1	Existence de développements limités. 1.1 Notion de développement limité en a	3
2	2 DL et opérations.	6
3	Applications des développements limités. 3.1 Calcul de limite, d'équivalent	
\mathbf{E} :	Exercices	11

Introduction.

Soit f une fonction définie sur un intervalle I contentant a. Si f est dérivable en a, on a

$$\frac{f(x)-f(a)}{x-a} \xrightarrow[x\to a]{} f'(a)$$
, ce qui se récrit $\frac{f(x)-f(a)}{x-a} = f'(a) + o(1)$.

Multiplions par x: on obtient

$$f(x) - f(a) = f'(a)(x - a) + o(x - a),$$

et enfin

$$f(x) = \underbrace{f(a) + f'(a)(x - a)}_{\text{fonction affine}} + \underbrace{o(x - a)}_{\text{n\'egligeable}},$$

ou encore

$$f(a+h) = f(a) + f'(a)h + o(h),$$

On a donc obtenu une approximation de la fonction f au voisinage de a par une fonction polynomiale de degré inférieur à 1. Dans ce cours, on cherche à généraliser ce genre d'approximation : on cherchera à approximer une fonction f par une fonction polynomiale de degré quelconque.

DL (Avant-première : le développement limité du sinus en 0 à l'ordre 3).

$$\sin x = x - \frac{x^3}{3!} + o(x^3).$$

Ce type de résultat va offrir de nouveaux outils pour les études locales et asymptotiques de fonctions (et donc de suites par substitution...)

Par exemple, $\frac{\sin x - x}{x^3} = \frac{-\frac{x^3}{6} + o(x^3)}{x^3} = -\frac{1}{6} + o(1)$, ce qui amène une convergence hors de portée jusqu'alors

$$\frac{\sin x - x}{x^3} \xrightarrow[x \to 0]{} -\frac{1}{6}.$$

1

1 Existence de développements limités.

Dans cette partie, on considère un intervalle I non vide et non réduit à un point, et a un nombre réel, élément ou borne de I. La fonction f est définie sur I, sauf peut-être en a. Elle est en tout cas définie au voisinage de a. L'écriture f(a+h) aura donc toujours un sens pour un certain h au voisinage de 0.

1.1 Notion de développement limité en a.

Définition 1.

On dit que f admet un **développement limité** à l'ordre n au voisinage de a ($\mathrm{DL}_n(a)$) s'il existe des nombres réels a_0, a_1, \ldots, a_n tels que

$$f(x) = a_0 + a_1(x-a) + \ldots + a_n(x-a)^n + o((x-a)^n).$$

Proposition 2 (se ramener à 0).

La fonction f admet un développement limité à l'ordre n au voisinage de a si et seulement si la fonction $h \mapsto f(a+h)$ admet un développement limité à l'ordre n au voisinage de 0, c'est-à-dire s'il existe des nombres réels a_0, a_1, \ldots, a_n tels que

$$f(a+h) = a_0 + a_1h + \ldots + a_nh^n + o(h^n).$$

Exemples. $\mathrm{DL}_1(2)$ de $\ln ; \mathrm{DL}_n(0)$ de $x \mapsto \frac{1}{1-x}$.

\mathbf{DL} .

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n) = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n).$$

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n) = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n).$$

Proposition 3 (Unicité d'un DL en a).

Supposons que f admette au voisinage de a deux développements limités

$$\begin{cases} f(a+h) &= a_0 + a_1 h + \dots + a_n h^n + o(h^n) \\ f(a+h) &= b_0 + b_1 h + \dots + b_n h^n + o(h^n) \end{cases} \quad \text{Alors,} \begin{cases} a_0 &= b_0 \\ \dots \\ a_n &= b_n. \end{cases}$$

La fonction polynomiale $x\mapsto \sum\limits_{k=0}^n a_kx^k$ est appelée **partie régulière** du DL de f en a à l'ordre n.

Proposition 4 (Parité/Imparité et DL en 0).

Si une fonction paire admet un $DL_n(0)$, ses coefficients d'ordre impair sont nuls. Si une fonction impaire admet un $DL_n(0)$, ses coefficients d'ordre pair sont nuls.

Proposition 5 (Troncature).

Supposons que f admet un $\mathrm{DL}_n(a)$, de partie régulière $x \mapsto \sum_{k=0}^n a_k x^k$.

Alors, pour tout $p \in [0, n]$, la fonction f admet un $\mathrm{DL}_p(a)$ de partie régulière $x \mapsto \sum_{k=0}^p a_k x^k$.

