

System uprawy hydroponicznej Arduino Indoor

Proponowane przez Liceum Ogólnokształcące w Patras

Zestaw narzędzi dla trenerów do rozwijania umiejętności STEM z wykorzystaniem Aplikacje mikrokontrolerów

System uprawy hydroponicznej Arduino Indoor

Spis treści

Cel Opis Cele kształcenia Metodologia nauczania Grupa docelowa Schemat nauczania Rozwiązanie Objęte obszary naukowe Ocena Bibliografia

Cel

Użyj Arduino Indoor hydroponicznego rolnictwa, aby wyjaśnić i pomóc uczniom jako narzędzie edukacyjne w kierunku zrównoważonej przyszłości.

- Kompostowanie i wewnętrzna uprawa hydroponiczna stanowią cenne interdyscyplinarne narzędzie dydaktyczne, obejmujące obszary programu nauczania z wieloma efektami uczenia się.
- System Arduino zorientowany na wdrażanie praktyk przyjaznych dla środowiska zachęca uczniów do zrozumienia, co oznacza zrównoważony rozwój i jak my wszyscy, jako obywatele świata, możemy się do niego przyczynić.
- Biorąc pod uwagę obawy związane z wyżywieniem rosnącej populacji ludzkiej w zmieniającym się klimacie, naukowcy wierzą, że technologia hydroponiczna może być w stanie złagodzić zbliżający się niedobór żywności, służąc celowi 2 SDG ONZ: "Zakończyć głód, osiągnąć bezpieczeństwo żywnościowe i lepsze odżywianie oraz promować zrównoważone rolnictwo".

Arduino Indoor hydroponiczne uprawy

Opis

- Krok 1: Stworzenie prostego systemu hydroponicznego z pomocą technika rolniczego.
- System Arduino indoor pharming składa się z mikrokontrolera, przekaźnika, czujnika temperatury, pompy i źródła zasilania.
- Z tych komponentów, można łatwo zbudować system zasilany przez Arduino. W połączeniu z przygotowaniem roztworu odżywczego dla warzyw, system odpowiada zasadzeniu nasion w perlit i umieszczeniu ich w chronionym środowisku do wzrostu pierwotnego.
- W ten najprostszy sposób uczniowie dowiedzą się, jak mikrokontrolery mogą być wykorzystane do umieszczania roślin w krytym systemie hydroponicznym i monitorowania ich wzrostu.

Cele kształcenia

- Studenci rozumieją podstawowe zasady uprawy w pomieszczeniach
- Studenci rozumieją rolę monitorowania wzrostu roślin za pomocą systemu pomiarowego arduino.

1			Indoor farming				
2			Monitor	ing of plan	nts growth		
3			Species 1	Species 2	Species 3	Species 4	
4	Date	Plant height					
5		pH of nutrition solution					
6		Temperature of nutrition solution					
7		Electrical conductivity of nutrition solution					
8		Day duration in hours					
9		Night duration in hours					
10		Notes		100			
11							

 Studenci rozumieją w jaki sposób elektronika może zautomatyzował w laboratorium chemicznym.

Metodologia nauczania

 Łączenie nauki w klasie z realnym światem poprzez stworzenie możliwości zrównoważonego ogrodnictwa w przyszłości.

Nauczyciel przydziela grupy do pomiaru parametrów hydroponicznych w pomieszczeniach (np.

temperatury).

Na koniec projektu, projekt wspiera zdrowe wybory żywieniowe.

Grupa docelowa

Uczniowie szkół średnich

Schemat nauczania

- Uczniowie zostają podzieleni na grupy. Po około 2 minutach rozmowy lider każdej z grup ogłasza swoje poglądy, które są wstępnymi założeniami - prognozami na temat konieczności prowadzenia działalności rolniczej.
 - Pomiary temperatury są dokonywane w odpowiednim systemie arduino indoor farming.
 - Każda grupa ma za zadanie policzyć temperaturę roztworów na różne sposoby i porównać ją z wartością oczekiwaną.
 - Zdefiniuj temperaturę jako wielkość, która służy do osiągnięcia wzrostu roślin.

Rozwiązanie

Szczególnie ważnym elementem tego kursu jest to, że przekształca on szkolne laboratorium w laboratorium badawcze przyszłości, stymulując w ten sposób zainteresowanie ucznia, który może stać się badaczem jutra.

Podkreśla on również związek nauki i technologii, ponieważ technologia jest powołana do znajdowania rozwiązań, oferuje możliwości znacznej oszczędności wody i eliminuje użycie pestycydów, nawozów i herbicydów.

Rozwiązanie

Do przygotowania potrzebne są następujące komponenty:

- ARDUINO UNO
- Przekaźnik
- Czujnik wilgotności gleby .

- Przewody łączące
- Źródło zasilania 12V

Źródło: Store.arduino.cc

Rozwiązanie

<- Schemat połączeń wszystkich elementów układu.

Oprogramowanie do sterowania układem można łatwo napisać samemu, czytając instrukcję lub poszukać gotowego projektu w Internecie.

Źródło: Github

Objęte obszary naukowe

Chemia / Technologia / Biologia

Ocena

- Ocena powinna być osiągnięta poprzez długotrwałe zaangażowanie uczniów.
- W trakcie dyskusji uczniowie mogą być informowani o podstawowych zagadnieniach.
- Uczeń powinien być w stanie zidentyfikować podstawowe zależności pomiędzy zadaniami fizycznymi.
- Wreszcie, promuje ideę interdyscyplinarności, ponieważ podczas jego realizacji i zakończenia uczniowie mają do czynienia równolegie z więcej niż jednym obiektem poznawczym.

Bibliografia

- 1. Cornell Waste Management Institute
- 2. Kids Gardening: Classroom Hydroponics Lesson Plan
- 3. <u>University of Florida: Hydroponics in the Classroom</u>
- 4. United Nations: Sustainable Development Goals
- 5. Arduino UNO manual