Байесовские Методы. Лекция 3

БИВТ-23-9/10-ИСАД

23 сентября 2025 г.

Модель

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

lacktriangle X — матрица признаков размера $n \times d$.

Модель

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

- lacktriangle X матрица признаков размера $n \times d$.
- lacktriangledown вектор коэффициентов (неизвестные параметры).

Модель

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

- lacktriangle X матрица признаков размера $n \times d$.
- lacktriangledown вектор коэффициентов (неизвестные параметры).
- у вектор наблюдений.

Модель

$$y = X\theta + \varepsilon, \qquad \varepsilon \sim \mathcal{N}(0, \sigma^2 I)$$

- lacktriangle X матрица признаков размера $n \times d$.
- θ вектор коэффициентов (неизвестные параметры).
- у вектор наблюдений.
- lacktriangle Ошибки arepsilon независимы, одинаково распределены, дисперсия $\sigma^2.$

Цель

Найти такие параметры θ , которые лучше всего объясняют данные.

Оценка параметров (MLE)

• Правдоподобие:

$$P(y \mid X, \theta) = \prod_{i=1}^{n} \mathcal{N}(y_i \mid X_i^{\top} \theta, \sigma^2).$$

Оценка параметров (MLE)

• Правдоподобие:

$$P(y \mid X, \theta) = \prod_{i=1}^{n} \mathcal{N}(y_i \mid X_i^{\top} \theta, \sigma^2).$$

• Лог-правдоподобие:

$$\ell(\theta) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\|y - X\theta\|^2.$$

Оценка параметров (MLE)

• Правдоподобие:

$$P(y \mid X, \theta) = \prod_{i=1}^{n} \mathcal{N}(y_i \mid X_i^{\top} \theta, \sigma^2).$$

• Лог-правдоподобие:

$$\ell(\theta) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}||y - X\theta||^2.$$

• Максимизация эквивалентна задаче МНК:

$$\hat{\theta}_{\mathsf{MLE}} = \arg\min_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|^{2}.$$

Оптимизационная задача (MLE)

$$\hat{\theta}_{\mathsf{MLE}} = \arg\min_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|^2$$

Запишем функцию ошибки (сумму квадратов):

$$J(\theta) = (\mathbf{y} - \mathbf{X}\theta)^{\top} (\mathbf{y} - \mathbf{X}\theta).$$

Оптимизационная задача (MLE)

$$\hat{\theta}_{\mathsf{MLE}} = \arg\min_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|^2$$

• Запишем функцию ошибки (сумму квадратов):

$$J(\theta) = (y - X\theta)^{\top} (y - X\theta).$$

● Берём градиент по θ :

$$\nabla_{\theta} J(\theta) = -2X^{\top} (y - X\theta).$$

Оптимизационная задача (MLE)

$$\hat{\theta}_{\mathsf{MLE}} = \arg\min_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|^2$$

• Запишем функцию ошибки (сумму квадратов):

$$J(\theta) = (\mathbf{y} - \mathbf{X}\theta)^{\top} (\mathbf{y} - \mathbf{X}\theta).$$

● Берём градиент по θ :

$$\nabla_{\theta} J(\theta) = -2X^{\top} (y - X\theta).$$

• Приравниваем к нулю:

$$\mathbf{X}^{\top}\mathbf{X}\,\hat{\theta} = \mathbf{X}^{\top}\mathbf{y}.$$

Оптимизационная задача (MLE)

$$\hat{\theta}_{\mathsf{MLE}} = \arg\min_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|^2$$

• Запишем функцию ошибки (сумму квадратов):

$$J(\theta) = (\mathbf{y} - \mathbf{X}\theta)^{\top} (\mathbf{y} - \mathbf{X}\theta).$$

