1 绪论 1

1 绪论

- 1. 教材: 泛函分析导论及应用(前五章), 欧文克雷斯齐格;
- 2. 参考书:
 - (a) 泛函分析讲义, 张恭庆;
 - (b) 时变函数论, 周民强;
- 3. 作业: 每月一次, 形式不限;

2 度量空间与集合(作业: 20230220)

- 1. 度量空间: 设X是集合,有映射 $d:(x,y) \rightarrow d(x,y).d$ 满足:
 - (a) $\forall x, y \in X, d(x, y) \ge 0$;
 - (b) $\forall x, y \in X, d(x, y) = d(y, x);$
 - (c) $\forall x, y, z \in X, d(x, z) \le d(x, y) + d(y, z);$

则称 d 为一个度量(距离), (X, d)为度量空间;

2. 常见度量:

(a)
$$p-$$
 度量: $d_p(x,y) = \left(\sum_{x=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}};$

- (b) ∞ 度量: $d_{\infty}(x,y) = \max |x_i y_i|$;
- 3. 球: 在度量空间 (X,d) 中,称
 - (a) 开球: $B(x_0, r) = \{x \in X | d(x, x_0) < r\};$
 - (b) 闭球: $\overline{B(x_0,r)} = \{x \in X | d(x,x_0) \le r\};$
 - (c) 球面: $S(x_0, r) = \{x \in X | d(x, x_0) = r\};$
- 4. ε 邻域: 开球 $B(x_0, \varepsilon)$ 称为 x_0 的一个 ε 邻域;
 - (a) 开集: 度量空间 $(X,d), M \subset X$, 若对任意元素 $x_0 \in M$, 存在 $\varepsilon > 0$, 使得 $B(x_0, \varepsilon) \subset M$, 则称 $M \in X$ 中的开集;
 - (b) 闭集: 度量空间 $(X,d), K \subset X, 若 K^c = X | K$ 是开集, 则称 K 是 X 中的闭集;

- (c) 内点: 度量空间 (X,d), $M \subset X, x_0 \in M$, 若存在 $\varepsilon > 0$, 使得 $B(x_0, \varepsilon) \subset M$, 则称 $x_o \in M$ 的一个内点;
- (d) 内部: M 中全体内点构成的集合称为 M 的内部, 记为: M^{o} ;
- 5. 集类: E 是 X 中某些子集构成的集合, 称 E 为集类;
- 6. 拓扑空间: 满足开集条件的集类组成的空间 (X,Ξ) , 定义见另一笔记文件;
- 7. 聚点 (极限点): 度量空间 $(X,d), M \subset X, x_0 \in X, \Xi, x_0$ 的任一 ε 邻域 都至少函有一个不同于 x_0 的点 $y_o \in M$, 则称 $x_0 \in M$ 的聚点;
 - (a) 导集: M 的聚点全体构成的集合称为 M 的导集, 记为 M';
 - (b) 闭包: $\bar{M} := M \cup M'$;
 - i. 度量空间 $(X,d), M \subset X, 则 \overline{M}$ 是闭集;
 - ii. 度量空间 $(X,d), M \subset X : M$ 是闭集 $\Leftrightarrow M = \overline{M}$;
 - (c) 边缘: $\partial M = \bar{M} M^o$;
- 8. 有限集: 如果集合中元素个数有限,则称其为有限集;
 - (a) 可列集: 若集合中元素的个数无限多, 但可与自然数集 № 中的元素 ——对应, 则集合为可列集;
 - (b) 可数集: 有限集和可列集统称为可数集;
 - (c) $A_n(n \in \mathbb{N})$ 为可列集, 则 $A = \bigcup_{n=1}^{\infty} A_n$ 为可列集;
 - i. 推论: 可列个可列集的并集为可列集. 如: 有理数集 Q 是可列集;
 - (d) 常见的不可列集: 无理数集, 实数集 ℝ;
- 9. 稠密子集: 度量空间 $(X,d), M \subset X$, 若 $\overline{M} = X$, 则称 M 在 X 中稠密, M 是 X 中的稠密子集;
- 10. 可分性: 若 X 有一个可数的稠密子集 M, 则称 X 是可分的, (X, d) 是一个可分空间;
 - (a) 常见可分空间: $(\mathbb{R}^n, d_p)(1 \le p \le \infty)$, $(l^p, d_p)(1 \le p \le \infty)$, 其中 $l^p = \{\{x_i\}, i \in \mathbb{N}, \sum_{i=1}^{\infty} |x_i|^p < \infty\}$;

- i. 函数空间可分: $(\mathbb{C}[a,b],d_{max})$ $d_{max}(f,g) = \max_{a \leq t \leq b} |f(t) g(t)|$ $C[a,b] = \{f : [a,b] \to R | \exists f'(t)\}$
- (b) 常见不可分空间: (l^{∞}, d_{∞}) ; $l^{\infty} = \{(x_i) | i \in \mathbb{N}, \sup_{i \in \mathbb{N}} |x_i| < \infty \}$
- 11. 作业: 20230220
 - (a) 设 (X,d) 是任一度量空间,证明由 $\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$ 在 X 上定义 了另一个度量,且在 \tilde{d} 度量下, X 是有界的;
- 3 映射(作业: 20230227) 与巴拿赫不动点定理(作业: 20230309)
 - 1. 连续: 有度量空间 (X, d_X) 和 (Y, d_Y) , 映射 $T: X \to Y, x_0 \in X$, 若 $\forall \varepsilon > 0, \exists \delta > 0: \forall x, d_X(x_0, x) < \delta$, 有 $d_Y(T(x), T(x_0)) < \varepsilon$, 则称 T 在 x_0 处连续.

可简记为: $\forall \varepsilon > 0, \exists \delta > 0 : T(B(x_0, \delta)) < B(T(x_0), \varepsilon);$

- (a) 映射连续: 映射若映射 T 在 X 中每一点连续, 则称 T 为连续映射;
- (b) 连续性等价描述 (与空间结构相融): U 是开集, $T:(X,d) \to (Y,d)$ 连续 $\Leftrightarrow \forall U \subset Y: T^{-1}U = \{x \in X | T(x) \subset U\}$ 是 X 中的开集;
 - i. 若开集 $V, \forall V \subset C : TV = \{y \in Y | \exists x \in V, Tx = y\}$, 其像 TV 不一定是 Y 中的开集;
- 2. 极限 (在点处的收敛性): 在度量空间 (X,d), 序列 $\{x_n\}_{n=1}^{\infty} \subset X$, $\exists x \in X$: $\lim_{i \to \infty} d(x_0, x) = 0$, 则称 x 是序列 x_n 的极限. 记 $x_n \to x$ 或 $\lim_{n \to +\infty} x_n = x$;
 - (a) 直径: 在度量空间 $(X,d), M \subset X$, 直径 $d(M) = \sup_{x \in M, y \in M} d(d,y)$;
 - (b) 有界集: 在度量空间 (X,d), $d(M) < \infty$, 则称 M 是有界集. M 是有界集 $\leftrightarrow \forall x_0 \in X, \exists r = r(x_0) > 0 : M \subset B(x_0,r)$;
 - (c) 极限的唯一性: 在度量空间 (X,d) 中的收敛序列是有界集,且极限唯一;

