Elements Of Data Science - S2022

Week 9: Dimensionality Reduction, Feature Selection and Feature Extraction

3/22/2022

TODOs

- Readings:
 - HOML Chapter 8, Dimensionality Reduction
 - PDSH: In Depth: Principal Component Analysis
- Project presentation Tuesday March 29th, in class. Slides due by 6pm EST
- Quiz 9, Due Monday April 4th, 11:59pm ET
- HW3, Due Monday April 11th 11:59pm ET

Today

- Joining Datasets
- Dimensionality Reduction
 - **■** Feature Selection
 - Linear Model with LASSO
 - Tree Based Models Feature Importance
 - Univariate Tests
 - Recursive Feature Selection
 - lacktriangle Aside: Adjusted \mathbb{R}^2
 - **■** Feature Extraction
 - o PCA
- Example: Image Recognition Using PCA
- Pipelines?

Questions?

Environment Setup

In [1]:

```
import numpy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from mlxtend.plotting import plot_decision_regions

sns.set_style('darkgrid')
%matplotlib inline
```

Joing Datasets

• often have two sets of data we need to join together

```
In [3]:
df_flower_name_orig = pd.DataFrame([[1001, 'iris'], [1002, 'rose']],
                        columns=['flower_id','name'])
df_flower_price_orig = pd.DataFrame([[1002,3.99],[1003,2.25]],
                              columns=['flower_id','price'])
In [4]:
display(df_flower_name_orig)
display(df_flower_price_orig)
    flower_id
               name
  1001
              iris
  1002
            rose
    flower_id
  1002
           3.99
 1003 2.25
```

Joing Datasets On Index

- easiest way to join in Pandas is on row index label
- may need to set the index from a column using .set_index()

```
In [5]:
df_flower_name_orig
Out[5]:
    flower_id
                name
   1001
               iris
   1002
             rose
In [6]:
df_flower_name = df_flower_name_orig.set_index('flower_id') # note: inplace=False, drop=True by default,
df_flower_name
Out[6]:
           name
flower_id
          iris
   1001
   1002
        rose
In [7]:
df_flower_price = df_flower_price_orig.copy()
df_flower_price.set_index('flower_id',inplace=True)
df_flower_price
Out[7]:
flower_id
```

	price
flower_id	
1002	3.99
1003	2.25

Joining Datasets in Pandas On Index Using df.join()

• by default, this is a 'Left Join'

Join Types: Left Join

In [10]:

display(df_flower_name,df_flower_price)

	name
flower_id	
1001	iris
1002	rose

	price
flower_id	
1002	3.99
1003	2.25

In [11]:

df_flower_name.join(df_flower_price,how="left") # default for df.join() is left join

Out[11]:

	name	price
flower_id		
1001	iris	NaN

	name	price
flower_id		
1002	rose	3.99

Join Types: Right Join

In [12]:

display(df_flower_name,df_flower_price)

	name
flower_id	
1001	iris
1002	rose

	price
flower_id	
1002	3.99
1003	2.25

In [13]:

df_flower_name.join(df_flower_price,how='right')

Out[13]:

	name	price
flower_id		
1002	rose	3.99

	name	price
flower_id		
1003	NaN	2.25

Join Types: Inner Join

In [14]:

display(df_flower_name,df_flower_price)

	name
flower_id	
1001	iris
1002	rose

	price
flower_id	
1002	3.99
1003	2.25

In [15]:

df_flower_name.join(df_flower_price,how='inner')

Out[15]:

	name	price
flower_id		
1002	rose	3.99

Join Types: Outer Join

In [16]:

display(df_flower_name,df_flower_price)

	name
flower_id	
1001	iris
1002	rose

	price
flower_id	
1002	3.99
1003	2.25

In [17]:

df_flower_name.join(df_flower_price,how='outer')

