Mapping

Vladislav Goncharenko Materials by Oleg Shipitko MIPT, 2022

Outline

- 1. Mapping problem definition
- 2. Maps types
- 3. Topological maps
- 4. Features/landmarks maps
- 5. Occupancy grid maps

(SIMPLIFIED) CONTROL SCHEME OF MODERN MOBILE ROBOT

Mapping problem definition

girafe ai

WHAT IS MAPPING?

Mapping (in robotics) refers to the process of modeling the environment and presenting it in a form that is convenient for further use in navigation (localization, planning and motion implementation).

Where the Robots Live
Robots per one thousand workers.

WHY MAPPING IS TOUGH?

- Sensor measurement errors generate incomplete and/or inconsistent data
- Errors in determining ego-position (localization) also lead to similar contradictions
- How to integrate data over time?
- How to understand that we have already visited a place?

FORMAL MAPPING PROBLEM DEFINITION

Given:

 $\mathbf{X_{1:t}}$ - all previous robot states (poses)

Z1:t - sensors measurements

Find:

map – map of the environment

Maps types

girafe ai

WHICH TYPES OF MAPS ARE THERE?

Metric

- Reflect the world in the form of 2D or 3D space
- Objects are set by their coordinates
- Distance between objects is measured in meters

Topological

- Reflect the world in the form of places (locations) and connections (transitions) between them
- Distances between objects can be stored in links

WHICH TYPES OF MAPS ARE THERE?

Metric

Topological

WHICH TYPES OF MAPS ARE THERE?

Metric

- Occupancy grid maps
- Feature-based maps, landmark-based
- (Sometimes) Semantic maps

Topological

Graphs

Topological maps

girafe

TOPOLOGICAL MAPS

- It is a set of locations (nodes) and transitions between them (edges).
- Location is usually the space in which the robot can be reliably positioned (localized) and / or the point of making a decision about the direction of further motion. For example, a room in the case of a building.
- The locations are connected with each other by **transitions** containing a certain law of robot control, according to which the transition can be carried out.

(c) Topological regions

(b) Critical lines

(d) Topological graph

MAIN DRAWBACK

☐ Topological representation does not exist (or is difficult to achieve) for large open spaces

Features/landmarks maps

girafe

FEATURE / LANDMARKS MAPS

- ☐ Store features specified by their coordinates in space
- Anything can be used as feature / landmark: trees, road signs, doors, image keypoints ...
- Very compact space representation

FEATURES VS. LANDMARKS

Landmarks

Natural or man-made objects.

Features

Artificially built-up structures. Usually more abstract than landmarks.

- Most often, the Kalman filter and its modifications are used to build feature maps
- Each feature is encoded with its own spatial coordinates
- The estimate of the landmark position is iteratively refined with each new measurement (detection)

- Most often, the Kalman filter and its modifications are used to build feature maps
- Each feature is encoded with its own spatial coordinates
- The estimate of the landmark position is iteratively refined with each new measurement (detection)

- Most often, the Kalman filter and its modifications are used to build feature maps
- Each feature is encoded with its own spatial coordinates
- The estimate of the landmark position is iteratively refined with each new measurement (detection)

- Most often, the Kalman filter and its modifications are used to build feature maps
- Each feature is encoded with its own spatial coordinates
- ☐ The estimate of the landmark position is iteratively refined with each new measurement (detection)

Occupancy grid maps

girafe

OCCUPANCY GRID MAPS

- The most popular maps format
- Space is discretized into cells
 - ☐ Usually regular grid is used
- The probability that the cell is free (passable) or occupied (impassable) is estimated

SPACE DISCRETIZATION APPROACHES

Metric map of the environment

Exact cell decomposition

Regular cell decomposition

Rectangular cell decomposition

Quadtree decomposition

OCCUPANCY GRID MAPS

- Each cell is a binary random variable

 - $p(m_{x,y}) = 0.5 \text{we know nothing on the}$ cell state

1. The area described by the cell is entirely occupied or free

- 1. The area described by the cell is entirely occupied or free
- 2. The world is static

- 1. The area described by the cell is entirely occupied or free
- 2. The world is static
- 3. Cells are independent

MAP REPRESENTATION

The probability of a map is given by the product of the (independent) probabilities of all its cells.

