2

3

1

2

CLAIMS

1	 A handpiece, comprising:
2	a handpiece assembly including a handpiece housing; and
3	an insert detachably coupled to the handpiece housing, the
4	insert including an RF electrode with a conductive portion and a
5	dielectric.

- The handpiece of claim 1, further comprising:
 a cooling fluidic medium dispensing assembly coupled to the
 insert and the handpiece housing.
 - 3. The handpiece of claim 1, wherein the cooling fluidic medium dispensing assembly includes a fluid delivery member coupled to a cooling fluidic medium valve member.
 - 4. The handpiece of claim 3, wherein the cooling fluidic medium valve member is positioned in the handpiece housing.
- 5. The handpiece of claim 3, wherein the cooling fluidic medium valve member is positioned in the electrode assembly.
- 1 6. The handpiece of claim 3, wherein the fluid delivery member is positioned in the handpiece housing.
- 7. The handpiece of claim 3, wherein the fluid delivery member is positioned in the insert.
- 1 8. The handpiece of claim 3, wherein the fluid delivery member includes a nozzle.

2

3

4

1

2

3

4

1

2

3

- 9. The handpiece of claim 3, wherein the fluid delivery
 member is configured to deliver a controllable amount of cooling fluidic
 medium to the RF electrode.
- 1 10. The handpiece of claim 3, wherein the fluid delivery 2 member is configured to controllably deliver a cooling fluidic medium to 3 the back surface of the RF electrode.
 - 11. The handpiece of claim 3, wherein the fluid delivery member is configured to controllably deliver fluid to a backside of the RF electrode to evaporatively cool the RF electrode and conductively cool a skin surface in contact with the front side of the RF electrode.
 - 12. The handpiece of claim 3, wherein the fluid delivery member is configured to controllably deliver a cooling fluidic medium to the back surface of the RF electrode at substantially any orientation of the front surface of the RF electrode relative to a direction of gravity.
 - 13. The handpiece of claim 3, wherein the RF electrode is sufficiently sealed to minimize flow of a cooling fluidic medium from the back surface of the RF electrode to a skin surface in contact with the front surface of the RF electrode.
- 1 14. The handpiece of claim 1, wherein the insert includes a 2 vent.
- 1 15. The handpiece of claim 3, wherein the cooling fluidic 2 medium valve member is configured to provide a pulsed delivery of a 3 cooling fluidic medium.

2

3

1

2

3

4

3

1

2

3

1

2

3

- 1 16. The handpiece of claim 3, wherein the cooling fluidic 2 medium valve member includes a solenoid valve.
- 1 17. The handpiece of claim 1, further comprising:
- 2 a force sensor coupled to the RF electrode.
- 1 18. The handpiece of claim 17, wherein the force sensor is 2 configured to detect an amount of force applied by the RF electrode 3 against a surface.
 - 19. The handpiece of claim 17, wherein the force sensor is configured to zero out gravity effects of the weight of the electrode assembly.
 - 20. The handpiece of claim 17, wherein the force sensor is configured to zero out gravity effects of the weight of the electrode assembly in any orientation of a front surface of the RF electrode relative to a direction of gravity.
- 21. 1 The handpiece of claim 17, wherein the force sensor is 2 configured to provide an indication of RF electrode contact with a skin surface.
 - 22. The handpiece of claim 17, wherein the force sensor is configured to provide a signal indicating that a force applied by the RF electrode to a contacted skin surface is below a minimum threshold.
 - 23. The handpiece of claim 17, wherein the force sensor is configured to provide a signal indicating that a force applied by the RF electrode to a contacted skin surface is above a maximum threshold.
 - 24. The handpiece of claim 17, further comprising:

2	a tare	e button coupled to the force sensor.
1	25.	The handpiece of claim 1, wherein the RF electrode
2	includes a fl	ex circuit.
1	26.	The handpiece of claim 25, wherein the flex circuit is
2	configured to	o isolate flow of a cooling fluidic medium from a back
3	surface of th	ne RF electrode to a front surface of the RF electrode.
1	27.	The handpiece of claim 25, wherein the flex circuit is
2	configured to	o create a reservoir for a cooling fluidic medium that
3	gathers at a	back surface of the RF electrode.
1	28.	The handpiece of claim 17, wherein the RF electrode
2	includes a co	onductive portion and a dielectric portion.
1	29.	The handpiece of claim 17, wherein the RF electrode is
2	configured to	be capacitively coupled to a skin surface when at least a
3	portion of th	e RF electrode is in contact with the skin surface.
1	30.	A handpiece, comprising:
2	a han	dpiece assembly including a handpiece housing;
3	an ins	sert detachably coupled to the handpiece housing; and
4	an RF	electrode positioned in the insert, the RF electrode
5	including a f	

The handpiece of claim 30, further comprising:

a cooling fluidic medium dispensing assembly coupled to the

insert and the handpiece housing.

