

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15050031101

FCC REPORT

Applicant: Hulu Robotics Technology Company Limited

Address of Applicant: Unit A, 3/F, Cheong Sun Tower, 116-118 Wing Lok Street,

Sheung Wan, Hong Kong

Equipment Under Test (EUT)

Product Name: Bluetooth module (Dual mode)

Model No.: MBK-Bluetooth module-Dual mode

FCC ID: 2ACWW1300133B

Applicable standards: FCC CFR Title 47 Part 15.247

Date of sample receipt: 11 May., 2015

Date of Test: 11 May., 2015 to 01 Jun., 2015

Date of report issued: 01 Jun., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	01 Jun., 2015	Original

Prepared by:

May Liu

Date: 01 Jun., 2015

Report Clerk

Reviewed by: GUVW IIV Date: 01 Jun., 2015

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		3
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 Test mode	7
	5.4 DESCRIPTION OF SUPPORT UNITS	7
	5.5 LABORATORY FACILITY	7
	5.6 LABORATORY LOCATION	7
	5.7 TEST INSTRUMENTS LIST	8
6	6 TEST RESULTS AND MEASURE	MENT DATA9
	6.1 ANTENNA REQUIREMENT	9
	6.2 CONDUCTED EMISSIONS	10
	6.3 CONDUCTED OUTPUT POWER	13
	·	21
		26
		28
		EQUENCE32
		33
		od33
		J37
		50
		ethod50
		nod57
7	7 TEST SETUP PHOTO	62
8	8 FUT CONSTRUCTIONAL DETAIL	S 64

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Hulu Robotics Technology Company Limited		
Address of Applicant:	Unit A, 3/F, Cheong Sun Tower, 116-118 Wing Lok Street, Sheung Wan, Hong Kong		
Manufacturer/Factory:	Maker Works Technology INC		
Address of Manufacturer/Factory:	Building C3, Floor 4th, Zhiyuan, Xili, Nanshan District, ShenZhen 518057 China		

5.2 General Description of E.U.T.

-	
Product Name:	Bluetooth module (Dual mode)
Model No.:	MBK-Bluetooth module-Dual mode
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-3.0 dBi
Power supply:	DC 5V by USB port

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19 2421MHz 39 2441MHz 59 2461MHz							

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: CCIS150500311RF

Report No: CCIS15050031101

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.		
Remark	GFSK (1 Mbps) is the worst case mode.		

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	PC OPTIPLEX745		DoC
DELL	MONITOR	NITOR E178FPC N/A		DoC
DELL	KEYBOARD SK-8115		N/A	DoC
DELL	MOUSE MOC5UO		N/A	DoC
HP	HP Printer		05257893	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radia	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz Rohde & Schwarz		FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	Universal radio		CMU200	CCIS0069	03-28-2015	03-28-2016			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016					
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016					
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is -3.0 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207							
Test Method:	ANSI C63.4:2009							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
Limit:		Limit (d	IBuV)					
Lillin.	Prequency range (MHZ) Quasi-peak Average							
	0.15-0.5	56 to 46*						
	0.5-5	46						
	0.5-5 56 46 5-30 60 50							
	* Decreases with the logarithm	n of the frequency.						
Test setup:	Reference Plane							
Toot weed dure	AUX Equipment E.U.T Test table/Insulation plane Remark EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 							
Measurement Record:			Jncertainty: 3.28dB					
Test Instruments:	Refer to section 5.7 for details		,					
Test mode:	Bluetooth (Continuous transm	itting) mode						
Test results:	Pass	5 , •••						

Measurement Data

Line:

Trace: 5

: CCIS Shielding Room : FCC PART 15C QP LISN LINE : Bluetooth module(Dual mode) : MBK-Bluetooth module-Dual mode Site Condition EUT Model

Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: GAREN

Remark

Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
MHz	dBu√	<u>dB</u>	₫B	dBu₹	—dBu₹	<u>dB</u>	
0.154	27.11	0.27	10.78	38.16			
0.154	22.21	0.27	10.78	33.26	55.78	-22.52	Average
0.246	16.42	0.27	10.75	27.44	51.91	-24.47	Average
0.318	19.70	0.26	10.74	30.70	59.75	-29.05	QP
0.369	13.99	0.27	10.73	24.99	48.52	-23.53	Average
0.751	19.01	0.23	10.79	30.03	56.00	-25.97	QP
5.194	16.24	0.30	10.84	27.38	50.00	-22.62	Average
5.564	20.38	0.30	10.83	31.51			Programme and the second
16.573	25.59	0.33	10.91	36.83	50.00	-13.17	Average
16.750	26.39	0.33	10.91				
		The state of the s		THE THE PERSON	100/2000 BTD15345	10000000 10000000	V. 300 (C)
22.535	27.63	0.44	10.89	38.96			
	MHz 0. 154 0. 154 0. 246 0. 318 0. 369 0. 751 5. 194 5. 564 16. 573 16. 750 22. 416	MHz dBuV 0.154 27.11 0.154 22.21 0.246 16.42 0.318 19.70 0.369 13.99 0.751 19.01 5.194 16.24 5.564 20.38 16.573 25.59 16.750 26.39 22.416 29.77	MHz dBuV dB 0.154 27.11 0.27 0.154 22.21 0.27 0.246 16.42 0.27 0.318 19.70 0.26 0.369 13.99 0.27 0.751 19.01 0.23 5.194 16.24 0.30 5.564 20.38 0.30 16.573 25.59 0.33 16.750 26.39 0.33 22.416 29.77 0.43	MHz dBuV dB dB 0.154 27.11 0.27 10.78 0.154 22.21 0.27 10.78 0.246 16.42 0.27 10.75 0.318 19.70 0.26 10.74 0.369 13.99 0.27 10.79 5.194 16.24 0.30 10.84 5.564 20.38 0.30 10.83 16.573 25.59 0.33 10.91 16.750 26.39 0.33 10.91 22.416 29.77 0.43 10.90	MHz dBuV dB dB dBuV 0.154 27.11 0.27 10.78 38.16 0.154 22.21 0.27 10.78 33.26 0.246 16.42 0.27 10.75 27.44 0.318 19.70 0.26 10.74 30.70 0.369 13.99 0.27 10.73 24.99 0.751 19.01 0.23 10.79 30.03 5.194 16.24 0.30 10.84 27.38 5.564 20.38 0.30 10.83 31.51 16.573 25.59 0.33 10.91 36.83 16.750 26.39 0.33 10.91 37.63 22.416 29.77 0.43 10.90 41.10	MHz dBuV dB dB dBuV dBuV 0.154 27.11 0.27 10.78 38.16 65.78 0.154 22.21 0.27 10.78 33.26 55.78 0.246 16.42 0.27 10.75 27.44 51.91 0.318 19.70 0.26 10.74 30.70 59.75 0.369 13.99 0.27 10.73 24.99 48.52 0.751 19.01 0.23 10.79 30.03 56.00 5.194 16.24 0.30 10.84 27.38 50.00 5.564 20.38 0.30 10.83 31.51 60.00 16.573 25.59 0.33 10.91 36.83 50.00 16.750 26.39 0.33 10.91 37.63 60.00 22.416 29.77 0.43 10.90 41.10 60.00	MHz dBuV dB dB dBuV dBuV dB 0.154 27.11 0.27 10.78 38.16 65.78 -27.62 0.154 22.21 0.27 10.78 33.26 55.78 -22.52 0.246 16.42 0.27 10.75 27.44 51.91 -24.47 0.318 19.70 0.26 10.74 30.70 59.75 -29.05 0.369 13.99 0.27 10.73 24.99 48.52 -23.53 0.751 19.01 0.23 10.79 30.03 56.00 -25.97 5.194 16.24 0.30 10.84 27.38 50.00 -22.62 5.564 20.38 0.30 10.83 31.51 60.00 -28.49 16.573 25.59 0.33 10.91 36.83 50.00 -13.17 16.750 26.39 0.33 10.91 37.63 60.00 -22.37 22.416 29.77 0.43

Neutral:

Site

: CCIS Shielding Room : FCC PART 15C QP LISN NEUTRAL : Bluetooth module(Dual mode) : MBK-Bluetooth module-Dual mode Condition EUT Model

Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: GAREN

Remark

CHAIR	Freq	Read Level	LISN Factor	Cable Loss		Limit Line		Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.154	18.52	0.25	10.78	29.55	55.78	-26.23	Average
2	0.158	26.44	0.25	10.78	37.47	65.56	-28.09	QP
1 2 3 4 5	0.238	22.38	0.25	10.75	33.38	62.17	-28.79	QP
4	0.253	15.17	0.26	10.75	26.18	51.64	-25.46	Average
5	0.377	14.17	0.25	10.72	25.14	48.34	-23.20	Average
6	0.759	16.71	0.19	10.80	27.70	56.00	-28.30	QP
7 8 9	1.262	10.46	0.24	10.90	21.60	46.00	-24.40	Average
8	1.511	15.76	0.26	10.92	26.94	56.00	-29.06	QP
9	12.988	30.87	0.25	10.91	42.03	60.00	-17.97	QP
10	12.988	27.10	0.25	10.91	38.26	50.00	-11.74	Average
11	22.416	28.88	0.37	10.90	40.15	60.00	-19.85	QP
12	22.535	25.84	0.38	10.89	37.11	50.00	-12.89	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2009 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

