Relazione Modulo 3 Metodi Numerici

Marco Parrinello Niccolò Francesco Tiezzi

Abstract

Nel presente lavoro è stato studiato numericamente il sistema oscillatore armonico quantistico in formalismo di Path Integral tramite algoritmo Markov-Chain Monte Carlo.

Sono stati estrapolati i primi due gap energetici, rappresentato il modulo quadro della funzione d' onda normalizzata e studiato l' andamento termico dell' energia interna.

Successivamente è stata introdotta una perturbazione anarmonica $\lambda x^4,$ studiato il sistema complessivo e confrontato con la teoria delle perturbazioni, in particolare sottolineando come questa ovviamente fallisca quando l'accoppiamento quartico non è 'piccolo' rispetto alla scala di energia del problema i.e. $\frac{\hbar\lambda}{m^2\omega^3}\ll 1$

1 Introduzione

Si vuole descrivere una particella di massa m
 sottoposta a potenziale quadratico che produca una frequenza caratteristica ω . A partire dall' hamiltoniana

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \tag{1}$$

diagonalizzandola si arriva allo spettro

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right) \tag{2}$$

che fornisce la funzione di partizione

$$Z = \sum_{n} e^{-\beta E_n} = \frac{1}{\sinh\left(\frac{\beta\hbar\omega}{2}\right)} \qquad \beta = \frac{1}{kT}$$
 (3)

Nel formalismo del Path Integral si definisce la grandezza definita propagatore (i.e. l'ampiezza perchè la particella passi da x_1 a x_2 in un tempo t)

$$\langle x_1 | e^{-\frac{it}{\hbar}\hat{H}} | x_2 \rangle = \mathcal{N} \int_{x_1(0)}^{x_2(t)} \mathcal{D}[x(t)] \exp\left(\frac{i}{\hbar} S[x, \dot{x}, t]\right)$$
(4)

con $\mathcal N$ costante di normalizzazione (che nel caso dell' oscillatore armonico è calcolabile) e $S[x,\dot x,t]=\int_0^t dt' \mathcal L(x(t'),\dot x(t'),t)$ azione classica del problema, che nel caso dell' oscillatore armonico si scrive

$$S[x, \dot{x}] = \int_0^t dt' \ \frac{1}{2} m \left(\frac{dx}{dt'}\right)^2 - \frac{1}{2} m\omega^2 x^2(t') \tag{5}$$

Essendo interessati alla termodinamica del sistema, quindi alla traccia

$$Z = tr \left[e^{-\beta \hat{H}} \right] \tag{6}$$

il Path Integral viene definito su traiettorie periodiche estese sull' intervallo di "tempo euclideo" $\beta\hbar$

$$Z = \mathcal{N} \int_{x(\beta\hbar)=x(0)} \mathcal{D}x(\tau) \exp\left(-\frac{S_E}{\hbar}\right)$$
 (7)

con S_E "azione euclidea" ottenuta da (5) con $t \to -i\tau$

2 Discretizzazione

Per studiare numericamente il sistema lo si discretizza passando a unità adimensionali $y=\frac{x}{l},\ l=\sqrt{\frac{\hbar}{m\omega}}$, si considera l' evoluzione nel tempo euclideo discretizzato $\beta\hbar=aN$, su un reticolo di passo a con N siti.

Ponendo poi

$$\int_0^{\beta\hbar} d\tau \to \sum_j^{N-1} a \qquad \frac{dy}{d\tau} \to \frac{y_{j+1} - y_j}{a}$$

si arriva all' azione discretizzata

$$\frac{S_D}{\hbar} = \sum_{j}^{N-1} \left[y_j^2 \left(\frac{\eta}{2} + \frac{1}{\eta} \right) - \frac{1}{\eta} y_{j+1} y_j \right] \qquad \eta = a\omega$$
 (8)

 η parametro adimensionale che indica la spaziatura del tempo euclideo discretizzato in relazione alla scala temporale caratteristica del problema $\frac{1}{t_{ij}}$

3 Simulazioni numeriche

Le simulazioni sono state svolte con (se non specificato diversamente nel testo) $\approx 10^5$ campionamenti (in particolare 131072= 2^{17} per poter stimare l' errore sulle osservabili con algoritmo bootstrap con blocchi di dati di potenze di 2).

