

Tutorials Week 8

Pdf file on Blackboard	Dataset on Blackboard	Papers related to the datasets	Description
C.13.3	Kielmc.dta	K.A. Kiel and K.T. McClain (1995): House Prices During Siting Decision Stages: The Case of an Incinerator from Rumor Through Operation, Journal of Environmental Economics and Management 28, 241-255.	Dif-in-dif estimator
C.7.13	apple.dta	Van Ravenswaay, E.O and Blend, J.R. (1998): Consumer Demand for Ecolabeled apples: Survey Methods and Descriptive Results, AgEconsearch, 98-20, 1-45. 10.22004/ag.econ.11645	Estimation of Linear Probability Model (LPM).
C.7.8	loanapp.dta	W.C. Hunter and M.B. Walker (1996): The Cultural Affinity Hypothesis and Mortgage Lending Decisions, Journal of Real Estate Finance and Economics 13, 57-70.	Estimation with probit model, calculation of marginal effects, comparison logit model.
C.17.2	loanapp.dta	W.C. Hunter and M.B. Walker (1996): The Cultural Affinity Hypothesis and Mortgage Lending Decisions, Journal of Real Estate Finance and Economics 13, 57-70.	Estimation the restricted model, estimation with logit, probit fitted values, LPM.

- Use the data in KIELMC.RAW for this exercise.
 - (i) The variable *dist* is the distance from each home to the incinerator site, in feet. Consider the model

$$\log(price) = \beta_0 + \delta_0 y 81 + \beta_1 \log(dist) + \delta_1 y 81 \cdot \log(dist) + u.$$

- If building the incinerator reduces the value of homes closer to the site, what is the sign of δ_1 ? What does it mean if $\beta_1 > 0$?
- (ii) Estimate the model from part (i) and report the results in the usual form. Interpret the coefficient on $y81 \cdot \log(dist)$. What do you conclude?
- (iii) Add age, age², rooms, baths, log(intst), log(land), and log(area) to the equation. Now, what do you conclude about the effect of the incinerator on housing values?
- (iv) Why is the coefficient on log(dist) positive and statistically significant in part (ii) but not in part (iii)? What does this say about the controls used in part (iii)?

(i) Model Specification: $\log(price) = \beta_0 + \delta_0 y_{81} + \beta_1 \log(dist) + \delta_1 y_{81} * \log(dist) + u$

. reg lprice y81 ldist y81ldist

Source	SS				Number of obs		321
Model Residual	24.3172548 37.1217306	3 317	8.1057515 .11710325	1 R-sq	•	= = =	0.0000
Total	61.4389853	320	.19199682	9 Root	MSE	=	.3422
lprice	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
y81 ldist y81ldist _cons	0113101 .316689 .0481862 8.058468	.8050622 .0515323 .0817929 .5084358	-0.01 6.15 0.59 15.85	0.989 0.000 0.556 0.000	-1.5952 .215300 112739 7.05813	5 4	1.57263 .4180775 .2091117 9.058803

Other things equal, homes farther from the incinerator should be worth more, so $\delta_1 > 0$. If $\beta_1 > 0$, then the incinerator was located farther away from more expensive homes.

Additional: interpret the coefficient on log(dist) $\widehat{\beta}_1$ and its statistical significance. Is $\widehat{\delta}_1$ it statistically different from zero?

(ii) The estimated equation is:

$$\log(price) = 8.06 - .011 \, y81 + .317 \, \log(dist) + .048 \, y81 \cdot \log(dist)$$

(0.51) (.805) (.052) (.082)
 $n = 321, R^2 = .396, \bar{R}^2 = .390.$

While $\hat{\delta}_1 = .048$ is the expected sign, it is not statistically significant (t statistic $\approx .59$).

- For houses sold in 1981, a 1% increase in distance is associated with an additional 0.048% increase in the price of the house compared to houses sold in other years.
- However, due to its lack of statistical significance (p-value 0.5560.556), we cannot confidently assert that this interaction has a meaningful impact on house prices.

