Network neutrality inference

Zhiyong Zhang, Ovidiu Mara, Katerina Argyraki

EPFL, UESTC

Transparency

- Neutrality violation should be transparent
- Is it feasible to externally_observe neutrality violations?
- Is it feasible to <u>localize</u> them to specific links?

Inconsistent observations

When the network is non-neutral, if we make diverse external observations, these will be inconsistent with each other.

- Input: network topology, path measurements
- Output: link properties
 - average loss rate
 - average latency
 - congestion status
 - congestion probability

- Input: network topology, path measurements
- Output: link properties
 - average loss rate
 - average latency
 - congestion status
 - congestion probability

- Input: network topology, path measurements
- Output: link properties
 - average loss rate
 - average latency
 - congestion status
 - congestion probability

$$P\{p_1 good\} = P\{l_1 good\} * P\{l_2 good\}$$


```
P\{p_1 good\} = P\{l_1 good\} * P\{l_2 good\}
log(P\{p_1 good\}) = log(P\{l_1 good\}) + log(P\{l_2 good\})
```



```
P\{p_1 good\} = P\{l_1 good\} * P\{l_2 good\}
log(P{p_1 good}) = log(P{l_1 good}) + log(P{l_2 good})
        Y_1 = X_1 +
                                    X_2
```

$$Y_1 = X_1 + X_2$$
 $p_1 p_2$

link properties (unknowns)

Tomography and neutrality

Tomography fundamentally assumes network neutrality

A link has the same property for all paths that traverse that link

Neutrality and tomography

In a neutral network, any tomographic system of equations has a solution

If we find an <u>un</u>solvable system, this indicates neutrality violation

Outline

- Observability of neutrality violations
- Localization of neutrality violations
- Algorithm + results

Outline

- Observability of neutrality violations
- Localization of neutrality violations
- Algorithm + results

$$Y_1 = X_1 + X_2$$
 $Y_2 = X_1 + X_3$
 $Y_3 = X_3 + X_4$

$$0 = X_1 + X_2$$
 $0 > Y_2 = X_1 + X_3$
 $0 = X_3 + X_4$

$$0 = \chi_{1}^{0} + \chi_{2}^{0}$$

$$0 > Y_{2} = \chi_{1}^{0} + \chi_{3}^{0}$$

$$0 = \chi_{3}^{0} + \chi_{4}^{0}$$

Observable neutrality violation

$$0 = \chi_{1}^{0} + \chi_{2}^{0}$$

$$0 > Y_{2} = \chi_{1}^{0} + \chi_{3}^{0}$$

$$0 = \chi_{3}^{0} + \chi_{4}^{0}$$

$$Y_1 = X_1 + X_2$$

 $Y_2 = X_1 + X_3$

$$0 = X_1 + X_2$$

 $0 > Y_2 = X_1 + X_3$

$$0 = \chi_1^{0} + \chi_2^{0}$$

$$0 > Y_2 = \chi_1^{0} + (\chi_3)$$

Non-observable neutrality violation

$$0 = \chi_1^0 + \chi_2^0$$

$$0 > Y_2 = \chi_1^0 + \chi_3^0$$

Equivalent neutral network

Any non-neutral network has a <u>neutral equivalent</u>

A neutral network that:

given the same traffic input would produce the same external observations as the non-neutral network.

Equivalent neutral network

A purely theoretical construct

Enables to formally specify which neutrality violations are externally observable

Non-observable neutrality violation

neutral equivalent

original

Non-observable neutrality violation

Non-observable neutrality violation

Non-observable neutrality violation

Observable neutrality violation

neutral equivalent

original

Observability

Neutrality violation is externally observable, if and only if there exists at least one distinguishable virtual link in the equivalent neutral network.

Outline

- Observability of neutrality violation
- Localization of neutrality violations
- Algorithm + results

$$0 = X_1 + X_2$$

 $0 > Y_2 = X_1 + X_3$

$$0 = X_1^{0} + X_2^{0}$$

$$0 > Y_2 = X_1^{0} + X_3$$

$$0 = \chi_1^{0} + \chi_2^{0}$$

$$0 > Y_2 = \chi_1^{0} + \chi_3^{0}$$

$$0 = X_1^{0} + X_2^{0}$$

$$0 > Y_2 = X_1^{0} + X_3$$

$$Y_2 = X_1 + X_3$$
 $Y_3 = X_1 + X_4$
 $Y_{23} = X_1 + X_3 + X_4$

$$0 = X_1^{0} + X_2^{0}$$

$$0 > Y_2 = X_1^{0} + X_3$$

$$Y_2 = (X_1) + X_3$$
 $Y_3 = X_1 + X_4$
 $Y_{23} = X_1 + X_3 + X_4$

$$0 = X_1^{0} + X_2^{0}$$

$$0 > Y_2 = X_1^{0} + X_3$$

$$Y_2 = (X_1) + X_3$$
 $Y_3 = X_1 + X_4$
 $Y_{23} = X_1 + X_3 + X_4$

Localizable violation

$$0 = \chi_1^{0} + \chi_2^{0}$$

$$0 > Y_2 = \chi_1^{0} + \chi_3^{0}$$

$$Y_2 = (X_1) + X_3$$
 $Y_3 = X_1 + X_4$
 $Y_{23} = X_1 + X_3 + X_4$

Localizability

We can <u>localize</u> a neutrality violation to a particular link sequence,

if there exist at least two <u>path pairs</u> that intersect exactly at this link sequence (...)

Outline

- Observability of neutrality violation
- Localization of neutrality violations
- Algorithm + results

Algorithm

- Considers each link sequence
- Identifies path pairs that intersect exactly at this link sequence
- Checks whether these form an <u>un</u>solvable tomographic system of equations

Measurements

- Divide time into intervals
- Measure "congestion probabilities"
 - count the intervals in which a path or a pair of paths is congestion-free

Output

- Non-neutral link sequences
 - include at least one non-neutral link
 - satisfy our localization condition

Metrics

- False positives
 - fraction of neutral links that are in a link sequence that is misclassified as non-neutral
- False negatives
 - fraction of non-neutral links that are not in a link sequence that is classified as non-neutral
- Granularity
 - average size of link sequences classified as non-neutral

Evaluation platform

- Network emulator (LINE)
 - virtual interface per end-host
 - runs in user space
- Real network stacks, TCP traffic
- Real packet queues, policers, shapers
 - (in software)
- Simulated transfer and propagation delay

Simplest setup: uniform traffic

- Two traffic classes: high and low priority
- ▶ All traffic has <u>the same</u> TCP flow properties
- All links implement drop-tail policy
- Non-neutral links police low-priority at 30%

Results

- No false positives
- No false negatives
- ► Granularity: 1.8

Under the hood

Link sequence

Under the hood

In the paper

- Theoretical assumptions
 - link independence, class correlation
- Solutions to practical problems
 - TCP cautiousness, loss burstiness
- Other experimental setups
 - varying flow sizes, RTTs, congestion control algorithms, policing/shaping rates

Related work

- Detection of application-layer and transport-layer differentiation
 - DiffProbe, Kanuparthy and Dovrolis, 2010
 - Glasnost, Dischinger et al., 2010
- Detection of traffic shaping
 - ShaperProbe, Kanuparthy and Dovrolis, 2011
 - Packsen, Weinsberg et al., 2011

Contributions

- Detection on neutrality violations independently from differentiation criteria
 - iff there exists a distinguishable virtual link in the neutral equivalent
- Localization of neutrality violations to specific link sequences
 - if there exist two path pairs that intersect exactly at that link sequence (...)