Le permutoèdre Colloque ISM - Université Laval

Jean-Philippe Labbé

UQAM LaCIM

30 mai 2010

Considérons un groupe W engendré par un certain ensemble fini d'éléments S suivant les relations :

Cours Intensif - Groupe de Coxeter 1

Considérons un groupe W engendré par un certain ensemble fini d'éléments S suivant les relations :

$$s^2=e \quad \forall s \in S;$$
 $(st)^{m(s,t)}=e, \text{ avec } m(s,t) \in \{2,3,4,\cdots,\infty\} \quad \forall s \neq t \in S.$

Considérons un groupe W engendré par un certain ensemble fini d'éléments S suivant les relations :

Groupes de réflexions

$$s^2=e \quad \forall s \in S;$$
 $(st)^{m(s,t)}=e, \text{ avec } m(s,t) \in \{2,3,4,\cdots,\infty\} \quad \forall s \neq t \in S.$

Nous lui donnons souvent la présentation suivante :

$$\langle S: (st)^{m(s,t)} = e \quad \forall s, t \in S \rangle.$$

Ayant
$$W = \langle S : (st)^{m(s,t)} = e \quad \forall s, t \in S \rangle$$
, alors

Cours Intensif - Groupe de Coxeter 2

Ayant
$$W = \langle S : (st)^{m(s,t)} = e \quad \forall s, t \in S \rangle$$
, alors

■ Le groupe W est appelé un groupe de Coxeter;

Cours Intensif - Groupe de Coxeter 2

Ayant
$$W = \langle S : (st)^{m(s,t)} = e \quad \forall s, t \in S \rangle$$
, alors

- Le groupe W est appelé un groupe de Coxeter;
- **2** La matrice symétrique $m: S \times S \rightarrow \{1, 2, 3, ..., \infty\}$ est appelée matrice de Coxeter;

Ayant
$$W = \langle S : (st)^{m(s,t)} = e \quad \forall s, t \in S \rangle$$
, alors

- Le groupe W est appelé un groupe de Coxeter;
- 2 La matrice symétrique $m: S \times S \rightarrow \{1, 2, 3, \dots, \infty\}$ est appelée matrice de Coxeter:
- Le rang d'un groupe de Coxeter est le nombre d'éléments de S.

Groupes de réflexions

Cours Intensif - Groupe de Coxeter 3

Les sous-groupes paraboliques de W sont définis comme suit.

Les sous-groupes paraboliques de W sont définis comme suit.

Définition

Étant donné un sous-ensemble $I \subseteq S$, le sous-groupe parabolique standard $W_I \le W$ est engendré par les $s \in I$.

Cours Intensif - Groupe de Coxeter 3

Les sous-groupes paraboliques de W sont définis comme suit.

Définition

Étant donné un sous-ensemble $I \subseteq S$, le sous-groupe parabolique standard $W_I \le W$ est engendré par les $s \in I$.

Définition

Étant donné un sous-ensemble $I \subseteq S$ et $w \in W$, le sous-groupe parabolique $wW_Iw^{-1} \leq W$ est le conjugué d'un sous-groupe parabolique standard.

Exemple (Type $I_2(m)$, $(m \ge 3)$)

Le groupe diédral est un groupe de Coxeter. Il se réalise de la façon suivante :

$$\langle s, t : s^2 = t^2 = (st)^m = e \rangle.$$

La matrice de Coxeter de $I_2(m)$ est

$$\left(\begin{array}{cc} 1 & m \\ m & 1 \end{array}\right).$$

Exemple (Type A_{n-1} , (n > 2))

Le groupe symétrique S_n est un groupe de Coxeter. Les transpositions composent son ensemble de générateurs. On note $s_i = (i, i + 1)$ pour $i \in \{1, n - 1\}$, et Sdevient $S = \{s_1, s_2, \dots, s_{n-1}\}$ et obéissant aux relations :

$$s_i^2 = e \qquad \forall i \in \{1, ..., n-1\}$$

 $(s_i s_{i+1})^3 = e \quad \forall i \in \{1, 2, ..., n-2\}$
 $(s_i s_j)^2 = e \quad si |i-j| \ge 2.$

Groupes de réflexions

Les éléments d'un groupe de Coxeter peuvent se voir comme des mots.

Cours Intensif - Groupe de Coxeter 5

Les éléments d'un groupe de Coxeter peuvent se voir comme des mots.

Fig. : Les diagrammes de Hasse de A_2 et $I_2(4)$.

