



Acta Crystallographica Section E

#### **Structure Reports**

#### **Online**

ISSN 1600-5368

# 4,4',6,6'-Tetrachloro-2,2'-[(1*E*,1'*E*)-propane-1,3-diylbis(nitrilomethanylylidene)]diphenol

#### Hadi Kargar,<sup>a</sup> Reza Kia,<sup>b</sup>\*‡ Amir Adabi Ardakani<sup>a</sup> and Muhammad Nawaz Tahir<sup>c</sup>\*

<sup>a</sup>Department of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, <sup>b</sup>Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and <sup>c</sup>Department of Physics, University of Sargodha, Punjab, Pakistan

Correspondence e-mail: zsrkk@yahoo.com, dmntahir\_uos@yahoo.com

Received 16 June 2012; accepted 28 June 2012

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma(C-C) = 0.003$  Å; R factor = 0.027; wR factor = 0.068; data-to-parameter ratio = 17.0.

The title compound,  $C_{17}H_{14}Cl_4N_2O_2$ , is generated by crystal-lographic twofold symmetry. The two benzene rings are inclined to one another by 80.17 (10)°. There are two intramolecular  $O-H\cdots N$  hydrogen bonds, which make S(6) ring motifs. In the crystal, molecules are linked by  $C-H\cdots O$  and weak  $C-H\cdots Cl$  interactions, forming a three-dimensional network.

#### **Related literature**

For standard bond lengths, see: Allen *et al.*, (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For related Schiff base ligands, see: Kargar *et al.* (2011); Kia *et al.* (2010).

#### **Experimental**

Crystal data

 $C_{17}H_{14}Cl_4N_2O_2$ 

 $M_r = 420.10$ 

Orthorhombic, Fdd2 Z = 8 a = 24.9797 (14) Å Mo Kα radiation b = 31.666 (3) Å  $μ = 0.69 \text{ mm}^{-1}$  c = 4.4495 (2) Å T = 291 KV = 3519.6 (4) Å<sup>3</sup>  $0.26 \times 0.23 \times 0.18 \text{ mm}$ 

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{\min} = 0.842$ ,  $T_{\max} = 0.886$ 

7926 measured reflections 1960 independent reflections 1634 reflections with  $I > 2\sigma(I)$   $R_{\rm int} = 0.028$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$   $wR(F^2) = 0.068$  S = 1.041960 reflections 115 parameters 1 restraint

H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.14$  e Å $^{-3}$   $\Delta \rho_{\rm min} = -0.16$  e Å $^{-3}$  Absolute structure: Flack (1983), 842 Friedel pairs Flack parameter: 0.08 (7)

**Table 1** Hydrogen-bond geometry (Å, °).

| $D-\mathrm{H}\cdots A$                                                                                  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|---------------------------------------------------------------------------------------------------------|------|-------------------------|-------------------------|------------------------|
| $ \begin{array}{c} O1 - H1 \cdots N1 \\ C5 - H2 \cdots O1^{i} \\ C8 - H5B \cdots C11^{ii} \end{array} $ | 0.82 | 1.84                    | 2.574 (2)               | 147                    |
|                                                                                                         | 0.93 | 2.43                    | 3.336 (2)               | 166                    |
|                                                                                                         | 0.97 | 2.89                    | 3.851 (2)               | 169                    |

Symmetry codes: (i)  $x + \frac{1}{4}$ ,  $-y + \frac{1}{4}$ ,  $z + \frac{1}{4}$ ; (ii)  $x + \frac{1}{4}$ ,  $-y + \frac{1}{4}$ ,  $z + \frac{5}{4}$ .

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HK and AAA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2464).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). *J. Chem. Soc. Perkin Trans.* 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). *Acta Cryst.* E**67**, o614. Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). *Acta Cryst.* E**66**, o2296. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

<sup>‡</sup> Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11 37077 Göttingen, Germany.

### supplementary materials

Acta Cryst. (2012). E68, o2323 [doi:10.1107/S1600536812029443]

## 4,4',6,6'-Tetrachloro-2,2'-[(1*E*,1'*E*)-propane-1,3-diylbis(nitrilomethanylylidene)]diphenol

#### Hadi Kargar, Reza Kia, Amir Adabi Ardakani and Muhammad Nawaz Tahir

#### Comment

In continuation of our work on the crystal structure analyses of Schiff base ligands (Kargar *et al.*, (2011); Kia *et al.*, (2010), we synthesized the title compound and report herein on its crystal structure.

