Scikit-ribo reveals precise codon-level translational control by dissecting ribosome pausing and codon elongation

Han Fang

October 26, 2016
Biological Data Science

The hidden treasure in genomics

The hidden treasure in genomics

Ribosome-Mediated Specificity

Verte

Ribosome Profiling Reveals a Cell-Type-Specific

Dynamics of ribosome scanning and recycling

rev Ribosome profiling reveals features of normal and disease-associated mitochondrial translation

What is ribosome profiling (Riboseq)?

Ingolia et al. Science. (2009) Ingolia. Nat Rev Genet. (2014)

What is ribosome profiling (Riboseq)?

Normal translation efficieny (TE)

Ingolia et al. Science. (2009) Ingolia. Nat Rev Genet. (2014)

What is ribosome profiling (Riboseq)?

Ingolia et al. Science. (2009) Ingolia. Nat Rev Genet. (2014)

Calculate translational efficiency (TE)

Less efficient translation

 $\log_2(TE) < 0$

Normal translation efficieny (TE)

 $\log_2(TE) = 0$

More efficient translation

 $\log_2(TE) > 0$

$$TE = \frac{Riboseq\ rpkm}{RNAseq\ rpkm}$$

Hypothesis: TE distribution could be skewed by ribosome pausing events.

Ribosome footprints without bias

Ribosome footprints with pausing

Simulated S. cerevisiae data

Simulated S. cerevisiae data - TE distribution are negatively-skewed by ribosome pausing events

Randomly imputed ribosome pausing sites to 20% of the genes

Ribosome pausing sites (peaks) finding by negative binomial mixture model

Yifei Huang

$$P(\mathbf{X}_i|\pi_i,\mu_i,k_i,r_i) = \prod_j \pi_i \mathcal{NB}(X_{ij}|\mu_i,r_i) + (1-\pi_i)\mathcal{NB}(X_{ij}|k_i\mu_i,r_i),$$

for gene i at position j, where $k \geq 5$

Ribosome pausing sites (peaks) finding by negative binomial mixture model

Yifei Huang

$$P(\mathbf{X}_i|\pi_i,\mu_i,k_i,r_i) = \prod_j \pi_i \mathcal{NB}(X_{ij}|\mu_i,r_i) + (1-\pi_i)\mathcal{NB}(X_{ij}|k_i\mu_i,r_i),$$

for gene i at position j, where $k \geq 5$

# genes	# genes (rpkm > 100)	# genes with pausing	# ribosome pausing sites identified
6664	1252	94	180

mRNA with stronger secondary structure tend to have ribosome pausing events

mRNA with stronger secondary structure tend to have ribosome pausing events

mRNA with stronger secondary structure tend to have ribosome pausing events

Joint inference of protein TE and codon dwell time using GLM, while accounting for secondary structure

GLM for joint inference of TE and codon dwell time:

$$Y_{ij} \sim NB(mean = \mu_{ij}, dispersion = \alpha)$$
, for gene i, position j

$$g(\mu^{ij}) = \beta_0 + \underbrace{x_m^i}_{\text{mRNA}} + \underbrace{\beta_t^i}_{\text{t}} + \underbrace{\beta_c^k}_{\text{codon}} + \underbrace{\beta_s x^{ij}}_{\text{secondary structure}}$$

where g(.) is a log link function, $\mu_{ij} = E(Y_{ij})$,

 x_m^i is mRNA abundance for gene i,

 β_t^i is translational efficiency for gene i,

 β_c^k is dwell time for codon k,

 $\beta_s x^{ij}$ is secondary structure effect at position j for gene i.

Scikit-ribo perfectly reproduced relative codon dwell time from Weinberg et al

Scikit-ribo perfectly reproduced relative codon dwell time from Weinberg et al

Significant correlation between tRNA abundance and codon elongation rates

GLM estimates vs. RPKM-based estimates reveals systematic bias in typical Riboseq analysis

GLM estimates vs. RPKM-based estimates reveals systematic bias in typical Riboseq analysis

The rpkm based approach overestimated TE of highly structured mRNA, while the rest of the mRNA were slightly under-estimated, as hypothesized.

Accurate TE estimation supported by proportional synthesis for heterodimeric complexes in S. cerevisiae.

Summary

Discussed:

- Introduced scikit-ribo for joint analysis of Riboseq and RNAseq data.
- 2) Identified biases in Riboseq data due to ribosome pausing.
- 3) Corrected biases and revealed underlying biology
- 4) Joint inference of codon elongation rate and protein TE
- 5) Revealed precise translational control at codon level

https://github.com/hanfang/

Acknowledgments

Lyon Lab
Max Doerfel
Yiyang Wu
Jonathan Crain
Jason O'Rawe

Gholson Lyon

Michael Schatz

Schatz Lab
Fritz Sedlazeck
Tyler Garvin
James Gurtowski
Maria Nattestad
Srividya Ramakrishnan

CSHL	JHU	UCSF	Rutgers	Stony Brook University
Yifei Huang Adam Siepel	Rachel Green	Jonathan Weissman Joshua Dunn	Premal Shah	Rob Patro
Noah Dukler		David Weinberg		

