

PCT/JP00/05636

日本特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

23.08.00

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application:

1999年 8月23日

REC'D 13 OCT 2000

WIPO

PCT

出願番号
Application Number:

平成11年特許願第274956号

出願人
Applicant(s):

中外製薬株式会社

4

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 9月29日

特許庁長官
Commissioner,
Patent Office

及川耕造

BEST AVAILABLE COPY

出証番号 出証特2000-3078735

【書類名】 特許願

【整理番号】 P11-2470

【提出日】 平成11年 8月23日

【あて先】 特許庁長官殿

【国際特許分類】 A61K 31/565

C07C 13/10

C07C 13/18

【発明者】

【住所又は居所】 静岡県御殿場市駒門1丁目135番地 中外製薬株式会
社内

【氏名】 海宝 晋一

【発明者】

【住所又は居所】 静岡県御殿場市駒門1丁目135番地 中外製薬株式会
社内

【氏名】 大泉 厳雄

【発明者】

【住所又は居所】 東京都北区浮間5丁目5番1号 中外製薬株式会内

【氏名】 田村 邦雄

【発明者】

【住所又は居所】 静岡県御殿場市駒門1丁目135番地 中外製薬株式会
社内

【氏名】 加藤 伸明

【発明者】

【住所又は居所】 静岡県御殿場市駒門1丁目135番地 中外製薬株式会
社内

【氏名】 米屋 孝明

【発明者】

【住所又は居所】 静岡県御殿場市駒門1丁目135番地 中外製薬株式会
社内

【氏名】 橋 一生

【特許出願人】

【識別番号】 000003311

【氏名又は名称】 中外製薬株式会社

【代表者】 永山 治

【連絡先】 中外製薬株式会社 知的財産部

【電話番号】 03(3273)1139

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【書類名】 明細書

【発明の名称】 抗アンドロゲン剤

【特許請求の範囲】

【請求項1】 一般式(I)

【化1】

[式中、X¹及びX²は、独立して水素原子、又は一般式(II)] $-Ar-A-R^1$ (II)

で表される基を示し、R^aは、水素原子又は水酸基の保護基を示し、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって、保護されていてもよい-(C=O)-を示し、破線は、実線と共に、単結合又は二重結合を形成していることを示す。

更に、Arは、単結合又は芳香族炭化水素基を示し、Aは、メチレン基又は-O-を示し、R¹は、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、又は置換されていてもよいアルキニル基を示す。

ただし、X¹及びX²は、同時に水素原子であることはない。]

で表される化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項2】 R¹が、R^{1a}[ここで、R^{1a}は、一般式(III)] $-G-E-J-Y-L-Q-Z$ (III)

(式中、Gは、置換されていてもよい炭素数2~30の直鎖もしくは分岐鎖状のアルキレン基、置換されていてもよい炭素数2~30の直鎖もしくは分岐鎖状のアルケニレン基、又は置換されていてもよい炭素数2~30の直鎖もしくは分岐鎖状のアルキニレン基を示し、Eは、単結合又は-O-を示し、Jは、単結合、置換されていてもよい芳香族炭化水素基、又は置換されていてもよい複素環基を示し、Yは、単結合又は-O-を示し、Lは、単結合、炭素数1~10の直鎖

もしくは分岐鎖状のアルキレン基、炭素数2～10の直鎖もしくは分岐鎖状のアルケニレン基、又は炭素数2～10の直鎖もしくは分岐鎖状のアルキニレン基を示し、Qは、単結合、又は下記式：

【化2】

【化3】

、及び

【化4】

(ここで、R⁷は、水素原子、又は炭素数1～6の直鎖もしくは分岐鎖状の低級アルキル基を示し、R⁸、R⁹、R¹⁰、及びR¹¹は、それぞれ独立して、水素原子、又は炭素数1～3の直鎖もしくは分岐鎖状の低級アルキル基を示す。)から選択される1つの基を示し、Zは、水素原子、ハロゲン原子で置換されてもよい炭素数1～10の直鎖もしくは分岐鎖状のアルキル基、ハロゲン原子で置換されていてもよい炭素数2～10の直鎖もしくは分岐鎖状のアルケニル基、ハロゲン原子で置換されていてもよい炭素数2～10の直鎖もしくは分岐鎖状の

アルキニル基、 $-O-R^d$ （ここで、 R^d は、水素原子、又は水酸基の保護基を示す）、又は $-COOH$ を示す。）を示す。}]

で表される、請求項1記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項3】 Qが、 Q^2 [ここで、 Q^2 は、単結合、 Q^{62} 、 Q^{63} 、 Q^{64} 、 Q^3 （更にここで、 R^8 は、前記と同義である。）、 Q^4 （更にここで、 R^8 は、前記と同義である。）、 Q^{17} （更にここで、 R^7 は、前記と同義である。）、 Q^{32} （更にここで、 R^7 は、前記と同義である。）、又は Q^{27} （更にここで、 R^7 は、前記と同義である。）] である、請求項1又は2記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項4】 X^1 が $-Ar-A-R^1$ （式中、 Ar 、A及び R^1 は前記と同義である）であり、かつ、 X^2 が水素原子である、請求項1～3のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項5】 X^1 が水素原子であり、かつ、 X^2 が $-Ar-A-R^1$ （式中、 Ar 、A及び R^1 は前記と同義である）である、請求項1～3のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項6】 破線が、実線と共に、単結合を形成している、請求項1～5のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項7】 11位の立体配置が、 β 配置である、請求項1又は2又は3又は4又は6記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項8】 7位の立体配置が、 α 配置である、請求項1又は2又は3又は5又は6記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項9】 Zが、ハロゲン原子で置換されていてもよい炭素数1～10の直鎖もしくは分岐鎖状のアルキル基である、請求項1～8のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項10】 Zが、4, 4, 5, 5, 5-ペンタフルオロペンチル基である

、請求項9記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項11】 Jが、単結合である、請求項1～10のいずれか1項記載の化合物その薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項12】 Arが、単結合である、請求項1～11のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項13】 Aが、メチレン基である、請求項1～12のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項14】 Qが、Q⁶²、Q⁶³、又はQ⁶⁴である、請求項1～13のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項15】 Qが、R⁸が水素原子であるQ³、又はR⁸が水素原子であるQ⁴である、請求項1～13のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項16】 Qが、R⁷が水素原子であるQ¹⁷、R⁷が水素原子であるQ³²、又はR⁷が水素原子であるQ²⁷である、請求項1～13のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項17】 Arが、芳香族炭化水素基であり、かつAが、-O-である、請求項1～11のいずれか1項記載の化合物その薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項18】 Gが、置換されていてもよい炭素数2～30の直鎖状のアルキレン基である、請求項1～17のいずれか1項記載の化合物その薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項19】 Gが、置換されていてもよい炭素数3～11の直鎖状のアルキレン基である、請求項18記載の化合物その薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項20】 17 β -ヒドロキシ-11 β -{10-(4,4,5,5,5-ペンタフルオロペンチルスルフィニル)デシル}アンドロスタン-3-オン；17 β -ヒドロキシ-11 β -{11-(4,4,5,5,5-ペンタフルオロ

ペンチルスルフィニル) ウンデシル} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{12-(4, 4, 5, 5, 5-ペントフルオロ
ペンチルスルフィニル) ドデシル} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{10-(4, 4, 5, 5, 5-ペントフルオロ
ペンチルスルホニル) デシル} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{11-(4, 4, 5, 5, 5-ペントフルオロ
ペンチルスルホニル) ウンデシル} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{12-(4, 4, 5, 5, 5-ペントフルオロ
ペンチルスルホニル) ドデシル} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -[10-{N-(4, 4, 5, 5, 5-ペントフ
ルオロペンチル) アミノカルボニル} デシル] アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -[11-{N-(4, 4, 5, 5, 5-ペントフ
ルオロペンチル) アミノカルボニル} ウンデシル] アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -[9-{N-(5, 5, 6, 6, 6-ペントフル
オロヘキサノイル) アミノ} ノニル] アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -[10-{N-(5, 5, 6, 6, 6-ペントフ
ルオロヘキサノイル) アミノ} デシル] アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{9-(4, 4, 5, 5, 5-ペントフルオロペ
ンチルスルフィニル) ノニルオキシ} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{10-(4, 4, 5, 5, 5-ペントフルオロ
ペンチルスルフィニル) デシルオキシ} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{11-(4, 4, 5, 5, 5-ペントフルオロ
ペンチルスルフィニル) ウンデシルオキシ} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{9-(4, 4, 5, 5, 5-ペントフルオロペ
ンチルスルホニル) ノニルオキシ} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{10-(4, 4, 5, 5, 5-ペントフルオロ
ペンチルスルホニル) デシルオキシ} アンドロスタン-3-オン;
17 β -ヒドロキシ-11 β -{11-(4, 4, 5, 5, 5-ペントフルオロ
ペンチルスルホニル) ウンデシルオキシ} アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[9-{N-(4,4,5,5,5-ペンタフルオロペンチル)アミノカルボニル}ノニルオキシ]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[10-{N-(4,4,5,5,5-ペンタフルオロペンチル)アミノカルボニル}デシルオキシ]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[8-{N-(5,5,6,6,6-ペンタフルオロヘキサノイル)アミノ}オクチルオキシ]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[9-{N-(5,5,6,6,6-ペンタフルオロヘキサノイル)アミノ}ノニルオキシ]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-{8-(4,4,5,5,5-ペンタフルオロペンチルスルフィニル)オクチルオキシ}フェニル]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-{9-(4,4,5,5,5-ペンタフルオロペンチルスルフィニル)ノニルオキシ}フェニル]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-{8-(4,4,5,5,5-ペンタフルオロペンチルスルホニル)オクチルオキシ}フェニル]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-{9-(4,4,5,5,5-ペンタフルオロペンチルスルホニル)ノニルオキシ}フェニル]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-[8-{N-(4,4,5,5,5-ペンタフルオロペンチル)アミノカルボニル}オクチルオキシ]フェニル]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-[9-{N-(4,4,5,5,5-ペンタフルオロペンチル)アミノカルボニル}ノニルオキシ]フェニル]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-[7-{N-(5,5,6,6,6-ペンタフルオロヘキサノイル)アミノ}ヘプチルオキシ]フェニル]アンドロスタン-

-3-オン；

17β -ヒドロキシ- 11β -(4-[8-{N-(5,5,6,6,6-ペンタフルオロヘキサノイル)アミノ}オクチルオキシ]フェニル)アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -(6-[4-{N-(4,4,5,5,5-ペンタフルオロベンチル)アミノカルボニル}フェニル]ヘキシル)アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -(5-[4-{N-(4,4,5,5,5-ペンタフルオロベンチル)アミノカルボニル}フェニル]ペンチルオキシ)アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -トリデシルオキシアンドロスタン-3-オン；

17β -ヒドロキシ- 11β -(11-カルボキシ-15,15,16,16,16-ペンタフルオロヘキサデシル)アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -[4-{(2-ヒドロキシ-3-(4,4,5,5,5-ペンタフルオロベンチルスルフィニルエチルオキシ)プロピル}オキシ}フェニル]アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -(4-ヒドロキシ-9-(4,4,5,5,5-ペンタフルオロベンチルスルフィニル)ノニル)アンドロスタン-3-オン；

及び 17β -ヒドロキシ- 11β -(10-カルボキシ-14,14,15,15,15-ペンタフルオロペンタデシルオキシ)アンドロスタン-3-オンから選択される請求項1～3のいずれか1項記載の化合物その薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項21】アンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【請求項22】請求項1～21のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグを有効成分として含有する医薬組成物。

【請求項23】請求項1～21のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグを有効成分として含有する抗アンドロゲ

ン剤。

【請求項24】請求項1～21のいずれか1項記載の化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグを有効成分として含有する、前立腺癌、前立腺肥大症、男性型脱毛症、性的早熟、尋常性座瘡、脂漏症及び多毛症から選択される疾患の予防もしくは治療剤。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、7位もしくは11位に種々の置換基を有するアンドロスタン誘導体；アンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質；及び上記アンドロスタン誘導体及び物質を含む医薬に関する。

【0002】

【従来の技術】

これまでに、前立腺癌、前立腺肥大症、男性型脱毛症、性的早熟、尋常性座瘡、脂漏症及び多毛症と男性ホルモンであるアンドロゲンとが深く関わっていることが知られてきている。例えば、去勢された人や性腺不全症の人には前立腺癌、及び前立腺肥大症がほとんどみられないことが知られている。

すでに抗アンドロゲン剤、すなわちアンドロゲン受容体のアンタゴニストとして、例えば、酢酸シプロテロン、酢酸クロルマジノン、フルタミド、ピカルタミドなどが用いられている。酢酸シプロテロンは、十代の人の座瘡の進行や禿頭の発生を抑制することが知られている。また、酢酸シプロテロンは、女性においては、男性化と脱毛症の治療に用いられている。フルタミド、ピカルタミドは、前立腺癌治療薬として使用されている。

【0003】

これらの抗アンドロゲン剤は、前立腺癌における薬物治療を始めとする多くの例で奏効し、有効な治療剤の一つとなっているが、問題点の1つとして、抗アンドロゲン剤が奏効しても2年から5年後にはほとんどの場合再発症してしまうこと、つまりアンドロゲン抵抗性になってしまうことが知られている。

ところで、最近、フルタミドの活性本体のハイドロキシフルタミドが $10\text{ }\mu\text{m}$ $\circ 1/\text{L}$ の濃度で、アンドロゲンレセプターの転写活性を上昇させることが報告された。またフルタミドで治療を受けている前立腺癌患者のハイドロキシフルタミドの血中濃度は数 $\mu\text{m}\circ 1/\text{L}$ で、この濃度は、上記の報告によると、アゴニスト作用を示す濃度である (J. Biol. Chem., vol. 270, 19998-20003, 1995を参照)。また、去勢ラットに酢酸シプロテロン及び酢酸クロルマジノンを2週間連続投与すると、前立腺重量が増加することが報告されている (日内分泌会誌、vol. 66 597-606, 1990)。また、フルタミド及びピカルタミドについては、肝毒性などの副作用の報告例もある。

【0004】

一方、核内受容体に対して、アンタゴニストとして作用し、かつアゴニストとして作用しない物質、すなわち完全に受容体の働きを阻害できる物質、いわゆる純アンタゴニストは、エストロジエン受容体について知られている (WO98/25916号公報、ヨーロッパ特許公開0138504号公報、米国特許4, 659, 516号公報及びCancer Res., 1991, 51, 3867等を参照)。また、核内受容体のホルモン結合ドメインの分子構造は、X線結晶構造解析等により、RXR (retinoid-X receptor)、RAR (retinoic acid receptor) などで明らかになってきている (例えば、Nature, vol. 375, 377-382, 1995等を参照)。

WO97/49709には、非ステロイド型の4環系化合物であるアンドロゲン受容体調節剤が開示されている。

7位にアミノカルボニルアルキル基又は17位にアミノカルボニルアルキニル基を有するステロイド化合物としては、WO91/00732号公報記載のものが知られている。

11位に芳香環又はアルキルオキシ基を有するステロイド化合物としては、例えばWO95/17192号公報記載の、RU486が、多剤耐性の改善剤として知られている。

【0005】

【発明が解決しようとする課題】

本発明の1つの目的は、7位もしくは11位に種々の置換基を有するアンドロスタン誘導体又はその薬学上許容しうる塩あるいはそれらのプロドラッグを提供することである。

本発明の別の目的は、アンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質又はその薬学上許容しうる塩あるいはそれらのプロドラッグを提供することである。

本発明のさらに別の目的は、上記アンドロスタン誘導体を含む医薬及び上記物質を含む医薬を提供することである。

【0006】

【発明を解決するための手段】

本発明者は、上記課題を解決することを目的として、従来知られたアンドロゲン受容体のアンタゴニストの、アンドロゲン抵抗性及び前立腺重量の増加などの副作用は、該アンタゴニストが有するアゴニスト作用によりアンドロゲン応答性の細胞（前立腺細胞等）が増殖することが、原因の1つであると推定し、アンドロゲン受容体に対してアゴニストとして作用しないアンタゴニスト、すなわちアンドロゲン受容体に対する純アンタゴニストを見いだせば、長期投与によるアンドロゲン抵抗性の発現や肝毒性などの副作用を示さない抗アンドロゲン剤を見いだすことができると期待し、該アンタゴニストの設計に着手した。第1に、既存のRXR, RAR等の核内受容体からアンドロゲン受容体を、Homology (MSI社)、Look (MAG社)等のソフトウェアを用いるホモロジー法でモデリングし、第2に、アンドロゲン受容体における純アンタゴニストを、テストステロン及び／又はジヒドロテストステロンをリガンドとして用い、得られた該リガンドとアンドロゲン受容体との複合体モデルを利用して、適当な位置に、受容体との相互作用を形成する、適当な長さと官能基を有する側鎖を導入することにより設計すれば、アンドロゲン受容体に対する純アンタゴニストであると期待できる物質もしくは化合物、及び／又は、肝毒性等の副作用が軽減された抗アンドロゲン剤が設計できることを見いだし、本発明を完成するに至った。

【0007】

本発明の第1の側面によれば、一般式(I)

【0008】

【化5】

【0009】

[式中、X¹及びX²は、独立して水素原子、又は一般式(II)]

-Ar-A-R¹ (II)

で表される基を示し、R^aは、水素原子又は水酸基の保護基を示し、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって、保護されていてもよい-(C=O)-を示し、破線は、実線と共に、単結合又は二重結合を形成していることを示す。

更に、Arは、単結合又は芳香族炭化水素基を示し、Aは、メチレン基又は-O-を示し、R¹は、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、又は置換されていてもよいアルキニル基を示す。

ただし、X¹及びX²は、同時に水素原子であることはない。]

で表される化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグが提供される。

本発明の第2の側面によれば、アンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質又はその薬学上許容しうる塩あるいはそれらのプロドラッグが提供される。

本発明の第3の側面によれば、一般式(I)で表される化合物を含む医薬、及び、アンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質を含む医薬が提供される。

【0010】

本明細書において、炭素数1～3の直鎖もしくは分岐鎖状のアルキル基として

は、メチル基、エチル基、n-プロピル基、及びi-プロピル基が挙げられる。

また、炭素数1～6の直鎖もしくは分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、3-メチルブチル基、2-メチルブチル基、1-メチルブチル基、1-エチルプロピル基、及びn-ヘキシル基等が挙げられる。

本明細書において、 ω 位とは、2価基における、1位とは異なる、もう1つの末端位を意味する。例えば、ヘキサン-1, 6-ジイル基において、 ω 位は6位である。

本明細書において、単結合とは、該基が存在せず、該基の両隣の基が、直接単結合を形成していることを意味する。例えば、一般式(I I)で表される基において、Arが単結合であるとは、一般式(I)で表される化合物におけるステロイド環の7位及び/又は11位とAとが直接単結合を形成していることを示す。

【0011】

一般式(I)で表される化合物の定義において、X¹及びX²は、独立して水素原子、又は一般式(I I)

(ここで、更に、Arは、単結合又は芳香族炭化水素基を示し、Aは、メチレン基又は-O-を示し、R¹は、置換基されていてもよいアルキル基、置換基されていてもよいアルケニル基、又は置換基されていてもよいアルキニル基を示す。)

で表される基を示すが、好ましくは、X¹が-Ar-A-R¹（式中、Ar、A及びR¹は前記と同義である）であり、かつ、X²が水素原子である場合、及びX¹が水素原子であり、かつ、X²が-Ar-A-R¹（式中、Ar、A及びR¹は前記と同義である）である場合が挙げられる。さらに、ステロイド環の11位の立体配置が、 β 配置であるもの、及び7位の立体配置が、 α 配置であるものが好ましい。ただし、X¹及びX²は、同時に水素原子であることはない。

【0012】

R^aは、水素原子又は水酸基の保護基を示すが、好ましくは水素原子を示す。

水酸基の保護基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ビバロイル基、カブロイル基、トリフルオロアセチル基、及びベンゾイル基等のアシル基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、アリルオキシカルボニル基、ベンジルオキシカルボニル基、及びフェノキシカルボニル基等のアルコキシカルボニル基、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチルテキシルシリル基、*t*-ブチルジメチルシリル基、*t*-ブチルジフェニルシリル基、トリベンジルシリル基、トリ-*p*-キシリルシリル基、トリフェニルシリル基、ジフェニルメチルシリル基、及び*t*-ブチルメトキシフェニルシリル基等の置換シリル基、メトキシメチル基、メトキシエトキシメチル基、メチルチオメチル基、*t*-ブチルチオメチル基、 β -トリクロロエチルオキシメチル基、トリメチルシリルエトキシメチル基、*p*-メトキシベンジルオキシメチル基、及び*p*-クロロベンジルオキシメチル基等の置換メチル基、テトラヒドロフラリル、及びテトラヒドロピラニル基等の2-オキサシクロアルキル基、並びにベンジル基等のアラルキル基が挙げられる。中でもトリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、ジメチルテキシルシリル基、*t*-ブチルジメチルシリル基、*t*-ブチルジフェニルシリル基、トリベンジルシリル基、トリ-*p*-キシリルシリル基、トリフェニルシリル基、ジフェニルメチルシリル基、及び*t*-ブチルメトキシフェニルシリル基等の置換シリル基、並びにメトキシメチル基、メトキシエトキシメチル基、メチルチオメチル基、*t*-ブチルチオメチル基、 β -トリクロロエチルオキシメチル基、トリメチルシリルエトキシメチル基、*p*-メトキシベンジルオキシメチル基、及び*p*-クロロベンジルオキシメチル基等の置換メチル基が好ましく、*t*-ブチルジメチルシリル基及びメトキシメチル基が特に好ましい。

【0013】

R^b 及び*R*^c は、それらが結合している3位の炭素原子と一緒にになって、保護されていてもよい- (C=O) -を示すが、好ましくは- (C=O) -を示す。

保護されている—(C=O)—としては、ジメトキシメチレン、ビス(2,2,2-トリクロロエチルオキシ)メチレン、ジベンジルメチレン、ビス(2-ニトロベンジルオキシ)メチレン、ビス(アセチルオキシ)メチレン、ビス(メチルチオ)メチレン、ビス(エチルチオ)メチレン、ビス(プロピルチオ)メチレン、ビス(ブチルチオ)メチレン、ビス(フェニルチオ)メチレン、ビス(ベンジルチオ)メチレン、ビス(アセチルチオ)メチレン、トリメチルシリルオキシメチルチオメチレン、トリメチルシリルオキシエチルチオメチレン、トリメチルシリルオキシフェニルチオメチレン、メチルオキシメチルチオメチレン、メチルオキシフェニルチオメチレン、メチルオキシ-2-(メチルチオ)エチルチオメチレン、ビス(メチルセレネニル)メチレン、及びビス(フェニルセレネニル)メチレン等の非環状であるアセタールもしくはケタール、並びに1,3-ジオキサン、5,5-ジプロモ-1,3-ジオキサン、5-(2-ピリジル)-1,3-ジオキサン、1,3-ジオキソラン、4-ブロモメチル-1,3-ジオキソラン、4-(3-ブテニル)-1,3-ジオキソラン、4-フェニル-1,3-ジオキソラン、4-(2-ニトロフェニル)-1,3-ジオキソラン、4,5-ジメトキシメチル-1,3-ジオキソラン、1,5-ジヒドロ-3H-2,4-ベンゾジオキセピン、1,3-ジチアン、1,3-ジチオラン、1,5-ジヒドロ-3H-2,4-ベンゾジチエピン、1,3-オキサチオラン等の環状であるアセタールもしくはケタールを挙げることができるが、好ましくは1,3-ジオキサン、1,3-ジオキソラン、及び1,3-ジチアン等が挙げられ、特に好ましくは1,3-ジオキソラン等が挙げられる。

【0014】

破線は、実線と共に、単結合又は二重結合を形成していること、すなわち、ステロイド環の4位と5位との間の結合としては、単結合及び二重結合が挙げられることを示すが、好ましくは単結合を形成していることを示す。破線が実線と共に、単結合を形成する場合は、ステロイド環の5位の水素原子は α 配置であるのが好ましい。

【0015】

一般式(I I)で表される基において、Arは、単結合又は芳香族炭化水素基

を示すが、単結合であるのが好ましい。

A_r における芳香族炭化水素基の、芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、ナフタセン環、ペンタセン環、ヘキサセン環、フェナントレン環、トリフェニレン環、ピレン環、クリセン環、ピセン環、ペリレン環、ペンタフェン環、コロネン環、ヘプタフェン環、ピラントレン環、及びオバレン環等が挙げられるが、好ましくはベンゼン環が挙げられる。 A_r における芳香族炭化水素基は、これらの芳香族炭化水素環中の、異なる2つの位置に、1個ずつ結合手を有する基を意味するが、好ましくは、 p -フェニレン基が挙げられる。

A は、メチレン基又は $-O-$ を示すが、メチレン基であるのが好ましい。中でも、 A_r が単結合であり、かつ A がメチレン基であるのが更に好ましい。

また、 A_r が芳香族炭化水素基である場合は、 A が $-O-$ であるのが好ましい。

【0016】

R^1 は、置換基されていてもよいアルキル基、置換基されていてもよいアルケニル基、又は置換基されていてもよいアルキニル基を示すが、好ましくは、 R^1 は、 R^{1a}

[ここで、 R^{1a} は、一般式 (III)]

(式中、 G は、置換されていてもよい炭素数2~30の直鎖もしくは分岐鎖状のアルキレン基、置換されていてもよい炭素数2~30の直鎖もしくは分岐鎖状のアルケニレン基、又は置換されていてもよい炭素数2~30の直鎖もしくは分岐鎖状のアルキニレン基を示し、 E は、単結合又は $-O-$ を示し、 J は、単結合、置換されていてもよい芳香族炭化水素基、又は置換されていてもよい複素環基を示し、 Y は、単結合又は $-O-$ を示し、 L は、単結合、炭素数1~10の直鎖もしくは分岐鎖状のアルキレン基、炭素数2~10の直鎖もしくは分岐鎖状のアルケニレン基、又は炭素数2~10の直鎖もしくは分岐鎖状のアルキニレン基を示し、 Q は、単結合、又は下記式：

【0017】

【化6】

【0018】

【0019】

【化7】

【0020】

、及び

【0021】

【化8】

【0022】

(ここで、R⁷は、水素原子、又は炭素数1～6の直鎖もしくは分岐鎖状の低級アルキル基を示し、R⁸、R⁹、R¹⁰、及びR¹¹は、それぞれ独立して、水素原子、又は炭素数1～3の直鎖もしくは分岐鎖状の低級アルキル基を示す。)から選択される1つの基を示し、Zは、水素原子、ハロゲン原子で置換されてもよい炭素数1～10の直鎖もしくは分岐鎖状のアルキル基、ハロゲン原子で置換されてもよい炭素数2～10の直鎖もしくは分岐鎖状のアルケニル基、

ハロゲン原子で置換されていてもよい炭素数2～10の直鎖もしくは分岐鎖状のアルキニル基、 $-O-R^d$ （ここで、 R^d は、水素原子、又は水酸基の保護基を示す）、又は $-COOH$ を示す。]である。

【0023】

Gにおける、置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルキレン基、置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルケニレン基、及び置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルキニレン基の置換基としては、 $-(CH_2)_m-COOR^{7a}$ 、 $-(CH_2)_p-CONR^{8a}R^{9a}$ 、 $-NR^{8b}R^{9b}$ 、水酸基、及びオキソ基等が挙げられる。ここで、m及びpは、独立して、0又は1を示し、 R^{7a} は、水素原子、又は炭素数1～6の直鎖もしくは分岐鎖状のアルキル基を示し、 R^{8a} 、 R^{9a} 、 R^{8b} 、及び R^{9b} は、それぞれ独立して、水素原子、又は炭素数1～3の直鎖もしくは分岐鎖状のアルキル基を示す。また、この置換基は、存在しないか又は水酸基であるのが好ましく、存在しないのが特に好ましい。なお、Gが置換されている場合、この置換基の数は、1個～4個であり、好ましくは1個である。

【0024】

Gにおける、置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルキレン基の、炭素数2～30の直鎖もしくは分岐鎖状のアルキレン基としては、エタン-1, 2-ジイル基、プロパン-1, 3-ジイル基、ブタン-1, 4-ジイル基、ペンタン-1, 5-ジイル基、ヘキサン-1, 6-ジイル基、ヘプタン-1, 7-ジイル基、オクタン-1, 8-ジイル基、ノナン-1, 9-ジイル基、デカン-1, 10-ジイル基、ウンデカン-1, 11-ジイル基、ドデカン-1, 12-ジイル基、トリデカン-1, 13-ジイル基、テトラデカン-1, 14-ジイル基、ペンタデカン-1, 15-ジイル基、ヘキサデカン-1, 16-ジイル基、ヘptaデカン-1, 17-ジイル基、オクタデカン-1, 18-ジイル基、ノナデカン-1, 19-ジイル基、イコサン-1, 20-ジイル基、ヘニコサン-1, 21-ジイル基、ドコサン-1, 22-ジイル基、トリコサン-1, 23-ジイル基、テトラコサン-1, 24-ジイル基、ペンタコサン-1

, 25-ジイル基、ヘキサコサン-1, 26-ジイル基、ヘプタコサン-1, 27-ジイル基、オクタコサン-1, 28-ジイル基、ノナコサン-1, 29-ジイル基、及びトリアコンタン-1, 30-ジイル基である直鎖状のアルキレン基

【0025】

並びに2-メチルプロパン-1, 3-ジイル基、2-メチルブタン-1, 4-ジイル基、3-メチルブタン-1, 4-ジイル基、2, 3-ジメチルブタン-1, 4-ジイル基、2-メチルペンタン-1, 5-ジイル基、3-メチルペンタン-1, 5-ジイル基、4-メチルペンタン-1, 5-ジイル基、2, 3-ジメチルペンタン-1, 5-ジイル基、2, 4-ジメチルペンタン-1, 5-ジイル基、3, 3-ジメチルペンタン-1, 5-ジイル基、3, 4-ジメチルペンタン-1, 5-ジイル基、2, 3, 4-トリメチルペンタン-1, 5-ジイル基、3-エチルペンタン-1, 5-ジイル基、3-エチル-2-メチルペンタン-1, 5-ジイル基、3-エチル-4-メチルペンタン-1, 5-ジイル基、2, 4-ジメチル-3-エチルペンタン-1, 5-ジイル基、2-メチルヘキサン-1, 6-ジイル基、3-メチルヘキサン-1, 6-ジイル基、4-メチルヘキサン-1, 6-ジイル基、5-メチルヘキサン-1, 6-ジイル基、2, 3-ジメチルヘキサン-1, 6-ジイル基、2, 4-ジメチルヘキサン-1, 6-ジイル基、2, 5-ジメチルヘキサン-1, 6-ジイル基、3, 3-ジメチルヘキサン-1, 6-ジイル基、3, 4-ジメチルヘキサン-1, 6-ジイル基、3, 5-ジメチルヘキサン-1, 6-ジイル基、4, 4-ジメチルヘキサン-1, 6-ジイル基、2, 3, 3-トリメチルヘキサン-1, 6-ジイル基、2, 3, 4-トリメチルヘキサン-1, 6-ジイル基、2, 4, 4-トリメチルヘキサン-1, 6-ジイル基、2, 4, 5-トリメチルヘキサン-1, 6-ジイル基、2, 4, 5-トリメチルヘキサン-1, 6-ジイル基、3, 3, 4-トリメチルヘキサン-1, 6-ジイル基、3, 3, 5-トリメチルヘキサン-1, 6-ジイル基、3, 4, 5-トリメチルヘキサン-1, 6-ジイル基、2, 3, 4-トリメチルヘキサン-1, 6-ジイル基、2, 3, 4, 5-トリメチルヘキサン-1, 6-ジイル基、2, 3, 4, 5-トリメチルヘキサン-1, 6-ジイル基、2, 3, 4, 5-テトラメチルヘキサン-1, 6-ジイル基、3-エチルヘキサン-1, 6

－ジイル基、4－エチルヘキサン－1，6－ジイル基、3－エチル－2－メチル
 ヘキサン－1，6－ジイル基、3－エチル－4－メチルヘキサン－1，6－ジイ
 ル基、3－エチル－5－メチルヘキサン－1，6－ジイル基、4－エチル－2－
 メチルヘキサン－1，6－ジイル基、4－エチル－3－メチルヘキサン－1，6
 －ジイル基、4－エチル－5－メチルヘキサン－1，6－ジイル基、2，4－ジ
 メチル－3－エチルヘキサン－1，6－ジイル基、2，5－ジメチル－3－エチ
 ルヘキサン－1，6－ジイル基、4，5－ジメチル－3－エチルヘキサン－1，
 6－ジイル基、2，3－ジメチル－4－エチルヘキサン－1，6－ジイル基、2
 ，5－ジメチル－4－エチルヘキサン－1，6－ジイル基、3，5－ジメチル－
 4－エチルヘキサン－1，6－ジイル基、3，4－ジエチルヘキサン－1，6－
 ジイル基、

【0026】

2－メチルヘプタン－1，7－ジイル基、3－メチルヘプタン－1，7－ジイル
 基、4－メチルヘプタン－1，7－ジイル基、5－メチルヘプタン－1，7－ジ
 イル基、6－メチルヘプタン－1，7－ジイル基、2，3－ジメチルヘプタン－
 1，7－ジイル基、2，4－ジメチルヘプタン－1，7－ジイル基、2，5－ジ
 メチルヘプタン－1，7－ジイル基、2，6－ジメチルヘプタン－1，7－ジイ
 ル基、3，3－ジメチルヘプタン－1，7－ジイル基、3，4－ジメチルヘプタ
 ン－1，7－ジイル基、3，5－ジメチルヘプタン－1，7－ジイル基、3，6
 －ジメチルヘプタン－1，7－ジイル基、4，4－ジメチルヘプタン－1，7－
 ジイル基、4，5－ジメチルヘプタン－1，7－ジイル基、4，6－ジメチルヘ
 プタン－1，7－ジイル基、5，5－ジメチルヘプタン－1，7－ジイル基、5
 ，6－ジメチルヘプタン－1，7－ジイル基、2，3，3－トリメチルヘプтан
 －1，7－ジイル基、2，3，4－トリメチルヘプтан－1，7－ジイル基、2
 ，3，5－トリメチルヘプтан－1，7－ジイル基、2，3，6－トリメチルヘ
 プтан－1，7－ジイル基、2，4，4－トリメチлヘプтан－1，7－ジイル
 基、2，4，5－トリメチлヘプтан－1，7－ジイル基、2，4，6－トリメ
 チлヘптан－1，7－ジイル基、2，5，5－トリメチлヘптан－1，7－
 ジイル基、2，5，6－トリмечилヘптан－1，7－ジイル基、3，3，4－

トリメチルヘプタン-1, 7-ジイル基、3, 3, 5-トリメチルヘプタン-1, 7-ジイル基、3, 3, 6-トリメチルヘプタン-1, 7-ジイル基、3, 4, 4-トリメチルヘプタン-1, 7-ジイル基、3, 4, 5-トリメチルヘプタン-1, 7-ジイル基、3, 4, 6-トリメチルヘプタン-1, 7-ジイル基、3, 5, 5-トリメチルヘプタン-1, 7-ジイル基、3, 5, 6-トリメチルヘプタン-1, 7-ジイル基、4, 4, 5-トリメチルヘプタン-1, 7-ジイル基、4, 4, 6-トリメチルヘプタン-1, 7-ジイル基、4, 5, 5-トリメチルヘプタン-1, 7-ジイル基、4, 5, 6-トリメチルヘプタン-1, 7-ジイル基、3-エチルヘプタン-1, 7-ジイル基、4-エチルヘプタン-1, 7-ジイル基、5-エチルヘプタン-1, 7-ジイル基、3-エチル-2-メチルヘプタン-1, 7-ジイル基、3-エチル-4-メチルヘプタン-1, 7-ジイル基、3-エチル-5-メチルヘプタン-1, 7-ジイル基、3-エチル-6-メチルヘプタン-1, 7-ジイル基、4-エチル-2-メチルヘプタン-1, 7-ジイル基、4-エチル-3-メチルヘプタン-1, 7-ジイル基、4-エチル-5-メチルヘプタン-1, 7-ジイル基、4-エチル-6-メチルヘプタン-1, 7-ジイル基、5-エチル-2-メチルヘプタン-1, 7-ジイル基、5-エチル-3-メチルヘプタン-1, 7-ジイル基、5-エチル-4-メチルヘプタン-1, 7-ジイル基、5-エチル-5-メチルヘプタン-1, 7-ジイル基、5-エチル-6-メチルヘプタン-1, 7-ジイル基、4-n-プロピルヘプタン-1, 7-ジイル基、4-i-プロピルヘプタン-1, 7-ジイル基、

【0027】

2-メチルオクタン-1, 8-ジイル基、3-メチルオクタン-1, 8-ジイル基、3-メチルオクタン-1, 8-ジイル基、4-メチルオクタン-1, 8-ジイル基、5-メチルオクタン-1, 8-ジイル基、6-メチルオクタン-1, 8-ジイル基、7-メチルオクタン-1, 8-ジイル基、2, 3-ジメチルオクタン-1, 8-ジイル基、2, 4-ジメチルオクタン-1, 8-ジイル基、2, 5-ジメチルオクタン-1, 8-ジイル基、2, 6-ジメチルオクタン-1, 8-ジイル基、2, 7-ジメチルオクタン-1, 8-ジイル基、3, 3-ジメチルオ

