基于逆推算法和深度优先搜索的模型检验 数据结构大作业

王逸轩、韩啸

北京大学数学科学学院

December 20, 2017

- 1 问题分析
 - ■背景
 - 解决方案
- 2 算法设计
 - CTL 算法设计
 - LTL 算法设计
- 3 模型展望
 - 模型的评价
 - 模型的推广
- 4 参考书目
- 5 结束语

Section 1

问题分析

■ 迁移状态系统 *TS*;

- 迁移状态系统 TS;
- 逻辑公式 *L*;

- 迁移状态系统 TS;
- 逻辑公式 *L*;
- 公式类型 LTL、CTL 等;

- 迁移状态系统 TS;
- 逻辑公式 *L*;
- 公式类型 LTL、CTL 等;
- 公式基本算符.

问题的关联

从给定的迁移状态系统出发,我们研究不同的逻辑公式,发现本质上就 是针对对象的不同。

Figure: PPT 中刻画 CTL 与 LTL 模型检验的关联

两个例子

我们具体考察 CTL 与 LTL 模型检验的两个简单实例。

Example: CTL semantics

CTLSS4.1-16

$$\mathcal{T} \models \exists \Diamond \forall \Box \neg start$$

$$\mathcal{T} \models \forall \bigcirc \exists \bigcirc \forall \Box \neg start$$

$$T \not\models \exists \bigcirc \forall \bigcirc \forall \Box \neg start$$

$$\Phi_3 = \exists \bigcirc \forall \bigcirc \forall \Box \neg start \rightsquigarrow \boxed{\exists \bigcirc error}$$

$$Sat(\forall \Box \neg start) = \{error\}$$

$$Sat(\forall \bigcirc \forall \Box \neg start) = \{error\}$$

$$Sat(\exists \bigcirc \forall \bigcirc \forall \Box \neg start) = \{error, try\}$$

98 / 357

Which formulas hold for T?

LTLSF3.1-11

$$AP = \{a, b\}$$

$$T \models a$$

as
$$s_0 \models a$$
 and $s_2 \models a$

$$T \not\models \Diamond \Box a$$

as
$$s_0 s_1 s_0 s_1 \dots \not\models \Diamond \square a$$

$$T \models \Diamond \Box b \lor \Box \Diamond (\neg a \land \neg b)$$
 as $s_2 \models b$, $s_1 \not\models a, b$

as
$$s_2 \models b$$
, $s_1 \not\models a, b$

$$\mathcal{T} \models \Box(a \rightarrow (\bigcirc \neg a \lor b))$$
 as $s_2 \models b$, $s_0 \models \bigcirc \neg a$

as
$$s_2 \models b$$
, $s_0 \models \bigcirc \neg a$

116 / 416

1 刻画迁移状态系统 TS;

- 1 刻画迁移状态系统 TS;
- 2 刻画逻辑公式 L;

- 1 刻画迁移状态系统 TS;
- 2 刻画逻辑公式 L;
- 3 建立对公式的一些运算法则(如取子式、递推等等);

- \blacksquare 刻画迁移状态系统 TS:
- 2 刻画逻辑公式 L;
- 3 建立对公式的一些运算法则(如取子式、递推等等);
- 4 针对不同的公式类型,设计算法.

问题难点

- 如何刻画初始的输入信息:
- 2 CTL 可以利用朴素的逆推方法解决,如何定位子串;
- 3LTL 中逆推算法可能无限循环,找到替代方案处理"无穷"的问题;
- 4 通过逻辑筛选,简化枚举次数,降低时间复杂度.

处理问题的思想

- \blacksquare 用图结构储存迁移状态系统 TS;
- 2 用字符串存储逻辑公式 *L*,并假设已指明逻辑类型并添加括号;
- 3 对 CTL 公式,利用建立的运算法则,逆推判断;
- 4 对 *LTL* 公式,利用公式的所有子串的满足情况构建新的图,深度优先搜索举例.

