T-PMTH-402 - Math. appliquées à l'info. Chapitre 6 - Les nombres entiers

Jean-Sébastien Lerat Jean-Sebastien.Lerat@heh.be

Haute École en Hainaut

2019-2020

Plan

- Division
 - Définition
 - Théorèmes
 - Algorithme
- 2 Modulo
 - Arithmétique modulo
 - Propriétés
 - Application
- PGCD et PPCM
 - Nombre premier
 - Théorème fondamental
 - Définitions

- Cryptographie
 - Changement de base
 - RSA
 - Expansion modulo
 - Inverse modulo
- 5 Exercices

Plan

- Division
 - Définition
 - Théorèmes
 - Algorithme
- 2 Modulo
 - Arithmétique modulo
 - Propriétés
 - Application
- 3 PGCD et PPCM
 - Nombre premier
 - Théorème fondamental
 - Définitions

- 4 Cryptographie
 - Changement de base
 - RSA
 - Expansion modulo
- Inverse modulo
- 5 Exercices

Définition

Division

Soient $a, b \in \mathbb{Z}$, $a \neq 0$. a divise par b s'il existe $c \in \mathbb{Z}$ tel que $b = a \times c$. Le fait que a divise b est noté a|b. b est donc un multiple de a.

Exemple de division

$$3|12 \text{ car } c = 4(12 = 3 \times 4)$$

2|7

Théorèmes

```
Soient a,b,c\in\mathbb{Z},a\neq0

Si a|b est a|c alors a|(b+c) Par définition, puisque a|b, (resp. c) \exists n (resp. m), b=a\times n (resp. c=a\times m).

Montrons que a|(b+c), c'est-à-dire \exists k tel que (b+c)=k\times a.

Prenons k=n+m ce qui donne bien a\times (n+m)=a\times n+a\times m=(b+c).

Si a|b et a|c alors a|(b\times c) Preuve similaire
```

Si a b et b c alors a c, $b \neq 0$ Preuve similaire

Algorithme d'Euclide

Algorithme d'Euclide

Soient $a \in \mathbb{Z}$, $d \in \mathbb{N}$, d > 0. Il existe deux uniques entiers q et r tel que : $a = d \times q + r$ et 0 < r < d

Exemple

$$a = 22, d = 5$$

$$22 = 5 * 4 + 2$$

Algorithme d'Euclide – Unicité

Preuve par l'absurde.

Supposons qu'il existe q_1, q_2, r_1, r_2 tel que

$$\begin{cases} a = d \times q_1 + r_1 & 0 \le r_1 < d \\ a = d \times q_2 + r_2 & 0 \le r_2 < d \end{cases}$$

$$\Rightarrow d \times q_1 + r_1 = d \times q_2 + r_2$$

$$d \times q_1 - d \times q_2 = r_2 - r_1$$

$$d \times (q_1 - q_2) = r_2 - r_1$$

Or
$$-d < r_2 - r_1 < d \text{ car } 0 \le r_i < d$$
.
 $\Leftrightarrow -d < d \times (q_1 - q_2) < d \text{ car } = r_2 - r_1$
 $\Leftrightarrow 0 \le |d \times (q_1 - q_2)| < |d|$
 $\Leftrightarrow 0 \le |(q_1 - q_2)| < 1 \text{ car } d \in \mathbb{N}, d > 0$
Or $q_1, q_2 \in \mathbb{N}$ donc $q_1 - q_2 = 0 \Rightarrow r_2 - r_1 = 0$.
 $\Rightarrow r_1 = r_2 \text{ et } q_1 = q_2$

Algorithme d'Euclide – Existence

Case de base (a=0) : prenons q = r = 0, $a = d \times q + r = 0$ et

$$0 \le r < \underbrace{d}$$

peu importe sa valeur tant que >0

Case général (a) : on suppose que $\forall a' < a, a' = d' \times q' + r', \qquad r' < d'$

Si
$$a < d$$
 alors $q = 0$ et $r = a$. On a bien que $a = d \times \underbrace{q}_{0} + \underbrace{r}_{a}$

