

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 449-852 KOREA, REPUBLIC OF

TEL:+82 31 330-1700

FAX:+82 31 322 2332

FCC EVALUATION REPORT FOR CERTIFICATION

Applicant:

Healcerion Co., Ltd Dates of Issue : December 18, 2017

804ho, 38-21, Digital-ro 31-gil, Guro-gu, Test Report No.: NK-17-R-218

Seoul, 08376, Republic of KOREA Test Site: Nemko Korea Co., Ltd.

Attn.: Minji Bang

FCC ID

Brand Name

Contact Person

2ADXVSWM500

Healcerion Co., Ltd

Healcerion Co., Ltd 804ho, 38-21, Digital-ro 31-gil, Guro-gu, Seoul, 08376, Republic of KOREA Minji Bang

Telephone No.: 82-2-6342-6326

Applied Standard: FCC 47 CFR Part 15.407

Classification: Unlicensed National Information Infrastructure (NII)

EUT Type: Wifi Module

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Yonghwan Kim

Engineer

Reviewed By : Deokha Ryu

Destaka Dec 18.2019

Technical Manager

FCC ID: 2ADXVSWM500

TABLE OF CONTENTS

1.	Scope	4
2.	Introduction (Site Description)	5
	2.1 Test facility	5
	2.2 Accreditation and listing	6
3.	Test Conditions & EUT Information	7
	3.1 Operation During Test	7
	3.1.1 Table of test power setting	7
	3.1.2 Table of test channels	7
	3.1.3 Antenna information	8
	3.1.4 Additional Information Related to Testing	8
	3.1.5 Table of test modes	8
	3.1.6 Table of actual operating channels	9
	3.2 Support Equipment	9
	3.3 Setup Drawing	9
	3.4 EUT Information	10
4.	Summary of Test Results	11
5.	Recommendation / Conclusion	12
6.	Antenna Requirements	12
7.	Description of Test	13
	7.1 Radiated Emissions	13
	7.2 26 dB Bandwidth and 99% Occupied Bandwidth	14
	7.3 6 dB Bandwidth	15
	7.4 Maximum Conducted Output Power (average)	16
	7.5 Maximum Power Spectral Density (average)	17
	7.6 Duty Cycle	18

Test Report No.: NK-17-R-218

FCC Certification

8.	Test Data	19
	8.1 Radiated Emissions	19
	8.2 26 dB Bandwidth and 99% Occupied Bandwidth	21
	8.3 6 dB Modulated Bandwidth – UNII-3 band	29
	8.4 Maximum Conducted Output Power (average)	33
	8.5 Maximum Power Spectral Density (average)	41
	8.6 Radiated Spurious Emissions	49
	8.7 Radiated Band Edge	58
9.	Test Equipment	64
10.	Accuracy of Measurement	65

FCC Certification

1. SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

Responsible Party: Healcerion Co., Ltd

804ho, 38-21, Digital-ro 31-gil, Guro-gu, Seoul, 08376,

Republic of KOREA

Contact Person : Minji Bang

Manufacturer: Healcerion Co., Ltd

804ho, 38-21, Digital-ro 31-gil, Guro-gu, Seoul, 08376,

Republic of KOREA

FCC ID: 2ADXVSWM500

• Model: SWM-500

Brand Name: Healcerion Co., Ltd

• EUT Type: Wifi Module

Classification: Unlicensed National Information Infrastructure (NII)

Applied Standard: FCC 47 CFR Part 15.407

Test Procedure(s): 789033 D02 General UNII Test Procedures New Rules v01r04

dated May 2, 2017 entitled "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices –

Part 15, Subpart E".

Dates of Test: October 12, 2017 ~ December 11, 2017

Place of Tests: Nemko Korea Co., Ltd.

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating from **Healcerion Co.**, **Ltd FCC ID**: **2ADXVSWM500**.

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory .

The site address 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPULIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 km (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 km (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014 according to §2.948.

Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

FCC Certification

2.2 Accreditation and listing

	Accreditation type	Accreditation number
CAB Accreditation for DOC		Designation No. KR0026
KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)		Registration No. 155
Industry Canada	Canada IC Registered site	Site No. 2040E
VEI	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118
IECEE SCHEME	EMC CBTL	-
	KCC(RRL)Designated Lab.	Registration No. KR0026

3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

The EUT is the SISO transceiver which is module supporting the 802.11n mode (802.11n(20,40MHz) : 1TX/1RX).

The Laptop was used to control the EUT to transmit the wanted TX channel continuously (dutycycle 100%) by the testing program (TeraTerm) supported by manufacturer. The Laptop was removed after controlling the EUT to transmit the wanted signal.