Out[17]:

	name	price
flower_id		
1001	iris	NaN

	name	price
flower_id		
1002	rose	3.99
1003	NaN	2.25

Setting the Index When Reading in Data

• instead of using .set_index(), can specify index_col=

```
In [18]:
# this csv has column for purchase_id
pd.read_csv('../data/flowershop_data_with_dups.csv'
          ).head(2)
Out[18]:
  purchase_id
                                                              price favorite_flower
                     lastname
                                    purchase_date stars
               PERKINS
                             2017-04-08
                                                   19.599886
  1000
                                                                       iris
   1001
           ROBINSON
                             2017-01-01
                                                   37.983904
                                                                     NaN
In [19]:
# can set the index when reading in the csv
pd.read_csv('../data/flowershop_data_with_dups.csv',
           index_col='purchase_id'
          ).head(2)
Out[19]:
                   lastname
                                 purchase_date stars
                                                            price favorite_flower
purchase_id
            PERKINS
                          2017-04-08
                                                19.599886
                                                                     iris
    1000
                          2017-01-01
         ROBINSON
                                                37.983904
                                                                  NaN
```

Joining on the Index using .join()

```
In [20]:
# imagine that 'name' is a categorical variable
df_flower_name[['name']]
Out[20]:
flower_id
          iris
   1001
   1002
         rose
In [21]:
# converting categorical to one-hot using get_dummies
pd.get_dummies(df_flower_name['name'],prefix='flower_name')
Out[21]:
        flower_name_iris flower_name_rose
flower_id
                               0
   1001
                 0
   1002
In [22]:
# can join back using the default index
df_flower_name[['name']].join(pd.get_dummies(df_flower_name['name'],prefix='flower_name'))
Out[22]:
            name flower_name_iris flower_name_rose
flower id
           iris
                                        0
   1001
                          0
   1002
        rose
```

Join on Columns Instead of Index using pd.merge()

• to do more complicated joins, use pd.merge()

```
In [23]:
# using the dataframes before setting index using .set_index()
pd.merge(df_flower_name,
         df_flower_price,
         left on='flower id',
         right_on='flower_id') # what is the default join for merge?
Out[23]:
flower id
        rose
   1002
In [24]:
# if both id columns have the same name, use on
pd.merge(df_flower_name,
         df_flower_price,
         on='flower_id',
         how='outer')
Out[24]:
           name
                     price
flower id
                 NaN
   1001
          iris
                  3.99
   1002
         rose
                  2.25
        NaN
```

Joining Datasets Review

- Use .join() when you can, using dataframe indices
- May need to set the dataframe indices (.set_index() or index_col=)
- Know the different general join types: Left, Right, Inner, Outer
- Use pd.merge() when you need something more complicated

Questions?

Dimensionality Reduction

Recall: Methods for Avoiding Overfitting

- Collect additional examples
- Use a simpler model
- Regularization
- Reduce the dimensions of our data: Dimensionality Reduction

Dimensionality Reduction

- Reasons to reduce the number of features:
 - improve model performance (reducing complexity reducing chance of overfitting)
 - improve *speed performance* (reducing number of calculations)
 - interpretation (which features are most important?)

• Feature Selection

choose a subset of original features

• Feature Extraction

combine/transform features to generate a new feature space

Load Binary Wine Classification

```
In [25]:
from sklearn import datasets
from sklearn.model_selection import train_test_split
wine = datasets.load_wine()
X wine = pd.DataFrame(wine.data,columns=wine.feature names)
y wine = wine.target
# reduce to binary classification
X wine = X wine.iloc[y wine < 2]</pre>
y_wine = y_wine[y_wine < 2]</pre>
X_train,X_test,y_train,y_test = train_test_split(X_wine,y_wine,random_state=0)
X train.columns.values
Out[25]:
 array(['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'ma
gnesium',
             'total phenols', 'flavanoids', 'nonflavanoid phenols',
             'proanthocyanins', 'color intensity', 'hue',
             'od280/od315_of_diluted_wines', 'proline'], dtype=objec
 t)
In [26]:
X_train.head(3)
Out[26]:
           malic acid
                      ash alcalinity_of_ash
                                   magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity
                                                                                              hue od280/od315_of_diluted_wines
  13.03
           0.90
                            16.0
                                                   2.03
                                                                0.24
                                                                                                                    392.0
                                             1.95
                                                                                   4.60
                  1.71
                                    86.0
                                                                           1.46
                                                                                          1.19
                                                                                                            2.48
           0.99
                                                                0.35
                                                                                                            2.31
                                                                                                                     750.0
  12.33
                  1.95
                            14.8
                                   136.0
                                            1.90
                                                   1.85
                                                                          2.76
                                                                                   3.40
                                                                                          1.06
```

proli

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	$nonflavanoid_phenols$	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proli
45	14.21	4.04	2.44	18.9	111.0	2.85	2.65	0.30	1.25	5.24	0.87	3.33	1080.0

