Statistics for Data Science -1

Lecture 6.1: Probability- Sample space

Usha Mohan

Indian Institute of Technology Madras

1. Understand uncertainty and concept of a random experiment.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.
- 5. Calculate probabilities of events and use a tree diagram to compute probabilities.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.
- 5. Calculate probabilities of events and use a tree diagram to compute probabilities.
- 6. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.
- 5. Calculate probabilities of events and use a tree diagram to compute probabilities.
- Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 7. Distinguish between independent and dependent events.

- 1. Understand uncertainty and concept of a random experiment.
- 2. Describe sample spaces, events of random experiments.
- 3. Understand the notion of simple event and compound events.
- 4. Basic laws of probability.
- 5. Calculate probabilities of events and use a tree diagram to compute probabilities.
- 6. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 7. Distinguish between independent and dependent events.
- 8. Solve applications of probability.

Statistics for Data Science -1

Random Experiment, Sample Space, Events

Introduction

- ▶ There is a 50% chance that India will win the toss.
- My guess is answer "a" is the right choice.
- Party ABC will probably win the next election.
- ▶ There is a 30% chance of rain tomorrow.
- We routinely see or hear claims as the ones mentioned above. What do they mean?
- ► Indeed, as a general rule, to be able to draw valid inferences about a population from a sample, one needs to know how likely it is that certain events will occur under various circumstances.
- ► The determination of the likelihood, or chance, that an event will occur is the subject matter of **probability**.

Random Experiment, Sample Space, Events

Random experiment

Definition

An experiment is any process that produces an observation or outcome.

Random experiment

Definition

An experiment is any process that produces an observation or outcome.

Definition

A random experiment is an experiment whose outcome is not predictable with certainty.

Random experiment

Definition

An experiment is any process that produces an observation or outcome.

Definition

A random experiment is an experiment whose outcome is not predictable with certainty.

Remark

However, although the outcome of the experiment will not be known in advance, let us suppose that the set of all possible outcomes is known.

► Experiment: Guessing answers to a four option multiple choice question:

 Experiment: Guessing answers to a four option multiple choice question:
 Outcome: A,B,C,D

Experiment: Guessing answers to a four option multiple choice question:

Outcome: A,B,C,D

Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Experiment: Guessing answers to a four option multiple choice question:

Outcome: A,B,C,D

Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Outcome: all possible permutations of A, B, C, D, E, and F.

Experiment: Guessing answers to a four option multiple choice question:

Outcome: A,B,C,D

Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Outcome: all possible permutations of A, B, C, D, E, and F.

Experiment: Tossing two coins and noting the outcomes

Experiment: Guessing answers to a four option multiple choice question:

Outcome: A,B,C,D

Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

Outcome: all possible permutations of A, B, C, D, E, and F.

Experiment: Tossing two coins and noting the outcomes Outcome: HH, HT, TH, TT

- Experiment: Guessing answers to a four option multiple choice question:
 - Outcome: A,B,C,D
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Outcome: all possible permutations of A, B, C, D, E, and F.
- Experiment: Tossing two coins and noting the outcomes Outcome: HH, HT, TH, TT
- Experiment: Measuring the lifetime (in hours) of a bulb

- Experiment: Guessing answers to a four option multiple choice question:
 - Outcome: A,B,C,D
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Outcome: all possible permutations of A, B, C, D, E, and F.
- Experiment: Tossing two coins and noting the outcomes Outcome: HH, HT, TH, TT
- Experiment: Measuring the lifetime (in hours) of a bulb Outcome: 0, or 1 hour, or 2 hours, or,....so on.

- Experiment: Guessing answers to a four option multiple choice question:
 - Outcome: A,B,C,D
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Outcome: all possible permutations of A, B, C, D, E, and F.
- Experiment: Tossing two coins and noting the outcomes Outcome: HH, HT, TH, TT
- Experiment: Measuring the lifetime (in hours) of a bulb Outcome: 0, or 1 hour, or 2 hours, or,....so on.
- Experiment: To throw a dart on a unit square and note the point where it lands.

