

Aplicação de Diferentes Métodos de Randomização em Meta-heurísticas

Luiza Engler Stadelhofer, Rafael Stubs Parpinelli

luiza.engler@gmail.com
rafael.parpinelli@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

26 de novembro de 2019

Recapitulo Proposta Experimentos Considerações Finais Referências

Sumário

Recapitulo

Proposta

Experimentos

Considerações Finais

Recapitulo

Problema

- A randomização está fortemente ligada às propriedades de convergência dos algoritmos;
- ► Temos a disposição diversos métodos de randomização que podem ser utilizados;
- Grande parte dos estudos não fazem uma análise de qual a melhor distribuição a se usar.

A contribuição deste trabalho se encontra na análise do impacto que diferentes distribuições probabilísticas possuem sobre algumas meta-heurísticas.

Proposta

- ▶ De acordo com o mapeamento sistemático realizado, existem diversas formas de se aplicar diferentes métodos de randomização em um algoritmo;
- ▶ Decidiu-se abordar duas dessas aplicações: em todos os pontos de randomização, e em pontos específicos do algoritmo.

Aplicação em Todos os Pontos

- Algoritmos: jDE e SCA;
- Métodos de randomização: distribuição Uniforme, Gaussiana e mapa caótico Logístico;
- ▶ Problemas: funções *benchmark* e Predição de Estrutura de Proteínas (PSP).

Fonte: Própria autora.

Fonte: Própria autora.

Aplicação em Pontos Específicos

 O primeiro passo necessário para realizar essa aplicação foi analisar quais parâmetros dos algoritmos são relevantes e possuem um grande impacto no comportamento de intensificação e diversificação dessas meta-heurísticas;

Parâmetros SCA

Parâmetro	Função	Geração
r1	Determina a direção do movi-	Auto-adaptado
	mento	
r2	Determina o tamanho do movi-	Uniforme [0, 2π]
	mento	
r3	Enfatiza ou não o efeito da me-	Uniforme [0, 2]
	lhor solução na definição da dis-	
	tância	
r4	Alterna entre as fórmulas de up-	Uniforme [0, 1]
	date com seno e cosseno	

Tabela: Parâmetros do SCA

- O parâmetro r3 varia no intervalo de [0, 2], enfatizando (r3 > 1) ou não (r3 < 1) o efeito da melhor solução encontrada até
- O valor de r3 deve começar baixo e incrementar ao longo das iterações.

então pelo algoritmo na definição da distância;

Parâmetro R3

$$desvioR3 = 0.0 + iteracaoAtual * \frac{2.0}{maxIteracao}$$
 (1)

- Os termos r1 * sin(r2) e r1 * cos(r2) são os responsáveis por guiar juntamente a habilidade de intensificação e diversificação do algoritmo;
- ► Valores maiores que 1 ou menores que -1, realizam uma diversificação; enquanto valores no intervalo [-1, 1], realizam um intensificação.

Parâmetro R2

$$2.0 \rightarrow [-2.0, 2.0]$$
 $1.9 \rightarrow [-1.9, 1.9]$
...
 $1.0 \rightarrow [-1.0, 1.0]$
...
 $0.1 \rightarrow [-0.1, 0.1]$
 $0.0 \rightarrow [0.0, 0.0]$
(2)

Parâmetro R2

$$desvioR2Seno = \frac{\pi}{2} + iteracaoAtual * \frac{(\frac{3\pi}{2} - \frac{\pi}{2})}{maxIteracao}$$
 (3)

$$desvioR2Cosseno = 0.0 + iteracaoAtual * \frac{\pi}{maxIteracao}$$
 (4)

Experimentos

Configurações - Benchmarks

- ► Tamanho da população: 30;
- ▶ Gerações: 2000;
- ▶ Dimensões: 20;
- ► Execuções: 10;

