Traitements ponctuels

Image numérique

Traitements ponctuels

107	108	107	106	99	101	102
109	106	108	107	103	102	103
107	106	110	110	106	107	107
106	107	108	108	108	108	108
105	108	109	109	108	106	107
105	108	109	110	108	108	109
108	109	109	109	108	109	110

110	98	123	45	98	98	77
125	116	145	248	198	121	97
167	236	150	156	145	167	167
128	156	158	98	99	118	154
117	143	172	145	177	141	174
154	145	156	160	134	165	122
118	176	153	167	152	156	118

La transformation ne dépend pas du voisinage

Opérateur logique

Les opérandes sont des images binaires codées sur 1 bit

La transformation est réalisée par application d'opérations booléennes : AND, OR, XOR, NAND etc

Applications

- Intersections de formes,
- Déplacements d'objets,
- Opérations de base de la morphologie mathématique.

Opérations arithmétiques

Les opérandes sont des scalaires ou des images à niveaux de gris

$$(I_1(k,l), I_2(k,l), \dots, I_n(k,l), a,b,\dots)$$
 opérateur IR (k,l)

I_i (k,l) : intensité au point k,l de l'image I_i

IR (k,l) : image résultant d'une combinaison linéaire ou non linéaire d'une ou plusieurs images

Opérateurs: +, -, x, /, Max, Min, Iⁿ, ABS, exp, log, etc.

Problèmes : changement de format de codage des nombres

- Passage de 8 à 9 bits pour l'addition, 8 à 16 pour la multiplication,
- Passage en nombre réel pour la division, l'exponentielle etc.

L'addition

Application principale: augmentation du RSB de l'image

L'image est dégradée par les bruits :

Thermique, de lecture et de quantification des dispositifs d'acquisition

Soient : b(k,l) : la dégradation due aux bruits perturbateurs,

I(k,l): l'image idéale,

IA(k,l): l'image provenant du dispositif d'acquisition.

Le modèle de dégradation le plus simple consiste à écrire :

$$IA(k,l) = I(k,l) + b(k,l)$$

Augmentation du RSB par moyennage

La moyenne de N images de la même scène vaut :

$$\overline{IA}(k,l) = \frac{1}{N} \sum_{i=0}^{N-1} IA(k,l)$$

Cette moyenne peut être considérée comme un estimateur de I(k,l). Calculons La moyenne et la variance de cet estimateur.

$$E(\overline{IA}(k,l)) = E\left(\frac{1}{N}\sum_{i=1}^{N-1}IA_{i}(k,l)\right) = \frac{1}{N}E\left(\sum_{i=1}^{N-1}I_{i}(k,l)\right) + \frac{1}{N}E\left(\sum_{i=1}^{N-1}b_{i}(k,l)\right)$$

Si on suppose que la moyenne du bruit est nulle

$$E(\overline{IA}(k,l)) = \frac{1}{N} E\left(\sum_{i=1}^{N-1} I_i(k,l)\right)$$

I(k,l) est une grandeur déterministe

$$E(\overline{IA}(k,l)) = I(k,l)$$

Augmentation du RSB par moyennage

La variance de l'estimateur vaut :

$$Var(\overline{IA}(k,l)) = Var\left(\frac{1}{N} \sum_{i=1}^{N-1} AI_i(k,l)\right)$$

L'image et le bruit ne sont pas corrélés, on peut donc écrire la variance de l'estimateur sous la forme :

$$Var(\overline{IA}(k,l)) = \frac{1}{N^{2}} Var\left(\sum_{i=1}^{N-1} I_{i}(k,l)\right) + \frac{1}{N^{2}} Var\left(\sum_{i=1}^{N-1} b_{i}(k,l)\right)$$

I(k,l) est une grandeur déterministe, la variance est nulle

$$Var(\overline{IA}(k,l)) = \frac{1}{N^2} Var\left(\sum_{i=1}^{N-1} b_i(k,l)\right) = \frac{1}{N^2} N \sigma^2 = \frac{\sigma^2}{N}$$

$$\sqrt{Var(\overline{IA}(k,l))} = \frac{\sigma}{\sqrt{N}}$$

L'écart type du bruit de l'image moyennée est réduit de :

Exemple : images de comète

Autres applications de l'arithmétique

- Décalage « offset » (visualisation de nvg < 0) : addition d'une constante
- Suppresssion du vignettage : soustraction d'une image et mise à l'échelle

 Codage delta en compression : transmission des différences entre deux images successives (différence faible peu de bits)

