EECS 16B Fall 2018

Designing Information Devices and Systems II Elad Alon and Miki Lustig Discussion 10A

1. SVD Short Questions Assume we have the compact form of the SVD of $A = U_1 SV_1^T = \sum_{i=1}^r \sigma_i \vec{u}_i \vec{v}_i^T$.

(a) Compute $AV_1V_1^T$

Solutions: Recall that V_1 is an orthogonal matrix, so it has orthonormal columns, giving it the property $V_1^T V_1 = I$. Hence we can write:

$$AV_1V_1^T = U_1SV_1^TV_1V_1^T = U_1SV_1^T = A$$

(b) What is the subspace that spans the column space of A?

Solutions: Given a vector \vec{x} , the column space of A is also the same as the space of all possible $A\vec{x}$.

$$A\vec{x} = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^T \vec{x}$$

But, $\vec{v_i}^T \vec{x}$ is a scalar, hence,

$$A\vec{x} = \sum_{i=1}^{r} (\sigma_i \vec{v}_i^T \vec{x}) \vec{u}_i$$

From that decomposition, we can see that $A\vec{x}$ is a linear combination of $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r$. Hence the span of columns of A is the subspace spanned by the columns of U_1 .

2. Frobenius Norm In this problem we will investigate the properties of the Frobenius norm.

(a) The trace of a matrix is the sum of its diagonal entries. For example, let $Q \in \mathbb{R}^{N \times N}$, then,

$$Tr\{Q\} = \sum_{i=1}^{N} Q_{ii}$$

Much like the norm of a vector $\vec{x} \in \mathbb{R}^N$ is $\sqrt{\sum_{i=1}^N x_i^2}$, the Frobenius norm of a matrix Q is defined as,

$$||Q||_F = \sqrt{\sum_{i=1}^N \sum_{j=1}^N |Q_{ij}|^2}$$

Note that matrices have other types of norms as well. With the above definitions, show that,

$$||A||_F = \sqrt{Tr\{A^TA\}}$$

1

Solutions:

$$Tr\{A^{T}A\} = \sum_{i=1}^{N} (A^{T}A)_{ii}$$

$$= \sum_{i=1}^{N} \left(\sum_{j=1}^{N} (A^{T})_{ij} A_{ji} \right)$$

$$= \sum_{i=1}^{N} \left(\sum_{j=1}^{N} A_{ji} A_{ji} \right)$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} (A_{ji}^{2})$$

$$= |A|_{F}^{2}$$

(b) Show that if U and V are orthonormal, then

$$||UA||_F = ||AV||_F = ||A||_F$$

Solutions:

$$||UA||_F = \sqrt{Tr\{(UA)^T(UA)\}} = \sqrt{Tr\{A^TU^TUA\}} = \sqrt{Tr\{A^TA\}} = ||A||_F$$

To show the second set of equality, we must note that $Tr\{A^TA\} = Tr\{AA^T\}$. Hence,

$$||AV||_F = \sqrt{Tr\{(AV)(AV)^T\}} = \sqrt{Tr\{AVV^TA^T\}} = \sqrt{Tr\{AA^T\}} = ||A||_F$$

(c) Show that $||A||_F = \sqrt{\sum_{i=1}^N \sigma_i^2}$

Solutions:

$$\begin{aligned} ||A||_F &= ||U\Sigma V^T||_F = ||\Sigma V^T||_F = ||\Sigma||_F \\ &= \sqrt{Tr\{\Sigma^T \Sigma\}} = \sqrt{\sum_{i=1}^N \sigma_i^2} \end{aligned}$$

Let A ϵ/R be a "fat" matrix, where M<N. A is full rank, with Rank{A}=M.

a). $A=U_1SV_1^T$ Is the SVD of A. What are the sizes of U_1 , S, V_1 ?

solution:

b) You are given the following equation, where \vec{x} is unknown:

$$A\vec{x} = \vec{y}$$

A is the same as above, and can represent some linear system. \vec{y} is known and can represent a desired output of system A. We would like to design an input \vec{x} , which satisfies the above equality. Note, that since A is fat, we can not just compute an inverse. In fact, there are infinite number of solutions to Eq. 1.

We define a pseudo-inverse $A^{\dagger} = V_{1} S^{-1} U_{1}^{T}$.

Show that $\hat{x} = A^{\dagger} \vec{y}$ is a solution to Eq. 1.