Resultados - Benchmarks

Função	Uniforme		Gaussiana		Logístico	
	jDE	SCA	jDE	SCA	jDE	SCA
Sphere	3.9883e-53 ± 4.6228e-53	$\begin{array}{c} {\rm 1.3604e\text{-}132} \pm \\ {\rm 4.0813e\text{-}132} \end{array}$	$\begin{array}{c} 2.6314 \text{e-}43 \pm \\ 7.4168 \text{e-}43 \end{array}$	$\begin{array}{c} \textbf{4.1389e-71} \ \pm \\ \textbf{1.2406e-70} \end{array}$	$\begin{array}{c} 2.2783 \text{e-} 13 \; \pm \\ 6.5587 \text{e-} 13 \end{array}$	1.3873e-30 ± 4.1617e-30
Rosenbrock	$5.2117e+00 \pm \\ 3.3498e+00$	$^{1.8567\mathrm{e}+01~\pm}_{0.2201\mathrm{e}+00}$	$^{2.8926\mathrm{e}+01} \pm \\ ^{2.6698\mathrm{e}+01}$	$^{1.8660\mathrm{e}+01~\pm}_{0.2155\mathrm{e}+00}$	$\substack{1.4413\mathrm{e}+01\ \pm\\1.7316\mathrm{e}+01}$	$^{1.8897\mathrm{e}+01~\pm}_{0.0918\mathrm{e}+00}$
Rastrigin	0.0000e+00 ± 0.0000e+00	$^{0.0000\mathrm{e}+00~\pm}_{0.0000\mathrm{e}+00}$	$\substack{1.9899\mathrm{e}+00\ \pm\\1.7798\mathrm{e}+00}$	$^{0.0000e+00~\pm}_{0.0000e+00}$	$4.3778e+00 \pm 2.0487e+00$	$^{0.0000\mathrm{e}+00~\pm}_{0.0000\mathrm{e}+00}$
Schaffer	3.3123e-01 ± 1.0099e-01	$1.9088\text{e-}32\ \pm \\5.7240\text{e-}32$	$^{2.3277\mathrm{e}+00}\pm^{00000000000000000000000000000000000$	$\begin{array}{c} {\bf 1.2143e\text{-}16} \ \pm \\ {\bf 3.6114e\text{-}16} \end{array}$	$7.7709e+00 \pm 7.9093e-01$	$9.4477e-14 \pm 1.7980e-13$
Ackley	3.9968e-15 ± 0.0000e+00	$^{4.4409\mathrm{e-}16} \pm \\ 0.0000\mathrm{e+}00$	$2.5008e-05 \pm 7.5023e-05$	$^{4.4409\mathrm{e}\text{-}16} \pm \\ _{0.0000\mathrm{e}+00}$	$4.1998e{+00} \pm 1.5783e{+00}$	$^{4.4409\mathrm{e-}16~\pm}_{0.0000\mathrm{e}+00}$
Griewank	0.0000e+00 ± 0.0000e+00	$^{0.0000e+00~\pm}_{0.0000e+00}$	$^{0.0000\text{e}+00~\pm}_{0.0000\text{e}+00}$	$\substack{\mathbf{0.0000e} + 00 \ \pm \\ \mathbf{0.0000e} + 00}$	$1.4099e-15 \pm 3.4216e-15$	$^{0.0000\mathrm{e}+00~\pm}_{0.0000\mathrm{e}+00}$
Schwefel	-4.1602e+02 ± 3.9725e+00	$^{-1.1764\mathrm{e}+02}\pm0000000000000000000000000$	$^{-3.9766\mathrm{e}+02} \pm \\ ^{1.8576\mathrm{e}+01}$	$^{-1.3163\mathrm{e}+02~\pm}_{9.4722\mathrm{e}+00}$	$^{-4.0546}\mathrm{e}{+02} \pm \\ 8.7620\mathrm{e}{+00}$	$^{-1.3729e+02}\pm$ $^{1.1659e+01}$
Zakharov	1.5326e-09 ± 2.4289e-09	$\begin{array}{c} \textbf{9.4473e-127} \ \pm \\ \textbf{1.9111e-126} \end{array}$	$4.6938e-07 \pm 5.8719e-07$	$\begin{array}{c} {\bf 1.5898e\text{-}54}\ \pm \\ {\bf 4.7694e\text{-}54} \end{array}$	$3.5924\text{e-}03 \pm 4.4548\text{e-}03$	$9.7949e-38 \pm 2.9384e-37$
Destaques	4	6	2	6	2	3

Fonte: Própria autora.

Resultados - Benchmarks

Fonte: Própria autora.

Configurações - PSP

- ► Tamanho da população: 30;
- ▶ Gerações: 10000;
- ► Execuções: 30;