The title compound, Fig. 1, a potential tetradentate Schiff base ligand, possesses two-fold rotation symmetry, atom C9 is located on the 2-fold axis. The bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges. The two symmetry related benzene rings are inclined to one another by 80.17 (10) °. There are two intramolecular O—H···N hydrogen bonds which make S(6) ring motifs (Table 1; Bernstein *et al.*, 1995).

In the crystal, molecules are linked by C—H···O and weak C—H···Cl interactions to form a three-dimensional network (Table 1 and Fig. 2).

#### **Experimental**

The title compound was synthesized by adding 3,5-dichlorosalicylaldehyde (2 mmol) to a solution of propylenediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Light-yellow prismatic single crystals of the title compound, suitable for *X*-ray structure determination, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

#### Refinement

The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93 and 0.96 Å, with  $U_{iso}(H) = k \times U_{eq}(O,C)$  where k = 1.5 for OH and CH<sub>3</sub> H atoms and = 1.2 for other H atoms.

#### **Computing details**

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Acta Cryst. (2012). E68, o2323 Sup-1



Figure 1

The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A = -x, -y, z].



Figure 2

The crystal packing diagram of the title compound viewed down the *c*-axis, showing linking of molecules through C—H···O and weak C—H···Cl interactions (dashed lines).

#### 4,4',6,6'-Tetrachloro-2,2'-[(1E,1'E)-propane-1,3- diylbis(nitrilomethanylylidene)]diphenol

Crystal data

F(000) = 1712 $C_{17}H_{14}Cl_4N_2O_2$  $M_r = 420.10$  $D_{\rm x} = 1.586 \; {\rm Mg \; m^{-3}}$ Orthorhombic, Fdd2 Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Hall symbol: F 2 -2d Cell parameters from 1234 reflections a = 24.9797 (14) Å $\theta = 2.5 - 27.5^{\circ}$ b = 31.666 (3) Å  $\mu = 0.69 \text{ mm}^{-1}$ T = 291 Kc = 4.4495 (2) Å $V = 3519.6 (4) \text{ Å}^3$ Prism, light-yellow Z = 8 $0.26\times0.23\times0.18~mm$ 

Acta Cryst. (2012). E68, o2323

Data collection

Bruker SMART APEXII CCD area-detector

diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 $\varphi$  and  $\omega$  scans

Absorption correction: multi-scan

(SADABS; Bruker, 2005)

 $T_{\min} = 0.842, T_{\max} = 0.886$ 

Refinement

Refinement on  $F^2$ 

Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.027$ 

 $wR(F^2) = 0.068$ 

S = 1.03

1960 reflections

115 parameters

1 restraint

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier

map

7926 measured reflections 1960 independent reflections 1634 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.028$ 

 $\theta_{\text{max}} = 27.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ 

 $h = -32 \longrightarrow 32$ 

 $k = -40 \rightarrow 40$ 

 $l = -5 \rightarrow 5$ 

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0306P)^2 + 1.6825P]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\rm max} < 0.001$ 

 $\Delta \rho_{\text{max}} = 0.14 \text{ e Å}^{-3}$ 

 $\Delta \rho_{\min} = -0.16 \text{ e Å}^{-3}$ 

Absolute structure: Flack (1983), 842 Friedel

pairs

Flack parameter: 0.08 (7)

#### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | у           | Z          | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|-------------|------------|-----------------------------|-----------|
| C1  | -0.04810 (7) | 0.14212 (6) | 0.7828 (4) | 0.0378 (4)                  |           |
| C2  | -0.05597(7)  | 0.17577 (6) | 0.5854 (5) | 0.0405 (5)                  |           |
| C3  | -0.01420(7)  | 0.19985 (6) | 0.4810 (5) | 0.0429 (5)                  |           |
| H9  | -0.0203      | 0.2218      | 0.3466     | 0.052*                      |           |
| C4  | 0.03720 (8)  | 0.19078 (6) | 0.5799 (5) | 0.0419 (5)                  |           |
| C5  | 0.04673 (7)  | 0.15902 (6) | 0.7793 (5) | 0.0409 (5)                  |           |
| H2  | 0.0814       | 0.1538      | 0.8453     | 0.049*                      |           |
| C6  | 0.00437 (7)  | 0.13440 (6) | 0.8845 (4) | 0.0374 (4)                  |           |
| C7  | 0.01466 (8)  | 0.10036 (6) | 1.0958 (4) | 0.0401 (5)                  |           |
| H4  | 0.0489       | 0.0972      | 1.1753     | 0.048*                      |           |
| C8  | -0.00878(9)  | 0.03959 (6) | 1.3730 (4) | 0.0458 (5)                  |           |
| H5A | -0.0378      | 0.0351      | 1.5143     | 0.055*                      |           |
| H5B | 0.0234       | 0.0461      | 1.4863     | 0.055*                      |           |
| C9  | 0.0000       | 0.0000      | 1.1876 (7) | 0.0465 (7)                  |           |
| H6A | -0.0309      | -0.0043     | 1.0589     | 0.056*                      | 0.50      |

