Maize Production Environments Revisited

A GIS-based Approach

A.D. Hartkamp, J.W. White, A. Rodríguez Aguilar,

Natural Resources Group

M. Bänziger, G. Srinivasan, G. Granados,

Maize Program

J. Crossa, Biometrics and Statistics Unit

NRG

Natural Resources Group

The Maize Program

Maize Production Environments Revisited

A GIS-based Approach

A.D. Hartkamp, J.W. White, A. Rodríguez Aguilar,

Natural Resources Group

M. Bänziger, G. Srinivasan, G. Granados,

Maize Program

J. Crossa, Biometrics and Statistics Unit

The authors would like to thank Larry Harrington, CIMMYT Natural Resources Group, as well as Greg Edmeades, Shivaji Pandey, and other members of the CIMMYT Maize Program for their support, ideas and comments. CIMMYT science writer, Mike Listman, edited and coordinated production of this publication, and designers Wenceslao Almazán and Miguel Mellado deserve credit for the attractive and readable layout and cover.

Contents

- 1 Executive summary
- 3 Introduction
- 4 Previous ME classification methods
- 6 GIS-based approaches
- 7 Methodology for this study
- 8 Results and discussion
- 11 Conclusions
- 12 References
- 13 Appendices

Tables

- 2 Table 1. Descriptions, regions, countries, and key sites associated with global maize mega-environments.
- 5 Table 2. Agroclimatic criteria used for the maize environment classification by Dowswell et al. (1996).
- 5 Table 3. Maize ME Update Committee classification, 1991.
- 9 Table 4. Cluster mean values for variables: daylength, temperature difference, mean temperature, precipitation and evapotranspiration.
- Table 5. Cluster criteria for revised maize mega-environments, including subdivisions based on precipitation, for a 4-month growing season.

Appendices

- 13 Appendix A. Estimated area and production percentages for maize mega-environments, derived from the 1987-1988 mega-environment survey.
- 14 Appendix B. Maize mega-environment updates using FAO information, 1990 and 1996.
- 15 Appendix C. Maize mega-environments in South America using the 1991 classification criteria.
- Appendix D. Latin America maize mega-environment production breakdown created by overlaying crop distribution (Hyman et al. 1998) and 1991 mega-environment area maps.
- 19 Appendix E. Locations selected for GIS-based cluster analysis.
- Appendix F. Clusters for 220 unique maize international testing sites using four consecutive monthly environmental variables starting from the 'best bet' planting date.
- Appendix G. Post classification of selected locations according to the new and 1991 classifications.
- 32 Appendix H. Zonal maps of maize mega-environments made using trigger season planting.

(Centerfold: A simplified map of maize mega-environments created by removing precipitation criteria.)

Executive Summary

To improve the targeting of germplasm by its staff and partners, in the 1980s CIMMYT defined a set of global maize production environments known as "mega-environments" (MEs). Center staff interviewed research partners in approximately 70 maize producing countries of the developing world. Based on the results, the major, non-temperate maize production ecologies were subdivided into 30 large, not necessarily contiguous areas according to such factors as maturity, preferred grain color and texture, and important production constraints (drought, low N conditions, diseases, insect pests). These ME definitions are very useful for targeting and priority setting, but also have shortcomings. They are based on expert knowledge and are therefore subjective. Crop losses due to diseases, pests and abiotic stress factors are estimated and not based on trials. The timing and severity of common stresses are not defined, thus precise aggregation of areas with similar stress ratings is difficult. Furthermore, definitions focus on regions where CIMMYT has strong contacts, leaving some areas poorly characterized. In some regions, different MEs overlap, making the system difficult to use. Finally, maize cropping locations, circumstances, and systems have changed considerably since the original ME study, but updating of MEs has been sketchy for lack of resources to do a complete, methodical revision.

This publication presents a revision of the maize MEs that draws on geographic information systems (GISs). A cluster analysis was performed on climate data, representing a four-month growing season, for key maize producing locations. The onset of the growing season was determined based on the month when the ratio of precipitation over potential evapotranspiration exceeds 0.5, assuming rainfed production conditions. Diagnostic criteria for mapping MEs were based on cluster analysis results and expert knowledge, and resulted in divisions based on daylength, mean temperature, and precipitation. The resulting maps and classifications can be used to select appropriate target environments for maize germplasm and trials at the regional level, as well as in priority setting and site selection for global maize breeding programs. The full ME classification and map (Table 5 and Appendix H) is more detailed than many users will want to deal with, so a simplified map (Centerfold) and table of criteria (Table 1) were prepared that eliminate the subdivisions based on precipitation. In any case, the creation of surfaces for precipitation is more problematic than for temperature. Variation in precipitation often shows no relation to elevation, and precipitation amounts may change rapidly over relatively short distances (e.g., in rain shadows). We expect that users of the map will usually have a good understanding of such local variation.

The ME definitions need further refinement using actual maize production¹ and distribution data; long-term trial results that represent genotype-by-environment interaction and the incidence and severity of stresses; improved data on soils; information on consumer preferences; and the identification of irrigated maize areas in developing countries, to name a few important factors.

¹ Including planting dates for main and secondary seasons.

Table 1. Descriptions, regions, countries, and key sites associated with global maize mega-environments.

ME	Name	Daylength (h)	Mean temperature (°C)	Description *
1	Tropical lowland	11-12.5	>=24	Equatorial Central and South America and Southeast Asia, as well as coastal regions of Africa. Largely high humidity, rainfed systems. Includes some winter season regions at higher latitudes. Key sites: Suwan (W), Thailand; Bangalore (W), India;
				Tarapoto, Peru; Mvuazi, DRC; Kwadoso, Ghana.
2	Tropical midaltitude	11-12.5	>= 18 < 24	Much of inland equatorial sub-Saharan Africa, Central and South America. Key sites: Sete Lagos, Brazil; Palmira, Colombia; Turrialba, Costa Rica; Nazareth, Ethiopia; Embu, Kenya; Poza Rica (W), Mexico
3	Tropical highland	11-12.5	< 18	Equatorial highlands, typically over 2,000 masl. Key sites: Rio Negro, Colombia; Ambo, Ethiopia; Cajamarca, Peru
4	Non-equatorial Tropical - Subtropical lowland	12.5-13.4	>=24	Major environment of Central and South America, sub-Saharan and West Africa and Asia. Key sites: Ludhiana, India; Chiredzi, Zimbabwe; Santa Cruz, Bolivia; La Ceiba, Honduras; Poza Rica (S), Mexico; Tlaltizapan (S), Mexico; Suwan (S), Thailand.
5	Non-equatorial Tropical - Subtropical midaltitude	12.5-13.4	>= 18 < 24	Major environment of sub-Saharan Africa and the Mexican highlands. Typically less than 1,800 masl. Usually rainfed but with large variation in rainfall. Key sites: Harare, Zimbabwe; Celaya, Mexico.
6	Non-equatorial Tropical - Subtropical highland	12.5-13.4	< 18	Many scattered highland regions of Central and South America and Africa. Typically over 1,800 masl. Key sites: El Batan, Mexico; Thaba Seka, Lesotho.
7	Subtropical winter hot	< 11	>=24	No regions fit these criteria. The category is included only for completeness. Key sites: None.
8	Subtropical winter warm	< 11	>= 18 < 24	Typically irrigated regions at lower elevations. Key sites: Los Mochis (W), Mexico; Joydebpur (W), Bangladesh.
9	Subtropical winter cold	<11	< 18	Very limited area with cool, subtropical climate, but no frost in winter season. Key sites: Good Hope, Botswana.
10	Subtropical -Temperate hot	>= 13.4	>=24	Ranges from very dry irrigated to humid rainfed environments. Key sites: Sakha, Egypt; Chokwe, Mozambique; Rampur (S), Nepal; Islamabad, Pakistan; Temple, Texas.
11	Subtropical -Temperate warm	>= 13.4	>=18 <24	Major temperate maize production regions of USA and China. Key sites: Kunming, China; Lumle, Nepal; Potchefstroom, South Africa; Toulouse, France; Ferrara, Italy; Pyongyang, North Korea; Ames, Iowa, USA; Davis, California, USA.
12	Subtropical -Temperate cold	>= 13.4	< 18	Highest latitude regions where maize production is possible. Key sites: La Platina, Chile; Guelph, Ontario; Orleans, France.

^{*} For key sites, S = summer season and W = winter season.

Maize Production Environments Revisited: A GIS-based Approach

Introduction

In agricultural research and development, priorities are often set and promising technologies targeted within particular crop production settings, taking into account spatial variation in biophysical and socioeconomic factors. Agricultural production environments vary by climate (a function of latitude, altitude, and other factors), soil and related aspects, consumer and producer preferences, accessibility, and input use, among other things. The effectiveness of agricultural interventions - improved cultivars, agronomic management practices, decision support systems - depends on these factors. Thus, researchers often define the limits of an environment within which a given technology is applicable.

When the CIMMYT Maize Program began developing germplasm for maize production environments in the developing world 35 years ago, it adopted a strategy for efficiently applying resources to a range of needs and problems. That strategy involved grouping the world's maize production regions into major ecologies: the lowland tropics, the subtropics, midaltitude regions, and the highlands. By the late 1980s, the Program had subdivided these ecologies into 30 areas called mega-environments (MEs) in 70 countries. MEs were defined as the largest subunits of a crop's growing or target environment within which a particular variety or related practice was useful (Pham and Edmeades 1987; CIMMYT 1989b; Delacy et al. 1994). For the Maize Program at that time, it involved such factors as maturity, preferred grain color and texture, and production constraints (e.g., drought, low N conditions, diseases, insect pests) to which the germplasm must be resistant or tolerant. The typical ME encompassed large (in excess of 1 million ha), not necessarily contiguous areas in several countries (CIMMYT 1989a).

Use of the ME concept at CIMMYT

Mega-environments were originally intended to help crop breeders manage genotype-byenvironment interaction and extrapolate successful varieties and results from one site or region to other locations where they might have potential use. The relative size of each ME together with considerations such as impact on the poor, likeliness of success, and the presence of alternative suppliers — was a key criterion in strategic planning and the subsequent allocation of resources during the late 1980s and early 1990s (CIMMYT 1989a). Since then, the concept has also been applied in designing and testing new crop management practices (Sayre and Moreno Ramos 1997; CIMMYT Annual Report 1999) and other products of research by CIMMYT and its partners. The ME concept has proven useful for setting priorities, planning strategy, and collaborating with researchers worldwide (CIMMYT 1990).

Refining ME definitions

CIMMYT initially characterized maize and wheat production environments through consultation with regional staff and scientists in national programs (CIMMYT Maize Program 1988;

CIMMYT 1989b). The criteria used were semiquantitative, and there was frequent discussion about whether the classification of environments could be revised using more objective and easily reproducible measures. The development of geographic information systems (GIS), as well as improved coverage and reliability in data for factors such as climate, soils, and topography, offered a way to achieve this, as demonstrated in preliminary work by Pollak and Corbett (1993).

This paper describes a GIS-based approach for refining the definition of maize MEs. It reviews the origin of the ME concept in more detail, summarizes various iterations of maize MEs, and concludes with a version that uses daylength, temperature, and season rainfall as classification criteria.

Previous ME Classification Methods

The first global ME study: 1985-1988

The first initiatives at CIMMYT to assemble ME information started in 1977 for wheat. Regional and national program staff were asked to identify major production regions by country, setting a lower limit of harvested area of 100,000 ha annually. These regions were described in terms of area; crop type; moisture conditions; incidence of heat, cold, and drought; maturity requirements; and the average annual loss to specific diseases and insects. By 1985, after several iterations of data collection and analysis, rough maps of national production regions were available and a computerized database was produced (CIMMYT 1989b).

Tropical maize is grown over a wider range of environments than wheat and interacts more closely with its environment, making the ME approach potentially more useful for maize. When CIMMYT began to define global maize MEs in 1985, it used the same approach as for wheat, except that losses from pests and diseases were considered and greater attention paid to preferences for grain texture and color. The main criteria were elevation and climate zones (Appendix A). The information was computerized and rough maps of 30 MEs, as drawn by the numerous contributors, were published in 1988. This reference, often referred to as "The Yellow Book" (CIMMYT Maize Program 1988), has since been an important tool for CIMMYT and its partners. A summary table was developed (CIMMYT 1989c) in which not only area but yield level and grain production were estimated (Appendix A). Production data could be weighted by factors such as utilization (food vs feed), per capita income, relative strength of a national program, or emphasis on a particular region (e.g., sub-Saharan Africa).

Updating the global ME 1985-88 survey results

The construction of a database from expert knowledge was very expensive, making it impracticable to update the ME definitions comprehensively on a regular basis. Because biannual updates of maize area, production, and yield were needed, the 1985-88 estimates were increased with correction factors derived from FAO country level statistics. The areas of all MEs in a given country were automatically increased at the same ratio as the increase for the country's entire maize area.

Table 2. Agroclimatic criteria used for the maize environment classification by Dowswell et al. (1996).

		seaso	owing on ire (°C)		
Environment	Min.	Max.	Mean	Altitude	Latitude
				(masl)	
Tropical	22	32	28	<1,000	33° or lower
Subtropical	17	32	25	<1,600	23-33°
II .	17	32	25	1,000-1,800	23° or lower
Temperate	14	24	20	<500	34° or higher
Highland	7	24	16	>1,800	23° or lower
	9	25	18	>1,600	23-34°

In publications on the impact of international maize breeding (Lopez-Pereira and Morris 1994; Morris 1998), the 1985-1988 ME classification was updated with information from the FAO AGROSTAT (FAO 1990) database (see Appendix B; Tables B.1 and B.2). Dowswell et al. (1996) suggested a more expanded table with agroclimatic criteria (Table 2). Using information from the 1985-1988 study, they produced an area table by region (Appendix B; Table B.3).

Classification of testing sites with point based meteorological data

In 1989, an attempt was made to classify maize testing sites in sub-Saharan Africa (Pollak and Pham 1989). Forty-two sites from sub-Saharan Africa were used to create seven clusters. Fifty-two monthly agroclimatic variables from ten years of meteorological data from those sites were used. The classification used Ward's method of cluster analysis and canonical discriminant analysis. They identified four lowland regions, two midaltitude regions, and one highland region. Lowland regions were separated into 1) high rainfall, 2) warm temperatures and high rainfall, 3) low minimum temperature, and 4) very high temperature.

The 1991 classification attempt

In 1991, an interdisciplinary group was formed at CIMMYT to redefine maize MEs using more objective criteria. An initial effort resulted in the criteria shown in Table 3. These classification criteria were to be sent to CIMMYT outreach staff and collaborating national programs, as was done in 1985, but with the hope of obtaining more objective and reproducible area estimates. The effort never went further, due to funding constraints.

Limitations to previous classification approaches

The 1985-88 study is still widely used in international maize research, including the private sector (McCarter 1998, personal communication). This testifies to the overall utility of the ME concept and the robustness of the maize MEs defined largely on expert knowledge. However, several limitations of this approach are apparent.

The definition of environments is subjective. For example, terms such as "midaltitude" and "subtropical" are sometimes used interchangeably where germplasm requirements are similar, so

Table 3. Maize Mega-Environment Update Committee classification, 1991.

Ecology	Mean growing season temperature (°C)	Elevation (masl)	Latitude
Lowland tropics	>24	0-1,000	30°N-30°S
Midaltitude tropical	20-24	800-1,800	30°N-30°S
Subtropical	20-24	-	>20°N & >20°S
Tropical highland			
transition	17-20	1,500-1,800	30°N-30°S
Tropical highland	12.5-17	>2,000	30°N-30°S
Temperate	20-22	-	>30°N & >30°S
Highland temperate	15-20	-	>30°N & >30°S

results are not easily reproducible, and the two types of ME are not separated well enough. (The 1985-88 classification created many overlapping subdivisions in certain regions.) Crop losses due to diseases, pests and abiotic stress factors are estimated, rather than being based on trial results. The timing and severity of common stresses are not defined, even though they may strongly affect the extent of crop losses. As a result, an assessment of one stress factor in a given region may not really be comparable to the same level of stress identified in another region. This makes the aggregation of areas with similar ratings for various stress factors imprecise. The same applies for the use of elevation: perceptions of "lowland," "midaltitude," and "highland" can vary among maize researches, especially across regions and where countries have established their own classifications. Moreover, the ME definitions described above focus on regions where CIMMYT has strong contacts, leaving certain areas in Asia, for example, poorly characterized. Finally, maize cropping locations, circumstances, and systems have changed considerably since the original ME study, but updating of the definitions has been sketchy for lack of resources to do a more complete, methodical revision.

GIS-based Approaches

To avoid confusion in terminology, update area and production data, identify non-overlapping MEs, and introduce more useful, diagnostic variables, CIMMYT proposed in 1996 to redefine global maize MEs using geographic information systems (GIS). Use of a GIS can ensure that criteria are applied consistently across regions. Furthermore, a GIS can combine or link many types of data (climate and soils, pests and diseases, socioeconomic factors) by overlaying and merging them.

The availability of environmental data has improved greatly with the development of GIS. Elevation data on a 1-km grid are available for the entire globe (USGS 1997). Climate data, including long-term monthly means for maximum and minimum temperature and totals for precipitation and potential evapotranspiration, are available as interpolated surfaces with a grid cell size typically of 5 to 10 km² (Corbett and O'Brien 1997). The interpolation procedures used can allow for elevation effects and normally offer more accurate results than simple estimations of climate based on reference to the nearest station (Hartkamp et al. 1999). Obtaining detailed and reliable soil and crop distribution data is still problematic. The best global soil database is the FAO digital soil map of the world (FAO 1996) at a 1:5,000,000 scale. Crop distribution data are available for Latin America (Hyman et al. 1998) and efforts to obtain similar data for Africa are under way (P. Thornton, personal communication). 2

A first attempt to define maize ecologies using GIS-based approaches was made by Pollak and Corbett (1993) for Central America and Mexico. They clustered grid cells based on elevation and mean monthly precipitation and temperature data during the growing season (April through October). Ten ecologies were identified: three lowland, three highland, two subtropical, and two transitional from subtropical to highland.

Gebrekidan et al. (1992) and Corbett (1998) proposed a geographic approach to define maize production environments for Kenya. The ecologies (lowland, midaltitude, transitional, and highland) are based on altitude and a cutoff between moist (> 550 mm) and dry (< 550 mm) for the growing

² Crop distribution data are critical sources of information on area and production, essential to the definition of maize production environments.

season (March to August). The moist transitional zone (1,200 to 2,000 masl, > 550 mm) accounts for the largest portion (41%) of the total maize area.

Criteria from the aborted 1991 study were later used at CIMMYT to create global maps representing maize production zones. An example is given for South America in Appendix C. The growing season was determined using the Spatial Characterization Tool (SCT) "optimal season" climate model (Corbett and O'Brien 1997). The optimal season is defined as the five-month period with the largest ratio of precipitation over potential evapotranspiration. Mean growing season temperatures were replaced by minimum and maximum temperature ranges (-6°C and +6°C from the mean temperature). This approach is only approximate, because diurnal temperature ranges in lowland tropical areas are typically smaller than in the highlands. Data on the start and length of the onset of the growing season were estimated by assuming that the ratio of precipitation to potential evapotranspiration exceeds 0.5 during the season ("trigger season" climate model). This approach has proven useful in targeting different maturity classes of maize in sub-Saharan Africa, although the 0.5 limit appears to be too high for most drier areas where maize is sown at low densities (Hodson et al. 1999).

In a regional refinement to this global classification, maize areas were assigned to ME climatology zones in Latin America, based on maize production data. A crop distribution database for Latin America was developed by the GIS group at the Centro Internacional de Agricultura Tropical (CIAT; Hyman et al. 1998). Disaggregated, municipality-level maize production information was reclassified to identify municipalities where at least 10,000 ha of maize was grown, applying a probability model that included infrastructure, transportation access, and

location of populated areas. The crop distribution information for maize was then overlaid on the ME zonal maps for Latin America by country (Appendix D).

