ColumbiaX: Machine Learning Lecture 14

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

Unsupervised Learning

SUPERVISED LEARNING

Framework of supervised learning

Given: Pairs $(x_1, y_1), \dots, (x_n, y_n)$. Think of x as input and y as output.

Learn: A function f(x) that accurately predicts $y_i \approx f(x_i)$ on this data.

Goal: Use the function f(x) to predict new y_0 given x_0 .

Probabilistic motivation

If we think of (x, y) as a random variable with joint distribution p(x, y), then supervised learning seeks to learn the conditional distribution p(y|x).

This can be done either directly or indirectly:

Directly: e.g., with logistic regression where p(y|x) = sigmoid function

Indirectly: e.g., with a Bayes classifier

$$y = \arg \max_{k} p(y = k|x) = \arg \max_{k} p(x|y = k)p(y = k)$$

Unsupervised Learning

Some motivation

- ► The Bayes classifier factorizes the joint density as p(x, y) = p(x|y)p(y).
- ► The joint density can also be written as p(x, y) = p(y|x)p(x).
- ▶ Unsupervised learning focuses on the term p(x) learning p(x|y) on a class-specific subset has the same "feel." What should this be?
- ► This implies an underlying classification task, but often there isn't one.

Unsupervised learning

Given: A data set x_1, \ldots, x_n , where $x_i \in \mathcal{X}$, e.g., $\mathcal{X} = \mathbb{R}^d$

Define: Some model of the data (probabilistic or non-probabilistic).

Goal: Learn structure within the data set *as defined by the model*.

- ► Supervised learning has a clear performance metric: accuracy
- ▶ Unsupervised learning is often (but not always) more subjective

SOME TYPES OF UNSUPERVISED LEARNING

Overview of second half of course

We will discuss a few types of unsupervised learning approaches in the second half of the course.

Clustering models: Learn a partition of data x_1, \ldots, x_n into groups.

► Image segmentation, data quantization, preprocessing for other models

Matrix factorization: Learn an underlying dot-product representation.

► User preference modeling, topic modeling

Sequential models: Learn a model based on sequential information.

► Learn how to rank objects, target tracking

As will become evident, an unsupervised model can often be interpreted as a supervised model, or very easily turned into one.

CLUSTERING

Problem

- ► Given data $x_1, ..., x_n$, partition it into groups called *clusters*.
- ► Find the clusters, given only the data.
- ▶ Observations in same group ⇒ "similar," different groups ⇒ "different."
- ▶ We will set how many clusters we learn.

Cluster assignment representation

For K clusters, encode cluster assignments as an indicator $c \in \{1, \dots, K\}$,

$$c_i = k \iff x_i \text{ is assigned to cluster } k$$

Clustering feels similar to classification in that we "label" an observation by its cluster assignment. The difference is that there is no ground truth.

THE K-MEANS ALGORITHM

CLUSTERING AND K-MEANS

K-means is the simplest and most fundamental clustering algorithm.

Input: x_1, \ldots, x_n , where $x \in \mathbb{R}^d$.

Output: Vector c of cluster assignments, and K mean vectors μ

- ▶ $c = (c_1, ..., c_n), c_i \in \{1, ..., K\}$
 - If $c_i = c_j = k$, then x_i and x_j are clustered together in cluster k.
- $\mu = (\mu_1, \dots, \mu_K), \quad \mu_k \in \mathbb{R}^d \text{ (same space as } x_i)$
 - Each μ_k (called a *centroid*) defines a cluster.

As usual, we need to define an *objective function*. We pick one that:

- 1. Tells us what are good c and μ , and
- 2. That is easy to optimize.

K-MEANS OBJECTIVE FUNCTION

The K-means objective function can be written as

$$\mu^*, c^* = \arg\min_{\mu, c} \sum_{i=1}^n \sum_{k=1}^K \mathbb{1}\{c_i = k\} \|x_i - \mu_k\|^2$$

Some observations:

- ▶ K-means uses the squared Euclidean distance of x_i to the centroid μ_k .
- ▶ It only penalizes the distance of x_i to the centroid it's assigned to by c_i .

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\{c_i = k\} \|x_i - \mu_k\|^2 = \sum_{k=1}^{K} \sum_{i:c_i = k} \|x_i - \mu_k\|^2$$

- ► The objective function is "non-convex"
 - ▶ This means that we can't actually find the *optimal* μ^* and c^* .
 - ▶ We can only derive an *algorithm* for finding a *local optimum* (more later).

