Real Estate House Pricing Analysis

Abstract

Buying or selling a house is one of the important events faced by many in their lifetime. As such understanding what factors drive sale prices is both interesting and beneficial. In this project I used the popular Ames, Iowa housing data set to investigate which factors influence the final sale price. The research showed that location and condition of the house are the biggest attributes. A bigger house will not increase the final sale price as much as a smaller, nicer house in a better neighborhood.

Key Words

house prices, regression, linear models, assessed value

Introduction

This paper is the result of the final project in applying regression methods to real-world data. I chose housing data because I work as a Quant on Investment Real Estate portfolio for a Commercial Bank. In addition, this research is based on a well-studied data set that allowed me to employ many topics discussed during the course.

The data set describes the sale of individual residential properties in Ames, Iowa from 2006 to 2010. Founded in 1864 as a station stop, Ames has a population of approximately 60,000 people, covers about 24.27 square miles and was ranked ninth on the *Best Places to Live*. The original data came directly from the Ames Assessor's Office recordkeeping database and included information for calculation of assessed value using the city's assessment process. Each of over 2,900 total observations in the data represent attributes of an individual residential property sold. For properties that exchanged ownership multiple times during the collection period (2006 through 2010). There are about 80 variables included that cover a multitude of property attributes. Most variables describe the physical appearance or features of the property but other variables provide measures of quality and condition. The data types are varied and include discrete, continuous, and categorical (both nominal and ordinal) data.

The data was originally published in the Journal of Statistics Education. The data used for regression was downloaded from Kaggle.com, which allowed me the opportunity to compete against other kaggle users to find the best-fitting model for this data.

Literature Review

Building regression models to predict house prices is not a new undertaking. There is also a lot of data readily available with some cleanup work. Additionally, in large part thanks to the information revolution, data are easily accessible via many multiple listing services such as MLS.com.

There are many attributes that factor into a house price. For example, environmental attributes can impact the price substantially. Gardens, pleasant views, and attractive landscaping can all increase the house value. Neighborhood attributes such as schools and public services also play a factor.

The data set deals mostly with physical characteristics of the house itself. One key characteristic that should be taken into account is the correlation between the prices of neighboring houses. This will not be addressed by my project because of complexity and since I do not have specific locations for our data set.

Another interesting approach to modeling house prices is hedonic regression. This method breaks up an item into its constituent parts and tries to predict the target value based on how much individual parts contribute to it. A house is a perfect heterogeneous good to be predicted by hedonic regression. It can be broken up into various characteristics such as number of bedrooms, distance to the city center, environmental features, etc.

Methodology

Data Description

The data set includes 2,910 observation and 79 independent variables. Out of those 36 are numeric, such as lot area or pool area in square feet, and 43 are categorical, such as garage type (attached to home, built-in, carport, etc.) or utilities (gas, sewer, both, etc.). The data set is split into 1,460 observations comprising the training set and 1,459 observations representing the testing set.

Data Imputation

Original data set included no complete observations (*see table 3*). However, according to the data dictionary, many of theNA values have a specific meaning. For example, NA in the PoolQC variable (pool quality) implies that the property has no pool. Often this logic carried across multiple variables - for example, NA in GarageQual (garage quality), GarageCond (garage condition) and GarageType variables all indicate that the property has no garage. This type of missing value was replaced with a new category - *No Pool, No Garage* or similar. This work was accomplished using the forcats R package.

After this substitution the number of complete observations increased significantly to 2,861 or about 98% of all observations. There remained only 58 observations with true missing values. These observations contained 180 missing values in 32 variables. None of the variables contained a large number of missing values. The top one was MasVnrType

with 24 observations containing NA (0.8% of all observations). None of the variables were close to the 5% missing threshold that would suggest that I should drop them from analysis.

There are three ways to deal with missing values:

- **Deleting the variables:** If the missingness is concentrated in a relatively small number of variables, then deleting the variables may be a good option. The downside to this approach is that I lose the opportunity to include the observed values in the model.
- **Imputation via mean, median and mode:** An expedient way to retain all of the cases and variables is to insert the mean or median for continuous variables or the mode for categorical or discrete variables. This approach may suffice for a small number of values, but has the potential to introduce bias in the form of decreasing the variance.
- **Prediction:** This more advanced approach involves using the other variables to predict the missing values. Without validating the results, this method also has the potential to introduce bias.

For my data set I used multiple imputation by chained equations (MICE). The technique involves imputing multiple iterations of values in order to account for statistical uncertainty with standard errors. Since it uses chained equations, MICE has the ability to impute both numerical and categorical variables. The ideal scenario to use MICE is when less than 5% of the values are missing and when values are missing at random. I used the mice R package with the cart (classification and regression trees) method. cart is one of the five mice methods that can impute both numerical and categorical variables. Figure 3 shows the density plots of the observed and imputed values. The imputed distributions have more variance and extremes than the observed distributions.

Additional Data Preparation

All categorical variables were inspected and their order (or order of levels in R) was changed to match the most likely low-to-high order. These variables for the most part do not rely on the order of categories, so this step was not critical to modeling; however, it makes the modeling output more readable and easier to interpret.

As is the case with most data sets, I found several values that were clearly typos and input errors. For instance, one observation had the year when garage was built listed as 2207. There were 6 negative values in age related variables (see data transformations below). Those were set to 0.

Data Transformation

Prior to modeling, I have extensively analyzed available variables and took a few approaches to variable transformations. They were meant to both simplify existing variables and add new variables that may be helpful in modeling.

Generally, it is more common to think about the age of the house than the year it was built. Each age related variable was stored in the data set in two related variables - year built and year sold. For house age the value was YrSold - YearBuilt.

Because I am not dealing with a time series data set, I have converted YrSold and MoSold variables from numeric to nominal.

Using the side-by-side box plots in Figure 4, I examined the categorical variables with more than two values to see if the variable can be simplified by combining the values into two groups. My criteria for this simplification was if the variables' inner quartile ranges of the response variable distinctly and logically bifurcate. For example, in FireplaceQu (fireplace quality), HeatingQC (heating quality) and PoolQC (pool quality), I noticed that the inner quartiles are bifurcated into two groups that do not overlap: the highest *Excellent* value and all other lesser quality conditions. Additional values that are distinct from other values in the same variables are the *Wood Shingle* value in the roof material variable (RoofMat1), the above average values in the garage quality variable (GarageQual), the gas-related values in the heating variable (Heating), and the *Partial* value in the sale condition variable (SaleCondition).

I tried to examine whether the modeling would benefit from transforming any of the predictor variables. I took natural logarithms, square roots and squares of the numerical variables, and then I calculated every possible pairwise interaction between these transformations, the original numerical variables and categorical variables. I then calculated all pairwise correlations between the interactions and the response variable SalePrice. The top correlations can be seen in table 6, which is sorted in descending order by R-squared. I clearly observed that there are several correlation values higher than the highest correlation between the original predictors and the response, which is OverallQual at 0.79 (see table 5). I added the top five interactions to our training data set.

I created several training data sets. The **first** of the three training data sets I created includes only the original variables with the missing values imputed. In model building and selection this set is referred to as the *original* data set. The **second** training data set includes seven "simplified" dummy variables instead of original variables. It also includes the five highly-correlated interactions. This set is referred to as the *transformed* data set. The **third** training data set includes the same predictor variables as in the second set with a transformed response variable. While creating all interactions, I noticed that the correlation values appeared to increase vis-a-vis the square root of the response variable. Consequently, since the response variable contains only positive values, I created a simple BIC step model and used it to calculate the Box-Cox λ value and transform the response variable. According to Box-Cox, a λ value of approximately 0.184 should help the final model meet the normality assumption. This set is referred as the *Box-Cox* data set.