Proposition 6 (DL à l'ordre 1 et dérivabilité).

Soit $f: I \to \mathbb{R}$ et $a \in I$. Il y a équivalence entre les deux assertions suivantes.

- 1. f est dérivable en a.
- 2. Il existe deux réels a_0, a_1 tels que

$$\forall x \in I \quad f(a+h) = a_0 + a_1 h + o(h).$$

Dans le cas où 2 est vraie, alors nécessairement, $a_0 = f(a)$ et $a_1 = f'(a)$.

L'implication $(1) \Longrightarrow (2)$ sera généralisée à un ordre plus grand par la formule de Taylor-Young, qui nous dira que si on a suffisamment de régularité en a, on y a un DL.

En revanche, l'implication $(2) \Longrightarrow (1)$ ne se généralise pas aux ordres plus grands que 2: voir le TD pour un exemple de fonction admettant un DL à l'ordre 2 en 0 mais n'étant pas deux fois dérivable en 0.

1.2 Primitivation d'un développement limité.

Proposition 7 (Primitivation d'un DL).

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur I et a un élément de I.

On suppose que f' admet un DL à l'ordre $n \in \mathbb{N}$ au voisinage de $a : \exists (a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$:

$$f'(a+h) = a_0 + a_1h + \ldots + a_nh^n + o(h^n).$$

Alors, f admet un DL à l'ordre n+1 au voisinage de a et

$$f(a+h) = f(a) + a_0h + \frac{a_1}{2}h^2 + \dots + \frac{a_n}{n+1}h^{n+1} + o(h^{n+1}).$$

On a encadré la « constante d'intégration » : on tâchera de ne pas l'oublier lorsqu'on primitive un DL... surtout lorsqu'elle n'est pas nulle!;)

Exemple 8.

En partant du DL en 0 au premier ordre de tan obtenir celui à l'ordre 3. Utiliser le DL obtenu pour en déduire celui à l'ordre 5.

DL.

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n} + o(x^n) = -\sum_{k=1}^n \frac{x^k}{k} + o(x^n).$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + o(x^n) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^n).$$

DL.

$$\arctan(x) = \sum_{k=1}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+1}) = x - \frac{x^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1}).$$

1.3 Formule de Taylor-Young et DL usuels.

Théorème 9 (Formule de Taylor-Young).

Soient $n \in \mathbb{N}$, f une fonction de classe \mathbb{C}^n sur I, et $a \in I$. Alors, f admet un développement limité à l'ordre n au voisinage de a:

$$f(a+h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + o(h^{n}).$$

 \mathbf{DL} .

$$\exp(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}).$$

Méthode.

- Il faut connaître les DL usuels à l'ordre n. On saura à la fois écrire la forme dépliée $e^x = {0 = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \frac{x^n}{n!} + o\left(x^n\right)}$, qui dans la pratique est généralement écrite et utilisée pour $n \in \{1, 2, 3\}$.
 - écrire la somme et les coefficients sous leur forme générale : ces coefficients seront à savoir en spé dans le cours sur les séries entières, de toute façon.

DL.

$$\cos x = \sum_{k=0}^{p} \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2p+1}) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^p}{(2p)!} x^{2p} + o(x^{2p+1})$$

$$\sin x = \sum_{k=0}^{p} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2p+2}) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^p}{(2p+1)!} x^{2p+1} + o(x^{2p+2}).$$

Exemple 10.

Donner le $DL_2(\pi/4)$ de cos

- en se ramenant en 0.
- en utilisant la formule de Taylor-Young,

\mathbf{DL} (Pour un réel α fixé).

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-(k-1))}{k!} x^{k} + o(x^{n})$$
$$= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \dots + \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-(n-1))}{n!} x^{n} + o(x^{n}).$$

Par exemple, pour $\alpha = \frac{1}{2}$, le DL de $(1+x)^{\alpha}$ donne

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2).$$

De même, pour $\alpha = -\frac{1}{2}$, on obtient

$$\boxed{\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + o(x^2).}$$

Remarque. Pour un réel α et un entier naturel k non nul, on note parfois

$$\binom{\alpha}{k} := \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-k+1)}{k!}.$$

On note aussi $\binom{\alpha}{0} = 1$. Ce nombre est alors appelé "coefficient binomial généralisé". On peut ainsi écrire

$$(1+x)^{\alpha} = \sum_{k=0}^{n} {\alpha \choose k} x^{k} + o(x^{n}).$$

Lorsque α est un entier naturel, on retrouve la formule du binôme avec un négligeable nul.

