УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 95

> Студент Разыграев Кирилл Сергеевич Р3115

> Преподаватель Поляков Владимир Иванович

Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $1 < |x_4x_2x_3 - x_11x_5| \le 4$ и неопределенное значение при $|x_4x_2x_3 - x_11x_5| = 6$.

Таблица истинности

No _							1	22 22 22	1	ſ
0	$\begin{array}{c c} x_1 \\ \hline 0 \end{array}$	x_2	x_3	x_4	x_5	$x_4x_2x_3$	x_11x_5	$x_4x_2x_3$	$x_1 1 x_5$	$\begin{array}{ c c }\hline f \\\hline 1 \end{array}$
		0	0	0	0	0	2	0	2	
1	0	0	0	0	1	0	3	0	3	1
2	0	0	0	1	0	4	2	4	2	1
3	0	0	0	1	1	4	3	4	3	0
4	0	0	1	0	0	1	2	1	2	0
5	0	0	1	0	1	1	3	1	3	1
6	0	0	1	1	0	5	2	5	2	1
7	0	0	1	1	1	5	3	5	3	1
8	0	1	0	0	0	2	2	2	2	0
9	0	1	0	0	1	2	3	2	3	0
10	0	1	0	1	0	6	2	6	2	1
11	0	1	0	1	1	6	3	6	3	1
12	0	1	1	0	0	3	2	3	2	0
13	0	1	1	0	1	3	3	3	3	0
14	0	1	1	1	0	7	2	7	2	0
15	0	1	1	1	1	7	3	7	3	1
16	1	0	0	0	0	0	6	0	6	d
17	1	0	0	0	1	0	7	0	7	0
18	1	0	0	1	0	4	6	4	6	1
19	1	0	0	1	1	4	7	4	7	1
20	1	0	1	0	0	1	6	1	6	0
21	1	0	1	0	1	1	7	1	7	d
22	1	0	1	1	0	5	6	5	6	0
23	1	0	1	1	1	5	7	5	7	1
24	1	1	0	0	0	2	6	2	6	1
25	1	1	0	0	1	2	7	2	7	0
26	1	1	0	1	0	6	6	6	6	0
27	1	1	0	1	1	6	7	6	7	0
28	1	1	1	0	0	3	6	3	6	1
29	1	1	1	0	1	3	7	3	7	1
30	1	1	1	1	0	7	6	7	6	0
31	1	1	1	1	1	7	7	7	7	0
							·	· · · · · · · · · · · · · · · · · · ·		

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \,$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$ $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})$ $(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{-1}(f)$		$K^2(f)$	Z(f)	
m_0	00000	√	m_0 - m_1	0000X		m_0 - m_2 - m_{16} - m_{18}	X00X0	0000X
m_1	00001	√	m_0 - m_2	000X0	✓	m_5 - m_7 - m_{21} - m_{23}	X01X1	00X01
m_2	00010	\checkmark	m_0 - m_{16}	X0000	✓			00X10
m_{16}	10000	\checkmark	m_1 - m_5	00X01				0X010
m_5	00101	√	m_2 - m_6	00X10				1X000
m_6	00110	\checkmark	m_2 - m_{10}	0X010				0011X
m_{10}	01010	\checkmark	m_{16} - m_{18}	100X0	✓			0101X
m_{18}	10010	\checkmark	m_{16} - m_{24}	1X000				1001X
m_{24}	11000	\checkmark	m_2 - m_{18}	X0010	✓			11X00
m_7	00111	√	m_6 - m_7	0011X				01X11
m_{11}	01011	\checkmark	m_5 - m_7	001X1	✓			0X111
m_{19}	10011	\checkmark	m_{10} - m_{11}	0101X				10X11
m_{28}	11100	\checkmark	m_{18} - m_{19}	1001X				1110X
m_{21}	10101	\checkmark	m_{24} - m_{28}	11X00				1X101
m_{15}	01111	√	m_5 - m_{21}	X0101	✓			X00X0
m_{23}	10111	\checkmark	m_{11} - m_{15}	01X11				X01X1
m_{29}	11101	\checkmark	m_7 - m_{15}	0X111				
			m_{21} - m_{23}	101X1	✓			
			m_{19} - m_{23}	10X11				
			m_{28} - m_{29}	1110X				
			m_{21} - m_{29}	1X101				
			m_7 - m_{23}	X0111	√			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы														
Простые импликанты		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
		0	0	0	0	0	0	1	1	1	0	0	0	1	1	1
		0	0	0	1	1	1	0	0	1	0	0	1	0	1	1
		0	0	1	0	1	1	1	1	1	1	1	1	0	0	0
		0	1	0	1	0	1	0	1	1	0	1	1	0	0	1
		0	1	2	5	6	7	10	11	15	18	19	23	24	28	29
A	0000X	X	X													
В	00X01		X		X											
С	00X10			X		X										
D	0X010			X				X								
Е	1X000													X		
F	0011X					X	X									
G	0101X							X	X							
Н	1001X										X	X				
I	11X00													X	X	
J	01X11								X	X						
K	0X111						X			X						
L	10X11											X	X			
M	1110X														X	X
N	1X101															X
О	X00X0	X		X							X					
Р	X01X1				X		X						X			

