Contrôlabilité d'un modèle de nageur en fluide parfait

Thomas Chambrion

Alexandre Munnier

LSS - Supélec, Juin 2011

- \bullet $\mathfrak{E} := (0, \mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3)$ est Galiléen et $\mathfrak{e} := (\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ est mobile.
- ▶ La position de \mathfrak{e} est donnée par $\mathbf{q} := (R, \mathbf{r}) \in \mathcal{Q} := SO(3) \times \mathbf{R}^3$.
- \mathbf{v} : vitesse du centre de gravité et Ω : vitesse angulaire (dans \mathfrak{e}).
- La forme du nageur est décrite par rapport à c.
- $\triangleright \mathcal{B}_t$ est l'image de la boule unité B par Θ_t , un difféomorphisme C^1 .
- ▶ Les déformations sont prescrites : $t \in \mathbf{R}_+ \mapsto \Theta_t$.

- ▶ Problème direct : Déterminer le déplacement rigide $t \mapsto (R(t), \mathbf{r}(t))$ en fonction des déformations.
- ▶ Problème de Contrôle : Déterminer les déformations faisant nager le poisson suivant une trajectoire prescrite.

Quelques références

Nager dans un fluide parfait

- ► Mason, Burdick 1999;
- ► Triantafyllou, Triantafyllou, Yue 2000:
- Kanso, Marsden, Rowley, Melli-Hubert 2005;
- ► Kanso, Marsden 2005;
- Melli, Rufat 2006;
- A. M. 2008; A. M. 2009;
- A. M. and Pinçon 2010;
- ► Chambrion and A.M. 2010;

et aussi Lamb, Lighthill, Wu...

Nager dans un fluide visqueux

- ► Khapalov 2007, 2009;
- ► Liu, Kawachi 1999;
- San Martin, Takahashi, Tucsnak 2007:

Nager dans un fluide très visqueux

- ▶ Purcell 1977:
- ► Shapere and Wilczek 1989;
- ► Alouges, Desimone, Lefebvre 2008, 2009, avec Merlet 2010;
- ▶ Loheac, Scheid, Tucsnak 2011;
- Kelly 2011.

Déformations

$$\mathcal{B}_t = \Theta_t(B)$$
 (Θ_t un difféomorphisme C^1, B la boule unité).

On suppose que, pour tout t:

- $\Theta_t(x) \to 0 \text{ et } \nabla \Theta_t(x) \to 0 \text{ quand } ||x||_{\mathbf{R}^3} \to +\infty.$
- \triangleright Θ_t est isotopique à l'identité.
- ightharpoonup On le décompose sous la forme $\Theta_t = \mathrm{Id} + \vartheta_t$.

Alors ϑ_t appartient à un ouvert de $C^1_0(\mathbf{R}^3)^3$, noté $D^1_0(\mathbf{R}^3)$.

La fonction de déformation

Les déformations sont données sous la forme d'une fonction AC $t \in [0,T] \mapsto \vartheta_t \in D_0^1(\mathbf{R}^3)^3$.

La masse volumique ρ_t dans \mathcal{B}_t est donnée par (conservation de la masse):

$$\underline{\varrho_t} := \frac{\underline{\varrho}}{\det(\nabla \Theta_t) \circ \Theta_t^{-1}}, \qquad \underline{\varrho} \in C^0(\bar{B})^+.$$

Masse et tenseur d'inertie.

$$m = \int_{B} \underline{\varrho} \, \mathrm{d}x \qquad \text{(masse du nageur)};$$

$$\mathbb{I}(t) = \int_{B} \underline{\varrho} \left[\|\Theta_{t}\|_{\mathbf{R}^{3}}^{2} \mathrm{Id} - \Theta_{t} \otimes \Theta_{t} \right] \mathrm{d}x \quad \text{(tenseur d'inertie)}.$$

Contraintes d'auto-propulsion

Un couple (ϱ, ϑ) est admissible si, pour tout $t \in [0, T]$:

$$\int_{B} \underline{\varrho} \, \Theta_t \, \mathrm{d}x = \mathbf{0} \qquad \text{ et } \qquad \int_{B} \underline{\varrho} \, \partial_t \Theta_t \times \Theta_t \, \mathrm{d}x = \mathbf{0}.$$

Le fluide est supposé parfait (incompressible et non visqueux).

