Implementasi Forward Propagation untuk Feed Forward Neural Network

Diajukan sebagai pemenuhan tugas I

Oleh

13521116	Juan Christopher Santoso
13521135	Nicholas Liem
13521139	Nathania Calista Djunaedi
13521162	Antonio Natthan Krishna

Dosen Pengampu : Fariska Zakhralativa Ruskanda, S.T.,M.T. IF3270 - Pembelajaran Mesin

PROGRAM STUDI TEKNIK INFORMATIKA
SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA
INSTITUT TEKNOLOGI BANDUNG
2024

Daftar Isi

Daftar Isi	2
Bab I Penjelasan Implementasi	3
1.1. Implementasi Fast Feed Neural Network	3
1.2. Implementasi Linear	5
1.3. Implementasi ReLU	5
1.4. Implementasi Sigmoid	6
1.5. Implementasi Softmax	6
Bab II Hasil Pengujian	7
2.1. Hasil Pengujian Test Case Linear	7
2.2. Hasil Pengujian Test Case Softmax	12
2.3. Hasil Pengujian Test Case Multilayer Softmax	14
2.4. Hasil Pengujian Test Case ReLU	15
2.5. Hasil Pengujian Test Case Sigmoid	16
2.6. Hasil Pengujian Test Case Multilayer	19
2.7. Hasil Pengujian Test Case Init	20
Bab III Perbandingan dengan Perhitungan Manual	21
3.1. Perbandingan Hasil Pengujian Test Case Linear	21
3.2. Perbandingan Hasil Pengujian Test Case ReLU	21
3.3. Perbandingan Hasil Pengujian Test Case Sigmoid	22
3.4. Perbandingan Hasil Pengujian Test Case Softmax	22
3.5. Perbandingan Hasil Pengujian Test Case Multilayer Softmax	23
3.6. Perbandingan Hasil Pengujian Test Case Multilayer	24
Bab IV Pembagian Tugas Anggota Kelompok	25
Lampiran	26

Bab I Penjelasan Implementasi

1.1. Implementasi Fast Feed Neural Network

Untuk mengimplementasikan semua algoritma pembelajaran yang ada, penulis membuat sebuah kelas (*class FastFeedNeuralNetwork* (FFNN)) yang menggambarkan bagaimana sebuah FFNN bekerja. Kelas FFNN memiliki beberapa *method* yang nantinya dapat digunakan untuk membantu model membuat sebuah prediksi. Implementasi serta metode - metode yang terdapat pada kelas FFNN dapat dilihat pada gambar di bawah ini

```
class FastFeedNeuralNetwork:
  def __init__(self, layers, weights, input_data):
     self.input_data = np.array(input_data) if not isinstance(input_data, np.ndarray)
else input_data
    self.layers = layers
    self.weights = [np.array(w) for w in weights]
     self.graph_visualizer = GraphNetworkVisualizer(layers, weights, input_data)
  def prepend bias(self, activations):
     return np.insert(activations, 0, 1, axis=1)
  def predict(self):
     activations = self.input_data
     activationFunc = ActivationFunction()
    for i in range(len(self.layers)):
       activations_with_bias = self.prepend_bias(activations)
       net_input = np.dot(activations_with_bias, self.weights[i])
       # Update nilai activations dengan menggunakan fungsi aktivasi yang
diinginkan
       activation_function_str = self.layers[i]['activation_function']
       match activation function str:
```

```
case "relu":
    activations = activationFunc.relu(net_input)
    case "softmax":
    activations = activationFunc.softmax(net_input)
    case "sigmoid":
    activations = activationFunc.sigmoid(net_input)
    case "linear":
    activations = activationFunc.linear(net_input)

return activations
```

Kelas *FastFeedNeuralNetwork* memiliki beberapa *method* yang akan dijelaskan pada tabel di bawah ini

Method	Deskripsi
init	Inisialisasi kelas dan menerima 2 parameter, yaitu <i>layers</i> dan <i>weights.</i>
prepend_bias	Memasukkan nilai bias pada input
predict	Metode yang dapat dipanggil oleh program untuk memberikan prediksi. Di dalam <i>method</i> ini, akan dipanggil fungsi aktivasi yang sesuai dengan <i>input</i> dari pengguna.

