逻辑航线信息学奥赛系列教程

深度优先搜索

基本模型:给定起点和终点,寻找可通行路线,如下图所示@代表起点,*代表终点,求一 共需要多少步才能从起点走到终点。

数据准备:

- 1、建立Node类型结构体,用来存储每一个节点的信息,用于解答题目2、建立char类型地图数据表map[行][列],记录整个地图信息3、建立bool类型访问记录表vis[行][列],记录某个节点是否已经走过

遍历逻辑:

1、将起点记录已访问,并按上左下右的方向搜寻其他的邻格。

地图表							
1	2	3	4	5	6		
#				#	#		
#		@			#		
	#						
	#			#			
		#		*	#		
		1 2 # . # .	1 2 3 # # . @ . # .	1 2 3 4 # # . @ . . #	1 2 3 4 5 # # # . @ . #		

2、首先是起点上方的格子(1,3)点,它可以通行,且不是终点,我们需要将其标记为已访 问。

	地图表								
	1	2	3	4	5	6			
1	#				#	#			
2	#		@			#			
2 3		#							
4		#			#				
4 5			#		*	#			

3、接下来, 我们以(1,3)点作为出发点,继续搜索它上方的(1,3)点,很明显,这个点超 出范围了。

	地图表							
	1	2	3	4	5	6		
1	#		•		#	#		
2	#		@			#		
3	•	#						
1 2 3 4 5		#			#			
5			#		*	#		

		访	问讠	己录	表	
	1	2	3	4	5	6
1						
2						
3						
2 3 4 5						
5						

4、现在, 我们搜索(1,3)点左侧的点, 它可以通行! 同样的, 将其加入访问记录表。

	地图表							
_	1	2	3	4	5	6		
1	#				#	#		
2	#		@			#		
1 2 3		#						
	•	#			#			
4 5			#		*	#		

	访问记录表							
	1	2	3	4	5	6		
1								
2								
1 2 3								
4 5								
5								

5、继续向下搜索,以(1,2)点作为起始,可以发现它的上左都没有办法通行,唯一可走的就是下边(2,2)点。

	地图表							
	1	2	3	4	5	6		
1	#				#	#		
2	#	•	@			#		
3		#						
1 2 3 4 5		#			#			
5			#		*	#		

6、以(2,2)点为起始时,我们已经无路可走了。

	地图表							
	1	2	3	4	5	6		
1	#				#	#		
2 3	#		@			#		
3		#						
4		#			#			
4 5			#		*	#		

7、此时, 我们只能退回到(1,2)点。

8、很明显(1,2)点也不存在可行走路径,我们只能继续向后退至(1,3)点。此时,以(1,3)点作为起点时,右侧的(1,4)点可以通行!我们将其加入访问列表中。

9、现在,我们以(1,4)点作为起点,很明显它的上左邻格都无法通行,唯一可以通行的就是下方的(2,4)点。

地图表 1 2 3 4 5 6 访问记录表 1 2 3 4 5 6

1	#			#	#
2	#	•	@		#
2 3		#			
		#		#	
4 5			#	*	#

1			
2			
2 3			
4 5			

10、按照这样的方法,我们不断的遍历每一个节点的上左下右,并将已经走过的进行标记,直到最后走到终点。

	地图表							
	1	2	3	4	5	6		
1	#	•	•		#	#		
2	#		@			#		
3		#						
1 2 3 4 5		#			#			
5			#		*	#		

	地图表							
_	1	2	3	4	5	6		
1	#				#	#		
2	#		@			#		
1 2 3	•	#						
4 5		#			#			
5			#		*	#		

使用深度优先搜索的关键词一般包含:"求总方案数"、"列出所有方案"等,这种就要求我们穷尽所有情况。

逻辑航线培优教育, 信息学奥赛培训专家。

扫码添加作者获取更多内容。

