T8

1. Sea $U \neq \emptyset$ un abierto de \mathbb{R}^n , $p_0 \in U$, $f, g : U \to \mathbb{R}$ funciones diferenciables en p_0 y $c \in \mathbb{R}$.

Usando la proposición 2 de las notas, demuestra que cf+g es diferenciable en p_0 y que:

$$\nabla_{p_0}(cf+g) = c\nabla_{p_0}f + \nabla_{p_0}g.$$

2. Sea $f:\mathbb{R}^n \to \mathbb{R}$ una función diferenciable en todo punto de \mathbb{R}^n ¿Tiene sentido la fórmula

$$\nabla_{p_0+p_0'}f = \nabla_{p_0}f + \nabla_{p_0'}f?$$

Demuestra o da un contraejemplo.

- 3. Encuentra la aproximación lineal de la función indicada, alrededor de un punto adecuado para estimar las siguientes cantidades
 - (a) $\sqrt{(9.1)(15.9)}$,
 - (b) $\sqrt{(4.1)^2 + (3.95)^2 + (2.01)^2}$,
 - (c) $(2.01)^3 + (1.99)^3 5(2.01)(1.99)$.
- 4. Este ejercicio muestra que todo polinomio en dos variables es diferenciable en todo punto de \mathbb{R}^2 .
 - (a) Dados naturales $n, m \geq 0$ considera la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = x^n y^m$. Demuestra que f es diferenciable en todo punto de \mathbb{R}^2 . Sugerencia: usa el ejercicio 2 de aproximación lineal (el del video).
 - (b) Un polinomio en dos variables en una función de la forma

$$p(x,y) = \sum_{i=1}^{N} \alpha_i x^{n_i} y^{m_i}$$

donde, para i = 1, ..., N, $\alpha_i \in \mathbb{R}$ y $n_i, m_i \geq 0$ son naturales.

Demuestra que p es diferenciable en todo punto de \mathbb{R}^2 .

Nota: también se puede probar que todo polinomio en n-variables es diferenciable.

(c) Considera el polinomio en dos variables

$$p(x,y) = a + bx + cy + \sum_{i=1}^{N} x^{i}y^{i+1}$$

donde $a, b, c \in \mathbb{R}$ y $N \ge 1$ es un natural.

Encuentra su aproximación lineal de p cerca del (0,0).

Sugerencia: primero prueba que, $\lim_{(x,y)\to(0,0)}\frac{|x^ny^m|}{\|(x,y)\|}=0$ si $n,m\geq 0$ son naturales con $n+m\geq 2$ y después usa la proposición 2 de las notas.

5. Considera la función $r: \mathbb{R}^3 \to \mathbb{R}$ dada por $r(x,y,z) = \|(x,y,z)\|$. Durante este ejercicio vamos a suponer que r es difeferenciable en todo punto $(x_0,y_0,z_0) \neq (0,0,0)$.

Por simplicidad vamos a denotar: $p_0 = (x_0, y_0, z_0)$.

- (a) Demuestra que $\nabla_{p_0} r$ es el vector unitario, en la misma dirección que $p_0.$
- (b) Demuestra que $\nabla_{p_0}(r^n) = [nr^{(n-2)}(x_0)]p_0$, donde $n \geq 1$ es un natural.
- (c) La fórmula del inciso anterio ξ es válida si n es un entero negativo?
- 6. Sea q_0 un vector fijo en \mathbb{R}^n y define $f: \mathbb{R}^n \to \mathbb{R}$ por $f(p) = \langle q_0, p \rangle$. Demuestra que f es continua en todo punto $p \in \mathbb{R}^n$.
- 7. Sea $U \neq \emptyset$ un abierto de \mathbb{R}^n , $p_0 \in U$ y $g: U \to \mathbb{R}$ una función diferenciable en p_0 .
 - (a) Demuestra que existe una bola $B_r(p_0)$, una función $F: B_r(p_0) \to \mathbb{R}$ tal que
 - i. para toda $p \in B_r(p_0), g(p) = g(p_0) + \langle \nabla_{p_0} g, p p_0 \rangle + ||p p_0|| F(p),$
 - ii. $\lim_{p \to p_0} F(p) = 0$,

Sugerencia: si E es la función error de la aproximación de g en p_0 define:

$$F(p) = \begin{cases} \frac{E(p)}{\|p - p_0\|} & p \neq p_0 \\ 0 & p = p_0. \end{cases}$$

(b) Demuestra que existe una bola $B_s(p_0)$ tal que para toda $p \in B_s(p_0)$, $||F(p)|| \le 1/2$.

Sugerencia: en la definición ε, δ del límite $\lim_{p\to p_0} F(p)=0$ toma $\varepsilon=1/2.$

(c) Demuestra que para toda $p \in B_s(p_0)$

$$|g(p) - g(p_0)| \le ||p - p_0|| (||\nabla_{p_0} g|| + 1/2).$$

Sugerencia: usa el inciso anterior y la desigualdad de Cacuchy-Schwartz.

- 8. Considera la función $t \mapsto 1/t$, definida para $t \in \mathbb{R}, t \neq 0$.
 - (a) Prueba que, dado $t_0 \neq 0$ fijo y arbitrario, existe s > 0 tal que para toda $t \in B_s(t_0)$

$$\frac{1}{t} = \frac{1}{t_0} - \frac{1}{t_0^2}(t - t_0) + |t - t_0|F_1(t)$$

donde $\lim_{t\to t_0} |F_1(t)| = 0$.

(b) Sean $a,b \in \{1,2,3,4,5,6,7,8,9\}$ tal que a+b=10. Usa el inciso anterior para probar que el inverso multiplicativo de 1.a es aproximadamente 0.b.