絥

西安电子科技大学

考试时间 120 分钟

试

题

题号	_	11	总分
分数			

1. 考试形式: 闭卷回 开卷口

2. 考试日期:

年

月

日(答题内容请写在装订线外)

1. 选择题 (每小题 2 分, 共 60 分)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	В	С	С	В	В	С	A	С	D	A	В	С	A	A
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
D	D	D	С	В	D	С	A	В	D	D	D	D	В	D

1. 图中计算机硬件系统基本组成部件①、②、③、④和⑤的名称是(B)。

- A. ①控制器、②运算器、③存储器、④输入设备、⑤输出设备
- B. ①运算器、②控制器、③存储器、④输入设备、⑤输出设备
- C. ①运算器、②存储器、③控制器、④输入设备、⑤输出设备
- D. ①运算器、②控制器、③存储器、④输出设备、⑤输入设备
- 2. 按照计算机系统的层次结构,下列 5 个级别的机器由下到上的顺序是(B)。
- I. 机器语言机器 II.汇编语言机器 III.高级语言机器
- IV.微程序控制机器 V.操作系统机器
- A. I→II→III→IV→V
- B. $IV \rightarrow I \rightarrow V \rightarrow II \rightarrow III$
- C. III \rightarrow II \rightarrow V \rightarrow I \rightarrow IV
- D. $V \rightarrow IV \rightarrow III \rightarrow II \rightarrow I$
- 3. 某计算机的时钟频率为 400MHz,测试该计算机的程序使用 4 种类型的指令。每种指令的数量及所需指令时钟数(CPI)如表 1 所示,则该计算机的运算速度是

A.106.7

B. 169.5

C. 207.3

D. 216.2

表 1 每种指令的数量及所需指令时钟数

指令类型	指令数目/条	每条指令需时钟周期数
1	160 000	1
2	30 000	2
3	24 000	4
4	16 000	8

		3	24 000	4		
		4	16 000	8		
4.	系统总线中地址 A. 用于选择主行 B. 用于选择进行 C. 用于指定主行	字单元地址 亍信息传输	止 俞的设备	1路的抽出		
	D. 用于传送主			364 4365811		
	D. / [1] [(ZZ Z)	1.1942	L/1622447032L			
5.	在 32 位总线系统则该总线系统的A. 200MB/s	数据传输	率是(B	0MHz,传送一个)。 C. 600MB/s		字需要 5 个时钟周期, MB/s
6.	总线仲裁方式可 I.链式查询方式 A.只能 I,其余	能是(【 都不可能	B) I.计数器查询) I	总线使用权的机会 方式 III.¾ B. II 和 III 都有页 D. I、II、II 都有页	独立 请 求 「能,Ⅰ	
7.	需要的时间大约	是(().			居传输速度为 56kb/s,
	A. 34.82s	B. 42.8	36s	C. 85.71s	D. 8'	7.77s
8.		可减半	B. 有	字储密度提高一倍 核盘访问速度提高		
9.	将外部设备与主				→ L. A	, bl. Li 77 1
				B.每个外设接口		
	C.按口中的有天	句仔都各	占一个地址 码	D.每台外设由-	一个土在	作中 兀官埋
10.			in,传输速度为	为 4MB/s,控制器		J 1ms。要保证读或写

