Devika S

Department of Mathematics BITS Pilani, K K Birla Goa Campus

October 23, 2024

ANNOUNCEMENT:

An additional class will be held this **Saturday (26 October 2024)** from **12:00 PM to 1:00 PM** in **LT3**.

• If f is differentiable, $(D_{\boldsymbol{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u}$.

- If f is differentiable, $(D_{\boldsymbol{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u}$.
- Existence of all directional derivatives $\implies f$ is differentiable.

- If f is differentiable, $(D_{\boldsymbol{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u}$.
- Existence of all directional derivatives $\implies f$ is differentiable.
- For a differentiable function, $D_{\boldsymbol{u}}f = |\nabla f|\cos\theta$.

- If f is differentiable, $(D_{\boldsymbol{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u}$.
- Existence of all directional derivatives $\implies f$ is differentiable.
- For a differentiable function, $D_{\boldsymbol{u}}f = |\nabla f|\cos\theta$. The maximum value of $D_{\boldsymbol{u}}f$ is $|\nabla f|$ and f increases most rapidly when \boldsymbol{u} has the same direction of ∇f ($\theta = 0$).

- If f is differentiable, $(D_{\boldsymbol{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u}$.
- Existence of all directional derivatives $\implies f$ is differentiable.
- For a differentiable function, $D_{\boldsymbol{u}}f = |\nabla f|\cos\theta$. The maximum value of $D_{\boldsymbol{u}}f$ is $|\nabla f|$ and f increases most rapidly when \boldsymbol{u} has the same direction of ∇f ($\theta=0$). The minimum value of $D_{\boldsymbol{u}}f$ is $-|\nabla f|$ and f decreases most rapidly when \boldsymbol{u} and ∇f are in opposite direction ($\theta=\pi$). $D_{\boldsymbol{u}}f\in[-|\nabla f|,|\nabla f|]$.

- If f is differentiable, $(D_{\boldsymbol{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u}$.
- Existence of all directional derivatives $\implies f$ is differentiable.
- For a differentiable function, $D_{\boldsymbol{u}}f = |\nabla f|\cos\theta$. The maximum value of $D_{\boldsymbol{u}}f$ is $|\nabla f|$ and f increases most rapidly when \boldsymbol{u} has the same direction of ∇f ($\theta=0$). The minimum value of $D_{\boldsymbol{u}}f$ is $-|\nabla f|$ and f decreases most rapidly when \boldsymbol{u} and ∇f are in opposite direction ($\theta=\pi$). $D_{\boldsymbol{u}}f\in[-|\nabla f|,|\nabla f|]$.
- Any direction ${\boldsymbol u}$ orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f and $D_{{\boldsymbol u}} f = 0$ ($\theta = \pi/2$).

- If f is differentiable, $(D_{\boldsymbol{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u}$.
- Existence of all directional derivatives $\implies f$ is differentiable.
- For a differentiable function, $D_{\boldsymbol{u}}f = |\nabla f|\cos\theta$. The maximum value of $D_{\boldsymbol{u}}f$ is $|\nabla f|$ and f increases most rapidly when \boldsymbol{u} has the same direction of ∇f ($\theta=0$). The minimum value of $D_{\boldsymbol{u}}f$ is $-|\nabla f|$ and f decreases most rapidly when \boldsymbol{u} and ∇f are in opposite direction ($\theta=\pi$). $D_{\boldsymbol{u}}f\in[-|\nabla f|,|\nabla f|]$.
- Any direction ${\boldsymbol u}$ orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f and $D_{{\boldsymbol u}} f = 0$ ($\theta = \pi/2$).

Example: Suppose that the temperature at a point (x,y,z) is given by $T(x,y,z)=80/(1+x^2+2y^2+3z^2)$, where T is measured in degree Celsius and x,y,z in meters. In which direction does the temperature increase fastest at the point (1,1,-2)? What is the maximum rate of increase?

- If f is differentiable, $(D_{\boldsymbol{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \boldsymbol{u}$.
- Existence of all directional derivatives $\implies f$ is differentiable.
- For a differentiable function, $D_{\boldsymbol{u}}f = |\nabla f|\cos\theta$. The maximum value of $D_{\boldsymbol{u}}f$ is $|\nabla f|$ and f increases most rapidly when \boldsymbol{u} has the same direction of ∇f ($\theta=0$). The minimum value of $D_{\boldsymbol{u}}f$ is $-|\nabla f|$ and f decreases most rapidly when \boldsymbol{u} and ∇f are in opposite direction ($\theta=\pi$). $D_{\boldsymbol{u}}f\in[-|\nabla f|,|\nabla f|]$.
- Any direction ${\boldsymbol u}$ orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f and $D_{{\boldsymbol u}} f = 0$ ($\theta = \pi/2$).

