PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-233065

(43) Date of publication of application: 28.08.2001

(51)Int.Cl.

B60K 6/02 B60L 7/10 // HOIM 10/40 H01M 10/44

(21)Application number: 2000-054438

(71)Applicant:

SONY CORP

(22)Date of filing:

25.02.2000

(72)Inventor:

TODA MASAYUKI

KAWASE KENICHI

(54) CHARGING METHOD FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To efficiently regenerative-charge a nonaqueous electrolyte secondary battery by a regenerative power from a motor.

SOLUTION: When a non-aqueous electrolyte secondary battery, i.e., a power source of a moving body is regenerative-charged by a regenerative power from a motor, a charge control voltage, i.e., an upper limit voltage of charge is temporarily enhanced to an excess charge area of the non-aqueous electrolyte secondary battery. At this time, an interval resistance of the non-aqueous electrolyte secondary battery is detected and the charge control voltage may be changed corresponding to a value of the internal resistance detected. A start signal of the regenerative-charging is formed, for example, an acceleration off signal of the moving body or a brake-on signal of the moving body.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-233065 (P2001-233065A)

(43)公開日 平成13年8月28日(2001.8.28)

(51) Int.Cl. ⁷		識別記号	FΙ		รั	·-7]-ド(参考)	
B60K	6/02		B60L	7/10		5H029	
B60L 1	7/10	•	H01M	10/40	Z	5H030	
# H01M 10	0/40	•		10/44	Α	5H115	
. 10	0/44		B 6 0 K	9/00	С		

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号	特顧2000-54438(P2000-54438
(で1) 川原(柱) ウ	14892000 344300 P2000 - 34430

(22)出顯日

平成12年2月25日(2000.2.25)

(71)出額人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72) 発明者 任田 正之

福島県郡山市日和田町高倉字下杉下1-1

株式会社ソニー・エナジー・テック内

(72)発明者 川瀬 賢一

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 100067736

弁理士 小池 晃 (外2名)

最終頁に続く

(54) 【発明の名称】 非水電解液二次電池の充電方法

(57)【要約】

【課題】 モータからの回生電力により非水電解液二次電池を効率的に回生充電する。

【解決手段】 移動体の動力源である非水電解液二次電池をモータからの回生電力により回生充電するに際し、充電の上限電圧となる充電制御電圧を一時的に非水電解液二次電池の過充電領域まで高める。このとき、非水電解液二次電池の内部抵抗を検出し、検出された内部抵抗の値に応じて上記充電制御電圧を変更するようにしてもよい。回生充電の開始信号は、例えば移動体のアクセルオフ信号、あるいは移動体のブレーキオン信号とする。

【特許請求の範囲】

【請求項1】 移動体の動力源である非水電解液二次電池をモータからの回生電力により回生充電するに際し、充電の上限電圧となる充電制御電圧を一時的に非水電解液二次電池の過充電領域まで高めることを特徴とする非水電解液二次電池の充電方法。

1

【請求項2】 非水電解液二次電池の内部抵抗を検出し、検出された内部抵抗の値に応じて上記充電制御電圧を変更することを特徴とする請求項1記載の非水電解液二次電池の充電方法。

【請求項3】 移動体のアクセルオフ信号を上記回生充電の開始信号とすることを特徴とする請求項1記載の非水電解液二次電池の充電方法。

【請求項4】 移動体のブレーキオン信号を上記回生充電の開始信号とすることを特徴とする請求項1記載の非水電解液二次電池の充電方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、いわゆるハイブリッド自動車等の移動体の動力源として使用される非水電 20 解液二次電池の充電方法に関するものであり、特に、モータからの回生電力を利用した回生充電法の改良に関する。

[0002]

【従来の技術】非水電解液二次電池、例えばリチウムイオン二次電池等は、エネルギー密度が高く、出力密度も高いため、電気自動車やハイブリッド自動車、さらには電気自転車や電動スクータ等の移動体の電源として開発が進められ、一部実用化されている(例えば、マテリアルインテグレーション 99年 第12巻 第3号 P 3049~P62参照)。

