```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
wine=pd.read_csv('wine.csv')
```

In [3]:

```
wine.head()
```

Out[3]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD280/OD3 of dilu wir
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2
4													Þ

In [4]:

```
wine.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Class	178 non-null	int64
1	Alcohol	178 non-null	float64
2	Malic acid	178 non-null	float64
3	Ash	178 non-null	float64
4	Alcalinity of ash	178 non-null	float64
5	Magnesium	178 non-null	int64
6	Total phenols	178 non-null	float64
7	Flavanoids	178 non-null	float64
8	Nonflavanoid phenols	178 non-null	float64
9	Proanthocyanins	178 non-null	float64
10	Color intensity	178 non-null	float64
11	Hue	178 non-null	float64
12	OD280/OD315 of diluted wines	178 non-null	float64
13	Proline	178 non-null	int64

dtypes: float64(11), int64(3)
memory usage: 19.6 KB

In [5]:

wine.shape

```
Out[5]:
(178, 14)
In [6]:
wine.dtypes
Out[6]:
Class
                                 int64
Alcohol
                                float64
Malic acid
                               float64
                               float64
Ash
Alcalinity of ash
                               float64
Magnesium
                                 int64
Total phenols
                               float64
Flavanoids
                               float64
Nonflavanoid phenols
                               float64
Proanthocyanins
                               float64
Color intensity
                               float64
                               float64
                             float64
OD280/OD315 of diluted wines
Proline
                                 int64
dtype: object
In [7]:
wine.columns
Out[7]:
Index(['Class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash',
       'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols',
       'Proanthocyanins', 'Color intensity', 'Hue',
       'OD280/OD315 of diluted wines', 'Proline'],
     dtype='object')
In [8]:
wine.describe()
Out[8]:
```

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanin
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.00000
mean	1.938202	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.59089
std	0.775035	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.57235
min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.41000
25%	1.000000	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.25000
50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.55500
75%	3.000000	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.95000
max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.58000
4										Þ

In [9]

 ${\it\#to~understand~it~has~two~or~more~unique~variables~and~is~it~regression~or~classification}\\$ wine. Class.unique()

Out[9]:

```
array([1, 2, 3], dtype=int64)
```

In [10]:

```
# identifing null values
wine.isnull().sum()
```

Out[10]:

Class	C
Alcohol	C
Malic acid	C
Ash	0
Alcalinity of ash	0
Magnesium	0
Total phenols	0
Flavanoids	0
Nonflavanoid phenols	0
Proanthocyanins	0
Color intensity	0
Hue	0
OD280/OD315 of diluted wines	0
Proline	0
dtype: int64	

In [11]:

 $\verb|sns.heatmap(wine.isnull(),annot=|| \textbf{True}|)|$

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x22f607450c8>

In [12]:

wine.corr()

Out[12]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins
Class	1.000000	0.328222	0.437776	0.049643	0.517859	-0.209179	0.719163	-0.847498	0.489109	-0.499130
Alcohol	0.328222	1.000000	0.094397	0.211545	0.310235	0.270798	0.289101	0.236815	-0.155929	0.136698
Malic acid	0.437776	0.094397	1.000000	0.164045	0.288500	-0.054575	0.335167	-0.411007	0.292977	-0.220746
Ash	0.049643	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230	0.009652

Alcalinity of ash	0.5 C/ess	Alcohol 0.310235	Malic 0.288500	0.443 357	Alcalinity 1.0000000	Mag <u>inesi</u> ten	Total Ophenols	Flayanoida	Nonflavanoid phenois	Proanthocygriggs
Magnesium	0.209179	0.270798	0.054575	0.286587	0.083333	1.000000	0.214401	0.195784	-0.256294	0.236441
Total phenols	0.719163	0.289101	0.335167	0.128980	0.321113	0.214401	1.000000	0.864564	-0.449935	0.612413
Flavanoids	0.847498	0.236815	0.411007	0.115077	0.351370	0.195784	0.864564	1.000000	-0.537900	0.652692
Nonflavanoid phenols	0.489109	0.155929	0.292977	0.186230	0.361922	-0.256294	0.449935	-0.537900	1.000000	-0.365845
Proanthocyanins	0.499130	0.136698	0.220746	0.009652	0.197327	0.236441	0.612413	0.652692	-0.365845	1.000000
Color intensity	0.265668	0.546364	0.248985	0.258887	0.018732	0.199950	0.055136	-0.172379	0.139057	-0.025250
Hue	0.617369	0.071747	0.561296	0.074667	0.273955	0.055398	0.433681	0.543479	-0.262640	0.295544
OD280/OD315 of diluted wines	0.788230	0.072343	0.368710	0.003911	0.276769	0.066004	0.699949	0.787194	-0.503270	0.519067
Proline	0.633717	0.643720	0.192011	0.223626	0.440597	0.393351	0.498115	0.494193	-0.311385	0.330417

In [13]:

