## Small step from single neurons to networks

Johnatan (Yonatan) Aljadeff

aljadeff@ucsd.edu

September 22, 2020

#### Outline

Information from inside a cell is valuable!

E/I balance

Spatial representations

Modeling can help when intracellular recordings are not available

A synapse is not a number

## Information from inside the cell helps us understand balance of excitation and inhibition

... during spontaneous activity



Okun, Lampl, 2008

## Information from inside the cell helps us understand balance of excitation and inhibition

... and also during evoked activity



# Information from inside the cell helps us understand formation of spatial representations



Harvey et al. 2009

# Information from inside the cell helps us understand formation of spatial representations



Harvey et al. 2009

# Information from inside the cell helps us understand formation of spatial representations



Cohen et al. 2017

To get some intuition, we start with the LIF neuron

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I, \qquad \text{(with constant input }I\text{)}$$

$$V = 0 \quad \text{if} \quad V > \theta$$

When intracellular recording impossible, a model can help To get some intuition, we start with the LIF neuron

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I, \qquad \text{(with constant input }I\text{)}$$

$$V = 0 \quad \text{if} \quad V > \theta$$

#### Let's use what we learned to compute the f-I curve.

▶ Assume consecutive spikes at times t = 0, T.

To get some intuition, we start with the LIF neuron

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I, \qquad \text{(with constant input }I\text{)}$$

$$V = 0 \quad \text{if} \quad V > \theta$$

#### Let's use what we learned to compute the f-I curve.

- ightharpoonup Assume consecutive spikes at times t=0, T.
- ▶ We know that V(t = 0) = 0, and  $V(t = T) = \theta$ .

To get some intuition, we start with the LIF neuron

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I, \qquad \text{(with constant input }I\text{)}$$

$$V = 0 \quad \text{if} \quad V > \theta$$

#### Let's use what we learned to compute the f-I curve.

- $\blacktriangleright$  Assume consecutive spikes at times t=0, T.
- ▶ We know that V(t = 0) = 0, and  $V(t = T) = \theta$ .
- ▶ Between the two spikes, the dynamics are  $\frac{dV}{dt} = -V + I$ .

To get some intuition, we start with the LIF neuron

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I, \qquad \text{(with constant input }I\text{)}$$

$$V = 0 \quad \text{if} \quad V > \theta$$

#### Let's use what we learned to compute the f-I curve.

- $\blacktriangleright$  Assume consecutive spikes at times t=0, T.
- ▶ We know that V(t = 0) = 0, and  $V(t = T) = \theta$ .
- ▶ Between the two spikes, the dynamics are  $\frac{dV}{dt} = -V + I$ .
- ▶ We know the solution!

$$\log\left(\frac{I}{I - V(T)}\right) = \log\left(\frac{I}{I - \theta}\right) = T$$

To get some intuition, we start with the LIF neuron

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I, \qquad \text{(with constant input }I\text{)}$$

$$V = 0 \quad \text{if} \quad V > \theta$$

#### Let's use what we learned to compute the f-I curve.

- $\blacktriangleright$  Assume consecutive spikes at times t=0, T.
- ▶ We know that V(t = 0) = 0, and  $V(t = T) = \theta$ .
- ▶ Between the two spikes, the dynamics are  $\frac{dV}{dt} = -V + I$ .
- ► We know the solution!

$$\log\left(\frac{I}{I - V(T)}\right) = \log\left(\frac{I}{I - \theta}\right) = T$$

► So the f-I curve is

$$f(I) = \frac{1}{T}$$

To get some intuition, we start with the LIF neuron

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I, \qquad \text{(with constant input }I\text{)}$$

$$V = 0 \quad \text{if} \quad V > \theta$$

#### Let's use what we learned to compute the f-I curve.

- ▶ Assume consecutive spikes at times t = 0, T.
- ▶ We know that V(t = 0) = 0, and  $V(t = T) = \theta$ .
- ▶ Between the two spikes, the dynamics are  $\frac{dV}{dt} = -V + I$ .
- ► We know the solution!

$$\log\left(\frac{I}{I - V(T)}\right) = \log\left(\frac{I}{I - \theta}\right) = T$$

► So the f-I curve is

$$f(I) = \frac{1}{T} = \begin{cases} 0 & I \leq \theta \\ \frac{1}{\log(\frac{I}{I-\theta})} & I > \theta \\ \frac{1}{\log(\frac{I}{I-\theta})} & I > \theta \end{cases}$$

#### What does the f-I curve tell us?



If the spike frequency is measured extra-cellularly, does the f-l curve give us the input?

