

MOVIE ANALYSIS FOR MICROSOFT CORPORATION

Final Project Submission

- Student name: Evaclaire Munyika Wamitu
- · Student pace: Full time Remote
- · Scheduled project review date/time: 22nd March, 2024
- Instructor name: Asha Deen / Lucille Kaleha

OVERVIEW

This project was aimed at helping Microsoft break into the movie industry by obtaining much needed insight into what makes for a great movie. I looked into a wide variety of films produced over the years to see what makes some perform better than others.

From my analysis, the following were the greatest determiners of a movie's success:

- Genre: Different genres appeal to different audiences and certain genres tend to perform better at the box office than others. Genres such as action, adventure, drama and comedies tend to have a wider appeal and thus generate more box office revenue.
- Release Timing: The time of year a movie is released directly impacts its box office
 performance. Movies released during peak seasons or strategically timed to coincide
 with holidays or special events tend to perform better.
- Budget: The effectiveness of a movie's production, marketing and promotional campaigns significantly influence its box office success. A larger budget enables the best production methods and teams and wider promotion tours for a movie leading to higher ticket sales.

BUSINESS UNDERSTANDING

Microsoft is a multinational technology company headquatered in Redmond, Washington,USA. They are well known for their software products and services and are now looking to dive into the movie making scene and compete against industry heavy hitters. Microsoft have decided to create a new movie studio but they lack proper insight as to what makes great movies,GREAT! The goal is to analyse some of the most successful box office movies and advice the head of Microsoft's new movie studio on what they need inorder to produce successful films.

DATA UNDERSTANDING

The following were the sources of data I chose for this project:

- ImDb movie database This is an internet movie database accessible via SQLite3 that
 contains two tables relevant to my analysis. The first table is the movie basics table that
 contains the following data: movie id, original and primary movie title, start year, genre,
 runtime in minutes. The second table is called movie rating and it contains the following
 data: movie id, average rating and number of votes a movie has garnered.
- Box office mojo (BOM) BOM is a popular box office data website that analyzes and tracks performance of films in theatres. This dataset contains movie name, domestic and foreign gross, year of production and the studio that produced the movie.
- The Numbers This website conducts financial analysis of films and tracks box office
 revenue. This particular dataset contains data on movie production budgets, domestic
 and worldwide gross revenues and movie release dates.

I began by importing the modules I would require for the entirety of this project.

```
In [1]: # importing the necessary modules to carry out the project
import pandas as pd
# configuring pandas to display floating point numbers
# to 2 decimal places
pd.options.display.float_format = '{:.2f}'.format
import sqlite3
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

International Movie Database (IMDB)

Then I started assessing the data contained in the movie basics table in the imdb database using SQLite3.

```
In [2]: # declaring the path to the database
    database_path = r'/Users/claire/Desktop/DS-FT08/Project files/im.db'
    # connecting to the database
    conn = sqlite3.connect(database_path)
    # querying the database to view the movie basics table
    q = '''
    SELECT *
    FROM movie_basics;
    ""
    movie_basics_df = pd.read_sql(q, conn)
    # closing the database connection
    conn.close()
    # previewing the dataframe
    movie_basics_df.head()
```

Out[2]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	Sunghursh	2013	175.00	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.00	Biography,Drama
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.00	Drama
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	nan	Comedy,Drama
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.00	Comedy, Drama, Fantasy

In [3]: # assessing information about the dataframe movie_basics_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 146144 entries, 0 to 146143
Data columns (total 6 columns):
```

Data	cotumns (total o	CO Culli13 / .						
#	Column	Non-Null Count	Dtype					
0	movie_id	146144 non-null	object					
1	<pre>primary_title</pre>	146144 non-null	object					
2	original_title	146123 non-null	object					
3	start_year	146144 non-null	int64					
4	runtime_minutes	114405 non-null	float64					
5	genres	140736 non-null	object					
dtype	es: float64(1), i	nt64(1), object(4))					
memoi	ry usage: 6.7+ MB	memory usage: 6.7+ MB						

I could see I had some missing values in the original_title column, the start_year column, runtime_minutes and genres column. My major focus was on the genres, runtime minutes and start year column so I went ahead to see what they contained.

```
In [4]: # assessing the value counts of the top 10 genres
movie_basics_df['genres'].value_counts().head(10)
```

```
Out[4]: Documentary
                                   32185
        Drama
                                   21486
         Comedy
                                    9177
                                    4372
        Horror
         Comedy, Drama
                                     3519
        Thriller
                                     3046
        Action
                                    2219
         Biography, Documentary
                                     2115
        Drama, Romance
                                    2079
         Comedy, Drama, Romance
                                    1558
        Name: genres, dtype: int64
```

```
In [5]: # getting descriptive statistics of the runtime minutes column
movie_basics_df['runtime_minutes'].describe()
```

```
Out[5]: count
                 114405.00
        mean
                     86.19
        std
                    166.36
        min
                      1.00
        25%
                     70.00
        50%
                     87.00
        75%
                     99.00
                  51420.00
        max
```

Name: runtime_minutes, dtype: float64

Now to view the contents of the movie ratings dataframe.

```
In [6]: # declaring the path to the database
    database_path = r'/Users/claire/Desktop/DS-FT08/Project files/im.db'
# connecting to the database
    conn = sqlite3.connect(database_path)
# querying the database to view the movie ratings table
    q = '''
    SELECT *
    FROM movie_ratings;
    '''
    movie_ratings_df = pd.read_sql(q, conn)
# closing the database connection
    conn.close()
# previewing the dataframe
    movie_ratings_df.head()
```

Out[6]:

	movie_id	averagerating	numvotes
0	tt10356526	8.30	31
1	tt10384606	8.90	559
2	tt1042974	6.40	20
3	tt1043726	4.20	50352
4	tt1060240	6.50	21

```
In [7]: # assessing information about the dataframe
movie_ratings_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 73856 entries, 0 to 73855
Data columns (total 3 columns):
 #
                    Non-Null Count
     Column
                                    Dtype
     movie id
                    73856 non-null
 0
                                    object
 1
     averagerating 73856 non-null
                                    float64
     numvotes
                    73856 non-null int64
```

dtypes: float64(1), int64(1), object(1)

memory usage: 1.7+ MB

Luckily there were no missing values so I went on to get descriptive statistics of the average rating column and the numvotes column to get a feel of the data.

```
In [8]: # getting descriptive statistics of average movie ratings
movie_ratings_df['averagerating'].describe()
```

```
Out[8]: count
                 73856.00
        mean
                     6.33
         std
                      1.47
                      1.00
         min
                      5.50
         25%
         50%
                      6.50
                      7.40
         75%
                     10.00
        max
```

Name: averagerating, dtype: float64

```
In [9]: # getting descriptive statistics of numvotes
movie_ratings_df['numvotes'].describe()
```

```
Out[9]: count
                   73856.00
                    3523.66
        mean
                   30294.02
         std
         min
                       5.00
         25%
                      14.00
                      49.00
         50%
         75%
                      282,00
                 1841066.00
         max
```

Name: numvotes, dtype: float64

Merging

I saw that the numvotes column contained some outliers which I would have to deal with along the way. At this point I thought it best to merge the two tables from the imdb database in order to assign the average ratings to specific movies.

