CS143 Notes: E/R model

Book Chapters

- (4th) Chapters 2.1-2.9
- (5th) Chapters 6.1-6.10

E/R model

Why E/R model?

- We need to figure out how to represent the data for a given application
 - Tables are not given
 - "Good" tables are not easy to come up with
- E/R model: graphical, intuitive and informal representation of data
 - Not directly implemented by DBMS
- Start with E/R model, convert it into table
 - Many E/R tools do this automatically

Entity-Relationship (E/R) Model

- Entity: "thing" or "object" in real world
 - eg) I, this book, UCLA,
- Entity set: a set of entities (object). Like a class is OOPL.
 - Rectangle in ER
 - eg) Students, Schools, Classes
 - (ex: Students, Classes, Faculty)

• Attribute: Property of entities, "field"
– Ellipsis in E/R \langle add attributes to example \rangle
– Can informally think of entities as records (tuples) $\langle {\rm show\ records\ for\ example} \rangle$
• Key: a set of attributes that uniquely identifies an entity in an entity set, underline in E/R
– Important: all entity sets need a key $\langle add keys to example \rangle$
 No good way to notate multiple keys
• Relationship: connection between entities.
• Relationship set: a set of relations of the same kind
Diamond in ER⟨ex: add Take, Teach⟩
– Think of relationships as connections between entities (or as records) $\langle {\rm examples~of~each} \rangle$
 Not all entities need to participate in relationships. Relationships can also have ATTRIBUTES

(add	grade	to	Take,	quarter	to	Teach'	>
---	-----	-------	----	-------	---------	----	--------	---

\mathbf{C}^{A}

ΑI	RDINALITY of relationships
1.	ONE-TO-ONE: Each entity in E1 is related to at most one entity in E2 and vice-versa
	$\langle abstract\ dot\ diagram\ for\ entity\ sets\ E1\ and\ E2\rangle$
	• Notation: arrow at the "one" end
	• Q: Meaning of one-to-one in Teach?
2	MANY-TO-ONE: Each entity in E1 is related to at most one entity in E2 (converse is ONE-TO-MANY) $\langle abstract\ picture \rangle$
	• Notation: arrow at the "one" end

• **Q:** Meaning of many-to-one in Teach?

3.	MANY-TO-MANY: Each entity in E1 may be related to 0 or more entities in E2 and vice-versa $$
	$\langle abstract\ picture \rangle$
	• Notation: no arrow.
	• Q: Meaning in Teach? Take?
•	TOTAL PARTICIPATION: an entity participates in the relationship AT LEAST ONCE. $-$ double lines in ${\rm E/R}$
	$\langle \text{eg: double line between Class and Teach. meaning?} \rangle$
	$\langle \text{eg: double line between Teach and Faculty. meaning?} \rangle$
	$\langle \text{eg: double line and arrow between Teach and Faculty. meaning?} \rangle$
	$\langle \text{eg: double lines at both sides of Teach vs one-to-one of Teach. The same?} \rangle$

- GENERAL CARDINALITY NOTATION: l..h on an edge.
 - The object participate in a relationship l to h times
 - "*" means unlimited (abstract diagram)

⟨eg: 1..1 on Class and Teach. 1..1 on Teach and Faculty. meaning?⟩

* **Q:** For this example, is it one-to-one, many-to-many? What is the equivalent notation using arrows?

 $\langle \text{eg: } 0..^* \text{ on Class} \text{ and Teach. } 0..1 \text{ on Teach and Faculty. } \text{meaning?} \rangle$

- * again, "*" means unlimited
- * **Q:** For this example, equivalent notation?
- \ast Comments: don't get confused. It is one-to-many. "0..*" corresponds to one, and "0..1" to many

N-ARY RELATIONSHIPS

• Sometimes we need more than binary relationship

(ex: Students, TA, Class)

- ⟨All TAs for all students⟩

- ⟨Each student assigned to a particular TA⟩ * Arrow in a N-ary relationship: pick one entity from every other set without arrow. Together, these entities must be related to at most one entity with arrow \cdot (eg: Arrow to TA. Meaning?) · Do not put multiple arrows for non-binary relationships. Very confusing. No standard interpretation. (Case tools do not allow anyway) ROLES • useful if an entity set participates more than once in a relationship - labels on the edge in E/R (eg: Partner relation between students. Coder and Tester) **SUBCLASSES** (eg: Student, ForeignStudent, DomesticStudent)
- - Similar to class inheritance in OOPL. ISA relationship in E/R

