Bunch Arrival Time Monitor

—with electro-optical detection scheme

Jinguo Wang

Shanghai Institute of Applied Physics, CAS

Overview

- **□** Introduction
- ☐ Arrival-time measurement techniques
- □ Old and new Pickup
- **□** Opto-Mechanical Front End
- **□** BAM Back End
- **□** Prototype MTCA BAM Readout Devices

Introduction

Schematic of the laser-based synchronisation system at the upgraded FLASH accelerator facility. (2011)

Measurement Principle

Courtesy of Marie Kristin Czwalinna

F. Lohl et al., PRL104,144801 (2010)

Slope and equivalent frequency

$$U(t) = A \cdot \sin(2\pi f_e \cdot t)$$

$$S = \pm A \cdot 2\pi f_e \quad \text{with S as Slope}$$

$$\Rightarrow f_e = \frac{|S|}{\pi \cdot U_{\text{peak to peak}}} \quad \text{with} \quad U_{\text{peak to peak}} = 2 \cdot A$$

Measurement Resolution

measurement resolution = f (slope of pickup signal)

SXFEL Bunch Charge = 500pC

Higher bandwidth improves measurement resolution specially for low charged bunches

Parameters to improve

```
Slope ↑

Ringing ↓

There are several factors which influence the ringing.

Resonances of the pickup itself

cross talk between the pickups

interactions between the beam with the surrounding environment
```

Boundary Condition: Keep peak voltage at 1.5 V

```
Bandwidth ↑ => Slope ↑ => Measurement Resolution ↑
Reflections in pickup ↓ => Ringing ↓
```


BAM-Pickup – Design

Old Design Status 2010

Signal of a Single BAM-Feedthrough (simulation)

Standard Bunch:

Charge = 20 pC Length = 2.35 mm Gaussian shaped

Alexander Kuhl, TU Darmstadt.

BAM-Pickup – Design

New Design Status 2011

Comparison

Improvement of performance (simulated)

New Design – 40 GHz BAM Pickup

No vacuum suitable Prototype

Angelovski et al., TU Darmstadt, IPAC 2011

New Design – 40 GHz BAM Pickup

Verification of simulations with s-parameter measurement

Angelovski et al., TU Darmstadt, IPAC 2011

Measured values of the prototype correspond to the simulated.

Influence of geometric variations

Aleksandar Angelovski et al., 15, 112803 (2012)

Manufacturing of the Pickup

Orient Microwave delivered feedthrough

Courtesy of Jürgen Kruse

Installation—Details

FLASH
SFELC
Position 185 m

RF calculation

Signal extrapolated by using S-parameters

- Cable
- Combiner

IBIC 2012 - MOPA46 A. Angelovski et. al.

IBIC 2012 - MOPA43 A. Penirschke et. al.

Electro Optical Modulator (EOM)

Modulation of the laser pulse

$$M = \frac{I_{out}}{I_{in}} = \frac{1}{2} + \frac{1}{2}\cos\left(\delta_0 + \frac{\pi}{U_{\pi}}U(t_m)\right)$$

M = Modulation

I = Laser amplitude

 δ_0 = intrinsic operation point

 U_{π} = Voltage to change M from 0 to 1

Different Jitter Sources

Influence of different jitter sources on the arrival time measurement

Parameter	Assumed RMS values
Bunch charge	1 %
Bias voltage	0.5 mV
RF voltage	0.5 mV
Laser amplitude	0.35 %
Laser timing	2.5 fs
ADC channel (16bit)	20

M. K. Bock et al., WEOCMH02, IPAC'10

Opto-Mechanical Front-End

Schematic of the Opto-Mechanical Front-End and chassis

BAM front-end prototype

SwissFEL@Paul Scherrer Institute

FERMI@Elettra

BAM Back End

The general concept of the laser pulses modulation

Optical distribution used for the BAM

L.Pavlovic et al., BUNCH ARRIVAL MONITOR AT FERMI@ELETTRA, JACOW

Peak and baseline sampling

60ps/200fs=300(min);100ps/20ps=500(max); 5ns/100ps=50(min);5ns/60ps=83.3(max)

Modulation of the laser pulses by the signal from the BAM detector

Peak and baseline sampling principle with two ADCs with shifted clock phase

SINAP

Amplitude correction

- The absolute height of the modulated pulse is not accurate enough, because of the drifts of the signal.
- Better results gives the relative height of the pulse.

$$A_{corr} = \frac{V_{peak2} - V_{base2}}{V_{peak1} - V_{base1}}$$

This method of amplitude correction gives the proper amplitude correction, proportional to the arrival time of the electron bunch

Improvement in the new uTCA system

Sampling with 108 MHz and 2 ADCs

Disadvantage and Problem

- This method was that incorrect synchronization caused sampling wrong samples, that the modulated samples has not been seen.
- This kind of splitting may decrease the signal quality use two ADC.

Sampling with 216 MHz and 2 ADCs

Sampling with 432 MHz and 1 ADC

Raw photodiode signals at the BAM PRX input

Pulse-shaped PRX signals fed to the ADC card

Photodiode signals

Prototype MTCA BAM Readout Devices

(a) Carrier block diagram

(b) Mezzanine block diagram

Prototype MTCA BAM Readout Devices

(a) Prototype FMC carrier

(b) Prototype FMC mezzanine with ADCs

Thank you for your attention!