In [10]: # merging the movie basics dataframe and the movie ratings dataframe t # link movie titles and genres and their respective rating imdb_merged_df = pd.merge(movie_basics_df, movie_ratings_df, how = 'ou # previewing the top 5 results imdb merged df.head()

Out[10]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genres	av
0	tt0063540	Sunghursh	Sunghursh	2013	175.00	Action,Crime,Drama	
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.00	Biography,Drama	
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.00	Drama	
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	nan	Comedy,Drama	
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.00	Comedy,Drama,Fantasy	

```
In [11]: # assessing dataframe info
         imdb_merged_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 146144 entries, 0 to 146143
Data columns (total 8 columns):
```

#	Column	Non-Null Count	Dtype
0	movie_id	146144 non-null	object
1	primary_title	146144 non-null	object
2	original_title	146123 non-null	object
3	start_year	146144 non-null	int64
4	runtime_minutes	114405 non-null	float64
5	genres	140736 non-null	object
6	averagerating	73856 non-null	float64
7	numvotes	73856 non-null	float64
ما ـ ـ ـ الم	aa. £1aa+64/2\ ;	n+61/1) nhina+/1	1

dtypes: float64(3), int64(1), object(4)

memory usage: 10.0+ MB

Cleaning

I decided to deal with duplicate values with the same primary title, genre and start year so as to make the data less murky.

In [12]: # looking for duplicate values in relation to the primary title, start
imdb_merged_df.loc[imdb_merged_df.duplicated(subset = ['primary_title']

Out[12]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	
948	tt10064536	Untitled Disney Marvel Film	Untitled Disney Marvel Film	2022	nan	
949	tt10064558	Untitled Marvel Film	Untitled Marvel Film	2021	nan	
1478	tt10127292	Plushtubers: The Apocalypse	Plushtubers: The Apocalypse	2019	nan	Act
2231	tt10224422	Olanda	Olanda	2019	154.00	
2286	tt10230042	Rok Sako To Rok Lo	Rok Sako To Rok Lo	2018	nan	
145222	tt9786006	Waiting for the Carnival	Waiting for the Carnival	2019	76.00	
145459	tt9819724	The Tale of Two Deaf Travellers	The Tale of Two Deaf Travellers	2018	5.00	Adventure,Biography,
145559	tt9838402	Furie	Furie	2019	nan	
145903	tt9883728	Congo, My Precious	Congo, My Precious	2017	nan	
145937	tt9889072	The Promise	The Promise	2017	nan	

355 rows × 8 columns

In [13]: # confirming duplicates have same start year, primary titles and genre
imdb_merged_df.loc[imdb_merged_df['primary_title'] == 'Olanda']

Out[13]:

		movie_id	primary_title	original_title	start_year	runtime_minutes	genres	average
2	001	tt10195890	Olanda	Olanda	2019	154.00	Documentary	_
2	231	tt10224422	Olanda	Olanda	2019	154.00	Documentary	

In [14]: # confirming duplicates have same start year, primary titles and genre
imdb_merged_df.loc[imdb_merged_df['primary_title'] == 'Furie']

Out[14]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genres	averageratir
142723	tt9412268	Furie	Hai Phuong	2019	98.00	Action	6.7
145559	tt9838402	Furie	Furie	2019	nan	Action	na

Since the main aim was to retain only entries with genre values, I decided to drop duplicates with null values.

```
In [15]: # dropping duplicate values
imdb_merged_df.drop_duplicates(subset=['primary_title', 'start_year',
```

In [16]: # checking on the status of the remaining columns imdb merged df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 145789 entries, 0 to 146143
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	movie_id	145789 non-null	object
1	primary_title	145789 non-null	object
2	original_title	145768 non-null	object
3	start_year	145789 non-null	int64
4	runtime_minutes	114145 non-null	float64
5	genres	140398 non-null	object
6	averagerating	73771 non-null	float64
7	numvotes	73771 non-null	float64
dtyp	es: float64(3), i	nt64(1), object(4))
memo	rv usage: 10.0+ M	B	

Now was the time to get rid of unwanted columns to zero in on the target data. I opted to drop the numvotes, start_year, original_title, movie_id columns and runtime_minutes as they would not be relevant to my analysis.

```
In [17]: # declaring columns to drop in a list
to_drop = ['numvotes', 'start_year', 'original_title', 'movie_id', 'ru
# dropping listed columns
imdb_merged_df.drop(columns = to_drop, axis=1, inplace=True)
```

```
In [18]: # previewing dataframe columns
imdb_merged_df.columns
```

Out[18]: Index(['primary_title', 'genres', 'averagerating'], dtype='object')

```
In [19]: # renaming the averagerating column to rating
imdb_merged_df = imdb_merged_df.rename(columns = {'averagerating': 'ra
# previewing first 5 results
imdb_merged_df.head()
```

Out[19]:

	title	genres	rating
0	Sunghursh	Action,Crime,Drama	7.00
1	One Day Before the Rainy Season	Biography,Drama	7.20
2	The Other Side of the Wind	Drama	6.90
3	Sabse Bada Sukh	Comedy,Drama	6.10
4	The Wandering Soap Opera	Comedy, Drama, Fantasy	6.50

The next step was to eliminate null values in the rating and genres columns as these would affect the analysis.

```
In [20]:
         # checking for null values in order to remove them
         imdb_merged_df.isna().sum()
Out[20]: title
         genres
                    5391
                   72018
         rating
         dtype: int64
In [21]: # dropping rows containing null values
         imdb_merged_df.dropna(subset=['genres', 'rating'], inplace=True)
In [22]: # confirming our data is now free of null values
         imdb_merged_df.isna().sum()
Out[22]: title
         genres
                   0
         rating
         dtype: int64
In [23]: #final check of the dataframe columns to confirm no missing values
         imdb_merged_df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 72967 entries, 0 to 146134
         Data columns (total 3 columns):
              Column Non-Null Count Dtype
          0
              title
                      72967 non-null object
              genres 72967 non-null object
          1
              rating 72967 non-null float64
         dtypes: float64(1), object(2)
         memory usage: 2.2+ MB
In [24]: #saving the dataframe in current directory as a csv file
         #imdb_merged_df.to_csv('./imdb_merged_df.csv')
```

Box Office Mojo (BOM)

I decided to look into the Box Office Mojo (bom) movie gross dataset to see what additional insights I would gain.

```
In [25]: # declaring the file path
    file_path = r'/Users/claire/Desktop/DS-FT08/Project files/bom.movie_gr
# reading the csv file into a dataframe
    bom_movie_gross_df = pd.read_csv(file_path)
# displaying first five results
bom_movie_gross_df.head()
```

Out[25]:

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.00	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.00	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.00	664300000	2010
3	Inception	WB	292600000.00	535700000	2010
4	Shrek Forever After	P/DW	238700000.00	513900000	2010

