2

3

What is claimed is:

1	 A speech communication apparatus comprising: 	
2	a signal output transducer for receiving a distant signal from a far-end	
3	talker and producing acoustic energy of the distant signal;	
4	a signal input transducer for producing a near-end signal which may	
5	contain a component representing a speech activity of a near-end talker or an	
6	acoustic echo component, or both, wherein said acoustic echo component	
7	occurs as a result of the distant signal being transmitted through an acoustic	
8	echo path from the signal output transducer to the signal input transducer;	
9	an echo canceller for producing an echo replica from said distant	
10	signal and a residual echo;	
11	a residual echo detector for detecting a difference between said near-	
12	end signal and said echo replica and supplying the difference as said residual	
13	echo to said echo canceller; and	
14	a spectral shaper for receiving one of said near-end signal and said	
15	residual echo as a first imput signal, receiving said echo replica as a second	
16	input signal, estimating from the first and second input signals said acoustic	
17	echo component when said speech activity is low or zero, and shaping	
18	spectrum of said first input signal with the estimated acoustic echo	
19	component.	

- The speech communication apparatus of claim 1, wherein said spectral shaper estimates said acoustic echo component for each of a plurality of subband frequencies of audio spectrum.
- 1 3. The speech communication apparatus of claim 1, wherein said 2 spectral shaper estimates said acoustic echo component from a ratio of said 3 first input signal to said second input signal.

1	4. The speech communication apparatus of claim 1, wherein said		
2	spectral shaper estimates said acoustic echo component from a ratio of said		
3	first input signal to said second input signal for each of a plurality of subband		
4	frequencies of audio spectrum.		
1	5. The speech communication apparatus of claim 1, wherein said		
2	spectral shaper comprises:		
3	means for dividing said first input signal into a first set of subband		
4	frequency component signals;		
5	means for dividing said second input signal into a second set of		
6	subband frequency component signals;		
7	a plurality of subband spectral shaping means, each of the subband		
8	spectral shaping means receiving a corresponding one of the first set of		
9	subband frequency component signals as a first subband signal, receiving a		
10	corresponding one of the second set of subband frequency component signals		
11	as a second subband signal, producing an estimate of a subband acoustic		
12	echo component from the first and second subband signals, and shaping the		
13	first subband signal with the estimate of the subband acoustic echo		
14	component; and		
15	means for combining output signals of said plurality of subband		
16	spectral shaping means.		
.1	6. The speech communication apparatus of claim 5, wherein each		
2	of said subband spectral shaping means comprises:		
3	a division circuit for producing a ratio of said first subband signal to		
4	said second subband signal;		
5	a smoother for smoothing said ratio when said speech activity is low		
6	or zero;		
7	a multiplier for multiplying said second subband signal by said		
8	smoothed ratio to produce said estimate of the subband acoustic echo		

10

second ratio;

9	component; and	
10	a subtractor for producing a difference signal representative of the	
11	difference between the first subband signal and said estimate supplied from	
12	said multiplier.	
	į	
1	7. The speech communication apparatus of claim 6, wherein said	
2	smoother includes means for causing said ratio to vary sharply at a rising	
3	edge of a transition and vary slowly at a falling edge of the transition.	
1	8. The speech communication apparatus of claim 6, wherein said	
2	division circuit includes first and second smoothers for smoothing said first	
3	and second subband signals, respectively, before said ratio is produced.	
1	9. The speech communication apparatus of claim 8, wherein said	
2	first smoother includes means for causing said first subband signal to vary	
3	sharply at a rising edge of a transition and vary slowly at a falling edge of the	
4	transition, and wherein said second smoother includes means for causing	
5	said second subband signal to vary sharply at a rising edge of a transition and	
6	vary slowly at a falling edge of the transition.	
1	10. The speech communication apparatus of claim 5, wherein each	
2	of said subband spectral shaping means comprises:	
3	a first division circuit for producing a first ratio of said first subband	
4	signal to said second subband signal;	
5	a second division circuit for producing a second ratio of said second	
6	subband signal to said first subband signal;	
7	a first smoother for smoothing said first ratio when said speech	
8	activity is low or zero;	

