Lauren Gerber Master's Thesis

2025-04-24

Master's Thesis Script

Install necessary libraries, set options, and download GDP and Democracy Data from R packages.

```
| library(devtools) | library(tidyverse) | library(forcats) | devtools::install_github("vdeminstitute/vdemdata") | library(vdemdata) | library(car) | library(gtsummary) | library(WDI) | library(psych) | | #set to not report in scientific notation | options(scipen = 5)
```

Load Datasets, Rename Variables, and Keep Only Relevant Variables/Years for GDP and VDEM Datasets.

```
#Make a data-set with chosen countries' GDP per capita adjusted for inflation and purchasing power parity.
#limit year to 2023, the end of survey collection.
gdp<- WDI(indicator="NY.GDP.PCAP.PP.KD", country=c("USA", "CAN", "AUS", "DEU", "ZAF", "BRA"), start=2023, end=2023)
#rename "country" to "country" name" so we can later merge the data. Rename gdp to a simpler name.
gdp<- gdp %>% rename(country_name=country, gdp=NY.GDP.PCAP.PP.KD)
#Load the vdem data-set from the package.
vdem<- vdem
#keep only chosen countries, limit the year to 2023, and keep only the liberal democracy index in the VDEM data-set.
#Rename "United States of America" to "United States" to keep consistency across data-sets.
countries_to_keep= c("Brazil", "Canada", "Germany", "South Africa", "United States of America", "Australia")
vdem<- vdem %>% filter(country_name %in% countries_to_keep & year=="2023")
vdem<- vdem %>% select(country_name, v2x_libdem, v2x_libdem_codelow) %>% mutate(country_name=as.factor(country_name)) %>%
mutate(country_name=str_replace(country_name, "United States of America", "United States"))
#Load the conspiracy data-set
conspdata<- read_csv("data/CCRS Dataset.csv")
#rename variables of interest to more intuitive names.
conspdata<- conspdata %>% rename(country_name=ID_Q2, Age=ID_Q3, Gender=ID_Q4, Education=ID_Q5, SES=ID_Q8, Employment=ID_Q9, leftright
=ID_Q10,
                   polinterest=ID_Q11, satisfactiongov=ID_Q15, satisfactiondem=ID_Q16, trustgov=ID_Q18_1, trustpol=ID_Q18_2,
                   trustelections=ID_Q18_4,eliteppldif=ID_Q23_3, Religiosity=ID_Q25, NCCmean=ID_Q30, conspbeliefavg=ID_Q32,
                   govmurder=ID_Q32_1, worldcontrol=ID_Q32_2, govterrorism=ID_Q32_6, war=ID_Q32_7, govcrime=ID_Q32_10,
                   significantevents=ID_Q32_11, drugspublic=ID_Q32_13, infohiding=ID_Q32_14, conspmentalityavg=ID_Q33)
```

Make Indices For Political Trust and Political Conspiracy Beliefs and Test Reliability Index.

```
#make average political trust index- trust in government and trust in politicians (0-10, no trust-a lot of trust).

conspdata$average_trust <- rowMeans(conspdata[, c("trustgov", "trustpol")])

#check reliability of index- good levels of internal consistency (0.89).

average_trust_index<- data.frame(conspdata$trustpol, conspdata$trustgov)

alphaindex<- alpha(average_trust_index)

summary(alphaindex)
```

```
##
## Reliability analysis
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.8 0.8 7.8 0.0025 3.6 2.8 0.8
```

```
#make political conspiracy index (0-4, definitely not true-definitely true).
#check reliability of index- good levels of internal consistency (0.82).

conspdata$average_polconspiracies <- rowMeans(conspdata[, c("worldcontrol", "war", "significantevents")])

polconspiracies_index<- data.frame(conspdata$worldcontrol,conspdata$war, conspdata$significantevents)
alphaindex2<- alpha(polconspiracies_index)
summary(alphaindex2)
```

```
##
## Reliability analysis
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.82 0.82 0.76 0.61 4.7 0.0034 2 1.1 0.58
```

Merge Datasets, Check for Duplicates, and Change to Correct Variable Types.

Make Object With Variables for Regression, Rescale Political Efficacy Variable for Easier Interpretation.

Correlation Analysis.

