Jlanders - S3163776 – Joseph Landers – Database Systems Assignment #2 – Semester 1 2009

Jlanders - S316		h Landers –	Database	Systems Ass	signment #2	– Semest
Nested Loops J	<u>0111</u>	characters	ioin	quilde	Noct	odl oon
1.)		characters	join	guilds	Nest	edLoop
		cg	nested 100	200	500	1000
				200		
			090 100	1820	1140	930
			100	1830 1820	1140	930
			080		1150	910
			080 070	1810 1820	1140 1130	900 930
			080	1830	1130	930
			090	1780	1150	920
			110	1820	1140	910
			090	1810	1170	900
			080	1810	1110	910
			110	1800	1140	910
			060	1820	1150	920
			100	1830	1140	890
			270	1810	1140	920
			100	1820	1140	900
			140	1810	1140	910
			080	1800	1160	910
			090	1810	1130	900
			080	1830	1160	920
	2		120	1840	1150	910
	Average		101	1816	1142.5	912
2)	, ii c.a.gc	•				V
2.)		gc	nested			
			100	200	500	1000
			330	2910	1560	1070
			310	2920	1560	1060
		_	280	2940	1540	1070
			290	2980	1580	1070
			350	2940	1600	1060
			310	2900	1610	1060
			280	2940	1580	1060
			420	2950	1590	1070
			290	2940	1570	1060
			320	2950	1560	1060
			290	2940	1540	1070
			330	2930	1560	1060
			330	2940	1550	1080
			240	2950	1560	1060
			300	2980	1570	1070
			350	2960	1540	1050
			330	2960	1570	1070
			340	2970	1550	1080
	4	0 5	200	0000	4500	4050

Average

5326.5

2949.5

1565.5

1064.5

3.) Discuss your results. Is the data as you expected? What number of buffers would you recommend for the join process? Which order of file parameters works best? In answering these questions, you should demonstrate understanding of the theoretical properties of the nested loop join. Restrict your answer to a maximum of half a page.

The general trend was expected – as the outer relations buffer size increases the number of disk reads should reduce as we have to iterate over the inner relation less times.

Given the results, I would recommend a buffer size between 500 and 1000 as this is where the benefit of the buffer appears to tail off.

It appears that characters join guilds works best.

Here are the expected costs for the two joins:

characte	ers	Guilds					
Outer		Inner		Buffer		Cost	
	10000		4000		10		4010000
	10000		4000		100		410000
	10000		4000		200		210000
	10000		4000		500		90000
	10000		4000		1000		50000
Guilds		characte	ers				
Outer		Inner		Buffer		Cost	
	4000		10000		10		4004000
	4000		10000		100		404000
	4000		10000		200		204000
	4000		10000		500		84000

The performance of the two based on the costs should have been similar.

4000

The guilds join characters should have a faster hashtable search because we don't have to search every record in buffer due to the guilds(many) to character(one) relationship – we can stop when we find one guild in the outer buffer. This appears to have a low cost so has not had much impact on performance.

I believe the performance is different between the two joins because the inner file record size is important to performance.

10000

1000

44000

The guilds file has smaller records which results in less disk reads. The characters file has bigger records which results in more disk reads.

Of course, we can optimise our code to block read and reduce this difference.

4.) In up to ten sentences, explain how you implemented your hash table. As part of your discussion, describe your hash function, and explain why it is suitable for hashing this type of data.

The hash table implemented was a linear hash table.

The hash table was made of pointers to records.

Once the guildID was hashed we could search the hash table at that slot.

If the pointer to the record was NULL then we had no match as there was no record (this case should never occur as we should have 100% occupancy). If the pointer was not NULL then we would check the record for a matching guildID.

For GUILDS JOIN CHARACTERS the search would terminate on a NULL record or matching. For a non-matching record the search would continue until a match was found or we had read the entire hash table.

For CHARACTERS JOIN GUILDS the search would continue until the whole hash table was processed – hence non-optimal use of the hash table as we search all records

The hash function used:

```
int hashfunction (int id, int hashtable_size)
{
   return (((438439 * id) + 34723753) % 376307) % hashtable_size;
}
```

This is a good function as:

- 1.) It provides a good spread of data in a semi-random distribution across the hashtable.
- 2.) It uses ints and a simple formula therefore will be relatively quick as compared to strings as mathematical functions can be processed in less operations on a CPU.

