

Project Title	Chatbots	
Tools	Jupyter Notebook and VS code	
Technologies	Machine learning	
Domain	Data Science	
Project Difficulties level	Advanced	

Dataset: Dataset is available in the given link. You can download it at your convenience.

Click here to download data set

About Dataset

Bitext Sample Pre-built Customer Support Dataset for English

Overview

This dataset contains example utterances and their corresponding intents from the Customer Support domain. The data can be used to train intent recognition models Natural Language Understanding (NLU) platforms.

The dataset covers the "Customer Support" domain and includes 27 intents grouped in 11 categories. These intents have been selected from Bitext's collection of 20 domain-specific datasets (banking, retail, utilities...), keeping the intents that are common across domains. See below for a full list of categories and intents.

Utterances

The dataset contains over 20,000 utterances, with a varying number of utterances per intent. These utterances have been extracted from a larger dataset of 288,000 utterances (approx. 10,000 per intent), including language register variations such as politeness, colloquial, swearing, indirect style... To select the utterances, we use stratified sampling to generate a dataset with a general user language register profile.

The dataset also reflects commonly ocurring linguistic phenomena of real-life chatbots, such as:

- spelling mistakes
- run-on words
- missing punctuation

Contents

Each entry in the dataset contains an example utterance from the Customer Support domain, along with its corresponding intent, category and additional linguistic information. Each line contains the following four fields:

- flags: the applicable linguistic flags
- utterance: an example user utterance
- category: the high-level intent category
- intent: the intent corresponding to the user utterance

Linguistic flags

The dataset contains annotations for linguistic phenomena, which can be used to adapt bot training to different user language profiles. These flags are:

- B Basic syntactic structure
- S Syntactic structure
- L Lexical variation (synonyms)

- M Morphological variation (plurals, tenses...)
- I Interrogative structure
- C Complex/Coordinated syntactic structure
- P Politeness variation
- Q Colloquial variation
- W Offensive language
- E Expanded abbreviations (I'm -> I am, I'd -> I would...)
- D Indirect speech (ask an agent to...)
- Z Noise (spelling, punctuation...)

These phenomena make the training dataset more effective and make bots more accurate and robust.

Categories and Intents

The intent categories covered by the dataset are:

ACCOUNT

CANCELLATION FEE

CONTACT

DELIVERY

FEEDBACK

INVOICES

NEWSLETTER

ORDER

PAYMENT

REFUNDS

SHIPPING

The intents covered by the dataset are:

cancel_order

complaint

contact_customer_service

contact_human_agent

create_account

change_order

change_shipping_address

check cancellation fee

check invoices

check_payment_methods check_refund_policy delete account delivery_options delivery_period edit_account get invoice get refund newsletter_subscription payment issue place_order recover_password registration_problems review set up shipping address switch_account track order track refund

Chatbots Machine Learning Project

Project Overview

The Chatbots Machine Learning project involves developing a conversational agent (chatbot) capable of interacting with users in natural language. This can include answering questions, providing information, performing tasks, or holding a conversation. The project leverages natural language processing (NLP) and machine learning techniques to build and train the chatbot.

Project Steps

1. Understanding the Problem

o The goal is to build a chatbot that can understand and respond to user queries

Chatbots Machine Learning Project

Project Overview

The Chatbots Machine Learning project involves developing a conversational agent (chatbot) capable of interacting with users in natural language. This can include answering questions, providing information, performing tasks, or holding a conversation. The project leverages natural language processing (NLP) and machine learning techniques to build and train the chatbot.

Project Steps

1. Understanding the Problem

- The goal is to build a chatbot that can understand and respond to user queries effectively and efficiently.
- Define the scope of the chatbot: customer support, personal assistant, FAQ bot, etc.

2. Dataset Preparation

- Data Sources: Collect data from chat logs, customer support transcripts, or public datasets such as the Cornell Movie Dialogues Corpus.
- Features: Text of user queries, context information (if available), and corresponding responses.
- Labels: Responses or actions the chatbot should take.

3. Data Exploration and Preprocessing

- o Clean the text data by removing special characters, punctuation, and stop words.
- Tokenize the text and convert it into numerical representations using techniques like TF-IDF, word embeddings (Word2Vec, GloVe), or BERT embeddings.
- o Split the dataset into training, validation, and testing sets.

4. Model Selection and Training

- Choose appropriate NLP models based on the complexity and requirements of the chatbot. Common choices include:
 - Rule-based models
 - Retrieval-based models
 - Generative models (Seq2Seq, Transformer-based models like GPT-3, BERT)

o Train the model on the training data and fine-tune it on the validation data.

5. Model Evaluation

- Evaluate the model using metrics like BLEU score, ROUGE score, perplexity, and user satisfaction ratings.
- Perform qualitative evaluation by having users interact with the chatbot and provide feedback.