Rename Categories from Numbers to Names; Set and Add Reference Levels; and Multiply Quality of Democracy Score (0-1) by 100 for Ease of Interpretation.

```
#rename categories names for regression data.

regressiondata<-- regressiondata %>% mutate(Gender=fct_recode(Gender, "Female"="0", "Male"= "1"), Education=fct_recode(Education, "None"="1", "Ele mentary"="2", "Secondary"="3", "University"="4", "Postgrad"="5"), SES=fct_recode(SES, "Lower-Class"="1", "Middle-Class"="2", "Upper-Class"="3"), Empl oyment=fct_recode(Employment, "Full-Time"="1", "Part-Time"="2", "Retired"="3", "Unemployed"="4", "Student"="5", "Other"="9"), Religiosity=fct_recode(R eligiosity, "Not Religious"="0", "Religious"="1"))

#check how many NAs in each variable, NAs could be meaningful for gender/religiosity.

regressiondata %>% summarise_all(~ sum(is.na(.)))
```

```
#gender=100, Religiosity=405

#calculate percentage of NAs.
colMeans(is.na(regressiondata))
```

```
## average_polconspiracies
                                v2x_libdem
                                                    Gender
        0.0108232207
                            0.0000000000
                                               0.0163988193
##
                         Education
                                          Employment
             Age
##
        0.0004919646
                            0.0368973434
                                               0.0011479173
##
             SES
                          leftright
                                       eliteppldif
                            0.0052476222
                                               0.0072154805
##
        0.0072154805
##
                                              NCCmean
        average_trust
                           Religiosity
##
        0.0111511971
                            0.0664152181
                                               0.0450967530
##
             gdp
                       country_name eliteppldifrescaled
##
        0.0000000000
                            0.0000000000
                                               0.0072154805
```

```
#Mostly insignificant, 6.6% Religiosity.

#An NA answer for gender might not always mean non-binary... but we should create a "don't know" category for religiosity.

regressiondata$Religiosity <- fct_na_value_to_level(regressiondata$Religiosity, level = "Other/Don't Know")

#reset reference category in Education from "none" to "university".

regressiondata<- regressiondata %>% mutate(Education=fct_relevel(Education, "University"))

#multiply liberal democracy index by 100 for ease of interpretation.

regressiondata$v2x_libdemrescaled<- regressiondata$v2x_libdem *100
```

Bivariate Analysis.

Average Belief in Political Conspiracy Theories

Variables	Coefficients	Std. Error	CI	P-value			
Intercept	4.76 ***	0.14	4.48 - 5.03	<0.001			
Quality of Democracy	-0.04 ***	0.00	-0.040.03	<0.001			
Observations	6032						
R^2 / R^2 adjusted	0.062 / 0.062						
•		p<0.05	5 ** p<0.01	*** p<0.001			

Multivariate Analysis.

```
#analysis with controls.

Im2<- Im(formula=average_polconspiracies~v2x_libdemrescaled + Gender + Age+ Education+ Employment+ SES+ leftright+ average_trust+ Religiosity+NCCmean + gdp, data=regressiondata)

#table of exclusionary strategy:

modeltwo<-tab_model(Im2, show.se=TRUE, show.p=TRUE, show.fstat = TRUE, show.obs=TRUE, show.reflvl = TRUE, string.est="Coefficients", string.pred = "Variables", string.p="P-value", string.se = "Std. Error", emph.p=TRUE, pred.labels = c("Intercept", "Quality of Democracy", "Male", "Age", "No Education", "Elementary Education", "Secondary Education", "Post-Grad Degree", "Employed Part-Time", "Retired", "Unemployed", "Student", "Other Employment", "Middle-Class", "Upper Class", "Left-Right Scale Placement", "Average Political Trust", "Religious", "NA Religion", "Average Need For Cognitive Closure", "GDP"), dv.labels = "Average Belief in Political Conspiracy Theories", p.style="numeric_st ars", CSS = list(css.thead = "text-align:center; padding-bottom:0.2cm;", css.tdata="padding:0.11cm;"))

modeltwo
```

