

Part I: Fundamental Concepts

Introduction to Speech Synthesis

Human Speech Production

Human Speech Production Model

Speech Synthesis

Speech Synthesis Technologies

Evolution of Speech Synthesis

Articulatory speech synthesis

Concatenative speech synthesis

Neural speech synthesis

Formant speech synthesis

Statistical parametric speech synthesis

Articulatory Speech Synthesis

- Replication of the movements of human articulators
- Difficult to gather data
- Useful for phonological studies
- Inferior synthetic speech quality

von Kempelen Speaking Machine (1800)

Voder 1939

Fig. 8—Schematic circuit of the voder.

Formant Speech Synthesis

- Simplified source-filter model
- Each vocal tract resonance is model by a 2nd order filter
- Cascade/parallel association
- Rule-based parameter control

Speech Coding: Removing Redundancy

Text-to-Speech Synthesis

Text-to-Speech LPC Synthesizer

Advantages of the LPC Model

Parameters easily extracted from speech

Parameters can be interpolated

Modifiable fundamental frequency

Modifiable duration

Diphone

- Speech sound segment between the stable regions of two phones
- Captures the transition dynamics
- Can be extended to larger segments

Concatenative Speech Synthesis

- Piecing together recorded speech units from a database
- Minimization of selection and concatenation costs
- Requires extensive recordings from a single speaker
- Highly intelligible
- Lack of naturalness and emotional expressiveness

Pitch Synchronous Overlap Add (TD-PSOLA)

- Find the largest peak in each period
- Window covering two pitch periods
- Shift windows to match the desired period

Statistical Parametric Speech Synthesis (SPSS)

- HMM acoustic model to generate acoustic parameters
- The acoustic model is trained with paired linguistic features and acoustic features
- Requires fewer data than concatenative synthesis
- More flexibility but lower intelligibility and robotic voice quality

Neural Speech Synthesis

- Replace the HMM acoustic model with DNN
- Replace the vocoder with DNN
- Allows an end-to-end system
- High voice quality: intelligibility and naturalness

Speech synthesis Evaluation 98.663

623

675

101

10.

5.05.

30. 2. 123

2

29.431

128.04 cos

.100 6.

6

131

che

30

155

.00 250

80.

Mean Opinion Score

- Subjective test
- Rating on a 1-5 scale
- Careful design
- Native language listeners
- Baseline examples

AB Test

- Subjective test
- Preference test
- Listeners are presented with two versions
- Careful design
- Native language listeners
- Baseline examples

Perceptual Evaluation Speech Quality (PESQ)

- Designed to assess voice communication systems
- Needs a reference speech signal
- Spectral distortion
- Temporal alignment
- Noise
- Score range between -0.5 and 4.5

Mel Cepstral Distortion

- Needs a reference speech signal
- Extracts MFCCs from both the synthesized and reference speech signals
- Euclidean distance between each corresponding pair of MFCCs is computed and averaged over all frames.
- Does not capture prosody, intonation, or pronunciation accuracy.

$$ext{MCD}_{ ext{dB}} = rac{lpha}{N} \sum_{t=0}^{N-1} \sqrt{\sum_{k=1}^{P} (ext{MC}_{ ext{syn}}(t,k) - ext{MC}_{ ext{ref}}(t,k))^2}$$

Word Error Rate (WER)

- Measures the intelligibility of the synthesized speech
- Does not require a reference speech signal
- Requires a speech recognizer
- Percentage of incorrectly recognized words in the synthesized output compared to the reference text.

$$ext{WER} = rac{S+D+I}{N} imes 100\%$$

Probabilistic Formulation of TTS

Linguistic and Acoustic Features

acoustic features

linguistic features (labels)

$$p(\mathbf{x}|\mathbf{w}, \mathcal{X}, \mathcal{W}) = \int \int \underbrace{p(\mathbf{x}|\mathbf{o})}_{\text{vocoder}} \underbrace{p(\mathbf{o}|\mathbf{l}, \lambda)P(\mathbf{l}|\mathbf{w})p(\lambda|\mathcal{X}, \mathcal{W})}_{\text{acoustic linguistic training}} d\lambda \, d\mathbf{o}$$

joint optimization

$$\left\{\hat{\mathbf{o}}, \hat{\mathbf{l}}, \hat{\lambda}\right\} = \argmax_{\mathbf{o}, \mathbf{l}, \lambda} \left\{p(\mathbf{x}|\mathbf{o})p(\mathbf{o}|\mathbf{l}, \lambda)P(\mathbf{l}|\mathbf{w})p(\lambda|\mathcal{X}, \mathcal{W})\right\}$$

$$p(\mathbf{x}|\mathbf{w}, \mathcal{X}, \mathcal{W}) \approx \underbrace{p(\mathbf{x}|\hat{\mathbf{o}})}_{\text{vocoder}} \underbrace{p(\hat{\mathbf{o}}|\hat{\mathbf{l}}, \hat{\lambda})}_{\text{acoustic linguistic training}} \underbrace{p(\hat{\lambda}|\mathcal{X}, \mathcal{W})}_{\text{training}}$$

