

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»(ИУ7)
НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 «Программная инженерия»

ОТЧЕТ

по лабораторной работе № 1

Название Проектирование систем на кристалле на основе ПЛИС				
Дисциплина Архитектура элекронно-вычислительных машин				
Студент:		Золотухин А. В.		
Преподаватель:	подпись, дата	Фамилия, И.О. Попов А. Ю.		
преподаватель.	подпись, дата	Фамилия, И. О.		

Цель работы

Изучение основ построения микропроцессорных систем на ПЛИС. В ходе работы необходимо ознакомиться с принципами построения систем на кристалле (СНК) на основе ПЛИС, получить навыки проектирования СНК в САПР Altera Quartus II, выполнить проектирование и верификацию системы с использованием отладочного комплекта Altera DE1Board.

Функциональная схема разрабатываемой системы на кристалле

Функциональная схема разрабатываемой системы на кристалле представлена на рисунке 1.

Рисунок 1 — Функциональная схема разрабатываемой системы на кристалле

Система на кристалле состоит из следующих блоков.

- 1. Микропроцессорное ядро Nios II/е выполняет функции управления системой.
- 2. Внутренняя оперативная память СНК, используемая для хранения программы управления и данных.
- 3. Системная шина Avalon обеспечивает связность всех компонентов системы.
- 4. Блок синхронизации и сброса обеспечивает обработку входных сигналов сброса и синхронизации и распределение их в системе. Внутренний сигнал сброса синхронизирован и имеет необходимую для системы длительность.

- 5. Блок идентификации версии проекта обеспечивает хранение и выдачу уникального идентификатора версии, который используется программой управления при инициализации системы.
- 6. Контроллер UART обеспечивает прием и передачу информации по интерфейсу RS232.

Маршрут проектирования

Модуль в QSYS

Для создания нового модуля системы на кристалле QSYS выполнены следующие действия.

- 1. Создан новый модуль СНК.
- 2. Установлена частота внешнего сигнала синхронизации 50 000 000 Гц.
- 3. Добавлен в проект модуль синтезируемого миркропроцессорного ядра Nios2.
- 4. Добавлен в проект модуль ОЗУ программ и данных.
- 5. Добавлены компоненты Avalon System ID, Avalon UART.
- 6. Создана сеть синхронизации и сбоса системы.
- 7. Все блоки подключены к системной шине Avalon.
- 8. Сигналы ТХ и RX экспортированы во внешние порты.
- 9. Соединины выход IRQ блока UART с входом IRQ процессора.
- 10. Выполнена настройка таблицы прерываний процессора.
- 11. Назначены базовые адреса устройств.

Результат выполненных действий приведен на рисунке 2.

Рисунок 2 – Модуль в Qsys

Назначение портам проекта контактов микросхемы

Были назначены контакты в соответствии с таблицей 1 из методических указаний, а затем выполнен синтез проекта.

Таблица 1. Назначение контактов микросхемы портам проекта

Сигнал	Контакт	
clk	L1	
reset	R22	
uart0_rxd	F14	
uart0_txd	G12	

Рисунок 3

Результат выполненных действий приведен на рисунке 4.

Рисунок 4 – Модуль Pin Planner

Результаты тестирования PSoC на отладочной плате

К ПК была подключена отладочная плата с ПЛИС EPC2C20, выполнена верификация проекта с использованием программы терминала. Доработан код проекта с использованием необходимых библиотек.

Доработанный код проекта представлен на рисунке 6, а также вывод сообщения с номером группы (54) представлен на рисунке 7.

#include "sys/alt_stdio.h"

#include "system.h"

#include "altera_avalon_sysid_qsys.h"

#include "altera_avalon_sysid_qsys_regs.h"

#include "altera_avalon_sysid_qsys_regs.h"

#include "altera_avalon_sysid_qsys_regs.h"

#include "altera_avalon_sysid_qsys_regs.h"

#include "altera_avalon_sysid_qsys_regs.h"

#include "sys/alt_stdio.h"

#include "stdio.h"

#include "std

Рисунок 6 – Доработанный код программы.

Рисунок 7 – Результаты тестирования PSoC на отладочной плате

Вывод

В ходе работы изучены принципы построения систем на кристалле (СНК) на основе ПЛИС, получены навыки проектирования СНК в САПР Altera Quartus II, выполнено проектирование и верификация системы с использованием отладочного комплекта Altera DE1Board.