TDT4136 - Assignment 2

Filip F Egge

October 4, 2013

Task 1 - Models and Entailment in Propositional Logic

1)

The tables above show all the possible worlds. The red square tells us that there is a wumpus occupying that square. The blue square means a pit is located on that square. And purple means that both a wampus and a pit is on that square. The four first rows matches α_2 = "There is no pit in [2,2]." and the third column matches α_3 = "There is a wumpus in [1,3]". The **KB** is true for the table in row 2, column 3.

2) Exercise 7.4

a) $False \models True$

False entails True, this is correct

b) $True \models False$

False

- c) $(A \wedge B) \models (A \Leftrightarrow B)$
- **d)** $(A \Leftrightarrow B) \models (A \lor B)$
- e) $(A \Leftrightarrow B) \models (\neg A \Leftrightarrow B)$
- **f)** $(A \lor B) \land (\neg C \lor \neg D \lor E) \models (A \lor B \lor C) \lor (B \lor C \lor (D \to E))$
- **g)** $(A \lor B) \land (\neg C \lor \neg D \lor E) \models (A \lor B) \land (\neg D \lor E)$
- **h)** $(A \vee B) \wedge \neg (A \rightarrow B)$
- i) $(A \lor B) \to C \models \neg (A \to B)$
- $\mathbf{j}) \ (C \lor (\neg A \land \neg B)) \equiv ((A \to C) \land (B \to C))$
- **k)** $(A \Leftrightarrow B) \land (\neg A \lor B)$
- l) $(A \Leftrightarrow B) \Leftrightarrow C$ has the same number of models as $(A \Leftrightarrow B)$ for any fixed set of proposition symbols that includes A, B, C.
- 3) Exercise 7.7
- a) $B \vee C$

There are 3 models in which this sentence is true

b) $\neg A \lor \neg B \lor \neg C \lor \neg D$

Using a truth table i have found the number of models to be 15.

b) $(A \rightarrow B) \lor A \lor \neg B \lor C \lor D$

This sentence is always false and has no models.

- 4)
- 5)
- a) $A_1 \vee A_{73}$
- $3/4 + 2^{100}$

- **b)** $A_7 \vee (A_{19} \wedge A_{33})$
- $5/8 * 2^{100}$
- c) $A_{11} \to A_{22}$
- $3/4 + 2^{100}$

Task 2 - Resolution in Propositional Logic

- 1) Convert each of the following sentences to Cunjunctive Normal Form (CNF)
- a) $A \wedge B \wedge C$

Already in CNF

a) $A \vee B \vee C$

Already in CNF

- a) $A \rightarrow (B \vee C)$
- $\neg A \lor (A \lor B)$
- 2) Consider the following Knowledge Base (KB):
 - $(A \lor \neg B) \to \neg C$
 - $(D \wedge E) \to C$
 - \bullet $A \wedge D$

Use resolution to show that $KB \models \neg E$

The first step is to convert the knowledge base into Cunjunctive Normal Form.

- $(\neg A \lor \neg C) \land (\neg C \lor E)$
- $\bullet \ \ C \vee \neg D \vee \neg E$
- \bullet $A \wedge D$