PAKET 2

PELATIHAN ONLINE

po.alcindonesia.co.id

2019 SMA KIMIA

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

PEMBAHASAN PAKET 2

- 1. Salah satu cara untuk menentukan orde reaksi dari data yang disajikan adalah dengan mengamati satuan nilai k, karena hukum laju berbentuk r = k[A]^m sedangkan satuan r adalah M/s dan [A] memiliki satuan M maka M⁻¹s⁻¹ merupakan tanda bagi kinetika orde 2 (B)
- 2. Dengan membandingkan data baris 1 dan 2, maka dapat dilihat bahwa jika H₂ naik 2x lipat maka laju naik 2x lipat (kinetika berode 1 terhadap H₂)
 Dengan membandingkan data baris 2 dan 3, maka dapat dilihat bahwa jika I₂ naik 2x lipat maka laju naik 2x lipat (kinetika berorde 1 terhadap I₂)
 Sehingga orde total dari reaksi tersebut adalah 1+1 = 2 (B)
- 3. Perhatikan tanda positif-negatif dan koefisien masing-masing spesi

$$r = k_1 \left[-\frac{d[-d]}{dt} \right]^m = -\frac{d[-d]}{dt} = +\frac{d[-d]}{dt} = + (d[-d])/2dt$$

4. Untuk menentukan orde reaksi, dapat dilakukan regresi linear untuk menentukan nilai r² dari persamaan kinetika terdiferensiasi dari masing-masing orde, misal

Untuk orde 1 : persamaan $ln[A]_t = ln[A]_0$ –kt seharusnya memiliki nilai $r^2 \sim 1$, sedangkan jika dilakukan terhadap data pada soal didapat nilai $r^2 = 0.9886$

Untuk orde 2 : persamaan $1/[A]_t = 1/[A]_0$ +kt seharusnya memiliki nilai $r^2 \sim 1$, sedangkan jika dilakukan terhadap data pada soal didapat nilai $r^2 = 0,9998$

Karena r^2 pada fungsi orde 2 memiliki nilai \sim 1 maka data ini mendukung kinetika orde 2 (B)

- 5. jika merujuk pada kinetika orde 2, maka nilai k akan sesuai dengan kemiringan garis yang didapat (setara nilai b untuk regresi menggunakan fungsi a+bx), dengan regresi didapat b = 0,0158 (C)
- 6. Dengan memasukkan nilai [A]_o dan k dari soal nomor 5 ke dalam persamaan yang didapat maka akan didapat

$$1/[A]_t = 1/1 + 0.0158 \text{ M}^{-1}\text{s}^{-1} (200\text{s})$$

= 4.16 M⁻¹
[A]_t = 1/4.16 = 0.2404 M (D)

7. Menggunakan regresi, didapat ${\bf r}^2$ untuk masing-masing fungsi berikut adalah

$$ln[A]_t = ln[A]_0 - kt$$
 $\rightarrow 1$
1/[A]_t = 1/[A]₀ + kt \rightarrow 0,7233

Sehingga orde reaksi tersebut adalah 1 (A)

- 8. untuk orde 1, nilai $k = -b = 2.4 \times 10^{-2} \text{ s}^{-1}$ (D)
- 9. Tentukan %NH₃ yang terdekomposisi jika reaksi dilanjutkan hingga 210 detik

PELATIHAN ONLINE 2019 KIMIA – PAKET 2

Menggunakan informasi dari jawaban soal no 8 dan no 7 didapat

In [A]_t = In [A]₀ –kt
= In (200) – 2,4 x
$$10^{-2}$$
 s⁻¹x210s
= 0,2583
[A]_t = $e^{0.2583}$ = 1,29 torr
%dekomposisi = $\frac{200-1.29}{200}$ x100% = 99,36% (B)

10. pada soal ini hanya p_{total} yang diketahui, sedangkan untuk keperluan regresi diperlukan P atau konsentrasi dari reaktan. Pada reaksi ini hubungan antara P_{total} dan P_{n205} adalah

Menggunakan persamaan ini dapat dibangun tabel berikut

pn2o5	ptot	t	
(atm)	(atm)	(menit)	t (s)
1.000	1.000	0	0
0.980	1.030	10	600
0.960	1.060	20	1200
0.941	1.089	30	1800
0.922	1.117	40	2400
0.904	1.145	50	3000
0.885	1.172	60	3600

Menggunakan regresi akan didapati reaksi ini berorde 1 (A)

