WiFi

Wireless Communication

Wireless communications is a type of data **communication** that is performed and delivered wirelessly. This is a broad term that incorporates all procedures and forms of connecting and **communicating** between two or more devices using a **wireless** signal through **wireless communication** technologies and devices.

While wireless LANs refer to any local area network (LAN) that a mobile user can connect to through a <u>wireless</u> (radio) connection; Wi-Fi (short for "wireless fidelity") is a term for certain types of WLANs that use specifications in the <u>802.11</u> wireless protocol family

WIRELESS VS. WLAN VS. WI-FI VENN DIAGRAM

WiFi – Introduction

- ☐ WiFi (Wireless Fidelity) is a technology that allows electronic devices to connect to a **wireless**LAN (WLAN) network, mainly using the 2.4 gigahertz (12 cm) UHF (Ultra High Frequency) and 5 gigahertz (6 cm) SHF (Super High Frequency) ISM radio bands
- ☐ A wireless network uses <u>radio waves</u>, just like cell phones, televisions and radios do

They transmit at frequencies of 2.4 GHz or 5 GHz

WiFi's benefits for enterprise IoT networking

	Taking advantage of existing infrastructure
	but there's no single radio technology that dominates the market. Expect Wi-Fi to assume that role going forward, for a number of very good reasons:
Ш	Many IoT devices rely on such wireless technologies as Bluetooth Low Energy, ZigBee and Z-Wave,

Advantages

☐ Scalability

□ Security

- Mobility
- Ease of Installation
- Flexibility
- Cost
- Reliability
- Security
- Use unlicensed part of the radio spectrum
- Roaming
- Speed

ESP8266

Pin configuration

ESP8266 Pins

- 1. GND Circuit Ground
- 2. TX UARTO Transmit
- 3. GPIO2 General Purpose I/O
- 4. CH_EN Chip Enable, Active High
- 5. GPIO0 General Purpose I/O
- 6. RESET Reset, Active Low
- 7. RX UARTO Receive
- 8. VCC Circuit Power = +3.3V DC

ESP8266 – Arduino configuration

ESP8266	Arduino
TX	RX
RX	TX
VCC	3.5 V
GND	GND
CH_PD	3.5 V
RESET	3.5 V

ESP8266 AT Command Set

Function	AT Command	Response
Working	AT	OK
Restart	AT+RST	OK [System Ready, Vendor:www.ai-thinker.com]
Firmware version	AT+GMR	AT+GMR 0018000902 OK
List Access Points	AT+CWLAP	AT+CWLAP +CWLAP:(4,"RochefortSurLac",- 38,"70:62:b8:6f:6d:58",1) +CWLAP:(4,"LiliPad2.4",-83,"f8:7b:8c:1e:7c:6d",1) OK
Join Access Point	AT+CWJAP? AT+CWJAP="SSID","Password"	Query AT+CWJAP? +CWJAP:"RochefortSurLac" OK
Quit Access Point	AT+CWQAP=? AT+CWQAP	Query OK
Get IP Address	AT+CIFSR	AT+CIFSR 192.168.0.105 OK
Set Parameters of	AT+ CWSAP?	Query
Access Point	AT+ CWSAP= <ssid>,<pwd>,<chl>, <ecn></ecn></chl></pwd></ssid>	ssid, pwd chl = channel, ecn = encryption
WiFi Mode	AT+CWMODE? AT+CWMODE=1 AT+CWMODE=2 AT+CWMODE=3	Query STA AP BOTH
Set up TCP or UDP	AT+CIPSTART=?	Query
connection	(CIPMUX=0) AT+CIPSTART = <type>,<addr>,<port> (CIPMUX=1) AT+CIPSTART= <id><type>,<addr>,<port></port></addr></type></id></port></addr></type>	id = 0-4, type = TCP/UDP, addr = IP address, port= port
TCP/UDP	AT+ CIPMUX?	Query
Connections	AT+ CIPMUX=0	Single
	AT+ CIPMUX=1	Multiple
Check join devices' IP	AT+CWLIF	
TCP/IP Connection Status	AT+CIPSTATUS	AT+CIPSTATUS? no this fun
Send TCP/IP data	(CIPMUX=0) AT+CIPSEND= <length>; (CIPMUX=1) AT+CIPSEND= <id>,<length></length></id></length>	
Close TCP / UDP connection	AT+CIPCLOSE= <id> or AT+CIPCLOSE</id>	
Set as server	AT+ CIPSERVER= < mode>[, < port>]	mode 0 to close server mode; mode 1 to open; port = port
Set the server	AT+CIPSTO?	Query
timeout	AT+CIPSTO= <time></time>	<time>0~28800 in seconds</time>
Baud Rate*	AT+CIOBAUD? Supported: 9600, 19200, 38400, 74880, 115200, 230400, 460800, 921600	Query AT+CIOBAUD? +CIOBAUD:9600 OK
Check IP address	AT+CIFSR	AT+CIFSR 192.168.0.106 OK
Firmware Upgrade (from Cloud)	AT+CIUPDATE	 +CIPUPDATE:1 found server +CIPUPDATE:2 connect server +CIPUPDATE:3 got edition +CIPUPDATE:4 start update
Received data	+IPD	(CIPMUX=0): + IPD, <len>: (CIPMUX=1): + IPD, <id>, <len>: <data></data></len></id></len>
Watchdog Enable*	AT+CSYSWDTENABLE	Watchdog, auto restart when program errors occur: enable
Watchdog Disable*	AT+CSYSWDTDISABLE	Watchdog, auto restart when program errors occur: disable