(iii)

. reg lprice y81 ldist y81ldist age agesq rooms baths lintst lland larea

Source	SS	df	MS	Numb	er of obs	=	321
				- F(10	, 310)	=	114.55
Model	48.353762	10	4.8353762	2 Prob	> F	=	0.0000
Residual	13.0852234	310	.042210398	R-sq	uared	=	0.7870
				- Adj	R-squared	=	0.7802
Total	61.4389853	320	.191996829			=	. 20545
	•						
lprice	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
y81	2254466	.4946914	-0.46	0.649	-1.198824		.7479309
ldist	.0009226	.0446168	0.02	0.984	0868674	1	.0887125
y81ldist	.0624668	.0502788	1.24	0.215	036464	1	.1613976
age	0080075	.0014173	-5.65	0.000	0107962	2	0052187
agesq	.0000357	8.71e-06	4.10	0.000	.0000186	5	.0000528
rooms	.0461389	.0173442	2.66	0.008	.0120117	7	.0802662
baths	.1010478	.0278224	3.63	0.000	.0463032	2	.1557924
lintst	0599757	.0317217	-1.89	0.060	1223929	9	.0024414
lland	.0953425	.0247252	3.86	0.000	.046692	2	.143993
larea	.3507429	.0519485	6.75	0.000	. 2485266	5	.4529592
_cons	7.673854	.5015718	15.30	0.000	6.686938	3	8.660769
	I						

- When we add the list of housing characteristics to the regression, the coefficient on y81*log(dist) becomes 0.062 (se=0.050). The estimated effect is larger the elasticity of price with respect to dist is 0.062 after the incinerator site was chosen but its t-statistics is only 1.24.
- One could conclude that there is no evidence in favor of a positive effect. \rightarrow Show H_0 , H_1 , rejection area, etc.

(iv) After including further home specifications, the variable distance is not significant anymore (p-value: 0.98 vs. 0.00). The controls used in part (iii) signalized that the housing characteristics capture differences between houses close and far away from the incinerator.

C13 Use the data in APPLE.RAW to answer this question.

- (i) Define a binary variable as ecobuy = 1 if ecolbs > 0 and ecobuy = 0 if ecolbs = 0. In other words, ecobuy indicates whether, at the prices given, a family would buy any ecologically friendly apples. What fraction of families claim they would buy ecolabeled apples?
- (ii) Estimate the linear probability model

$$ecobuy = \beta_0 + \beta_1 ecoprc + \beta_2 regprc + \beta_3 faminc$$

 $+ \beta_4 hhsize + \beta_5 educ + \beta_6 age + u,$

and report the results in the usual form. Carefully interpret the coefficients on the price variables.

- (iii) Are the nonprice variables jointly significant in the LPM? (Use the usual F statistic, even though it is not valid when there is heteroskedasticity.) Which explanatory variable other than the price variables seems to have the most important effect on the decision to buy ecolabeled apples? Does this make sense to you?
- (iv) In the model from part (ii), replace *faminc* with log(*faminc*). Which model fits the data better, using *faminc* or log(*faminc*)? Interpret the coefficient on log(*faminc*).
- (v) In the estimation in part (iv), how many estimated probabilities are negative? How many are bigger than one? Should you be concerned?
- (vi) For the estimation in part (iv), compute the percent correctly predicted for each outcome, *ecobuy* = 0 and *ecobuy* = 1. Which outcome is best predicted by the model?

i) First, generate the dummy variable:

ecobuy = 1 if ecolbs > $0 \rightarrow$ if at prices given, a family would buy ecological apples. ecobuy = 0, if ecolbs = 0

ecolbs: quantity eco-labeled apples, lbs

. gen ecobuy= ecolbs>0

Create a table of frequency:

. tab ecobuy

Cum.	Percent	Freq.	ecobuy
37.58 100.00	37.58 62.42	248 412	0 1
	100.00	660	Total

62.42% of the families claim they would buy ecolabelled apples.

(ii) What are the price variables?

