

## **Algorithm Design V**

Divide and Conquer II

Guoqiang Li School of Software, Shanghai Jiao Tong University





z = a + bi is plotted at position (a, b).



$$z = a + bi$$
 is plotted at position  $(a, b)$ .

In its polar coordinates, denoted  $(r, \theta)$ , rewrite as

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

- length:  $r = \sqrt{a^2 + b^2}$ .
- angle:  $\theta \in [0, 2\pi)$ .
- $\theta$  can always be reduced modulo  $2\pi$ .



$$z = a + bi$$
 is plotted at position  $(a, b)$ .

In its polar coordinates, denoted  $(r, \theta)$ , rewrite as

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

- length:  $r = \sqrt{a^2 + b^2}$ .
- angle:  $\theta \in [0, 2\pi)$ .
- $\theta$  can always be reduced modulo  $2\pi$ .

#### Basic arithmetic:

- $-z = (r, \theta + \pi)$ .
- $(r_1, \theta_1) \times (r_2, \theta_2) = (r_1 r_2, \theta_1 + \theta_2).$
- If z is on the unit circle (i.e., r = 1), then  $z^n = (1, n\theta)$ .

## The n-th Complex Roots of Unity



Solutions to the equation  $z^n = 1$ 

• by the multiplication rules: solutions are  $z=(1,\theta)$ , for  $\theta$  a multiple of  $2\pi/n$ .

### The *n*-th Complex Roots of Unity



Solutions to the equation  $z^n = 1$ 

- by the multiplication rules: solutions are  $z=(1,\theta)$ , for  $\theta$  a multiple of  $2\pi/n$ .
- It can be represented as

$$1, \omega, \omega^2, \dots, \omega^{n-1}$$

where

$$\omega = e^{2\pi i/n}$$

### The n-th Complex Roots of Unity



#### Solutions to the equation $z^n = 1$

- by the multiplication rules: solutions are  $z=(1,\theta)$ , for  $\theta$  a multiple of  $2\pi/n$ .
- It can be represented as

$$1, \omega, \omega^2, \dots, \omega^{n-1}$$

where

$$\omega = e^{2\pi i/n}$$

#### For n is even:

- These numbers are plus-minus paired.
- Their squares are the (n/2)-nd roots of unity.



The complex conjugate of a complex number  $z=re^{i\theta}$  is  $z^*=re^{-i\theta}$ .



The complex conjugate of a complex number  $z = re^{i\theta}$  is  $z^* = re^{-i\theta}$ .

The complex conjugate of a vector (or a matrix) is obtained by taking the complex conjugates of all its entries.



The complex conjugate of a complex number  $z = re^{i\theta}$  is  $z^* = re^{-i\theta}$ .

The complex conjugate of a vector (or a matrix) is obtained by taking the complex conjugates of all its entries.

The angle between two vectors  $u=(u_0,\ldots,u_{n-1})$  and  $v(v_0,\ldots,v_{n-1})$  in  $\mathbb{C}^n$  is just a scaling factor times their inner product

$$u \cdot v^* = u_0 v_0^* + u_1 v_1^* + \ldots + u_{n-1} v_{n-1}^*$$



The complex conjugate of a complex number  $z = re^{i\theta}$  is  $z^* = re^{-i\theta}$ .

The complex conjugate of a vector (or a matrix) is obtained by taking the complex conjugates of all its entries.

The angle between two vectors  $u=(u_0,\ldots,u_{n-1})$  and  $v(v_0,\ldots,v_{n-1})$  in  $\mathbb{C}^n$  is just a scaling factor times their inner product

$$u \cdot v^* = u_0 v_0^* + u_1 v_1^* + \ldots + u_{n-1} v_{n-1}^*$$

The above quantity is maximized when the vectors lie in the same direction and is zero when the vectors are orthogonal to each other.

### **Polynomial multiplication**



If 
$$A(x)=a_0+a_1x+\ldots+a_dx^d$$
 and  $B(x)=b_0+b_1x+\ldots+b_dx^d$ , their product 
$$C(x)=c_0+c_1x+\ldots+c_{2d}x^{2d}$$

has coefficients

$$c_k = a_0 b_k + a_1 b_{k-1} + \ldots + a_k b_0 = \sum_{i=0}^k a_i b_{k-i}$$

where for i > d, take  $a_i$  and  $b_i$  to be zero.

