

Seminar: Gaussian Processes for Machine

Learning

Gaussian processes for regression

Davit Papikyan

Mathematics in Data Science Department of Mathematics Technical University of Munich

February 3rd, 2022

Outline

- Introduction
- Bayesian Linear Regression
- Gaussian Processes

Introduction

Supervised Learning: Regression vs. Classification

- Regression: **continuous** variables (price, salary, etc.)
- Classification: **discrete** variables (spam/not spam, male/female, etc.)

Outline

- 1 Introduction
- Bayesian Linear Regression
- Gaussian Processes

Problem statement

Training set:
$$\mathcal{D}=\{(m{x}_i,y_i)\mid i=1,2,\ldots,n\},$$
 where $m{x}_i\in\mathbb{R}^d\ i=1,2,\ldots,n$ $y_i\in\mathbb{R}$

Using matrix notations: $\mathcal{D} = (\boldsymbol{X}, \boldsymbol{y})$, where

$$oldsymbol{X} \in \mathbb{R}^{d imes n}$$
 – design matrix

$$oldsymbol{y} \in \mathbb{R}^n$$
 – target vector

Problem statement

Training set:
$$\mathcal{D}=\{(m{x}_i,y_i)\mid i=1,2,\dots,n\},$$
 where $m{x}_i\in\mathbb{R}^d\ i=1,2,\dots,n$ $y_i\in\mathbb{R}$

Using matrix notations: $\mathcal{D}=(m{X},m{y})$, where $m{X}\in\mathbb{R}^{d imes n}$ – design matrix $m{u}\in\mathbb{R}^n$ – target vector

Goal: Make inferences about the relationship between X and y, i.e. the conditional distribution of the targets given inputs (without modeling the input distribution itself).

Problem statement

$$\begin{aligned} & \text{Model: } f(\boldsymbol{x}_i) = \boldsymbol{x}_i^T \boldsymbol{w}, & y_i = f(\boldsymbol{x}_i) + \epsilon & \text{where } \epsilon \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2) \,. \\ & \boldsymbol{w} \in \mathbb{R}^d - \text{weight vector} \end{aligned}$$

Likelihood

Model:
$$f(\boldsymbol{x}_i) = \boldsymbol{x}_i^T \boldsymbol{w}$$
, $y_i = f(\boldsymbol{x}_i) + \epsilon$ where $\epsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$ $\boldsymbol{w} \in \mathbb{R}^d$ – weight vector

Likelihood: Probability density of the observations given the parameters.

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{w}) = \prod_{i=1}^{n} p(y_i \mid \boldsymbol{x}_i, \boldsymbol{w})$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2}{2\sigma^2}\right]$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{X}^T \boldsymbol{w}\|^2\right] = \mathcal{N}(\boldsymbol{X}^T \boldsymbol{w}, \sigma^2 \boldsymbol{I}).$$

Prior

<u>Prior</u>: Probability density of parameters expressing our beliefs about them before having a look at the data

$$oldsymbol{w} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma}_w)$$
 .

Posterior

Posterior: Probability density of parameters given the observations (data).

$$\mathsf{posterior} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{marginal \ likelihood}} \qquad \qquad p(\boldsymbol{w} \,|\, \boldsymbol{y}, \boldsymbol{X}) = \frac{p(\boldsymbol{y} \,|\, \boldsymbol{X}, \boldsymbol{w}) \times p(\boldsymbol{w})}{p(\boldsymbol{y} \,|\, \boldsymbol{X})}$$

where marginal likelihood is independent of $m{w}$, plays a role of normalizing constant and is given by

$$p(\boldsymbol{y} | \boldsymbol{X}) = \int p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{w}) p(\boldsymbol{w}) d\boldsymbol{w}.$$