● Берём градиент по θ :

$$\nabla_{\theta} J(\theta) = -2 X^{\top} (y - X\theta).$$

• Приравниваем к нулю:

$$X^{\top}X\hat{\theta} = X^{\top}y.$$

ullet Если $X^{\top}X$ обратима:

$$\hat{\theta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

Нормальные уравнения

$$X^{\top}X\hat{\theta} = X^{\top}y$$

 \bullet Если X^TX обратима:

$$\hat{\theta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

Нормальные уравнения

$$X^{\top}X\hat{\theta} = X^{\top}y$$

 \bullet Если $X^{\top}X$ обратима:

$$\hat{\theta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

• Если $X^{\top}X$ вырожденная (нет обратной), решение выражается через **псевдообратную Мура-Пенроуза**:

$$\hat{\theta} = X^+ y,$$

где

$$X^+ = \begin{cases} (X^\top X)^{-1} X^\top, & n \geq d, \text{ pahr}(X) = d, \\ X^\top (XX^\top)^{-1}, & n < d, \text{ pahr}(X) = n. \end{cases}$$

Нормальные уравнения

$$X^{\top}X\hat{\theta} = X^{\top}y$$

 \bullet Если $X^{\top}X$ обратима:

$$\hat{\theta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

• Если $X^{\top}X$ вырожденная (нет обратной), решение выражается через **псевдообратную Мура-Пенроуза**:

$$\hat{\theta} = X^+ y,$$

где

$$X^+ = \begin{cases} (X^\top X)^{-1} X^\top, & n \geq d, \text{ pahr}(X) = d, \\ X^\top (XX^\top)^{-1}, & n < d, \text{ pahr}(X) = n. \end{cases}$$

• Это решение минимизирует $\|y-X\theta\|^2$ и среди всех возможных выбирает θ с минимальной нормой.

Нормальные уравнения

$$X^{\top}X\hat{\theta} = X^{\top}y$$

 \bullet Если $X^{\top}X$ обратима:

$$\hat{\theta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

• Если $X^{\top}X$ вырожденная (нет обратной), решение выражается через **псевдообратную Мура-Пенроуза**:

$$\hat{\theta} = X^+ y,$$

где

$$X^+ = \begin{cases} (X^\top X)^{-1} X^\top, & n \geq d, \text{ pahr}(X) = d, \\ X^\top (XX^\top)^{-1}, & n < d, \text{ pahr}(X) = n. \end{cases}$$

• Это решение минимизирует $\|y - X\theta\|^2$ и среди всех возможных выбирает θ с минимальной нормой.

Замечание

Использование псевдообратной особенно важно при n < d (мало данных, много признаков).

 Нет априорной информации: модель не учитывает знаний о параметрах до наблюдений.

- Нет априорной информации: модель не учитывает знаний о параметрах до наблюдений.
- ullet Точка вместо распределения: $\hat{ heta}$ одно число, без оценки неопределённости.

- Нет априорной информации: модель не учитывает знаний о параметрах до наблюдений.
- ullet Точка вместо распределения: $\hat{ heta}$ одно число, без оценки неопределённости.
- **Переобучение:** при n < d или при сильной корреляции признаков решение становится нестабильным.

- Нет априорной информации: модель не учитывает знаний о параметрах до наблюдений.
- ullet Точка вместо распределения: $\hat{ heta}$ одно число, без оценки неопределённости.
- **Переобучение:** при n < d или при сильной корреляции признаков решение становится нестабильным.
- Нет доверительных интервалов: предсказания не содержат информацию о «надежности».

Почему байесовская регрессия?

О Добавляем **априор** на параметры θ :

$$\theta \sim \mathcal{N}(0, \tau^2 I).$$

Почему байесовская регрессия?

О Добавляем **априор** на параметры θ :

$$\theta \sim \mathcal{N}(0, \tau^2 I).$$

• Получаем постериорное распределение, а не точку:

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta).$$

Почему байесовская регрессия?

