Application de l'optimisation convexe au choix de portefeuilles socialement responsables

Travail d'initiative personnelle encadré

Réalisé par Ilias Mellouki

Juin 2021

- 1 Introduction
- Problème de Markovitz
 - Hypothèses sur le marché
 - Modélisation
 - Optimisation moyenne-variance
- 3 Optimisation sous contraintes
 - Cas général
 - Cas convexe
- A Résolution du problème
 - Expression de la solution
 - Partie Python
 - Graphiques obtenus
- 5 Investissement socialement responsable
- 6 Annexe

- Introduction
- Problème de Markovitz
 - Hypothèses sur le marché
 - Modélisation
 - Optimisation moyenne-variance
- 3 Optimisation sous contraintes
 - Cas général
 - Cas convexe
- A Résolution du problème
 - Expression de la solution
 - Partie Python
 - Graphiques obtenus
- 5 Investissement socialement responsable
- 6 Annexe

Problématique

- Comment modéliser les prix des actifs ainsi que les portefeuilles ?
- Comment formuler le problème de recherche d'un portefeuille performant pour un seuil maximal de risque donné?
- Comment traduire mathématiquement et résoudre le problème en utilisant des outils d'optimisation ?
- Comment introduire la responsabilité sociale dans le choix de portefeuille ?

- Introduction
- 2 Problème de Markovitz
 - Hypothèses sur le marché
 - Modélisation
 - Optimisation moyenne-variance

Introduction Problème de Markovitz Optimisation sous

- 3 Optimisation sous contraintes
 - Cas général
 - Cas convexe
- A Résolution du problème
 - Expression de la solution
 - Partie Python
 - Graphiques obtenus
- 5 Investissement socialement responsable
- 6 Annexe

Notations et hypothèses sur le marché

- On suppose le marché à 2 dates t=0 et t=1
- ullet Il existe N actifs risqués, et 1 actif sans risque
- L'actif sans risque vaut 1 en t=0 et 1+r en t=1
- On note $p_i(t)$ le prix de l'actif i à la date t, avec $i \in \{1,...,N\}$ et $t \in \{0,1\}$
- On note y_i le rapport $\frac{p_i(1)}{p_i(0)}$

Modélisation du futur

- Afin de modéliser les valeurs futures des actifs, on utilise des variables aléatoires, pour cela on se donne un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$
- ullet $Y=egin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$ vecteur aléatoire à valeurs dans \mathbb{R}^N qu'on suppose dans L^2
- On note son espérance

$$\mu = \mathbb{E}[Y] \in \mathbb{R}^N$$

et sa matrice de variance covariance

$$\Omega = \mathbb{V}ar(Y) = (\mathbb{C}ov(Y_i, Y_j)_{1 \le i, j \le N}) \in \mathbb{S}_n^{++}(\mathbb{R})$$

Donc en particulier Ω inversible.

ullet On suppose que $\forall i \in \{1,\ldots,N\}$ on a $\mu_i > 1+r$

Ilias Mellouki TIPE 6

Modélisation du portefeuille

- Un portefeuille est définit par le couple $(a_0,a) \in \mathbb{R} \times \mathbb{R}^N$, indiquant la quantité d'actif qu'il contient.
- La valeur du portefeuille aux différents instants est donc

$$\begin{cases} V_0(a_0, a) = a_0 + \sum_{i=1}^N a_i p_i(0) \\ V_1(a_0, a) = a_0(1+r) + \sum_{i=1}^N a_i p_i(1) = a_0(1+r) + \sum_{i=1}^N a_i p_i(0) y_i \end{cases}$$

Sous forme matricielle:

Valeurs du portefeuille

$$\begin{cases} V_0(a_0, a) = a_0 + a^T p(0) \\ V_1(a_0, a) = a_0(1 + r) + a^T \operatorname{diag}(p(0)) Y \end{cases}$$

οù

$$p(0) = \begin{pmatrix} p_1(0) \\ \vdots \\ p_N(0) \end{pmatrix}$$

Ilias Mellouki

TIPI

- On considère un portefeuille de valeur v en t=0, i.e $V_0(a_0,a)=v$, on se donne un niveau maximal de variance σ^2 , on veut naturellement maximiser l'espérance de gain.
- On cherche à trouver les couples (a_0,a) qui résolvent :

