CLAIMS

1	1. A method for extracting data of interest from observed vector data, the method
2	comprising:
3	determining the projection of each vector in observed vector data onto a subspace as a
4	vector subtraction in an original coordinate system.
1	2. A method for processing a block of discrete data vectors to obtain a decomposition of the
2	data with respect to a correlation direction vector, the method comprising:
3	multiplying each data vector onto the correlation direction vector to determine a scalar
4	amplitude of each data vector in the direction of the correlation direction vector;
5	multiplying each scalar amplitude onto the correlation direction vector to determine a set
6	of scaled vectors; and
7	subtracting the scaled vectors from the data vectors.
•	
1	3. In a filter, a method for processing a block of discrete data vectors to obtain a
2	decomposition of the data with respect to a correlation direction vector, the method comprising:
3	multiplying each data vector onto the correlation direction vector to determine a scalar
4	amplitude of each data vector in the direction of the correlation direction vector;
5	multiplying each scalar amplitude onto the correlation direction vector to determine a set
6	of scaled vectors; and
7	subtracting the scaled vectors from the data vectors.
1	4. A method for adaptively analyzing data, the data characterized by a set of data vectors, to
2	estimate that part of the data that best corresponds to a steering vector, the method comprising:
3	in a first analysis stage:
4	projecting each data vector onto the steering vector to form a set of inner products
5	that estimate the part of the data that best corresponds to the steering vector,
6	multiplying the inner products onto the steering vector to form a set of vector
7	estimates of that part of the data that best corresponds to the steering vector,
8	subtracting the vector estimates from the corresponding data vectors to obtain a
9	projection of the data onto the nullspace of the steering vector; and

10	in at least one adaptive analysis stage:
11	calculating a correlation direction vector of the current adaptive stage between the
12	corresponding inner products and vector differences of an immediately prior
13	analysis stage;
14	forming inner products of the current stage by projecting each vector difference of
15	the immediately prior analysis stage onto the correlation direction vector of the
16	current stage;
17	forming scaled vectors of the current stage by multiplying the inner products of the
18	current stage onto the correlation direction vector of the current stage;
19	forming the projection of the prior stage vector differences onto the nullspace of the
20	correlation direction vector of the current stage by subtracting each scaled
21	vector of the current stage from the corresponding projection of the prior stage.
1	5. A method for adaptively analyzing an observed signal, the signal characterized by a set of
2	data vectors, to estimate that part of the signal that best corresponds to a steering vector, the
3	method comprising:
4	in a first analysis stage:
5	projecting each data vector onto the steering vector to form a set of inner products
6	that estimate the part of the data that best corresponds to the steering vector,
7	multiplying the inner products onto the steering vector to form a set of vector
8	estimates of that part of the data that best corresponds to the steering vector,
9	subtracting the vector estimates from the corresponding data vectors to obtain a
10	projection of the data onto the nullspace of the steering vector; and
11	in at least one adaptive analysis stage:
12	calculating a correlation direction vector of the current adaptive stage between the
13	corresponding inner products and vector differences of an immediately prior
14	analysis stage;
15	forming inner products of the current stage by projecting each vector difference of
16	the immediately prior analysis stage onto the correlation direction vector of the
17	current stage;
18	forming scaled vectors of the current stage by multiplying the inner products of the
19	current stage onto the correlation direction vector of the current stage;

20	forming	the projection of the prior stage vector differences onto the numspace of the
21	con	relation direction vector of the current stage by subtracting each scaled
22	veo	ctor of the current stage from the corresponding projection of the prior stage.
23	6. A method for	or adaptively analyzing discrete data, the data characterized by a vector data
24	set and a scalar data	set, the sets having a common index, to obtain a decomposition of the data
25	based on correlation	between the sets, the method comprising
26	in a first stag	ge:
27	forming	g a first stage correlation direction vector between corresponding elements of
28	the	vector data set and the scalar data set;
29	forming	g a set of first stage inner products between the vector data set and the first
30	sta	ge correlation direction vector;
31	forming	g a set of first stage scaled direction vectors between the scalar data set and
32	the	e first stage correlation direction vector;
33	forming	g a set of first stage vector differences between the corresponding elements of
34	the	e set of first stage scaled direction vectors and the vector data set; and
35	in each of ze	ero or more subsequent stages:
36	receivii	ng the set of inner products and the set of vector differences of the
37	im	mediately prior stage as inputs to the current stage;
38	forming	g a current stage correlation direction vector between corresponding elements
39	of	the sets of inner product and vector difference current stage inputs;
40	forming	g a set of current stage inner products between the set of current stage vector
41	di	fference inputs and the current stage correlation direction vector;
42	forming	g a set of current stage scaled direction vectors between the set of inner
43	pr	oduct current stage inputs and the current stage correlation direction vector;
44	formin	g a set of current stage vector differences between the corresponding elements
45	of	the set of current stage scaled direction vectors and the set of current stage
46	ve	ctor difference inputs.
1	7. An analysis	chain for a multistage adaptive filter, the analysis chain comprising:
2	a non-adapt	ive analysis stage, comprising:
3	a first i	nner product logic device operative:
4	to	receive a set of data vectors and a steering vector, and

