

PROJET PYTHON

Réalisé par Eunice KOFFI Gaoussou DIAKITE

Professeur Hager Oueslati

Notre application : <u>Mon logement Nexity · Streamlit</u>

SOMMAIRE

1. Scraping

2. Features engineering

3. Analyse exploratoire

4. Machine Learning

1. Scrapping (1/2)

Nexity est un site qui propose des offres d'achat, de location ou de vente de biens immobiliers (appartements, maisons, terrains, immeubles, ...) principalement en France.

Lien du site : Location immobilier France | Nexity

1. Scrapping (2/2)

- ➤ Informations disponibles au 23/01/2023
- ➤ Bibliothèques utilisées : BeautifulSoup
- > Données extraites : Toutes les informations disponibles pour chaque logement
- ➤ Résultats : 21 colonnes et 1032 observations

Un aperçu de la base de données

	Prix_loyer	Amenagement	Essentiel	Superficie	Departement	Code_postal	Logement	Titre	Types
Pleir	650 € CC/mois	Pièce(s)1WC séparéOui	Type de BienApparte	22 m²	Toulouse	31000	- Appartement studio	Appartement à louer :	location meublée
hype	450 € CC/mois	Pièce(s)1WC séparéOui	Type de BienApparte	27 m²	Reims	51100	- Appartement studio	Appartement à louer :	location meublée
	409 € CC/mois	Pièce(s)1WC séparéOui	Type de BienApparte	18 m²	Valenciennes	59300	- Appartement studio	Appartement à louer :	location meublée
AVIG	NA	Pièce(s)1WC séparéOui	Type de BienApparte	NA	84000	NA	NA	Appartement étudiant	location meublée
PES	632 € CC/mois	Pièce(s)1WC séparéOui	Type de BienApparte	21 m²	Pessac	33600	- Appartement studio	Appartement à louer :	location meublée
Tale	1 155 € CC/mois	Pièce(s)3WC séparéOui	Type de BienApparte	69 m²	Talence	33400	- Appartement 3 pièces	Appartement à louer :	location meublée
Нур	502 € CC/mois	Pièce(s)1WC séparéOui	Type de BienApparte	24 m²	Reims	51100	- Appartement studio	Appartement à louer :	location meublée
Rés	402 € CC/mois	Pièce(s)1WC1WC sé	Type de BienApparte	18 m²	Reims	51100	- Appartement studio	Appartement à louer :	location meublée
EX	1 780 € CC/mois	Pièce(s)4Chambre(s)	Type de BienApparte	115 m²	Grenoble	38000	- Appartement 4 pièces	Appartement à louer :	location meublée
Dans	354 € CC/mois	Pièce(s)1WC séparéOui	Type de BienApparte	17 m²	Auxerre	89000	- Appartement studio	Appartement à louer :	location meublée
L'idé	NA	Pièce(s)1WC séparéOui	Type de BienApparte	NA	59564	NA	NA	Appartement étudiant	location meublée

2. Features engineering

- Un constat
 - Des informations répétitives dans plusieurs variables (loyer, charge, ...)
 - Des informations indisponibles dans certaines variables et présentes dans d'autres
- Sélection / Suppression de variables
 - Sélection des variables contenant des informations complètes sans valeurs manquantes (ex: la colonne titre contient à la fois le type, la superficie, le nombre de pièces et ce, de manière complète pour toutes les observations)
 - Suppression des variables initiales incomplètes qui pourraient être reconstruites (ex : loyer et charges)
- > Traitement
 - Utilisation de regex
 - Split de colonnes
 - Conditions
- Résultats : 22 colonnes et 1032 observations

3. Exploration des données (1/4)

- On a une distribution asymétriques des loyers dans notre base de données. La plupart des loyers sont inférieurs à 2000 €
- On remarque une distribution des garanties similaire à celle des loyers. Ce qui est normal car la garantie correspond le plus souvent à une ou deux mensualité du loyer.

Distribution des loyers en fonction du type du logement

- En observant la décomposition de ces loyers en fonction du type de logement on se rend compte les appartements ont les loyers les plus élevés.
- Les appartements étudiants ont les loyers les plus faibles.

3. Exploration des données (2/4)

- Nous avons plusieurs variables unimodales.
- Tous nos logements sont dotés d'ascenseur, de WC séparé, Cave, Gardien, Digicode, Terrain extérieur
- La majorité ont une terrasse, un balcon et un interphone

3. Exploration des données (3/4)

- Les départements qui comptabilisent le plus de logements sont : Hauts-de-Seine, Paris, Isère, Haute-Garonne
- Cependant les départements qui ont les loyers les plus élevés sont Paris, Hauts-de-Seine, Yveline et Val-de-Marne

3. Exploration des données (4/4)

On affiche pour chaque type de logement, un nuage de mots formé à partir des descriptions des logements.

On remarque, alors, des caractéristiques déterminantes différentes selon le type de logement.

- Pour les maisons les caractéristiques mises en avant sont : Le séjour, la cuisine, la terrasse, le garage, la cuisine
- Pour les appartements, ce sont : Le chauffage, la salle de bain, les chambres, ...
- Pour les résidences sénior : La terrasse, les services, la possibilité de visite, ...
- Pour les résidences étudiantes : le fait que l'appartement soit meublé, la proximité avec les commerce et la gare, la présence de laverie, ...

4. Machine Learning (1/4)

0.4

Variables les plus linéairement corrélées au loyer

- Comme nous pouvons le voir dans la matrice de corrélation ci-dessus, il existe deux variables qui montrent une forte multicolinéarité (r > 0,80): les chambres et la surface. Cela a du sens puisque plus une maison est grande, plus elle aura généralement de chambres.
- Une façon de résoudre ce problème est de combiner les deux variables en une seule, par exemple en créant une nouvelle variable pour la surface par chambre.

Dans une conclusion quelque peu similaire à la surface, plus une maison a de chambres, plus le loyer devrait être élevé. Cependant, nous constatons qu'un autre facteur entre en ligne de compte car il existe des appartements de 5 pièces pour lesquels le loyer est plus faible que d'autres qui ont un plus petit nombre de pièces.

4. Machine Learning (2/4)

- > Préparation des données
 - Analyse des corrélations
 - Croisement de variables
 - Dichotomisation de nos catégorielles
- Le graphique nous affiche plusieurs représentations de nos données dans un espace de deux dimensions en utilisant plusieurs combinaisons de nos variables. La forme du nuage de mots nous montre clairement si une corrélation linéaire existent entre les dimensions choisies. Nous pouvons de ce fait voir que certaines variables ne sont pas corrélées (étage et nombre de pièces).
- La matrice de corrélation nous apportera une information chiffrée de nos remarques.

4. Machine Learning (3/4)

Régression linéaire

0.558 Model: Adj. R-squared: F-statistic: Method: Least Squares 109.3 Prob (F-statistic): 1.69e-173 Log-Likelihood: Time: -7716.8 No. Observations: AIC: 1.546e+04 BIC: 1.552e+04 Df Residuals: 1017 Df Model: 12

Covariance Type: nonrobust

Skew:

Kurtosis:

	coef	std err	t	P> t	[0.025	0.975]						
surface_par_nb_piece	9.2561	2.670	3.467	0.001	4.017	14.495						
Type_Appartement	-28.9293	37.755	-0.766	0.444	-103.016	45.158						
Type_Appartement en résidence s	énior 98.1792	88.763	1.106	0.269	-76.000	272.358						
Type_Appartement étudiant	-158.4497	54.335	-2.916	0.004	-265.072	-51.828						
Type_Maison	421.9610	68.803	6.133	0.000	286.950	556.972						
WC_separe_Non	280.3954	25.913	10.821	0.000	229.546	331.245						
WC_separe_Oui	52.3658	15.460	3.387	0.001	22.029	82.702						
Interphone_Non	280.3954	25.913	10.821	0.000	229.546	331.245						
Interphone_Oui	52.3658	15.460	3.387	0.001	22.029	82.702						
Terrain_extérieur_Non	169.3340	46.070	3.676	0.000	78.931	259.737						
Terrain_extérieur_OUI	163.4272	60.749	2.690	0.007	44.219	282.636						
Terrasse_Non	280.3954	25.913	10.821	0.000	229.546	331.245						
Terrasse_Oui	52.3658	15.460	3.387	0.001	22.029	82.702						
Balcon_Non	103.8417	21.000	4.945	0.000	62.634	145.049						
Balcon_Oui	228.9195	26.202	8.737	0.000	177.504	280.335						
Departement_Paris	1155.0913	80.337	14.378	0.000	997.445	1312.737						
Departement_Val-d'Oise	110.4898	38.885	2.841	0.005	34.186	186.794						
Departement_Hauts-de-Seine	466.9149	81.702	5.715	0.000	306.591	627.239						
Departement_Isère	208.2336	65.056	3.201	0.001	80.575	335.892						
Departement_Seine-Saint-Denis	237.5101	85.939	2.764	0.006	68.871	406.149						
Departement_Val-d'Oise	110.4898	38.885	2.841	0.005	34.186	186.794						
Omnibus: 7	56.589 Durbin-W	atson:		1.815								

Durbin-Watson: 1.815 Prob(Omnibus): Jarque-Bera (JB): 29077.764 Prob(JB): 0.00 28.369 Cond. No. 1.92e+20

$$R^2 = 0.56$$

Notre modèle arrive à expliquer 56% de la variance du loyer. On a un bon ajustement de notre modèle aux variables

Prob F-statistic = 1.69e-173

Au seuil de 5 %, on rejette l'hypothèse nulle selon laquelle notre modèle n'est pas globalement significatif.

Au seuil de 5 %, on rejette l'hypothèse nulle selon laquelle nos résidus ne suivent pas une loi normale.

Les variables explicatives ne sont pas toutes significatives.

La surface par pièce est significative : Si la surface par pièce augmente de 1m² le loyer augmentera de 9, 25 € toutes choses égales par ailleurs.

Le fait qu'un appartement soit un appartement étudiant dimuniera le loyer de 158, 45 € en moyenne par rapport aux autres toutes choses égales par ailleurs.

Le fait un logement se situe à Paris augmentera le loyer en moyenne de 1155 € toutes choses égales par ailleurs.

4. Machine Learning (4/4)

Gradient Boosting

Score Test: 0.7282956149252022

MAE: 215.1918036428456 MSE: 129123.35479682879

Le modèle a de meilleures performances que la régression linéaire effectuée.

Adobe Stock | #98542148