MAT237: Multivariable Calculus

Tianyu Du

Friday 19th April, 2019

Contents

1	\mathbf{Lim}	its, continuity, and related topics	2
	1.1	Open and Closed Sets, Boundary, Interior and Closure	2
	1.2	Limits and Continuity	
		1.2.1 Limits of Multivariable Functions	
		1.2.2 Continuity	4
		1.2.3 Continuous Functions and Open Sets	4
	1.3	Sequences and Completeness	4
	1.4	Compactness	6
		1.4.1 Compactness	6
		1.4.2 the Extreme Value Theorem	6
		1.4.3 Uniform Continuity	7
	1.5	the Intermediate Value Theorem	7
2	Diff	Gerentiation and related topics	8
	2.1	Differentiation of Real-Valued Functions	8
		2.1.1 Single Variable Case	8
		2.1.2 Differentiability of Real-valued Functions Defined on \mathbb{R}^n	Ć
		2.1.3 Partial Differentiability	Ć
		2.1.4 Directional Derivatives	1(
	2.2	Differentiation	1(
	2.3	the Chain Rule	1(
	2.4	the Mean Value Theorem	11
	2.5	Higher Order Derivatives	12
	2.6	Taylor's Theorem	13
	2.7	Critical Points	14
	2.8	Optimization	15
3	The	e Implicit and Inverse Function Theorems	16
	3.1	The Implicit Function Theorem I	16
	3.2	Geometric Content of the Implicit Function Theorem	
	3.3	Transformations, and the Inverse Function Theorem	17

4	Inte	egration 1	8
	4.1	Basics	8
	4.2	Integration on Higher Dimensions	8
	4.3	Iterated Integrals	0
	4.4	Change of Variables	0
	4.5	Further Aspects	1
		4.5.1 Exchanging Differentiation and Integration	1
		4.5.2 Improper Integrals	1
5	Vec	etor Calculus 2	3
	5.1	Line Integrals	3
		5.1.1 Arc Length	3
		5.1.2 Line Integrals of Scalar Functions	3
		5.1.3 Line Integrals of Vector Fields	4
		5.1.4 Rectifiable Curves	4
	5.2	Green's Theorem	4
		5.2.1 Preliminary Definitions	4
	5.3	Surface Integrals	6
		5.3.1 Surface Areas and Surface Integrals	6
		5.3.2 An invariance property	7
		5.3.3 Volume and Area (Optional)	7
	5.4	Divergence, Gradient and Curl	7
	5.5	Divergence Theorem	8
	5.6	Stokes Theorem	0
		5.6.1 The Stoke Boundary	0
		5.6.2 The Orientation	0
		5.6.3 Stokes Theorem in \mathbb{R}^3	0
		5.6.4 The Generalization	1
	5.7	Vector Fields that are Gradients or Curls	3
		5.7.1 Conservative Vector Field	3
		5.7.2 Vector Fields that are Curls 3	1

1 Limits, continuity, and related topics

1.1 Open and Closed Sets, Boundary, Interior and Closure

Definition 1.1.1. Let $\mathbf{a} \in \mathbb{R}^n$, and r > 0. The **open ball with centre a and radius** r is defined as

$$\mathcal{B}(r, \mathbf{a}) := \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{a}|| < r \}. \tag{1.1.1}$$

Definition 1.1.2. The sphere with centre a and radius r is defined as

$$\partial \mathcal{B}(r, \mathbf{a}) := \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{a}|| = r \}$$
(1.1.2)

Definition 1.1.3. Let $S \subset \mathbb{R}^n$, S is bounded if

$$\exists r > 0 \ s.t. \ S \subset \mathcal{B}(r, \mathbf{0}) \tag{1.1.3}$$

Definition 1.1.4. Let $S \subset \mathbb{R}^n$, then the **complement** of S is defined as

$$S^c := \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \notin S \} \tag{1.1.4}$$

Definition 1.1.5. Let $S \subset \mathbb{R}^n$, the **interior** of S is defined as

$$S^{int} := \{ \mathbf{x} \in \mathbb{R}^n : \exists \varepsilon > 0 \text{ s.t. } \mathcal{B}(\varepsilon, \mathbf{x}) \subset S \}$$
(1.1.5)

Definition 1.1.6. The **boundary** of S is defined as

$$\partial S := \{ \mathbf{x} \in \mathbb{R}^n : \forall \varepsilon > 0 \ \mathcal{B}(\varepsilon, \mathbf{x}) \cap S \neq \emptyset \land \mathcal{B}(\varepsilon, \mathbf{x}) \cap S^c \neq \emptyset \}$$
 (1.1.6)

Theorem 1.1.1. A point $\mathbf{x} \in S$ is either a boundary point or a interior point.

Definition 1.1.7. The closure of S is defined as

$$\overline{S} := S^{int} \cup \partial S \tag{1.1.7}$$

Theorem 1.1.2. For any $S \subset \mathbb{R}^n$

$$S^{int} \subset S \subset \overline{S} \tag{1.1.8}$$

Theorem 1.1.3. For any $S \subset \mathbb{R}^n$

$$\partial S = \partial(S^c) \tag{1.1.9}$$

Definition 1.1.8. A set $S \subset \mathbb{R}^n$ is open if $S = S^{int}$. S is closed if $S = \overline{S}$.

Theorem 1.1.4.

$$S ext{ is closed} \iff S^c ext{ is open}$$
 (1.1.10)

Proof.

$$S \text{ is closed} \iff \partial S \subset S \iff \partial (S^c) \subset S$$
 (1.1.11)

$$\iff$$
 no point of S^c is a boundary point $\iff S^c$ is open (1.1.12)

Proposition 1.1.1. A set S is *closed* if it contains all limit points. That's, every convergent sequence in S converges to a limit point in S.

1.2 Limits and Continuity

1.2.1 Limits of Multivariable Functions

Definition 1.2.1. Let $S \subset \mathbb{R}^n$, $\mathbf{f}: S \to \mathbb{R}^k$, and $\mathbf{a} \in S$, then

$$\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{L} \in \mathbb{R}^k \tag{1.2.1}$$

is defined as

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ s.t. \ \forall \mathbf{x} \in S, \ \mathbf{0} < ||\mathbf{x} - \mathbf{a}|| < \delta \implies ||\mathbf{f}(\mathbf{x}) - \mathbf{L}|| < \varepsilon \tag{1.2.2}$$

For this definition to be non-trivial, we need **a** not be an isolated point,

$$\forall \delta > 0, \ \exists \mathbf{x} \in S \ s.t. \ ||\mathbf{x} - \mathbf{a}|| \in (0, \delta) \tag{1.2.3}$$

Theorem 1.2.1 (Limit Laws). Let $S \subset \mathbb{R}^n$ and $\mathbf{a} \in \mathbb{R}^n$ satisfying (1.3.3) And $f, g : S \to \mathbb{R}$, $L, M \in \mathbb{R}$ such that

$$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = L \tag{1.2.4}$$

$$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = M \tag{1.2.5}$$

then

$$\lim_{\mathbf{x} \to \mathbf{a}} [f(\mathbf{x}) + g(\mathbf{x})] = L + M \tag{1.2.6}$$

$$\lim_{\mathbf{x} \to \mathbf{a}} [f(\mathbf{x}) \cdot g(\mathbf{x})] = LM \tag{1.2.7}$$

Theorem 1.2.2 (Squeeze Theorem on Real Valued Functions). Let $S \subset \mathbb{R}^n$, $\mathbf{a} \in \mathbb{R}^n$ satisfies (1.3.3). Suppose that $f, g, h : S \to \mathbb{R}$ and there exists p > 0 and $L \in \mathbb{R}$ such that

$$\forall \mathbf{x} \in S \cap \mathcal{B}(p, \mathbf{a}) \ f(\mathbf{x}) \le g(\mathbf{x}) \le h(\mathbf{x}) \tag{1.2.8}$$

and

$$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{a}} h(\mathbf{x}) = L \tag{1.2.9}$$

then

$$\lim_{\mathbf{x} \to \mathbf{a}} g(\mathbf{x}) = L \tag{1.2.10}$$

Corollary 1.2.1. Let $g, h : S \to \mathbb{R}$ and

$$|g(\mathbf{x})| \le h(\mathbf{x}) \ \forall \mathbf{x} \in S \tag{1.2.11}$$

and
$$\lim_{\mathbf{x} \to \mathbf{a}} h(\mathbf{x}) = 0$$
 (1.2.12)

then

$$\lim_{\mathbf{x} \to \mathbf{a}} g(\mathbf{x}) = 0 \tag{1.2.13}$$

Theorem 1.2.3. Assume that $S \subset \mathbb{R}^n$ and let $\mathbf{a} \in \mathbb{R}^n$ satisfying (1.3.3). Let $\mathbf{f}: S \to \mathbb{R}^k$, then

$$\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{L} \iff \lim_{\mathbf{x} \to \mathbf{a}} f_j(\mathbf{x}) = L_j \ \forall j$$
 (1.2.14)

1.2.2 Continuity

Definition 1.2.2. Let $S \subset \mathbb{R}^n$ and $\mathbf{f}: S \to \mathbb{R}^k$. \mathbf{f} is continuous at $\mathbf{a} \in S$ if

$$\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{a}) \tag{1.2.15}$$

and f is **continuous** if f is continuous at every point in S.

Theorem 1.2.4 (Basic Properties of Continuity). Assume that $S \subset \mathbb{R}^n$ and $\mathbf{a} \in S$,

- (i) If $\mathbf{f}: S \to \mathbb{R}^k$ is continuous at \mathbf{a} , then every component of $\mathbf{f}, f_j: S \to \mathbb{R}$, is continuous at \mathbf{a} .
- (ii) If $\mathbf{f}, \mathbf{g}: S \to \mathbb{R}^k$ are continuous at \mathbf{a} , then $\mathbf{f} + \mathbf{g}$ is continuous at \mathbf{a} .
- (iii) If $f, g: S \to \mathbb{R}$ continuous, then fg is continuous and $\frac{f}{g}$ is continuous given $g(\mathbf{a}) \neq 0$.
- (iv) A composition of continuous functions is continuous.
- (v) The elementary functions of a single variable (trigonometric functions and their inverses, polynomials, exponential and log) are continuous on their domains.

1.2.3 Continuous Functions and Open Sets

Theorem 1.2.5. Assume that $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^k$, then the following are equivalent

- (i) **f** is continuous;
- (ii) For every open set $\mathcal{O} \subset \mathbb{R}^k$, $\mathbf{f}^{-1}(\mathcal{O})$ is also open;
- (iii) For every closed set $\mathcal{C} \subset \mathbb{R}^k$, $\mathbf{f}^{-1}(\mathcal{C})$ is also closed.

1.3 Sequences and Completeness

Definition 1.3.1. A sequence $\{\mathbf{a}_j\}_j$ in \mathbb{R}^n converges to the limit $\mathbf{L} \in \mathbb{R}^n$ if

$$\forall \varepsilon > 0 \ \exists J \in \mathbb{N}, \ s.t. \ \forall j \ge J \implies ||\mathbf{a}_j - \mathbf{L}|| < \varepsilon \tag{1.3.1}$$

Theorem 1.3.1.

$$\lim_{j \to \infty} \mathbf{a}_j = \mathbf{L} \iff \lim_{j \to \infty} ||\mathbf{a}_j - \mathbf{L}|| = 0$$
 (1.3.2)

Theorem 1.3.2. Let $\{a_{jk}\}_j$ be a sequence in \mathbb{R}^n where $k \in [n]$, and let $\mathbf{L} = (L_1, \dots, L_n) \in \mathbb{R}^n$, then

$$\lim_{j \to \infty} \mathbf{a}_j = \mathbf{L} \iff \lim_{j \to \infty} a_{jk} = L_k \ \forall k \in [n]$$
 (1.3.3)

Proof Idea.

$$\forall j \in [n], |a_j - L_j| \le ||\mathbf{a} - \mathbf{L}|| \le n \max_{k \in [n]} |a_k - L_k|$$
 (1.3.4)

Axiom 1.1 (the Completeness Axiom). Every bounded and nonempty set of real numbers has a least upper bound (**supremum**) and a greatest lower bound (**infimum**).

Theorem 1.3.3 (Monotone Sequence Theorem). Every bounded nondecreasing sequence of real numbers converges to a limit.

Proof Idea. Note that such sequence converges to its supremum S.

Let $\varepsilon > 0$, there exists j^* such that

$$S - \varepsilon < a_{j^*} \le S \tag{1.3.5}$$

take such j^* and by the nondecreasing property,

$$\forall j \ge j^* \ a_i > S - \varepsilon \tag{1.3.6}$$

which implies $|S - a_j| < \varepsilon$.

Theorem 1.3.4 (Monotone Sequence Theorem). Every bounded monotone sequence in \mathbb{R} is convergent.

Definition 1.3.2. A subsequence of a sequence $\{\mathbf{a}_j\}_{j\geq j_0}$ in \mathbb{R}^n is a sequence constructed as $\{a_{k_j}\}_j$, such that $\{k_j\}_j$ is a *strictly increasing* sequence bounded below by j_0 .

Remark 1.3.1. Subsequences can be constructed using strictly increasing transformations.

Proposition 1.3.1. If $\{\mathbf{a}_j\}_j$ is a sequence in \mathbb{R}^n converges to \mathbf{L} , then (i) any subsequence of it converges to the (ii) same limit.

Proof Idea. Suppose not and reach a contradiction.

Theorem 1.3.5 (Bounded Sequence Theorem in \mathbb{R}). Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof. Let $\{a_j\}_j$ be a bounded sequence.

For each $j \in \mathbb{N}$, define $b_{k_j} := \inf_{k > k_j} a_k$.

Note that $\{b_i\}$ is non-decreasing and bounded, so it converges to some limit ℓ .