Average Belief in Political Conspiracy Theories

Variables	Coefficients	Std. Error	CI	P-value
Intercept	3.91 ***	0.28	3.36 - 4.45	<0.001
Quality of Democracy	-0.04 ***	0.00	-0.050.03	<0.001
Male	0.05	0.03	-0.01 - 0.11	0.076
Age	-0.01 ***	0.00	-0.010.01	<0.001
No Education	0.10	0.15	-0.18 - 0.39	0.485
Elementary Education	0.14 **	0.05	0.05 - 0.24	0.004
Secondary Education	0.08 *	0.03	0.01 - 0.15	0.019
Post-Grad Degree	0.03	0.04	-0.05 - 0.11	0.489
Employed Part-Time	-0.09 *	0.04	-0.180.00	0.042
Retired	-0.25 ***	0.05	-0.35 – -0.15	<0.001
Unemployed	-0.04	0.06	-0.16 - 0.07	0.448
Student	-0.04	0.08	-0.20 - 0.12	0.626

Other Employment	-0.01	0.06	-0.13 - 0.11	0.826		
Middle-Class	-0.12 ***	0.03	-0.180.05	<0.001		
Upper Class	0.07	0.07	-0.06 - 0.21	0.275		
Left-Right Scale Placement	0.09 ***	0.01	0.08 - 0.10	<0.001		
Average Political Trust	-0.07 ***	0.01	-0.080.06	<0.001		
Religious	0.18 ***	0.03	0.12 - 0.24	<0.001		
NA Religion	0.06	0.06	-0.05 - 0.17	0.303		
Average Need For Cognitive Closure	0.26 ***	0.02	0.22 - 0.30	<0.001		
GDP	0.00 ***	0.00	0.00 - 0.00	<0.001		
Observations	5357					
R ² / R ² adjusted	0.215 / 0.212					
•		p<0.0	05 ** p<0.01 **	** p<0.001		

Effect Size Regression.

```
#normalize data to explore effect size of predictors.
scaled_merged_data<- regressiondata
numeric_cols <- sapply(scaled_merged_data, is.numeric)</pre>
scaled_merged_data[numeric_cols] <- scale(scaled_merged_data[numeric_cols])
#effect size/standardized model.
lm3<- lm(formula=average_polconspiracies~v2x_libdemrescaled + Gender + Age+ Education+ Employment+ SES+ leftright+ average_trust+
                  Religiosity+NCCmean + gdp, data=scaled_merged_data)
#table without dummy variables for effect size:
standardized model < -tab\_model (Im3, terms = c("v2x\_libdemrescaled", "Age", "leftright", "average\_trust", "NCCmean", "gdp"), show.se = TRUE, show.p = TRUE (Im3, terms = c("v2x\_libdemrescaled", "Age", "leftright", "average\_trust", "NCCmean", "gdp"), show.se = TRUE, show.p = TRUE (Im3, terms = c("v2x\_libdemrescaled", "Age", "leftright", "average\_trust", "NCCmean", "gdp"), show.se = TRUE (Im3, terms = c("v2x\_libdemrescaled", "Age", "leftright", "average\_trust", "NCCmean", "gdp"), show.se = trust" (Im3, terms = c("v2x\_libdemrescaled", "Age", "leftright", "average\_trust", "NCCmean", "gdp"), show.se = trust" (Im3, terms = c("v2x\_libdemrescaled", "Age", "leftright", "average\_trust", "NCCmean", "gdp"), show.se = trust" (Im3, terms = c("v2x\_libdemrescaled", "Age", "leftright", "average\_trust", "NCCmean", "gdp"), show.se = trust (Im3, terms = c("v2x\_libdemrescaled", "Age", "leftright", "average\_trust", "average\_tru
E, show.fstat = TRUE, show.obs=TRUE,
                                string.est="Coefficients", string.pred = "Variables", string.p="P-value", string.se = "Std. Error", emph.p=TRUE,
                                pred.labels = c("Quality of Democracy", "Age", "Left-Right Scale Placement", "Average Political Trust",
                                                            "Average Need For Cognitive Closure", "GDP"),
                                 dv.labels = "Average Belief in Political Conspiracy Theories",
                                p.style="numeric_stars", CSS = list(css.thead = "text-align:center; padding-bottom:0.2cm;", css.tdata="padding:0.11cm;"))
standardizedmodel
```

Average Belief in Political Conspiracy Theories

Variables	Coefficients	Std. Error	CI	P-value		
Quality of Democracy	-0.27 ***	0.03	-0.330.22	<0.001		
Age	-0.17 ***	0.02	-0.200.14	<0.001		
Left-Right Scale Placement	0.21 ***	0.01	0.19 - 0.24	<0.001		
Average Political Trust	-0.18 ***	0.01	-0.200.15	<0.001		
Average Need For Cognitive Closure	0.15 ***	0.01	0.12 - 0.17	<0.001		
GDP	0.18 ***	0.03	0.13 - 0.24	<0.001		
Observations		53	57			
R ² / R ² adjusted	0.215 / 0.212					
•	-	p<0.03	5 ** p<0.01 *	** p<0.001		

