第五章关系

5-1

2.

对集合{1,2,3,4}上的每一个关系,确定它是否是自反的、是否是对称的、是否是反对称的、是否 是传递的。

```
a)\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}
```

- \mathbf{b}){(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}
- $c)\{(2, 4), (4, 2)\}$
- d){(1, 2), (2, 3), (3, 4)}
- $e)\{(1, 1), (2, 2), (3, 3), (4, 4)\}$
- $f)\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)\}$

解:

- a) 传递的;
- b) 自反的,对称的,传递的;
- c) 对称的;
- d) 反对称的;
- e) 自反的,对称的,反对称的,传递的;
- f) 不存在题中所说性质。

3.

确定定义在所有 Web 页上的关系 R 是否为自反的、对称的、反对称的和传递的,其中 $(a, b) \in R$ 当且仅当

- a)每个访问 Web 页 a 的人也访问了 Web 页 b。
- b)在 Web 页 a 和 b 上没有公共链接。
- c)在 Web 页 a 和 b 上至少有一条公共链接。
- d)存在一个 Web 页, 其中包含了到 Web 页 a 和 b 的链接。

解:

- a) 自反的, 传递的;
- b) 对称的;
- c) 对称的;
- d) 对称的;

22.

n元素集合上有多少个关系是

a) 对称的?

b) 反对称的?

c)非对称的?

- d)反自反的?
- e) 自反的和对称的?
- f)既不是自反的也不是反自反的?

解:

- a) $2^{n(n+1)/2}$ b) $2^n 3^{n(n-1)/2}$ c) $3^{n(n-1)/2}$
- d) $2^{n(n-1)}$ e) $2^{n(n-1)/2}$ f) $2^{n^2} 2 \cdot 2^{n(n-1)}$

24

证明:集合A上的关系R是对称的当且仅当 $R=R^{-1}$,其中 R^{-1} 是R的逆关系。证明:

"当关系": 对 \forall a ,b \in A,如果 (a,b) \in R ,则 (b,a) \in R $^{-1}$,由于 R = R $^{-1}$,故 (b,a) \in R ,可得关系R 是对称的;

"仅当关系": 对 \forall a ,b \in A,如果 (a,b) \in R ,则 (b,a) \in R · 1 , 由于关系R是对称的,故 (b,a) \in R , 所以

 $R^{-1} \subseteq R$,同理,有 $R \subseteq R^{-1}$,故 $R = R^{-1}$ 。

26.

设R是自反的和传递的关系。证明对所有的正整数n, $R^n = R$ 。

解:

证明:数学归纳法: 1, 当 n = 1时,上述结论显然成立; 2,假设当 n = k时, R ^k = R;

3,当 n=k+1 时,由于R是传递的,由定理一得: $R^{k+1}\subseteq R$,又注意到 $R^{k+1}=R^k\circ R$,

令 $(a,b) \in R$, 因为 R是自反的,所以 $(b,b) \in R$, 由假设 $R^k = R$, 所以 $(b,b) \in R^k$,

由合成的定义得 $(a,b) \in R^{k+1}$,即 $R \subseteq R^{k+1}$,所以 $R^{k+1} = R$ 。

由以上三步, 题设得证。

5-2

无。

5-3

用矩阵表示下面每个定义在{1,2,3}上的关系(按增序列出集合中的元素)。

$$\mathbf{b}$$
){(1, 2), (2, 1), (2, 2), (3, 3)}

$$\mathbf{d}$$
){(1, 3), (3, 1)}

解:

$$a) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} b) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad c) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} d) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

6.

当 R 是有穷集 A 上的关系时,怎样从表示 R 的关系矩阵得到表示这个关系的补 \overline{R} 的矩阵? 解:

把矩阵中的每一个0元素变成1,每一个1元素变成0。

7.

设R是矩阵

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

所表示的关系, 求表示下述关系的矩阵。

a)
$$R^{-1}$$

$$\mathbf{b})\overline{R}$$

解:

$$\mathsf{a)} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \mathsf{b)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \mathsf{c)} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

8.