In [26]: # getting information about the dataframe bom_movie_gross_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype			
0	title	3387 non-null	object			
1	studio	3382 non-null	object			
2	<pre>domestic_gross</pre>	3359 non-null	float64			
3	foreign_gross	2037 non-null	object			
4	year	3387 non-null	int64			
dtyp	es: float64(1),	int64(1), object	(3)			
memory usage: 132.4+ KB						

In [27]: # investigating the years the data spans bom_movie_gross_df['year'].value_counts()

```
Out[27]: 2015
                  450
          2016
                  436
          2012
                  400
          2011
                  399
          2014
                  395
          2013
                  350
          2010
                  328
          2017
                  321
```

Name: year, dtype: int64

```
In [28]:
         # getting descriptive statistics of the domestic gross column
         bom_movie_gross_df['domestic_gross'].describe()
Out[28]: count
                       3359,00
         mean
                  28745845.07
                  66982498.24
         std
         min
                        100.00
         25%
                     120000.00
         50%
                    1400000.00
         75%
                  27900000.00
         max
                 936700000.00
         Name: domestic gross, dtype: float64
In [29]: # getting descriptive statistics of the foreign gross column
         bom movie gross df['foreign gross'].describe()
Out[29]: count
                       2037
         unique
                       1204
         top
                    1200000
         freq
                         23
         Name: foreign_gross, dtype: object
```

Cleaning

25%

50%

75%

max

Upon realizing that data in the foreign gross column was of the type object, I got to changing its format to float64 after stripping any unneccesary commas present in some of the values.

```
In [30]:
         # converting data type from object to float64
         bom_movie_gross_df['foreign_gross'] = bom_movie_gross_df['foreign_gros
In [31]:
         # confirming data type has changed to float64
         bom_movie_gross_df.dtypes
Out[31]: title
                             object
         studio
                             object
         domestic_gross
                            float64
                            float64
         foreign_gross
                              int64
         vear
         dtype: object
In [32]: # getting descriptive statistics of the foreign gross column
         bom_movie_gross_df['foreign_gross'].describe()
Out[32]: count
                       2037.00
                  74872810.15
         mean
         std
                 137410600.84
                        600.00
         min
```

I decided to do away with the studio column and rename the year column to release_year

Name: foreign_gross, dtype: float64

3700000.00

18700000.00

74900000.00 960500000.00

```
In [33]: # dropping the studio column
bom_movie_gross_df.drop('studio' ,axis=1, inplace=True)
# previewing first five results of the dataframe
bom_movie_gross_df.head()
```

Out[33]:

	title	domestic_gross	foreign_gross	year
0	Toy Story 3	415000000.00	652000000.00	2010
1	Alice in Wonderland (2010)	334200000.00	691300000.00	2010
2	Harry Potter and the Deathly Hallows Part 1	296000000.00	664300000.00	2010
3	Inception	292600000.00	535700000.00	2010
4	Shrek Forever After	238700000.00	513900000.00	2010

```
In [34]: # renaming the year column to release_year
bom_movie_gross_df = bom_movie_gross_df.rename(columns = {'year': 'rel
# previewing column names
bom_movie_gross_df.columns
```

```
In [35]: #picking only films produced after 2015
bom_movie_gross_df = bom_movie_gross_df[(bom_movie_gross_df['release_y
```

```
In [36]: # previewing first 5 results
bom_movie_gross_df.head()
```

Out[36]:

	title	domestic_gross	foreign_gross	release_year
1872	Star Wars: The Force Awakens	936700000.00	1131.60	2015
1873	Jurassic World	652300000.00	1019.40	2015
1874	Furious 7	353000000.00	1163.00	2015
1875	Avengers: Age of Ultron	459000000.00	946400000.00	2015
1876	Minions	336000000.00	823400000.00	2015

```
In [37]: #saving the dataframe in current directory as a csv file
# bom_movie_gross_df.to_csv('./bom_movie_gross_df.csv')
```

The Numbers dataset

This dataset contained data on the production budget of different movies and how much they grossed domestically and worldwide after the release date. Below is how I went about exploring and cleaning the data.

```
In [38]: # declaring the file path
    file_path = r'/Users/claire/Desktop/DS-FT08/Project files/tn.movie_buc
    # reading the csv file into a dataframe
    movie_budgets_df = pd.read_csv(file_path)
    # displaying first five results
    movie_budgets_df.head()
```

Out[38]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

In [39]: # assessing the number of rows and columns in the dataframe
movie_budgets_df.shape

Out[39]: (5782, 6)

In [40]: movie_budgets_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	id	5782 non-null	int64
1	release_date	5782 non-null	object
2	movie	5782 non-null	object
3	production_budget	5782 non-null	object
4	domestic_gross	5782 non-null	object
5	worldwide_gross	5782 non-null	object

dtypes: int64(1), object(5)
memory usage: 271.2+ KB

Cleaning

I was glad to see that the dataset was not missing any values so I decided to dive right into cleaning up the data by configuring the release dates to datetime format and stripping the \$ signs and commas from the budget and gross income figures and lastly converting them from objects to integers.

In [41]:

stripping dollar signs and commas from the production budget column
movie_budgets_df['production_budget'] = movie_budgets_df['production_k
stripping dollar signs and commas from the domestic gross column and
movie_budgets_df['domestic_gross'] = movie_budgets_df['domestic_gross'
stripping dollar signs and commas from the worldwide gross column and
movie_budgets_df['worldwide_gross'] = movie_budgets_df['worldwide_gross
previewing the dataframe
movie_budgets_df

Out[41]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	425000000	760507625	2776345279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875
2	3	Jun 7, 2019	Dark Phoenix	350000000	42762350	149762350
3	4	May 1, 2015	Avengers: Age of Ultron	330600000	459005868	1403013963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747
5777	78	Dec 31, 2018	Red 11	7000	0	0
5778	79	Apr 2, 1999	Following	6000	48482	240495
5779	80	Jul 13, 2005	Return to the Land of Wonders	5000	1338	1338
5780	81	Sep 29, 2015	A Plague So Pleasant	1400	0	0
5781	82	Aug 5, 2005	My Date With Drew	1100	181041	181041

5782 rows × 6 columns

I created a new column for gross_profit to see the return on investment in relation to a movie's production budget

In [42]: # creating a new column for gross profit made
 movie_budgets_df['gross_profit'] = (movie_budgets_df['worldwide_gross'
 # previewing results
 movie_budgets_df

Out[42]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross	gross
0	1	Dec 18, 2009	Avatar	425000000	760507625	2776345279	2351
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875	635
2	3	Jun 7, 2019	Dark Phoenix	350000000	42762350	149762350	-200
3	4	May 1, 2015	Avengers: Age of Ultron	330600000	459005868	1403013963	1072
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	999
5777	78	Dec 31, 2018	Red 11	7000	0	0	
5778	79	Apr 2, 1999	Following	6000	48482	240495	
5779	80	Jul 13, 2005	Return to the Land of Wonders	5000	1338	1338	
5780	81	Sep 29, 2015	A Plague So Pleasant	1400	0	0	
5781	82	Aug 5, 2005	My Date With Drew	1100	181041	181041	