クタン-1, 8-ジイル基、3, 4-ジメチルオクタン-1, 8-ジイル基、3,
 , 5-ジメチルオクタン-1, 8-ジイル基、3, 6-ジメチルオクタン-1,
 8-ジイル基、3, 7-ジメチルオクタン-1, 8-ジイル基、4, 4-ジメチ
 ルオクタン-1, 8-ジイル基、4, 5-ジメチルオクタン-1, 8-ジイル基
 、4, 6-ジメチルオクタン-1, 8-ジイル基、4, 7-ジメチルオクタン-
 1, 8-ジイル基、5, 5-ジメチルオクタン-1, 8-ジイル基、5, 6-ジ
 メチルオクタン-1, 8-ジイル基、5, 7-ジメチルオクタン-1, 8-ジイ
 ル基、6, 6-ジメチルオクタン-1, 8-ジイル基、6, 7-ジメチルオクタ
 ン-1, 8-ジイル基、3-エチルオクタン-1, 8-ジイル基、4-エチルオ
 クタン-1, 8-ジイル基、5-エチルオクタン-1, 8-ジイル基、6-エチ
 ルオクタン-1, 8-ジイル基、2-メチルノナン-1, 9-ジイル基、3-メ
 チルノナン-1, 9-ジイル基、4-メチルノナン-1, 9-ジイル基、5-メ
 チルノナン-1, 9-ジイル基、6-メチルノナン-1, 9-ジイル基、7-メ
 チルノナン-1, 9-ジイル基、8-メチルノナン-1, 9-ジイル基、

【0028】

2-メチルデカン-1, 10-ジイル基、3-メチルデカン-1, 10-ジイル
 基、4-メチルデカン-1, 10-ジイル基、5-メチルデカン-1, 10-ジ
 イル基、6-メチルデカン-1, 10-ジイル基、7-メチルデカン-1, 10
 -ジイル基、8-メチルデカン-1, 10-ジイル基、4-エチルデカン-1,
 10-ジイル基、5-エチルデカン-1, 10-ジイル基、6-エチルデカン-
 1, 10-ジイル基、7-エチルデカン-1, 10-ジイル基、5-n-プロピ
 ルデカン-1, 10-ジイル基、6-n-プロピルデカン-1, 10-ジイル基
 、3-エチル-2-メチルデカン-1, 10-ジイル基、4-エチル-2-メチ
 ルデカン-1, 10-ジイル基、5-エチル-2-メチルデカン-1, 10-ジ
 イル基、6-エチル-2-メチルデカン-1, 10-ジイル基、7-エチル-2
 -メチルデカン-1, 10-ジイル基、3-エチル-3-メチルデカン-1, 1
 0-ジイル基、4-エチル-3-メチルデカン-1, 10-ジイル基、5-エチ
 ル-3-メチルデカン-1, 10-ジイル基、6-エチル-3-メチルデカン-
 1, 10-ジイル基、7-エチル-3-メチルデカン-1, 10-ジイル基、3

—エチル—4—メチルデカン—1, 10—ジイル基、4—エチル—4—メチルデカン—1, 10—ジイル基、5—エチル—4—メチルデカン—1, 10—ジイル基、6—エチル—4—メチルデカン—1, 10—ジイル基、7—エチル—4—メチルデカン—1, 10—ジイル基、3—エチル—5—メチルデカン—1, 10—ジイル基、4—エチル—5—メチルデカン—1, 10—ジイル基、5—エチル—5—メチルデカン—1, 10—ジイル基、6—エチル—5—メチルデカン—1, 10—ジイル基、7—エチル—5—メチルデカン—1, 10—ジイル基、

【0029】

2—メチルウンデカン—1, 11—ジイル基、3—メチルウンデカン—1, 11—ジイル基、4—メチルウンデカン—1, 11—ジイル基、5—メチルウンデカン—1, 11—ジイル基、6—メチルウンデカン—1, 11—ジイル基、7—メチルウンデカン—1, 11—ジイル基、8—メチルウンデカン—1, 11—ジイル基、9—メチルウンデカン—1, 11—ジイル基、10—メチルウンデカン—1, 11—ジイル基、3—エチルウンデカン—1, 11—ジイル基、4—エチルウンデカン—1, 11—ジイル基、5—エチルウンデカン—1, 11—ジイル基、6—エチルウンデカン—1, 11—ジイル基、7—エチルウンデカン—1, 11—ジイル基、8—エチルウンデカン—1, 11—ジイル基、9—エチルウンデカン—1, 11—ジイル基、

2—メチルドデカン—1, 12—ジイル基、3—メチルドデカン—1, 12—ジイル基、4—メチルドデカン—1, 12—ジイル基、5—メチルドデカン—1, 12—ジイル基、6—メチルドデカン—1, 12—ジイル基、7—メチルドデカン—1, 12—ジイル基、8—メチルドデカン—1, 12—ジイル基、9—メチルドデカン—1, 12—ジイル基、10—メチルドデカン—1, 12—ジイル基、11—メチルドデカン—1, 12—ジイル基、

3—エチルドデカン—1, 12—ジイル基、4—エチルドデカン—1, 12—ジイル基、5—エチルドデカン—1, 12—ジイル基、6—エチルドデカン—1, 12—ジイル基、7—エチルドデカン—1, 12—ジイル基、8—エチルドデカン—1, 12—ジイル基、9—エチルドデカン—1, 12—ジイル基、10—エチルドデカン—1, 12—ジイル基、

2-メチルトリデカン-1, 13-ジイル基、3-メチルトリデカン-1, 13-ジイル基、4-メチルトリデカン-1, 13-ジイル基、5-メチルトリデカン-1, 13-ジイル基、6-メチルトリデカン-1, 13-ジイル基、7-メチルトリデカン-1, 13-ジイル基、8-メチルトリデカン-1, 13-ジイル基、9-メチルトリデカン-1, 13-ジイル基、10-メチルトリデカン-1, 13-ジイル基、11-メチルトリデカン-1, 13-ジイル基、12-メチルトリデカン-1, 13-ジイル基、

【0030】

3-エチルトリデカン-1, 13-ジイル基、4-エチルトリデカン-1, 13-ジイル基、5-エチルトリデカン-1, 13-ジイル基、6-エチルトリデカン-1, 13-ジイル基、7-エチルトリデカン-1, 13-ジイル基、8-エチルトリデカン-1, 13-ジイル基、9-エチルトリデカン-1, 13-ジイル基、10-エチルトリデカン-1, 13-ジイル基、11-エチルトリデカン-1, 13-ジイル基、

2-メチルテトラデカン-1, 14-ジイル基、3-メチルテトラデカン-1, 14-ジイル基、4-メチルテトラデカン-1, 14-ジイル基、5-メチルテトラデカン-1, 14-ジイル基、6-メチルテトラデカン-1, 14-ジイル基、7-メチルテトラデカン-1, 14-ジイル基、8-メチルテトラデカン-1, 14-ジイル基、9-メチルテトラデカン-1, 14-ジイル基、10-メチルテトラデカン-1, 14-ジイル基、11-メチルテトラデカン-1, 14-ジイル基、12-メチルテトラデカン-1, 14-ジイル基、13-メチルテトラデカン-1, 14-ジイル基、

3-エチルテトラデカン-1, 14-ジイル基、4-エチルテトラデカン-1, 14-ジイル基、5-エチルテトラデカン-1, 14-ジイル基、6-エチルテトラデカン-1, 14-ジイル基、7-エチルテトラデカン-1, 14-ジイル基、8-エチルテトラデカン-1, 14-ジイル基、9-エチルテトラデカン-1, 14-ジイル基、10-エチルテトラデカン-1, 14-ジイル基、11-エチルテトラデカン-1, 14-ジイル基、12-エチルテトラデカン-1, 14-ジイル基、

2-メチルペントадекан-1, 15-ジイル基、3-メチルペントадекан-1,
 15-ジイル基、4-メチルペントадекан-1, 15-ジイル基、5-メチлпе
 нтадекан-1, 15-ジイル基、6-метилpentадекан-1, 15-ジイル
 基、7-метилpentадекан-1, 15-ジイル基、8-метилpentадекан-
 1, 15-ジイル基、9-метилpentадекан-1, 15-ジイル基、10-
 метилpentадекан-1, 15-ジイル基、11-метилpentадекан-1, 15
 -ジイル基、12-метилpentадекан-1, 15-ジイル基、13-метилпе
 нтадекан-1, 15-ジイル基、14-метилpentадекан-1, 15-ジи
 л基、

3-エチлpentадекан-1, 15-ジイル基、4-エチлpentадекан-1,
 15-ジイル基、5-エチлpentадекан-1, 15-ジイル基、6-этилпе
 нтадекан-1, 15-ジイル基、7-этилpentадекан-1, 15-ジイル
 基、8-этилpentадекан-1, 15-ジイル基、9-этилpentадекан-
 1, 15-ジイル基、10-этилpentадекан-1, 15-ジイル基、11-
 этилpentадекан-1, 15-ジイル基、12-этилpentадекан-1, 1
 5-ジイル基、13-этилpentадекан-1, 15-ジイル基、

【0031】

2-メチルヘキサデкан-1, 16-ジイル基、3-メチルヘキсацан-1,
16-ジイル基、4-メチлヘキсацан-1, 16-ジイル基、5-メチлхе
 キсацан-1, 16-ジイル基、6-метилхексацан-1, 16-ジイル
 基、7-метилхексацан-1, 16-ジイル基、8-метилхексацан-
 1, 16-ジイル基、9-метилхексацан-1, 16-ジイル基、10-
 метилхексацан-1, 16-ジイル基、11-метилхексацан-1, 16
 -ジイル基、12-метилхексацан-1, 16-ジイル基、13-метилхе
 кисацан-1, 16-ジイル基、14-метилхексацан-1, 16-ジи
 л基、15-метилхексацан-1, 16-ジイル基、

3-エチлхексацан-1, 16-ジイル基、4-этилхексацан-1,
 16-ジイル基、5-этилхексацан-1, 16-ジイル基、6-этилхе
 кисацан-1, 16-ジイル基、7-этилхексацан-1, 16-ジイル

基、8-エチルヘキサデカン-1, 16-ジイル基、9-エチルヘキサデカン-1, 16-ジイル基、10-エチルヘキサデカン-1, 16-ジイル基、11-エチルヘキサデカン-1, 16-ジイル基、12-エチルヘキサデカン-1, 16-ジイル基、13-エチルヘキサデカン-1, 16-ジイル基、14-エチルヘキサデカン-1, 16-ジイル基、

2-メチルヘプタデカン-1, 17-ジイル基、3-メチルヘプタデカン-1, 17-ジイル基、4-メチルヘプタデカン-1, 17-ジイル基、5-メチルヘプタデカン-1, 17-ジイル基、6-メチルヘプタデカン-1, 17-ジイル基、7-メチルヘプタデカン-1, 17-ジイル基、8-メチルヘプタデカン-1, 17-ジイル基、9-メチルヘプタデカン-1, 17-ジイル基、10-メチルヘプタデカン-1, 17-ジイル基、11-メチルヘプタデカン-1, 17-ジイル基、12-メチルヘプタデカン-1, 17-ジイル基、13-メチルヘプタデカン-1, 17-ジイル基、14-メチルヘプタデカン-1, 17-ジイル基、15-メチルヘプタデカン-1, 17-ジイル基、16-メチルヘプタデカン-1, 17-ジイル基、

3-エチルヘプタデカン-1, 17-ジイル基、4-エチルヘプタデカン-1, 17-ジイル基、5-エチルヘプタデカン-1, 17-ジイル基、6-エチルヘプタデカン-1, 17-ジイル基、7-エチルヘプタデカン-1, 17-ジイル基、8-エチルヘプタデカン-1, 17-ジイル基、9-エチルヘプタデカン-1, 17-ジイル基、10-エチルヘプタデカン-1, 17-ジイル基、11-エチルヘプタデカン-1, 17-ジイル基、12-エチルヘプタデカン-1, 17-ジイル基、13-エチルヘプタデカン-1, 17-ジイル基、14-エチルヘプタデカン-1, 17-ジイル基、15-エチルヘプタデカン-1, 17-ジイル基、

【0032】

2-メチルオクタデカン-1, 18-ジイル基、3-メチルオクタデカン-1, 18-ジイル基、4-メチルオクタデカン-1, 18-ジイル基、5-メチルオクタデカン-1, 18-ジイル基、6-メチルオクタデカン-1, 18-ジイル基、7-メチルオクタデカン-1, 18-ジイル基、8-メチルオクタデカン-

1, 18-ジイル基、9-メチルオクタデカン-1, 18-ジイル基、10-メチルオクタデカン-1, 18-ジイル基、11-メチルオクタデカン-1, 18-ジイル基、12-メチルオクタデカン-1, 18-ジイル基、13-メチルオクタデカン-1, 18-ジイル基、14-メチルオクタデカン-1, 18-ジイル基、15-メチルオクタデカン-1, 18-ジイル基、16-メチルオクタデカン-1, 18-ジイル基、17-メチルオクタデカン-1, 18-ジイル基、3-エチルオクタデカン-1, 18-ジイル基、4-エチルオクタデカン-1, 18-ジイル基、5-エチルオクタデカン-1, 18-ジイル基、6-エチルオクタデカン-1, 18-ジイル基、7-エチルオクタデカン-1, 18-ジイル基、8-エチルオクタデカン-1, 18-ジイル基、9-エチルオクタデカン-1, 18-ジイル基、10-エチルオクタデカン-1, 18-ジイル基、11-エチルオクタデカン-1, 18-ジイル基、12-エチルオクタデカン-1, 18-ジイル基、13-エチルオクタデカン-1, 18-ジイル基、14-エチルオクタデカン-1, 18-ジイル基、15-エチルオクタデカン-1, 18-ジイル基、16-エチルオクタデカン-1, 18-ジイル基、
2-メチルノナデカン-1, 19-ジイル基、3-メチルノナデカン-1, 19-ジイル基、4-メチルノナデカン-1, 19-ジイル基、5-メチルノナデカン-1, 19-ジイル基、6-メチルノナデカン-1, 19-ジイル基、7-メチルノナデカン-1, 19-ジイル基、8-メチルノナデカン-1, 19-ジイル基、9-メチルノナデカン-1, 19-ジイル基、10-メチルノナデカン-1, 19-ジイル基、11-メチルノナデカン-1, 19-ジイル基、12-メチルノナデカン-1, 19-ジイル基、13-メチルノナデカン-1, 19-ジイル基、14-メチルノナデカン-1, 19-ジイル基、15-メチルノナデカン-1, 19-ジイル基、16-メチルノナデカン-1, 19-ジイル基、17-メチルノナデカン-1, 19-ジイル基、18-メチルノナデカン-1, 19-ジイル基、
3-エチルノナデカン-1, 19-ジイル基、4-エチルノナデカン-1, 19-ジイル基、5-エチルノナデカン-1, 19-ジイル基、6-エチルノナデカン-1, 19-ジイル基、7-エチルノナデカン-1, 19-ジイル基、8-エ

チルノナデカン-1, 19-ジイル基、9-エチルノナデカン-1, 19-ジイ
ル基、10-エチルノナデカン-1, 19-ジイル基、11-エチルノナデカン
-1, 19-ジイル基、12-エチルノナデカン-1, 19-ジイル基、13-
エチルノナデカン-1, 19-ジイル基、14-エチルノナデカン-1, 19-
ジイル基、15-エチルノナデカン-1, 19-ジイル基、16-エチルノナデ
カン-1, 19-ジイル基、17-エチルノナデカン-1, 19-ジイル基、

【0033】

2-メチルイコサン-1, 20-ジイル基、3-メチルイコサン-1, 20-ジ
イル基、4-メチルイコサン-1, 20-ジイル基、5-メチルイコサン-1,
20-ジイル基、6-メチルイコサン-1, 20-ジイル基、7-メチルイコサ
ン-1, 20-ジイル基、8-メチルイコサン-1, 20-ジイル基、9-メチ
ルイコサン-1, 20-ジイル基、10-メチルイコサン-1, 20-ジイル基
、11-メチルイコサン-1, 20-ジイル基、12-メチルイコサン-1, 2
0-ジイル基、13-メチルイコサン-1, 20-ジイル基、14-メチルイコ
サン-1, 20-ジイル基、15-メチルイコサン-1, 20-ジイル基、16
-メチルイコサン-1, 20-ジイル基、17-メチルイコサン-1, 20-ジ
イル基、18-メチルイコサン-1, 20-ジイル基、19-メチルイコサン-
1, 20-ジイル基、

3-エチルイコサン-1, 20-ジイル基、4-エチルイコサン-1, 20-ジ
イル基、5-エチルイコサン-1, 20-ジイル基、6-エチルイコサン-1,
20-ジイル基、7-エチルイコサン-1, 20-ジイル基、8-エチルイコサ
ン-1, 20-ジイル基、9-エチルイコサン-1, 20-ジイル基、10-エ
チルイコサン-1, 20-ジイル基、11-エチルイコサン-1, 20-ジイル
基、12-エチルイコサン-1, 20-ジイル基、13-エチルイコサン-1,
20-ジイル基、14-エチルイコサン-1, 20-ジイル基、15-エチルイ
コサン-1, 20-ジイル基、16-エチルイコサン-1, 20-ジイル基、1
7-エチルイコサン-1, 20-ジイル基、18-エチルイコサン-1, 20-
ジイル基、

【0034】

2-メチルヘニコサン-1, 21-ジイル基、3-メチルヘニコサン-1, 21-ジイル基、4-メチルヘニコサン-1, 21-ジイル基、5-メチルヘニコサン-1, 21-ジイル基、6-メチルヘニコサン-1, 21-ジイル基、7-メチルヘニコサン-1, 21-ジイル基、8-メチルヘニコサン-1, 21-ジイル基、9-メチルヘニコサン-1, 21-ジイル基、10-メチルヘニコサン-1, 21-ジイル基、11-メチルヘニコサン-1, 21-ジイル基、12-メチルヘニコサン-1, 21-ジイル基、13-メチルヘニコサン-1, 21-ジイル基、14-メチルヘニコサン-1, 21-ジイル基、15-メチルヘニコサン-1, 21-ジイル基、16-メチルヘニコサン-1, 21-ジイル基、17-メチルヘニコサン-1, 21-ジイル基、18-メチルヘニコサン-1, 21-ジイル基、19-メチルヘニコサン-1, 21-ジイル基、20-メチルヘニコサン-1, 21-ジイル基、

3-エチルヘニコサン-1, 21-ジイル基、4-エチルヘニコサン-1, 21-ジイル基、5-エチルヘニコサン-1, 21-ジイル基、6-エチルヘニコサン-1, 21-ジイル基、7-エチルヘニコサン-1, 21-ジイル基、8-エチルヘニコサン-1, 21-ジイル基、9-エチルヘニコサン-1, 21-ジイル基、10-エチルヘニコサン-1, 21-ジイル基、11-エチルヘニコサン-1, 21-ジイル基、12-エチルヘニコサン-1, 21-ジイル基、13-エチルヘニコサン-1, 21-ジイル基、14-エチルヘニコサン-1, 21-ジイル基、15-エチルヘニコサン-1, 21-ジイル基、16-エチルヘニコサン-1, 21-ジイル基、17-エチルヘニコサン-1, 21-ジイル基、18-エチルヘニコサン-1, 21-ジイル基、19-エチルヘニコサン-1, 21-ジイル基、

【0035】

2-メチルドコサン-1, 22-ジイル基、3-メチルドコサン-1, 22-ジイル基、4-メチルドコサン-1, 22-ジイル基、5-メチルドコサン-1, 22-ジイル基、6-メチルドコサン-1, 22-ジイル基、7-メチルドコサン-1, 22-ジイル基、8-メチルドコサン-1, 22-ジイル基、9-メチルドコサン-1, 22-ジイル基、10-メチルドコサン-1, 22-ジイル基

、11-メチルドコサン-1, 22-ジイル基、12-メチルドコサン-1, 2-ジイル基、13-メチルドコサン-1, 22-ジイル基、14-メチルドコサン-1, 22-ジイル基、15-メチルドコサン-1, 22-ジイル基、16-メチルドコサン-1, 22-ジイル基、17-メチルドコサン-1, 22-ジイル基、18-メチルドコサン-1, 22-ジイル基、19-メチルドコサン-1, 22-ジイル基、20-メチルドコサン-1, 22-ジイル基、21-メチルドコサン-1, 22-ジイル基、
3-エチルドコサン-1, 22-ジイル基、4-エチルドコサン-1, 22-ジイル基、5-エチルドコサン-1, 22-ジイル基、6-エチルドコサン-1, 22-ジイル基、7-エチルドコサン-1, 22-ジイル基、8-エチルドコサン-1, 22-ジイル基、9-エチルドコサン-1, 22-ジイル基、10-エチルドコサン-1, 22-ジイル基、11-エチルドコサン-1, 22-ジイル基、12-エチルドコサン-1, 22-ジイル基、13-エチルドコサン-1, 22-ジイル基、14-エチルドコサン-1, 22-ジイル基、15-エチルドコサン-1, 22-ジイル基、16-エチルドコサン-1, 22-ジイル基、17-エチルドコサン-1, 22-ジイル基、18-エチルドコサン-1, 22-ジイル基、19-エチルドコサン-1, 22-ジイル基、20-エチルドコサン-1, 22-ジイル基、

[0036]

2-メチルトリコサン-1, 23-ジイル基、3-メチルトリコサン-1, 23-ジイル基、4-メチルトリコサン-1, 23-ジイル基、5-メチルトリコサン-1, 23-ジイル基、6-メチルトリコサン-1, 23-ジイル基、7-メチルトリコサン-1, 23-ジイル基、8-メチルトリコサン-1, 23-ジイル基、9-メチルトリコサン-1, 23-ジイル基、10-メチルトリコサン-1, 23-ジイル基、11-メチルトリコサン-1, 23-ジイル基、12-メチルトリコサン-1, 23-ジイル基、13-メチルトリコサン-1, 23-ジイル基、14-メチルトリコサン-1, 23-ジイル基、15-メチルトリコサン-1, 23-ジイル基、16-メチルトリコサン-1, 23-ジイル基、17-メチルトリコサン-1, 23-ジイル基、18-メチルトリコサン-1, 23-

－ジイル基、19－メチルトリコサン－1，23－ジイル基、20－メチルトリコサン－1，23－ジイル基、21－メチルトリコサン－1，23－ジイル基、22－メチルトリコサン－1，23－ジイル基、
3－エチルトリコサン－1，23－ジイル基、4－エチルトリコサン－1，23
－ジイル基、5－エチルトリコサン－1，23－ジイル基、6－エチルトリコサン－1，23－ジイル基、7－エチルトリコサン－1，23－ジイル基、8－エチルトリコサン－1，23－ジイル基、9－エチルトリコサン－1，23－ジイル基、10－エチルトリコサン－1，23－ジイル基、11－エチルトリコサン－1，23－ジイル基、12－エチルトリコサン－1，23－ジイル基、13－エチルトリコサン－1，23－ジイル基、14－エチルトリコサン－1，23－ジイル基、15－エチルトリコサン－1，23－ジイル基、16－エチルトリコサン－1，23－ジイル基、17－エチルトリコサン－1，23－ジイル基、18－エチルトリコサン－1，23－ジイル基、19－エチルトリコサン－1，23－ジイル基、20－エチルトリコサン－1，23－ジイル基、21－エチルトリコサン－1，23－ジイル基、

【0037】

2－メチルテトラコサン－1，24－ジイル基、3－メチルテトラコサン－1，
24－ジイル基、4－メチルテトラコサン－1，24－ジイル基、5－メチルテ
トラコサン－1，24－ジイル基、6－メチルテトラコサン－1，24－ジイル
基、7－メチルテトラコサン－1，24－ジイル基、8－メチルテトラコサン－
1，24－ジイル基、9－メチルテトラコサン－1，24－ジイル基、10－メ
チルテトラコサン－1，24－ジイル基、11－メチルテトラコサン－1，24
－ジイル基、12－メチルテトラコサン－1，24－ジイル基、13－メチルテ
トラコサン－1，24－ジイル基、14－メチルテトラコサン－1，24－ジイ
ル基、15－メチルテトラコサン－1，24－ジイル基、16－メチルテトラ
コサン－1，24－ジイル基、17－メチルテトラコサン－1，24－ジイル基、
18－メチルテトラコサン－1，24－ジイル基、19－メチルテトラコサン－
1，24－ジイル基、20－メチルテトラコサン－1，24－ジイル基、21－
メチルテトラコサン－1，24－ジイル基、22－メチルテトラコサン－1，2

4-ジイル基、23-メチルテトラコサン-1, 24-ジイル基、
 3-エチルテトラコサン-1, 24-ジイル基、4-エチルテトラコサン-1,
 24-ジイル基、5-エチルテトラコサン-1, 24-ジイル基、6-エチルテ
 ラコサン-1, 24-ジイル基、7-エチルテトラコサン-1, 24-ジイル
 基、8-エチルテトラコサン-1, 24-ジイル基、9-エチルテトラコサン-
 1, 24-ジイル基、10-エチルテトラコサン-1, 24-ジイル基、11-
 エチルテトラコサン-1, 24-ジイル基、12-エチルテトラコサン-1, 2
 4-ジイル基、13-エチルテトラコサン-1, 24-ジイル基、14-エチ
 ルテトラコサン-1, 24-ジイル基、15-エチルテトラコサン-1, 24-ジ
 イル基、16-エチルテトラコサン-1, 24-ジイル基、17-エチルテトラ
 コサン-1, 24-ジイル基、18-エチルテトラコサン-1, 24-ジイル基
 、19-エチルテトラコサン-1, 24-ジイル基、20-エチルテトラコサン
 -1, 24-ジイル基、21-エチルテトラコサン-1, 24-ジイル基、22
 -エチルテトラコサン-1, 24-ジイル基、

【0038】

2-メチルペンタコサン-1, 25-ジイル基、3-メチルペンタコサン-1,
 25-ジイル基、4-メチルペンタコサン-1, 25-ジイル基、5-メチルペ
 ンタコサン-1, 25-ジイル基、6-メチルペンタコサン-1, 25-ジイル
 基、7-メチルペンタコサン-1, 25-ジイル基、8-メチルペンタコサン-
 1, 25-ジイル基、9-メチルペンタコサン-1, 25-ジイル基、10-メ
 チルペンタコサン-1, 25-ジイル基、11-メチルペンタコサン-1, 25
 -ジイル基、12-メチルペンタコサン-1, 25-ジイル基、13-メチルペ
 ンタコサン-1, 25-ジイル基、14-メチルペンタコサン-1, 25-ジイ
 ル基、15-メチルペンタコサン-1, 25-ジイル基、16-メチルペンタコ
 サン-1, 25-ジイル基、17-メチルペンタコサン-1, 25-ジイル基、
 18-メチルペンタコサン-1, 25-ジイル基、19-メチルペンタコサン-
 1, 25-ジイル基、20-メチルペンタコサン-1, 25-ジイル基、21-
 メチルペンタコサン-1, 25-ジイル基、22-メチルペンタコサン-1, 2
 5-ジイル基、23-メチルペンタコサン-1, 25-ジイル基、24-メチル

ペントカサン-1, 25-ジイル基、
 3-エチルペントカサン-1, 25-ジイル基、4-エチルペントカサン-1,
 25-ジイル基、5-エチルペントカサン-1, 25-ジイル基、6-エチルペ
 ンタコサン-1, 25-ジイル基、7-エチルペントカサン-1, 25-ジイル
 基、8-エチルペントカサン-1, 25-ジイル基、9-エチルペントカサン-
 1, 25-ジイル基、10-エチルペントカサン-1, 25-ジイル基、11-
 エチルペントカサン-1, 25-ジイル基、12-エチルペントカサン-1, 2
 5-ジイル基、13-エチルペントカサン-1, 25-ジイル基、14-エチル
 ペントカサン-1, 25-ジイル基、15-エチルペントカサン-1, 25-ジ
 イル基、16-エチルペントカサン-1, 25-ジイル基、17-エチルペント
 カサン-1, 25-ジイル基、18-エチルペントカサン-1, 25-ジイル基
 、19-エチルペントカサン-1, 25-ジイル基、20-エチルペントカサン
 -1, 25-ジイル基、21-エチルペントカサン-1, 25-ジイル基、22
 -エチルペントカサン-1, 25-ジイル基、23-エチルペントカサン-1,
 25-ジイル基、

【0039】

2-メチルヘキサコサン-1, 26-ジイル基、3-メチルヘキサコサン-1,
 26-ジイル基、4-メチルヘキサコサン-1, 26-ジイル基、5-メチルヘ
 キサコサン-1, 26-ジイル基、6-メチルヘキサコサン-1, 26-ジイル
 基、7-メチルヘキサコサン-1, 26-ジイル基、8-メチルヘキサコサン-
 1, 26-ジイル基、9-メチルヘキサコサン-1, 26-ジイル基、10-メ
 チルヘキサコサン-1, 26-ジイル基、11-メチルヘキサコサン-1, 26
 -ジイル基、12-メチルヘキサコサン-1, 26-ジイル基、13-メチルヘ
 キサコサン-1, 26-ジイル基、14-メチルヘキサコサン-1, 26-ジイ
 ル基、15-メチルヘキサコサン-1, 26-ジイル基、16-メチルヘキサコ
 サン-1, 26-ジイル基、17-メチルヘキサコサン-1, 26-ジイル基、
 18-メチルヘキサコサン-1, 26-ジイル基、19-メチルヘキサコサン-
 1, 26-ジイル基、20-メチルヘキサコサン-1, 26-ジイル基、21-
 メチルヘキサコサン-1, 26-ジイル基、22-メチルヘキサコサン-1, 2

6-ジイル基、23-メチルヘキサコサン-1, 26-ジイル基、24-メチルヘキサコサン-1, 26-ジイル基、25-メチルヘキサコサン-1, 26-ジイル基、

3-エチルヘキサコサン-1, 26-ジイル基、4-エチルヘキサコサン-1, 26-ジイル基、5-エチルヘキサコサン-1, 26-ジイル基、6-エチルヘキサコサン-1, 26-ジイル基、7-エチルヘキサコサン-1, 26-ジイル基、8-エチルヘキサコサン-1, 26-ジイル基、9-エチルヘキサコサン-1, 26-ジイル基、10-エチルヘキサコサン-1, 26-ジイル基、11-エチルヘキサコサン-1, 26-ジイル基、12-エチルヘキサコサン-1, 26-ジイル基、13-エチルヘキサコサン-1, 26-ジイル基、14-エチルヘキサコサン-1, 26-ジイル基、15-エチルヘキサコサン-1, 26-ジイル基、16-エチルヘキサコサン-1, 26-ジイル基、17-エチルヘキサコサン-1, 26-ジイル基、18-エチルヘキサコサン-1, 26-ジイル基、19-エチルヘキサコサン-1, 26-ジイル基、20-エチルヘキサコサン-1, 26-ジイル基、21-エチルヘキサコサン-1, 26-ジイル基、22-エチルヘキサコサン-1, 26-ジイル基、23-エチルヘキサコサン-1, 26-ジイル基、24-エチルヘキサコサン-1, 26-ジイル基、

【0040】

2-メチルヘプタコサン-1, 27-ジイル基、3-メチルヘプタコサン-1, 27-ジイル基、4-メチルヘプタコサン-1, 27-ジイル基、5-メチルヘプタコサン-1, 27-ジイル基、6-メチルヘプタコサン-1, 27-ジイル基、7-メチルヘプタコサン-1, 27-ジイル基、8-メチルヘプタコサン-1, 27-ジイル基、9-メチルヘプタコサン-1, 27-ジイル基、10-メチルヘプタコサン-1, 27-ジイル基、11-メチルヘプタコサン-1, 27-ジイル基、12-メチルヘプタコサン-1, 27-ジイル基、13-メチルヘプタコサン-1, 27-ジイル基、14-メチルヘプタコサン-1, 27-ジイル基、15-メチルヘプタコサン-1, 27-ジイル基、16-メチルヘプタコサン-1, 27-ジイル基、17-メチルヘプタコサン-1, 27-ジイル基、18-メチルヘプタコサン-1, 27-ジイル基、19-メチルヘプタコサン-

1, 27-ジイル基、20-メチルヘプタコサン-1, 27-ジイル基、21-メチルヘプタコサン-1, 27-ジイル基、22-メチルヘプタコサン-1, 27-ジイル基、23-メチルヘプタコサン-1, 27-ジイル基、24-メチルヘプタコサン-1, 27-ジイル基、25-メチルヘプタコサン-1, 27-ジイル基、26-メチルヘプタコサン-1, 27-ジイル基、
3-エチルヘプタコサン-1, 27-ジイル基、4-エチルヘプタコサン-1, 27-ジイル基、5-エチルヘプタコサン-1, 27-ジイル基、6-エチルヘプタコサン-1, 27-ジイル基、7-エチルヘプタコサン-1, 27-ジイル基、8-エチルヘプタコサン-1, 27-ジイル基、9-エチルヘプタコサン-1, 27-ジイル基、10-エチルヘプタコサン-1, 27-ジイル基、11-エチルヘプタコサン-1, 27-ジイル基、12-エチルヘプタコサン-1, 27-ジイル基、13-エチルヘプタコサン-1, 27-ジイル基、14-エチルヘプタコサン-1, 27-ジイル基、15-エチルヘプタコサン-1, 27-ジイル基、16-エチルヘプタコサン-1, 27-ジイル基、17-エチルヘプタコサン-1, 27-ジイル基、18-エチルヘプタコサン-1, 27-ジイル基、19-エチルヘプタコサン-1, 27-ジイル基、20-エチルヘプタコサン-1, 27-ジイル基、21-エチルヘプタコサン-1, 27-ジイル基、22-エチルヘプタコサン-1, 27-ジイル基、23-エチルヘプタコサン-1, 27-ジイル基、24-エチルヘプタコサン-1, 27-ジイル基、25-エチルヘプタコサン-1, 27-ジイル基、
2-メチルオクタコサン-1, 28-ジイル基、3-メチルオクタコサン-1, 28-ジイル基、4-メチルオクタコサン-1, 28-ジイル基、5-メチルオクタコサン-1, 28-ジイル基、6-メチルオクタコサン-1, 28-ジイル基、7-メチルオクタコサン-1, 28-ジイル基、8-メチルオクタコサン-1, 28-ジイル基、9-メチルオクタコサン-1, 28-ジイル基、10-メチルオクタコサン-1, 28-ジイル基、11-メチルオクタコサン-1, 28-ジイル基、12-メチルオクタコサン-1, 28-ジイル基、13-メチルオクタコサン-1, 28-ジイル基、14-メチルオクタコサン-1, 28-ジイル基、15-メチルオクタコサン-1, 28-ジイル基、16-メチルオクタコ

サン-1, 28-ジイル基、17-メチルオクタコサン-1, 28-ジイル基、
18-メチルオクタコサン-1, 28-ジイル基、19-メチルオクタコサン-
1, 28-ジイル基、20-メチルオクタコサン-1, 28-ジイル基、21-
メチルオクタコサン-1, 28-ジイル基、22-メチルオクタコサン-1, 2
8-ジイル基、23-メチルオクタコサン-1, 28-ジイル基、24-メチル
オクタコサン-1, 28-ジイル基、25-メチルオクタコサン-1, 28-ジ
イル基、26-メチルオクタコサン-1, 28-ジイル基、27-メチルオクタ
コサン-1, 28-ジイル基、

3-エチルオクタコサン-1, 28-ジイル基、4-エチルオクタコサン-1,
28-ジイル基、5-エチルオクタコサン-1, 28-ジイル基、6-エチルオ
クタコサン-1, 28-ジイル基、7-エチルオクタコサン-1, 28-ジイル
基、8-エチルオクタコサン-1, 28-ジイル基、9-エチルオクタコサン-
1, 28-ジイル基、10-エチルオクタコサン-1, 28-ジイル基、11-
メチルオクタコサン-1, 28-ジイル基、12-エチルオクタコサン-1, 2
8-ジイル基、13-エチルオクタコサン-1, 28-ジイル基、14-エチル
オクタコサン-1, 28-ジイル基、15-エチルオクタコサン-1, 28-ジ
イル基、16-エチルオクタコサン-1, 28-ジイル基、17-エチルオクタ
コサン-1, 28-ジイル基、18-エチルオクタコサン-1, 28-ジイル基
、19-エチルオクタコサン-1, 28-ジイル基、20-エチルオクタコサン
-1, 28-ジイル基、21-エチルオクタコサン-1, 28-ジイル基、22-
-エチルオクタコサン-1, 28-ジイル基、23-エチルオクタコサン-1,
28-ジイル基、24-エチルオクタコサン-1, 28-ジイル基、25-エチ
ルオクタコサン-1, 28-ジイル基、26-エチルオクタコサン-1, 28-
ジイル基、

【0041】

2-メチルノナコサン-1, 29-ジイル基、3-メチルノナコサン-1, 29
-ジイル基、4-メチルノナコサン-1, 29-ジイル基、5-メチルノナコサ
ン-1, 29-ジイル基、6-メチルノナコサン-1, 29-ジイル基、7-メ
チルノナコサン-1, 29-ジイル基、8-メチルノナコサン-1, 29-ジイ

ル基、9-メチルノナコサン-1, 29-ジイル基、10-メチルノナコサン-1, 29-ジイル基、11-メチルノナコサン-1, 29-ジイル基、12-メチルノナコサン-1, 29-ジイル基、13-メチルノナコサン-1, 29-ジイル基、14-メチルノナコサン-1, 29-ジイル基、15-メチルノナコサン-1, 29-ジイル基、16-メチルノナコサン-1, 29-ジイル基、17-メチルノナコサン-1, 29-ジイル基、18-メチルノナコサン-1, 29-ジイル基、19-メチルノナコサン-1, 29-ジイル基、20-メチルノナコサン-1, 29-ジイル基、21-メチルノナコサン-1, 29-ジイル基、22-メチルノナコサン-1, 29-ジイル基、23-メチルノナコサン-1, 29-ジイル基、24-メチルノナコサン-1, 29-ジイル基、25-メチルノナコサン-1, 29-ジイル基、26-メチルノナコサン-1, 29-ジイル基、27-メチルノナコサン-1, 29-ジイル基、及び28-メチルノナコサン-1, 29-ジイル基等の分岐鎖状のアルキレン基が挙げられる。

