# BLG 335E Analysis of Algorithms 1 Project 1

<u>Lecturer:</u> Hazım Kemal Ekenel

> Student: Göktürk GÖK 150110029

> > **Due Date**:

21.10.2016, 23:59

### A. Asymptotic Upper Bound

There are 3 main situation as worst-case, average-case and best case of algorithms. And each of them is described as <a href="big O">big O</a> notation which specify the upper bound for the worst-case, <a href="big D">big Theta Notation</a> which is located between upper and lower bound for the average-case and <a href="big O">big Omega Notation</a> that specify the lower bound for the best-case.

#### 1. Linear Search

my implementation: Normally there would be a key then you can search the list item by item until the key matches the element of an array. But in our project there is a temporary array( temp) which keeps K-closest warehouses instead of just a key. My implementation includes two nested loops which the inner loop is K times and outer loop is N-K times. So N\*K is the upper bound of linear search in this project instead of finding a key in an array has just N.

**best case:** 1 (big omega notation) **worst case:** n (big O notation)

#### 2. Insertion Sort

 $\label{eq:my-implementation:} \begin{tabular}{ll} my implementation: There are two nested loops which both are run N (range) times. So <math display="block"> \hline upper-bound\ of\ my\ insertion\_sorter\ is\ N^2\ . \\ \begin{tabular}{ll} Here\ N\ is\ the\ number\ of\ warehouses\ which\ is\ taken\ as\ an\ argument\ from\ terminal. \end{tabular}$ 

**best case:** n (big omega notation) **average case:** n<sup>2</sup> (big theta notation) **worst case:** n<sup>2</sup> (big O notation)

#### 3. Merge Sort

my implementation: There is a <u>divide and conquer algorithm</u> here using merge sort algorithm. Asymptotic <u>upper bound of Merge Sort</u> Algorithm is **O(n\*log(n))**. So when the number of warehouses is taken as N, execution time will be multiplied by **N\*(log(N))**.

best case: nlogn (big omega notation) average case: nlogn (big theta notation)

worst case: nlogn (big O notation)

## **B.** Execution Time (sec)

#### 1. Linear Search

|               | K = 1 | K = 2 | K = 10 | K = N/2 |
|---------------|-------|-------|--------|---------|
| N = 10        | 0     | 0     | 0      | 0       |
| N = 100       | 0     | 0     | 0      | 0       |
| N = 1000      | 0     | 0     | 0.0001 | 0.004   |
| N = 1 000 000 | 0.001 | 0.03  | 0.13   | 3294    |

#### 2. Insertion Sort

|               | K = 1 | K = 2 | K = 10 | K = N/2 |
|---------------|-------|-------|--------|---------|
| N = 10        | 0     | 0     | 0      | 0       |
| N = 100       | 0     | 0     | 0      | 0       |
| N = 1000      | 0.003 | 0.003 | 0.0029 | 0.0029  |
| N = 1 000 000 | 3304  | 3387  | 3467   | 3412    |

### 3. Merge Sort

|               | K = 1  | K = 2  | K = 10 | K = N/2 |
|---------------|--------|--------|--------|---------|
| N = 10        | 0      | 0      | 0      | 0       |
| N = 100       | 0      | 0      | 0      | 0       |
| N = 1000      | 0.0004 | 0.0005 | 0.0004 | 0.0004  |
| N = 1 000 000 | 0.7132 | 0.7013 | 0.6926 | 0.6883  |

## 4. Average Times of Execution Time of Algorithms

|               | Linear Search | Insertion Sort | Merge Sort |
|---------------|---------------|----------------|------------|
| N = 10        | 0             | 0              | 0          |
| N = 100       | 0             | 0              | 0          |
| N = 1000      | 0.002         | 0.00295        | 0.00042    |
| N = 1 000 000 | 823.54        | 3392.5         | 0.526      |

### C. 2-Line Plotting of Running Time Complexity



N (Number of data)

As it is shown above that if there is a sorting around small amount of data(ex: 500), there are not so big differences between insertion sort and merge sort

But Merge sort is more effective than insertion sort when sorting big amount of data (ex;more than 1000) because it has much more less complexity than insertion sort (**logn < n after specific point**).