Number Theory Reminder

Divisibility, Primes, etc.

- Divisibility, residues
- Prime numbers
- Primality tests
- Prime decomposition
- Greatest common divisor
- Relatively prime numbers
- Euler totient function
- Multiplicative group
- Primitive roots
- Quadratic residues
- Complexity of arithmetic

Residues

For a positive integer n, we denote

- \mathbb{Z}_n the set $\{0,1,2,...,n-1\}$
- \mathbb{Z}_{n}^{+} the set $\{1,2,...,n-1\}$
- +, \times , x^y addition, multiplication and exponentiation modulo n

 \mathbb{Z}_n with these operations is called the set of residues modulo n

Every integer m, positive or negative, has a corresponding residue — $m \mod n$

For example,

 $17 \mod 5 = 2$, $20 \mod 5 = 0$, $-1 \mod 5 = 4$

Modular Arithmetic

We define addition, subtraction, and multiplication of residues:

Let
$$a,b \in \mathbb{Z}_n$$
. Then

$$a + b \pmod{n}$$
 is the element $c \in \mathbb{Z}_n$ such that $c \equiv a + b \pmod{m}$

$$a - b \pmod{n}$$
 is the element $c \in \mathbb{Z}_n$ such that $c \equiv a - b \pmod{m}$

- $a \cdot b \pmod{n}$ is the element $c \in \mathbb{Z}_n$ such that $c \equiv a \cdot b \pmod{m}$
- lacktriangle Example. Construct operation tables for \mathbb{Z}_5

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Divisors of Zero

- It is not hard to see that the operation tables of addition looks similar for all m
- It is not the case for multiplication. Consider

•	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

• A proper divisor of 0 modulo m is a residue a such that there is $b \not\equiv 0 \pmod{m}$ with $a \cdot b \equiv 0 \pmod{m}$. \mathbb{Z}_4 has a proper divisor of zero. \mathbb{Z}_5 does not.

Inverse

- A residue a modulo m is called an inverse of a residue b if $a \cdot b \equiv 1 \pmod{m}$, denoted b^{-1}
- 3 is the inverse of 2 modulo 5
- 2 does not have an inverse modulo 4
- Theorem

Let a be residue modulo m. The following conditions are equivalent:

- (i) a has an inverse;
- (ii) a is not a proper divisor of 0;
- (iii) a is relatively prime with m.

Fermat's Little Theorem

Fermat's Little Theorem.

If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

Clearly, it suffices to consider only residues modulo p.

 \mathbb{Z}_5

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Fermat's Little Theorem (cntd)

- Fermat's Little Theorem was improved by Euler
- Fermat's Little Theorem improved

For any integers m and a such that they are relatively prime $a^{\varphi(m)} \equiv 1 \pmod{m}$

where $\phi(m)$ denotes the Euler totient function, the number of numbers 0 < k < m relatively prime with m

• Example: \mathbb{Z}_8

Multiplicative Groups

- lacktriangle The set of invertible elements from \mathbb{Z}_{n} is denoted by $\mathbb{Z}_{\mathsf{n}}^*$
- It is called the multiplicative group modulo n, because it is equipped with multiplication modulo n
- If a and b are invertible then a \cdot b is also invertible, so \mathbb{Z}_n^* is closed under multiplication
- We also know that every member of \mathbb{Z}_n^* has an inverse.
- Example: n = 8

Primitive Roots

- Let p be a prime. Then \mathbb{Z}_p^* contains p 1 element
- There is always a number g such that

$$\{1,2,\ldots,p-1\}=\{g,g^2,g^3,\ldots,g^{p-1}\}$$

- It is called a primitive root modulo p
- Note that p 1 is the smallest number with $g^{p-1} \equiv 1 \pmod{p}$
- We say that p 1 is the order of g
- lacktriangle Other members of \mathbb{Z}_p^* may have different orders
- Example: p = 11
- For \mathbb{Z}_n^* the set $\{a, a^2, ..., a^{n-1}\}$ is called the subgroup generated by a
- It is not hard to see that the number of primitive roots is $\varphi(p-1)$
- Primitive roots exist for $n = 2,4, p^k, 2p^k$, p is an odd prime

Quadratic Residues

- A residue $q \in \mathbb{Z}_n$ is called a quadratic residue modulo n if $q \equiv x^2 \pmod{n}$ for some $x \in \mathbb{Z}_n$
- Modulo an odd prime p there are (p + 1)/2 quadratic residues. (Why?)
- Legendre symbol:

$$\left(\frac{a}{p}\right) = \begin{cases} 0, & \text{if } p \text{ divides } a, \\ 1, & \text{if } a \text{ is a quadratic residue and } p \text{ doesn't divide } a \equiv x^2 \pmod{n} \\ -1, & \text{if } a \text{ is not a quadratic residue} \end{cases}$$

Complexity of Arithmetic

Given two integers, a and b, we can compute

- a + b in O(max(log a, log b))
- $a \times b$ in $O(\log a \times \log b)$

 a^b cannot be computed in polynomial time, because the size of this number is $b \log(a)$

It is possible modulo n

Let $b_0b_1b_2...b_k$ be the binary representation of b (k = log b)

Then
$$b = b_0 2^0 + b_1 2^1 + \dots + b_k 2^k$$
 that implies $a^b \pmod{n} = a^{b_0 2^0} \cdot a^{b_1 2^1} \cdot \dots \cdot a^{b_k 2^k}$

First, we consecutively compute a^{2^0} , a^{2^1} , ..., a^{2^k} in $O(k \log^2 n)$

Then we compute the product again in $O(k \log^2 n)$