Lattices, submanifolds and diophantine approximations (Nicolas de Saxcé, Winter 2024)

Yuxiang Jiao https://yuxiangjiao.github.io

Contents

1	Classical results and general settings	1
2	The correspondence between lattices and subspaces	4
3	Algebraic subspaces	8
4	Rational approximation to linear subspaces	10

§1 Classical results and general settings

Theorem 1.1

For every $\theta \in \mathbb{R} \setminus \mathbb{Q}$, there exists infinitely many $p/q \in \mathbb{Q}$ such that $|\theta - p/q| \leqslant 1/q^2$.

The first proof (continued fractions). Let $\theta_0 = \theta$ and $a_0 = \lfloor \theta_0 \rfloor$. For every $i \geqslant 1$, we define inductively that

$$\theta_i = \frac{1}{\theta_{i-1} - a_{i-1}}, \quad a_i = \lfloor \theta_i \rfloor.$$

We can check that

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{\cdots \cdot \frac{1}{a_{1:1}}}}.$$

1.
$$\begin{bmatrix} 1 \\ \theta \end{bmatrix} \mathbb{R} = \begin{bmatrix} 0 & 1 \\ 1 & a_0 \end{bmatrix} \cdots \begin{bmatrix} 0 & 1 \\ 1 & a_n \end{bmatrix} \begin{bmatrix} 1 \\ \theta_n \end{bmatrix} \mathbb{R}$$

We have the following two facts:

1.
$$\begin{bmatrix} 1 \\ \theta \end{bmatrix} \mathbb{R} = \begin{bmatrix} 0 & 1 \\ 1 & a_0 \end{bmatrix} \cdots \begin{bmatrix} 0 & 1 \\ 1 & a_n \end{bmatrix} \begin{bmatrix} 1 \\ \theta_n \end{bmatrix} \mathbb{R}$$
.

2. Let $p_n/q_n = a_0 + \frac{1}{\ddots + 1/a_n}$, then $\begin{bmatrix} q_n & q_{n-1} \\ p_n & p_{n-1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & a_0 \end{bmatrix} \cdots \begin{bmatrix} 0 & 1 \\ 1 & a_n \end{bmatrix}$.

In particular, for every $n, \theta \in [p_n/q_n, p_{n+1}/q_{n+q}]$ (maybe reverse order

In particular, for every n, $\theta \in [p_n/q_n, p_{n+1}/q_{n+q}]$ (maybe reverse order). Then

$$\left|\theta - \frac{p_n}{q_n}\right| \leqslant \left|\frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}}\right| = \frac{1}{q_n q_{n+1}} \leqslant \frac{1}{q_n^2}.$$

Exercise 1.2. (1) Show that $q_{n+1} = a_{n+1}q_n + q_{n-1}$, and deduce that there are infinitely many n such that $q_{n+1} \ge \phi \cdot q_n$, where $\phi = (1 + \sqrt{5})/2$.

- (2) Conclude that there are infinitely many p_n/q_n such that $|\theta p_n/q_n| \le 1/(\sqrt{5}q_n^2)$.
- (3) Check that the constant $\sqrt{5}$ is optimal.

The second proof (using Dirichlet's theorem).

Theorem 1.3 (Dirichlet)

For every $\theta \in \mathbb{R}$ and $Q \geqslant 1$, there exists $q \in \{1, \dots, Q\}$ and $p \in \mathbb{Z}$ such that

$$\left|\theta - \frac{p}{q}\right| \leqslant \frac{1}{qQ} \leqslant \frac{1}{q^2}.$$

Definition 1.4. For $\theta \in \mathbb{R}$, we define its Diophantine exponent as

$$\beta(\theta) \coloneqq \sup \left\{ \beta > 0 : \exists p/q \text{ arbitrarily close to } \theta \text{ with } |\theta - p/q| \leqslant q^{-\beta} \right\}.$$

There are several basic properties:

- (D) By Dirichlet's theorem, $\beta(\theta) \geqslant 2$ for every $\theta \in \mathbb{R}$.
- (BC) By Borel-Cantelli lemma, $\beta(\theta) = 2$ for almost every $\theta \in \mathbb{R}$.
 - (R) Roth showed that $\beta(\theta) = 2$ for every $\theta \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$.

Exercise 1.5 (Liouville). Show that if $f(\theta) = 0$ for some $f \in \mathbb{Z}[X] \setminus \{0\}$, then $\beta(\theta) \leq (\deg f)$ if $f \notin \mathbb{Q}$.

Approximation in \mathbb{R}^n .

Let $\theta = [\theta_1 \cdots \theta_n]^t \in \mathbb{R}^n$. We can consider several types of approximations:

- Simultaneous approximations: $|\theta_i p_i/q| \le q^{-\beta}$ for $i = 1, \dots, n$.
- Linear form approximations: $|q p_1\theta_1 \cdots p_n\theta_n| \leq q^{-\beta+1}$.

Here, the simultaneous approximation can also be considered as a projective approxima-

tions. Let $x = \mathbb{R} \begin{bmatrix} 1 \\ \theta \end{bmatrix} \subset \mathbb{R}^d$, which is a point in $\mathbb{P}(\mathbb{R}^d)$. Let v be an element in $\mathbb{P}(\mathbb{Q}^d) \subset \mathbb{R}^d$

 $\mathbb{P}(\mathbb{R}^d)$. Then v is also a rational line in \mathbb{R}^d , which can be written as $\mathbb{R}\mathbf{v}$ for some primitive $\mathbf{v} = \begin{bmatrix} q & p_1 & \cdots & p_n \end{bmatrix}^t \in \mathbb{Z}^d$. The **height** of v is given by $H(v) := \|\mathbf{v}\|$. We want to study $d(x,v) \leq H(v)^{-\beta}$. Here the distance is understood in the projective space.

