

Number Systems and Number Representation

For Your Amusement

Question: Why do computer programmers confuse Christmas and Halloween?

Answer: Because 25 Dec = 31 Oct

-- http://www.electronicsweekly.com

Goals of this Lecture

Help you learn (or refresh your memory) about:

- The binary, hexadecimal, and octal number systems
- Finite representation of unsigned integers
- Finite representation of signed integers
- Finite representation of rational numbers (if time)

Why?

 A power programmer must know number systems and data representation to fully understand C's primitive data types

Primitive values and the operations on them

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

The Decimal Number System

Name

"decem" (Latin) => ten

Characteristics

- Ten symbols
 - 0 1 2 3 4 5 6 7 8 9
- Positional
 - $2945 \neq 2495$
 - $2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$

(Most) people use the decimal number system

The Binary Number System

Name

"binarius" (Latin) => two

Characteristics

- Two symbols
 - 0 1
- Positional
 - $1010_{B} \neq 1100_{B}$

Most (digital) computers use the binary number system

Terminology

- Bit: a binary digit
- Byte: (typically) 8 bits

Decimal-Binary Equivalence

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Decimal	Binary
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

$$100101_{B} = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})$$

$$= 32 + 0 + 0 + 4 + 0 + 1$$

$$= 37$$

Decimal-Binary Conversion

Decimal to binary: do the reverse

• Determine largest power of 2 ≤ number; write template

$$37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$$

Fill in template

```
37 = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})
-32
5
-4
1
100101_{B}
-1
0
```

Decimal-Binary Conversion

Decimal to binary shortcut

Repeatedly divide by 2, consider remainder

```
37 / 2 = 18 R 1

18 / 2 = 9 R 0

9 / 2 = 4 R 1

4 / 2 = 2 R 0

2 / 2 = 1 R 0

1 / 2 = 0 R 1
```

Read from bottom to top: 100101_B

The Hexadecimal Number System

Name

- "hexa" (Greek) => six
- "decem" (Latin) => ten

Characteristics

- Sixteen symbols
 - 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Positional
 - $A13D_H \neq 3DA1_H$

Computer programmers often use the hexadecimal number system

Why?

Decimal-Hexadecimal Equivalence

Decimal	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	A
11	В
12	С
13	D
14	E
15	F

Decimal	<u>Hex</u>
16	10
17	11
18	12
19	13
20	14
21	15
22	16
23	17
24	18
25	19
26	1A
27	1B
28	1C
29	1D
30	1E
31	1F

Decimal	<u>Hex</u>
32	20
33	21
34	22
35	23
36	24
37	25
38	26
39	27
40	28
41	29
42	2A
43	2B
44	2C
45	2D
46	2E
47	2F

Decimal-Hexadecimal Conversion

Hexadecimal to decimal: expand using positional notation

$$25_{H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Decimal to hexadecimal: use the shortcut

Read from bottom to top: 25_H

Binary-Hexadecimal Conversion

Observation: $16^1 = 2^4$

Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

1010000100111101_B
A 1 3 D_H

Digit count in binary number not a multiple of 4 => pad with zeros on left

Hexadecimal to binary

A 1 3 D_H
1010000100111101_B

Discard leading zeros from binary number if appropriate

Is it clear why programmers often use hexadecimal?

The Octal Number System

Name

"octo" (Latin) => eight

Characteristics

- Eight symbols
 - 0 1 2 3 4 5 6 7
- Positional
 - $1743_{\circ} \neq 7314_{\circ}$

Computer programmers often use the octal number system

Decimal-Octal Equivalence

Decimal	<u>Octal</u>
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17

Decimal	<u>Octal</u>
16	20
17	21
18	22
19	23
20	24
21	25
22	26
23	27
24	30
25	31
26	32
27	33
28	34
29	35
30	36
31	37

Decimal	<u>Octal</u>
32	40
33	41
34	42
35	43
36	44
37	45
38	46
39	47
40	50
41	51
42	52
43	53
44	54
45	55
46	56
47	57
• • •	

Decimal-Octal Conversion

Octal to decimal: expand using positional notation

$$37_{\circ} = (3*8^{1}) + (7*8^{0})$$

$$= 24 + 7$$

$$= 31$$

Decimal to octal: use the shortcut

Read from bottom to top: 37₀

Binary-Octal Conversion

Observation: $8^1 = 2^3$

Every 1 octal digit corresponds to 3 binary digits

Binary to octal

001010000100111101_B
1 2 0 4 7 5₀

Digit count in binary number not a multiple of 3 => pad with zeros on left

Octal to binary

1 2 0 4 7 5₀ 001010000100111101_B

Discard leading zeros from binary number if appropriate

Is it clear why programmers sometimes use octal?