5782 rows × 7 columns

In [43]: # converting release date to datetime format
movie_budgets_df['release_date'] = pd.to_datetime(movie_budgets_df['re
 # creating new column for the release month
movie_budgets_df['release_month'] = movie_budgets_df['release_date'].c
 # creating new column for release years
movie_budgets_df['release_year'] = movie_budgets_df['release_date'].dt
 # creating new column for release day
movie_budgets_df['release_day'] = movie_budgets_df['release_date'].dt.
 # renaming the movie column to title
movie_budgets_df = movie_budgets_df.rename(columns = {'movie': 'title'
 # dropping the id column
movie_budgets_df.drop(columns='id', inplace=True)
 # previewing dataframe
movie_budgets_df

Out[43]:

	release_date	title	production_budget	domestic_gross	worldwide_gross	gross_pro
0	2009-12-18	Avatar	425000000	760507625	2776345279	23513452
1	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875	6350638
2	2019-06-07	Dark Phoenix	350000000	42762350	149762350	-2002376
3	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	10724139
4	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	9997217
5777	2018-12-31	Red 11	7000	0	0	-70
5778	1999-04-02	Following	6000	48482	240495	2344
5779	2005-07-13	Return to the Land of Wonders	5000	1338	1338	-36
5780	2015-09-29	A Plague So Pleasant	1400	0	0	-14
5781	2005-08-05	My Date With Drew	1100	181041	181041	1799

5782 rows × 9 columns

In [44]: # filtering only films produced after 2015
movie_budgets_df = movie_budgets_df[(movie_budgets_df['release_year']>
previewing the first 10 results
movie_budgets_df.head(10)

Out [44]:

	release_date	title	production_budget	domestic_gross	worldwide_gross	gross_profit
2	2019-06-07	Dark Phoenix	350000000	42762350	149762350	-200237650
3	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	1072413963
4	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	999721747
5	2015-12-18	Star Wars Ep. VII: The Force Awakens	306000000	936662225	2053311220	1747311220
6	2018-04-27	Avengers: Infinity War	300000000	678815482	2048134200	1748134200
8	2017-11-17	Justice League	300000000	229024295	655945209	355945209
9	2015-11-06	Spectre	300000000	200074175	879620923	579620923
11	2018-05-25	Solo: A Star Wars Story	275000000	213767512	393151347	118151347
16	2016-05-06	Captain America: Civil War	250000000	408084349	1140069413	890069413
17	2016-03-25	Batman v Superman: Dawn of Justice	250000000	330360194	867500281	617500281

In [45]: # checking the final number of rows and columns in the dataframe
movie_budgets_df.shape

Out[45]: (938, 9)

In [46]: # cofirming there are no null values in the dataframe
movie_budgets_df.isna().sum()

Out[46]: release_date 0 title 0 production_budget 0 domestic_gross 0 worldwide_gross 0 gross_profit 0 release_month 0 release_year 0 release_day 0 dtype: int64

In [47]:

#saving the dataframe in current directory as a csv file #movie_budgets_df.to_csv('./movie_budgets_df.csv')

Merging

Now was the time to merge the three datframes systematically inorder to bring together all the different columns with values that would enable us to derive insights for Microsoft. The first step was to merge the dataframes containing financial data of the different movies. I went with a right join inorder to include all rows from the movie_budgets dataframe and matching rows from the box office mojo dataframe in order to fill in any missing values and kind of get the best of both worlds.

In [48]: # merging the bom_movie_gross dataframe with the movie_budgets datafra bom_moviebudgets_df = pd.merge(bom_movie_gross_df, movie_budgets_df, f # creating a new column for foreign gross values bom_moviebudgets_df['foreign_gross'] = (bom_moviebudgets_df['worldwide # previewing the top 10 results bom_moviebudgets_df.head(10)

Out[48]:

	title	domestic_gross	foreign_gross	release_year	release_date	production_budget	W
0	Dark Phoenix	42762350	107000000	2019	2019-06-07	350000000	
1	Avengers: Age of Ultron	459005868	944008095	2015	2015-05-01	330600000	
2	Star Wars Ep. VIII: The Last Jedi	620181382	696540365	2017	2017-12-15	317000000	
3	Star Wars Ep. VII: The Force Awakens	936662225	1116648995	2015	2015-12-18	306000000	
4	Avengers: Infinity War	678815482	1369318718	2018	2018-04-27	300000000	
5	Justice League	229024295	426920914	2017	2017-11-17	300000000	
6	Spectre	200074175	679546748	2015	2015-11-06	30000000	
7	Solo: A Star Wars Story	213767512	179383835	2018	2018-05-25	275000000	
8	Captain America: Civil War	408084349	731985064	2016	2016-05-06	250000000	
9	Batman v Superman: Dawn of Justice	330360194	537140087	2016	2016-03-25	250000000	

In [49]: # sorting the dataframe by gross profit in descending order
bom_moviebudgets_df_sorted = bom_moviebudgets_df.sort_values(by= 'grosbom_moviebudgets_df_sorted.head(10)

Out [49]:

	title	domestic_gross	foreign_gross	release_year	release_date	production_budget
4	Avengers: Infinity War	678815482	1369318718	2018	2018-04-27	300000000
3	Star Wars Ep. VII: The Force Awakens	936662225	1116648995	2015	2015-12-18	306000000
13	Jurassic World	652270625	996584239	2015	2015-06-12	215000000
21	Furious 7	353007020	1165715774	2015	2015-04-03	190000000
14	Black Panther	700059566	648198658	2018	2018-02-16	200000000
44	Jurassic World: Fallen Kingdom	417719760	888053039	2018	2018-06-22	170000000
52	Beauty and the Beast	504014165	755185541	2017	2017-03-17	160000000
155	Minions	336045770	824290403	2015	2015-07-10	74000000
1	Avengers: Age of Ultron	459005868	944008095	2015	2015-05-01	330600000
15	Incredibles 2	608581744	633938967	2018	2018-06-15	200000000

In [50]: # previewing number of rows and columns in the merged dataset.
bom_moviebudgets_df_sorted.shape

Out[50]: (938, 10)

In [51]: # checking for any null values
bom_moviebudgets_df_sorted.isna().sum()

Out[51]: title 0 domestic_gross 0 foreign_gross 0 release_year 0 release_date 0 production_budget worldwide_gross 0 gross_profit 0 release_month 0 release_day dtype: int64

In [52]: #saving the dataframe in current directory as a csv file #bom_moviebudgets_df_sorted.to_csv('./bom_moviebudgets_df_sorted.csv')

Lastly I performed an inner join/ merge on the imdb_merged dataframe and the earlier merged box office mojo and movie_budgets dataframes to link the movie release details and financials to their respective genres.