Need to Standardize Features

In [27]:

X_train.agg(['mean','std']).T.sort_values('mean',ascending=False)

Out[27]:								
	mean	std						
proline	770.381443	351.632012						
magnesium	99.649485	15.215837						
alcalinity_of_ash	18.926804	3.162986						
alcohol	12.876392	0.882710						
color_intensity	4.112680	1.660242						
od280/od315_of_diluted_wines	2.933299	0.452246						
total_phenols	2.479175	0.537158						
flavanoids	2.426598	0.672639						
ash	2.338660	0.279052						
malic_acid	2.033402	0.979120						
proanthocyanins	1.732474	0.520371						
hue	1.054082	0.179279						
nonflavanoid_phenols	0.329794	0.105574						

Standardize Features

```
In [28]:
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train = pd.DataFrame(ss.fit_transform(X_train),columns=X_train.columns)
X_test = ss.transform(X_test)
In [29]:
X_train.agg(['mean','std']).T.sort_values('mean',ascending=False)
Out[29]:
                                   mean
                                                   std
                     2.028160e-15
                                         1.005195
          total_phenols
                     6.638447e-16
                                         1.005195
            flavanoids
                     4.727032e-16
                                         1.005195
        alcalinity_of_ash
                     3.694067e-16
                                         1.005195
           magnesium
                     1.281907e-16
                                         1.005195
              alcohol
                    -3.204767e-17
                                         1.005195
                    -1.110223e-16
                                         1.005195
        proanthocyanins
                    -2.495140e-16
                                         1.005195
     nonflavanoid_phenols
                    -4.051742e-16
                                         1.005195
         color_intensity
                    -4.229149e-16
                                         1.005195
            malic_acid
                    -9.694422e-16
                                         1.005195
od280/od315_of_diluted_wines
                    -1.818706e-15
                                         1.005195
```

mean std

ash -2.128881e-15 1.005195

Recall: Predicting vs Transforming with Train/Test Split

• When transforming data, fit on the training set, transform both train and test

From PML

Recall: Predicting vs Transforming with Train/Test Split

• When performing prediction, train on the training set, evaluate on the test set

From PML

Feature Selection

- Select a subset of features
- Based on how much they contribute to predicting the target 'y'
- From the Model
 - Linear Model with LASSO Regularization
 - Tree Based Models Feature Importance
- Univariate Tests
- Recursive Feature Selection

Feature Selection: LASSO (L1)

• LASSO or ℓ_1 or 11 regularization drives the coefficient of uninformative features to 0

```
In [30]:
from sklearn.linear_model import LogisticRegression
# First, without regularization
# C is the inverse regularization strength: higher means less regularization
logr = LogisticRegression(C=100, penalty="11", solver="liblinear", random_state=123)
logr.fit(X_train, y_train)
logr.coef [0,:5]
Out[30]:
array([-5.74709641, -1.20824931, -2.70057811, 2.47398434, -0.2
83048421)
In [31]:
sorted_tuples = sorted(list(zip(X_train.columns.values,logr.coef_[0])),key=lambda x:x[1],reverse=True)
for feature,coef in sorted tuples:
   print(f'{feature:30s} : {coef: 0.3f}')
alcalinity of ash
                                                         2.474
 proanthocyanins
                                                         1.144
 hue
                                                         1.069
 nonflavanoid phenols
                                                         0.000
total_phenols
                                                       -0.146
magnesium
                                                       -0.283
 flavanoids
                                                       -0.376
```

-0.638

color_intensity

od280/od315_of_diluted_wines	:	-0.860
malic_acid	:	-1.208
ash	•	-2.701
alcohol	:	-5.747
proline	:	-7.568

Feature Selection: LASSO (L1) Cont.

