Şiruri de numere reale

October 10, 2024

1 Noțiuni teoretice

Definiție 1 Se numește șir de numere reale o funcție $f: \mathbb{N}^* \to \mathbb{R}$. Punând $a_n := f(n), n \in \mathbb{N}^*, \text{ sirul se notează prin } (a_n)_{n \ge 1} \text{ sau } (a_n).$

Un şir de numere reale $(a_n)_{n\geq 1}$, se numeşte :

- mărginit dacă există $M \ge 0$ astfel încât $|a_n| \le M$ pentru orice $n \in \mathbb{N}^*$;
- crescător (descrescător) dacă $a_n \leq a_{n+1}$ ($a_n \geq a_{n+1}$) pentru orice $n \in \mathbb{N}^*$;
- monoton dacă este crescător sau descrescător.

Reamintim aici câteva criterii importante în calculul limitelor de şiruri.

Teoremă 1 (Criteriul cleștelui) Fie $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ șiruri de numere reale cu proprietatea că

$$a_n \le b_n \le c_n, n \ge n_0.$$

 $Dac\check{a}\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=l,\ l\in\overline{\mathbb{R}},\ atunci\lim_{n\to\infty}b_n=l.$

Teoremă 2 (Stolz-Cesaro I) Fie $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ şiruri de numere reale cu proprietățile:

- 1) $(b_n)_{n\geq 1}$ este strict monoton și nemărginit;
- 2) există limita $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = l, l \in \overline{\mathbb{R}};$ $Atunci \lim_{n\to\infty} \frac{a_n}{b_n} = l.$

Teoremă 3 (Stolz-Cesaro II) Fie $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ şiruri de numere reale cu proprietățile:

- 1) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0;$ 2) $(b_n)_{n\geq 1}$ este strict monoton; 3) există limita $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = l, l \in \overline{\mathbb{R}};$ Atunci $\lim_{n\to\infty} \frac{a_n}{b_n} = l.$

Teoremă 4 (Consecința Teoremei lui Stolz-Cesaro) $Fie~(a_n)_{n\geq 1},~un$ *şir de numere strict pozitive cu proprietatea că există* $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l,\ l\in\overline{\mathbb{R}}.$ $Atunci \lim_{n \to \infty} \sqrt[n]{a_n} = l.$

Teoremă 5 (Criteriul raportului) Fie $(a_n)_{n\geq 1}$ un şir de numere strict pozitive cu proprietatea că există $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l, \ l \in \overline{\mathbb{R}}$. Atunci:

- 1) $dac \check{a} \ l < 1 \Rightarrow \lim_{n \to \infty} a_n = 0;$ 2) $dac \check{a} \ l > 1 \Rightarrow \lim_{n \to \infty} a_n = +\infty;$ 3) $dac \check{a} \ l = 1$, criteriul nu este eficient.

Şiruri remarcabile

1) Sirul $(e_n)_{n>1}$,

$$e_n = \left(1 + \frac{1}{n}\right)^n$$

este strict crescător și are limita e ($e \simeq 2,71828...$).

2) Şirul $(E_n)_{n>1}$,

$$E_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

este strict crescător și are limita e.

3) Şirul $(\gamma_n)_{n>1}$,

$$\gamma_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$

este strict descrescător și mărginit inferior. Limita sa notată cu γ se numește constanta lui Euler ($\gamma \simeq 0,577...$).

Observație 1

$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}, \ \forall n \in \mathbb{N}^*.$$

2 Exerciții și probleme

Ex. 1 Să se calculeze $\lim_{n\to\infty} x_n$ dacă, pentru fiecare $n\in\mathbb{N}^*$:

a)
$$x_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \ldots + \frac{1}{\sqrt{n^2+n}};$$

b)
$$x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2} + \ldots + \frac{n}{n^2+n};$$

c)
$$x_n = \frac{[x] + [2x] + \dots + [nx]}{n^2} \text{ unde } x \in \mathbb{R};$$