2 DL et opérations.

Par définition, un DL en a pour une fonction f est un DL en 0 pour $h \mapsto f(a+h)$. C'est donc au voisinage de ce point qu'on énonce tous les résultats de cette section. Dans les énoncés des propositions ci-dessous, les fonctions f et g sont supposées définies au voisinage de 0, sauf peut-être en ce point.

Somme.

Proposition 11.

Sommer un $DL_n(0)$ pour f et un $DL_p(0)$ pour g donne un $DL_q(0)$ pour f+g, où $q=\min(p,q)$. Les coefficients de la somme sont la somme des coefficients.

DL.

$$\operatorname{ch}(x) = \sum_{k=0}^{p} \frac{x^{2k}}{(2k)!} + o\left(x^{2p}\right) = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2p}}{(2p)!} + o\left(x^{2p+1}\right).$$

$$\operatorname{sh}(x) = \sum_{k=0}^{p} \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2p+2}\right) = x + \frac{x^3}{3!} + \dots + \frac{x^{2p+1}}{(2p+1)!} + o\left(x^{2p+2}\right).$$

Produit.

$\mathbf{Proposition} \ \mathbf{12}$

Si f et g admettent un $\mathrm{DL}_n(0)$, alors $f \times g$ aussi.

Preuve. Supposons qu'il existe a_0, a_1, \ldots, a_n ainsi que b_0, b_1, \ldots, b_n tels que

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$$
 et $g(x) = b_0 + b_1 x + \dots + b_n x^n + o(x^n)$.

Notons $P: x \mapsto \sum_{k=0}^{n} a_k x^k$ et $Q: x \mapsto \sum_{k=0}^{n} b_k x^k$ respectivement les parties régulières dans le DL à l'ordre n de f et g. On a

$$f(x) \times g(x) = (P(x) + o(x^n))(Q(x) + o(x^n)) = P(x)Q(x) + P(x)o(x^n) + Q(x)o(x^n) + o(x^{2n}).$$

On a $o(x^{2n}) = o(x^n)$. De plus, les fonctions P et Q sont continues en 0 donc y sont bornées. On a donc $P(x)o(x^n) = o(x^n)$ et $Q(x)o(x^n) = o(x^n)$. On a donc

$$f(x) \times g(x) = P(x)Q(x) + o(x^n).$$

La fonction polynomiale PQ est de degré inférieur à 2n. Pour obtenir la partie régulière à l'ordre n de notre DL , il reste à tronquer à l'ordre n pour obtenir la fonction polynomiale R. On a alors

$$f(x) \times g(x) = R(x) + o(x^n).$$

Notons $R = \sum_{k=0}^{n} c_k x^k$. Pour $k \in [0, n]$, c_k est le coefficient devant X^k du produit PQ: on rappelle que

$$c_k = \sum_{i=0}^k a_i b_{k-i}.$$

Exemple 13 (Première et dernière fois qu'on développe un produit de DL jusqu'au bout).

Calculer naïvement le DL à l'ordre 2 en 0 de $\frac{e^x}{1-x}$ en écrivant tous les termes, puis souligner en rouge les termes qu'il était inutile de calculer.

Méthode (Calcul malin d'un produit de DL).

Lorsqu'on développe le produit de deux développements limités d'ordre n, les termes d'ordre supérieur à n+1 ne sont pas écrits. On les remplace au fur et à mesure du calcul par $o(x^n)$.

Considérons le produit d'un DL de f et d'un DL de g en visant un DL final à l'ordre n. Si le premier terme non nul de f est d'ordre $p \in [0, n]$, il suffit d'utiliser un DL de g à l'ordre n - p; on rappelle en effet que $x^p \times o(x^{n-p}) = o(x^n)$.

Exemples 14.

$$\mathrm{DL}_2(0) \ \mathrm{de} \ x \mapsto \sqrt{1+x} \cdot e^x, \qquad \quad \mathrm{DL}_3(0) \ \mathrm{de} \ x \mapsto \frac{\ln(1+x)}{1+x}, \qquad \quad \mathrm{DL}_6(0) \ \mathrm{de} \ x \mapsto (1-\cos x) \sin x.$$

Quotient. Voici un quotient de DL en 0 dans lequel on a factorisé les premiers termes non nuls :

$$\frac{f(x)}{g(x)} = \frac{a_m x^m}{b_n x^n} \cdot \frac{1 + c_1 x + \dots + c_p x^p + o(x^p)}{1 + d_1 x + \dots + d_q x^q + o(x^q)}.$$

