

11.1.2 使用模拟的原因 11.1.3 系统模拟过程

11.1.4 模拟的不足处

▶ 如果构成模型的关系相当简单,那么就有可能用各种数学的方法(像代数、微积分或概率论)来取得我们感兴趣问题的精确数据,这就是分析解。

> 复杂的模型无法计算出准确的结果,这种模型必须用模拟的方法来研究。

▶ 模拟又称仿真,它的基本思想是构造一个试验的模型,这个模型与我们研究的系统的主要性能十分近似的,通过对这个模型的运行,获得要研究的系统的必要信息和结果。

11.1.1 模拟的概念

11.1.2 使用模拟的原因

11.1.3 系统模拟过程

11.1.4 模拟的不足处

模拟是一种定量的过程,它先为过程设计一个模型,然后再组织一系列的反复试验,以预测该过程全部时间里所发生的情况。

- 〉最常用的模拟方法——蒙特卡洛方法:
- ▶ 蒙特卡洛方法是应用随机数进行模拟试验的方法,它对要研究的系统进行随机观察抽样,通过对样本的观察统计,得到系统的参数值。

11.1.1一、模拟的概念

模拟中常用到的方法是()

A:关键线路法

B:单纯形法

C:阶石法

D:蒙特卡洛法

【答案】: D

11.1.1一、模拟的概念

模拟又称_____, 它的基本思想是构造一个试验的模型,通过对这个模型的运行,获得要研究的系统的必要信息和结果。

【答案】:仿真

11.1.1一、模拟的概念

蒙特卡洛方法是应用____进行模拟试验的方法。

【答案】:随机数

11.1.2 使用模拟的原因

11.1.3 系统模拟过程

11.1.4 模拟的不足处

> 使用模拟的原因:

- (1)由于难以观察到实际环境,模拟可能是惟一可以利用的方法。
- (2)实际观察一个系统可能太费钱。
- (3)不可能有足够的时间来广泛地操作该系统。
- (4)对一个系统的实际运用和观察可能破坏性太大。
- (5)不可能求出一个数学解(分析解)。

选择/填空

在科学研究中,专家们不会考虑使用模拟方法的情形是()

A:系统模型的解析解可求得

B:不可能有足够的时间来操作该系统

C:难以观察到系统的实际环境

D:系统的实际观察费用过于昂贵

【答案】:A

当所研究的问题的实际环境难以观察时,()可能是惟一可以利用的方法。

A:蒙特卡洛法

B:模拟

C:马尔柯夫分析

D:预测法

【答案】:B

出现下列哪种情况时,可以考虑采用模拟技术解决问题?()

A:某问题可以求出一个数学解

B:某问题可以在实际环境中观察

C:对一个系统实际应用和观察时破坏性太大

D:实际观察一个系统的时间为一个月

【答案】: C

11 1

11.1 概述

11.1.1 模拟的概念

11.1.2 使用模拟的原因

11.1.3 系统模拟过程

11.1.4 模拟的不足处

➢ 系统模拟过程是建立模型,并通过模型的运行对模型进行<mark>检验</mark>和修正,使模型不断趋于完善的过程。

系统模拟的过程是建立模型并通过模型的运行对模型进行____和修正,使模型不断趋于完善的过程。

【答案】:检验

系统模拟的过程是建立模型并通过模型的运行进行检验和_____,使模型不断趋于完善的过程。

【答案】:修正

11.1 概述

11.1.2 使用模拟的原因

11.1.3 系统模拟过程

11.1.4 模拟的不足处

> 模拟的不足之处:

- (1)模拟是不精确的,它既不是一个最优化过程,也不能得到一个答案。
- (2)模拟能产生一种<mark>估算答案的方法,但不能得出答案</mark>本身。管理者还必须进一步产生他们 所需测试的解答。
- (3)并非所有的方法都可用模拟的方法来估算,只有包含不确定因素的环境才能适用。 而且如果没有随机元素,所有模拟的实验会产生相同的结果。
- (4)一个良好的模拟模型可能是非常昂贵的。

