

Chauffage d'une chambre

On étudie le chauffage d'une chambre au dernier étage de l'internat en hiver. On installe un radiateur électrique d'appoint fournissant une puissance de chauffe \mathcal{P}_c . Le volume de la chambre est $V=36\,\mathrm{m}^3$, et est rempli d'air de capacité thermique molaire $C_{V,m}=\frac{5}{2}R$. On la suppose vide de meubles.

Les échanges thermiques se font via par deux surfaces : le mur et les vitres en contact avec l'extérieur et le toit, de surfaces égales $S=12\,\mathrm{m}^2$. Les autres surfaces sont supposées à l'équilibre thermique du fait des chambres voisines et en-dessous. On note $T_{\mathrm{int}}(t)$ la température intérieure, et $T_{\mathrm{ext}}=10\,\mathrm{^{\circ}C}$ la température extérieure, supposée constante.

Les fuites thermiques à la date t à travers le mur sont données par la puissance $\mathcal{P}_{\text{mur}} = g_{\text{mur}} S(T_{\text{int}}(t) - T_{\text{ext}})$, et celles à travers le toit par $\mathcal{P}_{\text{toit}} = g_{\text{toit}} S(T_{\text{int}}(t) - T_{\text{ext}})$.

On souhaite maintenir la température à une température de confort $T_c = 19$ °C. La pression de l'air intérieur est $P_0 = 1,0$ bar à cette température.

$$g_{\text{mur}} = 2,90 \,\text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-1} \text{ et } g_{\text{toit}} = 0,50 \,\text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}, \ R = 8,314 \,\text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}.$$

- 1) Faire un schéma représentant la pièce, le radiateur et l'extérieur, en faisant apparaître les transferts thermiques entrant en rouge et les transferts thermiques sortant en bleu.
- 2) Calculer le nombre de moles d'air présentes dans la véranda dans les conditions (T_c, P_0) . En déduire la capacité thermique C_V de l'air contenu dans la vérande. Faire l'application numérique.
- 3) Quelle est la puissance \mathcal{P}_c fournie par le radiateur pour maintenir une telle température de confort dans les conditions mentionnées ci-dessus?

On doit partir pour une khôlle et dîner, et on se demande s'il vaut mieux couper le chauffage ou le maintenir. On suppose alors qu'on arrête le chauffage à t = 0, et qu'on revient 3 h plus tard au temps t_1 .

- 4) En supposant qu'il n'y a pas de circulation d'air, appliquer le premier principe sous forme différentielle à l'air de la chambre et déterminer l'équation différentielle vérifier par $T_{\text{int}}(t)$ pour $t \in [0,t_1]$. On introduira un temps caractéristique τ que l'on calculera.
- 5) Tracer cette évolution au cours du temps, et déterminer la température $T_{\mathrm{int},\mathrm{f}}$ lors du retour dans la chambre.
- 6) Comme il fait très froid, on pousse la puissance de chauffe à son maximum, $\mathcal{P}_{c,\text{max}} = 2.0 \,\text{kW}$. Ecrire la nouvelle équation différentielle satisfaite par $T_{\text{int}}(t)$, la résoudre et calculer la durée nécessaire pour retrouver la température de confort T_c . On appelle cet instant t_2 .
- 7) Déterminer alors la différence d'énergie entre les deux situations :
 - \diamond On garde le chauffage à la puissance \mathcal{P}_c de t=0 à t_2 ;
 - \diamond On a éteint le chauffage de t=0 à t_1 , mais on le rallume de t_1 à t_2 avec $\mathcal{P}_{c,\max}$.

On suppose que l'énergie électrique est parfaitement convertie en chaleur. Sachant que pour l'électricité on a $1 \text{ kWh} \approx 0.27 \in \text{avec}$ l'augmentation de février 2024, déterminer l'écart financier entre ces deux méthodes. Commenter.