The operating voltage of EUT was 3.3 Vdc, 1.8Vdc supplied from jig board.

The EUT was tested at the lowest, middle and the highest channels with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

3.1.1 Table of test power setting

Frequency	Mode	Power setting Level
5180 MHz ~ 5220 MHz	802.11n (20 MHz)	13
5100 WINZ ~ 5220 WINZ	802.11n (40 MHz)	13
5745 MHz ~ 5825 MHz	802.11n (20 MHz)	14
3743 IVIDZ ~ 3823 IVIDZ	802.11n (40 MHz)	14

3.1.2 Table of test channels

Frequency band	Mode	Test Channel (CH)	Frequency (MHz)
		36	5180
	802.11n (20MHz)	44	5220
U-NII-1		48	5240
	802.11n (40MHz)	38	5190
		46	5230
		149	5745
	802.11n (20MHz)	157	5785
U-NII-3		165	5825
	000 44 ~ (40 MH=)	151	5755
	802.11n (40 MHz)	159	5795

FCC Certification

3.1.3 Antenna information:

Frequency band	Mode	Data rate	Antenna TX mode	Support CDD	Support MIMO
5 GHz	802.11n (20 MHz)	MCS 0~7	■ 1TX, □ 2TX	☐ Yes, ■ No	☐ Yes, ■ No
5 GHZ	802.11n (40 MHz)	MCS 0~7	■ 1TX, □ 2TX	☐ Yes, ■ No	☐ Yes, ■ No

3.1.4 Additional Information Related to Testing

The cable and attenuator loss from 30MHz to 26.5GHz was reflected in spectrum analyzer with correction factor for all conducted testing.

3.1.5 Table of test modes

Test Items	Mode	*Data rate (Mbps)	Test Channel (CH)
Radiated Emissions	802.11n (20 MHz)	MCS0	157
26 dB Bandwidth	802.11n (20 MHz)	MCS0	36/44/48 149/157/165
20 db Baildwidti	802.11n (40 MHz)	MCS0	38/46 151/159
6 dD Dondwidth	802.11n (20 MHz)	MCS0	149/157/165
6 dB Bandwidth	802.11n (40 MHz)	MCS0	151/159
Maximum conducted	802.11n (20 MHz)	MCS0	36/44/48 149/157/165
Output Power	802.11n (40 MHz)	MCS0	38/46 151/159
Power Spectral Density	802.11n (20 MHz)	MCS0	36/44/48 149/157/165
Fower Spectral Delisity	802.11n (40 MHz)	MCS0	38/46 151/159
Radiated Spurious Emission	802.11n (20 MHz)	MCS0	36/44/48 149/157/165
Tradiated Opunous Emission	802.11n (40 MHz)	MCS0	38/46 151/159
Padiated Pand adda Emission	802.11n (20 MHz)	MCS0	36/48 149//165
Radiated Band edge Emission	802.11n (40 MHz)	MCS0	38/46 151/159

^{*}The worst data rate was determined by the conducted output power that generates the highest emission performing pre-scan testing in all data rates of each mode.

3.1.6 Table of actual operating channels

Frequency band	Frequency band Bandwidth		Frequency (MHz)
		36	5180
	20MHz	40	5200
UNII-1	ΖΟΙΝΙΠΖ	44	5220
OINII-1		48	5240
	40MLI=	38	5190
	40MHz	46	5230
		149	5745
		153	5765
	20MHz	157	5785
UNII-3		161	5805
		165	5825
	40MHz	151	5755
		159	5795

3.2 Support Equipment

EUT	Healcerion Co., Ltd. Model : SWM-500	S/N: N/A
Laptop Computer	LG Model : 14Z970	FCC DOC S/N: 701NZFQ065883
AC/DC Adapter	LG Model : LCAP48-WK 1.5 m unshielded power cable	FCC DOC S/N: N/A

3.3 Setup Drawing

3.4 EUT Information

The EUT is the Healcerion Co., Ltd Wifi Module FCC ID: 2ADXVSWM500.