О Добавляем **априор** на параметры θ :

$$\theta \sim \mathcal{N}(0, \tau^2 I).$$

• Получаем постериорное распределение, а не точку:

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta).$$

• Теперь можно делать байесовское предсказание:

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta) P(\theta \mid D) d\theta.$$

Байесовская линейная регрессия: модель

Наблюдения

$$y = X\theta + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2 I).$$

Априор на параметры

$$\theta \sim \mathcal{N}(0, \tau^2 I).$$

Правдоподобие:

$$P(y \mid X, \theta) = \mathcal{N}(y \mid X\theta, \sigma^2 I).$$

Байесовская линейная регрессия: модель

Наблюдения

$$\mathbf{y} = \mathbf{X}\mathbf{\theta} + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}).$$

Априор на параметры

$$\theta \sim \mathcal{N}(0, \tau^2 I).$$

Правдоподобие:

$$P(y \mid X, \theta) = \mathcal{N}(y \mid X\theta, \sigma^2 I).$$

• Априор: гауссовский, центрирован в нуле.

Байесовская линейная регрессия: модель

Наблюдения

$$\mathbf{y} = \mathbf{X}\mathbf{\theta} + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}).$$

Априор на параметры

$$\theta \sim \mathcal{N}(0, \tau^2 I).$$

Правдоподобие:

$$P(y \mid X, \theta) = \mathcal{N}(y \mid X\theta, \sigma^2 I).$$

- Априор: гауссовский, центрирован в нуле.
- Постериор: по теореме Байеса

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta).$$

Теорема Байеса

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta).$$

• Правдоподобие:

$$P(y \mid X, \theta) \propto \exp\left(-\frac{1}{2\sigma^2}||y - X\theta||^2\right).$$

Теорема Байеса

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta).$$

• Правдоподобие:

$$P(y \mid X, \theta) \propto \exp\left(-\frac{1}{2\sigma^2}||y - X\theta||^2\right).$$

• Априор:

$$P(\theta) \propto \exp\left(-\frac{1}{2\tau^2}\|\theta\|^2\right).$$

Теорема Байеса

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta).$$

• Правдоподобие:

$$P(y \mid X, \theta) \propto \exp\left(-\frac{1}{2\sigma^2}||y - X\theta||^2\right).$$

• Априор:

$$P(\theta) \propto \exp\left(-\frac{1}{2\tau^2}\|\theta\|^2\right).$$

• Постериор:

$$P(\theta \mid D) \propto \exp\left(-\frac{1}{2\sigma^2}||\mathbf{y} - \mathbf{X}\theta||^2 - \frac{1}{2\tau^2}||\theta||^2\right).$$

Теорема Байеса

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta).$$

• Правдоподобие:

$$P(y \mid X, \theta) \propto \exp\left(-\frac{1}{2\sigma^2}\|y - X\theta\|^2\right).$$

• Априор:

$$P(\theta) \propto \exp\Big(-rac{1}{2 au^2}\| heta\|^2\Big).$$

• Постериор:

$$P(\theta \mid D) \propto \exp\left(-\frac{1}{2\sigma^2}\|\mathbf{y} - \mathbf{X}\theta\|^2 - \frac{1}{2\tau^2}\|\theta\|^2\right).$$

ullet Это экспонента от квадратичной формы по heta o многомерное нормальное распределение.

Теорема Байеса

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta).$$

• Правдоподобие:

$$P(y \mid X, \theta) \propto \exp\left(-\frac{1}{2\sigma^2}||y - X\theta||^2\right).$$

• Априор:

$$P(\theta) \propto \exp\left(-\frac{1}{2\tau^2}\|\theta\|^2\right)$$
.

• Постериор:

$$P(\theta \mid D) \propto \exp\left(-\frac{1}{2\sigma^2}\|\mathbf{y} - \mathbf{X}\theta\|^2 - \frac{1}{2\tau^2}\|\theta\|^2\right).$$

ullet Это экспонента от квадратичной формы по heta o многомерное нормальное распределение.

