# Weitere Plattformen und Abschluss

#### **Zeitlicher Ablauf**

- **★** Weitere Plattformen
- **★** Bücher
- **★** Beispiele
- **★** Abschluss

### **Atomic Host (RHEL/CentOS)**



- ★ Atomic fungiert als dedizierte, extrem abgespeckte RHEL/CentOS/Fedora-basierte Container-Plattform.
- ★ Der Fokus von Atomic liegt klar auf dem Einsatz als Arbeitspferd im Rahmen von Kubernetes Clustern.

#### **Rocket Science? – CoreOS/Container Linux**

## CoreOS has joined the Red Hat family The CoreOS team is thrilled to have joined Red Hat\*. Together we are working to further extend the value of Kubernetes for all of our customers.

- ★ Die zunächst euphorische Marktakzeptanz für CoreOS/Rocket schwindet nach wie vor.
- ★ Im Single Node-Einsatz bringt CoreOS / Container Linux keinen wirklichen Benefit gegenüber Docker, im Gegenteil – es ist bisweilen eher sperriger zu handhaben.
- ★ Unterschiede zwischen Docker- und Rocket-Container
  - actool: das Rocket-spezifische Container-Build-Tool
  - rkt: der eigentliche Rocket-Kernbefehl: Verwaltung und Administration von Images, Pods (Containern):

## **OpenShift (Red Hat)**



## The Kubernetes platform for big ideas

Focus on writing code and let OpenShift build, run, and scale your apps in the cloud

- ★ Traditionell und Cloud-nativ. On-Premise und in der Cloud. Ganz gleich, was Sie bauen, Red Hat "OpenShift" ist die führende Kubernetes-Plattform, um Ihren Kunden das Aussergewöhnliche schneller zu liefern, als Sie sich vorstellen können.
- ★ Oder einfach ausgedrückt:
  - Der übergeordnete Orchestrierer für den K8s-Orchestrierer, mit intelligenten Management und Build-Funktionalitäten, integrierter Registry und Software-Katalogen und einem komplettem Lifecycle-Management.
- ★ <a href="https://cloudowski.com/articles/10-differences-between-openshift-and-kubernetes/">https://cloudowski.com/articles/10-differences-between-openshift-and-kubernetes/</a>

Digital Competence. Made of People. digicomp

#### **OpenShift (Red Hat) - Varianten**

- ★ 17.2.1 OpenShift Origin/OKD
  - OpenShift Origin ist das ohne Lizenzkosten verfügbare Upstream-OpenSource-Community-Projekt, das als Grundlage für OpenShift Online, OpenShift Dedicated und OpenShift Container Platform verwendet wird.
- ★ 17.2.2 OpenShift Online (NextGen OpenShift)
  - OpenShift Online ist Red Hats kommerzieller Public Cloud Application-Entwicklungs- und Hosting-Service, der seit Mai 2017 verfügbar ist. OpenShift Online ist die online angebotene und von Red Hat gehostete Version des Origin-Projekt-Quellcodes.
- ★ 17.2.3 OpenShift Dedicated (Cloud Services)
  - OpenShift Dedicated ist der von Red Hat gehostete OpenShift Private Cloud Service für private Unternehmens-Cluster (Single-Tenant) in Public Clouds.
- ★ Weitere Informationen: <a href="https://www.openshift.com/products/pricing/">https://www.openshift.com/products/pricing/</a>

#### OpenShift (Red Hat) - Unterschiede

- ★ **Projects** (K8s Namespaces), welches folgendes beinhalten:
  - Objects Pods, ReplicaSets, Deployments, Services usw.
  - Policies (ACLs) vergleiche Kubernetes → RBAC
  - Constraints im Sinne von OpenShift sind damit Quotas gemeint
  - Service Accounts bestimmen den Zugriff auf Objekte im Project.
- **★ OAuth-Server** (Authentication und IDM)
- ★ Service Broker und Catalog (Applikationsverzeichnis und Bereitstellung)
- ★ **Networking**, Standard K8s und Isolierung auf Projektebene für Pods und Services
- **★ Router**, vereinfachte Version des Ingress Dienstes
- ★ Steuerung eines kompletten Container-Lifecycles: Build plus Rollout per OpenShift-GUI