### **Polynomial multiplication**



If 
$$A(x)=a_0+a_1x+\ldots+a_dx^d$$
 and  $B(x)=b_0+b_1x+\ldots+b_dx^d$ , their product 
$$C(x)=c_0+c_1x+\ldots+c_{2d}x^{2d}$$

has coefficients

$$c_k = a_0 b_k + a_1 b_{k-1} + \ldots + a_k b_0 = \sum_{i=0}^k a_i b_{k-i}$$

where for i > d, take  $a_i$  and  $b_i$  to be zero.

Computing  $c_k$  from this formula take O(k) step, and finding all 2d+1 coefficients would therefore seem to require  $\Theta(d^2)$  time.

### Polynomial multiplication



If 
$$A(x)=a_0+a_1x+\ldots+a_dx^d$$
 and  $B(x)=b_0+b_1x+\ldots+b_dx^d$ , their product 
$$C(x)=c_0+c_1x+\ldots+c_{2d}x^{2d}$$

has coefficients

$$c_k = a_0 b_k + a_1 b_{k-1} + \ldots + a_k b_0 = \sum_{i=0}^k a_i b_{k-i}$$

where for i > d, take  $a_i$  and  $b_i$  to be zero.

Computing  $c_k$  from this formula take O(k) step, and finding all 2d+1 coefficients would therefore seem to require  $\Theta(d^2)$  time.

Q: Can we do better?



Fact: A degree-d polynomial is uniquely characterized by its values at any d+1 distinct points.



Fact: A degree-d polynomial is uniquely characterized by its values at any d+1 distinct points.

We can specify a degree-d polynomial  $A(x) = a_0 + a_1x + \ldots + a_dx^d$  by either of the following:

• Its coefficients  $a_0, a_1, \ldots, a_d$ . (coefficient representation).



Fact: A degree-d polynomial is uniquely characterized by its values at any d+1 distinct points.

We can specify a degree-d polynomial  $A(x) = a_0 + a_1x + \ldots + a_dx^d$  by either of the following:

- Its coefficients  $a_0, a_1, \ldots, a_d$ . (coefficient representation).
- The values  $A(x_0), A(x_1), \dots A(x_d)$  (value representation).



Fact: A degree-d polynomial is uniquely characterized by its values at any d+1 distinct points.

We can specify a degree-d polynomial  $A(x) = a_0 + a_1x + \ldots + a_dx^d$  by either of the following:

- Its coefficients  $a_0, a_1, \ldots, a_d$ . (coefficient representation).
- The values  $A(x_0), A(x_1), \dots A(x_d)$  (value representation).

coefficient representation value representation interpolation



|                            | evaluat   | ion                  |
|----------------------------|-----------|----------------------|
| coefficient representation |           | value representation |
|                            | interpola | ation                |

The product C(x) has degree 2d, it is determined by its value at any 2d + 1 points.



|                            | evaluation    |                      |
|----------------------------|---------------|----------------------|
| coefficient representation |               | value representation |
|                            | interpolation |                      |

The product C(x) has degree 2d, it is determined by its value at any 2d + 1 points.

Its value at any given point z is just A(z) times B(z).



|                            | evaluation    |                      |
|----------------------------|---------------|----------------------|
| coefficient representation |               | value representation |
|                            | interpolation |                      |

The product C(x) has degree 2d, it is determined by its value at any 2d + 1 points.

Its value at any given point z is just A(z) times B(z).

Therefore, polynomial multiplication takes linear time in the value representation.



Input: Coefficients of two polynomials, A(x) and B(x), of degree d

Output: Their product  $C = A \cdot B$ 



Input: Coefficients of two polynomials, A(x) and B(x), of degree d

Output: Their product  $C = A \cdot B$ 

#### Selection

Pick some points  $x_0, x_1, \ldots, x_{n-1}$ , where  $n \geq 2d + 1$ .



Input: Coefficients of two polynomials, A(x) and B(x), of degree d

Output: Their product  $C = A \cdot B$ 

Selection

Pick some points  $x_0, x_1, \ldots, x_{n-1}$ , where  $n \ge 2d + 1$ .

