Décomposition de Dunford

On démontre l'existence et l'unicité de la décomposition de Dunford pour tout endomorphisme d'un espace vectoriel de dimension finie.

Soit *E* un espace vectoriel de dimension finie sur un corps commutatif \mathbb{K} .

[GOU21] p. 203

Théorème 1 (Décomposition de Dunford). Soit $f \in E$ un endomorphisme tel que son polynôme minimal π_f soit scindé sur \mathbb{K} . Alors il existe un unique couple d'endomorphismes (d, n) tel que :

- f = d + n.
 d est diagonalisable et n est nilpotent.

 $D\acute{e}monstration. \ \ \text{On \'ecrit}\ \pi_f = (-1)^n \prod_{i=1}^s (X-\lambda_i)^{\alpha_i} \ \text{et pour tout } i, \text{ on note } N_i = \mathrm{Ker}((f-\lambda_i \operatorname{id}_E)^{\alpha_i})$ le i-ième sous-espace caractéristique de f.

Construction : Comme $E = N_1 \oplus \cdots \oplus N_s$, il suffit de définir d et n sur chaque N_i . On les définit pour tout i et pour tout $x \in N_i$ comme tels :

$$-d(x) = \lambda_i x \implies d_{|N_i} = \lambda_i \operatorname{id}_{N_i}$$

$$-n(x) = f(x) - \lambda_i x = f(x) - d(x) \implies n = f - d.$$

Vérification:

- Les restrictions de d et n à N_i sont bien des endomorphismes car les espaces N_i sont stables par f et par d (cf. définition de d), donc aussi par n = f - d.
- d est diagonalisable et pour tout i, $n_{|N_i|}^{\alpha_i} = 0$ (car $\forall x \in N_i$, $(f \lambda_i)^{\alpha_i}(x) = 0$ par définition de N_i). On pose donc $\alpha = \max_i \{\alpha_i\}$ et on a $n_{|N_i|}^{\alpha} = 0$ pour tout i, donc $n^{\alpha} = 0$ par somme directe. Ainsi, *n* est nilpotent.
- Pour tout i, on a $d_{|N_i|} = \lambda_i \operatorname{id}_E$, donc $n_{|N_i|} \circ d_{|N_i|} = d_{|N_i|} \circ n_{|N_i|}$ i.e. d et n commutent sur chaque N_i donc sur E tout entier.

Unicité : Soit (d', n') un autre couple d'endomorphismes de E vérifiant les hypothèses. On remarque d'abord que d' et f commutent (car d' commute avec d' et n', donc avec f = d' + n' aussi). Pour tout i, N_i est stable par d' (car $\forall x \in N_i$, $(f - \lambda_i \operatorname{id}_E)^{\alpha_i}(d'(x)) = d' \circ (f - \lambda_i \operatorname{id}_E)^{\alpha_i}(x) = 0$). Comme $d_{|N_i} = \lambda_i \operatorname{id}_{N_i}$, on en déduit que $d \circ d' = d' \circ d \operatorname{sur} N_i$. Donc c'est également vrai sur E tout entier. Ainsi, d et d' sont diagonalisables dans une même base, donc d-d' est diagonalisable.

D'autre part, comme n = f - d, n' = f - d' et que d et d' commutent, n et n' commutent. Si on choisit p et q tels que $n^p = n'^q = 0$, alors :

$$(n-n')^{p+q} = \sum_{i=0}^{p+q} {p+q \choose i} n^{i} (-1)^{p+q-i} n'^{p+q-i} = 0$$

(dans chaque terme de la somme, soit $i \ge p$, soit $p + q - i \ge q$). Donc n - n' = d' - d est nilpotent. Or nous avions montré que d'-d est diagonalisable, donc d'-d=0. Finalement, on a d=d' et n = n'.

Remarque 2. On peut démontrer que les endomorphismes d et n sont des polynômes en f. En effet, si on note p_i la projection sur N_i parallèlement à $\bigoplus_{\substack{j=1 \ j\neq i}}^s N_j$, alors, le lemme des noyaux nous indique que p_i est la restriction à N_i d'un endomorphisme en f. Comme $d = \sum_{i=1}^s \lambda_i p_i$, d est également un polynôme en f; et n = f - d aussi.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$