Specifications:			
EUT Type	Wifi Module		
Model Name	SWM-500		
Brand Name	Healcerion Co., Ltd.		
Frequency of Operation	For U-NII-1 Band 802.11n(20 MHz): 5180 MHz ~ 5240 MHz 802.11n(40 MHz): 5190 MHz ~ 5230 MHz For U-NII-3 Band 802.11n(20 MHz): 5745 MHz ~ 5825 MHz 802.11n(40 MHz): 5755 MHz ~ 5795 MHz		
Maximum Conducted Output Power	For U-NII-1 Band 802.11n(20 MHz): 10.77 dBm 802.11n(40 MHz): 10.82 dBm For U-NII-3 Band 802.11n(20 MHz): 10.58 dBm 802.11n(40 MHz): 10.63 dBm		
FCC Classification	Unlicensed National Information Infrastructure (NII)		
Number of Channels	For U-NII-1 Band 802.11n(20 MHz): 4ch, 802.11n(40 MHz): 2ch For U-NII-3 Band 802.11n(20 MHz): 5ch, 802.11n(40 MHz): 2ch		
Modulations	OFDM(BPSK,QPSK,16QAM,64QAM) for 802.11n		
Antenna Gain (peak)	4.5 dBi		
Antenna Setup	802.11n (20, 40MHz) : 1TX / 1RX		
Voltage	3.3 Vdc, 1.8 Vdc		
Temperature Range	-20 ℃ ~ +50 ℃		
Size (L x W x H)	About 20 mm x 25 mm x 1 mm		
Weight	About 1 g		
Remarks	-		

FCC Certification

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	FCC Paragraph No.	Result	Remark
Radiated Emission	15.209	Complies	
26 dB Spectrum Bandwidth and 99% Occupied bandwidth	15.407(a)	Complies	
6 dB Bandwidth	15.407(e)	Complies	
Maximum Conducted Output Power	15.407(a)	Complies	
Power Spectral Density	15.407(a)	Complies	
Radiated Spurious Emission	15.407(b)	Complies	
Maximum Permissible Exposure	1.1307(b)	Complies	

FCC Certification

5. RECOMMENDATION/CONCLUSION

The data collected shows that the **Healcerion Co.**, **Ltd Wifi Module FCC ID**: **2ADXVSWM500** is in compliance with Part 15.407 of the FCC Rule.

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the **Healcerion Co., Ltd Wifi Module FCC ID: 2ADXVSWM500** is **permanently attached** and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

Test Report No.: NK-17-R-218

FCC Certification

7. DESCRIPTION OF TESTS

7.1 Radiated Emissions

The measurement was performed at the test site that is specified in accordance with ANSI C63.10-2013.

The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna(Rohde&Schwarz, HFH2-Z2) and 30 to 1000 MHz using Trilog broadband test antenna(Schwarzbeck, VULB 9163). Above 1 GHz, Horn antenna (Schwarzbeck BBHA 9120D: up to 18 GHz, Q-par Angus QSH20S20: 18 to 26.5 GHz, Q-par Angus QSH22K20: 26.5 to 40 GHz) was used.

For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

Unwanted emissions in the restricted bands

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection.

At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in KDB "789033 D02 General UNII Test Procedures New Rules v01r04"in section G)5) and G)6). Peak emission levels was measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels was measured using the "Method VB" by setting the analyzer RBW = 1 MHz, VBW = 1 kHz (VBW \leq RBW/100), Detector = Peak , if the EUT is configured to transmit with duty cycle \geq 98 percent. When the duty cycle \leq 98 percent, VBW \geq 1/T(T = minimum transmission duration over which the transmitter is on) was used, and allow max hold to run for at least 50 times (1/duty cycle) traces.

<u>Unwanted emissions outside of the restricted bands</u>

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak measurement procedures described in KDB "789033 D02 General UNII Test Procedures New Rules v01r04" in section G)5). Peak emission levels was measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. If the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle.

7.2 26 dB Bandwidth and 99% Occupied bandwidth

Test Setup

Test Procedure

EUTs 26 dB bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

RBW = approximately 1 % of the emission bandwidth

 $VBW \geq 3 \times RBW$

Detector = Peak

Trace mode = max hold

Sweep = auto couple

The bandwidth measurement function on the spectrum analyzer is used to measure the 26 dB bandwidth and 99% occupied bandwidth.

7.3 6 dB Bandwidth

Test Setup

Test Procedure

EUTs 6 dB bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

RBW = 100 kHz

 $VBW > 3 \times RBW$

Detector = Peak

Trace mode = max hold

Sweep = auto couple

The bandwidth measurement function on the spectrum analyzer is used to measure the 6 dB bandwidth.

7.4 Maximum Conducted Output Power (average)

Test Setup

Test Procedure

EUTs Maximum Conducted Output Power (average) is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Measure the duty cycle, x, of the transmitter output signal

Span = encompass the EBW of the signal.

RBW = 1 MHz

 $VBW \geq 3 MHz$

Number of points in sweep $\geq 2 \times \text{Span} / \text{RBW}$

Sweep time = auto

Detector = RMS

Trace average at least 100 traces in power averaging mode.

The band power measurement function on the spectrum analyzer is used to measure the maximum conducted output power.

