combinatorial optimization

Mohammadreza Ardestani 9513004, Mohammad Bornosi 9713007

This assignment has been done with collaboration of both team members.

Exercise 1:

```
اندیسهای زیر را تعریف می کنیم: i=1,\ldots,7 اندیس دروس با احتساب گروههای مختلف i=1,\ldots,5 ..., i=1,\ldots,5 اندیس بازههای زمانی i=1,\ldots,5 ..., i=1,\ldots,5 اندیس بازههای زمانی i=1,\ldots,5 ..., i=1,\ldots,5 اندیس انواع اتاقها پارامترهای زیر را تعریف می کنیم: i=1,\ldots,5 ..., i=1,\ldots,5 ...,
```

We formulate the problem in the following way:

Min Z = M Z (1-8;) + \(\sum_{\overline{1}} \s 82 = Max $\left[\left(\sum_{i=1}^{5} \sum_{j=1}^{4} 8_{i} \sum_{j=1}^{4} -TH(i)+1\right], 0\right]$ الم الع در معل مام " لل مركز ار نشاده در حمر كرفتي كو 3) Z 8 til = 0 3 V tol: a(toi)=0

Cherlopeo (w) The oplishing common plt ours) pli (w) so plishing of the oplishing of the open of the ope العَنْفَاص تَدِيع (ابن مَشْرِ لَهُ عِلْدُلْنِ عَمِلْنُ (رَ ابن لَهُ نَشْرِطُ 1 فِلْدُ مِنْفُقَى بِواشَ وجود ما و معارى الربا والى درسان المساع كلاس المنقاص لدنع مشرط 1 معدار ع 8 السياه مسل. لا شر 4) 8+32 = 0 Yigj: P:> Capj كلاس كم فارون من كرسوار فارفيل سود يلا درس ماسيد والعمل كالمنه الم تل مالی اسلی ویاده سال ک قید سیاره ۱ مرسری فطی است که ما بر اس میری ال (1-8i) 3 THLEI- ZZ XIL & (X (1-8) . 42

Still the above picture needs another constraint:

It says, for each class at each time we can at most alocate 1 room to it. Had it not been for the above constraint, we would have had the following issue, which the model has held class #1 at t=4 in two different room(room #4 and #1).

Gams output:

```
607
608 ----
                                                1802.000
          91 VARIABLE z.L
609
610 ---- 91 VARIABLE x.L
611
612
                1
                            2
                                      5
                                                  6
                                                              7
613
6141.1
                                               1.000
6151.4
                                                          1.000
6162.1
                        1.000
6172.2
                                                          1.000
                                               1.000
6182.3
6192.4
            1.000
620 3.1
            1.000
621 3.4
                        1.000
622 4.1
            1.000
623 4.4
                        1.000
6245.2
                                   1.000
625
626
627 ---- 91 VARIABLE delta.L
629 1 1.000, 2 1.000, 5 1.000,
                                     6 1.000, 7 1.000
630
631
```

Note that the value of M should be determined properly in a way that the model should try to hold classes as mush as posible. For this purpose, we set M = 601, which is 1 score more than the cost that we have to pay for the biggest penalty.

This result means we have to hold classes number 1, 2, 5, 6, and 7 as their corresponding time and room are outlines in lines 614 to 624 in the above picutre.

Exercise 2:

I have to mention that we, me and mohammad Bornosi, explained out model and our Gams code for this exercise in the class. we, however, real-quick explain that again:

The example that we use for setting parameters:

GAMS implementation:

	YALL A			
	LOWER	LEVEL	UPPER	MARGINAL
1.2			1.000	1.000
1.3		1.000	1.000	EPS
1.4			1.000	EPS
1.5			1.000	EPS
1.6			1.000	EPS
2.3			1.000	EPS
2.4			1.000	EPS
2.5			1.000	EPS
2.6			1.000	1.000
3.2			1.000	EPS
3.4			1.000	-5.000
3.5			1.000	EPS
3.6		1.000	1.000	1.000
4.2			1.000	EPS
4.3			1.000	EPS
4.5			1.000	-5.000
4.6			1.000	EPS
5.2			1.000	EPS
5.3			1.000	-5.000
5.4			1.000	EPS
5.6			1.000	EPS
6.2			1.000	EPS
6.3			1.000	EPS
6.4			1.000	EPS
6.5			1.000	EPS

This result exactly matches our anticipation. It says, we have to go from 1 to 3 and then from 3 to 6, which is the shortest path.

Thanks for your time.