POLARIS axes & rotations

(Sanity checks)

Mock cube with constant B, n, n_{cr}

- Example tests of a 32^3 cube
- Break symmetry with slices with $n_{cr} = 0$ (at y = 0 and at z = 10) helps identify axes at a glance
- Run octree conversion and POLARIS synchrotron emission (various detectors, i.e. observer locations)

Detector rotated around x by 90°

Detector rotated around z by 90°

Detector rotated first around x by 90° and then around (old) z by 90°

Magnetic field vector

Polarization angle defined in POLARIS (derived from these tests - not what is shown in manual)

Stokes parameters, no rotation

Stokes for rotation around x by 90°

Stokes for rotation around z by 90°

Detector rotated first around x by 90° and then around (old) z by 90°

Detector rotated first around x by 90° and then around (old) y by 90°

Observed: $\theta = 90^{\circ}$ Q < 0U = 0

RM convention

Negative if B points towards observer, positive otherwise (manual 4.113)

... but no '-' according to Reissl+2019 paper??

$$\kappa_{\rm V}(\lambda, \vartheta) = -\frac{1}{2\pi} \frac{n_{\rm th} e^2 B}{m_{\rm e}^2 c^4} \lambda^2 \cos(\vartheta).$$

$\kappa_{\rm V} \lambda^2$ for rotation around x by 90°

$\kappa_{\rm V} \lambda^2$ for rotation around z by 90°

