

Research Project (10 ECTS): AutoML Techniques and Evolutionary Search for Efficient Al

Supervisors: M. Sc. Muhammad Sabih

Badar Alam

Friedrich-Alexander-Universität Erlangen-Nürnberg, Hardware-Software-Co-Design

March 20, 2024

- 2. Evolutionary Pruning
- 3. Seed search approach
- 4. Questions

2. Evolutionary Pruning

3. Seed search approach

4. Questions

Neural Network Pruning

- Goal is to systematically prune the unimportant weights but also maintain high accuracy
- Options
 - Iterative Pruning
 - One-shot pruning
 - Evolutionary Algorithms-based pruning

Neural Network Pruning

Iterative Pruning	One-shot Pruning	Evolutionary Pruning					
Pros							
Gradual control, adaptability Potential for	Quick reduction, simplicity	Diverse strategy exploration, adaptability Non-intuitive					
high accuracy	Simplicity	discoveries					
Cons							
Increased computation	Potential accuracy loss	Computational overhead					
Longer training	Limited fine-tuning	Parameter tuning complexity					

Table: Comparison of Pruning Techniques

Our choice

Our project was to investigate evolutionary Pruning.

Evaluation

• Dataset: Cifar10

Model: Resnet50

• Search-time: 5 Hours

Accuracy of searched model:0.9113

speedup of searched model: 2.226818

target hardware:FPGA (Estimated)

Figure: Fig.4 front-sparcity-selection

- 1. Introduction
- 2. Evolutionary Pruning
- 3. Seed search approach
- 4. Questions

Seed search approach

Most NAS approaches assume initial topology or cell

We propose to search a seed model from HW-NAS dataset

Seed search approach

Most NAS approaches assume initial topology or cell

We propose to search a seed model from HW-NAS dataset

HW-NAS

- HW-NAS benchmark is a dataset consisting total 46k neural network architecture trained on CIFAR10, CIFAR100 and imageNet.
- For an unknown image related dataset, we choose points based on similary with CIFAR10, CIFAR100 or imageNet, in terms of complexity

Devices	Edge GPU	Raspi 4	Edge TPU	Pixel 3	ASIC-Eyeriss	FPGA
Collected	Latency (ms)	Latency (ms)	Latency (ms)	Latency (ms)	Latency (ms)	Latency (ms)
Metrics	Energy (mJ)				Energy (mJ)	Energy (mJ)
Collecting	Measured	Measured	Measured	Measured	Estimated	Estimated
Method						
Runtime Envi-	TensorRT	TensorFlow	Edge TPU	TensorFlow	AccelerEyes	Vivado HLS
ronment		Lite	Runtime	Lite		
Customizing	×	×	×	×	\checkmark	\checkmark
Hardware?						
Category	Commercial Edge Devices			ASIC		FPGA

Seed Search

Seed Search Approach

Application

- We used the PathMNIST part of MedMNIST dataset .
- It contain 9 classes, so it resembles with CIFAR-10 in number of classes.
- Queried a network based on these constraint and then employed Optuna for hyperparameter optimization.
- State-of-the-art manually designed model obtained around 90% test accuracy with 11.7 M parameter.
- We obtain a model from the HW-NAS bench using the approach above and obtained 90% accuracy with 1.1 M parameters .

Figure: Fig.5 Pareto front based on constraints

Seed Search Approach

Figure: Fig.6 Parameter Comparison

Seed Search Approach

- 10

Figure: Fig.5 Memory consumption and Latency

100

- 1. Introduction
- 2. Evolutionary Pruning
- 3. Seed search approach
- 4. Questions