设R是矩阵

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

表示的关系, 求表示下述关系的矩阵

a)
$$R^2$$
 b) R^3

解:

$$\text{a)} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{b)} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{c)} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

14.

确定练习 10~11 所示的有向图表示的关系是否为自反的、反自反的、对称的、反对称的和传递的。

解:

10题: 反自反的; 11题: 反自反的, 反对称的。

16.

证明: 如果 M_R 是表示关系 R 的矩阵, 那么 M_R 是表示关系 R 的矩阵。

证明:

即证: $(M_R 表示 R) \rightarrow (M_R^{[n]} 表示 R^n)$

用数学归纳法:已知 M_R 表示 R ,当n=1时, $M_R^{[1]}$ 表示 R 显然成立;假设当 n = k 时, $M_R^{[k]}$ 表示 R^k 成立,

则当 n = k+1时, $M_R^{[k+1]} = M_R^{[k]} \odot M_R^{[1]} = R^k \circ R = R^{k+1}$.由以上步骤可知题设得证。

5-4

1.

设 R 是定义在集合 $\{0, 1, 2, 3\}$ 上的关系,R 中包含有序对(0, 1), (1, 1), (1, 2), (2, 0), (2, 2)和(3, 0), 求

a)R的自反闭包

b)R的对称闭包

解:

a) { (0,0) , (0,1) , (1,1) , (1,2) , (2,0) , (2,2) , (3,0) , (3,3) } ;

b) { (0,1), (1,0), (1,1), (1,2), (2,1), (2,0), (0,2), (2,2), (3,0), (0,3)}.

7.

假设有穷集 A 上的关系 R 由矩阵 M_R 表示,证明表示 R 的对称闭包的矩阵是 $M_R \vee M_R^T$ 。解:

证明: M_R 表示 关系R,而R的对称闭包 s(R) = R \cup R C = M $_R$ \vee M $_{R^c}$ = M $_R$ \vee M $_R$ T 。

10.

设 R 是所有学生的集合上的关系,如果 $a \neq b$ 且 a 和 b 至少有一门是公共课程,则 R 包含了有序对 (a,b)。什么时候(a,b)在下面的关系中?

 $a)R^2$

 $\mathbf{b})R$

c) R*

- a) 如果有学生 c,使得a和c有公共课程, c和b也有公共课程, 那么 (a,b) 在关系 R² 中。
- b) 如果有学生 c 和 d ,使得a 和 c 有公共课程且 c 和 d 有公共课程且d 和 b 也有公共课程,

那么 (a,b) 在关系 R³ 中。

c) 如果有从学生 a 开始到 学生 b 结束的学生序列,使得序列中的每一个学生与他的下一个学生都有公共课程,那么(a,b) 在关系 R^{*} 中。

11.

假设关系 R 是对称的,证明 R* 是对称的。

证明:关系R是对称的,即R=R^c,又因为 R^{*} = $\bigcup_{n=1}^{\infty} R^n = \bigcup_{n=1}^{\infty} (R^n)^c = (\bigcup_{n=1}^{\infty} R^n)^c = (R^*)^c$,所以 R^{*} 是对称的。

12.

使用算法1找出下面{1,2,3,4}上的关系的传递闭包。

$$a)\{(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)\}$$

$$\mathbf{b}$$
){(2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)}

$$c)\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$$

$$\mathbf{d}$$
){(1, 1), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4), (4, 2)}

解:

13.

使用沃舍尔算法找出练习12中关系的传递闭包。

解:

14.

求出包含关系{(1, 2), (1, 4), (3, 3), (4, 1)}的最小的关系, 使得它是 a)自反的和传递的。 b)对称的和传递的。 c)自反的、对称的和传递的。

- a) { (1,1), (1,2), (1,4), (2,2), (3,1), (4,1), (4,2), (4,4) };
- b) { (1,1) , (1,2) , (1,4) , (2,1) , (2,2) , (2,4), (3,3) , (4,1) , (4,2), (4,4) } ;
- c) $\{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (3,3), (4,1), (4,2), (4,4)\}$

5-5

1.

