A Parallel Genetic Algorithm Based on Hadoop MapReduce for the Automatic Generation of JUnit Test Suites

Linda Di Geronimo, Filomena Ferrucci, Alfonso Murolo, Federica Sarro
University of Salerno
Via Ponte don Melillo, 84084 Fisciano, Italy
e-mail: {fferrucci; fsarro}@unisa.it

Abstract—Software testing represents one of the most explored fields of application of Search-Based techniques and a range of testing problems have been successfully addressed using Genetic Algorithms. Nevertheless, to date Search-Based Software Testing (SBST) has found limited application in industry. As in other fields of Search-Based Software Engineering, this is principally due to the fact that when applied to large problems, Search-Based approaches may require too much computational efforts. In this scenario, parallelization may be a suitable way to improve the performance especially due to the fact that many of these techniques are "naturally parallelizable". Nevertheless, very few attempts have been provided for SBST parallelization. In this paper, we present a Parallel Genetic Algorithm for the automatic generation of JUnit test suites. The solution is based on Hadoop MapReduce since it is well supported to work also in the cloud and on graphic cards, thus being an ideal candidate for high scalable parallelization of Genetic Algorithms. A preliminary analysis of the proposal was carried out aiming to evaluate the speed-up with respect to the sequential execution. The analysis was based on a real world open source library.

Keywords- Parallel Genetic Algorithm, Hadoop MapReduce, Search Based Software Testing.

I. INTRODUCTION

Software testing represents one of the most explored fields of application of Search-Based techniques. Indeed, a range of testing problems has been addressed, such as structural testing (both static and dynamic), functional testing, non-functional testing, mutation testing, test case prioritization, and so on (see [31] for a survey). Despite all such efforts, to date, Search-Based Software Testing (SBST) has found limited application in industry [7][25]. As in other fields of Search-Based Software Engineering (SBSE), this is principally due to the fact that in general when applied to large problems, Search-Based approaches may require too much computational efforts [25][43]. Indeed, "many approaches that are attractive and elegant in the laboratory, turn out to be inapplicable in the field, because they lack scalability" [21].

In this scenario, parallelization may be a suitable way to improve the performance, both in terms of computational time and effectiveness in the exploration of the search space. Moreover, many of these techniques are "naturally parallelizable" [21]. As a matter of fact, the *population based* characteristic of Genetic Algorithms (GA) allows the fitness function of each individual to be computed in parallel.

Nevertheless, very few attempts have been provided for SBST parallelization. As suggested in [43] "one possible historical barrier to wider application of parallel execution has been the high cost of parallel execution architectures and infrastructure. ...While commodity PCs have significantly reduced the cost of such clusters, their management can still be a non-trivial task, restricting the potential availability for developers."

The emerging use of Cloud Computing and of General Purpose computing on Graphical Processing Unit (GPGPU) can represent an affordable solution to address the above issues. This can provide a significant impulse in SBST parallelization allowing for more scalable research proposals suitable to be transferred in software industry.

Indeed, GPGPU exploits a parallelism (originally designed for graphics) for non graphical tasks using a single hardware component (GPU) that is less expensive than multiple PCs and has smaller management costs [43].

Cloud Computing solutions offer a parallel distributed computational environment together with an on demand resource handling and allocation to easily scale up. As a consequence, companies that plan to use this kind of solutions as an alternative to traditional cluster-based platforms could employ virtually unlimited computational resources without caring about the management and the maintenance of the overall IT infrastructure. Furthermore, the on-demand resource allocation mechanism allows companies to reduce costs consistently since they have to pay only for the computational resources actually used.

Based on these considerations in this paper we present a Genetic Algorithm for the automatic test suite generation for Object Oriented software and show how it can be parallelized using Hadoop MapReduce [4]. Hadoop MapReduce is a framework for developing applications that rapidly process vast amounts of data in parallel on large clusters of computing nodes. This choice was motivated by the fact that it is becoming the de-facto standard MapReduce implementation and it has been used also in industry [40]. Moreover, it is well supported to work not only on clusters, but also on the cloud [3] and on graphic cards [20], thus being an ideal candidate for high scalable parallelization of GAs.

The proposed Parallel Genetic Algorithm (PGA) takes as input the software to be tested and an initial population of random solutions (i.e., a set of test cases) that are evolved according to a given coverage criterion (i.e., branch coverage) following a global parallelization model. This means that at each iteration the individual fitness evaluation,

which is the most time consuming GA task in the considered domain, is carried in a parallel way exploiting the MapReduce programming model. At the end of the evolution process a JUnit test suite, optimized to cover as much branches as possible of the software under test, is given in output to the user.