Solution:

 U_i is a square orthonormal matrix. Hence, $U_iU_i = U_iU_i^T = 1_{M \times M}$

 V_{i} is tall, and orthonormal. Hence, $V_{i}^{T}V_{i} = I_{M \times M}$ $\left(V_{i}V_{i}^{T} \neq I_{M \times N} \downarrow / \right)$

$$A\hat{S} = AA^{\dagger}\vec{y} = U_1 S V_1^T V_1 S^{-1} U_1^T \vec{y} = U_1 S S^{-1} U_1^T \vec{y} = U_1 U_1^T \vec{y} = \vec{y}$$

$$= \vec{I}_{m \times m} \qquad = \vec{I}_{m \times m}$$

c) Show that $\hat{x} + \hat{x}$ is also a solution,

$$A(\vec{x}+\vec{x})=\vec{y}$$

only if X is spanned by the null-space of V,

Solution:

$$\vec{y} = A(\hat{x} + \tilde{x}) = A\hat{x} + A\tilde{x} = \vec{y} + A\tilde{x} \Rightarrow true \text{ only } if A\tilde{x} = 0$$

$$A\tilde{x} = U_1 S V_1^T \tilde{x} = 0$$

d) Show that when $\hat{x} = A^{\dagger} \vec{y}$, is a solution for Eq. 1. \hat{x} has the minimum norm among all solutions that satisfy Eq. 1.

In other words: let $\vec{x} / A \vec{x} = y$. If $\vec{x} \neq \hat{x}$, then $||\vec{x}|| > ||\hat{x}||$.

Solution:

Let
$$A = U \ge V^T$$
 be the full SVD. $V = [V_1, V_2]$
if $\vec{x} \ne \hat{x}$, then $\vec{x} = \hat{x} + \hat{x}$

The norm does not change when multiplying by an orthonormal matrix. So,

$$\|\vec{x}\|^{2} = \|VV^{T}\vec{x}\|^{2} = \|VV^{T}(\hat{x} + \tilde{x})\|^{2} = \|VV^{T}(\hat{x} + \tilde{x})\|^{2} = \|\hat{x}\|^{2} + \|\hat{x}\|^{2} = \|\hat{x}\|^{2} + \|\hat{x}\|$$

From port (C),

$$= \|V_1 V_1^T \vec{x} + V_2 V_1^T \vec{x} \|^2$$

V. 11/12, SO

$$= \| V_1 V_1^T \hat{x} \|^2 + \| V_1 V_2^T \tilde{x} \|^2 =$$

$$= ||\hat{x}||^2 + ||\tilde{x}||^2 > ||\hat{x}||^2$$

$$\operatorname{Let} A = \begin{bmatrix} 2 & 2 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix} .$$

Find the vector \vec{x} with the smallest norm, that satisfies,

$$A\vec{z} = \begin{bmatrix} \lambda \\ 0 \end{bmatrix}$$

Solution:

$$\vec{x} = A^{\dagger} y = V_1 \vec{5}^1 U_1^T$$

$$S = \begin{bmatrix} 3\sqrt{1} & 0 \\ 0 & \sqrt{1} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix}$$

$$S^{-1}U_{1}^{T} = \sqrt{2} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix} \cdot \sqrt{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \\ -1 & 2 \end{bmatrix} \quad \text{and} \quad \vec{\lambda} = A^{\dagger} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \vec{3} \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$

f) Now, let $A \in \mathbb{R}^{N^{\times N}}$ be a tall full rank matrix, M>N. Given a set of equations,

$$A\vec{x} = \vec{G}$$

there is generally no solution that satisfies all the equations exactly. However, we know that the least squares solution x_{ls} minimizes the norm of the error $\|A\vec{x}_{ls}\vec{y}\|$

In 16A we learned that the solution has a closed form:

$$\vec{x}_{LS} = (A^T A)^{-1} A^T \vec{q}$$

In that case, we can say that $(A^T A)^{1}A^{T}$ is a pseudo-inverse of A.

Show that $(\overrightarrow{A} \overrightarrow{A})'\overrightarrow{A}' = \overrightarrow{A}' = \overrightarrow{V}_{1} \overrightarrow{S}' \overrightarrow{U}_{1}^{T}$

Solution:

Note that A is tall, so,

Now
$$V_{i} \in IR^{N \times N}$$
 is square and orthonormal. Also,

 $U_{i} \in IR^{N \times N}$ is tall and orthonormal so $U_{i}^{T}U_{i} = I_{N \times N}$

SO,

 $(A^{T}A) = V_{i} S U_{i}^{T} U_{i} S V_{i}^{T} = V_{i} S^{2} V_{i}^{T}$
 $(A^{T}A)^{T} = V_{i} S^{2} V_{i}^{T} V_{i}^{T} S U_{i}^{T} = V_{i} S^{2} U_{i}^{T} = V_{i} S^{2} U_{i}^{T}$
 $(A^{T}A)^{N} = V_{i} S^{2} V_{i}^{T} V_{i}^{T} S U_{i}^{T} = V_{i} S^{2} S U_{i}^{T} = V_{i} S^{2} U_{i}^{T}$

At = V, S'U, is also called the

"Moore-Penrose Pseudo-Inverse"

The same equation using the SVD of A can be used for both tall and fot matrices.

When A is tall, Aty will be the least squares solution.

When A is fot, Aty will be the minimum norm solution.

Some-Some, but différent!