

- Model Checking and Assessment
- Posterior predictive checking

Bayesian Statistics and Data Analysis Lecture 8a

Måns Magnusson Department of Statistics, Uppsala University Thanks to Aki Vehtari, Aalto University

- Model Checking and Assessment
- Posterior predictive checking

Section 1

Model Checking and Assessment

- Model Checking and Assessment
- Posterior predictive checking

The Box process: Probabilistic modeling

Figure: The Box approach (Box, 1976, Blei, 2014)

- Model Checking and Assessment
- Posterior predictive checking

Model assessment

- Sensibility with respect to additional information not used in model
 - e.g., if posterior would claim that hazardous chemical decreases probability of death

- Model Checking and Assessment
- Posterior predictive checking

Model assessment

- Sensibility with respect to additional information not used in model
 - e.g., if posterior would claim that hazardous chemical decreases probability of death
- External validation
 - compare predictions to completely new observations

Model Checking and Assessment

 Posterior predictive checking

Model assessment

- Sensibility with respect to additional information not used in model
 - e.g., if posterior would claim that hazardous chemical decreases probability of death
- External validation
 - compare predictions to completely new observations
- Internal validation
 - posterior predictive checking
 - cross-validation predictive checking

- Model Checking and Assessment
- Posterior predictive checking

Section 2

Posterior predictive checking

- Model Checking and Assessment
- Posterior predictive checking

- Newcombs speed of light measurements
 - model $y \sim \mathcal{N}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$

- Model Checking and Assessment
- Posterior predictive checking

- Newcombs speed of light measurements
 - model $y \sim \mathcal{N}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}

- Model Checking and Assessment
- Posterior predictive checking

- Newcombs speed of light measurements
 - model $y \sim \mathcal{N}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}
 - draw $\mu^{(s)}, \sigma^{(s)}$ from the posterior $p(\mu, \sigma|y)$

- Model Checking and Assessment
- Posterior predictive checking

- Newcombs speed of light measurements
 - model $y \sim \mathcal{N}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}
 - draw $\mu^{(s)}, \sigma^{(s)}$ from the posterior $p(\mu, \sigma|y)$
 - draw $y^{\text{rep}(s)}$ from $\mathcal{N}(\mu^{(s)}, \sigma^{(s)})$

- Model Checking and Assessment
- Posterior predictive checking

- Newcombs speed of light measurements
 - model $y \sim \mathcal{N}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}
 - draw $\mu^{(s)}, \sigma^{(s)}$ from the posterior $p(\mu, \sigma|y)$
 - draw $y^{\text{rep}(s)}$ from $\mathcal{N}(\mu^{(s)}, \sigma^{(s)})$
 - repeat n times to get y^{rep} with n replicates

UNIVERSITET

- Model Checking and Assessment
- Posterior predictive checking

- Newcombs speed of light measurements
 - model $y \sim \mathcal{N}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}
 - draw $\mu^{(s)}, \sigma^{(s)}$ from the posterior $p(\mu, \sigma|y)$
 - draw $y^{\text{rep}(s)}$ from $\mathcal{N}(\mu^{(s)}, \sigma^{(s)})$
 - repeat n times to get y^{rep} with n replicates

Model Checking and Assessment

 Posterior predictive checking

Replicates vs. future observation

• Predictive \tilde{y} is the next not yet observed possible observation.

Model Checking and Assessment

 Posterior predictive checking

Replicates vs. future observation

- Predictive ỹ is the next not yet observed possible observation.
- y^{rep} refers to replicating the whole experiment (potentially with same values of x)
 i.e. obtaining as many replicated observations as in the original data.

- Model Checking and Assessment
- Posterior predictive checking

• Generate replicated datasets y^{rep}

- Model Checking and Assessment
- Posterior predictive checking

- Generate replicated datasets y^{rep}
- Compare to the original dataset

- Model Checking and Assessment
- Posterior predictive checking

- Generate replicated datasets y^{rep}
- Compare to the original dataset

- Model Checking and Assessment
- Posterior predictive checking

Posterior predictive checking with test statistic

- Replicated data sets y^{rep}
- Test quantity (or discrepancy measure) $T(y, \theta)$
 - summary quantity for the observed data $T(y, \theta)$
 - summary quantity for a replicated data $T(y^{\mathrm{rep}}, \theta)$
 - can be easier to compare summary quantities (y^{rep} statistics) than data sets

- Model Checking and Assessment
- Posterior predictive checking

• Compute test statistic for data $T(y, \theta) = \min(y)$

- Model Checking and Assessment
- Posterior predictive checking

- Compute test statistic for data $T(y, \theta) = \min(y)$
- Compute test statistic $\min(y^{\text{rep}})$ for many replicated datasets

- Model Checking and Assessment
- Posterior predictive checking

- Compute test statistic for data $T(y, \theta) = \min(y)$
- Compute test statistic $\min(y^{\text{rep}})$ for many replicated datasets

- Model Checking and Assessment
- Posterior predictive checking

- Good test statistic is ancillary (or almost)
 - a statistic T(X) that does not depend on the parameters
 of the model are ancillary
 e.g. in a normal model with known σ²,

$$s^2 = \sum_{i}^{n} \frac{\left(x_i - \bar{x}\right)^2}{n-1},$$

is ancillary (μ cancel out).

