Titanic - Exploratory Data Analysis

In this project, I explored the Titanic: Machine Learning from Disaster dataset from Kaggle. The key steps I performed included:

Data Cleaning: Handled missing values (e.g., age and embarked), corrected data types, and cleaned categorical fields.

Summary Statistics: Generated group-wise survival insights — e.g., survival rates by gender, passenger class, and family size.

Visualizations: Created multiple plots using Matplotlib and Seaborn, including:

Bar plots for survival by gender, class, and embarkation point

Box plots of age and fare distributions

A correlation heatmap for numerical features

Insights: Found clear survival trends based on gender and class, where females and first-class passengers had higher chances of survival.

This EDA provided a solid foundation for future steps like model building or dashboarding.

```
In [42]: import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import matplotlib.ticker as mtick
   from ydata_profiling import ProfileReport
   import seaborn as sns
In [18]: df-nd read csy("train csy")
```

```
In [18]: df=pd.read_csv("train.csv")
    df.head()
```

Out[18]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
	4			-		-	-	-			

In [19]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11 Embarked		889 non-null	object			
<pre>dtypes: float64(2), int64(5), object(5)</pre>						

memory usage: 83.7+ KB

In [20]: df.isna().sum()

```
Out[20]: PassengerId
                           0
         Survived
                           0
         Pclass
                           0
         Name
                           0
          Sex
                           0
         Age
                         177
          SibSp
                           0
         Parch
                           0
         Ticket
                           0
          Fare
                           0
         Cabin
                         687
          Embarked
                           2
          dtype: int64
In [21]: df.duplicated().sum()
Out[21]: 0
In [22]: df['Age'] = df['Age'].fillna(df['Age'].median())
         df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
         df.drop('Cabin', axis=1, inplace=True)
In [23]: df['Survived'] = df['Survived'].astype('category')
         df['Pclass'] = df['Pclass'].astype('category')
         df['Sex'] = df['Sex'].astype('category')
         df['Embarked'] = df['Embarked'].astype('category')
In [24]: df['Age']=df['Age'].astype(int)
In [26]:
         df.dtypes
                            int64
Out[26]: PassengerId
          Survived
                         category
         Pclass
                         category
         Name
                           object
          Sex
                         category
         Age
                            int32
                            int64
          SibSp
                            int64
         Parch
         Ticket
                           object
          Fare
                          float64
          Embarked
                         category
         dtype: object
In [27]: df.isnull().sum()
```

```
Out[27]: PassengerId
         Survived
                         0
         Pclass
                         0
         Name
                         0
          Sex
                         0
                         0
         Age
                         0
          SibSp
                         0
         Parch
         Ticket
                         0
          Fare
                         0
          Embarked
          dtype: int64
In [29]: profile = ProfileReport(df, title="Titanic Dataset Profiling Report", explorative=T
         profile.to_file("titanic_profile_report.html")
```

```
0/16 [00:00
        Summarize dataset:
                            0%
        <?, ?it/s, Describe variable: Name]</pre>
