

Software for Autonomous Systems SFfAS-31391:

Learning ROS Transforms (TF), Robot Visualization (RVIZ) and Simulation (Gazebo)

Lecturer, Course Coordinator: Evangelos Boukas—PhD

- Transformations
- TF Package
- Universal Robot Description Format
- Simulating Physical Robots in ROS

- Transformations
- TF Package
- Universal Robot Description Format
- Simulating Physical Robots in ROS
- And ALL of that Hands on!!!

Transformations Example: Mobile robot in a factory

Transformations High-level approach

- Attach a separate coordinate system, or frame, for each rigid body
- Relate these frames to each other
- Why? It makes everything so much easier!
- If we have all the coordinate systems, and their relations, we can easily transform a pose
 in one frame to any other frame

Transformations: Graphical overview

- Point is defined by a vector
 - The <u>frame</u> matters!
- Frame is defined by a changed in pose ξ
 - Describes both translation and rotation

Transformations: Graphical overview

- We use indices to indicate the relevant frames
 - For points, in which frame we have defined the point
 - For transformations, the **pose** of a frame with respect to another
 - Transform: "From A to B"
 - Pose: "B relative to A"

Transformations: Basic principles fixed camera

The strategy is to follow the arrows!

 Pose transformations can be applied sequentially ("compounded" in the book)

• They can even be reversed, by taking the inverse $\xi_{\rho} = \xi_f \oplus {}^F \xi_f = \xi_R \oplus {}^R \xi_C \oplus {}^C \xi_B$

Transformations in a 3D

- We can make rotation matrices from the different rotation representations (See later...)
- We we need to be careful when defining the rotation matrix):

$$\begin{pmatrix} {}^{A}P_{\chi} \\ {}^{A}P_{y} \\ {}^{A}P_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ {}^{O}_{1x3} & 1 \end{pmatrix} * \begin{pmatrix} {}^{B}P_{\chi} \\ {}^{B}P_{y} \\ {}^{B}P_{z} \\ 1 \end{pmatrix}$$

Transformations: Rotation around one axis

Rotation around X axis

Rotation around X axis

Rotation around X axis

Translation X,Y,Z axis

$$R_{\phi}^{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\phi & \sin\phi & 0 \\ 0 & -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{\theta}^{y} = \begin{bmatrix} \cos \theta & 0 & -\sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{\psi}^{z} = \begin{bmatrix} \cos & \sin \psi & 0 & 0 \\ -\sin \psi & \cos \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformations: Euler

• 12 possible representations

xyz	yzx	zxy
xzy	yxz	zyx
xyx	yzy	ZXZ
XZX	yxy	zyz

• The most popular is the roll, pitch, yaw one:

$$R = R_{\phi}^{x} R_{\theta}^{y} R_{\psi}^{z}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Transformations: Euler

• A major problem is the Gimbal lock:

Transformations: Euler

• A major problem is the Gimbal lock:

```
[ cos(g), -sin(g), 0]
            [1, 0, 0] [0.0000 0 1.0000]
                                                                         Rz = [\sin(g), \cos(g), 0]
         Rx = [0, cos(a), -sin(a)] Ry = [0, cos(a), -sin(a)]
            [ 0, sin(a), cos(a)] [-1.0000
                                                   0 0.00001
                                     cos(b)*cos(g),
                                                                      -cos(b) *sin(g),
 R = R_X * R_V * R_Z = [\cos(a) * \sin(g) + \cos(g) * \sin(a) * \sin(b), \cos(a) * \cos(g) - \sin(a) * \sin(b) * \sin(g), -\cos(b) * \sin(a)]
             [\sin(a)*\sin(g) - \cos(a)*\cos(g)*\sin(b), \cos(g)*\sin(a) + \cos(a)*\sin(b)*\sin(g), \cos(a)*\cos(b)]
         b = pi/2
           [ 0.0000
                         0 1.0000]
        Ry = [ 0 1.0000
            [-1.0000
                          0 0.00001
 R=Rx*Ry*Rz = [\cos(a)*\sin(g) + \cos(g)*\sin(a), \cos(a)*\cos(g) - \sin(a)*\sin(g), 0]
             [\sin(a)*\sin(g) - \cos(a)*\cos(g), \cos(a)*\sin(g) + \cos(g)*\sin(a), 0]
                       0, 0, 1]
simplifv(R) = [sin(a + g), cos(a + g), 0]
            [-\cos(a+g), \sin(a+g), 0]
```