Les éléments d'un groupe de Coxeter peuvent former un treillis à l'aide de l'ordre faible.

Cours Intensif - Groupe de Coxeter 6 Examen final

Les éléments d'un groupe de Coxeter peuvent former un treillis à l'aide de l'ordre faible.

Définition

Étant donné un système de Coxeter (W,S) et deux éléments $u,v\in W$, alors $u\leq v$ lorsque $v=us_1s_2\cdots s_k$ avec $s_i\in S$, et $\ell(us_1s_2\cdots s_i)=\ell(u)+i,\ 0\leq i\leq k$.

Treillis de l'ordre faible du groupe symétrique

Fig. : Treillis de l'ordre faible de A_3

Représentation géométrique

Nous ne voulons pas entrer dans les détails...

Représentation géométrique

Nous ne voulons pas entrer dans les détails...

Mais les groupes de Coxeter peuvent être vu comme des groupes de réflexions (et vice-versa).

Représentation géométrique

Nous ne voulons pas entrer dans les détails...

Mais les groupes de Coxeter peuvent être vu comme des groupes de réflexions (et vice-versa).

Exemple

FIG. : Le groupe diédral D(4) engendré par deux réflexions d'hyperplan \mathcal{H}_{α} et \mathcal{H}_{β} .

Représentation géométrique

Exemple

FIG. : Le groupe symétrique S_2 engendré par la réflexion selon l'hyperplan $\mathcal{H}_{\varepsilon_2-\varepsilon_1}$.

Représentation géométrique

Nous commençons par une définition essentielle.

Définition

Nous commençons par une définition essentielle.

Définition

Un complexe Σ sur un ensemble de points P est une famille non vide d'ensembles finis - appelés faces - qui est close sous l'opération d'inclusion ; si $F \subseteq F' \in \Sigma$, alors $F \in \Sigma$.

Définition

Nous commençons par une définition essentielle.

Définition

Un complexe Σ sur un ensemble de points P est une famille non vide d'ensembles finis - appelés faces - qui est close sous l'opération d'inclusion ; si $F \subseteq F' \in \Sigma$, alors $F \in \Sigma$.

En anglais, on dit abstract simplicial complex. À la différence de simplicial complex.

Voici quelques exemples.

Exemples de complexes

Voici quelques exemples.

Exemple

Soit l'ensemble $P_1 = \{x_1, x_2, x_3\}$. Alors

$$\Sigma_1 = \{\emptyset, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_2, x_3\}\}\$$

forme un complexe pur de dimension 1, puisque chaque face est incluse dans une face de dimension 1. L'ensemble des facettes est $\mathcal{F}(\Sigma_1) = \{\{x_1, x_2\}, \{x_2, x_3\}\}.$

Exemples de complexes

Voici quelques exemples.

Exemple

Soit l'ensemble $P_2 = \{x_1, x_2, x_3, x_4\}$. Alors

$$\Sigma_2 = \{\emptyset, \{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_1, x_2\}, \{x_2, x_3\}, \{x_1, x_3\}, \{x_2, x_4\}, \{x_1, x_2, x_3\}\}$$

Groupes de réflexions

forme un complexe. Il ne peut être pur, car la face $\{x_1, x_2, x_3\}$ est de dimension 2 et la face $\{x_2, x_4\}$ n'est pas incluse dans une face de dimension 2, par exemple.

Exemples de complexes

Voici quelques exemples.

Exemple

Soit I'ensemble $P_3 = \{x_1, x_2, x_3, x_4, x_5, x_6\}$. Alors

$$\Sigma_{3} = \{\emptyset, \{x_{1}\}, \{x_{2}\}, \{x_{3}\}, \{x_{4}\}, \{x_{5}\}, \{x_{6}\}, \\ \{x_{1}, x_{2}\}, \{x_{1}, x_{3}\}, \{x_{1}, x_{4}\}, \{x_{2}, x_{3}\}, \{x_{2}, x_{4}\}, \{x_{3}, x_{4}\}, \\ \{x_{4}, x_{5}\}, \{x_{4}, x_{6}\}, \{x_{5}, x_{6}\}, \{x_{1}, x_{2}, x_{3}\}, \{x_{1}, x_{2}, x_{4}\}, \\ \{x_{1}, x_{3}, x_{4}\}, \{x_{2}, x_{3}, x_{4}\}, \{x_{4}, x_{5}, x_{6}\}\}$$

forme un complexe pur de dimension 2, puisque chaque face est incluse dans une face de dimension 2.