Si $a \ge d$ II faut montrer que a est de la forme $a = d \times q + r$. Soit un nombre d > 0, par hypothèse, il existe $a - d = qt \times d + rt$. $\Rightarrow a = qt \times d + rt + d$ $\Leftrightarrow a = \underbrace{(qt + 1)}_{} \times d + rt$

Plan

- Division
 - Définition
 - Théorèmes
 - Algorithme
- 2 Modulo
 - Arithmétique modulo
 - Propriétés
 - Application
- 3 PGCD et PPCM
 - Nombre premier
 - Théorème fondamental
 - Définitions

- 4 Cryptographie
 - Changement de base
 - RSA
 - Expansion modulo
 - Inverse modulo
- 5 Exercices

Arithmétique modulo

Modulo

Soient $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$. On dit que a modulo n est le reste b de la division entière de a par b que nous noterons $a \equiv_n b \Leftrightarrow n | (a - b)$.

Exemple

$$a = 7, n = 3, b = 1$$

$$7 \mod 3 = 1$$

Congruence

Congruence

Soient $a, b \in \mathbb{Z}, n \in \mathbb{N}$. On dit que a est congru à b modulo n noté $a \equiv_n b \Leftrightarrow n \mid (b-a)$, a est de la forme $a = b + k \times n$.

Exemple

$$12 \equiv_5 2$$

 $12 \equiv_5 27$

Note: $a \mod n \equiv_n a$

Propriétés

- Soit $n \in \mathbb{N}$, n > 0. $a \equiv_n b$ si et seulement si $\exists k \in \mathbb{Z}$, $a = b + k \times n$
- Soit $a \equiv_n b$ et $c \equiv_n d$:
 - $a + c \equiv_n b + d$
 - $a \times c \equiv_n b \times d$

Application

Génération de nombres pseudo-aléatoires

On choisit a, n, c, x_0 $x_{n+1} = (a \times x_n + c) \mod n$ $n \sim 2^{31} - 1$

Cryptographie

f : fonction de chiffrement g : fonction de déchiffrement g(f(message)) = message

Chiffre de César

FKLIIUH GH FHVDU

 $f(\text{symbole}) = code_{ASCII}(\text{symbole}) - 3$ $g(code) = symbole_{ASCII}(code + 3)$

Plan

- Division
 - Définition
 - Théorèmes
 - Algorithme
- 2 Modulo
 - Arithmétique modulo
 - Propriétés
 - Application
- PGCD et PPCM
 - Nombre premier
 - Théorème fondamental
 - Définitions

- 4 Cryptographie
 - Changement de base
 - RSA
 - Expansion modulo
 - Inverse modulo
- 5 Exercices

Définition

Soit $p \in \mathbb{N}$, $p \ge 2$. On dit que p est premier si et seulement si les seuls diviseurs sont 1 et p.

Exemple

2, 3, 5, 7, 11, 13, ...

Théorème fondamental de l'arithmétique

Théorème fondamental de l'arithmétique

Soit $n \ge 2$, n se décompose de manière *unique* en produit de nombres premiers.

Exemple

```
6 = 2 \times 3
```

```
Cas de base (n = 2): 2 est le produit de 2.
```

Cas général (n > 2):

Si
$$n$$
 est premier $n = n$

si *n* n'est pas premier alors
$$\exists p, p | n \Rightarrow n = p \times q$$
.

p < n et q < n, or par hypothèse d'induction forte, $\forall k < n$, k est décomposable en produit de nombres premiers.

- $\Rightarrow p \times q$ est décomposable en facteurs premiers.
- \Rightarrow *n* est décomposable en facteurs premiers.

Définitions

Plus grand commun diviseur (PGCD)

Soient $a, b \in \mathbb{Z}$, $a \neq 0 \lor b \neq 0$. Le PGCD de a et b, noté pgcd(a, b), est le plus grand nombre naturel $d \in \mathbb{N}$ tel que d|a et d|b.

Note: $pgcd(p_1, p_2) = 1$ lorsque p_1, p_2 sont premiers entre eux.

Note: pgcd(a, 0) = pgcd(0, a) = a. Par convention pgcd(0, 0) = 0

Plus petit commun multiple (PPCM)

Soient $a, b \in \mathbb{Z}$, $a \neq 0 \lor b \neq 0$. Le PPCM de a et b, noté ppcm(a, b), est le plus petit entier d tel que a|d et b|d.