【0042】

Gにおける、置換されていてもよい炭素数2~30の直鎖もしくは分岐鎖状のアルケニレン基の、炭素数2~30の直鎖もしくは分岐鎖状のアルケニレン基としては、エチレン-1, 2-ジイル基、1-プロパン-1, 3-ジイル基、2-プロパン-1, 3-ジイル基、1-ブテン-1, 4-ジイル基、2-ブテン-1, 4-ジイル基、3-ブテン-1, 4-ジイル基、1, 3-ブタジエン-1, 4-ジイル基、2-ペンテン-1, 5-ジイル基、3-ペンテン-1, 5-ジイル基、2, 4-ペントジエン-1, 5-ジイル基、2-ヘキセン-1, 6-ジイル基、3-ヘキセン-1, 6-ジイル基、4-ヘキセン-1, 6-ジイル基、2, 4-ヘキサジエン-1, 6-ジイル基、2-ヘプテン-1, 7-ジイル基、3-ヘプテン-1, 7-ジイル基、4-ヘプテン-1, 7-ジイル基、5-ヘプテン-1, 7-ジイル基、2, 4-ヘプタジエン-1, 7-ジイル基、2, 5-ヘプタジエン-1, 7-ジイル基、3, 5-ヘプタジエン-1, 7-ジイル基、2-オクテン-1, 8-ジイル基、3-オクテン-1, 8-ジイル基、4-オクテン-1, 8-ジイル基、5-オクテン-1, 8-ジイル基、6-オクテン-1, 8-ジイル基、2, 4-オクタジエン-1, 8-ジイル基、2, 5-オクタジエン

-1, 8-ジイル基、2, 6-オクタジエン-1, 8-ジイル基、2, 4, 6-オクタトリエン-1, 8-ジイル基、2-ノネン-1, 9-ジイル基、3-ノネン-1, 9-ジイル基、4-ノネン-1, 9-ジイル基、5-ノネン-1, 9-ジイル基、6-ノネン-1, 9-ジイル基、7-ノネン-1, 9-ジイル基、2-デセン-1, 10-ジイル基、3-デセン-1, 10-ジイル基、4-デセン-1, 10-ジイル基、5-デセン-1, 10-ジイル基、6-デセン-1, 10-ジイル基、7-デセン-1, 10-ジイル基、8-デセン-1, 10-ジイル基、

【0043】

2-ウンデセン-1, 11-ジイル基、3-ウンデセン-1, 11-ジイル基、4-ウンデセン-1, 11-ジイル基、5-ウンデセン-1, 11-ジイル基、6-ウンデセン-1, 11-ジイル基、7-ウンデセン-1, 11-ジイル基、8-ウンデセン-1, 11-ジイル基、9-ウンデセン-1, 11-ジイル基、2-ドデセン-1, 12-ジイル基、3-ドデセン-1, 12-ジイル基、4-ドデセン-1, 12-ジイル基、5-ドデセン-1, 12-ジイル基、6-ドデセン-1, 12-ジイル基、7-ドデセン-1, 12-ジイル基、8-ドデセン-1, 12-ジイル基、9-ドデセン-1, 12-ジイル基、10-ドデセン-1, 12-ジイル基、

2-トリデセン-1, 13-ジイル基、3-トリデセン-1, 13-ジイル基、4-トリデセン-1, 13-ジイル基、5-トリデセン-1, 13-ジイル基、6-トリデセン-1, 13-ジイル基、7-トリデセン-1, 13-ジイル基、8-トリデセン-1, 13-ジイル基、9-トリデセン-1, 13-ジイル基、10-トリデセン-1, 13-ジイル基、11-トリデセン-1, 13-ジイル基、

2-テトラデセン-1, 14-ジイル基、3-テトラデセン-1, 14-ジイル基、4-テトラデセン-1, 14-ジイル基、5-テトラデセン-1, 14-ジイル基、6-テトラデセン-1, 14-ジイル基、7-テトラデセン-1, 14-ジイル基、8-テトラデセン-1, 14-ジイル基、9-テトラデセン-1, 14-ジイル基、10-テトラデセン-1, 14-ジイル基、11-テトラデセ

ン-1, 14-ジイル基、12-テトラデセン-1, 14-ジイル基、
 2-ペントаден-1, 15-ジイル基、3-ペントаден-1, 15-ジイル
 基、4-ペントаден-1, 15-ジイル基、5-ペントаден-1, 15-ジ
 イル基、6-ペントаден-1, 15-ジイル基、7-ペントаден-1, 15
 -ジイル基、8-ペントаден-1, 15-ジイル基、9-ペントаден-1,
 15-ジイル基、10-ペントаден-1, 15-ジイル基、11-ペントаде
 ン-1, 15-ジイル基、12-ペントаден-1, 15-ジイル基、13-ペ
 ントаден-1, 15-ジイル基、

【0044】

2-ヘキサデセン-1, 16-ジイル基、3-ヘキサデセン-1, 16-ジイル
 基、4-ヘキサデセン-1, 16-ジイル基、5-ヘキサデセン-1, 16-ジ
 イル基、6-ヘキサデセン-1, 16-ジイル基、7-ヘキサデセン-1, 16
 -ジイル基、8-ヘキサデセン-1, 16-ジイル基、9-ヘキサデセン-1,
 16-ジイル基、10-ヘキサデセン-1, 16-ジイル基、11-ヘキサデセ
 ン-1, 16-ジイル基、12-ヘキサデセン-1, 16-ジイル基、13-ヘ
 キサデセン-1, 16-ジイル基、14-ヘキサデセン-1, 16-ジイル基、
 2-ヘプタデセン-1, 17-ジイル基、3-ヘプタデセン-1, 17-ジイル
 基、4-ヘプタデセン-1, 17-ジイル基、5-ヘプタデセン-1, 17-ジ
 イル基、6-ヘプタデセン-1, 17-ジイル基、7-ヘプタデセン-1, 17
 -ジイル基、8-ヘプタデセン-1, 17-ジイル基、9-ヘプタデセン-1,
 17-ジイル基、10-ヘプタデセン-1, 17-ジイル基、11-ヘプタデセ
 ン-1, 17-ジイル基、12-ヘプタデセン-1, 17-ジイル基、13-ヘ
 プタデセン-1, 17-ジイル基、14-ヘプタデセン-1, 17-ジイル基、
 15-ヘプタデセン-1, 17-ジイル基、

2-オクタデセン-1, 18-ジイル基、3-オクタデセン-1, 18-ジイル
 基、4-オクタデセン-1, 18-ジイル基、5-オクタデセン-1, 18-ジ
 イル基、6-オクタデセン-1, 18-ジイル基、7-オクタデセン-1, 18
 -ジイル基、8-オクタデセン-1, 18-ジイル基、9-オクタデセン-1,
 18-ジイル基、10-オクタデセン-1, 18-ジイル基、11-オクタデセ

ン-1, 18-ジイル基、12-オクタデセン-1, 18-ジイル基、13-オクタデセン-1, 18-ジイル基、14-オクタデセン-1, 18-ジイル基、15-オクタデセン-1, 18-ジイル基、16-オクタデセン-1, 18-ジイル基、

2-ノナデセン-1, 19-ジイル基、3-ノナデセン-1, 19-ジイル基、4-ノナデセン-1, 19-ジイル基、5-ノナデセン-1, 19-ジイル基、6-ノナデセン-1, 19-ジイル基、7-ノナデセン-1, 19-ジイル基、8-ノナデセン-1, 19-ジイル基、9-ノナデセン-1, 19-ジイル基、10-ノナデセン-1, 19-ジイル基、11-ノナデセン-1, 19-ジイル基、12-ノナデセン-1, 19-ジイル基、13-ノナデセン-1, 19-ジイル基、14-ノナデセン-1, 19-ジイル基、15-ノナデセン-1, 19-ジイル基、16-ノナデセン-1, 19-ジイル基、17-ノナデセン-1, 19-ジイル基、

【0045】

2-イコセン-1, 20-ジイル基、3-イコセン-1, 20-ジイル基、4-イコセン-1, 20-ジイル基、5-イコセン-1, 20-ジイル基、6-イコセン-1, 20-ジイル基、7-イコセン-1, 20-ジイル基、8-イコセン-1, 20-ジイル基、9-イコセン-1, 20-ジイル基、10-イコセン-1, 20-ジイル基、11-イコセン-1, 20-ジイル基、12-イコセン-1, 20-ジイル基、13-イコセン-1, 20-ジイル基、14-イコセン-1, 20-ジイル基、15-イコセン-1, 20-ジイル基、16-イコセン-1, 20-ジイル基、17-イコセン-1, 20-ジイル基、18-イコセン-1, 20-ジイル基、

2-ヘニコセン-1, 21-ジイル基、3-ヘニコセン-1, 21-ジイル基、4-ヘニコセン-1, 21-ジイル基、5-ヘニコセン-1, 21-ジイル基、6-ヘニコセン-1, 21-ジイル基、7-ヘニコセン-1, 21-ジイル基、8-ヘニコセン-1, 21-ジイル基、9-ヘニコセン-1, 21-ジイル基、10-ヘニコセン-1, 21-ジイル基、11-ヘニコセン-1, 21-ジイル基、12-ヘニコセン-1, 21-ジイル基、13-ヘニコセン-1, 21-ジ

イル基、14-ヘニコセン-1, 21-ジイル基、15-ヘニコセン-1, 21-ジイル基、16-ヘニコセン-1, 21-ジイル基、17-ヘニコセン-1, 21-ジイル基、18-ヘニコセン-1, 21-ジイル基、19-ヘニコセン-1, 21-ジイル基、

2-ドコセン-1, 22-ジイル基、3-ドコセン-1, 22-ジイル基、4-ドコセン-1, 22-ジイル基、5-ドコセン-1, 22-ジイル基、6-ドコセン-1, 22-ジイル基、7-ドコセン-1, 22-ジイル基、8-ドコセン-1, 22-ジイル基、9-ドコセン-1, 22-ジイル基、10-ドコセン-1, 22-ジイル基、11-ドコセン-1, 22-ジイル基、12-ドコセン-1, 22-ジイル基、13-ドコセン-1, 22-ジイル基、14-ドコセン-1, 22-ジイル基、15-ドコセン-1, 22-ジイル基、16-ドコセン-1, 22-ジイル基、17-ドコセン-1, 22-ジイル基、18-ドコセン-1, 22-ジイル基、19-ドコセン-1, 22-ジイル基、20-ドコセン-1, 22-ジイル基、

【0046】

2-トリコセン-1, 23-ジイル基、3-トリコセン-1, 23-ジイル基、4-トリコセン-1, 23-ジイル基、5-トリコセン-1, 23-ジイル基、6-トリコセン-1, 23-ジイル基、7-トリコセン-1, 23-ジイル基、8-トリコセン-1, 23-ジイル基、9-トリコセン-1, 23-ジイル基、10-トリコセン-1, 23-ジイル基、11-トリコセン-1, 23-ジイル基、12-トリコセン-1, 23-ジイル基、13-トリコセン-1, 23-ジイル基、14-トリコセン-1, 23-ジイル基、15-トリコセン-1, 23-ジイル基、16-トリコセン-1, 23-ジイル基、17-トリコセン-1, 23-ジイル基、18-トリコセン-1, 23-ジイル基、19-トリコセン-1, 23-ジイル基、20-トリコセン-1, 23-ジイル基、21-トリコセン-1, 23-ジイル基、

【0047】

2-テトラコセン-1, 24-ジイル基、3-テトラコセン-1, 24-ジイル基、4-テトラコセン-1, 24-ジイル基、5-テトラコセン-1, 24-ジ

イル基、6-テトラコセン-1, 24-ジイル基、7-テトラコセン-1, 24-ジイル基、8-テトラコセン-1, 24-ジイル基、9-テトラコセン-1, 24-ジイル基、10-テトラコセン-1, 24-ジイル基、11-テトラコセン-1, 24-ジイル基、12-テトラコセン-1, 24-ジイル基、13-テトラコセン-1, 24-ジイル基、14-テトラコセン-1, 24-ジイル基、15-テトラコセン-1, 24-ジイル基、16-テトラコセン-1, 24-ジイル基、17-テトラコセン-1, 24-ジイル基、18-テトラコセン-1, 24-ジイル基、19-テトラコセン-1, 24-ジイル基、20-テトラコセン-1, 24-ジイル基、21-テトラコセン-1, 24-ジイル基、22-テトラコセン-1, 24-ジイル基、
 2-ペンタコセン-1, 25-ジイル基、3-ペンタコセン-1, 25-ジイル基、4-ペンタコセン-1, 25-ジイル基、5-ペンタコセン-1, 25-ジイル基、6-ペンタコセン-1, 25-ジイル基、7-ペンタコセン-1, 25-ジイル基、8-ペンタコセン-1, 25-ジイル基、8-ペンタコセン-1, 25-ジイル基、9-ペンタコセン-1, 25-ジイル基、10-ペンタコセン-1, 25-ジイル基、11-ペンタコセン-1, 25-ジイル基、12-ペンタコセン-1, 25-ジイル基、13-ペンタコセン-1, 25-ジイル基、14-ペンタコセン-1, 25-ジイル基、15-ペンタコセン-1, 25-ジイル基、16-ペンタコセン-1, 25-ジイル基、17-ペンタコセン-1, 25-ジイル基、18-ペンタコセン-1, 25-ジイル基、19-ペンタコセン-1, 25-ジイル基、20-ペンタコセン-1, 25-ジイル基、21-ペンタコセン-1, 25-ジイル基、22-ペンタコセン-1, 25-ジイル基、23-ペンタコセン-1, 25-ジイル基、

【0048】

2-ヘキサコセン-1, 26-ジイル基、3-ヘキサコセン-1, 26-ジイル基、4-ヘキサコセン-1, 26-ジイル基、5-ヘキサコセン-1, 26-ジイル基、6-ヘキサコセン-1, 26-ジイル基、7-ヘキサコセン-1, 26-ジイル基、8-ヘキサコセン-1, 26-ジイル基、9-ヘキサコセン-1, 26-ジイル基、10-ヘキサコセン-1, 26-ジイル基、11-ヘキサコセ

ン-1, 26-ジイル基、12-ヘキサコセン-1, 26-ジイル基、13-ヘキサコセン-1, 26-ジイル基、14-ヘキサコセン-1, 26-ジイル基、15-ヘキサコセン-1, 26-ジイル基、16-ヘキサコセン-1, 26-ジイル基、17-ヘキサコセン-1, 26-ジイル基、18-ヘキサコセン-1, 26-ジイル基、19-ヘキサコセン-1, 26-ジイル基、20-ヘキサコセン-1, 26-ジイル基、21-ヘキサコセン-1, 26-ジイル基、22-ヘキサコセン-1, 26-ジイル基、23-ヘキサコセン-1, 26-ジイル基、24-ヘキサコセン-1, 26-ジイル基、
2-ヘプタコセン-1, 27-ジイル基、3-ヘプタコセン-1, 27-ジイル基、4-ヘプタコセン-1, 27-ジイル基、5-ヘプタコセン-1, 27-ジイル基、6-ヘプタコセン-1, 27-ジイル基、7-ヘプタコセン-1, 27-ジイル基、8-ヘプタコセン-1, 27-ジイル基、9-ヘプタコセン-1, 27-ジイル基、10-ヘプタコセン-1, 27-ジイル基、11-ヘプタコセン-1, 27-ジイル基、12-ヘプタコセン-1, 27-ジイル基、13-ヘプタコセン-1, 27-ジイル基、14-ヘプタコセン-1, 27-ジイル基、15-ヘプタコセン-1, 27-ジイル基、16-ヘプタコセン-1, 27-ジイル基、17-ヘプタコセン-1, 27-ジイル基、18-ヘプタコセン-1, 27-ジイル基、19-ヘプタコセン-1, 27-ジイル基、20-ヘプタコセン-1, 27-ジイル基、21-ヘプタコセン-1, 27-ジイル基、22-ヘプタコセン-1, 27-ジイル基、23-ヘプタコセン-1, 27-ジイル基、24-ヘプタコセン-1, 27-ジイル基、25-ヘプタコセン-1, 27-ジイル基、

【0049】

2-オクタコセン-1, 28-ジイル基、3-オクタコセン-1, 28-ジイル基、4-オクタコセン-1, 28-ジイル基、5-オクタコセン-1, 28-ジイル基、6-オクタコセン-1, 28-ジイル基、7-オクタコセン-1, 28-ジイル基、8-オクタコセン-1, 28-ジイル基、9-オクタコセン-1, 28-ジイル基、10-オクタコセン-1, 28-ジイル基、11-オクタコセン-1, 28-ジイル基、12-オクタコセン-1, 28-ジイル基、13-オ

クタコセン-1, 28-ジイル基、14-オクタコセン-1, 28-ジイル基、
15-オクタコセン-1, 28-ジイル基、16-オクタコセン-1, 28-ジ
イル基、17-オクタコセン-1, 28-ジイル基、18-オクタコセン-1,
28-ジイル基、19-オクタコセン-1, 28-ジイル基、20-オクタコセ
ン-1, 28-ジイル基、21-オクタコセン-1, 28-ジイル基、22-オ
クタコセン-1, 28-ジイル基、23-オクタコセン-1, 28-ジイル基、
24-オクタコセン-1, 28-ジイル基、25-オクタコセン-1, 28-ジ
イル基、26-オクタコセン-1, 28-ジイル基、
2-ノナコセン-1, 29-ジイル基、3-ノナコセン-1, 29-ジイル基、
4-ノナコセン-1, 29-ジイル基、5-ノナコセン-1, 29-ジイル基、
6-ノナコセン-1, 29-ジイル基、7-ノナコセン-1, 29-ジイル基、
8-ノナコセン-1, 29-ジイル基、9-ノナコセン-1, 29-ジイル基、
10-ノナコセン-1, 29-ジイル基、11-ノナコセン-1, 29-ジイル
基、12-ノナコセン-1, 29-ジイル基、13-ノナコセン-1, 29-ジ
イル基、14-ノナコセン-1, 29-ジイル基、15-ノナコセン-1, 29
-ジイル基、16-ノナコセン-1, 29-ジイル基、17-ノナコセン-1,
29-ジイル基、18-ノナコセン-1, 29-ジイル基、19-ノナコセン
-1, 29-ジイル基、20-ノナコセン-1, 29-ジイル基、21-ノナコセ
ン-1, 29-ジイル基、22-ノナコセン-1, 29-ジイル基、23-ノナ
コセン-1, 29-ジイル基、24-ノナコセン-1, 29-ジイル基、25-
ノナコセン-1, 29-ジイル基、26-ノナコセン-1, 29-ジイル基、2
7-ノナコセン-1, 29-ジイル基、
2-トリアコンテン-1, 30-ジイル基、3-トリアコンテン-1, 30-ジ
イル基、4-トリアコンテン-1, 30-ジイル基、5-トリアコンテン-1,
30-ジイル基、6-トリアコンテン-1, 30-ジイル基、7-トリアコンテ
ン-1, 30-ジイル基、8-トリアコンテン-1, 30-ジイル基、9-トリ
アコンテン-1, 30-ジイル基、10-トリアコンテン-1, 30-ジイル基
、11-トリアコンテン-1, 30-ジイル基、12-トリアコンテン-1, 3
0-ジイル基、13-トリアコンテン-1, 30-ジイル基、14-トリアコン

テン-1, 30-ジイル基、15-トリアコンテン-1, 30-ジイル基、16-トリアコンテン-1, 30-ジイル基、17-トリアコンテン-1, 30-ジイル基、18-トリアコンテン-1, 30-ジイル基、19-トリアコンテン-1, 30-ジイル基、20-トリアコンテン-1, 30-ジイル基、21-トリアコンテン-1, 30-ジイル基、22-トリアコンテン-1, 30-ジイル基、23-トリアコンテン-1, 30-ジイル基、24-トリアコンテン-1, 30-ジイル基、25-トリアコンテン-1, 30-ジイル基、26-トリアコンテン-1, 30-ジイル基、27-トリアコンテン-1, 30-ジイル基、及び28-トリアコンテン-1, 30-ジイル基等の直鎖状のアルケニレン基、

【0050】

並びに1-メチルエチレン-1, 2-ジイル基、2-メチル-1-プロペン-1, 3-ジイル基、2-メチル-2-プロパン-1, 3-ジイル基、2-メチル-1-ブテン-1, 4-ジイル基、3-メチル-2-ブテン-1, 4-ジイル基、2-メチル-3-ブテン-1, 4-ジイル基、2, 3-ジメチル-1, 3-ブタジエン-1, 4-ジイル基、3-エチル-2-プロパン-1, 5-ジイル基、4-メチル-3-プロパン-1, 5-ジイル基、3-メチル-2, 4-プロパジエン-1, 5-ジイル基、3, 4-ジエチル-2-ヘキセン-1, 6-ジイル基、4-メチル-3-ヘキセン-1, 6-ジイル基、2-メチル-4-ヘキセン-1, 6-ジイル基、3, 5-ジメチル-2, 4-ヘキサジエン-1, 6-ジイル基、5-エチル-3-メチル-2-ヘプテン-1, 7-ジイル基、5-メチル-3-ヘプテン-1, 7-ジイル基、4-n-プロピル-4-ヘプテン-1, 7-ジイル基、3, 6-ジメチル-5-ヘプテン-1, 7-ジイル基、5-エチル-2, 4-ヘプタジエン-1, 7-ジイル基、2, 6-ジメチル-2, 5-ヘプタジエン-1, 7-ジイル基、4-エチル-3, 5-ヘプタジエン-1, 7-ジイル基、4-エチル-6, 6-ジメチル-2-オクテン-1, 8-ジイル基、5-n-プロピル-3-オクテン-1, 8-ジイル基、3-エチル-4-オクテン-1, 8-ジイル基、4-エチル-2-メチル-6-i-プロピル-5-オクテン-1, 8-ジイル基、3, 4, 5-トリメチル-6-オクテン-1, 8-ジイル基、5-エチル-7-メチル-2, 4-オクタジエン-1, 8-ジイル基、3-メ

チル-2, 5-オクタジエン-1, 8-ジイル基、5-n-プロピル-2, 6-オクタジエン-1, 8-ジイル基、4-メチル-2, 4, 6-オクタトリエン-1, 8-ジイル基、5-エチル-2-ノネン-1, 9-ジイル基、3, 5, 6-トリメチル-3-ノネン-1, 9-ジイル基、2, 4, 5, 7-テトラメチル-4-ノネン-1, 9-ジイル基、3, 4-ジエチル-5-ノネン-1, 9-ジイル基、4-i-プロピル-6-ノネン-1, 9-ジイル基、3-エチル-7-ノネン-1, 9-ジイル基、5-n-ブチル-2-デセン-1, 10-ジイル基、6-i-プロピル-3-デセン-1, 10-ジイル基、5-エチル-4-デセン-1, 10-ジイル基、6, 7-ジメチル-5-デセン-1, 10-ジイル基、4-エチル-6-デセン-1, 10-ジイル基、5-メチル-7-デセン-1, 10-ジイル基、6-エチル-4-メチル-8-デセン-1, 10-ジイル基、6-メチル-2-ウンデセン-1, 11-ジイル基、4-エチル-3-ウンデセン-1, 11-ジイル基、5-メチル-4-ウンデセン-1, 11-ジイル基、7-エチル-5-ウンデセン-1, 11-ジイル基、5-メチル-6-ウンデセン-1, 11-ジイル基、9-エチル-7-ウンデセン-1, 11-ジイル基、3-メチル-8-ウンデセン-1, 11-ジイル基、4-エチル-9-ウンデセン-1, 11-ジイル基、

【0051】

4-エチル-2-ドデセン-1, 12-ジイル基、5-メチル-3-ドデセン-1, 12-ジイル基、6-エチル-4-ドデセン-1, 12-ジイル基、7-メチル-5-ドデセン-1, 12-ジイル基、8-エチル-6-ドデセン-1, 12-ジイル基、9-メチル-7-ドデセン-1, 12-ジイル基、10-エチル-8-ドデセン-1, 12-ジイル基、2-メチル-9-ドデセン-1, 12-ジイル基、5-エチル-10-ドデセン-1, 12-ジイル基、
 4, 7, 9-トリメチル-2-トリデセン-1, 13-ジイル基、10-メチル-3-トリデセン-1, 13-ジイル基、8-エチル-4-トリデセン-1, 13-ジイル基、4-メチル-5-トリデセン-1, 13-ジイル基、5-エチル-6-トリデセン-1, 13-ジイル基、3, 6-ジエチル-7-トリデセン-1, 13-ジイル基、5-メチル-8-トリデセン-1, 13-ジイル基、7-

エチル-9-トリデセン-1, 13-ジイル基、4-メチル-10-トリデセン-1, 13-ジイル基、6-エチル-11-トリデセン-1, 13-ジイル基、7-メチル-2-テトラデセン-1, 14-ジイル基、8-エチル-3-テトラデセン-1, 14-ジイル基、6-n-プロピル-4-テトラデセン-1, 14-ジイル基、8-メチル-5-テトラデセン-1, 14-ジイル基、3-エチル-6-テトラデセン-1, 14-ジイル基、10-メチル-7-テトラデセン-1, 14-ジイル基、6-i-プロピル-8-テトラデセン-1, 14-ジイル基、5, 7, 11-トリメチル-9-テトラデセン-1, 14-ジイル基、5-エチル-10-テトラデセン-1, 14-ジイル基、6-メチル-11-テトラデセン-1, 14-ジイル基、4-n-ブチル-12-テトラデセン-1, 14-ジイル基。

【0052】

4-メチル-2-ペンタデセン-1, 15-ジイル基、6-エチル-3-ペンタデセン-1, 15-ジイル基、8-メチル-4-ペンタデセン-1, 15-ジイル基、10-エチル-5-ペンタデセン-1, 15-ジイル基、4, 9-ジメチル-6-ペンタデセン-1, 15-ジイル基、10-エチル-7-ペンタデセン-1, 15-ジイル基、6-メチル-8-ペンタデセン-1, 15-ジイル基、8-n-プロピル-9-ペンタデセン-1, 15-ジイル基、5-メチル-10-ペンタデセン-1, 15-ジイル基、4, 7-ジエチル-11-ペンタデセン-1, 15-ジイル基、5-メチル-12-ペンタデセン-1, 15-ジイル基、8-エチル-13-ペンタデセン-1, 15-ジイル基、
 8-i-プロピル-2-ヘキサデセン-1, 16-ジイル基、6-メチル-3-ヘキサデセン-1, 16-ジイル基、8-エチル-4-ヘキサデセン-1, 16-ジイル基、9-メチル-5-ヘキサデセン-1, 16-ジイル基、10-エチル-6-ヘキサデセン-1, 16-ジイル基、5-メチル-7-ヘキサデセン-1, 16-ジイル基、5, 10-ジメチル-8-ヘキサデセン-1, 16-ジイル基、5-エチル-9-ヘキサデセン-1, 16-ジイル基、7, 12-ジエチル-10-ヘキサデセン-1, 16-ジイル基、5-エチル-7-メチル-11-ヘキサデセン-1, 16-ジイル基、5-メチル-12-ヘキサデセン-1

, 16-ジイル基、8-s-ブチル-13-ヘキサデセン-1, 16-ジイル基
 、5-エチル-14-ヘキサデセン-1, 16-ジイル基,
 11-メチル-2-ヘプタデセン-1, 17-ジイル基、9-エチル-3-ヘプ
 タデセン-1, 17-ジイル基、6-i-プロピル-4-ヘプタデセン-1, 1
 7-ジイル基、8-メチル-5-ヘプタデセン-1, 17-ジイル基、4-エチ
 ル-6-ヘプタデセン-1, 17-ジイル基、10-メチル-7-ヘプタデセン
 -1, 17-ジイル基、5, 11-ジメチル-8-ヘプタデセン-1, 17-ジ
 イル基、5-エチル-9-ヘプタデセン-1, 17-ジイル基、8-エチル-1
 0-ヘプタデセン-1, 17-ジイル基、7-メチル-11-ヘプタデセン-1
 , 17-ジイル基、5-i-プロピル-12-ヘプタデセン-1, 17-ジイル
 基、9-エチル-13-ヘプタデセン-1, 17-ジイル基、8-メチル-14
 -ヘプタデセン-1, 17-ジイル基、7-s-ブチル-15-ヘプタデセン-
 1, 17-ジイル基,

【0053】

10, 15-ジメチル-2-オクタデセン-1, 18-ジイル基、6-エチル-
 3-オクタデセン-1, 18-ジイル基、10-メチル-4-オクタデセン-1
 , 18-ジイル基、11-メチル-5-オクタデセン-1, 18-ジイル基、1
 2-エチル-6-オクタデセン-1, 18-ジイル基、10-メチル-7-オク
 タデセン-1, 18-ジイル基、5-メチル-8-オクタデセン-1, 18-ジ
 イル基、8-エチル-9-オクタデセン-1, 18-ジイル基、7-メチル-1
 0-オクタデセン-1, 18-ジイル基、9-n-ブチル-11-オクタデセン
 -1, 18-ジイル基、7-メチル-12-オクタデセン-1, 18-ジイル基
 、9-エチル-13-オクタデセン-1, 18-ジイル基、10-i-プロピル
 -14-オクタデセン-1, 18-ジイル基、7-メチル-15-オクタデセン
 -1, 18-ジイル基、10-エチル-16-オクタデセン-1, 18-ジイル
 基,

10-メチル-2-ノナデセン-1, 19-ジイル基、10, 12-ジエチル-
 3-ノナデセン-1, 19-ジイル基、6-メチル-4-ノナデセン-1, 19
 -ジイル基、7-エチル-5-ノナデセン-1, 19-ジイル基、9-n-プロ

ピル-6-ノナデセン-1, 19-ジイル基、10-メチル-7-ノナデセン-1, 19-ジイル基、12-i-プロピル-8-ノナデセン-1, 19-ジイル基、5, 15-ジメチル-9-ノナデセン-1, 19-ジイル基、7-エチル-13-メチル-10-ノナデセン-1, 19-ジイル基、6-メチル-11-ノナデセン-1, 19-ジイル基、6-エチル-12-ノナデセン-1, 19-ジイル基、7, 15-ジエチル-13-ノナデセン-1, 19-ジイル基、9-s-ブチル-14-ノナデセン-1, 19-ジイル基、8-メチル-15-ノナデセン-1, 19-ジイル基、10-エチル-16-ノナデセン-1, 19-ジイル基、10-i-プロピル-17-ノナデセン-1, 19-ジイル基、

【0054】

8-メチル-2-イコセン-1, 20-ジイル基、6-エチル-3-イコセン-1, 20-ジイル基、10-i-プロピル-4-イコセン-1, 20-ジイル基、11-n-プロピル-5-イコセン-1, 20-ジイル基、12-メチル-6-イコセン-1, 20-ジイル基、11-エチル-7-イコセン-1, 20-ジイル基、13-n-プロピル-8-イコセン-1, 20-ジイル基、8-i-プロピル-9-イコセン-1, 20-ジイル基、8-n-プロピル-10-イコセン-1, 20-ジイル基、7-メチル-11-イコセン-1, 20-ジイル基、8-エチル-12-イコセン-1, 20-ジイル基、10-n-プロピル-13-イコセン-1, 20-ジイル基、9-i-プロピル-14-イコセン-1, 20-ジイル基、10-n-ブチル-15-イコセン-1, 20-ジイル基、8-s-ブチル-16-イコセン-1, 20-ジイル基、7-i-ブチル-17-イコセン-1, 20-ジイル基、9-メチル-18-イコセン-1, 20-ジイル基、

11-メチル-2-ヘニコセン-1, 21-ジイル基、12-n-ブチル-3-ヘニコセン-1, 21-ジイル基、10-n-ペンチル-4-ヘニコセン-1, 21-ジイル基、8-エチル-5-ヘニコセン-1, 21-ジイル基、10-i-プロピル-6-ヘニコセン-1, 21-ジイル基、5-n-プロピル-7-ヘニコセン-1, 21-ジイル基、13-n-ブチル-8-ヘニコセン-1, 21-ジイル基、15-s-ブチル-9-ヘニコセン-1, 21-ジイル基、5-メ

チル-10-ヘニコセン-1, 21-ジイル基、15-エチル-6-メチル-1
 1-ヘニコセン-1, 21-ジイル基、8-エチル-12-ヘニコセン-1, 2
 1-ジイル基、7-メチル-13-ヘニコセン-1, 21-ジイル基、11-エ
 チル-14-ヘニコセン-1, 21-ジイル基、6-エチル-15-ヘニコセン
 -1, 21-ジイル基、9-メチル-16-ヘニコセン-1, 21-ジイル基、
 5-エチル-9-メチル-17-ヘニコセン-1, 21-ジイル基、10, 10
 -ジメチル-18-ヘニコセン-1, 21-ジイル基、9-エチル-19-ヘニ
 コセン-1, 21-ジイル基。

11-メチル-2-ドコセン-1, 22-ジイル基、12-エチル-3-ドコセ
 ン-1, 22-ジイル基、13-i-プロピル-4-ドコセン-1, 22-ジイ
 ル基、10-n-プロピル-5-ドコセン-1, 22-ジイル基、10-n-ブ
 チル-6-ドコセン-1, 22-ジイル基、15-s-ブチル-7-ドコセン-
 1, 22-ジイル基、11-i-ブチル-8-ドコセン-1, 22-ジイル基、
 5, 15-ジメチル-9-ドコセン-1, 22-ジイル基、8, 14-ジエチル
 -10-ドコセン-1, 22-ジイル基、5-メチル-11-ドコセン-1, 2
 2-ジイル基、7-エチル-12-ドコセン-1, 22-ジイル基、10-メチ
 ル-13-ドコセン-1, 22-ジイル基、10-エチル-14-ドコセン-1
 , 22-ジイル基、9-エチル-15-ドコセン-1, 22-ジイル基、8-メ
 チル-16-ドコセン-1, 22-ジイル基、7-i-プロピル-17-ドコセ
 ン-1, 22-ジイル基、10-i-ブチル-18-ドコセン-1, 22-ジイ
 ル基、9, 10-ジメチル-19-ドコセン-1, 22-ジイル基、13-エチ
 ル-20-ドコセン-1, 22-ジイル基。

【0055】

19-メチル-2-トリコセン-1, 23-ジイル基、10, 15-ジメチル-
 3-トリコセン-1, 23-ジイル基、3, 11, 16-トリメチル-4-トリ
 コセン-1, 23-ジイル基、12-エチル-5-トリコセン-1, 23-ジイ
 ル基、6, 13-ジエチル-6-トリコセン-1, 23-ジイル基、4, 12,
 18-トリエチル-7-トリコセン-1, 23-ジイル基、18-i-プロピル
 -8-トリコセン-1, 23-ジイル基、14-n-プロピル-9-トリコセン

-1, 23-ジイル基、8-n-ブチル-10-トリコセン-1, 23-ジイル基、15-s-ブチル-11-トリコセン-1, 23-ジイル基、5-i-ブチル-12-トリコセン-1, 23-ジイル基、7-エチル-9-メチル-13-トリコセン-1, 23-ジイル基、9-メチル-14-トリコセン-1, 23-ジイル基、4, 18-ジメチル-15-トリコセン-1, 23-ジイル基、3, 4, 11-トリメチル-16-トリコセン-1, 23-ジイル基、9-エチル-17-トリコセン-1, 23-ジイル基、10, 13-ジエチル-18-トリコセン-1, 23-ジイル基、5, 8, 21-トリエチル-19-トリコセン-1, 23-ジイル基、15-i-プロピル-20-トリコセン-1, 23-ジイル基、17-n-プロピル-21-トリコセン-1, 23-ジイル基、

【0056】

16-n-ブチル-2-テトラコセン-1, 24-ジイル基、11-s-ブチル-3-テトラコセン-1, 24-ジイル基、8-i-ブチル-4-テトラコセン-1, 24-ジイル基、18-エチル-9-メチル-5-テトラコセン-1, 24-ジイル基、13-メチル-6-テトラコセン-1, 24-ジイル基、4, 19-ジメチル-7-テトラコセン-1, 24-ジイル基、5, 10, 17-トリエチル-8-テトラコセン-1, 24-ジイル基、6-エチル-9-テトラコセン-1, 24-ジイル基、7, 16-ジエチル-10-テトラコセン-1, 24-ジイル基、5, 9, 18-トリエチル-11-テトラコセン-1, 24-ジイル基、10-n-プロピル-12-テトラコセン-1, 24-ジイル基、20-i-プロピル-13-テトラコセン-1, 24-ジイル基、9-n-ブチル-14-テトラコセン-1, 24-ジイル基、11-s-ブチル-15-テトラコセン-1, 24-ジイル基、13-i-ブチル-16-テトラコセン-1, 24-ジイル基、10-エチル-13-メチル-17-テトラコセン-1, 24-ジイル基、6-メチル-18-テトラコセン-1, 24-ジイル基、5, 7-ジメチル-19-テトラコセン-1, 24-ジイル基、4, 8, 13-トリメチル-20-テトラコセン-1, 24-ジイル基、18-エチル-21-テトラコセン-1, 24-ジイル基、6, 10-ジエチル-22-テトラコセン-1, 24-ジイル基、

9, 13, 16-トリメチル-2-ペンタコセン-1, 25-ジイル基、12-n-プロピル-3-ペンタコセン-1, 25-ジイル基、11-i-プロピル-4-ペンタコセン-1, 25-ジイル基、20-n-ブチル-5-ペンタコセン-1, 25-ジイル基、17-i-ブチル-6-ペンタコセン-1, 25-ジイル基、15-s-ブチル-7-ペンタコセン-1, 25-ジイル基、15-エチル-23-メチル-8-ペンタコセン-1, 25-ジイル基、11-メチル-8-ペンタコセン-1, 25-ジイル基、13, 17-ジメチル-9-ペンタコセン-1, 25-ジイル基、5, 8, 21-トリメチル-10-ペンタコセン-1, 25-ジイル基、17-エチル-11-ペンタコセン-1, 25-ジイル基、8, 18-ジエチル-12-ペンタコセン-1, 25-ジイル基、10, 15, 18-トリメチル-13-ペンタコセン-1, 25-ジイル基、4-n-プロピル-14-ペンタコセン-1, 25-ジイル基、20-i-プロピル-15-ペンタコセン-1, 25-ジイル基、8-n-ブチル-16-ペンタコセン-1, 25-ジイル基、11-s-ブチル-17-ペンタコセン-1, 25-ジイル基、5, 22-ジメチル-18-ペンタコセン-1, 25-ジイル基、5-i-ブチル-19-ペンタコセン-1, 25-ジイル基、9-メチル-13-エチル-20-ペンタコセン-1, 25-ジイル基、15-メチル-21-ペンタコセン-1, 25-ジイル基、6, 13-ジメチル-22-ペンタコセン-1, 25-ジイル基、4, 8, 12-トリメチル-23-ペンタコセン-1, 25-ジイル基、