Posterior

$$p(m{w} \,|\, m{X}, m{y}) \propto \exp\left[-rac{1}{2\sigma^2}(m{y} - m{X}^Tm{w})^T(m{y} - m{X}^Tm{w})
ight] \, \exp\left[rac{1}{2}m{w}^Tm{\Sigma}_wm{w}
ight] \ \propto \exp\left[-rac{1}{2}(m{w} - \widetilde{m{w}})^T\underbrace{\left(rac{1}{\sigma^2}m{X}m{X}^T + m{\Sigma}_w^{-1}
ight)}_{m{A}}(m{w} - \widetilde{m{w}})
ight] \ ext{where} \quad \widetilde{m{w}} = rac{1}{\sigma^2}m{A}m{X}m{y} \quad ext{and} \quad m{A} = rac{1}{\sigma^2}m{X}m{X}^T + m{\Sigma}_w^{-1} \,.$$

$$p(\boldsymbol{w} \mid \boldsymbol{X}, \boldsymbol{y}) \sim \mathcal{N}(\widetilde{\boldsymbol{w}}, \boldsymbol{A}^{-1})$$
.

Posterior predictive distribution

Assume we have a new data point x_* and goal is to predict y_* .

$$p(y_* \,|\, \boldsymbol{x_*}, \boldsymbol{X}, \boldsymbol{y}) =$$

Posterior predictive distribution

Assume we have a new data point x_* and goal is to predict y_* .

$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \int p(y_*, \boldsymbol{w} | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w}$$

Posterior predictive distribution

Assume we have a new data point x_* and goal is to predict y_* .

$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \int p(y_*, \boldsymbol{w} | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w}$$
$$= \int p(y_* | \boldsymbol{x}_*, \boldsymbol{w}) p(\boldsymbol{w} | \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w}$$
$$= \mathcal{N} \left(\frac{1}{\sigma^2} \boldsymbol{x}_*^T \boldsymbol{A}^{-1} \boldsymbol{X} \boldsymbol{y}, \, \boldsymbol{x}_*^T \boldsymbol{A}^{-1} \boldsymbol{x}_* \right).$$

 $p(y_* | \boldsymbol{x_*}, \boldsymbol{X}, \boldsymbol{y})$ is known as posterior predictive distribution or just predictive distribution.

Note that we can now estimate the uncertainty of our prediction.

Addressing nonlinear dependency

What if the dependency between y and x is not linear?

Addressing nonlinear dependency

What if the dependency between y and x is not linear?

Idea: Project data into some high dimensional space and then apply the linear model in that space.

Addressing nonlinear dependency

 $\phi: \mathbb{R}^d \to \mathbb{R}^k$ with $\Phi:=\Phi(X) \in \mathbb{R}^{k \times n}$ be the aggregation of columns $\phi(x)$ for all samples in training set.

Now the model becomes $f(x) = \phi(x)^T w$ where $w \in \mathbb{R}^k$.

Addressing nonlinear dependency

 $\phi: \mathbb{R}^d \to \mathbb{R}^k$ with $\Phi:=\Phi(X) \in \mathbb{R}^{k \times n}$ be the aggregation of columns $\phi(x)$ for all samples in training set.

Now the model becomes $f(x) = \phi(x)^T w$ where $w \in \mathbb{R}^k$.

$$p(y_* \mid \boldsymbol{x_*}, \boldsymbol{X}, \boldsymbol{y}) = \mathcal{N}\left(\frac{1}{\sigma^2} \boldsymbol{\phi}(\boldsymbol{x_*})^T \boldsymbol{A}^{-1} \boldsymbol{\Phi} \boldsymbol{y}, \, \boldsymbol{\phi}(\boldsymbol{x_*})^T \boldsymbol{A}^{-1} \boldsymbol{\phi}(\boldsymbol{x_*})\right)$$

where
$$oldsymbol{A} = rac{1}{\sigma^2} oldsymbol{\Phi} oldsymbol{\Phi}^T + oldsymbol{\Sigma}_w^{-1}$$
 .

Addressing nonlinear dependency

 $\phi: \mathbb{R}^d \to \mathbb{R}^k$ with $\Phi:=\Phi(X) \in \mathbb{R}^{k \times n}$ be the aggregation of columns $\phi(x)$ for all samples in training set.

