Sparse Multiplication for Pairing with Sextic Twist

Kazuma Ikesaka

Information Security Lab. Okayama University, Japan

2nd progress meeting November 28th, 2024

Contents

- 1 Background
- 2 Fundamental
- 3 Previous Work
- 4 Proposed Work
- **5** Conclusion and Future Works

Contents

- 1 Background
- 2 Fundamenta
- 3 Previous Work
- 4 Proposed Work
- **5** Conclusion and Future Works

- Pairing on Elliptic Curve
 - A map with special properties of bilinear and non-degenerate.
 - Based on the difficulties of solving FFDLP and ECDLP.
 - Enable innovative protocols
 e.g., ID-based cryptography and zk-SNARKs.
 - Efficient pairing implementation is an inseparable topic for practical uses in cryptographic protocols.

- Attacking Methods for Pairing
 - Tower of Number Field Sieve (TNFS)[KB16]
 - Special Tower of Number Field Sieve (STNFS)[BD19]

The resistance against TNFS and STNFS is important.

- [Gui20] list STNFS-secure pairing-friendly curves.
- Elliptic curves with a sextic twist are one of the efficient STNFS-secure pairing-friendly curves.

[[]KB16]: Taechan Kim and Razvan Barbulescu. "Extended tower number field sieve: A new complexity for the medium prime case". In: Annual international cryptology conference. Springer. 2016, pp. 543-571

[[]BD19]: Razyan Barbulescu and Sylvain Duquesne, "Updating key size estimations for pairings", In: Journal of cryptology 32.4 (2019), pp. 1298-1336

[[]Gui20]: Aurore Guillevic. "A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level". In: IACR international conference on public-key cryptography

- Pairing on Elliptic Curve
 - Carried out by two steps, Miller loop and final exponentiation.

$$e(P,Q) = \underbrace{f(P,Q)}^{\text{Final exponentiation}} (p^k - 1)/r$$
Miller loop

• In this work, we aim to reduce the cost for Miller loop.

Our Objective

Reduce the cost for Miller loop for pairing on elliptic curve with sextic twist.

- Elliptic curve with sextic twist is one of the efficient STNFS-secure pairing-friendly curves.
- Construct a new efficient algorithm to compute Miller loop.
- In particular, we focus on constructing a new sparse multiplication.

Contents

- 1 Background
- 2 Fundamental
 - 3 Previous Work
 - Proposed Work
 - **5** Conclusion and Future Works

Extention Field

- Let p be a prime number and m be a positive integer.
- The finite field \mathbb{F}_{p^m} is an extension field of \mathbb{F}_p .
- The extension field \mathbb{F}_{p^m} is defined as follows:

$$\mathbb{F}_{p^m} = \mathbb{F}_p[x]/(f(x)),$$

where f(x) is an irreducible polynomial of degree m over \mathbb{F}_p .

Extention Field with m=12

• A tower of extension fields for m=12 is defined as follows:

$$\begin{split} \mathbb{F}_{p^2} &= \mathbb{F}_p[\alpha]/(\alpha^2+1) \\ \mathbb{F}_{p^6} &= \mathbb{F}_{p^2}[\beta]/(\beta^3-(\alpha+1)) \\ \mathbb{F}_{p^{12}} &= \mathbb{F}_{p^6}[\gamma]/(\gamma^2-\beta) \end{split}$$

• The relation between α , β , and γ is as follows:

$$\gamma^6 = \beta^3 = \alpha + 1, \alpha^2 = -1.$$

• Ex. $X \in \mathbb{F}_{p^{12}}$ is represented as follows.

$$X = x_0 + x_1\alpha + x_2\beta + x_3\alpha\beta + x_4\beta^2 + x_5\alpha\beta^2 + x_6\gamma + x_7\gamma\alpha + x_8\beta\gamma + x_9\alpha\beta\gamma + x_{10}\beta^2\gamma + x_{11}\alpha\beta^2\gamma, \text{ where } x_i \in \mathbb{F}_p.$$

• An elliptic curve over \mathbb{F}_{p^m} is defined as follows:

$$E/\mathbb{F}_{p^m}: y^2 = x^3 + ax + b.$$

- Note that a and b are elements over \mathbb{F}_p and they satisfy $4a^3+27b^2\neq 0$.
- A set of rational points $E(\mathbb{F}_{p^m})$ performs an additive group with the infinity point \mathcal{O} as the unity of the group.

