ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

CO₂ hydrogenation to methanol on tungsten-doped Cu/CeO₂ catalysts

Yong Yan ^{a,b}, Roong Jien Wong ^{a,b,c}, Zhirui Ma ^d, Felix Donat ^e, Shibo Xi ^f, Syed Saqline ^{a,b,c}, Qianwenhao Fan ^{a,b}, Yonghua Du ^{f,g}, Armando Borgna ^f, Qian He ^h, Christoph R. Müller ^e, Wei Chen ^d, Alexei A. Lapkin ^{b,i}, Wen Liu ^{a,b,*}

- ^a School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- ^b Cambridge Centre for Advanced Research and Education, 1 Create Way, #05-05, Singapore 138602, Singapore
- ^c Nanyang Environmental and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- ^d Department of Chemistry, National University Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- ^e Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zürich, Switzerland
- f Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Singapore 627833, Singapore
- g Brookhaven National Laboratory, National Synchrotron Light Source II, Bldg. 743, P.O. Box 5000, Upton, NY 11973-500, United States
- h Department of Materials Science and Engineering, National University Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- i Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 OAS, United Kingdom

ARTICLE INFO

Keywords: CO₂ Methanol Oxygen vacancy Hydrogenation Ceria Metal-support interface

ABSTRACT

The catalytic hydrogenation of CO_2 to methanol depends significantly on the structures of metal-oxide interfaces. We show that doping a high-valency metal, viz. tungsten, to CeO_2 could render improved catalytic activity for the hydrogenation of CO_2 on a $Cu/CeW_{0.25}O_x$ catalyst, whilst making it more selective towards methanol than the undoped Cu/CeO_2 . We experimentally investigated and elucidated the structural-functional relationship of the Cu/CeO_2 interface for CO_2 hydrogenation. The promotional effects are attributed to the irreversible reduction of Ce^{4+} to Ce^{3+} by W-doping, the suppression of the formation of redox-active oxygen vacancies on CeO_2 , and the activation of the formate pathway for CO_2 hydrogenation. This catalyst design strategy differs fundamentally from those commonly used for CeO_2 -supported catalysts, in which oxygen vacancies with high redox activity are considered desirable.

1. Introduction

Carbon capture, storage and utilisation (CCSU) is a scheme that complements the transition to renewable energies and electrification towards building a low-carbon economy [1–4]. An important aspect of CCSU is to synthesise, at large scale, chemicals and fuels from captured $\rm CO_2$ [5,6]. Amongst the various $\rm CO_2$ -derived products, methanol is a highly attractive target, owing to its versatile roles as a gateway molecule and a liquid fuel substitute [7–10]. Recent analyses have shown that methanol synthesised from captured $\rm CO_2$ and renewable hydrogen has a significantly lower environmental impact than that produced from natural gas or coal [11]. Furthermore, the use of methanol as a fuel additive could substantially reduce $\rm CO_2$ emission from vehicle exhaust [12].

To date, there is limited commercial processes that produces methanol from CO_2 [13,14], partly because the commercial $Cu/ZnO/Al_2O_3$ methanol synthesis catalysts are insufficiently stable under the CO_2

hydrogenation conditions [15,16]. Meanwhile, several catalysts with promising performance have been developed and evaluated at pilot scales [17-23]. Significant experimental and theoretical research have been conducted to establish reaction pathways of methanol synthesis. It is generally understood that the activation of CO2 is the first rate-limiting step. Depending on the nature of the active sites, CO2 may form formate (HCOO*), carboxyl (*COOH), carbonate (*CO3), bicarbonate (*HCO₃), or a surface carbonyl (*CO) upon adsorption [24,25]. The further hydrogenation of the surface intermediates; e.g. HCOO* and *CO, is regarded as the second rate-limiting step [25,26]. This is followed by the successive hydrogenation to form *CH₃O, the hydrogenation and desorption of which is the final step to methanol production. According to the second rate-limiting step, the reaction mechanisms are classified as (i) the formate pathway, where HCOO* is a key reaction intermediate, or (ii) the reverse water-gas-shift (RWGS) pathway, where *COOH or *CO are key reaction intermediates [25]. However, the identities of the active sites of many high-performing catalysts remain

^{*} Corresponding author at: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore. *E-mail address*: wenliu@ntu.edu.sg (W. Liu).

debatable and the structural-functional relationships at the metal-oxide interfaces are yet to be fully understood [13,16,27–29]. For any metal/oxide interface catalysts, closing these knowledge gaps will enable the rapid improvement of catalyst design.

Amongst the various Cu-based catalysts, Cu/CeO2 is known to catalyse methanol synthesis via the RWGS pathway, where CO is produced as a reaction intermediate as well as a byproduct. However, unmodified Cu/CeO2 shows relatively low activity (space time yield, STY <2 $\rm mol_{MeOH}\cdot kg_{cat}^{-1}\cdot h^{-1})$ and moderate selectivity (~50%) [30,31]. Attempts to improve the activities of CeO2-based catalysts often evolve around promoting their redox activity, e.g. by preparing morphologically well-defined CeO2 supports with high redox activities [32,33] or doping lower-valency cations (e.g. $\rm Co^{3+}$ and $\rm Pr^{3+})$ to generate additional oxygen vacancies [34–38]. These approaches invariably promote RWGS and the formation of CO, whose adsorption on Cu is weak, therefore limiting the overall methanol productivity and selectivity [39–41].

According to recent studies [35,42], doping high-valency metals such as Mo and W will reduce CeO₂ as the dopants donate electrons to adjacent Ce⁴⁺. Such reduction does not involve the generation of additional oxygen vacancies and is therefore fundamentally different from the conventional reduction by lattice oxygen removal. Therefore, this doping effect offers an alternative approach to modify the activity of Cu/CeO₂ without generating additional oxygen vacancies [43]. Here, we successfully prepared a W-doped Cu/CeO2 catalyst, viz. Cu/Ce-W_{0.25}O_x, which shows a substantially enhanced methanol activity (CO₂ conversion = 13%, STY = 12.32 $\text{mol}_{\text{MeOH}} \cdot \text{kg}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$) over unmodified Cu/CeO_2 (CO_2 conversion = 1.3%, $STY = 1.26 \text{ mol}_{MeOH} \cdot \text{kg}_{cat}^{-1} \cdot \text{h}^{-1}$) at 250 °C, 35 bar total pressure and a weight hourly space velocity (WHSV) of 15000 mL $g_{cat}^{-1} h^{-1}$. The Cu/CeW_{0.25}O_x catalyst is also significantly more selective towards methanol (87% vs. 51%) than the undoped Cu/CeO_2 . In fact, the activity of $\text{Cu/CeW}_{0.25}\text{O}_x$ is on par with some of the best performing Cu-based CO2-to-methanol catalysts reported in the literature [44-51]. In situ vibrational spectroscopy and in situ X-ray scattering experiments were conducted to elucidate the roles of different types of Ce^{3+} sites and oxygen vacancies during methanol synthesis.

2. Experimental

2.1. Catalyst preparation

All chemicals were purchased from Sigma Aldrich and used as received without further purification. To prepare W-doped CeO $_2$, urea was added into an aqueous Ce(NO $_3$) $_3$ solution (0.005 M) at a urea: Ce $^3+$ ratio of 10: 1. Then, (NH $_4$) $_6$ H $_2$ W $_1$ 2O $_4$ 0·xH $_2$ O (at a W: Ce ratio of 1: 4), together with equal mass of H $_2$ C $_2$ O $_4$ ·2H $_2$ O, was dissolved in the same solution. Subsequently, the solution was transferred into an autoclave, which was sealed and heated to 150 °C to react for 12 h. The resulting precipitate was filtered and washed with deionized water, dried at 100 °C overnight, and calcined at 500 °C for 1 h in air. Undoped CeO $_2$ was prepared by a similar procedure, but without (NH $_4$) $_6$ H $_2$ W $_1$ 2O $_4$ 0·xH $_2$ O and H $_2$ C $_2$ O $_4$ ·2H $_2$ O.

Supported Cu catalysts were prepared by wet impregnation. In a typical preparation, the support material (CeO $_2$ or W-doped CeO $_2$) was added to an aqueous solution containing required amount of Cu(NO $_3$) $_2$ under rigorous stirring. The targeted Cu loading was 10 wt%. After impregnation, the excess water was removed in a rotary evaporator at 80 °C. The catalysts were obtained by drying the resulting solid at 80 °C in air for 12 h, followed by calcination at 500 °C in air for 2 h.