Ядро покрытия:

$$T = \{\}$$

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (A \lor O) \ (A \lor B) \ (C \lor D \lor O) \ (B \lor P) \ (C \lor F) \ (F \lor K \lor P) \ (D \lor G) \ (G \lor J) \ (J \lor K) \ (H \lor O) \ (H \lor L) \ (L \lor P) \ (E \lor L) \ (A \lor B) \ (B \lor B) \ (B$$

Приведем выражение в ДНФ:

 $Y = ABCEFGHJLM \lor ABCEGHKLM \lor ABCFGHIJLM \lor ABCFGHIJLN \lor ABCGHIKLM \lor ABCGHIKLN \lor ABCGHIKLN \lor ABDEFHJLM \lor ABDFGHIKLM \lor ABDFGHIKLN \lor ABDFHIJLM \lor ABDFHIJLN \lor ACEGHJMP \lor ACEGHKLMP \lor ACGHIJMP \lor ACGHIKLMP \lor ACGHIKLMP \lor ADFGHIKLMP \lor ADFGHIKLMP \lor ADFGHIKLMP \lor ADFGHIKLMP \lor ADFHIJMP \lor ADFHIJMP \lor BCEGHJMOP \lor BCEGHKLMO \lor BCGHIJMOP \lor BCGHIJNOP \lor BCGHIKLMO \lor BDEFHJLMO \lor BDEFHJLMOP \lor BDFHIJLMOP \lor BDFHIJLMOP \lor BDFHIJLMOP \lor BDFHIJLMOP \lor BDFHIJNOP \lor BFGHJMOP \lor BFGH$

Возможны следующие покрытия:

$$C_{7} = \begin{cases} T \\ A \\ B \\ D \\ O X010 \\ D \\ E \\ O X010 \\ O X010 \\ D \\ E \\ O X010 \\ E \\ O X011X \\ O X011 \\ I & I001X \\ I & I001X \\ I & I001X \\ I & I001X \\ I & I00X1 \\ I & I1100X \\ I & I11$$

$$C_{19} = \begin{cases} T \\ A \\ D \\ D \\ E \\ F \\ G \\ H \\ O 1 1 X000 \\ O 11 X \\ O 1 1 X000 \\ O 101 X \\ O 1 1 X \\ O 1 1$$

$$C_{43} = \begin{cases} T \\ B \\ F \\ G \\ I \\ J \\ L \\ N \\ O \end{cases} = \begin{cases} 00X01 \\ 0011X \\ 0101X \\ 11X00 \\ 01X11 \\ 10X11 \\ 1X101 \\ X00X0 \end{cases} \qquad C_{44} = \begin{cases} T \\ B \\ F \\ G \\ I \\ K \\ L \\ M \\ O \end{cases} = \begin{cases} 00X01 \\ 0011X \\ 0101X \\ 11X00 \\ 0X111 \\ 10X11 \\ 1110X \\ X00X0 \end{cases} \qquad C_{45} = \begin{cases} T \\ B \\ F \\ G \\ I \\ K \\ L \\ N \\ O \end{cases} = \begin{cases} 00X01 \\ 0011X \\ 0101X \\ 11X00 \\ 0X111 \\ 1110X \\ X00X0 \end{cases}$$

$$C_{45} = \begin{cases} T \\ B \\ F \\ G \\ I \\ K \\ L \\ N \\ O \end{cases} = \begin{cases} 00X01 \\ 0011X \\ 0101X \\ 11X00 \\ 0X111 \\ 1110X \\ X00X0 \end{cases}$$

$$S_{43}^{a} = 31 \\ S_{43}^{b} = 39 \end{cases} \qquad S_{45}^{a} = 31 \\ S_{45}^{b} = 39$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0000X \\ 00X10 \\ 1X000 \\ 0101X \\ 1001X \\ 01X11 \\ 1110X \\ X01X1 \end{cases}$$

$$S^a = 31$$

$$S^b = 39$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1}\,\overline{x_2}\,\overline{x_3}\,\overline{x_4} \vee \overline{x_1}\,\overline{x_2}\,x_4\,\overline{x_5} \vee x_1\,\overline{x_3}\,\overline{x_4}\,\overline{x_5} \vee \overline{x_1}\,x_2\,\overline{x_3}\,x_4 \vee x_1\,\overline{x_2}\,\overline{x_3}\,x_4 \vee \overline{x_1}\,x_2\,x_4\,x_5 \vee x_1\,x_2\,x_3\,\overline{x_4} \vee \overline{x_2}\,x_3\,x_5 \vee x_1\,x_2\,x_3\,\overline{x_4} \vee \overline{x_2}\,x_3\,x_5 \vee x_1\,x_2\,x_3\,x_5 \vee x_1\,x_2\,x_3\,x_4 \vee x_1\,x_2\,x_3$$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_2} \, x_3 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, \overline{x_2} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \vee \overline{x_1} \, x_2 \, x_4 \, x_5 \vee x_1 \, x_2 \, x_3 \, \overline{x_4} \vee \overline{x_4} \, \overline{x_5} \vee \overline{x_4} \, \overline{x_5} \vee \overline{x_4} \, \overline{x_5} \vee \overline{x_5} \, \overline{x_5} \vee \overline{x_5} \, \overline{x_5} \vee \overline{x$

