Math 445 Number Theory

October 27, 2004

Continued fractions: Another example: $\sqrt{77}$

 $8 < \sqrt{77} < 9$. so:

$$a_0 = \lfloor \sqrt{77} \rfloor = 8, r_0 = \sqrt{77} - 8 \;, \qquad a_1 = \lfloor \frac{1}{\sqrt{77} - 8} \rfloor = \lfloor \frac{\sqrt{77} + 8}{13} \rfloor = 1 \;, r_1 = \frac{\sqrt{77} + 8}{13} - 1 = \frac{\sqrt{77} - 5}{13} \;, \qquad a_2 = \lfloor \frac{13}{\sqrt{77} - 5} \rfloor = \lfloor \frac{\sqrt{77} + 5}{4} \rfloor = 3 \;, r_2 = \frac{\sqrt{77} + 5}{4} - 3 = \frac{\sqrt{77} - 7}{4} \;, \qquad a_2 = \lfloor \frac{4}{\sqrt{77} - 7} \rfloor = \lfloor \frac{\sqrt{77} + 7}{7} \rfloor = 2 \;, r_2 = \frac{\sqrt{77} + 7}{7} - 2 = \lfloor \frac{\sqrt{77} - 7}{7} \rfloor = \lfloor \frac{\sqrt{77} + 7}{4} \rfloor = 3 \;, r_3 = \frac{\sqrt{77} + 7}{4} - 3 = \frac{\sqrt{77} - 5}{4} \;, \qquad a_4 = \lfloor \frac{4}{\sqrt{77} - 5} \rfloor = \lfloor \frac{\sqrt{77} + 5}{13} \rfloor = 1 \;, r_4 = \frac{\sqrt{77} + 5}{13} - 1 = \frac{\sqrt{77} - 8}{13} \;, \qquad a_5 = \lfloor \frac{13}{\sqrt{77} - 8} \rfloor = \lfloor \frac{\sqrt{77} + 8}{1} \rfloor = 16 \;, r_5 = \frac{\sqrt{77} + 8}{1} - 16 = \frac{\sqrt{77} - 8}{1} = r_0 \;, and then the process will repeat. So, $\sqrt{77} = [8, 1, 3, 2, 3, 1, 16, 1, 3, 2, 3, 1, 16, \dots] = [3, \overline{1, 3, 2, 3, 1, 16}] \;.$$$

Some basic facts. Finite, simple, continued fraction $x = [a_0, a_1, \dots, a_n], a_i \in \mathbb{N}$ for all $i \geq 1$; $a_0 \in \mathbb{Z}$.

A basic formula: $[a_0, a_1, ..., a_n] = a_0 + \frac{1}{[a_1, ..., a_n]}$.

x is a rational number. (Proof: induction on n.)

Because $a_n = (a_n - 1) + \frac{1}{1}$, $[a_0, a_1, \dots, a_n] = [a_0, a_1, \dots, a_n - 1, 1]$. But this is the only type of equality:

If $[a_0, a_1, \ldots, a_n] = [b_0, b_1, \ldots, b_m]$ with $a_n, b_m > 1$, then n = m and $a_i = b_i$ for all i. The idea:

$$[a_0, a_1, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]}, \text{ and } [a_1, \dots, a_n] > 1, \text{ so } a_0 = \lfloor [a_0, a_1, \dots, a_n] \rfloor = \lfloor [b_0, b_1, \dots, b_m] \rfloor = b_0.$$
 So

 $\frac{1}{[a_1,\ldots,a_n]} = \frac{1}{[b_1,\ldots,b_m]}$, so $[a_1,\ldots,a_n] = [b_1,\ldots,b_m]$. Then continue by induction.

Our basic formulas will hold just as well if the a_i are not integers. Another basic formula that we will repeatedly use is

$$[a_0,\ldots,a_{n-1},a_n]=[a_0,\ldots,a_{n-2},a_{n-1}+\frac{1}{a_n}]$$

Computing $[a_0, \ldots, a_n]$ from $[a_0, \ldots, a_{n-1}]$:

 $[a_0,\ldots,a_n]=rac{h_n}{k_n}$, where the h_n,k_n are defined inductively by

 $h_{-2} = 0, h_{-1} = 1, k_{-2} = 1, k_{-1} = 0$, and $h_i = h_{i-1}a_i + h_{i-2}$, $k_i = k_{i-1}a_i + k_{i-2}$

Proof: next time.