Let $\{a_{k_j}\}_j$ denote a subsequence of the original sequence, define $k_0 = j_0$, and indices are constructed in a recurrent way.

Suppose every index before k_j has been chosen, we choose k_{j+1} to be the index such that

$$b_{k_j} \le a_{k_{j+1}} < b_{k_j} + \frac{1}{j} \tag{1.3.7}$$

by construction, $\{a_{k_j}\}_j$ is bounded by both $\{b_{k_j}\}_j$ and $\{b_{k_j}+\frac{1}{j}\}_j$, and both bounding sequences converge to ℓ . So $\{a_{k_j}\}_j$ converges to ℓ by squeeze theorem.

Theorem 1.3.6 (Bounded Sequence Theorem). Every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Proof. Let $\{\mathbf{a}_i\}_i$ be a bounded sequence.

Applying the previous theorem iteratively, we can construct a subsequence of $\{\mathbf{a}_{k_j}\}_j$ such that $\{\mathbf{a}_{k_j} \cdot \mathbf{e}_1\}_j$ is bounded and convergent.

Then we apply the previous theorem iteratively on the constructed convergent subsequences to construct new subsequences with more convergent components. \blacksquare

Theorem 1.3.7 (Nested Interval Theorem). Given a sequence of *closed intervals* in \mathbb{R} ,

$$\{I_k\}_{k\in\mathcal{A}} \text{ s.t. } I_k = [a_k, b_k] \subset \mathbb{R}$$
 (1.3.8)

and

$$\cdots I_{k+1} \subseteq I_k \subseteq \cdots I_4 \subseteq I_3 \subseteq I_2 \subseteq I_1 \tag{1.3.9}$$

Then

$$\bigcap_{k \in \mathcal{A}} I_k \neq \emptyset \tag{1.3.10}$$

1.4 Compactness

1.4.1 Compactness

Definition 1.4.1 (Heine-Borel Property). A set S is **compact** if every *open* covering of S has a *finite* sub-covering.

Definition 1.4.2 (Sequentially Compact). A set $S \subset \mathbb{R}^n$ is **compact** if every sequence in S has a subsequence that converges to a limit in S.

Proposition 1.4.1. If $\{\mathbf{x}_j\}_j$ is a *convergent* sequence in a *closed* set $S \subset \mathbb{R}^n$, the then limit of this sequence is in S.

Proof Idea. Let $\mathbf{x} := \lim_{j \to \infty} \mathbf{x}_j$, and we wish to show $\mathbf{x} \in S$. Equivalently, we can show $\mathbf{x} \in \overline{S}$, and that's

$$\forall \varepsilon > 0 \ \mathcal{B}(\varepsilon, \mathbf{x}) \cap S \neq \varnothing \tag{1.4.1}$$

this is immediately true by the definition of sequence convergence. There must be some points in the sequence, thus in S, belongs to $\mathcal{B}(\varepsilon, \mathbf{x})$.

Theorem 1.4.1 (Bolzano-Weierstrass). Let $S \subset \mathbb{R}^n$,

$$S$$
 is compact \iff S is closed and bounded (1.4.2)

Proof Idea.

(\Leftarrow) Suppose S is closed and bounded, boundedness ensures such sequence converges, and closeness ensures the limit point of sequence is in S.

 (\Longrightarrow) Prove by modus tollens.

Case (i): S is not bounded, then

$$\forall R > 0 \ \exists \mathbf{x} \in S \backslash \mathcal{B}(R, \mathbf{0}) \tag{1.4.3}$$

and above $\mathbf{x}(R)$ depends on R, we can construct a sequence using $\mathbf{x}(j)$ such that the $||\mathbf{x}||$ is ever increasing and it does not have a limit.

Case (ii): S is not closed, we can construct a sequence with subsequence converges to $\mathbf{x} \in \partial S \backslash S$, which is nonempty because S is not closed.

Theorem 1.4.2. Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function. If $K \subset \mathbb{R}^n$ is compact, then the image $\mathbf{f}(K)$ is compact.

1.4.2 the Extreme Value Theorem

Theorem 1.4.3 (the Extreme Value Theorem). Assume K is a compact subset of \mathbb{R}^n and $f: K \to \mathbb{R}$ is continuous.

Then (i)

$$f(K)$$
 is compact $(1.4.4)$

and (ii) the infimum and supremum of $f(\mathbf{x})$ on K are attainable.

$$\exists \, \overline{\mathbf{x}}, \underline{\mathbf{x}} \in K \, s.t. \, \begin{cases} f(\overline{\mathbf{x}}) = \sup_{\mathbf{x} \in K} f(\mathbf{x}) \\ f(\underline{\mathbf{x}}) = \inf_{\mathbf{x} \in K} f(\mathbf{x}) \end{cases}$$
(1.4.5)

Proof. Let $\{y_j\}_j$ be a sequence in f(K), and we can find a sequence $\{\mathbf{z}_j\}_j$ in K such that $y_j = f(\mathbf{z}_j)$ (by definition of image). Because K is compact, there exists a subsequence of $\{\mathbf{z}_j\}_j$ converges to $\mathbf{z}^* \in K$. Since f is continuous, we can conclude there a subsequence, sharing the same indices, such that $f(\mathbf{z}_j) \to f(\mathbf{z}^*)$ (Proposition 1.5.2). Obviously $f(\mathbf{z}^*) \in f(K)$, so f(K) is compact.

Since f(K) is compact, by Proposition 1.5.3, $\sup_{\mathbf{x}\in K} f(\mathbf{x}) \in f(K)$. By definition of image, $\exists \mathbf{x}\in K$ such that $f(\mathbf{x}) = \sup_{\mathbf{x}\in K} f(\mathbf{x})$, supremum attainability shown.

Proof for infimum attainability is the same.

Proposition 1.4.2. Assume that $\{\mathbf{z}_j\}_j$ is a sequence in a set $S \subset \mathbb{R}^k$, and f is a continuous real-valued function defined on S, then

$$\mathbf{z}_j \to \mathbf{z} \implies f(\mathbf{z}_j) \to f(\mathbf{z})$$
 (1.4.6)

Proposition 1.4.3. If S is a compact set in \mathbb{R} , then sup S and inf S both in S.

Proof Idea. Suppose $\sup S \notin S$, by definition of supremum,

$$\forall \varepsilon \ \exists x \in S \ s.t \ \sup S - \varepsilon < x \le \sup S \tag{1.4.7}$$

note that such $x \in \mathcal{B}(\varepsilon, \sup S)$. Also, similarly,

$$\forall \varepsilon > 0 \ \exists x \notin S \ s.t. \ \sup S < x < \sup S + \varepsilon \tag{1.4.8}$$

so such $x \in \mathcal{B}(\varepsilon, \sup S)$. We conclude

$$\forall \varepsilon > 0 \ \mathcal{B}(\varepsilon, \sup S) \cap S \neq \emptyset \land \mathcal{B}(\varepsilon, \sup S) \cap S^c \neq \emptyset$$
 (1.4.9)

which means $\sup S \in \partial S$. Thus if $\sup S \notin S$, S cannot be closed and this contradicts our assumption that S is compact.

The proof for
$$\inf S \in S$$
 is similar.

1.4.3 Uniform Continuity

Definition 1.4.3. Let $S \subset \mathbb{R}^n$, a function $\mathbf{f}: S \to \mathbb{R}^k$ is uniformly continuous if

$$\underbrace{\forall \varepsilon > 0 \ \exists \delta > 0 \ s.t. \ \forall \mathbf{x}, \ \mathbf{y} \in S, \ ||\mathbf{x} - \mathbf{y}|| < \delta \implies ||\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})|| < \varepsilon}_{\forall \mathbf{x} \in S, \ \varepsilon > 0, \ \exists \delta > 0}$$
(1.4.10)

Remark 1.4.1. In the definition of *continuity*, value of δ can depend on \mathbf{x} . But in the definition of *uniform continuity*, one δ has to work for every \mathbf{x} .

Theorem 1.4.4. If K is a compact subset of \mathbb{R}^n , and $\mathbf{f}: K \to R^k$ is continuous, then \mathbf{f} is uniformly continuous.

1.5 the Intermediate Value Theorem

Definition 1.5.1. A set $S \subset \mathbb{R}^n$ is path-connected (arcwise connected) pathwise connected) if for every $\mathbf{x}, \mathbf{y} \in S$, there exists a continuous function $\gamma : [0,1] \to S$ such that

$$\gamma(0) = \mathbf{x}, \ \gamma(1) = \mathbf{y} \tag{1.5.1}$$

Example 1.5.1. Convex sets are path-connected, a path can be constructed using the convex combination,

$$\gamma(t) := (1 - t)\mathbf{x} + t\mathbf{y} \tag{1.5.2}$$

Proposition 1.5.1. Let $S_1, S_2 \subset \mathbb{R}^n$ be two path-connected sets, and $S_1 \cap S_2 \neq \emptyset$. Then $S_1 \cup S_2$ is path-connected.

Proof. Take $\mathbf{z} \in S_1 \cap S_2$, and let $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ be two connecting paths between \mathbf{x} , \mathbf{z} and \mathbf{z} , \mathbf{y} respectively. Then define $\gamma : [0,1] \to S_1 \cup S_2$ as

$$\gamma(t) := \mathbb{1}\{t \in [0, \frac{1}{2})\} \times \tilde{\gamma}_1(2t) + \mathbb{1}\{t \in [\frac{1}{2}, 1]\} \times \tilde{\gamma}_2(2(t - \frac{1}{2}))$$
(1.5.3)

Theorem 1.5.1. Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^k$ be a continuous function, and $S \subset \mathbb{R}^m$ be a path-connected set. Then, $\mathbf{f}(S)$ is path-connected.

Proof Idea. Take the composite $\mathbf{f} \circ \gamma$.

Theorem 1.5.2 (the Intermediate Value Theorem). Assume that S is a path-connected subset of \mathbb{R}^n and that $f: S \to \mathbb{R}$ is continuous. Let $\mathbf{a}, \mathbf{b} \in S$. Then for every $t \in (\min\{f(\mathbf{a}), f(\mathbf{b})\}, \max\{f(\mathbf{a}), f(\mathbf{b})\})$, there exists $\mathbf{c} \in S$ such that $f(\mathbf{c}) = t$.

Proof. Let $\mathbf{a}, \mathbf{b} \in S$. WLOG, assume $f(\mathbf{a}) < f(\mathbf{b})$. Let t be an arbitrary value in $(f(\mathbf{a}), f(\mathbf{b}))$. Since S is path-connected, let $\vec{\varphi} : [0,1] \to S$ be a continuous function such that $\vec{\varphi}(0) = \mathbf{a}$ and $\vec{\varphi}(1) = \mathbf{b}$.

Then we can construct composite $f \circ \vec{\varphi} : [0,1] \to \mathbb{R}$, then apply the Intermediate Value Theorem in \mathbb{R} . We can conclude that $\exists \eta \in (0,1) \ s.t. \ f \circ \vec{\varphi}(\eta) = t$. And $\vec{\varphi}(\eta) \in S$ is the point desired.

2 Differentiation and related topics

2.1 Differentiation of Real-Valued Functions

2.1.1 Single Variable Case

Definition 2.1.1 (Equivalent Definitions of Differentiability). Let $S \subset \mathbb{R}$ open, and $f: S \to \mathbb{R}$ is said to be **differentiable at** $x \in S$ if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ exists}$$
 (2.1.1)

or there exists $m \in \mathbb{R}$ such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - mh}{h} = 0 \tag{2.1.2}$$

or there exists $m \in \mathbb{R}$ and $E(h) : \mathbb{R} \to \mathbb{R}$ such that

$$f(x+h) = f(x) + mh + E(h), \lim_{h \to 0} \frac{E(h)}{h} = 0$$
 (2.1.3)

If f is differentiable at x, we define the **derivative** f'(x) := m.

2.1.2 Differentiability of Real-valued Functions Defined on \mathbb{R}^n

Definition 2.1.2. Let S be an open subset of \mathbb{R}^n , and $f: S \to \mathbb{R}$ is differentiable at $\mathbf{x} \in S$ if

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x})}{||\mathbf{h}||} \text{ exists}$$
 (2.1.4)

or there exists $\mathbf{m} \in M_{1 \times n}$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x}) - \mathbf{m}\cdot\mathbf{h}}{||\mathbf{h}||} = 0$$
 (2.1.5)

or there exists $\mathbf{m} \in M_{1 \times n}$ and $E(\mathbf{h})$ such that

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \mathbf{m} \cdot \mathbf{h} + E(\mathbf{h}), \lim_{\mathbf{h} \to \mathbf{0}} \frac{E(\mathbf{h})}{||\mathbf{h}||} = 0$$
 (2.1.6)

If f is differentiable at x, we define its gradient as $\nabla f(\mathbf{a}) := \mathbf{m}$.

Theorem 2.1.1. Assume that $f: S \to \mathbb{R}$, where S is an open subset of \mathbb{R}^n , and that $\mathbf{x} \in S$. If f is differentiable at \mathbf{x} , then f is continuous at \mathbf{x} .

Proof.

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \mathbf{m} \cdot \mathbf{h} + E(\mathbf{h})$$
 (2.1.7)

Note that when $||\mathbf{h}|| \leq 1$,

$$E(\mathbf{h}) \le \frac{|E(\mathbf{h})|}{||\mathbf{h}||} \tag{2.1.8}$$

By the Squeeze Theorem, $\lim_{h\to 0} E(h) = 0$. Also, $\lim_{h\to 0} \mathbf{m} \cdot \mathbf{h} = 0$. Thus

$$\lim_{\mathbf{h} \to \mathbf{0}} f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = 0 \tag{2.1.9}$$

so f is continuous at \mathbf{x} .