Fra una misura e l'altra il reticolo è stato decorrelato con un numero di aggiornamenti pari alla dimensione del reticolo svolti sequenzialmente lungo la catena.

Prima di ogni misura il reticolo è stato aggiornato 10³ volte per essere sicuri che la catena di markov fosse "termalizzata" anche dopo eventuale partenza "a freddo", con ogni sito fissato ad un valore.

Il parametro δ dell' algoritmo metropolis è stato posto $\delta=2\sqrt{\eta}$ per avere un' accettanza ≈ 0.5

3.1 Energia interna

Da $U=-\frac{\partial}{\partial\beta}\log Z$ si può calcolare l' energia interna, tenendo presente che nel modello discretizzato $\frac{\partial}{\partial\beta}\propto\frac{\partial}{\partial\eta}$ e che la costante di normalizzazione del path integral va come $\eta^{N/2}$ si ha

$$\frac{U_r}{\hbar\omega} = \frac{1}{2\eta} + \frac{1}{2} \left(\langle y^2 \rangle - \langle \Delta y^2 \rangle \right) \tag{9}$$

Questa quantità è stata studiata numericamente estrapolando al continuo i punti "sperimentali" secondo un modello di correzioni quadratiche $U(\eta)=U^*+a\eta^2$ per varie temperature ed è stato fatto un fit con modello

$$U(T) = E_0 + \frac{1}{e^{1/T} - 1} \tag{10}$$

con risultato

$$E_0 = 0.49(2)$$
 $\chi_{rid}^2 = 1.8$

É stato inoltre stimato il coefficiente angolare dell' andamento ad alta temperatura fittando i dati a $T \ge 1$ con modello lineare con risultato

$$m = 0.998(2)$$
 $\chi_{rid}^2 = 0.8$

Figure 1: Fit con modello (10)

3.2 Gap fra i livelli

Per l'oscillatore armonico vale esattamente

$$C_1(k) = \langle y_j y_{j+k} \rangle - \langle y \rangle^2 \propto e^{-\Delta E_1 \eta k}$$
(11)

$$C_2(k) = \langle y_j^2 y_{j+k}^2 \rangle - \langle y^2 \rangle^2 \propto e^{-\Delta E_2 \eta k}$$
(12)

con j qualsiasi (dall' invarianza per traslazioni). Sono stata stimata la quantità $C_1(k)$ e $C_2(k)$ per $\eta=0.2,\ 0.4,\ 0.5,\ 0.8$ ed eseguito un fit per stimare $\Delta E_1, \Delta E_2$ nei quattro casi e successivamente estrapolato il valore al continuo considerando sempre un modello quadratico

I gap energetici risultanti sono riportati in tabella (1)

$$\Delta E_1 = 1.002(4) \ \chi^2_{rid} = 1.9$$

 $\Delta E_2 = 1.99(1) \ \chi^2_{rid} = 0.3$

Table 1: Gap energetici estrapolati

Figure 2: Fit con modello $\Delta E(\eta) = \Delta E^* + a\eta^2$

3.3 Modulo quadro della funzione d' onda dello stato fondamentale

Per ottenere il modulo quadro della funzione d' onda è stato campionato il valore y_0 (quasiasi valore va bene per invarianza per traslazioni) a $T=0.05\ 10^6$ volte e fatto un istogramma normalizzato visibile in figura (3)

