

(8) BUNDESREPUBLIK (12) Offenlegungsschrift

® DE 19638667 A 1

(51) Int. Cl.6: H 01 L 33/00 G 02 F 2/02

PATENTAMT

Siemens AG, 80333 München, DE

(7) Anmelder:

196 38 667.5 ② Aktenzeichen: Anmeldetag: 20. 9.96

Offenlegungstag: 2. 4.98

Schlotter, Peter, Dr., 79112 Freiburg, DE; Schmidt, Rolf, 79279 Vörstetten, DE; Schneider, Jürgen, Dr., 79199 Kirchzarten, DE

66 Entgegenhaltungen:

DÉ 33 15 675 C2 38 04 293 A1 DE DE-OS 20 59 909 Abstract zu JP 07 176 794 A;

»Appl.Phys.Lett.« 69 (12. Aug. 1996) 898-900;

Prüfungsantrag gem. § 44 PatG ist gestellt

(5) Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement

Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit einem Strahlung aussendenden Halbleiterkörper (1) und einem Lumineszenzkonversionselement (4, 5). Der Halbleiterkörper (1) sendet Strahlung mit einer Wellenlänge λ ≤ 520 nm und des Lumineszenzkonversionselement (4, 5) wandalt einen Teil dieser Strahlung in Strahlung mit einer größeren Wellenlänge um. Dadurch lassen sich Leuchtdioden herstellen, die mischfarbiges Licht, insbesondere wei-Bes Licht abstrahlen. Das Lumineszenzkonversionselement (4, 5) weist einen anorganischen Leuchtstoff (6) auf.

Beschreibung

Die Erfindung bezieht sich auf ein mischfarbiges, insbesondere weißes Licht abstrahlendes Halbleiterbauelement.

In vielen potentiellen Anwendungsgebieten für Leuchtdioden, wie zum Beispiel bei Anzeigeelementen im Kfz-Armaturenbrett, Beleuchtung in Flugzeugen und Autos und bei vollfarbtauglichen LED-Displays, tritt verstärkt die Forderung nach Leuchtdiodenanord- 10 nungen auf, mit denen sich mischfarbiges Licht, insbesondere weißes Licht erzeugen läßt. Bisher läßt sich weißes "LED"-Licht nur mit sogenannten Multi-LEDs erzeugen, bei denen drei verschiedenfarbige Leuchtdioden (i. a. eine rote, eine grüne und eine blaue) oder zwei 15 komplementärfarbige Leuchtdioden (z. B. eine blaue und eine gelbe) verwendet werden. Neben einem erhöhten Montageaufwand sind für solche Multi-LEDs auch aufwendige Ansteuerelektroniken erforderlich, da die verschiedenen Diodentypen unterschiedliche Ansteuer- 20 spannungen benötigen. Außerdem wird die Langzeitstabilität hinsichtlich Wellenlänge und Intensität durch unterschiedliche Alterungserscheinungen der verschiedenen Leuchtdioden und auch aufgrund der unterschiedlichen Ansteuerspannungen und den daraus resultieren- 25 den unterschiedlichen Betriebsströmen beeinträchtigt. Ein zusätzlicher Nachteil der Multi-LEDs besteht darin, daß die Bauteilminiaturisierung stark begrenzt ist.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Halbleiterbauelement der eingangs genannten 30 Art zu entwickeln, mit dem auf technisch einfache Weise, mit einem möglichst geringen Bauteileaufwand, mischfarbiges Licht, insbesondere weißes Licht erzeugt werden kann.

Diese Aufgabe wird durch ein Halbleiterbauelement 35 nach Anspruch 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche 2 bis 30. Die Unteransprüche 31 bis 34 geben bevorzugte Verwendungsmöglichkeiten des erfindungsgemäßen Halbleiterbauelements an.

Erfindungsgemäß ist ein Strahlung aussendender Halbleiterkörper, mit mindestens einem ersten und mindestens einem zweiten mit dem Halbleiterkörper elektrisch leitend verbundenen elektrischen Anschluß vorgesehen, dem ein Lumineszenzkonversionselement zu- 45 geordnet ist. Der Halbleiterkörper weist eine Schichtenfolge auf, die eine elektromagnetische Strahlung mit Wellenlängen $\lambda \leq 520 \text{ nm}$ aussendet. Sie weist insbesondere eine Schichtenfolge mit einer aktiven Schicht aus GaxIn_{1-x}N oder GaxAl_{1-x}N auf. Das Lumineszenz- 50 konversionselement wandelt Strahlung eines ersten spektralen Teilbereiches der von dem Halbleiterkörper ausgesandten, aus einem ersten Wellenlängenbereich stammenden Strahlung in Strahlung eines zweiten Wellenlängenbereiches um, derart, daß das Halbleiterbau- 55 element Strahlung aus mindestens einem zweiten spektralen Teilbereich des ersten Wellenlängenbereiches und Strahlung des zweiten Wellenlängenbereiches aussendet. Das Lumineszenzkonversionselement ist dazu mit mindestens einem anorganischen Leuchtstoff, insbe- 60 sondere mit einem Phosphor versehen. Das heißt zum Beispiel, daß das Lumineszenzkonversionselement einen Teil einer vom Halbleiterkörper ausgesandten Strahlung spektral selektiv absorbiert und im längerwelligen Bereich (im zweiten Wellenlängenbereich) 65 emittiert. Idealerweise weist die von dem Halbleiterkörper ausgesandte Strahlung bei einer Wellenlänge $\lambda \leq$ 520 nm ein Intensitätsmaximum auf.

Bei einer vorteilhaften Weiterbildung des erfindungsgemäßen Halbleiterbauelements besteht das Lumineszenzkonversionselement zumindest teilweise aus einem transparenten Epoxidharz, das mit dem anorganischen Leuchtstoff versehen ist. Vorteilhafterweise lassen sich nämlich anorganische Leuchtstoffe insbesondere Phosphore wie z.B. YAG: Ce (Y3Al5O12: Ce3+), auf einfache Weise in Epoxidharz einbinden. Weiterhin als Leuchtstoffe geeignet sind weitere mit Seltenen Erden dotierte Granate wie z.B. $Y_3Ga_5O_{12}: Ce^{3+}$ Y(Al,Ga)5O12: Ce3+ und Y(Al,Ga)5O12: Tb3+ sowie mit Seltenen Erden dotierte Erdalkali-Sulfide wie z. B. $SrS: Ce^{3+}$, Na, $SrS: Ce^{3+}$, Cl, SrS: CeCl₂ $CaS : Ce^{3+} + und SrSe : Ce^{3+}$.

Zur Erzeugung von mischfarbigem Licht eignen sich darüberhinaus mit Seltenen Erden dotierte Thiogallate wie z. B. CaGa₂S₄: Ce³⁺ und SrGa₂S₄: Ce³⁺ sowie mit Seltenen Erden dotierte Aluminate wie z. B. YA-lO₃: Ce³⁺, YGaO₃: Ce³⁺, Y(Al,Ga)O₃: Ce³⁺ und mit Seltenen Erden dotierte Orthosilikate M₂SiO₅: Ce³⁺ (M: Sc, Y, Sc) wie z. B. Y₂SiO₅: Ce³⁺. Bei allen Yttriumverbindungen kann das Yttrium im Prinzip auch durch Scandium oder Lanthan ersetzt werden.

