

2021 Mathematical Methods Trial Exam 2 Solutions

Use CAS whenever practical

SECTION A – Multiple-choice questions

1	2	3	4	5	6	7	8	9	10
Е	A	C	A	C	A	В	D	D	С
11	12	13	14	15	16	17	18	19	20
A	В	D	Е	В	Е	D	С	D	В

Q1 Horizontal dilation factor
$$\sqrt{2}$$
, vertical dilation factor 2 $(a,b) \rightarrow (\sqrt{2}a,2b)$

Q2
$$g'(x) = 2(f(x))f'(x)$$
, $f(x)$ is an odd function :: $f(0) = 0$
:: $g'(0) = 2(f(0))f'(0) = 0$

Q3
$$\alpha = ba$$
, $\beta = b^2$: $\beta - \alpha = b^2 - ab$

Q4
$$y = a^{\log_b x}$$
, $\log_a y = \log_b x$, $\frac{\log_b y}{\log_b a} = \log_b x$,

 $\log_b y = \log_b x^{\log_b a}$, $y = x^{\log_b a}$ is a power function

 $\log_a(y-x) = \log_b(b-a)$, $y-x = a^{\log_b(b-a)}$ is a linear function if b > a, and is undefined if $b \le a$.

Q5 The two tangents are inverse of each other. They intersect on the line y = x, .: $\beta = \alpha$

Q6 The average value of f(x) equals the average rate of change of f(x) with respect to x over the interval [1,3].

$$\therefore \frac{a+b}{2} = \frac{b-a}{3-1} \therefore a = 0$$

Q7 b > a, -2b < -2a

 $\frac{1}{2}f(-x)$ is the horizontal dilation by factor 2 and vertical dilation

by factor $\frac{1}{2}$ of f(2x).

$$\therefore \int_{-2b}^{-2a} \frac{1}{2} f(-x) dx = c \quad \therefore \int_{-2a}^{-2b} \frac{1}{2} f(-x) dx = -c$$

Q8 Range of $g \subseteq \operatorname{domain}$ of f :: range of $g \subseteq \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

.: range of g is $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.: domain of g is $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$

.: domain of f(g(x)) is $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$ and range of f(g(x)) is (-1, 0)

Q9
$$f(x) = a(x-1)(x+1)+3$$
, $\frac{f(x)}{x^2-1} = a + \frac{3}{x^2-1}$, the remainder is 3

Q10
$$\sqrt{(a\sin(nx))^2 + (b\cos(nx))^2} = \sqrt{a^2 - a^2\cos^2(nx) + b^2\cos^2(nx)}$$

= $\sqrt{a^2 + (b^2 - a^2)\cos^2(nx)}$

Min is a when
$$\cos^2(nx) = 0$$
, max is b when $\cos^2(nx) = 1$

Q11
$$f'(x) = 3ax^2 + 2bx + c \neq 0$$
, $(2b)^2 - 4(3a)c < 0$, $b^2 < 3ac$

Q12
$$T_3T_2T_1\begin{bmatrix} x \\ y \end{bmatrix} = T_3T_2\begin{bmatrix} qx \\ by \end{bmatrix} = T_3\begin{bmatrix} ax - c \\ by - d \end{bmatrix} = \begin{bmatrix} ax - c \\ -\frac{1}{2}(by - d) \end{bmatrix} = \begin{bmatrix} ax - c \\ \frac{1}{2}(d - by) \end{bmatrix}$$

Q13
$$y = \log_e ax$$
 and $y = e^{x-b}$ intersect at $y = x$, and $y = x$ is a

common tangent to the curves : $\frac{dy}{dx} = 1$ at the intersection.

$$\frac{dy}{dx} = \frac{1}{x} = 1$$
 and $\frac{dy}{dx} = e^{x-b} = 1$.: $x = 1$ and $1 - b = 0$, $b = 1$
Intersection is $(1, 1)$.: $\log_{x} a = 1$.: $a = e$

Q14 Find the point where $\frac{dy}{dx} = m$ for each curve.

For
$$y = \frac{3}{4}x^2$$
, $\frac{dy}{dx} = \frac{3}{2}x = m$; for $y = \log_e x$, $\frac{dy}{dx} = \frac{1}{x} = m$

$$\left(\frac{2m}{3}, \frac{m^2}{3}\right), \left(\frac{1}{m}, \log_e \frac{1}{m}\right)$$

Common normal at both points: $\frac{\frac{m^2}{3} - \log_e \frac{1}{m}}{\frac{2m}{3} - \frac{1}{m}} = -\frac{1}{m}, \ m = 1$

$$\left(\frac{2}{3}, \frac{1}{3}\right)$$
, $(1, 0)$:: distance² = $\left(1 - \frac{2}{3}\right)^2 + \left(0 - \frac{1}{3}\right)^2 = \frac{2}{9}$

Q15
$$\int_0^{\pi} (a\cos 2x + b) dx = 1$$
 : $b = \frac{1}{\pi}$

$$a\cos 2x + \frac{1}{\pi} \ge 0$$
 : $-\frac{1}{\pi} \le a \le \frac{1}{\pi}$

Q16 Sum of the number of dots on opposite faces = 7

$$Pr(33) = Pr(5 \text{ dots on the uppermost face}) = \frac{1}{6}$$

Q17 A, B, C and E are events.