	GFSK mode					
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	-2.74	21.00	Pass			
Middle	-2.31	21.00	Pass			
Highest	-2.20	21.00	Pass			
	π/4-DQPSK ι	mode				
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	Lowest -2.79		Pass			
Middle	Middle -2.31		Pass			
Highest -2.20		21.00	Pass			
	8DPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	Lowest -2.91		Pass			
Middle	-2.55	21.00	Pass			
Highest	-2.43	21.00	Pass			

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: $\pi/4$ -DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and DA00-705		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

Test channel	20dB Occupy Bandwidth (kHz)			
rest chamilei	GFSK	π/4-DQPSK	8DPSK	
Lowest	1050	1174	1182	
Middle	1054	1170	1186	
Highest	1050	1174	1182	

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: $\pi/4$ -DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data

GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)		Result		
Lowest	1002	702.67	Pass		
Middle	1006	702.67	Pass		
Highest	1002	702.67	Pass		
	π/4-DQPSK mo	de			
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	1002	782.67	Pass		
Middle	1002	782.67	Pass		
Highest	Highest 1002		Pass		
	8DPSK mode				
Test channel Carrier Frequencies Separation (kHz)		Limit (kHz)	Result		
Lowest	Lowest 1002		Pass		
Middle	Middle 1006		Pass		
Highest 1002		790.67	Pass		

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)	
GFSK	1054	702.67	
π/4-DQPSK	1174	782.67	
8DPSK	1186	790.67	

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: $\pi/4$ -DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and KDB DA00-705		
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.14752		
GFSK	DH3	0.28448	0.4	Pass
	DH5	0.31787		
	2-DH1	0.14432		
π/4-DQPSK	2-DH3	0.27696	0.4	Pass
	2-DH5	0.31808		
	3-DH1	0.14944		
8DPSK	3-DH3	0.27664	0.4	Pass
	3-DH5	0.32384		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.461*(1600/ (2*79))*31.6=147.52ms DH3 time slot=1.778*(1600/ (4*79))*31.6=284.48ms DH5 time slot=2.980*(1600/ (6*79))*31.6=317.87ms

2-DH1 time slot=0.451*(1600/ (2*79))*31.6=144.32ms 2-DH3 time slot=1.731*(1600/ (4*79))*31.6=276.96ms

2-DH5 time slot=2.982*(1600/ (6*79))*31.6=318.08ms

3-DH1 time slot=0.467*(1600/ (2*79))*31.6=149.44ms

3-DH3 time slot=1.729*(1600/ (4*79))*31.6=276.64ms

3-DH5 time slot=3.036*(1600/ (6*79))*31.6=323.84ms

Test plot as follows:

400 μs/

DH5

Date:

Center 2.441 GHz

21.MAY 2015 23:24:42

2-DH1

2-DH3

2-DH5

3-DH1

3-DH3

Report No: CCIS15050031101

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2009 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

GFSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

0.0.2	3.3.2 Radiated Ellission Method										
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
	Test Method:	ANSI C63.4: 20	09								
	Test Frequency Range:	2.3GHz to 2.5G	Hz								
	Test site:	Measurement D	istance: 3m								
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
		Above 1GHz	Peak	1MHz	3MHz	Peak Value					
			Peak	1MHz	10Hz	Average Value					
	Limit:	Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Value									
		Above 1GHz 74.00 Average value Peak Value									
	Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier 1. The EUT was placed on the top of a rotating table 0.8 meters above the									
	Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 									
	Test Instruments:	Refer to section	5.7 for details	S							
	Test mode:	Non-hopping m	ode								
	Test results:	Passed									
		·	·								

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Bluetooth module(Dual mode) Condition

EUT : MBK-Bluetooth module-Dual mode Model

Test mode : BT-DH1-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

מטונטנט	•	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
_	MHz	dBu∜	dB/m	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000	24.21	27.58		0.00		74.00 54.00	10.700 (0.700 (0.700 (0.700))	

Site

Condition

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Bluetooth module(Dual mode) MBK-Bluetooth module-Dual mode EUT Model

Test mode : BT-DH1-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK

Lilland			Antenna Factor				Limit Line	Remark
	MHz	dBu√	<u>d</u> B/m	dB	<u>ab</u>	dBuV/m	dBuV/m	
1 2	2390.000 2390.000		72-124 (27) - 4 (27) (27)			56.49 44.78		Peak Average

