ELECTROSTATIC CHUCK

Patent Number:

JP9172057

Publication date:

1997-06-30

Inventor(s):

TATSUMI YOSHIAKI;; MIYATA SEIICHIRO

Applicant(s):

SOUZOU KAGAKU:KK;; MIYATA R ANDEI:KK

Requested Patent:

JP9172057

Application Number: JP19950354545 19951220

Priority Number(s):

IPC Classification:

H01L21/68; B23Q3/15; H01L21/205; H01L21/3065; H02N13/00

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To reduce time required for evacuation by preheating and enhance attracting capability by forming electrostatic induction electrodes in a heater circuitlike pattern on the back of a dielectric ceramic, and using them both for heating and for electrostatic induction. SOLUTION: Two electrodes are formed using heater wires 1, 2, and heater circuits 1, 2 are formed by sticking a metal film in a heater circuit pattern to the underside of a dielectric ceramic. The metal film is formed by metal paste baking, sputtering, fusion welding of activated metal or the like. To heat the heater wires 1, 2, a heater power supply is connected to the terminals a, b of the heater wire 1 and th terminals c, d of the heater wire 2. To use the electrostatic chuck for the attracting purpose, a directcurrent voltage is applied to the terminal a of the heater wire 1 and the terminal d of the heater wire 2.

Data supplied from the esp@cenet database - 12

PTO HAS COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公閱番号

特開平9-172057

(43)公開日 平成9年(1997)6月30日

(51) Int.Cl.*		酸別記号	庁内整理番号	FI			技術表示箇所
H01L	21/68			H01L 2	1/68	I	R
B 2 3 Q	3 Q 3/15		B23Q	B 2 3 Q 3/15 D			
H01L	21/205			H01L 2	1/205		
	21/3065	5		H02N 1	3/00	D	
H02N	13/00			H01L 2	1/302	В	
				審查請求	未請求	請求項の数7	書面(全 6 頁)
(21) 出願番号		特願平7-354545		(71)出額人	591012266		
					株式会社	上創造科学	
(22)出顧日		平成7年(1995)12月20日			川崎市高	6津区下作延802	3
				(71)出頭人			
					有限会社ミヤタアールアンディ		
						県下関市長府中土居本町 9 —10	
				(72) 発明者 辰己			
						5 津区下作延802	株式会社創造科
					学内		
				(72) 発明者		- ··	
					比例的	長府中土居本町	9 – 10

(54) 【発明の名称】 静電チャック

(57)【要約】

【課題】 電熱ヒーターの機能を備えた静電チャックにかかわり、さらに詳しくは、予備加熱して使用する静電チャックあるいは数百度の温度で使用する静電チャックの構造にかかわる。

【解決方法】 誘電体セラミックの背面に形成された静電誘導電極の背面に絶縁セラミック層が一体的に接合され、該絶縁セラミック層の背面に電熱ヒーター回路が一体的に形成されてなることを特徴とする。

【特許請求の範囲】

【請求項1】誘電体セラミックの背面に電熱ヒーターの 回路模様形状の静電誘導電極が形成され、該電極がヒー ター加熱と静電誘導の両方に共用されてなることを特徴 とする静電チャック。

【請求項2】誘電体セラミックの背面に形成された静電 誘導電極の背面にセラミック絶縁体を間に挟んで電熱ヒ ーター回路が一体的に接合されてなることを特徴とする 静電チャック。

【請求項3】誘電体セラミックの背面に形成された静電 10 誘導電極の背面に電熱ヒーターを内蔵したセラミック絶 緑体が接合一体化されてなることを特徴とする静電チャ

【請求項4】誘電体セラミックの背面に形成された静電 誘導電極の背面にセラミック絶縁体を間に挟んで金属で 鋳包んだ電熱ヒーターが接合一体化されてなることを特 徴とする静電チャック。

【請求項5】上記セラミック絶縁体と鋳包み金属の接合 面に応力緩衝板がインサートされて接合されてなる請求 項4に記載の静電チャック。

【請求項6】誘電体セラミックの背面に金属で鋳包んだ 電熱ヒーターが接合一体化されてなることを特徴とする 静電チャック。

【請求項7】上記誘電体セラミックと鋳包み金属の接合 面に応力緩衝板がインサートされて接合されてなる請求 項6に記載の静電チャック。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電熱ヒーターの機能を 備えた静電チャックにかかわり、さらに詳しくは、予備 30 合―体化されてなることを特徴とする静電チャック。 加熱して使用する静電チャックあるいは数百度の温度で 使用する静電チャックの構造にかかわるものである。