The difference is a numerical variable and its value depends on the outcome of tossing 8 coins.

Q18
$$\mu = np = a$$
, $\sigma = \sqrt{np(1-p)} = \sqrt{b}$, $np(1-p) = b$, $a-ap = b$
 $\therefore a > b$

Q19
$$p+1.5p^2+p^3+0.25p^4=1$$
 :: $4p+6p^2+4p^3+p^4=4$

$$1+4p+6p^2+4p^3+p^4=5$$
, $(1+p)^4=5$, $p=\sqrt[4]{5}-1\approx 0.49535$

$$E(X) = p(1)+1.5p^{2}(2)+p^{3}(3)+0.25p^{4}(4) \approx 1.656$$

Q20
$$n = 1000$$
, $\hat{p} = 0.60$, $sd(\hat{p}) = \sqrt{\frac{0.60 \times 0.40}{1000}} \approx 0.0155$

 $invnorm(0.8) \approx 0.842$

$$0.60 \pm 0.842 \times 0.0155 \approx 0.587$$
 or 0.613

SECTION B

Q1a
$$OK = OP + r = 1$$
, $\sqrt{1 - \left(\frac{a}{2}\right)^2} + r + r = 1$.: $r = \frac{1}{2} \left(1 - \frac{\sqrt{4 - a^2}}{2}\right)$

Q1b
$$OJ = OG + R = 1$$
, $\sqrt{x^2 + R^2} + R = 1$: $x = \sqrt{1 - 2R}$

Q1c
$$\triangle EGF$$
 and $\triangle ACB$ are similar triangles :: $\frac{y}{R} = \frac{2}{\sqrt{4-a^2}}$

$$\therefore y = \frac{2R}{\sqrt{4 - a^2}}$$

Q1d
$$\triangle ADE$$
 and $\triangle ACB$ are similar triangles :: $\frac{z}{R} = \frac{a}{\sqrt{4-a^2}}$

$$\therefore z = \frac{aR}{\sqrt{4 - a^2}}$$

Q1e
$$1+x = y+z$$
 :: $x = y+z-1$

Q1f
$$\sqrt{1-2R} = \frac{aR}{\sqrt{4-a^2}} + \frac{2R}{\sqrt{4-a^2}} - 1$$
, $\sqrt{1-2R} = \frac{(2+a)R}{\sqrt{4-a^2}} - 1$,

$$\sqrt{1-2R} = R\sqrt{\frac{2+a}{2-a}} - 1$$
.

By squaring both sides:
$$1-2R = R^2 \frac{2+a}{2-a} - 2R \sqrt{\frac{2+a}{2-a}} + 1$$

$$\therefore R^2 \frac{2+a}{2-a} + 2R \left(1 - \sqrt{\frac{2+a}{2-a}} \right) = 0, \ R \frac{2+a}{2-a} + 2 \left(1 - \sqrt{\frac{2+a}{2-a}} \right) = 0$$

$$\therefore R = 2\left(\frac{2-a}{2+a}\right)\left(\sqrt{\frac{2+a}{2-a}} - 1\right) \therefore R = 2\left(\sqrt{\frac{2-a}{2+a}} - \frac{2-a}{2+a}\right)$$

Q1g R is a maximum when
$$a = 1.2$$
 :: $r = \frac{1}{2} \left(1 - \frac{\sqrt{4 - a^2}}{2} \right) = \frac{1}{10}$

Q1h
$$A = \pi (r^2 + R^2) = \frac{\pi}{4} \left(\left(1 - \frac{\sqrt{4 - a^2}}{2} \right)^2 + 16 \left(\sqrt{\frac{2 - a}{2 + a}} - \frac{2 - a}{2 + a} \right)^2 \right)$$

Q1i
$$A_{\text{max}} \approx 0.821 \text{ when } a \approx 1.277$$

Q1j
$$A_{\min} \approx 0.384$$
 when $a = \frac{1}{2}$

Q2a Period
$$T = \frac{2\pi}{\frac{\pi}{2}} = 4$$

Q2b When
$$A(x)$$
 changes from $A(x)=1$ to $A(x)=1-\frac{x}{2}$, $f(x)$

changes from
$$f(x) = \cos\left(\frac{\pi x}{2}\right)$$
 to $f(x) = \left(1 - \frac{x}{2}\right)\cos\left(\frac{\pi x}{2}\right)$, i.e.

from an even function to neither even nor odd.