Inti dari algoritma *Fast Feed Neural Network* terletak pada metode *predict*. Berikut adalah prosedur dari fungsi tersebut:

- 1. Menyimpan input_data pada variabel activations
- 2. Untuk setiap layer yang ada kita akan iterasi sub-prosedur di bawah ini
 - a. Menambahkan bias (bernilai 1) pada input_data untuk setiap iterasi
 - Menghitung nilai net_input dengan melakukan dot product antara input yang sudah diappend dengan bias dengan setiap nilai weight yang berkoresponden

- Berdasarkan fungsi aktivasi pada layer tersebut, ditentukan pilihannya dan dihitung nilai aktivasi yang baru
- 3. Mengembalikan nilai atau hasil output terakhir

Dalam mengimplementasikan fungsi aktivasi yang digunakan dalam kelas FFNN, dibuatlah sebuah kelas yang menyimpan seluruh algoritma fungsi aktivasi tersebut, yakni kelas *ActivationFunction*. Kelas *ActivationFunction* memiliki beberapa *method* yang akan dijelaskan pada tabel di bawah ini

Method	Deskripsi
linear	Fungsi aktivasi untuk membangkitkan prediksi nilai dengan cara metode <i>linear</i>
softmax	Fungsi aktivasi untuk membangkitkan prediksi nilai dengan cara metode softmax
relu	Fungsi aktivasi untuk membangkitkan prediksi nilai dengan cara metode <i>relu</i>
sigmoid	Fungsi aktivasi untuk membangkitkan prediksi nilai dengan cara metode <i>sigmoid</i>

1.2. Implementasi Linear

Fungsi aktivasi untuk fungsi linear adalah sebagai berikut

```
def linear(self, x):
return x
```

1.3. Implementasi ReLU

Fungsi aktivasi untuk fungsi ReLU adalah sebagai berikut

```
def relu(self, x):
return np.maximum(0, x)
```

1.4. Implementasi Sigmoid

Fungsi aktivasi untuk fungsi Sigmoid adalah sebagai berikut

```
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
```

1.5. Implementasi Softmax

Fungsi aktivasi untuk fungsi Softmax adalah sebagai berikut

```
def softmax(self, x):
    expX = np.exp(x - np.max(x, axis=1, keepdims=True))
    return expX / np.sum(expX, axis=1, keepdims=True)
```

Bab II Hasil Pengujian

2.1. Hasil Pengujian Test Case Linear

Penjelasan

Dalam visualisasi tersebut, dapat dilihat bahwa input yang digunakan terbagi menjadi 10 *batch* yang berbeda. Untuk setiap *batch* terdapat 1 nilai input dan 1 nilai bias untuk jumlah *node input*. Banyak *layer* perantara adalah 1 *layer* dengan jumlah *node* adalah 1 *node*. Terakhir, model akan menghasilkan satu *node* output.

2.2. Hasil Pengujian Test Case Softmax

Output (Log)

Output: [[0.76439061 0.21168068 0.02392871]]

Sum of Squared Errors (SSE): 1.2639167711800341e-1

Output (Network)

Penjelasan

Dalam visualisasi tersebut, dapat dilihat bahwa input yang digunakan hanya terdapat 1 *batch*. Untuk *batch* tersebut, terdapat 8 nilai input dan 1 nilai bias untuk jumlah *node input*. Banyak *layer* perantara adalah 1 *layer* dengan jumlah *node* adalah 3 *node*. Terakhir, model akan menghasilkan satu *node* output.

2.3. Hasil Pengujian Test Case Multilayer Softmax

Output (Log)

Output: [[0.7042294 0.2957706]]

Sum of Squared Errors (SSE): 1.942282085801731e-19

Output (Network)

Penjelasan

Dalam visualisasi tersebut, dapat dilihat bahwa input yang digunakan hanya terdapat 1 *batch*. Untuk *batch* tersebut, terdapat 4 nilai input dan 1 nilai bias untuk jumlah *node input*. Banyak *layer* perantara adalah 3 *layer* dengan jumlah *node* masing-masing adalah 3, 3, 3, dan 2 *node*. Terakhir, model akan menghasilkan satu *node* output.

