FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen

Aufgabenblatt 1: Endliche Automaten

Präsenzteil am 14./15.10. – Abgabe am 21./22.10.2013

Präsenzaufgabe 1.1:

- 1. Wir wissen aus FGI-1, dass es zu jedem NFA A einen DFA B mit L(A) = L(B) gibt. Kann man B aus A berechnen? Wenn ja, wie?
- 2. Sei A ein NFA mit $L(A) \subseteq X^*$. Geben Sie eine Konstruktionsvorschrift für einen NFA \bar{A} an, für den $L(\bar{A}) = X^* \setminus L(A)$ gilt. (Tipp: Wandeln Sie zunächst A in einen DFA um.)
- 3. Konstruieren Sie den Potenzautomaten für folgenden NFA:

Präsenzaufgabe 1.2: Zeigen Sie die erste Teilaussage von Lemma 1.9: "Das Leerheitsproblem für NFA ist entscheidbar."

- 1. Beschreiben Sie ein Verfahren, welches für einen gegebenen nichtdeterministischen Automaten $A:=(Q,\Sigma,\delta,Q^0,F)$ feststellt, ob $L(A)=\emptyset$ gilt.
- 2. Wenden Sie Ihr Verfahren auf folgende Automaten an:

- 3. Begründen Sie Korrektheit und Termination Ihres Verfahrens.
- 4. Ist Ihr Verfahren ohne Modifikationen für deterministische und verallgemeinerte endliche Automaten anwendbar? Wenn nicht, was müsste modifiziert werden?

Übungsaufgabe 1.3: Gegeben ein beliebiges, festes n. Zu n sei der Automat A_n wie folgt gegeben:

1. Beschreiben Sie $L(A_n)$ durch einen regulären Ausdruck. (Sie dürfen Auslassungspunkte verwenden.)

von 6

- 2. Beschreiben Sie $L(A_n)$ als Menge (ohne Auslassungspunkte).
- 3. Begründen Sie die Korrektheit Ihrer Antworten.
- 4. Ist $L(A_n)$ regulär? Begründen.
- 5. Zusatz: Betrachten Sie die Vereinigung aller Mengen $L(A_n)$: $A:=\bigcup_{n\geq 0}L(A_n)$ Ist A regulär? Kann man A durch eine Grammatik darstellen? Begründen Sie dies.

Übungsaufgabe 1.4: Es soll ein einfacher Textverarbeitungs-Algorithmus in Form eines endlichen Automaten erstellt werden. Gesucht ist ein endlicher Automat, der die akzeptierten Wörter eines anderen Automaten akzeptiert, mit dem Unterschied das jedes Symbol verdoppelt wird.

- 1. Beschreiben Sie ein Verfahren, welches für einen gegebenen deterministischen Automaten $A := (Q, \Sigma, \delta, \{q^0\}, F)$ einen deterministischen Automaten $A' := (Q', \Sigma', \delta', \{q'^0\}, F')$ konstruiert, der genau die 'gedoppelten' Wörter von L(A) akzeptiert, d.h. $L(A') = \{a_0 a_0 a_1 a_1 \dots a_n a_n | a_0 a_1 \dots a_n \in L(A)\}.$
- 2. Beweisen Sie, dass der folgende Automat A, die Menge aller Wörter über $\Sigma = \{a, b\}$ akzeptiert, die das Teilwort abb enthalten.

- 3. Beschreiben Sie diese Wortmenge durch einen regulären Ausdruck.
- 4. Wenden Sie Ihr Verfahren unter 1. auf diesen Automaten A an. Dokumentieren Sie dabei die Zwischenergebnisse.
- 5. Begründen Sie die Korrektheit der Lösung.

Mehr Details zur Veranstaltung unter:

http://www.informatik.uni-hamburg.de/TGI/lehre/vI/WS1213/FGI2/