                                                                   9/16 [00:00<00:00, 30.
        Summarize dataset: 56%
        09it/s, Describe variable: Embarked]
        100%
          | 11/11 [00:00<00:00, 39.31it/s]
                                                                   | 13/18 [00:00<00:00, 3
        Summarize dataset: 72%
        0.09it/s, Calculate auto correlation]C:\Users\Hp\AppData\Roaming\Python\Python39\sit
        e-packages\ydata_profiling\model\pandas\discretize_pandas.py:52: FutureWarning: Sett
        ing an item of incompatible dtype is deprecated and will raise in a future error of
        pandas. Value '[2 4 3 4 4 3 6 0 3 1 0 7 2 4 1 6 0 3 3 3 4 4 1 3 0 4 3 2 3 3 4 3 3 8
        3 5 3
        2 2 1 4 3 3 0 2 3 3 3 3 2 0 2 6 3 8 3 2 3 0 1 2 4 5 0 3 3 3 2 2 3 3 1 2 3
        3 3 3 3 0 3 2 3 3 3 2 4 1 3 2 2 3 2 5 3 7 3 8 2 4 4 3 3 2 4 4 3 2 3 4 3 5
        1 2 2 2 2 8 3 2 0 2 3 3 3 6 1 3 2 3 5 4 2 5 3 3 2 2 4 1 2 3 2 2 2 2 2 3 1
        4 5 6 2 6 4 3 6 1 3 3 3 5 4 3 2 0 1 3 5 3 3 7 0 0 2 6 2 3 6 3 4 3 3 1 0 0
         3 3 5 4 4 3 2 2 0 5 7 3 5 3 2 3 3 4 5 2 0 3 3 1 4 2 4 2 3 3 3 3 5 3 3 1 3
         6 3 4 2 2 2 2 3 4 3 7 0 2 3 5 0 2 4 3 3 3 2 3 5 3 2 4 6 3 3 7 3 5 3 3 3 4
         6 3 0 6 4 3 4 1 3 7 4 3 3 5 4 3 7 5 3 0 4 8 3 1 2 3 4 3 2 5 2 3 2 4 2 2 3
         2 0 3 6 3 3 2 3 3 0 3 2 3 3 2 2 3 3 5 3 2 6 3 4 2 3 3 2 3 4 7 4 3 1 3 5 4
         1 3 3 3 5 5 5 0 2 3 3 4 2 4 3 0 5 2 3 1 3 3 3 2 4 3 3 4 3 5 4 3 3 7 3 3 2
         3 2 2 2 0 3 2 3 2 2 5 0 3 4 3 2 0 4 3 2 4 2 3 2 2 2 3 5 2 3 4 3 2 3 2 4 6
         0 2 3 3 3 4 3 5 3 4 2 3 1 3 2 3 3 2 3 3 2 3 3 3 5 2 6 1 2 2 7 3 5 2 3 3
         3 0 1 4 0 6 4 3 3 6 3 3 8 3 6 3 5 4 5 5 3 4 3 6 3 0 3 4 4 2 2 3 4 3 2 0 1
         3 6 7 3 3 4 7 3 1 3 2 6 8 2 3 6 3 3 2 2 2 3 4 1 2 4 3 3 3 3 3 4 6 2 5 4 3
         4 3 3 2 3 5 3 4 6 3 4 2 0 3 2 3 3 0 5 3 3 2 4 1 1 3 6 7 2 3 4 0 2 3 3 2 2
         7 5 3 4 4 3 4 3 3 3 2 2 3 3 3 7 6 4 3 1 2 4 4 3 3 3 4 6 4 3 2 5 7 2 3 4 6
         5 3 4 4 3 6 3 6 2 3 3 5 4 4 3 3 2 4 4 3 3 3 4 2 4 3 0 3 3 5 2 2 2 7 7 2 3
         3 9 6 3 3 1 3 3 3 5 3 2 2 0 3 0 5 2 6 3 2 3 2 2 3 3 2 2 3 3 2 7 6 4 5 4 2 3
         3 3 5 3 4 3 8 3 3 2 2 2 5 4 3 3 2 1 7 3 1 2 2 1 3 0 3 3 7 6 5 3 6 5 2 4 2
         3 3 4 5 5 2 3 2 3 5 3 6 2 4 3 3 4 0 2 4 6 3 2 3 3 3 3 3 1 3 2 2 3 5 4 3 3
         3 4 2 2 3 8 1 3 2 3 0 0 4 2 5 0 3 2 4 4 3 5 2 4 1 6 3 3 3 3 2 5 7 3 6 2 3
         0 3 5 1 2 3 3 3 3 2 0 0 5 3 1 3 3 3 4 6 3 3 3 4 3 1 0 3 3 4 2 4 4 3 4 4 0
         3 3 2 3 5 1 6 3 4 3 0 3 3 0 3 7 1 0 3 2 2 4 2 3 3 3 2 1 3 4 2 5 3 4 3 3 0
         9 1 1 5 2 5 6 2 3 5 2 5 3 2 5 3 3 3 0 3 5 4 5 3 1 2 2 3 6 3 4 2 3 3 4 3 2
         3 3 3]' has dtype incompatible with int32, please explicitly cast to a compatible d
        type first.
          discretized_df.loc[:, column] = self._discretize_column(
        Summarize dataset: 100%
                                                                                   45/45
        [00:12<00:00, 3.65it/s, Completed]
        Generate report structure: 100%
        1/1 [00:13<00:00, 13.84s/it]
        Render HTML: 100%
        1/1 [00:04<00:00, 4.88s/it]
        Export report to file: 100%
         1/1 [00:00<00:00, 33.67it/s]
In [30]: # Title
         df['Title'] = df['Name'].str.extract(' ([A-Za-z]+)\.', expand=False)
         df['Title'] = df['Title'].replace(['Lady', 'Countess','Capt', 'Col', 'Don',
                                            'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona']
         df['Title'] = df['Title'].replace({'Mlle': 'Miss', 'Ms': 'Miss', 'Mme': 'Mrs'})
         # Family size and solo traveler
         df['FamilySize'] = df['SibSp'] + df['Parch'] + 1
         df['IsAlone'] = (df['FamilySize'] == 1).astype(int)
```

```
# Age and Fare bins
df['AgeGroup'] = pd.cut(df['Age'], bins=[0, 12, 18, 60, 100], labels=['Child', 'Tee
df['FareBand'] = pd.qcut(df['Fare'], 4, labels=['Low', 'Medium', 'High', 'Very High
```

