นายปัญกรัฐมน สหภัฐสาดา (13010584

01076010 เครือข่ายคอมพิวเตอร์ : 2/2564 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

กิจกรรมที่ 8 : TCP Window

กิจกรรมครั้งนี้จะเป็นการทำความเข้าใจกับโปรโตคอล TCP (Transmission Control Protocol) ให้มากยิ่งขึ้น โดยเน้นเรื่องของ TCP Window โดย TCP Window จะแบ่งออกเป็น send Window และ receive Window

ใน send window จะแบ่งออกเป็น 4 ส่วน คือ

- ข้อมูลที่ส่งแล้วและได้รับ Acknowledge ไปแล้ว
- ข้อมูลที่ส่งไปแล้วแต่ยังไม่ได้รับ Acknowledge (ใน Wireshark จะเรียกว่า byte in flight)
- ข้อมูลที่ยังไม่ได้ส่ง และ ฝั่งรับสามารถรับได้ (ตามขนาดของ receive window)
- ข้อมูลที่ยังไม่ได้ส่ง และ ผั่งรับไม่พร้อมจะรับเนื่องจากขนาดของ receive window

ใน receive window จะแบ่งเป็น 2 ส่วน

- ข้อมูลที่รับแล้วและ Acknowledge ไปแล้ว
- ข้อมูลพร้อมจะรับ

ในระหว่างการสื่อสารทั้ง 2 ด้านจะมีการแจ้งขนาดของ window size ที่เหลือที่ยังรับข้อมูลได้มาใน header ของ TCP โดย<mark>มีขนาด 2 ไบต์ โดยมีค่าสูงสุด คือ 65,535 ไบต์</mark> โดยมี Scaling Factor เป็นตัวคูณ ซึ่งหากผั่งรับไม่ สามารถนำข้อมูลออกจาก receive window ได้เร็วพอจะทำให้ Buffer เต็มและเกิด zero window ตามรูป (หมาย เหตุข้อมูล window full และ zero window นี้เป็นข้อมูลที่ wireshark สร้างขึ้น เพื่อให้สะดวกต่อการใช้งาน)

- 1. ให้เปิดไฟล์ tr-youtubebad.pcapng จากนั้นให้ค้นหาเหตุการณ์ zero window โดยใช้ display filter tcp.analysis.zero_window จะเห็นว่ามี zero window เกิดขึ้นจำนวนมาก ให้เลือกบรรทัดแรก แล้วยกเลิก filter โปรแกรม wireshark จะแสดงบริเวณ packet ที่เกิด zero window ครั้งแรก ให้ขยาย TCP หาฟิลด์ calculated window size แล้วสร้างเป็นคอลัมน์ โดยกำหนดให้ Align Center และตั้งชื่อเป็น WinSize
 - ให้สังเกตที่ packet 2718 ซึ่งเป็น packet ที่ host 24.4.7.217 ส่ง ACK กลับมา โดยมี window size เหลือเพียง 1,460 ไบต์
 - ต[่]อมาใน packet 2719 host 208.117.232.102 มีการ<mark>ส่งข้อมูลไปอีก 1,460 ไบต์</mark> ซึ่งจะทำให[้]เต็ม receive window พอดี และทำให^{*} wireshark สร้างข้อมูลแจ้งเตือนว[่]า w<mark>indow ful</mark>l
 - เมื่อถึง Packet 2720 host 24.4.7.217 ก็ส่ง Packet ACK กลับมา โดยมีค่า window size เป็น 0 ทำ ให้ wireshark สร้างข้อมูลแจ้งเตือนว่า zero window
 - ให[้]สังเกตช่วงเวลาระหว่าง packet 2720 และ 2721 จะเห็นว[่]ามีระยะห[่]างมากกว[่]าปกติ หมายความ ว[่]าฝั่งผู้ส[่]งเมื่อพบ zero window ก็<mark>จะรอฝั่งผู้รับให้เคลียร์ receive window เสียก่อ</mark>น
 - ใน packet <mark>2721 จะมีการส่ง packet keep alive</mark> (คือ p<mark>acket ACK ที่ไม่มีข้อมู</mark>ล จากผั่งผู้ส่ง ซึ่งจะ เกิดขึ้นเมื่อ keepalive timer expire)
 - จากนั้นใน packet 2722 ผู้รับจะส่ง ACK กลับมา โดยมี window size เป็น 0 เช่นเดิม และเกิดซ้ำอีก ครั้งใน packet 2723 และ 2724