- Generalization: Subclass \rightarrow Superclass
- Specialization: Superclass \rightarrow Subclass
- Subclass inherits all attributes of its superclass

 Subclass participates in the relationships of its superclass Subclass may participate in its own relationship (eg: Student, HonorStudent, HonorClass)
OTAL SPECIALIZATION: Double lines in E/R. Entity is always one of subclasses eg: A student is either a foreign student or a domestic student.)
K ENTITY SET Cantity sets without unique keys — Notation: Double rectangle and double diamond in E/R
⟨eg: ProjectReport⟩

- A part of its key comes from one or more entity set it is linked to.
- Discriminator: a set of attributes in W.E.S. that are part of the key.
 - Dashed underline in E/R
- OWNER ENTITY SET: entity set providing a part of the key
- IDENTIFYING RELATIONSHIP: relationship between a weak entity set and owner entity set
- Q: Can a weak entity not participate in the identifying relationship?
 - Always double edge between a weak entity and identifying relationship

Design Principles

- Often it is not clear what choices to make.
- A general rule of thumb for good design: avoid redundancy
 - Saying the same thing more than once
 - Space waste and potential inconsistency

```
(eg: Faculty (id, name, address), and class (dept, cnum, title)
```

 $-\langle eg1: All as attributes of class ES \rangle$

- 1. repeats the faculty name and address for every class. potential inconsistency
- 2. What if a faculty does not teach any class?
- $-\langle eg2: Faculty ES, Class ES, Teach RS \rangle$
- Things to consider for Entity set vs. Attribute
 - Do we need more attributes than keys? eg, Faculty name, address
 - Is it "one-to-one" relationship?
 Separate entities for many-to-one or many-to-many relationship

Drawing ER Example

(eg. Draw ER diagram for the following example)

- Inventory management for chain stores (like Costco, Target, Wallmart, etc.)
- Products are either
 - a "store-brand product" (like Kirkland shoes at Costco) or
 - a "manufacturer-brand product" (like Kleenex Tissue, etc)
- Each product is manufactured by exactly one manufacturer
 - like Sprite by Coke company, etc.
- Each store-brand product is carried by exactly one chain store
 - eg, Kirkland shoes by Costco
- Some manufacturer-brand product product may not be carried by any store

E/R to Relation

•	translation from ER diagram to tables is mostly straightforward
•	Database design tools do this automatically from ER diagram
	$\langle \mathrm{ER} \ \mathrm{example} \ \mathrm{slide} \rangle$
•	(STRONG) ENTITY SET: one table with all attributes
	⟨eg: Faculty, Class, Student⟩
_	RELATIONSHIP SET: one table with keys from the linked ES and its own attributes
•	
	(eg: Teach)
	- Q: What is the key for the relations?
	$\langle eg: Take \rangle$
	- Rename attributes when names conflict, like TA.name and Student.name
	(eg: Partner)
	- Use role label as attribute names
•	WEAK ENTITY SET: one table with its own attributes and keys from owner ES
	(eg. ProjectReport)

- Q: What is the key?
- Q: Need to convert Submit to a relation?
* Separate submit is redundant (already captured by ProjectReport) * No need to translate identifying relationship set
• SUBCLASS: three approaches
1. one table for each subclass with all its attributes plus key from its superclass
2. one big relation with all attributes with null values for missing attributes
3. one table for every subtree (including the root) with all its attributes plus all "inherited" attributes
$\langle \mathrm{eg}, \mathrm{Student}, \mathrm{ForeignStudent}, \mathrm{HonorStudent} \rangle$
1. Student, ForeignStudent, HonorStudent
2. Student
3. Student, FStudent, HStudent, FHStudent
 Q: For the third approach, where should a "foreign and non-honor" student tuple belong? (a) Insert to both Student and FStudent: redundancy (b) Insert only to FSudent, not to Student: no redundancy * Q: How to express foreign-key constraint for Partner?

— Q: What if disjoint and total specialization? eg, Student, ForeighStudent, DomesticStudent? any need for Student or FDStudent?

Most case tools use the first approach