Lecture 20: Correlated Errors

Ailin Zhang

2023-07-04

Agenda

- Definition of Correlated Errors (Today)
- Detection of Correlated Errors (Today)
 - Time plot of residuals
 - Runs test
 - Durbin-Watson test
 - Lag plots
 - Autocorrelation function and autocorrelation plot
- Remedies to Correct for Autocorrelated Errors
- Autocorrelation and Seasonality

Correlated Errors

Recall in MLR Models,

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i$$

the errors ϵ_i are assumed to be independent.

- If the data are collected sequentially in time/space, then the errors may be correlated
- Correlated errors can arise when observations have a spatial or temporal order, e.g.,
 - Temporal: In sports, a player may exhibit hot or cold streaks in which he performs above or below expectation for several games.
 - Spatial: In agriculture studies, adjacent plots of land tend to be similar (soil, humidity, sun exposure)

Plots of residuals against time

Time order

Ailin Zhang

Autocorrelation

When the observations have a natural sequential order, the correlation is referred to as **autocorrelation**.

Example: Quarterly data from 1952 to 1956 on consumer expenditure (Y = Expenditure) and the stock of money (X = Stock), both in millions of current US dollars.

```
stock = read.table("stock.txt", h=T)
library(ggplot2)
ggplot(stock, aes(x=Stock, y=Expenditure)) +
geom_point() + geom_smooth(method='lm')
```

```
## geom_smooth() using formula 'y ~ x'
```


Residual Plot

Since the observations are ordered in time, we should also plot the residuals against time (index).

```
lm1 = lm(Expenditure ~ Stock, data=stock)
ggplot(stock, aes(x=Stock, y=lm1$res)) +
  geom_point() + geom_line() +
  ylab("Residuals")+ geom_hline(yintercept=0)
ggplot(stock, aes(x=1:20, y=lm1$res)) +
  geom_point() + geom_line() + xlab("Index") +
  ylab("Residuals")+ geom_hline(yintercept=0)
```


Interpreting Time Plot/Index Plot of Residuals

A time plot or an index plot of the residuals is a plot of residuals v.s. the (time) order they are recorded. Points in a time-plot are connected by a line.

 A smooth time-plot is a sign of positive autocorrelation, since a smooth time plot means successive residuals are close together

Interpreting Time Plot/Index Plot of Residuals

 Time plot of data w/ negative autocorrelation tend to alternate regularly between positive and negative values.

• If no autocorrelation, the time plot has more up-and-downs.

For the Stock Data, what is the sign of autocorrelation?

Positive Autocorrelation!

Runs Test

- The runs test (Bradley, 1968) can be used to decide if a data set is from a random process.
- The first step in the runs test is to count the number of runs in the data sequence.
- A group of successive positive residuals or negative residuals are called as a run.
- For the above data there are 5 separate runs:

Distribution of Runs

Assuming independence, with n_1 positive and n_2 negative residuals, the expected number μ and variance σ^2 of runs are

$$\bullet \ \mu = \frac{2n_1n_2}{n_1 + n_2} + 1$$

•
$$\sigma^2 = \frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}$$

In the above example, $\textit{n}_1 = 12$. $\textit{n}_2 = 8$, therefore $\mu = 10.6$, $\sigma = 2.08$

Z-test of runs

Normal Approximation:

If n_1 and n_2 are large (say ≥ 10), number of Runs is approx. $\sim N(\mu, \sigma^2)$

• then we can use an approximate z-statistic

$$z = rac{\mathsf{Number\ of\ Runs} - \mu}{\sigma} \sim \mathsf{approx}.\ \mathit{N}(0,1)$$

• For our example,

$$z = \frac{5 - 10.6}{2.0845} \approx -2.6865$$

The two-sided P-value is 2*pnorm(-2.686) = 0.0072

If $\alpha = 0.05$, shall you conclude that the error is correlated?

