

TFT LCD Approval Specification

MODEL NO.:V156B1 - L01

Customer:

Approved b	y:				
Note:					
Approved Dy	TV Head Division				
Approved By	LY Chen				
Reviewed By	QA Dept.	Product Development Div.			
Treviewed by	Tomy Chen	WT Lin			
Propagad Py	LCD TV Marketing and Product Management Div.				
Prepared By	Alan Chang				

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT INVERTER UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACTE	ERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODUL		10
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 BLOCK DIAGRAM OF INTERFACE 5.4 LVDS INTERFACE 5.5 COLOR DATA INPUT ASSIGNMENT		11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		16
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		19
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		23
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		24
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS		26
11. MECHANICAL CHARACTERISTICS		27

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Dec. 05,'07	All	All	Approval Specification was first issued.
Ver 2.0	Dec. 05,'07	All	All	RoHS Compliance
		N N	ww	品仓库 goodpanel.net

Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V156B1- L01 is a 15.6" TFT Liquid Crystal Display module with 4-CCFL Backlight unit and 1ch-LVDS interface. This module supports 1366 x 768 WXGA format and can display true 16.2M colors (6-bits+FRC). The inverter module for backlight is not built-in.

1.2 FEATURES

- -High brightness (500nits)
- High contrast ratio (1200:1)
- Fast response time (Gray to gray average 7.5 ms)
- High color saturation NTSC 72%
- WXGA (1366 x 768 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Ultra wide viewing angle: 176(H)/176(V) (CR>20) Super MVA technology

1.3 APPLICATION

- TFT LCD TVs

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	344.232 (H) x 193.536 (V) (15.6" diagonal)	mm	(1)
Bezel Opening Area	347.83 (H) x 197.14 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.084 (H) x 0.252 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.2M	color	
Display Operation Mode	Transmissive mode / Normally black	-	
Surface Treatment	Anti-Glare coating, Hard coating: 3H	-	
VVV	vw.goodpanei.net		

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	363.2	363.8	364.4	mm	
Module Size	Vertical(V)	215.32	215.92	216.52	mm	
Module Size	Depth(D)	26.57	27.57	28.57	mm	To Rear plate
	Depth(D)	35.1	36.1	37.1	mm	To PCB cover
Weight			1440		g	

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offit	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

Approval

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
Power Supply Voltage	Vcc	-0.3	6.0	V	(1)	
Input Signal Voltage	Vin	-0.3	2.7	V	(1)	

2.3.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V_W	_	3000	V_{RMS}	
Power Supply Voltage	V_{BL}	0	30	V	(1)
Control Signal Level	_	-0.3	7	V	(1), (3)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals includes Backlight On/Off Control, Internal PWM Control.

Approval

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol	Value			Unit	Note	
			Symbol	Min.	Тур.	Max.	Offic	NOLE
Power Su	pply Voltage		V_{CC}	4.5	5.0	5.5	V	(1)
Power Su	pply Ripple Vo	tage	V_{RP}	-	-	150	mV	
Rush Curi	rent		I _{RUSH}	-	-	5.5	Α	(2)
		White		-	1.00	1.25	Α	
Power Su	pply Current	Black	I _{cc}	-	0.67	0.74	Α	(3)
		Vertical Stripe]	-	0.97	1.07	Α	` '
L) /D0	Differential Input High Threshold Voltage		V_{LVTH}	-	-	+100	mV	
LVDS Interface	Differential Input Low		V_{LVTL}	-100	-	-	mV	
	Common Inpu	it Voltage	V_{LVC}	1.125	1.25	1.375	V	
	Terminating R	esistor	R⊤	-	100	-	ohm	
CMOS	Input High Th	reshold Voltage	V _{IH}	1.9	-	2.5	V	
interface	Input Low Threshold Voltage		V_{IL}	0	-	0.7	V	
EMI level		-	-	-6	-3	dΒ (μ V/m)	(4)	
SSCG in TCON Board		T _{RCL}	-	250	-	ps		
3300 111	I CON BOAIU		F _{mod}	-	75	-	KHz	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 5 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \text{ Hz}$, whereas a power dissipation check pattern below is displayed.

Note(4) a. Criteria: CISPR22 b. Signal generator: PSG200-1 (Sony EMCS)c. 0 dB is the limit line

3.3 BACKLIGHT INVERTER UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Lamp Voltage	V_W	-	1230	-	V_{RMS}	$I_L = 6.5 \text{mA}$
Lamp Current	Ι _L	6.0	6.5	7.0	mA_{RMS}	(1)
Lown Ctarting Valtage	.,	ı	-	1750	V_{RMS}	(2), Ta = 0 °C
Lamp Starting Voltage	Vs	-	-	1620	V_{RMS}	(2), Ta = 25 °C
Operating Frequency	Fo	40	-	70	KHz	(3)
Lamp Life Time	L_BL	50,000	60,000	-	Hrs	(4)

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point.) as the time in which it continues to operate under the condition Ta = $25 \pm 2^{\circ}$ C and $I_L = 6.0 \sim 7.0 \text{mA}_{RMS}$.

