

Aula 02 – Fundamentos da imagem digital I

Prof. João Fernando Mari

joaofmari.github.io

joaof.mari@ufv.br

Roteiro

- O olho humano
- Câmera fotográfica
- A imagem digital
- Imagens coloridas RGB
- O espaço de cores RGB
- Aquisição de imagens
- Sensores CCD e padrão de Bayer
- Amostragem
- Efeitos da resolução espacial
- Resolução de intensidade
- Efeitos da resolução de intensidade

O olho humano

O olho humano

O olho humano

Câmera fotográfica – diafragma

Câmera fotográfica – diafragma

Câmera fotográfica – diafragma

Imagem de intensidades (níveis de cinza):

Imagem colorida (RGB):

Imagem de intensidades (níveis de cinza):

Imagem de intensidades (níveis de cinza):

Imagem de intensidades (níveis de cinza):

Imagem de intensidades (níveis de cinza):

60	89	117	140
127	147	160	168
192	198	193	186
209	210	204	197

	92 70 49	75 52 28	
118	149	80	
108	133	58	
91	124	33	
211	176	81	
202	161	57	
200	158	17	
231	174	83	
218	155	57	
214	150	21	

M linhas

N colunas

Imagens coloridas - RGB

Imagens coloridas - RGB

Imagens coloridas - RGB

Imagens coloridas - RGB

Imagens coloridas - RGB

O espaço de cores RGB

I: iluminância

 $0 < i(x,y) < \infty$

R: refletância 0 < r(x,y) < 1

f(x, y)	i=i(x,y)	7) X	r(x, y)
	(/)		

i(x, y)	(em lux ou lúmen/m²)
900	Dia ensolarado
100	Dia nublado
10	Escritório
0,001	Noite clara

$\Gamma(X,Y)$	
0,93	Neve
0,80	Parede branca
0,65	Aço inoxidável
0,01	Veludo preto

MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.

$$I_D = \frac{1}{\Delta^2} \int_{l\Delta}^{(l+1)\Delta} \int_{c\Delta}^{(c+1)\Delta} I_c(\rho, \chi) \delta \rho \delta \chi$$

Baseado em: Alan Peters, 2019

Imagem RGB contínua

Imagem RGB contínua

Imagem B contínua

Imagem R contínua

Imagem G contínua

Imagem B contínua

Amostragem do canal R

Amostragem do canal G

<u>Amostragem</u>

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

96 64

32

64 96 128 160 192 224 256 288 320 352 384 416 448 480

32

32

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

64 96 128 160 192 224 256 288 320 352 384 416 448 480

64

32

64 96 128 160 192 224 256 288 320 352 384 416 448 480

32

32

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

Imagem em níveis de cinza continua

Imagem em níveis de cinza continua

Amostragem da imagem em níveis de cinza

Imagem em níveis de cinza continua

Amostragem da imagem em níveis de cinza

Imagem em niveis de cinza discreta (amostrada)

Efeitos da resolução espacial

1,7 pol

300 ppi – 512 x 512

1,7 pol. a 150 ppi – 256 x 256

1,7 pol. a ~38 ppi – 64 x 64

1,7 pol. a 75 ppi – 128 x 128

1,7 pol. a 19 ppi – 32 x 32

Efeitos da resolução espacial

0,85 pol. 256 x 256 pixels 300 ppi

0,43 pol. 128 x 128 pixels 300 ppi

0,21 pol. 64 x 64 pixels 300 ppi

0,11 pol. 32 x 32 pixels 300 ppi

Resolução de intensidade

Resolução de intensidade

Efeitos da resolução de intensidade

8 bits. 28 = 256 níveis de cinza

4 bits. 2⁴ = 16 níveis de cinza

7 bits. $2^7 = 128$ níveis de cinza

3 bits. $2^3 = 8$ níveis de cinza

6 bits. $2^6 = 64$ níveis de cinza

5 bits. $2^5 = 32$ níveis de cinza

1 bit. $2^1 = 2$ níveis de cinza

Bibliografia

- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - Disponível para download no site do autor (Exclusivo para uso pessoal)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
 - Seção 2.1
- GONZALEZ, R.C.; WOODS, R.E.; Processamento Digital de Imagens. 3ª edição. Editora Pearson, 2009.
 - Disponível na Biblioteca Virtual da Pearson.
 - Seções: 2.1, 2.2, 2.3 e 2.4
- Alan Peters. Lectures on Image Processing. Vanderbilt University, 2019.
 - https://archive.org/details/Lectures on Image Processing
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf
 - Seção 2

Bibliografia complementar

- Felipe Arruda. Vídeo explica como funciona o sensor CCD das câmeras digitais. Tecmundo, 2012.
 - https://www.tecmundo.com.br/fotografia-e-design/23626-video-explica-comofunciona-o-sensor-ccd-das-cameras-digitais.htm
- Bill Hammack. CCD: The heart of a digital camera (how a charge-coupled device works).
 YouTube. Canal: engineerguy.
 - https://www.youtube.com/watch?v=wsdmt0De8Hw&feature=youtu.be
- Raymond Siri. CMOS Animation Sequence. Vimeo
 - https://vimeo.com/103279734
- Raymond Siri. CCD Animation Sequence. Vimeo
 - https://vimeo.com/103279733

Bibliografia complementar

- Rafael Helerbrock. Quais são os limites da visão humana? Mundo Educação
 - https://mundoeducacao.uol.com.br/fisica/quais-sao-os-limites-visao-humana.htm
- Francie Diep. Humans Can Only Distinguish Between About 30 Shades Of Gray. Popular Science, 2015.
 - https://www.popsci.com/humans-can-only-distinguish-between-about-30-shades-gray/
- Luciana Galastri. Humanos conseguem distinguir apenas 30 tons de cinza. Galileu, 2015.
 - https://revistagalileu.globo.com/Ciencia/noticia/2015/02/humanos-conseguemdistinguir-apenas-30-tons-de-cinza.html

FIM