Ecoprc: price of eco-labeled apples

Regprc: price of regular apples

. reg ecobuy ecoprc regprc faminc hhsize educ age, rob

Linear regression	Number of obs =	660
	F(6, 653) =	14.93
	Prob > F =	0.0000
	R-squared =	0.1098
	Root MSE =	.45939

ecobuy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
ecoprc	8026219	.1056678	-7.60	0.000	-1.010112	5951321
regprc	.7192675	.1302317	5.52	0.000	.463544	.9749911
faminc	.0005518	.0005245	1.05	0.293	0004781	.0015817
hhsize	.0238227	.0124672	1.91	0.056	0006579	.0483033
educ	.0247849	.0084565	2.93	0.003	.0081796	.0413901
age	0005008	.0012655	-0.40	0.692	0029858	.0019842
_cons	.4236865	.1677529	2.53	0.012	.0942864	.7530867

- If *ecoprc* increases by, say, 10 cents (.10), then the probability of buying eco-labeled apples falls by about .080, c.p.
- If *regprc* increases by 10 cents, the probability of buying eco-labeled apples increases by about .072, c.p.
- We can assume that both sorts of apples are substitutes. cross-price elasticity.

(iii) There are four non price variables: hhsize, faminc, educ and age

. reg ecobuy ecoprc regprc faminc hhsize educ age, rob

Linear regression					Number of ob	s = 660
					F(6, 653) Prob > F R-squared Root MSE	= 14.93 = 0.0000 = 0.1098 = .45939
ecobuy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
ecoprc regprc faminc hhsize educ age cons	8026219 .7192675 .0005518 .0238227 .0247849 0005008 .4236865	.1056678 .1302317 .0005245 .0124672 .0084565 .0012655	-7.60 5.52 1.05 1.91 2.93 -0.40 2.53	0.000 0.000 0.293 0.056 0.003 0.692 0.012	-1.010112 .463544 0004781 0006579 .0081796 0029858	5951321 .9749911 .0015817 .0483033 .0413901 .0019842 .7530867

hhsize: household size faminc: family income, thousands educ: years schooling age: in years

They are jointly significant at 1% level of significance. For the exam, you have to write all the statistical steps.

- The F test, with 4 and 653 df, is 4.23, with p-value = .0021. Thus, based on the usual F-test, the four non-price variables are jointly very significant. Of the four variables, educ appears to have the most important effect.
- For example, a difference of four years of education implies an increase of .025(4) = .10 in the estimated probability of buying eco-labeled apples. This suggests that more highly educated people are more open to buying products that is environmentally friendly, which is perhaps expected. Household size (*hhsize*) also has an effect.
- Comparing a couple with two children to one with no children other factors equal the couple with two children has a .048 higher probability of buying eco-labeled apples.

cons

(iv) Compare both models and decide which fits better. Interpret log(faminc)

. gen lfaminc=ln(faminc) . req ecobuy ecoprc regprc faminc hhsize educ age, rob . reg ecobuy ecoprc regprc lfaminc hhsize educ age, rob Linear regression Number of obs = 660 Linear regression Number of obs = 660 653) = 15.24 F(6, 653) = 14.93Prob > F = 0.0000R-squared = 0.1116 Root MSE Root MSE = .45939 Robust Robust Std. Err. P>|t| ecobuy Coef. Std. Err. P>|t| ecobuv .1056678 -7.600.000 -1.010112-.5951321 -.8026219 -.8006664 .1055406 0.000 -1.007906 ecoprc -7.59-.5934265 .1302317 5.52 0.000 .463544 .9749911 .7192675 .721377 .9764343 .1298925 0.000 .4663197 regprc .0005518 .0005245 0.293 -.0004781 .0015817 faminc lfaminc .0445162 .0292792 1.52 0.129 -.0129766 .102009 hhsize .0124672 0.056 -.0006579 .0483033 .0472429 .0227002 -.0018426 hhsize .0124989 1.82 0.070 educ .0247849 .0084565 2.93 0.003 .0081796 .0413901 .023093 .0085234 .0398296 educ 2.71 0.007 .0063564 -.0005008 .0012655 -0.400.692 -.0029858 .0019842 age .0020964 age -.0003865 .0012645 -0.310.760 -.0028695 2.53 .4236865 .1677529 0.012 .0942864 .7530867 cons

• The model with log(faminc) fits the data slightly better: the *R*-squared increases to about .112. (We would not expect a large increase in *R*-squared from a simple change in the functional form.)

.6607125

• The coefficient on log(faminc) is about .045 (t = 1.52).

.1817885

1.67

0.095

-.0532087

.3037519

- **Level-log interpretation**: holding other factors fixed, one percentage increase in family income leads to 0.00045 higher probability of families buying eco-labelled apples.
- If log(faminc) increases by .10, which means roughly a 10% increase in faminc, then P(ecobuy = 1) is estimated to increase by about .0045, a pretty small effect.

(v) To know how many probabilities are negative, and how to deal with that:

. predict yhat
(option xb assumed; fitted values)

. gen above=yhat>1

. gen below=yhat<0

. tab above

above	e	Freq.	Percent	Cum.
	0 1	658 2	99.70 0.30	99.70 100.00
Tota	+- l	660	100.00	

. tab below

	Freq.	below
	660	
 100.00	660	Total

- The fitted probabilities range from about .185 to 1.051, so none are negative.
- There are two fitted probabilities above 1, which is not a source of concern with 660 observations.
- Probabilities can be above. However, we can assume (in this example) that the above 1 probabilities represent 1.
- None of the estimated probabilities are below 0.

(vi) We need to choose a cutoff value to convert the estimated probabilities into a dummy variable. Without additional information, we choose 50% as the cutoff value. If the estimated probability of purchasing eco-labeled apples is above 50%, our model predicts that the household will buy eco-labeled apples.

Cross-tabulate ecobuy=1 and ecobuy=0

- . gen estecobuy=yhat>.5
- . tap estecopuy ecopuy

estecobuy	ecobuy 0	1	Total
0 1	102 146	72 340	174 486
Total	248	412	660

- Using the standard prediction rule predict one when $ecobuy_i \ge 0.5$ and zero otherwise –gives the fraction correctly predicted for ecobuy = 0 as $102/248 \approx .411$, so about 41.1%.
- The model correctly predicts 340/412 = 0.825, that is 82.5% of the cases when a family bought eco-labeled apples.
- With the usual prediction rule, the model performs better for families that buy ecolabeled apples.
- The model correctly predicts 442 cases out of 660, which is 67%. This is a pseudo R² and describes the overall fit of the model.

Use the data in LOANAPP.RAW for this exercise. The binary variable to be explained is *approve*, which is equal to one if a mortgage loan to an individual was approved. The key explanatory variable is *white*, a dummy variable equal to one if the applicant was white. The other applicants in the data set are black and Hispanic.

To test for discrimination in the mortgage loan market, a linear probability model can be used:

$$approve = \beta_0 + \beta_1 white + other factors.$$

- (i) If there is discrimination against minorities, and the appropriate factors have been controlled for, what is the sign of β_1 ?
- (ii) Regress *approve* on *white* and report the results in the usual form. Interpret the coefficient on *white*. Is it statistically significant? Is it practically large?
- (iii) As controls, add the variables *hrat*, *obrat*, *loanprc*, *unem*, *male*, *married*, *dep*, *sch*, *cosign*, *chist*, *pubrec*, *mortlat1*, *mortlat2*, and *vr*. What happens to the coefficient on *white*? Is there still evidence of discrimination against nonwhites?
- (iv) Now, allow the effect of race to interact with the variable measuring other obligations as a percentage of income (*obrat*). Is the interaction term significant?
- (v) Using the model from part (iv), what is the effect of being white on the probability of approval when *obrat* = 32, which is roughly the mean value in the sample? Obtain a 95% confidence interval for this effect.

(i) If the appropriate factors have been controlled for, $\beta_1 > 0$ signals discrimination against minorities: a white person has a greater chance of having a loan approved, other relevant factors fixed.

(ii) The simple regression results are

$$approve = .708 + .201 white$$
 (.018) (.020)

$$n = 1,989, R^2 = .049.$$

. reg approve white, rob

Linear regression Number of obs = 1989 F(1, 1987) = 55.75 Prob > F = 0.0000 R-squared = 0.0489 Root MSE = .3201

approve	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
		.0268651 .0259264			.147909 .6569465	.2532824

- The coefficient on *white* means that, in the sample of 1,989 loan applications, an application submitted by a white applicant was 20 percentage points more likely to be approved than that of a nonwhite applicant.
- It is statistically significant 1%, and the t statistic is 7.47.
- 20% more chance of getting the application approved is a significant difference.