7.5 Maximum Power Spectral Density (average)

Test Setup

Test Procedure

EUTs Maximum Power Spectral Density (average) is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

Measure the duty cycle, x, of the transmitter output signal

The spectrum analyzer setting is as follows.

Span = encompass the EBW of the signal.

RBW = 1 MHz for UNII-1, 2A, 2C band or 500kHz for UNII-3 band

 $VBW \ge 3 RBW$

Number of points in sweep ≥ 2 Span / RBW

Sweep time = auto

Detector = RMS

Trace average at least 100 traces in power averaging mode

Use the peak search function on the instrument to find the peak of the spectrum.

7.6 Duty Cycle

Test Setup

Test Procedure

EUTs duty cycle are measured at middle channel with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

Center frequency = Center frequency of the transmission

Span = zero

RBW = 8 MHz

VBW = 8 MHz

Detector = peak

Sweep time = at least 3 ms

Sweep mode = Single

The marker function on the spectrum analyzer is used to determine the duty cycle

The results of the duty cycle measurement according to the above test procedure

	Data rate	On time (ms)	On + Off time (ms)	Duty Cycle (%)	Duty Factor (dB)
n(20MHz)mode	MCS0	-	-	100	-
n(40MHz)mode	MCS0	-	1	100	-

8. TEST DATA

8.1 Radiated Emissions

FCC §15.209

Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
395.96	48.68	Н	100	248	-18.3	30.4	46.0	15.6
484.01	56.54	Н	177	122	-16.5	40.0	46.0	6.0
571.96	54.56	Н	170	299	-14.4	40.2	46.0	5.8
748.02	46.07	Н	100	172	-12.3	33.8	46.0	12.2
839.68	31.22	Н	330	168	-11.1	20.1	46.0	25.9
881.82	45.35	V	278	196	-10.6	34.8	46.0	11.3

Radiated Measurements at 3meters

Notes:

- 1. All modes were measured and the worst-case emission was reported.
- 2. The radiated limits are shown on Figure 3. Above 1 GHz the limit is 500 μ V/m.
- 3. *Pol. H = Horizontal, V = Vertical
- 4. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 5. Measurements using CISPR quasi-peak mode below 1 GHz.
- 6. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 7. Middle channel (5785MHz) in n (20MHz) mode is the worst case.
- 8. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 9. The limit is on the FCC §15.209.

8.2 26 dB Bandwidth and 99 % Occupied bandwidth

8.2.1 26 dB Bandwidth and 99 % Occupied bandwidth - U-NII-1 band

FCC §15.407(a)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Channel	Frequency (MHz)	26 dB Bandiwidth (MHz)	99% Occupied Bandwidth (MHz)
Lowest	5180	20.25	17.78
Middle	5220	20.29	17.79
Highest	5240	20.29	17.78

802.11n (40 MHz) mode

Channel	Frequency (MHz)	26 dB Bandiwidth (MHz)	99% Occupied Bandwidth (MHz)	
Lowest	5190	40.99	36.35	
Highest 5230		40.99	36.40	

802.11n (20 MHz) mode

26 dB Bandwidth, Lowest Channel (5180 MHz)

26 dB Bandwidth, Middle Channel (5220 MHz)

802.11n (40 MHz) mode

Healcerion Co., Ltd FCC ID: 2ADXVSWM500

Transmit Freq Error

x dB Bandwidth

36.509 kHz

40.993 MHz

8.2.2 26 dB Bandwidth and 99 % Occupied bandwidth - U-NII-3 band

FCC §15.407(a)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Channel	Frequency (MHz)	26 dB Bandiwidth (MHz)	99% Occupied Bandwidth (MHz)
Lowest	5745	20.28	17.78
Middle 5785		20.21	17.79
Highest	5825	20.16	17.78

802.11n (40 MHz) mode

Channel Frequency (MHz)		26 dB Bandiwidth (MHz)	99% Occupied Bandwidth (MHz)	
Lowest	5755	40.95	36.36	
Highest	5795	40.78	36.40	

802.11n (20 MHz) mode

26 dB Bandwidth, Lowest Channel (5745 MHz)

26 dB Bandwidth, Middle Channel (5785 MHz)

802.11n (40 MHz) mode

8.3 6 dB Bandwidth - UNII-3 band

FCC §15.407(e)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Channel	Frequency(MHz)	6dB Bandwidth(MHz)	Limit (kHz)
Lowest	5745	17.82	
Middle	5785	17.78	>500
Highest	5825	17.81	

802.11n (40 MHz) mode

Channel	Frequency(MHz)	6dB Bandwidth(MHz)	Limit (kHz)
Lowest	5755	36.54	>500
Highest 5795		36.57	>300

