

Présentation par : Orphila OURAGA, Assia BOUZNAD, Sonia CHIBOUB

Cours : Corpus, ressources et linguistique outillée présentation et organisation du cours

Formation: Master 1 - Langue et Informatique - Sorbonne Université

Enseignante: Karën FORT

<u>Sources</u>

- Site source : <u>Stanza</u> et <u>CoreNLP</u>
- A Python Natural Language Processing Toolkit for Many Human Languages (Google Scholar)

- Corpus (Web scraping) :
 - o <u>lci-japon</u> (japonais)
 - o github (coréen)
 - o **Gutenberg** (anglais, espagnol, français)
 - o Wikipédia (afrikaans)

Sommaire

1. Stanza de CoreNLP, c'est quoi?

- Présentation
- Documentation de l'outil
- Etat de l'art

2. Comment l'avons-nous utilisé ?

Comprendre l'outil

3. Conclusion

Avantages/Inconvégnants

Stanza de CoreNLP, c'est quoi?

<u>Présentation</u>

- → Par Stanford NLP Group (Stanford University)
- → Librairie python de CoreNlp
- → Outil du TAL

Documentation de l'outil

- → Installation guidée pour python
- → Tutoriel pour l'utilisation et l'exploitation
- → Accès au corpus d'entraînement

Language ‡	Treebank	lcode ‡	Default	Tokens	Sentences ‡	Words	UP
English	ESLSpok	en		100.00	92.81	100.00	98.28
English	EWT	en		99.17	89.16	98.92	96.20
English	GUM	en		99.78	95.34	99.69	97.59
English	LinES	en		99.96	88.63	99.96	97.42
English	ParTUT	en		99.72	100.00	99.63	96.70
Erzya	JR	myv	~	99.63	96.92	99.08	84.84
Estonian	EDT	et	~	99.97	92.88	99.97	97.19
Estonian	EWT	et		98.79	79.57	98.79	93.14
Faroese	FarPaHC	fo	~	99.65	93.94	99.64	96.51
Finnish	FTB	fi		100.00	90.13	99.98	96.88
Finnish	TDT	fi	~	99.73	90.70	99.70	97.51
French	GSD	fr	~	99.71	95.03	99.50	97.63
French	ParTUT	fr		99.88	100.00	99.42	96.92
French	ParisStories	fr		99.76	92.80	99.56	97.08
French	Rhapsodie	fr		99.81	99.82	99.52	97.31
French	Sequoia	fr		99.88	87.46	99.64	98.80
Galician	СТБ	gl	~	99.91	99.30	99.37	97.11
* *******							

https://stanfordnlp.github.io/stanza/performance.html

État de l'art

A Python Natural Language Processing Toolkit for Many Human Languages, Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, Christopher D. Manning, Stanford University (2003) : L'article démontre une présentation détaillée de l'outil Stanza de Corenlp et en effet, il est avantageux car il comporte une couverture linguistique vaste et une **précision élevée** (anglais et chinois) grâce à son architecture entièrement neurale. Les chercheurs nous expliquent qu'inclure une réduction des modèles en taille pourrait être efficace et l'ajout de nouvelles fonctionnalités pour enrichir encore plus l'analyse textuelle.

Comment l'avons-nous utilisé?

Comprendre l'outil

Processeurs (Neural Pipeline)

- Tokenize, Lemma: Tokenisation et lemmatisation
- POS: part of speech (Partie du discours)
- Constituency (Groupes syntaxiques)
- Depparse : Dependency parsing (Relation de dépendances syntaxiques)
- NER: Named-entity recognition (Entités nommées)
- Mwt : Multi-word-Token (Mots composés)
- Sentiment (positifs/négatifs)

Anglais Afrikaans

Processor	Package
tokenize mwt pos lemma constituency depparse sentiment ner	combined combined combined combined_charlm combined_nocharlm ptb3-revised_charlm combined_charlm sstplus_charlm ontonotes-ww-multi_charlm

Français Espagnol

Processor	Package
tokenize mwt pos lemma depparse ner	combined combined combined_charlm combined_nocharlm combined_charlm wikiner

Processor	Package
tokenize mwt pos lemma constituency depparse sentiment ner	ancora ancora ancora_charlm ancora_nocharlm combined_charlm ancora_charlm tass2020_charlm conll02

Coréen

Japonais

```
Processor
              Package
  tokenize
              kaist
              kaist nocharlm
  pos
              kaist_nocharlm
  lemma
              kaist_nocharlm
  depparse
2024-05-09 18:06:18 INFO: Using device: cpu
2024-05-09 18:06:18 INFO: Loading: tokenize
2024-05-09 18:06:18 INFO: Loading: pos
2024-05-09 18:06:19 INFO: Loading: lemma
2024-05-09 18:06:19 INFO: Loading: depparse
2024-05-09 18:06:19 INFO: Done loading processors!
```

```
Package
  Processor
 tokenize
                 qsd
                 gsd charlm
  pos
  lemma
                 gsd_nocharlm
                 alt charlm
  constituency
 depparse
                 gsd_charlm
 ner
                gsd
2024-05-09 18:18:53 INFO: Using device: cpu
2024-05-09 18:18:53 INFO: Loading: tokenize
2024-05-09 18:18:54 INFO: Loading: pos
2024-05-09 18:18:54 INFO: Loading: lemma
2024-05-09 18:18:54 INFO: Loading: constituency
2024-05-09 18:18:54 INFO: Loading: depparse
2024-05-09 18:18:55 INFO: Loading: ner
2024-05-09 18:18:56 INFO: Done loading processors!
```

Conclusion

Avant	ages
--------------	------

- Installation
- Documentation
- Compatible avec plusieurs langages de programmation
- Analyse textuelle approfondie
- Langues Naturelles (+70 langues)

Inconvénients

- Processeurs différentes selon les langues
- Anglais > autres langues
- Ambiguïté syntaxique
- Nécessite une connexion Internet
- Prend beaucoup d'espace

Merci de votre attention!

DÉMONSTRATION

EN LIGNE

http://stanza.run/

Exemples:

- « Le petit garçon mange une pomme. »
- « La petite porte le voile. »

SUR PYTHON

https://we.tl/t-ysrVobjMCl