Test channel: Highest

Horizontal:

3m chamber

Site Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Bluetooth module (Dual mode) EUT Model : MBK-Bluetooth module-Dual mode

Test mode : BT-DH1-H Mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer:

REMARK

	Freq		Antenna Factor						
19	MHz	—dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B	
	2483.500 2483.500								

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Bluetooth module(Dual mode) : MBK-Bluetooth module-Dual mode EUT : MBK-Bluetooth modulelest mode : BT-DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK :

	1005		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Bluetooth module(Dual mode) Condition

EUT : MBK-Bluetooth module-Dual mode : BT-2DH1-L Mode Model

Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: REMARK :

JILLIU	70000		Antenna Factor					Remark
-	MHz	dBu₹	<u>dB</u> /m	 <u>d</u> B	$\overline{dB}\overline{uV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000			0.00 0.00				

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Bluetooth module(Dual mode)

Model : MBK-Bluetooth module-Dual mode

Test mode : BT-2DH1-L Mode

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer:

Test Engineer: REMARK

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1 2	2390.000 2390.000					55.85 44.78			

Test channel: Highest

Horizontal:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Bluetooth module(Dual mode) : MBK-Bluetooth module-Dual mode EUT Model

Test mode : BT-2DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK

	•	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
O <u>ş</u>	MHz	dBu∜	dB/m	d <u>B</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500								
2	2483.500	12.17	27.52	5.70	0.00	45.39	54.00	-8.61	Average

Site 3m chamber

Condition

FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Bluetooth module (Dual mode)
MBK-Bluetooth module-Dual mode EUT Model

: BT-2DH1-H Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

	Freq		Antenna Factor					
	MHz	dBu∜	dB/m	 <u>d</u> B	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500							

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Bluetooth module(Dual mode) Condition

EUT : MBK-Bluetooth module-Dual mode Model

Test mode : BT-3DH1-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: REMARK :

			Antenna Factor						Remark	
_	MHz	dBuV	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		-
	2390.000 2390.000									

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL
EUT : Bluetooth module(Dual mode)
Model : MBK-Bluetooth module-Dual mode
Test mode : BT-3DH1-L Mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: REMARK :

TENIETY	n :								
	Freq		Antenna Factor				Limit		
	1104	20001	1 40 (01	2000	1 40 101	20002	22110		ROMULI
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1	2390.000	22.81	27.58	5.67	0.00	56.06	74.00	-17.94	Peak
2	2390,000	11.49	27.58	5.67	0.00	44.74	54.00	-9.26	Average

Test channel: Highest

Horizontal:

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL
EUT : Bluetooth module(Dual mode)
Model : MBK-Bluetooth module-Dual mode
Test mode : BT-3DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

			Antenna Factor						Remark
-			<u>d</u> B/m						
1 2	2483.500 2483.500	24.81 12.05	27.52 27.52	5.70 5.70	0.00 0.00	58.03 45.27	74.00 54.00	-15.97 -8.73	Peak Average

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Bluetooth module(Dual mode)

: Bluetooth module(Dual mode)

model : MBK-Bluetooth module-Dual mode
Test mode : BT-3DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK :

Freq	Read. Level	intenna Cable Factor Loss		Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	<u>dB</u>	
2483.500 2483.500								

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

GFSK

Lowest channel

Date: 22.MAY.2015 18:58:33

30MHz~25GHz

Middle channel

Date: 22.MAY.2015 18:55:29

30MHz~25GHz

Highest channel

Date: 22.MAY.2015 19:01:42

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 22.MAY.2015 19:07:00

30MHz~25GHz

Date: 22.MAY.2015 19:07:00

30MHz~25GHz

Highest channel

Date: 22.MAY.2015 19:03:47

30MHz~25GHz

8DPSK

Lowest channel

Date: 22.MAY.2015 19:09:24

30MHz~25GHz Middle channel

Date: 22.MAY.2015 19:11:38

30MHz~25GHz

Highest channel

Date: 22.MAY.2015 19:16:33

30MHz~25GHz

6.10.2 Radiated Emission Method

	10.2 Radiated Emission Method									
Test Requirement:	FCC Part 15 C		9							
Test Method:	ANSI C63.4: 2009									
Test Frequency Range:	9 kHz to 25 GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz- 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above IGHZ	Peak	1MHz	10Hz	Average Value					
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark					
	30MHz-8	8MHz	40.0)	Quasi-peak Value					
	88MHz-2	16MHz	43.	5	Quasi-peak Value					
	216MHz-9	60MHz	46.0)	Quasi-peak Value					
	960MHz-	-1GHz	54.0)	Quasi-peak Value					
	Above	CU ₇	54.0)	Average Value					
	Above	GHZ	74.0)	Peak Value					
Test setup:	Above 1(iHz									

