

CURSO INTENSIVO 2022

ITA - 2022 Matemática

Prof. Victor So

Sumário

APRESENTAÇÃO COMPANION DE LA C	
1. CÔNICAS	5
1.1. Circunferência	5
1.1.1. Posições relativas entre ponto e circunferência	6
1.1.2. Posições relativas entre retas e circunferência	6
1.1.3. Posições relativas entre duas circunferências	7
1.2. Parábola	9
1.3. Elipse	10
1.3.1. Relação fundamental da elipse	10
1.3.2. Excentricidade da elipse	10
1.3.3. Equação reduzida da elipse	11
1.4. Hipérbole	12
1.4.1. Relação fundamental da hipérbole	13
1.4.2. Excentricidade da hipérbole	13
1.4.3. Equação reduzida da hipérbole 1.4.4. Retas assíntotas	14
1.4.4. Retas assintotas	14
1.5. Reconhecimento de uma cônica	16
1.6. Problemas de tangência com cônicas	17
2.CÔNICAS ROTACIONADAS	19
2.1. Sistema coordenado rotacionado	19
2.2. Resolução de cônicas rotacionadas	20
2.3. Classificação das cônicas pelo discriminante	22
3. INTERPRETAÇÃO GEOMÉTRICA DAS INEQUAÇÕES	24
3.1. Inequações lineares	24
3.1.1. Sistema de inequações lineares	25
3.2. Inequações quadráticas	27
3.2.1. Circunferência	27
3.2.2. Elipse	27
3.2.3. Parábola	28
3.2.4. Hipérbole	28
4. QUESTÕES DE PROVAS ANTERIORES	31
ITA	31
IME	38
5. GABARITO	44

ITA		44
IME		44
6. QUESTÕES DE PR	OVAS ANTERIORES COMENTADAS	45
ITA		45
IME		83

Apresentação

Nesta aula, veremos as equações das principais cônicas e os seus elementos. Também, estudaremos a interpretação geométrica de um sistema de inequações. A aula pode parecer extensa, e isso é devido à grande quantidade de assuntos que veremos, mas não se assuste!

Se você já é experiente no assunto, pule para a lista de exercícios e tente resolver todas as questões. Quaisquer dúvidas, críticas ou sugestões, entre em contato no fórum de dúvidas ou se preferir:

Como se trata de um **curso intensivo**, o nosso objetivo é que você consiga estudar todas as principais questões que podem ser cobradas na prova e, por isso, teremos menos questões e nossa teoria será mais objetiva. Caso queira um material mais aprofundado e com mais questões, recomendo o nosso material do **curso extensivo**.

1. Cônicas

Vamos iniciar o estudo das cônicas. Essas figuras são lugares geométricos obtidos pela intersecção de um plano com cones retos duplos opostos pelo vértice. Vejas as figuras abaixo:

Perceba que a **elipse** é formada pela intersecção de um plano inclinado em relação às bases dos cones. Se esse plano for paralelo às bases, obtemos a figura de uma **circunferência**, e esse é um caso particular de elipse. Se o plano for paralelo à geratriz de um dos cones, obtemos uma **parábola** (dessa forma não formamos uma elipse). Por fim, a **hipérbole** é obtida passando-se um plano paralelo ao eixo de simetria dos cones. Além desses, temos as cônicas degeneradas: um ponto (elipse degenerada), uma reta (parábola degenerada), para de retas (hipérbole degenerada) ou o conjunto vazio.

Estudaremos a equação das principais cônicas.

1.1. Circunferência

A circunferência é o lugar geométrico dos pontos do plano que equidistam de um ponto fixo. Esse ponto é chamado de centro da circunferência.

Seja λ a circunferência de centro $C(x_0,y_0)$ e r o seu raio. Se $P\in\lambda$, então, pela definição desse L.G., temos

Sendo P(x,y) um ponto qualquer de λ , podemos aplicar a fórmula da distância entre dois pontos:

$$\sqrt{(x-x_0)^2 + (y-y_0)^2} = r$$

Elevando ambos os membros ao quadrado, obtemos a equação reduzida da circunferência:

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Desenvolvendo-se a equação reduzida, obtemos a equação geral da circunferência:

$$x^{2} + y^{2} - 2x_{0}x - 2y_{0}y + (x_{0}^{2} + y_{0}^{2} - r^{2}) = 0$$

Usando a equação da circunferência, podemos escrever duas equações de semicircunferências. Vamos tomar a circunferência centrada na origem.

$$x^2 + y^2 = r^2$$

Isolando y:

$$y^2 = r^2 - x^2 \Rightarrow y = \pm \sqrt{r^2 - x^2}$$

Representando as curvas no gráfico, temos:

1.1.1. Posições relativas entre ponto e circunferência

Dados um ponto $P(x_1, y_1)$ e uma circunferência λ : $(x - x_0)^2 + (y - y_0)^2 = r^2$, para saber a posição relativa do ponto em relação à λ , basta substituir as coordenadas de P na expressão $(x-x_0)^2+(y-y_0)^2$ e analisar o número encontrado com o raio ao quadrado. Desse modo:

- $(x_1 x_0)^2 + (y_1 y_0)^2 < r^2 \to P \text{ \'e interior \'a } \lambda$ $(x_1 x_0)^2 + (y_1 y_0)^2 = r^2 \to P \in \lambda$ $(x_1 x_0)^2 + (y_1 y_0)^2 > r^2 \to P \text{ \'e exterior \'a } \lambda$

Seja a circunferência λ : $(x-2)^2 + (y-1)^2 = 9$, qual a posição relativa do ponto P(0,3) em relação à *λ*?

Substituindo as coordenadas de *P* na circunferência:

$$(0-2)^2 + (3-1)^2 = 4 + 4 = 8 < 9$$

Assim, o ponto é interior à circunferência.

1.1.2. Posições relativas entre retas e circunferência

Dadas as equações de uma reta r: ax + by + c = 0 e de uma circunferência λ : $(x - x_0)^2 + c$ $(y-y_0)^2=r^2$, para saber a posição relativa da reta em relação à λ , basta isolar uma das variáveis da reta $(x \ ou \ y)$ na equação da circunferência e verificar o valor do discriminante da equação.

Assim:

• $r \cap \lambda = \emptyset \Leftrightarrow \Delta < 0 \ (r \ \'{e} \ exterior)$

• $r \cap \lambda = \{P\} \Leftrightarrow \Delta = 0 \ (r \ \'e \ tangente)$

• $r \cap \lambda = \{P_1, P_2\} \Leftrightarrow \Delta > 0 \ (r \in secante)$

1.1.3. Posições relativas entre duas circunferências

Dadas as circunferências λ_1 : $(x-x_1)^2+(y-y_1)^2=r_1^2$ e λ_2 : $(x-x_2)^2+(y-y_2)^2=r_2^2$, para analisar a posição relativa entre as circunferências, devemos calcular a distância entre seus centros e fazer as seguintes comparações:

Seja O_1 o centro da circunferência λ_1 e O_2 o centro da circunferência λ_2 .

• $O_1O_2 = r_1 + r_2 (\lambda_1 e \lambda_2 s\~ao tangentes externamente)$

• $O_1O_2 = |r_1 - r_2|$ ($\lambda_1 e \lambda_2$ são tangentes internamente)

• $|r_1 - r_2| < O_1O_2 < r_1 + r_2 (\lambda_1 e \lambda_2 são secantes)$

• $O_1O_2 > r_1 + r_2$ (as duas circunferências são externas uma à outra)

• $O_1O_2 < |r_1 - r_2|$ (uma das circunferências é interna à outra)

Quando duas circunferências satisfazem a seguinte relação: $O_1O_2^2=r_1^2+r_2^2\ (condição\ de\ ortogonalidade)$

Dizemos que as circunferências são ortogonais entre si. Note que os pontos de intersecção das circunferências formam retas tangentes que passam pelo centro das circunferências.

1.2. Parábola

A equação da parábola já nos é conhecida. Vamos entender melhor os elementos geométricos dessa figura.

Dada uma reta d e um ponto F tal que $F \notin d$, o lugar geométrico chamado de parábola é a figura formada por todos os pontos que equidistam de F e de d, isto é, se P é um ponto da parábola λ , então

$$P \in \lambda \Leftrightarrow d_{PF} = d_{P,d}$$

Observe a figura abaixo e veja as nomenclaturas dos principais elementos da parábola.

Elementos da parábola

 $F \rightarrow foco$

 $V \rightarrow v\acute{e}rtice$

 $d \rightarrow reta \ diretriz$

 $p \rightarrow parâmetro$

Perceba que $P,Q \in parábola$ e $\overline{PF} = \overline{PP'}$ e $\overline{OF} = \overline{OO'}$.

A distância do foco da parábola à reta diretriz é p e, por isso, temos

$$\overline{VF} = \frac{p}{2}$$

Outro ponto a se notar é que a reta que contém V e F

é o eixo de simetria da parábola. Vamos deduzir a equação da parábola usando a definição desse lugar geométrico.

A equação reduzida da parábola com vértice no ponto (x_0, y_0) é dada por:

a) Eixo de simetria na vertical:

$$(x - x_0)^2 = 2p(y - y_0)$$

b) Eixo de simetria na horizontal:

$$(y - y_0)^2 = 2p(x - x_0)$$

1.3. Elipse

A elipse é o lugar geométrico dos pontos P, pertencentes a um plano α , cuja soma das distâncias a dois pontos fixos, F_1 e F_2 , é constante. Chamamos esses pontos fixos de focos da elipse ou pontos focais e o ponto médio do segmento que liga esses focos é o centro da elipse.

Assim, a definição da elipse é

$$PF_1 + PF_2 = constante$$

Essa figura possui um eixo maior e um eixo menor, esses são os eixos de simetria da elipse. O diagrama a seguir mostra os principais elementos da elipse.

 F_1 e F_2 — pontos focais O — centro da elipse $\overline{A_1A_2}$ — eixo maior $\overline{B_1B_2}$ — eixo menor 2c — distância focal 2a — medida do eixo maior 2b — medida do eixo menor

1.3.1. Relação fundamental da elipse

1.3.2. Excentricidade da elipse

A excentricidade da elipse, indicada por *e*, é um número real positivo dado pela razão entre a metade da distância focal e a metade da medida do eixo maior, ou seja,

$$e = \frac{c}{a}$$

Note que e varia no intervalo entre 0 e 1, pois a > c > 0.

Veja o que acontece com a elipse, variando-se os valores da excentricidade.

1.3.3. Equação reduzida da elipse

A equação reduzida da elipse com centro em (x_0, y_0) é:

a) Eixo maior na horizontal:

$$\Rightarrow \frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1$$

b) Eixo maior na vertical:

$$\frac{x'^2}{b^2} + \frac{y'^2}{a^2} = 1 \Rightarrow \boxed{\frac{(x - x_0)^2}{b^2} + \frac{(y - y_0)^2}{a^2} = 1}$$

Como saber se a elipse possui eixo maior (ou

eixo focal) paralelo ao eixo x ou ao eixo y?

Para saber isso, devemos observar a equação reduzida da elipse. Se o maior número estiver abaixo da variável x, então a elipse tem eixo paralelo ao eixo das abcissas. Se o maior número estiver abaixo da variável y, então o eixo maior é paralelo ao eixo das ordenadas.

Veja dois exemplos:

$$1)\frac{x^2}{16} + \frac{y^2}{9} = 1$$

Nesse exemplo, perceba que $a^2 = 16$ e $b^2 = 9$, pois 16 > 9. Como 16 está abaixo de x^2 , essa elipse possui eixo focal paralelo ao eixo x.

$$(2)\frac{x^2}{9} + \frac{y^2}{16} = 1$$

2) $\frac{x^2}{9} + \frac{y^2}{16} = 1$ Aqui, temos $b^2 = 9$ e $a^2 = 16$. Como 16 está abaixo de y^2 , essa elipse possui eixo focal paralelo ao eixo y.

Lembre-se, na elipse, a^2 sempre será o maior número da equação reduzida.

1.4. Hipérbole

A hipérbole é o lugar geométrico formado pelos pontos P do plano cujo módulo da diferença a dois pontos fixos, F_1 e F_2 , é uma constante.

$$|PF_1 - PF_2| = 2a$$

Veja na figura os elementos da hipérbole.

 $O-centro\ da\ hipérbole$ $F_1\ e\ F_2-pontos\ focais$ $A_1A_2-eixo\ real\ ou\ eixo\ transversal$ $B_1B_2-eixo\ imaginário\ ou\ eixo\ conjugado$ $2c-distância\ focal$ $2a-medida\ do\ eixo\ real$ $2b-medida\ do\ eixo\ imaginário$

Perceba que, ao contrário da elipse, o valor 2a é menor do que a distância dos focos, 2c.

1.4.1. Relação fundamental da hipérbole

Sabendo que o eixo imaginário é perpendicular ao eixo real, temos que a relação fundamental da hipérbole é

1.4.2. Excentricidade da hipérbole

Da mesma forma como a elipse, a hipérbole também possui excentricidade e ela é calculada pela mesma razão

$$e = \frac{c}{a}$$

Como c>a>0, temos que e é um número real positivo maior que 1.

1.4.3. Equação reduzida da hipérbole

Considerando como centro o ponto $C(x_0, y_0)$, temos:

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$
 eixo real horizontal
$$\frac{(y-y_0)^2}{a^2} - \frac{(x-x_0)^2}{b^2} = 1$$
 eixo real vertical

1.4.4. Retas assíntotas

À medida que os pontos da hipérbole se afastam dos focos, a hipérbole tende a tangenciar duas retas, essas retas são chamadas de retas assíntotas.

Como fazemos para achar as retas assíntotas de uma hipérbole? Para isso, usamos a equação reduzida da hipérbole e igualamos a expressão do membro à esquerda a 0.

Vejamos um exemplo. Seja a hipérbole de equação reduzida dada por: $\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

Igualando a expressão da esquerda a 0, obtemo

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 0$$

Agora, fatorando a diferença de quadrados, encontramos dois fatores:

$$\left[\frac{(x-x_0)}{a} - \frac{(y-y_0)}{b}\right] \left[\frac{(x-x_0)}{a} + \frac{(y-y_0)}{b}\right] = 0$$

Cada fator representa uma reta assíntota, portanto:

$$\begin{cases} r: \frac{(x - x_0)}{a} - \frac{(y - y_0)}{b} = 0 \\ s: \frac{(x - x_0)}{a} + \frac{(y - y_0)}{b} = 0 \end{cases} \Rightarrow \begin{cases} r: y = \frac{b}{a}x - \frac{b}{a}x_0 + y_0 \\ s: y = -\frac{b}{a}x + \frac{b}{a}x_0 + y_0 \end{cases}$$

Podemos ver pelo diagrama abaixo as retas assíntotas.

Note que as assíntotas passam pelo centro da hipérbole. Um outro modo de encontrar essas retas assíntotas é encontrar o coeficiente das retas assíntotas pela razão

$$m_r = \frac{b}{a}$$
$$m_s = -\frac{b}{a}$$

E substituir os coeficientes na equação da reta

$$y - y_0 = m(x - x_0)$$

Vejamos um exemplo.

Seja a hipérbole dada por

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

Encontre as retas assíntotas dessa hipérbole.

Pela equação dada, podemos ver que

$$a^2 = 16 \Rightarrow a = 4$$

 $b^2 = 9 \Rightarrow b = 3$

Os coeficientes angulares das assíntotas são

$$m = \pm \frac{b}{a} = \pm \frac{3}{4}$$

O centro dessa hipérbole é o ponto
$$(0,0)$$
, logo, as assíntotas são dadas por
$$r: y-0=\frac{3}{4}(x-0)\Rightarrow r: y=\frac{3}{4}x$$

$$s: y-0=-\frac{3}{4}(x-0)\Rightarrow s: y=-\frac{3}{4}x$$

Outra forma de encontrar essas retas é igualando a expressão à esquerda a zero e fatorá-la:

$$\frac{x^2}{16} - \frac{y^2}{9} = 1 \Rightarrow \frac{x^2}{16} - \frac{y^2}{9} = 0 \Rightarrow \left(\frac{x}{4} - \frac{y}{3}\right) \left(\frac{x}{4} + \frac{y}{3}\right) = 0$$

Retas assíntotas:

$$r: \frac{x}{4} - \frac{y}{3} = 0 \Rightarrow r: y = \frac{3}{4}x$$
$$s: \frac{x}{4} + \frac{y}{3} = 0 \Rightarrow s: y = -\frac{3}{4}x$$

1.5. Reconhecimento de uma cônica

Estudamos a equação das cônicas que podem ser cobradas na prova, resta aprender a identificar cada uma delas. As questões, normalmente, darão a equação geral da cônica e, para saber qual figura ela representa, devemos fatorar e analisar a sua equação reduzida. Vamos usar os exemplos abaixo para isso.

1)
$$x - 10y^2 + 60y - 90 = 0$$

O primeiro passo é fatorar a equação. Note que temos apenas um termo linear em x e dois termos em y. Vamos fatorar os termos na variável y:

$$x - 10(y^2 - 6y) - 90 = 0$$

Agora, vamos completar a expressão quadrática $y^2 - 6y$ somando e subtraindo 9:

$$x - 10(y^{2} - 6y + 9 - 9) - 90 = 0$$

$$x - 10[(y - 3)^{2} - 9] - 90 = 0$$

$$x - 10(y - 3)^{2} + 90 - 90 = 0$$

$$\boxed{\frac{x}{10} = (y - 3)^{2}}$$

Essa é a equação de uma parábola da forma

$$2p(x-x_0) = (y-y_0)^2$$

Assim, o parâmetro dessa parábola é $2p = 1/10 \Rightarrow p = 1/20$ e seu centro é (0,3).

2)
$$x^2 - 10x + y^2 + 4y + 28 = 0$$

Aqui temos duas expressões quadráticas nas variáveis x e y. Vamos fatorar cada uma delas.

$$x^{2} - 10x + 25 - 25 + y^{2} + 4y + 4 - 4 + 28 = 0$$

$$(x - 5)^{2} + (y + 2)^{2} - 25 - 4 + 28 = 0$$

$$(x - 5)^{2} + (y + 2)^{2} = 1$$

Essa é a equação de uma circunferência, pois é da forma

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Seu raio é 1 e seu centro é (5, -2).

3)
$$16x^2 - 32x + 9y^2 - 36y - 92 = 0$$

Novamente, vamos iniciar pela fatoração.

$$16(x^2 - 2x) + 9(y^2 - 4y) - 92 = 0$$

Completando os quadrados:

$$16(x^{2} - 2x + 1 - 1) + 9(y^{2} - 4y + 4 - 4) - 92 = 0$$

$$16[(x - 1)^{2} - 1] + 9[(y - 2)^{2} - 4] - 92 = 0$$

$$16(x - 1)^{2} - 16 + 9(y - 2)^{2} - 36 - 92 = 0$$

$$16(x - 1)^{2} + 9(y - 2)^{2} = 144$$

$$\frac{16(x - 1)^{2}}{144} + \frac{9(y - 2)^{2}}{144} = 1$$

$$\frac{(x - 1)^{2}}{9} + \frac{(y - 2)^{2}}{16} = 1$$

Encontramos a equação de uma elipse. Perceba que o maior número está abaixo da variável y, logo, ela possui eixo focal paralelo ao eixo y. Ela é da forma

$$\frac{(x-x_0)^2}{b^2} + \frac{(y-y_0)^2}{a^2} = 1$$

As variáveis são $b^2 = 9 \Rightarrow b = 3$ e $a^2 = 16 \Rightarrow a = 4$, e seu centro é (1, 2).

Da relação fundamental, encontramos a distância focal:

$$a^2 = b^2 + c^2 \Rightarrow c^2 = a^2 - b^2 \Rightarrow c = \sqrt{16 - 9} = \sqrt{7}$$
 (semidistância focal)
$$2c = 2\sqrt{7}$$
 (distância focal)

A excentricidade da elipse é

$$e = \frac{c}{a} = \frac{\sqrt{7}}{4}$$

4)
$$5x^2 - 10x - 4y^2 - 495 = 0$$

Fatorando a expressão do membro à esquerda:

$$5(x^{2} - 2x) - 4y^{2} - 495 = 0$$

$$5(x^{2} - 2x + 1 - 1) - 4y^{2} - 495 = 0$$

$$5[(x - 1)^{2} - 1] - 4y^{2} - 495 = 0$$

$$5(x - 1)^{2} - 5 - 4y^{2} - 495 = 0$$

$$5(x - 1)^{2} - 4y^{2} = 500$$

$$\frac{(x - 1)^{2}}{100} - \frac{y^{2}}{125} = 1$$

Essa é a equação de uma hipérbole com eixo real paralelo ao eixo x, pois o termo que está subtraindo é y^2 . Ela é da forma

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

Temos $a^2 = 100 \Rightarrow \boxed{a = 10}$ e $b^2 = 125 \Rightarrow \boxed{b = 5\sqrt{5}}$. Seu centro é (1, 0).

Da relação fundamental:

$$c^2 = a^2 + b^2 \Rightarrow c = \sqrt{100 + 125} = \sqrt{225} \Rightarrow \boxed{c = 15}$$

A excentricidade dessa hipérbole é

$$e = \frac{c}{a} = \frac{15}{10} = 1,5$$

1.6. Problemas de tangência com cônicas

Com o que aprendemos até aqui, já conseguimos resolver diversos problemas de Geometria Analítica. Uma questão muito recorrente nas provas militares é sobre reta tangente às cônicas. Para resolver esse problema, devemos nos lembrar que, se a reta é tangente, o ponto de intersecção dela com a cônica é apenas um ponto. Dessa forma, vejamos como procedemos com um exemplo.

Seja a equação de cônica dada por λ : $x^2+y^2=1$. Determine a equação da reta tangente à circunferência no ponto $P\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$.

Resolução:

Dado que temos o ponto da reta tangente, podemos escrever a seguinte relação para a equação da reta tangente r:

$$y - y_0 = m(x - x_0) \Rightarrow y = mx + y_0 - mx_0$$

Substituindo as coordenadas do ponto P na reta:

$$y = mx + \left(\frac{\sqrt{2}}{2} - \frac{m\sqrt{2}}{2}\right) \Rightarrow r: y = mx + \frac{\sqrt{2}}{2}(1-m)$$

Agora, temos as seguintes equações:

$$\begin{cases} \lambda : x^2 + y^2 = 1\\ r : y = mx + \frac{\sqrt{2}}{2}(1 - m) \end{cases}$$

Fazendo a intersecção de r com λ , devemos encontrar apenas um ponto. Desse modo:

$$x^2 + \left(mx + \frac{\sqrt{2}}{2}(1-m)\right)^2 = 1$$

Desenvolvendo e simplificando, encontramos:

$$(1+m^2)x^2 + \sqrt{2}(1-m)mx + \frac{m^2 - 2m - 1}{2} = 0$$

Essa é uma equação do segundo grau em x, para termos apenas uma solução, devemos ter $\Delta=0$, logo:

$$\Delta = \left(\sqrt{2}(1-m)m\right)^2 - 4 \cdot (1+m^2) \cdot \left(\frac{m^2 - 2m - 1}{2}\right) = 0$$

Fazendo as contas e simplificando, obtemos:

$$(m+1)^2 = 0 \Rightarrow m = -1$$

Substituindo esse valor na equação da reta:

$$y = (-1)x + \frac{\sqrt{2}}{2}(1 - (-1)) \Rightarrow y = -x + \sqrt{2}$$

Portanto, a equação da reta tangente à circunferência no ponto $P\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ é

$$r: y = -x + \sqrt{2}$$

Você deve ter notado que o problema de tangência acima se resumiu em encontrar o valor do coeficiente angular m da reta. Há um método mais fácil de encontrá-la, nesse usaremos um pouco de cálculo. Dado que temos um ponto da circunferência e queremos a reta tangente a ela nesse ponto, podemos calcular o coeficiente angular derivando-se a equação da circunferência (também funciona para qualquer equação de cônica, não apenas a circunferência), assim, analisemos a equação:

$$x^2 + y^2 = 1$$

Nessa equação, temos duas variáveis (x e y), podemos derivá-la em relação à x.

$$\frac{dx^2}{dx} + \frac{dy^2}{dx} = \frac{d(1)}{dx}$$

Para o primeiro termo, temos:

$$\frac{dx^2}{dx} = 2x$$

Para o segundo termo, temos uma função em y e queremos derivá-la em relação à x. Podemos de maneira simplificada, proceder da seguinte maneira:

$$\frac{dy^2}{dx} = \frac{dy^2}{\underbrace{dy}_{2y}} \cdot \frac{dy}{\underbrace{dx}} = 2y \cdot y'$$

*À princípio o método acima é informal, mas para a prova, faça desse modo.

E, por fim, a derivada de uma constante é zero, logo:

$$\frac{d(1)}{dx} = 0$$

Assim, obtemos:

$$2x + 2y \cdot y' = 0 \Rightarrow y' = -\frac{x}{y}$$

y' é o coeficiente angular que procuramos e (x,y) é a coordenada do ponto da circunferência. Substituindo os valores, encontramos:

$$m = y' = -\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = -1 \div \boxed{m = -1}$$

E esse é o mesmo resultado que encontramos sem o uso do cálculo.

Dado que qualquer cônica possui como equação geral:

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

Um bizu para aplicar a derivada nessa equação é decorar as seguintes derivadas:

$$\frac{\frac{d(Ax^2)}{dx} = A \cdot 2x}{\frac{d(Bxy)}{dx} = B(y + xy')}$$

$$\frac{\frac{d(Cy^2)}{dx} = C \cdot 2y \cdot y'}{\frac{d(Dx)}{dx} = D}$$

$$\frac{\frac{d(Ey)}{dx} = Ey'}{\frac{d(F)}{dx} = 0}$$

A maioria das questões podem ser resolvidas sem o uso de cálculo, por isso, não é obrigatório que você aprenda esse assunto. Mas essa ferramenta pode facilitar a resolução de algumas questões.

2. Cônicas rotacionadas

Vimos, no capítulo anterior, apenas a equação das cônicas com eixos paralelos aos eixos cartesianos. Mas além desses, podemos encontrar questões sobre cônicas rotacionadas. Vamos aprender a resolver problemas desse tipo.

Toda cônica possui uma equação geral da forma

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

Onde A, B, C, D, E e F são constantes reais.

As equações das cônicas que estudamos até aqui possuíam o coeficiente B=0 e, por isso, bastava completar os quadrados para encontrar a equação reduzida e identificar o lugar geométrico. Mas se $B\neq 0$, temos cônicas de eixos não paralelos aos eixos coordenados e não podemos usar o método de completar quadrados para fatorar a equação da cônica. Para resolver esse problema, podemos fazer uso de um sistema coordenado rotacionado.

2.1. Sistema coordenado rotacionado

Seja $P(x_0, y_0)$ um ponto qualquer do plano representado pelo sistema cartesiano ortogonal xOy. Vamos rotacionar esse sistema de um ângulo θ no sentido anti-horário e obter uma relação entre as coordenadas do novo XOY e do antigo sistema xOy. Observe a figura abaixo.

Note que (X_0, Y_0) é a coordenada de P no sistema rotacionado.

