Lecture 17 – Networking Defense

Michael Bailey
University of Illinois
ECE 422/CS 461 – Spring 2018

Encryption, VPN

Secure sockets layer (SSL)

- transport layer security to any TCP-based app using SSL services.
- used between Web browsers, servers for ecommerce (shttp).
- security services:
 - server authentication
 - data encryption
 - client authentication (optional)

server authentication:

- SSL-enabled browser includes public keys for trusted CAs.
- Browser requests server certificate, issued by trusted CA.
- Browser uses CA's public key to extract server's public key from certificate.
- check your browser's security menu to see its trusted CAs.

SSL (continued)

Encrypted SSL session:

- Browser generates
 symmetric session key,
 encrypts it with server's
 public key, sends encrypted
 key to server.
- Using private key, server decrypts session key.
- Browser, server know session key
 - All data sent into TCP socket (by client or server) encrypted with session key.

- SSL: basis of IETF
 Transport Layer Security
 (TLS).
- SSL can be used for non-Web applications, e.g., IMAP.
- Client authentication can be done with client certificates.

IPsec: Network Layer Security

- Network-layer secrecy:
 - sending host encrypts the data in IP datagram
 - TCP and UDP segments; ICMP and SNMP messages.
- Network-layer authentication
 - destination host can authenticate source IP address
- Two principle protocols:
 - authentication header (AH) protocol
 - encapsulation security payload (ESP) protocol

- For both AH and ESP, source, destination handshake:
 - create network-layer logical channel called a security association (SA)
- Each SA unidirectional.
- Uniquely determined by:
 - security protocol (AH or ESP)
 - source IP address
 - 32-bit connection ID

Authentication Header (AH) Protocol

- provides source authentication, data integrity, no confidentiality
- AH header inserted between IP header, data field.
- protocol field: 51
- intermediate routers process datagrams as usual

AH header includes:

- connection identifier
- authentication data: sourcesigned message digest calculated over original IP datagram.
- next header field: specifies type of data (e.g., TCP, UDP, ICMP)

IP header

AH header

data (e.g., TCP, UDP segment)

ESP Protocol

- provides secrecy, host authentication, data integrity.
- data, ESP trailer encrypted.
- next header field is in ESP trailer.

- ESP authentication field is similar to AH authentication field.
- Protocol = 50.

IEEE 802.11 security

- War-driving: drive around Bay area, see what 802.11 networks available?
 - More than 9000 accessible from public roadways
 - 85% use no encryption/authentication
 - packet-sniffing and various attacks easy!
- Securing 802.11
 - encryption, authentication
 - first attempt at 802.11 security: Wired Equivalent Privacy (WEP): a failure
 - current attempt: 802.11i

Wired Equivalent Privacy (WEP):

- authentication as in protocol ap4.0
 - host requests authentication from access point
 - access point sends 128 bit nonce
 - host encrypts nonce using shared symmetric key
 - access point decrypts nonce, authenticates host
- no key distribution mechanism
- authentication: knowing the shared key is enough

WEP data encryption

- Host/AP share 40 bit symmetric key (semipermanent)
- Host appends 24-bit initialization vector (IV) to create 64-bit key
- 64 bit key used to generate stream of keys, kilV
- kilV used to encrypt ith byte, di, in frame:
- ci = di XOR kiIV
- IV and encrypted bytes, ci sent in frame

Breaking 802.11 WEP encryption

- Security hole:
- 24-bit IV, one IV per frame, -> IV's eventually reused
- IV transmitted in plaintext -> IV reuse detected
- Attack:
 - Trudy causes Alice to encrypt known plaintext d1 d2 d3 d4
 ...
 - Trudy sees: ci = di XOR kiIV
 - Trudy knows ci di, so can compute kilV
 - Trudy knows encrypting key sequence k1IV k2IV k3IV ...
 - Next time IV is used, Trudy can decrypt!

What is a VPN?

- Making a shared network look like a private network
- Why do this?
 - Private networks have all kinds of advantages
 - But building a private network is expensive
 - (cheaper to have shared resources rather than dedicated)

IP VPN benefits

- IP not really global (private addresses)
 - VPN makes separated IP sites look like one private
 IP network
- Security
- Bandwidth guarantees across ISP
 - QoS, SLAs
- Simplified network operation
 - ISP can do the routing for you

End-to-end VPNs

 Solves problem of how to connect remote hosts to a firewalled network

Customer-based Network VPNs

Customer buys own equipment, configures IPsec tunnels over the global internet, manages addressing and routing. ISP plays no role.

Provider-based Network VPNs

Provider manages all the complexity of the VPN. Customer simply connects to the provider equipment.

Firewalls

Firewalls

-firewall

isolates organization's internal net from larger Internet, allowing some packets to pass, blocking others.