反映模拟的不足之处的表述是()

A:模拟是不精确的,它既不是一个最优化过程,也不能得到一个答案

B:实际观察一个系统可能费用过于昂贵

C:不可能有足够的时间来实际广泛地操作该系统

D:由于难于观察到实际环境,模拟可能是惟一可以利用的方法

【答案】:A

关于模拟的叙述,不正确的是()

A:模拟是不精确的

B:模拟是一个最优化过程

C:模拟的过程是一种仿真

D:模拟适用于包含不确定因素的环境

【答案】: B

模拟是能产生一种()答案的方法。

A:估算

B:最优

C:精确

D:随机

【答案】: A

有关模拟的表述中,反映模拟的不足之处的是()

A:模拟是不精确的,它既不是一个最优化过程,也不能得到一个答案

B:实际观察一个系统可能费用过于昂贵

C:不可能有足够的时间来实际广泛地操作该系统

D:由于难以观察到实际环境,模拟可能是惟一可以利用的方法

【答案】:A

在系统模拟中,应当注意包含在模拟中的一些缺点,比如()

A:由于难于观察到实际环境,模拟可能是惟一可以利用的方法

B:一个良好的模拟系统可能是非常昂贵的

C:实际观察一个系统可能费用过于昂贵

D:不可能有足够的时间来广泛地操作该系统

【答案】:B

针对模拟的局限性,下列说法正确的是()

A:模拟是十分精确的

B:模拟可以产生最优答案

C:并非所有所有问题都可以用模拟的方法解决

D:模拟过程对实际环境可能会造成很大破坏

【答案】: C

11.2.1 概率分布

〉某牛奶销售公司过去100天的销售量如下图

表 11-1

在 100 天中销售的箱数

销售量(箱)		达到这个销售量的天数	
200	3	2	
201		3	
202		4	
203		7	
204		9 3	
205	•	13	
206	•	15	
207	Ö ∰ ≸	21	
208	in n in	16	
209		9	
210			
•		100	

1.2.1

销售量	达到该销售量的天数	概率
200	2	
201	3	
202	4	
203	7	
204	9	
205	13	
206	15	
207	21	
208	16	
209	9	
210	1	

11.2.1-

销售量	达到该销售量的天数	概率
200	2	0.02
201	3	
202	4	
203	7	
204	9	
205	13	
206	15	
207	21	
208	16	
209	9	
210	1	

11.2.1-

销售量	达到该销售量的天数	概率
200	2	0.02
201	3	0.03
202	4	0.04
203	7	0.07
204	9	0.09
205	13	0.13
206	15	0.15
207	21	0.21
208	16	0.16
209	9	0.09
210	1	0.01

11.2.1

销售量	达到该销售量的天数	概率	累计概率
200	2	0.02	
201	3	0.03	
202	4	0.04	
203	7	0.07	
204	9	0.09	
205	13	0.13	
206	15	0.15	
207	21	0.21	
208	16	0.16	
209	9	0.09	
210	1	0.01	

11.2.1

销售量	达到该销售量的天数	概率	累计概率
200	2	0.02	0.02
201	3	0.03	0.05
202	4	0.04	0.09
203	7	0.07	
204	9	0.09	
205	13	0.13	
206	15	0.15	
207	21	0.21	
208	16	0.16	
209	9	0.09	
210	1	0.01	

销售量	达到该销售量的天数	概率	累计概率
200	2	0.02	0.02
201	3	0.03	0.05
202	4	0.04	0.09
203	7	0.07	0.16
204	9	0.09	0.25
205	13	0.13	0.38
206	15	0.15	0.53
207	21	0.21	0.74
208	16	0.16	0.90
209	9	0.09	0.99
210	1	0.01	1

> 概率分布提供了每个可能值的概率,这些概率加起来必须等于1。

11.2.1 概率分布

〉某牛奶销售公司过去100天的销售量如下图

表 11-1

在 100 天中销售的箱数

销售量(箱)	达到这个销售量的天数
200	2
201	3
202	4
203	7
204	9
205	13
206	15
207	21
208	16
209	9
210	1
	100

