IPRJ - Laboratório de Física 1 Experimento 4 – Grupo 10

Experimento: Lei de Hooke

Nome do aluno: Gustavo Dias de Oliveira

Matrícula: 2020-1-00785-11

Nome do aluno: Thiago Bastos da Silva

Matrícula: 2020-1-00760-11

Objetivos do Experimento

Esta tarefa tem o objetivo de demonstrar experimentalmente que os materiais possuem um coeficiente de elasticidade, como por exemplo:

• Se temos uma mola e a esticamos, ela tende voltar ao normal.

e para mostrar esse comportamento utilizaremos a Lei de Hooke.

Introdução e Desenvolvimento Teórico

A Lei de Hooke diz que quando uma força externa é aplicada sobre algum objeto que possua coeficiente de elasticidade, esse objeto é deformado, e como consequência produz uma força contraria a força externa, e essa força é chamada de força elástica.

Sabemos que a fórmula usada para descobrir a força elástica é:

$$F_{x} = -\mathbf{k} \cdot \mathbf{x}$$

Nesse experimento podemos considerar a Força elástica igual a força peso, já que a deformação do elástico está sendo causada pelo peso do objeto. O experimento se passa por uma situação parecida com a da figura 1 a seguir.

Figura 1 – Situação do experimento

E com determinada situação temos o seguinte:

$$F = P$$

$$P = m \cdot g$$

$$m \cdot g = k \cdot x$$

$$m(x) = \frac{k}{g} \cdot x$$
2

Cujo gráfico pode ser expresso por:

Gráfico da força elástica em relação a x.

Podemos comparar a equação 2 com uma equação de primeiro grau pois apresenta um comportamento similar. A equação de primeiro grau é dada por:

$$y = ax + b$$

Que pode ser expressa pelo gráfico:

Gráfico de y em relação a x.

No qual, temos: $\frac{k}{g} \to a$, por isso usaremos essa equação para fazer os ajustes e encontrar os dados.

1. Materiais Utilizados e Roteiro Experimental

Os matérias usados para o experimento foram:

Uma folha para podermos fazer as marcações, uma régua para medir as marcações, três elásticos, dois clips, uma garrafinha, bolinhas de gude e uma balança para calcular a massa das bolinhas de gude.

Matérias usados para o experimento.

Matérias usados para o experimento.

Calcular a massa da bolinha de gude, depois fazer as marcações do deslocamento no papel para obter os pontos (m, Δx), após isso usar o software SciDAVIs para plotar os dados, fazer um gráfico e realizar o MMQ para encontrar a melhor reta que se encaixam nas equações.

2. Apresentação e Análise dos Dados Experimentais

Os dados retirados do experimento foram os seguintes:

Tabela 1 - Dados experimentais.

x(m)	m(g)	Δx	Δm
0,04	21	0,05	0,5
0,09	37	0,05	0,5
0,15	56	0,05	0,5
0,2	72	0,05	0,5
0,25	88	0,05	0,5
0,3	104	0,05	0,5
0,35	120	0,05	0,5
0,4	136	0,05	0,5

Sistema Massa-Mola

Dados experimentais e ajuste linear

Agora que temos o valor do coeficiente angular podemos descobrir o valor de k com a equação 2, já que o coeficiente angular é igual a $\frac{k}{a}$, então temos que:

$$\frac{k}{g} = 319,4$$

$$k = 319.4 \cdot 9.8$$

$$k = 3130,12 \text{ N/m}$$

Agora precisamos calcular a incerteza experimental e para isso utilizaremos a fórmula:

$$\frac{\delta k}{\bar{k}} = \sqrt{\left(\frac{\delta x}{\bar{x}}\right)^2}$$

$$\frac{\delta k}{3130,12} = \sqrt{\left(\frac{1,499}{319,4}\right)^2}$$

$$\delta k = 14,69 \, \text{N/m}$$

Agora calcularemos a precisão dos dados encontrados com a fórmula:

$$100\% - \left(\left| \frac{\sigma k}{\overline{k}} \right| * 100 \right)$$

$$100\% - \left(\left| \frac{14,69}{3130,12} \right| * 100 \right)$$

99,53% de precisão.

3. Resultados e Conclusões

Podemos observar que o objeto (o elástico) se deforma muito mesmo colocando pouca força (o peso), e por isso o coeficiente de elasticidade deu um valor consideravelmente alto.

Calculando a precisão do resultado encontrado, conseguimos achar um valor para precisão acima de 99%, e com isso temos um bom resultado.

É possível melhorar o experimento, mas para isso precisaríamos de uma mola, um ambiente melhor e melhores instrumentos de medida, porque assim, conseguiríamos resultados bem mais precisos.

Com esse experimento conseguimos comprovar a lei de Hooke, que diz que um objeto é deformado por uma força externa, a força elástica restauradora passa a ser exercida na mesma direção e no sentido oposto à força externa. Porém essa força elástica é variável e depende do quanto de deformação que o objeto sofre.

4. Bibliografia

- [1] Fundamentos de Física Volume 1; D. Halliday, R, Resnick, J. Walker; LTC Editora (2006).
- [2] https://brasilescola.uol.com.br/fisica/lei-de-hooke.htm
- [3] Resumo Experimento 4 Física 1 Experimental