Problème de Markowitz

$$\max_{a_0,a} \quad \mathbb{E}[V_1(a_0,a)]$$
sous
$$\mathbb{V}ar[V_1(a_0,a)] \le \sigma^2$$

$$V_0(a_0,a) = v$$

$$(1)$$

Ilias Mellouki TIPE

Formulation de la moyenne et de la variance

On note

$$w_a = \operatorname{diag}(p(0))a = \begin{pmatrix} p_1(0) \cdot a_1 \\ \vdots \\ p_N(0) \cdot a_N \end{pmatrix}$$

le vecteur des valeurs initialement investies en chaque actif risqué

Donc

$$\begin{cases} V_0(a_0, a_1) = a_0 + w_a^T e \\ V_1(a_0, a_1) = a_0(1+r) + w_a^T Y \end{cases}$$

où
$$e = (1...1)^T$$

- En général pour un vecteur aléatoire $X \in L^2$ et un vecteur réel λ de même dimension, $\mathbb{V}ar(\lambda^T X) = \lambda^T \mathbb{V}ar(X)\lambda$
- On déduit

$$\begin{cases} \mathbb{E}[V_1(a_0, a_1)] = a_0(1+r) + w_a^T \mu \\ \mathbb{V}ar[V_1(a_0, a_1)] = w_a^T \Omega w_a \end{cases}$$

Ilias Mellouki

Problème équivalent

• Sachant que v est une donnée du problème, on peut éliminer la variable a_0 du problème et se retrouver avec une optimisation sur \mathbb{R}^N :

$$\mathbb{E}[V_1(a_0, a_1)] = (v - w_a^T e)(1+r) + w_a^T \mu$$

• On se débarrasse en même temps de la contrainte $V_0(a_0,a)=v$, le problème est alors équivalent à

$$\max_{w_a \in \mathbb{R}^N} \quad (v - w_a^T e)(1+r) + w_a^T \mu$$
sous
$$w_a^T \Omega w_a = \sigma^2$$

• Le terme v(1+r) étant constant, celà revient à trouver w_a^* qui résoudrait

Problème d'optimisation équivalent

$$\max_{w_a \in \mathbb{R}^N} w_a^T \tilde{\mu}$$
sous $w_a^T \Omega w_a \le \sigma^2$ (2)

Où
$$\tilde{\mu} = \mu - (1+r)e$$

- Introduction
- Problème de Markovitz
 - Hypothèses sur le marché
 - Modélisation
 - Optimisation moyenne-variance
- 3 Optimisation sous contraintes
 - Cas général
 - Cas convexe
- A Résolution du problème
 - Expression de la solution
 - Partie Python
 - Graphiques obtenus
- 5 Investissement socialement responsable
- 6 Annexe

Ilias Mellouki TIPE

Formulation standard d'un problème d'optimisation

ullet La forme standard d'un problème d'optimisation sur $x\in\mathbb{R}^n$

$$\begin{array}{ll} \min & f_0(x) \\ \text{sous contraintes} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

Où toutes les fonctions sont à valeurs dans $\mathbb R$

• La valeur optimale du problème:

$$p^* = \inf_{x \in \mathbb{R}^n} \{ f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p \}$$

•
$$p^* = +\infty$$
 si $\{f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\} = \emptyset$

- $p^* = -\infty$ si le problème est non borné inférieurement
- $p^* \in \mathbb{R}$ sinon

Ilias Mellouki TIPE 12 /

Dualité Lagrangienne

Lagrangien

On définit le Lagrangien: $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ par

$$\mathcal{L}(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Les scalaires λ_i et ν_i sont appelés multiplicateurs de Lagrange.

Ilias Mellouki

Conditions de KKT

Conditions de Karush-Kuhn-Tucker

Les 4 conditions suivantes sur le triple (x, λ, ν) sont appelées conditions de KKT (pour un problème différentiable f_i, h_i)

- Réalisabilité primale: $f_i(x) \leq 0, h_i(x) = 0$
- Réalisabilité duale: $\lambda \succ 0$
- Conditions de relâchement supplémentaires: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- Condition du premier ordre (le gradient du Lagrangien s'annule)

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

Condition nécessaire d'optimalité

Pour tout problème d'optimisation avec une fonction objective et des fonctions de contrainte différentiables, le triplet (x, λ, ν) composé des points optimaux satisfait obligatoirement les conditions de KKT.

