Mathematik 9 lukas-semrau.de

Mathematik

Note (NP)):	
--------	-----	----	--

Aufgaben zu Mathematik 9. Skript.

Alle Aufgaben sind sauber, ordentlich und mit ausführlichem Rechenweg zu bearbeiten.

Lukas Semrau <lukas@lukas-semrau.de>

	Inhaltsverzeichnis	
1 1	Reelle Zahlen	2
2 5	Satzgruppe des Pythagoras	4
3 (Quadratische Funktionen und Gleichungen	6
4	Wahrscheinlichkeit bei mehrstufigen Zufallsexperimenten	8
5 7	Trigonometrie	9
Na	ime	_

1 Reelle Zahlen

Aufgabe 1.1: Definitionsmengen angeben9BE	
Geben sie jeweils die maximale Definitionsmenge ${\cal D}$ der jeweiligen Terme an.	
(a) $\sqrt{x^2}$ (c) $\sqrt{4-x^2}$ (e) $\sqrt[2n]{x}$ mit $n \in \mathbb{N}$ (b) $(\sqrt{x})^2$ (d) $\sqrt[3]{x}$	
zu den Punkten: Teilaufgabe (a) bis (d) werden jeweils mit 1Be bewertet, (e) wird aufgrund der Verallgemeinerung mit 2Be bewertet.	
Aufgabe 1.2: Betragsstriche7BE	
(a) Müssen Betragsstriche gesetzt werden? Kreuzen Sie an, wenn diese gesetzt werden müssen. \Box $\sqrt{x^2}$ \Box $\sqrt{x^2}$ \Box $\sqrt{x^3}$	3
zu den Punkten: Jedes Kästchen wird mit 1Be bewertet, wird die richtige Antwort gegeben, erhält man diese Bewertungseinheit.	
(b) Begründen Sie, weshalb folgender Satz nicht gilt: Für eine Zahl $a \in \mathbb{R}$ gilt: $\sqrt{a^2} = a$.	2
(c) Vereinfachen Sie. (Setzen Sie nur dann Betragsstriche, wenn sie unbedingt nötig sind!)	8
i. $\sqrt{16x^2}$ ii. $\sqrt{3u^3}$: \sqrt{u} iii. $\sqrt{(-x-1)^2}$ iv. $\sqrt{3a}\cdot\sqrt{3a}$	
zu den Punkten: Es können je 2Be erreicht werden.	
Aufgabe 1.3: Die Menge der reellen Zahlen / Zahlenmengen	
(a) Welche Rechenoperationen sind in der jeweiligen Zahlenmengen (zusätzlich zur vorherigen) möglich?i. natürliche Zahlen:	6
ii. ganze Zahlen:	
iii. rationale Zahlen:iv. reelle Zahlen:	
zu den Punkten: Jede richtige Rechenoperation ergibt 1Be.	
(b) Welche Aussagen sind wahr? Kreuzen Sie jede richtige an. $\square \ 0 \in \mathbb{N} \square \ \sqrt{-3^2} \notin \mathbb{R} \square \ -1.6\overline{34} \in \mathbb{Q} \square \ \sqrt{121} \in \mathbb{N}$	4
zu den Punkten: Jedes Kästchen wird mit 1Be bewertet, wird die richtige Antwort gegeben, erhält man diese Bewertungseinheit.	

Name:		

Aufgabe 1.4: Umformungen und Vereinfachen......9BE

(a) Welche Paare haben den gleichen Wert?

(Notieren Sie die Ergebnisse wie folgt: X - Y - Z)

A. $\sqrt{112}$ B. $\sqrt{7} \cdot \sqrt{28}$ C. $9\sqrt{7} - \sqrt{63}$ F. $\sqrt{4 \cdot 2 \cdot 14}$ G. $(\sqrt{7})^2 \cdot (\sqrt{2})^2$

D. $42\sqrt{7} : 3\sqrt{7}$ E. $42/\sqrt{7}$

zu den Punkten: Jedes korrekte Paar wird mit einer Bewertungseinheit bewertet.

(b) Vereinfache. (machen Sie den Nenner ggf. rational; schreiben Sie immer als Wurzel, falls idese benötigt wird)

i. $(\sqrt{a-1} - \sqrt{a+1})(\sqrt{a+1} + \sqrt{a-1})$

ii. $1/\sqrt{a}$

iv. $\sqrt[n]{\sqrt[3]{a}}$

iii. $(a-1):(\sqrt{a}+1)$

v. $(\sqrt[3]{2^4})^{\frac{1}{2}}$

zu den Punkten: i, iii - v: 2Be // ii: 1Be

Name:		
Tidilio.		

2 Satzgruppe des Pythagoras

Abbildung 1: Das folgende rechtwinklige Dreieck wird im folgenden immer wieder betrachtet.