[0002]

【従来の技術】半導体基板のプラズマ処理では、たとえ ばプラズマCVDあるいはレジストのアッシング処理で は基板を数百度(例えば300~600℃)の温度下で 処理する場合がある。かかる処理に当たって基板は処理 台に保持固定する必要があり、現状は基台に機械的にク ランプする方法が取られている。機械的なクランピング は取り付け、取り外しが繁雑な上にクランプする治具が 40 当たった部分は処理できずこの部分はロスになる。クラ ンプによるロスを無くし、しかも取り付け取り外しが簡 単で自動化できる機構として静電チャックによる吸着固 定方式があるが、現実、数百度の温度で使用できる静電 チャックは存在しない。かかる機能を満足させる静電チ ャックには、静電吸着機構部にヒーター機能が接続され ていることが必須である。数百度のヒーター機能部を吸 着機構部に接続するには機械的な接続では熱伝達性で問 題があるし、また、もちろん有機接着剤は使用できず、

らざるを得ず、これが難問である。また、静電チャック に関して次のようなニーズもある。半導体基板に限らず 被処理物を静電チャックで吸着固定して真空チャンバー に入れて真空引きする際に、被処理物に湿分が付着して いると所定の真空度を得るのに相当長時間かかる。被処 理物の予熱ができればこれは相当改善される。これには 静電チャックにヒーター機能が備わっておれば解決でき る。いずれの場合にせよ、静電チャックにヒーター機能 が備われば問題は解決できる。

[0003]

【発明が解決する課題】本発明は、かかる問題に鑑みて なされたもので、その目的とするところは、予熱用のヒ ーター機能、あるいはヒーター機能と髙温下での吸着機 能の両方を備えた新しい構造の静電チャックを提供せん とするものである。

[0004]

【課題を解決するための手段】本発明者らは上記問題に 関して鋭意研究を行った結果、上記問題は次の手段で解 決できることを見いだした。すなわち、

- 1. 誘電体セラミックの背面に電熱ヒーターの回路模様 20 形状の静電誘導電極が形成され、該電極がヒーター加熱 と静電誘導の両方に共用されてなることを特徴とする静 電チャック。
 - 2. 誘電体セラミックの背面に形成された静電誘導電極 の背面にセラミック絶縁体を間に挟んで電熱ヒーター回 路が一体的に接合されてなることを特徴とする静電チャ ック。
 - 3. 誘電体セラミックの背面に形成された静電誘導電極 の背面に電熱ヒーターを内蔵したセラミック絶縁体が接
 - 4. 誘電体セラミックの背面に形成された静電誘導電極 の背面にセラミック絶縁体を間に挟んで金属で鋳包んだ 電熱ヒーターが接合一体化されてなることを特徴とする 静電チャック。
 - 5. 上記セラミック絶縁体と鋳包み金属の接合面に応力 **緩衝板がインサートされて接合されてなる4に記載の静** 電チャック。
 - 6. 誘電体セラミックの背面に金属で鋳包んだ電熱ヒー ターが接合―体化されてなることを特徴とする静電チャ ック。
 - 7. 上記誘電体セラミックと鋳包み金属の接合面に応力 **緑衝板がインサートされて接合されてなる6 に記載の静** 電チャック。

[0005]

【発明の実施の形態】静電チャックを加熱したい場合、 ヒーター機構を別個に取り付ける必要がある。ヒーター 付きの静電チャックは構造が複雑になる。しかしながら 吸着と加熱を同時に行う必要がないとき、たとえば予熱 だけを行いたいような場合、静電誘導電極にヒーター機 無機接着剤では剥離の問題がある。結局冶金的接合に頼 50 能を付与できる。すなわち、誘電体セラミックの背面に

形成された静電誘導電極をヒーターの回路模様の形状に し、静電誘導とヒーター加熱の両方に共用できるように し、これを交互に切り替えて使用できるようにすると、 これが可能になる。本発明の第一項発明は、この場合を 考えた構造である。