In [31]: df.describe()

Out[31]:

•		Passengerld	Age	SibSp	Parch	Fare	FamilySize	IsAlone
	count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
	mean	446.000000	29.345679	0.523008	0.381594	32.204208	1.904602	0.602694
	std	257.353842	13.028212	1.102743	0.806057	49.693429	1.613459	0.489615
	min	1.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000
	25%	223.500000	22.000000	0.000000	0.000000	7.910400	1.000000	0.000000
	50%	446.000000	28.000000	0.000000	0.000000	14.454200	1.000000	1.000000
	75%	668.500000	35.000000	1.000000	0.000000	31.000000	2.000000	1.000000
	max	891.000000	80.000000	8.000000	6.000000	512.329200	11.000000	1.000000

```
In [51]: sns.countplot(x='Survived', data=df)
  plt.title("Survival Count")
  plt.xticks([0, 1], ['Died', 'Survived'])
  plt.show()
```



```
In [36]: df['Survived'] = df['Survived'].astype(int)
         # Survival Rate by Gender
         print("\n Survival Rate by Gender:")
         print(df.groupby('Sex', observed=False)['Survived'].mean())
         # Survival Rate by Passenger Class
         print("\n Survival Rate by Passenger Class:")
         print(df.groupby('Pclass', observed=False)['Survived'].mean())
         # Survival Rate by Age Group
         print("\n Survival Rate by Age Group:")
         print(df.groupby('AgeGroup', observed=False)['Survived'].mean())
         # Survival Rate by Title
         print("\n Survival Rate by Title:")
         print(df.groupby('Title', observed=False)['Survived'].mean().sort_values(ascending=
         # Survival Rate by Family Size
         print("\n Survival Rate by Family Size:")
         print(df.groupby('FamilySize', observed=False)['Survived'].mean())
         # Survival Rate by IsAlone
         print("\n Survival Rate by IsAlone:")
         print(df.groupby('IsAlone', observed=False)['Survived'].mean())
         # Survival Rate by Fare Band
```

```
print("\n Survival Rate by Fare Band:")
print(df.groupby('FareBand', observed=False)['Survived'].mean())
```

```
Survival Rate by Gender:
female
         0.742038
male
         0.188908
Name: Survived, dtype: float64
Survival Rate by Passenger Class:
Pclass
    0.629630
1
2
    0.472826
3
     0.242363
Name: Survived, dtype: float64
Survival Rate by Age Group:
AgeGroup
Child
         0.532258
Teen
         0.428571
Adult
         0.365753
Senior
         0.227273
Name: Survived, dtype: float64
Survival Rate by Title:
Title
Mrs
         0.793651
Miss
         0.702703
Master
         0.575000
Rare
         0.347826
Mr
         0.156673
Name: Survived, dtype: float64
Survival Rate by Family Size:
FamilySize
1
     0.303538
2
     0.552795
3
     0.578431
4
     0.724138
5
     0.200000
6
     0.136364
7
     0.333333
8
     0.000000
     0.000000
11
Name: Survived, dtype: float64
Survival Rate by IsAlone:
IsAlone
0
    0.505650
    0.303538
Name: Survived, dtype: float64
Survival Rate by Fare Band:
FareBand
Low
            0.197309
Medium
            0.303571
High
            0.454955
Very High
            0.581081
Name: Survived, dtype: float64
```

```
In [44]: # 1. Survival by Gender
         plt.figure(figsize=(6,4))
         sns.barplot(data=df, x='Sex', y='Survived')