```
plt.figure(figsize=(10,6))
sns.heatmap(wine.corr(),annot=True)
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x22f623b8b48>

In [14]:

```
wine.skew()
```

Out[14]:

Class 0.107431 Alcohol -0.051482 Malic acid 1.039651

```
-0.176699
Ash
Alcalinity of ash
                                0.213047
                                1.098191
Magnesium
                                0.086639
Total phenols
Flavanoids
                                0.025344
Nonflavanoid phenols
                                0.450151
Proanthocyanins
                                0.517137
Color intensity
                                0.868585
                                0.021091
OD280/OD315 of diluted wines
                              -0.307285
Proline
                                0.767822
dtype: float64
```

In [15]:

```
for col in wine.columns:
    if wine.skew().loc[col]>0.55:
        wine[col]=np.log1p(wine[col])
```

In [16]:

```
wine.skew()
```

Out[16]:

Class	0.107431
Alcohol	-0.051482
Malic acid	0.529222
Ash	-0.176699
Alcalinity of ash	0.213047
Magnesium	0.605723
Total phenols	0.086639
Flavanoids	0.025344
Nonflavanoid phenols	0.450151
Proanthocyanins	0.517137
Color intensity	0.097222
Hue	0.021091
OD280/OD315 of diluted wines	-0.307285
Proline	0.087930
dtype: float64	

In [17]:

```
col=wine.columns.values
ncol=5
nrow=7
plt.figure(figsize=(ncol,5*ncol))
for i in range(1,len(col)):
    plt.subplot(nrow,ncol,i+1)
   sns.boxplot(wine[col[i]],color='red',orient='v')
   plt.tight layout()
```


In [18]:

```
#Removing outliers
from scipy.stats import zscore
z_score=abs(zscore(wine))
print(wine.shape)
wine_df=wine.loc[(z_score<3).all(axis=1)]
print(wine_df.shape)</pre>
```

(178, 14) (170, 14)

In [19]:

wine_df

Out[19]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD28
0	1	14.23	0.996949	2.43	15.6	4.852030	2.80	3.06	0.28	2.29	1.893112	1.04	
1	1	13.20	1.022451	2.14	11.2	4.615121	2.65	2.76	0.26	1.28	1.682688	1.05	
2	1	13.16	1.211941	2.67	18.6	4.624973	2.80	3.24	0.30	2.81	1.899118	1.03	
3	1	14.37	1.081805	2.50	16.8	4.736198	3.85	3.49	0.24	2.18	2.174752	0.86	
4	1	13.24	1.278152	2.87	21.0	4.779123	2.80	2.69	0.39	1.82	1.671473	1.04	
173	3	13.71	1.894617	2.45	20.5	4.564348	1.68	0.61	0.52	1.06	2.163323	0.64	
174	3	13.40	1.591274	2.48	23.0	4.634729	1.80	0.75	0.43	1.41	2.116256	0.70	
175	3	13.27	1.663926	2.26	20.0	4.795791	1.59	0.69	0.43	1.35	2.415914	0.59	
176	3	13.17	1.278152	2.37	20.0	4.795791	1.65	0.68	0.53	1.46	2.332144	0.60	
177	3	14.13	1.629241	2.74	24.5	4.574711	2.05	0.76	0.56	1.35	2.322388	0.61	

170 rows × 14 columns

[4]

In [20]:

wine_df=pd.DataFrame(data=wine_df)

In [21]:

wine_df

Out[21]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD28
0	1	14.23	0.996949	2.43	15.6	4.852030	2.80	3.06	0.28	2.29	1.893112	1.04	
1	1	13.20	1.022451	2.14	11.2	4.615121	2.65	2.76	0.26	1.28	1.682688	1.05	
2	1	13.16	1.211941	2.67	18.6	4.624973	2.80	3.24	0.30	2.81	1.899118	1.03	
3	1	14.37	1.081805	2.50	16.8	4.736198	3.85	3.49	0.24	2.18	2.174752	0.86	
4	1	13.24	1.278152	2.87	21.0	4.779123	2.80	2.69	0.39	1.82	1.671473	1.04	
173	3	13.71	1.894617	2.45	20.5	4.564348	1.68	0.61	0.52	1.06	2.163323	0.64	
174	3	13.40	1.591274	2.48	23.0	4.634729	1.80	0.75	0.43	1.41	2.116256	0.70	
175	3	13.27	1.663926	2.26	20.0	4.795791	1.59	0.69	0.43	1.35	2.415914	0.59	
176	3	13.17	1.278152	2.37	20.0	4.795791	1.65	0.68	0.53	1.46	2.332144	0.60	
177	3	14.13	1.629241	2.74	24.5	4.574711	2.05	0.76	0.56	1.35	2.322388	0.61	

