Nipun Batra

July 26, 2025

IIT Gandhinagar

Used for constrained optimization of the form

Minimize f(x), where $x \in \mathbb{R}^k$ such that

$$h_i(x) = 0$$
, $\forall i = 1, ..., m$ (m equalities) $g_j(x) \leq 0$, $\forall j = 1, ..., n$ (n inequalities)

• Create a new function for minimization,

$$L(x,\lambda_1,\ldots,\lambda_m,\mu_1,\ldots,\mu_n)=f(x)+\sum_{i=1}^m\lambda_ih_i(x)+\sum_{j=1}^n\mu_jg_j(x)$$

where,

 $\lambda_1 - \lambda_m$ are multipliers for the m equalities

 $\mu_1 - \mu_n$ are multiplices for the *n* inequalities

• Minimize $L(x, \lambda, \mu)$ w.rt. $x \implies \nabla_x L(x, \lambda, \mu) = 0$ Gives k equations

• Minimize $L(x, \lambda, \mu)$ w.rt. $\lambda \implies \nabla_{\lambda} L(x, \lambda, \mu) = 0$ Gives m equations

In both cases, $\mu_i g_i(x^*) = 0$

In both cases,
$$\mu_i g_i(x^*) = 0$$

In both cases,
$$\mu_i g_i(x^*) = 0$$

Constraint on μ_i 's

$$min_x L(x, \lambda, \mu) \implies \nabla_x f(x) + \nabla_x \mu_i g_i(x) = 0$$

$$\mu_i = \frac{\nabla_x f(x)}{\nabla_x \mu_i g_i(x)} = +ve$$

Stationarity (For minimization)
$$\nabla_{x} f(x) + \sum_{i=1}^{m} \nabla_{x} \lambda_{i} h_{i}(x) + \sum_{i=1}^{n} \nabla_{x} \mu_{i} g_{i}(x) = 0$$

Stationarity (For minimization)

$$\nabla_{\mathbf{x}} f(\mathbf{x}) + \sum_{i=1}^{m} \nabla_{\mathbf{x}} \lambda_{i} h_{i}(\mathbf{x}) + \sum_{i=1}^{n} \nabla_{\mathbf{x}} \mu_{i} g_{i}(\mathbf{x}) = 0$$

Equality Constraints

$$\nabla_{\lambda} f(x) + \sum_{i=1}^{m} \nabla_{\lambda} \lambda_{i} h_{i}(x) + \sum_{i=1}^{n} \nabla_{\lambda} \mu_{i} g_{i}(x) = 0$$
$$\sum_{i=1}^{m} \nabla_{\lambda} \lambda_{i} h_{i}(x) = 0$$

Stationarity (For minimization)

$$\nabla_x f(x) + \sum_{i=1}^m \nabla_x \lambda_i h_i(x) + \sum_{i=1}^n \nabla_x \mu_i g_i(x) = 0$$

Equality Constraints

$$\nabla_{\lambda} f(x) + \sum_{i=1}^{m} \nabla_{\lambda} \lambda_{i} h_{i}(x) + \sum_{i=1}^{n} \nabla_{\lambda} \mu_{i} g_{i}(x) = 0$$
$$\sum_{i=1}^{m} \nabla_{\lambda} \lambda_{i} h_{i}(x) = 0$$

Inequality Constraints (Complementary Slackness)

$$\mu_i g_i(x) = 0 \forall i = 1, \dots, n$$

 $\mu_i \ge 0$

Minimize
$$x^2+y^2$$
 such that,
$$x^2+y^2 \leq 5$$

$$x+2y=4$$

$$x,y \geq 0$$

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = x^2 + y^2$$

 $h(x,y) = x + 2y - 4$

$$f(x,y) = x^{2} + y^{2}$$

$$h(x,y) = x + 2y - 4$$

$$g_{1}(x,y) = x^{2} + y^{2} - 5$$

$$f(x,y) = x^{2} + y^{2}$$

$$h(x,y) = x + 2y - 4$$

$$g_{1}(x,y) = x^{2} + y^{2} - 5$$

$$g_{2}(x,y) = -x$$

$$f(x,y) = x^{2} + y^{2}$$

$$h(x,y) = x + 2y - 4$$

$$g_{1}(x,y) = x^{2} + y^{2} - 5$$

$$g_{2}(x,y) = -x$$

$$g_{3}(x,y) = -y$$

$$f(x,y) = x^{2} + y^{2}$$

$$h(x,y) = x + 2y - 4$$

$$g_{1}(x,y) = x^{2} + y^{2} - 5$$

$$g_{2}(x,y) = -x$$

$$g_{3}(x,y) = -y$$

$$L(x, y, \lambda, \mu_1, \mu_2, \mu_3) = x^2 + y^2 + \lambda(x + 2y - 4) + \mu_1(x^2 + y^2 - 5) + \mu_2(-x) + \mu_3(-y)$$

Stationarity

$$\nabla_{x}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3}) = 0$$

$$\implies 2x + \lambda + 2\mu_{1}x - \mu_{2} = 0 \dots (1)$$

$$\nabla_{y}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3}) = 0$$

$$\implies 2y + 2\lambda + 2\mu_{1}y - \mu_{3} = 0 \dots (2)$$

Stationarity

$$\nabla_{x}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3}) = 0$$

$$\implies 2x + \lambda + 2\mu_{1}x - \mu_{2} = 0 \dots (1)$$

$$\nabla_{y}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3})=0$$

$$\implies 2y+2\lambda+2\mu_{1}y-\mu_{3}=0.....(2)$$

Equality Constraint

$$x + 2y = 4 \dots (3)$$

Stationarity

$$\nabla_{x}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3}) = 0$$

$$\implies 2x + \lambda + 2\mu_{1}x - \mu_{2} = 0 \dots (1)$$

$$\nabla_{y}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3})=0$$

$$\implies 2y+2\lambda+2\mu_{1}y-\mu_{3}=0......(2)$$

Equality Constraint

$$x + 2y = 4 \dots (3)$$

Slackness

$$\mu_1(x^2 + y^2 - 5) = 0 \dots (4)$$
 $\mu_2 x = 0 \dots (5)$
 $\mu_3 y = 0 \dots (6)$

```
From (6), \mu_3=0 or y=0 But if, y=0, then x=4 according to (3) . This violates (1). Hence, y\neq 0 and \mu_3=0
```

```
From (6), \mu_3=0 or y=0 But if, y=0, then x=4 according to (3) . This violates (1). Hence, y\neq 0 and \mu_3=0
```

From (5),
$$\mu_1 = 0$$
 or $x = 0$
If $x = 0$, $y = 2$, which implies $x^2 + y^2 = 4 (\le 5)$
Since $(x,y) = (0,2)$ gives smaller $x^2 + y^2$ terms than 5,
Using (4), $\mu_1 = 0$

From (6),
$$\mu_3=0$$
 or $y=0$
But if, $y=0$, then $x=4$ according to (3) . This violates (1). Hence, $y\neq 0$ and $\mu_3=0$

From (5),
$$\mu_1 = 0$$
 or $x = 0$
If $x = 0$, $y = 2$, which implies $x^2 + y^2 = 4 (\le 5)$
Since $(x,y) = (0,2)$ gives smaller $x^2 + y^2$ terms than 5,
Using (4), $\mu_1 = 0$

On further solving we get,

$$x = 0.8$$

$$y = 1.6$$