CHAPITRE 19

TABLE DES MATIÈRES

Ι	Premières propriétés	2
Π	Noyau et image	7
Ш	Théorème du rang	10
IV	Formes linéaires	15
\mathbf{V}	Projections et symétries	22

Première partie

Premières propriétés

Définition: Soient E et F deux $\mathbb{K}\text{-espaces}$ vectoriels et $f:E\to F.$ On dit que f est $\underline{\text{linéaire}}$ si

$$\forall (x,y) \in E^2, \forall (\alpha,\beta) \in \mathbb{K}^2, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

Exemple: 1. $E = \mathscr{C}^0([a, b], \mathbb{C})$

$$\varphi: E \longrightarrow \mathbb{C}$$

$$f \longmapsto \int_a^b f(t) \ dt$$

 φ est linéaire

2. $E = \mathcal{D}(I, \mathbb{C})$ et $F = \mathbb{C}^I$

$$\varphi: E \longrightarrow F$$
$$f \longmapsto f'$$

 φ est linéaire

 $3. \ f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ax \end{array} \ \text{est lin\'eaire}.$

$$f(\alpha x + \beta y) = \alpha ax + \beta ay = \alpha f(x) + \beta f(y)$$

 $\begin{array}{lll} 4. & E=\mathscr{C}^1(I,\mathbb{C}) \text{ et } F=\mathscr{C}^0(I,\mathbb{C}). \ a\in F \\ \varphi: & E & \longrightarrow & F \\ y & \longmapsto & y'+ay \end{array} \text{ est linéaire}$

$$y' + a(x)y = b(x) \iff \varphi(y) = b$$

5.
$$E = \mathbb{C}^{\mathbb{N}} = F$$

 $\varphi : \begin{array}{ccc} E & \longrightarrow & F \\ (u_n) & \longmapsto & (u_{n+2} - u_{n+1} - u_n) \end{array}$

$$\forall n, u_{n+2} = u_{n+1} + u_n \iff \varphi(u) = 0$$

6. $E = \mathcal{M}_{p,1}(\mathbb{K}), F = \mathcal{M}_{n,1}(\mathbb{K}), A \in \mathcal{M}_{n,p}(\mathbb{K})$

$$\varphi: E \longrightarrow F$$
$$X \longmapsto AX$$

$$AX = B \iff \varphi(X) = B$$

 $\textbf{D\'efinition:} \quad \text{On dit qu'un problème est } \underline{\text{lin\'eaire}} \text{ s'il se pr\'esente sous la forme}:$

Résoudre
$$\varphi(x) = y$$

où l'inconnue est $x \in E,\, y$ est un paramètre de F avec $\varphi: E \to F$ linéaire.

Exemple:

Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x \in \mathbb{R}, f(x+1) - f(x-1) = \lambda$$

où $\lambda \in \mathbb{R}$ est fixé. On pose $E = \mathbb{R}^{\mathbb{R}}$,

$$\begin{split} \varphi : E &\longrightarrow E \\ f &\longmapsto \varphi(f) : & \mathbb{R} &\longrightarrow & \mathbb{R} \\ x &\longmapsto & f(x+1) - f(x-1) \end{split}$$

Ι

et

$$y:\mathbb{R}\longrightarrow\mathbb{R}$$

$$x\longmapsto\lambda$$

Le problème est équivalent à

$$\begin{cases} \varphi(f) = y \\ f \in E \end{cases}$$

Soient $f, g \in E, \lambda, \mu \in \mathbb{R}$.

$$\forall x \in \mathbb{R}, \varphi(\lambda f + \mu g)(x) = (\lambda f + \mu g)(x+1) - (\lambda f + \mu g)(x-1)$$

$$= \lambda f(x+1) - \mu g(x+1) - \lambda f(x-1) - \mu g(x-1)$$

$$= \lambda (f(x+1) - f(x-1)) + \mu (g(x+1) - g(x-1))$$

$$= \lambda \varphi(f)(x) + \mu \varphi(g)(x)$$

Donc, $\varphi(\lambda f + \mu g) = \lambda \varphi(f) + \mu \varphi(g)$

Remarque (Notation):

Soient E et F deux K-espaces vectoriels.

L'ensemble des applications linéaires de E dans F est $\mathscr{L}(E,F).$

Si F=E, alors on note plus simplement $\mathscr{L}(E)$ à la place de $\mathscr{L}(E,E).$

Les éléments de $\mathcal{L}(E)$ sont appelés <u>endomorphismes (linéaires)</u> de E.

Proposition: Soit $f \in \mathcal{L}(E,F)$, $g \in \mathcal{L}(F,G)$. Alors $g \circ f \in \mathcal{L}(E,G)$.

Preuve:

Soient $u, v \in E$ et $\alpha, \beta \in \mathbb{K}$.

$$(g \circ f)(\alpha u + \beta v) = g(f(\alpha u + \beta v))$$

$$= g(\alpha f(u) + \beta f(v))$$

$$= \alpha g(f(u)) + \beta g(f(v))$$

$$= \alpha (g \circ f)(u) + \beta (g \circ f)(v)$$

Proposition: $\mathscr{L}(E,F)$ est un sous-espace vectoriel de F^E .

