経済統計:前期第2回中間試験

村澤 康友

2011年6月6日

注意:3問とも解答すること.

- 1. (20点)以下の用語の定義を式または言葉で書きなさい(各20字程度).
 - (a)ベルヌーイ試行
 - (b)相関係数
 - (c)条件つき分散
 - (d)確率収束
- 2. (30 点) サイコロを転がして出た目の枚数のコインを投げる実験を考える.サイコロの目を X , コインの「表」の枚数を Y とする.以下の問いに答えなさい.
 - (a)(X,Y)の同時確率関数を次の表の形で書きなさい.

$X\backslash Y$	0	1	2	3	4	5	6
1							
2							
3							
4							
5							
6							

- (b) Y の周辺確率関数を式とグラフで書きなさい.
- (c) Y = 3 のときの X の条件つき確率関数を式とグラフで書きなさい.
- 3. (50 点) 某大学の「経済学入門」の試験は ×問題であり,100 問中 6 割以上の正答で合格となる.A 君は一度も授業に出席しておらず,問題文すら理解できないが,コイントス(または鉛筆ころがし)で ×を選び,あわよくば合格しようと考えている.A 君の正答数を X とする.
 - (a) X はどのような分布をするか?分布の名称と母数(分布の形を決める数値)で答えなさい.
 - (b) X の確率関数を式で書きなさい.
 - (c) X の平均と分散を求めなさい (ヒント: 100 回の独立なベルヌーイ試行と考える).
 - (d) $\Pr[X \ge 60]$ の厳密な計算は難しいが,正規分布で近似して求めることができる.標準正規分布表を利用して A 君が合格する確率を近似的に求めなさい.
 - (e) 出題数を 25 問として A 君が合格する確率を近似的に求めなさい.

解答例

- 1. 確率・統計の基本用語
 - (a) 結果が2通りしかない試行.
 - (b)標準化した確率変数の共分散.
 - $\sigma_{XY}/(\sigma_X\sigma_Y)$ でも OK .
 - (c) Y = y が与えられたときの X の条件つき分散は

$$var(X|Y = y) := E((X - E(X|Y = y))^2|Y = y).$$

- ●「条件つき分布の分散」でも OK.
- (d) 任意の $\epsilon > 0$ について

$$\lim_{n \to \infty} \Pr[|X_n - c| < \epsilon] = 1$$

なら $\{X_n\}$ はcに確率収束.

- 「大数の法則」はダメ.
- 2. 多变量分布
 - (a)(X,Y)の同時確率関数は

$X \backslash Y$	0	1	2	3	4	5	6
1	1/12	1/12	0	0	0	0	0
2	1/24	2/24	1/24	0	0	0	0
3	1/48	3/48	3/48	1/48	0	0	0
4	1/96	4/96	6/96	4/96	1/96	0	0
5	1/192	5/192	10/192	10/192	5/192	1/192	0
6	1/384	6/384	15/384	20/384	15/384	6/384	1/384

または

$X \backslash Y$	0	1	2	3	4	5	6
1	1/12	1/12	0	0	0	0	0
	1/24					0	0
3	1/48	1/16	1/16	1/48	0	0	0
4	1/96	1/24	1/16	1/24	1/96	0	0
5	1/192	5/192	5/96	5/96	5/192	1/192	0
6	1/384	1/64	5/128	5/96	5/128	1/64	1/384

- 同時確率でなければ0点.
- (b) Y の周辺確率関数は

$$p_Y(y) = \begin{cases} 21/128 & \text{for } y = 0\\ 5/16 & \text{for } y = 1\\ 33/128 & \text{for } y = 2\\ 1/6 & \text{for } y = 3\\ 29/384 & \text{for } y = 4\\ 1/48 & \text{for } y = 5\\ 1/384 & \text{for } y = 6\\ 0 & \text{elsewhere} \end{cases}.$$

なお $y=1,\ldots,6$ について

$$\begin{split} p_Y(y) &:= \Pr[Y = y] \\ &= \sum_{x=1}^6 \Pr[X = x, Y = y] \\ &= \sum_{x=1}^6 \Pr[Y = y | X = x] \Pr[X = x] \\ &= \sum_{x=1}^6 {}_x C_y \left(\frac{1}{2}\right)^y \left(\frac{1}{2}\right)^{x-y} \frac{1}{6} \\ &= \frac{1}{6} \sum_{x=1}^6 \frac{{}_x C_y}{2^x}. \end{split}$$

グラフは省略.