Ebenso kann vorteilhafterweise bei dem erfindungsgemäßen Halbleiterbauelement auch eine Anzahl (einer oder mehrere) von aus dem ersten Wellenlängenbereich stammenden ersten spektralen Teilbereichen in mehrere zweite Wellenlängenbereiche umgewandelt werden. Dadurch ist es vorteilhafterweise möglich, vielfältige Farbmischungen und Farbtemperaturen zu erzeugen.

Das erfindungsgemäße Halbleiterbauelement hat den besonderen Vorteil, daß das über Lumineszenkonversion erzeugte Wellenlängenspektrum und damit die Farbe des abgestrahlten Lichtes nicht von der Höhe der Betriebsstromstärke durch den Halbleiterkörper abhängt. Dies ist insbesondere dann von großer Bedeutung, wenn die Umgebungstemperatur des Halbleiterbauelementes und damit bekanntermaßen auch die Betriebsstromstärke stark schwankt. Besonders Leuchtdioden mit einem Halbleiterkörper auf der Basis von GaN sind diesbezüglich sehr empfindlich.

Außerdem benötigt das erfindungsgemäße Halbleiterbauelement im Gegensatz zu den eingangs genannten Multi-LEDs nur eine einzige Ansteuerspannung und damit auch nur eine einzige Ansteuerschaltungsanordnung, wodurch der Bauteileaufwand sehr gering gehalten werden kann.

Bei einer besonders bevorzugten Ausführungsform der Erfindung ist als Lumineszenzkonversionselement über oder auf dem Halbleiterkörper eine teiltransparente, d. h. eine für die von dem Strahlung aussendenden Halbleiterkörper ausgesandte Strahlung teilweise transparente Lumineszenzkonversionsschicht vorgesehen. Um eine einheitliche Farbe des abgestrahlten Lichtes sicherzustellen, ist vorteilhafterweise die Lumineszenzkonversionsschicht derart ausgebildet, daß sie durchweg eine konstante Dicke aufweist. Ein besonderer Vorteil eines erfindungsgemäßen Halbleiterbauelements gemäß dieser Weiterbildung besteht darin, daß auf einfache Weise eine hohe Reproduzierbarkeit erzielt werden kann, was für eine effiziente Massenfertigung von wesentlicher Bedeutung ist. Als Lumineszenzkonversionsschicht kann beispielsweise eine mit anorganischem Leuchtstoff versetzte Lack- oder Kunstharzschicht vorgesehen sein.

Eine andere bevorzugte Ausführungsform des erfindungsgemäßen Halbleiterbauelementes weist als Luminenzkonversionselement eine teiltransparente Luminer

neszenzkonversionsumhüllung auf, die zumindest einen Teil des Halbleiterkörpers (und evtl. Teilbereiche der elektrischen Anschlüsse) umschließt und gleichzeitig als Bauteilumhüllung (Gehäuse) genutzt sein kann. Der Vorteil eines Halbleiterbauelements gemäß dieser Ausführungsform besteht im wesentlichen darin, daß zu seiner Herstellung konventionelle, für die Herstellung von herkömmlichen Leuchtdioden (z. B. Radial-Leuchtdioden) eingesetzte Produktionslinien genutzt werden herkömmlichen Leuchtdioden dafür verwendeten transparenten Kunststoffes das Material der Lumineszenzkonversionsumhüllung verwendet.

Bei vorteilhaften Ausführungsformen des erfindungsgemäßen Halbleiterbauelements und der beiden oben genannten bevorzugten Ausführungsformen besteht die Lumineszenzkonversionsschicht bzw. die Lumineszenzkonversionsumhüllung aus einem transparenten Material (z. B. Kunststoff (wie Epoxidharz)), das mit mindestens einem anorganischen Farbstoff versehen ist (Bei- 20 farben der C.L.E.-Farbtafel erzeugen. spiele für geeignete Kunststoffe finden sich weiter unten). Auf diese Weise lassen sich Lumineszenzkonversionselemente besonders kostengünstig herstellen. Die dazu notwendigen Verfahrensschritte sind nämlich ohne großen Aufwand in herkömmliche Produktionslinien für 25 Leuchtdioden integrierbar.

Bei einer besonders bevorzugten Weiterbildung der Erfindung bzw. der o. g. Ausführungsformen ist vorgesehen, daß der oder die zweiten Wellenlängenbereiche zumindest teilweise größere Wellenlängen aufweisen 30

als der erste Wellenlängenbereich.

Insbesondere ist vorgesehen, daß ein zweiter spektraler Teilbereich des ersten Wellenlängenbereiches und ein zweiter Wellenlängenbereich zueinander komplementär sind. Auf diese Weise kann aus einer einzigen 35 farbigen Lichtquelle, insbesondere einer Leuchtdiode mit einem einzigen blaues oder grünes Licht abstrahlenden Halbleiterkörper, mischfarbiges, insbesondere wei-Bes Licht erzeugt werden. Um z. B. mit einem blaues erzeugen, wird ein Teil des von dem Halbleiterkörper ausgesandten Spektralbereiches in einen gelben Spektralbereich konvertiert. Die Farbtemperatur des weißen Lichtes kann dabei durch geeignete Wahl des anorganischen Leuchtstoffes und geeignete Gestaltung des Lumineszenzkonversionselements hinsichtlich (z. B. Schichtdicke und Leuchtstoffkonzentration), variiert werden. Darüberhinaus bieten diese Anordnungen vorteilhafterweise auch die Möglichkeit, Leuchtstoffmider gewünschte Farbton sehr genau einstellen läßt.

Ebenso können Lumineszenzkonversionselemente inhomogen ausgestaltet sein, z. B. mittels einer inhomogenen Leuchtstoffverteilung. Unterschiedliche Weglängen des Lichtes durch das Lumineszenzkonversionsele- 55 ment können dadurch vorteilhafterweise kompensiert

Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Halbleiterbauelements weist das Lumineszenzkonversionselement oder ein anderer Be- 60 standteil einer Bauteilumhüllung zur Farbanpassung einen oder mehrere Farbstoffe auf, die keine Wellenlängenkonversion bewirken. Hierzu können die für die Herstellung von herkömmlichen Leuchtdioden verwendeten Farbstoffe wie z. B. Azo-, Anthrachinon- oder Pe- 65 rinon-Farbstoffe wie herkömmlich eingesetzt werden.

Bei einer vorteilhaften Weiterbildung des erfindungsgemäßen Halbleiterbauelements ist zumindest ein Teil

der Oberfläche des Halbleiterkörpers von einer ersten. z. B. aus einem Kunststoff bestehenden transparenten Umhüllung umgeben, auf der die Lumineszenzkonversionsschicht aufgebracht ist. Dadurch wird die Strahlungsdichte im Lumineszenzkonversionselement und somit dessen Strahlungsbelastung verringert, was sich je nach verwendeten Materialien positiv auf die Lebensdauer des Lumineszenzkonversionselementes auswirkt.