a first multiplier for multiplying the smoothed first ratio by said

11	a second smoother for smoothing the output of said first multiplier;		
12	a subtractor for subtracting integer 1 from the output of the second		
13	smoother; and		
14	a second multiplier for multiplying said first subband signal by the		
15	output of the subtractor		
1	11. The speech communication apparatus of claim 10, wherein said		
2	first smoother includes means for causing said first ratio to vary sharply at a		
3	rising edge of a transition and vary slowly at a falling edge of the transition.		
1	12. The speech communication apparatus of claim 10, wherein said		
2	first division circuit includes first and second smoothers for smoothing said		
3	first and second subband signals, respectively, before said first ratio is		
4	produced.		
1	13. The speech communication apparatus of claim 1, further		
2	comprising a harmonics generator for emphasizing harmonics components of		
3	said distant signal contained in said echo replica from said echo canceller.		
1	14. The speech communication apparatus of claim 1, wherein said		
2	echo canceller comprisés:		
3	means for dividing said residual echo into a first set of subband		
4	frequency component signals;		
5	means for dividing said distant signal into a second set of subband		
6	frequency component signals;		
7	an adaptive filter bank for adaptively filtering said second set of		
8	subband frequency component signals according to said first set of subband		
9	frequency component signals;		
10	means for combining output signals of said adaptive filter bank to		
11	produce said echo replica; and		

2

3

2	means for nullifying the first set of subband frequency component		
13	signals when said speech activity is high,		
4	wherein said spectral shaper comprises:		
15	a plurality of subband spectral shaping means, each of the subband		
16	spectral shaping means receiving a corresponding one of the first set of		
17	subband frequency component signals as a first subband signal, receiving a		
18	corresponding one of the output signals of said adaptive filter bank as a		
19	second subband signal, producing an estimate of a subband acoustic echo		
20	component from the first and second subband signals, and shaping the first		
21	subband signal with the estimate of the subband acoustic echo component;		
22	and ·		
23	means for combining output signals of said plurality of subband		
24	spectral shaping means.		
1	15. The speech communication apparatus of claim 14, wherein each		
2	of said subband spectral shaping means comprises:		
3	a division circuit for producing a ratio of said first subband signal to		
4	said second subband signal;		
5	a smoother for smoothing said ratio when said speech activity is low		
6	or zero;		
7	a multiplier for multiplying said second subband signal by said		
8	smoothed ratio to produce said estimate of the subband acoustic echo		
9	component; and		
10	a subtractor for producing a difference signal representative of the		
11	difference between the first subband signal and said estimate supplied from		
12	said multiplier.		
	:		

16. The speech communication apparatus of claim 15, wherein said smoother includes means for causing said ratio to vary sharply at a rising edge of a transition and vary slowly at a falling edge of the transition.

i

1	17. The speech communication apparatus of claim 15, wherein said	
2	division circuit includes first and second smoothers for smoothing said first	
3	and second subband signals, respectively, before said ratio is produced.	
1	18. The speech communication apparatus of claim 17, wherein said	
2	first smoother includes means for causing said first subband signal to vary	
3	sharply at a rising edge of a transition and vary slowly at a falling edge of the	
4	transition, and wherein said second smoother includes means for causing	
5	said second subband signal to vary sharply at a rising edge of a transition and	
6	vary slowly at a falling edge of the transition.	
	<u>:</u>	
1	19. The speech communication apparatus of claim 14, wherein	
2	each of said subband spectral shaping means comprises:	
3	a first division circuit for producing a first ratio of said first subband	
4	signal to said second subband signal;	
5	a second division circuit for producing a second ratio of said second	
6	subband signal to said first subband signal;	
7	a first smoother for smoothing said first ratio when said speech	
8	activity is low or zero;	
9	a first multiplier for multiplying the smoothed first ratio by said	
10	second ratio;	
11	a second smoother for smoothing the output of said first multiplier;	
12	a subtractor for subtracting integer 1 from the output of the second	
13	smoother; and	
14	a second multiplier for multiplying said first subband signal by the	
15	output of the subtractor.	
	•	
1	20. The speech communication apparatus of claim 19, wherein said	
2	first smoother includes means for causing said first ratio to vary sharply at a	
3	rising edge of a transition and vary slowly at a falling edge of the transition.	