Diagnostic Plots and Multicollinearity Check.

```
#diagnostic plots for multivariate linear regression:
par(mfrow = c(2, 2))
plot(lm2)
```


#testing for multicollinearity.
vif(Im2)

GVIF Df GVIF^(1/(2*Df)) ## v2x_libdemrescaled 4.833911 1 2.198616 1.069307 1 ## Gender 1.034073 ## Age 1.774169 1 1.331979 ## Education 1.524515 4 1.054123 ## Employment 2.111820 5 1.077620 ## SES 1.237322 2 1.054680 ## leftright 1.110938 1 1.054010 ## average_trust 1.158371 1 1.076277 ## Religiosity 1.181835 2 1.042652 ## NCCmean 1.081169 1 1.039793 ## gdp 4.926512 1 2.219575

Mediation Analysis.

#na's dropped dataset:

#In order to run a mediation analysis, we need to have regression models of the same size. So dropping all na's before for these specific variables is neces sary:

nasdropped<- regressiondata %>% drop_na(v2x_libdemrescaled, average_polconspiracies, eliteppldifrescaled, Gender, Age, Education, Employment, SES, leftright, average_trust, Religiosity, NCCmean, gdp)

#inclusionary strategy using Barron & Kenny's model:

#step one, total effect of x on y taking into account alternative explanations: #summary(lm2)

#Step two: does X have a significant relationship with M (X->M)?

eliteppldif<- Im(formula=eliteppldifrescaled~v2x_libdemrescaled + Gender + Age+ Education+ Employment+ SES+ leftright+ average_trust+ Religiosity+NCCmean + gdp, data=nasdropped)

#Step three: how is the relationship between X&Y affected with M? What is the relationship between M and Y?

mediationmodel<- lm(average_polconspiracies~v2x_libdemrescaled + eliteppldifrescaled+ Gender + Age

+ Education+ Employment+ SES+ leftright+ average_trust+ Religiosity+NCCmean + gdp, data=nasdropped)

#diagnostic plots. Relatively normal, slight tail skew but sample is large enough for it to be okay. plot(eliteppldif)

Fitted values $Im(eliteppldifrescaled \sim v2x_libdemrescaled + Gender + Age + Education + Em \dots$

Im(eliteppldifrescaled ~ v2x_libdemrescaled + Gender + Age + Education + Em ...

Im(eliteppldifrescaled ~ v2x_libdemrescaled + Gender + Age + Education + Em ...

plot(mediationmodel)

lm(average_polconspiracies ~ v2x_libdemrescaled + eliteppldifrescaled + Gen ...

Im(average_polconspiracies ~ v2x_libdemrescaled + eliteppldifrescaled + Gen ...

Scale-Location

Fitted values lm(average_polconspiracies ~ v2x_libdemrescaled + eliteppldifrescaled + Gen ...

Im(average_polconspiracies ~ v2x_libdemrescaled + eliteppldifrescaled + Gen ...

```
#table for inclusionary strategy:
inclusionary strategytable<- tab_model(eliteppldif, mediationmodel, show.se=TRUE, show.p=TRUE, show.fstat = TRUE, show.obs=TRUE, collapse.ci=FAL SE,
string.est="Coefficients", string.pred = "Variables", string.p="P-value", string.se = "Std. Error", emph.p=TRUE,
```

pred.labels = c("Intercept", "Quality of Democracy", "Male", "Age", "No Education", "Elementary Education", "Secondary Education",

"Post-Grad Degree", "Employed Part-Time", "Retired", "Unemployed", "Student", "Other Employment",

"Middle-Class", "Upper Class", "Left-Right Scale Placement", "Average Political Trust", "Religious", "NA Religion",

"Average Need For Cognitive Closure", "GDP", "External Political Efficacy"), dv.labels = c("External Political Efficacy", "Average Belief in Political Conspiracy Theories"),

