Aufgabe 1: Entwurf eines Hochspannungskondensator

Entwerfen Sie einen Hochspannungszylinderkondensator (Innendurchmesser d, Aussendurchmesser D) mit der Kapazität C = 30pF für eine Maximalspannung $U_{max} = 140$ kV. In **Fig. 1** ist die Geometrie des Kondensators gezeigt.

Fig. 1: Geometrie des Hochspannungszylinderkondensator

Für die wirksame axiale Länge stehen I=450mm zur Verfügung. Der Raum zwischen den beiden Elektroden sei mit SF₆–Gas gefüllt. SF₆–Gas wird in der Mittel- und Hochspannungstechnik als Isoliergas eingesetzt, da es bei Atmosphärendruck eine etwa dreimal höhere Durchschlagsfestigkeit als Luft aufweist. Die relative Permittivität von SF₆–Gas beträgt $\varepsilon_{\rm f}\approx 1$.

Berechnen Sie die kleinstmöglichen Elektrodendurchmesser d und D des Kondensators derart, dass die maximale elektrische Feldstärke E_{max} unter der Ionisationsfeldstärke des SF₆-Gases, E_{max} = 60kV/cm, bleibt. Vernachlässigen Sie Randstörungen.