DISKRETE STRUKTUREN Aufgabenblatt 8

Aufgabe 48

Es sei $n \in \mathbb{N}_0$ und $\pi \in S_n$ mit $O := [1, n]/\pi$ gegeben.

 \mathbf{a}

Jede Permutation ist eine Verkettung von Nachbartranspositionen

- Auf einer Bahn finden zyklische Vertauschungen statt. Also braucht man m-1 Transpositionen um eine Bahn der Länge m darzustellen. Insgesamt benötigt man somit für eine Permutation die Anzahl von Transpositionen von $\sum_{o \in O} (|o|-1), \text{ wobei } |o| \text{ die Länge einer Bahn ist.}$
- Man kann Transpositionen weiter in Nachbartranspositionen zerlegen. Mit 12.20(b) benötigt man $2 \cdot |i-j|-1$ Nachbartranspositionen für eine Transposition. Nach 12.25 ist $Inv((j,j+1)) = \{(j,j+1)\}$ und damit gilt $|Inv(i,j)| = 2 \cdot |i-j|-1$ mit $(i,j) \in [1,n] \times [1,n]$.

Da eine Transposition in eine ungerade Anzahl von Nachbartranspositionen zerlegt werden kann und somit eine Transposition eine ungerade Anzahl von Fehlständen erzeugt, ist das Signum -1 für eine ungerade Anzahl von Transpositionen. Jede Permutation $\pi \in S_n$ lässt sich nun durch $\sum_{o \in O}(|o|-1)$ Transpositionen darstellen (1.):

$$sgn(\pi) = (-1)^{\sum_{o \in O}(|o|-1)}$$
.

|o| ist die Länge einer Bahn. Ist diese Anzahl gleich 1, so kann diese Bahn einen Fehlstand haben und fällt weg. Es genügt also die Bahnen mit Länge > 1 zu betrachten.

$$(-1)^{\sum_{o \in O}(|o|-1)} = (-1)^{\sum_{o \in O, |o|>1}(|o|-1)}$$

Außerdem reicht es aus, die Bahnen mit gerader Elementenzahl zu betrachten, da diese durch eine ungerade Anzahl von Transpositionen dargestellt werden können (1.). Da $sgn(\pi) = -1$ für ungerade viele Transpositionen, gilt

$$sgn(\pi) = (-1)^{|\{o \in O | |o| istgerade\}|}$$
.

Auf einer einzelnen Bahn werden die Elemente zyklisch vertauscht. Das heißt, eine Bahn der Länge m kann durch m-1 Transpositionen dargestellt werden. Wie bereits oben gezeigt, sind Transpositionen ungerade. Mit der Verkettungseigenschaft folgt:

$$sgn(\delta_k) = (-1)^{m_k - 1}, \text{ wobei } \pi = \prod_{k \in [1, |o|]} \delta_k \text{ und } n = \sum_{k \in [1, |o|]} m_k$$

$$\implies sgn(\pi) = \prod_{k \in [1, |o|]} sgn(\delta_k) = \prod_{k \in [1, |o|]} (-1)^{m_k - 1} = (-1)^{\sum_{k \in [1, |o|]} m_k - 1}$$

$$= (-1)^{n - |o|}.$$

Insgesamt gilt folglich:

$$sgn(\pi) = (-1)^{\sum_{o \in O}(|o|-1)} = (-1)^{\sum_{o \in O, |o|>1}(|o|-1)}$$
$$= (-1)^{n-|o|} = (-1)^{|\{o \in O||o| \text{ ist gerade}\}|}.$$

b

$$(i) \iff \pi \text{ ist gerade} \iff |Inv(\pi)| \text{ ist gerade} \iff (-1)^{Inv(\pi)} = 1 = sgn(\pi) \iff (ii).$$

Wenn die Permutation π gerade ist, muss auch die Anzahl der Fehlstände gerade sein. Das bedeutet wiederum, dass $sgn(\pi)=1$ ist. Also sind die Aussagen (i) und (ii) äquivalent. Nach Teil a gilt $sgn(\pi)=(-1)^{|\{o\in O||o|\text{ ist gerade}\}|}$. Mit der Voraussetzung (iii) gilt $sgn(\pi)=(-1)^{|\{o\in O||o|\text{ ist gerade}\}|}=1$, was äquivalent zu (ii) und damit zu (i) ist.

Wenn die Permutation π ein Kompositum einer geraden Anzahl von Transpositionen ist, so muss $\sum_{o \in o} (|o| - 1)$ gerade sein (gemäß a).

$$sgn(\pi) = (-1)^{\sum_{o \in O}(|o|-1)} = 1$$

und somit äquivalent zu (ii) und damit zu (i) und (iii). Insgesamt sind folglich die Aussagen (i) - (iv) äquivalent.