Bei einer besonders bevorzugten Ausgestaltung der können. Für die Bauteilumhüllung ist anstelle des bei 10 Erfindung sowie der oben genannten Ausführungsformen ist ein Halbleiterkörper, z.B. eine Leuchtdiode oder eine Laserdiode verwendet, bei dem das ausgesandte Strahlungsspektrum bei einer Wellenlänge zwischen 420nm und 460 nm, insbesondere bei 430 nm (z. B. Halbleiterkörper auf der Basis von GaxAl1-xN) oder 450 nm (z. B. Halbleiterkörper auf der Basis von GaxIn_{1-x}N) ein Intenitätsmaximum. Mit einem derartigen erfindungsgemäßen Halbleiterbauelement lassen sich vorteilhafterweise nahezu sämtliche Farben und Misch-

Bei einer weiteren besonders bevorzugten Weiterbildung der Erfindung und deren Ausführungsformen ist die Lumineszenzkonversionsumhüllung bzw. die Lumineszenzkonversionsschicht aus einem Lack oder aus einem Kunststoff, wie beispielsweise die für die Umhüllung optoelektronischer Bauelemente eingesetzten Silikon-, Thermoplast- oder Duroplastmaterialien (Epoxidu. Acrylatharze) hergestellt. Desweiteren können z. B. aus Thermoplastmaterialien gefertigte Abdeckelemente als Lumineszenzkonversionsschicht eingesetzt sein. Sämtliche oben genannten Materialien lassen sich auf einfache Weise mit einem oder mehreren anorganischen Leuchtstoffen versetzen.

Besonders einfach läßt sich ein erfindungsgemäßes Halbleiterbauelement vorteilhafterweise dann realisieren, wenn der Halbleiterkörper gemäß einer bevorzugten Weiterbildung in einer Ausnehmung eines gegebenenfalls vorgefertigten Gehäuses angeordnet ist und die Ausnehmung mit einem die Lumineszenzkonversions-Licht aussendenden Halbleiterkörper weißes Licht zu 40 schicht aufweisenden Abdeckelement versehen ist. Ein derartiges Halbleiterbauelement läßt sich in großer Stückzahl in herkömmlichen Produktionslinien herstellen. Hierzu muß lediglich nach der Montage des Halbleiterkörpers in das Gehäuse, das Abdeckelement, beispielsweise eine Lack- oder Gießharzschicht oder eine vorgefertigte Abdeckplatte aus Thermoplastmaterial, auf das Gehäuse aufgebracht werden. Optional kann die Ausnehmung des Gehäuses mit einem transparenten Material, beispielsweise einem transparenten Kunstschungen einzusetzen, wodurch sich vorteilhafterweise 50 stoff, gefüllt sein, das z. B. die Wellenlänge des von dem Halbleiterkörper ausgesandten Lichtes nicht verändert oder aber, falls gewünscht, bereits lumineszenzkonvertierend ausgebildet sein kann. Im letztgenannten Fall kann das Abdeckelement auch weggelassen sein.

Vorteilhafte Materialien zur Herstellung der o. g. Lumineszenzkonversionsschicht bzw. Lumineszenzkonversionsumhüllung sind z.B. Polymethylmetacrylat (PMMA) oder Epoxidharz dem ein oder mehrere anorganische Leuchtstoffe zugesetzt sind.

Bei einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Halbleiterbauelements bestehen zumindest alle lichtdurchstrahlten Komponenten der Umhüllung, d. h. auch die Lumineszenzkonversionsumhüllung bzw. -schicht aus rein anorganischen Materialien. Das Lumineszenzkonversionselement besteht somit aus einem anorganischen Leuchtstoff, der in einem temperaturstabilen, transparenten oder teiltransparenten anorganischen Material eingebettet ist. Insbe-

sondere besteht das Lumineszenzkonversionselement aus einem anorganischen Phosphor, der in ein vorteilhafterweise niedrig schmelzendes anorganisches Glas (z. B. Silikatglas) eingebettet ist. Eine bevorzugte Herstellungsweise für eine derartige Lumineszenzkonversionsschicht ist die Sol-Gel-Technik, mit der die gesamte Lumineszenzkonversionsschicht, d. h. sowohl der anorganische Leuchtstoff als auch das Einbettmaterial in einem Arbeitsgang hergestellt werden kann.

Um die Durchmischung der von dem Halbleiterkörper ausgesandten Strahlung des ersten Wellenlängenbereiches mit der lumineszenzkonvertierten Strahlung des zweiten Wellenlängenbereiches und damit die Farbkonstanz des abstrahlten Lichtes zu verbessern, ist bei einer vorteilhaften Ausgestaltung des erfindungsgemäßen 15 das erfindungsgemäße Halbleiterbauelement im Ver-Halbleiterbauelements der Lumineszenzumhüllung bzw. der Lumineszenzkonversionsschicht und/oder einer anderen Komponente der Bauteilumhüllung zusätzlich ein im Blauen lumineszierender Farbstoff hinzugefügt, der eine sogenannte Richtcharakteristik der von 20 Auge wahrnehmbare Helligkeit des erfindungsgemäßen dem Halbleiterkörper abgestrahlten Strahlung abschwächt. Unter Richtcharakteristik ist zu verstehen, daß die von dem Halbleiterkörper ausgesandte Strahlung eine bevorzugte Abstrahlrichtung aufweist.

Bei einer anderen vorteilhaften Ausgestaltung des er- 25 findungsgemäßen Halbleiterbauelements ist zu diesem Zweck ein pulverförmiger anorganischer Leuchtstoff verwendet, der sich in dem ihn umhüllenden Stoff (Matrix) nicht löst. Außerdem weisen der anorganische Leuchtstoff und der ihn umhüllende Stoff voneinander 30 verschiedene Brechungsindizes auf. Dies führt vorteilhafterweise dazu, daß abhängig von der Korngröße des Leuchtstoffes, ein Anteil des nicht vom Leuchtstoff absorbierten Lichtes gestreut wird. Dadurch ist die Richtcharakteristik der von dem Halbleiterkörper abge- 35 Halbleiterkörper hintereinander angeordnet. strahlten Strahlung effizient geschwächt, so daß die nicht absorbierte Strahlung und die lumineszenzkonvertierte Strahlung homogen gemischt werden, was zu einem räumlich homogenen Farbeindruck führt. Das ist 4 μm—13 μm in Epoxidharz eingebettet ist.

Ein weißes Licht abstrahlendes erfindungsgemäßes Halbleiterbauelement läßt sich beispielsweise dadurch realisieren, daß einem zur Herstellung der Lumineszenzkonversionsumhüllung oder -schicht verwendeten 45 Epoxidharz der anorganische Leuchtstoff Y₂Al₅O₁₂: Ce³⁺ beigemischt wird. Ein Teil einer von dem Halbleiterkörper ausgesandten blauen Strahlung von dem anorganischen Leuchtstoff mit in einen komplementären Wellenlängenbereich verschoben. Der Farbton (Farbort in der CIE-Farbtafel) des weißen Lichts kann dabei durch geeignete Wahl der Farbstoffmischung und -konzentration variiert werden.

derem den besonderen Vorteil, daß es sich hierbei um nicht lösliche Farbpigmente (Teilchengröße z. B. 10 μm) mit einem Brechungsindex von ca. 1,84 handelt. Dadurch tritt neben der Wellenlängenkonversion noch ein Streueffekt auf, der zu einer guten Vermischung von blauer 60 sche Leuchtstoffe), so daß auch Weiß leuchtende Di-Diodenstrahlung und gelber Konverterstrahlung führt.