d)
$$x_n = \sum_{k=2}^n \frac{1}{\sqrt[k]{n^k + n + 1} + 1};$$

e)
$$x_n = \sum_{k=1}^n \frac{1}{\sqrt{(n+k-1)(n+k)}};$$

$$f) x_n = \sum_{k=1}^n \sqrt{1 + \frac{k}{n^2}} - n.$$

Ex. 2 Să se calculeze $\lim_{n\to\infty} x_n$ dacă, pentru fiecare $n\in\mathbb{N}^*$:

a)
$$x_n = \frac{1^p + 2^p + \dots n^p}{n^{p+1}}$$
, unde $p \in \mathbb{N}^*$;

b)
$$x_n = \frac{1}{\ln n} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n} \right), n \ge 2;$$

c)
$$x_n = \frac{a + \sqrt{a} + \dots + \sqrt[n]{a} - n}{\ln n}$$
, unde $a > 0$.

Ex. 3 Să se calculeze $\lim_{n\to\infty} x_n$ dacă, pentru fiecare $n\in\mathbb{N}^*$:

a)
$$x_n = \sqrt[n]{\frac{(n!)^2}{(2n)!8^n}}, n \ge 2;$$

b)
$$x_n = \frac{n}{\sqrt[n]{n!}}, n \ge 2;$$

$$c) x_n = \frac{2^n n!}{n^n};$$

d)
$$x_n = \sqrt[n^2]{(pn)!}, p \in \mathbb{N}^*;$$

$$e) x_n = \left(\frac{(n!)^3}{n^{3n}e^{-n}}\right)^{\frac{1}{n}}.$$

Ex. 4 Se consideră șirul $(a_n)_{n\geq 1}$ definit prin relația de recurență

$$a_{n+1} = a_n + \frac{1}{a_n}, \quad n \ge 1, a_1 > 0.$$

 $S\check{a}$ se calculeze $\lim_{n\to\infty}\frac{a_n}{\sqrt{n}}$.

Ex. 5 Fie şirul $(a_n)_{n\geq 1}$ dat prin relația de recurență $a_{n+1}=\sin a_n$, cu $a_1\in (0,\frac{\pi}{2})$. Arătați că

$$\lim_{n \to \infty} \sqrt{n} \cdot a_n = \sqrt{3}.$$

Ex. 6 Fie şirul $(a_n)_{n\geq 1}$ dat prin relația de recurență $a_{n+1} = \arctan a_n$, cu $a_1 > 0$. Arătați că

$$\lim_{n \to \infty} \sqrt{n} \cdot a_n = \sqrt{\frac{3}{2}}.$$

Ex. 7 Fie $f:[1,\infty)\to\mathbb{R}$ o funcție descrescătoare și mărginită inferior. Să se arate că șirul $(a_n)_{n\geq 1}$ de termen general

$$a_n = f(1) + f(2) + \ldots + f(n) - \int_1^n f(x)dx$$

este convergent.

Ex. 8 Să se arate că următoarele șiruri sunt convergente, folosind problema precedentă.

a)
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n;$$

b)
$$a_n = 1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} - \frac{1}{1-\alpha}n^{1-\alpha}, \ \alpha \in (0,1);$$

c)
$$a_n = 1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}}, \ \alpha > 1;$$

d)
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n};$$

e)
$$a_n = \frac{1}{2 \ln 2} + \frac{1}{3 \ln 3} + \dots + \frac{1}{n \ln n} - \ln(\ln n)$$
.

Ex. 9 Dacă notăm cu l limitele șirurilor de la exercițiul precedent, să se calculeze limitele următoare:

a)
$$\lim_{n\to\infty} n \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n - l\right);$$

b)
$$\lim_{n \to \infty} n^{\alpha} \left(1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} - \frac{1}{1 - \alpha} n^{1 - \alpha} - l \right), \ \alpha \in (0, 1);$$

c)
$$\lim_{n \to \infty} n^{\alpha - 1} \left(1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} - l \right), \ \alpha > 1;$$

d)
$$\lim_{n\to\infty} \sqrt{n} \left(1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n} - l\right)$$
.