- i. 若 $x_n \to x, y_n \to y$, 则 $d(x_n, y_n) \to d(x, y)$;
- 3. 柯西列: 在度量空间 (X,d) 中, 序列 $\{x_n\}_{n=1}^{\infty} \subset X, \forall \varepsilon > 0, \exists N = N(\varepsilon) > 0 : n, m > N, d(x_n, y_n) < \varepsilon$, 则称 $\{x_n\}$ 为柯西列;
 - (a) 在度量空间中,收敛序列一定是柯西列(柯西列未必收敛);
 - (b) 完备空间: 在度量空间 (X, d) 中, 如果 X 中任何柯西列都是收敛 列, 则称 X 完备;
 - i. 常见完备空间: $(\mathbb{R}^n, d_p), (l^p, d_p)$;
- 4. 闭集: 在度量空间 (X,d) 中, $M \subset X$, M 是闭集 $\Leftrightarrow \forall \{x_n\} \subset M : x_n \to x \in X, x \in M;$
- 5. 闭包: 在度量空间 (X,d) 中, $M \subset X, x \in X, x \in \bar{M} = M \cup M' \Leftrightarrow \exists \{x_n\} \subset M : x_n \to x;$
- 6. 子空间: 在度量空间 (X,d) 中, $M \subset X$. 则度量空间 (M,d) 被称为子空间:
 - (a) 子空间完备性: 在完备的度量空间 (X,d) 中, $M \subset X$, 则: 当且仅 当 $M \neq X$ 中的闭集时, M 完备;
- 7. 连续函数: 度量空间 (X,d) 和 (Y,d) 有 $T:(X,d) \to (Y,d)$ 在 x_0 连续, 当且仅当若 $x_n \to x$ 在 (X,d), 则 $Tx_n \to Tx_0$ 在 (Y,d) 中;
- 8. 等距映射: 度量空间 (X, d) 和 (\tilde{X}, \tilde{d}) 有 $T: (X, d) \to (\tilde{X}, \tilde{d})$, 若 $\forall x.y \in X, \exists \tilde{d}(Tx, Ty) = d(x, y)$, 则称 T 是等距映射;
 - (a) 等距空间: 若有双射 (单射且满射) $T: (X,d) \to (\tilde{X},\tilde{d})$, 且 T 为等距映射, 则称度量空间 (X,d) 和 (\tilde{X},\tilde{d}) 是等距空间;
- 9. 完备化空间: 度量空间 (X,d) 一定存在一个完备的度量空间 (\hat{X},\hat{d}) , 且 $W \subset \hat{X}$ 满足 W 在 \hat{X} 中稠密 $(\bar{M} = \hat{X})$ 且 W 与 X 是等距空间, 则称 \hat{X} 是 X 的完备化空间;
- 10. 不动点: 集合 X, 映射 $T: X \to X$, 若 $\exists x \in X: T(x) = x$, 则称 x_0 是映射 T 的一个不动点;
 - (a) 压缩映射: 在度量空间 (X,d) 中, 有映射 $T: X \to X$, 若 $\exists 0 < a < 1: \forall x, y \in X, d(Tx, Ty) \leq ad(x, y)$, 则称 T 为压缩映射;

- (b) 巴拿赫不动点定理: 在完备度量空间 (X,d) 中, 有压缩映射 $T: X \to X$, 则存在唯一不动点 x, 且 $\forall x_0 \in X, x_n = Tx_{n-1}, n \in N^*$, 则 $x_n|_{n\to\infty} = x$;
- 11. 李氏条件: $\forall (t, x), (t, y) \in R, \exists k > 0, s.t. : |f(t, x) f(t, y)| \le k|x y|;$
- 12. 常微分方程局部解的存在唯一性定理: 设 $R = \{(t,x)||t-t_0| \le a, |x-x_0| \le b\}$, f 在 R 上连续, $\forall (t,x) \in R$, $|f(t,x)| \le c$, f 对 x 满足李氏条件, 则常微分方程 $\begin{cases} x'(t) = f(t,x(t)) \\ x(t_0) = x_0 \end{cases}$ 在区间 $[t_0 \beta, t_0 + \beta]$ 上存在唯一的解 x(t), $\beta < \min\{a, \frac{b}{c}, \frac{1}{k}\}$;
- 13. 作业: 20230227
 - (a) 证明映射 $T: X \to Y$ 当且仅当任一闭集 $M \subset Y$ 的逆象是 X 中的闭集时才是连续的;
- 14. 作业: 20230309
 - (a) 若度量空间 X 中的序列 (x_n) 是收敛的且有极限 x, 证明 (x_n) 的每一个子序列 (x_{n_k}) 都是收敛的, 并且有同一个极限 x;

4 赋范空间(作业: 20230317) 与线性算子(作业 20230425)

- 1. 加法: 集合 X, 数域 k, 加法 $+: X \times X \to X$, 满足:
 - (a) 交換律: x + y = y + x;
 - (b) 结合律: (x + y) + z = x + (y + z);
 - (c) 零元: $\exists \theta \in X, s.t. : \forall x \in X, x + \theta = x, 则称 \theta 为零元;$
 - (d) 逆元: $\forall x \in X, \exists x' \in X, s.t. : x + x' = \theta$, 则称 x' 为 x 的逆元, 记作 -x;
- 2. 数乘: 集合 X, 数域 K, 数乘 $\cdot : k \times X \to X$, $k \in K$, 满足:
 - (a) $\alpha(\beta x) = (\alpha \beta)x, \forall \alpha, \beta \in K, \forall x, y \in X;$
 - (b) 1x = x;

- (c) $\alpha(x+y) = \alpha x + \alpha y$;
- (d) $(\alpha + \beta)x = \alpha x + \beta x$;
- 3. 线性空间: 定义了加法和数乘的空间 $(X, K, +, \cdot), x \in X$ 称为向量 (矢量), $k \in K$ 称为标量. 线性空间以后默认装配数域, 加法, 数乘;
 - (a) 线性空间的零元唯一;
 - (b) 线性空间的逆元唯一;
 - (c) $\forall x \in X, 0x = \theta;$
 - (d) $-1 \cdot x = -x$;
 - (e) $\alpha\theta = \theta$;
- 4. 常见线性空间:($C[a, b], \mathbb{R}, +, \cdot$), ($l^p, \mathbb{R}, +, \cdot$);
- 5. 线性组合: 设 X 是线性空间, $x_1, x_2, ...x_n \in X$, 称 $a_1x_1 + ... + a_nx_n, a_n \in K$ 为 $x_1, x_2, ...x_n$ 的线性组合;
- 6. 子空间: 设 X 是线性空间, $M \subset X$, 称 M 中向量的所有线性组合构成的集合为 M 所张成的子空间, 记为 $\operatorname{span} M$;
 - (a) spanM 对加法和数乘封闭;
 - (b) 线性空间的子空间: 设 X 是线性空间, 子集 $Y \subset X$, 若 $\forall y_1, y_2 \in Y$, $\forall a_1, a_2 \in K$, 都有 $a_1y_1 + a_2y_2 \in Y$, 则 Y 本身也是线性空间, 称 Y 为 X 的一个子空间;
- 7. 线性无关: 设 X 是线性空间, $\{x_1, ..., x_n\} \subset X$, 若 $a_1x_1 + ... + a_nx_n = \theta$, 则一定有 $a_1 = ... = a_n = 0$, 称 $\{x_1, ..., x_n\}$ 线性无关;
 - (a) 线性相关: 若存在不全为零的标量 $a_1,...,a_n$, 使得 $a_1x_1 + ... + a_nx_n = \theta$, 则称 $\{x_1,...,x_n\}$ 线性相关;
- 8. 维数: 设 X 是线性空间, 若 $\exists n > 0, n \in \mathbb{Z}^*$, 使得 X 中包含 n 个线性无关的向量, 并且任意 n+1 个向量都线性相关, 则称线性空间 X 是有限维, $n = \dim X$ 为 X 的维数;
 - (a) 无穷维: 若 X 不是有限维, 则称 X 是无穷维的;
- 9. 基: 若 dim X = n, 则 X 中任意 n 个线性无关的向量称为空间的一个基;