【0057】

13-エチル-2-ヘキサコセン-1, 26-ジイル基、5, 16-ジエチル-3-ヘキサコセン-1, 26-ジイル基、7, 11, 16-トリメチル-4-ヘキサコセン-1, 26-ジイル基、12-n-プロピル-5-ヘキサコセン-1, 26-ジイル基、21-i-プロピル-6-ヘキサコセン-1, 26-ジイル基、6-n-ブチル-7-ヘキサコセン-1, 26-ジイル基、13-s-ブチル-8-ヘキサコセン-1, 26-ジイル基、19-i-ブチル-9-ヘキサコセン-1, 26-ジイル基、13-エチル-18-メチル-10-ヘキサコセン-1, 26-ジイル基、10-メチル-11-ヘキサコセン-1, 26-ジイル

基、10, 20-ジメチル-12-ヘキサコセン-1, 26-ジイル基、7, 9, 17-トリメチル-13-ヘキサコセン-1, 26-ジイル基、8-エチル-14-ヘキサコセン-1, 26-ジイル基、5, 22-ジエチル-15-ヘキサコセン-1, 26-ジイル基、7, 10, 21-トリメチル-16-ヘキサコセン-1, 26-ジイル基、15-n-プロピル-17-ヘキサコセン-1, 26-ジイル基、13-i-プロピル-18-ヘキサコセン-1, 26-ジイル基、8-n-ブチル-19-ヘキサコセン-1, 26-ジイル基、11-s-ブチル-20-ヘキサコセン-1, 26-ジイル基、14-i-ブチル-21-ヘキサコセン-1, 26-ジイル基、5-エチル-21-メチル-22-ヘキサコセン-1, 26-ジイル基、7-メチル-23-ヘキサコセン-1, 26-ジイル基、8, 14-ジメチル-24-ヘキサコセン-1, 26-ジイル基、

【0058】

7, 16, 24-トリメチル-2-ヘプタコセン-1, 27-ジイル基、9-エチル-3-ヘプタコセン-1, 27-ジイル基、7, 16-ジメチル-4-ヘプタコセン-1, 27-ジイル基、9, 13, 21-トリメチル-5-ヘプタコセン-1, 27-ジイル基、13-n-プロピル-6-ヘプタコセン-1, 27-ジイル基、10-i-プロピル-7-ヘプタコセン-1, 27-ジイル基、16-n-プロピル-8-ヘプタコセン-1, 27-ジイル基、18-メチル-9-ヘプタコセン-1, 27-ジイル基、9-i-プロピル-10-ヘプタコセン-1, 27-ジイル基、15-エチル-7-メチル-11-ヘプタコセン-1, 27-ジイル基、25-メチル-12-ヘプタコセン-1, 27-ジイル基、8, 21-ジメチル-13-ヘプタコセン-1, 27-ジイル基、5, 11, 23-トリメチル-14-ヘプタコセン-1, 27-ジイル基、9-エチル-15-ヘプタコセン-1, 27-ジイル基、8, 20-ジメチル-16-ヘプタコセン-1, 27-ジイル基、4, 8, 19-トリメチル-17-ヘプタコセン-1, 27-ジイル基、7-n-プロピル-18-ヘプタコセン-1, 27-ジイル基、21-i-プロピル-19-ヘプタコセン-1, 27-ジイル基、14-n-プロピル-20-ヘプタコセン-1, 27-ジイル基、8-エチル-21-ヘプタコセン-1, 27-ジイル基、11-i-プロピル-22-ヘプタコセン-1,

27-ジイル基、5-エチル-13-メチル-23-ヘプタコセン-1, 27-ジイル基、16-メチル-24-ヘプタコセン-1, 27-ジイル基、7-エチル-25-ヘプタコセン-1, 27-ジイル基、
 14-エチル-2-オクタコセン-1, 28-ジイル基、20-メチル-3-オクタコセン-1, 28-ジイル基、7, 22-ジメチル-4-オクタコセン-1
 , 28-ジイル基、19-エチル-5-オクタコセン-1, 28-ジイル基、1
 1-メチル-6-オクタコセン-1, 28-ジイル基、13, 16-ジメチル-7-オクタコセン-1, 28-ジイル基、13-エチル-8-オクタコセン-1
 , 28-ジイル基、6-メチル-9-オクタコセン-1, 28-ジイル基、9,
 16-ジメチル-10-オクタコセン-1, 28-ジイル基、7-エチル-11
 -オクタコセン-1, 28-ジイル基、16-メチル-12-オクタコセン-1
 , 28-ジイル基、6, 15-ジメチル-13-オクタコセン-1, 28-ジイ
 ル基、22-エチル-14-オクタコセン-1, 28-ジイル基、6-メチル-
 15-オクタコセン-1, 28-ジイル基、8, 11-ジメチル-16-オクタ
 コセン-1, 28-ジイル基、23-エチル-17-オクタコセン-1, 28-
 ジイル基、4-メチル-18-オクタコセン-1, 28-ジイル基、7, 14-
 ジメチル-19-オクタコセン-1, 28-ジイル基、13-エチル-20-オ
 クタコセン-1, 28-ジイル基、8-メチル-21-オクタコセン-1, 28
 -ジイル基、11, 17-ジメチル-22-オクタコサン-1, 28-ジイル基
 、10-エチル-23-オクタコセン-1, 28-ジイル基、9-メチル-24
 -オクタコセン-1, 28-ジイル基、7, 19-ジメチル-25-オクタコセ
 ン-1, 28-ジイル基、12-エチル-26-オクタコセン-1, 28-ジイ
 ル基、

【0059】

15-メチル-2-ノナコセン-1, 29-ジイル基、14-メチル-3-ノナ
 コセン-1, 29-ジイル基、12-メチル-4-ノナコセン-1, 29-ジイ
 ル基、13-メチル-5-ノナコセン-1, 29-ジイル基、11-メチル-6
 -ノナコセン-1, 29-ジイル基、10-メチル-7-ノナコセン-1, 29
 -ジイル基、25-メチル-8-ノナコセン-1, 29-ジイル基、24-メチ

ル-9-ノナコセン-1, 29-ジイル基、23-メチル-10-ノナコセン-1, 29-ジイル基、22-メチル-11-ノナコセン-1, 29-ジイル基、21-メチル-12-ノナコセン-1, 29-ジイル基、20-メチル-13-ノナコセン-1, 29-ジイル基、19-メチル-14-ノナコセン-1, 29-ジイル基、18-メチル-15-ノナコセン-1, 29-ジイル基、27-メチル-16-ノナコセン-1, 29-ジイル基、26-メチル-17-ノナコセン-1, 29-ジイル基、25-メチル-18-ノナコセン-1, 29-ジイル基、29-ジイル基、24-メチル-19-ノナコセン-1, 29-ジイル基、23-メチル-20-ノナコセン-1, 29-ジイル基、20-メチル-21-ノナコセン-1, 29-ジイル基、19-メチル-22-ノナコセン-1, 29-ジイル基、18-メチル-23-ノナコセン-1, 29-ジイル基、17-メチル-24-ノナコセン-1, 29-ジイル基、16-メチル-25-ノナコセン-1, 29-ジイル基、6-メチル-26-ノナコセン-1, 29-ジイル基、及び5-メチル-27-ノナコセン-1, 29-ジイル基等の分岐鎖状のアルケニレン基が挙げられる。

【0060】

Gにおける、置換されていてもよい炭素数2~30の直鎖もしくは分岐鎖状のアルキニレン基の、炭素数2~30の直鎖もしくは分岐鎖状のアルキニレン基としては、アセチレン-1, 2-ジイル基、1-プロピン-1, 3-ジイル基、2-プロピン-1, 3-ジイル基、1-ブチン-1, 4-ジイル基、2-ブチン-1, 4-ジイル基、3-ブチン-1, 4-ジイル基、1, 3-ブタジイン-1, 4-ジイル基、2-ペンチン-1, 5-ジイル基、3-ペンチン-1, 5-ジイル基、2, 4-ペントジイン-1, 5-ジイル基、2-ヘキシン-1, 6-ジイル基、3-ヘキシン-1, 6-ジイル基、4-ヘキシン-1, 6-ジイル基、2, 4-ヘキサジイン-1, 6-ジイル基、2-ヘプチン-1, 7-ジイル基、3-ヘプチン-1, 7-ジイル基、4-ヘプチン-1, 7-ジイル基、5-ヘプチン-1, 7-ジイル基、2, 4-ヘプタジイン-1, 7-ジイル基、2, 5-ヘプタジイン-1, 7-ジイル基、3, 5-ヘプタジイン-1, 7-ジイル基、2-オクチン-1, 8-ジイル基、3-オクチン-1, 8-ジイル基、4-オクチ

ン-1, 8-ジイル基、5-オクチン-1, 8-ジイル基、6-オクチン-1,
 8-ジイル基、2, 4-オクタジイン-1, 8-ジイル基、2, 5-オクタジイ
 ン-1, 8-ジイル基、2, 6-オクタジイン-1, 8-ジイル基、2, 4, 6
 -オクタトリイン-1, 8-ジイル基、2-ノニン-1, 9-ジイル基、3-ノ
 ニン-1, 9-ジイル基、4-ノニン-1, 9-ジイル基、5-ノニン-1, 9
 -ジイル基、6-ノニン-1, 9-ジイル基、7-ノニン-1, 9-ジイル基、
 2-デシン-1, 10-ジイル基、3-デシン-1, 10-ジイル基、4-デシ
 イル基、10-ジイル基、5-デシン-1, 10-ジイル基、6-デシン-1,
 10-ジイル基、7-デシン-1, 10-ジイル基、8-デシン-1, 10-ジ
 イル基、

2-ウンデシン-1, 11-ジイル基、3-ウンデシン-1, 11-ジイル基、
 4-ウンデシン-1, 11-ジイル基、5-ウンデシン-1, 11-ジイル基、
 6-ウンデシン-1, 11-ジイル基、7-ウンデシン-1, 11-ジイル基、
 8-ウンデシン-1, 11-ジイル基、9-ウンデシン-1, 11-ジイル基、

【0061】

2-ドデシン-1, 12-ジイル基、3-ドデシン-1, 12-ジイル基、4-
 ドデシン-1, 12-ジイル基、5-ドデシン-1, 12-ジイル基、6-ドデ
 シン-1, 12-ジイル基、7-ドデシン-1, 12-ジイル基、8-ドデシン
 -1, 12-ジイル基、9-ドデシン-1, 12-ジイル基、10-ドデシン-
 1, 12-ジイル基、

2-トリデシン-1, 13-ジイル基、3-トリデシン-1, 13-ジイル基、
 4-トリデシン-1, 13-ジイル基、5-トリデシン-1, 13-ジイル基、
 6-トリデシン-1, 13-ジイル基、7-トリデシン-1, 13-ジイル基、
 8-トリデシン-1, 13-ジイル基、9-トリデシン-1, 13-ジイル基、
 10-トリデシン-1, 13-ジイル基、11-トリデシン-1, 13-ジイル
 基、

2-テトラデシン-1, 14-ジイル基、3-テトラデシン-1, 14-ジイル
 基、4-テトラデシン-1, 14-ジイル基、5-テトラデシン-1, 14-ジ
 イル基、6-テトラデシン-1, 14-ジイル基、7-テトラデシン-1, 14

－ジイル基、8－テトラデシン－1, 14－ジイル基、9－テトラデシン－1,
 14－ジイル基、10－テトラデシン－1, 14－ジイル基、11－テトラデシン－1,
 14－ジイル基、12－テトラデシン－1, 14－ジイル基、
 2－ペントデシン－1, 15－ジイル基、3－ペントデシン－1, 15－ジイル基、
 4－ペントデシン－1, 15－ジイル基、5－ペントデシン－1, 15－ジ
 イル基、6－ペントデシン－1, 15－ジイル基、7－ペントデシン－1, 15
 －ジイル基、8－ペントデシン－1, 15－ジイル基、9－ペントデシン－1,
 15－ジイル基、10－ペントデシン－1, 15－ジイル基、11－ペントデシ
 ン－1, 15－ジイル基、12－ペントデシン－1, 15－ジイル基、13－ペ
 ンタデシン－1, 15－ジイル基、

2－ヘキサデシン－1, 16－ジイル基、3－ヘキサデシン－1, 16－ジイル
 基、4－ヘキサデシン－1, 16－ジイル基、5－ヘキサデシン－1, 16－ジ
 イル基、6－ヘキサデシン－1, 16－ジイル基、7－ヘキサデシン－1, 16
 －ジイル基、8－ヘキサデシン－1, 16－ジイル基、9－ヘキサデシン－1,
 16－ジイル基、10－ヘキサデシン－1, 16－ジイル基、11－ヘキサデシ
 ン－1, 16－ジイル基、12－ヘキサデシン－1, 16－ジイル基、13－ヘ
 キサデシン－1, 16－ジイル基、14－ヘキサデシン－1, 16－ジイル基、

【0062】

2－ヘプタデシン－1, 17－ジイル基、3－ヘプタデシン－1, 17－ジイル
 基、4－ヘプタデシン－1, 17－ジイル基、5－ヘプタデシン－1, 17－ジ
 イル基、6－ヘプタデシン－1, 17－ジイル基、7－ヘプタデシン－1, 17
 －ジイル基、8－ヘプタデシン－1, 17－ジイル基、9－ヘプタデシン－1,
 17－ジイル基、10－ヘプタデシン－1, 17－ジイル基、11－ヘプタデシ
 ン－1, 17－ジイル基、12－ヘプタデシン－1, 17－ジイル基、13－ヘ
 プタデシン－1, 17－ジイル基、14－ヘプタデシン－1, 17－ジイル基、
 15－ヘプタデシン－1, 17－ジイル基、

2－オクタデシン－1, 18－ジイル基、3－オクタデシン－1, 18－ジイル
 基、4－オクタデシン－1, 18－ジイル基、5－オクタデシン－1, 18－ジ
 イル基、6－オクタデシン－1, 18－ジイル基、7－オクタデシン－1, 18

-ジイル基、8-オクタデシン-1, 18-ジイル基、9-オクタデシン-1,
18-ジイル基、10-オクタデシン-1, 18-ジイル基、11-オクタデシ
ン-1, 18-ジイル基、12-オクタデシン-1, 18-ジイル基、13-オ
クタデシン-1, 18-ジイル基、14-オクタデシン-1, 18-ジイル基、
15-オクタデシン-1, 18-ジイル基、16-オクタデシン-1, 18-ジ
イル基、

2-ノナデシン-1, 19-ジイル基、3-ノナデシン-1, 19-ジイル基、
4-ノナデシン-1, 19-ジイル基、5-ノナデシン-1, 19-ジイル基、
6-ノナデシン-1, 19-ジイル基、7-ノナデシン-1, 19-ジイル基、
8-ノナデシン-1, 19-ジイル基、9-ノナデシン-1, 19-ジイル基、
10-ノナデシン-1, 19-ジイル基、11-ノナデシン-1, 19-ジイル
基、12-ノナデシン-1, 19-ジイル基、13-ノナデシン-1, 19-ジ
イル基、14-ノナデシン-1, 19-ジイル基、15-ノナデシン-1, 19
-ジイル基、16-ノナデシン-1, 19-ジイル基、17-ノナデシン-1,
19-ジイル基、

2-イコシン-1, 20-ジイル基、3-イコシン-1, 20-ジイル基、4-
イコシン-1, 20-ジイル基、5-イコシン-1, 20-ジイル基、6-イコ
シン-1, 20-ジイル基、7-イコシン-1, 20-ジイル基、8-イコシン
-1, 20-ジイル基、9-イコシン-1, 20-ジイル基、10-イコシン-
1, 20-ジイル基、11-イコシン-1, 20-ジイル基、12-イコシン-
1, 20-ジイル基、13-イコシン-1, 20-ジイル基、14-イコシン-
1, 20-ジイル基、15-イコシン-1, 20-ジイル基、16-イコシン-
1, 20-ジイル基、17-イコシン-1, 20-ジイル基、18-イコシン-
1, 20-ジイル基、

2-ヘニコシン-1, 21-ジイル基、3-ヘニコシン-1, 21-ジイル基、
4-ヘニコシン-1, 21-ジイル基、5-ヘニコシン-1, 21-ジイル基、
6-ヘニコシン-1, 21-ジイル基、7-ヘニコシン-1, 21-ジイル基、
8-ヘニコシン-1, 21-ジイル基、9-ヘニコシン-1, 21-ジイル基、
10-ヘニコシン-1, 21-ジイル基、11-ヘニコシン-1, 21-ジイル

基、12-ヘニコシン-1, 21-ジイル基、13-ヘニコシン-1, 21-ジ
イル基、14-ヘニコシン-1, 21-ジイル基、15-ヘニコシン-1, 21
-ジイル基、16-ヘニコシン-1, 21-ジイル基、17-ヘニコシン-1,
21-ジイル基、18-ヘニコシン-1, 21-ジイル基、19-ヘニコシン-
1, 21-ジイル基、

2-ドコシン-1, 22-ジイル基、3-ドコシン-1, 22-ジイル基、4-
ドコシン-1, 22-ジイル基、5-ドコシン-1, 22-ジイル基、6-ドコ
シン-1, 22-ジイル基、7-ドコシン-1, 22-ジイル基、8-ドコシン-
1, 22-ジイル基、9-ドコシン-1, 22-ジイル基、10-ドコシン-
1, 22-ジイル基、11-ドコシン-1, 22-ジイル基、12-ドコシン-
1, 22-ジイル基、13-ドコシン-1, 22-ジイル基、14-ドコシン-
1, 22-ジイル基、15-ドコシン-1, 22-ジイル基、16-ドコシン-
1, 22-ジイル基、17-ドコシン-1, 22-ジイル基、18-ドコシン-
1, 22-ジイル基、19-ドコシン-1, 22-ジイル基、20-ドコシン-
1, 22-ジイル基、

2-トリコシン-1, 23-ジイル基、3-トリコシン-1, 23-ジイル基、
4-トリコシン-1, 23-ジイル基、5-トリコシン-1, 23-ジイル基、
6-トリコシン-1, 23-ジイル基、7-トリコシン-1, 23-ジイル基、
8-トリコシン-1, 23-ジイル基、9-トリコシン-1, 23-ジイル基、

10-トリコシン-1, 23-ジイル基、11-トリコシン-1, 23-ジイル
基、12-トリコシン-1, 23-ジイル基、13-トリコシン-1, 23-ジ
イル基、14-トリコシン-1, 23-ジイル基、15-トリコシン-1, 23
-ジイル基、16-トリコシン-1, 23-ジイル基、17-トリコシン-1,
23-ジイル基、18-トリコシン-1, 23-ジイル基、19-トリコシン-
1, 23-ジイル基、20-トリコシン-1, 23-ジイル基、21-トリコシ
ン-1, 23-ジイル基、

【0063】

2-テトラコシン-1, 24-ジイル基、3-テトラコシン-1, 24-ジイル
基、4-テトラコシン-1, 24-ジイル基、5-テトラコシン-1, 24-ジ

イル基、6-テトラコシン-1, 24-ジイル基、7-テトラコシン-1, 24-ジイル基、8-テトラコシン-1, 24-ジイル基、9-テトラコシン-1, 24-ジイル基、10-テトラコシン-1, 24-ジイル基、11-テトラコシン-1, 24-ジイル基、12-テトラコシン-1, 24-ジイル基、13-テトラコシン-1, 24-ジイル基、14-テトラコシン-1, 24-ジイル基、15-テトラコシン-1, 24-ジイル基、16-テトラコシン-1, 24-ジイル基、17-テトラコシン-1, 24-ジイル基、18-テトラコシン-1, 24-ジイル基、19-テトラコシン-1, 24-ジイル基、20-テトラコシン-1, 24-ジイル基、21-テトラコシン-1, 24-ジイル基、22-テトラコシン-1, 24-ジイル基、
2-ペンタコシン-1, 25-ジイル基、3-ペンタコシン-1, 25-ジイル基、4-ペンタコシン-1, 25-ジイル基、5-ペンタコシン-1, 25-ジイル基、6-ペンタコシン-1, 25-ジイル基、7-ペンタコシン-1, 25-ジイル基、8-ペンタコシン-1, 25-ジイル基、8-ペンタコシン-1, 25-ジイル基、9-ペンタコシン-1, 25-ジイル基、10-ペンタコシン-1, 25-ジイル基、11-ペンタコシン-1, 25-ジイル基、12-ペンタコシン-1, 25-ジイル基、13-ペンタコシン-1, 25-ジイル基、14-ペンタコシン-1, 25-ジイル基、15-ペンタコシン-1, 25-ジイル基、16-ペンタコシン-1, 25-ジイル基、17-ペンタコシン-1, 25-ジイル基、18-ペンタコシン-1, 25-ジイル基、19-ペンタコシン-1, 25-ジイル基、20-ペンタコシン-1, 25-ジイル基、21-ペンタコシン-1, 25-ジイル基、22-ペンタコシン-1, 25-ジイル基、23-ペンタコシン-1, 25-ジイル基、

【0064】

2-ヘキサコシン-1, 26-ジイル基、3-ヘキサコシン-1, 26-ジイル基、4-ヘキサコシン-1, 26-ジイル基、5-ヘキサコシン-1, 26-ジイル基、6-ヘキサコシン-1, 26-ジイル基、7-ヘキサコシン-1, 26-ジイル基、8-ヘキサコシン-1, 26-ジイル基、9-ヘキサコシン-1, 26-ジイル基、10-ヘキサコシン-1, 26-ジイル基、11-ヘキサコシ

ン-1, 26-ジイル基、12-ヘキサコシン-1, 26-ジイル基、13-ヘキサコシン-1, 26-ジイル基、14-ヘキサコシン-1, 26-ジイル基、15-ヘキサコシン-1, 26-ジイル基、16-ヘキサコシン-1, 26-ジイル基、17-ヘキサコシン-1, 26-ジイル基、18-ヘキサコシン-1, 26-ジイル基、19-ヘキサコシン-1, 26-ジイル基、20-ヘキサコシン-1, 26-ジイル基、21-ヘキサコシン-1, 26-ジイル基、22-ヘキサコシン-1, 26-ジイル基、23-ヘキサコシン-1, 26-ジイル基、24-ヘキサコシン-1, 26-ジイル基、
 2-ヘプタコシン-1, 27-ジイル基、3-ヘプタコシン-1, 27-ジイル基、4-ヘプタコシン-1, 27-ジイル基、5-ヘプタコシン-1, 27-ジイル基、6-ヘプタコシン-1, 27-ジイル基、7-ヘプタコシン-1, 27-ジイル基、8-ヘプタコシン-1, 27-ジイル基、9-ヘプタコシン-1, 27-ジイル基、10-ヘプタコシン-1, 27-ジイル基、11-ヘプタコシン-1, 27-ジイル基、12-ヘプタコシン-1, 27-ジイル基、13-ヘプタコシン-1, 27-ジイル基、14-ヘプタコシン-1, 27-ジイル基、15-ヘプタコシン-1, 27-ジイル基、16-ヘプタコシン-1, 27-ジイル基、17-ヘプタコシン-1, 27-ジイル基、18-ヘプタコシン-1, 27-ジイル基、19-ヘプタコシン-1, 27-ジイル基、20-ヘプタコシン-1, 27-ジイル基、21-ヘプタコシン-1, 27-ジイル基、22-ヘプタコシン-1, 27-ジイル基、23-ヘプタコシン-1, 27-ジイル基、24-ヘプタコシン-1, 27-ジイル基、25-ヘプタコシン-1, 27-ジイル基、

【0065】

2-オクタコシン-1, 28-ジイル基、3-オクタコシン-1, 28-ジイル基、4-オクタコシン-1, 28-ジイル基、5-オクタコシン-1, 28-ジイル基、6-オクタコシン-1, 28-ジイル基、7-オクタコシン-1, 28-ジイル基、8-オクタコシン-1, 28-ジイル基、9-オクタコシン-1, 28-ジイル基、10-オクタコシン-1, 28-ジイル基、11-オクタコシン-1, 28-ジイル基、12-オクタコシン-1, 28-ジイル基、13-オ

クタコシン-1, 28-ジイル基、14-オクタコシン-1, 28-ジイル基、
15-オクタコシン-1, 28-ジイル基、16-オクタコシン-1, 28-ジ
イル基、17-オクタコシン-1, 28-ジイル基、18-オクタコシン-1,
28-ジイル基、19-オクタコシン-1, 28-ジイル基、20-オクタコ
シン-1, 28-ジイル基、21-オクタコシン-1, 28-ジイル基、22-オ
クタコシン-1, 28-ジイル基、23-オクタコシン-1, 28-ジイル基、
24-オクタコシン-1, 28-ジイル基、25-オクタコシン-1, 28-ジ
イル基、26-オクタコシン-1, 28-ジイル基、

【0066】

2-ノナコシン-1, 29-ジイル基、3-ノナコシン-1, 29-ジイル基、
4-ノナコシン-1, 29-ジイル基、5-ノナコシン-1, 29-ジイル基、
6-ノナコシン-1, 29-ジイル基、7-ノナコシン-1, 29-ジイル基、
8-ノナコシン-1, 29-ジイル基、9-ノナコシン-1, 29-ジイル基、
10-ノナコシン-1, 29-ジイル基、11-ノナコシン-1, 29-ジイル
基、12-ノナコシン-1, 29-ジイル基、13-ノナコシン-1, 29-ジ
イル基、14-ノナコシン-1, 29-ジイル基、15-ノナコシン-1, 29
-ジイル基、16-ノナコシン-1, 29-ジイル基、17-ノナコシン-1,
29-ジイル基、18-ノナコシン-1, 29-ジイル基、19-ノナコシン-
1, 29-ジイル基、20-ノナコシン-1, 29-ジイル基、21-ノナコシ
ン-1, 29-ジイル基、22-ノナコシン-1, 29-ジイル基、23-ノナ
コシン-1, 29-ジイル基、24-ノナコシン-1, 29-ジイル基、25-
ノナコシン-1, 29-ジイル基、26-ノナコシン-1, 29-ジイル基、2
7-ノナコシン-1, 29-ジイル基、

【0067】

2-トリアコンチン-1, 30-ジイル基、3-トリアコンチン-1, 30-ジ
イル基、4-トリアコンチン-1, 30-ジイル基、5-トリアコンチン-1,
30-ジイル基、6-トリアコンチン-1, 30-ジイル基、7-トリアコンチ
ン-1, 30-ジイル基、8-トリアコンチン-1, 30-ジイル基、9-トリ
アコンチン-1, 30-ジイル基、10-トリアコンチン-1, 30-ジイル基

、11-トリアコンチン-1, 30-ジイル基、12-トリアコンチン-1, 30-ジイル基、13-トリアコンチン-1, 30-ジイル基、14-トリアコンチン-1, 30-ジイル基、15-トリアコンチン-1, 30-ジイル基、16-トリアコンチン-1, 30-ジイル基、17-トリアコンチン-1, 30-ジイル基、18-トリアコンチン-1, 30-ジイル基、19-トリアコンチン-1, 30-ジイル基、20-トリアコンチン-1, 30-ジイル基、21-トリアコンチン-1, 30-ジイル基、22-トリアコンチン-1, 30-ジイル基、23-トリアコンチン-1, 30-ジイル基、24-トリアコンチン-1, 30-ジイル基、25-トリアコンチン-1, 30-ジイル基、26-トリアコンチン-1, 30-ジイル基、27-トリアコンチン-1, 30-ジイル基、及び28-トリアコンチン-1, 30-ジイル基等の直鎖状のアルキニレン基、

【0068】

並びに3-メチル-1-ブチン-1, 4-ジイル基、2-メチル-3-ブチン-1, 4-ジイル基、4-メチル-2-ペンチン-1, 5-ジイル基、2-メチル-3-ペンチン-1, 5-ジイル基、4-エチル-2-ヘキシン-1, 6-ジイル基、5-メチル-3-ヘキシン-1, 6-ジイル基、2-メチル-4-ヘキシン-1, 6-ジイル基、5-エチル-6-メチル-2-ヘプチン-1, 7-ジイル基、5-メチル-3-ヘプチン-1, 7-ジイル基、3-n-プロピル-4-ヘプチン-1, 7-ジイル基、4, 4-ジメチル-5-ヘプチン-1, 7-ジイル基、6-メチル-2, 4-ヘプタジイン-1, 7-ジイル基、4-メチル-2, 5-ヘプタジイン-1, 7-ジイル基、2-メチル-3, 5-ヘプタジイン-1, 7-ジイル基、4-エチル-6, 6-ジメチル-2-オクチン-1, 8-ジイル基、5-n-プロピル-3-オクチン-1, 8-ジイル基、3-エチル-4-オクチン-1, 8-ジイル基、4-エチル-2-メチル-5-オクチン-1, 8-ジイル基、3, 4, 5-トリメチル-6-オクチン-1, 8-ジイル基、7-メチル-2, 4-オクタジイン-1, 8-ジイル基、4-メチル-2, 5-オクタジイン-1, 8-ジイル基、5-n-プロピル-2, 6-オクタジイン-1, 8-ジイル基、5-エチル-2-ノニン-1, 9-ジイル基、5, 6, 7-トリメチル-3-ノニン-1, 9-ジイル基、2, 3, 6, 7-テトラメチル-4

-ノニン-1, 9-ジイル基、3, 4-ジエチル-5-ノニン-1, 9-ジイル基、4-i-プロピル-6-ノニン-1, 9-ジイル基、3-エチル-7-ノニン-1, 9-ジイル基、5-n-ブチル-2-デシン-1, 10-ジイル基、6-i-プロピル-3-デシン-1, 10-ジイル基、7-エチル-4-デシン-1, 10-ジイル基、3, 7-ジメチル-5-デシン-1, 10-ジイル基、4-エチル-6-デシン-1, 10-ジイル基、5-メチル-7-デシン-1, 10-ジイル基、6-メチル-2-ウンデシン-1, 11-ジイル基、6-エチル-3-ウンデシン-1, 11-ジイル基、7-メチル-4-ウンデシン-1, 11-ジイル基、7-エチル-5-ウンデシン-1, 11-ジイル基、5-メチル-6-ウンデシン-1, 11-ジイル基、9-エチル-7-ウンデシン-1, 11-ジイル基、3-メチル-8-ウンデシン-1, 11-ジイル基、4-エチル-9-ウンデシン-1, 11-ジイル基、

【0069】

5-エチル-2-ドデシン-1, 12-ジイル基、6-メチル-3-ドデシン-1, 12-ジイル基、8-エチル-4-ドデシン-1, 12-ジイル基、8-メチル-5-ドデシン-1, 12-ジイル基、9-エチル-6-ドデシン-1, 12-ジイル基、6-メチル-7-ドデシン-1, 12-ジイル基、10-エチル-8-ドデシン-1, 12-ジイル基、2-メチル-9-ドデシン-1, 12-ジイル基、5-エチル-10-ドデシン-1, 12-ジイル基、4, 7, 9-トリメチル-2-トリデシン-1, 13-ジイル基、10-メチル-3-トリデシン-1, 13-ジイル基、8-エチル-4-トリデシン-1, 13-ジイル基、4-メチル-5-トリデシン-1, 13-ジイル基、5-エチル-6-トリデシン-1, 13-ジイル基、3, 6-ジエチル-7-トリデシン-1, 13-ジイル基、5-メチル-8-トリデシン-1, 13-ジイル基、7-エチル-9-トリデシン-1, 13-ジイル基、4-メチル-10-トリデシン-1, 13-ジイル基、6-エチル-11-トリデシン-1, 13-ジイル基、
7-メチル-2-テトラデシン-1, 14-ジイル基、8-エチル-3-テトラデシン-1, 14-ジイル基、6-n-プロピル-4-テトラデシン-1, 14-

－ジイル基、8-メチル-5-テトラデシン-1, 14-ジイル基、3-エチル-6-テトラデシン-1, 14-ジイル基、10-メチル-7-テトラデシン-1, 14-ジイル基、6-i-プロピル-8-テトラデシン-1, 14-ジイル基、5, 7, 11-トリメチル-9-テトラデシン-1, 14-ジイル基、5-エチル-10-テトラデシン-1, 14-ジイル基、6-メチル-11-テトラデシン-1, 14-ジイル基、4-n-ブチル-12-テトラデシン-1, 14-ジイル基、

【0070】

4-メチル-2-ペンタデシン-1, 15-ジイル基、6-エチル-3-ペンタデシン-1, 15-ジイル基、8-メチル-4-ペンタデシン-1, 15-ジイル基、10-エチル-5-ペンタデシン-1, 15-ジイル基、4, 9-ジメチル-6-ペンタデシン-1, 15-ジイル基、10-エチル-7-ペンタデシン-1, 15-ジイル基、6-メチル-8-ペンタデシン-1, 15-ジイル基、8-n-プロピル-9-ペンタデシン-1, 15-ジイル基、5-メチル-10-ペンタデシン-1, 15-ジイル基、4, 7-ジエチル-11-ペンタデシン-1, 15-ジイル基、5-メチル-12-ペンタデシン-1, 15-ジイル基、8-エチル-13-ペンタデシン-1, 15-ジイル基、

【0071】

8-i-プロピル-2-ヘキサデシン-1, 16-ジイル基、6-メチル-3-ヘキサデシン-1, 16-ジイル基、8-エチル-4-ヘキサデシン-1, 16-ジイル基、9-メチル-5-ヘキサデシン-1, 16-ジイル基、10-エチル-6-ヘキサデシン-1, 16-ジイル基、5-メチル-7-ヘキサデシン-1, 16-ジイル基、5, 11-ジメチル-8-ヘキサデシン-1, 16-ジイル基、5-エチル-9-ヘキサデシン-1, 16-ジイル基、7, 13-ジエチル-10-ヘキサデシン-1, 16-ジイル基、5-エチル-7-メチル-11-ヘキサデシン-1, 16-ジイル基、5-メチル-12-ヘキサデシン-1, 16-ジイル基、8-s-ブチル-13-ヘキサデシン-1, 16-ジイル基、5-エチル-14-ヘキサデシン-1, 16-ジイル基、

【0072】

11-メチル-2-ヘプタデシン-1, 17-ジイル基、9-エチル-3-ヘプタデシン-1, 17-ジイル基、7-i-プロピル-4-ヘプタデシン-1, 17-ジイル基、8-メチル-5-ヘプタデシン-1, 17-ジイル基、4-エチル-6-ヘプタデシン-1, 17-ジイル基、10-メチル-7-ヘプタデシン-1, 17-ジイル基、5, 11-ジメチル-8-ヘプタデシン-1, 17-ジイル基、5-エチル-9-ヘプタデシン-1, 17-ジイル基、8-エチル-10-ヘプタデシン-1, 17-ジイル基、7-メチル-11-ヘプタデシン-1, 17-ジイル基、5-i-プロピル-12-ヘプタデシン-1, 17-ジイル基、9-エチル-13-ヘプタデシン-1, 17-ジイル基、8-メチル-14-ヘプタデシン-1, 17-ジイル基、7-s-ブチル-15-ヘプタデシン-1, 17-ジイル基、

【0073】

10, 15-ジメチル-2-オクタデシン-1, 18-ジイル基、6-エチル-3-オクタデシン-1, 18-ジイル基、10-メチル-4-オクタデシン-1, 18-ジイル基、11-メチル-5-オクタデシン-1, 18-ジイル基、12-エチル-6-オクタデシン-1, 18-ジイル基、10-メチル-7-オクタデシン-1, 18-ジイル基、5-メチル-8-オクタデシン-1, 18-ジイル基、7-エチル-9-オクタデシン-1, 18-ジイル基、7-メチル-10-オクタデシン-1, 18-ジイル基、8-n-ブチル-11-オクタデシン-1, 18-ジイル基、7-メチル-12-オクタデシン-1, 18-ジイル基、9-エチル-13-オクタデシン-1, 18-ジイル基、10-i-プロピル-14-オクタデシン-1, 18-ジイル基、7-メチル-15-オクタデシン-1, 18-ジイル基、10-エチル-16-オクタデシン-1, 18-ジイル基、

【0074】

10-メチル-2-ノナデシン-1, 19-ジイル基、10, 12-ジエチル-3-ノナデシン-1, 19-ジイル基、7-メチル-4-ノナデシン-1, 19-ジイル基、9-エチル-5-ノナデシン-1, 19-ジイル基、9-n-プロピル-6-ノナデシン-1, 19-ジイル基、10-メチル-7-ノナデシン-

1, 19-ジイル基、12-i-プロピル-8-ノナデシン-1, 19-ジイル基、5, 15-ジメチル-9-ノナデシン-1, 19-ジイル基、7-エチル-13-メチル-10-ノナデシン-1, 19-ジイル基、6-メチル-11-ノナデシン-1, 19-ジイル基、6-エチル-12-ノナデシン-1, 19-ジイル基、7, 16-ジエチル-13-ノナデシン-1, 19-ジイル基、9-s-ブチル-14-ノナデシン-1, 19-ジイル基、8-メチル-15-ノナデシン-1, 19-ジイル基、10-エチル-16-ノナデシン-1, 19-ジイル基、10-i-プロピル-17-ノナデシン-1, 19-ジイル基、

