OPTIMASI PENDISTRIBUSIAN AIR DENGAN MENGGUNAKAN METODE LEAST COST DAN METODE MODIFIED DISTRIBUTION

(Studi Kasus: PDAM Kabupaten Minahasa Utara)

Claudia Nelwan¹⁾, John S. Kekenusa¹⁾, Yohanes Langi¹⁾

¹⁾Program Studi Matematika FMIPA Universitas Sam Ratulangi Jl. Kampus Unsrat, Manado 95115

e-mail: claudianelwan@ymail.com; johnskekenusa@yahoo.com; yarlangi@yahoo.com; ya

ABSTRAK

Model optimasi merupakan salah satu model analisis sistem yang diindentikkan dengan *operation research*. Model transportasi berkaitan dengan penentuan rencana biaya terendah untuk mengirimkan satu barang dari sejumlah sumber (misalnya, pabrik) ke sejumlah tujuan (misalnya, gudang). Prinsip kerja metode *least cost* ialah pemberian prioritas pengalokasian yang mempunyai ongkos satuan terkecil (biaya per unit terkecil). Metode MODI (*Modified Distribution*) merupakan metode penyelesaian kasus transportasi yang di kembangkan dari metode *stepping stone*. Tujuan penelitian ini, menentukan distribusi air yang optimal dengan biaya distribusi yang minimum. Hasil penelitian menunjukkan bahwa biaya operasional yang dikeluarkan sebelum dilakukan minimalisasi yaitu Rp. 603.364.240 dan biaya operasional yang dikeluarkan setelah diminimalisasi menggunakan metode *least cost* yaitu Rp. 588.814.656.

Kata kunci: Least cost, modified distribution, optimasi, pendistribusian air

OPTIMIZATION OF WATER DISTRIBUTION USING LEAST COST METHOD AND MODIFIED DISTRIBUTION METHOD (Case Study on PDAM North Minahasa District)

ABSTRACT

Optimization model is one of model in system analysis model identified with operations research. Transport models related to the determination of the lowest cost plan to send an item from a source to a destination. The procedure of the least cost method is giving priority allocation that has the smallest unit cost (cost per unit of the smallest). MODI method (Modified Distribution) is a method of resolving cases of transport that was developed methods stepping stone. The objective from the research is determining optimal water distribution with the cost of minimum. The research that has been gained operating costs incurred prior to the minimization of Rp. 603.364.240 and operating cost incurred after minimized using the least cost method is Rp. 588.814.656.

Keywords: Least cost, modified distribution, optimization, water distribution

PENDAHULUAN

Saat ini, air bersih yang merupakan kebutuhan utama sehari-hari masyarakat semakin sulit didapatkan terutama di kotakota besar karena pencemaran air tanah, pencemaran di aliran sungai karena sampah, pencemaran dari industri, dan lain-lain. Kebutuhan akan air bersih yang terus bertambah, sedangkan air bersih yang tersedia di alam semakin berkurang, maka untuk memenuhi kebutuhan air bersih,

dibutuhkan suatu badan usaha atau organisasi yang mengelolanya guna memenuhi kebutuhan masyarakat akan air bersih.

Untuk menjalankan kegiatannya PDAM harus mempertimbangkan prinsip ekonomi, yaitu dengan pengeluaran yang minimal dapat menghasilkan kinerja yang maksimal, dalam hal ini memenuhi kebutuhan konsumen akan air bersih. Tentu saja dalam mencapai tujuan tersebut PDAM menemui beberapa kendala, diantaranya:

1. Keterbatasan alat produksi air bersih

- 2. Terbatasnya ketersediaan air bersih yang akan didistribusi ke wilayah wilayah tujuan.
- 3. Terbatasnya biaya operasional
- 4. Kebutuhan masyarakat akan air bersih semakin meningkat sehingga perlu sumber air, pompa dan pipa distribusi yang baru.

Indriyani (2004) berpendapat bahwa pengembangan wilayah merupakan salah satu permasalahan yang sering dihadapi oleh Perusahaan Daerah Air Minumyang diakibatkan pertambahan jumlah penduduk yang sangat pesat di daerah perkotaan, sedangkan jumlah air relatif terbatas untuk dapat melayani kebutuhan akan air bersih.

