

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

ОТЧЁТ

к лабораторной работе №3 по дисциплине «Дифференциальные уравнения»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр.

Б9121-01.03.02сп(1)

Держапольский Ю.В.

(Ф.И.О.)

(подпись)

 $\ll 21$ » мая 2023 г.

г. Владивосток

Содержание

1	Вве	дение	3
2	Задание 1		4
	2.1	Постановка задачи	4
	2.2	Решение	4
3	Задание 2		
	3.1	Постановка задачи	6
	3.2	Решение	6
4	Задание 3		
	4.1	Постановка задачи	10
	4.2	Решение	10
5	Zar	пиление	11

1. Введение

В этой лабораторной работе мы будем решать дифференциальные уравнения, неразрешённые относительно производной, находить значение функции и строить её график с помощью производной, а также решать дифференциальные уравнения высших порядков, верстая решения в ЫТЕХ.

2. Задание 1

2.1. Постановка задачи

Для следующих дифференциальных уравнений указать вид, дать характеристику и найти общее решение с помощью программ компьютерной математики:

1.
$$(r-r') \ln r = r' (\varphi - \ln r');$$

$$2. \tan \frac{r}{r'} = \ln r;$$

3.
$$r = \frac{3}{2}\varphi r' + e^{r'};$$

4.
$$\dot{x}^2 - 2x\dot{x} = x^2 \cdot (e^{2t} - 1)$$
;

5.
$$\ln \theta = \ln r' + r'^2 - 1$$
;

2.2. Решение

1.
$$(r-r') \ln r = r' (\varphi - \ln r');$$

Вид уравнения: $F\left(\varphi,r,r'\right)=0;$

Характеристика уравнения: Полное неразрешенное относительно производной;

Общее решение: $r \cdot C^C = e^{C\varphi}$.

$$2. \tan \frac{r}{r'} = \ln r;$$

Вид уравнения: F(r, r') = 0;

Характеристика уравнения: Неразрешенное относительно производной, не содержащее аргумента;

Общее решение:
$$\ln r \cdot \arctan\left(\ln r\right) = \varphi + \frac{1}{2}\ln\left(\ln^2 r + 1\right) + C.$$

4

3.
$$r = \frac{3}{2}\varphi r' + e^{r'};$$

Вид уравнения: $F\left(\varphi,r,r'\right)=0;$

Характеристика уравнения: Уравнение Лагранжа;

Общее решение:
$$\begin{cases} r=\frac{3C}{2p^2}-\frac{\left(4p^2-6p+6\right)e^p}{p^2},\\ \varphi=\frac{C-\left(2p^2-4p+4\right)e^p}{p^3}. \end{cases}$$

4.
$$\dot{x}^2 - 2x\dot{x} = x^2 \cdot (e^{2t} - 1)$$
;

Вид уравнения: $F(t, x, \dot{x}) = 0;$

Характеристика уравнения: Полное неразрешенное относительно производной;

Общее решение: $\ln x = t \pm e^t + C$.

5.
$$\ln \theta = \ln r' + r'^2 - 1$$
;

Вид уравнения: $F(\theta, r') = 0$;

Характеристика уравнения: Неразрешенное относительно производной, не содержащее функции;

Общее решение:
$$\begin{cases} \theta=pe^{p^2-1},\\ r=\left(p^2-\frac{1}{2}\right)e^{p^2-1}+C. \end{cases}$$

3. Задание 2

3.1. Постановка задачи

Разрешить следующие уравнения относительно производной и, используя метод Эйлера, найти значение функции в точке. Нарисовать график искомой функции. Реализацию решения проводить на языке «С++»:

1.
$$\sec^2(1-y-x) = y'^2 - \tan xy + 2; \quad y\left(\frac{\pi}{4}\right) = 1, \ y\left(\frac{\pi}{3}\right) = ?;$$

2.
$$e^{x-y} = \cos(y'\sin x - \tan^2(\sec xy) - \tan y); \quad y(\frac{\pi}{3}) = \ln 7, \ y(1) = ?.$$

3.2. Решение

1.
$$\sec^2{(1-y-x)} = y'^2 - \tan{xy} + 2; \quad y\left(\frac{\pi}{4}\right) = 1, \ y\left(\frac{\pi}{3}\right) = ?;$$
Разрешённое уравнение: $y' = \pm \sqrt{\sec^2{(1-y-x)} + \tan{xy} - 2};$
Значение функции:
$$\begin{bmatrix} 1.85955 \dots, \\ 0.73742 \dots \end{bmatrix}$$