- (a) 若 $\dim X = n$, $\{e_1, ..., e_n\}$ 是其中一个基,则对任意 $x \in X$, 有 $x = a_1 e_1 + ... + a_n e_n$, 且表达方式唯一;
- 10. 范数: 设 X 是线性空间, 映射 $||\cdot||: X \to \mathbb{R}$, 同时满足下面条件时, 则称 $||\cdot||$ 为 X 上的范数;
 - (a) 非负性: $||x|| \ge 0$, $||\theta|| = 0$;
 - (b) 正齐次性: $\forall a \in K, x \in X, ||ax|| = |a| \cdot ||x||$;
 - (c) 三角不等式: $||x + y|| \le ||x|| + ||y||$;
- 11. 赋范空间: 称定义了范数的线性空间 $(X, ||\cdot||)$ 为赋范空间, 赋范空间是以范数为度量的度量空间;
 - (a) 巴拿赫空间 (完备赋范空间): 若赋范空间 $(X, ||\cdot||)$ 是完备的,则称 X 其为巴拿赫空间;
 - i. 常见巴拿赫空间: $(\mathbb{R}^n, ||\cdot||_p), (l^p, ||\cdot||_p), (C[a, b], ||\cdot||_{max});$
 - (b) 设 X 是赋范空间, 子空间 $Y \subset X$, 则 $(Y, || \cdot ||)$ 也是赋范空间;
 - (c) 闭子空间: 若 Y 是赋范空间 X 的子空间, 且 Y 是 X 中的闭集,则称 Y 是 X 中的闭子空间;
 - i. 巴拿赫空间 $(X, ||\cdot||)$, 子空间 $Y \subset X$, 当且仅当 $Y \in X$ 中的闭集, $(Y, ||\cdot||)$ 是完备的;
 - (d) 极限收敛: 设 X 是赋范空间, 序列 $\{x_n\}_{n=1}^{\infty} \subset X$, 前 n 项和 $S_n = x_1 + ... + x_n \in X$, $\{S_n\}_{n=1}^{\infty} \subset X$. 若存在 $S \in X$, 使得 $S_n \to S$, $n \to +\infty$, 则称 $\sum_{n=1}^{\infty} x_n$ 收敛, 记 $S = \sum_{n=1}^{\infty} x_n$;
 - (e) Schauder 基: 若赋范空间 X 中存在 $\{e_n\}_{n=1}^{\infty}$,使得对任意 $x \in X$,存在唯一 $\{a_n\}_{n=1}^{\infty} \subset K$,满足 $\lim_{n \to +\infty} ||\sum_{i=1}^{n} a_i e_i x|| = 0$,则称序列 $\{e_n\}_{n=1}^{\infty}$ 是 X 中的一个 Schauder 基,记作 $\sum_{i=1}^{\infty} a_i e_i = x$;
- 12. 赋范空间的完备化: 设 X 是赋范空间,则存在一个巴拿赫空间 (完备的赋范空间) \hat{X} 和稠密子空间 $W \subset \hat{X}$,使得 $X \subseteq W$ 是等距同构;
 - (a) \mathbb{R}^1 上的一个定理: 若 $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ 有界,则其存在一个子列 $\{x_{n_i}\}_{i=1}^{\infty} \subset \{a_n\}_{n=1}^{\infty}$ 使得 $x_{n_i} \to x \in \mathbb{R}(i \to +\infty)$;

- i. 在 \mathbb{R}^m 上定义范数 $||x||_1 = |x_1| + ... + |x_n|$, 若 $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}^m$ 有界, 则存在 $\{x_{n_i}\}_{i=1}^{\infty} \subset \{a_n\}_{n=1}^{\exists n}$, 使得 $x_{n_i} \to x \in \mathbb{R}^m$, $(i \to +\infty)$;
- (b) 设 X 是赋范空间, $\{x_1, ..., x_n\} \subset X$ 线性无关, 则存在常数 C > 0, 使得对任何 n 个标量 $\beta_1, ..., \beta_n \in K$ 满足 $\sum_{i=1}^n |\beta_i| = 1$, 由 $||\beta_1 x_1 + ... + \beta_n x_n|| \ge C > 0$;
 - i. 设 X 是赋范空间, $\{x_1, ..., x_n\} \subset X$ 线性无关, 则存在常数 C > 0, 使得对任何 n 个标量 $\alpha_1, ..., \alpha_n \in K$, $||\alpha_1 x_1 + ... + \alpha_n x_n|| \ge C(|\alpha_1| + ... + |\alpha_n|)$;
- (c) 赋范空间子空间的完备性: 赋范空间 X 的任一有限维子空间 Y 是完备的;
 - i. 有限维的赋范空间,一定是巴拿赫空间;
- (d) 设 X 是赋范空间, $Y \subset X$, Y 是有限维子空间, 则 Y 一定是 X 中的闭集;
- 13. 等价范数: 设 X 是一个线性空间, || · || 和 || · ||₀: X → ℝ 都是范数. 若 $\exists a, b > 0$ 使得 $\forall x \in X, a ||x||_0 \le ||x|| \le b ||x||_0$, 则称 || · || 和 || · ||₀ 等价;
 - (a) 等价范数不改变收敛性: 若 $||\cdot||$ 和 $||\cdot||_0$ 等价, 则 $\{x_n\}_{n=1}^{\infty} \subset X, x_0 \in X, x_n \to x_0$ 在 $||\cdot||$ 下, 当且仅当 $x_n \to x_0$ 在 $||\cdot||_0$ 下;
 - (b) 设 X 是有限维线性空间, 任意两种范数 $||\cdot||$ 和 $||\cdot||_0$ 一定是等价的;
 - i. 有限维上的任意范数都与 ||·||2 等价;
- 14. 紧空间: 设度量空间 X 的每一个序列都有收敛的子序列,则称空间 X 是一个紧的;
 - (a) 紧子集: 设 $M \subset X$, (M,d) 是 (X,d) 的子空间, 若 (M,d) 是紧的,则称 M 是紧子集;
 - i. M 是紧集, 当且仅当 $\forall \{x_n\}_{n=1}^{\infty} \subset M, \exists \{x_{n_i}\}_{i=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}, s.t.: x_{n_i} \to x \in M(i \to \infty);$
 - (b) 度量空间 X 中紧子集 M 一定是有界闭集;
 - i. 若 M 是一个紧集, 则 M 是一个有界闭集;