Now the model becomes $f(x) = \phi(x)^T w$ where $w \in \mathbb{R}^k$.

$$p(y_* \mid \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \mathcal{N}\left(\frac{1}{\sigma^2} \boldsymbol{\phi}(\boldsymbol{x}_*)^T \boldsymbol{A}^{-1} \boldsymbol{\Phi} \boldsymbol{y}, \, \boldsymbol{\phi}(\boldsymbol{x}_*)^T \boldsymbol{A}^{-1} \boldsymbol{\phi}(\boldsymbol{x}_*)\right)$$

where
$$oldsymbol{A} = rac{1}{\sigma^2} oldsymbol{\Phi} oldsymbol{\Phi}^T + oldsymbol{\Sigma}_w^{-1}$$
 .

Problem: A^{-1} is not tractable for large k!

Addressing nonlinear dependency

Denote $K:=\mathbf{\Phi}^T\mathbf{\Sigma}_w\mathbf{\Phi}$ and $\phi_*:=\phi(x_*)$. Let's rewrite the mean:

Addressing nonlinear dependency

Denote $m{K} := m{\Phi}^T m{\Sigma}_w m{\Phi}$ and $m{\phi}_* := \phi(m{x}_*)$. Let's rewrite the mean:

$$\boldsymbol{A}\boldsymbol{\Sigma}_{w}\boldsymbol{\Phi} = \frac{1}{\sigma^{2}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{T}\boldsymbol{\Sigma}_{w}\boldsymbol{\Phi} + \boldsymbol{\Phi} = \frac{1}{\sigma^{2}}\boldsymbol{\Phi}(\boldsymbol{\Phi}^{T}\boldsymbol{\Sigma}_{w}\boldsymbol{\Phi} + \sigma^{2}\boldsymbol{I}) = \frac{1}{\sigma^{2}}\boldsymbol{\Phi}(\boldsymbol{K} + \sigma^{2}\boldsymbol{I})$$

Addressing nonlinear dependency

Denote $K:=\Phi^T\Sigma_w\Phi$ and $\phi_*:=\phi(x_*)$. Let's rewrite the mean:

$$\boldsymbol{A}\boldsymbol{\Sigma}_{w}\boldsymbol{\Phi} = \frac{1}{\sigma^{2}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{T}\boldsymbol{\Sigma}_{w}\boldsymbol{\Phi} + \boldsymbol{\Phi} = \frac{1}{\sigma^{2}}\boldsymbol{\Phi}(\boldsymbol{\Phi}^{T}\boldsymbol{\Sigma}_{w}\boldsymbol{\Phi} + \sigma^{2}\boldsymbol{I}) = \frac{1}{\sigma^{2}}\boldsymbol{\Phi}(\boldsymbol{K} + \sigma^{2}\boldsymbol{I}).$$

Multiplying both sides by ${\bf A}^{-1}$ from left and $({\bf K}+\sigma^2{\bf I})^{-1}$ from right we will get

$$\Sigma_w \Phi(K + \sigma^2 I)^{-1} = \frac{1}{\sigma^2} A^{-1} \Phi,$$

by using which we can rewrite the mean of posterior predictive distribution as

$$rac{1}{\sigma^2} {oldsymbol{\phi_*}}^T {oldsymbol{A}}^{-1} {oldsymbol{\Phi}} {oldsymbol{y}} = {oldsymbol{\phi_*}}^T {oldsymbol{\Sigma}}_w {oldsymbol{\Phi}} ({oldsymbol{K}} + \sigma^2 {oldsymbol{I}})^{-1} {oldsymbol{y}} \, .$$

Addressing nonlinear dependency

Now let's rewrite the variance.