1	21.	The speech communication apparatus of claim 19, wherein said	
2	first division	circuit includes first and second smoothers for smoothing said	
3	first and second subband signals, respectively, before said first ratio is		
4	produced.	:	
1	22.	A speech communication apparatus comprising:	
2	a sign	al output transducer for receiving a distant signal from a far-end	
3	talker and pr	oducing acoustic energy of the distant signal;	
4	mean	s for dividing said distant signal into a first set of subband	
5	frequency component signals;		
6	a sign	al input transducer for producing a near-end signal which may	
7	contain a cor	nponent representing a speech activity of a near-end talker or an	
8	acoustic echo	component, or both, wherein said acoustic echo component	
9	occurs as a result of the distant signal being transmitted through an acoustic		
10	echo path from the signal output transducer to the signal input transducer;		
11	mean	s for dividing said near-end signal into a second set of subband	
12	frequency co	mponent signals;	
13	a plur	ality of subband echo suppressors, each of the subband echo	
14	suppressors	comprising:	
15		an echo canceller for producing an echo replica from a	
16	correspondi	ng one of said first set of subband frequency component signals	
17	and a subbar	nd residual echo;	
18		a residual echo detector for detecting a difference between a	
19	correspondi	ng one of said second set of subband frequency component	
20	signals and s	aid echo replica and supplying the difference as said residual	
21	echo to said	echo canceller; and	
22		subband spectral shaping means for receiving said residual	
23	echo as a firs	t subband input signal, receiving said echo replica as a second	
24	subband inp	ut signal, estimating from the first and second input signals said	
25	acoustic ech	o component when said speech activity is low or zero, and	

26	shaping said first subband input signal with the estimated acoustic echo		
27	component to produce an output signal of the subband echo suppressor, and		
28	means for combining the output signals of said plurality of subband		
29	echo suppressors.		
	; 		
1	23. The speech communication apparatus of claim 22, wherein said		
2	subband spectral shaping means comprises:		
3	a division circuit for producing a ratio of said first subband signal to		
4	said second subband signal;		
5	a smoother for smoothing said ratio when said speech activity is low		
6	or zero;		
7	a multiplier for multiplying said second subband signal by said		
8	smoothed ratio to produce said estimate of the subband acoustic echo		
9	component; and		
10	a subtractor for producing a difference signal representative of the		
11	difference between the first subband signal and said estimate supplied from		
12	said multiplier.		
1	24. The speech communication apparatus of claim 23, wherein said		
2	smoother includes means for causing said ratio to vary sharply at a rising		
3	edge of a transition and vary slowly at a falling edge of the transition.		
1	25. The speech communication apparatus of claim 23, wherein said		
2	division circuit includes first and second smoothers for smoothing said first		
3	and second subband signals, respectively, before said ratio is produced.		
1	26. The speech communication apparatus of claim 25, wherein said		
2	first smoother includes means for causing said first subband signal to vary		
3	sharply at a rising edge of a transition and vary slowly at a falling edge of the		
4	transition, and wherein said second smoother includes means for causing		

5	said second subband signal to vary sharply at a rising edge of a transition and		
6	vary slowly at a falling edge of the transition.		
	· · · · · · · · · · · · · · · · · · ·		
1	27. The speech communication apparatus of claim 22, wherein		
2	each of said subband spectral shaping means comprises:		
3	a first division circuit for producing a first ratio of said first subband		
4	signal to said second subband signal;		
5	a second division circuit for producing a second ratio of said second		
6	subband signal to said first subband signal;		
7	a first smoother for smoothing said first ratio when said speech		
8	activity is low or zero;		
9	a first multiplier for multiplying the smoothed first ratio by said		
10	second ratio;		
11	a second smoother for smoothing the output of said first multiplier;		
12	a subtractor for subtracting integer 1 from the output of the second		
13	smoother; and		
14	a second multiplier for multiplying said first subband signal by the		
15	output of the subtractor.		
1	28. The speech communication apparatus of claim 27, wherein said		
2	first smoother includes means for causing said first ratio to vary sharply at a		
3	rising edge of a transition and vary slowly at a falling edge of the transition.		
1	29. The speech communication apparatus of claim 27, wherein said		
2	first division circuit includes first and second smoothers for smoothing said		
3	first and second subband signals, respectively, before said first ratio is		
4	produced.		
1	30. A method of suppressing acoustic echo, comprising the steps of:		
2	a) receiving a distant signal from a far-end talker and producing		
	; !		

