Beurling Factorisation of Hardy Spaces

Final Presentation

by Ashish Kujur on 16th May, 2023

* (Open Unit Disc) $\overline{\mathbb{D}}=\{z\in\mathbb{C}:|z|<1\}.$

- * (Open Unit Disc) $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| < 1\}.$
- * (Unit Circle) $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}.$

- * (Open Unit Disc) $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- * (Unit Circle) $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$
- * \mathbb{T} has the normalised Lebesgue measure $\frac{dt}{2\pi}$ unless specified otherwise.

- * (Open Unit Disc) $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- * (Unit Circle) $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$
- * $\mathbb T$ has the normalised Lebesgue measure $\frac{dt}{2\pi}$ unless specified otherwise.
- * $\mathcal{M}(\mathbb{T})$: Banach space of complex measures on \mathbb{T} with the total variation norm.

- * (Open Unit Disc) $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- * (Unit Circle) $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$
- * $\mathbb T$ has the normalised Lebesgue measure $\frac{dt}{2\pi}$ unless specified otherwise.
- * $\mathcal{M}(\mathbb{T})$: Banach space of complex measures on \mathbb{T} with the total variation norm.
- * nth Fourier coefficient of $f \in \mathcal{L}^1(\mathbb{T})$ and $\mu \in \mathcal{M}(\mathbb{T})$, $n \in \mathbb{Z}$:

$$\hat{\mathit{f}}(\mathit{n}) := rac{1}{2\pi} \int_{-\pi}^{\pi} \mathit{f}\left(\mathit{e}^{\mathit{it}}\right) \mathit{e}^{-\mathit{int}} \mathit{dt}.$$

$$\hat{\mu}\left(\mathbf{n}
ight) :=\int_{\mathbb{T}}e^{-i\mathbf{n}\mathbf{t}}d\mu\left(e^{i\mathbf{t}}
ight) .$$

- * (Open Unit Disc) $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- * (Unit Circle) $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$
- * $\mathbb T$ has the normalised Lebesgue measure $\frac{dt}{2\pi}$ unless specified otherwise.
- * $\mathcal{M}(\mathbb{T})$: Banach space of complex measures on \mathbb{T} with the total variation norm.
- * nth Fourier coefficient of $f \in \mathcal{L}^1(\mathbb{T})$ and $\mu \in \mathcal{M}(\mathbb{T})$, $n \in \mathbb{Z}$:

$$\hat{f}(n) := rac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{it}\right) e^{-int} dt.$$

$$\hat{\mu}\left(n
ight) :=\int_{\mathbb{T}}e^{-int}d\mu\left(e^{it}
ight) .$$

*
$$H(\mathbb{D}) = \{f : \mathbb{D} \to \mathbb{C} : f \text{ is holomorphic on } \mathbb{D}\}$$

 $h(\mathbb{D}) = \{f : \mathbb{D} \to \mathbb{C} : f \text{ is harmonic in } \mathbb{D}\}.$

(F. Riesz (1923))

(F. Riesz (1923))

Let $1 \leq p \leq \infty$ and $f \in H(\mathbb{D})$.

(F. Riesz (1923))

Let $1 \leq p \leq \infty$ and $f \in H(\mathbb{D})$.

For $0 \le r < 1$, define $f_r : \mathbb{T} \to \mathbb{C}$, $f_r(e^{i\theta}) = f(re^{i\theta})$ for each $e^{i\theta} \in \mathbb{T}$.

(F. Riesz (1923))

Let $1 and <math>f \in H(\mathbb{D})$.

For $0 \le r < 1$, define $f_r : \mathbb{T} \to \mathbb{C}$, $f_r(e^{i\theta}) = f(re^{i\theta})$ for each $e^{i\theta} \in \mathbb{T}$. Define $H^p(\mathbb{D})$, Hardy class of analytic functions, by

$$H^{p}\left(\mathbb{D}
ight)=\left\{ f\!\in H\!\left(\mathbb{D}
ight):\left\{ \left\Vert f_{r}\right\Vert _{p}
ight\} _{0\leq r<1}\text{ is bounded}
ight\}$$

(F. Riesz (1923))

Let $1 \leq p \leq \infty$ and $f \in H(\mathbb{D})$.