Methodology for this Study

About 150 representative sites were selected from records for international maize trials, and approximately 70 sites were added to cover regions where trials had not been conducted (Appendix E).³ Information on planting dates was compiled from international trial reports and in consultation with maize researchers. A separate set of planting dates was obtained using the climate models for the trigger and optimal seasons, as defined in the SCT environmental database (Corbett and O'Brien 1997). Monthly climate data for the selected sites were obtained using the climate surfaces. For Africa and Latin America, gridded climate surfaces were derived from Corbett and O'Brien (1997). For Asia, gridded climate surfaces were derived from Jones (1998). Starting with the reported month of planting, variables from the first four consecutive months were taken. This interval was chosen to represent a 120-day maize crop cycle.

Daylength (d) was estimated using the algorithm of Goudriaan and Van Laar, (1994):

```
d=12 * [1+ (2/pi) * asin(a/b)]

a = sin(lat)*sin(om) b = cos(lat)*cos(om)

sin(om) = - sin (pi * 23.45/180) * cos

(2 * pi * (td + 10)/365),

where:

lat = latitude

td = day of year.
```

The geographical coordinates of these sites were carefully checked.

To represent the daylength that affects floral initiation, three values for *td* were used: 15 days, 30 days, and 45 days after planting date.⁴

For the hierarchical cluster analysis, Ward's clustering procedure (Ward 1963) within SAS 6.12 (SAS Institute 1998) was used. All variables (daylength, temperature difference, mean temperature, precipitation and evapotranspiration) were standardized by subtracting the mean and dividing by the standard deviation. Cluster distance was not stable enough to determine an optimal number of clusters, so a maximum of 15 clusters was allowed, since this was considered to provide a manageable number of MEs. Clusters were estimated based on daylength and the first four monthly mean climate variables derived from:

- Planting dates as reported in the CIMMYT Maize International Testing Unit database or compiled through consultation with maize scientists.
- Planting dates as estimated based on start of the trigger season.
- Planting dates as estimated based on the start of the optimal season.

Criteria were derived from evaluating the values of the environmental variables of members within each cluster. Maize production environments were mapped and feedback from experts was sought. After several iterations this resulted in a revised set of criteria for defining maize MEs.

Results and Discussion

Planting date and clusters

Each approach to define planting date and growing season (reported, trigger season model, optimum season model) resulted in different cluster compositions. Site clusters using planting date from trigger season resembled site clusters from reported planting date more than site clusters from optimal season (data not shown). A set of "best bet" planting dates was compiled from the reported planting dates, trigger planting dates, and expert knowledge. These climate data were clustered again, giving the clusters shown in Appendix F. Mean cluster values are shown in Table 4.

Determining criteria

Classification criteria were determined from the range of values for environmental variables of the individual sites within the clusters. This was done iteratively; e.g., assuming a daylength of 13.5 h for high latitude to temperate areas and checking the sites that segregate at this criterion. This proved to segregate better at a daylength of 13.4 h. This process resulted in the use of three classification criteria: daylength, mean temperature, and seasonal rainfall over the fourmonth growing season (Table 5). After this process of determining the criteria based on membership of the selected sites to specific clusters, another application of the criteria involving maize scientists took place. For instance, analysis of the clusters suggested a different temperature criterion for distinguishing non-equatorial subtropical lowlands from nonequatorial subtropical midaltitude environments (22°C) than for distinguishing equatorial tropical lowlands from equatorial tropical midaltitude environments (24°C). Upon mapping, however (see next paragraph), this did not provide a

⁴ The 15th day of the planting month was considered the planting date.

Table 4. Cluster mean values for variables: daylength, temperature difference, mean temperature, precipitation
and evapotranspiration. M1, M2refers to month of growing season.

	Fre-	Da	ylength	(h)		Tdiffere	ence (°C))		Tmea	ın (ºC)		Pro	ecipita	tion (m	nm)	Evapo	transp	iration	ı (mm)
Cluster	quency	M1	M2	M3	M1	M2	M3	M4	M1	M2	M3	M4	M1	M2	M3	M4	M1	M2	M3	M4
1	5	12.2	12.0	11.8	7.3	7.7	8.2	8.7	27.4	27.0	25.6	23.9	243	125	66	41	170	172	166	156
2	28	12.5	12.6	12.7	10.0	9.1	8.3	8.1	28.0	27.7	27.4	27.1	116	161	196	233	190	181	169	165
3	7	10.7	10.5	10.5	14.5	15.4	15.8	16.4	21.1	18.1	17.7	20.0	16	10	12	13	142	126	126	152
4	19	12.1	12.2	12.1	7.8	7.6	7.7	8.2	25.7	25.7	25.8	26.0	182	196	177	166	109	105	107	114
5	25	12.0	12.0	12.0	11.8	10.8	10.6	11.0	21.8	21.2	20.9	20.9	95	135	119	89	117	108	104	107
6	15	12.6	12.6	12.6	9.9	9.3	9.4	9.5	26.8	26.3	26.1	26.3	279	352	364	322	131	122	120	119
7	9	12.1	12.1	12.1	9.4	8.8	8.9	9.5	15.3	15.2	15.2	15.1	172	233	190	124	89	86	82	86
8	23	12.7	12.8	12.9	11.2	9.6	9.5	9.7	22.7	22.0	21.9	21.9	145	251	244	210	137	121	117	112
9	39	13.0	13.0	13.0	12.5	11.6	11.4	11.6	24.1	23.9	24.0	24.3	129	171	163	138	144	140	135	130
10	12	13.3	13.1	12.9	14.3	13.6	14.0	14.8	21.3	20.6	20.4	20.6	97	113	97	73	149	139	125	108
11	17	12.7	12.9	13.1	14.0	13.0	12.8	13.0	14.3	14.9	15.5	16.0	81	110	119	115	112	114	118	120
12	11	13.7	13.7	13.5	9.1	7.2	7.3	7.7	26.8	26.4	26.2	25.2	218	359	348	240	228	209	210	197
13	2	13.5	13.7	13.8	9.1	6.9	5.8	6.1	23.1	24.0	24.0	23.9	327	735	1133	1061	215	200	195	200
14	5	13.5	13.5	13.4	14.1	13.3	13.2	12.8	25.4	26.8	27.2	25.8	1	3	10	22	196	204	195	171
15	4	14.1	13.9	13.7	13.9	10.4	10.5	13.7	32.5	31.0	29.8	27.8	74	139	144	53	355	295	280	280

satisfactory distinction between lowland and midaltitude environments, so we reverted to a uniform temperature criterion of 24°C to distinguish between lowland and midaltitude environments in both the equatorial tropics and non-equatorial subtropics.

Finally, locations were classified according to the new criteria. To compare classification methods, the sites were also classified using the previous classification criteria. This is depicted in the first columns of Appendix G.

Mapping maize MEs

Because the actual planting date for each map cell was not available, we used the planting date surface as defined by the trigger season model of the SCT (Corbett and O'Brien 1997) for mapping maize MEs. Moreover, planting dates as reported by collaborators conducting international maize trials may not necessarily follow the actual growing season, because they may plant late due to late arrival of seed shipments or use irrigation (which allows them to plant outside the normal season). Farmers in contrast are more dependent

on the actual start of the growing season.⁵ Daylength maps were calculated from latitude grids and the trigger season planting date (averaging values for +15, +30 and +45 days after trigger season planting date). Zonal maps were made using criteria from Table 5 (Appendix H). A simplified map (centerfold) was created by eliminating the precipitation criteria.

Use of maize mega-environment maps and information

The maize MEs provide a global characterization of the target environments for tropical maize germplasm. Potential users and applications include:

- For research managers to set priorities and allocate resources.
- For scientists to focus efforts on relevant products;
 i.e., those most urgently needed for the most important MEs. (Thus, if early-maturing, drought

The start of the trigger growing season commonly coincides with the main (summer-autumn) growing season. The secondary season is thus not represented here.

Table 5. Cluster criteria for revised maize mega-environments, including subdivisions based on precipitation, for a 4-month growing season.

No.	Name	Daylength (h)	Mean temperature (°C)	Precipitation (mm)
1a	Too dry lowland tropical	11 to 12.5	≥ 24	< 200
1b	Lowland tropical mesic	11 to 12.5	≥ 24	≥ 200 and <600
1c	Lowland tropical wet	11 to 12.5	<u>≥</u> 24	≥ 600 and <2,000
1d	Lowland tropical excess	11 to 12.5	≥ 24	≥ 2,000
2a	Too dry tropical midaltitude	11 to 12.5	> 18 and < 24	< 200
2b	Tropical midaltitude mesic	11 to 12.5	> 18 and < 24	≥ 200 and < 600
2c	Tropical midaltitude wet	11 to 12.5	> 18 and < 24	\geq 600 and < 2,000
2d	Tropical midaltitude excess	11 to 12.5	> 18 and < 24	≥ 2,000
3a	Too dry tropical highland	11 to 12.5	≤ 18	< 200
3b	Tropical highland mesic	11 to 12.5	≤ 18	≥ 200 and < 600
3c	Tropical highland wet	11 to 12.5	≤ 18	\geq 600 and < 2,000
3d	Tropical highland excess	11 to 12.5	<u>≤</u> 18	≥ 2,000
4a	Too dry non-equatorial tropical/subtropical lowland	12.5 to 13.4	≥ 24	< 200
4b	Non-equatorial tropical/subtropical lowland mesic	12.5 to 13.4	≥ 24	≥ 200 and < 600
4c	Non-equatorial tropical/subtropical lowland wet	12.5 to 13.4	<u>≥</u> 24	≥ 600 and < 2,000
4d	Non-equatorial tropical/subtropical lowland excess	12.5 to 13.4	≥ 24	≥ 2000
5a	Too dry non-equatorial tropical/subtropical midaltitude	12.5 to 13.4	> 18 and < 24	< 200
5b	Non-equatorial tropical/subtropical midaltitude mesic	12.5 to 13.4	> 18 and < 24	≥ 200 and < 600
5c	Non-equatorial tropical/subtropical midaltitude wet	12.5 to 13.4	> 18 and < 24	≥ 600 and < 2000
5d	Non-equatorial tropical/subtropical midaltitude excess	12.5 to 13.4	> 18 and < 24	≥ 2,000
6a	Too dry non-equatorial tropical/subtropical highland	12.5 to 13.4	≤ 18	< 200
6b	Non-equatorial tropical/subtropical highland mesic	12.5 to 13.4	≤ 18	≥ 200 and < 600
6C	Non-equatorial tropical/subtropical highland wet	12.5 to 13.4	<u>≤</u> 18	≥ 600 and < 2,000
6d	Non-equatorial tropical/subtropical highland excess	12.5 to 13.4	<u>≤</u> 18	≥ 2,000
7a	Subtropical winter hot dry	<u>≤</u> 11	≥ 24	< 200
7b	Subtropical winter hot mesic	<u>≤</u> 11	≥ 24	≥ 200 and < 600
7c	Subtropical winter hot wet	<u><</u> 11	≥ 24	≥ 600 and < 2,000
7d	Subtropical winter hot excess	<u>≤</u> 11	≥ 24	≥ 2,000
8a	Too dry subtropical winter warm	<u>≤</u> 11	> 18 and < 24	< 200
8b	Subtropical winter warm mesic	_ <u><</u> 11	> 18 and < 24	≥ 200 and < 600
8c	Subtropical winter warm wet	<u>≤</u> 11	> 18 and < 24	≥ 600 and < 2,000
8d	Subtropical winter warm excess	_ ≤11	> 18 and < 24	≥ 2,000
9a	Too dry subtropical winter cold	_ ≤ 11	≤ 18	< 200
9b	Subtropical winter cold mesic	_ ≤ 11	_ ≤ 18	≥ 200 and < 600
9с	Subtropical winter cold wet	_ <u><</u> 11	_ ≤ 18	_ ≥ 600 and < 2,000
9d	Subtropical winter cold excess	_ ≤ 11	_ ≤ 18	_ ≥ 2,000
10a	Too dry temperate/subtropical lowland dry	_ ≥ 13.4	_ ≥ 24	< 200
10b	Temperate/subtropical hot mesic	≥ 13.4	_ ≥ 24	≥ 200 and < 600
10c	Temperate/subtropical hot wet	≥ 13.4	_ ≥ 24	≥ 600 and < 2,000
10d	Temperate/subtropical hot excess	_ ≥ 13.4	_ ≥ 24	_ ≥ 2,000
11a	Too dry temperate/subtropical warm dry	≥ 13.4	> 18 and < 24	< 200
11b	Temperate/subtropical warm mesic	<u>≥</u> 13.4	> 18 and < 24	≥ 200 and < 600
11c	Temperate/subtropical warm wet	≥ 13.4	> 18 and < 24	≥ 600 and < 2,000
11d	Temperate/subtropical warm excess	≥ 13.4	> 18 and < 24	≥ 2,000
12a	Too dry temperate/subtropical cold dry	≥ 13.4	≤ 18	< 200
12b	Temperate/subtropical cold mesic	<u>=</u> 13.4	<u>≤</u> 18	≥ 200 and < 600
12c	Temperate/subtropical cold wet	≥ 13.4	≤ 18	\geq 600 and < 2,000
-	Temperate/subtropical cold excess	≥ 13.4	≤ 18	≥ 2,000

stressed maize turns out to occupy substantially more area than currently estimated, it may deserve increased attention.)

- For scientists to test the right type of germplasm in the appropriate environments. This should also allow a reduction in the number of testing sites.
- For national program researchers and other partners to decide which type of germplasm and trials most suit their needs.

Challenges

The ME definitions provided here need to be refined through one or several of the following:

- Development of a global database of actual maize planting dates for main and secondary seasons.
- Identification of irrigated maize production areas.
- Integration of improved data on soils.
- Integration of data on consumer preferences.
- Integration of data on the incidence and severity of diseases and insect pests.
- Linkage to crop distribution data to obtain maize production information.

For validation purposes there is a need to link the proposed maize environment definitions to data on genotype-by-environment interactions from trials across MEs; this could also improve the efficiency of international testing. The work of Crossa et al. (1993) exemplifies an effective study of genotype-by-environment interaction. They analyzed eight years of historical maize data from multi-environment trials using pattern analysis on performance data. In this way, they were able to 1) tease out long-term relationships among international maize testing environments for which breeding strategies ought to be defined and 2) assess the long-term precision of trials at the specific testing locations.

Conclusions

The ME concept has proven a useful tool for setting priorities, allocating resources, and fostering international collaboration in agricultural research and development. Use of a GIS can allow scientists to 1) define environments according to more quantitative criteria and 2) visualize how these criteria affect the location of the environments. To be fully useful, the ME definitions provided here need to be refined using actual maize distribution and production data, as well as information on major production constraints, by country. A GISbased approach can help researchers establish a framework within which other spatial data can be consulted. The ultimate goal is for researchers and other users to be able to formulate task-specific versions of the MEs or "query" a ME definition for information of interest.

References

- CIMMYT. 1989a. *Toward the 21st Century: CIMMYT's Strategy.* Mexico D.F.: CIMMYT.
- CIMMYT. 1989b. An account of how priorities are set among megaenvironments from a breeding perspective. Internal document Number 17. Mexico D.F.: CIMMYT.
- CIMMYT. 1989c. *CIMMYT's Five Year Budget: 1990-1994.* Mexico D.F.: CIMMYT.
- CIMMYT. 1990. The CIMMYT Maize Program Information Packet. Mexico D.F.: CIMMYT.
- CIMMYT Maize Program. 1988. *Maize Production Regions in Developing Countries*. Mexico D.F.: CIMMYT.
- Corbett, J.D. 1998. Classifying maize production zones. In: Hassan, R.M.(ed.), 1998, *Maize Technology Development and Transfer.* A GIS application for Research Planning in Kenya. CIMMYT-KARI-CAB International. New York: CABI.
- Corbett, J.D., and R.F. O'Brien. 1997. The Spatial Characterization Tool.

 Texas Agricultural Experimental Station, Texas A&M University
 System, Blackland Research Center. CD-ROM. College Station:
 Texas A&M University.
- Crossa, J., S. Chapman, and H. Barreto. 1993. Pattern analysis and parameters of experimental precision of historical maize data. Technical Report. Mexico D.F.: CIMMYT.
- DeLacy, I.H., P.N. Fox, J.D. Corbett, J. Crossa, S. Rajaram, R.A. Fischer, M. van Ginkel. 1994. Long-term association of locations for testing spring bread wheat. *Euphytica* 72: 95-106.
- Dowswell, C.R., R.L. Paliwal, and R.P. Cantrell. *Maize in the Third World*. Winrock Development Orientated Literature Studies. Boulder, Colorado: Westview Press.
- FAO. 1990. AGROSTAT Database. Rome: FAO.
- FAO. 1996. Digital Soil Map of the World and Derived Soil Properties. Version 3.5. FAO, Rome, Italy.
- Gebrekidan, B., B. Wafula, and K. Njoroge. 1992. Agroecological zoning in relation to maize research priorities in Kenya. In: KARI. Review of the National Maize Research Program. Proceedings of a Workshop. November 19-23, Kakamega, Kenya. Nairobi: Kenya Agricultural Research Institute (KARI).
- Goudriaan, J. and H.H. van Laar. 1994. *Modelling Potential Crop Growth Processes. Textbook with Exercises*. Current issues in Production Ecology. Dordrecht: Kluwer Academic Publishers.
- Hartkamp, A.D., K. De Beurs, A. Stein and J.W. White. 1999. Interpolation Techniques for Climate Variables. NRG-GIS Series 99-01. Mexico, D.F.; CIMMYT.
- Hodson, D.P., A. Rodriguez, J.W. White, J.D. Corbett, R.F. O'Brien, and M. Bänziger. 1999. *Africa Maize Research Atlas (v. 2.0)*. CD-ROM. Mexico D.F.: CIMMYT.
- Hutchinson, M.F. 1989. A new procedure for gridding elevation and streamline data with automatic removal of spurious pits. *Journal of Hydrology* 106: 211-232.

- Hutchinson, M.F. 1995. Interpolating mean rainfall using thin plate smoothing splines. *International Journal of GIS* 106: 211-232.
- Hyman, G., P. Jones, and G. Lema. 1998. Latin America Crop Distribution Database. CD-ROM. Cali Colombia: CIAT.
- Jones, P. 1998. Climate Surfaces for Southeast Asia. CD-ROM. Cali Colombia: CIAT.
- Lopez-Pereira, M.A., and M.L. Morris. 1994. *Impacts of International Maize Research in the Developing World, 1966-1990.* Mexico D.F.: CIMMYT.
- MacMillan, J.A., and P. Aquino. 1997. Impacts of the Mexican hybrid maize seed industry. CIMMYT Economics Program. Internal document. Mexico D.F.: CIMMYT.
- Morris, M.L.(ed.) 1998. Maize Seed Industries in Developing Countries. Boulder, Colorado: Lynne Rienner.
- Pollak, L.M., and J.D. Corbett. 1993. Using GIS datasets to classify maize growing regions in Mexico and Central America. *Agronomy Journal* 85: 1133-1139.
- Pollak, L.M., and H.N. Pham. 1989. Classification of maize testing locations in sub-Saharan Africa by using agroclimatic data. *Mavdica* 34: 43-51.
- CIMMYT. 1987. CIMMYT Research Highlights 1986, pp. 3-11. Mexico D.F.: CIMMYT.
- SAS Institute. 1997. SAS Proprietary Software Release 6.12. Cary, North Carolina: SAS Institute, Inc.
- Sayre, K.D., and O.H. Moreno Ramos. 1997. Applications of raised-bed planting systems to wheat. Wheat special report no. 31. Mexico D.F.: CIMMYT.
- USGS. 1997. GTOPO-30: Global digital elevation model at 30 arc second scale. Sioux Falls, South Dakota: USGS EROS Data Center.
- Ward, J.H. 1963. Hierarchical grouping to optimize an objective function. *Journal of the American Statistical Association* 58: 236-244.

Appendix A. Estimated area and production percentages for maize mega-environments, derived from the 1987-1988 mega-environment survey. (Classification criteria used in the 1987-1988 maize MEs are listed below.)