Preuve:

Soient $f,g\in\mathcal{L}(E,F)$ et $\lambda,\mu\in\mathbb{K}.$ Montrons que $\lambda f+\mu g\in\mathcal{L}(E,F).$ Soient $u,v\in E,\,\alpha,\beta\in\mathbb{K}.$

$$\begin{split} (\lambda f + \mu g)(\alpha u + \mu v) &= \lambda f(\alpha u + \beta v) + \mu g(\alpha u + \beta v) \\ &= \lambda \left(\alpha f(u) + \beta f(v)\right) + \mu \left(\alpha g(u) + \beta g(v)\right) \\ &= \alpha \left(\lambda f(u) + \mu g(u)\right) + \beta \left(\lambda f(v) + \mu g(v)\right) \\ &= \alpha \left(\left(\lambda f + \mu g(u)\right) + \beta \left(\left(\lambda f + \mu g(v)\right)\right) \end{split}$$

De plus,
$$\tilde{0}: \begin{array}{ccc} E & \longrightarrow & F \\ x & \longmapsto & 0_F \end{array}$$
 est linéaire donc $\mathscr{L}(E,F) \neq \varnothing$. \square

Proposition: $(\mathcal{L}(E), +, \circ, \cdot)$ est une K-algèbre (non commutative en général).

 $\begin{array}{ll} \textit{Preuve:} & - \left(\mathscr{L}(E), +, \cdot \right) \text{ est un } \mathbb{K}\text{-espace vectoriel d'après la proposition précédente.} \\ & - \left(\mathscr{L}(E), + \right) \text{ est un groupe abélien.} \\ & \text{``o'''} \text{ est associative et interne sur } \mathscr{L}(E). \end{array}$

 $id_E \in \mathcal{L}(E)$.

Soient $f, g, h \in \mathcal{L}(E)$.

$$\begin{split} \forall x \in E, f \circ (g+h)(x) &= f \big((g+h)(x) \big) \\ &= f \big(g(x) + h(x) \big) \\ &= f \big(g(x) \big) + f \big(h(x) \big) \text{ car } f \text{ est linéaire} \\ &= (f \circ g + f \circ h)(x) \end{split}$$

Donc,

$$f \circ (g+h) = f \circ g + f \circ h$$

$$\forall x \in E, (g+h) \circ f(x) = (g+h) (f(x))$$
$$= g(f(x)) + h(f(x))$$
$$= (g \circ f + h \circ f)(x)$$

Donc,

$$(g+h)\circ f=g\circ f+h\circ f$$

Donc, $(\mathcal{L}(E), +, \circ)$ est un anneau — Soit $\lambda \in \mathbb{K}$, $f, g \in \mathcal{L}(E)$.

$$\forall x \in E, \lambda \cdot (f \circ g)(x) = \lambda f(g(x))$$
$$(\lambda \cdot f) \circ g(x) = \lambda f(g(x))$$

$$\begin{split} f \circ (\lambda \cdot g)(x) &= f \big(\lambda g(x) \big) \\ &= \lambda f \big(g(x) \big) \text{ car } f \in \mathscr{L}(E) \end{split}$$

Corollaire: Soit $P \in \mathbb{K}[X]$ et $u \in \mathcal{L}(E)$. On peut former $P(u) \in \mathcal{L}(X)$: on dit que P(u) est un polynôme d'endomorphisme.

Proposition: Soit $f \in \mathcal{L}(E, F)$ bijective. Alors $f^{-1} \in \mathcal{L}(F, E)$.

Preuve:

Soit
$$u, v \in F$$
, $\alpha, \beta \in \mathbb{K}$.

$$f^{-1}(\alpha u + \beta v) = \alpha f^{-1}(u) + \beta f^{-1}(v)$$

$$\iff \alpha u + \beta v = f(\alpha f^{-1}(u) + \beta f^{-1}(v))$$

$$\iff \alpha u + \beta v = \alpha f(f^{-1}(u)) + \beta f(f^{-1}(v))$$

$$\iff \alpha u + \beta v = \alpha u + \beta v$$
Donc, $f^{-1} \in \mathcal{L}(F, E)$

Remarque (Notation):

On note $\mathrm{GL}(E)$ l'ensemble des endomorphismes de E bijectifs, $\mathrm{GL}(E,F)$ l'ensemble des applications linéaires de E dans F bijectives.

Les éléments de $\mathrm{GL}(E)$ sont appelés <u>automorphismes (linéaires)</u> de E.

Corollaire: $\operatorname{GL}(E)$ est un sous-groupe de $\left(S(E),\circ\right)$

Définition: GL(E) est dit " le groupe linéaire de E".

Deuxième partie

Noyau et image

Proposition: Soit $f \in \mathcal{L}(E,F),$ U un sous-espace vectoriel de E et V un sous-espace vectoriel de F.

- 1. f(U) est un sous-espace vectoriel de F.
- 2. $f^{-1}(V)$ est un sous-espace vectoriel de E.

Preuve: 1.
$$0_F = f(0_E)$$
 et $0_E \in U$ donc $0_F \in f(U)$ donc $f(U) \neq \emptyset$
Soient $(x, y) \in f(U)^2$, $(\lambda, \mu) \in \mathbb{K}^2$. Soient $a, b \in U$ tels que
$$\begin{cases} x = f(a) \\ y = f(b) \end{cases}$$

$$\lambda x + \mu y = \lambda f(a) + \mu f(b) = f(\lambda a + \mu b) \operatorname{car} f \in \mathcal{L}(E, F)$$

U est un sous-espace vectoriel de E.