Run test in R

library(tseries)

The command runs.test() in the tseries library can perform the runs test. You need to first install the tseries.

```
runs.test(factor(lm1$res > 0)) # two-sided by default
##
## Runs Test
##
## data: factor(lm1$res > 0)
## Standard Normal = -2.6865, p-value = 0.007221
```

alternative hypothesis: two.sided

For testing **positive** autocorrelation, use alternative = "less" as positive autocorrelation leads to fewer runs.

```
runs.test(factor(lm1$res > 0), alternative = "less")

##
## Runs Test
##
## data: factor(lm1$res > 0)
## Standard Normal = -2.6865, p-value = 0.003611
```

For testing negative autocorrelation, use alternative = "greater" as negative autocorrelation leads to more runs.

```
runs.test(factor(lm1$res > 0), alternative = "greater")
##
## Runs Test
##
## data: factor(lm1$res > 0)
## Standard Normal = -2.6865, p-value = 0.9964
## alternative hypothesis: greater
```

alternative hypothesis: less

Pros and Cons of the Runs Test

- Pros: Simple, intuitive (Can be generalized to test randomness)
- Cons:
 - It ignores the magnitude of the residuals e_i .
 - Treatment when residuals =0

Durbin-Watson Test

Proceeds from the assumption that successive errors are correlated:

$$\epsilon_t = \rho \epsilon_{t-1} + \omega_t, \qquad |\rho| < 1$$

- Note: In Time Series analysis, this is called a first-order autoregressive model, abbreviated AR(1), or first-order autocorrelation.
- The actual autocorrelation structure may be more complex (e.g. AR(2), AR(3), etc.) In this case, the first-order structure is a simple approximation.
- Durbin-Watson statistic

$$d = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$

Properties of Durbin-Watson Statistic (d)

• $d \approx 2(1-\hat{
ho})$, where \hat{rho} estimates the autocorrelation ho by

$$\hat{\rho} = \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2}$$

- d is a test statistic for testing: $H_0: \rho = 0$ v.s $H_A: \rho > 0$
- The null hypothesis indicates that successive residuals are not correlated.
- Under the H_0 of no autocorrelation, d should be close to 2.

Durbin-Watson Test in R

In R, durbinWatsonTest() in library(car) can produce an approximate P-value (by simulation) for the DW test.

```
library(car)
durbinWatsonTest(lm1, alt="positive")
   lag Autocorrelation D-W Statistic p-value
             0.7506122
                           0.3282113
##
   Alternative hypothesis: rho > 0
durbinWatsonTest(lm1, alt="negative")
   lag Autocorrelation D-W Statistic p-value
##
             0.7506122
                           0.3282113
   Alternative hypothesis: rho < 0
durbinWatsonTest(lm1) # two-sided by default
   lag Autocorrelation D-W Statistic p-value
##
##
             0.7506122 0.3282113
    Alternative hypothesis: rho != 0
##
```

Plotting Residuals Against Lag-k Residuals

```
res = lm1$res
n = length(res)
plot(res[2:n], res[1:(n-1)], main="Lag-1")
plot(res[3:n], res[1:(n-2)], main="Lag-2")
```


Lag Plots in R

The lag.plot() command can produce lag plots.

lag.plot(lm1\$res, lags=2, layout=c(1,2), do.lines=FALSE)

- lags = k would produce lag-1 to lag-k plots
- layout = c(1,2) arranges the plots in 1 row and 2 columns.

15

Autocorrelation

The R command acf() (autocorrelation function) in R can calculate lag-k autocorrelation.

```
##
## Autocorrelations of series 'lm1$res', by lag
##
## 0 1 2 3 4 5
## 1.000 0.751 0.521 0.297 -0.007 -0.220
```

acf(lm1\$res, lag.max =5, plot=FALSE)

Autocorrelation Function and the Plot

In time-series analysis, one often plot the lag-k autocorrelations against k to examine the autocorrelation structure of a variable. The acf() command can produce such autocorrelation plot.

acf(lm1\$res)

