Eco 213: Basic Data Analysis and Econometrics Lecture 9: Instrumental Variables April 6, 2019

Dr. Garima Malik
Department of Economics
Shiv Nadar University

Outline

- Instrumental Variable
- > 2SLS
- Weak Instruments

- ▶ In practice, there could be correlation between X and ε .
- Much of econometric work involves studying the process determining the explanators, to see how they might be correlated with ε .

- ▶ The ideal *X* variable has been randomly assigned.
- If X has been randomly assigned, then it contains no information about ε .
- ▶ However, true randomization is relatively uncommon.

- Often, an explanator is partially determined in a way that is random, or at least uncorrelated with ε .
- Nowever, the explanator is also influenced by omitted variables, or determined endogenously, or is in some other way correlated with ε .

- Fortunately, econometricians have discovered a method for separating out the random elements of explanators from the elements that may be correlated with ε .
- Unfortunately, this method requires the data to include an instrumental variable with certain key properties.

Instrumental Variable

- An **Instrumental Variable** is a variable that is correlated with X but uncorrelated with ε .
- If Z_i is an instrumental variable:
 - 1. $E(Z_i X_i) \neq 0$
 - 2. $E(Z_i \varepsilon_i) = 0$

$$\hat{\beta}^{IV} = \frac{\sum z_i Y_i}{\sum z_i x_i}$$

What is the probability limit of IV?

$$p \lim(\hat{\beta}_1^{IV}) = \beta_1 \frac{Cov(Z_i, X_i)}{Cov(Z_i, X_i)} + \frac{Cov(Z_i, \varepsilon_i)}{Cov(Z_i, X_i)} = \beta_1$$

If $Cov(Z_i, X_i) = 0$, the denominator equals 0, and the $p \lim$ does not exist.

If $Cov(Z_i, \varepsilon_i) \neq 0$, then $\hat{\beta}_1^{IV}$ is inconsistent.

Asymptotic Variance

The asymptotic variance of β^{IV} is

$$\frac{1}{n}\sigma^{2} \frac{p \lim_{n} \frac{1}{\Sigma z_{i}^{2}}}{p \lim_{n} \left(\frac{1}{n} \sum z_{i} x_{i}\right)^{2}} \rightarrow \frac{1}{n}\sigma^{2} \frac{Var(Z_{i})}{Cov(Z_{i}, X_{i})^{2}}$$

$$\Rightarrow \frac{1}{n}\sigma^{2} \frac{Var(Z_{i})}{Cov(Z_{i}, X_{i})^{2}}$$

$$\Rightarrow \text{The greater the covariance between}$$

X and Z, the lower the asymptotic variance.

- When we have just enough instruments for consistent estimation, we say the regression equation is exactly identified.
- When we have more than enough instruments, the regression equation is over identified.
- When we do not have enough instruments, the equation is under identified (and inconsistent).

- ▶ When the regression equation is over identified, we have more instruments than we need.
- We construct a new instrument that combines the original instruments.

IV estimation of the multiple regression model

- Case 1: One endogenous variable, one instrument.
- Case 2: One endogenous variable, more than one instruments. (Two stage least squares)
- Case 3: More than one endogenous variables, more than one instruments. (Two stage least squares)

- Instrumental variables methods are much less efficient than OLS.
- The stronger the correlation between the instruments and the explanators, the more efficient IV is.
- If the correlation between Z and X is too low, then Z is a weak instrument, and 2SLS is not a helpful procedure.

Case 1: One endogenous variable, one instrument.

Consider the following regression.

$$\log(wage) = \beta_0 + \beta_1 educ + \beta_2 \exp + u$$

Suppose that educ is endogenous but exp is exogenous.

- ▶ To explain IV regression for multiple regression, it is often useful to use different notations for endogenous end exogenous variable.
- Let us use y for endogenous variable (i.e., correlated with u) and z for exogenous variables (i.e., uncorrelated with u).
- ▶ Then, we can write the model as:

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u$$
(1)

 y_1 is log(wage), y_2 is educ, and z_1 is exp.