[0006] 静電吸着だけを目的にした電極では、電極 面は連続した面体であるが、第一項発明の電極はヒータ 一回路が切り込まれている。一つの電極面は連続した一 本のヒーター線からなり、各線は絶縁が損なわれない範 はヒーター加熱電源と接続される。一方静電吸着に当た っては、ヒーター線の両端あるいは一端が静電吸着用直 流電源の一方の端子に接続されることとなる。ヒーター 加熱と吸着はこの回路を切り替えて行うこととなる。静 電チャックでは、単極、双極、二組の電極構造がある が、1項発明では、単極では加熱、吸着共用の一組の回 路が誘電体セラミック背面に形成され、双極では二組の 回路が別々に配置されて形成されている。

【0007】電極、ヒーター回路は誘電体セラミックの 背面にヒーターの回路模様に金属膜を固着させることに 20 よって形成される。膜の固着には、金属ペーストの焼付 け、スパッタリング、活性金属の融接等、通常のメタラ イズ手法が利用できる。電極金属には、Pt、Pd、P t-Pd台金、Ag, Ni-Cr合金.Fe-Cr-A し合金等、高融点貴金属、耐熱、耐酸化金属が適宜使用 できる。電極金属の厚さは、使用する金属の固有抵抗に よって変わってくるが、概ね1~100ミクロン程度の 範囲がよい。

【0008】第2~5項発明は吸着と加熱を同時に行う 場合の構造である。第2項発明は第一項発明の吸着と加 熱の機構を分離した構造で、吸着電極とヒーター回路が 分離された構造である。第3項発明は電熱ヒーターを内 蔵したセラミック絶縁体が誘電電極の背面に接合された 構造。第4~7項発明は金属鋳包ヒーターが誘電電極の 背面に接合されたもので、4,5項発明は静電電極と鋳 包ヒーターが絶縁されたもの、6,7項発明は静電電極 と鋳包ヒーターが電気的に導通したもので、このうち 5. 7項は応力緩衝板を間に挟んで接合されたものであ る。6. 7項発明は単極方式に限られる。

【0009】第2項発明で使用されるヒーター回路は第 40 1項発明のヒーター回路と同じ構造、手法のものをその まま適用できる。

【0010】第2~7項発明の静電電極は、使用温度で 溶解せず、半導体に為害性のない金属で形成され、誘電 体セラミック及び背面のセラミック絶縁板に融着あるい は焼結されている。

【0011】金属鋳包ヒーターはアルミニウム、銅の鋳 造金属でニクロム線、カンタル線等のヒーター線が鋳包 まれたものであるが、この鋳包金属とセラミックを接合 すると熱膨脹係数の違いによりセラミックが破壊される 50

場合が多い。このような場合、接合部に応力緩衝材を入 れて接合するとよい。応力緩衝材の材質は接合するセラ ミックの種類によって異なるが、鋳包ヒーターが銅、ア ルミニウムでセラミックがアルミナ系、つまり熱膨脹係 数が7~8×10°の場合、熱膨脹係数が4~12×1 0°の材料、例えば、W. Mo, Nb, Cr, 42%N irul, 42Ni-6Cr, Ti, Ni, WC-Co 超硬合金、TiC-Niサーメット、炭素鋼、特殊鋼、 さらにW-Cu, W-AL, Mo-Cu, Mo-AL等 囲で接近して配置されている。一本のヒーター線の両端 10 の複合材料等々が適宜使用できる。セラミックが炭化ケ イ素、窒化アルミニウム系、つまり熱膨脹係数が4~5 ×10° の場合、熱膨脹係数が3~7×10° の材料、 例えば、W. Mo, Nb, Cr, 42%Niアロイ、W C-Co超硬合金、TiC-NiサーメットさらにW-Cu, W−AL, Mo−Cu、Mo−AL等の複合材料 等々が適宜使用できる。

> 【0012】ととで本明細書での「接合」とは、冶金的 接合、機械的接合、および接着を包括して表現したもの であり、冶金的接合のみに限定されるものではないが、 伝熱性、熱効率を考慮すると、冶金的接合が最も好まし い。なお冶金的接合とは、ろうづけ、拡散接合を意味 し、活性金属を使って直接接合してもよいし、あるいは 予め接合面をメタライズしてろうづけ、拡散接合しても よい。接着は、無機、有機接着剤を使用した接着である が、高温用途には無機接着剤に限られる。