Donc $\lambda a + \mu v \in U$

donc $f(\lambda u + \mu v) \in f(U)$

donc $\lambda x + \mu y \in f(U)$.

2. $f(0_E) = 0_F \in V$ donc $0_E \in f^{-1}(V)$. Donc $f^{-1}(V) \neq \emptyset$. Soient $x, y \in f^{-1}(V)$, $\lambda, \mu \in \mathbb{K}$.

$$f(\lambda x + \mu y) = \lambda \underbrace{f(x)}_{\in V} + \mu \underbrace{f(y)}_{\in V} \in V$$

donc $\lambda x + \mu y \in f^{-1}(V)$.

Corollaire: Soit $f \in \mathcal{L}(E, F)$.

- 1. $\operatorname{Ker}(f) = f^{-1}(\{0_F\}) = \{x \in E \mid f(x) = 0_E\}$ est un sous-espace vectoriel de E.
- 2. $\operatorname{Im}(f) = f(E) = \{f(u) \mid u \in E\}$ est un sous-espace vectoriel de E.

Remarque (Rappel): Soit $f \in \mathcal{L}(E, F)$

$$f$$
 injective \iff $\operatorname{Ker}(f) = \{0_E\}$
 f surjective \iff $\operatorname{Im}(f) = F$

Exemple: 1. Soit I un intervalle, $E = \mathcal{D}(I, \mathbb{R})$ et $F = \mathbb{R}^I$

$$\varphi: E \longrightarrow F$$
$$f \longmapsto f'$$

$$\mathrm{Ker}(\varphi) = \left\{ f: I \to \mathbb{R} \mid f \text{ constante } \right\}$$

$$\mathrm{Im}(\varphi) \supset \mathscr{C}^0(I, \mathbb{R})$$

2.
$$E = \mathbb{R}_{2}[X], F = \mathbb{R}, \varphi : P \mapsto \int_{0}^{1} P(t) dt$$

$$\operatorname{Ker}(\varphi) = \left\{ P = a + bX + cX^{2} \mid (a, b, c) \in \mathbb{R}^{3} \text{ et } \int_{0}^{1} P(t) dt = 0 \right\}$$

$$= \left\{ a + bX + cX^{2} \mid a + \frac{b}{2} + \frac{c}{3} = 0 \right\}$$

$$= \left\{ a + bX + cX^{2} \mid a = -\frac{b}{2} - \frac{c}{3} \right\}$$

$$= \left\{ -\frac{b}{2} - \frac{c}{3} + bX + cX^{2} \mid b, c \in \mathbb{R} \right\}$$

$$= \left\{ b \left(-\frac{1}{2} + X \right) + c \left(-\frac{1}{3} + X^{2} \right) \mid b, c \in \mathbb{R} \right\}$$

$$= \operatorname{Vect}\left(-\frac{1}{2} + X, -\frac{1}{3} + X^{2} \right)$$

 $\operatorname{Im}(\varphi) = \mathbb{R}.$

Troisième partie

Théorème du rang

Dans ce paragraphe, E est un \mathbb{K} -espace vectoriel de dimension finie.

Proposition: Soit $f: E \to F$ un isomorphisme (i.e. une application linéaire bijective). Alors, $\dim(E) = \dim(F)$

Preuve:

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On pose

$$\forall i \in \llbracket 1, n \rrbracket, u_i = f(e_i) \in F$$

— Soit
$$(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$$
. On suppose que $\sum_{i=0}^n \lambda_i u_i = 0_F$. D'où,

$$\sum_{i=1}^{n} \lambda_{i} f(e_{i}) \operatorname{donc} f\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right) = 0_{F}$$

$$\operatorname{donc} \sum_{i=1}^{n} \lambda_{i} e_{i} \in \operatorname{Ker}(f) = \{0_{E}\}$$

$$\operatorname{donc} \sum_{i=1}^{n} \lambda_{i} e_{i} = 0_{E}$$

$$\operatorname{donc} \forall i \in [1, n], \lambda_{i} = 0$$

Donc (u_1, \ldots, u_n) est libre. Soit $y \in F$. Comme f est surjective, il existe $x \in E$ tel que f(x) = y. Comme \mathscr{B} engendre E, il existe $\lambda_1, \ldots, \lambda_n \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n \lambda_i e_i$. Comme f est linéaire,

$$y = f(x) = \sum_{i=1}^{n} \lambda_i f(e_i) = \sum_{i=1}^{n} \lambda_i e_i$$

Donc, $F = Vect(u_1, \ldots, u_n)$

Donc (u_1, \ldots, u_n) est une base de F donc

$$\dim(E) = n = \dim(F)$$

La première partie de la preuve précédente justifie le résultat suivant.

Proposition: Soit $f \in \mathcal{L}(E,F)$ injective. $\mathcal{L} = (e_1,\ldots,e_p)$ une famille libre de E. Alors $(f(e_1),\ldots,f(e_n))$ est une famille libre de F. En particulier, $\dim(F) \geqslant \dim(E)$.

La deuxième partie de la preuve prouve :

Proposition: Soit $f \in \mathcal{L}(E,F)$ surjective et $\mathscr{G} = (e_1,\ldots,e_p)$ une famille génératrice de E. Alors $(f(e_1), \ldots, f(e_p))$ est une famille génératrice de F. En particulier,

$$\dim(F) \leqslant \dim(E)$$

Théorème (Théorème du rang): Soit $f \in \mathcal{L}(E, F)$.

