Random Variables and Events

An event is a subset of the outcome space Ω A random variable is a function $\Omega \to \mathbb{R}$ (or $\Omega \to \text{something else}$)

Example: Flipping two p-coins. Let's formalize tollowing:

- · Event A is "first coin was heads"
- · Random variable N is "number of heads"
- · Event {N=1} is "got exactly I heads"
- · Randon variable (N-1)2 is, well, "number of heads, minus 1, squared"

Approach 1: Using outcome space $\Omega = \{00, 01, 10, 11\}$

- $A = \{10, 11\}$
- N(00) = 0, N(01) = 1, N(10) = 1, N(11) = 2
- $\{N=1\}$ = $\{\omega \in \Sigma \mid N(\omega)=1\}$ = $\{01, 10\}$ Remember, went to express this as a subset of Ω
- $[(N-1)^2](\omega) = (N(\omega)-1)^2$ Remember, want to express this as a function $\Sigma 2 \to \mathbb{R}$

Approach 2: Using outcome space $\Omega = [0,1]^2 \omega / unitern probability$

•
$$N((x,y)) = \begin{cases} 0 & \text{if } x > p \text{ and } y > p \\ 2 & \text{if } x \leq p \text{ and } y \leq p \end{cases}$$

otherwise

•
$$[(N-1)^2](\omega) = (N(\omega)-1)^2$$
 > Seem familiar?

Shorthard notation: Let X and Y be vardon variables IZ -> R

· The event shorthard: (add the green)

$$\{X \in A\} = \{\omega \in \Sigma \mid X(\omega) \in A\}$$

$$\{X \leq t\} = \{\omega \in \Omega \mid X(\omega) \leq t\}$$

$$\{X > Y\} = \{ \omega \in \Omega \mid X(\omega) > Y(\omega) \}$$
 etc.
Shorthand Full notation for subset of Ω

Works w/ any random variables and any predicate about them

• The random variable shorthand: (shuffle the arange)

Example: Turn "X+Y" into a function $\Omega \to \mathbb{R}$

 $[X+Y](\omega) = X(\omega) + Y(\omega)$

That is, what is the value of the function [X+Y] evaluated at some specific outcome $w \in \Omega$?

Dhostever you get by evaluating each of X and Y at that autcome w, then add the results

$$\left[aX^{2}+bX+c\right](\omega) = a(X(\omega))^{2}+bX(\omega)+c$$

$$\left[f(X)\right](\omega) = f(X(\omega))$$

Try it: Using either approach 1 or 2, define

 $X = "| if first is heads, 0 otherwise: <math>\Omega \rightarrow \mathbb{R}$

Y = " | if second is heads, O otherwise": IZ -> R

Check that [X+4] and N are the same function

Terminology: X(w) is called the realization of X for outcome w

Interpretation: when the random outcome is ω , $X(\omega)$ is the specific value the random variable X has. The fact that there are usually lots of $\omega \in \Omega$ is why random variables can have multiple possible values