

Introduction:

With a large number of movies available for viewers to watch, it can be hard to predict whether or not an upcoming movie can be a worthwhile investment. In order to do so, we want to figure out the factors that are most important in determining movie success and create a machine learning model using this data that can predict a movie's success.

Objectives

- Using the dataset, create a criteria that would determine if a movie is successful or not.
- Visualize the correlation between a movie's success and various factors.
- Use this to create a machine learning model that is able to predict a movie's success based off the data.
- Determine which factors are most important in a movie's success.

Datasets

All of our datasets were sourced from Kaggle.

Our initial work was done with a dataset from 2017 called **TMDB 5000**.

...and then we discovered a much more robust dataset <u>here</u> (from 2022).

In an attempt to get better clarity and representation on our output, we performed many comparisons between the two datasets.

Success Criteria

For our machine learning model, we defined a model as "successful" based on the following criteria:

The movie's revenue is greater than twice its' budget.

AND

 The average rating of the movie is greater than the average rating of the dataset overall.

Directors Avg Gross Worldwide vs Domestic **Director Name** Avg. Worldwide gross \$ 800M 400M 200M 400M Avg. Domestic gross \$ 200M 100M Sam Raimi Jon Watts Phyllida Lloyd Gareth Edwards Brad Bird Chloé Zhao Peyton Reed James Cameron Josh Cooley Lee Unkrich James Fotopoulos Joss Whedon Colin Trevorrow Chris Renaud Neil Boultby Robert Stromberg David Yates Jon Favreau Sam Taylor-Johnson Dean DeBlois Jordan Vogt-Roberts Joseph Kosinski Christopher Nolan Kiran Nakti Michael Bay David Silverman Alfonso Cuarón J.A. Bayona Marc Webb Rich Moore Joachim Rønning Carlos Saldanha Shane Black David Leitch Francis Lawrence Genndy Tartakovsky Dan Scanlon Michael Gracey Taika Waititi Tom McGrath Andy Muschietti Jeff Fowler Peter Jackson Chris Miller Tim Miller Ryan Coogler James Wan Bryan Singer

Machine Learning Model

After defining our success criteria, we added an additional column into our dataset to showcase each movie's success.

We proceeded to fit our data into the random forest classifier. We used this due to the large number of variables present in our model, which random forest is well suited for.

(6)		budget	popularity	revenue	vote_average	vote_count	success_score
	0	237000000	150.437577	2787965087	7.2	11800	.1
	1	300000000	139.082615	961000000	6.9	4500	1
	2	245000000	107.376788	880674609	6.3	4466	1
	3	250000000	112.312950	1084939099	7.6	9106	1
	4	260000000	43.926995	284139100	6.1	2124	0

479	98	220000	14.269792	2040920	6.6	238	1
479	99	9000	0.642552	0	5.9	5	0
480	00	0	1.444476	0	7.0	6	0
480	01	0	0.857008	0	5.7	7	0
480	02	0	1.929883	0	6.3	16	0

Machine Learning Model - Results

Confusion Matrix and Classification Report

-	-			
(on	+111	ราดก	Mati	CIV

	Predicted 0	Predicted 1	
Actual 0	833	17	
Actual 1	5	346	

Accuracy Score: 0.9816819317235637

Classification Report

CIGSSIII	Catto	ii kepoi c			
		precision	recall	f1-score	support
	0	0.99	0.98	0.99	850
	1	0.95	0.99	0.97	351
accui	racy			0.98	1201
macro	avg	0.97	0.98	0.98	1201
weighted	avg	0.98	0.98	0.98	1201

Feature Importance

We can also use **sklearn** to determine the importance of each feature in determining a movie's success. Here are the results:

```
[(0.2983306480889208, 'vote_average'),
(0.29462905266843614, 'revenue'),
(0.18635902106610636, 'budget'),
(0.12987841167775563, 'vote_count'),
(0.09080286649878107, 'popularity')]
```


Machine Learning Model (Alternate Dataset)

We also used a dataset known as the Ultimate Film Statistics and compared our results to our original model.

Comparison:

	runtime_minutes	movie_averageRating	movie_numerOfVotes	approval_Index	production_budget	domestic_gross	worldwide_gross	success_score
0	192.0	7.8	277543.0	7.061101	460000000	667830256	2265935552	1
1	181.0	8.4	1143642.0	8.489533	400000000	858373000	2794731755	1
2	137.0	6.6	533763.0	6.272064	379000000	241071802	1045713802	1
3	141.0	7.3	870573.0	7.214013	365000000	459005868	1395316979	1
4	149.0	8.4	1091968.0	8.460958	300000000	678815482	2048359754	1
4375	100.0	7.2	110078.0	6.017902	65000	11529368	22233808	1
4376	98.0	6.6	7986.0	4.231464	50000	10426506	10426506	1
4377	93.0	4.9	1593.0	2.526405	50000	2335352	2335352	0
4378	98.0	6.2	14595.0	4.242085	50000	391674	424149	0
4379	111.0	6.2	163.0	2.191765	50000	8374	8374	0
1000			<u> </u>					

