Definition 1. Let V be a vector space over \mathbf{F}_q . Then a set of vectors $A = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ in V is said to be *linearly independent* if and only if a *linear combination* $\lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k$ being a zero-vector implies that λ_i , $i = 1, \dots, k$, are zero.

Definition 2. Let V be a vector space over \mathbf{F}_q . Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ be a non-empty subset of V. Then, the $linear span \langle S \rangle$ of S is defined as

$$\left\langle S
ight
angle = \left\{ \sum\limits_{i=1}^k \lambda_i \mathbf{v}_i : \lambda_i \in \mathbf{F}_q
ight\}$$

We say that the span $\langle S \rangle$ of S is a subset of V generated or spanned by S. Let C be a subspace of V, then a subset S of C is called a *generating*- or *spanning* set of C if $C = \langle S \rangle$.

Definition 3. An inner product on \mathbf{F}_q is a mapping $\langle \mathbf{a}, \mathbf{b} \rangle : \mathbf{F}_q^n \times \mathbf{F}_q^n \to \mathbf{F}_q$ such that, for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbf{F}_q^n ,

- a. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- b. $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle$, where α is a scalar
- c. $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$
- d. $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, for all non-zero \mathbf{u} in \mathbf{F}_q^n , if and only if $\mathbf{v} = \mathbf{0}$

Definition 4. Let \mathbf{v} and \mathbf{w} be two vectors in \mathbf{F}_q^n . Then the scalar product, aka the dot- or Euclidean inner product, between \mathbf{v} and \mathbf{w} is defined as $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^n v_i w_i \in \mathbf{F}_q$. The two vectors are said to be orthogonal to each other if and only if $\mathbf{v} \cdot \mathbf{w} = 0$. The orthogonal complement S^{\perp} of a non-empty subset S of \mathbf{F}_q^n , is defined to be

$$S^{\perp} = \left\{ \mathbf{v} \in \mathbf{F}_q^n : \mathbf{v} \cdot \mathbf{s} = 0 \text{ for all } \mathbf{s} \in S \right\}$$

When $S = \emptyset$ we define $S^{\perp} = \mathbf{F}_q^n$.

Note 1. The orthogonal complement S^{\perp} of a non-empty subset S of a vector space \mathbf{F}_q^n is always a subspace of \mathbf{F}_q^n . Moreover, $\langle S \rangle^{\perp} = S^{\perp}$.

Kit Tyabandha, PhD

Department of Mathematics, Mahidol University

Definition 5. Let V be a vector space over \mathbf{F}_q . Then a non-empty subset $A = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V is called a *basis* for V if $V = \langle A \rangle$ and A is linearly independent.

Theorem 1. Let V be a vector space over \mathbf{F}_q . If dim v=k, then V has q^k elements and

$$rac{1}{k!}\prod_{i=0}^{k-1}\left(q^k-q^i
ight)$$

different bases.

Proof. If the basis for V is $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ and $\lambda_1, \dots, \lambda_k$ are in \mathbf{F}_q , then $V = \sum_{i=1}^k \lambda_i \mathbf{v}_i$. Since $|\mathbf{F}_q|$ is q, there are q choices for each λ_i . Therefore V has exactly q^k elements.

Let $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a basis for V. Since B is non-empty, $\mathbf{v}_1 \neq \mathbf{0}$ and there are $q^k - 1$ choices for \mathbf{v}_1 . Then there are $q^k - q^{i-1}$ choices of \mathbf{v}_i , for $i = 2, \dots, k$ because $\mathbf{v}_i \notin \langle \mathbf{v}_1, \dots, \mathbf{v}_{i-1} \rangle$. Therefore there are $\prod_{i=0}^{k-1} (q^k - q^i)$ distinct ordered k-tuples, $(\mathbf{v}_1, \dots, \mathbf{v}_k)$. The order of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is irrelevant, hence the number of distinct bases for V is $\frac{1}{k!} \prod_{i=0}^{k-1} (q^k - q^i)$.

Corollary 1[1]. Let C be a linear code of length n over \mathbf{F}_q . Then, dim $C = \log_q |C|$, in other words $|C| = q^{\dim C}$.

Theorem 2. Let S be a subset of \mathbf{F}_q^n . Then, $\dim \langle S \rangle + \dim S^{\perp} = n$.

Proof. When $\langle S \rangle = \{ \mathbf{0} \}$, this is obvious. Next, consider cases where dim $\langle S \rangle = k$, where $1 \leq k < n$. Let $\{ \mathbf{v}_1, \dots, \mathbf{v}_k \}$ be a basis of $\langle S \rangle$, then we need to show that dim $S^{\perp} = \dim \langle S \rangle^{\perp} = n - k$. Since \mathbf{x} is in S^{\perp} if and only if $\mathbf{v}_1 \cdot \mathbf{x} = \dots = \mathbf{v}_k \cdot \mathbf{x} = 0$, or equivalently $A\mathbf{x} = \mathbf{0}$, where the $k \times n$ matrix A is

$$A = egin{bmatrix} \mathbf{v}_1^T \ dots \ \mathbf{v}_k^T \end{bmatrix}$$

we know that the rows of A are linearly independent. Then $A\mathbf{x} = \mathbf{0}$ is a linear system of k linearly independent equations in n variables, where n > k, and therefore admits a solution space of dimension n - k.