Modeling

Since I am dealing with trying to predict a continuous variable, house sale price, I relied upon building and optimizing general linear model.

After fitting three baseline (all k-parameters) models to all three training data sets, ANOVA demonstrated statistical significance between the original data set and the transformed data set. While all multiple R^2 values were within some negligible deviation of each other, adding a Box-Cox transformation of the response variable improved the R^2 beyond the model based on the original data set.

I took the strongest model, and applied step-wise regression. I applied backward elimination in order to settle on a model with the lowest Akaike information criterion (AIC) value.

I ended up with six representative models:

- 1. Model 1 is based on the fully transformed data set with Box-Cox transformed response variable. It includes all available predictor variables including any interactions created in data preparation. This model explains nearly 94% of variability of the response variable. A good starting point, however, I can remove some insignificant variables for a more parsimonious model with a decreased risk of overfitting.
- 2. **Model 2** is based on Model 1 modified with step-wise regression (backward elimination). It is an improvement with lower number of parameters (156 comparing to 237). The multiple R^2 value is similar. Comparing two models using ANOVA indicates that they are not significantly different.
- 3. **Model 3** selects only statistically highly significant variables from the previous model (p-value is nearly 0). R^2 drops and F-statistic rises, so even though the model is simpler with only 58 parameters, it may not be an improvement. Comparing this model with the first one using ANOVA, shows that there is significant difference between the two.
- 4. **Model 4** expands on the previous model by using statistically significant variables, but with less strict criteria (p-value < 0.01). The number of parameters is increased, but R^2 is also increased. Similarly, per ANOVA, this model is significantly different from models 1 and 3.
- 5. **Model 5** takes variables identified in the previous model, but it is trained on the original data set without interactions. It uses only log-transformation of LotArea predictor variable and SalePrice response variable. This model represents the best results based on R^2 for any model I have tried using the original data set.
- 6. **Model 6** is based on Model 4, but it is trained on the transformed data set that includes interactions, but not the Box-Cox transformation of the response variable. Similarly to model 5, this model uses log-transformed LotArea and SalePrice.

For all models the F-statistic's p-value shows a drastic improvement over an intercept-only model, so I can infer that these models are statistically significant.

The table below summarizes the models. I can see a steady improvement in AIC numbers for models 1 through 6. Adjusted R^2 fluctuates, but it remains high, and the values are close between various models. The fluctuation in R^2 is not enough to be the deciding factor in selecting a model.

Model	Multiple R^2	Adjusted R^2	AIC	Kaggle Score
Model 1 (Box-Cox)	0.9359	0.9241	-531	NA
Model 2 (Box-Cox)	0.9330	0.9252	-617	NA
Model 3 (Box-Cox)	0.8934	0.8890	-126	NA
Model 4 (Box-Cox)	0.9193	0.9131	-440	NA
Model 5 (Original)	0.8935	0.8857	-1604	0.1475
Model 6 (Transformed)	0.9183	0.9120	-1982	0.1385

Models 1 through 4 rely on the Box-Cox transformation of the response variable with λ value of 0.184. Although this may slightly improve a model, it makes conversion of prediction difficult and confusing. Log-transformation of the response variable used by models 5 and 6 is significantly easier to implement. As such slight improvement of the Box-Cox model is not enough to justify added complexity of making predictions. It is important to consider how the model will be implemented and simplicity matters.

Model 6 is our primary linear regression model to predict house sale prices.

The model was tuned using k-fold validation (with 10 folds). It was run through full diagnostic and four leverage points have been identified. These observations were removed from the training set as it is very plausible that the sales data set has some uncharacteristic outliers.

Additionally, two categorical variables - Condition2 and Utilities - were removed from the model because they did not have enough samples in each category. These variables may be meaningful for predicting the response variable, but there is not enough information in our small data set for these variable to train on.

The final model had multiple \mathbb{R}^2 of 0.9276, adjusted \mathbb{R}^2 of 0.9225, AIC of -2172 . These are the best values in all categories.

Figure 1 shows the model diagnostics. There is no discernible pattern among residuals. The Q-Q plot shows some problems with distribution tails; however, this is not unexpected with sales data - there are bound to be some really good and some really bad deals out there. Major leverage points have been accounted for.

Data preparation and transformation, including response variable transformation, model building and re-building as well as model diagnostics resulted in a linear regression model to predict house sale prices.

Model diagnostics.

Experimentation and Results

My model has 98 parameters. The majority of those are dummy variables created for categorical variables. Table 2 lists all parameters and corresponding coefficients. Please note that our response variable is log-transformed, so coefficients will only give a general idea of the impact on the sale price, and not a specific amount.

Linear regression takes the following form:

Here, \hat{y} is the predicted outcome, x_1 through x_p are selected parameters, β_1 through β_p are corresponding coefficients, β_0 is the intercept and ϵ is the error or noise term. The formula used in R is as follows:

```
log(SalePrice) ~ OverallCond + Condition1 + MSZoning + X1stFlrSF + X2ndFlrSF
+
LowQualFinSF + Neighborhood + KitchenQual + Fireplaces + WoodDeckSF +
Functional + FullBath + BsmtFullBath + BsmtFinType1 + BsmtExposure +
BsmtQual +
LandSlope + LandContour + log(LotArea) + LotFrontage + LotConfig +
HouseStyle +
RoofStyle + MasVnrArea + ScreenPorch + House_Age_Yrs + RoofMatl_WdShngl +
GarageQual_abv_avg + OverallQual2_x_GrLivArea +
OverallQual2_x_TotRmsAbvGrd_log +
OverallQual2_x_GarageCars
```

Linear model parameters and coefficients (sorted by category and coefficient).

Category	Details	Coefficient
		9.736404
Amenities	Basement exposure - Good	0.051112
Amenities	Full bathrooms - Basement	0.040449
Amenities	Number of fireplaces	0.030267
Amenities	Full bathrooms - Above grade	0.007889
Amenities	Basement exposure - Minimum	0.007124
Amenities	Size of garage	0.000961
Amenities	Basement exposure - None	-0.000683
Amenities	Basement exposure - No basement	NA
Condition	Normal	0.079479
Condition	Near park, greenbelt, etc.	0.078508
Condition	Within 200' of East-West railroad	0.058670
Condition	Adjacent to North-South railroad	0.056679
Condition	Overall condition of the house	0.052166
Condition	Within 200' of North-South railroad	0.048134
Condition	Adjacent to feeder street	0.034262
Condition	Adjacent to park, greenbelt, etc.	0.008202
Condition	Age	-0.003162
Condition	Adjacent to East-West railroad	-0.062048
Functionality	Typical	0.112427
Functionality	Minor deductions 2	0.072990
Functionality	Minor deductions 1	0.062419
Functionality	Moderate deductions	0.007538
Functionality	Major deductions 2	-0.144502
Functionality	Severely damaged	-0.390187
House	Roof material - Wood shingles	0.072151
House	2.5 story: 2nd level unfinished	0.059545
House	Roof - Mansard	0.045818
House	1.5 story: 2nd level unfinished	0.023669
House	Total rooms above grade	0.001667
House	Above grade living area	-0.000001
House	1 story	-0.001891
House	Roof - Hip	-0.005659
House	Split foyer	-0.010301

