^2)\right)$$
(40)

The $P_{k,ij}(x)$ are the Altarelli-Parisi splitting functions for which we find [3, 4]

$$P_{k,gg}(x) = \Theta(1 - \delta - x)P_{k,gg}^{H}(x) + \delta(1 - x)\left(2C_A \ln(\delta) + \frac{\beta_0}{2}\right)$$
(41)

where we introduced another infrared cut-off δ to seperate soft $(x \geq 1 - \delta)$ and hard $(x < 1 - \delta)$ gluons that is connected to Δ via $\delta = \Delta/(s' + t_1)$. The structure here explains why we were able to write the equation (25).

The light quark process can be regularized in a complete analogous way:

$$s'^{2} \frac{d^{2} \sigma_{k,q}^{(1),fin}(s',t_{1},u_{1},q^{2},\mu_{F})}{dt_{1} du_{1}} = \lim_{\epsilon \to 0} \left[s'^{2} \frac{d^{2} \sigma_{k,q}^{(1)}(s',t_{1},u_{1},q^{2},\epsilon)}{dt_{1} du_{1}} - \int_{0}^{1} \frac{dx_{1}}{x_{1}} \Gamma_{k,gq}^{(1)}(x_{1},\mu_{F}^{2},\mu_{D},\epsilon) \right]$$

$$(x_{1}s')^{2} \frac{d^{2} \sigma_{k,g}^{(0)}(x_{1}s',x_{1}t_{1},u_{1},q^{2},\epsilon)}{d(x_{1}t_{1}) du_{1}}$$

$$(42)$$

The needed splitting functions $P_{k,gq}$ have been already quoted in equations (34) and (35). Note that $K_{q\gamma} = 1/(N_C) = 2C_F K_{g\gamma}$.

The final finite cross sections are then

$$s'^{2} \frac{d^{2} \sigma_{k,g}^{(1),H,fin}}{dt_{1} du_{1}} = \frac{1}{2\pi} K_{g\gamma} \alpha \alpha_{S} e_{H}^{2} N_{C} C_{F} b_{k}(0) \left[-\frac{1}{u_{1}} P_{k,gg}^{H}(x_{1}) \right]$$

$$\left\{ 4\pi B_{k,QED}^{(0)} \begin{pmatrix} s' \to x_{1} s' \\ t_{1} \to x_{1} t_{1} \end{pmatrix} \left(\ln \left(\frac{s_{4}^{2}}{m^{2} (s_{4} + m^{2})} \right) - \ln(\mu_{F}^{2} / m^{2}) \right) \right.$$

$$\left. -8\pi B_{k,QED}^{(1)} \begin{pmatrix} s' \to x_{1} s' \\ t_{1} \to x_{1} t_{1} \end{pmatrix} \right\}$$

$$\left. + C_{A} \frac{s_{4}}{s_{4} + m^{2}} \left(\int d\Omega_{n} d\hat{\mathcal{I}} R_{k,QED} \right)^{finite} \right.$$

$$\left. + 2C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} R_{k,QED} \right]$$

$$(43)$$

$$s'^{2} \frac{d^{2} \sigma_{k,g}^{(1),S+V,fin}}{dt_{1} du_{1}} = 4K_{g\gamma} \alpha \alpha_{S} e_{H}^{2} N_{C} C_{F} b_{k}(0) B_{k,QED}^{(0)} \delta(s' + t_{1} + u_{1}) \left[C_{A} \ln^{2}(\Delta/m^{2}) + \ln(\Delta/m^{2}) \left(\left(\ln(-t_{1}/m^{2}) - \ln(-u_{1}/m^{2}) - \ln(\mu_{F}^{2}/m^{2}) \right) C_{A} - \frac{2m^{2} - s}{s\beta} \ln(\chi) (C_{A} - 2C_{F}) - 2C_{F} \right) + \frac{\beta_{0}^{lf}}{4} \left(\ln(\mu_{R}^{2}/m^{2}) - \ln(\mu_{F}^{2}/m^{2}) \right) + f_{k}(s', u_{1}, t_{1}, q^{2}) \right]$$

$$(44)$$

where f_k contains lots of logarithms and dilogarithms, but does not depend on Δ , μ_F^2 , μ_R^2 nor n_f and $\beta_0^{lf} = (11C_A - 2n_{lf})/3$.