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f))$$

Preuve (À connaître): On pose

$$u: U \longrightarrow \operatorname{Im}(f)$$

 $x \longmapsto f(x)$

où U est un supplémentaire de $\mathrm{Ker}(f)$ dans E.

(U existe : voir remarque qui suit)

— $u \in \mathcal{L}(U, \operatorname{Im}(f))$, en effet, soient $x, y \in U, \lambda, \mu \in \mathbb{K}$

$$u(\lambda x + \mu v) = f(\lambda x + \mu v)$$
$$= \lambda f(x) + \mu f(y)$$
$$= \lambda u(x) + \mu u(y)$$

— Soit $y \in \text{Im}(f)$. Soit $x \in E$ tel que y = f(x). Comme $E = U \oplus \text{Ker}(f)$. On peut écrire

$$\begin{cases} x = a + b \\ a \in U, b \in \text{Ker}(f) \end{cases}$$

D'où,

$$y = f(x) = f(a+b) = f(a) + f(b) = u(a) + 0_E = u(a)$$

Donc u est surjective.

Soit $x \in U$.

$$x \in \text{Ker}(u) \iff u(x) = 0_F$$

 $\iff f(x) = 0_F$
 $\iff x \in \text{Ker}(f)$
 $\iff x = 0_E \text{ car } U \cap \text{Ker}(f) = \{0_E\}$

Donc u est injective.

Ainsi, $\dim(U) = \dim(\operatorname{Im}(f))$

Or,

$$\begin{split} \dim(E) &= \dim \left(U \oplus \operatorname{Ker}(f) \right) \\ &= \dim(U) + \dim \left(\operatorname{Ker}(f) \right) \end{split}$$

donc

$$\dim(U) = \dim(E) - \dim(\operatorname{Ker}(f))$$

Donc,

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f))$$

Remarque:

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et F un sous-espace vectoriel de E. $\underline{\mathrm{Cas}\ 1}\ F = \{0_E\}$, alors E est un supplémentaire de F. <u>Cas 2</u> $F \neq \{0_E\}$. Soit $\mathscr{B}=(e_1,\ldots,e_p)$ une base de F. Alors \mathscr{B} est une famille libre de E. On complète \mathscr{B} en une base $(e_1,\ldots,e_p,e_{p+1},\ldots,e_n)$ de E. On pose $G=\mathrm{Vect}(e_{p+1},\ldots,e_n)$. On démontre que

$$F \oplus G = E$$

Corollaire: Soient E et F deux \mathbb{K} -espaces vectoriels de <u>même dimension finie</u> et $f \in \mathcal{L}(E,F)$.

$$\begin{array}{ccc} f \text{ injective} & \Longleftrightarrow & f \text{ surjective} \\ & \Longleftrightarrow & f \text{ bijective} \end{array}$$

Preuve:

D'après le théorème du rang,

$$\dim(E) = \dim (\operatorname{Ker}(f)) + \dim (\operatorname{Im}(f))$$

Si f est injective, alors $\operatorname{Ker}(f) = \{0_E\}$ et donc $\dim (\operatorname{Ker}(f)) = 0$ et donc $\dim (\operatorname{Im}(f)) = \dim(F)$ et donc $\operatorname{Im}(f) = F$ et donc f est surjective.

Si f est surjective, alors Im(f) = F et donc $\dim(\text{Im}(f)) = \dim(F) = \dim(E)$ et donc $\dim(\text{Ker}(f)) = 0$ et donc $\text{Ker}(f) = \{0\}$ et donc f est injective

Exemple:

Soit $(x_1, \ldots, x_n) \in \mathbb{K}^n$ tel que

$$\forall i \neq j, x_i \neq x_j$$
 Soit $(y_1, \dots, y_n) \in \mathbb{K}^n$. On pose $\varphi : \begin{array}{ccc} \mathbb{K}_{n-1}[X] & \longrightarrow & \mathbb{K}^n \\ P & \longmapsto & \left(P(x_1), \dots, P(x_n)\right) \end{array}$

$$\begin{split} P \in \mathrm{Ker}(\varphi) &\iff \varphi(P) = 0 \\ &\iff \forall i \in \llbracket 1, n \rrbracket \,, P(x_i) = 0 \\ &\iff P = 0 \text{ car } \deg(P) \leqslant n - 1 \end{split}$$

Donc φ est injective et donc φ est bijective. Donc,

$$\exists ! P \in \mathbb{K}_{n-1}[X], \forall i \in [1, n], P(x_i) = y_i$$

De plus, $\varphi^{-1}: \mathbb{K}^n \to \mathbb{K}_{n-1}[X]$ est un isomorphisme. Soit (e_1, \dots, e_n) la base canonique d \mathbb{K}^n . $(\varphi^{-1}(e_1), \dots, \varphi^{-1}(e_n))$ est une base de $\mathbb{K}_{n-1}[X]$. $\forall i \in [\![1,n]\!], \varphi^{-1}(e_i) = L_i$ es tle i-ème polynôme interpolateur de Lagrange.

$$P = \varphi^{-1}(y_1, \dots, y_n)$$
$$= \varphi^{-1}\left(\sum_{i=1}^n y_i e_i\right)$$
$$= \sum_{i=1}^n y_i \varphi^{-1}(e_i)$$
$$= \sum_{i=1}^n y_i L_i$$