Do diagrama, podemos escrever as seguintes relações:

$$X_0 \cdot \cos \theta = x_0 + Y_0 \cdot \sin \theta$$

$$y_0 = X_0 \cdot \sin \theta + Y_0 \cdot \cos \theta$$

Isolando as coordenadas x_0 e y_0 , obtemos:

$$\begin{cases} x_0 = X_0 \cdot \cos \theta - Y_0 \cdot \sin \theta \\ y_0 = X_0 \cdot \sin \theta + Y_0 \cdot \cos \theta \end{cases}$$

Assim, dado um ponto P(x,y) no plano cartesiano, se quisermos rotacionar o sistema de eixos do plano de um ângulo θ no sentido anti-horário e obter as coordenadas de P no novo sistema, basta fazer as seguintes transformações:

$$\begin{cases} x = X \cdot \cos \theta - Y \cdot \sin \theta \\ y = X \cdot \sin \theta + Y \cdot \cos \theta \end{cases}$$

Podemos representar essa transformação usando matrizes:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

Multiplicando a equação acima pela inversa da matriz $\begin{pmatrix} \cos \theta & -\sec \theta \\ -\cos \theta & \cos \theta \end{pmatrix}$

$$-\frac{\sin\theta}{\cos\theta}$$
), obtemos:

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

2.2. Resolução de cônicas rotacionadas

Agora que aprendemos como rotacionar o sistema de eixos coordenados, podemos proceder à resolução das questões de cônicas rotacionadas. Tomemos o caso geral, onde $B \neq 0$.

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

Como $B \neq 0$, não podemos simplesmente completar os quadrados para encontrar a equação reduzida. Nesse caso, devemos fazer as transformações

$$\begin{cases} x = X \cdot \cos \theta - Y \cdot \sin \theta \\ y = X \cdot \sin \theta + Y \cdot \cos \theta \end{cases}$$

E encontrar um θ que zere o termo xy. Essa transformação rotacionará o sistema de eixos coordenados de um ângulo θ no sentido anti-horário de tal forma que a figura fique na forma de equação reduzida no novo sistema de eixos coordenados.

Assim, transformando as coordenadas, obtemos:

$$A(X \cdot \cos \theta - Y \cdot \sin \theta)^{2} + B(X \cdot \cos \theta - Y \cdot \sin \theta)(X \cdot \sin \theta + Y \cdot \cos \theta) + C(X \cdot \sin \theta + Y \cdot \cos \theta)^{2} + D(X \cdot \cos \theta - Y \cdot \sin \theta) + E(X \cdot \sin \theta + Y \cdot \cos \theta) + F = 0$$

Fazendo as contas e simplificando, encontramos a seguinte equação:

$$\left[A\cos^{2}\theta + \frac{Bsen(2\theta)}{2} + Csen^{2}\theta\right]X^{2} + (D\cos\theta + Esen\theta)X
+ \left[Asen^{2}\theta + \frac{Bsen(2\theta)}{2} + C\cos^{2}\theta\right]Y^{2} + (-Dsen\theta + E\cos\theta)Y
+ \left[(C - A)sen(2\theta) + B\cos(2\theta)\right]XY + F = 0$$

Queremos zerar o termo XY, logo, devemos ter

$$(C - A)sen(2\theta) + Bcos(2\theta) = 0$$
$$cotg(2\theta) = \frac{cos(2\theta)}{sen(2\theta)} = \frac{A - C}{B}$$

Se $A \neq C$, podemos escrever

$$tg(2\theta) = \frac{B}{A - C}$$

Essa é a condição que o ângulo deve satisfazer para zerar o termo misto XY.

Vejamos um exemplo para praticar.

1) Determine o lugar geométrico definido pela equação

$$4x^2 - 8xy + 4y^2 - 9\sqrt{2}x + 7\sqrt{2}y + 16 = 0$$

Perceba que temos o termo misto xy na equação. Na notação da equação geral, temos

$$A = 4$$
, $B = -8$, $C = 4$

Como $A=\mathcal{C}$, para zerar o termo misto, devemos usar a seguinte relação

$$\cot(2\theta) = \frac{A - C}{B}$$

Substituindo os valores:

$$\cot(2\theta) = \frac{4-4}{-8} = 0 \Rightarrow 2\theta = 90^{\circ} \Rightarrow \theta = 45^{\circ}$$

Dessa forma, temos que rotacionar o sistema de um ângulo de 45°. Usando a seguinte transformação

$$\begin{cases} x = X \cdot \cos 45^{\circ} - Y \cdot \sin 45^{\circ} \\ y = X \cdot \sin 45^{\circ} + Y \cdot \cos 45^{\circ} \end{cases} \Rightarrow \begin{cases} x = \frac{\sqrt{2}}{2}(X - Y) \\ y = \frac{\sqrt{2}}{2}(X + Y) \end{cases}$$

Encontramos

$$4\left[\frac{\sqrt{2}}{2}(X-Y)\right]^{2} - 8\left[\frac{\sqrt{2}}{2}(X-Y)\right]\left[\frac{\sqrt{2}}{2}(X+Y)\right] + 4\left[\frac{\sqrt{2}}{2}(X+Y)\right]^{2} - 9\sqrt{2}\left[\frac{\sqrt{2}}{2}(X-Y)\right] + 7\sqrt{2}\left[\frac{\sqrt{2}}{2}(X+Y)\right] + 16 = 0$$

Fazendo as contas e simplificando, obtemos:

$$\frac{X-4}{4} = (Y+1)^2$$

Essa é a equação de uma parábola com eixo de simetria na horizontal e vértice (4,-1), rotacionada de 45°. O parâmetro dessa parábola é

$$2p = \frac{1}{4} \Rightarrow p = \frac{1}{8}$$

O esboço dessa parábola é representado pela seguinte figura:

Uma equação que pode ser cobrada nas provas é da seguinte hipérbole rotacionada:

$$xy = k, k \in \mathbb{R}^*$$

Essa hipérbole possui como retas assíntotas os próprios eixos coordenados.

Decore essa equação, pois caso ela seja cobrada, você ganhará tempo na prova!

2.3. Classificação das cônicas pelo discriminante

Dada uma equação geral de cônica da forma

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ Podemos classificar as cônicas pelo número $B^2 - 4AC$, esse é conhecido como o **discriminante** da equação da cônica.

Veja a tabela abaixo as classificações.

Classificação das cônicas		
$B^2-4AC>0$	Hipérbole	
$B^2 - 4AC < 0 e A \neq C$	Elipse	
$B^2 - 4AC < 0 e A = C$	Circunferência	
$B^2 - 4AC = 0$	Parábola	

Nos casos em que a equação geral possui B=0, podemos fatorar a equação geral para encontrar a equação reduzida pelo método de completar quadrados, fazendo isso, os termos que multiplicam x^2 e y^2 , isto é, A e C, respectivamente, são colocados em evidência, e esses são os termos que determinam a equação reduzida da cônica. Veja para cada caso de cônica.

Parábola: a parábola possui apenas um termo elevado ao quadrado e, por isso, um dos números A ou C deve ser zero. Multiplicando-os encontramos sempre AC=0.

Elipse: No caso da elipse, a equação reduzida é da forma

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1$$

Assim, os termos A e C da equação geral da elipse são necessariamente positivos e, portanto, o produto deles sempre deve resultar em um número positivo, ou seja, AC > 0.

Circunferência: Esse é um caso particular de elipse e, nesse caso, temos da sua equação geral $A=\mathcal{C}$. Para ser elipse, sabemos que devemos ter $A\mathcal{C}>0$.

Hipérbole: Aqui, diferentemente da elipse, os termos quadráticos são subtraídos e, por isso, A e C da sua equação geral devem ter sinais opostos. Desse modo, o produto AC < 0.

Com os casos acima, vemos que para o caso onde B=0, podemos classificar as cônicas pelo produto AC. Mas como fazemos a classificação se $B\neq 0$? Aí entra o discriminante da equação da cônica. Fazendo uma rotação de sistema usando as transformações

$$\begin{cases} x = X \cdot \cos \theta - Y \cdot \sin \theta \\ y = X \cdot \sin \theta + Y \cdot \cos \theta \end{cases}$$

Podemos reescrever $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ sem o termo misto xy:

$$A'X^{2} + C'Y^{2} + D'X + E'Y + F' = 0$$

Fazendo as contas, podemos provar que

$$B^2 - 4AC = -4A'C'$$

Sabemos como classificar a cônica pelo produto A'C'. Como B^2-4AC possui sinal oposto ao de A'C', temos o resultado da tabela apresentada nesse tópico.

Tomemos o exemplo do tópico anterior para verificar por esse método a classificação da cônica.

$$4x^2 - 8xy + 4y^2 - 9\sqrt{2}x + 7\sqrt{2}y + 16 = 0$$

Nessa equação, temos A=4, B=-8 e C=4. Calculando o discriminante da cônica, obtemos:

$$B^{2} - 4AC = (-8)^{2} - 4 \cdot 4 \cdot 4 = 64 - 64 = 0$$

$$\therefore B^{2} - 4AC = 0$$

Portanto, como $B^2-4AC=0$, temos que a equação representa uma parábola, o que condiz com o resultado que verificamos rotacionando-se o sistema.

3. Interpretação geométrica das inequações

Estudamos inequações em aulas passadas, veremos aqui a interpretação geométrica das inequações.

3.1. Inequações lineares

Sabemos da Geometria Plana que uma reta divide o plano em dois semiplanos. Assim, a inequação ax + by + c > 0 representa um semiplano. Vamos aprender a identificá-lo.

Tomemos a inequação x + y + 1 > 0, o que ela representa no plano cartesiano? Para saber isso, podemos esboçar o gráfico da equação x + y + 1 = 0:

Perceba que a reta x+y+1=0 divide o plano nos semiplanos α e β . Para saber qual a região da inequação x+y+1>0, podemos testar a veracidade da inequação com um ponto qualquer. Vamos testar o ponto P(0,0).

$$P(0,0) \Rightarrow 0 + 0 + 1 = 1 > 0$$
 (verdadeiro)

Como a inequação é verdadeira para P(0,0), temos que $P \in x+y+1>0$. O ponto P está localizado na região α e, portanto, x+y+1>0 é a região α .

Os pontos da reta x+y+1=0 não fazem parte do plano α , pois a inequação não possui o símbolo de igualdade!

Vejamos outro exemplo.

Qual a região da inequação $x + y \le 0$?

Nesse caso, note que $x+y \le 0$ é igual à união da região x+y < 0 e da reta x+y=0. Além do método que aprendemos, podemos analisar o gráfico de outro modo. Vamos isolar y da inequação:

$$y \leq -x$$

Representemos y = -x no gráfico:

Agora, vamos testar os valores de x na inequação:

$$x = 1 \Rightarrow y \le -1$$

$$x = 0 \Rightarrow y \le 0$$

$$x = -1 \Rightarrow y \le 1$$

$$x = -2 \Rightarrow y \le 2$$

Representando essas coordenadas no plano, temos:

Perceba que qualquer x que tomarmos, o intervalo resultante será todos os pontos abaixo da reta. Desse modo, a inequação representa o semiplano formado pelos pontos abaixo da reta e os pontos da reta.

3.1.1. Sistema de inequações lineares

Um sistema de inequações lineares representa a região do plano delimitada pela região comum a cada inequação linear do sistema. Considere o sistema abaixo.

$$\begin{cases} x+y > 0 \\ -2x + 3y + 1 < 0 \end{cases}$$

Vamos esboçar a região delimitada pelo sistema. Inicialmente, devemos desenhar a região de cada inequação conforme acabamos de aprender e, por fim, fazemos a intersecção dessas regiões.

Começaremos por x+y>0, isolando y, temos y>-x. Essa inequação representa a região do plano acima da reta y=-x (perceba que a reta está em pontilhado para indicar que ela não faz parte do semiplano).

O próximo passo é esboçar -2x + 3y + 1 < 0, isolando y: $y < \frac{2}{3}x - \frac{1}{3}$

Essa inequação representa todos os pontos abaixo da reta $y = \frac{2}{3}x - \frac{1}{3}$.

Note que temos uma região comum às duas inequações. Essa é a solução do sistema.

3.2. Inequações quadráticas

Da mesma forma como fizemos com as inequações lineares (retas), vamos analisar inequações quadráticas.

3.2.1. Circunferência

Para analisar as inequações de circunferências, podemos usar o que aprendemos no tópico posição relativa entre ponto e circunferência. Assim, temos:

$$(x-x_0)^2 + (y-y_0)^2 < r^2$$
 \rightarrow todos os pontos dentro da circunferência

$$(x - x_0)^2 + (y - y_0)^2 > r^2$$

 \rightarrow pontos fora da circunferência

3.2.2. Elipse

Como a circunferência é um caso particular da elipse, as inequações envolvendo elipse serão análogas aos casos da circunferência.

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} < 1$$

$$\rightarrow região\ interna\ da\ elipse$$

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} > 1$$

$$\rightarrow região\ externa\ da\ elipse$$

3.2.3.

Para

Parábola

a parábola, temos a região interna e a região externa.

$$2p(y - y_0) > (x - x_0)^2$$

 \rightarrow região interna à parábola

3.2.4. Hipérbole

Para a hipérbole, temos duas regiões definidas por cada curva e uma região entre as curvas.

 \rightarrow região entre as curvas

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} > 1$$

$$\rightarrow duas \ regiões \ delimitadas \ pelas \ curvas$$

(ITA/2004) Determine os valores reais do parâmetro a para os quais existe um número real x satisfazendo $\sqrt{1-x^2} \ge a-x$.

Resolução:

À primeira vista, esse problema aparenta ser um problema puramente algébrico. Mas podemos resolver a questão usando a Geometria Analítica. Observemos as expressões envolvidas e façamos $y=\sqrt{1-x^2}$ e y=a-x.

Note que $y=\sqrt{1-x^2}$ representa, no plano cartesiano, uma semicircunferência de raio 1 e y=a-x é uma reta de coeficiente angular -1 e coeficiente linear a (parâmetro). Veja como o esboço do gráfico pode simplificar a resolução da questão.

Inicialmente, desenhamos o esquema da semicircunferência.

Agora, desenhamos a reta. Como a é um parâmetro, a reta y=a-x pode transladar ao longo do eixo x desse modo:

A questão pede os valores do parâmetro real a para que a inequação $\sqrt{1-x^2} \ge a-x$ tenha solução real. Pelo gráfico acima, podemos ver que enquanto houver pontos da semicircunferência acima da reta y=a-x, teremos alguma solução real:

A curva em vermelho indica as soluções reais da inequação $\sqrt{1-x^2} \ge a-x$. Aumentando-se o valor de a, a reta translada para a direita. Assim, o problema se resume a encontrar o limite superior de a para que exista algum ponto da semicircunferência que ainda esteja acima da reta. Isso ocorrerá quando a reta tangenciar a semicircunferência no seu lado direito.

Portanto, temos o seguinte esquema

Note pela figura ao lado que ABC é um triângulo retângulo. Podemos encontrar o valor dos seus ângulos internos. Da reta $r\colon y=a-x$, temos como coeficiente angular $m_r=-1$. \overline{AC} é perpendicular a essa reta, logo, o coeficiente da reta que contém \overline{AC} é

$$m_{AC} = -\frac{1}{m_r} = -\frac{1}{-1} = 1$$

Sendo θ o ângulo da reta perpendicular, temos

$$m_{AC} = \operatorname{tg} \theta = 1 \Rightarrow \theta = 45^{\circ}$$

Sabendo que AC é o raio da semicircunferência, temos

$$\cos \theta = \frac{AC}{AB} \Rightarrow AB = \frac{AC}{\cos \theta}$$

$$AB = \frac{1}{\cos 45^{\circ}} = \sqrt{2}$$

A equação de r é

$$r: y = -x + a$$

Como $(\sqrt{2},0)$ é ponto da reta, temos

$$y = 0 \Rightarrow 0 = -\sqrt{2} + a \Rightarrow a = \sqrt{2}$$

Esse é o maior valor que a pode assumir para $\sqrt{1-x^2} \geq a-x$ ter alguma solução real em x.

Portanto, para $a \leq \sqrt{2}$, a inequação possui solução real.

4. Questões de Provas Anteriores

ITA

1. (ITA/2020)

Seja λ a circunferência que passa pelos pontos P=(1,1), Q=(13,1) e R=(7,9). Determine:

- a) A equação de λ .
- b) Os vértices do quadrado ABCD circunscrito a λ , sabendo que R é o ponto médio de \overline{AB} .

2. (ITA/2020)

Sejam a e b dois números reais. Sabendo que o conjunto dos números reais k para os quais a reta y = kx intersecta a parábola $y = x^2 + ax + b$ é igual a $(-\infty, 2] \cup [6, +\infty)$, determine os números a e b.

3. (ITA/2019)

Seja γ a circunferência de equação $x^2+y^2=4$. Se r e s são duas retas que se interceptam no ponto P=(1,3) e são tangentes a γ , então o cosseno do ângulo entre r e s é igual a

- a) $\frac{1}{5}$
- b) $\frac{\sqrt{7}}{7}$
- c) $\frac{1}{2}$
- d) $\frac{\sqrt{2}}{2}$
- e) $\frac{2\sqrt{6}}{5}$

4. (ITA/2019)

Seja F o foco da parábola de equação $(y-5)^2=4(x-7)$, e sejam A e B os focos da elipse da equação $\frac{(x-4)^2}{9}+\frac{(y-2)^2}{8}=1$. Determine o lugar geométrico formado pelos pontos P do plano tais que a área do triângulo ABP seja numericamente igual ao dobro da distância de P a F.

5. (ITA/2018)

Considere a definição: duas circunferências são ortogonais quando se interceptam em dois pontos distintos e nesses pontos suas tangentes são perpendiculares. Com relação às circunferências C_1 : $x^2 + (y+4)^2 = 7$, C_2 : $x^2 + y^2 = 9$ e C_3 : $(x-5)^2 + y^2 = 16$, podemos afirmar que

- a) somente C_1 e C_2 são ortogonais.
- b) somente C_1 e C_3 são ortogonais.
- c) C_2 é ortogonal a C_1 e a C_3 .
- d) C_1 , C_2 e C_3 são ortogonais duas a duas.
- e) não há ortogonalidade entre as circunferências.

6. (ITA/2018)

No plano cartesiano são dadas as circunferências C_1 : $x^2 + y^2 = 1$ e C_2 : $(x - 4)^2 + y^2 = 4$. Determine o centro e o raio de uma circunferência C tangente simultaneamente a C_1 e C_2 , passando pelo ponto $A = (3, \sqrt{3})$.

7. (ITA/2017)

Sejam $S_1 = \{(x,y) \in \mathbb{R}^2 : y \ge \big| |x| - 1 \big| \}$ e $S_2 = \{(x,y) \in \mathbb{R}^2 : x^2 + (y+1)^2 \le 25 \}$. A área da região $S_1 \cap S_2$ é

- a) $\frac{25}{4}\pi 2$
- b) $\frac{25}{4}\pi 1$
- c) $\frac{25}{4}\pi$
- d) $\frac{75}{4}\pi 1$
- e) $\frac{75}{4}\pi 2$

8. (ITA/2016)

Considere as circunferências λ_1 : $x^2 + y^2 - 8x + 4y = 20$ e λ_2 : $x^2 + y^2 - 2x - 8y = 8$. O triângulo ABC satisfaz as seguintes propriedades:

- a) o lado \overline{AB} coincide com a corda comum a λ_1 e λ_2 ;
- b) o vértice *B* pertence ao primeiro quadrante;
- c) o vértice C pertence a λ_1 e a reta que contém \overline{AC} é tangente a λ_2 .

Determine as coordenadas do vértice C.

9. (ITA/2016)

Se P e Q são pontos que pertencem à circunferência $x^2+y^2=4$ e à reta y=2(1-x), então o valor do cosseno do ângulo $P\hat{O}Q$ é igual a

- a) $-\frac{3}{5}$
- b) $-\frac{3}{7}$
- c) $-\frac{2}{5}$
- d) $-\frac{4}{5}$
- e) $-\frac{1}{7}$

10. (ITA/2016)

Sejam S um subconjunto de \mathbb{R}^2 e P=(a,b) um ponto de \mathbb{R}^2 . Define-se distância de P a S, d(P,S), como a menor das distâncias d(P,Q), com $Q \in S$: $d(P,S) = min\{d(P,Q): Q \in S\}$.

Sejam
$$S_1 = \{(x,y) \in \mathbb{R}^2 : x = 0 \text{ e } y \ge 2\} \text{ e } S_2 = \{(x,y) \in \mathbb{R}^2 : y = 0\}.$$

- a) Determine $d(P, S_1)$ quando P = (1, 4) e $d(Q, S_1)$ quando Q = (-3, 0).
- b) Determine o lugar geométrico dos pontos do plano equidistantes de S_1 e de S_2 .

11. (ITA/2015)

Considere uma circunferência \mathcal{C} , no primeiro quadrante, tangente ao eixo $\mathcal{O}x$ e à reta r: x-y=0. Sabendo-se que a potência do ponto $\mathcal{O}=(0,0)$ em relação a essa circunferência é igual a 4, então o centro e o raio de \mathcal{C} são, respectivamente, iguais a

a)
$$(2, 2\sqrt{2} - 2)$$
 e $2\sqrt{2} - 2$

b)
$$\left(2, \frac{\sqrt{2}}{2} - \frac{1}{2}\right) e^{\frac{\sqrt{2}}{2}} - \frac{1}{2}$$

c)
$$(2, \sqrt{2} - 1)$$
 e $\sqrt{2} - 1$

d)
$$(2, 2 - \sqrt{2})$$
 e $2 - \sqrt{2}0$

e)
$$(2, 4\sqrt{2} - 4)$$
 e $4\sqrt{2} - 4$

12. (ITA/2015)

Considere as afirmações a seguir:

- I. O lugar geométrico do ponto médio de um segmento \overline{AB} , com comprimento l fixado, cujos extremos se deslocam livremente sobre os eixos coordenados é uma circunferência.
- II. O lugar geométrico dos pontos (x,y) tais que $6x^3 + x^2y xy^2 4x^2 2xy = 0$ é um conjunto finito no plano cartesiano \mathbb{R}^2 .
- III. Os pontos (2,3), (4,-1) e (3,1) pertencem a uma circunferência.

Destas, é (são) verdadeira(s)

- a) apenas I.
- b) apenas II.
- c) apenas III.
- d) l e II.
- e) l e III.

13. (ITA/2014)

A equação do círculo localizado no 1° quadrante que tem área igual a 4π (unidades de área) e é tangente, simultaneamente, às retas r: 2x - 2y + 5 = 0 e s: x + y - 4 = 0 é

a)
$$\left(x - \frac{3}{4}\right)^2 + \left(y - \frac{10}{4}\right)^2 = 4$$

b)
$$\left(x - \frac{3}{4}\right)^2 + \left(y - \left(2\sqrt{2} + \frac{3}{4}\right)\right)^2 = 4$$

c)
$$\left(x - \left(2\sqrt{2} + \frac{3}{4}\right)\right)^2 + \left(y - \frac{10}{4}\right)^2 = 4$$

e)
$$\left(x - \left(2\sqrt{2} + \frac{3}{4}\right)\right)^2 + \left(y - \frac{11}{4}\right)^2 = 4$$

14. (ITA/2013)

Determine a área da figura plana situada no primeiro quadrante e delimitada pelas curvas

$$(y-x-2)(y+\frac{x}{2}-2)=0$$
 e $x^2-2x+y^2-8=0$

15. (ITA/2013)

Sobre a parábola definida pela equação $x^2 + 2xy + y^2 - 2x + 4y + 1 = 0$ pode-se afirmar que

- a) ela não admite reta tangente paralela ao eixo Ox.
- b) ela admite apenas uma reta tangente paralela ao eixo Ox.
- c) ela admite duas retas tangentes paralelas ao eixo Ox.
- d) a abscissa do vértice da parábola é x = -1.
- e) a abscissa do vértice da parábola é $x=-\frac{2}{3}$.

16. (ITA/2011)

Sejam m e n inteiros tais que $\frac{m}{n}=-\frac{2}{3}$ é a equação $36x^2+36y^2+mx+ny-23=0$ representa uma circunferência de raio r=1 cm e centro C localizado no segundo quadrante. Se A e B são os pontos onde a circunferência cruza o eixo Oy, a área do triângulo ABC, em cm^2 , é igual a

- a) $\frac{8\sqrt{2}}{3}$
- b) $\frac{4\sqrt{2}}{3}$
- c) $\frac{2\sqrt{2}}{3}$
- d) $\frac{2\sqrt{2}}{9}$
- e) $\frac{\sqrt{2}}{9}$

17. (ITA/2010)

Um triângulo equilátero tem os vértices nos pontos $A, B \in C$ do plano xOy, sendo B = (2, 1) e C = (5, 5). Das seguintes afirmações:

I. A se encontra sobre a reta $y = -\frac{3}{4}x + \frac{11}{2}$,

II. A está na intersecção da reta $y = -\frac{3}{4}x + \frac{45}{8}$ com a circunferência $(x-2)^2 + (y-1)^2 = 25$,

III. A pertence às circunferências $(x-5)^2 + (y-5)^2 = 25 \text{ e} \left(x-\frac{7}{2}\right)^2 + (y-3)^2 = \frac{75}{4}$

é (são) verdadeira(s) apenas

- a) l.
- b) II.
- c) III.
- d) l e II.
- e) II e III.

18. (ITA/2010)

Considere as circunferências C_1 : $(x-4)^2+(y-3)^2=4$ e C_2 : $(x-10)^2+(y-11)^2=9$. Seja r uma reta tangente interna a C_1 e C_2 , isto é, r tangência C_1 e C_2 e intercepta o segmento de reta $\overline{O_1O_2}$ definido pelos centros O_1 de C_1 e C_2 de C_2 . Os pontos de tangência definem um segmento sobre r que mede

- a) $5\sqrt{3}$
- b) $4\sqrt{5}$
- c) $3\sqrt{6}$
- d) $\frac{25}{3}$
- e) 9

19. (ITA/2010)

Determine uma equação da circunferência inscrita no triângulo cujos vértices são $A=(1,1),\ B=(1,7)$ e C=(5,4) no plano $x{\it O}y$.

20. (ITA/2008)

Dada a cônica λ : $x^2 - y^2 = 1$, qual das retas abaixo é perpendicular à λ no ponto $P = (2, \sqrt{3})$?

a)
$$y = \sqrt{3}x - 1$$

b)
$$y = \frac{\sqrt{3}}{2}x$$

c)
$$y = \frac{\sqrt{3}}{3}x + 1$$

d)
$$y = -\frac{\sqrt{3}}{5}x - 7$$

e)
$$y = -\frac{\sqrt{3}}{2}x - 4$$

21. (ITA/2008)

Considere a parábola de equação $y = ax^2 + bx + c$, que passa pelos pontos (2,5), (-1,2) e tal que a,b,c formam, nesta ordem, uma progressão aritmética. Determine a distância do vértice da parábola à reta tangente à parábola no ponto (2,5).

22. (ITA/2007)

Considere, no plano cartesiano xy, duas circunferências C_1 e C_2 , que se tangenciam exteriormente em P:(5,10). O ponto Q:(10,12) é o centro de C_1 . Determine o raio da circunferência C_2 , sabendo que ela tangencia a reta definida pela equação x=y.

23. (ITA/2006)

Sejam a reta s: 12x - 5y + 7 = 0 e a circunferência $C: x^2 + y^2 + 4x + 2y = 11$. A reta p, que é perpendicular a s e é secante a C, corta o eixo Oy num ponto cuja ordenada pertence ao seguinte intervalo

- a) (-91/12, -81/12)
- b) (-81/12, -74/12)
- c) (-74/12, 30/12)
- d) (30/12,74/12)
- e) (75/12,91/12)

24. (ITA/2006)

Sabendo que $9y^2 - 16x^2 - 144y + 224x - 352 = 0$ é a equação de uma hipérbole, calcule sua distância focal.

