

Product Specification _

NHD-2.7-12864WDW3-M

Graphic OLED Display Glass

NHD- Newhaven Display

2.7- 2.7" Diagonal Size

12864- 128 x 64 Pixel Resolution

WD- Model

W- Emitting Color: White

3. 3.3V Power Supply

M- Molex (52271-2079) Connector Interface

Table of Contents

Document Revision History	3
Mechanical Drawing	
Pin Description	
Interface Selection	
On-Board Jumper Options	
Electrical Characteristics	7
Optical Characteristics	7
Controller Information	7
Table of Commands	8
Timing Characteristics-OLED	11
Example Software Routines	15
Quality Information	16

Additional Resources

- > Support Forum: https://support.newhavendisplay.com/hc/en-us/community/topics
- ➤ **GitHub:** https://github.com/newhavendisplay
- **Example Code:** https://support.newhavendisplay.com/hc/en-us/categories/4409527834135-Example-Code/
- > Knowledge Center: https://www.newhavendisplay.com/knowledge center.html
- ➤ Quality Center: https://www.newhavendisplay.com/quality_center.html
- **Precautions for using LCDs/LCMs:** https://www.newhavendisplay.com/specs/precautions.pdf
- ➤ Warranty / Terms & Conditions: https://www.newhavendisplay.com/terms.html

Document Revision History

Revision	Date	Description	Changed By
-	06/09/2017	Initial Release	ML
1	07/25/2017	Update Storage Temperature range	ML
2	05/12/2020	Included Additional Dimensions on Mechanical Drawing	AS
3	02/04/2021	Bezel Redesign; Updated 2D Mechanical Drawing	AS
4	02/26/2021	Rectified error in MPU Pin Assignment Summary	AS
5	11/21/2022	Mechanical Drawing Updated	KL
6	08/17/2023	Minimum Supply Voltage Updated from 2.8V to 3.0V	KL
7	07/29/2024	Maximum Supply Voltage for Boost Converter Updated from 12V to 5.5V.	KL

Pin Description

Parallel Interface:

Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED module
3	NC	-	No Connect by default. Can be configured to power the boost converter
	(BC_V_{DD})		independently. (refer to On-Board Jumper Options section)
4	D/C	MPU	Data/Command select signal, D/C=0: Command; D/C=1: Data
5	R/W	MPU	6800 mode: Read/Write select signal, R/W=1: Read, R/W=0: Write
	/WR		8080 mode: Active LOW Write signal
6	Ε	MPU	6800 mode: Operation Enable signal. Falling edge triggered.
	/RD		8080 mode: Active LOW Read signal
7-14	DB0 – DB7	MPU	8-bit bi-directional Data Bus
15	NC	-	No Connect by default. Can be configured to power Vcc independently.
	(V _{CC})		(refer to On-Board Jumper Options section)
16	/RES	MPU	Active LOW Reset signal
17	/cs	MPU	Active LOW Chip Select signal
18	/SHDN	MPU	Active LOW Shutdown signal for boost converter (internally pulled HIGH).
19	BS1	MPU	MPU Interface select signal
20	BS0	MPU	MPU Interface select signal

Serial Interface:

Pin No.	Symbol	External Connection	Function Description
1	V_{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED module
3	NC	-	No Connect by default. Can be configured to power the boost converter
	(BC_V_{DD})		independently. (refer to On-Board Jumper Options section)
4	D/C	MPU	Data/Command select signal, D/C=0: Command; D/C=1: Data
			Tie LOW for 3-wire SPI
5-6	V_{SS}	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal
8	SDIN	MPU	Serial Data Input signal
9	NC	-	No Connect
10-14	Vss	Power Supply	Ground
15	NC	-	No Connect by default. Can be configured to power V _{CC} independently.
	(Vcc)		(refer to On-Board Jumper Options section)
16	/RES	MPU	Active LOW Reset signal
17	/CS	MPU	Active LOW Chip Select signal
18	/SHDN	MPU	Active LOW Shutdown signal for boost converter (internally pulled HIGH).
19	BS1	MPU	MPU Interface select signal
20	BS0	MPU	MPU Interface select signal