下面是定义在{0,1,2,3}上的关系,其中哪些是等价关系?给出其他关系中所缺少的等价关系应具有的性质。

```
a)\{(0, 0), (1, 1), (2, 2), (3, 3)\}
```

- **b**) $\{(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)\}$
- c){(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}
- d){(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}
- $e)\{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)\}$

解:

- a) 是等价关系; b) 不是等价关系, 缺少自反性, 传递性;
- c) 是等价关系; d)不是等价关系,缺少传递性; e) 不是等价关系,缺少传递性,对称性。

6.

设 R 是长度至少为 3 的所有位串的集合上的关系,R 由有序对(x, y)构成,其中 x 和 y 是长度至少为 3 的位串,且它们的前 3 位相同。证明 R 是等价关系。

解:

证明: 假设x是长度至少为3的串,由于x 与自己的前三位相同,所以(x,x) \in R,因此R是自反的;假设(x,y) \in R,那么x 和y 的前三位是相同的,y 与x 的前三位自然也相同,即(y,x) \in R,所以R是对称的;假设(x,y) \in R,(y,z) \in R,即x与y,y与z的前三位相同,所以x与z的前三位也相同,即(x,z) \in R,说明R是传递的,综上可知R是等价关系。

Ω

设 R 是定义在正整数的有序对构成的集合上的关系, $((a, b), (c, d)) \in R$ 当且仅当 a+d=b+c。证明 R 是等价关系。

解:

证明: 因为 a+b=b+a,所以((a,b),(a,b)) \in R,因此R是自反的;假设((a,b),(c,d)) \in R,即 a+d=b+c,亦即 c+b=d+a,所以((c,d),(a,b)) \in R,所以R是对称的;假设((a,b),(c,d)) \in R 且 ((c,d),(e,f)) \in R,即 a+d=b+c 且 c+f=d+e,两式结合得 a+f=b+e,所以((a,b),(e,f)) \in R,说明R是传递的。

11. 12.

在练习11~12中,判断有向图中所示的关系是否为等价关系。

解:

11, 不是等价关系, 不满足传递性; 12, 不是等价关系, 不满足传递性。

15.

当n为下列各数时,同余类 $[n]_5$ (即n关于模5同余的等价类)是什么?

a)2

b)3

c)6

(d) - 3

解:

a) $[2]_5 = \{ \dots -13-8, -3, 2, 7, 12, 17, \dots \};$

b) $[3]_5 = \{ \dots, -7, -2, 3, 8, 13, \dots \};$

c) $[6]_5 = \{\dots -4, 1, 6, 11, 16, \dots \}$;

d) $[-3]_5 = \{\dots -8, -3, 2, 7, 12, \dots \}$

21.

列出由{0,1,2,3,4,5}的划分产生的等价关系中的有序对。

 $a)\{0\},\{1,2\},\{3,4,5\}$

b) $\{0, 1\}, \{2, 3\}, \{4, 5\}$

 $c)\{0, 1, 2\}, \{3, 4, 5\}$

 \mathbf{d}) $\{0\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$

如果在划分 P_1 中的每个集合都是划分 P_2 中每个集合的子集,则 P_1 叫作 P_2 的加细。

解:

a) $\{(0,0), (1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (3,5), (4,3), (4,4), (4,5), (5,3), (5,4), (5,5)\}$;

b) $\{(0,0),(0,1),(1,0),(1,1),(2,2),(2,3),(3,2),(3,3),(4,4),(4,5),(5,4),(5,5)\}$;

c) $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5)\}$;

d) { $(0,0),(1,1),(2,2),(3,3),(4,4),\{5,5\}$ }.

29.

当我们构造一个关系的自反闭包的对称闭包的传递闭包时,一定能得到一个等价关系吗?

解:

由等价关系的定义知,一定能得到一个等价关系。

31.

设计一个算法,找出包含一个给定关系的最小的等价关系。

先构成给定关系的自反闭包,再构成它的自反闭包的对称闭包,最后构成它的自反闭包的对称闭包的传 递闭包,

所得关系即为给定关系的最小身为等价关系。

5-6

1.