Aufgabe 2.1: Satz des Pythagoras.....9BE

- (a) In einem Gleichschenkligen Dreieck mit 16 langer Basis misst die Höhe auf die Basis 15. Wie lange ist der Schenkel dieses Dreiecks. Fertige eine Skizze an.
- (b) Die basiswinkel eines gleichschnekligen Dreiecks betragen 60°, die Länge der Basis beträgt 5cm. Welche Länge hat die Höhe auf die Basis?
- (c) Von einem Rechteck ist der Flächeninhalt A=117.6 und eine Seitenlänge b=10.5 gegeben. Berechnen Sie die Diagonale d des Rechtecks.
- (d) In einem Prospekt ist Angegeben: "LCD-Fernseher 16:9, 80cm" Dabei gibt 16:9 das Verhältnis der Seitenlängen an. Passt der Bildschirm in eine Schranknische der Länge 75cm? Begründen Sie.
- (e) Zeichnen die Punkte P und Q jeweil in ein Koordinatensystem. Und bestimmen Sie ihren Abstand durch Rechnung.
 - i. $P(2 \mid 1)$; $Q(5 \mid 5)$
 - ii. finden Sie eine allgemeine Formel: $P(x_1 \mid y_1)$; $Q(x_2 \mid y_2)$

zu den Punkten: Für das korrekte KS: 1Be; für das Zeichnen der Punkte: 1Be; für die Rechnung in i: 1Be und in ii: 2Be.

- (a) Prüfen Sie, ob ein Dreieck mit den Seitenlängen (a,b,c) Rechtwinklig ist.
 - i. (28, 45, 53)
- ii. (16, 62, 64)
- iii. (286, 290, 48)

zu den Punkten: Je Teilaufgabe 1Be.

(b) Es gelten folgende Verhältnisse: $m^2 - n^2$, b = 2mn und $c = m^2 + n^2$. Beweisen Sie folgende Aussage: $F\ddot{u}r \ m, n \in \mathbb{N}$ mit m > n ist das Dreieck rechtwinklig.

3

2

3

2

3

Name:_____

Berechne die fehlenden Größen.¹

	a	b	\mathbf{c}	p	q	h	A
a				1.6	10.0		
b				4.0		6.0	39.0

Tabelle 1: Tabelle zur Aufgabe 2.3

Aufgabe 2.4: Berechnungen an Figuren und Körpern. 9BE

2

(a) Bestimmen Sie d.

(b) Es wird eine Elfmeter auf ein Tor mit den Maßen 732cm × 244cm. Der Ball wird im oberen rechten Eck versenkt. Berechnen Sie den Weg, der den Ball zurückgelegt hat.

¹Ein Beispieldreieck finden Sie unter www.lukas-semrau.de/hohensatz-dreieck/

Name:_____

3 Quadratische Funktionen und Gleichungen

Aufgabe 3.1: Parabeln verse	chieben	9BE	
(a) Bestimmen Sie den Fu	nktionsterm einer Normal	parabel, die	2
	und 3 nach oben verscho		
	n und um 4 nach rechts v	erschoben ist.	
zu den Punkten: Je korr	ekten Term: 1Be		
(b) Geben Sie den Funktio	onsterm an.		3
i. $S(-3 \mid 0)$	ii. $S(2.7 \sqrt{2})$	iii. $S(-0.8 \mid 2)$	
zu den Punkten: Je korr	ekten Term: 1Be		
(c) Prüfen Sie, ob die Para parabel ist.	$abel x \mapsto x^2 - 12 + 36 eine$	in x -Richtung verschobene Normal-	4
Aufgabe 3.2: Scheitel / Nul Bestimme den Scheitelpunk			
(a) $f_1(x) = (x+2)^2 - 9$	(b) $f_2(x) = t^2 + 3t$	(c) $f_3(x) = x^2 + 6x + 4$	
Aufgabe 3.3: Textaufgaben			
(a) Das Produkt zweier po lauten die beiden Zahl		n 6 unterscheiden, beträgt 6075. Wie	3
(b) Das Produkt zweier au ihre Summe.	nfeinander folgender natür	rlicher Zahlen ist um 461 größer als	4
(c) Wurde in der Rechnnu	ng wirklich ein Fehler gen	nacht? Begründen Sie.	3
	$2x^2 - 8x = 0 $	$\overline{ : x }$	
	$2x^{2} - 8x = 0$ $2x - 8 = 0$ $x = 4$ $L = \{4\}$		
	x = 4		
	$L = \{4\}$	f.	
Aufgabe 3.4: Lineare Gleich Lösen Sie das Gleichungssy		Variablen	
	$\int x + 4z = 4y$		
	$\begin{cases} x + 4z &= 4y \\ 2x + 3z &= 5y \\ x &= y + z \end{cases}$	(3.1)	
	$\int x = y + x$	z	
Aufgabe 3.5: Funktionstern	n bestimmen	4BE	

