Monte Carlo Methods

Motivation

Last Lecture

- Solve a known MDP by dynamic programming
- **Solve** means answering the question what shall I do in each state to maximize my expected discounted reward?.
- We saw how to use knowledge of the environment for prediction of a policy, and control (optimize such policy).
 - Prediction means evaluation of the policy (how would the trajectories look like).
 - Control means finding the best policy.

Model-Based Prediction

• The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π :

$$v_{\pi}(s) = \mathbb{E}(G_t \mid S_t = s)$$

• The state-action value function $q_{\pi}(s,a)$ is the expected return starting from state s, taking action a and then following policy π ,

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}(G_t \mid S_t = s, A_t = a).$$

Model-Based Control: Value Iteration.

Idea:

Use the optimality equation:

$$v_*(s) = \max_{a \in \mathcal{A}} \left\{ \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')
ight\}$$

to get a sequence:

$$v_{k+1} \leftarrow \max_{a \in \mathcal{A}} \left\{ \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight\}$$

Model-Based Control: Policy Iteration.

How to get close to optimal behaviour without calculating the value function

- Given policy π :
 - \circ **Evaluate** π , that is, calculate $v_{\pi}(s)$ and/or Q_{π} .
 - \circ Improve the policy by being greedy with respect to v_{π} and/or Q_{π} .
 - Update and repeat.
- Being greedy means, at state s, update the policy π by the policy π' such that:

$$\pi'(s) = \operatorname{argmax}_{a \in \mathcal{A}} Q_{\pi}(s, a)$$

This process converges to the optimal policy π_* .

Model-Free Prediction

- Evaluate a policy without using explicit rewards or transitions from the underlying model.
- Part of the full reinforcement learning problem.

Model-Free Control

- How to find the best policy?
- Many problems can be modelled as MDPs, but either
 - MDP model is unknown, but experience can be sampled.
 - MDP model is known, but it is too big to use.
- In the model-free world, we use Q instead of v, since greedy policy improvement over Q does not depend on the model.

In this lecture:

- We will show how to adapt policy iteration in the model-free world.
- To substitute our knowledge of the world, we need to
 - Infer its reward and transition structure by repetition of many episodes.
 - Update our information "somehow" while running the episode.

Monte Carlo Learning

What are Monte Carlo methods?

• Key idea: Average sample returns at the end of each episode.

Assumptions

- Experience is divided into episodes.
- All episodes finish (eventually).

Monte Carlo Learning

- MC is model-free because we don't need to know the rewards or transitions of the underlying MDP.
- Estimates for one state do not "build upon" estimates of the other.
 - Useful if you only require the value at certain states.
- Learning from both real and simulated experience.
- Might take too much time, even in small problems.

Goal

• Learn Q_{π} from episodes of experience under π :

$$S_1, A_1, R_1, S_2, A_2, R_2, \dots S_T \sim \pi$$

ullet Recall that the return G_t is

$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$$

• The value function is the expected return

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}(G_t \mid S_t = s, A_t = a)$$

 In MC simulation we replace the expectation above by empirical mean.

Making it work

- To ensure that sampled average returns would converge to the value function, we need:
 - All episodes must start in a state-action pair.
 - All state-action pairs have positive probability of being selected at the start.
 - This guarantees that in the limit of an infinite number of episodes, all pairs would be selected infinitely many times.

