home_credit_modeling

2024-11-06

```
# use the prcomp() function to calculate pca
pca <- prcomp( application_train, scale = TRUE )</pre>
# calculate cumulative variance explained
pca.var <- pca$sdev^2</pre>
pca.var.per <- pca.var / sum( pca.var )</pre>
cumulative_variance <- cumsum( pca.var.per )</pre>
\# determine the number of PCs to retain that explain at least 80% of variance
num_components <- which( cumulative_variance >= 0.80 )[ 1 ]
# print summary
cat( "Number of PCs retained:", num_components, "\n" )
PCA
## Number of PCs retained: 125
cat( "Cumulative variance explained:", cumulative_variance[num_components] * 100, "%\n")
## Cumulative variance explained: 80.3812 \%
#plot the results
barplot( pca.var.per,
         main = "Scree Plot",
         xlab = "Principal Component",
         ylab = "Percent Variation" )
```

Scree Plot

Principal Component

```
##
                                                 variable
                                                                loading
## 1
                                          LIVINGAREA_MEDI
                                                           0.218446065
## 2
                                           LIVINGAREA_AVG
                                                            0.218443215
## 3
                                           APARTMENTS_AVG
                                                            0.217410482
## 4
                                          APARTMENTS_MEDI
                                                            0.217390880
## 5
                                          LIVINGAREA_MODE
                                                            0.215160719
## 6
                                          APARTMENTS_MODE
                                                            0.213961753
## 7
                                           TOTALAREA_MODE
                                                            0.213817444
## 8
                                            ELEVATORS AVG
                                                            0.203990769
                                           ELEVATORS_MEDI
## 9
                                                           0.203965528
```

##	10	ELEVATORS_MODE	0.202169290
##		LIVINGAPARTMENTS_MEDI	0.192108500
##	12	LIVINGAPARTMENTS_AVG	0.191421555
	13	LIVINGAPARTMENTS_MODE	0.191295880
	14	BASEMENTAREA_MEDI	0.166846170
	15	BASEMENTAREA_AVG	0.166789722
##		FLOORSMAX_AVG	0.164002131
	17	BASEMENTAREA_MODE	0.163824768
	18	FLOORSMAX_MEDI	0.163734792
##		FLOORSMAX_MODE	0.163722926
##		ENTRANCES_AVG	0.142688920
##		ENTRANCES_MEDI	0.142128630
	22	ENTRANCES_MODE	0.137758393
##		COMMONAREA_MEDI	0.129785373 0.129488132
##	24	COMMONAREA_AVG COMMONAREA_MODE	
##		LANDAREA_MEDI	0.128325059 0.123117397
##		LANDAREA_MEDI LANDAREA_AVG	0.123117397
##		LANDAREA_AVG LANDAREA_MODE	0.122314244
##		FLOORSMIN_AVG	0.121103222
##		FLOORSMIN_MEDI	0.119713740
##		FLOORSMIN_MODE	0.118813897
	32	YEARS_BUILD_MODE	0.097812861
	33	YEARS_BUILD_AVG	0.097746824
	34	YEARS_BUILD_MEDI	0.097576634
##		NONLIVINGAREA_AVG	0.083236095
##		NONLIVINGAREA_MEDI	0.082946427
##		NONLIVINGAREA_MODE	0.080599963
##		WALLSMATERIAL_MODE_Panel	0.069907121
##		WALLSMATERIAL_MODE_Stone, brick	
##		REGION_POPULATION_RELATIVE	0.046003109
##	41	WALLSMATERIAL_MODE_Wooden	
##	42	NONLIVINGAPARTMENTS AVG	0.038711616
##	43	NONLIVINGAPARTMENTS_MEDI	0.038678122
##	44	REGION_RATING_CLIENT_W_CITY	-0.038181801
##	45	NONLIVINGAPARTMENTS_MODE	0.037823617
##	46	WALLSMATERIAL_MODE_Monolithic	0.037512476
##	47	REGION_RATING_CLIENT	-0.035394900
##	48	NAME_EDUCATION_TYPE_Higher education	0.022859868
##	49	EMERGENCYSTATE_MODE_Yes	-0.022759563
##	50	<pre>NAME_EDUCATION_TYPE_Secondary / secondary special</pre>	-0.022251698
##	51	YEARS_BEGINEXPLUATATION_AVG	0.021773924
##	52	YEARS_BEGINEXPLUATATION_MEDI	0.021459819
##	53	FONDKAPREMONT_MODE_org spec account	0.020851031
##	54	AMT_ANNUITY	0.020646449
##		EXT_SOURCE_2	
##	56	YEARS_BEGINEXPLUATATION_MODE	
	57		
	58	HOUR_APPR_PROCESS_START	
##		AMT_CREDIT	0.017494166
	60	WALLSMATERIAL_MODE_Block	
##		NAME_INCOME_TYPE_Commercial associate	0.015996655
	62	HOUSETYPE_MODE_terraced house	
##	63	FLAG_DOCUMENT_8	0.014126856

