Distribuição Exponencial

SÉRIE II - CAPÍTULO 4

1.
$$\mu(\chi^2_{23}) = 23$$

$$\sigma^2(\chi^2_{23}) = 46$$

$$\sigma(\chi^2_{23}) = 6.78$$

1.
$$\mu(\chi^2_{23}) = 23$$
 $\sigma^2(\chi^2_{23}) = 46$ $\sigma(\chi^2_{23}) = 6,78$ Md $(\chi^2_{23}) = 22,3$ $Q_3 = 27,1$

$$Q_3 = 27$$

2.
$$\chi_{\text{sup}}^2 = 13.4$$
 $\chi_{\text{inf}}^2 = 3.49$

3.
$$\mu(t_{23}) = 0$$
 $\sigma^2(t_{23}) = 1,095$ $\sigma(t_{23}) = 1,046$

$$Q_1 = -0.68531$$
 $P_5 = -1.7139$ $Mo = 0$

$$P_{\rm c} = -1.7139$$

$$Mo = 0$$

5.
$$\mu = 1,25$$
 $\sigma^2 = 1,042$ $\sigma = 1,021$ $Mo = 0,625$

$$\sigma = 1.02$$

$$Mo = 0.625$$

SÉRIE II - CAPÍTULO 5

aj	
b)	
c)	

95	Xi	Fi	fį	F _{ac}
-	3	1	0,05	-1
-	4	3	0,15	4
	5	5	0,25	9
-	6	6	0,30	15
	7	4	0,20	19
	8	1	0,05	20

- e) 5 f) 55%

- 2. a) R = 39 b) K = 8 c) h = 5 d) e) f) g) h)

Limites das classes	Fi	Xi	f_i	Fac
151 ⊢ 156	4	153,5	0,04	4
156 161	4	158,5	0,04	8
161 166	11	163,5	0,11	19
166 171	33	168,5	0,33	52
171 176	17	173,5	0,17	69
176 181	17	178,5	0,17	86
181 186	9	183,5	0,09	95
186 191	5	188,5	0,05	100

b)	Classes	0 ⊢ 1,5	1,5 3,0	3,0 ⊢ 4,5	4,5 6,0	6,0 ⊢ 7,5	7,5 ⊢ 9,0
	Fi	3	4	5	10	8	2
	1,17	129	1	1	and the second	1	I

- F_{ac} 4. a) Classes 45 | 52
 - 7 10 52 | 59 59 | 66 21 11
 - 66 ⊢ 73 10 31
 - 73 | 80 35 4
 - 80 | 87 4 39 87 | 94

SÉRIE III – CAPÍTULO 5

- 1. a) 4 b) 9 c) 3,305 d) 79,43
- 2. Não foi aprovado; $\bar{x} = 4,875$
- 3. a) 6,82 b) 11,59 c) 4 d) 9,03 e) 87,88

- 4. 164,93
- 5. \$ 5.820
- 6. 78,16
- 7. a) $X_i \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12 \mid 15 \mid 20 \mid 25$
 - b) 7,24
- 8. 5,85
- 9. a) b)

Classes	Fi	Xi
15 20	10	17,5
20 25	4	22,5
25 30	12	27,5
30 ⊢ 35	24	32,5
Σ	50	1 00

- c) 27,5
- 10. a) 10,95 b) 5,22 c) 9,29
- 11. a) 8,12 b) 3,53
- 12. 355,93

SÉRIE IV – CAPÍTULO 5

- 1. I) 4 II) 5 III) 8 IV) 87

- 2. I) 4 II) 77 III) 13 IV) 235
- 3. I) 6,63 II) 28,35
- 4. I) 7 II) 43
- 5. I) 80 II) 3,5
- 6. I) 14,5 II) 26,25
- 7. I) 8,8; 9,03; 6,86 II) 33,6; 42,32; 50
- 8. a) 1,17 b) 1 c) 0 d) 34%
- - b) 4,83; 4; 4
- 10. a) 22,99 b) 21,85 c) 20,18 d) 18,59

- e) 17,68 f) 29,48 g) 74%
- 11. a) X_i 0 1 2 3 4 5 6 7 8 9 F_i 2 3 4 8 1 5 5 7 3
 - b) 4,63
 - c) 7; moda
 - d) 5

