Chapitre 1: Espaces Métriques

Ivan Lejeune*

28 mars 2024

1 Espaces métriques

Definition 1.1. Soit (X,d) un espace métrique. Une suite $(x_n) \subset X$ sera dite de Cauchy si :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n, m \ge N, \ d(x_n, x_m) < \varepsilon.$$

Remarque 1.1.

- C'est une notion purement métrique.
- intuitivement : " x_n et x_m se rapprochent de plus en plus à mesure que n et m deviennent grands".

2 Un premier lot de résultats utiles

Proposition 2.1.

- 1. Si d et δ sont deux distances fortement équivalentes sur le même ensemble X, alors (X, d) et (X, δ) ont les **mêmes** suites de Cauchy.
- 2. Si $f:(X,d) \to (Y,\delta)$ est une application uniformément continue, alors f envoie les suites de Cauchy de X sur les suites de Cauchy de Y.
- 3. Toute suite de Cauchy est bornée.
- 4. Toute suite convergente est de Cauchy.
- 5. Si une suite de Cauchy admet une valeur d'adhérence, alors elle converge.

Preuve.

1. Il existe $\alpha, \beta > 0$ tels que $\alpha d(x, y) \le \delta(x, y) \le \beta d(x, y)$. Soit (x_n) une suite de Cauchy dans (X, d).

$$\delta(x_n, x_m) \le \beta d(x_n, x_m)$$

Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour $n, m \ge N$, $d(x_n, x_m) < \frac{\varepsilon}{\beta}$.

Donc $\forall n, m \geq N, \, \delta(x_n, x_m) \leq \beta d(x_n, x_m) < \varepsilon.$

La réciproque est analogue.

2. Soit (x_n) une suite de Cauchy dans (X,d) et $f:(X,d) \to (Y,\delta)$ uniformément continue. On pose $y_n = f(x_n)$ et on veut montrer que (y_n) est de Cauchy dans (Y,δ) . Comme f est uniformément continue, on a :

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x, x' \in X, \ d(x, x') < \alpha \Rightarrow \delta(f(x), f(x')) < \varepsilon.$$

^{*}Cours inspiré de M. Charlier et M. Gieu

Comme (x_n) est de Cauchy, on a :

$$\forall \alpha > 0, \exists N \in \mathbb{N}, \forall n, m \ge N, d(x_n, x_m) < \alpha.$$

Soit $\varepsilon > 0$. On veut montrer

$$\delta(y_n, y_m) = \delta(f(x_n), f(x_m)) < \varepsilon.$$

Or $\delta(f(x_n), f(x_m)) < \varepsilon$ vrai dès que $d(x_n, x_m) < \alpha$ et donc dès que $n, m \ge N$.

3. Soit (x_n) une suite de Cauchy dans (X,d). Prenons $\varepsilon = 1$. Alors, il existe $N \in \mathbb{N}$ tel que pour $n, m \ge N$, $d(x_n, x_m) < 1$.

En particulier, pour $n \ge N$, $d(x_n, x_N) < 1$.

Prenons $R = \max\{d(x_0, a), \dots, d(x_{N-1}, a), 1\}.$

Alors, pour tout $n \in \mathbb{N}$, $d(x_n, a) \leq R$.

Donc $(x_n) \subset B(a,R)$, ce qui montre que (x_n) est bornée.

4. Soit (x_n) une suite convergente dans (X, d). Alors

$$d(x_n, a) \xrightarrow[n \to +\infty]{} 0.$$

Montrons que (x_n) est de Cauchy:

Soit $\varepsilon > 0$, alors

$$d(x_n, x_m) \le d(x_n, a) + d(a, x_m) < \varepsilon$$

pour n, m assez grands.

Lemme 2.1 cf prochain TD. Soit (x_n) une suite dans (X,d). Les assertions suivantes sont équivalentes :

- (i) (x_n) admet une sous-suite convergente vers $a \in X$.
- (ii) a est valeur d'adhérence de (x_n) .
- (iii) $\forall V \in \mathcal{V}_a, \ \forall m \in \mathbb{N}, \ \exists n \geq m, \ x_n \in V.$
- (iv) $\forall \varepsilon > 0, \ \forall m \in \mathbb{N}, \ \exists n \ge m, \ d(a, x_n) < \varepsilon.$

Soit (x_n) une suite de Cauchy dans (X,d) qui admet une valeur d'adhérence $a \in X$. Alors,

$$\forall \varepsilon > 0, \ \forall m, p \in \mathbb{N}, \ d(x_m, x_p) < \varepsilon.$$

Soit $\varepsilon > 0$, on a les assertions suivantes :

- (x_n) de Cauchy donc $\forall m, p \ge N, d(x_m, x_p) < \frac{\varepsilon}{2}$.
- a est une valeur d'adhérence donc si on fixe $m \in \mathbb{N}, \ \exists n \geq m, \ d(a, x_n) < \frac{\varepsilon}{2}$.

