[MVA]

Probabilistic graphical models Homework 1

Maha ELBAYAD

22 octobre 2015

Learning in discrete graphical models:

Consider two discrete r.v z and x taking respectively M and K different values with $\mathbb{P}(z=m)=\pi_m$ and $\mathbb{P}(x=k|z=m)=\theta_{mk}$.

Maximum likelihood estimation of π and θ :

Let $\mathcal{D} = \{(x_i, z_i)\}_{1 \le i \le n}$ be an i.i.d sample of observations.

Our objective is to maximize $\mathbb{P}(\mathcal{D}|\theta,\pi)$. We have:

$$\mathbb{P}(\mathcal{D}|\theta,\pi) = \prod_{i=1}^{n} \mathbb{P}(x_i, z_i|\theta,\pi) = \prod_{i=1}^{n} \mathbb{P}(x_i|z_i, \theta, \pi).\mathbb{P}(z_i|\theta,\pi) = \prod_{i=1}^{n} \theta_{z_i x_i} \pi_{z_i}$$

Let us introduce $\eta_m = \sum_{i=1}^n \mathbb{I}(z_i = m)$ and $\xi_{mk} = \sum_{i=1}^n \mathbb{I}(z_i = k, x_i = k)$.

It follows that $\sum_{k=1}^{K} \xi_{mk} = \eta_m \ (m=1,..,M)$ and $\sum_{m=1}^{M} \eta_m = n$.

Thus, we can rewrite our optimization problem as:

maximize
$$l(\theta, \pi) = \sum_{m=1}^{M} \left[\eta_m \log \pi_m + \sum_{k=1}^{K} \xi_{mk} \log \theta_{mk} \right]$$
 subject to
$$\sum_{m=1}^{M} \pi_m = 1$$

$$\sum_{k=1}^{K} \theta_{mk} = 1 \ (m = 1, ..., M)$$

The corresponding Lagrangian is:

$$L(\theta, \pi, \mu, \lambda_1, ... \lambda_M) = \sum_{m=1}^{M} \left[\eta_m \log \pi_m + \sum_{k=1}^{K} \xi_{mk} \log \theta_{mk} \right] + \mu \left(1 - \sum_{m=1}^{M} \pi_m - 1 \right) + \sum_{m=1}^{M} \lambda_m \left(\sum_{k=1}^{K} \theta_{mk} - 1 \right)$$

We set the gradient with respect to π and θ to 0:

$$\frac{\partial L(...)}{\partial \pi_m} = \frac{\eta_m}{\pi_m} - \mu = 0 \quad m = 1, ..., M$$

And:

$$\frac{\partial L(\ldots)}{\partial \theta_{mk}} = \frac{\xi_{mk}}{\theta_{mk}} - \lambda_m = 0$$

Using the optimization constraints and the conditions on η and ξ we find:

$$\mu = n$$
, $\lambda_m = \eta_m$ and $\pi_m^* = \frac{\eta_m}{n} \, \theta_{mk}^* = \frac{\xi_{mk}}{\eta_m}$

Linear classification:

Generative model (LDA):

(a) Maximum likelihood:

Let us consider an i.i.d sample of observations $\mathcal{D} = \{(x_i, y_i)\}_{1 \leq i \leq n}$ where $x_i \in \mathbb{R}^2$ and $y_i \in \{0, 1\}$. Suppose

$$y \sim Bernoulli(\alpha) \quad x|\{y=i\} \sim \mathcal{N}(\mu_i, \Sigma)$$
$$\mathbb{P}(\mathcal{D}|\alpha, \mu_0, \mu_1, \Sigma) = \prod_{i=1}^{n} \alpha^{y_i} (1-\alpha)^{1-y_i} f_0(x_i)^{1-y_i} f_1(x_i)^{y_i}$$

Where

$$f_i(x) = \frac{1}{2\pi\sqrt{\det\Sigma}} \exp\left(-\frac{1}{2}(x-\mu_i)^T \Sigma^{-1}(x-\mu_i)\right)$$