以下这些定义在集合{0,1,2,3}上的关系,哪些是偏序的?如果不是偏序的,请给出它缺少偏序的

 $a)\{(0, 0), (1, 1), (2, 2), (3, 3)\}$

 \mathbf{b}){(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}

 $c)\{(0, 0), (1, 1), (1, 2), (2, 2), (3, 3)\}$

 \mathbf{d}){(0, 0), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

e){(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)}

解:

a) 是; b) 不是,不满足反对称性,传递性; c) 是; d) 是; e) 不是,不满足反对称性,传递性。

确定以下 0-1 矩阵表示的关系是否为偏序。

a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$

解:

a) 不是 b) 是 c) 不是

8.

在下面的偏序集中,找出两个不可比的元素。

$$\mathbf{a}$$
)($\mathcal{P}(\{0, 1, 2\}), \subseteq$)

a) $(\mathcal{P}(\{0, 1, 2\}), \subseteq)$ b) $(\{1, 2, 4, 6, 8\}, |)$

解:

a) 比如: {0,1} 和 {1,2}; b)比如: 4 和 6。

11.

画出定义在{0, 2, 5, 10, 11, 15}上的"小于或等于"关系的哈塞图。

17.

对偏序集({3,5,9,15,24,45}, |),回答下述问题。

- a)求极大元。
- b) 求极小元。
- c)存在最大元吗?
- d)存在最小元吗?
- e)找出{3,5}的所有上界。
- f)如果存在,求{3,5}的最小上界。
- g)求{15,45}的所有下界。
- h)如果存在,求{15,45}的最大下界。

哈赛图如上;根据此图易知:

a) 极大元是24,45; b) 极小元是3,5;

c)不存在; d)不存在;

e) 15,45; f) 15;

g) 3,5,15; h) 15 .

22.

确定具有下面哈塞图的偏序集是否为格。

解:

a) 是 b) 不是, 因为元素f,g没有下确界 c) 是

24.

- 在一个公司里,使用信息流的格模型控制敏感信息,这些信息具有由有序对(A, C)表示的安全类别。这里 A 是权限级别,这种权限级别可以是非私有的(0)、私有的(1)、受限制的(2)或注册的(3)。种类 C 是所有项目集合 $\{$ 猎豹,黑斑羚,美洲狮 $\}$ 的子集(在公司里常常使用动物的名字作为项目的代码名字)。
 - a)是否允许信息从(私有的,{猎豹,美洲狮})流向(受限制的,{美洲狮})?
 - b)是否允许信息从(受限制的, (猎豹))流向(注册的, (猎豹, 黑斑羚))?
 - c)允许信息从(私有的,{猎豹,美洲狮})流向哪个类?
 - d)允许信息从哪个类流向安全类(受限制的,{黑斑羚,美洲狮})?

解:

a)不允许;

b)允许;

c)(私有的,{猎豹,美洲狮}),(受限制的,(猎豹,美洲狮)),(注册的,(猎豹,美洲狮)),(私有的,{猎豹,美洲狮,黑斑羚)),(泛服制的,{猎豹,美洲狮,黑斑羚));

d)(非私有的,{黑斑羚,美洲狮}),(私有的,{黑斑羚,美洲狮}),(受限制的,(黑斑羚,美洲狮}),(非私有的,{黑斑羚}),(私有的,{黑斑羚})),(受限制的,{黑斑羚}),(非私有的,{美洲狮}),(受限制的,{美洲狮}),(非私有的, \emptyset),(私有的, \emptyset),(受限制的, \emptyset).

33.

如果关于一个软件项目的任务的哈塞图如下图所示,给出这个软件项目的任务的完成顺序。

解:

确定用户需求 \prec 写出功能需求 \prec 设置测试点 \prec 开发系统需求 \prec 写文档 \prec 开发模块A \prec 开发模块B \prec 开发模块C \prec 模块集成 \prec α 测试 \prec β 测试 \prec 完成 。

End!