Life processes

The basic and essential activities performed by a living organism to sustain and maintain life.

Nutrition

Process of obtaining and utilisation of Food

Respiration

Process of Breaking down the food to produces energy

Transportation

Process of transporting useful and non useful substances from part to another part of the organism

Excretion

Process of removal of metabolic waste

Autotrophic Nutrition

- Photo autotrophic Nutrition
- Ex- Green plants, cyanobcateria
- Chemo autotrophic Nutrition
- Ex- some bacteria

Heterotrophic Nutrition

- / Holozoic Nutrition
 - Ex-Huamn, cow, dog amoeba, paramecium,
- Saprotrophic nutrition
 - Ex- Bread mould, yeast, mushroom
- Parasitic Nutrition
 - Ex- Tapeworm, lice, leech, cuscuta

Photosynthetic Autotrophic Nutrition in plants

Mechanism of Photosynthesis

-> Starch

(i) Absorption of light energy by chlorophyll.

(ii) Conversion of light energy to chemical energy and splitting of water molecules into hydrogen and oxygen.

(iii) Reduction of carbon dioxide to carbohydrates.

Functions of stomata

- 1. Transpiration
- 2. Exchanges of gases

Stomata

Stomata are are tiny/microscopic pores like structure present on surface of leaves

Opening and closing of stomata

Exchange of gases

Transpiration

open stomata pore

Nutrition in Amoeba

Human Digestive System Mechanical digestion (Chewing) Mouth Tasting food Salivary gland Salivary amylase (Ptyalin) Saliva -**Oesophagus** Peristaltic movement Pepsin (Protein digestion) Gastric gland Gastric juice Stomach Hydrochloric acid (acidic pH) Mucus (Protect inner lining of stomach) Bile juice (Emulsification fast and alkaline food Pancreatic Amylase (Carbohydrate digestion) **Small Intestine** Pancreatic juice Trypsin (Protein digestion) Intestinal juice (Final digestion of food) Lipase (Digestion of emulsified fats) **Small Intestine** Absorption of food /Large intestine Absorption of water Rectum Anus

Breathing and Respiration

/Breathing	Respiration
Process of Inhaling and exhaling the air in and out of the lungs	Process of breaking down of glucose to produce energy
It takes place in lungs	It takes place in all cells
It is a physical process ✓	It is a chemical process
Energy is not produced	Energy is produced in the form of ATP

Aerobic Respiration	Anaerobic respiration
O ₂ required	O ₂ not required
It occurs in cytoplasm and mitochondria	It occurs in Cytoplasm only
Complete breakdown of glucose takes place	Incomplete breakdown of glucose takes place
End products are CO ₂ and H ₂ O	End products are CO ₂ and ethanol or lactic acid

Inhalation / Inspiration	Exhalation / Expiration
The muscles of the diaphragm contract.	The muscles of the diaphragm relax.
The diaphragm goes downward and becomes flat.	The diaphragm goes upward and becomes dome shaped
Air enters the lungs through the nose.	Air goes out the lungs through the nose.

		<u>Arteries</u>	<u>Veins</u>	<u>Capillaries</u>
	Direction of blood flow	Away from the heart	Towards the heart	Helps in exchange of substances
	0xygen	✓0xygenated blood	Deoxygenated blood	Both /
*	Pressure	✓ High	Low	Medium
	Walls	Thick and elastic	Thin and non elastic	<pre> √Very thin (one cell thickness)</pre>
	Valves	X Absent	✓ Present	→ Absent

Transportation in human beings

Double circulation

Blood enters TWICE into heart to complete the full circuit/cycle

Single circulation

Blood enters only ONCE in heart to complete the full circuit/ cycle

Class	Chambers in heart	Type of circulation	Temperature maintenance
Pisces (Fishes)	✓ 2	✓ Single circulation	No (Cold blooded)
Amphibians	3	Incomplete Double circulation	No (Cold blooded)
Reptiles	3	Incomplete Double circulation	No (Cold blooded)
Aves (Birds)	4	Complete double circulation	Yes (Warm blooded)
Mammals	4	Complete double circulation	Yes (Warm blooded)

Transportation in plants

Water and mineral salts

Ascent of sap

Phloem

Food

Translocation

Transportation in plants

Transport of materials in xylem	Transport of materials in phloem
Xylem tissue helps in the transport of water and minerals.	Phloem tissue helps in the transport of food.
Water is transported upwards from roots to aerial parts of plants.	Food is transported in both upward and downward directions.
Transport in xylem requires physical forces such as transpiration pull and / root pressure.	Transport of food in phloem requires energy in the form of ATP.

Excretion

Removal of harmful metabolic wastes from the body

Waste products

- Nitrogenous waste products
 Urea, Uric acid, Ammonia
- CO₂
- Excess Water
- Mineral salts

Kidney

- Excretion of nitrogenous and other waste products
- Water balance
- · Elimination of toxic chemicals
- Maintenance of pH of body fluids
- Nephron is the structural and functional unit of the kidney.
- Each kidney consists of about one million nephrons.

Nephron

Steps of urine formation

Glomerular filtration

Nitrogenous wastes, glucose, water, amino acid, excessive salts from the blood are filtered and initial filtrate enters into Bowman Capsule of the nephron.

Selective Reabsorption

Useful substances like glucose, amino acids, salts and a major amount of water from the filtrate are reabsorbed back by capillaries surrounding the nephron.

Tubular Secretion

Urea, extra water and salts are secreted into the tubule which open up into the collecting duct & then into the ureter.

Excretion in plants

- Oxygen and carbon dioxide is diffused through stomata.
- Excess water is removed by transpiration.
- Shedding of old leaves and bark
- Many plant waste products are stored in cellular vacuoles.
- Other waste products like latex, raisins and gums are stored in old xylem cells.
- Plants also secrete some waste substances into the soil around them.