【0075】

8-メチル-2-イコシン-1, 20-ジイル基、6-エチル-3-イコシン-1, 20-ジイル基、10-i-プロピル-4-イコシン-1, 20-ジイル基、11-n-プロピル-5-イコシン-1, 20-ジイル基、12-メチル-6-イコシン-1, 20-ジイル基、11-エチル-7-イコシン-1, 20-ジイル基、13-n-プロピル-8-イコシン-1, 20-ジイル基、6-i-プロピル-9-イコシン-1, 20-ジイル基、5-n-プロピル-10-イコシン-1, 20-ジイル基、7-メチル-11-イコシン-1, 20-ジイル基、8-エチル-12-イコシン-1, 20-ジイル基、10-n-プロピル-13-イコシン-1, 20-ジイル基、9-i-プロピル-14-イコシン-1, 20-ジイル基、~~10-n-ブチル-15-イコシン-1, 20-ジイル基、8-s-ブチル-16-イコシン-1, 20-ジイル基、7-i-ブチル-17-イコシン-1, 20-ジイル基、9-メチル-18-イコシン-1, 20-ジイル基、~~

【0076】

11-メチル-2-ヘニコシン-1, 21-ジイル基、12-n-ブチル-3-ヘニコシン-1, 21-ジイル基、10-n-ペンチル-4-ヘニコシン-1, 21-ジイル基、8-エチル-5-ヘニコシン-1, 21-ジイル基、10-i-プロピル-6-ヘニコシン-1, 21-ジイル基、5-n-プロピル-7-ヘニコシン-1, 21-ジイル基、13-n-ブチル-8-ヘニコシン-1, 21-ジイル基、15-s-ブチル-9-ヘニコシン-1, 21-ジイル基、5-メ

チル-10-ヘニコシン-1, 21-ジイル基、15-エチル-6-メチル-1
1-ヘニコシン-1, 21-ジイル基、8-エチル-12-ヘニコシン-1, 2
1-ジイル基、7-メチル-13-ヘニコシン-1, 21-ジイル基、11-エ
チル-14-ヘニコシン-1, 21-ジイル基、6-エチル-15-ヘニコシン
-1, 21-ジイル基、9-メチル-16-ヘニコシン-1, 21-ジイル基、
5-エチル-9-メチル-17-ヘニコシン-1, 21-ジイル基、10, 10
-ジメチル-18-ヘニコシン-1, 21-ジイル基、9-エチル-19-ヘニ
コシン-1, 21-ジイル基、

【0077】

11-メチル-2-ドコシン-1, 22-ジイル基、12-エチル-3-ドコシ
ン-1, 22-ジイル基、13-i-プロピル-4-ドコシン-1, 22-ジイ
ル基、10-n-プロピル-5-ドコシン-1, 22-ジイル基、10-n-ブ
チル-6-ドコシン-1, 22-ジイル基、15-s-ブチル-7-ドコシン
-1, 22-ジイル基、11-i-ブチル-8-ドコシン-1, 22-ジイル基、
5, 15-ジメチル-9-ドコシン-1, 22-ジイル基、8, 14-ジエチル
-10-ドコシン-1, 22-ジイル基、5-メチル-11-ドコシン-1, 2
2-ジイル基、7-エチル-12-ドコシン-1, 22-ジイル基、10-メチ
ル-13-ドコシン-1, 22-ジイル基、10-エチル-14-ドコシン-1
, 22-ジイル基、9-エチル-15-ドコシン-1, 22-ジイル基、8-メ
チル-16-ドコシン-1, 22-ジイル基、7-i-プロピル-17-ドコシ
ン-1, 22-ジイル基、10-i-ブチル-18-ドコシン-1, 22-ジイ
ル基、9, 10-ジメチル-19-ドコシン-1, 22-ジイル基、13-エチ
ル-20-ドコシン-1, 22-ジイル基、

【0078】

19-メチル-2-トリコシン-1, 23-ジイル基、10, 15-ジメチル-
3-トリコシン-1, 23-ジイル基、3, 11, 16-トリメチル-4-トリ
コシン-1, 23-ジイル基、12-エチル-5-トリコシン-1, 23-ジイ
ル基、6, 13-ジエチル-6-トリコシン-1, 23-ジイル基、4, 12,
18-トリエチル-7-トリコシン-1, 23-ジイル基、18-i-プロピル

-8-トリコシン-1, 23-ジイル基、14-n-プロピル-9-トリコシン-1, 23-ジイル基、8-n-ブチル-10-トリコシン-1, 23-ジイル基、15-s-ブチル-11-トリコシン-1, 23-ジイル基、5-i-ブチル-12-トリコシン-1, 23-ジイル基、7-エチル-9-メチル-13-トリコシン-1, 23-ジイル基、9-メチル-14-トリコシン-1, 23-ジイル基、4, 18-ジメチル-15-トリコシン-1, 23-ジイル基、3, 4, 11-トリメチル-16-トリコシン-1, 23-ジイル基、9-エチル-17-トリコシン-1, 23-ジイル基、10, 13-ジエチル-18-トリコシン-1, 23-ジイル基、5, 8, 15-トリエチル-19-トリコシン-1, 23-ジイル基、15-i-プロピル-20-トリコシン-1, 23-ジイル基、17-n-プロピル-21-トリコシン-1, 23-ジイル基、

【0079】

16-n-ブチル-2-テトラコシン-1, 24-ジイル基、11-s-ブチル-3-テトラコシン-1, 24-ジイル基、8-i-ブチル-4-テトラコシン-1, 24-ジイル基、18-エチル-9-メチル-5-テトラコシン-1, 24-ジイル基、13-メチル-6-テトラコシン-1, 24-ジイル基、4, 19-ジメチル-7-テトラコシン-1, 24-ジイル基、5, 11, 17-トリエチル-8-テトラコシン-1, 24-ジイル基、6-エチル-9-テトラコシン-1, 24-ジイル基、7, 16-ジエチル-10-テトラコシン-1, 24-ジイル基、5, 9, 18-トリエチル-11-テトラコシン-1, 24-ジイル基、10-n-プロピル-12-テトラコシン-1, 24-ジイル基、20-i-プロピル-13-テトラコシン-1, 24-ジイル基、9-n-ブチル-14-テトラコシン-1, 24-ジイル基、11-s-ブチル-15-テトラコシン-1, 24-ジイル基、13-i-ブチル-16-テトラコシン-1, 24-ジイル基、10-エチル-13-メチル-17-テトラコシン-1, 24-ジイル基、6-メチル-18-テトラコシン-1, 24-ジイル基、5, 7-ジメチル-19-テトラコシン-1, 24-ジイル基、4, 8, 13-トリメチル-20-テトラコシン-1, 24-ジイル基、18-エチル-21-テトラコシン-1, 24-ジイル基、6, 10-ジエチル-22-テトラコシン-1, 24-ジ

イル基、

【0080】

9, 13, 16-トリメチル-2-ペンタコシン-1, 25-ジイル基、12-n-プロピル-3-ペンタコシン-1, 25-ジイル基、11-i-プロピル-4-ペンタコシン-1, 25-ジイル基、20-n-ブチル-5-ペンタコシン-1, 25-ジイル基、17-i-ブチル-6-ペンタコシン-1, 25-ジイル基、15-s-ブチル-7-ペンタコシン-1, 25-ジイル基、15-エチル-23-メチル-8-ペンタコシン-1, 25-ジイル基、11-メチル-8-ペンタコシン-1, 25-ジイル基、13, 17-ジメチル-9-ペンタコシン-1, 25-ジイル基、5, 8, 21-トリメチル-10-ペンタコシン-1, 25-ジイル基、17-エチル-11-ペンタコシン-1, 25-ジイル基、8, 18-ジエチル-12-ペンタコシン-1, 25-ジイル基、10, 15, 18-トリメチル-13-ペンタコシン-1, 25-ジイル基、4-n-プロピル-14-ペンタコシン-1, 25-ジイル基、20-i-プロピル-15-ペンタコシン-1, 25-ジイル基、8-n-ブチル-16-ペンタコシン-1, 25-ジイル基、11-s-ブチル-17-ペンタコシン-1, 25-ジイル基、5, 22-ジメチル-18-ペンタコシン-1, 25-ジイル基、5-i-ブチル-19-ペンタコシン-1, 25-ジイル基、9-メチル-13-エチル-20-ペンタコシン-1, 25-ジイル基、15-メチル-21-ペンタコシン-1, 25-ジイル基、6, 13-ジメチル-22-ペンタコシン-1, 25-ジイル基、4, 8, 12-トリメチル-23-ペンタコシン-1, 25-ジイル基、

【0081】

13-エチル-2-ヘキサコシン-1, 26-ジイル基、5, 16-ジエチル-3-ヘキサコシン-1, 26-ジイル基、7, 11, 16-トリメチル-4-ヘキサコシン-1, 26-ジイル基、12-n-プロピル-5-ヘキサコシン-1, 26-ジイル基、21-i-プロピル-6-ヘキサコシン-1, 26-ジイル基、6-n-ブチル-7-ヘキサコシン-1, 26-ジイル基、13-s-ブチル-8-ヘキサコシン-1, 26-ジイル基、19-i-ブチル-9-ヘキサコ

シン-1, 26-ジイル基、13-エチル-18-メチル-10-ヘキサコシン-1, 26-ジイル基、10-メチル-11-ヘキサコシン-1, 26-ジイル基、10, 20-ジメチル-12-ヘキサコシン-1, 26-ジイル基、7, 9, 17-トリメチル-13-ヘキサコシン-1, 26-ジイル基、8-エチル-14-ヘキサコシン-1, 26-ジイル基、5, 22-ジエチル-15-ヘキサコシン-1, 26-ジイル基、7, 10, 21-トリメチル-16-ヘキサコシン-1, 26-ジイル基、15-n-プロピル-17-ヘキサコシン-1, 26-ジイル基、13-i-プロピル-18-ヘキサコシン-1, 26-ジイル基、8-n-ブチル-19-ヘキサコシン-1, 26-ジイル基、11-s-ブチル-20-ヘキサコシン-1, 26-ジイル基、14-i-ブチル-21-ヘキサコシン-1, 26-ジイル基、5-エチル-21-メチル-22-ヘキサコシン-1, 26-ジイル基、7-メチル-23-ヘキサコシン-1, 26-ジイル基、8, 14-ジメチル-24-ヘキサコシン-1, 26-ジイル基、

【0082】

7, 16, 24-トリメチル-2-ヘプタコシン-1, 27-ジイル基、9-エチル-3-ヘプタコシン-1, 27-ジイル基、7, 16-ジメチル-4-ヘプタコシン-1, 27-ジイル基、9, 13, 21-トリメチル-5-ヘプタコシン-1, 27-ジイル基、13-n-プロピル-6-ヘプタコシン-1, 27-ジイル基、10-i-プロピル-7-ヘプタコシン-1, 27-ジイル基、16-n-プロピル-8-ヘプタコシン-1, 27-ジイル基、18-メチル-9-ヘプタコシン-1, 27-ジイル基、9-i-プロピル-10-ヘプタコシン-1, 27-ジイル基、15-エチル-7-メチル-11-ヘプタコシン-1, 27-ジイル基、25-メチル-12-ヘプタコシン-1, 27-ジイル基、8, 21-ジメチル-13-ヘプタコシン-1, 27-ジイル基、5, 11, 23-トリメチル-14-ヘプタコシン-1, 27-ジイル基、9-エチル-15-ヘプタコシン-1, 27-ジイル基、8, 20-ジメチル-16-ヘプタコシン-1, 27-ジイル基、4, 8, 19-トリメチル-17-ヘプタコシン-1, 27-ジイル基、7-n-プロピル-18-ヘプタコシン-1, 27-ジイル基、21-i-プロピル-19-ヘプタコシン-1, 27-ジイル基、14-n-ブ

ロピル-20-ヘプタコシン-1, 27-ジイル基、8-エチル-21-ヘプタコシン-1, 27-ジイル基、11-i-プロピル-22-ヘプタコシン-1, 27-ジイル基、5-エチル-13-メチル-23-ヘプタコシン-1, 27-ジイル基、16-メチル-24-ヘプタコシン-1, 27-ジイル基、7-エチル-25-ヘプタコシン-1, 27-ジイル基、

【0083】

14-エチル-2-オクタコシン-1, 28-ジイル基、20-メチル-3-オクタコシン-1, 28-ジイル基、7, 22-ジメチル-4-オクタコシン-1, 28-ジイル基、19-エチル-5-オクタコシン-1, 28-ジイル基、11-メチル-6-オクタコシン-1, 28-ジイル基、13, 16-ジメチル-7-オクタコシン-1, 28-ジイル基、13-エチル-8-オクタコシン-1, 28-ジイル基、6-メチル-9-オクタコシン-1, 28-ジイル基、9, 16-ジメチル-10-オクタコシン-1, 28-ジイル基、7-エチル-11-オクタコシン-1, 28-ジイル基、16-メチル-12-オクタコシン-1, 28-ジイル基、6, 15-ジメチル-13-オクタコシン-1, 28-ジイル基、22-エチル-14-オクタコシン-1, 28-ジイル基、6-メチル-15-オクタコシン-1, 28-ジイル基、8, 11-ジメチル-16-オクタコシン-1, 28-ジイル基、23-エチル-17-オクタコシン-1, 28-ジイル基、4-メチル-18-オクタコシン-1, 28-ジイル基、7, 14-ジメチル-19-オクタコシン-1, 28-ジイル基、13-エチル-20-オクタコシン-1, 28-ジイル基、8-メチル-21-オクタコシン-1, 28-ジイル基、11, 17-ジメチル-22-オクタコシン-1, 28-ジイル基、10-エチル-23-オクタコシン-1, 28-ジイル基、9-メチル-24-オクタコシン-1, 28-ジイル基、7, 19-ジメチル-25-オクタコシン-1, 28-ジイル基、12-エチル-26-オクタコシン-1, 28-ジイル基、

【0084】

15-メチル-2-ノナコシン-1, 29-ジイル基、14-メチル-3-ノナコシン-1, 29-ジイル基、12-メチル-4-ノナコシン-1, 29-ジイ

ル基、13-メチル-5-ノナコシン-1, 29-ジイル基、11-メチル-6-ノナコシン-1, 29-ジイル基、10-メチル-7-ノナコシン-1, 29-ジイル基、25-メチル-8-ノナコシン-1, 29-ジイル基、24-メチル-9-ノナコシン-1, 29-ジイル基、23-メチル-10-ノナコシン-1, 29-ジイル基、22-メチル-11-ノナコシン-1, 29-ジイル基、21-メチル-12-ノナコシン-1, 29-ジイル基、20-メチル-13-ノナコシン-1, 29-ジイル基、19-メチル-14-ノナコシン-1, 29-ジイル基、18-メチル-15-ノナコシン-1, 29-ジイル基、27-メチル-16-ノナコシン-1, 29-ジイル基、26-メチル-17-ノナコシン-1, 29-ジイル基、25-メチル-18-ノナコシン-1, 29-ジイル基、24-メチル-19-ノナコシン-1, 29-ジイル基、23-メチル-20-ノナコシン-1, 29-ジイル基、20-メチル-21-ノナコシン-1, 29-ジイル基、19-メチル-22-ノナコシン-1, 29-ジイル基、18-メチル-23-ノナコシン-1, 29-ジイル基、17-メチル-24-ノナコシン-1, 29-ジイル基、16-メチル-25-ノナコシン-1, 29-ジイル基、6-メチル-26-ノナコシン-1, 29-ジイル基、及び5-メチル-27-ノナコシン-1, 29-ジイル基等の分岐鎖状のアルキニレン基が挙げられる。

【0085】

代表的には、Gとしては、置換されていてもよい炭素数2~30の直鎖状のアルキレン基が好ましく、置換されていてもよい炭素数3~11の直鎖状のアルキレン基がより好ましく、水酸基で置換されていてもよい炭素数3~11の直鎖状のアルキレン基がさらに好ましく、中でも、ペンタン-1, 5-ジイル基、ヘキサン-1, 6-ジイル基、ヘプタン-1, 7-ジイル基、オクタン-1, 8-ジイル基、ノナン-1, 9-ジイル基、デカン-1, 10-ジイル基、ウンデカン-1, 11-ジイル基、2-ヒドロキシプロパン-1, 3-ジイル基、及び3-ヒドロキシオクタン-1, 8-ジイル基等が特に好ましい。

【0086】

Gとして挙げられる、置換されていてもよい炭素数2~30の直鎖もしくは分

岐鎖状のアルキレン基、置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルケニレン基、及び置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルキニレン基は、その1位でAと結合し、かつ、そのω位でEと結合しているか、あるいは、その1位でEと結合し、かつ、そのω位でAと結合しているが、その1位でAと結合し、かつ、そのω位でEと結合しているのが好ましい。

【0087】

Eは、単結合又は—O—を示すが、好ましくは、単結合を示す。

【0088】

Jは、単結合、置換されていてもよい芳香族炭化水素基、又は置換されていてもよい複素環基を示すが、単結合であるのが好ましい。

Jにおける置換されていてもよい芳香族炭化水素基、及び置換されていてもよい複素環基における置換基としては、 $-(CH_2)_k-COOR^{7b}$ 、 $-(CH_2)_1-CONR^{8c}R^{9c}$ 、 $-NR^{8d}R^{9d}$ 、及び水酸基等が挙げられる。ここで、k及び1は、独立して、0又は1を示し、R^{7b}は、水素原子、又は炭素数1～6の直鎖もしくは分岐鎖状のアルキル基を示し、R^{8c}、R^{9c}、R^{8c}、及びR^{9d}は、それぞれ独立して、水素原子、又は炭素数1～3の直鎖もしくは分岐鎖状のアルキル基を示す。また、この置換基は、Qが単結合以外である場合、存在しないのが好ましく、Qが単結合である場合、 $-(CH_2)_k-CO$
OR^{7b}（ここで、k及びR^{7b}は、前記と同義である）であるのが好ましい。

なお、Jが置換されている場合、この置換基の数は、1個～4個であり、好ましくは1個である。

【0089】

Jにおける置換されていてもよい芳香族炭化水素基における芳香族炭化水素基の定義は、Arにおける芳香族炭化水素基と同様であるが、好ましくは、p-フェニレン基、及びm-フェニレン基等が挙げられる。

Jにおける置換されていてもよい芳香族炭化水素基としては、無置換のp-フェニレン基、無置換のm-フェニレン基、及び-COOHで置換されているフェニレン基等が好ましい。

Jにおける置換されていてもよい複素環基の複素環とは、同一又は異なって、酸素原子、窒素原子、硫黄原子などのヘテロ原子1個～4個を含む4員～10員の、単環又は縮合環式の脂肪族環又は芳香族環を意味し、具体例としては、オキセタン、フラン、ジヒドロフラン、テトラヒドロフラン、ピラン、ジヒドロピラン、テトラヒドロピラン、ジオキソール、チオフェン、ジヒドロチオフェン、テトラヒドロチオフェン、チオピラン、ジヒドロチオピラン、テトラヒドロチオピラン、ピロール、ジヒドロピロール、ピロリジン、ピリジン、ジヒドロピリジン、テトラヒドロピリジン、ピペリジン、ピラゾール、2-ピラゾリン、ピラゾリジン、イミダゾール、イミダゾリジン、ピリミジン、ピラジン、ピリダジン、オキサゾリン、ピペラジン、1, 2, 3-トリアゾール、1, 2, 4-トリアゾール、テトラゾール、イソオキサゾール、1, 3-オキサゾール、1, 2, 3-オキサジアゾール、1, 2, 4-オキサジアゾール、1, 2, 5-オキサジアゾール、1, 3, 4-オキサジアゾール、1, 2-チアゾール、1, 3-チアゾール、1, 2, 3-チアジアゾール、1, 2, 4-チアジアゾール、1, 2, 5-チアジアゾール、1, 3, 4-チアジアゾール、1, 3-ジオキソラン、1, 4-ジオキサン、オキサゾリジン、モルホリン、インドール、キノリン、イソキノリン、ベンゾピラン、ベンゾフラン、ベンゾチオフェン、ベンゾジアゾール、ベンゾオキサゾール、及びベンゾチアゾール等が挙げられるが、好ましくは、フラン、及びオキサゾール等が挙げられる。Jにおける複素環基は、これらの複素環中の、置換基を有する位置を除いた異なる2つの位置に、1個ずつ結合手を有する基を意味するが、好ましくは、フラン-2, 5-ジイル基、1, 3-オキサゾール-2, 4-ジイル基、及び1, 3-オキサゾール-2, 5-ジイル基等が挙げられる。

Jにおける置換されていてもよい複素環基としては、無置換のフラン-2, 5-ジイル基、無置換の1, 3-オキサゾール-2, 4-ジイル基、及び無置換の1, 3-オキサゾール-2, 5-ジイル基等が好ましい。

Jにおける置換されていてもよい芳香族炭化水素基、及び置換されていてもよい複素環基は、2個の結合手のいずれか一方でEと結合し、もう一方でYと結合していれば、どちらの一方でEと結合していてもよいが、好ましくは、1, 3-

オキサゾール-2, 4-ジイル基においては、4位でEと結合し、1, 3-オキサゾール-2, 5-ジイル基においては、5位でEと結合している。

【0090】

Yは、単結合又は-O-を示すが、好ましくは単結合を示す。

【0091】

Lは、単結合、炭素数1～10の直鎖もしくは分岐鎖状のアルキレン基、炭素数2～10の直鎖もしくは分岐鎖状のアルケニレン基、又は炭素数2～10の直鎖もしくは分岐鎖状のアルキニレン基を示すが、単結合が好ましく、また、Jが置換されていてもよい芳香族炭化水素基であり、かつYが単結合である場合は、Lは、単結合、及び炭素数1～5の直鎖状のアルキレン基が好ましく、中でも単結合、及び炭素数1～3の直鎖状のアルキレン基が好ましく、Jが置換されていてもよい芳香族炭化水素基であり、かつYが-O-である場合は、Lは、炭素数1～5の直鎖状のアルキレン基が好ましく、中でも炭素数2～3の直鎖状のアルキレン基が好ましい。

【0092】

Lにおける、炭素数1～10の直鎖もしくは分岐鎖状のアルキレン基、炭素数2～10の直鎖もしくは分岐鎖状のアルケニレン基、炭素数2～10の直鎖もしくは分岐鎖状のアルキニレン基、炭素数1～5の直鎖状のアルキレン基、炭素数1～3の直鎖状のアルキレン基、及び炭素数2～3の直鎖状のアルキレン基の具体例としては、Gにおける、置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルキレン基、置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルケニレン基、及び置換されていてもよい炭素数2～30の直鎖もしくは分岐鎖状のアルキニレン基の具体例として列挙したものの中から、該当するものを選択し、更にメチレン基を追加して列挙することができる。

また、2つの結合手の一方でYと結合し、もう一方でQと結合しているという条件を満たせば、どちらの結合手がYと結合していてもよい。

【0093】

Qは、単結合、又は下記式：

【0094】

【化9】

【0095】

【0096】

【化10】

【】

、及び

【0097】

【化11】

【0098】

(ここで、 R^7 は、水素原子、又は炭素数1～6の直鎖もしくは分岐鎖状の低級アルキル基を示し、 R^8 、 R^9 、 R^{10} 、及び R^{11} は、それぞれ独立して、水素原子、又は炭素数1～3の直鎖もしくは分岐鎖状の低級アルキル基を示す。)から選択される1つの基を示すが、Qが、Q² (ここで、Q²としては、単結合、Q⁶²、Q⁶³、Q⁶⁴、Q³ (更にここで、 R^8 は、前記と同義である。)、Q⁴ (更にここで、 R^8 は、前記と同義である。)、Q¹⁷ (更にここで、 R

⁷は、前記と同義である。)、Q^{3 2}(更にここで、R⁷は、前記と同義である。)、及びQ^{2 7}(更にここで、R⁷は、前記と同義である。)が挙げられる。
}であるのが好ましく、抗アンドロゲン活性の強さの点では、Qが、Q^{6 2}、Q^{6 3}、及びQ^{6 4}であるもの、並びにR⁸が水素原子であるQ³、及びR⁸が水素原子であるQ⁴が更に好ましく、Q^{6 2}、Q^{6 3}、Q^{6 4}、及びR⁸が水素原子であるQ³が特に好ましく、Q^{6 2}、Q^{6 3}、及びQ^{6 4}であるものが更に特に好ましい。また、経口吸収性の点では、Qが、R⁷が水素原子であるQ^{1 7}、R⁷が水素原子であるQ^{3 2}、及びR⁷が水素原子であるQ^{2 7}が更に好ましい。

Qにおいては、*を付した位置でLと結合し、**を付した位置でZと結合している。

【0099】

Zは、水素原子、ハロゲン原子で置換されていてもよい炭素数1～10の直鎖もしくは分岐鎖状のアルキル基、ハロゲン原子で置換されていてもよい炭素数2～10の直鎖もしくは分岐鎖状のアルケニル基、ハロゲン原子で置換されていてもよい炭素数2～10の直鎖もしくは分岐鎖状のアルキニル基、-O-R^d(ここで、R^dは、水素原子、又は水酸基の保護基を示す)、又は-COOHを示す。

【0100】

Zにおける、ハロゲン原子で置換されていてもよい炭素数1～10の直鎖もしくは分岐鎖状のアルキル基、ハロゲン原子で置換されていてもよい炭素数2～10の直鎖もしくは分岐鎖状のアルケニル基、及びハロゲン原子で置換されていてもよい炭素数2～10の直鎖もしくは分岐鎖状のアルキニル基の、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられるが、好ましくはフッ素原子が挙げられる。置換されているハロゲン原子の数は、1個～10個であり、好ましくは、3個～9個、特に好ましくは5個である。その置換様式としては、ある1つの炭素原子上の全ての水素原子がハロゲン原子で置換されている(例えば、トリハロメチル基、1, 1, 3, 3, 3-ペンタハロプロピル基等が挙げられる。)のが好ましい。

【0101】

Zにおける、ハロゲン原子で置換されていてもよい炭素数1～10の直鎖もしくは分岐鎖状のアルキル基の、炭素数1～10の直鎖もしくは分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、及びn-デシル基である直鎖状のアルキル基、並びに1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1, 1-ジメチルプロピル基、1, 2-ジメチルプロピル基、2, 2-ジメチルプロピル基、1-エチルプロピル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1, 1-ジメチルブチル基、1, 2-ジメチルブチル基、1, 3-ジメチルブチル基、2, 2-ジメチルブチル基、2, 3-ジメチルブチル基、3, 3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1, 1-ジメチルペンチル基、1, 2-ジメチルペンチル基、1, 3-ジメチルペンチル基、1, 4-ジメチルペンチル基、2, 2-ジメチルペンチル基、2, 3-ジメチルペンチル基、2, 4-ジメチルペンチル基、3, 3-ジメチルペンチル基、3, 4-ジメチルペンチル基、3, 3-ジメチルペンチル基、3, 4-ジメチルペンチル基、4, 4-ジメチルペンチル基、1-プロピルブチル基、1-エチル-1-メチルブチル基、1-エチル-2-メチルブチル基、1-エチル-3-メチルブチル基、2-エチル-1-メチルブチル基、2-エチル-2-メチルブチル基、2-エチル-3-メチルブチル基、1, 1, 2-トリメチルブチル基、1, 1, 3-トリメチルブチル基、1, 2, 2-トリメチルブチル基、1, 2, 3-トリメチルブチル基、1, 3, 3-トリメチルブチル基、2, 2, 3-トリメチルブチル基、2, 3, 3-トリメチルブチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、6-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基

、1, 1-ジメチルヘキシル基、1, 2-ジメチルヘキシル基、1, 3-ジメチルヘキシル基、1, 4-ジメチルヘキシル基、1, 5-ジメチルヘキシル基、2, 2-ジメチルヘキシル基、2, 3-ジメチルヘキシル基、2, 4-ジメチルヘキシル基、2, 5-ジメチルヘキシル基、3, 3-ジメチルヘキシル基、3, 4-ジメチルヘキシル基、3, 5-ジメチルヘキシル基、4, 4-ジメチルヘキシル基、4, 5-ジメチルヘキシル基、5, 5-ジメチルヘキシル基、

【0102】

1-プロピルペンチル基、2-プロピルペンチル基、1-エチル-1-メチルペンチル基、1-エチル-2-メチルペンチル基、1-エチル-3-メチルペンチル基、1-エチル-4-メチルペンチル基、2-エチル-1-メチルペンチル基、2-エチル-2-メチルペンチル基、2-エチル-3-メチルペンチル基、2-エチル-4-メチルペンチル基、3-エチル-1-メチルペンチル基、3-エチル-2-メチルペンチル基、3-エチル-3-メチルペンチル基、3-エチル-4-メチルペンチル基、1, 1, 2-トリメチルペンチル基、1, 1, 3-トリメチルペンチル基、1, 1, 4-トリメチルペンチル基、1, 2, 2-トリメチルペンチル基、1, 2, 3-トリメチルペンチル基、1, 2, 4-トリメチルペンチル基、1, 3, 3-トリメチルペンチル基、1, 3, 4-トリメチルペンチル基、1, 4, 4-トリメチルペンチル基、2, 2, 3-トリメチルペンチル基、2, 2, 4-トリメチルペンチル基、2, 3, 3-トリメチルペンチル基、
 2, 3, 4-トリメチルペンチル基、2, 4, 4-トリメチルペンチル基、3, 3, 4-トリメチルペンチル基、3, 4, 4-トリメチルペンチル基、1-メチル-1-プロピルブチル基、2-メチル-1-プロピルブチル基、3-メチル-1-プロピルブチル基、1, 1-ジエチルブチル基、1, 2-ジエチルブチル基、2, 2-ジエチルブチル基、1, 2-ジメチル-1-エチルブチル基、1, 3-ジメチル-1-エチルブチル基、2, 2-ジメチル-1-エチルブチル基、2, 3-ジメチル-1-エチルブチル基、3, 3-ジメチル-1-エチルブチル基、1, 2-ジメチル-2-エチルブチル基、1, 2-ジメチル-2-エチルブチル基、1, 3-ジメチル-2-エチルブチル基、2, 3-ジメチル-2-エチルブチル基、3, 3-ジメチル-2-エチルブチル基、1, 1-ジエチル-2-メ

チルプロピル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、4-メチルオクチル基、5-メチルオクチル基、6-メチルオクチル基、7-メチルオクチル基、1-エチルヘプチル基、2-エチルヘプチル基、3-エチルヘプチル基、4-エチルヘプチル基、5-エチルヘプチル基、1, 1-ジメチルヘプチル基、1, 2-ジメチルヘプチル基、1, 3-ジメチルヘプチル基、1, 4-ジメチルヘプチル基、1, 5-ジメチルヘプチル基、1, 6-ジメチルヘプチル基、2, 2-ジメチルヘプチル基、2, 3-ジメチルヘプチル基、2, 4-ジメチルヘプチル基、2, 5-ジメチルヘプチル基、2, 6-ジメチルヘプチル基、3, 3-ジメチルヘプチル基、3, 4-ジメチルヘプチル基、3, 5-ジメチルヘプチル基、3, 6-ジメチルヘプチル基、4, 4-ジメチルヘプチル基、4, 5-ジメチルヘプチル基、4, 6-ジメチルヘプチル基、5, 5-ジメチルヘプチル基、5, 6-ジメチルヘプチル基、6, 6-ジメチルヘプチル基、

【0103】

1-プロピルヘキシル基、2-プロピルヘキシル基、3-プロピルヘキシル基、
 1-エチル-1-メチルヘキシル基、1-エチル-2-メチルヘキシル基、1-エチル-3-メチルヘキシル基、1-エチル-4-メチルヘキシル基、1-エチル-5-メチルヘキシル基、2-エチル-1-メチルヘキシル基、2-エチル-2-メチルヘキシル基、2-エチル-3-メチルヘキシル基、2-エチル-4-メチルヘキシル基、2-エチル-5-メチルヘキシル基、3-エチル-1-メチルヘキシル基、3-エチル-2-メチルヘキシル基、3-エチル-3-メチルヘキシル基、3-エチル-4-メチルヘキシル基、3-エチル-4-メチルヘキシル基、3-エチル-5-メチルヘキシル基、4-エチル-1-メチルヘキシル基、4-エチル-2-メチルヘキシル基、4-エチル-3-メチルヘキシル基、4-エチル-4-メチルヘキシル基、4-エチル-5-メチルヘキシル基、1, 1, 2-トリメチルヘキシル基、1, 1, 3-トリメチルヘキシル基、1, 1, 4-トリメチルヘキシル基、1, 1, 5-トリメチルヘキシル基、1, 2, 2-トリメチルヘキシル基、1, 2, 3-トリメチルヘキシル基、1, 2, 4-トリメチルヘキシル基、1, 2, 5-トリメチルヘキシル基、1, 3, 3-トリメチル

ヘキシル基、1, 3, 4-トリメチルヘキシル基、1, 3, 5-トリメチルヘキシル基、1, 4, 4-トリメチルヘキシル基、1, 4, 5-トリメチルヘキシル基、1, 5, 5-トリメチルヘキシル基、2, 2, 3-トリメチルヘキシル基、2, 2, 4-トリメチルヘキシル基、2, 2, 5-トリメチルヘキシル基、2, 3, 3-トリメチルヘキシル基、2, 3, 4-トリメチルヘキシル基、2, 3, 5-トリメチルヘキシル基、2, 4, 4-トリメチルヘキシル基、2, 4, 5-トリメチルヘキシル基、2, 5, 5-トリメチルヘキシル基、3, 3, 4-トリメチルヘキシル基、3, 3, 5-トリメチルヘキシル基、3, 4, 4-トリメチルヘキシル基、3, 4, 5-トリメチルヘキシル基、3, 5, 5-トリメチルヘキシル基、4, 4, 5-トリメチルヘキシル基、4, 5, 5-トリメチルヘキシル基、1-メチル-ノニル基、2-メチル-ノニル基、3-メチル-ノニル基、4-メチル-ノニル基、5-メチル-ノニル基、6-メチル-ノニル基、7-メチル-ノニル基、8-メチル-ノニル基、及び9-メチル-ノニル基等の分岐鎖状のアルキル基が挙げられるが、炭素数3~10の直鎖状のアルキル基が好ましく、中でもn-ペンチル基が特に好ましい。

【0104】

Zにおける、ハロゲン原子で置換されていてもよい炭素数2~10の直鎖もしくは分岐鎖状のアルケニル基の炭素数2~10の直鎖もしくは分岐鎖状のアルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1, 3-ブタジエニル基、2-ペンテニル基、3-ペンテニル基、2, 4-ペンタジエニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、2, 4-ヘキサジエニル基、2-ヘプテニル基、3-ヘプテニル基、4-ヘプテニル基、5-ヘプテニル基、2, 4-ヘプタジエニル基、2, 5-ヘプタジエニル基、3, 5-ヘプタジエニル基、2-オクテニル基、3-オクテニル基、4-オクテニル基、5-オクテニル基、6-オクテニル基、2, 4-オクタジエニル基、2, 5-オクタジエニル基、2, 6-オクタジエニル基、2, 4-オクタトリエニル基、2-ノネニル基、3-ノネニル基、4-ノネニル基、5-ノネニル基、6-ノネニル基、7-ノネニル基、2-デセニル基、3-デセニル基、4-デセニル基、5-デセニル基、6-デ

セニル基、7-デセニル基、8-デセニル基等の直鎖状のアルケニル基、

【0105】

並びに1-メチルエテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、2-メチル-1-ブテニル基、3-メチル-2-ブテニル基、2-メチル-3-ブテニル基、2, 3-ジメチル-1, 3-ブタジエニル基、3-エチル-2-プロペニル基、4-メチル-3-プロペニル基、3-メチル-2, 4-プロパジエニル基、3, 4-ジエチル-2-ヘキセニル基、4-メチル-3-ヘキセニル基、2-メチル-4-ヘキセニル基、3, 5-ジメチル-2, 4-ヘキサジエニル基、5-エチル-3-メチル-2-ヘプテニル基、5-メチル-3-ヘプテニル基、4-n-プロピル-4-ヘプテニル基、3, 6-ジメチル-5-ヘプテニル基、5-エチル-2, 4-ヘプタジエニル基、2, 6-ジメチル-2, 5-ヘプタジエニル基、4-エチル-3, 5-ヘプタジエニル基、4, 6-ジメチル-2-オクテニル基、5-エチル-3-オクテニル基、3-エチル-4-オクテニル基、3-エチル-5-オクテニル基、3, 4-ジメチル-6-オクテニル基、5-エチル-2, 4-オクタジエニル基、3-メチル-2, 5-オクタジエニル基、5-エチル-2, 6-オクタジエニル基、4-メチル-2, 4, 6-オクタトリエニル基、5-メチル-2-ノネニル基、6-メチル-3-ノネニル基、7-メチル-4-ノネニル基、3-メチル-5-ノネニル基、4-メチル-6-ノネニル基、3-メチル-7-ノネニル基等の分岐鎖状のアルケニル基が挙げられる。

【0106】

乙における、ハロゲン原子で置換されていてもよい炭素数2~10の直鎖もしくは分岐鎖状のアルキニル基の炭素数2~10の直鎖もしくは分岐鎖状のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1, 3-ブタジイニル基、2-ペンチニル基、3-ペンチニル基、2, 4-ペンタジイニル基、2-ヘキシニル基、3-ヘキシニル基、4-ヘキシニル基、2, 4-ヘキサジイニル基、2-ヘプチニル基、3-ヘプチニル基、4-ヘプチニル基、5-ヘプチニル基、2, 4-ヘプタジイニル基、2, 5-ヘプタジイニル基、3, 5-ヘプタジイニル基、2-

オクチニル基、3-オクチニル基、4-オクチニル基、5-オクチニル基、6-オクチニル基、2, 4-オクタジイニル基、2, 5-オクタジイニル基、2, 6-オクタジイニル基、2, 4, 6-オクタトリイニル基、2-ノニニル基、3-ノニニル基、4-ノニニル基、5-ノニニル基、6-ノニニル基、7-ノニニル基、2-デシニル基、3-デシニル基、4-デシニル基、5-デシニル基、6-デシニル基、7-デシニル基、8-デシニル基等の直鎖状のアルキニル基、

