Text Searching and Processing

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 18/1/2011 1 Master-TSP-strings

Strings

- ★ Alphabet: A (finite) set of letters, $A = \{a, b, c, \ldots\}$
- * Strings: A^* set of finite sequences of letters (ε denotes the empty string)
- **Length of a string** x: |x| = length of the sequence
- * Notation—array representation: $x = x[0]x[1] \dots x[|x|-1]$

- * Alphabet of a string: alph(x) set of letters occurring effectively in x; each letter of alph(x) appears at least once in x
- * Equality

$$x = y$$
 iff $|x| = |y|$ and $x[i] = y[i]$ for $i = 0, 1, ..., |x| - 1$

Factors

- \star Concatenation or product: xy is sequence x followed by sequence y
- **Factor**: x factor of or occurs in y if y is a product uxv for two strings u, v x **prefix** of y if y = xv; x **suffix** of y if y = ux

i	0	1	2	3	4	5	6	7	8
$\overline{y[i]}$	b	a	b	a	a	b	a	b	a
left positions of aba		1			4		6		
right positions of aba				3			6		8

- **Positions**: x occurs in y at (left) position i if y = uxv and |u| = i equivalently $x = y[i]y[i+1] \dots y[i+|x|-1] = y[i \dots i+|x|-1]$
- * Positions of the first occurrence:

$$pos(x) = \min\{|u| : uxA^* \cap yA^* \neq \emptyset\}$$

★ Subsequence: x subsequence of y if $y = w_0 x[0] w_1 x[1] \dots x[|x|-1] w_{|x|}$ for |x|+1 strings $w_0, w_1, \dots, w_{|x|}$ equivalently, x can be obtained from y by deleting |y|-|x| letters

M.C. 18/1/2011 3 Master-TSP-strings

Powers

Power: u^k is the kth power of u, defined by $u^0 = \varepsilon$ and $u^e = u^{e-1}u$ for e = 1, 2, ..., k

Lemma 1

If $x^m = y^n$ for integers m, n > 0, then x, y are powers of the same string.

* **Primitive string**: a (nonempty) string x is primitive if it is not the power of another string — equivalently $x = u^k$ implies k = 1, and then x = u abaab is primitive, while ε and bababa = $(ba)^3$ are not

Lemma 2 (Primitivity Lemma)

x is primitive iff it is a factor of x^2 only as a prefix and as a suffix, that is, ux prefix of x^2 implies $u=\varepsilon$ or u=x

abaab occurs at positions 0, 5 only in abaababaab $= (abaab)^2$ bababa occurs at positions 0, 2, 4, 6 in babababababa $= (bababa)^2$

Proofs as exercises — consequences of the Periodicity Lemma

Root and Conjugates

*** Root of** x: unique primitive u for which $x = u^k$

Proposition 3

There exists one and only one primitive string which $x \neq \varepsilon$ is a power of.

abaab root of itselfba root of bababa

* Conjugates: x, y are conjugates if x = uv and y = vu abaab has 5 = |abaab| conjugates: abaab, baaba, aabab, ababa, babaa bababa has 2 = |ba| conjugates: bababa, ababab

Proposition 4

x, y are conjugate if and only if their roots are conjugate.

Proposition 5

x, y are conjugate if and only if there exists a string z such that xz = zy.

Text Searching

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 21/1/2013 1 Master-TSP-TS

Pattern matching

* Problem

Find all the occurrences of pattern x of length m inside the text y of length n

★ Two types of solutions

Fixed pattern preprocessing time O(m)Use of combinatorial properties searching time O(n)Static text preprocessing time O(n)Solutions based on indexes searching time O(m)

Searching for a fixed string

★ String matching

given a pattern x, find all its locations in any text y

 \star **Pattern**: a string x of symbols, of length m

t a t a

Text: a string y of symbols, of length n

c a c g t a t a t a t g c g t t a t a a t

★ Occurrences at positions 4; 6, 15:

```
cacgtatatatgcgttataat
tata
tata
tata
```

Basic operation: symbol comparison $(=, \neq)$

M.C. 21/1/2013 3 Master-TSP-TS

Interest

* Practical

basic problem for

- search for various patterns
- lexical analysis
- approximate string matching
- comparisons of strings—alignments
- ...

* Theoretical

- design of algorithms
- analysis of algorithms—complexity
- combinatorics on strings
- ...

Sliding window strategy

★ Scan-and-shift mechanism

put window at the beginning of text

while window on text do

scan: if window = pattern then report it

shift: shift window to the right and

memorize some information for use during next scans and shifts

M.C. 21/1/2013 5 Master-TSP-TS

Naive search

Principles

★ No memorization, shift by 1 position

Complexity

 \star $O(m \times n)$ time, O(1) extra space

Number of symbol comparisons

- \star maximum $\approx m \times n$
- * expected $\approx 2 \times n$ on a two-letter alphabet, with equiprobablity and independence conditions

Naive string-searching algorithm


```
\begin{aligned} \text{Naive\_Search}(\text{string } x, y; \text{ integer } m, n) \\ pos &\longleftarrow 0 \\ \textbf{while } pos \leq n - m \textbf{ do} \\ i &\longleftarrow 0 \\ \textbf{while } i < m \textbf{ and } x[i] = y[pos + i] \textbf{ do} \\ i &\longleftarrow i + 1 \\ \textbf{if } i = m \textbf{ then } \text{ output}('x \text{ occurs in } y \text{ at position } ', pos) \\ pos &\longleftarrow pos + 1 \end{aligned}
```

M.C. 21/1/2013 7 Master-TSP-TS

Acceleration by hashing

 \star Hash function: $h: \Sigma^m \longrightarrow \mathbf{N}$

ACCELERATED_SEARCH(string x, y; integer m, n; h) $h_x \longleftarrow h(x)$ for $pos \longleftarrow 0$ to n-m do
if $h_x = h(y[pos ... pos + m - 1])$ then $i \longleftarrow 0$ while i < m and x[i] = y[pos + i] do $i \longleftarrow i + 1$ if i = m then output('x occurs in y at position ', pos)

- ★ Uses arithmetic operations in addition to symbol comparisons
- ★ What hash function to speed-up the algorithm?
- ★ Goal: h(u) = h(v) if it is very likely that u = v

Hash function

- \star Hash Function: $h: \Sigma^m \longrightarrow \mathbf{N}$
- ★ Principle: do as if symbols are integers similar to number representation but with approximation
- \star Parameters: integers d (like a base) and q (for the modulo)
- ★ Definition:

$$\begin{array}{ll} h_{pos} &=& h(y[pos\mathinner{.\,.} pos+m-1]) \\ &=& (y[pos]d^{m-1}+y[pos+1]d^{m-2}+\cdots+y[pos+m-1]) \ \mathbf{mod} \ q \\ &=& ((\ldots(y[pos]d+y[pos+1])d+\cdots+y[pos+m-2])d \\ &&+y[pos+m-1]) \ \mathbf{mod} \ q \end{array}$$

★ Hörner's rule for the first hash value

M.C. 21/1/2013 9 Master-TSP-TS

Next hash value

 \star From h_{pos} to h_{pos+1} :

$$\begin{array}{ll} h_{pos} &=& (y[pos]d^{m-1} + y[pos+1]d^{m-2} + \cdots + y[pos+m-1]) \ \mathbf{mod} \ q \\ h_{pos+1} &=& (y[pos+1]d^{m-1} + y[pos+2]d^{m-2} + \cdots + y[pos+m]) \ \mathbf{mod} \ q \\ &=& ((h_{pos} - y[pos]d^{m-1})d + y[pos+m]) \ \mathbf{mod} \ q \end{array}$$

- ★ It requires a fixed number of arithmetic operations
- * ... then executes in constant time

Karp-Rabin string searching

★ Typical parameters: $d = 2^k$ and q is a prime number

```
\begin{array}{l} \operatorname{KR}(\operatorname{string}\,x,y;\,\operatorname{integer}\,m,n,d,q)\\ (h_x,h_y,D) \longleftarrow (0,\,0,\,d^{m-1}\,\operatorname{mod}\,q)\\ \operatorname{for}\,i \longleftarrow 0\,\operatorname{to}\,m-1\,\operatorname{do}\\ h_x \longleftarrow (h_xd+x[i])\,\operatorname{mod}\,q\\ h_y \longleftarrow (h_yd+y[i])\,\operatorname{mod}\,q\\ \operatorname{for}\,\operatorname{pos} \longleftarrow 0\,\operatorname{to}\,n-m\,\operatorname{do}\\ \operatorname{if}\,h_x=h_y\,\operatorname{then}\\ i \longleftarrow 0\\ \operatorname{while}\,i < m\,\operatorname{and}\,x[i]=y[\operatorname{pos}+i]\,\operatorname{do}\\ i \longleftarrow i+1\\ \operatorname{if}\,i=m\,\operatorname{then}\,\operatorname{output}(\mbox{'}x\,\operatorname{occurs}\,\operatorname{in}\,y\,\operatorname{at}\,\operatorname{position}\mbox{'},\,\operatorname{pos})\\ \operatorname{if}\,\operatorname{pos} < n-m\,\operatorname{then}\\ h_y \longleftarrow ((h_y-x[\operatorname{pos}]D)d+y[\operatorname{pos}+m])\,\operatorname{mod}\,q \end{array}
```

M.C. 21/1/2013 11 Master-TSP-TS

Complexity of the problem

pattern x of length mtext y of length n (n > m)

Theorem 1 The search can be done optimally in time O(n) and space O(1).