$$p(\text{map}) = \prod_{x,y} p(m_{x,y})$$

MAP REPRESENTATION

$$p(\text{map}) = \prod_{x,y} p(m_{x,y})$$

PROBABILISTIC MAPPING PROBLEM DEFINITION

Given the vector of all consecutive sensors measurements $\mathbf{z}_{1:t} = \mathbf{z}_0 \dots \mathbf{z}_t$, and robot (sensor) poses $\mathbf{x}_{1:t} = \mathbf{x}_0 \dots \mathbf{x}_t$, it is needed to build / recover the most probable map.

$$p(\text{map}|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \prod_{x,y} p(m_{x,y}|\mathbf{z}_{1:t}, \mathbf{x}_{1:t})$$

PROBABILISTIC MAPPING PROBLEM DEFINITION

- 1. Let's count two numbers:
 - a. How many times have we observed a cell $C_{x,y}$
 - b. We will increase or decrease $O_{x,y}$ by 1 each time we observe an obstacle or a free zone in the cell, respectively
- 2. Let's calculate the probability of a cell being occupied as:

$$p(m_{x,y}) = \frac{O_{x,y} + C_{x,y}}{2C_{x,y}}$$

BAYESIAN ESTIMATION

$$p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t}) =$$

BAYESIAN ESTIMATION

$$p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t}) = \\ = \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})}{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})}{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{z}_{1$$

BAYESIAN ESTIMATION

$$p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t}) = \\ = \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{x}_{t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{x}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t-1})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t-1})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t-1})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t-1})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{z}_{1:t-1},\mathbf{z}_{1:t-1})} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{z}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{z}_t)}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{z}_t)} = \\ \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_t)p(m_{x,y}|\mathbf{z}_t)p($$

$$\begin{split} p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t}) &= \\ &= \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ &= \frac{p(\mathbf{z}_t|m_{x,y},\mathbf{x}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{x}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(m_{x,y}|\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{x}_t)p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(m_{x,y}|\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)}{p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)} = \\ &= \frac{p(m_{x,y}|\mathbf{z}_t,\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)}{p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)} = \\ &= \frac{p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t,\mathbf{z}_t$$

$$p(m_{x,y}|\mathbf{z}_{1:t}, \mathbf{x}_{1:t}) = \frac{p(\mathbf{z}_t|m_{x,y}, \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})p(m_{x,y}|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})} = \frac{p(\mathbf{z}_t|m_{x,y}, \mathbf{x}_t)p(m_{x,y}|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\mathbf{z}_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})} = \frac{p(m_{x,y}|\mathbf{z}_t, \mathbf{x}_t)p(\mathbf{z}_t|\mathbf{x}_t)p(m_{x,y}|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(m_{x,y}|\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})} = \frac{p(m_{x,y}|\mathbf{z}_t, \mathbf{x}_t)p(\mathbf{z}_t|\mathbf{x}_t)p(m_{x,y}|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(m_{x,y}|\mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})} = \frac{p(m_{x,y}|\mathbf{z}_t, \mathbf{x}_t)p(\mathbf{z}_t|\mathbf{z}_t, \mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_{1:t-1}, \mathbf{z}_t, \mathbf{z}_t)}{p(\mathbf{z}_t|\mathbf{z}_t, \mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t, \mathbf{z}_t, \mathbf{z}_t)} = \frac{p(m_{x,y}|\mathbf{z}_t, \mathbf{z}_t, \mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_t, \mathbf{z}_t, \mathbf{z}_t, \mathbf{z}_t, \mathbf{z}_t, \mathbf{z}_t)}{p(\mathbf{z}_t|\mathbf{z}_t, \mathbf{z}_t, \mathbf$$

Independence property

 $= \frac{p(m_{x,y}|\mathbf{z}_t, \mathbf{x}_t)p(\mathbf{z}_t|\mathbf{x}_t)p(m_{x,y}|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(m_{x,y})p(\mathbf{z}_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$

$$p(\neg m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t}) =$$

Similarly, for the opposite event

$$= \frac{p(\neg m_{x,y}|\mathbf{z}_t, \mathbf{x}_t)p(\mathbf{z}_t|\mathbf{x}_t)p(\neg m_{x,y}|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\neg m_{x,y})p(\mathbf{z}_t|\mathbf{z}_{1:t-1}, \mathbf{x}_{1:t})}$$