- Experiment: Guessing answers to a four option multiple choice question:
 - Outcome: A,B,C,D
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Outcome: all possible permutations of A, B, C, D, E, and F.
- Experiment: Tossing two coins and noting the outcomes Outcome: HH, HT, TH, TT
- Experiment: Measuring the lifetime (in hours) of a bulb Outcome: 0, or 1 hour, or 2 hours, or,....so on.
- Experiment: To throw a dart on a unit square and note the point where it lands.
 - Outcome: Any point in the square (assuming the dart lands within the square).

Sample Space

Definition

A sample space (denoted by Ω or S) : collection of all basic outcomes.

Sample Space

Definition

A sample space (denoted by Ω or S) : collection of all basic outcomes.

Basic Outcomes: the possible outcomes that can occur must be:

Sample Space

Definition

A sample space (denoted by Ω or S) : collection of all basic outcomes.

- Basic Outcomes: the possible outcomes that can occur must be:
 - 1. mutually exclusive: only one basic outcome can occur
 - 2. exhaustive: one basic outcome must occur

Experiment: Guessing answers to a four option multiple choice question:

Experiment: Guessing answers to a four option multiple choice question:

Sample space: $S = \{A, B, C, D\}$

- Experiment: Guessing answers to a four option multiple choice question:
 - Sample space: $S = \{A, B, C, D\}$
- ► Experiment: Order of finish in a race with six students-A, B, C, D, E, F.

- Experiment: Guessing answers to a four option multiple choice question:
 - Sample space: $S = \{A, B, C, D\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Sample space: $S = \{ABCDEF, ABCDFE, \dots, EFDBAC\}$

- Experiment: Guessing answers to a four option multiple choice question:
 - Sample space: $S = \{A, B, C, D\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Sample space: $S = \{ABCDEF, ABCDFE, \dots, EFDBAC\}$
- Experiment: Tossing two coins and noting the outcomes

- Experiment: Guessing answers to a four option multiple choice question:
 - Sample space: $S = \{A, B, C, D\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Sample space: $S = \{ABCDEF, ABCDFE, \dots, EFDBAC\}$
- Experiment: Tossing two coins and noting the outcomes Sample space: S = {HH, HT, TH, TT}

- Experiment: Guessing answers to a four option multiple choice question:
 - Sample space: $S = \{A, B, C, D\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Sample space: $S = \{ABCDEF, ABCDFE, \dots, EFDBAC\}$
- Experiment: Tossing two coins and noting the outcomes Sample space: $S = \{HH, HT, TH, TT\}$
- Experiment: Measuring the lifetime (in hours) of a bulb

- Experiment: Guessing answers to a four option multiple choice question:
 - Sample space: $S = \{A, B, C, D\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Sample space: $S = \{ABCDEF, ABCDFE, \dots, EFDBAC\}$
- Experiment: Tossing two coins and noting the outcomes Sample space: $S = \{HH, HT, TH, TT\}$
- Experiment: Measuring the lifetime (in hours) of a bulb Sample space: $S = \{x : 0 \le x < \infty\}$

- Experiment: Guessing answers to a four option multiple choice question:
- Sample space: $S = \{A, B, C, D\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 Sample space: S = {ABCDEF, ABCDFE, ..., EFDBAC}
- ► Experiment: Tossing two coins and noting the outcomes Sample space: *S* = { *HH*, *HT*, *TH*, *TT* }
- Experiment: Measuring the lifetime (in hours) of a bulb Sample space: $S = \{x : 0 \le x < \infty\}$
- Experiment: To throw a dart on a unit square and note the point where it lands.

- Experiment: Guessing answers to a four option multiple choice question:
 - Sample space: $S = \{A, B, C, D\}$
- Experiment: Order of finish in a race with six students-A, B, C, D, E, F.
 - Sample space: $S = \{ABCDEF, ABCDFE, \dots, EFDBAC\}$
- Experiment: Tossing two coins and noting the outcomes Sample space: $S = \{HH, HT, TH, TT\}$
- Experiment: Measuring the lifetime (in hours) of a bulb Sample space: $S = \{x : 0 \le x < \infty\}$
- Experiment: To throw a dart on a unit square and note the point where it lands.
 - Sample space: $S = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$

Section summary

- ► Random experiment
- Sample space: set of all basic outcomes of a random experiment.