House	Roof - Gable	-0.010775
House	2 story	-0.016187
House	Roof - Shed	-0.017076
House	Split level	-0.022143
House	Roof - Gambrel	-0.024712
House	2.5 story: 2nd level finished	-0.073665
Land	Land contour - Hillside	0.038803
Land	Land contour - Near flat	0.028476
Land	Land contour - Depression	0.026734
Land	Land slope - Moderate	0.007487
Land	Land slope - Severe	-0.085362
Lot	Lot area	0.091273
Lot	Cul-de-sac	0.022886
Lot	Feet of street connected to property	0.000066
Lot	Inside lot	-0.004728
Lot	Frontage on 2 sides	-0.026650
Lot	Frontage on 3 sides	-0.075301
Neighborhood	Stone Brooke	0.096771
Neighborhood	Crawford	0.086667
Neighborhood	Northridge Heights	0.039785
Neighborhood	Somerset	0.030671
Neighborhood	South & West of Iowa State U	0.013564
Neighborhood	Clear Creek	0.011456
Neighborhood	Brookside	0.010711
Neighborhood	Northridge	0.007573
Neighborhood	Veenker	0.003404
Neighborhood	Northpark Villa	-0.019407
Neighborhood	College Creek	-0.020850
Neighborhood	Bluestem	-0.027089
Neighborhood	Iowa DOT and Rail Road	-0.030277
Neighborhood	Gilbert	-0.037993
Neighborhood	Old Town	-0.039175
Neighborhood	North Ames	-0.047091
Neighborhood	Timberland	-0.048063
Neighborhood	Sawyer West	-0.051714
Neighborhood	Sawyer	-0.059436

Neighborhood	Briardale	-0.059884
Neighborhood	Edwards	-0.082427
Neighborhood	Northwest Ames	-0.083887
Neighborhood	Mitchell	-0.086347
Neighborhood	Meadow Village	-0.151122
Quality	Garage - above average	0.076615
Quality	Finished basement - Good living quarters	0.008018
Quality	Finished basement - Below average	-0.010040
Quality	Finished basement - Low quality	-0.013167
Quality	Finished basement - Average rec room	-0.018644
Quality	Finished basement - Unfinished	-0.042924
Quality	Kitchen - Good	-0.051366
Quality	Basement - Good	-0.051999
Quality	Basement - Fair	-0.052521
Quality	Basement - Typical	-0.074473
Quality	Kitchen - Average	-0.074507
Quality	Kitchen - Fair	-0.124179
Quality	Finished basement - None	-0.249115
Quality	Basement - None	NA
Sq Footage	First floor	0.000363
Sq Footage	Second floor	0.000290
Sq Footage	Screen porch	0.000238
Sq Footage	Low quality	0.000200
Sq Footage	Wood deck	0.000048
Sq Footage	Masonry veneer	-0.000004
Zoning	Floating Village Residential	0.511221
Zoning	Residential Low Density	0.469410
Zoning	Residential High Density	0.449200
Zoning	Residential Medium Density	0.442153

The attribute with the most negative effect on the sale price is severely damaged functionality of the house. Major deductions in functionality (a step above *Severely Damaged*) is also included in the top five negative attributes. Interestingly, typical functionality has one of the most positive influences on the sale price. Clearly and not surprisingly, general house condition that ranges from *Typical* to *Salvage Only*, is very important to the final sale price.

Another attribute that influences the sale price negatively is the Meadow Village neighborhood. Reviewing Ames, Iowa information, I can quickly notice that the Meadow

Village despite its peaceful name is actually on the edge of town next to the airport. This would be a less desirable neighborhood in any town. On the opposite side of town, next to a golf club and to the Ada Hayden Heritage park and lake, is the Stone Brooke neighborhood. This is one of the most positive attributes. Again not surprisingly, the most positive and negative neighborhoods are on completely opposite sides of town.

Other major negative attributes are lack of finished basement and fair quality of kitchen. Zoning attributes make up other major positive attributes.

The model confirms a few attributes that can be considered common sense. For example, location adjacent to the railroad has a negative influence on the sale price. However, this only applies to the East-West railroad. The impact of the North-South railroad is positive. It is important to note that the East-West railroad cuts through the middle of the town while the North-South railroad only affects a small portion, and it is clearly a less used railroad.

Other notable factors are the following:

- House age has a negative influence, but not as great as some other attributes.
- Being on a cul-de-sac is the most positive lot location. Inside lot has a slightly negative effect, and a lot with streets on 2 sides has even more negative coefficient. Finally, a lot with streets on 3 sides has the biggest negative impact.
- An unfinished basement generally has a negative impact as does a low-quality kitchen.
- The square footage of several characteristics, such as first or second floor, wood deck, porch, is not important (but the impact is slightly positive).
- 1.5 and 2.5 story houses seem to be preferred; however, this variable is probably highly dependent on the type of houses available in Ames, and it could be representative of some other features.

Discussion and Conclusion

Location and condition seem to be major attributes in house sale prices. There is seasonality to number of houses sold, especially considering that Ames is a college town; however, it does not appear to be a major factor.

The biggest limiting factor of my study is that it is based on one Midwest town's data. This model may not transfer well to other locations. After all it is not hard to imagine that the driving factors in Ames, Iowa are quite different from factors in New York, NY or Los Angeles, California. It is a helpful starting point, but may not be widely applicable.

My research is based exclusively on linear regression. Other methods, such as Support Vector Machines or Random Forrest, may be able to achieve much better results. This data set provides a rich opportunity for research, and it would be beneficial to try other methods for comparison purposes.

Appendix A. Figures

MasVnrTy
PoolQCC
MiscFeat
BsmtCond
MsSZoning
MsSZoning
BsmtFinT
BsmtFinT
BsmtFinT
CotalBsm
Co

Appendix B. Tables

Number of NA values in original data.

Variable	No of NAs	Percent of Total Obs
PoolQC	2909	99.66
MiscFeature	2814	96.40
Alley	2721	93.22
Fence	2348	80.44
FireplaceQu	1420	48.65
LotFrontage	486	16.65
GarageYrBlt	159	5.45
GarageFinish	159	5.45

GarageQual	159	5.45
GarageCond	159	5.45
Garage_Age_Yrs	159	5.45
GarageType	157	5.38
BsmtCond	82	2.81
BsmtExposure	82	2.81
BsmtQual	81	2.77
BsmtFinType2	80	2.74
BsmtFinType1	79	2.71
MasVnrType	24	0.82
MasVnrArea	23	0.79
MSZoning	4	0.14
Utilities	2	0.07
BsmtFullBath	2	0.07
BsmtHalfBath	2	0.07
Functional	2	0.07
Exterior1st	1	0.03
Exterior2nd	1	0.03
BsmtFinSF1	1	0.03
BsmtFinSF2	1	0.03
BsmtUnfSF	1	0.03
TotalBsmtSF	1	0.03
Electrical	1	0.03
KitchenQual	1	0.03
GarageCars	1	0.03
GarageArea	1	0.03
SaleType	1	0.03
Descriptive statistics for		

Descriptive statistics for numerical variables.

