Discrete Mathematics: Lecture 1. propositions

proposition

- A declarative sentence that is either true or false, but not both.
- A sentence that declares a fact.

Washington DC is the capital of the United States of America T

$$\triangleright$$
 1 + 1 = 2 T

$$\triangleright$$
 2 + 2 = 3 F

What time is it?

$$\triangleright$$
 x + I = 2 X

- a proposition that combines one or more propositions using logical operators
- connectives (logical operators)
 - ¬p (not p): negation of p
 - \blacksquare p \land q (p and q): <u>conjunction</u> of p and q
 - \blacksquare p \lor q (p or q): <u>disjunction</u> of p and q (inclusive or)
 - \blacksquare p \oplus q (p xor q): exclusive or of p and q

truth table

Р	Р	¬р	p ∧ q	p∨q	p ⊕ q
Т	Т	F	Т	Т	F
Т	F	F	F	Т	Т
F	Т	Т	F	Т	Т
F	F	T	F	F	F

what is the conjunction propositions p and q where p is "Rebecca's PC has more than I6GB free hard disk space" and q is "The processor in Rebecca's PC runs faster than IGHz"

what is the conjunction propositions p and q where p is "Rebecca's PC has more than I6GB free hard disk space" and q is "The processor in Rebecca's PC runs faster than IGHz"

Rebecca's PC has more than I6GB free hard disk space and its processor runs faster than IGHz

- connectives (logical operators)
 - $ightharpoonup p \longrightarrow q : \underline{conditional}$ statement (implication)

p: hypothesis (or premise)

q: conclusion (or consequence)

Р	q	$p \longrightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- If I love you, I will marry you
- If you get 100 points on the final, then you will get the grade A
- \triangleright (I = 0) \longrightarrow pigs can fly
- If Tuesday is a day of the week, then I am a penguin

- "If I wear a red shirt tomorrow, then my professor will give me A+"
- In logic, the sentence is TRUE so long as either
 - "I don't wear a red shirt" or
 - " My professor give me A+"

- p: It is below freezing
 - q: It is snowing
 - a) It is below freezing and snowing
 - b) It is below freezing but not snowing
 - c) It is not below freezing and it is not snowing
 - d) It is either snowing or below freezing
 - e) If it is below freezing, it is also snowing
- f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing

- p: It is below freezing
 - q: It is snowing
 - a) It is below freezing and snowing $p \land q$
 - b) It is below freezing but not snowing $p \land \neg q$
 - c) It is not below freezing and it is not snowing $\neg p \land \neg q$
 - d) It is either snowing or below freezing $p \lor q$
 - e) If it is below freezing, it is also snowing $p \longrightarrow q$
- f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing $(p \lor q) \land (p \longrightarrow \neg q)$

Р	q	$p \longrightarrow q$	¬Р	٦	¬q →
T	T	Т	F	F	Т
T	F	F	F	Т	F
F	Η	Т	Т	F	Т
F	F	Т	Т	Т	Т

$$(p \land q) \longrightarrow (p \lor q)$$

Р	q	р ^ q	p∨q	$(b \lor d) \longrightarrow (b \lor d)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

- connectives (logical operators)
 - $p \longleftrightarrow q : \underline{biconditional}$ statement

p if and only if q, p iff q

$$(p \longrightarrow q) \land (q \longrightarrow p)$$

Р	q	$p \longrightarrow q$	q —→p	p↔q
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

p: You get 100 points on the final

q: You get the grade A

 $p \longleftrightarrow q$: You get 100 points on the final if and only if you get the grade A

precedence of logical operators

operator	precedence
¬	
٨	2
V	3
\longrightarrow	4
\longleftrightarrow	5

$$p \wedge q \vee r \equiv (p \wedge q) \vee r$$

bits

- A bit is a binary digit: 0 or I
- By convention, 0 represents "false" and 1 represents "true"
- Boolean algebra is like ordinary algebra except that
 - variables stand for bits,
 - + means "or",
 - multiplication means "and"

bit operator

×	у	x∨y	x ∧ y	x ⊕ y
I	I	I	I	0
I	0	I	0	I
0	I	I	0	I
0	0	0	0	0

01 1011 0111

11 0001 1101

II 1011 IIII bitwise OR

01 0001 0101 bitwise AND

10 1010 1010 bitwise XOR

an example: system specification

- 1) The diagnostic message is stored in the buffer or it is retransmitted
- 2) The diagnostic message is not stored in the buffer
- 3) If the diagnostic message is stored in the buffer, then it is retransmitted

check the consistency!