Donc, pour $m \in \mathbb{N}$, on a

$$d(a, x_m) \le d(a, x_n) d(x_n, x_m) < \varepsilon$$

Donc $\lim_{n\to+\infty} x_n = a$.

Remarque 2.1. Il existe des suites de Cauchy qui ne convergent pas :

On considère Héron d'Alexandrie qui a donné une suite de Cauchy qui ne converge pas :

$$\begin{cases} x_0 = 2 \\ x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n} \end{cases}$$

Suite dans \mathbb{Q} .

- (x_n) est de Cauchy dans \mathbb{Q} mais ne converge pas.
- (x_n) est de Cauchy dans \mathbb{R} et converge vers $\sqrt{2}$.

Definition 2.1. Un espace métrique (X, d) sera dit complet si chacune de ses suites de Cauchy converge (dans X).

- **Exemple 2.1.** \mathbb{Q} n'est pas complet.
- **Proposition 2.2.** $(\mathbb{R}, |\cdot|)$ est complet.

Preuve. Soit (x_n) une suite de Cauchy dans \mathbb{R} .

Elle est donc bornée.

Par le théorème de Bolzano-Weierstrass, elle admet une valeur d'adhérence $a \in \mathbb{R}$.

Donc, (x_n) admet une sous-suite convergente vers a.

Alors $(x_n) \subset [\alpha, \beta]$ compact.

3 Complétude et Produit

Soient (X,d) et (Y,δ) deux espaces métriques. On considère

$$z = (x, y) \in Z = X \times Y$$
$$z' = (x', y') \in Z$$

Notation 3.1. On notera

$$\mathcal{D}_{\infty}(z, z') \coloneqq \max\{d(x, x'), \delta(y, y')\}$$

Exercice 3.1. Montrer que \mathcal{D}_{∞} est une distance sur Z.

"la" distance produit. On note aussi $(Z, \mathcal{D}_{\infty})$ "l" espace métrique produit.

Pourquoi les "."? On aurait pu prendre

$$\mathcal{D}_p(z,z') \coloneqq \left(d(x,x')^p + \delta(y,y')^p\right)^{\frac{1}{p}}$$

pour $p \ge 1$. \mathcal{D}_p est une distance équivalente à \mathcal{D}_{∞} .

Elles donnent la même topologie : la topologie produit.

Proposition 3.1. Si (x_n) une suite dans X, (y_n) une suite dans Y et $(z_n) = (x_n, y_n)$ une suite dans Z.

Alors, (z_n) est de Cauchy dans Z si et seulement si (x_n) et (y_n) sont de Cauchy dans X et Y respectivement.

Preuve. $\Rightarrow \mathcal{D}_{\infty}(z_n, z_m) \leq \max\{d(x_n, x_m) + \delta(y_n, y_m)\}.$

 \Leftarrow

$$\begin{cases} (x_n, x_m) < \mathcal{D}_{\infty}(z_n, z_m) \\ \dot{\delta}(y_n, y_m) < \mathcal{D}_{\infty}(z_n, z_m) \end{cases}$$

Corollaire 3.1. $(Z, \mathcal{D}_{\infty})$ est complet si et seulement si (X, d) et (Y, δ) sont complets.

Corollaire 3.2. $(\mathbb{R}^n, \|\cdot\|_{\infty})$ est complet, et

$$(\mathbb{R}^n, \|\cdot\|_{\infty}) = (\mathbb{R}, |\cdot|)^n$$

4 Complétude et Sous-espaces

Notation 4.1. On notera (A, d_A) un sous-espace de (X, d).

Remarque 4.1. $(a_n) \subset A$ est une suite de Cauchy dans (A, d_A) si et seulement si (a_n) est de Cauchy dans (X, d).

Proposition 4.1. Soit $A \subset (X, d)$ muni de la distance induite d_A . Alors :

- 1. (A, d_A) complet $\Rightarrow A$ fermé dans (X, d).
- 2. Si A est fermé dans (X,d) et (X,d) complet, alors (A,d_A) est complet.
- 3. Si A est compact dans (X,d), alors (A,d_A) est complet.

Preuve.

- 1. Soit $x \in \overline{A}$. Il existe $(a_n) \subset A$ telle que $a_n \xrightarrow[n \to +\infty]{} x$. Comme (a_n) est convergente dans (A, d_A) , elle est de Cauchy dans (A, d_A) . Donc, (a_n) converge dans (A, d_A) .
- 2. On suppose que A est fermé dans (X,d) et (X,d) complet. Soit (a_n) une suite de Cauchy dans (A,d_A) . Comme (a_n) est de Cauchy dans (X,d), elle converge dans (X,d).

 $X \text{ complet} \Rightarrow (a_n) \text{ converge vers } x \in X.$

Comme A est fermé, $x \in A$.

