	H8: Entropie			
8.1 het begrip entropie				
entropie	tss twee infinitesimaal dicht bij elkaar gelegen RA-opp wordt de warmteoverdracht gegever door: $dQ = \phi(T_e)f(\sigma)d\sigma.$			
	vermits de Kelvintemperatuur zo gedefinieerd is dat: $\frac{T}{T'}=\frac{Q}{Q'}=\frac{\phi(T_e)}{\phi(T'_e)}$ zal, met k een arbitraire cte: $T=k\phi(T_e),$			
	de eerste uitdrukking kan dan geschreven worden als: $\frac{dQ}{T} = \frac{1}{k} f(\sigma) d\sigma,$ met σ een functie vd coords T_e , X , X , > het rechterlid is dus een totale differentiaal en wordt genoteerd met dS zodat: $dS = \frac{dQ_R}{T},$			
	hierbij verwijst R naar de reversibiliteit van dQ > noem deze grootheid S de <i>entropie</i> vh systeem > bij een eindige toestandsverandering tss i en f is de verandering in entropie:			
	$S_f-S_i=\int_i^f\frac{dQ}{T}.$ >> we kunnen enkel veranderingen in entropie definiëren, niet een absolute entropie			
Clausius theorema	als we integreren over een reversibele cyclus geldt: $ \oint \frac{dQ}{T} = 0. $			
	8.2 Entropie van een ideaal gas			
entropie ve ideaal gas	De 1e wet voor een ideaal gas: $dQ = C_P dT - V dP.$ dus na deling T: $\frac{dQ}{T} = C_P \frac{dT}{T} - nR \frac{dP}{P}$ zodat voor reversibele processen geschreven kan worden $dS = C_P \frac{dT}{T} - nR \frac{dP}{P}$ bereken de entropie vanuit een arbitrair gekozen referentietoestand met coords T_1 en P_1 > na integratie: $\Delta S = \int_{T_1}^T C_P \frac{dT}{T} - nR \int_{P_1}^P \frac{dP}{P}$ wanneer C_p constant wordt beschouwd, vinden we: $S - S_1 = C_P \ln \frac{T}{T_1} - nR \ln \frac{P}{P_1}$ wat herschreven kan worden als: $S = C_P \ln T - nR \ln P + (S_1 - C_P \ln T_1 + nR \ln P_1)$ stel wat tss de haakjes staat gelijk aan S_0 : $S = C_P \ln T - nR \ln P + S_0$			
	Dit komt overeen met de onbepaalde integraal van dS, met S ₀ de integratieconstante > entropie is dus steeds op een cte na bepaald			

Het zelfde kunnen we doen voor C_V:

$$dQ = C_V dT + P dV,$$

dan wordt de uitdrukking van de entropie voor een ideaal gas

$$S = \int_{T_1}^T C_V \frac{dT}{T} + nR \int_{V_1}^V \frac{dV}{V},$$

wat met C_V constant geschreven kan worden als

$$S = C_V \ln T + nR \ln V + S_0.$$

	8.3 TS-diagrammen				
warmteoverdracht in een reversibel proces	Voor een reversibel proces geldt: $dQ_R = TdS.$ dus de warmteoverdracht in een reversibel proces wordt gegeven door $Q_R = \int_i^f TdS.$ > dit is de opp onder een kromme in een TS-diagram				
warmtecapaciteit voor reversibele processen	Bij een constant volume: $\left(\frac{dQ}{dT}\right)_V = C_V = T\left(\frac{\partial S}{\partial T}\right)_V$ bij constante druk: $\left(\frac{dQ}{dT}\right)_P = C_P = T\left(\frac{\partial S}{\partial T}\right)_P$ >> als de warmte-afhankelijkheid van de warmtecapaciteiten gekend is > dan kunnen we de entropie bij een reversibel isochoor proces berekenen als: $S_f - S_i = \int_i^f \frac{C_V}{T} dT, \ (V \ \text{constant})$ en voor een reversibel isobaar proces: $S_f - S_i = \int_i^f \frac{C_P}{T} dT. \ (P \ \text{constant})$ > extra gevolg: we weten dat $C_p = C_V + nR$, dus $C_p > C_V$ > de helling van een isochoor is groter dan die van een isobaar				
algemeen TS-diagram	Beschouw isobaren in een TS-diagram, dus één lijn heeft éénzelfde druk T P = 10 MPa P = 0,1 MPa P = 15 MPa P = 2 MPa P = 50 MPa P = 5 MPa P = 5 MPa P = 5 MPa Damp Damp				