• ECA (Elliptic Curve Addition)

• ECD (Elliptic Curve Doubling)

ullet For a positive integer s, a point multiplication endomorphism is defined by

$$[s]: E(\overline{\mathbb{F}}_q) \to E(\overline{\mathbb{F}}_q), P \mapsto P + P + \dots + P$$

which involves (s-1)-times additions.

• Let π_p be the Frobenius endomorphism defined as follows:

$$\pi_p: E \to E: (x,y) \mapsto (x^p, y^p),$$

A Family of Curves

- ullet Parameters of E are given as follows:
 - p: a characteristic of \mathbb{F}_p ,
 - r : a large prime factor of group order $n=\#E(F_p)$,
 - t: an integer t = p + 1 n, a Frobenius trace of $E(F_p)$,
 - k : the smallest integer satisfying $(p^k-1)/r$, an embedding degree with respect to r.
- The set of curves specified by the polynomials $p(x), r(x), t(x) \in \mathbb{Q}[x]$ is called a family of curves.

Pairings on Elliptic Curve

• We define base-field and trace-zero subgroup of ${\cal E}[r]$ defined as follows:

$$\begin{cases} \mathbb{G}_1 = E[r] \cap \ker(\pi_p - [1]) \\ \mathbb{G}_2 = E[r] \cap \ker(\pi_p - [p]). \end{cases}$$

- Pairing on Elliptic Curve
 - Carried out by two steps, Miller loop and final exponentiation.

Final exponentiation

$$e(P,Q) = \underbrace{f_{s,Q}(P)}_{\text{Miller loop}} (p^k - 1)/r \qquad P \in \mathbb{G}_1, Q \in \mathbb{G}_2$$

• In this work, we focus on Miller loop.

Miller's Algorithm

Alg 1 Miller's algorithm

```
\begin{split} & \textbf{Input:} \ s, P \in \mathbb{G}_1, Q \in \mathbb{G}_2; \\ & \textbf{Output:} \ f_{s,Q}(P); \\ & f \leftarrow 1, T \leftarrow Q; \\ & \textbf{for} \ i = \lfloor \log_2(s) \rfloor - 1 \ \textbf{downto} \ 1; \ \textbf{do} \\ & f \leftarrow f^2 \cdot l_{T,T}(P), \ T \leftarrow [2]T; \qquad \triangleright \ \text{DBL} \\ & \textbf{if} \ s[i] = 1; \ \textbf{then} \\ & f \leftarrow f \cdot l_{T,Q}(P), \ T \leftarrow T + Q; \quad \triangleright \ \text{ADD} \\ & \textbf{else if} \ s[i] = -1; \ \textbf{then} \\ & f \leftarrow f \cdot l_{T,-Q}(P), \ T \leftarrow T - Q; \quad \triangleright \ \text{SUB} \end{split}
```

- Let $l_{P,Q}$ be a line function on E, which intersects points $P \in E(\mathbb{F}_p), Q \in E(\mathbb{F}_{p^{12}}).$
- The count of iterations depends on the bit length of $s \in \mathbb{Z}$.

return f;

Contents

- 1 Background
- 2 Fundamental
- 3 Previous Work
 - Proposed Work
 - **5** Conclusion and Future Works

Sextic Twist

• A sextic twist of E is defined as follows:

$$E': y^2 = x^3 + bz \mapsto E: y^2 = x^3 + b(z = \alpha + 1, \text{ QNR, CNR})$$

$$\psi: Q'(x', y') \mapsto Q(z^{\frac{1}{3}}x', z^{\frac{1}{2}}y')$$

$$\psi: Q'(x', y') \mapsto Q((0, x', 0, 0, 0, 0), (0, 0, 0, y', 0, 0))$$

• Note that $Q' \in EF_{n^2}$ and $Q \in EF_{n^{12}}$.

Miller's Algorithm

Alg 2 Miller's algorithm

```
\begin{split} & \textbf{Input:} \ \ s,P \in \mathbb{G}_1, Q' \in \mathbb{G}'_2; \\ & \textbf{Output:} \ \ f_{s,\mathbf{Q}'}(P); \\ & f \leftarrow 1, T \leftarrow \mathbf{Q}'; \\ & \textbf{for} \ \ i = \lfloor \log_2(s) \rfloor - 1 \ \ \textbf{downto} \ \ 1; \ \ \textbf{do} \\ & f \leftarrow f^2 \cdot l_{T,T}(P), \ T \leftarrow [2]T; \qquad \triangleright \ \ \mathsf{DBL} \\ & \textbf{if} \ \ s[i] = 1; \ \ \textbf{then} \\ & f \leftarrow f \cdot l_{T,\mathbf{Q}'}(P), \ T \leftarrow T + \mathbf{Q}'; \ \triangleright \ \mathsf{ADD} \\ & \textbf{else if} \ \ s[i] = -1; \ \ \textbf{then} \\ & f \leftarrow f \cdot l_{T,-\mathbf{Q}'}(P), \ T \leftarrow T - \mathbf{Q}'; \ \triangleright \ \mathsf{SUB} \end{split}
```