Lemma: Matrix inversion lemma or Woodbury matrix identity

$$(B + UCV)^{-1} = B^{-1} - B^{-1}U(C^{-1} + VB^{-1}U)^{-1}VB^{-1}$$
.

$$\boldsymbol{A}^{-1} = \left(\frac{1}{\sigma^2}\boldsymbol{\Phi}\boldsymbol{\Phi}^T + \boldsymbol{\Sigma}_w^{-1}\right)^{-1} = \boldsymbol{\Sigma}_w - \boldsymbol{\Sigma}_w\boldsymbol{\Phi}(\sigma^2\boldsymbol{I} + \underbrace{\boldsymbol{\Phi}^T\boldsymbol{\Sigma}_w\boldsymbol{\Phi}}_{\boldsymbol{K}})^{-1}\boldsymbol{\Phi}^T\boldsymbol{\Sigma}_w$$

Addressing nonlinear dependency

Now let's rewrite the variance.

Lemma: Matrix inversion lemma or Woodbury matrix identity

$$(B + UCV)^{-1} = B^{-1} - B^{-1}U(C^{-1} + VB^{-1}U)^{-1}VB^{-1}$$

$$\boldsymbol{A}^{-1} = \left(\frac{1}{\sigma^2}\boldsymbol{\Phi}\boldsymbol{\Phi}^T + \boldsymbol{\Sigma}_w^{-1}\right)^{-1} = \boldsymbol{\Sigma}_w - \boldsymbol{\Sigma}_w \boldsymbol{\Phi}(\sigma^2 \boldsymbol{I} + \underbrace{\boldsymbol{\Phi}^T \boldsymbol{\Sigma}_w \boldsymbol{\Phi}}_{\boldsymbol{K}})^{-1} \boldsymbol{\Phi}^T \boldsymbol{\Sigma}_w,$$

$${oldsymbol{\phi_*}^T} oldsymbol{A}^{-1} {oldsymbol{\phi_*}^T} oldsymbol{\Phi_*}^T oldsymbol{\Sigma_w} {oldsymbol{\phi_*}^T} oldsymbol{\Delta_w} oldsymbol{\Phi_*}^T oldsymbol{\Sigma_w} oldsymbol{\Phi_*}^T oldsymbol{\Delta_w} oldsymbol{\Phi_*}^T oldsymbol{\Sigma_w} oldsymbol{\Phi_*}^T oldsymbol{\Phi_*}$$

Addressing nonlinear dependency

Combining the results we get:

$$p(y_* \mid \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \mathcal{N} \left(\boldsymbol{\phi_*}^T \boldsymbol{\Sigma}_w \boldsymbol{\Phi} (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{y}, \right.$$
$$\boldsymbol{\phi_*}^T \boldsymbol{\Sigma}_w \boldsymbol{\phi_*}^T - \boldsymbol{\phi_*}^T \boldsymbol{\Sigma}_w \boldsymbol{\Phi} (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{\Phi}^T \boldsymbol{\Sigma}_w \boldsymbol{\phi_*} \right)$$

where we need to invert matrix of size $n \times n$ which is more convenient when n < k.

Т

Addressing nonlinear dependency

Т

Addressing nonlinear dependency

Kernel trick

Notice that feature space always enters in the forms of $\Phi^T \Sigma_w \Phi$, $\phi_*^T \Sigma_w \Phi$, $\phi_*^T \Sigma_w \phi_*$. Entries of these matrices are of the form $\phi(x)^T \Sigma_w \phi(x') =: k(x, x')$.

• k(x, x') is known as kernel or covariance function

Kernel trick

Notice that feature space always enters in the form of $\Phi^T \Sigma_w \Phi$, ${\phi_*}^T \Sigma_w \Phi$, ${\phi_*}^T \Sigma_w \phi_*$.

Entries of these matrices are of the form $\phi(x)^T \Sigma_w \phi(x') =: k(x, x')$.

• k(x, x') is known as kernel or covariance function

Define $\psi(x) := \Sigma_w^{1/2} \phi(x)$ we can rewrite kernel as a simple dot product

$$k(\boldsymbol{x}, \boldsymbol{x'}) = \boldsymbol{\psi}(\boldsymbol{x})^T \boldsymbol{\psi}(\boldsymbol{x'}),$$

where $oldsymbol{\Sigma}_w^{1/2} = oldsymbol{U} oldsymbol{D}^{1/2} oldsymbol{U}^T$ for $oldsymbol{U} oldsymbol{D} oldsymbol{U}^T$ being the SVD of $oldsymbol{\Sigma}_w$.