In [53]: # merging the imdb_merged dataframe to the bom_moviebudgets dataframe
imdb_bom_moviebudgets_df = pd.merge(imdb_merged_df, bom_moviebudgets_d
previewing merged dataframe
imdb_bom_moviebudgets_df.head()

Out [53]:

	title	genres	rating	domestic_gross	foreign_gross	release_year	relea
0	Jurassic World	Action,Adventure,Sci-Fi	7.00	652270625	996584239	2015	201
1	Alita: Battle Angel	Action,Adventure,Sci-Fi	7.50	85710210	317265826	2019	201
2	Before We Go	Comedy,Drama,Romance	6.80	37151	446787	2015	201
3	Before We Go	Documentary,Drama,News	7.00	37151	446787	2015	201
4	The History of Love	Drama,Romance,War	6.30	0	476624	2016	201

In [54]: # sorting the values in desecnding order by worldwide gross
imdb_bom_moviebudgets_df_sorted = imdb_bom_moviebudgets_df.sort_values
previewing sorted dataframe
imdb_bom_moviebudgets_df_sorted.head()

Out[54]:

	title	genres	rating	domestic_gross	foreign_gross	release_year	releas
788	Avengers: Infinity War	Action,Adventure,Sci- Fi	8.50	678815482	1369318718	2018	201
0	Jurassic World	Action,Adventure,Sci- Fi	7.00	652270625	996584239	2015	201
577	Furious 7	Action,Crime,Thriller	7.20	353007020	1165715774	2015	201
475	Avengers: Age of Ultron	Action,Adventure,Sci- Fi	7.30	459005868	944008095	2015	201
255	Black Panther	Action,Adventure,Sci- Fi	7.30	700059566	648198658	2018	201

In [55]: # previewing number of rows and columns in the dataframe
imdb_bom_moviebudgets_df_sorted.shape

Out[55]: (994, 12)

```
# checking for any null values in the dataframe
In [56]:
         imdb_bom_moviebudgets_df_sorted.isna().sum()
Out[56]: title
         genres
                                0
         rating
                                0
         domestic gross
                                0
         foreign_gross
                                0
         release year
                                0
         release_date
                                0
         production_budget
                                0
         worldwide_gross
                                0
         gross profit
                                0
         release_month
                                0
         release_day
         dtype: int64
```

In [57]: #saving the dataframe in current directory as a csv file #imdb_bom_moviebudgets_df_sorted.to_csv('./imdb_bom_moviebudgets_df_sd

DATA ANALYSIS

The focus of my analysis would be on three key factors that I concluded were directly related to a movie's success as I went about cleaning and normalizing the data. These three factors were movie genre, the release time(month and day of the week) and the production budget.

Genre

I decided to plot a histogram showing which genres were most popular.

I knew I would have a difficult time trying to visualize all the different genres seeing as some movies had more than two genres associated with them. I decided to define a function that would aggregate the genres into different categories of genres in the film industry.

```
In [58]: # defining the function
         def count movie genres(genres column):
             This function accepts a column of genres as its input and loops
             through it extracting the first element from a list of strings
             separated by commas. It assumes the first element is the main movi
             genre and confirms its presence in the movie genres list. It then
             over all the elements increasing their count value by 1 whenever t
             genre is encountered
         # Initializing main movie categories
             movie_genres = ['Action', 'Adventure', 'Animation', 'Biography',
                            'Family', 'Fantasy', 'History', 'Horror', 'Music',
                            'Thriller', 'War']
         # starting count per genre at 0
             genre_count = {genre: 0 for genre in movie_genres}
         # looping over all elements in the column and incrementing genres and
             for genres in genres column:
                 movie_genre = genres.split(',')[0]
                 if movie genre in movie genres:
                     genre_count[movie_genre] += 1
         # expected output
             return genre count
         # calling the function on the dataset
         genre_count = count_movie_genres(imdb_bom_moviebudgets_df['genres'])
         # converting dictionary into dataframe
         genres_df = pd.DataFrame(list(genre_count.items()), columns=['genre',
         # sorting the genres in descending order according to count
         genres df sorted = genres df.sort values(by='count', ascending=False)
         # previewing the dataframe
         genres df sorted.head()
```

Out [58]:

	genre	count
0	Action	259
7	Drama	214
4	Comedy	145
1	Adventure	94
3	Biography	82

```
In [59]:
         # setting size of the figure
         plt.figure(figsize=(10,8))
         # setting seaborn theme and plotting bar plot
         sns.set_theme(style='ticks', palette='deep')
         sns.barplot(x='count', y='genre', data=genres_df_sorted.head(14))
         # setting x-axis and y-axis labels
         plt.xlabel('No. of Movies Produced', fontsize=16)
         plt.ylabel('Genre', fontsize=16)
         # setting plot title
         plt.title('Count of Movies per Genre', fontsize=20)
         # setting x-axis and y-axis ticks fontsize
         plt.xticks(fontsize=13)
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving the figure
         #plt.savefig('./fig1.png');
```


Action movies were the most produced genre according to the dataset. Other popular genres were drama, comedy and adventure movies. Next was to assess which genres had the best return on investment in terms of gross profits. Gross profit was determined by the difference between worldwide gross income and production budget.

First step was to extract the first genre listed in every row of the genres column inorder to group production budgets and gross profits accordingly.

In [60]: # applying a lambda function to the genres column to retrieve the firs imdb_bom_moviebudgets_df['genres'] = imdb_bom_moviebudgets_df['genres' # previewing genres column imdb_bom_moviebudgets_df['genres'].value_counts()

Out[60]: Action 259 Drama 214 Comedy 145 Adventure 94 Biography 82 Horror 73 Crime 49 Documentary 45 Thriller 12 Animation 8

Family

Sci-Fi

Fantasy 3 Mystery 1 Romance 1

Name: genres, dtype: int64

4

Next step was to convert values in the production budget, gross profits, worldwide, foreign and domestic gross to millions using a lambda function.

In [61]: # defining the lambda function lambda_function = lambda x: x / 1000000 # applying lambda function to production budget, gross profits, # worldwide, foreign and domestic gross and creating new columns for v imdb_bom_moviebudgets_df['gross_profits_mil'] = imdb_bom_moviebudgets_ imdb_bom_moviebudgets_df['production_budget_mil'] = imdb_bom_moviebudgets_df imdb_bom_moviebudgets_df['world_gross_mil'] = imdb_bom_moviebudgets_df['imdb_bom_moviebudgets_df['foreign_gross_mil'] = imdb_bom_moviebudgets_df['imdb_bom_moviebudgets_df['foreign_gross_mil'] = imdb_bom_moviebudgets_df['foreign_gross_mil'] = imdb_bom_moviebudgets_df['foreign_gross_mil'] = imdb_bom_moviebudgets_df['foreign_gross_mil'] = imdb_bom_moviebudgets_df.

