

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION	ÉPREUVE ÉCRITE	
BIOLOGIE	С	Durée de l'épreuve :	3 heures
		Date de l'épreuve :	11 juin 2018

Question I: Procréation (20 pts.)

I.1 Absence de règles pendant la grossesse (12 pts.)

En vous basant sur une analyse rigoureuse des 3 documents ci-dessous et en vous appuyant sur vos connaissances, présentez la succession des mécanismes hormonaux à l'origine de l'absence de règles lors de la grossesse.

Document 1:

Chez les femelles Primates, on mesure la concentration plasmatique de progestérone (ng/ml) au cours de la phase lutéale.

Graphique A: au cours d'un cycle normal

Graphique B : lors d'un cycle au cours duquel on inhibe la sécrétion de progestérone au milieu de la phase lutéale

Document 2:

Résultats du dosage des hormones ovariennes dans l'urine d'une femme pendant 73 jours.

Remarque : dans l'urine, la progestérone est éliminée sous forme de prégnandiol (mg/l) et les œstrogènes sous forme de phénolstéroïdes (µg/l).

Document 3:

Concentration de HCG (Gonadotrophine Chorionique Humaine, unités arbitraires/l) dans le plasma d'une femme en fonction du temps écoulé après la fécondation.

I.2 Mode d'action de la pilule contraceptive (8 pts.)

En vous appuyant sur les 2 documents présentés ci-dessous et en utilisant vos connaissances, comparez un cycle normal et cycle sous pilule pour expliquer le mode d'action de la pilule œstroprogestative.

Document 1 : Profils hormonaux du cycle menstruel naturel chez la femme. Remarque : œstradiol = estradiol

Document 2 : Concentrations plasmatiques de LH et FSH chez une femme au cours d'un cycle naturel suivi de deux cycles sous pilule œstroprogestative.

Question II: Génétique (20 pts.)

II.1 Croisements chez la drosophile (14 pts.)

Un premier croisement est réalisé entre une drosophile femelle à « corps gris » et « ailes avec nervures » et une drosophile mâle à « corps jaune » (mutation *yellow* : y) et « ailes sans nervures » (mutation *cross veinless* : cv). Les individus de la F1 obtenus sont tous à « corps gris » et « ailes avec nervures ».

Un deuxième croisement inverse est réalisé entre une drosophile mâle à « corps gris » et « ailes avec nervures » et une femelle à « corps jaune » et « ailes sans nervures ». Les deux drosophiles sont de race pure. Les individus obtenus sont des mâles à « corps jaunes, « ailes sans nervures » et des femelles à « corps gris », « ailes avec nervures ».

- a. Quels renseignements peut-on dégager des résultats obtenus des deux croisements ? (2 pts.)
- **b.** Quels sont les génotypes des parents et des descendants dans les deux croisements ? (4 pts.)
- c. Le croisement des individus de la F1 issus du premier croisement aboutit aux résultats suivants :

phénotypes	mâles	femelles
corps gris, ailes avec nervures	812	1870
corps jaune, ailes sans nervures	810	/
corps gris, ailes sans nervures	122	/
corps jaune, ailes avec nervures	125	/

- Interprétez les résultats du tableau et donnez les génotypes et phénotypes. (4 pts.)
- Comment s'expliquent les nouvelles associations d'allèles du tableau ? Illustrez votre réponse par un schéma. (4 pts.)

II.2 Analyse d'un arbre généalogique (6 pts.)

Voici l'arbre généalogique d'une famille dont certains membres sont atteints de surdi-mutité.

- a. Comment se transmet cette anomalie ? (2 pts.)
- **b.** Donnez le génotype des individus I-3 et I-4. (1 pt.)
- c. On admet qu'en Europe, il y a environ 1 personne sur 30 qui possède le génotype de l'individu I-
- 3. Madame III-2 attend un enfant. Quel est le risque que son enfant soit atteint de cette maladie génétique ? Justifiez votre réponse. (3 pts.)

Question III : Génie génétique (20 pts.)

III. 1 Le clonage (15 pts.)

Les chercheurs souhaitent étudier la fonctionnalité d'un gène M d'une bactérie. Pour cela, ils essaient de cloner au site *Bam* HI du vecteur plasmidique pBR330 (document 1) l'ADN contenant le gène d'intérêt. Cet ADN contenant le gène d'intérêt a préalablement été isolé à l'aide de l'enzyme de restriction *Bam* HI, puis amplifié. L'ADN du plasmide contient une origine de réplication et 2 gènes qui confèrent aux bactéries hôtes une résistance à 2 antibiotiques : l'ampicilline et la streptomycine.

Document 1 : le plasmide pBR330

Document 2 : étalement des bactéries

- a. Nommez la méthode de biologie moléculaire permettant, in vitro, l'amplification rapide de fragments d'ADN et expliquez son principe de fonctionnement. (3 pts.)
- **b.** Expliquez le rôle et la particularité des enzymes de restriction comme outil en biologie moléculaire. (2 pts.)
- **c.** Donnez le protocole de clonage complet et expliquez, en utilisant le document 2, comment sont sélectionnés les clones recombinants. (10 pts.)

III.2 Carte de restriction d'un plasmide (5 pts.)

Le plasmide pYG108 est digéré par deux enzymes de restriction *Eco* RI et *Bam* HI et analysé par électrophorèse. Les digestions par une ou deux enzymes ont donné les fragments indiqués dans le tableau ci-dessous.

Enzyme	Taille des fragments d'ADN en kilobases (kb)			
Eco RI	8	6		
Bam HI	8,5	5,5		
Eco RI + Bam HI	5	3,5	3	2,5

- a. Définissez « électrophorèse ». (2 pts.)
- **b.** Indiquez la taille du plasmide et dessinez la carte de restriction de ce plasmide en positionnant les divers sites de restriction sur le plasmide. (3 pts.)