【0003】非水電解液二次電池系では、電池の保護回路や電圧・温度等をモニタするコントローラが用いられ、サイクル寿命の向上や安全性の向上を狙いにしてセル(単電池)毎に電圧を検出している。

【0004】この保護回路では、例えば充電時の上限電圧(以降充電制御電圧と言う。)を設定して、セル電圧が過充電電圧に至ると充電を停止したり、充電電流を絞り込んだりしている(例えば特開平6・105457号公報参照)。例えば、通常のCo系リチウムイオン電池 40(正極にLiCoO、を用いたリチウムイオン電池)では、充電制御電圧を過充電に至る直前の4.2 V近辺に設定している。

[0005]

【発明が解決しようとする課題】ところで、前述の移動体用動力源として用いた非水電解液二次電池系においては、モータから減速時等の回生エネルギーが加わると電池は回生充電されるが、回生充電時に流れる電流による電圧降下分が上乗せされるため、上記充電制御電圧の制限により回生電力が制限されるという問題がある。

【0006】との現象を図を用いて説明する。

【0007】図6に代表的なリチウムイオン二次電池の入出力特性を示す。入出力特性の測定に際しては、出力特性の場合の下限電圧を2.5 Vとし、入力特性の場合の上限電圧を4.2 Vとしている。

【0008】特に、入力特性の上限電圧(充電制御電圧)を4.2 Vに設定しているのは、このリチウムイオン二次電池系では、充電電圧が4.2 Vを越えると過充電領域となるためである。

10 【0009】この図6からも明らかなように、実際に多用されることが想定される領域(放電の深さDOD60%以下)では、出力よりも入力の方が低く、回生特性が悪いという問題がある。この入力特性が悪い理由は、回生入力時に電池の内部抵抗による電圧降下分が上乗せされ、充電制御電圧に至るのが早いことによる。

【0010】本発明は、このような従来の状況に鑑みて 提案されたものであり、回生効率を大幅に改善すること が可能な非水電解液二次電池の充電方法を提供すること を目的とする。

[0011]

【課題を解決するための手段】上述の目的を達成するために、本発明の充電方法は、移動体の動力源である非水電解液二次電池をモータからの回生電力により回生充電するに除し、充電の上限電圧となる充電制御電圧を一時的に非水電解液二次電池の過充電領域まで高めることを特徴とするものである。

【0012】通常、非水電解液二次電池を充電する際には、充電電圧を過充電領域に至る前の電圧に抑えるというのが一般的である。

【0013】本発明では、このような常識を破り、充電 制御電圧を過充電領域の電圧に設定している。

【0014】とのように、回生時の充電制御電圧を、電池の内部抵抗による電圧降下分を加味した充電制御電圧 に設定することにより、回生入力特性が大幅に改善される。

[0015]

【発明の実施の形態】以下、本発明を適用した非水電解 液二次電池の充電方法について、図面を参照しながら詳 細に説明する。

) 【0016】先ず、移動体の動力源として用いられる非水電解液二次電池であるが、いわゆるリチウムイオン二次電池等、通常の構成の非水電解液二次電池を挙げるととができる。

【0017】例えば、本発明において対象とする非水電解液二次電池の正極に使用する活物質としては、リチウム含有化合物としては、例えばLi、MO、(但し、Mは1種類以上の選移金属を表す。)で表されるリチウム選移金属複合酸化物等が挙げられ、中でもLiCoO、LiNiO、Li Mn、O、等が好ましい。

【0018】とのようなリチウム遷移金属複合酸化物 は、例えばリチウム、コバルト、ニッケル、マンガンの 炭酸塩、硝酸塩、酸化物、水酸化物等を出発原料とし、 とれらを組成に応じた量で配合し、600~1000℃ の温度範囲で焼成することにより得られる。