- This model is called the structural equation to emphasize that this equation shows the causal relationship. Off course, OLS cannot be used to consistently estimate the parameters since y₂ is endogenous.
- If you have an instrument for y_2 , you can consistently estimate the model. Let us call this instrument, z_2 .

- As before, z₂ should satisfy (i) instrument exogeneity, and
 (ii) instrument relevance.
- ► For a multiple regression model, these conditions are written as:
 - 1. The instrument exogeneity

$$Cov(z_2, u)=0$$
(2)

2. The instrument relevance

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \text{error} \dots (3)$$

and $\pi_2 \neq 0$

In addition, z₂ should **not** be a part of the structural equation (1). This is called the **exclusion restriction**.

All the exogenous variables included. This equation is often called the reduced form equation.

Now, we have the following three conditions that can be used to obtain the IV estimators.

$$E(u)=0$$
 $Cov(z_1,u)=0$
 $Cov(z_2,u)=0$ (this is from the instrument exogeneity)

- Above method can be easily extended to the case where there are more explanatory variables (but only one endogenous variable).
- Consider the following model.

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \beta_3 z_2 + \beta_4 z_3 + ... + \beta_k z_{k-1} + u$$

Suppose that z_k is the instrument for y_2 . Then the IV estimators are the solution to the following equations.

 $\sum_{i=1}^{n} (y_{i1} - \hat{\beta}_{0} - \hat{\beta}_{1} y_{i2} - \hat{\beta}_{2} z_{i1} - \dots - \hat{\beta}_{k} z_{ik-1}) = 0$ $\sum_{i=1}^{n} z_{i1} (y_{i1} - \hat{\beta}_{0} - \hat{\beta}_{1} y_{i2} - \hat{\beta}_{2} z_{i1} - \dots - \hat{\beta}_{k} z_{ik-1}) = 0$ \vdots $\sum_{i=1}^{n} z_{ik} (y_{i1} - \hat{\beta}_{0} - \hat{\beta}_{1} y_{i2} - \hat{\beta}_{2} z_{i1} - \dots - \hat{\beta}_{k} z_{ik-1}) = 0$

Solution to the above equations are the IV estimators when there are many explanatory variables, but only one endogenous variable and one instrument.

Case 2: One endogenous variable, more than one instruments.

Two stage least squares

Consider the following model with one endogenous variable.

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u$$

Now, suppose that you have two instruments for y_2 that satisfy the instrument conditions. Call them z_2 and z_3 .

- You can apply IV method using either z₂ or z₃. But this produces two different estimators. Moreover, they are not efficient.
- ▶ There is a more efficient estimator.
- First, it is important to lay out the instrument conditions.

▶ For z₂ and z₃ to be valid instruments, they have to satisfy the following two conditions.

1. Instrument exogeneity

$$Cov(z_2, u)=0$$
 and $Cov(z_3, u)=0$

2. Instrument relevance

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + \text{error}$$

and $\pi_2 \neq 0$ or $\pi_3 \neq 0$

Include all the exogenous variables

In addition, z_2 and z_3 should not be a part of the structural equation. These are called the **exclusion restrictions**.

- Instead of using only one instrument, we use a linear combination of z_2 and z_3 as the instrument.
- ▶ Since a linear combination of z₂ and z₃ also satisfies the instrument conditions, this is a valid method.
- The question is how to find the best linear combination of z_2 and z_3 .

It turns out that OLS regression of the following model provides the best linear combination.

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + \text{error}$$

• After you estimate this model, you get the predicted value of y_2 .

$$\hat{y}_2 = \hat{\pi}_0 + \hat{\pi}_1 z_1 + \hat{\pi}_2 z_2 + \hat{\pi}_3 z_3$$

Since \hat{y}_2 is a combination of variables which are not correlated with u, \hat{y}_2 is not correlated with u as well. At the same time, \hat{y}_2 is correlate with y_2 . Thus this is a valid instrument.