OPTIMIZING THE K-MEANS OBJECTIVE

Gradient-based optimization

We can't optimize the K-means objective function exactly by taking derivatives and setting to zero, so we use an iterative algorithm.

However, the algorithm we will use is different from gradient methods:

$$w \leftarrow w - \eta \nabla_w \mathcal{L}$$
 (gradient descent)

Recall: With gradient descent, when we update a parameter "w" we move in the direction that decreases the objective function, but

- ▶ It will almost certainly not move to the *best* value for that parameter.
- ▶ It may not even move to a better value if the step size η is too big.
- \blacktriangleright We also need the parameter w to be continuous-valued.

K-MEANS AND COORDINATE DECENT

Coordinate descent

We will discuss a new and widely used optimization procedure in the context of K-means clustering. We want to minimize the objective function

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\{c_i = k\} \|x_i - \mu_k\|^2.$$

We split the variables into two unknown sets μ and c. We can't find their best values *at the same time* to minimize \mathcal{L} . However, we will see that

- Fixing μ we can find the best c exactly.
- Fixing c we can find the best μ exactly.

This optimization approach is called *coordinate descent*: Hold one set of parameters fixed, and optimize the other set. Then switch which set is fixed.

COORDINATE DESCENT

Coordinate descent (in the context of K-means)

Input: x_1, \ldots, x_n where $x_i \in \mathbb{R}^d$. Randomly initialize $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_K)$.

- ► Iterate back-and-forth between the following two steps:
 - 1. Given μ , find the best value $c_i \in \{1, ..., K\}$ for i = 1, ..., n.
 - 2. Given c, find the best vector $\mu_k \in \mathbb{R}^d$ for $k = 1, \dots, K$.

There's a circular way of thinking about why we need to iterate:

- 1. Given a particular μ , we may be able to find *the best* c, but once we *change* c we can probably find a better μ .
- 2. Then find the best μ for the new-and-improved c found in #1, but now that we've changed μ , there is probably a better c.

We have to iterate because the values of μ and c depend on each other. This happens very frequently in unsupervised models.

K-MEANS ALGORITHM: UPDATING c

Assignment step

Given $\mu = (\mu_1, \dots, \mu_K)$, update $\mathbf{c} = (c_1, \dots, c_n)$. By rewriting \mathcal{L} , we notice the independence of each c_i given μ ,

$$\mathcal{L} = \Big(\sum_{k=1}^{K} \mathbb{1}\{c_1 = k\} \|x_1 - \mu_k\|^2\Big) + \dots + \Big(\sum_{k=1}^{K} \mathbb{1}\{c_n = k\} \|x_n - \mu_k\|^2\Big).$$
distance of x_1 to its assigned centroid

We can minimize \mathcal{L} with respect to each c_i by minimizing each term above separately. The solution is to assign x_i to the closest centroid

$$c_i = \arg\min_k \|x_i - \mu_k\|^2.$$

Because there are only K options for each c_i , there are no derivatives. Simply calculate all the possible values for c_i and pick the best (smallest) one.

K-means algorithm: Updating μ

Update step

Given $c = (c_1, \ldots, c_n)$, update $\mu = (\mu_1, \ldots, \mu_K)$. For a given c, we can break \mathcal{L} into K clusters defined by c so that each μ_i is independent.

$$\mathcal{L} = \underbrace{\left(\sum_{i=1}^{N} \mathbb{1}\{c_i = 1\} \|x_i - \mu_1\|^2\right)}_{\text{sum squared distance of data in cluster } \# 1} + \dots + \underbrace{\left(\sum_{i=1}^{N} \mathbb{1}\{c_i = K\} \|x_i - \mu_K\|^2\right)}_{\text{sum squared distance of data in cluster } \# K}.$$

For each k, we then optimize. Let $n_k = \sum_{i=1}^n \mathbb{1}\{c_i = k\}$. Then

$$\mu_k = \arg\min_{\mu} \sum_{i=1}^n \mathbb{1}\{c_i = k\} \|x_i - \mu\|^2 \longrightarrow \mu_k = \frac{1}{n_k} \sum_{i=1}^n x_i \mathbb{1}\{c_i = k\}.$$

That is, μ_k is the *mean* of the data assigned to cluster k.