802.11n (20 MHz) mode

6 dB Bandwidth, Lowest Channel (5745 MHz)

6 dB Bandwidth, Middle Channel (5785 MHz)

802.11n (40 MHz) mode

TEST DATA

8.4 Maximum Conducted Output Power (average)

8.4.1 Maximum Conducted Output Power – U-NII-1 band

FCC §15.407(a)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20MHz) mode

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)
Lowest	5180	10.58	23.98
Middle	5220	10.70	23.98
Highest	5240	10.77	23.98

802.11n (40MHz) mode

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)
Lowest	5190	10.82	23.98
Highest	5230	10.71	23.98

Note:

The following equation was used for spectrum offset:
 Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

PLOT OF TEST DATA

802.11n (20 MHz) mode

Maximum Conducted Output Power, Lowest Channel (5180 MHz)

Maximum Conducted Output Power, Middle Channel (5220 MHz)

Span 30 MHz

Sweep 1.067 ms (8001 pts)

PLOT OF TEST DATA

#VBW 3 MHz

802.11n (40 MHz) mode

Center 5.240 00 GHz

#Res BW 1 MHz

PLOT OF TEST DATA

8.4.2 Maximum Conducted Output Power - U-NII-3 band

FCC §15.407(a)

<u>Test Mode</u>: <u>Set to Lowest channel, Middle channel and Highest channel</u>

802.11n (20MHz) mode

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)
Lowest	5745	10.28	30.00
Middle	5785	10.36	30.00
Highest	5825	10.58	30.00

802.11n (40MHz) mode

202::: (:	omine, mode		
Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)
Lowest	5755	10.29	30.00
Highest	5795	10.63	30.00

Note:

The following equation was used for spectrum offset:
 Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

802.11n (20 MHz) mode

Maximum Conducted Output Power, Lowest Channel (5745 MHz)

Maximum Conducted Output Power, Middle Channel (5785 MHz)

802.11n (40 MHz) mode

Healcerion Co., Ltd FCC ID: 2ADXVSWM500

TEST DATA

8.5 Maximum Power Spectral Density (average)

8.5.1 Maximum Power Spectral Density – U-NII-1 band

FCC §15.407(a)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20MHz) mode

Channel	Frequency (MHz)	Maximum PSD (dBm/MHz)	FCC Limit (dBm/MHz)
Lowest	5180	-0.79	11.00
Middle	5220	-0.44	11.00
Highest	5240	-0.38	11.00

802.11n (40MHz) mode

Channel	Frequency (MHz)	Maximum PSD (dBm/MHz)	FCC Limit (dBm/MHz)
Lowest	5190	-3.55	11.00
Highest	5230	-3.63	11.00

Note:

- 1. Power Spectral Density(PSD) was measured by same method with conducted output power according to II.F.1 in KDB 789033 D02 General UNII Test Procedures New Rules v01r04.
- 2. The following equation was used for spectrum offset:

 Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

802.11n (20 MHz) mode

Maximum Power Spectral Density, Lowest Channel (5180 MHz)

Maximum Power Spectral Density, Middle Channel (5220 MHz)

PAvg 200 W1 S2 S3 FC

PLOT OF TEST DATA

802.11n (40 MHz) mode

FCC ID: 2ADXVSWM500

8.5.2 Maximum Power Spectral Density - U-NII-3 band

FCC §15.407(a)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20MHz) mode

Channel	Frequency (MHz)	Maximum PSD (dBm/500kHz)	FCC Limit (dBm/500kHz)
Lowest	5745	-3.92	30.00
Middle	5785	-3.63	30.00
Highest	5825	-3.25	30.00

802.11n (40MHz) mode

Channel	Frequency (MHz)	Maximum PSD (dBm/500kHz)	FCC Limit (dBm/500kHz)
Lowest	5755	-7.17	30.00
Highest	5795	-6.62	30.00

Note:

- 1. Power Spectral Density(PSD) was measured by same method with conducted output power according to II.F.1 in KDB 789033 D02 General UNII Test Procedures New Rules v01r04
- 2. The following equation was used for spectrum offset:

 Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

802.11n (20 MHz) mode

Maximum Power Spectral Density, Lowest Channel (5745 MHz)

Maximum Power Spectral Density, Middle Channel (5785 MHz)

802.11n (40 MHz) mode

Maximum Power Spectral Density, Lowest Channel (5755 MHz)

FCC ID: 2ADXVSWM500

TEST DATA

8.6 Radiated Spurious Emissions

8.6.1 Radiated Spurious Emissions – U-NII-1 band

FCC §15.407(b)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Lowest Channel (5180 MHz)