In [32]: # Now with LASSO logr = LogisticRegression(C=0.1, penalty="11", solver="liblinear", random_state=123) logr.fit(X train, y train) sorted_tuples = sorted(list(zip(X_train.columns.values,logr.coef_[0])),key=lambda x:x[1],reverse=True) for feature,coef in sorted tuples: print(f'{feature:30s} : {coef: 0.3f}') malic_acid 0.000 ash 0.000 alcalinity_of_ash 0.000 magnesium 0.000 total_phenols 0.000 nonflavanoid_phenols 0.000 proanthocyanins 0.000 color intensity 0.000 hue 0.000 od280/od315 of diluted wines 0.000 flavanoids -0.007 alcohol -0.982proline -1.102 In [33]: # which columns were kept? X_train.columns[logr.coef_[0] != 0]

Out[33]:

Index(['alcohol', 'flavanoids', 'proline'], dtype='object')

Feature Selection: Tree Based Model Feature Importance

- Trees choose questions based on removing impurity
- We can rank the feature based on how much impurity they remove

```
In [34]:
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(random_state=123).fit(X_train,y_train)
rf.feature importances # (normalized) total reduction of function measuring impurity
Out[34]:
array([0.27332426, 0.01783127, 0.01145411, 0.05480187, 0.051583
74,
           0.05521824, 0.10260545, 0.01117794, 0.01033494, 0.133390
66,
           0.00759636, 0.0216486 , 0.24903258])
In [35]:
feature_importances = pd.Series(rf.feature_importances_,index=X_train.columns)
feature_importances.sort_values(ascending=False).round(3)
Out[35]:
alcohol
                                                 0.273
proline
                                                 0.249
color_intensity
                                                 0.133
flavanoids
                                                 0.103
total_phenols
                                                 0.055
```

alcalinity_of_ash	0.055
magnesium	0.052
od280/od315_of_diluted_wines	0.022
malic_acid	0.018
ash	0.011
nonflavanoid_phenols	0.011
proanthocyanins	0.010
hue	0.008
dtype: float64	

Feature Selection: Tree Based Model Feature Importance

In [36]:

```
fig,ax = plt.subplots(1,1,figsize=(12,10))
feature_importances.sort_values().plot.barh(ax=ax);
ax.set_yticklabels(ax.get_yticklabels(),fontsize=20);
```


Which of these should we keep? Elbow method? Threshold at mean?

Feature Selection: SelectFromModel

```
In [37]:
from sklearn.feature selection import SelectFromModel
sfm = SelectFromModel(logr,
                threshold=None, # if model uses l1 regularization, anything greater than 1e-5, otherwise mean
                           # do not need to re-fit
sfm.get_support() # boolean mask of features selected
Out[37]:
array([ True, False, False, False, False, True, False,
False,
            False, False, Truel)
In [38]:
X_train.columns[sfm.get_support()]
Out[38]:
 Index(['alcohol', 'flavanoids', 'proline'], dtype='object')
In [39]:
X train subset = sfm.transform(X train)
X_train_subset.shape
Out[39]:
 (97, 3)
In [40]:
X_train_subset[:3] # note that this is no-longer a dataframe
```

Out[40]:

```
array([[ 0.17492287, -0.59267761, -1.08166225], [-0.62220886, -0.86167036, -0.05826353], [ 1.51865922, 0.33385297, 0.88509284]])
```

Feature Selection: SelectFromModel Cont

```
In [41]:
sfm rf = SelectFromModel(RandomForestClassifier(),
                      threshold='mean', # return all features with value greater than the mean
                      prefit=False
                                        # will refit
                     ).fit(X_train,y_train)
X_train.columns[sfm_rf.get_support()]
sfm_rf = SelectFromModel(RandomForestClassifier(),threshold='mean')
X_train_subset = sfm_rf.fit_transform(X_train,y_train)
X test subset = sfm rf.transform(X test)
In [42]:
sfm_rf.estimator_.feature_importances_.mean()
Out[42]:
 0.07692307692307693
In [43]:
feature_importances = pd.Series(sfm_rf.estimator_.feature_importances_,index=X_train.columns)
feature_importances.sort_values(ascending=False).round(3)
Out[43]:
 proline
                                                                 0.284
 alcohol
                                                                 0.229
 color_intensity
```

0.157

0.101

0.058

0.057

0.048

flavanoids

magnesium

total_phenols

alcalinity_of_ash

od280/od315_of_diluted_wines	0.015
nonflavanoid_phenols	0.014
ash	0.010
hue	0.010
proanthocyanins	0.009
malic_acid	0.008
dtype: float64	

Feature Selection: Univariate Tests

- Perform statistical test on each feature independent of all others
 - Rank and select top k features
 - sklearn: SelectKBest
 - requires a scoring function
- Example: f_classif
 - F-test
 - estimates the degree of linear dependency between feature x and target y

```
In [44]:
```