Jlanders - S3163776 – Joseph Landers – Database Systems Assignment #2 – Semester 1 2009

HashJoin						
1.)		characters	join	guilds	HashJoin)
,		1	100	200	500	1000
		1 5	530	530	560	620
		2 5	510	520	590	620
		3 5	510	530	560	680
		4 5	510	540	560	620
		5 5	540	520	600	630
		6 5	510	520	560	660
		7 5	510	520	560	620
		8 5	530	520	570	630
		9 5	520	530	560	660
	1	0 5	520	530	560	620
	1	1 5	510	520	570	640
	1	2 5	510	520	560	640
	1	3 5	520	520	560	640
	1	4 5	530	520	570	650
	1	5 5	510	530	570	640
	1		510	520	560	630
	1		520	520	560	630
	1			520	570	630
	1			540	570	630
	2				570	640
	Average	Ę	517	525	567	636.5
2.)						
2.)		guilds	join	characters	HashJoin	l
2.)		-	=		HashJoin 500	1000
2.)		1	100	200		
2.)		1 5 2 5	100 510	200 520	500	1000
2.)		1 5 2 5	100 510 520	200 520 520	500 580	1000 640
2.)		1 5 2 5 3 5	100 510 520 510	200 520 520 530	500 580 550	1000 640 650
2.)		1 5 2 5 3 5 4 5	100 510 520 510 520	200 520 520 530 530	500 580 550 560	1000 640 650 690
2.)		1 5 2 5 3 5 4 5	100 510 520 510 520 510	200 520 520 530 520 530	500 580 550 560 570	1000 640 650 690 640
2.)		1 5 2 5 3 5 4 5 5 5	100 510 520 510 520 510	200 520 520 530 520 530 530	500 580 550 560 570 560	1000 640 650 690 640 650
2.)		1 5 2 5 3 5 4 5 5 6 7 5	100 510 520 510 520 510 520	200 520 520 530 520 530 530	500 580 550 560 570 560 560	1000 640 650 690 640 650 640
2.)		1 5 2 5 3 5 4 5 5 5 6 5 7 5	100 510 520 510 520 510 520 510	200 520 520 530 520 530 530 510	500 580 550 560 570 560 560 580	1000 640 650 690 640 650 640 660
2.)	1	1	100 510 520 510 520 510 520 510 510	200 520 520 530 520 530 530 510 520	500 580 550 560 570 560 560 580 560	1000 640 650 690 640 650 640 660 620
2.)		1	100 510 520 510 520 510 510 510 520	200 520 520 530 520 530 530 510 520 550	500 580 550 560 570 560 560 580 560 570	1000 640 650 690 640 650 640 660 620 630
2.)	1 1 1	1	100 510 520 510 520 510 520 510 520 510 510	200 520 520 530 530 530 530 510 520 550 520	500 580 550 560 570 560 560 580 560 570	1000 640 650 690 640 650 640 630 640 630
2.)	1 1 1 1	1	100 510 520 510 520 510 520 510 520 510 510	200 520 520 530 520 530 530 510 520 550 520 540 530	500 580 550 560 570 560 560 580 560 570 570	1000 640 650 690 640 650 640 620 630 640 630
2.)	1 1 1 1	1	100 510 520 510 520 510 520 510 520 510 510 510	200 520 520 530 530 530 530 510 520 550 520 540 530 510	500 580 550 560 570 560 580 560 570 570 570 560 610 570	1000 640 650 690 640 650 640 630 630 630 640
2.)	1 1 1 1 1	1	100 510 520 510 520 510 520 510 520 510 510 510 510	200 520 520 530 530 530 530 510 520 540 530 510 520	500 580 550 560 570 560 580 560 570 570 560 610 570 570	1000 640 650 690 640 650 640 630 630 630 630 640 680
2.)	1 1 1 1 1 1	1	100 510 520 510 520 510 520 510 520 510 510 510 510	200 520 520 530 530 530 510 520 550 540 530 510 520 510	500 580 550 560 570 560 580 560 570 570 570 570 570 570 570 57	1000 640 650 690 640 650 640 630 630 630 640 680 660
2.)	1 1 1 1 1 1	1	100 510 520 510 520 510 520 510 510 510 510 510 510 510	200 520 520 530 530 530 530 510 520 540 530 510 520 510 530 510	500 580 550 560 570 560 560 570 570 570 570 570 570 570 57	1000 640 650 690 640 650 640 630 630 630 640 680 660 650
2.)	1 1 1 1 1 1 1	1	100 510 520 510 520 510 510 520 510 510 510 510 510 510 510	200 520 520 530 530 530 510 520 550 540 530 510 520 510 530 560 550	500 580 550 560 570 560 580 560 570 570 560 610 570 570 570 570 560 610 570 570	1000 640 650 690 640 650 640 630 630 630 630 640 680 660 650 620
2.)	1 1 1 1 1 1 1 1	1	100 510 520 510 520 510 510 510 520 510 510 510 510 510 510 530 530	200 520 520 530 530 530 530 510 520 550 540 510 520 510 530 510 530 550 530	500 580 550 560 570 560 580 560 570 570 570 570 570 570 570 57	1000 640 650 690 640 650 640 630 630 630 630 640 680 660 650 620 640
2.)	1 1 1 1 1 1 1	1	100 510 520 510 520 510 520 510 510 510 510 510 510 530 530	200 520 520 530 530 530 530 510 520 540 530 510 520 510 520 510 530 550 550 550	500 580 550 560 570 560 560 570 570 570 570 570 570 570 57	1000 640 650 690 640 650 640 630 630 630 630 640 680 660 650 620