Результат

$$P(\theta \mid D) = \mathcal{N}(\mu_N, \Sigma_N),$$

где

$$\Sigma_{N} = \left(\frac{1}{\sigma^{2}}X^{\top}X + \frac{1}{\tau^{2}}I\right)^{-1}, \quad \mu_{N} = \frac{1}{\sigma^{2}}\Sigma_{N}X^{\top}y.$$

lacktriangle $\Sigma_{ extsf{N}}$ — ковариация постериора.

- Σ_N ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.

- lacktriangle $\Sigma_{ extsf{N}}$ ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.
 - Малое au^2 (сильный априор) уменьшает вариацию au сжатие к нулю.

- lacktriangle $\Sigma_{\it N}$ ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.
 - Малое au^2 (сильный априор) уменьшает вариацию au сжатие к нулю.
- ullet μ_N центр постериора.

Постериор

$$P(\theta \mid D) = \mathcal{N}(\mu_N, \Sigma_N),$$

где

$$\Sigma_{N} = \left(\frac{1}{\sigma^{2}}X^{\top}X + \frac{1}{\tau^{2}}I\right)^{-1}, \quad \mu_{N} = \frac{1}{\sigma^{2}}\Sigma_{N}X^{\top}y.$$

- Σ_N ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.
 - Малое au^2 (сильный априор) уменьшает вариацию au сжатие к нулю.
- ullet μ_N центр постериора.
 - Баланс между MLE и априором.

Постериор

$$P(\theta \mid D) = \mathcal{N}(\mu_N, \Sigma_N),$$

$$\Sigma_{N} = \left(\frac{1}{\sigma^{2}}X^{\top}X + \frac{1}{\tau^{2}}I\right)^{-1}, \quad \mu_{N} = \frac{1}{\sigma^{2}}\Sigma_{N}X^{\top}y.$$

- Σ_N ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.
 - Малое au^2 (сильный априор) уменьшает вариацию au сжатие к нулю.
- \bullet μ_N центр постериора.
 - Баланс между MLE и априором.
 - ullet При $au^2 o\infty$ (слабый априор): $\mu_{ extsf{N}} o\hat{ heta}_{ extsf{MLE}}.$

Постериор

$$P(\theta \mid D) = \mathcal{N}(\mu_N, \Sigma_N),$$

$$\Sigma_{N} = \left(\frac{1}{\sigma^{2}}X^{\top}X + \frac{1}{\tau^{2}}I\right)^{-1}, \quad \mu_{N} = \frac{1}{\sigma^{2}}\Sigma_{N}X^{\top}y.$$

- Σ_N ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.
 - Малое au^2 (сильный априор) уменьшает вариацию au сжатие к нулю.
- \bullet μ_N центр постериора.
 - Баланс между MLE и априором.
 - ullet При $au^2 o\infty$ (слабый априор): $\mu_{ extsf{N}} o\hat{ heta}_{ extsf{MLE}}.$
 - При малом au^2 : μ_N тяготеет к нулю.

Постериор

$$P(\theta \mid D) = \mathcal{N}(\mu_N, \Sigma_N),$$

$$\Sigma_{N} = \left(\frac{1}{\sigma^{2}}X^{\top}X + \frac{1}{\tau^{2}}I\right)^{-1}, \quad \mu_{N} = \frac{1}{\sigma^{2}}\Sigma_{N}X^{\top}y.$$

- Σ_N ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.
 - Малое au^2 (сильный априор) уменьшает вариацию au сжатие к нулю.
- \bullet μ_N центр постериора.
 - Баланс между MLE и априором.
 - ullet При $au^2 o\infty$ (слабый априор): $\mu_{ extsf{N}} o\hat{ heta}_{ extsf{MLE}}.$
 - При малом τ^2 : μ_N тяготеет к нулю.
- В целом:

Постериор

$$P(\theta \mid D) = \mathcal{N}(\mu_N, \Sigma_N),$$

$$\Sigma_{N} = \left(\frac{1}{\sigma^{2}}X^{\top}X + \frac{1}{\tau^{2}}I\right)^{-1}, \quad \mu_{N} = \frac{1}{\sigma^{2}}\Sigma_{N}X^{\top}y.$$

- Σ_N ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.
 - Малое au^2 (сильный априор) уменьшает вариацию o сжатие к нулю.
- μ_N центр постериора.
 - Баланс между MLE и априором.
 - При $au^2 o \infty$ (слабый априор): $\mu_{\mathsf{N}} o \hat{ heta}_{\mathsf{MLE}}$.
 - При малом τ^2 : μ_N тяготеет к нулю.
- В целом:
 - Байесовская регрессия = MLE + априор -> неопределённость.

Постериор

$$P(\theta \mid D) = \mathcal{N}(\mu_N, \Sigma_N),$$

$$\Sigma_{N} = \left(\frac{1}{\sigma^{2}}X^{\top}X + \frac{1}{\tau^{2}}I\right)^{-1}, \quad \mu_{N} = \frac{1}{\sigma^{2}}\Sigma_{N}X^{\top}y.$$

- Σ_N ковариация постериора.
 - Чем больше данных n, тем больше $X^{\top}X$, тем меньше дисперсия \rightarrow растёт уверенность.
 - Малое au^2 (сильный априор) уменьшает вариацию o сжатие к нулю.
- \bullet μ_N центр постериора.
 - Баланс между MLE и априором.
 - При $au^2 o \infty$ (слабый априор): $\mu_{\mathsf{N}} o \hat{ heta}_{\mathsf{MLE}}$.
 - При малом τ^2 : μ_N тяготеет к нулю.
- В целом:
 - Байесовская регрессия = MLE + априор -> неопределённость.
 - Мы получаем распределение параметров, а не одно число.

Байесовское предсказание

Определение

Для нового объекта x^* :

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta, \sigma^2) P(\theta \mid D) d\theta.$$

- lacktriangle Внутренний интеграл усредняет предсказания по всем возможным heta.
- Благодаря сопряжённости (нормальное × нормальное) интеграл считается аналитически.

Байесовское предсказание

Определение

Для нового объекта x^* :

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta, \sigma^2) P(\theta \mid D) d\theta.$$

- lacktriangle Внутренний интеграл усредняет предсказания по всем возможным heta.
- Благодаря сопряжённости (нормальное × нормальное) интеграл считается аналитически.

Байесовское предсказание

Определение

Для нового объекта x^* :

$$P(y^* \mid x^*, D) = \int P(y^* \mid x^*, \theta, \sigma^2) P(\theta \mid D) d\theta.$$

- lacktriangle Внутренний интеграл усредняет предсказания по всем возможным heta.
- Благодаря сопряжённости (нормальное × нормальное) интеграл считается аналитически.

Результат

$$P(y^* \mid X^*, D) = \mathcal{N}(X^{*\top}\mu_N, X^{*\top}\Sigma_N X^* + \sigma^2),$$

где μ_N, Σ_N — параметры постериора для θ .

Модель и априор

Линейная регрессия: $y = X\theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ Гауссовский априор на коэффициенты: $\theta \sim \mathcal{N}(0, \tau^2 I)$

• Постериор по теореме Байеса:

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta) \propto \exp\left(-\frac{1}{2\sigma^2} \|y - X\theta\|^2 - \frac{1}{2\tau^2} \|\theta\|^2\right).$$

Модель и априор

Линейная регрессия: $y = X\theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ Гауссовский априор на коэффициенты: $\theta \sim \mathcal{N}(0, \tau^2 I)$

• Постериор по теореме Байеса:

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta) \propto \exp\left(-\frac{1}{2\sigma^2} \|y - X\theta\|^2 - \frac{1}{2\tau^2} \|\theta\|^2\right).$$