	;	
3	acoustic energy of the distant signal from a signal output transducer;	
4	b) producing a near-end signal from a signal input transducer	
5	which may contain a component representing a speech activity of a near-end	
6	talker or an acoustic echo component, or both, wherein said acoustic echo	
7	component occurs as a result of the distant signal being transmitted through	
8	an acoustic echo path from the signal output transducer to the signal input	
9	transducer;	
10	c) producing an echo replica from said distant signal and a	
11	residual echo, detecting said residual echo between said near-end signal and	
12	said echo replica and using the residual echo as a feedback signal to produce	
13	said echo replica; and	
14	d) receiving one of said near-end signal and said residual echo as a	
15	first input signal, receiving said echo replica as a second input signal, and	
16	estimating from the first and second input signals said acoustic echo	
17	component when said speech activity is low or zero; and	
18	e) shaping spectrum of said first input signal with the estimated	
19	acoustic echo component.	
1	31. The method of claim 30, wherein step (d) estimates said acoustic	
2	echo component for each of a plurality of subband frequencies of audio	
3	spectrum.	
1	32. The method of claim 30, wherein step (d) estimates said acoustic	
2	echo component from a ratio of said first input signal to said second input	
3	signal.	
1	33. The method of claim 30, wherein step (d) estimates said acoustic	
2	echo component from a ratio of said first input signal to said second input	

3 signal for each of a plurality of subband frequencies of audio spectrum.

	:		
1	34. The method of claim 30, wherein step (d) comprises:		
2	d ₁) dividing said first input signal into a first set of subband		
3	frequency component signals;		
4	d ₂) dividing said second input signal into a second set of subband		
5	frequency component signals;		
6	d ₃) receiving a corresponding one of the first set of subband		
7	frequency component signals as a first subband signal, receiving a		
8	corresponding one of the second set of subband frequency component signals		
9	as a second subband signal, producing an estimate of a subband acoustic		
10	echo component from the first and second subband signals, and shaping the		
11	first subband signal with the estimate of the subband acoustic echo		
12	component; and		
13	$\mathbf{d_4}$) combining output signals of said plurality of subband spectral		
14	shaping means.		
1	35. The method of claim 34, wherein step (d ₃) comprises:		
2	producing a ratio of said first subband signal to said second subband		
3	signal;		
4	smoothing said ratio when said speech activity is low or zero;		
5	multiplying said second subband signal by said smoothed ratio to		
6	produce said estimate of the subband acoustic echo component; and		
7	producing a difference signal representative of the difference between		
8	the first subband signal and said estimate supplied from said multiplier.		
1	36. The method of claim 35, wherein the smoothing step causes said		
2	ratio to vary sharply at a rising edge of a transition and vary slowly at a		
3	falling edge of the transition.		
1	37. The method of claim 35, wherein the ratio producing step		
2	includes the step of smoothing said first and second subband signals before		

produced.

3

3	said ratio is	produced.
1	38.	The method of claim 37, wherein the step of smoothing the first
2	and second	subband signals causes said first and second subband signals to
3	vary sharply	at a rising edge of a transition and vary slowly at a falling edge
4	of the transition.	
1	39.	The method of claim 34, wherein step (d) comprises:
2	d_1)	producing a first ratio of said first subband signal to said second
3	subband sig	nal;
4	d ₂)	producing a second ratio of said second subband signal to said
5	first subban	d signal;
6	d ₃)	smoothing said first ratio when said speech activity is low or
7	zero;	
8	d_4)	multiplying the smoothed first ratio by said second ratio;
9	d ₅)	smoothing the multiplied smoothed first ratio;
10	d ₆)	subtracting integer 1 from the first ratio smoothed by step (d5)
11	to produce a	a subtracted signal; and
12	d ₇)	multiplying said first subband signal by said subtracted signal.
		·
1	40.	The method of claim 39, wherein step (d_3) includes the step of
2	causing said	l first ratio to vary sharply at a rising edge of a transition and vary
3	slowly at a f	alling edge of the transition.
1	41.	The method of claim 39, wherein step (d_1) includes the steps of
2	smoothing s	said first and second subband signals before said first ratio is

1 42. The method of claim 30, further comprising accentuating 2 harmonics components of said distant signal contained in said echo replica

3	perore estimating said acoustic echo component.		
1	43. The method of claim 30, wherein step (c) comprises the steps of:		
2	dividing said residual echo into a first set of subband frequency		
3	component signals;		
4	dividing said distant signal into a second set of subband frequency		
5	component signals;		
6	adaptively filtering said second set of subband frequency component		
7	signals according to said first set of subband frequency component signals;		
8	combining the adaptively filtered signals to produce said echo replica;		
9	and		
10	nullifying the first set of subband frequency component signals when		
11	said speech activity is high,		
12	wherein step (d) _i comprises:		
13	receiving a corresponding one of the first set of subband frequency		
14	component signals as a first subband signal, receiving a corresponding one of		
15	the adaptively filtered signals as a second subband signal, and producing an		
16	estimate of a subband acoustic echo component from the first and second		
17	subband signals;		
18	shaping the first subband signal with the estimate of the subband		
19	acoustic echo component; and		
20	combining a plurality of said shaped first subband signals.		
1	44. The method of claim 43, wherein the shaping step comprises:		
2	producing a ratio of said first subband signal to said second subband		
3	signal;		
4	smoothing said ratio when said speech activity is low or zero;		
5	multiplying said second subband signal by said smoothed ratio to		
6	produce said estimate of the subband acoustic echo component; and		
7	producing a difference signal representative of the difference between		

