E-Graphs and Equality Saturation (in Haskell)

Rodrigo Mesquita

March 8, 2023

E-graphs and eq-sat are cool

Published applications of equality saturation and e-graphs

- Automatic vectorization of digital signal processing code
- Tensor graph superoptimization
- Algebraic metaprogramming and symbolic computation
- and more...

E-graphs and eq-sat are cool

And perhaps in the near future...

- A symbolic mathematics library in Haskell
- Pattern-match coverage checking in GHC
- <Insert your idea here>

- An e-graph is a data structure that
 - compactly represents equivalence classes of expressions
 - while maintaining a key invariant: the equivalence relation is closed under congruence^a
- Concretely, an e-graph is a set of equivalence classes.
 - Each e-class is a set of equivalent e-nodes
 - An e-node represents a expression from a given language (e.g. x * 1)
 - An e-node is a function symbol paired with a list of children e-classes $f(c_1, c_2, \dots)$

^aIntuitively, $a \equiv b \Rightarrow f(a) \equiv f(b)$

- An e-graph is a data structure that
 - compactly represents equivalence classes of expressions
 - while maintaining a key invariant: the equivalence relation is closed under congruence^a
- Concretely, an e-graph is a set of equivalence classes.
 - Each e-class is a set of equivalent e-nodes
 - An e-node represents a expression from a given language (e.g. x * 1)
 - An e-node is a function symbol paired with a list of children e-classes $f(c_1, c_2, \dots)$

alntuitively, $a \equiv b \Rightarrow f(a) \equiv f(b)$

- An e-graph is a data structure that
 - compactly represents equivalence classes of expressions
 - while maintaining a key invariant: the equivalence relation is closed under congruence^a
- Concretely, an e-graph is a set of equivalence classes.
 - Each e-class is a set of equivalent e-nodes
 - An e-node represents a expression from a given language (e.g. x * 1)
 - An e-node is a function symbol paired with a list of children e-classes $f(c_1, c_2, ...)$

^aIntuitively, $a \equiv b \Rightarrow f(a) \equiv f(b)$

- An e-graph is a data structure that
 - compactly represents equivalence classes of expressions
 - while maintaining a key invariant: the equivalence relation is closed under congruence^a
- Concretely, an e-graph is a set of equivalence classes.
 - Each e-class is a set of equivalent e-nodes
 - An e-node represents a expression from a given language (e.g. x * 1)
 - An e-node is a function symbol paired with a list of children e-classes $f(c_1, c_2, \dots)$

alntuitively, $a \equiv b \Rightarrow f(a) \equiv f(b)$

- An e-graph is a data structure that
 - compactly represents equivalence classes of expressions
 - while maintaining a key invariant: the equivalence relation is closed under congruence^a
- Concretely, an e-graph is a set of equivalence classes.
 - Each e-class is a set of equivalent e-nodes
 - An e-node represents a expression from a given language (e.g. x * 1)
 - An e-node is a function symbol paired with a list of children e-classes $f(c_1, c_2, \dots)$

^aIntuitively, $a \equiv b \Rightarrow f(a) \equiv f(b)$

- This e-graph represents (a*2)/2
- In fact, it represents a, 2 and a * 2 too

- ullet Now we **represent** the expression $a\ll 1$ in a new e-class
- And **merge** that e-class with the e-class representing a * 2
 - We merge these two classes because they represent equivalent expressions
 - By congruence, (a*2)/2 is now seen as equivalent to $(a \ll 1)/2$

- Now we **represent** the expression $a\ll 1$ in a new e-class
- And **merge** that e-class with the e-class representing a * 2
 - We merge these two classes because they represent equivalent expressions
 - By congruence, (a*2)/2 is now seen as equivalent to $(a \ll 1)/2$

- ullet Now we **represent** the expression $a\ll 1$ in a new e-class
- And **merge** that e-class with the e-class representing a*2
 - We merge these two classes because they represent equivalent expressions
 - By congruence, (a*2)/2 is now seen as equivalent to $(a\ll1)/2$

- Eq-sat is a technique that leverages e-graphs to implement term rewriting systems
- In short, we
 - Represent an expression in the e-graph
 - Repeatedly apply pattern-based rewrites until saturation (rewrite rules like $x*1 \rightarrow x$ where x matches any expression)
 - Extract the best expression equivalent to the inpu