Theorem 1.6

- (D) For every $x \in \mathbb{P}(\mathbb{R}^d)$, $\beta(x) \ge d/(d-1)$.
- (BC) For almost every $x \in \mathbb{P}(\mathbb{R}^d)$, $\beta(x) = d/(d-1)$.
- (R-S) For every $x \in \mathbb{P}(\overline{\mathbb{Q}}^d)$ not in any proper rational subspace, $\beta(x) = d/(d-1)$.

Exercise 1.7. Check (D) and (BC).

Theorem 1.8 (Subspace theorem, Schmidt, 1970s)

Let $L \in GL(d, \overline{\mathbb{Q}})$ and write L_1, \dots, L_d for the rows of L. For every $\varepsilon > 0$, all solutions $\mathbf{v} \in \mathbb{Z}^d$ satisfying the inequality

$$|L_1(\mathbf{v})\cdots L_d(\mathbf{v})| \leqslant ||\mathbf{v}||^{-\varepsilon}$$

are contained in a finite union of Q-hyperplanes.

Exercise 1.9. Check the theorem when $L \in GL(d, \mathbb{Q})$.

Proof of (RS) assuming the subspace theorem. Write $x = \mathbb{R}[1 \ \theta_2 \ \cdots \ \theta_d]^t$ with $\theta_i \in \overline{\mathbb{Q}}$. Take

$$L = egin{bmatrix} 1 & & & \ - heta_2 & 1 & & \ dots & & dots \ - heta_d & \cdots & 1 \end{bmatrix}.$$

Assume that $d(x,v) \leqslant H(v)^{-\beta}$ for some $v \in \mathbb{P}(\mathbb{Q}^d)$. Take $\mathbf{v} \in \mathbb{Z}^d$ corresponding to v. Then $L_1(\mathbf{v}) = |q|$ and $L_i(\mathbf{v}) = |-q\theta_i + p_i|$ for $i \geqslant 2$. By the assumption, we have $L_i(\mathbf{v}) \leqslant \|\mathbf{v}\|H(v)^{-\beta}$ for every $i \geqslant 2$. Hence $|L_1(\mathbf{v}) \cdots L_d(\mathbf{v})| \leqslant \|v\|^{d-(d-1)\beta}$. If $d-(d-1)\beta > 0$ then \mathbf{v} belongs to a finite union of Q-hyperplanes $V_1 \cup \cdots \cup V_k$. But $x \notin \mathbb{P}(V_1 \cup \cdots \cup V_k)$, so d(x,v) is bounded away from 0. There are only finitely many v with bounded height. A contradiction.

Exercise 1.10. Prove (RS) for linear form approximations.

Approximation by linear subspaces.

Schmidt's question. Fix integers $q \le k \le \ell < d$. Given an ℓ -dimensional subspace $x \in \mathbb{R}^d$. Study k-dimensional rational subspace v lying close to x.

Definition 1.11 (distance). $d(v,x) := \max \{ d(\mathbf{u},x) : \mathbf{u} \in v, ||\mathbf{u}|| = 1 \}$.

Notation 1.12. Denote X_{ℓ} to be the grassmannian variety of ℓ -dimensional subspaces in \mathbb{R}^d . Let $X_k(\mathbb{Q})$ to be the \mathbb{Q} -points in X_k (corresponding to \mathbb{Q} -subspaces).

Definition 1.13 (height). For every $v \in X_k(\mathbb{Q})$, the intersection $v \cap \mathbb{Z}^d$ is a subgroup of \mathbb{Z}^d , which can be written as $\mathbb{Z}v_1 \oplus \cdots \otimes \mathbb{Z}v_k$. The **height** of v is defined to be

$$H(v) := \operatorname{vol}(v_1 \wedge \cdots \wedge v_k) = \operatorname{vol}(v/(v \cap \mathbb{Z}^d)).$$

Proposition 1.14

There exists C = C(d) such that $N_d(H) := \#\{v \in X_k(\mathbb{Q}) : H(v) \leq H\}$ satisfies

$$C^{-1}H^d \leqslant N_d(H) \leqslant CH^d$$
.

Exercise 1.15. Check this for k = 1 and k = d - 1.

Theorem 1.16

- (D) For every $x \in X_{\ell}(\mathbb{R})$, $\beta_k(x) \geqslant \frac{d}{k(d-\ell)}$.
- (BC) For almost every $x \in X_{\ell}(\mathbb{R})$, $\beta_k(x) = \frac{d}{k(d-\ell)}$.
- (R) For every $x \in X_{\ell}(\overline{\mathbb{Q}})$ not contained in any proper rational pencil, $\beta_k(x) = \frac{d}{k(d-\ell)}$.

Definition 1.17. A **pencil** in X_{ℓ} is the a subset

$$\mathscr{P}_{W,r} := \{ x \in X_{\ell}(\mathbb{R}) : \dim x \cap W \geqslant r \},$$

where $W \subset \mathbb{R}^d$ is a rational subspace and $r \geqslant 1$.

Now we explain the intuition of this theorem. For every $v \in X_k(\mathbb{Q})$ and $\varepsilon > 0$. The set $\{x \in X_\ell(\mathbb{R}) : d(v,x) \le \varepsilon\}$ is an ε -neighborhood of $E_v = \{x \in X_\ell(\mathbb{R}) : v \subset x\}$. Here E_v is a submanifold of $X_\ell(\mathbb{R})$ and dim $E_v = (d-\ell)(\ell-k)$. Then codim $E_v = k(d-\ell)$ and hence vol $\{x : d(v,x) \le \varepsilon\} \approx \varepsilon^{k(d-\ell)}$.