Example: Suppose that the temperature at a point (x,y,z) is given by $T(x,y,z)=80/(1+x^2+2y^2+3z^2)$, where T is measured in degree Celsius and x,y,z in meters. In which direction does the temperature increase fastest at the point (1,1,-2)? What is the maximum rate of increase? Solution: $\nabla T_{|(1,1,-2)}=\frac{5}{8}(-i-2j+6k)$ and the maximum rate of increase of temperature is $\frac{5}{8}\sqrt{41}$.

Let f(x,y,z) be a differentiable function. Suppose that $\boldsymbol{r}(t) = g(t)\boldsymbol{i} + h(t)\boldsymbol{j} + k(t)\boldsymbol{k}$ be a smooth curve on the level surface f(x,y,z) = c passing through $P_0(x_0,y_0,z_0) = \boldsymbol{r}(t_0)$.

Let f(x,y,z) be a differentiable function. Suppose that $\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$ be a smooth curve on the level surface f(x,y,z) = c passing through $P_0(x_0,y_0,z_0) = \mathbf{r}(t_0)$. Then we have

$$f(g(t), h(t), k(t)) = c.$$

Let f(x,y,z) be a differentiable function. Suppose that ${\boldsymbol r}(t)=g(t){\boldsymbol i}+h(t){\boldsymbol j}+k(t){\boldsymbol k}$ be a smooth curve on the level surface f(x,y,z)=c passing through $P_0(x_0,y_0,z_0)={\boldsymbol r}(t_0)$. Then we have

$$f(g(t), h(t), k(t)) = c.$$

Differentiating with respect to t at $t=t_0$ leads to

Let f(x,y,z) be a differentiable function. Suppose that ${\boldsymbol r}(t)=g(t){\boldsymbol i}+h(t){\boldsymbol j}+k(t){\boldsymbol k}$ be a smooth curve on the level surface f(x,y,z)=c passing through $P_0(x_0,y_0,z_0)={\boldsymbol r}(t_0)$. Then we have

$$f(g(t), h(t), k(t)) = c.$$

Differentiating with respect to t at $t=t_0$ leads to

$$\nabla f|_{P_0} \cdot \boldsymbol{r}'(t_0) = 0.$$

Let f(x,y,z) be a differentiable function. Suppose that ${\boldsymbol r}(t)=g(t){\boldsymbol i}+h(t){\boldsymbol j}+k(t){\boldsymbol k}$ be a smooth curve on the level surface f(x,y,z)=c passing through $P_0(x_0,y_0,z_0)={\boldsymbol r}(t_0)$. Then we have

$$f(g(t), h(t), k(t)) = c.$$

Differentiating with respect to t at $t=t_0$ leads to

$$\nabla f|_{P_0} \cdot \boldsymbol{r}'(t_0) = 0.$$

At every point along the curve, ∇f is orthogonal to the curve's velocity vector/tangent vector.

This shows that the tangents to all the smooth curves on the level surface f(x,y,z)=c through a fixed point P_0 lie in the plane through P_0 normal to $\nabla f|_{P_0}$.

FIGURE 14.32 The gradient ∇f is orthogonal to the velocity vector of every smooth curve in the surface through P_0 . The velocity vectors at P_0 therefore lie in a common plane, which we call the tangent plane at P_0 .

Tangent Plane and Normal Line

Definition

The tangent plane at the point $P_0(x_0, y_0, z_0)$ on the level surface f(x, y, z) = c of a differentiable function f is the plane through P_0 normal to $\nabla f|_{P_0}$.

The normal line of the surface at P_0 is the line through P_0 parallel to $\nabla f|_{P_0}$.

Tangent Plane and Normal Line

Definition

The tangent plane at the point $P_0(x_0,y_0,z_0)$ on the level surface f(x,y,z)=c of a differentiable function f is the plane through P_0 normal to $\nabla f|_{P_0}$.

The normal line of the surface at P_0 is the line through P_0 parallel to $\nabla f|_{P_0}.$

Equation of the tangent plane to f(x,y,z)=c at $P_0(x_0,y_0,z_0)$ is

$$f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0) = 0.$$

Equation of the normal line to f(x,y,z)=c at $P_0(x_0,y_0,z_0)$ is

$$x = x_0 + f_x(P_0)t$$
, $y = y_0 + f_y(P_0)t$, $z = z_0 + f_z(P_0)t$.

