EE24BTECH11021 - Eshan Ray

Question:

A circle drawn with origin as the centre passes through $(\frac{13}{2}, 0)$. The point which does not lie in the interior of the circle is

- 1) $\left(\frac{-3}{4}, 1\right)$ 2) $\left(2, \frac{7}{3}\right)$ 3) $\left(5, \frac{-1}{2}\right)$
- 4) $\left(-6, \frac{2}{7}\right)$

Solution:

Variable	value
A	$\begin{pmatrix} \frac{13}{2} \\ 0 \end{pmatrix}$
O	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
В	$\begin{pmatrix} \frac{-3}{4} \\ 1 \end{pmatrix}$
C	$\begin{pmatrix} 2 \\ \frac{7}{3} \end{pmatrix}$
D	$\begin{pmatrix} 5 \\ \frac{13}{2} \end{pmatrix}$
Е	$\begin{pmatrix} -6 \\ \frac{-5}{2} \end{pmatrix}$

TABLE 4: Input parameters

As A lies on circle,

$$||A||^2 + 2u^{\mathsf{T}}A + f = 0 \tag{1}$$

$$\implies f = -\left(\left(\frac{13}{2}\right)^2\right) - 2\left(0 \quad 0\right)\left(\frac{13}{2}\right) \tag{2}$$

$$\implies f = -\frac{169}{4} \tag{3}$$

 \therefore The equation of the circle is $||x||^2 = \frac{169}{4}$.

A point is inside the circle if $||P - O||^2 < r^2$ $r^2 = \frac{169}{4} = 42.25$

For $B\left(\frac{-3}{4},1\right)$

$$||B - O||^2 = \left\| \begin{pmatrix} \frac{-3}{4} \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\|^2 \tag{4}$$

$$\implies ||B - O||^2 = \left\| \begin{pmatrix} \frac{-3}{4} \\ 1 \end{pmatrix} \right\|^2 \tag{5}$$

$$\implies ||B - O||^2 = \left(\frac{-3}{4}\right)^2 + 1^2 \tag{6}$$

$$\implies ||B - O||^2 = \frac{25}{16} < \frac{169}{4} \tag{7}$$

$$\implies ||B - O||^2 < r^2 \tag{8}$$

So, $B\left(\frac{-3}{4},1\right)$ lies inside the circle.

For $C(2, \frac{7}{3})$

$$\|C - O\|^2 = \left\| \begin{pmatrix} 2 \\ \frac{7}{2} \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\|^2 \tag{9}$$

$$\Longrightarrow \|C - O\|^2 = \left\| \begin{pmatrix} 2 \\ \frac{7}{3} \end{pmatrix} \right\|^2 \tag{10}$$

$$\implies ||C - O||^2 = 2^2 + \left(\frac{7}{3}\right)^2 \tag{11}$$

$$\implies ||C - O||^2 = \frac{85}{9} < \frac{169}{4} \tag{12}$$

$$\implies \|C - O\|^2 < r^2 \tag{13}$$

So, $C(2, \frac{7}{3})$ lies inside the circle.

For $D\left(5, \frac{-1}{2}\right)$

$$||D - O||^2 = \left\| \begin{pmatrix} 5 \\ \frac{-1}{2} \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\|^2$$
 (14)

$$\implies ||D - O||^2 = \left\| \begin{pmatrix} 5 \\ \frac{1}{2} \end{pmatrix} \right\|^2 \tag{15}$$

$$\implies ||D - O||^2 = 5^2 + \left(\frac{-1}{2}\right)^2 \tag{16}$$

$$\implies ||D - O||^2 = \frac{101}{4} < \frac{169}{4} \tag{17}$$

$$\implies ||D - O||^2 < r^2 \tag{18}$$

So, $D(5, \frac{-1}{2})$ lies inside the circle.

For $E\left(-6, \frac{-5}{2}\right)$

$$||E - O||^2 = \left\| \begin{pmatrix} -6 \\ \frac{-5}{2} \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\|^2$$
 (19)

$$\Longrightarrow ||E - O||^2 = \left\| \begin{pmatrix} -6 \\ \frac{-5}{2} \end{pmatrix} \right\|^2 \tag{20}$$

$$\implies ||E - O||^2 = (-6)^2 + \left(\frac{-5}{2}\right)^2 \tag{21}$$

$$\implies ||E - O||^2 = \frac{169}{4} = \frac{169}{4} \tag{22}$$

$$\implies ||E - O||^2 = r^2 \tag{23}$$

So, only point $E\left(-6, \frac{-5}{2}\right)$ lies on the circle.

Fig. 4: Point E lies on the circle