GATE:EE/63

EE23BTECH11208 - Manohar K*

Question: A signal $x(t) = 2 \cos(180\pi t) \cos(60\pi t)$ is sampled at 200 Hz and then passed through an ideal low pass filter having cut-off frequency of 100 Hz.

The maximum Frequency present in the filtered signal in Hz is _____ (Round off to the nearest integer.) (GATE 2023 EE)

Solution:

Given,

Fig. 1. Plot of x(t) vs t

symbol	value	description
x(t)	$2\cos(180\pi t)\cos(60\pi t)$	input signal
f_s	200Hz	sampling frequency
f_c	100 <i>Hz</i>	cut-off frequency of low pass filter
y(t)		output signal

TABLE I PARAMETERS

$$x(t) = \cos(240\pi t) + \cos(120\pi t) \tag{1}$$

Here, the input signal can be assumed as sum of two individual signals with frequency $f_1 = 120Hz$ and $f_2 = 60Hz$.

The frequency components present at sampler output:

$$\implies f_1, (f_s \pm f_1), (2f_s \pm f_1)...$$
 (2)

$$\implies f_2, (f_s \pm f_2), (2f_s \pm f_2)...$$
 (3)

$$eq(2) \implies 120, 80, 340, 280, 520...$$
 (4)

$$eq(3) \implies 60, 140, 260, 34, 460...$$
 (5)

From table $f_c = 100Hz$

LPF output: 60Hz, 80Hz

Maximum Frequency present in the filtered signal is 80Hz

Fig. 2. Plot of x(t) vs t