 $L'id\acute{e}$: on peut alors calculer le développement limité à l'ordre q de

$$\frac{1}{1+d_1x+\ldots+d_qx^q+o(x^q)} \quad \boxed{ \text{à l'aide de celui de } \frac{1}{1+u} } \text{ en posant } u(x)=d_1x+\ldots+d_qx^q+o(x^q)$$

et d'une substitution. Il restera à faire un produit de DL : on obtient alors

$$\frac{f(x)}{g(x)} = \frac{a_m}{b_n} x^{m-n} (1 + e_1 x + \dots e_r x^r + o(x^r)), \quad \text{où } r = \min(p, q)$$

DL.

$$\tan(x) = x + \frac{x^3}{3} + o(x^3)$$
 et $\operatorname{th}(x) = x - \frac{x^3}{3} + o(x^3)$.

Exemple 15.

$$\mathrm{DL}_2(0) \ \mathrm{de} \ x \mapsto \frac{\sin x}{\ln(1+x)}.$$

Composée.

Exemple 16.

$$\mathrm{DL}_8(0) \ \mathrm{de} \ x \mapsto \cos(x^2).$$
 $\mathrm{DL}_3(0) \ \mathrm{de} \ x \mapsto \sin\left(\ln(1+x)\right).$

3 Applications des développements limités.

Dans les deux prochains paragraphes, la fonction f est supposée définie au voisinage de a sauf peut-être en a.

3.1 Calcul de limite, d'équivalent.

Méthode (Limite?/ Prolongeable par continuité?/Continue?).

L'existence d'une limite est équivalente à celle d'un DL à l'ordre 0. Plus précisément, pour $a_0 \in \mathbb{R}$,

$$f(x) \xrightarrow[x \to a]{} a_0 \iff f(x) = a_0 + o(1).$$

On cherchera notamment à écrire des DL à l'ordre 0 pour prouver qu'une fonction est prolongeable par continuité en un point.

Si de surcroît f est définie en a, elle y est continue ssi elle admet en a un DL à l'ordre 0.

On pourra relire/refaire le calcul de la limite en 0 de $\left(\frac{a^x+b^x}{2}\right)^{\frac{1}{x}}$, fait dans le cours précédent.

Exemple 17 (Fil rouge (1/3)).

Montrer que

$$f: x \mapsto \frac{1}{\ln(1+x)} - \frac{1}{x},$$

est prolongeable par continuité en 0.

Exemple 18 (Se ramener à 0 à partir d'un point fini).

Calculer

$$\lim_{x \to 2} \frac{x^2 - 2^x}{x - 2}.$$

Exemple 19 (Se ramener à 0 à partir de $+\infty$).

Calculer

$$\lim_{x \to +\infty} x \left[\left(1 + \frac{2}{x} \right)^x - \left(1 + \frac{1}{x} \right)^{2x} \right].$$

Méthode (Obtenir un équivalent à partir d'un DL).

Un DL peut nous aider à obtenir une écriture du type

$$f(a+h) = a_p h^p + o(h^p),$$

avec $p \in \mathbb{N}$ et $a_p \neq 0$ (c'est le premier coefficient non nul du DL). On sait alors que

$$f(x) \sim a_p(x-a)^p$$
.

Exemples 20.

Soient a et b deux réels. On pose

$$g: x \mapsto \cos x - \frac{1 + ax^2}{1 + bx^2},$$

définie au voisinage de 0.

- 1. Calculer un développement limité de g en 0 à l'ordre 6.
- 2. Donner un équivalent de g en 0 de la forme $g(x) \sim cx^n$ avec c et n à préciser (on discutera selon la valeur de a et b).

3.2 Étude locale d'une fonction.

Méthode (Dérivable? / Équation de la tangente?).

Si f est définie en a, d'après la proposition 6, montrer la dérivabilité en a revient à montrer l'existence d'un DL à l'ordre 1 en a. L'écriture

$$f(x) = a_0 + a_1(x - a) + o(x - a),$$

implique que f est dérivable en a et que l'on a $f(a) = a_0$ et $f'(a) = a_1$.

La courbe de f admet alors la droite d'équation $y = a_0 + a_1(x - a)$ comme tangente en a.

Exemple 21 (Fil rouge (2/3)).

Reprenons

$$f: x \mapsto \frac{1}{\ln(1+x)} - \frac{1}{x}.$$

- Démontrer que f est prolongeable en 0 en une fonction dérivable en 0.
- Pour prouver que ce prolongement est de classe \mathcal{C}^1 , que faudrait-il faire?

