Math 415 - Lecture 3

Existence and Uniqueness, linear combinations

Friday August 28 2015

Textbook: Chapter 1.2

Suggested Practice Exercise: Read section 1.2, do problem 1.3:9 (drawing optional)

Khan Academy Video: Linear Combinations and Span

1 Review

Existence and Uniqueness Theorem

Theorem 1 (Existence and Uniqueness Theorem). A linear system is **consistent** if and only if an echelon form of the augmented matrix has **no** row of the form

$$\left[\begin{array}{ccc|c}0&\dots&0&b\end{array}\right]$$

where b is nonzero. If a linear system is consistent, then the solution contains either

- a unique solution (when there are no free variables) or
- infinitely many solutions (when there is at least one free variable).

Example 1.

The (reduced) echelon form of

$$\begin{bmatrix} 3 & 4 & | & -3 \\ 2 & 5 & | & 5 \\ -2 & -3 & | & 1 \end{bmatrix} \quad \text{is} \quad \begin{bmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 0 \end{bmatrix}$$

• So what is *b*? Is the system consistent?

• So how many pivots?
• How many free variables?
• How many solutions?
Look now at the system with augmented matrix
$\begin{bmatrix} 3 & 4 & & -3 \\ 3 & 4 & & -3 \\ 6 & 8 & & -6 \end{bmatrix}$
How many free variables can this matrix have?
• What is the Echelon form?
• Is the system consistent?
• How many free variables?
• How many solutions?

1.1 Recap

Recap: Using Row Reduction to Solve Linear Systems

Use the following algorithm:

- 1. Write the augmented matrix of the system.
- 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If not, stop; otherwise go to the next step.
- 3. Continue row reduction to obtain the reduced echelon form.
- 4. Write the system of equations corresponding to the matrix obtained in step 3.
- 5. State the solution by expressing each pivot variable in terms of the free variables and declare the free variables.

1.2 Questions

Questions to check understanding

On an exam, you are asked to find all s You find exactly two solutions. Should		*	equations.
True or false?			
- There is no more than one pivot in	any row.		
- There is no more than one pivot in	any column.		
- There cannot be more free variable	es than pivot v	variables.	

2 Geometry of Linear Equations

Definition. A vector in \mathbb{R}^n is

Let c be a real number. Then we define the **Scalar Multiple** $c\mathbf{u}$ by

Example 2. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Then $\mathbf{u} + \mathbf{v}$ is $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ are

$$\begin{bmatrix} \\ \\ \end{bmatrix}$$
 and $\begin{bmatrix} \\ \\ \end{bmatrix}$.

2.1 Linear Combinations

Definition. Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by

is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ using scalars (or weights) c_1, c_2, \dots, c_p . Example 3. The following are linear combinations of \mathbf{v}_1 and \mathbf{v}_2 :

- $3\mathbf{v}_1 + 2\mathbf{v}_2$,
- $\frac{1}{3}$ **v**₁,
- $\mathbf{v}_1 2\mathbf{v}_2$,
- 0.

Example 4. Let $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Express each of the following as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{a} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} 7 \\ -4 \end{bmatrix}$$

Solution.

Example 5. Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}$.

Determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

Solution. Vector **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 if can we find scalars (weights) x_1, x_2, x_3 such that

$$x_1 \left[\right] + x_2 \left[\right] + x_3 \left[\right] = \left[\right].$$

How to find these numbers?: a_1 , a_2 , a_3 and b are columns of the augmented matrix

$$\begin{bmatrix}
1 & 4 & 3 & | & -1 \\
0 & 2 & 6 & | & 8 \\
3 & 14 & 10 & | & -5
\end{bmatrix}$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

$$\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3 \quad \mathbf{b}$$

Solution to

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$$

is found by solving the linear system whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & | & \mathbf{b} \end{bmatrix}.$$

Theorem 2. A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & | & \mathbf{b} \end{bmatrix}$$

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ if and only if there is a solution to the linear system corresponding to the augmented matrix.

2.2 Span

Example 6. Let $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$. The origin $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ together with \mathbf{v} , $2\mathbf{v}$ and $1.5\mathbf{v}$ all lie on the same line.

 $\mathbf{Span}\{\mathbf{v}\}$ is the set of all vectors of the form $c\mathbf{v}$. Here, $\mathbf{Span}\{\mathbf{v}\}=$ a line through the origin.

Example 7. Label \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$ and $3\mathbf{u} + 4\mathbf{v}$ on the graph below.

 \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$ and $3\mathbf{u} + 4\mathbf{v}$ all lie in the same plane. $\mathbf{Span}\{\mathbf{u}, \mathbf{v}\}$ is the set of all vectors of the form $x_1\mathbf{u} + x_2\mathbf{v}$. Here, $\mathbf{Span}\{\mathbf{u}, \mathbf{v}\} = \mathbf{a}$ plane through the origin.

Definition. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in \mathbb{R}^n ; then the $\mathbf{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is defined as the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$.

Stated another way: $\mathbf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}$ is the collection of all vectors that can be written as

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p$$

where x_1, x_2, \ldots, x_p are scalars.

Example 8. Let $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

- (a) Find a vector in $\mathbf{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.
- (b) Describe $\mathbf{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$ geometrically.

Solution.	
So the Span of two vectors is a plane if and only if	
bo the Span of two vectors is a plane if and only if	
[4] [6]	
Example 9. Let $\mathbf{v}_1 = \begin{bmatrix} 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 3 \end{bmatrix}$. Is $\mathbf{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ a line or a plane?	
Example 9. Let $\mathbf{v}_1 = \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 3 \\ 2 \end{bmatrix}$. Is $\mathbf{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ a line or a plane?	

Example 10. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$. Is \mathbf{b} in the plane spanned by the columns of A?

Solution.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$$

Do x_1 and x_2 exist such that

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}?$$