On the other hand, the number of $v \in X_k(\mathbb{Q})$ with $H(v) \leq H$ is approximately H^d . So that expected value for ε satisfies $H^d \varepsilon^{k(d-\ell)} = 1$. This gives $\varepsilon = H^{-\frac{d}{k(d-\ell)}}$.

Exercise 1.18. Use this argument to show that $\beta(x) \leqslant \frac{d}{k(d-\ell)}$ for almost every x.

§2 The correspondence between lattices and subspaces

Lattices in \mathbb{R}^d

Proposition 2.1

If Λ is a discrete subgroup of \mathbb{R}^d , then there exists k linearly independent vectors v_1, \dots, v_k such that $\Lambda = \mathbb{Z}v_1 \oplus \dots \oplus \mathbb{Z}v_k$

Proof. Take $v_1 \in \Lambda$ with minimal norm. Consider $P_{v_1^{\perp}}(\Lambda)$, which is a discrete subgroup of v_1^{\perp} since v_1 is the shortest vector. By induction, we may write

$$P_{v_1^{\perp}}(\Lambda) = \mathbb{Z}P_{v_1^{\perp}}(v_2) \oplus \cdots \oplus \mathbb{Z}P_{v_1^{\perp}}(v_k).$$

Then $\Lambda = \mathbb{Z}v_1 \oplus \cdots \oplus \mathbb{Z}v_k$.

Definition 2.2. A **lattice** in \mathbb{R}^d is a discrete subgroup of rank d. We can write $\Lambda = \mathbb{Z}v_1 \oplus \cdots \oplus \mathbb{Z}v_d$ with (v_i) a basis of \mathbb{R}^d in this case.

Definition 2.3. The **first minimum** of a lattice is $\lambda_1(\Lambda) := \min \{ \|v\| : v \in \Lambda \setminus \{0\} \}$. The **co-volume** of Λ is covol $\Lambda = \operatorname{vol}(v_1 \wedge \cdots \wedge v_k)$, where v_1, \cdots, v_k is given above.

Theorem 2.4 (Minkowski I)

Let Δ be a lattice in \mathbb{R}^d . If C is a convex symmetric set in \mathbb{R}^d with vol $C > 2^d \operatorname{covol} \Delta$, then $C \cap \Delta \neq \{0\}$. In particular, $\lambda_1(\Delta)^d \leqslant \frac{2^d}{\operatorname{vol} B(0,1)} \operatorname{covol} \Delta$.

Proof. Consider $\Delta_q = \frac{1}{q}\Delta$ for $q \in \mathbb{N}_+$. The number of points in $\Delta_q \cap \frac{C}{2}$ is approximately $q^d \frac{\operatorname{vol}(C)}{2^d \operatorname{covol}\Delta}$. If $\operatorname{vol} C > 2^d \operatorname{covol}\Delta$, for q large enough, there exists $v_1, v_2 \in \Delta_1 \cap \frac{C}{2}$ with the same image in $\Delta_q/\Delta \cong (\mathbb{Z}/q\mathbb{Z})^d$. Then $0 \neq v_1 - v_2 \in \Delta \cap C$.

Definition 2.5. The successive minima of Δ is $\lambda_1(\Delta) \leqslant \cdots \leqslant \lambda_d(\Delta)$, where

 $\lambda_i(\Delta) := \inf \{ \lambda > 0 : \Delta \cap B(0,\lambda) \text{ contains } i \text{ linearly independent vectors } \}.$

Theorem 2.6 (Minkowski II)

$$\operatorname{covol} \Delta \leqslant \lambda_1(\Delta) \cdots \lambda_d(\Delta) \leqslant \frac{2^d}{\operatorname{vol} B(0,1)} \operatorname{covol} \Delta.$$

Proof. If v_1, \dots, v_d are linearly independent with $||v_i|| = \lambda_i$, then $\Delta' = \mathbb{Z}v_1 \oplus \dots \oplus \mathbb{Z}v_d < \Delta$. Hence $\lambda_1 \dots \lambda_d \geqslant \operatorname{covol}(\Delta') \geqslant \operatorname{covol}(\Delta)$.

For the converse, we first construct an orthogonal basis u_1, \dots, u_d satisfying

$$\operatorname{span}\left\{u_1,\cdots,u_i\right\} = \operatorname{span}\left\{v_1,\cdots,v_i\right\}, \quad \forall 1 \leq i \leq d.$$

Let $T: u_i \mapsto \lambda_i^{-1}(\Delta)u_i$. We denote $\Delta_T = T\Delta$.

Claim 2.7. $\lambda_1(\Delta_T) \geqslant 1$.