Exploring starts

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
    Q(s,a) \leftarrow \text{arbitrary}
    \pi(s) \leftarrow \text{arbitrary}
    Returns(s, a) \leftarrow \text{empty list}
Repeat forever:
     Choose S_0 \in S and A_0 \in A(S_0) s.t. all pairs have probability > 0
     Generate an episode starting from S_0, A_0, following \pi
    For each pair s, a appearing in the episode:
         G \leftarrow return following the first occurrence of s, a
         Append G to Returns(s, a)
         Q(s, a) \leftarrow \text{average}(Returns(s, a))
    For each s in the episode:
         \pi(s) \leftarrow \operatorname{arg\,max}_a Q(s, a)
```

- MC with exploring starts has not been proven to converge!
- However, convergence is proven for a variation of this idea.

First-Visit Monte Carlo Policy Evaluation

- To evaluate a state s under a fixed policy π :
- ullet Increment a counter the first that the pair s,a is visited in an episode

$$N(s,a) \leftarrow N(s,a) + 1.$$

- Increment total return $R(s,a) \leftarrow R(s,a) + G_t$
- ullet Let $Q(s,a) \sim R(s,a)/N(s,a)$
- ullet $Q(s,a) o Q_\pi(s,a)$ as $N(s,a) o +\infty$
- $\pi \to \epsilon \operatorname{greedy}(\pi)$

Every-Visit Monte Carlo Policy Evaluation

- To evaluate a state s under a fixed policy π :
- Increment a counter every time that the pair s,a is visited in an episode

$$N(s,a) \leftarrow N(s,a) + 1.$$

- Increment total return $R(s,a) \leftarrow R(s,a) + G_t$
- ullet Let $Q(s,a) \sim R(s,a)/N(s,a)$
- $ullet \ Q(s,a) o Q_\pi(s,a)$ as $N(s,a) o +\infty$
- $\pi \to \epsilon \operatorname{greedy}(\pi)$

What's the difference?

- None in practice, theoretical analysis is different.
- Both methods are **on-policy**, meaning that they sample and evaluate from the same policy.

Incremental mean

The mean of a sequence x_1, x_2, \ldots can be computed incrementally:

$$egin{aligned} \mu_k = & rac{1}{k} \sum_{j=1}^k x_j \ & = & rac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j
ight) \ & = & rac{1}{k} \left(x_k + (k-1) \mu_{k-1}
ight) \ & = & \mu_{k-1} + rac{1}{k} (x_k - \mu_{k-1}) \end{aligned}$$

Incremental Monte-Carlo Updates

- Update Q(s,a) incrementally after each episode.
- ullet For each state S_t with return G_t

$$N(S_t, A_t) \leftarrow \qquad \qquad N(S_t, A_t) + 1 \ Q(S_t, A_t) \leftarrow \qquad Q(S_t, A_t) + rac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

 We can "forget the past" by compute an exponential moving mean. We don't move to correct the value all the way to the mean, we just correct it a bit.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(G_t - Q(S_t, A_t))$$

GLIE Monte-Carlo Control

- *Greedy in the Limite with Infinite Exploration* (GLIE)
- Sample an episode using policy π
- ullet For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow \qquad \qquad N(S_t, A_t) + 1 \ Q(S_t, A_t) \leftarrow \qquad Q(S_t, A_t) + rac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

 Improve the policy based on the new state-action-value function

$$egin{array}{l} \circ \ \epsilon \leftarrow 1/k \ \\ \circ \ \pi \leftarrow \epsilon - \operatorname{greedy}(Q) \end{array}$$

Example: Frozen Lake

- https://gym.openai.com/evaluations/eval_TtcFloaZQu6fGDIQIC
 FKtw
- https://gist.github.com/jpmaldonado/fbc572b3bb517ac084868
 7b6e987f9a0

Off-policy

- Learn for a **different** policy to the one we are using to generate the episode.
- Off-policy methods consider both a
 - \circ target policy t policy, from which we want to learn.
 - \circ **behavior policy** *b* policy, from which we generate the episode.
- ullet We need to guarantee **coverage** that is, t(a|s)>0 implies b(a|s>0).

Importance sampling

• Estimation of expected values from a distribution given samples of another.

Weighted importance sampling

```
Off-policy MC control, for estimating \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
     Q(s,a) \leftarrow \text{arbitrary}
     C(s,a) \leftarrow 0
     \pi(s) \leftarrow \operatorname{arg\,max}_a Q(S_t, a) (with ties broken consistently)
Repeat forever:
     b \leftarrow \text{any soft policy}
     Generate an episode using b:
          S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T, S_T
     G \leftarrow 0
     W \leftarrow 1
     For t = T - 1, T - 2, ... downto 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          \pi(S_t) \leftarrow \operatorname{argmax}_a Q(S_t, a) (with ties broken consistently)
          If A_t \neq \pi(S_t) then ExitForLoop
          W \leftarrow W \frac{1}{b(A_t|S_t)}
```

References

- David Silver's course (videos, slides).
- Sutton and Barto, Reinforcement Learning: An Introduction.