Определение МКНФ

$$f = (x_1 \vee \overline{x_2} \vee x_4) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) (x_1 \vee \overline{x_3} \vee x_4 \vee x_5) (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_5) (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) (\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5}) (x_1 \vee x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_2} x_3 x_5 \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \vee \overline{x_1} \overline{x_2} x_4 \overline{x_5} \vee x_1 \overline{x_3} \overline{x_4} \overline{x_5} \vee \overline{x_1} x_2 \overline{x_3} x_4 \vee x_1 \overline{x_2} \overline{x_3} x$$

Декомпозиция невозможна

$$f = \overline{x_2} \left(x_3 \, x_5 \vee \overline{x_1} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_3} \, x_4 \right) \vee x_1 \, \overline{x_4} \left(\overline{x_3} \, \overline{x_5} \vee x_2 \, x_3 \right) \vee \overline{x_1} \, x_2 \, x_4 \left(\overline{x_3} \vee x_5 \right) \quad S_Q = 35 \quad \tau = 4$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \vee \overline{x_2} \vee x_4) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) (x_1 \vee \overline{x_3} \vee x_4 \vee x_5) (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_5) \\ (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) (\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5}) (x_1 \vee x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \\ f = (x_1 \vee \overline{x_2} \vee x_4) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) (x_1 \vee \overline{x_3} \vee x_5 \vee \overline{x_2} x_4) (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) \\ (\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5}) (x_1 \vee x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \\ \varphi = \overline{x_2} x_4 \\ \overline{\varphi} = x_2 \vee \overline{x_4} \\ f = (x_1 \vee \overline{x_2} \vee x_4) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) (x_1 \vee \overline{x_3} \vee x_5 \vee \varphi) \\ (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) (\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5}) (\overline{\varphi} \vee x_1 \vee x_3 \vee \overline{x_5}) \\ \mathcal{S}_Q = 31 \quad \tau = 3$$
Декомпозиция нецелесообразна
$$f = (x_1 \vee \overline{x_2} \vee x_4) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) (x_1 \vee \overline{x_3} \vee x_5 \vee \overline{x_2} x_4) (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) \\ (\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5}) (x_1 \vee x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \\ \mathcal{S}_Q = 31 \quad \tau = 3$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_2} \left(x_3 \, x_5 \vee \overline{x_1} \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_3} \, x_4 \right) \vee x_1 \, \overline{x_4} \left(\overline{x_3} \, \overline{x_5} \vee x_2 \, x_3 \right) \vee \overline{x_1} \, x_2 \, x_4 \, \left(\overline{x_3} \vee x_5 \right) \quad \left(S_Q = 35, \tau = 4 \right)$$

Схема по упрощенной МКНФ:

$$f = (x_1 \vee \overline{x_2} \vee x_4) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) (x_1 \vee \overline{x_3} \vee x_5 \vee \overline{x_2} x_4) (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) (\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5}) (x_1 \vee x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5})$$

$$(S_Q = 31, \tau = 3)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДН Φ в базисе И, НЕ:

$$f = \overline{x_2} x_3 x_5 \overline{x_1} \overline{x_2} \overline{x_4} \overline{x_3} \overline{x_5} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_1} \overline{x_2} \overline{x_4} \overline{x_5} \overline{x_1} \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4}$$
 $(S_Q = 45, \tau = 6)$

Схема по упрощенной МКН Φ в базисе И, НЕ:

$$f = \overline{x_1} \, x_2 \, \overline{x_4} \, \overline{x_1} \, x_2 \, \overline{x_4} \, \overline{x_1} \, \overline{x_3} \, \overline{x_5} \, \overline{\varphi} \, \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_5} \, \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, x_5 \, \overline{\varphi} \, \overline{x_1} \, \overline{x_3} \, x_5 \qquad (S_Q = 37, \tau = 5)$$

$$\varphi = \overline{x_2} \, x_4$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_2 \, \overline{\overline{x_1} \, \overline{x_4}} \, \overline{x_1 \, x_4}} \, \overline{\overline{x_3} \, \overline{x_5} \, \overline{\overline{x_1} \, \overline{x_4}}} \, \overline{\overline{x_1} \, \overline{\overline{x_2}} \, \overline{x_4}} \, \overline{\overline{x_1}} \, \overline{\overline{\overline{x_2}} \, \overline{x_4}} \, \overline{\overline{x_1}} \, \overline{\overline{\overline{x_2}} \, \overline{x_4}} \, \overline{\overline{x_1}} \, \overline{\overline{\overline{x_2}} \, \overline{x_4}} \, \overline{x_1} \, \overline{\overline{x_2}}} \qquad (S_Q = 46, \tau = 11)$$

