

PRUEBA DE EVALUACIÓN 21 de diciembre de 2016

- 1. Dada $F: \mathbb{R} \to \mathbb{R}$ la función definida por $F(x) = \int_0^x e^{-t^2} dt$,
 - (I) $(1.5 \ ptos.)$ calcula razonadamente F'(x), para $x \in \mathbb{R}$.
 - (II) (2 pto.) Halla el límite $\lim_{x\to 0} \frac{F(x)-x}{x^2}$.
 - (III) (2 ptos.) Calcula una aproximación de $F(1/2) = \int_0^{1/2} e^{-t^2} dt$ mediante $P_4(1/2)$, donde $P_4(x)$ es el polinomio de MacLaurin de orden 4 de F(x).
- 2. (4.5 ptos.) Calcula $\int_0^1 \frac{4}{e^x 3e^{-x} 2} dx$.