A preliminary analysis of the proposed PGA was realized on standard cluster exploiting a real word open source library. The results were evaluated in terms of the time needed to generate the test suites and compared with the ones achieved executing the same GA in the traditional sequential way.

Although the problem of parallelizing Search-Based techniques is not new (see section V for related work), to the best of our knowledge this work is the first that proposes a PGA based on Hadoop MapReduce for the automatic generation of JUnit test suite, showing also a preliminary evaluation of its use.

The rest of the paper is organized as follows. In section II we describe the design of a Genetic Algorithm for the automatic generation of JUnit test suite. Section III presents the approach we proposed to parallelize the genetic algorithm exploiting HadoopMapReduce. Section IV reports the design and the results of the analysis we carried out to assess the effectiveness of the proposed approach. Section V describes related work while some final remarks and future work conclude the paper.

II. A GENETIC ALGORITHM FOR THE AUTOMATIC GENERATION OF TEST SUITE

Genetic Algorithms (GA) [18] are evolutionary algorithms that, inspired by the theory of natural evolution, simulate the evolution of species emphasizing the law of survival of the strongest to solve, or approximately solve, optimization problems. To this end, a fitness function is used to evaluate the goodness (i.e., fitness) of the solutions represented by the individuals (i.e., chromosomes) and genetic operators based on selection and reproduction are employed to produce new offspring.

The elementary evolutionary process of GA is composed by the following steps:

- 1. An initial population is usually randomly generated;
- 2. A fitness function is used to assign a fitness value to each individual;
- According to their fitness value some individuals are selected as parents and new individuals (offspring) are created by applying reproduction operators (i.e., crossover and mutation) and evaluated using the fitness function;
- To determine the individuals that will be included in the next generation (i.e., survivals) a selection based on individual's fitness value is applied;
- Steps 2, 3, and 4 are repeated until stopping criteria hold.

In the following, we describe the design choices we made for tailoring GA to automatically produce test suites for the unit testing of classes of a given software system.

In such a scenario, a chromosome represents a test suite (i.e., a set of JUnit test cases) for a given software class

under test. As for the test cases we employ a representation similar to [16] where each test case contains a sequence of statements of length l for object creation, state change, and method invocation. In particular, each statement can be one of these types: primitive, constructor, field, method [16].

The initial population is generated randomly building the required test cases for each chromosome. Then the classical evolutionary scheme is applied to such chromosomes aiming at search for a solution that achieve a high level of coverage.

To this end, a fitness function based on branch coverage is employed, although the algorithm can be easily generalized to work with other adequacy criteria. In particular, branch coverage measures the ratio of covered decisions with respect to the total number of decisions. A decision is covered if it is exercised on the true and false outcomes, at least once. Thus, to evaluate each chromosome, we have to collect the branch coverage score of each test case. To this end all test cases are executed with JUnit on the instrumented bytecode of the Software Under Test and the corresponding coverage information has to be collected. To perform this task we extended the Cobertura tool [8] to properly work in our fitness function.

Concerning the crossover operator it generates offspring O1 and O2 from two parents (i.e., two test suites) P1 and P2, selecting a point of cut and swapping the corresponding test cases with a rate of 0.5. As for the mutation operator, it changes with probability 0.25 each gene (i.e., a test case) in a chromosome replacing it with a new random test case.

As for the selection operators we employed Tournament and Linear Ranking selector for reproduction and survival selection, respectively.

The search process is stopped after performing a fixed number of generations or whether the best solution doesn't change for a certain number of generations.

III. A PARALLEL GENETIC ALGORITHM BASED ON HADOOP MAP REDUCE

In the following subsections we first give some background, reporting on the strategies proposed in the literature to parallelize Genetic Algorithms and recalling the main aspects of MapReduce and Hadoop MapReduce. Then, we present the design of the proposed parallel Genetic Algorithm using Hadoop MapReduce.

A. Parallelization Strategies

Several GA parallelization strategies exist depending on the grain of parallelization to achieve. Basically, three levels of parallelization can be exploited:

- fitness evaluation level (i.e., global parallelization model);
- population level (i.e., coarse-grained parallelization or island model);
- individual level (i.e., fine-grained parallelization or grid model).

In the global parallelization model, a node acting as a master, manages the population (i.e., applying genetic and selection operators) and distributes the individuals among slave nodes which compute only the fitness values of the individuals. The main advantage of using such a model is

that it does not require any change to the design of traditional GA since the individual fitness evaluation is independent from the rest of the population.

In the island model the population is subdivided in several subpopulations of relatively large size which are located in several islands (i.e., nodes). Thus, a Genetic Algorithm is executed on each subpopulation and such subpopulations exchange information by allowing some individuals to migrate from one island to another according to a given temporal criteria. The main expected advantages of this model are:

- (i) different subpopulations could explore different portions of the search-space,
- (ii) migrating individuals injects diversity into the converging population.