Hence the log-likelihood is:

$$\begin{split} l(\alpha, \mu_0, \mu_1, \Sigma) &= \sum_{i=1}^n \left[y_i \log \alpha + (1 - y_i) \log (1 - \alpha) \right. \\ &+ (1 - y_i) \left(-log(2\pi) - \frac{1}{2} \log \det \Sigma - \frac{1}{2} (x_i - \mu_0)^T \Sigma^{-1} (x_i - \mu_0) \right) \\ &+ y_i \left(-log(2\pi) - \frac{1}{2} \log \det \Sigma - \frac{1}{2} (x_i - \mu_1)^T \Sigma^{-1} (x_i - \mu_1) \right) \right] \end{split}$$

we set the gradients to 0 for α, μ_0 and μ_1 :

$$\frac{\partial l}{\partial \alpha}(..) = \sum_{i=1}^{n} \left[\frac{y_i}{\alpha} - \frac{1 - y_i}{1 - \alpha} \right] = 0$$

thus: $\alpha^* = \frac{1}{n} \sum_{i=1}^n y_i$

$$\frac{\partial l}{\partial \mu_0}(..) = -\frac{1}{2}\Sigma^{-1}\left(\sum_{i=1}^n (1-y_i)(x_i - \mu_0)\right) = \mathbf{0}$$

thus
$$\mu_0^* = \frac{\sum_{i=1}^n (1 - y_i) x_i}{\sum_{i=1}^n (1 - y_i)}$$

And similarly
$$\mu_1^* = \frac{\sum_{i=1}^n y_i x_i}{\sum_{i=1}^n y_i}$$

Finally for Σ , we introduce $A = \Sigma^{-1}$

$$\begin{split} \frac{\partial l}{\partial A}(..) &= \frac{\partial}{\partial A} \left(\sum_{i=1}^{n} \frac{1 - y_i}{2} (\log \det A - Tr((x_i - \mu_0)^T A(x_i - \mu_0))) \right. \\ &\quad + \frac{y_i}{2} (\log \det A - Tr((x_i - \mu_1)^T A(x_i - \mu_1))) \right) \\ &= \sum_{i=1}^{n} \frac{1 - y_i}{2} (A^{-1} - (x_i - \mu_0)(x_i - \mu_0)^T) + \frac{y_i}{2} (A^{-1} - (x_i - \mu_1)(x_i - \mu_1)^T) \\ &= \frac{n}{2} A^{-1} - \frac{n}{2} \bar{\Sigma}_0 - \frac{n}{2} \bar{\Sigma}_1 \end{split}$$

Where

$$\bar{\Sigma}_0 = \frac{1}{n} \sum_{i=1}^{n} (1 - y_i)(x_i - \mu_0)(x_i - \mu_0)^T$$

and:

$$\bar{\Sigma}_1 = \frac{1}{n} \sum_{i=1}^n y_i (x_i - \mu_1) (x_i - \mu_1)^T$$

Thus

$$\Sigma^* = \bar{\Sigma}_0 + \bar{\Sigma}_1$$

(b):

Using Bayes'rule:

$$\mathbb{P}(Y = 1 | X = x) = \frac{\mathbb{P}(X = x | Y = 1) \mathbb{P}(Y = 1)}{\mathbb{P}(X = x | Y = 1) \mathbb{P}(Y = 1) + \mathbb{P}(X = x | Y = 0) \mathbb{P}(Y = 0)}$$
$$= \frac{1}{1 + \frac{(1 - \alpha)f_0(x)}{\alpha f_1(x)}}$$

Given that:

$$\frac{\mathbb{P}(Y=1|X=x)}{\mathbb{P}(Y=0|X=x)} = \frac{\alpha f_1(x)}{(1-\alpha)f_0(x)}
= \exp\left((\Sigma^{-1}(\mu_1 - \mu_0))^T x + \log\frac{\alpha}{1-\alpha} - \frac{1}{2}(\mu_1^T \Sigma^{-1} \mu_1 - \mu_0^T \Sigma^{-1} \mu_0)\right)
= \exp(\omega^T x + b)$$

with:

$$\omega = \Sigma^{-1}(\mu_1 - \mu_0), \quad b = \log \frac{\alpha}{1 - \alpha} - \frac{1}{2}(\mu_1 + \mu_0)^T \Sigma^{-1}(\mu_1 - \mu_0)$$