Model optimasi merupakan salah satu model analisa sistem yang diindentikkan dengan *operation research* (Qomariyah, 1995).

Berdasarkan uraian di atas, maka tujuan utama dari penelitian ini ialah mengembangkan model optimasi distribusi air minum dengan menggunakan parameter model berupa biaya, nilai permintaan dan pasokan air, di suatu wilayah pengelolaan dari Perusahaan Air, menggunakan metode least cost dan modified distribution untuk mencari solusi agar distribusi air merata di semua wilayah.

TINJAUAN PUSTAKA

PDAM Minahasa Utara

Perusahaan Daerah Air Minum (PDAM) Kabupaten Minahasa Utara merupakan salah satu perusahaan milik pemerintah kabupaten Minahasa Utara, yang bertugas menyediakan air bersih bagi masyarakat yang ada di Kabupaten Minahasa Utara. PDAM Kabupaten Minahasa Utara saat ini memiliki jumlah pelanggan sebanyak 8985 pelanggan sambungan rumah.

Air bersih

Air bersih merupakan air yang dipakai untuk keperluan sehari-hari yang kualitasnya memenuhi syarat kesehatan dan dapat diminum apabila telah dimasak. (Yunus dan Witarso, 1992).

Air minum adalah air jernih, yang tidak berbau, tidak berwarna, tidak berasa, dan rasa segar oleh kandungan oksigen (Izdihar dan Hadi, 1998).

Operasi Riset

Operasi riset digambarkan sebagai suatu pendekatan ilmiah kepada pengambilan keputusan yang meliputi operasi dari sistem – sistem organisasi, dan berusaha menetapkan arah tindakan terbaik (optimum) dari sebuah masalah keputusan di bawah sumber daya yang terbatas (Ismaniah, 2009).

Model Transportasi

Asumsi dasar model ini adalah biaya transport pada suatu rute tertentu proporsional dengan banyaknya unit yang dikirimkan. (Subardi, 1992).

Metode Least Cost

Prinsip kerja metode ini ialah pemberian prioritas pengalokasian yang mempunyai ongkos satuan terkecil (biaya per unit terkecil). Pengalokasian awal yaitu pada kotak dalam tabel yang mempunyai biaya terendah.

Langkah – langkah dari metode *least cost* ialah sebagai berikut :

- 1. Mengalokasikan sebanyak mungkin ke kotak feasible dengan biaya transportasi yang minimum, kemudian harus disesuaikan dengan kebutuhan yang ada.
- 2. Langkah tersebut diulangi ke biaya minimum terendah selanjutnya.

Metode MODI (Modified Distribution)

Pengoperasian metode MODI dalam menyelesaikan masalah transporatasi, prinsip dasarnya sama dengan metode yang lain.

Untuk mencari nilai sel bukan basis berdasarkan Metode MODI, dilakukan dengan cara menambahkan satu baris katakanlah Kj yang menyatakan nilai setiap kolom K₁, K₂, K₃, ...,Kj, dan menambahkan satu kolom katakanlah Ri yang menyatakan nilai setiap baris R₁, R₂, R₃,...,Ri. Nilai Kj dan Ri yang dicari hanya untuk sel basis (jumlah sel basis sama dengan m + n -1), dengan menggunakan rumus Ri + Kj = Cij = biayaangkut per satuan dari tempat asal (i) ke tempat tujuan (j). Sedangkan untuk mencari nilai sel bukan basis digunakan rumus Cij -Ri - Kj. Langkah awal metode MODI dapat dimulai dari tabel awal metode NW-corner maupun tabel awal metode biaya minimum (Yamit, 1994).

