

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

Hyderabad Campus, Hyderabad Computer Science Dept, 2nd Semester 2023-2024 Course Handout (BITS F464: Machine Learning)

Date: 9th Jan 2024

Course Number: BITS F464 (Tues:4, Thur:4,10)

Course Title: Machine Learning

Instructor-In-Charge: Chittaranjan Hota, Ph.D (hota[AT]hyderabad.bits-

pilani.ac.in)

Scope and Objectives of the course:

This course is an undergraduate course on Machine Learning. ML is the sub-field of Artificial Intelligence. It helps engineers build automated systems that learn from experiences or examples. It helps machines make data-driven decisions. For example, Google Maps for navigation uses the route network, real-time traffic characteristics, time of travel etc. to predict an appropriate path for you using ML algorithms. ML is a multi-disciplinary field, with roots in Computer science, and Mathematics. ML methods are best described using linear and matrix algebra and their behaviours are best understood using the tools of probability and statistics. According to the latest estimates, 328 million terabytes of data are created daily. With this increasing amounts of data, the need for automated methods for data analysis continues to grow. The goal of ML is to develop methods that can automatically detect patterns in data, and then use the uncovered patterns to predict the future outcomes of interest. This course will cover many ML models and algorithms, including linear models, multi-layer neural networks, support vector machines, density estimation methods, Bayesian belief networks, mixture models, clustering, ensemble methods, and reinforcement learning. The course objectives are the following:

- To select and apply an appropriate supervised learning algorithm for classification problems like Naïve Bayes, SVM, Logistic regression, Neural networks etc.
- To select and apply an appropriate supervised learning algorithm for regression problems like Linear regression, Ridge regression, Non-parametric kernel regression etc.
- To select and apply an appropriate un-supervised learning algorithm for clustering, linear and non-linear dimensionality reduction etc.
- To understand ML principles and techniques like Model selection, Under-fitting, Over-fitting, Cross-validation, Regularization etc.
- To test run appropriate ML algorithm on real and synthetic datasets and interpret their results.

Text Books:

T1: Christopher Bishop: Pattern Recognition and Machine Learning, Springer-Verlag New York Inc., 2006.

T2: Tom M. Mitchell: Machine Learning, The McGraw-Hill, Indian Edition, 2017.

Reference Books:

R1: Kevin Murphy: Machine Learning: A Probabilistic Perspective, MIT Press, 2012.

R2: Shai Shalev-Shwartz and Shai Ben-David: Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014.

R3: Ethem Alpaydin: Introduction to Machine Learning, 3rd Edition, MIT Press, 2014.

Lecture Plan:

Lect. #	Learnin g objectiv es	Topics to be covered	Chapter in the Text Book
1	Course administrati on	Course Administration, Motivation and ML Frameworks.	T2(1), Lectur e Slides
2	Overview of ML	Supervised/Unsupervised/RL, Classification/ Regression, General Approach.	R3(1.1, 1.2)
3 - 4	Supervis ed Learning - I	Concept Learning: Version space and Candidate elimination algorithm.	T2(2.2, 2.5)
5 - 6	Supervise d Learning - II	Decision Tree Learning: Tree Representation, Types of problems suitable for DT learning, Learning algorithm.	T2(3.2, 3.3, 3.4)
7 - 8	Evaluating a model	Bias, Cross-validation, Precision-Recall, ROC Curve.	T1(1.3), R3(19. 6, 19.7)
9 - 11	Linear Models for Regression	Linear regression, Logistic regression, Gradient Descent, GD Analysis, SGD.	T1(3.1, 3.2), R1(8.1-3, 8.6)
12 - 14	Linear Models for Classification	Discriminant functions, least squares, Fischer's Linear Discriminant.	T1(4.1)
15 - 17	Naïve Bayes	Generative Vs Discriminative models, Maximum A Posteriori (MAP) Vs Maximum Likelihood (ML)	T1(4.2, 4.3), T2(6.1-6.10)
18 - 21	Neural Network s-I	Perceptron Training, Multi- layer Perceptron(MLP): Components, Activations, Training: SGD, Computing Gradients, Error Backpropagation.	T1(5.1-5.4)
22 - 25	Neural Networks -II	Regularization, Data Augmentation, Convolutional Networks: CNNs, RNNs; Generative Models: Autoregressive, GANs.	T1(5.5), Lectur e Slides
26 – 29	Instance- based	k-Nearest Neighbour Learning, Constructing Kernels, Radial Basis	T2(8.2), T1(6.1-

	Learning:	Function Networks, Maximum margin	6.3, 7.1)
	Kernels &	classifiers.	
	SVMs		
30 - 33	Graphic	Bayesian Networks: Training,	T1 (8.1,
	al	Structure learning,	8.4.1), T2(6)
	Models	Inferences, Undirected models.	
34 - 35	Un-	Mixture Models and EM: K-means	T1 (9.1, 9.2)
	supervised	Clustering, Gaussian Mixture Models, EM	
	Learning - I	for GMM.	
36 - 37	Un-	Dimensionality Reduction,	T1(12.1)
	supervised	Principal Component	
	Learning - II	Analysis (PCA).	
38 – 39	Combini	Bayesian-model averaging,	T1(14.1
	ng	Boosting, Tree- based	- 14.4)
	Models	Models.	
40 - 41	Reinforceme	Markov Decision Process, Value	T1 (13.1),
	nt Learning	Iteration, Policy Iteration, Q-learning.	T2(13.3)

Evaluation Scheme:

Component	Duratio n	Date & Time	Weightage	Nature
				of
				Componen
Mid-	00 mins	14/02/2024 (2:00 to 2:20 pm)	2004	Closed Book
	90 mins	14/03/3024 (2:00 to 3:30pm)	30%	Closed Book
Semester				
Exam				
Home	-	To be announced	20%	Open Book
Assignments/				
Projects				
(coding)				
Two	30	Second week of Feb, and	10%	Open Book
announced		First week of April 2024.		
quizzes	mins			
	each			
Comprehensi	3 Hrs	15/05/2024 (FN)	40%	Closed Book
ve Exam				

(**Note:** Minimum 40% of the evaluation component will be conducted before the mid semester grading)

Chamber Consultation Hours: Would be announced in the class.

Make-up Policy:

Prior permission of the Instructor-In-Charge is required to get make-up on any evaluation component. Genuine requests will only be considered.

Notices: All notices about the course will be put on Course webpage.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-In-Charge BITS

F464