

100%

Matemática Discreta I

Parcial 5: junio 21, 2022 Tema 1

Nombre y apellido: Tomas AcHAVAC

Correo UNC: TOMAS ACHAVACOM: UNC. EDU. AR

COMISIÓN: 2

Observación: La comisión debe ser tal como figura en Guaraní. En caso de no estar inscritos en Guaraní deben poner la comisión a la cual asisten.

Ejercicios:

(1) Sean los siguientes grafos:

- 5 (a) (5 %) Escribir la tabla de adyacencias de G_1 .
- 5 (b) (5 %) ¿Es G_1 un grafo regular?
- (c) (10 %) Dibujar los grafos complementarios de G_1 y G_2 .
- \mathcal{U} (d) (20 %) Probar que G_1 y G_2 no son isomorfos (puede ayudar usar el item (c)).
- \mathcal{U} (e) (20 %) Dé un ciclo hamiltoniano en el grafo G_1 .
- UO (2) (40 %) Determinar si el grafo G=(V,E) tiene caminatas o circuitos eulerianos, y en caso de que la respuesta sea positiva, encontrar una caminata o circuito euleriano.

 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

 $E = \{\{1,2\},\{1,12\},\{2,7\},\{3,4\},\{3,7\},\{4,5\},\{4,6\},\{4,7\},\{5,6\},$

 $\{7,8\},\{8,9\},\{9,10\},\{9,11\},\{9,12\},\{10,11\}\}.$

COMITION 2

MATERATICA DISCRETA - PANCIAL 5

EJERCICIO 1: SEAN

TOMAS ACHÁVAL 45085146 Q.

6,: 3 2

a) TABLA OF ADYACTUCIAS OF G:

- 54					
		3			6
2	1	2	1	2	2
4	3	4	3	3	3
	5	5		6	5
(5	6			

b) Es G, un GRAFO REGULAR? SABEMOS DUT EN UN

GRAFO REGULAR TODOS LOS VÉRTICET TIENTO LA MISMA

VALENCIA, Y EN G, POR ESEMPLO, S(1) = 2 MIENTRAS

DUE S(2) = 4, POR LO TANTO NO TODOS LOS VÉRTICES

TIENTO LA MISMA VALENCIA Y ENTONCES G, NO ES

UN GRAFO REGULAR. (LA FUNCION S(X) DEUDIEUT LA

VALENCIA DEL VÉRTICEX)

C) GRAFOT COMPLEMENTATIOT

d) PROBAR PUT 61 y 62 NO SON ISOMONEOS;

SABEMOJ PUE SI GO ES ISOMONFO CON GO ENTONCES GO Y GO TAMBIÉN LO SENAN. VALE

TAMBIÉN PUE SI GO Y GO NO SON ISOMORFOS ENTONCES GO Y GO TAMPOCO LO SENAN.

NOTEMOS PUE GO CONTIENE UN 3-CICLO ENTAR LOS VÉNTICES D, DY P, MENTAS DUE

67 NO CONTIENE NINCÚN 3-CICLO. UN ISOMONFISMO MANTIENE LOS SUBGARAS Y CICLOS Y POR

MOTA

LO TANTO 62 NO PODN'A SER ISOMONSO A 6, CON LO CUAL 6, NO ES ISOMONSO A 62 L

e Ciclo Hamiltoniano en 61º

4,3,5,6,2,1,4 (uricità robor los véntices únicamente repirituon el último y printen)

EJERCICIO 2: DETERMINAN Y DAN, 5: EXISTEU GAMINATAS O CINCUITOS QUELLANOS EN EL GRAFO G=(V,E) DADO POR

V= {1,2,3,4,5,6,7,8,9,10,11,12} E={{1,2},{1,12},{2,3},{3,4},{3,4},{4,5},{4,6},{4,7},{5,6},{7,8},{87},{1,10},{1,11}

(IIII	UNI NCT	143.601	7 6100	Crof 3 10	
G=	63	100	BAR!	December 18	e sins
		9	_		
	_ (13	-		2	
74	(D)/	1796	dign's	1	(3)
4	11		May	Lay 6	7
100	//		/	/	\ \bar{\}
1	1		1	/	17
- (9	300	a Dila	-	1	///
	1		1/	//	(3)
	(6)		1//		
		V	3	(3)	
		-	4	1 15	

HAXE IMAREPORTEUTA CIÓN GNAPICA

LOS VÉRTICES	CON LA FUNCION	5()
8(1)=2	8(+)=4	1 JANA 5 1
S(2)= 2 #	S(8) = 2	
S(3) = Z	8(9) = 9	T 6 5 5
8(4)=4	8 (10) = 2	
8 (2)=5	5(11) = 2	
5(6)=2	5(12)=2	

- AHOND, SABEMET PUE EXITTE UNA CAMINATA EULENIANA ENTRE DOS VÉNTICES DISTINTOS ÚNICAMENTE SI ESOS DOS VÉNTICES SON 105 ÚNICOS DOS CON VALENCIA IMPAR DE GNAFO. PON 10 TANTO Y YA PUE NO HAY VÉNTICES DE VALENCIA IMPAR EN G, NO EXISTE UNA CAMINATA EULENIANA ENTRE 2 VÉNTICES DISTINTOS DE G.
- · SARMOS TAMBIÉS PUL EXISTE UN CIRCUITO EULERIALA EN 6 SI Y 5010 SI TODAT LAS VALUCIAS DE 6 JON PARES, Y LO JON, POR LA TANTO EXISTE UN CIRCUITO EULERIALA EN 6
- EL CIRCUITO PUEDE SENS

 2,1,12,9,10,11,9,8,7,3,4,5,6,4,7,2 VICOMENTA Y TEAMINA EN EL
 MISMO UÉNTICE