31.

1 2

2

1

2

1

1	32.	The handpiece of claim 30, wherein the cooling fluidic
2	medium disp	pensing assembly includes a fluid delivery member coupled
3	to a cooling	fluidic medium valve member.

- 33. The handpiece of claim 32, wherein the cooling fluidic medium valve member is positioned in the handpiece housing.
- 1 34. The handpiece of claim 32, wherein the cooling fluidic 2 medium valve member is positioned in the electrode assembly.
- 1 35. The handpiece of claim 32, wherein the fluid delivery member is positioned in the handpiece housing.
 - 36. The handpiece of claim 32, wherein the fluid delivery member is positioned in the insert.
 - 37. The handpiece of claim 32, wherein the fluid delivery member includes a nozzle.
- 1 38. The handpiece of claim 32, wherein the fluid delivery 2 member is configured to deliver a controllable amount of cooling fluidic 3 medium to the RF electrode.
- 1 39. The handpiece of claim 32, wherein the fluid delivery 2 member is configured to controllably deliver a cooling fluidic medium to 3 the back surface of the RF electrode.
- 1 40. The handpiece of claim 32, wherein the fluid delivery 2 member is configured to controllably deliver fluid to a backside of the 3 RF electrode to evaporatively cool the RF electrode and conductively 4 cool a skin surface in contact with the front side of the RF electrode.

2

3

4

1

2

3

1

L	41. The handpiece of claim 32, wherein the fluid delivery
2	member is configured to controllably deliver a cooling fluidic medium to
3	the back surface of the RF electrode at substantially any orientation of
1	the front surface of the RF electrode relative to a direction of gravity.

- 42. The handpiece of claim 32, wherein the RF electrode is sufficiently sealed to minimize flow of a cooling fluidic medium from the back surface of the RF electrode to a skin surface in contact with the front surface of the RF electrode.
- 1 43. The handpiece of claim 30, wherein the insert includes a 2 vent.
 - 44. The handpiece of claim 32, wherein the cooling fluidic medium valve member is configured to provide a pulsed delivery of a cooling fluidic medium.
 - 45. The handpiece of claim 32, wherein the cooling fluidic medium valve member includes a solenoid valve.
- 1 46. The handpiece of claim 30, further comprising: 2 a force sensor coupled to the RF electrode.
- 1 47. The handpiece of claim 46, wherein the force sensor is 2 configured to detect an amount of force applied by the RF electrode 3 against a surface.
- 1 48. The handpiece of claim 46, wherein the force sensor is 2 configured to zero out gravity effects of the weight of the electrode 3 assembly.

1	49. The handpiece of claim 46, wherein the force sensor is
2	configured to zero out gravity effects of the weight of the electrode
3	assembly in any orientation of a front surface of the RF electrode
4	relative to a direction of gravity.

- 50. The handpiece of claim 46, wherein the force sensor is configured to provide an indication of RF electrode contact with a skin surface.
- 51. The handpiece of claim 46, wherein the force sensor is configured to provide a signal indicating that a force applied by the RF electrode to a contacted skin surface is below a minimum threshold.
- 52. The handpiece of claim 46, wherein the force sensor is configured to provide a signal indicating that a force applied by the RF electrode to a contacted skin surface is above a maximum threshold.
 - 53. The handpiece of claim 46, further comprising: a tare button coupled to the force sensor.
- 54. The handpiece of claim 30, wherein the flex circuit is configured to isolate flow of a cooling fluidic medium from a back surface of the RF electrode to a front surface of the RF electrode.
- 55. The handpiece of claim 30, wherein the flex circuit is configured to create a reservoir for a cooling fluidic medium that gathers at a back surface of the RF electrode.
- 1 56. The handpiece of claim 30, wherein the RF electrode 2 includes a conductive portion and a dielectric portion.

2

3

1

1	57.	The handpiece of claim 30, wherein the RF electrode is
2	configured t	o be capacitively coupled to a skin surface when at least a
3	portion of th	e RF electrode is in contact with the skin surface.

