Academia Sabatina de Jóvenes Talento

Colinealidad y Concurrencia Clase #9

Encuentro: 23 Nivel: 5

Curso: Colinealidad y Concurrencia

Semestre: II

Fecha: 23 de septiembre de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Contenido: Clase práctica #3

En esta tercera clase práctica se presentan los primeros diez de los veinte problemas del trabajo de Concurrencia y Colinealidad.

1. Problemas propuestos

Primeros diez problemas del trabajo de concurrencia y colinealidad.

Problema 1.1. Sea D el pie de altura desde A en el triángulo $\triangle ABC$ y M, N puntos en los lados CA y AB talque las rectas BM y CN se intersecan en AD. Probar que AD es bisectriz del ángulo $\angle MDN$.

Problema 1.2. Sea $\triangle ABC$ un triángulo con incentro I. Sea Γ un círculo centrado en I con radio mayor al inradio. Sean X_1 la intersección de Γ con AB más cercana a B; X_2 y X_3 las intersecciones de Γ con BC donde X_2 es más cercana a B; y X_4 la intersección de Γ con CA más cercana a C. Sea K la intersección de X_1X_2 con X_3X_4 . Probar que AK biseca X_2X_3 .

Problema 1.3. Sea ABCD un cuadrado y sea X un punto en lado BC. Sea Y un punto en la recta CD tal que BX = YD y D se encuentra entre C y Y. Demuestra que el punto medio de XY se encuetra sobre la diagonal BD.

Problema 1.4. Sean Γ_1 una circunferencia y P un punto fuera de Γ_1 . Las rectas tangentes desde P a Γ_1 tocan a la circunferencia en los puntos A y B. Considera M el punto medio del segmento PA y Γ_2 la circunferencia que pasa por los puntos P, A y B. La recta BM interseca de nuevo a Γ_2 en el punto C, la recta CA interseca de nuevo a Γ_1 en el punto D, el segmento DB interseca de nuevo a Γ_2 en el punto E y la recta PE interseca a Γ_1 en el punto E (con E entre E y E). Muetra que las rectas E0 y E1 concurren.

Problema 1.5. Sea Ω el circuncírculo del triángulo $\triangle ABC$ y sea ω_a la circunferencia tangente al segmento CA, segmento AB y Ω . Se definen ω_b y ω_c de manera análoga. Sea A', B', C' los puntos de toque de $\omega_a, \omega_b, \omega_c$ con Ω , respectivamente. Probar que AA', BB', CC' concurren en la recta OI donde O e I son el cincuncentro y el incentro de $\triangle ABC$, respectivamente.

Problema 1.6. Sea ABCD un trapezoide con AB > CD y AB||CD. Sean los puntos K, L sobre los segmentos AB, CD, respectivamente, tal que $\frac{AK}{KB} = \frac{DL}{LC}$. Suponga que existen los puntos P, Q en la recta KL que satisfacen $\angle APB = \angle BCD$ y $\angle CQD = \angle ABC$. Probar que los puntos P, Q, B, C con concíclicos.

Problema 1.7. Los puntos P, Q y R están sobre los lados AB, BC y CA del triángulo acutángulo $\triangle ABC$, respectivamente. Si $\angle BAQ = \angle CAQ$, $QP \perp AB$, $QR \perp AC$ y CP y BR se intersecan en S probar que $AS \perp BC$.

Problema 1.8. Sea $\triangle ABC$ un triángulo con circuncentro O y baricentro G. Sean A', B', C' las reflexiones de los puntos medios de BC, CA, AB con respecto a O, respectivamente. Probar que AA', BB', CC' y GO con concurrente.

Problema 1.9. Un triángulo isósceles $\triangle ABC$ tiene base AB y altura CD con BC = CA. Sean P un punto sobre CD, E la intersección de la recta AP con BC y F la intersección de la recta BP con CA. Suponga que los incírculos del triángulo $\triangle ABP$ y del cuadrilátero PECF son congruentes. Demuestre que los incírculos de $\triangle ADP$ y $\triangle BCP$ son también congruentes.

Problema 1.10. Sea el triángulo $\triangle ABC$ con AC = BC, sea P un punto dentro del triángulo tal que $\angle PAB = \angle PBC$. Si M es el punto medio de AB, entonce probar que $\angle APM + \angle BPC = 180^{\circ}$.

Nota: los problemas no está ordenados por orden de dificultadad.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com