2.4. Hasil Pengujian Test Case ReLU

Output (Log)

Output: [[0.05 1.1 0.]]

Sum of Squared Errors (SSE): 4.8148248609680896e-33

Output (Network)

Penjelasan

Dalam visualisasi tersebut, dapat dilihat bahwa input yang digunakan hanya terdapat 1 *batch*. Untuk *batch* tersebut, terdapat 2 nilai input dan 1 nilai bias untuk jumlah *node input*. Banyak *layer* perantara adalah 1 *layer* dengan jumlah *node* adalah 3 *node*. Terakhir, model akan menghasilkan satu *node* output.

2.5. Hasil Pengujian Test Case Sigmoid

Output (Log)

Output: [[0.41197346 0.8314294 0.53018536 0.31607396]

[0.78266141 0.80843631 0.55350518 0.64278501]

[0.58987524 0.82160954 0.75436518 0.34919895]

[0.6722004 0.81660439 0.59020258 0.50870988]

[0.47322841 0.82808466 0.69105452 0.29358323]]

Sum of Squared Errors (SSE): 2.1756063320477236e-16

Output (Network)

Penjelasan

Dalam visualisasi tersebut, dapat dilihat bahwa input yang digunakan terbagi menjadi 5 *batch* yang berbeda. Untuk setiap *batch* terdapat 3 nilai input dan 1 nilai bias untuk jumlah *node input*. Banyak *layer* perantara adalah 2 *layer* dengan masing-masing jumlah *node* adalah 2 dan 4 *node*. Terakhir, model akan menghasilkan satu *node* output.

2.6. Hasil Pengujian *Test Case* Multilayer

Output (Log)

Output: [[0.4846748]]

Sum of Squared Errors (SSE): 3.1555532735024718e-18

Output (Network)

Penjelasan

Dalam visualisasi tersebut, dapat dilihat bahwa input yang digunakan hanya terdapat 1 *batch*. Untuk *batch* tersebut, terdapat 3 nilai input dan 1 nilai bias untuk jumlah *node input*. Banyak *layer* perantara adalah 4 *layer* dengan masing-masing jumlah *node* adalah 4, 3, 2, dan 1 *node*. Terakhir, model akan menghasilkan satu *node* output.

2.7. Hasil Pengujian Test Case Init

Output (Log)

Output: [[0.05 1.1 0.]]

Sum of Squared Errors (SSE): 4.8148248609680896e-33

Output (Network)

Penjelasan

Dalam visualisasi tersebut, dapat dilihat bahwa input yang digunakan hanya terdapat 1 *batch*. Untuk *batch* tersebut, terdapat 2 nilai input dan 1 nilai bias untuk jumlah *node input*. Banyak *layer* perantara adalah 1 *layer* dengan jumlah *node* adalah 3 *node*. Terakhir, model akan menghasilkan satu *node* output.

Bab III Perbandingan dengan Perhitungan Manual

Perhitungan manual dilakukan dengan bantuan tools Excel yang dapat diakses pada link ini.

3.1. Perbandingan Hasil Pengujian *Test Case* Linear

LIN	EAF	?				
	b	x	w0	w1	Sum	Output (After Activation
1	1	-4	1	3	-11	-11
2	1	-3	1	3	-8	-8
3	1	-2	1	3	-5	-5
4	1	-1	1	3	-2	-2
5	1	0	1	3	1	1
6	1	1	1	3	4	4
7	1	2	1	3	7	7
8	1	3	1	3	10	10
9	1	4	1	3	13	13
10	1	5	1	3	16	16

3.2. Perbandingan Hasil Pengujian Test Case ReLU

RE	LU							
	b	x1	x2	w0	w1	w2	Sum	Output (After Activation
01	1	1.5	-0.45	0.1	0.47	1.1	0.31	0.31
O2	1	1.5	-0.45	0.2	-0.6	-1.3	-0.115	0
O3	1	1.5	-0.45	0.3	0.2	0.5	0.375	0.375