Finally, in the grid model each individual is placed on a grid (i.e., each individual is assigned to a node) and all GA operations are performed in parallel evaluating simultaneously the fitness and applying locally selection and genetic operations to a small neighboring. A drawback of this approach is the overhead due to the frequent communications between grid nodes.

There exist proposals that fall in the so called hybrid models which combine different levels of parallelization.

In the following we define a way to exploit the first parallelization model using Map Reduce.

B. MapReduce

MapReduce is an elegant and flexible paradigm which enables to develop large-scale distributed applications [12]. It is expressed in terms of two distinct functions, namely Map and Reduce, which are combined together in a divideand-conquer way where the Map function is responsible to handle the parallelization while the Reduce collects and merges the results. In particular, a master node splits the initial input in several pieces, each one identified by a unique key, and distributes them via the Map function to several slave nodes (i.e., Mappers) which work in parallel and independently from each other performing the same task on a different piece of input. As soon as each Mapper finishes its own job the output is identified and collected via the Reducer function. In particular, each Mapper produces a set of intermediate key/value pairs which are exploited by one or more Reducer to group together all the intermediate values associated to the same key and to compute the list of output results. It is worth mentioning that the different intermediate keys emitted by the Mapper functions affect the way the model distributes the computation of each Reducer on different machines. Thus, the program automatically invokes and allocates a number of distinct Reducers that correspond to the number of distinct intermediate keys.

C. HadoopMapReduce

Several different implementations of MapReduce have been proposed. The most famous ones are the AppEngine-MapReduce [19], built on the top of the distributed Google File System, and Hadoop MapReduce [4].

Hadoop MapReduce is an open-source project of the Apache Software Foundation aiming at supporting developers in realizing applications that rapidly process vast amounts of data in parallel on large clusters of computing nodes. Its popularity is increasing rapidly as well as its adoption by large companies such as IBM and Yahoo.

With respect to its "big brother", the AppEngine-MapReduce [19], Hadoop MapReduce supports both Map and Reduce phases, thus avoiding a programmer to manage its own Reducer. Using Hadoop also let us to avoid some limitations imposed by GoogleApp Engine (e.g., it is not allowed using files or executing external threads and processes). Moreover, Hadoop MapReduce is well supported to work not only on clusters, but also on the cloud [3] and on graphic cards [20], thus being an ideal candidate for high scalable parallelization of GA.

Hadoop MapReduce exploits a distributed file system (an open source implementation of Google File System), named the Hadoop Distributed File System (HDFS), to store data as well as intermediate results and uses the MapReduce programming model for data processing. The Hadoop MapReduce interpretation of the Distributed File System was conceived to increase large-data availability and fault-tolerance by spreading copies of the data throughout the cluster nodes, in order to achieve both lower costs (for hardware and RAID disks) and lower data transfer latency between the nodes themselves. Hadoop offers also a database named HBase that was created to compete with Google's DataStore in order to speed up the data retrieval for billions of small information.

In the next section we detailed how we exploited the Hadoop MapReduce programming model to parallelize the proposed Genetic Algorithm for the automatic creation of JUnit test suites

D. The proposed Parallel Genetic Algorithm based on Hadoop MapReduce

The underlying idea in using MapReduce to parallelize the Genetic Algorithm described in section II is to encapsulate each iteration of the GA as a separate MapReduce job and parallelize the chromosome fitness evaluation assigning such task to several *Mappers*, while a single *Reducer* is responsible to collect the results and to perform the genetic operations (i.e., parents selection, crossover and mutation, and survival selection) needed to produce a new generation following a global parallelization model.

Figure 1 shows the proposed architecture based on HadoopMapReduce and composed by the following main components: a *Parallel Genetic Algorithm*, a *Master*, a number of *Mappers* and a *Reducer*, together with two other units, namely *InputFormat* and *OutputFormat*, which are responsible to split the data for the *Mappers* and to store the *Reducer* output into the Hadoop Distributed File System (HDFS), respectively.

Let us note that these components communicate each other exploiting the HDFS distributed file system provided by Hadoop, while the communications within the Hadoop framework (i.e., those between the master and slave nodes) are carried out via socket using SSH (Secure SHell).

Figure 1. Architecture of the proposed PGA for test suite generation.

The Parallel Genetic Algorithm module lets the user (i.e., a tester) to specify the Software Under Test (SUT) and manages the overall execution of GA. Once the GA is terminated it returns to the user a test suite for the software under test.