$$s'^{2} \frac{d^{2} \sigma_{k,q}^{(1),fin}}{dt_{1} du_{1}} = \frac{1}{2\pi} K_{q\gamma} \alpha \alpha_{S} N_{C} b_{k}(0) \left[-\frac{1}{u_{1}} e_{H}^{2} P_{k,gq}(x_{1}) \right]$$

$$\left\{ 2\pi B_{k,QED}^{(0)} \left(\begin{array}{c} s' \to x_{1} s' \\ t_{1} \to x_{1} t_{1} \end{array} \right) \left(\ln \left(\frac{s_{4}^{2}}{m^{2} (s_{4} + m^{2})} \right) - \ln(\mu_{F}^{2} / m^{2}) + 1 - \delta_{k,P} \right) \right.$$

$$\left. -4\pi B_{k,QED}^{(1)} \left(\begin{array}{c} s' \to x_{1} s' \\ t_{1} \to x_{1} t_{1} \end{array} \right) \right\}$$

$$\left. + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \left(\int d\Omega_{n} d\hat{\mathcal{I}} e_{H}^{2} A_{k,1} \right)^{finite} \right.$$

$$\left. + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{L}^{2} A_{k,2} + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{H} e_{L} A_{k,3} \right]$$

$$\left. + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{L}^{2} A_{k,2} + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{H} e_{L} A_{k,3} \right]$$

$$\left. + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{L}^{2} A_{k,2} + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{H} e_{L} A_{k,3} \right]$$

$$\left. + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{L}^{2} A_{k,2} + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{H} e_{L} A_{k,3} \right]$$

$$\left. + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{L}^{2} A_{k,2} + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{H} e_{L} A_{k,3} \right]$$

$$\left. + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{L}^{2} A_{k,2} + C_{F} \frac{s_{4}}{s_{4} + m^{2}} \int d\Omega_{4} d\hat{\mathcal{I}} e_{H} e_{L} A_{k,3} \right]$$

where $1 - \delta_{k,P}$ may also be written as $-2\partial_{\epsilon}E_k(\epsilon = 0)$ as it originates from the additional factor of $E_k(\epsilon)$ in the subtraction part of equation (42).

5 Partonic Results

FiXme Error!

FiXme Error: write partonic

6 Hadronic Results

FiXme Error!

FiXme Error: write hadronic

7 Summary

FiXme Error!

FiXme Error: write summary

A References

- [1] I. Bojak, NLO QCD corrections to the polarized photoproduction and hadroproduction of heavy quarks. PhD thesis, Dortmund U., 2000. arXiv:hep-ph/0005120 [hep-ph].
- [2] Beenakker, W. and Kuijf, H. and van Neerven, W. L. and Smith, J., "Qcd corrections to heavy-quark production in $p\bar{p}$ collisions," Phys. Rev. D 40 (Jul, 1989) 54–82. http://link.aps.org/doi/10.1103/PhysRevD.40.54.
- [3] G. Altarelli and G. Parisi, "Asymptotic Freedom in Parton Language," <u>Nucl. Phys.</u> **B126** (1977) 298–318.
- [4] W. Vogelsang, "A Rederivation of the spin dependent next-to-leading order splitting functions," Phys. Rev. **D54** (1996) 2023–2029, arXiv:hep-ph/9512218 [hep-ph].

List of Corrections

Error:	rite intro	1
Error:	rite motivation	1
Error:	rite natation	1
Error:	hift to appendix?	1
Error:	0	3
Error:	0	3
Error:	hift to factorization?	4
Error:	0	5
Error:	rite partonic	8
Error:	rite hadronic	9
Error	rite summary	10