【0107】

並びに1-メチル-2-プロピニル基、3-メチル-1-ブチニル基、2-メチル-3-ブチニル基、4-メチル-2-ペンチニル基、2-メチル-3-ペンチニル基、4-エチル-2-ヘキシニル基、5-メチル-3-ヘキシニル基、2-メチル-4-ヘキシニル基、5-エチル-6-メチル-2-ヘプチニル基、5-メチル-3-ヘプチニル基、3-n-プロピル-4-ヘプチニル基、4, 4-ジメチル-5-ヘプチニル基、6-メチル-2, 4-ヘプタジイニル基、4-メチル-2, 5-ヘプタジイニル基、2-メチル-3, 5-ヘプタジイニル基、6, 6-ジメチル-2-オクチニル基、6-メチル-3-オクチニル基、3-エチル-4-オクチニル基、4-メチル-5-オクチニル基、4, 8-ジメチル-6-オクチニル基、7-メチル-2, 4-オクタジイニル基、4-メチル-2, 5-オクタジイニル基、5-エチル-2, 6-オクタジイニル基、5-メチル-2-ノニニル基、6-メチル-3-ノニニル基、7-メチル-4-ノニニル基、8-メチル-5-ノニニル基、4-メチル-6-ノニニル基、3-メチル-7-ノニニル基等の分岐鎖状のアルキニル基が挙げられる。

【0108】

Zにおける、 $-O-R^d$ の R^d としては、水素原子、及び水酸基の保護基が挙げられるが、好ましくは水素原子が挙げられる。水酸基の保護基としては、 R^a における水酸基の保護基と同様のものが挙げられ、好ましいもの、特に好ましいものも、 R^a におけるそれらと同様である。

【0109】

代表的には、Zとしては、ハロゲン原子で置換されていてもよい炭素数1~10の直鎖もしくは分岐鎖状のアルキル基が好ましく、ハロゲン原子で置換されて

いる炭素数3～10の直鎖もしくは分岐鎖状のアルキル基のが更に好ましく、中でもフッ素原子で置換されている炭素数3～8の直鎖もしくは分岐鎖状のアルキル基のが特に好ましく、4, 4, 5, 5, 5-ペンタフルオロペンチル基であるのが更に特に好ましい。また、経口吸收性の点からは、Zとしては、-COOH であるのが好ましい。

なお、Qが、Q⁶⁵、Q⁶⁶、Q⁶⁷、Q⁶⁸、Q⁶⁹、及びQ⁷⁰である場合は、Zは、水素原子、及び置換されていない炭素数1～3の直鎖もしくは分岐鎖状のアルキル基が好ましく、中でも、水素原子であるのが特に好ましい。また、Qが、Q⁷¹、Q⁷²、Q⁷³、Q⁷⁴、Q⁷⁵、及びQ⁷⁶である場合は、Zは、水素原子であるのが好ましい。

【0110】

Zが、-O-R^d（ここで、R^dは、前記と同義である。）、及び-COOH である、一般式(I)で表される化合物は、一般式(I)で表される化合物のうち、Zが、-O-R^d（ここで、R^dは、前記と同義である。）でも-COOH でもない化合物の中間体としても有用である。

【0111】

X¹ 及びX²としては、水素原子、10-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルフィニル) デシル基、11-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルフィニル) ウンデシル基、12-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルフィニル) ドデシル基、10-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルホニル) デシル基、11-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルホニル) ウンデシル基、12-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルホニル) ドデシル基、10-{N-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルホニル) アミノカルボニル} デシル基、11-{N-(4, 4, 5, 5, 5-ペンタフルオロペンチル) アミノカルボニル} ウンデシル基、9-{N-(5, 5, 6, 6, 6-ペンタフルオロヘキサノイル) アミノ} ノニル基、10-{N-(5, 5, 6, 6, 6-ペンタフルオロヘキサノイル) アミノ} デシル基、9-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルフィニル) ノニルオキシ基、10-(4, 4, 5, 5, 5-ペンタフルオ

ロペンチルスルフィニル) デシルオキシ基、11-(4, 4, 5, 5, 5-ペ
ンタフルオロペンチルスルフィニル) ウンデシルオキシ基、9-(4, 4, 5, 5
, 5-ペンタフルオロペンチルスルホニル) ノニルオキシ基、10-(4, 4,
5, 5, 5-ペンタフルオロペンチルスルホニル) デシルオキシ基、11-(4
, 4, 5, 5, 5-ペンタフルオロペンチルスルホニル) ウンデシルオキシ基、
9-{N-(4, 4, 5, 5, 5-ペンタフルオロペンチル) アミノカルボニル
) ノニルオキシ基、10-{N-(4, 4, 5, 5, 5-ペンタフルオロペンチ
ル) アミノカルボニル} デシルオキシ基、8-{N-(5, 5, 6, 6, 6-ペ
ンタフルオロヘキサノイル) アミノ} オクチルオキシ基、9-{N-(5, 5,
6, 6, 6-ペンタフルオロヘキサノイル) アミノ} ノニルオキシ基、4-{8
-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルフィニル) オクチルオキ
シ} フェニル基、4-{9-(4, 4, 5, 5, 5-ペンタフルオロペンチルス
ルフィニル) ノニルオキシ} フェニル基、4-{8-(4, 4, 5, 5, 5-ペ
ンタフルオロペンチルスルホニル) オクチルオキシ} フェニル基、4-{9-(
4, 4, 5, 5, 5-ペンタフルオロペンチルスルホニル) ノニルオキシ} フエ
ニル基、4-[8-{N-(4, 4, 5, 5, 5-ペンタフルオロペンチル) ア
ミノカルボニル} オクチルオキシ] フェニル基、4-[9-{N-(4, 4, 5
, 5, 5-ペンタフルオロペンチル) アミノカルボニル} ノニルオキシ] フエ
ニル基、4-[7-{N-(5, 5, 6, 6, 6-ペンタフルオロヘキサノイル)
アミノ} ヘプチルオキシ] フェニル基、4-[8-{N-(5, 5, 6, 6, 6
-ペンタフルオロヘキサノイル) アミノ} オクチルオキシ] フェニル基、6-[
4-{N-(4, 4, 5, 5, 5-ペンタフルオロペンチル) アミノカルボニル
) フェニル] ヘキシル基、5-[4-{N-(4, 4, 5, 5, 5-ペンタフル
オロペンチル) アミノカルボニル} フェニル] ペンチルオキシ基、トリデシルオ
キシ基、11-カルボキシ-15, 15, 16, 16, 16-ペンタフルオロヘ
キサデシル) 基、4-{(2-ヒドロキシ-3-(4, 4, 5, 5, 5-ペンタ
フルオロペンチルスルフィニルエチルオキシ) プロピル} オキシ} フェニル基、
4-ヒドロキシ-9-(4, 4, 5, 5, 5-ペンタフルオロペンチルスルフィ
ニル) ノニル基、及び10-カルボキシ-14, 14, 15, 15, 15-ペン

タフルオロペントデシルオキシ基が好ましい。ただし、 X^1 及び X^2 は、同時に水素原子であることはない。また、 X^1 が水素原子であり、かつ X^2 が上記したもののうち水素原子以外であるもの、及び X^1 が上記したものの中のうち水素原子以外であり、かつ X^2 が水素原子であるものが特に好ましい。

【0112】

一般式(I)で表される化合物としては、 17β -ヒドロキシ- 11β -{ $10-(4, 4, 5, 5, 5$ -ペントフルオロペンチルスルフィニル)デシル}アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -{ $11-(4, 4, 5, 5, 5$ -ペントフルオロペンチルスルフィニル)ウンデシル}アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -{ $12-(4, 4, 5, 5, 5$ -ペントフルオロペンチルスルフィニル)ドデシル}アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -{ $10-(4, 4, 5, 5, 5$ -ペントフルオロペンチルスルホニル)デシル}アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -{ $11-(4, 4, 5, 5, 5$ -ペントフルオロペンチルスルホニル)ウンデシル}アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -{ $12-(4, 4, 5, 5, 5$ -ペントフルオロペンチルスルホニル)ドデシル}アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -[$10-(N-(4, 4, 5, 5, 5$ -ペントフルオロペンチル)アミノカルボニル)デシル]アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -[$11-(N-(4, 4, 5, 5, 5$ -ペントフルオロペンチル)アミノカルボニル)ウンデシル]アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -[$9-(N-(5, 5, 6, 6, 6$ -ペントフルオロヘキサノイル)アミノ)ノニル]アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -[$10-(N-(5, 5, 6, 6, 6$ -ペントフルオロヘキサノイル)アミノ)デシル]アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -{ $9-(4, 4, 5, 5, 5$ -ペントフルオロペンチルスルフィニル)ノニルオキシ}アンドロスタン-3-オン；

17β -ヒドロキシ- 11β -{ $10-(4, 4, 5, 5, 5$ -ペントフルオロ

ペンチルスルフィニル) デシルオキシ} アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[11-(4, 4, 5, 5, 5-ペンタフルオロ

ペンチルスルフィニル) ウンデシルオキシ} アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[9-(4, 4, 5, 5, 5-ペンタフルオロペ

ンチルスルホニル) ノニルオキシ} アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[10-(4, 4, 5, 5, 5-ペンタフルオロ

ペンチルスルホニル) デシルオキシ} アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[11-(4, 4, 5, 5, 5-ペンタフルオロ

ペンチルスルホニル) ウンデシルオキシ} アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[9-{N-(4, 4, 5, 5, 5-ペンタフル

オロペンチル) アミノカルボニル} ノニルオキシ] アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[10-{N-(4, 4, 5, 5, 5-ペンタフ

ルオロペンチル) アミノカルボニル} デシルオキシ] アンドロスタン-3-オン

;

17 β -ヒドロキシ-11 β -[8-{N-(5, 5, 6, 6, 6-ペンタフル

オロヘキサノイル) アミノ} オクチルオキシ] アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[9-{N-(5, 5, 6, 6, 6-ペンタフル

オロヘキサノイル) アミノ} ノニルオキシ] アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-{8-(4, 4, 5, 5, 5-ペンタフル

オロペンチルスルフィニル) オクチルオキシ} フェニル] アンドロスタン-3-

オン;

17 β -ヒドロキシ-11 β -[4-{9-(4, 4, 5, 5, 5-ペンタフル

オロペンチルスルフィニル) ノニルオキシ} フェニル] アンドロスタン-3-オ

ン;

17 β -ヒドロキシ-11 β -[4-{8-(4, 4, 5, 5, 5-ペンタフル

オロペンチルスルホニル) オクチルオキシ} フェニル] アンドロスタン-3-オ

ン;

17 β -ヒドロキシ-11 β -[4-{9-(4, 4, 5, 5, 5-ペンタフル

オロペンチルスルホニル) ノニルオキシ} フェニル] アンドロスタン-3-オン

17 β -ヒドロキシ-11 β -(4-[8-{N-(4,4,5,5,5-ペンタフルオロベンチル)アミノカルボニル}オクチルオキシ]フェニル)アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -(4-[9-{N-(4,4,5,5,5-ペンタフルオロベンチル)アミノカルボニル}ノニルオキシ]フェニル)アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -(4-[7-{N-(5,5,6,6,6-ペンタフルオロヘキサノイル)アミノ}ヘプチルオキシ]フェニル)アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -(4-[8-{N-(5,5,6,6,6-ペンタフルオロヘキサノイル)アミノ}オクチルオキシ]フェニル)アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -(6-[4-{N-(4,4,5,5,5-ペンタフルオロベンチル)アミノカルボニル}フェニル]ヘキシル)アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -(5-[4-{N-(4,4,5,5,5-ペンタフルオロベンチル)アミノカルボニル}フェニル]ペンチルオキシ)アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -トリデシルオキシアンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -(11-カルボキシ-15,15,16,16,16-ペンタフルオロヘキサデシル)アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -[4-{(2-ヒドロキシ-3-(4,4,5,5,5-ペンタフルオロベンチルスルフィニルエチルオキシ)プロピル}オキシ}フェニル]アンドロスタン-3-オン;

17 β -ヒドロキシ-11 β -{4-ヒドロキシ-9-(4,4,5,5,5-ペンタフルオロベンチルスルフィニル)ノニル}アンドロスタン-3-オン;

及び17 β -ヒドロキシ-11 β -(10-カルボキシ-14,14,15,15,15-ペンタフルオロペンタデシルオキシ)アンドロスタン-3-オンが好

ましい。これらの化合物の構造を以下に示す：

【0113】

【化12】

【0114】

一般式（I）で表される化合物が、分子内に1個以上の不斉炭素原子を含有する場合、各々の不斉炭素原子について、その絶対配置がR配置、及びS配置であるもの、並びにそれらの任意の割合の混合物の全てが、本発明に包含される。

【0115】

本発明の、アンドロゲン受容体に対し、アンタゴニストとして作用し、アゴニストとして作用しない物質において、アゴニストとして作用しないとは、以下のアンドロゲンレセプターレポータージーンアッセイ法において、 0.1 nmol/L ～ $10\mu\text{mol/L}$ のいずれかの濃度で、転写活性値が、無添加の転写活性値を1とした場合、その1～5倍の値を示すことを意味する：

【0116】

トランスフェクションの24時間前に、 1.0×10^5 個のHeLa細胞（大日本製薬（株）より購入）を12ウエルのマイクロプレート中でチャコール処理したFBS（DCC-FBS）5%を含むフェノールレッドを含まないDulbecco's Modified Eagle Medium (phenol red free DMEM) で培養する。500ng/wellのMMTV-Lucベクター（アンドロゲンレスポンスエレメントを含むMouse tumor Long terminal repeatを持つルシフェラーゼのレポータープラスミド：A. T. C. C. より購入したGM-CATベクター（A. T. C. C. No. 67282）のクロラムフェニコールアセチルトランスフェラーゼ遺伝子をホタルルシフェラーゼ遺伝子に置換したベクター）と100ng/wellのpSG5-hAR（ヒトのアンドロゲン受容体の発現ベクターでSV40プロモーターの制御下にアンドロゲンレセプター遺伝子を有す）、5ng/wellのRenilla Luc vector（ウミシイタケルシフェラーゼ遺伝子が組み込まれた内部標準用ベクター）をHeLa細胞にトランスフェクションする。トランスフェクションはphenol red free DMEM培養液中で $3\mu\text{L}/\text{well}$ のリポフェクトアミン（GibcoBRL）を用いて行う。トランスフェクションの9時間後に培養液を、 $10\mu\text{mol/L}$ の本発明の一般式（I）で表される化合物、又は本発明のアンドロゲン受容体に対

し、アンタゴニストとして作用し、アゴニストとして作用しない物質を含むp h e n o l r e d f r e e D M E M / 3 % D C C - F B S に交換する。培養液交換の48時間後に転写活性値を測定する。転写活性はDual-Luciferase Reporter Assay System (Promega) で測定する。

(転写活性値) = (ホタルルシフェラーゼの値) / (ウミシイタケルシフェラーゼの値) と定義する。このアッセイ法の実施にあたっては、J. Biol. Chem., vol. 270, p. 19998-20003, 1995を参照することができる。

【0117】

WO97/49709号公報には、アンドロゲン受容体に対し、アンタゴニストとして作用し、アゴニストとして作用しない物質として、ハイドロキシフルタミド（フルタミドのin vivoでの活性本体）及びピカルタミドが記載されているが、該公報におけるアゴニストとして作用しないとは、CV-1細胞を用いたアンドロゲンレポータージーンアッセイ法において、 $10 \mu\text{mol/L}$ 以上の濃度で、下記式で表されるアゴニスト効率値が、0~20%であることと定義されており、本発明におけるアゴニストとして作用しないことの定義とは明確に峻別される：

【0118】

アゴニスト効率 (%) = (スクリーニングした非ステロイド化合物の転写活性値) / (DHTによる最大転写活性値) × 100。

【0119】

また、本発明のアゴニストとして作用しないことの定義で用いたアンドロゲンレセプターレポータージーンアッセイ法において、ハイドロキシフルタミド及びピカルタミドは、それぞれ $10 \mu\text{mol/L}$ の濃度で、アゴニストとして作用すると認められた（本明細書の実施例1参照）。

【0120】

また、アンタゴニストとして作用するとは、以下のアンドロゲンレセプターレポータージーンアッセイ法において、 $0.1 \text{nmol/L} \sim 10 \mu\text{mol/L}$ の

いずれかの濃度で、0.1nmol/Lのジヒドロテストステロン(DHT)の転写活性値を0~50%に抑制することを意味する：

【0121】

トランスフェクションの24時間前に、 1.0×10^5 個のHeLa細胞を12ウェルのマイクロプレート中でphenol red free DMEM/5%DCC-FBSで培養する。500ng/wellのMMTV-Lucベクターと100ng/wellのpSG5.hAR、5ng/wellのRenilla Luc vectorをHeLa細胞にトランスフェクションする。トランスフェクションはphenol red free DMEM培養液中で3μL/wellのリポフェクトアミンを用いて行う。トランスフェクションの9時間後に培養液を、0.1nmol/LのDHT、1.0μmol/Lの本発明の一般式(I)で表される化合物、又は本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、アゴニストとして作用しない物質を含むphenol red free DMEM/3%DCC-FBSに交換する。培養液交換の48時間後に転写活性値を測定する。転写活性はDual-Luciferase Reporter Assay Systemで測定する。

(転写活性値) = (ホタルルシフェラーゼの値) / (ウミシイタケルシフェラーゼの値)とする。このアッセイ法の実施にあたっては、J. Biol. Chem., vol. 270, p. 19998-20003, 1995を参照することができる。

【0122】

本発明の、アンドロゲン受容体に対し、アンタゴニストとして作用し、アゴニストとして作用しない物質の具体例としては、例えば、本発明の一般式(I)で表される化合物が挙げられる。

【0123】

本発明の一般式(I)で表される化合物、及び本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、アゴニストとして作用しない物質は、その薬学上許容し得る塩としても得ることができる。薬学上許容し得る塩としては、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、及びリン酸塩等の無機酸塩；

ギ酸塩、酢酸塩、シュウ酸塩、マレイン酸塩、フマル酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、コハク酸塩、マロン酸塩、クエン酸塩、グルコン酸塩、マンデル酸塩、安息香酸塩、サリチル酸塩、トリフルオロ酢酸塩、酒石酸塩、プロピオン酸塩、及びグルタル酸等の有機酸塩；ナトリウム塩、カリウム塩、マグネシウム塩、及び亜鉛塩等の無機塩基塩；並びにアンモニウム塩等の有機塩基塩などが挙げられる。

【0124】

本発明の一般式(I)で表される化合物、及びその薬学上許容し得る塩、並びに本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、アゴニストとして作用しない物質、及びその薬学上許容し得る塩は、それらのプロドラッグとしても得ることができる。プロドラッグとは、生体内で急速に変換して一般式(I)で表される化合物、及びその薬学上許容し得る塩、並びに本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、アゴニストとして作用しない物質、及びその薬学上許容し得る塩を、たとえば血液内での加水分解により生成する化合物を意味する。T. Higuchi及びV. Stellaは、“Prodrugs as Novel Delivery Systems, vol. 14 of the A. C. S. Symposium Series, American Chemical Society (1975) にプロドラッグの概念を詳しく説明している。これらのプロドラッグはそれ自身活性を有することもあれば有しないこともあるが、普通には殆ど活性を有しない。また、例えば、ウイルマン(D. E. V. Wilman、「癌化学療法におけるプロドラッグ」、バイオケミカル・ソサイエティー・トランザクションズ(Biochemical Society Transactions), vol. 14, pp. 375. 382 [第615会議(615th Meeting, Belfast) 1986] 及びステラ(V. J. Stella)ほか、「プロドラッグ：標的指向薬剤供給に対する化学的方法」、ディレクテッド・ドラッグ・デリバリー(Directed Drug Delivery), ボルチャート(R. Borchardt)ほか編, pp. 247-267, ヒュマナ・プレス(Humana Press) 1985を参照することもできる。プロドラッグの具体例

としては、例えば一般式(I)で表される化合物が-COOH部分構造を有する場合、そのエステル、カーボネート、カーバメート等が挙げられる。

【0125】

本発明の一般式(I)で示される化合物は、例えば以下に示すA法～O法、又は目的化合物に応じてA法～O法を適宜一部変更した方法に従って製造することができる。

【0126】

A法～O法において記載されている化学式中、R²は、一般式(IV)

(式中、G²は、炭素数1～26の直鎖もしくは分岐鎖状のアルキレン基、炭素数2～26の直鎖もしくは分岐鎖状のアルケニレン基、又は炭素数2～26の直鎖もしくは分岐鎖状のアルキニレン基を示し、E、J、Y、L、Q²、及びZは前記と同義である。なお、Q²におけるR⁷及びR⁸は、好適には水素原子である。) R³は、置換シリル基を示し、好適には、t-ブチルジメチルシリル基である。X³は、ハロゲン原子又は置換スルホネート基を示し、好適には、p-トルエンスルホネート基又はメタンスルホネート基である。

【0127】

R⁴は、一般式(V)

(式中、G³は、炭素数1～27の直鎖もしくは分岐鎖状のアルキレン基、炭素数2～27の直鎖もしくは分岐鎖状のアルケニレン基、又は炭素数2～27の直鎖もしくは分岐鎖状のアルキニレン基を示し、E、J、Y、L、Q²及びZは前記と同義である。) を示す。R⁵は、ハロゲン原子を示し、好適には臭素原子又はヨウ素原子である。R⁶は置換シリル基を示し、好適にはトリメチルシリル基である。G⁴は炭素数1～28の直鎖もしくは分岐鎖状のアルキレン基、炭素数2～28の直鎖もしくは分岐鎖状のアルケニレン基、又は炭素数2～28の直鎖もしくは分岐鎖状のアルキニレン基を示す。波線は、二重結合に対してトランス配置又はシス配置の単結合を示し、好適にはトランス配置である。

【0128】

A法は、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aが-O-であり、 R^1 が-CH₂-CH=CH-CH₂-R²であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(6)、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aが-O-であり、 R^1 が-(CH₂)₄-R²であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(7)、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aが-O-であり、 R^1 が-(CH₂)₄-G²-S(O)-Zであり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(9)、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aが-O-であり、 R^1 が-(CH₂)₄-G²-S(O)₂-Zであり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(10)、並びに一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aが-O-であり、 R^1 が-CH₂-CH=CH-CH₂-R²であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に二重結合である化合物(147)を製造する方法である。

【0129】

【化13】

A法

【0130】

第A1工程は、化合物(2)を製造する工程で、不活性溶媒中、塩基の存在下、化合物(1)と化合物(133)を反応させることにより達成される。

使用される不活性溶媒は、本反応に関与しないものであれば特に限定しないが

、例えばジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒であり、好適にはジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒であり、さらに好適にはジクロロメタンである。使用される塩基は、例えばジイソプロピルエチルアミン、4-ジメチルアミノピリジン、ピリジン、トリエチルアミン、N-メチルモリホリンのような有機塩基であり、好適にはジイソプロピルエチルアミンである。反応温度は、溶媒の種類等により異なるが、通常、0℃～50℃であり、好適には10℃～30℃である。反応時間は、反応温度等により異なるが、通常10分間～24時間であり、好適には30分間～15時間である。

【0131】

第A2工程は、化合物(3)を合成する工程で、不活性溶媒中、化合物(2)と還元剤を反応させることにより達成される。

使用される不活性溶媒は、反応に関与しないものであれば特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、メタノール、エタノールのようなアルコール系溶媒であり、好適にはエーテル、テトラヒドロフランであり、さらに好適にはエーテルである。使用される還元剤は、例えば、水素化アルミニウムリチウム、水素化トリメトキシアルミニウムリチウム、水素化トリ-*t*-ブロトキシアルミニウムリチウム、水素化アルミニウムリチウム-トリクロロアルミニウム(アラン)、水素化アルミニウムリチウム-三フッ化ホウ素、水素化アルミニウム塩化マグネシウム、水素化アルミニウムマグネシウム、水素化アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス(メトキシエトキシ)アルミニウムナトリウム、水素化ホウ素ナトリウム、水素化ホウ素ナトリウム-パラジウム/炭素、硫化水素化ホウ素ナトリウム、シアノ化水素化ホウ素ナトリウム、水素化トリメトキシホウ素ナトリウム、水素化ホウ素リチウム、シアノ化水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ-*s*-ブチルホウ素リチウム、水素化トリ-*t*-ブチルホウ素リチウム、水素化ホウ素カルシウム、

水素化ホウ素カリウム、水素化トリイソプロポキシホウ素カリウム、水素化トリ-*s*-ブチルホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラメチルアンモニウム、水素化シアノホウ素テトラ-*n*-ブチルアンモニウムのような金属水素錯化合物、水素化ジイソブチルアルミニウム、水素化トリフェニルスズ、水素化トリ-*n*-ブチルスズ、水素化ジフェニルスズ、水素化ジ-*n*-ブチルスズ、水素化トリエチルスズ、水素化トリメチルスズ、トリクロシラン/トリ-*n*-ブチルアミン、トリクロロシラン/トリ-*n*-プロピルアミン、トリエチルシラン、トリメチルシラン、ジフェニルシラン、フェニルシラン、ポリメチルヒドロシロキサン、ジメチルフェニルシラン、ジ-*n*-ブチルシラン、メチルフェニルシランのような金属水素化物、ジボラン、ジメチルアミン-ボラン、トリメチルアミン-ボラン、エチレンジアミン-ボラン、ピリジン-ボラン、ジメチルスルフィド-ボラン、2, 3-ジメチル-2-ブチルボラン(*the hexyl borane*)、ビス-3-メチル-2-ブチルボラン(*diisiamyl borane*)、ジイソビノカンフェニルボラン、ジシクロヘキシルボラン、9-ボラビシクロ[3, 3, 1]ノナン(9-BBN)のようなボラン誘導体であり、好適には水素化アルミニウムリチウム、水素化トリメトキシアルミニウムリチウム、水素化トリ-*t*-ブトキシアルミニウムリチウム、水素化アルミニウムリチウム-トリクロロアルミニウム(アラン)、水素化アルミニウムリチウム-三フッ化ホウ素、水素化アルミニウム塩化マグネシウム、水素化アルミニウムマグネシウム、水素化アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス(メトキシエトキシ)アルミニウムナトリウム、水素化ホウ素ナトリウム、水素化ホウ素ナトリウム-パラジウム/炭素、硫化水素化ホウ素ナトリウム、シアン化水素化ホウ素ナトリウム、水素化トリメトキシホウ素ナトリウム、水素化ホウ素リチウム、シアン化水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ-*s*-ブチルホウ素リチウム、水素化トリ-*t*-ブチルホウ素リチウム、水素化ホウ素カルシウム、水素化ホウ素カリウム、水素化トリイソプロポキシホウ素カリウム、水素化トリ-*s*-ブチルホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラメチルアンモニウム、水素化シアノホウ素テトラ-*n*-ブチルアンモニウムのような金属水素錯化合物であり、さらに好適に

は水素化アルミニウムリチウムである。反応温度は、溶媒の種類等により異なるが、通常、-30℃～100℃であり、好適には0℃～70℃である。反応時間は、反応温度等により異なるが、通常10分間～48時間であり、好適には30分間～24時間である。

【0132】

また、この工程で副生する、化合物(3)の11位の水酸基が α 配置である化合物を用いることにより、化合物(6)、化合物(7)、化合物(9)、及び化合物(10)のX¹が α 配置である化合物を得ることができる。

【0133】

第A3工程は、化合物(4)を製造する工程で、不活性溶媒中、化合物(3)に塩基を反応させることにより得られる化合物(3)の金属塩を、不活性溶媒中、化合物(134)と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、シクロヘキサン、ジメチルスルホキシド、ジメチルアセタミド、ジメチルイミダゾリジノン、ジメチルホルムアミド、N-メチルピロリドン等であり、好適にはエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ジメチルスルホキシド、ジメチルアセタミド、ジメチルイミダゾリジノン、ジメチルホルムアミド、N-メチルピロリドン等である。使用される塩基は、水素化ナトリウム、水素化カリウム、水素化カルシウムのような金属水素化物、メチルリチウム、エチルリチウム、n-ブチルリチウム、t-ブチルリチウムのようなアルキルリチウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、水酸化セシウムのような金属水酸化物、ナトリウムアミド、カリウムビストリメチルシリルアミド、ナトリウムビストリメチルシリルアミド、リチウムジイソプロピルアミドのような金属アミド、トリエチルアミン、ジイソプロピルエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ピリジン、ジメチル

アミノピリジン、ピラジンのようなアミン類、四ホウ酸ナトリウム、ヨウ化ナトリウム、リチウムヘキサメチルジシラザン、ナトリウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン等であり得、好適には水素化ナトリウム、水素化カリウム、水素化カルシウムのような金属水素化物、メチルリチウム、エチルリチウム、n-ブチルリチウム、t-ブチルリチウムのようなアルキルリチウムである。反応温度は、溶媒の種類等により異なるが、通常、-30℃～100℃であり、好適には0℃～70℃である。反応時間は、反応温度等により異なるが、通常10分間～48時間であり、好適には30分間～24時間である。

【0134】

第A4工程は、化合物(5)を製造する工程で、不活性溶媒中、有機金属触媒存在下、化合物(4)と化合物(135)を反応させることにより達成される。

使用される不活性溶媒は、反応に関与しないものであれば特に限定されないが、好適にはジクロロメタン、クロロホルムのようなハロゲン系溶媒、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒等であり、さらに好適にはジクロロメタン、ジメトキシエタン等である。使用的有機金属触媒は、好適には、ベンジリデンーピス(トリシクロヘキシルホスフィン)-ジクロロルテニウムである。反応温度は、溶媒の種類等により異なるが、通常、-30℃～100℃であり、好適には0℃～80℃である。反応時間は、反応温度等により異なるが、通常10分間～48時間であり、好適には30分間～24時間である。

【0135】

第A5工程は、化合物(6)を製造する工程で、水系溶媒中、化合物(5)を酸と反応させるとこにより達成される。

使用される溶媒は、反応を阻害しないものであれば特に限定されないが、エーテル、テトラヒドロフラン、ジオキサンのようなエーテル系溶媒、メタノール、エタノールのようなアルコール系溶媒又はアセトンのようなケトン系溶媒と水との混合溶媒であり得、好適には、含水アセトンである。

使用される酸は、例えば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸の

のような無機酸、酢酸、p-トルエンスルホン酸、ピリジニウム-p-トルエンスルホネートのような有機酸であり得、好適には、塩酸である。反応温度は、溶媒の種類等により異なるが、通常、0℃～100℃（好適には、30℃～50℃）である。反応時間は、反応温度等により異なるが、通常15分間～24時間（好適には、30分間～5時間）である。

【0136】

第A6工程は、化合物（7）を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成される。

使用される溶媒は、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、sec-ブタノール、t-ブタノール、ペンタノール、ヘキサノール、シクロプロパノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、エチレングルコール、1、3-プロパンジオール、1、4-ブタンジオール、1、5-ペンタンジオールのようなアルコール系溶媒、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、シクロヘキサン、ジメチルスルホキシド、ジメチルアセタミド、ジメチルイミダゾリジノン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、アセトニトリル、ニトロメタンであり得、好適には、エタノール、ジオキサン、ベンゼン、酢酸エチル等である。

接触還元に用いる条件は、水素-クロロトリス（トリフェニルホスфин）ロジウム（I）、水素-クロロトリス（トリバラトリルホスфин）ロジウム（I）、水素-クロロトリス（トリバラメトキシフェニルホスфин）ロジウム（I）、水素-ヒドリドカルボニルトリス（トリフェニルホスфин）ロジウム（I）、水素-酢酸ロジウム（II）、水素-酢酸ルテニウム（II）、水素-クロロヒドリドトリス（トリフェニルホスфин）ルテニウム（II）、水素-カルボキシラトヒドリドトリス（トリフェニルホスфин）ルテニウム（II）、水素-ヒドリドカルボニルトリス（トリフェニルホスфин）イリジウム（I）、水素-白金（II）-塩化スズ錯体、水素-ペンタシアノコバルト（II）錯体

、水素-トリシアノビピリジンコバルト(II)錯体、水素-ビス(ジメチルグリオキシマト)コバルト(II)錯体、水素-安息香酸メチルートリカルボニルクロム錯体、水素-ビス(トリカルボニルシクロペニタジエニルクロム)、水素-ペニタカルボニル鉄、水素-ビス(シクロペニタジエニル)ジカルボニルチタン、水素-ヒドリドカルボニルコバルト錯体、水素-オクタカルボニルニコバルト、水素-ヒドリドカルボニルロジウム、水素-クロム(III)アセチルアセトナート-トリイソブチルアルミニウム、水素-コバルト(II)アセチルアセトナート-トリイソブチルアルミニウム、水素-ニッケル(II)-2-ヘキサノアート-トリエチルアルミニウム等の均一系、水素-二酸化白金、水素-白金/炭素、水素-パラジウム/炭素、水素-パラジウム/硫酸バリウム、水素-パラジウム/炭酸カルシウム、水素-ラネーニッケル、水素-カッパークロマイド、水素-ロジウム/炭素、水素-ロジウム/アルミナ、水素-二酸化ルテニウム、水素-ルテニウム/炭素等の不均一系条件であり得、好ましくは水素-クロロトリス(トリフェニルホスфин)ロジウム(I)、水素-パラジウム/炭素、水素-パラジウム/炭酸カルシウム等である。

反応温度は、通常0℃～100℃であり、好適には0℃～60℃である。反応時間は、反応温度等により異なるが、通常、10分間～24時間であり、好適には10分間～6時間である。

【0137】

第A8工程は、化合物(7)のR²におけるQ²が-S-である場合、化合物(9)を製造する工程で、不活性溶媒中、化合物(7)を酸化剤と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、メタノール、エタノールのようなアルコール系溶媒、又は水等であり、好適にはジクロロメタン、メタノール等である。

使用される酸化剤は、例えば、過安息香酸t-ブチル、過酢酸t-ブチル、t-ブチルヒドロペルオキシド、t-アミルヒドロペルオキシド、ジベンゾイルペ

ルオキシド、ジ-*p*-ニトロベンゾイルペルオキシド、ジ-*p*-クロロベンゾイルペルオキシドのような有機過酸化物、過安息香酸、メタクロロ過安息香酸、*p*-ニトロ過安息香酸、モノペルオキシタル酸、過ギ酸、過酢酸、トリフルオロ過酢酸、ペルオキシラウリン酸のような有機過酸、次亜塩素酸、次亜塩素酸ナトリウム、次亜臭素酸カリウム、次亜ヨウ素酸カリウム、塩素酸ナトリウム、塩素酸カリウム、臭素酸ナトリウム、臭素酸カリウム、ヨウ素酸ナトリウム、ヨウ素酸カリウム、フッ化ペルクロリル、オルト過ヨウ素酸、メタ過ヨウ素酸ナトリウム、メタ過ヨウ素酸カリウム、*N*-ブロモアセトアミド、*N*-ブロモスクシンイミド、*N*-ブロモフタルイミド、イソシアヌルクロリド、イソシアヌルブロミド、*N*-ブロモカプロラクタム、1-クロロベンゾトリアゾール、1, 3-ジブロモ-5, 5-ジメチルヒダントイン、ナトリウム*N*-クロロ-*p*-トルエンスルホンアミド(クロラミンT)、ナトリウム*N*-クロロベンゼンスルホンアミド(クロラミンB)、次亜塩素酸*t*-ブチル、次亜臭素酸*t*-ブチル、次亜ヨウ素酸*t*-ブチル、酢酸ヨードシルベンゼン、ヨードシルベンゼンのようなハロゲン類、ペルオキソ一硫酸、OXONE(登録商標)、過酸化水素等であり、好適には、過ヨウ素酸ナトリウム、OXONE(登録商標)等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～100℃(好適には、10℃～50℃)である。反応時間は、反応温度等により異なるが、通常15分間～24時間(好適には、30分間～15時間)である。

【0138】

第A9工程は、化合物(7)のR²におけるQ²が-S-である場合、化合物(10)を製造する工程で、不活性溶媒中、化合物(7)を酸化剤と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、メタノール、エタノールのようなアルコール系溶媒、又は水等であり、好適にはジクロロメタン、メタノール等である。

使用される酸化剤は、例えば、過安息香酸*t*-ブチル、過酢酸*t*-ブチル、*t*

−ブチルヒドロペルオキシド、t−アミルヒドロペルオキシド、ジベンゾイルペルオキシド、ジ−p−ニトロベンゾイルペルオキシド、ジ−p−クロロベンゾイルペルオキシドのような有機過酸化物、過安息香酸、メタクロロ過安息香酸、p−ニトロ過安息香酸、モノペルオキシタル酸、過ギ酸、過酢酸、トリフルオロ過酢酸、ペルオキシラウリン酸のような有機過酸、次亜塩素酸、次亜塩素酸ナトリウム、次亜臭素酸カリウム、次亜ヨウ素酸カリウム、塩素酸ナトリウム、塩素酸カリウム、臭素酸ナトリウム、臭素酸カリウム、ヨウ素酸ナトリウム、ヨウ素酸カリウム、フッ化ペルクロリル、オルト過ヨウ素酸、メタ過ヨウ素酸ナトリウム、メタ過ヨウ素酸カリウム、N−プロモアセトアミド、N−プロモスクシンイミド、N−プロモタルイミド、イソシアヌルクロリド、イソシアヌルプロミド、N−プロモカプロラクタム、1−クロロベンゾトリアゾール、1, 3−ジプロモ−5, 5−ジメチルヒダントイン、ナトリウムN−クロロベンゼンスルホンアミド（クロラミンT）、ナトリウムN−クロロベンゼンスルホンアミド（クロラミンB）、次亜塩素酸t−ブチル、次亜臭素酸t−ブチル、次亜ヨウ素酸t−ブチル、酢酸ヨードシルベンゼン、ヨードシルベンゼンのようなハロゲン類、ペルオキソ−硫酸、OXONE（登録商標）、過酸化水素等であり、好適には、OXONE（登録商標）等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～100℃（好適には、10℃～50℃）である。反応時間は、反応温度等により異なるが、通常15分間～24時間（好適には、30分間～15時間）である。