Ilias Mellouki

Théorème de Salter

Problème convexe

Un problème d'optimisation est dit **convexe** si les f_i sont convexes et les h_i sont linéaires, i.e de la forme $h_i(x) = a_i^T x - b_i$ avec $a_i \in \mathbb{R}^n$ et $b_i \in \mathbb{R}$. On note $A \in \mathbb{R}^{p \times n}$ la matrice dont les lignes sont les a_i^T et $b \in \mathbb{R}^p$ le vecteur des b_i

Condition de Salter pour un problème convexe

Il s'agit de l'existence d'un élément strictement réalisable :

$$\exists x \in \mathbb{R}^n : f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

Théorème de Salter

 Pour un problème convexe différentiable les conditions de KKT sont nécessaires et suffisantes pour l'optimalité, en d'autre terme un point x est optimal pour le primal si on réussit à trouver λ et μ de sorte que (x, λ, μ) satisfasse les conditions de KKT.

- Introduction
- 2 Problème de Markovitz
 - Hypothèses sur le marché
 - Modélisation
 - Optimisation moyenne-variance
- 3 Optimisation sous contraintes
 - Cas général
 - Cas convexe
- A Résolution du problème
 - Expression de la solution
 - Partie Python
 - Graphiques obtenus
- 5 Investissement socialement responsable
- 6 Annexe

Problème de Markowitz sous la forme standard

 On réécrit le problème sous la forme standard, avec un min, pour cela on utilise le fait que

$$\begin{aligned} \max_{w_a \in \mathbb{R}^N} & w_a^T \tilde{\mu} & & -\min_{w_a \in \mathbb{R}^N} & -w_a^T \tilde{\mu} \\ \text{sous} & w_a^T \Omega w_a \leq \sigma^2 & & \text{sous} & w_a^T \Omega w_a \leq \sigma^2 \end{aligned}$$

La résolution du problème de Markowitz est équivalente à la résolution de

$$\min_{x \in \mathbb{R}^N} \quad f_0(x)$$
sous
$$f_1(x) \le 0$$

- $f_0(x) = -x^T \tilde{\mu}$ est linéaire donc convexe.
- $f_1(x) = x^T \Omega x \sigma^2$ qui est bien convexe, car $\nabla^2 f_1(x) = 2\Omega \in \mathbb{S}_n^{++}(\mathbb{R})$
- Dans le cas où $\sigma = 0$ la solution est triviale: on investit tout dans l'actif sans risque (valeur future déterministe donc de variance nulle)

Conditions d'optimalité

- Dans le cas où $\sigma > 0$, en prenant x = 0 on trouve que $x^T \Omega x = 0 < \sigma^2$ et donc 0 satisfait la condition de Salter i.e $f_1(0) < 0$
- Les conditions de KKT

$$\lambda \geq 0$$

$$\lambda(x^T \Omega x - \sigma^2) = 0$$

sont alors nécéssaires et suffisantes pour l'optimalité de ce problème convexe.

- La condition 3 implique que $\lambda = 0$ ou $x^T \Omega x \sigma^2 = 0$
- Si $\lambda=0$ alors la condition 4 donne $\tilde{\mu}=0$ or $\mu>(1+r)e$ donc $\tilde{\mu}>0$ d'où $\lambda > 0$ et c'est l'autre terme qui s'annule
- Cela fait sens, la variance du portefeuille de gain maximal atteindra la variance maximale permise σ^2
- L'équation 4 permet d'obtenir alors $x = \frac{1}{\lambda}\Omega^{-1}\tilde{\mu}$

Solution du problème

En injectant dans l'équation 3 on obtient

$$x^T \Omega x = (\frac{1}{\lambda} \Omega^{-1} \tilde{\mu})^T \Omega \frac{1}{\lambda} \Omega^{-1} \tilde{\mu} = \frac{1}{\lambda^2} \tilde{\mu}^T \Omega^{-1} \tilde{\mu} = \sigma^2$$

Finalement, la solution du problème est

$$\begin{cases} w_a^*(\lambda^*) = \frac{1}{\lambda^*} \Omega^{-1} \tilde{\mu} \\ \lambda^* = \frac{1}{\sigma} \sqrt{\tilde{\mu}^T \Omega^{-1} \tilde{\mu}} \end{cases}$$

• λ^* étant proportionnel à $\frac{1}{\sigma}$, peut être vu comme l'aversion au risque de l'investisseur, plus λ^* est grand moins on investit dans l'actif risqué et donc plus on investit dans l'actif sans risque.