25. (ITA/2006)

Os focos de uma elipse são $F_1(0,-6)$ e $F_2(0,6)$. Os pontos A(0,9) e B(x,3), x>0, estão na elipse. A área do triângulo com vértices em B,F_1 e F_2 é igual a

- a) $22\sqrt{10}$
- b) $18\sqrt{10}$
- c) $15\sqrt{10}$
- d) $12\sqrt{10}$
- e) $6\sqrt{10}$

26. (ITA/2005)

Uma circunferência passa pelos pontos A = (0,2), B = (0,8) e C = (8,8). Então, o centro da circunferência e o valor de seu raio, respectivamente, são a) (0,5) e 6.

- b) (5,4) e 5.
- c) (4,8) e 5,5.
- d) (4, 5) e 5.
- e) (4,6)e 5.

27. (ITA/2005)

Seja \mathcal{C} a circunferência de centro na origem, passando pelo ponto P=(3,4). Se t é a reta tangente a \mathcal{C} por P, determine a circunferência \mathcal{C}' de menor raio, com centro sobre o eixo x e tangente simultaneamente à reta t e à circunferência \mathcal{C} .

28. (ITA/2005)

A distância focal e a excentricidade da elipse com centro na origem e que passa pelos pontos (1,0) e (0,-2) são, respectivamente,

- a) $\sqrt{3} e^{\frac{1}{2}}$
- b) $\frac{1}{2}$ e $\sqrt{3}$
- c) $\frac{\sqrt{3}}{2}$ e $\frac{1}{2}$
- d) $\sqrt{3} e^{\frac{\sqrt{3}}{2}}$
- e) $2\sqrt{3}$ e $\frac{\sqrt{3}}{2}$

29. (ITA/2004)

Sejam os pontos A: (2,0), B: (4,0) e P: $(3,5+2\sqrt{2})$.

- a) Determine a equação da circunferência C, cujo centro está situado no primeiro quadrante, passa pelos pontos A e B e é tangente ao eixo y.
- b) Determine as equações das retas tangentes à circunferência $\mathcal C$ que passam pelo ponto $\mathcal P$.

IME

30. (IME/2020)

- O lugar geométrico definido pela equação $x^2 + 3y^2 + 5 = 2x xy 4y$ representa
- a) uma elipse.
- b) uma hipérbole.
- c) uma circunferência.
- d) um conjunto vazio.
- e) duas retas paralelas.

31. (IME/2020)

Os pontos A(-5,0) e B(5,0) definem um dos lados do triângulo ABC. A bissetriz interna do ângulo correspondente ao vértice C é paralela à reta de equação 14x-2y+1=0. Determine o valor da excentricidade do lugar geométrico definido pelo vértice C deste triângulo.

32. (IME/2020)

Sobre uma reta r são marcados três pontos distintos A,B e C, sendo que C é um ponto externo ao segmento de reta \overline{AB} . Determine o lugar geométrico das interseções das retas tangentes a partir de A e B a qualquer circunferência tangente à reta r no ponto C. Justifique sua resposta.

33. (IME/2019)

Uma hipérbole equilátera de eixo igual a 4, com centro na origem, eixos paralelos aos eixos coordenados e focos no eixo das abscissas sofre uma rotação de 45° no sentido antihorário em torno da origem. A equação dessa hipérbole após a rotação é:

- a) xy = 2
- b) $x^2 + xy y^2 = 4$
- c) $x^2 y^2 = 2$
- d) xy = -2
- e) $x^2 y^2 = -2$

34. (IME/2019)

A reta r é normal à cônica C, de equação $9x^2 - 4y^2 = 36$, no ponto $A = \left(3, \frac{3\sqrt{5}}{2}\right)$ e intercepta o eixo das abcissas no ponto B. Sabendo que F é o foco da cônica C mais próximo ao ponto A, determine a área do triângulo ABF.

35. (IME/2018)

Considere a elipse abaixo, onde DD' é uma corda passando pelo seu centro, MM' uma corda focal e o eixo maior da elipse é 2a.

Prove que: $DD'^2 = MM' \cdot 2a$

36. (IME/2018)

Seja uma elipse com focos no eixo OX e centrada na origem. Seus eixos medem 10 e 20/3. Considere uma hipérbole tal que os focos da elipse são os vértices da hipérbole e os focos da hipérbole são os vértices da elipse. As parábolas que passam pelas interseções entre a elipse e a hipérbole e que são tangentes ao eixo OY, na origem, têm as seguintes equações:

a)
$$y^2 = \pm 2 \frac{\sqrt{35}}{7} x$$

b)
$$y^2 = \pm 4 \frac{\sqrt{5}}{7} x$$

c)
$$y^2 = \pm 6 \frac{\sqrt{5}}{7} x$$

d)
$$y^2 = \pm 6 \frac{\sqrt{35}}{7} x$$

e)
$$y^2 = \pm 8 \frac{\sqrt{35}}{63} x$$

37. (IME/2017)

Um triângulo ABC tem o seu vértice A na origem do sistema cartesiano, seu baricentro é o ponto D(3,2) e seu circuncentro é o ponto E(55/18,5/6). Determine:

- a equação da circunferência circunscrita ao triângulo ABC;
- as coordenadas dos vértices B e C.

38. (IME/2016)

A circunferência \mathcal{C} tem equação $x^2+y^2=16$. Seja \mathcal{C}' uma circunferência de raio 1 que se desloca tangenciando internamente a circunferência \mathcal{C} , sem escorregamento entre os pontos de contato, ou seja, \mathcal{C}' rola internamente sobre \mathcal{C} .

Define-se o ponto P sobre C' de forma que no início do movimento de C' o ponto P coincide com o ponto de tangência (4,0), conforme figura a. Após certo deslocamento, o ângulo de entre o eixo x e a reta que une o centro das circunferências é α , conforme figura b.

- Determine as coordenadas do ponto P marcado sobre C' em função do ângulo α .
- Determine a equação em coordenadas cartesianas do lugar geométrico do ponto P quando a varia no intervalo $[0,2\pi)$.

39. (IME/2015)

Pelo ponto P de coordenadas (-1,0) traçam-se as tangentes t e s à parábola $y^2 = 2x$. A reta t intercepta a parábola em A e a reta s intercepta a parábola em B. Pelos pontos A e B traçam-se paralelas às tangentes encontrando a parábola em outros pontos C e D, respectivamente. Calcule o valor da razão AB/CD.

40. (IME/2015)

Sejam r a circunferência que passa pelos pontos (6,7), (4,1) e (8,5) e t a reta tangente à r, que passa por (0,-1) e o ponto de tangência tem ordenada 5. A menor distância do ponto P(-1,4) à reta t é:

- a) $3\sqrt{2}$
- b) 4
- c) $2\sqrt{3}$
- d) 3
- e) $4\sqrt{10}/5$

41. (IME/2015)

Determine o produto dos valores máximo e mínimo de y que satisfazem às inequações dadas para algum valor de x.

$$2x^2 - 12x + 10 \le 5y \le 10 - 2x$$

- a) -3,2
- b) -1,6
- c) 0

- d) 1,6
- e) 3,2

42. (IME/2014)

Uma elipse cujo centro encontra-se na origem e cujos eixos são paralelos ao sistema de eixos cartesianos possui comprimento da semidistância focal igual a $\sqrt{3}$ e excentricidade igual a $\sqrt{3}/2$. Considere que os pontos A,B,C e D representam as interseções da elipse com as retas de equações y=x e y=-x. A área do quadrilátero ABCD é

- a) 8
- b) 16
- c) 16/3
- d) 16/5
- e) 16/7

43. (IME/2012)

É dada uma parábola de parâmetro p. Traça-se a corda focal MN, que possui uma inclinação de 60° em relação ao eixo de simetria da parábola. A projeção do ponto M sobre a diretriz é o ponto Q, e o prolongamento da corda MN intercepta a diretriz no ponto R. Determine o perímetro do triângulo MQR em função de p, sabendo que N encontra-se no interior do segmento MR.

44. (IME/2012)

Os triângulos ABC e DEF são equiláteros com lados iguais a m. A área da figura FHCG é igual à metade da área da figura ABHFG. Determine a equação da elipse de centro na origem e eixos formados pelos segmentos FC e GH.

a)
$$48x^2 + 36y^2 - \sqrt{2}m^2 = 0$$

b)
$$8x^2 + 16y^2 - \sqrt{3}m^2 = 0$$

c)
$$16x^2 + 48y^2 - 3m^2 = 0$$

d)
$$8x^2 + 24y^2 - m^2 = 0$$

e)
$$16x^2 - 24y^2 - m^2 = 0$$

45. (IME/2011)

Determine o valor da excentricidade da cônica dada pela equação $x^2 - 10\sqrt{3}xy + 11y^2 + 16 = 0$.

46. (IME/2010)

Uma hipérbole de excentricidade $\sqrt{2}$ tem centro na origem e passa pelo ponto $(\sqrt{5},1)$.

A equação de uma reta tangente a esta hipérbole e paralela a y = 2x é:

a)
$$\sqrt{3}y = 2\sqrt{3}x + 6$$

b)
$$y = -2x + 3\sqrt{3}$$

c)
$$3y = 6x + 2\sqrt{3}$$

d)
$$\sqrt{3}y = 2\sqrt{3}x + 4$$

e)
$$y = 2x + \sqrt{3}$$

47. (IME/2010)

Seja M um ponto de uma elipse com centro O e focos F e F'. A reta r é tangente à elipse no ponto M e s é uma reta, que passa por O, paralela a r. As retas suportes dos raios vetores MF e MF' interceptam a reta s em H e H', respectivamente. Sabendo que o segmento FH mede 2 cm, o comprimento F'H' é:

- a) 0,5 cm
- b) 1,0 cm
- c) 1,5 cm
- d) 2,0 cm
- e) 3,0 cm

48. (IME/2004)

Considere a parábola P de equação $y=ax^2$, com a>0 e um ponto A de coordenadas (x_0,y_0)

satisfazendo a $y_0 < ax_0^2$. Seja S a área do triângulo ATT', onde T e T' são os pontos de contato

das tangentes a P passando por A.

- a) Calcule o valor da área S em função de a, x_0 e y_0 .
- b) Calcule a equação do lugar geométrico do ponto ${\cal A},$ admitindo que a área ${\cal S}$ seja constante.
- c) Identifique a cônica representada pela equação obtida no item anterior.

5. Gabarito

ITA

1. a)
$$(x-7)^2 + \left(y - \frac{11}{4}\right)^2 = \frac{625}{16}$$
 b) $A\left(\frac{3}{4}, 9\right) B\left(\frac{53}{4}, 9\right) C\left(\frac{53}{4}, \frac{-7}{2}\right) D\left(\frac{3}{4}, \frac{-7}{2}\right)$

2.
$$a = 4 e b = 1$$

4.
$$\frac{(x-8)^2}{3} + \frac{(y-6)^2}{4} = 1$$

6.
$$r = \frac{11}{2} e C = (\frac{1}{4}, \frac{15\sqrt{3}}{4})$$

8.
$$C = \left(\frac{38}{5}, -\frac{36}{5}\right)$$

10. a)
$$d(P, S_1) = 1$$
; $d(Q, S_1) = \sqrt{13}$; b) $|y| = |x|$, se $y \ge 2$ e $y = \frac{x^2}{4} + 1$, se $y < 2$

14. Área pedida =
$$\frac{9\pi}{4} - \frac{3}{2}$$

19.
$$\left(x-\frac{5}{2}\right)^2+(y-4)^2=\frac{9}{4}$$

21.
$$d(V,r) = \frac{1}{\sqrt{5}}$$

22.
$$r = \frac{5\sqrt{29}}{\sqrt{58}-3}$$

24.
$$F_1F_2 = 10$$

27.
$$\left(x - \frac{25}{4}\right)^2 + y^2 = \frac{25}{16}$$

29. Item a)
$$(x-3)^2 + (y-2\sqrt{2})^2 = 9$$
; Item b) $y = \frac{4}{3}x + 1 + 2\sqrt{2}$ ou $y = -\frac{4}{3}x + 9 + 2\sqrt{2}$.

IME

- 30. d
- 31. Hipérbole de excentricidade $\sqrt{2}$

33. a

34.
$$S_{ABF} = \frac{117\sqrt{5}-12\sqrt{65}}{16}$$

35. Demonstração.

36. e

37. Item a)
$$\left(x - \frac{55}{18}\right)^2 + \left(y - \frac{5}{6}\right)^2 = \left(\frac{5\sqrt{130}}{18}\right)^2$$
; Item b) $B = (3, 4) \ e \ C = (6, 2)$

38.
$$P = \left(4\cos^3(\alpha), 4sen^3(\alpha)\right); \left(\frac{x_p}{4}\right)^{\frac{2}{3}} + \left(\frac{y_p}{4}\right)^{\frac{2}{3}} = 1$$

39.
$$\frac{AB}{CD} = \frac{1}{3}$$

40. e

41. a

42. d

43.
$$2p(\sqrt{3}+3)$$

44. d

45.
$$e = \frac{\sqrt{5}}{2}$$

46. a

47. d

48. a)
$$S = \frac{2(ax_0^2 - y_0)\sqrt{a^2x_0^2 - ay_0}}{a}$$
 b) $y_0 = ax_0^2 - \frac{\sqrt[3]{2aS^2}}{2}$ c) Parábola P transladada de $-\frac{\sqrt[3]{2aS^2}}{2}$

6. Questões de Provas Anteriores Comentadas

ITA

1. (ITA/2020)

Seja λ a circunferência que passa pelos pontos P=(1,1), Q=(13,1) e R=(7,9). Determine:

- a) A equação de λ .
- b) Os vértices do quadrado ABCD circunscrito a λ , sabendo que R é o ponto médio de \overline{AB} .

Comentários

a) Equação da circunferência de raio r centrada no ponto O(a,b):

$$(x-a)^2 + (y-b)^2 = r^2$$

Substituindo os pontos dados:

Equação
$$1 \rightarrow P(1,1)$$
: $(1-a)^2 + (1-b)^2 = r^2$
Equação $2 \rightarrow Q(13,1)$: $(13-a)^2 + (1-b)^2 = r^2$
Equação $\rightarrow R(7,9)$: $(7-a)^2 + (9-b)^2 = r^2$

De eq. 1 e eq. 2:

$$(1-a)^2 = (13-a)^2$$

1-2a + a² = 169 - 26a + a²

$$24a = 168$$
$$a = 7$$

Substituindo o valor de *a* na eq. 1:

$$(1-7)^2 + (1-b)^2 = r^2$$

Equação $4 \rightarrow 36 + (1-b)^2 = r^2$

Substituindo o valor de a na eq. 3:

$$(7-7)^2 + (9-b)^2 = r^2$$

Equação $5 \rightarrow r^2 = (9-b)^2$

Das eq. 4 e 5:

$$36 + (1 - b)^2 = (9 - b)^2 : 36 + 1 - 2b + b^2 = 81 - 18b + b^2 : 16b = 44 : b = \frac{11}{4}$$

Substituindo o valor de b na eq. 5:

$$r^2 = \left(9 - \frac{11}{4}\right)^2 \therefore \boxed{r = \frac{25}{4}}$$

Portanto, a equação da circunferência será

$$(x-7)^2 + \left(y - \frac{11}{4}\right)^2 = \frac{625}{16}$$

b) Percebendo que o centro da circunferência está na mesma abscissa que o ponto R, o lado AB do quadrado é tangente à circunferência em R e paralelo ao eixo x. Assim:

Logo:

$$A = \left(7 - \frac{25}{4}, \frac{11}{4} + \frac{25}{4}\right) = \left(\frac{3}{4}, 9\right)$$

$$B = \left(7 + \frac{25}{4}, \frac{11}{4} + \frac{25}{4}\right) = \left(\frac{53}{4}, 9\right)$$

$$C = \left(7 + \frac{25}{4}, \frac{11}{4} - \frac{25}{4}\right) = \left(\frac{53}{4}, \frac{-7}{2}\right)$$

$$D = \left(7 - \frac{25}{4}, \frac{11}{4} - \frac{25}{4}\right) = \left(\frac{3}{4}, \frac{-7}{2}\right)$$

Gabarito: a)
$$(x-7)^2 + \left(y - \frac{11}{4}\right)^2 = \frac{625}{16}$$
 b) $A\left(\frac{3}{4}, 9\right) B\left(\frac{53}{4}, 9\right) C\left(\frac{53}{4}, \frac{-7}{2}\right) D\left(\frac{3}{4}, \frac{-7}{2}\right)$

2. (ITA/2020)

Sejam a e b dois números reais. Sabendo que o conjunto dos números reais k para os quais a reta y = kx intersecta a parábola $y = x^2 + ax + b$ é igual a $(-\infty, 2] \cup [6, +\infty)$, determine os números a e b.

Comentários

Devemos ter que:

$$kx = x^{2} + ax + b$$

$$x^{2} + (a - k)x + b = 0$$

$$\Delta = (a - k)^{2} - 4b \ge 0 \text{ (pois existe intersecção)}$$

$$a^{2} - 2ak + k^{2} - 4b \ge 0$$

$$k^{2} - 2ak + a^{2} - 4b \ge 0 \text{ (I)}$$

$$\Delta' = (-2a)^{2} - 4 \cdot 1 \cdot (a^{2} - 4b) = 4a^{2} - 4a^{2} + 16b$$

$$\Rightarrow \Delta' = 16b$$

Encontrando as raízes em k:

$$\begin{cases} k_1 = \frac{2a + \sqrt{16b}}{2} = a + 2\sqrt{b} \\ k_2 = \frac{2a - \sqrt{16b}}{2} = a - 2\sqrt{b} \end{cases}$$

O intervalo que satisfaz a inequação (I) é:

$$k \in \left(-\infty, a-2\sqrt{b}\right] \cup \left[a+2\sqrt{b}, +\infty\right)$$

Comparando com o intervalo dado no enunciado:

$$k \in (-\infty, 2] \cup [6, +\infty)$$

Temos que:

$$\begin{cases} a + 2\sqrt{b} = 6 \\ a - 2\sqrt{b} = 2 \end{cases} \Rightarrow (a, b) = (4,1)$$

Gabarito: a = 4 e b = 1

3. (ITA/2019)

Seja γ a circunferência de equação $x^2+y^2=4$. Se r e s são duas retas que se interceptam no ponto P=(1,3) e são tangentes a γ , então o cosseno do ângulo entre r e s é igual a

- a) $\frac{1}{5}$
- b) $\frac{\sqrt{7}}{7}$
- c) $\frac{1}{2}$
- d) $\frac{\sqrt{2}}{2}$
- e) $\frac{2\sqrt{6}}{5}$

Comentários

Do enunciado, temos a seguinte figura:

Queremos descobrir o valor de $\cos(\alpha)$.

Das propriedades da reta tangente na circunferência, temos:

- AO é perpendicular a r e BO é perpendicular a s.
- \bullet PA = PB

Analisando a equação da circunferência, podemos ver que o seu raio é dado por $R=\sqrt{4}=2$. Como A e B são pontos dessa cônica, temos:

• AO = BO = 2 = raio da circunferência.

Note que pelo critério de congruência LLL, temos $\Delta PAO \equiv \Delta PBO$. Logo, $O\widehat{P}B \equiv O\widehat{P}A$. Fazendo $O\widehat{P}B = O\widehat{P}A = \beta$:

Sabemos que a distância do ponto P à origem O é dado por: $d_{PO} = \sqrt{(1-0)^2 + (3-0)^2} = \sqrt{10}$

$$d_{PO} = \sqrt{(1-0)^2 + (3-0)^2} = \sqrt{10}$$

Desse modo, temos:

$$sen(\beta) = \frac{2}{\sqrt{10}}$$

Queremos saber $cos(\alpha) = cos(2\beta)$. Usando a fórmula do arco duplo do cosseno da trigonometria:

$$cos(2\beta) = 1 - 2sen(\beta)^2 = 1 - 2\left(\frac{2}{\sqrt{10}}\right)^2 = 1 - \frac{8}{10} = \frac{2}{10} = \frac{1}{5}$$

Gabarito: "a".

4. (ITA/2019)

Seja F o foco da parábola de equação $(y-5)^2=4(x-7)$, e sejam A e B os focos da elipse da equação $\frac{(x-4)^2}{9} + \frac{(y-2)^2}{8} = 1$. Determine o lugar geométrico formado pelos pontos P do plano tais que a área do triângulo ABP seja numericamente igual ao dobro da distância de P a F.

Comentários

Precisamos encontrar os pontos A, B, F e achar a equação que representa a situação do problema. Vamos analisar a parábola dada:

$$(y-5)^2 = 4(x-7)$$

Essa é a equação de uma parábola com eixo de simetria na horizontal, pois o termo quadrático está em y. Lembrando que uma parábola desse tipo pode ser escrita como:

$$\frac{2p(x-x_v)=(y-y_v)^2}{}$$

Sendo p seu parâmetro e (x_v, y_v) as coordenadas do seu vértice. Da equação da parábola dada, podemos ver que:

$$(x_v; y_v) = (7; 5)$$

 $2p = 4 \Rightarrow p = 2$

As coordenadas de F são dadas por:

$$F = \left(x_v + \frac{p}{2}; y_v\right) = \left(7 + \frac{2}{2}; 5\right)$$

$$F = (8; 5)$$

Resta analisar a elipse:

$$\frac{(x-4)^2}{9} + \frac{(y-2)^2}{8} = 1$$

O centro dessa elipse é dado por $O=(x_o;y_o)=(4;2)$. Note que o semieixo maior é paralelo ao eixo das abcissas, pois o maior denominador está abaixo de x. Então, sendo a o semieixo maior e b o semieixo menor, temos:

$$a^2 = 9 \Rightarrow a = 3$$
$$b^2 = 8 \Rightarrow b = 2\sqrt{2}$$

Lembrando que a semidistância focal pode ser calculada usando o teorema de Pitágoras, podemos escrever:

$$a^2 = b^2 + c^2 \Rightarrow 9 = 8 + c^2 \Rightarrow c = 1$$

Logo, os focos A e B são dados por:

$$A = (x_o - c; y_o) = (4 - 1; 2)$$

$$A = (3; 2)$$

$$B = (x_o + c; y_o) = (4 + 1; 2)$$

$$B = (5; 2)$$

Agora, temos os dados dos focos, o enunciado pede o lugar geométrico que satisfaz a seguinte relação:

$$A_{\Delta ABP} \stackrel{N}{=} 2d_{P,F}$$

Vamos representar a figura apenas para visualizar a situação:

Como o ponto P não foi dado, não sabemos onde ele está localizado. Devemos calcular a área $A_{\Delta ABP}$ e a distância $d_{P,F}$ supondo P=(x;y).

Para calcular a área $A_{\Delta ABP}$ do triângulo, podemos tomar como base o segmento \overline{AB} . Então, essa área é dada por:

$$A_{\Delta ABP} = \frac{base \cdot altura}{2} = \frac{|x_B - x_A| \cdot |y - 2|}{2} = \frac{|5 - 3| \cdot |y - 2|}{2} = |y - 2|$$

Para a distância do ponto P ao foco F:

$$d_{P,F} = \sqrt{(x - x_F)^2 + (y - y_F)^2} = \sqrt{(x - 8)^2 + (y - 5)^2}$$

Desse modo, temos:

$$A_{\Delta ABP} = 2d_{P,F}$$
$$|y - 2| = 2\sqrt{(x - 8)^2 + (y - 5)^2}$$

Elevando ao quadrado a equação e desenvolvendo:

$$|y-2|^2 = \left(2\sqrt{(x-8)^2 + (y-5)^2}\right)^2$$

$$y^2 - 4y + 4 = 4(x^2 - 16x + 64 + y^2 - 10y + 25)$$

Como a expressão à esquerda possui apenas a variável y, vamos manter a expressão em x em evidência e tentar simplificar a expressão em y.

$$4(x^{2} - 16x - 64) + 4y^{2} - 40y + 100 - y^{2} + 4y - 4 = 0$$

$$4(x - 8)^{2} + 3y^{2} - 36y + 96 = 0$$

$$4(x - 8)^{2} + 3\underbrace{(y^{2} - 12y)}_{(y - 6)^{2} - 36} + 96 = 0$$

Note que a expressão em y pode ser escrita como:

$$v^2 - 12v = v^2 - 12v + 36 - 36 = (v - 6)^2 - 36$$

Desse modo:

$$4(x-8)^{2} + 3[(y-6)^{2} - 36] + 96 = 0$$

$$4(x-8)^{2} + 3(y-6)^{2} - 108 + 96 = 0$$

$$4(x-8)^{2} + 3(y-6)^{2} = 12$$

Dividindo a equação por 12:

$$\frac{(x-8)^2}{3} + \frac{(y-6)^2}{4} = 1$$

Esse lugar geométrico representa uma elipse com as seguintes características:

Centro = (8; 6)
Semieixo maior
$$\rightarrow a = 2$$

Semieixo menor $\rightarrow b = \sqrt{3}$

Gabarito:
$$\frac{(x-8)^2}{3} + \frac{(y-6)^2}{4} = 1$$

5. (ITA/2018)

Considere a definição: duas circunferências são ortogonais quando se interceptam em dois pontos distintos e nesses pontos suas tangentes são perpendiculares. Com relação às circunferências C_1 : $x^2 + (y+4)^2 = 7$, C_2 : $x^2 + y^2 = 9$ e C_3 : $(x-5)^2 + y^2 = 16$, podemos afirmar que

- a) somente C_1 e C_2 são ortogonais.
- b) somente C_1 e C_3 são ortogonais.
- c) C_2 é ortogonal a C_1 e a C_3 .
- d) C_1 , C_2 e C_3 são ortogonais duas a duas.
- e) não há ortogonalidade entre as circunferências.

Comentário

Questão que exige que o candidato faça um diagrama inicial com o intuito de não perder tempo demasiado em contas. Observe a figura abaixo que contempla a situação sobre a qual o enunciado trata:

Observe que a perpendicular à tangente no ponto de tangência passa pelo centro da circunferência dada.

Dessa forma, para duas circunferências cumprindo as condições do enunciado, teremos a configuração mostrada na figura acima.

Assim, devemos ter a seguinte relação, advinda do triângulo retângulo C_1C_2P :

$$(C_1C_2)^2 = (C_1P)^2 + (C_2P)^2 = R_1^2 + R_2^2 \text{ (eq. 01)}$$

Note que essa condição é necessária e suficiente para termos a condição de ortogonalidade, ou seja, se um par de circunferências satisfaz a eq. 01, então elas são ortogonais.

Obs.: Muito cuidado nesse ponto! Usamos o diagrama para buscar alguma relação que pudesse simplificar as contas, mas poderíamos ter encontrado apenas uma condição necessária, ou seja, se duas circunferências são ortogonais, então satisfazem a eq.01. O que queremos é justamente o contrário, usar a eq.01 para concluir que elas são ortogonais, isso exigiria que o candidato partisse da volta e concluísse que de fato isso implica que elas são ortogonais. Verifique!

Assim, devemos simplesmente verificar se os pares de circunferências satisfazem à eq.01. Vamos seguir então os seguintes passos:

Passo 01:

Determinar as coordenadas dos centros. Para isso, lembre-se que a equação de uma circunferência é:

$$(x - x_c)^2 + (y - y_c)^2 = R^2$$

Do enunciado:

$$C_1$$
: $x^2+(y+4)^2=7$; C_2 : $x^2+y^2=9$; C_3 : $(x-5)^2+y^2=16$
Denotando por C_1 , C_2 e C_3 os centros das circunferências, temos:

$$C_1 = (0, -4); C_2 = (0, 0); C_3 = (5, 0)$$

Passo 02:

Determinar os raios. Por inspeção, determinamos os raios R_1 , R_2 e R_3 :

$$R_1 = \sqrt{7}$$
; $R_2 = 3$; $R_3 = 4$

Passo 03:

Determinar as distâncias entre os centros. Da geometria analítica, temos:

$$C_1C_2 = \sqrt{(0-0)^2 + (0-(-4))^2} = 4$$

$$C_1 C_3 = \sqrt{(5-0)^2 + (0-(-4))^2} = \sqrt{41}$$
$$C_2 C_3 = \sqrt{(5-0)^2 + (0-0)^2} = 5$$

Passo 04:

Verificar se os pares de circunferências satisfazem à eq.01.

