$\begin{array}{c|c} & \int_S f \,\mathrm{d}\mu. \\ & \text{QUANTUM} \\ & \text{FORMALISM} \end{array}$

Homework 2

Directions: Answer the following questions. You are encouraged to work together, join the discussion sessions, use discord, and ask me questions!

- 1. We call a collection of sets $\mathcal{R} \subset P(X)$ a ring if it is closed under finite unions and differences, that is, if $E, F \in \mathcal{R}$, then $E \setminus F \in \mathcal{R}$. If it is closed under countable unions, we call it a σ -ring.
 - a) Let \mathcal{R} be a ring such that $X \in \mathcal{R}$. Show that \mathcal{R} is also an algebra. (The same holds for σ -rings/ σ -algebras).
 - b) Construct an example of a ring that is not an algebra.
 - c) If \mathcal{R} is a σ -ring, then

$$\mathcal{A}_1 = \{ E \subset X \mid E \in \mathcal{R} \text{ or } E^c \in \mathcal{R} \}$$

and

$$\mathcal{A}_2 = \{ E \subset X \mid E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R} \}$$

are both σ -algebras.

Solution:

- (a) Since rings are closed under differences, and $X \in \mathcal{R}$, then for any $E \in \mathcal{R}$, we have that $E^c = X \setminus E \in \mathcal{R}$. Thus it is an algebra since we also get for free closure under finite unions.
- (b) We let X = [0, 1], $\mathcal{R} = \{\emptyset, [0, 1/2)\}$. It is clear that \mathcal{R} satisfies the definition of a ring. However it is not closed under compliments so it is not an algebra.
- (c) Note that since rings are closed under differences, this means that $\emptyset = E \setminus E$ is in every ring. Now since $X^c = \emptyset$, this means $X \in \mathcal{R}$, so by part (a), \mathcal{A}_1 is a σ -algebra. As for \mathcal{A}_2 , observe that since $X \cap F = F$, by the definition of the set, $X \in \mathcal{R}$, thus it is a σ -algebra by part (a).
- 2. a) Let X be a non-empty set and $A_1, A_2, ...$ be a collection of σ -algebras on X. Verify that $\bigcap_{j=1}^{\infty} A_j$ is a σ -algebra on X. (Recall we state this in lecture but never verified it).
 - b) Provide an example to show that the analogous statement about a union of σ -algebras is false.

c) Suppose we add the condition that $A_1 \subset A_2 \subset ...$ Is it now the case that $\bigcup_{j=1}^{\infty} A_j$ is a σ -algebra? Prove it or provide a counter example.

Solution:

- (a) We simply verify the definition of a σ -algebra. First let $E \in \bigcap_{j=1}^{\infty} \mathcal{A}_j$, and then since $E \in \mathcal{A}_j$ for all j, then since each \mathcal{A}_j is a σ -algebra, $E^c \in \mathcal{A}_j$ for all j. But then that means $E^c \in \bigcap_{j=1}^{\infty} \mathcal{A}_j$, thus the intersection is closed under compliments. Now let $\{E_j\}_{j=1}^{\infty} \subset \bigcap_{j=1}^{\infty} \mathcal{A}_j$. Thus $\{E_j\}_{j=1}^{\infty} \subset \mathcal{A}_j$ for all j, and again since it is a σ -algebra, this means the union is in \mathcal{A}_j for each j. So $\bigcup_{j=1}^{\infty} E_j \in \bigcap_{j=1}^{\infty} \mathcal{A}_j$. Thus it is also closed under countable unions, so it is indeed a σ -algebra.
- (b) We will let X = [0, 1], $\mathcal{A}_1 = \{\emptyset, X, [0, 1/2], (1/2, 1]\}$, $\mathcal{A}_2 = \{\emptyset, X, [0, 1/3), [1/3, 1]\}$, and $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$. One can easily see that each \mathcal{A}_j is a σ -algebra, however the union is not, as $E_1 = [0, 1/3)$ and $E_2 = (1/2, 1]$ are both in \mathcal{A} , but their union is not. So \mathcal{A} isn't even an algebra.
- (c) This still remains false. Let X = [0,1], and let $\mathcal{E}_1 = \{\emptyset, X, [0,1/2), [1/2,1]\}$ and \mathcal{A}_1 the σ -algebra generated by \mathcal{E}_1 (in this case they will be the same). Let $\mathcal{E}_2 = \mathcal{E}_1 \cup \{[1/3,1]\}$ and \mathcal{A}_2 the σ -algebra generated by \mathcal{E}_2 . In general we let $\mathcal{E}_n = \mathcal{E}_{n-1} \cup \{[1/(n+1),1]\}$ and \mathcal{A}_n the σ -algebra it generates. Note that since $\mathcal{E}_1 \subset \mathcal{E}_2 \subset \ldots$, we have that $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \ldots$, so our σ -algebras are nested as desired. Let $\mathcal{A} = \bigcup_{j=1}^{\infty} \mathcal{A}_j$, and we now pick our sets $E_n = [1/(n+1), 1] \in \mathcal{A}$. However we note that $\bigcup_{j=1}^{\infty} E_j = (0, 1]$ which is not in any \mathcal{A}_j , thus not in \mathcal{A} . So the union of the nested σ -algebras is still not a σ -algebra.

Remark: Interestingly enough, the union of the nested σ -algebras is closed under compliments, whereas the example in part (b) is not even closed under compliments.

3. An algebra \mathcal{A} is a σ -algebra if and only if for any collection $\{E_j\}_{j=1}^{\infty} \subset \mathcal{A}$ with $E_1 \subset E_2 \subset \ldots, \bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$.

Solution: The forward direction has nothing to show, since if \mathcal{A} is a σ -algebra, then it's closed under countable unions, and in particular closed under increasing countable unions. Suppose now that \mathcal{A} is an algebra that is closed under countable increasing unions, and let $\{E_j\}_{j=1}^{\infty} \subset \mathcal{A}$. We will define $F_k = \bigcup_{j=1}^k E_j$. Since \mathcal{A} is an algebra, it is closed under finite unions, so each $F_k \in \mathcal{A}$. Moreover, $F_1 \subset F_2 \subset F_3 \subset \ldots$, so by our hypothesis, their union is in the algebra, that is, $\bigcup_{k=1}^{\infty} F_k \in \mathcal{A}$. However, note that $\bigcup_{k=1}^{\infty} F_k = \bigcup_{j=1}^{\infty} E_j$, so we have that $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$, which shows that it is closed under countable unions. Thus \mathcal{A} is indeed a σ -algebra.