Bestimmen Sie die Gleichung einer Parabel, die durch folgende Punkte geht:

 $P_1(-1 \mid 0), \quad P_2(2 \mid 0) \quad \text{und} \quad P_3(3 \mid 2)$

Name:

- (a) Für welche ganze Zahl ist das Produkt aus Vorgänger und Nachfolger am kleinsten.
- 2
- (b) Für welche reelle Zahl ist das Produkt aus Vorgänger und Nachfolger am kleinsten.
- 2

(c) Gegeben ist eine Funktion

$$f(x) = -\frac{1}{2}x + 2. (3.2)$$

Für $a \in]0;4[$ mit $a \in \mathbb{R}$ werden folgende Punkte definiert: $O(0\mid 0),\ P(a\mid f(a)),$ $P_1(0 \mid f(a)) \text{ und } P_2(a \mid 0).$

Wann ist der Flächeninhalt des Rechtecks OP_2PP_1 am größten?

6

Aufgabe 3.7: Schnittprobleme??BE

(a) Geben Sie die Schnittpunkte der Funktionen

$$f(x) = \frac{1}{x}$$
 und $g(x) = x - 1.5$ an.

(b) Gegeben sind die Funktionen $f: x \mapsto -x^2 + 4x - 3$ und $h_a: x \mapsto ax$.

- i. Untersuchen Sie für welche $a \in \mathbb{R}$ die Graphen einen, zwei oder keinen Schnittpunkt haben.
- ii. Bestimmen Sie die Koordinaten des Berührpunktes B von h_a und f.

ufgabe 4.1: Urnen	
(a) Zeichne eine Baumdiagramm, das den Sachverhalt erklärt.	
(b) Berechnen Sie die Wahrscheinlichkeit $p("Otoo")$, dass das Wort "Otto" gezogen wird.	
In einer Playlist eines Smartphones befinden sich 20 Lieder, darunter genau fünf mit deutschsprachigem Text. Die 20 Lieder werden in zufälliger Reihenfolge ohne Wiederholung abgespielt. p ist die Wahrscheinlichkeit dafür, dass die ersten drei gespielten Lieder einen deutschsprachigen Text haben. Erläutern Sie, warum der Ansatz $p = (1/4)^3$ falsch ist, und geben Sie einen richtigen Ansatz zur Berechnung von p an.	
Bei einem Basketballspiel	
ufgabe 4.4: Würfelwurf	

verschiedene Augenzahlen geworfen.

4 Wahrscheinlichkeit bei mehrstufigen Zufallsexperimenten

Name:____

 $\boxed{4}$

Name:

Trigonometrie

Aufgabe 5.1: Berechnungen an Dreiecken. 9BE

Berechnen Sie die fehlenden Seiten und Winkel eines rechtwinkligen Dreiecks ABC mit Hypotenuse c und den Katheten a und b. (Geben Sie dabei immer den vollständigen Rechenweg an.)

(a)
$$b = 4.8$$
; $\beta = 42^{\circ}$ (b) $c = 7.3$; $\alpha = 72^{\circ}$ (c) $c = 3.3$; $\alpha = 5.7^{\circ}$

(b)
$$c = 7.3; \ \alpha = 72^{\circ}$$

(c)
$$c = 3.3; \ \alpha = 5.7^{\circ}$$

Vereinfachen Sie folgende Terme.

(a)
$$\sin \alpha - \sin \alpha \cdot \cos^2 \alpha$$

(b)
$$\frac{\sin^4 \alpha - \cos^4 \alpha}{\sin^2 \alpha - \cos^2 \alpha}$$

(c)
$$1 - \frac{1}{\sin^2 \alpha}$$

zu den Punkten: (a) 2; (b) 3; (c) 2

Eine lineare Funktion besitzt den Funktionsterm $f: x \mapsto mx + t$. Die Steigung m wird durch die Gleichung

$$m = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a} \tag{5.1}$$

(a) Zeigen Sie: $\tan \alpha = m$

2

(b) Berechne jeweils den Steigungswinkel der Geraden:

2

i.
$$y = 2x + 5$$

ii.
$$y = \sqrt{3}x - 2$$

zu den Punkten: Je 1Be

(c) Bestimme die Gleichung der Geraden, die durch den Punkt P geht und den Steigungswinkel α hat.

6

i.
$$P(1 | 2)$$
 und $\alpha = 30^{\circ}$

ii.
$$P(-2 \mid -3)$$
 und $\alpha = 60^{\circ}$

zu den Punkten: Je 3Be