Para C_1 e C_2 :

$$(C_1C_2)^2 = 4^2 = 16; R_1^2 + R_2^2 = (\sqrt{7})^2 + 3^2 = 16; (C_1C_2)^2 = R_1^2 + R_2^2$$

Para C_1 e C_3 :

$$(C_1C_3)^2 = (\sqrt{41})^2 = 41; R_1^2 + R_3^2 = (\sqrt{7})^2 + 4^2 = 23; (C_1C_3)^2 \neq R_1^2 + R_3^2$$

Para C_2 e C_3 :

Para
$$C_2$$
 e C_3 :
$$(C_2C_3)^2 = 5^2 = 25; R_2^2 + R_3^2 = 3^2 + 4^2 = 25; (C_1C_3)^2 = R_1^2 + R_3^2$$
 De onde se conclui que C_2 é ortogonal a C_1 e a C_3 .

Gabarito: "c".

6. (ITA/2018)

No plano cartesiano são dadas as circunferências C_1 : $x^2 + y^2 = 1$ e C_2 : $(x - 4)^2 + y^2 = 4$. Determine o centro e o raio de uma circunferência $\hat{\mathcal{C}}$ tangente simultaneamente a \mathcal{C}_1 e \mathcal{C}_2 , passando pelo ponto $A=(3,\sqrt{3})$.

Comentários

Primeiramente, perceba que o ponto A dado também pertence a C_2 , pois substituindo o ponto Ana equação de C_2 , temos satisfeita a equação:

$$(3-4)^2 + (\sqrt{3}-0)^2 = 1+3=4$$

Dessa forma, seja C o centro da circunferência que é tangente a \mathcal{C}_1 e \mathcal{C}_2 . Do enunciado, podemos traçar o seguinte diagrama:

Como $\frac{AE}{AD}=\frac{3}{\sqrt{3}}=\sqrt{3}$, temos que o ângulo $C_1\hat{A}D=60^\circ$. Além disso, como $DC_2=4-3=1$, temos que $\frac{DC_2}{DA}=\frac{1}{\sqrt{3}}$, do que segue que o ângulo $D\hat{A}C_2=30^\circ$. Assim, concluímos que $C_1\hat{A}C_2=C_1\hat{A}D+D\hat{A}C_2=90^\circ$ e o triângulo ΔC_1AC é retângulo.

Note que, como a circunferência que buscamos é tangente às duas, temos que CA=r e $CC_1=CB+BC_1=r+1$. Além disso, olhando para o triângulo ΔC_1AD , temos que $sen(60^\circ)=\frac{C_1D}{C_1A}=\frac{3}{C_1A}=\frac{\sqrt{3}}{2}$, então $C_1A=2\sqrt{3}$. Aplicando o teorema de Pitágoras ao triângulo ΔC_1AC , temos:

$$(r+1)^2 = r^2 + (2\sqrt{3})^2 \Rightarrow 2r+1 = 12 \Rightarrow r = \frac{11}{2}$$

Observe, pelo diagrama abaixo, que a coordenada x de C é dada por $4 - CC_2sen(30^\circ) = \frac{1}{4}$ e a coordenada y de C é dada por $CC_2\cos(30^\circ) = \frac{15\sqrt{3}}{4}$.

Gabarito: $r = \frac{11}{2} e C = (\frac{1}{4}, \frac{15\sqrt{3}}{4}).$

7. (ITA/2017)

Sejam $S_1 = \{(x,y) \in \mathbb{R}^2: y \ge \big||x|-1\big|\}$ e $S_2 = \{(x,y) \in \mathbb{R}^2: x^2 + (y+1)^2 \le 25\}$. A área da região $S_1 \cap S_2$ é

a)
$$\frac{25}{4}\pi - 2$$

b)
$$\frac{25}{4}\pi - 1$$

d)
$$\frac{75}{4}\pi - 1$$

e)
$$\frac{75}{4}\pi - 2$$

Comentários

Primeiramente, vamos determinar a região S_1 . Em questões desse tipo, é bastante útil começar de funções que já conhecemos o comportamento e, após isso, ir fazendo as alterações propostas. Nesse caso, vamos olhar para a função y=x, que tem gráfico:

Após isso, olhamos para a função y = |x| e y = |x| - 1:

Por fim, temos o gráfico de y = |x| - 1:

Observe, que o queremos é a região que satisfaz $y \ge ||x| - 1|$, ou seja:

Agora, vamos determinar a região S_2 . Note que temos um círculo de raio $r=\sqrt{25}=5$ e centro $\mathcal{C}=(0,-1)$, observe no gráfico abaixo:

Sobrepondo as duas regiões, observamos que o que o enunciado pede é a área correspondente a um quarto da circunferência subtraída da área de um quadrado de lado $l=\sqrt{2}$. Assim:

Área de
$$S_1 \cap S_2 = \frac{1}{4}(25\pi) - (\sqrt{2})^2 = \frac{25\pi}{4} - 2$$

Gabarito: "a".

8. (ITA/2016)

Considere as circunferências λ_1 : $x^2 + y^2 - 8x + 4y = 20$ e λ_2 : $x^2 + y^2 - 2x - 8y = 8$. O triângulo ABC satisfaz as seguintes propriedades:

- a) o lado \overline{AB} coincide com a corda comum a λ_1 e λ_2 ;
- b) o vértice *B* pertence ao primeiro quadrante;
- c) o vértice C pertence a λ_1 e a reta que contém \overline{AC} é tangente a λ_2 .

Determine as coordenadas do vértice C.

Comentários

Primeiramente, vamos encontrar os vértices A e B subtraindo λ_2 de λ_1 :

$$(x^{2} + y^{2} - 8x + 4y) - (x^{2} + y^{2} - 2x - 8y) = (20) - (8)$$

-6x + 12y = 12 \Leftrightarrow x - 2y = -2 \Leftrightarrow x = 2(y - 1) (eq. 01)

Substituindo eq.01 em λ_2 , vem:

$$4(y-1)^2 + y^2 - 2 \cdot 2(y-1) - 8y = 8 \Leftrightarrow 5y^2 - 20y = 0 \ (eq. \ 02)$$

Resolvendo a eq.02 para y, temos y=0 ou y=4. Para y=0, temos x=2(0-1)=-2. Para y=4, temos x=2(4-1)=6. Como B pertence ao primeiro quadrante, temos então:

$$B = (6,4) e A = (-2,0)$$

Agora, vamos descobrir a equação da reta tangente que passa por $A\mathcal{C}$. Seja ela da forma:

$$r: y = mx + b$$

Como ela passa por A=(-2,0), temos $0=m\cdot(-2)+b\Leftrightarrow b=2m$. Assim:

$$y = m(x + 2) (eq. 03)$$

Ela é tangente a λ_2 . Vamos escrever a equação de λ_2 na forma reduzida:

$$\lambda_2$$
: $x^2 + y^2 - 2x - 8y = 8 \Rightarrow \lambda_2$: $(x - 1)^2 + (y - 4)^2 = 8 + 1 + 16 = 25$

Assim, a distância da reta ao centro da circunferência, $C_2=(1,4)$ deve ser igual ao raio dela.

Dessa forma:

$$d(r, C_2) = \left| \frac{m - 4 + 2m}{\sqrt{m^2 + 1}} \right| = 5 \Rightarrow (3m - 4)^2 = 25(m^2 + 1) \Rightarrow m = -\frac{3}{4}$$

Logo, a reta:

$$y = -\frac{3}{4}(x+2)$$

Substituindo a equação da reta em λ_1 :

$$x^{2} + \frac{9}{16}(x+2)^{2} - 8x + 4 \cdot \left(-\frac{3}{4}\right)(x+2) = 20$$

Resolvendo pra x, vem x=-2 ou $x=\frac{38}{5}$. Para x=-2, teríamos o ponto A. Assim, $x_C=\frac{38}{5}$. Substituindo na equação da reta:

$$y_C = -\frac{3}{4} \left(\frac{38}{5} + 2 \right) = -\frac{36}{5}$$

Portanto:
$$C = \left(\frac{38}{5}, -\frac{36}{5}\right)$$
.

Gabarito:
$$C = \left(\frac{38}{5}, -\frac{36}{5}\right)$$
.

9. (ITA/2016)

Se P e Q são pontos que pertencem à circunferência $x^2+y^2=4$ e à reta y=2(1-x), então o valor do cosseno do ângulo $P\hat{O}Q$ é igual a

- a) $-\frac{3}{5}$
- b) $-\frac{3}{7}$
- c) $-\frac{2}{5}$
- d) $-\frac{4}{5}$
- e) $-\frac{1}{7}$

Comentários

Se os pontos pertencem à circunferência e à reta, o primeiro passo é substituir a equação da reta na equação da circunferência. Desse modo:

$$x^{2} + 4(1-x)^{2} = 4 \implies x = 0 \text{ ou } x = \frac{8}{5}$$

Assim, para x=0, temos y=2. Para $x=\frac{8}{5}$, temos $y=-\frac{6}{5}$. Sem perda de generalidade, seja:

$$P = (0,2)$$

$$Q = \left(\frac{8}{5}, -\frac{6}{5}\right)$$

Observe a figura:

Vamos calcular PQ^2 usando distância de pontos:

$$PQ^{2} = \left(0 - \frac{8}{5}\right)^{2} + \left(2 - \left(-\frac{6}{5}\right)\right)^{2} = \frac{64}{5}$$

Aplicando a lei dos cossenos ao triângulo ΔPOQ :

$$PQ^2 = r^2 + r^2 - 2r \cdot rcos(P\hat{O}Q) \Rightarrow \frac{64}{5} = 2 \cdot 4 - 2 \cdot 4\cos(P\hat{O}Q)$$

Logo, $\cos(P\hat{O}Q) = -\frac{3}{5}$.

Gabarito: "a".

10. (ITA/2016)

Sejam S um subconjunto de \mathbb{R}^2 e P=(a,b) um ponto de \mathbb{R}^2 . Define-se distância de P a S, d(P,S), como a menor das distâncias d(P,Q), com $Q\in S$: $d(P,S)=min\{d(P,Q)\colon Q\in S\}$.

Sejam
$$S_1 = \{(x, y) \in \mathbb{R}^2 : x = 0 \text{ e } y \ge 2\} \text{ e } S_2 = \{(x, y) \in \mathbb{R}^2 : y = 0\}.$$

- a) Determine $d(P, S_1)$ quando P = (1, 4) e $d(Q, S_1)$ quando Q = (-3, 0).
- b) Determine o lugar geométrico dos pontos do plano equidistantes de S_1 e de S_2 .

Comentários

a) Nessa questão, o primeiro passo é identificar os conjuntos S_1 e S_2 .

Observe que S_1 corresponde a um intervalo sobre o eixo y, ou seja, x=0. A distância de um ponto qualquer a esse conjunto vai depender da coordenada y desse ponto. Se $y\geq 2$, então sua distância será apenas a sua distância usual ao eixo y, ou seja, |x|. Se y<2, temos que sua distância será a sua distância usual ao ponto (0,2), que é o ponto mais próximo nessa situação. Para facilitar, observe o diagrama abaixo:

O conjunto S_2 , pode-se observar facilmente que ele é o próprio eixo x, consequentemente, a distância de qualquer ponto a esse conjunto é o módulo de sua coordenada y, ou seja, |y|.

Na questão são dados dois pontos, P=(1,4) e Q=(-3,0). Observe que $y_P>2$, da discussão acima:

$$d(P, S_1) = |1| = 1$$

E temos $y_{\it Q} <$ 2, do que segue:

$$d(Q, S_1) = \sqrt{(-3-0)^2 + (0-2)^2} = \sqrt{13}$$

b) Seja um ponto qualquer do plano, P = (x, y).

Vimos acima que sua distância a S_2 é dada por $d(P, S_2) = |y|$.

Para calcular sua distância a S_1 , devemos considerar dois casos:

1º caso: $y \ge 2$

Disso, temos que:

$$d(P, S_1) = |x|$$

Fazendo $d(P, S_1) = d(P, S_2)$, vem:

$$|y| = |x| \Rightarrow y = \pm x$$

2º caso: *y* < 2

Disso, temos que:

$$d(P, S_1) = \sqrt{(x-0)^2 + (y-2)^2} = \sqrt{x^2 + (y-2)^2}$$

Fazendo $d(P, S_1) = d(P, S_2)$, vem:

$$\sqrt{x^2 + (y-2)^2} = |y| \Rightarrow x^2 + (y-2)^2 = y^2 \Rightarrow y = \frac{x^2}{4} + 1$$

Graficamente, temos:

Gabarito: a) $d(P, S_1) = 1$; $d(Q, S_1) = \sqrt{13}$; b) |y| = |x|, se $y \ge 2$ e $y = \frac{x^2}{4} + 1$, se y < 2.

11. (ITA/2015)

Considere uma circunferência \mathcal{C} , no primeiro quadrante, tangente ao eixo $\mathcal{O}x$ e à reta r: x-y=0. Sabendo-se que a potência do ponto $\mathcal{O}=(0,0)$ em relação a essa circunferência é igual a 4, então o centro e o raio de \mathcal{C} são, respectivamente, iguais a

a)
$$(2, 2\sqrt{2} - 2)$$
 e $2\sqrt{2} - 2$

b)
$$\left(2, \frac{\sqrt{2}}{2} - \frac{1}{2}\right) e^{\frac{\sqrt{2}}{2}} - \frac{1}{2}$$

c)
$$(2, \sqrt{2} - 1)$$
 e $\sqrt{2} - 1$

d)
$$(2, 2 - \sqrt{2})$$
 e $2 - \sqrt{20}$

e)
$$(2, 4\sqrt{2} - 4)$$
 e $4\sqrt{2} - 4$

Comentários

Primeiramente devemos lembrar a definição de potência de ponto. Dado um ponto P e uma circunferência λ , a função potência de ponto é definida por:

$$P(d) = d^2 - r^2 (eq. 01)$$

Onde d é a distância de P ao centro da circunferência e r o raio dela.

Observe o diagrama abaixo que ilustra a situação:

Utilizando a eq.~01, podemos determinar o valor de \overline{OM} , pois a potência do ponto O=(0,0) é 4, ou seja, $A=\overline{OC^2}-\overline{CM^2}$ (eq.~02) e também, pelo triângulo retângulo ΔOCM temos que $\overline{OC^2}=\overline{CM^2}+\overline{OM^2}$ $\Rightarrow \overline{OM^2}=\overline{OC^2}-\overline{CM^2}=4 \Rightarrow \overline{OM^2}=4 \Rightarrow \overline{OM}=2$.

Do diagrama apresentado, observa-se que a coordenada x_C do centro da circunferência corresponde a \overline{OM} . Sendo assim, $x_C=2$.

Do diagrama apresentado, temos que $2\theta=45$. Da trigonometria:

$$tg(2\theta) = \frac{2tg(\theta)}{1 - tg^2(\theta)} = tg(45^\circ) = 1 \Rightarrow tg^2(\theta) + 2tg(\theta) - 1 = 0$$

Resolvendo a equação do segundo grau acima para $tg(\theta)$, obtemos $tg(\theta) = -1 - \sqrt{2}$ ou $tg(\theta) = \sqrt{2} - 1$. Mas θ está no primeiro quadrante, então $tg(\theta) > 0$. Assim, $tg(\theta) = \sqrt{2} - 1$. Observando o diagrama, temos que a coordenada y_C é igual ao raio da circunferência. Além disso, $\frac{\overline{CM}}{\overline{MO}} = tg(\theta)$. Dessa forma, temos $\overline{CM} = \overline{MO}tg(\theta) = 2(\sqrt{2} - 1)$. Logo, $\overline{CM} = y_C = r = 2(\sqrt{2} - 1)$.

Gabarito: "a".

12. (ITA/2015)

Considere as afirmações a seguir:

- I. O lugar geométrico do ponto médio de um segmento \overline{AB} , com comprimento l fixado, cujos extremos se deslocam livremente sobre os eixos coordenados é uma circunferência.
- II. O lugar geométrico dos pontos (x,y) tais que $6x^3 + x^2y xy^2 4x^2 2xy = 0$ é um conjunto finito no plano cartesiano \mathbb{R}^2 .
- III. Os pontos (2,3), (4,-1) e (3,1) pertencem a uma circunferência.

Destas, é (são) verdadeira(s)

- a) apenas I.
- b) apenas II.
- c) apenas III.
- d) I e II.
- e) l e III.

Comentários

Vamos analisar cada afirmativa.

Afirmativa I:

Se os extremos percorrem os eixos coordenados, podemos supor, sem perda de generalidade que:

$$A = (x_A, 0)$$

$$B = (0, y_B)$$

Além disso, como seu comprimento é fixado, temos que:

$$l = \overline{AB} = \sqrt{(x_A - 0)^2 + (0 - y_B)^2} = \sqrt{x_A^2 + y_B^2} \Rightarrow l^2 = x_A^2 + y_B^2 \text{ (eq. 01)}$$

O ponto médio do seguimento \overline{AB} é dado por:

$$M = \frac{A+B}{2} = \left(\frac{x_A+0}{2}, \frac{0+y_B}{2}\right) = \left(\frac{x_A}{2}, \frac{y_B}{2}\right)$$

Dessa forma, temos que:

$$\overline{OM} = \sqrt{\left(\frac{x_A}{2} - 0\right)^2 + \left(0 - \frac{y_B}{2}\right)^2} = \sqrt{\frac{x_A^2}{2} + \frac{y_B^2}{2}} \Rightarrow \overline{OM}^2 = \frac{x_A^2}{2} + \frac{y_B^2}{2} \quad (eq. 02)$$

Combinando eq.01 e eq.02, temos:

$$\overline{OM}^2 = \frac{l^2}{4} \Rightarrow \overline{OM} = \frac{l}{2}$$

Ou seja, M pertence a uma circunferência de raio $\frac{l}{2}$ centrada na origem. Logo, é verdadeira.

Afirmativa II:

Nessa questão, basta observar que qualquer ponto do tipo P=(0,y), com $y\in\mathbb{R}$, satisfaz a equação, pois:

$$6 \cdot 0^3 + 0^2 \cdot y - 0 \cdot y^2 - 4 \cdot 0^2 - 2 \cdot 0 \cdot y = 0$$

Então, esse conjunto não é finito, pois pode-se escolher y livremente nos reais. Logo, é falsa. Afirmativa III:

Da geometria plana, temos que:

Três pontos não colineares formam um triângulo;

Todo triângulo é inscritível em uma circunferência.

Logo, basta verificar se esses pontos são ou não colineares.

Da geometria analítica, temos que três pontos são colineares se, e somente se, eles obedecem a equação de uma reta. Ou seja, se tivermos três pontos $A, B \ e \ C$, eles pertencem a uma mesma reta se, e somente se:

$$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0 (eq. 03)$$

Do enunciado, temos que A=(2,3), B=(4,-1) e C=(3,1). Substituindo na eq.03, temos, usando regra de Sarrus:

$$\begin{vmatrix} 2 & 3 & 1 \\ 4 & -1 & 1 \\ 3 & 1 & 1 \end{vmatrix} = 3 \cdot 3 \cdot 1 + 2 \cdot (-1) \cdot 1 + 4 \cdot 1 \cdot 1 - (4 \cdot 3 \cdot 1 + 3 \cdot (-1) \cdot 1 + 2 \cdot 1 \cdot 1) =$$

$$= 9 - 2 + 4 - 12 + 3 - 2 = 0$$

Logo, eles pertencem a uma mesma reta e não pertencem a uma mesma circunferência. Logo, a afirmativa é falsa.

Gabarito: "a".

13. (ITA/2014)

A equação do círculo localizado no 1° quadrante que tem área igual a 4π (unidades de área) e é tangente, simultaneamente, às retas r: 2x - 2y + 5 = 0 e s: x + y - 4 = 0 é

a)
$$\left(x - \frac{3}{4}\right)^2 + \left(y - \frac{10}{4}\right)^2 = 4$$

b)
$$\left(x - \frac{3}{4}\right)^2 + \left(y - \left(2\sqrt{2} + \frac{3}{4}\right)\right)^2 = 4$$

c)
$$\left(x - \left(2\sqrt{2} + \frac{3}{4}\right)\right)^2 + \left(y - \frac{10}{4}\right)^2 = 4$$

d)
$$\left(x - \left(2\sqrt{2} + \frac{3}{4}\right)\right)^2 + \left(y - \frac{13}{4}\right)^2 = 4$$

e)
$$\left(x - \left(2\sqrt{2} + \frac{3}{4}\right)\right)^2 + \left(y - \frac{11}{4}\right)^2 = 4$$

Comentários

Primeiramente devemos determinar o raio da circunferência. Da geometria plana, temos:

$$A = \pi r^2$$

Onde A é a área da circunferência e r seu raio. Do enunciado, $A=4\pi$. Ou seja:

$$4\pi = \pi r^2 \iff r^2 = 4$$
$$\therefore r = 2$$

Para entender melhor a situação, façamos os diagrama das retas no plano cartesiano, percebendo que $r \perp s$, uma vez que $m_r = 1$ e $m_s = -1$ e, portanto, $m_r m_s = -1$.

Dessa maneira, podemos melhorar ainda mais essa figura, pois sabemos que a circunferência se encontra totalmente no primeiro quadrante, do que resta apenas a seguinte possibilidade:

Pela construção, observamos que o seguimento PC é horizontal, uma vez que ele representa a bissetriz do ângulo $N\widehat{P}M = 90^{\circ}$ e, portanto, faz com a reta r o mesmo ângulo que essa faz com o eixo x.

Disso, temos que a coordenada y do centro, y_C , é a mesma do ponto $P = r \cap s$. Além disso, observe também que a coordenada $x_{\mathcal{C}}$ obedece:

$$x_C = x_P + PC$$

Além disso, observe que:

$$\frac{2}{PC} = sen(45^\circ) = \frac{1}{\sqrt{2}} \Rightarrow PC = 2\sqrt{2}$$

Encontrando o ponto *P*:

$$r: x - y + \frac{5}{2} = 0$$

$$s: x + y - 4 = 0$$

$$x_P - y_P + \frac{5}{2} + (x_P + y_P - 4) = 0 \Rightarrow 2x_P - \frac{3}{2} = 0 \Rightarrow x_P = \frac{3}{4}$$

Disso:

$$\frac{3}{4} - y_P + \frac{5}{2} = 0 \Rightarrow y_P = \frac{13}{4}$$

Por fim, temos que:

$$x_C = \frac{3}{4} + 2\sqrt{2}$$

Ou seja:

$$C = (\frac{3}{4} + 2\sqrt{2}, \frac{13}{4})$$

Do que segue que a equação da circunferência é dada por:

$$\left(x - \left(\frac{3}{4} + 2\sqrt{2}\right)\right)^2 + \left(y - \frac{13}{4}\right)^2 = 4$$

Gabarito: "d".

14. (ITA/2013)

Determine a área da figura plana situada no primeiro quadrante e delimitada pelas curvas

$$(y-x-2)\left(y+\frac{x}{2}-2\right)=0$$
 e $x^2-2x+y^2-8=0$

Comentários

Observe que a primeira equação representa duas retas, pois ela implica:

$$y - x - 2 = 0$$
 ou $y + \frac{x}{2} - 2 = 0$

Vamos investigar a segunda equação. Observe que ela parece muito com uma equação de circunferência. Vamos tentar representá-la na forma:

$$(x - x_C)^2 + (y - y_C)^2 = r^2$$

Para isso, vamos completar os quadrados:

$$x^{2} - 2x + y^{2} - 8 = 0 \Rightarrow (x^{2} - 2x + 1) - 1 + y^{2} - 8 = 0$$

Logo:

$$(x-1)^2 + y^2 = 9 = (3)^2$$

Assim, observamos que de fato temos uma circunferência, de raio r=3 e centro C=(1,0). O próximo passo é representar as curvas em um plano cartesiano. Observe abaixo:

Do diagrama acima, temos três pontos de intersecção importantes:

- 1º) Entre as retas (C);
- 2º) Entre a reta $y + \frac{x}{2} 2 = 0$ e a circunferência (B);
- 3º) Entre a reta y x 2 = 0 e a circunferência (A).

O ponto de intersecção das retas, pelo próprio diagrama, é o ponto $\mathcal{C}=(0,2)$, obtido fazendo-se x=0 na equação das retas. O ponto \mathcal{B} também pode ser obtido facilmente observando-se que, pra y=0

0 temos x = 4, o qual corresponde ao ponto mais extremo da circunferência. Ou seja, B = (4,0). Para encontrar o ponto A, isole y na equação da reta:

$$y = x + 2$$

E substitua na equação da circunferência:

$$(x-1)^2 + (x+2)^2 = 9 \Rightarrow 2x^2 + 2x - 4 = 0$$

Resolvendo para x, obtemos x=1 ou x=-2. Mas A pertence ao primeiro quadrante, ou seja, x>0. Logo, x=1. Assim, y=x+2=1+2=3. Por fim, A=(1,3).

De posse dos pontos, podemos calcular a área hachurada na figura abaixo, observe:

Note que O, centro da circunferência, está na mesma vertical que o ponto A.

Para calcular a área do triângulo ABC, podemos usar a seguinte equação, do estudo da geometria analítica:

Área do ΔABC =
$$\frac{1}{2} \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 3 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1 \end{vmatrix} = 3$$

Para calcular a área restante, perceba que ela corresponde à área de um quarto da circunferência subtraída da área do triângulo retângulo ΔABO . Assim:

Área de
$$\frac{1}{4}$$
 de circunferência = $\frac{1}{4}\pi(3)^2 = \frac{9\pi}{4}$
Área do ΔΑΒΟ = $\frac{3\cdot 3}{2} = \frac{9}{2}$

Do que segue que:

$$A_2 = \frac{9\pi}{4} - \frac{9}{2}$$

Finalmente, a área pedida:

Área pedida =
$$\frac{9\pi}{4} - \frac{9}{2} + 3 = \frac{9\pi}{4} - \frac{3}{2}$$

Gabarito: Área pedida = $\frac{9\pi}{4} - \frac{3}{2}$.

15. (ITA/2013)

Sobre a parábola definida pela equação $x^2 + 2xy + y^2 - 2x + 4y + 1 = 0$ pode-se afirmar que

- a) ela não admite reta tangente paralela ao eixo Ox.
- b) ela admite apenas uma reta tangente paralela ao eixo Ox.
- c) ela admite duas retas tangentes paralelas ao eixo Ox.

- d) a abscissa do vértice da parábola é x = -
- e) a abscissa do vértice da parábola é $x = -\frac{2}{3}$.

Comentários

A primeira coisa que se observa é que a equação da parábola não se apresenta da forma como normalmente conhecemos. No entanto, observe que os itens a, b e c versam sobre tangentes paralelas ao eixo Ox. O que sabemos sobre retas paralelas ao eixo Ox? Sabemos que elas são do tipo:

$$y = a, a \in \mathbb{R}$$

Além disso, para que uma reta seja tangente a uma curva do segundo grau, sabemos que basta fazer seu discriminante nulo quando substituímos a equação da reta na equação da cônica, ou seja, a equação

$$x^{2} + 2xa + a^{2} - 2x + 4a + 1 = 0 \Rightarrow x^{2} + 2(a - 1)x + a^{2} + 4a + 1 = 0$$

Deve ter o discriminante (Δ) nulo. Dessa forma, teremos:

$$\Delta = [2(a-1)]^2 - 4 \cdot (1) \cdot (a^2 + 4a + 1) = 0 \Rightarrow -24a = 0 \Rightarrow a = 0$$

Assim, a reta y = 0 (o próprio eixo Ox) é a única tangente à curva, o que torna o item b verdadeiro.