2.2. Ex situ sample characterisation

The crystalline structural information was investigated by powder X-ray diffraction (XRD) on a Bruker AXS D8 diffractometer with Cu K α radiation ($\lambda=1.5406$ Å) at 40 kV and 40 mA. The morphology of the catalysts was examined by high-resolution transmission electron microscopy (HRTEM) using a JEOL JEM 2100F TEM, working at an

accelerating voltage of 200 kV. The $\rm N_2$ adsorption-desorption isotherms were measured on a Micromeritics 3 flex instrument at $-196~^{\circ}\rm C$. Prior to $\rm N_2$ physisorption, all samples were degassed at 180 $^{\circ}\rm C$ for 5 h in vacuum. The specific surface areas were calculated according to the Brunauer-Emmet-Teller (BET) equation using the data over the P/P_0 range from 0.05 to 0.35. The X-ray photoelectron spectra (XPS) of the catalysts were acquired on a Kratos Axis Supra spectrophotometer with a dual anode monochromatic K α excitation source. All binding energies were calibrated against the adventitious carbon C 1s peak at 284.8 eV. Cu speciation was determined from the Auger electron spectroscopy with XPS [52,53].

Inductively coupled plasma optical emission spectroscopy (ICP-OES, Agilent 5100 VDV) was used to quantify the mass fractions of Cu, Ce, and W elements in the catalysts.

 H_2 temperature-programmed reduction (H_2 -TPR) measurements were carried out on a Micromeritics Autochem II 2920 instrument. Firstly, the catalysts were loaded into a quartz U-tube reactor and pretreated under an air flow (50 mL min $^{-1}$) at 500 °C for 60 min, followed by cooling to 35 °C in He. After 30 min, 5% H_2/N_2 (50 mL min $^{-1}$) was passed through the catalyst bed until a stable thermal conductivity detector (TCD) signal was observed. Subsequently, the temperature was increased from 35 °C to 1000 °C at a constant rate of 10 °C min $^{-1}$ in 5% H_2/N_2 . The outlet gas, after H_2 O removal, was analysed by the TCD to quantify the consumption of H_2 during the TPR.

 $\rm CO_2$ temperature-programmed desorption (CO₂-TPD) was performed on the same Autochem II 2920 instrument equipped with a MKS Cirrus II mass spectrometer (MS). The total gas flow rate through the catalyst bed was kept constant at 50 mL min $^{-1}$. Prior to each TPD experiment, the sample ($\sim\!100$ mg) was pretreated in 5% $\rm H_2/N_2$ at 500 °C for 60 min and cooled to 35 °C in He. At 35 °C, the sample was exposed to 10% CO $_2$ /He for 60 min, followed by He purging for 30 min. Then, the temperature was raised to 500 °C at a ramping rate of 10 °C min $^{-1}$, whilst the mass spectrometer analysed the outlet gas and recorded the signals of CO (m/z=28) and CO $_2$ (m/z=44).

The surface dispersion of Cu metals was quantified by N_2O chemisorption measurements on a Micromeritics Autochem II 2920 instrument. In a typical measurement, Cu was first reduced in $10\%\ H_2/Ar$ prior to N_2O chemisorption, followed by a second H_2 reduction step to remove the chemisorbed oxygen. H_2 reduction was first performed at $300\ ^{\circ}C$ for $60\ min$. After cooling to room temperature, $10\%\ N_2O/He$ was introduced to the sample until N_2O consumption was no longer observed. Hydrogen reduction, following the H_2 -TPR programme described above, was then conducted to quantify the amount of surface Cu atom based on the amount of H_2 consumed.

2.3. CO₂ hydrogenation to methanol

The performance of the catalyst was examined in a fixed-bed reactor. Before CO $_2$ hydrogenation, the loaded catalysts were reduced in situ in 50 mL min $^{-1}$ of 10% $\rm H_2/He$ at 500 °C and 10 bar for 60 min. In each experiment, 200 mg of catalyst was used to convert a 23:69:8 mixture of CO $_2$, $\rm H_2$ and $\rm N_2$, with a total flow rate of 50 mL min $^{-1}$ (STP) at 250 °C and 35 bar total pressure. Using $\rm N_2$ as an internal standard, the composition of outlet gas was analysed by online gas chromatography (Agilent 7890B) equipped with both flame ionisation detector (FID) detector and TCD detector. Condensation of the liquid products was avoided by trace heating the gas sampling line to 90 °C. Kinetics data were collected by measuring the rate when the CO $_2$ conversion was below 10%.

2.4. In situ catalyst characterisation

In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was carried out on a Bruker Tensor II FTIR spectrometer. The FTIR was equipped with a liquid-N₂ cooled MCT/A detector, a Pike DiffuseIR accessory, and a high-pressure reaction cell. Prior to each

Fig. 1. Ex situ characterisation of the as-prepared supports and Cu-loaded catalysts. (a): XRD patterns of the reduced and the oxidised catalysts. (b) and (c): HRTEM images of Cu/CeO₂ and Cu/CeW_{0.25}O_x, respectively. (d) High-resolution XPS spectra of Ce 3d. (e) H_2 -TPR profiles of the air-calcined bare catalyst supports and the Cu loaded catalysts.

experiment, the sample was reduced in 50 mL min $^{-1}$ of 10% $\rm H_2/He$ at 500 °C for 60 min and cooled in He to the desired reaction temperature (250 °C). The background spectrum was collected in He, at the reaction temperature. Each spectrum was obtained by averaging over 100 consecutive scans, each with a spectral resolution of 4 cm $^{-1}$.

In situ X-ray absorption spectra (XAS) were measured using wafer samples (I.D. 10 mm pellets) in a customised high pressure reaction cell equipped with two beryllium windows at the XAFCA beamline of Singapore Synchrotron Light Source (SSLS). The beamline has a flux of 1.6×10^{10} photons per second at 7 keV. A Si(111) crystal was used as the monochromator for the energy range from 2.1 to 12.8 keV. The typical scan time was about 20 min. The data were processed using IFEFFIT software packages. XAS of the as-prepared samples were measured at RT under He purging. The spectra of the reduced samples were collected after reduction in 10% $\rm H_2/He$ at 500 $^{\circ}\rm C$, 10 bar total pressure, for 60 min. In situ measurements were carried out when the samples were exposed to a 3:1 mixture of $\rm H_2$ and $\rm CO_2$ at 250 $^{\circ}\rm C$ and 10 bar.

Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) experiments were performed in a multichambered Specs system equipped with an Al/Mg twin anode X-ray source and a Phoibos hemispherical energy analyzer. A residual gas analyzer (RGA) was connected to the NAP lens chamber, which was exposed to 0.1–1 mbar of reaction gas, supplied through a 300 μm nozzle. The NAP cell was degassed before each experiment by heating to 627 °C under vacuum until the chamber pressure fell below 1 \times 10 $^{-9}$ mbar. In each NAP-XPS experiment, the catalyst was first reduced in 0.4 mbar H2 at 500 °C, followed by oxidation in 0.5 mbar CO2 at RT. Then, 0.3 mbar CO2 and 0.9 mbar H2 were fed into the measurement chamber at 250 °C to simulate a CO2 hydrogenation environment. Finally, the samples were oxidised in 0.4 mbar O2 at 500 °C. NAP-XPS spectra were collected at each segment of the experiment, when the samples were believed to have reached steady

state.

3. Results and dicussion

3.1. Characterisation of the as-prepared catalysts

Fig. 1 presents the characterisation of the as-synthesised CeO₂ supports and the Cu/CeO₂ catalysts, with and without W-doping. Prior to Cu loading, the X-ray diffraction (XRD) patterns of both the unmodified and the W-doped CeO2 can be fully indexed by the fluorite-structured CeO2 phase (Fig. S1). After Cu loading, the freshly calcined catalysts show diffraction peaks of CuO, which changed to Cu after H2 reduction (Fig. 1a). In all cases, the absence of any diffraction peak associated with WO_x species suggests that W atoms are finely dispersed on and, or in the CeO₂ support. In addition, the samples containing W-doped CeO₂ show greater extent of peak broadening than the samples without W. This additional peak broadening effect is attributed to the additional microstrain (e.g. the presence of defects) that is commonly observed in metal-doped CeO₂ [54-58]. The lattice parameters of CeO₂ in the oxidised Cu/CeO2 and Cu/CeW0.25Ox catalysts were estimated by Rietveld refinement of the diffraction patterns to be 5.41 \pm 0.01 and 5.44 \pm 0.01 Å, respectively. The increase in the lattice parameter of CeO₂ upon W-doping signifies the reduction of Ce⁴⁺ to Ce³⁺ [59]. In fact, both the reduced and oxidised forms of Cu/CeW_{0.25}O_x show larger CeO₂ lattices than the Cu/CeO₂ sample, suggesting the reduction of Ce⁴⁺ to Ce³⁺ by W doping is ubiquitous in all the chemical environments of interest. The HRTEM images, depicted in Fig. 1b and c, show that both catalysts consist of grains of Cu and CeO₂ of ~4 nm and ~5 nm in size, respectively. The HRTEM observations further support the conclusion that the additional peak broadening of the W-doped CeO2 observed in Fig. 1a is due to increased microstrain rather than decreased grain sizes of CeO2.

