INDEX

S.no	Experiments	Date	Signature
1.	Implement and demonstrate the FIND S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .csv file.	30/01/23	
2.	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.	06/02/23	
3.	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	13/02/23	
4.	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	20/02/23	
5.	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.	06/03/23	
6.	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.	20/03/23	
7.	Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set	21/03/23	

8.	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering.	27/03/23	
9.	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.	03/04/23	
10.	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.	10/04/23	