Acta Cryst. (2012). E68, o2323 Sup-3

## supplementary materials

| H6B | 0.0309      | 0.0043        | 1.0589       | 0.056*       | 0.50 |
|-----|-------------|---------------|--------------|--------------|------|
| Cl1 | -0.12035(2) | 0.187207 (19) | 0.46609 (15) | 0.05937 (17) |      |
| C12 | 0.09006(2)  | 0.220654 (18) | 0.43888 (16) | 0.06188 (18) |      |
| N1  | -0.02186(7) | 0.07479 (5)   | 1.1743 (4)   | 0.0424 (4)   |      |
| O1  | -0.08951(5) | 0.11861 (4)   | 0.8692 (4)   | 0.0503 (4)   |      |
| H1  | -0.0790     | 0.0999        | 0.9826       | 0.075*       |      |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|           | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|-----------|-------------|-------------|-------------|-------------|-------------|--------------|
| C1        | 0.0349 (9)  | 0.0355 (9)  | 0.0429 (12) | -0.0002(8)  | -0.0034 (8) | -0.0052 (9)  |
| C2        | 0.0322 (9)  | 0.0401 (10) | 0.0490 (12) | 0.0056(8)   | -0.0083(8)  | -0.0044(9)   |
| C3        | 0.0415 (10) | 0.0356 (9)  | 0.0518 (13) | 0.0015 (8)  | -0.0029(10) | 0.0001 (10)  |
| C4        | 0.0349 (10) | 0.0359 (10) | 0.0550 (13) | -0.0016 (8) | 0.0015 (9)  | -0.0067(9)   |
| C5        | 0.0314 (9)  | 0.0402 (10) | 0.0512 (13) | 0.0052(8)   | -0.0060(8)  | -0.0087(9)   |
| C6        | 0.0368 (9)  | 0.0344 (9)  | 0.0409 (11) | 0.0028 (7)  | -0.0035(8)  | -0.0085(9)   |
| C7        | 0.0374 (10) | 0.0420 (11) | 0.0410 (11) | 0.0067 (8)  | -0.0083(8)  | -0.0084(9)   |
| C8        | 0.0521 (12) | 0.0446 (11) | 0.0407 (12) | 0.0032 (9)  | -0.0053(9)  | -0.0001 (10) |
| C9        | 0.0567 (17) | 0.0430 (15) | 0.0399 (15) | 0.0048 (13) | 0.000       | 0.000        |
| Cl1       | 0.0371 (3)  | 0.0610(3)   | 0.0800(4)   | 0.0024(2)   | -0.0162(3)  | 0.0145 (3)   |
| C12       | 0.0434(3)   | 0.0532(3)   | 0.0891 (5)  | -0.0076(2)  | 0.0080(3)   | 0.0055(3)    |
| N1        | 0.0464 (9)  | 0.0411 (9)  | 0.0397 (9)  | 0.0039(7)   | -0.0062(8)  | -0.0015 (8)  |
| <u>O1</u> | 0.0366 (7)  | 0.0503 (9)  | 0.0639 (10) | -0.0058 (6) | -0.0093 (6) | 0.0124 (7)   |