(iii) Is there still evidence for discrimination against non-whites?

. reg approve white hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat1 mortlat2

> vr, rob

1971 . des hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat1 mortlat2 vr

storage display

variable name	type	format	label	variable label
hrat	float	%9.0g		housing exp. % total inc
obrat	float	%9.0g		other oblgs, % total inc
loanprc	float	%9.0g		amt/price
unem	float	%9.0g		unemployment rate by industry
male	byte	%9.0g		=1 if applicant male
married	byte	%9.0g		=1 if applicant married
dep	byte	%9.0g		number of dependents
sch	byte	%9.0g		=1 if > 12 years schooling
cosign	byte	%9.0g		is there a cosigner
chist	byte	%9.0g		=0 if accnts deliq. >= 60 days
pubrec	byte	%9.0g		=1 if filed bankruptcy
mortlat1	byte	%9.0g		one or two late payments
mortlat2	byte	%9.0g		> 2 late payments
vr	byte	%9.0g		=1 if tract vac rte > MSA med

			Robust			
approve	 -	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
white hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat1 mortlat2		.1288196 .001833 0054318 1473001 0072989 0041441 .0458241 0068274 .0017525 .0097722 .1330267 2419268 0572511 1137234 0314408	.0258693 .001467 .001331 .0378351 .0037122 .0193044 .0172374 .0069038 .017146 .0395825 .0246202 .0427922 .0662234 .0910697 .0144855	4.98 1.25 -4.08 -3.89 -1.97 -0.21 2.66 -0.99 0.10 0.25 5.40 -5.65 -0.86 -1.25 -2.17	0.000 0.212 0.000 0.000 0.049 0.830 0.008 0.323 0.919 0.805 0.000 0.000 0.387 0.212 0.030	.0780852 .1795540010441 .00471010080421002821522150130730988014579200001870420035 .0337152 .0120186 .07962960203669 .00671220318739 .03537890678561 .0874005 .0847421 .1813114325849815800371871269 .07262472923274 .064880605984930030322
_cons	 	.9367312	.0593886 	15.77 	0.000	.8202595 1.053203

- Yes, there is still evidence for discrimination against non-whites. It is represented by an increase of 12.9 percentage points in the probability of mortgage loan approval for white individuals compared to non-white individuals.
- The coefficient has fallen by some margin because we are now controlling for factors that should affect loan approval rates, and some of these differ by race.
- The race effect is still strong and very significant (t statistic = 4.98).

(iv) Now, create an interaction term: (other obligations * white)

```
. gen white obrat=white*obrat
. req approve white hrat obrat white obrat loanprc unem male married dep sch cosign
chist pubrec mortl
> at1 mortlat2 vr, rob
Linear regression
                                                      Number of obs =
                                                      F(16, 1954) =
                                                                        14.41
                                                      Prob > F
                                                                    = 0.0000
                                                      R-squared
                                                                    = 0.1709
                                                      Root MSE
                                                                    = .30119
                             Robust
                   Coef. Std. Err.
       white | -.1459751
                            .1050932
                                       -1.39
                                               0.165
                                                        -.3520816
                                                                     .0601314
                 .0017897
                            .0014702
                                        1.22
                                               0.224
                                                        -.0010938
                                                                     .0046731
       hrat |
       obrat |
               -.0122262
                            .0030209
                                       -4.05
                                               0.000
                                                        -.0181507
                                                                    -.0063017
 white obrat |
                 .0080879
                            .0031094
                                        2.60
                                               0.009
                                                         .0019897
                                                                     .0141861
     loanprc
               -.1525356
                                        -4.00
                                               0.000
                                                         -.2272607
                                                                    -.0778105
                            .0381022
                -.0075281
                            .0036972
                                       -2.04
                                               0.042
                                                         -.0147789
                                                                    -.0002772
        unem
               -.0060154
                            .0191269
                                       -0.31
                                               0.753
                                                                     .0314958
        male
                                                        -.0435267
     married
                .0455358
                           .0172009
                                        2.65 0.008
                                                         .0118018
                                                                     .0792699
                 -.00763
                                               0.268
                                                        -.0211245
         dep
                            .0068808
                                       -1.11
                                                                     .0058646
         sch
                 .0017766
                           .0171474
                                        0.10
                                               0.917
                                                        -.0318526
                                                                     .0354058
                 .0177091
                                                        -.0581535
      cosign
                           .0386821
                                        0.46 0.647
                                                                     .0935716
       chist |
                 .1298548
                           .0245869
                                        5.28 0.000
                                                                     .1780742
                                                         .0816354
      pubrec |
                -.240325
                           .0429733
                                       -5.59 0.000
                                                        -.3246034
                                                                    -.1560467
               -.0627819
                           .0653656
                                       -0.96 0.337
                                                        -.1909755
                                                                    .0654116
    mortlat1
               -.1268446
                           .0903701
                                       -1.40 0.161
                                                                     .0503872
    mortlat2
                                                        -.3040764
               -.0305396
                           .0144395
                                       -2.12
                                              0.035
                                                        -.0588579
                                                                    -.0022212
               1.180648
                           .1106498
                                       10.67 0.000
                                                         .9636445
                                                                     1.397652
```