The amplitude increases as the value of x increases in both directions. The change has no effects on the period.

Q2c
$$g(x) = f(x-b) = \left(1 - \frac{x-b}{2}\right) \cos\left(\frac{\pi(x-b)}{2}\right)$$
 is an odd function, i.e. $g(-x) = -g(x)$.

$$\left(1 + \frac{x+b}{2}\right)\cos\left(\frac{\pi(x+b)}{2}\right) = -\left(1 - \frac{x-b}{2}\right)\cos\left(\frac{\pi(x-b)}{2}\right)$$

.: At
$$x = 0$$
, $g(0) = 0$, .: $b = -2$

$$g(x) = -\frac{x}{2}\cos\left(\frac{\pi x}{2} + \pi\right) = \frac{x}{2}\cos\left(\frac{\pi x}{2}\right)$$

Q2d
$$A(x) = \frac{x}{2}, \frac{d}{dx}A(x) = \frac{1}{2}$$

Q2ei Let
$$\frac{x}{2}\cos\left(\frac{\pi x}{2}\right) = \frac{x}{2}$$
, $\frac{x}{2}\cos\left(\frac{\pi x}{2}\right) - \frac{x}{2} = 0$, $\frac{x}{2}\left(\cos\left(\frac{\pi x}{2}\right) - 1\right) = 0$

:
$$x = 0$$
 or $\cos\left(\frac{\pi x}{2}\right) - 1 = 0$, $\frac{\pi x}{2} = 2n\pi$, $x = 4n$ and $y = 2n$.

General solution (4n, 2n) where $n \in \text{set of integers}$.

Q2eii
$$g'(x(n)) = \frac{1}{2}$$

$$g(x) = \frac{x}{2}\cos\left(\frac{\pi x}{2}\right), \ g'(x) = \frac{1}{2}\cos\left(\frac{\pi x}{2}\right) - \frac{x}{2}\cdot\frac{\pi}{2}\sin\left(\frac{\pi x}{2}\right) \ \therefore \ g'(4n) = \frac{1}{2}$$

Q2f
$$\int_0^{4n} \frac{x}{2} \cos\left(\frac{\pi x}{2}\right) dx = 0$$
 : the regions above and below the *x*-axis

have the same area.

Q2gi
$$\int_0^{4n} \left(\frac{x}{2} - \frac{x}{2} \cos \left(\frac{\pi x}{2} \right) \right) dx$$

Q2gii The definite integral has a value equal to the area of the triangle bounded by $y = \frac{x}{2}$, x = 4n and the x-axis, i.e. $\frac{1}{2} \times 4n \times 2n = 4n^2$

Q3a Radius r of water surface: $\frac{r}{1-h} = \frac{1}{1}$, r = 1-h

$$V(h) = \frac{1}{3}\pi 1^2 1 - \frac{1}{3}\pi (1-h)^2 (1-h) = \frac{\pi}{3} (1-(1-h)^3) = \pi h \left(1-h+\frac{h^2}{3}\right)$$

Q3b
$$h_{\text{full}} = 1 - 0.25 = \frac{3}{4}$$
, $V_{av} = \frac{\int_{0}^{\frac{3}{4}} \pi h \left(1 - h + \frac{h^{2}}{3}\right) dh}{\frac{3}{4} - 0} = \frac{171\pi}{1024}$

Q3c
$$\left(\frac{dV}{dh}\right)_{av} = \frac{V(\frac{3}{4}) - V(0)}{\frac{3}{4} - 0} = \frac{7\pi}{16}$$

Q3d
$$\frac{dV}{dh} = \pi (1-h)^2$$
, $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$, $\frac{\pi}{3600} = \pi (1-h)^2 \times \frac{dh}{dt}$,

$$\frac{dh}{dt} = \frac{1}{3600(1-h)^2}$$

Q3e When
$$h = \frac{1}{2} \times \frac{3}{4} = \frac{3}{8}$$
, $V\left(\frac{3}{8}\right) = \pi \frac{3}{8} \left(1 - \frac{3}{8} + \frac{\left(\frac{3}{8}\right)^2}{3}\right) \approx 0.2520\pi$,

time required
$$\approx \frac{0.2520\pi}{\frac{\pi}{3600}} \approx 907 \text{ s}$$

Q3f Time required to fill the tank =
$$\frac{V(\frac{3}{4})}{\frac{\pi}{3600}} = \frac{\frac{21\pi}{64}}{\frac{\pi}{3600}} = \frac{4725}{4}$$
,

$$\left(\frac{dh}{dt}\right)_{av} = \frac{h_{\text{full}} - 0}{t_{\text{full}} - 0} = \frac{\frac{3}{4}}{\frac{4725}{4}} = \frac{1}{1575} \text{ m/s}$$