All' istogramma è stato sovrapposto il modulo quadro della funzione d' onda calcolata analiticamente per verificarne la compatibilità

$$|\psi_0(y)|^2 = \frac{1}{\sqrt{\pi}}e^{-y^2} \tag{13}$$

Figure 3: Frequenze dei 10^6 valori di y_0 campionati con sovrapposta funzione (13)

3.4 Limite al continuo come punto critico

Considerando i correlatori in eq (11) e (12), possono essere riscritti definendo le lunghezze di correlazione per i 2 gap

$$\xi_1 = \frac{1}{\eta \Delta E_1}$$

$$\xi_2 = \frac{1}{\eta \Delta E_2}$$
(14)

come $C_1(k) = e^{-k/\xi_1}, C_2(k) = e^{-k/\xi_2}.$

Si ha quindi che nel limite del continuo le lunghezze di correlazione divergono come $\eta^{-\nu}$, $\nu=1$, divergenza analoga a quella osservata per transizioni di fase del second' ordine.

Sono prima stati effettuati dei fit con modello $f(x)=ae^{-k/\xi}$ per stimare $\xi_{1,2}$ in funzione di η e poi stimato ν (figura(7)) con modello

$$f(x) = ax^{-\nu} \tag{15}$$

I risultati sono riportati in tabella (2)

Figure 4: Fit con modello (15) per la stima di ν

	a	ν	χ^2_{rid}
Gap 1	1.02(1)	0.99(2)	0.8
Gap 2	0.50(2)	1.02(2)	1.5

Table 2: Risultati per la stima dell' indice critico

4 Termine quartico

Considerando ora il sistema

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 + \lambda \hat{x}^4 \tag{16}$$

si arriva ad un' azione discretizzata

$$\frac{S_D}{\hbar} = \sum_{j=1}^{N-1} \left[y_j^2 \left(\frac{\eta}{2} + \frac{1}{\eta} \right) - \frac{1}{\eta} y_{j+1} y_j + \eta \alpha y_j^4 \right] \qquad \alpha = \frac{\hbar \lambda}{m^2 \omega^3}$$
 (17)

anche per questa parte gli iperparametri (numero di misure, δ del metropolis etc) sono rimasti invariati

4.1 Energia interna e stato fondamentale

In questo caso si ha una correzione

$$\frac{U_r}{\hbar\omega} = \frac{1}{2\eta} + \frac{1}{2} \left(\langle y^2 \rangle - \langle \Delta y^2 \rangle \right) + \alpha \langle y^4 \rangle \tag{18}$$

Anche in questo caso sono stati estrapolati al continuo i valori dell' energia interna per diverse temperature e per 3 diversi valori dell' accoppiamento quartico $\alpha = 0.1, 0.5, 1.0,$ i risultati sono visibili in figura (5).

Per stimare lo stato fondamentale è stato eseguito un fit con modello costante sui dati a temperatura più bassa (T \leq 0.5), i risultati sono riportati in tabella (3)

Figure 5: U(T) per accoppiamenti diversi, le linee continue sono solo delle interpolazioni fra i dati

α	E_0	χ^2_{rid}	m	χ^2_{rid}
0.1	0.56(1)	3.4	0.753(2)	1.2
0.5	0.69(1)	2.1	0.749(2)	0.6
1.0	0.79(1)	1.9	0.747(2)	1.4

Table 3: Energia dello stato fondamentale e coefficiente angolare energia interna per accoppiamenti diversi

Sono inoltre stati eseguiti dei fit con modello lineare sui dati a temperatura più alta $(T\geq 1)$ per stimare il coefficiente angolare dell' energia interna ad alta temperatura, aspettandosi un coefficiente unitario per l' oscillatore armonico e pari a $\frac{3}{4}$ per il modello quartico.

I risultati sono riportati in tabella (3).

