Algorithms and Complexity

Spring 2018 Aaram Yun

This page is intentionally left blank

Today

- >> Time complexity
- >> Oracle machines
- » Circuits and advice

Time complexity

>> Consider only algorithms that halt on each input

$$\gg \ t_A:\{0,1\}^* o \mathbb{N}$$

>> With input $x \in \{0,1\}^*$, the algorithm A halts after $t_A(x)$ steps

$$\gg T_A: \mathbb{N} o \mathbb{N}$$

$$>> T_A(n) := \max_{x \in \{0,1\}^n} (t_A(x))$$

>> Time complexity of *A*

If
$$t_A(n) = B(n)$$
, then it means, no matter what x is, as long as $|x| = h$, $t_A(x) \le B(n)$, or A hatson x within $B(n)$ steps.

(time complexity of T is $B(n)$, in the "worst case")

Time complexity

$$N^3 + 3N \leq O(N^4)$$

>> Efficient algorithm

$$T_{A}(y) \subseteq O(N^{C})$$

- >> **A** is efficient, if it is a polynomial-time algorithm
- \gg In other words, $T_A(n)$ is polynomially bounded
- >> In other words, $T_A(n)$ for some c>0 $= \bigcirc({\scriptscriptstyle N}^c)$

Oracle machines

- » An oracle machine is just like a Turing machine, except
 - >> Oracle invocation
 - >> Oracle spoke
 - \gg Notation: $M^f(x)$

$$\int: Q \times \sum^{2} - Q \times \sum^{2} \times \{-1, 0, 1\}^{2}$$

Turing reduction

- \gg A problem Π is Turing-reducible to Π' , if there exists an oracle machine M such that for every function f that solves Π' , it holds that M^f solves Π
- >> Meaning?

 $\Pi \leq_{\tau} \Pi'$ f solves T/ Some > Mf solves TT phoblem

$$f(\gamma) = N(\gamma)$$

Non-uniform model of computation

- >> Non-uniform model
 - >> No *uniformity* in algorithms for handling different size inputs
 - >> Circuits
 - >> Machines with advice

Boolean circuits

- » A boolean circuit is a directed acyclic graph with labels on the vertices
 - >> Internal vertices (gates): in-degree and out-degree at least 1, labeled by a boolean operation (\land, \lor, \neg)
 - >> Sources: labeled by distinct natural numbers hithout any months edges
 - » Sinks: labeled by distinct, consecutive natural numbers

without any outgoing

26 212 213 26

Boolean circuits

Algorithms and Complexity, Spring 2018

Boolean circuits

- >> C: a boolean circuit with n input labels and m output labels
 - \gg C induces a function $f_C:\{0,1\}^n \to \{0,1\}^m$
- \gg \exists polytime algorithm for evaluating a circuit C on input x

Algorithms and Complexity, Spring 2018

Circuit model

- $\mathcal{C} = \{C_n\}_{n \in \mathbb{N}}$: a family of circuits
- $>> \mathcal{C}$ computes $f:\{0,1\}^* o \{0,1\}^*$, if C_n computes $f|_{x\in\{0,1\}^n}$ for each $n\in\mathbb{N}$
 - >> Or, $C_{|x|}(x)=f(x)$ for all $x\in\{0,1\}^*$
- >> Why is this called non-uniform?

Circuit complexity

- >> Size of a circuit: total number of edges
- $\mathcal{C} = \{C_n\}_{n \in \mathbb{N}}$ has size complexity $s : \mathbb{N} \to \mathbb{N}$ if for every n, the size of C_n is s(n)
- $s_f:\mathbb{N} \to \mathbb{N}$: circuit complexity of $f:\{0,1\}^* \to \{0,1\}^*$
 - $>> s_f(n)$ is the size of the smallest circuit that computes $f_n = f|_{x \in \{0,1\}^n}$

Circuit model

- >> Some facts
 - >> For any f, the circuit complexity s_f is well-defined. $s_f(n)$ is at most exponential in n
 - >> A family of circuits is *uniform*, if there exists a Turing machine which generates the circuit family
 - >> If a function f is computed by an algorithm of time complexity t, then it has circuit complexity at most poly(t).

 $\{C_n\}$ is uniform if $\exists TM M s.t. M(I^n) = \langle C_n \rangle$.

Phop) If {Cn} is uniform, and if {Cn} computes f, then I a TM which computes f.

 $M(1^{|X|}) \rightarrow (C_n)$ $E((C_n) \times X) = y$

$$f = (7x_1 \wedge 7x_2 \wedge x_3) \vee (7x_1 \wedge x_2 \wedge 7x_3) \vee (x_1 \wedge 7x_2 \wedge 7x_3 \wedge 7x_3) \vee (x_1 \wedge 7x_2 \wedge 7x_3 \wedge 7x_3 \wedge 7x_3 \wedge 7x_3) \vee (x_1 \wedge 7x_2 \wedge 7x_3 \wedge 7x$$

f can be computed by & TM within E(u) steppe t(n) > n. £(4) Sine const us. of previous bits O(f(n)) 5-0(+(n)2)

Machines that take advice

- >> An algorithm A computes $f:\{0,1\}^* \to \{0,1\}^*$ using advice of length $l:\mathbb{N}\to\mathbb{N}$, if $\exists (a_n)_{n\in\mathbb{N}}$ such that
 - >> For every $x\in\{0,1\}^*$, $A(a_{|x|},x)=f(x)$
 - >> For every $n\in\mathbb{N}, |a_n|=l(n)$
- $(a_n)_{n\in\mathbb{N}}$ is the advice sequence

Circuits and advices

- >> Any function having circuit complexity s can be computed using advice of length $O(s \log s)$
 - \gg A graph with v vertices and e edges can be described by a string of length $2e \log_2 v$

$$2 \log_2 V: \text{ the no. of bits} \qquad \qquad A(a_n, x) = f(x)$$
required to write
$$f(x) = f(x) \qquad \qquad A(y, x) \qquad |y| = l(n), |x| = n$$

$$C_n(y, x) := A(y, x) \qquad C_n: \text{ circuit} \qquad \text{s.t.} \qquad C_n(a_n, x) = f(x)$$
gorithms and Complexity, Spring 2018
$$C_n(x) := C_n(a_n, x)$$