Handle Complexity: Manipulate (Interaction)

How?

How?

Reduce

Filter

Aggregate

- If what we have before does not work
 - Using one static view to solve problems is the best
 - If it is possible
 - If it is not too complicated to understand
 - If the data or tasks are too complicated, do not insist on one static view to solve all problems
- Change view (what you see) over time
- Facet across multiple view (next topic)
- Reduce item/attribute within single view (next next topic)

Manipulate

Facet

Reduce

Change

Juxtapose

Filter

Select

Partition

Aggregate

Superimpose

Embed

Change over Time or by User's Need

- Change over time: animation
- O Change by user's need: interaction
- What can we change?
 - Visual encoding
 - Parameters
 - Arrange: rearrange, reorder
 - Alignment

 - Interaction entails change
- Powerful and flexible

- Different idioms serve different tasks. Users may want to complete different tasks from your tool. You cannot show all idioms on the screen
- Re-encode (different idioms) same data by user's need (interaction)
- Example: choropleth map <-> bar chart
 - Serve different purposes: observe the population distribution over the space vs find the state with the n-th most population

Idiom: Change Parameters

- Add widgets/controls for users to control what a subsets of data should be show on the visualization
 - Sliders, buttons, radio buttons, checkboxes, dropdowns, comboboxes
- Pros:
 - users can control it so users can clearly know what happen,
 - self-documenting
- Cons: use screen space.

Idiom: Change Parameters

- Add widgets/controls for users to control what a subsets of data should be show on the visualization
 - Sliders, buttons, radio buttons, checkboxes, dropdowns, comboboxes
- Pros:
 - users can control it so users can clearly know what happen,
 - self-documenting
- Cons: use screen space

- What: simple table
- Why: find extreme values, trends
- How: data-driven reordering

https://observablehq.com/@d3/sortable-bar-chart

http://carlmanaster.github.io/datastripes/

Idiom: Reorder

- Reordering may be more powerful than you think
- Observe correlation between columns (attributes)?

Idiom: Change Alignment

- Stacked bars
 - Easy to compare
 - First segment
 - Total bar
- Align to different segment
 - Supports flexible comparison

Change the alignment point by interactions

Idiom: Animated Transition (Important!!!)

- Smooth interpolation from one state to another
 - Alternative to jump cut, supports item tracking
 - Best case for animation
 - Staging to reduce "cognitive load"
 - Use can know what happen between two view without explanation
- https://vimeo.c om/19278444

Idiom: Animated Transition

- Animated transition
 - Network drilldown/rollup

Idiom: Animated Transition

- Example: hierarchical bar chart

 Add detail during transition to new level of detail

https://observablehq.com/@d3/hierarchical-bar-chart

Manipulate

- Example of selection
 - Tooltip to show detail of selected item

Manipulate

→ Change

→ Select

→ Navigate

- What do you design for?
 - Mouse & keyboard on desktop?
 - Large screens, hover, multiple clicks
 - Touch screen (smartphone, tablet)
 - Small screens, no hover, just tap
- Gesture from videos/sensors?
 - Ergonomic reality vs movie bombast
- Eye tracking?
 - VR AR devices

Selection

- O Selection: basic operation for most interaction

- Design choices
 - how many selection types?
 - Interaction types (actions)
 - Click/tap (heavyweight) vs hover (lightweight but not available on most touchscreens)
 - Multiple click types (shift-click, option-click...)
 - Proximity beyond click/hover (touching vs nearby vs distant)

Application semantics (for the selection set)

- Adding to selection set vs replacing selection
- Can selection be null?
 - Ex: toggle so nothing selected if click on background
- Primary vs secondary (ex: source/target nodes in network)
- Group membership (add/delete items)

Highlight the Selection

- Highlight: change visual encoding for selection target
 - Visual feedback closely tied to but separable from selection (interaction)
- Design choices: typical visual channels
 - Change item color: but hides existing color coding
 - Add outline mark
 - Change size (ex: increase outline mark linewidth)
 - Change shape (ex: from solid to dashed line for link mark)
- Unusual channels: motion
 - Motion: usually avoid for single view
 - With multiple views, could justify to draw attention to other views

- Tooltips

- Popup information for selection
 - Hover or click
 - Can provide useful additional detailed on demand
 - Beware: does not support overview
 - Always consider if there is a way to visually encode directly to provide overview
 - If you make a rollover or tooltip, assume nobody will see it. If it is important, make it explicit