11.2.1

销售量	达到该销售量的天数	概率	累计概率
200	2	0.02	0.02
201	3	0.03	0.05
202	4	0.04	0.09
203	7	0.07	0.16
204	9	0.09	0.25
205	13	0.13	0.38
206	15	0.15	0.53
207	21	0.21	0.74
208	16	0.16	0.90
209	9	0.09	0.99
210	1	0.01	1

已知某品牌的汽车在某地过去50天内销售记录如下表所示,试求每种可能的销售量值的概率,并求出累计概率。

汽车销售量	达到这个销售量的天数
0	2
1	5
2	9
3	13
4	10
5	6
6	3
7	2
求和	50

已知某品牌的汽车在某地过去50天内销售记录如下表所示,试求每种可能的销售量值的概率,并求出累计概率。

汽车销售量	达到这个销售量的天数	该销售量的概率	该销售量的累计概率
0	2	0.04	0.04
1	5	0.10	0. 14
2	9	0.18	0. 32
3	13	0.26	0. 58
4	10	0.20	0. 78
5	6	0.12	0. 90
6	3	0.06	0. 96
7	2	0.04	1. 00
求和	50		

已知某品牌的一款打印机在一城市过去50天内销售记录如表所示,试求每种可能的销售量值的概率,并求出累计概率。

打印机销售量(台)	达到这个销售量的天数
0	2
1	6
2	8
3	10
4	10
5	7
6	4
7	3
求和	50

已知某品牌的一款打印机在一城市过去50天内销售记录如表所示,试求每种可能的销售量值的概率,并求出累计概率。

打印机销售量(台)	达到这个销售量的天数	该销售量的概率	该销售量的累计概率
0	2	0.04	0.04
1	6	0.12	0.16
2	8	0.16	0.32
3	10	0.2	0.52
4	10	0.2	0.72
5	7	0.14	0.86
6	4	0.08	0.94
7	3	0.06	1
求和	50		

已知某品牌袋装大米在某区域过去50天内销售记录如下表,试求每种可能的销售量值的概率,并求出累计概率。

袋装大米销售量(袋)	达到这个销售量的天数
6	1
7	3
8	6
9	8
10	12
11	7
12	6
13	5
14	2
Σ	50

已知某品牌袋装大米在某区域过去50天内销售记录如下表,试求每种可能的销售量值的概率,并求出累计概率。

大米销售量	达到这个销售量的天数	该销售量的概率	该销售量的累计概率
6	1	0.02	0. 02
7	3	0.06	0.08
8	6	0.12	0. 20
9	8	0.16	0. 36
10	12	0.24	0. 60
11	7	0.14	0. 74
12	6	0.12	0. 86
13	5	0.10	0. 96
14	2	0.04	1. 00
求和	50		

11.2.2 随机变量、随机数

随机变量是具有各种不同数值的一个变量,这些不同数值是在一次随机试验中,作为各种结果之一而出现的。

如果一个随机变量允许在某个给定的范围内具有有限个数的数值,它就是一个离散的随机变量。

随机变量是具有各种不同数值的一个变量,这些不同数值是在一次随机试验中,作为各种结果之一而出现的。

如果一个随机变量允许在某个给定的范围内具有有限个数的数值,它就是一个离散的随机变量。

如果一个随机变量允许在某个给定的范围内具有任何个数的数值,它就是一个连续的随机变量。

牛奶每天销售量的概率分布

销售量	达到该销售量的天数	概率	累计概率
200	2	0.02	0.02
201	3	0.03	0.05
202	4	0.04	0.09
203	7	0.07	0.16
204	9	0.09	0.25
205	13	0.13	0.38
206	15	0.15	0.53
207	21	0.21	0.74
208	16	0.16	0.90
209	9	0.09	0.99
210	1	0.01	1

