

Artificial Intelligence Project:

Snake game

73259 | Diogo Gaitas 98543 | Luís Oliveira 102480 | Rúben Pequeno

Agent Architecture

Algorithm Analysis

Key strategies:

- ❖ A* pathfinding with Manhattan distance heuristic
- ❖ Food (normal or super) prioritization based on game state
- ❖ Adaptive scouting patterns (wrap vs. no-wrap)

Strengths:

- Efficient pathfinding
- * Robust safety checks

Agent Benchmark

We have runned the program ten times on a VM with limited resources in order to get some feedback of the snake's behaviour.

Results:

- ❖ Average score: ∼55 points (vs 20-30 in first delivery)
- ❖ Survival time: ∼1600 steps

LVL	1	POINTS	1	STEPS
1	1	58	1	1736
2	1	51	1	1094
3	1	55	1	1171
4	Ĭ	50	1	1064
5	1	36	1	1317
6	1	75	1	2346
7	Τ	26	1	843
8	1	79	1	3000
9	T	84	I	2804
10	Τ	42	1	805
MÉDIA	I	55.9	1	1618

Conclusions

Potential Improvements:

- ❖ Dynamic risk assessment for superfoods
- ❖ Improve super fruit search when "traverse = false"
- Loop avoidance
- Better multiplayer adaptation
- **❖** More sophisticated territory control