Evaluation

Compute  $A(x_0), A(x_1), \dots, A(x_{n-1})$  and  $B(x_0), B(x_1), \dots, B(x_{n-1})$ .



Input: Coefficients of two polynomials, A(x) and B(x), of degree d

Output: Their product  $C = A \cdot B$ 

#### Selection

Pick some points  $x_0, x_1, \ldots, x_{n-1}$ , where  $n \ge 2d + 1$ .

#### Evaluation

Compute  $A(x_0), A(x_1), \dots, A(x_{n-1})$  and  $B(x_0), B(x_1), \dots, B(x_{n-1})$ .

#### Multiplication

Compute  $C(x_k) = A(x_k)B(x_k)$  for all k = 0, ..., n-1.



Input: Coefficients of two polynomials, A(x) and B(x), of degree d

Output: Their product  $C = A \cdot B$ 

#### Selection

Pick some points  $x_0, x_1, \ldots, x_{n-1}$ , where  $n \ge 2d + 1$ .

#### Evaluation

Compute  $A(x_0), A(x_1), \dots, A(x_{n-1})$  and  $B(x_0), B(x_1), \dots, B(x_{n-1})$ .

#### Multiplication

Compute  $C(x_k) = A(x_k)B(x_k)$  for all k = 0, ..., n - 1.

#### Interpolation

Recover  $C(x) = c_0 + c_1 x + \ldots + c_{2d} x^{2d}$ 



The selection step and the multiplications are just linear time:



The selection step and the multiplications are just linear time:

 In a typical setting for polynomial multiplication, the coefficients of the polynomials are real number.



The selection step and the multiplications are just linear time:

- In a typical setting for polynomial multiplication, the coefficients of the polynomials are real number.
- Moreover, are small enough that basic arithmetic operations take unit time.



The selection step and the multiplications are just linear time:

- In a typical setting for polynomial multiplication, the coefficients of the polynomials are real number.
- Moreover, are small enough that basic arithmetic operations take unit time.

Evaluating a polynomial of degree  $d \le n$  at a single point takes O(n), and so the baseline for n points is  $\Theta(n^2)$ .



The selection step and the multiplications are just linear time:

- In a typical setting for polynomial multiplication, the coefficients of the polynomials are real number.
- Moreover, are small enough that basic arithmetic operations take unit time.

Evaluating a polynomial of degree  $d \le n$  at a single point takes O(n), and so the baseline for n points is  $\Theta(n^2)$ .

The Fast Fourier Transform (FFT) does it in just  $O(n \log n)$  time, for a particularly clever choice of  $x_0, \ldots, x_{n-1}$ .

# **Evaluation by divide-and-conquer**



Q: How to make it efficient?

### **Evaluation by divide-and-conquer**



Q: How to make it efficient?

First idea, we pick the n points,

$$\pm x_0, \pm x_1, \dots, \pm x_{n/2-1}$$

then the computations required for each  $A(x_i)$  and  $A(-x_i)$  overlap a lot, because the even power of  $x_i$  coincide with those of  $-x_i$ .

### **Evaluation by divide-and-conquer**



Q: How to make it efficient?

First idea, we pick the n points,

$$\pm x_0, \pm x_1, \dots, \pm x_{n/2-1}$$

then the computations required for each  $A(x_i)$  and  $A(-x_i)$  overlap a lot, because the even power of  $x_i$  coincide with those of  $-x_i$ .

We need to split A(x) into its odd and even powers, for instance

$$3 + 4x + 6x^{2} + 2x^{3} + x^{4} + 10x^{5} = (3 + 6x^{2} + x^{4}) + x(4 + 2x^{2} + 10x^{4})$$



Q: How to make it efficient?

First idea, we pick the n points,

$$\pm x_0, \pm x_1, \dots, \pm x_{n/2-1}$$

then the computations required for each  $A(x_i)$  and  $A(-x_i)$  overlap a lot, because the even power of  $x_i$  coincide with those of  $-x_i$ .

We need to split A(x) into its odd and even powers, for instance

$$3 + 4x + 6x^{2} + 2x^{3} + x^{4} + 10x^{5} = (3 + 6x^{2} + x^{4}) + x(4 + 2x^{2} + 10x^{4})$$

More generally

$$A(x) = A_e(x^2) + xA_o(x^2)$$

where  $A_e(\cdot)$ , with the even-numbered coefficients, and  $A_o(\cdot)$ , with the odd-numbered coefficients, are polynomials of degree  $\leq n/2 - 1$ .