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Unsigned Data Types: Java vs. C

Java has type

- int
 - Can represent signed integers

C has type:

- signed int
 - Can represent signed integers
- int
 - Same as signed int
- unsigned int
 - Can represent only unsigned integers

To understand C, must consider representation of both unsigned and signed integers

Representing Unsigned Integers

Mathematics

Range is 0 to ∞

Computer programming

- Range limited by computer's word size
- Word size is n bits => range is 0 to 2ⁿ − 1
- Exceed range => overflow

Nobel computers with gcc217

• n = 32, so range is 0 to $2^{32} - 1$ (4,294,967,295)

Pretend computer

• n = 4, so range is 0 to $2^4 - 1$ (15)

Hereafter, assume word size = 4

• All points generalize to word size = 32, word size = n

Representing Unsigned Integers

On pretend computer

<u>Unsigned</u>	
<u>Integer</u>	<u>Rep</u>
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Adding Unsigned Integers

Addition

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

Results are mod 24

How would you detect overflow programmatically?

Subtracting Unsigned Integers

Subtraction

```
12
0202
10 1010<sub>B</sub>
- 7 - 0111<sub>B</sub>
--- ----
3 0011<sub>B</sub>
```

Start at right column
Proceed leftward
Borrow 2 when necessary

```
2
3 0011<sub>B</sub>
- 10 - 1010<sub>B</sub>
---
9 1001<sub>B</sub>
```

Beware of overflow

Results are mod 24

How would you detect overflow programmatically?

Shifting Unsigned Integers

Bitwise right shift (>> in C): fill on left with zeros

What is the effect arithmetically? (No fair looking ahead)

Bitwise left shift (<< in C): fill on right with zeros

Results are mod 24

What is the effect arithmetically? (No fair looking ahead)

Other Operations on Unsigned Ints

Bitwise NOT (~ in C)

Flip each bit

Bitwise AND (& in C)

Logical AND corresponding bits

Useful for setting selected bits to 0

Other Operations on Unsigned Ints

Bitwise OR: (| in C)

Logical OR corresponding bits

10	1010 _B
1	0001 _B
11	1011 _B

Useful for setting selected bits to 1

Bitwise exclusive OR (* in C)

Logical exclusive OR corresponding bits

x ^ x sets all bits to 0

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

$$x * 2^{y} == x << y$$
 $\cdot 3*4 = 3*2^{2} = 3 << 2 => 12$
 $x / 2^{y} == x >> y$
 $\cdot 13/4 = 13/2^{2} = 13>> 2 => 3$
 $x % 2^{y} == x & (2^{y}-1)$
 $\cdot 13\%4 = 13\%2^{2} = 13\&(2^{2}-1)$

= 13&3 => 1

Fast way to **multiply** by a power of 2

Fast way to **divide** by a power of 2

Fast way to **mod** by a power of 2

Aside: Example C Program


```
#include <stdio.h>
#include <stdlib.h>
int main(void)
  unsigned int n;
  unsigned int count;
  printf("Enter an unsigned integer: ");
   if (scanf("%u", &n) != 1)
      fprintf(stderr, "Error: Expect unsigned int.\n");
      exit(EXIT FAILURE);
   for (count = 0; n > 0; (n = n >> 1))
      count += (n & 1);
   printf("%u\n", count);
   return 0;
                                       How could this be
                                       expressed more
          What does it
                                       succinctly?
          write?
```

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Signed Magnitude

<u>Integer</u>	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit indicates sign

0 => positive

1 => negative

Remaining bits indicate magnitude

$$1101_{B} = -101_{B} = -5$$

$$0101_{B} = 101_{B} = 5$$

Signed Magnitude (cont.)

<u>Integer</u>	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
3 4 5 6	0011 0100 0101 0110

Computing negative

```
neg(x) = flip high order bit of x

neg(0101_B) = 1101_B

neg(1101_B) = 0101_B
```

Pros and cons

- + easy for people to understand
- + symmetric
- two reps of zero

Ones' Complement


```
Integer
          Rep
          1000
          1001
        1010
     -4 1011
     -3
        1100
     -2
        1101
     -1
        1110
     -0
         1111
          0000
      0
          0001
      1
          0010
      2
          0011
          0100
          0101
          0110
          0111
```

Definition

```
High-order bit has weight -7
1010_{B} = (1*-7)+(0*4)+(1*2)+(0*1)
= -5
0010_{B} = (0*-7)+(0*4)+(1*2)+(0*1)
```

Ones' Complement (cont.)