 $p.style="numeric_stars", CSS = list(css.thead = "text-align:center; padding-bottom: 0.2cm;", css.tdata="padding: 0.11cm;", c$

css.depvarhead= "+padding-right: 0.2cm;", css.col5= "+padding-right: 0.88cm;", css.col1="padding-right: 0.1cm;"))

inclusionarystrategytable

	Exter	rnal Political Effica	су	Average Belief in Political Conspiracy Theories			
Variables	Coefficients Std.	Error CI	P-value	Coefficients	Std. Error	CI	P-value
Intercept	3.21 *** 0).29 2.65 – 3.77	<0.001	4.40 ***	0.28	3.86 - 4.95	<0.001
Quality of Democracy	0.01 ** 0	0.00 0.00 - 0.02	0.003	-0.04 ***	0.00	-0.050.03	<0.001
Male	-0.04 0	0.03 -0.10 -0.02	0.173	0.05	0.03	-0.01 - 0.10	0.104
Age	-0.01 *** 0	0.00 -0.010.0	1 <0.001	-0.01 ***	0.00	-0.020.01	<0.001

No Education	0.49 **	0.15	0.19 – 0.78 0.0	0.17	0.15	-0.11 – 0.46	0.236
Elementary Education	0.20 ***	0.05	0.10 - 0.30 < 0. 0	001 0.18 ***	0.05	0.08 - 0.27	<0.001
Secondary Education	0.05	0.04	-0.02 - 0.12 0.1	0.09 **	0.03	0.02 - 0.16	0.008
Post-Grad Degree	-0.04	0.04	-0.12 - 0.04 0.3	359 0.02	0.04	-0.06 - 0.10	0.578
Employed Part-Time	-0.00	0.05	-0.09 - 0.08 0.9	916 -0.09 [*]	0.04	-0.180.01	0.038
Retired	0.05	0.05	-0.04 – 0.15 0.2	280 -0.24 ***	0.05	-0.340.14	<0.001
Unemployed	0.04	0.06	-0.08 – 0.16 0.5	501 -0.04	0.06	-0.15 - 0.07	0.483
Student	-0.09	0.08	-0.25 – 0.08 0.3	302 -0.05	0.08	-0.21 - 0.10	0.505
Other Employment	0.15 *	0.06	0.02 - 0.27 0.0	0.01	0.06	-0.11 – 0.13	0.881
Middle-Class	0.07 *	0.03	0.00 - 0.14 0.0	. 0.11 **	0.03	-0.170.04	0.001
Upper Class	0.10	0.07	-0.04 – 0.24 0.1	148 0.09	0.07	-0.04 - 0.22	0.187
Left-Right Scale Placement	-0.02 ***	0.01	-0.040.01 <0. 0	0.09 ***	0.01	0.08 - 0.10	<0.001
Average Political Trust	0.04 ***	0.01	0.03 - 0.05 <0. 0	.001 -0.07 ***	0.01	-0.08 – -0.06	<0.001
Religious	0.01	0.03	-0.05 – 0.07 0.8	0.18 ***	0.03	0.12 - 0.24	<0.001
NA Religion	0.09	0.06	-0.03 – 0.20 0.1	0.07	0.06	-0.04 - 0.18	0.221
Average Need For Cognitive Closure	-0.45 ***	0.02	-0.490.40 <0. 0	0.19 ***	0.02	0.15 - 0.24	<0.001
GDP	-0.00	0.00	-0.00 - 0.00 0.2	288 0.00 ***	0.00	0.00 - 0.00	<0.001
External Political Efficacy				-0.14 ***	0.01	-0.17 – -0.11	<0.001
Observations	ervations 5328 5328						
R ² / R ² adjusted		0.1	16 / 0.112		0.231	/ 0.228	
•	·		·		n<0.0	05 ** p<0.01 **	r* p<0.001

#formal mediation test

library(mediation)

mediationanalysis<- mediate(eliteppldif, mediationmodel, treat="v2x_libdemrescaled", mediator="eliteppldifrescaled", boot=TRUE, sims=500) summary(mediationanalysis)

#Although none of the variables affect the QOD coefficient, testing if NCC explains better. #Step One- is quality of democracy related with NCC? It is not.

