Music Generation based on Emotions

2011140138 황태림 2013130625 조성표

- 1. 주제 및 목표
- 2. 모델 구조
- 3. 활용한 데이터
- 4. 결과
- 5. 한계점
- 6. 결론 및 발전방향

1. 주제 및 목표

입력 텍스트에 대한 감성 분석

해당 감정에 맞는 적절한 음악 생성

2. 모델 구조

모델 구조(감성분석)

모델 구조(음악생성)

Recurrent Neural Networks with magenta library

magenta

3. 활용한 데이터

감성분석

네이버 영화 리뷰 20만건(박은정): 긍정, 부정 분류 https://github.com/e9t/nsmc

음악생성

장/단조 음계 데이터 36개 클래식 midi 데이터 870개

4. 결과

1. 네이버 영화 데이터의 test data에 대한 86%의 감성분석 정확도

2. 긍정/부정 감성 분류 결과에 근거한 음악 결과물 생성 (파일에 첨부)

5. 한계점

가장 큰 문제점

- 1. 단기간에 구현하기에 너무 난해한 주제를 선정
- 2. 음악생성의 경우 감정에 따른 데이터를 모으기가 어려움
- 3. 감성분석 데이터의 경우 모두 분류 카테고리가 긍정/부정뿐

감성분석

1. 감성분석 Dataset의 태생적인 한계로 인해 분류 카테고리가 많아야 긍정/부정/(중립)으로 분류될 수 밖에 없는 문제 발생

음악생성 모델 구현

- 1. 현재는 감성분석에서 Softmax의 결과값으로 긍정, 부정만 출력하고, 이 값이 음악생성 모델의 유일한 input으로 사용되는 문제점이 있음
- 2. 따라서 긍정적 및 부정적 단어에 따라 음악을 생성하는 LSTM 모델을 만들 필요성이 제기됨

6. 결론 및 발전방향

결론

- 1. Bi-LSTM 모델을 사용해 한국어 텍스트의 감성분석 정확도를 86%까지 올렸다.
- 2. 텍스트의 감성분석에 근거한 멜로디를 생성할 수 있었다.

발전방향

- 1. Bi-LSTM모델의 정확도를 높이기 위해, Attention모델을 추가 도입
- 2. 긍정, 부정만이 아닌 더욱 다양한 감성을 분석하고 분류할 수 있는 데이터 및 알고리즘
- 3. 감성의 분위기에 맞춘 음악을 생성하는 더 발전된 모델

<u> 감사합니다</u>

질의&응답