- ▶ Masse volumique : $\rho_f > 0$.
- ▶ Il occupe le domaine $\mathcal{F}_t := \mathbf{R}^3 \setminus \bar{\mathcal{B}}_t$.
- Écoulement potentiel

$$\mathbf{u}_t := \nabla \phi_t \quad \text{avec} \quad -\Delta \phi_t = 0 \text{ dans } \mathcal{F}_t.$$

Conditions aux limites

► Vitesse du nageur

$$\mathbf{w}_t = \underbrace{\sum_{i=1}^{3} \mathbf{\Omega}_i(\mathbf{e}_i \times x) + \mathbf{v}_i \mathbf{e}_i}_{\text{mouvement rigide}} + \underbrace{\partial_t \mathbf{\Theta}_t(\mathbf{\Theta}_t^{-1})}_{\text{déformations}}.$$

Glissement du fluide sur la surface du nageur :

$$\mathbf{u}_t \cdot \mathbf{n}_t = \mathbf{w}_t \cdot \mathbf{n}_t \text{ on } \partial \mathcal{B}_t \quad \Rightarrow \quad \partial_n \phi_t = \mathbf{w}_t \cdot \mathbf{n}_t \text{ sur } \partial \mathcal{B}_t.$$

Le potentiel du fluide vérifie, pour tout $t \in [0, T]$

$$-\Delta \phi_t = 0 \qquad \text{dans } \mathcal{F}_t$$
$$\partial_n \phi_t = \mathbf{w}_t \cdot \mathbf{n}_t \qquad \text{sur } \partial \mathcal{B}_t,$$

avec
$$\mathbf{w}_t = \sum_{i=1}^{3} \Omega_i(\mathbf{e}_i \times x) + \mathbf{v}_i \mathbf{e}_i + \partial_t \Theta_t(\Theta_t^{-1}).$$

Loi de Kirchhoff

$$\phi_t = \sum_{i=1}^3 \Omega_i \psi_t^i + v_i \psi_t^{i+3} + \varphi_t,$$

avec ψ_t^i et φ_t harmoniques et vérifiant les conditions aux limites :

$$\partial_n \psi_t^i = \begin{cases} (\mathbf{e}_i \times x) \cdot \mathbf{n}_t & i = 1, 2, 3 \\ \mathbf{e}_{i-3} \cdot \mathbf{n}_t & i = 4, 5, 6. \end{cases} \text{ et } \partial_n \varphi_t = \partial_t \Theta_t(\Theta_t^{-1}) \cdot \mathbf{n}_t.$$

Lagrangien du système

Le Lagrangien du système fluide-nageur est :

$$\mathcal{L} = \frac{1}{2} m \|\mathbf{v}\|_{\mathbf{R}^3}^2 + \frac{1}{2} \mathbf{\Omega} \cdot \mathbb{I}(t) \mathbf{\Omega} + \frac{1}{2} \underline{\rho_f} \int_{\mathcal{F}_t} \|\nabla \phi_t\|_{\mathbf{R}^3}^2 dx,$$

que l'on peut réécrire comme un produit matrices vecteurs :

$$\mathcal{L} = \frac{1}{2}(\mathbf{\Omega}, \mathbf{v}) \mathbb{M}^r(t) \begin{pmatrix} \mathbf{\Omega} \\ \mathbf{v} \end{pmatrix} + (\mathbf{\Omega}, \mathbf{v}) \mathbf{N}(t),$$

avec:

$$\mathbb{M}^{r}(t) := \begin{pmatrix} \mathbb{I}(t) & 0 \\ 0 & m \operatorname{Id} \end{pmatrix} + \underbrace{\varrho_{f}} \left(\int_{\mathcal{F}_{t}} \nabla \psi_{t}^{i} \cdot \nabla \psi_{t}^{j} \, \mathrm{d}x \right)_{1 \leq i, j \leq 6} \\
\mathbf{N}(t) := \underbrace{\varrho_{f}} \left(\int_{\mathcal{F}_{t}} \nabla \psi_{t}^{i} \cdot \nabla \varphi_{t} \, \mathrm{d}x \right)_{1 \leq i \leq 6}$$

Dynamique du système

On applique le principe de moindre Action :

$$\frac{\mathrm{d}}{\mathrm{dt}} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} - \frac{\partial \mathcal{L}}{\partial \mathbf{q}} = 0.$$

 $(\mathbf{q} := (R, \mathbf{r}) \in \mathcal{Q} := SO(3) \times \mathbf{R}^3 \text{ et } (\mathbf{q}, \dot{\mathbf{q}}) \in T\mathcal{Q}).$ On obtient :

Dynamique

Modélisation 0000000000

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{pmatrix} \mathbf{R} \\ \mathbf{r} \end{pmatrix} = \begin{pmatrix} \mathbf{R} \widehat{\mathbf{\Omega}} \\ \mathbf{R} \mathbf{v} \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} \mathbf{\Omega} \\ \mathbf{v} \end{pmatrix} = -\mathbf{M}^r(t)^{-1} \mathbf{N}(t)$$
 (1)

où l'on a défini:

$$\widehat{\mathbf{\Omega}} := \begin{pmatrix} 0 & -\Omega_3 & \Omega_2 \\ \Omega_3 & 0 & -\Omega_1 \\ -\Omega_2 & \Omega_1 & 0 \end{pmatrix}.$$

Remarques sur la dynamique

Dynamique

Modélisation

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{pmatrix} R \\ \mathbf{r} \end{pmatrix} = \begin{pmatrix} R \hat{\mathbf{\Omega}} \\ R \mathbf{v} \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} \mathbf{\Omega} \\ \mathbf{v} \end{pmatrix} = -\mathbf{M}^r(t)^{-1} \mathbf{N}(t)$$

- ▶ Le contrôle est la fonction $t \in [0, T] \mapsto \vartheta_t \in D^1_0(\mathbf{R}^3)$.
- Le calcul de $\mathbb{M}^r(t)$ et $\mathbf{N}(t)$ nécessite la résolution de problèmes aux limites.
- ► Le contrôle apparaît dans :
 - ightharpoonup L'expression du tenseur d'inertie $\mathbb{I}(t)$;
 - Les conditions aux limites du potentiel φ_t ;
 - ▶ La définition du domaine \mathcal{F}_t .

Suivi de trajectoire générique

Théorème

Les éléments suivants sont donnés :

- ▶ $\bar{\varrho}$ in $C^0(\bar{B})^+$ (la masse volumique de référence du nageur) et une fonction C^1 $t \in [0,T] \mapsto \bar{\vartheta}_t \in D^1_0(\mathbf{R}^3)$ (les déformations de référence) tels que $(\bar{\varrho},\bar{\vartheta})$ soit admissible;
- ▶ Une fonction C^1 $t \in [0, T] \mapsto (\bar{R}_t, \bar{\mathbf{r}}_t) \in SO(3) \times \mathbf{R}^3$ (la trajectoire de référence).

Alors, pour tout $\varepsilon > 0$, il existe un fonction $\varrho \in C^0(\bar{B})^+$ (la masse volumique réelle du nageur) et une fonction $t \in [0,T] \mapsto \vartheta_t \in D^1_0(\mathbf{R}^3)$ telles que (ϱ,ϑ) soit admissible et

- $|| \underline{\varrho} \underline{\varrho} ||_{C^0(\bar{B})} < \varepsilon ;$

où $t \in [0, T] \mapsto (R_t, \mathbf{r}_t) \in SO(3) \times \mathbf{R}^3$ est l'unique solution du système (1) avec donnée de Cauchy $(R_0, \mathbf{r}_0) = (\bar{R}_0, \bar{\mathbf{r}}_0)$ et contrôle ϑ_t .