Méthode (Positions relatives du graphe et de la tangente).

Supposons que l'on dispose d'un DL de la forme

$$f(a+h) = a_0 + a_1 h + a_p h^p + o(h^p),$$

où a_p désigne le premier coefficient non nul après l'ordre 1.

Alors, le graphe de f admet au point a une tangente d'équation $y = a_0 + a_1(x - a)$, et on a

$$f(a+h) - (a_0 + a_1 h) \sim a_p h^p$$
.

Au voisinage de a, la différence entre f et sa tangente est du signe de a_ph^p . Plus précisément,

- Si p est pair, on constate que le graphe est au-dessus de sa tangente au voisinage de a si $a_p > 0$, en-dessous si $a_p < 0$.
- Si p est impair, on constate un **point d'inflexion** : les positions relatives du graphe et de la tangente sont *opposées de part et d'autre* de a (dépend du signe de a_p).

Deux exemples immédiats pour lesquels on connaît déjà les positions relatives : exp et sin.

Exemple. Fil rouge (3/3): Comparer $f: x \mapsto \frac{1}{\ln(1+x)} - \frac{1}{x}$ à sa tangente au voisinage de 0.

Proposition 22 (DL d'ordre 2 et extremum local).

Soit $f: I \to \mathbb{R}$ et a un élément à l'intérieur de I ($a \in I$ n'est pas une borne de I).

ullet Supposons que f admet un DL à l'ordre 1 en a :

$$f(a+h) = a_0 + a_1 h + o(h)$$
.

Pour que f admette un extremum local en a, il est **nécessaire** que a_1 soit nul. Il est équivalent de dire que si f est dérivable en un point a intérieur à son ensemble de définition, et g possède un extremum, alors g est un point critique : f'(g) = 0.

 \bullet Supposons que f admet un DL à l'ordre 2 en a :

$$f(a+h) = a_0 + a_1h + a_2h^2 + o(h^2)$$

Pour que f admette un extremum local en a, il est suffisant que $a_1 = 0$ et que $a_2 \neq 0$.

- si $a_1 = 0$ et $a_2 > 0$, f admet en a un minimum local,
- si $a_1 = 0$ et $a_2 < 0$, f admet en a un maximum local.

Exercices

Manipuler les DL usuels

32.1 $[\phi \diamondsuit \diamondsuit]$ Donner, pour chacune des fonctions suivantes, le développement limité au point 0 à l'ordre 3.

$$a: x \mapsto \ln(1+x) + e^{-x}$$
 $b: x \mapsto \frac{\sin(x)}{x}$ $c: x \mapsto \frac{1-\cos(x)}{x^2}$ $d: x \mapsto \frac{1}{2+x}$

32.2 $[\phi \diamondsuit \diamondsuit]$ Calculer le $DL_4(0)$ de $x \mapsto \exp(x)\sin(x)$ et de $x \mapsto (\ln(1-x))^2$.

32.3 $[\phi \phi \diamondsuit]$ Donner le développement limité au point 0 à l'ordre 2 de $f: x \mapsto (1+x)^{\frac{1}{x}}$.

32.4 [$\diamondsuit\diamondsuit$] Soit $f: x \mapsto \frac{e^x}{1 + e^{2x}}$ et $g: x \mapsto \arctan(e^x)$.

- 1. Donner un DL de f en 0 à l'ordre 2.
- 2. Justifier que g est dérivable sur $\mathbb R$ et calculer sa dérivée.
- 3. En déduire un DL de g en 0 à l'ordre 3.

32.7 $[\spadesuit \spadesuit \spadesuit]$ Donner le DL à l'ordre 100 au voisinage de 0 de $x \mapsto \ln \sum_{k=0}^{99} \frac{x^k}{k!}$.

Formule de Taylor-Young

32.8 $[\blacklozenge \diamondsuit \diamondsuit]$ Soit $f \in \mathcal{C}^2(I)$ et x_0 un réel de l'intervalle I. Montrer que la limite suivante existe et la calculer :

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}.$$

32.9 $[\spadesuit \spadesuit \diamondsuit]$ Soit $f: x \mapsto \frac{\cos x}{1-x}$. Calculer pour k dans [0,5] la valeur de $f^{(k)}(0)$.

32.10 [♦♦♦] [La régularité offre des DL mais la réciproque n'est pas vraie]

Soit $f: x \mapsto x^3 \sin(\frac{1}{x})$, prolongée par continuité en 0.