NCCmeanmediation<- lm(formula=NCCmean~v2x_libdemrescaled + Gender + Age+ Education+ Employment+ SES+ leftright+ average_trust+ Religiosity+eliteppldifrescaled+gdp, data=nasdropped)

Reporting with Clustered Standard Errors, Does Not Change Estimates.

```
#robust clustered standard errors test.

library(sandwich)
library(Imtest)

clustered_se<- vcovCL(Im2, cluster = ~country_name)
coeftest(Im2, vcov = clustered_se)
```

```
##
## t test of coefficients:
##
##
                   Estimate Std. Error t value Pr(>|t|)
                   3.9093693487 0.7839219389 4.9869 6.329e-07 ***
## (Intercept)
## v2x_libdemrescaled
                       -0.0417797400 0.0116774245 -3.5778 0.0003495 ***
## GenderMale
                     0.0499166809 0.0355067944 1.4058 0.1598315
                  -0.0119127856 0.0021685689 -5.4934 4.126e-08 ***
## Age
## EducationNone
                      0.1022464527 0.1256234445 0.8139 0.4157316
                      ## EducationElementary
## EducationSecondary
                        0.0810970114 0.0490446756 1.6535 0.0982812 .
## EducationPostgrad
                        0.0288600661 0.0587387349 0.4913 0.6232137
## EmploymentPart-Time
                       -0.0898286666 0.0439815119 -2.0424 0.0411591 *
## EmploymentRetired
                       -0.2506043252  0.0679341051 -3.6889  0.0002274 ***
## EmploymentUnemployed -0.0433390567 0.0219497653 -1.9745 0.0483803 *
## EmploymentStudent -0.0398234787 0.0688003960 -0.5788 0.5627308
## EmploymentOther
                      -0.0133101583 0.0683454856 -0.1947 0.8455975
## SESMiddle-Class
                     -0.1169749840 0.0255725725 -4.5742 4.888e-06 ***
                    0.0745011650 0.1381777457 0.5392 0.5897927
## SESUpper-Class
## leftright
                -0.0712812565 0.0141956319 -5.0214 5.298e-07 ***
## average_trust
## ReligiosityReligious 0.1776541276 0.0450495621 3.9435 8.132e-05 ***
## ReligiosityOther/Don't Know 0.0593615644 0.0902883382 0.6575 0.5109093
## NCCmean
                      0.2598789540 0.0377067077 6.8921 6.133e-12 ***
## gdp
                  0.0000089008 0.0000024993 3.5613 0.0003723 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#doesn't change anything

EXTRA GRAPHS AND TABLES SECTION:

```
#Sociodemographic descriptive statistics tables:
sampletable<- regressiondata %>% tbl_summary(include=c(Education, SES, Employment, Age, Gender),
statistic= list(all_continuous()~"{mean}", all_categorical()~"{p}\overline{o}"),
type = all_continuous() ~ "continuous", missing="no") %>% bold_labels() %>% bold_levels()
sampletable
```

Characteristic	N = 6,098 ¹
Education	
University	37%
None	1.0%
Elementary	11%
Secondary	33%
Postgrad	18%
SES	
Lower-Class	26%
Middle-Class	69%
Upper-Class	5.7%
Employment	
Full-Time	56%
Part-Time	12%
Retired	15%
Unemployed	7.3%
Student	3.3%
Other	6.3%
Age	43
Gender	
Female	51%
Male	49%
¹ %; Mean	

Characteristic	Australia N = 1,026 ¹	Brazil N = 1,024 ¹	Canada N = 999 ¹	Germany N = 1,027 ¹	South Africa N = 1,016 ¹	United States N = 1,006 ¹
Education	1,020	1,024		1,027	14 = 1,010	14 - 1,000
University	29%	77%	41%	41%	20%	19%
None	0%	0.2%	0.6%	0.4%	0.1%	4.6%
Elementary	25%	2.5%	3.2%	7.0%	0%	28%
Secondary	28%	3.5%	52%	41%	36%	33%
Postgrad	18%	17%	3.0%	10%	44%	15%
SES						
Lower-Class	24%	26%	24%	28%	21%	31%
Middle-Class	67%	67%	72%	69%	75%	61%
Upper-Class	8.6%	6.8%	3.7%	3.0%	4.2%	7.7%
Employment						
Full-Time	50%	73%	53%	48%	65%	46%
Part-Time	16%	6.1%	9.7%	19%	10%	12%
Retired	18%	7.3%	22%	20%	5.8%	18%
Unemployed	6.5%	7.1%	6.2%	3.4%	10%	11%
Student	1.6%	3.3%	2.4%	2.5%	7.2%	2.9%
Other	8.7%	3.5%	6.7%	6.4%	1.8%	10%
Age	44	39	47	47	37	44
Gender						
Female	49%	51%	51%	52%	49%	56%
Male	51%	49%	49%	48%	51%	44%
¹ %; Mean						

#other control variables descriptive statistic tables:

 $sample table other variables <-\ regression data\ \%>\%\ tbl_summary (include = c(left right,\ average_trust,\ Religiosity,\ NCC mean),$

 $statistic=list(all_continuous() \sim c("\{mean\}", "\{median\}", "\{p25\}, \{p75\}"), all_categorical() \sim "\{p\}\%"),$

label = list(leftright~"Left-Right Scale", average_trust ~ "Average Political Trust", NCCmean ~ "Average Need for Cognitive Clo

sure"),

sampletableothervariables

Characteristic	N = 6,098 ¹
Left-Right Scale	
Mean	5.4
Median	5.0
Q1, Q3	4.0, 7.0
Average Political Trust	
Mean	3.92
Median	4.00
Q1, Q3	1.50, 6.00
Religiosity	
Not Religious	42%
Religious	51%
Other/Don't Know	6.6%
Average Need for Cognitive Closure	
Mean	3.57
Median	3.53
Q1, Q3	3.13, 4.00
1 %	

countrytableothervariables<- regressiondata %>% tbl_summary(include=c(leftright, average_trust, Religiosity, NCCmean), statistic= list(all_continuous()~c("{mean}", "{median}", "{p25}, {p75}"), all_categorical()~"{p}%"), label = list(leftright~"Left-Right Scale", average_trust ~ "Average Political Trust", NCCmean ~ "Average Need for

Cognitive Closure"),

by=country_name, type=all_continuous()~"continuous2", missing="no") %>% bold_labels() %>% bold_levels()

countrytableothervariables

	Australia N =	Brazil N =	Canada	Germany N =	South Africa	United States
Characteristic	1,026 ¹	1,0241	$N = 999^{1}$	1,0271	$N = 1,016^{1}$	$N = 1,006^{1}$
Left-Right Scale						
Mean	5.4	5.7	5.3	4.9	5.8	5.6
Median	5.0	5.0	5.0	5.0	5.0	5.0
Q1, Q3	5.0, 7.0	4.0, 9.0	4.0, 7.0	4.0, 6.0	5.0, 7.0	4.0, 8.0
Average Political Trust						
Mean	4.88	3.32	4.66	3.91	2.45	4.29
Median	5.00	3.50	5.00	4.00	2.00	4.50
Q1, Q3	3.00, 7.00	1.00, 5.00	2.50, 6.50	1.50, 6.00	0.00, 4.00	2.00, 6.50
Religiosity						
Not Religious	58%	25%	53%	58%	20%	40%
Religious	34%	71%	38%	34%	76%	53%
Other/Don't Know	7.5%	4.3%	8.8%	7.9%	4.3%	7.1%
Average Need for Cognitive Closure						
Mean	3.50	3.75	3.52	3.50	3.67	3.51
Median	3.47	3.73	3.47	3.47	3.67	3.47
Q1, Q3	3.07, 3.87	3.33, 4.20	3.13, 3.93	3.13, 3.93	3.27, 4.07	3.07, 3.93
1 %						

#table for dependent variable and mediating variable.

 $main variable stable <- \ regression data \ \%>\% \ tbl_summary (include = c (average_polconspiracies, eliteppl diffrescaled), and the contraction of the contraction$

 $statistic= list(all_continuous() \sim c("\{mean\}", "\{median\}", "\{p25\}, \{p75\}")),\\$

 $label = list(average_polconspiracies {\tt `"Average Political Conspiracy Belief"}, eliteppl diffrescaled {\tt `"External Political Conspiracy Belief"}) and {\tt `"External Political Conspiracy Belief"}). The state of the political Conspiracy Belief" and {\tt `"External Political Conspiracy Belief"}) and {\tt `"External Political Conspiracy Belief"}). The state of the political Conspiracy Belief" and {\tt `"External Political Conspiracy Belief"}) and {\tt `"External Political Conspiracy Belief"}) and {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are also as a state of {\tt `"External Political Conspiracy Belief"}). The state of {\tt `"External Political Conspiracy Belief"}) are a state of {\tt `"External Political Conspiracy Be$

Efficacy Score"),

by=country_name,

 $type = list(average_polconspiracies \sim \verb"continuous2", eliteppldifrescaled \sim \verb"continuous2"),$

missing="no") %>% bold_labels() %>% bold_levels()

mainvariablestable

Characteristic	Australia N = 1,026	Brazil N = 1,024	Canada N = 999	Germany N = 1,027	South Africa N = 1,016	United States N = 1,006
Average Political Conspiracy Belief						
Mean	1.79	2.02	1.71	1.52	2.51	2.05
Median	2.00	2.00	2.00	1.67	2.67	2.00
Q1, Q3	1.00, 2.67	1.33, 2.67	0.67, 2.67	0.33, 2.33	2.00, 3.00	1.33, 3.00
External Political Efficacy Score						
Mean	2.45	2.11	2.38	2.38	2.03	2.34
Median	2.00	2.00	2.00	2.00	2.00	2.00
Q1, Q3	2.00, 3.00	1.00, 3.00	2.00, 3.00	1.00, 3.00	1.00, 3.00	1.00, 3.00