Ex. 10 Să se arate că au loc următoarele relații:

i)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \ln 2;$$

ii)
$$\lim_{n \to \infty} n \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} - \ln 2 \right) = -\frac{1}{4};$$

iii)
$$\lim_{n \to \infty} \left(e^{1 + \frac{1}{2} + \dots + \frac{1}{n+1}} - e^{1 + \frac{1}{2} + \dots + \frac{1}{n}} \right) = e^{\gamma};$$

iv)
$$\lim_{n \to \infty} (n+1)! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} - e\right) = -1.$$

3 Indicații și răspunsuri

Solutie Ex. 1 Se aplică criteriul cleştelui a) 1, b) $\frac{1}{2}$, c) $\frac{x}{2}$, d) 1, e) $\ln 2$, f) $\frac{1}{4}$.

Solutie Ex. 2 Se utilizează prima teoremă a lui Stolz-Cesaro a) $\frac{1}{p+1}$, b) 1, c) $\ln a$.

Solutie Ex. 3 a) $\frac{1}{32}$, b) e, c) 0, d) 1, e) e^{-2} .

Solutie Ex. 4 Limita este $\sqrt{2}$.

Solutie Ex. 5 $a_1 \in (0, \frac{\pi}{2})$ implică $a_2 \in (0, 1) \subseteq (0, \frac{\pi}{2})$ şi prin inducție matematică avem $a_n \in (0, 1)$, pentru orice $n \in \mathbb{N}^*$, deci şirul $(a_n)_{n \geq 1}$ este mărginit. Pe de altă parte

$$a_{n+1} - a_n = \sin a_n - a_n < 0$$
, pentru orice $n \ge 1$

(inegalitatea $\sin x < x$, pentru orice x > 0 este cunoscută). Așadar șirul $(a_n)_{n \geq 1}$ este convergent, și fie a limita lui: $\lim_{n \to \infty} a_n = a$, $a \in [0,1)$. Trecând la limită în relația de recurență $a_{n+1} = \sin a_n$ avem $a = \sin a$, deci a = 0. Avem

$$\sqrt{n} \cdot a_n = \sqrt{na_n^2} = \sqrt{\frac{n}{\frac{1}{a_n^2}}}, \text{ pentru orice } n \ge 1.$$

 $Deoarece \, \left(\frac{1}{a_n^2}\right)_{n \geq 1} \ este \ \mbox{$\it sir$ $cresc{\it a}tor$ $\it si$ $\frac{1}{a_n^2} \to \infty$, rezult$ $\it a}$

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_n^2}} \stackrel{Stolz}{=} \lim_{n \to \infty} \frac{n+1-n}{\frac{1}{a_{n+1}^2} - \frac{1}{a_n^2}} = \lim_{n \to \infty} \frac{1}{\frac{1}{\sin^2 a_n} - \frac{1}{a_n^2}}$$

$$= \lim_{n \to \infty} \frac{a_n^2 \sin^2 a_n}{a_n^2 - \sin^2 a_n} = \lim_{\substack{x \to 0 \\ x \in \mathbb{R}}} \frac{x^2 \sin^2 x}{x^2 - \sin^2 x} = \lim_{x \to 0} \frac{x^4}{x^2 - \sin^2 x} \left(\frac{\sin x}{x}\right)^2$$

$$= \lim_{x \to 0} \frac{x}{x + \sin x} \cdot \lim_{x \to 0} \frac{x^3}{x - \sin x} \cdot \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 = 3,$$

 $adic\breve{a}$

$$\lim \sqrt{n} \cdot a_n = \sqrt{3}.$$

Solutie Ex. 6 Rezolvarea este similară cu cea a problemei precedente.

Solutie Ex. 7 Se arată că șirul este monoton și mărginit.

Solutie Ex. 8 Se ia a)
$$f(x) = \frac{1}{x}$$
, b) $f(x) = \frac{1}{x^{\alpha}}$, $\alpha \in (0,1)$, c) $f(x) = \frac{1}{x^{\alpha}}$, $\alpha > 1$, d) $f(x) = \frac{1}{\sqrt{x}}$, e) $f(x) = \frac{1}{x \ln x}$.

Solutie Ex. 9 Se folosește a doua teoremă a lui Stloz-Cesaro obținându-se: a) $\frac{1}{2}$, b) $\frac{1}{2}$, c) $\frac{1}{1-\alpha}$, d) $\frac{1}{2}$.