Given paired points  $\pm x_i$ , the calculations needed for  $A(x_i)$  can be recycled toward computing  $A(-x_i)$ :

$$A(x_i) = A_e(x_i^2) + x_i A_o(x_i^2)$$

$$A(-x_i) = A_e(x_i^2) - x_i A_o(x_i^2)$$



Given paired points  $\pm x_i$ , the calculations needed for  $A(x_i)$  can be recycled toward computing  $A(-x_i)$ :

$$A(x_i) = A_e(x_i^2) + x_i A_o(x_i^2)$$

$$A(-x_i) = A_e(x_i^2) - x_i A_o(x_i^2)$$

Evaluating A(x) at n paired points  $\pm x_0, \ldots, \pm x_{n/2-1}$  reduces to evaluating  $A_e(x)$  and  $A_o(x)$  at just n/2 points,  $x_0^2, \ldots, x_{n/2-1}^2$ .



Given paired points  $\pm x_i$ , the calculations needed for  $A(x_i)$  can be recycled toward computing  $A(-x_i)$ :

$$A(x_i) = A_e(x_i^2) + x_i A_o(x_i^2)$$

$$A(-x_i) = A_e(x_i^2) - x_i A_o(x_i^2)$$

Evaluating A(x) at n paired points  $\pm x_0, \ldots, \pm x_{n/2-1}$  reduces to evaluating  $A_e(x)$  and  $A_o(x)$  at just n/2 points,  $x_0^2, \ldots, x_{n/2-1}^2$ .

If we could recurse, we would get a divide-and-conquer procedure with running time

$$T(n) = 2T(n/2) + O(n) = O(n \log n)$$



Aim: To recurse at the next level, we need the n/2 evaluation points  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$  to be themselves plus-minus pairs.



Aim: To recurse at the next level, we need the n/2 evaluation points  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$  to be themselves plus-minus pairs.

Q: How can a square be negative?



Aim: To recurse at the next level, we need the n/2 evaluation points  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$  to be themselves plus-minus pairs.

Q: How can a square be negative?

• We use complex numbers.



Aim: To recurse at the next level, we need the n/2 evaluation points  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$  to be themselves plus-minus pairs.

Q: How can a square be negative?

We use complex numbers.

At the very bottom of the recursion, we have a single point, 1, in which case the level above it must consist of its square roots,  $\pm\sqrt{1}=\pm1$ .



Aim: To recurse at the next level, we need the n/2 evaluation points  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$  to be themselves plus-minus pairs.

Q: How can a square be negative?

· We use complex numbers.

At the very bottom of the recursion, we have a single point, 1, in which case the level above it must consist of its square roots,  $\pm\sqrt{1}=\pm1$ .

The next level up then has  $\pm \sqrt{+1} = \pm 1$ , as well as the complex numbers  $\pm \sqrt{-1} = \pm i$ .



Aim: To recurse at the next level, we need the n/2 evaluation points  $x_0^2, x_1^2, \dots, x_{n/2-1}^2$  to be themselves plus-minus pairs.

Q: How can a square be negative?

We use complex numbers.

At the very bottom of the recursion, we have a single point, 1, in which case the level above it must consist of its square roots,  $\pm\sqrt{1}=\pm1$ .

The next level up then has  $\pm \sqrt{+1} = \pm 1$ , as well as the complex numbers  $\pm \sqrt{-1} = \pm i$ .

By continuing in this manner, we eventually reach the initial set of n points: the complex n th roots of unity, that is the n complex solutions of the equation

$$z^n = 1$$

# The n-th complex roots of unity



Solutions to the equation  $z^n = 1$ 

- by the multiplication rules: solutions are  $z=(1,\theta)$ , for  $\theta$  a multiple of  $2\pi/n$ .
- It can be represented as

$$1, \omega, \omega^2, \dots, \omega^{n-1}$$

where

$$\omega = e^{2\pi i/n}$$

## The n-th complex roots of unity



### Solutions to the equation $z^n = 1$

- by the multiplication rules: solutions are  $z=(1,\theta)$ , for  $\theta$  a multiple of  $2\pi/n$ .
- It can be represented as

$$1, \omega, \omega^2, \ldots, \omega^{n-1}$$

where

$$\omega = e^{2\pi i/n}$$

#### For n is even:

- These numbers are plus-minus paired.
- Their squares are the (n/2)-nd roots of unity.