	64	FLAG_PHONE	0.012858506
	65	REG_CITY_NOT_WORK_CITY	
	66	AMT_INCOME_TOTAL	0.011673030
	67	OCCUPATION_TYPE_Managers	0.010981489
	68	NAME_INCOME_TYPE_Working	
	69	FLAG_DOCUMENT_3	
	70	LIVE_CITY_NOT_WORK_CITY	
	71	EXT_SOURCE_1	0.009765311
	72	ORGANIZATION_TYPE_Business Entity Type 3	0.009195123
	73	WALLSMATERIAL_MODE_Others	-0.008633225
	74	FONDKAPREMONT_MODE_reg oper spec account	0.008258600
	75		-0.008242812
	76	AMT_REQ_CREDIT_BUREAU_MON	0.008168510
	77	FLAG_OWN_CAR	0.008011552
	78	HOUSETYPE_MODE_block of flats	0.007845191
	79	FLAG_EMAIL	0.007803299
	80	EMERGENCYSTATE_MODE_No	0.007612181
	81	HOUSETYPE_MODE_specific housing	
	82		-0.006963223
##	83	REG_CITY_NOT_LIVE_CITY	-0.006809516
##	84	LIVE_REGION_NOT_WORK_REGION	0.006263323
##	85	OCCUPATION_TYPE_Laborers	
##	86	ORGANIZATION_TYPE_Self-employed	
##	87	OBS_30_CNT_SOCIAL_CIRCLE	
##	88	OBS_60_CNT_SOCIAL_CIRCLE	
##	89	FONDKAPREMONT_MODE_not specified	
##	90	NAME_TYPE_SUITE_Family	-0.005322716
##	91	WALLSMATERIAL_MODE_Mixed	0.005207727
##	92	FLAG_DOCUMENT_13	0.005130872
##	93	FLAG_DOCUMENT_14	0.005123075
##	94	OCCUPATION_TYPE_Accountants	0.005112379
##	95	CODE_GENDER_M	0.004948371
##	96	NAME_HOUSING_TYPE_Municipal apartment	-0.004867813
##	97	ORGANIZATION_TYPE_Transport: type 4	0.004800406
##	98	NAME_TYPE_SUITE_Unaccompanied	0.004793122
##	99	ORGANIZATION_TYPE_Bank	0.004687250
##	100	FLAG_DOCUMENT_9	0.004627507
##	101	FLAG_DOCUMENT_11	0.004593241
##	102	FONDKAPREMONT_MODE_reg oper account	0.004587181
##	103	NAME_HOUSING_TYPE_House / apartment	0.004525304
##	104	REG_REGION_NOT_WORK_REGION	0.004391022
##	105	DEF_60_CNT_SOCIAL_CIRCLE	-0.004389529
##	106	NAME_FAMILY_STATUS_Married	0.004293249
##	107	DEF_30_CNT_SOCIAL_CIRCLE	-0.004102940
##	108	OCCUPATION_TYPE_High skill tech staff	0.004092117
##	109	OCCUPATION_TYPE_Sales staff	-0.003996212
##	110	NAME_FAMILY_STATUS_Widow	-0.003970730
##	111	DAYS_EMPLOYED	-0.003915343
##	112	FLAG_EMP_PHONE	0.003915264
	113	NAME_INCOME_TYPE_Pensioner	
	114	ORGANIZATION_TYPE_XNA	
	115	AMT_REQ_CREDIT_BUREAU_YEAR	
	116	OCCUPATION_TYPE_Cooking staff	
	117	DAYS_REGISTRATION	
		-	

```
## 118
                   NAME_EDUCATION_TYPE_Incomplete higher 0.003558249
## 119
                     NAME_EDUCATION_TYPE_Lower secondary -0.003522814
## 120
                ORGANIZATION TYPE Business Entity Type 1 0.003445275
## 121
                              OCCUPATION_TYPE_Core staff 0.003159616
## 122
                          OCCUPATION_TYPE_Cleaning staff -0.003147281
## 123
                          OCCUPATION TYPE Medicine staff -0.003141932
## 124
                            ORGANIZATION TYPE University 0.003114836
                         ORGANIZATION_TYPE_Trade: type 2 0.003077345
## 125
# create new dfs with the remaining pca names
pca_application_train <- application_train |>
 select( all_of( top_pca ) )
# add target back
pca_application_train$TARGET <- application_train_dt$TARGET</pre>
```

```
# convert TARGET to factor in training data with explicit levels
application_train_dt$TARGET <- factor( application_train_dt$TARGET, levels = c( 1, 0 ) )
# split training data into training and validation sets
set.seed( 123 )
train_index <- createDataPartition( application_train_dt$TARGET,</pre>
                                      p = 0.7,
                                      list = FALSE )
train <- application_train_dt[ train_index, ]</pre>
valid <- application_train_dt[ -train_index, ]</pre>
# down sample to deal with imbalanced data issues
set.seed(123)
train <- downSample( x = train[ , -which( names( train ) == "TARGET" ) ],</pre>
                      y = train$TARGET,
                      vname = "TARGET" )
# train model on training set
tree_model <- rpart (TARGET ~ .,</pre>
                     data = train,
                     method = "class",
                     control = rpart.control( maxdepth = 5,
                                               minsplit = 20,
                                               cp = 0.01))
# evaluate on validation set
valid pred <- predict( tree model, valid, type = "class" )</pre>
confusion_matrix <- confusionMatrix( valid_pred, valid$TARGET )</pre>
print( confusion_matrix )
```

