# Introduction to structural equation modeling and mixed models in

Day 3 – Part 3: SEM

Oksana Buzhdygan

oksana.buzh@fu-berlin.de

# Day 3 – Part 3

# Outline

Introduction to Covariance-based SEM

- ✓ SEM using likelihood and covariance matrices
- ✓ Model Identifiability
- ✓ Sample Size for SEM
- ✓ Assessing model fit:  $\chi^2$ , related indices

#### Theory

- The literature
- Natural history
- Exploratory analyses
- Logical arguments
- Available data

**Build a Model** 

Collect Data

Confront Model with Data

**Estimate Parameters, Assess Model Fit** 

How well our data correspond to our model?

# SEM workflow process

Two Paradigms for model estimation

# Covariance-Based Estimation

(lavaan)

#### **Global estimation:**

 reproduce a single variance-covariance matrix



# Local Equation Estimation

(piecewiseSEM)

#### Local estimation:

- fit a model for each response
- strings together the inferences

$$y_1 = b_1 x + \zeta_1$$

$$y_2 = b_2 x_1 + b_2 y_1 + \zeta_2$$

# Covariance-based SEM

**=** S

Observed variance-covariance matrix

Maximum-Likelihood

Estimation

$$S = \widehat{\Sigma}$$

Implied (model-estimated) variance-covariance matrix

$$= \begin{pmatrix} \sigma_x \\ \sigma_{xy_1} & \sigma_{y_1} \\ \sigma_{xy_2} & \sigma_{y_1y_2} & \sigma_{y_2} \end{pmatrix}$$

#### **Likelihood Function:**

tr trace of the matrix

p number of endogenous variables

$$F_{ML} = log|\widehat{\Sigma}| + tr(\widehat{S}\widehat{\Sigma}^{-1}) - log|S| - (p+q)$$

modeled covariance matrix

**S** observed covariance matrix

*q* number of exogenous variables

#### Maximum Likelihood ML

#### **Likelihood Function:**

tr trace of the matrix

p number of endogenous variables

$$F_{ML} = log|\widehat{\Sigma}| + tr(\widehat{S}\widehat{\Sigma}^{-1}) - log|S| - (p+q)$$

**\hat{\Sigma}** modeled covariance matrix

**S** observed covariance matrix

*q* number of exogenous variables

Perfect model fit

$$F_{ML}=0$$

#### **Likelihood Function:**

tr trace of the matrix

p number of endogenous variables

$$F_{ML} = log|\widehat{\Sigma}| + tr(\widehat{S}\widehat{\Sigma}^{-1}) - log|S| - (p+q)$$

**Σ** modeled covariance matrix

**S** observed covariance matrix

*q* number of exogenous variables

#### Desirable properties of $F_{ML}$ :

- scale invariant
- asymptotically unbiased
- efficient

# Covariance-based SEM

#### **Global Estimation**



# Day 3 – Part 3

# Outline

Introduction to Covariance-based SEM

- ✓ SEM using likelihood and covariance matrices
- ✓ Model Identifiability
- ✓ Sample Size for SEM
- ✓ Assessing model fit:  $\chi^2$ , related indices

# Model Identifiability

# Can I fit my model?

 To fit a model we need enough 'known' pieces of information to produce unique estimates of 'unknown' parameters

#### We can not fit the model!

Unidentified

no unique estimates

**Overidentified** 

more 'known' than 'unknown'

#### We can evaluate model fit!

Just Identified

unique estimates

We can fit model!

- In SEM 'knowns' are the variances & covariances of observed variables
- Unknowns are the model parameters to be estimated

# Model Identifiability

# Can I fit my model?



#### lavaan WARNING:

Could not compute standard errors! ... This may be a symptom that the model is not identified.