2.1.3 Partial Differentiability

Definition 2.1.3. Let S be an open subset of \mathbb{R}^n , and $f: S \to \mathbb{R}$. The j-th partial derivative of f at x is defined as

$$\frac{\partial f(\mathbf{x})}{\partial x_j} := \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{e}_j) - f(\mathbf{x})}{h}$$
 (2.1.10)

Theorem 2.1.2. Let f be a function $S \to \mathbb{R}$, where S is an open subset of \mathbb{R}^n . If f is differentiable at a point $\mathbf{x} \in S$, then (i) $\frac{\partial f}{\partial x_i}$ exists at \mathbf{x} for every $j \in [n]$ and (ii)

$$\nabla f(\mathbf{x}) := \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)(\mathbf{x}) \tag{2.1.11}$$

Theorem 2.1.3. Assume f is a function $S \to \mathbb{R}$ for some open $S \subset \mathbb{R}^n$. If all partial derivatives of f exist and are continuous at every point of S, then f is differentiable in S.

Definition 2.1.4. A function $f: S \to R$ is said to be **of class** C^1 if all partial derivatives of f exist and continuous at every point of S.

2.1.4 Directional Derivatives

Definition 2.1.5. A direction in \mathbb{R}^n is represented by a unit vector **u**. And given such a unit vector, the directional derivative of f at **x** in the direction of **u** is defined as

$$\partial_{\mathbf{u}} f(\mathbf{x}) := \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{u}) - f(\mathbf{x})}{h}$$
 (2.1.12)

Theorem 2.1.4. If f is differentiable at a point \mathbf{x} , then $\partial_{\mathbf{u}} f(\mathbf{x})$ exists for every unit vector \mathbf{u} , and moreover

$$\partial_{\mathbf{u}} f(\mathbf{x}) = \mathbf{u} \cdot \nabla f(\mathbf{x}) \tag{2.1.13}$$

2.2 Differentiation

Definition 2.2.1. Assume S is an open subset of \mathbb{R}^n . Given function $\mathbf{f}: S \to \mathbb{R}^m$, we say that \mathbf{f} is differentiable at a point $\mathbf{a} \in S$ if there exists $M \in M_{m \times n}$ such that

$$\mathbf{f}(\mathbf{a} + \mathbf{h}) - \mathbf{f}(\mathbf{a}) = M\mathbf{h} + \mathbf{E}(\mathbf{h}), \lim_{\mathbf{h} \to \mathbf{0}} \frac{\mathbf{E}(\mathbf{h})}{||\mathbf{h}||} = \mathbf{0} \in \mathbb{R}^m$$
 (2.2.1)

If such M exists, we define the **Jacobian matrix** of **f** at **a** as

$$D\mathbf{f}(\mathbf{a}) := M \tag{2.2.2}$$

Definition 2.2.2. Given a differentiable function $f: S \to \mathbb{R}$, where S is an open subset of \mathbb{R}^n , at a point **a** we define the **differential of** f **at a** as

$$df|_{\mathbf{a}}(\mathbf{h}) := \nabla f(\mathbf{a}) \cdot \mathbf{h} \tag{2.2.3}$$

Remark 2.2.1. The notion of differential applies to real-valued functions only (in this textbook).

Remark 2.2.2 (First Order Taylor Polynomial). The differential can be used for linear approximations for small **h**.

$$f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + df|_{\mathbf{a}}(\mathbf{h})$$
 (2.2.4)

2.3 the Chain Rule

Theorem 2.3.1 (the Chain Rule). Let $S_n \subset \mathbb{R}^n$ and $T_m \subset \mathbb{R}^m$, given functions $\mathbf{g}: S_n \to \mathbb{R}^m$ and $\mathbf{f}: T_m \to \mathbb{R}^\ell$. Also let $\mathbf{a} \in S_n$ such that \mathbf{g} is differentiable at \mathbf{a} and \mathbf{f} is differentiable at $\mathbf{g}(\mathbf{a})^1$. Then

$$\underline{D(\mathbf{f} \circ \mathbf{g})(\mathbf{a})}_{\ell \times n} = \underbrace{D(\mathbf{f})(\mathbf{g}(\mathbf{a}))}_{\ell \times m} \underbrace{D\mathbf{g}(\mathbf{a})}_{m \times n} \tag{2.3.1}$$

Example 2.3.1.

$$\frac{d}{d\mathbf{x}}||\mathbf{x}|| = \frac{\mathbf{x}}{||\mathbf{x}||} \tag{2.3.2}$$

Definition 2.3.1. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called **homogeneous of degree** α if

$$f(\lambda \mathbf{x}) = \lambda^{\alpha} f(\mathbf{x}) \ \forall \mathbf{x} \neq \mathbf{0}, \ \lambda \in \mathbb{R}_{++}$$
 (2.3.3)

¹Also all functions \mathbf{f} and \mathbf{g} and $\mathbf{f} \circ \mathbf{g}$ are well-defined near \mathbf{a} and $\mathbf{g}(\mathbf{a})$.

Theorem 2.3.2 (the Euler's Theorem of Homogeneous Functions). If $f : \mathbb{R}^n \to \mathbb{R}$ is a homogeneous equation of degree α , then

$$\nabla f(\mathbf{x}) \cdot \mathbf{x} = \alpha f(\mathbf{x}) \tag{2.3.4}$$

Proof.

$$\begin{cases} \frac{\partial f(\lambda \mathbf{x})}{\partial \lambda} = \nabla f(\lambda \mathbf{x}) \cdot \mathbf{x} \\ \frac{\partial f(\lambda \mathbf{x})}{\partial \lambda} = \frac{\partial \lambda^{\alpha} f(\mathbf{x})}{\partial \lambda} = \alpha \lambda^{\alpha - 1} f(\mathbf{x}) \end{cases}$$
(2.3.5)

$$\implies \nabla f(\lambda \mathbf{x}) \cdot \mathbf{x} = \alpha \lambda^{\alpha - 1} f(\mathbf{x}) \tag{2.3.6}$$

$$\implies \nabla f(\mathbf{x}) \cdot \mathbf{x} = \alpha f(\mathbf{x}) \text{ evaluated at } \lambda = 1$$
 (2.3.7)

Definition 2.3.2. Let C be the level set of $f: S \to \mathbb{R}$ at $\mathbf{a} \in S$ defined as

$$C := \{ \mathbf{x} \in S : f(\mathbf{x}) = f(\mathbf{a}) \}$$
 (2.3.8)

and a vector **v** is **tangent to** C **at a** if there exists a function $\gamma: I \to C$ defined on interval I containing 0, such that

$$\gamma(0) = \mathbf{a} \tag{2.3.9}$$

and

$$\mathbf{v} = \gamma'(0) \tag{2.3.10}$$

Theorem 2.3.3. Let $S \subset \mathbb{R}^n$ be an open set, and $f: S \to \mathbb{R}$ is differentiable at **a**. Then $\nabla f(\mathbf{a})$ is orthogonal to the level set of f passes through **a**.

Proof Idea. Let **v** be an arbitrary tangent vector to C at **a**, there must exists a function $\gamma: I \to C$. And define

$$h(t) := f \circ \gamma(t) \tag{2.3.11}$$

by definition of γ , $h(I) = \{f(\mathbf{a})\}$. Thus

$$\frac{d}{dt}h(t) = \frac{d}{dt}f \circ \gamma(t) \text{ evaluated at } t = 0$$
 (2.3.12)

$$= \nabla f(\gamma(0)) \cdot \gamma'(0) \tag{2.3.13}$$

$$= \nabla f(\mathbf{a}) \cdot \gamma'(0) \tag{2.3.14}$$

$$= \nabla f(\mathbf{a}) \cdot \mathbf{v} = 0 \tag{2.3.15}$$

So $\nabla f(\mathbf{a})$ is orthogonal to any tangent vector of C at \mathbf{a} , which means $\nabla f(\mathbf{a})$ is orthogonal to C.

2.4 the Mean Value Theorem

Theorem 2.4.1 (the Mean Value Theorem). Assume $f: S \to \mathbb{R}$, where S is a convex and open subset of \mathbb{R}^n , of class C^1 , then

$$\forall \mathbf{a}, \mathbf{b} \in S, \ \exists \lambda \in [0, 1] \ s.t. \ \mathbf{c} = \lambda \mathbf{a} + (1 - \lambda)\mathbf{b} \tag{2.4.1}$$

$$\nabla f(\mathbf{c}) \cdot (\mathbf{b} - \mathbf{a}) = f(\mathbf{b}) - f(\mathbf{a}) \tag{2.4.2}$$

Proof Idea. Define $\gamma(t) := t\mathbf{a} + (1-t)\mathbf{b}$. Construct $h : [0,1] \to \mathbb{R}$ defined as $h := f(\gamma(t))$ then apply one dimensional mean value theorem on h.

Definition 2.4.1. A set $S \subset \mathbb{R}^n$ is **convex** if

$$\forall \mathbf{a}, \mathbf{b} \in S, \lambda \in [0, 1], \ \lambda \mathbf{a} + (1 - \lambda) \mathbf{b} \in S \tag{2.4.3}$$

Theorem 2.4.2. Assume that S is an <u>open and convex</u> subset of \mathbb{R}^n and that $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable in S such that

$$||\nabla f(\mathbf{x})|| \le M \ \forall \mathbf{x} \in S \tag{2.4.4}$$

then for every $\mathbf{a}, \mathbf{b} \in S$,

$$|f(\mathbf{b}) - f(\mathbf{a})| \le M||\mathbf{b} - \mathbf{a}|| \tag{2.4.5}$$

Proof Idea. Use Cauchy's Inequality.

Theorem 2.4.3. Assume that S is an <u>open and convex</u> subset of \mathbb{R}^n , and $f: S \to \mathbb{R}$ is a function differentiable on S. If $\nabla f(\mathbf{x}) = \mathbf{0} \ \forall \mathbf{x} \in \overline{S}$, then f is constant on S.

Proof Idea. Take two arbitrary $\mathbf{a}, \mathbf{b} \in S$, then use mean value theorem to show $f(\mathbf{a}) = f(\mathbf{b})$.

Theorem 2.4.4 (Generalization of the Previous Theorem). Assume that S is an open and path-connected subset of \mathbb{R}^n , and $f: S \to \mathbb{R}$ is a function differentiable on S. If $\nabla f(\mathbf{x}) = \mathbf{0} \ \forall \mathbf{x} \in S$, then f is constant on S.

Proof. Any path-connected set can be written as a countable union of convex sets $S = \bigcup_{i \in \mathcal{A}} C_i$ such that

$$\forall \alpha \subset \mathcal{A} \ s.t. \ \alpha \neq \emptyset, \ \cup_{i \in \alpha} C_i \cap \cup_{i \in \alpha^c} C_i \neq \emptyset$$
 (2.4.6)

then apply the previous theorem.

2.5 Higher Order Derivatives

Definition 2.5.1. A function f defined on S is **of class** C^k if all of its k^{th} order partial derivatives exists and continuous everywhere in S.

Theorem 2.5.1. Assume that S is an open subset of \mathbb{R}^n and that $f: S \to \mathbb{R}$ is C^k . Let $\alpha \in [n]^k$, and let β be any permutation of α ,

$$\partial^{\alpha} f = \partial^{\beta} f \tag{2.5.1}$$

Definition 2.5.2. A multi-index is an n-tuple of nonnegative integers. And we define

$$\partial^{\alpha} f := \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} f, \quad \text{for } \alpha = (\alpha_1, \dots, \alpha_n)$$
 (2.5.2)

where the **order** of multi-index is defined as

$$|\alpha| := \alpha_1 + \alpha_2 + \dots + \alpha_n \tag{2.5.3}$$

Theorem 2.5.2 (the Multinomial Theorem).

$$(x_1 + x_2 + \dots + x_n)^k = \sum_{|\alpha| = k} \frac{k!}{\alpha!} \mathbf{x}^{\alpha}$$

$$(2.5.4)$$

Proof Idea. Prove by induction on n, with Binomial Theorem.

