MTH013

«Calculus for Science and Engineering»

Module Teacher: Yun Lu

Email: yun.lu02@xjtlu.edu.cn

Office: MB343C

Office Hours: 15:00-17:00 Tuesday

Teaching Arrangements

- Lecture 1: Tuesday 9:00-11:00 FB195
- Lecture 2: Friday 15:00-17:00 FB195

网络平台 LMO

- XJTLU-LMO
 - -Module Handbook 课程手册
 - -Teaching Plan 教学计划
 - -Lecture Slides 课件
 - -Solutions to Exercise Booklet 习题解答
 - -Reading Materials 课外阅读材料

Module Assessments 课程考核

- In-Semester Exam (15%, Week 7) 期中考试占15%
- Course Work (10%, weekly homework and two online tests in week 4, week 11)
 平时成绩占10%
- Final Examination (75%) 期末考试占75%

Exercise Booklet (Weekly Homework)

- Submitted by assignment links in LMO
- Deadline: 23:00 Monday
- Solutions release time: Tuesday
- Contribution to final marks (5%)

W2	W3	W5	W6	W7	W9	W10	W11	W12	W13
P1-3	P4-6	P7-9	P10- 11	P12- 14	P17-20	P21-22	P23-26	P27-29	P30-33

Textbook 教材

- 《Calculus Early Transcendentals》 D. Varberg etc.
- 《微积分》,上下册,同济大学数学系

Learning Suggestions

Change Learning Behavior 转变学习方式
Passive Learning → Active Learning
被动学习→主动学习

自觉的转变自己的学习方法和学习习惯作为开始阶段的第一要务

- Focus on deep understanding of concepts, methods and conclusions 注重数学概念、方法和结论的深入理解
- For detail in a step-by-step of operation and reasoning 运算和推理的步骤
- Expression of mathematical language 数学语言的规范表达

- ■阅读教材
- 数学语言
- 专业词汇
- ■课前预习
- ■学会记笔记
- 及时复习
- ■认真完成作业
- 及时解惑

Chapter 1 Preliminaries

- 1.5 Functions and Their Graphs
- 1.6 Operations on Functions
- 1.7 Exponential and Logarithmic Functions
- 1.8 The Trigonometric Functions
- 1.9 The Inverse Trigonometric Functions

1.5 Functions and Their Graphs

Definition of Functions (函数的定义):

Let D and R be nonempty sets (非空集合). A function from D to R is a rule (法则) f of correspondence that assigns a unique element $y \in R$ to each element $x \in D$.

- (1) x is called the independent variable (自变量) and y the dependent variable (因变量), and .
- (2) We say "y is a function of x" and symbolically: y = f(x) $x \in D$.

Function Notation

• A single letter like f (or g or F) is used to name a function. Then f(x), read "f of x" or "f at x", denotes the value that f assigns to x.

Domain and Range

The domains frequently appeared are intervals (区间) such as $[a,b],(a,b),(a,\infty),\cdots$

- The set D is called the domain(定义域) of the function and denoted by D(f) or D_f .
- The set of all the values that y can take is called the range(值域) of the function and symbolically R(f), or R_f , that is,

$$R(f) = \{y: y = f(x), x \in D(f)\}$$

- To specify (说明) a function completely, we must state,

 (1) The rule of correspondence (对应法则), two key elements

 (2) The domain of the function (定义域).
- When no domain is specified for a function, we assume that it is the largest set of real numbers for which the rule for the function makes sense. This is called the natural domain (自然定义域).

Graphs of Functions

The graph of y = f(x), $x \in [a,b]$ is the set in the plane \mathbb{R}^2 : $\{(x,y): y = f(x), x \in [a,b]\}.$

Even Functions and Odd Functions: Symmetry of graph

Domain D is symmetric with respect to the origin.

Even function of x if f(-x) = f(x), $x \in D$.

Odd function of x if $f(-x) = -f(x), x \in D$.

The graph of an even function is symmetric about the *y*-axis.

The graph of an odd function is symmetric about the origin.