[Galil and Seiferas, 1983]

Theorem 2 The search can be done in optimal expected time $O(\frac{\log m}{m} \times n)$.

[Yao, 1979]

Theorem 3 The maximal number of comparisons done during the search $is \ge n + \frac{9}{4m}(n-m)$, and can be made $\le n + \frac{8}{3(m+1)}(n-m)$.

[Cole et alii, 1995]

Known bounds on symbol comparisons

Lower bounds Upper bounds

★ access to the whole text

$$n$$
 [Folklore]
$$2n-1$$
 [Morris and Pratt, 1970]
$$\frac{4}{3}n$$
 [Zwick and Paterson, 1992]

 \star search with a sliding window of size m

M.C. 21/1/2013 13 Master-TSP-TS

Known bounds on symbol comparisons (followed)

Lower bounds Upper bounds

 \star search with a sliding window of size 1

$$2n-1$$
 [Morris and Pratt, 1970] $(2-\frac{1}{m})n$ [Hancart, 1993] [Breslauer *et alii*, 1993]

★ delay = maximum number of comp's on each text symbol

$$m \qquad \qquad [\text{Morris and Pratt, 1970}] \\ \log_{\Phi}(m+1) \qquad [\text{Knuth, Morris and Pratt, 1977}] \\ \min\{\log_{\Phi}(m+1), \operatorname{card}\Sigma\} \qquad [\text{Simon, 1989}] \\ \min\{1 + \log_2 m, \operatorname{card}\Sigma\} \qquad [\text{Hancart, 1993}] \\ \log\min\{1 + \log_2 m, \operatorname{card}\Sigma\} \qquad [\text{Hancart, 1996}] \\ \end{cases}$$

prefix of text in $\Sigma^* pattern$

pattern

- * sequential searches (window size = one symbol)
 - \hookrightarrow adapted to telecommunications
 - \hookrightarrow based on efficient implementations of automata

[Knuth, Morris, Pratt, 1976], [Simon, 1989], [Hancart, 1993], [Breslauer, Colussi, Toniolo, 1993]

M.C. 21/1/2013 15 Master-TSP-TS

Methods (followed)

- ★ time-space optimal searches
 - \hookrightarrow mainly of theoretical interest
 - \hookrightarrow based on combinatorial properties of strings

[Galil, Seiferas, 1983], [Crochemore, Perrin, 1991],[Crochemore, 1992], [Gąsieniec, Plandowski, Rytter, 1995],[Crochemore, Gąsieniec, Rytter, 1997]

- \star practically-fast searches
 - \hookrightarrow used in text editors, data retrieval software
 - ⇒ based on combinatorics + automata (+ heuristics)

[Boyer, Moore, 1977], [Galil, 1979], [Apostolico, Giancarlo, 1986], [Crochemore *et alii*, 1992]

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 3/2/2010 1 Master-TSP-TS

Examples

★ Naive search (1)

★ Naive search (2)

Left-to-right scan -- shift

- \star Mismatch situation: $\sigma \neq \tau$
- \star period(u) = |u| |border(u)|
- ★ Optimal shift length = $period(u\tau)$
- \star Valid if u = x

M.C. 3/2/2010 3 Master-TSP-TS

Periods and borders

- ★ Non-empty string u, integer p, 0
- \star p is a period of u if any of these equivalent conditions is satisfied:
 - [1] u[i] = u[i+p], for $0 \le i < |u|-p$
 - [2] u is a prefix of some y^k , k > 0, |y| = p
 - [3] u = yw = wz, for some strings y, z, w with |y| = |z| = pString w is called **a border** of u
- **The** period of u, period(u), is its smallest period (can be |u|)
- **The** border of u, border(u), is its longest border (can be empty)
- ★ Periods and borders of abacabacaba
 - 4 abacaba
 - 8 aba
 - 10 a
 - 11 empty string

Sequential search

- ★ Simple online search
- \star Length of shift = period
- ★ Memorization of borders

while window on text do

 $u \leftarrow$ longest common prefix of window and pattern **if** u = pattern **then** report a match shift window period(u) places to right memorize border(u)

M.C. 3/2/2010 5 Master-TSP-TS

MP algorithm


```
\begin{split} & \text{MP(string } x, y; \text{ integer } m, n) \\ & i \longleftarrow 0; j \longleftarrow 0 \\ & \textbf{while } j < n \textbf{ do} \\ & \textbf{while } (i = m) \textbf{ or } (i \geq 0 \textbf{ and } x[i] \neq y[j]) \textbf{ do} \\ & i \longleftarrow MP\_next[i] \\ & i \longleftarrow i+1; j \longleftarrow j+1 \\ & \textbf{ if } i = m \textbf{ then } \text{ output('}x \text{ occurs in } y \text{ at position'}, j-i) \end{split}
```

 \star *MP_next* table

$$\frac{i \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10}{x[i] \quad \text{a b a c a b a c a b}}$$

$$MP_next[i] \quad -1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

★ Run of MP algorithm

 \star If end of y, MP algorithm gives the longest overlap between y and x.

M.C. 3/2/2010 7 Master-TSP-TS

Computing borders of prefixes

- * A border of a border of u is a border of uA border of u is either border(u) or a border of it
- \star Border[i] = |border(x[0..i-1])|
- \star j runs through decreasing lengths of borders

Compute_borders(string x; integer m)

$$\begin{array}{c} \operatorname{Border}[0] \longleftarrow -1 \\ \mathbf{for} \ i \longleftarrow 0 \ \mathbf{to} \ m-1 \ \mathbf{do} \\ j \longleftarrow \operatorname{Border}[i] \\ \mathbf{while} \ j \geq 0 \ \mathbf{and} \ x[i] \neq x[j] \ \mathbf{do} \\ j \longleftarrow \operatorname{Border}[j] \\ \operatorname{Border}[i+1] \longleftarrow j+1 \\ \mathbf{return} \ \operatorname{Border} \end{array}$$

 \star $MP_next[i] = Border[i] \text{ for } i = 0, \dots, m$

Improvement

- ★ Interrupted periods strict borders
- ★ Changes only the preprocessing of MP algorithm

while window on text do

 $u \leftarrow$ longest common prefix of window and pattern **if** u = pattern **then** report a match shift window $interrupt_period(u)$ places to the right memorize $strict_border(u)$

M.C. 3/2/2010 9 Master-TSP-TS

Interrupted periods and strict borders

- \star Fixed string x, non-empty prefix u of x
- \star w is a strict border of u if both:
 - w is a border of u
 - $w\tau$ is a prefix of x, but $u\tau$ is not
- * p is an interrupted period of u if p = |u| |w| for some strict border |w| of u
- ★ Prefix abacabacaba of abacabacabacaba Interrupted periods and strict borders of abacabacaba

10

11

empty string

KMP preprocessing

$$\begin{array}{ll} \star & k = MP_next[i] \\ \star & KMP_next[i] = \left\{ \begin{array}{ll} k, & \text{if } x[i] \neq x[k] \text{ or if } i = m, \\ KMP_next[k], & \text{if } x[i] = x[k]. \end{array} \right. \end{array}$$

$$\begin{aligned} & \operatorname{Compute_KMP_Next}(\operatorname{string}\ x; \operatorname{integer}\ m); \\ & KMP_next[0] \longleftarrow -1;\ k \longleftarrow 0 \\ & \mathbf{for}\ i \longleftarrow 1\ \mathbf{to}\ m-1\ \mathbf{do}\ \{\operatorname{here:}\ k = MP_next[i]\} \\ & \mathbf{if}\ x[i] = x[k]\ \mathbf{then} \\ & KMP_next[i] \longleftarrow KMP_next[k] \\ & \mathbf{else}\ KMP_next[i] \longleftarrow k \\ & \mathbf{do}\ k \longleftarrow KMP_next[k] \\ & \mathbf{while}\ k \geq 0\ \mathbf{and}\ x[i] \neq x[k] \\ & k \longleftarrow k+1 \\ & KMP_next[m] \longleftarrow k \\ & \mathbf{return}\ KMP_next \end{aligned}$$

M.C. 3/2/2010 11 Master-TSP-TS

Example of KMP run

 \star KMP_next table

★ Run of KMP algorithm

 \star If end of y, KMP algorithm gives the longest overlap between y and x.

Running times of MP and KMP

Theorem 1 On a text of length n, MP and KMP string-searching algorithm run in time O(n).

They make less than 2n symbol comparisons.

Proof Positive comparisons increase the value of jNegative comparisons increase the value of j - i (shift)

★ Delay = maximum number of comparisons on a text symbol

Theorem 2 Pattern of length m. The delay for MP algorithm is no more than m. The delay for KMP algorithm is no more than $\log_{\Phi}(m+1)$, where Φ is the golden ratio, $(1+\sqrt{5})/2$.

Proof For KMP, use the periodicity theorem

★ A worst-case pattern of length 19: abaababaabaabaaba

M.C. 3/2/2010 13 Master-TSP-TS

Periodicities

Theorem 3 If p and q are periods of a word x and satisfy $p + q - GCD(p, q) \le |x|$ then GCD(p, q) is a period of x.