We end up with an expression similar to the logistic regression with an explicit intercept b.

$$\mathbb{P}(Y=1|X=x) = \frac{1}{1 + \exp(-(\omega^T x + b))} = \sigma(\omega^T x + b)$$

Our decision boundary would be $\mathbb{P}(Y=1|x)=.5$ which is equivalent to $w^Tx+b=0$

(c):

We implement the model above on a sample (X,Y):

```
MLE.LDA<-function(X,Y){
    alpha=mean(Y)
    mu1=colSums(X[Y==1,])/sum(Y)
    mu0=colSums(X[Y==0,])/sum(1-Y)
    sigma.0=(t(X[Y==0,]-mu0)%*%(X[Y==0,]-mu0))/length(Y)
    sigma.1=(t(X[Y==1,]-mu1)%*%(X[Y==1,]-mu1))/length(Y)
    sigma=sigma.0+sigma.1
    A=solve(sigma)
    w=A%*%(mu1-mu0)
    b=log(alpha/(1-alpha))+1/2*t(mu0+mu1)%*%A%*%(mu1-mu0)
    predict<-function(x){(t(w)%*%x+b>=0)+0}
    list(alpha=alpha,mu1=mu1,mu0=mu0,sigma=sigma,w=w,b=b,predict=predict)
}
```

Estimated gaussian distributions and decision boundaries on the training sets A,B and C:

 $^{\mathsf{X1}}$ $_4$

Table 1: LDA - sample A

alpha	mu1	mu0	sigma.1	sigma.2	w	b
0.00	-2.69		8.74	-1.31	-0.62	
0.33	0.87	-0.89	-1.31	7.78	0.12	-0.76

Table 2: LDA - sample B

alpha	mu1	mu0	sigma.1	sigma.2	w	b
0.5	-3.22	3.34	12	-0.21	-0.54	0.0-
0.5	1.08	-0.84	-0.21	10.91	0.17	

Table 3: LDA - sample C

alpha	mu1	mu0	sigma.1	sigma.2	w	b
	-2.94 -0.96		0.0-	-0.69 8.77	-0.88 -0.08	0.00

Logistic regression:

We will implement the logistic regression model with the assumption:

$$\log \frac{\mathbb{P}(Y=1|X=x)}{\mathbb{P}(Y=0|X=x)} = f(x) = w^T x$$

Where the intercept w_0 is included in w by adding adding a column of ones to the design matrix X.

We have established in the course that:

$$l(w) = \sum_{i=1}^{n} y_i w^T x_i + \log \sigma(-w^T x_i)$$

Thus:

$$\nabla_w l(w) = \sum_{i=1}^n (y_i - \eta_i) x_i$$

with $\eta_i = \sigma(w^T x_i)$

$$Hl(w) = -X^T D_{\eta} X$$

with $D_{\eta} = Diag(\eta_i(1 - \eta_i))$.

The Newton-Raphson method consists of updating w as follows:

$$w^{(new)} = w^{(old)} + (X^T D_{\eta^{(old)}} X)^{-1} X^T (Y - \eta^{(old)})$$

assuming $X^T D_{\eta} X$ is invertible.

The descision boundary defined as $\mathbb{P}(Y=1|x)=.5$ is equivalent to $w^Tx=0$

```
sigmoid < -function(x) \{1/(1+exp(-x))\}
p \le function(x,w) \{ sigmoid(apply(x,1,function(u)\{t(u)%*%w\})) \}
grad = function(x,y,w)\{-t(x)\%*\%(y-p(x,w))\}
hess = function(x,y,w){
  t(x)%*% diag(p(x,w)*(1-p(x,w))) %*%x
}
NR.Logit<-function(X,Y,max_iter=1000,tol=1e-7){</pre>
  X=cbind(1,X)
  #Initialize w:
  #w=rnorm(dim(X)[2])
  w=numeric(ncol(X))
  flag=T
  iter=1
  while(iter<max_iter & flag){</pre>
    w.old=w
    w=w.old-ginv(hess(X,Y,w.old))%*%grad(X,Y,w.old)
    norm(w-w.old,'2')
    flag =norm(w-w.old,'2') > tol
    iter=iter+1
  }
  predict < -function(x) \{(t(w)%*%c(1,x)>=0)+0\}
  list(w=w,iter=iter,cvg=iter<max_iter,predict=predict)</pre>
```

