Arithmetic, Geometric and Harmonic Means Problems 21-30

Shiv Shankar Dayal

October 12, 2021

21. Insert 17 A.M. between $\frac{7}{2}$ and $-\frac{83}{2}$.

Solution: Let a_1, a_2, \ldots, a_{17} are required 17 A.M. Let d to be the common difference. We know that there will be a total of 19 terms in the A.P. Thus,

$$-\frac{83}{2} = \frac{7}{2} + 18d \Rightarrow d = -\frac{5}{2}$$

Now the means can be found easily.

22. Between 1 and 31, n A.M. are inserted such that ratio of 7th and (n-1)th means is 5:9, find n.

Solution: Let the means are a_1,a_2,\ldots,a_n betweeen 1 and 31 then $d=\frac{30}{n+1}$, where d is the common difference.

$$\frac{x_7}{x_{n-1}} = \frac{5}{9} \Rightarrow \frac{1+7d}{1+(n-1)d} = \frac{5}{9} \Rightarrow n = 14$$

23. Find the relation between x and y in order that rth mean between x and 2y may be the same as rth mean between 2x and y; if n arithmetic means are inserted in each case.

Solution: In first case $x_r = x + \frac{2y-x}{n+1}r$ and in second case $y_r = 2x + \frac{y-2x}{n+1}r$

Equating them we get $y = \frac{n+1-r}{r}x$

24. Insert 7 geometric means between 2 and 162.

Solution: If we insert 7 G.M. then total no. of terms would be 9, so if r is common ratio then $162 = 2.r^8$

$$\Rightarrow r = \sqrt{3}$$

Thus, G.M. will be $2\sqrt{3}, 6, 6\sqrt{3}, 18, 18\sqrt{3}, 54, 54\sqrt{3}$

25. Insert 6 geometric means between $\frac{8}{27}$ and $-\frac{81}{16}$

Solution: If we insert 6 G.M. then total no. of terms would be 8, so if r is the common ratio then $-\frac{81}{16}=\frac{8}{27}r^7\Rightarrow r=-\frac{3}{2}$

Thus, G.M. will be $-\frac{4}{9},\frac{2}{3},-1,\frac{3}{2},-\frac{9}{4},\frac{27}{8}$

26. If odd number of geometric means are inserted between two given numbers a and b, show that the middle geometric mean is \sqrt{ab} .

Solution: Let 2n+1 geometric means are inserted between a and b and that r is the common ratio. Then,

$$b = ar^{2n+2} \Rightarrow r = \left(\frac{b}{a}\right)^{\frac{1}{2n+2}}$$

 $\mbox{Middle geometric mean } = g_{n+1} = a.r^{n+1} = \sqrt{ab}$

27. Insert four harmonic means between 1 and $\frac{1}{11}.$

Solution: Let h_1,h_2,h_3,h_4 be four harmonic means between 1 and $\frac{1}{11}$. Thus corresponding A.P. will be $1,\frac{1}{h_1},\frac{1}{h_2},\frac{1}{h_3},\frac{1}{h_4},11$

Since there are six terms in A.P. $11=1+5d \Rightarrow d=2$. So A.P. will be 1,3,5,7,9,11 and corresponsing H.P. will be composed of reciprocals of these values.

28. n harmonic means are inserted between 1 and 4 such that first mean: last mean = 1:3, then find n.

Solution: After inserting n harmonic means there will be a total of n+2 terms. So in corresponding A.P. 1 will remain 1 but 4 will become $\frac{1}{4}$ and the ratio of first mean to last mean will also become its reciprocal i.e. 3:1

$$\frac{1}{h_1} = 1 + d, \frac{1}{h_n} = 1 + nd, d = \frac{\frac{1}{4} - 1}{n + 1} = -\frac{3}{4(n + 1)}$$

Now n can be found to be 11.

29. Find n such that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be a single harmonic mean between a and b.

Solution: H.M. between
$$a$$
 and $b = \frac{2ab}{a+b}$

$$\begin{split} \frac{a^{n+1}+b^{n+1}}{a^n+b^n} &= \frac{2ab}{a+b} \\ a^{n+1}+ab^{n+1}+ba^{n+1}+b^{n+2} &= 2a^{n+1}b+2ab^{n+1} \\ a^{n+2}-ab^{n+1}-ba^{n+1}+b^{n+2} &= 0 \\ &\Rightarrow a^{n+1}-b^{n+1} &= 0 \Rightarrow n = -1 \end{split}$$

30. If H_1,H_2,\dots,H_n be n harmonic means between a and b, prove that $\frac{H_1+a}{H_1-a}+\frac{H_n+b}{H_n-b}=2n$

Solution: We have evaluated previously that $H_1=\frac{ab(n+1)}{a+nb}$ and $H_n=\frac{ab(n+1)}{na+b}$ Substituting in the given equality

$$\begin{split} \text{L.H.S.} &= \frac{ab(n+1) + a^2 + nab}{ab(n+1) - a^2 - nab} + \frac{ab(n+1) + nab + b^2}{ab(n+1) - nab - b^2} \\ &= \frac{a(a+b) + 2nab}{a(b-a)} + \frac{b(a+b) + 2nab}{b(a-b)} \\ &= \frac{(a+b) + 2nb}{b-a} + \frac{(a+b) + 2na}{a-b} \\ &= \frac{2n(b-a)}{b-a} = 2n \end{split}$$