6. Dialog Management

- Implement a dialog management system to handle context and state tracking.
- Use frameworks like Rasa, Microsoft Bot Framework, or Dialogflow to manage dialog flow and context.

7. Deployment

- Deploy the chatbot using platforms like Flask, Django, or a cloud service like AWS Lambda.
- Integrate the chatbot with messaging platforms (e.g., Facebook Messenger, Slack, WhatsApp) or websites.

8. Continuous Improvement

- Collect user interactions and feedback to continuously improve the chatbot.
- Regularly update the model with new data and retrain it to handle new queries and scenarios.

9. Documentation and Reporting

- Document the entire process, including data collection, preprocessing, model training, evaluation, and deployment.
- Create a final report or presentation summarizing the project, results, and insights.

Sample Code

Here's a basic example using Python and the Rasa framework to build a simple chatbot:

Install Rasa !pip install rasa

Create a new Rasa project
rasa initno-prompt
Define the NLU model
ılu.md:
intent:greet
hey
hello
hi
good morning
good evening
intent:bye
bye
goodbye
see you later
have a nice day
intent:affirm
yes
indeed
of course
that sounds good
intent:deny
no
never
I don't think so
nn

This code demonstrates creating a simple chatbot using the Rasa framework, defining intents, responses, and stories, and training the model.

Additional Tips

- Use pre-trained language models like BERT, GPT-3, or Transformer-based models for more advanced chatbots.
- Implement fallback mechanisms to handle out-of-scope queries gracefully.
- Incorporate sentiment analysis to understand user emotions and tailor responses accordingly.
- Regularly monitor and update the chatbot to ensure it remains accurate and relevant.

Sample Project Report

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegression

import nltk
try:
    nltk.data.find('tokenizers/punkt')
except:
    nltk.download('punkt')
```

```
df = pd.read_csv("/kaggle/input/training-dataset-for-chatbotsvirtual-assistants/20000-Utteranc
es-Training-dataset-for-chatbots-virtual-assistant-Bitext-sample/20000-Utterances-Training-dat
aset-for-chatbots-virtual-assistant-Bitext-sample/20000-Utterances-Training-dataset-for-chatbo
ts-virtual-assistant-Bitext-sample.csv")
df.head()
```

OUT[Z]:

	flags	utterance	category	intent
0	BILC	I don't have an online account, what do I have	ACCOUNT	create_account
1	BILQZ	can you tell me if i can regisger two accounts	ACCOUNT	create_account
2	BPLC	I have no online account, open one, please	ACCOUNT	create_account
3	BIPLD	could you ask an agent how to open an account,	ACCOUNT	create_account
4	BLQC	i want an online account, create one	ACCOUNT	create_account

```
In [3]: len(df.intent.value_counts())
Out[3]: 27
```

Without preprocessing

```
In [4]:
    label_intent = preprocessing.LabelEncoder()
    df['label_num'] = label_intent.fit_transform(df.intent)
    df.head()
```

	flags	utterance	category	intent	label_num
0	BILC	I don't have an online account, what do I have	ACCOUNT	create_account	10
1	BILQZ	can you tell me if i can regisger two accounts	ACCOUNT	create_account	10
2	BPLC	I have no online account, open one, please	ACCOUNT	create_account	10
3	BIPLD	could you ask an agent how to open an account,	ACCOUNT	create_account	10
4	BLQC	i want an online account, create one	ACCOUNT	create_account	10

precision recall f1-score support

	precision	recall	f1-score	support
				_
0	0.00	0.00	0.00	7
1	0.91	0.78	0.84	185
2	0.00	0.00	0.00	22
3	0.00	0.00	0.00	72
4	0.85	0.69	0.76	203
5	0.00	0.00	0.00	54
6	0.00	0.00	0.00	96
7	1.00	0.86	0.92	149
8	0.80	1.00	0.89	411
9	1.00	1.00	1.00	205
10	0.80	1.00	0.89	424
11	1.00	0.89	0.94	183
12	0.00	0.00	0.00	72
13	0.00	0.00	0.00	28
14	0.00	0.00	0.00	27
15	0.53	1.00	0.70	286
16	0.70	0.98	0.81	230
17	0.00	0.00	0.00	47
18	0.98	0.99	0.98	873
19	0.00	0.00	0.00	14
20	1.00	0.98	0.99	197
21	0.00	0.00	0.00	26

	precision	recall	f1-score	support
0	0.00	0.00	0.00	7
1	0.80	0.98	0.88	185
2	0.00	0.00	0.00	22
3	1.00	0.74	0.85	72
4	0.84	0.98	0.91	203
5	0.00	0.00	0.00	54