

NTE4001B & NTE4001BT Integrated Circuit CMOS, Quad 2-Input NOR Gate

Description:

The NTE4001B (14–Lead DIP) and NTE4001BT (SOIC–14) are quad 2–input NOR gate devices constructed with P–Channel and N–Channel enhancement mode devices in a single monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/or high noise immunity is desired.

Features:

- Supply Voltage Range: 3Vdc to 18Vdc
- All Outputs Buffered
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Double Diode Protection on All Inputs

Absolute Maximum Ratings: (Voltages referenced to V _{SS} , Note 1)	
DC Supply Voltage, V _{DD}	0.5 to +18.0V
Input Voltage (DC or Transient), V _{in} –0	0.5 to V_{DD} to +0.5V
Output Voltage (DC or Transient), VoutC	0.5 to V_{DD} to +0.5V
Input Current (DC or Transient, Per Pin), I _{in}	±10mA
Output Current (DC or Transient, Per Pin), I _{out}	±10mA
Power Dissipation (Per Package), PD	500mW
Temperature Derating (from +65° to +125°C)	–7.0mW/°C
Storage Temperature, T _{stg}	–65° to +150°C
Lead Temperature (During Soldering, 8sec max), T _L	+260°C

Note 1. Maximum Ratings are those values beyond which damage to the device may occur.

<u>Electrical Characteristics:</u> (Voltages referenced to V_{SS}, Note 2)

		.,	-55°C +25°C		+125°C					
Parameter	Symbol	V _{DD} Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Voltage "0" Level	V_{OL}	5.0	_	0.05	-	0	0.05	-	0.05	Vdc
$V_{in} = V_{DD}$ or 0		10	_	0.05	_	0	0.05	_	0.05	Vdc
		15	_	0.05	-	0	0.05	-	0.05	Vdc
"1" Level	V _{OH}	5.0	4.95	_	4.95	5.0	_	4.95	-	Vdc
$V_{in} = 0$ or V_{DD}		10	9.95	_	9.95	10	_	9.95	-	Vdc
		15	14.95	_	14.95	15	_	14.95	_	Vdc
Input Voltage "0" Level $(V_O = 4.5 \text{ or } 0.5\text{Vdc})$	V _{IL}	5.0	_	1.5	_	2.25	1.5	_	1.5	Vdc
(V _O = 9.0 or 1.0Vdc)		10	_	3.0	-	4.50	3.0	-	3.0	Vdc
(V _O = 13.5 or 1.5Vdc)		15	_	4.0	-	6.75	4.0	-	4.0	Vdc
"1" Level (V _O = 0.5 or 4.5Vdc)	V _{IH}	5.0	3.5	-	3.5	2.75	-	3.5	-	Vdc
(V _O = 1.0 or 9.0Vdc)		10	7.0	_	7.0	5.50	_	7.0	_	Vdc
(V _O = 1.5 or 13.5Vdc)		15	11.0	_	11.0	8.25	_	11.0	-	Vdc
Output Drive Current Source (V _{OH} = 2.5Vdc)	Іон	5.0	-3.0	_	-2.4	-4.2	_	-1.7	-	mAdc
(V _{OH} = 4.6Vdc)		5.0	-0.64	_	-0.51	-0.88	_	-0.36	-	mAdc
(V _{OH} = 9.5Vdc)		10	-1.6	_	-1.3	-2.25	_	-0.9	_	mAdc
(V _{OH} = 13.5Vdc)		15	-4.2	_	-3.4	-8.8	_	-2.4	-	mAdc
Sink (V _{OL} = 0.4Vdc)	I _{OL}	5.0	0.64	-	0.51	0.88	-	0.36	ı	mAdc
(V _{OL} = 0.5Vdc)		10	1.6	_	1.3	2.25	_	0.9	1	mAdc
(V _{OL} = 1.5Vdc)		15	4.2	-	3.4	8.8	-	2.4	ı	mAdc
Input Current	l _{in}	15	_	±0.1	_	±0.00001	±0.1	_	±0.1	μAdc
Input Capacitance (V _{IN} = 0)	C _{in}	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package)	I_{DD}	5.0	-	0.25	-	0.0005	0.25	-	7.5	μAdc
(i ei i ackaye)		10	_	0.5	_	0.0010	0.5	_	15	μAdc
		15	_	1.0	_	0.0015	1.0	_	30	μAdc
Total Supply Current	I _T	5.0			• •	3μA/kHz) f				μAdc
(Dynamic plus Quiescent, Per Gate, C _L = 50pF,		10	$I_T = (0.6\mu\text{A/kHz}) \text{ f} + I_{DD}/\text{N}$ μ						μAdc	
Note 3, Note 4)		15	$I_{T} = (0.8\mu\text{A/kHz}) \text{ f} + I_{DD}/N$						μAdc	

- Note 2. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.
- Note 3. The formulas given are for the typical characteristics only at +25°C.
- Note 4. To calculate total supply current at loads other than 50pF:

$$I_T(C_L) = I_T(50pF) + (C_L -50) V_{fk}$$

where: I_T is in μH (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.001 x the number of exercised gates per package.

<u>Switching Characteristics:</u> $(C_L = 50pF, T_A = +25^{\circ}C, Note 2)$

Parameter	Symbol	V _{DD} Vdc	Min	Тур	Max	Unit
Output Rise Time $t_{TLH} = (1.35 \text{ns/pf}) C_L + 33 \text{ns}$	t _{TLH}	5.0	-	100	200	ns
$t_{TLH} = (0.60 \text{ns/pf}) C_L + 20 \text{ns}$		10	_	50	100	ns
$t_{TLH} = (0.40 \text{ns/pf}) C_L + 20 \text{ns}$		15	_	40	80	ns
Output Fall Time t _{THL} = (1.35ns/pf) C _L + 33ns	t _{THL}	5.0	-	100	200	ns
$t_{THL} = (0.60 \text{ns/pf}) C_L + 20 \text{ns}$		10	_	50	100	ns
$t_{THL} = (0.40 \text{ns/pf}) C_L + 20 \text{ns}$		15	_	40	80	ns
Propagation Delay Time t_{PLH} , $t_{PHL} = (0.90 \text{ns/pf}) C_L + 80 \text{ns}$	t _{PLH} . t _{PHL}	5.0	_	125	250	ns
t_{PLH} , $t_{PHL} = (0.36 \text{ns/pf}) C_L + 32 \text{ns}$		10	_	50	100	ns
t_{PLH} , $t_{PHL} = (0.26 \text{ns/pf}) C_L + 27 \text{ns}$		15	_	40	80	ns

- Note 2. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the device's potential performance.
- Note 3. The formulas given are for the typical characteristics only at +25°C.

NTE4001B 14 8 .600 (15.24) .200 (5.08) .200 (5.08) .200 (5.08) .200 (2.5) Min .785 (19.95) Max

