MOUVEMENTS DANS E ET B

Exercice n°1

1. On applique une tension U continue réglable entre la cathode C et l'anode A d'un tube thermoélectrique à vide. On règle U de façon que la vitesse des électrons au niveau de la plaque A soit $v = 6\ 10^6\ m.s^{-1}$. Calculer U en se plaçant dans les deux cas suivants pour la vitesse v_0 des électrons à la sortie de la cathode : $v_0 = 0\ m.s^{-1}$ et $v_0 = 50\ m.s^{-1}$. Conclure

Données : $m_e = 9.1 \cdot 10^{-31} \text{ kg}$, $e = 1.6 \cdot 10^{-19} \text{ C}$.

2. Les électrons arrivent au point O avec la vitesse \vec{v} colinéaire à Ox. Ils sont alors soumis sur une distance $\vec{l} = 0.1$ m à l'action d'un champ \vec{E} uniforme

créé par un condensateur plan dont les armatures P_1 et P_2 sont parallèles au plan xOz, symétriques par rapport à ce dernier et distantes de d=0.05m.

- a. Déterminer le sens de \vec{E} pour obtenir un point d'impact M' des électrons sur la portion O'Y.
- b. Déterminer les équations horaires x(t) et y(t) du mouvement puis l'équation de la trajectoire y(x).
- c. Quelle tension U' doit-on appliquer entre les plaques pour obtenir une déviation α en M de 20° ? Donner les caractéristiques du vecteur vitesse en M.
- d. Calculer dans ces conditions l'ordonnée y de M et celle Y de M' sachant que la distance D du milieu des plaques P₁ et P₂ au plan YO'Z vaut 0.3m.

Exercice n°2

Dans un cyclotron à protons, on donne :

la valeur du champ magnétique uniforme dans les "dees" B= 1,0 T

- la valeur maximale de la tension alternative sinusoïdale que l'on établit entre les "dees" : U_M = 2 .10³ V
- a) Montrer que, dans un "dee", le mouvement d'un proton est circulaire uniforme. On négligera le poids par rapport à la force magnétique.
- b) Exprimer littéralement le temps t mis par un proton pour effectuer un demi-tour. Ce temps dépend-il de la vitesse du proton? Calculer sa valeur numérique.
- c) En déduire la valeur de la fréquence N de la tension alternative qu'il faut établir entre les dees pour que les protons subissent une accélération maximale à chaque traversée de l'intervalle entre les dees. Le temps de traversée de cet intervalle est négligeable.
- d) Calculer l'énergie cinétique transmise au proton lors de chacune de ses accélérations entre les dees.
- e) La vitesse v. d'injection du proton étant négligeable, on désire que sa vitesse atteigne la valeur v=2 10⁴ km-s⁻¹. Calculer le nombre de tours que le proton devra décrire dans le cyclotron.
- f) A quel rayon ces protons seront-ils alors extraits en admettant quels sont injectés en A à proximité immédiate du centre O?

On donne masse du proton $m_p = 1,67-10^{-27} \text{ kg}$; charge du proton . + e = + 1,60-10⁻¹⁹ C .

Exercice n°3

On donne : charge élémentaire : $e = 1,60 \cdot 10^{-19} \, C$; intensité du champ magnétique : B=0,I T; masse d'un nucléon (proton ou neutron) $m_n = 1,67 \cdot 10^{-27} \, kg$.

Le poids des ions est négligeable par rapport aux forces électrostatique ou magnétique qui s'exercent sur eux. On veut séparer les deux isotopes du brome ⁷⁹Br et ⁸¹Br dont les masses m_1 et m_2 sont proportionnelles aux nombres de masse A_1 = 79 et A_2 = 81. Les atomes de brome sont d'abord ionisés dans une chambre d'ionisation en ions Br d'où ils sortent par la fente F avec une vitesse sensiblement nulle. Puis ces ions sont accélérés par un champ électrostatique uniforme entre les plaques P_1 et P_2 ; la tension entre ces plaques vaut : $U_{P2P1} = V_{P2}$ - V_{P1} = U_{P2} - V_{P1} = V_{P2} - V_{P1} = V_{P2} - V_{P1} = V_{P2} - V_{P1} = V_{P2} - V_{P3} - V_{P

une région (chambre de déviation) où règne un champ magnétique uniforme à perpendiculaire au plan de la figure. Ils décrivent alors deux trajectoires circulaires de rayons R_1 et R_2 et parviennent dans deux collecteurs C_1 et C_2 .

- a) Montrer que, quel que soit l'isotope, les ions pénètrent en F' dans la chambre de déviation avec la même énergie cinétique E_c . Calculer la valeur de E_c en joules puis en keV. Les ions ont-ils la même vitesse en F'?
- b) Donner le sens du vecteur **B** qui permet aux ions d'être déviés vers le bas.
- c) Rappeler, sans démonstration, l'expression littérale du rayon R du cercle en fonction de la masse de l'ion, de sa charge, de la tension accélératrice Uo et du champ magnétique B. Conclure. Calculer R_1 et R_2 .

Exercice n°4

Une particule chargée M de charge q et de masse m se déplace dans un plan xOz.

Elle subit l'action d'une force de rappel : $\vec{F} = -k \overrightarrow{OM}$ ainsi que l'action d'un champ magnétique uniforme $\vec{B} = B \overrightarrow{e_y}$. Ecrire les équations différentielles du mouvement de M. On posera ω_0^2 =k/m

On pose u = x + jz, en notation complexe. Quelle est l'équation différentielle vérifiée par u ? Faire apparaître, dans le mouvement de M, deux pulsations ω_1 et ω_2 , que l'on exprimera en fonction de ω_0 et m. On supposera que $\omega_0 >> qB/m$