Project Title : Analytics for Hospitals' Health-Care Data

Team ID: PNT2022TMID04305

```
In []: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from pandas.api.types import is_numeric_dtype
    sns.set()
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder
    from sklearn.preprocessing import StandardScaler
    sns.set_style("darkgrid")
    from sklearn.linear_model import LinearRegression
    from sklearn.svm import SVR
    from sklearn.tree import DecisionTreeRegressor

from sklearn import metrics
%matplotlib inline
```

LOAD THE DATASET

```
In [2]: abalone = pd.read_csv('abalone.csv', sep=',')
```

In [3]: abalone.head()

Out[3]:

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7
	M M F	M 0.455 M 0.350 F 0.530 M 0.440	M 0.455 0.365 M 0.350 0.265 F 0.530 0.420 M 0.440 0.365	M 0.455 0.365 0.095 M 0.350 0.265 0.090 F 0.530 0.420 0.135 M 0.440 0.365 0.125	Sex Length Diameter Height weight M 0.455 0.365 0.095 0.5140 M 0.350 0.265 0.090 0.2255 F 0.530 0.420 0.135 0.6770 M 0.440 0.365 0.125 0.5160	Sex Length Diameter Height weight weight M 0.455 0.365 0.095 0.5140 0.2245 M 0.350 0.265 0.090 0.2255 0.0995 F 0.530 0.420 0.135 0.6770 0.2565 M 0.440 0.365 0.125 0.5160 0.2155	Sex Length Diameter Height weight weight weight M 0.455 0.365 0.095 0.5140 0.2245 0.1010 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 M 0.440 0.365 0.125 0.5160 0.2155 0.1140	Sex Length Diameter Height weight weight weight weight M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155

UNIVARIATE ANALYSIS

```
In [4]: rows = 2
        cols = 2
        i = 0
        plt.figure(figsize=(cols * 5, rows * 5))
        i += 1
        plt.subplot(rows, cols, i)
        plt.xticks(range(0, 31, 4))
        plt.xlim(0, 30)
        _ = sns.distplot(abalone['Rings'], kde=False, bins=range(0, 31, 2))
        i += 1
        plt.subplot(rows, cols, i)
        _ = sns.distplot(abalone['Rings'])
        i += 1
        plt.subplot(rows, cols, i)
        plt.xticks(range(0, 31, 4))
        plt.xlim(0, 30)
        _ = sns.boxplot(abalone['Rings'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWar ning: `distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

28

24

0

4

12

16

Rings

20

```
In [5]: abalone = abalone[abalone['Height'] < 0.4]</pre>
        plt.figure(figsize=(15, 15))
        colors = sns.color palette()
        lines = 3
        rows = 3
        i = 0
        i += 1
        plt.subplot(lines, rows, i)
        _ = sns.distplot(abalone['Length'], color=colors[i % 3])
        i += 1
        plt.subplot(lines, rows, i)
        _ = sns.distplot(abalone['Diameter'], color=colors[i % 3])
        i += 1
        plt.subplot(lines, rows, i)
        _ = sns.distplot(abalone['Height'], color=colors[i % 3])
       i += 1
        plt.subplot(lines, rows, i)
        _ = sns.distplot(abalone['Length'], kde=False, bins=np.arange(0.0, 0.9, 0.05), cd
        i += 1
        plt.subplot(lines, rows, i)
        = sns.distplot(abalone['Diameter'], kde=False, bins=np.arange(0.0, 0.7, 0.05),
       i += 1
        plt.subplot(lines, rows, i)
        _ = sns.distplot(abalone['Height'], kde=False, bins=10, color=colors[i % 3])
        i += 1
        plt.subplot(lines, rows, i)
        i += 1
        plt.subplot(lines, rows, i)
        _ = sns.boxplot(abalone['Diameter'], color=colors[i % 3])
        i += 1
        plt.subplot(lines, rows, i)
        _ = sns.boxplot(abalone['Height'], color=colors[i % 3])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog

rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments wit hout an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning


```
In [6]: plt.figure(figsize=(20, 15))
        colors = sns.color_palette()
        rows = 3
        cols = 4
        i = 0
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.distplot(abalone['Whole weight'], color=colors[i % cols])
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.distplot(abalone['Shucked weight'], color=colors[i % cols])
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.distplot(abalone['Viscera weight'], color=colors[i % cols])
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.distplot(abalone['Shell weight'], color=colors[i % cols])
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.distplot(abalone['Whole weight'], kde=False, bins=14, color=colors[i % cd
        i += 1
        plt.subplot(rows, cols, i)
        _ = sns.distplot(abalone['Shucked weight'], kde=False, bins=14, color=colors[i %
        i += 1
        plt.subplot(rows, cols, i)
        _ = sns.distplot(abalone['Viscera weight'], kde=False, bins=16, color=colors[i %
        plt.subplot(rows, cols, i)
         _ = sns.distplot(abalone['<mark>Shell weight</mark>'], kde=False, bins=20, color=colors[i % co
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.boxplot(abalone['Whole weight'], color=colors[i % cols])
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.boxplot(abalone['<mark>Shucked weight</mark>'],                       color=colors[i % cols])
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.boxplot(abalone['Viscera weight'], color=colors[i % cols])
        i += 1
        plt.subplot(rows, cols, i)
         _ = sns.boxplot(abalone['Shell weight'], color=colors[i % cols])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments wit hout an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments wit hout an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni ng: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments wit hout an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

BIVARATE ANALYSIS

```
In [8]: plt.figure(figsize=(7, 7))
_ = sns.boxplot(data=abalone, x='Sex', y='Rings')
```



```
In [9]: plt.figure(figsize=(7, 7))
_ = sns.boxplot(data=abalone, x='Sex', y='Height')
```


/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: Th
e `size` parameter has been renamed to `height`; please update your code.
warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)


```
In [11]: plt.figure(figsize=(7, 7))
    _ = sns.boxplot(data=abalone, x='Sex', y='Shell weight')
```


/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: Th
e `size` parameter has been renamed to `height`; please update your code.
warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)


```
In [13]: plt.figure(figsize=(10, 10))
    corr = abalone.corr()
    _ = sns.heatmap(corr, annot=True)
```



```
In [14]: plt.figure(figsize=(20, 5))

_ = sns.jointplot(data=abalone, x='Rings', y='Height', kind='reg')
_ = sns.jointplot(data=abalone, x='Rings', y='Shell weight', kind='reg')
```

<Figure size 1440x360 with 0 Axes>

DESCRIPTIVE STATISTICS

In [15]: abalone.describe().T

Out[15]:

	count	mean	std	min	25%	50%	75%	max
Length	4175.0	0.523965	0.120084	0.0750	0.45000	0.5450	0.61500	0.8150
Diameter	4175.0	0.407856	0.099230	0.0550	0.35000	0.4250	0.48000	0.6500
Height	4175.0	0.139189	0.038489	0.0000	0.11500	0.1400	0.16500	0.2500
Whole weight	4175.0	0.828468	0.490027	0.0020	0.44150	0.7995	1.15300	2.8255
Shucked weight	4175.0	0.359195	0.221713	0.0010	0.18600	0.3360	0.50175	1.4880
Viscera weight	4175.0	0.180536	0.109534	0.0005	0.09325	0.1710	0.25275	0.7600
Shell weight	4175.0	0.238791	0.139162	0.0015	0.13000	0.2340	0.32875	1.0050
Rings	4175.0	9.934132	3.224802	1.0000	8.00000	9.0000	11.00000	29.0000

HANDLING WITH MISSING DATA

In [16]: df = pd.DataFrame(abalone)
 df.isnull()

Out[16]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False

4175 rows × 9 columns

In [17]: df.fillna(0)

Out[17]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4175 rows × 9 columns

OUTLIERS IN EACH ATTRIBUTES

In [18]: | sns.boxplot(df['Length'],data=df)

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc658ae4d0>

In [19]: | sns.boxplot(df['Diameter'],data=df)

Out[19]: <matplotlib.axes. subplots.AxesSubplot at 0x7efc63c9f190>

In [20]: | sns.boxplot(df['Height'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc65679450>

In [21]: sns.boxplot(df['Whole weight'],data=df)

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc65661610>

In [22]: sns.boxplot(df['Shucked weight'],data=df)

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc6563a350>

In [23]: sns.boxplot(df['Viscera weight'],data=df)

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc6565a2d0>

In [24]: sns.boxplot(df['Shell weight'],data=df)

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc65a26290>


```
In [25]: sns.boxplot(df['Rings'],data=df)
```

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc661856d0>


```
In [26]: Q1 = abalone.quantile(0.25)
    Q3 = abalone.quantile(0.75)
    IQR = Q3-Q1
    print(IQR)
```

0.16500 Length Diameter 0.13000 Height 0.05000 Whole weight 0.71150 Shucked weight 0.31575 Viscera weight 0.15950 Shell weight 0.19875 Rings 3.00000

dtype: float64

```
In [27]: abalone = abalone[\sim((abalone < (Q1 - 1.5 * IQR)) | (abalone > (Q3 + 1.5 * IQR))).abalone.shape
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Automatic reindexing on DataFrame vs Series comparisons is deprecated and will raise ValueError in a future version. Do `left, right = left.align(right, axis =1, copy=False)` before e.g. `left == right` """Entry point for launching an IPython kernel.