11. 在中断周期, CPU 完成的主要工作是(A)。

A.关中断,保护断点,发中断响应信号并形成中断服务程序入口地址

B.开中断,保护断点,发中断响应信号并形成中断服务程序入口地址

C.关中断, 执行中断服务程序

D.开中断, 执行中断服务程序

12.	
	A.PC 和 IR B. PC 和 PSW C.AR 和 IR D.AR 和 PSW
13.	以下关于程序中断方式和 DMA 方式的叙述中错误的是(C)。 I.若同时接到 DMA 请求和中断请求,CPU 优先响应 DMA 请求 II.程序中断需要保护现场,DMA 方式不需要保护现场 III.程序中断方式的中断请求是为了报告 CPU 数据的传输结束,而 DMA 方式的中断请求完全是为了传送数据 IV.相较于 DMA 方式,快速 I/O 设备更适合采用中断方式传递数据 A. II、IV B. II、III、IV C. III、IV D. I、II、IV
14.	某计算机字长16位,主存地址空间大小是64KB,按字节编址,则寻址范围是(A)。 A.0~(64K-1) B.0~(32K-1) C.0~(64KB-1) D.0~(32KB-1)
15.	下面有关半导体存储器的叙述中,错误的是(A)。 A. 半导体存储器都采用随机存取方式进行读写 B. ROM 芯片属于半导体随机存储器芯片 C. SRAM 是半导体静态随机访问存储器,可用作 cache D. DRAM 是半导体动态随机访问存储器,可用作主存
16.	在关于主存与 Cache 的地址映射方式中,(D)是正确的。 A. 全相联映射方式适用于大容量 Cache B. 直接映射是一对一的映射关系,组相联映射是多对一的映射关系 C. 在 Cache 容量相等条件下,直接映射方式的命中率比组相联映射方式有更高的命中率 D. 在 Cache 容量相等条件下,组相联映射比直接映射方式有更高的命中率
17.	内存按字节编址,地址从 90000H 到 CFFFFH,若用存储容量为 16K×8 位芯片构成 该内存,至少需要的芯片数是(D)。 A. 2 B.4 C.8 D.16
18.	某计算机使用 4 体交叉编址存储器,假定在存储器总线上出现的主存地址(十进制) 序列为 8005、8006、8007、8008、8001、8002、8003、8004、8000,则可能发生访存 冲突的地址对是(D)。 A.8004 和 8008 B.8002 和 8007 C.8001 和 8008 D.8000 和 8004
19.	有如下 C 语言程序段 for(k=0;k<1000;k++) a[k]=a[k]+32; 若数组 a 及变量 k 均为 int 型,int 型数据占 4B,数据 Cache 采用直接映射方式,数据区大小为 1KB,块大小为 16B,该程序段执行前 Cache 为空,则该程序段执行过程中访问数组 a 的 Cache 缺失率约为(C)。A.1.25% B.2.5% C.12.5% D.25%

20. 若数据在存储器中采用以低字节地址为字地址的存放方式,则十六进制数 12345678H

	的存储字节顺序技	安地址由小到大依	ズ次为(B)。		
	A.12345678	B.78563412	C.87654321	D.34127856	
21.	下面关于主存储器	B性能的说法中 不	下正确的是(D)。	
	A. 主存储器的性	能指标主要有主	存容量、存储器存取	双时间和存取周期	
	B. 指令中地址码	的位数决定了主	存储器可以直接寻址	上的空间	
	C. 存储器存取时	间是指从启动一	次存储器操作到完成	战该操作所经历的时间	
	D. 存取周期是指	连续启动两次独	立的存储器操作所需	통间隔的最小时间,通常	存取周
	期小于存取时间				
22.	某 SRAM 芯片容:	量为 1024×8 位,	除电源和接地端外	该芯片最少引出线数为	(C).
	A.16	B.18	C.20	D.21	
23.		•	立),用 4K×4 位的 上线应该是(A)	存储芯片组成 16KB 存储 。	者器,则
	$A. A_2A_3$	$B.A_0A_1$	$C.A_{12}A_{13}$	$D.A_{14}A_{15}$	
24.		•	可是同时启动的,则	che 的 1/4,主存的存取 Cache-主存的效率是(〕 D.0.98	
25.	A.直写法充分保 B.采用直写法时 C.写回法减少了	证了 Cache 与主	he 行设置脏位 / 修i 间的通信量	改位	
26.	下列机器数中,享 A.[X]*=1000 00			1000 0011 D.[X] _# =1000	0011
27.	计算机内部的定点	点数大多用补码表	表示。以下是一些关·	于补码特点的叙述,其中	⊐正确的
	是 (D)。				
	I. 0 的表示是唯-	一的			
	II. 符号位可以和	数值部分一起参	与运算		
	III. 与其真值的对				
	IV. 减法可用加法		-		
	A. I 和 II		C. I. II. II	I D. I., II., IV	
28.	考虑以下 C 语言和	程序 :			
	short si=-8196;				
	unsigned short us	i=si;			
	执行上述程序段局	f,usi 的值是(D).		
	A.8196	B. 34 572	C.57 339	D.57 340	
29.	假定采用 IEEE 75	54 单精度浮点数	格式表示一个数为。	45100000H,则该数的值	是(B)。
			$_{0}\times2^{11}$ C.(+0.125)		

30. 若浮点数尾数用补码表示,则下列数中为规格化尾数形式的是(D)。

A. 1.1100000

B.0.0111000

C.0.0101000

D.1.0001000

二、分析计算(共40分)

1. (6分)假设某个频繁使用的程序 P 在计算机 M1 上运行时间需要 10s, M1 的时钟频率为 2GHz。设计人员想开发一台与 M1 具有相同指令系统架构的新计算机 M2。采用新技术可使 M2 的时钟频率增加,但同时也会使 CPI 增加。假定程序 P 在 M2 上的时钟周期数是在 M1 上的 1.5 倍,则 M2 的时钟频率至少达到多少,才能使程序 P 在 M2 上的运行时间缩短为 6s?