Q3g
$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$
, $\frac{dV}{dt} = \pi (1 - h)^2 \times \frac{1}{1000\pi} = \frac{(1 - h)^2}{1000}$

Q3h Time required =
$$\frac{\frac{3}{4}}{\frac{1}{1000\pi}}$$
 = 750 π s

Q3i
$$V = \pi h \left(1 - h + \frac{h^2}{3} \right) = \frac{1}{2} \times \frac{21\pi}{64}, \ h \approx 0.2022,$$

time required
$$\approx \frac{0.2022}{\frac{1}{1000\pi}} \approx 635 \,\mathrm{s}$$

Q3j
$$\left(\frac{dV}{dt}\right)_{av} = \frac{V\left(\frac{3}{4}\right)}{750\pi} = \frac{\frac{21\pi}{64}}{750\pi} = \frac{7}{16000}$$
 m³/s

Q4a
$$g'(3) = f'(3)$$
 :: $\frac{a}{2\sqrt{3-b}} = 1$:: $\sqrt{3-b} = \frac{a}{2}$

$$g(3) = a\sqrt{3-b} + c = 1$$
 : $c < 1$ and $a \times \frac{a}{2} + c = 1$: $a = \sqrt{2(1-c)}$

Q4b
$$\sqrt{3-b} = \frac{1-c}{a}$$
, $3-b = \frac{(1-c)^2}{a^2}$, $b = 3 - \frac{(1-c)^2}{a^2}$

Q4c
$$c = -1$$
, $a = \sqrt{2(1-c)} = 2$, $b = 3 - \frac{(1-c)^2}{a^2} = 2$

$$g(x) = 2\sqrt{x-2} - 1$$

Q4d
$$h(x) = \begin{cases} -2\sqrt{-x-2} + 1 & -9 \le x < -3 \\ \frac{x^3}{27} & -3 \le x \le 3 \\ 2\sqrt{x-2} - 1 & 3 < x \le 9 \end{cases}$$

Q4e

Q4f
$$f(x) = \frac{x^3}{27}$$
, $f'(x) = \frac{x^2}{9} = m$, $x = -3\sqrt{m}$, $y = -m\sqrt{m}$,

$$g(x) = 2\sqrt{x-2} - 1$$
, $g'(x) = \frac{1}{\sqrt{x-2}} = m$, $x = \frac{1}{m^2} + 2$, $y = \frac{2}{m} - 1$,

common tangent:
$$\frac{\frac{2}{m} - 1 + m\sqrt{m}}{\frac{1}{m^2} + 2 + 3\sqrt{m}} = m$$

$$\therefore \frac{2}{m} - 1 + m\sqrt{m} = \frac{1}{m} + 2m + 3m\sqrt{m}$$

$$2m\sqrt{m} + 2m + 1 - \frac{1}{m} = 0$$
, $m \approx 0.4196$

Q5a
$$n = 2\,000\,000$$
, $p = 0.75$, $\mu = np = 1500\,000$,

$$\sigma = \sqrt{np(1-p)} \approx 612.3724$$

Normal approximation : $Pr(N > 1501000) \approx 0.05$

Q5b $X \sim Bin(100, 0.75)$, $Pr(78 \le X \le 86) \approx 0.2839$

Number of samples $\approx 25 \times 0.2839 \approx 7$

Q5c
$$E(\hat{P}) = p = 0.75$$
, $sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.75 \times 0.25}{100}} \approx 0.0433$,

$$\Pr(0.78 \le \hat{P} \le 0.86) \approx 0.2387$$

Number of samples $\approx 25 \times 0.2387 \approx 6$

The difference arises due to small sample size and skewed distribution of \hat{P} (p not close to 0.5).

Q5d

	w	w'	
c	0.75	1.125 <i>x</i>	0.75 + 1.125x
c'	x	0.05	x + 0.05
	0.75 + x	1.125x + 0.05	1

$$0.75 + 1.125x + x + 0.05 = 1$$
, $x = \frac{8}{85}$, $Pr(c \cap w') = 1.125 \times \frac{8}{85} = \frac{9}{85}$

Q5e
$$Pr(c' \cup w') = 1 - Pr(c \cap w) = 1 - 0.75 = 0.25$$

Q5fi
$$Pr(c \mid w) = \frac{Pr(c \cap w)}{Pr(w)} = \frac{\frac{3}{4}}{\frac{3}{4} + \frac{8}{95}} = \frac{255}{287}$$

Q5fii
$$Pr(c) = 0.75 + 1.125 \times \frac{8}{85} = \frac{291}{340} \neq Pr(c \mid w)$$
 : not independent

Please inform admin@itute.com re conceptual and/or mathematical errors