Résoudre dans  $\mathbb R$  les équations suivantes :

1. x + 3 = 2

- 3. 3x = 2
- **2.** 3 x = -8
- **4.** -5x = 4



Résoudre dans  $\mathbb{R}$  les équations suivantes :

- 1.  $13 + \frac{3}{2}x = 1$
- **2.**  $4x = \frac{1}{4}x + 5$
- $3. \ \frac{2x-3}{7} = \frac{3}{8}$



Existe-t-il trois nombres entiers consécutifs dont la somme vaut  $2\,520\,$ ?

Justifier.



Soit x et y deux nombres réels vérifiant 2x + 3y = 7.

- 1. Exprimer y en fonction de x.
- **2.** Exprimer x en fonction de y.



Résoudre dans  $\mathbb R$  les équations suivantes :

- 1. 2x + 3 = 5x 2
- **2.**  $(3x-1)^2=0$
- 3.  $\left(2x+\frac{5}{7}\right)^2=0$
- **4.**  $x^2 2 = (x 1)(x + 3)$



Résoudre dans  $\mathbb{R}$  les équations suivantes :

- 1. (x-3)(2x+4)=0
- **2.** (5x-1)(-3x+7)=0
- 3. 5x(-4x+1)
- **4.**  $3x(2x-1)^2=0$



Pour tout réel x, on pose  $f(x) = \frac{1}{4}x - \frac{1}{2}$ .

- 1. Calculer  $f\left(\frac{2}{3}\right)$ .
- **2.** Résoudre dans  $\mathbb{R}$  l'équation f(x) = 0.



Pour tout réel x, on pose f(x) = -2x + 3.

- 1. Déterminer l'image de  $\frac{1}{5}$  par f.
- **2.** Démontrer que -4 est un antécédent de 11 par f.

3. Déterminer les antécédents éventuels de  $\frac{1}{3}$  par la fonction f.



Soit x un nombre réel. Développer les expressions suivantes :

- 1.  $A = (x+3)^2$
- 3. C = (x-2)(x+3)
- **2.**  $B = (x-7)^2$
- **4.** D = (x-4)(x+4)



Soit y un nombre réel. Développer les expressions suivantes :

- 1.  $A = (2y 4)^2$
- **2.**  $B = 2y + (3y 5)^2$
- 3.  $C = y (y 7)^2 + y^2$
- **4.**  $D = 2(3y 7) + (y + 1)^2$



Soit x un nombre réel. Factoriser les expressions suivantes :

- 1.  $A = 9 x^2$
- 3.  $C = 4x^2 12x + 9$
- **2.**  $B = x^2 + 2x + 1$
- 4.  $D = 5x^2 13x$



Soit x un nombre réel. Factoriser les expressions suivantes :

- 1.  $A = 9(x+3) + (x+3)^2$
- **2.**  $B = (x-6)^2 16$
- **3.**  $C = (2x-7)^2 3(2x-7)$
- **4.**  $D = (x+4)^2 x(x+4)$



Montrer que pour tous nombres réels a et b on a :

$$a^{2} + b^{2} = \frac{(a+b)^{2} + (a-b)^{2}}{2}.$$



On considère un nombre réel x tel que  $-3 < x \le 2$ . Encadrer les expressions suivantes :

1. x + 4

4.  $\frac{x}{2}$ 

**2.** 5*x* 

**5.** 2x + 3

3. -4x

**6.** -x

34

Soit x un nombre réel tel que  $x \le 2$  et y un nombre réel tel que  $y \le -6$ . Que peut-on en déduire pour les expressions suivantes?

**1.** 3*x* 

3. 2x + 3y

**2.** -4y

**4.** -x - 2y



Pour chaque implication, dire si elle est vraie ou fausse :

- 1.  $x > 6 \Rightarrow x > 5$
- 2.  $x \leq 3 \Rightarrow x > 2$
- **3.**  $x > -1 \Rightarrow x \geqslant -1$
- **4.**  $2 \le x \le 5 \Rightarrow 0 \le x \le 7$ .



Un rectangle MNPQ est tel que MP > 8 et MQ > 3. Que peut-on dire du périmètre de ce rectangle?



- 1. À l'aide de la calculatrice, donner l'encadrement décimal à  $10^{-3}$  près de  $\pi$ .
- **2.** En déduire un encadrement de  $-4\pi 7$ .
- 3. L'encadrement obtenu est-il l'encadrement décimal à  $10^{-3}$  près de  $-4\pi-7$ ? Argumenter.



Soit x un nombre réel vérifiant : -5,678 < x < -5,677. Donner l'arrondi à  $10^{-2}$  près de x.



Dans chaque cas, le nombre a est-il solution de l'inéquation proposée ?

- 1. x+4 > 5x-7 a=-3.
- **2.** x + 5 < 10x 7 a = 8.



Résoudre dans  $\mathbb{R}$  les inéquations suivantes :

- 1.  $4x 3 \ge 2x + 5$
- **2.** 2 + x < 3 x
- 3.  $3-4x \ge 5+6x$
- **4.** 5 + x > x + 3



Le périmètre d'un rectangle est inférieur à 24 cm et sa longueur vaut le double de sa largeur. Quelle largeur peut-il avoir?



Un photographe propose deux formules pour tirer sur papier des photos numériques.

- Avec la formule f, on paie  $0, 15 \in$  chaque tirage.
- Avec la formule g, on paie d'abord un forfait de 12 € et chaque tirage ne vaut que 0,99 €.

À partir de combien de tirages a-t-on intérêt à choisir la formule avec forfait ?



Démontrer l'identité de Lagrange: « pour tous nombres réels  $a,\,b,\,c$  et d, on a :

$$(a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2.$$



La somme d'un nombre réel et de son carré vaut 15,75. On cherche la ou les valeur(s) possible(s) de ce nombre.

- 1. Développer l'expression  $\left(x+\frac{1}{2}\right)^2-\frac{1}{4}$ .
- 2. Résoudre le problème posé.