Proof. Indeed, for every $v \in \Delta$, write $v = \sum_{i=1}^{I} \alpha_i v_i$ with $\alpha_I \neq 0$. Since v is linearly independent with (v_1, \cdots, v_{I-1}) , $||v|| \geq \lambda_I(\Delta)$. Therefore,

$$\|Tv\|\geqslant \frac{\|v\|}{\|T^{-1}|_{\text{span}\{\,v_1,\cdots,v_I\,\}}\|}=\frac{\|v\|}{\|T^{-1}|_{\text{span}\{\,u_1,\cdots,u_I\,\}}\|}\geqslant \frac{\lambda_I(\Delta)}{\lambda_I(\Delta)}=1.$$

Now we apply Minkowski I to Δ_T , we obtain

$$1 \leqslant \frac{2^d \operatorname{covol} \Delta_T}{\operatorname{vol} B(0,1)} = \frac{2^d \operatorname{covol} \Delta}{\lambda_1(\Delta) \cdots \lambda_d(\Delta) \operatorname{vol} B(0,1)}.$$

Remark 2.8 We proved this theorem for euclidean norm above. But it is true in general for any norm with

$$\frac{\operatorname{covol}\Delta}{d!}\leqslant \lambda_1(\Delta)\cdots\lambda_d(\Delta)\leqslant \frac{2^d}{\operatorname{vol}B(0,1)}\operatorname{covol}\Delta.$$

Dani's correspondence

Let $x \in X_{\ell}(\mathbb{R})$. We want to study the diophantine exponent $\beta_k(x)$. Let $G = \operatorname{SL}(d, \mathbb{R})$ and $P = \operatorname{Stab}_G(x_0)$ where $x_0 = \operatorname{span} \{e_1, \dots, e_{\ell}\} \in X_{\ell}(X)$. Then G acts transitively on $X_{\ell}(\mathbb{R}) \cong P \setminus G$, here the isomorphism is given by $gx_0 \mapsto Pg^{-1}$.

Notation 2.9. For $x \in X_{\ell}(\mathbb{R})$, let $u_x \in G$ be such that $x = Pu_x$ (hence $u_x x = x_0$).

The **zooming flow** is given by

Proposition 2.10 (Dani's correspondence, version 1)

For $x \in X_{\ell}(\mathbb{R})$, let $\Delta_x = u_x \mathbb{Z}^d$ be the lattice in \mathbb{R}^d . Let

$$\gamma_1(x) := \limsup_{t \in +\infty} -\frac{1}{t} \log \lambda_1(a_t \Delta_x).$$

Then

$$\beta_1(x) = \frac{d}{(d-\ell)(1-\ell\gamma_1(x))}.$$

Applications.

- (1) Lower bound on β . Minkowski's first theorem shows that $\lambda_1(a_t\Delta_x)\lesssim 1$. Hence $\gamma_1(x)\geqslant 0$ and $\beta_1(x)\geqslant \frac{d}{d-\ell}$.
- (2) Let Ω be the space of unimodular lattices in \mathbb{R}^d . Then $\Omega \cong \mathrm{SL}(d,\mathbb{R})/\mathrm{SL}(d,\mathbb{Z}) = G/\Gamma$ and it admits a finite G-invariant measure m_{Ω} . For $f \in C_c(\mathbb{R}^d)$, we define

$$\widetilde{f}(\Delta) := \sum_{\text{primitive } v \in \Delta} f(v).$$

Then $\int_{\Omega} \widetilde{f} \, dm_{\Omega} = \int_{\mathbb{R}^d} f$. Take $f = \mathbb{1}_{B(0,\varepsilon)}$, then $\widetilde{f}(\Delta) \geqslant \mathbb{1}_{\lambda_1(\Delta) \leqslant \varepsilon}$. Therefore,

$$m_{\Omega}(\{\lambda_1 \leqslant \varepsilon\}) \leqslant \int \widetilde{f} = \int f \lesssim \varepsilon^d.$$

Claim 2.11. For almost every $\Delta \in \Omega$, $\lim_{t \to +\infty} \frac{1}{t} \log \lambda_1(a_t \Delta) = 0$.

Proof. For every $\varepsilon > 0$, we aim to show $\lambda_1(a_t \Delta) \geqslant e^{-\varepsilon t}$ for t large enough. It is enough to check for $t \in \mathbb{N}$. Note that

$$|\left\{\Delta:\lambda_1(a_t\Delta)\leqslant e^{-\varepsilon t}\right\}|=|\left\{\Delta:\lambda_1(\Delta)\leqslant e^{-\varepsilon t}\right\}|\lesssim \varepsilon^{-d\varepsilon t}.$$

By Borel-Cantelli lemma, we have $\limsup -\frac{1}{t} \log \lambda_1(a_t \Delta) \leq 0$. Hence the limit is 0 because $\lambda_1(a_t \Delta) \leq 1$ for every t. This implies that $\lambda_1(x) = 0$ for almost every x.

Exterior powers. For $0 \le k \le d$, the exterior power $\wedge^k \mathbb{R}^d$ is a vector space with basis e_I where $I \subset \{1, \dots, d\}$ and #I = k. If $I = \{i_1 < \dots < i_k\}$ then $e_I = e_{i_1} \wedge \dots \wedge e_{i_k}$.

Exercise 2.12. If $\wedge^k \mathbb{R}^d$ is endowed with the euclidean structure making e_I an orthonormal basis, then, for $W = \mathbb{Z}v_1 \oplus \cdots \oplus \mathbb{Z}v_k$ a discrete subgroup of \mathbb{R}^d , we have $|W| = ||v_1 \wedge \cdots \wedge v_k||$, where |W| denotes the covolume of W in its real span.

Note that a_t acts on $\wedge^k \mathbb{R}^d$ with eigenvalues $\exp(-(\frac{k}{\ell} - i\frac{d}{\ell(d-\ell)})t)$ for $0 \leqslant i \leqslant k$. An element e_I is an eigenvector corresponding to the eigenvalue $\exp(-(\frac{k}{\ell} - i\frac{d}{\ell(d-\ell)})t)$ if and only if $\#(I \setminus \{1, \cdots, \ell\}) = i$. We write $\pi_+ : \wedge^k \mathbb{R}^d \to \wedge^k \mathbb{R}^d$ to be the projection to the eigenspace with the eigenvalue $e^{-kt/\ell}$ (parallel to other eigenspaces).

