3.2 The Derivative Function

MATH 205

Derivative at a point versus the Derivative Function

- But suppose, instead of looking at a single point, we wish to find a rule to determine the instantaneous rate of change anywhere on a given function.
- If such a rule exists, we would have a function whose outputs would be the original functions IROCs for any input.
- The derivative of a function f(x) with respect to the variable x is the function f'(x) whose value at x is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

provided this limit exists.

A few more definitions

Differentiable at a point:

If f'exists at x = a, then f is differentiable at x = a.

Differentiable (function):

If f' exists for all x in the domain of f, then f is called differentiable.

- The act of taking a derivative is differentiation.
- The reverse is called Antidifferentiation.

Notation

There are many ways to write the derivative of a function:

I. f'(x) " f prime of x"

II. y' "y prime"

III. $\frac{dy}{dy}$ "The derivative of y with respect to x"

IV. $\frac{df}{dx}$ "the derivative of f with respect to x"

V. $\frac{d}{dx} f(x)$ "the derivative of f(x)"

VI. D(f)(x) "the derivative of f(x)"

VII. $D_x f(x)$ "the derivative, with respect to x, of f(x)"

$$\frac{d}{dx}(x^2 - 3x + 1)$$

$$\frac{2}{x}$$
. $y'(x)$ for $y = \frac{2}{x+5}$

3.
$$f'(x) = \sqrt{3x + 5}$$

f'(0) for f(x) = |x|

Where does differentiability fail?

Though a function may be continuous at a point, it might not be differentiable at the point.

$$\lim_{x \to c} f(x) = f(c) \text{ but } \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \text{ may not exist}$$

Continuity DOES NOT guarantee differentiability.

Three behaviors that ruin differentiability

I. Corner:
$$f(x) = |x|$$

Cusp:
$$g(x) = x^{2/3}$$

. Vertical Tangent:
$$k(x) = \sqrt[3]{x}$$

III. Discontinuity:
$$h(x) = \frac{x^2}{x}$$

So, what can we conclude?

- Continuity at a point does not guarantee differentiability at that point!
- If a function is differentiable at a point, then it is continuous at that point.
- A differentiable function is a continuous function
- In terms of functions defined on closed intervals, we can discuss right/left-handed differentiability just as we described right/left-handed continuity.

Graphically

Derivative Plotter