Fig. 2. (a) Methanol STY and CO_2 conversion over Cu/CeO_2 , and $Cu/CeW_{0.25}O_x$ in a 23:69:8 mixture of $CO_2/H_2/N_2$ at 250 °C, 35 bar total pressure, with WHSV of 15,000 mL $g_{cat}^{-1}h^{-1}$. The error bars for methanol selectivity, calculated based on the data variability during the 72 h TOS experiments, are too small to be shown. (b) Arrhenius plots of the rate of CO and methanol formation over the Cu/CeO_2 and $Cu/CeW_{0.25}O_x$ catalysts under the same operating conditions as (a), except the varied reaction temperatures.

The lattice fringes of 0.18 nm and 0.31 nm observed in the HRTEM images correspond to the Cu(200) and CeO₂(111) planes, respectively. Supplementary HRTEM images, including lower magnification ones, are provided in Fig. S2 of Supporting Information. The identification of the CeO₂ grains were further confirmed by selected area electron diffraction (SAED) analysis, as shown Fig. S2c and d. It should be noted that the resolution of the present HRTEM analysis is not sufficiently high to verify the lattice expansion due to W-doping (as suggested by the XRD results). The actual Cu loadings on Cu/CeO2 and Cu/CeW0,25Ox, as determined by ICP-OES (Table S1), are 9.8 wt% and 10.9 wt%, respectively. The specific surface areas of the Cu/CeO₂ and Cu/CeW_{0.25}O_r catalysts, as determined by the BET analysis of the N2 adsorption-desorption isotherms, are 105 and 84 m²g⁻¹, respectively. Given the lack of contrast of Cu on CeO₂ in TEM, the dispersion of Cu on the Cu/CeO2 and Cu/CeW0.25Ox catalysts is estimated by N2O chemisorption (results shown in Fig. S3), to be around 16.8% and 16.9%, respectively. Care is taken to discriminate the chemisorption signals associated with Cu and CeO₂. These dispersion values translate to mean Cu particle sizes of ~4.3 nm, assuming uniform particle sizes and spherical particle shape. The estimated particle sizes agree with the HRTEM (Fig. 1b and c), which show Cu particles of 4-5 nm in size. Therefore, despite the marginal increase in Cu loading and decrease in BET surface area, W-doping appears to have negligible effect on the morphology and dispersion of the supported Cu particles.

The chemical states of the surface regions of the catalysts were probed by XPS. The Ce 3d XPS spectra, shown in Fig. 1d, reflect the ratio of Ce^{3+} to Ce^{4+} in the surface region of the catalysts. On Cu/CeO_2 , the major XPS peaks are assigned to a doublet of Ce^{4+} with an orbital splitting of ~18.6 eV, accompanied by the shakedown features of one or two electron transfer from a filled O 2p orbital to an empty Ce 4f orbital [60]. The doublet corresponding to Ce^{3+} is significantly more intense in the spectra of the $Cu/CeW_{0.25}O_x$ than that of Cu/CeO_2 , indicating that the reduction of Ce^{4+} by W was not only a bulk phenomenon, but also profound near the surface. The consequence of W-doping on the states of Cu at the Cu/oxide interfaces is analysed by Cu AES, as shown in Fig. S4a. Looking at the quantitative analyses of the fitted Cu Auger peaks, as shown in Fig. S4b, W-doping does not cause any significant change to the amount of Cu^+ in the surface region, where Cu^+ is regarded as the Cu species at the Cu/oxide interfaces [52].

The reducibility of the air-calcined CeO₂ support and the Cu-loaded catalysts are investigated by H_2 -TPR, as shown in Fig. 1e. Three types of TPR peaks can be seen. Firstly, the low temperature peaks (\leq 200 °C) correspond to the reduction of CuO to metallic Cu [61]. Secondly, the intermediate temperature (200–600 °C) peaks are assigned to the

removal of oxygen from the surface of the CeO_2 supports [62]. Lastly, the high temperature peaks (> 600 °C) can be assigned to the removal of bulk lattice oxygen from CeO_2 [63]. After Cu loading, the intermediate-temperature TPR peaks (350–530 °C) associated with the reduction of surface CeO_2 shift to lower temperatures, showing intense peaks around 227–245 °C, probably because Cu catalyses the reduction of CeO_2 by facilitating hydrogen spill-over. Upon W-doping, the main TPR peak associated with the removal of lattice oxygen from the surface of the fully oxidised CeO_2 , shifts from 245 °C (in the case of Cu/CeO_2) to 227 °C (for $Cu/CeW_{0.25}O_x$), suggesting that the addition of W might have promoted the catalyst's ability to activate H_2 . Although $Cu/CeW_{0.25}O_x$ has substantially higher Ce^{3+} concentration, its overall reducibility, as shown by the total areas of the TPR peaks, does not appear significantly different from Cu/CeO_2 ; this observation agrees with the catalyst design hypothesis outlined in the Introduction.

3.2. CO₂ hydrogenation performance and mechanism

As shown in Fig. 2, the CO₂ hydrogenation activity of Cu/CeW_{0.25}O_x, evaluated at 250 °C and 35 bar, in a 23:69:8 mixture of CO₂:H₂:N₂, was substantially higher and more selective towards methanol than the unmodified Cu/CeO2. On average, the unmodified Cu/CeO2 showed a space-time yield (STY) of 1.26 mol_{MeOH}·kg_{cat}⁻¹·h⁻¹, a CO₂ conversion of 1.3% and a methanol selectivity of 51%. The STY of the Cu/CeO2 catalyst is comparable to the other Cu/CeO₂-type catalysts reported in the literature (i.e. with STY varying in the range $0.6-2.9 \text{ mol}_{\text{MeOH}} \cdot \text{kg}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$), as shown in Table S2. In contrast, the Cu/ CeW_{0.25}O_x catalysts exhibited a one order of magnitude increase in STY (12.3 mol_{MeOH}·kg_{cat}⁻¹·h⁻¹), as well as significantly improved CO₂ conversion and methanol selectivity of 13% and 87%, respectively. The standard errors of the mean STY and mean selectivity, estimated over 72 h time-on-stream (TOS, see Fig. S5) were both well below 1%. Given that Cu/CeO₂ and Cu/CeW_{0.25}O_x have comparable specific surface areas (105 and 84 m² g⁻¹, respectively), Cu loadings (9.8 wt% and 10.9 wt%, respectively), Cu chemical states (see AES in Fig. S4), Cu dispersion (see Table S1), and Cu particle sizes, such significant improvement in methanol synthesis activity of the Cu/CeW_{0.25}O_x catalyst over Cu/CeO₂ can only be explained by changes in the catalytic structure and, or possibly a change in the dominating reaction pathway. Additionally, the Cu/CeO2 and Cu/CeW0.25Ox catalysts showed stable performances over 72 h TOS (Fig. S5), suggesting satisfactory stabilities. In comparison, we note that a Cu/WO3 catalyst (results not shown) prepared by impregnating 10 wt% Cu on WO3 showed no detectable CO2 hydrogenation activity at 250 °C and 35 bar, suggesting that the Cu/WO3 interfaces,

Fig. 3. DRIFTS spectra recorded over $Cu/CeW_{0.25}O_x$ when the catalyst was exposed to CO_2 hydrogenation conditions for 30 min, followed by He purging for 120 min, and then treated with H_2 only. All measurements were performed at 35 bar total pressure at 250 °C.

even if it was present on $\text{Cu/CeW}_{0.25}\text{O}_x$, was not responsible for the observed catalytic enhancement.

Arrhenius analyses of the apparent rates of formation of methanol and CO are shown in Fig. 2b. All rate measurements were taken under differential reactor conditions, in which the catalyst weight and total flow rate were adjusted accordingly to keep the CO₂ conversion below 10%. For Cu/CeO₂, the apparent activation energies of the formation of CO and methanol are similar, i.e. $\sim 55~\rm kJ \pm 5~mol^{-1}$ (see Table S3, Supporting Information); this agrees with the understanding that methanol is formed, on Cu/CeO₂, via the RWGS pathway, with CO being a key intermediate [30]. Desorption of CO competes with its further hydrogenation, resulting in low methanol selectivity. For Cu/Ce-Wo.25O_x, the apparent activation energies of methanol formation and CO formation are 38 ± 2 and 58 ± 2 kJ mol⁻¹, respectively (Table S3, Supporting Information). This disparity in activation energy suggests that RWGS is unlikely to be the rate-controlling step for methanol formation on Cu/CeW_{0.25}O_x.