Commands to Configure as access point

1. AT+CWMODE=2

Configure as AP

2. AT+CWSAP="ESP8266","123", 3, 0

Set SSID, password, channel and encryption.

To allow connections without a password set encryption parameter to 0 which is OPEN mode. To allow only users with a valid password, set encryption to 1, 2, 3 or 4. These encryption modes correspond to WEP, WPA-PSK, WPA2-PSK and WPA/WPA2-PSK with WPA2-PSK being the most secure and common for general use.

AT+CWSAP?

Verify that the AP settings have been set correctly.

3. AT+CIPMUX=1

Mode of TCP connection (single/multiple)

Single connection mode is set with a 0 value while multiple connection mode is set with a value of 1. This mode can only be changed after all connections are disconnected. If server is started, reboot is required.

4. AT+CIPSERVER=1

Configure TCP Server.

A value of 1 creates the the server while 0 deletes the server in which case the module needs to restarted. The port can be optionally specified as a second argument otherwise it the default port of 333 is used.

Commands to Configure as station

1. AT+CWMODE=2

Configure as Station

2. AT+CWJAP="SSID","PASS"

Connect to AP.

Command takes 2 arguments, SSID which is the name of the network and the PASSwhich is the password of the same network.

3. AT+CIPMUX=0

Mode of TCP connection(single/multiple)

4. AT+CIPSTART="TCP","192.168.0.65","333"

Start TCP or UDP connection in single connection mode.

The connection type can be either TCP or UDP. 192.168.0.65 is the IP address of the remove server the connection is being made to. 333 is the port of the same remote server.

AT+CIPSTART=1,"TCP","192.168.0.65","333"

(Multiple Connection mode) where first argument is the id of the connection

Commands to send data

1. Send data in single connection mode.

AT+CIPSEND=15

When in single connection mode only the length of the data in bytes is required. Maximum length is 2048 bytes. Send command should be immediately followed by the actual data that matches the length specified.