随机数表				
1581922396	2068577984	8262130892	9274957040	4637567488
0928105582	7295088579	9586111652	8374856049	6472382934
4112077556	3440672486	1882412963	7055508767	
7457477468	5435810788	9670852913	0684012006	0933147914
0099520858	3090908872		1291265730	4890031305
7245174840	2275698645	2039593181	5973470495	9776135501
6749420382	4832630032	8416549348	4676463101	2229367983
5503161011	7413686599	5670984959	5432114610	2966095680
7164238934		1198757695	0414294470	0140121598
3593969525	7666127259	5263097712	5133648980	4011966963
	0272759769	0385998136	9999089966	7544056852
4192054466	0700014629	5169439659	8408705169	1074373131
9697426117	6488888550	4031652526	8123543276	0927534537
2007950579	9564268448	3457416988	1531027886	7016633739
4584768758	2389278610	3859431781	3643768456	4141314518
3840145867	9120831830	7228567652	1267173884	4020651657
0190453442	4800088084	1165628559	5407921254	3768932478
6766554338	5585265145	5089052204	9780623691	2195448096
6315116284	9172824179	5544814339	0016943666	3828538786
3908771938	4035554324	0840126299	4942059208	1475623997
5570024586	9324732596	1186563397	4425143189	3216653251
2999997185	0135968938	7678931194	1351031403	6002561840
7864375912	8383232768	1892857070	2323673751	3188881718
7065492027	6349104233	3382568662	4579426826	1513082455
0654683246	4765104877	8149224168	5468631609	6474393896
7830555058	5255147182	3519287786	2481675649	8907598697
7626984369	4725370390	9641916289	5049082870	7463807244
4785048453	3646121751	8436077768	2928794356	9956043516
4627791048	5765558107	8762592043	6185670830	6363845920
9376470693	0441608934	8749472723	2202271078	5897002653
1227991661	7936797054	9527542791	4711871173	8300978148
5582095589	5535798279	4764439855	6279247618	4446895088
4959397698	1056981450	8416606706	8234013222	6426813469
1824779358	1333750468	9434074212	5273692238	5902177065
7041092295	5726289716	3420847871	1820481234	0318831723
3555104281	0903099163 4031562749	6827824899 5570757297	6383872737	5901682626
3007929946 6085440624	2875556938	5496629750	6273785046	1455349704
7005051056	3496332071	5054070890	4841817356 7303867953	1443167141
9846413446	8306646692	0661684251	8875127201	6255181190
0625457703	4229164694	7321363715	7051128285	6251533454 1108468072
5457593922	9751489574	1799906380	1989141062	5595364247
4076486653	8950826528	4934582003	4071187742	1456207629

11.2.2 随机变量、随机数

每一个随机变量的数值和相关的某个范围内累计频率序列数相应,这个累计频率数,称为随机数。

〉蒙特卡洛法是一个模拟技术,它用一系列的随机数创造分布函数。

牛奶每天销售量的随机数分布

销售量	达到该销售量的天数	概率	累计概率	随机数分布
200	2	0.02	0.02	00-01
201	3	0.03	0.05	02-04
202	4	0.04	0.09	
203	7	0.07	0.16	
204	9	0.09	0.25	
205	13	0.13	0.38	
206	15	0.15	0.53	
207	21	0.21	0.74	
208	16	0.16	0.90	
209	9	0.09	0.99	
210	1	0.01	1	

牛奶每天销售量的随机数分布

销售量	达到该销售量的天数	概率	累计概率	随机数分布
200	2	0.02	0.02	00-01
201	3	0.03	0.05	02-04
202	4	0.04	0.09	05-08
203	7	0.07	0.16	09-15
204	9	0.09	0.25	16-24
205	13	0.13	0.38	25-37
206	15	0.15	0.53	38-52
207	21	0.21	0.74	53-73
208	16	0.16	0.90	74-89
209	9	0.09	0.99	90-98
210	1	0.01	1	99

