page 1

hapter
$$4:$$
63. Solution: $S = (I - P^T)^{-1} = \begin{bmatrix} 2.2069 & 1.3793 & 0.6207 \\ 0.9655 & 3.1034 & 0.8966 \\ 1.3103 & 2.0690 & 1.9310 \end{bmatrix}$

$$S_{13} = 0.6207$$
, $S_{23} = 0.8966$, $S_{23} = 1.9310$.

$$f_{ij} = \frac{S_{ij} - k_{ij}}{S_{ij}} \qquad f_{i3} = \frac{S_{i3}}{S_{33}} = 0.3214, \ f_{23} = \frac{S_{23}}{S_{33}} = 0.4643, \ f_{33} = \frac{S_{33} - 1}{S_{33}} = 0.4821$$

66.(a)
$$\pi_0 = \frac{1}{4} + \frac{3}{4} \pi^{2} = \frac{1}{3}$$

$$(1)$$
 (1) (1) (2) (3) (3) (3) (3) (3) (4) (3) (4) (3) (4)

(C)
$$7.=\frac{1}{5}+\frac{1}{2}7.0+\frac{1}{3}7.3 \Rightarrow 27.3-37.0+1=0$$
.

$$(2) \quad \lambda_0 = 6 \quad 2 \quad \lambda_0 + 3 \quad \lambda_0 = 2 \quad \lambda_0$$

$$\frac{1}{2} = 0.366$$

 $\Rightarrow \begin{cases} 7 e^{20.2} \\ n_1 = 0.4 \end{cases}$ 7 = 0.4

$$P_{7} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \rangle \begin{pmatrix} \pi_{0} = \frac{1}{4}\pi_{1} + \frac{1}{4}\pi_{1} \\ \pi_{1} = \frac{1}{2}\pi_{0} + \frac{1}{2}\pi_{1} + \frac{1}{4}\pi_{1} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$= \langle \pi_{0} = \frac{1}{4}\pi_{1} + \frac{1}{4}\pi_{1} \rangle$$

$$= \langle \pi_{0} = \frac{1}{$$

Page 2. Markov Desición Process additional problem. Solution: Let I be "Machine is working". X be "Machine is not working". ×
0.6 ×1 PT = (0.4 0.6)
-0.4 Xz × 0.6 V 0.6 0.4 %, PT= (0.6 0.4) X 0.5 0.5 % Bill 7.0 X Buck stay of home when O.W. $\chi^{1} = \left\langle \begin{array}{c} 0 \\ 1 \end{array} \right\rangle$ Suppose Brick stay at home when Machine is good. Buck stag at home next day when machine is not good. $\chi_{z} = \left\langle \right\rangle$ 0. W. Bill stay athome when Machine is good the next day y, = { 0 Bill stay at home when machine is not good. the next day But this is not linear program. Object function; Max 60x20x2. so relax it to linear; Constraints: 10=0.4x, +0.6y, +0.6x2+0.5y2; Kinj; 30] Replace it. n = 0.6 x 1+0.4x+0.4x,+0.5y=; and solve the problem. We get y1=1, x2=1, ベッナン ニーノ Xztなマニリ $n_0 = 0.6$. 11,7070; [Xi, 4; is binary, i=1,2, j=1,2;

[S& 339 HW#2 Norme & Bolun Xu.

Page ?.

we get $y_1 = 1, x_2 = 1, \lambda_0 = 0.6$, so $p_T = \begin{pmatrix} 0.6 & 0.4 \\ 0.6 & 0.4 \end{pmatrix}$

Max 60.20.20=720 (dollars)

The oftimal policy is. "When to machine is good, Bill stay at home the next day, when machine is not good, Buck stay at home the next day." The expected average profit is \$720 per day.

Infinite State Markov Chain.

 $\left[I - P^{T} \right] \pi = b \Rightarrow \pi^{T} = \begin{bmatrix} 1 & 2 & 3 & --- & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 \\ \hline 0.1198 & 0.05554 & 0.05724 & --- & 0.003492 & --- & --$

· Finding min (Thm)

 $M=50 \Rightarrow 10.9 M = 45$

1 45 0.00258 7 = 46 0.002399 47 2002205 ratio = 10 7/1 2

48 0.002/08

491 0.00175

50 . 0.002 281

0.9266 0.9297 47 0.9190

0.9562 48 0.8301 = mm = h

50. 1.3035

plug in \$ 1 = 0.8301, and calutate again 1. We obtain:

2 7; + 7m =/

0.002552 0.002572

45 0.9266

45 0.002552

7= 46 0.002372

0.002180 0.8301 (min = 1 (nochange) 0.002085

n*=149 0.00[73] 50 1.3035 40 0.002256.

So, An= Trx. h n-nx = 0.001731. 0.8301 -49 for n=n+=49

i = 1 -- 100, in this case, divide all probability, estimates by 0.9952.