Mega-environment	Estimated area (%)	Estimated production (%)	Weighted production (%)		
Highland					
Tropical highlands	6.0	4.4	1.0		
Tropical transitional	4.1	6.4	12.0		
Temperate highlands	1.0	0.9	0.7		
Subtotal	11.0	11.7	13.7		
Subtropical					
Early white flint/dent	1.2	0.9	1.6		
Early yellow flint	1.8	1.1	1.2		
Intermediate white dent	7.5	9.5	8.6		
Intermediate yellow flint	1.9	1.3	1.5		
Late white flint	3.9	3.3	11.2		
Late white dent	5.1	6.1	12.4		
Late yellow dent/flint	7.8	9.5	2.6		
Other	0.8	1.0	1.3		
Subtotal	30.3	32.6	40.4		
Lowland tropical					
Early white flint	4.0	2.2	3.7		
Early white dent	1.2	0.7	1.0		
Early yellow flint	7.1	4.3	3.5		
Early yellow dent	2.5	1.3	0.5		
Intermediate white flint	2.1	1.5	3.2		
Intermediate white dent	5.3	6.2	3.6		
Intermediate yellow flint	9.6	9.7	6.1		
Late white flint	4.4	3.6	4.4		
Late white dent	6.9	7.3	5.0		
Late yellow flint	8.4	9.7	9.4		
Late yellow dent	1.7	2.3	2.6		
Others	5.8	7.0	2.9		
Subtotal	59.0	55.7	45.9		
Total	100.0	100.0	100.0		

Classification criteria used in the 1987-1988 maize mega-environments study.

Ecolo	av:		Grain ty	/pe:						_
LT: TE: HT: ST: TZ: SH:	Lowland tropical Temperate Highland tropical Subtropical Transitional zone Temperate highland		WD: WF: WFD: YD: YF: YFD: MD: MD: MIX: GF: BF:	White dent White flint White (flint Yellow den Yellow (flint Yellow (flint Mixed colo Mixed colo Gray flint Black flint	or dent) t t or dent) ors dent ors flint		WO: YO: GO: BO: WM: YM: BM: M:	White flou Yellow flou Gray floury Black flour White mor Yellow mor Black more Morocho (iry / y ocho rocho ocho	v and white)
Grow	ing season:	Matu	ırity:		Mo	isture:			Soi	I type:
MA: MI:	Major season Minor season	XE: E: I: L: XL:	Extra e Early Interm Late Extra la	ediate	A: B: C: D:	Sometir Frequer	stressed mes stress ntly stress stressed		1: 2:	Normal Acid

Disease and insects: A relative importance rating of 0-5, where 0 means no presence, and 5 means that maize cannot be grown unless a resistant variety is grown or chemical control is applied.

Appendix B. Maize mega-environment updates using FAO information, 1990 and 1996.

Table B.1. Maize production ecologies in developing and industrialized countries in 1990 (López-Pereira and Morris 1994).

	Dev	eloping count	ries	Industrialized countries		
Ecology	Total maize area (million ha)	Percent of total	Percent of non-temperate	Total maize area (million ha)	Percent of total	
Lowland tropical	34.5	43	57	0	-	
Subtropical	13	16	21	42	9	
Tropical midaltitude	7.6	9	12	0	-	
Tropical highland	6	8	10	0	-	
Temperate regions	19.6	24	-	44.3	91	
Total	80.7	100	100	86.3	100	

Table B.2Distribution of non-temperate maize in 1990, from Lopez-Pereira and Morris (1994).

Region	Lowland tropics	Subtropics	Tropical midaltitude	Tropical highland	All	Total maize area (million ha)
Sub-Saharan Africa	49	2	38	11	100	14.4
West Asia & North Africa	0	99	0	1	100	1.2
Asia	71	21	3	5	100	19
Latin America	59	23	3	14	100	23.1
Total	59	19	12	10	100	57.7

Table B.3 Maize environments in the developing world (million ha), from Dowswell et al. (1996).

Region	Tropical	Subtropical	Temperate	Highland
Southern Cone, South America	8.7	4	1.8	0
Andean Region, South America	1.6	0.3	0	0.5
Mexico and Central America	4.3	1.6	0	3
West and Central Africa	5.2	0.3	0	0.05
West and Southern Africa	2.1	7	0	1.5
North Africa and the Mideast	0	1	1.1	0
South Asia	5.6	1.4	0	0.6
Southeast Asia	8.7	0.2	0	0
East Asia	0.5	1.3	19.3	0.55
Total	36.7	17.1	22.2	6.2

Appendix C. Maize mega-environments in South America using the 1991 classification criteria. (Crop distribution from Hyman et al., 1998, is overlayed as dots.)

A simplified map of maize mega-environments created by removing precipitation criteria

(see Table 1 for descriptions, regions, countries, and key sites associated with global maize mega-environments). Source of climate data: Latin America, Africa: Corbett and O'Brien (1997); Asia: Jones (1998).

	Mega-environment	DL	Tmean
Tropical lowland	1	11-12.5	>=24
Tropical midaltitude	2	11-12.5	>=18-<24
Tropical highland	3	11-12.5	<18
Non-Eq tropical / Subtropical lowland	4	12.5-13.4	>=24
Non-Eq tropical / Subtropical midaltitude	5	12.5-13.4	>=18-<24
Non-Eq tropical / Subtropical highland	6	12.5-13.4	<18
Subtropical winter hot	7	<11	>=24
Subtropical winter warm	8	<11	>=18-<24
Subtropical winter cold	9	<11	<18
 Temp / Subtropical hot	10	>=13.4	>=24
Temp / Subtropical warm	11	>=13.4	>=18-<24
Temp / Subtropical cold	12	>=13.4	<18

No growing season Too dry

$Appendix \ D. \ Latin \ America \ maize \ mega-environment \ production \ breakdown \ created \ by \ overlaying \ crop \ distribution \ (Hyman \ et \ al. \ 1998) \ and \ 1991 \ mega-environment \ area \ maps.$

Table A assings maize area within a district according to the percentages of environment areas per district. Table B assigns all maize area within a district to the environment area that is largest in that district.

A MA priority of	over ST			Maize area	a by ME (000 ha)		
Region/country	Lowland tropics	Midaltitude	Highland tropical transitional	Tropical highland	Subtropical	Temperate	Highland temperate	Total area
Central America	6,946	2,529	927	1,061	-	-	117	11,580
Belize	11	-	-	-	-	-	-	11
Costa Rica	28	6	3	2	-	-	-	38
El Salvador	387	13	-	-	-	-	-	399
Guatemala	182	37	34	24	-	-	-	300
Honduras	167	125	14	-	-	-	-	306
Mexico	5,782	2,276	856	1,035	-	-	117	10,066
Nicaragua	213	14	-	-	-	-	-	227
Panama	177	59	20	-	-	-	-	256
South America	15,241	1,369	343	496	845	27	178	18,499
Argentina	159	43	13	14	209	27	153	618
Bolivia	252	16	5	15	-	-	-	288
Brazil	10,826	627	2	-	588	-	23	12,067
Chile	-	-	-	-	-	-	-	-
Colombia	2,691	410	225	276	-	-	-	3,603
Ecuador	209	99	60	127	-	-	-	495
Guyana	7	0	-	-	-	-	-	7
Paraguay	95	-	-	-	48	-	-	143
Peru	426	62	24	56	-	-	-	568
Surinam	0	0	-	-	-	-	-	0
Uruguay	-	-	-	-	-	-	1	1
Venezuela	576	111	14	8	-	-	-	709
Latin America	22,187	3,897	1,270	1,557	845	27	295	30,079
	73.8%	13.0%	4.2%	5.2%	2.8%	0.1%	1.0%	100.0%

B MA priority of	over ST			Maize area	a by ME (000 ha)		
Region/country	Lowland tropics	Midaltitude	Highland tropical transitional	Tropical highland	Subtropical	Temperate	Highland temperate	Total area
Central America	7,035	457	1,376	1,947	865	-	-	11,680
Belize	11	-	-	-	-	-	-	11
Costa Rica	38	38	-	0	-	-	-	-
El Salvador	399	-	-	-	-	-	-	399
Guatemala	132	101	39	66	-	-	-	338
Honduras	126	167	12	-	-	-	-	306
Mexico	5,948	48	1,324	1,880	865	-	-	10,066
Nicaragua	137	89	-	-	-	-	-	227
Panama	243	13	-	-	-	-	-	256
	-	-	-	-	-	-	-	-
South America	8,269	2,608	46	2,287	5,213	0	87	18,511
Argentina	96	12	-	-	422	0	87	618
Bolivia	198	-	-	89	-	-	-	288
Brazil	4,270	1,626	-	1,523	4,647	-	-	12,067
Chile	-	-	-	-	-	-	-	-
Colombia	2,705	809	-	88	-	-	-	3,603
Ecuador	197	22	2	274	-	-	-	495
Guyana	7	-	-	-	-	-	-	7
Paraguay	0	-	-	-	143	-	-	143
Peru	111	105	44	307	-	-	-	568
Surinam	0	-	-	-	-	-	-	0
Uruguay	-	-	-	-	1	-	-	-
Venezuela	683	33	-	5	-	-	-	721
Latin America	- 15,304	3,065	1,422	4,234	6,079	0	- 87	30,190
Latin rancinca	50.7%	10.2%	4.7%	14.0%	20.1%	0.0%	0.3%	100.0%

Appendix E. Locations selected for GIS-based cluster analysis.

Location	Country	Planting month	Latitude [†]	Longitude [†]	Season*	Number
Catete-Mazozo	Angola	3	-9.10	13.72	а	1
Cela	Angola	10	-11.42	15.12	a	2
Chianga	Angola	10	-12.73	15.83	а	3
Humpata	Angola	11	-15.03	13.43	а	4
Kilombo	Angola	10	-8.91	14.73	a	5
Poligno-Florestal	Angola	10	-9.52	16.32	а	6
St. Vincente	Angola	11	-5.57	12.20	а	7
Pergamino	Argentina	9	-33.93	-60.57	а	8
Leales	Argentina	12	-25.83	-65.25	а	9
Joydebpur	Bangladesh	4	24.00	90.42	а	10
Joydebpur	Bangladesh	11	24.00	90.42	b	11
İshurdi	Bangladesh	4	24.12	89.08	а	12
Ishurdi	Bangladesh	11	24.12	89.08	b	13
Rangpur	Bangladesh	4	25.73	89.23	а	14
Rangpur	Bangladesh	11	25.73	89.23	b	15
Central Farm	Belize	6	17.00	-89.00	a	16
Santa Cruz	Bolivia	10	-17.70	-63.13	a	17
Parirumani	Bolivia	12	-17.35	-66.32	a	18
Cochabamba	Bolivia	12	-17.43	-66.17	a	19
Iboperanda	Bolivia	11	-19.87	-63.77	a	20
Mairana	Bolivia	11	-18.12	-63.95	a	21
Algarrobal	Bolivia	11	-21.45	-63.65	a	22
Good-Hope	Botswana	6	-25.48	25.47	a	23
Hukunsi	Botswana	2	-23.97	21.75	a	24
Pandamatenga	Botswana	12	-18.55	25.65	a	25
Sebele	Botswana	2	-24.57	25.95	a	26
Sete Lagoas	Brazil	10	-24.37 -19.47	-44.25	a	20 27
Jardinopolis	Brazil	10	-20.98	-47.80	a	28
Capinopolis	Brazil	10	-20. 7 6 -18.68	-49.57		20 29
Sta. Cruz Palmeira	Brazil	11	-16.06 -6.22	-36.00	a	30
	Burkina Faso		-0.22 11.10	-30.00 -4.33	а	31
Farako-Ba			12.00	-4.33 105.00	а	32
Banteay-Dek La Platina	Cambodia	5			a	
	Chile	10	-33.57	-70.63	a	33
Kunming	China	6	25.12	102.72	a	34
Nanning	China	4	22.60	108.17	a	35
Gui-Yang	China	6	26.48	106.65	а	36
Chinchina	Colombia	4	4.93	-75.60	a	37
Chinchina	Colombia	9	4.93	-75.60	b	38
Medellin	Colombia	4	6.26	-75.58	a	39
Medellin	Colombia	9	6.26	-75.58	b	40
Popayan	Colombia	9	2.45	-76.60	а	41
Palmira 	Colombia	9	3.55	-76.35	a	42
Turipana	Colombia	4	8.65	-75.97	a	43
Turipana	Colombia	9	8.65	-75.97	b	44
Monteria	Colombia	4	8.83	-75.78	a	45
Monteria	Colombia	9	8.83	-75.78	b	46
Cali	Colombia	9	3.50	-76.37	а	47
Tibaitata	Colombia	4	4.70	-74.20	a	48
Tibaitata	Colombia	9	4.70	-74.20	b	49

^{*} Season a = main season; season b= second season.
† Digital degree format.

Appendix E. Locations selected for GIS-based cluster analysis (cont'd).

Location	Country	Planting month	Latitude [†]	Longitude [†]	Season*	Number
Rionegro	Colombia	4	6.18	-75.43	а	50
Rionegro	Colombia	9	6.18	-75.43	b	51
Antioquia	Colombia	5	7.70	-76.80	a	52
Guanacaste	Costa Rica	7	10.35	-85.13	a	53
Los Diamantes	Costa Rica	5	10.22	-83.77	a	54
Los Diamantes	Costa Rica	10	10.22	-83.77	b	55
Turrialba	Costa Rica	5	9.88	-83.65	a	56
Turrialba	Costa Rica	10	9.88	-83.65	b	57
Ferkessedougou	Cote d'Ivoire	4 (9.58	-5.23	а	58
Bouake	Cote d'Ivoire	7 (7.68	-5.03	а	59
Sinematiali	Cote d'Ivoire	4 (9.62	-3.07	а	60
Alquizar	Cuba	6	23.83	-82.52	а	61
Tomeguin	Cuba	6	23.85	-82.52	а	62
Ciaza	an Republic	6 Dominic	18.38	-70.83	а	63
Pichilingue	Ecuador	6	-1.10	-79.48	а	64
Porto Viejo	Ecuador	7	-1.07	-80.43	а	65
Sta.Catalina	Ecuador	11	-0.38	-78.52	а	66
Sids	Egypt	6	28.93	30.98	а	67
Gemmeiza	Egypt	6	30.72	31.12	a	68
Sakha	Egypt	6	31.12	30.95	a	69
Nubaria	Egypt	6	31.00	30.50	a	70
San Andrés	El Salvador	5	13.80	-89.42	a	71
Ambo	Ethiopia	5	9.05	37.82	a	72
Alemaya	Ethiopia	7	9.40	41.08	a	73
Awassa	Ethiopia	5	7.08	38.48	a	74 74
Bako	Ethiopia	5	5.85	37.08	a	75 75
Nazareth	Ethiopia	6	8.50	39.50	a	76
Kwadaso	Ghana	6	6.75	-1.58	a	70 77
Thessaloniki	Greece	5	40.55	23.00	a	78
Godet	Guadeloupe		16.33	-61.67	a a	76 79
	Guatemala	5	14.25	-90.00		80
Cuyuta				-90.00 -91.57	а	81
La Máquina	Guatemala	6	14.30 14.87	-91.57 -91.52	a	82
Quetzaltenango	Guatemala	5			a	83
San Jeronimo	Guatemala	5	15.08	-90.23	a	
Jutiapa	Guatemala	5	14.25	-89.92	a	84
Polochic	Guatemala	5	15.31	-89.75	a	85
Polochic	Guatemala	10	15.31	-89.75	b	86
Cenmac	inea-Bissau		12.35	-14.55	а	87
La Esperanza	Honduras	5	14.25	-88.20	a	88
La Esperanza	Honduras	12	14.25	-88.20	b	89
Omonita	Honduras	5	14.40	-87.67	a	90
Omonita	Honduras	12	14.40	-87.67	b	91
Catacamas	Honduras	5	14.91	-85.90	a	92
La Ceiba	Honduras	6	15.75	-86.87	a	93
La Ceiba	Honduras	12	15.75	-86.87	b	94
Ludhiana	India	7	30.90	75.80	а	95
Hyderabad	India	7	17.33	78.50	a	96
Pantnagar	India	6	29.00	79.45	a	97
Jorhat	India	6	26.77	94.27	а	99

^{*} Season a = main season; season b= second season.

† Digital degree format.

Appendix E. Locations selected for GIS-based cluster analysis (cont'd).

Location	Country	Planting month	Latitude [†]	Longitude [†]	Season*	Number
Dholi	India	6	25.98	86.25	а	98
Jalna	India	6	19.85	75.88	a	100
Bahraich	India	6	27.72	81.60	a	101
Bahraich	India	12	27.72	81.60	b	102
Arabhavi	India	6	16.20	74.90	а	103
Bangalore	India	2	12.97	77.58	а	104
Lampung	Indonesia	9	-5.30	105.10	а	105
Bogor	Indonesia	9	-6.62	106.73	а	106
Muneng	Indonesia	4	-8.27	113.28	а	107
Muneng	Indonesia	9	-8.27	113.28	b	108
Maros	Indonesia	4	-5.00	119.60	а	109
Maros	Indonesia	9	-5.00	119.60	b	110
Karaj	Iran	4	35.78	50.00	а	111
Gorgan	Iran	4	36.00	54.00	а	112
Kitale	Kenya	4	-1.01	35.00	а	113
Embu	Kenya	3	-0.50	37.45	а	114
Katumani	Kenya	3	-1.58	37.23	а	115
Leribe	Lesotho	10	-28.88	28.05	а	116
Maseru	Lesotho	11	-29.28	27.50	а	117
Mokotlong	Lesotho	10	-29.28	29.08	а	118
Thaba-Tseka	Lesotho	10	-29.50	28.62	а	119
Bembeke	Malawi	12	-14.17	34.43	а	120
Chitedze	Malawi	12	-13.98	33.63	а	121
Ngabu	Malawi	12	-16.47	34.92	а	122
Bvumbwe	Malawi	11	-15.92	35.07	a	123
Chitala	Malawi	12	-13.13	34.07	a	124
Celaya (INIFAP)	Mexico	6	20.52	-100.82	a	125
Los Mochis	Mexico	11	25.77	-109.00	a	126
Poza Rica	Mexico	6	20.53	-97.43	a	127
Cd. Obregón	Mexico	10	26.67	-109.42	a	128
Tlaltizapán	Mexico	6	18.68	-99.13	a	129
El Batán	Mexico	5	19.52	-98.87	a	130
Toluca	Mexico	5	19.28	-99.65	a	131
Veracruz	Mexico	6	19.15	-96.12	a	132
Nayarit (INIFAP)	Mexico	6	21.51	-105.20	a	133
Xalisco	Mexico	6	21.43	-104.80	a	134
Gomez Farías	Mexico	7	29.33	-107.75	a	135
Culiacán	Mexico	7	24.80	-107.40	a	136
Tlajomulco	Mexico	6	20.47	-103.77	a	137
S.M. Cuyutlán	Mexico	6	20.50	-103.50	a	138
Zapopan	Mexico	6	20.70	-103.38	a	139
Queretaro	Mexico		20.70	-100.67		140
Irapuato	Mexico	6 6	20.32	-100.07	a	140
·	Mexico	5	19.30	-101.32 -99.63	a	141
Metepeo					a	142
Pabellón	Mexico	6	22.18	-102.30	a	
Ameca	Mexico	6	20.55	-104.05	a	144
Amecameca	Mexico	5	19.13	-98.77	a	145
Calera	Mexico	7	22.90	-102.65	a	146
Cuautitlán	Mexico	6	19.68	-99.18	а	147

^{*} Season a = main season; season b= second season.
† Digital degree format.

Appendix E. Locations selected for GIS-based cluster analysis (cont'd).

