Module X: Distributied and Scalable Bayesian Graphical Entity Resolution

Rebecca C. Steorts

Reading

- ▶ Binette and Steorts (2020)
- ► Steorts, Hall, Fienberg (2016)
- ► Steorts (2015)
- ► Marchant et al. (2020)

Why is ER difficult?

Suppose that we have a total of N records in k databases.

- 1. We seek models that are much less than $O(N^k)$.
- 2. We seek models that are reliable, accurate, fit the data well, and account for the uncertainty of the model.
- 3. We seek models and algorithms to handle unbalanced data (containing duplications).

Existing ER methods

- 1. deterministic linking
- 2. probabilistic linking (Fellegi Sunter, random forests, deep learning)
- 3. Bayesian Fellegi Sunter

Limitations of Existing ER methods

- pairs of records are assessed independently
- awkward post-processing step (transitive closure)
- subjectivity in setting the decision threshold
- lack of uncertainty quantification
- require training data
- scalability achieved via deterministic dimension reduction of the data

[Fellegi and Sunter (1969), Ventura et al. (2014), Christen (2012), Dong and Shrivastava (2015), Belin and Rubin (1995), Gutman et al. (2013), McVeigh et al. (2020), Sadinle (2014+)].

Graphical Bayesian ER

Builds off Copas and Hilton (2011), Tancredi and Liseo (2011).

[RCS, Hall, Fienberg (2014, 2016); RCS (2015), Zanella, et al. (2016), RCS et al. (2017), (2018), Tancredi et al. (2019), Betancourt et al. (2020)].

Review of Bayesian Graphical ER

\begin{figure}[htbp] \begin{center}

\end{figure}

Review of Bayesian Graphical ER

Our Goal

Scaling Bayesian ER methods to millions of records without sacrificing accuracy and crucially giving uncertainty of the ER task

Our Solution

We propose a scalable joint (Bayesian) model for blocking and performing entity resolution, where the error from this joint task is exactly measured.

Problem setup

Key assumptions:

- multiple tables/sources
- duplicates within and across tables
- attributes are aligned
- attributes are discrete
- some missing values
- no ground truth (unsupervised)

Output: approximate posterior distribution over the blocks and linkage structure

Contribution

- 1. Joint Bayesian model for blocking (latent entities) and ER.
- 2. Propose blocks (latent entities) that induce conditional independence between the latent entities.
- Blocking function (responsible for partitioning the entities) groups similar entities together while achieving well-balanced partitions.
- 4. Application of partially-collapsed Gibbs sampling in the context of distributed computing.
- 5. Improving computational efficiency:
 - a) Sub-quadratic algorithm for updating links based on indexing.
 - b) Truncation of the attribute similarities.
 - c) Perturbation sampling algorithm for updating the entity attributes, which relies on the Vose-Alias method.

dblink

Posterior inference

Since the posterior for the linkage structure $p(\Lambda|X)$ is not tractable, we resort to approximate inference.

We propose an MCMC algorithm based on the *partially-collapsed Gibbs* sampler~(van Dyk and Park, 2008):

- regular Gibbs updates for the distortion probabilities θ_{ta} , distortion indicators z_{tra} and links λ_{tr}
- "marginalization" and "trimming" are applied to jointly update the entity attributes y_{ea} and the partition assignments for the linked records
- order of the updates is important (to preserve the stationary distribution)

distributed MCMC

Tricks for speeding up inference

- 1. linkage structure update $\mathcal{O}(\# \text{ records} \times \# \text{ entities})$
- 2. entity attribute update $\mathcal{O}(\# \text{ entities} \times \text{domain size})$

Solutions:

- 1. Indexing: Maintain indices from "entity attributes \rightarrow entities" and "entities \rightarrow linked records." This allows us to prune candidate links for a record
- 2. Thresholding similarity scores
- 3. Express the distribution for the entity attribute update as a two-component perturbation mixture model

Software

Two software packages:

1. dblink: Apache Spark

2. dblinkR: R wrapper for Spark package

dblink

Given the sensitivity of connections between R and Spark, we will perform this demo solely in $\mathsf{R}.$