CryoRes: Local Resolution Estimation of Cryo-EM Density Maps by Deep Learning

Dang Yiming

May 25, 2023

Table of Contents

Introduction

2 Method

Result

Introduction

- A cryo-EM density map can have varying extents of resolvability in different local regions, owing to factors including sample heterogeneity and radiation damage.
- Estimate from half maps: blocres, ResMap.
- Estimate from a single final map: ResMap, MonoRes, DeepRes.

Introduction

Table 1 Comparison and summary of local resolution estimation methods.

Method	Theory	Input	Output	Disadvantage	Time
blocres	Fourier shell correlation	Half-maps; Mask; Parameters (Kernel width in voxels, step size et al.);	Resolution map;	Requiring half-maps; Requiring parameters; Spectral leakage Huge number of calculations;	Several hours
ResMap	Signal and noise comparison	 Single final map / Half-maps *; Mask *; Parameters (step size et al.); Step of manually adjusting frequency conversion; 	Resolution map;	Preferring half maps; Preferring mask; Requiring parameters;	Dozens of seconds / Several minutes
MonoRes	Signal and noise comparison	 Single final map; Mask or Half-maps; Parameters (resolution range[#]); 	Resolution map;	Requiring mask or half-maps; Requiring parameters;	Dozens of seconds/ Several minutes
DeepRes	Deep learning	Single final map; Mask;	Resolution map;	 Requiring mask; Requiring sharpened map; Estimating only Å - 13 Å; 	Dozens of minutes
CryoRes	Deep learning	1. Single map;	 Resolution map; Mask; 	1. Estimating only 1 Å – 10 Å;	Several seconds/ Dozens of seconds

^{*} means "prefer".

[#] means compulsory user parameters, without default value.

Table of Contents

Introduction

2 Method

Result

Algorithm

 The CryoRes algorithm comprises three modules: pre-processing, network inference, and post-processing.

Pre-processing

- Cropping: extracting the minimum bounding cube. Ensure that those voxels outside of the cube have a density value less than or equal to $\mu \pm 3\sigma$.
- \bullet Rescaling: Down-sampling the density map to a size of $W\times H\times L$ with interpolation.

Network Inference

Training details

- Labels:
 - The global resolution: the global resolution deposited in EMDB.
 - Relative local resolutions: estimated by ResMap.
 - \bullet Molecular mask: calculating a $4\Bar{A}$ simulated map from the corresponding atomic model in PDB.
- Loss function: $L_{global}, L_{rel}, L_{mask}$
 - $L_{global} = (\hat{y}_b y_b)^2$.
 - $L_{rel} = \frac{1}{N} \sum_{i=1}^{N} (\log_{10} |\hat{y}_i^r y_i^r| + 1).$
 - $L_{mask} = -\frac{1}{N} \sum_{i=1}^{N} [y_i^m \log(\hat{y}_i^m) + (1 y_i^m) \log(1 \hat{y}_i^m)].$
 - $L_{total} = L_{global} + \lambda L_{rel} + L_{mask}$.
- SGD optimizer, learning rate 0.0000001, momentum 0.8, 500 epochs.

Post-processing

Post-processing:

- The post-processing includes two steps: aggregating and rescaling.
- Aggregating: add the predicted baseline global resolution to the relative local resolution and then multiply it with the predicted molecular mask.
- Rescaling: rescale the aggregated local resolution to the same size as the original input density map.

Evaluation:

- Local resolution: RMSE= $\sqrt{\frac{1}{N}(\hat{y}_i y_i)}$.
- Mask: mloU= $\frac{1}{N} \sum_{i=1}^{N} \frac{\hat{y}_i \cap y_i}{\hat{y}_i \cup y_i}$.

Table of Contents

Introduction

2 Method

Result