Out[61]:

	title	genres	rating	domestic_gross	foreign_gross	release_year	release_date	pro
0	Jurassic World	Action	7.00	652270625	996584239	2015	2015-06-12	
1	Alita: Battle Angel	Action	7.50	85710210	317265826	2019	2019-02-14	
2	Before We Go	Comedy	6.80	37151	446787	2015	2015-09-04	
3	Before We Go	Documentary	7.00	37151	446787	2015	2015-09-04	
4	The History of Love	Drama	6.30	0	476624	2016	2016-11-18	

```
In [62]: # grouping by genre and summing up production budgets and gross profit
          grouped_df = imdb_bom_moviebudgets_df.groupby('genres')[['production_k]
          # setting seaborn style
          sns.set_theme(style='ticks')
          # seting size of the figure
          plt.figure(figsize=(10, 8))
          # plotting stacked bar plot
          sns.barplot(data=grouped_df, x='genres', y='production_budget_mil', last sns.barplot(data=grouped_df, x='genres', y='gross_profits_mil', label=
                       bottom=grouped_df['production_budget_mil'])
          # setting x-axis and y-axis labels
          plt.xlabel('Genre', fontsize=16)
          plt.ylabel('Amount in millions ($)', fontsize=16)
          # setting plot title
          plt.title('Production Budget vs Gross Profits per Genre', fontsize=20)
          # setting x-axis and y-axis ticks fontsize
          plt.xticks(fontsize=13, rotation=45, ha='right')
          plt.yticks(fontsize=13)
          # setting legend
          plt.legend()
          # adjusting layout
          plt.tight_layout()
          # saving the figure
          #plt.savefig('./fig2.png');
```


Action movies continued to stand out by raking in the highest gross profits compared to production budget. This is even though action movies had significantly higher production budget. Adventure films seemed to have almost the same production budget as dramas but they posted higher gross profits than dramas. Microsoft would do well to consider those three genres in order to see a sizeable return on their investment.

Release day and month

Next I looked at how release timings affect the success of a film. I wanted to see how the release month and day of the week impacted how a movie would perform.

```
In [63]: # getting value counts of release month column
         months = imdb_bom_moviebudgets_df['release_month'].value_counts().rese
         # declaring month columns
         months.columns = ['Month', 'Number of Movies']
         # setting seaborn theme
         sns.set theme(style='ticks')
         # setting size of the figure
         plt.figure(figsize=(10, 8))
         # plotting bar plot of variation of movie releases by month
         sns.barplot(data=months, x='Month', y='Number of Movies', palette='hus
                    order = ['January', 'February', 'March', 'April', 'May',
                        'July', 'August', 'September', 'October', 'November',
         # setting plot title
         plt.title('Variation of Movie Releases by Month', fontsize=20)
         # setting x-axis and y-axis labels
         plt.xlabel('Release Month', fontsize=16)
         plt.ylabel('Number of Movies', fontsize=16)
         # setting xticks format to prevent overlapping
         plt.xticks(fontsize=13, rotation=45, ha='right')
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving the figure
         #plt.savefig('./fig3.png');
```


Most releases occured in March and December with the lowest release months being July, January and May.

```
In [64]: # getting value counts of release_day column
        days = imdb bom moviebudgets df['release day'].value counts().reset ir
        # declaring columns
        days.columns = ['Day', 'Number of Movies']
        # setting seaborn theme
        sns.set_theme(style='ticks')
        # settting size of the figure
        plt.figure(figsize=(10, 8))
        # plotting bar plot of variation of movie releases by day of the week
        # setting plot title
        plt.title('Variation of Movie Releases by Day of the Week', fontsize=2
        # setting x-axis and y-axis labels
        plt.xlabel('Release Day', fontsize=16)
        plt.ylabel('Number of Movies', fontsize=16)
        # setting xticks format to avoid overlapping
        plt.xticks(fontsize=13, rotation=45, ha='right')
        plt.yticks(fontsize=13)
        # adjusting layout
        plt.tight_layout();
        # saving the figure
        #plt.savefig('./fig4.png');
```


Its no surprise that most movies are released on friday because studios aim to take advantage of the weekend box office. This gurantees a larger audience as majority of people have free time from friday evenings all through the weekend to watch new releases.

Budget

Next I wanted to establish the relationship between production budget and how much a movie grossed domestically and worldwide. I decided to begin by creating a correlation heatmap to explore the correlation of financial variables within the dataset.

In [65]: # gettting the correlation matrix
 corr_matrix = imdb_bom_moviebudgets_df.corr()
 # previewing coorrlation matrix
 corr_matrix

Out [65]:

	rating	domestic_gross	foreign_gross	release_year	production_budget
rating	1.00	0.24	0.21	0.09	0.19
domestic_gross	0.24	1.00	0.88	0.14	0.71
foreign_gross	0.21	0.88	1.00	0.11	0.78
release_year	0.09	0.14	0.11	1.00	0.15
production_budget	0.19	0.71	0.78	0.15	1.00
worldwide_gross	0.23	0.95	0.98	0.13	0.78
gross_profit	0.22	0.94	0.97	0.11	0.66
gross_profits_mil	0.22	0.94	0.97	0.11	0.66
production_budget_mil	0.19	0.71	0.78	0.15	1.00
world_gross_mil	0.23	0.95	0.98	0.13	0.78
dom_gross_mil	0.24	1.00	0.88	0.14	0.71
foreign gross mil	0.21	0.88	1.00	0.11	0.78

```
In [66]: # setting size of the figure
    plt.figure(figsize=(10,8))
    # plotting correlation matrix heatmap and displaying correlation coeff
    sns.heatmap(corr_matrix, cmap='Blues', annot=True)
    # setting plot title
    plt.title('Correlation Heatmap', fontsize=20)
    # adjusting layout
    plt.tight_layout()
    # saving figure
    #plt.savefig('./fig5.png');
```


The heatmap showed a somewhat strong positive correlations between production budget and foreign and domestic gross. Gross profit had a strong positive correlation with domestic and foreign gross unsurprisingly. I decided to plot a stacked bar chart to see how foreign, domestic and worldwide gross varied per genre.

```
In [67]:
         # grouping genres by sum of production budget, foreign and domestic gr
         grouped_df_2 = imdb_bom_moviebudgets_df.groupby('genres')[['production']
         # setting seaborn theme
         sns.set_theme(style='ticks')
         # setting size of the figure
         plt.figure(figsize=(10, 8))
         # plotting stacked bar plot
         sns.barplot(data=grouped_df_2, x='genres', y='production_budget_mil',
         sns.barplot(data=grouped_df_2, x='genres', y='foreign_gross_mil', labe
                     bottom=grouped_df_2['dom_gross_mil'])
         sns.barplot(data=grouped_df_2, x='genres', y='dom_gross_mil', label='[
                     bottom=grouped_df_2['production_budget_mil'])
         # setting x-axis and y_axis labels
         plt.xlabel('Genre', fontsize=16)
         plt.ylabel('Amount in millions ($)', fontsize=16)
         # setting plot title
         plt.title('Production Budget vs Domestic and Foreign Gross per Genre',
         # setting xticks and yticks format
         plt.xticks(fontsize=13, rotation=45, ha='right')
         plt.yticks(fontsize=13)
         # setting plot legend
         plt.legend()
         # adjusting layout
         plt.tight_layout()
         # saving the figure
         #plt.savefig('./fig6.png');
```


