Question number	Scheme	Marks
3	$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = 27\right)$ $r = \frac{3h}{2}$	
	$r = \frac{3h}{2}$ $V = \frac{1}{3}\pi r^2 h \Rightarrow V = \frac{3}{4}\pi h^3$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{9}{4}\pi h^2$	M1A1
	$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ $\frac{dh}{dt} = 27 \times \frac{4}{9\pi h^2} = 27 \times \frac{4}{9\pi 4^2} = 0.23873 \frac{dh}{dt} = 0.239$	M1
	$\frac{dh}{dt} = 27 \times \frac{4}{9\pi h^2} = 27 \times \frac{4}{9\pi 4^2} = 0.23873 \frac{dh}{dt} = 0.239$	M1dd A1
		[6]

B1 Fo	violance or using the given $r = 1.5h$ to find the correct expression for the volume in terms h only. Need not be simplified. Accept $V = \frac{1}{3}\pi \left(\frac{3h}{2}\right)^2 h$ or $V = \frac{1}{3}\pi \times \frac{9h^2}{4} \times h$ You may see $27 = \frac{3}{4}\pi h^3$ Award B1 here if this is later differentiated and used
B1 Fo	or using the given $r = 1.5h$ to find the correct expression for the volume in terms h only. Need not be simplified. Accept $V = \frac{1}{3}\pi \left(\frac{3h}{2}\right)^2 h$ or $V = \frac{1}{3}\pi \times \frac{9h^2}{4} \times h$
of	<i>h</i> only. Need not be simplified. Accept $V = \frac{1}{3}\pi \left(\frac{3h}{2}\right)^2 h$ or $V = \frac{1}{3}\pi \times \frac{9h^2}{4} \times h$
	You may see $27 = \frac{3}{2}\pi h^3$ Award B1 here if this is later differentiated and used
sc	4
	rrectly.
dir	or attempting to differentiate their V provided it is in terms if h only. Must be a mensionally correct V .
	e general guidance for the definition of an attempt.
	or the correct derivative $\frac{dV}{dh} = \frac{9}{4}\pi h^2$
	or a correct expression of chain rule.
Ac	eccept any correct equivalent. Eg., $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ oe
	ease check this carefully.
3 (1 1 1	nain rule may not be explicitly stated, but may be implied from correct work.
M1dd Fo	or substituting $h = 4$ and $\frac{dV}{dt} = 27$ into their expression of chain rule. It must be
con	rrect, but not necessarily with $\frac{dh}{dt}$ as the subject
No	ote: this mark is dependent on BOTH previous Method marks scored.
	or $\frac{\mathrm{d}h}{\mathrm{d}t} = 0.239$ rounded correctly.
ALT	
B1 Fo	or using the given $r = 1.5h$ to find the correct expression for the volume in terms h only.
M1 Fo	or attempting to differentiate their V wrt to t provided V is in terms if h only. ust be a dimensionally correct V .
$\frac{d}{dt}$	$\frac{V}{t} = \frac{9}{4}\pi h^2 \frac{\mathrm{d}h}{\mathrm{d}t}$
	or a correct expression for $\frac{dV}{dt}$ in terms of h and $\frac{dh}{dt}$
	or re-arranging their $\frac{dV}{dt} = \frac{9}{4}\pi h^2 \frac{dh}{dt}$ to $\frac{dh}{dt} = \frac{4}{9\pi h^2} \times \frac{dV}{dt}$
	ease check their re-arrangement, it must be correct for this mark.
M1dd Fo	or substituting $h = 4$ and $\frac{dV}{dt} = 27$ into their $\frac{dh}{dt}$
No	ote: This M mark and the previous M mark may be in either order.
A 1	or $\frac{\mathrm{d}h}{\mathrm{d}t} = 0.239$ rounded correctly.