- จนกระทั่ง packet 2725 ผั่งผู้รับจึงส่ง packet ACK ซึ่งมีขนาดของ window size = 243820 ซึ่งไม่
 เท่ากับ 0 ซึ่งหมายความว่า receive window ของผั่งผู้รับว่างแล้ว พร้อมรับข้อมูลใหม่ ณ จุดนี้ ถือว่า
 เหตุการณ์ zero window สิ้นสุดลง โดย wireshark จะสร้างข้อมูลแจ้งเตือน window update
- **ในไม่ ส่ ฯ๐๖๕**2. ให้นักศึกษาตรวจสอบ zero window <mark>ระยะที่ 2</mark> แล้วตอบคำถาม ต[่]อไปนี้
 - เกิด window full, zero window (เฉพาะครั้งแรก) และ window update ที่ packet ใด

windon fell; padent of 4022 window update; padent of 4026

Zero window; padent of 4023

- หลังจากมีการทำ keep alive กี่ครั้ง มีช่วง<mark>ระยะเวลาเท่าไรบ้าง</mark> นับจาก zero window ครั้งก่อน ให้ แสดงรูป capture จาก wireshark ที่แสดงเวลาของ keep alive แต่ละครั้ง มาด้วยใน 1 รูป

1287 0.477 0.995, 1.476, 8.704, 7.398, 10.02 manoto.

- 4	4022	12.6792 208.117.232.102	24.4.7.217	TCP		4248122	4248450		8384	0.362283000	[TCP Window Full] 80 → 56770 [PSH, A
4	4023	12.8890 24.4.7.217	208.117.232.102	TCP	54	1270	1270	4248450		0.209752000	[TCP ZeroWindow] 56770 → 80 [ACK] Se
4	4024	13.3666 208.117.232.102	24.4.7.217	TCP	60	4248449	4248449	1270	8384	0.477622000	[TCP Keep-Alive] 80 → 56770 [ACK] Se
4	4025	13.3666 24.4.7.217	208.117.232.102	TCP	54	1270	1270	4248450		0.000046000	[TCP ZeroWindow] 56770 → 80 [ACK] Se
4	4026	14.3620 208.117.232.102	24.4.7.217	TCP	60	4248449	4248449	1270	8384	0.995377000	[TCP Keep-Alive] 80 → 56770 [ACK] Se
4	4027	14.3621 24.4.7.217	208.117.232.102	TCP	54	1270	1270	4248450		0.000057000	[TCP ZeroWindow] 56770 → 80 [ACK] Se
4	4028	16.2402 208.117.232.102	24.4.7.217	TCP	60	4248449	4248449	1270	8384	1.878101000	[TCP Keep-Alive] 80 → 56770 [ACK] Se
4	4029	16.2402 24.4.7.217	208.117.232.102	TCP	54	1270	1270	4248450		0.000063000	[TCP ZeroWindow] 56770 → 80 [ACK] Se
4	4030	19.9451 208.117.232.102	24.4.7.217	TCP	60	4248449	4248449	1270	8384	3.704824000	[TCP Keep-Alive] 80 → 56770 [ACK] Se
4	4031	19.9452 24.4.7.217	208.117.232.102	TCP	54	1270	1270	4248450	0	0.000141000	[TCP ZeroWindow] 56770 → 80 [ACK] Se
4	4032	27.3441 208.117.232.102	24.4.7.217	TCP	60	4248449	4248449	1270	8384	7.398856000	[TCP Keep-Alive] 80 → 56770 [ACK] Se
4	4033	27.3442 24.4.7.217	208.117.232.102	TCP	54	1270	1270	4248450	0	0.000100000	[TCP ZeroWindow] 56770 → 80 [ACK] Se
4	4034	37.3642 208.117.232.102	24.4.7.217	TCP	60	4248449	4248449	1270	8384	10.020053000	[TCP Keep-Alive] 80 → 56770 [ACK] Se
4	4035	37.3643 24.4.7.217	208.117.232.102	TCP	54	1270	1270	4248450		0.000052000	[TCP ZeroWindow] 56770 → 80 [ACK] Se
4	4036	38.3192 24.4.7.217	208.117.232.102	TCP	54	1270	1270	4248450	166440	0.954932000	[TCP Window Update] 56770 → 80 [ACK]

ระยะเวลาตั้งแต่เกิด zero window ครั้งแรกจนถึง window update ใช้เวลาเท่าไร Ja 182

25.4302

ดังนี้

3. การวิเคราะห์ข้อมูลนอกจากจะทำในหน้าต่าง Packet List และ Packet Detail แล้ว ใน wireshark ยังให้ เครื่องมือประเภทกราฟมาด้วย จากไฟล์เดิม ให้นักศึกษาเรียกเมนู Statistics I I/O Graph จะปรากฏหน้าจอ

