Computational text analysis: A brief introduction

TextXD, Dec. 3, 2019 *Jaren Haber*

With special thanks to Ben Gebre-Medhin, Laura Nelson, Geoff Bacon, and Caroline Le Pennec-Caldichoury

Introductions

- Instructor
- Participants
 - Name
 - Affiliation
 - Any immediate projects or use cases? (Briefly)
 - Familiarity with Python or R? (Beginner, Intermediate, Advanced)

If you do have immediate projects, bring them in!

Goals of this workshop

- Provide a general roadmap of computational text analysis (CTA)
- Build intuitions about using text as data
- Gain practice with preprocessing and more
- Understand at a high-level
 - how a few primary CTA methods work
 - what kinds of questions they answer
 - how to design and implement a CTA project

Machine translation

Speech Recognition

"Alexa, how many cups are in a quart?"

Question Answering

Software/Libraries

NLP is interdisciplinary

- Artificial intelligence
- Machine learning (ca. 2000—today); statistical models, neural networks
- Linguistics (representation of language)
- Social sciences/humanities (models of language at use in culture/society)

Computational Social Science

Adamic and Glance 2005

Computational Journalism

Change in insured Americans under the ACA, NY Times (Oct 29, 2014)

Computational Humanities

Text as data

Exhibit Feedback

1. Please explain below:

What did you think overall?
What would you improve?

Types of languages

- Natural languages

Time flies like an arrow. Fruit flies like abanana.

- Artificial languages

$$Y = f3_0 + f3_1X_1 + f3_2X_2 + f3_3X_3 + ... + f3_nX_n + E$$
import scipy
from scipy import sparse

 $n = 200000$
matrix = scipy.sparse.rand(n, n, density=.001) print(matrix)

How do humans analyze texts?

We need to steer clear of this poverty of ambition, where people want to drive fancy cars and wear nice clothes and live in nice apartments but don't want to work hard to accomplish these things. Everyone should try to realize their full potential.

Barack Obama

Close reading

The promise of distant reading

- Scale/speed
- Reproducibility
- Does not have human biases
- Has other (at times unknown) biases
- Consistent

A simple representation of text

Corpus of documents

Objective: map raw text of each document i to some attribute v_i

The estimated attribute \hat{v} can then be used for descriptive or causal analysis:

 causal effect of racial animus predicted from Google search data on vote for Obama (Stephens-Davidowitz (2014))

Movie revenues

Input: text of movie

review

Output: box office

revenue

Geographical location

POP vs SODA

Input: tweet

Output: latitude,

longitude

http://popvssoda.com

- Data: Random acts of pizza (subreddit)
- Response: Is a request successful in getting a pizza?

Fraction of words about female characters

Ted Underwood, David Bamman, and Sabrina Lee (2018), "The Transformation of Gender in English-Language Fiction," (*Cultural Analytics*)

Fraction of words about female characters

Ted Underwood, David Bamman, and Sabrina Lee (2018), "The Transformation of Gender in English-Language Fiction," (*Cultural Analytics*)

CTA lifecycle

CTA lifecycle

- Cooking analogy

Research question

- Domain specific
- Possible answer is encoded in text

- E.g. What are the early warning symptoms of depression?
- How did different European nations react to the election of Trump?
- Do Twitter users react differently to mass shootings based on the ethnicity of the perpetrator?
- What distinguishes different styles of hip-hop?
- Have any of these essays been plagiarized?

Getting data

What do we want?

- Plain, machine-readable text

How do we get it?

- You (your collaborator or a stranger on the Internet) already have it*
- Web scraping
- API
- OCR
- *Still important to know how the data was collected

What is preprocessing?

- Tokenization = separating running text into words
- Sentence segmentation/tokenization = separating words into sentences
- Text normalization = dealing with upper/lower case, spelling mistakes, removing special characters, replacing URLs, numbers, etc.
- Remove "stop words"
- Stemming/lemmatization = removing morphological affixes
- POS tagging = assigning a part-of-speech category to each word
- Syntactic parsing = assigning a (normally graph or tree) structure to a sentence
- Chunking = shallow version of syntactic parsing
- Named entity recognition = identifying the proper nouns in a text
- ...

Why do we do preprocessing?

- Because later methods require preprocessed data as input
 - Counting words requires having already identified the words of a text
 - Knowing the POS of a word might help us in knowing whether it is important (modal *can* vs noun *can*)
- Because we gain intuition about our data
 - It forces us to look at the data
 - Often coupled with exploratory data analysis (EDA)
 - We might find out that all the reviews are exactly 500 characters long, which suggests some have been truncated.

Inputs to modeling

- Topic modeling: input = many different texts, output = what each text is about
 - Newspaper articles
 - Emails
- Classification: input = many different texts and hand-labeled categories, output = something that can take in unlabeled texts and predict the category.
 - Hand label a bunch of documents, train a computer to mimic your hand coding
 - Spam/ham
 - positive/negative reviews
- The big difference is the need for labeled data (unsupervised vs supervised)
- Text = document, could be a review, newspaper article, journal article, whole book, tweet, ...

What are N-grams?