Proposition 2.13 (Dani's correspondence, version 2)

For $x \in X_{\ell}(\mathbb{R})$, let

$$\gamma_k(x) \coloneqq \sup \left\{ \begin{array}{l} \exists t > 0 \ \mathrm{large} \;,\; \exists w \in a_t \wedge^k u_x \mathbb{Z}^d \ \mathrm{with} \\ \|w\| \leqslant e^{-\gamma t}, \|\pi_+ w\| \geqslant rac{1}{2} \|w\| \end{array} \right\}.$$

Then

$$\beta_k(x) = \frac{d}{(d-\ell)(k-\ell\gamma_k(x))}.$$

Proof. Assume $\beta < \beta_k(x)$, then there exists $v \in X_k(\mathbb{Q})$ close to x with $d(v,x) \leqslant H(v)^{-\beta}$. Take $\mathbf{v} \in \wedge^k \mathbb{Z}^d$ representing v. We want to make $\|a_t u_x \mathbf{v}\|$ small. We write $u_x \mathbf{v} = \mathbf{v}^{(0)} + \mathbf{v}^{(1)} + \cdots$ such that $a_t \mathbf{v}^{(i)} = \exp(-(\frac{k}{\ell} - i \frac{d}{\ell(d-\ell)})t)\mathbf{v}^{(i)}$.

Lemma 2.14

If v is close to x, then $\|\mathbf{v}^{(0)}\| \simeq H(v)$, $\|\mathbf{v}^{(1)}\| \simeq H(v)d(v,x)$ and $\|\mathbf{v}^{(p)}\| \lesssim H(v)d(v,x)^p$ for every $p \geqslant 2$.

Proof. Fix x and so does u_x . Then $H(v) = \|\mathbf{v}\| \times \max_i \|\mathbf{v}^{(i)}\|$. Note that $d(v, x) = d_{X_k}(v, E_x)$ where $E_x = \{ y \in X_k : y \subset x \}$. We have

$$d(v,x) \asymp d(u_x v, u_x x) = d_{X_k}(u_x v, E_{x_0}) \asymp d(\frac{u_x \mathbf{v}}{\|u_x \mathbf{v}\|}, \wedge^k \operatorname{span} \{e_1, \cdots, e_\ell\}).$$

Note that $\wedge^k E_\ell$ is exactly the eigenspace of a_t with the eigenvalue $e^{-kt/\ell}$. Therefore,

$$d(v,x) \asymp \frac{1}{\|u_x \mathbf{v}\|} \max_{i \geqslant 1} \|\mathbf{v}^{(i)}\| \asymp \frac{1}{H(v)} \max_{i \geqslant 1} \|\mathbf{v}^{(i)}\|.$$

If d(v,x) is small enough, then $\max_{i\geqslant 1}\|\mathbf{v}^{(i)}\|$ is much smaller than $H(v) \asymp \max_{i\geqslant 0}\|\mathbf{v}^i\|$. Therefore, $\mathbf{v}^{(0)}$ is the main term and $\|\mathbf{v}^{(0)}\| \asymp H(v)$.

Besides, we also obtain $\max_{i\geqslant 1}\|\mathbf{v}^{(i)}\|\lesssim H(v)d(v,x)$. Now we demonstrate the remaining two estimates. For simplicity, we assume that $k=\ell$. After some appropriate rotations, we may assume that $\pi_+(u_x\mathbf{v})$ is parallel to $e_1\wedge\cdots\wedge e_\ell$. Then we write (we cheat here)

$$\frac{u_{x}\mathbf{v}}{\|u_{x}\mathbf{v}\|} = \begin{bmatrix} \mathrm{id} & 0\\ (u_{ij}) & \mathrm{id} \end{bmatrix} (e_{1} \wedge \cdots \wedge e_{\ell})$$

with $u_{ij} \in \mathbb{R}$ small. So we have $d(v, x) \asymp \max_{i,j} |u_{ij}|$. But then

$$\frac{\mathbf{v}^{(1)}}{\|\mathbf{v}^{(0)}\|} = \sum \pm u_{ij} \cdot e_{\{1,\dots,\ell\}\setminus\{j\}\cup\{i\}}$$

is with norm $\asymp \max |u_{ij}| \asymp d(v,x)$. For $p \geqslant 2$, we can find that $\|\mathbf{v}^{(p)}\| / \|\mathbf{v}^{(0)}\|$ is a homogeneous polynomial of deg p, so we have $\|\mathbf{v}^{(p)}\| \lesssim \|\mathbf{v}^{(0)}\| (\max |u_{ij}|)^p \asymp H(v)d(v,x)^p$.

So we have

$$||a_t u_x \mathbf{v}|| \approx H(v) \max \left\{ e^{-\frac{kt}{\ell}}, e^{-(\frac{k}{\ell} - \frac{d}{\ell(d-\ell)})t} d(x, v), \cdots \right\}.$$

Take t>0 so that $e^{\frac{dt}{\ell(d-\ell)}}=H(v)^{\beta}$. Then

$$||a_t u_x \mathbf{v}|| \lesssim H(v) e^{-\frac{kt}{\ell}} = e^{-(\frac{k}{\ell} - \frac{1}{\beta} \frac{d}{\ell(d-\ell)})t}.$$

Thus $\gamma_k(x) \geqslant \frac{k}{\ell} - \frac{1}{\beta} \frac{d}{\ell(d-\ell)}$

For the converse direction, assume that $||a_t u_x \mathbf{v}|| \le e^{-\gamma t}$ and $||\pi_+(a_t u_x \mathbf{v})|| \gtrsim ||a_t u_x \mathbf{v}||$. Using the above computation, this yields:

$$e^{-\gamma t} \gtrsim H(v) \max \left\{ e^{-\frac{kt}{\ell}}, e^{-(\frac{k}{\ell} - \frac{d}{\ell(d-\ell)})t} d(x,v) \right\} \quad \text{and} \quad e^{-(\frac{k}{\ell} - \frac{d}{\ell(d-\ell)})t} \|\mathbf{v}^{(1)}\| \lesssim e^{-\frac{kt}{\ell}} \|\mathbf{v}^{(0)}\|.$$

Therefore,
$$H(v) \lesssim e^{(\frac{k}{\ell} - \gamma)t}$$
 and $d(x, v) \lesssim H(v)^{-\frac{d}{(d-\ell)(k-\ell\gamma)}}$.

