

Lista de Exercícios 1: F 129

R. Urbano/L. E. E. de Araújo

Teoria de Erros e Medidas, Histograma

1) Faça a leitura dos instrumentos de medida abaixo, escrevendo as medidas com seus respectivos erros instrumentais e unidades.

2) Uma esfera é lançada horizontalmente de uma mesa e aterrissa no chão a uma distância d da mesma. A posição de queda é registrada em um papel sobre o chão e a distância d é medida com uma régua como ilustrado na figura. O experimento é realizado 3 vezes partindo sempre das mesmas condições iniciais. A régua é graduada em milímetros.

- a) Qual a distância *d* percorrida em cada lançamento? Indique o erro de leitura em sua resposta. Considere o centro da mancha como a posição de queda da esfera.
- b) Se você tivesse que escrever um único valor para representar a melhor estimativa para a distância d, o que escreveria? Qual seria a incerteza em d? Justifique sua resposta.

- 3) Quantos algarismos significativos há em cada um dos números abaixo?
 - a. 504,04
 - b. 6000
 - c. $6,023 \times 10^{23}$
 - d. 0,000580
- 4) Os valores abaixo representam resultados de várias medidas de comprimento. Ajuste o dígito significativo corretamente e reescreva os resultados no formato adotado em F 129.
 - a. $1,0321 \pm 0,05678$ m
 - b. $9,1321 \pm 0,31867$ m
 - c. 0.0569 ± 0.0112 m
 - d. 0.1999 ± 1.0000 m
 - e. $7,545 \pm 1,734$ m
- 5) O intervalo de tempo de queda de uma esfera foi medido 6 vezes com um cronômetro digital, registrando os seguintes valores de t [s]:

$0.356 \mathrm{\ s}$	0,410 s	$0,375 { m \ s}$	$0,386 \; { m s}$	$0,369 \; { m s}$	$0,380 \; { m s}$

A menor medida deste cronômetro é de 0,001 s.

- a. Obtenha o tempo médio (\bar{t}) .
- b. Obtenha o desvio-padrão (σ) das medidas.
- c. Obtenha o erro estatístico (Δt_{est}).
- d. Obtenha o erro total (Δt_{total}) .
- e. Escreva o resultado da medida como tempo = $(\bar{t}\pm....)$
- 6) Considere os seguintes resultados de uma prova de F-129 que foi aplicada a 213 alunos:

Nota	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5	10
Ocorrências	1	1	5	7	12	13	16	15	17	32	17	21	12	16	8	4	7	5	4	1

- a) Faça um histograma das notas considerando para isso os seguintes intervalos: [0,5; 1,5[; [1,5; 2,5[; [2,5; 3,5[; [3,5; 4,5[; [4,5; 5,5[; [5,5; 6,5[; [6,5; 7,5[; [7,5; 8,5[; [8,5; 9,5[; [9,5; 10,5[.
- b) Discuta o aspecto do histograma.
- c) A partir do histograma, estime a média \bar{N} e o desvio-padrão σ das notas.
- d) Que porcentagem das notas estão contidas no intervalo $\left[\bar{N} \sigma, \bar{N} + \sigma\right]$?

7) Uma analogia interessante para se compreender a diferença entre **erros estatísticos** e **erros sistemáticos** é através do resultado de um experimento onde foram atirados projéteis em um alvo.

A máquina é ajustada para atingir o centro "verdadeiro" ou "absoluto" da grandeza que pretende-se medir. A imagem abaixo mostra o alvo e o seu centro e onde os projéteis atingiram quando quatro instrumentos distintos foram usados com o mesmo objetivo: atingir o alvo no centro.

Use esta imagem para discutir os conceitos de erro estatístico, erro casual, erro sistemático, exatidão e precisão.