- Provide Orientations
- Invented by Hamilton in 1843

- Provide Orientations
- Invented by Hamilton in 1843
- The governing rule is:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i} \, \mathbf{j} \, \mathbf{k} = -1$$

- Provide Orientations
- Invented by Hamilton in 1843
- The governing rule is:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$$

A quaternion is defined as:

$$q = q_0 + \mathbf{q} = q_0 + \mathbf{i}q_1 + \mathbf{j}q_2 + \mathbf{k}q_3$$

,where q0 is the scalar and q is called the vector part. i,j,z is the common orthonormal bases of R^3

- Provide Orientations
- Invented by Hamilton in 1843
- The governing rule is:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$$

• A quaternion is defined as:

$$q = q_0 + \mathbf{q} = q_0 + \mathbf{i}q_1 + \mathbf{j}q_2 + \mathbf{k}q_3$$

,where q0 is the scalar and q is called the vector part.

i,j,z is the common orthonormal bases of R³

Quaternions solve all the problems with euler angles

Transformations (Rotations): Overall

Task/Property	Matrix	Euler Angles	Quaternion
Rotating points	Possible	Impossible (must con-	Impossible (must con-
between coordinate		vert to matrix)	vert to matrix)
spaces (object and			
internal)			
Concatenation or in-	Possible but usually	Impossible	Possible, and usually
cremental rotation	slower than quater-		faster than matrix form
	nion form		
Interpolation	Basically impossible	Possible, but aliasing	Provides smooth inter-
		causes Gimbal lock	polation
		and other problems	
Human interpretation	Difficult	Easy	Difficult
Storing in memory	Nine numbers	Three numbers	Four numbers
Representation is	Yes	No - an infinite num-	Exactly two distinct
unique for a given		ber of Euler angle	representations for any
orientation		triples alias to the	orientation
		same orientation	
Possible to become	Can be invalid	Any three numbers	Can be invalid
invalid		form a valid orienta-	
		tion	

- Transformations
- TF Package
- Universal Robot Description Format
- Simulating Physical Robots in ROS
- And ALL of that Hands on!!!

tf Package

tf Package

- The tf package allows the tracking over time of coordinate systems tree(s)
- Allows the easily creation of new frames (static or dynamic)
- Eases the process of transforming points, vectors, etc.
- Distributed system no centralized storage
- Caches the past information on the transforms

The *tf* coordinate frame tree

• A tree of the current coordinate frame can be generated using the

command: rosrun tf view_frames

Outputs a pdf of current tree

Recorded at time: 1349482424.082

tf Package | Terminal commands

- rosrun tf tf_echo
- rosrun tf tf_monitor
- rosrun tf static_transform_publisher:
 - Usage: rosrun tf static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period(milliseconds)

OR

Usage: rosrun tf static_transform_publisher x y z qx qy qz qw frame_id child_frame_id period(milliseconds)

tf Package | Python code

• Transform Broadcasting:

```
br = tf.TransformBroadcaster()
br.sendTransform(x,y,z,rot,Time," frame1", " frame2")
```

• Listening a transform:

```
listener = tf.TransformListener()
(trans,rot)=listener.lookupTransform('/frame1','/frame2', rospy.Time(0))
```


tf Package | time

- Check whether the transform is up..
- Get a transform in the past

```
try:
    now = rospy.Time.now()
    past = now - rospy.Duration(5.0)
    listener.waitForTransformFull("/frame2", now, "/frame1", past, "/transform",
rospy.Duration(1.0))
    (trans, rot) = listener.lookupTransformFull("/ frame2", now, "/ frame1", past, "/transform")
```


tf Package

• Let me show you with some hands on...

You'll do something similar during Lab time

- Transformations
- TF Package
- <u>Universal Robot Description Format</u>
- Simulating Physical Robots in ROS
- And ALL of that Hands on!!!

