Total Variation Graph Neural Networks

Jonas Berg Hansen and Filippo Maria Bianchi

Balanced K-cut Problem

 The optimal cluster assignment is the solution of the following (combinatorial) problem:

$$\min_{C_1,\ldots,C_k} \sum_{k=1}^K \frac{cut(C_k,\bar{C}_k)}{\hat{S}(C_k)}$$

- The numerator minimizes the volume of edges between clusters
- The denominator ensures balanced partitions and avoids degenerate solutions
- Spectral clustering adopts a continuous relaxation that replaces the numerator with a local quadratic variation (**LQV**) term: $\|\mathbf{s}\|_{LQV} = \sum_{(i,j)\in\mathcal{E}} a_{ij} (s_i - s_j)^2$
- Tighter relaxations adopt a graph total variation (GTV) term: $\|s\|_{GTV} = \sum_{(i,j)\in\mathcal{E}} a_{ij} |s_i - s_j|$, but do not admit closed form solutions [1]

Notation

 $\mathbf{X} \in \mathbb{R}^{N \times F}$: node features $A \in \mathbb{R}^{N \times N}$: adjacency matrix $\mathbf{D} \in \mathbb{R}^{N \times N}$: degree matrix $S \in \mathbb{R}^{N \times K}$: cluster assignments

Clustering with GNNs

1. The GNN Computes soft assignments **S** using MP layers and an MLP

Balance term

2. GNN's clusters account both for topology and node features

LQV term

- 3. Current approaches are based on loose graph cut relaxations with **LQV terms**
- 4. This results in *smooth* cluster assignments

Total Variation GNN (TVGNN)

Loss based on a tighter relaxation of the minimum K-cut

$$||\mathbf{S}||_{\mathrm{GTV}} - \sum_{k=1}^{K} ||\mathbf{s}_{:,k} - \mathrm{quantile}_{K-1}(\mathbf{s}_{:,k})||_{1,K-1}$$

Balance term

Message passing layer derived from the gradient descent step of GTV

$$\mathbf{X}^{(l+1)} = \sigma \left[\left(\mathbf{I} - 2\delta \mathbf{L}_{\Gamma}^{(l)} \right) \mathbf{X}^{(l)} \mathbf{\Theta}^{(l)} \right]$$

Properties

- Yields sharper assignments compared to methods that minimize LQV
- Implicitly learns connectivity weights given by $L_{\Gamma} = D_{\Gamma} \Gamma$ where

Architecture

LQV term

Results

Cluster	assignment	ts for	simple	2D	grapi	ıs

Dataset	Top-K	SAGPool	DiffPool	MinCutPool	DMoN	TVGNN	<i>p</i> -value
Bench-easy	53.8±31.8	53.8±31.8	99.0 ± 0.3	99.0±0.3	98.8±0.5	99.6 ±0.6	.011*
Bench-hard	30.5 ± 0.7	29.5 ± 0.0	$\overline{72.8}_{\pm 0.2}$	$\overline{70.9}_{\pm 1.7}$	71.8 ± 1.9	75.3 ± 0.8	.001**
MUTAG	77.5 ± 8.4	76.8 ± 9.7	86.4 ± 7.6	85.2 ± 7.2	86.7 ± 7.0	88.4 ±7.5	.606
Mutagenicity	68.4 ± 8.4	68.2 ± 7.8	78.5 ± 1.5	78.4 ± 1.4	$\overline{77.1} \pm 1.3$	80.0 \pm 1.3	.028*
NCI1	54.0 ± 4.1	59.2 ± 7.7	$\overline{74.1}_{\pm 1.8}$	75.2 ± 1.8	74.3 ± 1.3	77.3 \pm 1.8	.018*
Proteins	69.6 ± 2.7	70.4 ± 2.5	74.6 ± 4.2	$\overline{75.7} \pm 3.0$	75.2 ± 3.3	77.1 ±2.9	.302
D&D	62.0 ± 5.6	64.2 ± 7.0	77.7 ± 3.0	78.2 ± 3.4	78.0 ± 3.3	79.5 \pm 2.2	.323
COLLAB	73.4 ± 6.9	$75.6{\scriptstyle\pm2.5}$	78.4 ± 1.6	$\overline{79.3}_{\pm 1.1}$	79.5 ± 0.7	79.8 \pm 1.1	.476
REDDIT-BINARY	$54.0{\pm}10.0$	$50.0{\scriptstyle\pm0.1}$	$80.9{\scriptstyle\pm2.7}$	82.3 ± 3.2	82.6 ± 2.9	$86.5 {\scriptstyle\pm2.8}$.007**

Graph classification performance

MP output w/ true MP output w/ $\log(SS^T)$ assignments labels **IVGNN** 1000 1500 2000 2500 1000 1500 2000 2500 1000 2000 2500 500 1000 1500 2000 2500 1000 1500

Latent features and cluster assignments for Cora

References

- Bresson, X., Laurent, T., Uminsky, D. and Von Brecht, J. Multiclass total variation clustering. Advances in Neural Information Processing Systems, 2013.
- F. M. Bianchi, D. Grattarola, and C. Alippi. Spectral clustering with graph neural networks for graph pooling. International Conference on Machine Learning, 2020.
- A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Muller. Graph clustering with graph neural networks. arXiv preprint arXiv:2006.16904, 2020.
- Contacts

500 1000 1500 2000 2500