Agenda

- i) Introduction to LPS
 - -> prefix and suffix strings
 - -> LPS of a String
 - LPS[] of a string
- ii) optimised code of LPS
- iii) Pattern matching of a string
- > biven a string of N dength:

what is predix strings: substrings starting from o

what is sullix strings: substrings ending at 1-1

S: 0 1 2 3 S : 0 b 0 b

pogix	swyi x
Q	ь
aь	aь
aba	bab
abab	abab

5: a b a

podix	x itwe
a	a
аь	Ьа
aba	аьа

LPS of a string: Longest dength of Prolix which is also a sulli x. 2 exclude complete string 3

Jps(S) => 2	

pryix	sullix
а а b а b с	b ab cab
abca	bcab

5 = aaaa ups(s) => 3

5= abcdabc ups(s) => 3

pryix	sullix
a	a
αα	áa
90a	aaa

pogix	sullix
a abc abc abcd abcda abcdab	c bc abc dabc cdabc bcdabc
	I

s=abcab	pryix	sullix	
1ps(s) => 2	а а ь	ь аь	1 (1)
	abc abca	cab bcab	3 (3) + : (n-1)
to the use of a sing	ale string		\sim \circ (n^2)

to that are of a single string $TC \Rightarrow O(n^2)$

```
Q. Univer a string s, return ups [].

Ups [i] => ups value of substring 0 to i
```

$$APS[0], S[0,0] \Rightarrow A, ans=0$$
 $APS[1], S[0,1] \Rightarrow aa, ans=1 (a)$
 $APS[2], S[0,2] \Rightarrow aab, ans=0$
 $APS[3], S[0,3] \Rightarrow aaba, ans=1 (a)$
 $APS[4], S[0,4] \Rightarrow aabaa, ans=2 (aa)$
 $APS[4], S[0,4] \Rightarrow aabaa, ans=2 (aa)$

To to calculate ups of a single stoing
$$\Rightarrow$$
 $O(n^2)$

To to calculate ups [] \Rightarrow $O(n^3)$

understanding examples

*	5.charAt(i) == 5-charAt(x)	
7	S. charAt(16) == S. charAt(7) y ≠ a	X = dps[x-1] X = dps[6] = 3
3	s. charat((1) = 5. charat(3) y == a	ans => x+1

×	s.charAt(i) == s-(harAt(x)	action $X = dps[x-1]$
11	5-CharAt(23) == S.CharAt(11)	NO) X= LPS[10] = 5
5	s. (harAf (23) == s.charAt(s)	NO, X = dps[4] = 2
2	S-cha1At(23) == S.cha1At(2)	Yes ans => x+1

×	s.charAt(i) == s-charAt(x)	action $X = dps[x-1]$
3	5-CharAt(7) == S.CharAt(3)	10, x= 4ps[2]= 1
2	s. (harAt (7) == s.charAt(1)	no, x= aps[0]=0
0	5-charAt(7) == s.charAt(0)	10, id(x==0) }
		4ns → 0

```
I ( * to ( ) pristo ) 291 ( ) to
     int n= str. length();
     (Cn] thi won = 296C] thi
      ¿0 = [0] 292
      dor (int i=1) 120) 1++) {
            int x = dps [i-1];
            while (str.charAt (i) != s.charAt(x)) }
             LPSTIJ = X+1;
      rdum ups;
3
```

ory our

	٥	1	2	3	ч	5	6	a	
5:	a	b	a	4	α	b	a	b	
Lisl?	o	0	ı	0	2	2	3	2	

dor (int i=1) 1200 1++) {

int x = dps [i-1];
while (str.charAt (i) != s.charAt(x)) }
id(x==0) {
x = -1') box ak';
x = ups[x-1];
ζ
dpslij = x + 1;

í	×	
1	ø - 1	UPS[1]= 0
2	o	4/s[2] = 1
3	7 Ø-1	UPS[3]=0
4	0	d <i>PS</i> [4]=1
5	1	4/5[5] = 2
6	2	1ps [6] =3
7	82	UPS [7]=2

total dic steps -> n

itr: 20

T c: 0(n)

O. Count occurrences of pattern P in Text T.

eg1
$$\begin{cases}
T = a & \underline{a} & \underline{b} & \underline{a} & \underline{c} \\
P = a & \underline{b} & \underline{a} & \underline{c}
\end{cases}$$
ans = 1

eg2
$$\begin{cases} T = \underbrace{a b a} d c \underbrace{a b a b a} e \\ P = \underbrace{a b a} \end{cases}$$

- i) boute josce idea: match p with all substrings of denoth

 m in T. Tc: o(n=m)
- ii) Expected TC: O(n+m)

$$S+r = > \rho + "#" + T$$

$$s + r \Rightarrow a b a \# a b a d c a b a b a e$$

$$ups[] 0 0 1 0 1 2 3 0 0 1 2 3 2 3 0$$

Str: P + "#" + T

int pattern Matching (String T, string P) {

String Str = P + "#" + T;

int ans = 0;

int [] ups = LPs (str);

dox (int i = 0; i < ups-dength(); itt) {

if (ups [i] = P. dength()) {

ans ++;

int pattern Matching (String T, string P) {

To: O(ntm)

To: O(ntm)

return ans;

ح

why putting "#" in blow of P and T is smportant.

T = QQQQ

P = aa

Is we don't put "#"

Str = P + T

Str = aaaaaa

Ups => 0 1 2 3 4 5

I we put "#"

5+ x = P + "#"+ T

str = aa # aaaa

Ups => 0101222

ans=3 /