Monotonic Functions 单调函数

The function f(x) is defined on some interval I,

增函数

f is increasing on I if $x_1 < x_2$ implies $f(x_1) < f(x_2)$. f is decreasing on I if $x_1 < x_2$ implies $f(x_1) > f(x_2)$.

1.6 Operations on Functions (函数的运算)

(1) Sums(和), Differences(差), Products(积), Quotients(商), and Powers(幂)

Given two functions f and g, D is the intersection(交) of the two domains of functions f and g. We define

$$(f+g)(x) = f(x) + g(x) \quad x \in D$$

$$(f-g)(x) = f(x) - g(x) \quad x \in D$$

$$(f \cdot g)(x) = f(x) \cdot g(x) \quad x \in D$$

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)} \quad x \in D \text{ and } g(x) \neq 0$$

 $f^n(x) = [f(x)]^n, x \in D(f)$

(2) Composition of Functions 复合函数

Suppose that f(x) and g(x) be two functions.

$$g \circ f(x) := g(f(x))$$

is called the composition of g with f.

Note the domain of the composite function is:

$$D(g \circ f) = \{x \mid x \in D(f), f(x) \in D(g)\}$$

 $D(g \circ f)$ need not be the same as D(f), usually, $D(g \circ f) \subseteq D(f)$.

Decomposition of a given function 函数的分解

Complex Example: Decompose the following function as the composition of some simple functions.

$$y = \ln\left(\sin\frac{1}{\sqrt{x^2 + 1}}\right)$$

$$\Rightarrow y = \ln u, u = \sin v, v = t^{-\frac{1}{2}}, t = x^2 + 1$$

(3) Inverse Functions 反函数

Difinition (one-to-one function ——对应函数)

A function is said to be one-to-one (1-1) if distinct values of x always lead to distinct values of y = f(x); that is

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$
. (i.e., $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.)

If a function f is one-to-one, then we can define the inverse of f.

If the function f is one to one, then the function (denoted by f^{-1}) that assigns x to each y in R(f) as follows is called the inverse of f:

If y = f(x), then $x = f^{-1}(y)$.

The inverse function have the domain $D(f^{-1}) = R(f)$ and the range $R(f^{-1}) = D(f)$. And $f(f^{-1}(x)) = x$; $f^{-1}(f(x)) = x$.

Warning: $f^{-1}(x) \neq 1/f(x)$, that is, $f^{-1}(x) \neq [f(x)]^{-1}$

The Graph of Inverse

The graphs of y = f(x) and $y = f^{-1}(x)$ are symmetric about the line y = x.

A sufficient condition (充分条件) for the Existence of Inverse Function (Theorem A, P.40):

If f is a monotonic function on its domain, then f has an inverse. And f and f^{-1} have the same kind of monotonicity.

1.7 Exponential and Logarithmic Functions (指数函数和对数函数)

Exponential Function(指数函数) $f(x) = a^x$, a > 0 and $a \ne 1$.

Domain: $(-\infty, +\infty)$; Range: $(0, +\infty)$.

Theorem A Properties of Exponents (指数运算性质)

If a > 0, b > 0 and x and y are real numbers, then

$$(1) a^x a^y = a^{x+y}$$

$$(2) \frac{a^x}{a^y} = a^{x-y}$$

$$(3) \left(a^{x}\right)^{y} = a^{xy}$$

$$(4) \ a^{-x} = \frac{1}{a^x}$$

$$(5) (ab)^x = a^x b^x$$

$$(6) \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

Logarithmic Function (对数函数)

If a > 0 and $a \ne 1$, we define $y = \log_a x$ to be the inverse of the

function $x = a^y$; that is, $y = \log_a x \iff x = a^y$.

Domain: $(0, +\infty)$; Range: $(-\infty, +\infty)$

Theorem B Properties of Logarithms (对数运算性质)

If a, b, and c are positive numbers, where $a \ne 1$, and if x is any real number, then

(1)
$$\log_a 1 = 0$$

(2)
$$\log_a bc = \log_a b + \log_a c$$

(3)
$$\log_a \frac{b}{c} = \log_a b - \log_a c$$
 (4) $\log_a b^x = x \log_a b$

$$(4) \log_a b^x = x \log_a b$$

Other Identities $\log_a a = 1$, $\log_a a^b = b$, $a^{\log_a b} = b$.

