PID efficiencies

Shuo Jia

HMS, electron arm

Basic cuts

cointime:2.5(fall)/1.5(spring) HMS(SHMS) delta:-8,8(-10,20) HMS(SHMS) acceptance constrain

SHMS pi cut

accidental background: 6 peaks

HMS Calorimeter

Cherenkov cut: 12

Calorimeter cut: varies

HMS Cherenkov

Cherenkov cut: varies

Calorimeter cut: 1

HMS Cer, not a good pion rejector

HMS Cherenkov detector has pion threshold 3.8, which is not a good pion rejector. To select good electron sample, I use cernpe greater than 12.

efficiency with cut

RunNumber 6524, in run group 360, momentum 4.736, neg

$$cal_eff = \frac{e_did[cer_cut\&cal_cuts]}{e_sample[cer_cut]}$$

efficiency with cut

left is neg run 6524, right is pos run 6518, in run group 360, momentum 4.736

HMS Detector efficiency verse momentum

HMS Detector efficiency verse RunNumber

calorimeter

HMS Detector efficiency verse RunGroup

efficiency with cut

RunNumber 6524, in run group 360, momentum 4.736, neg, cal cut greater than $1\,$

$$cer_eff = \frac{e_did[cal_cuts\&cer_cuts]}{e_sample[cal_cut]}$$

efficiency with cut

left is neg run 6524, right is pos run 6518, in run group 360, momentum 4.736

HMS Detector efficiency verse momentum

HMS Detector efficiency verse RunNumber

HMS Detector efficiency verse RunGroup

SHMS pion arm

Basic cuts

cointime: 2.5 (fall)/1.5 (spring)

HMS(SHMS) delta:-8,8(-10,20)

HMS(SHMS) acceptance constrain

HMS e cut

accidental background: 6 peaks

SHMS Calorimeter

Aerogel Cherenkov cut: 2

rftime cut: 0.5,1.5

Calorimeter cut: varies

SHMS aerogel Cherenkov

Aerogel Cherenkov cut: varies

rftime cut: 0.5,1.5

Calorimeter cut: 0.05,0.85

SHMS efficiency with cut

neg run 6524,in run group 360, momentum 4.736

SHMS efficiency with cut

left is neg run 6524, right is pos run 6518, in run group 360, momentum 4.736

SHMS cal efficiency verse momentum

SHMS cal efficiency verse RunNumber

rfcut,cal_pi<0.8

SHMS cal efficiency verse RunNumber

SHMS cal efficiency verse RunNumber

rfcut,cal_pi<0.8

SHMS cal efficiency verse RunGroup

SHMS efficiency with cut

efficiency with cut

neg run 6524,in run group 360, momentum 4.736

SHMS aero efficiency verse momentum

SHMS aero efficiency verse RunNumber

SHMS aero efficiency verse RunNumber

SHMS aero efficiency verse RunNumber

SHMS aero efficiency verse RunGroup

hgcer npe verse momentum

aero npe verse momentum

SHMS pion arm

Basic cuts

cointime: 2.5(fall)/1.5(spring)HMS(SHMS) delta: -8.8(-10.20)

HMS(SHMS) acceptance constrain

HMS e cut

accidental background: 6 peaks

Aerogel Cherenkov cut: 2 Calorimeter cut: 0.05,0.85

SHMS rftiming

0.5, 1.5

 $-3\sigma, 3\sigma$

HGcer greater than 2. Cut pions to show kaons here.

pi_eff from gaussian distribution kaon con = $\frac{kaonfitintegral[rfcut]}{allfitintegral[rfcut]}$

HGcer greater than 2. Cut pions to show kaons here.

HGcer greater than 2. Cut pions to show kaons here.

pion eff from gaussian fit sigma estimate kaon con = $\frac{kaonfit[newrfcut]}{allfit[newrfcut]}$

What if I use 3 sigma cut on pi fit

pion eff = 99.7 kaon con =
$$\frac{kaonfit[newrfcut]}{allfit[newrfcut]}$$

Some definition

Kaon con. = $\frac{kaonfit[rfcut]}{pionfit[rfcut]}$

$$\begin{array}{l} \text{pion efficiency} = \frac{pionfit[rfcut]}{pionfit[allrange]} \\ \text{error} = \sqrt{\frac{p(1-p)}{N}} \end{array}$$

pion efficiency =
$$\frac{pionfit[r]cut]}{pionfit[allrange]}$$

For different rf timing cut,

percentage: 1+(Kpeak - Pipeak)*percentage

eg. pion peak at 1, kaon peak at 1.6, then percentage 80 means (1.6-1)*80%+1 =

1.48, rf right hand side cut is at 1.48

 $\label{eq:pion_purity} \mbox{pion purity} = 1\mbox{-kaon con}.$

HGC cut 2

HGC cut 1

HGC cut 3

HGC less than 2, no aero cut

No HGC cut, aero greater than 4

HGC less than 2, no aero cut

No HGC cut, aero greater than 4

How to use it

- less than 2.9, use pion eff, pion purity is 1
- 2.9 to 3.9, use percentage where pi eff converge, 99%

How to apply the eff and purity?

I'm thinking of add two branches on my data, so for an event with different delta, it will have an pi eff and pi purity. That branches can be used as weighting

pos. pi eff.

neg. pi eff.

pos. pi purity.

neg. pi purity.

 backup