Interface Selection

MPU Interface Pin Selections

Pin	6800 Parallel	8080 Parallel	3-wire Serial	4-wire Serial
Name	8-bit interface	8-bit interface	Interface	Interface
BS1	1	1	0	0
BS0	1	0	1	0

MPU Interface Pin Assignment Summary

Bus			Data	/Comma	and Inte	Control Signals							
Interface	D7	D7 D6 D5 D4 D3 D2 D1 D0									/CS	D/C	/RES
8-bit 6800				D[7	7:0]				E	R/W	/CS	D/C	/RES
8-bit 8080				D[7	7:0]				/RD	/WR	/CS	D/C	/RES
3-wire SPI		Tie LOW NC SDIN SCLK									/CS	Tie LOW	/RES
4-wire SPI		•	Tie LOW			NC	SDIN	SCLK	Tie	LOW	/CS	D/C	/RES

On-Board Jumper Options

Default Jumper Setting

R4	R5	R7	Description
Close	Open	Open	(default) OLED controller and boost converter + OLED panel are powered from VDD (pin #2). This allows the full module to be powered by a single low-voltage supply.

Jumper Option #1 - Independent Supply Voltage for Boost Converter (BC_VDD)

R4	R5	R7	Description
Open	Close	Open	Boost converter + OLED panel are powered from BC_VDD (pin #3). OLED controller is still powered from VDD (pin #2). This allows for increased efficiency through the boost converter by allowing a higher supply voltage at its input, BC_VDD (pin #3).

Jumper Option #2 - External Supply Voltage for OLED Panel (VCC)

omper op		Atoma Cap	p., 10.0086 10. 0112 1 dile. (100)
R4	R5	R7	Description
Open	Open	Close	OLED panel is powered from V_{CC} (pin #15) – boost converter is not used. OLED controller is still powered from V_{DD} (pin #2). This allows for maximum module efficiency, and drastically reduced total current consumption.

Default Jumper Setting

Jumper Option #1

Jumper Option #2

For detailed electrical information on each jumper option, please see the Electrical Characteristics table below.

Electrical Characteristics

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit		
Operating Temperature Range	T _{OP}	Absolute Max	-40	-	+85	°C		
Storage Temperature Range	T _{ST}	Absolute Max	-40	-	+85	°C		
		Default Jumper Setting						
Operating Temperature Range Top Absolute Max -40 - +85 00								
Supply Current for Module	I _{DD}	V _{DD} =3.3V, 100% ON	-	345	375	mA		
		Jumper Option #1						
Supply Voltage for Module	V_{DD}	-	3.0	3.3	3.5	٧		
Supply Current for Module	I _{DD}	V _{DD} =3.3V	-	190	305	μΑ		
Supply Voltage for Boost Converter	BC_V _{DD}	-	3.0	5.0	5.5	V		
Supply Current for Boost Converter	I _{DD_BC}	BC_V _{DD} =5.0V, 100% ON	-	200	215	mA		
		Jumper Option #2						
Supply Voltage for Module	V_{DD}	-	2.8	3.3	3.5	V		
Supply Current for Module	I_{DD}	V _{DD} =3.3V	-	180	300	μΑ		
Supply Voltage for OLED Panel	V _{CC}	-	14.5	15	15.5	٧		
Supply Current for OLED Panel	Icc	V _{CC} =15V, 100% ON	-	60	70	mA		
Sleep Mode Current	I _{DD_SLEEP}	-	-	25	120	μΑ		
"H" Level input	V _{IH}	-	0.8 * V _{DD}	-	V _{DD}	V		
"L" Level input	VIL	-	Vss	-	0.2 * V _{DD}	V		
"H" Level output	V _{OH}	-	0.9 * V _{DD}	-	V_{DD}	V		
"L" Level output	V _{OL}	-	Vss	-	0.1 * V _{DD}	V		

Note: The electrical characteristics shown above for Jumper Option #1 and Jumper Option #2 apply only when the on-board jumpers are configured accordingly. By default, only Default Jumper Setting supply voltage and current (in bold) need to be considered. For details, see On-Board Jumper Options section on previous page.