[Fine, Wilf, 1965]

Used in the analysis of KMP algorithm and in the analysis of many other pattern matching algorithms.

Theorem 4 (Weak version) If p and q are periods of a word x and satisfy $p + q \le |x|$ then GCD(p,q) is a period of x.

Proof If p and q are periods of x, p > q, then p - q is also a period of x. Rest of the proof analogous to correctness of Euclid's gcd algorithm.

Proof of the weak statement

- \star p and q periods of x with $p+q \leq |x|$ and p>q
- \star p-q period of x because:

★ rest of the proof like Euclid's induction

M.C. 3/2/2010 15 Master-TSP-TS

Searching with an automaton

- * Uses the string-matching automaton SMA(x): smallest deterministic automaton accepting Σ^*x
- \star Example x = abaa

★ Search for abaa in:

Searching algorithm

* Simple online parsing of the text with the string-matching automaton SMA(x)

```
SEARCH(string x, y; integer m, n) (Q, \Sigma, initial, \{terminal\}, \delta) \text{ is the automaton } SMA(x) q \longleftarrow initial \ state  \textbf{if } q = terminal \ \textbf{then} \text{ report an occurrence of } x \text{ in } y   \textbf{while not } \text{end of } y \ \textbf{do}   \sigma \longleftarrow \text{next symbol of } y   q \longleftarrow \delta(q, \sigma)   \textbf{if } q = terminal \ \textbf{then} \text{ report an occurrence of } x \text{ in } y
```

M.C. 3/2/2010 17 Master-TSP-TS

Construction of SMA(x)

- ⋆ Unwinding arcs
- \star From $SMA(abaa) \dots$

 \star ... to SMA(abaab)

Construction algorithm

★ Unwind the appropriate arc

```
automaton SMA(string x)
\det initial \text{ be a new state}
Q \longleftarrow \{initial\}
terminal \longleftarrow initial
\textbf{for all } \sigma \textbf{ in } \Sigma \textbf{ do } \delta(initial, \sigma) \longleftarrow initial
\textbf{while not end of } x \textbf{ do}
\tau \longleftarrow \text{next symbol of } x
r \longleftarrow \delta(terminal, \tau)
\text{add new state } s \text{ to } Q
\delta(terminal, \tau) \longleftarrow s
\textbf{ for all } \sigma \text{ in } \Sigma \textbf{ do } \delta(s, \sigma) \longleftarrow \delta(r, \sigma)
terminal \longleftarrow s
\textbf{return } (Q, \Sigma, initial, \{terminal\}, \delta)
```

M.C. 3/2/2010 19 Master-TSP-TS

Significant arcs

 \star Complete SMA(ananas)

- **★ Forward arcs**: spell the pattern
- * Backward arcs: arcs going backwards without reaching the initial state

Lemma 1 SMA(x) contains at most |x| backward arcs.

* Consequence: the implementation of SMA(x) can be done in O(|x|) time and space, independently of the alphabet size

Backward arcs in SMA

- * States of SMA(x) are identified with prefixes of xA backward arc is of the form $(u, \tau, v\tau)$ (u, v) prefixes of x, τ symbol) with
 - $v\tau$ longest suffix of $u\tau$ that is a prefix of x, and $u \neq v$

Note: $u\tau$ is not a prefix of x

Let $p(u,\tau) = |u| - |v|$; it is a period of u because v is a border of u

 \star Backward arcs to periods: p is injective

Each period $p, 1 \leq p \leq |x|$, corresponds to at most one backward arc, thus there are at most |x| such arcs

* A worst case: $SMA(ab^{m-1})$ has m backward arcs $(a \neq b)$

M.C. 3/2/2010 21 Master-TSP-TS

Backward arcs (followed)

\star Proof that p is injective

Two backward arcs $(u, \tau, v\tau)$, $(u', \tau', v'\tau')$ Assume $p(u, \tau) = p(u', \tau') = p$; we prove u = u' and $\tau = \tau'$.

***** If v = v' then u = u' and also $\tau = \tau'$

* If v' a proper prefix of v then $v'\tau'$ and $v'\sigma'$ are prefixes of v thus $\tau' = \sigma'$ a contradiction

Complexity of searching with SMA

 \star Pattern x of length m, text y of length n

★ With complete SMA implemented by transition matrix

Preprocessing on pattern x time $O(m \times \operatorname{card} \Sigma)$

space $O(m \times \operatorname{card} \Sigma)$

Search on text y time O(n)

space $O(m \times \operatorname{card} \Sigma)$

Delay time constant

★ With SMA implemented by lists of forward and backward arcs

Preprocessing on pattern x time O(m)

space O(m)

Search on text y time O(n)

space O(m)

Delay comparisons $\min\{\operatorname{card} \Sigma, \log_2 m\}$

 \star Improves on KMP algorithm

Dictionary Matching

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 18/12/2007 1 Master-TSP-DM

Matching several strings

- **★ Dictionary**: set of finite strings, $X = \{x_0, x_1, \dots, x_{k-1}\}$ (empty string not in X)
- ***** Matching: locate occurrences of the strings in any text y

Note that each position on y can be the position of several strings, yielding a possible quadratic output (e.g. $X = \{a, aa, ..., a^k\}$ and $y = a^n$)

- **★ Output**: list of positions on *y* that are end-positions of some string in *X*
- ★ **Standard method**: based on the Dictionary Matching Automaton (Aho-Corasick automaton), an extension of the String Matching Automaton
- ★ **Other method**: extension of the right-to-left window scanning strategy (Boyer-Moore technique)

Trie of the dictionary

- * Trie: $\mathcal{T}(X)$, digital tree whose branches are labelled by strings of X As an automaton, the language it accepts is X
- ★ Example : $\mathcal{T}(\{aa, abaaa, abab\})$

- \star Nodes are all prefixes of strings in X
- \star $\mathcal{T}(X)$ is the basis of the Dictionary Matching Automaton

M.C. 18/12/200 Master-TSP-DM

Dictionary Matching Automaton

* Dictionary Matching Automaton, $\mathcal{D}(X)$

it accepts the language A^*X and is defined by:

- set of states is Pref(X); initial state is the empty string
- set of terminal states is $\operatorname{Pref}(X) \cap A^*X$
- arcs are of the form (u, a, h(ua))where $h(ua) = \text{longest suffix of } ua \text{ that belongs to } \Pr(X)$
- ★ **Example** : $\mathcal{D}(\{aa, abaaa, abab\})$ with alphabet $A = \{a, b\}$

* Searching

Det-search-by-failure(X, y)

- 1 $M \leftarrow \text{DMA-BY-FAILURE}(X)$
- $2 \quad r \leftarrow initial[M]$
- 3 **for** each letter a of y, sequentially **do**
- 4 $r \leftarrow \text{Target}(,)(r,a)$
- 5 OUTPUT-IF(terminal[r])
- * Implementation of $\mathcal{D}(\{aa, abaaa, abab\})$ with a transition table

* Searching time: O(|y|)

M.C. 18/12/2007 5 Master-TSP-DM

Implementation by failure function

- * **Aim**: reduction of the implementation to $O(\Sigma\{|x|:x\in X\})$ independent of the alphabet
- * Failure function (u nonempty string) f(u) = the longest proper suffix of u that belongs to Pref(X)
- * Implementation of $\mathcal{D}(\{aa, abaaa, abab\})$ with successor lists and f

* Searching

$\underline{}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
y[j]	c	d	a	b	b	a	b	a	a	b	a	b	a	b	b	a	a	
state 0	0	0	1	3	0,0	1	3	4	5	2,1,3	4	7	3,4	7	3,0,0	1	2	

Searching with failure function

* Searching

Det-search-by-failure(X, y)

- 1 $M \leftarrow \text{DMA-BY-FAILURE}(X)$
- $2 \quad r \leftarrow \text{initial}[M]$
- 3 **for** each letter a of y, sequentially **do**
- 4 $r \leftarrow \text{Target-by-failure}(r, a)$
- 5 OUTPUT-IF(terminal[r])
- ★ Target: next state function using successors lists

Target-by-failure(p, a)

- 1 while $p \neq \text{NIL}$ and TARGET(p, a) = NIL do
- $2 p \leftarrow fail[p]$
- 3 if p = NIL then
- 4 return initial[M]
- 5 **elseturn** TARGET(p, a)
- * Running time: $O(|y| \times \log \operatorname{card} A)$

M.C. 18/12/2007 7 Master-TSP-DM

Computing the failure links

- \star f(ua) = Target-by-failure(f(u), a)
- ★ Computation via a width-first traversal of the trie

- ★ fail[0], fail[1], fail[2], fail[3], and fail[4] already computed
- ★ Computing fail[5] from 4: $\delta(4, \mathbf{a}) = 5$, fail[4] = 1, and $\delta(1, \mathbf{a}) = 2$ gives fail[5] = 2

Note: since state 2 is terminal, state 5 becomes terminal

★ Computing fail[6] from 5: $\delta(5, \mathbf{a}) = 6$, fail[5] = 2, and $\delta(2, \mathbf{a})$ undefined but TARGET-BY-FAILURE(2, \mathbf{a}) = 2 gives fail[6] = 2