Location	Country	Planting month	Latitude [†]	Longitude [†]	Season*	Number
Sussundenga	ozambique	11 M	-19.33	33.22	а	148
Umbeluzzi	ozambique		-26.58	32.38	a	149
Lichinga	ozambique		-13.30	35.23	a	150
Nampula	ozambique		-15.10	39.28	a	151
Chokwe	ozambique	12 M	-24.53	33.00	a	152
Kabre-Dolakha	Nepal	5	27.68	86.07	a	153
Pakhribas	Nepal	6	27.08	87.33	a	154
Pokhara	Nepal	5	28.22	84.00	a	155
Lumle	Nepal	5	28.30	83.80	a	156
Dailekh	Nepal	6	28.85	81.72	а	157
Rampur	Nepal	6	27.62	84.42	а	158
Surkhet	Nepal	6	28.60	81.60	a	159
Santa Rosa	Nicaragua	5	12.13	-86.18	a	160
Peshawar	Pakistan	6	34.02	71.58	а	161
Pirsabak	Pakistan	6	34.00	72.83	а	162
Yousafwala	Pakistan	6	31.00	74.00	а	163
Islamabad	Pakistan	6	33.50	72.75	а	164
Tocumen	Panama	5	9.05	-79.37	а	165
Guarare	Panama	6	7.83	-80.33	а	166
Chiriqui	Panama	5	8.38	-82.33	а	167
El Ejido	Panama	6	7.93	-80.38	а	168
La Honda	Panama	9	8.00	-80.00	a	169
Caacupe	Paraguay	9	-25.40	-57.10	a	170
Capitán Miranda	Paraguay	9	-27.28	-55.82	a	171
Piura	Peru	6	-5.18	-80.63	a	172
La Molina	Peru	6	-12.08	-76.95	a	173
Tarapoto	Peru	2	-6.52	-76.42	a	174
Cajamarca	Peru	10	-7.10	-78.07	a	175
El Porvenir	Peru	2	-6.52	-76.35	a	176
Iquitos	Peru	2	-3.75	-73.25	a	177
Cajabamba	Peru	10	-7.62	-78.05	a	178
Cagayan	Philipinnes		8.29	124.38	a	179
U.P. Los Baños	Philippines		14.17	121.25	a	180
Karaan	Philippines		7.00	125.00	a	181
Ilagan	Philippines		16.50	121.15		182
Ilagan	Philippines		16.50	121.15	a b	183
Gral. Santos	Philippines Philippines		6.12	125.18		184
Mindanao	Philippines		7.23	124.82	a	185
	RSA	10	-29.02	30.60	a	186
Greytown Potchefstroom	RSA	12	-24.02 -26.67	27.07	a	187
	RSA	1	-20.07 -27.17	26.92	a	188
Viljienskroon			-27.17 -26.55		а	
Malkerns Rig bond	Swaziland Swaziland	10 11		31.15	a	189
Big-bend	Swaziland	11	-26.78	31.92	а	190
Aleppo	Syria	6	33.18	36.52	а	191
Po-tzu-chia-i	Taiwan	8	23.50	120.23	a	192
Taichung	Taiwan	8	24.02	120.68	a	193
Selian	Tanzania	12	-4.50	35.17	a	194
Uyole	Tanzania	11	-8.92	33.37	a	195
Ilonga	Tanzania	12	-6.77	37.03	a	196

^{*} Season a = main season; season b= second season.
† Digital degree format.

Appendix E. Locations selected for GIS-based cluster analysis (cont'd).

Location	Country	Planting month	Latitude [†]	Longitude [†]	Season*	Number
Ukirigurı	Tanzania	11	-2.70	33.02	а	197
Lambo	Tanzania	3	-3.28	37.23	a	198
Suwar	Thailand	6	14.08	101.00	a	199
Nakhon Sawan R	Thailand	6	15.35	100.50	a	200
Phraphutthaba	Thailand	6	14.73	100.60	а	201
Khonkaer	Thailand	6	16.43	102.83	а	202
Adapazar	Turkey	5	36.70	26.75	а	203
Antalya	Turkey	5	37.00	30.83	а	204
Namulonge	Uganda	3	0.53	32.58	а	205
La Estanzuela	Uruguay	9	-34.33	-57.68	а	206
Tagabe	Vanuatu	9	-17.75	168.30	а	207
Maracay	Venezuela	9	12.10	-77.05	а	208
San Joaquír	Venezuela	6	10.26	-67.78	а	209
San Javie	Venezuela	7	10.35	-68.65	а	210
Song Bo	Vietnam	6	20.48	105.78	а	211
Hung Loc	Vietnam	4	10.95	107.23	a	212
Doc Trong Farm	Vietnam	5	11.13	108.38	a	213
Dan Phuong	Vietnam	2	21.03	105.80	a	214
Gandajika	Zaire	9	-6.75	23.95	a	215
Kaniamesh	Zaire	11	-11.73	27.42	a	216
Mvuaz	Zaire	10	-5.45	14.90	a	217
Kabwe	Zambia	11	-14.45	28.47	a	218
Kasama	Zambia	11	-10.22	31.13	a	219
Masabuka	Zambia	11	-15.85	27.75	a	220
Mount Makulı	Zambia	11	-15.53	28.25	a	221
Mansa	Zambia	11	-13.33	28.85	a	222
Golden Valley	Zambia	11	-11.10 -14.17	28.37		223
Kaoma	Zambia	12	-14.17	27.92	a	223
	Zimbabwe	11	-13.77	32.62	a	225
Chipinge Chiredz	Zimbabwe	12	-20.20 -21.02		а	
				31.58	a	226
Makohol	Zimbabwe	11	-19.83	30.78	a	227
Matopos	Zimbabwe	11	-20.38	28.50	a	228
Save-Valley	Zimbabwe	12	-20.35	32.33	a	229
Rattray-Arnolo	Zimbabwe	11	-17.67	31.17	а	230
Harare	Zimbabwe	11	-17.80	31.05	а	231
Kadoma	Zimbabwe	11	-18.32	30.90	а	232
Mzaraban	Zimbabwe	12	-16.37	31.02	а	233
Chisumbanj	Zimbabwe	12	-20.80	32.23	а	234
Glendale	Zimbabwe	11	-17.08	31.03	a	235
				ation only	post-classific	Extra: for
Sete Lagoas	Brazil	10	-19.47	-44.25	b	240
Nanning	China	10	22.60	108.17	b	242
Cuyuta	Guatemala	10	14.25	-90.00	b	243
Poza Rica	Mexico	10	20.53	-97.43	b	238
Nakhon Sawan R	Thailand	10	15.35	100.50	b	237
Suwar	Thailand	10	14.08	101.00	b	236
Song Bo	Vietnam	10	20.48	105.78	b	241
	Zambia	4	-14.17	28.37	b	239

^{*} Season a = main season; season b= second season.

[†] Digital degree format.

 ${\sf Annex}\ {\sf F}.$ Clusters for 220 unique maize international testing sites using four consecutive monthly environmental variables starting from the 'best bet' planting date.

Several sites have two seasons: ID =1 main season; ID = 2 second season.

	4			22	
IDL-hTMEAN-vITDIF-aTOTP Tropical lowland average rainfall humid	IDL-hTMEAN-vITDIF-aTOTP Tropical lowland average rainfall	aDhTMEAN-artDiF-vhTOTP Tropical lowland wet	ahDL-aTMEAN-aTDIF-hTOTP NONEO Tropical midlands wet	ahDL-ahTDIF-ahTOTP Subtropical midlands	
90507 1 90512 1 91609 2	4 1 8 1 10502 2 10504 2 10504 2 10504 1 10504 1 10504 1 10516 1 10516 1 10516 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 10516 1 1 1 10516 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20102 1 20302 1 20304 2 20304 1 20311 2 20511 1 20502 1	5 10302 1 20501 20506 1 20506 1 20607 1 20606 1 20606 1 20617 1 71001 1 71005 1	10102 10202 10208 10224 10324 10317 10317 10322 20401 70601 71004	20725 1 20764 1 20794 1 20798 1 21101 1 21143 1 71201 1
Indonesia Indonesia Philippines	Angola Angola Angola Colombia Colombia Colombia Colombia Colombia Colombia Colombia Colombia	Belize Costa Rica Costa Rica Costa Rica Costa Rica Costa Rica Gustemala Gustemala	Angola Brazil Guatemala Guatemala Guatemala Honduras Honduras Malawi Malawi Malawi Malawi	Angola Argentina Bolivia Bolivia Bolivia Bolivia Bolivia Botswana Bazzil Brazil El Salvador Ethiopia Malawi	Mexico Mexico Mexico Mexico Mexico Mozambique Mozambique
Muneng Maros Ilagan	Catete-Mazozo Kilombo St. Vincente Uuripana Nonteria Monteria Antioquia Bouake Kwadasco	Central Farm Guanacaste Los Diamantes Los Diamantes Turrialba Turrialba La Maquina	Cela Sete Lagoas Cuyuta San Jeronimo Jutiapa Lutiapa Omonita Calacamas Bembeke Chitedze Bvumbwe Chitedze	Humpata Leales Iboperanda Marirana Algarrobal Pandamatenga Jadrinopolis San Andres Alemaya Ngabu	Xalisco Culiacan Tajomulco S.M. Cuyutlan Zapopan Ameca Sussundenga Umbeluzzi
4 4 6	01 11 04 04 04 05 04	6 7 10 10 10 10 10 10	10 10 12 12 12 12 12 12	111111111111111111111111111111111111111	
-8.3 1 -5.0 1 16.5 1	8.8 8.8 8.7 8.7 8.8 8.8 8.8 6.8 6.8	17.0 10.4 10.2 10.2 9.9 9.9 14.3	11.4 19.5 · . 14.3 · . 14.3 · . 14.2 · . 14.0 · . 13.1	25.8	
113.3 119.6 121.2	13.7 14.7 12.2 -76.0 -76.0 -75.8 1-75.8 1-75.8 1-16.0 1-16.0	89.0 83.8 83.8 83.8 83.7 83.7 89.8	15.1 13.1 13.1 13.1 13.1 13.1 13.1 13.3 14.1 14.3 13.3 14.1 15.1 13.3 14.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1	13.4 14.1 13.4 14.1 14.1 14.1 14.1 14.1	
13 11.7 52 11.8 278 11.8	50 11.9 432 12.3 0 12.3 50 11.9 50 12.3 70 11.9 70 12.3 360 12.3 287 12.4	353 13.0 25 12.4 245 11.6 245 12.6 595 11.6 59 12.5 40 12.8	1328 12.4 1823 12.8 950 12.8 1420 12.8 1420 12.8 1821 12.8 1871 12.8 1170 12.8 1170 12.8 1170 12.8 1170 12.8	1468 12.8 1066 13.0 1060 13.0 777 13.2 1097 13.1 709 12.8 579 12.7 579 12.7 108 12.9 945 13.1	
.7 25.6 .8 27.3 .8 25.4	25.5 3 24.4 3 24.4 3 27.0 26.8 26.9 26.9 26.9 26.9 26.9 26.9 3 27.1 4 25.7 4 25.7 4 25.7	26.0 26.0 26.0 25.2 26.0 26.0 26.0 23.9 23.9 27.4 28.2 28.2	20.5 20.5	24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	
6 7.6 3 8.1 4 7.5	5 7.0 8 8.0 7.2 8 8.0 1 8.2 9 8.2 1 8.3 7 8.0 9 9.0 9 9.0	0 7.3 0 10.4 0 10.4 0 9.9 9 10.8 7 10.7 2 9.6	55 9.8 9 9.6 9 9.6 11.1 9.7 9.7 9.9 9.9 8 8.9 9.8 8 8.9 1 9.6 9.9	11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9	
5 338 1 348 5 699	341 7 493 2 422 0 986 2 942 973 973 1109 0 530 8 592	3 1520 4 1428 5 1567 9 1400 9 1134 7 1225 2 1642 5 1326	8 680 1 954 2 1040 2 1081 7 1032 9 990 9 687 8 802 5 724 8 724 9 948	1 448 4 475 4 487 4 487 5 539 5 539 7 1083 6 415 6 415 6 819	-
145 160 175	116 120 112 105 117 118 111 96	120 119 103 111 99 106 121 134	116 115 114 113 113 120 117 119 128	127 138 138 139 139 131 131 131 141	124 123 123 139 148
91301 1 91302 1	20518 2 20615 2 20615 1 20902 1 20901 1 11029 1 72408 1	61302 1 80422 1 90503 1 20710 1 20716 1 20717 1	71203 1 2406 1 25 1 26 1 72501 1 72502 1 72601 1 72601 1 72602 1	10901 10902 10902 72001 72005 72101 11303 11312 72504 72504 30 1	31 1 32 1 72604 1 72607 1 72608 1
I Taiwan I Taiwan	2 Guatemala 2 Honduras 1 Honduras 1 Panama 1 Panama 1 Panama 2 Panama 1 Peru 1 Vietnam 2 Zaire	G. Bissau India Indonesia Mexico Mexico Mexico	Mozambique Zare Zambia Zambia Zambia Zambia Zambia Zambia Zimbabwe Zimbabwe	Paraguay Paraguay Paraguay Philippines Swaziland Swaziland Tanzania Venezuela Venezuela Zambia Zambia Zimbabwe	Zimbabwe I Zimbabwe I Zimbabwe I Zimbabwe I Zimbabwe
Po-Tzu-Chia-I Taichung	Polochic La Ceiba La Ceiba Cocumen Guarare El Ejido Iquitos Dan Phuong	Cenmac Arabhavil Bogor Poza Rica Veracruz Natarit Chiriqui	Lichinga Kanlamesh Kabwe Kasama Mount-Makulu Mansa Golden Valley Chipinge C	Caacupe 9 Capitan Miranda9 U.P. Los Bayos 5 W.P. Los Bayos 5 Big-Bend 11 longa 12 San Javier 7 Masabuka 11 Kaoma 12 Chiredzi 12	
8 23. 8 24.	10 15 15 15 15 15 15 15 15 15 15 15 15 15	6 12 6 20 6 20 6 21 6 21 5 8	1113.3 1110.2 1110.2 1110.2 1110.2 1120.2 1117.3 1117.8		
3.5 120. 4.0 120.	15.3 -89 15.8 -86 15.8 -86 9.1 -76 7.9 -86 7.9 -86 7.9 -86 7.9 -86 7.9 -86 7.5 -75 5.5 14	12.4 -14 16.2 74 -6.6 106 20.5 -97 19.2 -96 21.5 -10E		25.4 25.4 14.2 15.3 26.6 31 26.6 31 31 31 31 31 31 31 31 31 31	
7	-89.8 -86.9 -79.4 -79.4 -80.3 -80.3 -73.3 14.9 551	-14.6 2 74.9 53 106.7 34 -97.4 8 -96.1 105.2 1	35.2 1305 27.4 1295 28.5 1200 31.1 1363 28.3 1281 28.9 1267 28.4 1170 32.6 1102 31.2 1452 31.1 1489	27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1	
4 1: 82 1:	22 11 22 11 22 12 22 12 22 12 22 11 22 22	23 1; 531 1; 341 1; 87 1; 7 1; 16 1;		214 11 91 12 763 11 109 11 914 11 914 11 1000 11 668 11 668 11	
12.4	11.1 12.5 12.4 12.4 12.1 12.7 12.7	12.7 12.1 13.2 13.2 13.2 12.5	12.6 12.6 12.8 12.8 12.8 13.0 13.0	22.4 22.4 22.4 22.5 33.2 33.2 33.2 33.2 33.2 33.2 33.2	
26.2	25.4 24.2 24.2 26.9 26.2 26.5 26.5 26.5 22.8 24.5	26.8 24.6 25.4 27.5 10 27.4 28.6 10	21.1 22.4 11.22.4 11.52.7 11.52.0 11.52.5 11.52.5 11.52.0 11.52.5 11.52.0 11.71.1	23.6 1 24.9 11.2 24.9 11.2 24.0 11.2 24.0 11.2 24.0 11.2 24.0 11.2 24.0 11.2 25.0 11.2 25.5 25.5	
8.6 5	8.5 5.7.4 7.7.5 6.1 99.4 108 9.4 108 8.9 7.7 7.8 8.9 7.7 6.1 2	' ' ' ' '			
510 175 483 175					
510	483	549 739 648 990 714 695 1088 274 701	549 739 648 648 648 690 714 695 1088 1265 1053 1448 999 999 999 968 1300 1476	483 549 648 648 648 648 648 648 648 648 648 648	483 483 483 483 483 483 483 483 483 483