Variable	Count	Mean	SD	Median	Min	Max	Kurtosis
LotFrontage	2919	57.77	33.48	63	0	313	2.169
LotArea	2919	10168	7887	9453	1300	215245	264.3
OverallQual	2919	6.089	1.41	6	1	10	0.06295
OverallCond	2919	5.565	1.113	5	1	9	1.472
YearBuilt	2919	1971	30.29	1973	1872	2010	-0.5142
YearRemodAdd	2919	1984	20.89	1993	1950	2010	-1.347
MasVnrArea	2896	102.2	179.3	0	0	1600	9.228

BsmtFinSF1	2918	441.4	455.6	368.5	0	5644	6.884
BsmtFinSF2	2918	49.58	169.2	0	0	1526	18.79
BsmtUnfSF	2918	560.8	439.5	467	0	2336	0.3985
TotalBsmtSF	2918	1052	440.8	989.5	0	6110	9.125
X1stFlrSF	2919	1160	392.4	1082	334	5095	6.936
X2ndFlrSF	2919	336.5	428.7	0	0	2065	-0.4254
LowQualFinSF	2919	4.694	46.4	0	0	1064	174.5
GrLivArea	2919	1501	506.1	1444	334	5642	4.108
BsmtFullBath	2917	0.4299	0.5247	0	0	3	-0.738
BsmtHalfBath	2917	0.06136	0.2457	0	0	2	14.81
FullBath	2919	1.568	0.553	2	0	4	-0.5409
HalfBath	2919	0.3803	0.5029	0	0	2	-1.035
BedroomAbvGr	2919	2.86	0.8227	3	0	8	1.933
KitchenAbvGr	2919	1.045	0.2145	1	0	3	19.73
TotRmsAbvGrd	2919	6.452	1.569	6	2	15	1.162
Fireplaces	2919	0.5971	0.6461	1	0	4	0.07213
GarageYrBlt	2918	2412	1816	1984	1895	9999	13.51
GarageCars	2918	1.767	0.7616	2	0	5	0.2335
GarageArea	2918	472.9	215.4	480	0	1488	0.9334
WoodDeckSF	2919	93.71	126.5	0	0	1424	6.721
OpenPorchSF	2919	47.49	67.58	26	0	742	10.91
EnclosedPorch	2919	23.1	64.24	0	0	1012	28.31
X3SsnPorch	2919	2.602	25.19	0	0	508	149
ScreenPorch	2919	16.06	56.18	0	0	576	17.73
PoolArea	2919	2.252	35.66	0	0	800	297.9
MiscVal	2919	50.83	567.4	0	0	17000	562.7
MoSold	2919	6.213	2.715	6	1	12	-0.4574
YrSold	2919	2008	1.315	2008	2006	2010	-1.156
House_Age_Yrs	2919	36.48	30.34	35	-1	136	-0.5058
RemodAdd_Age_Yrs	2919	23.53	20.89	15	-2	60	-1.339
Garage_Age_Yrs	2918	28.07	25.8	25	-200	114	1.614
Predictor variables most correlated with original response variable.							

Predictor variables most correlated with original response variable.

Predictor Variable	Response Variable	Correlation	R^2
OverallQual	SalePrice	0.79	0.63
GrLivArea	SalePrice	0.71	0.50
GarageCars	SalePrice	0.64	0.41

GarageArea	SalePrice	0.62	0.39
TotalBsmtSF	SalePrice	0.61	0.38
X1stFlrSF	SalePrice	0.61	0.37
FullBath	SalePrice	0.56	0.31
TotRmsAbvGrd	SalePrice	0.53	0.28
House_Age_Yrs	SalePrice	-0.52	0.27
RemodAdd_Age_Yrs	SalePrice	-0.51	0.26
D 11	1 . 1 . 1		

Predictor transformations most correlated with transformed response variable.

Response Variable	Predictor Transformation	Correlation	R^2
SalePrice_sqrt	LotArea_log:OverallQual	0.856	0.732
SalePrice_sqrt	GrLivArea_log:OverallQual	0.852	0.727
SalePrice_sqrt	OverallQual_2:GarageCars	0.851	0.724
SalePrice_sqrt	OverallQual_sqrt:GarageCars	0.851	0.724
SalePrice_sqrt	OverallQual_2:TotRmsAbvGrd_log	0.851	0.724
SalePrice_sqrt	OverallQual_sqrt:TotRmsAbvGrd_log	0.851	0.724
SalePrice_sqrt	X1stFlrSF_log:OverallQual	0.851	0.724
SalePrice_sqrt	OverallQual_2:LotArea_log	0.850	0.723
SalePrice_sqrt	OverallQual_sqrt:LotArea_log	0.850	0.723
SalePrice_sqrt	OverallQual_2:GrLivArea_log	0.847	0.717
SalePrice_sqrt	OverallQual_sqrt:GrLivArea_log	0.847	0.717
SalePrice_sqrt	OverallQual_2:X1stFlrSF_log	0.844	0.713
SalePrice_sqrt	OverallQual_sqrt:X1stFlrSF_log	0.844	0.713
SalePrice_sqrt	TotRmsAbvGrd_log:OverallQual	0.841	0.707
SalePrice_sqrt	OverallQual_log:GrLivArea_log	0.837	0.700
SalePrice_sqrt	OverallQual_2:TotRmsAbvGrd	0.835	0.698
SalePrice_sqrt	OverallQual_sqrt:TotRmsAbvGrd	0.835	0.698
SalePrice_sqrt	OverallQual_log:X1stFlrSF_log	0.834	0.695
SalePrice_sqrt	OverallQual_2	0.828	0.685
SalePrice_sqrt	OverallQual_sqrt	0.828	0.685
SalePrice_sqrt	OverallQual:GrLivArea	0.827	0.685
SalePrice_sqrt	UtilitiesAllPub:OverallQual_2	0.827	0.684
SalePrice_sqrt	UtilitiesAllPub:OverallQual_sqrt	0.827	0.684
SalePrice_sqrt	OverallQual_2:OverallQual_log	0.827	0.684
SalePrice_sqrt	OverallQual_sqrt:OverallQual_log	0.827	0.684
SalePrice_sqrt	LotArea_log:OverallQual_log	0.827	0.683
SalePrice_sqrt	OverallQual:GarageCars	0.826	0.682

SalePrice_sqrt	OverallQual_2:GrLivArea	0.826	0.682
SalePrice_sqrt	OverallQual_sqrt:GrLivArea	0.826	0.682
SalePrice_sqrt	StreetPave:OverallQual_2	0.825	0.680
SalePrice_sqrt	StreetPave:OverallQual_sqrt	0.825	0.680
SalePrice_sqrt	OverallQual_2:GarageArea	0.823	0.678
SalePrice_sqrt	OverallQual_sqrt:GarageArea	0.823	0.678
SalePrice_sqrt	OverallQual_log:OverallQual	0.823	0.677
SalePrice_sqrt	OverallQual_2:OverallQual	0.822	0.676
SalePrice_sqrt	OverallQual_sqrt:OverallQual	0.822	0.676
SalePrice_sqrt	OverallQual_2:TotalBsmtSF_log	0.822	0.675
SalePrice_sqrt	OverallQual_sqrt:TotalBsmtSF_log	0.822	0.675
SalePrice_sqrt	OverallQual_2:FullBath	0.821	0.674
SalePrice_sqrt	OverallQual_sqrt:FullBath	0.821	0.674
SalePrice_sqrt	CentralAirY:OverallQual_2	0.817	0.667
SalePrice_sqrt	CentralAirY:OverallQual_sqrt	0.817	0.667
SalePrice_sqrt	OverallQual	0.816	0.666
SalePrice_sqrt	UtilitiesAllPub:OverallQual	0.813	0.660
SalePrice_sqrt	Condition2Norm:OverallQual_2	0.812	0.659
SalePrice_sqrt	Condition2Norm:OverallQual_sqrt	0.812	0.659
SalePrice_sqrt	OverallQual_2:OverallCond_log	0.810	0.656
SalePrice_sqrt	OverallQual_sqrt:OverallCond_log	0.810	0.656
SalePrice_sqrt	OverallQual_2:GarageCars_2	0.809	0.655
SalePrice_sqrt	OverallQual_2:GarageCars_sqrt	0.809	0.655