Frequency	Reading	Pol*		AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
6906.50***	56.1	Н	peak	4.9	61.0	68.2	7.2
10361.00***	46.0	٧	peak	11.4	57.4	68.2	10.8

Middle Channel (5220 MHz)

Frequency	Reading	Pol*		AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
6960.00***	55.7	Н	peak	5.1	60.8	68.2	7.4
10433.00***	42.7	V	peak	11.7	54.4	68.2	13.8

Highest Channel (5240 MHz)

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
6986.50***	54.1	Н	peak	5.3	59.4	68.2	8.8
10479.50***	45.6	V	peak	11.7	57.3	68.2	10.9

TEST DATA

802.11n (40 MHz) mode

Lowest Channel (5190 MHz)

Frequency	Reading	Pol*	mada	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
6920.00***	55.5	Н	peak	4.9	60.4	68.2	7.8
10382.00***	45.7	V	peak	11.5	57.2	68.2	11.0

Highest Channel (5230 MHz)

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
6973.50***	54.7	Н	peak	5.2	59.9	68.2	8.3

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. At frequencies above 1 GHz, peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 4. EUT has 100% duty cycle. As the EUT was configured to transmit with duty cycles ≥ 98 percent, at frequencies above 1 GHz, average emission levels were measured using the "Method VB" by setting the analyzer RBW = 1 MHz, VBW = 1 kHz (VBW ≤ RBW/100), Detector = Peak.
- 5. The spectrum is measured from 9 kHz to 10th harmonic and the worst-case emissions are reported. No significant emissions were found beyond the Second harmonic for this device.
- 6. ***For outside of the restricted band, the peak limit is applied according to Part 15.407(b).
 Peak limit is 68.2 dBμV/m. (E[dBμV/m] = EIRP[dBm/MHz] + 95.2 = 68.2 dBuV/m, for EIPR[dBm/MHz] = -27dBm.)
- 7. For restricted band, the peak limit is 68.2 dBµV/m, the average limit is 54 dBµV/m per FCC §15.209
- 8. Lowest channel (5180MHz) in n (20MHz) mode was the worst channel with respect to spurious emission.
- The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 10. At frequencies above 1 GHz, EUT was placed at a height of 1.5m above the floor on a support according to ANSI 63.10-2013.

Worst Case

802.11n (20MHz) mode

Lowest channel: 18 GHz to 26.5 GHz_Peak

8.6.2 Radiated Spurious Emissions - U-NII-3 band

FCC §15.407(b)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Lowest Channel (5745 MHz)

Frequency	Reading	Pol*	modo	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
11487.82	44.8	Н	peak	12.6	57.4	68.2	10.8
11489.31	37.1	V	average	12.6	49.7	54.0	4.3

Middle Channel (5785 MHz)

Frequency	Reading	Pol*		AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
11574.17	44.7	V	peak	12.6	57.3	68.2	10.9
11569.78	37.2	V	average	12.6	49.8	54.0	4.2

Highest Channel (5825 MHz)

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
11647.48	45.6	V	peak	12.4	58.0	68.2	10.2
11649.80	36.8	V	average	12.4	49.2	54.0	4.8

FCC Certification

TEST DATA

802.11n (40 MHz) mode

Lowest Channel (5755 MHz)

<u> </u>	111101 (0100						
Frequency	Reading	Pol*	modo	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
11517.33	43.5	V	peak	12.6	56.1	68.2	12.2
11510.40	35.1	V	average	12.6	47.7	54.0	6.3

Highest Channel (5795 MHz)

Frequency	Reading	Pol*		AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
11590.29	42.8	V	peak	12.6	55.4	68.2	12.8
11590.21	35.4	V	average	12.6	48.0	54.0	6.0

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. At frequencies above 1 GHz, peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 4. EUT has 100% duty cycle. As the EUT was configured to transmit with duty cycles ≥ 98 percent, at frequencies above 1 GHz, average emission levels were measured using the "Method VB" by setting the analyzer RBW = 1 MHz, VBW = 1 kHz (VBW ≤ RBW/100), Detector = Peak.
- 5. The spectrum is measured from 9 kHz to 10th harmonic and the worst-case emissions are reported. No significant emissions were found beyond the Second harmonic for this device.
- 6. For outside of the restricted band, the peak limit is applied according to Part 15.407(b).
 Peak limit is 68.2 dBμV/m. (E[dBμV/m] = EIRP[dBm/MHz] + 95.2 = 68.2 dBuV/m, for EIPR[dBm/MHz] = -27dBm.)
- 7. For restricted band, the peak limit is 68.2 dBµV/m, the average limit is 54 dBµV/m per FCC §15.209
- 8. Middle channel(5785MHz) in n (20MHz) was the worst channel with respect to spurious emission.
- 9. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 10. At frequencies above 1 GHz, EUT was placed at a height of 1.5m above the floor on a support according to ANSI 63.10-2013.