	aDL-vhTMEAN-ITDIF-aTOTP Tropical lowland, hot, average rainfall 8	80201 80202 10203 10342 61401 90302 90302 90403 60701 80404 80404 80417 90507	Bangladesh Bangladesh Bangladesh Bolivia Bolivia Brazil Burkina Faso Cambodia China Cole Divoire I cole Divoire I nidia I india I indionesia 2 indonesia	Joydebpur Ishurdi Ishurdi Rangpur Rangpur Santa Cruz Santa Cruz S. c. Palmeira Farako Bantesy Naming Percessedougou Snematiali Hyderabad Lalina Lalina Lalina Muneng Muneng	444011234447966	24.0 8 8 25.7 8 8 25.7 9 8 17.7 6 17.7 6 17.7 6 17.7 7 6 17.7 7 6 17.7 7 6 17.7 7 6 17.7 7 6 17.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	90.4 90.4	8 130 32 131 32 130 35 123 36 127 115 129 115 129 120 124 121 121 121 121 121 121 122 123 123 124 124 125 127 126 127 127 127 127 127 127 127 127 127 127	29.5 0 29.5 0 28.3 1 26.0 2 20.5 2 26.5 2 26.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.9 9.8 9.8 9.8 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	912 775 1324 564 137 744 680 680 680 680 680 680 680 680 784 567 567 567 567 568 783 783	225 20805 225 30805 227 91609 146 91616 149 91610 1150 91400 1150 91401 1150 91401 1150 91501 1150 91501 1150 91501 1150 91501	1 Nicaragua 3 Philipines 4 Philippines 6 Philippines 6 Philippines 7 Philippines 7 Philippines 1 Thailand 6 Thailand 7 Thailand 7 Thailand 7 Thailand 7 Thailand 8 Thailand 1 Vetnam 2 Wetnam 3 Wetnam	Santa Rosa Cagayan Ilagan Ilagan Cral. Santos Mindanao Suwan Nakhon Sawan 6 Pin aphutihabat Khonkao Song Boi Song Boi Cong Boi Doc Trong Fame	m 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	12.1 8.3 7.0 16.5 6.1 7.2 114.1 116.4 110.0 11.1	-86.2 124.4 125.0 125.0 125.2 125.2 106.5 100.6 102.8 105.8 107.2 108.4	77 290 102 278 12 24 13 83 6 6 162 173 173	12.7 12.5 12.6 12.8 12.8 12.8 12.8 12.8 12.8 12.8	27.4 26.9 27.1 27.0 27.0 27.0 27.0 27.0 28.4 28.4 28.6 28.6 29.0 29.0 29.0 29.0 27.4 28.6 28.6 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0	9.2 9.2 9.2 9.3 9.3 9.3 9.3 7.6 9.3 9.3 7.6	617 786 923 612 396 791 602 705 742 742 795 622	146 178 168 205 168 175 203 193 195 160 160
	vhDL-ahTMEAN-ITDIF-hTOTP Subtroplical midlands, wet	90402 90406 80405 80407 80413 80420	1 China 1 China 1 India 1 India 1 India	Kunming Gui-yang Pantnagar Dholi Jorhat Bahraich	6 2 2 6 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	25.1 10 26.5 10 29.0 7 26.0 8 26.8 9 26.8 9	102.7 195 106.7 115 79.5 20 86.3 3 94.3 12 81.6 13	1957 13.5 1153 13.6 204 13.8 34 13.5 123 13.6 130 13.7	5 19.4 6 23.2 8 29.1 5 29.6 6 28.0 7 30.1	8.8 8.8 7.6 7.1 8.5	703 631 993 1050 1685 1012	183 34 203 35 230 80601 190 80608 230	4 1 Nepal 5 1 Nepal 8 1 Nepal 1 1 Nepal 8 1 Nepal	Kabre-Dolakha (Pakhribas of Dailekh (Rampur Surkhet	a 6 6 6 5 5	27.7 27.1 28.9 27.6 28.6	86.1 87.3 81.7 84.4 81.6	### ### 185 617	13.6 13.6 13.7 13.7 13.7	20.8 24.4 25.6 28.9 28.3	6.8 6.5 7.6 7.6	1625 696 1302 1576 1531	193 210 213 228 238
4	hDL-hTMEAN-ITDIF-whTOTP Subtropical midlands extreme wet	36	1 Nepal	Pokhara	5 2	28.2 8	84.0 94	944 13.7	7 24.7	8.8	2765	215 37	7 1 Nepal	Lumle Arc	2	28.3	83.8	####	13.7	22.8	5.1	3745	190
	hDL-hTMEAN-ITDIF-vITOTP Subtropical-temperate, rainfall limited	50401 50402 50403	1 Egypt 1 Egypt 1 Egypt	Sids Gemmeiza Sakha	6 9 3 3 2	28.9 3 30.7 3 31.1 3	31.0 31.1 31.0	29 13.7 9 13.9 7 13.9	7 27.2 9 26.0 9 25.7	14.2 13.6 13.3	000	188 50404 178 80427 177	4 1 Egypt 7 1 India	Nubaria Bangalore	5 6	31.0	30.5	8 606	13.9	25.8	11.9	178	173 243
	NDL-vhTMEAN-aTDIF-ITOTP Subtropical-temperate lowlands	80701	1 Pakistan 1 Pakistan	Pirsabak Yousafwala	6 9	34.0 7	72.8 47	474 14.1 176 13.9	1 30.2 9 32.2	12.1	446 32 266 31	323 80705 313 80403	5 1 Pakistan 3 1 India	Islamabad Ludhiana	9 7	33.5	72.8	521 241	14.1	29.2 29.5	13.1	414 513	300
	vIDL-aITMEAN-hTDIF-vITOTP Subtropical winter, rainfall limited	80201 80202 80209	2 Bangladesh 2 Bangladesh 2 Bangladesh	Joydebpur Ishurdi Rangpur	11 2 11 2	24.0 9 24.1 8 25.7 8	90.4 89.1 89.2 3	8 10.6 31 10.6 32 10.5	6 21.3 6 20.8 5 19.7	12.6 14.1 14.3	34 34	110 111 168 80420 160 20709	1 1 Botswana 0 2 India 9 1 Mexico	Good-Hope Bahraich Los Mochis	- 41 12 - 11	25.5 27.7 25.8	25.5 81.6 -109.0	### 130 10	10.5 10.4 10.5	13.8 18.6 19.9	18.1 15.8 17.3	26 66 43	104 168 94
LO.	IDL-aTIVEAN-aTDIF-aITOTP Tropical midlands rainfall low-average	6 9 10501 10506 10601 10602 70602 70607 20604 20606	1 Angola 1 Angola 1 Colombia 1 Colombia 1 Ecuador 1 Ecuador 1 Ethiopia 1 Ethiopia 1 Ethiopia 2 Honduras 2 Honduras	Chlanga Poligno-Florestal Paminira Cali Pichilingue Pichilingue Profo Viejo Ambo Awassa Bako Nazareth La Espeanza Omonita	10 -1 10 -1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12.7 1 1 2 3.6 -7 3.8 -7 3.5 -7 1 1 -8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.8 1736 16.3 1178 -76.4 1189 -76.4 1189 -79.5 320 -80.4 213 37.8 2083 38.5 1784 37.1 1257 39.5 1631 88.2 1821 88.2 1831	36 12.5 78 12.4 89 12.0 89 12.0 20 11.9 13 12.0 83 12.5 84 12.4 12.3 13.1 20 11.2 60 11.2	5 19.8 4 21.3 0 22.4 0 22.4 0 22.4 0 24.0 17.0 5 11.0 5 21.1 5 21.1 5 21.1 5 21.1	11.3 11.7 10.3 10.3 10.2 12.3 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	784 12 545 10 555 10 555 10 272 8 272 8 478 11 344 11 567 11 94 10	122 70702 113 70703 1001 70709 1001 11001 11008 93 11008 99 11018 1115 24 119 72102 12302	2 1 Kenya 3 1 Kenya 3 1 Kenya 1 1 Kenya 5 1 Kenya 5 1 Peru 8 1 Peru 8 1 Peru 8 1 Peru 3 1 Tanzania 3 1 Tanzania 4 1 Tanzania 4 1 Tanzania 5 1 Uganda	Kitale Embu Katumani Piura Piura La Molina Tarapoto El Povvenir Selian Uyole Uyole Ukiriguru Lambo	4 8 8 9 9 7 7 7 7 7 7 8 8	-1.0 -0.5 -1.6 -5.2 -12.1 -12.1 -6.5 -6.5 -6.5 -6.5 -2.7 -2.7 -2.7 -3.3	35.0 37.5 37.5 37.2 -80.6 -77.0 -76.4 35.2 33.4 33.0 37.2	#### 457 412 457 #### ####	120 120 120 11.7 11.3 12.1 12.3 12.5 12.0 12.0	18.5 20.1 20.2 22.8 16.2 24.7 24.5 19.3 21.0 22.6 22.6 23.4 23.4 24.5 22.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6	12.8 11.2 11.0 11.0 10.7 10.7 10.7 10.1 10.3	488 575 314 9 23 522 524 524 516 704 468 627	105 173 173 173 173 173 173
	aDL-ITMEAN-ITDIF-aTOTP Tropical highlands, cold, low temp.diff.	55 5 5 7 7 7	2 Colombia 11 Colombia 2 Colombia 1 Colombia 1 Colombia	Chinchina Chinchina Medellin Medellin Popayan	04040	4.9 -7 4.9 -7 6.3 -7 2.5 -7	75.6 2500 75.6 2500 75.6 2286 75.6 2286 76.6 2362	00 11.9 00 12.2 86 11.9 86 12.2 62 12.0	9 14.1 2 14.5 9 15.9 2 16.4 0 14.6	8.2 8.0 9.7 9.8 9.9	842 658 870 813 813	84 10507 86 10507 87 10510 91 10510 86	7 2 Colombia 7 1 Colombia 0 2 Colombia 0 1 Colombia	Tibaitata Tibaitata Rionegro Rionegro	0404	4.7 4.7 6.2 6.2	-74.2 -74.2 -75.4 -75.4	****	11.9 12.2 11.9 12.2	13.6 13.7 16.7 17.1	8.9 9.8 9.8	418 369 870 825	80 78 88 92
9	hDL-aTMEAN-hTDIF-aITOTP Subtroptical highlands, warm	20708 20763 21117 21124 21138 21150 21162	1 Mexico 1 Mexico 1 Mexico 1 Mexico 1 Mexico 1 Mexico	Celaya Gomez Farias Queretaro Irapuato Pabellon Calera Cuautitlan	6 22 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20.5 -100.8 29.3 -107.8 20.5 -100.7 20.7 -101.3 22.2 -102.3 22.9 -102.7 19.7 -99.2	0.8 1765 77.8 2136 0.7 1777 11.3 1785 22.3 1952 22.7 2213 9.2 2246	65 13.2 36 13.3 77 13.2 85 13.2 52 13.3 13 13.0 46 13.1	2 21.7 2 21.7 2 21.7 2 21.7 3 20.7 0 19.1 1 18.8	13.8 15.4 13.7 14.2 13.3 12.9	501 12 358 12 465 12 570 12 387 12 276 11 552 10	29 12 123 14 129 19 128 71401 129 71404	2 1 Botswana 4 1 Botswana 9 1 Lesotho 1 1 Rsa 4 1 Rsa	Hukunsi Sebele Maseru 1 Potchefstroom1 Viljienskroon	22 - 1	-24.0 -24.6 -29.3 -26.7 -27.2	21.8 26.0 27.5 27.1 26.9	#### #################################	12.4 12.4 13.8 13.6 13.2	21.5 21.1 19.9 22.0 20.6	15.1 15.2 13.7 14.0	162 197 384 385 317	122 124 156 160 140
	anDL-vITMEAN-hTDIF-alTOTP Subtropical highlands, cold	10101 10205 10206 10402 10603 20504 18 20 70801	1 Argentina 1 Bolivia 1 Bolivia 1 Bolivia 1 Chile 1 Chile 1 Cademala 1 Lesotho 1 Lesotho 1 Lesotho	Pergamino Parirumani Cochabamba La Platina Sta. Catalina Quetzaltenango Leribe Mokotlong Thaba-tseka	9 - 3 - 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	33.9 -6 -17.4 -6 -17.4 -6 -17.4 -6 -17.4 -7 -0.4 -7 -28.9 2 -29.3 2 -29.3 2	60.6 61 66.3 2819 66.2 2895 70.6 1037 78.5 3353 91.5 2388 29.1 2359 28.6 2218	61 12.5 19 13.0 95 13.0 37 13.4 12.8 88 12.8 89 13.2 59 13.2	5 17.8 0 16.1 0 15.6 0 15.6 0 9.7 0 9.7 2 18.4 2 13.9 2 14.9	13.9 10.8 10.8 11.8 11.8 13.9 13.9	337 500 485 44 352 679 411 395	126 20713 116 20715 115 27130 137 27144 80 11013 104 11034 151 22 126 11201	3 1 Mexico 5 1 Mexico 0 1 Mexico 0 1 Mexico 4 1 Mexico 3 1 Peru 4 1 Rsa 2 1 Rsa 1 1 Uruguay	El Batan Toluca Metepec Amecameca Cajannarca Cajabamba Greytown La Estanzuela	2010	19.5 19.3 19.3 19.1 -7.1 -7.6 -29.0 -34.3	-98.9 -99.7 -99.6 -98.8 -78.1 -78.1 30.6 -57.7	*************	13.1 13.1 13.1 12.3 12.3 12.3 12.3	17.4 14.4 14.4 16.2 13.3 13.3 17.5 17.5	14.3 13.2 13.5 13.5 13.9 14.1 11.5	492 576 572 573 339 352 473 338	115 106 107 109 102 99 130
	I = low; a = average; h = high; v = very. DI = Daylength of day 15 of each month averaged over 4 months. DI = Daylength of day 15 of each month averaged over 4 months. TIMEAN = Note an of maximum and minimum temperature averaged over 4 months. TOTP = Total precipitation over 4 months. ETP = Evaport anspiration PLANT = Planting month LAT, LONG and Z = Latitude, longitude and altitude respectively	n averaged c num tempers mum tempers s	over 4 months ature averaged over stature averaged of respectively	er 4 months																			

$\frac{Appendix\ G.\ Post\ classification\ of\ selected\ locations\ according\ to\ the\ new\ and\ 1991\ classifications.}{\text{Classification\ following\ 1991}}$

			Classifica	ation following	j 1991		
Newnr	Meclas	MEname	latitude	altitude	tmean	Cluster Diagnostic	Cluster Characteristic
1	1a	True Tropical lowland dry	tropical	lowland	tropical	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
2		True Tropical lowland dry	tropical	lowland	tropical	na	na
3		True Tropical lowland dry	tropical	lowland	tropical	vhTmean-ITdif-aP-aDI	Tropical Lowland very hot
4 5		True Tropical lowland dry True Tropical lowland dry	tropical tropical	lowland lowland	tropical tropical	hTmean-ITdif-vIP-hDL na	Dry subtropical-temperate na
6	1b	True Tropical lowland mesic	tropical	midaltitude	tropical	variousTmean-ahTdif-ahP-ahDl	Subtropical, long day
7	16	True Tropical lowland mesic	tropical	lowland	tropical	hTmean-vITdif-aP-IDI	Tropical Lowland
8		True Tropical lowland mesic	tropical	lowland	tropical	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
9		True Tropical lowland mesic	tropical	lowland	tropical	hTmean-vlTdif-aP-IDI	Tropical Lowland
10 11		True Tropical lowland mesic True Tropical lowland mesic	tropical tropical	lowland lowland	tropical tropical	variousTmean-ahTdif-ahP-ahDl alTmean-alTdif-alP-lDl	Subtropical, long day NONEQ Topics midaltitude mesic
12		True Tropical lowland mesic	tropical	lowland	tropical	hTmean-vlTdif-aP-IDI	Tropical Lowland
13		True Tropical lowland mesic	tropical	lowland	tropical	hTmean-vITdif-aP-IDI	Tropical Lowland
14		True Tropical lowland mesic	tropical	lowland	tropical	hTmean-vlTdif-aP-IDI	Tropical Lowland
15		True Tropical lowland mesic	subtropical	lowland	tropical	hTmean-vlTdif-aP-alDl	Tropical Lowland
16 17		True Tropical lowland mesic True Tropical lowland mesic	tropical tropical	lowland lowland	tropical tropical	hTmean-vlTdif-aP-alDl vhTmean-lTdif-aP-aDl	Tropical Lowland Tropical Lowland very hot
18		True Tropical lowland mesic	subtropical	lowland	tropical	hTmean-vlTdif-aP-alDl	Tropical Lowland
19		True Tropical lowland mesic	tropical	lowland	tropical	vhTmean-ITdif-aP-aDI	Tropical Lowland very hot
20		True Tropical lowland mesic	tropical	lowland	tropical	hTmean-vlTdif-aP-IDI	Tropical Lowland
21		True Tropical lowland mesic	tropical	lowland	tropical	hTmean-vlTdif-aP-alDl	Tropical Lowland
22 23		True Tropical lowland mesic True Tropical lowland mesic	tropical tropical	lowland lowland	tropical tropical	vhTmean-ITdif-aP-aDI vhTmean-ITdif-aP-aDI	Tropical Lowland very hot Tropical Lowland very hot
	_	·	•		•		•
24 25	1c	True Tropical lowland wet True Tropical lowland wet	tropical tropical	lowland lowland	tropical tropical	hTmean-vlTdif-aP-IDI hTmean-vlTdif-aP-IDI	Tropical Lowland Tropical Lowland
26		True Tropical lowland wet	tropical	lowland	tropical	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
27		True Tropical lowland wet	tropical	lowland	tropical	hTmean-altdif-vhP-aDl	Tropical lowland wet
28		True Tropical lowland wet	tropical	lowland	tropical	hTmean-vlTdif-aP-alDl	Tropical Lowland
29		True Tropical lowland wet	tropical	lowland	tropical	hTmean-altdif-vhP-aDI	Tropical lowland wet
30 31		True Tropical lowland wet True Tropical lowland wet	tropical tropical	lowland lowland	tropical tropical	hTmean-vlTdif-aP-lDl hTmean-vlTdif-aP-lDl	Tropical Lowland Tropical Lowland
32		True Tropical lowland wet	tropical	lowland	tropical	vhTmean-ITdif-aP-aDl	Tropical Lowland very hot
33		True Tropical lowland wet	tropical	lowland	tropical	hTmean-vlTdif-aP-IDI	Tropical Lowland
34		True Tropical lowland wet	tropical	lowland	tropical	hTmean-vlTdif-aP-IDI	Tropical Lowland
35		True Tropical lowland wet	tropical	lowland	tropical	hTmean-vITdif-aP-IDI	Tropical Lowland
36 37		True Tropical lowland wet True Tropical lowland wet	tropical tropical	lowland lowland	tropical tropical	hTmean-vlTdif-aP-lDl hTmean-vlTdif-aP-lDl	Tropical Lowland Tropical Lowland
38		True Tropical lowland wet	tropical	lowland	tropical	vhTmean-ITdif-aP-aDl	Tropical Lowland very hot
39		True Tropical lowland wet	tropical	lowland	tropical	hTmean-altdif-vhP-aDl	Tropical lowland wet
40		True Tropical lowland wet	tropical	lowland	tropical	hTmean-altdif-vhP-aDI	Tropical lowland wet
41 42		True Tropical lowland wet True Tropical lowland wet	tropical tropical	lowland lowland	tropical tropical	hTmean-vlTdif-aP-lDl hTmean-vlTdif-aP-lDl	Tropical Lowland Tropical Lowland
43		True Tropical lowland wet	tropical	lowland	tropical	vhTmean-ITdif-aP-aDl	Tropical Lowland very hot
44		True Tropical lowland wet	tropical	lowland	tropical	vhTmean-ITdif-aP-aDI	Tropical Lowland very hot
45		True Tropical lowland wet	tropical	lowland	tropical	vhTmean-ITdif-aP-aDI	Tropical Lowland very hot
46		True Tropical lowland wet	tropical	lowland	tropical	vhTmean-ITdif-aP-aDI	Tropical Lowland very hot
47	2a	Tropical midaltitude dry	tropical	lowland	htroptrans	na	na
48 49		Tropical midaltitude dry Tropical midaltitude dry	subtropical subtropical	lowland midaltitude	st/ma st/ma	na aTmean-htdif-alP-hDl	na Subtropical highlands, long day, warm dry
50		Tropical midalitude dry	subtropical	midaltitude	st/ma	aTmean-htdif-alP-hDl	Subtropical highlands, long day, warm dry
51		Tropical midaltitude dry	tropical	lowland	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
52		Tropical midaltitude dry	tropical	lowland	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
53	2b	Tropical midaltitude mesic	subtropical	lowland	htroptrans	na	na
54		Tropical midaltitude mesic	tropical	troptrans	htroptrans	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
55 56		Tropical midaltitude mesic Tropical midaltitude mesic	tropical tropical	troptrans troptrans	htroptrans htroptrans	alTmean-alTdif-alP-IDI alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic NONEQ Topics midaltitude mesic
57		Tropical midalitude mesic	tropical	midaltitude	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midalitude mesic
58		Tropical midaltitude mesic	tropical	midaltitude	st/ma	alTmean-alTdif-alP-lDl	NONEQ Topics midaltitude mesic
59		Tropical midaltitude mesic	tropical	midaltitude	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
60		Tropical midaltitude mesic	tropical	troptrans	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
61 62		Tropical midaltitude mesic Tropical midaltitude mesic	tropical subtropical	midaltitude lowland	st/ma st/ma	alTmean-alTdif-alP-lDl na	NONEQ Topics midaltitude mesic na
63		Tropical midaltitude mesic	tropical	troptrans	st/ma	variousTmean-ahTdif-ahP-ahDl	Subtropical, long day
64		Tropical midaltitude mesic	tropical	midaltitude	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
65		Tropical midaltitude mesic	tropical	midaltitude	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
66 47		Tropical midaltitude mesic	tropical	midaltitude	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
67 68		Tropical midaltitude mesic Tropical midaltitude mesic	subtropical tropical	lowland midaltitude	st/ma st/ma	variousTmean-ahTdif-ahP-ahDl alTmean-alTdif-alP-lDl	Subtropical, long day NONEQ Topics midaltitude mesic
69		Tropical midaltitude mesic	tropical	midaltitude	st/ma	na	na
70		Tropical midaltitude mesic	subtropical	lowland	st/ma	hTmean-vlTdif-aP-IDI	Tropical Lowland
71		Tropical midaltitude mesic	tropical	lowland	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
72		Tropical midaltitude mesic	subtropical	lowland	st/ma	variousTmean-ahTdif-ahP-ahDl	Subtropical, long day
73	2c	Tropical midaltitude wet	tropical	troptrans	htroptrans	alTmean-alTdif-alP-IDI	NONEQ Topics midaltitude mesic
74 75		Tropical midaltitude wet Tropical midaltitude wet	tropical tropical	midaltitude troptrans	st/ma st/ma	aTmean-aTdif-hP-haDl alTmean-alTdif-alP-lDl	NONEQ Tropics wet NONEQ Topics midaltitude mesic
75 76		Tropical midalitude wet	tropical	midaltitude	st/ma	alTmean-alTdif-alP-IDI	NONEQ Topics midalitude mesic
77		Tropical midaltitude wet	tropical	lowland	st/ma	hTmean-altdif-vhP-aDl	Tropical lowland wet