Computing the failure links—algorithm

 \star Failure links fail implements the failure function f

```
DMA-BY-FAILURE(X)
      M \leftarrow \text{Trie}(X)
     fail[initial[M]] \leftarrow \text{NIL}
 3 \quad F \leftarrow \text{Empty-Queue}()
 4 Enqueue(F, initial[M])
     while non Queue-is-empty(F) do
  5
          t \leftarrow \text{DEQUEUED}(F)
  6
          for each pair (a, p) \in Succ[t] do
  7
  8
              r \leftarrow \text{Target-by-failure}(fail[t], a)
  9
              fail[p] \leftarrow r
              if terminal[r] then
 10
                  terminal[p] \leftarrow TRUE
 11
 12
              ENQUEUE(F, p)
 13
     return M
```

M.C. 18/12/2007 9 Master-TSP-DM

Optimized failure links

- * Next set of state $u \in \text{Pref}(X)$: $Next(u) = \{a : a \in A, ua \in \text{Pref}(X)\}$
- **New link** defined by function f': for u nonempty $f'(u) = f^k(u)$ where $k = \min\{\ell : Next(f^{\ell}(u)) \nsubseteq Next(u)\}$
- * Optimized link

Non optimized

- **★ Delay**: maximum time spent on a letter of yIt is $\max\{|x|: x \in X\}$ even with the optimized links
- \star Example: $X = \{aaab, aabb, aba, bb\}$

 $\star \ L(m) = \{\mathtt{a}^{m-1}\mathtt{b}\} \cup \{\mathtt{a}^{2k-1}\mathtt{b}\mathtt{a} : 1 \leq k < \lceil m/2 \rceil \} \cup \{\mathtt{a}^{2k}\mathtt{b}\mathtt{b} : 0 \leq k < \lfloor m/2 \rfloor \}$

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 18/12/2007 1 Master-TSP-TS

Examples

★ Naive search with backward scan (1)

 $\hbox{\tt aacaaaababaab.}.$

abaaaa

$$a$$
 b a a a

★ Naive search with backward scan (2)

ababaababbaabab..

abaaabab

. .

Right-to-left scan — shift

- \star Match shift: good-suffix rule (function d)
- ★ Occurrence shift heuristics: bad-character rule
- ★ Extra rules if memorization

while window on text do

 $u \longleftarrow$ longest common suffix of window and pattern

if u = pattern then report a match

shift window d(u) places to the right

M.C. 18/12/2007 3 Master-TSP-TS

Match shift

* Precomputation

of rightmost occurrences of u's: O(m)

- \star Second shift length = a period of x
- * Table D implements the good-suffix rule: shift = d(u) = D[i]

BM algorithm

★ No memorization of previous matches

```
\begin{aligned} \operatorname{BM}(\operatorname{string}\,x,y;\,\operatorname{integer}\,m,n) \\ pos &\longleftarrow 0 \\ \mathbf{while}\,\,pos \leq n-m\,\,\mathbf{do} \\ i &\longleftarrow m-1 \\ \mathbf{while}\,\,i \geq 0\,\,\mathbf{and}\,\,x[i] = y[pos+i]\,\,\mathbf{do}\,\,i &\longleftarrow i-1 \\ \mathbf{if}\,\,i = -1\,\,\mathbf{then} \\ &\quad \operatorname{output}('x\,\operatorname{occurs}\,\operatorname{in}\,y\,\operatorname{at}\,\operatorname{position}\,',\,pos) \\ pos &\longleftarrow period(x) \\ \mathbf{else} \\ pos &\longleftarrow pos + D[i] \end{aligned}
```

M.C. 18/12/2007 5 Master-TSP-TS

Suffix displacement

 \star Displacement function d:

$$d(u) = \min\{|z| > 0 \mid (x \text{ suffix of } uz) \text{ or } (\tau uz \text{ suffix of } x \text{ and } \tau u \text{ not suffix of } x, \text{ for } \tau \in \Sigma)\}$$

 \star Displacement table D:

$$D[i] = d(x[i+1..m-1]), \text{ for } i = 0,..,m-1$$

- ★ Note 1: u is a (strict) border of uz''
- * Note 2: |z'| is a period of uz' (thus, |z'| is a period of x)

Lemma 1 Table D can be computed in linear time. [see Page 22]

Occurrence shift

- * Table DA implements the bad-character rule: $DA[\sigma] = \min\{|z| > 0 \mid \sigma z \text{ suffix of } x\} \cup \{|x|\}$
- * $shift = DA[\tau] |u| = DA[\tau] m + i + 1$

Compute_DA(string x; integer m)

for all
$$\sigma$$
 in Σ do
$$DA[\sigma] = m$$
for $i \longleftarrow 0$ to $m - 2$ do
$$DA[x[i]] = m - i - 1$$
return DA

M.C. 18/12/2007 7 Master-TSP-TS

BM with occurrence shift

 \star Use of DA in addition to D

```
\begin{aligned} \operatorname{BM}(\operatorname{string}\,x,y;\,\operatorname{integer}\,m,n);\\ pos &\longleftarrow 0\\ \mathbf{while}\,\,pos \leq n-m\,\,\mathbf{do}\\ i &\longleftarrow m-1\\ \mathbf{while}\,\,i \geq 0\,\,\mathbf{and}\,\,x[i] = y[pos+i]\,\,\mathbf{do}\\ i &\longleftarrow i-1\\ \mathbf{if}\,\,i = -1\,\,\mathbf{then}\\ &\quad \operatorname{output}('x\,\operatorname{occurs}\,\operatorname{in}\,y\,\operatorname{at}\,\operatorname{position}\,',\,pos)\\ pos &\longleftarrow period(x)\\ \mathbf{else}\\ pos &\longleftarrow pos + \max\{D[i],DA[y[pos+i]]-m+i+1\} \end{aligned}
```

Complexity of BM

* Preprocessing phase

match shift O(m) occurrence shift $O(m + \operatorname{card} \Sigma)$

★ Search phase (finding all occurrences)

running time $O(n \times m)$ minimum number of comparisons n/mmaximum number of comparisons $n \times m$

* Extra space

for shift functions $O(m+\operatorname{card}\Sigma)$ can be reduced to O(m)

M.C. 18/12/2007 9 Master-TSP-TS

Symbol comparisons in variants of BM

★ For finding the first occurrence

[Knuth, Morris, Pratt, 1977] $\leq 7 \times n$ [Guibas, Odlysko, 1980] $\leq 4 \times n$ [Cole, 1990] $\leq 3 \times n$

Theorem 1 If period(x) > m/2, BM searching algorithm performs at most 3n - n/m symbol comparisons. The bound is tight.

Proof difficult

Symbol comparisons in variants of BM (followed)

 \star For finding all occurrences

[Galil, 1979]	O(n)
\longrightarrow prefix memorization	O(1) extra space
[Crochemore $et~alii,~1991$]	$\leq 2 \times n$
\longrightarrow last-suffix memorization	O(1) extra space
$\longrightarrow ext{Turbo-BM}$	
$[{f Apostolico,Giancarlo,1986}]$	$\leq 1.5 \times n$
\longrightarrow all-suffix memorization	O(m) extra space

M.C. 18/12/2007 11 Master-TSP-TS

Turbo-BM method

* Features

- **Stores** the last match in case of match shift (*memory*)
- **Jumps** on *memory*
- Uses turbo-shifts
- * Preprocessing

same as BM algorithm

- * Search
 - O(1) extra space to store *memory*: (length, right position)
- \star Note: match-shift is a period of uz since u is a border of it

Turbo-shift

- \star turbo-shift = |memory| |match|
- ★ Use in Turbo-BM:

```
shift \leftarrow \max\{match\text{-}shift, occ\text{-}shift, turbo\text{-}shift\};
\mathbf{if}\ (shift = match\text{-}shift)\ \mathbf{then}
set\ memory;
\mathbf{else}
\{shift \leftarrow \max\{shift, match+1\}; \text{no memory}; \}
```

M.C. 18/12/2007 13 Master-TSP-TS

Tight number of comparisons for Turbo-BM

Theorem 2 The Turbo-BM searching algorithm runs in time O(n). It makes no more than 2n symbol comparisons.

Proof difficult

* Features

- **Stores** all previous matches (suffixes of pattern)
- Uses the table Suf Suf[i] = longest suffix of x ending at i in x $pattern x \qquad \boxed{Suf[i]}$

★ Extra preprocessing

computing Suf on the pattern: O(m) time and space

* Search

 ${\cal O}(m)$ extra space to store the matches

M.C. 18/12/2007 15 Master-TSP-TS

Rules for shifts in AG

• match

• mismatch

 \bullet mismatch

• jump

Tight number of comparisons for AG

Lemma 2 The AG algorithm makes at most $\frac{n}{2}$ comparisons on text characters previously compared.

Theorem 3 The AG searching algorithm runs in time O(n). It makes no more than 1.5n symbol comparisons.

