Statistical Learning Assignment 4

Exercises

1. Assume the linear model:

$$Y = X\beta + \epsilon$$
,

where X'X = I and $\epsilon \sim N(0, \sigma^2 I)$.

Find the numerical solution for the elastic net in the form:

$$\hat{\beta}_{\text{en}} = \operatorname{argmin}_{b} \frac{1}{2} \|Y - Xb\|_{2}^{2} + \lambda \left(\frac{1}{2} (1 - \alpha) \|b\|_{2}^{2} + \alpha \sum_{i=1}^{p} |b_{i}| \right)$$

- What would be the value of the elastic net estimator with $\lambda=1$ and $\alpha=0.5$ if $\hat{\beta}_{OLS}=3$?
- How does the number of discoveries depend on the parameter α ?
- Provide the numerical value for the expected number of false discoveries when n = p = 1000, $p_0 = 950$, $\sigma = 1$, and $\lambda = 2$, and the power of detection of X_1 when $\beta_1 = 3$.
- 2. Why do the LASSO, SLOPE, and elastic net perform variable selection, while ridge regression does not?
- 3. Formulate the identifiability condition for LASSO. What does it guarantee in terms of model selection? How does it compare to the irrepresentability condition?
- 4. Define SLOPE. How is it different from LASSO in terms of formulations and properties?
- 5. What are knockoffs?
- 6. The vector of W statistics for the knockoffs procedure is equal to:

$$W = (8, -4, -2, 2, -1.2, -0.6, 10, 12, 1, 5, 6, 7).$$

Which variables would be considered important if we use knockoffs at the false discovery rate (FDR) level q = 0.4?

7. Show that ridge regression can be viewed as the Maximum A Posteriori (MAP) Bayes rule with a multivariate normal prior on regression coefficients.

Computer project

Generate the design matrix $X_{500\times450}$ such that its elements are independent and identically distributed (iid) random variables from $\mathcal{N}(0, \sigma = \sqrt{\frac{1}{n}})$. Then generate the vector of the response variable according to the model:

$$Y = X\beta + \epsilon$$
,

where $\epsilon \sim 2\mathcal{N}(0, I)$, $\beta_i = 10$ for $i \in \{1, \dots, k\}$, $\beta_i = 0$ for $i \in \{k + 1, \dots, 450\}$, and $k \in \{5, 20, 50\}$.

For 100 replications of the above experiments, estimate the regression coefficients and/or identify important variables using:

- i) Least squares.
- Ridge regression and LASSO with the tuning parameters selected by crossvalidation.
- iii) Knockoffs with ridge and LASSO at the nominal false discovery rate (FDR) equal to 0.2.

Perform the following analyses:

- a) Estimate the false discovery rate (FDR) and the power of the cross-validated LASSO and the knockoffs with ridge and LASSO.
- b) For all three methods in i) and ii), estimate the mean square errors of the estimators of β and $\mu = X\beta$.