Autres applications de l'arithmétique

Recalage par différence

- Normalisation par division
 - Imagerie multispectrale
 ⇒ diagnostic pré-cancéreux par fluorescence

$$Ir(k,l) = \frac{I\lambda_1(k,l)}{I\lambda_2(k,l)}$$
 Avec: $\lambda_1 = 550 \text{ nm}$ $\lambda_2 = 450 \text{ nm}$

Si
$$Ir(k,l) \ge S \implies$$
 Tissus suspects

Fonction de transfert

Transformation des niveaux de gris selon une loi :

$$G(k,l) = f[I(k,l)]$$

I : image d'entrée

G: image de sortie

f : fonction de transfert

Circuit spécialisé LUT (Look Up Table)

Zone mémoire spéciale

Fonction de transfert

- La transformation peut s'appliquer dés l'acquisition ou lors de la visualisation.
- En général, les dispositifs d'acquisition d'images possèdent des LUT d'entrée et de sortie afin de réaliser l'opération en temps réel.
- Les transformations conduisent souvent à une perte d'informations.
- La transformation doit être strictement monotone si l'on souhaite la réversibilité
- 2 types d'applications :
 - Pré-traitement,
 - Amélioration de la lisibilité de l'image.

Fonction de transfert - exemples

Le seuillage

Si I(k,l) > s alors G(k,l) = 255sinon G(k,l) = 0;

Inversion

Fonction de transfert - exemples

• Augmentation du contraste

Augmentation de la brillance

Fonction de transfert - exemples

• Correction Gamma

• Pseudo couleur

HISTOGRAMME

$$H(i) = \sum_{k=1}^{N} \sum_{l=1}^{M} [I(k,l)/I(k,l) = i]$$

H(i): Histogramme, nombre de pixels ayant le niveau de gris i

I(k,l): Image de taille NxM.

On a:
$$\sum_{i=0}^{nvg\max} H(i) = NxM$$

$$h(i) = \frac{H(i)}{NM}$$
 H(i): estimation de la densité de probabilité

avec:
$$\sum_{i=0}^{n \text{vgmax}} h(i) = 1$$

Histogramme - exemples

Histogramme - applications

Segmentation

• Réglage des paramètres de prises de vue

Image correcte

Modification d'histogramme

Transformer l'histogramme pour lui donner une forme déterminée (linéarisation) : plat (égalisation), exponentiel, logarithmique etc.

Pour:

- Maximiser l'entropie,
- Compenser des non-linéarités monotones,
- Normaliser pour permettre des comparaisons visuelles avec d'autres images (également normalisées).

Modification d'histogramme - principe

$$\int_{g_{\min}}^{g_2} ht(g'_2)dg'_2 = \int_{g_1}^{g_1} h(g'_1)dg'_1 = F(g_1)$$

$$\frac{g_2 - g_{\min}}{g_{\max} - g_{\min}} = F(g_1)$$

$$g_2 = F(g_1)(g_{\text{max}} - g_{\text{min}}) + g_{\text{min}}$$

$$T(h)=F(h)(g_{\text{max}}-g_{\text{min}})+g_{\text{min}}$$

Egalisation d'histogramme - exemple

Histogramme exponentiel

$$\int_{g_{\min}}^{g_2} ht(g'_2)dg'_2 = \int_{g_{\min}}^{g_2} h(g'_1)dg'_1 = F(g_1)$$

$$ht(g_2) = \alpha \cdot \exp[-\alpha(g_2 - g_{\min})]$$

$$\int_{g_{\min}}^{g_2} \alpha \exp[-\alpha(g'_2 - g_{\min} \min)] dg'_2 = F(g_1)$$

$$[-\exp(-\alpha(g'_2 - g_{\min})]_{g_{\min}}^{g_2} = F(g_1)$$

$$T(h) = g_{\min} - \frac{1}{\alpha} \ln[1 - F(g_1)]$$

Modification d'histogramme - remarques

• Si le nombre de NVG de l'image transformée est plus faible que celui de l'image source :

Perte d'information

• Si le nombre de NVG de l'image transformée est plus grand que celui de l'image source :

Pas de perte d'information

Répartition des NVG les plus fréquents sur plusieurs niveaux de l'histogramme (critères de voisinage)

Le seuillage

- Séparation de l'image en deux ou plusieurs classes de niveaux de gris.
- Si les objets présents dans l'image ont des niveaux de gris qui correspondent aux classes | le seuillage réalise une segmentation
- Le problème consiste à déterminer le ou les seuils (s'ils existent) permettant de séparer les classes de manière optimale.

