Section 8.5 – Inverse Trigonometry Functions

Relationships Between f^{-1} and f

- $ightharpoonup y = f^{-1}(x)$ if and only if x = f(y), where x is in the domain of f^{-1} and y is in the domain of f
- ightharpoonup Domain of f^{-1} = Range of f
- ightharpoonup Range of f^{-1} = Domain of f
- $ightharpoonup f(f^{-1}(x)) = x$ for every x in the domain of f^{-1}
- \rightarrow $f^{-1}(f(y)) = y$ for every y in the domain of f
- The point (a, b) is on the graph of f iff the point (b, a) is on the graph of f^{-1} .
- \triangleright The graphs of f^{-1} and f are reflections of each other through the line y = x.

The Inverse Sine Function

$$y = \sin^{-1} x$$
 or $y = \arcsin x$ iff $x = \sin y$ for $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ and $-1 \le x \le 1$

Properties of \sin^{-1}

$$\sin\left(\sin^{-1}x\right) = \sin\left(\arcsin x\right) = x \quad if \quad -1 \le x \le 1$$

$$\sin^{-1}\left(\sin y\right) = \arcsin\left(\sin y\right) = y \quad if \quad -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

Find the exact value: $\sin\left(\sin^{-1}\frac{1}{2}\right)$, $\sin^{-1}\left(\sin\frac{\pi}{4}\right)$

Solution

$$\sin\left(\sin^{-1}\frac{1}{2}\right) = \frac{1}{2}$$
 Since $-1 \le \frac{1}{2} \le 1$

$$\sin^{-1}\left(\sin\frac{\pi}{4}\right) = \frac{\pi}{4}$$
 Since $-\frac{\pi}{2} \le \frac{\pi}{4} \le \frac{\pi}{2}$

The Inverse Cosine Function

Definition

The inverse cosine function, denoted by \cos^{-1} , is defined by

$$y = \cos^{-1} x$$
 iff $x = \cos y$ for $0 \le y \le \pi$ and $-1 \le x \le 1$

Notation	Meaning
$y = \cos^{-1} x$ or $y = \arccos x$	$x = \cos y$ and $0 \le y \le \pi$

Properties of \cos^{-1}

$$\cos(\cos^{-1} x) = \cos(\arccos x) = x \quad if \quad -1 \le x \le 1$$

$$\cos^{-1}(\cos y) = \arccos(\cos y) = y$$
 if $0 \le y \le \pi$

Find the exact value: $\cos\left(\cos^{-1}(-0.5)\right)$, $\cos^{-1}(\cos(3.14))$, $\cos^{-1}(\sin(-\frac{\pi}{6}))$

Solution

$$\cos(\cos^{-1}(-0.5)) = -0.5$$
 Since $-1 \le -0.5 \le 1$

Since
$$-1 \le -0.5 \le 1$$

$$\cos^{-1}(\cos(3.14)) = 3.14$$
 Since $0 \le 3.14 \le \pi$

Since
$$0 \le 3.14 \le \pi$$

$$\cos^{-1}\left(\sin\left(-\frac{\pi}{6}\right)\right) = \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

Example

Find the exact value of $\sin \left[\arccos \left(-\frac{2}{3} \right) \right]$

$$\theta = \arccos\left(-\frac{2}{3}\right) \Rightarrow \cos\theta = -\frac{2}{3}$$
 $0 \le \theta \le \pi$

$$0 \le \theta \le \pi$$

$$y = \sqrt{3^2 - 2^2} = \sqrt{5}$$

$$\sin\left[\arccos\left(-\frac{2}{3}\right)\right] = \sin\theta = \frac{\sqrt{5}}{3}$$

The Inverse Tangent Function

Definition

The inverse cosine function, denoted by \tan^{-1} , is defined by

$$y = \tan^{-1} x$$
 iff $x = \tan y$ for any real number x and for $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$y = \tan^{-1} x$$
 or $y = \arctan x$

Properties of tan⁻¹

$$\tan(\tan^{-1} x) = \tan(\arctan x) = x$$
 for every x

$$\tan^{-1}(\tan y) = \arctan(\tan y) = y$$
 if $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Example