Quelques remarques

- Les déformations sont prescrites de façon approchée.
- ▶ La régularité du contrôle $t \in [0, T] \mapsto \vartheta_t \in D_0^1(\mathbf{R}^3)$ peut être choisie de AC à analytique.
- Si les déformations ne sont pas prescrites, le suivi de trajectoire peut être réalisé avec (génériquement) au plus 5 mouvements de base.
- ▶ Il est probable que l'on puisse choisir $\varrho = \bar{\varrho}$ (masse volumique réelle = masse volumique de référence).

Plan de la démonstration

- Identifier un nombre fini de paramètres permettant d'identifier un nageur (et sa façon de nager) : la signature du nageur.
- Montrer que l'ensemble des signatures a une structure de sous variété (de dimension infinie) analytique connexe plongée dans un espace de Banach.
- Montrer que la propriété d'être contrôlable est équivalente à la non annulation d'une fonction analytique en la signature.
- 4 Exhiber un exemple de nageur qui est contrôlable.
- **5** Conclure en invoquant une propriété classique des fonctions analytiques.

Démonstration

Paramètres caractérisant les nageurs

- ▶ La masse volumique $\rho \in C^0(\bar{B})^+$.
- ▶ La forme "au repos" $\vartheta \in D_0^1(\mathbf{R}^3)$ telle que

$$\int_{B} \varrho \Theta \, \mathrm{d}x = 0 \qquad \text{(centre de gravité à l'origine du repère)}.$$

▶ Des champs de vecteurs $\mathbf{V}_i \in C_0^1(\mathbf{R}^3)^3$ (i = 1, ..., n) tels que :

$$\int_{B} {\boldsymbol{\varrho} \, \mathbf{V}_i \, \mathrm{d} x} = 0, \quad \int_{B} {\boldsymbol{\varrho} \, \boldsymbol{\Theta} \times \mathbf{V}_i \, \mathrm{d} x} = 0 \quad \text{et} \quad \int_{B} {\boldsymbol{\varrho} \, \mathbf{V}_i \times \mathbf{V}_j \, \mathrm{d} x} = 0.$$

La fonction de déformation s'écrit alors :

$$\vartheta_t := \vartheta + \sum_{i=1}^n s_i(t) \mathbf{V}_i,$$

où $t \in [0,T] \mapsto s_i(t) \in \mathbf{R}$ sont (momentanément) les nouveaux contrôles.

Le couple (ϱ, ϑ_t) est automatiquement admissible.

Signature d'un nageur (n est fixé)

Signature d'un nageur

C'est un triplet $c := (\rho, \vartheta, \mathcal{V})$ tel que

$$\int_{B} \underline{\varrho} \Theta \, \mathrm{d}x = 0, \, \int_{B} \underline{\varrho} \, \mathbf{V}_{i} \, \mathrm{d}x = 0, \, \int_{B} \underline{\varrho} \, \Theta \times \mathbf{V}_{i} \, \mathrm{d}x = 0 \text{ et}$$

$$\int_{B} \underline{\varrho} \, \mathbf{V}_{i} \times \mathbf{V}_{j} \, \mathrm{d}x = 0 \, (i, j = 1, \dots, n).$$

 $\mathbf{V}_i \cdot \mathbf{e}_i, i, j = 1, \dots, n$ est un système libre dans $C_0^1(\mathbf{R}^3)^3$.

On note

$$C(n) \subset C^0(\bar{B})^+ \times D^1_0(\mathbf{R}^3) \times (C^1_0(\mathbf{R}^3)^3)^n$$

l'ensemble des signatures.