Gabarito: "b".

16. (ITA/2011)

Sejam m e n inteiros tais que $\frac{m}{n} = -\frac{2}{3}$ é a equação $36x^2 + 36y^2 + mx + ny - 23 = 0$ representa uma circunferência de raio $r=1\ cm$ e centro $\mathcal C$ localizado no segundo quadrante. Se A e B são os pontos onde a circunferência cruza o eixo Oy, a área do triângulo ABC, em cm^2 , é igual a

- a) $\frac{8\sqrt{2}}{3}$
- b) $\frac{4\sqrt{2}}{2}$
- c) $\frac{2\sqrt{2}}{3}$
- d) $\frac{2\sqrt{2}}{9}$
- e) $\frac{\sqrt{2}}{9}$

Comentários

Antes de qualquer coisa, vamos fazer algumas substituições que vão simplificar bastante o problema. Divida a equação da circunferência por 36, para normalizar os termos quadráticos:

$$36x^{2} + 36y^{2} + mx + ny - 23 = 0 \iff x^{2} + y^{2} + \frac{m}{36}x + \frac{n}{36}y - \frac{23}{36} = 0$$

Note que o enunciado fixou a razão $\frac{m}{n}$. Ou seja, ele também ficou a razão $\frac{\frac{36}{n}}{36} = \frac{m}{n} = -\frac{2}{3}$. De maneira esperta, podemos fazer a seguinte substituição de variáveis: $\frac{m}{36} = -4k \ e \frac{n}{36} = 6k$

$$\frac{m}{36} = -4k e^{\frac{n}{36}} = 6k$$

Que é válida, pois preserva a razão estabelecida no enunciado. Assim a equação da circunferência fica:

$$x^{2} + y^{2} - 4kx + 6ky - \frac{23}{36} = 0 \Leftrightarrow (x - 2k)^{2} + (y + 3k)^{2} - \frac{23}{36} - 4k^{2} - 9k^{2} = 0$$

Logo, seu centro é: C = (2k, -3k).

Como o raio da circunferência é 1, devemos ter:

$$1^2 = \frac{23}{36} + 4k^2 + 9k^2 = 13k^2 + \frac{23}{36} \Rightarrow 13k^2 = \frac{36}{36} - \frac{23}{36} = \frac{13}{36} \Rightarrow k^2 = \frac{1}{36} \Rightarrow k = \pm \frac{1}{6}$$

Como ela tem centro no segundo quadrante, k < 0, ou seja, $k = -\frac{1}{6}$.

Assim, teremos a equação da circunferência:

$$\left(x + \frac{1}{3}\right)^2 + \left(y - \frac{1}{2}\right)^2 = 1$$

Sua intersecção com o eixo y ocorre quando x=0. Logo:

$$\left(0 + \frac{1}{3}\right)^2 + \left(y - \frac{1}{2}\right)^2 = 1 \Rightarrow \left(y - \frac{1}{2}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \Rightarrow y = \frac{1}{2} \pm \frac{2\sqrt{2}}{3}$$

Sem perda de generalidade, seja $A = \left(0, \frac{1}{2} + \frac{2\sqrt{2}}{3}\right)e$ $B = \left(0, \frac{1}{2} - \frac{2\sqrt{2}}{3}\right)$. Teremos

$$AB = \sqrt{(0-0)^2 + \left(\frac{1}{2} + \frac{2\sqrt{2}}{3} - \left(\frac{1}{2} - \frac{2\sqrt{2}}{3}\right)\right)^2} = \frac{4\sqrt{2}}{3}$$

Observe o diagrama abaixo:

Dele, temos que a altura do triângulo $\triangle ABC$ é a coordenada x de C. Assim:

Área do
$$\triangle ABC = \frac{AB \cdot x_C}{2} = \frac{4\sqrt{2}}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} = \frac{2\sqrt{2}}{9}$$

Gabarito: "d".

17. (ITA/2010)

Um triângulo equilátero tem os vértices nos pontos $A, B \in C$ do plano xOy, sendo B = (2, 1) e C = (5, 5). Das seguintes afirmações:

I. A se encontra sobre a reta $y = -\frac{3}{4}x + \frac{11}{2}$

II. A está na intersecção da reta $y = -\frac{3}{4}x + \frac{45}{8}$ com a circunferência $(x-2)^2 + (y-1)^2 = 25$,

III. A pertence às circunferências $(x-5)^2+(y-5)^2=25$ e $\left(x-\frac{7}{2}\right)^2+(y-3)^2=\frac{75}{4}$, é (são) verdadeira(s) apenas

- a) l.
- b) II.
- c) III.
- d) I e II.
- e) II e III.

Comentários

Como o triângulo ΔABC é isósceles, A está sobre a mediatriz de BC. Para encontrar essa reta, precisamos de duas informações:

1ª) O coeficiente angular, o qual podemos obter diretamente da reta BC, uma vez que elas são perpendiculares;

2ª) Um ponto pelo qual a mediatriz passa, o ponto médio de BC, por exemplo.

Da geometria analítica, o coeficiente angular de BC é dado por:

$$m_{BC} = \frac{y_C - y_B}{x_C - x_B} = \frac{5 - 1}{5 - 2} = \frac{4}{3}$$

Assim, seja r a mediatriz, seu coeficiente angular é dado por:

$$m_r = -\frac{3}{4}$$

O ponto médio do seguimento BC, que chamaremos de M, é:

$$M = \left(\frac{5+2}{2}, \frac{5+1}{2}\right) = \left(\frac{7}{2}, 3\right)$$

Por fim, a mediatriz r, da geometria analítica:

$$-\frac{3}{4} = \frac{y-3}{x-\frac{7}{2}} \Rightarrow y = -\frac{3}{4}x + \frac{45}{8}$$

Isso invalida a afirmativa I, pois $y=-\frac{3}{4}x+\frac{11}{2}$ é paralela à r. Se passasse pelo mesmo ponto, A, elas deveriam ser iguais, o que não é verdade.

A afirmativa II é verdadeira, uma vez que a circunferência dada está centrada em B e possui raio 5, ou seja, ela representa o conjunto de todos os pontos que distam 5 de B, que é o caso de A, dado que ΔABC é equilátero. Além disso, $A \in r$: $y = -\frac{3}{4}x + \frac{45}{8}$, como visto anteriormente.

A afirmativa III também é verdadeira. Vamos analisar:

 $(x-5)^2+(y-5)^2=25$ representa o conjunto de pontos que distam 5 de C=(5,5), que é o caso de A, uma vez que ΔABC é equilátero.

 $\left(x-\frac{7}{2}\right)^2+(y-3)^2=\frac{75}{4}$ representa o conjunto de pontos que distam $\frac{5\sqrt{3}}{2}$ de $M=(\frac{7}{2},3)$, ponto médio de BC. A deve pertencer a esse conjunto, uma vez que $BC=\sqrt{(5-2)^2+(5-1)^2}=5$, e a altura AM do ΔABC é dada por:

Gabarito: "e".

18. (ITA/2010)

Considere as circunferências C_1 : $(x-4)^2+(y-3)^2=4$ e C_2 : $(x-10)^2+(y-11)^2=9$. Seja r uma reta tangente interna a C_1 e C_2 , isto é, r tangência C_1 e C_2 e intercepta o segmento de reta $\overline{O_1O_2}$ definido pelos centros O_1 de C_1 e O_2 de C_2 . Os pontos de tangência definem um segmento sobre r que mede

- a) $5\sqrt{3}$
- b) $4\sqrt{5}$
- c) $3\sqrt{6}$
- d) $\frac{25}{3}$
- e) 9

Comentários

Tudo que precisamos nessa questão é de um bom diagrama, observe:

Da figura:

$$m+n=O_1O_2=\sqrt{(4-10)^2+(3-11)^2}=10 \ (eq. \ 01)$$
 Observando os triângulos ΔPP_1O_1 e ΔPP_2O_2 , temos que:

$$sen(\theta) = \frac{3}{m} = \frac{2}{n} \Rightarrow n = \frac{2}{3}m$$

Substituindo na eq. 01, temos:

$$m + \frac{2}{3}m = 10 \Rightarrow \frac{5}{3}m = 10 \Rightarrow m = 6$$

Logo, $n = \frac{2}{3} \cdot 6 = 4$. Teorema de Pitágoras para os triângulos ΔPP_1O_1 e ΔPP_2O_2 :

$$m^2 = 3^2 + (P_2P)^2 \Rightarrow 6^2 = 9 + (P_2P)^2 \Rightarrow P_2P = 3\sqrt{3}$$

 $n^2 = 2^2 + (P_1P)^2 \Rightarrow 4^2 = 4 + (P_2P)^2 \Rightarrow P_1P = 2\sqrt{3}$

Queremos:

$$P_2P_1 = P_2P + PP_1 = 3\sqrt{3} + 2\sqrt{3} = 5\sqrt{3}$$

Gabarito: "a".

19. (ITA/2010)

Determine uma equação da circunferência inscrita no triângulo cujos vértices são A =(1,1), B = (1,7) e C = (5,4) no plano xOy.

Comentários

Vamos encontrar primeiramente o centro dessa circunferência. Da geometria plana, sabemos que o centro dessa circunferência é a intersecção das bissetrizes internas do triângulo, o incentro.

Observe o digrama abaixo:

Pelo Teorema da Bissetriz Interna, aplicado ao triângulo ΔABC , temos:

$$\frac{CM}{MB} = \frac{b}{c} \Rightarrow \frac{M - C}{B - M} = \frac{b}{c} \Rightarrow M = \frac{cC + bB}{c + b}$$

 $\frac{CM}{MB} = \frac{b}{c} \Rightarrow \frac{M-C}{B-M} = \frac{b}{c} \Rightarrow M = \frac{cC+bB}{c+b}$ Como $CB = a, \frac{CM}{MB} = \frac{b}{c}$ e CB = CM + MB, temos que $CM = \frac{ba}{c+b}$. Aplicando o Teorema da Bissetriz Interna ao triângulo ΔCMA , temos:

$$\frac{MI}{IA} = \frac{ba}{c+b} \cdot \frac{1}{b} \Rightarrow \frac{I-M}{A-I} = \frac{a}{c+b}$$

Como $M = \frac{cC + bB}{c + b}$, temos que:

$$I = \frac{aA + bB + cC}{a + b + c}$$

Vamos calcular então os valores de a, b e c:

$$a = BC = \sqrt{(5-1)^2 + (4-7)^2} = 5$$

$$b = AC = \sqrt{(5-1)^2 + (4-1)^2} = 5$$

$$c = AB = \sqrt{(1-1)^2 + (7-1)^2} = 6$$

Assim, temos que:

$$I = \frac{5 \cdot (1,1) + 5 \cdot (1,7) + 6 \cdot (5,4)}{16} = (\frac{5}{2},4)$$

Por fim, devemos encontrar o raio da circunferência. Para isso, vamos encontrar a reta base do lado AB. Note que ambos estão sobre a reta r: x=1. Assim, para calcular o raio, R, basta encontrar a distância de I a essa reta:

$$d(I,r) = R = \left| \frac{\frac{5}{2} - 1}{\sqrt{1^2 + 0^2}} \right| = \frac{3}{2}$$

Logo, a circunferência pedida:

$$\left(x - \frac{5}{2}\right)^2 + (y - 4)^2 = \frac{9}{4}$$

Gabarito:
$$\left(x - \frac{5}{2}\right)^2 + (y - 4)^2 = \frac{9}{4}$$
.

20. (ITA/2008)

Dada a cônica λ : $x^2 - y^2 = 1$, qual das retas abaixo é perpendicular à λ no ponto $P = (2, \sqrt{3})$?

a)
$$y = \sqrt{3}x - 1$$

b)
$$y = \frac{\sqrt{3}}{2}x$$

c)
$$y = \frac{\sqrt{3}}{3}x + 1$$

d)
$$y = -\frac{\sqrt{3}}{5}x - 7$$

e)
$$y = -\frac{\sqrt{3}}{2}x - 4$$

Comentários

Esse problema trata, basicamente, de encontrar o coeficiente angular da tangente à cônica no ponto P, uma vez que de posse desse valor podemos determinar o coeficiente angular da perpendicular à cônica nesse ponto.

Seja, então, r: y = mx + b uma reta tangente à cônica. Como $P \in r$, temos:

$$\sqrt{3} = m \cdot 2 + b \Rightarrow b = \sqrt{3} - 2m$$

Ou seja, $r: y = mx + \sqrt{3} - 2m$.

Substituindo y na cônica, temos:

$$x^2 - [mx + (\sqrt{3} - 2m)]^2 = 1 \Rightarrow (1 - m^2)x^2 - 2m(\sqrt{3} - 2m)x - (\sqrt{3} - 2m)^2 - 1 = 0$$

Seu discriminante deve ser zero, logo:

$$\Delta = 4m^2 (\sqrt{3} - 2m)^2 + 4(1 - m^2) (\sqrt{3} - 2m)^2 + 4(1 - m^2) = 0$$
$$\Delta = (\sqrt{3}m - 2)^2 = 0 \Rightarrow m = \frac{2}{\sqrt{3}}$$

A reta s que queremos é tal que:

$$m_s m = -1 \Rightarrow m_s = -\frac{\sqrt{3}}{2}$$

Gabarito: "e".

21. (ITA/2008)

Considere a parábola de equação $y = ax^2 + bx + c$, que passa pelos pontos (2,5), (-1,2) e tal que a,b,c formam, nesta ordem, uma progressão aritmética. Determine a distância do vértice da parábola à reta tangente à parábola no ponto (2,5).

Comentários

Como a, b e c são uma P.A., nesta ordem, podemos escrever que:

$$(a, b, c) = (b - r, b, b + r) (eq. 01)$$

Como a parábola passa pelos pontos dados, temos que:

$$5 = 4a + 2b + c$$
$$2 = a - b + c$$

Usando a eq. 01:

$$5 = 4(b-r) + 2b + b + r = 7b - 3r$$
$$2 = b - r - b + b + r = b$$

Resolvendo o sistema, temos b=2 e r=3. Portanto, a=-1, b=2 e c=5. A parábola:

$$y = -x^2 + 2x + 5$$

Observe que podemos reescrever a parábola como:

$$y = -x^2 + 2x - 1 + 6 = 6 - (x - 1)^2 \le 6$$

O vértice, V, está associado ao máximo ou mínimo valor de y. Nesse caso, y é máximo quando $x-1=0 \Rightarrow x=1$ e, portanto, y=6. Dessa forma, o vértice da parábola é: V=(1,6). Seja r: y=mx+b a reta tangente à parábola no ponto (2,5). Temos:

$$5 = 2 \cdot m + b \Rightarrow b = 5 - 2m$$

Assim, r: y = mx + 5 - 2m.

Substituindo y na parábola, vem:

$$-x^{2} + 2x + 5 = mx + 5 - 2m \Rightarrow -x^{2} + (2 - m)x + 2m$$

Queremos que seu discriminante seja nulo, pela condição de tangência, ou seja:

$$\Delta = (2 - m)^2 - 4 \cdot (-1) \cdot 2m = m^2 + 4m + 4 = (m + 2)^2 = 0$$

Logo, m=-2. Dessa forma, r:y=-2x+9. Fazendo a distância de V a r, temos:

$$d(V,r) = \left| \frac{-2 \cdot 1 - 1 \cdot 6 + 9}{\sqrt{(-2)^2 + (-1)^2}} \right| = \frac{1}{\sqrt{5}}$$

Gabarito:
$$d(V,r) = \frac{1}{\sqrt{5}}$$
.

22. (ITA/2007)

Considere, no plano cartesiano xy, duas circunferências \mathcal{C}_1 e \mathcal{C}_2 , que se tangenciam exteriormente em P:(5,10). O ponto Q:(10,12) é o centro de \mathcal{C}_1 . Determine o raio da circunferência \mathcal{C}_2 , sabendo que ela tangencia a reta definida pela equação x=y.

Comentários

Essa questão é um pouco mais elaborada e exige um diagrama inicial bem feito, observe:

Vamos dividir a solução em três partes:

Encontrar $sen(\theta)$;

Encontrar PR;

Encontrar r.

Para calcular $sen(\theta)$, observe, do diagrama acima, que:

$$\alpha + \theta = 45^{\circ} \Rightarrow \theta = 45^{\circ} - \alpha$$

Assim, temos que $sen(\theta) = sen(45^{\circ} - \alpha) = sen(45^{\circ})\cos(\alpha) - \cos(45^{\circ})sen(\alpha)$. Portanto:

$$sen(\theta) = \frac{1}{\sqrt{2}}(\cos(\alpha) - sen(\alpha))$$

Note que $tg\alpha$ é o coeficiente angular da reta que passa por PQ. Assim, temos que: $tg(\alpha) = \frac{10-12}{5-10} = \frac{2}{5}$

$$tg(\alpha) = \frac{10 - 12}{5 - 10} = \frac{2}{5}$$

Usando o triângulo abaixo, podemos observar que $sen(\alpha) = \frac{2}{\sqrt{29}} e \cos(\alpha) = \frac{5}{\sqrt{29}}$. Dessa forma, temos que:

$$sen(\theta) = \frac{1}{\sqrt{2}} \left(\frac{5}{\sqrt{29}} - \frac{2}{\sqrt{29}} \right) = \frac{3}{\sqrt{58}}$$

Para encontrar R e posteriormente PR, é conveniente encontrar a equação da reta PQ. Isso é bem simples, pois temos seu coeficiente angular e temos um ponto dela (tome P, por exemplo). Da geometria analítica, sabemos que:

$$\frac{2}{5} = \frac{y - 10}{x - 5} \Rightarrow 2x - 5y + 40 = 0$$

Fazendo y = x na reta PQ podemos encontrar as coordenadas de R:

$$2x - 5x + 40 = 0 \Rightarrow x = \frac{40}{3} = y$$

$$\therefore R = (\frac{40}{3}, \frac{40}{3})$$

Assim,
$$PR = \sqrt{\left(\frac{40}{3} - 5\right)^2 + \left(\frac{40}{3} - 10\right)^2} = \sqrt{\frac{25 \cdot 25}{9} + \frac{25 \cdot 4}{9}} = \frac{\sqrt{25 \cdot (25 + 4)}}{3} = \frac{5}{3}\sqrt{29}.$$

Para encontrar r, observe na figura que:

$$sen(\theta) = \frac{r}{r + PR} \Rightarrow \frac{3}{\sqrt{58}} = \frac{r}{r + \frac{5\sqrt{29}}{3}} \Rightarrow r = \frac{5\sqrt{29}}{\sqrt{58} - 3}$$

Gabarito:
$$r=rac{5\sqrt{29}}{\sqrt{58}-3}$$
.

23. (ITA/2006)

Sejam a reta s: 12x - 5y + 7 = 0 e a circunferência $C: x^2 + y^2 + 4x + 2y = 11$. A reta p, que é perpendicular a s e é secante a C, corta o eixo Oy num ponto cuja ordenada pertence ao seguinte intervalo

- a) (-91/12, -81/12)
- b) (-81/12, -74/12)
- c) (-74/12, 30/12)
- d) (30/12,74/12)
- e) (75/12,91/12)

Comentários

Inicialmente, vamos definir o formato de p usando que ela é perpendicular a s. O coeficiente angular de s é, por inspeção, $m_s=\frac{12}{5}$. Dessa forma, temos que $\frac{12}{5}\cdot m_p=-1\Rightarrow m_p=-\frac{5}{12}$. Assim, p é da forma:

$$p: y = -\frac{5}{12}x + b \ (eq. \ 01)$$

Observe o seguinte diagrama:

Nele, podemos observar que qualquer reta secante à circunferência estará na região entre as retas tangentes de mesmo coeficiente angular.

É conveniente calcular o valor de *b* para a condição de tangência. Para isso, lembre-se que uma reta é tangente a uma circunferência se, e somente se, a distância do centro da circunferência à reta for igual ao raio da circunferência.

Nesse caso, temos que o centro é C = (-2, -1), do que temos que:

$$d(C,p) = \left| \frac{-1 + \frac{5}{12} \cdot (-2) - b}{\sqrt{1^2 + \left(\frac{5}{12}\right)^2}} \right| = \left| \frac{-\frac{11}{6} - b}{\sqrt{\frac{(12^2 + 5^2)}{12^2}}} \right| = 4$$

$$\left| \frac{-\frac{11}{6} - b}{\sqrt{\frac{13^2}{12^2}}} \right| = 4 \Rightarrow \left| \frac{-22 - 12b}{13} \right| = 4 \Rightarrow \frac{-22 - 12b}{13} = \pm 4$$

Caso 01:
$$\frac{-22-12b}{13} = 4$$

$$\frac{-22-12b}{13} = 4 \Rightarrow -22-12b = 52 : b = -\frac{74}{12}$$

Caso 02:
$$\frac{-22-12b}{13} = -4$$

$$\frac{-22-12b}{13} = -4 \Rightarrow -22-12b = -52 \Rightarrow b = \frac{30}{12}$$

Queremos a intersecção com o eixo y, ou seja, queremos y para x=0. Da $eq.\,01$, temos:

$$y = -\frac{5}{12} \cdot 0 + b \Rightarrow y = b$$

Observe, então, a figura abaixo:

Dela, temos que a intersecção das retas secantes com o eixo y, como dito antes limitadas pelas retas tangentes, está no intervalo $I=]-\frac{74}{12},\frac{30}{12}[$.

Gabarito: "c".

24. (ITA/2006)

Sabendo que $9y^2 - 16x^2 - 144y + 224x - 352 = 0$ é a equação de uma hipérbole, calcule sua distância focal.

Comentários

O primeiro passo é escrevê-la da forma:

$$\frac{(x-x_C)^2}{a^2} - \frac{(y-y_C)^2}{h^2} = 1$$

Ou

$$\frac{(y - y_C)^2}{a^2} - \frac{(x - x_C)^2}{b^2} = 1$$

Para isso, vamos dividir a equação, membro a membro, por $9 \cdot (-16)$, observe:

$$\frac{9}{9 \cdot (-16)} y^2 - \frac{16}{9 \cdot (-16)} x^2 - \frac{144}{9 \cdot (-16)} y + \frac{224}{9 \cdot (-16)} x - \frac{352}{9 \cdot (-16)} = 0$$
$$-\frac{1}{16} y^2 + \frac{1}{9} x^2 + \frac{16}{16} y - \frac{14}{9} x - \frac{352}{9 \cdot (-16)} = 0$$
$$\frac{1}{9} (x^2 - 14x) - \frac{1}{16} (y^2 - 16y) + \frac{352}{144} = 0$$

Completando os quadrados de x e y, vem:

$$\frac{1}{9}(x^2 - 2 \cdot 7x + 49) - \frac{49}{9} - \frac{1}{16}(y^2 - 2 \cdot 8y + 64) - \left(-\frac{64}{16}\right) + \frac{352}{144} = 0$$

Do que obtemos:

$$\frac{(y-8)^2}{(4)^2} - \frac{(x-7)^2}{(3)^2} = 1$$

Assim, temos que a=4 e b=3. Do estudo da hipérbole, sabemos que a distância focal é dada por $F_1F_2=2c$, onde $c^2=a^2+b^2$.

Dessa maneira, temos: $c^2 = 4^2 + 3^2 = 25 \Rightarrow c = 5$.

Por fim:

$$F_1F_2 = 2 \cdot 5 = 10$$

Gabarito: $F_1F_2 = 10$.

25. (ITA/2006)

Os focos de uma elipse são $F_1(0,-6)$ e $F_2(0,6)$. Os pontos A(0,9) e B(x,3), x>0, estão na elipse. A área do triângulo com vértices em B,F_1 e F_2 é igual a

- a) $22\sqrt{10}$
- b) $18\sqrt{10}$
- c) $15\sqrt{10}$
- d) $12\sqrt{10}$
- e) $6\sqrt{10}$

Comentários

Ele nos dá os elementos necessários para que consigamos construir a equação da elipse. Lembrese que a equação geral da elipse com seus eixos paralelos aos eixos coordenados é da forma:

$$\frac{(x - x_C)^2}{a^2} + \frac{(y - y_C)^2}{b^2} = 1$$

Ou

$$\frac{(x - x_C)^2}{b^2} + \frac{(y - y_C)^2}{a^2} = 1$$

Onde 2a é o tamanho do eixo maior e 2b a medida do eixo menor da elipse. Além disso, também sabemos que a distância focal é chamada de $2c=F_1F_2$. Nesse caso:

$$F_1F_2 = \sqrt{(0-0)^2 + (6-(-6))^2} = 12 \Rightarrow 2c = 12 \Rightarrow c = 6$$

Sabemos também que o centro da elipse é o ponto médio do seguimento F_1F_2 . Portanto:

$$C = (x_C, y_C) = \left(\frac{0+0}{2}, \frac{6+(-6)}{2}\right) = (0,0)$$

Assim, nossa elipse tem a seguinte forma

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Note que a está sob y pois o eixo maior sempre é aquele que contêm os focos. Nesse caso, o eixo focal está sobre o eixo y.

Como o ponto A pertence à elipse, temos que:

$$\frac{0^2}{b^2} + \frac{(9)^2}{a^2} = 1 \Rightarrow a = 9, pois \ a > 0$$

Do estudo da elipse, também sabemos que: $a^2=b^2+c^2$. Logo:

$$9^2 = b^2 + (6)^2 \Rightarrow b = 3\sqrt{5}$$

Nossa elipse está completa, veja:

$$\frac{x^2}{45} + \frac{y^2}{81} = 1$$

B pertence à elipse, logo:

$$\frac{x^2}{45} + \frac{(3)^2}{81} = 1 \Rightarrow x = 2\sqrt{10}$$

Observe a figura:

Logo, a área do $\Delta F_1 F_2 B$ é dada por:

Área do
$$\Delta F_1 F_2 B = \frac{12 \cdot 2\sqrt{10}}{2} = 12\sqrt{10}$$

Gabarito: "d".

26. (ITA/2005)

Uma circunferência passa pelos pontos A = (0,2), B = (0,8) e C = (8,8).

Então, o centro da circunferência e o valor de seu raio, respectivamente, são

- a) (0,5) e 6.
- b) (5,4) e 5.

- c) (4,8) e 5,5.
- d) (4, 5) e 5.
- e) (4,6) e 5.

Comentários

Faça um diagrama e perceba que o triângulo é retângulo de diâmetro AC. Disso, podemos tirar duas informações importantes:

- 1ª) Seu centro está no ponto médio de AC;
- $2^{\underline{a}}$) Seu raio é a metade do comprimento de AC.

Logo, o ponto médio de AC:

$$M = \frac{A+C}{2} = \left(\frac{0+8}{2}, \frac{2+8}{2}\right) = (4,5)$$

Além disso, o comprimento de AC:

$$AC = \sqrt{(0-8)^2 + (8-2)^2} = 5$$

Gabarito: "d".

27. (ITA/2005)

Seja $\mathcal C$ a circunferência de centro na origem, passando pelo ponto P=(3,4). Se t é a reta tangente a $\mathcal C$ por P, determine a circunferência $\mathcal C'$ de menor raio, com centro sobre o eixo x e tangente simultaneamente à reta t e à circunferência $\mathcal C$.

