Sara Frazer - Lifespan Experiment Research

```
In [1]:
        import numpy as np
        import pandas as pd
        import seaborn as sb
In [2]: dataset = pd.read_excel("lifespan_data.xlsx")
In [3]: dataset.head()
Out[3]:
           DAY
                      STRAIN
                               A D
                                     М
        0
                     Alpha N2 40
                                     0
         1
                    Alpha nj66 40
                                     0
              1 Alpha tm4844 38
        2
                                     2
        3
                       HB N2 39
        4
              1
                      HB nj66 40
```

Lineplot to show time series data between days and alive

```
In [4]: sb.lineplot(x='DAY', y='A', data=dataset, hue="STRAIN")
Out[4]: <Axes: xlabel='DAY', ylabel='A'>
```

about:srcdoc Page 1 of 5

In [5]: #new data frame to find when 'A' (Alive) is equal to zero
 df_lastday=dataset[dataset['A']==0]
 display(df_lastday)

about:srcdoc Page 2 of 5

	DAY	STRAIN	Α	D	M
61	20	Alpha nj66	0	1	0
64	20	HB nj66	0	5	0
65	20	HB tm4844	0	2	0
67	22	Alpha nj66	0	0	0
69	22	HB N2	0	7	0
70	22	HB nj66	0	0	0
71	22	HB tm4844	0	0	0
72	24	Alpha N2	0	10	0
73	24	Alpha nj66	0	0	0
75	24	HB N2	0	0	0
76	24	HB nj66	0	0	0
77	24	HB tm4844	0	0	0
78	28	Alpha N2	0	0	0
79	28	Alpha nj66	0	0	0
80	28	Alpha tm4844	0	0	0
81	28	HB N2	0	0	0
82	28	HB nj66	0	0	0
83	28	HB tm4844	0	0	0

```
#new data frames to calculate min and mean
#new data frame to group by strain and day to then find the minimum day to k
grouped_min = df_lastday.groupby('STRAIN')['DAY'].min().reset_index()

#created a new column with the data frame grouped_min
grouped_min["strain_type"]= ["Alpha", "Alpha", "Alpha", "HB", "HB", "HB"]

#created a new data frame called group_mean with the grouped.min data to grouped_mean=grouped_min.groupby("strain_type")['DAY'].mean().reset_index()
```

```
In [7]: display(grouped_min)
    display(grouped_mean)
```

about:srcdoc Page 3 of 5

	STRAIN	DAY	strain_type
0	Alpha N2	24	Alpha
1	Alpha nj66	20	Alpha
2	Alpha tm4844	28	Alpha
3	HB N2	22	НВ
4	HB nj66	20	НВ
5	HB tm4844	20	НВ

	strain_type	DAY
0	Alpha	24.000000
1	НВ	20.666667

Barplot to show the average lifespan for the Alpha strains and the HB strains

```
In [8]: sb.barplot(x='strain_type', y='DAY', data=grouped_mean, orient="v")
```

Out[8]: <Axes: xlabel='strain_type', ylabel='DAY'>

about:srcdoc Page 4 of 5

about:srcdoc Page 5 of 5