Neural language modeling

The boys went outside to _____

$$\hat{P}(w_t = w^k | w_1, ..., w_{t-1})$$

Objective: minimize the surprisal of the word that in fact occurred in the corpus:

$$-log\hat{P}(w)$$

Neural language model

How do we represent discrete inputs and outputs in a network?

Localist ("one hot") representation: each input unit represents an item (e.g., a word)

Distributed representation: each item is represented by multiple units, and each unit participates in representing multiple items

Neural language model

The chain rule

$$(f(g(x)))' = f'(g(x))g'(x)$$

$$f(y) = y^2 \qquad g(x) = \sin x$$

$$f'(y) = 2y \qquad g'(x) = \cos x$$

$$h(x) = f(g(x)) = (\sin x)^2$$

$$h'(x) = f'(g(x))g'(x) = 2\sin x \cos x$$

Substituting sin(x) for y in f'(y) = 2y

Computation graphs

$$L(a, b, c) = c(a + 2b)$$

$$(f(g(x)))' = f'(g(x))g'(x)$$

Backpropagation

$$L(a, b, c) = c(a + 2b)$$

$$d = 2b$$

$$d = 2b$$
 $e = a + d$

$$L = ce \qquad \frac{\partial L}{\partial c} = e$$

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$$

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a} \qquad \frac{\partial L}{\partial a} \bigg|_{a} = \frac{\partial L}{\partial e} \bigg|_{e(a)} \frac{\partial e}{\partial a} \bigg|_{a}$$

$$\frac{\partial L}{\partial e} = c \qquad \frac{\partial e}{\partial a} = 1$$

Backpropagation

$$L(a, b, c) = c(a + 2b)$$

$$L = ce$$

$$L = ce$$
 $e = a + d$

$$d = 2b$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

$$\frac{\partial L}{\partial e} = c \qquad \frac{\partial e}{\partial d} = 1 \qquad \frac{\partial d}{\partial b} = 2$$

Long-distance dependencies

- A neural feedforward language model can generalize across n-grams (easy money → easy cash)
- But it still makes the Markov assumption, which ignores long-distance dependencies:
 - The people you saw at the grocery store last night are my friends.
 - I went to Paris but I didn't get a chance to see the rest of France.

Lack of temporal invariance

Recurrent neural network

Simple recurrent network

Unrolling an RNN

$$\frac{\partial L}{\partial W_h} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W_h}$$

(Figure credit: Richard Socher)

Stacked RNNs

RNN as a language model

	PPL		WER	
Model	RNN	RNN+KN	RNN	RNN+KN
KN5 - baseline	-	221	-	13.5
RNN 60/20	229	186	13.2	12.6
RNN 90/10	202	173	12.8	12.2
RNN 250/5	173	155	12.3	11.7
RNN 250/2	176	156	12.0	11.9
RNN 400/10	171	152	12.5	12.1
3xRNN static	151	143	11.6	11.3
3xRNN dynamic	128	121	11.3	11.1

Sequence classification

Sentiment analysis, language classification, authorship identification, genre classification...

(Figure from Goldberg, 2017)

Sequence tagging

- Part-of-speech tagging:
 - The cat is about to fall from the tree.
 - Last fall I traveled to Europe.
- Named entity recognition:
 - Seattle is in Washington.
 - Washington was the first president of the United States.

Sequence tagging

Bidirectional context can help

- Will gets his revenge by masquerading as Sue's hairdresser and forcibly shaving her head bald.
- Will putting a patch over my eye help to get the object out of it?

(Elkahky et al. 2018)

Bidirectional RNN

Bidirectional RNN

Vanishing gradients

$$\frac{\partial L_t}{\partial W_h} = \sum_{k=1}^t \frac{\partial L_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W_h} \frac{\partial h_k}{\partial W_h} \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_t}{\partial h_{t-$$

$$\frac{\partial h_j}{\partial h_{j-1}} = W_h \operatorname{diag}(\sigma'(h_{j-1}))$$

(Pascanu et al., 2013)

Vanishing gradients

$$\frac{\partial h_j}{\partial h_{j-1}} = W_h \operatorname{diag}(\sigma'(h_{j-1}))$$

$$\left\|\frac{\partial h_{j}}{\partial h_{j-1}}\right\| \leq \left\|W_{h}\right\| \left\|\operatorname{diag}(\sigma'(h_{j-1}))\right\| \leq \left\|W_{h}\right\| \gamma$$
 Fixed Bounded

$$\left\| \frac{\partial h_t}{\partial h_k} \right\| \leq (\| W_h \| \gamma)^{t-k}$$

(Pascanu et al., 2013)

Simple recurrent network

LSTM ("long short-term memory")

$$c_t = f_t c_{t-1} + i_t g_t$$

$$z_t = \mathbf{concat}(D_{t-1}, x_t)$$

$$i_t = \sigma(W_i z_t + b_i)$$

$$f_t = \sigma(W_f z_t + b_f)$$

$$g_t = \tanh(W_g z_t + b_g)$$

$$D_t = o_t \tanh(c_t)$$

$$o_t = \sigma(W_o z_t + b_o)$$

(Hochreiter & Schmidhuber 1997; figure from Ma & Hovy 2016)

LSTM computation graph

LSTM language models

Model	TEST PERPLEXITY	NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JI ET AL., 2015A)	68.3	4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013)	67.6	1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015)	52.9	33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013)	51.3	20
T. C. T. C.		0.02
LSTM-512-512	54.1	0.82
LSTM-1024-512	48.2	0.82
LSTM-2048-512	43.7	0.83
LSTM-8192-2048 (No Dropout)	37.9	3.3
LSTM-8192-2048 (50% DROPOUT)	32.2	3.3
2-LAYER LSTM-8192-1024 (BIG LSTM)	30.6	1.8
BIG LSTM+CNN INPUTS	30.0	1.04

(Jozefowicz et al., 2016)

Gated Recurrent Units

Reset gate: $r_t = \sigma(U_r h_{t-1} + W_r x_t)$

Update gate: $z_t = \sigma(U_z h_{t-1} + W_z x_t)$

$$\tilde{h}_t = \tanh(U(r_t h_{t-1}) + W x_t)$$

$$h_t = (1 - z_t)h_{t-1} + z_t \tilde{h}_t$$

(Cho et al. 2014)