Kernel trick

Notice that feature space always enters in the form of $\Phi^T \Sigma_w \Phi$, $\phi_*^T \Sigma_w \Phi$, $\phi_*^T \Sigma_w \phi_*$. Entries of these matrices are of the form $\phi(x)^T \Sigma_w \phi(x') =: k(x, x')$.

• k(x, x') is known as kernel or covariance function

Define $\psi(x) := \Sigma_w^{1/2} \phi(x)$ we can rewrite kernel as a simple dot product

$$k(\boldsymbol{x}, \boldsymbol{x'}) = \boldsymbol{\psi}(\boldsymbol{x})^T \boldsymbol{\psi}(\boldsymbol{x'}),$$

where $oldsymbol{\Sigma}_w^{1/2} = oldsymbol{U} oldsymbol{D}^{1/2} oldsymbol{U}^T$ for $oldsymbol{U} oldsymbol{D} oldsymbol{U}^T$ being the SVD of $oldsymbol{\Sigma}_w$.

Kernels provide an efficient way to transform data without having to compute coordinates in a new space, i.e. $\phi(x)$.

Outline

- 1 Introduction
- Bayesian Linear Regression
- Gaussian Processes

Problem statement

Goal: Find hypothesis function that fits the data.

Gaussian Process Regression

Problem statement

Goal: Find hypothesis function that fits the data.

Assumption: $y_i = f(x_i) + \epsilon$

- $\epsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$
- ullet is a function-valued r.v. drawn from a Gaussian Process conditioned on data

Gaussian Process

Definition: Gaussian Process

Let $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a positive definite kernel and $m: \mathbb{R}^d \to \mathbb{R}$ be a finite real-valued function. Then a random function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be a Gaussian Process (GP) with mean m and covariance kernel k, denoted by GP(m, k), if the following holds: for any finite set $X = (x_1, x_2, \ldots, x_n) \subset \mathbb{R}^d$ of any size $n \in \mathbb{N}$, the random vector

$$f_X = (f(\boldsymbol{x}_1), f(\boldsymbol{x}_2), \dots, f(\boldsymbol{x}_n))^T \in \mathbb{R}^n$$

follows a multivariate normal distribution $\mathcal{N}(m_X,\,k_{XX})$ with covariance

$$k_{XX}=[k(m{x}_i,m{x}_j)]_{i,j=1}^n$$
 and mean vector $m_X=[m(m{x}_1),m(m{x}_2),\dots,m(m{x}_n)]^T$. It is written as

$$f \sim GP(m,k)$$
.

Gaussian Process

Since m and k are respectively the mean and covariance functions of a Gaussian process, they can be written as

$$m(\boldsymbol{x}) = \mathbb{E}_{f \sim GP(m,k)}[f(\boldsymbol{x})],$$

$$k(\boldsymbol{x}, \boldsymbol{x'}) = \mathbb{E}_{f \sim GP(m,k)}[(f(\boldsymbol{x}) - m(\boldsymbol{x}))(f(\boldsymbol{x'}) - m(\boldsymbol{x'}))].$$

The function values $f(x_1), f(x_2), \dots, f(x_n)$ are jointly Gaussian for any finite n.

Example: Prior

Define

$$k(x, x') = cov(f(x), f(x')) = exp\left(-\frac{1}{2}||x - x'||_2^2\right).$$

With this covariacne function we can defince covariance matrix $K(X_*, X_*)$ between two sets of points by applying equation above elementwise for each pair of points.

Let's draw some function values $f \sim \mathcal{N} \big(\mathbf{0}, K(\boldsymbol{X}_*, \boldsymbol{X}_*) \big)$.