Estimated decision boundaries on the training sets A,B and C:

Sample A (Newton-Raphson didn't converge) Logitsic regression

Sample B (converged after 11 iterations) Logistic regression

Sample C (converged after 11 iterations) Logistic regression

Table 4: Logit - sample A

w	iter	cvg
-200.6	1000	FALSE
-1179	1000	FALSE
-2043	1000	FALSE

Table 5: Logit - sample B

w	iter	cvg
1.35	11	TRUE
-1.71	11	TRUE
1.02	11	TRUE

Table 6: Logit - sample C

w	iter	cvg
0.96	11	TRUE
-2.2	11	TRUE
0.71	11	TRUE

Linear regression:

For the affine model $y = w^T x + b$ or $y = w^T x$ after offset reparametrization.

The solution to the normal equations is:

$$w^* = (X^T X)^{-1} X^T Y$$

and the noise variance:

$$\hat{\sigma}^2 = \frac{1}{n} (Y - Xw^*)^T (Y - Xw^*)$$

The decision boundary $\mathbb{P}(Y=1|x)=.5$ is equivalent to:

$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(1 - w^T x)^2}{\sigma^2}\right) = .5$$
$$w^T x + \sqrt{\sigma^2 \log(\frac{2}{\pi\sigma^2})} - 1 = 0$$

```
LR<- function(X,Y){
    X=cbind(1,X)
    w=ginv(t(X)%*%X)%*%t(X)%*%Y
    sigma=mean((Y-X%*%w)^2)
    #the extra intercept:
    alpha=sqrt(sigma*log(2/pi/sigma))-1
    predict<-function(x){(t(w)%*%c(1,x)+alpha>=0)+0}
    list(w=w,sigma=sqrt(sigma),alpha=alpha,predict=predict)
}
```

Table 7: LR - sample A

w	sigma	alpha
0.49	0.2	-0.67
-0.26	0.2	-0.67
-0.37	0.2	-0.67

Table 8: LR - sample B

w	sigma	alpha
0.5	0.23	-0.63
-0.1	0.23	-0.63
0.05	0.23	-0.63

Table 9: LR - sample C

w	sigma	alpha
0.51	0.25	-0.62
-0.13	0.25	-0.62
-0.02	0.25	-0.62

Estimated decision boundaries on the training sets A,B and C:

Models' performance:

```
\#LDA - A
                                              Confusion.LDA.C.Train=CM(LDA.C.Train,Y.C)
                                              ##Test:
##Train:
LDA.A.Train=apply(X.A,1,LDA.A$predict)
                                              LDA.C.Test=apply(X.CT,1,LDA.C$predict)
                                              Confusion.LDA.C.Test=CM(LDA.C.Test,Y.CT)
Confusion.LDA.A.Train=CM(LDA.A.Train,Y.A)
##Test:
LDA.A.Test=apply(X.AT,1,LDA.A$predict)
                                               #Confusion matrices:
Confusion.LDA.A.Test=CM(LDA.A.Test,Y.AT)
                                              Confusion.LDA.C.Train$C
                                              ##
                                                       true
                                                             0
#Confusion matrices:
                                              ## pred
Confusion.LDA.A.Train$C
                                              ## 0
                                                            128
                                                             22 243
                                              ## 1
##
        true 0 1
## pred
                                              Confusion.LDA.C.Test$C
## 0
             99 6
## 1
              1 44
                                              ##
                                                      true
                                                               0
                                                                    1
                                              ## pred
                                              ## 0
                                                             867
                                                                   28
Confusion.LDA.A.Test$C
                                              ## 1
                                                            133 1972
##
        true
               0
                   1
                                              \#Logit - A
## pred
                                              ##Train:
## 0
             998 60
                                              Logit.A.Train=apply(X.A,1,Logit.A$predict)
## 1
               2 440
                                              Confusion.Logit.A.Train=CM(Logit.A.Train,Y.A)
                                              ##Test:
\#LDA - B
                                              Logit.A.Test=apply(X.AT,1,Logit.A$predict)
##Train:
                                              Confusion.Logit.A.Test=CM(Logit.A.Test,Y.AT)
LDA.B.Train=apply(X.B,1,LDA.B$predict)
Confusion.LDA.B.Train=CM(LDA.B.Train,Y.B)
                                               #Confusion matrices:
##Test:
                                              Confusion.Logit.A.Train$C
LDA.B.Test=apply(X.BT,1,LDA.B$predict)
                                                      true 0
                                              ##
Confusion.LDA.B.Test=CM(LDA.B.Test,Y.BT)
                                                                1
                                              ## pred
                                                           100
                                              ## 0
                                                                 Ω
#Confusion matrices:
                                              ## 1
                                                              0
                                                                50
Confusion.LDA.B.Train$C
                                              Confusion.Logit.A.Test$C
##
        true
               Ω
                   1
## pred
                                              ##
                                                      true
                                                             0
## 0
             149
                   9
                                              ## pred
## 1
               1 141
                                              ## 0
                                                            982 35
                                              ## 1
                                                            18 465
Confusion.LDA.B.Test$C
                                              \#Logit - B
                                              ##Train:
##
       true
               0
                                              Logit.B.Train=apply(X.B,1,Logit.B$predict)
## pred
                                              Confusion.Logit.B.Train=CM(Logit.B.Train,Y.B)
## 0
             972 69
                                              ##Test:
## 1
              28 931
                                              Logit.B.Test=apply(X.BT,1,Logit.B$predict)
                                              Confusion.Logit.B.Test=CM(Logit.B.Test,Y.BT)
\#LDA - C
##Train:
                                               #Confusion matrices:
LDA.C.Train=apply(X.C,1,LDA.C$predict)
                                              Confusion.Logit.B.Train$C
```

## true 0 1	## true 0 1
## pred	## pred
## 0 149 5	## 0 996 63
## 1 1 145	## 1 4 437
## 1 1 145	## 1 4 457
Confusion Louis D. Toostoc	
Confusion.Logit.B.Test\$C	#LR - B
	##Train:
## true 0 1	<pre>LR.B.Train=apply(X.B,1,LR.B\$predict)</pre>
## pred	Confusion.LR.B.Train=CM(LR.B.Train,Y.B)
## 0 946 32	##Test:
## 1 54 968	<pre>LR.B.Test=apply(X.BT,1,LR.B\$predict)</pre>
	Confusion.LR.B.Test=CM(LR.B.Test,Y.BT)
WT 11 C	Confusion. Env. D. 1050 Cir (Env. D. 1050, 1. D1)
#Logit - C	#Confusion makes
##Train:	#Confusion matrices:
<pre>Logit.C.Train=apply(X.C,1,Logit.C\$predict)</pre>	Confusion.LR.B.Train\$C
Confusion.Logit.C.Train=CM(Logit.C.Train,Y.C))
##Test:	## true 0 1
<pre>Logit.C.Test=apply(X.CT,1,Logit.C\$predict)</pre>	## pred
Confusion.Logit.C.Test=CM(Logit.C.Test,Y.CT)	=
, , , , , , , , , , , , , , , , , , , ,	## 0 150 22
#Confusion matrices:	## 1 0 128
Confusion.Logit.C.Train\$C	
Confusion.Logit.C.Hainwo	Confusion.LR.B.Test\$C
	001140201121021120040
## true 0 1	
## pred	## true 0 1
## 0 141 7	## pred
## 1 9 243	## 0 997 174
	## 1 3 826
Confusion.Logit.C.Test\$C	
	W.D. C
## +***** 0 1	#LR - C
## true 0 1	##Train:
## pred	<pre>LR.C.Train=apply(X.C,1,LR.C\$predict)</pre>
## 0 973 41	${\tt Confusion.LR.C.Train=CM(LR.C.Train,Y.C)}$
## 1 27 1959	##Test:
	<pre>LR.C.Test=apply(X.CT,1,LR.C\$predict)</pre>
#LR - A	<pre>Confusion.LR.C.Test=CM(LR.C.Test,Y.CT)</pre>
##Train:	
<pre>LR.A.Train=apply(X.A,1,LR.A\$predict)</pre>	#Confusion matrices:
Confusion.LR.A.Train=CM(LR.A.Train,Y.A)	Confusion.LR.C.Train\$C
##Test:	
LR.A.Test=apply(X.AT,1,LR.A\$predict)	
	## true 0 1
Confusion.LR.A.Test=CM(LR.A.Test,Y.AT)	## pred
	## 0 146 19
#Confusion matrices:	## 1 4 231
Confusion.LR.A.Train\$C	
## true 0 1	Confusion.LR.C.Test\$C
	Confusion.LR.C.Test\$C
## pred	
## pred ## 0 100 6	## true 0 1
## pred ## 0 100 6	## true 0 1 ## pred
## pred ## 0 100 6	## true 0 1

