"Merge Sort"

Integrantes:
Diego Zavaleta
Jessica Rodriguez
Erick Jael Guerra Canto

Instituto Tecnológico de Software

Estructura de datos

Profesor: José Francisco Pérez Alcocer

Mérida, Yucatán 6 de marzo del 2025

Complejidad computacional teórica

Línea	Descripción	Costos
SI longitud(arr) <= 1 ENTONCES RETORNAR arr	Caso base de la recursión: si el arreglo tiene 1 o 0 elementos, ya está ordenado.	1
mid ← longitud(arr) / 2	Encuentra el punto medio del arreglo.	1
L ← arr[0mid-1]	Divide la primera mitad del arreglo.	n en total
R ← arr[midfin]	Divide la segunda mitad del arreglo.	n en total
L ← MERGE_SORT(L)	Llamada recursiva para ordenar la primera mitad.	T(n/2)T(n/2)T(n/2)
$R \leftarrow MERGE_SORT(R)$	Llamada recursiva para ordenar la segunda mitad.	T(n/2)T(n/2)T(n/2)
RETORNAR MERGE(L, R)	Fusiona las mitades ordenadas.	n

Expandir la recurrencia

Primera expansión (1 nivel de recursión)

T(n)=2T(n/2)+cn

Reemplazamos T(n/2) con su propia expansión:

T(n)=2[2T(n/4)+c(n/2)]+cn

Distribuimos 2:

T(n)=4T(n/4)+2c(n/2)+cn

Segunda expansión (2 niveles de recursión) Expandimos nuevamente T(n/4):

T(n)=4[2T(n/8)+c(n/4)]+2c(n/2)+cn

Distribuimos 4:

T(n)=8T(n/8)+4c(n/4)+2c(n/2)+cn

Generalización para k niveles de recursión Observemos el patrón:

 $T(n)=2^kT(n/2^k)+kcn$

La recursión continúa hasta que n/2k=1 es decir, cuando el tamaño del problema es 1. Esto ocurre cuando:

 $n/2^k=1$

Resolviendo para k:

 $n=2^kn = 2^k$ k = log2(n)

Sustituyendo en la ecuación de T(n):

T(n)=2log2(n)T(1)+cnlog2(n)

Como $2\log^2(n) = n$ y T(1)es una constante, definimos T(1)=O(1), entonces:

 $T(n)=O(n)+O(n\log n)$

El término dominante es O(nlogn)O(n \log n)O(nlogn), por lo que la complejidad final es:

T(n)=O(n log n)

Complejidad computacional teórica

Merge sort es un algoritmo de divide y vencerás que siempre sigue la misma secuencia de operaciones: divide el arreglo en dos mitades, ordena cada mitad recursivamente y luego fusiona las dos mitades ordenadas. Debido a esta estructura, la complejidad de merge sort es O(n log n) en el mejor, peor y caso promedio.