Definition 2.5.3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function, then its **Hessian matrix** is defined as

$$H_f := \begin{pmatrix} \partial_1 \partial_1 f & \cdots & \partial_n \partial_1 f \\ \vdots & \ddots & \vdots \\ \partial_1 \partial_n f & \cdots & \partial_n \partial_n f \end{pmatrix}$$
 (2.5.5)

2.6 Taylor's Theorem

Definition 2.6.1. Let $f: I \to \mathbb{R}$, where I is an open subset of \mathbb{R} , be C^k . Let $a \in I$. then the k^{th} **order Taylor polynomial of** f **at** a is the <u>unique</u> polynomial of order at most k, denoted $P_{a,k}(h)$ such that

$$f^{(j)}(a) = P_{a,k}^{(j)}(0) \ \forall j \in \{0, 1, \dots, k\}$$
 (2.6.1)

Note

$$P_{a,k}^{(j)}(h) = \sum_{j=0}^{k} \frac{h^j}{j!} f^{(j)}(a)$$
 (2.6.2)

Theorem 2.6.1 (Taylor's Theorem in 1 Dimension). Assume that $I \subset \mathbb{R}$ is an open interval and that $f: I \to \mathbb{R}$ is a function of class C^k on I. For $a \in I$ and $h \in \mathbb{R}$ such that $a + h \in I$. Define the **reminder**

$$R_{a,k}(h) := f(a+h) - P_{a,k}(h)$$
(2.6.3)

Then

$$\lim_{h \to 0} \frac{R_{a,k}(h)}{h^k} = 0 \tag{2.6.4}$$

Proposition 2.6.1. Assume that $I \subset \mathbb{R}$ is an open interval and that $f: I \to \mathbb{R}$ is a function of class C^k on I. For $a \in I$ and $h \in \mathbb{R}$ such that $a+h \in I$, there exists some $\theta \in (0,1)$ such that

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a) + \dots + \frac{h^{k-1}}{(k-1)!}f^{(k-1)}(a) + \frac{h^k}{k!}f^{(k)}(a+\theta h)$$
 (2.6.5)

Definition 2.6.2. Assume that $S \subset \mathbb{R}^n$ is an open interval and that $f: S \to \mathbb{R}$ is a function of class C^k on S. For a point $\mathbf{a} \in S$, the k^{th} **order Taylor polynomial of** $f: S \to \mathbb{R}$ is a polynomial of order at most k, denoted $P_{\mathbf{a},k}(\mathbf{h})$ satisfying

$$f(\mathbf{a}) = P_{\mathbf{a}|k}(\mathbf{0}) \tag{2.6.6}$$

$$\partial^{\alpha} f(\mathbf{a}) = \partial^{\alpha} P_{\mathbf{a},k}(\mathbf{0}) \ \forall \alpha \ s.t. \ |\alpha| \le k$$
 (2.6.7)

Theorem 2.6.2 (Taylor's Theorem in n Dimensions). Assume that $S \subset \mathbb{R}^n$ is an open set and that $f: S \to \mathbb{R}$ is a function of class C^k on S. For $\mathbf{a} \in S$ and $\mathbf{h} \in \mathbb{R}^n$ such that $\mathbf{a} + \mathbf{h} \in S$. Define the **reminder**

$$R_{\mathbf{a},k}(\mathbf{h}) := f(\mathbf{x} + \mathbf{h}) - P_{\mathbf{a},k}(\mathbf{h})$$
(2.6.8)

Then

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{R_{\mathbf{a},k}(\mathbf{h})}{||\mathbf{h}||^k} = 0 \tag{2.6.9}$$

Theorem 2.6.3 (the Quadratic Case).

$$P_{\mathbf{a},2}(\mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^T H_f(\mathbf{a}) \mathbf{h}$$
 (2.6.10)

$$\exists \theta \in (0,1) \ s.t. \ f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^T H_f(\mathbf{a} + \boldsymbol{\theta} \mathbf{h}) \mathbf{h}$$
 (2.6.11)

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{R_{\mathbf{a},2}(\mathbf{h})}{||\mathbf{h}||^2} = 0 \tag{2.6.12}$$

Definition 2.6.3 (the General Taylor's Polynomial).

$$P_{\mathbf{a},k}(\mathbf{h}) = \sum_{\{\alpha: |\alpha| \le k\}} \frac{\mathbf{h}^{\alpha}}{\alpha!} \partial^{\alpha} f(\mathbf{a})$$
 (2.6.13)

2.7 Critical Points

Definition 2.7.1. A symmetric $n \times n$ matrix A is said to be

- Positive definite if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- Non-negative definite/Positive semi-definite if $\mathbf{x}^T A \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.
- Negative definite if $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- Non-positive definite/Negative semi-definite if $\mathbf{x}^T A \mathbf{x} \leq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.

and **indefinite** otherwise.

Theorem 2.7.1. Assume A is a symmetric matrix. Then

A is positive definite \iff all its eigenvalues are positive

$$\iff \exists \lambda_i > 0 \text{ such that } \mathbf{x}^T A \mathbf{x} \ge \lambda_i ||\mathbf{x}||^2 \text{ for all } \mathbf{x} \in \mathbb{R}^n.$$

and

A is nonnegative definite
$$\iff$$
 all its eigenvalues are nonnegative. (2.7.1)

and

A is indefinite
$$\iff$$
 A has both positive and negative eigenvalues. (2.7.2)

Lemma 2.7.1. Let A be a symmetric matrix, then

the smallest eigenvalue of
$$A = \min_{\{\mathbf{u} \in \mathbb{R}^n : |\mathbf{u}| = 1\}} \mathbf{u}^T A \mathbf{u}$$
 (2.7.3)

Definition 2.7.2. A point $\mathbf{a} \in S$ is a **local minimum point** for $f: S \to \mathbb{R}$ if

$$\exists \varepsilon > 0 \ s.t. \ \forall \mathbf{x} \in \mathcal{B}(\varepsilon, \mathbf{a}) \ f(\mathbf{a}) \le f(\mathbf{x})$$
 (2.7.4)

Definition 2.7.3. A point $\mathbf{a} \in S$ is a **local maximum point** for $f: S \to \mathbb{R}$ if

$$\exists \varepsilon > 0 \text{ s.t. } \forall \mathbf{x} \in \mathcal{B}(\varepsilon, \mathbf{a}) \ f(\mathbf{a}) \ge f(\mathbf{x})$$
 (2.7.5)

Definition 2.7.4. Let $f: S \to \mathbb{R}$ is differentiable on the open subset $S \subset \mathbb{R}^n$, then a point $\mathbf{a} \in S$ is a **critical point** if

$$\nabla f(\mathbf{a}) = \mathbf{0} \tag{2.7.6}$$

Definition 2.7.5. Let $\mathbf{a} \in S$ be a critical point of f, then \mathbf{a} is a saddle point if $H_f(\mathbf{a})$ is indefinite.

Theorem 2.7.2 (First Derivative Test). If $f: S \to R$ is differentiable, then

local extremum
$$\implies$$
 critical point (2.7.7)

Theorem 2.7.3 (Necessary Condition for a Local Minimum). If $f: S \to \mathbb{R}$ is C^2 and **a** is a local minimum point for f, then

- (i) **a** is critical point of f;
- (ii) $H_f(\mathbf{a})$ is positive semi-definite.

Theorem 2.7.4 (Sufficient Condition for a Local Minimum). If

- (i) **a** is a critical point of f;
- (ii) $H_f(\mathbf{a})$ is positive definite.

Then **a** is a local minimum for f.

Corollary 2.7.1. Assume f is C^2 and $\nabla f(\mathbf{a}) = \mathbf{0}$, then

- (i) If $H_f(\mathbf{a})$ is positive definite, then \mathbf{a} is a local minimum;
- (ii) If $H_f(\mathbf{a})$ is negative definite, then \mathbf{a} is a local maximum;
- (iii) If $H_f(\mathbf{a})$ is indefinite, then \mathbf{a} is a saddle point.

If none of the above hold, then we cannot determine the character of the critical point without further thought.

Definition 2.7.6. A critical point **a** of f is **degenerate** if $\det H_f(\mathbf{a}) = 0$, and **non-degenerate** if $\det H_f(\mathbf{a}) \neq 0$.

2.8 Optimization

Theorem 2.8.1. Let $S \subset \mathbb{R}^n$ be an open set and $f, g : S \to \mathbb{R}$ be C^1 functions. If \mathbf{x} is a *local extremal* satisfying $g(\mathbf{x}) = 0$, and $\nabla g(\mathbf{x}) \neq 0$, then

$$\exists \lambda \in \mathbb{R} \ s.t. \begin{cases} \nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x}) \\ g(\mathbf{x}) = 0 \end{cases}$$
 (2.8.1)

Proposition 2.8.1. Equations (2.8.1) $\implies \nabla f(\mathbf{x}) \perp \{\mathbf{x} \in S : g(\mathbf{x}) = 0\}$ at \mathbf{x} .

Theorem 2.8.2. Let $S \subseteq \mathbb{R}^n$ be an open set, and $f, \{g_i\}_{i=1}^k : S \to \mathbb{R}$ be C^1 functions. Define $\mathbf{g}(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^k := (g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_k(\mathbf{x})).$

If $\mathbf{x} \in S$ is a local extremal of f such that $\mathbf{g}(\mathbf{x}) = \mathbf{0}$, and $\{\nabla g_i(\mathbf{x})\}$ are <u>linearly independent</u> (i.e. $rank(D\mathbf{g}(\mathbf{x})) = k$), then

$$\exists \lambda \in \mathbb{R}^k \ s.t. \begin{cases} \nabla f(\mathbf{x}) = \lambda^T D\mathbf{g}(\mathbf{x}) \\ \mathbf{g}(\mathbf{x}) = \mathbf{0} \end{cases}$$
 (2.8.2)

Remark 2.8.1. Procedure of optimization on open sets:

- (i) Find all critical points;
- (ii) Find optimizers (classify them) among critical points.

Remark 2.8.2. Procedure of optimization with *inequality constraints*:

- (i) Find critical points in the constraint set;
- (ii) Find critical points on the boundary of constraint set;
- (iii) Find optimizers among candidates.

3 The Implicit and Inverse Function Theorems

3.1 The Implicit Function Theorem I

Theorem 3.1.1 (Implicit Function Theorem). Let $S \subseteq \mathbb{R}^{n+k}$ be an open set, and function $F: S \to \mathbb{R}^k$ be a C^1 function. Suppose there exists point $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^k$ such that

$$F(\mathbf{a}, \mathbf{b}) = \mathbf{0} \tag{3.1.1}$$

If

$$det(D_{\mathbf{y}}(F(\mathbf{a}, \mathbf{b}))) \neq 0 \tag{3.1.2}$$

then there exists $r_0, r_1 > 0$ and a C^1 function $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^k$ such that

$$\forall \mathbf{x} \in \mathcal{B}(r_0, \mathbf{a}), \ \mathbf{f}(\mathbf{x}) \in \mathcal{B}(r_1, \mathbf{b}) \land F(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \mathbf{0}$$
(3.1.3)

and define y := f(x), the derivative of f can be found as

$$D\mathbf{f}(\mathbf{x}) = -[D_{\mathbf{v}}F(\mathbf{x}, \mathbf{y})]^{-1}D_{\mathbf{x}}F(\mathbf{x}, \mathbf{y})$$
(3.1.4)

Remark 3.1.1. Procedure to prove solvability of non-linear equations

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0} \tag{3.1.5}$$

near (\mathbf{a}, \mathbf{b}) .

- (i) Verify $\mathbf{F}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$.
- (ii) Assert

$$det(D_{\mathbf{v}}\mathbf{F}(\mathbf{a}, \mathbf{b})) \neq 0 \tag{3.1.6}$$

(iii) Approximate solution y = f(x) using

$$\mathbf{f}(\mathbf{x} + \mathbf{h}) \approx \mathbf{a} + D\mathbf{f}(\mathbf{a})\mathbf{h} \tag{3.1.7}$$

$$= \mathbf{a} - [D_{\mathbf{v}}\mathbf{F}(\mathbf{a}, \mathbf{b})]^{-1}D_{\mathbf{x}}\mathbf{F}(\mathbf{a}, \mathbf{b})\mathbf{h}$$
(3.1.8)

3.2 Geometric Content of the Implicit Function Theorem

Definition 3.2.1. Let $S \subseteq \mathbb{R}^n$ and $\mathbf{a} \in S$. S is singular at \mathbf{a} if

$$\forall r > 0 \ S \cap \mathcal{B}(r, \mathbf{a}) \text{ cannot be represented as a } C^1 \text{ graph.}$$
 (3.2.1)

S is **regular** at **a** is its not singular there.

Theorem 3.2.1 (k dimensional manifold as level set). Let $U \subseteq \mathbb{R}^n$ and let $\mathbf{F}: U \to \mathbb{R}^{n-k}$ be a C^1 function.

$$S := \{ \mathbf{x} \in U : \mathbf{F}(\mathbf{x}) = \mathbf{0} \} \tag{3.2.2}$$

Let $\mathbf{a} \in U$, if

$$rank(D\mathbf{F}(\mathbf{a})) = n - k \tag{3.2.3}$$

then $\exists r > 0$ such that the level set of F near a

$$\mathcal{B}(r,\mathbf{a}) \cap S \tag{3.2.4}$$

can be represented as a C^1 graph.

Remark 3.2.1 (Interpretation). In \mathbb{R}^n , there are n degree of freedom before imposing any constraint, after add a constraint $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ with n - k effective constraints, there are k degree of freedom left. What's left is a k dimensional manifold.

Theorem 3.2.2 (k dimensional manifold as parameterization). Let $T \subseteq \mathbb{R}^k$ and let $\mathbf{f}: U \to \mathbb{R}^n$ be a C^1 function.

$$S := \mathbf{f}(T) \tag{3.2.5}$$

Let $\mathbf{t} \in T$, if

$$rank(D\mathbf{f}(\mathbf{t})) = k \tag{3.2.6}$$

then $\exists r > 0$ such that the parameterization of **f** near **t**

$$\mathbf{f}(T \cap \mathcal{B}(r, \mathbf{t})) \tag{3.2.7}$$

can be represented as a C^1 graph.

