2

SUPERVISOR'S USE ONLY

91165

Level 2 Chemistry, 2017

91165 Demonstrate understanding of the properties of selected organic compounds

2.00 p.m. Thursday 16 November 2017 Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of the properties of selected organic	Demonstrate in-depth understanding of the properties of selected organic	Demonstrate comprehensive understanding of the properties of
compounds.	compounds.	selected organic compounds.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L2–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–12 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL

QUESTION ONE

ASSESSOR'S USE ONLY

(a) Polyvinyl chloride (polychloroethene) is often used to make artificial leather. This can then be used to cover chairs, cover car seats, and make clothing.

A section of a polyvinyl chloride molecule is shown below.

((i)	Draw the monomer	r from which	the poly	vmer noly	vvinv1 c	chloride v	would be	made
١	(1)	Draw the monomer	i iioiii wiiici	I tile por	ymici pory	y v 111 y 1 C	omination i	would be	mauc

(ii)	Explain the difference in the structures and chemical reactivity of the monomer and
	polymer, and why the difference is important for the uses of the polymer.

)	Making polyvinyl chloride (polychloroethene) from its monomer is called 'addition polymerisation'.	ASSES
	Explain the term 'addition polymerisation' using polyvinyl chloride as an example.	
	Include an equation in your answer.	
	Equation:	
	Equation:	

(b) A chemistry class was learning about the chemistry of haloalkanes. They were researching the effect of heat and concentrated potassium hydroxide in ethanol, conc. KOH(alc), on the haloalkane 2-chloropropane.

(i) Draw the organic product formed in the following reaction.

|--|--|--|

(ii) Explain how the functional group of the organic product drawn above could be identified.

(iii)	2-bromo-3-methylbutane also reacts with conc. KOH(alc). However, in this reaction TWO organic products are formed, a major and a minor product.	ASSESSOR USE ONLY
	Give an account of the chemical processes that occur in this reaction.	
	In your answer you should:	
	• write an equation for this reaction showing the organic compounds	
	 name the type of reaction occurring 	
	• explain how the products form	
	• explain which product you would expect to be the minor product.	

QUESTION TWO

ASSESSOR'S USE ONLY

(a) The structure of a molecule of an organic compound, threonine, is shown below.

$$\begin{array}{c|c} & CH_3 \\ H-C & OH \end{array}$$
 alcohol functional group
$$\begin{array}{c|c} H_2N-C-COOH \\ H \end{array}$$
 threonine

(i) Circle and name **two other** functional groups on the threonine molecule above.

An alcohol functional group has been identified in the threonine molecule above.

- (ii) Classify the alcohol functional group as primary, secondary, or tertiary.
- (iii) Explain how you classified the alcohol group.

(b) Name the organic compounds in the table below.

Compound	IUPAC (systematic) name
$CH_3 - CH_2 - CH_2 - C \equiv CH$	
CH ₃ -CH-CH-CH ₂ -CH ₂ -CH ₃	
$\begin{array}{ccc} & \text{OH} & \text{CH}_3 \\ & \text{I} & \text{I} \\ & \text{CH}_3 - \text{CH}_2 - \text{CH} - \text{C} - \text{CH}_3 \\ & \text{I} \\ & \text{CH}_3 \end{array}$	

1.	2.	
3.	4.	
Identify the compo	ounds that are <i>cis</i> and <i>trans</i> (geomet	ric) isomers from the table above.
racinity the compe	rands that are ers and it aris (geomet	,
lucitify the compe	cis	trans
		T
Number		T
		T
Number Justify your choice	cis es, and explain why only these two	trans
Number	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans
Number Justify your choice	cis es, and explain why only these two	trans

Alkanes and alkenes can be identified by their reactions with a solution of bromine water, $Br_2(aq)$.	
	ASSES:
Contrast the types of reactions an alkane and an alkene will undergo with an orange solution of bromine water.	
	_
	_
	_
	_
	_

(a) (i) Complete the following reaction scheme by drawing the structural formulae for the organic compounds **A**, **C**, and **D**, and identifying *reagents 2 and 3*.

(ii)	Identify the types	of reactions that	occur to produce	compounds A,	, B , C , D ,	and E
------	--------------------	-------------------	------------------	--------------	------------------------------------	-------

A.____

B. _____

C. _____

D. _____

E. _____

Com	npounds B and E react together.				
(i)	Write a balanced equation for the reaction that occurs between compounds B and E .				
(ii)	Identify the type of reaction that occurs between compounds B and E .				
(ii)	Identify the type of reaction that occurs between compounds B and E . Justify your answer.				
(ii)					

Explain how compound D .	ound A from the read	ction scheme coul	ld be directly cor	nverted into	A
compound D .					
					_

ASSESSOR'S USE ONLY

I	Extra paper if required. Write the question number(s) if applicable.				
QUESTION NUMBER	Title the question number (e) it approaches				