【0139】

第A10工程は、化合物（145）を製造する工程で、不活性溶媒中、化合物（144）に塩基を反応させることにより得られる化合物（144）の金属塩を、不活性溶媒中、化合物（134）と反応させることにより達成され、本反応は、前記A法第A3工程と同様に行われる。

【0140】

また、化合物（144）の11位の水酸基が α 配置である化合物が市販されており、これを化合物（144）の代わりに用いることにより、化合物（7）のX¹が α 配置である化合物を得ることができる。

【0141】

第A11工程は、化合物（146）を製造する工程で、不活性溶媒中、有機金属触媒存在下、化合物（145）と化合物（135）を反応させることにより達成され、本反応は、前記A法第A4工程と同様に行われる。

【0142】

第A12工程は、化合物（147）を製造する工程で、混合されていてもよい不活性溶媒中、化合物（146）と還元剤を反応させることにより達成される。

使用される不活性溶媒は、反応を阻害しないものであれば特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、メタノール、エタノールのようなアルコール系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、ピリジン、トリエチルアミンのようなアミン類であり、好適にはメタノール、エタノールのようなアルコール系溶媒であり、さらに好適にはメタノール等である。使用される還元剤は、例えば、水素化アルミニウムリチウム、水素化トリメトキシアルミニウムリチウム、水素化トリ-*t*-ブトキシアルミニウムリチウム、水素化アルミニウムリチウム-トリクロロアルミニウム（アラン）、水素化アルミニウムリチウム-三フッ化ホウ素、水素化アルミニウム塩化マグネシウム、水素化アルミニウムマグネシウム、水素化アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス（メトキシエトキシ）アルミニウムナトリウム、水素化ホウ素ナトリウム、水素化ホウ素ナトリウム-パラジウム/炭素、硫化水素化ホウ素ナトリウム、シアノ化水素化ホウ素ナトリウム、水素化トリメトキシホウ素ナトリウム、水素化ホウ素リチウム、シアノ化水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ-*s*-ブチルホウ素リチウム、水素化トリ-*t*-ブチルホウ素リチウム、水素化ホウ素カルシウム、水素化ホウ素カリウム、水素化トリイソプロポキシホウ素カリウム、水素化トリ-*s*-ブチルホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラメチルアンモニウム、水素化シアノホウ素テトラ-*n*-ブチルアンモニウムのような金属水素錯化合物、水素化ジイソブチルアルミニウム、水素化トリフェニルスズ、水素化トリ-*n*-ブチルスズ、水素化ジフェニルスズ、水素化ジ-*n*-ブチルスズ、

水素化トリエチルスズ、水素化トリメチルスズ、トリクロシラン／トリ－n－ブチルアミン、トリクロロシラン／トリ－n－プロピルアミン、トリエチルシラン、トリメチルシラン、ジフェニルシラン、フェニルシラン、ポリメチルヒドロシリキサン、ジメチルフェニルシラン、ジ－n－ブチルシラン、メチルフェニルシランのような金属水素化物、ジボラン、ジメチルアミン－ボラン、トリメチルアミン－ボラン、エチレンジアミン－ボラン、ビリジン－ボラン、ジメチルスルフィド－ボラン、2，3－ジメチル－2－ブチルボラン（*the hexylborane*）、ビス－3－メチル－2－ブチルボラン（*disiamylborane*）、ジイソピノカンフェニルボラン、ジシクロヘキシルボラン、9－ボラビシクロ[3，3，1]ノナン（9－BBN）のようなボラン誘導体であり、好適には水素化アルミニウムリチウム、水素化トリメトキシアルミニウムリチウム、水素化トリ－t－ブトキシアルミニウムリチウム、水素化アルミニウムリチウム－トリクロロアルミニウム（アラン）、水素化アルミニウムリチウム－三フッ化ホウ素、水素化アルミニウム塩化マグネシウム、水素化アルミニウムマグネシウム、水素化アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス（メトキシエトキシ）アルミニウムナトリウム、水素化ホウ素ナトリウム、水素化ホウ素ナトリウム－パラジウム／炭素、硫化水素化ホウ素ナトリウム、シアノ化水素化ホウ素ナトリウム、水素化トリメトキシホウ素ナトリウム、水素化ホウ素リチウム、シアノ化水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ－s－ブチルホウ素リチウム、水素化トリ－t－ブチルホウ素リチウム、水素化ホウ素カルシウム、水素化ホウ素カリウム、水素化トリイソプロポキシホウ素カリウム、水素化トリ－s－ブチルホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラメチルアンモニウム、水素化シアノホウ素テトラ－n－ブチルアンモニウムのような金属水素錯化合物であり、さらに好適には水素化ホウ素ナトリウムである。反応温度は、溶媒の種類等により異なるが、通常、－30℃～100℃であり、好適には0℃～70℃である。反応時間は、反応温度等により異なるが、通常10分間～48時間であり、好適には30分間～24時間である。

【0143】

第A13工程は、化合物(7)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記A法第A6工程と同様に行なわれる。

【0144】

B法は、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが単結合であり、Aが-O-であり、 R^1 が-G-S-Z²であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(17)、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが単結合であり、Aが-O-であり、 R^1 が-G-S(O)-Zであり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(18)、並びに一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが単結合であり、Aが-O-であり、 R^1 が-G-S(O)₂-Zであり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(19)を製造する方法である。

【0145】

【化14】

B法

【0146】

第B1工程は、化合物（13）を製造する工程で、不活性溶媒中、化合物（3）に塩基を反応させることにより得られる化合物（3）の金属塩を、不活性溶媒中、化合物（136）と反応させることにより達成され、本反応は、前記A法第A3工程と同様に行われる。

【0147】

第B2工程は、化合物（14）を製造する工程で、不活性溶媒中、化合物（13）と脱保護剤を反応させること、すなわち置換シリル基を除去することにより達成される。

使用される不活性溶媒は、反応を阻害しないものであれば、特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ジメチルホルムアミド、水であり、好適には、テトラヒドロフラン等である。使用される脱保護剤は、特に限定されないが、例えば、フッ化水素、フッ化水素-ピリジン、フッ化ナトリウム、フッ化カリウム、フッ化テトラ-n-ブチルアンモニウムのようなフッ化物、蟻酸、酢酸、p-トルエン

スルホン酸のような有機酸であり、好ましくは、フッ化テトラ-n-ブチルアンモニウム等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～80℃（好適には、0℃～50℃）である。反応時間は、反応温度等により異なるが、通常15分間～24時間（好適には、30分間～15時間）である。

【0148】

第B3工程は、化合物（1-5）を製造する工程で、アミン系溶媒中、化合物（1-4）を塩化スルホニル化合物と反応させるか、あるいは、不活性溶媒中、化合物（1-4）をハロゲン化剤と反応させることにより、達成される。

使用されるアミン系溶媒は、特に限定されないが、例えば、トリエチルアミン、ジイソプロピルエチルアミン、1,8-ジシアザビシクロ[5.4.0]-7-ウンデセン、ピリジン等であり、好適には、ピリジン、トリエチルアミン等である。

使用される塩化スルホニル化合物は、特に限定されないが、例えば、p-トルエンスルホニルクロリド、ベンゼンスルホニルクロリド、メタンスルホニルクロリド、トリフルオロメタンスルホニルクロリド等であり、好適には、メタンスルホニルクロリド、トリフルオロメタンスルホニルクロリド等である。

使用される不活性溶媒は、本反応に関与しないものであれば特に限定しないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、アセトニトリルのようなニトリル系溶媒、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、シクロヘキサン、ジメチルスルホキシド、ジメチルアセタミド、ジメチルイミダゾリジノン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル等であり得、好適にはベンゼン、ジクロロメタン等である。

使用されるハロゲン化剤は、例えば、四塩化炭素-トリフェニルホスフィン、塩化チオニル、塩化スルフリル、N-クロルコハク酸イミド-トリフェニルホスフィン、N-クロルコハク酸イミド-ジメチルスルフィド、三塩化リン、五塩化リン等のクロロ化剤、又は四臭化炭素-トリフェニルホスフィン、N-ブロモコ

ハク酸イミドートリフェニルホスфин、N-ブロモコハク酸イミドージメチルスルフィド、三臭化リン、五臭化リン等のブロモ化剤であり得、好適には四臭化炭素-トリフェニルホスфин、塩化チオニル等である。反応温度は、通常、0℃～80℃であり、好適には10℃～40℃である。反応時間は、反応温度等により異なるが、通常、10分間～10時間であり、好適には30分間～3時間である。

【0149】

第B4工程は、化合物(16)を製造する工程で、アルコール系溶媒中、化合物(137)と金属アルコキシドを反応させることにより得られる化合物(137)の反応性誘導体を、アルコール系溶媒中、化合物(15)と反応させることにより達成される。

使用されるアルコール系溶媒は、特に限定されないが、例えば、メタノール、エタノール、n-ブロパノール、i-ブロパノール等であり、好適には、メタノール等である。

使用される金属アルコキシドは、特に限定されないが、例えば、ナトリウムメトキシド、ナトリウムエトキシド等であり、好適には、ナトリウムメトキシド等である。

反応温度は、溶媒等の条件により異なるが、通常、0℃～80℃であり、好適には10℃～40℃である。反応時間は、反応温度等により異なるが、通常、10分間～10時間であり、好適には30分間～8時間である。

【0150】

第B5工程は、化合物(17)を製造する工程で、水系溶媒中、化合物(16)を酸と反応させるとこにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0151】

第B6工程は、化合物(18)を製造する工程で、不活性溶媒中、化合物(17)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0152】

第B7工程は、化合物(19)を製造する工程で、不活性溶媒中、化合物(18)を酸化剤と反応させることにより達成され、本反応は、前記A法第A9工程と同様に行われる。

【0153】

C法は、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、 A_r が単結合であり、 A が-O-であり、 R^1 が-G-CO NH-Zであり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(25)を製造する方法である。

【0154】

【化15】

C法

【0155】

第C1工程は、化合物(22)を製造する工程で、不活性溶媒中、化合物(15)をシアノ化剤と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しないものであれば特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、シクロヘキサン、ジメチルスルホキシド、ジメチルアセタミド

、ジメチルイミダゾリジノン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、アセトニトリル、ニトロメタン等であり得、好適にはジメチルスルホキシド等である。

使用されるシアノ化剤は、例えば、シアノ化リチウム、シアノ化ナトリウム、シアノ化カリウム等であり得、好適にはシアノ化ナトリウム等である。

反応温度は、通常、0℃～80℃であり、好適には10℃～40℃である。反応時間は、反応温度等により異なるが、通常、10分間～24時間であり、好適には1時間～15時間である。

【0156】

第C2工程は、化合物（23）を製造する工程で、化合物（22）を塩基の存在下加水分解することにより達成される。

使用される溶媒は、通常の加水分解反応に使用されるものであれば特に限定はなく、メタノール、エタノールのようなアルコール系溶媒、テトラヒドロフラン、ジオキサンのようなエーテル系溶媒、水、あるいはこれらの混合溶媒であり得、好適には水又は水-エタノール等の含水アルコール系溶媒である。

使用される塩基は、化合物の他の部分に影響を与えないものであれば特に限定されないが、好適には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、水酸化セシウムのような金属水酸化物であり、特に好適には、水酸化ナトリウム、水酸化カリウム等である。

反応温度は、通常、0℃～100℃であり、好適には50℃～100℃である。反応時間は、反応温度等により異なるが、通常、10分間～48時間であり、好適には5時間～48時間である。

【0157】

第C3工程は、化合物（24）を製造する工程で、不活性溶媒中、化合物（23）又はその反応性誘導体（酸ハライド類、混合酸無水物又は活性エステル類）と、化合物（138）又はその酸付加塩を反応させることにより達成される。

【0158】

本反応は、例えば、酸ハライド法、混合酸無水物法、活性エステル法又は縮合法によって行われる。酸ハライド法は、不活性溶媒中、化合物（23）をハログ

ン化剤（例えば、チオニルクロリド、シュウ酸クロリド、五塩化リン等）と反応させ、酸ハライドを製造し、その酸ハライドと化合物（138）又はその酸付加塩を不活性溶媒中、塩基の存在下又は非存在下（好適には、存在下）、反応させることにより達成される。使用される塩基は、例えば、トリエチルアミン、N-メチルモルホリン、ピリジン、4-ジメチルアミノピリジンのような有機アミン類、重曹、重炭酸カリウムのようなアルカリ金属重炭酸塩、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩であり得、好適には、有機アミン類（特に好適には、トリエチルアミン）である。

【0159】

使用される溶媒は、反応に関与しなければ、特に限定されないが、例えば、ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレンのような炭化水素系溶媒、ジクロルメタン、1, 2-ジクロルエタン、四塩化炭素のようなハロゲン化系溶媒、エーテル、テトラヒドロフラン、ジオキサンのようなエーテル系溶媒、アセトンのようなケトン系溶媒、N, N-ジメチルアセタミド、N, N-ジメチルホルムアミド、N-メチル-2-ピロリドンのようなアミド系溶媒、ジメチルスルホキシドのようなスルホキシド系溶媒であり得、好適には、炭化水素系溶媒、ハロゲン化系溶媒又はエーテル系溶媒であり、更に好適には、エーテル系溶媒（特に好適には、テトラヒドロフラン）である。反応温度は、溶媒の種類等により異なるが、ハロゲン化剤と化合物（23）との反応及び酸ハライドと化合物（138）又はその酸付加塩との反応とも、通常-20℃～150℃であり、好適には、ハロゲン化剤と化合物（23）との反応は-10℃～50℃であり、酸ハライドと化合物（138）又はその酸付加塩との反応は0℃～100℃である。

反応時間は、反応温度等により異なるが、通常15分間～24時間（好適には、30分間～15時間）である。

【0160】

混合酸無水物法は、ハロゲノ炭酸C1-C6アルキル（ここで、C1-C6アルキルは、炭素数1～6の直鎖もしくは分岐鎖状のアルキル基を意味する）、ジ-C1-C6アルキルシアノリン酸又はジアリールホスホリルアジドと化合物（23）を反応させ、混合酸無水物を製造し、その混合酸無水物と化合物（138

) 又はその酸付加塩を反応させることにより達成される。混合酸無水物を製造する反応は、クロル炭酸メチル、クロル炭酸エチル、クロル炭酸イソブチル、クロル炭酸ヘキシルのようなハロゲノ炭酸C1-C6アルキル(好適には、クロル炭酸エチル又はクロル炭酸イソブチル)、ジメチルシアノリン酸、ジエチルシアノリン酸、ジヘキシルシアノリン酸のようなジ-C1-C6アルキルシアノリン酸又はジフェニルリン酸アジド、ジ-(p-ニトロフェニル)リン酸アジド、ジナフチルリン酸アジドのようなジ-C1-C6アリールリン酸アジド(好適には、ジフェニルリン酸アジド)と化合物(23)を反応させることにより行われ、好適には、不活性溶媒中、塩基の存在下に行われる。

【0161】

使用される塩基及び不活性溶媒は、本工程の酸ハライド法で使用されるものと同様である。反応温度は、溶媒の種類等により異なるが、通常、-20℃~50℃(好適には、0℃~30℃)である。反応時間は、反応温度等により異なるが、通常、15分間~24時間(好適には、30分間~15時間)である。

【0162】

混合酸無水物と化合物(138)又はその酸付加塩との反応は、不活性溶媒中、塩基の存在下又は非存在下(好適には、存在下)で行われ、使用される塩基及び不活性溶媒は、上記の酸ハライド法で使用されるものと同様である。反応温度は、溶媒の種類等により異なるが、通常、-20℃~50℃(好適には、0℃~30℃)である。反応時間は、反応温度等により異なるが、通常、15分間~24時間(好適には、30分間~15時間)である。また、本方法において、ジ-C1-C6アルキルシアノリン酸又はジ-C1-C6アリールリン酸アジドを使用する場合には、塩基の存在下、化合物(23)と化合物(138)又はその酸付加塩を直接反応させることもできる。

【0163】

活性エステル化法は、縮合剤(例えば、ジシクロヘキシルカルボジイミド、カルボニルジイミダゾール等)の存在下、化合物(23)を活性エステル化剤(例えば、N-ヒドロキシサクシンイミド、N-ヒドロキシベンゾトリアゾールのようなN-ヒドロキシ化合物等)と反応させ、活性エステルを製造し、この活性工

ステルと化合物(138)又はその酸付加塩を反応させることにより、達成される。活性エステルを製造する反応は、好適には、不活性溶媒中で行われ、使用される不活性溶媒は、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、ジメチルホルムアミド、酢酸エチル、アセトニトリル等であり得、好適にはジクロロメタン、アセトニトリル、酢酸エチル等である。反応温度は、溶媒の種類等により異なるが、活性エステル化反応では、通常、-20℃～50℃(好適には、-10℃～30℃)であり、活性エステル化合物と化合物(138)又はその酸付加塩との反応では、-20℃～50℃(好適には、-10℃～30℃)である。反応時間は、反応温度等により異なるが、両反応共、通常15分間～24時間(好適には、30分間～15時間)である。

【0164】

縮合法は、縮合剤[例えば、ジシクロヘキシルカルボジイミド、カルボニルジイミダゾール、1-(N,N-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩等]の存在下、化合物(23)と化合物(138)又はその酸付加塩を直接反応させることにより行われる。本反応は、前記の活性エステルを製造する反応と同様に行われる。

【0165】

第C4工程は、化合物(25)を製造する工程で、水系溶媒中、化合物(24)を酸と反応させるとこにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0166】

D法は、一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが単結合であり、Aが-O-であり、R¹が-G-NHCO-Zであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(30)を製造する方法である。

【0167】

【化16】

D法

【0168】

第D1工程は、化合物(27)を製造する工程で、不活性溶媒中、アゾジカルボン酸ジアルキルエステル（好適には、アゾジカルボン酸ジエチル）及びホスフィン化合物（好適には、トリフェニルホスフィン）の存在下、化合物(14)をフタルイミドと反応させることにより達成される。

使用される不活性溶媒は、反応に関与しないものであれば、特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒であり、好適には、テトラヒドロフラン等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～50℃（好適には、10℃～30℃）である。反応時間は、反応温度等により異なるが、通常15分間～48時間（好適には、30分間～24時間）である。

【0169】

第D2工程は、化合物(27)を製造する別の工程で、不活性溶媒中、化合物(15)をフタルイミドの金属塩（好適には、フタルイミドカリウム）と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しないものであれば、特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、ジクロロメタンのようなハロゲン系溶媒、ジメチルスルホキシド、ジメチルアセタミド、ジメチルイミダゾリジノン、ジメチルホルムアミド、N-メチルピロリドン等であり、好適には、テトラヒドロフラン等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～50℃（好適には、10℃～30℃）である。反応時間は、反応温度等により異なるが、通常1.5分間～48時間（好適には、30分間～24時間）である。

【0170】

第D3工程は、化合物（28）を製造する工程で、アルコール系溶媒中、化合物（27）を、アミン系化合物（好適には、ヒドラジン）と反応させることにより達成される。

使用されるアルコール系溶媒は、反応を阻害しないものであれば、特に限定されないが、例えば、メタノール、エタノール、n-プロピルアルコール、i-ブロピルアルコール等であり、好適には、エタノール等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～50℃（好適には、10℃～30℃）である。反応時間は、反応温度等により異なるが、通常1.5分間～48時間（好適には、30分間～24時間）である。

【0171】

第D4工程は、化合物（29）を製造する工程で、不活性溶媒中、化合物（139）又はその反応性誘導体（酸ハライド類、混合酸無水物又は活性エステル類）と、化合物（28）又はその酸付加塩を反応させることにより達成され、本反応は、前記C法第C3工程と同様に行われる。

【0172】

第D5工程は、化合物（30）を製造する工程で、水系溶媒中、化合物（29）を酸と反応させるとこにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0173】

E法は、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、 R^1 が $-CH_2-CH=CH-CH_2$
 $-R^4$ であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって $-(C=O)-$ であり、破線が実線と共に単結合又は二重結合である化合物(35)、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、 R^1 が $-(CH_2)_4-R^4$ であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって $-(C=O)-$ であり、破線が実線と共に単結合又は二重結合である化合物(36)、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、 R^1 が $-(CH_2)_4-G^2-S(O)-Z$ であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって $-(C=O)-$ であり、破線が実線と共に単結合又は二重結合である化合物(38)、並びに一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、 R^1 が $-(CH_2)_4-G^2-S(O)_2-Z$ であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって $-(C=O)-$ であり、破線が実線と共に単結合又は二重結合である化合物(39)を製造する方法である。

【0174】

【化17】

E法

【0175】

第E1工程は、化合物(32)を製造する工程で、不活性溶媒中、化合物(134)と金属(好適には、マグネシウム)又はアルキルリチウム(好適には、t-ブチルリチウム)を反応させることにより得られる化合物(134)の反応性誘導体を、不活性溶媒中、化合物(2)と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しなければ、特に限定されないが、好適には、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル類であり、更に好ましくは、テトラヒドロフランである。

反応温度は、溶媒の種類等により異なるが、通常、0℃～80℃(好適には、10℃～50℃)である。反応時間は、反応温度等により異なるが、通常15分間～24時間(好適には、30分間～15時間)である。

本工程は、また、不活性溶媒中、活性化剤の存在下、化合物(2)を化合物(140)と反応させることによっても達成される。

使用される不活性溶媒は、反応に関与しなければ、特に限定されないが、好適には、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ジクロロメタンのようなハロゲン系溶媒であり、好適には、テトラヒドロフラン、ジクロロメタン等である。

使用される活性化剤は、反応を阻害しないものであれば特に限定されないが、例えば、フッ化テトラn-ブチルアンモニウムのようなフッ化物、三塩化アルミニウム、二塩化エチルアルミニウム、四塩化チタン、三フッ化ホウ素、トリフルオロメタンスルホン酸トリメチルシリルのようなルイス酸等であり、好適には、トリフルオロメタンスルホン酸トリメチルシリル等である。

反応温度は、溶媒の種類等により異なるが、通常、-78℃～50℃(好適には、-60℃～30℃)である。反応時間は、反応温度等により異なるが、通常15分間～24時間(好適には、30分間～5時間)である。

【0176】

第E2工程は、化合物(33)を製造する工程で、不活性溶媒中、添加剤の存在下、化合物(32)を還元剤と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しなければ特に限定されないが、例えば、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒であり、好ましくはベンゼン、トルエン、ジクロロメタン等である。

使用される添加剤は、反応を阻害しないものであれば特に限定されないが、好ましくは、1, 1'-チオカルボニルジイミダゾール、ホスゲン、塩化ベンゾイル、ヨウ化亜鉛等である。

使用される還元剤は、例えば、水素化トリフェニルスズ、水素化トリ-n-ブチルスズ、水素化ジフェニルスズ、水素化ジ-n-ブチルスズ、水素化トリエチルスズ、水素化トリメチルスズ、トリクロシラン/トリ-n-ブチルアミン、トリクロロシラン/トリ-n-プロピルアミン、トリエチルシラン、トリメチルシ

ラン、ジフェニルシラン、フェニルシラン、ポリメチルヒドロシロキサン、ジメチルフェニルシラン、ジ-n-ブチルシラン、メチルフェニルシランのような金属水素化物、水素化アルミニウムリチウム、水素化トリメトキシアルミニウムリチウム、水素化トリー-t-ブトキシアルミニウムリチウム、水素化アルミニウムリチウム-トリクロロアルミニウム(アラン)、水素化アルミニウムリチウム-三フッ化ホウ素、水素化アルミニウム塩化マグネシウム、水素化アルミニウムマグネシウム、水素化アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス(メトキシエトキシ)アルミニウムナトリウム、水素化ホウ素ナトリウム、水素化ホウ素ナトリウム-パラジウム/炭素、硫化水素化ホウ素ナトリウム、シアノ化水素化ホウ素ナトリウム、水素化トリメトキシホウ素ナトリウム、水素化ホウ素リチウム、シアノ化水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリー-s-ブチルホウ素リチウム、水素化トリー-t-ブチルホウ素リチウム、水素化ホウ素カルシウム、水素化ホウ素カリウム、水素化トリイソプロポキシホウ素カリウム、水素化トリー-s-ブチルホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラメチルアンモニウム、水素化シアノホウ素テトラ-n-ブチルアンモニウムのような金属水素錯化合物であり、好ましくは、水素化トリー-n-ブチルスズ、トリエチルシラン、シアノ化水素化ホウ素ナトリウム等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～150℃(好適には、10℃～100℃)である。反応時間は、反応温度等により異なるが、通常15分間～24時間(好適には、30分間～15時間)である。

【0177】

また、この工程で副生する、化合物(33)の11位のアリル基が α 配置である化合物を用いることにより、化合物(35)、化合物(36)、化合物(38)、及び化合物(39)のX¹が α 配置である化合物を得ることができる。

【0178】

第E3工程は、化合物(34)を製造する工程で、不活性溶媒中、有機金属触媒存在下、化合物(33)と化合物(141)を反応させることにより達成され、本反応は、前記A法第A4工程と同様に行われる。

【0179】

第E4工程は、化合物(35)を製造する工程で、水系溶媒中、化合物(34)を酸と反応させるとことにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0180】

第E5工程は、化合物(36)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記A法第A6工程と同様に行われる。

【0181】

第E7工程は、化合物(36)のR⁴におけるQ²が-S-である場合、化合物(38)を製造する工程で、不活性溶媒中、化合物(36)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0182】

第E8工程は、化合物(36)のR⁴におけるQ²が-S-である場合、化合物(39)を製造する工程で、不活性溶媒中、化合物(36)を酸化剤と反応させることにより達成され、本反応は、前記A法第A9工程と同様に行われる。

【0183】

F法は、一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が-CH₂-G⁴-S(O)-Zであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(49)、並びに一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が-CH₂-G⁴-S(O)₂-Zであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(52)を製造する方法である。

【0184】

【化18】

【0185】

第F1工程は、化合物(42)を製造する工程で、不活性溶媒中、化合物(142)とアルキルリチウム(好適には、n-ブチルリチウム)を反応させることにより得られる化合物(142)の反応性誘導体を、不活性溶媒中、化合物(2)と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しなければ、特に限定されないが、好適には、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル類であり、更に好ましくは、テトラヒドロフラン等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～80℃(好適には、10℃～50℃)である。反応時間は、反応温度等により異なるが、通常15分間～24時間(好適には、30分間～15時間)である。

【0186】

第F2工程は、化合物(43)を製造する工程で、不活性溶媒中、添加剤の存在下、化合物(42)を還元剤と反応させることにより達成され、本反応は、前記E法第E2工程と同様に行われる。

【0187】

また、この工程で副生する、化合物(43)の11位の水酸基が α 配置である化合物を用いることにより、化合物(49)及び化合物(52)のX¹が α 配置である化合物を得ることができる。

【0188】

第F3工程は、化合物(44)を製造する工程で、不活性溶媒中、化合物(43)と脱保護剤を反応させること、すなわち置換シリル基を除去することにより達成され、本反応は、前記B法第B2工程と同様に行なわれる。

【0189】

第F4工程は、化合物(45)を製造する工程で、アミン系溶媒中、化合物(44)を塩化スルホニル化合物と反応させるか、あるいは、不活性溶媒中、化合物(44)をハロゲン化剤と反応させることにより達成され、本反応は、前記B法第B3工程と同様に行なわれる。

【0190】

第F5工程は、化合物(46)を製造する工程で、アルコール系溶媒中、化合物(137)と金属アルコキシドを反応させることにより得られる化合物(137)の反応性誘導体を、アルコール系溶媒中、化合物(45)と反応させることにより達成され、本反応は、前記B法第B4工程と同様に行なわれる。

【0191】

第F6工程は、化合物(47)を製造する工程で、不活性溶媒中、化合物(46)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0192】

第F7工程は、化合物(48)を製造する工程で、水系溶媒中、化合物(47)を酸と反応させることにより達成され、本反応は、前記A法第A5工程と同様

に行われる。

【0193】

第F8工程は、化合物(49)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、化合物(48)の接触還元を行うことにより達成される。

使用される溶媒は、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、sec-ブタノール、t-ブタノール、ペンタノール、ヘキサノール、シクロプロパノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、エチレングルコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオールのようなアルコール系溶媒、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、シクロヘキサン、ジメチルスルホキシド、ジメチルアセタミド、ジメチルイミダゾリジノン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、アセトニトリル、ニトロメタン等であり得、好適には、酢酸エチル等である。

接触還元に用いる条件は、例えば、水素-クロロトリス(トリフェニルホスフィン)ロジウム(I)、水素-クロロトリス(トリバラトリルホスフィン)ロジウム(I)、水素-クロロトリス(トリバラメトキシフェニルホスフィン)ロジウム(I)、水素-ヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)、水素-酢酸ロジウム(II)、水素-酢酸ルテニウム(II)、水素-クロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、水素-カルボキシラトヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、水素-ヒドリドカルボニルトリス(トリフェニルホスフィン)イリジウム(I)、水素-白金(II)-塩化スズ錯体、水素-ペントシアノコバルト(II)錯体、水素-トリシアノビビリジンコバルト(II)錯体、水素-ビス(ジメチルグリオキシマト)コバルト(II)錯体、水素-安息香酸メチルトリカルボニルクロム錯体、水素-ビス(トリカルボニルシクロペンタジエニルクロム)、水素-ペントカルボニル鉄、水素-ビス(シクロペンタジエニル)ジカルボニルチタン、水素-ヒドリドカルボニルコバルト錯体、水素-オクタカルボニル

ニコバルト、水素-ヒドリドカルボニルロジウム、水素-クロム(III)アセチルアセトナート-トリイソブチルアルミニウム、水素-コバルト(II)アセチルアセトナート-トリイソブチルアルミニウム、水素-ニッケル(II)-2-ヘキサノアート-トリエチルアルミニウム等の均一系、水素-二酸化白金、水素-白金/炭素、水素-パラジウム/炭素、水素-パラジウム/硫酸バリウム、水素-パラジウム/炭酸カルシウム、水素-ラネ-ニッケル、水素-カッパークロマイト、水素-ロジウム/炭素、水素-ロジウム/アルミナ、水素-二酸化ルテニウム、水素-ルテニウム/炭素等の不均一系条件であり得、好ましくは、水素-パラジウム/炭素等である。

反応温度は、通常0℃～100℃であり、好適には0℃～60℃である。反応時間は、反応温度等により異なるが、通常、10分間～24時間であり、好適には10分間～6時間である。

また、破線が、実線と共に、二重結合を形成している場合、この反応に付随して、単結合に変換されることもある。

【0194】

第F11工程は、化合物(52)を製造する工程で、不活性溶媒中、化合物(49)を酸化剤と反応させることにより達成され、本反応は、前記B法第B7工程と同様に行われる。

【0195】

G法は、一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が-CH₂-G⁴-COOHであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(56)、並びに一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が-CH₂-G⁴-CONH-Zであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子

と一緒にになって—(C=O)—であり、破線が実線と共に単結合又は二重結合である化合物(57)を製造する方法である。

【0196】

【化19】

G法

【0197】

第G1工程は、化合物(53)を製造する工程で、不活性溶媒中、化合物(45)をシアノ化剤と反応させることにより達成され、本反応は、前記C法第C1工程と同様に行われる。

【0198】

第G2工程は、化合物(54)を製造する工程で、化合物(53)を塩基の存在下加水分解することにより達成され、本反応は、前記C法第C2工程と同様に行われる。

【0199】

第G3工程は、化合物(55)を製造する工程で、水系溶媒中、化合物(54)を酸と反応させるとこにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0200】

第G4工程は、化合物(56)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記F法第F8工程と同様に行われる。

また、破線が、実線と共に、二重結合を形成している場合、この反応に付隨して、単結合に変換されることもある。

【0201】

第G5工程は、化合物(57)を製造する工程で、不活性溶媒中、化合物(56)又はその反応性誘導体(酸ハライド類、混合酸無水物又は活性エステル類)と、化合物(138)又はその酸付加塩を反応させることにより達成され、本反応は、前記C法第C3工程と同様に行われる。

【0202】

H法は、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが単結合であり、Aがメチレン基であり、 R^1 が $-CH_2-G_4-NHCO-Z$ であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって $-(C=O)-$ であり、破線が実線と共に単結合又は二重結合である化合物(63)を製造する方法である。

【0203】

【化20】

H法

【0204】

第H1工程は、化合物(59)を製造する工程で、不活性溶媒中、アゾジカルボン酸ジアルキルエステル（好適には、アゾジカルボン酸ジエチル）及びホスフイン化合物（好適には、トリフェニルホスфин）の存在下、化合物(44)をフタルイミドと反応させることにより達成され、本反応は、前記D法第D1工程と同様に行われる。

【0205】

第H2工程は、化合物(59)を製造する別の工程で、不活性溶媒中、化合物(45)をフタルイミドの金属塩（好適には、フタルイミドカリウム）と反応させることにより達成され、本反応は、前記D法第D2工程と同様に行われる。

【0206】

第H3工程は、化合物(60)を製造する工程で、アルコール系溶媒中、化合物(59)を、アミン系化合物(好適には、ヒドラジン)と反応させることにより達成され、本反応は、前記D法第D3工程と同様に行われる。

【0207】

第H4工程は、化合物(61)を製造する工程で、不活性溶媒中、化合物(139)又はその反応性誘導体(酸ハライド類、混合酸無水物又は活性エステル類)と、化合物(60)又はその酸付加塩を反応させることにより達成され、本反応は、前記C法第C3工程と同様に行われる。

【0208】

第H5工程は、化合物(62)を製造する工程で、水系溶媒中、化合物(61)を酸と反応させることにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0209】

第H6工程は、化合物(63)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記F法第F8工程と同様に行われる。

また、破線が、実線と共に、二重結合を形成している場合、この反応に付随して、単結合に変換されることもある。

【0210】

I法は、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、 R^1 が-CH₂-CH=CH-CH₂-R²であり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(70)、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、 R^1 が-(CH₂)₄-R²であり、 X^2 が水素原子であり、 R^a

が水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(71)、一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、R¹が-(CH₂)₄-G₂-S(O)-Zであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(73)、並びに一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、R¹が-(CH₂)₄-G²-S(O)₂-Zであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(74)を製造する方法である。

【0211】

【化21】

1法

【0212】

第I1工程は、化合物(65)を製造する工程で、不活性溶媒中、化合物(143)と金属(好適には、マグネシウム)又はアルキルリチウム(好適には、n-ブチルリチウム)を反応させることにより得られる化合物(143)の反応性誘導体を、不活性溶媒中、化合物(2)と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しなければ、特に限定されないが、好適には、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル類であり、更に好ましくは、テトラヒドロフラン等である。反応温度は、溶媒の種類等により異なるが、通常、0℃～80℃(好適には、10℃～50℃)である。反応時間は、反応温度等により異なるが、通常15分間～24時間(好適には、30分間～15時間)である。

【0213】

第I2工程は、化合物(66)を製造する工程で、不活性溶媒中、添加剤の存在下、化合物(65)を還元剤と反応させることにより達成され、本反応は、前記E法第E2工程と同様に行われる。

【0214】

また、この工程で副生する、化合物(66)の11位の $-C_6H_4-OR^3$ が α 配置である化合物を用いることにより、化合物(70)、化合物(71)、化合物(73)、及び化合物(74)の X^1 が α 配置である化合物を得ることができる。

【0215】

さらに、化合物(66)及びその11位の $-C_6H_4-OR^3$ が α 配置である化合物の合成にあたっては、Tetrahedron, 52, 1529-1542(1996)に開示された各種の芳香族炭化水素基の導入法を参照することもできる。

【0216】

第I3工程は、化合物(67)を製造する工程で、不活性溶媒中、化合物(66)と脱保護剤を反応させること、すなわち置換シリル基を除去することにより達成される。

使用される不活性溶媒は、反応を阻害しないものであれば、特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ジメチルホルムアミド、水等であり、好適には、テトラヒドロフラン等である。使用される脱保護剤は、特に限定されないが、例えば、フッ化水素、フッ化水素-ピリジン、フッ化ナトリウム、フッ化カリウム、フッ化テトラ-n-ブチルアンモニウムのようなフッ化物、蟻酸、酢酸、p-トルエンスルホン酸のような有機酸であり、好ましくは、フッ化テトラ-n-ブチルアンモニウム等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～80℃(好適には、0℃～50℃)である。反応時間は、反応温度等により異なるが、通常15分間～24時間(好適には、30分間～15時間)である。

【0217】

第I4工程は、化合物(68)を製造する工程で、不活性溶媒中、化合物(67)に塩基を反応させることにより得られる化合物(67)の金属塩を、不活性溶媒中、化合物(134)と反応させることにより達成され、本反応は、前記A法第A3工程と同様に行われる。

【0218】

第I5工程は、化合物(69)を製造する工程で、不活性溶媒中、有機金属触媒存在下、化合物(68)と化合物(135)を反応させることにより達成され、本反応は、前記A法第A4工程と同様に行われる。

【0219】

第I6工程は、化合物(70)を製造する工程で、水系溶媒中、化合物(69)を酸と反応させることにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0220】

第I7工程は、化合物(71)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記A法第A6工程と同様に行われる。

【0221】

第I9工程は、化合物(71)のR²におけるQ²が-S-である場合、化合物(73)を製造する工程で、不活性溶媒中、化合物(71)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0222】

第I10工程は、化合物(74)のR²におけるQ²が-S-である場合、化合物(74)を製造する工程で、不活性溶媒中、化合物(71)を酸化剤と反応させることにより達成され、本反応は、前記A法第A9工程と同様に行われる。

【0223】

J法は、一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、R¹が-G-S-Zであり、X²が水素原子であり、R^aが水素原子であり、