170 rows × 14 columns

In [22]:

#x and y values allocation for training and testing
x=wine_df.iloc[:,1:-1]

In [23]:

Х

Out[23]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD280/OD31 of dilute wine
0	14.23	0.996949	2.43	15.6	4.852030	2.80	3.06	0.28	2.29	1.893112	1.04	3.9
1	13.20	1.022451	2.14	11.2	4.615121	2.65	2.76	0.26	1.28	1.682688	1.05	3.4
2	13.16	1.211941	2.67	18.6	4.624973	2.80	3.24	0.30	2.81	1.899118	1.03	3.1
3	14.37	1.081805	2.50	16.8	4.736198	3.85	3.49	0.24	2.18	2.174752	0.86	3.4
4	13.24	1.278152	2.87	21.0	4.779123	2.80	2.69	0.39	1.82	1.671473	1.04	2.9
173	13.71	1.894617	2.45	20.5	4.564348	1.68	0.61	0.52	1.06	2.163323	0.64	1.7
174	13.40	1.591274	2.48	23.0	4.634729	1.80	0.75	0.43	1.41	2.116256	0.70	1.5
175	13.27	1.663926	2.26	20.0	4.795791	1.59	0.69	0.43	1.35	2.415914	0.59	1.5
176	13.17	1.278152	2.37	20.0	4.795791	1.65	0.68	0.53	1.46	2.332144	0.60	1.6
177	14.13	1.629241	2.74	24.5	4.574711	2.05	0.76	0.56	1.35	2.322388	0.61	1.6

170 rows × 12 columns

In [24]:

x.shape

Out[24]:

(170, 12)

In [25]:

```
y=wine_df.iloc[:,0]
In [26]:
Out[26]:
0
      1
2
      1
      1
173
     3
174
175
     3
176
     3
      3
177
Name: Class, Length: 170, dtype: int64
In [27]:
y.shape
Out[27]:
(170,)
In [28]:
x train,x test,y train,y test=train test split(x,y,test size=.22,random state=42)
#we are using follwing models for prediction
#KNeighborsClassifier
#GaussianNB
#SVC
#DecisionTreeClassifier
#RandomForestClassifier
#AdaBoostClassifier
In [30]:
knn=KNeighborsClassifier()
knn.fit(x train,y train)
knn.score(x_train,y_train)
predknn=knn.predict(x test)
print(accuracy_score(y_test,predknn))
print(confusion_matrix(y_test,predknn))
print(classification_report(y_test,predknn))
0.9736842105263158
[[16 0 0]
[ 0 13 1]
 [ 0 0 8]]
             precision
                        recall f1-score support
          1
                 1.00
                           1.00
                                    1.00
                                                 16
          2
                 1.00
                          0.93
                                    0.96
          3
                  0.89
                           1.00
                                     0.94
                                                 8
                                     0.97
                                                 38
   accuracy
                0.96
                          0.98
                                    0.97
                                                 38
  macro avg
                  0.98
                          0.97
                                    0.97
weighted avg
                                                 38
```

```
from sklearn.model_selection import cross val score
knnscores=cross val score(knn,x,y,cv=5)
print(knnscores)
print(knnscores.mean(),knnscores.std())
[0.88235294 0.94117647 0.88235294 1.
                                            0.94117647]
0.9294117647058824 0.04401949866792873
In [32]:
mnb=MultinomialNB()
mnb.fit(x_train,y_train)
mnb.score(x train,y train)
predmnb=mnb.predict(x test)
print(accuracy_score(y_test,predmnb))
print(confusion_matrix(y_test,predmnb))
print(classification_report(y_test,predmnb))
0.8947368421052632
[[13 3 0]
[ 1 13 0]
[ 0 0 8]]
             precision recall f1-score support
           1
                  0.93
                           0.81
                                     0.87
                                                  16
                           0.93
                                    0.87
                  0.81
           2
                                                  14
                  1.00
                           1.00
                                     1.00
                                      0.89
                                                 38
   accuracy
                                  0.91
0.89
                0.91 0.91
0.90 0.89
  macro avg
                                                  38
weighted avg
                                     0.89
                                                  38
In [33]:
mnbscores=cross val score(mnb,x,y,cv=5)
print(mnbscores)
print(mnbscores.mean(),mnbscores.std())
[0.85294118 0.91176471 0.73529412 0.91176471 1.
0.8823529411764707 0.08724939396583131
In [34]:
svc=SVC(kernel='rbf')
svc.fit(x_train,y_train)
svc.score(x_train,y_train)
predsvc=svc.predict(x_test)
print(accuracy_score(y_test,predsvc))
print(confusion_matrix(y_test,predsvc))
print(classification report(y test,predsvc))
0.8947368421052632
[[14 2 0]
 [ 0 12 2]
 \begin{bmatrix} 0 & 12 & 2 \end{bmatrix}
             precision recall f1-score support
                           0.88
                                     0.93
                  1.00
                                                  16
           1
                           0.86
1.00
                  0.86
                                      0.86
           2
                                                  14
                                     0.89
           3
                  0.80
                                                  8
                                     0.89
                                                 38
   accuracy
               0.89
                        0.91
                                  0.89
  macro avg
                                                  38
weighted avg
                  0.91
                           0.89
                                      0.90
                                                  38
```