- Let $l_{P,Q'}$ be a line function on E', which intersects points $P \in E(\mathbb{F}_p), \ Q' \in E(\mathbb{F}_{p^2}).$
- The count of iterations depends on the bit length of $s \in \mathbb{Z}$.

return f;

Sparse Form

- Thanks to the sextic twist, the result of the line function $l_{P,Q'} \in \mathbb{F}_{p^2}$
- The shape of $l_{P,O'}$ is as follows:

$$l_{P,Q'}(P) = x_0 + x_3 \gamma + x_4 \beta \gamma$$

- In other words, it has 7 zero as coefficients, and it is called a 7-sparse form.
- By multiplicating x_0^{-1} , we get following pseudo 8-sparse form:

$$l_{P,Q'}(P) = 1 + a_3\gamma + a_4\beta\gamma$$

Contents

- 1 Background
- 2 Fundamental
- 3 Previous Work
- 4 Proposed Work
 - **5** Conclusion and Future Works

Multiplication of two pseudo 8-sparse elements

• Let a and b be pseudo 8-sparse elements in $\mathbb{F}_{p^{12}}$ as follows:

$$a = 1 + a_3 \gamma + a_4 \beta \gamma$$
$$b = 1 + b_3 \gamma + b_4 \beta \gamma$$

• The result of multiplication $c=a\cdot b$ is obtained with following coefficients:

$$c_0 = 1 + (1 + \alpha) \cdot a_4 \cdot b_4$$
 $c_3 = a_3 + b_3$ $c_1 = a_3 \cdot y_3$ $c_4 = a_4 + b_4$ $c_5 = 0$

Multiplication of two pseudo 8-sparse elements

• Coefficients of c are obtained by following formulas:

$$t_0 = a_3 \cdot b_3$$
 $c_1 = t_0$ $c_2 = s_1 \cdot s_2 - t_0 - t_1$ $s_0 = a_3 + a_4$ $c_3 = s_1$ $c_4 = s_2$ $c_0 = 1 + (1 + \alpha) \cdot t_1$

- As a result, it costs 3 m_2 , and its result has 2 zero coefficients.
- Note that m_i is a multiplication in \mathbb{F}_{n^i} .

Multiplication of two 2-sparse elements in $\mathbb{F}_{p^{12}}$

• Let a and b be 2-sparse elements in $\mathbb{F}_{p^{12}}$ as follows:

$$a = a_0 + a_1 \beta + a_2 \beta^2 + a_3 \gamma + a_4 \beta \gamma$$
 $= A_0 + A_1 \gamma$
 $b = b_0 + b_1 \beta + b_2 \beta^2 + b_3 \gamma + b_4 \beta \gamma$ $= B_0 + B_1 \gamma$

• The result of multiplication $c = a \cdot b$ is obtained as follows:

$$c = c_0 + c_1 \beta + c_2 \beta^2 + c_3 \gamma + c_4 \beta \gamma + c_5 \beta^2 \gamma = C_0 + C_1 \gamma$$

$$T_0 = A_0 \cdot B_0 \qquad S_1 = B_0 + B_1$$

$$T_1 = A_1 \cdot B_1 \qquad C_0 = T_0 + \beta \cdot T_1$$

$$S_0 = A_0 + A_1 \qquad C_1 = S_0 \cdot S_1 - T_0 - T_1$$

Multiplication of two 2-sparse elements in $\mathbb{F}_{p^{12}}$

• Let a and b be 2-sparse elements in $\mathbb{F}_{p^{12}}$ as follows:

$$a = a_0 + a_1\beta + a_2\beta^2 + a_3\gamma + a_4\beta\gamma$$
 $= A_0 + A_1\gamma$
 $b = b_0 + b_1\beta + b_2\beta^2 + b_3\gamma + b_4\beta\gamma$ $= B_0 + B_1\gamma$