Base Decision Tree Model

```
## Confusion Matrix and Statistics
##
```

```
##
             Reference
                  1
                        0
## Prediction
##
            1 3919 21241
            0 3528 63564
##
##
##
                  Accuracy: 0.7315
##
                    95% CI: (0.7286, 0.7344)
##
       No Information Rate: 0.9193
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa : 0.1323
##
   Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.52625
##
               Specificity: 0.74953
##
            Pos Pred Value: 0.15576
##
            Neg Pred Value: 0.94742
##
                Prevalence: 0.08072
            Detection Rate: 0.04248
##
##
      Detection Prevalence: 0.27273
##
         Balanced Accuracy: 0.63789
##
##
          'Positive' Class: 1
##
# predict on test data
test_pred <- predict( tree_model, application_test_dt, type = "class" )</pre>
application_test_dt$TARGET <- test_pred</pre>
# Create a new data frame with only SK_ID_CURR and TARGET columns
kaggle_sub <- application_test_dt[ , c( "SK_ID_CURR", "TARGET" ) ]</pre>
# Export the new data frame as a CSV file
write.csv( kaggle_sub, "kaggle_sub.csv", row.names = FALSE )
```

```
# get predicted probabilities for the validation set
valid_probabilities <- predict( tree_model, valid, type = "prob" )
# extract probabilities for positive class
valid_prob_class1 <- valid_probabilities[ , "1" ]
# generate ROC curve
roc_curve <- roc( valid$TARGET, valid_prob_class1, levels = rev(levels( valid$TARGET ) ) )</pre>
```

ROC Curve

Setting direction: controls < cases

```
# plot the ROC curve
plot( roc_curve, col = "blue", lwd = 2, main = "ROC Curve for Decision Tree Model" )
```

ROC Curve for Decision Tree Model


```
# calculate AUC
auc_value <- auc( roc_curve )
print(paste( "AUC:", auc_value ) )</pre>
```

[1] "AUC: 0.657368129273448"

Decision Tree Model w/ PCA Data

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  1
            1 4240 28427
##
            0 3207 56378
##
##
                  Accuracy : 0.6571
##
                    95% CI: (0.654, 0.6602)
##
       No Information Rate: 0.9193
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.092
##
   Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.56936
##
               Specificity: 0.66480
##
            Pos Pred Value: 0.12979
##
            Neg Pred Value: 0.94618
##
                Prevalence: 0.08072
##
            Detection Rate: 0.04596
##
      Detection Prevalence: 0.35411
##
         Balanced Accuracy: 0.61708
##
##
          'Positive' Class: 1
##
# predict on test data
test_pred <- predict( tree_model, application_test_dt, type = "class" )</pre>
application_test_dt$TARGET <- test_pred</pre>
```