### The FFT algorithm



```
FFT (A, \omega)
input: coefficient reprentation of a polynomial A(x) of degree < n-1, where n is a power of 2;
          \omega, an n-th root of unity
output: value representation A(\omega^0), \ldots, A(\omega^{n-1})
if \omega = 1 then return A(1);
express A(x) in the form A_e(x^2) + xA_o(x^2);
call FFT (A_e, \omega^2) to evaluate A_e at even powers of \omega;
call FFT (A_0,\omega^2) to evaluate A_0 at even powers of \omega;
for j = 0 to n - 1 do
    compute A(\omega^j) = A_e(\omega^{2j}) + \omega^j A_o(\omega^{2j});
end
return (A(\omega^0), \ldots, A(\omega^{n-1}));
```

## Interpolation



FFT moves from coefficients to values in time just  $O(n \log n)$ , when the points  $\{x_i\}$  are complex n-th roots of unity  $(1, \omega, \omega^2, \ldots, \omega^{n-1})$ .

### Interpolation



FFT moves from coefficients to values in time just  $O(n \log n)$ , when the points  $\{x_i\}$  are complex n-th roots of unity  $(1, \omega, \omega^2, \dots, \omega^{n-1})$ .

That is,

$$\langle value \rangle = \mathtt{FFT}(\langle coefficients \rangle, \omega)$$

### Interpolation



FFT moves from coefficients to values in time just  $O(n \log n)$ , when the points  $\{x_i\}$  are complex n-th roots of unity  $(1, \omega, \omega^2, \dots, \omega^{n-1})$ .

That is,

$$\langle value \rangle = \mathtt{FFT}(\langle coefficients \rangle, \omega)$$

We will see that the interpolation can be computed by

$$\langle coefficients \rangle = \frac{1}{n} \text{FFT}(\langle values \rangle, \omega^{-1})$$



Let's explicitly set down the relationship between our two representations for a polynomial A(x) of degree  $\leq n-1$ .



Let's explicitly set down the relationship between our two representations for a polynomial A(x) of degree  $\leq n-1$ .

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$



Let's explicitly set down the relationship between our two representations for a polynomial A(x) of degree  $\leq n-1$ .

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Let M be the matrix in the middle, which is a Vandermonde matrix.



Let's explicitly set down the relationship between our two representations for a polynomial A(x) of degree  $\leq n-1$ .

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Let M be the matrix in the middle, which is a Vandermonde matrix.

• If  $x_0, x_1, \ldots, x_{n-1}$  are distinct numbers, then M is invertible.



Let's explicitly set down the relationship between our two representations for a polynomial A(x) of degree  $\leq n-1$ .

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Let *M* be the matrix in the middle, which is a Vandermonde matrix.

- If  $x_0, x_1, \ldots, x_{n-1}$  are distinct numbers, then M is invertible.
- evaluation is multiplication by M, while interpolation is multiplication by  $M^{-1}$ .



This reformulation of our polynomial operations reveals their essential nature more clearly.



This reformulation of our polynomial operations reveals their essential nature more clearly.

It justifies an assumption that A(x) is uniquely characterized by its values at any n points.



This reformulation of our polynomial operations reveals their essential nature more clearly.

It justifies an assumption that A(x) is uniquely characterized by its values at any n points.

Vandermonde matrices also have the distinction of being quicker to invert than more general matrices, in  $O(n^2)$  time instead of  $O(n^3)$ .



This reformulation of our polynomial operations reveals their essential nature more clearly.

It justifies an assumption that A(x) is uniquely characterized by its values at any n points.

Vandermonde matrices also have the distinction of being quicker to invert than more general matrices, in  $O(n^2)$  time instead of  $O(n^3)$ .

However, using this for interpolation would still not be fast enough for us..