Tangent Plane and Normal Line

Definition

The tangent plane at the point $P_0(x_0,y_0,z_0)$ on the level surface f(x,y,z)=c of a differentiable function f is the plane through P_0 normal to $\nabla f|_{P_0}$.

The normal line of the surface at P_0 is the line through P_0 parallel to $\nabla f|_{P_0}$.

Equation of the tangent plane to f(x,y,z)=c at $P_0(x_0,y_0,z_0)$ is

$$f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0) = 0.$$

Equation of the normal line to f(x,y,z)=c at $P_0(x_0,y_0,z_0)$ is

$$x = x_0 + f_x(P_0)t$$
, $y = y_0 + f_y(P_0)t$, $z = z_0 + f_z(P_0)t$.

Equivalently, the equation of the normal line is given by

$$\frac{x - x_0}{f_x(P_0)} = \frac{y - y_0}{f_y(P_0)} = \frac{z - z_0}{f_z(P_0)}.$$

1) Find the tangent plane and the normal line to the level surface $x^2 + y^2 + z^2 = 3$ at (1, 1, 1).

• Find the tangent plane and the normal line to the level surface $x^2+y^2+z^2=3$ at (1,1,1).

$$(x + y + z = 3; x = 1 + 2t, y = 1 + 2t, z = 1 + 2t)$$

- Find the tangent plane and the normal line to the level surface $x^2 + y^2 + z^2 = 3$ at (1, 1, 1). (x + y + z = 3; x = 1 + 2t, y = 1 + 2t, z = 1 + 2t)
- 2) Find the tangent plane and the normal line to the level surface of the function $x^2y + 2xz^2 = 8$ at the point (1,0,2).

- Find the tangent plane and the normal line to the level surface $x^2 + y^2 + z^2 = 3$ at (1, 1, 1). (x + y + z = 3; x = 1 + 2t, y = 1 + 2t, z = 1 + 2t)
- 2) Find the tangent plane and the normal line to the level surface of the function $x^2y + 2xz^2 = 8$ at the point (1,0,2).
- 3 Find the tangent plane and the normal line to the level surface $z = \ln(x^2 + y^2)$ at (1, 0, 0).

- Find the tangent plane and the normal line to the level surface $x^2 + y^2 + z^2 = 3$ at (1, 1, 1). (x + y + z = 3; x = 1 + 2t, y = 1 + 2t, z = 1 + 2t)
- 2 Find the tangent plane and the normal line to the level surface of the function $x^2y + 2xz^2 = 8$ at the point (1,0,2).
- 3 Find the tangent plane and the normal line to the level surface $z=\ln(x^2+y^2)$ at (1,0,0).

Tangent Plane to a Surface z = f(x, y)

Plane tangent to a surface z = f(x, y) at a point $(x_0, y_0, f(x_0, y_0))$ of a differentiable function f is given by

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0.$$

Examples

• Find parametric equations for the line tangent to the curve of intersection of xyz = 1 and $x^2 + 2y^2 + 3z^2 = 6$ at (1, 1, 1).

Examples

1 Find parametric equations for the line tangent to the curve of intersection of xyz=1 and $x^2+2y^2+3z^2=6$ at (1,1,1). $(\nabla f \times \nabla g=2\boldsymbol{i}-4\boldsymbol{j}+2\boldsymbol{k};\ x=1+2t,y=1-4t,z=1+2t.)$

Examples

- 1 Find parametric equations for the line tangent to the curve of intersection of xyz=1 and $x^2+2y^2+3z^2=6$ at (1,1,1). $(\nabla f \times \nabla g=2\mathbf{i}-4\mathbf{j}+2\mathbf{k};\ x=1+2t,y=1-4t,z=1+2t.)$
- 2 Find parametric equations for the line tangent to the curve of intersection of y=1 and $x+y^2+z=2$ at (1/2,1,1/2).
- 3 Find the normal line at the point (1,0,2) of the surface $x^2y+2xz^2=8$.
- 4 Find the tangent plane to the surface $z=\sqrt{y-x}$ at (1,2,1).

For a given unit vector u, we want to estimate how much the value of a function f changes if we move a small distance ds from a point P_0 to another point nearby.

For a given unit vector u, we want to estimate how much the value of a function f changes if we move a small distance ds from a point P_0 to another point nearby.

Estimating the Change in f in a Direction u:

The change in the value of a differentiable function f (denoted by df) when we move a small distance ds from a point P_0 in a particular direction \boldsymbol{u} is given by

$$df = (\nabla f|_{P_0} \cdot \boldsymbol{u}) ds.$$

For a given unit vector u, we want to estimate how much the value of a function f changes if we move a small distance ds from a point P_0 to another point nearby.

