8.3: Trigonometric Integrals

${\bf Important\ trigonometric\ identities}$

Pythagorean Identities	$\sin^2(\theta) + \cos^2(\theta) = 1$
Angle sum formulas	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$
Double angle formulas	
	$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$
	$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$
Half angle formulas	
	$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$
	$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$

Derivation of angle sum formulas

$$\sin(\alpha) = \frac{\overline{DE}}{\overline{EF}} = \frac{\overline{DE}}{\sin(\beta)} \implies \overline{DE} = \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha) = \frac{\overline{DF}}{\overline{EF}} = \frac{\overline{DF}}{\sin(\beta)} \implies \overline{DF} = \cos(\alpha)\sin(\beta)$$

$$\sin(\alpha) = \frac{\overline{CE}}{\overline{AE}} = \frac{\overline{CE}}{\cos(\beta)} \implies \overline{CE} = \sin(\alpha)\cos(\beta)$$

$$\cos(\alpha) = \frac{\overline{AC}}{\overline{AE}} = \frac{\overline{AC}}{\cos(\beta)} \implies \overline{AC} = \cos(\alpha)\cos(\beta)$$

Derivation of the double angle formulas

$$\sin(2\theta) = \sin(\theta + \theta) = \sin(\theta)\cos(\theta) + \cos(\theta)\sin(\theta) = 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos(\theta + \theta) = \cos(\theta)\cos(\theta) - \sin(\theta)\sin(\theta) = \cos^2(\theta) - \sin^2(\theta)$$

Derivation of the half angle formulas

Start with the cosine double angle formula:

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$

Solve for either $\sin^2(\theta)$ or $\cos^2(\theta)$:

$$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \qquad \qquad \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$$

Example. Evaluate the integral $\int \cos^5(x) dx$.

Example. Evaluate the integral $\int \sin^3(x) \cos^{3/2}(x) dx$.

Example. Evaluate the integral $\int 20 \sin^2(x) \cos^2(x) dx$

Example. Evaluate the integral $\int \sec^6(x) \tan^4(x) dx$.

Example. Evaluate the integral $\int 35 \tan^5(x) \sec^4(x) dx$.

Example. Consider the region bounded by $y = \sec(x)$ and $y = \cos(x)$ for $0 \le x \le \pi/3$. Find the volume of the solid generated when rotating this region about the line y = -1.

Example.	Find the le	ength of the	e curve $y =$	$= \ln (2\sec(x))$)) on the in	terval $[0, \pi/6]$.	
8.3: Trigonomet	ric Integrals		8	37		Math 1080	Class notes Fall 2021

$\int \sin^m(x)\cos^n(x)dx$	Strategy
m odd and positive, n real	Split off $sin(x)$, rewrite the resulting even power of $sin(x)$ in terms of $cos(x)$, and then use $u = cos(x)$.
n odd and positive, m real	Split off $cos(x)$, rewrite the resulting even power of $cos(x)$ in terms of $sin(x)$, and then use $u = sin(x)$.
m and n both even, nonnegative integers	Use half-angle formulas to transform the integrand into a polynomial in $\cos(2x)$, and apply the preceding strategies once again to powers of $\cos(2x)$ greater than 1.
$\int \tan^m(x) \sec^n(x) dx$	
n even and positive, m real	Split off $\sec^2(x)$, rewrite the remaining even power of $\sec(x)$ in terms of $\tan(x)$, and use $u = \tan(x)$.
m odd and positive, n real	Split off $sec(x) tan(x)$, rewrite the remaining even power of $tan(x)$ in terms of $sec(x)$, and use $u = sec(x)$.
m even and positive, n odd and positive	Rewrite $tan^m(x)$ in terms of $sec(x)$
$\int \sec^n(x) dx$	
n odd	Use integration by parts with $u = \sec^{n-2}(x)$ and $dv = \sec^2(x) dx$
n even	Split off $\sec^2(x)$, rewrite the remaining powers of $\sec(x)$ in terms of $\tan(x)$, and use $u = \tan(x)$.
$\int \tan^m(x) dx$	Split off $\tan^2(x)$ and rewrite in terms of $\sec(x)$. Expand into difference of integrals substituting $u = \tan(x)$. Repeat the process as needed for remaining powers of $\tan(x)$.