 (a_n) converge dans (A, d_A) . (A, d_A) complet.

3. On suppose que A est compact dans (X, d).

Soit (a_n) une suite de Cauchy dans (A, d_A) .

Comme A est compact, (a_n) admet une valeur d'adhérence $x \in A$.

Comme A compact dans un séparé, A est fermé. Donc $x \in A$.

Donc (a_n) converge dans (A, d_A) . (A, d_A) complet.

5 Exemples fondamentaux

5.1 f puissance infinie de X

On considère X un ensemble et $f^{\infty}(X) \subset \mathcal{F}(X,\mathbb{R})$ l'ensemble des fonctions bornées de X dans \mathbb{R} . On a $||f||_{\infty} = \sup_{x \in X} |f(x)|$.

Proposition 5.1. $(f^{\infty}(X), \|\cdot\|_{\infty})$ est complet.

Remarque 5.1. Si $X = \mathbb{N}$, alors $f^{\infty}(X)$ est l'ensemble des suites bornées. Alors $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$.

Maintenant je prends X un espace topologique compact. Si $C^0(X) = \{f: X \to \mathbb{R} \text{ continue}\}$, alors $C^0(X) \subset f^{\infty}(X)$.

Proposition 5.2. $(C^0(X), \|\cdot\|_{\infty})$ est fermé.

Corollaire 5.1. $(C^0(X), \|\cdot\|_{\infty})$ est complet.

Prenons maintenant X=I=[0,2] compact.

Alors $C^0(I)$ est complet.

Prenons maintenant $||f||_1 = \int_I |f(t)| dt$.

C'est une norme.

Proposition 5.3. $(C^0(I), ||\cdot||_1)$ n'est pas complet.

On considère $C^0(I)$ avec I = [0,2] muni de $\|\cdot\|_1$. On considère la suite (f_n) définie par

$$f_n: I \to \mathbb{R}, \ t \mapsto \begin{cases} 1 & \text{si } t \in [0, 1] \\ -nt + n + 1 & \text{si } t \in [1, 1 + \frac{1}{n}] \\ 0 & \text{si } t \in [1 + \frac{1}{n}, 2] \end{cases}$$

$$||f_n - f_m||_1 = \int_0^2 |f_n(t) - f_m(t)| dt$$

$$= \int_0^1 |1 - 1| dt + \int_1^{1 + \frac{1}{n}} |nt - n + 1| dt + \int_{1 + \frac{1}{n}}^2 |0 - 0| dt$$

$$= \text{Aire sous le graphe bleu - Aire sous le graphe rouge} = \text{Aire de } T$$

$$= \frac{1}{2} \left(\frac{1}{n} - \frac{1}{m} \right)$$

On considère $u_n = \frac{1}{n}$ de Cauchy. Alors

$$||f_n - f_m||_1 = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{m} \right) = \frac{1}{2} |u_n - u_m|$$

 (f_n) n'admet pas de limite dans $(C^0(I), ||\cdot||_1)$. Supposons le contraire : $f_n \xrightarrow{||\cdot||_1} f$ avec f continue.

Si $f_n \to f$ alors $d_1(f_n, f) \to 0$. Alors

$$d_1(f_n, f) = \int_0^2 |f_n(t) - f(t)| dt$$

$$= \int_0^1 |f_n(t) - f(t)| dt + \int_1^{1 + \frac{1}{n}} |f_n(t) - f(t)| dt + \int_{1 + \frac{1}{n}}^2 |f_n(t) - f(t)| dt$$

$$= \underbrace{\int_0^1 |1 - f(t)| dt}_{\Omega} + \beta_n + \gamma_n$$

Avec

$$0 \le \beta_n \le \left(1 + \frac{1}{n} - 1\right) \left(\sup_{I} |f_n| + \sup_{I} |f|\right) 0 \le \beta_n \le \frac{1 + \sigma}{n} \to 0$$

et

$$\gamma_n = F(2) - F(1 + \frac{1}{n}) \to \int_1^2 |f(t)| dt$$

En revenant au calcul, on a:

$$d_1(f_n, f) = \alpha + \beta_n + \gamma_n \to 0$$
$$0 = \alpha + 0 + \int_1^2 |f(t)| dt \to 0$$

Donc (x_n) converge (puisque X est complet).

On a donc $\exists l \in X$ tel que $x_n \xrightarrow[n \to +\infty]{} l$.

Comme de plus, f est continue (puisque contractante) alors on peut passer à la limite dans $x_{n+1} = f(x_n)$ et on obtient l = f(l).

Donc l est un point fixe de f.

Vérifions maintenant l'unicité de l. Soit l' un autre point fixe de X. On a

$$d(l, l') = d(f(l), f(l')) \le kd(l, l')$$

Alors
$$\underbrace{(1-k)}_{>0} d(l,l') \le 0$$
 et donc $d(l,l') = 0$.