Approval

OPTOELECTRONIC

4.1 TFT LCD MODULE

4. BLOCK DIAGRAM

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin No.	Symbol	Description	Note		
1	ODSEL	Overdrive Lookup Table Selection	(2)		
2	NC	No Connection	(2)		
3	NC	No Connection (3			
4	GND	Ground			
5	RX0-	Negative transmission data of pixel 0			
6	RX0+	Positive transmission data of pixel 0			
7	GND	Ground			
8	RX1-	Negative transmission data of pixel 1			
9	RX1+	Positive transmission data of pixel 1			
10	GND	Positive transmission data of pixel 0			
11	RX2-	Negative transmission data of pixel 2			
12	RX2+	Positive transmission data of pixel 2			
13	GND	Ground			
14	RXCLK-	Negative of clock			
15	RXCLK+	Positive of clock			
16	GND	Ground			
17	RX3-	Negative transmission data of pixel 3			
18	RX3+	Positive transmission data of pixel 3			
19	GND	Ground			
20	NC	No Connection	(3)		
21	SELLEVDS	Select LVDS data format	(4)		
22	NC	No Connection	(3)		
23	GND	Ground			
24	GND	Ground			
25	GND	Ground			
26	VIN	Power supply: +5V			
27	VIN	Power supply: +5V			
28	VIN	Power supply: +5V			
29	VIN	Power supply: +5V			
30	VIN 🔪	Power supply: +5V			

Note (1) Connector part no.: FI-X30SSL-HF (JAE)

Note (2) Low/OPEN: OD LUT optimized for 60Hz frame rate. High: OD LUT optimized for 50Hz frame rate

ODSEL	Note
L/open	Lookup table optimized for 60 Hz frame rate.
Н	Lookup table optimized for 50 Hz frame rate.

Note (3) Reserved for CMO internal use, please leave it open

Note (4) Low/OPEN: NS/VESA data format. High: JEIDA data format

Note (5) Please refer to 5.4 LVDS INTERFACE for LVDS data mapping

Note (6) Logic level voltage definition: Low: 0V, High: 2.5V

Approval

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN3-CN6 (Housing): BDAMR-02VAS-3 (JST)

Pin No.	Symbol	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BDAMR-02VAS-3, manufactured by JST.

5.3 BLOCK DIAGRAM OF INTERFACE

R0~R7 : Pixel R Data , G0~G7 : Pixel G Data

B0~B7 : Pixel B Data

DE : Data enable signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

5.4 LVDS INTERFACE

	SIGNAL		TRANSMITTER THC63LVDM83A		INTERF CONNE			ECEIVER 63LVDF84A	TFT CONTROL INPUT		
	SELLVDS =L or OPEN	SELLVDS =H	PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	SELLVDS =L or OPEN	SELLVDS =H	
	R0	R2	51	TxIN0			27	Rx OUT0	R0	R2	
	R1	R3	52	TxIN1			29	Rx OUT1	R1	R3	
	R2	R4	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2	R4	
	R3	R5	55	TxIN3			32	Rx OUT3	R3	R5	
	R4	R6	56	TxIN4			33	Rx OUT4	R4	R6	
	R5	R7	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5	R7	
	G0	G2	4	TxIN7			37	Rx OUT7	G0	G2	
	G1	G3	6	TxIN8			38	Rx OUT8	G1	G3	
	G2	G4	7	TxIN9			39	Rx OUT9	G2	G4	
	G3	G5	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3	G5	
	G4	G6	12	TxIN13			45	Rx OUT13	G4	G6	
	G5	G7	14	TxIN14			46	Rx OUT14	G5	G7	
	В0	B2	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	В0	B2	
	B1	В3	19	TxIN18			51	Rx OUT18	B1	В3	
24	B2	B4	20	TxIN19			53	Rx OUT19	B2	B4	
bit	В3	B5	22	TxIN20			54	Rx OUT20	В3	B5	
	B4	В6	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4	В6	
	B5	В7	24	TxIN22			1	Rx OUT22	B5	В7	
	DE	DE	30	TxIN26			6	Rx OUT26	DE	DE	
	R6	R0	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6	R0	
	R7	R1	2	TxIN5		A	34	Rx OUT5	R7	R1	
	G6	G0	8	TxIN10	55	1	41	Rx OUT10	G6	G0	
	G7	G1	10	TxIN11	니니	6	42	Rx OUT11	G7	G1	
	В6	В0	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	B6	В0	
	В7	B1	18	TxIN17	, 0 0 a p	ancı	50	Rx OUT17	В7	B1	
	RSVD 1	RSVD 1	25	TxIN23			2	Rx OUT23	NC	NC	
	RSVD 2	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	NC	NC	
	RSVD 3	RSVD 3	28	TxIN25			5	Rx OUT25	NC	NC	
	DC	LK	31	TxCLK IN	TxCLK OUT+	RxCLK IN+	26	RxCLK OUT	DC	LK	
					TxCLK OUT-	RxCLK IN-					