Appendix C. R Code

```
paste0("https://raw.githubusercontent.com/omerozeren/DATA621/master/final pro
ject/test.csv")
stand read <- function(url){</pre>
  return(read.csv(text = getURL(url)))
}
o_train <-
  stand read(url train) %>%
  mutate(d_name = 'train')
o test <- stand read(url test) %>%
  mutate(SalePrice = NA, d name = 'test')
full_set <- rbind(o_train, o_test)</pre>
na review <- function(df){</pre>
  # returns df of vars w/ NA qty desc.
  na qty <- colSums(is.na(df)) %>% as.data.frame(stringsAsFactors=F)
  colnames(na_qty) <- c("NA_qty")</pre>
  na qty <- cbind('Variable' = rownames(na qty), na qty) %>%
    select(Variable, NA_qty)
  rownames(na qty) <- NULL</pre>
  na_qty <- na_qty %>%
    arrange(desc(NA_qty)) %>% filter(NA_qty > 0) %>%
    mutate(Variable = as.character(Variable)) %>%
    mutate(Pct_of_Tot = round(NA_qty/nrow(df), 4) * 100)
  return(na_qty)
}
first pass <-
  full set %>%
  # first pass is train.csv and test.csv combined for NA reviews
  # and imputation planning and calculated columns
  mutate(House_Age_Yrs = YrSold - YearBuilt,
         RemodAdd Age Yrs = YrSold - YearRemodAdd,
         Garage Age Yrs = YrSold - GarageYrBlt)
naVars <- na review(first pass %>% select(-SalePrice))
naVars
set aside <- c(2600, 2504, 2421, 2127, 2041, 2186, 2525, 1488, 949, 2349,
2218, 2219, 333)
set asideA <-
'2600|2504|2421|2127|2041|2186|2525|1488|949|2349|2218|2219|333' # 13
set asideB <- '|2550|524|2296|2593' # negative values in ' Age' columns
x <- first pass %>%
  # exclude set aside observations to fill in known NA's
  filter(!grepl(paste0(set_asideA, set_asideB), Id))
naVarsx <- na_review(x %>% select(-SalePrice))
naVarsx
obtain_data <- function(df){</pre>
  # like first pass but with imputation that addresses
  # observations that have known NA's
df %>%
```

```
mutate(PoolOC = fct explicit na(PoolOC, na level='NoP'),
            MiscFeature = fct explicit na(MiscFeature, na level='NoM'),
            Alley = fct_explicit_na(Alley, na_level='NoA'),
            Fence = fct explicit na(Fence, na level = 'NoF'),
            FireplaceQu = fct_explicit_na(FireplaceQu, na_level = 'NoFp'),
            LotFrontage = ifelse(is.na(LotFrontage), 0, LotFrontage),
            # Note GarageYrBlt set to 9999 may be a problem
            GarageYrBlt = ifelse(is.na(GarageYrBlt), 9999, GarageYrBlt),
            GarageFinish = fct explicit na(GarageFinish, na level = 'NoG'),
            GarageQual = fct_explicit_na(GarageQual, na_level = 'NoG'),
            GarageCond = fct explicit na(GarageCond, na level = 'NoG'),
            # NOTE: Garage Age Yrs: 0 doesn't seem appropriate...
            Garage_Age_Yrs = ifelse(is.na(Garage_Age_Yrs), 0, Garage_Age_Yrs),
            GarageType = fct explicit na(GarageType, na level = 'NoG'),
            BsmtOual = fct explicit na(BsmtOual, na level = 'NoB'),
            BsmtCond = fct explicit na(BsmtCond, na level = 'NoB'),
            BsmtExposure = fct explicit na(BsmtExposure, na level = 'NoB'),
            BsmtFinType1 = fct explicit na(BsmtFinType1, na level = 'NoB'),
            BsmtFinType2 = fct explicit na(BsmtFinType2, na level = 'NoB')
probl obs <- full set %>%
  mutate(House_Age_Yrs = YrSold - YearBuilt,
          RemodAdd Age Yrs = YrSold - YearRemodAdd,
          Garage_Age_Yrs = YrSold - GarageYrBlt) %>%
  filter(grepl(paste0(set_asideA, set_asideB), Id))
known obs <- full set %>%
  filter(!grepl(paste0(set_asideA, set_asideB), Id)) %>%
  mutate(House_Age_Yrs = YrSold - YearBuilt,
          RemodAdd Age Yrs = YrSold - YearRemodAdd,
          Garage Age Yrs = YrSold - GarageYrBlt)
full set clean <- rbind(obtain data(known obs), probl obs) %>% arrange(Id)
str(full set clean)
#View(full set clean)
#summary(full_set_clean)
naVarsy <- na review(full set clean %>% select(-SalePrice))
sum(naVarsy$NA_qty) # 176
# ord vars per the Data Dictionary.
ord_vars <- c("LotShape","Utilities", "LandSlope", "ExterQual", "ExterCond", "BsmtQual", "BsmtCond", "BsmtExposure",
               "BsmtFinType1", "BsmtFinType2", "HeatingQC", "Electrical", "KitchenQual", "Functional", "FireplaceQu", "GarageFinish", "GarageQual", "GarageCond", "PavedDrive", "PoolQC", "Fence")
# Order of levels for ordinal variables
# all are ordered most favorible to least favorible, below
LotShape_ <- c("Reg", "IR1", "IR2", "IR3")
Utilities_ <- c("AllPub", "NoSeWa")</pre>
LandSlope_ <- c("Gtl", "Mod", "Sev")</pre>
```

```
ExterQual_ <- c("Ex", "Gd", "TA", "Fa")
ExterCond_ <- c("Ex", "Gd", "TA", "Fa", "Po")</pre>
BsmtQual_ <- c("Ex", "Gd", "TA", "Fa", "NoB")
BsmtCond_ <- c("Gd", "TA", "Fa", "NoB")
BsmtExposure_ <- c("Gd", "Av", "Mn", "No", "NoB")</pre>
BsmtFinType1_ <- c("GLQ", "ALQ", "BLQ", "Rec", "LwQ", "Unf", "NoB")
BsmtFinType2_ <- c("GLQ", "ALQ", "BLQ", "Rec", "LwQ", "Unf", "NoB")
HeatingQC_ <- c("Ex", "Gd", "TA", "Fa", "Po")</pre>
GarageFinish_ <- c("Fin", "RFn", "Unf", "NoG")</pre>
GarageQual_ <- c("Ex", "Gd", "TA", "Fa", "Po",</pre>
                  "NoG")
GarageCond_ <- c("Ex", "Gd", "TA", "Fa", "Po",</pre>
                  "NoG")
PavedDrive_ <- c("Y", "P", "N")
PoolQC_ <- c("Ex", "Gd", "Fa", "NoP")
Fence_ <- c("GdPrv", "MnPrv", "GdWo", "MnWw",</pre>
             "NoF")
# list of lists of the correct factor levels
n_levels <- list(LotShape , Utilities , LandSlope , ExterQual ,</pre>
                  ExterCond_, BsmtQual_, BsmtCond_,
                                                         BsmtExposure_,
                  BsmtFinType1_, BsmtFinType2_, HeatingQC_, Electrical_,
                  KitchenQual_, Functional_, FireplaceQu_, GarageFinish_,
                  GarageQual_, GarageCond_, PavedDrive_, PoolQC_, Fence_)
names(n_levels) <- ord_vars</pre>
                                                     # name vars so I can index
relevel data <- function(df, ord list, new lvls){
  # updates factor cols df[ord list] with new lvls (list of lists)
  i = sapply(colnames(full set clean),
              function (x) x %in% ord_list)
                                                     # obtain order list cols
  df[i] = lapply(df[i], as.character)