#### Ubuntu

#### Install Kubernetes on Ubuntu

Kubernetes on Ubuntu is free to use and always current - you get the latest innovations from the Kubernetes community within a week of upstream release. It works on any cloud (public, private, and bare-metal). Kubernetes on Ubuntu is the productive, open source way to manage containers and microservices, automating the time-consuming tasks of installing, patching, upgrading, and carrying out cluster health checks.

#### Single node with MicroK8s

Install MicroK8s, the Linux snap that downloads in seconds. Microk8s is lightweight and deploys all Kubernetes services natively on Ubuntu. Ideal for:

- Laptops: develop microservices locally
- Workstations: develop and train machine learning models locally
- CI pipelines: create ephemeral Kubernetes quickly for testing microservices
- IoT devices: embed upgradeable Kubernetes in your lot devices for easy evolution
- Small edge clouds: create simple Kubernetes clusters for your edge clouds

#### Multi node with Charmed Kubernetes

Install Charmed Kubernetes, Ubuntu's highly available, multi node Kubernetes cluster on your infrastructure of choice:

- Bare metal: deploying Kubernetes on bare metal is easy using Charmed Kubernetes and MAAS (Metal-as-a-Service).
- Private clouds: take advantage of your on-premises clouds to deploy one or more Kubernetes clusters (VMware vSphere, OpenStack, LXD)
- Public clouds: deploy Charmed Kubernetes to AWS, GCP, Azure, IBM, and Oracle



### **SLE MicroOS (SUSE CaaS-Plattform)**

- ★ Die SUSE CaaS-Plattform ist eine Container-Verwaltungslösung für Geschäftsanwendungen, mit der IT- und DevOps-Experten containerbasierte Anwendungen und Services leichter bereitstellen, verwalten und skalieren können. Sie enthält **Kubernetes** zur Automatisierung der Verwaltung des Geräte-Lebenszyklus sowie entsprechende Technologien, die Kubernetes erweitern und eine einfache Bedienung der Plattform ermöglichen. Infolgedessen können Unternehmen, die auf die SUSE CaaS-Plattform setzen, Anwendungsbereitstellungszyklen verkürzen und die geschäftliche Agilität verbessern.
- ★ Weiter Informationen: <a href="https://www.suse.com/de-de/products/caas-platform/">https://www.suse.com/de-de/products/caas-platform/</a>

#### **RancherOS**



Abbildung 7.4 Aufbau des containerisierten RancherOS

- ★ RancherOS, aus dem Haus der Rancher Labs, setzt als Einzige der bisher betrachteten Plattformen echte Containerisierung um.
- ★ Konsequent ist es im Vergleich zu seinen Kontrahenten allemal. Stark vereinfacht startet der Kernel eine speziell angepasste initrd, welche wiederum Docker mit PID 1 als Init-Prozess startet. Dieser startet dann wiederum alle Systemdienste wie udev, DHCP, die Shells usw. als Container und natürlich auch noch eine weitere Docker-Instanz. Diese verwaltet dann die eigentlichen Nutz-Container.

#### **Docker unter Windows**



Abbildung 7.2 Normale und Hyper-V-Container unter Windows

- ★ Docker läuft seit Ende 2016 auch nativ unter Windows 10 oder Server 2016, d. h. als echter Windows Service und nicht mehr wie zuvor in einer Linux VM unter Windows.
- ★ Der Betrieb von Docker-Containern unter Windows, ist in etwa, grob vergleichbar mit den bereits vorgestellten Verfahren und Konzepten.
- **★** Weitere Informationen:
  - https://docs.docker.com/docker-forwindows/
  - <a href="https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/">https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/</a>

#### **★ Empfehlung**:

 Windows Container gehören auf Windows, Linux Container auf Linux.