Théorème

 $\mathcal{C}(n)$ est une sous variété analytique connexe de codimension 3(n+2)(n+1)/2 plongée dans $C^0(\bar{B})^+ \times D_0^1(\mathbf{R}^3) \times (C_0^1(\mathbf{R}^3)^3)^n$.

Pour toute signature $c \in \mathcal{C}(n)$, on note $\mathcal{S}(c)$ l'ouvert de \mathbf{R}^n tel que

$$s \in \mathcal{S}(c) \quad \Leftrightarrow \quad \vartheta + \sum_{i=1}^{n} s_i \mathbf{V}_i \in D_0^1(\mathbf{R}^3).$$

Pour tout $c \in \mathcal{C}(n)$, les déformations sont données par une fonction $t \in [0,T] \mapsto s(t) := (s_1(t), \dots, s_n(t)) \in \mathcal{S}(c).$

Signature étendue d'un nageur

On note $C_X(n)$ l'ensemble des $\mathbf{c} := (c, s)$ tels que $c \in C(n)$ et $s \in S(c)$. Tout couple $\mathbf{c} = (c, s)$ est appelé une signature étendue.

Corollaire

 $\mathcal{C}_X(n)$ est une sous variété analytique connexe de codimension 3(n+2)(n+1)/2 plongée dans $C^0(\bar{B})^+ \times D^1_0(\mathbf{R}^3) \times (C^1_0(\mathbf{R}^3)^3)^n \times \mathbf{R}^n$.

Les données du problème en terme de signature

Soit $c \in \mathcal{C}(n)$ et une fonction de déformation

$$t \in [0,T] \mapsto s(t) := (s_1(t),\ldots,s_n(t)) \in \mathcal{S}(c).$$

On note
$$\mathbf{c} := (c, s) \in \mathcal{C}_X(n)$$
 et $\Theta_s := \mathrm{Id} + \vartheta + \sum_{i=1}^n s_i \mathbf{V}_i$.

- Les domaines \mathcal{F}_t et \mathcal{B}_t peuvent se réécrire \mathcal{F}_c et \mathcal{B}_c .
- \blacktriangleright Le tenseur d'inertie est $\mathbb{I}(\mathbf{c})$.
- Les potentiels élémentaires (mouvement rigide) sont notés ψ_c^i $(i = 1, \ldots, 6).$
- ▶ La matrice de masse $\mathbb{M}^r(t)$ devient $\mathbb{M}^r(\mathbf{c})$.
- Le potentiel élémentaire φ_t (déformations) se décompose sous la forme $\varphi_t = \sum_{i=1}^n \dot{s}_i \varphi_c^i$.

Chaque φ_c^i est harmonique et $\partial_n \varphi_c^i = \mathbf{V}_i(\Theta_s^{-1}) \cdot \mathbf{n}$ sur $\partial \mathcal{B}_c$.

La dynamique en terme de signature

On introduit la matrice

$$\mathbb{N}(\mathbf{c}) = \left(\underbrace{\varrho_f}_{\mathcal{F}_{\mathbf{c}}} \nabla \psi_{\mathbf{c}}^i \cdot \nabla \varphi_{\mathbf{c}}^j \, \mathrm{d}x \right)_{\substack{1 \le i \le 6 \\ 1 \le j \le n}}$$

et on peut réécrire la dynamique :

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{pmatrix} R \\ \mathbf{r} \end{pmatrix} = \begin{pmatrix} R \widehat{\mathbf{\Omega}} \\ R \mathbf{v} \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} \mathbf{\Omega} \\ \mathbf{v} \end{pmatrix} = -\mathbb{M}^r(\mathbf{c})^{-1} \mathbb{N}(\mathbf{c}) \dot{\mathbf{s}}.$$

Proposition

Les matrices $\mathbb{M}^r(\mathbf{c})$ et $\mathbb{N}(\mathbf{c})$ sont analytiques en la signature étendue c.