Proof rather difficult

M.C. 18/12/2007 17 Master-TSP-TS

Worst-case example

```
      a
      a
      b
      a
      a
      b
      a
      a
      b
      a
      a
      b
      a
      a
      b
      ...

      a
      b
      a
      a
      b
      a
      a
      b
      a
      a
      b
      a
      a
      a
      b
      ...

      a
      a
      b
      a
      a
      b
      a
      a
      b
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
```

pattern =
$$a^{m-1}ba^mb$$
, text = $(a^{m-1}ba^mb)^e$
number of comparisons = $2m+1+(3m+1)e=\frac{3m+1}{2m+1}n-m\approx 1.5n$

Computing the table of suffixes

* i given: Suf[j] known for $i < j \le m-1$ $k = \min\{j - Suf[j] \mid i < j < m\}$ (leftmost considered position) $\sigma \ne \tau$; $\sigma' \ne \tau'$; Suf[i + m - j - 1] = |u'|

* If Suf[i + m - j - 1] < i - k: Suf[i] = Suf[i + m - j - 1]

 \star If Suf[i+m-j-1] > i-k: Suf[i] = i-k

★ If Suf[i+m-j-1] = i-k: find Suf[i] by scanning from position k Yields a new k and a new j (= i)

M.C. 18/12/2007 19 Master-TSP-TS

Extra preprocessing for AG

 \star Linear-time computation of table Suf

COMPUTE_SUF(string x; integer m) $Suf[m-1] \longleftarrow m; k \longleftarrow m-1$ for $i \longleftarrow m-2$ downto 0 do

if i > k and $Suf[i+m-j-1] \neq i-k$ then $Suf[i] \longleftarrow \min\{Suf[i+m-j-1], i-k\}$ else $j \longleftarrow i; k \longleftarrow \min\{i, k\};$ while $k \geq 0$ and x[k] = x[k+m-j-1] do $k \longleftarrow k-1;$ $Suf[i] \longleftarrow j-k$ return Suf

From Suf to D

 \star Initializing D using the periods of x only

$$Suf[2] = 3 \Longrightarrow \text{period } 8 \; ; \; Suf[0] = 1 \Longrightarrow \text{period } 10 \; ; \; \text{period } 11$$

 \star Accounting for occurrences inside x of its suffixes

M.C. 18/12/2007 21 Master-TSP-TS

Computing the displacement table D with the table Suf

 \star Linear-time computation of table D

```
COMPUTE_D(string x; integer m; table D)
j \longleftarrow 0;
for i \longleftarrow m-2 downto -1 do
if \ i = -1 \text{ or } Suf[i] = i+1 \text{ then}
while \ j < m-i-1 \text{ do}
D[j] \longleftarrow m-i-1;
j \longleftarrow j+1;
for i \longleftarrow 0 to m-2 do
D[m-Suf[i]-1] \longleftarrow m-i-1;
return D
```

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 18/12/2007 1 Master-TSP-SA

Searching problem

* Input

- a list L of n strings of Σ^* stored in increasing lexicographic order in a table: $L_0 \leq L_1 \leq \cdots \leq L_{n-1}$
- a string $x \in \Sigma^*$ of length m.

* Simple problem

find

- either i, -1 < i < n, with $x = L_i$ if x occurs in L,
- or d and f, $-1 \le d < f \le n$, that satisfy d+1 = f and $L_d < x < L_f$ otherwise.

* Interval

find d et f, $-1 \le d < f \le n$, with: d < i < f if and only if x prefix of L_i .

Example

List
$$L$$

$$L_0 = \texttt{a} \ \texttt{a} \ \texttt{a} \ \texttt{b} \ \texttt{a} \ \texttt{a}$$

$$L_1 = \texttt{a} \ \texttt{a} \ \texttt{a} \ \texttt{b} \ \texttt{b}$$

$$L_2 = \texttt{a} \ \texttt{a} \ \texttt{b} \ \texttt{b} \ \texttt{b}$$

$$L_3 = \texttt{a} \ \texttt{b}$$

$$L_4 = \texttt{b} \ \texttt{a} \ \texttt{a} \ \texttt{a}$$

$$L_5 = \texttt{b} \ \texttt{b}$$

* Search

$$x = a a a b b \longrightarrow 1$$

 $x = a a b a \longrightarrow (1, 2)$

* Interval

$$x = a \ a \longrightarrow (-1,3)$$

M.C. 18/12/2007 3 Master-TSP-SA

Searching algorithm

```
SIMPLE-SEARCH(L, n, x, m)
  1 \quad d \leftarrow -1
  2 \quad f \leftarrow n
  3 while d+1 < f do
                                            \triangleright Invariant: L_d < x < L_f
             i \leftarrow \lfloor (d+f)/2 \rfloor
  4
  5
              \ell \leftarrow |lcp(x, L_i)|
             if \ell = m and \ell = |L_i| then
  6
  7
                    return i
              elseif (\ell = |L_i|) or (\ell \neq m \text{ and } L_i[\ell] < x[\ell]) then
  8
                    d \leftarrow i
  9
              else f \leftarrow i
 10
 11 return (d, f)
```

* Running time

$$O(m \times \log n)$$

- ⋆ Worst case
 - list $L = (\mathbf{a}^{m-1}\mathbf{b}, \mathbf{a}^{m-1}\mathbf{c}, \mathbf{a}^{m-1}\mathbf{d}, \ldots)$
 - string $x = \mathbf{a}^m$
- * Additional space

constant

M.C. 18/12/2007 5 Master-TSP-SA

Binary search tree

- * Nodes
 - n+1 external nodes $(-1,0), (0,1), (1,2), \ldots, (n-1,n)$ n internal nodes in the form (d,f) with d+1 < fchildren of (d,f): $(d, \lfloor (d+f)/2 \rfloor)$ and $(\lfloor (d+f)/2 \rfloor, f)$ root: (-1,n)
- * Size

2n + 1 nodes for a list of n strings

 \star Example for n = 6

Search using LCP's

- * Aim reduce the running time to $O(m + \log n)$
- * LCP, longest common prefix $lcp(L_d, L_f)$ known for any pair (d, f) considered in the binary search
- * Additional space: O(n) integers for the 2n+1 LCP's associated with nodes of the binary search tree
- * Algorithm based on properties arising in three cases (plus symmetric cases)
- ⋆ Variables

$$ld = |lcp(x, L_d)|, lf = |lcp(x, L_f)|, i = \lfloor (d+f)/2 \rfloor$$
 maintained during execution

M.C. 18/12/2007 7 Master-TSP-SA

Case one

* Hypotheses

$$L_d < x < L_f$$
 and $ld \le |lcp(L_i, L_f)| < lf$

* Example

$$L_d$$
 aaaca x aabbbaa L_i aabbabab x aabbbaa x aabbbaa

★ Conclusion

$$L_i < x < L_f$$
 and $|lcp(x, L_i)| = |lcp(L_i, L_f)|$

* Hypotheses

$$L_d < x < L_f$$
 and $ld \le lf < |lcp(L_i, L_f)|$

* Example

$$L_d$$
 aaaca x aabacb aaacba L_i aabbaba x aabacb x aabacb x

* Conclusion

$$L_d < x < L_i$$
 and $|lcp(x, L_i)| = |lcp(x, L_f)|$

M.C. 18/12/2007 9 Master-TSP-SA

Case three

* Hypotheses

$$L_d < x < L_f$$
 and $ld \le lf = |lcp(L_i, L_f)|$

* Example

$$L_d$$
 aaaca x aabbab abab L_f aabbab x aabbab x aabbab

* Conclusion

compare x and L_i from position lf

Improved searching algorithm

```
SEARCH(L, n, Lcp, x, m)
   1 \quad (d, ld) \leftarrow (-1, 0)
       (f, lf) \leftarrow (n, 0)
       while d+1 < f do
                                                \triangleright Invariant : L_d < x < L_f
  3
  4
              i \leftarrow \lfloor (d+f)/2 \rfloor
  5
              if ld \leq Lcp(i, f) < lf then
  6
                     (d, ld) \leftarrow (i, Lcp(i, f))
  7
              elseif ld \leq lf < Lcp(i, f) then
  8
                     f \leftarrow i
  9
              elseif lf \leq Lcp(d,i) < ld then
 10
                     (f, lf) \leftarrow (i, Lcp(d, i))
              elseif lf < ld < Lcp(d, i) then
 11
 12
                     d \leftarrow i
              else \ell \leftarrow \max\{ld, lf\}
 13
 14
                     \ell \leftarrow \ell + |lcp(x[\ell ...m-1], L_i[\ell ...|L_i|-1])|
 15
                     if \ell = m and \ell = |L_i| then
 16
                            return i
 17
                     elseif (\ell = |L_i|) or (\ell \neq m \text{ and } L_i[\ell] < x[\ell]) then
 18
                            (d, ld) \leftarrow (i, \ell)
 19
                     else (f, lf) \leftarrow (i, \ell)
 20
      return (d, f)
```

M.C. 18/12/2007 11 Master-TSP-SA

Complexity

Proposition 1 Algorithm Search finds a string x of length m in a sorted list of n strings in time $O(m + \log n)$. It makes no more than $m + \lceil \log(n+1) \rceil$ comparisons of letters. It requires O(n) extra space.

Sketch of the proof

Number of letter comparisons:

- * each positive comparison strictly increases ℓ , yielding no more than m such comparisons.
- * each negative comparison leads to divide by two the value of f-d, producing no more than $\lceil \log(n+1) \rceil$ such comparisons.

LCP can be implemented to run in constant time after preprocessing.

