- Module 9 - k-Nearest Neighbors

Outline

- k-Nearest Neighbors
 - Distance Metrics
 - \triangleright Effects of k
- Classifier Performance Metrics

k-Nearest Neighbors (1)

- k-Nearest Neighbors (k-NN) is a non-parametric, instance-based learning algorithm
 - non-parametric: it does not make explicit assumptions about the form of the mapping function, $h(X): X \to Y$ (as opposed to parametric techniques, e.g., linear regression, $h(X): Y = X\beta$)
- $k-{
 m NN}$ can be used for <u>classification</u> and <u>regression</u>
 - → for this course, focus on <u>multiclass</u> <u>classification</u> where the input <u>features</u> can have <u>continuous</u> or discrete values

k-Nearest Neighbors (2)

- Steps to use k-NN for <u>classification</u>, kNN(x,T,k), given
 - a test sample, x
 - a <u>training set</u>, \mathcal{T} consists of the <u>training</u> samples, (x_i, y_i) for i = 1, ..., N
 - a positive integer, k
 - a **distance metric**, $d(x,x_i)$ <u>measures</u> the <u>distance</u> between x and $x_i \ \forall \ i=1,...,N$
 - **Step 1:** For each training sample $x_i \forall i = 1,...,N$, compute the distance, $d(x,x_i)$, between x and x_i
 - Step 2: Order the training samples by increasing distance
 - Step 3: Select the first k training samples that have the smallest $d(x,x_i)$, i.e., k nearest neighbors of x
 - Step 4: Determine the predicted value \hat{y} of x by majority vote, i.e., most commonly occurring class of the k nearest neighbors
 - (Note: k is usually an odd number to avoid ties)

k-Nearest Neighbors: Example (3)

Example:

Consider the following training samples.

Classify test sample x using 5-NN.

5 nearest
neighbors

k-Nearest Neighbors: Distance Metrics (4)

- The <u>distance metrics</u>, d(x,x'), where x and x' are <u>vectors</u> of p <u>features</u> indexed by j, for j=1,...,p, are computed as follows:
 - for continuous features
 - L^2 norm (Euclidean distance):

$$d(x, x') = \sqrt{\sum_{j=1}^{p} (x_j - x'_j)^2}$$

• L^1 norm (Manhattan distance):

$$d(x,x') = \sum_{j=1}^{p} |x_j - x_j'|$$

- for categorical features
 - Hamming distance:

Indicator function:
$$I(condition)$$

$$= \begin{cases} 1, & \text{if } condition = true \\ 0, & \text{otherwise} \end{cases}$$

$$d(x,x') = \sum_{j=1}^{p} I(x_j \neq x_j')$$

k-Nearest Neighbors: Distance Metrics (5)

- Note that the <u>distance metric</u> is <u>dependent</u> on the <u>scales</u> of the <u>features</u>
 - (e.g., if <u>a feature changes measurements</u> from <u>centimeters</u> to <u>miles</u> while <u>keeping other features</u> the <u>same</u>, a <u>different set</u> of <u>nearest neighbors</u> will be <u>selected</u>)
- \rightarrow to <u>avoid</u> this, it is common to <u>standardize</u> each <u>feature</u> j, i.e., $x_{i,j}$ is replaced with $(x_{i,j}-\mu_j)/\sigma_j$, before performing k-NN

k-Nearest Neighbors: Effects of k (6)

• In k-NN, the <u>parameter</u>, k, is a <u>tuning parameter</u> that controls the <u>smoothness</u> of the **decision boundary** of a k-NN <u>classifier</u> and its <u>fit</u> for the given <u>dataset</u>

{decision boundary:

partition the **feature space** (space spanned by possible values of $X_1, X_2, ..., X_p$) into \mathcal{C} non-overlapping regions, one for each class (e.g., lines for two-dimensional (p=2) input vectors or hyper-surfaces for higher-dimensional (p>2) input vectors)}

Boundary

k-Nearest Neighbors: Effects of k (7)

- When k is small, k-NN has high flexibility but highly sensitive to outliers
 - exhibit overfitting (i.e., low bias and high variance) and the decision boundary is more jagged
- When k is large, k-NN is more resilient to outliers but has lower flexibility
 - exhibit underfitting (i.e., high bias and low variance) and the decision boundary is more smooth

 \rightarrow the best value of k is chosen using cross-validation, i.e., select k that gives the lowest average cross-validation estimate of prediction error

k-Nearest Neighbors: Cross-Validation (8)