【0019】一方、非水電解液二次電池の負極に使用さ れる活物質としては、炭素材料が挙げられる。炭素材料 としては、リチウムをドープ、脱ドープすることが可能 なものであれば良く、2000℃以下の比較的低い温度 で焼成して得られる低結晶性炭素材料や、結晶化しやす い原料を3000℃近くの髙温で処理した人造黒鉛、天 然黒鉛等の高結晶性材料が用いられる。例えば、熱分解 炭素類、コークス類、黒鉛類、ガラス状炭素類、有機高 分子化合物焼成体、炭素繊維、活性炭等が使用可能であ る。

【0020】また、非水電解液は、有機溶媒とそれに溶 解した電解質からなっている。ととで、有機溶媒として は、例えばエチレンカーボネート、プロピレンカーボネ ート等の環状カーボネート、ジメチルカーボネート、ジ エチルカーボネート等の鎖状カーボネート、ァ・ブチロ 20 インターフェース部23を介してパワー制御部5へ送 ラクトン、ア・バレロラクトン等の環状エステル、酢酸 エチル、プロピオン酸メチル等の鎖状エステル、テトラ ビドロフラン、1,2・ジメトキシエタン等のエーテル 等を挙げることができ、1種もしくは2種以上のものを 混合して用いることができる。電解質としては、溶媒に 溶解し、イオン導電性を示すリチウム塩であれば特に限 定されることなく、例えばLiPF。、LiBF4、L iClO, LiCF, SO, LiN (CF, S O₁), LiC(CF,SO₂)等を挙げることがで ができる。

【0021】動力源となる非水電解液二次電池は、例え ば、以上のような正極活物質をシート状のアルミ箔に塗 布後、適当な幅と長さにカットされた帯状の正極と、以 上のような負極活物質をシート状の銅箔に塗布後、適当 な幅と長さにカットされた帯状の負極と、ポリエチレン (PE)、ポリプロピレン(PP)、あるいはこれらの 複合膜によって形成された帯状のセパレータを介して重 ね合わせ、これを多数回巻回したスパイラル状電極体を 金属製、あるいはラミネートケースに収納し、これを安 40 全弁や蓋等で密閉したものである。

【0022】図1は、移動体におけるモータの駆動系を 示すものであり、上記のような非水電解液二次電池が動 力源として組み込まれている。

【0023】 このモータ駆動系は、単セル、あるいはそ れらを組み合わせた組電池からなる電池1、電池1から の電圧(セル電圧及び組電池電圧)や温度等の信号を受 けて各種演算を行い充放電制御部へ充放電制御信号を送 る制御電圧演算部2、充放電制御信号を受けてモータと 電池1間の電力の流れを制御する充放電制御部3、駆

動、発電あるいは回生を行うモータ4から構成される。 【0024】また、移動体の各種信号(速度、温度、パ 「ワーON、パワーOFF信号など)は、パワー制御部5 に取り込まれ、パワー制御部5から充放電制御信号が充 放電制御部3に出力されるとともに、パワー制御部5 は、電池1の制御電圧演算部2と移動体及び電池1に関 する信号を相互通信する。

【0025】上記制御電圧演算部2は、図2に概略構成」 を示すように、セル電圧検出部21とセルの電圧信号を 演算処理する演算部22と充放電制御部と信号を通信す るインターフエース部23とから構成される。

【0026】電池1は、それを構成する多数個のセルを 直並列接続したものからなる。セルは、所定の個数毎に ブロック化され、そのブロック毎に制御電圧演算部2が 接続されている。

【0027】セル電圧検出部21では、各セル毎の電圧 が検出され、AD変換されて演算部22へ取り込まれ る。演算部22は、各セルの電圧が所定値の範囲(例え は2.5 V~4.2 V) に入るように充放電許容信号を る。例えば充電時の場合、電池中のあるセルの電圧が充っ 電制御電圧4.2Vに達したら、充電停止信号をパワー 制御部5へ送り、充電が停止あるいは充電電流が絞り込 まれ、放電時の場合、電池1中のあるセルの電圧が放電 制御電圧2.5 Vに達したら、放電停止信号をパワー制 御部5へ送り、放電を停止あるいは放電電流を絞り込 tr.

