DLHLP HW3 Report

組長 Githud ID: wubinary 組員: 徐均筑 R08921040 吳彬睿 R08942087

- 1. (5%)請記錄 evaluate.log 裡面的SiSNR 數值,和當時所用的 hyperparameter(這一題請3-1不用PIT, 3-2用PIT)
 - 3-1 without PIT

Average SDR improvement: 17.34 Average SISNR improvement: 17.09

• 3-2 with PIT

Average SDR improvement: 10.98
Average SISNR improvement: 10.46

Hyperparameter

	3-1 without PIT	3-2 with PIT	
N (# of filters)	128	256	
L (lenght of filters)	40	20	
B (# of channels in bottlneck)	128	256	
H (# of channels in conv)	256	512	
P (kernel size)	3	3	
X (# of conv block)	7	8	
R (# of reapeats)	1	4	
norm_type	gLN	gLN	
causal	0	0	
mask_nonlinear	relu	relu	
С	2	2	
Epoch	100	14	
Si-SNR	17.09	10.46	

- 2. (5%)嘗試調整不同的hyperparameter, 比較其差異, 並試著分析結果(至少針對2種不同的hyperparameter進行實驗)
 - The experiments below are under closed-condition (CC) (seen speaker) without PIT and open-condition (OC) with PIT.

Repeat

N	128	128	128
L	40	40	40
В	128	128	128
Н	256	256	256
Р	3	3	3
Х	7	7	7
R	1	2	3
Si-SNR (CC)	17.71	19.32	20.41
Si-SNR (OC)	7.21	8.91	9.31

• The number of filters in autoencoder

N	64	128	256	512
L	40	40	40	40
В	128	128	128	128
Н	256	256	256	256
Р	3	3	3	3
Х	7	7	7	7
R	1	1	1	1
Si-SNR (CC)	15	17.71	18.12	18.54
Si-SNR (OC)	6.64	7.21	7.53	7.69

● 分析

從數據中可以發現 R和 N 越大通常 performance 越佳,但 model size 也隨之增大。另外通常有 saturation 的現象存在,當 model size 到達一定程度時,提升 R 或 N 所帶來的 Si-SNR 的提升會逐漸趨緩。

3. (3%)3-1, 3-2請分別試看看有無PIT的差異並記錄結果(loss learning curve, Si-SNR)

• 3-1 with PIT

Average Si-SNR: 17.69

• 3-1 without PIT

Average Si-SNR: 17.71

3-2 with PIT

Average Si-SNR: 7.21

• 3-2 without PIT

Average Si-SNR: 1.81

4. (2%)思考一下為何有無PIT會影響3-1, 3-2的結果並寫下你的看法

在不同的 frame 之間最佳的 output-speaker assignment 可能有所改變,因此若沒有使用 PIT 會造成較差的 Si-SNR,特別在 [1] 之中有提到在相同性別以及 output window size 蠻小的時候,有無使用 PIT 的效果會很明顯。另外相較於 open condition (HW3-2), closed condition (HW3-1) 的效果反而差了些許,原因在於測試時是以訓練所使用的 speaker,在無使用 PIT 的情況下 model 能更好的針對這兩個 speaker 去調整,因此得到的 model 表現在已知的 speaker 較佳,但卻犧牲了 generalization。

Bonus(2%):

請自己找兩段音訊合起來(請不要使用作業給的data)測看看是否能成功分離 ,上傳音訊(含原音檔、合成後音檔及經過model分離的音檔),紀錄Si-SNR 於report中,並給出至少一種improve Si-SNR的方法(調參數除外)。

結果:

Average SDR improvement: 3.06 Average SISNR improvement: 2.47

Improve Si-SNR 方法:

將訓練過的 Conv-Tasnet 視作 pretrained autoencoder, 只取 encoder 的部分, 利用 Deep Clustering 的方法去進行訓練, 得到更好的 embedding, 最後再根據此 embedding 做 K-means Clustering, 得到最後的 mask。

References

- [1] D. Yu, M. Kolbk, Z.-H. Tan, J. Jensen, "Permutation invariant training of deep models for speaker-independent multi-talker speech separation", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 241-245, 2017
- [2] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, "Multitalker speech separation with utterance-level permutation invariant training of deep recurrent neural networks", IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 10, pp. 1901–1913, 2017