8.4 de Carnotcyclus			
Carnotmachine	= een reversibele machine werkend tss slechts twee warmtereservoirs > geeft de meest efficiënte cyclus in een TS-diagram > twee isothermen en twee reversibele adiabaten:		
efficiëntie Carnotmachine	Uit H7 RA-oppervlakken weten we, voor reversibele processen: $\frac{ Q_K }{ Q_H } = \frac{T_K}{T_H},$ en dus is het rendement: $\eta_{Carnot} = 1 - \frac{T_K}{T_H}.$ > 100% efficiëntie als T_K =0 > geen enkele warmtebron kan een temp T=0K hebben > we kunnen geen cyclus maken met 100% efficiëntie		
	8.5 entropie en reversibiliteit		
entropie en reversibiliteit	bekijk een groot warmtereservoir dat een eindige hoeveelheid warmte absorbeerd > stel dat deze een warmte Q opneemt bij een temp T > de entropieverandering zal Q/T zijn > de infinitesimale entropieverandering is $dS_{res} = +\frac{dQ}{T}, \; (\text{warmte-opname}) \qquad \text{of} \qquad dS_{res} = -\frac{dQ}{T}, \; (\text{warmte-afgifte}) $ voor het systeem echter: $dS_{sys} = -\frac{dQ}{T}, \; (\text{warmte-afgifte}) \qquad \text{of} \qquad dS_{sys} = +\frac{dQ}{T}, \; (\text{warmte-opname}) $ maar in totaliteit: $dS_{univ} = \sum dS = 0.$ >> voor elk reversibel proces blijft de entropie van het universum onveranderd		
	8.6 entropie en irreversibiliteit		
entropie en irreversibiliteit	Voor een irreversibel proces is de entropieverandering tss toestand i en f: $\Delta S_{sys} = S_f - S_i = \int_{R}^{f} \frac{dQ}{T},$ > de R betekend dat we een arbitrair reversibel proces kiezen dat het systeem vd beschouwde begin- en eindtoestand kan brengen > integratie gebeurt langs het reversibel pad, niet het eigenlijke irreversibele pad Bekijk de volgende systemen: 1: uitwendige mechanische irreversibiliteit 2: inwendige mechanische irreversibiliteit 3: externe thermische irreversibiliteit 4: chemisch irreversibel proces		
1: uitwendige mechanische irreversibiliteit	1: isotherme dissipatie van arbeid via een systeem naar inwendige energie in een reservoir > systeem blijft onveranderd, dus ΔU =0 > warmteoverdracht is Q=W naar het reservoir met temp T > entropieverandering is W/T (positieve entropieverandering) 2: adiabatische dissipatie van arbeid naar inwendige energie vh systeem > arbeid wordt omgezet naar inwendige energie vh systeem > bij cte druk stijgt de temp van T_i naar T_f > er is geen warmte-uitwisseling, dus de entropieverandering voor de omgeving is 0 Nu: bekijk de reversibel isobare overdracht van warmte uit een stel reservoirs > deze gaan van T_i naar T_f , met entropieverandering: $\Delta S_{sys} = \int_{T_i}^{T_f} \frac{dQ}{T} = \int_{T_i}^{T_f} C_P \frac{dT}{T}.$ en als C_p cte is hebben we dus: $\Delta S_{sys} = C_P \ln \frac{T_f}{T_i}.$		