Bei einer weiteren bevorzugten Weiterbildung eineserfindungsgemäßen Halbleiterbauelements bzw. der oben angegebenen vorteilhaften Ausführungsformen sind dem Lumineszenzkonversionselement oder einer 65 ringen Leistungsaufnahme in vollfarbtauglichen LEDanderen strahlungsdurchlässigen Komponente der Bauteilumhüllung zusätzlich lichtstreuende Partikel, sogenannte Diffusoren zugesetzt. Hierdurch läßt sich vor-

teilhafterweise der Farbeindruck und die Abstrahlcharakteristik des Halbleiterbauelements weiter optimie-

Von besonderem Vorteil ist, daß die Leuchteffizienz 5 von weißleuchtenden erfindungsgemäßen Halbleiterbauelementen bzw. deren o. g. Ausführungsformen mit einem im wesentlichen auf der Basis von GaN hergestellten blau leuchtenden Halbleiterkörper gegenüber der Leuchteffizienz einer Glühbirne erheblich erhöht ist. Der Grund dafür besteht darin, daß zum einen die externe Quantenausbeute derartiger Halbleiterkörper bei einigen Prozent liegt und andererseits die Lumineszenzausbeute von anorganischen Leuchtstoffen oft bei über 90% angesiedelt ist. Darüberhinaus zeichnet sich gleich zur Glühbirne durch eine extrem lange Lebensdauer, größere Robustheit und eine kleinere Betriebsspannung aus.

Vorteilhaft ist weiterhin, daß die für das menschliche Halbleiterbauelements gegenüber einem ohne Lumineszenzkonversionselement ausgestatteten, aber sonst identischen Halbleiterbauelement deutlich erhöht werden kann, da die Augenempfindlichkeit zu höherer Wellenlänge hin zunimmt. Es kann darüberhinaus auch ultraviolettes Licht in sichtbares Licht umgewandelt werden.

Das hier vorgestellte Konzept der Lumineszenzkonversion mit blauem Licht eines Halbleiterkörpers läßt sich vorteilhafterweise auch auf mehrstufige Lumineszenzkonversionselemente erweitern, nach dem Schema ultraviolett → blau → grün → gelb → rot. Hierbei werden mehrere unterschiedlich spektral selektiv emittierende Lumineszenzkonversionselemente relativ zum

Ebenso können vorteilhafterweise mehrere unterschiedlich spektral selektiv emittierende anorganische Leuchtstoffe gemeinsam in einen transparenten Kunststoff eines Lumineszenzkonversionselements eingebetz. B. der Fall, wenn YAG: Ce mit einer Korngröße von 40 tet sein. Hierdurch ist ein sehr breites Farbenspektrum erzeugbar.

> Besonders vorteilhaft können erfindungsgemäße Halbleiterbauelemente gemäß der vorliegenden Erfindung z.B. in vollfarbtauglichen LED-Anzeigevorrichtungen (Displays) oder zu Beleuchtungszwecken in Flugzeugen, Kraftfahrzeugen usw. eingesetzt werden.

Ein besonderer Vorteil von erfindungsgemäßen wei-Bes Licht abstrahlenden Halbleiterbauelementen auf der Basis Ce-dotierter Phosphore, insbesondere Ce-do-Y₃Al₅O₁₂: Ce³⁺ in den gelben Spektralbereich und so- 50 tierter Granate wie z. B. YAG: Ce als Leuchtstoff, besteht darin, daß diese Leuchtstoffe bei Anregung mit blauem Licht eine spektrale Verschiebung von ca. 100 nm zwischen Absorption und Emission bewirkt. Dies führt zu einer wesentlichen Reduktion der Reabsorp-Der anorganische Leuchtstoff YAG: Ce hat unter an- 55 tion des vom Leuchtstoff emittierten Lichtes und damit zu einer höheren Lichtausbeute. Außerdem besitzen derartige anorganische Leuchtstoffe vorteilhafterweise im allgemeinen eine hohe thermische und photochemische (z. B. UV-) Stabilität (wesentlich höher als organioden für Außenanwendung und/oder hohe Temperaturbereiche herstellbar sind.

> Besonders vorteilhaft lassen sich erfindungsgemäße Halbleiterbauelemente insbesondere aufgrund ihrer ge-Displays, zur Beleuchtung von Kfz-Innenräumen oder von Flugzeugkabinen sowie zur Beleuchtung von Anzeigevorrichtungen wie Kfz-Armaturen oder Flüssig

kristallanzeigen verwenden.

Weitere Merkmale, Vorteile und Zweckmäßigkeiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von neun Ausführungsbeispielen in Verbindung mit den Fig. 1 bis 12. Es zeigen:

Fig. 1 eine schematische Schnittansicht durch ein erstes Ausführungsbeispiel eines erfindungsgemäßen

Halbleiterbauelements:

Fig. 2 eine schematische Schnittansicht eines zweiten Ausführungsbeispieles eines erfindungsgemäßen Halb- 10 leiterbauelementes;

Fig. 3 eine schematische Schnittansicht durch ein drittes Ausführungsbeispiel eines erfindungsgemäße Halbleiterbauelementes:

Ausführungsbeispieles eines erfindungsgemäßen Halbleiterbauelements;

Fig. 5 eine schematische Schnittansicht eines fünften Ausführungsbeispieles eines erfindungsgemäßen Halbleiterbauelementes:

Fig. 6 eine schematische Schnittansicht eines sechsten Ausführungsbeispieles eines erfindungsgemäßen Halbleiterbauelementes;

Fig. 7 eine schematische Darstellung eines Emissionskörpers mit einer Schichtenfolge auf der Basis von

Fig. 8 eine schematische Darstellung der Emissionsspektren von erfindungsgemäßen Halbleiterbauelementen, die weißes Licht abstrahlen;

Fig. 9 eine schematische Schnittdarstellung durch einen Halbleiterkörper, der blaues Licht aussendet;

Fig. 10 eine schematische Schnittansicht eines siebten Ausführungsbeispieles eines erfindungsgemäßen Halbleiterbauelementes;

Fig. 11 eine schematische Schnittansicht eines achten Ausführungsbeispieles eines erfindungsgemäßen Halbleiterbauelementes und

Fig. 12 eine schematische Schnittansicht eines neunten Ausführungsbeispieles eines erfindungsgemäßen 40 Halbleiterbauelementes.

In den verschiedenen Figuren sind jeweils gleiche oder gleichwirkende Teile immer mit denselben Bezugs-

Bei dem in Fig. 1 dargestellten Licht aussendenden 45 Halbleiterbauelement weist ein Halbleiterkörper 1, z. B. eine Leuchtdiode oder eine Laserdiode, einen Rückseitenkontakt 11, einen Vorderseitenkontakt 12 und eine sich aus einer Anzahl von unterschiedlichen Schichten zusammensetzende Schichtenfolge 7 auf, die mindestens 50 eine eine Strahlung (z. B. ultraviolette, blaue oder grüne Strahlung) aussendende aktive Zone besitzt.