8	the first subband signal and said estimate of the subband acoustic echo		
9	component.	: :	
		· :	
1	45.	The method of claim 44, wherein the smoothing step causes said	
2	ratio to vary	sharply at a rising edge of a transition and vary slowly at a	
3	falling edge of the transition.		
1	46.	The method of claim 44, wherein the ratio producing step	
2	comprises the steps of smoothing said first and second subband signals		
3	before said ratio is produced.		
1	47 .	The method of claim 46, wherein the steps of smoothing the first	
2	and second	subband signals cause said first and second subband signals to	
3	vary sharply at a rising edge of a transition and vary slowly at a falling edge		
4	of the transi	tion.	
1	48.	The method of claim 43, wherein the shaping step comprises:	
2	d_1)	producing a first ratio of said first subband signal to said second	
3	subband signal;		
4	d ₂)	producing a second ratio of said second subband signal to said	
5	first subban	d signal;	
6	d ₃)	smoothing said first ratio when said speech activity is low or	
7	zero;		
8	d_4)	multiplying the smoothed first ratio by said second ratio;	
9	d ₅)	smoothing the multiplied smoothed first ratio;	
10	d ₆)	subtracting integer 1 from the first ratio smoothed by step (d ₅)	
11	to produce a subtracted signal; and		
12	d ₇)	multiplying said first subband signal by said subtracted signal.	
		•	
1	49	The method of claim 48, wherein step (d ₂) includes the step of	

2	causing said first ratio to vary sharply at a rising edge of a transition and vary
3	slowly at a falling edge of the transition

- 50. The method of claim 48, wherein step (d₁) includes the steps of smoothing said first and second subband signals before said first ratio is produced.
- 1 51. A method of suppressing acoustic echo, comprising the steps of:
 - a) receiving a distant signal from a far-end talker and producing acoustic energy of the distant signal from a signal output transducer;
 - b) dividing said distant signal into a first set of subband frequency component signals;
 - c) producing a near-end signal by a signal input transducer, wherein the near-end signal may contain a component representing a speech activity of a near-end talker or an acoustic echo component, or both, wherein said acoustic echo component occurs as a result of the distant signal being transmitted through an acoustic echo path from the signal output transducer to the signal input transducer;
 - d) dividing said near-end signal into a second set of subband frequency component signals;
 - e) producing an echo replica from a corresponding one of said first set of subband frequency component signals and a subband residual echo, detecting the subband residual echo between a corresponding one of said second set of subband frequency component signals and said echo replica and using said subband residual echo as a feedback signal to produce said echo replica;
 - f) receiving said residual echo as a first subband input signal, receiving said echo replica as a second subband input signal, and estimating from the first and second input signals said acoustic echo component when said speech activity is low or zero;

24	g)	shaping said first subband input signal with the estimated
25	acoustic ech	o component to produce an output signal; and
26	h)	combining a plurality of said output signals.
1	52.	The method of claim 51, wherein step (g) comprises the steps
2	of:	
3	•	ucing a ratio of said first subband signal to said second subband
4	signal;	!
5	smoo	thing said ratio when said speech activity is low or zero;
6	multiplying said second subband signal by said smoothed ratio to	
7	produce said	d estimate of the subband acoustic echo component; and
8	produ	ucing a difference signal representative of the difference between
9	the first sub	band signal and said estimate supplied from said multiplier.
		·
1	53.	The method of claim 52, wherein the smoothing step causes said
2	ratio to vary	sharply at a rising edge of a transition and vary slowly at a
3	falling edge	of the transition.
1	54.	The method of claim 52, wherein the ratio producing step
2	includes the	steps of smoothing said first and second subband signals before
3	said ratio is	produced.
1	55.	The method of claim 54, wherein the steps of smoothing said
2	first and sec	ond subband signals cause said first and second subband signals
3	to vary sharply at a rising edge of a transition and vary slowly at a falling	
4	edge of the t	1
-		
1	56 .	The method of claim 51, wherein step (e) comprises the steps
2	of:	The medical of chamical, wherein step (c) comprises the steps
		nroducing a first ratio of said first subband signal to said accord
3	e ₁)	producing a first ratio of said first subband signal to said second