Exercice (Interpolation de Hermite):

Soit $(x_1, \ldots, x_n) \in \mathbb{K}^n$ avec

$$\forall i \neq j, x_i \neq x_j$$

Soit $(y_1, \ldots, y_n) \in \mathbb{K}^n$ et $(z_1, \ldots, z_n) \in \mathbb{K}^n$. Trouver un polynôme de plus bas degré tel que

(*)
$$\forall i \in [1, n], \begin{cases} P(x_i) = y_i \\ P'(x_i) = z_i \end{cases}$$

Soit
$$\varphi : \overset{\mathbb{K}_{2n-1}[X]}{P} \xrightarrow{\longrightarrow} \overset{\mathbb{K}^{2n}}{(P(x_1), \dots, P(x_n), P'(x_1), \dots, P'(x_n))}$$

$$(*) \iff \varphi(P) = (y_1, \dots, y_n, z_1, \dots, z_n)$$

$$P \in \text{Ker}(\varphi) \iff \forall i, \begin{cases} P(x_i) = 0 \\ P'(x_i) = 0 \end{cases}$$

$$\iff P = 0 \text{ car deg}(P) \leqslant 2n - 1$$

Donc φ est un isomorphisme.

Corollaire: Soit $f \in \mathcal{L}(E)$ avec E de dimension finie. Alors,

$$f \in GL(E) \iff f \text{ injective } \iff f \text{ surjective}$$

Remarque

Soit $f \in \mathcal{L}(E, F)$, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Alors

$$\boxed{\operatorname{Im}(f) = \operatorname{Vect}\left(f(e_1), \dots, f(e_n)\right)}$$

 $\dim (\operatorname{Im}(f)) = \operatorname{rg} (f(e_1), \dots, f(e_n))$

Définition: Soit $f \in \mathcal{L}(E, F)$. Le rang de f est

$$rg(f) = dim (Im(f))$$

Quatrième partie

Formes linéaires

Définition: Soit E un \mathbb{K} -espace vectoriel. Une <u>forme linéaire</u> sur E est une application linéaire de E dans $\mathbb{K}.$

L'ensemble des formes linéaires est noté $E^*=\mathcal{L}(E,\mathbb{K}).$ E^* est appelé <u>espace dual</u> de

Proposition: Toute forme linéaire est soit nulle, soit surjective.

Preuve:

Soit $f\in E^*$. ${\rm Im}(f)$ est un sous-espace vectoriel de $\mathbb K$ donc ${\rm rg}(f)\leqslant \dim(\mathbb K)=1$.

Si rg(f) = 0, alors $Im(f) = \{0\}$ et donc

$$\forall x \in E, f(x) = 0$$

Si rg(f) = 1, alors $Im(f) = \mathbb{K}$ et donc f est surjective.

Proposition: Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $f \in E^* \setminus \{0\}$. Alors Ker(f) est de dimension n-1.

Preuve:

Comme $f \neq 0$, donc rg(f) = 1

D'après le théorème du rang,

$$\dim \big(\operatorname{Ker}(f)\big) = \dim(E) - \operatorname{rg}(f) = n - 1$$

Proposition: Soit E un \mathbb{K} -espace vectoriel de dimension finie n et H un sous-espace vectoriel de E de dimension n-1. Alors,

$$\exists f \in E^*, \mathrm{Ker}(f) = H$$

Soit D un supplémentaire de ${\cal H}$ dans ${\cal E}$:

$$E=H\oplus D$$

Nécessairement,

$$\dim(D) = \dim(E) - \dim(H) = 1$$

Soit $u \in D \setminus \{0\}$. D = Vect(u)

On pose f:

$$\begin{array}{ccc} x = h + \lambda u \\ (h \in H, \lambda \in \mathbb{K}) \end{array} \longmapsto \quad Z = 0$$

Montrons que $f \in E^*$. Soient $(x,y) \in E^2$, $(\alpha,\beta) \in \mathbb{K}^2$.

On pose

$$\begin{cases} x = h + \lambda u, & h \in H, \lambda \in \mathbb{K} \\ y = h' + \lambda' u, & h' \in H, \lambda' \in \mathbb{K} \end{cases}$$

D'où,

$$\begin{aligned} \alpha x + \beta y &= \alpha (h + \lambda u) + \beta (h' + \lambda' u) \\ &= \underbrace{(\alpha h + \beta h')}_{\in H} + \underbrace{(\alpha \lambda + \beta \lambda')}_{\in \mathbb{K}} u \end{aligned}$$

Donc,

$$f(\alpha x + \beta y) = \alpha \lambda + \beta \lambda'$$
$$= \alpha f(x) + \beta f(y)$$

Soit $x \in E$. On pose $x = h + \lambda u$ avec $h \in H$ et $\lambda \in \mathbb{K}$

$$\begin{aligned} x \in \mathrm{Ker}(f) &\iff f(x) = 0 \\ &\iff \lambda = 0 \\ &\iff x = y \\ &\iff x \in H \end{aligned}$$

Donc, H = Ker(f).

Exemple:

 $E = \mathbb{R}^4$, H = Vect((1, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0))

Soit $u = (1, 2, 1, 1) \notin H$.