Out[44]:

```
['alcohol', 'color_intensity', 'proline']
```

Feature Selection: Recursive Feature Elimination

- Would like to test all possible combinations of features
- Likely prohibitively expensive/time-consuming
- Instead recursively select smaller subsets of features
- Requires a model that assigns weights or importance to features

```
In [45]:
```

Out[45]:

```
Index(['alcohol', 'alcalinity_of_ash', 'proline'], dtype='objec
t')
```

Feature Selection: Other Methods

• by Variance

eliminate columns where all rows have the same (or almost all the same) value

Sequential Feature Selection

- greedy algorithm similar to Recursive Feature Elimination
- uses performance metric (eg accuracy) instead of weights, importances
- via mlxtend

• Exaustive Feature Selection

- evaluate all possible feature combinations
- uses performance metric (eg accuracy) instead of weights, importances
- via mlxtend

• Other Univariate tests

- f_regression, F-test for regression task
- mutual info classif and regression
- chi2, for classification, requires non-negative values

Questions on Feature Selection?

Changing number of features: Use Adjusted R^2

- Adding features guarantees an increase in R^2
- R^2 describes the proportion of explained variance
- Additional features explain more variance

$$R_{adj}^2 = 1 - (1 - R^2) rac{n-1}{n-m-1}$$

• where n is the number of observations, m is the number of features

```
In [46]:
```

```
def adj_r2(model,X,y):
    n,m = X.shape
    return 1-(1-model.score(X,y))*(n-1)/(n-m-1)
```

Changing number of features: Use Adjusted R² Cont.

In [47]:

```
from sklearn.linear_model import LinearRegression

X_r = X_train.iloc[:,1:]
y_r = X_train.iloc[:,0] # predict alcohol from other features

lr = LinearRegression()
print(lr.fit(X_r.iloc[:,:3],y_r).score(X_r.iloc[:,:3],y_r))
print(lr.fit(X_r.iloc[:,:],y_r).score(X_r.iloc[:,:],y_r))
```

- 0.3940307310415285
- 0.7455685143343734

Is this due to a better model or just adding features?

```
In [48]:

print(adj_r2(lr.fit(X_r.iloc[:,:3],y_r),X_r.iloc[:,:3],y_r))
print(adj_r2(lr.fit(X_r.iloc[:,:],y_r),X_r.iloc[:,:],y_r))
```

- 0.3744833352686746
- 0.7092211592392839
- Now we know the increase is due to a better model and not just adding features

Changing number of features: Use Adjusted R2 Cont.

In [49]:

```
from statsmodels.api import OLS

model = OLS(y_r,X_r).fit()
print(model.rsquared_adj)
model.summary()
```

0.709648775181579

Out[49]:

OIS	Regreccion	Reculto

Dep. Variable:	alcohol	R-squared (uncentered):	0.746
Model:	OLS	Adj. R-squared (uncentered):	0.710
Method:	Least Squares	F-statistic:	20.76
Date:	Mon, 15 Nov 2021	Prob (F-statistic):	2.12e-20
Time:	14:22:21	Log-Likelihood:	-71.254
No. Observations:	97	AIC:	166.5
Df Residuals:	85	BIC:	197.4
Df Model:	12		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
malic_acid	0.1412	0.064	2.201	0.030	0.014	0.269
ash	-0.0380	0.080	-0.473	0.637	-0.197	0.122
alcalinity_of_ash	-0.0283	0.082	-0.347	0.730	-0.191	0.134

	magnesium	0.1268	0.072	1.763	0.081	-0.016	0.270
to	otal_phenols	-0.1925	0.116	-1.665	0.100	-0.422	0.037
	flavanoids	0.2984	0.149	1.996	0.049	0.001	0.596
nonflavan	oid_phenols	-0.0106	0.087	-0.122	0.903	-0.183	0.162
proai	nthocyanins	-0.1724	0.076	-2.257	0.027	-0.324	-0.021
col	lor_intensity	0.3969	0.116	3.423	0.001	0.166	0.627
	hue	-0.0260	0.064	-0.410	0.683	-0.152	0.100
od280/od315_of_di	luted_wines	0.1999	0.078	2.568	0.012	0.045	0.355
	proline	0.2967	0.101	2.936	0.004	0.096	0.498
Omnibus:	4.328	Durbin-Watson:	2.072				
Prob(Omnibus):	0.115	Jarque-Bera (JB):	3.747				
Skew:	0.359	Prob(JB):	0.154				
Kurtosis:	3.641	Cond. No.	7.32				

Notes:

^[1] R² is computed without centering (uncentered) since the model does not contain a constant.