Robot Modeling

- Mechanical design of Robot parts in CAD
 - AutoCAD, Blender
- Virtual Robot Model
 - Universal Robot Description Format
 - XML

- Links:
 - Represents a link of a robot and includes the properties:
 - Size, Shape, Color or maybe include the 3D Mesh
 - Inertial Matrix, Collision info
 - The syntax is as follows:

```
<link name="<name of the link>">
<inertial>.....</inertial>
    <visual> ....</visual>
    <collision>....</collision>
</link>
```


- Joints:
 - Represents a joint of a robot and includes the properties:
 - Kinematics, Dynamics, limits of the joints
 - Different type: "revolute, continuous, prismatic, fixed, floating, planar"
 - The syntax is as follows:

```
<joint name="<name of the joint>">
    <parent link="link1"/>
        <child link="link2"/>

        <calibration .... />
        <dynamics damping ..../>
        alimit effort .... />
        </joint>
```


- Robot:
 - This includes the whole model (and other tags):
 - Name, links, joints
 - The syntax is as follows:

- Gazebo:
 - This includes the simulation specific parameters:
 - Gazebo plugins, Gazebo materials, etc..
 - The syntax is as follows:

```
<gazebo reference="link_1">
     <material>Gazebo/Black</material>
</gazebo>
```


URDF main functions

Check URDF:

check_urdf pan_tilt.urdf

- In launch File:
 - Loading the description and main parameters:

```
<arg name="model" />
<param name="robot_description" textfile="urdf/pan_tilt.urdf" />
<param name="use_gui" value="true"/>
```


URDF main functions

Check URDF:

check_urdf pan_tilt.urdf

- In launch File:
 - Loading the description and main parameters:

```
<arg name="model" />
<param name="robot_description" textfile="urdf/pan_tilt.urdf" />
<param name="use gui" value="true"/>
```

– Defining the joint states "joint_state_publisher":

```
<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />
```


URDF main functions

- Check URDF:
 - check_urdf pan_tilt.urdf
- In launch File:
 - Loading the description and main parameters:

```
<arg name="model" />
<param name="robot_description" textfile="urdf/pan_tilt.urdf" />
<param name="use_gui" value="true"/>
```

– Defining the joint states "joint_state_publisher":

```
<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />
```

– Loading the TF of the robot "robot_state_publisher":

```
<node name="robot state publisher" pkg="robot state publisher" type="state publisher" />
```


URDF

• Let me show you with some hands on...

You'll do something similar during Lab time

- Transformations
- TF Package
- Universal Robot Description Format
- Simulating Physical Robots in ROS
- And ALL of that Hands on!!!

Gazebo Implementation

Robot Modelling is cool and all but...

...robots are much more sophisticated than this!

Gazebo Implementation

Robot Modelling is cool and all but...

...robots are much more sophisticated than this!

- Where is the mass?
- Where is the actuation power?
- Where is the inertia?
- Where is the collision?

Gazebo Implementation

Gazebo is able to provide all this and more using a Physics engine! However, we need to provide this information:

- Collision
- Inertia
- Transmission: <transmission name="tran0"> <type>transmission_interface/SimpleTransmission</type> <joint name="hip"> <hardwareInterface>PositionJointInterface/hardwareInterface> </joint> <actuator name="motor0"> <hardwareInterface>PositionJointInterface/hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission>
- Control plugin:

```
<gazebo>
 <plugin name="control" filename="libgazebo_ros_control.so"/>
</gazebo>
```

16 September 2019 **DTU Electrical Engineering**

32

Gazebo

• Let me show you with some hands on...

You'll do something similar during Lab time

Ok now we're more realistic...

... however, still autonomous robots are more complex than this

Ok now we're more realistic...

- ... however, still autonomous robots are more complex than this
- The robots have to autonomously find their way through...

Ok now we're more realistic...

- ... however, still autonomous robots are more complex than this
- The robots have to autonomously find their way through...
 - Robotic Manipulators need:
 - To solve the inverse kinematics and dynamics problems
 - Find the correct trajectories to avoid obstacles

• ...

Ok now we're more realistic...

- ... however, still autonomous robots are more complex than this
- The robots have to autonomously find their way through...
 - Robotic Manipulators need:
 - To solve the inverse kinematics and dynamics problems
 - Find the correct trajectories to avoid obstacles
 - ...
 - Mobile Robots need to use path planning to navigate the environment

Robot Planning examples

- We learned about Transformations and their meaning, as well as how to implement it in ROS
- We learned how to model, implement and control a robot from scratch!
 - Modeling URDF
 - Simulation Gazebo
 - Intro to Robot Planning!

Software for Autonomous Systems SFfAS-31391:

Learning ROS Transforms (TF), Robot Visualization (RVIZ) and Simulation (Gazebo)

Lecturer, Course Coordinator: Evangelos Boukas—PhD