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or ("L" or OPEN)

Approval

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	ersus data iriput.											D	ata	Siar	nal										
	Color		Red					Data Signal Green						Blue											
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5		G3	G2	G1	G0	B7	В6	B5	B4	B3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	غ	:	:	:	<		:	:	:	A	:	:	:		3	:	:	:	:	:	:	:	:
Of	:	5) <u> </u>	:	:			:	:		1		:	:	Z	*	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	-	:	:	:	:	:	:	:		:	:		:	:	-	•	
Of	: Dlug(252)	:		:	:	:		:	:	:	:	:	:		:	:	:		1		:	:			1
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254) Blue(255)		0			0				0	0							1		1			1		
	Diue(200)	0	0	0	0	0	0	0	0	U	U	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
	Frequency	1/Tc	65	80	82	MHz	
LVDS Receiver Clock	Input cycle to	Trcl		-	200	ps	
	cycle Jitter						
LVDS Receiver Data	Setup Time	Tlvsu	400	-	-	ps	
LVD3 Receiver Data	Hold Time	Tlvhd	400	-		ps	
	Frame Rate	Fr5	47	50	53	Hz	
	Traine Nate	Fr6	57	60	63	Hz	
Vertical Active Display Term	Total	Tv	785	860	1000	Th	Tv=Tvd+Tvb
	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	17	92	232	Th	-
Horizontal Active Display Term	Total	Th	1442	1540	1900	Tc	Th=Thd+Thb
	Display	Thd	1366	1366	1366	Tc	-
	Blank	Thb	76	174	534	Tc	-

Note (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

(2) Please refer to 5.1 for detail information.

INPUT SIGNAL TIMING DIAGRAM

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Approval

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	Ha	50±10	%RH		
Supply Voltage	V_{CC}	5.0	V		
Input Signal	According to typical value	alue in "3. ELECTRICAL (CHARACTERISTICS"		
Lamp Current	I_{L}	6.5	mA		
Frame Rate	Fr	60	Hz		

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	Item		Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		1000	1200	-	-	(2)
Response Time		Gray to Gray			7.5	12	ms	(3)
Center Lumina	nce of White	L _C		420	500	-	cd/m ²	(4)
Average Lumin	ance of White	L _{AVE}		420	480	-	cd/m ²	(4)
White Variation		δW			-	1.3	-	(7)
Cross Talk		СТ	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		-	2.0	%	(5)
	Red	Rx	Viewing Angle		0.636	36		
	Neu	Ry	at Normal Direction		0.332		-	
	Green	Gx			0.267		-	
		Gy		T.m. 0.03	0.595	T.m. 10.02	-	(6)
Color	Blue	Вх		Typ -0.03	0.150	Typ +0.03	-	(6)
Chromaticity		Ву	8		0.062		-	
	White	Wx	妇 人	7	0.280		-	
	vvriite	Wy			0.290		-	
	Color Gamut	CG	goodpa	68	72		%	NTSC Ratio
Minusian Anglo	Horizontal	θ_{x} +		80	88	-		
	rionzonial	θ_{x} -	CD>20	80	88	-	Doa	(1)
Viewing Angle	Vertical	θ γ+	CR≥20	80	88	-	Deg.	
	vertical	θ _Y -		80	88	-		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0 ,63,127,191,255 to each other ..

Approval

Note (4) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L (5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L(x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Approval

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Approval

8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: V156B1-L01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(d) Production Location:XXXX, for example:TAIWAN or CHINA.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

✓ Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 10 LCD TV modules / 1 Box

(2) Box dimensions : 676(L)x468(W)x318(H)mm

(3) Weight: approximately 17Kg

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

www.goodpanel.net

Air Transportation

Sea / Land Transportation

Figure.9-2 packing method

Approval

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows: _ [1] [] [

Regulatory	Item	Standard
Information Technology equipment	UL	UL 60950-1 ; 2006
	cUL	CAN/CSA C22.2 No.60950-1-03 ; 2006
	СВ	IEC 60950-1:2001
	UL	UL 60065 ; 2006
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03 ; 2006
	СВ	IEC 60065:2001

11. MECHANICAL CHARACTERISTICS