From the stacked bar chart I inferred that action movies being the most produced genre had highest production budgets and in turn made more money in both domestic and foreign markets. Sci-Fi movies, thrillers, family and animation, romance and fantasy movies were

denerally not produced as frequently as drama, adventure and comedy hence their values

Next I decided to see how changes in production budget affected the worldwide gross of the top 3 genres as per their production budget to gross income ratios depicted above.

```
In [68]: # setting size of the figure
         plt.figure(figsize=(10,8))
         # setting seaborn style
         sns.set_style('ticks')
         # plotting linear model plot
         sns.lmplot(x='production_budget_mil', y='world_gross_mil',
                    data=imdb_bom_moviebudgets_df.loc[(imdb_bom_moviebudgets_df
                                                       (imdb bom moviebudgets df
                                                       (imdb_bom_moviebudgets_df
                                                       legend=False, hue='genres
                                                       scatter_kws={'alpha': 0.6
         # setting x-axis and y-axis labels
         plt.xlabel('Budget in Millions ($)', fontsize=16)
         plt.ylabel('Worldwide Gross in Millions($)', fontsize=16)
         # setting plot title
         plt.title('Production Budget vs Worldwide Gross for Action, Adventure
         # setting xticks and yticks format
         plt.xticks(fontsize=13)
         plt.yticks(fontsize=13)
         # setting legend
         plt.legend(loc=2, fontsize=12)
         # adjusting layout
         plt.tight_layout()
         # saving figure
         #plt.savefig('./fig7.png');
```

<Figure size 720x576 with 0 Axes>

From this regression plot I inferred that lower production budgets translated to lower worldwide gross earnings in most cases. The outliers in the plot mostly represent films that performed exceptionally well or poorly relative to their production budgets. Overall, the general trend was that the higher the production budget, the higher the worldwide gross and the higher the potential return on investment. Vice versa is also true.

```
In [69]:
         # setting size of the figure
         plt.figure(figsize=(10, 8))
         # setting seaborn style
         sns.set_style('ticks')
         # plotting strip plot
         sns.stripplot( x='genres', y="world_gross_mil", data=imdb_bom_moviebud
                       hue='genres', s=4, palette='husl')
         # seting x-axis and y-axis labels
         plt.xlabel('Genre', fontsize=16)
         plt.ylabel('Worldwide Gross in Millions', fontsize=16)
         # setting plot title
         plt.title('Worldwide Gross for Action and Drama Films', fontsize=20)
         # setting horizontal line on y=500
         plt.axhline(y=500, c='red', ls=':')
         # setting xticks and yticks format
         plt.xticks(rotation=45, ha='right', fontsize=13)
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving figure
         #plt.savefig('./fig8.png');
```


Action and adventure films show alot of promise in terms of how much they gross worldwide so next was to find out the median production budget and worldwide gross of all the genres.

```
In [70]:
         # setting size of the figure
         plt.figure(figsize=(10, 8))
         # setting seaborn style
         sns.set_style('ticks')
         # ploting boxplot
         sns.boxplot(x='genres', y='production_budget_mil', data=imdb_bom_movie
         # setting x-axis and y-axis labels
         plt.xlabel('Genres', fontsize=16)
         plt.ylabel('Production Budget in Millions ($)', fontsize=16)
         # setting plot title
         plt.title('Box Plot of Production Budget per Genre', fontsize=20)
         # setting xticks and yticks format
         plt.xticks(rotation=45, ha='right', fontsize=13)
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving figure
         #plt.savefig('./fig9.png');
```


The median production budget of family movies appeared to be the highest followed by animation, action and adventure movies. The boxplot also showed that the family genre had the highest interquartile range meaning that there was a large variance in family movie production budgets from the mean of the dataset and that they had relatively high median budgets. Action movies and adventure movies also depicted high interquartile ranges but significantly lower production budget median values as compared to family type movies.

```
In [71]:
         # setting size of the figure
         plt.figure(figsize=(10, 8))
         # setting seaborn style
         sns.set_style=('ticks')
         # ploting boxplot
         sns.boxplot(x='genres', y='world_gross_mil', data=imdb_bom_moviebudget
         # setting x-axis and y-axis labels
         plt.xlabel('Genres', fontsize=16)
         plt.ylabel('Worldwide Gross in Millions ($)', fontsize=16)
         # setting plot title
         plt.title('Box Plot of Worldwide gross Revenue per Genre', fontsize=20
         # setting xticks and yticks format
         plt.xticks(rotation=45, ha='right', fontsize=13)
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving figure
         #plt.savefig('./fig10.png');
```


From this plot we can conclude that family movies appear very promising in terms of worldwide gross as they also present a high median value in comparison to the other genres. Action and adventure films follow closely but I suspected that the values were being affected by outliers so I proceeded to visualize the box plot with outliers.

```
In [72]:
         # setting size of the figure
         plt.figure(figsize=(10, 8))
         # setting seaborn style
         sns.set_style=('ticks')
         # ploting boxplot
         sns.boxplot(x='genres', y='world_gross_mil', data=imdb_bom_moviebudget
         # setting x-axis and y-axis labels
         plt.xlabel('Genres', fontsize=16)
         plt.ylabel('Worldwide Gross in Millions ($)', fontsize=16)
         # setting plot title
         plt.title('Box Plot of Worldwide gross Revenue per Genre', fontsize=20
         # setting xticks and yticks format
         plt.xticks(rotation=45, ha='right', fontsize=13)
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving figure
         #plt.savefig('./fig11.png');
```


My guess was right. The action and adventure genres did possess a number of outliers and so did all the other genres except for family, animation and fantasy. The family genre continued to look very promising as a genre to invest in terms of median worldwide gross but more research was required in order to make the best informed decision.