METODOLOGI PENELITIAN

Objek Penelitian

Penelitian dilakukan di Perusahaan daerah air minum kabupaten Minahasa Utara. Dimana difokuskan pada masalah ketersediaan dan pendistribusian ke rumah pendistribusiannya pelanggan. Biava merupakan biaya operasional termasuk dengan biaya pipa, listrik dan biaya untuk pekerja

Data yang digunakan

PDAM kabupaten Minahasa Utara memiliki 7 wilayah distribusi air dengan masing -masing wilayah memiliki sumber air yang diproduksi dan langsung dialirkan ke wilayah tersebut. Untuk total penawaran air yang didistribusikan yaitu data per hari di tahun 2011, begitu juga dengan data permintaan pelanggan. Diagram sumber ke daerah tujuan yaitu:

Gambar 1 Sumber dan tujuan pada model transportasi distribusi air

Tahap Penelitian

Langkah – langkah dalam penelitian antara lain:

Langkah-langkah metode least cost adalah sebagai berikut:

- 1. Pilih variable Xij (kotak) dengan biaya transport (cii) terkecil dan alokasikan sebanyak mungkin.
- 2. Dari kotak-kotak sisanya yang layak (yaitu yang tidak terisi atau dihilangkan) pilih cij terkecil dan alokasikan sebanyak mungkin.
- 3. Lanjutkan proses ini sampai semua penawaran dan permintaan terpenuhi (Mulyono, 2002).

Setelah menyelesaikan solusi awal dengan metode biaya terkecil dilanjutkan dengan uji optimalisasi dengan metode Modified Distribution.

- 1. Menguji apakah (m + n -1) jumlah sel vang terisi.
- 2. Menghitung harga indeks R dan K.
- 3. Menghitung indeks yang ditingkatkan atau sel yang tidak terisi.
- 4. Jawab optimal dengan jika tidak ada yang bernilai negatif (≥ 0) untuk maksimasi dan tidak ada yang bernilai positif (≤ 0) untuk minimasi (Siagian, 1987).

HASIL DAN PEMBAHASAN

PDAM bertujuan untuk mengoptimalkan kebutuhan air yaitu dengan mengoptimalkan 10 sumber yaitu : mata air Tambuk Terang, Sumur Bor 1, Sumur Bor 2, mata air Matungkas, Sumur Dalam, mata air Padang, Sungai Wori, Sumur dalam wori, mata air Tatelu, Sungai Likupang.

Biaya operasional rata - rata PDAM per m³ adalah Rp.3400. Biaya operasional tersebut meliputi biaya operasional semua sumber ketujuan dan biaya distribusi ke daerah – daerah.

Tabel 1 Penawaran, Permintaan dan biaya rata - rata

Daerah tujuan		Permintaan	Penawaran	Biaya
	MTT	25650	25600	3071
Aimadd	591	5400	6200	2961
t	592	10260	10200	3420
t	MAM	7770	\$200	3193
	MTT	25650	22900	3505
Kauditan	521	5400	4600	3991
	592	10260	12100	2883
ı	50	1950	1950	3400
Maumbi	MAP	34560	32200	3669
Kolongan	MAP	34560	36920	3193
	580	10260	5450	6116
Wort	2.0.	7560	7560	3400
	SDW	1740	1740	3400
Tatelu	MAT	13560	13560	3400
	MAM	7770	7260	3669
Likupang	51.	7776	7776	3400

Untuk sumber – sumber yang tidak dapat mengalirkan air ke daerah tujuan tertentu, maka untuk biaya operasional diisi dengan B yaitu dengan menganggap jika mengalirkan air, maka biayanya akan sangat besar. Dari permasalahan ini maka formulasinya yaitu:

Variabel keputusan:

Xij = Volume air dari sumber i ke daerah tujuan j

Cij = Biaya operasional distribusi air dari sumber i ke daerah tujuan j dimana i = 1....10, j = 1....7

Fungsi Tujuan:

Meminimumkan:

$$Z = C_{1,1}X_{1,1} + C_{1,2}X_{1,2} + C_{1,3}X_{1,3} + \dots + C_{10,7}X_{10,7}$$

Kendala:

$$X_{1,1} + X_{1,2} + X_{1,3} + \dots + X_{1,7} = a_1$$

$$X_{2,1} + X_{2,2} + \ X_{2,3} + + X_{2,7} = a_2$$

$$X_{10,1} + X_{10,2} + \ X_{10,3} + + X_{10,7} = a_{10}$$

$$X_{1,1} + X_{2,1} + X_{3,1} + \dots + X_{7,1} = b_1$$

$$X_{1,2} + X_{2,2} + \ X_{3,2} + + X_{7,2} \, = b_2$$

. . V . V . .

