Les primitives et les dérivées.

Louis Herzog

20 août 2025

Table des matières

0.1	La fonction $x \mapsto \cos(x)$		1
	0.1.1	Dérivée de la fonction $x \mapsto \cos(x)$	2
	0.1.2	Calcul d'une primitive de la fonction $x \mapsto \cos(x)$	2
0.2	La fonction $x \mapsto \operatorname{Arccos}(x)$		2
	0.2.1	Calcul de la dérivée de la fonction $x \mapsto \operatorname{Arccos}(x)$	3
	0.2.2	Calcul de la primitive de la fonction $x \mapsto \operatorname{Arccos}(x)$	3
0.3	La fonction $x \mapsto \operatorname{ch}(x)$		2
	0.3.1	Dérivée de la fonction $x \mapsto \operatorname{ch}(x)$	2
	0.3.2	Calcul d'une primitive de la fonction $x \mapsto \operatorname{ch}(x)$	2
0.4	La fonction $x \mapsto \operatorname{Argch}(x)$		2
	0.4.1	Dérivée de la fonction $x \mapsto \operatorname{Argch}(x)$	5
	0.4.2		6
0.5	Calcul d'une primitive de $x \mapsto \frac{dx}{\sqrt{x^2 - 1}}$		6
	0.5.1	Avons nous Arg ch $(x) = \ln(x + \sqrt{x^2 - 1})$?	7

0.1 La fonction $x \mapsto \cos(x)$.

Définissons nos fonctions dans Sage. Soit

$$f(x) = cos(x)$$

$$g(x) = diff(f(x),x)$$

$$F(x) = integrate(f(x),x)$$

La représentation graphique de $x \mapsto \cos(x)$ sur l'intervalle $[-\pi, \pi]$.

La fonction est paire et périodique de période 2π .

0.1.1 Dérivée de la fonction $x \mapsto \cos(x)$.

$$\lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h} = \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{\cos(x)(\cos(h) - 1)}{h} - \frac{\sin(x)\sin(h)}{h}\right)$$

$$= \cos(x) \times \lim_{h \to 0} \frac{\cos(h) - 1}{h} - \sin(x) \times \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= -\sin x$$

0.1.2 Calcul d'une primitive de la fonction $x \mapsto \cos(x)$.

Dans la section suivante, on calcule la dérivée de la fonction $x \mapsto \sin(x)$ qui vaut $x \mapsto \cos(x)$, par conséquent une primitive de $x \mapsto \cos(x)$ est égale, à une constante près, à $\sin(x) + C^{ste}$.

On vérifie ce résultat avec Sage. Une primitive de la fonction $x \mapsto \cos(x)$ est la fonction $x \mapsto \sin(x) + C^{ste}$ définie à une constante près.

0.2 La fonction $x \mapsto Arccos(x)$.

La restriction de la fonction $x \mapsto \cos(x)$ à l'intervalle $[0,\pi]$ est une bijection de $[0,\pi] \to [-1,1]$. Il existe donc une fonction réciproque à la fonction $x \mapsto \cos(x)$ que l'on nomme $x \mapsto \operatorname{Arc}\cos(x)$. C'est également une bijection, elle est continue sur l'intervalle fermé [-1,1] et est dérivable sur l'intervalle ouvert]-1,1[.

0.2.1 Calcul de la dérivée de la fonction $x \mapsto Arc cos(x)$.

Définissons nos fonctions dans Sage

$$f(x) = \arccos(x)$$

$$g(x) = diff(f(x), x)$$

$$F(x) = integrate(f(x), x)$$

Pour ce faire, il faut utiliser le calcul de la dérivée d'une fonction composée. On a $\cos(\operatorname{Arc}\cos(x)) = x$, par conséquent la dérivée de cette expression s'exprime par $-\sin(\operatorname{Arc}\cos(x) \times \operatorname{Arc}\cos'(x) = 1$, d'où $\operatorname{Arc}\cos(x)' = \frac{-1}{\sin(\operatorname{Arc}\cos(x))}.$

La difficulté est maintenant de déterminer $\sin(\operatorname{Arc}\cos(x))$, or on sait que pour tout $X \in \mathbb{R}$, on a $\sin^2(X) + \cos^2(X) = 1$, d'où $\sin(X) = \sqrt{1 - \cos^2(X)}$.