【0028】また、演算部22では、パワー制御部5か、 ら送られた制御信号により、上記充電制御電圧あるいは き、やはり1種もしくは2種以上を混合して用いること 30 放電制御電圧の電圧レベルを任意に設定することができ る。

> 【0029】具体的には、本発明では、回生時にパワー 制御部5から回生信号を受けると、演算部22で充電制 御電圧を4.2 Vから過充電領域の充電電圧である4. 3 V に高め、回生受け入れ性を改善する。

> 【0030】図3は、制御電圧演算部2のフローチャー トを示すものである。制御電圧演算部2では、例えばと の図3に示すフローチャートに従って過充電電圧の変更 を行う。

【0031】なお、上記のフローチャートにおいて、回 生開始信号としては、移動体のアクセルスイッチオフ (OFF) 信号、ブレーキスイッチオン(ON)信号、 さらには移動体の減速信号及びこれらが複合した信号を 用いることができる。

【0032】とのような駆動系において、例えば、先に 述べたような移動体のアクセルスイッチオフ(OFF) の信号、ブレーキスイッチオン(ON)の信号、移動体 の速度信号を演算処理することにより、回生充電のタイ ミングを検出することができる。

【0033】本発明においては、このような回生に関す 50

る信号に基づき、例えば、これまで4.2Vに設定して いた充電制御電圧(充電の上限電圧)を一時的に過充電 領域である4.3 V に高め、電池の内部抵抗に起因する IR降下の上乗せ分を補正する。これによって実効的な 回生電力を大きくすることが可能となる。

【0034】また、このとき、電池の内部抵抗の大きさ から充電制御電圧の大きさを変更することも可能であ る。この場合、充放電制御部3及び制御電圧演算部2か ら、電池1に流れる電流とその時の電圧から電池の内部・ 抵抗を検出することができる。この電池の内部抵抗の大 10 きさから充電制御電圧を一時的に髙める大きさを変更す るととにより、電池の劣化に因らず所定の回生入力特性 が得られるという特徴もある。

[0035]

【実施例】以下、本発明の具体的な実施例について、実 験結果に基づいて説明する。

【0036】電池の作製

非水電解液二次電池A

この電池において、正極は次のように作製した。

【0037】先ず、炭酸リチウム0.5モルと炭酸コバ 20 熱処理し冷却してリチウムマンガン酸化物を得た。 ルト1モルを混合し、この混合物を空気中900°Cの条 件で5時間焼成した。得られた材料についてX線回折測 定を行つた結果、JCPDSファイルに登録されたLi CoO、のピークと一致するものであった。

【0038】 このようにして得られた材料を粉砕し、と れを正極活物質として使用したが、この粉砕した粉末を レーザー回折法で測定した結果、累積50%粒径が15 μmであった。

【0039】次に、得られたLiCoO、粉末95重量 部と炭酸リチウム粉末5重量部を混合し、この混合物8 7重量部に導電材として鱗片状黒鉛(ロンザ社製、商品 名KS15)8重量部とピッチ系粒状炭素(d.,,= 0. 337nm、Lc=30nm、嵩密度=0. 57g /cm³、累積50%粒径=16μm)2重量部、結着 剤(ポリフッ化ビニリデン)3重量部を加え、これを混 合して正極合剤を調製し、N-メチル-2-ピロリドン に分散させてスラリー(ペースト状)にした。