$$X_{1,10} + X_{2,10} + X_{3,10} + \dots + X_{7,10} = b_7$$

Untuk sumber yang tidak mengalirkan air ke daerah tujuan tertentu dialokasikan sebanyak 0 sehingga Formulasi dari permasalahan ini adalah :

Meminimumkan:

$$Z = 3071X_{1,1} + 3808X_{1,2} + 2961X_{2,1} + 3991X_{2,2} + 3420X_{3,1} + 2883X_{3,2} + 4114X_{3,4} + 3183X_{4,1} +$$

$$\begin{array}{l} 3649X_{4,6} \ + \ 3400X_{5,2} \ + \ 3649X_{6,3} \ + \ 3183X_{6,4} \ + \\ 3400X_{7,5} \ + \ 3400X_{8,5} \ + \ 3400X_{9,6} \ + \ 3400X_{10,7} \end{array}$$

Kendala:

$$X_{1,1} + X_{1,2} = 51300$$

$$X_{2,1} + X_{2,2} = 10800$$

$$X_{3,1} + X_{3,2} + X_{3,4} = 30780$$

$$X_{4,1} + X_{4,6} = 15540$$

$$X_{5,2} = 1950$$

$$X_{6,3} X_{6,4} = 69120$$

$$X_{7,5} = 7560$$

$$X_{8,5} = 1740$$

$$X_{9,6} = 13560$$

$$X_{10,7} = 7776$$

$$X_{1,1} + X_{2,1} + \ X_{3,1} + X_{4,1} = 53100$$

$$X_{1,2} + X_{2,2} + \ X_{3,2} + X_{5,2} = 41550$$

 $X_{6,3} = 32200$

$$X_{3,4} + X_{6,4} = 45400$$

$$X_{7,5} + X_{8,5} = 9300$$

$$X_{9,6} + X_{4,6} = 20800$$

$$X_{10,7} = 7776$$

Dari formulasi tersebut dapat dibentuk ke tabel transportasi yang dapat dilihat pada tabel dibawah ini :

Tabel 2 Transportasi sebelum diminimalisasi

Dari	Alm166	Kauditan	Maumbi	Kolongan	Worl	Tatdu	Likupan	Supply
мтт	3 071 254 00	3808 22900						51 300
581	2916	3991						10 500
	\$420 \$420	2883		4114				30750
582	102 00 5 185	12100		\$ 450		3649		15540
MAM	\$300	3400				7260		
SD		1950	36 49	3 183				1950
MAP			322 00	1 —				69 120
21/					75 60			7560
sow					1740			1760
MA						12560		13 560
21.						13560	3400 7776	7776
Domand	531 00	61550	322 00	65 600	9300	2 0500	7776	210126

Dari tabel 2 kemudian di modelkan dengan menggunakan diagram transportasi.

Gambar 2 Sumber dan tujuan pada model transportasi distribusi air

Tabel pendistribusian air diatas tidak bisa dilanjutkan dengan menggunakan metode transportasi karena tidak memenuhi syarat model transportasi.

Gambar 3 Sumber dan tujuan pada model transportasi distribusi air

MTT

SB1

SB2

Tabel 3 Transportasi pendistribusian air sebelum diminimalisasi

scocium diminimansasi						
Dari Ke	Airmadidi	Kauditan	Maumbi	Kolongan	Tatelu	Supply
MTT	3071 28400	3808 22900				51300
SB1	2916	3991				10800
SB2	3420 10200	2883		4114 8480		30780
MAM	3183 8300				7240	15540
MAP			3649 32200	3183 36920		69120
Demand	53100	39600	32200	45400	7240	177540