Tr	eeCLUSTE	RCLUSNAN	IE CID	newid	Country	Location	PLANT	LAT	LONG	Z	DL	TMEAN	ТОТР	TDIF	ETP
2	5	CL17	10602	10602	Ecuador	Porto Viejo	7	-1.07	-80.43	213	11.96	24.0	0	10.2	93
na na		na	10002	-21	Thailand	Nakhon-S	10	15.35	100.43	83	11.41	25.7	195	10.2	183
6	2	CL15	10342	10342	Brazil	S. Cruz Palmeira	11	-6.22	-36.00	182	12.34	26.5	137	9.4	146
9	14	CL16	80427	80427	India	Bangalore	2	12.97	77.58	909	11.82	26.6	178	13.8	243
na		na		-20	Thailand	Suwan	10	14.08	101	13	11.46	26.8	212	12.3	205
5	9	CL22	72101	72101	Tanzania	Ilonga	12	-6.77	37.03	914	12.37	24.0	549	11.2	132
2 12	4 ! 5	CL28 CL17	8 11018	8 11018	Angola Peru	Kilombo El Porvenir	10 2	-8.91 -6.52	14.73 -76.35	432 457	12.34 12.09	24.4 24.5	493 524	8.7 10.7	120 99
2	4	CL28	61103	61103	Ghana	Kwadaso	6	6.75	-1.58	287	12.37	24.5	592	6.8	96
5	9	CL22	11312	11312	Venezuela	San Javier	7	10.35	-68.65	557	12.42	24.6	551	10.5	130
12		CL17	11008	11008	Peru	Tarapoto	2	-6.52	-76.42	412	12.09	24.7	522	10.7	100
2	4 4	CL28 CL28	60702 20518	60702 -9	Cote D'ivoire Guatemala	Bouake Polochic	7 10	7.68 15.31	-5.03 -89.75	360 40	12.31 11.41	24.9 25.4	530 549	9.0 8.5	104 102
2	4	CL28	4	4	Angola	Catete-Mazozo	3	-9.10	13.72	50	11.89	25.5	341	7.0	116
1	1	CL47	91302	91302	Taiwan	Taichung	8	24.02	120.68	82	12.38	25.5	483	8.1	175
1	1	CL47	90507	90507	Indonesia	Muneng	4	-8.27	113.28	13	11.69	25.6	338	7.6	145
6 1	2 1	CL15 CL47	90507 91301	-17 91301	Indonesia Taiwan	Muneng Po-Tzu-Chia-I	9 8	-8.27 23.50	113.28 120.23	13 4	12.11 12.37	26.1 26.2	548 510	8.0 8.6	153 175
6	2	CL47	91616	91616	Philippines	Gral. Santos	5	6.12	125.18	12	12.33	26.8	396	8.1	168
2	4	CL28	10	10	Angola	St. Vincente	11	-5.57	12.20	0	12.30	27.0	422	7.2	112
1	1	CL47	90512	90512	Indonesia	Maros	4	-5.00	119.60	52	11.81	27.3	348	8.1	160
6	2	CL15	60706	60706	Cote D'Ivoire	Sinematiali	4	9.62	-3.07	250	12.36	27.6	509	9.6	143
6	2	CL15	60701	60701	Cote D'Ivoire	Ferkessedougou	4	9.58	-5.23	283	12.36	27.7	567	9.9	150
2	4	CL28	20615	-12 72409	Honduras Zairo	La Ceiba	12	15.75	-86.87	22	11.12	24.2	739	7.4	106
2 12	4 ! 5	CL28 CL17	72408 72401	72408 72401	Zaire Zaire	Mvuazi Gandajika	10 9	-5.45 -6.75	14.90 23.95	538 800	12.20 12.09	24.5 24.5	701 672	8.9 12.7	108 121
3	. 6	CL23	20304	-7	Costa Rica	Los Diamantes	10	10.22	-83.77	245	11.61	25.2	1567	10.0	103
1	1	CL47	91609	-19	Philippines	Ilagan	9	16.50	121.15	278	11.78	25.4	699	7.5	175
3	6	CL23	90503	90503	Indonesia	Bogor	9	-6.62	106.73	341	12.09	25.4	1448	7.7	150
2	4 4	CL28 CL28	10516 20907	10516 20907	Colombia Panama	Antioquia	5 6	7.70 7.83	-76.80 -80.33	168 33	12.41	25.7	1109	8.0	111 103
6	2	CL28 CL15	91502	91502	Vietnam	Guarare Hung Loc	0 4	7.83 10.95	-80.33 107.23	33 193	12.43 12.41	26.2 26.4	714 972	7.6 8.2	160
2	4	CL28	20911	20911	Panama	El Ejido	6	7.93	-80.38	22	12.44	26.5	695	7.6	103
2	4	CL28	11029	11029	Peru	Iquitos	2	-3.75	-73.25	91	12.05	26.5	1088	9.4	96
2	4	CL28	10502	-3	Colombia	Turipana	9	8.65	-75.97	50	11.89	26.8	986	8.0	105
2	4 4	CL28 CL28	20902 10504	20902 -4	Panama Colombia	Tocumen Monteria	5 9	9.05 8.83	-79.37 -75.78	6 70	12.49 11.89	26.9 26.9	990 973	6.1 8.2	103 106
6	2	CL26 CL15	3	-4 3	Philipinnes	Cagayan	5	8.29	124.38	290	12.45	26.9	786	9.0	178
3	6	CL23	20909	20909	Panama	Chiriqui	5	8.38	-82.33	16	12.45	27.0	1476	9.9	107
3	6	CL23	20302	20302	Costa Rica	Guanacaste	7	10.35	-85.13	25	12.42	27.0	1428	10.4	119
2	4	CL28	10502	10502	Colombia	Turipana	4	8.65	-75.97	50	12.32	27.1	942	8.2	117
2	4 2	CL28 CL15	10504 91606	10504 91606	Colombia Philippines	Monteria Karaan	4 5	8.83 7.00	-75.78 125.00	70 102	12.33 12.38	27.1 27.1	905 923	8.3 9.0	118 168
6	2	CL15	2	2	Indonesia	Lampung	9	-5.30	105.10	118	12.30	27.1	633	9.1	168
6	2	CL15	90512	-18	Indonesia	Maros	ý 9	-5.00	119.60	52	12.06	27.5	783	8.3	163
6	2	CL15	91620	91620	Philippines	Mindanao	6	7.23	124.82	24	12.40	27.9	791	9.2	175
na	a na	na		-24	Brazil	Sete Lagoas	4	-19.47	-44.25	823	11.25	18.9	133	13.5	79
na		na		-25	Vietnam	Song-Boin	10	20.48	105.78	55	11.2	20.9	193	6.8	120
14 14		CL25 CL25	14 12	14 12	Botswana Botswana	Sebele Hukunsi	2 2	-24.57 -23.97	25.95 21.75	972 1064	12.36 12.35	21.1 21.5	197 162	15.2 15.1	124 122
12		CL23	11001	11001	Peru	Piura	6	-23.77 -5.18	-80.63	137	11.72	22.8	9	11.0	97
12		CL17	20606	-11	Honduras	Omonita	12	14.40	-87.67	560	11.20	22.8	139	11.1	121
na	a na	na		-26	China	Nanning	10	22.6	108.17	115	11.11	18.1	206	7.9	115
12		CL17	70702	70702	Kenya	Kitale	4	-1.01	35.00	1694	11.96	18.5	488	12.8	105
12		CL17	70602	70602	Ethiopia	Awassa	5	7.08	38.48	1784	12.38	18.7	478	12.6	110
12		CL17	23	23	Tanzania	Selian	12	-4.50	35.17	1829	12.25	19.3	516	10.9	116
12 12		CL17 CL17	70703 70709	70703 70709	Kenya Kenya	Embu Katumani	3 3	-0.50 -1.58	37.45 37.23	1380 1477	11.99 11.98	20.1 20.2	575 314	11.3 11.2	135 123
12		CL17	70603	70603	Ethiopia	Bako	5 5	5.85	37.23 37.08	1257	12.31	21.1	344	10.8	115
12	5	CL17	70607	70607	Ethiopia	Nazareth	6	8.50	39.50	1631	12.47	21.1	567	12.0	119
12		CL17	9	9	Angola	Poligno-Florestal	10	-9.52	16.32	1178	12.36	21.3	545	11.7	113
na		na	70/01	-22	Mexico	Poza Rica	10	20.53	-97.43	87	11.2	21.5	534	9.3	86
5 12	9 ! 5	CL22 CL17	70601 72302	70601 72302	Ethiopia Uganda	Alemaya Namulonge	7 3	9.40 0.53	41.08 32.58	1524 1112	12.38 12.01	22.3 22.4	415 477	12.6 10.3	139 130
12		CL17	10501	10501	Colombia	Palmira	9	3.55	-76.35	1112	11.95	22.4	555	10.3	101
12	5	CL17	10506	10506	Colombia	Cali	9	3.50	-76.37	1189	11.96	22.4	555	10.3	101
5	9	CL22	10902	10902	Paraguay	Capitan Miranda	9	-27.28	-55.82	91	12.38	22.4	576	12.9	135
12		CL17	72102	72102	Tanzania Guatomal	Ukiriguru	11 10	-2.70 14.25	33.02	1239	12.15	22.6	468	9.8	127 107
na 2	a na 4	na CL28	91517	-27 91517	Guatemal Vietnam	Cuyuta Dan Phuong	10 2	14.25 21.03	-90 105.80	950 16	11.46 11.70	22.7 22.8	280 274	10.4 6.1	107 123
12		CL26 CL17	10601	10601	Ecuador	Pichilingue	6	-1.10	-79.48	320	11.70	23.3	274	9.1	87
5	9	CL22	10901	10901	Paraguay	Caacupe	9	-25.40	-57.10	214	12.35	23.6	497	11.0	145
12	2 5	CL17	6	6	Angola	Chianga	10	-12.73	15.83	1736	12.48	19.8	784	11.3	122
4	8	CL42	5	5	Angola	Cela	10	-11.42	15.12	1328	12.43	20.5	680	9.8	116
12		CL17	24	24	Tanzania	Uyole	11	-8.92	33.37	1524	12.49	21.0	704	10.7	113
12 3	? 5 6	CL17	72104 20311	72104 -8	Tanzania	Lambo Turrialba	3 10	-3.28 0.88	37.23 -83.65	1072 595	11.96	21.4 23.9	627 1134	10.1 10.8	108 99
3	0	CL23	20311	-8	Costa Rica	Turrialba	IU	9.88	-03.03	0 7 0	11.63	23.9	1134	10.8	77

Note				Classific	ation following	j 1991		
Proposed lightwates seven Tropcock Import	Newnr	Meclas	MEname	latitude	altitude	tmean	Cluster Diagnostic	Cluster Characteristic
Project Project Special		3a		•				•
Same Targood lightness was in the property of the property								•
Propose Injury Important	81	3b	. 0	•	highland	•	vlTmean-htdif-alP-ahDl	Subtropical, cold highlands
Trappical Highlands modes in tripical mighland in highland in high			Tropical Highlands mesic	tropical	highland	trophighland		Subtropical, cold highlands
Topical Highlands mode Impact Imp								
8 2 Trapical Highlands well tropical in fighted trapical in fighte								
Section Proposal implicants well Proposal implication Proposal implicants well Proposal implicants well Proposal implicants well Proposal implicants well Proposal implicants Propos				•				
regional injunction services of the proposal and prophysical prophysical physical services of the physical and physical services of the physical s		30		•				•
Tropical Highlands well tropical highland by the properties of the properties of the polyther		30						
Tropical Highlands well tripical highland tripipilithand Tropical Highlands well tropical highland hig								
Project Highlands well tropical highland of the project of highland in the principal Highland well tropical highlands well tropical well highland in the principal highland highlands well tropical well and the principal highland highlands well tropical well well as the principal highland highlands well tropical well well well well well well well we								
Programme Prog	93		Tropical Highlands wet	tropical	highland	trophighland	ITmean-ITdif-aP-aDI	Tropical Highlands but low temperature difference
The Subtropical loveland mesis: tropical midelitude simple of the Subtropical loveland mesis: tropical loveland mesis: loveland mesis: tropical loveland mesis: tropical loveland mesis: loveland mesis: tropical loveland mesis:								
The Subtripical loveland mesic tropical midalittude frojical midalitude frojical midalittude frojical midalitude frojical midalitude fr		4h		•	Ü	•		
True Subtropical lowland mesic subtropical lowland tropical to warbournamenic subtropical lowland tropical toward mesic subtropical lowland tropical toward tropical tropical toward tropical tropical tropical toward tropical tr	97		True Subtropical lowland mesic	tropical	midaltitude		variousTmean-ahTdif-ahP-ahDl	Subtropical, long day
True Subtropical lowland mesic subtropical lowland for tropical towland mesic subtropical lowland mesic subtropical lowland mesic tropical towland mesic tropical tropic								
True Subtropical lowland mesis subtropical olwards of the Subtropical lowland with tropical t						•		
True Subtropical lowland mesic tropical towland mesic tropical towland tropical tropical towland mesic tropical tropical towland mesic tropical			True Subtropical lowland mesic			tropical		Subtropical, long day
True Subtropical low/and mesis: tropical towland topical tropical towland topical tropical towland topical tropical towland tropical towland topical tropical towland topical tropical towland tropical towland tropical towland tropical towland tropical tropical tropical tropical towland well tropical tropi						•		
True Subtropical lowland mesic propical subtropical subtropical subtropical subtropical lowland mesic temporate towland tropical subtropical lowland mesic temporate towland tropical subtropical lowland wet tropical midalitude strain midalitude st	104						vhTmean-ITdif-aP-aDl	
True Subtropical lowland mesic temperate warm of tropical tropical tropical tropical tropical tropical tropical cowland were tropical trop						•		
True Subtropical lowland mesic temperate tropical midalitude strain midalitude strain midalitude strain midalitude strain s								
True Subtropical lowland wet tropical midalithude st/ma at mean-artifick-P-habl NONEO Tropics wet subtropical tropical tropical windailthude st/ma at mean-artifick-P-habl NONEO Tropics wet subtropical tropical tropical windailthude st/ma at mean-artifick-P-habl NONEO Tropics wet	108						vhTmean-aTdif-IP-hDL	
111 True Subtropical lowland wet tropical fropframs sulma sulmana-afdif-Rh-habl various Tream-afdif-Rh-habl variou		4c		•				
True Subtropical lowland wet tropical midalitude stms at mean affeli-hP-hBoll on NDNEO Tropics wet midalitude stms at mean affeli-hP-hBoll on NDNEO Tropics wet midalitude stms at mean affeli-hP-hBoll on NDNEO Tropics wet midalitude stms at mean affeli-hP-hBoll on NDNEO Tropics wet midalitude stms at mean affeli-hP-hBoll on NDNEO Tropics wet midalitude stms at mean affeli-hP-hBoll on NDNEO Tropics wet midalitude stms at mean affeli-hP-hBoll on NDNEO Tropics wet stms at mean-affeli-hP-hBoll on NDNEO Tropics wet subtropical towland wet subtropical tropical subtropical lowland wet subtropical tropical movement of tropical subtropical lowland wet subtropical tropical subtropical lowland wet subtropical towland wet tropical midalitude stms at mean-affeli-hP-hBoll on NDNEO Tropics wet subtropical subtropical lowland wet subtropical individual wet subtropical midalitude stms at mean-affeli-hP-hBoll on NDNEO Tropics wet subtropical subtropical lowland wet tropical midalitude stms at mean-affeli-hP-hBoll on NDNEO Tropics wet wardout stms-affel-hP-hBoll on NDNE								
True Subtropical lowland wet tropical for True Subtropical lowland wet tropical for True Subtropical lowland wet tropical for Subtropical lowland wet tropical for True Subtropical lowland wet tropical for True Subtropical lowland wet subtropical lowland wet subtropical for True Subtropical lowland wet subtropical for Institute for true subtropical lowland wet subtropical for Subtropical lowland wet subtropical fo	112		True Subtropical lowland wet		troptrans	st/ma	variousTmean-ahTdif-ahP-ahDl	Subtropical, long day
True Subtropical lowland wet tropical midalithude stropical subtropical objects wet tropical form to subtropical s								
117 True Subtropical lowland wet subtropical from the subtropical properties of the subtropical								
True Subtropical lowland wet subtropical frogerans strain various Timean-ahr-Idif-ahP-ahDl Subtropical, long day 17 True Subtropical lowland wet subtropical frogerans strain various Timean-ahr-Idif-ahP-ahDl Subtropical, long day 18 True Subtropical lowland wet subtropical subtropical lowland wet subtropical subtropical lowland wet tropical midalitude strain was subtropical lowland wet tropical midalitude strain midalitude strain was subtropical lowland wet tropical midalitude strain was subtropical lowland was subtropical lowland was subtropical lowland wet tropical lowland tropical frue Subtropical lowland wet tropical lowland tropical frue Subtropical lowland wet tropical lowland tropical lowland was subtropical lowland wet tropical lowland tropical lowland wet tropical lowland tropical lowland wet tropical lowland tropical lowland was subtropical lowland wet tropical lowland tropical lowland was subtropical lowland wet tropical lowland tropical lowland was subtropical lowland wet tropical lowland was subtropical lowland wet tropical lowland was subtropical lowland was subtropical lowland was subtropical lowland was subtropical lowland wet tropical lowland was subtropical lowland wet tropical lowland was subtropical lowland wet tropical lowland wet tropical lowland wet tropical lowland was subtropical lowland wet tropical lowland wet t								
True Subtropical lowland wet tropical or tropical subtropical lowland wet tropical or trop								
True Subtropical lowland wet ropical owland wet tropical midalitude stma arma-artidi-AP-AbD Subtropical, long day arma-artidi-AP-AbD Subtropical, long day arma-artidi-AP-AbD Subtropical lowland wet tropical midalitude stma arma-artidi-AP-AbD Subtropical lowland wet tropical midalitude stma arma-artidi-AP-AbD Subtropical wet tropical midalitude stma arma-artidi-AP-AbD Subtropical wet tropical lowland wet tropical towland tropical arma-artidi-AP-AbD Subtropical wet tropical working tropical worki	119		True Subtropical lowland wet	subtropical	troptrans	st/ma	variousTmean-ahTdif-ahP-ahDl	Subtropical, long day
True Subtropical lowland wet tropical indaltitude st/ma a mean-altifi-APh-AbDl Subtropical, long day a midaltitude st/ma								
True Subtropical lowland wet tropical midaltitude stma various Tmean-ahTdif-ahP-ahDl NONEO Tropics wet tropical lowland wet tropical lowland wet tropical lowland wet tropical lowland wet tropical subtropical lowland wet tropical lowland tropical ropical subtropical lowland wet tropical lowland wet tropical lowland tropical lowl							variousTmean-ahTdif-ahP-ahDl	
True Subtropical lowland wet tropical iowland tropical iowland itropical a True Subtropical lowland wet subtropical iowland itropical iowland itropical various Timean-ah Tdif-hP-habl iowland wet itropical lowland wet itropical lowland wet itropical lowland itropical various Timean-ah Tdif-hP-habl iowland itropical various Timean-ah Tdif-hP-habl iowland wet itropical lowland itropical various Timean-ah Tdif-hP-habl iowland wet itropical lowland itropical various Timean-ah Tdif-hP-habl iowland wet itropical lowland wet itropical lowland itropical various Timean-ah Tdif-hP-habl iowland various Time								
True Subtropical lowland wet tropical subtropical without tropical subtropical without tropical lowland wet tropical lowland wet tropical lowland tropical lowland wet tropical lowland tropical invalid tropical lowland wet tropical lowland tropical lowland wet tropical lowland wet tropical lowland tropical lowland wet tropical lowland wet tropical lowland tropical lowland wet tropical lowland tropical lowland wet lowland wet tropical lowland wet lowland								
True Subtropical lowland wet tropical fowland wet tropical towland tropical tropical lowland tropical tropical fowland tropical tropical subtropical lowland wet tropical fowland tropical variousTmean-ahTdif-ahP-ahDl Subtropical, long day Tropical lowland wet tropical fowland tropical tropical tropical subtropical subtropical lowland wet tropical fowland tropical variousTmean-ahTdif-ahP-ahDl Subtropical, long day Tropical lowland wet tropical fowland tropical variousTmean-ahTdif-ahP-ahDl Subtropical, long day Tropical lowland wet tropical fowland tropical variousTmean-ahTdif-ahP-ahDl Subtropical, long day VariousTmean-ahTdif-ahP-ahDl Subtropical lowland wet VariousTmean-ahTdif-ahP-ahDl Subtropical lowland VariousTmean-ahTdif-ahP-ahDl Subtropical lowland wet VariousTmean-ahTdif-ahP-ahDl Tropical Lowland very hot VariousTmean-ahTdif-ahP-ahDl Tropical Lowland very hot VariousTmea								
True Subtropical lowland wet tropical lowland tropical homen-altdif-vhP-aDl variousTmean-ahTdif-ahP-ahDl Subtropical lowland wet tropical lowland tropical homen-ahTdif-ahP-ahDl Subtropical lowland wet tropical lowland tropical variousTmean-ahTdif-ahP-ahDl Subtropical, long day 1332 True Subtropical lowland wet tropical lowland tropical variousTmean-ahTdif-ahP-ahDl Subtropical, long day 1343 True Subtropical lowland wet tropical lowland tropical variousTmean-ahTdif-ahP-ahDl Subtropical, long day 1354 True Subtropical lowland wet tropical lowland tropical variousTmean-ahTdif-ahP-ahDl Subtropical, long day 1365 True Subtropical lowland wet tropical lowland tropical variousTmean-ahTdif-ahP-ahDl VariousTmean			•					1 . 3 .
True Subtropical lowland wet tropical lowland tropical tropical variousTmean-ahtIdif-ahP-ahDl Subtropical, long day True Subtropical lowland wet subtropical midalitude tropical variousTmean-ahtIdif-ahP-ahDl Subtropical, long day True Subtropical lowland wet tropical lowland tropical variousTmean-ahtIdif-ahP-ahDl Subtropical, long day True Subtropical lowland wet tropical lowland tropical variousTmean-ahtIdif-ahP-ahDl Subtropical, long day True Subtropical lowland wet tropical lowland tropical variousTmean-ahtIdif-ahP-ahDl NONEO Tropics wet subtropical lowland wet tropical lowland tropical variousTmean-ahtIdif-ahP-ahDl NONEO Tropics wet subtropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDD Tropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDD Tropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDD Tropical lowland wet tropical lowland tropical variousTmean-ahtIdif-ahP-ahDl Subtropical, long day True Subtropical lowland wet tropical lowland tropical variousTmean-ahtIdif-ahP-ahDl Tropical Lowland very hot Tropical Lowland very hot Tropical lowland wet tropical lowland tropical variousTmean-ahtIdif-ahP-ahDl Tropical Lowland very hot Tropical lowland very hot Tropical lowland very hot Tropical lowland wet tropical lowland tropical vhTmean-Itdif-aP-aDl Tropical Lowland very hot Tropical Lowland very hot Tropical lowland wet tropical lowland tropical vhTmean-altIdif-vhP-aDl Tropical Lowland very hot Tropical Lowland very hot Tropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDl Tropical Lowland very hot Tropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDl Tropical Lowland very hot Tropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDl Tropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDl Tropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDl Tropical lowland wet tropical lowland wet tropical lowland tropical hTmean-altIdif-vhP-aDl Tropical lowland wet tropical lowland wet tropical lowland tro	129		True Subtropical lowland wet	tropical	lowland	tropical	hTmean-altdif-vhP-aDl	Tropical lowland wet
True Subtropical lowland wet subtropical midalitude tropical various Tmean-ahTdif-ahP-ahDl subtropical, long day True Subtropical lowland wet tropical lowland tropical lowland wet subtropical lowland wet subtropical lowland wet subtropical lowland wet tropical lowland wet tropical lowland wet subtropical lowland wet tropical lowland wet tropic								
True Subtropical lowland wet tropical lowland tropical almean-ahrdif-ahp-ahDl rue Subtropical lowland wet tropical lowland tropical almean-ahrdif-ahp-habDl subtropical lowland wet tropical lowland tropical various/Tmean-ahrdif-ahp-ahbl subtropical lowland wet tropical lowland tropical hrmean-altdif-vhp-abDl rropical lowland wet tropical lowland tropical hrmean-altdif-vhp-abDl rropical lowland wet tropical lowland tropical hrmean-altdif-vhp-abDl rropical lowland wet tropical lowland tropical various/Tmean-ahrdif-ahp-ahbDl Subtropical lowland wet tropical lowland tropical various/Tmean-ahrdif-ahp-ahbDl subtropical lowland wet tropical midalitude tropical vhrmean-lrdif-ap-abDl rropical Lowland very hot subtropical lowland wet tropical midalitude tropical vhrmean-lrdif-ap-abDl rropical Lowland very hot subtropical lowland wet tropical lowland tropical vhrmean-lrdif-ap-abDl rropical Lowland very hot tropical lowland wet tropical lowland tropical hrmean-altdif-vhP-abDl rropical lowland wet tropical lowland tropical hrmean-altdif-vhP-abDl rropical lowland wet tropical lowland tropical hrmean-altdif-vhP-abDl rropical lowland wet tropical lowland tropical hrmean-altdif-ap-abDl rropical lowland wet tropical lowland tropical hrmean-altdif-vhP-abDl rropical lowland wet tropical lowland tropical hrmean-altdif-vhP-abDl rropical lowland wet tropical lowland wet tropical lowland tropical hrmean-altdif-ap-abDl rropical								
True Subtropical lowland wet tropical lowland tropical aTmean-aTdif-hP-haDl variousTmean-ahTdif-ahP-haDl variousImean-ahTdif-ahP-haDl variousImean-ahTdif-ahP-haD								
True Subtropical lowland wet tropical lowland tropical tropical tropical lowland tropical tropical lowland wet tropical lowland tropical hTmean-altdif-hP-aDl Tropical lowland wet tropical lowland tropical hTmean-altdif-hP-aDl Tropical lowland wet tropical lowla								
True Subtropical lowland wet tropical lowland tropical various Tmean-ahTdif-aP-aDl Tropical Lowland very hot Tropical Lowland very hot Tropical Lowland very hot Tropical Lowl	136			tropical	lowland	tropical		
True Subtropical lowland wet subtropical lowland wet subtropical lowland tropical variousTmean-ahTdif-ahP-ahDl Tropical Lowland very hot subtropical lowland wet tropical midaltitude tropical vhTmean-ITdif-aP-ahDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical vhTmean-ITdif-ahP-ahDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical htmean-altdif-vhP-abDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical htmean-altdif-vhP-abDl Tropical lowland wet tropical lowland wet tropical lowland tropical htmean-altdif-vhP-abDl Tropical lowland wet tropical lowland tropical htmean-altdif-vhP-abDl Tropical lowland wet tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical htmean-altdif-vhP-abDl Tropical Lowland very hot subtropical lowland wet tropical lowland tropical htmean-altdif-vhP-abDl Tropical Lowland wet subtropical lowland tropical vhTmean-ITdif-aP-abDl Tropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-abDl Tropical Lowland very hot subtro								
True Subtropical lowland wet tropical lowland tropical tropical variousTmean-ahTdif-ahP-ahDl Tropical, long day True Subtropical lowland wet tropical lowland tropical tropical vhTmean-ITdif-aP-aDl Tropical Lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDl Tropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet Tropical lowland tropical hTmean-vlTdif-aP-aDl Tropical Lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDl Tropical Lowland wet Tropical lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDl Tropical lowland wet Tropical lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet Subtropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot Tropical Lowland	139		True Subtropical lowland wet		lowland	tropical	variousTmean-ahTdif-ahP-ahDl	Subtropical, long day
True Subtropical lowland wet tropical lowland tropical hTmean-ITdif-aP-aDI Tropical Lowland very hot tropical lowland tropical hTmean-ITdif-aP-aDI Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical hTmean-ITdif-aP-aDI Tropical Lowland wet Tropical lowland tropical hTmean-ITdif-aP-aDI Tropical Lowland wet Tropical lowland tropical hTmean-ITdif-aP-aDI Tropical lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot								
True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot tropical lowland tropical hTmean-ITdif-aP-aDl Tropical lowland wet tropical lowland tropical hTmean-alltdif-vhP-aDl Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical hTmean-vITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet subtropical lowland tropical hTmean-vITdif-aP-aDl Tropical lowland wet Tropical lowland tropical hTmean-alltdif-vhP-aDl Tropical lowland wet Tropical lowland tropical hTmean-alltdif-vhP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot								
True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical hTmean-vITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical hTmean-vITdif-aP-aDI Tropical Lowland Tropical Lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet Subtropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot								Tropical lowland wet
146 True Subtropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical hTmean-vITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet subtropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet Tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot Tropical Lowland very hot Tropical lowland wet tropical lowland very hot								
True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot tropical lowland tropical hTmean-VITdif-aP-aDl Tropical Lowland very hot tropical lowland tropical hTmean-VITdif-aP-IDl Tropical Lowland Tropical Lowland tropical hTmean-Itdif-aP-aDl Tropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDl Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical lowland wet Tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot	146		True Subtropical lowland wet	tropical	lowland	tropical	hTmean-altdif-vhP-aDl	Tropical lowland wet
True Subtropical lowland wet tropical lowland tropical hTmean-ITdif-aP-aDI Tropical Lowland very hot tropical lowland tropical hTmean-VITdif-aP-IDI Tropical Lowland wet tropical lowland tropical hTmean-altdif-aP-IDI Tropical Lowland wet tropical lowland tropical hTmean-altdif-aP-aDI Tropical lowland wet tropical lowland tropical hTmean-altdif-aP-aDI Tropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot								
151 True Subtropical lowland wet subtropical lowland tropical hTmean-altdif-vhP-aDl Tropical lowland wet 152 True Subtropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDl Tropical lowland wet 153 True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot 154 True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot 155 True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot	149						vhTmean-ITdif-aP-aDI	
152 True Subtropical lowland wet tropical lowland tropical hTmean-altdif-vhP-aDI Tropical lowland wet 153 True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot 154 True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot 155 True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDI Tropical Lowland very hot								
153 True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot 154 True Subtropical lowland wet subtropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot 155 True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot								
155 True Subtropical lowland wet tropical lowland tropical vhTmean-ITdif-aP-aDl Tropical Lowland very hot	153		True Subtropical lowland wet	tropical	lowland	tropical	vhTmean-ITdif-aP-aDl	Tropical Lowland very hot
100 1140 Saba Spicar iowiana wet Saba Opicar iowiana a Opicar ITTIIIcan atti ITOpicar iowiana wet	156		True Subtropical lowland wet	subtropical	lowland	tropical	hTmean-altdif-vhP-aDl	Tropical lowland wet