2: interne mechanische irreversibiliteit	bekijk expansie van een ideaal gas > beschouw dit als een reversibel proces van isotherme expansie van V_i naar V_f bij temp T > voor een isotherm proces ve ideaal gas geldt: $dQ_R = PdV,$ dus: $\frac{dQ_R}{T} = nR\frac{dV}{V}$ de entropieverandering is dan: $\Delta S_{sys} = \int_{V_i}^{V_f} \frac{dQ}{T} = \int_{V_i}^{V_f} nR\frac{dV}{V} = nR\ln\frac{V_f}{V_i}.$						
	de entropieverandering vh universum is dus $nRln(V_f/V_i)$, wat positief is						
3: externe thermische irreversibiliteit	Warmte wordt overgedragen als gevolg ve eindig tempverschil van warm->koud tss T_1 en T_2 > de entropieverandering is: $\Delta S_{sys} = 0; \Delta S_{warme\ bron} = -\frac{Q}{T_1}; \Delta S_{koude\ bron} = +\frac{Q}{T_2},$						
	$\Delta S_{sys} = 0;$ $\Delta S_{warme\ bron} = -\frac{1}{T_1};$ $\Delta S_{koude\ bron} = +\frac{1}{T_2};$ en dus is de entropieverandering vh universum:						
	=	$\Delta S_{univ} = \sum \Delta S = rac{Q}{T}$					
4: chemisch irreversibel proces	bekijk de diffusie van twee inerte ideale gassen > dit kan voorgesteld worden als twee verschillende vrije expansies > beschouw één mol van elk gas, dan is V _i =v en V _f =2v > de entropieverandering is: $\Delta S = R \ln \frac{2\mathrm{V}}{\mathrm{V}} + R \ln \frac{2\mathrm{V}}{\mathrm{V}} = 2R \ln 2.$						
>> conclusie entropie bij	We zien dat bij elk systeem de entropie van het universum stijgt						
irreversibel proces	> we kunnen de entrop Type irreversibiliteit	oieveranderingen van e Irreversibel proces	lk systeem in ee $\Delta S_{systeem}$	n tabel zetten: $\Delta S_{omgeving}$	$\Delta S_{universum}$		
	Externe mechanische irreversibiliteit	Isotherme dissipatie van arbeid via een systeem naar inwen- dige energie van een reservoir	0	W/T	W/T		
		Adiabatische dissipa- tie van arbeid naar inwendige energie van een systeem	$C_P \ln (T_f/T_i)$	0	$C_P \ln (T_f/T_i)$		
	Interne mechani- sche irreversibili- teit	Vrije expansie van een gas	$nR \ln (V_f/V_i)$	0	$nR \ln \left(V_f/V_i ight)$		
	Externe thermische irreversibiliteit	Warmte-overdracht door een medium van een warme bron naar een koude bron	0	Q/T_2 - Q/T_1	Q/T_2 - Q/T_1		
	Chemische irreversibiliteit	Diffusie van twee verschillende inerte ideale gassen	$2R \ln 2$	0	2R ln 2		

8.7 principe van de entropietoename van het universum			
entropieprincipe	de entropieverandering ve systeem en zijn omgeving is steeds positief en nadert naar nul als de processen naar reversibiliteit naderen		
bewijs entropieprincipe	bekijk een adiabatisch proces met onafh coords T,X,X' > begin bij een punt i in de TXX' ruimte > het systeem gaat irreversibel naar een punt f , waarbij tempverandering optreedt > de entropieverandering wordt gegeven door $\Delta S = S_f - S_i$ echter: neem een reversibel adiabatisch proces $f \rightarrow k$ > dit is zodat de temp deze wordt van een willekeurig reservoir op temp T' > daarna wordt het systeem in contact gebracht met dit reservoir > dus een reversibel sids botherm proces $k \rightarrow j$, tot de entropie hetzelfde is als van i > de netto entropieverandering van deze reversibele cyclus is 0, dus: $(S_f - S_i) + (S_j - S_k) = \Delta S + S_j - S_k = 0,$ dus: $(S_f - S_i) + (S_j - S_k) = \Delta S + S_j - S_k = 0,$ dus: $\Delta S = S_k - S_j$ de enige warmteoverdracht in de cyclus is bij het isotherm proces $k \rightarrow j$: $Q_R = T'(S_j - S_k)$ tijdens de cyclus werd een netto arbeid W verricht, zodat: $W_{net} = Q_R.$ uit de 2e wet volgt dat er geen warmte in het systeem gebracht kan zijn nl: anders zouden we een cyclisch proces hebben waarbij enkel warmte wordt onttrokken er in arbeid omgezet > de netto warmteoverdracht is nul > systeem is terug in oorspronkelijke toestand zonder veranderingen in het systeem of omgeving > het proces is dus reversibel > de entropie vh systeem kan dus niet onveranderd blijven, zodat: $\Delta S > 0.$		
	8.8 toepassing vh entropieprincipe op thermische machines		
stelling maximaal rendement	Het maximaal rendement van gelijk welke machine, werkend tss twee reservoirs, is dit ve Carnotmachine werkend tss twee reservoirs		
> bewijs	beschouw een thermische machine, die een arbitraire cyclus doorloopt > er wordt een hoeveelheid warmte Q ve warme bron op temp T_H onttrokken en na leveren van arbeid W een hoeveelheid Q-W afstaat aan een koude bron op T_K > volgens het entropieprincipe: $\Sigma \Delta S_{univ} = \frac{Q-W}{T_k} - \frac{Q}{T_H} \geq 0,$ dus: $W \leq Q - \frac{T_K}{T_H}Q,$ of dus: $W_{max} = Q\left(1 - \frac{T_K}{T_H}\right)$ met rendement: $\eta_{max} = \frac{W_{max}}{Q} = 1 - \frac{T_K}{T_H},$		

