HF Sourcing: FFTs on Sourcing Data

Edmund Berry¹

¹Brown University

Thursday, June 12, 2014

- Fourier transform (FT) definition
 - $F(u) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i u t} dt$
- FTs have real and imaginary components
 - Real: $\mathcal{R}(F)$
 - Imaginary: $\mathcal{I}(F)$
- FTs have magnitude and phase in complex space:
 - Magnitude: $|F| = |\mathcal{R}(F)^2 + \mathcal{I}(F)^2|^{1/2}$
 - Phase: $\phi(F) = \tan^{-1} \frac{\mathcal{R}(\mathcal{F})}{\mathcal{I}(\mathcal{F})}$

Introduction

Introduction

Method

- Two very simple steps
 - Use sine functions to test ROOT FFT software
 - 2 Use ROOT FFT software to analyze sourcing data
- All of this code is on git:
 - 1 Link to code for testing FFTs
 - 2 Link to code for running FFTs on sourcing data

FFT test on sine functions

- Fill a histogram using linear combo of sine functions:
 - $f(t) = \sum_{i=0}^{3} A_i \cdot \sin(2\pi \cdot \omega_i \cdot t)$
 - $A_i = \{1.0, 2.0, 0.5\} [A.U.]$
 - $\omega_i = \{0.5, 1.0, 2.0\}$ [Hz]

Look at magnitude of FFT

Recall original linear combo of sine functions:

$$f(t) = \sum_{i=0}^{3} A_i \cdot \sin(2\pi \cdot \omega_i \cdot t)$$

$$A_i = \{1.0, 2.0, 0.5\}$$
 [A.U.]

$$\omega_i = \{0.5, 1.0, 2.0\}$$
 [Hz]

Look at magnitude of FFT (left side of function)

- Magnitude (even function) returns A_i and ω_i
 - $f(t) = \sum_{i=0}^{3} A_i \cdot \sin(2\pi \cdot \omega_i \cdot t)$
 - $A_i = \{1.0, 2.0, 0.5\}$ [A.U.]
 - $\omega_i = \{0.5, 1.0, 2.0\}$ [Hz]

(ロ) (部) (注) (注) 注 の(の)

Look at phase of FFT

- Phase information not useful for our purposes. . .
 - $f(t) = \sum_{i=0}^{3} A_i \cdot \sin(2\pi \cdot \omega_i \cdot t)$
 - $A_i = \{1.0, 2.0, 0.5\}$ [A.U.]
 - $\omega_i = \{0.5, 1.0, 2.0\}$ [Hz]

Conclusion of test:

- Can use ROOT FFT software
- ROOT FFT software can reconstruct parameters of sines
 - FT magnitude contains useful information for analysis
 - FT phase not useful for this analysis (?)
 - Can use FT phase to reconstruct original function (inverse FFT)
- Ready to try sourcing data

Conclusion

Look at sourcing data

histogram name:

```
"HFP13_ETA38_PHI25_T10_SRCTUBE_
Ieta38_Iphi25_Depth2
Run 221509reelPosition"
```

- x-axis: Reel [mm]
- y-axis: Histogram mean [linear ADC]

Look at sourcing data: full range of Reel values

FFTs on data

000000

Next: focus on Reel ϵ [5800, 6800] [mm]

Look at sourcing data: zoomed Reel values (graph)

FFTs on data

000000

■ Next: make a histogram from this TGraph

Look at sourcing data: zoomed Reel values (hist)

■ If 2 points have same x-value, use mean y-value on y-axis

Next: do FFT on this histogram

FFTs on data

Look at sourcing data: FFT magnitude

"Spike" at zero is from y-axis of original histogram being centered at $y \neq 0$. You can remove it.

FFTs on data

Look at sourcing data: FFT magnitude, no first bin

"Frequency" peaks around 0.02 - 0.03 [1/mm]

Conclusion

Conclusion

- We can use ROOT software to do FFTs.
 - Tests done on sine waves in time / frequency space
 - Prelim. results on data in reel / "reel frequency" space
- Prelim. results show peak in "reel frequency"
 - Around 0.02 0.03 [1/mm]
- Would be nice to repeat the study on sourcing data in time (OrN)
 - Need plots for this