4.2 Gap energetici e teoria delle perturbazioni

Anche in questo caso dal correlatore $C_1(k) = \langle y_j y_{j+k} \rangle - \langle y \rangle^2$ è possibile stimare il gap $E_1 - E_0$. Per i 3 diversi valori di α sono stati estrapolati al continuo i gap, riportati in tabella (4), eseguendo sempre un fit con correzioni quadratiche (figura (6))

Figure 6: Estrapolazioni ΔE_1 con accoppiamenti diversi

α	ΔE_1	χ^2_{rid}
0.1	1.21(1)	0.8
0.5	1.63(3)	0.3
1.0	1.93(3)	0.6

Table 4: Gap fra fondamentale e primo eccitato al variare dell' accoppiamento quartico

Questi valori possono essere confrontati con i risultati forniti dalla teoria delle perturbazioni, di seguito riportato fino al terzo ordine:

$$\frac{E_n}{\hbar\omega} = n + \frac{1}{2} + \alpha \left(\frac{3}{4} + \frac{3n}{2} + \frac{3n^2}{2} \right)
- \alpha^2 \left(\frac{21}{8} + \frac{59n}{8} + \frac{51n^2}{8} + \frac{17n^3}{8} \right)
+ \alpha^3 \left(\frac{333}{16} + \frac{1041n}{16} + \frac{177n^2}{2} + \frac{375n^3}{8} + \frac{375n^4}{16} \right) + o(\alpha^4)$$
(19)

É noto che la serie perturbativa è divergente, ci si aspetta quindi dei risultati compatibili solo per il valore di α più piccolo, con un errore che cresce molto velocemente con α .

In tabella sono riportati i confronti fra estrapolazione numerica e calcolo perturbativo

α	$E_{0,pert}$	$E_{0,num}$	$\Delta E_{1,pert}$	$\Delta E_{1,num}$
0.1	0.575	0.56(1)	1.343	1.21(1)
0.5	2.875	0.69(1)	25.875	1.63(3)
1.0	19.25	0.79(1)	209	1.93(3)

Table 5: Confronto fra risultati numerici e teoria delle perturbazioni

4.3 Doppio regime per piccoli α

Per un valore piccolo della costante di accoppiamento (in questo caso $\alpha=0.01$) il sistema si comporta come un oscillatore armonico a bassa temperatura, mentre ad alta temperatura prevale il comportamento quartico.

Questo è stato verificato stimando l' energia interna a varie temperature e fittando i dati di alte e basse temperature ($T \leq 15$) con modelli lineari, aspettandosi un coefficiente angolare pari rispettivamente a $\frac{3}{4}$ per il regime quartico e 1 per il regime quadratico.

Figure 7: Fit per la stima della pendenza di U(T)

	m	χ^2_{rid}
T < 15	0.99(1)	0.2
T > 15	0.74(2)	0.7
$T \ge 15$	0.76(2)	1.3

Table 6: Risultati studio doppio regime, la seconda riga è relativa al fit escludendo il dato a T=15, la terza è relativa al fit con offset

Dato che la grandezza di interesse è la capacità termica (derivata dell' energia), sono state fatte due prove diverse:

una escludendo il dato a T=15, nel regime di transizione fra oscillatore armonico e anarmonico (figura (7a)), un' altra considerando tutti i dati ma usando un modello lineare con un offset (figura (7b)), dato che in ogni caso quello che interessa sono i coefficienti angolari.

Come si vede in tabella (6), i due fit hanno dato risultati compatibili.

4.4 Modulo quadro funzione d' onda e confronto col l' oscillatore armonico

É stato nuovamente campionato il valore di y_0 10⁶ volte per i tre accoppiamenti diversi a T=0.05 e costruiti i rispettivi istogrammi normalizzati.

Sugli istogrammi è stata sovrapposta la funzione (13) per confronto, si apprezza la maggiore concentrazione intorno allo 0 dovuta al termine quartico che rende la distribuzione più piccata

Figure 8: $|\psi_o|^2$ per accoppiamenti diversi