Comentários

Seja r a reta tangente a C por P=(3,4). Observe o diagrama:

O ponto R, de intersecção da reta com o eixo x, é do tipo $R=(x_R,0)$. Note que o triângulo ΔOPR é retângulo, pela tangência. Seja θ o ângulo $P\widehat{O}T$. Temos, do triângulo ΔPOT , que $\cos(\theta)=\frac{3}{5}$, pois $OP^2=3^2+4^2=25\Rightarrow OP=5$. Olhando agora para o triângulo ΔOPR , temos:

$$\cos(\theta) = \frac{OP}{OR} = \frac{5}{x_R} = \frac{3}{5} \Rightarrow x_R = \frac{25}{3}$$

Note que OC'=5+r, pois o raio de C é 5, ainda da condição de tangência à reta. Além disso, da condição de tangência de C', temos que C'S=r. Olhando para o triângulo $\Delta C'SR$, temos:

$$\cos(\theta) = \frac{C'S}{C'R} = \frac{r}{\frac{25}{3} - (5 + r)} = \frac{r}{\frac{10}{3} - r} = \frac{3}{5} \Rightarrow 5r = 10 - 3r \Rightarrow r = \frac{10}{8} = \frac{5}{4}$$

Por fim, sabemos que $OC' = x_{C'} = 5 + \frac{5}{4} = \frac{25}{4}$ e $y_{C'} = 0$. Portanto, a equação de C' é:

$$\left(x - \frac{25}{4}\right)^2 + y^2 = \frac{25}{16}$$

Gabarito:
$$\left(x - \frac{25}{4}\right)^2 + y^2 = \frac{25}{16}$$
.

28. (ITA/2005)

A distância focal e a excentricidade da elipse com centro na origem e que passa pelos pontos (1,0) e (0,-2) são, respectivamente,

- a) $\sqrt{3} e^{\frac{1}{2}}$
- b) $\frac{1}{2}$ e $\sqrt{3}$
- c) $\frac{\sqrt{3}}{2}$ e $\frac{1}{2}$
- d) $\sqrt{3} e^{\frac{\sqrt{3}}{2}}$
- e) $2\sqrt{3}$ e $\frac{\sqrt{3}}{2}$

Comentários

Pontos do tipo (0, y) e (x, 0) delimitam os tamanhos dos semieixos maiores e menores. No nosso caso, temos então que um dos semieixos deve medir 1 e o outro |-2|=2, pois a elipse passa pelos pontos (1,0) e (0,-2).

Como 1 < 2, o semieixo maior, a, mede 2, ou seja, a = 2 e, portanto, b = 1.

Do estudo da elipse, sabemos que:

$$a^2 = b^2 + c^2$$

Onde 2c é a distância focal.

Dessa forma:

$$(2)^2 = (1)^2 + c^2 \Rightarrow c^2 = 3 \Rightarrow c = \sqrt{3}$$

Do que temos que a distância focal é dada por $2c = 2\sqrt{3}$.

Da definição de excentricidade: $e = \frac{c}{a} = \frac{\sqrt{3}}{2}$.

Gabarito: "e".

29. (ITA/2004)

Sejam os pontos $A: (2,0), B: (4,0) e P: (3,5 + 2\sqrt{2}).$

- a) Determine a equação da circunferência C, cujo centro está situado no primeiro quadrante, passa pelos pontos A e B e é tangente ao eixo y.
- b) Determine as equações das retas tangentes à circunferência \mathcal{C} que passam pelo ponto \mathcal{P} .

Comentários

a) Esse item é resolvido rapidamente quando se representa a situação graficamente, observe:

Do digrama acima, notamos que a coordenada $x_{\mathcal{C}}$ do centro está no ponto médio de AB, ou seja:

$$M = \frac{A+B}{2} = \left(\frac{2+4}{2}, \frac{0+0}{2}\right) = (3,0)$$

Dessa forma $x_{\mathcal{C}}=3$. Ainda do diagrama, pela tangência do eixo y, observe que $x_{\mathcal{C}}$ também corresponde ao raio da circunferência, do que temos que $A\mathcal{C}=3$. O triângulo $\Delta AM\mathcal{C}$ é retângulo, logo, aplicando o teorema de Pitágoras:

$$3^2 = CM^2 + AM^2 = CM^2 + 1^2 \Rightarrow CM = 2\sqrt{2}$$

Portanto, a equação da circunferência é:

$$(x-3)^2 + \left(y - 2\sqrt{2}\right)^2 = 9$$

b) Se você proceder com calma, vai observar que P está sobre a reta CM, a uma distância S de C. Assim, faça o seguinte diagrama:

Para simplificar, vamos fazer $P\hat{C}Q = \theta$. Note que $\pm tg(\theta)$ corresponde ao coeficiente angular das retas procuradas, pois o ângulo que a reta base de PQ faz com o sentido positivo de $x \in 180 - \theta$ e o ângulo que a reta base de PR faz com o sentido positivo do eixo $x \in \theta$, conforme se deduz rapidamente no diagrama acima.

Como dito acima, CP=5 e da tangência, CQ=3. Sendo o triângulo ΔPCQ retângulo, temos, por Pitágoras:

$$5^2 = 3^2 + PQ^2 \Rightarrow PQ = 4$$

Dessa forma, $tg(\theta) = \frac{PQ}{cQ} = \frac{4}{3}$. Concluímos que as retas possuem coeficiente angular $m = \pm \frac{4}{3}$. Como elas passam por P, podemos escrever:

Caso 01:
$$m = \frac{4}{3}$$
.

$$\frac{4}{3} = \frac{y - (5 + 2\sqrt{2})}{x - 3} \Rightarrow y = \frac{4}{3}x + 1 + 2\sqrt{2}$$

Caso 02:
$$m = -\frac{4}{3}$$
.

$$-\frac{4}{3} = \frac{y - (5 + 2\sqrt{2})}{x - 3} \Rightarrow y = -\frac{4}{3}x + 9 + 2\sqrt{2}$$

Gabarito: Item a) $(x-3)^2 + (y-2\sqrt{2})^2 = 9$; Item b) $y = \frac{4}{3}x + 1 + 2\sqrt{2}$ ou $y = -\frac{4}{3}x + 9 + 2\sqrt{2}$.

IME

30. (IME/2020)

- O lugar geométrico definido pela equação $x^2 + 3y^2 + 5 = 2x xy 4y$ representa
- a) uma elipse.
- b) uma hipérbole.

- c) uma circunferência.
- d) um conjunto vazio.
- e) duas retas paralelas.

Comentários

Nessa questão, poderíamos ficar tentados a calcular o discriminante da cônica e, assim, acharíamos que o lugar geométrico é uma elipse. No entanto, devemos nos atentar às alternativas e ver que nas letras (D) e (E), temos um conjunto vazio e duas retas paralelas, respectivamente. Assim, vamos verificar se a equação dada pode ser uma dessas possibilidades. Analisemos a equação quadrática em função de \boldsymbol{x} :

$$x^{2} + 3y^{2} + 5 = 2x - xy - 4y$$
$$x^{2} + (y - 2)x + 3y^{2} + 4y + 5 = 0$$

Devemos verificar se essa equação possui solução. Para isso, vamos calcular seu discriminante:

$$\Delta = (y-2)^2 - 4(3y^2 + 4y + 5)$$

$$\Delta = y^2 - 4y + 4 - 12y^2 - 16y - 20$$

$$\Delta = -11y^2 - 20y - 16$$

Encontramos uma função em y. Ao analisarmos o discriminante da equação $-11y^2-20y-16=0$, verificamos que ele é menor que zero:

$$\Delta' = (-20)^2 - 4(-11)(-16) = 400 - 704 = -304 < 0$$

Como o discriminante dessa equação é menor que zero e a função $\Delta = f(y) = -11y^2 - 20y - 16$ representa uma parábola com concavidade para baixo, temos que $\forall y \in \mathbb{R}, f(y) < 0$, ou seja, $\Delta < 0, \forall y \in \mathbb{R}$. Portanto, a equação inicial em x não possui solução, logo, o lugar geométrico é o conjunto vazio.

Gabarito: "d".

31. (IME/2020)

Os pontos A(-5,0) e B(5,0) definem um dos lados do triângulo ABC. A bissetriz interna do ângulo correspondente ao vértice C é paralela à reta de equação 14x-2y+1=0. Determine o valor da excentricidade do lugar geométrico definido pelo vértice C deste triângulo.

Comentários

Solução 1) Representando a figura do enunciado, temos:

 \overline{CM} é a bissetriz interna do triângulo ABC, a questão afirma que ela é paralela à reta 14x-2y+1=0, logo, a reta \overline{CM} deve possuir o mesmo coeficiente angular:

$$14x - 2y + 1 = 0 \Rightarrow y = 7x + \frac{1}{2} \Rightarrow m = 7$$

Assim, o coeficiente angular da reta \overline{CM} é:

$$m_{CM} = tg\beta = 7$$

A reta \overline{CM} é dada por:

$$y = 7(x - k)$$

Logo:

$$k = x - \frac{y}{7}$$

Aplicando o teorema da bissetriz interna, temos:

$$\frac{AC}{AM} = \frac{BC}{BM} \Rightarrow \frac{\sqrt{(x+5)^2 + y^2}}{k+5} = \frac{\sqrt{(x-5)^2 + y^2}}{5-k}$$

Elevando ao quadrado:

$$(5-k)^{2}(x^{2} + 10x + 25 + y^{2}) = (k+5)^{2}(x^{2} - 10x + 25 + y^{2})$$

$$(25-10k+k^{2})(x^{2} + 10x + 25 + y^{2}) = (k^{2} + 10k + 25)(x^{2} - 10x + 25 + y^{2})$$

$$25x^{2} + 250x + 625 + 25y^{2} - 10kx^{2} = 100kx - 250k - 10ky^{2} + k^{2}x^{2} + 10k^{2}x + 25k^{2} + k^{2}y^{2}$$

$$= k^{2}x^{2} - 10k^{2}x + 25k^{2} + k^{2}y^{2} + 10kx^{2} = 100kx + 250k + 10ky^{2} + 25x^{2} - 250x$$

$$+ 625 + 25y^{2}$$

$$500x - 20kx^{2} - 500k - 20ky^{2} + 20k^{2}x = 0$$

$$25x - 25k - kx^{2} - ky^{2} + k^{2}x = 0$$

 $25(x - k) - kx(x - k) - kv^{2} = 0$

Substituindo o valor de k:

$$25\left(x - \left(x - \frac{y}{7}\right)\right) - \left(x - \frac{y}{7}\right)x\left(x - \left(x - \frac{y}{7}\right)\right) - \left(x - \frac{y}{7}\right)y^{2} = 0$$

$$\frac{25y}{7} - \frac{x(7x - y)}{7}\left(\frac{y}{7}\right) - \frac{7xy^{2}}{7} + \frac{y^{3}}{7} = 0$$

$$175y - 7x^{2}y + xy^{2} - 49xy^{2} + 7y^{3} = 0$$

Como $y \neq 0$, temos:

$$175 - 7x^{2} - 48xy + 7y^{2} = 0$$

$$7x^{2} + 48xy - 7y^{2} - 175 = 0$$

Fazendo a rotação de modo a eliminar o termo misto, temos:

$$tg(2\theta) = \frac{B}{A - C}$$

$$tg(2\theta) = \frac{48}{14} = \frac{24}{7}$$

$$\frac{2tg\theta}{1 - tg^2\theta} = \frac{24}{7}$$

$$24tg^2\theta + 14tg\theta - 24 = 0$$

$$12tg^2\theta + 7tg\theta - 12 = 0$$

Encontrando as soluções:

$$tg\theta = \frac{-7 \pm \sqrt{49 + 4 \cdot 144}}{24} = \frac{-7 \pm \sqrt{625}}{24} = \frac{-7 \pm 25}{24}$$
$$tg\theta_1 = \frac{3}{4} \text{ ou } tg\theta_2 = -\frac{4}{3}$$

Vamos usar $tg\theta = 3/4$, aplicando a transformação de coordenadas:

$$\cos\theta = \frac{4}{5} e \sin\theta = \frac{3}{5}$$

$$\begin{cases} x = X \cdot \cos\theta - Y \cdot \sin\theta \\ y = X \cdot \sin\theta + Y \cdot \cos\theta \end{cases} \Rightarrow \begin{cases} x = \frac{4}{5}X - \frac{3}{5}Y \\ y = \frac{3}{5}X + \frac{4}{5}Y \end{cases}$$

$$7\left(\frac{4}{5}X - \frac{3}{5}Y\right)^{2} + 48\left(\frac{4}{5}X - \frac{3}{5}Y\right)\left(\frac{3}{5}X + \frac{4}{5}Y\right) - 7\left(\frac{3}{5}X + \frac{4}{5}Y\right)^{2} - 175 = 0$$

$$\frac{7}{25}(16X^{2} - 24XY + 9Y^{2}) + \frac{48}{25}(12X^{2} - 12Y^{2}) - \frac{7}{25}(9X^{2} + 24XY + 16Y^{2}) - 175 = 0$$

$$7 \cdot 16X^{2} + 7 \cdot 9Y^{2} + 48 \cdot 12X^{2} - 48 \cdot 12Y^{2} - 7 \cdot 9X^{2} - 7 \cdot 16Y^{2} - 175 \cdot 25 = 0$$

$$(49 + 48 \cdot 12)X^{2} - (49 + 48 \cdot 12)Y^{2} - 175 \cdot 25 = 0$$

$$625X^{2} - 625Y^{2} - 7 \cdot 625 = 0$$

$$X^{2} - Y^{2} = 7$$

Portanto, temos a equação de uma hipérbole equilátera. Logo, sua excentricidade é $\boxed{e=\sqrt{2}}$

Solução 2) Para facilitar a resolução da questão, podemos utilizar uma rotação do eixo de coordenadas em torno do ponto A. Para isso, tomemos o eixo $\mathbf{y'}$ como paralelo à reta que é a bissetriz fornecida no enunciado e o eixo $\mathbf{x'}$ é perpendicular a $\mathbf{y'}$ passando no ponto A.

Definimos também o ponto Z(c,0) como o encontro entre a reta \mathbf{s} e o eixo $\mathbf{x'}$. Devemos observar que a reta \mathbf{r} é altura e bissetriz no triângulo ABZ, portanto, é também mediana do lado AZ, como mostrado no desenho.

O ponto **C** desejado é o encontro das retas **r** e **s**.

Primeiramente, vamos calcular as coordenadas do ponto B nesse novo sistema de coordenadas. Note que a mera rotação do eixo de coordenadas não altera a distância AB = 10. Além disso, as projeções de B formam um triângulo retângulo que possui um dos ângulos como o arco tangente de 1/7.

$$x_B^2 + y_B^2 = 10^2$$

 $y_B = \frac{x_B}{7} : x_B = 7y_B$

Agora, podemos calcular as novas coordenadas de B.

$$(7y_B)^2 + y_B^2 = 10^2$$

$$49y_B^2 + y_B^2 = 100$$

$$50y_B^2 = 100$$

$$\therefore y_B^2 = \frac{100}{50} = 2 \therefore y_B = \sqrt{2}$$

Façamos a conta de x_B.

$$x_B = 7y_B = 7\sqrt{2}$$

A reta r é paralela ao eixo y'. Portanto, a sua equação é dada por:

$$r: x' = \frac{c}{2}$$

A reta **s** é dada pelos pontos $B(7\sqrt{2},\sqrt{2})$ e (c,0). Sua equação pode ser expressa em função do coeficiente angular:

$$m_s = \frac{\Delta y}{\Delta x} = \frac{\sqrt{2} - 0}{7\sqrt{2} - c} = \frac{\sqrt{2}}{7\sqrt{2} - c}$$

Podemos agora obter o coeficiente linear da reta $\bf n$ considerando que (c,0) pertence à reta $\bf s$.

$$y' = m_{s}x' + n_{s}
0 = m_{s} \cdot c + n_{s}
\therefore n_{s} = -m_{s}c = -\frac{\sqrt{2}}{7\sqrt{2} - c} \cdot c = \frac{\sqrt{2}}{7\sqrt{2} - c} \cdot (-c)$$

Logo, a equação da reta s é:

$$s: y' = m_s x' + n_s = \frac{\sqrt{2}}{7\sqrt{2} - c} \cdot x' + \frac{\sqrt{2}}{7\sqrt{2} - c} \cdot (-c)$$

$$s: y' = \frac{\sqrt{2}}{7\sqrt{2} - c} [x' - c]$$

Note que o ponto C é o encontro das retas \mathbf{r} e \mathbf{s} . Portanto, basta resolver o sistema de equações definido pelas duas equações de reta.

$$r: x' = \frac{c}{2} \div c = 2x'$$

Substituindo o parâmetro c na equação da reta s é:

$$s: y' = \frac{\sqrt{2}}{7\sqrt{2} - c} [x' - c] = \frac{\sqrt{2}}{7\sqrt{2} - 2x'} [x' - 2x']$$

Fazendo as manipulações algébricas.

$$y' = \frac{\sqrt{2}}{7\sqrt{2} - 2x'} [x' - 2x'] = \frac{\sqrt{2}}{7\sqrt{2} - 2x'} [-x']$$

Passando o denominador para o outro lado, temos:

$$\therefore y'(7\sqrt{2} - 2x') = \sqrt{2}[-x']$$
$$7\sqrt{2}y' - 2x'y' = \sqrt{2}[-x']$$
$$\therefore \sqrt{2}x' + 7\sqrt{2}y' - 2x'y' = 0$$

$$x'y' - \frac{\sqrt{2}}{2}x' - \frac{7\sqrt{2}}{2}y' = 0$$

Podemos fatorar a equação obtida, observando que:

$$\left(x' - \frac{7\sqrt{2}}{2}\right)\left(y' - \frac{\sqrt{2}}{2}\right) = x'y' - \frac{\sqrt{2}}{2}x' - \frac{7\sqrt{2}}{2}y' + \frac{7}{2}$$

Portanto, temos que a equação da curva é:

$$x'y' - \frac{\sqrt{2}}{2}x' - \frac{7\sqrt{2}}{2}y' = 0$$
$$\left(x' - \frac{7\sqrt{2}}{2}\right)\left(y' - \frac{\sqrt{2}}{2}\right) - \frac{7}{2} = 0$$
$$\left(x' - \frac{7\sqrt{2}}{2}\right)\left(y' - \frac{\sqrt{2}}{2}\right) = \frac{7}{2}$$

Trata-se, portanto de uma hipérbole equilátera deslocada da origem. Portanto, a sua excentricidade é igual a $\sqrt{2}$.

Gabarito: Hipérbole de excentricidade $\sqrt{2}$

32. (IME/2020)

Sobre uma reta r são marcados três pontos distintos A,B e C, sendo que C é um ponto externo ao segmento de reta \overline{AB} . Determine o lugar geométrico das interseções das retas tangentes a partir de A e B a qualquer circunferência tangente à reta r no ponto C. Justifique sua resposta.

Comentários

Sem perda de generalidade, consideremos a seguinte figura que representa o problema:

 \overline{AD} e \overline{BE} são as retas tangentes à circunferência tangente à reta r no ponto C. Para simplificar os cálculos, consideramos a reta r como a reta coincidente com o eixo das abcissas. Sabendo que a equação de uma reta é

$$y - y_0 = m(x - x_0)$$

Temos para a reta \overline{AD} :

$$y - y_A = m_{AD}(x - x_A) \Rightarrow y = (x + a) \cdot tg(2\alpha) \ (eq. I)$$

Para a reta \overline{BE} :

$$y - y_B = m_{BE}(x - x_B) \Rightarrow y = (x + b) \cdot tg(2\beta)$$
 (eq. II)

A interseção da reta \overline{AD} e a reta \overline{BE} é o ponto P(x,y). Igualando as equações das retas, temos:

$$(x+a) \cdot tg(2\alpha) = (x+b) \cdot tg(2\beta) \ (eq.III)$$

Pela figura, vemos que:

$$tg\alpha = \frac{R}{a} e tg\beta = \frac{R}{b}$$

Pelas relações trigonométricas, temos:

$$tg(2\alpha) = \frac{2tg\alpha}{1 - tg^2\alpha} \Rightarrow tg(2\alpha) = \frac{2\left(\frac{R}{a}\right)}{1 - \left(\frac{R}{a}\right)^2} \Rightarrow \boxed{tg(2\alpha) = \frac{2Ra}{a^2 - R^2}}$$
$$tg(2\beta) = \frac{2tg\beta}{1 - tg^2\beta} \Rightarrow tg(2\beta) = \frac{2\left(\frac{R}{b}\right)}{1 - \left(\frac{R}{b}\right)^2} \Rightarrow \boxed{tg(2\beta) = \frac{2Rb}{b^2 - R^2}}$$

Substituindo os valores encontrados na eq. I:

$$(x+a) \cdot \left(\frac{2Ra}{a^2 - R^2}\right) = (x+b) \cdot \left(\frac{2Rb}{b^2 - R^2}\right)$$

$$(x+a)(b^2 - R^2)2Ra = (x+b)(a^2 - R^2)2Rb$$

$$a(xb^2 - xR^2 + ab^2 - aR^2) = b(xa^2 - xR^2 + a^2b - bR^2)$$

$$axb^2 - axR^2 + a^2b^2 - a^2R^2 = bxa^2 - bxR^2 + a^2b^2 - b^2R^2$$

$$ab^2x - a^2bx - aR^2x + bR^2x - a^2R^2 + b^2R^2 = 0$$

$$abx(b-a) + R^2x(b-a) + R^2\underbrace{(b^2 - a^2)}_{(b-a)(b+a)} = 0$$

Como $b \neq a$, temos:

$$abx + R^{2}x + R^{2}(a+b) = 0$$
$$x = -\frac{R^{2}(a+b)}{ab + R^{2}}$$

Substituindo o valor de x na equação I, obtemos:

$$y = \left(-\frac{R^2(a+b)}{ab+R^2} + a\right) \cdot \left(\frac{2Ra}{a^2 - R^2}\right)$$

Simplificando:

$$y = \frac{2Ra(-aR^2 - bR^2 + a^2b + aR^2)}{(ab + R^2)(a^2 - R^2)}$$
$$y = \frac{2Rab(a^2 - R^2)}{(ab + R^2)(a^2 - R^2)}$$
$$y = \frac{2Rab}{(ab + R^2)}$$

Escrevendo R^2 em função de x:

$$x = -\frac{R^2(a+b)}{ab+R^2} \Rightarrow abx + R^2x = -aR^2 - bR^2 \Rightarrow R^2(a+b+x) = -abx$$
$$\therefore R^2 = -\frac{abx}{a+b+x}$$

Substituindo em y:

$$y = \frac{2Rab}{(ab+R^2)} \Rightarrow y^2 = \frac{4a^2b^2R^2}{(ab+R^2)^2} \Rightarrow y^2 = \frac{\left(4a^2b^2\left(-\frac{abx}{a+b+x}\right)\right)}{\left(ab - \frac{abx}{a+b+x}\right)^2}$$

$$\Rightarrow y^2 = \frac{4a^2b^2\left(-\frac{abx}{a+b+x}\right)}{a^2b^2\left(1 - \frac{x}{a+b+x}\right)^2} \Rightarrow y^2 = \frac{-\frac{4abx}{(a+b+x)}}{\frac{(a+b+x-x)^2}{(a+b+x)^2}} \Rightarrow y^2 = -\frac{4abx(a+b+x)}{(a+b)^2}$$

$$y^{2} + \frac{4ab(a+b)x}{(a+b)^{2}} + \frac{4abx^{2}}{(a+b)^{2}} = 0$$

$$y^{2} + \frac{4ab}{(a+b)^{2}} \left(\underbrace{x^{2} + 2\frac{(a+b)}{2}x + \frac{(a+b)^{2}}{4} - \frac{(a+b)^{2}}{4}}_{(x+\frac{a+b}{2})^{2}} - ab = 0 \right)$$

$$y^{2} + \frac{4ab}{(a+b)^{2}} \left(x + \frac{a+b}{2} \right)^{2} - ab = 0$$

$$\frac{\left(x + \frac{a+b}{2} \right)^{2}}{\frac{(a+b)^{2}}{4ab}} + y^{2} = ab$$

$$\therefore \frac{\left(x + \frac{a+b}{2} \right)^{2}}{\frac{(a+b)^{2}}{4}} + \frac{y^{2}}{ab} = 1$$

Portanto, o lugar geométrico dos pontos que satisfazem às condições do problema é uma elipse.

Gabarito: Elipse

33. (IME/2019)

Uma hipérbole equilátera de eixo igual a 4, com centro na origem, eixos paralelos aos eixos coordenados e focos no eixo das abscissas sofre uma rotação de 45° no sentido antihorário em torno da origem. A equação dessa hipérbole após a rotação é:

a)
$$xy = 2$$

b)
$$x^2 + xy - y^2 = 4$$

c)
$$x^2 - y^2 = 2$$

d)
$$xy = -2$$

e)
$$x^2 - y^2 = -2$$

Comentários

A equação de uma hipérbole é dada por:

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

A hipérbole da questão possui centro na origem, então, $(x_0, y_0) = (0, 0)$. Ela também é equilátera de eixo igual a 4, logo:

$$2a = 2b = 4 \Rightarrow a = b = 2$$

Assim, temos:

$$\boxed{\frac{x^2}{4} - \frac{y^2}{4} = 1}$$

Precisamos rotacionar essa equação 45° no sentido anti-horário. Podemos usar a matriz de rotação:

$$\underbrace{\begin{pmatrix} x' \\ y' \end{pmatrix}} = \underbrace{\begin{pmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix}}_{(y)} \begin{pmatrix} x \\ y \end{pmatrix}$$

ortogonal, podemos escreve

$$M^{T}M = MM^{T} = I$$
$$\binom{x'}{y'} = M\binom{x}{y}$$

Vamos multiplicar à esquerda da equação por M^T :

$$M^{T} \begin{pmatrix} x' \\ y' \end{pmatrix} = \underbrace{M^{T} M}_{I} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$M^{T} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} \cos 45^{\circ} & \sin 45^{\circ} \\ -\sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Assim, obtemos:

$$\begin{cases} x = \frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' \\ y = -\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' \end{cases}$$

Agora, basta substituir essas relações na equação da hipérbole:

$$\frac{x^2}{4} - \frac{y^2}{4} = 1 \Rightarrow \frac{\left(\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'\right)^2}{4} - \frac{\left(-\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'\right)^2}{4} = 1$$

Simplificando:

$$\frac{\frac{2}{4}(x'+y')^2}{4} - \frac{\frac{2}{4}(-x'+y')^2}{4} = 1$$

$$\frac{x'^2 + 2x'y' + y'^2 - (x'^2 - 2x'y' + y'^2)}{8} = 1$$

$$\frac{4x'y'}{8} = 1$$

$$x'y' = 2$$

Gabarito: "a".

34. (IME/2019)

A reta r é normal à cônica C, de equação $9x^2 - 4y^2 = 36$, no ponto $A = \left(3, \frac{3\sqrt{5}}{2}\right)$ e intercepta o eixo das abcissas no ponto B. Sabendo que F é o foco da cônica C mais próximo ao ponto A, determine a área do triângulo ABF.

