PROBLEMA 2

En un proceso de pintura una placa, con forma de S, avanza con una velocidad V_p . Dos chorros de pintura, de diámetros d, salen de dos toberas situadas a ambos lados de la placa, de velocidades V_1 y V_2 . Los chorros inciden perpendicularmente sobre los bordes doblados de la placa, a distancias L_1 y L_2 respectivamente, abandonándola de forma vertical y manteniendo su sección. La placa se sujeta sobre un eje que pasa OO'. Suponiendo que la placa tiene un espesor despreciable y que se desprecia el efecto de la gravedad, determinar:

- a) Expresiones de la fuerza necesaria sobre la placa para que la placa avance a $V_{\rm p}$.
- b) Par necesario para que la placa no gire sobre el eje que pasa por OO', según los datos numéricos de la tabla:

ρ =	1500	kg/m³	d =	2 cm
V _p =	2	m/s	L ₁ =	20 cm
V ₁ =	12	m/s	L ₂ =	15 cm
V ₂ =	10	m/s		

Sistema de referencia móvil

a) 6 puntos (3 puntos cada eje):

$$F_x = \rho A \left[-(V_1 - V_p)^2 + (V_2 + V_p)^2 \right]$$

$$F_{v} = \rho A [(V_1 - V_p)^2 - (V_2 + V_p)^2]$$

b) 4 puntos:

$$M = -\rho A [L_1(V_1 - V_p)^2 + L_2(V_2 + V_p)^2]$$