PARI PACKAGE: VALID DOUBLE-DIPPING VIA PERMUTATION-BASED ALL RESOLUTIONS INFERENCE

ANGELA ANDREELLA1

LIVIO FINOS²

JELLE GOEMAN³

EUROBIOC - 15 DECEMBER 2020

¹DEPARTMENT OF STATISTICAL SCIENCES, UNIVERSITY OF PADUA

²Department of Developmental Psychology and Socialisation, University of Padua

³BIOMEDICAL DATA SCIENCES, LEIDEN UNIVERSITY MEDICAL CENTER

MOTIVATION

Dealing with **multiple testing problem** leads to decide which correction method must be applied to handle potential false positives.

- At level of single variable or set of variables?
- Low **power** or low **information**?

FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) DATA

fMRI is the most used technology to study human cognition's neural underpinnings.

We have a **test statistic** \forall voxel corresponding to the **null hypothesis that the voxel is not active**.

SPATIAL SPECIFICITY PARADOX

In fMRI data analysis, the most widely used method for locating brain activity is **cluster-extent based thresholding** ¹.

¹Woo, C. et al. (2014).

SPATIAL SPECIFICITY PARADOX

Problems:

- Spatial Specificity paradox ² → The larger the cluster, the weaker the finding!
- Inferring inside data-driven clusters is problematic! → Double-dipping, Circular analysis, Cherry picking ...

Solution: All-resolutions inference $(ARI)^3 \rightarrow Inference$ on the **number of truly active voxels**.

²Woo, C. et al. (2014).

³Rosenblatt, J. et al. (2018).

NOT ONLY FMRI DATA!

Every time that we want to infer inside a data-driven (and not) cluster (features set), we can use ARI:

- Cluster fMRI data analysis ⁴;
- Gene expression cluster analysis 5;
- **Cluster EEG data analysis** ⁶.

⁴Woo, C. et al. (2014).

⁵Berge, K. et al. (2017).

⁶Maris, E. et al. (2007).

MULTIPLE TESTING PROBLEM

Let consider B collection of m features to test, e.g., voxel activation, gene count, etcetera.

- Hypothesis: H_1, \ldots, H_m ;
- **True Discoveries:** $A \subset \{1, ..., m\}$;
- Cluster: $S \subset \{1, ..., m\}$ selected hypothesis;
- True Discoveries in S: $|A \cap S| \subset \{1, ..., m\}$.

We want to infer on $a(S) = |A \cap S|$, or equivalently true discovery proportion (TDP), i.e., $\pi(S) = a(S)/|S|$.

ALL-RESOLUTION INFERENCE (ARI)

Two ingredients:

- **Closed testing procedure** for controlling the familywise error rate⁷:
- Local test used in the closed testing procedure;

The closed testing principle rejects any H_i , if all possible intersection hypotheses involving H_i are rejected by using valid local level α tests. $\rightarrow 2^m$ hypothesis to tests!!

However...Goeman et al. (2020) finds a good general shortcut by defining the concept of **critical vector**.

⁷Marcus, E. et al. (1976).

CRITICAL VECTOR

Definition

A vector l_1, \ldots, l_m is a critical vector if and only if

$$\Pr(\bigcap_{i=1}^{|N|} \{q_{(i)} \ge l_i\}) \ge 1 - \alpha,$$
 (1)

where $N = B \setminus A$ is the set of inactive voxels, and $q_{(i)}$, $1 \le i \le |N|$ are their sorted p-values.

ALL-RESOLUTIONS INFERENCE (ARI)

Lemma

Let l_i satisfy (1). Then for every $\emptyset \neq S \subseteq B$,

$$\bar{a}(S) = \max_{1 \le u \le |S|} 1 - u + |\{i \in S : p_i \le l_u\}|.$$
 (2)

is a lower $(1-\alpha)$ confidence bound of a(S), simultaneously for all $S\subseteq B$, that is

$$\Pr(\forall S \subseteq B : \bar{a}(S) \le a(S)) \ge 1 - \alpha. \tag{3}$$

ALL RESOLUTION INFERENCE (ARI)

where $z = |\{i \in S : p_i \le l_u\}|$ of the previous Lemma.

PARAMETRIC ARI

The **parametric** version, i.e., local tests are based on the **Simes tests**, uses:

$$l_i = \frac{\alpha i}{h} \tag{4}$$

where *h* is the largest size of a features set not rejected by the Simes test.

Parametric ARI is not assumption-free \rightarrow Simes inequality, i.e., positive regression dependency on subsets ⁸, also adopted for the FDR ⁹ controlling approach.

However... it can be **conservative** in the case of strong **correlation** between tests.

⁸Sarkar, S. K. (2008).

⁹Benjamini, Y. (1995).

PERMUTATION-BASED ARI

Solution: Permutation approach!

It accounts for the p_i 's **dependence structure** \rightarrow higher critical curve than parametric methods \rightarrow more **power**.

- Let $p_1^1, ..., p_m^1 = p_1, ..., p_m$ be the *p*-values for the real data;
- Let $p_1^j, ..., p_m^j$ be the p-values obtained for the j-th random permutation of the data, where w is the total number of random **permutations** or **sign-flipping** transformations;
- Let the **family of candidate critical vectors** be $\mathcal{F} = \{l(\lambda_{\alpha}) : \lambda_{\alpha} \in \Lambda\}$, where $\lambda_{\alpha} \in \Lambda \subseteq \mathbb{R}$.