For $0 \le r < 1$, define $f_r : \mathbb{T} \to \mathbb{C}$, $f_r(e^{i\theta}) = f(re^{i\theta})$ for each $e^{i\theta} \in \mathbb{T}$. Define $H^p(\mathbb{D})$, Hardy class of analytic functions, by

$$H^{p}\left(\mathbb{D}\right)=\left\{ f\in H\left(\mathbb{D}\right):\left\{ \left\Vert f_{r}\right\Vert _{p}
ight\} _{0\leq r<1}\text{ is bounded}
ight\}$$

Theorem (G.H. Hardy, 1915)

If
$$f \in H^p(\mathbb{D})$$
 then $\|f_{r_1}\|_p \le \|f_{r_2}\|_p$ for $0 < r_1 \le r_2 < 1$.

(F. Riesz (1923))

Let $1 \le p \le \infty$ and $f \in H(\mathbb{D})$.

For $0 \le r < 1$, define $f_r : \mathbb{T} \to \mathbb{C}$, $f_r(e^{i\theta}) = f(re^{i\theta})$ for each $e^{i\theta} \in \mathbb{T}$. Define $H^p(\mathbb{D})$, Hardy class of analytic functions, by

$$H^{p}\left(\mathbb{D}
ight)=\left\{ f\!\in H\left(\mathbb{D}
ight):\left\{ \left\Vert f_{r}\right\Vert _{p}
ight\} _{0\leq r<1}\text{ is bounded}
ight\}$$

Theorem (G.H. Hardy, 1915)

If
$$f \in H^p(\mathbb{D})$$
 then $\|f_{r_1}\|_p \le \|f_{r_2}\|_p$ for $0 < r_1 \le r_2 < 1$.

Theorem

For $1 \leq p < \infty$, $H^p(\mathbb{D})$ is a Banach space with the norm

$$\|f\|_p := \sup_{0 < r < 1} \|f_r\|_p = \lim_{r \to 1} \|f_r\|_p.$$

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt/2\pi)$.

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T}, \mathcal{B}\left(\mathbb{T}\right), dt/2\pi)$. Define $H^{p}\left(\mathbb{T}\right) = \left\{f \in L^{p}\left(\mathbb{T}\right) : \hat{f}(n) = 0 \text{ for each } n < 0\right\}$.

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt/2\pi)$. Define $H^p(\mathbb{T}) = \left\{ f \in L^p(\mathbb{T}) : \hat{f}(n) = 0 \text{ for each } n < 0 \right\}$. $H^p(\mathbb{T})$ is a Banach space.

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt/2\pi)$. Define $H^p(\mathbb{T}) = \left\{ f \in L^p(\mathbb{T}) : \hat{f}(n) = 0 \text{ for each } n < 0 \right\}$. $H^p(\mathbb{T})$ is a Banach space. (Why?)

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt/2\pi)$. Define $H^p(\mathbb{T}) = \left\{ f \in L^p(\mathbb{T}) : \hat{f}(n) = 0 \text{ for each } n < 0 \right\}$. $H^p(\mathbb{T})$ is a Banach space. (Why?)

Question

 $H^p(\mathbb{D})$ and $H^p(\mathbb{T})$ are both Banach spaces. Are they related?

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt/2\pi)$. Define $H^p(\mathbb{T}) = \left\{ f \in L^p(\mathbb{T}) : \hat{f}(n) = 0 \text{ for each } n < 0 \right\}$. $H^p(\mathbb{T})$ is a Banach space. (Why?)

Question

 $H^p(\mathbb{D})$ and $H^p(\mathbb{T})$ are both Banach spaces. Are they related?

YES!

» Poisson Kernel & Integral

(Recover!)

Definition (Poisson Kernel)

For each $r \in [0,1)$, we define $P_r : \mathbb{T} \to \mathbb{R}$ by

$$P_r\left(e^{it}\right) = \frac{1 - \dot{r}^2}{1 + \dot{r}^2 - 2r\cos t}$$

Definition (Poisson Integral)

Let $\mu \in \mathcal{M}\left(\mathbb{T}\right)$ and $f \in L^{1}\left(\mathbb{T}\right)$. Then Poisson integral of μ , denoted by $P[\mu]: \mathbb{D} \to \mathbb{C}$ is given by

$$P\left[\mu
ight]\left(re^{i heta}
ight)=\int_{\mathbb{T}}P_{r}\left(e^{i(heta-t)}
ight)d\mu\left(e^{it}
ight)$$

and Poisson integral of f, denoted by $P[f]: \mathbb{D} \to \mathbb{C}$ is given by

$$P[f]\left(re^{i heta}
ight) = rac{1}{2\pi}\int_{-\pi}^{\pi}P_{r}\left(e^{i(heta-t)}
ight)f\left(e^{i heta}
ight)dt.$$

» Representation Theorems

(Recovery)

Let $u \in h(\mathbb{D})$. Then u is a Poisson integral of 1. hello