

AG THEORETISCHE INFORMATIK

ILP-Solver für das Labeling-Problem

Levin Nemesch, Joshua Sangmeister

13. Januar 2021

Algorithm Engineering - Projekt

ILP-Formulierung

Variablen:

- P: Menge aller Punkte
- C: Menge aller Kandidaten
- C_p : Alle Kandidaten des Punktes p

max
$$\sum_{c \in C} x_c$$
 s.t.
$$\sum_{c \in C_p} x_c \le 1 \qquad \forall p \in P$$

$$x_{c_1} + x_{c_2} \le 1 \qquad \forall c_1, c_2 \in C \mid c_1 \text{ and } c_2 \text{ overlap}$$

$$x_c \in \{0,1\} \qquad \forall c \in C$$

1

Callback-Heuristik

Relaxierte Lösung des ILP gegeben, dazu treshold t:

Callback-Heuristik

Relaxierte Lösung des ILP gegeben, dazu treshold t:

Treshold *t*?

- ullet Hoch: Punkt kann auch gar nicht gelabelt werden, wenn C_p sehr "unentschlossen"
- Niedrig: Punkt wird nach Möglichkeit gelabelt, C_p wird als Ranking nach Erfolgswk. gedeutet

Güte der SA-Heuristik

Laufzeit ILP vs. SA

Laufzeit mit/ohne Callback-Heuristik

Laufzeit verschiedener Parameter

ILP als Heuristik

Setze timeout, übernehme dann bisherige beste Lösung des Solvers:

- Für einige mittelgroße Instanzen bessere Lösungen als SA-Heuristic
- Große Instanze weiterhin problematisch
- Black-Box-Magie, unklare Gütegarantien

Ausblick

Verstärkende Ungleichungen:

Relaxierte (Teil-)Lösung ist gültig

Ausblick

Verstärkende Ungleichungen:

Neue Ungleichung für Punkt auf blauer Fläche, beschränke dort Summe aller Label auf $1\,$

Ausblick

Verstärkende Ungleichungen:

Rettet uns aber nicht vor anderen Relaxierungen