- 1 58. A handpiece, comprising:
- a handpiece assembly including a handpiece housing; and an insert detachably coupled to the handpiece housing, the insert including a flex circuit and an RF electrode that includes a conductive portion and a dielectric.
- 1 59. The handpiece of claim 58, further comprising: 2 a cooling fluidic medium dispensing assembly coupled to the 3 insert and the handpiece housing.
 - 60. The handpiece of claim 58, wherein the cooling fluidic medium dispensing assembly includes a fluid delivery member coupled to a cooling fluidic medium valve member.
 - 61. The handpiece of claim 60, wherein the cooling fluidic medium valve member is positioned in the handpiece housing.
- 1 62. The handpiece of claim 60, wherein the cooling fluidic 2 medium valve member is positioned in the electrode assembly.
- 1 63. The handpiece of claim 60, wherein the fluid delivery 2 member is positioned in the handpiece housing.
- 1 64. The handpiece of claim 60, wherein the fluid delivery 2 member is positioned in the insert.
- 1 65. The handpiece of claim 60, wherein the fluid delivery 2 member includes a nozzle.

2

3

4

1

2

3

4

1

2

3

- 1 66. The handpiece of claim 60, wherein the fluid delivery 2 member is configured to deliver a controllable amount of cooling fluidic 3 medium to the RF electrode.
- 1 67. The handpiece of claim 60, wherein the fluid delivery 2 member is configured to controllably deliver a cooling fluidic medium to 3 the back surface of the RF electrode.
 - 68. The handpiece of claim 60, wherein the fluid delivery member is configured to controllably deliver fluid to a backside of the RF electrode to evaporatively cool the RF electrode and conductively cool a skin surface in contact with the front side of the RF electrode.
 - 69. The handpiece of claim 60, wherein the fluid delivery member is configured to controllably deliver a cooling fluidic medium to the back surface of the RF electrode at substantially any orientation of the front surface of the RF electrode relative to a direction of gravity.
 - 70. The handpiece of claim 60, wherein the RF electrode is sufficiently sealed to minimize flow of a cooling fluidic medium from the back surface of the RF electrode to a skin surface in contact with the front surface of the RF electrode.
- The handpiece of claim 58, wherein the insert includes a vent.
- The handpiece of claim 60, wherein the cooling fluidic medium valve member is configured to provide a pulsed delivery of a cooling fluidic medium.

2

3

1

1	73. The handpiece of claim 60, wherein the cooling fluidic
2	medium valve member includes a solenoid valve.
1	74. The handpiece of claim 58, further comprising:
	·
2	a force sensor coupled to the RF electrode.
1	75. The handpiece of claim 74, wherein the force sensor is
2	configured to detect an amount of force applied by the RF electrode
3	against a surface.
1	76. The handpiece of claim 74, wherein the force sensor is
2	configured to zero out gravity effects of the weight of the electrode
3	assembly.
1	77. The handpiece of claim 74, wherein the force sensor is
	·
2	configured to zero out gravity effects of the weight of the electrode
3	assembly in any orientation of a front surface of the RF electrode
4	relative to a direction of gravity.
1	78. The handpiece of claim 74, wherein the force sensor is
2	configured to provide an indication of RF electrode contact with a skin
3	surface.
1	79. The handpiece of claim 74, wherein the force sensor is
2	configured to provide a signal indicating that a force applied by the RF
3	electrode to a contacted skin surface is below a minimum threshold.

81. The handpiece of claim 74, further comprising:

configured to provide a signal indicating that a force applied by the RF

electrode to a contacted skin surface is above a maximum threshold.

The handpiece of claim 74, wherein the force sensor is

80.

3

1

2

3

2	a tar	e button coupled to the force sensor.
1	82	The handniece of claim 58, wherein th

a tare button coupled to the force sensor.

- The handpiece of claim 58, wherein the flex circuit is configured to isolate flow of a cooling fluidic medium from a back surface of the RF electrode to a front surface of the RF electrode.
- The handpiece of claim 58, wherein the flex circuit is 1 83. configured to create a reservoir for a cooling fluidic medium that 2 gathers at a back surface of the RF electrode. 3
 - The handpiece of claim 58, wherein the RF electrode is 84. configured to be capacitively coupled to a skin surface when at least a portion of the RF electrode is in contact with the skin surface.