Figure 2 reports the pseudocode for the *Parallel Genetic Algorithm* component. First of all a PreExecutionPhase (line 1) is needed to instrument the SUT bytecode in order to get information about the coverage in a program run (lines 8-9) and to generate an initial random population (lines 10-11). Then, it starts the evolutionary process by creating and executing the MapReduceJob (lines 3-4) and checks at each iteration if a termination criterion holds (line 2). Finally, a postExecution phase is needed to clean the local file system and the distributed one.

The MapReduceJob is the core of the *Parallel Genetic Algorithm* module since it allows us to parallelize fitness evaluations and distribute the computation over the nodes (see Fig. 1). In particular, a MapReduceJob consists of three phases (i.e., **Split**, **Map**, and **Reduce**) in which each component performs its proper task as detailed in the following.

Split. In this phase the *InputFormat* module gets the current population (i.e., the test suites composing the current population) from the HDFS and processes it in order to split it in crunch of data (i.e., input split) to be distributed among the *Mapper* modules.

The number of input splits is dynamically computed on the basis of the number of available *Mappers*.

The *Master* module is responsible to coordinate and supervise the assignment of resources and the computations taking care also of the load balancing aspects. In more details, once the *InputFormat* begins to emit the *<key, value>* pairs - exploting the RecordReader component of Hadoop - the underlying Hadoop framework is automatically notified and the *Master* component is invoked to assign the input split produced by the *InputFormat* to the available *Mappers*.

Map. In this phase each *Mapper* carries out its task on the received input split in a parallel and independent way. In particular, each *Mapper* is responsible to exercise a class of the SUT with the test suites associated to the received chromosomes and to observe the software behavior in order to evaluate the corresponding fitness value (i.e., branch coverage).

Once such evaluation is completed, each *Mapper* generates a new pair <*key*, *value*>, where *value* is a pair <*chromosome*, fitness value>, while the new *key* will be used by the Master module to properly assign the *Reducers*. Since our architecture does not require any other parallel computation, the generated key will be the same for all the chromosomes, in order to have only a single *Reducer*.

The *Master* module in this phase is responsible to collect the outputs produced by the *Mappers* that will constitute the input for *Reducer*.

```
1 population = preExecution(SUT);
2 while(!stopCriteria ()) {
3    mpJob= createMapReduceJob();
4    population= mpJob.execute(population);
5 }
6 postExecution();
7 preExecution (SUT):population {
8    instrumentedCode = instrument(SUT);
9    move(instrumented Code, HDFS);
10 population = createRandomPopulation();
11 return population;
12 }
```

Figure 2. Parallel Genetic Algorithm pseudocode.

Reduce. Once the Master component has collected all the *Mappers* outputs, *Reducer* receives an entire population where all the chromosomes have a fitness value already assigned. Thus, *Reducer* can perform the survival selection and apply on the new generation the crossover and mutation operators to produce a new offspring to be evaluated in the next MapReduceJob. Data concerning with the new offspring is saved by the *OutputFormat* - using the RecordWriter - into the HDFS, allowing the *Parallel Genetic Algorithm* module to verify whether the stopping criteria hold

The *Master* module in this phase is responsible to notify *Parallel Genetic Algorithm* to restart the computation invoking the MapReduceJob for the new offspring created by *Reducer*.

IV. PRELIMINARY EVALUATION

In this section we report the results achieved in a preliminary analysis carried out to assess the speed-up achieved by using the Parallel Genetic Algorithm described in section III with respect to the sequential Genetic Algorithm described in section III (denoted in the following as SGA).

A. Subject

The proposed approach was experimented exploiting an open source software library, namely Apache Commons Primitives [4] which contains collections and utilities specially designed for use with primitive types in Java. It is composed by 259 classes, for a total of 4605 Lines of Code (LOC) and 1446 branches. As done in previous work [16], we tested all the classes which were not interface, abstract, or private (see Table I).

TABLE I. THE CASE STUDY SUBJECT.

Subject	# Classes	# Branches	LOC
Commons Primitives (CP)	Total		
	259	1446	4605
	Testable		
	89	1024	2826

TABLE II. EQUIPMENT OF THE EMPLOYED NODES

HARDWARE	CPU	Intel Core i3 2100	
	RAM	4GB	
	Hard Disk	SATA 500GB 5200RPM	
	Connectivity	10/100/1000 Ethernet LAN	
SOFTWARE	Operative	Windows 7 Home Premium SP1	
	System	64bit	
	Java Virtual	Java SE Runtime with	
	Machine	version1.6.	
	JUnit	v. 4.10	
	Hadoop	v. 0.21	
	Cygwin	1.7.1	

B. Evaluation Criteria

To compare the performance of the employed algorithms we evaluated them both in term of branch coverage and execution time. In particular, the execution time was measured using the system clock and the observation of algorithms execution time (TotalTime) is composed of the following parts:

- InitTime: total time required by PGA for initializing a Map with the information (i.e., SUT instrumented bytecode, JUnit, test cases) needed to perform the fitness evaluation in each generation;
- EvalTime: total time spent to evaluate the fitness of chromosomes;
- RemainTime: time given by the difference between TotalTime and (InitTime + EvalTime); it comprises the time required to create the initial random population, perform selection, crossover, and mutation operators and, in case of PGA also the time spent for the communication among nodes.