Soit $(x, y, z, t) \in E$. On cherche $(\alpha, \beta, \gamma, \lambda) \in \mathbb{R}^4$ tels que

(*)
$$(x, y, z, t) = \alpha(1, 0, 0, 1) + \beta(1, 1, 0, 0) + \gamma(0, 1, 1, 0) + \lambda(1, 2, 1, 1)$$

Plus précisément, on cherche à exprimer λ en fonction de x, y, z, t.

$$(*) \iff \begin{cases} \alpha + \beta + \gamma = x \\ \beta + \gamma + 2\lambda = y \\ \gamma + \lambda = z \\ \alpha + \lambda = t \end{cases}$$

$$\iff \begin{cases} \frac{\alpha}{\beta} + \beta + \lambda = x \\ \beta + \gamma + 2\lambda = y \\ \frac{\gamma}{\gamma} + \lambda = z \\ -\beta = t - x \end{cases}$$

$$\iff \begin{cases} \frac{\alpha}{\beta} + \beta + \lambda = x \\ \beta + \lambda = y - z \\ \frac{\gamma}{\gamma} + \lambda = z \\ \beta = x - t \end{cases}$$

$$\iff \begin{cases} \lambda = y - z - x + t \\ \vdots \end{cases}$$

Donc,

$$(x, y, z, t) \in H \iff y - z - x + t = 0$$

Soit
$$f: \mathbb{R}^4 \longrightarrow \mathbb{R}$$

 $(x, y, z, t) \longmapsto x - y + z - t$ et $H = \text{Ker}(f)$

Proposition: Avec les notations précédentes, $\{f \in E^* \mid \operatorname{Ker}(f) = H\}$ est une droite de E^* privée de l'application nulle. En d'autres termes, les équations de H sont 2 à 2 proportionelles.

Soient $f,g\in E^*$ telles que

$$Ker(f) = Ker(g)$$

On pose H = Ker(f). Soit $u \notin H$ de sorte que

$$H \oplus \operatorname{Vect}(u) = E$$

 $u \notin H$ donc $f(u) \neq 0$. On pose $\alpha = \frac{g(u)}{f(u)}$. Montrons que $g = \alpha f$.

Soit $x \in E$. On pose $x = h + \lambda u$ avec $\begin{cases} h \in H \\ \lambda \in \mathbb{K} \end{cases}$

$$g(x) = g(h) + \lambda g(u) = 0 + \lambda \alpha f(u)$$

$$\alpha f(x) = \alpha (f(h) + \lambda f(u)) = \lambda \alpha f(u)$$

Définition: Soit E un \mathbb{K} -espace vectoriel et H un sous-espace vectoriel de E. On dit

que H est un <u>hyperplan</u> de E s'il existe une droite D de E telle que

$$H\oplus D=E$$

En reprenant les démonstrations précédentes, on a encore les résultats suivants :

Proposition: Soit H un hyperplan de E. Alors, $\{f \in E^* \mid \text{Ker}(f) = H\}$ est une droite de E^* privée de l'application nulle.

Proposition: Soit $f \in E^*$ non nulle. Alors Ker(f) est un hyperplan de E.

Preuve:

f non nulle. Soit $x \in E$ tel que

$$f(x) \neq 0$$

On pose H = Ker(f) et D = Vect(x). Montrons que $H \oplus D = E$.

Analyse Soit $y \in E$. On suppose $y = h + \lambda x$ avec $h \in H$ et $\lambda \in \mathbb{K}$. Alors, $f(y) = f(h) + \lambda f(x) = \lambda f(x) \text{ donc } \begin{cases} \lambda = f(y)f(x)^{-1} \\ h = y - f(y)f(x)^{-1} x \end{cases}$ $\underbrace{\text{Synthèse}}_{f(x)} \text{ Soit } y \in E. \text{ On pose } \begin{cases} \lambda = f(y)f(x)^{-1} \\ h = y - \lambda x \end{cases}.$

Évidemment, $\begin{cases} h + \lambda x = y \\ \lambda \in \mathbb{K} \end{cases}$

$$f(h) = f(y - \lambda x)$$

$$= f(y) - \lambda f(x)$$

$$= f(y) - f(y)f(x)^{-1}f(x)$$

$$= 0$$

HORS-PROGRAMME

 $\mathbb{P}^3(\mathbb{K}) = \{ D \setminus \{0\} \mid D \text{ droite vectorielle de } \mathbb{K}^3 \}$

Une <u>droite</u> projective de $\mathbb{P}^3(\mathbb{K})$ est un plan vectoriel de \mathbb{K}^3 privé de 0.

À faire : schéma A

À faire : schémas B et C

IV	Formes linéaires				
			h(D)		
	$h(N)_{ullet}$	h(M)	$h(O) \longrightarrow$		

Cinquième partie

Projections et symétries

V

Définition: Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces de E supplémentaires:

$$E = F \oplus G$$

Soit $x \in E$.

$$\exists!(a,b)\in F\times G, x=a+b$$

Le vecteur a est appelé projeté de x sur F parallèlement à G.

Le vecteur b est appelé projeté de x sur G parallèlement à F.

La projection sur F parallèlement à G est l'application qui à $x \in E$ associe son projeté sur F parallèlement à G.

 $E = \mathbb{R}^{\mathbb{R}}, F = \{ f \in E \mid f \text{ paire} \} \text{ et } G = \{ f \in E \mid f \text{ impaire} \}$

On a $E = F \oplus G$.