Optical Characteristics

	Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit
Optimal Viewing Angles Contrast Ratio	Top)	φΥ+		-	85	-	0
	Bot	tom	φΥ-		-	85	-	0
	t	θХ-	-	-	85	-	0	
Angles	Rig	ht	θX+		-	85	85 - ° 85 - ° 85 - ° 10 - 10 - μs 10 - μs	
Contrast Rat			Cr	-	>10,000:1	-	-	-
Dosmansa Tir		Rise	T _R	-	-	10	-	μs
Response III	ne	Fall	T _F	-	-	10	-	μs
Brightness		Lv		50% Checkerboard	60	80	-	cd/m ²
l ifatina			-	$T_{OP} = 25^{\circ}C$, $L_V = 80$ cd/m ²	30,000	-	-	hrs
Response Time Rise Fall		-	$T_{OP} = 25^{\circ}C$, $L_V = 60 \text{cd/m}^2$	50,000	1	-	hrs	

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. To extend the life of the display, lower values may be used for the contrast setting registers – see below table of commands for details.

Controller Information

Built-in SSD1322 Controller: https://support.newhavendisplay.com/hc/en-us/articles/4414477846679-SSD1322

Table of Commands

la otar ration					Cod	e			Dogovintion	RESET		
Instruction	D/C	HEX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	value
Enable Grayscale Table	0	00	0	0	0	0	0	0	0	0	Enable the Grayscale table settings. (see command 0xB8)	
Set Column	0	15	0	0	0	1	0	1	0	1	Set column start and end address	
Address	1	A[6:0]	*	A6	A5	A4	A3	A2	A1	A0	A[6:0]: Column start address. Range: 0-119d	0
	1	B[6:0]	*	В6	B5	В4	В3	B2	B1	В0	B[6:0]: Column end address. Range: 0-119d	119d
Write RAM Command	0	5C	0	1	0	1	1	1	0	0	Enable MCU to write Data into RAM	
Read RAM Command	0	5D	0	1	0	1	1	1	0	1	Enable MCU to read Data from RAM	
Set Row Address	0	75	0	1	1	1	0	1	0	1	Set row start and end address	
	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	A[6:0]: Row start address. Range: 0-127d	0
	1	B[6:0]	*	В6	B5	В4	В3	B2	B1	В0	B[6:0]: Row end address. Range: 0-127d	127d
Set Re-map	0	Α0	1	0	1	0	0	0	0	0	A[0] = 0; Horizontal Address Increment	0
·	1	A[5:0]	0	0	A5	A4	0	A2	A1	A0	A[0] = 1; Vertical Address Increment	
	1	B[4]	*	*	0	В4	0	0	0	1	A[1] = 0; Disable Column Address remap	0
											A[1] = 1; Enable Column Address remap	
											A[2] = 0; Disable Nibble remap	0
											A[2] = 1; Enable Nibble remap A[4] = 0; Scan from COM0 to COM[N-1]	0
											A[4] = 1; Scan from COM0 to COM[N-1] A[4] = 1; Scan from COM[N-1] to COM0	0
											A[4] = 1, 3can non Com[N-1] to Comb	0
											A[5] = 1; Enable COM split Odd/Even	
											B[4] = 0; Disable Dual COM mode	0
											B[4] = 1; Enable Dual COM mode	
											Note: A[5] must be 0 if B[4] is 1.	
Set Display Start	0	A1	1	0	1	0	0	0	0	1	Set display RAM display start line register from 0-127.	0
Line	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0		
Set Display Offset	0	A2	1	0	1	0	0	0	1	0	Set vertical shift by COM from 0~127.	0
	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0		
Display Mode	0	A4~A7	1	0	1	0	0	X2	X1	X0	0xA4 = Entire display OFF	0xA6
											0xA5 = Entire display ON, all pixels Grayscale level 15	
											0xA6 = Normal display	
											0xA7 = Inverse display	
Enable Partial	0	A8	1	0	1	0	1	0	0	0	Turns ON partial mode.	
Display	1	A[6:0]	0	A6	A5	A4	A3	A2	A1	Α0	A[6:0] = Address of start row B[6:0] = Address of end row (B[6:0] > A[6:0])	
	1	B[6:0]	0	В6	B5	B4	В3	B2	B1	В0		
Exit Partial Display	0	A9	1	0	1	0	1	0	0	1	Exit Partial Display mode	
Function Selection	0	AB	1	0	1	0	1	0	1	1	A[0] = 0; External VDD	
	1	A[0]	0	0	0	0	0	0	0	A0	A[0] = 1; Internal VDD regulator	1