En remplaçant X par $\operatorname{Arccos}(x)$, on a $\sin(\operatorname{Arccos}(x)) = \sqrt{1-\cos^2(\operatorname{Arccos}(x))} = \sqrt{1-x^2}$. Finalement, $\operatorname{Arccos}'(x) = \frac{-1}{\sin(\operatorname{Arccos}(x))} = \frac{-1}{\sqrt{1-\cos^2(\operatorname{Arccos}(x))}} = \frac{-1}{\sqrt{1-x^2}}$.

On vérifie ce résultat avec Sage. La dérivée de la fonction Arccos(x) est la fonction $x \mapsto -\frac{1}{\sqrt{-x^2+1}}$, ce que l'on retrouve sous une écriture légèrement modifiée de Sage.

Les représentations graphiques de $x \mapsto \operatorname{Arc}\cos(x)$ et de $x \mapsto \cos(x)$.

On peut maintenant entreprendre le calcul de la primitive de la fonction $x \mapsto \operatorname{Arccos}(x)$.

0.2.2 Calcul de la primitive de la fonction $x \mapsto Arc cos(x)$.

Je pose que u(x) est égal à la fonction $\operatorname{Arccos}(x)$ et v'(x) est égal dx d'où u'(x) est égal à la fonction $\frac{-1}{\sqrt{1-x^2}}$ et v(x) est égal x. Alors on a, par une intégration par parties, $\int \operatorname{Arccos}(x) \, dx = x \times \operatorname{Arccos}(x) - \int \frac{-1}{\sqrt{1-x^2}} \times x \, dx = x \operatorname{Arccos}(x) + \int \frac{x}{\sqrt{1-x^2}} \, dx$.

Calcul de
$$\int \frac{x}{\sqrt{1-x^2}} \, dx$$
. $\int \frac{x}{\sqrt{1-x^2}} \, dx = \frac{-1}{2} \int \frac{d(1-x^2)}{\sqrt{1-x^2}} = -\sqrt{1-x^2}$. Finalement, $\int \operatorname{Arc}\cos(x) \, dx = x \operatorname{Arc}\cos(x) - \sqrt{1-x^2} + C^{ste}$ est une primitive de la fonction $x \mapsto \operatorname{Arc}\cos(x)$.

On vérifie ce résultat avec Sage. Une primitive de $Arccos(x) = x Arccos(x) - \sqrt{-x^2 + 1} + C^{ste}$.

0.3 La fonction $x \mapsto ch(x)$.

Définissons nos fonctions dans Sage

$$f(x) = cosh(x)$$

$$g(x) = diff(f(x),x)$$

F(x) = integrate(f(x),x)

La représentation graphique de $x \mapsto \operatorname{ch}(x)$ et de sa dérivée.

0.3.1 Dérivée de la fonction $x \mapsto ch(x)$.

$$ch(x)' = \left(\frac{\exp(x) + \exp(-x)}{2}\right)'$$

$$= \frac{\exp(x)' + \exp(-x)'}{2}$$

$$= \frac{\exp(x) - \exp(-x)}{2}$$

$$= \sinh(x)$$

0.3.2 Calcul d'une primitive de la fonction $x \mapsto ch(x)$.

$$\int \operatorname{ch}(x)dx = \int \frac{\exp(x) + \exp(-x)}{2} dx = \frac{1}{2} \times \int \exp(x) dx + \frac{1}{2} \times \int \exp(-x) dx = \frac{\exp(x) - \exp(-x)}{2} = \frac{\exp(x) + \exp(-x)}{2} = \frac{\exp(x)}{2} = \frac{\exp(x)}{2} = \frac{\exp(x)}{2} = \frac{\exp(x)}{2} = \frac{\exp(x)}{2} = \frac{\exp$$

On vérifie ce résultat avec Sage. Une primitive de $ch(x) = sh(x) + C^{ste}$.

