Report on exercise 4.2: Conditional Residual Variance Estimation

Martin Guy, Hannes Leskelä

October 24, 2016

Abstract

In this exercise, we want to compare alternative residual variance estimators. These ones do not require a previous estimation of the regression function. The working material that will be used is **Boston housing Data**. In order to check if these estimators are "good", we will compare them with estimators from loess and sm.regression.

Differents proposals

Proposal of Rice

In a paper from 1984, Rice suggests that if we consider a non-parametric regression model:

$$y_i - y_{i-1} = m(x_i) - m(x_{i-1}) + (\epsilon_i - \epsilon_{i-1}), i = 1, ..., n$$

and assumed that the function m is smooth and that x_i and x_{i-1} are sufficiently close, the variance $\hat{\sigma}^2$ could be expressed as

$$\widehat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=2}^{n} (y_i - y_{i-1})^2$$

Proposal of Gasser, Sroka and Jennen-Steinmetz (1986)

The estimation of σ for this proposal is:

$$\widehat{\sigma}^2 = \frac{1}{n-2} \sum_{i=2}^n \frac{\widehat{\epsilon}_i^2}{a_i^2 + b_i^2 + 1}$$

where

$$a_i = \frac{x_{i+1} - x_i}{x_{i+1} - x_{i-1}}$$

$$b_i = \frac{x_i - x_{i-1}}{x_{i+1} - x_{i-1}}$$

$$\tilde{\epsilon}_i = a_i y_{i-1} + b_i y_{i+1} - y_i$$

It can happen in real datasets that we find 3 (or more) consecutive repeated values for the explanatory variable x. In this case, $x_{i+1} = x_{i-1}$ and then a_i and b_i are not well defined. In order to avoid that, we define $x_{u(i)}$ as the lowest value of x_j among those being greater than x_i and $x_{l(i)}$ as the largest value of x_j among those being lower than x_i . If such a case happens, we replace the denominator $x_{i+1} - x_{i-1}$ by $x_{u(i)} - x_{l(i)}$.

Comparison of estimators

Estimation method	Estimation of σ
loess	0.503
sm.regression	0.510
Rice	0.498
Gasser et al.	0.458

We can observe that the estimates are quite near the loess or sm.regression models. However, Rice and Gasser et al. are "nice" methods since they do not require a previous estimation of the regression function to calculate the variance. This means that we can estimate the variance of a model without first making the regression function, and thus decide if it is worth doing a regression model or not depending on this value.