程序 P 在计算机 M1 上运行的时钟周期数为

CPU 执行时间×时钟频率 =10s×2GHz=2×1010

因此,程序 P 在计算机 M2 上运行的时钟周期数为 $1.5 \times 2 \times 10^{10} = 3 \times 10^{10}$ 。要使程序 P 在 M2 上的运行时间缩短为 6s,则 M2 的时钟频率至少应为

程序所含时钟周期数÷CPU 执行时间 = 3×10¹⁰÷6s=5GHz

由此可见, M2 的时钟频率是 M1 的 2.5 倍, 但 M2 的速度只是 M1 的 1.67 倍。

- 2. (10 分) 设浮点数字长 16 位, 其中阶码 4 位(含 1 位阶符), 尾数 12 位(含 1 位数符)。
 - (1) 将(51/128)₁₀ 转换成二进制规格化浮点数及机器数(其中阶码采用移码,基值为 2, 尾数采用补码)(6分)
 - (2) 回答此浮点格式的规格化数表示范围。(4分)

 $(51/128)_{10}=0.0110011=2^{-1}\times0.1100110$

阶码采用移码、基值为 2、尾数采用补码的机器数为 0,111; 0.11001100000。按题目给定的浮点格式的规格化数表示范围是:最大正数为 $2^7 \times (1-2^{-11})$;最小正数为 2^{-9} ;最大负数为- $2^{-8} \times (2^{-1}+2^{-11})$;最小负数为- 2^{-7} 。

- 3. (12 分)设某微机的寻址范围为 64K,接有 8 片 8K 的存储芯片,存储芯片的片选信号为 \overline{CS} ,要求:
 - (1) 画出选片译码逻辑电路(可选用74138译码器)。(3分)
 - (2) 写出每片 RAM 的地址范围。(3分)
 - (3) 如果运行时发现只有以 0000H 为起始地址的一片存储芯片不能读写,分析故障原因,如何解决? (3分)
 - (4) 如果发现只能对第 1-4 片 RAM 进行读写,试分析故障原因。(3 分)
 - (1)8 片 8K 存储芯片的选片逻辑电路如图所示。 Y_i (i=0~7)分别为每片 RAM 的片选信号。

- (2) 8 片 RAM 的寻址范围分别是: 0000H~1FFFH; 2000H~3FFFH; 4000H~5FFFH; 6000H~7FFFH; 8000H~9FFFH; A000H~BFFFH; C000H~DFFFH; E000H~FFFFH。
- (3)说明 74138 译码器的 Y_0 输出始终为高。因 RAM 的片选信号是低电平有效,故用 $\overline{Y_0}$ 作为片选信号的存储芯片(对应 0000H~3FFFH 地址范围)不能读写,而其他存储芯片可以读写。解决方法可以换一片 74138 译码器。
- (4) 说明译码器 $\mathbb C$ 端始终为低,可检查一下 $A_{\mathbb D}$ 是否搭接到低电平上。
 - 4. (12 分) 假设主存容量为 512K×16 位, Cache 容量为 4K×16 位, 块长为 4 个 16 位的字, 访存地址为字地址。
 - (1) 在直接映射方式下,设计主存的地址格式。(3分)
 - (2) 在全相联映射方式下,设计主存的地址格式。(3分)
 - (3) 在 2 路组相联映射方式下,设计主存的地址格式。(3分)
 - (4) 若主存容量为 512K×32 位, 块长不变, 在 4 路组相联映射方式下, 设计主存的地址格式。(3分)

根据 Cache 容量为 4096 字,得 Cache 地址为 12 位。根据块长为 4 个 16 位的字,且访存地址为字地址,可知块内地址为 2 位,且 Cache 共有 1024 块(4096÷4)。根据主存容量为 512K 字,主存地址为 19 位。在直接映射方式下主存字块标记为 7 位(19-12),主存地址格式如图(a)所示。

- (2) 在全相联映射方式下,主存字块标记为17位(19-2),主存地址格式如图(b)所示。
- (3) 根据 2 路组相联映射的条件,一组内有 2 块, Cache 共分 512 组,主存字块标记为 8 位,主存地址格式如图(c)所示。
- (4) 若主存容量改为 512K×32 位,即双字宽存储器,块长不变,访存仍为字地址,则主存容量可写为 1024K×16 位,得出主存地址为 20 位。在 4 路组相联映射方式下,Cache 共分为 256 组。主存字块标记为 10 位,主存地址格式如图(d)所示。