Section 2

算法设计

Subsection 1

CTL 算法设计

逆推算法 算法的指导思想

本质上的思想是找到每个逻辑公式对应的满足该公式的节点集合。 解决了最简单的公式对应的节点集合之后,就可以对于复杂的公式,利 用逆推算法, 脱去最外层的括号, 找到相应的节点集合。 最后诵过原始逻辑公式 L 找到的相应节点集合,判断迁移状态系统 TS的初始节点是否在该集合中即可。

逆推算法

需要注意的问题

尽管我们结合前面的分析,知道逆推算法能够有效的解决 CTL 模型检 验问题, 但我们还需要注意处理以下的细节。

- 括号匹配:我们在逆推时需要定位最左侧括号对应的反括号,进而 分割出完整的子式语句:
- ☑ 最外层算符的讨论:我们在逆推时需要特别注意,最外侧为 ∀、∃ 这两个算符时,要连同下一个算符一起考虑。

Subsection 2

LTL 算法设计

Recall: nondeterministic Büchi automata

LTLMC3.2-DEF-NBA

NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet \longleftarrow here: $\Sigma = 2^{AP}$
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}_{\omega}(\mathcal{A}) \subseteq \Sigma^{\omega}$ is given by:

$$\mathcal{L}_{\omega}(\mathcal{A}) \stackrel{\mathsf{def}}{=}$$
 set of infinite words over Σ that have an accepting run in \mathcal{A}

33 / 527

克服逆推算法带来的"无穷"的问题

如前所述,朴素的逆推算法难以解决 LTL 模型检验的问题,我们参阅 Introduction to Model Checking 这门课程的 PPT 资源,利用 NBA 找到了以下代替方案:

我们把逻辑公式 S 的所有子串给记录下来,然后这些子串形成一个集合,我们考察这个集合生成的子集族 Q,子集族中每个元素代表着相应的子串得到了满足,而余下的子串没有得到满足。我们考察一个新的图 G_1 ,节点集合是由原来的节点集合 V 与新得到的子集族 Q 形成的的笛卡尔积,我们设法把原来的迁移状态系统 TS 存在反例的问题转化为新图 G_1 存在一条满足某种性质的路径的问题,这样一来通过对 G_1 的深度搜索即可完成结论。

理论支持

首先我们需要说明原来的迁移状态系统 TS 存在反例,就等价于新图 G_1 中存在某种无穷长的路径。这在 PPT 的如下定理中得到佐证。

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

其次,我们说明给出的反例一定可以具有无穷循环的回路的形式。这个 事实我们通过回路的拼接可以说明。

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

核心算法的描述

结合之前的理论支持,我们把寻找反例转化为找到在 G_1 中的一个无穷路径,其中有限步之后形成回路的无穷循环,这个回路满足所有出现的无穷算符。最后一步,我们通过深度优先搜索来实现。

我们简明扼要地给出算法的步骤:

1 简化输入的 LTL 公式,用 U "直到" 算符来表示 W "弱直到"、D "最终满足"、S "一直满足" 等算符

我们简明扼要地给出算法的步骤:

- **1** 简化输入的 LTL 公式,用 U "直到" 算符来表示 W "弱直到"、D"最终满足"、S "一直满足" 等算符
- **2** 找到那些出现 U "直到" 算符,即需要之后回路判断的子串

我们简明扼要地给出算法的步骤:

- 简化输入的 LTL 公式,用 U "直到" 算符来表示 W "弱直到"、D"最终满足"、S "一直满足" 等算符
- ▶ 找到那些出现 U"直到"算符,即需要之后回路判断的子串
- **3** 先进行一步筛查来判断哪些图 G_1 中的点连有边,即原图 G 中哪些 状态可以相互转化.