3.3 Transformations, and the Inverse Function Theorem

Example 3.3.1 (Polar coordinate in \mathbb{R}^2). Let

$$U := \{ (r, \theta) : r > 0 \land \theta \in (-\pi, \pi) \}$$
(3.3.1)

$$V := \mathbb{R}^2 \setminus \{(x,0) : x \le 0\}$$
 (3.3.2)

Define $\mathbf{f}: U \to V$ as

$$\mathbf{f}(r,\theta) := \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix} \tag{3.3.3}$$

Example 3.3.2 (Spherical coordinate in \mathbb{R}^3). Define

$$\mathbf{f}(r,\theta,\varphi) = \begin{pmatrix} r\cos(\theta)\sin(\varphi) \\ r\sin(\theta)\sin(\varphi) \\ r\cos(\varphi) \end{pmatrix}$$
(3.3.4)

Example 3.3.3 (Cylindrical coordinate in \mathbb{R}^3). Define

$$\mathbf{f}(r,\theta,z) = \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \\ z \end{pmatrix}$$
 (3.3.5)

Theorem 3.3.1 (Inverse Function Theorem). Let U and V be open subsets in \mathbb{R}^n , and $\mathbf{f}: U \to V$. Let $\mathbf{a} \in U$ and define $\mathbf{b} := \mathbf{f}(\mathbf{a}) \in V$. If

$$det(D\mathbf{f}(\mathbf{a})) \neq 0 \tag{3.3.6}$$

then there exists $M\subseteq U$ and $N\subseteq V$ such that

- (i) $\mathbf{a} \in M$ and $\mathbf{b} \in N$,
- (ii) \mathbf{f} is bijective between M and N,
- (iii) $\mathbf{f}^{-1}: N \to M \text{ is } C^1,$

and for all $\mathbf{x} \in M$ such $\mathbf{y} := \mathbf{f}(\mathbf{x}) \in N$,

$$D\mathbf{f}^{-1}(\mathbf{y}) = [D\mathbf{f}(\mathbf{x})]^{-1} \tag{3.3.7}$$

4 Integration

4.1 Basics

Theorem 4.1.1 (Properties of infimum and supremum). Let $A \subseteq \mathbb{R}^n$ and $A \neq \emptyset$, and $f, g : A \to \mathbb{R}$ are bounded functions. Let m and M denote the infimum and supremum respectively, then

- (i) $m_A f + m_A g \le m_A (f + g) \le M_A (f + g) \le M_A f + M_A g$
- (ii) If $A' \subseteq A$, then $m_A f \leq m_{A'} f \leq M_{A'} f \leq M_A f$
- (iii) If $f(\mathbf{x}) \leq g(\mathbf{x}) \ \forall \mathbf{x} \in A$, then $m_A f \leq m_A g$ and $M_A f \leq M_A g$
- (iv) $|M_A f| \leq M_A |f|$
- (v) $M_A|f| m_A|f| \le M_A f m_A f$
- (vi) $\forall c \in \mathbb{R}, M_A(cf) m_A(cf) = |c|(M_A f m_A f)$
- (vii) $M_A f m_A f = \sup\{f(x) f(y) : x, y \in A\}$

4.2 Integration on Higher Dimensions

Definition 4.2.1. A rectangle $\mathcal{R} \subseteq \mathbb{R}^n$ (*n*-orthotope) is defined as

$$\mathcal{R} := \prod_{i=1}^{n} [a_i, b_i] \tag{4.2.1}$$

where $a_i, b_i \in \mathbb{R}$ and $a_i < b_i$.

Definition 4.2.2. A partition P of rectangle $\mathcal{R} = \prod_{i=1}^n [a_i, b_i]$ is a list of n finite and increasing list of real numbers

$$P = \{L_1, L_2, \dots, L_n\} \tag{4.2.2}$$

where $L_i = \{e_j\}_{j=0}^{T_i}$ such that

$$a_i = e_0 < e_1 < \dots < e_{T_i} = b_i$$
 (4.2.3)

and such partition generates a set of rectangles(boxes) $\mathcal{B}(P) := \{B_j\}_{j=1}^J \subseteq \mathcal{R}$.

Definition 4.2.3. Let P and P' be two partitions of \mathcal{R} . Then P' is a **refinement** of P if

$$\forall B_j \in \mathcal{B}(P), B_j' \in \mathcal{B}(P') \quad B_j' \subseteq B_j \vee (B_j^{'int} \cap B_j^{int} = \emptyset)$$
(4.2.4)

Definition 4.2.4. Define the volume of rectangle $\mathcal{R} = \prod_{i=1}^n [a_i, b_i]$ as

$$V^{n}(\mathcal{R}) := \prod_{i=1}^{n} (b_{i} - a_{i})$$
(4.2.5)

Definition 4.2.5. The lower Riemann sum of f with partition P on \mathcal{R} is defined as

$$L_P f := \sum_{B_j \in \mathcal{B}(P)} \inf_{\mathbf{x} \in B_j} f(\mathbf{x}) V^n(B_j)$$
(4.2.6)

and the upper Riemann sum is defined as

$$U_P f := \sum_{B_j \in \mathcal{B}(P)} \sup_{\mathbf{x} \in B_j} f(\mathbf{x}) V^n(B_j)$$
(4.2.7)

Definition 4.2.6. The upper integral and lower integral of f on \mathcal{R} are defined as

$$\bar{I}_{\mathcal{R}}f := \inf_{\mathcal{D}} U_{\mathcal{P}}f \tag{4.2.8}$$

$$\underline{I}_{\mathcal{R}}f := \sup_{P} L_{P}f \tag{4.2.9}$$

Definition 4.2.7. A bounded real-valued function f defined on \mathcal{R} is **integrable** if

$$\underline{I}_{\mathcal{R}}f = \bar{I}_{\mathcal{R}}f \tag{4.2.10}$$

and the integral is defined as

$$\int \cdots \int_{\mathcal{R}} f \ dV^n := \underline{I}_{\mathcal{R}} f = \bar{I}_{\mathcal{R}} f \tag{4.2.11}$$

Lemma 4.2.1. Let f be a bounded real-valued function defined on \mathcal{R} , f is integrable if and only if $\forall \epsilon > 0$, there exists a partition P of \mathcal{R} such that

$$U_P f - L_P f < \epsilon \tag{4.2.12}$$

Theorem 4.2.1. Let f and g be two integrable functions on $\mathcal{R} \subseteq \mathbb{R}^n$, let $c \in \mathbb{R}$,

- (i) $f + g : \mathcal{R} \to \mathbb{R}$ is integrable and $\int_{\mathcal{R}} (f + g) = \int_{\mathcal{R}} f + \int_{\mathcal{R}} g$
- (ii) $c \cdot f$ is integrable and $\int_{\mathcal{R}} c \cdot f = c \int_{\mathcal{R}} f$
- (iii) $f(\mathbf{x}) \ge g(\mathbf{x}) \ \forall \mathbf{x} \in \mathcal{R} \implies \int_{\mathcal{R}} f \ge \int_{\mathcal{R}} g$
- (iv) |f| is integrable and $|\int_R f| \le \int_R |f|$

Definition 4.2.8. Let $S \subseteq \mathbb{R}^n$ be a bounded set, and there exists rectangle \mathcal{R} covers S, the indicator function of S is $\chi_S : \mathcal{R} \to \{0,1\}$, defined as

$$\chi_S(\mathbf{x}) := \mathbb{1}\{\mathbf{x} \in S\} \tag{4.2.13}$$

Definition 4.2.9. Let $S \subseteq \mathbb{R}^n$ be a bounded set, and there exists rectangle \mathcal{R} covers S. Let $f: \mathcal{R} \to \mathbb{R}$ be a bounded function, then f is **integrable on** S if $\chi_S f$ is integrable on \mathcal{R} . And

$$\int \cdots \int_{S} f \ dV^{n} := \int \cdots \int_{\mathcal{R}} \chi_{S} f \ dV^{n} \tag{4.2.14}$$

Definition 4.2.10. Let $Z \subseteq \mathbb{R}^n$, Z has **zero content** if for all $\epsilon > 0$, there exists a <u>finite</u> set of rectangles $\{R_\ell\}_{\ell=1}^L$ covers Z and

$$\sum_{\ell=1}^{L} V^n(R_\ell) < \epsilon \tag{4.2.15}$$

Proposition 4.2.1. Let $Z \subseteq \mathbb{R}^n$ has zero content, then

- (i) For any $Z' \subseteq Z$, Z' has zero content.
- (ii) Finite union of content zero sets has zero content.
- (iii) Let $f:[a,b]\to\mathbb{R}$ be an integrable function, its graph $\{(x,f(x)):x\in[a,b]\}$ has zero content.
- (iv) Let $\mathbf{f}:[a,b]\to\mathbb{R}^2$ be a C^1 function, the parameterization $\mathbf{f}([a,b])$ has zero content.

Theorem 4.2.2. Let \mathcal{R} be a rectangle in \mathbb{R}^n and f is integrable on \mathcal{R} if the set

$$\{\mathbf{x} \in \mathcal{R} : f \text{ is discontinuous at } \mathbf{x}\}\$$
 (4.2.16)

has zero content.

Proposition 4.2.2 (Folland 4.22). Suppose $Z \subseteq \mathbb{R}^n$ has zero content. If $f : \mathbb{R}^n \to \mathbb{R}$ is bounded, then f is integrable on Z and $\int_Z f \ dV^n = 0$.

Remark 4.2.1 (Measures and Contents). A measure μ is required to be *countably* additivity on disjoint sets, but a content only requires *finite* additivity on disjoint sets. Therefore, if a set has content zero based on some content function, such a content function is also a measure function, thus such set has measure zero as well.

content zero
$$\implies$$
 measure zero (4.2.17)

4.3 Iterated Integrals

Theorem 4.3.1 (Fubini's Theorem). Let $\mathcal{R} = [a, b] \times [c, d] \subseteq \mathbb{R}^2$ and $f : \mathcal{R} \to \mathbb{R}$ is bounded. Assuming that

- (i) f is integrable on \mathcal{R} .
- (ii) for each $y \in [c, d]$, the function $f_y(x) := f(x, y)$ is integrable on [a, b].
- (iii) Define $g(y) := \int_a^b f(x,y)dy$ is integrable on [c,d].

Then

$$\iint_{\mathcal{R}} f \ dA = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \ dx \right) dy \tag{4.3.1}$$

Proposition 4.3.1. Let $S \subseteq \mathbb{R}^n$ be an unbounded set, and $f: S \to \mathbb{R}$. Then improper integral $\int \cdots \int_S f \ d^n \mathbf{x}$ is absolutely convergent on \mathbb{R}^n if and only if $\int \cdots \int_{\mathbb{R}^n} \chi_S f \ d^n \mathbf{x}$ is absolutely convergent.

4.4 Change of Variables

Theorem 4.4.1 (Change of Variable). Let U and V be two open subsets of \mathbb{R}^n , and let $\mathbf{G}: U \to V$ be a C^1 bijection. Let $T \subset U$ and $S \subset V$. Suppose $\mathbf{G}(T) = S$, then

$$\underbrace{\int \cdots \int_{S} f \ d\Omega}_{\text{Target Intergal}} = \int \cdots \int_{T \equiv \mathbf{G}^{-1}(S)} f \circ \mathbf{G} \ |\det D\mathbf{G}| \ d\Theta$$
(4.4.1)

Corollary 4.4.1. Let S be a region in \mathbb{R}^n , suppose S can be parameterized by $\mathbf{G}: T \to S$. By the change of variable formula, consider the special case $f(\mathbf{x}) = 1$,

$$|S| = \int \cdots \int_{S} 1 \ d\Omega = \int \cdots \int_{T} 1 \ |\det D\mathbf{G}(\mathbf{u})| \ d\Theta$$
 (4.4.2)

Example 4.4.1 (Polar Coordinate). Define the coordinate transformation mapping from polar to Cartesian,

$$\mathbf{P}(r,\theta) := (x,y) = \begin{pmatrix} r\cos\theta\\r\sin\theta \end{pmatrix}, \ \theta \in [0,2\pi] \ r \in \mathbb{R}_+$$
 (4.4.3)

and $|\det D\mathbf{P}(r,\theta)| = r$.

Example 4.4.2 (Cylindrical Coordinate). Define the coordinate transformation mapping from cylindrical to Cartesian as

$$\mathbf{C}(r,\theta,z) := (x,y,z) = \begin{pmatrix} r\cos\theta\\r\sin\theta\\z \end{pmatrix}, \ \theta \in [0,2\pi] \ r \in \mathbb{R}_+ \ z \in \mathbb{R}$$
 (4.4.4)

and $|\det D\mathbf{C}(r, \theta, z)| = r$.

Example 4.4.3 (Spherical Coordinate). Define the coordinate transformation mapping from spherical to Cartesian as

$$\mathbf{S}(r,\theta,\varphi) = \begin{pmatrix} r\cos\theta\sin\varphi\\r\sin\theta\sin\varphi\\r\cos\varphi \end{pmatrix} \tag{4.4.5}$$

and $|\det D\mathbf{S}(r,\theta,\varphi)| = r^2 \sin \varphi$

4.5 Further Aspects

4.5.1 Exchanging Differentiation and Integration

Theorem 4.5.1 (Exchanging Differentiation and Integration). Let $f(\mathbf{x}, \mathbf{t}) : S \times T \to \mathbb{R}$ and define $F(\mathbf{x}) : S \to \mathbb{R}$ as

$$F(\mathbf{x}) := \int \cdots \int_{T} f(\mathbf{x}, \mathbf{t}) d\mathbf{t}$$
 (4.5.1)

If

- (i) S is open and T is compact;
- (ii) f and F are continuous;
- (iii) and $\forall x_j \in \mathbf{x}, \frac{\partial f(\mathbf{x}, \mathbf{t})}{\partial x_j}$ is continuous,

then F is C^1 in S and for every j,

$$\frac{\partial F(\mathbf{x})}{\partial x_j} = \int \cdots \int_T \frac{\partial f(\mathbf{x}, \mathbf{t})}{\partial x_j} d\mathbf{t}$$
(4.5.2)

Corollary 4.5.1 (Exchanging Limits and Integration). By the definition of partial derivative, above theorem is equivalent to

$$\lim_{h \to 0} \int \cdots \int_{T} \frac{f(\mathbf{x} + h\mathbf{e}_{j}, \mathbf{t})}{h} d\mathbf{t} = \int \cdots \int_{T} \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{e}_{j}, \mathbf{t})}{h} d\mathbf{t}$$
(4.5.3)

4.5.2 Improper Integrals

Definition 4.5.1 (Unbounded Domains). An **improper integral** with unbounded domain $\int \cdots \int_{\mathbb{R}^n} f \, d\Omega$ is **absolutely convergent** if there exists $L \in \mathbb{R}$ such that

$$\forall \varepsilon > 0 \ \exists R > 0 \ s.t. \ \forall S \subseteq \mathbb{R}^n \ \mathcal{B}(R, \mathbf{0}) \subset S \implies \left| \int \cdots \int_S f \ d\Omega - L \right| < \varepsilon$$
 (4.5.4)

Theorem 4.5.2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function, and that

$$\lim_{R \to \infty} \int \cdots \int_{\mathcal{B}(R,\mathbf{0})} |f| \ d\Omega \text{ exists}$$
 (4.5.5)

then $\int \cdots \int_{\mathbb{R}^n} f \ d\Omega$ is absolutely convergent.