【0040】一方、負極材としては、石油ピッチを酸素 雰囲気中、1000℃で加熱処理して得られた(いわゆ る酸素架橋を施した)炭素を粉砕し、平均粒径が22μ mで1~100μmの粒径分布を有する材料を用いた。 この炭素材90重量%と結着材であるポリフッ化ビニリ デン (PVDF) 10重量%とを混合し、ことに溶剤と してN-メチル-2-ピロリドンを加えて合剤化し、厚 さ15 µmの銅箔集電体上に両面均一に塗布し乾燥させ・ た後、ローラープレス機を用いて加圧成型して負極を作 製した。

【0041】次に、正極、負極を所定の幅に切断した 後、AlとNiのリード体を各々の電極の端部に溶着さ せた。

【0042】これらの正極、負極と微多孔性ポリエチレ ン製セパレータを正極/セパレータ/負極/セパレータ の順に重ね、多数回巻回して渦巻状素子を作製した、次 に、この渦巻状素子の上下にポリプロピレン製絶縁板を 載置し、鉄製缶容器に入れ、Niリードを缶底に溶接 し、さらにポリプロピレン製絶縁ガスケットを載置して 正極リード体をアルミニウム製安全弁に溶接した後、電 解液として炭酸プロピレンと炭酸ジメチルの等量混合溶 媒にLiPF。を1モル/L溶解させた溶液を注液し て、安全弁、トップカバーを順番に載置した後、缶開口」 部をカシメて外径40mm、長さ100mmの円筒型電 池を作製した。

【0043】非水電荷駅二次電池B

二酸化マンガンとして平均粒子径が7μmである材料と 平均粒子径2μmの炭酸リチウムをLi/Mn比が0. 5になるように計量し、乳鉢で混合した。

【0044】との混合物をアルミナボートに入れ800 °Cで12時間熱処理し、室温まで冷却した後、再び乳鉢 で混合し、アルミナポートに移し、800℃で12時間

【0045】得られた化合物をX線回折で測定した結 果、スピネル型LiMn,O,に一致するピークを有する 化合物であった。さらに、この化合物の粒子径分布を測 定した結果、平均粒径が10μmを示していた。

【0046】このリチウムマンガン酸化物87重量%と 導電材であるグラファイト6重量%、及び結着剤である ポリフッ化ビニリデン(PVDF)4重量%を混合し た。

【0047】次に、この混合物に溶剤としてN-メチル 30 -2-ピロリドンを加えて合剤化して、厚さ20μmの A 1 箔を集電体としてこの上に両面均一に塗布し乾燥さ せた後、ローラプレス機を用いて加圧成型し正極を作製 した。

【0048】負極は上記の非水電解液二次電池Aと同じ 電極を用いた。

【0049】以下、上記非水電解液二次電池Aと同様に 電極を作製し、多数回巻回して渦巻き状電極素子を作製 した。次いで、非水電解液二次電池Aと同様の電解液を 注入し、これをカシメで外径40mm、長さ100mm の円筒型電池を作製した。

【0050】充電制御電圧の検討

充電制御電圧を一時的に高めた場合の回生入力特性を図 4及び図5に示す。図4は、非水電解液二次電池Aを用 いた場合の例であり、充電制御電圧を4.2 Vから4. 3Vに髙めた時の入力特性を示してある。

【0051】また、図5は、非水電解液二次電池Bを用 いた例であり、充電制御電圧を4.2Vから4.3Vあ るいは4. 4 V に高めた時の入力特性を示してある。図 からわかるように、充電制御電圧を一時的に0.1V~ 50 0.2 V 高めるととにより回生入力特性が著しく改善さ

れている。

【0052】上記のように回生入力特性が著しく改善されるのは、次の理由による。一般的にリチウムイオン電池等の非水電解液電池は、平衡電圧が高い。ここで、回生電力をW、回生電圧をV、電池電圧をE、回生電流をI、電池の内部抵抗をRとすると、W=IV=I(E+IR)となり、回生時に内部抵抗に起因するIR降下分が上乗せされる。この時、上限電圧を4.2 Vに制限すると(つまり充電制御電圧を4.2 Vに設定すると)平衡電圧が高い分と合わせて、回生電力が制限される。そこで、IR降下分をキャンセルすべく一時的に充電制御電圧を高めると回生入力特性が著しく改善される。