The speed-up is then calculated by dividing the total amount of time that SGA required by the amount of time required by PGA.

It is worth noting that we executed ten runs in order to cope with the inherent randomness of dynamic execution time and of GA, and reported the average results.

C. Experimental Setup

To set SGA we exploited different settings for population size and generation number analyzing whether exploring a wider search space allowed us to achieve more accurate coverage results. In particular, we started experimenting with small setting values (i.e., 25 chromosomes and 10 iterations) and increasing them until we found a setting which allowed SGA to cover at least 75% of branches. The resulting setting employed a population of 225 chromosomes, each containing 6 test cases with a number of statements ranging from 20 to 2. The search process was stopped after performing 100 generations or whether the best solution did not change for 10 generations. The same setting was employed for PGA to allow for a fair comparison.

As for the employed hardware, SGA was executed on a node equipped with the configuration reported in Table II, while for PGA we exploited nine Maps and one Reducer distributed in a small cluster of three nodes for a total of six cores. The employed version of Hadoop was the 0.21 and we also exploited Cygwin 1.7.1 in order to run Hadoop on Windows Operative System.

D. Results

Figure 3 reports on the execution time for both SGA and PGA. As we can see the total execution time (i.e., TotalTime) is highly reduced by using PGA, thus allowing us to achieve a speed-up of 57% with respect to the use of SGA.

Figure 3. Execution time performance of SGA and PGA.

Moreover, we can observe that the time required to initialize each Map (i.e., InitTime) is much less than the RemainTime, whose main part consists of the overhead due to data management during the reduce phase (i.e., using HDFS to move at each iteration the new population to the Master node). This suggested us that trying to diminish such an overhead by means of cloud computing or graphic cards could allow us to further reduce the total execution time.

Figure 4 reports the obtained results in terms of branch coverage for both SGA and PGA. As we expected using PGA with the same setting of SGA allowed us to generate test suites able to cover the same percentage of branches with respect the ones provided by SGA. Exploiting the speed-up provided by PGA we could try to improve the coverage acting on the setting for population size and generation number.

Figure 4. Percentage of branches covered by the test suites generated by SGA and PGA.

E. Threats to Validity

The focus of this paper was to propose the use of a parallel/distributed GA for automatic test suite generation

and to conduct a preliminary investigation on its effectiveness. Thus, several improvements can be done in future work to mitigate the construct, internal, and external validity threats of this study. As for the construct validity the metrics employed to evaluate and compare the performance of the testing techniques were based on coverage criteria and execution time since the main goal of the study was to analyze the speed-up due to the use of PGA. However, they can be enriched exploiting for example other criteria to assess the quality of the generated test suite, or providing a fine-grained information on the RemainTime. As for the threats related to the internal validity, they can be due to the bias introduced by the intrinsic randomness of GA and to the employed GA setting. We mitigate these threats by using average results obtained from ten executions and exploiting different setting to properly tune the employed algorithms. As for the external validity, it can be affected by the fact that the subject of the study was an open-source software and there could be some differences between open-source and industrial development (e.g., some industrial settings enforce standards of code quality). Thus, further studies, taking into account different software projects are needed to generalize the achieved results.

V. RELATED WORK

In this section, we present some related works. First of all, we discuss previous works on the design of parallel genetic algorithms (not applied in the context of software engineering) based on MapReduce, showing similarity and differences with our proposal. Then, we describe solutions based on parallel search-based approaches employed for automated testing and for other software engineering problems. Finally, we report on several studies proposing different frameworks for the parallel execution of test cases.

A. Parallel Genetic Algorithms based on MapReduce

To the best of our knowledge, in the literature only two proposals [23][40] have been proposed for using the MapReduce model to parallelize GA. Nevertheless, such proposals did not take into account the specific context of software testing and differ from the one proposed in this paper under several aspects.

