Problem

In $\triangle ABC$, AE is the diameter of the circumcircle. AD is the altitude on BC. Show that $AB \times AC = AD \times AE$.

Solution

Method 1:

Connect BE. Triangle ABE is a right triangle. Since $\angle ACB$ and $\angle AEB$ face the same arc, $\angle ACB = \angle AEB$. We also know that $\angle ABE = \angle ADC = 90^{\circ}$. Therefore $\triangle ACD$ and $\triangle ABE$ are similar.

$$\frac{AB}{AE} = \frac{AD}{AC} \quad \Rightarrow \quad AB \times AC = AD \times AE.$$
 Method 2:

Connect EC. Triangle AEC is a right triangle. Since $\angle ABC$ and $\angle AEC$ face the same arc, $\angle ABC = \angle AEC$. We also know that $\angle ADB = \angle ACE = 90^{\circ}$. Therefore $\triangle AEC$ and $\triangle ABD$ are similar

$$\frac{AB}{AD} = \frac{AE}{AC} \Rightarrow AB \times AC = AD \times AE.$$