3.3. Perbandingan Hasil Pengujian Test Case Sigmoid

SIC	ЭМ	OID)																				
	b		x1	x2	х3	W	0.01	w0.02	w0.11	w0.	12 v	w0.21	w0.22	w0.3	w0.32	2 Sum	L11	Sum l	L12	Outp	ut L11	Oı	utput L12
1	1	-	0.6	1.6	-1	(0.6	-1.2	-1.2	-1.	7	1.4	-1.6	-0.7	1.1	4.2	6	-3.8	4	0.9860	743597	0.02	104134702
2	1	-	1.4	0.9	1.5	5 (0.6	-1.2	-1.2	-1.	7	1.4	-1.6	-0.7	1.1	2.4	9	1.3	9	0.9234	378026	0.80	005922432
3	1		0.2	-1.3	-1	(0.6	-1.2	-1.2	-1.	7	1.4	-1.6	-0.7	1.1	-0.7	6	-0.5	6	0.3186	462662	0.36	635474597
4	1	-	0.9	-0.7	-1.2	2 (0.6	-1.2	-1.2	-1.	7	1.4	-1.6	-0.7	1.1	1.5	4	0.1	3	0.8234	647252	0.53	324543064
5	1		0.4	0.1	0.2	2 (0.6	-1.2	-1.2	-1.	7	1.4	-1.6	-0.7	1.1	0.1	2	-1.8	2	0.5299	640518	0.1	39433873
w1.01	w1.02	w1.03	w1.04	w1.11	w1.12	w1.13	w1.14	w1.21	w1.22	w1.23	w1.24	Sum L	21 Sur	n L22	Sum L23	Sum L24	Outp	ut L21	Outp	ut L22	Output L	23	Output L24
-0.4	1.6	1.6	-1.5	0	0	-1.5	0.7	2.1	-0.2	0	1.8	0.355813	31711.595	791731).1	20888460).771873523	0.4119	734556	0.8314	1293994	0.5301853	633 (0.3160739649
-0.4	1.6	1.6	-1.5	0	0	-1.5	0.7	2.1	-0.2	0	1.8	1.281243	37111.439	8815510.2	214843296	.587472499	0.7826	614091	0.8084	1363083	0.5535051	761 (0.6427850098
-0.4	1.6	1.6	-1.5	0	0	-1.5	0.7	2.1	-0.2	0	1.8	.363449	665 1.527	2905081.1	122030601	0.622562186	0.5898	752435	0.8216	3095373	0.7543651	777 (0.3491989467
-0.4	1.6	1.6	-1.5	0	0	-1.5	0.7	2.1	-0.2	0	1.8	.718154	043 1.493	509139.3	64802912	0348430591	0.6722	2003954	0.8166	604391	0.5902025	844 (0.5087098836
-0.4	1.6	1.6	-1.5	0	0	-1.5	0.7	2.1	-0.2	0	1.8	þ.107188	866 1.572	113225).8	05053922	0.878044192	0.473	228411	0.8280	0846566	0.6910545	249 (0.2935832342

3.4. Perbandingan Hasil Pengujian *Test Case* Softmax

11		-	-	-		-			-		-			-				-		-
SO	FTM	IAX																		
	b	x1	x2	x 3	x4	x5	x 6	x7	x8	w0	w1	w2	w3	w4	w5	w6	w7	w8	Sum	Output (After Activation
01	1	-1	1	2.8	1.8	-0.45	0.24	0.15	0.2	0.1	-0.2	0.3	0.4	0.5	-0.6	-0.7	0.8	0.9	3.022	0.7643906087
02	1	-1	1	2.8	1.8	-0.45	0.24	0.15	0.2	0.9	8.0	-0.7	0.6	0.5	0.4	-0.3	0.2	-0.1	1.738	0.2116806829
O3	1	-1	1	2.8	1.8	-0.45	0.24	0.15	0.2	-0.1	0.2	0.3	-0.4	0.5	0.6	0.7	-0.8	0	-0.442	0.0239287084