Corollary 4.5.2 (Equivalence). Above improper integral $\int \cdots \int_{\mathbb{R}^n} f \ d\Omega$ is absolutely convergent if set

$$\left\{ \int \cdots \int_{\mathcal{B}(R,\mathbf{0})} |f| \ d\Omega : R \in \mathbb{R}_{++} \right\} \tag{4.5.6}$$

is bounded.

Corollary 4.5.3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be an continuous function, if

$$\exists p > n, \ C > 0 \ s.t. \ |f(\mathbf{x})| \le \frac{1}{||\mathbf{x}||^p} \ \forall \mathbf{x} \in \mathbb{R}^n$$
 (4.5.7)

then $\int \cdots \int_{\mathbb{R}^n} f \ d\Omega$ is absolutely convergent.

Definition 4.5.2 (Unbounded Function). Let $S \subset \mathbb{R}^n$, $\mathbf{a} \in \mathbb{R}^n$. Consider a function $f : S \setminus \{\mathbf{a}\} \to \mathbb{R}$. Then the improper integral $\int \cdots \int_S f d\Omega$ is absolutely convergent if

$$\exists L \in \mathbb{R} \ s.t \ \forall \varepsilon > 0 \ \exists r > 0 \ s.t. \ \forall U \subset S \ s.t. \ \mathbf{a} \in U^{int} \land U \subset \mathcal{B}(r, \mathbf{a}), \ \left| \int \cdots \int_{S \backslash U} f \ d\Omega - L \right| < \varepsilon \ (4.5.8)$$

Theorem 4.5.3. Let $f: S \setminus \{a\} \to \mathbb{R}$, if

$$\lim_{r \to 0} \int \cdots \int_{S \setminus \mathcal{B}(r, \mathbf{a})} |f| \ d\Omega \text{ exists}$$
 (4.5.9)

then $\int \cdots \int_S f \ d\Omega$ is absolutely convergent.

Corollary 4.5.4 (Equivalence). If the set

$$\left\{ \iint_{S \setminus \mathcal{B}(r,\mathbf{a})} |f| \ d\Omega : r \in \mathbb{R}_{++} \right\} \tag{4.5.10}$$

is bounded, then $\int \cdots \int_S f \ d\Omega$ is absolutely convergent.

Corollary 4.5.5. Let $f: S \setminus \{a\} \to \mathbb{R}$, if

$$\exists p < n, \ C > 0 \ s.t. |f(\mathbf{x})| \le \frac{C}{||\mathbf{x} - \mathbf{a}||^p} \ \forall \mathbf{x} \in S \setminus \{\mathbf{a}\}$$
 (4.5.11)

then the improper integral $\int \cdots \int_S f \ d\Omega$ is absolutely convergent.

5 Vector Calculus

5.1 Line Integrals

5.1.1 Arc Length

Definition 5.1.1. Let C be a smooth curve in \mathbb{R}^n parameterized by C^1 function \mathbf{g} such that $\mathbf{g}'(t) \neq \mathbf{0}$ for every appropriate t.

$$C := \{ \mathbf{g}(t) : t \in [a, b] \}$$
 (5.1.1)

and the **arc length** of *C* is defined as

$$\int_C d^n \mathbf{x} := \int_C ds := \int_a^b ||\mathbf{g}'(t)|| \ dt \tag{5.1.2}$$

Proposition 5.1.1. The arc length of a curve C is an intrinsic property of the geometric object C and should not depend on the particular parameterization we use.

Proof. Let $\varphi:[c,d]\to [a,b]$ be a bijection, so that $\mathbf{h}:=\mathbf{g}\circ\varphi$ is also a valid parameterization of C such that

$$C := \{ \mathbf{h}(u) : u \in [c, d] \}$$
(5.1.3)

The arc length of C can be computed using

$$\int_C ds = \int_c^d ||\mathbf{h}'(u)|| \ du \tag{5.1.4}$$

$$= \int_{c}^{d} ||\mathbf{g}'(\varphi(u))|| \cdot |\varphi'(u)| du$$
 (5.1.5)

$$= \int_{a}^{b} ||\mathbf{g}'(t)|| dt \text{ by change of variable formula.}$$
 (5.1.6)

Remark 5.1.1 (Interpretations). Suppose \mathbf{g} is a parameterization of C.

- (i) $\int_a^b \mathbf{g}'(t) dt = \mathbf{g}(b) \mathbf{g}(a)$ measures the distance between two endpoints of C.
- (ii) Choosing a parameterization is effectively choosing an **orientation** for the curve C.

Definition 5.1.2. A function $\mathbf{g}:[a,b]\to\mathbb{R}^n$ is called **piecewise smooth** if

- (i) it's *continuous*, and
- (ii) it's derivate exists and is continuous except at finitely many points t_j , at which the <u>one-sided</u> limits exist.

5.1.2 Line Integrals of Scalar Functions

Definition 5.1.3. Let smooth curve $C \subseteq \mathbb{R}^n$, $f: C \to \mathbb{R}$ and \mathbf{g} be a parameterization of C, then

$$\int_{C} f \ ds = \int_{a}^{b} f(\mathbf{g}(t)) \ ||\mathbf{g}'(t)|| \ dt \tag{5.1.7}$$

Remark 5.1.2. The line integrals of scalar functions are also independent from the choices of parameterizations.

Definition 5.1.4.

Average of
$$f$$
 over $C := \frac{\int_C f \, ds}{\int_C \, ds}$ (5.1.8)

5.1.3 Line Integrals of Vector Fields

Definition 5.1.5. Let smooth $C \in \mathbb{R}^n$ with parameterization \mathbf{g} and $\mathbf{F}: C \to \mathbb{R}^n$ defined on it, the line integral of \mathbf{F} over C is defined as

$$\int_{C} \mathbf{F} \cdot d\mathbf{x} = \int_{a}^{b} \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) dt$$
 (5.1.9)

Proposition 5.1.2. The line integral $\int_C \mathbf{F} \cdot d\mathbf{x}$ is independent of the parameterization as long as the orientation is unchanged.

Theorem 5.1.1 (The Fundamental Theorem of Line Integral). Let $f: C \to \mathbb{R}$ defined on smooth curve C parameterized by $\mathbf{g}: [a, b] \to \mathbb{R}^n$, then

$$\int_{C} \nabla f(\mathbf{x}) \cdot d^{n} \mathbf{x} = f(\mathbf{g}(b)) - f(\mathbf{g}(a))$$
(5.1.10)

Proof.

$$\int_{C} \nabla f(\mathbf{x}) \cdot d^{n} \mathbf{x} = \int_{a}^{b} \frac{\partial f(\mathbf{g}(t))}{\partial \mathbf{g}(t)} \cdot \mathbf{g}'(t) dt$$
(5.1.11)

$$= \int_{a}^{b} \frac{\partial f(\mathbf{g}(t))}{\partial t} dt = f(\mathbf{g}(b)) - f(\mathbf{g}(a))$$
(5.1.12)

5.1.4 Rectifiable Curves

Remark 5.1.3. Let C be a curve in \mathbb{R}^n parameterized by injection $\mathbf{g}:[a,b]\to\mathbb{R}^n$ such that $\mathbf{g}'(t)\neq\mathbf{0}$. Let P be a partition of [a,b]. Denote

$$L_P(C) := \sum_{j} ||\mathbf{g}(t_j) - \mathbf{g}(t_{j-1})||$$
(5.1.13)

Definition 5.1.6. A curve C is **rectifiable** if the set $\{L_P(C): P\}$ is <u>bounded</u>. And the arc length of C s defined as

$$L(C) := \sup\{L_P(C) : P\}$$
 (5.1.14)

Theorem 5.1.2. The supremum found above, L(C) is the precisely the arc length of C:

$$L(C) = \int_{a}^{b} ||\mathbf{g}'(t)|| dt$$
 (5.1.15)

5.2 Green's Theorem

5.2.1 Preliminary Definitions

Definition 5.2.1. A simple closed curve is a curve with parameterization $\mathbf{g}:[a,b]\to\mathbb{R}^n$ where

- (i) **g** is continuous;
- (ii) g(a) = g(b);
- (iii) \mathbf{g} is injective with its domain restricted to (a,b) (so the curve does not cross).

Definition 5.2.2. A simple closed curve is **piecewise smooth** if it has a parameterization **g** such that

- (i) **g** is continuously differentiable with $\mathbf{g}'(t) \neq \mathbf{0}$ except finitely many breakpoints;
- (ii) $\mathbf{g}'(t)$ is one side continuous at breakpoints of the curve.

Definition 5.2.3. A regular region $S \subseteq \mathbb{R}^n$ is a set satisfying both

- (i) S is compact;
- (ii) $\overline{S^{int}} = S$.

Definition 5.2.4. Let $S \subseteq \mathbb{R}^2$, S has **piecewise smooth boundary** if ∂S consists of one or more disjoint, piecewise smooth, simple closed curve.

Definition 5.2.5. Let $S \subseteq \mathbb{R}^2$, then **positive orientation** on ∂S is the orientation on each of the closed curves that make up the boundary such that the region is on the *left* with respect to the positive direction on the curve.

Theorem 5.2.1 (Green's Theorem). Suppose $S \subseteq \mathbb{R}^2$ is a regular region with piecewise smooth region ∂S . Suppose **F** is a C^1 vector field defined on \overline{S} , then

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{x} = \iint_{S} \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) dA \tag{5.2.1}$$

Corollary 5.2.1. Suppose S is a regular region in \mathbb{R}^2 with piecewise smooth boundary ∂S , and let $\mathbf{n}(\mathbf{x})$ be the *unit outward normal* vector to ∂S at $\mathbf{x} \in \partial S$. Suppose also that \mathbf{F} is a vector field defined on \overline{S} , then

$$\int_{\partial S} \mathbf{F} \cdot \mathbf{n} \ ds = \iint_{S} \left(\frac{\partial F_{1}}{\partial x_{1}} + \frac{\partial F_{2}}{\partial x_{2}} \right) \ dA \tag{5.2.2}$$

Proof. Let $\mathbf{g}(t)$ be a parameterization of boundary ∂S . Then the tangent vector would be $\mathbf{g}'(t)$ and we can conclude the *outer normal vector* \mathbf{n} is $\frac{(g_2'(t), -g_1'(t))}{||(g_2'(t), -g_1'(t))||}$. Then

$$\int_{\partial S} \mathbf{F} \cdot \mathbf{n} \ ds = \int_{T} \mathbf{F} \circ \mathbf{g} \cdot \frac{(g'_{2}(t), -g'_{1}(t))}{\|(g'_{2}(t), -g'_{1}(t))\|} \|\mathbf{g}'(t)\| \ dt$$
 (5.2.3)

$$= \int_{\mathcal{T}} F_1 g_2'(t) - F_2 g_1'(t) dt$$
 (5.2.4)

$$= \int_{T} \begin{pmatrix} -F_2 \\ F_1 \end{pmatrix} \cdot \begin{pmatrix} g_1'(t) \\ g_2'(t) \end{pmatrix} dt \tag{5.2.5}$$

$$= \int_{\partial S} \begin{pmatrix} -F_2 \\ F_1 \end{pmatrix} \cdot d^2 \mathbf{x} \tag{5.2.6}$$

$$= \iint_{S} \frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} dA \text{ By Green's Theorem}$$
 (5.2.7)

26

5.3 Surface Integrals

5.3.1 Surface Areas and Surface Integrals

Definition 5.3.1. Suppose S is a surface in \mathbb{R}^3 and parameterized by

$$\mathbf{G}(\mathbf{u}): R \to S \tag{5.3.1}$$

where $rank(D\mathbf{G}(\mathbf{u})) = 2$ for every $\mathbf{u} \in R \setminus Z$ where Z is a probably empty set with zero content. If $||\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}||$ is integrable, then

$$Area(S) := \iint_{\mathbf{R}} ||\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}|| \ d\Theta$$
 (5.3.2)

Definition 5.3.2. Let $f: S \to \mathbb{R}$ be a real-valued continuous function defined on a super set of S, the **integral of a real-valued function on a surface** is defined as

$$\iint_{S} f(\mathbf{x}) \ dA := \iint_{\mathbf{R}} f(\mathbf{G}(\mathbf{u})) || \frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} || \ d\Theta$$
 (5.3.3)

Definition 5.3.3. Let $\mathbf{F}: S \to \mathbb{R}^3$ be a continuous vector field defined on a super set of S, the integral of vector field on a surface is defined as

$$\iint_{S} \mathbf{F}(\mathbf{x}) \cdot \mathbf{n} \ dA := \iint_{\mathbf{R}} \mathbf{F}(\mathbf{G}(\mathbf{u})) \cdot \left(\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}\right) \ d\Theta$$
 (5.3.4)

Remark 5.3.1. Surface integrals of real-valued functions are independent of the choice of parametrization.

Remark 5.3.2. But the choice of parameterization can change the sign of surface integrals of vector fields. We need to choose the direction of the normal, **n**.