0.4 La fonction $x \mapsto \operatorname{Argch}(x)$.

Définissons nos fonctions dans Sage

Le cosinus hyperbolique, noté ch est défini sur $\mathbb R$ selon l'expression $\frac{\exp(x)+\exp(-x)}{2}$, son domaine de valeurs est $[1,+\infty[$ c'est une fonction paire c'est-à-dire $\operatorname{ch}(-x)=\operatorname{ch}(x)$.

La fonction $x \mapsto \operatorname{ch}(x)$ est inversible sur le domaine de définition restreint à \mathbb{R}^+ , car elle y est bijective, son inverse est notée « Arg ch » et définit la fonction « argument cosinus hyperbolique » telle que $x \mapsto \operatorname{Arg}\operatorname{ch}(x)$.

La représentation graphique de $x \mapsto \operatorname{Arg} \operatorname{ch}(x)$.

On observe que la fonction est croissante, continue sur $[1, +\infty[$ et dérivable sur l'intervalle ouvert $]1, +\infty[$.

0.4.1 Dérivée de la fonction $x \mapsto Argch(x)$.

On a la fonction composée $Id = ch \circ Arg \, ch$ telle que $x \mapsto ch \, (Arg \, ch(x)) = x$ dont la dérivée s'écrit alors $1 = Arg \, ch' \times ch' \circ Arg \, ch$.

$$x = \operatorname{ch}\left(\operatorname{Arg}\operatorname{ch}(x)\right)(x) \quad \text{en d\'erivant, on a}$$

$$1 = \operatorname{Arg}\operatorname{ch}'(x) \times \operatorname{ch}' \circ \operatorname{Arg}\operatorname{ch}(x) \quad \operatorname{d'o\`u}$$

$$\operatorname{Arg}\operatorname{ch}'(x) = \frac{1}{\operatorname{ch}' \circ \operatorname{Arg}\operatorname{ch}(x)} = \frac{1}{\operatorname{sh}\left(\operatorname{Arg}\operatorname{sh}(x)\right)} \quad \text{or, on sait que}$$

$$1 = \operatorname{ch}^2\left(\operatorname{Arg}\operatorname{ch}(x)\right) - \operatorname{sh}^2\left(\operatorname{Arg}\operatorname{ch}(x)\right) \quad \text{alors}$$

$$\operatorname{sh}\left(\operatorname{Arg}\operatorname{ch}(x)\right) = \sqrt{\operatorname{ch}^2\left(\operatorname{Arg}\operatorname{ch}(x)\right) - 1} = \sqrt{x^2 - 1} \quad \text{finalement}$$

$$\operatorname{Arg}\operatorname{ch}'(x) = \frac{1}{\sqrt{x^2 - 1}} \quad \text{on v\'erifie ce calcul avec Sage.}$$

On vérifie ce résultat avec Sage. La dérivée de arcosh $(x) = \frac{1}{\sqrt{x+1}\sqrt{x-1}}$.

0.4.2 Calcul d'une primitive de la fonction $x \mapsto Arg ch(x)$.

Pour calculer $\int \operatorname{Arg} \operatorname{ch}(x) \, dx$, on procède par une intégration par parties en posant $u(x) = \operatorname{Arg} \operatorname{ch}(x)$ et v'(x) = dx, d'où $u'(x) = \frac{1}{\sqrt{x^2 - 1}}$ et v(x) = x. On a donc

$$\int \operatorname{Arg} \operatorname{ch}(x) \, dx = x \operatorname{Arg} \operatorname{ch}(x) - \int \frac{x}{\sqrt{x^2 - 1}} \, dx \quad \text{or}$$

$$\int \frac{x}{\sqrt{x^2 - 1}} \, dx = \int \left(\sqrt{x^2 - 1}\right)' \, dx = \sqrt{x^2 - 1} \quad \text{d'où}$$

$$\int \operatorname{Arg} \operatorname{ch}(x) \, dx = x \operatorname{Arg} \operatorname{ch}(x) - \sqrt{x^2 - 1} + C^{ste}$$

