HAAR MEASURE

1. Existence of Haar Measure

For a topological space X we denote by $\mathcal{B}(X)$ the σ -algebra of all open subsets of X.

Definition 1.1. Let X be a locally compact space and let $\mu : \mathcal{B}(X) \to [0, +\infty]$ be a measure. If $\mu(K) \in \mathbb{R}$ for every compact subset K of X, then μ is *finite on compact sets*. Suppose that for every open subset U of X we have

$$\mu(U) = \sup \{ \mu(K) \mid K \text{ compact subset of } X \text{ contained in } U \}$$

then μ is *inner regular*. We say that μ is *outer regular* if for every A in $\mathcal{B}(X)$ we have

$$\mu(A) = \inf \{ \mu(U) \mid U \text{ is open in } X \text{ and contains } A \}$$

Finally μ is a Radon measure if it is finite on compact sets, inner regular and outer regular.

Definition 1.2. Let G be a topological group and let $\mu : \mathcal{B}(G) \to [0, +\infty]$ be a measure. Then μ is *left-invariant* if $\mu(xA) = \mu(A)$ for every A in $\mathcal{B}(G)$. Similarly μ is right-invariant if $\mu(Ax) = \mu(A)$ for every A in $\mathcal{B}(G)$.

Theorem 1.3. Let G be a locally compact topological group. Then there exists a nonzero, left-invariant Radon measure μ on G.

We denote by K the set of all compact subsets of G and by U the set of all open neighborhoods of identity in G. Let U be an open nonempty subset of G and K be a compact subset of G. We define

$$(K:U) = \inf \{ n \in \mathbb{N} \mid \text{ there exist } x_1, ..., x_n \in G \text{ such that } K \subseteq \bigcup_{i=1}^n x_i U \}$$

Throughout the proof we fix a compact subset Q of G such that $int(Q) \neq \emptyset$.

Lemma 1.3.1. Fix $U \in \mathcal{U}$. There exists a real valued function h_U on \mathcal{K} such that the following assertions hold.

- **(1)** For every compact subset K in K we have $h_U(K) \ge 0$, $h_U(\emptyset) = 0$ and $h_U(Q) = 1$.
- **(2)** For every compact subset K in K and for every element x in G we have $h_U(xK) = h_U(K)$.
- **(3)** If $K \subseteq L$ are compact subsets in K, then $h_U(K) \subseteq h_U(L)$.
- **(4)** For every compact subset K in K we have $h_U(K) \leq (K : \mathbf{int}(Q))$.
- **(5)** If K, L are compact subsets in K, then

$$h_U(K \cup L) \le h_U(K) + h_U(L)$$

and if $K \cdot U^{-1} \cap L \cdot U^{-1} = \emptyset$, then the equality holds.

Proof of the lemma. For every compact subset *K* of *G* we define

$$h_U(K) = \frac{(K:U)}{(Q:U)}$$

Now we check that h_U admits the properties above. Properties (1), (2) and (3) are clear. For (4) note that

$$(K:U) \leq (Q:U) \cdot (K:\mathbf{int}(Q))$$

Indeed, if $K \subseteq \bigcup_{i=1}^n y_i \cdot \operatorname{int}(Q)$ and $Q \subseteq \bigcup_{j=1}^m z_j U$, then $K \subseteq \bigcup_{i=1}^n \bigcup_{j=1}^m y_i z_j U$ and this implies the inequality above. Observe that $xU \cap K \neq \emptyset$ implies that $x \in K \cdot U^{-1}$ and similarly $xU \cap L \neq \emptyset$

implies that $x \in L \cdot U^{-1}$. Assuming that for compact subsets K, L in G we have $K \cdot U^{-1} \cap L \cdot U^{-1} = \emptyset$ we derive from this that for every $x \in G$ we have $xU \cap (K \cap L) = \emptyset$. Thus if $K \cdot U^{-1} \cap L \cdot U^{-1} = \emptyset$, then we have $(K \cup L : U) = (K : U) + (K : L)$ and hence $h_U(K \cup L) = h_U(K) + h_U(L)$. Note that in general case we have $(K \cup L : U) \leq (K : U) + (K : L)$ and hence also (5) holds for h_U .

Lemma 1.3.2. Let K, L in K and suppose that $K \cap L = \emptyset$. Then there exists $U \in \mathcal{U}$ such that $K \cdot U^{-1} \cap L \cdot U^{-1} = \emptyset$.