5	to form a first set of inner products of the steering vector and each data vector,
6	and
7	a first vector scaling logic device:
8	in communication with the first inner product logic device, and
9	operative:
10	to receive the steering vector and the first set of inner products, and
11	to form a first set of scaled direction vectors of the steering vector and
12	each inner product of the first set of inner products, and
13	a first vector difference logic device:
14	in communication with the first vector scaling logic device, and
15	operative:
16	to receive the set of data vectors and the first set of scaled vectors, and
17	to form a first set of vector differences between corresponding elements of
18	the set of data vectors and the first set of scaled vectors; and
19	at least one adaptive analysis stage comprising:
20	a correlation direction vector logic device:
21	in communication with the immediately prior stage, and
22	operative:
23	to receive a set of vector differences of the immediately prior stage and a
24	set of inner products of the immediately prior stage, and
25	to form a current stage correlation direction vector between the vector
26	differences of the immediately prior stage and the corresponding
27	inner products of the immediately prior stage; and
28	an adaptive stage inner product logic device:
29	in communication with the immediately prior stage and the adaptive stage
30	correlation direction vector logic device of the current stage, and
31	operative:
32	to receive the set of vector differences of the immediately prior stage and
33	the current stage correlation direction vector, and
34	to form a current stage set of inner products of each vector difference of
35	the immediately prior stage and the current stage correlation direction
36	vector; and
37	an adaptive stage vector scaling logic device:

38	in communication with the correlation direction vector logic device of the	
39	current stage and the inner product device of the current stage, and	
40	operative:	
41	to receive the set of inner products of the current stage and the correlation	
42	direction vector of the current stage, and	
43	to form a current stage set of scaled direction vectors of each inner product	
44	of the set of inner products of the current stage and the correlation	
45	direction vector of the current stage; and	
46	an adaptive stage vector difference logic device:	
47	in communication with the vector difference logic device of the immediately	
48	prior stage and the vector scaling logic device of the current stage, and	
49	operative:	
50	to receive the set of vector differences of the immediately prior stage and	
51	the set of scaled vectors of the current stage, and	
52	to form a current stage set of vector differences between corresponding	
53	elements of the set of vector differences of the immediately pri	
54	stage and the set of scaled direction vectors of the current stage.	
1	8. A method for adaptively analyzing an observed signal, the signal characterized by	
2	discrete data, the data characterized by a vector data set and a scalar data set, the sets having a	
3	common index, to obtain a decomposition of the data based on correlation between the sets, the	
4	method comprising	
5	in a first stage:	
6	forming a first stage correlation direction vector between corresponding elements of	
7	the vector data set and the scalar data set;	
8	forming a set of first stage inner products between the vector data set and the first	
9	stage correlation direction vector;	
10	forming a set of first stage scaled direction vectors between the scalar data set and	
11	the first stage correlation direction vector;	
12	forming a set of first stage vector differences between the corresponding elements of	
13	the set of first stage scaled direction vectors and the vector data set; and	
14	in each of zero or more subsequent stages:	
15	receiving the set of inner products and the set of vector differences of the	
16	immediately prior stage as inputs to the current stage;	

17	forming a current stage correlation direction vector between corresponding elements
18	of the sets of inner product and vector difference current stage inputs;
19	forming a set of current stage inner products between the set of current stage vector
20	difference inputs and the current stage correlation direction vector;
21	forming a set of current stage scaled direction vectors between the set of inner
22	product current stage inputs and the current stage correlation direction vector;
23	forming a set of current stage vector differences between the corresponding elements
24	of the set of current stage scaled direction vectors and the set of current stage
25	vector difference inputs.
1	9. An adaptive stage of an analysis chain for a multistage adaptive filter, the adaptive stage
2	comprising:
3	a correlation direction vector logic device:
4	in communication with the immediately prior stage, and
5	operative: to receive a set of vector differences of the immediately prior stage and a
6	set of inner products of the immediately prior stage, and
7	to form a current stage correlation direction vector between the vector
8	differences of the immediately prior stage and the corresponding
9 10	inner products of the immediately prior stage; and
11	an adaptive stage inner product logic device:
12	in communication with the immediately prior stage and the adaptive stage
13	correlation direction vector logic device of the current stage, and
14	operative:
15	to receive the set of vector differences of the immediately prior stage and
16	the current stage correlation direction vector, and
17	to form a current stage set of inner products of each vector difference of
18	the immediately prior stage and the current stage correlation direction
19	vector; and
20	an adaptive stage vector scaling logic device:
21	in communication with the correlation direction vector logic device of the
22	current stage and the inner product device of the current stage, and
23	operative:

24	to receive the set of inner products of the current stage and the correlation
25	direction vector of the current stage, and
26	to form a current stage set of scaled direction vectors of each inner product
27	of the set of inner products of the current stage and the correlation
28	direction vector of the current stage; and
29	an adaptive stage vector difference logic device:
30	in communication with the vector difference logic device of the immediately prior
31	stage and the vector scaling logic device of the current stage, and
32	operative:
33	to receive the set of vector differences of the immediately prior stage and
34	the set of scaled vectors of the current stage, and
35	to form a current stage set of vector differences between corresponding
36	elements of the set of vector differences of the immediately prior
37	stage and the set of scaled direction vectors of the current stage.