Ein Beispiel für eine geeignete Schichtenfolge 7 für dieses und für sämtliche im folgenden beschriebenen Ausführungsbeispiele ist in Fig. 9 gezeigt. Hierbei ist auf 55 dieser Weglänge abhängt. einem Substrat 18, das z. B. aus SiC besteht, eine Schichtenfolge aus einer AlN- oder GaN-Schicht 19, einer n-leitenden GaN-Schicht 20, einer n-leitenden GaxAl_{1-x}N- oder Ga_xIn_{1-x}N-Schicht 21, einer weiteren nleitenden GaN- oder GaxIn_{1-x}N-Schicht 22, einer 60 p-leitenden Ga_xAl_{1-x}N- oder Ga_xIn_{1-x}N-Schicht 23 und einer p-leitenden GaN-Schicht 24 aufgebracht. Auf einer Hauptfläche 25 der pleitenden GaN-Schicht 24 und einer Hauptfläche 26 des Substrats 18 ist jeweils einem herkömmlich in der Halbleitertechnik für elektrische Kontakte verwendeten Werkstoff besteht.

Es kann jedoch auch jeder andere dem Fachmann für

das erfindungsgemäße Halbleiterbauelement als geeignet erscheinende Halbleiterkörper verwendet werden. Dies gilt ebenso für sämtliche nachfolgend beschriebenen Ausführungsbeispiele.

Im Ausführungsbeispiel von Fig. 1 ist der Halbleiterkörper 1 mittels eines elektrisch leitenden Verbindungsmittels, z. B. ein metallisches Lot oder ein Klebstoff, mit seinem Rückseitenkontakt 11 auf einem ersten elektrischen Anschluß 2 befestigt. Der Vorderseitenkontakt 12 ist mittels eines Bonddrahtes 14 mit einem zweiten elektrischen Anschluß 3 verbunden.

Der Halbleiterkörper 1 und Teilbereiche der elektrischen Anschlüsse 2 und 3 sind unmittelbar von einer Lumineszenzkonversionsumhüllung 5 umschlossen. Fig. 4 eine schematische Schnittansicht eines vierten 15 Diese besteht beispielsweise aus einem für transparente Leuchtdiodenumhüllungen verwendbaren transparenten Kunststoff (z. B. Epoxidharz oder Polymethylmetaacrylat) oder einem niedrig schmelzenden anorganischen Glas, dem ein anorganischer Leuchtstoff 6, z.B. 20 Y3Al5O12: Ce3+ (YAG: Ce) für ein weißes Licht abstrahlendes Halbleiterbauelement, beigemischt ist.

Das in Fig. 2 dargestellte Ausführungsbeispiel eines erfindungsgemäßen Halbleiterbauelements unterscheidet sich von dem der Fig. 1 dadurch, daß der Halbleiterspektrums eines blaues Licht abstrahlenden Halbleiter- 25 körper 1 und Teilbereiche der elektrischen Anschlüsse 2 und 3 anstatt von einer Lumineszenzkonversionsumhüllung von einer transparenten Umhüllung 15 umschlossen sind. Diese transparente Umhüllung 15 bewirkt keine Wellenlängenänderung einer von dem Halbleiterkörper 1 ausgesandten Strahlung und besteht beispielsweise aus einem in der Leuchtdiodentechnik herkömmlich verwendeten Epoxid-, Silikon- oder Acrylatharz oder aus einem anderen geeigneten strahlungsdurchlässigen

Material wie z. B. anorganisches Glas.

Auf diese transparente Umhüllung 15 ist eine Lumineszenzkonversionsschicht 4 aufgebracht, die, wie in der Fig. 2 dargestellt, die gesamte Oberfläche der Umhüllung 15 bedeckt. Ebenso denkbar ist, daß die Lumineszenzkonversionsschicht 4 nur einen Teilbereich dieser Oberfläche bedeckt. Die Lumineszenzkonversionsschicht 4 besteht beispielsweise wiederum aus einem transparenten Kunststoff (z. B. Epoxidharz, Lack oder Polymethylmetaacrylat) oder aus einem anorganischen Glas, der bzw. das mit einem anorganischen Leuchtstoff 6 versetzt ist. Auch hier eignet sich als Leuchtstoff für ein weiß leuchtendes Halbleiterbauelement z.B. YAG : Ce.

Dieses Ausführungsbeispiel hat den besonderen Vorteil, daß für die gesamte von dem Halbleiterkörper ausgesandte Strahlung die Weglänge durch das Lumineszenzkonverionselement näherungsweise gleich groß ist. Dies spielt insbesondere dann eine bedeutende Rolle, wenn, wie oftmals der Fall, der genaue Farbton des von dem Halbleiterbauelement abgestrahlten Lichtes von

Zur besseren Auskopplung des Lichtes aus der Lumineszenzkonversionsschicht 4 von Fig. 2 kann auf einer Seitenfläche des Bauelements eine linsenförmige Abdeckung 29 (gestrichelt eingezeichnet) vorgesehen sein, die eine Totalreflexion der Strahlung innerhalb der Lumineszenzkonversionsschicht 4 reduziert. Diese linsenförmige Abdeckung 29 kann aus transparentem Kunststoff oder Glas bestehen und auf die Lumineszenzkonversionsschicht 4 beispielsweise aufgeklebt oder direkt eine Kontaktmetallisierung 27, 28 aufgebracht, die aus 65 als Bestandteil der Lumineszenzkonversionsschicht 4 ausgebildet sein.

Bei dem in Fig. 3 dargestellten Ausführungsbeispiel sind der erste und der zweite elektrische Anschluß 2,3 in

ein lichtundurchlässiges evtl. vorgefertigtes Grundgehäuse 8 mit einer Ausnehmung 9 eingebettet. Unter "vorgefertigt" ist zu verstehen, daß das Grundgehäuse 8 bereits an den Anschlüssen 2, 3 beispielsweise mittels Spritzguß fertig ausgebildet ist, bevor der Halbleiterkörper auf den ersten Anschluß 2 montiert wird. Das Grundgehäuse 8 besteht beispielsweise aus einem lichtundurchlässigen Kunststoff und die Ausnehmung 9 ist als Reflektor 17 (ggf. durch geeignete Beschichtung der Innenwände der Ausnehmung 9) ausgebildet. Solche Grundgehäuse 8 werden seit langem insbesondere bei oberflächenmontierbaren Leuchtdioden (SMD-TO-PLEDs) verwendet und werden daher an dieser Stelle nicht mehr näher erläutert. Sie werden vor der Montage der Halbleiterkörper auf ein die elektrischen Anschlüsse 15 spielsweise wiederum aus einem herkömmlich in der 2,3 aufweisendes Leiterband (Leadframe) aufgebracht.

Die Ausnehmung 9 ist von einer Lumineszenzkonversionsschicht 4, beispielsweise eine separat hergestellte und auf dem Grundgehäuse 8 befestigte Abdeckplatte 17 aus Kunststoff, abgedeckt. Als geeignete Materialien 20 für die Lumineszenzkonversionsschicht 4 kommen wiederum die weiter oben im allgemeinen Teil der Beschreibung genannten Kunststoffe oder anorganisches Glas in Verbindung mit den dort genannten anorganischen Leuchtstoffen in Frage. Die Ausnehmung 9 kann 25 sowohl mit einem transparenten Kunststoff, mit einem anorganischen Glas oder mit Gas gefüllt als auch mit einem Vakuum versehen sein.