TTS Pipeline

 $\hat{\mathcal{O}} = \arg \max p(\mathcal{X} \mid \mathcal{O})$

$$\hat{\mathcal{L}} = rg \max_{\mathcal{L}} p(\mathcal{L} \mid \mathcal{W})$$

$$\hat{\lambda} = \arg \max_{\lambda} p(\hat{\mathcal{O}} \mid \hat{\mathcal{L}}, \lambda) p(\lambda)$$
 Learn mapping

Extract acoustic features

Extract linguistic features

$$\hat{\boldsymbol{o}} = \arg\max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \hat{\boldsymbol{l}}, \hat{\lambda})$$

$$\bar{\boldsymbol{x}} \sim f_{\boldsymbol{x}}(\hat{\boldsymbol{o}}) = p(\boldsymbol{x} \mid \hat{\boldsymbol{o}})$$

Predict linguistic features

Predict acoustic features

Synthesize waveform

TTS Front End

Text Normalization

Non-standard words

Earthquake of 1755

My phone is 123451755

I paid € 1755

I traveled 1775 km

Semiotic class

Year

Phone number

Money amount

Distance

Examples of Non-Standard Words

ordinal numbers • 13th (thirteen) roman numbers Charles ||| (Charles third) percentage • 3.5% (three point five per cent) • 12:10 (twelve ten) time symbols • + (plus) abbreviations Av. (avenue) NY (New York), GPU (gee pee u) acronyms

Grapheme-to-Phoneme (G2P)

Dictionary

character-tosound correspondences

Prediction

words not in the dictionary

Disambiguation

homographs nonhomophones

Sandhi

changes in word boundaries

Homographs Non-Homophones (GenAm)

The nurse wound the bandage around my wound. (/wund/, /waʊnd/)

I did not object after being asked to carry the large object. (/əbˈd͡ʒɛkt/, /ˈɑb.d͡ʒɛkt/)

Sheldon and Amy weren't close enough to the car door to be able to close it so Leonard had to do it himself. (/kləʊs/, /kloʊz/)

The mouth of a huge bass was painted on the bass drum (/bæs/, /beɪs/)

I shed a tear when I saw the tear in my shirt. (/tɪəɹ/, /tɛəɹ/)

Homographs Non-Homophones (PT)

Eu jogo nesse jogo (V/N)

Ele foi colher flores com uma colher (V/N)

Pisou um prego enquanto estava a pregar (N/V)

O barco seguiu a sua rota mesmo com a vela rota (N/A)

Estava na sede do clube e fiquei com sede (N/N)

Intermediate Spectrogram

- Phones and prosody can be modeled with the magnitude of the spectrum
- Perceptually based (e.g. mel spectrogram)
- Adequate resolution in time with short-time analysis
- FFT provides efficient computation

SPSS: HMM Acoustic Model

- Observation vectors are spectral parameters and f0 (acoustic features)
- Context-dependent modeling

State chain: $P(s_t|s_{t-1})$

State emissions: $P(\mathbf{y} \mid s) = \sum_{k=1}^{K} \phi_{k,s} N(\mathbf{y} \mid \mathbf{\mu}_{k,s}, \Sigma_{k,s})$

Neural Speech Synthesis Models

RNN-based: Tacotron

- Encoder-decoder with attention
- Predicts mel spectrograms
- Pre-net provides information bottleneck for regularization
- CBHG is a 1-D convolutional filters, followed by highway networks and a bidirectional gated recurrent unit

Tacotron2

- Replaces CBHG and GRU by LSTM
- Bidirectional LSTM
- Location-sensitive attention instead of additive attention
- Training with the accurate spectrum, not the predicted
- WaveNet instead of Griffin-Lim

Fig. 1. Block diagram of the Tacotron 2 system architecture.

