Unit II: Recurrence Relations / Advanced Counting Techniques. Text Book: Ch 8

Many counting problems cannot be solved easily using simple counting techniques. Here we will study a variety of counting problems that can be solved by finding relationship between terms of sequence or by modelling of recurrence relations.

Recurrence relation

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, \ldots, a_{n-1}$ for all integers n with $n \geq n_0$, where n_0 is a nonnegative integer. A sequence is called a solution of a recurrence relation.

Q1. Find the first four terms of the sequence defined by each of these recurrence relations and initial conditions $a_n = 3a_{n-1}^2$, $a_0 = 1$

$$\alpha_1 = 3\alpha_0^2 = 3 \cdot 1 = 3$$
 $\alpha_2 = 3\alpha_1^2 = 27$
 $\alpha_3 = 3(27)^2 = 2187$

$$a_3 = 3a_3^2 = 3(37)^2 = 3187$$
 $a_4 = 3a_3^2 = [4348907]$
Q2. Find 5th term of $a_n = na_{n-1} + a_{n-2}^2$, $a_0 = -1$, $a_1 = 0$
 $a_1 = 2a_1 + a_0^2 = 1$
 $a_2 = 3a_2 + a_1^2 = 3$
 $a_3 = 3a_2 + a_1^2 = 3$
 $a_4 = 4a_3 + a_2^2 = 13$
 $a_5 = 5a_4 + a_1^2 = 74$

Q3. Show that the sequence $\{a_n\}$ is solution of the recurrence solution $a_n = -3a_{n-1} + 4a_{n-2}$, where $a_n = (-4)^n$.

$$Q_{\eta} = -3Q_{\eta-1} + 4Q_{\eta-2} \qquad \underline{Lns} \qquad Q_{\eta} = (-4)^{\eta}$$

$$Q_{\eta-1} = (-4)^{\eta-1} , \quad Q_{\eta-2} = (-4)^{\eta-2}$$

$$-3((-4)^{\eta-1}) + 4((-4)^{\eta-2})$$

$$= -3((-4)^{\eta-1}) - (-4)(-4)^{\eta-2}$$

$$= -3(-4)^{\eta-1} - (-4)^{\eta-1}$$

$$= (-4)^{\eta-1} - (-4)^{\eta-1}$$

$$= (-4)^{\eta-1} - (-3-1) = (-4)^{\eta} = \underline{Lns}$$

Q4. Is the sequence $\{a_n\}$, $a_n = n4^n$ is solution of the recurrence relation $a_n = n4^n$

$$8a_{n-1} - 16a_{n-2}$$
?

Q5. Find the solution of the following recurrence relation with given initial conditions using iterative approach?

(a)
$$a_n = 2a_{n-1} - 3$$
, $a_0 = -1$

(b)
$$a_n = na_{n-1}$$
, $a_0 = 5$