Out[27]: (3781, 9)

In [28]: sns.boxplot(abalone['Rings'],data=abalone)

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc6592e290>

In [29]: | sns.boxplot(abalone['Length'],data=abalone)

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc658a63d0>

In [30]: sns.boxplot(abalone['Height'],data=abalone)

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc65975710>

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 Height

In [31]: sns.boxplot(abalone['Diameter'],data=abalone)

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc6377bb10>

In [32]: | sns.boxplot(abalone['Whole weight'],data=abalone)

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc6555d210>

In [33]: sns.boxplot(abalone['Shucked weight'],data=abalone)

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc63b167d0>

In [34]: | sns.boxplot(abalone['Shell weight'],data=abalone)

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc6568c250>

In [35]: sns.boxplot(abalone['Viscera weight'],data=abalone)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x7efc63a00a10>

LABEL ENCODING FOR CATEGORICAL DATA

In [36]: le=LabelEncoder()
abalone['Sex']=le.fit_transform(abalone['Sex'])

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopy
Warning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

In []:

In [37]: abalone

Out[37]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

3781 rows × 9 columns

##Spliting the Data into dependent and Independent Variables

```
In [38]: X = abalone.iloc[:, :-1].values
y = abalone.iloc[:, -1].values
```

##Scaling independent variables

```
In [39]: scaler = StandardScaler()
scaler.fit(abalone)
```

Out[39]: StandardScaler()

##Spliting training and test data

Shape of Validation X : (757, 8)

```
In [42]: print("Shape of Training y :",train y.shape)
         print("Shape of Validation y :",val_y.shape)
         Shape of Training y: (3024,)
         Shape of Validation y: (757,)
         ##LINEAR REGRESSION
In [43]: | lr = LinearRegression()
         lr.fit(train X,train y)
Out[43]: LinearRegression()
In [44]: %%time
         y_pred_val_lr = lr.predict(val_X)
         print('MAE on Validation set :',metrics.mean_absolute_error(val_y, y_pred_val_lr)
         print("\n")
         print('MSE on Validation set :',metrics.mean squared error(val y, y pred val lr))
         print("\n")
         print('RMSE on Validation set :',np.sqrt(metrics.mean_absolute_error(val_y, y_pre
         print("\n")
         print('R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_lr))
         print("\n")
         MAE on Validation set : 1.2719689486359298
         MSE on Validation set: 2.7606215450501024
         RMSE on Validation set : 1.127816008325795
         R2 Score on Validation set: 0.5119499107890585
         CPU times: user 5.67 ms, sys: 859 \mus, total: 6.53 ms
         Wall time: 6.14 ms
         ##SUPPORT VECTOR MACHINE
In [45]: |svm = SVR()
         svm.fit(train_X,train_y)
Out[45]: SVR()
```

MAE on Validation set: 1.2208952787270895

MSE on Validation set : 2.7012620714060267

RMSE on Validation set: 1.1049413010323623

R2 Score on Validation set : 0.5224440679687887

CPU times: user 146 ms, sys: 0 ns, total: 146 ms

Wall time: 145 ms

##DECISION TREE REGRESSOR

Out[47]: DecisionTreeRegressor(random state=0)

```
In [48]: | %%time
         y_pred_val_dc = dc.predict(val_X)
         print('MAE on Validation set :',metrics.mean_absolute_error(val_y, y_pred_val_dc)
         print("\n")
         print('MSE on Validation set :',metrics.mean squared error(val y, y pred val dc))
         print("\n")
         print('RMSE on Validation set :',np.sqrt(metrics.mean absolute error(val y, y pre
         print('R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_dc))
         print("\n")
         MAE on Validation set: 1.6393659180977542
         MSE on Validation set : 4.88110964332893
         RMSE on Validation set: 1.2803772561623212
         R2 Score on Validation set: 0.13706896870869845
         CPU times: user 10.1 ms, sys: 1.1 ms, total: 11.2 ms
         Wall time: 24.9 ms
 In [ ]:
```

##OVERVIEW OF R2 SCORES OF ALL MODELS

```
In [49]: print('Logistic Regression R2 Score on Validation set :',metrics.r2_score(val_y, print('SVR R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_svm))
print('Decision Tree Regressor R2 Score on Validation set :',metrics.r2_score(val_val_val_svm))
Logistic Regression R2 Score on Validation set : 0.5119499107890585
SVR R2 Score on Validation set : 0.5224440679687887
```

Decision Tree Regressor R2 Score on Validation set: 0.13706896870869845

localhost:8888/notebooks/Assignment 4.ipynb#