- The white coefficient becomes statistically insignificant, while the interaction variable yields a significant, positive coefficient.
- The interactive effect suggests that the percentage of other obligations mattered less in the approval of mortgage requests by whites than by non-whites.


```
(v) . nlcom _b[white]+_b[white_obrat]*32

__nl_1: _b[white]+_b[white_obrat]*32

__approve | Coef. Std. Err. z P>|z| [95% Conf. Interval]

__nl_1 | .1128382 .0255754 4.41 0.000 .0627114 .162965
```

- Replace white * obrat with white * (obrat 32); the coefficient on white is now the race differential when obrat = 32.
- We obtain about .113 and se = .025. So, the 95% confidence interval is about $0.113 \mp 1.96(0.025)$ or about 0.063 to 0.162. This interval excludes zero, so at the average *obrat* there is evidence of discrimination (or, at least loan approval rates that differ by race for some other reason that is not captured by the control variables).
- The effect of being white on the probability of successful application is estimated at 11.3% for people with 32% other obligations.

- Use the data in LOANAPP.RAW for this exercise; see also Computer Exercise C8 in Chapter 7.
 - (i) Estimate a probit model of *approve* on *white*. Find the estimated probability of loan approval for both whites and nonwhites. How do these compare with the linear probability estimates?
 - (ii) Now, add the variables *hrat*, *obrat*, *loanprc*, *unem*, *male*, *married*, *dep*, *sch*, *cosign*, *chist*, *pubrec*, *mortlat1*, *mortlat2*, and *vr* to the probit model. Is there statistically significant evidence of discrimination against nonwhites?
 - (iii) Estimate the model from part (ii) by logit. Compare the coefficient on *white* to the probit estimate.
 - (iv) Use equation (17.17) to estimate the sizes of the discrimination effects for probit and logit.

(i) Estimate the effect of white on approval in a Probit model.

The probit model predicts the probability of loan approval as: $P(Y = 1|X) = \phi(X\beta)$

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	Х
y = =		predict)					
whit _con		.0867118 .075435	9.04 7.25	0.000 0.000	.6139946 .3990964		_
approv	e Coefficient	Std. err.	z	P> z	[95% con	f. interval	.]
Probit regr Log likelih	ession ood = - 700.8774 4	1)4)0
Iteration 1 Iteration 2	: Log likelihoo : Log likelihoo : Log likelihoo : Log likelihoo	od = - 701.33 2 od = - 700.87 2	221 747				

- . predict lin pred, xb
- . list lin_pred in 1/10

. display normal(1.3308928)
.90838786

- As there is only one explanatory variable that takes on just two values, there are only two different predicted values: the estimated probabilities of loan approval for white and nonwhite applicants.
- Rounded to three decimal places, these are .708 for nonwhites and .908 for whites.
- Without rounding errors, these are *identical* to the fitted values from the linear probability model.
- This is the case when the independent variables in a binary response model are mutually exclusive and exhaustive binary variables.
- Then, the predicted probabilities, whether we use the LPM, probit, or logit models, are simply the cell frequencies (in this case, how many loans were approved vs denied for the independent variable: white)
- In other words, 0.708 is the proportion of loans approved for nonwhites and .908 is the proportion approved for whites.