Find the exact value: $\tan(\tan^{-1}(1000))$, $\tan^{-1}(\tan\frac{\pi}{4})$, $\arctan(\tan\pi)$

$$\tan(\tan^{-1}1000) = 1000$$

$$\tan^{-1}\left(\tan\frac{\pi}{4}\right) = \frac{\pi}{4}$$
 Since $-\frac{\pi}{2} \le \frac{\pi}{4} \le \frac{\pi}{2}$

$$\arctan(\tan \pi) = \arctan(0) = 0$$
 $\therefore \pi > \frac{\pi}{2}$

Evaluate in radians without using a calculator or tables.

a.
$$\sin^{-1}\frac{1}{2}$$

$$-\frac{\pi}{2} \le angle \le \frac{\pi}{2} \Rightarrow \sin\frac{\pi}{6} = \frac{1}{2}$$

$$\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$

b.
$$\operatorname{arccos}\left(-\frac{\sqrt{3}}{2}\right)$$

$$0 < \operatorname{angle} < \pi \Rightarrow \cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$$

$$\operatorname{arccos}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$

c.
$$\tan^{-1}(-1)$$

$$-\frac{\pi}{2} < angle < \frac{\pi}{2} \Rightarrow \tan\left(-\frac{\pi}{4}\right) = -1$$

$$\tan^{-1}(-1) = -\frac{\pi}{4}$$

Example

Use a calculator to evaluate each expression to the nearest tenth of a degree

a.
$$\arcsin(0.5075)$$
 $\arcsin(0.5075) = 30.5^{\circ}$

b.
$$\arcsin(-0.5075)$$
 $\arcsin(-0.5075) = -30.5^{\circ}$

c.
$$\cos^{-1}(0.6428)$$

 $\cos^{-1}(0.6428) = 50.0^{\circ}$

d.
$$\cos^{-1}(-0.6428)$$

 $\cos^{-1}(-0.6428) = 130.0^{\circ}$

e.
$$\arctan(4.474)$$
 $\arctan(4.474) = 77.4^{\circ}$

f.
$$\arctan(-4.474)$$

 $\arctan(-4.474) = -77.4^{\circ}$

Find the exact value: $\sec\left(\arctan\frac{2}{3}\right)$

Solution

$$\alpha = \arctan \frac{2}{3} \rightarrow \tan \alpha = \frac{2}{3}$$

$$\sec \left(\arctan \frac{2}{3}\right) = \sec \alpha$$

$$= \frac{\sqrt{13}}{3}$$

Example

Find the exact value: $\sin\left(\arctan\frac{1}{2} - \arccos\frac{4}{5}\right)$

$$\alpha = \arctan \frac{1}{2} \qquad \beta = \arccos \frac{4}{5}$$

$$\tan \alpha = \frac{1}{2} \qquad \cos \beta = \frac{4}{5}$$

$$\sin \alpha = \frac{1}{\sqrt{5}} \qquad \sin \beta = \frac{3}{5}$$

$$\cos \alpha = \frac{2}{\sqrt{5}}$$

$$1 \frac{\sqrt{2^2 + 1^2} = \sqrt{5}}{\alpha}$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$= \frac{1}{\sqrt{5}} \frac{4}{5} - \frac{2}{\sqrt{5}} \frac{3}{5}$$

$$= \frac{4}{5\sqrt{5}} - \frac{6}{5\sqrt{5}}$$

$$= -\frac{2}{5\sqrt{5}} \frac{\sqrt{5}}{\sqrt{5}}$$

$$= -\frac{2\sqrt{5}}{25}$$

If $-1 \le x \le 1$, rewrite $\cos(\sin^{-1} x)$ as an algebraic expression in x.

$$\alpha = \sin^{-1} x \rightarrow \sin \alpha = x = \frac{x}{1}$$

$$\cos(\sin^{-1} x) = \cos \alpha$$

$$= \frac{\sqrt{1 - x^2}}{1}$$

$$= \sqrt{1 - x^2}$$

Exercises Section 8.5 – Inverse Trigonometric Functions

Find the exact value of the expression whenever it is defined

1.
$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

7.
$$\cos^{-1} \left[\cos \left(\frac{5\pi}{6} \right) \right]$$

13.
$$\cos\left[\arctan\left(-\frac{3}{4}\right) - \arcsin\frac{4}{5}\right]$$

2.
$$\arccos\left(\frac{\sqrt{2}}{2}\right)$$

8.
$$\tan^{-1}\left[\tan\left(-\frac{\pi}{6}\right)\right]$$

14.
$$\tan \left[\cos^{-1} \left(\frac{1}{2} \right) + \sin^{-1} \left(-\frac{1}{2} \right) \right]$$