TreeCl	LUSTERO	CLUSNAM	E CID	newid	Country	Location	PLANT	LAT	LONG	Z	DL	TMEAN	тотр	TDIF	ETP
12	5	CL17	11005	11005	Peru	La Molina	6	-12.08	-76.95	762	11.33	16.2	23	9.4	70
12	5	CL17	20604	-10	Honduras	La Esperanza	12	14.25	-88.20	1821	11.21	16.8	94	12.6	105
na	na	na		-23	Zambia	Golden-V	4	-14.17	28.37	1170	11.46	17.9	29	15.2	110
15	11	CL19	10603	10603	Ecuador	Sta. Catalina	11	-0.38	-78.52	3353	12.02	9.7	352	10.8	80
15 15	11 11	CL19 CL19	11034 11013	11034 11013	Peru Peru	Cajabamba	10 10	-7.62 -7.10	-78.05 -78.07	3353 2896	12.29 12.27	11.1 13.3	352 339	14.1 13.9	99 102
13	7	CL19 CL51	10507	-5	Colombia	Cajamarca Tibaitata	9	4.70	-76.07 -74.20	2545	11.94	13.5	418	8.9	80
13	7	CL51	10507	10507	Colombia	Tibaitata	4	4.70	-74.20	2545	12.17	13.7	369	8.1	78
15	11	CL19	11201	11201	Uruguay	La Estanzuela	9	-34.33	-57.68	30	12.50	17.5	338	11.5	122
15	11	CL19	10101	10101	Argentina	Pergamino	9	-33.93	-60.57	61	12.49	17.8	337	13.4	126
13	7	CL51	15	-1	Colombia	Chinchina	9	4.93	-75.60	2500	11.94	14.1	842	8.2	84
13 13	7 7	CL51 CL51	15 17	15 17	Colombia Colombia	Chinchina Popayan	4 9	4.93 2.45	-75.60 -76.60	2500 2362	12.18 11.97	14.5 14.6	658 813	8.0 9.9	86 86
13	7	CL51	16	-2	Colombia	Medellin	9	6.26	-75.58	2286	11.92	15.9	870	9.7	87
13	7	CL51	16	16	Colombia	Medellin	4	6.26	-75.58	2286	12.23	16.4	813	9.8	91
13	7	CL51	10510	-6	Colombia	Rionegro	9 5	6.18	-75.43	2156	11.92	16.7	870	9.8	88
12 13	5 7	CL17 CL51	33 10510	33 10510	Ethiopia Colombia	Ambo Rionegro	5 4	9.05 6.18	37.82 -75.43	2083 2156	12.49 12.23	17.0 17.1	695 825	12.3 9.8	99 92
5	9	CL22	30	30	Zimbabwe	Makoholi	11	-19.83	30.78	1111	13.12	22.5	489	11.2	146
5	9	CL22 CL22	13	30 13	Botswana	Pandamatenga	12	-19.63 -18.55	25.65	1097	13.12	23.8	523	12.3	144
5	9	CL22	10207	10207	Bolivia	Iboperanda	11	-19.87	-63.77	1066	13.12	24.1	487	12.4	138
5	9	CL22	10224	10224	Bolivia	Algarrobal	11	-21.45	-63.65	777	13.22	24.7	539	12.5	139
5 5	9 9	CL22 CL22	72608 32	72608 32	Zimbabwe Zimbabwe	Chisumbanji Save-Valley	12 12	-20.80 -20.35	32.23 32.33	412 446	13.19 13.16	25.4 25.4	379 326	11.6 11.9	145 142
5	9	CL22 CL22	32 29	32 29	Zimbabwe	Chiredzi	12	-20.33 -21.02	32.33 31.58	433	13.10	25.4	424	11.9	150
6	2	CL15	10203	10203	Bolivia	Santa Cruz	10	-17.70	-63.13	350	12.69	26.0	564	10.7	152
6	2	CL15	80404	80404	India	Hyderabad	7	17.33	78.50	521	12.71	26.1	541	9.1	195
5 5	9 9	CL22 CL22	72607 71004	72607 71004	Zimbabwe Malawi	Mzarabani	12 12	-16.37 -16.47	31.02 34.92	429 108	12.92 12.92	26.5 27.5	584 584	11.1 11.3	139 141
5	9	CL22 CL22	20764	20764	Mexico	Ngabu Culiacan, Sin.	7	24.80	-107.40	48	13.06	27.3	560	12.0	141
10	15	CL31	80403	80403	India	Ludhiana	7	30.90	75.80	241	13.38	29.5	513	11.9	275
4	8	CL42	72501	72501	Zambia	Mount-Makulu	11	-15.53	28.25	1281	12.86	22.0	687	10.1	129
4	8	CL42	71001	71001	Malawi	Chitedze	12	-13.98	33.63	1097	12.78	22.1	724	9.6	119
4	8	CL42	72406	72406	Zaire	Kaniamesh	11	-11.73	27.42	1295	12.64	22.1	952	11.5	110
5 4	9 8	CL22 CL42	20798 25	20798 25	Mexico Zambia	S. M. Cuyutlan, Kabwe	6 11	20.50 -14.45	-103.50 28.47	1616 1200	13.17 12.80	22.3 22.4	754 780	12.6 10.2	121 124
4	8	CL42	20506	20506	Guatemala	San Jeronimo	5	15.08	-90.23	1420	12.83	22.4	1081	10.2	114
4	8	CL42	10302	10302	Brazil	Sete Lagoas	10	-19.47	-44.25	823	12.76	22.5	954	11.1	115
4	8	CL42	72503	72503	Zambia	Golden Valley	11	-14.17	28.37	1170	12.78	22.5	818	10.3	123
4 5	8 9	CL42 CL22	20612 20794	20612 20794	Honduras Mexico	Catacamas Tlajomulco, Jal	5 6	14.91 20.47	-85.90 -103.77	819 1513	12.82 13.17	22.8 22.8	687 742	8.9 13.0	120 121
5	9	CL22	21101	21101	Mexico	Zapopan, Jal.	6	20.70	-103.38	1566	13.19	22.9	743	12.8	123
4	8	CL42	71005	71005	Malawi	Bvumbwe	11	-15.92	35.07	889	12.88	23.1	788	9.3	128
5 5	9 9	CL22	10317	10317	Brazil	Jardinopolis	10	-20.98	-47.80	709	12.82	23.3	834	11.4	128
о 4	8	CL22 CL42	71201 20507	71201 20507	Mozambique Guatemala	Sussundenga Jutiapa	11 5	-19.33 14.25	33.22 -89.92	787 948	13.09 12.78	23.5 23.7	739 1032	11.5 9.7	139 125
5	9	CL22	27	27	Zambia	Masabuka	11	-15.85	27.75	1000	12.88	23.7	658	10.6	135
4	8	CL42	20501	20501	Guatemala	Cuyuta	5	14.25	-90.00	950	12.78	23.9	1040	9.6	125
4 5	8 9	CL42 CL22	71006 11303	71006 11303	Malawi Venezuela	Chitala San Joaquin	12 6	-13.13 10.26	34.07 -67.78	733 580	12.73 12.57	24.1 24.1	948 602	8.9 10.6	125 123
5	9	CL22	21143	21143	Mexico	Ameca, Jal.	6	20.55	-104.05	1244	13.18	24.1	702	13.5	123
3	6	CL23	80422	80422	India	Arabhavi	6	16.20	74.90	531	12.91	24.6	1053	7.1	160
5	9	CL22	10322	10322	Brazil	Capinopolis	10	-18.68	-49.57	579	12.73	24.6	816	12.0	131
3 5	6 9	CL23 CL22	20311 91602	20311 91602	Costa Rica Philippines	Turrialba U.P. Los Baños	5 5	9.88 14.17	-83.65 121.25	595 52	12.53 12.77	24.7 24.9	1225 949	10.7 12.0	106 163
5	9	CL22	20725	20725	Mexico	Xalisco, Nay.	6	21.43	-104.80	987	13.23	25.0	1094	12.1	124
5	9	CL22	72504	72504	Zambia	Kaoma	12	-15.77	27.92	668	12.88	25.1	618	10.3	134
4 5	8 9	CL42 CL22	20606 20401	20606 20401	Honduras El Salvador	Omonita San Andres	5 5	14.40 13.80	-87.67 -89.42	560 452	12.79 12.75	25.2 25.9	990 1083	9.9 10.9	132 135
3	6	CL22 CL23	20304	20401	Costa Rica	Los Diamantes	5 5	13.80	-89.42 -83.77	452 245	12.75	26.0	1083	9.9	135
3	6	CL23	20102	20102	Belize	Central Farm	6	17.00	-89.00	353	12.96	26.0	1520	7.3	120
5	9	CL22	71208	71208	Mozambique	Nampula	12	-15.10	39.28	329	12.84	26.3	831	11.5	142
6 5	2 9	CL15 CL22	90403 20712	90403 20712	China Mexico	Nanning Tlaltizapan	4 6	22.60 18.68	108.17 -99.13	115 945	12.89 13.06	26.3 26.5	680 819	6.9 13.5	168 119
6	2	CL15	61401	61401	Burkina Faso	Farako-Ba	5	11.10	-4.33	466	12.60	26.7	744	10.5	149
3	6	CL23	61302	61302	Guinea-Bissau	Cenmac	6	12.35	-14.55	23	12.69	26.8	1265	8.6	128
6	2	CL15	91609	91609	Philippines	Ilagan	4	16.50	121.15	278	12.63	27.0	612	9.1	205
6 3	2 6	CL15 CL23	80417 20716	80417 20716	India Mexico	Jalna Veracruz	6 6	19.85 19.15	75.88 -96.12	485 3	13.13 13.09	27.0 27.4	602 968	9.5 9.9	208 124
3	6	CL23	20502	20502	Guatemala	La Maquina	6	14.30	-90.12 -91.57	55	12.80	27.4	1642	10.2	124
6	2	CL15	20805	20805	Nicaragua	Santa Rosa	5	12.13	-86.18	77	12.66	27.4	617	9.2	146
6	2	CL15	91513	91513	Vietnam	Doc Trong Farm	5	11.13	108.38	173	12.60	27.4	622	7.6	163
2	4 6	CL28 CL23	20615 20710	20615 20710	Honduras Mexico	La Ceiba Poza Rica	6 6	15.75 20.53	-86.87 -97.43	22 87	12.88 13.18	27.5 27.5	648 999	7.5 10.7	121 129
3	6	CL23 CL23	20710	20710	Guatemala	Polochic	5	20.53 15.31	-97.43 -89.75	40	13.18	28.2	1326	9.6	134
6	2	CL15	90302	90302	Cambodia	Banteay-dek	5	12.00	105.00	15	12.65	28.3	680	8.2	180
6	2	CL15	80209	80209	Bangladesh	Rangpur	4	25.73	89.23	32	13.03	28.3	1324	9.8	213
6 3	2 6	CL15 CL23	91406 20717	91406 20717	Thailand Mexico	Nakhon Sawan R. Nayarit (INIFAP)	6 6	15.35 21.51	100.50 -105.20	83 7	12.86 13.24	28.4 28.6	705 1300	9.3 10.1	193 138
J	U	ULZJ	20/1/	20/1/	IVICAICU	reagant (HVII AF)	U	£1.J1	103.20	,	13.24	20.0	1300	10.1	130