In [23] an extension of MapReduce, named MRPGA, was proposed. In that work the authors claim that due to its iterative nature, the GA process cannot follow the two phases pattern of MapReduce. Thus, they add to the pattern a further reduction phase for performing a global selection at the end of each iteration of parallel GA. In particular, the architecture of the run time system consists of one master and multiple mappers and reducers. The master has the responsibility of scheduling the execution of parallel tasks, while the mapper workers have to execute the map functions (i.e., the evaluation of chromosome fitness defined by the user) and the reducer workers are responsible to execute reduce functions (i.e., the selection operation on chromosomes to choose local optimum individuals). The difference with the standard implementation of MapReduce concerns with the support provided for a second reduce phase that is conceived to use just a reducer responsible of the selection of the global optimum individuals. Moreover, a coordinator client is introduced to coordinate the executions of the parallel GA iterations. MRPGA was implemented on .NET platform using C# language and was applied to solve the DLTZ4 and DLTZ5 problems [14].

Our solution differs from the one of [23] since it does not employ the additional reduction phase, indeed, as suggested also by Verma et al., this phase is not necessary since the local reduce can be implemented within a Combiner as shown in [13]. Further, using "default_key" and 1 as values produced by the mapper, reducer and final reducer functions, MRPGA does not employ any characteristics of the MapReduce model (i.e., the grouping by keys and the shuffling). Moreover, in their proposal a huge amount of work, regarding mutation, crossover, and evaluation of the convergence criteria is made by a single coordinator affecting the scalability of their approach [40]. To avoid this problem, in our solution we split these jobs among the master node (performing evaluation of the convergence criteria) and the reducer (performing mutation and crossover).

Differently from [23], Verma et al. [40] designed a Parallel GA based on the traditional MapReduce model and realized it by exploiting Hadoop MarReduce [4]. The proposed PGA was employed to solve the ONEMAX problem [36] showing that larger problems could be resolved without any changes in the implementation of the algorithms by adding more resources. Our solution is similar to [36], except for the use of multiple reducer. Indeed, they followed a coarse-grained parallelization model performing a local survival selection on multiple reducers to speed-up the overall execution time, however as pointed out in [35] a local selection can led to a reduction in selection pressure affecting the time taken to converge. Thus, since in the domain we considered the computation of the fitness function is the most time consuming task we preferred employing a global parallelization level using only one reducer. However, if a higher level of parallelization is required, the architecture we proposed can be extended, basically acting on the number of the involved reducers and the intermediate keys, to parallelize also the execution of selection and genetic operators (i.e., coarse-grained parallelization) or to enhance the selection pressure by means of migrations among groups of chromosomes (i.e., finegrained parallelization) as described in [15].

B. Parallel Genetic Algorithms for Automated Testing

Search-based algorithms have been used to automate a variety of software testing activities, such as test data generation (e.g., [2][22][25][39]), test case generation and selection (e.g., [16][42]), test case prioritization (e.g., [41]), and so on. For sake of space we remind interested readers to [1] and [31] for a review of these works and we discuss in the following the parallel Search-based approaches proposed for Software Testing.

At the best of our knowledge [15] has been the first paper suggesting the use of MapReduce for addressing the computational issues related to SBST. In particular, the authors proposed three architectures to achieve different

levels of parallelization (i.e., global, island, and grid models) with Genetic Algorithms. Moreover, they report an example on how to design a Parallel Genetic Algorithm based on Google AppEngine-MapReduce [19] for test data generation. As they stated, the proposal needs to be validated in practice carrying out an empirical evaluation of the solutions; this is necessary to highlight on the field the strength or weakness of the different architectures, as well as to assess their actual scalability. Thus, in this paper we designed a Parallel Genetic Algorithm conceived for JUnit Test Suite Generation based on the global parallelization model proposed in [15] and realized it exploiting the Hadoop MapReduce framework reporting also a preliminary evaluation of its use on standard cluster. With respect to AppEngine-MapReduce [19], Hadoop MapReduce provides several advantages as described in section III-C.

A different approach to address parallelization of SBST has been recently proposed by Shin *et al.* in [43], where a parallel multi-objective Genetic Programming for test suite minimization was devised for exploiting the computational power of modern graphic cards. The obtained results showed that for their problem the speed-up achieved by using GPU was logarithmic correlated to the problem size (i.e., SUT and test suite size) and ranged from 1x to 25x with respect to the use of a single-threaded version of the same GP.

C. Parallel Search-Based Approaches in Software Engineering

As for the use of parallel solutions in other areas of SBSE, Mitchell *et al.* [33] suggested the exploitation of a distributed architecture to parallelize modularization through the application of search-based clustering.

To the same end, Mahdavi *et al.* [29] developed a parallel hill climbing algorithm exploiting a cluster of standard PCs.

More recently, Asadi *et al.* [6] compared different distributed architectures to parallelize a GA for the concept location problem.

D. Parallel Execution of Testing

Since software testing is one of the most expensive phases of the software development process, in the last decades a huge amount of research efforts has been devoted to speed-up testing activities. Nevertheless, despite the general advantages of parallelizing software testing [37], very little work has been made to distribute software testing over multiple computers.