[0013]また、第2、3、4、5項発明のセラミッ ク絶縁体は、電気絶縁性のセラミック体であればよく、 必ずしも焼結材料に限定されない。セラミック溶射、ス パッタリング、CVD、PVD、あるいはセラミック粉 末ペーストを塗布、硬化させる方法、あるいはその他の 通常の成膜手段で形成した被膜でもよい。

【0014】第3項発明の電熱ヒーターを内蔵したセラ ミック絶縁体とは、電熱ヒーター線あるいは電熱ヒータ 一回路を内蔵したセラミック絶縁体を意味する。つまり 発熱体はヒーター線でもよいしヒーター回路でもよく、 この発熱体がセラミック絶縁体に内蔵されたものであ る。内蔵とは一枚のセラミックの中に埋め込み等で内蔵 させる場合、あるいは二枚、あるいは三枚以上のセラミ ックを組み合わせて内蔵させる場合がある。いずれでも よい。

【0015】なお、本発明の誘電体セラミックは、必ず しも焼成体のみに限定されるものではなく、セラミック 溶射によって形成されたもの、あるいはその他の成膜手 法によって形成されたものでもよい。

【0016】また、本発明静電チャックは、本発明だけ、 の構造でそのまま目的の用途に供してもよいし、あるい は必要に応じて更に別の機構と接続あるいは接合して使 用に供してもよい。

[0017]

【実施例】本発明構造を図面で説明する。図1は第1項

発明の誘電電極とヒーター回路の構造を説明した図であ る。図2は第2項発明の構造を説明した図、図3は第2 項発明のヒーター回路を説明した図である。図4,5は 第3項発明の構造を説明した図である。図4はヒーター 線埋め入れタイプの説明図。図5はヒーター回路埋込み タイプの説明図。図6は第5項発明の構造を説明した図 である。図7は第7項発明の構造を説明した図である。 【0018】図1は双極方式のヒーター回路と誘電電極 の構造を説明した図である。一つの電極は一本のヒータ ー線で図のようなパターンに作られる。ヒーター線1. 2で二つの電極が作られる。加熱する際は、端子イ、 ロ、端子ハ、二がそれぞれヒーター電源と接続される。 吸着の際は、端子イと端子ニに直流電圧が印加される。 電極は、0.3mm厚さ、φ100mmのサファイア (誘電体セラミック) に60Pt-40Pd合金の粉末 とガラス (1%) 混合ペーストを図のようなパターン状 に焼き付けることによって形成されたものである。パタ ーン厚約10ミクロン、幅1mmに焼付けたもので、1 ~2×10^{- 4} Q−cmの比抵抗があり、50~100 *C/minの加熱スピードで割れることもなく昇温でき 20 た。300℃に昇温後、端子を切り替え、端子イとニに 直流1000V印加した。シリコンウエハーを吸着固定 できた。

【0019】図2はヒーター回路と誘電電極が別々の構 造で、電極が単極構造の場合の説明図であり、図3は図 2の構造のヒーター回路の形状の説明図である。電極と ヒーター回路は絶縁板(アルミナ)を挟んで独立して別 々に形成される。ヒーター回路は一本のヒーター線で図 3のようなパターンに作られる。誘電体セラミック (O. 3mm厚さ、φ100mmのアルミナ質焼結体を 30 使用) と絶縁板(l m m 厚さ、 φ l 0 0 m m のアルミナ 焼結体)の接合は、活性金属(Ag-25%Cu-5% Ti合金)を使用して真空ロー付。本例は単極であり、 誘電体セラミックと絶縁板の接合金属層が電極となる。 ヒーター回路は、図1と同じく、60Pt-40Pd合 金の粉末とガラス(1%)混合ベーストを図3のパター ン状に焼き付けることによって形成。図1の場合と同じ く、パターン厚約10ミクロン、幅1mmに焼付けたも ので、 $1\sim2\times10^{-4}$ Ω -cmの比抵抗があり、50 ~100℃/minの加熱スピードで割れることもなく 昇温できた。本例は加熱と吸着を同時に行った。加熱は ヒーター線の端子イ、口とヒーター電源接続。吸着は誘 電電極を直流電源を接続して600V印加。ヒーター加 熱開始後300℃に至まで安定してシリコンウエハーを 吸着固定できた。