			Classifica	ation following	1991		
Newnr	Meclas	MEname	latitude	altitude	tmean	Cluster Diagnostic	Cluster Characteristic
157 158 159 160 161 162		True Subtropical lowland wet True Subtropical lowland wet	tropical tropical subtropical subtropical subtropical tropical	lowland lowland lowland lowland lowland lowland	tropical tropical tropical tropical tropical tropical	vhTmean-ITdif-aP-aDI vhTmean-ITdif-aP-aDI vhTmean-ITdif-aP-aDI vhTmean-ITdif-aP-aDI vhTmean-ITdif-aP-aDI vhTmean-ITdif-aP-aDI	Tropical Lowland very hot Tropical Lowland very hot
163 164 165 166 167 168 169 170 171 172 173 174 175	5b	Subtropical midaltitude mesic Subtropical midaltitude mesic	subtropical tropical subtropical tropical subtropical subtropical subtropical tropical subtropical subtropical subtropical subtropical subtropical subtropical subtropical	troptrans highland highland midaltitude highland midaltitude highland midaltitude troptrans lowland troptrans troptrans troptrans midaltitude	htroptrans htroptrans htroptrans htroptrans st/ma st/ma st/ma st/ma st/ma st/ma st/ma st/ma	vITmean-htdif-alP-ahDI aTmean-htdif-alP-hDI aTmean-htdif-alP-hDI variousTmean-ahTdif-ahP-ahDI aTmean-htdif-alP-hDI aTmean-htdif-alP-hDI variousTmean-ahTdif-ahP-ahDI variousTmean-ahTdif-ahP-ahDI variousTmean-ahTdif-ahP-ahDI aTmean-htdif-alP-hDI aTmean-htdif-alP-hDI aTmean-htdif-alP-hDI variousTmean-ahTdif-ahP-ahDI	Subtropical, cold highlands Subtropical highlands, long day, warm dry Subtropical highlands, long day, warm dry Subtropical, long day Subtropical highlands, long day, warm dry Subtropical highlands, long day, warm dry Subtropical, long day Subtropical, long day Subtropical, long day Subtropical, long day Subtropical highlands, long day, warm dry Subtropical, long day
177 178 179 180 181 182 183 184	5c	Subtropical midaltitude wet	tropical tropical tropical subtropical tropical tropical tropical tropical tropical	troptrans midaltitude midaltitude midaltitude midaltitude midaltitude midaltitude midaltitude midaltitude	htroptrans st/ma st/ma st/ma st/ma st/ma st/ma st/ma	aTmean-aTdif-hP-haDl	NONEQ Tropics wet
186 187 188 189 190 191 192 193 194	6b	Subtropical highland mesic Subtropical highland mesic	subtropical tropical tropical subtropical tropical tropical tropical tropical subtropical	highland highland highland highland highland highland highland midaltitude	trophighland trophighland trophighland trophighland trophighland trophighland trophighland htroptrans htroptrans	vITmean-htdif-alP-ahDI vITmean-htdif-alP-ahDI vITmean-htdif-alP-ahDI vITmean-htdif-alP-ahDI vITmean-htdif-alP-ahDI vITmean-htdif-alP-ahDI vITmean-htdif-alP-ahDI vITmean-htdif-alP-ahDI vITmean-htdif-alP-ahDI	Subtropical, cold highlands
195	6C	Subtropical highland wet	tropical	highland	trophighland	vITmean-htdif-aIP-ahDI	Subtropical, cold highlands
196 197 198 199 200 201	8a	Subtropical winter warm dry Subtropical winter warm dry	subtropical subtropical subtropical subtropical subtropical subtropical	lowland lowland lowland lowland lowland lowland	htroptrans htroptrans htroptrans st/ma st/ma st/ma	alTmean-htdif-vIP-vIDI alTmean-htdif-vIP-vIDI alTmean-htdif-vIP-vIDI alTmean-htdif-vIP-vIDI alTmean-htdif-vIP-vIDI alTmean-htdif-vIP-vIDI	Subtropical winter, short Day, rainfall limited
202	9a	Subtropical winter cold dry	subtropical	midaltitude	trophighland	alTmean-htdif-vIP-vIDI	Subtropical winter, short Day, rainfall limited
203 204 205 206	10a	Temperate-HighlatST hot dry Temperate-HighlatST hot dry Temperate-HighlatST hot dry Temperate-HighlatST hot dry	temperate temperate temperate subtropical	lowland lowland lowland lowland	tropical tropical tropical tropical	hTmean-ITdif-vIP-hDL hTmean-ITdif-vIP-hDL hTmean-ITdif-vIP-hDL hTmean-ITdif-vIP-hDL	Dry subtropical-temperate Dry subtropical-temperate Dry subtropical-temperate Dry subtropical-temperate
207 208 209 210 211 212	10b	Temperate-HighlatST hot mesic Temperate-HighlatST hot mesic Temperate-HighlatST hot mesic Temperate-HighlatST hot mesic Temperate-HighlatST hot mesic Temperate-HighlatST hot mesic	subtropical subtropical subtropical temperate temperate temperate	lowland lowland lowland lowland lowland lowland	tropical tropical tropical tropical tropical tropical	variousTmean-ahTdif-ahP-ahDl variousTmean-ahTdif-ahP-ahDl variousTmean-ahTdif-ahP-ahDl vhTmean-aTdif-IP-hDL vhTmean-aTdif-IP-hDL vhTmean-aTdif-IP-hDL	Subtropical, long day Subtropical, long day Subtropical, long day Dry temperate lowlands Dry temperate lowlands Dry temperate lowlands
213 214 215 216 217 218 219 220	10c	Temperate-HighlatST hot wet	subtropical subtropical subtropical subtropical subtropical subtropical subtropical subtropical	midaltitude midaltitude lowland lowland lowland lowland lowland lowland	tropical tropical tropical tropical tropical tropical tropical tropical	ahTmean-ITdfi-hP-vhDL ahTmean-ITdfi-hP-vhDL ahTmean-ITdfi-hP-vhDL ahTmean-ITdfi-hP-vhDL ahTmean-ITdfi-hP-vhDL ahTmean-ITdfi-hP-vhDL ahTmean-ITdfi-hP-vhDL ahTmean-ITdfi-hP-vhDL	Subtropical wet Subtropical wet Subtropical wet Subtropical wet Subtropical wet Subtropical wet Subtropical wet Subtropical wet
221	10d	Temperate-HighlatST hot extreme wet	subtropical	midaltitude	tropical	hTmean-ITdif-vvhP-hDL	Subtropical extreme wet
222 223 224	11b	Temperate-HighlatST warm mesic Temperate-HighlatST warm mesic Temperate-HighlatST warm mesic	subtropical subtropical subtropical	troptrans midaltitude midaltitude	htroptrans st/ma st/ma	aTmean-htdif-alP-hDl variousTmean-ahTdif-ahP-ahDl aTmean-htdif-alP-hDl	Subtropical highlands, long day, warm dry Subtropical, long day Subtropical highlands, long day, warm dry
225	11c	Temperate-HighlatST warm wet	subtropical	highland	htroptrans	ahTmean-ITdfi-hP-vhDL	Subtropical wet
226 227		Temperate-HighlatST warm wet Temperate-HighlatST warm wet	subtropical subtropical	troptrans midaltitude	st/ma st/ma	ahTmean-ITdfi-hP-vhDL ahTmean-ITdfi-hP-vhDL	Subtropical wet Subtropical wet
228	11d	Temperate-HighlatST warm extreme wet	subtropical	midaltitude	st/ma	hTmean-ITdif-vvhP-hDL	Subtropical extreme wet
229	12a	Temperate-HighlatST cold dry	temperate	midaltitude	highlandtemp	vlTmean-htdif-alP-ahDl	Subtropical, cold highlands

TreeCl	LUSTERC	LUSNAME	CID	newid	Country	Location I	PLANT	LAT	LONG	Z	DL	TMEAN	ТОТР	TDIF	ЕТР
6	2	CL15	91407	91407	Thailand	Phraphutthabat	6	14.73	100.60	6	12.82	28.6	742	9.1	190
6 6	2 2	CL15 CL15	91414 91501	91414 91501	Thailand Vietnam	Khonkaen	6 6	16.43 20.48	102.83 105.78	162 55	12.92 13.17	28.8 29.0	795 1219	8.5 6.9	195 183
6	2	CL15 CL15	80201	80201	Bangladesh	Song Boi Joydebpur	4	24.00	90.42	8	12.95	29.0	912	7.9	198
6	2	CL15	80202	80202	Bangladesh	Ishurdi	4	24.12	89.08	31	12.95	29.5	775	9.9	225
6	2	CL15	91401	91401	Thailand	Suwan	6	14.08	101.00	13	12.79	29.9	602	8.8	203
15 14	11 10	CL19 CL25	18 21162	18 21162	Lesotho Mexico	Leribe	10 6	-28.88 19.68	28.05 -99.18	1699 2246	13.19 13.12	18.4 18.8	411 552	13.5 12.9	151 107
14	10	CL25 CL25	21150	21150	Mexico	Cuautitlan Calera, Zac	7	22.90	-102.65	2240	12.97	19.1	276	13.3	107
5	9	CL22	7	7	Angola	Humpata	11	-15.03	13.43	1468	12.83	19.8	448	12.1	127
14 14	10 10	CL25 CL25	20763 71404	20763 71404	Mexico RSA	Gomez Farias, C Viljienskroon	7 1	29.33 -27.17	-107.75 26.92	2136 1347	13.29 13.15	19.9 20.6	358 317	15.4 14.8	123 140
14	10	CL25	21138	21138	Mexico	Pabellon Ags	6	22.18	-102.30	1952	13.13	20.7	387	14.2	129
5	9 9	CL22 CL22	31	31	Zimbabwe	Matopos	11	-20.38	28.50	1457	13.15	21.0	458	11.6	147
5 5	9	CL22 CL22	10208 72001	10208 72001	Bolivia Swaziland	Mairana Malkerns	11 10	-18.12 -26.55	-63.95 31.15	1600 763	13.01 13.08	21.3 21.7	417 490	11.3 11.6	132 148
14	10	CL25	20708	20708	Mexico	Celaya (INIFAP)	6	20.52	-100.82	1765	13.18	21.7	501	13.8	129
14 14	10 10	CL25 CL25	21117 21124	21117 21124	Mexico Mexico	Queretaro Irapuato	6 6	20.52 20.73	-100.67 -101.32	1777 1785	13.18 13.19	21.7 21.7	465 570	13.7 13.8	129 128
5	9	CL23	72604	72604	Zimbabwe	Kadoma	11	-18.32	30.90	1309	13.17	21.7	585	11.3	136
4	8	CL42	20604	20604	Honduras	La Esperanza	5	14.25	-88.20	1821	12.78	18.9	1225	11.0	113
4	8	CL42	72602	72602	Zimbabwe	Harare	11	-17.80	31.05	1489	12.99	20.7	646	10.5	129
4	8 8	CL42 CL42	72601 28	72601 28	Zimbabwe Zimbabwe	Rattray-Arnold Chipinge	11 11	-17.67 -20.20	31.17 32.62	1452 1102	12.99 13.14	20.8 21.0	683 751	10.5 9.6	128 132
4	8	CL42	71203	71203	Mozambique	Lichinga	11	-13.30	35.23	1305	12.73	21.1	815	9.9	124
4	8	CL42	21	21	Malawi	Bembeke	12	-14.17	34.43	1170	12.79	21.5	802	8.8	117
4	8 8	CL42 CL42	26 72609	26 72609	Zambia Zimbabwe	Kasama Glendale	11 11	-10.22 -17.08	31.13 31.03	1363 1250	12.56 12.95	21.6 21.7	918 682	9.9 10.5	113 131
4	8	CL42	72502	72502	Zambia	Mansa	11	-11.10	28.85	1267	12.61	21.8	842	10.3	112
15	11	CL19	20	20	Lesotho	Mokotlong	10	-29.28	29.08	2359	13.21	13.9	395	13.9	126
15 15	11 11	CL19 CL19	21130 20715	21130 20715	Mexico Mexico	Metepec Toluca, Mex.	5 5	19.30 19.28	-99.63 -99.65	2650 2657	13.08 13.07	14.4 14.4	572 576	13.3 13.2	107 106
15	11	CL19	70801	70801	Lesotho	Thaba-Tseka	10	-29.50	28.62	2218	13.07	14.4	363	13.6	134
15	11	CL19	10206	10206	Bolivia	Cochabamba	12	-17.43	-66.17	2895	12.98	15.6	485	12.8	115
15 15	11 11	CL19 CL19	10205 21144	10205 21144	Bolivia Mexico	Parirumani Amecameca, Mex.	12 5	-17.35 19.13	-66.3 <u>2</u> -98.77	2819 2491	12.98 13.07	16.1 16.2	500 518	12.9 13.5	116 109
15	11	CL19	20713	20713	Mexico	El Batan	5	19.52	-98.87	2267	13.09	17.4	492	14.3	115
15	11	CL19	22	22	RSA	Greytown	10	-29.02	30.60	1314	13.19	17.5	473	12.1	130
15	11	CL19	20504	20504	Guatemala	Quetzaltenango	5	14.87	-91.52	2388	12.81	14.2	679	11.8	104
11 11	3	CL20 CL20	80420 80209	-16 -15	India Bangladesh	Bahraich Rangpur	12 11	27.72 25.73	81.60 89.23	130 32	10.35 10.50	18.6 19.7	66 34	15.8 14.3	168 160
11	3	CL20	20709	20709	Mexico	Los Mochis, Sin	11	25.77	-109.00	10	10.50	19.9	43	17.3	94
11 11	3	CL20 CL20	20711 80202	20711 -14	Mexico Bangladesh	Cd. Obregon Ishurdi	10 11	26.67 24.12	-109.42 89.08	2 31	10.92 10.61	20.6 20.8	82 50	16.5 14.1	102 168
11	3	CL20	80202	-13	Bangladesh	Joydebpur	11	24.12	90.42	8	10.62	21.3	55	12.6	160
11	3	CL20	11	11	Botswana	Good-Hope	6	-25.48	25.47	1231	10.50	13.8	26	18.1	104
9	14	CL16	50403	50403	Egypt	Sakha	6	31.12	30.95	7	13.91	25.7	0	13.3	177
9	14 14	CL16 CL16	50404 50402	50404 50402	Egypt	Nubaria	6 6	31.00 30.72	30.50	8 9	13.90 13.88	25.8	0	11.9 13.6	173 178
9	14	CL16	50402	50402	Egypt Egypt	Gemmeiza Sids	6	28.93	31.12 30.98	29	13.74	26.0 27.2	0	14.2	188
5	9	CL22	71202	71202	Mozambique	Umbeluzzi	11	-26.58	32.38	23	13.56	24.7	371	10.7	148
5	9	CL22	72005	72005	Swaziland	Big-Bend	11	-26.78	31.92	109	13.57	25.0	351	11.6	149
5 10	9 15	CL22 CL31	71209 80705	71209 80705	Mozambique Pakistan	Chokwe Islamabad	12 6	-24.53 33.50	33.00 72.75	33 521	13.43 14.10	26.6 29.2	411 414	12.5 13.1	151 300
10	15	CL31	80701	80701	Pakistan	Pirsabak	6	34.00	72.83	474	14.14	30.2	446	12.1	323
10	15	CL31	80702	80702	Pakistan	Yousafwala	6	31.00	74.00	176	13.90	32.2	266	11.4	313
7 7	12 12	CL18 CL18	35 38	35 38	Nepal Nepal	Pakhribas Dailekh	6 6	27.08 28.85	87.33 81.72	1148 1237	13.61 13.74	24.4 25.6	696 1302	6.8 6.5	210 213
7	12	CL18	80413	80413	India	Jorhat	6	26.77	94.27	123	13.59	28.0	1685	7.1	190
7	12	CL18	80608	80608	Nepal	Surkhet	6	28.60	81.60	617	13.72	28.3	1531	7.6	238
7 7	12 12	CL18 CL18	80601 80405	80601 80405	Nepal India	Rampur Pantnagar	6 6	27.62 29.00	84.42 79.45	185 204	13.65 13.75	28.9 29.1	1576 993	8.6 8.8	228 230
7	12	CL18	80407	80407	India	Dholi	6	25.98	86.25	34	13.53	29.6	1050	7.6	208
7	12	CL18	80420	80420	India	Bahraich	6	27.72	81.60	130	13.66	30.1	1012	8.5	230
8	13	CL35	36	36	Nepal	Pokhara	5	28.22	84.00	944	13.66	24.7	2765	8.8	215
14 5	10 9	CL25 CL22	19	19 10102	Lesotho Argentina	Maseru Leales	11 12	-29.28 -25.83	27.50 -65.25	1635	13.75	19.9	384	13.7	156 137
5 14	9 10	CL22 CL25	10102 71401	10102 71401	Argentina RSA	Leales Potchefstroom	12 12	-25.83 -26.67	-65.25 27.07	1219 1354	13.52 13.58	21.1 22.0	475 385	11.9 14.0	137 160
7	12	CL18	90402	90402	China	Kunming	6	25.12	102.72	1957	13.48	19.4	703	8.8	183
7	12	CL18	34	34	Nepal	Kabre-Dolakha	5	27.68	86.07	1733	13.62	20.8	1625	6.8	193
7	12	CL18	90406	90406	China	Gui-Yang	6	26.48	106.65	1153	13.57	23.2	631	9.0	203
8	13	CL35	37	37	Nepal	Lumle Reg. Agric. Res	s. C5	28.30	83.80	1492	13.66	22.8	3745	5.1	190
15	11	CL19	10402	10402	Chile	La Platina	10	-33.57	-70.63	1037	13.43	15.4	44	15.9	137

Appendix H. Zonal maps of maize mega-environments made using trigger season planting. Source of climate data: Latin America, Africa: Corbett and O'Brien, 1997; Asia: Jones 1998.

CIMMYT® (www.cimmyt.org) is an internationally funded, nonprofit, food and environmental research center. Headquartered in Mexico, the Center works with agricultural research institutions worldwide to improve the productivity, profitability, and sustainability of maize and wheat systems for poor farmers in developing countries. CIMMYT is a Future Harvest (www.futureharvest.org) center and receives its principal funding from 58 governments, private foundations, and international and regional organizations known as the Consultative Group on International Agricultural Research. Future Harvest builds awareness and support for food and environmental research for a world with less poverty, a healthier human family, well-nourished children, and a better environment. Future Harvest supports research, promotes partnerships, and sponsors projects that bring the results of research to rural communities, farmers, and families in Africa, Latin America, and Asia.

© International Maize and Wheat Improvement Center (CIMMYT) 2000. All rights reserved. Responsibility for this publication rests solely with CIMMYT. The designations employed in the presentation of material in this publication do not imply the expressions of any opinion whatsoever on the part of CIMMYT or contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. CIMMYT encourages fair use of this material. Proper citation is requested.

Printed in Mexico.

Correct citation: Hartkamp, A.D., J.W. White, A. Rodríguez Aguilar, M. Bänziger, G. Srinivasan, G. Granados, and J. Crossa. 2000. *Maize Production Environments Revisited: A GIS-based Approach*. Mexico, D.F.: CIMMYT.

Abstract: This publication presents a GIS-based approach for revising the definitions of global maize production environments, called "mega-environments" (MEs), used by CIMMYT and its partners. A cluster analysis was performed on climate data, representing a four-month growing season, for key maize producing locations. Assuming rainfed production, the onset of the growing season was determined based on the month when the ratio of precipitation over potential evapotranspiration exceeds 0.5. Diagnostic criteria for mapping MEs were based on cluster analysis results and expert knowledge. The resulting maps can be used to select appropriate target environments for maize germplasm and trials, as well as in priority setting and site selection for global maize breeding programs.

ISBN: 970-648-050-1.

AGROVOC descriptors: Zea mays; Maize; Plant production; Production factors; Climatic factors; Environmental factors; Climate; Rain; Genotype environment interaction; Crop management; Production possibilities; Geographical information systems; Cartography; Sampling.

Additional keywords: CIMMYT

AGRIS category codes: F01 Crop Husbandry; B10 Geography.

Dewey decimal classification: 633.1523.