Example: Prior

Computing the predictions

Assumption: $y = f(\boldsymbol{x}) + \epsilon \;$ where noise is i.i.d. $\mathcal{N}(0, \sigma^2)$. Then,

$$cov(y_i, y_j) = cov(f(\boldsymbol{x}_i) + \epsilon_i, f(\boldsymbol{x}_j) + \epsilon_j) =$$

$$cov(f(\boldsymbol{x}_i), f(\boldsymbol{x}_j)) + cov(f(\boldsymbol{x}_i), \epsilon_j) +$$

$$cov(\epsilon_i, f(\boldsymbol{x}_j)) + cov(\epsilon_i, \epsilon_j) =$$

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) + \sigma^2 \delta_{ij}$$

or

$$cov(\boldsymbol{y}) = k(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 \boldsymbol{I}$$
.

Computing the predictions: Joint distribution of observed and test values

$$\begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{f}_* \end{bmatrix} \sim \mathcal{N} \left(\boldsymbol{0}, \begin{bmatrix} K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 \boldsymbol{I} & K(\boldsymbol{X}, \boldsymbol{X}_*) \\ K(\boldsymbol{X}_*, \boldsymbol{X}) & K(\boldsymbol{X}_*, \boldsymbol{X}_*) \end{bmatrix} \right)$$

Computing the predictions: Posterior predictive distribution

$$\begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{f}_* \end{bmatrix} \sim \mathcal{N} \left(\boldsymbol{0}, \begin{bmatrix} K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 \boldsymbol{I} & K(\boldsymbol{X}, \boldsymbol{X}_*) \\ K(\boldsymbol{X}_*, \boldsymbol{X}) & K(\boldsymbol{X}_*, \boldsymbol{X}_*) \end{bmatrix} \right)$$

$$oldsymbol{f}_* \, | \, oldsymbol{X}, oldsymbol{y}, oldsymbol{X}_* \sim \mathcal{N}(\overline{oldsymbol{f}}_*, \, \mathrm{cov}(oldsymbol{f}_*))$$

where

$$\begin{split} \overline{\boldsymbol{f}}_* &:= \mathbb{E}[\boldsymbol{f}_* \,|\, \boldsymbol{X}, \boldsymbol{y}, \boldsymbol{X}_*] = K(\boldsymbol{X}_*, \boldsymbol{X}) \big(K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 \boldsymbol{I} \big)^{-1} \boldsymbol{y} \,, \\ & \text{cov}(\boldsymbol{f}_*) = K(\boldsymbol{X}_*, \boldsymbol{X}_*) - K(\boldsymbol{X}_*, \boldsymbol{X}_*) \big(K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 \boldsymbol{I} \big)^{-1} K(\boldsymbol{X}, \boldsymbol{X}_*) \,. \end{split}$$

Computing the predictions: Posterior predictive distribution

Denote $K := K(X, X), K_* := K(X, X_*),$

 $m{k}_* := m{k}(m{x}_*) = [k(m{x}_i, m{x}_*)]_{i=1}^n$ – the covariance vector of a test point $m{x}_*$ and n training points.

$$f_* \mid oldsymbol{X}, oldsymbol{y}, oldsymbol{x}_* \sim \mathcal{N}(ar{f}_*, \, \mathbb{V}[f_*])$$

where

$$egin{aligned} & \overline{f}_* = oldsymbol{k}_*^T oldsymbol{(K + \sigma^2 oldsymbol{I})}^{-1} oldsymbol{y} \,, \ & \mathbb{V}[f_*] = oldsymbol{k}(oldsymbol{x}_*, oldsymbol{x}_*) - oldsymbol{k}_*^T oldsymbol{(K + \sigma^2 oldsymbol{I})}^{-1} oldsymbol{k}_* \,. \end{aligned}$$

Т

Example

Example: Noise-free case

$$\epsilon = 0 \Leftrightarrow \sigma^2 = 0$$

Equivalence to Bayesian Linear Regression

$$\overline{f}(\boldsymbol{x}_*) = \boldsymbol{k}(\boldsymbol{x}_*)^T (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{y} = \sum_{i=1}^n \alpha_i \boldsymbol{y}_i$$

Corresponds to posterior predictive mean of Bayesian Linear Regression (slide 23)

$$\boldsymbol{\phi_*}^T \boldsymbol{\Sigma}_w \boldsymbol{\Phi} (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{y}$$

if we define $k(\boldsymbol{x}_i, \boldsymbol{x}_j) := \boldsymbol{\phi}(\boldsymbol{x}_i)^T \boldsymbol{\Sigma}_w \, \boldsymbol{\phi}(\boldsymbol{x}_j)$.