[0020] <図4の構造>図4は単極方式で、アルミナ質の多結晶焼結体からなる誘電体セラミック(φ100mm、厚さ0.2mm、)に、ヒーター埋入用溝のあるアルミナ質の絶縁体がろうづけされた構造であり、ろう材金属の部分が誘電電極となる。ろう材にはAg-250

5%Cu-5%Ti合金を使用して真空中で加熱(850℃)接合した。ヒーターにはカンタル線を使用し、ヒーター線埋入溝に埋入し、上からアルミナ系無機接着剤を充填して固めた。絶縁体はアルミナ焼結体で、誘電体セラミックとは熱膨脹係数はほとんど同じであり、50~100℃/minの急熱、急冷でも接合部に割れは発生しなかった。500℃に昇温し、ろう材金属の部分と表面に載置したシリコンウエハーの間に直流1000℃を印加した。シリコンウエハーを吸着固定できた。

【0021】<図5の構造>図5の構造も単極方式で、 アルミナ質の多結晶焼結体からなる誘電体セラミック (φ100mm、厚さ0.2mm、) に、ヒーター回路 を埋め込んだアルミナ質の絶縁板がろうづけされた構造 であり、ろう材金属の部分が誘電電極となる。ろう材に は同じくAg-25%Cu-5%Ti合金を使用して真 空中で加熱(850℃)接合した。ヒーター回路は2枚 のアルミナ質絶縁板(厚さ1mm)の間に、図2の場合 と同じく、60Pt-40Pd合金のパターンを間に挟 んでに焼き付けた構造である。絶縁体は、アルミナ質の 誘電体セラミックとは熱膨脹係数はほとんど同じであ り、50~100℃/minの急熱、急冷でも接合部に 割れは発生しなかった。500℃に昇温し、ろう材金属 の部分と表面に載置したシリコンウエハーの間に直流 1 000Vを印加した。シリコンウエハーを吸着固定でき tc.

[0022]<図6の構造>双極方式の誘電電極をアルミナ質の誘電体セラミック($\phi100$ mm、厚さ0.3 mm)の裏に形成。電極は、Tiスパッタリングし、この上にさらにNiメッキして形成。5 mmのアルミナ絶縁板の片面に上と同じ手法で双極の電極パターン形成(Tiスパッタリング+Niメッキ)。双極の電極面を向合わせ、位置合せしてロー付(BAg-8)。アルミナ絶縁板の反対側は全面、5 mmのTi 板を間にはさんで銅鋳込みヒーターとろうづけ(BAg-8 で銀ろう付)。鋳込みヒーターを加熱して300 ℃に加熱し、双極に直流電圧(600 V)印加してシリコンウエハー吸着できた。

[0023]図7は、SiC系の誘電体セラミック(厚さ1mm、 φ50mm)が、厚さ5mm、 φ50mmの Mo板を間にはさんでアルミニウム鋳込みヒーターとろうづけされた構造である。この場合Mo、アルミニウム 鋳込みヒーター全体が電極(単極)を兼ねる。SiC系の誘電体セラミックとMoは活性金属(Ag-25%Cu-5%Ti)でロー付。Moとアルミニウム鋳込みヒーターはアルミニウムろうでロー付した。鋳込みヒーターを加熱して200℃に加熱し、電極に直流電圧(400V)印加してシリコンウエハー吸着できた。

[0024]

【発明の効果】以上詳記したように本発明はヒーター機能を備えた静電チャックであり、予熱による真空引き時

7

間の軽減および半導体基板等の被吸着物の加熱処理に著効を有するものである。

【図面の簡単な説明】

【図1】図1は第1項発明の誘電電極とヒーター回路の構造を説明した図である。

[図2]図2は第2項発明の構造を説明した図(断面図)である。

【図3】図3は第2項発明のヒーター回路を説明した図である。

* 【図4】図4は第3項発明の構造を説明した図であり、 ヒーター線埋め入れタイプの説明図である。

【図5】図5は第3項発明の構造を説明した図であり、 ヒーター回路埋め込みタイプの説明図である。

【図6】図6は第5項発明の構造を説明した図である。

[図7] 図7は第7項発明の構造を説明した図である。 【符号の説明】

1, 2… ヒーター線

イ、ロ、ハ、ニ… 端子

【図1】

[図3]

【図2】

【図4】

[図5]

【図6】

【図7】