During the proof of Lemma 2.14, we assume implicitly that \mathbf{v} was decomposable. That is $\mathbf{v} = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_k$ for some $\mathbf{v}_1, \cdots, \mathbf{v}_k \in \mathbb{R}^d$. This is always possible thanks to the following lemma:

Lemma 2.15 (Mahler)

If Δ is a lattice in \mathbb{R}^d , then the successive minima of $\wedge^k \Delta$ are essentially (up to a multiplicative constant) equal to the

$$\lambda_I(\Delta) = \lambda_{i_1}(\Delta) \cdots \lambda_{i_k}(\Delta), \quad I \subset \{1, \cdots, \ell\}, \#I = k,$$

and achieved by decomposable vectors.

Proof. Assume Δ is unimodular and hence so is $\wedge^k \Delta$. If $||v_i|| = \lambda_i(\Delta)$ with v_1, \dots, v_d linearly independent, then $v_I = v_{i_1} \wedge \dots \wedge v_{i_k}$ satisfies $||v_I|| \leq \lambda_I(\Delta)$. But by Minkowski II, $\prod_I \lambda_I(\Delta) \lesssim 1$ and hence $||v_I|| \approx \lambda_I(\Delta)$ for each I.

Going back to the correspondence, if there exits $w \in \wedge^k a_t u_x \mathbb{Z}^d$ with $||w|| \leqslant e^{-\gamma t}$ (i.e. $\lambda_1(\wedge^k a_t u_x \mathbb{Z}^d) \leqslant e^{-\gamma t}$) and $||\pi_+(w)|| \gtrsim ||w||$, then we can find such w with that is decomposable.

§3 Algebraic subspaces

Grayson polygon and Harder-Narasimhan filtration.

Let Δ be a lattice in \mathbb{R}^d , let $\mu_i(\Delta) = \min\{ |V| : V < \Delta, V \cong \mathbb{Z}^i \}$ be the successive covolumes of Δ .

Definition 3.1. The Grayson polygon C_{Δ} is the maximal convex function on [0,d] whose graph has below each point $(i, \log \mu_i(\Delta))$.

Proposition 3.2 (Harder-Narasimhan filtration)

If C_{Δ} has angle at the point i then there exists $V_i < \Delta$ of rank i with $|V_i| = \log \mu_i(\Delta)$. Moreover, if $I = \{i_1 < \cdots < i_k\}$ is the set of angle points then

$$\{0\} < V_{i_1} < \cdots < V_{i_k} < \Delta.$$

Definition 3.3. Let $\mathbb K$ be a field with characteristic 0. A map $\tau: \mathrm{Gr}(\mathbb K^d) \to \mathbb R$ is **submodular** if

$$\tau(V \cap W) + \tau(V + W) \leqslant \tau(V) + \tau(W), \quad \forall V, W \subset \mathbb{K}^d.$$

Example 3.4

If Δ is a lattice in \mathbb{R}^d then $\{$ primitive subgroups of Δ $\} \hookrightarrow \operatorname{Gr}(\mathbb{Q}^d)$. Then $\tau(V) = \log |V|$ is submodular, or equivalently $|V \cap W| \cdot |V + W| \leq |V| \cdot |W|$.

Exercise 3.5. Check this inequality.

Lemma 3.6 (Submodularity)

Let $\tau: Gr(\mathbb{K}^d) \to \mathbb{R}$ be submodular with $\tau(\{0\}) = 0$. Then there exists a unique maximal subspace with

$$\frac{\tau(V)}{\dim V} = \inf \left\{ \frac{\tau(W)}{\dim W} : W \subset \mathbb{K}^d \right\}.$$

Proof. Assume for simplicity that *V*, *W* both attain the infimum *a*. Then

$$\tau(V+W) \leqslant a(\dim V + \dim W) - a\dim(V \cap W) = a\dim(V+W).$$

This proves the lemma.

Theorem 3.7

If $\tau: \operatorname{Gr}(\mathbb{K}^d) \to \mathbb{R}$ is submodular with $\tau(0) = 0$. Define its Grayson polygon C_τ as the maximal convex function on [0,d] lying below all points $(\dim W, \tau(W))$. If C_τ has angle at i, then there is a unique V_i such that $\dim V_i = i$ and $C_\tau(i)$, and if $I = \{i_1 < \cdots < i_k\}$ is the set of angle points for C_τ then we have a HN-filtration

$$\{0\} < V_{i_1} < \cdots < V_{i_k} < \mathbb{K}^d.$$

Remark 3.8 By Minkowski II, $\mu_i(\Delta) \simeq \lambda_1(\Delta) \cdots \lambda_i(\Delta)$. So the shapes of C_{Δ} are (up to a additive constant) equal to $(\log \lambda_1(\Delta), \cdots, \log \lambda_d(\Delta))$.

Parametric subspace theorem.