#### Can non-recursive models be identified?

YES: if responses have unique information



NO: if not enough information for unique solution



# Model Identifiability

# Can I fit my model?

### Assessing identification status: t-rule

s number of

 $DF = t_{max} - t$ 

maximum number of parameters that can be estimated, given *s* 

observed variables

 $=\frac{s(s+1)}{2}$ 

 $oldsymbol{t} = oldsymbol{t}_{max}$  Just identified  $oldsymbol{t} > oldsymbol{t}_{max}$  Unidentified

 $t < t_{max}$  Overidentified

*t* number of parameters to be estimated by the model

Observed variance-covariance matrix

$$s = 3$$

$$t_{max} = 6$$



# Outline

Introduction to Covariance-based SEM

- ✓ SEM using likelihood and covariance matrices
- ✓ Model Identifiability
- ✓ Sample Size for SEM
- ✓ Assessing model fit:  $\chi^2$ , related indices

# Sample Size

# Is my sample size enough?

#### The basic rule-of-thumb:

Minimum requirement

n sample size

$$\vec{n} = p \times 5$$

Ideally 
$$n = p \times 20$$

p number of path coefficients

$$oldsymbol{k} = rac{oldsymbol{p}^{rac{3}{2}}}{oldsymbol{n}} pprox 0$$

The larger the sample size, the more precise (unbiased) the estimates will be.



$$p=2$$

$$n = 2 \times 5 = 10$$
  $k = 0.16$ 

$$n = 2 \times 20 = 40$$
  $k = 0.03$ 

$$k = 0.16$$

$$k = 0.03$$

# Outline

Introduction to Covariance-based SEM

- ✓ SEM using likelihood and covariance matrices
- ✓ Model Identifiability
- ✓ Sample Size for SEM
- ✓ Assessing model fit:  $\chi^2$ , related indices

# Covariance-based SEM

#### Global Estimation





```
data1 <- read.table("Data/SEMdata1.txt", header = T)</pre>
# Specify the model in lavaan
sem mod1 <- ^{\prime} y1 ^{\prime} x1
               y2 ~ y1
# Fit the model
sem.fit1 <- sem(sem mod1, data=data1)</pre>
# Extract results
summary(sem.fit1, standardize = T)
```



# Observed covariance matrix (scaled)

$$x_1$$
  $y_1$   $y_2$   
 $x_1$  1.00  
 $y_1$  0.69 1.00  
 $y_2$  0.44 0.72 1.00

# Model implied matrix (scaled)

|                | X <sub>1</sub> | y <sub>1</sub> | $y_2$ |
|----------------|----------------|----------------|-------|
| $X_1$          | 1.00           |                |       |
| y <sub>1</sub> | 0.69           | 1.00           |       |
| y <sub>2</sub> | 0.49           | 0.72           | 1.00  |

residual 0.444-0.496=-**0.052** 

#### Residuals r (scaled)



```
# Model implied covariance matrix (standardised)
lavInspect(sem.fit1, what="cor.all")
# Observed covariance matrix (standardised)
lavCor(sem.fit1)
# Residuals (standardised)
resid(sem.fit1, "cor")
library(ggcorrplot)
ggcorrplot(resid(sem.fit1,type="cor")$cov,
                                    type="lower")
```



```
# Model implied covariance matrix (standardised)
lavInspect(sem.fit1, what="cor.all")
# Observed covariance matrix (standardised)
lavCor(sem.fit1)
# Residuals (standardised)
resid(sem.fit1, "cor")
library(ggcorrplot)
ggcorrplot(resid (sem.fit1,type="cor")$cov,
                                    type="lower")
```

#### **Likelihood Function:**

p number of endogenous variables

$$F_{ML} = log|\widehat{\Sigma}| + tr(\widehat{S}\widehat{\Sigma}^{-1}) - log|\widehat{S}| - (p+q)$$