- Eq-sat is a technique that leverages e-graphs to implement term rewriting systems
- In short, we
 - Represent an expression in the e-graph
 - Repeatedly apply pattern-based rewrites until saturation (rewrite rules like $x*1 \rightarrow x$ where x matches any expression)
 - Extract the best expression equivalent to the input

- Eq-sat is a technique that leverages e-graphs to implement term rewriting systems
- In short, we
 - Represent an expression in the e-graph
 - Repeatedly apply pattern-based rewrites until saturation (rewrite rules like $x*1 \rightarrow x$ where x matches any expression)
 - Extract the best expression equivalent to the input

- Eq-sat is a technique that leverages e-graphs to implement term rewriting systems
- In short, we
 - Represent an expression in the e-graph
 - Repeatedly apply pattern-based rewrites until saturation (rewrite rules like $x*1 \rightarrow x$ where x matches any expression)
 - Extract the best expression equivalent to the input

Example (Rewriting (a*2)/2)

- $a * 2 = a \ll 1$
- (a*b)/c = a*(b/c)
- x/x = 1
- x * 1 = x

Example (Rewriting (a*2)/2)

- $a * 2 = a \ll 1$
- (a*b)/c = a*(b/c)
- x/x = 1
- x * 1 = x

Example (Rewriting (a*2)/2)

- $a * 2 = a \ll 1$
- (a*b)/c = a*(b/c)
- x/x = 1
- x * 1 = x

Example (Rewriting (a * 2)/2)

- $a * 2 = a \ll 1$
- (a*b)/c = a*(b/c)
- x/x = 1
- x * 1 = x

Fast and extensible equality saturation¹

- Invariant restoration technique called rebuilding
- Mechanism called e-class analysis to integrate domain specific analysis into the e-graph

¹egg: Fast and Extensible Equality Saturation (POPL 2021)

Rebuilding

The key idea: defer e-graph invariant restoration to the call of rebuild

- Under certain workloads (automated theorem provers such as Z3), e-graph invariants are restored after every operation
- For equality saturation, we can greatly benefit from deferred invariant maintenance:
 - Search for all pattern matches
 - Apply all rewrites that matched²
 - Restore invariants³

²We can't search patterns while applying rewrites – the invariants aren't maintained w/out rebuild

Potentially saves work because we deduplicate the worklis

Rebuilding

The key idea: defer e-graph invariant restoration to the call of rebuild

- Under certain workloads (automated theorem provers such as Z3), e-graph invariants are restored after every operation
- For equality saturation, we can greatly benefit from deferred invariant maintenance:
 - Search for all pattern matches
 - Apply all rewrites that matched²
 - Restore invariants³

²We can't search patterns while applying rewrites – the invariants aren't maintained w/out **rebuild**

³Potentially saves work because we deduplicate the worklist

E-class Analysis

The key idea: attach data to each e-class and use it to modify the e-graph

- Purely syntactic rewrites are insufficient in certain applications, in which we need domain knowledge (e.g. constant folding)
- Previously, this knowledge was added by modifying the e-graph with ad-hoc passes
- E-class analysis allows the expression of analysis over the e-graph
 - Each e-class has data from a semilattice
 - Merging e-classes merges the data
 - We can use the data to modify the e-graph
 - (See interface of Analysis)

E-class Analysis

The key idea: attach data to each e-class and use it to modify the e-graph

- Purely syntactic rewrites are insufficient in certain applications, in which we need domain knowledge (e.g. constant folding)
- Previously, this knowledge was added by modifying the e-graph with ad-hoc passes
- E-class analysis allows the expression of analysis over the e-graph
 - Each e-class has data from a semilattice
 - Merging e-classes merges the data
 - We can use the data to modify the e-graph
 - (See interface of Analysis)

E-class Analysis

The key idea: attach data to each e-class and use it to modify the e-graph

- Purely syntactic rewrites are insufficient in certain applications, in which we need domain knowledge (e.g. constant folding)
- Previously, this knowledge was added by modifying the e-graph with ad-hoc passes
- E-class analysis allows the expression of analysis over the e-graph
 - Each e-class has data from a semilattice
 - Merging e-classes merges the data
 - We can use the data to modify the e-graph
 - (See interface of Analysis)

E-graphs in hegg (Demo)

Remark

Follow through with the documentation: Data.Equality.Graph

• Why are expressions in their functorial form?

References

- egg: Fast and Extensible Equality Saturation
- Relational E-matching