Resultados - PSP - Todos os Pontos

Função	Uniforme		Gaussiana		Logístico	
Tunyuo	jDE	SCA	jDE	SCA	$_{ m jDE}$	SCA
F_{13}	$^{-1.9189\mathrm{e}+00~\pm}_{3.6629\mathrm{e}-01}$	$^{-0.5874\mathrm{e}+00}\pm\\0.0921\mathrm{e}+00$	$^{-1.7748}\mathrm{e}{+00}~\pm$ $3.9848\mathrm{e}{-01}$	$^{-0.5902\mathrm{e}+00} \pm \\ 0.0612\mathrm{e}+00$	$-1.4509e+00 \pm 7.0879e-01$	$-0.7968e+00 \pm 0.1745e+00$
F_{21}	$^{-4.0581\mathrm{e}+00~\pm}_{3.8556\mathrm{e}-01}$	$^{-1.0345\mathrm{e}+00}\pm\\0.1064\mathrm{e}+00$	$^{\textbf{-3.5875e+00}}_{\textbf{-7.5970e-01}} \pm$	$^{-1.0738\mathrm{e}+00} \pm \\ 0.0967\mathrm{e}+00$	$^{-2.9871\mathrm{e}+00} \pm \\ ^{1.2664\mathrm{e}+00}$	$^{-1.2132\mathrm{e}+00} \pm \\ 0.1360\mathrm{e}+00$
F_{34}	$^{-6.690}{}^{2\mathrm{e}}{+00}{\pm} \\ 8.9389\mathrm{e}{-01}$	$^{-0.9526\mathrm{e}+00}\pm\\0.2652\mathrm{e}+00$	$^{\textbf{-5.7044e}+\textbf{00}\ \pm}_{\textbf{1.3987e}+\textbf{00}}$	$^{-1.0135\mathrm{e}+00}~\pm\\0.2500\mathrm{e}+00$	$^{-4.8845\mathrm{e}+00}~\pm\\1.8677\mathrm{e}+00$	$^{-1.2386\mathrm{e}+00}\pm\\0.2906\mathrm{e}+00$
F_{55}	$^{-9.6476\mathrm{e}+00~\pm}_{1.3193\mathrm{e}+00}$	$^{-1.2564\mathrm{e}+00}\pm\\0.1734\mathrm{e}+00$	$^{2.5832\mathrm{e}+01} \pm _{1.8098\mathrm{e}+02}$	$^{-1.2265e+00} \pm \\ 0.1684e+00$	$^{2.6790\mathrm{e}+01~\pm}_{1.8101\mathrm{e}+02}$	$^{-1.4580\mathrm{e}+00} \pm \\ 0.3562\mathrm{e}+00$
Destaques	4	0	3	0	0	0

Fonte: Própria autora.

Resultados - PSP - Todos os Pontos

Fonte: Própria autora.

Resultados - PSP - Pontos Específicos

Função	SCA Padrão	SCA Adaptado
F_{13}	$^{-0.5874\mathrm{e}+00~\pm}_{0.0921\mathrm{e}+00}$	$\begin{array}{c} \textbf{-1.9444e+00} \ \pm \\ \textbf{0.3340e+00} \end{array}$
F_{21}	$^{-1.0345\mathrm{e}+00~\pm}_{0.1064\mathrm{e}+00}$	$^{-2.5988\mathrm{e}+00~\pm}_{0.4972\mathrm{e}+00}$
F_{34}	$^{-0.9526\mathrm{e}+00~\pm}_{0.2652\mathrm{e}+00}$	$^{-2.9768\mathrm{e}+00~\pm}_{0.6780\mathrm{e}+00}$
F_{55}	$^{-1.2564\mathrm{e}+00~\pm}_{0.1734\mathrm{e}+00}$	$^{\textbf{-3.3634e}+00~\pm}_{\textbf{1.0257e}+\textbf{00}}$
Destaques	0	4

Fonte: Própria autora.

Resultados - PSP - Pontos Específicos

Fonte: Própria autora.

Considerações Finais

Considerações Finais

- O método de randomização utilizado para geração de números aleatórios é um parâmetro das meta-heurísticas;
- ► A decisão, de qual método se utilizar, depende de diversos aspectos, como: o algoritmo que está sendo usado; o problema ao qual o algoritmo está tentando solucionar; e em que partes do algoritmo este método foi aplicado.

Considerações Finais

► Como trabalhos futuros, sugere-se o desenvolvimento de um estudo com mesmo foco do trabalho em questão, mas realizando experimentos com outros algoritmos; outros métodos de randomização; e outros pontos de aplicação.

Referências I

J. Brest, V. Zumer e M. S. Maucec. "Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization". Em: 2006 IEEE International Conference on Evolutionary Computation. Jul. de 2006, pp. 215–222. DOI: 10.1109/CEC.2006.1688311.

R. Caponetto et al. "Chaotic sequences to improve the performance of evolutionary algorithms". Em: *IEEE Transactions on Evolutionary Computation* 7.3 (jun. de 2003), pp. 289–304. ISSN: 1089-778X. DOI: 10.1109/TEVC.2003.810069.

Chiwen Qu et al. "A Modified Sine-Cosine Algorithm Based on Neighborhood Search and Greedy Levy Mutation". Em: Computational Intelligence and Neuroscience 2018 (jul. de 2018), pp. 1–19. DOI: 10.1155/2018/4231647.

Obrigada!

Aplicação de Diferentes Métodos de Randomização em Meta-heurísticas

Luiza Engler Stadelhofer, Rafael Stubs Parpinelli

luiza.engler@gmail.com
rafael.parpinelli@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

26 de novembro de 2019