Estimating the Change in f in a Direction u:

The change in the value of a differentiable function f (denoted by df) when we move a small distance ds from a point P_0 in a particular direction \boldsymbol{u} is given by

$$df = (\nabla f|_{P_0} \cdot \boldsymbol{u}) ds.$$

1 By how much will $f(x,y,z)=\ln\sqrt{x^2+y^2+z^2}$ change if the point P(x,y,z) moves from (3,4,12) by a distance of 0.1 unit in the direction of $3\boldsymbol{i}+6\boldsymbol{j}-2\boldsymbol{k}$?

For a given unit vector u, we want to estimate how much the value of a function f changes if we move a small distance ds from a point P_0 to another point nearby.

Estimating the Change in f in a Direction u:

The change in the value of a differentiable function f (denoted by df) when we move a small distance ds from a point P_0 in a particular direction \boldsymbol{u} is given by

$$df = (\nabla f|_{P_0} \cdot \boldsymbol{u}) ds.$$

1 By how much will $f(x,y,z) = \ln \sqrt{x^2 + y^2 + z^2}$ change if the point P(x,y,z) moves from (3,4,12) by a distance of 0.1 unit in the direction of 3i + 6j - 2k? $(\nabla f|_{P_0} = (3,4,12)/169; df = 0.9/1183)$

For a given unit vector u, we want to estimate how much the value of a function f changes if we move a small distance ds from a point P_0 to another point nearby.

Estimating the Change in f in a Direction u:

The change in the value of a differentiable function f (denoted by df) when we move a small distance ds from a point P_0 in a particular direction \boldsymbol{u} is given by

$$df = (\nabla f|_{P_0} \cdot \boldsymbol{u}) ds.$$

- **1** By how much will $f(x,y,z) = \ln \sqrt{x^2 + y^2 + z^2}$ change if the point P(x,y,z) moves from (3,4,12) by a distance of 0.1 unit in the direction of $3\mathbf{i} + 6\mathbf{j} 2\mathbf{k}$? $(\nabla f|_{P_0} = (3,4,12)/169; df = 0.9/1183)$
- 2 By about how much will $g(x,y,z) = x + x\cos z y\sin z + y$ change if the point P(x,y,z) moves from $P_0(2,-1,0)$ a distance of ds=0.2 unit toward the point $P_1(0,1,2)$?

A differentiable function can be approximated by a linear function.

A differentiable function can be approximated by a linear function.

Standard Linear Approximation

The linearization of a differentiable function f(x,y) at a point (x_0,y_0) is the function

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

The approximation $f(x,y) \approx L(x,y)$ is called the standard linear approximation of the function f at (x_0,y_0) .

A differentiable function can be approximated by a linear function.

Standard Linear Approximation

The linearization of a differentiable function f(x,y) at a point (x_0,y_0) is the function

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

The approximation $f(x,y) \approx L(x,y)$ is called the standard linear approximation of the function f at (x_0,y_0) .

Example: Find the standard linear approximation of the function $f(x,y)=x^3y^4$ at the point (1,1). Using it, approximate f at (1.1,0.9). Also, compare exact value and approximated value of f.

A differentiable function can be approximated by a linear function.

Standard Linear Approximation

The linearization of a differentiable function f(x,y) at a point (x_0,y_0) is the function

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

The approximation $f(x,y) \approx L(x,y)$ is called the standard linear approximation of the function f at (x_0,y_0) .

Example: Find the standard linear approximation of the function $f(x,y)=x^3y^4$ at the point (1,1). Using it, approximate f at (1.1,0.9). Also, compare exact value and approximated value of f. (3x+4y-6;0.8732691,0.9)

Error in the Standard Linear Approximation

The error E(x,y)=f(x,y)-L(x,y) in the standard linear approximation of a function f can be estimated in the following way.

Error in the Standard Linear Approximation

The error E(x,y)=f(x,y)-L(x,y) in the standard linear approximation of a function f can be estimated in the following way.

Error in the standard linear approximation

If f has continuous second partial derivatives throughout an open set containing a rectangle R centered at (x_0,y_0)

 $(R:=\{(x,y):|x-x_0|\leq h,\,|y-y_0|\leq k\})$ and if M is an upper bound for the values of $|f_{xx}|,|f_{xy}|$ and $|f_{yy}|$ in the rectangle R (that is, $M=\max\{|f_{xx}|,|f_{xy}|,|f_{yy}|\}$ on R), then for any $(x,y)\in R$,

$$|E(x,y)| \le \frac{1}{2}M(|x-x_0|+|y-y_0|)^2$$
.