```
#plot for country democracy scores.
#first create data-set with only one value of democracy score per country.
distinct_data<- regressiondata %>% distinct(country_name, v2x_libdem, .keep_all = TRUE)

#quality of democracy graph.
library(ggthemes)
ggplot(distinct_data, aes(x = reorder(country_name, v2x_libdem), y = factor(round(v2x_libdem, 2)), fill = factor(round(v2x_libdem, 2)))) +
geom_bar(stat = "identity") +
ylab("Liberal Democracy Score") +
labs(title="Liberal Democracy Scores (0-1) by Country", subtitle="Measured in the Year 2022") +
coord_flip() +
theme_tufte()+
scale_fill_economist() +
theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 12), plot.subtitle=element_text(hjust = 0.5, size = 10),axis.title.y = element_bl
ank())
```

Liberal Democracy Scores (0-1) by Country Measured in the Year 2022


```
#plots of dependent and mediating variable.
#create data-set that takes the average of average pol conspiracy beliefs/political efficacy scores for each country.
averages_by_country <- regressiondata %>%
 group_by(country_name) %>%
 summarise(
  average_polconspiraciescountry = mean(average_polconspiracies, na.rm = TRUE),
  avg_pol_efficacy = mean(eliteppldifrescaled, na.rm = TRUE))
#average political conspiracy belief graph.
ggplot(averages_by_country, aes(x = reorder(country_name, average_polconspiraciescountry), y = factor(round(average_polconspiraciescountry, 2)), fill =
factor(round(average_polconspiraciescountry, 2)))) +
 geom_bar(stat = "identity") +
 ylab("Average Belief in Political Conspiracy Theories") +
 labs(title="Average Political Conspiracy Beliefs by Country", subtitle="Measured on a Scale from 0-4 (low->high)")+
 coord_flip() +
 theme tufte()+
 scale_fill_brewer(palette = "BuGn") +
 theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 12), plot.subtitle=element_text(hjust = 0.5, size = 10), axis.title.y = element_bl
ank())
```

Average Political Conspiracy Beliefs by Country Measured on a Scale from 0-4 (low->high)


```
#average external political efficacy graph.

ggplot(averages_by_country, aes(x = reorder(country_name, avg_pol_efficacy), y = factor(round(avg_pol_efficacy, 2)), fill = factor(round(avg_pol_efficacy, 2)))) +

geom_bar(stat = "identity") +

ylab("Average External Political Efficacy") +

labs(title="Average External Political Efficacy by Country", subtitle="Measured on a Scale from 1-5 (low->high)")+

coord_flip() +

theme_tufte()+

scale_fill_brewer(palette = "BuPu") +

theme(legend.position = "none", plot.title = element_text(hjust = 0.5, size = 12), plot.subtitle=element_text(hjust = 0.5, size = 10), axis.title.y = element_bl
ank())
```

Average External Political Efficacy by Country Measured on a Scale from 1-5 (low->high)

Final Model Visualization

```
#visualizing final model

library(visreg)

visreg(mediationmodel, "v2x_libdemrescaled", # specifying x-variable to visualize

ylab = "Average Political Conspiracy Belief (low->high)",

xlab = "Quality of Democracy Score 0-100",

gg = TRUE, # creating a ggplot

band = TRUE) +

theme(plot.title = element_text(hjust = 0.5, size = 12)) +

ggtitle("Predicted Relationship Between Democratic Quality and Political Conspiracy Beliefs")
```

Predicted Relationship Between Democratic Quality and Political Conspiracy Beliefs