                                                     # convert factors to char
  for(s_var in ord_list){
                                                     # correct levels
    df[[s_var]] = factor(df[[s_var]], rev(new_lvls[[s_var]]))
  }
  return(df)
}
full_set_clean <- relevel_data(full_set_clean, ord_vars, n_levels)</pre>
var types <- function(df){</pre>
  # returns df of Variable name and Type from df
  var_df <- sapply(df, class) %>% as.data.frame()
  colnames(var df) <- c("Var Type")</pre>
  var df <- cbind(var_df, 'Variable' = rownames(var_df)) %>%
 select(Variable, Var_Type) %>%
```

```
mutate(Variable = as.character(Variable), Var Type =
as.character(Var Type))
  return(var_df)
}
var_review <-
  var_types(full_set_clean %>%
              select(-c(Id,SalePrice,d name)))
fac vars <- var review %>%
  filter(Var_Type == 'factor') %>%
  select(Variable) %>%
  t() %>%
  as.character()
# 43 total length(fac vars)
num vars <- var review %>%
  filter(grep1('character|integer|numeric', Var_Type)) %>%
  select(Variable) %>% t() %>% as.character() # 39 total but see GarageYrBlt
sum(complete.cases(full_set %>% select(-SalePrice)))
sum(complete.cases(full set clean %>% select(-SalePrice))) # 2,861 ~ 98%
nrow(full set clean) - 2861 # 58 NA
stat info <- psych::describe(full set clean %>% select(num vars, -Id, -
d name))
stat_info[c(2:nrow(stat_info)),c(2:5,8:9,13:ncol(stat_info)-1)]
train_data <- full_set_clean %>% filter(d_name == 'train') %>% select(-
test data <- full set clean %>% filter(d name == 'test') %>% select(-d name)
##View(train data)
dim(train data)
dim(test data)
dplyr::filter(full_set_clean,
              House Age Yrs < 0 | RemodAdd Age Yrs < 0 | Garage Age Yrs < 0)
%>%
  dplyr::select(YrSold, YearBuilt, YearRemodAdd, House Age Yrs, GarageYrBlt,
                RemodAdd_Age_Yrs, Garage_Age_Yrs) %>%
  kable(caption = "Table 3.1: Invalid Negative Values")
# Mutute Variables
# bc of the new Age vars, remove the YearBuilt, YearRemodAdd, GarageYrBlt
# set negative Ages to zero, scaled the YrSold, MoSold as a factor
full_set_clean_kyle <-</pre>
  full set clean %>%
  arrange(desc(d_name)) %>%
  dplyr::select(-c(Id, YearBuilt, YearRemodAdd, GarageYrBlt, d name)) %>%
  mutate(
    House Age Yrs = pmax(0, House Age Yrs),
    RemodAdd_Age_Yrs = pmax(0, RemodAdd_Age_Yrs),
    Garage_Age_Yrs = pmax(0, Garage_Age_Yrs),
   YrSold = as.ordered(YrSold),
    MoSold = as.ordered(MoSold),
   MSSubClass = as.factor(MSSubClass)
  )
factor_differences <-</pre>
```

```
full set clean %>%
  mutate(d name = factor(d name)) %>%
  select_if(is.factor) %>%
  #na.omit() %>%
  reshape2::melt(id.var = "d_name") %>%
  group_by(d_name, variable) %>%
  summarise(unique values = length(na.omit(unique(value)))) %>%
  spread(key = d_name, value = unique_values) %>%
  dplyr::filter(test != train) %>%
  left join(
    gather(full_set_clean) %>%
      group by(key) %>%
      summarize(NAs = sum(as.integer(is.na(value)))) %>%
      dplyr::select(variable = key, NAs)
kable(factor differences,
      caption = "Table 3.2: Differences in Factor Values between Test &
Training Sets")
#combine data sets for imputation
predictors_for_imputation <-</pre>
  full set clean kyle %>%
  dplyr::select(-SalePrice)
# https://www.rdocumentation.org/packages/VIM/versions/4.7.0/topics/aggr
missing plot <- VIM::aggr(predictors for imputation,
                      #numbers = T.
                      sortVars = T,
                      combine = T,
                      col = c("lightgreen", "darkred", "orange"),
                      labels=str_sub(names(predictors_for_imputation), 1, 8),
                      ylab="Figure 3.1: Missing Values in Train Set"
kable(data.frame(complete_cases_pct = missing_plot$percent[1]),
      caption = "Table 3.3 % of Complete Cases",
      digits = 1
dtypes <- rapply(predictors_for_imputation, class)</pre>
dtypes <- data.frame(</pre>
  Variable = names(dtypes),
  dtype = dtypes
)
missing_summary <-</pre>
  missing_plot$missings %>%
  arrange(-Count) %>%
  janitor::adorn totals() %>%
  mutate(
    pct missing = Count / nrow(predictors for imputation) * 100
    ) %>%
  filter(pct_missing > 0) %>%
  left join(dtypes)
missing_summary[nrow(missing_summary), "pct_missing"] <- NA</pre>
kable(missing_summary, digits = 3, row.names = T,
```

```
caption = "Table 3.4 Missing Values by Variable")
if (!exists("predictors imputed")){
  #https://www.rdocumentation.org/packages/mice/versions/2.46.0/topics/mice
  mice_mod <- mice(predictors_for_imputation, m = 1, method = "cart", seed =</pre>
5)
  predictors_imputed <- mice::complete(mice_mod)</pre>
full set imputed <-
  predictors imputed %>%
  mutate(SalePrice = full set clean kyle$SalePrice) %>%
  droplevels()
train data imputed <-
  full_set_imputed[1:nrow(train_data), ]
test data imputed <-
  full_set_imputed[nrow(train_data) + 1:nrow(test_data), ] %>%
  dplyr::select(-SalePrice)
# Visualize the imputations
# SOURCE: https://stackoverflow.com/questions/12056989/
# density-plots-with-multiple-groups?utm medium=organic&
# utm source=google rich ga&utm campaign=google rich ga
# Melt into long format
# Add a variable for the plot legend
mice_data <- mice::complete(mice_mod, "long", include = TRUE)</pre>
mice_mod_viz <-</pre>
  mice data %>%
  select if(is.numeric) %>%
  mutate(Imputed = ifelse(mice_data$.imp == "0", "Observed", "Imputed")) %>%
  reshape2::melt("Imputed") %>%
  na.omit()
if (!exists("mice_density_plot")){
mice density plot <-
  ggplot(mice_mod_viz, aes(x=value, colour = factor(Imputed))) +
  stat_density(geom = "path") +
  facet_wrap(~variable, scales="free") +
  labs(title = "Figure 3.2: Denisity plots of Observed & Imputed Values")
mice density plot
stripplot(mice mod, pch = 20, cex = 1.2,
          main = "Figure 3.3: Strip Plots of Observed & Imputed Values")
# http://web.maths.unsw.edu.au/~dwarton/missingDataLab.html
### Side-by-Side Boxplots of Categorical Variables
# create data
boxplot data <-
  train data imputed %>%
  select_if(function(x) !is.numeric(x)) %>%
  mutate(SalePrice = train data imputed$SalePrice) %>%
  reshape2::melt(id.vars = "SalePrice")