         plt.title('Survival Rate by Gender')
         plt.ylabel('Survival Rate')
         plt.xlabel('Gender')
         plt.gca().yaxis.set major formatter(mtick.PercentFormatter(1.0))
         plt.show()
         # 2. Survival by Passenger Class
         plt.figure(figsize=(6,4))
         sns.barplot(data=df, x='Pclass', y='Survived')
         plt.title('Survival Rate by Passenger Class')
         plt.ylabel('Survival Rate')
         plt.xlabel('Passenger Class')
         plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
         plt.show()
         # 3. Survival by Age Group
         plt.figure(figsize=(8,4))
         sns.barplot(data=df, x='AgeGroup', y='Survived', order=['Child','Teenager','Young A
         plt.title('Survival Rate by Age Group')
         plt.ylabel('Survival Rate')
         plt.xlabel('Age Group')
         plt.xticks(rotation=45)
         plt.gca().yaxis.set major formatter(mtick.PercentFormatter(1.0))
         plt.show()
         # 4. Survival by Title
         plt.figure(figsize=(10,5))
         sns.barplot(data=df, x='Title', y='Survived', order=df['Title'].value_counts().inde
         plt.title('Survival Rate by Title')
         plt.ylabel('Survival Rate')
         plt.xlabel('Title')
         plt.xticks(rotation=45)
         plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
         plt.show()
         # 5. Survival by Family Size
         plt.figure(figsize=(8,4))
         sns.barplot(data=df, x='FamilySize', y='Survived')
         plt.title('Survival Rate by Family Size')
         plt.ylabel('Survival Rate')
         plt.xlabel('Family Size')
         plt.gca().yaxis.set major formatter(mtick.PercentFormatter(1.0))
         plt.show()
         # 6. Survival by IsAlone
         plt.figure(figsize=(6,4))
         sns.barplot(data=df, x='IsAlone', y='Survived')
         plt.title('Survival Rate by IsAlone')
         plt.ylabel('Survival Rate')
         plt.xlabel('Is Alone (1 = Yes, 0 = No)')
         plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
         plt.show()
```

```
# 7. Survival by Fare Band
plt.figure(figsize=(8,4))
sns.barplot(data=df, x='FareBand', y='Survived', order=df['FareBand'].cat.categorie
plt.title('Survival Rate by Fare Band')
plt.ylabel('Survival Rate')
plt.xlabel('Fare Band')
plt.xticks(rotation=45)
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
plt.show()
```



```
In [49]: numerical_df = df[['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
    corr = numerical_df.corr()
    plt.figure(figsize=(8, 6))
    sns.heatmap(corr, annot=True, cmap='viridis', fmt=".2f", linewidths=0.5)
    plt.title("Correlation Heatmap (Numerical Features)")
    plt.tight_layout()
    plt.show()
```


In [50]: sns.pairplot(numerical_df, hue='Survived', diag_kind='kde')
 plt.suptitle("Pairplot of Numerical Features by Survival", y=1.02)
 plt.show()


```
In [53]:
    plt.figure(figsize=(8, 4))
    sns.kdeplot(data=df[df['Survived']==1], x='Age', label='Survived')
    sns.kdeplot(data=df[df['Survived']==0], x='Age', label='Did not survive')
    plt.title('Age Distribution by Survival')
    plt.xlabel('Age')
    plt.legend()
    plt.show()
```