Additional: We can estimate the model with logit and compare it to the previous one.

```
. logit approve white
Iteration 0: \log \text{ likelihood} = -740.34659
Iteration 1: log likelihood = -709.1878
Iteration 2: log likelihood = -700.9007
Iteration 3: log likelihood = -700.87744
Iteration 4: log likelihood = -700.87744
Logistic regression
                                        Number of obs = 1989
                                        LR chi2(1) = 78.94
                                         Prob > chi2 = 0.0000
                                        Pseudo R2 = 0.0533
Log likelihood = -700.87744
    approve | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     white | 1.409422 .1511511 9.32 0.000 1.113172 1.705673
     cons | .8846854 .1252927 7.06 0.000 .6391162 1.130255
. mfx
Marginal effects after logit
    y = Pr(approve) (predict)
       = .8885343
variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X
  white*| .2005957 .02685 7.47 0.000 .147968 .253224 .845148
```

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

. probit approve white hrat obrat loanprc unem male married dep sch cosign chist pubrec mor > tlat1 mortlat2 vr

Iteration 0: Log likelihood = -737.97933
Iteration 1: Log likelihood = -603.5925
Iteration 2: Log likelihood = -600.27774
Iteration 3: Log likelihood = -600.27099
Iteration 4: Log likelihood = -600.27099

Probit regression

Number of obs = 1,971 LR chi2(15) = 275.42 Prob > chi2 = 0.0000 Pseudo R2 = 0.1866

Log likelihood = -600.27099

approve	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
white	.5202525	.0969588	5.37	0.000	.3302168	.7102883
hrat	.0078763	.0069616	1.13	0.258	0057682	.0215209
obrat	0276924	.0060493	-4.58	0.000	0395488	015836
loanprc	-1.011969	.2372396	-4.27	0.000	-1.47695	5469881
unem	0366849	.0174807	-2.10	0.036	0709464	0024234
male	0370014	.1099273	-0.34	0.736	2524549	.1784521
married	.2657469	.0942523	2.82	0.005	.0810159	.4504779
dep	0495756	.0390573	-1.27	0.204	1261266	.0269753
sch	.0146496	.0958421	0.15	0.879	1731974	.2024967
cosign	.0860713	.2457509	0.35	0.726	3955917	.5677343
chist	.5852812	.0959715	6.10	0.000	.3971805	.7733818
pubrec	7787405	.12632	-6.16	0.000	-1.026323	5311578
mortlat1	1876237	.2531127	-0.74	0.459	6837153	.308468
mortlat2	4943562	.3265563	-1.51	0.130	-1.134395	.1456823
vr	2010621	.0814934	-2.47	0.014	3607862	041338
_cons	2.062327	.3131763	6.59	0.000	1.448512	2.676141

. mfx

Marginal effects after probit y = Pr(approve) (predict) = .91065604

variable	dy/dx	Std. err.	Z	P> z	[95%	c.I.]	Х
white*	.105747	.02386	4.43	0.000	.058988	.152506	.846271
hrat	.0012721	.00113	1.13	0.258	000933	.003477	24.8001
obrat	0044726	.00098	-4.58	0.000	006387	002558	32.3898
loanprc	1634429	.03772	-4.33	0.000	237367	089519	.770431
unem	005925	.00282	-2.10	0.036	011456	000394	3.88853
male*	0058835	.0172	-0.34	0.732	039599	.027832	.813293
married*	.045491	.01701	2.68	0.007	.012161	.078821	.659564
dep	0080069	.0063	-1.27	0.204	020354	.00434	.771689
sch*	.0023787	.01564	0.15	0.879	028284	.033042	.770167
cosign*	.0131566	.03547	0.37	0.711	056364	.082677	.028919
chist*	.1213625	.0242	5.02	0.000	.073937	.168788	.836631
pubrec*	1867903	.04019	-4.65	0.000	265569	108012	.068493
mortlat1*	0341006	.05129	-0.66	0.506	134632	.066431	.01928
mortlat2*	1075809	.08988	-1.20	0.231	283752	.06859	.010654
vr*	0333289	.01381	-2.41	0.016	06039	006268	.407915

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

- With the set of controls added, the probit estimate on *white* becomes about .520 (se = .097). Therefore, there is still very strong evidence of discrimination against nonwhites.
- The effect of white is about 10.5 p.p. when calculated around the average approval rate.

