Containers

Stanislav Protasov

Agenda

- Lists, Sorted list
 - Unrolled linked list
 - Skip list
- Set, Sorted set
 - Search trees
- Persistent data structures
 - Techniques
 - V-List

Abstract data types and their implementations

List

List

Countable number of <u>ordered</u> <u>non-unique</u> values. Finite sequence.

	Array List	Linked List
creating an empty list		
testing a list is empty		
prepending an entity		
appending an entity		
determining the "head" of a list		
accessing the element at a given index		

List

Countable number of <u>ordered</u> <u>non-unique</u> values. Finite sequence.

	Array List	Linked List
creating an empty list	O(1)	O(1)
testing a list is empty	O(1)	O(1)
prepending an entity / inserting at position	O(N)	O(1)
appending an entity	O(N), O _A (1)	O(1)
determining the "head" of a list	O(1)	O(1)
accessing the element at a given index	O(1)	O(N)

Unrolled *linked list* (1994)

Increases cache performance

Decreases memory overhead

Ideas:

- Nodes capacity is constant k. Thus, search is O(n/k).
- Each node stores it's size and ~ cache line of data.
- Nodes are preserved at worst case half-full.
 - On insert overflow: split a node into 2 of (k/2)+1 and (k/2) in +O(k).
 O(n/k + k) for insert
 - On delete: either steal from the next or merge is possible in +O(k).
 O(n/k + k) for insert

Priority queue and Sorted list

Heaps (priority queues)

Sorted list: new requirements for the list

- 1. Fast "TOP N" operation (including peak() and pop())
- 2. Sublinear search(x)
 - a. Sublinear insert
 - b. Sublinear delete

	Array List	Linked List
Search		
Insert		
Delete		

Sorted list: new requirements for the list

- 1. Fast "TOP N" operation (including peak() and pop())
- 2. Sublinear search(x)
 - a. Sublinear insert
 - b. Sublinear delete

	Array List	Linked List
Search	O(log(N))	O(N)
Insert	O(N)	O(N)
Delete	O(N)	O(N)

Skip List

- 1) Based on the linked list
 - a) Instead of Node* next it has Node*[LEVELS] next;
- 2) Introduces idea of search "shortcuts"

3) Probabilistic insertion algorithm

- a) Insert into basic linked list
- b) Increment a level. If maximum -
- c) Toss a coin (p = 0.5 or any other). If "win" goto (b)
- 4) **Expected** search time for a list with n elements: $T_{\rm E}(n) = \frac{1}{p} \log_{1/p} n$
 - a) if node.next[level] is null or node.next[max_level].value > x
 - i) then: level-- (or return None on level 0)
 - ii) else: node = node.next[level]

Set, multiset, map and sorted

Set+

- 1) Basic operations
 - a) Union, Intersection, Difference, IsSubset

	HashTable	Union-Find
Union (n, k)		
Intersection (n, k)		
Difference (n, k)		
IsSubsetOf (n, k)		

Set+

- 1) Basic operations
 - a) Union, Intersection, Difference, IsSubset
- 2) IsElementOf
- 3) Iterate/Enumerate*, **
- 4) Add(x), Remove(x)

	HashTable	Union-Find
Union (n, k)	O(min(n+k))	O(1)
Intersection (n, k)	O(min(n, k))*	O(min(n,k))**
Difference (n, k)	O(n+k)*	O(n+k)**
IsSubsetOf (n, k)	O(n)*	O(n)**

	HashTable	Union-Find
IsElementOf		
Iterate		
Add		
Remove		

Set+

- 1) Basic operations
 - a) Union, Intersection, Difference, IsSubset

Remove

- 2) IsElementOf
- 3) Iterate/Enumerate*, **
- 4) Add(x), Remove(x)

_		IsSubsetOf (n, k)		O(n)*
*	**			
		HashTable	U	nion-Find
	IsElementOf	O(1)	0	(1)
	Iterate	O(n)*		
	Add	O _A (1)	0	(1)
_				

O(1)