The catalytic mechanism of CO₂ hydrogenation was investigated by in situ DRIFTS, the results of which are shown in Fig. 3. After 30 min of CO₂ hydrogenation at 250 °C, 35 bar, the surface of Cu/CeW_{0.25}O_x showed adsorbates including adsorbed CO (2077 cm⁻¹), formate (the peaks at 1601, 1378, 1078 and 2842 cm⁻¹ correspond to the symmetric vibration of ν (OCO), the asymmetric vibration vs(OCO), the stretching vibration of -OCH and the stretching of -CH, respectively), carbonates (1432 cm^{-1}) , HOCO ($\sim 1580 \text{ cm}^{-1}$) and possibly trace amount of HCO₃ (1622 and 1222 cm⁻¹) [64]. The low intensity of the CO peak at $2077~\text{cm}^{-1}$ suggests that CO adsorption on Cu is indeed weak [65,66]. After purging the reaction cell with He for 120 min, the adsorption peaks of CO and HCO₃ disappeared owing to their weak adsorption. Then, H₂ was supplied to the purged reaction cell to hydrogenate the remaining adsorbates. From the time-resolved DRIFTS spectra, it can be seen that the intensity of the formate peaks decreased gradually over time, accompanied by the emergence of characteristic peaks corresponding to surface methoxy species at 2924 cm⁻¹, 2796 cm⁻¹ and 1064 cm⁻¹ [21]. The observation of the methoxy group as a surface-significant species, in conjunction with the increase in methanol yield, suggests that methoxy is a key intermediate for methanol formation, in agreement with the literature [52]. The dynamic spectral changes indicate that methanol is formed via the formate pathway on Cu/CeW_{0.25}O_x.

On Cu/CeO2, the same surface adsorbates were observed during

Fig. 4. CO_2 -TPD profiles of the CeO_2 -based supports and the Cu loaded catalysts. The vertical blue lines indicate the shift of the CO_2 desorption peak.

steady-state hydrogenation (viz. CO, HCOO and HCO₃). After purging with He, HCOO is the main surface-significant species, as shown in Fig. S6. However, the formate peaks remained largely unchanged over 300 min of continuous $\rm H_2$ treatment at 250 °C, 35 bar. Therefore, formate appears to act as a spectator on undoped Cu/CeO₂, a phenomenon that has been previously reported in the literature [30].

3.3. The roles of oxygen vacancies and Ce^{3+} sites

On undoped CeO_2 , the presence of Ce^{3+} is often associated with the presence of oxygen vacancies, which in turn, is correlated to the redox activity of CeO_2 or the metal/ CeO_2 interface. This is not the case for $Cu/CeW_{0.25}O_x$. In the following, we experimentally verify the lack of correlation between Ce^{3+} , oxygen vacancies and redox activity on $Cu/CeW_{0.25}O_x$. First, CO_2 -TPD was performed to probe the CO_2 affinity and the redox activity of the catalysts, as shown in Fig. 4. Over the

Fig. 5. In situ XANES spectra of Ce $L_{\rm III}$ edge of the catalysts when freshly calcined ("as received", green line), after reduction in 10% H_2/He at 500 °C, 10 bar for 30 min ("reduced", blue line), and during CO_2 hydrogenation in a 23:69:8 mixture of $CO_2/H_2/N_2$ at 250 °C, 10 bar, after 30 min TOS ("reaction", red line). The purple and orange dash-dot line refer to Ce^{3+} ($CeCl_3$) and Ce^{4+} ($CeCl_2$) references, respectively.

unmodified CeO2 support, a CO2 desorption peak at 140 °C, with a shoulder at ~240 °C was observed, whereas a second CO2 desorption peak can be seen \sim 760 °C. Upon W-doping, the shoulder peak \sim 240 °C shifted to ~320 °C, suggesting stronger CO2 adsorption. The high temperature CO_2 desorption peaks (m/z = 44) above 700 °C are accompanied by CO desorption peaks (m/z = 28, after correcting for the m/zz=28 contribution by CO_2 fragmentation). The CO produced is attributed to the dissociative adsorption of CO2 at an oxygen vacancy site [67]. Therefore, the amount of CO produced is indicative of the amount of redox-active oxygen vacancies (i.e. the oxygen vacancies that could reversibly form and disappear upon reduction and oxidation, respectively) present in the surface-region of the catalyst. To complement, we define the non-redox-active oxygen vacancies to be those originating from the inherent defects of the structures of the metal oxides. Therefore, the amount of non-redox-active oxygen vacancies would remain largely unchanged over varying redox environments. Accordingly, the quantifications of the redox-active oxygen vacancies are shown in Table S4. The fact that $Cu/CeW_{0.25}O_x$ and $CeW_{0.25}O_x$ produced less CO than Cu/CeO₂ and CeO₂ suggests W-doping suppresses the redox activity of CeO2, with or without Cu loading. This also agrees well with the O₂-TPO results, as shown in Fig. S7, i.e. pre-reduced CeO₂ consumes more O_2 (452 μ mol/g) and is more redox-active than the pre-reduced $CeW_{0.25}O_x$ (with an oxygen consumption of 283 µmol/g).

The relative concentrations of Ce^{3+} and Ce^{4+} under pressurised CO_2 hydrogenation conditions were studied by in situ XANES, the results of which are shown in Fig. 5. By performing linear combination fitting (LCF) of the XANES data, the mole fraction of Ce^{3+} (balanced by Ce^{4+}) in the catalysts can be estimated. The results of the LCF analyses are shown in Table S5 and discussed below. The air calcined CuO/CeO_2 catalyst precursor exhibits a typical $Ce-L_{III}$ edge matching that of the reference CeO_2 , showing 0% Ce^{3+} . H_2 treatment at 500 °C resulted in the formation of oxygen vacancies and 17% Ce^{3+} , as $Ce-L_{III}$ edge of the reduced Cu/CeO_2 catalyst moved to a lower energy. Under in situ CO_2 hydrogenation conditions at 250 °C and 10 bar total pressure, the reduced CeO_2 was slightly oxidised by the adsorbed CO_2 to produce CO [39,40], accompanied by the elimination of a small fraction of oxygen vacancies

and a slight decrease in the mole fraction of Ce³⁺ from 17% to 15%.

Compared to Cu/CeO₂, the Ce-LIII edge of Cu/CeW_{0.25}O_x responds to changes in the gas environment differently. The CuO/CeW_{0.25}O_x catalyst precursor, after calcination in air, already contains 49% Ce³⁺. The Ce³⁺ content in air-calcined CuO/CeW_{0.25}O_x corresponds well to the Ce:W ratio of 4:1 and the fact that each W⁶⁺ could reduce two adjacent Ce⁴⁺ to Ce³⁺. H₂ reduction at 500 °C and CO₂ hydrogenation reaction at 250 °C further increased the mole fraction of Ce³⁺ to 69% and 59%, respectively, whilst creating additional oxygen vacancies in the catalysts. Here, the changes in the amount of Ce³⁺ under varying gas environments characterise the redox activity of the catalyst, subject to practical limitations: (i) XANES is not a surface-sensitive technique and (ii) the measurements may not capture all the transient redox processes taking place [68]. Based on the trends observed, the bulk redox activities of Cu/CeO₂ and Cu/CeW_{0.25}O_i appears similar.

The in situ EXAFS data of the Cu-K edge of both catalysts are carefully fitted by a single Cu-Cu shell (see Fig. S8, Supporting Information). The fitting results suggest average Cu-Cu first shell coordination numbers of 9.1 and 9.5 for Cu/CeO $_2$ and Cu/CeW $_{0.25}O_x$, respectively (Table S6, Supporting Information), with mean Cu particle sizes of 3.2 nm and 3.5 nm, respectively, assuming spherical particle shapes [69]. The particle sizes estimated by EXAFS are close to the size estimates by HRTEM and N $_2$ O chemisorption analyses (i.e. \sim 4 nm).

The chemical states of the surface regions of the catalysts were probed in situ by NAP-XPS. The signal-to-noise ratio in the C1s region of the measured XPS spectra was too low to perform any meaningful interpretation, whereas the Cu 2p, Ce 3d, O 1s and W 4f regions, shown in Fig. 6, were analysed in detail. The Cu 2p spectra of both Cu/CeO2 and Cu/CeW_{0.25}O_x, when (i) freshly reduced, (ii) oxidised by CO₂ at RT and (iii) under CO₂ hydrogenation conditions at 250 °C (Fig. 6a and b), show the predominance of Cu⁰ species in the surface regions of the catalysts under CO2 hydrogenation conditions at 1.2 mbar, 250 °C. Given the similarity of the positions of the Cu⁰ peaks (933 eV) of the two catalyst samples, it is plausible that W-doping does not have a notable influence on the chemical state of the Cu⁰ sites; this agrees with the similar Cu Auger spectra of the two catalysts (Fig. S4). After O2 treatment, the surface regions (and quite possibly the bulk) of the Cu particles were oxidised to Cu²⁺ for both Cu/CeO₂ and Cu/CeW_{0.25}O_x, as shown in Fig. 6c. Likewise, the similar Cu 2p peaks of the oxidised Cu/CeO₂ and $Cu/CeW_{0.25}O_x$ are in line with the complementary experimental observations that W-doped does not have a significant effect on the chemical state of Cu.