Definition 5.3.4. Let $S \subseteq \mathbb{R}^3$ be a two dimensional sub-manifold, and f is a real-valued function defined on a super set of S. Define the **average of** f **over** S as

aver of
$$f$$
 over $S := \frac{\iint_S f \ dA}{\iint_S 1 \ dA}$ (5.3.5)

Remark 5.3.3. A note on the relation between integrals of a vector field and a real-valued function. The surface of vector field \mathbf{F} on S is defined by reducing \mathbf{F} to a real-valued function $\mathbf{F} \cdot \mathbf{n}$ and then follow the definition of conventional real-valued function on S. Define $h := \mathbf{F} \cdot \mathbf{n}$,

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dA = \iint_{S} h \ dA \tag{5.3.6}$$

$$:= \iint_{R} h(\mathbf{G}(\mathbf{u})) || \frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} || d\Theta$$
 (5.3.7)

$$= \iint_{R} \mathbf{F}(\mathbf{G}(\mathbf{u})) \cdot \mathbf{n}(\mathbf{G}(\mathbf{u})) || \frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} || d\Theta$$
 (5.3.8)

$$= \iint_{R} \mathbf{F}(\mathbf{G}(\mathbf{u})) \cdot \frac{\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}}{\left|\left|\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}\right|\right|} \left|\left|\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}\right|\right| d\Theta$$
 (5.3.9)

$$= \iint_{R} \mathbf{F}(\mathbf{G}(\mathbf{u})) \cdot \left(\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}\right) d\Theta$$
 (5.3.10)

where $\mathbf{G}: R \to S$ is a parameterization of S.

5.3.2 An invariance property

Remark 5.3.4. As mentioned above, given $\mathbf{n}(\mathbf{x})$ fixed, we can define the surface integral of vector field as the surface integral of a real-valued function defined as $h(\mathbf{x}) := \mathbf{F}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x})$. And as argued before, one \mathbf{n} is fixed (i.e. orientation is fixed), the value of integral is deterministic. Therefore we can conclude the integral of a vector field \mathbf{F} over a surface S depends on the **orientation** of S but otherwise independent of the parameterization.

Remark 5.3.5. Let $S \subseteq \mathbb{R}^2$ be a two dimensional sub-manifold parameterized by $\mathbf{G} : R \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ such that $rank(\mathbf{G}(\mathbf{u})) = 2$ for all but zero-content sets on its domain.

Let $\varphi: W \subseteq \mathbb{R}^2 \to R$ be a bijection such that $\mathbf{H} := \mathbf{G} \circ \varphi: W \to \mathbb{R}^3$ is another parameterization of S.

Now consider the integral of vector field **F** under parameterization **H**,

$$\iint_{S} \mathbf{F} \cdot \mathbf{u} \ dA = \iint_{W} \mathbf{F}(\mathbf{H}) \cdot \left(\frac{\partial \mathbf{H}}{\partial s} \times \frac{\partial \mathbf{H}}{\partial t}\right) \ d\Theta \tag{5.3.11}$$

$$= \iint_{W} \mathbf{F} \circ \mathbf{G} \circ \varphi \cdot (\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}) \det D\varphi \ d\Theta$$
 (5.3.12)

$$= \pm \iint_{R} \mathbf{F} \circ \mathbf{G} \cdot \left(\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} \right) d\Theta \text{ (change of variable)}$$
 (5.3.13)

Theorem 5.3.1 (Invariance). Let $\mathbf{G}: R \to \mathbb{R}^3$ and $\mathbf{H} := \mathbf{G} \circ \varphi : W \to \mathbb{R}^3$ be two parameterizations of S, then

$$\iint_{\mathcal{B}} f \circ \mathbf{G} || \frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} || \ d\Theta = \iint_{W} f \circ \mathbf{H} || \frac{\partial \mathbf{H}}{\partial s} \times \frac{\partial \mathbf{H}}{\partial t} || \ d\Theta$$
 (5.3.14)

and

$$\iint_{R} \mathbf{F} \circ \mathbf{G} \cdot (\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}) \ d\Theta = \pm \iint_{W} \mathbf{F} \circ \mathbf{H} \cdot (\frac{\partial \mathbf{H}}{\partial u} \times \frac{\partial \mathbf{H}}{\partial v}) \ d\Theta \tag{5.3.15}$$

5.3.3 Volume and Area (Optional)

Theorem 5.3.2. Let R be an arbitrary regular region in \mathbb{R}^3 , and let S be the boundary surface of R, define

$$S_h := \{ \mathbf{x} + \delta \mathbf{n} : \mathbf{x} \in S \land \delta \in [0, h] \}$$
 (5.3.16)

where S_h can be interpreted as a shell of region R with thickness h. Then the surface area of S is

$$\operatorname{area}(S) = \lim_{h \to 0} \frac{|S_h|}{h} \tag{5.3.17}$$

5.4 Divergence, Gradient and Curl

Definition 5.4.1. Let $U \subseteq \mathbb{R}^n$ be an open set, and define real-valued function $f: U \to \mathbb{R}$ (0-form) and vector field $\mathbf{F}: U \to \mathbb{R}^n$. Then we define

- 1. (1-form) The **gradient** of f as ∇f ;
- 2. (2-form) The **curl** of **F** as $\nabla \times \mathbf{F}$;
- 3. (3-form) The **divergence** of \mathbf{F} as $\nabla \cdot \mathbf{F}$.

Definition 5.4.2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 real-valued function, define the **Laplacian** of f as a mapping from real-valued functional space to real-valued functional space defined as

$$\operatorname{div}(\operatorname{grad})f := \sum_{j} \partial_{j}^{2} f = \Delta f = \nabla^{2} f \tag{5.4.1}$$

Theorem 5.4.1. For every C^2 real valued function $f: \mathbb{R}^3 \to \mathbb{R}$,

$$\operatorname{curl}(\operatorname{grad} f) = \mathbf{0} \tag{5.4.2}$$

For every C^2 vector field defined in \mathbb{R}^3 or a subset of it,

$$\operatorname{div}(\operatorname{curl}\mathbf{F}) = 0 \tag{5.4.3}$$

Note that the domain of f and \mathbf{F} must be \mathbb{R}^3 or a subset of it, otherwise the curl operation is not well-defined.

Theorem 5.4.2 (Product rules).

$$\operatorname{grad}(fg) = f \operatorname{grad}g + \operatorname{grad}f g \tag{5.4.4}$$

$$\operatorname{curl}(f\mathbf{G}) = f \operatorname{curl}\mathbf{G} + \operatorname{grad}f \times \mathbf{G}$$
 (5.4.5)

$$\operatorname{div}(f\mathbf{G}) = f \operatorname{div}\mathbf{G} + \operatorname{grad} f \cdot \mathbf{G}$$
 (5.4.6)

5.5 Divergence Theorem

Remark 5.5.1. vector field integral on boundary (2-dimensional sub-manifold) of region in \mathbb{R}^3 ($\mathbf{F} \cdot \mathbf{n} \ dA$ 2-form) and scalar valued function (div(\mathbf{F}) dV3-form) in a region (3-dimensional sub-manifold).

Theorem 5.5.1 (Divergence Theorem). Let $R \subseteq \mathbb{R}^3$ be a regular region with piece-wise smooth boundary ∂S . And **n** is the outer normal vector on ∂S , then,

$$\iint_{\partial S} \mathbf{F} \cdot \mathbf{n} \ dA = \iiint_{S} \operatorname{div}(\mathbf{F}) \ dV \tag{5.5.1}$$

Proof.

Definition 5.5.1. A region $R \subseteq \mathbb{R}^3$ is said to be xy-simple if and only if it can be expressed as the following form

$$R = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in W, \varphi_1(x, y) \le z \le \varphi_2(x, y)\}$$
 (5.5.2)

Suppose S is simple in terms of all combinations of x, y, z. Then

$$\iint_{\partial S} \mathbf{F} \cdot \mathbf{n} \ dA = \iint_{\partial S} F_1 n_1 + F_2 n_2 + F_3 n_2 \ dA \tag{5.5.3}$$

Consider $\iint_{\partial S} F_3 n_3 dA$, since R is xy-simple,

$$\iint_{\partial S} F_3 n_3 \ dA = \iint_{\partial S} F_3 \mathbf{k} \cdot \mathbf{n} \ dA \tag{5.5.4}$$

Note that except the bottom and top sides, which are parameterized by $\mathbf{G}_1(x,y) = (x,y,\varphi_1(x,y))$ and $\mathbf{G}_2(x,y) = (x,y,\varphi_2(x,y))$, the outer normal vector of those region has form $(\cdot,\cdot,0)$, and therefore $\mathbf{n} \cdot \mathbf{k} = 0$ for every \mathbf{x} on those regions, and contribute nothing to the integral.

Therefore, to evaluate $\iint_{\partial S} F_3 \mathbf{k} \cdot \mathbf{n} \ dA$, we only need to consider the upper and bottom surfaces. Also note that \mathbf{n} has opposite z component on those two surfaces.

Moreover, the undirected **n** on those two surfaces is

$$\tilde{\mathbf{n}} = \begin{pmatrix} 1 \\ 0 \\ \partial_x \varphi_i \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ \partial_y \varphi_i \end{pmatrix} = \begin{pmatrix} -\partial_x \varphi_i \\ \partial_x \varphi_i - \partial_y \varphi_i \\ 1 \end{pmatrix}$$
 (5.5.5)

$$\implies \iint_{\partial S} F_3 \mathbf{k} \cdot \mathbf{n} \ dA = \iint_{\partial S} F_3 \ dA \tag{5.5.6}$$

$$= \iint_{upper \ \partial S} F_3 \ dA - \iint_{lower \ \partial S} F_3 \ dA \tag{5.5.7}$$

$$= \iint_{W} F_3(x, y, \varphi_2(x, y)) \ dxdy - \iint_{W} F_3(x, y, \varphi_1(x, y)) \ dxdy$$
 (5.5.8)

$$= \iint_{W} \int_{\varphi_{1}(x,y)}^{\varphi_{2}(x,y)} \partial_{3}F_{3} \, dz dx dy \tag{5.5.9}$$

$$= \iiint_{S} \partial_{3} F_{3} \ dV \tag{5.5.10}$$

We can prove the equalities involving the other two components, and the proof is completed by the fact that any open set in \mathbb{R}^n can be written as a countable union of almost disjoint cubes, which are simple and the boundary of S has zero content.

Proposition 5.5.1 (Geometric Interpretation of Divergence). Let $S \subset \mathbb{R}^3$, $\mathbf{F}: S \to \mathbb{R}^3$, $\mathbf{a} \in S$,

$$\operatorname{div}(\mathbf{F})(\mathbf{a}) = \lim_{r \to 0} \frac{3}{4\pi r^2} \iiint_{\mathcal{B}(\mathbf{a},r)} \operatorname{div}(\mathbf{F})(\mathbf{x}) \ d\mathbf{x}$$
 (5.5.11)

$$= \lim_{r \to 0} \frac{3}{4\pi r^2} \underbrace{\iint_{\partial \mathcal{B}(\mathbf{a},r)} \mathbf{F} \cdot \mathbf{n} \, d\mathbf{x}}_{\text{flux through boundary}}$$
(5.5.12)

thus $\operatorname{div}(\mathbf{F})(\mathbf{a}) > 0$ if and only if at point **a**, matters are flowing away from this point.

Corollary 5.5.1 (Green's Formula). Suppose $R \subset \mathbb{R}^3$ and $f, g : R \to \mathbb{R}$ are C^2 functions, then

$$\iint_{\partial S} f \nabla g \cdot \mathbf{n} \ dA = \iiint_{S} \nabla f \cdot \nabla g + f \nabla^{2} g \ dV$$
 (5.5.13)

$$\iint_{\partial S} (f\nabla g - g\nabla f) \ dA = \iiint_{S} (f\nabla^{2}g - g\nabla^{2}) \ dV \tag{5.5.14}$$

Proof.

$$\iint_{\partial S} f \nabla g \cdot \mathbf{n} \ dA = \iiint_{S} \operatorname{div}(f \nabla g) \ dA \tag{5.5.15}$$

$$= \iiint_{S} f \operatorname{div}(\nabla g) + \nabla f \cdot \nabla g \ dV = \iiint_{S} f \nabla f \cdot \nabla g + \nabla^{2} g \ dV$$
 (5.5.16)

The second formula can be proved directly using divergence theorem the first formula.

5.6 Stokes Theorem

5.6.1 The Stoke Boundary

Definition 5.6.1. Let S be a surface that is a subset of a smooth (or piecewise smooth) surface S_0 , and the boundary of S is interpreted as the boundary of S within S_0 . Then the $\mathbf{x} \in S_0$ belongs to the **Stoke boundary** of S within S_0 if

$$\forall r > 0, \ \mathcal{B}(r, \mathbf{x}) \cap S \neq \emptyset \land \mathcal{B}(r, \mathbf{x}) \cap (S_0 \backslash S) \neq \emptyset$$
(5.6.1)

5.6.2 The Orientation

Definition 5.6.2. Given a smooth surface $S \subset S_0$, at a point \mathbf{x} in the Stoke's boundary of S, ∂S , if \mathbf{n} denotes the **positive orientation normal** to S_0 and \mathbf{t} denotes the tangent to ∂S at \mathbf{x} with the **Stokes orientation**, then

$$\mathbf{n} \times \mathbf{t}$$
 points into S (5.6.2)

5.6.3 Stokes Theorem in \mathbb{R}^3

Theorem 5.6.1 (Stokes Theorem, Special Case). Let S be a 2 dimensional sub-manifold in \mathbb{R}^3 , and let \mathbf{F} be a vector field defined on some neighbour of S, then

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{x} = \iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \ dA \tag{5.6.3}$$

Remark 5.6.1. In above theorem, $\omega := \mathbf{F} \cdot d\mathbf{x}$ is a 1-form in \mathbb{R}^3 and $d\omega := \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \ dA$ is a 2-form in \mathbb{R}^3 .