Aufgabe 49

Es seien Gruppen G und H gegeben. Ein Gruppenhomomorphismus von G nach H ist eine Abbildung $\varphi: G \to H$ derart, dass für $x, x' \in G$ stets

$$\varphi(x \cdot^G x') = \varphi(x) \cdot^H \varphi(x')$$

gilt, kurz geschrieben als $\varphi(xx') = \varphi(x)\varphi(x')$.

Es seien abelsche Gruppen A und B gegeben. Ein Homomorphismus abelscher Gruppen von A nach B ist ein Gruppenhomomorphismus $\varphi:A\to B$.

 \mathbf{a}

• Für $n \in \mathbb{N}_0, \pi \in S_n$ ist $S_n \to S_n, \sigma \mapsto \pi \sigma$ ein Gruppenhomomorphismus.

Zu zeigen ist $\varphi(x \circ x') = \varphi(x) \circ \varphi(x')$.

$$\pi \circ x \circ x' = (\pi \circ x')$$

$$\iff \text{Assoziativgesetz} \pi \circ x \circ x' = \pi \circ x \circ \pi \circ x'.$$

Seien
$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
, $x = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, $x' = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$.

$$\pi \circ x \circ x' = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \pi \circ x \circ \pi \circ x'.$$

Daraus folgt, dass kein Gruppenhomomorphismus vorliegt.

• Für $n \in \mathbb{N}_0, \pi \in S_n$ ist $S_n \to S_n, \sigma \mapsto \pi \sigma \pi^{-1}$ ein Gruppenhomomorphismus.

Zu zeigen ist $\varphi(x \circ x') = \varphi(x) \circ \varphi(x')$.

$$\pi \circ (x \circ x') \circ \pi^{-1} = (\pi \circ x \circ \pi^{-1}) \circ \pi \circ x' \circ \pi^{-1}$$

$$\iff \underset{\mathrm{Ass.ges}}{\text{Ass.ges}} \pi \circ x \circ x' \circ \pi^{-1} = \pi \circ x \circ \pi^{-1} \circ \pi \circ x' \circ \pi^{-1}$$

$$\iff \pi \circ x \circ x' \circ \pi^{-1} = \pi \circ x \circ x' \circ \pi^{-1}.$$

Daraus folgt, dass ein Gruppenhomomorphismus vorliegt.

• Für $a \in \mathbb{Z}$ ist $\mathbb{Z} \to \mathbb{Z}$, $x \mapsto ax$ ein Homomorphismus abelscher Gruppen.

Zu zeigen ist $\varphi(x + x') = \varphi(x) + \varphi(x')$ gelten.

$$a + x + x' = a + x + a + x'$$

$$\iff \text{K.ges} a + x + x' \neq a + a + x + x'.$$

Daraus folgt, dass kein Homomorphismus abelscher Gruppen vorliegt.

b

Es sei ein Gruppenhomomorphismus $\varphi:G\to H$ gegeben.

- Es ist $\varphi(1) = 1$. $1 = \varphi(1) = \varphi(1 \cdot 1) = \text{Gr.homo.} \ \varphi(1) \cdot \varphi(1) = 1 \cdot 1 = 1$. \square
- Für $x \in G$ ist $\varphi(x^{-1}) = \varphi(x)^{-1}$. $e_H = \varphi(e_G) = \varphi(x \cdot x^{-1}) = \text{Gr.homo.} \ \varphi(x) \cdot \varphi(x^{-1})$ $\implies \varphi(x^{-1})$ ist Inverses zu $\varphi(x) \implies \varphi(x^{-1}) = \varphi(x)^{-1}$. \square
- Genau dann ist φ injektiv, wenn für $x \in G$ aus $\varphi(x) = 1$ bereits x = 1 folgt. Gemäß (i) gilt $\varphi(1) = 1$. Injektivität ist erfüllt, wenn $\varphi(x) = \varphi(x') \implies x = x'$. Kein anderes Element darf noch auf 1 abbilden. $\varphi(x) = 1 \implies x = 1$. Also bildet nur ein Element auf 1 ab, da $\varphi(1) = 1$ gilt.
- Es ist lm φ eine Untergruppe von H. lm φ = {φ(x) ∈ H | x ∈ G} ⊆ H.
 Die Gruppenaxiome Assoziativität, die Existenz eines neutralen Elements und die Existenz eines inversen Elements müssen erfüllt sein.
 Assoziativität gilt, da Im φ ⊆ H.
 Neutrales Element ist φ(1) = 1. Neutrales Element φ(e_G) = e_H immer im Bild enthalten.
 Inverses Element ist φ(x⁻¹) als Inverses zu φ(x) (ii) für ein beliebiges x ∈ G.

Ergo ist $Im \varphi$ eine Untergruppe von H.