2. Previous command should be immediately followed by the actual data.

Interfacing ESP8266 with Arduino

Program to communicate with ESP866 serially and execute AT commands [This program accepts command from the serial monitor and executes in ESP8266 module. After execution the response is printed in the serial monitor]

```
#include<SoftwareSerial.h>
SoftwareSerial wifi(2,3);
void setup() {
  pinMode(9, OUTPUT);
  Serial.begin(9600);
  wifi.begin(9600);
}
void loop() {
  if (Serial.available()) {
```

```
while (Serial.available()) {
   wifi.write(Serial.read());
 }
 }
if (wifi.available()) {
  while (wifi.available()) {
   Serial.write(wifi.read());
 }
}
}
Serial Commands and its output
ΑT
OK
AT+GMR
0018000902
OK
AT+CWLAP
+CWLAP:(3,"20f_2.4",-76,"c8:3a:35:37:f2:38",1)
+CWLAP:(2,"PLATINUM",-94,"0c:d2:b5:61:a0:93",1)
+CWLAP:(4,"dlink_xmen",-78,"6c:19:8f:0d:d0:56",1)
+CWLAP:(3,"DIRECT-MY-BRAVIA",-81,"42:b8:9a:55:cc:c7",1)
+CWLAP:(3,"ANIRBAN",-72,"78:d9:a0:ca:b6:11",5)
+CWLAP:(3,"ACDC",-86,"74:44:01:34:cd:d8",6)
+CWLAP:(2,"TIGER",-85,"c8:3a:35:15:e9:a8",6)
+CWLAP:(3,"GetyourownWIFI",-88,"00:25:5e:bb:21:a2",6)
+CWLAP:(1,"MGMNT",-86,"00:25:5e:bb:21:a3",6)
+CWLAP:(3,"Airtel-E5573-7F78",-89,"24:1f:a0:41:7f:78",6)
```

```
+CWLAP:(3,"biswas_network",-59,"e8:94:f6:2a:75:7c",9)
+CWLAP:(3,"Shiva",-64,"14:cc:20:e8:39:4c",10)
+CWLAP:(4,"GYOWF",-64,"6c:19:8f:ba:1a:8e",11)
+CWLAP:(1,"MGMNT",-81,"b8:c1:a2:12:b4:3d",11)
+CWLAP:(4,"Kliffhangr",-93,"78:e8:b6:41:b0:5f",11)
OK
AT+CWJAP="ANIRBAN","radharani1234"
OK
AT+CWJAP?
+CWJAP:"ANIRBAN"
OK
AT+CWJAP:"ANIRBAN"
```

OK

Program2: Wifi Server

This program will setup wifi server and wait for incoming commands from wifi client. An LED attached to pin 12 will ON/OFF based on the commands received from the client.

```
#include "SoftwareSerial.h"
#define WIFISSID "KAYARIOT" // WIFI Username
#define WIFIPASS "" // WIFI Password
SoftwareSerial Serial1(2,3);
void sendToESP8266AndWaitForResponse (const char *cmd, const char *resp, bool
waitForResponse, int duration) {
String bytes;
 Serial.print ("CMD: "); Serial.println(cmd);
 do {
  Serial.print(".");
  Serial1.println (cmd);
  delay(duration);
  bytes = Serial1.readString();
 } while ( (waitForResponse) && (bytes.indexOf(resp)<0));
 Serial.print ("RESPONSE: ");
 Serial.print (bytes.c_str());
 Serial.println("\n-----"):
}
void setupAP() {
 String cwsapCmd = "AT+CWSAP=\"";
 cwsapCmd+=WIFISSID; cwsapCmd+="\",\""; cwsapCmd+=WIFIPASS; cwsapCmd+="\",8,0";
 sendToESP8266AndWaitForResponse (cwsapCmd.c_str(), "OK", true, 50);
}
```

```
// the setup function runs once when you press reset or power the board
void setup() {
 Serial.begin(9600);
 Serial1.begin(9600);
 pinMode(11,OUTPUT);
 // Setup Wifi as AP
 sendToESP8266AndWaitForResponse ("AT+CWMODE=2", "", false, 5);
 setupAP();
 sendToESP8266AndWaitForResponse ("AT+CIPMUX=1", "OK", false, 50);
 sendToESP8266AndWaitForResponse ("AT+CIPSERVER=1", "OK", false, 50);
}
// the loop function runs over and over again forever
void loop() {
 if(Serial1.available())
 {
 String message = Serial1.readString();
 Serial.println (message);
  if(message.indexOf("LED ON")>0)
  {
   digitalWrite(11,HIGH);
  else if(message.indexOf("LED OFF")>0)
   digitalWrite(11,LOW);
  else
```

```
Serial.println ("Nothing to do...");
}

Output

CMD: AT+CWSAP="IOT5A","",8,0
.RESPONSE: AT+CWSAP="KAYARIOT","",8,0

OK

CMD: AT+CIPMUX=1
.RESPONSE: AT+CIPMUX=1
OK

CMD: AT+CIPSERVER=1
.RESPONSE: AT+CIPSERVER=1
OK
```