PELATIHAN ONLINE 2019 KIMIA – PAKET 2

- 11. Regresi dari data nomor 10 mendapatkan nilai $k = 3,38 \times 10^{-5} \text{ s}^{-1}$
- 12. $\ln [A]_t = \ln [1] 3,38 \times 10^{-5} \text{s}^{-1} \times 60 \text{ menit } \times 60 \text{ s/menit}$ = -0,12168 $[A]_t = e^{-0,12168} = 0,8854 \text{ atm}$ $O_2 \text{ dihasilkan} = x = \frac{1}{2}(1 - 0,8854) = 0,06 \text{ atm (C)}$
- 13. Memasukkan nilai k dan [A]_o maka didapat $r = k[N_2O_5] = 3,38 \times 10^{-5} s^{-1} x 60 s/menit x 2,0 atm = 4,056 x 10⁻³ atm menit⁻¹ (B)$
- 14. Penambahan katalis akan menurunkan ≒;rgi aktivasi sehingga meningkatkan nilai k reaksi ke kanan dan ke kiri (pelajari persamaan Arrhenius), penambahan katalis tidak mengubah nilai K (D)

Data berikut digunakan untuk menjawab pertanyaan 15 dan 16. Suatu percobaan pembakaran butana pada 2 suhu yang berbeda menghasilkan data berikut

k (10 ⁻³ s ⁻¹)	2,46	168,5
T (K)	273	303

15. Menggunakan persamaan Arrhenius ($k = Ae^{-Ea/RT}$), dalam reaksi yang sama dengan faktor selain suhu dikontrol untuk sama maka nilai $A_1=A_2$ sehingga didapat persamaan baru

$$\begin{aligned} \ln & k_1 + \frac{Ea}{RT_1} = lnk_2 + \frac{Ea}{RT_2} \text{ atau dapat ditata ulang menjadi} \\ \ln & \frac{k_1}{k_2} = \frac{Ea}{R} \big(\frac{1}{T_2} - \frac{1}{T_1} \big) \end{aligned}$$

dengan memasukkan nilai k dan T akan didapat

$$\ln \frac{2,46 \times 10^{-3}}{0,1685} = \frac{Ea}{8,314 \text{ J/molK}} \left(\frac{1}{303} - \frac{1}{273} \right)$$

Ea = 96900 J = 96,9 kJ (A)

16. Nilai A ditentukan dengan memasukkan kembali nilai Ea ke salah satu kondisi di persamaan Arrhenius

$$k = Ae^{-Ea/RT}$$

2,46 x 10⁻³ = $Ae^{-96900/(8,314J/molKx273K)}$
A = 8,55 x 10¹⁵ (D)

17. Diketahui peluruhan radioaktif mengikuti kinetika orde 1:

Dalam orde 1:

In2 =
$$kt_{1/2}$$

k = $\frac{ln2}{t_{1/2}}$ =0,0867 hari⁻¹

PELATIHAN ONLINE 2019 KIMIA – PAKET 2

menentukan umur larutan:

$$\begin{split} & \ln[A]_t = \ln[A]_0 - kt \\ & \ln \frac{[A]_t}{[A]_o} = -0,0867 \text{hari}^{-1} t \\ & t & = \frac{\ln(0,1)}{-0,0867 \ hari^{-1}} = 26,6 \ \text{hari} \approx 27 \ \text{hari} \ \text{(C)} \end{split}$$

18. Tentukan nilai k :

$$\begin{array}{lll} \ln 2 & = kt_{1/2} \\ k & = \frac{ln2}{t_{1/2}} = \frac{ln2}{5,2714 \ tahun} = 0,1315 \ tahun^{-1} = \frac{0,1315 \ tahun^{-1}}{365 \frac{hari}{tahun} x \ 24 \frac{jam}{hari} x 3600 \frac{s}{jam}} = 4,1698 \ x \ 10^{-9} \ s^{-1} \\ & \text{aktivitas tiap 1 g Co-60} = \frac{1}{60} x 6,02 x 10^{23} x 4,1698 x 10^{-9} s^{-1} = 4,1837 x 10^{13} \ dps = \frac{4,1837 x 10^{13} \ dps}{3,7 \ x \ 10^{10} \ dps/curie} = 1130,7 \ Curie \end{array}$$

untuk mengobati kanker 20 g dibutuhkan = 20 g x 86
$$\mu$$
Curie/g = 1720 μ Curie mCo-60 dibutuhkan =
$$\frac{1720\mu Curiex10^{-6}Curie/\mu Curie}{1130,7\ Curie/g}$$
=1,52 x 10⁻⁶ g ~ (B)

19. Tinjau persamaan t_{1/2} untuk setiap orde

Orde 0 :
$$t_{1/2} = [A]/k$$

Orde 1 : $t_{1/2} = ln2/k$
Orde 2 : $t_{1/2} = \frac{1}{2[A]k}$

Dari data dapat dilihat bahwa $t_{1/2}$ berbanding lurus dengan konsentrasi [P] sehingga dapat disimpulkan ordenya nol (A)

20. Misal pada percobaan 1, [NO]=A, [H₂]=B

$$r_1 = k[A]^2[B]$$

pada percobaan 2 digunakan [NO] =2A, [H₂]=B/2

$$r_2 = k[2A]^2[B/2]$$

= $2k[A]^2[B]$
= $2r_1(C)$