3.5. Perbandingan Hasil Pengujian *Test Case* Multilayer Softmax

MU	LTIL	.AYE	R S	OF1	MA	X						
LAYE	R 0->1											
	b	x1	x2	x 3	x4	w0	w1	w2	w3	w4	Sum	Output
L11	1	0.1	-0.8	1	1.2	-0.9	0.8	0.3	1.1	0.5	0.64	0.64
L12	1	0.1	-0.8	1	1.2	1.2	-0.7	-1.4	-1.3	-0.8	-0.01	0
L13	1	0.1	-0.8	1	1.2	-0.6	1.1	0.7	0.9	1.4	1.53	1.53
L14	1	0.1	-0.8	1	1.2	0.3	-1.2	1.2	0.4	-0.9	-1.46	0
LAYE	R 1->2											
	b	x1	x2	x 3	x4	w0	w1	w2	w3	w4	Sum	Output
L21	1	0.64	0	1.53	0	0.7	1.3	-1.2	0.6	1	2.45	2.45
L22	1	0.64	0	1.53	0	-1.1	-0.6	0.9	-0.5	-0.4	-2.249	0
L23	1	0.64	0	1.53	0	0.2	0.5	1.4	1.2	0.8	2.356	2.356
L24	1	0.64	0	1.53	0	-1.4	-1.3	-0.7	-1.1	-1	-3.915	0
LAYE	R 2->3											
	b	x1	x2	x 3	x4	w0	w1	w2	w3	w4	Sum	Output
L31	1	2.45	0	2.356	0	-1.3	0.2	1.4	-0.7	0.9	-2.4592	0
L32	1	2.45	0	2.356	0	0.7	-1	-0.9	1.2	-0.7	1.0772	1.0772
L33	1	2.45	0	2.356	0	-0.8	1.1	0.3	-1.1	1.3	-0.6966	0
L34	1	2.45	0	2.356	0	1.3	-0.6	-1.4	0.5	-0.8	1.008	1.008
LAYE	R 3->4											
	b	x1	x2	x 3	x4	w0	w1	w2	w3	w4	Sum	Output
01	1	0	1.0772	0	1.008	0.4	-1.4	0.8	0.1	1.2	2.47136	0.7042293997
02	1	0	1.0772	0	1.008	-1.1	0.3	1.2	-1.2	1.4	1.60384	0.2957706003

3.6. Perbandingan Hasil Pengujian *Test Case* Multilayer

MU	LTIL	AYE	R S	OFT	MA	X						
LAYE	R 0->1											
	b	x1	x2	x 3		w0	w1	w2	w3		Sum	Output
L11	1	-1	0.5	8.0		0.1	-0.5	0.9	1.3		2.09	2.09
L12	1	-1	0.5	0.8		0.2	0.6	1	1.4		1.22	1.22
L13	1	-1	0.5	0.8		0.3	0.7	-1.1	1.5		0.25	0.25
L14	1	-1	0.5	8.0		-1.2	0.5	-1	0.1		-2.12	0
LAYE	R 1->2											
	b	L11	L12	L13	L14	w0	w1	w2	w3	w4	Sum	Output
L21	1	2.09	1.22	0.25	0	0.1	-0.4	0.7	0.2	-0.1	0.168	0.168
L22	1	2.09	1.22	0.25	0	0.1	0.5	0.4	0.3	0.2	1.708	1.708
L23	1	2.09	1.22	0.25	0	0.3	0.6	-0.9	0.4	0.1	0.556	0.556
LAYE	R 2->3											
	b	L21	L22	L23		w0	w1	w2	w3		Sum	Output
L31	1	0.168	1.708	0.556		0.1	-0.3	0.6	0.1		1.13	1.13
L32	1	0.168	1.708	0.556		0.2	0.4	0.1	-0.4		0.2156	0.2156
LAYE	R 3->4											
	b	L31	L32			w0	w1	w2			Sum	Output
01	1	1.13	0.2156			0.1	-0.2	0.3			-0.06132	0.4846748018

Bab IV Pembagian Tugas Anggota Kelompok

Nama	NIM	Tugas
Juan Christopher Santoso	13521116	FFNN Class, Graph Visualization
Nicholas Liem	13521135	JSON Parser, FFNN Class, Graph Visualization
Nathania Calista Djunaedi	13521139	FFNN Class, Graph Visualization
Antonio Natthan Krishna	13521162	FFNN Class, Graph Visualization, Perhitungan Manual

Lampiran

Berikut adalah pranala repository yang digunakan untuk menyimpan program yang telah dikembangkan: https://github.com/NicholasLiem/IF3270_FP_FFNN .