Proof of the lemma. \Box

Lemma 1.3.3. There exists a real valued function h on K such that

- **(1)** For every compact subset K in K we have $h(K) \ge 0$, $h(\emptyset) = 0$ and h(Q) = 1.
- **(2)** For every compact subset K in K and for every element x in G we have h(xK) = h(K).
- **(3)** If $K \subseteq L$ are compact subsets in K, then $h(K) \subseteq h(L)$.
- **(4)** For every compact subset K in K we have $h(K) \leq (K : \mathbf{int}(Q))$.
- **(5)** If K, L are compact subsets in K, then

$$h(K \cup L) \le h(K) + h(L)$$

and if $K \cap L = \emptyset$, then the equality holds.

Proof of the lemma. Consider a topological space

$$X = \prod_{K \in \mathcal{K}} [0, (K : \mathbf{int}(Q))]$$

By Tichonoff's theorem X is compact. For every $U \in \mathcal{U}$ we define a subset $F_U \subseteq X$ that consists of tuples $\{a_K\}_{K \in \mathcal{K}}$ such that $a_\varnothing = 0$, $a_Q = 1$, $a_{xK} = a_K$ for $x \in G$ and K in K, $a_K \le a_L$ for $K \subseteq L$ in K, $a_{K \cup L} \le a_K + a_L$ for K, L in L and the equality holds if L in L in L in L and the equality holds if L in L in L in L in L is a closed subset. Note that $\{h_U(K)\}_{K \in \mathcal{K}} \in F_U$ for every L is a closed subset. Note that $\{h_U(K)\}_{K \in \mathcal{K}} \in F_U$ for every L is a closed subset.

$$F_{U_1\cap U_2\cap \ldots \cap U_n}\subseteq F_{U_1}\cap F_{U_2}\cap \ldots \cap F_{U_n}$$

for $U_1, U_2, ..., U_n \in \mathcal{U}$. This implies that $\{F_U\}_{U \in \mathcal{U}}$ is a centered family of nonempty closed subsets of a compact space X. Thus

$$\bigcap_{U\in\mathcal{U}}F_U\neq\emptyset$$

by compactness of X. Hence there exists $\{c_K\}_{K\in\mathcal{K}}$ in the intersection. We define a real function h on \mathcal{K} by $h(K) = c_K$ for K in \mathcal{K} . The fact that properties (1), (2), (3) and (4) hold for h follows by definition of F_U for $U \in \mathcal{U}$. Since $\{c_K\}_{K\in\mathcal{K}}$ is an element in F_U for every $U \in \mathcal{U}$ we derive that

$$c_{K \cup L} \le c_K + c_L$$

for K, L in K. This implies $h(K \cup L) \le h(K) + h(L)$ for $K, L \in K$. Moreover, $c_{K \cup L} = c_K + c_L$ if $K \cdot U^{-1} \cap L \cdot U^{-1} = \emptyset$ for some $U \in \mathcal{U}$. This implies that $c_{K \cup L} = c_K + c_L$ if $K \cap L = \emptyset$ by Lemma 1.3.2. Thus h admits (4).

Proof of the theorem. We fix h as in Lemma 1.3.3 and we define $\mu^* : \mathcal{P}(G) \to [0, +\infty]$. First if U is an open subset of G, then we define

$$\mu^*(U) = \sup_{K \in \mathcal{K}, K \subseteq U} h(K)$$

Note that if U, V are open subsets of G and $U \subseteq V$, then $\mu^*(U) \le \mu^*(V)$. Thus it makes sense to define

$$\mu^*(A) = \inf \{ \mu^*(U) \mid U \text{ is an open subset of } G \text{ containing } A \}$$

for arbitrary subset $A \subseteq G$. Note that $\mu^*(xA) = \mu^*(A)$ by definition of μ^* and the corresponding property of h. We check that μ^* is an outer measure. By definition and corresponding properties

HAAR MEASURE 3

of h we have $\mu^*(\varnothing) = 0$ and μ^* is monotone. Let $\{A_n\}_{n \in \mathbb{N}}$ be a sequence of subsets of G such that $\mu^*(A_n) \in \mathbb{R}$ for every $n \in \mathbb{N}$. Fix $\varepsilon > 0$ and for each $n \in \mathbb{N}$ we pick an open subset U_n such that $A_n \subseteq U_n$ and

$$\mu^*(U_n) \le \mu^*(A_n) + \frac{\epsilon}{2^{n+1}}$$

There exists a compact subset K of $\bigcup_{n \in \mathbb{N}} U_n$ such that

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} U_n \right) \le h(K) + \frac{\epsilon}{2}$$

Since K is compact, there exists $k \in \mathbb{N}$ such that $K \subseteq \bigcup_{n=0}^k U_n$. Since G is locally compact, there exist compact sets $K_0, K_1, ..., K_k$ such that $K_n \subseteq U_n$ and $K = \bigcup_{n=0}^k K_n$. Thus we have

