

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

Materia:	Dinámica d Vibraciones	e Máquinas	у	Semestre:	Séptimo
Ciclo:	Profesional Ingeniería				
	Electromecánica				
Código de la materia:	214				
Horas Semanales:	Teóricas:	2			
	Prácticas:	2			
	Laboratorio:	-			
Horas Semestrales:	Teóricas:	34			
	Prácticas:	34			
	Laboratorio:	-			
Pre-Requisitos:	Mecanismos y Elementos de Máquinas				

I.- OBJETIVOS GENERALES

Capacitar para el análisis cinemático y dinámico de mecanismos y máquinas. Capacitar para la comprensión de fenómenos vibratorios producidos en piezas y máquinas en general, así como de ruidos, sus orígenes, normas de vibraciones que permitan una prevención de daños de componentes.

II.- OBJETIVOS ESPECIFICOS

Aplicar los conocimientos adquiridos para resolver ejercicios y problemas de diseño de máquinas y equipos.

III.- CONTENIDOS PROGRAMATICOS

- 1. Introducción.
 - 1.1 Mecanismos. Máquinas.
 - 1.2 Movimiento. Tipos. Ciclo, Periodo y fase de movimiento.
 - 1.3 Transmisión de movimiento. Eslabón. Cadena. Inversión.
 - 1.4 Mecanismos de cuatro barras. Mecanismos de Retorno rápido.
 - 1.5 Juntas. Universales. Oldham. Hooks.
 - 1.6 Sistemas de Engranajes. Simples y Planetarios.
- 2. Cinemática de Máquinas.
 - 2.1 Movimientos Relativos.
 - 2.2 Velocidades y aceleraciones relativas en partículas.
 - 2.3 Determinación gráfica de velocidades en mecanismos.
 - 2.4 Determinación gráfica de aceleraciones en mecanismos. Aceleración de Coriolis.
- 3. Análisis de Fuerzas en Maquinarias.
 - 3.1 Fuerzas de inercia. Determinación.
 - 3.2 Análisis de fuerzas en mecanismos de barras articuladas.

Aprobado por:Fecha:	Actualización No.:	Sello y Firma	Página 1 de 3
---------------------	--------------------	---------------	------------------

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

- 3.3 Análisis de fuerzas en motores.
- 3.4 Análisis de fuerzas en los dientes de engranajes.
- 3.5 Análisis de fuerzas giroscópicas. Fuerzas en levas.

4. Balanceo de Maquinarias.

- 4.1 Balanceo de Rotores.
- 4.2 Balanceo dinámico y estático.
- 4.3 Máquinas de balanceo.
- 4.4 Balanceo de máquinas riciprocantes.
- 4.5 Determinación analítica de desbalanceo en motores.

5. Vibraciones de un Grado de Libertad.

- 5.1 Vibración Natural. Vibración Forzada.
- 5.2 Ecuación de movimientos.
- 5.3 Tansmisibilidad. Resonancia.
- 5.4 Amortiguamiento.
- 5.5 Frecuencia Natural y velocidad crítica de ejes.
- 5.6 Vibración en cuerdas flexibles.
- 5.7 Vibraciones longitudinales de barras.
- 5.8 Vibraciones torsionales de ejes.
- 5.9 Vibraciones de vigas.
- 5.10 Vibraciones en membranas y placas.

6. Vibraciones De Dos Grados De Libertad.

- 6.1 Coordenadas Generalizadas.
- 6.2 Modos de vibraciones.
- 6.3 Coordenadas principales y acopladas.
- 6.4 Ecuaciones de Lagrange.
- 6.5 Amortiguador de vibraciones.
- 6.6 Disipadores de vibraciones.

7. Vibraciones No Lineales.

- 7.1 Introducción.
- 7.2 Vibración libre con fuerza de restablecimiento no lineal.
- 7.3 Vibración forzada con fuerza de restablecimiento no lineal.
- 7.4 Vibraciones auto excitadas.
- 7.5 Estabilidad. Principio de la mínima Energía Potencial.

8. Vibraciones en Máquinas.

- 8.1 Análisis Vibracional de Maquinarias en Banda Ancha y Angosta.
- 8.2 Acelerómetros. Tipos. Ubicaciones.
- 8.3 Niveles de Vibraciones. Normas.
- 8.4 Identificaciones de las vibraciones.

Aprobado por:	Actualización No.: Resolución No.: Fecha:	Sello y Firma	Página 2 de 3
---------------	---	---------------	------------------

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

8.5 Predicción de fallas por Monitoreo de Vibraciones.

- 9. Analogías Eléctricas.
 - 9.1 Introducción.
 - 9.2 Elementos mecánicos lineales. Sistemas Translacionales. Sistemas Rotacionales. Principio de D'Alambert.
 - 9.3 Analogía Fuerza Voltaje.
 - 9.4 Analogía Fuerza Corriente.
 - 9.5 Dispositivos mecánicos de acoplamientos.

IV.- METODOLOGÍA

Exposición oral del profesor, y resolución de ejercicios prácticos.

V.- EVALUACIÓN

Conforme al Reglamento Académico y Reglamento de Cátedra vigentes.

VI - BIBLIOGRAFÍA

H. Mabie et all. Mecanismos y Dinámica Máquinas. México. Mc GRAW-HILL.

William Thompson. Teoría de Vibraciones. Aplicaciones. España. Editorial Dossat S.A.

William W.Seto. Mechanical Vibrations. New York. Mc GRAW-HILL.

Walter Zambrano. Prevención de Vibraciones en Sistemas Mecánicos. Santiago. Fac. de Ciencias Físicas y Matemáticas. Universidad Nacional de Chile.

Aprobado por:Fecha:	Actualización No.: Resolución No.: Fecha:	Sello y Firma	Página 3 de 3
---------------------	---	---------------	------------------