Vehicle Financing Cross Sell Insights and Modeling

By Partha Chowdhury

Email: partha2@gmail.com

Linkedin

Table of Contents:

<u>Problem Statement and Solution Approach</u>

Executive summary: Customer Behavior, Preferences, Product Usage, Patterns and Correlations

About the Data:

EDA: Exploration

EDA: Exploration contd..

Feature importance and Model Performance

Recommend Strategies for Effective Cross-Selling

Recommend Strategies for Effective Cross-Selling contd..

Assumptions

What Could Have Been Done Better

Thank you

Problem Statement and Solution Approach

The company's current cross-sell rate is 12%, which is lower than the industry average. The company wants to increase the cross-sell rate to at least 25% to boost its revenue and improve customer loyalty.

- For the purpose of this case study, I have found a relatable dataset on vehicle loan from Kaggle.
- ❖ I have created certain features synthetically using Faker library and other methods to make it suitable for cross sell analysis

Assumptions:

• As some data are synthetically generated and rest of data source is from open platform, this may not yield in real-life insights or model. But this analysis is to highlight the approach and solutioning.

Executive summary: Customer Behavior, Preferences, Product Usage, Patterns and Correlations

- Customers aged 20-40 shows higher cross-sell rates, specially among self-employed individuals
- ❖ Customers with higher loan amounts (>50K) or insurance usage are more likely to cross-sell.
- ❖ High engagement via emails (click rates >50%) is positively correlated with cross-sell.
- Customers with 'Asset to Loan value' ration of 20-80% is showing better cross sell rate
- The most important features driving cross-sell success are
 - ✓ Age of the customer
 - √ loan to asset value ratio (ltv)
 - ✓ Interaction intensity
 - ✓ SMS count
 - ✓ Email click rate
 - ✓ Credit history length etc.

All the above features are showing in top10 important features across models

Pivot Table: Cr	ross-Sell Rate	e by Age Bracket		
Employment_Type	e Salaried	Self employed		
age_bracket				
20-30	24.686235	25.433234		
30-40	23.505966	23.340679		
40-50	10.048891	9.902628		
50-60	9.844811	9.731371		
CO 70	0 574460	10 300000		
Pivot Table: Cr	oss-Sell Rate	by Loan Bracket		
insurance_flag	0	1		
loan_bracket				
0-50K	17.151943	20.767370		
50K-100K	17.370820	21.049192		
1L-2L	20.796460	23.333333		
Pivot Table: Cros	s-Sell Rate by E	mail Engagement (%)		
	_	ell_flag		
email_click_rate_	bracket			
0-10%		8.063856		
10-20%		17.805348		
20-50% 50-70%	_	17.907100 17.676963		
>70%		3.248473		
Cross-Sell Rate	•			
		cross_sell_flag		
Asset_value_to_l	oan_bracket			
Low (<20%)		14.000000		
Moderate (20-50%)	19.242166		
High (50-80%)		18.326857		
Very High (>80%)		16.908256		

About the Data:

- ❖ Dataset has 2.3 lakhs observations with 41 features.
- Some of the important features are:
 - Customer demographic details: DOB, Employment type, PAN Flag, Adhaar Flag etc.
 - Loan details: Disbursed amount, Asset cost, Installment amount, risk level (Derived) etc.
 - ❖ Interaction data: Call Logs count, SMS count, email click rate
 - ❖ Product Usage data: personal loan flag, insurance flag, asset mgmt flag, cross sell flag

Out[16]: (233154, 41)

Out[16]:

	UniqueID	disbursed_amount	asset_cost	Itv	branch_id	supplier_id	manufacturer_id	Current_pincode_ID	Date.of.Birth	Employment.Type	
0	420825	50578	58400	89.55	67	22807	45	1441	01-01-84	Salaried	
1	537409	47145	65550	73.23	67	22807	45	1502	31-07-85	Self employed	
2	417566	53278	61360	89.63	67	22807	45	1497	24-08-85	Self employed	
3	624493	57513	66113	88.48	67	22807	45	1501	30-12-93	Self employed	
4	539055	52378	60300	88.39	67	22807	45	1495	09-12-77	Self employed	

Remarks	Sythetic data	"T
Row Labels	Count of Column	_Name
■Interaction data		3
call_logs_count		1
email_click_rate		1
sms_count		1
■ Product Usage		5
asset_mgmt_flag		1
cross_sell_flag		1
insurance_flag		1
personal_loan_flag		1
total_products		1
■ Repayment history		1
payment_consistency_score	9	1
Grand Total		9

EDA: Exploration

- Synthetic data shows around 12% of cross flag distribution in the dataset
- In the dataset, income to loan ratio is showing negative skew.
- Feature derived: Interaction intensity

 aggregate of call, SMS and email
 intensity

Cleaning, Missing value handling and transformation

- Data format of date, ageing etc. features corrected.
- A risk level has been derived from risk score ranging from 0 to 4.
 '0' indicating score not available,
 '4' highest risk
- Some feature needed log transformation before usage as they were right skewed

EDA: Exploration contd..

Before Log transform

After Log transform

Some features are found to be correlated and hence dropped

Feature importance and Model Performance

- ❖ As we have around 12% classes in the data with our target variable (cross sell flag), I have used SMOTE to balance the dataset for LR
- ❖ 3 models have been testes- Logistic Regression, Random Forests, XGBoost model
- ❖ XGBoost is showing the best performance with highest balanced accuracy score
- ❖ Random Forest with Class Weights- 'Balanced' and XGBoost with 'scale_pos_weight' has been used to take care of class imbalance
- The most important features with high mean importance across models
 - ✓ Age of the customer
 - ✓ loan to asset
 - ✓ Disbursed amount etc.

