Thapar Institute of Engineering and Technology, Patiala **School of Mathematics**

Mathematics – II (UMA004): Tutorial Sheet 04

1. Find the Laplace Transform of the following functions:

i)
$$f(t) = \begin{cases} e^t, \ 0 < t < \\ 0, \ t > 1 \end{cases}$$

ii)
$$f(t) = \begin{cases} 4, & 0 < t < 3, & t > 1 \end{cases}$$

i)
$$f(t) = \begin{cases} e^t, \ 0 < t < 1 \\ 0, \ t > 1 \end{cases}$$
 ii) $f(t) = \begin{cases} 4, \ 0 < t < 1 \\ 3, \ t > 1 \end{cases}$ iii) $f(t) = 4t^2 + \sin(3t) + e^{2t}$ iv) $f(t) = 1 + 2\sqrt{t} + 3/\sqrt{t}$

iv)
$$f(t) = 1 + 2\sqrt{t} + 3/\sqrt{t}$$

2. Determine the Laplace Transform of the following functions:

i)
$$e^{-3t}t^4$$

ii)
$$e^{-3t}(2\cos 5t - 3\sin 5t)$$

iii)
$$(e^{-at}t^{n-1})/(n-1)!$$
 iv) $e^{4t}\sin 2t\cos t$

iv)
$$e^{4t} \sin 2t \cos t$$

3. Evaluate

i)
$$L[t(3\sin 2t - 2\cos 2t)]$$
 ii) $L[t^2\cos at]$

ii)
$$L \left[t^2 \cos at \right]$$

iii)
$$L[t^2e^{3t}]$$

iii)
$$L \left[t^2 e^{3t} \right]$$
 iv) $L \left[t e^{3t} \sin t \right]$

4. Find the Laplace Transform of the following functions:

i)
$$(1 - e^{-t})/t$$

ii)
$$(1-\cos t)/t$$

iii)
$$(\sinh t)/t$$
 iv) $e^{-t} \sin t/t$

iv)
$$e^{-t} \sin t/t$$

5. Determine the Laplace Transform of following functions:

i)
$$\int_{0}^{t} e^{-2t} t^{3} dt$$

ii)
$$\int_{0}^{t} t \cosh t \, dt$$

iii)
$$e^{-4t} \int_{0}^{t} t \sin 3t \, dt$$

i)
$$\int_{0}^{t} e^{-2t} t^{3} dt$$
 ii) $\int_{0}^{t} t \cosh t \, dt$ iii) $e^{-4t} \int_{0}^{t} t \sin 3t \, dt$ iv) $L[f'(t)], f(t) = e^{-5t} \sin t, f(t) = \frac{\sin t}{t}$

6. Show that

i)
$$\int_{0}^{\infty} \frac{\cos 6t - \cos 4t}{t} dt = \ln(2/3)$$
 ii)
$$\int_{0}^{\infty} te^{-3t} \sin t \, dt = 3/50$$
 iii)
$$\int_{0}^{\infty} \frac{e^{-3t} - e^{-6t}}{t} dt = \ln(2)$$

$$ii) \int_{0}^{\infty} te^{-3t} \sin t \, dt = 3 / 50$$

iii)
$$\int_{0}^{\infty} \frac{e^{-3t} - e^{-6t}}{t} dt = \ln(2)$$

7. Find the Inverse Laplace Transform of the following functions:

$$i) \frac{2s-5}{s^2-9}$$

$$ii) \frac{(1+2s)^2}{s^3}$$

ii)
$$\frac{(1+2s)^2}{s^3}$$
 iii) $\frac{1}{s^2+6s+13}$

iv)
$$\frac{3(s^2-2)^2}{2s^5}$$

v)
$$\frac{3s-2}{s^{5/2}} - \frac{7}{3s+2}$$
 vi) $\frac{s+2}{s^2-4s+13}$ vii) $\frac{3s-8}{4s^2+25}$

vi)
$$\frac{s+2}{s^2-4s+13}$$

vii)
$$\frac{3s-8}{4s^2+25}$$

$$viii) \frac{3s^2 + 10s - 6}{s^4}$$

ix)
$$\ln\left(\frac{s+3}{s+5}\right)$$

ix)
$$\ln\left(\frac{s+3}{s+5}\right)$$
 x) $\frac{1}{s}\tan^{-1}\left(\frac{1}{s}\right)$ xi) $\frac{1}{s^2(s+3)}$

$$xi) \frac{1}{s^2(s+3)}$$

xii)
$$\frac{1}{(2s+3)^{1/2}}$$

8. Solve the given differential equations using the Laplace Transformation

i)
$$y' + y = \cos 2t$$
, $y(0) = 1$

ii)
$$y'' - 6y' + 9y = t^2 e^{3t}, y(0) = 2, y'(0) = 6$$

iii)
$$y'' + 25y = 0$$
, $y(0) = 1$, $y(\pi/2) = -1$

iv)
$$y'' + y = 3$$
, $y(0) = 1$, $y(\pi/2) = 1$

9. Check the sufficient condition (piecewise continuity and exponential order) for the existence of the Laplace transform of the following functions:

i)
$$\sin t/t$$

ii)
$$e^{t}/t$$

iii)
$$\sin t/t^3$$

iv)
$$e^{t^2}$$

v)
$$e^{-t^2}$$

Answers

1. i)
$$\frac{(e^{1-p}-1)}{1-p}$$

ii)
$$\frac{4}{p} - \frac{e^{-p}}{p}$$

1. i)
$$\frac{(e^{1-p}-1)}{1-p}$$
 ii) $\frac{4}{p} - \frac{e^{-p}}{p}$ iii) $\frac{8}{p^3} + \frac{3}{p^2+9} + \frac{1}{p-2}$ iv) $\frac{1}{p} + \frac{\sqrt{\pi}}{p^{3/2}} + \frac{3\sqrt{\pi}}{p^{1/2}}$

iv)
$$\frac{1}{p} + \frac{\sqrt{\pi}}{p^{3/2}} + \frac{3\sqrt{\pi}}{p^{1/2}}$$

2. i)
$$\frac{24}{(p+3)^5}$$

ii)
$$\frac{2(p+3)}{(p+3)^2+25} - \frac{15}{(p+3)^2+25}$$

2. i)
$$\frac{24}{(p+3)^5}$$
 ii) $\frac{2(p+3)}{(p+3)^2+25} - \frac{15}{(p+3)^2+25}$ iii) $\frac{1}{(p+a)^n}$ iv) $\frac{1}{2} \left(\frac{3}{(p-4)^2+9} + \frac{1}{(p-4)^2+1} \right)$

3. i)
$$\frac{-2p^2 + 12p + 8}{(p^2 + 4)^2}$$
 ii) $\frac{2p(p^2 - 3a^2)}{(p^2 + a^2)^3}$ iii) $\frac{2}{(p-3)^3}$ iv) $\frac{2(p-3)}{((p-3)^2 + 1)^2}$

ii)
$$\frac{2p(p^2-3a^2)}{(p^2+a^2)^3}$$

iii)
$$\frac{2}{(p-3)^3}$$

iv)
$$\frac{2(p-3)}{((p-3)^2+1)^2}$$

4. i)
$$\ln\left(\frac{p+1}{p}\right)$$

ii)
$$\frac{1}{2} \ln \left(1 + \frac{1}{p^2} \right)$$

iii)
$$\frac{1}{2} \ln \left(\frac{p+1}{p-1} \right)$$

4. i)
$$\ln\left(\frac{p+1}{p}\right)$$
 ii) $\frac{1}{2}\ln\left(1+\frac{1}{p^2}\right)$ iii) $\frac{1}{2}\ln\left(\frac{p+1}{p-1}\right)$ iv) $\frac{\pi}{2}-\tan^{-1}\left(p+1\right)$

5. i)
$$\frac{6}{p(p+2)^4}$$

ii)
$$\frac{p^2+1}{p(p^2-1)^2}$$

iii)
$$\frac{6}{(p(p+8)+25)^2}$$

5. i)
$$\frac{6}{p(p+2)^4}$$
 ii) $\frac{p^2+1}{p(p^2-1)^2}$ iii) $\frac{6}{(p(p+8)+25)^2}$ iv) $\frac{p}{p(p+10)+26}$, $p\left(\frac{\pi}{2}-\tan^{-1}(p)\right)-1$

7. i)
$$\frac{1}{6} \left(e^{3t} + 11e^{-3t} \right)$$

ii)
$$4+4t+\frac{t^2}{2}$$

iii)
$$\frac{1}{2}e^{-3t}\sin 2t$$

ii)
$$4+4t+\frac{t^2}{2}$$
 iii) $\frac{1}{2}e^{-3t}\sin 2t$ iv) $\frac{t^4}{4}-3t^2+\frac{3}{2}$

v)
$$\frac{-8t^{3/2}}{3\sqrt{\pi}} + \frac{6t^{1/2}}{\sqrt{\pi}} - \frac{7e^{-2t/3}}{3}$$

vi)
$$e^{2t} \left(\cos 3t + \frac{4}{3} \sin 3t \right)$$

v)
$$\frac{-8t^{3/2}}{3\sqrt{\pi}} + \frac{6t^{1/2}}{\sqrt{\pi}} - \frac{7e^{-2t/3}}{3}$$
 vi) $e^{2t} \left(\cos 3t + \frac{4}{3}\sin 3t\right)$ vii) $\frac{3}{4}\cos\left(\frac{5t}{2}\right) - \frac{4}{5}\sin\left(\frac{5t}{2}\right)$

$$viii) -t^3 + 5t^2 + 3t$$

ix)
$$\frac{1}{4} \left(e^{-5t} - e^{-3t} \right)$$

x)
$$\int_0^t \frac{\sin t}{t} dt$$

viii)
$$-t^3 + 5t^2 + 3t$$
 ix) $\frac{1}{t} \left(e^{-5t} - e^{-3t} \right)$ x) $\int_0^t \frac{\sin t}{t} dt$ xi) $\frac{1}{9} \left(e^{-3t} - 1 \right) + \frac{t}{3}$ xii) $\frac{e^{-3t/2}}{\sqrt{2\pi}\sqrt{t}}$

$$xii) \frac{e^{-3t/2}}{\sqrt{2\pi}\sqrt{t}}$$

8. i)
$$\frac{1}{5}(4e^{-t} + \cos 2t + 2\sin 2t)$$
 ii) $\frac{e^{3t}t^4}{12} + 2e^{3t}$ iii) $(\cos 5t - \sin 5t)$ iv) $3 - 2\cos t - 2\sin t$

ii)
$$\frac{e^{3t}t^4}{12} + 2e^{3t}$$

iii)
$$(\cos 5t - \sin 5t)$$

iv)
$$3-2\cos t-2\sin t$$

9. Piecewise continuous: i), iv), v)

Exponential order: v)