Classes	Fi	f	Xi	Fac
30 ⊢ 40	4	<u>2</u> 25	35	4
40 ⊢ 50	6	3 25	45	10
50 ⊢ 60	8	<u>4</u> 25	55	18
60 ⊢ 70	12	6 25	65	30
70 80	9	<u>9</u> 50	75	39
80 90	7	<u>7</u> 50	85	46
90 100	4	2 25	95	50
Σ	50	1	7 (81)	

i) j) m)

65,8 p) I) k) n) 0)

SÉRIE V - CAPÍTULO 5

- 1. a) 10 b) 3,02
- c) 13,81
- 5 6

 - b) 4 c) 0,98
- d) 1,47
- e) 1,21
- f) 18%

- 3. 5,84
- 4. a) 11
- b) 175
- c) 13,23

- d) 20%
- e) 0,38
- f) 0,260

- 5. a) 53,5
- b) 45
- c) 13%
- d) $A_s = 0.21$, a distribuição não é simétrica.
- e) K = 0,260, a distribuição não é mesocúrtica.
- 6. $\bar{x} = 55.5$; $s^2 = 126$; s = 11.22; cv = 20%; $A_s = -0.045$; K = 0,275

- 7. 50%
- 8. a) A b) A
- Classes 9. a) X_{i} 14 | 19 4 16,5 19 | 24 6 21,5 24 | 29 5 26,5 29 | 34 3 31,5 34 | 39 2 36,5 39 | 44 10 41,5 30

b)

- c) 30,33 e 9,53

- 10. a) 295.600 b) $A_s = 0.32 \text{ Sim}$ c) K = 0.227 Sim

SÉRIE VI - CAPÍTULO 5

- 1. $\bar{x} = 1,58$; $\sigma = 0,286$
- 2. a) 171,59 b) 171,82 c) 172,67 d) 3,99

- e) -0,22
- 3. \$ 37,08

X_i
F_i
F_{ac}
f_i

1
4
4
0,04

2
8
12
0,08

3
18
30
0,18

4
27
57
0,27

5
15
72
0,15

6
11
83
0,11

7
10
93
0,10

8
7
100
0,07

$$\Sigma$$
100
1

5.
$$F_i = 7$$

6.
$$Q_1 = 1,21; D_7 = 3,1; P_{73} = 3,25$$

7.
$$s^2 = 422,68$$
; $mo = 55,56$

8.
$$\sigma^2 = 3,05$$
; $\sigma = 1,75$

9.
$$\bar{x} = 30.003,69$$
; $s^2(x) = 7,43$

10.
$$A_s = -0.11$$
 \therefore a distribuição é assimétrica negativa $K = 0.2718$ \therefore a distribuição é platicúrtica

e) A equipe 2, pois
$$\sigma = 15$$
 e c.v. = 34%

12. a)	Classes	Fi	Xi	$ d_i F_i$	F _{ac}
	1 4	14	2,5	79,8	14
	4 ⊢ 7	14	5,5	37,8	28
	7	11	8,5	3,3	39
	10 ⊢ 13	8	11,5	26,4	47
	13 16	11	14,5	69,3	58
	16 19	2	17,5	18,6	60
	Σ	60		235,2	

b)

c)

- d) 8,2 e) 7,55 f) 12,25 g) 6,14 h) 7,05
- m) 4,61

- i) 4,21 j) 3,92
- 1) 21,26
- n) 56%

- o) $A_s = 0.49$, não
 - p) K = 0,3185, não
 - q) vide gráfico da Fac

SÉRIE VII - CAPÍTULO 5

- 1. b
- 11. a
- 21. d

- 2. b
- 12. d
- 22. c

- 3. c
- 13. d
- 23. d

- 4. d
- 14. a
- 24. b

- 5. b
- 15. d
- 25. c

- 6. a
- 16. d
- 26. c

- 7. d
- 17. b
- 27. d

- 8. b
- 18. a
- 28. c

- 9. d
- 19. b
- 29. a

- 10. a
- 20. b
- 30. b

SÉRIE I - CAPÍTULO 6

- 1. a) $\mu(x) = 3.5$
- b) $\sigma(x) = 1,1180$
- c) $\mu(\bar{x}) = 3.5$
- d) $\sigma(\bar{x}) = 0.7906$
- 5. 52.000
- 6. 19.888

SÉRIE I - CAPÍTULO 7

- 1. a) n = 33
- 4. n = 400
- 5. n = 399. Comparando-se os resultados de 4 e 5 verifica-se que uma população de 200.000 dá aproximadamente o resultado de uma população infinita.