On vérifie ce résultat avec Sage. Une primitive de $\operatorname{arcosh}(x) = x \operatorname{arcosh}(x) - \sqrt{x^2 - 1} + C^{ste}$.

Les représentations graphiques respectivement de $x \mapsto \operatorname{Argch}(x)$, de sa dérivée et de sa primitive.

0.5 Calcul d'une primitive de $x \mapsto \frac{dx}{\sqrt{x^2 - 1}}$.

Je pose $y-x=\sqrt{x^2-1}$ avec $y-x=\sqrt{x^2-1}\geqslant 0$, donc $y\geqslant x$. Quel est le signe de y c'est-à-dire le signe de $x+\sqrt{x^2-1}$?

La représentation graphique de $x+\sqrt{x^2-1}$ et de sa dérivée.

En élevant au carré, on a

$$(y-x)^2 = x^2 - 1$$

$$y^2 - 2yx + x^2 = x^2 - 1$$

$$y^2 - 2yx = -1$$
 puis en différentiant chaque variable
$$2ydy - 2dy \times x - 2ydx = 0$$

$$(y-x)dy = ydx$$

$$\frac{dy}{y} = \frac{dx}{(y-x)} = \frac{dx}{\sqrt{x^2 - 1}}$$

$$\int \frac{dy}{y} = \ln|y| + C^{ste} = \int \frac{dx}{\sqrt{x^2 - 1}} dx \quad \text{or } y = x + \sqrt{x^2 - 1} \ge 0$$

$$\ln(x + \sqrt{x^2 - 1}) + C^{ste} = \int \frac{dx}{\sqrt{x^2 - 1}} dx$$

Or, nous avons déjà vu en ??, page ?? que la dérivée de la fonction $x \mapsto \operatorname{Argsh}(x)$ vaut $\frac{1}{\sqrt{x^2-1}}$ ce qui implique que $\ln(x+\sqrt{x^2-1})+C^{ste}=\operatorname{Argsh}(x)$. Montrons-le!

0.5.1 Avons nous $Argch(x) = ln(x + \sqrt{x^2 - 1})$?

Posons $y = \operatorname{Argch}(x)$, comme Argch est la fonction inverse de ch, on a $\operatorname{ch}(y) = \frac{\exp(y) + \exp(-y)}{2} = x$ d'où $2x = \exp(y) + \exp(-y)$ et en multipliant par $\exp(y)$, on obtient l'équation du second degré en $\exp(y)$,

$$(\exp(y))^2 - 2x \exp(y) + 1 = 0, (1)$$

dont le discriminant Δ vaut $4x^2 - 4 \neq 0$, ainsi les solutions s'écrivent $\exp(y_1) = x + \frac{\sqrt{4x^2 - 4}}{2} = x + \sqrt{x^2 - 1}$ et $\exp(y_2) = x - \frac{\sqrt{4x^2 - 4}}{2} = x - \sqrt{x^2 - 1}$.

On ne retient que la solution $\exp(y) = x + \sqrt{x^2 - 1}$ puisque la fonction exponentielle est toujours positive et que $\exp(y_2) = x - \sqrt{x^2 - 1} < 0$.

Finalement, $y = \operatorname{Argch}(x) = \ln(x + \sqrt{x^2 - 1})$.

Les représentations graphiques de $ln(x + \sqrt{x^2 - 1})$ et de Argch(x).

Nous avons montré l'égalité $Argch(x) = ln(x + \sqrt{x^2 - 1})$.