(iii) When we use logit instead of probit, the coefficient (standard error) on white becomes 0.938 (0.173).

mfx

cosign*

chist*

pubrec*

mortlat1*

mortlat2*

.0032647

.0098414

.1133208

-.1676967

-.0275065

-.1002576

-.02826

logit approve white hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat1 mortlat2 vr, rob

Iteration 0: Log pseudolikelihood = -737.97933 Iteration 1: Log pseudolikelihood = -634.97536 Iteration 2: Log pseudolikelihood = -601.41194 Log pseudolikelihood = -600.49724

Iteration 4: Log pseudolikelihood = -600.49616 Iteration 5: Log pseudolikelihood = -600.49616

Logistic regression Number of obs = 1,971

Wald chi2(15) = 210.98= 0.0000

Log pseudolikelihood = -600.49616 Pseudo R2 = 0.1863

approve	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
white	.9377643	.1747271	5.37	0.000	.5953054	1.280223
hrat	.0132631	.0135997	0.98	0.329	0133918	.039918
obrat	0530338	.0124078	-4.27	0.000	0773526	028715
loanprc	-1.904951	.508246	-3.75	0.000	-2.901095	9088075
unem	0665789	.0353345	-1.88	0.060	1358332	.0026755
male	0663852	.2068806	-0.32	0.748	4718638	.3390934
married	.5032817	.1838261	2.74	0.006	.1429891	.8635743
dep	0907336	.0739676	-1.23	0.220	2357075	.0542403
sch	.0412287	.1762664	0.23	0.815	3042471	.3867046
cosign	.132059	.3918293	0.34	0.736	6359124	.9000304
chist	1.066577	.1699995	6.27	0.000	.7333838	1.39977
pubrec	-1.340665	.227446	-5.89	0.000	-1.786451	8948791
mortlat1	3098821	.5171693	-0.60	0.549	-1.323515	.703751
mortlat2	8946755	.5675692	-1.58	0.115	-2.007091	.2177397
vr	3498279	.154458	-2.26	0.024	6525601	0470958
_cons	3.80171	.6333556	6.00	0.000	2.560356	5.043064

	у :	effects after = Pr(approve) = .91417919						
	variable	dy/dx	Std. err.	z	P> z	[95%	c.I.]	
	white*	.0967431	.02275	4.25	0.000	.052145	.141341	
l	hrat	.0010406	.00107	0.97	0.330	001055	.003136	
l	obrat	0041608	.00095	-4.38	0.000	006021	0023	
l	loanprc	1494541	.03921	-3.81	0.000	226303	072605	
l	unem	0052235	.00278	-1.88	0.060	010667	.00022	
l	male*	0051197	.01568	-0.33	0.744	035861	.025622	
	married*	.0423998	.01655	2.56	0.010	.009963	.074837	
	dep	0071186	.0058	-1.23	0.220	01849	.004253	

0.23

0.36

4.93

-4.11

-0.53

-1.18

-2.18

0.817

0.723

0.000

0.000

0.594

0.239

-.024335

-.044483

.068255

-.128634

-.26707

0.029 -.053654 -.002866

-.247682 -.087712

.030865

.064166

.158386

.073621

.066555

Х

.846271 24.8001 32.3898 .770431 3.88853 .813293 .659564

.771689

.770167

.028919

.836631

.068493

.01928

.010654

.407915

(*) dy/dx is for discrete change of dummy variable from 0 to 1

.01408

.02772

.02299

.04081

.08511

.01296

.0516

With a logit model, we obtain a bit lower estimate for the effect of white (9.7 p.p.), but it is still large, positive, and statistically significant.

(iv)

- Recall that, to make probit and logit estimates roughly comparable, we can multiply the logit estimates by 0.625.
- The scaled logit coefficient becomes .625(.938) = .586, which is reasonably close to the probit estimate.
- A better comparison would be to compare the predicted probabilities by setting the other controls at interesting values, such as their average values in the sample.