Github fork link if needed:

https://github.com/ygao2002/openEBL-2025-02/tree/main/submissions the file named

EBeam ELEC413 GAOYANG

Design and Evaluation of Mach-Zehnder Interferometer Devices for High-Performance Photonic Circuits

Department of Electrical and Computer Engineering

University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract

Introduction

The objective of this project is to design, simulate, and test a photonic integrated circuit (PIC) that connects a commercial swept tunable laser to a Mach-Zehnder Interferometer (MZI). The design aims to achieve a 25 GHz Free Spectral Range (FSR) operating around the 1310 nm wavelength, with minimal waveguide losses. This report outlines the design intentions, calculations, simulations, and expected outcomes.

Theoretical Calculations

Effective Index (n eff)

Group Index (n g)

Free Spectral Range (FSR)

Simulation Approach

Simulations were conducted using Lumerical INTERCONNECT to validate theoretical predictions and refine the design.

- Lumerical MODE

Mesh structure

Model fields

mode #	effective index	wavelength (µm)	loss (dB/cm)	group index		^
	2.713801+1.526226e-09i	1.31	0.00063583	4.174585+3.454967e-09i	99	
	2.168615+1.474021e-09i	1.31	0.00061408	4.681086+5.003704e-09i	4	
	1.823615+1.506743e-09i	1.31	0.00062771	4.713374+7.837469e-09i	86	~
					>	>

Calculation result at 1310nm

sweep from 1310 to 1400nm

result:

2.9448

-8.46418

-346.151

- Lumerical INTERCONNECT

Results and Discussion

Conclusion

References

Appendix