Comentários

A cônica pode ser escrita em sua forma reduzida:

$$9x^2 - 4y^2 = 36 \Leftrightarrow \frac{x^2}{4} - \frac{y^2}{9} = 1$$

Assim, temos que o semieixo real a e o semieixo imaginário b são dados por:

$$a^2 = 4 \Rightarrow a = 2$$
$$b^2 = 9 \Rightarrow b = 3$$

Com esses dados, podemos calcular o valor da semidistância focal:

$$c^2 = a^2 + b^2 \Rightarrow c^2 = 4 + 9 = 13 \Rightarrow c = \pm \sqrt{13}$$

Como a cônica possui centro na origem e é da forma

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Podemos afirmar que seus focos estão no eixo x, logo:

$$F_1 = \left(-\sqrt{13}, 0\right)$$
$$F_2 = \left(\sqrt{13}, 0\right)$$

F é o foco da cônica mais próximo ao ponto A. Como A está localizado no primeiro quadrante do plano cartesiano, temos que F deve ser igual a F_2 .

$$F = \left(\sqrt{13}, 0\right)$$

Vamos esboçar o gráfico para visualizar a situação:

Resta encontrar o ponto B. Para isso, devemos encontrar a equação da reta r normal à C. Sabendo que o coeficiente angular da reta tangente à curva no ponto (x,y) é dado por:

$$m_t = \frac{dy}{dx} = y'$$

Então, aplicando-se a derivada na equação da hipérbole, obtemos:

$$\frac{d(9x^2 - 4y^2)}{dx} = \frac{d(36)}{dx}$$

$$9 \cdot 2 \cdot x - 4 \cdot 2 \cdot y \cdot y' = 0$$

$$18x - 8ym_t = 0$$

$$\Rightarrow m_t = \frac{9x}{4y}$$

Para obter o coeficiente angular da reta r, podemos usar a seguinte relação:

$$m_r m_t = -1 \Rightarrow m_r = -\frac{1}{m_t} \Rightarrow m_r = -\frac{4y}{9x}$$

Como A é um ponto da reta r, temos:

$$A = \left(3, \frac{3\sqrt{5}}{2}\right) \Rightarrow \boxed{m_r = -\frac{4 \cdot \frac{3\sqrt{5}}{2}}{9 \cdot 3} = -\frac{2\sqrt{5}}{9}}$$

A forma geral de uma reta é:

$$y - y_0 = m(x - x_0)$$

Conhecemos o coeficiente angular o coeficiente angular de r e A é um ponto pertencente à reta, assim, sua equação é dada por:

$$r: y - \frac{3\sqrt{5}}{2} = -\frac{2\sqrt{5}}{9}(x-3)$$

B é um ponto do eixo das abcissas, logo, $y_B=0$. Desse modo:

$$y_{B} - \frac{3\sqrt{5}}{2} = -\frac{2\sqrt{5}}{9}(x_{B} - 3)$$

$$-\frac{3\sqrt{5}}{2} = -\frac{2\sqrt{5}}{9}(x_{B} - 3)$$

$$x_{B} = \frac{27}{4} + 3$$

$$x_{B} = \frac{39}{4}$$

$$B = \left(\frac{39}{4}, 0\right)$$

A área do $\triangle ABF$ é igual a:

$$S_{ABF} = \frac{1}{2} \cdot \left(\frac{39}{4} - \sqrt{13}\right) \cdot \frac{3\sqrt{5}}{2}$$
$$S_{ABF} = \frac{117\sqrt{5} - 12\sqrt{65}}{16}$$

Gabarito:
$$S_{ABF}=rac{117\sqrt{5}-12\sqrt{65}}{16}$$

35. (IME/2018)

Considere a elipse abaixo, onde DD' é uma corda passando pelo seu centro, MM' uma corda focal e o eixo maior da elipse é 2a.

Prove que: $DD'^2 = MM' \cdot 2a$

Comentários

Seja p = MF e q = FM'. Vamos nomear o outro foco como sendo F_2 . Observe o diagrama abaixo:

Aplicando a lei dos cossenos ao triângulo ΔFMF_2 , temos:

$$F_2M^2 = FF_2^2 + FM^2 - 2FF_2 \cdot FM \cdot \cos(180^\circ - \theta)$$

Observe que, por M estar sobre a elipse, temos $FM + MF_2 = 2a \Rightarrow MF_2 = 2a - FM = 2a - p$. Além disso, a distância focal, 2c, corresponde a FF_2 .

Ou seja:

For seja:

$$(2a - p)^2 = (2c)^2 + p^2 + 4cpcos(\theta) \Leftrightarrow 4a^2 - 4ap + p^2 = (2c)^2 + p^2 + 4cpcos(\theta)$$

$$\Leftrightarrow 4(a^2 - c^2) = 4ap + 4cpcos(\theta) \Leftrightarrow p = \frac{a^2 - c^2}{a + ccos(\theta)}$$

De maneira análoga ao que foi feito acima, vamos aplicar a lei dos cossenos ao triângulo $\Delta FM'F_2$:

$$F_2M'^2 = FF_2^2 + FM'^2 - 2FF_2 \cdot FM' \cdot \cos(\theta)$$

$$(2a-q)^2 = (2c)^2 + q^2 - 4cq\cos(\theta) \Leftrightarrow 4a^2 - 4aq + q^2 = (2c)^2 + q^2 - 4cq\cos(\theta)$$

$$\Leftrightarrow 4(a^2 - c^2) = 4aq - 4cqcos(\theta) \Leftrightarrow q = \frac{a^2 - c^2}{a - ccos(\theta)}$$

Dessa forma, temos que

$$MM' = p + q = \frac{a^2 - c^2}{a + ccos(\theta)} + \frac{a^2 - c^2}{a - ccos(\theta)} = \frac{2a(a^2 - c^2)}{a^2 - c^2\cos^2(\theta)}$$
Lembre-se que $a^2 = b^2 + c^2 \Rightarrow b^2 = a^2 - c^2$, ou seja:

$$MM' = \frac{2ab^2}{a^2 - c^2 \cos^2(\theta)}$$

Por outro lado, observe a seguinte figura:

Essa elipse obedece a equação:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Da figura, temos que $D = (mcos(\theta), msen(\theta))$ e $D' = (-ncos(\theta), -nsen(\theta))$. Para o ponto *D*:

$$\frac{m^2 \cos^2(\theta)}{a^2} + \frac{m^2 sen^2(\theta)}{b^2} = 1 \Rightarrow m^2 \left(\frac{\cos^2(\theta)b^2 + (1 - \cos^2(\theta))a^2}{a^2b^2}\right) = 1$$

$$\therefore m = \frac{ab}{\sqrt{a^2 - c^2 \cos^2(\theta)}}$$

Para o ponto D':

$$\frac{n^2 \cos^2(\theta)}{a^2} + \frac{n^2 \sin^2(\theta)}{b^2} = 1 \Rightarrow n^2 \left(\frac{\cos^2(\theta)b^2 + (1 - \cos^2(\theta))a^2}{a^2b^2} \right) = 1$$
$$\therefore n = \frac{ab}{\sqrt{a^2 - c^2 \cos^2(\theta)}}$$

Logo,

$$DD' = m + n = \frac{2ab}{\sqrt{a^2 - c^2 \cos^2(\theta)}}$$

Veja que:

$$(DD')^2 = \frac{4a^2b^2}{a^2 - c^2\cos^2(\theta)} = 2a \cdot \left(\frac{2ab^2}{a^2 - c^2\cos^2(\theta)}\right) = 2a \cdot MM'$$

Gabarito: Demonstração.

36. (IME/2018)

Seja uma elipse com focos no eixo OX e centrada na origem. Seus eixos medem 10 e 20/3. Considere uma hipérbole tal que os focos da elipse são os vértices da hipérbole e os focos da hipérbole são os vértices da elipse. As parábolas que passam pelas interseções entre a elipse e a hipérbole e que são tangentes ao eixo OY, na origem, têm as seguintes equações:

a)
$$y^2 = \pm 2 \frac{\sqrt{35}}{7} x$$

b)
$$y^2 = \pm 4 \frac{\sqrt{5}}{7} x$$

c)
$$y^2 = \pm 6 \frac{\sqrt{5}}{7} x$$

d)
$$y^2 = \pm 6 \frac{\sqrt{35}}{7} x$$

e)
$$y^2 = \pm 8 \frac{\sqrt{35}}{63} x$$

Comentários

Para essa questão é indispensável um diagrama esquemático da situação. Vamos chamar de F_1 e F_2 os focos da elipse e F_1' e F_2' os focos da hipérbole. Observe:

Já temos, do enunciado, como construir a equação da elipse, pois nos foi dado seu centro, as retas que definem seus eixos e o tamanho de seus eixos. Logo:

$$\frac{x^2}{5^2} + \frac{y^2}{\left(\frac{10}{3}\right)^2} = 1$$

Antes de continuar, vamos calcular a distância focal da elipse: $a^2 = b^2 + c^2 \Rightarrow c^2 = 5^2 - c^2$ $\left(\frac{10}{3}\right)^2 \Rightarrow c = \frac{5\sqrt{5}}{3}$.

No diagrama, podemos observar que a distância focal da hipérbole, 2c, corresponde ao eixo maior da elipse, ou seja, $2c = 10 \Rightarrow c = 5$. A distância entre seus vértices, eixo real (2a), corresponde à distância focal da elipse, ou seja, $2a = \frac{10\sqrt{5}}{3} \Rightarrow a = \frac{5\sqrt{5}}{3}$. Podemos calcular o eixo imaginário da hipérbole (b), através da relação:

$$b^2 + a^2 = c^2 \Rightarrow b^2 = c^2 - a^2 = 25 - \frac{125}{9} = \frac{100}{9} \Rightarrow b = \frac{10}{3}$$

Portanto, a equação da hipérbole é:

$$\frac{x^2}{\frac{125}{9}} - \frac{y^2}{\frac{100}{9}} = 1$$

Fazendo a intersecção entre a hipérbole e a elipse somando suas equações, temos:

$$\frac{x^2}{5^2} + \frac{y^2}{\left(\frac{10}{3}\right)^2} + \frac{x^2}{\frac{125}{9}} - \frac{y^2}{\frac{100}{9}} = 1 + 1 \Leftrightarrow \frac{x^2}{25} + \frac{x^2}{\frac{125}{9}} = 2 \Leftrightarrow \frac{14x^2}{125} = 2$$

$$\therefore x = \pm \frac{25}{\sqrt{35}}$$

Para encontrar o y correspondente, basta substituir x em uma das equações, da elipse ou da hipérbole. Perceba que, como nas equações x aparece elevado ao quadrado, tanto faz pegar o seu valor positivo ou negativo, pois:

$$\left(-\frac{25}{\sqrt{35}}\right)^2 = \left(+\frac{25}{\sqrt{35}}\right)^2$$

Logo, substituindo $x = \frac{25}{\sqrt{35}}$ na equação da elipse, vem:

$$\frac{\left(\frac{25}{\sqrt{35}}\right)^2}{25} + \frac{y^2}{\frac{100}{9}} = 1 \Rightarrow \frac{9y^2}{100} = 1 - \frac{5}{7} = \frac{2}{7} \Rightarrow y = \pm \frac{10}{3} \sqrt{\frac{2}{7}}$$

Temos, dessa forma, quatro pontos:

$$A = \left(\frac{25}{\sqrt{35}}, \frac{10}{3} \sqrt{\frac{2}{7}}\right) e B = \left(\frac{25}{\sqrt{35}}, -\frac{10}{3} \sqrt{\frac{2}{7}}\right)$$

$$C = \left(-\frac{25}{\sqrt{35}}, \frac{10}{3} \sqrt{\frac{2}{7}}\right) e D = \left(-\frac{25}{\sqrt{35}}, -\frac{10}{3} \sqrt{\frac{2}{7}}\right)$$

A equação da parábola, como foi dada no enunciado, é da forma:

$$p_n: y^2 = 4a_n x$$

 $p_n \colon y^2 = 4a_n x$ Disso, concluímos que os pontos com mesma abscissa pertencem a uma mesma parábola. Logo, vamos encontrar as possíveis parábolas:

Usando o ponto A:

$$\frac{100}{9} \cdot \frac{2}{7} = 4a_1 \cdot \frac{25}{\sqrt{35}} \Rightarrow a_1 = \frac{2\sqrt{35}}{63}$$

Usando o ponto *C*:

$$\frac{100}{9} \cdot \frac{2}{7} = 4a_2 \cdot \left(-\frac{25}{\sqrt{35}} \right) \Rightarrow a_2 = -\frac{2\sqrt{35}}{63}$$

Logo, as parábolas são:

$$p_{1,2} \colon y^2 = \pm \frac{8\sqrt{35}}{63} x$$

Gabarito: "e".

37. (IME/2017)

Um triângulo ABC tem o seu vértice A na origem do sistema cartesiano, seu baricentro é o ponto D(3,2) e seu circuncentro é o ponto E(55/18,5/6). Determine:

- a equação da circunferência circunscrita ao triângulo ABC;
- as coordenadas dos vértices B e C.

Comentários

O vértice A do triângulo é dado por A=(0,0). Da geometria plana, sabemos que o circuncentro é o centro da circunferência circunscrita a um dado triângulo. Logo, para determinar o que é pedido no primeiro item, como já temos o centro da circunferência, temos que determinar o raio.

A distância do circuncentro a qualquer um dos vértices é igual ao raio da circunferência. Vamos então calcular *EA*:

$$EA = \sqrt{\left(0 - \frac{55}{18}\right)^2 + \left(0 - \frac{5}{6}\right)^2} = \frac{5\sqrt{130}}{18}$$

Temos, então, a circunferência pedida:

$$\lambda$$
: $\left(x - \frac{55}{18}\right)^2 + \left(y - \frac{5}{6}\right)^2 = \left(\frac{5\sqrt{130}}{18}\right)^2$

Sejam os vértices $B \ e \ C$ dados por $B = (x_B, y_B) \ e \ C = (x_C, y_C)$. Foi dado o baricentro do triangulo, do que podemos escrever:

$$(3,2) = \left(\frac{0 + x_B + x_C}{3}, \frac{0 + y_B + y_C}{3}\right) \Rightarrow (3,2) = \left(\frac{x_B + x_C}{3}, \frac{y_B + y_C}{3}\right)$$

Disso, temos o sistema:

$$\begin{cases} \frac{x_B + x_C}{3} = 3\\ \frac{y_B + y_C}{3} = 2 \end{cases}$$

Isolando as coordenadas de *B*, vem:

$$x_B = 9 - x_C$$
$$y_B = 6 - y_C$$

Ou seja, $B = (9 - x_C, 6 - y_C)$.

O próximo passo é perceber que $B, C \in \lambda$. Do que temos as duas equações abaixo:

$$\left(x_C - \frac{55}{18}\right)^2 + \left(y_C - \frac{5}{6}\right)^2 = \left(\frac{5\sqrt{130}}{18}\right)^2 eq. 01$$
$$\left(9 - x_C - \frac{55}{18}\right)^2 + \left(6 - y_C - \frac{5}{6}\right)^2 = \left(\frac{5\sqrt{130}}{18}\right)^2 eq. 02$$

Subtraindo as equações:

$$\left(x_{c} - \frac{55}{18}\right)^{2} + \left(y_{c} - \frac{5}{6}\right)^{2} - \left[\left(9 - x_{c} - \frac{55}{18}\right)^{2} + \left(6 - y_{c} - \frac{5}{6}\right)^{2}\right] = \left(\frac{5\sqrt{130}}{18}\right)^{2} - \left(\frac{5\sqrt{130}}{18}\right)^{2}$$
$$\left(x_{c} - \frac{55}{18}\right)^{2} - \left(9 - x_{c} - \frac{55}{18}\right)^{2} + \left(y_{c} - \frac{5}{6}\right)^{2} - \left(6 - y_{c} - \frac{5}{6}\right)^{2} = 0$$

$$\left(x_{C} - \frac{55}{18} + 9 - x_{C} - \frac{55}{18}\right) \left(x_{C} - \frac{55}{18} - 9 + x_{C} + \frac{55}{18}\right) + \left(y_{C} - \frac{5}{6} + 6 - y_{C} - \frac{5}{6}\right) \left(y_{C} - \frac{5}{6} - 6 + y_{C} + \frac{5}{6}\right) = 0$$

$$\frac{26}{9} (2x_{C} - 9) + \frac{26}{6} (2y_{C} - 6) = 0 \Leftrightarrow 3y_{C} + 2x_{C} = 18 \text{ eq. } 03$$

Ou seja: $y_C = 6 - \frac{2x_C}{3}$. Substituindo isso na eq.01, vem:

$$\left(x_C - \frac{55}{18}\right)^2 + \left(6 - \frac{2x_C}{3} - \frac{5}{6}\right)^2 = \left(\frac{5\sqrt{130}}{18}\right)^2$$

Por simplicidade, faremos $x_C = x$.

Desenvolvendo os termos, sempre observando fatores que possam se repetir:

$$x^{2} - \frac{110}{18}x + \frac{55^{2}}{18^{2}} + \frac{4x^{2}}{9} - \frac{124}{18}x + \frac{93^{2}}{18^{2}} = \frac{13 \cdot 250}{18^{2}} \Leftrightarrow \frac{13x^{2}}{9} - \frac{224}{18}x + \frac{55^{2} + 93^{2}}{18^{2}} = 13 \cdot \frac{250}{18^{2}}$$
Note que: 224 = 18 · 13 e que 55² + 93² = 898 · 13. Ou seja:

$$\frac{13x^2}{9} - \frac{18 \cdot 13}{18}x + \frac{898 \cdot 13}{18^2} = 13 \cdot \frac{250}{18^2}$$

Simplificando, temos:

$$x^2 - 9x + 18 = 0$$

Que possui raízes $x_C = 6$ ou $x_C = 3$.

Note que se $x_C = 6$, temos $x_B = 9 - 6 = 3$. Se $x_C = 3$, temos $x_B = 9 - 3 = 6$. Então, sem perda de ge, vamos tomar $x_C = 6$.

Da *eq*. 03, temos:

$$y_C = 6 - \frac{2}{3} \cdot 6 = 2$$

E ainda, $y_B = 6 - 2 = 4$.

Por fim:

$$B = (3,4) e C = (6,2)$$

Gabarito: Item a)
$$\left(x - \frac{55}{18}\right)^2 + \left(y - \frac{5}{6}\right)^2 = \left(\frac{5\sqrt{130}}{18}\right)^2$$
; Item b) $B = (3,4) \ e \ C = (6,2)$.

38. (IME/2016)

A circunferência C tem equação $x^2 + y^2 = 16$. Seja C' uma circunferência de raio 1 que se desloca tangenciando internamente a circunferência \mathcal{C} , sem escorregamento entre os pontos de contato, ou seja, C' rola internamente sobre C.

Define-se o ponto P sobre C' de forma que no início do movimento de C' o ponto P coincide com o ponto de tangência (4,0), conforme figura a. Após certo deslocamento, o ângulo de entre o eixo x e a reta que une o centro das circunferências é α , conforme figura b.

- Determine as coordenadas do ponto P marcado sobre C' em função do ângulo α .

- Determine a equação em coordenadas cartesianas do lugar geométrico do ponto P quando a varia no intervalo $[0,2\pi)$.

Comentários

Observe o diagrama abaixo:

Nele, observe que CC' = 4 - 1 = 3, pois $C \in C'$ são tangentes internamente.

Pelo que foi dado no enunciado, P se desloca sem escorregamento, ou seja, os arcos BA e BP são iguais.

Pela definição de ângulo, temos:

$$\alpha = \frac{BA}{4}$$

Ε

$$\beta = \frac{BP}{1}$$

Mas BA = BP, logo, $\beta = 4\alpha$.

Observe a figura abaixo, com os ângulos marcados:

Da figura, podemos observar que a coordenada x de P, CM, é a soma das projeções de CC' e C'P sobre o eixo x, isto é:

$$x_p = CC'\cos(\alpha) + C'Psen(90 - 3\alpha) = 3\cos(\alpha) + sen(90 - 3\alpha) = 3\cos(\alpha) + \cos(3\alpha)$$

A coordenada y de P, PM, por sua vez, é a projeção de CC' sobre o eixo y subtraída da projeção de C'P sobre o eixo y, isto é:

$$y_P = CC'sen(\alpha) - C'Pcos(90 - 3\alpha) = 3sen(\alpha) - sen(3\alpha)$$

Da trigonometria, temos que:

$$cos(3\alpha) = 4 cos^{3}(\alpha) - 3cos(\alpha)$$

$$sen(3\alpha) = 3sen(\alpha) - 4sen^{3}(\alpha)$$

Ou seja:

$$x_P = 3\cos(\alpha) + 4\cos^3(\alpha) - 3\cos(\alpha) = 4\cos^3(\alpha)$$

$$y_P = 3sen(\alpha) - (3sen(\alpha) - 4sen^3(\alpha)) = 4sen^3(\alpha)$$

Por fim:

$$P = (4\cos^3(\alpha), 4sen^3(\alpha))$$

O ponto P, conforme dado acima, está em sua forma paramétrica, isto é, suas coordenadas estão em função de um parâmetro, no caso α . Para encontrar o lugar geométrico dos pontos P, devemos explicitar uma relação obedecida entre suas coordenadas.

Um fato simples, porém, fundamental, é a equação:

$$sen^2(\alpha) + \cos^2(\alpha) = 1$$

Como podemos usá-la? Veja:

$$x_P = 4\cos^3(\alpha) \Rightarrow \cos(\alpha) = \sqrt[3]{\frac{x_P}{4}}$$

Ε

$$y_P = 4sen^3(\alpha) \Rightarrow sen(\alpha) = \sqrt[3]{\frac{y_p}{4}}$$

Ou seja:

$$sen^{2}(\alpha) + cos^{2}(\alpha) = 1 = \left(\frac{x_{P}}{4}\right)^{\frac{2}{3}} + \left(\frac{y_{P}}{4}\right)^{\frac{2}{3}}$$

$$\therefore \left(\frac{x_P}{4}\right)^{\frac{2}{3}} + \left(\frac{y_P}{4}\right)^{\frac{2}{3}} = 1$$

Logo, a equação acima representa o lugar geométrico dos pontos P que satisfazem o enunciado.

Gabarito:
$$P=(4\cos^3(\alpha),4sen^3(\alpha));\left(\frac{x_p}{4}\right)^{\frac{2}{3}}+\left(\frac{y_p}{4}\right)^{\frac{2}{3}}=1.$$

39. (IME/2015)

Pelo ponto P de coordenadas (-1,0) traçam-se as tangentes t e s à parábola $y^2 = 2x$. A reta t intercepta a parábola em A e a reta s intercepta a parábola em B. Pelos pontos A e B traçam-se paralelas às tangentes encontrando a parábola em outros pontos C e D, respectivamente. Calcule o valor da razão AB/CD.

Comentários

Inicialmente, podemos fazer o seguinte diagrama:

O primeiro passo é descobrir a equação das retas $t \ e \ s$. Seja então a reta:

$$y = mx + b$$

Se ela passa por P = (-1,0), temos:

$$0 = (-1) \cdot m + b \Rightarrow b = m$$

Assim, a reta é da forma:

$$y = m(x + 1)$$

Para que ela seja tangente à parábola, vamos substituir a equação da reta na equação da parábola, ou seja:

$$m^{2}(x+1)^{2} = 2x \Leftrightarrow m^{2}x^{2} + 2(m^{2}-1)x + m^{2} = 0$$
 eq. 01

Seu discriminante é dado por:

$$\Delta = 4(m^2 - 1)^2 - 4m^2 \cdot m^2 = 4[(m^2 - 1)^2 - (m^2)^2] = 4[(m^2 - 1 + m^2)(m^2 - 1 - m^2)]$$

$$\Delta = 4(2m^2 - 1)(-1)$$

Para a condição de tangência, devemos ter:

$$\Delta = 0 \Rightarrow 2m^2 - 1 = 0 \Rightarrow m = \pm \frac{1}{\sqrt{2}}$$

Logo, sem perda de generalidade, seja:

$$t: y = \frac{1}{\sqrt{2}}(x+1)$$
$$s: y = -\frac{1}{\sqrt{2}}(x+1)$$

Observe, na $eq.\,01$, que ela depende de m^2 . Dessa forma, podemos encontrar as coordenadas x de A e B fazendo $m^2=\frac{1}{2}$ na $eq.\,01$, veja:

$$\frac{1}{2}x^{2} + 2\left(\frac{1}{2} - 1\right)x + \frac{1}{2} = 0 \Leftrightarrow x^{2} - 2x + 1 = 0 \Leftrightarrow (x - 1)^{2} = 0$$

$$\therefore x = 1$$

Ou seja, $x_A = x_B = 1$.

Assim, temos:

$$A \in t \Rightarrow y_A = \frac{1}{\sqrt{2}}(1+1) = \sqrt{2}$$

 $B \in s \Rightarrow y_B = -\frac{1}{\sqrt{2}}(1+1) = -\sqrt{2}$

Do que segue: $A = (1, \sqrt{2})$ e $B = (1, -\sqrt{2})$ e $AB = \sqrt{(1-1)^2 + (\sqrt{2} - (-\sqrt{2}))^2} = 2\sqrt{2}$ Sejam u e v, tais que $u \parallel t e v \parallel s$. Temos, então:

$$m_{u} = m_{t} = \frac{1}{\sqrt{2}}$$

$$B \in u \Rightarrow \frac{1}{\sqrt{2}} = \frac{y - (-\sqrt{2})}{x - 1} \Rightarrow u : y = \frac{1}{\sqrt{2}}(x - 3)$$

$$m_{v} = m_{s} = -\frac{1}{\sqrt{2}}$$

$$A \in v \Rightarrow -\frac{1}{\sqrt{2}} = \frac{y - (\sqrt{2})}{x - 1} \Rightarrow v : y = -\frac{1}{\sqrt{2}}(x - 3)$$

Note que, para ambas as retas, temos:

$$y^2 = \frac{1}{2}(x-3)^2$$

Substituindo na equação da parábola, vem:

$$\frac{1}{2}(x-3)^2 = 2x \Leftrightarrow x^2 - 10x + 9 = 0$$

Resolvendo para x, temos x=1 ou x=9. Note que se fizermos x=1 em qualquer uma das retas, vamos obter os pontos A e B. Portanto, somente x=9 convém.

Do enunciado, $C \in v$, do que temos $x_C = 9 e$:

$$y_C = -\frac{1}{\sqrt{2}}(9-3) = -\frac{6}{\sqrt{2}}$$

Ou seja $C = (9, -\frac{6}{\sqrt{2}}).$

Ainda do enunciado, $D \in u$, do que temos x_D e:

$$y_D = \frac{1}{\sqrt{2}}(9-3) = \frac{6}{\sqrt{2}}$$

Ou seja $D = (9, \frac{6}{\sqrt{2}}).$

Cálculo de DC:

$$DC = \sqrt{(9-9)^2 + \left(\frac{6}{\sqrt{2}} - \left(-\frac{6}{\sqrt{2}}\right)\right)^2} = \frac{12}{\sqrt{2}}$$

Por fim:

$$\frac{AB}{CD} = \frac{2\sqrt{2}}{\frac{12}{\sqrt{2}}} = \frac{1}{3}$$

Gabarito: $\frac{AB}{CD} = \frac{1}{3}$.

40. (IME/2015)

Sejam r a circunferência que passa pelos pontos (6,7), (4,1) e (8,5) e t a reta tangente à r, que passa por (0,-1) e o ponto de tangência tem ordenada 5. A menor distância do ponto P(-1,4) à reta t é:

- a) $3\sqrt{2}$
- b) 4
- c) $2\sqrt{3}$
- d) 3
- e) $4\sqrt{10}/5$

Comentários

Vamos nomear os pontos: A = (6,7), B = (4,1) e C = (8,5).

Sendo assim, vamos encontrar as mediatrizes das retas suporte dos lados AB, que vamos chamar de reta AB e do lado BC, analogamente, reta BC.

