

TIMING BASICS

Vasudev Murthy

Timing paths

Timing paths

- This circuit has
- How many start points?
- How many end points?
- How many paths?

RAMAIAH SKILL ACADEMY

Timing Terminologies

- Setup Time
- : Time for which data should be stable at the input of the ff **before** the arrival of clock at the ff's clock pin

• Hold Time

: Time for which data should be stable at the input of the ff after the arrival of clock at the ff's clock pin

RAMAIAH SKILL ACADEMY

Timing Terminologies

Slack

• Critical Path : Theoretically path which has maximum delay

 Arrival Time : Time taken by data to reach a particular end point from a specific start point. Depends on complexity of logic through which data traverses

Required Time : Time at which data is required at a particular end point.
Depends on the requirements / specifications

: Difference in required time and arrival time. For a design to work the slack value should always be positive

ϵ

Clock Skew

- Clock feeds multimillion flip-flops
- Theoretically clock should arrive at same instance at all flip-flops Practically impossible
- Frequency of clock may vary from cycle to cycle

 Variation in arrival of clock at clock pin of subsequent / consecutive flip-flops is known as skew

Clock Skew

- The difference in arrival of clock at different flip-flops could be due to
 - Jitter cycle to cycle variation in clock period due to aging of oscillator, anomalies in the pll etc
 - Clock network delay Uncertainty in arrival of clock due to clock network and clock network component delays

Clock Skew

- Skew can be considered to be of two types
 - When clock arrives earlier than expected generally known as negative skew
 - When clock arrives later than expected generally known as positive skew
- +ve skew can occur when data & clock travel in same direction
- -ve skew can occur when data & clock travel in opposite directions

Frequency Calculation

• Arrival Time = T_{COMBO, Max}

- Required Time = $T_{CP} + T_{Clock_Insertion_Delay} T_{SETUP}$
 - Since there is only one clock here instead of skew the possible delay on the clock line is denoted as insertion delay

- Arrival Time : T_{Clk-Q} + T_{Combo, MAX}
- Required Time = $T_{CP} + T_{Clock_Skew} T_{SETUP}$
 - Due to presence of 2 clocks the possible difference in arrival of clock is denoted as skew

Frequency Calculation

• Arrival Time : T_{Combo, MAX}

 Required Time : Explicit Timing Constraint (If Specified)

• Arrival Time = $T_{Clk-Q} + T_{Combo, MAX}$

 Required Time = Typically Unconstrained Path (Has no requirement set)

Max Frequency Calculation

• Find The maximum Frequency for the circuit shown in figure below

• Find The maximum Frequency for the circuit shown in figure below

	$t_{\scriptscriptstyle \mathrm{P}}$	t_{su}
D Flip-Flop:	20 ns	5 ns
JK Flip-Fllp:	25 ns	10 ns
AND Gate:	12 ns	
OR Gate:	10 ns	

Max Frequency Calculation

• Find the maximum Frequency for the circuit shown in figure below

