Exercise 33

Let $\mathfrak A$ be a *DWBA* and $\mathfrak A'$ be a deterministic Staiger-Wagner automaton and $\alpha \in \Sigma^{\omega}$. Let the $\mathcal F$ of the Staiger-Wagner automaton be construct as follows.

Proof.

 $\mathfrak A$ accepts α

 \Leftrightarrow from some point i the run $\rho(i)$ on α stays in a SSC S' with accepting states only

 \Leftrightarrow all loops in the S' are accepting

Exercise 34

Given

closed under co-reachable loops and for all loops $S, S', S \leadsto S', S \in \mathcal{F} \to S' \in \mathcal{F}$ \Leftrightarrow All strongly connected components $U \subseteq Q$ are completly in \mathcal{F} or there is no state $s \in U$ with $s \in S, S \in \mathcal{F}$, where S is a loop

Exercise 35