- K-fold cross-validation for k-NN:
 - Step 1: Sub-divide the training set into K non-overlapping subsets of equal size
 - **Step 2:** For each trial q = 1, ..., K
 - all subsets except the q-th subset is <u>used</u> as the <u>training set</u>, \mathcal{T}_q , and the q-th subset is <u>used</u> as the <u>validation set</u>, \mathcal{V}_q
 - for <u>each sample</u> x_i in \mathcal{V}_q
 - perform $kNN(x_i,\mathcal{T}_q,k)$ to obtain the predicted value, \hat{y}_i
 - $\underline{\text{compute}}$ the $\underline{\text{cross-validation estimate}}$ of $\underline{\text{prediction}}$ error (or $\underline{\text{misclassification rate}}$) for trial q:

$$Err_{CV}^{q} = \frac{\sum_{i=1}^{|\mathcal{V}_q|} I(y_i \neq \hat{y}_i)}{|\mathcal{V}_q|},$$

where $|\mathcal{V}_q|$ <u>denotes</u> the <u>number of samples</u> in \mathcal{V}_q

k-Nearest Neighbors: Cross-Validation (9)

Step 3: Compute the <u>average cross-validation estimate</u> of <u>prediction error</u>, Err_{CV} , <u>across</u> K <u>trials</u>

$$Err_{CV} = \frac{1}{K} \sum_{q=1}^{K} Err_{CV}^{q}$$

• To determine the <u>best value</u> of k (in k-NN), <u>repeat</u> steps 1 to 3 for <u>all considered</u> k values and <u>select</u> k that gives the <u>lowest average cross-validation estimate</u> of prediction error, Err_{CV}

k-Nearest Neighbors: Advantages and Limitations (10)

• Advantages of k-NN:

- easy to implement
- ability to achieve good classification performance when the training set is large
- works with multiclass datasets

• Limitations of k-NN:

- prediction stage is computationally intensive as the algorithm has to <u>iterate</u> through <u>all samples</u> in the <u>training set</u>
 - → often an <u>issue</u> where the <u>training set</u> is very <u>large</u>
- $\underline{\text{high memory requirement}}$ as it has to $\underline{\text{store}}$ all of the training samples all the time
- $\underline{\text{unable}}$ to provide $\underline{\text{information}}$ as to whether $\underline{\text{a feature}}$ is more informative than another

Classifier Performance Metrics (1)

- How to assess the performance of a classifier?
 - Accuracy: percentage of correct classifications
 - Error Rate: percentage of misclassifications (1 Accuracy)
- However, <u>accuracy</u> or <u>error rate</u> assume <u>equal costs</u> for <u>misclassification</u>, but this <u>assumption</u> is often <u>not</u> valid for real applications
 - Example: Spam filter
 - cost of misclassifying a spam e-mail as a legitimate e-mail
 → LOW
 - cost of misclassifying a legitimate e-mail as a span e-mail → HIGH
 - Example: Medical screening
 - cost of misclassifying a $\frac{\text{healthy person}}{\text{patient}}$ as a $\frac{\text{potential cancer}}{\text{patient}}$
 - cost of misclassifying a potential cancer patient as a healthy
 person → HIGH
- Need to <u>differentiate</u> <u>different kinds</u> of misclassifications → Confusion Matrix

Classifier Performance Metrics (2)

Confusion matrix

- True Positives (TP): actual class of a sample is positive and the predicted class is also positive
 - (e.g., the person has cancer and the classifier also indicates that the person has cancer)
- True Negatives (TN): actual class of a sample is negative and the predicted class is also negative
 - (e.g., the person does not have cancer and the classifier also indicates that the person does not have cancer)
- False Positives (FP): actual class of a sample is negative but the predicted class is positive
 - (e.g., the person does not have cancer but the classifier indicates that the person has cancer)
- False Negatives (FN): actual class of a sample is positive but the predicted class is negative
 - (e.g., the person has cancer but the classifier indicates that the person does not have cancer)

		Predicted	
		Positive	Negative
Actual	Positive	# of True Positives (TP)	# of False Negatives (FN)
	Negative	# of False Positives (FP)	# of True Negatives (TN)

(false positive)

(false negative)

Classifier Performance Metrics (3)

• Different <u>performance metrics</u> can be calculated from the confusion matrix:

$$- Accuracy = \frac{TP+TN}{TP+TN+FP+FN} = \frac{TP+TN}{total}$$

-
$$Precision = \frac{TP}{TP+FP} = \frac{TP}{predicted\ positive}$$

-
$$Sensitivity/Recall = \frac{TP}{TP+FN} = \frac{TP}{actual\ positive}$$

-
$$Specificity = \frac{TN}{TN+FP} = \frac{TN}{actual\ negative}$$

- False Positive Rate =
$$\frac{FP}{TN+FP} = \frac{FP}{actual\ negative}$$

= 1 - specificity

- False Negative Rate/MissRate =
$$\frac{FN}{FN+TP}$$
= $\frac{FN}{actual\ positive}$