Module -II Output Primitives 980CESS 04 =) scan conversion: process of converting basic low-level obj into their corresponding pixel map reprsenta" I scan Convision of line: I :DDA line drawing (al):
DDA (digital diffracial (Al)) is a line drawing (al) which uses fartitions 8lope interscept eg of Straight line Line drawing is accomblished by calculating introdeliate point coordinates along the line path blo 2 gun 'n' points. The cartition Slope introopt eg for a Straight line is -where m -> 8 lope ib -> intrapt The 2 end points of the line aregun which are (x1,4) & (x2,42). X1 . 5C2

for finding 32 - 1 = 3k+1 = m + 3k for finding 32 - 3k+1 = m + 3k		case 1: (m<1) -> == m=0.38 (1-2) met. To changes with unit in troat (21, 34) (kx11) (21, 34) (kx11) (kx11	There are 3 cases taged on value of m-	stimilarily ber preterine to hue procedurate getpixel (2114). getpixel (2114).	to load the specified color into the frame tuffer at a posticulous position, we will be low-level proceduly
1) (10,10) & (15,16) A) 34 dd 72 dd, (100) (15,16)	Xx+1 = Xx+1 Y changes cuids unit introd Yk+1 = Yx+1 Yk+1 = Yx+1 Yk+1 = Yx+1 Yk+1 > yx+1 Ham (x+1) = 3.4.	Case 3: (m=) (2ck+1) yk+1)		1 changes with cinit introd 1 changes with cinit introd	(G) WH 761 & 28 gun -) ((K+1 /m) 4k+1)

XKH M - 87K+ 1/2 = 10.83 + 1/.2 = 10.83 + 1/.2 = 11.66	1166 12 12 (12,112) XKH (00 = 11.66+083)	(15 m)	- And purpos) !!	XXXXII M = 10+1 = 11 12 1 12 1 12 1 12 1 12 1 12 1 12	10 10 10 10 (1910) (XK+1/M) YK+1)	m = 92 - 91 = 16 - 10 = 6
Chasante.	- 8 F1	(Enclus) of End of the seconding (a)	a Gord the Corner of the Corne		8) 14.15 15 14.18 (\$1.45) XKI (30 = 14.18 + 0.83 - 14.18 + 0.83 - 14.18 = 14.18	$\begin{cases} 2.49 & 3 & 2.49 & 3$

) (xc+x, 4c+4) = (0+2, 0+2) = (2,2)

3) (xc+x, 4c+4) = (0+2, 0+2) = (2,2)

5) (xc-x, 4c+4) = (0+2, 0+2) = (2,2)

5) (xc-x, 4c+4) = (0+2, 0+2) = (2,2)

5) (xc-x, 4c+4) = (0-2, 0+2) = (2,2)

5) (xc-x, 4c+4) = (0-2, 0+2) = (2,2)

6) (xc-x, 4c+4) = (0-2, 0+2) = (2,2)

7) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

8) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

9) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

1) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

1) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

1) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

2) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

2) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

3) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

4) (xc+x, 4c+4) = (0-2, 0-2) = (2,2)

5) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

6) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

7) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

8) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

1) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

1) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

1) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

2) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

2) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

2) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

3) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

4) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

5) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

6) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

6) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

7) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

8) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

1) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

1) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

2) (xc-x, 4c+4) = (2,2) = (2,2)

3) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

4) (xc-x, 4c+4) = (0-2, 0-2) = (2,2)

6) (xc-x, 4c+4) = (2,2) = (2,2)

6) (xc-x, 4c+4) = (2,2) = (2,2)

8) (xc-x, 4c+4) = (2,2) = (2,2)

1) (xc-x, sasted on mixrox haplection if we see high hand in the mixrox me will see (4,x).

So point p. find will see (4,x).

So point p. find will see (4,x).

Layer haplection, p3 (-4,x) will become -> Symmetric propty of &(): is bearing a hur the O is alreaun using 8-may Symmetric. 1, plot & paints (x, 46/x, 4) -> (0,0,2,2) thm, 7-x+1 = (+1 = 2 taken remember a things—

1) It will become (i,-y) according to a great

1) Similarly it we replect (any) with represent

2) Similarly it we replect mirror according

1) To y ances of will become (any).

2) read point (i,y) sign as is on a position

2) reflect with respect to x ances they

2) reflect with respect to x ances they 73 (-1/2) is curitten, so it will become Take this logic & replection of points become pi (xix). let us unclosseand has this -ue signs are suspect to or aris will make & position -ve 4 position becames we is with agreet to so not whose y is weitten, so it will

(new color, old wood, sold color). トイン X