Propriétés de base

2024-2025

Table des matières

	Revêtements			
	1.1	Degré		
2	Relèvement des homotopies			
	2.1	Outline de la preuve		
	2.2	Détail		
	2.3	Relèvement des chemins et homotopies de chemins	;	

1 Revêtements

Un revêtement de X est la donnée d'un ensemble F, et pour chaque $x \in X$ de l'existence d'un ouvert $x \in U \subset X$ d'un diagramme commutatif

$$U \times F \qquad \simeq \qquad p^{-1}U \longleftrightarrow \widetilde{X} \qquad \qquad \downarrow^p \qquad$$

tel que $x \in U$ dans Top où F est discret. Ducoup U **trivialise** le revêtement. Je note U_x un ouvert trivialisant qui contient x.

1.1 Degré

Le degré est donné par

$$\deg\colon X\to\mathbb{N}\cup\infty$$

via $\deg(x) := \#p^{-1}x$. Avec la topologie discrète sur \mathbb{N} le degré est continu. En général c'est localement constant ducoup et si X est connexe le degré est constant.

Remarque 1. La continuité c'est que pour x tel que $\deg(x) = n$ alors $U_x \subset \deg^{-1} n$. En fait $\deg^{-1} n = \bigcup_{\deg(y)=n} U_y$.

2 Relèvement des homotopies

Étant donné une homotopie $F\colon Y\times I\to X$ et un relèvement $\widetilde{F}_0\colon Y\times\{0\}\to\widetilde{X}$ y'a un unique relèvement

$$Y \times \{0\} \xrightarrow{\widetilde{F}|_{Y \times \{0\}}} \widetilde{X}$$

$$\downarrow p$$

$$Y \times I \xrightarrow{F} X$$

Je fais un outline de la preuve et un peu de détail après.

2.1 Outline de la preuve

Ca se fait comme ça:

Démonstration. Y'a 3 étapes, pour la première : à chaque y on peut attacher un voisinage N et une partition $0 = t_0 < \ldots < t_n = 1$ tels que pour chaque i, $F(N \times [t_i, t_{i+1}])$ est dans un ouvert trivialisant avec $p: (\tilde{U}_i) \simeq U_i$ et $\tilde{F}(y_0, t_i) \in \tilde{U}_i$ qui fait le lien (je parle après de la condition initiale) maintenant le lift est calculé via

$$F|_{N \times [t_i, t_{i+1}]} \circ p^{-1} \colon N \times [t_i, t_{i+1}] \to U_i \to \tilde{U}_i$$

Pour la deuxième étape (unicité sur $N \times I$), on regarde juste le lift en chaque $\{y\} \times I$ et le fait que $\tilde{F}(\{y\} \times [t_i, t_{i+1}])$ est connexe donc dans un seul \tilde{U}_i . En particulier la dessus p est injective un monomorphisme d'où unicité.

Pour la dernière, les lifts locaux sont uniques sur chaque $\{y\} \times I$ donc partout. La continuité est claire.

2.2 Détail

Pour lifter sur un $\{y\} \times I$, il faut un choisir un point dans $\tilde{x} \in p^{-1}(F(y,t))$, pour pouvoir choisir la copie de \tilde{U}_i . Par compacité de $\{y\} \times I$, on peut partitionner I en $\bigcup_{i=0}^n [t_i, t_{i+1}]$ de telle sorte que si U est trivialisant pour y et en restreignant p à $\tilde{U} \ni \tilde{x}$ alors $F \circ p^{-1}$ est un lift unique qui se recoupe aux t_i .

2.3 Relèvement des chemins et homotopies de chemins

Y'a le joli résultat maintenant : étant donné un point base $x_0 \in X$ et un lacet γ dans $\pi_1(X, x_0)$, pour tout $\tilde{x}_0 \in p^{-1}x_0$,

• Il existe un unique relèvement de γ , $\tilde{\gamma}$ t.q $\tilde{\gamma}(0) = \tilde{x}_0$.

Ensuite pour toute homotopie de chemins $(f_t(1) = f_t(0) \text{ pour tout } t), f_t \colon I \to Y \text{ de } \gamma \text{ à } \gamma'$ on peut les relever uniquement en $\tilde{\gamma}$ et $\tilde{\gamma}'$ commençant en \tilde{x}_0 . Et maintenant

• Il existe un unique relèvement de f_t , \tilde{f}_t entre $\tilde{\gamma}$ et $\tilde{\gamma}'$.

La preuve est un corollaire direct de la section d'avant ducoup.

Remarque 2. Le point clé à remarquer c'est le choix du point $\tilde{x}_0 \in p^{-1}(x_0)$.