Firewalls: Why

- prevent denial of service attacks:
 - SYN flooding: attacker establishes many bogus TCP connections, no resources left for "real" connections.
- prevent illegal modification/access of internal data.
 - e.g., attacker replaces CIA's homepage with something else
- allow only authorized access to inside network (set of authenticated users/hosts)
- two types of firewalls:
 - application-level
 - packet-filtering

Firewalls not just protection from outside attackers

- Bandwidth control
 - Block high bandwidth applications
 - Pointcast, Napster
- Employee network usage control
 - Block games, pornography, non-business uses
- Privacy
 - Don't let outside see what you have, how big you are, etc.
 - Similar to making corporate phone directory proprietary

- internal network connected to Internet via router firewall
- router filters packet-by-packet, decision to forward/drop packet based on:
 - source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits

Simple firewall policy configuration

Source	Dest	Арр	Action
any-inside	dmz-mail	SMTP	allow
any-inside	any-outside	SMTP	drop
any-inside	any-outside	HTTP	allow
any-inside	any-outside	FTP	allow
any-inside	any-outside	any	drop
any-outside	any-inside	any	drop

Conversations

- FTP consists of two flows, control flow and data flow
- Firewall must be smart enough to read control flow, identify subsequent data flow
- True for SIP as well

Stateful and stateless firewalls

- Original firewalls were stateless
 - Maintain static filter list, but no per flow state
 - For TCP, only look at SYN
 - Means that non-SYN TCP packets are allowed even if should be blocked
 - No concept of conversation
- Modern firewalls are typically stateful
 - Maintains dynamic list of all allowed flows
 - Better capability, harder to scale

Application gateways

- Filters packets on application data as well as on IP/TCP/ UDP fields.
- Example: allow select internal users to telnet outside.

- 1. Require all telnet users to telnet through gateway.
- 2. For authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
- 3. Router filter blocks all telnet connections not originating from gateway.

Limitations of firewalls and gateways

- IP spoofing: router can't know if data "really" comes from claimed source
- if multiple app's. need special treatment, each has own app. gateway.
- client software must know how to contact gateway.
 - e.g., must set IP address of proxy in Web browser

- filters often use all or nothing policy for UDP.
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks.

IDS

Intrusion detection

- "Building burglar alarms for the net"
- Idea: make systems sensitive to threatening actions, and make them capable of alerting authorities when they notice anomalies
- Necessarily post-hoc
- Broad types
 - Statistical analyzers (anomaly based)
 - Rules-based systems, Attack-signature detectors (misuse)
 - Others

Know Your Attacker

- Most attackers run scripts to probe for vulnerabilities, then return later to exploit them
- Probes tend to come in waves as new holes are discovered
- Probes look very different than typical network use
- Actual attack may come long after probe

Paradigms in Intrusion Detection

Misuse Detection Intrusion Detection Systems (MD)

- define "what is abnormal" using attack signatures
- traffic that matches an attack signature as attack traffic

Anomaly Detection Intrusion Detection Systems (AD)

- define "what is normal" using profiles
- traffic that does not match the profile as abnormal

The world's simplest ID system

```
v=listen(frequently-exploited-unused-port);
while(1) {
    s=accept(v, who, howbig);
    notify_the_authorities(s, who, howbig);
    close(s);
}
```

- This won't catch stealth scanners
- Doesn't have a global view
- Can't detect attacks on systems in use
- Surprisingly effective at catching scans nonetheless

Statistical analysis

- Constantly capture packets, watch logs, note typical flows
 - I.E. "95% of traffic flows from inside the firewall to outside web services"
 - Set off alarm bells when traffic not matching typical flows is seen
 - Can be a first alert against configuration problems
- Gains a global picture of the system

Rule-based systems

- Monitor logs and network for behavior violating or matching static rules
- Require some knowledge of attack behaviors
- Less prone to false alarms
- Often combined with anomaly detectors

Example: Snort

From: Rafeeq Ur Rehman, Intrusion Detection Systems with Snort: Advanced IDS Techniques with Snort, Apache, MySQL, PHP, and ACID.

Snort components

- Packet Decoder
 - input from Ethernet, SLIP, PPP...
- Preprocessor:
 - detect anomalies in packet headers
 - packet defragmentation
 - decode HTTP URI
 - reassemble TCP streams
- Detection Engine: applies rules to packets
- Logging and Alerting System
- Output Modules: alerts, log, other output

Snort detection rules

Additional examples

```
alert tcp any any -> 192.168.1.0/24 111
(content:"|00 01 86 a5|"; msg: "mountd access";)

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111
(content: "|00 01 86 a5|"; msg: "external mountd access";)

! = negation operator in address
content - match content in packet
```

https://www.snort.org/documents/snort-users-manual

192.168.1.0/24 - addr from 192.168.1.1 to 192.168.1.255

Using an IDS

- Plan your incident response process well before you install the system
- Know what you're looking for
- Make the system comprehensive
- Don't overreact to alarms
- If using a rules-based system, keep up with vulnerability reports

Future

S-BGP Design Overview

- IPsec: secure point-to-point router communication
- Public Key Infrastructure: authorization for all S-BGP entities
- Attestations: digitally-signed authorizations
 - Address: authorization to advertise specified address blocks
 - Route: Validation of UPDATEs based on a new path attribute, using PKI certificates and attestations
- Repositories for distribution of certificates, CRLs, and address attestations
- Tools for ISPs to manage address attestations, process certificates & CRLs, etc.

Slide: Steve Kent

DNSSEC

- Basically no change to packet format
 - Goal is security of DNS data, not channel security
- New Resource Records (RRs)
 - RRSIG : signature of RR by private zone key
 - DNSKEY : public zone key
 - DS : crypto digest of child zone key
 - NSEC / NSEC3 authenticated denial of existence
- Lookup referral chain (unsigned)
- Origin attestation chain (PKI) (signed)
 - Start at pre-configured trust anchors
 - DS/DNSKEY of zone (should include root)
 - DS \rightarrow DNSKEY \rightarrow DS forms a link

Other

- IPv6
- SDN