K-MEANS CLUSTERING ALGORITHM

Algorithm: K-means clustering

Given: x_1, \ldots, x_n where each $x \in \mathbb{R}^d$

Goal: Minimize $\mathcal{L} = \sum_{i=1}^n \sum_{k=1}^K \mathbb{1}\{c_i = k\} ||x_i - \mu_k||^2$.

- ▶ Randomly initialize $\mu = (\mu_1, \dots, \mu_K)$.
- Iterate until c and μ stop changing
 - 1. Update each c_i :

$$c_i = \arg\min_{k} \|x_i - \mu_k\|^2$$

2. Update each μ_k : Set

$$n_k = \sum_{i=1}^n \mathbb{1}\{c_i = k\}$$
 and $\mu_k = \frac{1}{n_k} \sum_{i=1}^n x_i \mathbb{1}\{c_i = k\}$

A random initialization

Iteration 1

Assign data to clusters

Iteration 1

Update the centroids

Iteration 2

Assign data to clusters

Iteration 2

Update the centroids

Iteration 3

Assign data to clusters

Iteration 3

Update the centroids

Iteration 4

Assign data to clusters

Iteration 4

Update the centroids

CONVERGENCE OF K-MEANS

Objective function after

- ightharpoonup the "assignment" step (blue: corresponding to c), and
- the "update" step (red: corresponding to μ).

CONVERGENCE OF K-MEANS

The outline of why this convergences is straightforward:

- 1. Every update to c_i or μ_k decreases \mathcal{L} compared to the previous value.
- 2. Therefore, \mathcal{L} is monotonically decreasing.
- 3. $\mathcal{L} \geq 0$, so Step 1 converges to some point (but probably not to 0).

When c stops changing, the algorithm has converged to a *local* optimal solution. This is a result of \mathcal{L} not being convex.

Non-convexity means that different initializations will give different results:

- ▶ Often the results will be similar in quality, but no guarantees.
- ▶ In practice, the algorithm can be run multiple times with different initializations. Then use the result with the lowest \mathcal{L} .

SELECTING K

We don't know how many clusters there are, but selecting *K* is tricky. The K-means objective function decreases as *K* increases,

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\{c_i = k\} \|x_i - \mu_k\|^2.$$

For example, if K = n then let $\mu_k = x_k$ and as a result $\mathcal{L} = 0$.

Methods for choosing K include:

- ▶ Using advanced knowledge. e.g., if you want to split a set of tasks among *K* people, then you already know *K*.
- ▶ Looking at the *relative* decrease in \mathcal{L} . If K^* is best, then increasing K when $K \leq K^*$ should decrease \mathcal{L} much more than when $K > K^*$.
- ▶ Often the K-means result is part of a larger application. The main application may start to perform worse even though £ is decreasing.
- ▶ More advanced modeling techniques exist that address this issue.

TWO APPLICATIONS OF K-MEANS

Lossy data compression

Approach: Vectorize 2×2 patches from an image (so data is $x \in \mathbb{R}^4$) and cluster them with K-means. Replace each patch with its assigned centroid.

(left) Original 1024×1024 image requiring 8 bits/pixel (1MB total) (middle) Approximation using 200 clusters (requires 239KB storage) (right) Approximation using 4 clusters (requires 62KB storage)

Data preprocessing (side comment)

K-means is also very useful for *discretizing* data as a preprocessing step. This allows us to recast a continuous-valued problem as a discrete one.

EXTENSIONS: K-MEDOIDS

Algorithm: K-medoids clustering

Input: Data x_1, \ldots, x_n and distance measure $D(x, \mu)$. Randomly initialize μ .

- ▶ Iterate until *c* is no longer changing
 - 1. For each c_i : Set

$$c_i = \arg\min_k \ D(x_i, \mu_k)$$

2. For each μ_k : Set

$$\mu_k = \arg\min_{\mu} \sum_{i:c_i=k} D(x_i, \mu)$$

Comment: Step #2 may require an algorithm.

K-medoids is a straightforward extension of K-means where the distance measure isn't the squared error. That is,

- K-means uses $D(x, \mu) = ||x \mu||^2$.
- ► Could set $D(x, \mu) = ||x \mu||_1$, which would be more robust to outliers.
- ▶ If $x \notin \mathbb{R}^d$, we could define $D(x, \mu)$ to be more complex.