Table 10: Comparison of the 3 models on 3 samples - error in %

Model	A.train	A.test	B.train	B.test	C.train	C.test
LDA	4.667	4.133	3.333	4.85	7.25	5.367
Logit	0	3.533	2	4.3	4	2.267
$\widetilde{\mathrm{LR}}$	4	4.467	7.333	8.85	5.75	5.267

We can see that the logistic regression outperforms LDA and linear regression on the 3 datasets even on A where the training set is linearly separable, thus allowing the algorithm to diverge and the computed weights to be large and prone to overfit the training set. The LDA do well on the sets A and B where the model of gaussian distribution is quite accurate; although the mislclassification measure favors the logitic regression, the decision boundaries of LDA on A and B seems more logic - the generative classification is suitable here—while the existence of two separate clusters on a single class in the set C affects the results of LDA badly.

QDA model:

When relaxing the assumption that the two classes share the same covariance matrix, the maximum likelihood yields the same results except from:

$$\Sigma_0^* = \frac{n}{\sum_{i=1}^n (1 - y_i)} \bar{\Sigma}_0$$
$$\Sigma_1^* = \frac{n}{\sum_{i=1}^n y_i} \bar{\Sigma}_1$$

As for the decision boundary, following the same step we get a boundary of quadratic equation:

$$x^T Q x + w^T x + b = 0$$

with:

$$\begin{split} Q &= \frac{1}{2} (\Sigma_O^{-1} + \Sigma_1^{-1}) \\ w &= \Sigma_1^{-1} \mu_1 - \Sigma_0^{-1} \mu_0 \\ b &= \log \left(\frac{\alpha \sqrt{det \Sigma_0}}{(1 - \alpha) \sqrt{det \Sigma_1}} \right) - \frac{1}{2} \mu_1^T \Sigma_1^{-1} \mu_1 + \frac{1}{2} \mu_0^T \Sigma_0^{-1} \mu_0 \end{split}$$

We implement the QDA in the following function:

```
MLE.QDA<-function(X,Y){
  alpha=mean(Y)
  mu1=colSums(X[Y==1,])/sum(Y)
  mu0=colSums(X[Y==0,])/sum(1-Y)
  emp.sigma.0=(t(X[Y==0,]-mu0)%*%(X[Y==0,]-mu0))/length(Y)
  {\tt emp.sigma.1=(t(X[Y==1,]-mu1)\%*\%(X[Y==1,]-mu1))/length(Y))}
  sigma.0=length(Y)/sum(1-Y)*emp.sigma.0
  sigma.1=length(Y)/sum(Y)*emp.sigma.1
  A=solve(sigma.0)
  B=solve(sigma.1)
  Q=(A-B)/2
  w=B%*%mu1-A%*%mu0
  b=log(alpha*sqrt(det(sigma.0))/(1-alpha)/sqrt(det(sigma.1)))
  -t(mu1)%*%B%*%mu1/2+t(mu0)%*%B%*%mu0/2
  Conic=cbind(rbind(Q,t(w)/2),c(w/2,b))
  predict <-function(x)\{((t(c(x,1))%*\%Conic%*\%c(x,1))>=0)+0\}
```