Exemples

$$pgcd(24, 36) = 12$$

$$ppcm(2,3) = 6$$

Soient $a, b \in \mathbb{N}$, a > 0, b > 0, a est de la forme $a = b \times q + r$. Donc $r = a - b \times q$ (a > b).

Soit d diviseur de a et $b \Rightarrow d|a$ et d|b.

$$\Rightarrow a = d \times x \text{ et } b = d \times y.$$

$$b \times q = d \times y \times q$$
 est divisible par d .

$$\Rightarrow \underbrace{a - b \times q}_{=r} = d \times x - \underbrace{d \times y \times q}_{=b \times q}$$

$$\Leftrightarrow r = d \times (x - y \times q)$$
 est divisible par d (multiple).

 \Leftrightarrow r est divisible par d.

De manière similaire, si d|b et d|r alors $d|b \times q + r$ (récursion).

d est diviseur commun de a et b si et seulement si d est diviseur commun de b et $r \Rightarrow pgcd(a,b) = pgcd(b,r)$

Corollaire $pgcd(a, b) = pgcd(b, a \mod b)$

Plan

- Division
 - Définition
 - Théorèmes
 - Algorithme
- 2 Modulo
 - Arithmétique modulo
 - Propriétés
 - Application
- PGCD et PPCM
 - Nombre premier
 - Théorème fondamental
 - Définitions

- 4 Cryptographie
 - Changement de base
 - RSA
 - Expansion modulo
 - Inverse modulo
- 5 Exercices

Changement de base

Représentation des nombres dans N

Soit $b, n \in \mathbb{N}, b \ge 2$. n peut être écrit de manière unique tel que

$$n = \sum_{i=0}^{k} a_i \times b^k$$

où $a_i \in [0, b-1]$

Exemple d'écriture

Base
$$b = 10 925_{10} = 9 \times 10^2 + 2 \times 10^1 + 5 \times 10^0$$

Base
$$b = 2 \ 101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Base
$$b = 16$$
 $AF_{16} = \underbrace{A}_{10} \times 16^{1} + \underbrace{F}_{15} \times 16^{1}6^{0}$

Chiffrement

Chiffrement

Un Chiffrement est un système qui définit comment chiffrer et déchiffrer un message. C'est-à-dire comment rendre un message inintelligible (incompréhensible) et comment rendre le message inintelligible en message intelligible.

Chiffrement symétrique

Un chiffrement symétrique va utiliser une seule clef (« mot de passe ») afin de chiffrer et déchiffrer un message à l'aide d'une fonction de chiffrement f et une fonction g de déchiffrement :

$$g(f(message, clef), clef) = message$$

Chiffrement asymétrique

Un **chiffrement asymétrique** va utiliser deux clefs appelées *clef publique p* et clef privée s. Les fonctions de chiffrement f et de déchiffrement g s'utilisent de la manière suivante :

$$g(f(message, s), p) = message$$

RSA

Chiffrement RSA

Le **chiffrement RSA** ^a est un algorithme de chiffrement asymétrique où :

La clef publique (n, e)

La clef privée (n, d)

La fonction de chiffrement $f(message_{clair}) = message_{clair}^e \mod n$

La fonction de déchiffrement $g(\textit{message}_{\textit{chiffré}}^d) = \textit{message}_{\textit{chiffré}}^d \mod n$

a. Le nom vient de ses inventeurs : Ronald Rivest, Adi Shamir et Leonard Adleman.

Générer une clef RSA:

- Choisir deux nombres premiers distincts p et q
- Calculer le module de chiffrement n = pq
- **3** Calculer l'indicatrice d'Euler $\phi(n) = (p-1)(q-1)$, i.e. combien de nombres premiers avec n.
- **Output** Choisir un nombre entier $e < \phi(n)$ premier (avec $\phi(n)$)
- **5** Calculer le nombre entier $d = e^{-1} \mod \phi(n)$

Solidité du RSA

Comment se fait-il que cet algorithme permet de communiquer de manière sécurisée?

