Introduction to Formal Language Chapter 2 Practice Solutions

April. 20, 2020

- **2.4** which includes 2 subproblems.
 - **a.** in the p.160
 - **d.** in the p.160
- 2.11

- **2.14** We follow the template from *Example 2.10*, coming immediately after **Theorem 2.9**.
 - 1. First we add a new start variable A_0 .

2. Secondly we remove ε -rules. (Note that in performing this step we exclude strings from language of grammar. This is the only string we lose in the process).

$$A_0 \rightarrow A$$
 $A_0 \rightarrow A$ $A \rightarrow BAB \mid B \mid \varepsilon$ $A \rightarrow BAB \mid BB \mid B \mid AB \mid BA \mid A$ $B \rightarrow 00 \mid \varepsilon$ $B \rightarrow 00 \mid \varepsilon$

3. Thirdly we remove all unit rules.

$$A_0 \rightarrow A$$
 $A_0 \rightarrow A \mid \mathbf{BAB} \mid \mathbf{BB} \mid 00 \mid \mathbf{AB} \mid \mathbf{BA}$
 $A \rightarrow BAB \mid BB \mid B \mid 00 \mid AB \mid BA \mid A$ $A \rightarrow BAB \mid BB \mid 00 \mid AB \mid BA \mid A$
 $B \rightarrow 00$ $B \rightarrow 00$

4. Lastly we add additional variables, to obtain the equivalent grammar in Chomsky form.

$$A_0 \rightarrow BA_1 \mid BB \mid ZZ \mid AB \mid BA$$

 $A \rightarrow BA_1 \mid BB \mid ZZ \mid AB \mid BA$
 $B \rightarrow ZZ$
 $Z \rightarrow 0$
 $A_1 \rightarrow AB$

2.16 Union and concatenation are trivial. Assume that we are given languages L_1 and L_2 generated by context-free grammars G_1 and G_2 respectively.

Then grammar which includes all rules of both grammar G_1 and G_2 and one additional rule $S \to S_1 \mid S_2$, where S is the new starting variable of grammar G, and S_1 and S_2 are old starting variables of grammars G_1 and G_2 . recognizes exactly union $L_1 \cup L_2$. Concatenation is obtained analogously, by adding rule $S \to S_1S_2$. Star is also not difficult, but last Exercise shows that we need to be careful. This time we wisely add new starting variable S_0 and add rules $S_0 \to SS \mid \varepsilon$ to new grammar, where S is the old starting variable. Note the analogy with adding a new initial state to NFA which recognizes star of language.

- 2.42 which includes 2 subproblems.
 - **b.** in the p.162
 - **c.** in the p.162