^[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Questions re Adjusted R^2 ?

Feature Extraction

- Transform original features into new feature space
- Can be thought of as compression while maintaining relevant information
- Often used for:
 - visualization (multi-dimensional to 2-D)
 - compression (storage)
 - dimensionality reduction
- Popular methods:
 - Principal Component Analysis: Unsupervised data compression
 - Linear Discriminant Analysis: Supervised method to maximize class separation
 - Kernel PCA, etc.

Principal Component Analysis (PCA)

- Unsupervised Learning method (ignores label)
- Idea:
- Directions of high variance in the data contain important information
- Colinear features can be combined
- Find directions of maximum variance
- Project onto subspace with same or fewer dimensions

Principal Component Analysis (PCA)

- How it works:
 - 1. first center the data (subtract the means)
 - 2. first component:
 - direction (combination of features)
 - explains maximum variance
 - 3. next component:
 - direction, orthogonal to the first (linearly independent)
 - explains max remaining variance
 - 4. repeat:
 - max number of possible components equals number of original dimensions

PCA Example

In [51]:

```
fig,ax = plt.subplots(1,1,figsize=(8,8))
sns.scatterplot(x='proline',y='color_intensity',data=X_train,ax=ax);
```


PCA Example Cont.

In [53]:

```
plot_pca(X_train[['proline','color_intensity']],pca,num_components=1)
plt.tight_layout()
```


PCA Example Cont.

In [54]:

```
plot_pca(X_train[['proline','color_intensity']],pca,num_components=2)
plt.tight_layout()
```


PCA in sklearn

In [55]:

```
from sklearn.decomposition import PCA

# extract the first 2 principle compenents
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_train[['proline','color_intensity']])

X_pca = pd.DataFrame(X_pca,columns=['component1','component2'])

fig,ax=plt.subplots(1,2,figsize=(14,6))
sns.scatterplot(x='proline',y='color_intensity',data=X_train,ax=ax[0]);
sns.scatterplot(x='component1',y='component2',data=X_pca,ax=ax[1]);
ax[0].axis('equal');ax[1].axis('equal');
```


PCA: Explained Variance

• How much of the variance is explained by each component?

```
In [56]:
pca.explained_variance_ratio_
Out[56]:
array([0.89808764, 0.10191236])
```

PCA: Principle Components

• What does the first component (vector) look like?

```
In [57]:
pca.components_[0]
Out[57]:
array([0.70710678, 0.70710678])
• And the second?
In [58]:
pca.components_[1]
Out[58]:
array([-0.70710678, 0.70710678])

    All components returned

In [59]:
pca.components_
Out[59]:
array([[ 0.70710678, 0.70710678],
          [-0.70710678, 0.70710678]])
```

In [60]:

```
# Can also return the singular values themselves
pca.singular_values_
```

Out[60]:

array([13.1995834 , 4.44645904])

Dimensionality Reduction with PCA

```
In [61]:
```

```
pca_2d = PCA(n_components=2)
X_2d = pca_2d.fit_transform(X_train)
X_2d = pd.DataFrame(X_2d, columns=["component"+str(i) for i in range(2)])
sns.scatterplot(x='component0',y='component1',data=X_2d);
```


In [62]:

```
print(' + \n'.join([f'{w: 0.2f}*{f}' for f,w in sorted(zip(X_train.columns,pca_2d.components_[0]),key=lambda x:x[1])]))
```

```
-0.28*nonflavanoid_phenols +
-0.26*alcalinity_of_ash +
-0.03*hue +
0.01*malic_acid +
0.11*ash +
0.21*proanthocyanins +
0.23*magnesium +
0.25*od280/od315_of_diluted_wines +
```

- 0.36*proline +
- 0.36*color_intensity +
- 0.36*total_phenols +
- 0.37*alcohol +
- 0.39*flavanoids

Image Recognition Example

PCA and Image Recognition

- Generally, an image is represented by a grid of pixels
- Each pixel is a square that takes a value representing a shade (usually a value between 0 and 255)
- 1024 x 1024 pixels = 1,048,576 pixels = 1 megapixel
- iPhone X11 Pro: 12 megapixels
- Color images contain three layers: red, green, blue
- ~36 million pixel values
- A very high dimensional space!
- Image classification using PCA?
 - Example based on **Faces recognition example using eigenfaces and SVMs**