- Model Checking and Assessment
- Posterior predictive checking

- Good test statistic is ancillary (or almost)
 - a statistic T(X) that does not depend on the parameters
 of the model are ancillary
 e.g. in a normal model with known σ²,

$$s^2 = \sum_{i}^{n} \frac{(x_i - \bar{x})^2}{n-1},$$

is ancillary (μ cancel out).

- Bad test statistic is highly dependent of the parameters
 - e.g. variance (or mean) for normal model with unknown σ^2 . If σ^2 changes so will T(X).

- Model Checking and Assessment
- Posterior predictive checking

- Good test statistic is ancillary (or almost)
 - a statistic T(X) that does not depend on the parameters
 of the model are ancillary
 e.g. in a normal model with known σ²,

$$s^2 = \sum_{i}^{n} \frac{(x_i - \bar{x})^2}{n-1},$$

is ancillary (μ cancel out).

- Bad test statistic is highly dependent of the parameters
 - e.g. variance (or mean) for normal model with unknown σ^2 . If σ^2 changes so will T(X).
- We want to identify problems in data not captured by the model

- Model Checking and
- Posterior predictive checking

Assessment

- Model Checking and Assessment
- Posterior predictive checking

Posterior predictive p-value

$$egin{array}{lcl} p & = & \mathsf{Pr}(T(y^{\mathrm{rep}}, heta) \geq T(y, heta) | y) \ & = & \int \int I_{T(y^{\mathrm{rep}}, heta) \geq T(y, heta)} p(y^{\mathrm{rep}} | heta) p(heta | y) dy^{\mathrm{rep}} d heta \end{array}$$

where I is an indicator function

- Model Checking and Assessment
- Posterior predictive checking

Posterior predictive p-value

$$\begin{array}{lcl} \rho & = & \Pr(T(y^{\mathrm{rep}}, \theta) \geq T(y, \theta)|y) \\ & = & \int \int I_{T(y^{\mathrm{rep}}, \theta) \geq T(y, \theta)} \rho(y^{\mathrm{rep}}|\theta) \rho(\theta|y) dy^{\mathrm{rep}} d\theta \end{array}$$

where I is an indicator function

• having $(y^{\text{rep }(s)}, \theta^{(s)})$ from the posterior predictive distribution (Monte Carlo):

$$T(y^{\operatorname{rep}(s)}, \theta^{(s)}) \geq T(y, \theta^{(s)}), \quad s = 1, \dots, S$$

- Model Checking and Assessment
- Posterior predictive checking

• Posterior predictive p-value

$$\begin{array}{lcl} \rho & = & \Pr(T(y^{\mathrm{rep}}, \theta) \geq T(y, \theta) | y) \\ \\ & = & \int \int I_{T(y^{\mathrm{rep}}, \theta) \geq T(y, \theta)} p(y^{\mathrm{rep}} | \theta) p(\theta | y) dy^{\mathrm{rep}} d\theta \end{array}$$

where I is an indicator function

• having $(y^{\text{rep }(s)}, \theta^{(s)})$ from the posterior predictive distribution (Monte Carlo):

$$T(y^{\text{rep}(s)}, \theta^{(s)}) \ge T(y, \theta^{(s)}), \quad s = 1, \dots, S$$

 Posterior predictive p-value (ppp-value): could difference between the model and data arise by chance

- Model Checking and Assessment
- Posterior predictive checking

• Posterior predictive p-value

$$\begin{array}{lcl} \rho & = & \Pr(T(y^{\mathrm{rep}}, \theta) \geq T(y, \theta)|y) \\ & = & \int \int I_{T(y^{\mathrm{rep}}, \theta) \geq T(y, \theta)} \rho(y^{\mathrm{rep}}|\theta) \rho(\theta|y) dy^{\mathrm{rep}} d\theta \end{array}$$

where I is an indicator function

• having $(y^{\text{rep }(s)}, \theta^{(s)})$ from the posterior predictive distribution (Monte Carlo):

$$T(y^{\text{rep}(s)}, \theta^{(s)}) \ge T(y, \theta^{(s)}), \quad s = 1, \dots, S$$

- Posterior predictive p-value (ppp-value): could difference between the model and data arise by chance
- Not commonly used, since the distribution of test statistic $T(y,\theta)$ has more information