Model Performance Comparison:

	Model	Accuracy	Balanced Accuracy
0	Logistic Regression	0.522571	0.526317
1	Random Forest	0.820270	0.500067
2	XGBoost	0.566190	0.613952

Mean Feature Importances	(Top	10):
age		0.164204
asset_cost		0.053434
ltv		0.053114
disbursed_amount		0.051617
interaction_intensity	0.049940	
sms_count		0.048502
email_click_rate		0.048171
call_logs_count		0.046080
PRI_DISBURSED_AMOUNT		0.024139
CREDIT_HISTORY_LENGTH_MON	THS	0.023625

Recommend Strategies for Effective Cross-Selling

Target High Engagement Customers

Insights

Features like
interaction_intensity,
email_click_rate, and
call_logs_count are among
the top predictors of cross-sell
likelihood

----- Strategy -

Leverage interaction data to prioritize customers with higher email click rates and call engagement.

Deploy **personalized marketing campaigns** for these segments.

Focus on Young Customers (20-40)

Age has the highest importance in predicting cross-sell success. Customers aged 20-40 show higher engagement and responsiveness.

Design offerings tailored to younger demographics, such as bundled insurance or personal loan discounts.

Use digital channels (e.g., targeted social media campaigns- Instagram, FB) to connect with this segment.

Incentivize Customers with Higher

Customers
with Higher
Loan-toValue Ratios

Features like Itv, asset_cost, and disbursed_amount are strong predictors.

Customers with higher loanto-value ratios are likely to require additional products. Offer bundled packages (e.g., asset management services) for customers with high-value loans.

Provide tiered benefits based on disbursed loan amounts.

*(explained in next slide)

Recommend Strategies for Effective Cross-Selling contd...

CREDIT_HISTORY_LENGTH_MO
NTHS and
PRI_DISBURSED_AMOUNT
indicate financial reliability
and cross-sell potential.

Insights

Offer additional products (e.g., insurance or personal loans) to customers with long credit histories or higher prior disbursed amounts.

Use payment consistency metrics to identify low-risk customers for upselling.

*Explanation on #3- Provide tiered benefits based on disbursed loan amounts.

1. Low Loan Segment (₹0 - ₹50,000)

Challenge: Customers with small loans may have less disposable income.

Benefits:

- Discounts on basic insurance plans (e.g., vehicle insurance at certain discount).
- Easy access to low-interest personal loans for small amounts.
- Cashback rewards for timely repayments.

Example: "Get 5% cashback on the first 3 personal loan installments when you take a loan above ₹20,000."

2. Medium Loan Segment (₹50,000 - ₹200,000)

Challenge: Customers in this range may be exploring additional financial products but need strong incentives.

Benefits:

- Bundled products (e.g., combine a personal loan with an investment or savings plan).
- Loyalty rewards for purchasing multiple products.
- Lower processing fees or preferential rates for personal loans or asset management services.

Example: "Apply for a personal loan above ₹100,000 and get vehicle insurance at a flat 20% discount."

3. High Loan Segment (₹200,000 and Above) Challenge: High-value customers are likely to cross-sell but expect premium service and high-value benefits.

Benefits:

- Strategy --

- Priority customer service and dedicated relationship managers.
- Deeply discounted financial products like health or life insurance.
- Exclusive offers, such as investment advisory or asset management services.
- Waivers on prepayment penalties or interest rate reductions for additional products.

Example: "Customers with loans above ₹300,000 receive free life insurance coverage for the first year"

Assumptions

Key Assumptions

Synthetic Data Creation:

- •Features such as cross_sell_flag and additional behavioral metrics were synthetically generated to simulate real-world scenarios.
- Assumed the synthetic features closely represent actual customer behaviors and preferences.

Feature Independence:

•Synthetic data generation did not enforce interdependence between some features, potentially oversimplifying relationships.

Model Generalization:

Models are built assuming the training data distribution matches unseen real-world data.

What Could Have Been Done Better

1.Access to Real Data:

- 1. Using real customer behavioral and transactional data could reveal authentic patterns and improve model robustness.
- 2. Real data would enable accurate dependency modeling between features like loan tenure, income, and engagement.

2.Advanced Feature Engineering:

- 1. Derive features from available data (e.g., ratios, trends, and lags in customer interactions).
- 2. Incorporate domain-specific metrics like financial risk scores or customer loyalty indices.

3.Enrich Data Sources:

1. Use external data such as credit bureau reports, demographic databases, or customer surveys for additional insights.

4.Modeling Enhancements:

- 1. Experiment with advanced techniques like:
 - 1. Gradient boosting algorithms (e.g., LightGBM, CatBoost).
 - 2. Ensemble methods combining predictions from multiple models.
- 2. An alternative approach to SMOTE could have been under-sampling the majority class to create a balanced dataset. While under-sampling avoids synthetic data, it may lead to information loss, making it suitable for large datasets with highly imbalanced classes.

5.Customer Segmentation:

1. Perform clustering or segmentation analysis to group customers into actionable cohorts before cross-sell targeting.

6.Long-Term Tracking:

1. Develop a framework for monitoring model predictions and validating outcomes over time.

Thank you

- Partha Chowdhury
- Email: partha2v@gmail.com
- Linkedin: <u>www.linkedin.com/in/parthach</u>