### Boxplots
ggplot(data = boxplot data, aes(x = value, y = SalePrice)) +
```

```
geom boxplot() +
  facet wrap( ~ variable, scales = "free") +
  coord_flip() +
  labs(title = paste0("Figure 3.4: Side-by-Side Box Plots of the Categorical
Variables ",
                       "versus the Response"))
# Reference: https://stackoverflow.com/questions/14604439/
# plot-multiple-boxplot-in-one-graph?utm medium=organic&utm source=
# google_rich_qa&utm_campaign=google_rich_qa
## CORRELATIONS
# correlation matrix
train data numeric <-
  train data imputed %>%
  select if(is.numeric)
cm <- cor(train_data_numeric, use = "pairwise.complete.obs")</pre>
corrplot::corrplot(cm, method = "square", type = "upper")
#find the top correlations
correlation df <- function(cm){</pre>
  #Creates a df of pairwise correlations
  correlations <- c(cm[upper.tri(cm)])</pre>
  cor_df <- data.frame(</pre>
             Var1 = rownames(cm)[row(cm)[upper.tri(cm)]],
             Var2 = colnames(cm)[col(cm)[upper.tri(cm)]],
             Correlation = correlations,
             Rsquared = correlations^2
       ) %>%
    arrange(-Rsquared)
  return(cor_df)
}
cor df <- correlation df(cm)</pre>
kable(head(cor_df, 10), digits = 2, row.names = T,
      caption = "Top Correlated Variable Pairs")
kable(head(dplyr::filter(cor_df, Var1 == "SalePrice" | Var2 == "SalePrice"
), 10),
      digits = 2, row.names = T, caption = "Top Correlated Variable Pairs")
# Reference: https://stackoverflow.com/questions/28035001/
# transform-correlation-matrix-into-dataframe-with-records-for-each-row-
column-pai
### CORRELATIONS WITH RESPONSE
pred vars <- dplyr::select(train data numeric, -SalePrice)</pre>
# categorical dummy vars
categorical vars <-
  train_data_imputed %>%
  select_if(function(x) !is.numeric(x)) %>%
  mutate(SalePrice = train_data_imputed$SalePrice)
categorical_dummy_vars <-</pre>
  model.matrix(SalePrice ~ ., data = categorical_vars) %>%
  data.frame() %>%
  dplyr::select(-X.Intercept.)
```

```
#squared variables
squared vars <-
  apply(pred_vars, 2, function(x) x^2) %>%
  as.data.frame()
colnames(squared_vars) <- paste0(names(squared_vars), "_2")</pre>
#square root variables
sqrt vars <-
  apply(pred vars, 2, function(x) x^2) %>%
  as.data.frame()
colnames(sqrt vars) <- paste0(names(sqrt vars), " sqrt")</pre>
#log variables
log vars <-
  apply(pred vars, 2, function(x) log(x + .01)) %>%
  as.data.frame()
colnames(log_vars) <- paste0(names(log_vars), "_log")</pre>
#combine all transformed variables
individual_vars <- cbind(categorical_dummy_vars,</pre>
                          squared vars,
                          sqrt vars,
                          log_vars,
                         pred vars)
# create interaction variables
# https://stackoverflow.com/questions/2080774/
# generating-interaction-variables-in-r-dataframes?
# utm medium=organic&utm source=google rich ga&utm campaign=google rich ga
if (!exists("all_interactions")){
  all interactions <- data.frame(t(apply(individual vars, 1, combn, 2,
prod)))
  colnames(all_interactions) <- combn(names(individual_vars), 2, paste,</pre>
collapse=":")
}
# combine the individual variables and interactions
all predictors <- cbind(individual vars, all interactions)
# response variable transformations
response transformed <-
  train data numeric %>%
  transmute(
    SalePrice = SalePrice,
    SalePrice_2 = SalePrice^2,
    SalePrice_sqrt = sqrt(SalePrice),
    SalePrice log = log(SalePrice)
# create pairwise correlation df
if (!exists("response_correlations")){
  response correlations <-
    cor(response_transformed, all_predictors, use = "pairwise.complete.obs")
%>%
    correlation df() %>%
    na.omit()
}
```

```
n rows <- 50
kable(head(dplyr::filter(response correlations, Var1 == "SalePrice sqrt"),
n rows),
      digits = 3,
      caption = "Table 3.5: Top Correlations with the Original Response
Variable")
# 1. Original Variables Imputed
# divide into training & test
train_orig_vars_imputed <- full_set_imputed[1:nrow(train_data), ]</pre>
test orig vars imputed <-
  full_set_imputed[nrow(train_data) + 1:nrow(test_data), ]
# 2. Several Predictor Transformations, including
# 7 categorical re-classifications & 5 interactions
full set predictors transformed <-
  full set imputed %>%
  mutate(
    RoofMatl_WdShngl = as.integer(RoofMatl == "WdShngl"),
    FireplaceQu Ex = as.integer(FireplaceQu == "Ex"),
    HeatingQC Ex = as.integer(HeatingQC == "Ex"),
    GarageQual abv avg = as.integer(GarageQual %in% c("TA", "Gd", "Ex")),
    PoolQC Ex = as.integer(PoolQC == "Ex"),
    Heating_Gas = as.integer(Heating %in% c("GasA", "GasW")),
    SaleCondition_Partial = as.integer(SaleCondition == "Partial"),
    OverallQual2 x GarageCars = OverallQual^2 * GarageCars,
    OverallQual2 x TotRmsAbvGrd log = OverallQual^2 * log(TotRmsAbvGrd),
    OverallQual2_x_GrLivArea = OverallQual^2 * GrLivArea,
    OverallQual2 x LotArea_log = OverallQual^2 * log(LotArea),
    OverallQual 2 = OverallQual^2
  dplyr::select(-c(RoofMatl, FireplaceQu, HeatingQC, GarageQual, PoolQC,
                   SaleCondition, Heating))
#divide into training & test
train predictors transformed <-
full set predictors transformed[1:nrow(train data), ]
test predictors transformed <-
  full set predictors transformed[nrow(train data) + 1:nrow(test data), ]
#3. Box-cox response transformation added to the existing predictor
transformations
lmod <- lm(SalePrice ~ ., data = train_predictors_transformed)</pre>
n <- nrow(train_predictors_transformed)</pre>
if (!exists("BIC lmod")) BIC lmod <- step(lmod, trace = 0, k = log(n))</pre>
PT <- car::powerTransform(as.formula(BIC lmod$call), data =
train predictors transformed)
train BC transformed <-
  train predictors transformed %>%
  mutate(SalePrice_BC = SalePrice^PT$lambda) %>%
  dplyr::select(-SalePrice)
# write.csv(train_orig_vars_imputed, "train_orig_vars_imputed.csv")
# write.csv(train_predictors_transformed, "train_predictors_transformed.csv")
```

```
# write.csv(train_BC_transformed, "train_BC_transformed.csv")
# write.csv(test orig vars imputed, "test orig vars imputed.csv")
# write.csv(test_predictors_transformed, "test_predictors_transformed.csv")
# Read prepared data
hcData =
