

Dynamic Programming

Algorithms: Design and Analysis, Part II

The Knapsack Problem

Problem Definition

Input: *n* items. Each has a value:

- Value v_i (nonnegative)
- Size w_i (nonnegative and integral)
- Capacity W (a nonnegative integer)

Output: A subset $S \subseteq \{1, 2, ..., n\}$ that maximizes $\sum_{i \in S} v_i$ subject to $\sum_{i \in S} w_i \leq W$.

Developing a Dynamic Programming Algorithm

Step 1: Formulate recurrence [optimal solution as function of solutions to "smaller subproblems"] based on a structure of an optimal solution.

Let S = a max-value solution to an instance of knapsack.

Case 1: Supose item $n \notin S$.

 \Rightarrow S must be optimal with the first n-1 items (same capacity W) [If S^* were better than S with respect to 1st n-1 items, then this equally true w.r.t. all n items - contradiction]

Optimal Substructure

- Case 2: Suppose item $n \in S$. Then $S \{n\}$...
 - A) is an optimal solution with respect to the 1st n-1 items and capacity W.
 - B) is an optimal solution with respect to the 1st n-1 items and capacity $W-v_n$.
 - C) is an optimal solution with respect to the 1st n-1 items and capacity $W-w_n$.
 - D) might not be feasible for capacity $W w_n$.

Proof: If S^* has higher value than $S - \{n\} + \text{total size} \le W - w_n$, then $S^* \cup \{n\}$ has size $\le W$ and value more than S [contradiction]

Dynamic Programming

Algorithms: Design and Analysis, Part II

An Algorithm for the Knapsack Problem

Recurrence from Last Time

Notation: Let $V_{i,x}$ = value of the best solution that:

- (1) uses only the first i items
- (2) has total size $\leq x$

```
Upshot from last video: For i \in \{1, 2, ..., n\} and only x, V_{i,x} = \max\{V_{(i-1),x} \text{ (case 1, item } i \text{ excluded}), v_i + V_{(i-1),x-w_i} \text{ (case 2, item } i \text{ included})\}
```

Edge case: If $w_i > x$, must have $V_{i,x} = V_{(i-1),x}$

The Subproblems

Step 2: Identify the subproblems.

- All possible prefixes of items $\{1, 2, \dots, i\}$
- All possible (integral) residual capacities $x \in \{0, 1, 2, ..., W\}$ Recall W and the w_i 's are integral

Step 3: Use recurrence from Step 1 to systematically solve all problems.

Let
$$A=2\text{-D}$$
 array Initialize $A[0,x]=0$ for $x=0,1,\ldots,W$ For $i=1,2,\ldots,n$ For $x=0,1,\ldots,W$
$$A[i,x]:=\max\{\begin{array}{c}A[i-1,x]\\A[i-1,x-w_i]+v_i\end{array}\}$$
 Return $A[n,W]$

Previously computed, available for O(1)-time lookup. Ignore second case if $w_i > x$.

Running Time

Question: What is the running time of this algorithm?

- A) $\Theta(n^2)$
- B) $\Theta(nW)$ $(\Theta(nW)$ subproblems, solve each in $\Theta(1)$ time)
- C) $\Theta(n^2W)$
- D) $\Theta(2^n)$

Correctness: Straightforward induction [use step 1 argument to justify inductive step]

The Knapsack Problem

Algorithms: Design and Analysis, Part II

An Example

Example (n = 4, W = 6)

Initialization: A[0,x] = 0 for all x

Main loop:

For
$$i = 1, \ldots, n$$

For $x = 0, \ldots, W$

$$A[i,x] := \max\{A[i-1,x], A[i-1,x-w_i] + v_i\}$$

	6	0	3	3	7	(
D 1	5	0	3	3	6	
Example: $W = 6$	4	0	3	3	4	
$v_1 = 3, w_1 = 4$ $v_2 = 2, w_2 = 3$	3	0	0	2	4	
$v_3 = 4, w_3 = 2$ $v_4 = 4, w_3 = 3$	2	0	0	0 /	4	
	1	0	0	0	0	
	x = 0	0	0	0	0	
						_

Optimal value = 8

Optimal solution = {item 3, item 4}