- ・ 式で5点,グラフで5点。
- 前問の解答と整合的なら OK.
- (c) Y = 3 のときの X の条件つき確率関数は

$$p_{X|Y}(x|Y=3) = \begin{cases} 1/8 & \text{for } x=3\\ 1/4 & \text{for } x=4\\ 5/16 & \text{for } x=5\\ 5/16 & \text{for } x=6\\ 0 & \text{elsewhere} \end{cases}$$

なお $x=3,\ldots,6$ について

$$\begin{split} p_{X|Y}(x|Y=3) &:= \frac{\Pr[X=x,Y=3]}{\Pr[Y=3]} \\ &= \frac{\Pr[Y=3|X=x]\Pr[X=x]}{\Pr[Y=3]} \\ &= \frac{{}_xC_3(1/2)^3(1/2)^{x-3}(1/6)}{1/6} \\ &= \frac{{}_xC_3}{2^x}. \end{split}$$

グラフは省略.

- ・ 式で5点,グラフで5点。
- この問題では $\Pr[X=x]=\Pr[Y=3]$ なので,たまたま $\Pr[X=x|Y=3]=\Pr[Y=3|X=x]$ となっています.一般には $\Pr[X=x|Y=3]\neq\Pr[Y=3|X=x]$ なので,間違ったやり方(右辺)で正解を得た方はご注意下さい.
- 3. 2項分布と正規分布
 - (a) $X \sim \text{Bin}(100, 1/2)$.
 - 「2項分布」で5点,母数で5点.
 - (b) X の確率関数は

$$p_X(x) = \begin{cases} {}_{100}C_x/2^{100} & \text{for } x = 0, \dots, 100 \\ 0 & \text{elsewhere} \end{cases}.$$

(c) 第 i 問の正解 / 不正解を次の確率変数で表す.

$$X_i = egin{cases} 1 & \mathbb{E}\mathbf{F} \\ 0 & \mathbb{F}\mathbf{F}\mathbf{F} \end{cases}.$$

 $X_i \sim \operatorname{Bin}(1,1/2)$ لان

$$E(X_i) = \frac{1}{2},$$
$$var(X_i) = \frac{1}{4}.$$

 $X = X_1 + \cdots + X_{100}$ より

$$E(X) = E(X_1 + \dots + X_{100})$$

$$= E(X_1) + \dots + E(X_{100})$$

$$= \frac{100}{2}$$

$$= 50.$$

また X_1, \ldots, X_{100} は独立なので

$$var(X) = var(X_1 + \dots + X_{100})$$

= $var(X_1) + \dots + var(X_{100})$
= $\frac{100}{4}$
= 25.

- 平均で5点,分散で5点.
- (d) $X \stackrel{a}{\sim} N(50,25)$ とすると

$$\Pr[X \ge 60] = \Pr\left[\frac{X - 50}{5} \ge \frac{60 - 50}{5}\right]$$

 $\approx \Pr[Z > 2].$

ただし $Z \sim \mathrm{N}(0,1)$. 標準正規分布表より $\Pr[Z \geq 2] \approx .022750$.

- 前問の解答と整合的なら OK.
- (e) $X \sim \text{Bin}(25, 1/2)$ なら

$$E(X) = E(X_1 + \dots + X_{25})$$

$$= E(X_1) + \dots + E(X_{25})$$

$$= \frac{25}{2}$$

$$= 12.5,$$

$$var(X) = var(X_1 + \dots + X_{25})$$

$$= var(X_1) + \dots + var(X_{25})$$

$$= \frac{25}{4}$$

$$= 6.25.$$

 $X \stackrel{a}{\sim} \mathrm{N}(12.5, 6.25)$ とすると

$$\Pr[X \ge 15] = \Pr\left[\frac{X - 12.5}{2.5} \ge \frac{15 - 12.5}{2.5}\right]$$

 $\approx \Pr[Z \ge 1],$

ただし $Z \sim \mathrm{N}(0,1)$. 標準正規分布表より $\Pr[Z \geq 1] \approx .15866$.

答案は返却します.採点や成績に関する質問にも応じます.オフィスアワーの時間(月水木金の昼休み)に研究室まで来てください.