- (c) 若 X 是有限维赋范空间,则有界闭集 $M \subset X$ 是一个紧子集;
- 15. 黎斯引理: 设 Z 是赋范空间, 真子空间 $Y \subset Z$, 若 Y 是闭集, 则对 $\forall \theta \in (0,1)$, 都 $\exists z, ||z|| = 1, s.t. : d(z,Y) = \inf_{y \in Y} ||z-y|| \ge \theta$;
 - (a) 有限维赋范空间条件: 设 X 是一个赋范空间, 若闭单位球 $M = \{x \in X | ||x|| \le 1\}$ 是紧集, 则 X 是有限维赋范空间;
 - i. 有限维赋范空间 ⇔ 赋范空间中的闭单位球是紧集;
 - ii. 无穷维赋范空间 ⇔ 赋范空间中的闭单位球不是紧集;

 - (c) 设 X 是度量空间, $M \subset X$ 是紧子集, $T: (X, d) \to (\mathbb{R}, |\cdot|)$ 连续, 则 T 在某点达到最大值 (最小值);
- 16. 线性算子: X,Y 是数域 K 上的线性空间, D(T) 是 X 的子空间, 算子 $T:D(T)\subset X\to Y$ 满足 $\forall x,y\in X, \forall a\in K, T(x+y)=Tx+Ty$ 和 T(ax)=aTx, 则称 T 为线性算子. 其中: D(T) 表示 T 的定义域, R(T) 表示 T 的值域, $N(T)=\{x\in D(T), Tx=\theta\}$ 表示 T 的零空间;
 - (a) 线性算子的性质: 如果 $T:D(T)\subset X\to Y$ 是线性算子,
 - i. 则 R(T) 是 Y 中的线性子空间;
 - ii. 则零空间 N(T) 是 X 的线性子空间;
 - iii. 若 $\dim D(T)=n<+\infty$, 则 $\dim R(T)\leq n$; A. 若 T 存在逆映射 T^{-1} , 则 $\dim D(T)=\dim R(T)$;
 - iv. 则 T 是单射当且仅当 $Tx = \theta \Leftrightarrow x = \theta$;
 - (b) 线性算子的逆算子: 线性算子 $T: D(T) \subset X \to Y$, 若 T 存在 $T^{-1}: R(T) \to D(T)$, 则 T^{-1} 也是线性算子;
 - (c) 有界算子: 设 X, Y 是赋范空间, 线性算子 $T: D(T) \subset X \to Y$, 若存在一个常数 $C \geq 0$, 使得 $\forall x \in D(T)$ 都有 $||Tx|| \leq C||x||$, 则称算子 T 是有界算子;
 - i. 有界算子的范数: 有界线性算子 $T: D(T) \subset X \to Y$, 称 $||T|| = \sup_{x \in X, x \neq \theta} \frac{||Tx||}{||x||} < +\infty$ 是映射 T 的范数;

- 17. 有界线性算子: 设 X,Y 是赋范空间, K 是数域, 所有有界线性算子集合 $B(X,Y) := \{T: X \to Y$ 是有界线性算子 $\}$. 定义加法 $+: B(X,Y) \times B(X,Y) \to B(X,Y)$ 为 $(T_1 + T_2)(x) = T_1x + T_2x$, 定义数乘 $\cdot: K \times B(X,Y) \to B(X,Y)$ 为 $\alpha \cdot T(x) = \alpha Tx$, 定义范数 $||\cdot||: B(X,Y) \to \mathbb{R}$ 为 $||T|| = \sup_{x \in X, x \neq \theta} \frac{||Tx||}{||x||} < +\infty$. 则集合 $(B(X,Y), K, +, \cdot, ||\cdot||)$ 是赋范空间;
- 18. 有界线性算子性质:
 - (a) 若 $T \in B(X,Y)$,
 - i. 则 $\forall x \in X, ||Tx|| \le ||T|| \cdot ||x||;$ A. 则 $||T|| = \sup_{x \in X, ||x|| = 1} ||Tx||;$
 - (b) 若 X 是有限维的赋范空间,则线性算子 $T: X \to Y$ 有界;
 - i. 若 X,Y 是赋范空间, 线性算子 $T: D(T) \subset X \to Y$ 连续, 当且 仅当 T 是有界算子;
 - ii. 若 X, Y 是赋范空间, 线性算子 $T: D(T) \subset X \to Y$, 则 T 在 x_0 连续, 当且仅当 T 处处连续;
 - A. 有界线性算子 $T:X\to Y$, 则零空间 $N(T)=\{x\in X, Tx=0\}$ 是闭集;
- 19. 求算子范数的方法:
 - $\text{(a)} \ \forall x \in X, ||Tx|| \leq C||x||, \text{ if } ||T|| = \sup_{x \in X} \frac{||Tx||}{||x||} \leq C;$
 - (b) 取特殊 $x_0 \in X$, 使得 $||T|| = \sup_{x \in X} \frac{||Tx||}{||x||} \ge \frac{||Tx||}{||x||} \ge C$ 或 $C \varepsilon$;
 - (c) 综上 ||T|| = C;
- 20. 算子相等: 对于算子 $T_1, T_2: X \to Y$, 若 $D(T_1) = D(T_2)$, 且 $\forall x \in D(T_1), T_1x = T_2x$, 则称算子 $T_1 = T_2$ 相等, 记作 $T_1 = T_2$;
- 21. 限制算子: 对于算子 $T:D(T) \to Y$, 子集 $B \subset D(T)$, 令 $T|_B: B \to Y$ 满足 $\forall x \in B, T_B(x) = Tx$, 则称 T_B 为 T 在 B 上的限制算子;
- 22. 延拓算子: 对于算子 $T:D(T)\to Y$, 若集合 M 满足 $D(T)\subset M$, 算子 $\tilde{T}:M\to Y$ 满足 $\tilde{T}|_{D(T)}=T$, 则称 \tilde{T} 为 T 的延拓算子;

- (a) 若 X 是赋范空间, Y 是巴拿赫空间, 若线性算子 $T:D(T)\subset X\to Y$ 有界, 则 T 有延拓算子 $\tilde{T}:\overline{D(T)}\to Y$ 也是有界线性算子, 且 $||\tilde{T}||=||T||;$
- 23. 泛函: 若算子 T 的值域 R(T) 落在 \mathbb{R} 或 \mathbb{C} 内, 则称 T 是一个泛函;
 - (a) 若 $f: D(f) \subset X \to K(\mathbb{R} \to \mathbb{C})$ 线性, 则称 f 为线性泛函;
- 24. 映射关于基的表示: 设 X,Y 是有限维线性空间, $\dim X = n, \{e_1, ..., e_n\}$ 为 X 的一个基, $\dim Y = m, \{b_1, ..., b_m\}$ 为 Y 的一个基, $T: X \to Y$ 是一个线性算子, $\forall x \in X, x = \sum_{i=1}^{n} \varphi_i e_i$ (即 $x = (e_1, ..., e_n)$ $\begin{pmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{pmatrix}$), 设 $y = Tx = (b_1, ..., b_m) \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_m \end{pmatrix}, Te_i = (b_1, ..., b_m) \begin{pmatrix} \tau_1^i \\ \vdots \\ \tau_m^i \end{pmatrix}, 1 \le i \le n,$ $Tx = T(e_1, ..., e_n) \begin{pmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{pmatrix} = (Te_1, ..., Te_n) \begin{pmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{pmatrix} = (b_1, ..., b_m) \begin{pmatrix} \tau_1^1 & ... & \tau_1^n \\ \vdots & \ddots & \vdots \\ \tau_m^1 & ... & \tau_m^n \end{pmatrix} \begin{pmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{pmatrix},$ 故 $\begin{pmatrix} \eta_1 \\ \vdots \\ \eta_m \end{pmatrix} = \begin{pmatrix} \tau_1^1 & ... & \tau_1^n \\ \vdots & \ddots & \vdots \\ \tau_m^1 & ... & \tau_m^n \end{pmatrix} \begin{pmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{pmatrix}. \Leftrightarrow \tau = (\tau_{ij})_{m \times n},$ 称 τ 是
 - (a) 考虑泛函 $f: X \to \mathbb{R}, \dim X = n,$ 基为 $\{e_1, ..., e_n\}, \forall x \in X, x = \sum_{i=1}^n \varphi_i e_i, f(x) = \sum_{i=1}^n \varphi_i f(e_i),$ 即 $\{f(e_1), ..., f(e_n)\}$ 决定了一个泛函 f:
 - (b) 对偶基: 线性泛函 $f_1, ..., f_n : X \to \mathbb{R}, f_k(e_j) = \delta_{jk} = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases}$ 称 $\{f_1, ..., f_n\}$ 为 $\{e_1, ..., e_n\}$ 的对偶基;
 - (c) 设 X 是 n 维线性空间, $\{e_1,...,e_n\}$ 是一个基, 令线性空间 $X^* = \{f: X \to K$ 是线性泛函 $\}$, $\{f_1,...,f_n\}$ 为 $\{e_1,...,e_n\}$ 的对偶基, 则 dim $X^* = n$, 且 $\{f_1,...,f_n\}$ 是 X^* 中的一个基;
 - i. 设 X 是有限维线性空间, $x_0 \in X$, 若 $\forall f \in X^*$ 都有 $f(x) = 0 \in K$, 则 $x_0 = \theta$;

- ii. 设 X, Y 是赋范空间, 若 Y 完备, 则 B(X, Y)(有界线性算子集合) 是巴拿赫空间;
- 25. 对偶空间: 设 X 是赋范空间, $X' = \{f: X \to K$ 有界线性泛函 $\}$, $||f|| = \sup_{x \in X, x \neq 0} \frac{|f(x)|}{||x||}$, $(X', ||\cdot||)$ 称为 X 的对偶空间;
 - (a) 对偶空间 X' 是巴拿赫空间;
- 26. 空间同构: 设 X, \tilde{X} 是赋范空间, 若 $\exists T: (X, ||\cdot||) \to (\tilde{X}, ||\cdot||)$ 是线性双射, 且映射保持范数不变 (||Tx|| = ||x||), 则称 $X 与 \tilde{X}$ 同构, 记作 $X = \tilde{X}$;
- 27. 作业: 20230317
 - (a) 证明同一个域上的两个矢量空间 X_1 和 X_2 的笛卡尔积 $X = X_1 \times X_2$,接 $\begin{cases} (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2) \\ \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2) \end{cases}$ 定义代数运算 使 X 成为一个矢量空间;
- 28. 作业: 20230425
 - (a) 线性算子 $T_1: Y \to Z, T_2: X \to Y$ 有界, 则 $T_1 \circ T_2: X \to Z$ 也是 有界线性算子, 且 $||T_1 \circ T_2|| \le ||T_1|| \cdot ||T_2||$;
 - (b) $(C[a,b],||\cdot||),||\cdot||=\sup_{a\leq x\leq b}|x(t)|$, 证明算子 $f:(C[a,b],||\cdot||)\to$ $(\mathbb{R},|\cdot|)(f(x)=x(t_0))$ 是有界线性泛函,且 ||f||=1;

- 1. 内积: 设 (X, K) 线性空间, 内积运算 $<\cdot,\cdot>: X\times X\to K$ 应该满足:
 - (a) 双线性: $\forall \alpha, \beta \in K, x_1, x_2 \in X, <\alpha x_1 + \beta x_2, y>=\alpha < x_1, y>+\beta < x_2, y>;$
 - i. 共轭线性: $\langle x, \alpha y_1 + \beta y_2 \rangle = \bar{\alpha}(x, y_1) + \bar{\beta}(x, y_2);$
 - (b) 共轭对称性: $\forall x, y \in X, \langle x, y \rangle = \overline{\langle y, x \rangle};$
 - (c) $\langle x, x \rangle > 0$, 对于 $\langle x, x \rangle = 0$ 当且仅当 $x = \theta$;
- 2. 内积空间: 装配内积结构 $<\cdot,\cdot>$ 的空间 $(X,<\cdot,\cdot>)$ 被称为内积空间;

- (a) 内积诱导的范数: $||x|| := \sqrt{\langle x, x \rangle};$
- (b) 引理: $\forall x, y \in X, | \langle x, y \rangle | \leq ||x|| \cdot ||y||$;
- (c) 施瓦兹不等式: $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$;
- 3. 希尔伯特空间: 若 $(X, <\cdot, \cdot>)$ 是完备的,则称 $(X, <\cdot, \cdot>)$ 是希尔伯特空间;
- 4. 平行四边形法则: 对内积空间 $(X, <\cdot, \cdot>)$, $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$;
- 5. 正交: 在内积空间 $(X, < \cdot, \cdot >)$ 中, $x, y \in X, A, B \subset X$:
 - (a) 若 $\langle x, y \rangle = 0$ 则称 x 与 y 正交, 记为 $x \perp y$;
 - (b) 若 $\forall z \in A$, 有 $\langle x, y \rangle = 0$, 则称 x 与 A 正交, 记为 $x \perp A$;
 - (c) 若 $\forall z \in A, h \in B$, 都有 $\langle z, h \rangle = 0$, 则称 $A \ni B$ 正交, 记为 $A \perp B$;
- 6. 内积的连续性: 对内积空间 $(X, < \cdot, \cdot >)$, 序列 $\{x_n\}, \{y_n\} \subset X$, 若 $x_n \to x, y_n \to y, y_n < x_n, y_n > \to < x, y >;$
- 7. 内积空间中点到子空间的距离: 在度量空间 (X,d) 中, $x \in X, M \subset X$, $\delta = d(x,M) = \inf_{y \in M} d(x,y)$;
- 8. 凸集: 设 X 是线性空间, $M \subset X$, 若 $\forall x, y \in M$, 有凸组合 $\forall \lambda \in [0,1], \exists z \in M, z = \lambda x + (1-\lambda)y$, 则称 M 是凸集;
 - (a) 点到集合距离可达的条件: 设 $(X,<\cdot,\cdot>)$ 是内积空间, $M\subset X, M\neq \phi$, 若 M 是完备的凸集, 则 $\forall x\in X,\exists!y\in M:d(x,M)=\inf_{\tilde{y}\in M}||x-\tilde{y}||=||x-y||;$
 - (b) 垂足存在条件: 设 $(X, <\cdot, \cdot>)$ 是内积空间, $Y\subset X, Y$ 是完备子空间, $x\in X$, 则 $\exists ! y\in Y, s.t.: ||x-y||=\inf_{\tilde{y}\in Y}||x-\tilde{y}||=d(x,Y)$. 令 z=x-y, 则 $z\perp Y$;
- 9. 直和: 设 X 为线性空间, $Y,Z \subset X$, 若 $\forall x \in X$, 都 $\exists ! x = y + z, y \in Y, z \in Z$, 则称 X 为子空间 Y,Z 的直和, 记作 $X = Y \oplus Z$;
 - (a) 正交补: 设 $(X, <\cdot, \cdot>)$ 是内积空间, $M\subset X$ 非空, 称 $M^{\perp}=\{x\in X|x\perp M\}$ 为 M 的正交补 (集合);

- i. 无论 M 是不是子空间, M^{\perp} 都是子空间;
- ii. 无论 M 是不是闭集, M^{\perp} 都是闭集 (进一步是闭子空间);
- (b) 直和分解: 设 $(H, <\cdot, \cdot>)$ 是希尔伯特空间, $Y \subset H$ 是闭子空间, 则 $H = Y \oplus Y^{\perp}$;
 - i. $Y \cap Y^{\perp} = \{\theta\};$
 - ii. 正交投影: 若 $x \in H$, x = y + z, $y \in Y$, $z \in Y^{\perp}$, 则称 y, z 分别 为 x 在 Y, Y^{\perp} 上的正交投影;
 - iii. 投影算子: $P: H \rightarrow Y, x \rightarrow Px = y$; A. 幂等性: $P^2 = P$;
- (c) 设 H 是希尔伯特空间, $Y \subset H$ 是闭子空间, 则 $(Y^{\perp})^{\perp} = Y$;
- 10. X 是内积空间, 若 $A \subset B \subset X$, 则 $B^{\perp} \subset A^{\perp}$;
 - (a) 对希尔伯特空间 $H, M \subset H$ 是非空子集, 当且仅当 $M^{\perp} = \{\theta\}$, $span\{M\}$ 在 H 中稠密;
- 11. 正交集: 对内积空间 $X, S = \{e_{\alpha} | \alpha \in A\} \subset X$, 若 $\forall \alpha, \beta \in A, \alpha \neq \beta$, 都 有 $e_{\alpha} \perp e_{\beta}$, 则称 S 为正交集;
 - (a) 正交规范集: 若正交集 S 中的元素都满足 $||e_{\alpha}|| = 1$, 则称 S 为正交规范集;
- 12. Bessel 不等式: 对内积空间 $X, S = \{e_{\alpha} | \alpha \in A\} \subset X$ 是正交规范集, 则 $\forall x \in X$, 都有 $\sum_{x \in A} | \langle x, e_{\alpha} \rangle |^2 \leq ||x||^2$;
 - (a) 设 H 是希尔伯特空间, $\{e_{\alpha}|\alpha\in A\}\subset H$ 是正交规范子集, $x\in H$, 则 $\sum_{\alpha\in A}< x, e_{\alpha}>e_{\alpha}\in H$, 且 $||x||^2=\sum_{\alpha\in A}|< x, e_{\alpha}>|^2+||x-\sum_{\alpha\in A}< x, e_{\alpha}>e_{\alpha}||^2$;
- 13. 设 X 是内积空间, $\{e_{\alpha}, \alpha \in A\} = S \subset X$ 是正交规范集:
 - (a) 完备性: 若 $S^{\perp} = \{\theta\}$, 则称 S 完备;
 - (b) Fourier 系数: 若 $\forall x \in X$, 都有 $x = \sum_{\alpha \in A} \langle x, e_{\alpha} \rangle e_{\alpha}$, 则称 S 为一个基 (或封闭), 称 $\{\langle x, e_{\alpha} \rangle\}_{\alpha \in A}$ 为 x 关于基 S 的 Fourier 系数;
- 14. 设 H 是希尔伯特空间, $S = \{e_{\alpha}, \alpha \in A\} \subset H$ 是正交规范集合, 则下面 3 点等价:

- (a) S 是基 (或封闭);
- (b) S 是完备的;
- (c) Bessel 不等式退化为 Parseval 等式: $\forall x \in A, ||x||^2 = \sum_{\alpha \in A} |< x, e_\alpha > |^2;$
- 15. 正交规范基存在: 设 H 是希尔伯特空间, 若 H 可分, 则 H 存在一个正交规范基 S, 且 S 可数;
- 16. Schmidt 正交化过程:
 - (a) $y_1 = x_1, e_1 = \frac{y_1}{\|y_1\|};$
 - (b) $y_2 = x_2 \langle x_2, e_1 \rangle e_1, e_2 = \frac{y_2}{||y_2||};$

(c)
$$y_n = x_n - \sum_{i=1}^{n-1} \langle x_n, e_i \rangle e_i, e_n = \frac{y_n}{||y_n||};$$

- 17. 黎斯定理: 设 H 是希尔伯特空间, H 上任何有界线性泛函 $f: H \to K$, 都可以表示为内积形式, 即 $\exists ! z = z_f \in H, s.t.: \forall x \in H, f(x) = < x, z >$, 且 ||f|| = ||z||;
- 18. 内积空间的元素相等: 设 X 是内积空间, 元素 $v_1, v_2 \in X$, 若对 $\forall w \in X$, 有 $< v_1, \omega > = < v_2, \omega >$, 则 $v_1 = v_2$. 特别的, 若对 $\forall w \in X$, 有 $< v_1, w > = 0$, 则 w = 0;
- 19. Hahn-Banach 定理: 设 X 是赋范空间, 子空间 $Z \subset X$, 映射 $f: Z \to K$ 是有界线性泛函, 则 f 的延拓 $\exists \tilde{f}: X \to K$ 也是有界线性泛函, 并满足:
 - (a) 延拓: $\tilde{f}(x) = f(x), \forall x \in Z$;
 - (b) 保范: $||\tilde{f}|| = ||f||$;
 - (c) 推论: 设 X 是赋范空间, $x_0 \in X$, $x_0 \neq \theta$, 则 $\exists \tilde{f}: X \to K$ 有界线性 泛函, 使得 $\tilde{f}(x_0) = ||x_0|| \neq 0$, 且 $||\tilde{f}|| = 1$;
 - (d) 注释: 赋范空间 X 上的有界线性泛函足够多. 即若 $x_1, x_2 \in X, x_1 \neq x_2,$ 则 $\exists \tilde{f}: X \to K$ 有界线性泛函, 使得 $\tilde{f}(x_1) \neq \tilde{f}(x_2);$
- 20. 一致有界定理 (共鸣定理): 设 X 是巴拿赫空间, Y 是一般赋范空间, 序列 $\{T_n\}_{n=1}^{\infty}: X \to Y$ 中的算子都有界线性. 若 $\forall x \in X$, $\exists M_x > 0$, 使得 $||T_nx|| \le M_x, \forall n \in \mathbb{Z}^+, 则 \exists M > 0$ 使得 $||T_n|| \le M$, $\forall n \in \mathbb{Z}^+$;

21. 开映射: 设 X, Y 是度量空间, 映射 $T: X \to Y$. 若 X 中任意开集 U, 它的象 $TU = \{Tx, x \in U\}$ 是 Y 中的开集, 则称 T 是开映射;

- (a) 注意: 连续映射 $(Im \to Ker$ 均是开集) \neq 开映射 $(Ker \to Im$ 均是 开集);
- 22. 开映射定理: 设 X,Y 是巴拿赫空间, 映射 $T:X\to Y$ 是满射且为有界 线性算子, 则 T 是开映射;
 - (a) 进一步, 若 T 是双射且为有界线性算子, 则逆映射 $T^{-1}: Y \to X$ 是连续线性算子;
- 23. 等价范数: 设 X 是线性空间, 范数 $||\cdot||_1$ 和 $||\cdot||_2$ 都是 X 上的范数, 且 $(X,||\cdot||_1)$ 和 $(X,||\cdot||_2)$ 都是完备的. 若存在 b>0, 使得 $||x||_2 \le b||x||_1, \forall x \in X$, 则存在 a>0, 使得 $||x||_1 \le a||x||_2, \forall x \in X$. 从而, $||x||_1$ 与 $||x||_2$ 是等价的;
- 24. 闭线性算子: X, Y 是赋范空间, 映射 $T: D(T) \subset X \to Y$ 是线性算子, 乘积赋范空间 $(X \times Y, || \cdot ||)$ 中的元素 $(x, y) \in X \times Y$, 乘积空间的范数 ||(x, y)|| = ||x|| + ||y||. 若算子 T 的图 $G(T) = \{(x, y) \in X \times Y | x \in D(T), y = Tx\}$ 在 $X \times Y$ 中是闭集, 则称 T 为闭线性算子;
 - (a) 注意: 对于线性算子, 闭算子 ⇒ 连续 (有界);
- 25. 闭图像定理: 设 X, Y 是巴拿赫空间, 线性算子 $T: D(T) \subset X \to Y$. 若 D(T) 是闭集, 且 T 是闭算子, 则 T 有界;
 - (a) 闭算子条件: $T:D(T)\subset X\to Y$ 有界线性, 且 D(T) 是闭集, 则 T 是闭算子;
- 26. 伴随算子: 设 X,Y 是赋范空间, X 的对偶空间 $X' = \{f: X \to K$ 有界线性泛函}, Y 的对偶空间 $Y' = \{g: Y \to K$ 有界线性泛函}, 有界线性算子 $T: X \to Y$, 则可定义 $T^*: Y' \to X', g \to T^*g$, 满足 $T^*g(x) := g(Tx)$. 称 T^* 为 T 的伴随算子;
 - (a) 伴随算子 T^* 是线性有界算子, 且 $||T^*|| = ||T||$;
- 27. 二次对偶空间: 设 $(X, ||\cdot||)$ 是赋范空间, 对偶空间 $X' = \{f: X \to K$ 有界线性泛函 $\}$, 算子 $f \in X'$ 的范数 $||f|| = \sup_{x \in X, x \neq \theta} \frac{|f(x)|}{||x||}$, 则 $(X', ||\cdot||)$

也是赋范空间. X' 的对偶空间 $(X')' = \{g: X' \to K$ 有界线性泛函}, 再对算子 $g \in (X')'$ 定义范数 $||g|| = \sup_{f \in X', f \neq \theta} \frac{|g(f)|}{||f||}$ 得到赋范空间 $((X')', ||\cdot||)$. 称 (X')' 为 X 的二次对偶空间, 记作 X'';

- (a) 赋范空间 $X, x \in X$, 定义 $g_x : X' \to K, f \to g_x(f) = f(x)$, 则 $g_x \in X''$ 是有界线性泛函, 且 $||g_x|| = ||x||$;
- 28. 弱收敛: 在赋范空间 X 中, 有序列 $\{x_n\} \subset X$, 若有界线性泛函 $\forall f \in X', f(x_n) \to f(x)$, 则称序列弱收敛, 记为 $x_n \to^{\omega} x \in X$ (手写时 ω 记在 \to 上方);
 - (a) 弱收敛的极限唯一;
 - (b) 弱收敛序列的任意子序列也是弱收敛;
 - (c) 弱收敛序列一定是有界的, 即 $||x_n|| \leq M, \forall n$;
- 29. 强弱收敛的关系:
 - (a) 在赋范空间 X 中, 序列 $\{x_n\} \subset X$, 若序列强收敛 $x_n \to x$, 则序列 弱收敛 $x_n \to \omega$ x;
 - (b) 在赋范空间 X 中, 若维数 $\dim X = K < +\infty$ 有限, 则弱收敛可推出强收敛;
- 30. 在希尔伯特空间 H 中, 序列 $x_n \to^{\omega} x$ 当且仅当 $\forall z \in H$ 都有 $< x_n, z > \to < x, z >$;

6 实变函数

- 1. σ 代数与可测: 设 $X = \mathbb{R}^n$, 集类 $\Sigma = \{E \subset \mathbb{R}^n\}$ 满足下面的三个性质,则称 Σ 为一个 σ 代数, 称 (\mathbb{R}^n , Σ) 为可测空间, 称 $E \in \Sigma$ 为可测集:
 - (a) 平庸封闭: ϕ , $\mathbb{R}^n \subset \Sigma$;
 - (b) 余运算封闭: 若 $E \in \Sigma$, 则 $E^c = \mathbb{R}^n \setminus E \in \Sigma$;
 - (c) 可列并封闭: 若 $E_i \in \Sigma, i \in \mathbb{N}, \mathbb{M} \cup_{i=1}^{\infty} E_i \in \Sigma;$ i. (或) 可列交封闭: 若 $E_i \in \Sigma, i \in \mathbb{N}, \mathbb{M} \cap_{i=0}^{\infty} E_i \in \Sigma;$
- 2. 不等号定义: 设 $X = \mathbb{R}^n$, $a = (a_1, ..., a_n)^T$, $b = (b_1, ..., b_n)^T \in \mathbb{R}^n$, 若 $a_i \leq b_i$, $1 \leq i \leq n$, 则称 $a \leq b$;

- (a) 半开半闭区间: $(a, b] = \{x \in \mathbb{R}^n, a_i < x \le b_i, 1 \le i \le n\};$
- 3. 测度: 对集类 $\mathfrak{C} = \{(a,b], a,b \in \mathbb{R}^n, a < b\}$, 定义测度 $m : \mathfrak{C} \to [0,+\infty]((a,b] \to m(a,b]), m(a,b] = \prod_{i=1}^n (b_i a_i);$
- 4. 集类生成的 σ 代数: 设 $X = \mathbb{R}^n$, 集类 $\mathfrak{C} = \{(a,b]\}$, 则 $\exists!\sigma$ 代数 $\sigma(\mathfrak{C})$ 使得 $\mathfrak{C} \subset \sigma(\mathfrak{C})$, 且若还有一个 σ 代数 Σ 满足 $\mathfrak{C} \subset \Sigma$, 则 $\sigma(\mathfrak{C}) \subset \Sigma$. 称 $\sigma(\mathfrak{C})$ 为由 \mathfrak{C} 生成的 σ 代数;
 - (a) Borel σ 代数: $\sigma(\mathfrak{C}) = \beta$. 可测空间 (\mathbb{R}^n, β) 称为 Borel 可测空间, \mathbb{R}^n 上的子集 $B \in \beta$ 作为 β 的元素被称为 Borel 可测集;
 - i. $\beta = \sigma(\{(a,b)\}) = \sigma(\{(a,b)\}) = \sigma(\{[a,b]\}) = \sigma(\{\mathcal{F},\mathcal{F},\mathcal{F}\});$
 - ii. 子集 B 的测度: $m(B)=\inf\{\sum_{n=1}^{\infty}m(I_n), B\subset \cup_{n=1}^{\infty}\}$, 其中 I_n 为 半开半闭区间;
 - (b) Borel 测度空间: 装配了测度 m 的 Borel 可测空间 (\mathbb{R}^n, β, m);
 - i. $m(\phi) = 0$;
 - ii. 可列可加性: 若可列个 Borel 可测集 $B_i \in \beta, i \in \mathbb{N}$, 且它们两两不交 $B_i \cap B_j = \phi$, 则 $m(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} m(B_i)$;
 - (c) Lebesgue σ 代数: 称 $\bar{\beta} = \mu = \sigma(\{z \subset B | B \in \beta, m(B) = 0\} \cup \beta)$ 即全部零测度集的全体子集为 Lebesgue σ 代数, 称 $E \in \bar{\beta}$ 为 Lebesgue 可测集;

5. 测度的性质:

- (a) 可数集 $E = \{x_i, i \in \mathbb{N}\} \in \mu, m(E) = 0;$
- (b) $\{x_0\} \in \mu, m(\{x_0\}) = 0;$
- (c) 次可加性: $m(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} (E_i);$
- (d) 下连续性: 若 $\{E_i\}_{i=1}^{\infty} \subset \mu, E_1 \subset E_2 \subset ... \subset E_i \subset ..., 则 m(\bigcup_{i=1}^{\infty} E_i) = m(\lim_{i \to \infty} E_i) = \lim_{i \to \infty} m(E_i);$
- (e) 上连续性: 若 $\{E_i\}_{i=1}^{\infty} \subset \mu, ... \subset E_i \subset ... \subset E_2 \subset E_1, 且 m(E_1) < +\infty, 则 m(\bigcap_{i=1}^{\infty} E_i) = m(\lim_{i \to \infty} E_i) = \lim_{i \to \infty} m(E_i);$
- (f) 若 $E \subset \mu, x_0 \in \mathbb{R}^n, E + x_0 = \{x + x_0, x \in E\}$, 则 $m(E) = m(E + x_0)$;

6. 可测函数: 函数 $f:(\mathbb{R}^n,\mu)\to(\mathbb{R},\beta)$, 若 $\forall B\subset\mathbb{R}$ (Borel 可测集) 有 $f^{-1}(B)\subset\mathbb{R}^n$ (Lebesgue 可测集), 则称 f 为可测函数;

- (a) 设函数 $f: E \to \mathbb{R}$, $E \in \mu$ (Lebesgue 可测集), 若 $\forall B \subset \mathbb{R}$ (Borel 可测集), 有 $f^{-1}(B) \subset \mathbb{R}^n$ 是 Lebesgue 可测集, 则称 $f \in E$ 上的可测函数;
- (b) $f: E \to \mathbb{R}$ 是可测函数 $\Leftrightarrow \forall t \in \mathbb{R}, f^{-1}(t, +\infty)$ (或 $f^{-1}[t, +\infty), f^{-1}(-\infty, t), f^{-1}(-\infty, t], f^{-1}(a, t)$) 是 Lebesgue 可测集;
- 7. 几乎处处: *a.e.* 表示几乎处处, 即除去零测集 $m(\{x \in E : f_k(x) \to f(x)\}) = 0$ 外的部分;
- 8. 控制收敛定理: 设 $\{f_k(x)\}_{k=1}^{\infty}: E \subset \mathbb{R}^n \to \mathbb{R}, f_k(x) \in L(E), k \in \mathbb{N}$ 即 Lebesgue 可积, 且 $\lim_{k \to +\infty} f_k(x) \to f(x), a.e.x \in E,$ 存在 $F(x) \in L(E)$ 使得 $|f_k(x)| \leq F(x), a.e.x \in E, \forall k \in \mathbb{N},$ 则 $\lim_{k \to +\infty} \int_E f_k(x) dx = \int_E \lim_{k \to +\infty} f_k(x) dx = \int_E f(x) dx;$
- 9. 函数 $f,g:E\subset\mathbb{R}^n\to\mathbb{R}$ 可测,若 $f(x)=g(x),a.e.x\in E,$ 则 $\int_E f(x)dx=\int_E g(x)dx;$
- 10. 设 $E \subset \mathbb{R}^n$ 是 Lebesgue 可测集, 函数 $f: E \to \mathbb{R}$ 是可测函数, 等价类 $[f] = \{g: E \to \mathbb{R}$ 是可测函数, $g(x) = f(x), a.e.x \in E\}$, 代表元 $f \in [f]$, 对任意 $f_1, f_2 \in [f]$, 有 $\int_E f_1(x) dx = \int_E f_2(x) dx$;
- 11. L^P 空间: 给定 $1 \le P < +\infty, L^P(E) := \{[f]: f: E \to \mathbb{R}$ 是可测函数, $\int_E |f(x)|^P dx < +\infty\}$. 当 $P = +\infty$ 时, $L^\infty(E) = \{[f]: f: E \to \mathbb{R}$ 是可测函数, $\inf_{z \subset E, m(z) = 0} \left(\sup_{E \setminus Z} |f(x)|\right) < +\infty\}$. 有时可以用代表元 f 代替等价类 [f], 而省略 [f];
 - (a) L^P 赋范空间: 当 $1 \leq P < +\infty$, $X = L^P(E)$, $||\cdot||_P : L^P(E) \to \mathbb{R}(f \to ||f||_P)$, $||f||_P = \left(\int_E |f(x)|^P dx\right)^{\frac{1}{P}} < +\infty$. 当 $P = +\infty$, $||\cdot|| : L^\infty(E) \to \mathbb{R}(f \to ||f||_\infty)$, $||f||_\infty = \inf_{m(z)=0, z \in E} \left(\sup_{E \setminus Z} |f(x)|\right) < +\infty$. 则 $(L^P, ||\cdot||_P)$ 是赋范空间;
 - i. $L^P(E)$, $1 \le P \le +\infty$ 是完备赋范空间 (巴拿赫空间);
 - ii. 当 $1 \le P < +\infty$ 时, $L^P(E)$ 是可分空间; 当 $P = +\infty$ 时, $L^P(E)$ 是不可分空间;

- (b) L^P 线性空间: 空间 $X = L^P(E), 1 \le P \le +\infty$, 数域 $K = \mathbb{R}$, 加法 $+: X \times X \to X((f,g) \to f+g, (f+g)(x) = f(x)+g(x), \forall x \in E)$, 数乘 $\cdot: K \times X \to X((\alpha,f) \to \alpha f, (\alpha f)(x) = \alpha f(x), \forall x \in E)$, 则 $(L^P(R), \mathbb{R}, +, \cdot)$ 是线性空间;
- 12. Holder 不等式: 若 $f \in L^P(E), g \in L^q(E), \frac{1}{p} + \frac{1}{q} = 1, 则 \int_E |f(x)g(x)| dx \le \left(\int_E |f(x)|^p dx\right)^{\frac{1}{p}} \left(\int_E |g(x)|^q dx\right)^{\frac{1}{q}}.$ 即 $||fg||_1 \le ||f||_p ||g||_q$;
 - (a) 当 p = q = 2 时, Holder 不等式退化为柯西-许瓦兹不等式;
 - (b) $\stackrel{.}{=}$ $m(E) < +\infty, 1 \le P_1 < P_2 < +\infty,$ $\stackrel{.}{=}$ $L^{P_2}(E) \subset L^{P_1}(E);$
- 13. 勒让德多项式: 在 L^2 上的基 $\{1, t, t^2, ..., t^n, ...\}$ 经过施密特正交化后得到的正交规范基;