Chapter 6

The Link Layer and LANs

2

Link layer and LANs: our goals

- •understand principles behind link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - local area networks: Ethernet, VLANs

 instantiation, implementation of various link layer technologies

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - · addressing, ARP
 - Ethernet
 - switches
 - VLANs

a day in the life of a web request

Link Layer: 6-7

7

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired
 - wireless
 - LANs
- layer-2 packet: frame, encapsulates datagram

link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., WiFi on first link, Ethernet on next link
- each link protocol provides different services
 - e.g., may or may not provide reliable data transfer over link

transportation analogy:

- trip from Princeton to Lausanne
 - · limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link-layer protocol
- travel agent = routing algorithm

Link Layer: 6-9

9

Link layer: services

- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - · channel access if shared medium
 - "MAC" addresses in frame headers identify source, destination (different from IP address!)
- reliable delivery between adjacent nodes
 - · we already know how to do this!
 - · seldom used on low bit-error links
 - wireless links: high error rates
 - <u>Q:</u> why both link-level and end-end reliability?

Link Layer: 6-10

Link layer: services (more)

- flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects errors, signals retransmission, or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without retransmission
- half-duplex and full-duplex:
 - with half duplex, nodes at both ends of link , but not at same time

11

Where is the link layer implemented?

- in each-and-every host
- link layer implemented in network interface card (NIC) or on a chip
 - Ethernet, WiFi card or chip
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

Interfaces communicating

sending side:

- encapsulates datagram in frame
- adds error checking bits, reliable data transfer, flow control, etc.

receiving side:

- looks for errors, reliable data transfer, flow control, etc.
- extracts datagram, passes to upper layer at receiving side

Link Layer: 6-13

13

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS

a day in the life of a web request

Link Layer: 6-15

Error detection

EDC: error detection and correction bits (e.g., redundancy)
D: data protected by error checking, may include header fields

Error detection not 100% reliable!

- protocol may miss some errors, but rarely
- larger EDC field yields better detection and correction

Link Layer: 6-16

16

Parity checking

single bit parity:

detect single bit errors

Even parity: set parity bit so there is an even number of 1's

two-dimensional bit parity:

detect and correct single bit errors

no errors: 10101|1 11110|0 01110|1 10101|0

Link Layer: 6-18

Internet checksum (review)

Goal: detect errors (i.e., flipped bits) in transmitted segment

sender:

- treat contents of UDP segment (including UDP header fields and IP addresses) as sequence of 16-bit integers
- checksum: addition (one's complement sum) of segment content
- checksum value put into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - not equal error detected
 - equal no error detected. But maybe errors nonetheless? More later

Transport Layer: 3-19

19

Cyclic Redundancy Check (CRC)

- more powerful error-detection coding
- D: data bits (given, think of these as a binary number)
- G: bit pattern (generator), of r+1 bits (given)

goal: choose r CRC bits, R, such that <D,R> exactly divisible by G (mod 2)

- receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
- can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi)

Cyclic Redundancy Check (CRC): example

We want:

 $D \cdot 2^r XOR R = nG$

or equivalently:

 $D \cdot 2^r = nG XOR R$

or equivalently:

if we divide D·2^r by G, want remainder R to satisfy:

$$R = remainder \left[\frac{D \cdot 2^r}{G} \right]$$

G										
							0			
1001	1	0	1	1	1	0	0	0	0	
	1	0	0	1		$\overline{}$		\setminus		
			1	0	1			$ \sqrt{} $	D*2	r
			0	0	0				D 2	-
				0						
			1	0	0	1				
					1	1	0			
					0	0	0			
					1	1	0	0		
					1	0	0	1		
						1	0	1	0	
						1	0	0	1	
							0	1	1	
							_	_		
								R		

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Link Layer: 6-21

21

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS
- data center networking

a day in the life of a web request

Link Layer: 6-22

Multiple access links, protocols

two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch, host
 - PPP for dial-up access
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC in cable-based access network
 - 802.11 wireless LAN, 4G/4G. satellite

shared radio: satellite humans at a cocktail party (shared air, acoustical)

Link Laver: 6-23

23

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol -

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: multiple access channel (MAC) of rate R bps desiderata:

- 1. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

Link Layer: 6-25

25

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

Link Layer: 6-27

27

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

Link Layer: 6-28

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes: "collision"
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - ALOHA,
 - slotted ALOHA
 - CSMA,
 - · CSMA/CD,
 - CSMA/CA

Link Layer: 6-29

29

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with probability p until success

randomization – why?

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

max efficiency = 1/e = 0.37

Cons:

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Link Layer: 6-31

31

Pure ALOHA

- unslotted Aloha: simpler, no synchronization
 - when frame first arrives: transmit immediately
- collision probability increases with no synchronization:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

pure Aloha efficiency: 18%!

CSMA (carrier sense multiple access)

simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission

CSMA/CD: CSMA with collision detection

- · collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection easy in wired, difficult with wireless

Link Layer: 6-35

35

CSMA: collisions

- collisions can still occur with carrier sensing:
 - propagation delay means two nodes may not hear each other's juststarted transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

Link Layer: 6-36

CSMA/CD:

- CSMA/CD reduces the amount of time wasted in collisions
 - transmission aborted on collision detection

Link Layer: 6-37

37

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel:

if idle: start frame transmission.

if busy: wait until channel idle, then transmit

- 3. If NIC transmits entire frame without collision, NIC is done with frame!
- 4. If NIC detects another transmission while sending: abort, send jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K'512 bit times, returns to Step 2
 - more collisions: longer backoff interval

39

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

"Taking turns" MAC protocols

polling:

- master node "invites" other nodes to transmit in turn
- typically used with "dumb" devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

Link Layer: 6-42

42

"Taking turns" MAC protocols

token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Link Layer: 6-43

Cable access network: FDM, TDM and random access!

Internet frames, TV channels, control transmitted downstream at different frequencies

cable headend

CMTS

cable modem termination system

- multiple downstream (broadcast) FDM channels: up to 1.6 Gbps/channel
 - single CMTS transmits into channels
- multiple upstream channels (up to 1 Gbps/channel)
 - multiple access: all users contend (random access) for certain upstream channel time slots; others assigned TDM

Link Layer: 6-44