## DATA 442: Neural Networks & Deep Learning

Dan Runfola - danr@wm.edu

icss.wm.edu/data442/





#### **CPU**

Only a Few Cores (Counted in Hundreds, at most, and normally in ten or less).

Very fast clock speeds (4GHz +)

Uses Physical Memory located Elsewhere on Motherboard



LOTS of cores
Thousands - i.e., a RTX 2080 TI has
4,352 cores.

Slower clock speeds (1-2 GHz )

Physical memory is integrated with the card.







#### LOTS of cores

Thousands - i.e., a RTX 2080 TI has 4,352 cores.

Slower clock speeds (1-2 GHz)

Physical memory is integrated with the card.





4x5 Matrix



## **Low-level GPU Programming**





#### Comparison:

https://arxiv.org/vc/arxiv/papers/100 5/1005.2581v1.pdf



### **Deep Learning Frameworks**

#### **Majors Players:**

Torch / PyTorch (Facebook)

TensorFlow / Keras (Google)

#### Old / Less Used / Integrated / Non-English:

Caffe (UC Berkeley); Theano (U Montreal); Caffe 2 (Facebook); PaddlePaddle (Baidu); CNTK (MSFT); MXNET (Amazon, MIT, CMU)

https://www.paddlepaddle.org.cn/



#### Standard DNN

# x = (x1, x2, x3, ..., xm)h(x)

#### Residual Block



## **Speed**



Figure 3: **Inference time vs. batch size.** This chart show inference time across different batch sizes with a logarithmic ordinate and logarithmic abscissa. Missing data points are due to lack of enough system memory required to process larger batches. A speed up of  $3\times$  is achieved by AlexNet due to better optimisation of its fully connected layers for larger batches.



#### **Recurrent Neural Networks**



#### **Recurrent Neural Networks**





Many-to-Many Network



#### **Recurrent Neural Networks**





Many-to-One Network

















3072 by 10 = **30,720** 



 $X_t + h_{t-1} W$  h

3072 by 10 = **30,720** 

h0





3072 by 10 = **30,720** 















## **Unpacking a RNN - Many to Many**



## **Unpacking a RNN - Many to One**



#### Flaw in a Vanilla RNN



## Long short term memory network

**LSTM** 

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \qquad h_t = \tanh \left( W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Simple RNN

$$h_t = \tanh\left(W\begin{pmatrix}h_{t-1}\\x_t\end{pmatrix}\right)$$













## Summary

- Basic introduction to RNNs
  - RNNs are really great for data that occurs over multiple steps.
  - Normal RNNs are vulnerable to vanishing/exploding gradients.
- Unpacking each step of a RNN
- Contrast Many-To-One and Many-To-Many RNNs
- Introduce LSTM
  - Solves vanishing gradient; still vulnerable to exploding.