#### What does the f-I curve tell us?



If the spike frequency is measured extra-cellularly, does the f-I curve give us the input?

Not necessarily. What if the input is noisy?



#### What does the f-I curve tell us?



If the spike frequency is measured extra-cellularly, does the f-I curve give us the input?

Not necessarily. What if the input is noisy?











In today's exercise we'll explore the f-I curve and the ISI distribution for different types of inputs to a LIF neuron.

Is a synapse a number?

What is the appropriate way to model the input I?

### Is a synapse a number?

What is the appropriate way to model the input I?

If a synapse **is** a number,  $I = w \times \text{presynaptic activity}$ 

### Is a synapse a number?

What is the appropriate way to model the input I?

If a synapse is a number,  $I = w \times presynaptic activity$ 

Alas, **short-term plasticity** (facilitation and depression) exists.



Hubbard, 1963

## Synaptic model of short term plasticity, Tsodyks Markram

Dynamics of synaptic resources:

recovered: 
$$\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} = \frac{\mathbf{z}}{\tau_{\mathrm{rec}}} - U_{\mathrm{SE}} \mathbf{x} \, \delta(t - t_{\mathrm{s}})$$

active:  $\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} t} = -\frac{\mathbf{y}}{\tau_{\mathrm{in}}} + U_{\mathrm{SE}} \mathbf{x} \, \delta(t - t_{\mathrm{s}})$ 

inactive:  $\frac{\mathrm{d} \mathbf{z}}{\mathrm{d} t} = \frac{\mathbf{y}}{\tau_{\mathrm{in}}} - \frac{\mathbf{z}}{\tau_{\mathrm{rec}}}$ 

## Synaptic model of short term plasticity, Tsodyks Markram

Dynamics of synaptic resources:

recovered: 
$$\frac{\mathrm{d} x}{\mathrm{d} t} = \frac{z}{\tau_{\mathrm{rec}}} - U_{\mathrm{SE}}^{1} \times \delta(t - t_{s})$$

active:  $\frac{\mathrm{d} y}{\mathrm{d} t} = -\frac{y}{\tau_{\mathrm{in}}} + U_{\mathrm{SE}}^{1} \times \delta(t - t_{s})$ 

inactive:  $\frac{\mathrm{d} z}{\mathrm{d} t} = \frac{y}{\tau_{\mathrm{in}}} - \frac{z}{\tau_{\mathrm{rec}}}$ 

## Synaptic model of short term plasticity, Tsodyks Markram

Dynamics of synaptic resources:

recovered: 
$$\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} = \frac{\mathbf{z}}{\tau_{\mathrm{rec}}} - U_{\mathrm{SE}}^{1} \mathbf{x} \, \delta(t - t_{s})$$

active:  $\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} t} = -\frac{\mathbf{y}}{\tau_{\mathrm{in}}} + U_{\mathrm{SE}}^{1} \mathbf{x} \, \delta(t - t_{s})$ 

inactive:  $\frac{\mathrm{d} \mathbf{z}}{\mathrm{d} t} = \frac{\mathbf{y}}{\tau_{\mathrm{in}}} - \frac{\mathbf{z}}{\tau_{\mathrm{rec}}}$ 

To model facilitation,  $U_{\rm SE}$  also changes with time

facilitation: 
$$\frac{\mathrm{d}U_{\mathrm{SE}}^{1}}{\mathrm{d}t} = -\frac{U_{\mathrm{SE}}^{1}}{\tau_{\mathrm{facil}}} + U_{\mathrm{SE}}(1 - U_{\mathrm{SE}}^{1})\delta(t - t_{s})$$









In today's exercise we will explore quantitatively the effects of short term plasticity on the input a neuron receives and on the response of a LIF neuron model.