• The result of multiplication $c = a \cdot b$ is obtained as follows:

$$c = c_0 + c_1 \beta + c_2 \beta^2 + c_3 \gamma + c_4 \beta \gamma + c_5 \beta^2 \gamma = C_0 + C_1 \gamma$$

$$T_0=A_0\cdot B_0 \leftarrow {\sf Normal}\ m_6$$
 $S_1=B_0+B_1$
$$T_1=A_1\cdot B_1 \leftarrow {\sf 2-sparse} \times {\sf 2-sparse}$$
 $C_0=T_0+\beta\cdot T_1$
$$S_0=A_0+A_1$$
 $C_1=S_0\cdot S_1-T_0-T_1 \leftarrow {\sf Normal}\ m_6$

Multiplication of two 2-sparse elements in \mathbb{F}_{p^6}

• Let a' and b' be 2-sparse elements in \mathbb{F}_{p^6} as follows:

$$a' = a'_0 + a_1 \beta$$
$$b' = b'_0 + b_1 \beta$$

• The result of multiplication $c' = a' \cdot b'$ is obtained as follows:

$$c' = c_0' + c_1'\beta + c_2'\beta^2$$

$$t_0 = a_3 \cdot b_3$$
 $c'_0 = t_0$
 $t_1 = a_4 \cdot b_4$ $c'_1 = s_0 \cdot s_1 - t_0 - t_1$
 $s_0 = a_3 + a_4$ $c'_2 = t_1$
 $s_1 = b_3 + b_4$

• As a result, it costs 3 m_2 .

Multiplication of two 2-sparse elements in $\mathbb{F}_{p^{12}}$

• The result of multiplication $c = a \cdot b$ is obtained as follows:

$$c = c_0 + c_1 \beta + c_2 \beta^2 + c_3 \gamma + c_4 \beta \gamma + c_5 \beta^2 \gamma = C_0 + C_1 \gamma$$

$$T_0 = A_0 \cdot B_0 \;\leftarrow\; \text{Normal } m_6 \qquad \qquad S_1 = B_0 + B_1$$

$$T_1 = A_1 \cdot B_1 \;\leftarrow\; \text{2-sparse} \;\times\; \text{2-sparse} \qquad C_0 = T_0 + \beta \cdot T_1$$

$$S_0 = A_0 + A_1 \qquad \qquad C_1 = S_0 \cdot S_1 - T_0 - T_1 \;\leftarrow\; \text{Normal } m_6$$

• As a result, it costs 2 m_6 and 3 m_2 .

Quick Summary

• The cost for each multiplication is summarized in Table 2.

Table 1: Caluculation cost for each multiplication

Multiplication Type in $\mathbb{F}_{p^{12}}$	Costs
m_{12}	$54m_1$
m_{8s}	$10m_2 = 30m_1$
$m_{8s,8s}$	$3m_2 = 9m_1$
$m_{2s,2s}$	$2m_6 + 3m_2 = 45m_1$

• Note that $m_{is}, m_{is,is}$ are a pseudo i-sparse multiplication and multiplication of two i-sparse form elements.

Applying to Miller's algorithm

- Handle with 4 steps in Miller's algorithm as one set.
 - Store the output of a line function 4 times denoted as l_0, l_1, l_2, l_3 .
 - Caluculate $l_0 \cdot l_1$ and $l_2 \cdot l_3 \leftarrow 2m_{8s,8s}$.
 - Caluculate $l_0 \cdot l_1 \cdot l_2 \cdot l_3 \leftarrow m_{2s,2s}$.
 - Malutiply $l_0 \cdot l_1 \cdot l_2 \cdot l_3$ to $f \leftarrow m_{12}$.
- In total, our proposed method costs $2m_{8s,8s}+m_{2s,2s}+m_{12}=117m_1 \ {\rm to\ multiply\ 4\ line\ function}$ results.

Comparsion with Previous Work

• If we apply pesudo 8-sparse multiplication to Miller's algorithm naively, the cost is $4m_{8s}=120$.

Table 2: Caluculation cost to multiply 4 line function results

	Costs
Previous One	$117m_1$
Our Proposal	$120m_1$

Contents

- 1 Background
- 2 Fundamental
- 3 Previous Work
- 4 Proposed Work
- **5** Conclusion and Future Works

Conclusion

- We proposed a new efficient algorithm to compute Miller loop for pairing on elliptic curve with sextic twist.
- In particular, we focused on constructing a new sparse multiplication with embedding degree 12.
- Our proposed method costs $117m_1$ to multiply 4 line function results and $3m_1$ are reduced from previous algorithm.

Future Works

- Implement the proposed method and evaluate the performance.
- Apply the strategy to quadratic twist.
- Apply our proposed method to higher embedding degree.