E

Sistemas Inteligentes

Tema 4.1: Sistemas Expertos Difusos

Lógica Difusa

Curso 2024-25

Precision and Significance in the Real World A 1500 kg mass LOOK OUT!! is approaching your head at 45.3 m/s Precision Significance

Lógica Difusa Introducción

LPO

- Especifiquemos qué es "Ser humano"
- Con lógica de primer orden

- Es monotónica
- Dificultad de representar el conocimiento real

Universitat d'Alacant Universidad de Alicante

Lógica Difusa Introducción

LPO

- Especifiquemos qué es "Ser humano"
- Con lógica multivaluada

- · Es monotónica
- Dificultad de representar el conocimiento real

Lógica Difusa Introducción

- Especifiquemos con LPO "Ser humano"
- Lógica difusa

Fuzzy Logic

 Representación del conocimiento de forma más natural

Lógica Difusa **Conjuntos difusos (I)**

B = $\{(x, \mu_B(x)) / x \in X\}$ $\mu_B: X \rightarrow [0,1]$

La función de pertenencia se establece de una manera arbitraria (triangular, gaussiana...)

Universitat d'Alacant Universidad de Alicante

Lógica Difusa Conjuntos difusos (II)

¿Cómo es la temperatura del Aula?

- Fría, Templada, Cálida.
- Definir los conjuntos difusos gráficamente y la función de pertenencia.
- ¿23 grados es cálida o templada?

Templada: 0.7

0.4

0

Cálida:

Fría:

Lógica Difusa **Conjuntos difusos (III)**

¿23 grados es una temperatura cálida o templada?

Lógica Difusa **Operaciones entre conjuntos (I)**

$$\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$$

$$\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

$$\mu_{\neg A}(x) = 1 - \mu_A(x)$$

$$\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

$$\mu_{\neg A}(x) = 1 - \mu_A(x)$$

Lógica Difusa Variables lingüísticas

- Una Variable Lingüística: palabras o sentencias que van a enmarcarse en un lenguaje predeterminado.
- Ejemplo:
 - Variable Edad:
 - Valores lingüísticos: Niño, Joven, Adulto, Viejo.
 - Universo del discurso de 0 a 100 años.
 - ¿Que valor lingüístico tiene una persona de 25 años?

Universitat d'Alacant Universidad de Alicante

Lógica Difusa Modificadores Lingüísticos

- Modificadores lingüísticos:
 - Operador que modifica el significado de un conjunto difuso:
 - Muy, Más o menos.
 - ¿Cómo lo podríamos describir Muy?
 - ¿Y más o menos?

Sistemas expertos Difusos Partes

Sistemas expertos Difusos Ejemplo Propinas

Dinner for Two a 2 input, 1 output, 3 rule system

All rules are evaluated in parallel using fuzzy reasoning. The results of the rules are combined and distilled (defuzzified).

The result is a crisp (non-fuzzy) number.

Sistemas expertos Difusos Ejemplo (I) Paso 1,2

Sistemas expertos Difusos Ejemplo (II) Paso 3

Sistemas expertos Difusos.

4.Combinación de las reglas

Sistemas expertos Difusos. Ejemplo (IV) Paso 5

Defuzzify the aggregate output (centroid).

Result of defuzzification

Sistemas expertos Difusos

Parámetros a establecer en el SE

Fuzzyficación

- Singleton
- Adaptativa
- Histogramas

Singleton:

And/Or a utilizar:

Operador OR		Operador AND	
Alternativas	Algoritmo	Alternativas	Algoritmo
MAX	$Max(\mu_1(x), \mu_2(x))$	MIN	$Min(\mu_1(x), \mu_2(x))$
ASUM	$\mu_1(x) + \mu_2(x) - \mu_1(x) \mu_2(x)$	PROD	$\mu_1(\mathbf{x}) \; \mu_2(\mathbf{x})$
BSUM	$Min(1, \mu_1(x) + \mu_2(x))$	BDIF	$Max(0, \mu_1(x) + \mu_2(x))$
			- 1)

Sistemas expertos Difusos

Parámetros a establecer en el SE

Implicadores:

Mamdani	$min\left(f_a(x),f_b(x)\right)$
Larsen	$f_a(x) imes f_b(x)$

 Método de agregación para los conjuntos de variables a defuzzyficar

Name	Keyword	Formula
Maximum	MAX	Max(μ ₁ (x), μ ₂ (x))
Bounded Sum	BSUM	Min(1, $\mu_1(x) + \mu_2(x)$)
Normalised Sum	NSUM	$\frac{\mu_{1}(x) + \mu_{2}(x)}{\text{Max}(1, \text{MAX} (\mu_{1}(x') + \mu_{2}(x')))}$

Sistemas expertos Difusos

Parámetros a establecer en el SE

- Método de defuzzyficación
 - COG (Center of Gravity) (contínuo)
 - COGS (Center of Gravity for Singletons) (discreto)

Metodo	Fórmula
COG	$U = rac{\int_{Min}^{Max} u \mu(u) du}{\int_{Min}^{Max} \mu(u) du}$
COGS	$U = rac{\sum_{i=1}^{n} [u_i \mu_i]}{\sum_{i=1}^{n} [\mu_i]}$

FCL (I)

- Fuzzy Control Language (FCL)
 - Lenguaje estandarizado (IEC 61131-7) para implementar sistemas de control difuso
 - Facilita la programación y el intercambio de sistemas difusos entre diferentes plataformas
- Estructura Básica

FUNCTION_BLOCK nombre_del_bloque

// Declaraciones y definiciones

END_FUNCTION_BLOCK

- Componentes Principales
 - VAR INPUT: Variables de entrada
 - VAR_OUTPUT: Variables de salida
 - FUZZIFY: Define conjuntos difusos para entradas
 - DEFUZZIFY: Define conjuntos difusos para salidas y método de defuzzificación
 - RULEBLOCK: Contiene las reglas difusas

FCL (II)

```
/ Block definition (there may be more than one block per file,
FUNCTION BLOCK tipper
// Define input variables
VAR INPUT
    service : REAL;
    food : REAL;
END VAR
// Define output variable
VAR OUTPUT
   tip : REAL;
END VAR
// Fuzzify input variable 'service'
FUZZIFY service
    TERM poor := (0, 1) (4, 0);
    TERM good := (1, 0) (4,1) (6,1) (9,0);
    TERM excellent := (6, 0) (9, 1);
'ND FUZZIFY
ND FUZZIFY
    TERM excellent := (6, 0) (9, 1);
    TERM good := (1, 0) (4,1) (6,1) (9,0);
    TERM poor := (0, 1) (4, 0);
```

FCL (II)

FCL (III)

```
JEFUZZIFY tip
   TERM cheap := (0,0) (5,1) (10,0);
   TERM average := (10,0) (15,1) (20,0);
   TERM generous := (20,0) (25,1) (30,0);
```


Univ Univ

FCL (IV)

```
Defzzzify output variable 'tip'
DEFUZZIFY tip
    TERM cheap := (0,0) (5,1) (10,0);
    TERM average := (10,0) (15,1) (20,0);
    TERM generous := (20,0) (25,1) (30,0);
    // Use 'Center Of Gravity' defuzzification method
   METHOD : COG;
    // Default value is 0 (if no rule activates defuzzifier)
    DEFAULT := 0;
END DEFUZZIFY
RULEBLOCK No1
    // Use 'min' for 'and' (also implicit use 'max'
    // for 'or' to fulfill DeMorgan's Law)
    AND : MIN;
    // Use 'min' activation method
    ACT : MIN;
    // Use 'max' accumulation method
    ACCU : MAX;
    RULE 1 : IF service IS poor OR food IS rancid
                THEN tip IS cheap;
    RULE 2 : IF service IS good
                THEN tip IS average;
    RULE 3 : IF service IS excellent AND food IS delicious
                THEN tip is generous;
 ND RULEBLOCK
```

Bibliografía

- Al Game Engine Programming (Game Development Series) Briam Schwab
- Sobre FCL: http://jfuzzylogic.sourceforge.net/doc/iec_1131_7_cd1. pdf