Рис. 1: График решений уравнения (1)

Листинг 1: Код программы

```
#include <iostream>
#include <cmath>
#include <vector>
double f(double x, double y) {
    return sqrt(std::pow(std::cos(1 - y - x), -2) + std::tan(x * y) - 2);
}
int main() {
    double x \theta = M PI / 4,
            x_n = M_PI / 3,
            y_prev = 1;
    int n = 10000;
    double h = (x_n - x_0) / n;
    std::vector<double> x;
    for (int i = 0; i < n; ++i) {
        x.push_back(x_0 + i * h);
    }
    std::vector<double> y1{y_prev};
    std::vector<double> y2{y_prev};
    for (int i = 0; i < n - 1; ++i) {
        y1.push_back(y1[i] + h * f(x[i], y1[i]));
        y2.push_back(y2[i] - h * f(x[i], y2[i]));
    }
    std::cout << y1.back() << ''_' << y2.back();</pre>
}
```

2.
$$e^{x-y} = \cos\left(y'\sin x - \tan^2(\sec xy) - \tan y\right); \quad y\left(\frac{\pi}{3}\right) = \ln 7, \ y(1) = ?;$$
 Разрешённое уравнение: $y' = \frac{\arccos\left(e^{x-y}\right) + \tan^2(\sec xy) + \tan y}{\sin x};$ Значение функции: $1.97059\dots$

Рис. 2: График решений уравнения (2)

Листинг 2: Код программы

```
#include <iostream>
#include <cmath>
#include <vector>
double f(double x, double y) {
    return (std::acos(std::exp(x - y))
        + std::pow(std::tan(1 / std::cos(x * y)), 2)
        + std::tan(y)) / std::sin(x);
}
int main() {
    double x_0 = M_PI / 3,
            x n = 1,
            y_prev = std::log(7);
    int n = 10000;
    double h = (x_n - x_0) / n;
    std::vector<double> x;
    for (int i = 0; i < n; ++i) {
        x.push_back(x_0 + i * h);
    }
    std::vector<double> y{y_prev};
    for (int i = 0; i < n - 1; ++i) {
        y.push_back(y[i] + h * f(x[i], y[i]));
    }
    std::cout << y.back();</pre>
}
```

4. Задание 3

4.1. Постановка задачи

Для следующих дифференциальных уравнений определить тип, дать характеристику и найти общее решение с помощью программ компьютерной математики:

1.
$$y'' \cdot \cos y = y'^2 \cdot \cot y$$
;

2.
$$u^2 + 4tu\dot{u} + t^2\dot{u}^2 + t^2u\ddot{u} = 2tu(u + t\dot{u}) \cdot \tan t$$
; $[z = \tan t]$;

3.
$$\frac{\ddot{x}}{\dot{x}^2 + 1} = \dot{x}$$
.

4.2. Решение

1.
$$y'' \cdot \cos y = y'^2 \cdot \cot y$$
;

Тип уравнения: Вполне интегрируемое уравнение;

Общее решение: $\sin^2 y = C_1 e^{C_2 x} (\cos y + 1)$

2.
$$u^2 + 4tu\dot{u} + t^2\dot{u}^2 + t^2u\ddot{u} = 2tu(u + t\dot{u}) \cdot \tan t$$
; $[z = \tan t]$;

 $\mathit{Tun}\ \mathit{уравнения}$: Вполне интегрируемое уравнение с заменой $z = \tan t$;

Характеристика уравнения: Полное;

Общее решение: $t^2u^2=C_1\tan t+C_2$.

3.
$$\frac{\ddot{x}}{\dot{x}^2 + 1} = \dot{x};$$

Тип уравнения: Вполне интегрируемое уравнение;

Характеристика уравнения: Не содержащее аргумента и функцию;

Общее решение: $\sin(x+C_1)=C_2e^t$.

5. Заключение

В этой лабораторной работе мы решили дифференциальные уравнения, неразрешённые относительно производной, нашли значения функций и построили её график с помощью производной, а также решили дифференциальные уравнения высших порядков, верстая решения в IATEX.