Calcul de la moyenne et de la variance

On rappelle que

$$\begin{cases} a^* = \text{diag}(p(0))^{-1} w_a^* \\ a_0^* = v - (w_a^*)^T e \end{cases}$$

On trouve finalement:

Solution du problème de Markowitz

$$\begin{cases} a^*(\lambda^*) = \frac{1}{\lambda^*} \mathrm{diag}(p(0))^{-1} \Omega^{-1} \tilde{\mu} \\ a_0^*(\lambda^*) = v - \frac{1}{\lambda^*} \tilde{\mu}^T \Omega^{-1} e \\ \lambda^* = \frac{1}{\sigma} \sqrt{\tilde{\mu}^T \Omega^{-1} \tilde{\mu}} \end{cases}$$

On rappelle que

$$\begin{cases} \mathbb{E}[V_1(a_0, a_1)] = (v - w_a^T e)(1+r) + w_a^T \mu \\ \mathbb{V}ar[V_1(a_0, a_1)] = w_a^T \Omega w_a \end{cases}$$

Ilias Mellouki

Relation moyenne variance

• En notant $V_1(\lambda) = V_1(a_0^*(\lambda), a^*(\lambda))$

Expression de la moyenne et de la variance

$$\begin{cases} \mathbb{E}[V_1(\lambda^*)] = v(1+r) + w_a^T \tilde{\mu} = v(1+r) + \frac{1}{\lambda^*} \tilde{\mu}^T \Omega^{-1} \tilde{\mu} \\ \mathbb{V}ar[V_1(\lambda^*)] = \sigma^2 = \frac{1}{(\lambda^*)^2} \tilde{\mu}^T \Omega^{-1} \tilde{\mu} \end{cases}$$

- Avec $\frac{1}{\lambda^*}\tilde{\mu}^T\Omega^{-1}\tilde{\mu} = \sqrt{\tilde{\mu}^T\Omega^{-1}\tilde{\mu}}\sqrt{\frac{1}{(\lambda^*)^2}\tilde{\mu}^T\Omega^{-1}\tilde{\mu}} = \sqrt{\tilde{\mu}^T\Omega^{-1}\tilde{\mu}}\sqrt{\mathbb{V}ar[V_1(\lambda^*)]}$
- L'équation moyenne écart-type des portefeuilles optimaux est:

Lien moyenne/écart-type pour les portefeuilles optimaux

$$\mathbb{E}[V_1(\lambda^*)] = v(1+r) + \sqrt{\mathbb{V}ar[V_1(\lambda^*)]} (\tilde{\mu}^T \Omega^{-1} \tilde{\mu})^{\frac{1}{2}}$$
(3)

Portefeuille optimal sans risque

- ullet On dénote un portefeuille par $P=inom{a_0}{a}\in\mathbb{R}^{N+1}$ de sorte que $V_0(a_0,a)=v$
- ullet On note $P^0:=egin{pmatrix}1\\0_{\mathbb{R}^N}\end{pmatrix}$, donc un investisseur purement risquophobe (qui se fixe $\sigma^2 = 0$ ou de façon équivalente $\lambda = +\infty$) compose son portefeuille avec la répartition optimale $a_0 = v$ et a = 0 i.e il choisit le portefeuille $v.P^0$

- On cherche de façon analogue un portefeuille optimal qui serait composé uniquement d'actifs risqués i.e on cherche un λ^* tel que $a_0^*(\lambda^*)=0$
- On rappelle que $a_0^*(\lambda^*) = v \frac{1}{\lambda^*} \tilde{\mu}^T \Omega^{-1} e$, donc il suffit de prendre $\lambda^* = \frac{\tilde{\mu}^T \Omega^{-1} e}{v} \text{ et on a donc } a^*(\lambda^*) = \frac{v}{\tilde{\mu}^T \Omega^{-1} e} \mathrm{diag}(p(0))^{-1} \Omega^{-1} \tilde{\mu}.$
- \bullet Le portefeuille d'un tel investisseur serait $\frac{v}{\tilde{u}^T.\Omega^{-1}\rho}P^*$ où

$$P^* := \begin{pmatrix} 0 \\ \operatorname{diag}(p(0))^{-1}\Omega^{-1}\tilde{\mu} \end{pmatrix}$$