3. Discuss your results. Is the data as you expected? What number of buffers would you recommend for the join process? Which order of file parameters works best? In answering these questions, you should demonstrate understanding of the theoretical properties of the hash join. Restrict your answer to a maximum of half a page.

The data wasn't what I expected. As the partitions increased I had assumed the search time would be lower as the number of search operations decreases but instead it increases. I had not factored in the extra disk cost of creating, reading and writing these partitions of data which have to sit on separate disk sectors.

In fact I did some further testing and found that performance is at a maximum around 10 partitions and decreases from there onwards. Therefore I would recommend 10 partitions for the join process.

The performance is relatively similar for either order of files in the above examples, if we analyse disk costs we can see that the order is not important as the costs are the same. Furthermore each file is read the same number of times no matter the order of parameters.

HashJo	in			HashJoin			
Outer	Inner	Cost		Outer	Inner	Cost	
	4000	10000	42000	100	000	4000	42000

4. In up to ten sentences, describe your two hash functions, and explain your choice. Remember to cite any sources that you use, if appropriate.

The first hash function I used to partition the data has simple hash of:

```
id % hashtable size;
```

For the second hash function I used the hash function explained earlier in the NestedLoop answers:

The hash functions should both provide random distributions and non-equivalent hash mappings when used together. They should also both be relatively fast as they are both simple formulas with relatively few CPU operations.

I did do some research and after testing a couple of hash functions against the basic ones given above I noted that the performance didn't noticeably improve. This is due to the relative costs of disk accesses versus memory accesses.

Discussion

1. In a few sentences, summarise your overall results. Which algorithm works best for joining the files?

HashJoin works best with our data set as it reduces the number of disk reads compared to Nested Loop Join.

Each data set is read twice in total and written once. Partitioning consists of a read of each data file and a write to the partitions and matching partitions consists of reading both sets of partitions once.

```
Cost: 3 * (M + N)
```

Where M = Number of records in first file (Outer File)

N = Number of records in second file (Inner File)

NestedLoop however can read the outer file once and the inner file multiple times resulting in higher disk costs.

Cost: M + (N * (M/B))

Where M = Number of records in first file (Outer File)

N = Number of records in second file (Inner File)

B = Outer Buffer Size

2. Would the algorithm that you found to work best on the supplied data files work as well for very large files? If not, which algorithm would you expect to work best and why?

For two very large files Hash Join will work just as well and will out perform Nested Loop Join.