```
# create a function to evaluate model with different parameters
evaluate_tree <- function( depth, minsplit, cp, train_data, valid_data ) {</pre>
  # train model
 tree_model <- rpart( TARGET ~ .,</pre>
                        data = train_data,
                       method = "class",
                        control = rpart.control( maxdepth = depth,
                                                 minsplit = minsplit,
                                                  cp = cp ) )
  # predict on validation set
  valid_pred <- predict( tree_model, valid_data, type = "class" )</pre>
  # calculate metrics
  conf_matrix <- confusionMatrix( valid_pred, valid_data$TARGET )</pre>
  # return relevant metrics
  return( list( accuracy = conf_matrix$overall[ "Accuracy" ],
                sensitivity = conf matrix$byClass[ "Sensitivity" ],
                specificity = conf_matrix$byClass[ "Specificity" ],
                balanced_accuracy = conf_matrix$byClass[ "Balanced Accuracy" ],
                kappa = conf_matrix$overall[ "Kappa" ] ) )
}
# create parameter grid
param_grid \leftarrow expand.grid(depth = c(5, 7, 10, 15),
                            minsplit = c(10, 20, 50, 100),
                            cp = c(0.001, 0.01, 0.05)
# store results
results <- data.frame()
# perform grid search
for( i in 1:nrow( param_grid ) ) {
  set.seed(123)
  # down sample training data
  train_balanced <- downSample( x = train[ , -which( names( train ) == "TARGET" ) ],</pre>
                                 y = train$TARGET,
                                 yname = "TARGET" )
  # evaluate parameters
  metrics <- evaluate_tree( depth = param_grid$depth[ i ],</pre>
                             minsplit = param_grid$minsplit[ i ],
                             cp = param_grid$cp[ i ],
                             train data = train balanced,
                             valid_data = valid )
 # store results
```

```
results <- rbind( results,
                    data.frame( depth = param_grid$depth[ i ],
                                minsplit = param_grid$minsplit[ i ],
                                cp = param_grid$cp[ i ],
                                accuracy = metrics$accuracy,
                                sensitivity = metrics$sensitivity,
                                specificity = metrics$specificity,
                                balanced accuracy = metrics$balanced accuracy,
                                kappa = metrics$kappa ) )
}
# sort results by balanced accuracy
results <- results[order( -results$balanced_accuracy ), ]</pre>
# print top 5 parameter combinations
print( "Top 5 parameter combinations by balanced accuracy:" )
Find Optimal Hyperparameters
## [1] "Top 5 parameter combinations by balanced accuracy:"
print( head( results, 5 ) )
                                cp accuracy sensitivity specificity
              depth minsplit
## Accuracy11
                 15
                          50 0.001 0.6239540 0.6483148 0.6218148
## Accuracy15
                         100 0.001 0.6239540 0.6483148 0.6218148
                15
## Accuracy3
                15
                         10 0.001 0.6317261 0.6374379 0.6312246
                15
                          20 0.001 0.6317261
                                              0.6374379 0.6312246
## Accuracy7
                10
                          10 0.001 0.6250813 0.6434806
                                                          0.6234656
## Accuracy2
              balanced_accuracy
                                     kappa
                      0.6350648 0.09634213
## Accuracy11
## Accuracy15
                      0.6350648 0.09634213
                     0.6343312 0.09769467
## Accuracy3
## Accuracy7
                     0.6343312 0.09769467
## Accuracy2
                      0.6334731 0.09557423
# convert TARGET to factor in training data with explicit levels
application_train_dt$TARGET <- factor( application_train_dt$TARGET, levels = c( 1, 0 ) )</pre>
# split training data into training and validation sets
set.seed( 123 )
train_index <- createDataPartition( application_train_dt$TARGET,</pre>
                                    p = 0.7,
                                    list = FALSE )
train <- application_train_dt[ train_index, ]</pre>
valid <- application_train_dt[ -train_index, ]</pre>
# down sample to deal with imbalanced data issues
set.seed( 123 )
train <- downSample( x = train[, -which( names( train ) == "TARGET" )],</pre>
```

Decision Tree w/ Optimal Hyper Parameters

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
              1
            1 4881 28618
##
##
            0 2566 56187
##
##
                  Accuracy: 0.662
##
                    95% CI: (0.6589, 0.665)
##
       No Information Rate: 0.9193
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: 0.1225
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.65543
##
##
               Specificity: 0.66254
            Pos Pred Value: 0.14571
##
##
            Neg Pred Value: 0.95633
##
                Prevalence: 0.08072
##
            Detection Rate: 0.05291
##
      Detection Prevalence: 0.36312
##
         Balanced Accuracy: 0.65899
##
##
          'Positive' Class : 1
##
# predict on test data
test_pred <- predict( tree_model, application_test_dt, type = "class" )</pre>
application_test_dt$TARGET <- test_pred</pre>
```