In linear algebra terms, the FFT multiplies an arbitrary n-dimensional vector, which we have been calling the coefficient representation, by the  $n \times n$  matrix.

$$M_n(\omega) = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ & & \vdots & & & \\ 1 & \omega^j & \omega^{2j} & \dots & \omega^{(n-1)j} \\ & & \vdots & & & \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & x^{(n-1)(n-1)} \end{bmatrix}$$

Its (j,k)-th entry (starting row- and column-count at zero) is  $\omega^{jk}$ 



The columns of M are orthogonal to each other, which is often called the Fourier basis.



The columns of M are orthogonal to each other, which is often called the Fourier basis.

The FFT is thus a change of basis, a rigid rotation. The inverse of M is the opposite rotation, from the Fourier basis back into the standard basis.



The columns of M are orthogonal to each other, which is often called the Fourier basis.

The FFT is thus a change of basis, a rigid rotation. The inverse of M is the opposite rotation, from the Fourier basis back into the standard basis.

Inversion formula

$$M_n(\omega)^{-1} = \frac{1}{n} M_n(\omega^{-1})$$



Take  $\omega$  to be  $e^{2\pi i/n}$ , and think of M as vectors in  $\mathbb{C}^n$ .



Take  $\omega$  to be  $e^{2\pi i/n}$ , and think of M as vectors in  $\mathbb{C}^n$ .

Recall that the angle between two vectors  $u=(u_0,\ldots,u_{n-1})$  and  $v(v_0,\ldots,v_{n-1})$  in  $\mathbb{C}^n$  is just a scaling factor times their inner product

$$u \cdot v^* = u_0 v_0^* + u_1 v_1^* + \ldots + u_{n-1} v_{n-1}^*$$

where  $z^*$  denotes the complex conjugate of z.



Take  $\omega$  to be  $e^{2\pi i/n}$ , and think of M as vectors in  $\mathbb{C}^n$ .

Recall that the angle between two vectors  $u=(u_0,\ldots,u_{n-1})$  and  $v(v_0,\ldots,v_{n-1})$  in  $\mathbb{C}^n$  is just a scaling factor times their inner product

$$u \cdot v^* = u_0 v_0^* + u_1 v_1^* + \ldots + u_{n-1} v_{n-1}^*$$

where  $z^*$  denotes the complex conjugate of z.

The above quantity is maximized when the vectors lie in the same direction and is zero when the vectors are orthogonal to each other.



#### Lemma

The columns of matrix M are orthogonal to each other.



#### Lemma

The columns of matrix M are orthogonal to each other.

Proof.



#### Lemma

The columns of matrix M are orthogonal to each other.

#### Proof.

Take the inner product of any columns j and k of matrix M,

$$1 + \omega^{j-k} + \omega^{2(j-k)} + \ldots + \omega^{(n-1)(j-k)}$$

This is a geometric series with first term 1, last term  $\omega^{(n-1)(j-k)}$ , and ratio  $\omega^{j-k}$ .



#### Lemma

The columns of matrix M are orthogonal to each other.

#### Proof.

Take the inner product of any columns j and k of matrix M,

$$1 + \omega^{j-k} + \omega^{2(j-k)} + \ldots + \omega^{(n-1)(j-k)}$$

This is a geometric series with first term 1, last term  $\omega^{(n-1)(j-k)}$ , and ratio  $\omega^{j-k}$ .

• Therefore, if  $j \neq k$ , it evaluates to

$$\frac{1 - \omega^{n(j-k)}}{1 - \omega^{(j-k)}} = 0$$

#### Interpolation resolved



#### Lemma

The columns of matrix M are orthogonal to each other.

#### Proof.

Take the inner product of any columns j and k of matrix M,

$$1 + \omega^{j-k} + \omega^{2(j-k)} + \ldots + \omega^{(n-1)(j-k)}$$

This is a geometric series with first term 1, last term  $\omega^{(n-1)(j-k)}$ , and ratio  $\omega^{j-k}$ .

• Therefore, if  $j \neq k$ , it evaluates to

$$\frac{1 - \omega^{n(j-k)}}{1 - \omega^{(j-k)}} = 0$$

• If j = k, then it evaluates to n.

# Interpolation resolved



# Corollary

$$MM^* = nI$$
, i.e.,

$$M_n^{-1} = \frac{1}{n} M_n^*$$



The FFT takes as input a vector  $a=(a_0,\ldots,a_{n-1})$  and a complex number  $\omega$  whose powers  $1,\omega,\omega^2,\ldots,\omega^{n-1}$  are the complex n-th roots of unity.