Biaya operasional pendistribusian air sebelum diminimalisasi

Dari tabel 3 dapat dihitung total biaya transportasi yang dikeluarkan Perusahaan Daerah Air Minum (PDAM) kabupaten Minahasa Utara sebelum dilakukan minimalisasi menggunakan rumus: $Z = \sum$ (Biaya operasional pendistribusian air per m^3 per daerah pasokan x jumlah suplai)

$$\begin{split} Z &= \sum \left(C_{1,1} X_{1,1} + C_{1,2} X_{1,2} + C_{1,3} X_{1,3} + + C_{5,5} X_{5,5} \right) \\ &= \sum \left(3071 X_{1,1} + 3808 X_{1,2} + 2961 X_{2,1} + 3991 X_{2,2} + 3420 X_{3,1} + 2883 X_{3,2} + 4114 X_{3,4} + 3183 X_{4,1} + 3649 X_{4,5} + 3649 X_{5,3} + 3183 X_{5,4} \right) \end{split}$$

 $= \sum ((3071 \times 28400) + (3808 \times 22900) + (2961 \times 6200) + (3991 \times 4600) + (3420 \times 10200) + (2883 \times 12100) + (4114 \times 8480) + (3183 \times 8300) + (3649 \times 7240) + (3649 \times 32200) + (3183 \times 36920))$

= Rp. 603.364.240

Diperoleh total biaya operasional pendistribusian air Perusahan Daerah Air Minum (PDAM) kabupaten Minahasa Utara sebelum dilakukan minimalisasi yaitu sebesar Rp. 603.364.240 -.

Biaya operasional pendistribusian air dengan menggunakan metode *Least Cost*

Prinsip kerja metode ini adalah pemberian prioritas pengalokasian yang mempunyai ongkos satuan terkecil (biaya per unit terkecil). Pengalokasian awal yaitu pada kotak dalam tabel yang mempunyai biaya terendah.

Langkah – langkah dari metode ini adalah

- Mengalokasikan sebanyak mungkin ke kotak feasible dengan biaya transportasi yang minimum kemudian harus disesuaikan dengan kebutuhan yang ada.
- 2. Langkah tersebut diulangi ke biaya minimum terendah selanjutnya sampai semua kebutuhan dapat terpenuhi.

Untuk perhitungan iterasi yang dikenakan pada tabel transportasi dengan menggunakan metode *least cost* dapat dilihat pada tabel 4.

Tabel 4 Transportasi pendistribusian air setelah diminimalisasi dengan metode *least cost*

Dari Ke	Airmadidi	Kauditan	Maumbi	Kolongan	Tatelu	Supply
MTT	3071	3808 17300				51300
SB1	2916 10800	3991				10800
SB2	3420	2883		4114 8480		30780
MAM	3183 8300				3649 7240	15540
MAP			3649 32200	3183 36920		69120
Demand	53100	39600	32200	45400	7240	177540

Dari tabel diatas diperoleh:

$X_{1,1} = 34000$	$X_{1,2} = 17300$
$X_{2,1} = 10800$	$X_{2,2} = 0$
$X_{3,1} = 0$	$X_{3,2} = 22300$
$X_{3,4} = 8480$	$X_{4,1} = 8300$
$X_{4,5} = 7240$	$X_{5,3} = 32200$
$X_{54} = 36920$	

Dari tabel transportasi yang diperoleh pada tabel diatas maka dapat dihitung total biaya transportasi yang dikeluarkan Perusahaan Daerah Air Minum (PDAM) kabupaten Minahasa Utara setelah dilakukan minimalisasi dengan menggunakan metode *least cost* menggunakn rumus fungsi tujuan : $Z = \sum$ (Biaya operasional pendistribusian air per m³ per daerah pasokan x jumlah suplai)

$$\begin{split} Z &= \sum \left(C_{1,1} X_{1,1} + C_{1,2} X_{1,2} + C_{1,3} X_{1,3} + + C_{5,5} X_{5,5} \right) \\ &= \sum \left(3071 X_{1,1} + 3808 X_{1,2} + 2961 X_{2,1} + 3991 X_{2,2} + 3420 X_{3,1} + 2883 X_{3,2} + 4114 X_{3,4} + 3183 X_{4,1} + 3649 X_{4,5} + 3649 X_{5,3} + + 3183 X_{5,4} \right) \end{split}$$