Term-document matrix

	Hamlet	Macbeth	Ro me o & Juli et	Richard III	J uli us Ca es ar	Tempest	Othello	King Lear
knife	1	1	4	2		2		2
dog	2		6	6		2		12
sword	17	2	7	12		2		17
love	64		135	63		12		48
like	75	38	34	36	34	41	27	44

Context = appearing in the same document.

Vector

Vector representation of the document; vector size = V

Hamlet					
1					
2					
17					
64					
75					

King Lear
2
12
17
48
44

Vectors

knife	1	1	4	2	2	2
swor	17	2	7	12	2	17

Vector representation of the term; vector size = number of documents

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

would whimsical times sweet satirical adventure genre humor

But there's more out there

- Dictionary methods
 - Lists of positive/negative words
- Document-Term Matrix (DTM)
 - Words are rows, documents are columns, entries are number of times word appears in document.
- Term Frequency-Inverse Document Frequency (TF-IDF)
 - Modification of DTM
 - Entries are scaled by how common a word is across the whole corpus
- Distinctive words
 - Through difference of proportions, Chi-square test, classification, etc.
- Clustering
 - Of DTM or TF-IDF

Dictionaries

Dodds et al. (2011), "Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter" (PLoS One)

	LIW		LIWC C			
Category	Example	T-statistics	Category	Example	T-statistics	Mod
Linguistics Processes			Negative emotion	hurt, ugly, nasty	6.49***	IVIOU
Words > 6 letters		-3.41**	Anxiety	fearful, nervous	2.37	
Dictionary words		9.60****	Anger	hate, kill, annoy	5.30***	
Total function words		8.98****	Sadness	cry, grief, sad	3.54***	
Personal pron.	I, them, her	7.07****	Cognitive process	cause, ought	6.09***	
1st pers singular	I, me, mine	9.83****	Insight	think, know	0.11	
1st pers plural	we, us, our	-2.38	Causation	effect, hence	0.93	
2nd person	you, your, thou	-0.91	Discrepancy	should, would	5.53***	
3rd pers singular	she, her, him	3.63**	Tentative	maybe, perhaps	5.95***	
3rd pers plural	their, they'd	2.47	Certainty	always, never	4.02***	
Impersonal pron.	it, it's, those	7.07****	Inhibition	block, constrain	0.32	
Articles	a, an, the	4.13***	Inclusive	with, include	4.74 ***	
Common verbs	walk, went, see	6.27***	Exclusive	but, without	7.53 ****	
Auxiliary verbs	am, will, have	5.76***	Perceptual process	,	1.93	
Past tense	went, ran, had	8.70****	See	view, saw, seen	1.68	
Present tense	is, does, hear	4.00***	Hear	listen, hearing	-0.88	
Future tense	will, gonna	5.84***	Feel	feels, touch	1.94	
Adverbs	very, really	7.92****	Biological process	,	4.22***	
Prepositions	to, with, above	7.62****	Body	cheek, spit	5.02***	
Conjunctions	and, whereas	4.59***	Health	clinic, flu, pill	1.51	
Negations	no, not, never	1.71	Sexual	horny, incest	-0.61	
Quantifiers	few, many, much	2.98*	Ingestion	dish, eat, pizza	4.37***	
Numbers	second, thousand	-3.68**	Relativity	area, bend, exit	9.52 ****	
Swear words	damn, piss, fuck	5.53***	Motion	arrive, car	3.07*	
Spoken Categories	1 ,		Space	down, in, thin	8.87****	
Assent	agree, OK, yes	7.05****	Time	end, until	5.87***	
Nonfluency	er, hm, umm	1.41	Personal Concerns	,		
Filters	blah, imean		Work	job, majors	0.05	
Psychological	,		Leisure	chat, movie	2.97*	
Social process	mate, talk, child	0.10	Achievement	earn, win	-1.22	
Family	son, mom, aunt	2.24	Home	family, kitchen	3.37**	
Friends	buddy, neighbor	2.10	Money	audit, cash	0.23	
Humans	adult, baby, boy	0.89	Religion	church, altar	-0.77	
Affective process	happy, cry	3.55**	Death	bury, coffin	0.49	
Positive emotion	love, nice, sweet	0.08		<i>y</i> ,		

Modeling

Distinctive words

2017/11/07/upshot/modern-love-what-wewrite-when-we-write-about-love.html

Now what?

- Use the insight from the preprocessing and modeling stage to understand the initial question
- In classification, this could be looking at words with high coefficients.
 - E.g. People with depressive symptoms are morelikely to talk about abstract concepts and use more negation.
- In topic modeling, this could be qualitative inspection of the topics.
 - E.g. In Germany the main themes centered around taxes and immigration, while in France people were more concerned about racism.

CTA lifecycle

Questions?

Now to get our hands dirty

http://bit.ly/intro-textxd19

Further resources

- D-Lab: http://dlab.berkeley.edu/
 - Regular workshops on CTA, Python, R, etc.
 - Consulting
- CTAWG: http://dlabctawg.github.io/
- Lectures from Stanford's NLP class
- Tutorials on NLTK and SpaCy
- Jurafsky and Martin textbook

Further examples of CTA applications

- Estimate political ideology from Twitter
- Uncover government censorship
- Relate the stock market to sentiment in the media
- Study why particular papers get cited
- Detect impending disease epidemics
- Determine who actually wrote something
- ...