Interval

```
1 ▷ next line replace line 15 of Search
     if \ell = m then
 3
          ▷ next lines replace line 16 of Search
 4
 5
           while d+1 < e do
 6
                j \leftarrow |(d+e)/2|
 7
                if Lcp(j, e) < m then
 8
                      d \leftarrow j
 9
                else e \leftarrow j
10
           if Lcp(d, e) \geq m then
                d \leftarrow \max\{d-1, -1\}
11
12
           e \leftarrow i
13
           while e + 1 < f do
                j \leftarrow |(e+f)/2|
14
                if Lcp(e, j) < m then
15
16
17
                else e \leftarrow j
18
          if Lcp(e, f) \ge m then
19
                f \leftarrow \min\{f+1, n\}
          return (d, f)
20
```

M.C. 18/12/2007 13 Master-TSP-SA

Preprocessing the list

Let $||L|| = \sum_{i=0}^{n-1} |L_i|$.

- * Sorting repetitive application of bin sorting: time O(||L||)
- ★ Computing LCP's of L_{f-1} and L_f , $0 \le f \le n$ straight algorithm: time O(||L||)
- ★ Computing other LCP's based on next lemma

Lemma 1 Let $L_0 \leq L_1 \leq \ldots \leq L_{n-1}$. Let d, i and f, -1 < d < i < f < n. Then $|lcp(L_d, L_f)| = \min\{|lcp(L_d, L_i)|, |lcp(L_i, L_f)|\}$.

Proposition 2 Preprocessing L, sorting and computing LCP's, takes O(||L||) time.

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 24/1/2013 1 Master-TSP-SA

Indexes

- **★ Pattern matching** in static texts
- ★ Basic operations
 - existence of patterns in the text
 - number of occurrences of patterns
 - list of positions of occurrences
- ★ Other applications
 - finding repetitions in texts
 - finding regularities in texts
 - approximate matchings
 - ...

Implementation of indexes

Implementation with efficient data structures

- ★ Suffix Trees digital trees, PATRICIA tree (compact trees)
- * Suffix Automata or DAWG's minimal automata, compact automata

Implementation with efficient algorithm

* Suffix Arrays
binary search in the ordered list of suffixes

M.C. 24/1/2013 3 Master-TSP-SA

Efficient constructions

- Position tree, suffix tree
 [Weiner 1973], [McCreight, 1976], [Ukkonen, 1992]
 [Farach, 1997]
- * Suffix DAWG, suffix automaton, factor automaton [Blumer et al., 1983], [Crochemore, 1984]
- Suffix array, PAT array
 [Manber, Myers, 1990], [Gonnet, 1986]
 [Kärkkäinen, Sanders, 2003]
 [Kim et al., 2003], [Ko, Aluru, 2003]
- * Some other implementations of suffix trees [Andersson, Nilsson, 1993], [Irving, 1995] [Kärkkäinen, 1995], [Munro et al., 1999]
- ★ For external memory (SB-trees) [Ferragina, Grossi, 1995]
- * Compact suffix automaton
 [Crochemore, Vérin, 1997], [Inenaga et al., 2001]

Text
$$y \in \Sigma^*$$

- \star Suff(y) = set of suffixes of y,
- \star card Suff(y) = |y| + 1
- ★ Suff(ababbb)

M.C. 24/1/2013 5 Master-TSP-SA

Suffix array

- * Text $y \in \Sigma^*$ of length n
- **★** Permutation of suffixes positions

$$SUF: \{0, 1, \dots n-1\} \to \{0, 1, \dots n-1\}$$
 such that $y[SUF[0] \dots n-1] < y[SUF[1] \dots n-1] < \dots < y[SUF[n-1] \dots n-1]$

★ LCP's of suffixes

$$LCP[i] = |lcp(y[SUF[i-1] \dots n-1], y[SUF[i] \dots n-1])|$$

i	SUF[i]	LCP[i]											
0	10	0	a										
1	0	1	a	a	b	a	a	b	a	a	b	b	a
2	3	6	a	a	b	a	a	b	b	a			
3	6	3	a	a	b	b	a						
4	1	1	a	b	a	a	b	a	a	b	b	a	
5	4	5	a	b	a	a	b	b	a				
6	7	2	a	b	b	a							
7	9	0	b	a									
8	2	2	b	a	a	b	a	a	b	b	a		
9	5	4	b	a	a	b	b	a					
10	8	1	b	b	a								

Operations on indexes

Text y of length n

- * Index implemented by suffix array of y memory space O(n)
- * String matching searching y for x of length m: time $O(m + \log n)$ number of occurrences of x in y: same complexity
- * All occurrences finding all occurrences of x in y: time $O(m + \log n + |output|)$
- * Repetitions computing a longest factor of y occurring at least k times: time O(n)
- * Marker computing a shortest factor of y occurring exactly once: time O(n)

M.C. 24/1/2013 7 Master-TSP-SA

Computing a suffix array

- **★** Sorting suffixes
 - previous solution runs in time $O(n^2)$ because $||Suff(y)|| = O(n^2)$ $O(n \log n)$ -time algorithm based on the **doubling technique** O(n)-time algorithm on integer alphabet [Manber and Myers, 1993], [Kärkkäinen, Sanders, 2003]
- * Computing LCP's of suffixes previous solution runs in time $O(n^2)$ because card $Suff(y) = O(n^2)$ O(n)-time simple algorithm using SUF and its inverse r [Kasai et al., 2001]
- * see also [Kim et al., 2003], [Ko, Aluru, 2003]

Text y of length n, string $u \in \Sigma^*$, integer k > 0

- \mathbf{First}
 - $First_k(u) = \begin{cases} u & \text{if } |u| \le k \\ u[0..k-1] & \text{otherwise} \end{cases}$
- Rank

i position of suffix y[i ... n-1] $R_k[i] = \text{rank of } First_k(y[i ... n-1]) \text{ inside the ordered list}$ of all $First_k(u)$, u non-empty suffix of y

Lemma 1 (doubling) $R_{2k}[i]$ is the rank of $(R_k[i], R_k[i+k])$ in the ordered list of these pairs.

M.C. 24/1/2013 Master-TSP-SA

Doubling technique

Input

i	0	1	2	3	4	5	6	7	8	9	10
$\overline{y[i]}$	a	a	b	a	a	b	a	a	b	b	a

Output

$$k = 1$$
 $\{0, 1, 3, 4, 6, 7, 10\}$
 $\{2, 5, 8, 9\}$
 $k = 2$
 $\{10\}$
 $\{0, 3, 6\}$
 $\{1, 4, 7\}$
 $\{2, 5, 9\}$
 $\{8\}$
 $k = 4$
 $\{10\}$
 $\{0, 3\}$
 $\{6\}$
 $\{1, 4\}$
 $\{7\}$
 $\{9\}$
 $\{2, 5, 8, 9\}$
 $k = 4$
 $\{10\}$
 $\{0, 3\}$
 $\{6\}$
 $\{1, 4\}$
 $\{7\}$
 $\{9\}$
 $\{2, 5, 8, 9\}$
 $k = 4$
 $\{10\}$
 $\{0, 3\}$
 $\{6\}$
 $\{1, 4\}$
 $\{7\}$
 $\{9\}$
 $\{2, 5, 8, 9\}$
 $k = 4$
 $\{10\}$
 $\{0, 3\}$
 $\{6\}$
 $\{1, 4\}$
 $\{7\}$
 $\{9\}$
 $\{2, 5, 8, 9\}$
 $k = 4$
 $\{10\}$
 $\{0, 3\}$
 $\{6\}$
 $\{1, 4\}$
 $\{7\}$
 $\{9\}$
 $\{2, 5, 8, 9\}$
 $k = 4$
 $\{10\}$
 $\{0, 3\}$
 $\{6\}$
 $\{1, 4\}$
 $\{7\}$
 $\{9\}$
 $\{2, 5, 8, 9\}$
 $k = 4$
 $\{10\}$
 $\{0, 3\}$
 $\{6\}$
 $\{1, 4\}$
 $\{7\}$
 $\{9\}$
 $\{2, 5, 8, 9\}$
 $k = 4$
 $\{10\}$
 $\{0, 3\}$
 $\{6\}$
 $\{1, 4\}$
 $\{7\}$
 $\{9\}$
 $\{2, 5, 8, 9\}$
 $k = 4$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$
 $\{10\}$

One step, doubling to get R_4 from R_2

i	0	1	2	3	4	5	6	7	8	9	10
$R_2[i]$	1	2	3	1	2	3	1	2	4	3	0
pair	(1,3)	(2,1)	(3,2)	(1,3)	(2,1)	(3,2)	(1,4)	(2,3)	(4,0)	(3,-1)	(0,-1)
$R_4[i]$	1	3	6	1	3	6	2	4	7	5	0

```
Suffix-sort(y, n)
  1 for r \leftarrow 0 to n-1 do
  2
             SUF[r] \leftarrow r
      k \leftarrow 1
  3
      for i \leftarrow 0 to n-1 do
  4
             Rk[i] \leftarrow \text{rank of } y[i] \text{ in the ordered list of letters in } alph(y)
  6
      SUF \leftarrow SORT(SUF, n, Rk, 0)
      i \leftarrow \operatorname{card} alph(y)
      while i < n do
             SUF \leftarrow SORT(SUF, n, Rk, k)
  9
             SUF \leftarrow SORT(SUF, n, Rk, 0)
 10
             i \leftarrow 0
 11
 12
             R2k[SUF[0]] \leftarrow i
 13
             for r \leftarrow 1 to n-1 do
14
                   if Rk[SUF[r]] \neq Rk[SUF[r-1]] or Rk[SUF[r] + k] \neq Rk[SUF[r-1] + k] then
 15
                         i \leftarrow i + 1
 16
                   R2k[\mathit{SUF}[r]] \leftarrow i
 17
             (k, Rk) \leftarrow (2k, R2k)
      return SUF
```

M.C. 24/1/2013 11 Master-TSP-SA

Complexity of the sorting

- * Sort implemented by bucket sort (radix sort) each call runs in O(n) time
- * One step runs in O(n) time

Proposition 1 Algorithm SUFFIX-SORT applied to text y of length n runs in $O(n \log n)$ time and O(n) space.

Sorting Suffixes on a Bounded Integer Alphabet

★ Skew algorithm

SUF[i]

10 0 3 6

1 4

7 9

- [1] bucket sort positions i according to $First_3(y[i ... n-1])$, for i=3q or i=3q+1 (include i=n if n multiple of 3) t[i]: rank of i in the sorted list
- [2] recursively sort the suffixes of the 2/3-shorter word $t[0]t[3]\cdots t[3q]\cdots t[1]t[4]\cdots t[3q+1]\cdots$ s[i]: rank of suffix i in the sorted list (i=3q or i=3q+1 position on y)
- [3] sort suffixes y[j ... n-1] for j of the form 3q+2 (i.e., bucket sort pairs (y[j], s[j+1]))
- [4] merge lists obtained at steps 2 and 3

 Note: comparing suffixes i (first list) and j (second list) remains to compare: (y[i], s[i+1]) and (y[j], s[j+1]) if i = 3q (y[i]y[i+1], s[i+2]) and (y[j]y[j+1], s[j+2]) if i = 3q+1
- * Running time: T(n) = T(2n/3) + O(n) then T(n) = O(n) [Kärkkäinen, Sanders, 2003]

M.C. 24/1/2013 13 Master-TSP-SA

Example 1

Example 2 — WRONG

i	0	1	2	3	4	5	6	7	8	
y[i]	a	b	a	a	a	a	a	a	a	_

Rank t			
0	a	a	
1	a	a	a
2	a	b	a
3	b	a	a

Rank s	i	$S\iota$	ıff	(21	13	10))
0	7	0					
1	4	1	0				
2	3	1	1	3	1	0	
3	6	1	3	1	0		
4	0	2	1	1	3	1	0
5	1	3	1	0			

- * WRONG: suffix at position 6 does not have the right rank
- **Solution**: when n is a multiple of 3, consider position n during steps 1 to 3 as if y[n] is a symbol smaller than any other symbol

M.C. 24/1/2013 15 Master-TSP-SA

Example 2 — Correct

011																				
Ra	ank	t				B	lank	s	i	S_1	uff	(32	220	42	1)		Ran	k <i>j</i>	(y[j], s[j +	1])
	0		ε		_		0		9	0	4	2	1				0	8	(a, 0)	
	1		a a	a			1		7	1							1	5	(a, 2)	
	2		a a	a a	_		2		6	2	0	4	2	1			2	2	(a, 4)	
	3		a l	o a	_		3		4	2	1									
	4		b a	a a	_		4		3	2	2	0	4	2	1					
							5		0	3	2	2	0	4	2	1				
							6		1	4	2	1								
i		0	1	2	3	4	5	6	7	8	3									
y[i]		a	b	a	a	a	a	a	a	a	<u> </u>									
r[i]		7	8	6	5	4	3	2	1	()									
SUF[i]		8	7	6	5	4	3	2	0	1	_									

Computing LCP's of suffixes

★ LCP's of suffixes

Lemma 2 Let $j \in (1, 2, ..., n-1)$ with r[j] > 0. Then $LCP[r[j-1]] - 1 \le LCP[r[j]]$.

M.C. 24/1/2013 17 Master-TSP-SA

Example

				i	SUF[i]	LCP[i]		
i	SUF[i]	LCP[i]		r[j]	j	LCP[r[j]]		
0	10	0	a	1	0	1	aabaabaabk) a
1	0	1	aabaabaabba	4	1	1	abaabaabk	o a
2	3	6	aabaabba	8	2	2	baabaabk	o a
3	6	3	aabba	2	3	6	aabaabk	o a
4	1	1	abaabaabba	5	4	5	abaabk	o a
5	4	5	abaabba	9	5	4	baabl	o a
6	7	2	a b b a	3	6	3	a a b l	o a
7	9	0	b a	6	7	2	a b b	o a
8	2	2	baabaabba	10	8	1	b t	o a
9	5	4	baabba	7	9	0	ł	o a
10	8	1	b b a	0	10	0		a

LCP algorithm

- * Rank r. r[j] = rank of suffix at position j $(r = SUF^{-1})$
- **Permutation** SUF: SUF[k] = position of suffix of rank <math>k

```
 \begin{aligned} \operatorname{LCP}(y, n, SUF, r) \\ 1 \quad \ell \leftarrow 0 \\ 2 \quad \text{for } j \leftarrow 0 \text{ to } n - 1 \text{ do} \\ 3 \quad \ell \leftarrow \max\{0, \ell - 1\} \\ 4 \quad \text{if } r[j] > 0 \text{ then} \\ 5 \quad i \leftarrow SUF[r[j] - 1] \\ 6 \quad \text{while } y[i + \ell] = y[j + \ell] \text{ do} \\ 7 \quad \ell \leftarrow \ell + 1 \\ 8 \quad LCP[r[j]] \leftarrow \ell \\ 9 \quad LCP[0] \leftarrow 0 \\ 10 \quad LCP[n] \leftarrow 0 \\ 11 \quad \text{return } LCP \end{aligned}
```

M.C. 24/1/2013 19 Master-TSP-SA

Complexity of LCP computation

★ Overall LCP computation

Running time: O(n)

in time O(n) for suffixes in lexicographic order, *i.e.* for the n+1 external nodes of the binary tree in time O(n) for the other n nodes of the binary tree by Lemma 1

Proposition 2 The computation of LCP's of pairs of suffixes used in the binary search can be done in time O(n) with O(n) memory space after suffixes are sorted.

Suffix Trees

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 22/3/2011 1 Master-TSP-ST

Implementation of indexes

suffix of text

pattern

Implementation with efficient data structures

- Suffix Trees digital trees, PATRICIA tree (compact trees)
- ★ Suffix Automata or DAWG's minimal automata, compact automata

Implementation with efficient algorithm

* Suffix Arrays
binary search in the ordered list of suffixes

Text $y \in \Sigma^*$

- \star Suff(y) = set of suffixes of y,
- \star card Suff(y) = |y| + 1
- \star Suff(ababbb)

(empty string)

M.C. 22/3/2011 3 Master-TSP-ST

ε

6

Trie of suffixes

- * $\mathcal{T}(y)$ = digital tree which branches are labeled by suffixes of y = tree-like deterministic automaton accepting Suff(y)
- \star Nodes identified with factors (subwords) of y
- * Terminal nodes identified with suffixes of y, output = position of the suffix
- ★ Suffix trie of ababbb

Insertion of u = y[i ... n - 1] in the structure accepting longer suffixes

- * Head of u: longest prefix y[i ... k-1] of u occurring before i
- *** Tail** of u: rest y[k ... n-1] of suffix u
- \star y = ababbb; head of abbb is ab; tail of abbb is bb

★ Fork

any node that has outdegree 2 at least, or that both has outdegre 1 and is terminal

 \star **Note**: the node associated with the head of u is a fork initial node is a fork iff y non empty

M.C. 22/3/2011 5 Master-TSP-ST

Suffix link

* Function s_y , suffix link if node p identified with factor av, $a \in \Sigma$, $v \in \Sigma^*$ $s_y(p) = q$, node identified with v

↓ Use

creates shortcuts used to accelerate heads computations

★ Useful for forks only

undefined on initial node

Note: if p is a fork, so is $s_y(p)$

Suffix Tree

Text $y \in \Sigma^*$ of length n

S(y) suffix tree of y: compact trie accepting Suff(y)

* Definition

tree obtained from the suffix trie of y by deleting all nodes having outdegree 1 that are not terminal

 \star Edges labeled by factors of y instead of letters

Number of nodes: no more than 2n (if n > 0) because all internal nodes have two children at least and there are at most n external nodes

M.C. 22/3/2011 7 Master-TSP-ST

Labels of edges

★ Labels represented by pairs (pos, Length)

- \star Requires to have y in main memory
- \star Size of S(y): O(n)

Scheme of suffix tree construction

```
Suffix-tree(y)
  1 T \leftarrow \text{New-tree}()
      for i \leftarrow 0 to n-1 do
  3
            find fork of head of y[i ... n-1] using
               Fast-Find from node s[parent] if needed
               and then SLOW-FIND
            k \leftarrow \text{position of tail of } y[i \dots n-1]
  4
  5
            if k < n then
                  q \leftarrow \text{New-state}()
  6
                  Adj[fork] \leftarrow Adj[fork] \cup \{((k, n-k), q)\}
  8
                  output[q] \leftarrow i
  9
            else output[fork] \leftarrow i
      output[initial] \leftarrow n
10
      return T
11
```