In the case study presented by Lastovetsky and Alexey [26] it was shown that parallelizing regression testing for a distributed programming system resulted in a speed up of up to 7.7 on two 4-processor workstations.

These promising results encouraged also the development of parallel regression testing tools based on JUnit, such as Joshua [24] and GridUnit [9][10][11]. The main idea underlying these tools was that a master node distributes test cases for execution across slave machines to speed-up the testing process and then collects the results. To this end Joshua exploited Jini for distributing the regression test suite execution over different CPUs, while GridUnit exploited a computational Grid.

Finally, two similar proposals for distributing the execution of test cases in the Cloud were presented in [12] and [34]. In particular, the former proposed a distributed execution framework for JUnit test cases named HadoopUnit [12], while the latter proposed a framework for the distributed execution of the York Extensible Testing Infrastructure (YETI), a language agnostic random testing tool [34]. Both proposals employed the MapReduce primitives for distributing test cases execution over the cloud. In particular, before the execution, the needed files (i.e., the test cases and the employed testing tool) were uploaded to the distributed file system file to be later read by the Mapper nodes. Then, the Master node launches a Mapper for each test case and each Mapper reads its data and executes the corresponding test case. Finally, the Reducer collects the test case results from each Mapper and outputs them to a file on the DFS. A preliminary case study [12] carried out with HadoopUnit on a 150-node cluster showed a speedup of 30x in execution time. Also the preliminary results reported in [34] were promising, showing that exploiting the proposed framework on the Amazon Elastic Computing Cloud (EC2) [3] improved the performances of YETI reducing the testing time.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed the use of a Parallel Genetic Algorihtm (PGA) for test suite generation exploiting Hadoop MapReduce and showed a preliminary evaluation of its use on a small cluster. The obtained results highlighted that using PGA allowed us to save over the 50% of time.

Since the use of parallel SBST approaches is still in its early phases, several directions can be prospected as future work. First of all a deeper empirical evaluation of the proposed approach is needed to asses on other subjects its strength or weakness, as well as to assess its actual scalability employing different GA settings, numbers of maps, and larger clusters. Also, the use of Hadoop MapReduce should be assessed running it not only on standard clusters, but also exploiting cloud computing, and graphic cards. Moreover, it can be interesting to realize and compare higher levels of parallelization, such as to parallelize the genetic operations other than the fitness evaluation. Finally, as a long-term research goal, it will be desirable to integrate these SBST approaches within a whole Validation-as-a-Service platform, available in the Cloud, to support the entire software testing process.

REFERENCES

- S. Ali, L. C Briand, H. Hemmati, R. K., Panesar-Walawege, "A Systematic Review of the Application and Empirical Investigation of Search-Based Test Case Generation," IEEE TSE, 36(6) 2010.
- [2] S. Ali, M. Z. Z. Iqbal, A. Arcuri, L. C. Briand: A Search-Based OCL Constraint Solver for Model-Based Test Data Generation. QSIC 2011: 41-50
- [3] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2
- [4] Apache Hadoop Map Reduce, http://hadoop.apache.org/mapreduce/
- [5] Apache Commons Primitives, http://commons.apache.org/primitives/