Para encontrar a mediatriz, seguiremos os seguintes passos:

- 1) Calcular o ponto médio do segmento:
- 1.1) Ponto médio de AB:

$$M_{AB} = \frac{A+B}{2} = (5,4)$$

1.2) Ponto médio de BC:

$$M_{BC} = \frac{B+C}{2} = (6,3)$$

- 2) Calcular o coeficiente angular da reta suporte do segmento.
- 2.1) Coeficiente angular de r_{AB} :

$$m_{AB} = \frac{7-1}{6-4} = 3$$

2.2) Coeficiente angular de r_{BC} :

$$m_{BC} = \frac{5-1}{8-4} = 1$$

Determinar o coeficiente angular da mediatriz (m') e encontrar a reta:

3.1) Mediatriz de AB:

$$m'_{AB}m_{AB} = -1 \Rightarrow m'_{AB} \cdot 3 = -1 \Rightarrow m'_{AB} = -\frac{1}{3}$$

 $-\frac{1}{3} = \frac{y-4}{x-5} \Leftrightarrow y = -\frac{1}{3}x + \frac{17}{3}$

3.2) Mediatriz de BC:

$$m'_{BC}m_{BC} = -1 \Rightarrow m'_{BC} \cdot 1 = -1 \Rightarrow m'_{BC} = -1$$
$$-1 = \frac{y-3}{x-6} \Leftrightarrow y = -x+9$$

O centro da circunferência é a intersecção dessas retas. Seja $C = (x_C, y_C)$ o centro dessa circunferência, devemos ter:

$$-x_C + 9 = -\frac{1}{3}x_C + \frac{17}{3} \Leftrightarrow x_C = 5.$$

$$y_C = -5 + 9 = 4$$

Portanto C = (5,4).

Para descobrir seu raio, basta calcular a distância de C a um dos vértices:

$$R = AC = \sqrt{(5-6)^2 + (4-7)^2} = \sqrt{10}$$

Portanto, a circunferência é:

$$r: (x-5)^2 + (y-4)^2 = 10$$

Seja $T=(x_T,y_T)$ o ponto de tangência. Temos que $y_T=5$. Substituindo na equação da circunferência:

$$(x_T - 5)^2 + (5 - 6)^2 = 10 \Rightarrow x_T = 8 \text{ ou } x_T = 2$$

Temos então dois candidatos a ponto T:

$$T_1 = (2,5) \ e \ T_2 = (8,5)$$

$$T_1 = (2,5) \ e \ T_2 = (8,5)$$
 As retas que passam por $(0,-1)$ e T_1 e $(0,-1)$ e T_2 são, respectivamente:
$$\begin{vmatrix} 0 & -1 & 1 \\ 2 & 5 & 1 \\ x & y & 1 \end{vmatrix} = 0 \Rightarrow y - 3x + 1 = 0$$

$$\begin{vmatrix} 0 & -1 & 1 \\ 8 & 5 & 1 \\ x & y & 1 \end{vmatrix} = 0 \Rightarrow 4y - 3x + 4 = 0$$

Suas respectivas distâncias ao ponto C, centro da circunferência:

$$d_1 = \left| \frac{1 \cdot 4 - 3 \cdot 5 + 1}{\sqrt{1^2 + (-3)^2}} \right| = \sqrt{10}$$
$$d_2 = \left| \frac{4 \cdot 4 - 3 \cdot 5 + 4}{\sqrt{4^2 + (-3)^2}} \right| = 1$$

Para que reta seja tangente a circunferência, sua distância ao centro da mesma deve ser igual ao raio. Isso somente ocorre para a reta que passa por (0,-1) e T_1 . Calculando o que é pedido no enunciado, temos:

$$d = \left| \frac{1 \cdot 4 - 3 \cdot (-1) + 1}{\sqrt{1^2 + (-3)^2}} \right| = \frac{4\sqrt{10}}{5}$$

Gabarito: "e".

41. (IME/2015)

Determine o produto dos valores máximo e mínimo de y que satisfazem às inequações dadas para algum valor de x.

$$2x^2 - 12x + 10 \le 5y \le 10 - 2x$$

- a) -3,2
- b) -1,6
- c) 0
- d) 1.6
- e) 3,2

Comentários

Do enunciado, y satisfaz, simultaneamente, as desigualdades:

$$\frac{2}{5}x^2 - \frac{12}{5}x + 2 \le y \ des. 01$$

Ε

$$y \le 2 - \frac{2}{5}x \quad des. 02$$

Por simplicidade, vamos resolver essa questão graficamente.

Observe que o lado esquerdo da desigualdade 01 corresponde aos pontos acima da parábola p: $y=\frac{2}{5}x^2-\frac{12}{5}x+2\,$ e que o lado direito da desigualdade 02 corresponde aos pontos sob a reta r: $y=2-\frac{2}{5}x$.

Representando essa situação graficamente, temos:

A região hachurada na figura acima representa o conjunto de pontos que obedece, simultaneamente, às duas desigualdades dados no enunciado.

Como ele pede o produto entre o máximo e mínimo valor de y, basta observar no gráfico que $y_{m\acute{a}x}$ ocorre na intersecção das curvas com o eixo y, enquanto $y_{m\acute{n}}$ ocorre no vértice da parábola.

Para encontrar $y_{m\acute{a}x}$, basta fazer x=0 em qualquer uma das curvas. Na reta:

$$y_{m\acute{a}x} = 2 - \frac{2}{5} \cdot 0 = 2$$

Do estudo das funções de segundo grau, sabemos que o y do vértice da parábola é dado por:

$$y_{min} = -\frac{\Delta}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{\left(-\frac{12}{5}\right)^2 - 4 \cdot \frac{2}{5} \cdot 2}{4 \cdot \left(\frac{2}{5}\right)} = -\frac{8}{5}$$

Por fim: $y_{m\acute{a}x} \cdot y_{m\acute{i}n} = 2 \cdot \left(-\frac{8}{5}\right) = -3.2$

Gabarito: "a".

42. (IME/2014)

Uma elipse cujo centro encontra-se na origem e cujos eixos são paralelos ao sistema de eixos cartesianos possui comprimento da semidistância focal igual a $\sqrt{3}$ e excentricidade igual a $\sqrt{3}/2$. Considere que os pontos A, B, C e D representam as interseções da elipse com as retas de equações y = x e y = -x. A área do quadrilátero ABCD é

- a) 8
- b) 16
- c) 16/3
- d) 16/5
- e) 16/7

Comentários

Do enunciado, temos que a semidistância focal, c, é dada por $\sqrt{3}$, isto é, $c=\sqrt{3}$. Por definição, a excentricidade e da elipse é dada por:

$$e = \frac{c}{a}$$

Onde a é o semieixo maior da elipse.

Mas

$$e = \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{a} \Rightarrow a = 2$$

Além disso, sabemos que o semieixo menor, b, obedece a seguinte relação:

$$a^2 = b^2 + c^2 \Rightarrow 2^2 = b^2 + (\sqrt{3})^2 \Rightarrow b = 1$$

A elipse está centrada na origem e seus eixos são paralelos aos eixos coordenados. Disso, podemos concluir que a equação da elipse é:

$$\frac{x^2}{4} + \frac{y^2}{1} = 1$$

Como a equação da elipse apresenta as coordenadas ao quadrado, a intersecção entre as retas e a elipse deve vir da seguinte condição:

$$x^2 = y^2$$

Ou seja:

$$\frac{x^2}{4} + x^2 = 1 \implies x = \pm \frac{2}{\sqrt{5}}$$

Para $x=\frac{2}{\sqrt{5}}$, temos duas possibilidades: $y=\pm\frac{2}{\sqrt{5}}$. Analogamente, para $x=-\frac{2}{\sqrt{5}}$, temos $y=\pm\frac{2}{\sqrt{5}}$. Então, os pontos são:

$$A = \left(\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right), B = \left(\frac{2}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right), C = \left(-\frac{2}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)e \ D = \left(-\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$

Note que

$$AB = \sqrt{\left(\frac{2}{\sqrt{5}} - \frac{2}{\sqrt{5}}\right)^2 + \left(\frac{2}{\sqrt{5}} - \left(-\frac{2}{\sqrt{5}}\right)\right)^2} = \frac{4}{\sqrt{5}} = \sqrt{\left(\frac{2}{\sqrt{5}} - \left(-\frac{2}{\sqrt{5}}\right)\right)^2 + \left(-\frac{2}{\sqrt{5}} - \left(-\frac{2}{\sqrt{5}}\right)\right)^2} = BC$$

Calculando as distâncias, como feito acima, temos:

$$AB = BC = CD = DA$$

Note ainda que $A\ e\ B$ possuem mesma abscissa, logo estão sobre a reta $x=\frac{2}{\sqrt{5}}$, que é paralela ao eixo y. Além disso, $B\ e\ C$ possuem mesma ordenada, logo estão sobre a reta $y=-\frac{2}{\sqrt{5}}$, que é paralela ao eixo x. Ou seja, $AB\ \perp BC$. Repetindo o raciocínio, temos que $CD\ \perp DA$, do que temos que ABCD é um quadrado.

Por fim:

$$\text{Área de ABCD} = \left(\frac{4}{\sqrt{5}}\right)^2 = \frac{16}{5}$$

Gabarito: "d".

43. (IME/2012)

É dada uma parábola de parâmetro p. Traça-se a corda focal MN, que possui uma inclinação de 60° em relação ao eixo de simetria da parábola. A projeção do ponto M sobre a diretriz é o ponto Q, e o prolongamento da corda MN intercepta a diretriz no

ponto R. Determine o perímetro do triângulo MQR em função de p, sabendo que N encontra-se no interior do segmento MR.

Comentários

Inicialmente, vamos representar a situação graficamente:

O parâmetro, p, corresponde à distância do foco F à diretriz. Ou seja: PF = p.

Pela definição de parábola, MQ=MF. Como o ângulo $Q\widehat{M}R=60^\circ$, pois $QM\parallel PF$, temos que $\cos(60^\circ)=\frac{1}{2}=\frac{QM}{RM}\Rightarrow RM=2QM$.

Mas

$$RM = 2QM = RF + MF = RF + QM \Rightarrow RF = QM$$

Olhando para o triângulo ΔPFR , temos

$$\cos(60^\circ) = \frac{1}{2} = \frac{PF}{RF} \Rightarrow RF = 2PF = 2p$$

Ou seja

$$RF = QM \Rightarrow QM = 2p \Rightarrow RM = 4p$$

Além disso

$$tg(60^\circ) = \sqrt{3} = \frac{RQ}{QM} = \frac{RQ}{2p} \Rightarrow RQ = 2\sqrt{3}p$$

Por fim, temos

Perímetro de
$$MQR = MQ + RM + RQ = 2p + 4p + 2\sqrt{3}p = 2p(\sqrt{3} + 3)$$

Gabarito: $2p(\sqrt{3}+3)$.

44. (IME/2012)

Os triângulos ABC e DEF são equiláteros com lados iguais a m. A área da figura FHCG é igual à metade da área da figura ABHFG. Determine a equação da elipse de centro na origem e eixos formados pelos segmentos FC e GH.

a)
$$48x^2 + 36y^2 - \sqrt{2}m^2 = 0$$

b)
$$8x^2 + 16y^2 - \sqrt{3}m^2 = 0$$

c)
$$16x^2 + 48y^2 - 3m^2 = 0$$

d)
$$8x^2 + 24y^2 - m^2 = 0$$

e)
$$16x^2 - 24y^2 - m^2 = 0$$

Comentários

Por simetria, os triângulos ΔGHC e ΔGHF são congruentes. Além disso, perceba que eles também são equiláteros, pois $GH \parallel DE$. Seja α a área de um desses triângulos.

A área do triângulo equilátero ΔABC é dada pela soma das áreas dos triângulos ΔGHC e ΔGHF (figura FHCG) e da figura ABHFG. Além disso, temos:

$$Aréa da figura FHCG = 2a$$

Do enunciado:

Área da figura
$$ABHFG = 2 \cdot (2a) = 4a$$

Ou, seja:

Área do triângulo $\triangle ABC = 2a + 4a = 6a$

Como $\triangle ABC$ e $\triangle GHC$ são semelhantes, podemos escrever:

$$\frac{6a}{a} = \left(\frac{AB}{GH}\right)^2 \Rightarrow GH = \frac{1}{\sqrt{6}}AB = \frac{m}{\sqrt{6}}$$

Pois a razão entre as áreas é o quadrado da razão entre os lados correspondentes.

Pela congruência, FC mede o dobro da altura do triângulo ΔGHC . Mas ele é equilátero, do que temos que sua altura mede:

$$\frac{FC}{2} = \frac{GC\sqrt{3}}{2} = \frac{GH\sqrt{3}}{2} = \frac{m}{\sqrt{6}} \cdot \frac{\sqrt{3}}{2} = \frac{m}{2\sqrt{2}}$$

Seja a elipse:

$$\frac{x^2}{\left(\frac{FC}{2}\right)^2} + \frac{y^2}{\left(\frac{GH}{2}\right)^2} = 1$$

Ou seja:

$$\frac{x^2}{\left(\frac{m}{2\sqrt{2}}\right)^2} + \frac{y^2}{\left(\frac{m}{2\sqrt{6}}\right)^2} = 1 \Leftrightarrow 8x^2 + 24y^2 - m^2 = 0$$

Gabarito: "d".

45. (IME/2011)

Determine o valor da excentricidade da cônica dada pela equação $x^2 - 10\sqrt{3}xy + 11y^2 + 10y^2$ 16 = 0.

Comentários

Observe que a equação dada corresponde a uma cônica, conforme dito no enunciado, mas apresenta um termo estranho: xy.

Para retirá-lo da equação, vamos lançar mão da matriz de rotação, a qual possui como efeito efetuar uma rotação de um ângulo θ nos eixos coordenados. Ela é dada por:

$$M = \begin{pmatrix} \cos{(\theta)} & sen(\theta) \\ -sen(\theta) & \cos{(\theta)} \end{pmatrix}$$

Após aplicá-la às coordenadas (x, y) de um ponto, obtém-se as coordenadas desse mesmo ponto, (x', y'), em um sistema cartesiano rotacionado de θ , no sentido anti-horário, em relação ao sistema original. Matematicamente:

$$\binom{x}{y} = \binom{\cos(\theta) & -sen(\theta)}{sen(\theta)} \binom{x'}{y'}$$
 Multiplicando as matrizes do lado direito da equação matricial acima, temos:

$$\binom{x}{y} = \binom{\cos(\theta) \, x' - sen(\theta) y'}{sen(\theta) x' + \cos(\theta) \, y'}$$
 Fazendo a substituição na equação da cônica, temos:

$$(\cos(\theta) x' - sen(\theta) y')^2 - 10\sqrt{3}(\cos(\theta) x' - sen(\theta) y')(sen(\theta) x' + \cos(\theta) y') + 11(sen(\theta) x' + \cos(\theta) y')^2 + 16 = 0$$

Desenvolvendo e agrupando os termos semelhantes, temos:

$$x^{2} = \cos^{2}\theta x'^{2} - 2sen\theta\cos\theta x'y' + sen^{2}\theta y'^{2}$$

$$11y^{2} = 11(sen^{2}\theta x'^{2} + 2sen\theta\cos\theta x'y' + \cos^{2}\theta y'^{2})$$

$$-10\sqrt{3}xy = -10\sqrt{3}(cos\theta sen\theta x'^{2} + (cos^{2}\theta - sen^{2}\theta)x'y' - sen\theta\cos\theta y'^{2})$$

Estamos interessados em zerar o coeficiente do termo x'y'. Olhando para as expressões acima, seu coeficiente é:

$$-2sen\theta cos\theta + 22sen\theta cos\theta - 10\sqrt{3}(cos^2\theta - sen^2\theta)$$

Ou ainda

$$20sen\theta cos\theta - 10\sqrt{3}(cos^2\theta - sen^2\theta)$$

Da trigonometria, temos:

$$2sen\theta cos\theta = sen(2\theta)$$
$$cos^{2}\theta - sen^{2}\theta = cos(2\theta)$$

Assim, o coeficiente de x'y' fica:

$$10sen(2\theta) - 10\sqrt{3}\cos(2\theta) = 0 \Rightarrow tg(2\theta) = \sqrt{3}$$

Por conveniência, vamos escolher $\theta = \frac{\pi}{6}$. Assim: $sen(\theta) = \frac{1}{2}e \cos(\theta) = \frac{\sqrt{3}}{2}$.

O coeficiente de x'^2 , por sua vez, será:

$$\cos^{2}\theta + 11sen^{2}\theta - 10\sqrt{3}sen\theta\cos\theta = \frac{3}{4} + 11\cdot\frac{1}{4} - 10\sqrt{3}\cdot\left(\frac{1}{2}\right)\cdot\frac{\sqrt{3}}{2} = -4$$

O coeficiente de y'^2 , por sua vez, será:

$$sen^{2}\theta + 11\cos^{2}\theta + 10\sqrt{3}sen\theta\cos\theta = \frac{1}{4} + 11\cdot\frac{3}{4} + 10\sqrt{3}\cdot\left(\frac{1}{2}\right)\cdot\frac{\sqrt{3}}{2} = 16$$

Logo, a cônica, no novo referencial, será:

$$-4x'^{2} + 16y'^{2} + 16 = 0 \Leftrightarrow \frac{x'^{2}}{4} - \frac{y'^{2}}{1} = 1$$

Ou seja, uma hipérbole de semieixo real $a=2\,$ e semieixo imaginário b=1. Sua semi-distância focal é dada por:

$$c^2 = 2^2 + 1^2 = 5 \Rightarrow c = \sqrt{5}$$

Por fim, sua excentricidade:

$$e = \frac{c}{a} = \frac{\sqrt{5}}{2}$$

Gabarito:
$$e = \frac{\sqrt{5}}{2}$$
.

46. (IME/2010)

Uma hipérbole de excentricidade $\sqrt{2}$ tem centro na origem e passa pelo ponto $(\sqrt{5},1)$.

A equação de uma reta tangente a esta hipérbole e paralela a y=2x é:

a)
$$\sqrt{3}y = 2\sqrt{3}x + 6$$

b)
$$y = -2x + 3\sqrt{3}$$

c)
$$3y = 6x + 2\sqrt{3}$$

d)
$$\sqrt{3}y = 2\sqrt{3}x + 4$$

e)
$$y = 2x + \sqrt{3}$$

Comentários

Vamos utilizar a seguinte equação da hipérbole, conforme descrita no enunciado:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Temos que $\frac{c}{a} = \sqrt{2}$, ou seja, $c = a\sqrt{2}$.

Além disso, temos também:

$$c^2 = a^2 + b^2 = 2a^2 \Rightarrow b^2 = a^2 \Rightarrow b = a$$

Ou seja, nossa hipérbole tem a forma:

$$\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$$

Sabemos que ela passa por $(\sqrt{5}, 1)$, então:

$$\frac{5}{a^2} - \frac{1}{a^2} = 1 \Rightarrow a = 2$$

Assim, a hipérbole está determinada:

$$x^2 - y^2 = 4$$

A reta que buscamos é paralela à reta y=2x. Então, ela deve ser da forma:

$$r: y = 2x + b$$

Substituindo na equação da hipérbole, temos:

$$x^{2} - (2x + b)^{2} = 4 \Leftrightarrow -3x^{2} - 4bx - b^{2} - 4 = 0$$

Seu discriminante deve ser nulo, da condição de tangência, ou seja:

$$\Delta = 16b^2 - 4 \cdot (-3)(-b^2 - 4) = 0 \Rightarrow b^2 = 12 \Rightarrow b = \pm 2\sqrt{3}$$

Logo, as possíveis retas são:

$$r_{1,2}$$
: $y = 2x \pm 2\sqrt{3} \Leftrightarrow r_{1,2}$: $\sqrt{3}y = 2\sqrt{3}x \pm 6$

Gabarito: "a".

47. (IME/2010)

Seja M um ponto de uma elipse com centro O e focos F e F'. A reta r é tangente à elipse no ponto M e s é uma reta, que passa por O, paralela a r. As retas suportes dos raios vetores MF e MF' interceptam a reta s em H e H', respectivamente. Sabendo que o segmento FH mede 2 cm, o comprimento F'H' é:

- a) 0,5 cm
- b) 1,0 cm
- c) 1,5 cm
- d) 2,0 cm
- e) 3,0 cm

Comentários

Observe o diagrama:

Como r é tangente à elipse, temos que os ângulos que FM e F'M fazem com ela são iguais. Além disso, como $r \parallel s$, temos que:

$$O\widehat{H}M=O\widehat{H'}M=\beta$$

E como O é o centro da elipse: FO = OF'.

Disso, temos a seguinte figura:

Agora, trace por F' uma reta paralela ao seguimento FM:

Como a reta base de FH é paralela à reta base de O'F', os ângulos $H\widehat{F}O$ e $O\widehat{F}'O'$ são iguais. Os ângulos $H\widehat{O}F$ e $F'\widehat{O}O'$ são opostos pelo vértice, logo, são iguais. Além disso, FO=OF'. Portanto, concluímos que os triângulos $\Delta OO'F'$ e ΔOFH são congruentes pelo caso ALA. Disso, temos que:

$$FH=O'F'$$

Pelo mesmo motivo da igualdade dos ângulos $H\widehat{F}O$ e $O\widehat{F}'O'$, temos $F'\widehat{O'}H'=\beta$, ou seja, o triângulo $\Delta O'F'H'$ é isósceles e

$$O'F' = F'H' \Rightarrow FH = 2 = F'H'$$

Gabarito: "d".

48. (IME/2004)

Considere a parábola P de equação $y=ax^2$, com a>0 e um ponto A de coordenadas (x_0,y_0)

satisfazendo a $y_0 < ax_0^2$. Seja S a área do triângulo ATT, onde T e T são os pontos de contato

das tangentes a P passando por A.

- a) Calcule o valor da área S em função de a, x_0 e y_0 .
- b) Calcule a equação do lugar geométrico do ponto A, admitindo que a área S seja constante.
- c) Identifique a cônica representada pela equação obtida no item anterior.

Comentários

a) Conhecendo a equação da parábola e sabendo que o ponto A é tal que $y_0 < ax_0^2$, então podemos fazer o esboço da situação. Sem perda de generalidade:

Como T e T' são pontos de tangência da parábola, temos que $y_1 = ax_1^2$ e $y_2 = ax_2^2$. Além disso, podemos derivar a parábola para encontrar o coeficiente angular das retas tangentes que passam por T e T':

$$y = ax^2 \Rightarrow y' = 2ax$$

Para calcular a área do $\Delta ATT'$, devemos escrever x_1 e x_2 em função de a, x_0 e y_0 . Vamos encontrar a equação das retas tangentes que passam pelo ponto A. Perceba que escolhendo-se qualquer um dos pontos $(T\ ou\ T')$ para obter a reta tangente, encontraremos uma situação análoga em

ambos os casos. Então, vamos chamar (x_t, y_t) como o ponto que é tangente à parábola e que passa por A (encontraremos uma equação do segundo grau na variável x_t e suas raízes serão x_1 e x_2).

$$y' = 2ax_t$$
 (coeficiente angular da reta)
 $y - y_t = 2ax_t(x - x_t)$ (equação da reta)

A reta passa pelo ponto A, desse modo:

$$y_0 - y_t = 2ax_t(x_0 - x_t)$$

$$y_0 = 2ax_0x_t - 2ax_t^2 + \underbrace{y_t}_{ax_t^2} \Rightarrow y_0 = 2ax_0x_t - ax_t^2$$

Assim, obtemos uma equação do segundo grau na variável \boldsymbol{x}_t :

$$ax_t^2 - 2ax_0x_t + y_0 = 0$$

Resolvendo a equação, obtemos:

$$x_t = \frac{ax_0 \pm \sqrt{a^2 x_0^2 - ay_0}}{a}$$

Como definimos anteriormente que (x_t, y_t) é o ponto de tangência à cônica e que passa por A, temos que essas raízes são x_1 e x_2 . Dessa forma:

$$x_1 = \frac{ax_0 + \sqrt{a^2x_0^2 - ay_0}}{a} e x_2 = \frac{ax_0 - \sqrt{a^2x_0^2 - ay_0}}{a}$$

Agora, podemos proceder ao cálculo da área do $\Delta ATT'$. Usaremos o método do determinante:

$$S = \frac{1}{2} \begin{vmatrix} x_0 & y_0 & 1 \\ x_1 & ax_1^2 & 1 \\ x_2 & ax_2^2 & 1 \end{vmatrix}$$

$$S = \frac{1}{2} |ax_0x_1^2 + y_0x_2 + ax_1x_2^2 - ax_1^2x_2 - ax_0x_2^2 - y_0x_1|$$

O bizu começa aqui, antes de substituirmos as variáveis x_1 e x_2 , iremos fatorar a expressão.

$$S = \frac{1}{2} |ax_0(x_1 - x_2)(x_1 + x_2) - y_0(x_1 - x_2) - ax_1x_2(x_1 - x_2)|$$

$$S = \frac{1}{2} |(x_1 - x_2)[ax_0(x_1 + x_2) - y_0 - ax_1x_2]| (I)$$

Lembra da equação do segundo grau que encontramos? Podemos aplicar as relações de Girard nela para encontrar as variáveis da equação (I). Veja:

$$ax_t^2 - 2ax_0x_t + y_0 = 0$$

Como x_1 e x_2 são as raízes dessa equação, temos:

$$x_1 + x_2 = 2x_0 \\ x_1 x_2 = \frac{y_0}{a}$$

Também podemos escrever
$$x_1 - x_2$$
:
$$x_1 - x_2 = \frac{ax_0 + \sqrt{a^2x_0^2 - ay_0}}{a} - \left(\frac{ax_0 - \sqrt{a^2x_0^2 - ay_0}}{a}\right) = \frac{2\sqrt{a^2x_0^2 - ay_0}}{a}$$

Substituindo os valores em (I):

$$S = \frac{1}{2} \left| \left(\frac{2\sqrt{a^2 x_0^2 - ay_0}}{a} \right) \left(ax_0(2x_0) - y_0 - a\left(\frac{y_0}{a}\right) \right) \right|$$

$$\therefore \left| S = \frac{2(ax_0^2 - y_0)\sqrt{a^2 x_0^2 - ay_0}}{a} \right|$$

b) Para encontrar o lugar geométrico de A, vamos usar o resultado encontrado no item a e manipular a equação.

$$S = \frac{2(ax_0^2 - y_0)\sqrt{a^2x_0^2 - ay_0}}{a} = \frac{2\sqrt{(ax_0^2 - y_0)^2}\sqrt{a}\sqrt{ax_0^2 - y_0}}{a}$$

$$\Rightarrow S = \frac{2}{\sqrt{a}} \sqrt{(ax_0^2 - y_0)^3} \Rightarrow \frac{S\sqrt{a}}{2} = \sqrt{(ax_0^2 - y_0)^3} \Rightarrow \frac{aS^2}{4} = (ax_0^2 - y_0)^3$$

$$\Rightarrow \frac{\sqrt[3]{2aS^2}}{2} = ax_0^2 - y_0$$

$$\therefore y_0 = ax_0^2 - \frac{\sqrt[3]{2aS^2}}{2}$$

c) A cônica resultante é a parábola P transladada de $-\frac{\sqrt[3]{2aS^2}}{2}$.

Gabarito: a)
$$S = \frac{2(ax_0^2 - y_0)\sqrt{a^2x_0^2 - ay_0}}{a}$$
 b) $y_0 = ax_0^2 - \frac{\sqrt[3]{2aS^2}}{2}$ c) Parábola P transladada de $-\frac{\sqrt[3]{2aS^2}}{2}$.