Soient p la projection sur F parallèlement à G et q la projection sur G parallèlement à F.

$$\forall x \in E, \begin{cases} p(f): x \mapsto \frac{1}{2} \left(f(x) + f(-x) \right) \\ q(f): x \mapsto \frac{1}{2} \left(f(x) - f(-x) \right) \end{cases}$$

Proposition: Soient F et G deux sous-espaces vectoriels de E supplémentaires et pla projection sur F parallèlement à G.

- 1. $p \in \mathcal{L}(E)$ 2. $p_{|F} = \mathrm{id}_F$ et $p_{|G} = 0$ 3. $p \circ p = p$
- 4. id $_E p$ est la projection sur G parallèlement à F.

 $\begin{array}{ll} \textit{Preuve:} & 1. \ \forall x \in E, p(x) \in F \subset E \\ & \text{Soit } (x,y) \in E^2, \ (\lambda,\mu) \in \mathbb{K}^2. \\ & \text{On pose } x = a+b \text{ avec } \begin{cases} a \in F \\ b \in G \end{cases} \quad \text{et } y = c+d \text{ avec } \begin{cases} c \in F \\ d \in G \end{cases} \end{array}$

$$\lambda x + \mu y = \lambda(a+b) + \mu(c+d)$$
$$= \underbrace{(\lambda a + \mu c)}_{\in F} + \underbrace{(\lambda b + \mu d)}_{\in G}$$

$$p(\lambda x + \mu y) = \lambda a + \mu b = \lambda p(x) + \mu p(y)$$

2. $\forall x \in F, x = \underbrace{x}_{\in F} + \underbrace{0}_{\in G} \text{donc } p(x) = x$ $\forall x \in G, x = \underbrace{0}_{\in F} + \underbrace{x}_{\in G} \text{donc } p(x) = 0$

- 3. $\forall x \in E, p(x) \in F \text{ donc } p(p(x)) = p(x)$
- 4. Soit $x \in E$. On pose x = a + b avec $\begin{cases} a \in F \\ b \in G \end{cases}$. Donc p(x) = a. D'où, x p(x) = best le projeté de x sur G parallèlement à F

V

Définition: Soit $f \in \mathcal{L}(E)$. On dit que f est un <u>projecteur</u> si $f \circ f = f$

Proposition: Soit f un projecteur de E. Alors f est la projection sur Im(f) parallèlement à Ker(f). En particulier,

$$\operatorname{Im}(f) \oplus \operatorname{Ker}(f) = E$$

 $Preuve: \quad \underline{\text{Analyse}} \;\; \text{Soit} \; x \in E. \; \text{On suppose que} \; x = a + b \; \text{avec} \; \begin{cases} a \in \text{Ker}(f) \\ b \in \text{Im}(f) \end{cases} \;\; . \; \text{D'où,}$

$$f(x) = f(a) + f(b)$$
$$= 0 + f(b)$$
$$= f(b)$$

Soit $y \in E$ tel que b = f(y). Donc,

$$f(b) = f(f(y)) = f(y) = b$$

Donc, f(x) = b et donc a = x - b = x - f(x)

 $\underline{\text{Synthèse}} \ \ \text{Soit} \ x \in E. \ \text{On pose} \ \begin{cases} a = x - f(x) \\ b = f(x) \end{cases} \ \ \text{. \'Evidemment}, \ \begin{cases} a + b = x \\ b \in \text{Im}(f) \end{cases}$

$$f(a) = f(x - f(x))$$

$$= f(x) - f(f(x))$$

$$= f(x) - f(x)$$

$$= 0$$

Donc $a \in \text{Ker}(f)$. On a montré

$$\operatorname{Im}(f) \oplus \operatorname{Ker}(f) = E$$

On considère la projection p sur $\mathrm{Im}(f)$ parallèlement à $\mathrm{Ker}(f).$ Soit $x\in E.$ On a montré que

$$x = \underbrace{f(x)}_{\in \operatorname{Im}(f)} + \underbrace{x - f(x)}_{\in \operatorname{Ker}(f)}$$

donc p(x) = f(x) et donc p = f

Définition: Soient F et G supplémentaires dans $E:E=F\oplus G$

Projections et symétries

Soit $x \in E$. On décompose x:

$$x = a + b \text{ avec } \begin{cases} a \in F \\ b \in G \end{cases}$$

et on forme

$$y = a - b$$

On dit que y est le symétrique de x par rapport à F parallèlement à G La symétrie par rapport à F parallèlement à G est l'application qui à tout $x \in E$ associe son symétrique parallèlement à G par rapport à F.

Proposition: Soient F et G supplémentaires dans E, ${\mathfrak b}$ la symétrie par rapport à F parallèlement à G.

1. $\delta \in \mathcal{L}(E)$

2. $\delta_{|E} = \mathrm{id}_F$ et $\delta_{|G} = -\mathrm{id}_G$

3. $\delta \circ \delta = \mathrm{id}_E$

Preuve:

Soient p la projection sur F parallèlement à G et q la projection sur G parallèlement à F.

On remarque que b = p - q.

1. p et q sont des endomorphismes donc s aussi

2.
$$\forall x \in E, \delta(x) = p(x) - q(x) = x - 0 = x$$

 $\forall x \in G, \delta(x) = p(x) - q(x) = 0 - x = -x$

3.

$$\forall x \in E, \delta(\delta(x)) = \delta(p(x) - q(x))$$

$$= \delta(\underbrace{p(x)}_{\in F}) - \delta(\underbrace{q(x)}_{\in G})$$

$$= p(x) - (-q(x))$$

$$= x$$

Définition: Soit $f \in \mathcal{L}(E)$. On dit que f est <u>involutive</u> si $f \circ f = \mathrm{id}_E$.