Il faut que le calcule de $m^e \mod n$ soit rapide et qu'il soit impossible (ou difficile) de retrouver (calculer) d sur base de (n, e).

Or
$$d = e^{-1} \mod \phi(n)$$
 et $\phi(n) = (p-1)(q-1)$.
 $\Rightarrow d = e^{-1} \mod (p-1)(q-1)$

Il faut que la recherche de p et q soit impossible/difficile.

Expansion modulo

Expansion modulo

L'expansion modulo d'un nombre b est le calcul de $b^n \mod m$.

Remarrques:

$$b^n = \prod_{i=0}^n b = \begin{cases} (b^{\frac{n}{2}})^2 & \text{si } n \text{ est pair} \\ b(b^{\frac{n-1}{2}})^2 & \text{si } n \text{ est impair} \end{cases}$$

Un algorithme efficace va donc calculer à chaque étape $base^2 \mod m$ tel que

$$base = \underbrace{b \lfloor \frac{n}{2} \rfloor}_{\text{Remarque 1}} \mod n$$

Inverse modulo

Inverse modulo

L'inverse de a modulo n est un nombre u tel que

$$u = a^{-1} \bmod n$$

$$\Leftrightarrow ua \equiv_n 1$$

\Rightarrow \exists v \in \mathbb{Z}, 1 - au = nv

$$\Leftrightarrow 1 = nv + au$$

Comment calculer $d = e^{-1} \mod \phi(n)$?

Selon le théorème d'Euler si e est premier avec $n \iff pgcd(e, n) = 1$,

$$\begin{array}{cccc} e^{\phi(n)} & \equiv_n & 1 \\ e \times e^{\phi(n)-1} & \equiv_n & 1 \\ e^{\phi(n)-1} & \equiv_n & \frac{1}{e} \\ e^{\phi(n)-1} & \equiv_n & e^{-1} \\ e^{(p-1)(q-1)-1} & \equiv_n & e^{-1} = d \end{array}$$

Plan

- Division
 - Définition
 - Théorèmes
 - Algorithme
- 2 Modulo
 - Arithmétique modulo
 - Propriétés
 - Application
- PGCD et PPCM
 - Nombre premier
 - Théorème fondamental
 - Définitions

- 4 Cryptographie
 - Changement de base
 - RSA
 - Expansion modulo
 - Inverse modulo
- 5 Exercices

Exercices -1/3

- **①** Prouvez que si $a \in \mathbb{N}, a > 0$, alors 1 divise a et a divise 0.
- **②** Soient $a, b \in \mathbb{Z}$, $a \neq 0, b \neq 0$, prouvez que si a|b et b|a alors a = b ou a = -b.
- Déterminez le quotient et le reste de 111 divisé par 11 ; 123 par 7 ; 777 divisé par 21 ; 1434 divisé par 13 et 1025 divisé par 15.
- Calculez 7 mod 5; 789 mod 5672; 77 mod 11; 55 mod 7; 72 mod 13
- **③** Soient $a, b, n, m \in \mathbb{N}$ tels que $n \ge 2, m \ge 2etn|m$. Prouvez que si $a \equiv_m b$ alors $a \equiv_n b$.
- **⑤** Soit $n \in \mathbb{N}$. Prouvez que si n est impair alors $n^2 \equiv_2 1$.
- **②** Soient $a, b, c, d \in \mathbb{Z}$, $m \in \mathbb{N}$, m > 0. Prouvez que si $a \equiv_m b$ et $c \equiv_m d$ alors $(a + c) \equiv_m (b + d)$ et $(ac) \equiv_m (bd)$.
- Oéduire de l'exercice précédent que :
 - $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
 - $(ab) \mod m = ((a \mod m)(b \mod m)) \mod m$
- Prouvez que les deux égalités suivantes sont fausses :
 - $\bullet (a+b) \bmod m = (a \bmod m) + (b \bmod m)$
 - $(ab) \mod m = (a \mod m)(b \mod m)$