Hyperparameter optimization: RBF kernel

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{||\boldsymbol{x}_i - \boldsymbol{x}_j||_2^2}{2l^2}\right)$$

How to choose hyperparameters (e.g. *l*)?

ТШ

Hyperparameter optimization: RBF kernel

Hyperparameter optimization

Let's introduce marginal likelihood:

$$p(\boldsymbol{y} \,|\, \boldsymbol{X}) = \int \overbrace{p(\boldsymbol{y} \,|\, \boldsymbol{f}, \boldsymbol{X})}^{\text{likelihood}} \ \overbrace{p(\boldsymbol{f} \,|\, \boldsymbol{X})}^{\text{prior}} \ d\boldsymbol{f}$$

Hyperparameter optimization

Let's introduce marginal likelihood:

$$p(\boldsymbol{y} \,|\, \boldsymbol{X}) = \int \overbrace{p(\boldsymbol{y} \,|\, \boldsymbol{f}, \boldsymbol{X})}^{\text{likelihood}} \ \overbrace{p(\boldsymbol{f} \,|\, \boldsymbol{X})}^{\text{prior}} \ d\boldsymbol{f}$$

Since prior is Gaussian, i.e. $f | \boldsymbol{X} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{K})$, then

$$\log p(f \mid X) = -\frac{1}{2} f^T K^{-1} f - \frac{1}{2} \log |K| - \frac{n}{2} \log 2\pi.$$

Hyperparameter optimization

Using the fact that likelihood is also Gaussian, $\boldsymbol{y} | \boldsymbol{f} \sim \mathcal{N}(\boldsymbol{f}, \sigma^2 \boldsymbol{I})$, the final log marginal likelihood is given by

$$\log p(\boldsymbol{y} \,|\, \boldsymbol{X}) = -\frac{1}{2} \boldsymbol{y}^T (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{y} - \frac{1}{2} \log |\boldsymbol{K} + \sigma^2 \boldsymbol{I}| - \frac{n}{2} \log 2\pi.$$

Hyperparameter optimization

Using the fact that likelihood is also Gaussian, $y | f \sim \mathcal{N}(f, \sigma^2 I)$, the final log marginal likelihood is given by

$$\log p(\boldsymbol{y} \,|\, \boldsymbol{X}) = -\frac{1}{2} \boldsymbol{y}^T (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{y} - \frac{1}{2} \log |\boldsymbol{K} + \sigma^2 \boldsymbol{I}| - \frac{n}{2} \log 2\pi.$$

Let Θ be the set of all hyperparameters. Note that K is dependent on Θ . Then

$$\Theta^* = \operatorname*{argmax}_{\Theta} \log p(\boldsymbol{y} \,|\, \boldsymbol{X}, \Theta) \,.$$

Advantages vs. Disadvantages

Gaussian Process Regression is a function-space view of regression problem.

Advantages

- Flexibility and interpretability
- Can exactly be optimized (given the hyperparameters)

Disadvantages

- Prone to outliers (use the whole data to perform prediction)
- Not efficient for high-dimensional data

Thank you!

References

- [1] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. *Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences*. 2018. arXiv: 1807.02582 [stat.ML].
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
 P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
 M. Brucher, M. Perrot, and E. Duchesnay. "Scikit-learn: Machine Learning in Python".
 In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.
- [3] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. Adaptive computation and machine learning. MIT Press, 2006, pp. I–XVIII, 1–248. ISBN: 026218253X.