• МАР = максимум постериора = минимум отрицательного лог-постериора:

$$\hat{\theta}_{\mathsf{MAP}} = \arg\min_{\theta} \Big[\frac{1}{2\sigma^2} \| \mathbf{y} - \mathbf{X}\boldsymbol{\theta} \|^2 + \frac{1}{2\tau^2} \|\boldsymbol{\theta}\|^2 \Big].$$

Модель и априор

Линейная регрессия: $y = X\theta + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ Гауссовский априор на коэффициенты: $\theta \sim \mathcal{N}(0, \tau^2 I)$

• Постериор по теореме Байеса:

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta) \propto \exp\left(-\frac{1}{2\sigma^2} \|y - X\theta\|^2 - \frac{1}{2\tau^2} \|\theta\|^2\right).$$

• МАР = максимум постериора = минимум отрицательного лог-постериора:

$$\hat{\theta}_{\mathsf{MAP}} = \arg\min_{\theta} \Big[\frac{1}{2\sigma^2} \| \mathbf{y} - \mathbf{X}\boldsymbol{\theta} \|^2 + \frac{1}{2\tau^2} \|\boldsymbol{\theta}\|^2 \Big].$$

lacktriangle Умножим на $2\sigma^2$ (не меняет минимума) и положим $\lambda=\sigma^2/ au^2$:

$$\hat{\theta}_{\mathsf{MAP}} = \arg\min_{\theta} \ \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \lambda \|\boldsymbol{\theta}\|^2.$$

Модель и априор

Линейная регрессия: $y = X\theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ Гауссовский априор на коэффициенты: $\theta \sim \mathcal{N}(0, \tau^2 I)$

• Постериор по теореме Байеса:

$$P(\theta \mid D) \propto P(y \mid X, \theta) P(\theta) \propto \exp\left(-\frac{1}{2\sigma^2} \|y - X\theta\|^2 - \frac{1}{2\tau^2} \|\theta\|^2\right).$$

МАР = максимум постериора = минимум отрицательного лог-постериора:

$$\hat{\theta}_{\mathsf{MAP}} = \arg\min_{\theta} \Big[\frac{1}{2\sigma^2} \| \mathbf{y} - \mathbf{X}\boldsymbol{\theta} \|^2 + \frac{1}{2\tau^2} \|\boldsymbol{\theta}\|^2 \Big].$$

lacktriangle Умножим на $2\sigma^2$ (не меняет минимума) и положим $\lambda=\sigma^2/ au^2$:

$$\hat{\theta}_{\mathsf{MAP}} = \arg\min_{\theta} \ \|\mathbf{y} - \mathbf{X}\theta\|^2 + \lambda \|\theta\|^2.$$

lacktriangle Это в точности задача **Ridge regression** (Тихоновская регуляризация, L_2):

$$\min_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|^2 + \lambda \|\theta\|^2.$$

Выбор λ через evidence

Напомним:

МАР для гауссовского априора эквивалентен Ridge:

$$\hat{\theta}_{\mathsf{MAP}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}, \quad \lambda = \frac{\sigma^2}{\tau^2}.$$

ullet Вопрос: как выбрать λ ?

Выбор λ через evidence

Напомним:

МАР для гауссовского априора эквивалентен Ridge:

$$\hat{\theta}_{\mathsf{MAP}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}, \quad \lambda = \frac{\sigma^2}{\tau^2}.$$

- Вопрос: как выбрать λ?
- Частотный подход: кросс-валидация.