read.csv(paste0('https://raw.githubusercontent.com/omerozeren/DATA621/master/
final project/train BC transformed.csv'))
bcData$X = NULL
imputedData =
read.csv(paste0('https://raw.githubusercontent.com/omerozeren/DATA621/master/
final_project/train_orig_vars_imputed.csv'))
imputedData$X = NULL
transformedData =
read.csv(paste0('https://raw.githubusercontent.com/omerozeren/DATA621/master/
final_project/train_predictors_transformed.csv'))
transformedData$X = NULL
library(psych)
describe(bcData)
m1BC = lm(data=bcData, formula =SalePrice BC~.)
m1IMP = lm(data = imputedData, formula = SalePrice~.)
anova(m1IMP,m1TD)
m1TD = lm(data=transformedData,formula = SalePrice~.)
m2BCstep =step(m1BC,direction = 'backward', trace=0)
summary(m2BCstep)
m3BC = lm(data = bcData, formula =
SalePrice BC~OverallCond+Condition2+Condition1+
            Neighborhood+MSZoning
+X1stFlrSF+X2ndFlrSF+LowQualFinSF+KitchenQual+
            Fireplaces +ScreenPorch+House_Age_Yrs+RoofMatl_WdShngl+
            GarageQual abv avg +OverallQual2 x GrLivArea+
            OverallQual2_x_TotRmsAbvGrd_log+OverallQual2_x_GarageCars)
m4BC = lm(data = bcData, formula =
SalePrice BC~OverallCond+Condition2+Condition1+
           Neighborhood+MSZoning
+X1stFlrSF+X2ndFlrSF+LowQualFinSF+KitchenQual+
Fireplaces+WoodDeckSF+Functional+FullBath+BsmtFullBath+BsmtFinType1+
           BsmtExposure +BsmtQual +LandSlope +LandContour+LotArea
+LotFrontage+
           LotConfig + Utilities + HouseStyle + RoofStyle + MasVnrArea +
           ScreenPorch+House_Age_Yrs+RoofMatl_WdShngl+GarageQual_abv_avg +
           OverallQual2 x GrLivArea+OverallQual2 x TotRmsAbvGrd log+
           OverallQual2 x GarageCars)
m5imp = lm(data = imputedData, formula =
log(SalePrice)~OverallCond+Condition2+
             Condition1+Neighborhood+MSZoning
+X1stFlrSF+X2ndFlrSF+LowQualFinSF+
             KitchenQual+(Fireplaces)^2+WoodDeckSF+Functional+FullBath+
             BsmtFullBath+BsmtFinType1 + BsmtExposure +BsmtQual +LandSlope +
             LandContour+log(LotArea) + LotFrontage+ LotConfig + Utilities +
```

```
HouseStyle + RoofStyle + MasVnrArea +ScreenPorch+House Age Yrs)
m6TD = lm(log(SalePrice)~OverallCond+Condition2+
            Condition1+Neighborhood+MSZoning
+X1stFlrSF+X2ndFlrSF+LowQualFinSF+
KitchenQual+Fireplaces+WoodDeckSF+Functional+FullBath+BsmtFullBath+
            BsmtFinType1 + BsmtExposure +BsmtQual +LandSlope +LandContour+
            log(LotArea) + LotFrontage+ LotConfig + Utilities + HouseStyle +
            RoofStyle + MasVnrArea
+ScreenPorch+House Age Yrs+RoofMatl WdShngl+
            GarageQual_abv_avg +OverallQual2_x_GrLivArea+
            OverallQual2 x TotRmsAbvGrd log+OverallQual2 x GarageCars,
          data = transformedData)
# Get AIC
AIC (m1BC, m2BCstep, m3BC, m4BC, m5imp, m6TD)
summary(m1BC)
summary(m2BCstep)
summary(m3BC)
summary(m4BC)
summary(m5imp)
summary(m6TD)
# Read test data
transformedTest =
read.csv(paste0('https://raw.githubusercontent.com/omerozeren/DATA621/master/
final project/test predictors transformed.csv'))
index <- transformedTest$X</pre>
transformedTest$X <- NULL</pre>
# Tune model and run prediction
library(caret)
ctrl <- trainControl(method = "repeatedcv", number = 10, savePredictions =</pre>
TRUE)
model_fit <- train(log(SalePrice)~OverallCond+Condition2+</pre>
                     Condition1+Neighborhood+MSZoning
+X1stFlrSF+X2ndFlrSF+LowQualFinSF+
KitchenQual+Fireplaces+WoodDeckSF+Functional+FullBath+BsmtFullBath+
                     BsmtFinType1 + BsmtExposure +BsmtQual +LandSlope
+LandContour+
                     log(LotArea) + LotFrontage+ LotConfig + Utilities +
HouseStyle +
                     RoofStyle + MasVnrArea
+ScreenPorch+House_Age_Yrs+RoofMatl_WdShngl+
                     GarageQual abv avg +OverallQual2 x GrLivArea+
OverallQual2_x_TotRmsAbvGrd_log+OverallQual2_x_GarageCars,
                   data=transformedData, method="lm", trControl = ctrl,
tuneLength = 5)
pred <- predict(model fit, newdata=transformedTest)</pre>
results <- cbind(index, exp(pred))
write.csv(results, "c://temp//results_tune.csv", row.names = FALSE)
```

```
summary(model fit)
library(ggplot2)
library(ggfortify)
autoplot(m6TD2)
library(car)
vif(m6TD2)
alias(m6TD2)
transformedData2 <- transformedData[-c(826,524,1299,89),]
m6TD2 = lm(log(SalePrice)~OverallCond+ # Condition2+
            Condition1+
            MSZoning +X1stFlrSF+X2ndFlrSF+LowQualFinSF+Neighborhood+
KitchenQual+Fireplaces+WoodDeckSF+Functional+FullBath+BsmtFullBath+
            BsmtFinType1 + BsmtExposure +BsmtQual +
            LandSlope +LandContour+
            log(LotArea) + LotFrontage+ LotConfig + HouseStyle + #Utilities +
            RoofStyle + MasVnrArea +ScreenPorch+House Age Yrs +
RoofMatl WdShngl+
            GarageQual abv avg +OverallQual2 x GrLivArea+
            OverallQual2 x TotRmsAbvGrd log+OverallQual2 x GarageCars,
          data = transformedData2)
summary(m6TD2)
pred <- predict(m6TD2, newdata=transformedTest)</pre>
results <- cbind(index, exp(pred))</pre>
write.csv(results, "c://temp//results m5TD2.csv", row.names = FALSE)
AIC(m6TD2)
table(transformedData2$OverallCond)
table(transformedData2$Condition1)
table(transformedData2$Condition2) # Removed
table(transformedData2$MSZoning)
table(transformedData2$Neighborhood)
table(transformedData2$KitchenQual)
table(transformedData2$Fireplaces)
table(transformedData2$WoodDeckSF)
table(transformedData2$FullBath)
table(transformedData2$BsmtFullBath)
table(transformedData2$BsmtFinType1)
table(transformedData2$BsmtExposure)
table(transformedData2$BsmtQual)
table(transformedData2$LandSlope)
table(transformedData2$LandContour)
table(transformedData2$LotConfig)
table(transformedData2$Utilities) # Removed
table(transformedData2$HouseStyle)
table(transformedData2$RoofStyle)
table(transformedData2$RoofMatl_WdShngl)
table(transformedData2$GarageQual abv avg)
table(transformedData2$MasVnrArea)
ce <- as.data.frame(m6TD2$coefficients)</pre>
colnames(ce) <- c("Coefficient")</pre>
```

write.csv(round(ce, 6), "c://temp//embedded_table2_coef.csv", row.names =
TRUE)