3.
$$\arctan\left(-\frac{\sqrt{3}}{3}\right)$$

9.
$$\arcsin \left[\sin \left(-\frac{\pi}{2} \right) \right]$$

9.
$$\arcsin \left[\sin \left(-\frac{\pi}{2} \right) \right]$$
 15. $\sin \left[2 \arccos \left(-\frac{3}{5} \right) \right]$

4.
$$\sin \left[\arcsin \left(-\frac{3}{10} \right) \right]$$

10.
$$arccos[cos(0)]$$

16.
$$\cos \left[2\sin^{-1}\left(\frac{15}{17}\right) \right]$$

5.
$$tan \left[arctan(14) \right]$$

11.
$$\arctan\left[\tan\left(-\frac{\pi}{4}\right)\right]$$
 17. $\tan\left[2\tan^{-1}\left(\frac{3}{4}\right)\right]$

17.
$$\tan\left[2\tan^{-1}\left(\frac{3}{4}\right)\right]$$

6.
$$\sin \left[\sin^{-1} \left(\frac{2}{3} \right) \right]$$

12.
$$\sin\left[\arcsin\left(\frac{1}{2}\right) + \arccos 0\right]$$

18.
$$\cos\left[\frac{1}{2}\tan^{-1}\left(\frac{8}{15}\right)\right]$$

(19-28) Evaluate without using a calculator

19.
$$\cos(\cos^{-1}\frac{3}{5})$$

23.
$$\cos(\sin^{-1}\frac{1}{2})$$

26.
$$\tan(\sin^{-1}\frac{3}{5})$$

20.
$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$$
 24. $\sin\left(\sin^{-1}\frac{3}{5}\right)$

24.
$$\sin(\sin^{-1}\frac{3}{5})$$

27.
$$\sec\left(\cos^{-1}\frac{1}{\sqrt{5}}\right)$$

21.
$$\tan(\cos^{-1}\frac{3}{5})$$
 25. $\cos(\tan^{-1}\frac{3}{4})$

25.
$$\cos(\tan^{-1}\frac{3}{4})$$

$$28. \quad \cot\left(\tan^{-1}\frac{1}{2}\right)$$

$$22. \quad \sin\left(\cos^{-1}\frac{1}{\sqrt{5}}\right)$$

(29-41) Write an equivalent expression that involves x only for

$$29. \quad \cos(\cos^{-1}x)$$

$$34. \quad \cot\left(\sin^{-1}\frac{\sqrt{x^2-9}}{x}\right) \quad x>0$$

$$30. \quad \tan\left(\cos^{-1}x\right)$$

35.
$$\sin(2\sin^{-1}x)$$
 $x > 0$

$$31. \quad \csc\left(\sin^{-1}\frac{1}{x}\right)$$

36.
$$\cos(2\tan^{-1}x), x > 0$$

$$32. \quad \sin\left(\tan^{-1}x\right); \quad x > 0$$

$$37. \quad \cos\left(\frac{1}{2}\arccos x\right), \quad x > 0$$

$$33. \quad \sec\left(\sin^{-1}\frac{x}{\sqrt{x^2+4}}\right) \quad x > 0$$

38.
$$\tan\left(\frac{1}{2}\cos^{-1}\frac{1}{x}\right), \quad x > 0$$

39.
$$\sec\left(\tan^{-1}\frac{2}{\sqrt{x^2-4}}\right) \quad x > 0$$

41.
$$\sin\left(\cos^{-1}\frac{x}{\sqrt{x^2+4}}\right)$$
 $x>0$

$$40. \quad \sec\left(\sin^{-1}\frac{\sqrt{x^2-25}}{x}\right) \quad x > 0$$

(42-44) Sketch the graph of the equation:

42.
$$y = \sin^{-1} 2x$$

43.
$$y = \sin^{-1}(x-2) + \frac{\pi}{2}$$
 44. $y = \cos^{-1}\frac{1}{2}x$

44.
$$y = \cos^{-1} \frac{1}{2} x$$

- Evaluate $\sin\left(\tan^{-1}\frac{3}{4}\right)$ without using a calculator
- Evaluate $\sin(\cos^{-1} x)$ as an equivalent expression in x only