- 1. Justifier qu'elle admet un DL à l'ordre 2 en 0.
- 2. Montrer que f n'est pas deux fois dérivable en 0.
- 3. Expliquer le titre de l'exercice.

32.11 $[\blacklozenge \blacklozenge \blacklozenge]$ 1. Donner le DL de $x \mapsto \frac{1}{\sqrt{1-x^2}}$ en 0 à l'ordre 2n, où $n \in \mathbb{N}$.

On exprimera les coefficients à l'aide des coefficients binomiaux $\binom{2k}{k}$.

- 2. En déduire une expression de $\arcsin^{(2n+1)}(0)$ pour tout entier $n \in \mathbb{N}$.
- 3. En utilisant la formule de Stirling, donner un équivalent de $\arcsin^{(2n+1)}(0)$ lorsque n tend vers $+\infty$.

32.12 $[\spadesuit \spadesuit \spadesuit]$ Montrer que $f: x \mapsto xe^{x^2}$ est une bijection de \mathbb{R} dans lui-même.

Justifier l'existence d'un DL à l'ordre 4 de f^{-1} en 0 et le calculer.

Applications du calcul de développements limités

32.13 $[\phi \phi \diamondsuit]$ Calculer le DL à l'ordre 2 en zéro de la fonction $g: x \mapsto \ln\left(\frac{\sin(x)}{x}\right)$. En déduire la limite :

$$\lim_{n\to +\infty} \left(n\sin\left(\frac{1}{n}\right)\right)^{n^2}.$$

$$\lim_{n \to +\infty} \left(3 \cdot 2^{\frac{1}{n}} - 2 \cdot 3^{\frac{1}{n}} \right)^n; \quad \lim_{x \to 0} \left(1 + \tan x \right)^{\frac{1}{\sin x}}; \quad \lim_{x \to +\infty} x^{\frac{x+1}{x}} - (x-1)^{\frac{x}{x-1}}.$$

32.15 $[\phi \diamondsuit \diamondsuit]$ Donner un équivalent de $(1 + \frac{1}{n})^{n^2}$.

32.16 $[\phi \diamondsuit \diamondsuit]$ Calculer un équivalent de $e^{\frac{1}{n}} - e^{\frac{1}{n+1}}$

32.17 [$\Diamond \Diamond \Diamond$] Donner un équivalent simple en 0 de $f(x) = x^x - \sin(x)^{\sin(x)}$.

32.19 $[\spadesuit \spadesuit \diamondsuit]$ Démontrer que la fonction $f: x \mapsto \frac{\sin x}{x}$, prolongée par continuité en 0, est de classe \mathcal{C}^1 sur \mathbb{R} .

32.20 $[\spadesuit \spadesuit \spadesuit]$ Démontrer que la fonction $f: x \mapsto \frac{1}{\tan x} - \frac{1}{x}$ se prolonge en 0 en une fonction de classe \mathcal{C}^1 .

32.21 $[\blacklozenge \blacklozenge \blacklozenge]$ Soit u la suite définie par $\begin{cases} u_0 \in]0, \frac{\pi}{2}] \\ \forall n \in \mathbb{N} \quad u_{n+1} = \sin(u_n). \end{cases}$

- 1. Justifier que u est bien définie.
- 2. Démontrer que u tend vers 0.
- 3. Démontrer que la suite v définie par $v_n = \frac{1}{u_{n+1}^2} \frac{1}{u_n^2}$ converge et préciser sa limite.
- 4. À l'aide du théorème de Cesáro, donner un équivalent de $\frac{1}{u_n^2}$, puis de u_n .

32.22 [♦♦♦]

- 1. Soit $n \in \mathbb{N}$. Montrer que l'équation $x + e^x = n$ admet une unique solution réelle notée x_n .
- 2. Établir le développement asymptotique :

$$x_n = \ln n - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

 $\boxed{ \mathbf{32.23} } \ [\blacklozenge \blacklozenge \blacklozenge] \ [\text{Recollement des solutions d'une équation différentielle}]$ Résoudre sur \mathbb{R} l'équation différentielle $x(x^2+1)y'+2(x^2+1)y=x.$

 $\boxed{\mathbf{32.24}} \ [\spadesuit \spadesuit \spadesuit] \ \mathrm{Soit} \ f: x \mapsto \left(\frac{1}{(x-1)^2}\right)^x.$

Donner un développement asymptotique au voisinage de 1 où figurent tous les termes tendant vers $+\infty$.