Wie bei dem Ausführungsbeispiel nach Fig. 2 kann auch hier zur besseren Auskopplung des Lichtes aus der 30 Lumineszenzkonversionsschicht 4 auf dieser eine linsenförmige Abdeckung 29 (gestrichelt eingezeichnet) vorgesehen sein, die eine Totalreflexion der Strahlung innerhalb der Lumineszenzkonversionsschicht 4 reduziert. Diese Abdeckung 29 kann wiederum aus transpa- 35 rentem Kunststoff oder aus anorganischem Glas bestehen und auf die Lumineszenzkonversionsschicht 4 beispielsweise aufgeklebt oder zusammen mit der Lumineszenzkonversionsschicht 4 einstückig ausgebildet

Ebenso ist es möglich, daß die Ausnehmung 9, wie in Fig. 10 gezeigt, mit einem mit einem anorganischen Leuchtstoff 6 versehenen Kunststoff oder Glas, d. h. mit einer Lumineszenzumhüllung 5 gefüllt ist, die das Lumineszenzkonversionselement bildet. Eine Abdeckplatte 45 17 und/oder eine linsenförmige Abdeckung 29 kann dann auch weggelassen sein. Weiterhin ist optional, wie in Fig. 11 dargestellt, der erste elektrische Anschluß 2 z. B. durch Prägen im Bereich des Halbleiterkörpers 1 als Reflektorwanne 34 ausgebildet, die mit einer Lumi- 50 neszenzkonversionsumhüllung 5 gefüllt ist.

In Fig. 4 ist als weiteres Ausführungsbeispiel eine sogenannte Radialdiode dargestellt. Hierbei ist der Halbleiterkörper 1 in einem als Reflektor ausgebildeten Teil 16 des ersten elektrischen Anschlusses 2 beispielsweise 55 mittels Löten oder Kleben befestigt. Auch derartige Gehäusebauformen sind aus der Leuchtdiodentechnik wohlbekannt und bedürfen von daher keiner näheren Erläuterung.

Bei dem Ausführungsbeispiel von Fig. 4 ist der Halb- 60 leiterkörper 1 von einer transparenten Umhüllung 15 umgeben, die wie beim zweitgenannten Ausführungsbeispiel (Fig. 2) keine Wellenlängenänderung der von dem Halbleiterkörper 1 ausgesandten Strahlung bewirkt und beispielsweise aus einem herkömmlich in der 65 Leuchtdiodentechnik verwendeten transparenten Epoxidharz oder aus einem anorganischen Glas bestehen

Auf dieser transparenten Umhüllung 15 ist eine Lumineszenzkonversionsschicht 4 aufgebracht. Als Material hierfür kommen beispielsweise wiederum die im Zusammenhang mit den vorgenannten Ausführungsbeispielen angeführten Kunststoffe oder anorganisches Glas in Verbindung mit den oben Leuchtstoffen in Fra-

Der gesamte Aufbau, bestehend aus Halbleiterkörper 1, Teilbereiche der elektrischen Anschlüsse 2,3, transpa-10 rente Umhüllung 15 und Lumineszenzkonversionsschicht 4, ist von einer weiteren transparenten Umhüllung 10 umschlossen, die keine Wellenlängenänderung der durch die Lumineszenzkonversionsschicht 4 hindurchgetretenen Strahlung bewirkt. Sie besteht bei-Leuchtdiodentechnik verwendeten transparenten Epoxidharz oder aus Glas.

Das in Fig. 5 gezeigte Ausführungsbeispiel unterscheidet sich von dem von Fig. 4 insbesondere dadurch, daß die freien Oberflächen des Halbleiterkörpers 1 unmittelbar von einer Lumineszenzkonversionsumhüllung 5 bedeckt sind, die wiederum von einer weiteren transparenten Umhüllung 10 umgeben ist. In Fig. 5 ist weiterhin beispielhaft ein Halbleiterkörper 1 dargestellt, bei dem anstelle des Rückseitenkontaktes 11 ein weiterer Kontakt auf der Halbleiterschichtenfolge 7 angebracht ist, der mittels eines zweiten Bonddrahtes 14 mit dem zugehörigen elektrischen Anschluß 2 oder 3 verbunden ist. Selbstverständlich sind derartige Halbleiterkörper 1 auch bei allen anderen hierin beschriebenen Ausführungsbeispielen einsetzbar. Umgekehrt ist natürlich auch bei dem Ausführungsbeispiel von Fig. 5 ein Halbleiterkörper 1 gemäß den vorgenannten Ausführungsbeispielen verwendbar.

Der Vollständigkeit halber sei an dieser Stelle angemerkt, daß selbstverständlich auch bei der Bauform nach Fig. 5 analog zu dem Ausführungsbeispiel nach Fig. 1 eine einstückige Lumineszenzkonversionsumhüllung 5, die dann an die Stelle der Kombination aus Lumineszenzkonversionsumhüllung 5 und weiterer transparenter Umhüllung 10 tritt, verwendet sein kann.

Bei dem Ausführungsbeispiel von Fig. 6 ist eine Lumineszenzkonversionsschicht 4 (mögliche Materialien wie oben angegeben) direkt auf den Halbleiterkörper 1 aufgebracht. Dieser und Teilbereiche der elektrischen Anschlüsse 2, 3 sind von einer weiteren transparenten Umhüllung 10 umschlossen, die keine Wellenlängenänderung der durch die Lumineszenzkonversionsschicht 4 hindurchgetretenen Strahlung bewirkt und beispielsweise aus einem in der Leuchtdiodentechnik verwendbaren transparenten Epoxidharz oder aus Glas gefertigt

Solche, mit einer Lumineszenzkonversionsschicht 4 versehenen Halbleiterkörper 1 ohne Umhüllung können natürlich vorteilhafterweise in sämtlichen aus der Leuchtdiodentechnik bekannten Gehäusebauformen (z. B. SMD-Gehäuse, Radial-Gehäuse (man vergleiche Fig. 5)) verwendet sein.

Bei dem in Fig. 12 dargestellten Ausführungsbeispiel eines erfindungsgemäßen Halbleiterbauelements ist Auf dem Halbleiterkörper 1 ein transparentes Wannenteil 35 angeordnet, das über dem Halbleiterkörper 1 eine Wanne 36 aufweist. Das Wannenteil 35 besteht beispielsweise aus transparentem Epoxidharz oder aus anorganischem Glas und ist z. B. mittels Umspritzen der elektrischen Anschlüsse 2,3 einschließlich Halbleiterkörper 1 gefertigt. In dieser Wanne 36 ist eine Lumineszenzkonversionsschicht 4 angeordnet, die z.B. wiederum aus Epoxidharz oder anorganischem Glas gefertigt ist, in das Partikel 37, bestehend aus einem der o. g. anorganischen Leuchtstoffe, eingebunden sind. Bei dieser Bauform wird vorteilhafterweise auf sehr einfache Weise sichergestellt, daß sich der Leuchtstoff während der Herstellung des Halbleiterbauelements an nicht vorgesehenen Stellen, z. B. neben dem Halbleiterkörper, ansammelt. Das Wannenteil 35 kann selbstverständlicherweise auch separat hergestellt und anderweitig, z. B. an einem Gehäuseteil, über dem Halbleiterkörper 1 10 befestigt sein.