The final step was to look at the top grossing movies worldwide per year in the action, adventure and drama categories. This would guide decisions about what actors, directors, producers, crew, agents and PR teams to engage in order to create a winning film.

```
In [73]:
         # creating new dataframe of action movies
         action movies df = imdb bom moviebudgets df[imdb bom moviebudgets df['
         # grouping by release year and getting sum of worldwide gross
         action_grouped_df = action_movies_df.groupby('release_year')['world_gr
         # sorting data to identify top 10 action movies per year
         top action movies= (action movies df.sort values(by='world gross mil',
                             .groupby('release year').head(1))
         # setting size of the figure
         plt.figure(figsize=(12, 6))
         # setting seaborn style
         sns.set(style='whitegrid')
         # plotting line plot
         sns.lineplot(data=action_grouped_df, x='release_year', y='world_gross]
         # iterating through each row of top action movies annoting top action
         for i , row in top_action_movies.iterrows():
             plt.text(row['release_year'], row['world_gross_mil'], row['title']
                      horizontalalignment='left', fontsize=12, color='green',).
         # setting x-axis and y-axis labels
         plt.xlabel('Release Year', fontsize=16)
         plt.ylabel('Worldwide Gross in Millions ($)', fontsize=16)
         # setting plot title
         plt.title('Top 5 Action Movies per Release Year by Worldwide Gross', 1
         # setting xticks and yticks format
         plt.xticks(rotation=45, ha='right',fontsize=13)
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving figure
         #plt.savefig('./fig12.png');
```



```
In [74]:
         # creating new dataframe of action movies
         adventure_movies_df = imdb_bom_moviebudgets_df[imdb_bom_moviebudgets_d
         # grouping by release year and getting sum of worldwide gross
         adv_grouped_df = adventure_movies_df.groupby('release_year')['world_gr
         # sorting data to identify top 10 action movies per year
         top adventure movies= (adventure movies df.sort values(by='world gross
                             .groupby('release year').head(1))
         # setting size of the figure
         plt.figure(figsize=(12, 6))
         # setting seaborn style
         sns.set(style='whitegrid')
         # plotting line plot
         sns.lineplot(data=adv_grouped_df, x='release_year', y='world_gross_mil
         # iterating through each row of top action movies annoting top action
         for i , row in top_adventure_movies.iterrows():
             plt.text(row['release_year'], row['world_gross_mil'], row['title']
                      horizontalalignment='left', fontsize=12, color='green',).
         # setting x-axis and y-axis labels
         plt.xlabel('Release Year', fontsize=16)
         plt.ylabel('Worldwide Gross in Millions ($)', fontsize=16)
         # setting plot title
         plt.title('Top 5 Adventure Movies per Release Year by Worldwide Gross'
         # setting xticks and yticks format
         plt.xticks(rotation=45, ha='right',fontsize=13)
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving figure
         #plt.savefig('./fig13.png');
```



```
In [75]:
         # creating new dataframe of action movies
         drama movies df = imdb bom moviebudgets df[imdb bom moviebudgets df['d
         # grouping by release year and getting sum of worldwide gross
         drama_grouped_df = drama_movies_df.groupby('release_year')['world_gros
         # sorting data to identify top 10 action movies per year
         top_drama_movies= (drama_movies_df.sort_values(by='world_gross_mil', a
                             .groupby('release year').head(1))
         # setting size of the figure
         plt.figure(figsize=(12, 6))
         # setting seaborn style
         sns.set(style='whitegrid')
         # plotting line plot
         sns.lineplot(data=drama_grouped_df, x='release_year', y='world_gross_n
         # iterating through each row of top action movies annoting top action
         for i , row in top_drama_movies.iterrows():
             plt.text(row['release_year'], row['world_gross_mil'], row['title']
                      horizontalalignment='left', fontsize=12, color='green',).
         # setting x-axis and y-axis labels
         plt.xlabel('Release Year', fontsize=16)
         plt.ylabel('Worldwide Gross in Millions ($)', fontsize=16)
         # setting plot title
         plt.title('Top 5 Drama Movies per Release Year by Worldwide Gross', fo
         # setting xticks and yticks format
         plt.xticks(rotation=45, ha='right',fontsize=13)
         plt.yticks(fontsize=13)
         # adjusting layout
         plt.tight_layout()
         # saving figure
         #plt.savefig('./fig14.png');
```


CONCLUSIONS

Microsoft stands a great chance at breaking into the movie industry by taking into consideration these three factors:

 Genre - The top 5 most produced genres in the movie industry are acttion, drama, comedy, adventure and biographies. These depict genres that have been tried and tested as being popular with a wide variety of masses. If microsoft focuses its attention on these genres they are guaranteed to successfully attract audiences the world over and break into the movie scene in an earth-shattering way.

- Release day Microsoft should aim to release their movies on fridays for maximum success. Friday being the end of the week makes it the most ideal period for moviegoers to visit theatres and watch new movie releases. Many movie studios strategically choose Fridays for releases to maximize box office earnings. This is because movies have more time to attract larger audiences and generate higher revenue. By creating buzz in the days before the day of release, a movie is guaranteed great success.
- Release month The period between March to June is very popular with movie releases and according to research, many critically acclaimed films that win at the Oscars are released in March and April. This can be a contributing factor to Microsoft's success. May to August also witnesses a rise in movie releases as movie studios count on the summer months to take advantage of the larger audience and school vacations. Summer break also means that families have more opportunities to go out for entertainment. Family films have a better opportunity when released from late November to December as this is the period of holidays such as Thanksgiving, Christmas, and New Year. The festive spirit means that families have a higher likelihood of going to movies together thus making it a good time for family-oriented films.
- Budget My analysis has shown that the more money that is put into producing a film, the more money there stands to be made in terms of domestic and foreign revenue. Less investment into producing a film will mean that production quality will be compromised. A higher budget will enable a movie studio to enlist top-tier actors, invest in high-quality special effects and CGI, create elaborate sets and producee captivating cinematography for its audience. This will have the domino effect of attracting more viewers. A larger budget will also enable effective marketing and promotional campaigns creating buzz and generating anticipation among audiences leading to higher ticket sales across multiple theaters both domestically and internationally.

RECOMMENDATIONS

I would recommend that Microsoft do the following:

- Produce an action film preferably a superhero movie seeing as three of the five top grossing action films worldwide between 2015 and 2019 are superhero movies. They should aim for a production budget of between 150 to 300 million dollars and aim to release the movie between March and June. This is the best time period for a demographic that enjoys superhero action films. Microsoft should also enlist a top-grossing superhero movie director for their premier film. As worlwide gross income numbers are to go by, they should work with the Russo brothers (Anthony and Joseph Russo) who are the directors of the movie Avengers: Infinity War.
- Microsoft should also aim to produce an adventure movie going by budget to worldwide gross income ratio. The top three adventure movies between 2015 and 2019 are animation comedy adventure films that appeal to younger and older audiences. This movie should be released between May and July during school summer breaks guaranteeing a massive audience of kids and parents alike. The production budget should be set around the median which is between 70 to 100 million dollars. Microsoft should also aim to enlist top animation producers such as Pierre Coffin who has directed both Minions and Despicable Me, Kyle Balda from Minions or Andrew Stanton from Finding Dory.
- Microsoft can also produce a romantic drama going by 3 of the top 5 drama movies in the 2015 to 2019 time period. Two of these are the Fifty Shades franchise so Microsooft can enlist top directors proficient in the genre. Some of them are James Foley from Fifty

Shades Freed and Morten TTyldum from the movie Passengers. The production budget should be between 50 and 100 million dollars.

NEXT STEPS

- Invest in the best producers, screenwriters, actors and cinematographers per genre in the recommendations.
- Get the best suited sound, design, costumes and art crew for each movie.
- Invest in the highest quality sound, music, visual and special effects software and hardware in the market to ensure the best quality of production.
- Enlist the best PR and marketing firms to boost advertising, marketing and distribution of their upcoming films.
- Research on the feasibility and viability of producing a family film.

REFERENCES

<u>Image by upklyak on Freepik (https://www.freepik.com/free-vector/film-crew-movie-production-studio-</u>

<u>staff_29314759.htm#fromView=search&page=1&position=8&uuid=1c379553-fabc-44ff-a8ab-f4c3d5519362)</u>