Seuillage par l'histogramme

Lorsque deux ou plusieurs modes sont évidents :

 S_1 : minimum entre les deux premiers modes

S₂: seconde vallée

• En pratique les seuils sont difficiles à déterminer sur l'histogramme brut et il est souvent nécessaire de lisser l'histogramme pour augmenter la précision

Calcul du seuil sur l'histogramme

Pour la distribution 1:

P₁: probabilité d'avoir un point appartenant à la région 1 dans l'image,

P(i/1) : probabilité pour qu'un point ait le niveau de gris i sachant qu'il appartient à la région 1

Pour la distribution 2 :

P₂: probabilité d'avoir un point appartenant à la région 2 dans l'image,

P(i/2): probabilité pour qu'un point ait le niveau de gris i sachant qu'il appartient à la région 2

Calcul du seuil sur l'histogramme

• Chaque mode est modélisé par une distribution gaussienne de Moyenne m et d'écart type σ .

$$P(i/1) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp \left[\frac{(i-m_1)^2}{2\sigma_1^2} \right] \qquad P_1 = \int_{-\infty}^{+\infty} P(i/1).di$$

$$P(i/2) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp \left[\frac{(i-m_2)^2}{2\sigma_2^2} \right] P_2 = \int_{-\infty}^{+\infty} P(i/2).di$$

Calcul du seuil sur l'histogramme

Le seuil optimal doit conduire à la probabilité d'erreur minimum Cette probabilité correspond à l'aire hachurée A minimale

$$A = \int_{-\infty}^{S} P_2 P(i/2) . di + \int_{-\infty}^{+\infty} P_2 P(i/1) . di$$

Le minimum de A est donné par :

$$\frac{\partial A}{\partial i} = \frac{\partial}{\partial i} \int_{-\infty}^{s} P \cdot P(i/2) \cdot di + \frac{\partial}{\partial i} \int_{s}^{+\infty} P \cdot P(i/1) \cdot di = 0$$

Soit:
$$P_2.P(S/2)=P_3.P(S/1)$$
 car: $\left(\frac{\partial}{\partial x}\int_a^b f(x).dx=f(b)-f(a)\right)$

Seuil optimal sur l'histogramme

$$\frac{R}{\sigma_1} \exp \left[\frac{(S-m_1)^2}{2\sigma_1^2} \right] = \frac{R}{\sigma_2} \exp \left[\frac{(S-m_2)^2}{2\sigma_2^2} \right]$$

Pour déterminer le seuil optimal, il faut :

- Estimer P₁ et P₂,
- Identifier les paramètres m₁, σ₁, m₂, σ₂,
 Résoudre l'équation du second degré en S.

Seuillage par entropie (1)

- L'entropie d'un signal ou d'une image mesure l'information contenue.
- Supposons 2 régions dans l'image que l'on peut aussi appeler classe C₁ et C₂

Soient:

i: niveau de gris pris entre 0 et N,

P(i/1): probabilité pour qu'un point ait le niveau de gris i sachant qu'il appartient à la classe C_1 ,

P(i/2): probabilité pour qu'un point ait le niveau de gris i sachant qu'il appartient à la classe C_2

H, l'entropie.

Seuillage par entropie (2)

• Les entropies des classes C1 et C2 sont :

$$H(C_1) = -\sum_{i=0}^{S} p(i/C_1) Ln(p(i/C_1))$$

$$H(C_2) = -\sum_{i=S+1}^{N} p(i/C_2) Ln(p(i/C_2))$$

• L'entropie totale vaut :

$$H(S)=H(C_1)+H(C_2)$$

H(S) est calculée pour S variant de 0 à N. La valeur qui donne

H(S) maximale définit le seuil de binarisation S.

Cette méthode peut être étendue à un nombre de classes >2.

Minimisation de variance

• Soient deux classes (régions) C₁ et C₂ et H(i) l'histogramme normalisé on définit :

$$T_{1} = \sum_{i=0}^{S} H(i) \quad T_{2} = \sum_{i=S+1}^{N} H(i) \quad M_{1} = \sum_{i=0}^{S} iH(i)/T_{1} \quad M_{2} = \sum_{i=S+1}^{N} iH(i)/T_{2}$$

$$V_{1} = \sum_{i=0}^{S} (i-M_{1})^{2} H(i)/T_{1} \quad V_{2} = \sum_{i=S+1}^{N} (i-M_{2})^{2} H(i)/T_{2}$$

• On construit la variance intra classe :

$$W = T_1 \cdot V_1 + T_2 \cdot V_2$$

Le meilleur seuil correspond à la variance intra-classe W Minimum (méthode de Fisher).