R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになってー (C=O)ーであり、破線が実線と共に単結合又は二重結合である化合物 (81)、一般式 (I) で表される化合物のうち、 X^1 が、 β 配置の、一般式 (II) で表される基であり、かつその一般式 (II) で表される基のうち、Ar が芳香族炭化水素基 (好ましくはp-フェニレン基) であり、AがーOーであり、 R^1 がーGーS(O)ーZであり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになってー (C=O)ーであり、破線が実線と共に単結合又は二重結合である化合物 (82)、並びに一般式 (I) で表される化合物のうち、 X^1 が、 β 配置の、一般式 (II) で表される基であり、かつその一般式 (II) で表される基のうち、Ar が芳香族炭化水素基 (好ましくはp-フェニレン基) であり、AがーOーであり、 R^1 がーGーS(O)₂ーZであり、 X^2 が水素原子であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになってー (C=O)ーであり、破線が実線と共に単結合又は二重結合である化合物 (83) を製造する方法である。

【0224】

【化22】

J法

【0225】

第J1工程は、化合物(77)を製造する工程で、不活性溶媒中、化合物(67)に塩基を反応させることにより得られる化合物(67)の金属塩を、不活性溶媒中、化合物(136)と反応させることにより達成され、本反応は、前記A法第A3工程と同様に行われる。

【0226】

第J2工程は、化合物(78)を製造する工程で、不活性溶媒中、化合物(77)と脱保護剤を反応させること、すなわち置換シリル基を除去することにより達成され、本反応は、前記B法第B2工程と同様に行われる。

【0227】

第J3工程は、化合物(79)を製造する工程で、アミン系溶媒中、化合物(78)を塩化スルホニル化合物と反応させるか、あるいは、不活性溶媒中、化合物(78)をハロゲン化剤と反応させることにより達成され、本反応は、前記B

法第B3工程と同様に行われる。

【0228】

第J4工程は、化合物(80)を製造する工程で、アルコール系溶媒中、化合物(137)と金属アルコキシドを反応させることにより得られる化合物(137)の反応性誘導体を、アルコール系溶媒中、化合物(79)と反応させることにより達成され、本反応は、前記B法第B4工程と同様に行われる。

【0229】

第J5工程は、化合物(81)を製造する工程で、水系溶媒中、化合物(80)を酸と反応させるとことにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0230】

第J6工程は、化合物(82)を製造する工程で、不活性溶媒中、化合物(81)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0231】

第J7工程は、化合物(83)を製造する工程で、不活性溶媒中、化合物(82)を酸化剤と反応させることにより達成され、本反応は、前記B法第B7工程と同様に行われる。

【0232】

K法は、一般式(I)で表される化合物のうち、X¹が、β配置の、一般式(I I)で表される基であり、かつその一般式(I I)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、R¹が-G-C(=O)-NH-Zであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合又は二重結合である化合物(89)を製造する方法である。

【0233】

【化23】

K法

【0234】

第K1工程は、化合物(86)を製造する工程で、不活性溶媒中、化合物(79)をシアノ化剤と反応させることにより達成され、本反応は、前記C法第C1工程と同様に行われる。

【0235】

第K2工程は、化合物(87)を製造する工程で、化合物(86)を塩基の存在下加水分解することにより達成され、本反応は、前記C法第C2工程と同様に行われる。

【0236】

第K3工程は、化合物(88)を製造する工程で、不活性溶媒中、化合物(87)又はその反応性誘導体(酸ハライド類、混合酸無水物又は活性エステル類)と、化合物(138)又はその酸付加塩を反応させることにより達成され、本反応は、前記C法第C3工程と同様に行われる。

【0237】

第K4工程は、化合物(89)を製造する工程で、水系溶媒中、化合物(88)を酸と反応させるとことにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0238】

L法は、一般式(I)で表される化合物のうち、 X^1 が、 β 配置の、一般式(

I I) で表される基であり、かつその一般式 (I I) で表される基のうち、A r が芳香族炭化水素基（好ましくはp-フェニレン基）であり、AがーOーであり、R¹がーG—NHCO—Zであり、X²が水素原子であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになってー(C=O)ーであり、破線が実線と共に単結合又は二重結合である化合物(94)を製造する方法である。

【0239】

【化24】

L法

【0240】

第L1工程は、化合物(91)を製造する工程で、不活性溶媒中、アゾジカルボン酸ジアルキルエステル（好適には、アゾジカルボン酸ジエチル）及びホスフイン化合物（好適には、トリフェニルホスфин）の存在下、化合物(78)をフタルイミドと反応させることにより達成され、本反応は、前記D法第D1工程と同様に行われる。

【0241】

第L2工程は、化合物(91)を製造する工程で、不活性溶媒中、化合物(7

9) をフタルイミドの金属塩（好適には、フタルイミドカリウム）と反応させることにより達成され、本反応は、前記D法第D2工程と同様に行われる。

【0242】

第L3工程は、化合物（92）を製造する工程で、アルコール系溶媒中、化合物（91）を、アミン系化合物（好適には、ヒドラジン）と反応させることにより達成され、本反応は、前記D法第D3工程と同様に行われる。

【0243】

第L4工程は、化合物（93）を製造する工程で、不活性溶媒中、化合物（139）又はその反応性誘導体（酸ハライド類、混合酸無水物又は活性エステル類）と、化合物（92）又はその酸付加塩を反応させることにより達成され、本反応は、前記C法第C3工程と同様に行われる。

【0244】

第L5工程は、化合物（94）を製造する工程で、水系溶媒中、化合物（93）を酸と反応させることにより達成され、本反応は、前記A法第A5工程と同様に行われる。

【0245】

M法は、一般式（I）で表される化合物のうち、 X^1 が水素原子であり、 X^2 が、 α 配置の、一般式（II）で表される基であり、かつその一般式（II）で表される基のうち、Arが単結合であり、Aが $-O-$ であり、 R^1 が $-(CH_2)_4-R^2$ であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって $-(C=O)-$ であり、破線が実線と共に単結合又は二重結合である化合物（102）、一般式（I）で表される化合物のうち、 X^1 が水素原子であり、 X^2 が、 α 配置の、一般式（II）で表される基であり、かつその一般式（II）で表される基のうち、Arが単結合であり、Aが $-O-$ であり、 R^1 が $-(CH_2)_4-G^2-S(O)-Z$ であり、 R^a が水素原子であり、 R^b 及び R^c は、それらが結合している3位の炭素原子と一緒にになって $-(C=O)-$ であり、破線が実線と共に単結合又は二重結合である化合物（104）、並びに一般式（I）で表される化合物のうち、 X^1 が水素原子であり、 X^2 が、 α 配置の、一般式（II）で表される基であり、かつその一般式（

I I) で表される基のうち、A_rが単結合であり、Aが—O—であり、R¹が—(CH₂)₄—G²—S(O)₂—Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって—(C=O)—であり、破線が実線と共に単結合又は二重結合である化合物(105)を製造する方法である。

【0246】

【化25】

M法

【0247】

第M1工程は、化合物(97)を製造する工程で、不活性溶媒中、化合物(96)に塩基を反応させることにより得られる化合物(96)の金属塩を、不活性溶媒中、化合物(134)と反応させることにより達成され、本反応は、前記A法第A3工程と同様に行われる。

【0248】

また、化合物(96)の7位の水酸基が、β配置である化合物も、例えばJ. Org. Chem., 26, 2856-2859 (1961)により公知であり、これを化合物(96)の代わりに用いることにより、化合物(102)、化合物(104)、及び化合物(105)のX²がβ配置である化合物を得ることが

できる。

【0249】

第M3工程は、化合物(100)を製造する工程で、不活性溶媒中、有機金属触媒存在下、化合物(97)と化合物(135)を反応させることにより達成され、本反応は、前記A法第A4工程と同様に行われる。

【0250】

第M5工程は、化合物(101)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記A法第A6工程と同様に行われる。

【0251】

第M6工程は、化合物(102)を製造する工程で、混合されていてもよい不活性溶媒中、化合物(101)と還元剤を反応させることにより達成される。

使用される不活性溶媒は、反応を阻害しないものであれば特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、メタノール、エタノールのようなアルコール系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、ピリジン、トリエチルアミンのようなアミン類であり、好適にはメタノール、エタノールのようなアルコール系溶媒であり、さらに好適にはメタノール等である。。使用される還元剤は、例えば、水素化アルミニウムリチウム、水素化トリメト

キアルミニウムリチウム、水素化トリ-*t*-ブトキシアルミニウムリチウム、水素化アルミニウムリチウム-トリクロロアルミニウム(アラン)、水素化アルミニウムリチウム-三フッ化ホウ素、水素化アルミニウム塩化マグネシウム、水素化アルミニウムマグネシウム、水素化アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス(メトキシエトキシ)アルミニウムナトリウム、水素化ホウ素ナトリウム、水素化ホウ素ナトリウム-パラジウム/炭素、硫化水素化ホウ素ナトリウム、シアノ化水素化ホウ素ナトリウム、水素化トリメトキシホウ素ナトリウム、水素化ホウ素リチウム、シアノ化水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ-*s*-ブチルホウ素リチウム、水素化トリ-*t*-ブチルホウ素リチウム、水素化ホウ素カルシウム、水

素化ホウ素カリウム、水素化トリイソプロポキシホウ素カリウム、水素化トリ-
 s-ブチルホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラメチルアン
 モニウム、水素化シアノホウ素テトラ-n-ブチルアンモニウムのような金属水
 素錯化合物、水素化ジイソブチルアルミニウム、水素化トリフェニルスズ、水素
 化トリ-n-ブチルスズ、水素化ジフェニルスズ、水素化ジ-n-ブチルスズ、
 水素化トリエチルスズ、水素化トリメチルスズ、トリクロシラン/トリ-n-ブ
 チルアミン、トリクロロシラン/トリ-n-プロピルアミン、トリエチルシラン
 、トリメチルシラン、ジフェニルシラン、フェニルシラン、ポリメチルヒドロシ
 ロキサン、ジメチルフェニルシラン、ジ-n-ブチルシラン、メチルフェニルシ
 ランのような金属水素化物、ジボラン、ジメチルアミン-ボラン、トリメチルア
 ミン-ボラン、エチレンジアミン-ボラン、ピリジン-ボラン、ジメチルスルフ
 イド-ボラン、2, 3-ジメチル-2-ブチルボラン (hexylborane) 、
 ピス-3-メチル-2-ブチルボラン (diisiamylborane) 、
 ジイソピノカンフェニルボラン、ジシクロヘキシルボラン、9-ボラビシクロ
 [3, 3, 1] ノナン (9-BBN) のようなボラン誘導体であり、好適には水
 素化アルミニウムリチウム、水素化トリメトキシアルミニウムリチウム、水素化
 トリ-t-ブトキシアルミニウムリチウム、水素化アルミニウムリチウム-トリ
 クロロアルミニウム (アラン) 、水素化アルミニウムリチウム-三フッ化ホウ素
 、水素化アルミニウム塩化マグネシウム、水素化アルミニウムマグネシウム、水
 素化アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水
 素化ビス (メトキシエトキシ) アルミニウムナトリウム、水素化ホウ素ナトリウ
 ム、水素化ホウ素ナトリウム-パラジウム/炭素、硫化水素化ホウ素ナトリウム
 、シアノ化水素化ホウ素ナトリウム、水素化トリメトキシホウ素ナトリウム、水
 素化ホウ素リチウム、シアノ化水素化ホウ素リチウム、水素化トリエチルホウ素
 リチウム、水素化トリ-s-ブチルホウ素リチウム、水素化トリ-t-ブチルホ
 ウ素リチウム、水素化ホウ素カルシウム、水素化ホウ素カリウム、水素化トリイ
 ソプロポキシホウ素カリウム、水素化トリ-s-ブチルホウ素カリウム、水素化
 ホウ素亜鉛、水素化ホウ素テトラメチルアンモニウム、水素化シアノホウ素テ
 ラ-n-ブチルアンモニウムのような金属水素錯化合物であり、さらに好適には

水素化ホウ素ナトリウム等である。反応温度は、溶媒の種類等により異なるが、通常、-30℃～100℃であり、好適には0℃～70℃である。反応時間は、反応温度等により異なるが、通常10分間～48時間であり、好適には30分間～24時間である。

【0252】

第M8工程は、化合物(102)のR²におけるQ²が-S-である場合、化合物(104)を製造する工程で、不活性溶媒中、化合物(102)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0253】

第M9工程は、化合物(102)のR²におけるQ²が-S-である場合、化合物(105)を製造する工程で、不活性溶媒中、化合物(102)を酸化剤と反応させることにより達成され、本反応は、前記A法第A9工程と同様に行われる。

【0254】

N法は、一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、α配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が-CH=CH-CH₂-R²であり、R^aが水素原子であり、R^b及びR^cは、それら

が結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に二重結合である化合物(112)、一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、α配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が-(CH₂)₃-R²であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に二重結合である化合物(113)、一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、α配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が-(CH₂)₃-R²であ

り、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって—(C=O)—であり、破線が実線と共に単結合である化合物(114)、一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、α配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が—(CH₂)₃—G²—S(O)—Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって—(C=O)—であり、破線が実線と共に二重結合である化合物(115)、一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、α配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が—(CH₂)₃—G²—S(O)₂—Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって—(C=O)—であり、破線が実線と共に二重結合である化合物(116)、一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、α配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が—(CH₂)₃—G²—S(O)—Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって—(C=O)—であり、破線が実線と共に单結合である化合物(117)、並びに一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、α配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが単結合であり、Aがメチレン基であり、R¹が—(CH₂)₃—G²—S(O)₂—Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって—(C=O)—であり、破線が実線と共に单結合である化合物(118)を製造する方法である。

【0255】

【化26】

N法

【0256】

第N3工程は、化合物（112）を製造する工程で、不活性溶媒中、有機金属触媒存在下、化合物（108）と化合物（135）を反応させることにより達成され、本反応は、前記A法第A4工程と同様に行われる。

【0257】

第N5工程は、化合物（113）を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記A法第A6工程と同様に行われる。

【0258】

第N6工程は、化合物（114）を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成される。

使用される溶媒は、メタノール、エタノール、n-ブロパノール、i-ブロパノール、n-ブタノール、sec-ブタノール、t-ブタノール、ペンタノール、ヘキサノール、シクロプロパノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、エチレングルコール、1、3-ブロパンジオール、1、4-ブタンジオール、1、5-ペンタンジオールのようなアルコール系溶媒、エ

ーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ベンゼン、トルエン、キシレン、キノリン、クロロベンゼンのような芳香族系溶媒、ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン系溶媒、シクロヘキサン、ジメチルスルホキシド、ジメチルアセタミド、ジメチルイミダゾリジノン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、アセトニトリル、ニトロメタンであり得、好適には、メタノール、エタノール等である。

接触還元に用いる条件は、水素-クロロトリス(トリフェニルホスフィン)ロジウム(I)、水素-クロロトリス(トリパラトリルホスフィン)ロジウム(I)、水素-クロロトリス(トリパラメトキシフェニルホスフィン)ロジウム(I)、水素-ヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)、水素-酢酸ロジウム(II)、水素-酢酸ルテニウム(II)、水素-クロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、水素-カルボキシラトヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)、水素-ヒドリドカルボニルトリス(トリフェニルホスフィン)イリジウム(I)、水素-白金(II)-塩化スズ錯体、水素-ペンタシアノコバルト(II)錯体、水素-トリシアノビピリジンコバルト(II)錯体、水素-ビス(ジメチルグリオキシマト)コバルト(II)錯体、水素-安息香酸メチルトリカルボニルクロム錯体、水素-ビス(トリカルボニルシクロペンタジエニルクロム)、水素-ペンタカルボニル鉄、水素-ビス(シクロペンタジエニル)ジカルボニルチタン、水素-ヒドリドカルボニルコバルト錯体、水素-オクタカルボニルニコバルト、水素-ヒドリドカルボニルロジウム、水素-クロム(III)アセチルアセトナート-トリイソブチルアルミニウム、水素-コバルト(II)アセチルアセトナート-トリイソブチルアルミニウム、水素-ニッケル(II)-2-ヘキサノアート-トリエチルアルミニウム等の均一系、水素-二酸化白金、水素-白金/炭素、水素-パラジウム/炭素、水素-パラジウム/硫酸バリウム、水素-パラジウム/炭酸カルシウム、水素-ラネ-ニッケル、水素-カッパークロマイト、水素-ロジウム/炭素、水素-ロジウム/アルミナ、水素-二酸化ルテニウム、水素-ルテニウム/炭素等の不均一系条件であり得、好ましくは、水素-パラ

ジウム／炭素等である。

反応温度は、通常0℃～100℃であり、好適には0℃～60℃である。反応時間は、反応温度等により異なるが、通常、10分間～24時間であり、好適には10分間～6時間である。

【0259】

第N7工程は、化合物(113)のR²におけるQ²が-S-である場合、化合物(115)を製造する工程で、不活性溶媒中、化合物(113)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0260】

第N8工程は、化合物(113)のR²におけるQ²が-S-である場合、化合物(116)を製造する工程で、不活性溶媒中、化合物(113)を酸化剤と反応させることにより達成され、本反応は、前記A法第A9工程と同様に行われる。

【0261】

第N9工程は、化合物(114)のR²におけるQ²が-S-である場合、化合物(117)を製造する工程で、不活性溶媒中、化合物(114)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0262】

第N10工程は、化合物(114)のR²におけるQ²が-S-である場合、化合物(118)を製造する工程で、不活性溶媒中、化合物(114)を酸化剤と反応させることにより達成され、本反応は、前記A法第A9工程と同様に行われる。

【0263】

第N11工程は、化合物(114)を製造する別の工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記N法第N6工程と同様に行なわれる。

【0264】

○法は、一般式(I)で表される化合物のうち、 X^1 が水素原子であり、 X^2 が、 α 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、 R^1 が-CH₂-CH=CH-CH₂-R²であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に二重結合である化合物(126)，一般式(I)で表される化合物のうち、 X^1 が水素原子であり、 X^2 が、 α 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、 R^1 が-(CH₂)₄-R²であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に二重結合である化合物(127)，一般式(I)で表される化合物のうち、 X^1 が水素原子であり、 X^2 が、 α 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、 R^1 が-(CH₂)₄-R²であり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に单結合である化合物(128)，一般式(I)で表される化合物のうち、 X^1 が水素原子であり、 X^2 が、 α 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、 R^1 が-(CH₂)₄-G²-S(O)-Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に二重結合である化合物(129)，一般式(I)で表される化合物のうち、 X^1 が水素原子であり、 X^2 が、 α 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、 R^1 が-(CH₂)₄-G²-S(O)₂-Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に二重結合である化合物(130)。

=O) -であり、破線が実線と共に二重結合である化合物(130)、一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、 α 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、R¹が-(CH₂)₄-G²-S(O)-Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合である化合物(131)、並びに一般式(I)で表される化合物のうち、X¹が水素原子であり、X²が、 α 配置の、一般式(II)で表される基であり、かつその一般式(II)で表される基のうち、Arが芳香族炭化水素基(好ましくはp-フェニレン基)であり、Aが-O-であり、R¹が-(CH₂)₄-G²-S(O)₂-Zであり、R^aが水素原子であり、R^b及びR^cは、それらが結合している3位の炭素原子と一緒にになって-(C=O)-であり、破線が実線と共に単結合である化合物(132)を製造する方法である。

【0265】

【化27】

【0266】

第O1工程は、化合物(120)を製造する工程で、不活性溶媒中、化合物(143)と金属(好適には、マグネシウム)又はアルキルリチウム(好適には、*t*-ブチルリチウム)を反応させることにより得られる化合物(143)の反応性誘導体を、不活性溶媒中、添加剤(好適には、テトラキス[ヨウ化(トリ-*n*-ブチルホスフィン)銅(I)]の存在下、化合物(119)と反応させることにより達成される。

使用される不活性溶媒は、反応に関与しなければ、特に限定されないが、好適には、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル類であり、更に好ましくは、エーテルである。反応温度は、溶媒の種類等により異なるが、通常、-78℃～80℃（好適には、-78℃～50℃）である。反応時間は、反応温度等により異なるが、通常15分間～24時間（好適には、30分間～15時間）である。

【0267】

また、化合物（120）を製造する際に副生する、化合物（120）の7位の $-C_6H_4-OR^3$ が β 配置である化合物を化合物（120）の代わりに用いることにより、化合物（126）、化合物（127）、化合物（128）、化合物（129）、化合物（130）、化合物（131）、及び化合物（132）のX²が β 配置である化合物を得ることができる。

【0268】

第O2工程は、化合物（121）を製造する工程で、不活性溶媒中、化合物（120）と脱保護剤を反応させること、すなわち置換シリル基を除去することにより達成される。

使用される不活性溶媒は、反応を阻害しないものであれば、特に限定されないが、例えば、エーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンのようなエーテル系溶媒、ジメチルホルムアミド、水であり、好適には、テトラヒドロフラン等である。使用される脱保護剤は、特に限定されないが、例えば、フッ化水素、フッ化水素-ピリジン、フッ化ナトリウム、フッ化カリウム、フッ化テトラ-n-ブチルアンモニウムのようなフッ化物、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸のような無機酸、蠍酸、酢酸、p-トルエンスルホン酸のような有機酸であり、好ましくは、フッ化テトラ-n-ブチルアンモニウム等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～80℃（好適には、0℃～50℃）である。反応時間は、反応温度等により異なるが、通常15分間～24時間（好適には、30分間～15時間）である。

【0269】

第O3工程は、化合物(122)を製造する工程で、不活性溶媒中、化合物(121)に塩基を反応させることにより得られる化合物(121)の金属塩を、不活性溶媒中、化合物(134)と反応させることにより達成され、本反応は、前記A法第A3工程と同様に行われる。

【0270】

第O5工程は、化合物(125)を製造する工程で、不活性溶媒中、有機金属触媒存在下、化合物(122)と化合物(135)を反応させることにより達成され、本反応は、前記A法第A4工程と同様に行われる。

【0271】

第O6工程は、化合物(126)を製造する工程で、水又は水溶性溶媒中、塩基又は酸(好適には、塩基)の存在下、化合物(125)を加水分解することにより達成される。

使用される水溶性溶媒は、特に限定されないが、例えば、メタノール、エタノール、n-ブロパノール、i-ブロパノールのようなアルコール系溶媒、テトラヒドロフラン、ジオキサンのようなエーテル系溶媒、ジメチルホルムアミド等であり、好適には、メタノール等である。

使用される塩基は、特に限定されないが、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、水酸化セシウムのような金属水酸化物、炭酸カリウム、炭酸ナトリウムのような炭酸塩であり、好適には、水酸化ナトリウム等である。

使用される酸は、特に限定されないが、例えば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸のような無機酸であり、好適には、塩酸等である。

反応温度は、溶媒の種類等により異なるが、通常、0℃～100℃(好適には、0℃～80℃)である。反応時間は、反応温度等により異なるが、通常15分間～24時間(好適には、30分間～15時間)である。

【0272】

第O8工程は、化合物(127)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記A法第A6工程と同様に行われる。

【0273】

第O9工程は、化合物(128)を製造する工程で、アルコール系溶媒もしくは不活性溶媒中、接触還元を行うことにより達成され、本反応は、前記N法第N6工程と同様に行われる。

【0274】

第O10工程は、化合物(127)のR²におけるQ²が-S-である場合、化合物(129)を製造する工程で、不活性溶媒中、化合物(127)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0275】

第O11工程は、化合物(127)のR²におけるQ²が-S-である場合、化合物(130)を製造する工程で、不活性溶媒中、化合物(127)を酸化剤と反応させることにより達成され、本反応は、前記A法第A9工程と同様に行われる。

【0276】

第O12工程は、化合物(128)のR²におけるQ²が-S-である場合、化合物(131)を製造する工程で、不活性溶媒中、化合物(128)を酸化剤と反応させることにより達成され、本反応は、前記A法第A8工程と同様に行われる。

【0277】

第O13工程は、化合物(128)のR²におけるQ²が-S-である場合、化合物(132)を製造する工程で、不活性溶媒中、化合物(128)を酸化剤と反応させることにより達成され、本反応は、前記A法第A9工程と同様に行われる。

【0278】

前記A法～O法において、G及び／又はJ及び／又はQ²が、炭素数1～6の直鎖もしくは分岐鎖状の低級アルキル基で保護されているカルボキシ基を含む基である場合、公知の方法で加水分解を行なうことにより、容易に脱保護され、カルボキシ基を含む基に変換することができる。

【0279】

前記A法～O法の各工程において、保護及び脱保護の必要な基が存在する場合は、各々の基について、当業者に周知の方法で、保護及び脱保護を行うことができる。保護及び脱保護にあたっては、例えば、"Protective Groups in Organic Synthesis 2nd edition", Theodora W. Green, John Wiley & Sons, Inc., 1991等を参照することができる。

【0280】

原料である化合物(1)は、公知か、公知の方法又はそれに類似した方法にしたがって、容易に製造される。[例えば、ジャーナル・オブ・メディシナル・ケミストリー、第35巻、第11号、第2113頁～第2129頁、1992年: J. Med. Chem. 35 (11), 2113-2129 (1992)、シンセティック・コミュニケーション、第24巻、第16号、第2325頁～第2340頁、1994年: Synth. Commun. 24 (16), 2325-2340 (1994)、ステロイズ、第60巻、第5号、第414頁～第422頁、1995年: Steroids, 60 (5), 414～422 (1995)等]。

原料である化合物(108)は、公知か、公知の方法又はそれに類似した方法にしたがって、容易に製造される。[例えば、テトラヘドロン・レターズ、第29巻、第13号、第1533頁～第1536頁、1988年: Tetrahedron Letters, 29 (13), 1533-1536 (1988)等。]

原料である化合物(96)は、市販品として容易に入手することができるか、又は、公知の方法又はそれに類似した方法にしたがって、容易に製造される。[例えば、J. Chem. Res. Miniprint, 2, 0650～0669 (1986)等。]

原料である化合物(119)及び化合物(144)は、市販品として容易に入手することができる。

原料である化合物(133)～化合物(143)は、市販品として容易に入手

することができるか、あるいは、公知か、公知の方法又はそれに類似した方法にしたがって、容易に製造される。

【0281】

本発明の、一般式(I)で表される化合物、及び、アンドロゲン受容体に対し、アンタゴニストとして作用し、アゴニストとして作用しない物質(以下、被験物質とも称する。)の抗アンドロゲン活性を始めとする効果は、本発明の、アンタゴニストとして作用することの定義及び/又はアゴニストとして作用しないことの定義に用いたアンドロゲンレセプターレポータージーンアッセイ法と、以下のA測定法~F測定法の測定法とを、必要に応じて適宜組み合わせることによって測定できる:

【0282】

A測定法: ラットでのin vivo実験による測定法

A-1測定法: アンタゴニスト作用の測定法

去勢ラットにテストステロンやジヒドロテストステロンを投与すると前立腺、及び精嚢腺重量が増加する。テストステロンやジヒドロテストステロンによる前立腺、及び精嚢腺の重量増加作用を被験物質が抑制するか否かを検討することにより、被験物質のアンタゴニスト作用を調べることができる。測定にあたっては、J. Med. Chem. 41: 623-639, 1998や基礎と臨床29(4): 877-885, 1995等を参考にできる。

A-2測定法: アゴニスト作用の測定法

去勢ラットに被験物質を連続投与する。投与後にアンドロゲン応答性の臓器である前立腺、精嚢腺重量が増加するか否かを検討することにより、被験物質のアゴニスト作用を検討できる。測定にあたっては、日内分泌会誌66: 597-606, 1990等を参考にできる。

【0283】

B測定法: アンドロゲン受容体の二量体形成による測定法

B-1測定法: 二量体形成の阻害作用による測定法

ジヒドロテストステロンによりアンドロゲン受容体の二量体が形成される。アンドロゲン受容体の二量体形成を被験物質が阻害するか否かをゲルシフトアッセ

イで測定することにより、被験物質のアンタゴニスト作用を検討できる。測定にあたっては、J. Biol. Chem., 268: 19004-19012, 1993, J. Biol. Chem., 270: 19998-20003, 1995等を参考にできる。

B-2 測定法：アンドロゲン受容体の二量体形成の促進作用による測定法

被験物質がアンドロゲン受容体の二量体形成を促進するか否かをゲルシフトアッセイで測定することにより被験物質のアゴニスト作用を検討できる。測定にあたっては、J. Biol. Chem., 268: 19004-19012, 1993, J. Biol. Chem., 270: 19998-20003, 1995等を参考にできる。

【0284】

C 測定法：オルニチンデカルボキシラーゼ (Ornithine Decarboxylase : ODC) 活性による測定法

被験物質が、アンドロゲン依存性活性を示すとされているODC活性を上昇させるのか減少させるのかを測定することにより、被験物質のアゴニスト、アンタゴニスト作用を検討できる。測定にあたっては、Anal. Biochem. 113: 352-355, 1981、日内分泌会誌 66: 597-606, 1990等を参考にできる。

【0285】

D 測定法：アンドロゲン受容体に対する結合能による測定法

アンドロゲン受容体とアンドロゲンとの結合を被験物質が阻害するのか否かを、バインディングアッセイ (Binding Assay) で検討することにより、被験物質のアンタゴニスト作用を検討できる。測定にあたっては、Urology 48: 157-163, 1996, J. Biol. Chem. 270: 19998-20003, 1995、基礎と臨床 29 (4): 877-885, 1995等を参考にできる。

【0286】

E 測定法：アンドロゲン受容体量の増減による測定法

アンドロゲン受容体発現細胞に、アンドロゲン存在下及び非存在下で被験物質

を処理した場合の細胞内アンドロゲン受容体量の増減を調べることにより、被験物質のアンドロゲン受容体に対するアゴニスト作用、及びアンタゴニスト作用を検討できる。測定にあたっては、Endocrinology, 129: 200-2010, 1991等を参考にできる。

【0287】

F測定法：アンドロゲン受容体の核内移行による測定法

アントロゲン受容体発現細胞に対して、アンドロゲンの存在下又は非存在下において、被験物質を処理する事により、細胞内のアンドロゲン受容体の局在を免疫組織染色により調べることで、アンドロゲン受容体の核内移行性の有無や、被験物質によるアンドロゲン受容体の核内移行に対する阻害作用を調べることができ、被験物質のアゴニスト、及び／又はアンタゴニストとしての作用を検討できる。測定にあたっては、J. Biol. Chem., 267: 968-974, 1992等を参考にできる。

【0288】

本発明の一般式(I)で表される化合物、及び本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質は、長期投与によるアンドロゲン抵抗性の発現、及び／又は肝毒性などの副作用を示さない抗アンドロゲン剤となることが期待され、医薬組成物、例えば、前立腺癌、前立腺肥大症、男性型脱毛症、性的早熟、尋常性座瘡、脂漏症、及び多毛症等の疾患の治療剤として有用となることが期待される。また、本発明の一般式(I)で表される化合物、及び本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質を、予め投与しておけば、前立腺癌、前立腺肥大症、男性型脱毛症、性的早熟、尋常性座瘡、脂漏症、及び多毛症等の疾患の発症を防ぐか遅延させることができるので、これらの疾患の予防剤となることも期待できる。

【0289】

本発明の一般式(I)で表される化合物を有効成分とする医薬組成物、及び本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質を有効成分とする医薬組成物は、経口的に又は非経口的

に投与することができるが、経口的に投与するのが望ましい。投与に関しては投与方法に適した製剤に調製することができる。

本発明の一般式(I)で表される化合物を有効成分とする医薬組成物、及び本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質を有効成分とする医薬組成物は、通常の製剤化技術を用いて製剤化することができ、その用途に応じて錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、注射剤、軟膏剤などの固体及び液体の製剤として使用することができる。製剤用の担体や賦形剤としては、固体又は液体状の物質が挙げられる。これらの例としては、乳糖、ステアリン酸マグネシウム、スターチ、タルク、ゼラチン、寒天、ペクチン、アラビアゴム、オリーブ油、ごま油、エチレングリコール等やその他、常用のものが例示される。

【0290】

かかる製剤中の本発明の新規化合物の含有量は、その剤型によって異なるが、一般に5～100重量%の濃度で含有していることが望ましい。本発明化合物の医薬組成物は、対象とする人間をはじめとする温血動物の種類、症状の軽重、医師の診断などに応じて、広範囲に変えることができるが、一般に有効成分として、1日あたり $1\mu\text{g} \sim 500\text{mg/kg}$ 、好ましくは1日あたり $20\mu\text{g} \sim 100\text{mg/kg}$ である。また、上記投与量は1日～1ヶ月当たり1回又は数回にまとめて又は分けて投与することができ、症状の軽重、医師の判断により適宜変更することができる。

【0291】

【実施例】

実施例1 フルタミド、ピカルタミドのアゴニスト作用の検討

トランスフェクションの24時間前に、 1.0×10^5 個のHeLa細胞を12ウェルのマイクロプレート中でphenol red free DMEM/5%DCC-FBSで培養する。500ng/wellのMMTV-Lucベクターと100ng/wellのpSG5-hAR、5ng/wellのRenilla Luc vectorをHeLa細胞にトランスフェクションする。トランスフェクションはphenol red free DMEM培養液中で3μ

L/wellのリポフェクトアミンを用いて行う。トランスフェクションの9時間後に培養液を、それぞれ $10\text{ }\mu\text{mol/L}$ のハイドロキシフルタミド又はピカルタミドを含むphenol red free DMEM/3%DCC-FBSに交換する。培養液交換の48時間後に転写活性値を測定する。転写活性はDual-Luciferase Reporter Assay Systemで測定する。(転写活性値) = (ホタルルシフェラーゼの値) / (ウミシイタケルシフェラーゼの値)とする。ハイドロキシフルタミド及びピカルタミドは無添加の5倍以上の値を示し、ハイドロキシフルタミド及びピカルタミドのアゴニスト作用が確認された(表1)。

【0292】

【表1】

<表1>

ルシフェラーゼ活性 (Fold induction)¹⁾

無添加	1.00
$10\text{ }\mu\text{mol/L}$ ハイドロキシフルタミド	7.84 (>5.0)
$10\text{ }\mu\text{mol/L}$ ピカルタミド	7.62 (>5.0)

1) 無添加のルシフェラーゼ活性値を1.00とした時の値

【0293】

実施例2 フルタミド、ピカルタミドのアンタゴニスト作用の検討

トランスフェクションの24時間前に、 1.0×10^5 個のHeLa細胞を12ウェルのマイクロプレート中でphenol red free DMEM/5%DCC-FBSで培養する。500ng/wellのMMTV-Lucベクターと100ng/wellのpSG5-hAR、5ng/wellのRenilla Luc vectorをHeLa細胞にトランスフェクションする。トランスフェクションはphenol red free DMEM培養液中で $3\text{ }\mu\text{L}/\text{well}$ のリポフェクトアミンを用いて行う。トランスフェクションの9時

間後に培養液を、0.1 nmol/LのDHT、1.0 μmol/Lのハイドロキシフルタミド又はピカルタミドを含むphenol red free DME/3%DCC-FBSに交換する。培養液交換の48時間後に転写活性値を測定する。転写活性はDual-Luciferase Reporter Assay Systemを用いて行う。(転写活性値) = (ホタルルシフェラーゼの値) / (ウミシイタケルシフェラーゼの値)と定義する。ハイドロキシフルタミド及びピカルタミドはDHTの転写活性値を50%以下に減少させ、ハイドロキシフルタミド及びピカルタミドのアンタゴニスト作用が確認された(表2)

【0294】

【表2】

<表2>

ルシフェラーゼ活性 (Relative activity)²⁾

0.1 nmol/L DHT	100
1.0 μmol/L ハイドロキシフルタミド	29.0 (<50.0)
1.0 μmol/L ピカルタミド	32.0 (<50.0)

2) 0.1 nmol/L のDHT のルシフェラーゼ活性値を100にした時の値

【0295】

【発明の効果】

本発明の一般式(I)で表される化合物、及び本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質は、長期投与によるアンドロゲン抵抗性の発現、及び/又は肝毒性などの副作用を示さない抗アンドロゲン剤となることが期待され、医薬組成物、例えば、前立腺癌、前立腺肥大症、男性型脱毛症、性的早熟、尋常性座瘡、脂漏症、及び多毛症等の疾患の治療剤として有用となることが期待される。また、本発明の一般式(I)で表される化合物、及び本発明のアンドロゲン受容体に対し、アンタゴニストとして作用し、かつアゴニストとして作用しない物質を、予め投与しておけば、

前立腺癌、前立腺肥大症、男性型脱毛症、性的早熟、尋常性座瘡、脂漏症、及び多毛症等の疾患の発症を防ぐか遅延させることができるので、これらの疾患の予防剤となることも期待できる。

【書類名】 要約書

【要約】

【課題】 長期投与によるアンドロジエン抵抗性の発現、及び／又は肝毒性などの副作用を示さない抗アンドロジエン剤と期待される化合物、及び／又は物質を提供すること。

【解決手段】 一般式 (I)

[式中、X¹ 及びX² は、独立して水素原子、又は一般式 (II)

-Ar-A-R¹ (II)

で表される基を示し、R^a は、水素原子又は水酸基の保護基を示し、R^b 及びR^c は、それらが結合している3位の炭素原子と一緒にになって、保護されていてもよい-(C=O)-を示し、破線は、実線と共に、単結合又は二重結合を形成していることを示す。

更に、Ar は、単結合又は芳香族炭化水素基を示し、A は、メチレン基又は-O-を示し、R¹ は、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、又は置換されていてもよいアルキニル基を示す。

ただし、X¹ 及びX² は、同時に水素原子であることはない。]

で表される化合物又はその薬学上許容しうる塩あるいはそれらのプロドラッグ。

【選択図】 なし

出願人履歴情報

識別番号 [000003311]

1. 変更年月日 1990年 9月 5日
[変更理由] 新規登録
住 所 東京都北区浮間5丁目5番1号
氏 名 中外製薬株式会社

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)