Property of Expectation and Variance

If
$$E(x_i)$$
 finite, $E(x_i) = \sum_{i=1}^n E(x_i)$

If $X_1 \dots X_n$ independent, $E(\pi X_i) = \pi E(x_i)$

If $X_1 \dots X_n$ independent and have finite means:

 $Var(z_i) = \sum_{i=1}^n Var(x_i)$

Moment Generating Function

For $RV(x_i) = E(e^{tX_i})$
 $= E(x_i) = E(x_i)$

Note, the derivative is with t_i not t_i .

Shotch proof: $C_i = C_i = C_i$

MGF of sum of RV:
For RV XIII Xn, MGF 4, 4n, let Y=Xi+"+Xn
for every t s.t. $\psi_i(t) < \infty$
MGF of y, 4 satisfy: 4(t) = TT 4;(t)
Probability Integral Theorem Let X have $cdf F(\cdot)$, let $Y = F(X)$,
We say transformation $X \rightarrow Y$ is probability integral transformation Pdf of Y : uniform on $[0,1]$
Inverse Sampling: Given $X \sim cdf F(i)$, to sample X , get $Y \sim U[0,1)$. Let $Z = F'(Y)$, $Z \sim X$.
Distribution of a Monotonic tunction of RV
(a,b can be cos)
Let X be RV with polf for, for which Pr(a <xb)=1.< td=""></xb)=1.<>
Let Y= r(X), r is differentiable and 1-to-1 for (a,b)
Let $Y = Y(X)$, $Y = Y(X)$ is differentiable and $1-to-1$ for (a,b) . Let (x, β) be image of (a,b) under Y .
r increasing: add +
Then, pof of Y is: r decreasing: add-
Then, post of Y is: r increasing: add + $f(x^{-1}y) = \begin{cases} f(x^{-1}y) & y \in (x, \beta) \\ f(x^{-1}y) & y \in (x, \beta) \end{cases}$
0 V

Covariana
Let X, Y be RV with finite means, E(x)=Hx, F(y)=Hy,
Let X, Y be RV with finite means, $E(X)=H_X$, $E(Y)=H_Y$, $Cov(X,Y)=E[(X-H_X)(Y-H_Y)]$.
If $6x^2 < \infty$,
$Cov(X,Y) = \widehat{E}(XY) - \widehat{E}(X)\widehat{E}(Y).$
cov(X,Y+3) = cov(X,Y) + cov(X,Z)
And, $Var(X+Y) = Var(X) + Var(Y) + 2 cov(X, Y)$
Correlation: $p(x, y) = \frac{cov(x, y)}{6x 6y}$
G_{x} G_{y}
Variance-covariance Matrix Covariance Matrix
For RV XIXn, Var(X;)<0,
covariance metrix $K: K_{ij} = Cov(X_i, X_j)$
Cross-covariance Matrix K_{XY} : $K_{XY}(i,j) = Cov(X_i, Y_j)$. $Cov(X,X) = \mathbb{E}(XX^T) - \mathbb{E}(X) \mathbb{E}(X)^T$
• $COV(X,X) = F(XX) - F(X)$