- Visual feedback
 - 0.1 second: perceptual processing
 - Mouseover highlighting ballistic motion
 - 1 second: immediate response
 - Fast response after mouse click, button press
 - 10 seconds: brief tasks
 - Bounded response after dialog- mental model of heavyweight operation (with processing icon)

Example of navigation: zoom and pan

Manipulate

→ Change

→ Select

→ Navigate

Navigate: Changing Item Visibility

- Change viewpoint
 - Changes which items are visible within view
 - Camera metaphor
 - Rotate: especially in 3D
 - Pan/translate: move up/down/sideway
 - Zoom
 - Geometric zoom: familiar semantics
 - semantic zoom: adapt object representation based on available pixels
 - Dramatic change, or more subtle one

→ Navigate

- → Item Reduction
 - → Zoom

 Geometric or Semantic

→ Pan/Translate

Navigate: Changing Item Visibility

- Change viewpoint
 - Changes which items are visible within view
 - Camera metaphor
 - Rotate: especially in 3D
 - Pan/translate: move up/down/sideway
 - Zoom
 - Geometric zoom: familiar semantics
 - semantic zoom: adapt object representation based on available pixels
 - Dramatic change, or more subtle one

→ Navigate

- → Item Reduction
 - → Zoom
 Geometric or Semantic

→ Pan/Translate

- Navigate: Changing Item Visibility

- Change viewpoint
 - Changes which items are visible within view
 - Camera metaphor
 - Rotate: especially in 3D
 - Pan/translate: move up/down/sideway
 - Zoom
 - Geometric zoom: familiar semantics
 - semantic zoom: adapt object representation based on available pixels
 - Dramatic change, or more subtle one

→ Navigate

- → Item Reduction
 - → Zoom
 Geometric or Semantic

→ Pan/Translate

Pan/Translate

Google map

Idiom: Scrollytelling

- How: navigate page by scrolling
- Procs:
 - Familiar & intuitive, from standard web browsing
 - Linear (up and down only) vs clicked based interface
- Cons
 - Scrolljacking, no direct access
 - Unexpected behavior
 - Continuous control for discrete steps

https://www.bloomberg.com/graphics/2015-whats-warming-the-world/

Navigate: Changing Item Visibility

- Change viewpoint
 - Changes which items are visible within view
 - Camera metaphor
 - Rotate: especially in 3D
 - Pan/translate: move up/down/sideway
 - Zoom
 - Geometric zoom: familiar semantics
 - semantic zoom: adapt object representation based on available pixels
 - Dramatic change, or more subtle one

After zooming: people may not only want to see the same plot drawn by more pixels, but also want to see more information of the plot

→ Navigate

- → Item Reduction
 - → Zoom
 Geometric or Semantic

→ Pan/Translate

Geometric vs Semantic Zooming

https://observablehq.com/@john-guerra/svg-semantic-zoom

Sematic zooming

Semantic Zooming

Google map

Utilize the extra pixel to put more information/change the

visual encoding

- Unconstrained navigation
 - Users can freely move the virtual camera
 - Easy to implement for designer
 - Hard to control for user
 - Easy to overshoot/undershoot
- Constrained navigation
 - Typically use animated transitions
 - Trajectory automatically computed based on selection
 - Just click: selection ends up framed nicely in final viewpoint

- Example: geographic map
 - Simple zoom, only viewport change, shape preserved
 - Limit the ways to zoom in (compare with google map)

Interaction Procs

- Major advantage of computer-based
 - vs paper-based visualization
- Flexible, powerful, intuitive
 - Exploratory data analysis: change as you go during analysis process
 - Fluid task switching: different visual encodings support different tasks
- Animated transitions provide excellent support
 - Empirical evidence that animated transitions help people stay oriented

Interaction Cons

- Interaction has a time cost.
 - Sometimes minor, sometimes significant
 - Degenerates to human-powered search in worst case
- Ontrols may take screen real estate
 - Or invisible functionality may be difficult to discover (lack of affordances)
- Users may not interact as planned by designer.
 - NYTimes logs show -90% do not interact beyond scrollytelling

Practice

- O What manipulation techniques do we use in this vis tool?
 - Change: visual encoding/alignment/reorder/filtered items?
 - Select: click/hover, null/adding/replacing selection?
 - Navigate: rotate/pan/translate/zoom?

- What manipulation techniques do we use in this vis tool?
 - Change: visual encoding/alignment/reorder/filtered items?
 - Select: click/hover, null/adding/replacing selection?
 - Navigate: rotate/pan/translate/zoom?

