example:

a) non-perturbate ETP

a') porturbate ETP

Examples:

Solve the next TP. if the second volution which we obtain it isn't optimal white

doubt continue the algorithm:

Becouse, 29:= 70 > 25;=55

we have a NeTP, so we must to equilibrate.

Fage:		3,	32	53	SL	
0	w,	3	2	1	0	20'.
	,	20	10	*	*	30,10,0
	WZ	*	5	15	*	20,15,0
1	wz	* 2	* 1	5 3	15	20,15,0
		20	思	30	15	
		Ų	. S	50	0	

to find the iBAS: \overline{X}_0 ($\overline{x}_{11}=20$; $\overline{x}_{12}=10$; $\overline{x}_{22}=5$;

the other 2: = * = 0

\$ (TOO) = 145

: we check if to it's optimal robution

$$\delta_{13} = -1 + 2 - 4 + 2 = -1$$

$$\delta_{14} = -0 + 0 - 3 + 2 - 4 + 2 = -3$$

$$\delta_{21} = -1 + 3 - 2 + 4 = \frac{4}{50}$$

$$\delta_{24} = -0 + 0 - 3 + 2 = -1$$

631=-2+3-2+4-2+3=4>0

! soit ules lemitgo + noi ti ox ca ocijo(E) (=

J droce (52111

(3) we apply the imped oridorea : 6: = max { & ke >0} = max { \delta_{21} \delta_{31} \delta_{32} \right] = \delta_{21} => \times_{21}

	SI	52	53	st
w,	15	15	×	¥ 30
W ₂	5 1	* 4	5 2	» [0 20
W3	* [2	* [4]	5 3	15 20
	20	15	20	15

$$\overline{X}_{1}: \{\overline{x}_{11} = 15, \overline{x}_{12} = 15, \overline{x}_{21} = 5, \overline{x}_{23} = 5, \overline{x}_{33} = 5, \overline{x}_{34} = 15 + baric components
 $\{\overline{x}_{13} = \overline{x}_{14} = \overline{x}_{22} = \overline{x}_{24} = \overline{x}_{31} = \overline{x}_{32} = 0 (=_{11}^{14})_{1} - non-baric (free) omponents
= f(x_{1}) = 115 (< f(x_{0}))$$$

1 We alrect if To it is a optimal solution:

p)	5,	32	5.			
w	20	0 2	* 1	36,0	1	X
W ₂	* 3	15 4	* [3	15,0	1	
W3	* 4	5 3	5 2	10,5,0		7
9.3	20	30	5	•		
	0	50	0	(2 a = 4	2=327	(i
		T.				

$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	15=0; £	=0(=1	Z=5	; 2534=5 ·	compound compound
\$(5)=125	-5 51			mpanende	

it's degenerate BAS(!!)
(10, it's possible to appear the cycle phenom.)

we apply the porturbation method

0	SI	32	53	
W	20	€ 12	*	20+E, =10,
WZ	*	15+2	* 3	15-12,0
W3	*	5-28	5+38	10+E,5+3E,0
1.	20	30€	5+32	

$$\delta_{13} = -1 + 2 - 3 + 2 = 0$$

$$\delta_{21} = -3 + 2 - 2 + 4 = 1 > 0$$

$$\delta_{33} = -3 + 2 - 3 + 4 = 0$$

$$\delta_{31} = -1 + 2 - 2 + 3 = 2 > 0$$

(3) dismax
$$\{\delta_{k\ell} > 0\} = \max \{\delta_{2i}, \delta_{3i}\} = \delta_{3i} =$$

(5)
$$S_1$$
 S_2 S_3
 W_1 $15+2\epsilon$ $5-\epsilon$ $*$ $20+\epsilon$
 W_2 $*$ $15+\epsilon$ $*$ $15+\epsilon$
 W_3 $5-2\epsilon$ $*$ $5+3\epsilon$ $10+\epsilon$
 20 20 $5+3\epsilon$

$$= \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}$$

We repeat the steps of the algorithm: