Machine Learning

Clustering and Anomalies

Jeff Abrahamson

9, 16 décembre 2016 13 janvier, 9 mars 2017

Clustering

The Problem

Have points $d = \{d_1, \dots, d_n\}$.

Have number of clusters k.

Want: an assignment of points to clusters

Copyright 2016 Jeff Abrahamson, for private use by course students only

The Algorithm

- 1 Assign points to clusters at random
- 2 Repeat until stable:
 - Compute centroids of each cluster
 - 2 Assign points to nearest centroid

Cost function

$$cost = \sum_{i} \sum_{j} |x_{j} - \mu_{i}|$$

Points $d = \{d_1, ..., d_n\}$

Clusters $K = \{c_1, \ldots, c_k\}$.

Cluster c_{d_i} is the centroid of d_i .

Points $d = \{d_1, ..., d_n\}$

Clusters $K = \{c_1, \ldots, c_k\}$.

Cluster c_{d_i} is the centroid of d_i .

Let a_i be the average dissimilarity of d_i to all points in its cluster.

Let b_i be the least average dissimilarity of d_i to any cluster other than k_{d_i}

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

$$s_i = \begin{cases} 1 - a_i/b_i & \text{if } a_i < b_i \\ 0 & \text{if } a_i = b_i \\ b_i/a_i - 1 & \text{if } a_i > b_i \end{cases}$$

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

$$s_i = \begin{cases} 1 - a_i/b_i & \text{if } a_i < b_i \\ 0 & \text{if } a_i = b_i \\ b_i/a_i - 1 & \text{if } a_i > b_i \end{cases}$$

So
$$s_i \in [-1, 1]$$

 s_i near 1 \iff d_i well clustered

 s_i near 0 \iff d_i on the border between two clusters

 s_i near -1 \iff d_i poorly clustered

Consider $\overline{s_i}$ over $i \in c_j$ for cluster c_j

Consider $\overline{s_i}$

video time

Anomaly Detection

- Supervised
- Unsupervised

Supervised anomaly detection:

- Training data: normal, abnormal
- Train a classifier

So reduced to existing problem of supervised classification.

Unsupervised anomaly detection:

- Mostly, this is clustering
- Increasingly, this is neural networks in advanced applications

Applications:

- Intrusion detection (physical or electronic)
- Fraud detection
- Health monitoring (people, animals, machines)

Techniques:

Density: kNN, local outlier factor

SVM

• Clustering: k-Means

kNN techniques and variations

- Voronoi diagrams
- aNN

LOF

- Measure average density using kNN
- Points with low local density are suspect outliers
- There is no good thresholding technique

k-Means

ping times

httpd response times

single/multiple host access abuse (DOS/DDOS)

bank card fraud

spam

