

Chapter 2

Mathematical modelling of (small) arteries by 1D models

Structure of the vascular system

Structure of the vascular system

Domain decomposition

Domain decomposition

Domain decomposition

Cylindrical geometry

curved vessel

Assumption: circular cross section

z axis coincides with main axis of vessel (can be achieved by transformation)

S(z,t) denotes cross section at position z and time t, R(z,t) denotes the radius, accordingly

I: length of vessel

$$\Omega(t) = \{(r, \theta, z) \in \mathbb{R}^3 \mid 0 < z < l, \ 0 \le r < R(z, t), \ 0 \le \theta < 2\pi \} \subset \mathbb{R}^3$$

Momentum and continuity equations:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \left(\mathbf{u} \cdot \nabla \right) \mathbf{u} + \nabla P - \mathbf{div} \left(2\mu \mathbf{D} \right) = \mathbf{f}, \text{ in } \Omega(t), \ t > 0,$$
$$\mathbf{div} \left(\mathbf{u} \right) = 0, \text{ in } \Omega(t), \ t > 0.$$

 ρ : density, blood is assumed to be incompressible

Momentum and continuity equations:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \left(\mathbf{u} \cdot \nabla \right) \mathbf{u} + \nabla P - \mathbf{div} \left(2\mu \mathbf{D} \right) = \mathbf{f}, \text{ in } \Omega(t), \ t > 0,$$
$$\mathbf{div} \left(\mathbf{u} \right) = 0, \text{ in } \Omega(t), \ t > 0.$$

 ρ : density, blood is assumed to be incompressible

 $\mathbf{f} \equiv \mathbf{0}$: no external forces, as for example gravity

Momentum and continuity equations:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \left(\mathbf{u} \cdot \nabla \right) \mathbf{u} + \nabla P - \mathbf{div} \left(2\mu \mathbf{D} \right) = \mathbf{f}, \text{ in } \Omega(t), \ t > 0,$$
$$\operatorname{div} \left(\mathbf{u} \right) = 0, \text{ in } \Omega(t), \ t > 0.$$

 ρ : density, blood is assumed to be incompressible

 $\mathbf{f} \equiv \mathbf{0}$: no external forces, as for example gravity

$$\mathbf{D}\left(\mathbf{u}\right) = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{T}\right), \ \nabla \mathbf{u} = \begin{pmatrix} \nabla u_{1}^{T} \\ \nabla u_{2}^{T} \\ \nabla u_{3}^{T} \end{pmatrix}$$

Remark:

$$\operatorname{div}(p\mathbf{I}) = \nabla p$$

Cylinder coordinates Navier-Stokes equations (3D)

$$\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} + \frac{1}{\rho} \frac{\partial p}{\partial r} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_r}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \right) - b_r = 0$$

$$\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + v_z \frac{\partial v_\theta}{\partial z} - \frac{v_r v_\theta}{r} + \frac{1}{r\rho} \frac{\partial p}{\partial \theta} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_\theta}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} - \frac{v_\theta}{r^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \right) - b_\theta = 0$$

$$\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} + v_z \frac{\partial v_z}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial z} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right) - b_z = 0$$

$$\frac{1}{r} \frac{\partial (r v_r)}{\partial r} + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z} = 0$$

velocity vector field
$$\boldsymbol{v} = \begin{pmatrix} v_r \\ v_\theta \\ v_z \end{pmatrix} \qquad \begin{array}{c} \text{radial component} \\ \text{circumferential component} \\ \text{axial component} \end{array}$$

Cylinder coordinates Navier-Stokes equations (3D)

$$\begin{split} \frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} + \frac{1}{\rho} \frac{\partial p}{\partial r} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_r}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \right) - \partial_r &= 0 \\ \frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + v_z \frac{\partial v_\theta}{\partial z} - \frac{v_r v_\theta}{r} + \frac{1}{r\rho} \frac{\partial p}{\partial \theta} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_\theta}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} - \frac{v_\theta}{r^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \right) - \partial_\theta &= 0 \\ \frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial z} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} + \frac{\partial^2 v_z}{\partial z^2} \right) - \partial_z &= 0 \\ \frac{1}{r} \frac{\partial (r v_r)}{\partial r} + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z} &= 0 \end{split}$$