p: The diagnostic message is stored in the buffer

q: The diagnostic message is retransmitted

Р	q	l) p ∨ q	2) ¬p	3) p —→q
Т	Т	Т	F	Т
Т	F	Т	F	F
F	Т	Т	Т	Т
F	F	F	Т	Т

an example: system specification

- 1) The diagnostic message is stored in the buffer or it is retransmitted
- 2) The diagnostic message is not stored in the buffer
- 3) If the diagnostic message is stored in the buffer, then it is retransmitted

when we have

4) The diagnostic message is not retransmitted check the consistency!

p: The diagnostic message is stored in the buffer

q: The diagnostic message is retransmitted

Р	q	I) p ∨ q	2) ¬p	3) p	4) ¬q
Т	Τ	Т	F	Т	F
Т	F	Т	F	F	Т
F	Т	Т	Т	Т	F
F	F	F	Т	Т	Т

an example: logic puzzles

There is an island that has two kinds of people: knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter two people A and B. What are A and B if A says "B is a knight",

B says "The two of us are opposite types"

p: A is a knight

q: B is a knight

an example: logic puzzles

There is an island that has two kinds of inhabitants: knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter two people A and B. What are A and B if A says "The two of us are knights"

B says "A is a knave"

p: A is a knight

q: B is a knight

an example: logic circuits

basic logic gates

propositional equivalences

- A tautology is a compound proposition that is always true.
- A contradiction is a compound proposition that is always false.
- A contingency is a compound proposition that is neither a tautology nor a contradiction.

Р	¬р	р∨¬р	р∧¬р
Т	F	Т	F
F	Т	Т	F

logical equivalences

- two syntactically different compound propositions may be semantically identical, which is equivalent
- when compound propositions have the same truth values in all possible cases, they are logically equivalent
- p = q: p and q are logically equivalent
- a truth table can be used to determine whether two compound propositions are equivalent

logical equivalences

$$p \longrightarrow q \equiv \neg p \lor q$$

Р	q	$p \longrightarrow q$	¬р	¬p ∨ q
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

ref. table 7 and 8 on page 26

De Morgan laws

Р	P	p∨q	¬(p ∨ q)	¬р	¬q	¬р ∧ ¬q
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

logical equivalences

identity laws	$\begin{array}{c} p \wedge T \equiv p \\ p \vee F \equiv p \end{array}$	
domination laws	$\begin{array}{c} p \lor T \equiv T \\ p \land F \equiv F \end{array}$	
idempotent laws	$p \lor p \equiv p$ $p \land p \equiv p$	
double negation law	¬ (¬ p) ≣ p	
commutative laws	$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	
associative laws	$ (p \lor q) \lor r \equiv p \lor (q \lor r) $ $ (p \land q) \land r \equiv p \land (q \land r) $	
distributive laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
absorption laws	$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	
negation laws	p ∨ ¬ p ≡ T p ∧ ¬ p ≡ F	

logical equivalences

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$

$$\equiv F \lor (\neg p \land \neg q)$$

$$\equiv \neg p \land \neg q$$

De Morgan law
De Morgan law
distributive law
negation law
identity law

propositional satisfiability

- A compound proposition is satisfiable if there is an assignment of truth values to its variables that makes it true.
- A compound proposition is unsatisfiable when the compound proposition is false for all assignments.

 $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$ is satisfiable?

Р	q	r	p∨¬q	q∨¬r	r∨¬p	$(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$
Т	Τ	H	Т	Т	Т	Т
Т	Т	F	Т	Т	F	F
Т	F	Т	Т	F	Т	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	F
F	Т	F	F	Т	Т	F
F	F	Т	Т	F	Т	F
F	F	F	Т	Т	Т	Т