Machine Learning Model (Alternate Dataset) - Results

Confusion Matrix and Classification Report

∄	Confusion Ma	trix			
135 - 170	Pr	edicted 0 Pr	edicted 1		
	Actual 0	715	21	11.	
	Actual 1	11	348		
	Accuracy Sco Classificati 0	precision 0.98		f1-score 0.98 0.96	support 736 359
	accuracy macro avg weighted avg	0.96	0.97 0.97	0.97 0.97 0.97	1095 1095 1095

Feature Importance (Alternate Dataset)

```
[(0.2768135760549307, 'movie_averageRating'), (0.2037114119853299, 'approval_Index'), (0.15399358759855838, 'production_budget'), (0.12147781814059178, 'worldwide_gross'), (0.10772034904874249, 'domestic_gross'), (0.0994849925457004, 'movie_numerOfVotes'), (0.036798264626146236, 'runtime_minutes')]
```


Feature Importance Comparison

TMDB_5000_dataset

Ultimate Film Statistics

Importance of Genres

In this section, we are comparing the impact of the genre of the movie to its

success.

We are using the Ultimate Film

Statistics dataset for this one.

Due to there being a large number of genre types, we first renamed all genres that had less than 50 movies in the dataset to "other"

Other	2397
Comedy, Drama, Romance	196
Drama	160
Adventure, Animation, Comedy	157
Comedy, Drama	148
Comedy	147
Comedy, Romance	135
Action,Adventure,Sci-Fi	119
Drama, Romance	115
Action,Crime,Drama	109
Action, Adventure, Comedy	97
Action, Comedy, Crime	79
Action,Adventure,Fantasy	76
Crime, Drama, Mystery	75
Action,Crime,Thriller	73
Horror, Mystery, Thriller	63
Crime, Drama, Thriller	62
Biography,Drama,History	61
Action, Adventure, Drama	59
Action, Adventure, Thriller	52
Name: genres, dtype: int64	

Importance of Genres

Confusion Matrix and Classification Report

	Predi	cted 0 Pr	edicted 1		
Actual 0		730	6	1 10	
Actual 1		349	10		
Classific	cation	0.6757990 Report recision		f1-score	support
	0	0.68	0.99	0.80	736
	1	0.62	0.03	0.05	359
accur	acy			0.68	1095
macno	avg	0.65	0.51	0.43	1095
macro					

This model is unreliable. In particular, it predicts many movies to be unsuccessful when in reality they actually were.

Importance of Genres - Feature Importance

Take this with a grain of salt for the reason listed on the previous slide.

Importance of Genres - Feature Importance

In order to maintain high accuracy, we need to keep in the features from before. Here's our new feature importances.

3	Confusion	Mati	rix			
		Prec	licted 0 Pre	dicted 1		
	Actual 0		712	24	118	
	Actual 1		16	343		
	Accuracy Classific		e: 0.96347033 n Report	196347032		
			precision	recall	f1-score	support
		0	0.98	0.97	0.97	736
		1	0.93	0.96	0.94	359
	accur	acy			0.96	1095
	macro	avg	0.96	0.96	0.96	1095
	weighted	avg	0.96	0.96	0.96	1095

Importance of Directors

The last thing we did was compare the importance of directors. Once again, we used the Ultimate Film Statistics Dataset for this.

First, we filtered out directors by renaming directors with 10 or less movies to "other directors".

Other_director	4037	
Steven Spielberg	25	
Clint Eastwood	24	
Ridley Scott	21	
Woody Allen	20	
Martin Scorsese	19	
Steven Soderbergh	18	
Spike Lee	16	
Ron Howard	16	
Tim Burton	15	
Robert Zemeckis	14	
Joel Schumacher	13	
Brian De Palma	13	
Oliver Stone	13	
Renny Harlin	13	
Barry Levinson	13	
Michael Bay	12	
Tony Scott	12	
Paul W.S. Anderson	11	
Antoine Fuqua	11	
Richard Donner	11	
M. Night Shyamalan	11	
Kevin Smith	11	
Roland Emmerich	11	

Importance of Directors - Feature Importances

As before, our model is unreliable due to its inaccuracy, particularly in rating movies as unsuccessful when they're actually successful.

Confusion	n Matri	х		3.0	
	Predic	ted 0 Pr	edicted 1		
Actual 0		728	8	113	
Actual 1		346	13		
Accuracy Classific	cation				
	р	recision	recall	f1-score	support
	0	0.68	0.99	0.80	736
	1	0.62	0.04	0.07	359
accur	racy			0.68	1095
macro	avg	0.65	0.51	0.44	1095
weighted	avg	0.66	0.68	0.56	1095

Importance of Directors - Feature Importances

To fix this, we had to keep the other features. We can see that directors have little impact on a movie's success, (although Ridley Scott does seem to be the most influential director).

Conclusion:

- For both datasets, the movie's rating contributed the most to the success of a movie. Interestingly, the rating count contributed the least to the movie's success.
- Directors and genres had very little impact on a movie's success, so if you
 want to invest in a movie, these don't matter as much.
- However, if you do want to use these factors, it seems that comedy/drama movies have the most importance in determining a movie's success.