Contrôle géométrique

La signature $c \in \mathcal{C}(n)$ est fixée.

 \triangleright On introduit la base canonique $(\mathbf{f}_1,\ldots,\mathbf{f}_n)$ de \mathbf{R}^n et on cherche le contrôle comme solution du problème de Cauchy:

$$\dot{s}(t) = \sum_{i=1}^{n} \lambda_i(t) \mathbf{f}_i, \qquad s(0) = 0.$$

Les fonctions $t \in [0,T] \mapsto \lambda_i(t) \in \mathbf{R}$ sont les nouveaux contrôles.

La dynamique s'écrit sous la forme :

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{pmatrix} \mathbf{R} \\ \mathbf{r} \\ s \end{pmatrix} = \sum_{i=1}^{n} \lambda_i(t) \mathbf{Z}_c^i(\mathbf{R}, s). \tag{2}$$

Démonstration

▶ s (c'est à dire la forme du nageur) fait maintenant parti de l'état du système.

Contrôle géométrique

- ▶ L'EDO est posée sur $\mathcal{M}(c) := SO(3) \times \mathbb{R}^3 \times \mathcal{S}(c)$ (une variété analytique de dim 6 + n).
- ▶ Les champs de vecteurs $\mathbf{Z}_{c}^{i}(\mathbf{R},s)$ sont analytiques sur $\mathcal{M}(c)$ (constants en r).

On note $\mathcal{Z}(c)$ la famille $(\mathbf{Z}_c^i)_{1 \leq i \leq n}$.

Lemme

S'il existe $\zeta \in \mathcal{M}(c)$ tel que dim $\operatorname{Lie}_{\zeta} \mathcal{Z}(c) = 6 + n$, alors l'orbite de $\mathcal{Z}(c)$ passant par le point $\zeta \in \mathcal{M}(c)$ est égale à toute la variété $\mathcal{M}(c)$. Dans ce cas, dim $\operatorname{Lie}_{\zeta} \mathcal{Z}(c) = 6 + n$ pour tout $\zeta \in \mathcal{M}(c)$.

Définition

Une signature $c \in \mathcal{C}(n)$ est contrôlable s'il existe $\zeta \in \mathcal{M}(c)$ tel que $\dim \operatorname{Lie}_{\mathcal{C}} \mathcal{Z}(c) = 6 + n.$

Démonstration 000000000000

- ightharpoonup dim Lie_{ζ} $\mathcal{Z}(c)$ ($\zeta = (R, \mathbf{r}, s)$) ne dépend ni de R ni de \mathbf{r} , seulement $\mathrm{de}\ s$.
- ▶ Théorème de l'orbite (cas analytique) : dim Lie_{\(\zeta\)} $\mathcal{Z}(c)$ est constante sur les orbites (= dimension de l'orbite).
- \blacktriangleright Tout orbite rencontre tous les points de $\mathcal{S}(c)$.
- ▶ Théorème de Rashevsky Chow : Si Lie_{\(\mathcal{\gamma}\)} $\mathcal{Z}(c) = T_{\cap{\gamma}}\mathcal{M}(c)$ pour tout $\zeta \in \mathcal{M}(c)$ alors tout orbite de $\mathcal{Z}(c)$ est égale à $\mathcal{M}(c)$.

Corollaire

Modélisation

S'il existe une signature $c \in \mathcal{C}(n)$ contrôlable, alors l'ensemble des signatures contrôlables de C(n) est un sous ensemble ouvert et dense (pour la topologie induite).