 $E = T_0 \Delta S_{univ}$.

algemeen bewijs	beschouw een mechanisch toestel dat arbeid kan leveren op een systeem					
niet beschikbare energie	> dit staat in contact met een warmtereservoir op temp T					
	> nu is er een irreversibel proces van toestand i naar f					
	> dit gebeurt door arbeid W uit te oefenen op systeem					
	> inwendige energie vh systeem verhoogt van U _i naar U _f					
	> hierbij wordt een hoeveelheid warmte Q overgedragen					
	> 1e wet zegt:					
	$O = U_t - U_t - W$					
	2e wet zegt:					
	$Q = U_f - U_i - W,$ 2e wet zegt: $0 < (S_f - S_i)_{systeem+directe\ omgeving}.$					
	we willen dezelfde effecten nu op een reversibele manier bekomen, om entropie te berekenen					
	> bekijk een stel Carnotmachines					
	> rust deze machines uit met mechanisch toestel om arbeid te verrichten en een					
	warmtereservoir om warmte af te staan					
	> de temp vh warmtereservoir is T ₀					
	> noem dit alles de bijkomende omgeving					
	Het systeem gaat nu reversibel van i naar f					
	> entropieverandering in het systeem en directe omgeving is dezelfde als bij irreversibele processen					
	nl: de begin- en eindtoestand zijn hetzelfde					
	> de bijkomende omgeving zal een even grote, tegengestelde entropieverandering ondergaan					
	nl: de entropieverandering vh universum moet 0 zijn voor reversibele processen					
	Nu: de entropieverandering vh systeem en de directe omgeving is positief					
	> entropieverandering vd bijkomende omgeving is negatief					
	> reservoir moet bij T een hoeveelheid warmte E hebben afgestaan					
	> deze warmte moet omgezet geweest zijn in arbeid					
	> deze arbeid is verricht op het bijkomend mechanische toestel					
	>> wanneer een irreversibel proces reversibel zou worden, zou hiervoor een energie E idvv					
	warmte door een bijkomend reservoir moeten geleverd worden, die dan tevoorschijn komt idvv arbeid op een bijkomend mechanisch toestel					
	> aangezien het originele proces irreversibel is, zal E de hoeveelheid energie zijn die niet kan					
	omgezet worden in arbeid					
	> ie: de niet beschikbare energie					
	> deze kunnen we berekenen adhv de entropieverandering ve reversibel proces:					
	$S_f - S_i - \frac{E}{T_0} = 0,$					
	dus wat we eerder vonden:					
	$E = T_0(S_f - S_i).$					
conclusie niet beschikbare	Telkens een irreversibel proces optreedt, wordt een hoeveelheid energie ve vorm die volledig					
energie	beschikbaar is voor arbeid, omgezet naar een voor die volledig onbeschikbaar is voor arbeid. > deze hoeveelheid energie $E = T_0 \Delta S$					
arbeid en reversibel proces	de maximale hoeveelheid arbeid wordt verkregen wanneer het proces reversibel verloopt					