Выбор λ через evidence

Напомним:

МАР для гауссовского априора эквивалентен Ridge:

$$\hat{\theta}_{\mathsf{MAP}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}, \quad \lambda = \frac{\sigma^2}{\tau^2}.$$

- Вопрос: как выбрать λ?
- Частотный подход: кросс-валидация.
- Байесовский подход: максимизация evidence.

$$P(y \mid X, \lambda, \sigma^2) = \int P(y \mid X, \theta, \sigma^2) P(\theta \mid \lambda) d\theta.$$

Evidence для линейной регрессии

Сопряжённость (нормальное × нормальное)

Интеграл берётся в замкнутой форме:

$$P(y \mid X, \lambda, \sigma^2) = \mathcal{N}(y \mid 0, \ \sigma^2 I + \tau^2 X X^\top).$$

© В терминах $\lambda = \sigma^2/\tau^2$:

$$\log P(\mathbf{y} \mid \mathbf{X}, \lambda, \sigma^2) = -\frac{1}{2} \Big(n \log(2\pi) + \log \det \mathbf{C} + \mathbf{y}^{\top} \mathbf{C}^{-1} \mathbf{y} \Big),$$

где
$$\mathbf{C} = \sigma^2 \mathbf{I} + \tau^2 \mathbf{X} \mathbf{X}^{\top}$$
.

Evidence для линейной регрессии

Сопряжённость (нормальное \times нормальное)

Интеграл берётся в замкнутой форме:

$$P(y \mid X, \lambda, \sigma^2) = \mathcal{N}(y \mid 0, \ \sigma^2 I + \tau^2 X X^\top).$$

• В терминах $\lambda = \sigma^2/\tau^2$:

$$\log P(\mathbf{y} \mid \mathbf{X}, \lambda, \sigma^2) = -\frac{1}{2} \Big(\mathbf{n} \log(2\pi) + \log \det \mathbf{C} + \mathbf{y}^{\top} \mathbf{C}^{-1} \mathbf{y} \Big),$$

где
$$C = \sigma^2 I + \tau^2 X X^\top$$
.

lacktriangle Задача: выбрать $\hat{\lambda} = \arg\max_{\lambda} \log P(y \mid X, \lambda, \sigma^2).$

• Малое λ (слабый априор, au^2 большое) \Rightarrow модель гибкая, риск переобучения.

- Малое λ (слабый априор, au^2 большое) \Rightarrow модель гибкая, риск переобучения.
- Большое λ (сильный априор, au^2 маленькое) \Rightarrow коэффициенты сжаты к нулю, риск недообучения.

- Малое λ (слабый априор, au^2 большое) \Rightarrow модель гибкая, риск переобучения.
- Большое λ (сильный априор, au^2 маленькое) \Rightarrow коэффициенты сжаты к нулю, риск недообучения.
- Evidence $P(y \mid X, \lambda)$ балансирует эти два эффекта:

- Малое λ (слабый априор, au^2 большое) \Rightarrow модель гибкая, риск переобучения.
- Большое λ (сильный априор, au^2 маленькое) \Rightarrow коэффициенты сжаты к нулю, риск недообучения.
- lacktriangle Evidence $P(y \mid X, \lambda)$ балансирует эти два эффекта:
 - штрафует за избыточную сложность (бритва Оккама),

- Малое λ (слабый априор, au^2 большое) \Rightarrow модель гибкая, риск переобучения.
- Большое λ (сильный априор, au^2 маленькое) \Rightarrow коэффициенты сжаты к нулю, риск недообучения.
- **©** Evidence $P(y \mid X, \lambda)$ балансирует эти два эффекта:
 - штрафует за избыточную сложность (бритва Оккама),
 - поощряет модели, которые хорошо объясняют данные.

- Малое λ (слабый априор, au^2 большое) \Rightarrow модель гибкая, риск переобучения.
- Большое λ (сильный априор, au^2 маленькое) \Rightarrow коэффициенты сжаты к нулю, риск недообучения.
- **©** Evidence $P(y \mid X, \lambda)$ балансирует эти два эффекта:
 - штрафует за избыточную сложность (бритва Оккама),
 - поощряет модели, которые хорошо объясняют данные.
- lacktriangle В итоге получаем «оптимальное» λ без кросс-валидации.