Steffensen's Method

Let
$$\{\Delta^2\}(p_n) = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

$$p_i^{(0)} = g(p_o^{(0)})$$

$$p_z^{(0)} = g(p_i^{(0)})$$

1)
$$b_{(i)}^{\circ} = \left\{ \nabla_{x} \right\} \left(b_{(o)}^{\circ} - b_{(o)}^{\circ} \right)_{x}$$

$$p_2^{(i)} = g(p_i^{(i)})$$

2)
$$p_{\bullet}^{(2)} = \{\Delta^{2}\}(p_{\bullet}^{(1)})$$
 $p_{i}^{(2)} = g(p_{\bullet}^{(2)})$

$$p_{i}^{(2)} = q(p_{o}^{(2)})$$

$$p_2^{(i)} = g(p_i^{(i)})$$

n)
$$p_{\bullet}^{(n)} = \{\Delta^{2}\}(p_{\bullet}^{(n-1)})$$

$$p_i^{(n)} = g(p_o^{(n)})$$

$$p_2^{(n)} = g(p_1^{(n)})$$

Thm. Steffensen's Method

Suppose g(x) = x has solution p with $g(p) \neq 1$. If there exists $\delta > 0$ st $g \in C^3[p-\delta, p+\delta]$, then Steffensen's Method gives quadratic convergence for pelp-8, p+8]

2.6 Zeros of Polynomials

Def. A polynomial of degree n has the form $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

Rmk. - ai's are coefficients of p -p(x)=0 is a polynomial of degree 0

Thm. Fundamental Theorem of Algebra If p(x) is a polynomial of degree nz1 with aie C, i=0,1,... n, then p(x) has

at least one complex root.

- Cor. I If p(x) is a polynomial of degree $n\ge 1$ with complex coefficients, then there exist unique $x_1, x_2, ..., x_k$ and unique $m_1, m_2, ..., m_k$ satisfying $\sum_{i=1}^{m} m_i = 0$ st integers $p(x) = a_n(x-x_1)^{m_1} (x-x_2)^{m_2} ... (x-x_k)^{m_k}$
- Rmk. (or. 1 ⇒ collection of zeroes of pn are unique, and if each zero x; counted as many times as its multiplicity mi, then pn has exactly n zeroes.
 - (or. 2 Let Pux) and Qux) be polynomials of degree at most n.

If $x_1, x_2, ... x_k$ with k>n are distinct numbers such that $P(x_i) = Q(x_i)$, i=1,...k then P(x) = Q(x) for all values of x.

Rmk. To show 2 polynomials of degree at most n are the same, we only need to show that they agree on n+1 values.

Pf. sketch of Cov. 2:

R(x) = P(x) - Q(x), deg(R) $\leq n$; R has n+1 roots. $\rightarrow R(x) = 0 \Rightarrow P(x) = Q(x)$

Ex. If P(x) with deg(P(x))=n, and P(xi)=xiⁿ for $x_1=1$, $x_2=2$, ... $x_n=n$, $x_{n+1}=n+1$, then P(x)=xⁿ (by Cor. 2).