

A first measurement of nuclear fragmentation cross-sections for hadrontherapy

Giacomo Ubaldi

Università di Bologna

108° Congresso Nazionale SIF, Milano

15/09/2022

Hadrontherapy

Hadrontherapy vs radiotherapy:

- **✓** Finite range
- **✓** Localized dose profile
- **✓** Spare of healthy tissues
- **X** Nuclear Fragmentation

Goal:

double differential **nuclear cross section** measurements with uncertainty < 5%

- Fixed target collisions
- Beam energies between 200 MeV/u and 700 MeV/u for hadrontherapy and space radioprotection topics
- table top setup to be moved according to beam facility availability

Goal:

double differential **nuclear cross sections** mesurements with uncertainty < 5%

Particle identification by measuring all kinematic quantities

Goal:

double differential **nuclear cross sections** mesurements with uncertainty < 5%

Particle identification by measuring all kinematic quantities

Goal:

double differential **nuclear cross sections** mesurements with uncertainty < 5%

Particle identification by measuring all kinematic quantities

108° Congresso Nazionale SIF, Milano

GSI 2021 Analysis

- Data-taking at GSI (Darmstadt, Germany) in 2021
- 16O 400 MeV/u on 5 mm C target
- Partial setup: no magnet, only one module of calorimeter

Specific goal:

- Elemental (charge differential) fragmentation cross section
- Angular differential cross section in charge

To compute elemental cross-section:

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$$

Starting from MC dataset to study Background and Efficiency from true values

To compute elemental cross-section:

$$\sigma(Z) = \frac{(Y(Z) - B(Z))}{N_{beam} N_{target} \epsilon(Z)}$$

Yield of Z obtained from reconstructed tracks

- Exploiting charge reconstruction algorithm
- Exploiting tracking reconstruction algorithm
- Simulating a "trigger" in order to consider only fragments

To compute elemental cross-section:

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$$

Background obtained from MC cuts on:

- Charge algorithm mis-reconstruction
- Tracking algorithm mis-reconstruction
- Trigger mis-reconstruction

To compute elemental cross-section:

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} \ N_{target}(\epsilon(Z))}$$

Efficiency obtained as:

$$\epsilon_{track}(Z) = \frac{Y(Z)_{track}}{Y(Z)_{MC}}$$

- where track is obtained by tracking algorithm
- MC particles are from the generated simulation

Elemental fragmentation cross-section

- Smeared MC dataset used as Yield
- Statistical uncertainties only

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$$

Elemental Cross Section

Fragment (Z)	σ_{meas} (mbarn)	σ_{MC} (mbarn)
()	meas ()	MC ()
1	3376 ± 30	3361 ± 8
2	911 ± 7	907 ± 5
3	80 ± 2	79 ± 1
4	40 ± 1	39 ± 1
5	40 ± 1	39 ± 1
6	87 ± 1	87 ± 1
7	112 ± 1	111 ± 2
8	68 ± 3	67 ± 1

Angular differential cross-section

An analogous procedure has been followed to obtain angular differential cross section:

$$\frac{d\sigma(Z)}{d\theta} = \frac{Y(Z,\theta)}{N_{beam} N_{target} \Delta\theta \ \epsilon(Z,\theta)}$$

Angle (degree)	σ_{meas} (mb)	σ_{MC} (mb)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1110 ()
$0.0 \le \theta < 0.5$	42.9 ± 1.5	42.3 ± 1.4
$0.5 \le \theta < 1.0$	66.5 ± 1.8	65.3 ± 1.7
$1.0 \le \theta < 1.5$	38.4 ± 1.4	37.4 ± 1.3
$1.5 \le \theta < 2.0$	18.0 ± 1.0	17.3 ± 0.9
$2.0 \le \theta < 2.5$	7.3 ± 0.6	6.9 ± 0.5
$2.5 \le \theta < 3.0$	2.9 ± 0.4	2.7 ± 0.3
$3.0 \le \theta < 3.5$	0.9 ± 0.2	1.1 ± 0.2
$3.5 \le \theta < 4.0$	0.1 ± 0.1	0.1 ± 0.1
$4.0 \le \theta < 4.5$	0.1 ± 0.1	0.1 ± 0.1

Angular differential cross-section

Angular differential cross-section

Conclusions

- First preliminary results of cross sections based on MC events with a solid closure test
- · Study of background sources, corrections and efficiencies on MC level
- Low impact of statistic fluctuations

To do:

- Preliminary systematics uncertainties
- Including unfolding to correct for migrations
- Process real data
- Evaluating cross section differential also in kinematic energy and in mass
- Repeat the same steps for ¹⁶O 200 MeV/u

Thank you for the attention!