In [35]:

```
Svcscores=cross_val_score(svc,x,y,cv=3)
print(svcscores)
print(svcscores.mean(), svcscores.std())
[0.70588235 0.79411765 0.73529412 0.97058824 0.88235294]
0.8176470588235294 0.09737026680733438
In [36]:
dtc=DecisionTreeClassifier()
dtc.fit(x_train,y_train)
dtc.score(x_train,y_train)
preddtc=dtc.predict(x test)
print(accuracy_score(y_test,preddtc))
print(confusion_matrix(y_test,preddtc))
print(classification report(y test,preddtc))
1.0
[[16 0 0]
 [ 0 14 0]
 [ 0 0 8]]
             precision
                        recall f1-score support
                           1.00
          1
                  1.00
                                      1.00
                                                  16
           2
                  1.00
                            1.00
                                      1.00
                                                  14
           3
                  1.00
                            1.00
                                      1.00
                                                  8
   accuracy
                                     1.00
                                                 38
                        1.00
                                   1.00
                  1.00
                                                  3.8
  macro avg
weighted avg
                  1.00
                                      1.00
                                                  38
In [37]:
dtcscores=cross val score(dtc,x,y,cv=5)
print(dtcscores)
print(dtcscores.mean(),dtcscores.std())
[0.88235294 0.82352941 0.91176471 0.97058824 1.
                                                      ]
0.9176470588235294 0.06280634265900772
In [38]:
rf=RandomForestClassifier()
rf.fit(x_train,y_train)
rf.score(x train, y train)
predrf=rf.predict(x_test)
print(accuracy_score(y_test,predrf))
print(confusion matrix(y test,predrf))
print(classification_report(y_test,predrf))
0.9736842105263158
[[16 0 0]
 [ 0 13 1]
 [ 0 0 8]]
             precision recall f1-score support
          1
                  1.00
                           1.00
                                      1.00
                                                  16
                           0.93
                  1.00
                                     0.96
                                                  14
          2
                  0.89
                           1.00
                                     0.94
                                                  8
                                      0.97
                                                  38
   accuracy
                         0.98
                  0.96
                                      0.97
                                                  38
  macro avg
weighted avg
                  0.98
                            0.97
                                      0.97
                                                  38
In [39]:
rfscores=cross_val_score(rf,x,y,cv=5)
print(rfscores)
```

print(rfscores.mean(),rfscores.std())

```
[0.94117647 0.97058824 1.
                                                      ]
                                            1.
0.9823529411764707 0.02352941176470589
In [40]:
ad=AdaBoostClassifier()
ad.fit(x_train,y_train)
ad.score(x_train,y_train)
predad=ad.predict(x_test)
print(accuracy_score(y_test,predad))
print(confusion_matrix(y_test,predad))
print(classification_report(y_test,predad))
0.5789473684210527
[[ 0 16 0]
 [ 0 14 0]
 [ 0 0 8]]
             precision
                        recall f1-score support
                        0.00
1.00
                  0.00
                                     0.00
          1
                                                  16
                  0.47
                                     0.64
                                                  14
          2
                  1.00
                           1.00
                                     1.00
                                                  8
                                      0.58
                                                  38
   accuracy
                          0.67
0.58
                 0.49
  macro avg
                                      0.55
                                                  38
              0.38
                                    0.44
                                                 38
weighted avg
In [41]:
adscores=cross_val_score(ad,x,y,cv=5)
print(adscores)
print(adscores.mean(),adscores.std())
[0.70588235 1.
                      0.91176471 0.91176471 0.88235294]
0.8823529411764707 0.09665692191267634
In [42]:
#RandomForestClassifier and DecisionTreeClassifier are the best model among all models
import joblib
joblib.dump(dtc,'wine_df.pkl')
Out[42]:
['wine_df.pkl']
In [ ]:
```