Boletín de Problemas 5: COMPONENTES DINÁMICOS

Problema 1. Tres condensadores iguales de valor 3 μ F se conectan como se indica en la figura. Determinar la capacidad equivalente en cada caso.

Solución: $C_e=2\,\mu\mathrm{F}$; $C_e=4.5\,\mu\mathrm{F}$

Problema 2. Tres bobinas iguales de valor 10 mH se conectan como se indica en la figura. Determinar la inductancia equivalente en cada caso.

Solución: $L_e=6,66~\mathrm{mH}$; $L_e=15~\mathrm{mH}$

Problema 3. Las dos inductancias de la figura están acopladas, con inductancias propias $L_1 = L_2 = 10~\mathrm{H}$ y mutua $M = 5~\mathrm{H}$, y los terminales correspondientes indicados. Plantear las ecuaciones de ambas bobinas con las referencias indicadas.

Solución: $v_1=10\,rac{d\,i_1}{dt}-5\,rac{d\,i_2}{dt}$; $v_2=-10\,rac{d\,i_2}{dt}+5\,rac{d\,i_1}{dt}$

Problema 4. Las dos inductancias de la figura están acopladas, con inductancias propias $L_1 = L_2 = 10 \text{ H}$ y mutua M = 10 H, y los terminales correspondientes indicados. Plantear las ecuaciones de ambas bobinas con las referencias indicadas.

Solución: $v_1=-10\,rac{d\,i_1}{dt}-10\,rac{d\,i_2}{dt}$; $v_2=10\,rac{d\,i_2}{dt}+10\,rac{d\,i_1}{dt}$

Problema 5. Dos inductancias están acopladas, con inductancias propias $L_1 = L_2 = 10 \text{ H y mutua } M = 5 \text{ H.}$ Determinar la inductancia equivalente en los casos siguientes:

Solución: $L_e=10~\mathrm{H}$; $L_e=30~\mathrm{H}$; $L_e=7.5~\mathrm{H}$; $L_e=2.5~\mathrm{H}$

Problema 6. Un condensador cargado con 0,4 culombios se conecta a una resistencia de $1~\mathrm{k}\Omega$. Si la intensidad en la resistencia justo al conectar la resistencia al condensador vale $0,1~\mathrm{A}$, determinar la evolución posterior de dicha intensidad, $i_R(t)$.

Solución: $i_R(t) = 0.1 e^{-\frac{t}{4}} A$

Problema 7. Una inductancia que almacena 0,002 julios se conecta a una resistencia de $1 \text{ k}\Omega$. Si la potencia que cede la inductancia justo al conectar la resistencia vale 40 W, determinar la evolución posterior de la intensidad en la resistencia, $i_R(t)$.

Solución: $i_R(t) = \pm 0.2 \,\mathrm{e}^{-\frac{t}{0.0001}} \,\mathrm{A}$