Règles de rédaction mathématiques

Sarah S. Sawyer

Table des matières

1	Lect	ture et écriture mathématique	3
2	Rais	connement mathématique	4
	2.1	Définition	4
	2.2	Réflexion mathématique	4
	2.3	Raisonnements mathématiques fondamentaux	4
3 Démonstration mathématique à l'écrit		5	

Introduction

Ce travail d'étude a été rédigé pour soutenir littérairement les futurs étudiants en mathématiques. Ceci ne s'agit en rien de règle à servir de principe pour la rédaction mathématique puisque la compréhension des démonstrations est purement subjective. Ainsi, ce papier sert à initier les étudiants vers une première rédaction potable et à adapter leur rédaction devant n'importe qui.

Attention. Ce cours est rédigé de sorte à ce qu'il soit vivement accessible aux étudiants n'ayant aucunes bases mathématiques sur ce thème.

Chapitre 1

Lecture et écriture mathématique

Chapitre 2

Raisonnement mathématique

2.1 Définition

Définition 1. On appelle raisonnement mathématique tout enchaînement de proposition mathématiquement vraie.

Dans un résultat de la forme $P_A\Rightarrow P_B$ alors il faut qu'on ait $P_A\Rightarrow P_{A_1},\,P_{A_1}\Rightarrow P_{A_2},...,\,P_{A_n}\Rightarrow P_B$

$$P_A \Rightarrow P_{A_1} \Rightarrow P_{A_2} \Rightarrow \cdots \Rightarrow P_{A_n} \Rightarrow P_B$$

- 1. étudier chaque hypothèse du résultat.
- 2. lier les hypothèses avec un résultat connu.
- 3. lier le résultat attendu avec un résultat connu.

2.2 Réflexion mathématique

Indicateur de raisonnement. \forall et \exists .

2.3 Raisonnements mathématiques fondamentaux

Raisonnement 1 (dit directe).

Raisonnement 2 (par contre-exemple).

Raisonnement 3 (par récurrence faible).

Raisonnement 4 (par récurrence forte).

Raisonnement 5 (par l'absurde).

Raisonnement 6 (par contra-posée).

Raisonnement 7 (par double inclusion).

Raisonnement 8 (par double implication).

Chapitre 3

Démonstration mathématique à l'écrit