Worst Case

802.11n (20MHz) mode

Middle channel: 1 GHz to 18 GHz_Peak

Middle channel: 18 GHz to 26.5 GHz_Peak

Middle channel: 26.5 GHz to 40 GHz_Peak

Middle channel : 2nd Harmonic_Peak

8.7 Radiated Band Edge

8.7.1 Radiated Band Edge - U-NII-1 band

FCC §15.407(b)

Test Mode: Set to Lowest channel and Highest channel

802.11n (20 MHz) mode

Lowest Channel (5180 MHz)

Frequency	Reading	Pol*	mada	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
5150.00***	44.3	V	peak	-0.2	44.1	68.2	24.1

Highest Channel (5240 MHz)

inghoot one	111101 (02 10	···· ·—/					
Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
5350.00***	44.3	Н	peak	0.0	44.3	68.2	23.9

802.11n (40 MHz) mode

Lowest Channel (5190 MHz)

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
5150.00	61.4	V	peak	-0.2	61.2	68.2	7.0
5150.00	48.1	V	average	-0.2	47.9	54.0	6.1

TEST DATA

Test Report No.: NK-17-R-218

FCC Certification

Highest Channel (5230 MHz)

Frequency	Reading	Pol*	mada	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
5350.00***	44.4	Н	peak	0.0	44.4	68.2	23.8

8.7.2 Radiated Band Edge - U-NII-3 band

FCC §15.407(b)

Test Mode: Set to Lowest channel and Highest channel

802.11n (20 MHz) mode

Lowest Channel (5745 MHz)

Frequency	Reading	Pol*		AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
5725.00	68.5	V	peak	0.8	69.3	122.2	52.9

Highest Channel (5825 MHz)

-	ingiliout ond							
	Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
	(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
	5850.00	57.8	V	peak	1.0	58.8	122.2	63.4

802.11n (40 MHz) mode

Lowest Channel (5755 MHz)

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
5725.00	68.3	V	peak	0.8	69.1	122.2	53.1

Highest Channel (5795 MHz)

Frequency	Reading	Pol*		AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
5850.00	51.8	V	peak	1.0	52.8	122.2	69.4

TEST DATA

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- ***Average measurement was not performed because peak-detected emission complies with the average limit.
- 4. At frequencies above 1 GHz, peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 5. EUT has 100% duty cycle. As the EUT was configured to transmit with duty cycles ≥ 98 percent, at frequencies above 1 GHz, average emission levels were measured using the "Method VB" by setting the analyzer RBW = 1 MHz, VBW = 1 kHz (VBW ≤ RBW/100), Detector = Peak.
- 6 The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 7. At frequencies above 1 GHz, EUT was placed at a height of 1.5m above the floor on a support according to ANSI 63.10-2013.
- 8. Lowest channel (5190MHz) in n (40MHz) mode for UNII-1 band, Lowest channel (5745MHz) in n (20MHz) mode for UNII-3 band were the worst channels in each band.
- 9. For restricted band, the peak limit is 68.2 dB μ V/m, the average limit is 54 dB μ V/m per FCC §15.209.
- 10. For outside of the restricted band, the peak limit is applied according to Part 15.407(b).

For UNII-1 band, peak limit is 68.2 dB μ V/m. ($E[dB\mu$ V/m] = EIRP[dBm/MHz] + 95.2 = 68.2 dBuV/m, for EIPR[dBm/MHz] = -27dBm.)

For UNII 3 band, the peak limit of bandedge to 75MHz above or below bandedge is specified in 15.407(b)(4)(i) as below.

Healcerion Co., Ltd

FCC ID: 2ADXVSWM500

Page 61 of 66

Worst Case

Radiated Band Edge - U-NII-1 band

802.11n (40MHz) mode

Lowest channel (5190 MHz) _Peak

Lowest channel (5190 MHz) _Average

Radiated Band Edge - U-NII-3 band

802.11n mode(20MHz)