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \mu^* \left(\bigcup_{n \in \mathbb{N}} U_n \right) \le h(K) + \frac{\epsilon}{2} \le \frac{\epsilon}{2} + \sum_{n=0}^k h(K_n) \le$$

$$\leq \frac{\epsilon}{2} + \sum_{n \in \mathbb{N}} \mu^*(U_n) \leq \sum_{n \in \mathbb{N}} \mu^*(A_n) + \frac{\epsilon}{2} + \sum_{n \in \mathbb{N}} \frac{\epsilon}{2^n} = \sum_{n \in \mathbb{N}} \mu^*(A_n) + \epsilon$$

Since ϵ is an arbitrary positive number, we derive that

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \mu^* (A_n)$$

Note that this inequality is obvious when there exists $n \in \mathbb{N}$ such that $\mu^*(A_n) = +\infty$. Thus the inequality above holds for arbitrary countable family of subsets of G. Therefore, μ^* is an outer measure. Now we use Carathéodory construction [Mon18, Theorem 3.2] in order to obtain a σ -algebra Σ_{μ^*} such that $\mu^*_{|\Sigma_{\mu^*}}$ is a measure. Now we show that σ -algebra of Borel sets $\mathcal{B}(G)$ is contained in Σ_{μ^*} . For this consider a set E of G and let G be an open subset of G. We show that

$$u^{*}(E) = u^{*}(E \cap U) + u^{*}(E \setminus U)$$

Clearly the inequality \leq holds and hence if $\mu^*(E) = +\infty$, then the equality holds regardless of U. Thus we may assume that $\mu^*(E) \in \mathbb{R}$. Fix $\epsilon > 0$ and consider open subset V such that $E \subseteq V$ and $\mu^*(V) \leq \mu^*(E) + \frac{\epsilon}{2}$. Next let $K \subseteq U \cap V$ be a compact subset such that $\mu^*(U \cap V) \leq h(K) + \frac{\epsilon}{4}$. Let L be a compact subset of $V \setminus K$ such that $\mu^*(V \setminus K) \leq \mu^*(L) + \frac{\epsilon}{4}$. We have

$$\mu^*(E) \leq \mu^*(E \cap U) + \mu^*(E \setminus U) \leq \mu^*(V \cap U) + \mu^*(V \setminus U) \leq \mu^*(V \cap U) + \mu^*(V \setminus K) \leq \mu^*(U \cap U) + \mu^*(U \cap U) \leq \mu^*(U \cap U) + \mu^*(U \cap U) \leq \mu^*(U \cap$$

$$\leq \left(h(K) + \frac{\epsilon}{4}\right) + \left(h(L) + \frac{\epsilon}{4}\right) = h(K) + h(L) + \frac{\epsilon}{2} = h(K \cap L) + \frac{\epsilon}{2} \leq \mu^*(V) + \frac{\epsilon}{2} \leq \mu^*(E) + \epsilon$$

and since $\epsilon > 0$ was arbitrary, we derive that

$$\mu^*(E) = \mu^*(E \cap U) + \mu^*(E \setminus U)$$

Hence this equality holds for every subset E of G and every open subset U of G. Thus open subsets of G are members of Σ_{μ^*} . Hence $\mathcal{B}(G) \subseteq \Sigma_{\mu^*}$. Let μ be a restriction of μ^* to $\mathcal{B}(G)$. Then μ is a left-invariant measure on $\mathcal{B}(G)$. By definition of μ^* we derive that μ is outer regular. Now we show that $\mu(K) \in \mathbb{R}$ for every compact subset of G. We pick an open subset U of G containing K and such that $\mathbf{cl}(U)$ is compact. Then we have $h(L) \leq h(\mathbf{cl}(U))$ for every compact $L \subseteq U$ and hence $\mu(U) \leq h(\mathbf{cl}(U))$. Thus $\mu(U) \in \mathbb{R}$ and hence also $\mu(K) \in \mathbb{R}$. Thus μ is finite on compact subsets of G. Moreover, $1 = h(Q) \leq \mu(Q)$. This implies that μ is nontrivial. Finally for every open subset U of G we have

$$\mu(U) = \sup_{K \in \mathcal{K}, K \subseteq U} h(K) \le \sup_{K \in \mathcal{K}, K \subseteq U} \mu(K) \le \mu(U)$$

and thus μ is inner regular.

We proved that μ is nonzero, left-invariant Radon measure on G. This finishes the proof.

4 HAAR MEASURE

Definition 1.4. Let G be a locally compact group and $\mu : \mathcal{B}(G) \to [0, +\infty]$ be a measure. If μ is left-invariant, nontrivial Radon measure on G, then we say that μ is a (left) Haar measure on G. Similarly if μ is right-invariant, nontrivial Radon measure on G, then we say that μ is a (right) Haar measure on G

REFERENCES

[Mon18] Monygham. Introduction to measure theory. github repository: "Monygham/Pedo-mellon-a-minno", 2018.