Nous pouvons obtenir un treillis à partir d'un complexe.

Treillis facial

Nous pouvons obtenir un treillis à partir d'un complexe.

Définition

Le treillis facial $L(\Sigma)$ d'un complexe Σ est formé de l'ensemble des faces de Σ ordonnées par l'inclusion.

Treillis facial

Nous pouvons obtenir un treillis à partir d'un complexe.

Le permutoèdre abstrait

Définition

Le permutoèdre $\Sigma^*(W)$ d'un groupe de Coxeter W est un complexe dont les points sont les éléments de W et ces faces sont les classes à gauche wW_I ($w \in W$ et $I \subseteq S$). Pour être bien défini, on ajoute aussi la face vide \varnothing .

Le permutoèdre abstrait

Définition

Le permutoèdre $\Sigma^*(W)$ d'un groupe de Coxeter W est un complexe dont les points sont les éléments de W et ces faces sont les classes à gauche wW_I ($w \in W$ et $I \subseteq S$). Pour être bien défini, on ajoute aussi la face vide Ø.

Exemple

Soit le groupe symétrique A_2 . Son permutoèdre est

$$\begin{split} \Sigma^*(A_2) &= \{\varnothing, \{e\}, \{s_1\}, \{s_2\}, \{s_1s_2\}, \{s_2s_1\}, \{s_1s_2s_1\}, \{e, s_1\}, \\ &\{s_2, s_2s_1\}, \{s_1s_2, s_1s_2s_1\}, \{e, s_2\}, \{s_1, s_1s_2\}, \\ &\{s_2s_1, s_2s_1s_2\}, \{s_2s_1, s_1s_2s_1\}, W\}. \end{split}$$

Étant donné un groupe de réflexion W et un point x de l'espace (bien choisi). Nous formons l'ensemble $P^x := \{w(x)|w \in W\}$ formé de l'orbite du point x par l'action de W sur l'espace V.

Étant donné un groupe de réflexion W et un point x de l'espace (bien choisi). Nous formons l'ensemble $P^x := \{w(x)|w \in W\}$ formé de l'orbite du point x par l'action de W sur l'espace V. Le permutoèdre de W est l'enveloppe convexe de P^x .

Étant donné un groupe de réflexion W et un point x de l'espace (bien choisi). Nous formons l'ensemble $P^x := \{w(x)|w \in W\}$ formé de l'orbite du point x par l'action de W sur l'espace V. Le permutoèdre de W est l'enveloppe convexe de P^x . On fait un dessin ensemble!

Mais, ça ressemble au treillis de l'ordre faible!

FIG. : Treillis de l'ordre faible et charpente de dimension 1 du permutoèdre de A_2 .

Le permutoèdre et le treillis de l'ordre faible

(a) Treillis de A_3

(b) Charpente de dimension 1 de $\Sigma^*(A_3)$

FIG. : Treillis de l'ordre faible et charpente de dimension 1 du permutoè dre de A_3 .

On se sert du permutoèdre :

On se sert du permutoèdre :

- O'est le dual du complexe de Coxeter;
- C'est un outil de visualisation;
- L'associaèdre peut être construit à l'aide du permutoèdre;
- Il renferme plusieurs notions : classes à gauche, sous-groupes, graphe de Cayley, etc.

On se sert du permutoèdre :

- O'est le dual du complexe de Coxeter;
- C'est un outil de visualisation;
- L'associaèdre peut être construit à l'aide du permutoèdre;
- Il renferme plusieurs notions : classes à gauche, sous-groupes, graphe de Cayley, etc.

L'associaèdre renferme la structure des générateurs des algèbres amassées.

On se sert du permutoèdre :

- O'est le dual du complexe de Coxeter:
- C'est un outil de visualisation :
- 3 L'associaèdre peut être construit à l'aide du permutoèdre;
- Il renferme plusieurs notions : classes à gauche, sous-groupes, graphe de Cayley, etc.

L'associaèdre renferme la structure des générateurs des algèbres amassées

Mais c'est une autre histoire!

Bibliographie

Mirrors and Reflections: The Geometry of Finite Reflection Groups. Springer, 1 édition.

Groupes de réflexions

Humphreys, J. E. 1992.

Reflection groups and Coxeter groups. Cambridge University Press.

Bibliographie

Mirrors and Reflections: The Geometry of Finite Reflection Groups. Springer, 1 édition.

Humphreys, J. E. 1992.

Reflection groups and Coxeter groups. Cambridge University Press.

Merci beaucoup! Bonne fin de colloque!