NUM9

Problem polega na numerycznym wyznaczeniu miejsca zerowego funkcji $f(x)=\sin(x)-0.4$ oraz $g(x)=f^2(x)$. Do rozwiązania tego problemu można zastosować kilka metod:

- Metodę bisekcji* (tylko do funkcji f)
- Metodę falsi* (tylko do funkcji f)
- Metodę siecznych**
- Metodę Newtona
- ullet "Polepszoną" metodę Newtona używając funkcji $u(x)=rac{g(x)}{g'(x)}$ (tylko dla funkcji g)
- * Jako zbliżona wartość miejsca zerowego x^* w danej iteracji jest brany środek przedziału.
- ** Jako zbliżona wartość miejsca zerowego x^* w danej iteracji jest brane miejsce zerowe siecznej.

Funkcja f

Widać, że dla funkcji $f(x)=\sin(x)-0.4$ metoda Newtona zbiega najszybciej, potrzebując tylko czterech iteracji do osiągnięcia błędu mniejszego niż 10^{-15} . Metoda siecznych jest trochę wolniejsza - potrzebuje siedem iteracji. Metoda falsi przez kilkanaście pierwszych iteracji wydaje się zbliżać do nieprawidłowej wartości miejsca zerowego. Ten efekt jest spowodowany przez powyższą definicję miejsca zerowego dla tej metody (*). Dla funkcji f metoda zmniejsza przedział początkowo tylko z jednej strony, zbliżając koniec przedziału do x^* ale pozostawiając początek przedziału w 0 (aż do ostatniej iteracji). Metoda bisekcji dość powoli zbliża się do dokładnej wartości; potrzebuje około 50 iteracji do otrzymania błędu mniejszego niż 10^{-15} .

Funkcja g

Dla funkcji $g(x)=(sin(x)-0.4)^2$ już nie odpowiadają metody bisekcji i falsi, ponieważ nie są osiągnięte wartości ujemne. Widać również efekty różnicy pomiędzy warunkiem zaprzestania iteracji $(g(x_i^*)<10^{-15})$ a wykreślonym błędem $(\epsilon_i=|\arcsin 0.4-x_i^*|,$ gdzie $\arcsin 0.4\approx 0.4115$ jest dokładnym miejscem zerowym). Metoda Newtona i polepszona Newtona osiągają wartość błędu mniejsze niż tylko $10^{-7}\approx \sqrt{10^{-15}}$. Metoda siecznych zbliża się do miejsca zerowego w $\pi-\arcsin 0.4$, co powoduje wysoki błąd w porównaniu do miejsca zerowego w $\arcsin 0.4$. Błąd między miejscem zerowym otrzymanym przez metodę siecznych po 36 iteracjach a $\pi-\arcsin 0.4$ wynosi około $2.2*10^{-8}$. Dla funkcji g, metoda "polepszona" Newtona jest najszybsza, zbiegając po trzech iteracjach. Metoda Newtona nieużywająca funkcji g zbiega po 24 iteracjach, a metoda siecznych po 36. Przy wyborze metody należy jednak uwzględnić, że "polepszona" metoda Newtona wymaga wyliczenia pierwszej i drugiej pochodnej funkcji g, a także więcej innych operacji matematycznych.