* A pata Lwill be posted at Applendix. \ \ \frac{7}{2} \are 20.9952

Applendix for Infinite M.C. Problem

First round calculation: $\pi = \begin{bmatrix} 1 & 0.121316 \end{bmatrix}$

1	0. 121316
2	0.056155
3	0.057877
4	0.060428
5	0.051921
6	0.048921
7	0.045694
8	0.042088
9	0.039104
10	0. 036273
11	0.033617
12	0. 031179
13	0.028912
14	0. 026809
15	0.02486
16	0. 023052
17	0. 021376
18	0.019822
19	0.01838
20	0.017044
21	0.015805
22	0. 014655
23	0.01359
24	0.012602
25	0.011685
26	0.010836
27	0.010048
28	0.009317
29	0.00864
30	0.008011
31	0.007429
32	0.006889
33	0.006388
34	0.005923
35	0.005493
36	0.005093
37	0.004723
38	0.00438
39	0.004061
40	0.003766
41	0.003492
42	0.003238
43	0.003002
44	0.002785
45	0.00258
46	0.002399
47	0.002205
48	0.002108
49	0.00175
50	0.002281
00	

Second round calculation:

iculation.
0.119979
0.055536
0.057239
0.059762
0.051348
0.048382
0.04519
0.041624
0.038673
0. 035873
0. 033246
0. 030835
0. 028593
0. 026513
0. 024586
0.022798
0. 02114
0.019603
0.013003
0.016856
0.01563
0.01303
0.014434
0.01344
0. 012403
0. 011337
0.010718
0.009937
0.009214
0.008344
0.007923
0.006813
0.006317
0.005858
0. 005432
0.005432
0.003037
0. 004331 0. 004016
0.004016
0.003202
0.002969
0.002754
0. 002552
0.002372
0.00218
0.002085
0. 001731 0. 002256

i=100, π i =

1	0.119979	51	0.001192
2	0.055536		0.00099
3	0.057239	53	0.000822
4	0.059762	54	0.000682
5	0.051348	55	0.000566
6	0.048382	56	0.00047
7	0.04519	57	0.00039
8	0.041624	58	0.000324
9	0.038673	59	0.000269
10		60	0.000223
11		61	0.000185
12	0. 030835	62	0.000154
13		63	0.000128
	0.026513	64	0.000106
	0.024586	65	8.79E-05
	0. 022798	66	7.3E-05
17		67	
	0.019603	68	5. 03E-05
	0.018178	69	4. 18E-05
	0.016856	70	3.47E-05
21		71	2.88E-05
22			2.39E-05
23			1.98E-05
24			1.65E-05
25			1. 37E-05
26			1. 13E-05
27		77	
28		. 78	
29		79	
30		80	
31		81	4.47E-06
32		82	
	0.006317	83	
	0.005858	84	
	0.005432	85	
-	0.005037		1.76E-06
37	-	87	T
38		88	
39		89	
40		90	
4:		91	
42	_	92	
4:		93	1
4		94	-
4:	-	95	
4		96	
4			
4		98	
4		99	
5			
3	0. 001437	Σπ i=	0.995177
		2 1	0.000111

ISE 339 HW#2 Name: Bohun Xu.

page 5.

Absorbing state Markov Chain problem!

$$F = (I - P_T)^{-1} = \begin{pmatrix} 151.9608 & 14.7059 \\ 122.5490 & 44.1176 \end{pmatrix}$$

Obviously, any patients must come to hospital first, and then they will decide the next step. So, at first, a patient must be at hospital.

E,(Money) = 151.9608x\$655 +14.7059x\$226=102857.86 dollars.

$$P_{T} = \begin{pmatrix} GPP & Hos & (GPP) & (Oinet) \\ 0.854 & 0.028 & 0.112 & 0 \\ 0.025 & 0 & 0.969 & 0 \\ 0 & 0.025 & 0 & 0.969 \end{pmatrix} F = \begin{pmatrix} I-P_{T} \end{pmatrix} = \begin{pmatrix} 26.9632 & 38.5569 \\ 17.9014 & 76.6696 \\ 21.7445 & 31.0943 \\ 14.4366 & 61.8303 \end{pmatrix}$$

$$F = (I-P_7)^{-1} = \begin{cases} 26.9632 & 38.5569 & 97.453 & 3.7313 \\ 17.9014 & 76.6696 & 68.6761 & 7.4196 \\ 21.7445 & 31.0943 & 110.8188 & 3.0091 \\ 14.4366 & 61.8303 & 52.1581 & 38.2416 \end{cases}$$

HOME

38.2416

Ez(Money)= 76.6696 X\$655 + 17.9014X\$ 680 + (64.6761+7.4196) X\$226 =\$78 685.17

Markov "Census"-type Model Problem: Solution: V R K Leave

 $\sqrt{\frac{1}{3}} = 0 + \frac{1}{3} = \frac{1}{3}$

R 1 3 3 0

$$k \quad 0 \quad \frac{2}{3} \quad \frac{1}{3} \quad 0.$$
 $k \quad 0 \quad 0 \quad 0 \quad 1$

$$F = (I - P_{T})^{-1} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 6 & 4.5 \\ 3 & 6 & 6 \end{pmatrix}$$

Goal N= (f)

$$F' = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

$$H = F^{-1} N = \begin{pmatrix} \frac{1}{3} \\ 0 \\ 0 \end{pmatrix}$$
Answer: Each month, Federation introduces \$\frac{1}{3}\$ billion

into to Vulcan.