- Model Checking and Assessment
- Posterior predictive checking

Marginal and CV predictive checking

- Consider marginal predictive distributions $p(\tilde{y}_i|y)$ and each observation separately
 - marginal posterior p-values

$$p_i = \Pr(T(y_i^{\text{rep}}) \leq T(y_i)|y)$$

if
$$T(y_i) = y_i$$

$$p_i = \Pr(y_i^{\text{rep}} \leq y_i | y)$$

- Model Checking and Assessment
- Posterior predictive checking

Marginal and CV predictive checking

- Consider marginal predictive distributions $p(\tilde{y}_i|y)$ and each observation separately
 - marginal posterior p-values

$$p_i = \Pr(T(y_i^{\text{rep}}) \leq T(y_i)|y)$$

if
$$T(y_i) = y_i$$

$$p_i = \Pr(y_i^{\text{rep}} \leq y_i | y)$$

- if $Pr(\tilde{y}_i|y)$ well calibrated, distribution of p_i would be uniform between 0 and 1
 - holds better for cross-validation predictive tests: $Pr(\tilde{y}_i|y_{-i})$ (cross-validation)

- Model Checking and Assessment
- Posterior predictive checking

Marginal predictive checking - Example

Marginal tail area or Probability integral transform (PIT)

$$p_i = p(y_i^{\text{rep}} \leq y_i|y)$$

• if $p(\tilde{y}_i|y)$ is well calibrated, distribution of p_i 's would be uniform between 0 and 1

- Model Checking and Assessment
- Posterior predictive checking

Marginal predictive checking - Example

Marginal tail area or Probability integral transform (PIT)

$$p_i = p(y_i^{\rm rep} \le y_i|y)$$

• if $p(\tilde{y}_i|y)$ is well calibrated, distribution of p_i 's would be uniform between 0 and 1

- Model Checking and Assessment
- Posterior predictive checking

Sensitivity analysis

 How much different choices in model structure and priors affect the results

- Model Checking and Assessment
- Posterior predictive checking

Sensitivity analysis

- How much different choices in model structure and priors affect the results
 - test different models and priors

- Model Checking and Assessment
- Posterior predictive checking

Sensitivity analysis

- How much different choices in model structure and priors affect the results
 - test different models and priors
 - alternatively combine different models to one model
 - e.g. hierarchical model instead of separate and pooled
 - e.g. t distribution contains Gaussian as a special case
 - robust models are good for testing sensitivity to "outliers"
 - e.g. t instead of Gaussian

- Model Checking and Assessment
- Posterior predictive checking

Sensitivity analysis

- How much different choices in model structure and priors affect the results
 - test different models and priors
 - alternatively combine different models to one model
 - e.g. hierarchical model instead of separate and pooled
 - e.g. t distribution contains Gaussian as a special case
 - robust models are good for testing sensitivity to "outliers"
 - e.g. t instead of Gaussian
- Compare sensitivity of essential inference quantities
 - extreme quantiles are more sensitive than means and medians
 - extrapolation is more sensitive than interpolation

- Model Checking and Assessment
- Posterior predictive checking

 Example from Jonah Gabry, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman (2019).
 Visualization in Bayesian workflow.

https://doi.org/10.1111/rssa.12378

- Estimation of human exposure to air pollution from particulate matter measuring less than 2.5 microns in diameter $(PM_{2.5})$
 - Exposure to $PM_{2.5}$ is linked to a number of poor health outcomes and a recent report estimated that $PM_{2.5}$ is responsible for three million deaths worldwide each year (Shaddick et al., 2017)
 - In order to estimate the public health effect of ambient $\mathrm{PM}_{2.5}$, we need a good estimate of the $\mathrm{PM}_{2.5}$ concentration at the same spatial resolution as our population estimates.

- Model Checking and Assessment
- Posterior predictive checking

- Direct measurements of PM 2.5 from ground monitors at 2980 locations
- High-resolution satellite data of aerosol optical depth

- Model Checking and Assessment
- Posterior predictive checking

- Direct measurements of PM 2.5 from ground monitors at 2980 locations
- High-resolution satellite data of aerosol optical depth

- Model Checking and Assessment
- Posterior predictive checking

- Direct measurements of PM 2.5 from ground monitors at 2980 locations
- High-resolution satellite data of aerosol optical depth

- Model Checking and Assessment
- Posterior predictive checking

Example: Prior predictive checking

- Model Checking and Assessment
- Posterior predictive checking

Example: Prior predictive checking

- Model Checking and Assessment
- Posterior predictive checking

Example: Prior predictive checking

- Model Checking and Assessment
- Posterior predictive checking

Example: Marginal predictive distributions

Figure: Model 1

- Model Checking and Assessment
- Posterior predictive checking

Example: Marginal predictive distributions

Figure: Model 2

- Model Checking and Assessment
- Posterior predictive checking

Example: Marginal predictive distributions

Figure: Model 3

- Model Checking and Assessment
- Posterior predictive checking

Example: Test statistic (skewness)

Figure: Model 1

- Model Checking and Assessment
- Posterior predictive checking

Example: Test statistic (skewness)

Figure: Model 2

- Model Checking and Assessment
- Posterior predictive checking

Example: Test statistic (skewness)

Figure: Model 3