Aim 3.9. Given $\Delta \subset \mathbb{R}^d$ a lattice, describe $C_{a_t\Delta}$ for t > 0, where $a_t = \operatorname{diag}(e^{\alpha_1 t}, \cdots, e^{\alpha_d t})$.

Theorem 3.10 (Parametric subspace theorem)

Assume that $\Delta = L\mathbb{Z}^d$ with $L \in GL(d, \overline{\mathbb{Q}})$. Then there exists C_{∞} such that

$$\lim_{t\to+\infty}\frac{1}{t}C_{a_t\Delta}=C_{\infty}.$$

Moreover, if $I = \{i_1 < \cdots < i_k\}$ are the angles of C_{∞} then there exists a filtration $\{0\} < V_{i_1} < \cdots < V_{i_k} < \mathbb{R}^d$ such that for every t > 0 large enough and for every s, $a_t L V_{i_s}$ contains the first i_s successive minima of $a_t L \mathbb{Z}^d$.

§4 Rational approximation to linear subspaces

Definition 4.1. For $W < \mathbb{R}^d$, the **expansion rate** of W under the flow $a_t L$ is

$$\tau_L(W) := \lim_{t \to +\infty} \frac{1}{t} \log \|a_t L w\|,$$

where $w \in \wedge^{\dim W} \mathbb{R}^d$ represents W.

Remark 4.2 $\tau_L(W)$ is the logarithm of the largest eigenvalue occurring in the decomposition of Lw along the eigenspaces of a_t in $\wedge^{\dim W} \mathbb{R}^d$.

Remark 4.3 If Λ_W is a lattice in W, then $|a_t L \Lambda_W| \simeq e^{\tau_L(W)} |\Lambda_W|$.

Exercise 4.4. $\tau_L : \operatorname{Gr}(\mathbb{Q}^d) \to \mathbb{R}$ is submodular.

Theorem 4.5 (Precision on the parametric subspace theorem.)

 C_{∞} is the Grayson polygon associated to τ_L and the HN filtration also corresponds.

Proof. V_{i_1} minimizes the rate $\frac{\tau_L(V_{i_1})}{i_1} = \min_V \frac{\tau_L(V)}{\dim V}$ and any V satisfying $\frac{\tau_L(V_{i_1})}{i_1} = \frac{\tau_L(V)}{\dim V}$ is a subspace of V_{i_1} . Observe that $|a_t L V_{i_1}(\mathbb{Z})| \asymp e^{t\tau_L(V_{i_1})} |V_{i_1}(\mathbb{Z})|$. So by Minkowski's first theorem, there exists $v \in a_t L V_{i_1}(\mathbb{Z})$ with $||v|| \lesssim e^{t\frac{\tau_L(V_{i_1})}{i_1}}$. This shows that for every t > 0 large, $\lambda_1(a_t L \mathbb{Z}^d) \lesssim e^{t\frac{\tau_L(V_{i_1})}{i_1}}$. So we have $\frac{1}{t}\log \mu_{i_1}(a_t L \mathbb{Z}^d) \leqslant \tau_L(V_{i_1}) + o(1)$. To check that $\frac{1}{t}C_t \to C_\infty$ on $[0,i_1]$, all we need to show is that

$$\lambda_1(a_t L \mathbb{Z}^d) \geqslant e^{t(\frac{\tau_L(V_{i_1})}{i_1} - \varepsilon)}$$

for every $\varepsilon > 0$ and t > 0 large enough. Let $V \leqslant \mathbb{Q}^d$ of minimal dimension such that there exists arbitrarily large t with $v \in V(\mathbb{Z})$ satisfying $\|a_t L v\| \leqslant e^{t(\frac{\tau_L(V_{i_1})}{l_1} - \varepsilon)}$. Let $k = \dim V$. We apply the subspace theorem.

Let L_1, \dots, L_d be the rows of L. Let j_1 be minimal such that $L_{j_1}|_V \neq 0$. We then find j_1, \dots, j_k inductively such that $L_{j_1}|_V, \dots, L_{j_k}|_V$ are linearly independent. Then $\tau_L(V) = A_{j_1} + \dots + A_{j_k}$.

We have

$$||L_{j_{1}}(v)\cdots L_{j_{k}}(v)|| \leq e^{-\tau_{L}(V)t} \prod_{s=1}^{k} \left| e^{A_{j_{s}}} t L_{j_{s}}(v) \right|$$

$$\leq e^{\tau_{L}(V)t} \prod_{s=1}^{k} ||a_{t} L v|| \leq e^{\tau_{L}(V)t} e^{kt(\frac{\tau_{L}(V_{i_{1}})}{i_{1}} - \varepsilon)}$$

$$\leq e^{-kt(\varepsilon - o(1))} \leq ||v||^{-\varepsilon'}.$$

So all such v must belong to a finite union of proper subspaces of V. By the minimality of V, there can be such solutions only for bounded t. Hence we obtain that $\frac{1}{t}C_{a_t\Delta} \to \tau_L$ on $[0,i_1]$. Then we apply an induction and we are done.

Application to rational approximation to linear subspaces.

Let $x \in X_{\ell}(\overline{\mathbb{Q}})$ and $u_x \in SL(d, \overline{\mathbb{Q}})$ such that $x = Pu_x$ ($x = u_x^{-1} \operatorname{span} \{e_1, \dots, e_{\ell}\}$). We want to understand the successive minima of $a_t u_x \mathbb{Z}^d$. For $W \leq \mathbb{Z}^d$, write $\tau_x(W) = \tau_{u_x}(W)$. Then

$$\tau_x(W) = -\frac{\dim x \cap W}{\ell} + \frac{\dim W - \dim x \cap W}{d - \ell}.$$

So

$$\frac{\tau_x(W)}{\dim W} = \frac{1}{d-\ell} - \frac{\dim x \cap W}{\dim W} \cdot \frac{d}{\ell(d-\ell)}.$$

To minimize this, one has to maximize $\frac{\dim x \cap W}{\dim W}$.

