Last name	
First name	
Group	

Grade	
------------------------	--

Algorithmics Undergraduate 2^{nd} year (S4) Midterm #4 (C4) 5 March 2019 - 14:45 Answer Sheets

1	
2	
3	
4	
5	

Answers 1 (Cut points, cut edges - 5 points)

1.	Cut points of G_1 :	
2.	Cut edges of G_1 :	
3.	The biconnected components of G_1 are :	

4. The table of prefix and higher values is :

	prefix	higher
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		

Answers 2 (I want to be a tree – 8 points)

1.	Defir	iitions:
	1	
	2	
2.	(a)	Edges that can be removed:
	(b)	the list of the edges of the graph "Not a tree yet" removed:
3.		ing the depth-first search, we assign to each vertex the number the component it belongs to a 1 to k , if there are k components):
	(a)	Number of edges to add:
	(b)	What are the edges to add, during the traversal?
	(c)	the list of the edges of the graph "Not a tree yet" added:

4. Specifications:

The function $make_me_tree(G)$ turns the graph G into a tree and returns the connected component vector of the initial graph.

Answers 3 (Condensation – 4 points)

Specifications:

The function condensation (G, scc) builds the condensation G_R of a digraph G, with scc its component list. The function returns G_r and the vector of components: a vector that gives for each vertex the number the component it belongs to (the vertex in G_R).

Answers 4 (Digraphs and Mystery – 3 points)

1.

	Call number	Returned result
(a) test(G_2)		
(b) test(G_3)		

<i>Z</i> .	what is the information returned by test(G)?

Answers 5 (Saving Algernon – Bonus)

1. (a) The manapper is the one of the las	1.	(a)	The kidnapper is the one of the lab	
---	----	-----	-------------------------------------	--

(b)	Algernon is				
-----	-------------	--	--	--	--

2.	