 $= \sum ((3071 \times 28400) + (3808 \times 22900) + (2961 \times 6200) + (3991 \times 4600) + (3420 \times 10200) + (2883 \times 12100) + (4114 \times 8480) + (3183 \times 8300) + (3649 \times 7240) + (3649 \times 32200) + (3183 \times 36920))$

= Rp. 588.814.656

Uji optimalisasi

Setelah dilakukan penyelesaian awal dengan menggunakan metode least cost maka

dilanjutkan dengan uji optimalisasi dengan menggunakan metode MODI untuk mendapatkan hasil yang optimal. Langkah – langkah metode MODI:

1. Menentukan apakah (m+-1) = jumlah sel yang terisi.

Tabel awal metode least cost dapat dilihat pada tabel 6. Jumlah sel yang terisi pada tabel diatas (m+n-1) dimana m adalah baris dan n adalah kolom. Maka hasilnya (5+5-1) = 9. Karena jumah sel yang terisi 9 maka dilanjutkan dengan langkah berikutnya.

2. Evaluasi dari variabel non basis dengan memisalkan salah satu nilai dari u_i atau v_j dengan sebarang bilangan bulat tertentu, misalkan: $u_1 = 0$ sehingga dapat dihitung:

```
\begin{array}{l} C_{11} = u_1 + v_1 \rightarrow 3071 = 0 + v_1 \rightarrow v_1 = 3071 \\ C_{12} = u_1 + v_2 \rightarrow 3808 = 0 + v_2 \rightarrow v_2 = 3808 \\ C_{21} = u_2 + v_1 \rightarrow 2916 = u_2 + 3071 \rightarrow u_2 = -155 \\ C_{32} = u_3 + v_2 \rightarrow 2883 = u_3 + 3808 \rightarrow u_3 = -925 \\ C_{34} = u_3 + v_4 \rightarrow 4114 = -925 + v_4 \rightarrow v_4 = 5039 \\ C_{41} = u_4 + v_1 \rightarrow 2883 = u_4 + 3071 \rightarrow u_4 = 112 \\ C_{45} = u_4 + v_5 \rightarrow 3649 = 112 + v_5 \rightarrow v_5 = 3537 \\ C_{53} = u_5 + v_3 \rightarrow 3649 = -1856 + v_3 \rightarrow v_3 = -925 \\ C_{54} = u_5 + v_4 \rightarrow 3183 = u_5 + 5039 \rightarrow u_3 = -1856 \\ \end{array}
```

3. Evaluasi dari variabel non basis dengan menghitung nilai dari $Z_{ij} - C_{ij} = u_i + v_j - c_{ij}$ sehingga diperoleh :

$$Z_{13} - C_{13} = u_1 + v_3 - C_{13} = 0 + 5505 - 20000 = -338$$

$$Z_{14} - C_{14} = u_1 + v_4 - C_{14} = 0 + 5039 - 20000 = -14961$$

$$Z_{15} - C_{15} = u_1 + v_5 - C_{15} = 0 + 3537 - 20000 = -16463$$

$$Z_{22} - C_{22} = u_2 + v_2 - C_{22} = -155 + 3808 - 3991 = -338$$

$$Z_{23} - C_{23} = u_2 + v_3 - C_{23} = -155 + 5505 - 20000 =$$

$$Z_{24} - C_{24} = u_2 + v_4 - C_{24} = -155 + 112 - 20000 = 15116$$

$$Z_{25} - C_{25} = u_2 + v_5 - C_{26} = -155 + 3537 - 20000 = -16618$$

$$\begin{array}{l} -16618 \\ Z_{31}-C_{31}=u_3+v_1-C_{31}=-925+3071-3420= \end{array}$$

$$Z_{33} - C_{33} = u_3 + v_3 - C_{33} = -925 + 5505 - 20000 =$$

$$\begin{array}{l} \hbox{-}\ 15420 \\ Z_{35} - C_{35} = u_3 + v_5 - C_{35} = \hbox{-}\ 925 + 3537 - 20000 = \end{array}$$

