代数结构第五周作业参考答案

- 3.17(2) 证明: 法一: 使用真值表可证.
 - 法二: 两边分别转化为小项表达式可证.
- 3.18(1) 证明: $f \cdot g + \overline{f} = f \cdot (f+g) + \overline{f} = f + f \cdot g + \overline{f} = 1 + f \cdot g = 1$.
- 3.18(3) 证明: $f \cdot \overline{g} = f \cdot \overline{f + g} = f \cdot \overline{f} \cdot \overline{g} = 0 \cdot \overline{g} = 0$.
- 3.19(2) $\Re: f(x_1, x_2) = x_1 x_2 + \overline{x_1 x_2}$
- 4.3 $\mathbb{R}: R_1 \circ R_2 = \{(c,d)\}, R_2 \circ R_1 = \{(a,d),(a,c)\}, R_1^2 = \{(a,a),(a,b),(a,d)\}, R_2^3 = \{(b,c),(b,d),(c,b)\}.$
- 4.4 证明: 考虑 $xR_1 \circ (R_2 \cap R_3)y$, 则 $\exists z \text{ s.t. } xR_1z, z(R_2 \cap R_3)y$. 由 $z(R_2 \cap R_3)y$ 得 zR_2y 且 zR_3y , 进而 $x(R_1 \circ R_2)y$ 且 $x(R_1 \circ R_3)y$, 得 $x(R_1 \circ R_2) \cap (R_1 \circ R_3)y$, 故 $R_1 \circ (R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3)$.
- 4.5 证明: R' 自反和 $R\subseteq R'$ 由 R' 定义易得. 考虑 R_2 , 其自反, 且有 $R\subseteq R_2$, 则 $\forall xR'y$, 有 xRy 或 xI_Ay , 则
 - 1° 若 xRy, 则由 $R \subseteq R_2$, 得 xR_2y ;
 - 2° 若 xI_Ay , 则 x=y, 由 R_2 自反, 得 xR_2y .

故 $R' \subseteq R_2$, 得证.