▶ Thus, we have the following three conditions that can be used to derive an IV estimator.

E(u)=0
Cov(
$$z_1$$
,u)=0
Cov(\hat{y}_2 ,u)=0

The sample counter part of the above equations are given by:

$$\sum_{i=1}^{n} (y_{i1} - \hat{\beta}_0 - \hat{\beta}_1 y_{i2} - \hat{\beta}_2 z_{i1}) = 0$$

$$\sum_{i=1}^{n} z_{i1} (y_{i1} - \hat{\beta}_0 - \hat{\beta}_1 y_{i2} - \hat{\beta}_2 z_{i1}) = 0$$

$$\sum_{i=1}^{n} \hat{y}_{i2} (y_{i1} - \hat{\beta}_{0} - \hat{\beta}_{1} y_{i2} - \hat{\beta}_{2} z_{i1}) = 0$$

- This is a set of three equations with three unknowns $\hat{\beta}_0 \hat{\beta}_1 \hat{\beta}_2$
- Solution to these equations are special type of IV estimators called the two stage least square estimators.

The estimation procedures of the two stage least square (2SLS).

Stage 1. Estimate the following model using OLS and get the predicted value for y_2 : \hat{y}_2

$$y_2 = \pi_0 + \pi_1 Z_1 + \pi_2 Z_2 + \pi_3 Z_3 + \text{error}$$

Make sure to put all the exogenous variables

Stage 2. replace y_2 with x_2 en estimate the following model using OLS.

$$y_1 = \beta_0 + \beta_1 \hat{y}_2 + \beta_2 z_1 + error$$

OLS estimators of the coefficients are the two stage least square estimators (2SLS).

Case 3: More than one endogenous variables, more than one instruments

Consider the following structural equation.

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 y_3 + \beta_3 z_1 + \beta_4 z_2 + \beta_5 z_3 + u_1$$

There are two endogenous variables, y_2 and y_3 . Thus, OLS will be biased. In order to estimate this model with IV method, you need at least 2 instruments.

When you have multiple endogenous variables, you need at least the same number of instruments as the endogenous variables.

▶ Suppose you have 3 instruments: z₄ z₅ z₆. As usual, these instruments should satisfy 2 conditions. The first is that they should not be correlated with u₁ (Instrument exogeneity). The second is that they should be correlated with endogenous variable (instrument relevance).

The estimation procedure

▶ The 2SLS procedure when there are more than one endogenous variables is shown here.

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 y_3 + \beta_3 z_1 + \beta_4 z_2 + \beta_5 z_3 + u_1$$

Suppose you have three Instruments : Z₄ Z₅ Z₆.

First stage: Estimate the following two reduced from regressions

$$y_2 = \Pi_{10} + \Pi_{11}Z_1 + \Pi_{12}Z_2 + \Pi_{13}Z_3 + \Pi_{14}Z_4 + \Pi_{15}Z_5 + \Pi_{16}Z_6 + \text{error}$$

$$y_3 = \Pi_{20} + \Pi_{21}Z_1 + \Pi_{22}Z_2 + \Pi_{23}Z_3 + \Pi_{24}Z_4 + \Pi_{25}Z_5 + \Pi_{26}Z_6 + \text{error}$$
Then obtain \hat{y}_2 and \hat{y}_3

▶ The second stage: Estimate the following 'second stage regression'.

$$y_1 = \beta_0 + \beta_1 \hat{y}_2 + \beta_2 \hat{y}_3 + \beta_3 z_1 + \beta_4 z_2 + \beta_5 z_3 + u_1$$

The estimated coefficients are the 2SLS coefficients.

- The main trick to using instrumental variables is finding the instruments in the first place.
- When reading studies that employ instruments, be skeptical. Are the authors reasonably convincing that their proposed instruments are valid?

- Instrumental variables can be a powerful technique for drawing causal inferences from not-entirely-random processes.
- However, IV must be used with care.
- If instruments are weak, or correlated with ε , then IV will still be biased.