4	subband signal;		
5	e ₂)	producing a second ratio of said second subband signal to said	
6	first subban	d signal;	
7	e ₃)	smoothing said first ratio when said speech activity is low or	
8	zero;		
9	e ₄)	multiplying the smoothed first ratio by said second ratio;	
10	e ₅)	smoothing the multiplied smoothed first ratio;	
11	e ₆)	subtracting integer 1 from the first ratio smoothed by step (e ₅)	
12	to produce a subtracted signal; and		
13	e ₇)	multiplying said first subband signal by said subtracted signal.	
1	57.	The method of claim 56, wherein step (e3) causes said first ratio	
2	to vary shar	ply at a rising edge of a transition and vary slowly at a falling	
3	edge of the	transition.	
1	58.	The method of claim 56, wherein step (e1) includes the steps of	
2	smoothing s	aid first and second subband signals before said first ratio is	
3	produced.	·	
		į	
1	59.	A spectral shaper for cancellation of noise comprising:	
2	mean	s for dividing a first input signal into a first set of subband	
3	frequency component signals;		
4	means for dividing a second input signal into a second set of subband		
5	frequency component signals;		
6	a plurality of subband spectral shaping means, each of the subband		
7	spectral shaping means receiving a corresponding one of the first set of		
8	subband frequency component signals as a first subband signal, receiving a		
9	corresponding one of the second set of subband frequency component signs		
10	as a second	subband signal, producing an estimate of a subband noise	
11	component	from the first and second subband signals, and shaping the first	

	·		
12	subband signal with the estimate of the subband noise component; and		
13	means for combining output signals of said plurality of subband		
14	spectral shaping means.		
1	60. The spectral shaper of claim 59, wherein each of said subband		
2	spectral shaping means comprises:		
3	a division circuit for producing a ratio of said first subband signal to		
4	said second subband signal;		
5	a smoother for smoothing said ratio when said first input signal is		
6	indicative of low or zero speech activity;		
7	a multiplier for multiplying said second subband signal by said		
8	smoothed ratio to produce said estimate of the subband noise component;		
9	and		
10	a subtractor for producing a difference signal representative of the		
11	difference between the first subband signal and said estimate supplied from		
12	said multiplier.		
1	61. The spectral shaper of claim 60, wherein said smoother includes		
2	means for causing said ratio to vary sharply at a rising edge of a transition		
3	and vary slowly at a falling edge of the transition.		
1	62. The spectral shaper of claim 60, wherein said division circuit		
2	includes first and second smoothers for smoothing said first and second		
3	subband signals, respectively, before said ratio is produced.		
	·		
1	63. The spectral shaper of claim 62, wherein said first smoother		
2	includes means for causing said first subband signal to vary sharply at a		
3	rising edge of a transition and vary slowly at a falling edge of the transition,		
4	and wherein said second smoother includes means for causing said second		
5	subband signal to vary sharply at a rising edge of a transition and vary		

6	slowly at a falling edge of the transition.	
1	64. The spectral shaper of claim 59, wherein each of said subband	
2	spectral shaping means comprises:	
3	a first division circuit for producing a first ratio of said first subband	
4	signal to said second subband signal;	
5	a second division circuit for producing a second ratio of said second	
6	subband signal to said first subband signal;	
7	a first smoother for smoothing said first ratio when said first input	
8	signal is indicative of low or zero speech activity;	
9	a first multiplier for multiplying the smoothed first ratio by said	
10	second ratio;	
11	a second smoother for smoothing the output of said first multiplier;	
12	a subtractor for subtracting integer 1 from the output of the second	
13	smoother; and	
14	a second multiplier for multiplying said first subband signal by the	
15	output of the subtractor.	
1	65. The spectral shaper of claim 64, wherein said first smoother	
2	includes means for causing said first ratio to vary sharply at a rising edge of a	
3	transition and vary slowly at a falling edge of the transition.	
	ı	
1	66. The spectral shaper of claim 64, wherein said first division	
2	circuit includes first and second smoothers for smoothing said first and	

second subband signals, respectively, before said first ratio is produced.