Neglect gravity / body forces: $\mathbf{b} = 0$

Cylinder coordinates Navier-Stokes equations (3D)

$$\begin{split} \frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} + \frac{1}{\rho} \frac{\partial p}{\partial r} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_r}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \right) - b_r &= 0 \\ \frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + v_z \frac{\partial v_\theta}{\partial z} - \frac{v_r v_\theta}{r} + \frac{1}{r\rho} \frac{\partial p}{\partial \theta} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_\theta}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} - \frac{v_\theta}{r^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \right) - b_r &= 0 \\ \frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} + v_z \frac{\partial v_z}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial z} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} + \frac{\partial^2 v_z}{\partial z^2} \right) - b_\theta &= 0 \\ \frac{1}{r} \frac{\partial (rv_r)}{\partial r} + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z} &= 0 \end{split}$$

Neglect gravity / body forces: $\mathbf{b} = 0$

Irrotational flow:
$$v_{\theta} = 0$$
 and $\frac{\partial}{\partial \theta} = 0$

University of Stuttgart Simplified (irrotational, no gravity) **Navier-Stokes equations**

$$\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + v_z \frac{\partial v_r}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial r} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_r}{\partial r} \right) + \frac{\partial^2 v_r}{\partial z^2} - \frac{v_r}{r^2} \right) = 0$$

$$\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + v_z \frac{\partial v_z}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial z} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{\partial^2 v_z}{\partial z^2} \right) = 0$$

$$\frac{1}{r} \frac{\partial (r v_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0$$

Neglect gravity / body forces: **b** = 0

Irrotational flow: $v_{\theta} = 0$ and $\frac{\partial}{\partial \theta} = 0$

Main idea: Integration over cross-section

Circular cross-section

$$A(z,t) = |S(z,t)| = \pi R^2(z,t)$$

Mean (axial) velocity and velocity profile

$$v_z(r,z,t) = \bar{v}(z,t)s(r^*), \quad \bar{v} := \frac{1}{A} \int_S v_z \mathrm{d}A \qquad r^* = r/R(z,t)$$

Flow rate

$$Q(z,t) := \int_{S} v_z dA = A\bar{v}.$$

University of Stuttgart Simplified (irrotational, no gravity) **Navier-Stokes equations**

$$\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + v_z \frac{\partial v_r}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial r} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_r}{\partial r} \right) + \frac{\partial^2 v_r}{\partial z^2} - \frac{v_r}{r^2} \right) = 0$$

$$\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + v_z \frac{\partial v_z}{\partial z} + \frac{1}{\rho} \frac{\partial p}{\partial z} - \frac{\mu}{\rho} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{\partial^2 v_z}{\partial z^2} \right) = 0$$

$$\frac{1}{r} \frac{\partial (rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0$$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0$$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{1}{r} \frac{\partial (rv_r)}{\partial r} dA = \int_{0}^{2\pi} \int_{0}^{R} \frac{\partial (rv_r)}{\partial r} dr d\theta$$

area element

$$dA = r dr d\theta$$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{1}{r} \frac{\partial (rv_r)}{\partial r} dA = \int_{0}^{2\pi} \int_{0}^{R} \frac{\partial (rv_r)}{\partial r} dr d\theta = 2\pi R v_r(R, t) \qquad v_r \text{ independent of } \theta$$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{1}{r} \frac{\partial (rv_r)}{\partial r} dA = \int_{0}^{2\pi} \int_{0}^{R} \frac{\partial (rv_r)}{\partial r} dr d\theta = 2\pi R v_r(R, t) = 2\pi R \frac{\partial R}{\partial t}$$

boundary condition: v_r at r=R is wall velocity

 $\frac{\partial R}{\partial t}$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{1}{r} \frac{\partial (rv_r)}{\partial r} dA = \int_{0}^{2\pi} \int_{0}^{R} \frac{\partial (rv_r)}{\partial r} dr d\theta = 2\pi R \underbrace{v_r(R, t)}_{=\partial R/\partial t} = 2\pi R \frac{\partial R}{\partial t} = \frac{\partial (\pi R^2)}{\partial t} = \frac{\partial A}{\partial t}$$

use chain rule or product rule

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\frac{1}{r} \frac{\partial (rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r} \frac{\partial (rv_r)}{\partial r} \, \mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \, \mathrm{d}A = 0$$

