

SWE 205 - Introduction to Software Engineering

Lecture 4

Lecture Objectives

- Software processes and their principle characteristics.
- Generic software process models
 - Waterfall model
 - Evolutionary development
 - Component based system development

What is a software process?

- A set of ordered tasks to produce indented output of some kind
 - Involving activates, constraints; and
 - Resources
- The process of building a software product
 - Life cycle describes the life of the software from conception through its implementation, delivery, use and maintenance.

Why we need software process?

- Common understanding of the activities, resources and constraints involved in software development.
- Creating processes helps
 - Find inconsistencies,
 - Redundancies; and
 - Omissions

Generic software process models

- The waterfall model
 - Separate and distinct phases of specification and development.
- Evolutionary development
 - Specification, development and validation are interleaved.
- Component-based software engineering
 - The system is assembled from existing components.

Waterfall Model

- Inflexible partitioning of the project into distinct stages
 - Makes it difficult to respond to changing customer requirements.
- Model is only appropriate when the requirements are well-understood; and
 - changes will be fairly limited during the design process.

Few business systems have stable requirements.

Evolutionary development

- Exploratory development
 - Objective is to work with customers and to evolve a final system from an initial outline specification.
 - Starts with well-understood requirements and add new features as proposed by the customer.
- Throw-away prototyping
 - Objective is to understand the system requirements.
 - Starts with poorly understood requirements to clarify what is really needed.

Evolutionary Development

Evolutionary Development

Problems

- Lack of process visibility;
- Systems are often poorly structured;
- Special skills (e.g. in languages for rapid prototyping) may be required.

Applicability

- For small or medium-size interactive systems;
- For parts of large systems (e.g. the user interface);
- For short-lifetime systems.

 Systematic reuse where systems are integrated from existing components or COTS (Commercial-off-the-shelf) systems.

This approach is becoming increasingly used as component standards have emerged.

Component Based System Engineering

Process Iterations

- System requirements ALWAYS evolve in the course of a project
 - Process iteration where earlier stages are reworked is always part of the process for large systems.
- Iteration can be applied to any of the generic process models.
- Two (related) approaches
 - Incremental delivery;
 - Spiral development.

Incremental Delivery

- Rather than deliver the system as a single delivery,
 - Development and delivery is broken down into increments;
 - With each increment delivering part of the required functionality.
- User requirements are prioritised and the highest priority requirements are included in early increments.

Incremental Delivery

System incomplete

Requirements are frozen though requirements for later increments can continue to evolve.

Incremental Delivery - Advantages

- Customer value can be delivered with each increment so system functionality is available earlier.
- Early increments act as a prototype to help elicit requirements for later increments.
- Lower risk of overall project failure.
- The highest priority system services tend to receive the most testing.

Spiral Development

- Process is represented as a spiral rather than as a sequence of activities with backtracking.
- Each loop in the spiral represents a phase in the process.
- No fixed phases such as specification or design - loops in the spiral are chosen depending on what is required.

Spiral Development Model

Key Points

- Software processes are the activities involved in producing and evolving a software system.
- General activities are specification, design and implementation, validation and evolution.
- Generic process models describe the organisation of software processes. For example
 - waterfall model,
 - evolutionary development; and
 - component-based software engineering.
- Iterative process models describe the software process as a cycle of activities.