Base de portefeuilles optimaux

optimaux

• Pour une aversion au risque λ^* fixée, le portefeuille optimal s'écrit:

$$\begin{split} P(\lambda^*) &= \begin{pmatrix} a_0^*(\lambda^*) \\ a^*(\lambda^*) \end{pmatrix} = \begin{pmatrix} v - \frac{1}{\lambda^*} \tilde{\mu}^T \Omega^{-1} e \\ \frac{1}{\lambda^*} \mathrm{diag}(p(0))^{-1} \Omega^{-1} \tilde{\mu} \end{pmatrix} \\ &= \begin{pmatrix} v - \frac{1}{\lambda^*} \tilde{\mu}^T \Omega^{-1} e \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{\lambda^*} \mathrm{diag}(p(0))^{-1} \Omega^{-1} \tilde{\mu} \end{pmatrix} \\ &= (v - \frac{1}{\lambda^*} \tilde{\mu}^T \Omega^{-1} e) P^0 + \frac{1}{\lambda^*} P^* \\ &= \alpha_0(\lambda^*) P^0 + \alpha^*(\lambda^*) P^* \end{split}$$

Οù

$$\begin{cases} \alpha_0(\lambda^*) = (v - \frac{1}{\lambda^*} \tilde{\mu}^T \Omega^{-1} e) \\ \alpha^*(\lambda^*) = \frac{1}{\lambda^*} \end{cases}$$

Outils

- Librairie Wallstreet pour l'extraction de données financières
- Librairie Pandas pour la manipulation des données
- Librairie Numpy pour le calcul scientifique/matriciel
- Librairie Matplotlib pour la visualisation graphique de la solution
- Utilisation des classes pour la modélisation des portefeuilles et des paramètres de marché

Introduction Problème de Markovitz Optimisation sous c Expression de la solution Partie Python Graphiques obten

Résultats graphiques

Figure: Comparaison des portefeuilles

Ilias Mellouki TIPE 26 /

- Introduction
- 2 Problème de Markovitz
 - Hypothèses sur le marché
 - Modélisation
 - Optimisation moyenne-variance
- 3 Optimisation sous contraintes
 - Cas général
 - Cas convexe
- A Résolution du problème
 - Expression de la solution
 - Partie Python
 - Graphiques obtenus
- 5 Investissement socialement responsable
- 6 Annexe

Ilias Mellouki

Proposition de régulation

- \bullet On suppose que les N entreprises du marché ont une note $G_i \in [0,10]$ qu'on regroupe dans le vecteur G
- ullet La note globale d'un portefeuille $P=egin{pmatrix} a_0 \\ a \end{pmatrix}$ est obtenue par

$$g_P = w_P^T G$$

où $w_P=rac{1}{V_0(a_0,a)}w_a$ le vecteur des poids de chaque action.

 On récompense les portefeuilles socialement responsables par une prime proportionelle à leur investissement initial et valant

$$\beta(q_P - 5)V_0(a_0, a)$$

Où $\beta>0$ est une **prime de gain relative au montant investi** imposée par l'autorité des marchés financiers.

ullet Ainsi le gain moyen réel du portefeuille P est égal à

$$\mathbb{E}[V_1(a_0, a)] + \beta(g_P - 5)V_0(a_0, a)$$

Ilias Mellouki TIPE 28

Analogie avec les résultats précédents

• On cherche à trouver les couples (a_0, a) qui résolvent :

Problème de Markowitz généralisé

$$\max_{a_0,a} \quad \mathbb{E}[V_1(a_0,a)] + \beta(g_P - 5)V_0(a_0,a)$$
sous
$$\mathbb{V}ar[V_1(a_0,a)] \le \sigma^2$$

$$V_0(a_0,a) = v$$
(4)

• Ce qui est équivalent au problème que l'on sait résoudre :

Problème d'optimisation équivalent

$$\max_{w_a \in \mathbb{R}^N} w_a^T \hat{\mu}$$
sous $w_a^T \Omega w_a \le \sigma^2$
(5)

Où
$$\widehat{\mu} = \mu - (1+r)e + \beta G$$

Mellouki TIPE 29 /

- Introduction
- Problème de Markovitz
 - Hypothèses sur le marché
 - Modélisation
 - Optimisation moyenne-variance
- 3 Optimisation sous contraintes
 - Cas général
 - Cas convexe
- Aésolution du problème
 - Expression de la solution
 - Partie Python
 - Graphiques obtenus
- 5 Investissement socialement responsable
- 6 Annexe

Harry Markowitz Portfolio Selection, Journal of Finance, 1952, 7 (1), 77-91.

Stephen Boyd and Lieven Vandenberghe Convex Optimization, Cambridge University Press, March 2004.

Idris Kharroubi Gestion de Portefeuilles, Université Paris Dauphine

Estimation Statistique : Estimateurs Classiques (Wikipedia)

Overview Of Sustainable Finance , Official Website Of The European Union

Merci de votre attention