Perfect model fit

$$F_{ML}=0$$

**\hat{\Sigma}** modeled covariance matrix

**S** observed covariance matrix

q number of exogenous variables

$$\chi^2 = (n-1) F_{ML}$$
  $\chi^2$  model fit  $n$  sample size

$$\chi^2 = (n-1)F_{ML}$$

 $\boldsymbol{n}$  sample size

 $m{DF}$  degrees of freedom

$$DF = \frac{s(s+1)}{2} - t$$
 from the t-rule

s number of observed variables

number of parameters to be estimated by the model

$$\chi^2 = (n-1)F_{ML}$$
 $n \text{ sample size}$ 

**H0:** no difference between model-implied and observed covariance matrices  $\chi^2 = 0$  (the model fits perfectly)

**Good fit:** P > 0.05 failing to reject **H0** 

- Large  $\chi^2$  implies LACK of fit
- Scaling by sample size

 $m{DF}$  degrees of freedom

$$DF = \frac{s(s+1)}{2} - t$$
 from the t-rule

s number of observed variables

t number of parameters to be estimated by the model







#### A is nested in B

 the same variables but additional parameter to be estimated

#### C is not nested (in A or B)

has additional variable x<sub>2</sub>



# $\chi^2$ statistics:

$$\chi^2 = 1.06$$
, DF=1, n=100, p = 0.3

# $\chi^2$ – difference test:

- only for comparison of nested models
- using the same dataset and sample size

```
# SEM model 1
sem mod1 <- \ y1 \sim x1
               y2 ~ y1
sem.fit1 <- sem(sem mod1, data=data1)</pre>
# SEM model 2
sem mod2 <- \ y1 \sim x1
              y2 \sim y1 + x1
sem.fit2 <- sem(sem mod2, data=data1)</pre>
# Chi-Squared Difference Test
anova(sem.fit1, sem.fit2)
```



# $\chi^2$ – difference test:

- only for comparison of nested models
- using the same dataset and sample size

### $\chi^2$ statistics:

 $\chi^2 = 1.06$ , DF=1, n=100, p = 0.3

- Our model is good enough
- No modifications needed

# **But, Sample Size dependency?**

$$\chi^2 = (n-1)F_{ML}$$
 $n \text{ sample size}$ 

50 samples:  $\chi^2 = 1.78$ , DF=1, p = 0.182

p>0.05 good fit

100 samples:  $\chi^2$  = 3.60, DF=1, p = 0.058

p decrease with higher n

200 samples:  $\chi^2 = 7.24$ , DF=1, p = 0.007

```
# results (fit.measures=T)
lavaan 0.6-9 ended normally after 23 iterations
. . .
Model Test Baseline Model:
  Test statistic
                                                138.453
  Degrees of freedom
  P-value
                                                  0.000
User Model versus Baseline Model:
  Comparative Fit Index (CFI)
                                                  1.000
  Tucker-Lewis Index (TLI)
                                                  0.999
Loglikelihood and Information Criteria:
                                                  7.399
  Loglikelihood user model (H0)
                                                  7.931
  Loglikelihood unrestricted model (H1)
# continued on the next page
```

| # continued                              |        |
|------------------------------------------|--------|
| •••                                      |        |
| Akaike (AIC)                             | -6.798 |
| Bayesian (BIC)                           | 3.623  |
| Sample-size adjusted Bayesian (BIC)      | -9.010 |
|                                          |        |
| Root Mean Square Error of Approximation: |        |
|                                          |        |
| RMSEA                                    | 0.025  |
| 90 Percent confidence interval - lower   | 0.000  |
| 90 Percent confidence interval - upper   | 0.268  |
| P-value RMSEA <= 0.05                    | 0.360  |
|                                          |        |
| Standardized Root Mean Square Residual:  |        |
|                                          |        |
| SRMR                                     | 0.021  |
|                                          |        |

# call the fit measures in lavaan
fitMeasures(sem.fit1)

| > fitMeasures(ser | m.fit1)         |                   |                |                   |
|-------------------|-----------------|-------------------|----------------|-------------------|
| nı                | par fmin        | chisq             | df             | pvalue            |
| 4.0               | 0.005           | 1.064             | 1.000          | 0.302             |
| baseline.ch       | isq baseline.df | baseline.pvalue   | cfi            | tli               |
| 138.4             | 453 3.000       | 0.000             | 1.000          | 0.999             |
| nı                | nfi rfi         | nfi               | pnfi           | ifi               |
| 0.9               | 999 0.977       | 0.992             | 0.331          | 1.000             |
| 1                 | rni logl        | unrestricted.logl | aic            | bic               |
| 1.0               | 7.399           | 7.931             | -6.798         | 3.623             |
| nto               | tal bic2        | rmsea             | rmsea.ci.lower | rmsea.ci.upper    |
| 100.0             | 000 -9.010      | 0.025             | 0.000          | 0.268             |
| rmsea.pva         | lue rmr         | rmr_nomean        | srmr           | srmr_bentler      |
| 0.3               | 360 0.003       | 0.003             | 0.021          | 0.021             |
| srmr_bentler_nome | ean crmr        | crmr_nomean       | srmr_mplus     | srmr_mplus_nomean |
| 0.0               | 0.030           | 0.030             | 0.021          | 0.021             |
| cn_               | _05 cn_01       | gfi               | agfi           | pgfi              |
| 362.0             | 085 624.659     | 0.993             | 0.955          | 0.165             |
|                   |                 |                   |                |                   |

