Лабораторная работа 8

Модель конкуренции двух фирм

Греков Максим Сергеевич

Содержание

1	Цел	ь работы	4		
2	Опи	исание задачи	5		
	2.1	Общее описание	5		
	2.2	Обозначения переменных	5		
	2.3	Уравнения	6		
	2.4	Алгебраические преобразования	7		
3	Постановка задачи				
	3.1	Первый случай	9		
	3.2	Система уравнений	9		
	3.3	Определение переменных	10		
	3.4	Второй случай	10		
	3.5	Система уравнений	10		
	3.6	Начальные значения	11		
	3.7	Требуемые действия	11		
4	Решение задачи				
	4.1	Первый случай	12		
	4.2	Второй случай	13		
5	Код	программы	14		
6	Выі	вод	16		

List of Figures

4.1	График изменения оборотных средств фирм для первого случая	12
4.2	График изменения оборотных средств фирм для второго случая	13

1 Цель работы

Рассмотреть модель конкуренции двух фирм.

Повысить навыки работы с открытым программным обеспечением для моделирования, симуляции, оптимизации и анализа сложных динамических систем - OpenModelica.

Построить графики изменения оборотных средств фирм.

2 Описание задачи

2.1 Общее описание

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы.

Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения.

Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

2.2 Обозначения переменных

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
- M оборотные средства предприятия
- au длительность производственного цикла
- p рыночная цена товара

- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- $\,\delta$ доля оборотных средств, идущая на покрытие переменных издержек.
- k постоянные издержки, которые не зависят от количества выпускаемой продукции.

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{p}{S} = q(1 - \frac{p}{p_{cr}}) \tag{1}$$

где q – максимальная потребность одного человека в продукте в единицу времени.

Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара.

Величина $p_{cr} = Sq/k$.

Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

2.3 Уравнения

Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - k \tag{2}$$

Уравнение для рыночной цены p представим в виде

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau \tilde{p}} + Nq(1 - \frac{p}{p_{cr}})) \tag{3}$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке.

Как правило, время торгового оборота существенно меньше времени производственного цикла au.

При заданном M уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

2.4 Алгебраические преобразования

В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0 \tag{4}$$

Из (4) следует, что равновесное значение цены p равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p} N q}) \tag{5}$$

Уравнение (2) с учетом (5) приобретает вид

$$\frac{dM}{dt} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \tilde{p}})^2 \frac{p_{cr}}{Nq} - k \tag{6}$$

Уравнение (6) имеет два стационарных решения, соответствующих условию dM/dt=0:

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b} \tag{7}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta}, b = kNq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2} \tag{8}$$

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет.

Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство.

Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\tilde{M}_{+}=Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \tilde{M}_{-}=k\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})} \tag{9}$$

Первое состояние \tilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия.

Второе состояние \tilde{M}_- неустойчиво, так, что при $M<\tilde{M}_-$ оборотные средства падают (dM/dt<0), то есть, фирма идет к банкротству.

По смыслу \tilde{M}_{-} соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ .

Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла.

Поэтому мы в дальнейшем положим: $\delta=1$, а параметр au будем считать временем цикла, с учётом сказанного.

3 Постановка задачи

3.1 Первый случай

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише.

Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами.

То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом).

3.2 Система уравнений

Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

3.3 Определение переменных

где

$$\begin{split} a_1 &= \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \\ b &= \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \\ c_1 &= \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2} \end{split}$$

Также введена нормировка $t=c_1\theta$.

3.4 Второй случай

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены.

В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться.

3.5 Система уравнений

Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - (\frac{b}{c_1} + 0.00067)M_1M_2 - \frac{a_1}{c_1}M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

3.6 Начальные значения

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

- $M_0^1 = 6.8$
- $M_0^2 = 6$
- $p_{cr} = 35$
- N = 31
- q = 1
- $\tau_1 = 18$
- $\tau_2 = 23$
- $\tilde{p}_1 = 11.5$
- $\tilde{p}_2 = 8.7$

3.7 Требуемые действия

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

4 Решение задачи

4.1 Первый случай

Figure 4.1: График изменения оборотных средств фирм для первого случая

4.2 Второй случай

Figure 4.2: График изменения оборотных средств фирм для второго случая

5 Код программы

```
model lab8
```

```
parameter Real pcr=35;
parameter Real N=31;
parameter Real q=1;
parameter Real tau1=18;
parameter Real tau2=23;
parameter Real p1=11.5;
parameter Real p2=8.7;
parameter Real a1 = pcr/(tau1*tau1*p1*p1*N*q);
parameter Real a2 = pcr/(tau2*tau2*p2*p2*N*q);
parameter Real b = pcr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
parameter Real c1 = (pcr-p1)/(tau1*p1);
parameter Real c2 = (pcr-p2)/(tau2*p2);
Real M1(start=6.8);
Real M2(start=6);
Real teta;
equation
 teta=time/c1;
//der(M1)/der(teta)=M1-(b/c1)*M1*M2-(a1/c1)*M1*M1;
```

```
//der(M2)/der(teta)=c2/c1*M2-b/c1*M1*M2-a2/c1*M2*M2;

der(M1)/der(teta)=M1-(b/c1+0.00067)*M1*M2-a1/c1*M1*M1;

der(M2)/der(teta)=c2/c1*M2-b/c1*M1*M2-a2/c1*M2*M2;

end lab8;
```

6 Вывод

Рассмотрели модель конкуренции двух фирм.

Повысили навыки работы с открытым программным обеспечением для моделирования, симуляции, оптимизации и анализа сложных динамических систем - OpenModelica.

Построили графики изменения оборотных средств фирм.