Set Sleep Mode	0	AE~AF	1	0	1	0	1	1	1	X0	0xAE = Sleep Mode ON (display OFF)	
ON/OFF					_						0xAF = Sleep Mode OFF (display ON)	_
Set Phase Length	0	B1	1	0	1	1	0	0	0	1	A[3:0] = P1. Phase 1 period of 5-31 DCLK clocks A[7:4] = P2. Phase 2 period of 3-15 DCLK clocks	9 7
	1	A[7:0]	A7	A6	A5	A4	А3	A2	A1	A0	*	
Set Display Clock	0	В3	1	0	1	1	0	0	1	1	A[3:0] = 0000; divide by 1	0
Divide Ratio /	1	A[7:0]	A7	A6	A5	A4	А3	A2	A1	A0	A[3:0] = 0001; divide by 2	
Oscillator											A[3:0] = 0010; divide by 4	
Frequency											A[3:0] = 0011; divide by 8	
											A[3:0] = 0100; divide by 16 A[3:0] = 0101; divide by 32	
											A[3:0] = 0110; divide by 32 A[3:0] = 0110; divide by 64	
											A[3:0] = 0111; divide by 04 A[3:0] = 0111; divide by 128	
											A[3:0] = 1000; divide by 256	
											A[3:0] = 1000; divide by 512	
											A[3:0] = 1010; divide by 1024	
											A[3:0] >= 1011; invalid	1100b
											A[7:4] = Set the Oscillator Frequency. Frequency increases with the	2200
											value of A[7:4]. Range 0000b~1111b.	
VSL / Display	0	B4	1	0	1	1	0	1	0	0	A[1:0] = 00b; Enable external VSL	
Enhancement	1	A[1:0]	1	0	1	0	0	0	A1	A0	A[1:0] = 10b; Internal VSL	10b
	1	B[7:3]	B7	В6	B5	B4	В3	1	0	1	B[7:3] = 11111b; Enhanced low GS display quality	
	-	D[7.3]		50		54		_		_	B[7:3] = 10110b; Normal	10110b
Set GPIO	0	B5	1	0	1	1	0	1	0	1	A[1:0] = 00; GPIO0 input disabled	
	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[1:0] = 01; GPIO0 input enabled	
											A[1:0] = 10; GPIO0 output LOW	10b
											A[1:0] = 11; GPIO0 output HIGH	
											A[3:2] = 00; GPIO1 input disabled	
											A[3:2] = 01; GPIO1 input enabled	
											A[3:2] = 10; GPIO1 output LOW	10b
											A[3:2] = 11; GPIO1 output HIGH	
Set Second Pre-	0	В6	1	0	1	1	0	1	1	0	Sets the second precharge period	1000b
charge Period	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[3:0] = DCLKs	
Set Grayscale	0	В8	1	0	1	1	1	0	0	0	Sets the gray scale pulse width in units of DCLK. Range 0-180d.	
Table	1	A1[7:0]	A1 ₇	A1 ₆	A1 ₅	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀	A1[7:0] = Gamma Setting for GS1	
	1	A2[7:0]	A2 ₇	A2 ₆	A2 ₅	A24	A2 ₃	A2 ₂	A2 ₁	A2 ₀	A2[7:0] = Gamma Setting for GS2	
	1		.					.				
	1							[.		
	1		•		•	•	•	•				
	1	A14[7:0]	A14 ₇	A14 ₆	A14 ₅	A14 ₄	A14 ₃	A14 ₂	A14 ₁	A14 ₀	A14[7:0] = Gamma Setting for GS14	
	1	A14[7.0] A15[7:0]	A147	A146	A145	A14 ₄	A14 ₃	A14 ₂	A14 ₁	A14 ₀	A15[7:0] = Gamma Setting for GS15	
	1	AT2[\;0]	A137	A126	A135	A154	A123	A132	A151	A120	_	
											Note: 0 < GS1 < GS2 < GS3 < GS14 < GS15	
											The setting must be followed by command 0x00.	