Solutions -1/3

- 1 | $a \Leftrightarrow a = 1 * b \Leftrightarrow \frac{a}{1} = b \Rightarrow b = a$ $a | 0 \Leftrightarrow 0 = a * b \Leftrightarrow \frac{0}{a} = b \Rightarrow b = 0, \frac{0}{a} \text{ existe car } a > 0$
- ② $(a|b \Leftrightarrow b = a * c, b|a \Leftrightarrow a = b * d) \Rightarrow a = d = \frac{1}{c}$ avec $c, d \in \mathbb{Z}$ Si a, b de mêmes signes (resp. différent) alors c et d positifs (resp. négatifs) $\Rightarrow a = b$ ou a = -b

- **③** On sait que $m = n * k, k ∈ \mathbb{N}$, $a = m * l + b \Rightarrow a = n * k * l + b$, a s'exprime bien sous la forme a = n * p + b, n le diviseur et b le reste
- **o** *n* est impaire $\Leftrightarrow n = 2 * k + 1$, $n^2 = (2 * k + 1)^2 = 4k^2 + 4k + 1 = 2 * (2k^2 + 2k) + 1 \Rightarrow n^2 \equiv_2 1$
- a + c = (m * k + b) + (m * l + d) = m * lk + (b + d) a * c = (m * k + b) * (m * l + d) = m * (mkl + ld + bl) + (b * d)
- $(a+b) \equiv_m (m*k+b+b) \equiv_m 2b \mod m \Leftrightarrow$ $((a \mod m) + (b \mod m)) \mod m = (b+b) \mod m = 2b \mod m$ $(a+b) \equiv_m b*(m*k+b) = m*bk+b^2 \equiv_m b^2 \mod m \Leftrightarrow$ $((a \mod m)(b \mod m)) \mod m = b^2 \mod m$
- $a = 8, m = 5, b = 3, k = 1 : 8 + 3 \not\equiv_5 3 + 2 \Leftrightarrow 1 \neq 5, \\ 8 * 3 \not\equiv_5 3 * 2 \Leftrightarrow 4 \neq 6$

Exercices -2/3

- Soient $m, n \in \mathbb{Z}$ et p un nombre premier. Prouvez que si p|mn alors p|m ou p|n. Ce résultat est-il toujours vrai si p n'est pas premier?
- ② Déterminez lesquels de ces nombres sont premiers : 21,71,111 et 143.
- Décomposez les nombres suivants en facteurs premiers : 88, 124, 289 et 402.
- Calculez pgcd(15, 36), ppcm(21, 49), pgcd(121, 125) et ppcm(31, 81).
- Prouvez que le produit de trois entiers consécutifs est toujours divisible par 6.
- **6** Écrire en notation binaire les nombres suivants : 7, 9, 11, 31 et 65.
- Écrire en notation hexadécimale les nombres suivants : 13,31 et 65.

Solutions -2/3 – Partie 1

- m*n=p*q Tout nombre se décompose en un produit de nombres premiers. Soit $q=\prod_i q_i, m=\prod_j m_j, n=\prod_k n_k$ des produits de nombres premiers. $\Rightarrow m*n=\prod_j m_j*\prod_k n_k, p*q=p*\prod_i q_i$ $\Rightarrow \prod_j m_j*\prod_k n_k=p*\prod_i q_i$ La liste exaustive des nombres premiers de m et n qui sont aussi diviseurs se trouve dans la partie gauche de l'égalité. p s'y trouve donc forcément.
- ② 3|21,3|111,11|143 et 71 est premier
- $88 = 2 \times 2 \times 2 \times 11,124 = 2 \times 2 \times 31,289 = 17 \times 17,402 = 2 \times 3 \times 67$
- pgcd(15,36) = 3, ppcm(21,49) = 147, pgcd(121,125) = 1 et ppcm(31,81) = 2511.

Solutions -2/3 – Partie 2

● Soit $n \in \mathbb{N}$, montrons que 6|n*(n+1)*(n+2). n^3+2n^2+n doit être de la forme 6*x. En particulier 2*3*x.

Divisible par 2:

si n est pair alors produit de nombres pairs est pair, sinon n^3 est impair, $2n^2$ est pair, n est impair ce qui donne un nombre pair.

Divisible par 3:

Montrons que n*(n+1)*(n+2) est divisible par 3. Soit n est divisible par trois, sinon c'est qui lui manque une ou deux unités. Donc forcément, n+1 ou n+2 sera divisible par 3 d'où leur produit qui est divisible par 3.

- **3** $13 =_{16} D$, $31 =_{16} 1F$ et $65 =_{16} 41$.

Exercices – 3/3

- Convertir les entiers suivants de l'hexadécimal au décimal : A0B1 et F0A02.
- Convertir les entiers suivants de l'hexadécimal au binaire : ABBA et FACE.
- Onvertir les entiers suivants du binaire en hexadécimal : 11111011 et 10011101.
- Prouvez qu'un nombre entier est divisible par 3 si et seulement si la somme de ses digits en décimal est divisible par 3.
- Trouvez l'inverse de 5 modulo 11 ainsi que l'inverse de 3 modulo 7.
- **o** Prouvez que $2^{240} \mod 11 = 1$

Solutions -3/3 Partie 2

- **41137** et $F0A02_{10} = 985602$
- ② $ABBA =_2 1010101110111010$ et $FACE =_2 1111101011001110$.
- Onvertir les entiers suivants du binaire en hexadécimal : $11111011 =_{16} FB$ et $10011101 =_{16} 9D$.
- Soit un nombre $z \in \mathbb{Z}$ représenté sous forme décimale $z = \sum_{i=0} z_i \times 10^i$. Montrons que 3|z ssi $3|\sum_{i=0} z_i$. Cas $1:|sum_{i=0}z_i| < 10$ alors par exhaustivité (montrer toutes les combinaisons) z n'est divisique que dans le cas où $|sum_{i=0}z_i|$ est un multiple de 3. Cas $2:|sum_{i=0}z_i| \geq 10$, $z' = sum_{i=0}z_i$, on retombe dans le cas 1 en remplaçant z par z'.
- \bullet L'inverse de 5 modulo 11 = 9 et l'inverse de 3 modulo 7 = 5.

Solutions – 3/3 – Partie 2 ($2^{240} \mod 11 = 1$)

```
(b^2)^120
((b^2)^2)^60
(((b^2)^2)^2)^3
((((b<sup>2</sup>)<sup>2</sup>)<sup>2</sup>)<sup>2</sup>)<sup>15</sup>
((((b^2)^2)^2)^2 \mod 11)^15
((((b^2)^2)^2)^2 \mod 11)^15
9^15 mod 11
(9 * (9^14 \mod 11)) \mod 11
(9 * ((9^2)^7 \mod 11)) \mod 11
(9 * (4^7 \mod 11)) \mod 11
(9 * (4* (4^6 \mod 11) \mod 11) \mod 11)
(9 * (4* ((4^2 \mod 11)^3 \mod 11) \mod 11) \mod 11)
(9 * (4* (5^3 \mod 11) \mod 11) \mod 11)
(9 * (4* (5^3 \mod 11) \mod 11) \mod 11)
(9 * (4* 4 mod 11) mod 11)
9 * 5 \mod 11
45 mod 11
```

Exercices – Python

- **⑤** Soient $a, d \in \mathbb{N}, d > 0$. Écrivez un algorithme qui calcule $a \ div \ b$ et $a \ mod \ b$. Prouvez la correction et la terminaison de votre algorithme.
- **②** Soient a et $b \in \mathbb{N}$, prouvez que $pgcd(a, b) = pgcd(b, a \mod b)$. Utilisez ce résultat pour construire un algorithme qui calcule pgcd(a, b). Prouvez la correction et la terminaison de votre algorithme. Utilisez votre algorithme pour obtenir pgcd(1000, 5040), pgcd(1001, 2345).
- Écrire un algorithme qui teste si un nombre est premier. Prouvez la correction et la terminaison de votre algorithme.
- **⊙** Étant donnés $n, b \in \mathbb{N}$ avec $b \ge 2$, écrire un algorithme qui retourne la représentation de n en base b. Prouvez la correction et la terminaison de votre algorithme.
- **9** Voici la clef publique RSA (e = 12373, n = 8204732881) qui a permis de chiffrer le message suivant :

5920091197, 3617337899, 7436421556, 316637925, 5289362343, 726885161

Cassez-le!