The Ce 3d XPS spectra, plotted in Fig. 6d and e, show trends agreeing well with the in situ XANES results, i.e., the surface region of the W-doped catalyst contains significantly more Ce^{3+} , with only a small fraction of Ce^{3+} oxidisable by CO_2 (viz. in CO_2 at RT and $CO_2 + H_2$ at 250 °C). In all NAP-XPS measurements, the surface region of $Cu/CeW_{0.25}O_x$ consistently contained more Ce^{3+} than that of Cu/CeO_2 , signifying the reduction of Ce^{4+} to Ce^{3+} and the stabilisation of the Ce^{3+} by W-doping. On the other hand, the surface region of the reduced Cu/CeO_2 appears more redox active (the Ce^{3+} content changes from 28.2% to 15.6% by CO_2 oxidation) than that of $Cu/CeW_{0.25}O_x$ (the Ce^{3+} content changes from 40.8% to 38.3%). Therefore, although $Cu/CeW_{0.25}O_x$ has more Ce^{3+} in its surface region than Cu/CeO_2 , the majority of the Ce^{3+} species are not redox-active. It is plausible that these non-redox-active Ce^{3+} are responsible for the significantly enhanced methanol synthesis activity of $Cu/CeW_{0.25}O_x$.

The XPS in the O 2p region also correlates well with the Ce 3d spectra. For Cu/CeO₂ (Fig. 6f), the peak at 529.3 eV (denoted as O_{β}) can be assigned to $O^{2^{-}}$ located near the Ce⁴⁺ ions [70], whereas the peak at 531.5 eV (denoted as O_{α}) is assigned to the carbonate-like and hydroxy adsorbates on the oxygen vacancy sites [71]. For Cu/CeW_{0.25}O_x (Fig. 6g), the peak at 530.5 eV (O_{β}) is assigned to $O^{2^{-}}$ located near the Ce³⁺ ions [70,72], accompanied by the small peak at 532.6 eV (O_{α}), which is characteristic of the adsorbate-related contribution associated with oxygen vacancies. Therefore, the apparent shifts in the binding

Fig. 6. High-resolution XPS spectra obtained during the NAP-XPS experiments. (a) and (b) show the Cu 2p region. (c) shows the close inspection of the Cu 2p spectra after oxidation. (d) and (e) show the Ce 3d region, with the fractions of Ce^{3+} in the surface regions of the catalysts labelled on the right of each spectrum. (f) and (g) show the O 1s region. (h) shows the W 4f region; the dashed vertical line denotes the reference binding energy of WO_3 . XPS measurements were taken when each sample was subjected to the following environments, in chronological order, 1) "reduced": 0.4 mbar WO_3 at 500 °C, 2) " WO_3 RT": 0.5 mbar WO_3 at RT, 3) " WO_3 at RT, 3) " WO_3 at SD0": 0.3 mbar WO_3 and 0.9 mbar WO_3 at RT, 3) " WO_3 at SD0" C and 4) "oxidised": 0.4 mbar WO_3 at 500 °C.

energies of the O 1s XPS upon W-doping can be explained by the change from the Ce⁴⁺-rich surface of the CeO₂ support to one that is rich in Ce³⁺. Additionally, the ratio of O_{α}/O_{β} is indicative of the activity of the oxygen vacancy sites, which could adsorptively activate CO₂ and H₂O. Upon the introduction of CO₂ at RT, the O_{α}/O_{β} ratio increases from 0.54 to 0.82 on Cu/CeO₂, accompanied by the emergence of a peak at 536.3 eV, which corresponds to gaseous CO₂ molecules (Fig. 6d). In contrast, the O_{α}/O_{β} ratio on the reduced Cu/CeW_{0.25}O_x hardly changes (~0.07) upon exposure to CO₂, suggesting that the oxygen vacancies on Cu/CeW_{0.25}O_x have rather lower activity; this is in good agreement with its low CO selectivity observed during CO₂ hydrogenation experiment (Fig. 1) and the low redox activity observed by CO₂-TPD (Fig. 4) and NAP-XPS of the Ce 3d region (Fig. 6e). Fig. 6h plots the W 4f XPS of the Cu/CeW_{0.25}O_x catalyst at various stages of the NAP-XPS experiment. With the

exception of the fully oxidised $\text{Cu/CeW}_{0.25}\text{O}_x$ (after exposure to O_2 at 500 °C), the catalyst under otherwise reduced or partially reduced states exhibits W 4f XPS peaks that are shifted to higher binding energies relative to the WO₃ reference. This observation is in agreement with the theoretical study by Hu and Metiu, who concluded that the W dopant in CeO_2 would donate electrons to neighbouring Ce^{4+} species, forming Ce^{3+} sites [42]. The charge transfer from W⁶⁺ to Ce^{3+} also corroborated by the NAP-XPS data of the Ce 3d region(Fig. 6d). In addition, the effect of W dopant on the charge transfer mechanism is supported by H₂-TPR (Fig. 1e), which portrays a negative shift in H₂ reduction temperature of $\text{CeW}_{0.25}\text{O}_x$ after air calcination, indicating higher reducibility of $\text{CeW}_{0.25}\text{O}_x$ as compared to CeO_2 .

Based on the experimental results discussed above, the catalytic consequences of W-doping are summarised in the following: (i) reducing

Scheme 1. Proposed reaction mechanisms for CO2 hydrogenation on (a-e) unmodified Cu/ CeO2 and (f-i) Cu/CeW0.25Ox and. The key steps on Cu/CeO2 include: (a) activation of H2 on Cu with hydrogen spillover across the Cu/ CeO2 interface, activation of CO2 at the Cu/ CeO2 interface, and activation of CO2 on an oxygen vacancy (Ov) of CeO2; (b) desorption of CO produced by the dissociative adsorption of CO2 at an oxygen vacancy, leaving behind formate spectators; (c) successive hydrogenation of adsorbed *CO species to form methoxy; (d) hydrogenation of surface methoxy species forming methanol; (e) desorption of methanol, leaving behind surface formate spectators. The key steps on Cu/CeW_{0.25}O_x include: (f) activation of H2 on Cu with hydrogen spillover across the Cu/CeO2 interface and activation of CO2 at

the $Cu/CeW_{0.25}O_x$ interface; (g) successive hydrogenation of formate species at the $Cu/CeW_{0.25}O_x$ interface to form surface methoxy species; (h) hydrogenation of surface methoxy species to form methanol; (i) desorption of methanol.

 ${\rm Ce}^{4+}$ to ${\rm Ce}^{3+}$ and stabilising ${\rm Ce}^{3+}$ both in the surface region and the bulk of the ${\rm Cu/CeW}_{0.25}{\rm O}_x$ catalyst, (ii) suppressing the redox activity of the ${\rm Cu/CeW}_{0.25}{\rm O}_x$ catalyst, (iii) promoting the formate pathway for ${\rm CO}_2$ hydrogenation to methanol, and (iv) improving both ${\rm CO}_2$ activation and selectivity towards methanol. Accordingly, the structural-functional relationship of the W-doped ${\rm Cu/CeW}_{0.25}{\rm O}_x$ catalyst, is depicted in Scheme 1 and elaborated below.

During CO₂ hydrogenation on unmodified Cu/CeO₂, the Cu nanoparticles facilitate hydrogen activation (including H₂ spill-over, Scheme 1a), whilst the redox-active oxygen vacancies formed on CeO₂ promote the dissociative activation of CO₂ to CO, i.e., RWGS via the Mars-van Krevelen (MvK) mechanism (Scheme 1b). Concomitantly, a fraction of the catalyst surface (possibly on the Cu and at the Cu/CeO₂ interfaces [30,73–75]) is covered by formate spectators (Scheme 1a). As such, the formation of CO, with an apparent activation energy of 55 kJ mol $^{-1}$, is the rate limiting step for methanol formation on unmodified Cu/CeO₂. While the hydrogen of adsorbed CO produces methanol (Scheme 1c–e) The weak adsorption of CO on Cu results in low methanol selectivity and productivity.

