Logica Propozițională. Seminar 4 - Fișă de exerciții

- 1. Demonstrați că $(p \land r)$ este consecință sintactică din $((q \land r) \land q)$ și $(p \land p)$.
- 2. Arătați că următoarele sevențe sunt valide:

(a)
$$p \land q, r \vdash p \land (r \lor r');$$

(b)
$$p \rightarrow (q \rightarrow r) \vdash p \land q \rightarrow r$$
;

(c)
$$p \land \neg r \rightarrow q, \neg q, p \vdash r;$$

- 3. Terminați "jocul" de la adresa https://profs.info.uaic.ro/~stefan.ciobaca/lnd.html. Nu trișați. Se consideră trișat: schimbarea codului JavaScript, dacă altcineva rezolvă un nivel în locul dumneavoastră, sau dacă demonstrați regulile derivate folosind chiar regulile derivate (într-un singur pas).
- 4. Demonstrați că următoarele reguli sunt derivate:

(a)
$$\neg \neg i$$
;

(b) LEM (law of excluded middle):
$$\frac{\text{Lem}}{\Gamma \vdash \varphi \lor \neg \varphi;}$$

(c) PBC (proof by contradiction):
$$^{\text{PBC}} \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi;}$$

(d) MT (modus tollens): MT
$$\frac{\Gamma \vdash \varphi \to \varphi' \qquad \Gamma \vdash \neg \varphi'}{\Gamma \vdash \neg \varphi}.$$

- 5. Demonstrați teorema de corectitudine (prin inducție după numărul de pași din demonstrația formală).
- 6. Arătați că regula $\neg \neg e$ poate fi derivată folosind LEM (i.e. puteți folosi LEM în demonstrația formală, dar nu $\neg \neg e$).
- 7. Demonstrați, apelând la teoremele de corectitudine și completitudine, că $\varphi_1 + \varphi_2$ dacă și numai dacă $\varphi_1 \equiv \varphi_2$.