Example Dataset: Labeled Faces in th Wild (LFW)

Labeled Faces in the Wild

```
In [64]:
```

```
from sklearn.datasets import fetch_lfw_people
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

In [65]:
sns.set_style('dark')
plt.imshow(lfw_people.images[1], cmap=plt.cm.gray, vmin=0, vmax=255)
```


plt.title(lfw_people.target_names[lfw_people.target[1]], size=12);

Example Pixel Values

```
In [66]:
```

```
# first 3x3 set of pixels
plt.imshow(lfw_people.images[1][:3,:3],cmap=plt.cm.gray,vmin=0, vmax=255);
```


In [67]:

```
lfw_people.images[1][:3,:3]
```

Out[67]:

```
array([[39.666668, 50.333332, 47. ], [47.666668, 63. , 65.333336], [55.333332, 76.666664, 86.333336]], dtype=float32)
```

Representing each Image: Flatten

• Grid as a fixed length feature vector?

```
In [68]:
lfw_people.images[1].shape
Out[68]:
(50, 37)
In [69]:
x = lfw_people.images[1].reshape(1,-1)
Out[69]:
array([[ 39.666668, 50.333332, 47. , ..., 117.666664, 11
5.
           133.66667 ]], dtype=float32)
In [70]:
x.shape
Out[70]:
 (1, 1850)
```

What information do we lose when we do this?

Create a Dataset

In [71]:

```
# get the shape of images for plotting the
n_samples, h, w = lfw_people.images.shape
# use actual pixel values, ignoring relative position
X_faces = lfw_people.data
n_features = X_faces.shape[1]
# the label to predict is the id of the person
y_faces = lfw_people.target
target names = lfw people.target names
n_classes = target_names.shape[0]
# create train/test split
X_train_faces, X_test_faces, y_train_faces, y_test_faces = train_test_split(X_faces, y_faces,
                                                                            test_size=0.25,
                                                                            stratify=y_faces,
                                                                            random_state=123)
print(f"image_size: {h}x{w}")
print("n_features: %d" % n_features)
print("n_classes : %d" % n_classes)
print(f"n_train : {len(X_train_faces)}")
print(f"n_test : {len(X_test_faces)}")
```