For Cu/CeW_{0.25}O_x, the W dopants donate electrons to the neighbouring Ce⁴⁺, generating and stabilising substantial amount of non-redox-active Ce³⁺ (Scheme 1f). The lack of reducibility of Ce³⁺ and W⁶⁺, as shown by the NAP-XPS spectra in Fig. 6e and h, hinders the ability of Cu/CeW_{0.25}O_x to lose lattice oxygen and create redox-active oxygen vacancies under CO₂ hydrogenation conditions, thus suppressing its redox activity. Consequently, RWGS and CO selectivity are effectively suppressed. Furthermore, the presence of the W-stabilised, non-redox-active Ce³⁺ species in the Cu/CeW_{0.25}O_x catalyst promote the hydrogenation of the surface formate species (Scheme 1g), activating the formate pathway to become the dominant reaction pathway (Scheme 1h,i) with a significantly reduced apparent activation energy of 38 kJ mol⁻¹ and a 10-fold increase in methanol STY.

The proposed structural-functional relationship is in line with the study by Senanayake et al. [76], who correlated the surface concentration of stable Ce^{3+} to the apparent rate of methanol formation. The improved CO_2 conversion with increasing Ce^{3+} is also corroborated by previous studies reporting that the Ce^{3+} sites on CeO_2 are responsible for the adsorptive activation of CO_2 [77–79]. However, the mechanistic function of the W-stabilised Ce^{3+} during the Cu-catalysed CO_2 hydrogenation is not fully understood and merits in-depth investigations in future studies, preferably with the help of theoretical tools such as density-functional theory calculations.

4. Conclusions

We prepared a Cu/CeW_{0.25}O_x catalyst for CO₂ hydrogenation to

produce methanol. W-doping increases and stabilises the concentration of non-redox-active Ce³⁺ on Cu/CeW_{0.25}O_x, resulting in significantly enhanced methanol productivity and selectivity. The W-induced reduction of Ce⁴⁺ also uncouples the catalytic roles of oxygen vacancies and that of the Ce³⁺ species. On unmodified Cu/CeO₂, CO₂ is activated either (i) dissociatively at a redox-active oxygen vacancy on CeO₂, forming a weakly adsorbing *CO or (ii) forming a stable formate spectator. Subsequently, CO2 is hydrogenated via the RWGS pathway with inherently low methanol selectivity. In comparison, W-doping resulted in a considerably reduced CeO2 surface having low redox activity and suppressed CO selectivity. This is achieved by W donating electrons to neighbouring Ce⁴⁺, reducing them to Ce³⁺ without generating additional oxygen vacancies. The abundant non-redox-active Ce³⁺ species on Cu/CeW_{0.25}O_x promote the hydrogenation of formate to produce methanol at a rate that is 10 times faster than undoped Cu/CeO2. Beyond CO2 hydrogenation, high-valency cation doping may be further exploited as a means to tune the catalytic activity of CeO2 for reactions where high redox activity is undesired.

Funding sources

National Research Foundation of Singapore: Campus for Research Excellence and Technological Enterprise (CREATE) programme.

Ministry of Education, Singapore: Academic Research Funding Tier 1: RT03/19.

CRediT authorship contribution statement

Yong Yan: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, Visualization. Roong Jien Wong: Methodology, Formal analysis, Investigation, Visualization, Writing – review & editing. Zhirui Ma: Formal analysis, Investigation. Felix Donat: Formal analysis, Investigation, Writing – review & editing. Shibo Xi: Formal analysis, Investigation. Syed Saqline: Investigation. Qianwenhao Fan: Investigation. Yonghua Du: Investigation. Armando Borgna: Resources, Supervision. Qian He: Investigation. Christoph R. Müller: Resources, Supervision, Writing – review & editing. Wei Chen: Resources, Supervision. Alexei A. Lapkin: Resources, Writing – review & editing, Supervision. Wen Liu: Resources, Writing – review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research is funded by the National Research Foundation (NRF), Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme and Ministry of Education, Singapore under its AcRF Tier 1 (RT03/19). The authors would also like to thank Prof. Kongzhai Li from Kunming University of Science and Technology for the helpful discussions.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Supporting information

The following files are available free of charge. Supporting information.pdf (PDF).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2022.121098.

References

- R.M. Cuéllar-Franca, A. Azapagic, Carbon Capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, J. CO2 Util. 9 (2015) 82–102, https://doi.org/10.1016/j. icou 2014 12 001
- [2] M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N.M. Dowell, Carbon capture and storage (CCS): the way forward, Energy Environ. Sci. 11 (5) (2018) 1062–1176, https://doi.org/10.1039/
- [3] A. Kätelhön, R. Meys, S. Deutz, S. Suh, A. Bardow, Climate change mitigation potential of carbon capture and utilization in the chemical industry, PNAS 116 (23) (2019) 11187–11194, https://doi.org/10.1073/pnas.1821029116.
- [4] J. Rissman, C. Bataille, E. Masanet, N. Aden, W.R. Morrow, N. Zhou, N. Elliott, R. Dell, N. Heeren, B. Huckestein, J. Cresko, S.A. Miller, J. Roy, P. Fennell, B. Cremmins, T. Koch Blank, D. Hone, E.D.; Williams, S.; de la Rue du Can, B.; Sisson, M.; Williams, J.; Katzenberger, D.; Burtraw, G.; Sethi, H.; Ping, D.; Danielson, H.; Lu, T.; Lorber, J.; Dinkel, J. Helseth, Technologies and policies to decarbonize global industry: review and assessment of mitigation Drivers through 2070, Appl. Energy 266 (2020), 114848, https://doi.org/10.1016/j.
- [5] L. Tao, T.S. Choksi, W. Liu, J. Pérez-Ramírez, Synthesizing high-volume chemicals from CO2 without direct H2 input. *ChemSusChem n/a* (n/a). (https://doi.org/10 .1002/cssc.202001604).
- [6] M.D. Burkart, N. Hazari, C.L. Tway, E.L. Zeitler, Opportunities and challenges for catalysis in carbon dioxide utilization, ACS Catal. 9 (9) (2019) 7937–7956, https:// doi.org/10.1021/acscatal.9b02113.
- [7] C. Jia, J. Gao, Y. Dai, J. Zhang, Y. Yang, The thermodynamics analysis and experimental validation for complicated systems in CO2 hydrogenation process, J. Energy Chem. 25 (6) (2016) 1027–1037, https://doi.org/10.1016/j. jechem.2016.10.003.
- [8] M. Yang, D. Fan, Y. Wei, P. Tian, Z. Liu, Recent progress in methanol-to-olefins (MTO) catalysts, Adv. Mater. 31 (50) (2019), 1902181, https://doi.org/10.1002/adma.201902181.
- [9] J. Ashok L. Falbo S. Das N. Dewangan C.G. Visconti S. Kawi. Catalytic CO2 conversion to added-value energy rich C1 products. an economy based on carbon dioxide and water, 2019, 155–210. doi: 10.1007/978-3-030-15868-2_5.
- [10] A.A. Tountas, X. Peng, A.V. Tavasoli, P.N. Duchesne, T.L. Dingle, Y. Dong, L. Hurtado, A. Mohan, W. Sun, U. Ulmer, L. Wang, T.E. Wood, C.T. Maravelias, M. M. Sain, G.A. Ozin, Towards solar methanol: past, present, and future, Adv. Sci. 6 (8) (2019). 1801903. https://doi.org/10.1002/advs.201801903.
- [11] A. González-Garay, M.S. Frei, A. Al-Qahtani, C. Mondelli, G. Guillén-Gosálbez, J. Pérez-Ramírez, Plant-to-planet analysis of CO2-based methanol processes, Energy Environ. Sci. 12 (12) (2019) 3425–3436, https://doi.org/10.1039/ CONFO16729.
- [12] B.M. Tackett, E. Gomez, J.G. Chen, Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes, Nat. Catal. 2 (5) (2019) 381–386, https://doi.org/10.1038/s41929-019-0266-y.
- [13] J. Sehested, Industrial and scientific directions of methanol catalyst development, J. Catal. 371 (2019) 368–375, https://doi.org/10.1016/j.jcat.2019.02.002.

