1. Plain TeXnology

Theorem T. All things are not necessarily the same

2. Permutations

TAoCP* 1.2.5 gives two methods to generate all permutations of a given ordered set. Quantites of permutations are considered with relevance to computing efficiencies.

3. The Wide-Awake example Group

Let $(Woozy, \circ, 0, -)$ be the group with a set $Woozy = \{woozy, vacuous, sleepy, wide - awake\}$, a binary operation \circ , a neutral elment 0, and for each element $\pi \in Woozy$ there is an inverse element $-\pi \in Woozy$ such that $\pi \circ -\pi = 0$.

For now, here, we call this group's binary operation *composition*. Given two elements $\pi, \eta \in Woozy$, then $\pi \circ \eta \in Woozy$ and $\eta \circ \pi \in Woozy$.

Permutations 1

^{*} https://www-cs-faculty.stanford.edu/%7Eknuth/taocp.html