Proposition: Soit $f \in \mathcal{L}(E)$ involutif. Alors f est la symétrie par rapport à $\operatorname{Ker}(f - \operatorname{id}_E)$ parallèlement à $\operatorname{Ker}(f + \operatorname{id}_E)$. En particulier,

$$\operatorname{Ker}(f - \operatorname{id}_E) \oplus \operatorname{Ker}(f + \operatorname{id}_E) = E$$

Preuve: Analyse Soit $x \in E$. On suppose que x = a + b avec $\begin{cases} a \in \text{Ker}(f - \text{id}_E) \\ b \in \text{Ker}(f + \text{id}_E) \end{cases}$

$$a \in \text{Ker}(f - \text{id}_E) \iff (f - \text{id}_E)(a) = 0$$

 $\iff f(a) - a = 0$
 $\iff a = f(a)$

$$b \in \text{Ker}(f + id_E) \iff f + id_E)(b) = 0$$

 $\iff f(b) + b = 0$
 $\iff f(b) = -b$

On sait que x = a + b et f(x) = f(a) + f(b) = a - b D'où,

$$a = \frac{1}{2}(x + f(x))$$
$$b = \frac{1}{2}(x - f(x))$$

Synthèse Soit $x \in E$. On pose

$$a = \frac{1}{2}(x + f(x))$$
$$b = \frac{1}{2}(x - f(x))$$

Alors a + b = x

$$f(a) = f\left(\frac{1}{2}(x+f(x))\right)$$
$$= \frac{1}{2}(f(x)+f(f(x)))$$
$$= \frac{1}{2}(f(x)+x)$$
$$= a$$

Donc $a \in \text{Ker}(f - \text{id}_E)$

$$f(b) = f\left(\frac{1}{2}(x - f(x))\right)$$
$$= \frac{1}{2}(f(x) - f(f(x)))$$
$$= \frac{1}{2}(f(x) - x)$$
$$= -b$$

donc $b \in \text{Ker}(f + \text{id}_E)$ Ainsi,

$$\operatorname{Ker}(f - \operatorname{id}_E) \oplus \operatorname{Ker}(f + \operatorname{id}_E) = E$$

Soit à la symétrie par rapport à $\operatorname{Ker}(f-\operatorname{id}_E)$ parallèlement à $\operatorname{Ker}(f+\operatorname{id}_E)$. Soit $x \in E$. On a vu que

$$x = \underbrace{\frac{1}{2}(x + f(x))}_{\in \operatorname{Ker}(f - \operatorname{id}_E)} + \underbrace{\frac{1}{2}(x - f(x))}_{\in \operatorname{Ker}(f + \operatorname{id}_E)}$$

Donc,

$$\Delta(x) = \frac{1}{2}(x + f(x)) - \frac{1}{2}(x - f(x)) = f(x)$$

Donc $\delta = f$

Exemple: $E = \mathbb{R}^{\mathbb{R}}$ et

$$f \longmapsto b(f) : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ f \longmapsto b(f) : & x & \longmapsto & f(-x) \end{array}$$

 $\mathcal{S}(f) = f \circ (-\operatorname{id}_{\mathbb{R}})$ $s \in \mathcal{L}(E)$, en effet :

$$\begin{split} \forall f,g \in \mathscr{L}(E), \forall \alpha,\beta \in \mathbb{R}, \\ & \delta(\alpha f + \beta g) = (\alpha f + \beta g) \circ (-\operatorname{id}_{\mathbb{R}}) \\ & = \alpha \big(f \circ (-\operatorname{id}_{\mathbb{R}} \big) + \beta \big(g \circ (-\operatorname{id}_{\mathbb{R}}) \big) \\ & = \alpha \delta(f) + \beta \delta(g) \end{split}$$

De plus, $\delta \circ \delta = \mathrm{id}_E$. Donc δ est une symétrie.

$$\begin{split} \operatorname{Ker}(\mathbf{b} - \operatorname{id}_E) &= \{ f \in E \mid f \text{ paire} \} = \mathscr{P} \\ \operatorname{Ker}(\mathbf{b} + \operatorname{id}_E) &= \{ f \in E \mid f \text{ impaire} \} = \mathscr{I} \end{split}$$

D'où,

$$\mathscr{P} \oplus \mathscr{I} = E$$

Exemple:

 $E = \mathcal{M}_n(\mathbb{K})$

Pour $A \in E$, on note tA la <u>transposée</u> de A la matrice obtenue en écrivant en ligne les colonnes $\mathrm{de}\ A.$

Soit

$$\delta: \mathscr{M}_n(\mathbb{K}) \longrightarrow \mathscr{M}_n(\mathbb{K})$$

$$A \longmapsto {}^t A$$

 \mathfrak{s} est linéaire, $\mathfrak{s} \circ \mathfrak{s} = \mathrm{id}_{\mathscr{M}_n(\mathbb{K})}$

$$\operatorname{Ker}(\delta - \operatorname{id}_{E}) = S_{n}(\mathbb{K})$$

 $\operatorname{Ker}(\delta + \operatorname{id}_{E}) = A_{n}(\mathbb{K})$