某公司对过去一年中某种配件的顾客需求管理统计如下表,试计算并在表中填写出累计概率分布和随机数分布。

需求(单位)	频率	累积概率分布	随机数分布
0	2		
1	8		
2	22		
3	34		
4	18		
5	9		
6	7		

某公司对过去一年中某种配件的顾客需求管理统计如下表,试计算并在表中填写出累计概率分布和随机数分布。

需求(单位)	频率	累积概率分布	随机数分布
0	2	0.02	00-01
1	8	0.10	02-09
2	22	0.32	10-31
3	34	0.66	32-65
4	18	0.84	66-83
5	9	0.93	84-92
6	7	1	93-99

某机场飞机降落经常发生延误。现统计某日100架飞机降落情况,延误的时间如下表所示。试列出飞机降落延误时间的频率与随机数分布的对应表。

飞机降落延误时间(分)	0	1-10	11-20	21-30	>30
发生次数	15	37	27	18	3

飞机降落延误时间(分)	频率	累积概率分布	随机数分布
0	15		
1-10	37		
11-20	27		
21-30	18		
>30	3		

某机场飞机降落经常发生延误。现统计某日100架飞机降落情况,延误的时间如下表所示。试列出飞机降落延误时间的频率与随机数分布的对应表。

飞机降落延误时间(分)	0	1-10	11-20	21-30	>30
发生次数	15	37	27	18	3

飞机降落延误时间(分)	频率	累积概率分布	随机数分布
0	15	0.15	
1-10	37	0.52	
11-20	27	0.79	
21-30	18	0.97	
>30	3	1	

某机场飞机降落经常发生延误。现统计某日100架飞机降落情况,延误的时间如下表所示。试列出飞机降落延误时间的频率与随机数分布的对应表。

飞机降落延误时间(分)	0	1-10	11-20	21-30	>30
发生次数	15	37	27	18	3

飞机降落延误时间(分)	频率	累积概率分布	随机数分布
0	15	0.15	00-14
1-10	37	0.52	15-51
11-20	27	0.79	52-78
21-30	18	0.97	79-96
>30	3	1	97-99

11.2.2二、随机变量、随机数、随机数分布

蒙特卡洛法是一个()

A:随机数技术

B:排队技术

C:不确定决策技术

D:模拟技术

【答案】: D

蒙特卡洛法是一个模拟技术,它用一系列的()创造分布函数。

A:随机分布

B:分布律

C:概率

D:随机数

【答案】: D

每一个随机变量和相关的某个范围内累计频率序列数相对应,这个累计频率数称之为()

A:随机数

B:随机数分布

C:离散的随机变量

D:连续的随机变量

【答案】:A

如果一个随机变量允许在某个给定的范围内具有任何个数的数值,则它就是一个()

A:随机数

B:随机数分布

C:离散的随机变量

D:连续的随机变量

【答案】: D

如果一个随机变量允许在某个给定范围内具有有限个数的数值,则它就是一个()

A:随机数

B:随机数分布

C:离散的随机变量

D:连续的随机变量

【答案】: C

11.2.2二、随机变量、随机数、随机数分布

累计频率数称为()

A:随机变量

B:随机分布

C:随机数

D:随机数分布

【答案】: C

11.3 排队系统的模拟

第11章 模 拟的概念 11.1 概述

11.2 概率分布及其应用

11.3 排队系统的模拟

户排队系统的模拟应用很广泛,如:港口的等待时间模拟,机场的起飞、着陆的模拟。

> 在排队论中,要求顾客到达人数呈普阿松分布、服务时间呈负指数分布。

排队论中,通常要求服务时间服从()

A:正态分布

B:负态分布

C:指数分布

D:负指数分布

【答案】: D

在排队论中,通常求顾客到达呈()分布。

A:负指数分布

B:普阿松分布

C:均匀分布

D:指数分布

【答案】: B

某咨询公司要解答"筹划一个新超市应设置多少个收银台才合适"的问题,应选择()

A:同行类比方法

B:模拟方法

C:数学规划方法

D:马尔柯夫分析方法

【答案】:B

在排队论中,通常要求服务时间呈____分布。

【答案】:负指数

THANKYOU