Corollary 5.6.1. Let S be a closed surface in \mathbb{R}^3 , that's, $\partial S = \emptyset$, and let **n** denote the outer normal vector, and **F** is a C^1 vector field. Then

$$\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \ dA = 0 \tag{5.6.4}$$

Proof. We can construct a *small* simple closed curve C on S and divide S into two regions sharing the same boundary. And note that given orientation fixed on S, the orientation on ∂S_1 and ∂S_2 are opposite. Then

$$\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \ dA = \iint_{S_{1}} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \ dA + \iint_{S_{2}} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \ dA$$
 (5.6.5)

$$= \int_{\partial S_1} \mathbf{F} \cdot d\mathbf{x} - \int_{\partial S_2} \mathbf{F} \cdot d\mathbf{x} = \int_C \mathbf{F} \cdot d\mathbf{x} - \int_C \mathbf{F} \cdot d\mathbf{x} = 0$$
 (5.6.6)

Definition 5.6.3. A surface $S \subset \mathbb{R}^3$ is **closed** if it has no Stokes boundary.

Definition 5.6.4. A piecewise smooth surface $S \subset \mathbb{R}^3$ is **closed** if there exists subsets S_1, S_2 such that $\partial S_1 = \partial S_2 = S_1 \cap S_2$, and ∂S_1 and ∂S_2 have opposite orientations, where S_1, S_2 have the same orientation as S.

Theorem 5.6.2. If S is a piecewise smooth <u>closed</u> surface in \mathbb{R}^3 and **F** is a vector field that is C^1 near S, then

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} dA = 0 \tag{5.6.7}$$

31

Proof.

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} dA = \iint_{S_{1}} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} dA + \iint_{S_{2}} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} dA = \int_{\partial S_{1}} \mathbf{F} \cdot d\mathbf{x} + \int_{\partial S_{2}} \mathbf{F} \cdot d\mathbf{x} = 0 \quad (5.6.8)$$

Proposition 5.6.1 (Geometric Interpretation of Curl). Let $R \subset \mathbb{R}^3$ be a 2 dimensional submanifold with **n** as outer normal vector on it, and $\mathbf{a} \in R$,

$$\operatorname{curl}(F)(\mathbf{a}) \cdot \mathbf{n}(\mathbf{a}) = \lim_{r \to 0} \frac{1}{2\pi r^2} \iint_{\mathcal{D}(\mathbf{a}, r)} \operatorname{curl}(F)(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) \ dA$$
 (5.6.9)

$$= \lim_{r \to 0} \frac{1}{2\pi r^2} \int_{\partial \mathcal{D}(\mathbf{a}, r)} \mathbf{F} \cdot d\mathbf{x}$$
 (5.6.10)

(5.6.11)

If we think of \mathbf{F} as a force field, then $\int_{\partial \mathcal{D}(\mathbf{a},r)} \mathbf{F} \cdot d\mathbf{x}$ represents the work done by \mathbf{F} on a particle moves around $\partial \mathcal{D}(\mathbf{a},r)$. Thus $\operatorname{curl}(\mathbf{F}) \cdot \mathbf{u}$ represents the tendency of the force \mathbf{F} to push the particle around $\partial \mathcal{D}(\mathbf{a},r)$ in a direction compatible with \mathbf{n} .

Theorem 5.6.3 (Application: Moving the Surface). Let S and S' be two oriented surfaces such that $\partial S = \partial S'$ (share the same orientation), then

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} dA = \int_{\partial S} \mathbf{F} \cdot d\mathbf{x} = \int_{\partial S'} \mathbf{F} \cdot d\mathbf{x} = \iint_{S'} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} dA$$
 (5.6.12)

5.6.4 The Generalization

Proposition 5.6.2 (Properties of Exterior Products). Let α_1, α_2 and β be 1-forms on \mathbb{R}^n and f_1, f_2 are continuous functions defined on \mathbb{R}^n ,

1. Distributive

$$(f_1\alpha_1 + f_2\alpha_2) \wedge \beta = f_1(\alpha_1 \wedge \beta) + f_2(\alpha_2 \wedge \beta)$$
(5.6.13)

$$\beta \wedge (f_1 \alpha_1 + f_2 \alpha_2) = f_1(\beta \wedge \alpha_1) + f_2(\beta \wedge \alpha_2) \tag{5.6.14}$$

2. Anti-commutative

$$\beta \wedge \alpha = -\alpha \wedge \beta \tag{5.6.15}$$

Theorem 5.6.4 (Divergence Theorem in \mathbb{R}^n). Let R be a regular region in \mathbb{R}^n bounded by a piecewise smooth hyper-surface ∂R . Note here R is a n dimensional sub-manifold and ∂R is a n-1 dimension sub-manifold. Then

$$\int \cdots \int_{\partial R} \mathbf{F} \cdot \mathbf{n} dV^{n-1} = \iint \cdots \int_{R} \operatorname{div}(\mathbf{F}) \ dV^{n}$$
 (5.6.16)

where if ∂R is parameterized by $\mathbf{G}(u_1,\ldots,u_{n-1})$, then

$$\mathbf{n}dV^{n-1} = \det \begin{pmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_n \\ \partial_1 G_1 & \dots & \partial_1 G_n \\ \vdots & & \vdots \\ \partial_{n-1} G_1 & \dots & \partial_{n-1} G_n \end{pmatrix}$$

$$(5.6.17)$$

Definition 5.6.5. A 0-form on \mathbb{R}^n is a real valued function f.

Remark 5.6.2. While writing the basis elements $dx_i \wedge dx_j$ with the variables in *cyclic order*. That's dx before dy before dz before dx in \mathbb{R}^3 case.

Definition 5.6.6. A k-form in \mathbb{R}^n takes the expression of linear combination of C(n,k) basis elements $\{\beta_i\}_i$.

Example 5.6.1. A 2-form ω in \mathbb{R}^3 can be expressed using a 3-element basis

$$\omega = \sum_{1 \le i \le j \le 3} C_{ij}(\mathbf{x})\beta_{ij} \tag{5.6.18}$$

$$\beta_{ij} \in \{dx \wedge dy, dy \wedge dz, dx \wedge dz\}$$
 (5.6.19)

Definition 5.6.7. Let $\omega = \sum_{j=1}^{C(n,k)} f_j \beta_j$ be a k-form in \mathbb{R}^n , then it's **exterior derivative** is defined to be the (k+1)-form in \mathbb{R}^n defined as

$$d\omega := \sum_{j} df_j \wedge \beta_j \tag{5.6.20}$$

where df_i can be computed using total derivative.

Example 5.6.2. In \mathbb{R}^3 , the *exterior derivative* for a 0-form f is its **gradient**, which is a 1-form. And the exterior derivate of a 1-form in \mathbb{R}^3 is its curl

$$\omega := F_1 dx + F_2 dy + F_3 dz \tag{5.6.21}$$

$$\implies d\omega = dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz \tag{5.6.22}$$

$$= (\partial_1 F_1 dx + \partial_2 F_1 dy + \partial_3 F_1 dz) \wedge dx \tag{5.6.23}$$

$$+(\partial_1 F_2 dx + \partial_2 F_2 dy + \partial_3 F_2 dz) \wedge dy \tag{5.6.24}$$

$$+(\partial_1 F_3 dx + \partial_2 F_3 dy + \partial_3 F_3 dz) \wedge dz \tag{5.6.25}$$

$$= (\partial_1 F_2 - \partial_2 F_1) dx \wedge dy + (\partial_2 F_3 - \partial_3 F_2) dy \wedge dz + (\partial_3 F_1 - \partial_1 F_3) dz \wedge dx$$
 (5.6.26)

$$= \operatorname{curl}(\mathbf{F}) \tag{5.6.27}$$

The exterior derivate of a 2-form in \mathbb{R}^3 is its divergence

$$\omega := Ady \wedge dz + Bdz \wedge dx + Cdx \wedge dy \tag{5.6.28}$$

$$\implies d\omega = (\partial_1 A dx + \partial_2 A dy + \partial_3 A dz) \wedge dy \wedge dz \tag{5.6.29}$$

$$+(\partial_1 B dx + \partial_2 B dy + \partial_3 B dz) \wedge dz \wedge dx \tag{5.6.30}$$

$$+(\partial_1 C dx + \partial_2 C dy + \partial_3 C dz) \wedge dx \wedge dy \tag{5.6.31}$$

$$= (\partial_1 A + \partial_2 B + \partial_3 C) dx \wedge dy \wedge dz \tag{5.6.32}$$

$$= \operatorname{div}(\mathbf{F}) \tag{5.6.33}$$

Theorem 5.6.5 (Stokes Theorem, 5.77). Let M be a smooth, oriented k dimensional sub-manifold of \mathbb{R}^n with a piecewise smooth boundary ∂M , and let ∂M carry the orientation that is (in a suitable sense) compatible with the one on M. If ω is a (k-1)-form of class C^1 on an open set containing M, then

$$\int \cdots \int_{\partial M} \omega = \iint \cdots \int_{M} d\omega \tag{5.6.34}$$

Theorem 5.6.6. The boundary of a (smoothly bounded) region M in a k dimensional manifold is a (k-1) dimensional manifold with no boundary.

That's let M be a k dimensional manifold with piecewise smooth boundary ∂M , then

$$\partial(\partial M) = \varnothing \tag{5.6.35}$$

Theorem 5.6.7. For any k-form ω on \mathbb{R}^n .

$$d(d\omega) = 0 \tag{5.6.36}$$

Proof. Let M be a k dimensional sub-manifold in \mathbb{R}^n with piecewise smooth boundary, and ω is a (k-2)-form on \mathbb{R}^n , so $d(d\omega)$ is a k-form on \mathbb{R}^n . And

$$\iiint \cdots \int_{M} d(d\omega) = \iint \cdots \int_{\partial M} d\omega$$
 (5.6.37)

$$= \int \cdots \int_{\partial(\partial M)} \omega = \int \cdots \int_{\varnothing} \omega = 0$$
 (5.6.38)

5.7 Vector Fields that are Gradients or Curls

5.7.1 Conservative Vector Field

Definition 5.7.1. A continuous vector field **G** defined on open $U \subset \mathbb{R}^n$ is **conservative** if there exists a function $f: U \to \mathbb{R}$ of class C^1 such that $\mathbf{G} = \nabla f$.

Theorem 5.7.1. Let $U \subset \mathbb{R}^n$ open, and let $\mathbf{G}: U \to \mathbb{R}^n$ be continuous. Then the following are equivalent:

- (i) There exists a function $f: U \to \mathbb{R}$ of class C^1 such that $\mathbf{G} = \nabla f$;
- (ii) $\int_C \mathbf{G} \cdot d\mathbf{x} = 0$ for any closed piecewise smooth oriented curve $C \subset U$;
- (iii) $\int_{C_1} \mathbf{G} \cdot d\mathbf{x} = \int_{C_2} \mathbf{G} \cdot d\mathbf{x}$ for any two piecewise smooth oriented curves C_1, C_2 in U that shares starting and ending points.

Proof.

- (i) \implies (ii) by the Fundamental Theorem of Line Integrals.
- (ii) \Longrightarrow (iii) Given C_1 and C_2 both from \mathbf{p} to \mathbf{q} . Constructing C_2' from \mathbf{q} to \mathbf{p} by reversing the orientation of C_2 . And $C_1 \cup C_2'$ form a closed curve.

$$\int_{C} \mathbf{G} \cdot d\mathbf{x} = \int_{C_{1}} \mathbf{G} \cdot d\mathbf{x} - \int_{C_{2}} \mathbf{G} \cdot d\mathbf{x}$$
 (5.7.1)

(iii) \implies (i), pick an arbitrary point $\mathbf{p} \in U$, and for every $\mathbf{q} \in U$, define f as

$$f(\mathbf{q}) = \int_{C_{\mathbf{p},\mathbf{q}}} \mathbf{G} \cdot d\mathbf{x} \tag{5.7.2}$$

where $C_{\mathbf{p},\mathbf{q}}$ is an arbitrary curve starting at \mathbf{p} and ending at \mathbf{q} .

Theorem 5.7.2. If **G** is a conservative vector field of class C^1 on an open set $U \subset \mathbb{R}^3$, then $\text{curl} \mathbf{G} = \mathbf{0}$.

Theorem 5.7.3. If $U \subset \mathbb{R}^3$ is <u>convex</u> and if **G** is a C^1 vector field defined on U and $\text{curl} \mathbf{G} = \mathbf{0}$ on U, then **G** is conservative.

Remark 5.7.1. That's possible for a non-conservative vector field G defined on some non-convex set to have $\operatorname{curl} G = 0$

Proposition 5.7.1 (Finding f for Conservative Vector Fields). If the domain of a conservative vector field \mathbf{G} is convex, then we can construct f following

- (i) Choose $\mathbf{p} = (a, b, c) \in U$;
- (ii) Define f(x, y, z) as

$$f(x,y,z) := \int_{a}^{x} G_1(t,b,c)dt + \int_{b}^{y} G_2(x,t,c)dt + \int_{c}^{z} G_3(x,y,t)dt$$
 (5.7.3)

Corollary 5.7.1. If the domain of **G** is a convex set containing the <u>origin</u>, then we can define $\mathbf{p} = (a, b, c) = (0, 0, 0)$,

$$f(x,y,z) = \int_0^1 \mathbf{G}(tx,ty,tz) \cdot (x,y,z)dt$$
 (5.7.4)

5.7.2 Vector Fields that are Curls

Theorem 5.7.4. If $\mathbf{G}: U \to \mathbb{R}^3$ is a vector field of class C^1 and $\mathbf{G} = \text{curl}\mathbf{F}$ for some vector field $\mathbf{F}: U \to \mathbb{R}^3$ of class C^2 , then $\text{div}\mathbf{G} = 0$.

Theorem 5.7.5. Suppose **G** is a C^1 vector field in an open set $U \subset \mathbb{R}^3$ such that $\operatorname{div} \mathbf{G} = 0$. If U is convex, then there exists a vector field **F** such that $\operatorname{curl} \mathbf{F} = \mathbf{G}$.

Definition 5.7.2. Given a closed curve $C \subset \mathbb{R}^3$, the **minimal surface** is the surface S with the smallest possible area, given that $\partial S = C$.