Let's calculate the probability ratio:

$$\frac{p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{\frac{p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})p(\mathbf{z}_{t}|\mathbf{x}_{t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(m_{x,y})p(\mathbf{z}_{t}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}}{\frac{p(\neg m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})p(\mathbf{z}_{t}|\mathbf{x}_{t})p(\neg m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(\neg m_{x,y})p(\mathbf{z}_{t}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}}$$

Let's calculate the probability ratio:

$$\frac{p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{\frac{p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})p(\mathbf{z}_{t}|\mathbf{x}_{t})p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(m_{x,y})p(\mathbf{z}_{t}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}}{\frac{p(\neg m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})p(\mathbf{z}_{t}|\mathbf{x}_{t})p(\neg m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{p(\neg m_{x,y})p(\mathbf{z}_{t}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t})}}$$

Let's calculate the probability ratio:

$$\frac{p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})}{1 - p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})} \frac{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{1 - p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})} \frac{1 - p(m_{x,y})}{p(m_{x,y})}$$

Let's calculate the probability ratio:

$$\frac{p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})}{1 - p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})} \frac{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{1 - p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})} \frac{1 - p(m_{x,y})}{p(m_{x,y})}$$

The ratio of the probabilities of cell occupancy and freedom under the condition of new measurements

Recursive member (the same ration for previous measurement / moment of time)

Ratio of prior probabilities (e.g. $p(m_{x,y})=0.5$ if we didn't know anything about the map at the beginning)

LOGARITHMIC ODDS

Let's call an odds:

$$odds(X) = \frac{p(X)}{1 - p(X)}$$

Let's call a logarithmic odds:

$$logodds(X) = log \frac{p(X)}{1 - p(X)}$$

MAPPING WITH AN INVERSE MODEL IN LOGARITHMIC FORM

Let's calculate the logarithmic odds from:

$$\frac{p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})}{1 - p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})} \frac{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{1 - p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})} \frac{1 - p(m_{x,y})}{p(m_{x,y})}$$

And we get:

$$\log \operatorname{odds}(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t}) = \log \operatorname{odds}(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t}) + \log \operatorname{odds}(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1}) - \log \operatorname{odds}(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})$$

MAPPING WITH AN INVERSE MODEL IN LOGARITHMIC FORM

Let's calculate the logarithmic odds from:

$$\frac{p(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})}{p(\neg m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})} = \frac{p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})}{1 - p(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})} \frac{p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})}{1 - p(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})} \frac{1 - p(m_{x,y})}{p(m_{x,y})}$$

And we get:

$$\log \operatorname{odds}(m_{x,y}|\mathbf{z}_{1:t},\mathbf{x}_{1:t}) = \frac{\log \operatorname{odds}(m_{x,y}|\mathbf{z}_{t},\mathbf{x}_{t})}{\log \operatorname{odds}(m_{x,y}|\mathbf{z}_{1:t-1},\mathbf{x}_{1:t-1})} - \log \operatorname{odds}(m_{x,y})$$

Inverse measurement / observation model


```
occupancy_grid_mapping(\{l_{t-1,i}\}, x_t, z_t):
         for all cells m_i do
2:
             if m_i in perceptual field of z_t then
3:
                  l_{t,i} = l_{t-1,i} + \text{inv\_sensor\_model}(m_i, x_t, z_t) - l_0
             else
                 l_{t,i} = l_{t-1,i}
5:
             endif
6:
         endfor
         return \{l_{t,i}\}
8:
```

highly efficient, we only have to compute sums

EXAMPLE OF A SIMPLE SONAR MEASUREMENT MODEL

EXAMPLE OF A SIMPLE SONAR MEASUREMENT MODEL

WHAT IS THE DISADVANTAGE OF MAPPING WITH A INVERSE MODEL

- ☐ The inverse model considers the cells of the map as independent random variables
- This approach fails to explain contradicting data

MAPPING WITH FORWARD MODEL

- In contrast to mapping with an inverse model, we will consider the search for the **entire map** as an optimization problem in the space of all possible maps
- We will try to find such a map that maximizes the probability of all obtained measurements:

$$\hat{map} = \arg\max_{map} p(z|x, map)$$

ADDITIONAL RESOURCES

- Topological Mapping. Benjamin Kuipers
- Robot Mapping. Gian Diego
 Tipaldi, Wolfram Burgard
- 4. <u>Learning Occupancy Grids with</u>
 <u>Forward Models</u>. Sebastian
 Thrun

Thanks for attention!

Questions? Additions? Welcome!

girafe