* Adjacency-list representation of labeled arcs

M.C. 22/3/2011 9 Master-TSP-ST

Straight insertion

★ Insertion of suffix ababbb is done by letter comparisons from the initial node (current node)

- * It leads to create node 3 which suffix link is still undefined,
- ★ and node 4 associated with suffix ababbb at position 2
- ★ Head is abab, tail is bb

```
SLOW-FIND(p, k)
       while k < n and Target(p, y[k]) \neq \text{NIL do}
  2
             q \leftarrow \text{Target}(p, y[k])
  3
             (j,\ell) \leftarrow label(p,q)
  4
             i \leftarrow j
  5
             do i \leftarrow i + 1
                    k \leftarrow k + 1
  6
             while i < j + \ell and k < n and y[i] = y[k]
  8
             if i < j + \ell then
  9
                    Adj[p] \leftarrow Adj[p] \setminus \{((j,\ell),q)\}
                    r \leftarrow \text{New-state}()
 10
                    Adj[p] \leftarrow Adj[p] \cup \{((j, i - j), r)\}
 11
                    Adj[r] \leftarrow Adj[r] \cup \{((j+i-j,\ell-i+j),q)\}
 12
                    return (r, k)
 13
             p \leftarrow q
 14
 15 return (p, k)
```

M.C. 22/3/2011 11 Master-TSP-ST

New suffix link

* Computing $s[3] = s_y(3)$ remains to find the node associated with bab

- \star Arc (0, (1, 7), 2) is split into (0, (1, 3), 5) and (5, (4, 4), 2)
- ★ Execution in constant time (here)
- * In general, iteration in time proportional to the number of nodes along the path (and not proportional to the length of the string)

Fast-Find(r, j, k) $1 \hspace{0.1in} \rhd \hspace{0.1in} \text{computes} \hspace{0.1in} \mathsf{Target}(r,y[j\mathinner{.\,.} k-1])$ if $j \geq k$ then 3 return relse $q \leftarrow \text{Target}(r, y[j])$ $(j',\ell) \leftarrow label(r,q)$ if $j + \ell \le k$ then 6 return Fast-Find $(q, j + \ell, k)$ 8 else $Adj[r] \leftarrow Adj[r] \setminus \{((j', \ell), q)\}$ 9 $p \leftarrow \text{New-state}()$ $Adj[r] \leftarrow Adj[r] \cup \{((j, k - j), p)\}$ 10 $Adj[p] \leftarrow Adj[p] \cup \{((j'+k-j,\ell-k+j),q)\}$ 11 12 return p

M.C. 22/3/2011 13 Master-TSP-ST

Next insertion

★ End of insertion of suffix babbb

- ★ Execution in constant time
- ★ Head is bab, tail is bb

Scheme for insertion

***** Scheme for the insertion of suffix $y[i ... n-1] = u \cdot v \cdot w \cdot z$

- * It first computes p = Target(s[r], v) with Fast-Find (if necessary)
- ★ then the fork of the current suffix with SLOW-FIND

M.C. 22/3/2011 15 Master-TSP-ST

Scheme for insertion (continued)

★ General scheme for inserting the next suffix in the data structure when the suffix target of the current fork is not defined

Complete algorithm

```
Suffix-tree(y)
  1 T \leftarrow \text{New-tree}()
      s[initial[T]] \leftarrow initial[T]
      (fork, k) \leftarrow (initial[T], 0)
       for i \leftarrow 0 to n-1 do
              k \leftarrow \max\{k, i\}
  5
  6
              if s[fork] = NIL then
                     r \leftarrow \text{parent of } \textit{fork}
  7
  8
                     (j, \ell) \leftarrow label(r, fork)
  9
                     if r = initial[T] then
                            \ell \leftarrow \ell - 1
 10
                     s[fork] \leftarrow \text{Fast-Find}(s[r], k - \ell, k)
 11
 12
              (fork, k) \leftarrow \text{Slow-Find}(s[fork], k)
              if k < n then
 13
                     q \leftarrow \text{New-state}()
 14
                     Adj[fork] \leftarrow Adj[fork] \cup \{((k, n-k), q)\}
 15
                     output[q] \leftarrow i
 16
              else output[fork] \leftarrow i
 17
       output[initial] \leftarrow n
 18
 19
      return T
```

M.C. 22/3/2011 17 Master-TSP-ST

Running time

★ Scheme for insertion

- \star Main iteration increments i, which never decreases
- \star Iteration in FAST-FIND increments j, which never decreases
- \star Iteration in Slow-Find increments k, which never decreases
- * Basic operations run in constant time or in time $O(\log \operatorname{card} \Sigma)$

Theorem 1 Execution of Suffix-Tree(y) = S(y) takes $O(|y| \times \log \operatorname{card} \Sigma)$ time in the comparison model.

Suffix Automata

MAXIME CROCHEMORE

King's College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 17/3/2011 1 Master-TSP-ST

Implementation of indexes

suffix of text

pattern

Implementation with efficient data structures

- * Suffix Trees
 digital trees, PATRICIA tree (compact trees)
- ★ Suffix Automata or DAWG's minimal automata, compact automata

Implementation with efficient algorithm

Suffix Arrays binary search in the ordered list of suffixes Text $y \in \Sigma^*$

- Suff(y) = set of suffixes of y,
- $\operatorname{card} Suff(y) = |y| + 1$
- Suff(ababbb)

M.C. 17/3/2011 Master-TSP-ST

ε

6

Trie of suffixes

- $\mathcal{T}(y) = \text{digital tree}$ which branches are labeled by suffixes of y = tree-like deterministic automaton accepting Suff(y)
- **Nodes** identified with factors (subwords) of \boldsymbol{y}
- Terminal nodes identified with suffixes of y, output = position of the suffix
- Suffix trie of ababbb

Suffix Automaton

Text $y \in \Sigma^*$ of length n

A(y) = minimal deterministic automaton accepting Suff(y)

★ Minimization of the trie of suffixes

- \star States are classes of factors (subwords) of y
- * Size:

$$n+1 \leq \#states \leq 2n-1$$

$$n \le \#arcs \le 3n - 4$$

M.C. 17/3/2011 5 Master-TSP-ST

Maximal size

★ Maximal number of states

★ Maximal number of arcs

Suffix link

* Function f_y , suffix link let $p = \text{Target}(initial[\mathcal{A}], v), v \in \Sigma^+$ $f_y(p) = \text{Target}(initial[\mathcal{A}], u)$, where u is the longest suffix of voccurring in a different right context

- * f[1] = 0, f[2] = 1, f[3] = 3'', f[3''] = 3', f[3'] = 0,f[4] = 4'', f[4''] = 3', f[5] = 1, f[6] = 3'', f[7] = 4''.
- * Suffix path example for state 7: $\langle 7, 4'', 3', 0 \rangle$, sequence of terminal states
- * Use same but more efficient than suffix link in suffix trees

M.C. 17/3/2011 7 Master-TSP-ST

Construction—one step (1)

From A(ccccbbccc) to A(ccccbbcccd)

* New arcs from states of the suffix path (9, 3, 2, 1, 0).

Construction—one step (2)

***** From A(ccccbbccc) to A(ccccbbcccc)

★ Link 3 = f[9] and solid arc $(3, \mathbf{c}, 4)$ (not a shortcut) then, $f[10] = \text{Target}(3, \mathbf{c}) = 4$ that becomes a terminal state

M.C. 17/3/2011 9 Master-TSP-ST

Construction—one step (3)

★ From $\mathcal{A}(\text{ccccbbccc})$ to $\mathcal{A}(\text{ccccbbcccb})$

Link 3 = f[9], non-solid arc (3, b, 5), cccb suffix but ccccb not state 5 is cloned into 5'' = f[10] = f[5], f[5''] = 5' arcs (3, b, 5), (2, b, 5) et (1, b, 5) are redirected onto 5''

Operations on indexes

Text y of length n

- * Index implemented by suffix tree or suffix automaton of y memory space O(n), construction time $O(n \times \log \operatorname{card} \Sigma)$
- * String matching searching y for x of length m: time $O(m \times \log \operatorname{card} \Sigma)$ number of occurrences of x in y: same complexity after O(n) preprocessing
- * All occurrences finding all occurrences of x in y: time $O(m \times \log \operatorname{card} \Sigma) + |output|)$
- * Repetitions computing a longest factor of y occurring at least k times: time O(n)
- * Marker computing a shortest factor of y occurring exactly once: time O(n)

M.C. 17/3/2011 11 Master-TSP-ST

Saving space

Compact Suffix Automaton

Text $y \in \Sigma^*$ of length n

 $\mathcal{A}^{c}(y) = \text{compact minimal automaton accepting } Suff(y)$

Compaction of $\mathcal{A}(y)$, or **minimization** of $\mathcal{S}(y)$

 \star Linear size: O(n)

M.C. 17/3/2011 13 Master-TSP-ST

Direct construction of CSA

- ★ Similar to both
 - Suffix Tree construction
 - Suffix Automaton construction
- ★ Sequential addition of suffixes in the structure from the longest to the shortest
- ★ Used features:
 - "slow-find" and "fast-find" procedures
 - suffix links
 - solid and non-solid arcs
 - state splitting
 - re-directions of arcs
- **Complexity**: $O(n \log \operatorname{card} \Sigma)$ time, O(n) space 50% **saved** on space of Suffix Automaton