<u>Integer</u>	<u>Rep</u>
-7	1000
-6	1001
- 5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

```
neg(x) = \sim x

neg(0101_B) = 1010_B

neg(1010_B) = 0101_B
```

Computing negative (alternative)

```
neg(x) = 1111_B - x
neg(0101_B) = 11111_B - 0101_B
= 1010_B
neg(1010_B) = 1111_B - 1010_B
= 0101_B
```

Pros and cons

- + symmetric
- two reps of zero

Two's Complement


```
Integer
         Rep
         1000
         1001
     -6
        1010
                Definition
     -5 1011
        1100
     -3
        1101
     -2 1110
     -1
         1111
         0000
         0001
     1
         0010
      2
         0011
         0100
         0101
         0110
          0111
```

```
High-order bit has weight -8

1010_B = (1*-8) + (0*4) + (1*2) + (0*1)

= -6

0010_B = (0*-8) + (0*4) + (1*2) + (0*1)

= 2
```

Two's Complement (cont.)

<u>Integer</u>	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

```
neg(x) = \sim x + 1

neg(x) = onescomp(x) + 1

neg(0101_B) = 1010_B + 1 = 1011_B

neg(1011_B) = 0100_B + 1 = 0101_B
```

Pros and cons

- not symmetric
- + one rep of zero

Two's Complement (cont.)

Almost all computers use two's complement to represent signed integers

Why?

- Arithmetic is easy
 - Will become clear soon

Hereafter, assume two's complement representation of signed integers

Adding Signed Integers


```
pos + pos
```

```
1111

3 0011<sub>B</sub>

+ -1 + 1111<sub>B</sub>

-- ----

2 10010<sub>B</sub>
```

neg + neg

pos + pos (overflow)

How would you detect overflow programmatically?

neg + neg (overflow)

Subtracting Signed Integers

Perform subtraction with borrows

or

Compute two's compand add


```
-5 1011<sub>B</sub>
- 2 - 0010<sub>B</sub>
-- ----
-7 1001<sub>B</sub>
```


Negating Signed Ints: Math

Question: Why does two's comp arithmetic work?

Answer: $[-b] \mod 2^4 = [twoscomp(b)] \mod 2^4$

```
[-b] mod 2^4
= [2^4 - b] mod 2^4
= [2^4 - 1 - b + 1] mod 2^4
= [(2^4 - 1 - b) + 1] mod 2^4
= [onescomp(b) + 1] mod 2^4
= [twoscomp(b)] mod 2^4
```

See Bryant & O'Hallaron book for much more info

Subtracting Signed Ints: Math

And so:

```
[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4
```

```
[a - b] mod 2^4

= [a + 2^4 - b] mod 2^4

= [a + 2^4 - 1 - b + 1] mod 2^4

= [a + (2^4 - 1 - b) + 1] mod 2^4

= [a + onescomp(b) + 1] mod 2^4

= [a + twoscomp(b)] mod 2^4
```

See Bryant & O'Hallaron book for much more info

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

What is the effect arithmetically?

Bitwise arithmetic right shift: fill on left with sign bit

Results are mod 24

Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

$$6 >> 1 => 3$$

 0110_{B} 0011_{B}
 $-6 >> 1 => 5$

1010_B 0101_B

In C, right shift (>>) could be logical or arithmetic

- Not specified by C90 standard
- Compiler designer decides

Best to avoid shifting signed integers

Other Operations on Signed Ints

Bitwise NOT (~ in C)

Same as with unsigned ints

Bitwise AND (& in C)

Same as with unsigned ints

Bitwise OR: (| in C)

Same as with unsigned ints

Bitwise exclusive OR (* in C)

Same as with unsigned ints

Best to avoid with signed integers

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Rational Numbers

Mathematics

- A rational number is one that can be expressed as the ratio of two integers
- Infinite range and precision

Compute science

- Finite range and precision
- Approximate using floating point number
 - Binary point "floats" across bits

IEEE Floating Point Representation

Common finite representation: IEEE floating point

More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):

- 1 bit: sign (0=>positive, 1=>negative)
- 8 bits: exponent + 127

Using 64 bits (type double in C):

- 1 bit: sign (0=>positive, 1=>negative)
- 11 bits: exponent + 1023

Floating Point Example

Sign (1 bit):

• 1 => negative

32-bit representation

Exponent (8 bits):

- $\cdot 10000011_{B} = 131$
- \cdot 131 127 = 4

Fraction (23 bits):

- 1 + $(1*2^{-1}) + (0*2^{-2}) + (1*2^{-3}) + (1*2^{-4}) + (0*2^{-5}) + (1*2^{-6}) + (1*2^{-7})$ = 1.7109375

Number:

 \bullet -1.7109375 * 2⁴ = -27.375

Floating Point Warning

Decimal number system can represent only some rational numbers with finite digit count

• Example: 1/3

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5

Beware of roundoff error

- Error resulting from inexact representation
- Can accumulate

<u>Decimal</u>	Rational
Approx	<u>Value</u>
.3	3/10
. 33	33/100
.333	333/1000
•••	

<u>Binary</u>	<u>Rational</u>
<u>Approx</u>	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	51/256
• • •	

Summary

The binary, hexadecimal, and octal number systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers

Essential for proper understanding of

- C primitive data types
- Assembly language
- Machine language