Name = Kevin Mody

Lab Partner = Lisset Marin and Hayley Ormond

Date = 9/17/18

Lab #3 Projection Motion

Grade =

Lab #3 Projection Motion

Objective:

The objective of this lab was to find the height, time and different velocities. We also need to stimulate our variable in the program called Interactive Physics (IP).

Theory:

- 1.v=v0+at1
- $2.\Delta x = (2v + vi) * t$
- $3.\Delta x = vit + 1/2at2$
- $4.v^2=vi^2+2a\Delta x$

Data:

Part 1

A.

B.

C.

Part 2:

A.

B.

Procedure:

1. Part 1 A, B and C:

- Use the rectangle tool to create a floor and anchor it.
- Use the circle tool to create a small circle, drag it to some height above the floor, and give it some velocity in the y-direction (right click the circle to adjust its values); keep vx = 0 for now.
- Create a second circle at a different height.
- Calculate the necessary initial y-velocity so the two circles hit the floor at the same time.
- Give the second circle this initial y-velocity.
- Use the Windows ``Snipping Tool" to take a screen shot of your initial conditions.
- Select both circles and click Windows Appearance and check ``Track outline".
- Run the simulation until both circles hit the floor.
- Take another screenshot to show that your calculations were correct.
- Restart the simulation (clear the tracks by clicking World Erase Track).
- Give the circles some random (but reasonable) x-velocity to show they still hit the floor at the same time.
- Run the simulation and take another screenshot.

2. Part 2 A and B;

- Using similar techniques as in Part 1, design an experiment where a projectile collides with a freely falling object.
- Show relevant screen shots

Calculations:

Attached in Calculations.pdf

Results:

Part 1:

I. Ball 2:

X	1.5m
Y	6.4m
Vy	3m/s
A	-9.81m/s^2
T	1.49s
Vx	3m/s

II. Ball 1:

X	4.5m
Y	10.5m
A	-9.81m/s^2
T	1.49s
Vy	.201m/s
Vx	4m/s

Part 2:

I. Ball 1:

X	11.5m
Y	8.5m
Vx	14^2m/s
A	-9.81m/s^2

II. Ball 2:

X	2.50m
Y	8.5m
Vy	9m/s
A	-9.81m/s^2

15.71	1 < < 4
1 1 1 1 1	1 16 64
•	10.04

Analysis:

In the IP, the number were accurate and it useful in the real world. The calculations and stimulation were easy. We think physicians should more often this program.

Comments:

No comments.