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Measurement Record:	Uncertainty: 4.88dB
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

Condition

: 3m chamber : FCC PART15C 3m VULB9163(30M1G) VERTICAL : Bluetooth module(Dual mode) EUT : MBK-Bluetooth module-Dual mode Model

Test mode : BT Mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

π urar x									
	Freq		Antenna Factor						Remark
_	MHz	dBu∇	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	32.293	35.16	12.32	0.45	29.97	17.96	40.00	-22.04	QP
2	44.743	33.74	13.55	0.56	29.86	17.99	40.00	-22.01	QP
3	56.792	38.35	12.91	0.66	29.79	22.13	40.00	-17.87	QP
4	94.428	34.42	12.75	0.93	29.55	18.55	43.60	-25.05	QP
5	135.032	39.14	8.56	1.23	29.30	19.63	43.60	-23.97	QP
6	193, 095	36, 65	10.56	1.37	28, 88	19.70	43, 60	-23.90	ΩP

Horizontal:

Condition

: 3m chamber : FCC PART15C 3m VULB9163(30M1G) HORIZONTAL : Bluetooth module(Dual mode) : MBK-Bluetooth module-Dual mode : BT Mode EUT Model

Test mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK:

Freq								Remark	
MHz	−−dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		
31.731	37.61	12.32	0.45	29.97	20.41	40.00	-19.59	QP	
45.217	32.45	13.54	0.56	29.86	16.69	40.00	-23.31	QP	
57.594	36.89	12.87	0.67	29.78	20.65	40.00	-19.35	QP	
95.427	45.21	12.87	0.93	29.55	29.46	43.60	-14.14	QP	
185.138	44.11	10.16	1.36	28.93	26.70	43.60	-16.90	QP	
302.481	33.42	13.08	1.78	28.45	19.83	46.00	-26.17	QP	
	Freq MHz 31.731 45.217 57.594 95.427 185.138	Read. Freq Level MHz dBuV 31.731 37.61 45.217 32.45 57.594 36.89 95.427 45.21 185.138 44.11	ReadAntenna Freq Level Factor MHz dBuV dB/m 31.731 37.61 12.32 45.217 32.45 13.54 57.594 36.89 12.87 95.427 45.21 12.87 185.138 44.11 10.16	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 31.731 37.61 12.32 0.45 45.217 32.45 13.54 0.56 57.594 36.89 12.87 0.67 95.427 45.21 12.87 0.93 185.138 44.11 10.16 1.36	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 31.731 37.61 12.32 0.45 29.97 45.217 32.45 13.54 0.56 29.86 57.594 36.89 12.87 0.67 29.78 95.427 45.21 12.87 0.93 29.55 185.138 44.11 10.16 1.36 28.93	ReadAntenna Cable Preamp Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 31.731 37.61 12.32 0.45 29.97 20.41 45.217 32.45 13.54 0.56 29.86 16.69 57.594 36.89 12.87 0.67 29.78 20.65 95.427 45.21 12.87 0.93 29.55 29.46 185.138 44.11 10.16 1.36 28.93 26.70	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over Level Factor Level Line Limit	ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit Remark

Above 1GHz:

Te	st channel		Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.21	31.53	8.90	40.24	47.40	74.00	-26.60	Vertical
4804.00	47.34	31.53	8.90	40.24	47.53	74.00	-26.47	Horizontal
Te	st channel		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	37.22	31.53	8.90	40.24	37.41	54.00	-16.59	Vertical
4804.00	37.52	31.53	8.90	40.24	37.71	54.00	-16.29	Horizontal

Te	st channel:		Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	45.23	31.58	8.98	40.15	45.64	74.00	-28.36	Vertical
4882.00	45.47	31.58	8.98	40.15	45.88	74.00	-28.12	Horizontal
Te	st channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	35.58	31.58	8.98	40.15	35.99	54.00	-18.01	Vertical
4882.00	35.63	31.58	8.98	40.15	36.04	54.00	-17.96	Horizontal

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.09	31.69	9.08	40.03	45.83	74.00	-28.17	Vertical
4960.00	46.97	31.69	9.08	40.03	47.71	74.00	-26.29	Horizontal
Te	st channel:		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.57	31.69	9.08	40.03	36.31	54.00	-17.69	Vertical
4960.00	36.76	31.69	9.08	40.03	37.50	54.00	-16.50	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.