image_size: 50x37

n_features: 1850

n_classes : 7

n_train : 966

n_test : 322

Compute PCA and Transform

```
In [72]:
# set the number of dimensions we want to retain
n_components = 150
# instantiate and fit on X_train
pca_faces = PCA(n_components=n_components,
           svd_solver='randomized',
            whiten=True).fit(X_train_faces)
# extract and reshape components into eigenfaces for plotting
eigenfaces = pca faces.components .reshape((n components, h, w))
# transform the training and test set for classification
X_train_pca_faces = pca_faces.transform(X_train_faces)
X_test_pca_faces = pca_faces.transform(X_test_faces)
In [73]:
pca_faces.components_[0]
Out[73]:
array([-0.01278668, -0.01292658, -0.01463957, ..., -0.00385124,
            -0.00411337, -0.0045574 ], dtype=float32)
In [74]:
pca_faces.singular_values_
Out[74]:
array([21388.467 , 19735.988 , 13733.558 , 12266.252 , 1134
9.948
              8755.401 , 7928.223 , 7296.223 , 7035.028
                                                                                                   686
4.7207 .
```

```
6348.1304 , 6118.6055 , 5526.047 , 5221.793 , 497
7.621
       4962.2236 , 4785.6265 , 4679.6924 , 4524.9766 , 427
5.846
       4209.652 , 4032.5813 , 3924.0525 , 3801.2917 , 372
3.4976,
       3675.6616 , 3581.645 , 3497.1353 , 3378.749 , 326
8.003,
       3137.3608 , 3030.9197 , 3017.3242 , 2981.4546 , 289
7.5417 ,
       2858.5464 , 2792.041 , 2762.1348 , 2726.447 , 270
2.855
       2661.0544 , 2591.7307 , 2543.3933 , 2526.289 , 245
9.802
       2429.5876 , 2417.179 , 2379.5273 , 2339.4941 , 233
2.3047 ,
       2293.3118 , 2283.203 , 2221.0967 , 2194.8472 , 216
0.4968,
       2144.4883 , 2110.5505 , 2088.7078 , 2063.9463 , 204
3.5891,
       2025.4708 , 2015.7623 , 1991.989 , 1967.3948 , 193
4.7207,
       1919.0978 , 1903.6674 , 1882.6061 , 1860.8585 , 184
1.5057,
       1817.5499 , 1804.0743 , 1789.1073 , 1762.907 , 175
```

```
6.5995,
       1734.2104 , 1713.4298 , 1709.3933 , 1699.7631 , 169
1.3091 ,
       1665.0392 , 1659.1537 , 1640.2972 , 1615.7921 , 160
9.4435 ,
       1593.5886 , 1581.632 , 1570.2622 , 1558.9673 , 155
1.7286,
       1545.3182 , 1526.7295 , 1512.867 , 1502.3687 , 148
5.8354,
       1476.9359 , 1461.7416 , 1448.5217 , 1441.638 , 141
8.3416,
       1411.0355 , 1408.6664 , 1399.116 , 1377.932 , 136
9.3612 ,
       1353.4885 , 1345.9337 , 1332.8931 , 1324.9926 , 131
6.9496,
       1310.7335 , 1309.0565 , 1291.4537 , 1277.1063 , 126
9.8738,
       1259.6508 , 1255.8784 , 1245.608 , 1226.1138 , 121
7.6237 ,
       1210.1542 , 1199.8496 , 1191.564 , 1184.0542 ,
                                                        118
0.1501 ,
       1170.3989 , 1166.5591 , 1157.1482 , 1141.7108 , 113
5.3065 ,
       1134.1444 , 1118.5774 , 1110.3324 , 1104.1069 , 109
6.6047 ,
```

```
1092.826 , 1082.0818 , 1071.1436 , 1066.9321 , 105
6.2136 ,
1051.6959 , 1042.011 , 1038.0168 , 1024.2737 , 101
7.2074 ,
1014.2571 , 1009.10315, 1002.5714 , 990.4884 , 99
0.0565 ],
dtype=float32)
```

Eigenfaces

• What if we plot the top 12 components (eigenfaces) using .reshape(h,w)?

```
In [76]:
```

```
eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)
plt.tight_layout()
```


Train and Tune SVC

best_score : 0.79

Evaluate on the test set

In [79]:

y_pred = clf_faces.predict(X_test_pca_faces)
from sklearn.metrics import classification_report
print(classification_report(y_test_faces, y_pred, target_names=target_names))

	precision	recall	f1-score	support
Ariel Sharon	0.93	0.74	0.82	19
Colin Powell	0.82	0.86	0.84	59
Donald Rumsfeld	0.89	0.83	0.86	30
George W Bush	0.84	0.97	0.90	133
Gerhard Schroeder	1.00	0.52	0.68	27
Hugo Chavez	1.00	0.61	0.76	18
Tony Blair	0.84	0.89	0.86	36
accuracy			0.86	322
macro avg	0.90	0.77	0.82	322
weighted avg	0.87	0.86	0.85	322

Prediction Examples

In [80]:

Performance without PCA

%%time # Warning: this cell takes up to 2 minutes to execute on an Intel i7 1.8Ghz w/ 8 cores params = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1],} clf_faces = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), params, cv=3, n_jobs=-1) clf_faces = clf_faces.fit(X_train_faces, y_train_faces) # CPU times: user 9.57 s, sys: 72.1 ms, total: 9.64 s # Wall time: 1min 18s print(f"best_params: {clf_faces.best_params_}") print(f"best_score: {clf_faces.best_score_:0.2f}") # best_params: {'C': 1000.0, 'gamma': 0.0001} # best_score: 0.41

Other Image Recognition Methods

- With Feature Engineering and general models
 - ex: Histogram of Oriented Gradients or HOG (See <u>PDSH Chap 5</u>)
 - many more (See <u>scikit-image</u>)

From PDSH

Other Image Recognition Methods: Deep Neural Networks

With Deep Neural Nets

From https://www.researchgate.net/figure/Layers-and-their-abstraction-in-deep-learning-Image-recognition-as-measured-by-ImageNet_fig17_326531654

Other Image Recognition Methods: Deep Neural Networks

• With Convolutional Neural Networks **Good Example**

From https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Questions re Feature Extraction and PCA?

Next time: NLP and Pipelines