Besprechung Zettel 2

Tutorium vom 31.10.2013

Mitschrift aus dem Tutorium (Jens Kosiol), vermutlich mit Fehlern

31. Oktober 2013

Aufgabe 1

$$G, H$$
 Formeln

zz:
$$G \equiv H \Leftrightarrow (G \leftrightarrow H)$$
 gültig.

$$(G \leftrightarrow H)$$
 gültig. $\Leftrightarrow (G \to H)$ und $(H \to G)$ gültig.

$$\begin{array}{c|cccc} G & H & G \rightarrow H & H \rightarrow G \\ \hline F & F & W & W \\ F & W & W & F \\ W & F & F & W \\ W & W & W & W \\ \end{array}$$

Die Hinrichtung "⇒":

$$G \equiv H$$

$$\Rightarrow (G \to H), (H \to G)$$
 gültig

Die Rückrichtung "←":

$$(G \to H)$$

$$\Rightarrow f(G) = f(H)$$

$$\Leftrightarrow G \equiv H$$

Aufgabe 2

Beh.: G enhält keine Negation $\Rightarrow G$ nicht gültig, aber erfüllbar Bew: Seien f_W und f_F zu G passende Interpretationen mit $f_W(A_i) = W, f_F(A_i) = F$ $\forall i \in \{1, \ldots, n\}$

Wir zeigen $F_W(G) = W, f_F(G) = F \ \forall G$ I.A: Sei A_i atomar, dann gilt: $f_W(A_i) = W, f_F(A_i) = F \ \forall i \in \{1, ..., n\}$ I.S:

- 1. Fall $G = (G_1 \vee G_2)$ Nach I.V. gilt $f_W(G_1) = W = f(G_2)$ $f_F(G_1) = F = f_F(G_2)$ Damit gilt $f_W(G) = f_W(G_1 \vee G_2) = W$ $f_F(G) = f_F(G_1 \vee G_2) = F$
- 2. Fall $G = (G_1 \wedge G_2)$ Nach I.V. gilt $f_W(G_1) = f_W(G_1) = W$ $f_F(G_1) = f_F(G_2) = F$ Damit gilt: $f_W(G) = f_W((G_1 \wedge G_2)) = W$ $f_F(G) = f_F((G_1 \wedge G_2)) = F$
- 3. Fall entfällt
 - $\Rightarrow G$ ist nicht gültig, aber erfüllbar.

Aufgabe 3

a)

Beh.: "≡" ist Äquivalenzrelation

• Reflexivität

G Formel. Dann gilt für jede zu G passende Interpretation $f\colon f(G)=f(G)\Rightarrow G\equiv G$

• Symmetrie:

G,H Formeln mit $G\equiv H$. Dann gilt für jede zu G und H passende Interpretation $f\colon f(G)=f(H)\Leftrightarrow f(H)=f(G)$ $\Rightarrow H\equiv G$

• Transitivität:

G, H, I Formel mit $G \equiv H, H \equiv I$

für jede zu G und H passende Interpretation

f gilt f(G) = f(H) und jede zu H und I passende Interpretation g mit g(H) = g(I) Sei h zu G und I passende Interpretation.

Sei h' zu H passend mit h' = h auf $((A \cap T(G)) \cup (A \cap T(I)))$ und beliebig sonst.

Dann gilt:
$$\underbrace{h'(G)}_{=h(G)} = h'(H) = \underbrace{h'(I)}_{=h(I)}$$

 $\Rightarrow G \equiv I$

Mit gleichen Wahrheitstabellen kommt man nicht immer weiter. Oder Tabellen, wo ALLE verwendeten atomaren Formeln vorkommen.

- b)
- c)

ii) Beh.
$$((G \wedge H) \wedge I) \equiv (G \wedge (H \wedge I))$$

$$f(((G \wedge H) \wedge I)) = \begin{cases} W & falls \ f(G \wedge H), f(I) \ W \\ F & sonst \end{cases}$$

$$\Leftrightarrow \begin{cases} W & falls \ f(G), f(H), f(I) \ W \\ F & sonst \end{cases}$$

$$\Leftrightarrow \begin{cases} F & sonst \\ W & falls \ f(G), f(H \wedge I) \ W \\ = f((G \wedge (H \wedge I))) \end{cases}$$

Aufgabe 4

Ein Alphabet nur mit $\{\neg, \#, (,), A_1...\}$ Formel G, die nur ein Atom enthällt

$$\begin{array}{c|ccc}
f(A) & f(G_1) \\
\hline
f_2 & F & W \\
f_1 & W & W \\
\hline
f(A_1) & f(G_1) \\
\hline
F & F \\
W & F \\
f_1(G_1) \neq f_2(G_1)
\end{array}$$

I.A.
$$G = A$$
 atomar $f_1(G_1) = f_1(A) \neq f_2(A) = f_2(G)$ IS:

1 Fall
$$G = \neg G_1$$

 $f_1(\neg G_1) \neq f_2(\neg G_1)$

2 Fall
$$G = \#(G_1, G_2, G_3)$$

 $f(G_1) = f_1(G_2) = f_1(G_3) = W$
 $f_1(G) = W$
 $f_2(G) = F$
da nach I.V. $f_1(G_i) \neq f_2(G_i)$

2.2 Genau 2
$$G_i$$
 sind wahr unter f_1
 $\Rightarrow f_1(G) = W$
 \Rightarrow nach IV ist unter f_2 nur ein G_i wahr
 $f_2(G) = F$

2.3 Genau ein
$$G$$
 ist W unter f_1
 $\Rightarrow f_1(G) = F$
nach I.V. sind unter f_2 geanu 2 G_i W
 $\Rightarrow f_2(G) = W$

2.4 Unter
$$f_1$$
 sind alle G_i f $f_1(G) = F$ nach IV sind alle G_i W unter $f_2 \Rightarrow f_2(G) = W$