Program to upload the temperature from Arduino client to Data.sparkfun.com cloud server CLOUD (SPARKFUN)

Cloud Data:

Nothing to do...

https://data.sparkfun.com/streams/QGyLQKYb71F2Q1qMqQER

Pushing data to cloud (Only for reference)

Pusing data to cloud is done by the program in Arduino. However sometime we might want to push manually from browser just for testing. Use below url for that https://data.sparkfun.com/input/QGyLQKYb71F2Q1qMqQER?private_key=JqyBXeWg9Viq

eBy9yevR&temperature=33.33

Pin Diagram of ESP8266

Connections

Arduino	ESP8266	DHT Temperature sensor
5V	CH_PD, RST, VCC	
3.3V		VCC
GND	GND	GND
2 (Software Serial RX)	TX	
3 (Software Serial TX)	RX	
5		DATA

```
#define WIFISSID "SKS Cottage" // WIFI Username

#define WIFIPASS "kayar123" // WIFI Password

#define SERVERIP "api.thingspeak.com" // Server to post the update. "data.sparkfun.com"

#define POSTURL "POST
/input/QGyLQKYb71F2Q1qMqQER?private_key=JqyBXeWg9ViqeBy9yevR&temperature="
SoftwareSerial Serial1(2,3);
void sendToESP8266AndWaitForResponse (const char *cmd, const char *resp, bool waitForResponse, int duration) {
String bytes;
Serial.print ("CMD: "); Serial.println(cmd);
do {
Serial.print(".");
Serial.println (cmd);
delay(duration);
bytes = Serial1.readString();
} while ( (waitForResponse) && (bytes.indexOf(resp)<0));
```

```
Serial.print ("RESPONSE: ");
Serial.print (bytes.c_str());
Serial.println("\n-----");
}
void connectToWIFI() {
String cwjapCmd = "AT+CWJAP=\"";
cwjapCmd+=WIFISSID; cwjapCmd+="\",\""; cwjapCmd+=WIFIPASS; cwjapCmd+="\"";
sendToESP8266AndWaitForResponse (cwjapCmd.c str(), "OK", true, 50);
}
void connectToServer() {
String cipstartCmd = "AT+CIPSTART=\"TCP\",\"";
cipstartCmd += SERVERIP; cipstartCmd += "\",80";
sendToESP8266AndWaitForResponse (cipstartCmd.c_str(), "Linked", true, 10);
}
// the setup function runs once when you press reset or power the board
void setup() {
Serial.begin(9600);
Serial1.begin(9600);
// Setup Wifi as STA and connect to AP
sendToESP8266AndWaitForResponse ("AT+CWMODE=1", "", false, 5);
connectToWIFI();
sendToESP8266AndWaitForResponse ("AT+CIPMUX=0", "OK", false, 50);
}
// the loop function runs over and over again forever
void loop() {
int rawvoltage= analogRead(A0);
float millivolts= (rawvoltage/1024.0) * 5000;
float temp= millivolts/10; //celcius
connectToServer();
char cmd[200],cipsend[100];
```

```
sprintf (cmd, "%s%d.%04d HTTP/1.0\r\n\r\n Host: %s\r\n\r\n",POSTURL, (int)temp,(int)trunc((temp-
(int)temp)*10000),SERVERIP);
sprintf (cipsend, "AT+CIPSEND=%d",strlen(cmd));
sendToESP8266AndWaitForResponse (cipsend, ">", true, 10);
sendToESP8266AndWaitForResponse (cmd, "", false, 10);
delay(10000);
}
```