■ Wireshark · I/O Graphs · tr-youtubebad.pcapng Wireshark I/O Graphs: tr-voutubebad.pcappg 1500 ackets/1 sec 1000 500 W/W/W/W/ Time (s) Enabled Color Y Axis Y Field SMA Period Graph Name Style Packets All Packets Line None \checkmark TCP Errors Packets + - P Interval 1 sec ∨ Mouse

drags

zooms Time of day Log scale

🖊 ข้อมูลแกน Y คือ packet/sec แกน x คือเวลา ซึ่งจะเห็นว่าข้อมูลมีการส่งได้ดี (กราฟพุ่งสูง จำนวน 5 -ครั้ง) จากนั้นก็ลดลงอย่างมาก

Copy Copy from ▼

🖊 ในช่องด้านล่าง เราสามารถสร้างกราฟขึ้นมาใหม่ได้ ให้กด + แล้วกำหนดข้อมูลดังนี้

- Graph Name : Zero_Window

Display filter : ว่าง

Color : แดง

- Style : Dot

Y Axis: COUNT FRAMES(Y Field)

Y Field: tcp.analysis.zero_window

ให[้] Disable กราฟเดิมทั้ง 2 กราฟ

- กราฟบอกข้อมูลอะไร (แสดงรูป capture ของกราฟด้วย)

characteren to united waterin- oras difference

- 4. ให้สร้างกราฟเพิ่มอีก 2 กราฟ ดังนี้
 - √ ชื่อ Window_Full โดยใน Y(AXIS) ใช้ COUNT FRAMES(Y Field) และช่อง Y Field ใช้ tcp.analysis.window_full กำหนดประเภทเป็น Bar สีเขียว
 - ✓ ชื่อ Window_Update โดยใน Y(AXIS) ใช้ COUNT FRAMES(*) และช่อง Y Field ใช้ tcp.analysis.window_update กำหนดประเภทเป็น Bar สีน้ำเงิน
 - กราฟแสดงอะไร (แสดงรูป capture ของกราฟด้วย)

nonlighted control of 1 sec

จากกราฟสามารถบอกได้หรือไม่ว่ามี window full กี่ครั้ง ให้ Capture รูปประกอบด้วย

LED P peute llut mabrink Monagranara

5. ให้สร้าง I/O Graph ใหม่ โดยในช่อง Display Filter ให้ใส่ ip.src==24.4.7.217 ใน Y(AXIS) ใช้ AVG(*) และช่อง Y Field ใช้ tcp.window_size กำหนดประเภทเป็น Line ให้ capture รูป และ อธิบายว่าเราสามารถวิเคราะห์ ข้อมูลอะไรจากกราฟนี้ ให้ Capture รูปประกอบด้วย

don winder of control of the state of the st

6. ในการควบคุม congestion control ของ TCP จะมีหลักอยู่ 2 ข้อ คือ Slow Start และ Congestion Avoidance ให้เปิดไฟล์ tcp.pcapng แล้วดูที่ Statistics->TCP Stream Graph-> Time-Sequence-Graph(Stevens) โดย แต่ละจุดแสดงถึงการส่งในแต่ละ segment ร่วมกับ Statistics-> Flow Graph นักศึกษาสามารถบอกได้หรือไม่ ว่า Slow Start เริ่มต้นและสิ้นสุดที่ใด และมี Congestion Avoidance เกิดขึ้นหรือไม่ ให้อธิบาย พร้อมรูป ประกอบ

anta son stort isoso padet of a 160 dres (CWND) Schraburrana a inves window rize (1460 byte) rulein ba, 780 bytes non-vegano index vize 162-1218 Congestion Avoidance inontu

Time	192. 168. 1. 102 128. 119. 2	Intel_52:2b:23	Broadcast	Comment
.000000	1161 → 80 [SYN] Seq=0 Win=16384		D) GGGCGC	TCP: 1161 → 80 [SYN] Seq=0 Win=16384 Len=0
.023172	1161 80 → 1161 [SYN, ACK] Seq=0 Ack=			TCP: 1161 → 80 [51N] Seq=0 Win=16384 En=0 TCP: 80 → 1161 [SYN, ACK] Seq=0 Ack=1 Win=
023265	very conference and and	80		TCP: 1161 → 80 [ACK] Seq=1 Ack=1 Win=1752
026477	IIbi	80		TCP: 1161 → 80 [RCK] Seq=1 RCK=1 Will=1/32 TCP: 1161 → 80 [PSH, ACK] Seq=1 Ack=1 Win:
041737	1101 On Incl. a curl c cor a	80		TCP: 1161 → 80 [PSH, ACK] Seq=1 ACK=1 Wills TCP: 1161 → 80 [PSH, ACK] Seq=566 Ack=1 W
053937	1161	80		TCP: 80 → 1161 [ACK] Seq=1 Ack=566 Win=67:
053937	1101	80		TCP: 1161 → 80 [ACK] Seq=1 ACK=366 Will=67 TCP: 1161 → 80 [ACK] Seq=2026 Ack=1 Win=1
054690	1101	80		TCP: 1161 → 80 [ACK] Seq=2486 Ack=1 Win=1
077294	1101	80		TCP: 1161 → 80 [ACK] Seq=3466 ACK=1 Will=1 TCP: 80 → 1161 [ACK] Seq=1 Ack=2026 Win=8
077405	1101	80		TCP: 1161 → 80 [ACK] Seq=1 Ack=2026 Win=6 TCP: 1161 → 80 [ACK] Seq=4946 Ack=1 Win=1
078157	1161 → 80 [ACK] Seq=6406 Ack=1			TCP: 1161 → 80 [ACK] Seq=4996 Ack=1 Win=1 TCP: 1161 → 80 [ACK] Seq=6406 Ack=1 Win=1
124085		80		TCP: 80 → 1161 [ACK] Seq=1 Ack=3486 Win=1
124185	ALCA ON ENGLY A GIRL G. TOUR A	50		TCP: 1161 → 80 [PSH, ACK] Seq=7866 Ack=1 \
169118	90 - 1161 (ACV) Sec-1 Ack-4946			TCP: 80 → 1161 [ACK] Seq=1 Adk=4946 Win=1-
217299	1161 80 → 1161 [ACK] Seq=1 Ack=6406	<u>"</u> 2) + (1460 × ♣)		TCP: 80 → 1161 [ACK] Seq=1 Ack=6406 Win=1
267802	00 4464 [4 014] 5 4 4 1 7066	50		TCP: 80 → 1161 [ACK] Seq=1 Ack=7866 Win=2
304807	00 4444 54 544 544 544 544 544	80		TCP: 80 → 1161 [ACK] Seq=1 Ack=9013 Win=2
305040	4454 00 54 GIA 5 0043 4-1 4	80		TCP: 1161 → 80 [ACK] Seq=9013 Ack=1 Win=1
305813	1161 → 80 [ACK] Seq=10473 Ack=1.			TCP: 1161 → 80 [ACK] Seq=10473 Ack=1 Win=
306692	here and a comment of a l	80		TCP: 1161 → 80 [ACK] Seq=11933 Ack=1 Win=
307571	1161 → 80 [ACK] Seq=13393 Ack=1			TCP: 1161 → 80 [ACK] Seg=13393 Ack=1 Win=
308699	have an family agent at a	80		TCP: 1161 → 80 [ACK] Seg=14853 Ack=1 Win=
309553		80		TCP: 1161 → 80 [PSH, ACK] Seq=16313 Ack=1
356437	hn 4404 (4 000) 5 4 4 1 40 000	80		TCP: 80 → 1161 [ACK] Seg=1 Ack=10473 Win=
400164	he	80		TCP: 80 → 1161 [ACK] Seq=1 Ack=11933 Win=.
448613	1161 80 → 1161 [ACK] Seq=1 Ack=13393	90		TCP: 80 → 1161 [ACK] Seg=1 Ack=13393 Win=
500029	1161 80 → 1161 [ACK] Seq=1 Ack=14853	80		TCP: 80 → 1161 [ACK] Seq=1 Ack=14853 Win=
545052	he	80		TCP: 80 → 1161 [ACK] Seq=1 Ack=16313 Win=
576417	20 4404 [4 010] 5 4 4 1 47705	90		TCP: 80 → 1161 [ACK] Seq=1 Ack=17205 Win=
576671	1161 → 80 [ACK] Seq=17205 Ack=1	80		TCP: 1161 → 80 [ACK] Seg=17205 Ack=1 Win=
577385	1161 → 80 [ACK] Seq=18665 Ack=1	90		TCP: 1161 → 80 [ACK] Seq=18665 Ack=1 Win=
578329	1161 → 80 [ACK] Seq=20125 Ack=1	80		TCP: 1161 → 80 [ACK] Seq=20125 Ack=1 Win=
	1		1	
ket 32: TCP: 1	161 → 80 [ACK] Seq=20125 Ack=1 Win=17520 Len=14	160 [TCP segment of a reassembled PDU] Flow type: All Flows	V	Addresses: Any

งานครั้งที่ 8

- การส่งงาน เขียนหรือพิมพ์ลงในเอกสารนี้ และส่งโดยเป็นไฟล์ PDF เท่านั้น
- ตั้งชื่อไฟล์โดยใช้รหัสนักศึกษา และ _Lab8 เช่น 63010789_Lab6.pdf
- กำหนดส่ง ภายในวันที่ 23 มีนาคม 2565