- [14] G.A. Olah, Towards oil independence through renewable methanol chemistry, Angew. Chem. Int. Ed. 52 (1) (2013) 104–107, https://doi.org/10.1002/ ppic.201204005
- [15] B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, Y. Huang, Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol, Ind. Eng. Chem. Res. 58 (21) (2019) 9030–9037, https://doi.org/ 10.1021/acs.iecr.9b01546.
- [16] J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chem. Soc. Rev. 49 (5) (2020) 1385–1413, https://doi.org/10.1039/C9CS00614A.
- [17] T. Fujitani, M. Saito, Y. Kanai, T. Watanabe, J. Nakamura, T. Uchijima, Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen, Appl. Catal. A: Gen. 125 (2) (1995) L199–L202, https://doi.org/10.1016/0926-860X(95)00049-6.
- [18] F. Arena, G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri, L. Spadaro, Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation, J. Catal. 300 (2013) 141–151, https://doi.org/10.1016/j.jcat.2012.12.019.
- [19] N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C. Liu, CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy, Appl. Catal. B: Environ. 218 (2017) 488–497, https://doi.org/10.1016/j.apcatb.2017.06.069.
- [20] S. Bai, Q. Shao, Y. Feng, L. Bu, X. Huang, Highly efficient carbon dioxide hydrogenation to methanol catalyzed by zigzag platinum-cobalt nanowires, Small 13 (22) (2017), 1604311, https://doi.org/10.1002/smll.201604311.
- [21] J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu, C. Li, A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol, Sci. Adv. 3 (10) (2017), e1701290, https://doi.org/10.1126/sciadv.1701290.
- [22] A. Tsoukalou, P.M. Abdala, D. Stoian, X. Huang, M.-G. Willinger, A. Fedorov, C. R. Müller, Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study, J. Am. Chem. Soc. 141 (34) (2019) 13497–13505, https://doi.org/10.1021/jacs.9b04873.
- [23] M.S. Frei, C. Mondelli, R. García-Muelas, K.S. Kley, B. Puértolas, N. López, O. V. Safonova, J.A. Stewart, D. Curulla Ferré, J. Pérez-Ramírez, Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation, Nat. Commun. 10 (1) (2019) 1–11, https://doi.org/10.1038/s41467-019-11349-9.
- [24] Y. Li, S.H. Chan, Q. Sun, Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review, Nanoscale 7 (19) (2015) 8663–8683, https://doi.org/10.1039/C5NR00092K.
- [25] S. Kattel, P. Liu, J.G. Chen, Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface, J. Am. Chem. Soc. 139 (29) (2017) 9739–9754, https://doi.org/10.1021/jacs.7b05362.
- [26] X. Nie, W. Li, X. Jiang, X. Guo, C. Song, Chapter two Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons, in: C. Song (Ed.), Advances in Catalysis, Vol. 65, Academic Press, 2019, pp. 121–233, https://doi.org/10.1016/ bs.acat.2019.10.002.
- [27] X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chem. Rev. 120 (2020) 7984–8034. https://doi.org/10.1021/acs.chem.ev.9b00723.
- [28] M. Bowker, Methanol synthesis from CO2 hydrogenation, ChemCatChem 11 (17) (2019) 4238–4246, https://doi.org/10.1002/cctc.201900401.
- [29] S. Dang, H. Yang, P. Gao, H. Wang, X. Li, W. Wei, Y. Sun, A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation, Catal. Today 330 (2019) 61–75, https://doi.org/10.1016/j. cattod 2018 04 021
- [30] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2, Science 345 (6196) (2014) 546–550, https://doi.org/10.1126/science.1253057.
- [31] A. Rodriguez, J.; C. Grinter, D.; Liu, Z.; M. Palomino, R.; D. Senanayake, S., Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming, Chem. Soc. Rev. 46 (7) (2017) 1824–1841, https://doi.org/10.1039/C6CS00863A.
- [32] G. Vilé, S. Colussi, F. Krumeich, A. Trovarelli, J. Pérez-Ramírez, Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis, Angew. Chem. Int. Ed. 53 (45) (2014) 12069–12072, https://doi.org/10.1002/anie.201406637.
- [33] A. Trovarelli, J. Llorca, Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal. 7 (7) (2017) 4716–4735, https://doi.org/10.1021/ acceptal.7001246
- [34] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials, Chem. Rev. 116 (10) (2016) 5987–6041, https://doi.org/10.1021/acs.chemrev.5b00603.
- [35] R. Schmitt, A. Nenning, O. Kraynis, R. Korobko, I. Frenkel, A. Lubomirsky, I.; M. Haile, S.; M. Rupp, J. L., A review of defect structure and chemistry in ceria and its solid solutions, Chem. Soc. Rev. 49 (2) (2020) 554–592, https://doi.org/ 10.1039/C9CS00588A.
- [36] B. Xu, H. Yang, Q. Zhang, S. Yuan, A. Xie, M. Zhang, T. Ohno, Design and synthesis of Sm, Y, La and Nd-doped CeO2 with a broom-like hierarchical structure: a photocatalyst with enhanced oxidation performance, ChemCatChem 12 (9) (2020) 2638–2646, https://doi.org/10.1002/cctc.201902309.
- [37] S. Jiang, R. Zhang, H. Liu, Y. Rao, Y. Yu, S. Chen, Q. Yue, Y. Zhang, Y. Kang, Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution, J. Am. Chem. Soc. 142 (14) (2020) 6461–6466, https://doi.org/10.1021/jacs.9b13915.

- [38] Z. Zhang, Y. Wang, J. Lu, J. Zhang, M. Li, X. Liu, F. Wang, Pr-doped CeO2 catalyst in the prins condensation–hydrolysis reaction: are all of the defect sites catalytically active? ACS Catal. 8 (4) (2018) 2635–2644, https://doi.org/10.1021/ acceptal.7004500
- [39] N. Kumari, M.A. Haider, M. Agarwal, N. Sinha, S. Basu, Role of reduced CeO2(110) surface for CO2 reduction to CO and methanol, J. Phys. Chem. C 120 (30) (2016) 16626–16635, https://doi.org/10.1021/acs.jpcc.6b02860.
- [40] C. Guo, S. Wei, S. Zhou, T. Zhang, Z. Wang, S.-P. Ng, X. Lu, C.-M.L. Wu, W. Guo, Initial reduction of CO2 on Pd-, Ru-, and Cu-doped CeO2(111) surfaces: effects of surface modification on catalytic activity and selectivity, ACS Appl. Mater. Interfaces 9 (31) (2017) 26107–26117, https://doi.org/10.1021/acsami.7b07945.
- [41] K. Chang, T. Wang, J.G. Chen, Hydrogenation of CO2 to methanol over CuCeTiOx catalysts, Appl. Catal. B: Environ. 206 (2017) 704–711, https://doi.org/10.1016/j.apcatb.2017.01.076.
- [42] Z. Hu, H. Metiu, Effect of dopants on the energy of oxygen-vacancy formation at the surface of ceria: local or global? J. Phys. Chem. C 115 (36) (2011) 17898–17909, https://doi.org/10.1021/jp205432r.
- [43] K. Chang, H. Zhang, M. Cheng, Q. Lu, Application of ceria in CO2 conversion catalysis, ACS Catal. (2019) 613–631, https://doi.org/10.1021/acscatal.9b03935.
- [44] J. Guo, H. Lou, L. Mo, X. Zheng, The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions, J. Mol. Catal. A: Chem. 316 (1) (2010) 1–7, https://doi.org/10.1016/j.molcata.2009.09.023.
- [45] F. Arena, G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri, L. Spadaro, How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol, Catal. Today 210 (2013) 39–46, https://doi. org/10.1016/j.cattod.2013.02.016.
- [46] L. Angelo, M. Girleanu, O. Ersen, C. Serra, K. Parkhomenko, A.-C. Roger, Catalyst synthesis by continuous coprecipitation under micro-fluidic conditions: application to the preparation of catalysts for methanol synthesis from CO2/H2, Catal. Today 270 (2016) 59–67, https://doi.org/10.1016/j.cattod.2015.09.028.
- [47] Q. Tan, Z. Shi, D. Wu, CO2 hydrogenation to methanol over a highly active Cu–Ni/ CeO2–nanotube catalyst, Ind. Eng. Chem. Res. 57 (31) (2018) 10148–10158, https://doi.org/10.1021/acs.iecr.8b01246.
- [48] M. Mureddu, F. Ferrara, A. Pettinau, Highly efficient CuO/ZnO/ZrO2@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO2, Appl. Catal. B: Environ. 258 (2019), 117941, https://doi.org/10.1016/j.apcatb.2019.117941.
- [49] V. Deerattrakul, N. Yigit, G. Rupprechter, P. Kongkachuichay, The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO2 hydrogenation to methanol, Appl. Catal. A: Gen. 580 (2019) 46–52, https://doi. org/10.1016/j.apcata.2019.04.030.
- [50] T. Liu, X. Hong, G. Liu, In situ generation of the Cu@3D-ZrOx framework catalyst for selective methanol synthesis from CO2/H2, ACS Catal. 10 (1) (2020) 93–102, https://doi.org/10.1021/acscatal.9b03738.
- [51] S. Li, L. Guo, T. Ishihara, Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst, Catal. Today 339 (2020) 352–361, https://doi.org/10.1016/j.cattod.2019.01.015.
- [52] B. Xie, R.J. Wong, T.H. Tan, M. Higham, E.K. Gibson, D. Decarolis, J. Callison, K.-F. Aguey-Zinsou, M. Bowker, C.R.A. Catlow, J. Scott, R. Amal, Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina, Nat. Commun. 11 (1) (2020) 1615, https://doi.org/10.1038/s41467-020-15445-z.
- [53] M.C. Biesinger, Advanced analysis of copper X-ray photoelectron spectra, Surf. Interface Anal. 49 (13) (2017) 1325–1334, https://doi.org/10.1002/sia.6239.
- [54] W. Shan, F. Liu, H. He, X. Shi, C. Zhang, Novel cerium–tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3, Chem. Commun. 47 (28) (2011) 8046–8048, https://doi.org/10.1039/C1CC12168E.
 [55] L. Chen, J. Li, W. Ablikim, J. Wang, H. Chang, L. Ma, J. Xu, M. Ge, H. Arandiyan,
- [55] L. Chen, J. Li, W. Ablikim, J. Wang, H. Chang, L. Ma, J. Xu, M. Ge, H. Arandiyan, CeO2–WO3 mixed oxides for the selective catalytic reduction of NOxby NH3 over a wide temperature range, Catal. Lett. 141 (12) (2011) 1859–1864, https://doi.org/ 10.1007/s10562-011-0701-4.
- [56] P. Kumar, P. With, V.C. Srivastava, R. Gläser, I.M. Mishra, Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: characterization, catalytic activity and thermodynamic study, J. Alloy. Compd. 696 (2017) 718–726, https://doi.org/ 10.1016/j.jallcom.2016.10.293.
- [57] B. Liu, C. Li, G. Zhang, X. Yao, S.S.C. Chuang, Z. Li, Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods, ACS Catal. 8 (11) (2018) 10446–10456, https://doi.org/10.1021/ acscatal.8b00415.
- [58] Z. Fu, Y. Zhong, Y. Yu, L. Long, M. Xiao, D. Han, S. Wang, Y. Meng, TiO2-doped GeO2 nanorod catalyst for direct conversion of CO2 and CH3OH to dimethyl carbonate: catalytic performance and kinetic study, ACS Omega 3 (1) (2018) 198–207, https://doi.org/10.1021/acsomega.7b01475.
- [59] L. Lin, S. Yao, Z. Liu, F. Zhang, N. Li, D. Vovchok, A. Martínez-Arias, R. Castañeda, J. Lin, S.D. Senanayake, D. Su, D. Ma, J.A. Rodriguez, In situ characterization of Cu/CeO2 nanocatalysts for CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity, J. Phys. Chem. C 122 (24) (2018) 12934–12943, https://doi.org/d.
- [60] B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, Surface characterization of CeO2/SiO2 and V2O5/CeO2/SiO2 catalysts by Raman, XPS,