### **Docker Community (CE) / Enterprise (EE)**

#### **★** Docker CE

- Stellt dar, was ohnehin längst dringend benötigt wurde, um zumindest einen grundlegenden, längerfristigen und stabilen Container-Betrieb zu gewährleisten.
- Der Swarm Mode hat grosse Defizite im Bereich Constraints, was ihn für grosse Cluster-Umgebungen disqualifiziert.

#### **★** Docker EE

• Die EE (Enterprise Edition), die nichts anderes als ein neuer Name für das DDC mit dem inkludierten und bereits vorgestellten CVE-Scanner ist, resultiert wohl am ehesten aus dem Bestreben, zumindest namentlich einen Anschluss an Mesospheres DC/OS EE zu erhaschen.

## Mesosphere DC/OS



- ★ Wenn K8s eine ziemlich dicke Luxus-Hochseejacht ist, dann ist DC/OS der Flugzeugträger.
- ★ Gross, mächtig, beeindruckend. Und genau wie der Träger hat DC/OS derzeit etliche Stellschrauben, an denen gedreht werden muss, bevor es losgeht.
- ★ Im Kern muss Mesosphere insbesondere daran arbeiten, den Setup-Vorgang von Bare Metal Clustern deutlich zu vereinfachen???. Hier ist Nacharbeit angesagt, ebenso bei der Dokumentation.

#### **Bücher und Links**

- ★ Skalierbare Container-Infrastrukturen, ISBN 978-3-8362-6386-3, 2. Auflage
- ★ Kubernetes, ISBN: 978-3-86490-542-1 (free eBook liegt bei)
- ★ Cloud Native Infrastructure, ISBN: 978-1-49198-425-3 (free eBook liegt bei)
- **★** <u>Kubernetes Learning Resources</u> <u>List</u>
- ★ <u>50 Best Kubernetes Architecture Tutorials</u>
- ★ <u>70 Best Kubernetes</u> Tutorials
- ★ <a href="https://12factor.net/">https://12factor.net/</a>
- ★ <a href="https://www.owasp.org">https://www.owasp.org</a>

### **KubeWeekly**

- **★** Kubernetes Security Audit
- ★ Tools and Methods for Auditing Kubernetes RBAC Policies
- ★ K8s scheduling deep dive
- **★** KUBERNETES WEB UIS IN 2019
- ★ <u>Multitenancy</u> on kubernetes with Istio, External Authentication Server and OpenID Connect
- ★ What Is GitOps Really?
- **★** 12 Kubernetes configuration best practices

#### Verzeichnis der Beispiele

- ★ Codebeispiele zum Buch
  - <a href="https://s3-eu-west-1.amazonaws.com/gxmedia.galileo-press.de/supplements/4252/skalierbare container infrastrukturen 4366.zip">https://s3-eu-west-1.amazonaws.com/gxmedia.galileo-press.de/supplements/4252/skalierbare container infrastrukturen 4366.zip</a>
- ★ DevOps (Beispiele zu Docker, Kubernetes)
  - https://github.com/mc-b/duk
- ★ Beispiele zum Kurs Microservices-Grundlagen («MISEGR»)
  - Hauptprojekt <a href="https://github.com/mc-b/misegr">https://github.com/mc-b/misegr</a>
  - Frontend Integration <a href="https://github.com/mc-b/SCS-ESI">https://github.com/mc-b/SCS-ESI</a>
  - Asynchrone Microservices <a href="https://github.com/mc-b/microservice-kafka">https://github.com/mc-b/microservice-kafka</a>
  - Synchrone Microservices <a href="https://github.com/mc-b/microservice-kubernetes">https://github.com/mc-b/microservice-kubernetes</a>
  - BPMN <a href="https://github.com/mc-b/bpmn-tutorial">https://github.com/mc-b/bpmn-tutorial</a>

#### **Abschluss**

## **★** Viel Erfolg mit Docker und Kubernetes!

★ Marcel Bernet - <a href="https://github.com/mc-b">https://github.com/mc-b</a>