Base changing formula(换底公式) for logarithms

$$\log_a b = \frac{\log_c b}{\log_c a}, \quad c > 0, c \neq 1.$$

1.8 The Trigonometric Functions

(三角函数)

function	domain	period	monotonic interval	odd/even
sin t	R	2π	$\boxed{[-\pi/2,\pi/2]}$	odd
$\cos t$	R	2π	$[0,\pi]$	even
tan t	$R \setminus (k\pi + \pi/2)$	π	$(-\pi/2,\pi/2)$	odd

(t is in radian 弧度)

$$\tan t = \frac{\sin t}{\cos t}$$
(正切)
$$\cot t = \frac{\cos t}{\sin t}$$
(余切)
$$\sec t = \frac{1}{\cos t}$$
(正割)
$$\csc t = \frac{1}{\sin t}$$
(余割)

Function	Cosecant(余割) function	Secant(正割) function		
Notation	$y = \csc x = \frac{1}{\sin x}$	$y = \sec x = \frac{1}{\cos x}$		
Domain	$R \setminus \{n\pi \mid n \in Z\}$	$R \setminus \{n\pi + \frac{\pi}{2} \mid n \in Z\}$		
Range	$R \setminus (-1,1)$	$R \setminus (-1,1)$		
Graph of Function	5	2 -4 -2 -2 -4 -6 -4 -6 -6 - Xi'an Jiaotong-Liverpool Universit		

Odd-even identities

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\tan(-x) = -\tan x$$

Pythagorean identities

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

Cofunction identities

$$\sin\!\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

Addition identities

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

Double-angle identities

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$
$$= 2\cos^2 x - 1$$
$$= 1 - 2\sin^2 x$$

Half-angle identities

$$\sin\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1-\cos x}{2}}$$

$$\cos\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1+\cos x}{2}}$$

Sum identities

$$\sin x + \sin y = 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$$

$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

Product identities

$$\sin x \sin y = -\frac{1}{2} [\cos(x + y) - \cos(x - y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2}[\sin(x+y) + \sin(x-y)]$$

1.9 The Inverse Trigonometric Functions (反三角函数)

The function $y = \sin x \ (x \in (-\infty, \infty))$ has no its inverse. If we restrict its domains to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then the function

$$y = \sin x \ (x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right])$$
 has an inverse $x = \sin^{-1} y \ (y \in [-1, 1]).$

$$x = \sin^{-1} y \iff y = \sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

1. Inverse for sine:

$$y = \sin^{-1} x \quad (x \in [-1, 1])$$

or $y = \arcsin x \quad (x \in [-1, 1])$

(1) **Domain:** [-1, 1]

Warning:
$$\sin^{-1} x \neq (\sin x)^{-1}, \sin^{-1} x \neq \frac{1}{\sin x}$$

(2) Range: $-\frac{\pi}{2}, \frac{\pi}{2}$

(3) Odd/even: Odd,

$$\arcsin(-x) = -\arcsin x$$

 $x \in [-1,1].$

(4) Monotonicity: Increasing.

 $\sin^{-1} x$ 表示一个[$-\frac{\pi}{2}, \frac{\pi}{2}$]内的角 y,这个角的正弦等于x.

To obtain inverses for cosine, it is necessary to restrict its domains to $[0, \pi]$.

The function $y = \cos x$ $(x \in [0, \pi])$ has an inverse $x = \cos^{-1} y$ $(y \in [-1, 1])$.

$$x = \cos^{-1} y \iff y = \cos x, \ 0 \le x \le \pi$$

2. Inverse for cosine:

$$y = \cos^{-1} x \quad (x \in [-1, 1])$$

or $y = \arccos x \quad (x \in [-1, 1])$

- (1) **Domain:** [-1, 1]
- (2) Range: $[0,\pi]$
- Warning

$$\cos^{-1} x \neq (\cos x)^{-1}, \cos^{-1} x \neq \frac{1}{\cos x}$$

(3) Odd/even: Neither

$$\cos^{-1}(-x) = \pi - \cos^{-1} x$$
$$x \in [-1, 1].$$

(4) Monotonicity:

Decreasing.