NestedLoop			
Outer	Inner	Buffer	Cost
1000000	1000000	10	###
1000000	1000000	100	10001000000
1000000	1000000	200	5001000000
1000000	1000000	500	2001000000
1000000	1000000	1000	1001000000
HashJo	oin		
Outer	Inner	Cost	
1	000000 1	000000 6	000000

3. Would the relative performance of your algorithms be the same when joining other small data files of different relative sizes? Why? In your answer, give examples of cases where performance is likely to be the same or different. You could run additional experiments to verify your findings.

The performance of the algorithms for different data file sizes is given below:

Nested	Loop				HashJoin	1		
Outer	Inne	er Buffer	C	Cost	Outer	Inner	Cost	
	100	1000000	10	10000100		100	1000000	3000300
	100	1000000	100	1000100				
	100	1000000	200	1000100				
	100	1000000	500	1000100				
	100	1000000	1000	1000100				
Nested	l oon				HashJoin			
Outer	Inne	er Buffer		Cost	Outer	Inner	Cost	
	000000	1000000	10	,05t ###		0000	1000000	6000000
	000000	1000000		10001000000	100	0000	1000000	0000000
	000000	1000000	200	5001000000				
	000000	1000000	500	2001000000				
	000000	1000000	1000	1001000000				
	000000	1000000	1000	100100000				
Nested	Loop				HashJoin	1		
Nested Outer	Loop Inne	er Buffer	C	Cost	HashJoin Outer	Inner	Cost	
Outer	•	er Buffer 100	C 10	Cost 11000000	Outer		Cost 100	3000300
Outer 1	Inne				Outer	Inner		
Outer 1 1	Inne 000000	100	10	11000000	Outer	Inner		
Outer 1 1 1	Inne 000000 000000	100 100	10 100	11000000 2000000	Outer	Inner		
Outer 1 1 1	Inne 000000 000000 000000	100 100 100	10 100 200	11000000 2000000 1500000	Outer	Inner		
Outer 1 1 1 1 1 1	Inne 000000 000000 000000 000000	100 100 100 100	10 100 200 500	11000000 2000000 1500000 1200000	Outer 100	Inner 10000		
Outer 1 1 1 1 Nested	Inne 000000 000000 000000 000000 000000	100 100 100 100 100	10 100 200 500 1000	11000000 2000000 1500000 1200000 1100000	Outer 100 HashJoin	Inner 90000	100	3000300
Outer 1 1 1 1 1 1	Inne 000000 000000 000000 000000 000000	100 100 100 100 100	10 100 200 500 1000	11000000 2000000 1500000 1200000 1100000	Outer 100	Inner 00000 Inner	100 Cost	3000300
Outer 1 1 1 1 Nested	Inne 000000 000000 000000 000000 000000 Loop Inne 100	100 100 100 100 100 er Buffer 100	10 100 200 500 1000	11000000 2000000 1500000 1200000 1100000	Outer 100 HashJoin	Inner 90000	100	3000300
Outer 1 1 1 1 Nested	Inne 000000 000000 000000 000000 000000 Loop Inne 100 100	100 100 100 100 100 er Buffer 100 100	10 100 200 500 1000	11000000 2000000 1500000 1200000 1100000 Cost 1100 200	Outer 100 HashJoin	Inner 00000 Inner	100 Cost	3000300
Outer 1 1 1 1 Nested	Inne 000000 000000 000000 000000 000000 Loop Inne 100	100 100 100 100 100 er Buffer 100	10 100 200 500 1000	11000000 2000000 1500000 1200000 1100000	Outer 100 HashJoin	Inner 00000 Inner	100 Cost	3000300

3.) Continued

For two large data files Hash Join will work better than Nested Loop Join.

For the other cases the Nested Loop Join can out perform the Hash Join given certain parameters.

If we analyse the cost formulas:

```
Hash Join Cost = 3 * (M + N)
Nested Loop Join Cost = M + (N * (M/B))
```

M = inner file record count

N = outer file record count

B = outer file buffer size

For Nested Loop Join we could reduce N and/or M to a low value or increase B to a higher value to get better costs than Hash Join.

END OF ASSIGNMENT