Leibniz' rule for parameter integral

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(\int_{a(z)}^{b(z)} f(z, r, t) \mathrm{d}r \right) = \int_{a(z)}^{b(z)} \frac{\partial}{\partial z} f(z, r, t) \mathrm{d}r + f(z, b(z), t) \frac{\mathrm{d}}{\mathrm{d}z} b(z) - f(z, a(z), t) \frac{\mathrm{d}}{\mathrm{d}z} a(z).$$

bounds constant

change due to changes in bour is

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{\partial u_{z}}{\partial z} dA = \int_{0}^{R(z)} \int_{0}^{2\pi} \frac{\partial u_{z}}{\partial z} r d\theta dr = \int_{0}^{R(z)} \frac{\partial}{\partial z} \left(\int_{0}^{2\pi} u_{z} r d\theta \right) dr$$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{\partial u_{z}}{\partial z} dA = \int_{0}^{R(z)} \int_{0}^{2\pi} \frac{\partial u_{z}}{\partial z} r d\theta dr = \int_{0}^{R(z)} \frac{\partial}{\partial z} \left(\int_{0}^{2\pi} u_{z} r d\theta \right) dr = \int_{0}^{R(z)} \frac{\partial g}{\partial z} dr$$

$$g(z,r,t) := \int_0^{2\pi} \!\! v_z r \mathrm{d} heta = 2\pi v_z r$$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{\partial u_{z}}{\partial z} dA = \int_{0}^{R(z)} \int_{0}^{2\pi} \frac{\partial u_{z}}{\partial z} r d\theta dr = \int_{0}^{R(z)} \frac{\partial}{\partial z} \left(\int_{0}^{2\pi} u_{z} r d\theta \right) dr = \int_{0}^{R(z)} \frac{\partial g}{\partial z} dr$$

(Leibniz' rule)
$$=rac{\mathrm{d}}{\mathrm{d}z}\left(\int\limits_0^{R(z)}g\mathrm{d}r
ight)-g(z,R(z),t)rac{\mathrm{d}R(z)}{\mathrm{d}z}+g(z,0,t)rac{\mathrm{d}0}{\mathrm{d}z}$$

$$e^{g(z,r,t) := \int_0^{2\pi} v_z r \mathrm{d} heta = 2\pi v_z r_z} = rac{\mathrm{d}}{\mathrm{d}z} \left(\int_S u_z \, \mathrm{d}A
ight) - 2\pi R \, u_z(t,R) \, rac{\partial R}{\partial z} \, .$$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{\partial u_{z}}{\partial z} dA = \int_{0}^{R(z)} \int_{0}^{2\pi} \frac{\partial u_{z}}{\partial z} r d\theta dr = \int_{0}^{R(z)} \frac{\partial}{\partial z} \left(\int_{0}^{2\pi} u_{z} r d\theta \right) dr = \int_{0}^{R(z)} \frac{\partial g}{\partial z} dr$$

(Leibniz' rule)
$$=rac{\mathrm{d}}{\mathrm{d}z}\left(\int\limits_0^{R(z)}g\mathrm{d}r
ight)-g(z,R(z),t)rac{\mathrm{d}R(z)}{\mathrm{d}z}+g(z,0,t)rac{\mathrm{d}0}{\mathrm{d}z}$$

$$u_{z}(z,r,t) := \int_{0}^{2\pi} v_{z} r d\theta = 2\pi v_{z} r$$
 $= \frac{d}{dz} \left(\int_{S} u_{z} dA \right) - 2\pi R u_{z}(t,R) \frac{\partial R}{\partial z}$ what is $u_{z}(R,t) = 0$

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{\partial u_{z}}{\partial z} dA = \int_{0}^{R(z)} \int_{0}^{2\pi} \frac{\partial u_{z}}{\partial z} r d\theta dr = \int_{0}^{R(z)} \frac{\partial}{\partial z} \left(\int_{0}^{2\pi} u_{z} r d\theta \right) dr = \int_{0}^{R(z)} \frac{\partial g}{\partial z} dr$$

(Leibniz' rule)
$$= \frac{\mathrm{d}}{\mathrm{d}z} \left(\int\limits_0^{R(z)} g \mathrm{d}r \right) - g(z,R(z),t) \frac{\mathrm{d}R(z)}{\mathrm{d}z} + g(z,0,t) \frac{\mathrm{d}0}{\mathrm{d}z} \right)$$

$$v_z = \int_0^{2\pi} v_z r d\theta = 2\pi v_z r$$
 $= \frac{d}{dz} \left(\int_S u_z dA \right) - 2\pi R u_z(t, R) \frac{\partial R}{\partial z}$ boundary condition: $v_z \text{ at r=R is 0 (no-slip)}$

boundary condition:

$$v_z$$
 at r=R is 0 (no-slip)