Example 4.6

 V_{i_1} is the unique subspace such that $\frac{\dim x \cap V_{i_1}}{\dim V_{i_1}} = \max_{W \leqslant \mathbb{Q}^d} \frac{\dim x \cap W}{\dim W}$.

Recall that a pencil for $W \subset \mathbb{Q}^d$ and $r \geqslant 1$ is

$$\mathscr{P}_{W,r} = \{ x \in X_{\ell}(\mathbb{R}) : \dim x \cap W \geqslant r \}.$$

We say the pencil is **constraining** if $\frac{r}{\dim W} > \frac{\ell}{d}$.

Corollary 4.7

If $x \in X_{\ell}(\overline{\mathbb{Q}})$ is not in any constraining rational pencil, then $\beta_k(x) = \frac{d}{k(d-\ell)}$.

Proof. By the example above, $V_{i_1} = \mathbb{Q}^d$. So the filtration is trivial and $C_{\infty} = 0$. Hence for every $i = 1, \cdots, d$, $\lambda_i(a_tu_x\mathbb{Z}^d) = e^{o(t)}$. But recall that the successive minima of $\wedge^k a_t u_x\mathbb{Z}^d$ are essentially the $\lambda_I = \lambda_{i_1} \cdots \lambda_{i_k} = e^{o(t)}$. So $\wedge^k a_t u_x\mathbb{Z}^d$ has a nice basis consisting of vectors of length $e^{o(t)}$. One of them must satisfy $\|\pi_+(w)\| \gtrsim \|w\|$ so $\gamma_k(x) \geqslant 0$. Hence we obtain $\beta_k(x) \geqslant \frac{d}{k(d-\ell)}$. But we also know that $\wedge^k a_t u_x\mathbb{Z}^d$ contains no vector of norm less than $e^{\varepsilon t}$, so $\gamma_k(x) \leqslant 0$ and hence $\beta_k(x) = \frac{d}{k(d-\ell)}$.

For general cases, V_{i_1} is the maximal maximizing $\frac{\dim x \cap V_{i_1}}{i_1} = \frac{\ell_1}{i_1}$; V_{i_2} is maximal maximizing $\frac{\dim x \cap V_{i_2} - \dim x \cap V_{i_1}}{i_2 - i_1} = \frac{\ell_2 - \ell_1}{i_2 - i_1}$, \cdots . To understand the successive minimas of $\wedge^k a_t u_x \mathbb{Z}^d$, we

decompose

$$\wedge^k \mathbb{Q} = \bigoplus_{k_1 \leqslant k_2 \leqslant \cdots \leqslant k_s = k} \underbrace{\bigwedge^{k_1} V_{i_1} \wedge \bigwedge^{k_2 - k_1} (V_{i_2} / V_{i_1}) \wedge \cdots \wedge \bigwedge^{k_s - k_{s-1}} (V_{i_s} / V_{i_{s-1}})}_{\text{denoted by } W_{\underline{k}} = W_{k_1, \cdots, k_s}}.$$

The logarithm of the successive minmas in $a_t u_x W_k$ are essentially equal to

$$\Lambda_{\underline{k}} = \frac{k}{d-\ell} - \frac{d}{\ell(d-\ell)} \left(\frac{k_1\ell_1}{i_1} + \frac{(k_2-k_1)(\ell_2-\ell_1)}{i_2-i_1} + \dots + \frac{(k_s-k_{s-1})(\ell_s-\ell_{s-1})}{i_s-i_{s-1}} \right).$$

To minimizing $\Lambda_{\underline{k}}$, one should take $k_1=i_1,k_2=i_2,\cdots,k_s=\min\{i_s,k\}$. But then, one might not have $\|\pi_+(w)\|\gtrsim \|w\|$. To ensure this, it is necessary to have $k_r\leqslant \ell_r$ for every r. Indeed, otherwise, $u_xW_{\underline{k}}\cap \wedge^k$ span $\{e_1,\cdots,e_\ell\}=\{0\}$. Then we have $\|u_xv-\pi_+u_xv\|\geqslant c\|u_xv\|$. So

$$||a_t u_x v|| \geqslant c^{-(\frac{k}{\ell} - \frac{d}{\ell(d-\ell)})t} ||u_x v|| \gtrsim e^{\frac{dt}{\ell(d-t)}} ||\pi_+(a_t u_x v)||$$

for $v \in W_k$. This is not as desired.

Best possible choice is therefore $k_r = \min \{ \ell_r, k \}$ for every i. Then we get the correct value. For example,

$$\gamma_{\ell}(x) = -\frac{\ell}{d-\ell} + \frac{d}{\ell(d-\ell)} \sum_{r=1}^{s} \frac{(\ell_r - \ell_{r-1})^2}{i_r - i_{r-1}}.$$

Finally, we can prove the first item in Theorem 1.16. It suffices to show that $\gamma_k \geqslant 0$. We consider a simpler case that $k = \ell$.

Proof. For $k = \ell$, by Cauchy-Schwartz, we have

$$d\sum_{r=1}^{s} \frac{(\ell_r - \ell_{s-1})^2}{i_r - i_{r-1}} \geqslant (\sum (\ell_r - \ell_{r-1})) \geqslant \ell^2.$$

Hence $\gamma_{\ell} \geqslant 0$.