Signature contrôlable

Proposition

Soit $c \in C(n)$ une signature contrôlable. Alors

- ▶ Pour toute fonction de référence $t \in [0, T] \mapsto (\bar{R}_t, \bar{\mathbf{r}}_t, \bar{s}_t) \in SO(3) \times \mathbf{R}^3 \times \mathbf{R}^n$;
- Et pour tout $\varepsilon > 0$;

Il existe n C^1 fonctions $\lambda_i:[0,T]\to\mathbf{R}$ $(i=1,\ldots,n)$ telles que:

 $\mathbf{Z} R_T = \bar{R}_T, \mathbf{r}_T = \bar{\mathbf{r}}_T \text{ and } s_T = \bar{s}_T;$

où $t \in [0,T] \mapsto (\mathbf{R}_t, \mathbf{r}_t, s_t) \in \mathcal{M}(c)$ est l'unique solution de l'EDO (2) avec données de Cauchy $\mathbf{R}_0 = \bar{\mathbf{R}}_0 \in \mathrm{SO}(3)$, $\mathbf{r}_0 = \bar{\mathbf{r}}_0 \in \mathbf{R}^3$ et $s_0 = \bar{s}_0 \in \mathcal{S}(c)$.

Déformations presque rigides

Soit $c := (\rho, \vartheta, \mathcal{V}) \in \mathcal{C}(5)$ telle que $\mathcal{V} := (\mathbf{V}_1, \dots, \mathbf{V}_5)$ avec

- $\mathbf{V}_{i}|_{\partial B}(x) := \mathbf{e}_{i} \times (x + \vartheta(x)) \ (i = 1, 2, 3);$
- $\mathbf{V}_i|_{\partial B}(x) := \mathbf{e}_{i-3} \ (i=4,5).$

Proposition

Il existe $\rho \in C^0(\bar{B})^+$ et $\vartheta \in D^1_0(\mathbf{R}^3)$ tels que c soit contrôlable.

Corollaire

Presque toutes les signatures de $\mathcal{C}(5)$ sont contrôlables.

Démonstration du Théorème principal

On rappelle que:

Modélisation

- ▶ $\bar{\varrho} \in C^0(\bar{B})^+$ est la masse volumique de référence du nageur.
- \bullet $t \in [0,T] \mapsto \overline{\vartheta}_t \in D_0^1(\mathbf{R}^3)$ sont les les déformations de référence;
- ▶ $t \in [0,T] \mapsto (\bar{R}_t, \bar{\mathbf{r}}_t) \in SO(3) \times \mathbf{R}^3$ est la la trajectoire de référence.

Les étapes de la démonstration consistent en :

- \triangleright compléter $(\bar{\rho}, \bar{\vartheta}_0)$ par $\bar{\mathcal{V}} := (\partial_t \bar{\vartheta}_0, V_2, \dots, V_5)$ pour en faire une signature \bar{c} dans C(5).
- \triangleright Arbitrairement proche de \bar{c} , il existe une signature $c^0 := (\rho, \vartheta^0, \mathcal{V}^0)$ contrôlable avec $\mathcal{V}^0 := (\mathbf{V}_1^0, \dots, \mathbf{V}_0^5)$.
- \triangleright On nage pendant un temps t_1 petit. On choisit comme forme de référence (à suivre) $\vartheta^0 + t\mathbf{V}_1^0$ qui, par construction, est proche de $\bar{\vartheta}_t \approx \bar{\vartheta}_0 + t\partial_t \bar{\vartheta}_0$. On note $\vartheta^1 = \vartheta^0 + t_1 \mathbf{V}_1^0$.
- ightharpoonup On complète (ϱ, ϑ^1) par $\mathcal{V}^1 := (\partial_t \bar{\vartheta}_{t_1}, \mathbf{V}^2_2, \dots, \mathbf{V}^1_5)$ de telle sorte que $c^1 := (\rho, \vartheta^1, \mathcal{V}^1)$ soit contrôlable.
- ▶ On itère le processus.

Conclusion

- ▶ Pour une trajectoire de référence donnée, on ne sait pas en général déterminer le contrôle.
- ▶ On peut montrer l'existence d'un contrôle optimal (Théorème de Filippov).
- Le résultat se généralise aux nageurs en fluide très visqueux (Stokes stationnaire): Modèle pour les microorganismes.