Глубокое обучение

Дмитрий Никулин

30 июня 2021 г.

Неделя 14: Трансформеры

Agenda

- Развитие идеи эмбеддингов
- RNN и механизм внимания
- Attention is all you need
- Модификации трансформера

Развитие идеи эмбеддингов

Серия вопросов в зал

- Как работают разные эмбеддинги?
- В чем, по вашему мнению, их главная проблема?

Embeddings from Language MOdels (ELMO)

https://arxiv.org/pdf/1802.05365.pdf

ELMO

Обучаем две языковые модели: в одной LSTM предсказывает следующее слово, в другой предыдущее (т.е. это bidirectional LSTM):

Embedding of "stick" in "Let's stick to" - Step #1

ELMO

В качестве эмбеддинга используем взвешенную сумму начального эмбеддинга и скрытых состояний LSTM:

RNN и механизм внимания

Проблема RNN

- При решении seq2seq задач предложения произвольной длины кодируются в вектор фиксированного размера
- В длинных предложениях теряется контекст, длинные предложения не зависят от начальных токенов
- LSTM и BiLSTM пытаются частично решить эту проблему

https://github.com/tensorflow/nmt

Автопереводы

https://github.com/tensorflow/nmt

Проблемы seq2seq архитектуры

- Нужно сжать весь текст в один вектор
- Теряется информация о первых словах
- Декодер тоже может терять информацию по мере генерации последовательности
- Можно использовать BiLSTM, но тогда будет теряться информация о словах в середине

https: //arxiv.org/pdf/1409.0473.pdf

- На вход энкодеру подаём все скрытые состояния
- Хотим научить нейросеть смотреть в нужные места исходной последовательности

https: //arxiv.org/pdf/1409.0473.pdf - Скрытое состояние декодера:

$$s_t = f(s_{t-1}, y_{t-1}, c_t)$$

- Релевантность *j*-го входного слова *t*-ому (обычно это полносвязный слой):

$$\mathrm{sim}(s_{t-1},h_j)$$

- Распределение на входных словах:

$$\alpha_{tj} = \mathsf{Softmax}(\mathsf{sim}(s_{t-1}, h_j))$$

- Предсказываем, какие слова входной последовательности важны: $c_t = \sum_j \alpha_{tj} \cdot h_j$

https://github.com/tensorflow/nmt

Как посчитать sim?

- Скалярное произведение:

$$\mathrm{sim}(s,h) = h^T \cdot s$$

- Additive attention:

$$\mathrm{sim}(s,h) = W^T \cdot \tanh(W_h h + W_s s)$$

Multiplicative attention:

$$\mathrm{sim}(s,h) = h^T W s$$

- W,W_s,W_h - обучаемые параметры

Как улучшить seq2seq?

Attention is All You Need (2017)

- Основная проблема RNN модель помнит только ближайший контекст
- В первой статье про attention рекуррентная сеть была как в энкодере (для вычисления эмбеддингов), так и в декодере
- Хотелось бы сделать модель, в которой:
 - эмбеддинги каждого слова "знали" не только о ближайших эмбеддингах
 - декодер мог бы помнить всю историю

Attention is All You Need (2017)

- Это реализовано в Transformer нейросетевой архитектуре для задач seq2seq, основанной исключительно на полносвязных слоях
- Превзошла существовавшие seq2seq архитектуры как по качеству, так и по скорости работы
- Основной элемент multi-head self-attention

Transformer

Верхнеуровнево это просто энкодер и декодер

Transformer

Энкодер и декодер состоят из одинаковых блоков; веса во всех блоках разные

Transformer

В энкодере происходят две вещи: сначала вход прогоняется через self-attention, а затем — через полносвязный слой. В декодере помимо обычного self-attention есть ещё и attention из энкодера.

Self-attention

Абстракции

- Для эмбеддинга x_i каждого входного слова считаются три вектора:
 - Query $\left(q_{i}\right)$ представление слова для сравнения его с другими
 - Key (k_i) представление слова для сравнения других с ним
 - Value $\left(v_{i}\right)$ представление слова, содержащее его смысл
- Матрицы W^Q, W^K, W^V обучаются вместе с моделью
- q_i, k_i, v_i получаются умножением x_i на соответствующие матрицы
- Функция релевантности: $\mathrm{sim}(x_i,x_j)=rac{q_ik_j^T}{\sqrt{d_k}}$, где d_k размерность q_i и k_j

Self-attention

Цель этого слоя — сложить Value с некоторыми весами

Более детально

Более детально

Зверь с кучей голов

Несколько голов обеспечивают разное внимание

Ещё раз обзор multi-head self-attention

Один слой энкодера

Positional encoding

Для учёта позиции слова в предложении входные эмбеддинги можно преобразовывать каким-то способом, зависящим от позиции. Например, прибавлять какой-то тензор t_i (разный для разных i):

Positional encoding

- Самый простой вариант для t_i это сделать их обучаемыми
- В оригинальной статье предлагалось сделать t_i из базисных векторов Фурье-базиса:

$$\begin{split} t_{i,2j} &= \sin\left(\frac{i}{10000^{2j/d_{\text{model}}}}\right) \\ t_{i,2j+1} &= \cos\left(\frac{i}{10000^{2j/d_{\text{model}}}}\right) \end{split}$$

- Количество различных t_i задаётся при создании модели. Поэтому предобученную модель нельзя использовать для сколь угодно длинных последовательностей

Что происходит в декодере?

Полная архитектура

Figure 1: The Transformer - model architecture.

Модификации трансформера

Учить трансформер под каждую задачу сложно

- Большие объёмы неразмеченных данных в интернете в разных доменах (книги, новости, Википедия, иные тексты из интернет-страниц)
- Размеченных данных мало. Качественная разметка дорогая и долгая
- Много вычислительных ресурсов, GPU, TPU, фреймворки распределённых вычислений
- Можем ли мы как-то заиспользовать имеющиеся ресурсы?

Модификации

- Да, можем! Использовать будем semi-supervised learning
- Обучаем большой трансформер на какой-нибудь unsupervised задаче на очень больших данных (очень долго, порядка нескольких недель на 64 GPU);
- Дообучаем трансформер на малом корпусе размеченных данных (очень быстро, порядка 1 часа на одной GPU).

Сколько стоит аренда 1 сервера с 8 GPU

https://cloud.yandex.ru/prices

- BERT Bidirectional Encoder Representations from Transformers
- <mark>Идея BERT</mark>: предобучать энкодер из трансформера на двух искусственных задачах:
 - Masked Language Modeling
 - Next Sentence Prediction
- После того, как мы предобучили BERT, мы можем доучивать слои для решения конкретной задачи

Как используем?

Figure 1: (**left**) Transformer architecture and training objectives used in this work. (**right**) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.