Lowest channel (5745 MHz) _Peak

9. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R&S	ESU 40	100202	Apr. 04 2017	1 year
2	Test Receiver	R&S	ESCS30	100302	Oct. 12 2017	1 year
3	*Attenuator	PASTERNACK	PE7395-10	1441-1	Jul. 13 2017	1 year
4	*Attenuator	FAIRVIEW	SA3N5W-06	N/A	Jan. 09 2017	1 year
5	*Attenuator	FAIRVIEW	SA3N5W-10	N/A	Apr. 03 2017	1 year
6	*Attenuator	WEINSCHEL	56-10	58765	Oct. 10 2017	1 year
7	*Amplifier	R&S	SCU 01	10029	Apr. 03 2017	1 year
8	*Amplifier	R&S	SCU18F	180025	Apr. 03 2017	1 year
9	*Amplifier	R&S	SCU26	10011	Jul. 13 2017	1 year
10	*Amplifier	R&S	SCU40	100380	Jul. 13 2017	1 year
11	Pre Amplifier	HP	8449B	3008A00107	Jan. 10 2017	1 year
12	Spectrum Analyzer	R&S	FSW43	100732	Apr. 11 2017	1 year
13	*Spectrum Analyzer	Agilent	E4440A	MY44303257	Oct. 13 2017	1 year
14	*Spectrum Analyzer	R&S	FSW43	104084	Apr. 04 2017	1 year
15	*Loop Antenna	R&S	HFH2-Z2	100279	Feb. 22 2016	2 year
16	*Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-508	Feb. 13 2017	2 year
17	*Horn Antenna	Q-par Angus	QSH20S20	8179	Aug. 01 2017	2 year
18	*Horn Antenna	Q-par Angus	QSH22K20	8180	Aug. 02 2017	2 year
19	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9163	9163-454	Feb. 11 2016	2 year
20	LISN	R&S	ESH3-Z5	833874/006	Oct. 12 2017	1 year
21	ESH2-Z5 Artiticial Mains Network	R&S	ESH2-Z5	100227	Apr. 04 2017	1 year
22	*Position Controller	INNCO	CO2000	12480406/L	N/A	N/A
23	*Controller	INNCO	CO3000	CO3000/937/38330516/L	N/A	N/A
24	*Turn Table	INNCO	DS1200S	N/A	N/A	N/A
25	*Turn Table	INNCO	DT2000-2t	N/A	N/A	N/A
26	*Antenna Mast	INNCO	MA4000	N/A	N/A	N/A
27	*TILT Antenna Mast	INNCO	MA4640-XP-EP	N/A	N/A	N/A
28	*Open Switch And Control Unit	R&S	OSP-120	100081	N/A	N/A
29	*Open Switch And Control Unit	R&S	OSP-120	101766	N/A	N/A
30	*Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A
31	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
32	*WiFi Filter Bank	R&S	U083	N/A	N/A	N/A
33	*WiFi Filter Bank	R&S	U082	N/A	N/A	N/A
	_					

^{*)} Test equipment used during the test

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%

1. Conducted Uncertainty Calculation

		Uncertainty of Xi		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN-Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00	-	-	0.00	1	0.00
AMN Impedance	dZ	± 1.80	triangular	2.449	0.73	1	0.73
Mismatch	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark (a): AMN-Receiver Mismati (b): AMN-Receiver Mismati							
Combined Standard Uncertainty	Normal			± 1.88			
Expended Uncertainty U	Normal (<i>k</i> = 2)			± 3.76			

2. Radiation Uncertainty Calculation

	Xi	Uncertainty of Xi		Coverage			
Source of Uncertainty		Value (dB)	Probability Distribution	factor k	u(Xi) (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability	RS	0.34	normal 1	1.00	0.34	1	0.34
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.92	normal 2	2.00	0.46	1	0.46
Pulse repetition rate response	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.25	1	0.25
Antenna Factor Calibration	AF	± 2.00	rectangular	√3	1.15	1	1.15
Cable Loss	CL	± 1.00	normal 2	2.00	0.50	1	0.50
Antenna Directivity	AD	± 0.00	rectangular	√3	0.00	1	0.00
Antenna Factor Height Dependence	AH	± 2.00	rectangular	√3	1.15	1	1.15
Antenna Phase Centre Variation	AP	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	Ai	± 0.25	rectangular	√3	0.14	1	0.14
Site Imperfections	Si	± 4.00	triangular	√6	1.63	1	1.63
Measurement Distance Variation	DV	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance	Dbal	± 0.90	rectangular	√3	0.52	1	0.52
Cross Polarisation	DCross	± 0.00	rectangular	√3	0.00	1	0.18
Mismatch	М	+ 0.98 - 1.11	U-Shaped	$\sqrt{2}$	0.74	1	0.74
EUT Volume Diameter	Vd	0.33	normal 1	1.00	0.33	1	0.11
Remark							
Combined Standard Uncertainty Normal							
Expended Uncertainty U	Normal (<i>k</i> = 2)						