Select Default Linear Gray Scale	0	В9	1	0	1	1	1	0	0	1	Sets Linear Grayscale table GS0 pulse width = 0 GS0 pulse width = 0	
Table											GSO pulse width = 8	
											GS0 pulse width = 16	
											GS0 pulse width = 104	
											GSO pulse width = 112	
Set Pre-charge	0	BB	1	0	1	1	1	0	1	1	Set precharge voltage level.	0x17
Voltage	1	A[4:0]	*	*	*	A4	А3	A2	A1	A0	A[4:0] = 0x00; 0.20*VCC	
											•	
											A[4:0] = 0x3E; 0.60*VCC	
Set VCOMH	0	BE	1	0	1	1	1	1	1	0	Sets the VCOMH voltage level	0x04
	1	A[3:0]	*	*	*	*	A3	A2	A1	A0	A[3:0] = 0x00; 0.72*VCC	0.04
Voltage	1	A[3.0]			-		AS	AZ	AI	AU		
											A[3:0] = 0x04; 0.8*VCC	
											A[3:0] = 0x07; 0.86*VCC	
Set Contrast	0	C1	1	1	0	0	0	0	0	1	Double byte command to select 1 out of 256 contrast steps.	0x7F
Control	1	A[7:0]	A7	A6	A5	A4	A3	A2	A1	A0	Contrast increases as the value increases.	
Master Contrast	0	C7	1	1	0	0	0	1	1	1	A[3:0] = 0x00; Reduce output for all colors to 1/16	0x0f
Control	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[3:0] = 0x01; Reduce output for all colors to 2/16	
											A[3:0] = 0x0E; Reduce output for all colors to 15/16	
Cat Navitinia	<u> </u>	64	-				4	_	-		A[3:0] = 0x0F; no change Set MUX ratio to N+1 MUX	1274
Set Multiplex	0	CA	1 *	1	0	0	1	0	1	0	N=A[6:0]; from 16MUX to 128MUX (0 to 14 are invalid)	127d
Ratio	1	A[6:0]		A6	A5	A4	A3	A2	A1	A0		0.12
Set Command	0	FD	1	1	1	1	1	1	0	1	A[2] = 0; Unlock OLED to enable commands	0x12
Lock	1	A[2]	0	0	0	1	0	A2	1	0	A[2] = 1; Lock OLED from entering commands	

For detailed instruction information, view full SSD1322 datasheet here (pages 32-47):

http://www.newhavendisplay.com/app_notes/SSD1322.pdf

Timing Characteristics-OLED

6800-MPU Parallel Interface

 $(V_{DDIO} - V_{SS} = 2.1 V - V_{CI}, V_{CI} - V_{SS} = 2.4 V - 3.5 V, T_A = 25 ^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{CYCLE}	Clock Cycle Time (read) Clock Cycle Time (write)	300 100	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	10	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	150 60	-	-	ns
PW _{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t _R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

8080-MPU Parallel Interface

 $(V_{DDIO} - V_{SS} = 2.1V - V_{CI}, V_{CI} - V_{SS} = 2.4V - 3.5V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Typ	Max	Unit
t_{CYCLE}	Clock Cycle Time (read)	300	-	-	ns
	Clock Cycle Time (write)	100			
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	10	-	-	ns
$t_{ m DHR}$	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
t_{PWLR}	Read Low Time	150	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t_{PWHR}	Read High Time	60	-	-	ns
t_{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns
t_{CS}	Chip select setup time	0	-	-	ns
t_{CSH}	Chip select hold time to read signal	0	-	-	ns
t_{CSF}	Chip select hold time	20	-	-	ns

Serial Interface (4-wire)

 $(V_{DDIO} - V_{SS} = 2.1 V - V_{CI}, V_{CI} - V_{SS} = 2.4 V - 3.5 V, T_A = 25 ^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	25	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	15	-	-	ns
t_{DHW}	Write Data Hold Time	20	-	-	ns
t_{CLKL}	Clock Low Time	25	-	-	ns
t _{CLKH}	Clock High Time	40	-	-	ns
t _R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Serial Interface (3-wire)

 $(V_{DDIO} - V_{SS} = 2.1 V - V_{CI}, V_{CI} - V_{SS} = 2.4 V - 3.5 V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	25	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
t_{DHW}	Write Data Hold Time	20	-	-	ns
t _{CLKL}	Clock Low Time	25	-	-	ns
t _{CLKH}	Clock High Time	25	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

Example Software Routines

Code to initialize OLED:

```
void NHD12864WDY3 Init(void){
        digitalWrite(RES, LOW);
                                         //pull /RES (pin #16) low
        delayUS(200);
                                         //keep /RES low for minimum 200µs
        digitalWrite(RES, HIGH);
                                         //pull /RES high
                                         //wait minimum 200µs before sending commands
        delayUS(200);
        writeCommand(0xAE);
                                         //display OFF
        writeCommand(0xB3);
                                         //set CLK div. & OSC freq.
        writeData(0x91);
        writeCommand(0xCA);
                                         //set MUX ratio
        writeData(0x3F);
        writeCommand(0xA2);
                                         //set offset
        writeData(0x00);
        writeCommand(0xAB);
                                         //function selection
        writeData(0x01);
        writeCommand(0xA0);
                                         //set re-map
        writeData(0x16);
        writeData(0x11);
        writeCommand(0xC7);
                                         //master contrast current
        writeData(0x0F);
        writeCommand(0xC1);
                                         //set contrast current
        writeData(0x9F);
        writeCommand(0xB1);
                                         //set phase length
        writeData(0xF2);
        writeCommand(0xBB);
                                         //set pre-charge voltage
        writeData(0x1F);
        writeCommand(0xB4);
                                         //set VSL
        writeData(0xA0);
        writeData(0xFD);
        writeCommand(0xBE);
                                         //set VCOMH
        writeData(0x04);
        writeCommand(0xA6);
                                         //set display mode
        writeCommand(0xAF);
                                         //display ON
```


Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+85°C, 240hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-40°C, 240hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+85°C, 240hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-40°C, 240hrs	1,2
High Temperature / Humidity Storage	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+60°C, 90% RH, 240hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	-40°C, 30min -> +25°C, 5min -> +85°C, 30min = 1 cycle 100 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-22Hz, 15mm amplitude. 22-500Hz, 1.5G 30min in each of 3 directions X, Y, Z	3
Atmospheric Pressure Test	Test the endurance of the display by applying atmospheric pressure to simulate transportation by air.	115mbar, 40hrs	3
Static electricity test	Endurance test applying electric static discharge.	Air: ±8KV; 300Ω, 150pF Contact: ±4KV; 300Ω, 150pF	

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.