我们简明扼要地给出算法的步骤:

- 简化输入的 LTL 公式,用 U "直到" 算符来表示 W "弱直到"、D"最终满足"、S "一直满足" 等算符
- ▶ 找到那些出现 U"直到"算符,即需要之后回路判断的子串
- **3** 先进行一步筛查来判断哪些图 G_1 中的点连有边,即原图 G 中哪些 状态可以相互转化
- 4 最后对于图 G_1 进行深度优先搜索,判断是否存在满足反例条件的 回路

Section 3

模型展望

模型的优点

- \blacksquare 处理 CTL 模型检验时,我们的算法在思想上和具体实现上都十分 简单,程序的复杂度也很低,我们可以容易地处理大规模的模型检 验运算。
- ☑ 处理 *LTL* 模型检验时,我们的算法将反例化归到回路情况,能够 较好地给出反例。
- 3 我们将输入输出标准化,存储在文件里,判断具体的模型检验时就 **显得一目了然了。**

模型的缺点

- \blacksquare 在 LTL 模型检验中,我们的程序在时间复杂度和空间复杂度上都显得太过于复杂,深度搜索引入了近乎难以容忍的运算量,于是 LTL 的算法只能解决比 CTL 模型检验规模小的多的问题。
- 2 程序的交互性做的不够好,不能达到一个较好的可视化界面的设计。

CTL^* 模型检验 定义

We saw in Theorem 6.21 on page 337 that CTL and LTL have incomparable expressiveness. An extension of CTL, proposed by Emerson and Halpern, called CTL*, combines the features of both logics, and thus is more expressive than either of them.

Logic, Expressiveness, and Equivalence

 CTL^* is an extension of CTL as it allows path quantifiers \exists and \forall to be arbitrarily nested with linear temporal operators such as () and U. In contrast, in CTL each linear temporal operator must be immediately preceded by a path quantifier. As in CTL, the syntax of CTL* distinguishes between state and path formulae. The syntax of CTL* state formulae is roughly as in CTL, while the CTL* path formulae are defined as LTL formulae, the only difference being that arbitrary CTL* state formulae can be used as atoms. For example, $\forall \bigcirc \bigcirc a$ is a legal CTL* formula, but does not belong to CTL. The same applies to the CTL^* formulae $\exists \Box \Diamond a$ and $\forall \Box \Diamond a$. (However, $\forall \Box \Diamond a$ is equivalent to the CTL formula $\forall \Box \forall \Diamond a.)$

CTL^* 模型检验 算法

 CTL^* 模型检验,在本质上是 LTL 与 CTL 模型检验算法的整合,我 们利用逆推算法来拆解 CTL* 逻辑公式, 在必要的逆推步骤时利用 LTL 模型检验得到的结果。

```
Algorithm 27 CTL* model checking algorithm (basic idea)
Input: finite transition system TS with initial states I, and CTL* formula Φ
Output: I \subset Sat(\Phi)
  for all i \leq |\Phi| do
    for all \Psi \in Sub(\Phi) with |\Psi| = i do
       switch(\Psi):
                            : Sat(Ψ) := S:
                            : Sat(Ψ) := { s ∈ S | a ∈ L(s) }:
                 a_1 \wedge a_2 : Sat(\Psi) := Sat(a_1) \cap Sat(a_2);
                            : Sat(Ψ) := S \ Sat(a);
                            : determine Sat<sub>ITI</sub> (¬φ) by means of an LTL model-checker;
                            : Sat(\Psi) := S \setminus Sat_{I,TL}(\neg \varphi)
       end switch
       AP := AP \cup \{a_{\Psi}\}:
                                                                 (* introduce fresh atomic proposition *)
       replace \Psi with a_{\Psi}
       for all s \in Sat(\Psi) do L(s) := L(s) \cup \{a_{\Psi}\}; od
    od
  od
  return I \subseteq Sat(\Phi)
```

TCTL 模型检验 探索

本质上 TCTL 就是考虑到时间因素的 CTL 模型, 逆推的过程中考虑 时间元素即可。

PCTL 模型检验

展望

PCTL 中状态出现的概率也可以朴素的使用逆推来完成计算,并比较输 出检验成果。

参考书目

Christel Baier. et al. *Principles of Model Checking*. The MIT Press, 2008.

Introduction to Model Checking. A course for software modeling and verification in RWTH Aachen University. 2016.

谢谢!