Attention vs Duration-Based S2S Models

Attention-based

- No alignments needed
- Adaptable to diverse or noisy datasets
- Capable of more natural prosody

Uses attention mechanism to align input and and output sequences

Duration-based

- Fast parallel inference
- Less chance of alignment problems
- Easier to train if alignments are available
- More robust to silence in training data

Uses an explicit duration model that predicts the duration of each phone

The Vocoder

- Initially conceived to reduce the bandwidth necessary to transmit intelligible voice
- Splits speech in source and frequency bands (acoustic features)
- Generates a waveform from the acoustic features
- Needs to reconstruct the phase information

Fig. 7-Schematic circuit of the vocoder.

Grifin-Lim Algorithm

- Initialization: original magnitude + random phase
- Reconstruction: time-domain using ISTFT
- New Phase: extracted from STFT
- Phase Update: original magnitude + new phase
- Iteration: repeat reconstruction until convergence

WaveNet Vocoder

- Autoregressive model
- Predict the next sample with a stack of convolution layers
- Extent range by using dilated convolutions
- Softmax to produce discrete amplitude levels
- Extremely slow

Speaker Characteristics

Speaking style

Personalized speech synthesis

Voicecloning

Cross-lingual voice cloning

Speech-tospeech translation

Latent Space

- Hidden state vector or bottleneck
- Module that contains the compressed knowledge representations

Global Style Tokens

- Captures stylistic attributes or characteristics of speech
- Learned from large datasets with diverse speech styles
- Learned from the mel spectrogram by compressing the latent space
- Interpretable "labels" that can be used to modify the speaking style

Neural TTS Systems

Zero-Shot TTS

Part II: Advanced Topics

Transformer-based: FastSpeech

- Transformer predicts mel spectrograms in parallel
- No attention mechanism
- Explicitly predicts duration, energy and f0
- Exceptionally fast inference speed

FastSpeech2

- Training with the accurate spectrum, not the predicted (AR)
- Variance information for f0, duration and energy
- Better voice quality

HifiGAN Vocoder

- Uses a Generative Adversarial Network (GAN)
- Generator: fully convolutional network
- Up-samples spectrogram to waveform temporal resolution
- Multi-period discriminator: periodic component
- Multi-scale discriminator: consecutive and long-term patterns

Flow-based Models

- Normalizing flows models the target distribution by transforming a simple distribution through a sequence of invertible mappings
- Both the forward and inverse transformations can be easily computed
- Flow-based models learn a mapping between a lowdimensional latent space and the high-dimensional space of speech waveforms

GlowTTS

- Searches for the most probable monotonic alignment between text and the latent representation of speech
- Monotonic alignments provides robustness and generalizes to long utterances
- Flows enable fast, diverse, and controllable speech synthesis.

- (a) An abstract diagram of the training procedure.
- (b) An abstract diagram of the inference procedure.

Figure 1: Training and inference procedures of Glow-TTS.

VITS

- Combination of GlowTTS with HiFiGAN vocoder
- Monotonic alignment search
- Inference runs x67 real-time

YourTTS Architecture

Encodec Model

Encodec Model Training

VALL-E Architecture

VALL-E Neural Codec Language Model

VALL-E Equations

first audio codeword index

phone embeddings

auto regressive (AR)

$$p(\mathbf{c}_{:,1}|\mathbf{x}, \tilde{\mathbf{C}}_{:,1}; \theta_{AR}) = \prod_{t=0}^{1} p(\mathbf{c}_{t,1}|\mathbf{c}_{< t,1}, \tilde{\mathbf{c}}_{:,1}, \mathbf{x}; \theta_{AR})$$

acoustic prompt

$$p(\mathbf{C}|\mathbf{x}, \tilde{\mathbf{C}}; \theta) = p(\mathbf{c}_{:,1}|\tilde{\mathbf{C}}_{:,1}, \mathbf{X}; \theta_{AR}) \prod_{j=2}^{8} p(\mathbf{c}_{:,j}|\mathbf{c}_{:,< j}, \mathbf{x}, \tilde{\mathbf{C}}; \theta_{NAR})$$

remaining indexes

non auto regressive (NAR) combines the 7 indexes

VALL-E X

Summary

Technologies

• Articulatory, formants, concatenative, statistical parametric SS, neural SS

Evaluation

Subjective and objective tests

Probabilistic Formulation

• Acoustic model, acoustic features, linguistic features, pipeline

Front End

• Text normalization, POS tagging, prosody prediction, G2P conversion

Summary (cont.)

Acoustic Model

• Generates the intermediate spectrogram with SPSS, RNN or transformers. Attention vs duration.

Waveform Generation

• LPC, Griffin-Lim and WaveNet vocoders

Speaker and Style Embeddings

Latent space and global style tokens

End-to-End Models

Neural TTS Systems, Zero-shot TTS, VALL-E

Obrigado

