

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: PCC-CS 403/PCC-CS403/PCC-CS8S401/PCCCS403 Formal Language & Automata Theory UPID: 004423

Time Allotted : 3 Hours

Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very S	hort Anguer	Tune ()	uastion)

. Answer	any ten of the following:			•			[1	x 10 = 10]
(1)	NFA, in its name has 'non-deterministic' becaus	e of					-		
(11)	The non- Kleene Star operation accepts the follocontains even number of 0 and 1	owing strin	g of finit	e length	over set	A = {0,1}	where st	ring s	
(in)	Language of finite automata is of which type?	,					00		
(IV)	The concept of FSA is much used in		part	of the	compile	ər			
(V)	FSM can recognize				-				:
	Consider the following language, L = {anbn{n = 1}		2.8						
(VIII)	Set of regular languages over a given a	alnhahet	set is	closéd	under				
		a thiiano t	301 10			- '.	-	4	
(*****)	Consider the grammar: S -> ABCc Abc								
	BA -> AB						₹		
	8b —> bb								
	Ab> ab								
-	Aa —> aa					1	. 1.		
	Write the sentences can be derived by this gran	nmar?	-				12.14	A L	
(IX)	Consider the following grammar								
	S> Ax / By					- ' '	1.4		
	A> By/Cw						2		
	B> x / Bw	•				-1			,
	C> y		· • • • •	4					
	Write the regular expressions describe the sam	e set of str	ings as t	ine gram	ımar.	. 8 1	A' hadh	+ha+ aa	
(X)	Let $S = \{a, b, c, d, e\}$. The number of	strings	is		_in 5*	or tengrn	4 Such	that no	
	symbol is used more than once in a str	ing				1 II-d	. 7.		
(X)	Given a grammar G, a production of G with a d	ot at some	position	of the r	ight side	is called _			
(XX)	Number of states of the FSM required to simula	te behavio	our of a	compute	r with a	memory ca	pable of	storing	,
	"m" words, each of length 'n' is								٠.
	Group-B (Short	Answer Ty	pe Que	stion)					
	Answer any th						€	5 x 3 = 15	Į.
n . Doc	ign a DFA where every string either starts with 0				alphabet	set {0,1}.		-[5]
		-			•			ſ	5]
	te the regular expression for the language L={a ⁿ	[11 2 0].							
	struct an NFA for the regular expression							. 1	5]
•	+1)*00(0+1)*								E 2
5. Des	ign a PDA for the language L = $\{WcW^R \mid w \in \{a,l\}\}$	b} }.							5]
6. Con	vert the following NFA to DFA.								[5]

Group-C (Long Answer Type Question)

Answer any three of the following : [**15** x 3 = 45] 7. (a) Design a DFA where each and every string end with '001' over the alphabet set {0,1}. [5] (b) Obtain the regular expression for the following DFA.

[5]

[5]

(c) Consider the following e-NFA: Compute the e-closure of each state. Convert the NFA to DFA.

- δ	€	а	b
→ P	(r)	{q}	{p,r}
q	Φ	{p}	ф
*r	{p,q}	{r}	{p}

- 8. (a) Define Chomsky normal form and convert the following CFG to CNF. [6] $S \rightarrow aSb|ab|Aa,A \rightarrow aab$
 - (b) What is useless production? Eliminate ∈, unit and useless production from following grammar. [9]

 $A \rightarrow bA|Bba|aa,B \rightarrow aba|b|D,C \rightarrow CA|AC|B,D \rightarrow a| \in$

- 9./ (a) Define Deterministic PDA and Non-deterministic PDA. [6]
 - (b) Construct a PDA for the grammar [9] $S \rightarrow aAA, A \rightarrow aS|bS|a$
- 10. (a) State the Pumping lemma for the Regular Language (RL). [4]
 - (b) State the Pumping lemma for the Context Free Language (CFL). [4]
 - (c) Prove that the given language is not regular. [7] t={aⁿbⁿ >=0}
- 11. Transform the CFG into GNF, given $G = (\{A_1, A_2, A_3\}, \{a,b\}, P, A_1\}$ and production P as, [15] $A_1 \to A_2 A_3, A_2 \to A_3 A_1 | b, A_3 \to A_1 A_2 | a$

*** END OF PAPER **