

Nova o-	MOMENTO	ESPERANZA	Varianza
NOMBRE			
UNIFORME CONTINUA X≃U(a,b)	* f (x) = 1 Vxe [a, b]	$\mu = \int_{a}^{b} \frac{x}{b-a} = \frac{b+a}{2}$	$A_{L} = E(X^{2}) = \frac{1}{2}$ $= \int_{a}^{b} \frac{x^{2}}{b-a} = \frac{b^{3}-a}{3(b-a)}$ $A_{L} = \frac{b^{3}-a}{3(b-a)}$ $A_{L} = \frac{b^{3}-a}{3(b-a)}$
GAMMA XYI(P, a)	$M(+) = E(e^{tx}) = \frac{\alpha p}{\Gamma p} \int_{e^{-t}}^{e^{+t}} \int_{e^{-t}}^{e^{-t}} e^{-t} dt$ $= \frac{\alpha^{p}}{\Gamma(p)} \int_{0}^{\infty} x^{p-1} e^{-\alpha x} (1 - t/\alpha) dx =$ $= (1 - \frac{t}{\alpha})^{-p} = (\frac{9}{\alpha - t})^{p}$ $\Psi(+) = (1 - \frac{t}{\alpha})^{-p}$	$N = \alpha_1 = H'(0) = \frac{P}{\alpha}$	$d_{2} = \Pi^{1}(0) = \frac{\rho(\rho+1)}{\alpha^{2}}$ $d^{2} = d_{2} - \mu^{2} = \frac{\rho(\rho+1-\rho)}{\alpha^{2}}$ $= \frac{\rho}{\alpha^{2}}$
EXPONENCIAL X=EXP(9) X=F(1, a)	$M(t) = \frac{a}{a - t} $ $\Psi(t) = (1 - \frac{it}{a})^{-1} t \in \mathbb{R}$	$V = d \cdot 1 = M''(c) = \frac{1}{q}$	$\phi_2 = M''(0) = \frac{2}{q^2}$ $G^2 = \phi_2 - \mu^2 = \frac{1}{q^2}$
CHI-WADADO $X \simeq X^2 (n)$ $X \simeq \Gamma(\frac{n}{2}, \frac{1}{2})$	M(t) = $(1-2t)^{-n/2}$ $\Psi(t) = (1-2it)^{-\frac{n}{2}}$	h = N	$\sigma^2 = 2n$
BETQ X2 BetalP(4)	$\phi_{K} = \frac{f'(p+q)}{f'(p)f(q)} \int_{a}^{1} \frac{x+p-1}{x+p-1} \frac{q-1}{(1-x)} dx = \frac{g(p+K,q)}{g(p,q)}$	$d_1 = \frac{P}{P + q} = N$	$d_{2} = \frac{\rho (\rho + 1)}{(\rho + q) (\rho + q + 1)}$ $d_{2} = \frac{\rho q}{(\rho + q)^{2} (\rho + q + 1)}$
NORMAL TRACADA XCN(0,1)	$M(+) = e^{\frac{+^2}{2}}$ $\Psi(+) = e^{-\frac{+^2}{2}}$	$V = d_1 = M^1(0) = te^{\frac{t}{2}} \Big]_{0}^{\infty} = 0$	$\delta^{2} = d_{2} - N^{2} = M^{*}(0) = $ $= e^{\frac{1}{2} \cdot \frac{1}{2}} e^{\frac{1}{2} \cdot \frac{1}{2}} = 1.$
NORMAL X > N(N,O)	7= 0 X+ N	h= E(A) = 8. E(x)+E(h)=h	$V(A) = \zeta^2 \cdot V(X) = \zeta^2$
T-STUDENT	1257 1 62	h=0	$S^2 = \frac{N}{N-2}$
Fde fisher SNEDELOR		$N = \frac{N}{N-2} $ N72	$S^{2} = \frac{2n^{2}(m+n-2)}{m(n-2)(n-4)}$

The Asian State of

NOMBRE	FUNCIÓN CARACI ERISTICI	MOMENTO	ESPERan za	varianta		
SINGULAR F(x)=1 Si x=9	Ψ(t)= ξ etx (x)=eta	$M(t) = \sum_{x} e^{tx} f(x) =$	N= q1 = W, (0) = d	$a_1 = M''(0) = q^2$ $0 = a_1 - \mu^2 = 0$		
UNIFORME F(X) = 1 X=p(q,b)	$\Psi(4) = \sum_{j=1}^{k} e^{i + x_j} - (x_j) - \frac{1}{k} \sum_{j=1}^{k} e^{i + x_j}$	= \frac{1}{2} \fra	= \frac{1}{2} \times \frac{1}{2}	F = (x1-x)= -1/K = x2= -1/K		
BERNOULLI ←(x)=P*q1-x X~B(1,P)	Ψ(+)= ξ e ' (x) = f(0)+ e' (+) = ξ e ' (x) = f(0)+	M(+)= C Ex F(x)= A+ P. C E X+ P. C E	N=d1= 11. (1)= P	$d_{2} = M''(0) = \rho$ $d_{2} = M''(0) = \rho$ $\rho - \rho^{2} = \rho(1 - \rho)$		
BINOMIAL X=B(n,p)	$Q_{\tau} = \Lambda(x) = \Lambda\left(\frac{1}{2}X^{T}\right) = \sum_{i=1}^{N} \Lambda(X^{i}) = NLd$ $Q_{\tau} = \Lambda(x) = \Lambda\left(\frac{1}{2}X^{T}\right) = \sum_{i=1}^{N} \Lambda(X^{i}) = NLd$					
POISSON X=PIN) PIN = EN X' X!	$= e_{-y} \sum_{(y \in F_{x})_{x}} \frac{x i}{e_{-y}} = e_{-y} \cdot e_{y \in F_{x}} = e_{y(e_{x} - T)}$ $= e_{-y} \sum_{(y \in F_{x})_{x}} \frac{x i}{e_{x}} = e_{y(e_{x} - T)}$ $= e_{-y} \sum_{(y \in F_{x})_{x}} \frac{x i}{e_{x}} = e_{y(e_{x} - T)}$ $= e_{-y} \sum_{(y \in F_{x})_{x}} \frac{x i}{e_{x}} = e_{-y} \cdot e_{y} = e_{y(e_{x} - T)}$		N=q1-W(0)=y	$\sigma_{2}^{2}=M^{0}(0)=\lambda+\lambda^{2}$ $\sigma_{2}^{2}=d_{2}-\mu^{2}=\lambda$		
GEOMÉTRICO f/x)=(1-P)*1.p	$M(t) = E(c^{tx}) = \sum_{x} e^{tx} F(x) = \sum_{x=1}^{\infty} e^{tx} q^{x-1} \cdot p = $ $Pe^{t} (1 + qe^{t} +) = Pe^{t} \frac{1}{1 - qe^{t}}$		$N=M, 10)=\frac{1}{b}$	82 Me(0) - N2=		
BINOHIAL NEGATIVA	$ M(t) = \left(\frac{pet}{1-qet}\right)^{K} \forall L \in [1/q]$		N= K(1- P)	02 K11-P)		
HIPERGEOHETRICO X = 1+6 (n, a, b)	$+ P(X = x) = \left(\frac{q}{x}\right) \left(\frac{p}{n-x}\right)$	N=N6	8=npq n-9			