Table 11: QDA - sample A

alpha	mu1	mu0	sigma.0.1	sigma.0.2	sigma.1.1	sigma.1.2
0.33	-2.69	2.9	8.84	-1.21	8.53	-1.5
0.33	0.87	-0.89	-1.21	8.12	-1.5	7.11

Table 12: QDA - sample B

alpha	mu1	mu0	${\rm sigma.0.1}$	${\rm sigma.} 0.2$	sigma.1.1	sigma.1.2
	-3.22		11.55	1.2	12.45	-1.61 10.16
0.5	1.08	-0.84	1.2	11.65	-1.61	10.1

Table 13: QDA - sample C

alpha	mu1	mu0	sigma.0.1	sigma.0.2	sigma.1.1	sigma.1.2
0.62	-2.94	2.79	9.49	1.07	4.89	-1.74
0.62	-0.96	-0.84	1.07	9.18	-1.74	8.52

Estimated gaussian distributions and decision boundaries on the training sets A,B and C:

Performance of QDA:

```
#QDA - A
##Train:
QDA.A.Train=apply(X.A,1,QDA.A$predict)
Confusion.QDA.A.Train=CM(QDA.A.Train,Y.A)
##Test:
QDA.A.Test=apply(X.AT,1,QDA.A$predict)
Confusion.QDA.A.Test=CM(QDA.A.Test,Y.AT)
#Confusion matrices:
Confusion.QDA.A.Train$C
        true 0 1
##
## pred
## 0
             98 5
## 1
              2 45
Confusion.QDA.A.Test$C
        true
               0
## pred
## 0
             996 41
## 1
               4 459
#QDA - B
##Train:
QDA.B.Train=apply(X.B,1,QDA.B$predict)
Confusion.QDA.B.Train=CM(QDA.B.Train,Y.B)
##Test:
QDA.B.Test=apply(X.BT,1,QDA.B$predict)
Confusion.QDA.B.Test=CM(QDA.B.Test,Y.BT)
#Confusion matrices:
Confusion.QDA.B.Train$C
##
        true
               0
                   1
## pred
## 0
             149
                   8
## 1
               1 142
Confusion.QDA.B.Test$C
##
        true
## pred
## 0
             976 64
## 1
             24 936
#QDA - C
##Train:
QDA.C.Train=apply(X.C,1,QDA.C$predict)
Confusion.QDA.C.Train=CM(QDA.C.Train,Y.C)
QDA.C.Test=apply(X.CT,1,QDA.C$predict)
```

```
Confusion.QDA.C.Test=CM(QDA.C.Test,Y.CT)
#Confusion matrices:
```

 ${\tt Confusion.QDA.C.Train\$C}$

```
## true 0 1
## pred
## 0 125 5
## 1 25 245
```

Confusion.QDA.C.Test\$C

##		true	0	1
##	pred			
##	0		836	26
##	1		164	1974

Table 14: Comparison of the 4 models on 3 samples - error in %

	Λ , .	A , ,	ъ.	D / /	a .	
Model	A.train	A.test	B.train	$\mathbf{B}.\mathbf{test}$	C.train	C.test
LDA	4.667	4.133	3.333	4.85	7.25	5.367
Logit	0	3.533	2	4.3	4	2.267
LR	4	4.467	7.333	8.85	5.75	5.267
QDA	4.667	3	3	4.4	7.5	6.333

As we expected, the QDA did well on sample B where the assumption of gaussian distributions with different covariances is suitable. Its performance on A is quite similar to this of LDA, but on sample C, QDA seems more sensitive to outliers, thus performing poorly.