Corollary 2[2]. Let C be a linear code of length n over \mathbf{F}_q . Then C^{\perp} is also a linear code, and dim C + dim C^{\perp} = n

Proof. This follows from Note 1 and Theorem 2 above.

Theorem 3. Let C be a linear code of length n over \mathbf{F}_q . Then, $(C^{\perp})^{\perp} = C$.

Proof. From Corollary 2[2], we have $\dim C + \dim C^{\perp} = n$ and $\dim C^{\perp} + \dim (C^{\perp})^{\perp} = n$, and hence $\dim C = \dim (C^{\perp})^{\perp}$. Let **c** be in C. Then for all **x** in C, we have $\mathbf{c} \cdot \mathbf{x} = 0$, hence $C \subseteq (C^{\perp})^{\perp}$ and the proof.

Definition 6. A linear code of length n over \mathbf{F}_q is a subspace of \mathbf{F}_q^n . The dual code C^{\perp} of C is the orthogonal complement of the subspace C of \mathbf{F}_q^n . The dimension of the linear code C is the dimensions of C as a vector space over \mathbf{F}_q , that is to say, dim C. A linear code C of length n and dimension k over \mathbf{F}_q^n is called a q-ary [n,k]-code, or an (n,q^k) -linear code. If the distance d of C is known, it is called an [n,k,d]-linear code. Furthermore, C is said to be self-orthogonal if $C \subseteq C^{\perp}$, and self-dual if $C = C^{\perp}$.

Definition 7. Let \mathbf{x} be a word in \mathbf{F}_q^n . Then, the Hamming weight $w(\mathbf{x})$ of \mathbf{x} is defined as the number of non-zero letters in \mathbf{x} . In other words, $w(\mathbf{x}) = d(\mathbf{x}, \mathbf{0})$, where $\mathbf{0}$ is the zero word and $d(\mathbf{x}, \mathbf{y})$ is the Hamming distance between two words \mathbf{x} and \mathbf{y} in \mathbf{F}_q^n . For each element x of \mathbf{F}_q , the Hamming weight may be defined as

$$w(x) = d(x,0) = \begin{cases} 1, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Then for $\mathbf{x} = (x_1, \dots, x_n)$ in \mathbf{F}_q^n ,

$$w(\mathbf{x}) = w(x_1) + \dots + w(x_n)$$

Theorem 4. Let \mathbf{x} and \mathbf{y} be two words in \mathbf{F}_q^n . Then $d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} - \mathbf{y})$.

Proof. For each pair of letters x and y in \mathbf{F}_q , we know that d(x,y)=0 if and only if x=y, that is if and only if x-y=0, or equivalently w(x-y)=0. The proof follows since $w(\mathbf{x})=\sum_{i=1}^n w(x_i)$ and $d(\mathbf{x},\mathbf{y})=\sum_{i=1}^n d(x_i,y_i)$.

Corollary 4[3]. Let q be an even positive integer. Then, for any two words \mathbf{x} and \mathbf{y} in \mathbf{F}_q^n we have $d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} + \mathbf{y})$.

Proof. The proof follows from the fact that a = -a for all a in \mathbf{F}_q when q is even.

Theorem 5. Let **x** and **y** be two words in \mathbf{F}_2^n . Then, $w(\mathbf{x}) + w(\mathbf{y}) \ge w(\mathbf{x} + \mathbf{y})$.

Proof. For $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ in \mathbf{F}_q^n , let

$$\mathbf{x} * \mathbf{y} = (x_1 y_1, \dots, x_n y_n)$$

Then, for q=2 and n=1,

x	y	x * y	w(x) + w(y) - 2w(x * y)	w(x+y)
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	0	0

From this together with Definition 7 we know that

$$w(\mathbf{x} + \mathbf{y}) = w(\mathbf{x}) + w(\mathbf{y}) - 2w(\mathbf{x} * \mathbf{y})$$

for \mathbf{x} and \mathbf{y} in \mathbf{F}_2 , and thus the proof is implied.

Kit Tyabandha, PhD

Department of Mathematics, Mahidol University

Problem 1. Prove for any prime power q and \mathbf{x}, \mathbf{y} in \mathbf{F}_q^n , that

$$w(\mathbf{x}) + w(\mathbf{y}) \ge w(\mathbf{x} + \mathbf{y}) \ge w(\mathbf{x}) - w(\mathbf{y})$$

Definition 8. Let A be a matrix over \mathbf{F}_q . An elementary row operation performed on A is any one among the following.

- a. interchange of two rows
- b. multiplication of a row by a non-zero scalar
- c. replacement of a row by its summation with a scalar multiple of another row

Two matrices are said to be *row equivalent* to each other if one is obtainable from another by a sequence of elementary row operations.

Definition 9. Any matrix is row equivalent to a matrix in *row echelon* (RE) form or *reduced row echelon* (RRE)† form formed by a sequence of elementary row operations done upon itself. The RRE form of any given matrix is unique, but its RE's may not be so.