- 3 α は $0<a<\frac{\pi}{2}$ を満たす実数とする. $\angle A=\alpha$ および $\angle P=\frac{\pi}{2}$ を満たす直角三角 形 APB が,次の 2 つの条件 (a) ,(b) を満たしながら,時刻 t=0 から時刻 $t=\frac{\pi}{2}$ まで xy 平面上を動くとする.
- (a) 時刻 t での点 A , B の座標は , それぞれ $A(\sin t, 0)$, $B(0, \cos t)$ である .
- (b) 点 P は第一象限内にある.

このとき,次の問いに答えよ.

- (1) 点 P はある直線上を動くことを示し、その直線の方程式を α を用いて表せ .
- (2) 時刻 t=0 から時刻 $t=\frac{\pi}{2}$ までの間に点 ${\mathrm P}$ が動く道のりを ${\alpha}$ を用いて表せ .
- (3) xy 平面内において,連立不等式

$$x^2 - x + y^2 < 0$$
, $x^2 + y^2 - y < 0$

により定まる領域を D とする.このとき,点 P は領域 D には入らないことを示せ.