Td interpolation : Hermite

I Base d'Hermite :

	φ1	φ2	ϕ_3	ϕ_4
φ(0)				
φ(1)				
φ' (0)				
φ'(1)				

On obtient :	$\varphi_1(x) =$
	$\varphi_2(x) =$
	φ ₃ (x)=

 $\varphi_4(x) =$

Allure des courbes de la base :

Td interpolation: Hermite

1) On cherche un polynôme P de degré 3 tel que :

х	0	1
Y= P(x)	y o	y 1
V= P'(x)	v ₀	V ₁

Vérifier que P(x) = y₀. $\phi_1(x) + y_1$. $\phi_2(x) + v_0$. $\phi_3(x) + v_1$. $\phi_4(x)$ convient.

2) On cherche un polynôme de degré 3 qui passe par deux points A et B et dont on connaît les dérivées v_1 et v_2 en x_A et x_B . Cette situation est résumée par le tableau suivant :

х	XA	X _B
Y= P(x)	УА	Ув
V= P'(x)	VA	V _B

Pour simplifier les écritures, on pose $t = (x-x_A)/(x_B-x_A)$

Vérifier que :

$$\textbf{P(x)} = \textbf{y}_0.\,\phi_1(t) + \textbf{y}_1.\,\phi_2(t) + (\textbf{x}_B - \textbf{x}_A).\,(\textbf{v}_0\,.\,\phi_3(t) + \textbf{v}_1\,.\,\phi_4\,(t)\,) \quad \text{convient}$$

Exemple:

X	1	5
Υ	6	2
v	3/2	-3

Déterminer le polynôme : t puis remplacer pout obtenir P

2) Faire la même chose avec le tableau en prenant les points deux-à-deux :

Х	1	5	7	8	10
Υ	6	2	-1	1	2
V	3/2	-3	0	4	1

Td interpolation : Hermite

TP5:

1)- Ecrire les fonctions phi1Phi4. Attention, elles sont nulles en dehors de [0 ; 1]
Ex: def phi1(t):
Si t compris entre 0 et 1 alors envoyersinon renvoyer 0
2)- Stockage des tableaux X,Y et V
3)- Ecrire foncHermite qui a pour paramètres X,Y,V et x et qui renvoie P(x)
4)- Afficher la courbe représentative de P. La grille d'affichage pour x allant de Xmin
à Xmax avec la résolution de votre choix. Soigner les axes .
5)- Tracer les tangentes (en fait des bouts de tangentes) aux points d'abscisses X _i
Indication : tracé d'un segment dont les extrémités sont $ X_{i}$ -1 et X_{i} +1,
La tangente au point d'abscisse X _i a pour équation y=V _i (x-X _i)+Y _i