#### Geometric parameters (Å, °)

| C1—01     | 1.331 (2)   | C6—C7                   | 1.453 (3)   |
|-----------|-------------|-------------------------|-------------|
| C1—C2     | 1.395 (3)   | C7—N1                   | 1.269 (2)   |
| C1—C6     | 1.408 (2)   | C7—H4                   | 0.9300      |
| C2—C3     | 1.373 (3)   | C8—N1                   | 1.460 (3)   |
| C2—C11    | 1.7318 (19) | C8—C9                   | 1.517 (3)   |
| C3—C4     | 1.387 (3)   | C8—H5A                  | 0.9700      |
| C3—H9     | 0.9300      | C8—H5B                  | 0.9700      |
| C4—C5     | 1.362 (3)   | C9—C8 <sup>i</sup>      | 1.517 (3)   |
| C4—C12    | 1.741 (2)   | C9—H6A                  | 0.9700      |
| C5—C6     | 1.395 (3)   | С9—Н6В                  | 0.9700      |
| C5—H2     | 0.9300      | O1—H1                   | 0.8200      |
|           |             |                         |             |
| O1—C1—C2  | 119.98 (16) | N1—C7—C6                | 121.61 (17) |
| O1—C1—C6  | 122.23 (17) | N1—C7—H4                | 119.2       |
| C2—C1—C6  | 117.79 (17) | C6—C7—H4                | 119.2       |
| C3—C2—C1  | 122.02 (17) | N1—C8—C9                | 109.52 (18) |
| C3—C2—C11 | 119.06 (15) | N1—C8—H5A               | 109.8       |
| C1—C2—Cl1 | 118.92 (15) | C9—C8—H5A               | 109.8       |
| C2—C3—C4  | 118.75 (19) | N1—C8—H5B               | 109.8       |
| C2—C3—H9  | 120.6       | C9—C8—H5B               | 109.8       |
| C4—C3—H9  | 120.6       | H5A—C8—H5B              | 108.2       |
| C5—C4—C3  | 121.42 (18) | C8 <sup>i</sup> —C9—C8  | 114.1 (3)   |
| C5—C4—Cl2 | 120.22 (15) | C8 <sup>i</sup> —C9—H6A | 108.7       |
| C3—C4—Cl2 | 118.35 (16) | C8—C9—H6A               | 108.7       |
|           |             |                         |             |

Acta Cryst. (2012). E68, o2323 sup-4

## supplementary materials

| C4—C5—C6     | 119.90 (17)  | C8 <sup>i</sup> —C9—H6B  | 108.7        |
|--------------|--------------|--------------------------|--------------|
| C4—C5—H2     | 120.1        | C8—C9—H6B                | 108.7        |
| C6—C5—H2     | 120.1        | H6A—C9—H6B               | 107.6        |
| C5—C6—C1     | 120.07 (18)  | C7—N1—C8                 | 119.53 (17)  |
| C5—C6—C7     | 119.82 (17)  | C1—O1—H1                 | 109.5        |
| C1—C6—C7     | 120.10 (18)  |                          |              |
|              |              |                          |              |
| O1—C1—C2—C3  | -177.41 (19) | C4—C5—C6—C7              | 179.60 (17)  |
| C6—C1—C2—C3  | 2.7 (3)      | O1—C1—C6—C5              | 177.77 (18)  |
| O1—C1—C2—Cl1 | 2.0(2)       | C2—C1—C6—C5              | -2.4(3)      |
| C6—C1—C2—Cl1 | -177.84 (15) | O1—C1—C6—C7              | -1.3(3)      |
| C1—C2—C3—C4  | -1.2(3)      | C2—C1—C6—C7              | 178.59 (16)  |
| C11—C2—C3—C4 | 179.35 (16)  | C5—C6—C7—N1              | -173.18 (19) |
| C2—C3—C4—C5  | -0.7(3)      | C1—C6—C7—N1              | 5.9 (3)      |
| C2—C3—C4—C12 | 178.41 (15)  | N1—C8—C9—C8 <sup>i</sup> | -174.57 (19) |
| C3—C4—C5—C6  | 1.0(3)       | C6—C7—N1—C8              | 176.32 (17)  |
| C12—C4—C5—C6 | -178.09 (15) | C9—C8—N1—C7              | -97.64 (19)  |
| C4—C5—C6—C1  | 0.5 (3)      |                          |              |

Symmetry code: (i) -x, -y, z.

#### Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>              | <i>D</i> —H | H <i>A</i> | D··· $A$  | <i>D</i> —H··· <i>A</i> |
|--------------------------------------|-------------|------------|-----------|-------------------------|
| O1—H1···N1                           | 0.82        | 1.84       | 2.574 (2) | 147                     |
| C5—H2···O1 <sup>ii</sup>             | 0.93        | 2.43       | 3.336 (2) | 166                     |
| C8—H5 <i>B</i> ···Cl1 <sup>iii</sup> | 0.97        | 2.89       | 3.851 (2) | 169                     |

Symmetry codes: (ii) x+1/4, -y+1/4, z+1/4; (iii) x+1/4, -y+1/4, z+5/4.

Acta Cryst. (2012). E68, o2323 sup-5