Challenge!

Seien $a_1, a_2, \ldots, a_n \in \mathbb{Z}$. Gebe einen $\mathcal{O}(n^2)$ Algorithmus an, der eine zusammenhängende Teilfolge $a_i, a_{i+1}, \ldots, a_j$ findet mit $1 \le i \le j \le n$, so dass $n \mid (a_i + a_{i+1} + \ldots + a_j)$.

Eine genaue Laufzeitanalyse vom angegebenem Algorithmus ist nicht nötig.

Tipp: Betrachte die Summen $S_i := \sum_{k=1}^i a_k$ für $1 \le i \le n$.

Monoid-/Gruppeneigenschaften überprüfen

Für jede der folgenden Algebren, entscheide ob sie ein Monoid, eine Gruppe oder keines davon ist:

- $\langle \mathbb{Z}; \rangle$
- $\langle \mathcal{P}(\mathbb{N}); \cap \rangle$

Monoid-/Gruppeneigenschaften überprüfen

Für jede der folgenden Algebren, entscheide ob sie ein Monoid, eine Gruppe oder keines davon ist:

- $\langle \mathbb{Z}; \rangle$
- $\langle \mathcal{P}(\mathbb{N}); \cap \rangle$

Das heisst, überprüfe

- 1 Ist die Operation assoziativ?
- 2 Gibt es ein neutrales Element?

Falls 1 oder 2 scheitert, dann sind wir fertig.

Monoid-/Gruppeneigenschaften überprüfen

Für jede der folgenden Algebren, entscheide ob sie ein Monoid, eine Gruppe oder keines davon ist:

- $\langle \mathbb{Z}; \rangle$
- $\langle \mathcal{P}(\mathbb{N}); \cap \rangle$

Das heisst, überprüfe

- 1 Ist die Operation assoziativ?
- 2 Gibt es ein neutrales Element?

Falls 1 oder 2 scheitert, dann sind wir fertig.

Sonst haben wir schon ein Monoid. Dann bleibt noch zu überprüfen

3 Besitzt jedes Element ein Inverses?

Subgroups

Let $\langle G; *, \hat{}, e \rangle$ be a group and define

$$H = \{a \in G \mid \forall b \in G \ a * b = b * a\}$$

(i.e. all commutative elements of G). Prove that H is a subgroup of G.

Subgroups

Let $\langle G; *, \hat{}, e \rangle$ be a group and define

$$H = \{a \in G \mid \forall b \in G \ a * b = b * a\}$$

(i.e. all commutative elements of G). Prove that H is a subgroup of G.

Das heisst, wir müssen zeigen für alle $a, b \in H$

- 1 $e \in H$
- 2 $a * b \in H$ (Operationen in H bleiben auch in H, H ist abgeschlossen (closed) bezüglich *)
- $3 \hat{a} \in H (H \text{ abgeschlossen bezüglich}^{\hat{}})$

Mehr Subgroups

Let H, H' subgroups of G. Prove

 $H \cup H'$ is a subgroup of $G \implies H \subseteq H'$ or $H' \subseteq H$.

Mehr Subgroups

Let H, H' subgroups of G. Prove

$$H \cup H'$$
 is a subgroup of $G \implies H \subseteq H'$ or $H' \subseteq H$.

Trick: Aussagen der Form "S oder \overline{T} " kann man beweisen, indem man "nicht $S \Longrightarrow T$ " beweist.

Nützliche Tatsache

Beweise:

$$g$$
 ist ein "generator" von $\langle \mathbb{Z}_n; \oplus \rangle \iff \gcd(n,g) = 1$.

Folgendes könnte dabei hilfreich sein

$$lcm(a, b) \cdot \gcd(a, b) = a \cdot b.$$

Sei G eine Gruppe und $a \in G$. Dann ist $\operatorname{ord}(a)$ das kleinte $m \ge 1$, so dass $a^m = e$.

Sei G eine Gruppe und $a \in G$. Dann ist $\operatorname{ord}(a)$ das kleinte $m \geq 1$, so dass $a^m = e$.

Lemma

 $\langle a \rangle = \{e, a, a^2, \dots, a^{\operatorname{ord}(a)-1}\}$ ist die kleinste Subgroup mit a.

Sei G eine Gruppe und $a \in G$. Dann ist ord(a) das kleinte $m \ge 1$, so dass $a^m = e$.

Lemma

 $\langle a \rangle = \{e, a, a^2, \dots, a^{\operatorname{ord}(a)-1}\}$ ist die kleinste Subgroup mit a.

Theorem (Lagrange)

Sei H ein Subgroup von G. Dann gilt |H| | |G|.

Sei G eine Gruppe und $a \in G$. Dann ist ord(a) das kleinte $m \ge 1$, so dass $a^m = e$.

Lemma

 $\langle a \rangle = \{e, a, a^2, \dots, a^{\operatorname{ord}(a)-1}\}$ ist die kleinste Subgroup mit a.

Theorem (Lagrange)

Sei H ein Subgroup von G. Dann gilt |H| |G|.

Lemma

Für alle $a \in G$ gilt: ord(a) | G.

Sei G eine Gruppe und $a \in G$. Dann ist ord(a) das kleinte $m \ge 1$, so dass $a^m = e$.

Lemma

 $\langle a \rangle = \{e, a, a^2, \dots, a^{\operatorname{ord}(a)-1}\}$ ist die kleinste Subgroup mit a.

Theorem (Lagrange)

Sei H ein Subgroup von G. Dann gilt |H| | |G|.

Lemma

Für alle $a \in G$ gilt: ord(a) | G.

Lemma

Für alle $a \in G$ gilt: $a^{|G|} = e$.

Next Level nützliche Tatsache

Lemma

Sei g_1 ein Generator von \mathbb{Z}_m und g_2 ein Generator von \mathbb{Z}_n . Dann gilt

 $\gcd(m,n)=1\iff (g_1,g_2) \ ein \ Generator \ von \ \langle \mathbb{Z}_m;\oplus \rangle \times \langle \mathbb{Z}_n;\oplus \rangle.$

Beweisidee (eine Richtung)

Wir beweisen eine abgeschwächte Form davon:

$$\gcd(m,n)=1 \implies \langle (1,1)\rangle = \langle \mathbb{Z}_m; \oplus \rangle \times \langle \mathbb{Z}_n; \oplus \rangle$$

Wieder Subgroups

Liste alle Subgroups von $\langle \mathbb{Z}_3; \oplus \rangle \times \langle \mathbb{Z}_4; \oplus \rangle$ auf.