$$Z_{42} - C_{42} = u_4 + v_2 - C_{42} = 112 + 3808 - 20000 = -16080$$

$$Z_{43} - C_{43} = u_4 + v_3 - C_{43} = 112 + 5505 - 20000 = -14383$$

$$Z_{44} - C_{44} = u_4 + v_4 - C_{44} = -1856 + 5039 - 20000$$

= -14849

$$Z_{51} - C_{51} = u_5 + v_1 - C_{55} = -1856 + 3071 - 20000 = -18785$$

$$Z_{52} - C_{52} = u_5 + v_2 - C_{52} = -1856 + 3808 - 3420 = -18048$$

$$Z_{55} - C_{55} = u_5 + v_5 - C_{55} = -1856 + 3537 - 20000$$

= -18319

Karena tidak ada nilai dari Zij – Cij yang positif (Zij – Cij > 0) maka tabel sudah optimal. Hasil pengolahan manual ini sama dengan hasil dari pengolahan dengan software QM (Quantitative Method) for windows 2.0

KESIMPULAN

Dari hasil dan pembahasan diperoleh solusi optimal yaitu sumber mata air Tambuk Terang ke tujuan Airmadidi, dengan volume air sebelumnya yaitu 28400 m³/bulan berubah menjadi 34000, sumber mata air Tambuk Terang ke tujuan Kauditan, volume air sebelumnya yaitu 22900 m³/bulan berubah menjadi 17300, sumber Sumur Bor 1 ke tujuan Airmadidi, volume air sebelumnya yaitu 6200 m³/bulan berubah menjadi 10800, sumber Sumur Bor 1 ke tujuan Kauditan, volume air sebelumnya yaitu 4600 m³/bulan berubah menjadi 0, sumber Sumur bor 2 ke tujuan Airmadidi, volume air sebelumnya yaitu 10200 m³/bulan berubah menjadi 0, sumber Sumur Bor 2 Kauditan, volume sebelumnya yaitu 12100 m³/bulan berubah menjadi 22300 dengan biaya operasional yang dikeluarkan sebelum diminimalisasi Rp. 603.364.240 dan setelah yaitu diminimalisasi menggunakan metode least cost yaitu Rp. 588.814.656.

DAFTAR PUSTAKA

Anonim, 2012. Profil PDAM Minahasa Utara. PDAM Minahasa Utara. Minahasa Utara.

Indryani, R. Suprayitno, H. Dan Astana, I. N. Y. 2004. Model Transportasi Untuk Pengembangan Air Bersih di Kabupaten Badung, Provinsi Bali. *Jurnal Teknologi dan Rekayasa Sipil Jurusan Teknik Sipil Institut Teknologi Sepuluh November*. Surabaya Edisi Maret Hal. 19-28

Ismaniah. 2009. Penyelesaian Masalah Riset Operasi dengan Menggunakan Program Solver. *Jurnal Kajian Ilmiah Lembaga Penelitian Ubhara Jaya* Vol.**10** No.1, P: 973-988

Izdihar dan Hadi, F. 1998. Air Minum. Yayasan Lembaga Pendidikan Masalah Bangunan. Bandung.

- Mulyono, S. 2002. Riset Operasi. Fakultas Ekonomi Universitas Indonesia. Jakarta.
- Qomariyah, S. 1995. Analisis Sistem dalam Perencanaan dan Pengembangan Sumber Daya Air. Prosiding Pertemuan Ilmiah Tahunan (PIT) XII Himpunan Ahli Teknik Hidraulik Indonesia (HATHI) Surabaya. 21 – 23 November. Vol.1 Hal 9 -16.
- Siagian, P. 1987. Penelitian Operasional Teori dan Praktikum. Universitas Indonesia. Jakarta.
- Subardi, A. 1992. Metode Modified Distribution Dalam Operations Jurnal dan Prosiding Research. Manajemen dan Usahawan Vol.21 No.05, P: 2-7
- Yamit, J. 1994. Manajemen Kuantitatif Untuk Bisnis. BPFE. Yogyakarta.
- Yunus, I Y., dan WS. Witarso. 1992. Spesifikasi Sumur Gali Untuk Sumber Badan Standarisasi Air Bersih. Nasional.

This is just a simple text

This is just a simple text