The FFT takes as input a vector  $a=(a_0,\ldots,a_{n-1})$  and a complex number  $\omega$  whose powers  $1,\omega,\omega^2,\ldots,\omega^{n-1}$  are the complex n-th roots of unity.

It multiplies vector a by the  $n \times n$  matrix  $M_n(\omega)$ , which has (j,k)-th entry  $\omega^{jk}$ .



The FFT takes as input a vector  $a=(a_0,\ldots,a_{n-1})$  and a complex number  $\omega$  whose powers  $1,\omega,\omega^2,\ldots,\omega^{n-1}$  are the complex n-th roots of unity.

It multiplies vector a by the  $n \times n$  matrix  $M_n(\omega)$ , which has (j,k)-th entry  $\omega^{jk}$ .

The potential for using divide-and-conquer in this matrix-vector multiplication becomes apparent when M's columns are segregated into evens and odds.



The FFT takes as input a vector  $a=(a_0,\ldots,a_{n-1})$  and a complex number  $\omega$  whose powers  $1,\omega,\omega^2,\ldots,\omega^{n-1}$  are the complex n-th roots of unity.

It multiplies vector a by the  $n \times n$  matrix  $M_n(\omega)$ , which has (j,k)-th entry  $\omega^{jk}$ .

The potential for using divide-and-conquer in this matrix-vector multiplication becomes apparent when M's columns are segregated into evens and odds.

The product of  $M_n(\omega)$  with vector  $a=(a_0,\ldots,a_{n-1})$ , a size-n problem, can be expressed in terms of two size-n/2 problems: the product of  $M_{n/2}(\omega^2)$  with  $(a_0,a_2,\ldots,a_{n-2})$  and with  $(a_1,a_3,\ldots,a_{n-1})$ .



The FFT takes as input a vector  $a=(a_0,\ldots,a_{n-1})$  and a complex number  $\omega$  whose powers  $1,\omega,\omega^2,\ldots,\omega^{n-1}$  are the complex n-th roots of unity.

It multiplies vector a by the  $n \times n$  matrix  $M_n(\omega)$ , which has (j,k)-th entry  $\omega^{jk}$ .

The potential for using divide-and-conquer in this matrix-vector multiplication becomes apparent when M's columns are segregated into evens and odds.

The product of  $M_n(\omega)$  with vector  $a=(a_0,\ldots,a_{n-1})$ , a size-n problem, can be expressed in terms of two size-n/2 problems: the product of  $M_{n/2}(\omega^2)$  with  $(a_0,a_2,\ldots,a_{n-2})$  and with  $(a_1,a_3,\ldots,a_{n-1})$ .

This divide-and-conquer strategy leads to the definitive FFT algorithm, whose running time is T(n) = 2T(n/2) + O(n) = O(nlogn).

#### The general FFT algorithm



```
FFT (a, \omega) input : An array a = (a_0, a_1, \dots, a_{n-1}) for n is a power of 2; \omega, an n-th root of unity output: M_n(\omega)a if \omega = 1 then return a; (s_0, s_1, \dots, s_{n/2-1})=FFT ((a_0, a_2, \dots, a_{n-2}), \omega^2); (s'_0, s'_1, \dots, s'_{n/2-1})=FFT ((a_1, a_3, \dots, a_{n-1}), \omega^2); for j = 0 to n/2 - 1 do r_j = s_j + \omega^j s'_j; r_{j+n/2} = s_j - \omega^j s'_j; end return (r_0, r_1, \dots, r_{n-1});
```

# Top 10 algorithms of the 20th century



# Top 10 algorithms of the 20th century



1946: The Metropolis Algorithm

1947: Simplex Method

1950: Krylov Subspace Method

1951: The Decompositional Approach to Matrix Computations

1957: The Fortran Optimizing Compiler

1959: QR Algorithm

1962: Quicksort

1965: Fast Fourier Transform

1977: Integer Relation Detection

1987: Fast Multipole Method

Homework

#### Homework



Assignment 2 (1 week). Exercises 2.13, 2.19, 2.22, and 2.28.