	HashTable	Union-Find
Union (n, k)	O(min(n+k))	O(1)
Intersection (n, k)	O(min(n, k))*	O(min(n,k))**
Difference (n, k)	O(n+k)*	O(n+k)**
IsSubsetOf (n, k)	O(n)*	O(n)**

__

Sorted sets: [binary] search trees

Idea

Non trivial delete

- 1) Find
- If no ancestors trivial
- 3) Single child pull it up
- 4) 2 children
 - a) Find pre/in-order ancestor and replace with it

Skewed binary tree

Balanced (self-balancing) binary search trees

AVL-tree (Adelson-Velskii, Landis, 1962)

Restriction: subtrees height differ by not more then 1.

$$|h(left) - h(right)| \le 1$$

Thus, worst case is:

$$n_0 = 0,$$
 $n_1 = 1,$ $n_h = n_{h-2} + n_{h-1} + 1.$

$$N_h = \Phi_{h+2} - 1 \hspace{1cm} F_n = \left\lfloor rac{arphi^n}{\sqrt{5}}
ight
floor$$

AVL Operations

Search - trivial BT search

Removal, Insertion:

Left and right *rotations and "big rotations"*

Red-Black Trees (Bayer, 1972)

RB-tree restrictions

- 1. Each node is either red or black.
- 2. The root is black. This rule is sometimes omitted. Since the root can always be changed from red to black
- 3. All leaves (NIL) are black.
- 4. If a node is red, then both its children are black.
- 5. Every path from a given node to any of its descendant NIL nodes contains the same number of black nodes.

RB-trees: techniques

Restoring RB-properties (rotations, restructuring) requires O(log(N)) or $O_A(1)$

Non-binary search tree: B-trees

Takes best from Unrolled linked lists and search trees:

- 1. Cache and HDD friendly
- 2. Minimizes restructuring (SPLIT, MERGE, BORROW)
- 3. Modifications are used in file systems and databases

Persistent lists

Techniques

Copy on Write

Fat node

Path copying

A combination fat node and path copying

Persistent singly-linked list

If we produce an operation, we need to preserve original structure unchanged. If we cannot, we need to copy. Singly-linked Lists can be constructed and operated in persistent way with cons, car and cdr operations.

- $\bullet \quad A[k] = O(k)$
- A[1:k] = O(1)
- Prepend = O(1)
- Append, insert before k = O(k)

Persistent search trees

VList (Bagwell, 2002)

cons

CONS: constructs memory objects which hold two values


```
(cons (cons 1 2) (cons 3 4))

*
/ \
* *
/ \ / \
1 2 3 4
```

car and cdr

car extracts first element of the pair, created by cons, cdr extracts the second

```
(cadr '(1 2 3)) = (car (cdr '(1 2 3))) = 2
(caar '((1 2) (3 4))) = (car (car '((1 2) (3 4)))) = 1
```

When cons cells are used to implement **singly linked lists** (rather than trees and other more complicated structures), the car operation returns the first element of the list

VList

- A[k] O_Δ(1) average, O(log n)
- Prepend O_Δ(1) average
- A[1:k] (cdr) O(1)
- len(A) O(log n)

- While immutability is a benefit, it is also a drawback, making it inefficient to modify elements in the middle of the array
- A[-1] Access near the end of the list can be as expensive as O(log n)
- Wasted space in the first block is proportional to n. This is similar to linked lists

VList

structure of a VList can be seen as a singly-linked list of arrays whose sizes

decrease geometrically.

A[k] timing comes from sum of geometric series

Any particular reference to a VList is actually a <base, offset> pair indicating the position of its first element

VList operations

```
A[0] (car) = trivial lookup O(1)

A[k] (car+cdr) = iterative process with O(log(N))

remove (cdr) = increase the offset | increase the base, offset = 0 - O(1)

prepend (cons) = insert in front array or add new 2*r level O_A(1)
```

insert before k (cons in the middle) = see linked list example. We create new front array, place there an element, pointing to k's base+offset - O(malloc(n - k)) for allocation

8.11 - midterm exam

Please, don't be late