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\int_{S} \frac{\partial u_{z}}{\partial z} dA = \frac{d}{dz} \left(\int_{S} u_{z} dA \right) - 2\pi R \underbrace{u_{z}(t, R)}_{=0} \frac{\partial R}{\partial z}$$
$$= \frac{\partial Q}{\partial z}$$

boundary condition: v_z at r=R is 0 (no-slip)

Mass balance (summary)

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{\partial v_z}{\partial z} = 0 \qquad \longrightarrow \qquad \int_S \frac{1}{r}\frac{\partial(rv_r)}{\partial r} \,\mathrm{d}A + \int_S \frac{\partial v_z}{\partial z} \,\mathrm{d}A = 0$$

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial z} = 0$$

1. boundary condition: v_r at r=R is wall velocity

 $\frac{\partial R}{\partial t}$

2. boundary condition: v_z at r=R is 0 (no-slip)

Momentum balance

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial z} \left(\alpha \frac{Q^2}{A} \right) + \frac{A}{\rho} \frac{\partial p}{\partial z} + K_R \frac{Q}{A} = 0,$$

$$v_z(r,z,t) = \bar{v}(z,t)s(r^*)$$

$$\alpha := \frac{\int_{S} v_z^2 dA}{A\bar{v}^2} = \frac{1}{A} \int_{S} s^2 dA$$
 $K_R = -2\pi \frac{\mu}{\rho} s'(1)$

$$K_R = -2\pi \frac{\mu}{\rho} s'(1)$$

typical choice: power law profile

$$v_z(r, z, t) = \bar{v}(z, t)s(r^*) = \bar{v}(z, t)\frac{\gamma + 2}{\gamma} \left[1 - (r^*)^{\gamma}\right] = \bar{v}(z, t)\frac{\gamma + 2}{\gamma} \left[1 - \left(\frac{r}{R}\right)^{\gamma}\right]$$

$$K_R = -2\pi \frac{\mu}{\rho} s'(1) = 2\pi \frac{\mu}{\rho} (\gamma + 2), \quad \gamma = \frac{2-\alpha}{\alpha - 1}$$

(no boundary layer effects, small Womersley numbers)

Čanić, Sunčica, and Eun Heui Kim. "Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow the compliant axi-symmetric vessels." Mathematical Methods in the Applied Sciences 26.14 (2003): 1161-1186

1D Equations (summary)

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial z} = 0 \quad \text{mass balance}$$

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial z} \left(\alpha \frac{Q^2}{A}\right) + \frac{A}{\rho} \frac{\partial p}{\partial z} + K_R \frac{Q}{A} = 0 \quad \text{momentum balance}$$

3 unknowns (A, Q, p), 2 equations

→ Find relationship between A and p (closure model)

$$F_{p\theta} = 2R_0 p = 2h_0 \sigma_{\theta\theta} = F_{\sigma\theta}$$
$$\Rightarrow \sigma_{\theta\theta} = \frac{pR_0}{h_0}$$

$$F_{pr} = \pi R_0 p = -\pi R_0 \sigma_{rr} = F_{\sigma r}$$

$$\Rightarrow \sigma_{rr} = -p$$

$$F_{pr} = \pi R_0 p = -\pi R_0 \sigma_{rr} = F_{\sigma r}$$

$$\Rightarrow \sigma_{rr} = -p$$

$$F_{p\theta} = 2R_0 p = 2h_0 \sigma_{\theta\theta} = F_{\sigma\theta}$$
$$\Rightarrow \sigma_{\theta\theta} = \frac{pR_0}{h_0}$$

$$h_0 \ll R_0 \longrightarrow \sigma_{rr} \ll \sigma_{\theta\theta}$$

assumption on axial strain $\epsilon_{zz} pprox 0$

Hooke's law

$$\epsilon_{ij} = \frac{1}{E} \left[(1 + \nu)\sigma_{ij} - \nu \delta_{ij}\sigma_{kk} \right]$$

$$\frac{1}{E} \left[\sigma_{\theta\theta} - \nu \left(\sigma_{rr} + \sigma_{zz} \right) \right] \approx \frac{1}{E} \left[\sigma_{\theta\theta} - \nu \sigma_{zz} \right],$$