【0053】とのように過充電電圧を高めると、サイクル寿命や安全性への影響が懸念されるが、数十秒程度以下の回生であればサイクル寿命や安全性への影響はない。また、長い下り坂での長時間回生や電気自動車の場合の充電等での過充電の虞れに対しては、例えば回生充*

*電時間を所定値以下に規定することや、移動体の速度信号にて回生充電か通常充電かを判断することで、無用な過充電を防止することができる。

【0054】寿命性能への影響

充電制御電圧を例えば4.2 Vから4.3 Vへ高めた場合、寿命への影響が懸念される。そこで、充電制御電圧を4.2 Vから4.3 Vへ高めた場合の寿命性能を調査した。

【0055】寿命試験Aは、CC-CV充電した場合の 10 サイクル寿命試験で、カットオフを2.5 Vとしてい る。また、寿命試験Bは、DOD50%を中心にしてパ ルス放電とパルス充電を繰り返したサイクル寿命試験で ある。パルス充電は回生時のパルス入力を想定した回生 充電に相当する。

【0056】試験結果を表1及び表2に示す。

[0057]

【表1】

寿命試験A:

試験条件	初期に対する200サイクル後の容量		
4.2V~2.5V	92. 2%		
4.3V~2.5V	89. 6%		

[005.8]

【表2】

寿命試験B:

試験条件	初期に対する4万パルス後の容量
4.2Vmaxパルス	94. 8%
4.3Vmaxハ*ルス	94. 5%

【0059】との試験結果から明らかなように、寿命試験Aでは、充電末期に開路電圧OCVが4.3Vに達するため寿命性能の低下が見られるが、寿命試験Bでは、パルス的に4.3VになってもOCVとしては4.2V以下に抑えられるため、寿命性能の低下がほとんど無い。

【0060】以上の結果から、再生時に一時的に充電制 御電圧を4.3 Vに高めても寿命への影響が無いことが わかる。

[0061]

【発明の効果】以上説明してきたように、非水電解液二次電池を電気自動車やハイブリッド自動車、電動自転車や電助スクータ等の移動体の動力源として用いる電源系において、モータからの回生電力により非水電解液二次電池を回生充電する際に、充電制御電圧を一時的に高めて回生充電電力を高めることにより、以下の効果を得る

ことができる。

【0062】すなわち、先ず第1に、一時的に充電制御 電圧を高めることにより、回生入力特性を著しく改善で きる。

【0063】また、電池の内部抵抗を検出し、それに基づいて充電制御電圧を設定するため、サイクルに因らず 30 一定の回生入力特性が得られる。

【0064】さらに、移動体の各種信号を利用して制御するため、無用の過充電の虞れが無い。

【図面の簡単な説明】

【図1】モータの駆動系を示すブロック図である。

【図2】制御電圧演算部の構成を示すブロック図である。

【図3】制御電圧制御部における充電制御電圧変更手順 を示すフローチャートである。

【図4】非水電解液二次電池Aを使用した場合の回生入 40 力特性を示す特性図である。

【図5】非水電解液二次電池Bを使用した場合の回生入力特性を示す特性図である。

【図6】従来の回生方法における入出力特性を示す特性 図である。

【符号の説明】

1 電池、2 制御電圧演算部、3 充放電制御部、4 モータ、パワー制御部

【図3】

フロントページの続き

F ターム(参考) 5H029 AJ03 AK03 AL06 AL07 AM03 AM04 AM05 AM07 BJ02 BJ04 BJ12 BJ14 CJ02 HJ14 SH030 AA03 AA10 AS08 BB10 FF41 FF43 FF51 SH115 PA11 PC06 PG04 PI14 PI16 PI29 PO02 PO06 PU01 QE10 QI04 QN02 SE06 TB01 TI05 TI10 TR19 TU16 UI40