UAV飞控代码分析

- 1. **上电自检** ---> poweron_self_check();
 - 启动SPI(与FPGA的通信)
 - 启动串口(查看附录设备应用情况)
 - 创建线程,串口接收数据(SBG,数传)
 - 启动I2C(气压计)
 - 。 设置当前状态为准备状态
 - 。 根据不同命令执行不同程序
 - reset_control_register(CTRL_REG_MASK_MANUAL);重启CPLD?
 - 等待SBG数据?
 -
 - 创建一个文件,用于保存调试数据
 - 读取调试参数 , 并初始化
 - 。 等待准备完毕
- 2. 死循环 ---> while(1)
 - 接收遥控器的数据----read_rc_data()
 - 飞控算法-----autopilot_control()
 - 位置控制和高度控制-----position_control()
 - 姿态控制-----attitude_control()
 - 计算时间,并判断是否保存数据(可控制飞控算法的运算频率)

附录:

设备号	串口号	说明
/dev/ttyLP0	Uart0	CPU, ttl转RS232 (DEBUG)
/dev/ttyLP1	Uart4	FPGA输出(SBG)
/dev/ttyLP2	Uart1	CPU直接输出(LEDDAR)
/dev/ttyLP3	Uart2	CPU直接输出 (数传)
/dev/spidev0.0	SPI	FPGA输出(RC)
/dev/spidev0.0	SPI	FPGA输出(PWM)