Bei sämtlichen der oben beschriebenen Ausführungsbeispiele kann zur Optimierung des Farbeindrucks des abgestrahlten Lichts sowie zur Anpassung der Abstrahlcharakteristik das Lumineszenzkonversionselement (Lumineszenzkonversionsumhüllung 5 oder Lumineszenzkonversionsschicht 4), ggf. die transparente Umhüllung 15, und/oder ggf. die weitere transparente Umhüllung 10 lichtstreuende Partikel, sogenannte Diffusoren aufweisen. Beispiele für derartige Diffusoren sind mineralische Füllstoffe, insbesondere CaF2, TiO2, SiO2, Ca-CO3 oder BaSO4 oder auch organische Pigmente. Diese Materialien können auf einfache Weise den o. g. Umhüllungs-bzw. Schichtmaterialien zugesetzt werden.

In den Fig. 7 und 8 sind Emissionsspektren eines blaues Licht abstrahlenden Halbleiterkörpers (Fig. 7) (Lumineszenzmaximum bei $\lambda \sim 430$ nm) bzw. von Weiß leuchtenden erfindungsgemäßen Halbleiterbauelementen (Fig. 8) gezeigt, die mittels solcher Halbleiterkörper hergestellt sind. An der Abszisse ist die Wellenlänge λ in 30 nm und an der Ordinate ist eine relative Intensität der

ausgesandten Strahlung aufgetragen.

Von der vom Halbeiterkörper ausgesandten Strahlung nach Fig. 7 wird nur ein Teil in einen längerwelligen Wellenlängenbereich konvertiert, so daß als Misch- 35 farbe weißes Licht entsteht. Die verschiedenartig gestrichelten Linien 30 bis 33 von Fig. 8 stellen Emissionsspektren von erfindungsgemäßen Halbleiterbauelementen in Form von Radialdioden dar, bei denen das Lumineszenzkonversionselement, in diesem Fall eine Lumi- 40 neszenzkonversionsumhüllung aus Epoxidharz, unterschiedliche YAG: Ce-Konzentrationen aufweist. Jedes Emissionsspektrum weist zwischen $\lambda = 420 \text{ nm}$ und $\lambda =$ 430 nm, also im blauen Spektralbereich, und zwischen λ = 520 nm und λ = 545 nm, also im grünen Spektralbe- 45 reich, jeweils ein Intensitätsmaximum auf, wobei die Emissionsbanden mit dem längerwelligen Intensitätsmaximum zu einem großen Teil im gelben Spektralbereich liegen. Das Diagramm von Fig. 8 verdeutlicht, daß bei dem erfindungsgemäßen Halbleiterbauelement auf 50 einfache Weise durch Veränderung der Leuchtstoffkonzentration im Epoxidharz der CIE-Farbort des weiden Lichtes verändert werden kann.

Weiterhin ist es möglich, anorganische Leuchtstoffe auf Basis von Ce-dotierten Granaten, Thiogallaten, Erdalkali-Sulfiden und Aluminaten direkt auf den Halbleiterkörper aufzubringen, ohne sie in Epoxidharz oder

Glas zu dispergieren.

Ein weiterer besonderer Vorteil der oben genannten anorganischen Leuchtstoffe ergibt sich daraus, daß die 60 Leuchtstoffkonzentration z.B. im Epoxidharz nicht wie bei organischen Farbstoffen durch die Löslichkeit begrenzt wird. Dadurch sind keine großen Dicken von Lumineszenzkonversionselementen nötig.

Patentansprüche

1. Mischfarbiges Licht abstrahlendes Halbleiter-

bauelement mit einem Strahlung aussendenden Halbleiterkörper (1), mit mindestens einem ersten und einem zweiten elektrischen Anschluß (2, 3), die mit dem Halbleiterkörper (1) elektrisch leitend verbunden sind, und mit einem Lumineszenzkonversionselement (4, 5), bei dem der Halbleiterkörper (1) eine Halbleiterschichtenfolge (7) aufweist, die eine elektromagnetische Strahlung mit einer Wellenlänge $\lambda \leq 520$ nm aussendet, bei dem das Lumineszenzkonversionselement (4, 5) Strahlung eines ersten spektralen Teilbereiches der von dem Halbleiterkörper (1) ausgesandten, aus einem ersten Wellenlängenbereich stammenden Strahlung in Strahlung eines zweiten Wellenlängenbereiches umwandelt, derart, daß das Halbleiterbauelement Strahlung aus einem zweiten spektralen Teilbereich des ersten Wellenlängenbereiches und Strahlung des zweiten Wellenlängenbereiches aussendet und bei dem das Lumineszenzkonversionselement (4, 5) mindestens einen anorganischen Leuchtstoff (6), insbesondere einen Phosphor, aufweist.

2. Halbleiterbauelement nach Anspruch 1, bei dem das Lumineszenzkonversionselement zumindest teilweise aus einem für eine von dem Halbleiterkörper (1) ausgesandte und eine von dem Leuchtstoff (6) emittierte Strahlung durchlässigen Material besteht, in das der anorganische Leuchtstoff (6)

eingebunden ist.

3. Halbleiterbauelement nach Anspruch 1 oder 2, bei dem als organischer Leuchtstoff ein oder mehrere Stoffe aus der Gruppe der Ce-dotierten-Granate, insbesondere YAG: Ce, verwendet ist.

4. Halbleiterbauelement nach Anspruch 1 oder 2, bei dem als organischer Leuchtstoff ein oder mehrere Stoffe aus der Gruppe der mit Seltenen Erden dotierten Granate, mit Seltenen Erden dotierten Erdalkali-Sulfide, mit Seltenen Erden dotierten Thiogallate, mit Seltenen Erden dotierte Aluminate und mit Seltenen Erden dotierte Orthosilikate verwendet ist.

5. Halbleiterbauelement nach einem der Ansprüche 1 bis 4, bei dem das Lumineszenzkonversionselement Strahlung eines ersten spektralen Teilbereiches der von dem Halbleiterkörper (1) ausgesandten, aus dem ersten Wellenlängenbereich stammenden Strahlung in Strahlung von mindestens zweizweiten Wellenlängenbereichen umwandelt, derart, daß das Halbleiterbauelement Strahlung aus einem zweiten spektralen Teilbereich des ersten Wellenlängenbereiches und Strahlung der zweiten Wellenlängenbereiche aussendet, wobei der zweite spektrale Teilbereich und die zweiten Wellenlängenbereiche Intensitätsmaximas bei verschiedenen Wellenlängen λ aufweisen.

6. Halbleiterbauelement nach einem der Ansprüche 1 bis 5, bei dem das Lumineszenzkonversionselement Strahlung mehrerer erster spektraler Teilbereiche der von dem Halbleiterkörper (1) ausgesandten, aus einem ersten Wellenlängenbereich stammenden Strahlung in Strahlung mehrerer zweiter Wellenlängenbereiche umwandelt, derart, daß das Halbleiterbauelement Strahlung aus mehreren zweiten spektralen Teilbereichen des ersten Wellenlängenbereiches und Strahlung der zweiten Wellenlängenbereiche aus sendet, wobei die zweiten spektralen Teilbereiche und die zweiten Wellenlängenbereiche Intensitätsmaximas bei unterschiedlichen Wellenlängen aufweisen.