# Recommended minimum of fit measures:

| Measure  | Name                                         | Description                                                                                                                                                                                                                                                   |                |
|----------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $\chi^2$ | Model<br>Chi-Square                          | Assess overall fit and the discrepancy between the observed and model-implied covariance matrices. Sensitive to sample size. H0: The model fits perfectly. (Present: $\chi^2$ , DF, p)                                                                        | p-value > 0.05 |
| RMSEA    | Root Mean Square Error of Approximation      | The square-root of the difference between the observed and model-implied covariance matrices. A parsimony-adjusted index. Values closer to 0 represent a good fit. RMSEA < 0.10 is generally 'acceptable' value. (Present: RMSEA, 90%CI, p <sub>RMSEA</sub> ) | RMSEA < 0.08   |
| CFI      | Comparative Fit Index                        | Compares the fit of a model to the fit of a 'null' model (which estimates all variances but sets the covariances to 0).  Low sensitivity to sample size.                                                                                                      | CFI ≥ 0.90     |
| SRMR     | Standardized<br>Root Mean<br>Square Residual | The standardized difference between the observed and model-implied covariance matrices.                                                                                                                                                                       | SRMR < 0.08    |

... and more:

| Measure | Name                     | Description                                                                                                           | Cut-off<br>for 'good' fit |
|---------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------|
| GFI     | Goodness of Fit          | GFI is the proportion of variance accounted for by the estimated population covariance. Analogous to R <sup>2</sup> . | GFI ≥ 0.95                |
| AGFI    | Adjusted Goodness of Fit | AGFI favours parsimony.                                                                                               | AGFI ≥0.90                |
| NFI     | Normed-Fit Index         | An NFI of 0.95, indicates that the model of interest improves the fit by 95% relative to the null model.              | NFI ≥ 0.95                |
| NNFI    | Non-Normed-Fit<br>Index  | NNFI is preferable for smaller samples.                                                                               | NNFI ≥ 0.95               |
| TLI     | Tucker Lewis index       | Sometimes the NNFI is called the Tucker Lewis index (TLI)                                                             |                           |

More comprehensive overview: <a href="http://davidakenny.net/cm/fit.htm">http://davidakenny.net/cm/fit.htm</a>



#### Indirect Effect of x1 on y2 = 0.496

# Example of how to present the fit statistics:

```
\chi^2 = 1.06, DF=1, n=100, p = 0.3

RMSEA=0.025, (CI = 0, 0.27), p<sub>RMSEA</sub>=0.36

CFI=1.00

SRMR=0.021
```

### **Important points:**

#### In SEM we assess overall model fit:

- Is your model adequate?
- Are you missing any paths?

### When you are missing important paths:

- your parameter estimates may be incorrect
- your model is misspecified

# Day 3 Task 2





California, USA.

Photos credit: USFS, and Jon Keeley, USGS

doi.org/10.1186/s42408-019-0041-0

doi.org/10.1071/WF07049

# Postfire recovery of plant communities in California shrublands

Following fires, 90 plots were established 20x50m.

A number of measures were taken, including:

- Vegetation cover "cover"
- Age of stands that burned "age"
- Fire severity "firesev"

```
# Keeley data
library(piecewiseSEM)
data(keeley)
```

Data: Grace, J.B. and Keeley, J.E. 2006. A structural equation model analysis of postfire plant diversity in California shrublands. Ecological Applications 16:503-514

# Day 3 Task 2





Data: Grace, J.B. and Keeley, J.E. 2006. A structural equation model analysis of postfire plant diversity in California shrublands. Ecological Applications 16:503-514

# Day 3 Task 2

#### For the model on Fig. 1:

- 1. Check what is the model identifability status:
- identified, underidentified, or overidentified model?
- saturated or unsaturated model?
- recursive or non-recursive?
- 2. Assess if the sample size is enough to fit this model?
- 3. Fit the model in lavaan and get the path coefficients.
- 4. Get the fit indices and assess goodness of fit.
- 5. Test if link from "age" to "cover" is missing (see Fig 2)

For this use a Likelihood Ratio Test ( $\chi^2$  – difference test)



