Kapitel 1

Unrestringierte Probleme

Definition 1.2.3 (Lösbarkeit).

Das Minimierungsproblem P heißt lösbar, falls ein $\overline{x} \in M$ existiert mit

$$\inf_{x \in M} f(x) = f(\overline{x})$$

Satz 1.2.5. Das Minimierungsproblem P ist genau dann lösbar, wenn es einen globalen Minimalpunkt besitzt.

Bemerkung. Es können drei Fälle der Unlösbarkeit auftreten:

- $\inf_{x \in M} f(x) = +\infty$
- $\inf_{x \in M} f(x) = -\infty$
- Ein endliches Infimum wird nicht angenommen.

Satz 1.2.6 (Satz von Weierstraß).

Die Menge $M \subseteq \mathbb{R}^n$ sei nichtleer und kompakt, und die Funktion $f: M \to \mathbb{R}$ sei stetig. Dann besitzt f auf M (mindestens) einen globalen Minimalpunkt und einen globalen Maximalpunkt.

Definition 1.2.8 (Untere Niveaumenge). Für $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}$ und $\alpha \in \mathbb{R}$ heißt

$$\operatorname{lev}_{\leq}^{\alpha}(f, X) = \left\{ x \in X \mid f(x) \leq \alpha \right\}$$

untere Niveaumenge von f auf X zum Niveau α . Im Fall $X = \mathbb{R}^n$ schreiben wir auch kurz

$$f_{\leq}^{\alpha} := \text{lev}_{\leq}^{\alpha}(f, \mathbb{R}^n) = \{x \in \mathbb{R}^n \mid f(x) \leq \alpha\}$$

Übung 1.2.10. Für eine abgeschlossene Menge $X \subseteq \mathbb{R}^n$ sei die Funktion $f \colon X \to \mathbb{R}$. Dann ist die Menge $\operatorname{lev}_{\leq}^{\alpha}(f,X)$ für alle $\alpha \in \mathbb{R}$ abgeschlossen.

Übung 1.2.11. Für eine abgeschlossene Menge $X \subseteq \mathbb{R}^n$ und endliche Indexmengen I und J seien die Funktion $g_i \colon X \to \mathbb{R}, i \in I$, und $h_j \colon X \to \mathbb{R}, j \in J$, stetiq. Dann ist die Menge

$$M = \{ x \in X \mid g_i(x) \le 0, i \in I, \ h_j(x) = 0, j \in J \}$$

abgeschlossen.

Definition. Die Menge der globalen Minimalpunkte lautet:

$$S = \{ \overline{x} \in M \mid \forall x \in M : f(x) \ge f(\overline{x}) \}$$

Lemma 1.2.12. Für ein $\alpha \in \mathbb{R}$ sei $\operatorname{lev}^{\alpha}_{<}(f, M) \neq \emptyset$. Dann gilt

$$S \subseteq \operatorname{lev}^{\alpha}_{<}(f, M).$$

Satz 1.2.13 (Verschärfter Satz von Weierstraß). Für eine (nicht notwendigerweise beschränkte oder abgeschlossene) Menge $M \subseteq \mathbb{R}^n$ sei $f: M \to \mathbb{R}$ stetig, und mit einem $\alpha \in \mathbb{R}$ sei $\operatorname{lev}_{\leq}^{\alpha}(f, M)$ nichtleer und kompakt. Dann besitzt f auf M (mindestens) einen globalen Minimalpunkt.