Permutation-based ARI - λ_{α} calibration

$$\lambda_{\alpha} = \sup\{\lambda \in \Lambda : \mathbf{W}^{-1} | \{1 \le j \le \mathbf{W} : p_i^j \ge l_i(\lambda) \ \forall i\} | \ge 1 - \alpha\}$$

Permutation-based ARI - Choice of ${\cal F}$

Let be $\delta \in \mathbb{R}^+$:

- Simes¹⁰: $l_i(\lambda_\alpha) = \frac{(i-\delta)\lambda_\alpha}{m-\delta}$, where $\Lambda \subseteq \mathbb{R}_{>0}$;
- Asymptotically Optimal Rejection Curves (AORC)¹¹: $l_i(\lambda_\alpha) = \frac{(i-\delta)\lambda_\alpha}{(m-\delta)-(i-\delta)(1-\lambda_\alpha)}$, where $\Lambda \subseteq \mathbb{R}_{>0}$;
- Higher Criticism¹²: $l_i(\lambda_\alpha) = \frac{2i + \lambda_\alpha^2 \sqrt{(2i + \lambda_\alpha^2)^2 4i^2(m + \lambda_\alpha^2)/m}}{2(m + \lambda_\alpha^2)}$, where $\Lambda \subseteq \mathbb{R}$;
- Beta¹³: $l_i(\lambda_\alpha) = \inf\{x : \lambda_\alpha \le F_i(x)\}$, where $\Lambda = [0,1]$ and $F_i(X)$ is the cdf of Beta(i, m+1-i).

¹⁰Simes (1986).

¹¹Finner et al. (2009).

¹²Donoho and Jin (2004).

¹³Hemerik et al. (2019).

Permutation-based ARI - Choice of ${\cal F}$

Theorem

The vector $l(\lambda_{\alpha})$ is a critical vector, i.e., it satisfies (1).

The parametric ARI equals the permutation-based ARI if:

- Simes-based \mathcal{F} ;
- $\lambda_{\alpha} = \alpha$ and $\delta = 0$.

MAIN FUNCTIONS OF PARI

```
devtools::install_github(angeella/pARI)
library(pARI)
```

fMRI framework:

```
pARIbrain(copes, thr, mask, alpha, ...)
```

General framework:

```
pARI(data, ix, alpha, test.type, ...)
```

where ix is the **features set** of interest. It can be a vector of indices or a vector with length equals the number of features where different values indicate the different sets.

FMRI DATA APPLICATION - CODE

We analyzed the **Auditory data** collected by Pernet et al. (2015), i.e, people listening vocal and non-vocal sounds.

Group analysis on 140 subjects of the Vocal > Non-vocal **contrast** by the one sample t-test flipping the sign of 140 voxel-wise contrasts maps.

First, let download the data from the fMRIdata package:

```
devtools::install_github(angeella/fMRIdata)
library(fMRIdata)
data(Auditory_clusterTH3_2)
data(Auditory_copes)
data(Auditory_mask)
```

FMRI DATA APPLICATION - CODE

FMRI DATA APPLICATION - RESULTS

Cluster	Threshold	Size	% ac	tive	P-Values
S	t	S	$ar{\pi}(S)$		p_{FWER}
			Perm.	Param.	
			Simes	Simes	
Right STG/PT	3.2	11683	92.36%	84.98%	< 0.0001
HG/IFG/T					
Right STG/PT	4	8875	99.54%	98.5%	=
HG/IFG/T					
Right IFG	4	422	91.47%	83.18%	_
Right T	4	292	85.96%	64.04%	_
Right T	4	15	13.33%	ο%	_

FMRI DATA APPLICATION - RESULTS

map_TDP: Create true discovery proportion map in nifti format.

20

GENE EXPRESSION APPLICATION - CODE

Let consider a simple example using Bottomly et. al (2011) data, i.e., a comparative RNA-seq analysis of different mouse strains:

- 1049 genes and 21 samples, where 10 C57BL/6J strain and 11 DBA/2J strain;
- After pre-processing steps, we perform a two-samples t-tests for each gene;
- We define as **sets of interest** the ones computed by hclust.

```
pARI(X = bottomly.eset_preprocessed,
    ix = my.clusters,
    test.type = "two_samples",
    label = label,
    alternative = "two.sided")
```

GENE EXPRESSION DATA APPLICATION - RESULTS

Cluster	Size	% active		
S	S	$ar{\pi}(S)$		
		Perm.	Param.	
		Simes	Simes	
1	3183	27.66%	3.5%	
2	3150	34.27%	5.58%	
3	2313	22.17%	2.7%	
4	2243	12.77%	ο%	

KEY POINTS

The permutation-based ARI:

- **flexible, mild** and **post-hoc** \rightarrow You can choose the features set as many time as you want!
- resolves the spatial specificity paradox of cluster fMRI data analysis:
- is general, allowing different families of confidence bounds;
- accounts for the dependence structure of the data;
- makes **no assumptions** on the null distribution of the p-values → only **exchangeability**:
- the **power** does not depend on the number of features sets tested.

Thanks to the amazing group that worked on the paper Permutation-based true discovery proportions for fMRI cluster analysis! (in arXiv)

- Livio Finos University of Padua;
- Jelle Goeman Leiden University Medical Centre;
- Jesse Hemerik Wageningen University;
- Wouter Weeda Leiden University;

and thanks for your attention!

- ngeella
- 🤨 @aangeella
- angela.andreella@stat.unipd.it