中国科学技术大学期末考试题

考试科目: 随	机过程(B)		得分:
学生所在系:_		姓名: _	学号:
	(2018年	1月9日,	半开卷)
一、(20分)判断	是非与填空:		
(1)(每空2分)	党 $X = \{X_n, \geq 0\}$ 为一	一不可约、有阝	$\mathbb{R}^{(N \cap N)}$ 状态的马氏链,且其转移概率矩阵 P
为双随机的(行和与列	月和均为1),则:		
a. X 的平稳分	↑布不一定存在 ();	b.	$oldsymbol{X}$ 的平稳分布存在但不必唯一();
$c.\ X$ 的平稳分	·布为 $\left(\frac{1}{N},\frac{1}{N},,\frac{1}{N}\right)$); d .	X 的极限分布为: $(\frac{1}{N}, \frac{1}{N},, \frac{1}{N})$ () 。
(2)(每空3分) 钟)的泊松过程。则:	设公路上某观察站红、袁	黄、蓝三种颜·	色的汽车到达数分别是强度为 2、3 和 5 (辆/分
c. 在第一辆红星	车到达之前恰好到达 k 斩	两非红车的概率	红车首先到达的概率为 ();率为 ()。约连续数据 (1—畅销,0—滞销);
	1, 1, 0, 1, 0,	0, 1, 1, 1,	0, 1, 0,
	1, 1, 0, 0, 1,	1, 0, 1, 0,	1, 1, 1,
若该商品销售状况满足	· 上齐次马氏链,则据以上	数据可估计出	$oxed{oxed}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
二、(15 分)设至	引达某计数器的脉冲数 { /	$N(t), t \ge 0$	是一速率为 λ 的泊松过程,每个脉冲被记录的
概率均为 p ,且各脉 λ	中是否被记录是相互独立	立的。现以 <i>N</i>	$N_1(t)$ 表示被记录的脉冲数,试求 $N_1(t)$ 的矩母
函数 $g_{N_1(t)}(v)$ 以及 E	$[N_1(t), Var[N_1(t)]$ 和	$Cov(N_1(s))$	$(N_1(t))$.
三 、(20分) 设马	氏链 $\{X_n, n \ge 0\}$ 的转	移概率矩阵为	5 :
	$P = 2 \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ 3 \end{pmatrix}$	$ \begin{pmatrix} \frac{2}{3} & 0 \\ 0 & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} $	

(1) 设 $X_0=3$, 试求: $\pi_i(1)=P\{X_1=i\},\ \pi_i(2)=P\{X_2=i\},\ (i=1,2,3)$, 并求:

 $E(X_1)$ 和 $E(X_2)$;

- (2) 试求该马氏链的极限分布: $\pi_j = \lim_{n \to \infty} p_{i,j}^{(n)}$, (i, j = 1, 2, 3);
- (3) 当初始分布 $\pi_i(0)$ (i=1,2,3) 为什么分布时,该马氏链为严格平稳过程?并求此时的 $E(X_n)$ 。

四、(15 分) 把一些球逐个随机地放到 a 个格子中去,若 n 个球放进了 k 个格子,则称系统在时刻 n 的状态为 k 。试用一马氏链 $\{X_n, n \geq 0\}$ 描述此系统,并且

- (1) 写出该马氏链的转移概率矩阵P,并讨论其状态分类;
- (2) 证明过程由状态 k ($0 \le k \le a-1$) 出发,必然进入状态 a;
- (3) 试求放满 a 个格子的平均时间(假定 $X_0 = 0$)。

五、(15 分) 设有随机过程 $X(t)=A\cos(\omega_0\,t+\Theta)$,其中 Θ 服从均匀分布 $U(0,2\pi)$, A 服从瑞利分布:

$$A \sim f(x) = \frac{x}{\sigma^2} \exp(-\frac{x^2}{2\sigma^2}), (x > 0)$$

且A与 Θ 独立,

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求 $\{X(t), t \in R\}$ 的功率谱密度函数 $S(\omega)$ 。

六、(15分) 在下列四个关于 ω 的函数中:

$$S_1(\omega) = \frac{\omega^2 + 9}{(\omega^2 + 4)(\omega + 1)^2}, \quad S_2(\omega) = \frac{\omega^2 + 64}{\omega^4 + 29\omega^2 + 100},$$

$$S_3(\omega) = \frac{\omega^2 - 4}{\omega^4 + 4\omega^2 + 3}, \quad S_4(\omega) = \frac{\omega^2 \cos \omega}{\omega^4 + 1}$$

- (1)哪一个可以作为一个平稳过程 $\{X(t),\ t\in {\sf R}\}$ (均值为 0)的功率谱密度函数?并求其所对应的协方差函数 $R(\tau)$;
 - (2) 该平稳过程的均值是否具有遍历性? 为什么?

(完)