 $y = \cos x, \ x \in [0, \pi]$

 $\cos^{-1} x$ 表示一个[0, π]内的角y, 这个角的余弦等于x.

To obtain inverses for tangent, it is necessary to restrict its domains to $(-\frac{\pi}{2}, \frac{\pi}{2})$.

The function $y = \tan x \ (x \in (-\frac{\pi}{2}, \frac{\pi}{2}))$ has an inverse

$$x = \tan^{-1} y \ (y \in (-\infty, \infty))$$
 or $y = \tan^{-1} x \ (x \in (-\infty, \infty)).$

$$x = \tan^{-1} y \iff$$

$$y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2}$$

3. Inverse for tangent

- (1) Domain: R
- (2) Range: $(-\frac{\pi}{2}, \frac{\pi}{2})$
- (3) Odd/even:

$$\tan^{-1}(-x) = -\tan^{-1} x, \ x \in R$$

(4) Monotonicity:

Increasing.

$$y = \tan^{-1} x \quad x \in R$$

(or, $y = \arctan x$)

Warning

$$\tan^{-1} x \neq (\tan x)^{-1}, \ \tan^{-1} x \neq \frac{1}{\tan x}$$

这个角的正切等于x.

Theorem A

$$(1) \quad \sin\left(\cos^{-1}x\right) = \sqrt{1-x^2}$$

(2)
$$\cos(\sin^{-1} x) = \sqrt{1 - x^2}$$

(3)
$$\sec(\tan^{-1} x) = \sqrt{1 + x^2}$$

Partial Catalog of Functions to Be Used in Calculus

Constant function: f(x) = k, where k is a constant(real number)

Non-algebraic functions are called transcendental functions, including trigonometric, inverse trigonometric, 超越函数 exponential, logarithmic functions.

Elementary functions 初等函数

Basic elementary functions:

Constant function: f(x) = k, where k is a constant (real number)

Power function: $f(x) = x^r$

Exponential function: $f(x) = a^x$, a > 0, $a \ne 1$

Logarithmic function: $f(x) = \log_a x$, a > 0, $a \ne 1$

Trigonometric function: $f(x) = \sin x, \cos x, \tan x, \cot x, \sec x, \csc x$

Inverse Trigonometric function:

$$f(x) = \arcsin x, \arccos x, \arctan x$$

Elementary functions: formed through $+, -, \bullet, \div, \circ$ of basic elementary functions

Three special functions:

1. Absolute value function:
$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$
 绝对值函数

2. Sign function: 符号函数

$$sgn x = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$

The two functions here are examples of piecewise defined function (分段函数): the function that has different expressions in different parts of the domain.

3. Greatest integer function: 最大整数部分,或 取整函数

[x] = the greatest integer less than or equal to x.

Example 1 Find the natural domain for the following

(a)
$$f(x) = \sqrt{-(x^2 + 4x + 3)}$$
, (b) $f(x) = \sqrt{1 - 2x} + \arcsin \frac{3x - 1}{2}$.

Example 2 If $f(x) = \sqrt{x^2 - 1}$ and $g(x) = \frac{2}{x}$, find formulas for the following and state their domains. (a) $(f \circ g)(x)$, (b) $(g \circ f)(x)$.

Example 3 Find the inverse of $y = 2^{x-1}$.

Example 4 Find the exact value of the following without using a calculator.

(a)
$$\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$
, (b) $\arcsin\left(\frac{\sqrt{3}}{2}\right)$, (c) $\arctan\left(-\frac{\sqrt{3}}{3}\right)$.

Example 5 Find the exact value of the following.

(a)
$$\cos[2\sin^{-1}(-\frac{2}{3})]$$
, (b) $\tan\left[2\tan^{-1}\left(\frac{1}{3}\right)\right]$, (c) $\sec(\arctan 2)$.

Thank You!