$$\epsilon_{zz} = \frac{1}{E} \left[\sigma_{zz} - \nu \left(\sigma_{\theta\theta} + \sigma_{rr} \right) \right] \approx \frac{1}{E} \left[\sigma_{zz} - \nu \sigma_{\theta\theta} \right] \approx 0.$$

$$\Delta p = p - P_{ext}$$
 = $\frac{(1 - \nu^2)}{E} \frac{\Delta p R_0}{h_0}$ relative pressure, generalize

$$\sigma_{ heta heta} = rac{pR_0}{h_0}$$

$$p = P_{ext} + \frac{Eh_0}{(1 - \nu^2)R_0} \epsilon_{\theta\theta} = P_{ext} + \frac{Eh_0}{(1 - \nu^2)R_0} \frac{R - R_0}{R_0} = P_{ext} + \frac{\sqrt{\pi}Eh_0}{(1 - \nu^2)\sqrt{A_0}} \left(\sqrt{\frac{A}{A_0}} - 1\right)$$

University of Stuttgart 1D Equations (summary again)

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial z} = 0 \quad \text{mass balance}$$

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial z} \left(\alpha \frac{Q^2}{A}\right) + \frac{A}{\rho} \frac{\partial p}{\partial z} + K_R \frac{Q}{A} = 0 \quad \text{momentum balance}$$

$$p = P_{\text{ext}} + G_0 \left(\sqrt{\frac{A}{A_0}} - 1\right) \quad G_0 = \frac{\sqrt{\pi} E h_0}{(1 - \nu^2)\sqrt{A_0}} \quad \text{closure model}$$

1D Equations (transport form)

Transport system of equations with flux function \mathbf{F} and source term \mathbf{S} :

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial z} (\mathbf{U}) = \mathbf{S} (\mathbf{U}), \ z \in (0, l), \ t > 0$$

$$\mathbf{U} = \begin{pmatrix} A \\ Q \end{pmatrix}, \ \mathbf{F}(\mathbf{U}) = \begin{pmatrix} Q \\ \frac{Q^2}{A} + \frac{G_0 A^{3/2}}{3\rho A_0^{1/2}} \end{pmatrix}, \ \mathbf{S}(\mathbf{U}) = \begin{pmatrix} 0 \\ -K_R \frac{Q}{A} \end{pmatrix}$$

$$G_0 = \frac{\sqrt{\pi}Eh_0}{(1-\nu^2)\sqrt{A_0}}$$

(simplified for constant parameters, for varying parameters see lecture notes)

Literature

John, L., P. Pustějovská, and O. Steinbach. "On the influence of the wall shear stress vector form on hemodynamic indicators." *Computing and Visualization in Science* 18.4-5 (2017): 113-122

D'Angelo, Carlo. "Multiscale modelling of metabolism and transport phenomena in living tissues." *Bibliotheque de l'EPFL, Lausanne* (2007)

Čanić, Sunčica, and Eun Heui Kim. "Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels." *Mathematical Methods in the Applied Sciences* 26.14 (2003): 1161-1186

Westerhof, Nicolaas, et al. "Analog studies of the human systemic arterial tree." *Journal of biomechanics* 2.2 (1969): 121IN1135IN3137IN5139-134136138143

Olufsen, Mette S. "Structured tree outflow condition for blood flow in larger systemic arteries." *American journal of physiology-Heart and circulatory physiology* 276.1 (1999): H257-H268

Fernández, Miguel Ángel, Vuk Milisic, and Alfio Quarteroni. "Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs." *Multiscale Modeling & Simulation* 4.1 (2005). 236

Literature

Köppl, T., Schneider, M., Pohl, U., & Wohlmuth, B. (2014). The influence of an unilateral carotid artery stenosis on brain oxygenation. *Medical engineering & physics*, *36*(7), 905-914

Galdi, G., Rannacher, R., Robertson, A., Turek, S.: Hemodynamical Flows: Modeling, Analysis and Simulation, vol. 37. Birkhäuser, Basel (2008)

Thank you!

Timo Koch (Oslo)

timokoch@uio.no

https://www.iws.unistuttgart.de/lh2/

University of Stuttgart Pfaffenwaldring 61, 70569 Stuttgart

Institute for Modelling Hydraulic and Environmental Systems,

Department of Hydromechanics and Modelling of Hydrosystems

dumux.org

http://dune-project.org/