7. Halbleiterbauelement nach einem der Ansprüche 1 bis 6, bei dem der Halbleiterkörper (1) eine aktive Schicht aus Ga_xIn_{1-x}N oder Ga_yAl_{1-x}N aufweist. 8. Halbleiterbauelement nach einem der Ansprüche 1 bis 7, bei dem das Lumineszenzkonversionselement eine über oder auf dem Halbleiterkörper (1) angeordnete Lumineszenzkonversionsschicht (4) aufweist.

9. Halbleiterbauelement nach einem der Ansprüche 1 bis 8, bei dem als Lumineszenzkonversionselement eine Lumineszenzkonversionsumhüllung (5) vorgesehen ist, die zumindest einen Teil des Halbleiterkörpers (1) und Teilbereiche der elektrischen Anschlüsse (2,3) umschließt.

10. Halbleiterbauelement nach einem der Ansprüche 1 bis 9, bei dem das Lumineszenzkonversionselement mit mehreren verschiedenartigen organischen und/oder anorganischen Leuchtstoffen (6) versehen ist.

11. Halbleiterbauelement nach einem der Ansprüche 1 bis 10, bei dem der bzw. die zweiten Wellenlängenbereiche zumindest teilweise größere Wellenlängen λ aufweisen als der bzw. die ersten Wellenlängenbereiche.

12. Halbleiterbauelement nach einem der Ansprüche 1 bis 11, bei dem der zweite spektrale Teilbereich des ersten Wellenlängenbereiches und der zweite Wellenlängenbereich zumindest teilweise zueinander komplementär sind.

13. Halbleiterbauelement nach Anspruch 5 oder 30 Anspruch 5 und einem der Ansprüche 7 bis 11, bei dem ein zweiter spektraler Teilbereich des ersten Wellenlängenbereiches und zwei zweite Wellenlängenbereiche ein additives Farbtripel ergeben.

14. Halbleiterbauelement nach einem der Ansprüche 1 bis 13, bei dem die vom Halbleiterkörper (1) ausgesandte Strahlung bei $\lambda = 430$ nm oder bei $\lambda = 450$ nm ein Intensitäts-Maximum aufweist.

15. Halbleiterbauelement nach Anspruch 8 oder nach Anspruch 8 und einem der Ansprüche 10 bis 40 14, bei dem zumindest ein Teil der Oberfläche des Halbleiterkörpers (1) von einer transparenten Umhüllung (15) umgeben ist und bei dem auf der transparenten Umhüllung (15) die Lumineszenzkonversionsschicht (4) aufgebracht ist.

16. Halbleiterbauelement nach Anspruch 8 oder nach Anspruch 8 und einem der Ansprüche 10 bis 14, bei dem zumindest auf einem Teil der Oberfläche des Halbleiterkörpers (1) die Lumineszenzkonversionsschicht (4) aufgebracht ist.

17. Halbleiterbauelement nach Anspruch 8 oder nach Anspruch 8 und einem der Ansprüche 10 bis 14, bei dem der Halbleiterkörper (1) in einer Ausnehmung (9) eines Grundgehäuses (8) angeordnet ist und bei dem die Ausnehmung (9) mit einer eine Lumineszenzkonversionsschicht (4) aufweisenden Abdeckschicht (17) abgedeckt ist.

18. Halbleiterbauelement einem der Ansprüche 1 bis 17, bei dem der Halbleiterkörper (1) in einer Ausnehmung (9) eines Grundgehäuses (8) angeordnet ist und bei dem die Ausnehmung (9) zumindest teilweise mit einem Lumineszenzkonversionselement (4,5) gefüllt ist.

19. Halbleiterbauelement nach einem der Ansprüche 1 bis 18, bei dem das Lumineszenzkonversionselement (4, 5) mehrere Schichten mit unterschiedlichen Wellenlängenkonversionseigenschaften aufweist.

20. Halbleiterbauelement nach einem der Ansprüche 1 bis 19, bei dem das Lumineszenzkonversionselement (4, 5) zusätzlich organische Farbstoffmoleküle aufweist.

21. Halbleiterbauelement nach einem der Ansprüche 1 bis 20, bei dem das Lumineszenzkonversionselement (4, 5) eine Epoxidharz-Matrix, eine Kunststoffmatrix, insbesondere aus Silikon-, Thermoplast- oder Duroplastmaterial oder eine Polymethylmetacrylat-Marix aufweist.

22. Halbleiterbauelement nach einem der Ansprüche 1 bis 20, bei dem das Lumineszenzkonversionselement (4,5) zumindest teilweise aus einem UVund temperaturstabilen anorganischen Material besteht.

23. Halbleiterbauelement nach einem der Ansprüche 1 bis 22, bei dem das Lumineszenzkonversionselement (4, 5) zusätzlich organische Farbstoffmoleküle ohne Wellenlängenkonversionswirkung aufweist.

24. Halbleiterbauelement nach einem der Ansprüche 1 bis 23, bei dem das Lumineszenzkonversionselement (4, 5) und/oder ggf. die transparente Umhüllung (10, 15) lichtstreuende Partikel aufweist.

25. Halbleiterbauelement nach einem der Ansprüche 1 bis 24, bei dem das Lumineszenzkonversionselement (4, 5) zusätzlich mit einem oder mehreren lumineszierenden 4f-metallorganischen Verbindungen versehen ist.

26. Halbleiterbauelement nach Anspruch 1, bei dem der anorganische Leuchtstoff (6) unmittelbar auf dem Halbleiterkörper (1) aufgebracht ist.

27. Halbleiterbauelement nach einem der Ansprüche 1 bis 26, bei dem der Halbleiterkörper (1) ein UV-Strahlung emittierender Leuchtdioden- oder Laserdiodenchip ist.

28. Halbleiterbauelement nach einem der Ansprüche 1 bis 27, bei dem das Lumineszenzkonversionselement (4, 5) und/oder ggf. die transparente Umhüllung (10, 15) mit mindestens einem im Blauen lumineszeierenden Lumineszenzfarbstoff versehen ist.

29. Halbleiterbauelement nach einem der Ansprüche 1 bis 28, bei dem nur ein einziger Strahlung aussendender Halbleiterkörper (1) vorgesehen ist. 30. Halbleiterbauelement nach einem der Ansprüche 1 bis 19 oder 22 bis 28, bei dem sämtliche Komponenten aus UV- und temperaturstabilen anorganischen Materialien hergestellt sind.

31. Verwendung einer Mehrzahl von Halbleiterbauelementen gemäß einem der Ansprüche 1 bis 30 in einer vollfarbtauglichen LED-Anzeigevorrichtung.

32. Verwendung einer Mehrzahl von Halbleiterbauelementen gemäß einem der Ansprüche 1 bis 30 zur Beleuchtung von Flugzeugkabinen.

33. Verwendung eines Halbleiterbauelements gemäß einem der Ansprüche 1 bis 30 zur Beleuchtung von Anzeigevorrichtungen, insbesondere zur Beleuchtung von Flüssigkristallanzeigen.

Hierzu 5 Seite(n) Zeichnungen

- Leerseite -

