3.5 pts

Contrôle de géométrie analytique N°2

Durée: 1 heure 45 minutes Barème s

NOM:	_	
	Groupe	
PRENOM:	 _	

- 1. Dans l'espace muni d'une origine O, on donne
 - un plan α défini par le point O et un vecteur normal \vec{n} unitaire $(\|\vec{n}\| = 1)$,
 - une droite d passant par O et de direction \vec{n} ,
 - un point A, $A \notin d$, $A \notin \alpha$.
 - a) On note I la projection orthogonale de A sur la droite d.

 Déterminer l'expression du rayon vecteur \overrightarrow{OI} en fonction de $\overrightarrow{OA} = \vec{a}$ et \vec{n} . $\overrightarrow{Réponse}: \overrightarrow{OI} = (\vec{a} \cdot \vec{n}) \ \vec{n}$
 - b) Soit B le symétrique de A par rapport à α et $\overrightarrow{OM} = \vec{a} + \vec{n}$. Déterminer, en fonction de \vec{a} et \vec{n} , les vecteurs \overrightarrow{OB} et \overrightarrow{BM} .

$$R\acute{e}ponse: \overrightarrow{OB} = \vec{a} - 2(\vec{a} \cdot \vec{n}) \ \vec{n}$$
 et $\overrightarrow{BM} = \vec{n} + 2(\vec{a} \cdot \vec{n}) \ \vec{n}$

c) On pose $\|\vec{a}\|=a>1$. Déterminer l'angle entre les vecteurs \vec{a} et \vec{n} lorsque $\|\overrightarrow{BM}\|=1$.

Determiner l'angle entre les vecteurs
$$a$$
 et n lorsque $||BM||$
 $Réponse: \varphi = \arccos(-\frac{1}{a})$

2. Dans l'espace muni d'un repère orthonormé direct, on donne les coordonnées de trois points A, C et M et les équations cartésiennes d'une droite g.

$$A(2;1;3)$$
, $C(2;-3;-5)$, $M(0;0;-1)$, $g: \frac{x}{2} = y = z$

On note α le plan passant par les points A, C et M.

On considère un losange de sommets ABCD.

Déterminer les coordonnées de B et D sachant que :

• les points B et D sont dans α ,

ullet le côté AB est contenu dans un plan qui est perpendiculaire à α et parallèle à la droite q.

$$R\acute{e}ponse: B(-3; 1; -2)$$
 et $D(7; -3; 0)$ 5.5 pts

3. Dans l'espace muni d'une origine O, on donne un plan α passant par O et de vecteurs directeurs \vec{u} et \vec{v} , un point A $(A \notin \alpha)$ et deux vecteurs \vec{d} et \vec{g} .

On considère les droites $d = (A, \vec{d})$ et $q = (O, \vec{q})$.

On suppose que ces droites sont gauches et ne sont pas orthogonales à α .

a) Soit β le plan othogonal à α et contenant g. On note I le point d'intersection de d et β .

Sans utiliser de coordonnées et en fonction des données, déterminer :

- le vecteur OI
- l'équation vectorielle d'une droite s orthogonale à α et qui coupe det g.

(On ne demande pas de discuter les positions particulières.)

4 pts

 $R\'{e}ponse$:

$$\overrightarrow{OI} = \overrightarrow{OA} + \frac{\overrightarrow{AO} \cdot (\vec{g} \times (\vec{u} \times \vec{v}))}{\vec{d} \cdot (\vec{g} \times (\vec{u} \times \vec{v}))} \vec{d}$$
$$s : \overrightarrow{OS} = \overrightarrow{OA} + \frac{\overrightarrow{AO} \cdot (\vec{g} \times (\vec{u} \times \vec{v}))}{\vec{d} \cdot (\vec{g} \times (\vec{u} \times \vec{v}))} \vec{d} + \lambda (\vec{u} \times \vec{v})$$

b) **Application numérique**:
$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\vec{d} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\vec{g} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ et $A(4;0;2)$.

Déterminer l'équation vectorielle de la droite s.

$$R\'{e}ponse: s: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$
 2 pts