- and other techniques, J. Phys. Chem. B 106 (42) (2002) 10964–10972, https://doi.org/10.1001/jp021195y
- [61] M. Lykaki, E. Pachatouridou, S.A.C. Carabineiro, E. Iliopoulou, C. Andriopoulou, N. Kallithrakas-Kontos, S. Boghosian, M. Konsolakis, Ceria nanoparticles shape effects on the structural defects and surface chemistry: implications in CO oxidation by Cu/CeO2 catalysts, Appl. Catal. B: Environ. 230 (2018) 18–28, https://doi.org/10.1016/j.apcatb.2018.02.035.
- [62] Y. Peng, K. Li, J. Li, Identification of the active sites on CeO2–WO3 catalysts for SCR of NOx with NH3: an in situ IR and Raman spectroscopy study, Appl. Catal. B: Environ. 140–141 (2013) 483–492, https://doi.org/10.1016/j. apcath 2013.04.043
- [63] A. Sepúlveda-Escribano, F. Coloma, F. Rodríguez-Reinoso, Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts, J. Catal. 178 (2) (1998) 649–657, https://doi.org/10.1006/jcat.1998.2199.
- [64] G.N. Vayssilov, M. Mihaylov, P. Petkov St, K.I. Hadjiivanov, K.M. Neyman, Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation, J. Phys. Chem. C 115 (47) (2011) 23435–23454, https://doi.org/ 10.1021/jp208050a.
- [65] P. Bera, A.L. Cámara, A. Hornés, A. Martínez-Arias, Comparative in situ DRIFTS-MS study of 12CO- and 13CO-TPR on CuO/CeO2 catalyst, J. Phys. Chem. C 113 (24) (2009) 10689–10695, https://doi.org/10.1021/jp9020504.
- [66] M. Zhu, P. Tian, R. Kurtz, T. Lunkenbein, J. Xu, R. Schlögl, I.E. Wachs, Y.-F. Han, Strong metal–support interactions between copper and iron oxide during the hightemperature water-gas shift reaction, Angew. Chem. 131 (27) (2019) 9181–9185, https://doi.org/10.1002/ange.201903298.
- [67] D. Schweke, S. Zalkind, S. Attia, J. Bloch, The interaction of CO2 with CeO2 powder explored by correlating adsorption and thermal desorption analyses, J. Phys. Chem. C 122 (18) (2018) 9947–9957, https://doi.org/10.1021/acs.incr.8b01299
- [68] R. Kopelent, J.A. vanBokhoven, J. Szlachetko, J. Edebeli, C. Paun, M. Nachtegaal, O.V. Safonova, Catalytically active and spectator Ce3+ in ceria-supported metal catalysts, Angew. Chem. 127 (30) (2015) 8852–8855, https://doi.org/10.1002/ ange.201503022.
- [69] A.I. Frenkel, A. Yevick, C. Cooper, R. Vasic, Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy, Annu. Rev. Anal. Chem. 4 (1) (2011) 23–39, https://doi.org/ 10.1146/annurev-anchem-061010-113906.
- [70] Y. Lykhach, T. Staudt, R. Streber, M.P.A. Lorenz, A. Bayer, H.-P. Steinrück, J. Libuda, CO2 activation on single crystal based ceria and magnesia/ceria model catalysts, Eur. Phys. J. B 75 (1) (2010) 89–100, https://doi.org/10.1140/epjb/ e2010-00110-x.
- [71] Z. Li, K. Werner, L. Chen, A. Jia, K. Qian, J.-Q. Zhong, R. You, L. Wu, L. Zhang, H. Pan, X.-P. Wu, X.-Q. Gong, S. Shaikhutdinov, W. Huang, H.-J. Freund, Interaction of hydrogen with ceria: hydroxylation, reduction, and hydride formation on the surface and in the bulk, Chem. Eur. J. 27 (16) (2021) 5268–5276, https://doi.org/10.1002/chem.202005374.
- [72] J.I. Flege, B. Kaemena, J. Höcker, F. Bertram, J. Wollschläger, T. Schmidt, J. Falta, Ultrathin, epitaxial cerium dioxide on silicon, Appl. Phys. Lett. 104 (13) (2014), 131604. https://doi.org/10.1063/1.4870585.
- [73] Y. Yang, D. Mei, C.H.F. Peden, C.T. Campbell, C.A. Mims, Surface-bound intermediates in low-temperature methanol synthesis on copper: participants and spectators, ACS Catal. 5 (12) (2015) 7328–7337, https://doi.org/10.1021/ acseptal.5b02060.
- [74] S. Kattel, B. Yan, Y. Yang, J.G. Chen, P. Liu, Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper, J. Am. Chem. Soc. 138 (38) (2016) 12440–12450, https://doi.org/10.1021/ jacs.6b05791
- [75] A. Karelovic, G. Galdames, J.C. Medina, C. Yévenes, Y. Barra, R. Jiménez, Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2supported Cu nanoparticles, J. Catal. 369 (2019) 415–426, https://doi.org/ 10.1016/j.jcat.2018.11.012.
- [76] S.D. Senanayake, P.J. Ramfrez, I. Waluyo, S. Kundu, K. Mudiyanselage, Z. Liu, Z. Liu, S. Axnanda, D.J. Stacchiola, J. Evans, J.A. Rodriguez, Hydrogenation of CO2 to methanol on CeOx/Cu(111) and ZnO/Cu(111) catalysts: role of the metal–oxide interface and importance of Ce3+ sites, J. Phys. Chem. C 120 (3) (2016) 1778–1784, https://doi.org/10.1021/acs.jpcc.5b12012.
- [77] C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya, T. Onishi, Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1.—formation of carbonate species on dehydroxylated CeO2, at room temperature, J. Chem. Soc., Faraday Trans. 1 85 (4) (1989) 929–943, https://doi.org/10.1039/F19898500929.
- [78] C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya, T. Onishi, Adsorption of carbon monoxide and carbon dioxide on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 2.—formation of formate species on partially reduced CeO2 at room temperature, J. Chem. Soc., Faraday Trans. 1 85 (6) (1989) 1451–1461, https://doi.org/10.1039/F19898501451.
- [79] L.G. Appel, J.G. Eon, M. Schmal, The CO2–CeO2 interaction and its role in the CeO2 reactivity, Catalysis Letters 56 (4) (1998) 199–202, https://doi.org/ 10.1023/A:1019098121432.