- [6] F. Asadi, G. Antoniol, Y. Gueheneuc, "Concept locations with genetic algorithms: A comparison of four distributed architectures," in Procs. of SSBSE, 2010.
- [7] A. Bertolino, "Software Testing Research: Achievements, Challenges, Dreams," in Procs. of FSE 2007.
- [8] Cobertura, Coverage Tool, http://cobertura.sourceforge.net/
- [9] A. Duarte, W. Cirne, F. Brasileiro, P. Machado, "Gridunit: software testing on the grid," in Proceedings of the 28th international conference on Software engineering, 2006, pp. 779–782.
- [10] A. Duarte, G. Wagner, F. Brasileiro, W. Cirne, "Multienvironment software testing on the grid," in Proceedings of the 2006 workshop on Parallel and distributed systems: testing and debugging, 2006, pp. 61– 68
- [11] R. N. Duarte, W. Cirne, F. Brasileiro, P. Duarte, and D. L. Machado, "Using the computational grid to speed up software testing," in Proceedings of 19th Brazilian Symposium on Software Engineering, 2005.
- [12] J. Dean, S. Ghemawat, "MapReduce: simplified data processing on large clusters," in Procs. OSDI, 2004.
- [13] J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on large clusters", Commun. ACM, 51(1):107–113, 2008
- [14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, "Scalable multiobjective optimization test problems". In Proc. of Congress on Evolutionary Computation, 2002
- [15] S. Di Martino, F. Ferrucci, C. Gravino, V. Maggio, F. Sarro, "Using MapReduce in the Cloud to enhance effectiveness and scalability of genetic algorithms for test data generation," unpublished.
- [16] G. Fraser, A. Arcuri, "Evolutionary generation of whole test suite," in Procs. of QSIC 2011.
- [17] Glenford J. Myers. The Art of Software Testing, 2nd edition. Wiley. 2004. ISBN 0471469122.
- [18] D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning," Addison-Wesley, 1989.
- [19] GoogleAppEngine, http://code.google.com/appengine/
- [20] CUDA on Hadoop MapReduce, http://wiki.apache.org/hadoop/CUDA%20On%20Hadoop
- [21] M. Harman, "The current state and future of search-based software engineering," in Procs. of FOSE 2007, pp. 342-357.
- [22] M. Harman, P. McMinn, "A theoretical and empirical study of search based testing: local, global and hybrid search." IEEE TSE, 36(2), 2010, pp. 226-247.
- [23] C. Jin, C. Vecchiola, R. Buyya: MRPGA: An Extension of MapReduce for Parallelizing Genetic Algorithms. eScience 2008: 214-221
- [24] G. M. Kapfhammer, "Automatically and transparently distributing the execution of regression test suites," in In Proceedings of the 18th International Conference on Testing Computer Software, 2000.
- [25] K. Lakhotia, P. McMinn, M. Harman, "Automated Test Data Generation for Coverage: Haven't We Solved This Problem Yet?," in Procs. of TAIC PART, 2009, pp. 95-104.
- [26] A. Lastovetsky, "Parallel testing of distributed software," Inf. Softw. Technol., vol. 47, no. 10, pp. 657–662, 2005.
- [27] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee, "Efficient hierarchical parallel genetic algorithms using grid computing" Future Gener. Comput. Syst., 23(4):658–670, 2007.
- [28] S.C. Lin, W. F. Punch, E. D. Goodman, "Coarse-grain parallel genetic algorithms: Categorization and new approach", In Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing, pages 28–37, 1994.
- [29] K. Mahdavi, M. Harman, R. M. Hierons, "A multiple hill climbing approach to software module clustering," in Procs. of ICSM 2003, pp. 315–324.
- [30] T. Maruyama, T. Hirose, and A. Konagaya. A fine-grained parallel genetic algorithm for distributed parallel systems. In Proceedings of

- the 5th International Conference on Genetic Algorithms, 1993, pp. 184-190
- [31] P. McMinn, "Search-based software test data generation: a survey," STVR, 14(2), 2004, pp. 105-156.
- [32] Microsoft Azure Platform, http://www.microsoft.com/windowsazure/
- [33] B. S. Mitchell, M. Traverso, and S. Mancoridis, "An architecture for distributing the computation of software clustering algorithms," in Procs. of WICSA, 2001, pp. 181–190.
- [34] M.Oriol, F. Ullah, "YETI on the Cloud", ICST Workshops, 2010, pp. 434-437.
- [35] A. J. Sarma, J. Sarma, and K. D. Jong. Selection pressure and performance in spatially distributed evolutionary. In In Proceedings of the World Congress on Computatinal Intelligence, 1998, pp 553– 557. IEEE Press.
- [36] J. Schaffer, L. Eshelman, "On Crossover as an Evolutionary Viable Strategy", In Proceedings of the 4th International Conference on Genetic Algorithms, pages 61–68. Morgan Kaufmann, 1991.
- [37] E. Starkloff, "Designing a parallel, distributed test system," Aerospace and Electronic Syst Systems Magazine, IEEE, vol. 16, no. 6, 2001, pp. 3 –6.

- [38] S. R. Tilley, T. Parveen, "Migrating software testing to the cloud" in Procs. of ICSM 2010: 1.
- [39] P. Tonella, "Evolutionary testing of classes," in Procs. of ISSTA 2004, pp. 119-128.
- [40] A. Verma, X. Llorà, D.E. Goldberg, R.H. Campbell, "Scaling Genetic Algorithms Using MapReduce". In Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications (ISDA '09). IEEE Computer Society, Washington, DC, USA, 2009, pp.13-18.
- [41] Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., & Roos, R.S. (2006). Time aware test suite prioritization, in Proceedings of the International Symposium on Software Testing and Analysis, pp. 1– 12.
- [42] S. Yoo, M., Harman, "Pareto efficient multi-objective test case selection". In Proceedings of International Symposium on Software Testing and Analysis, pp, 140-150, 2007.
- [43] S. Yoo, M. Harman, S. Ur "Highly scalable multi objective test suite minimisation using graphics cards," in Procs. of SSBSE, 2012, pp. 219-236.