This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Determine $\frac{dz}{dt}$ when

$$z = x \ln(x + 11y)$$

and

$$x = \sin t$$
, $y = \cos t$.

1.
$$\frac{dz}{dt} = \ln(x+11y)\cos t + \frac{x\cos t - 11x\sin t}{x+11y}$$

2.
$$\frac{dz}{dt} = \ln(x + 11y)\cos t - \frac{11x\sin t}{x + 11y}$$

3.
$$\frac{dz}{dt} = \frac{\ln(x+11y)\sin t - 11x\cos t}{x+11y}$$

4.
$$\frac{dz}{dt} = \ln(x+11y)\sin t + \frac{x\sin t - 11x\cos t}{x+11y}$$

5.
$$\frac{dz}{dt} = \ln(x+11y)\cos t + \frac{x(\sin t - \cos t)}{x+11y}$$

002 10.0 points

Use the Chain Rule to find $\frac{\partial z}{\partial u}$ when

$$z = e^r \cos \theta$$

and

$$r = 6uv$$
, $\theta = \sqrt{u^2 + v^2}$.

1.
$$\frac{\partial z}{\partial u} = e^r \left(6v \cos \theta - \frac{\sin \theta}{2\sqrt{u^2 + v^2}} \right)$$

2.
$$\frac{\partial z}{\partial u} = ue^r \left(6v \cos \theta + \frac{\sin \theta}{\sqrt{u^2 + v^2}} \right)$$

3.
$$\frac{\partial z}{\partial u} = e^r \Big(6v \cos \theta + \frac{\sin \theta}{\sqrt{u^2 + v^2}} \Big)$$

4.
$$\frac{\partial z}{\partial u} = e^r \Big(6v \cos \theta + \frac{u \sin \theta}{2\sqrt{u^2 + v^2}} \Big)$$

5.
$$\frac{\partial z}{\partial u} = e^r \left(6v \cos \theta - \frac{u \sin \theta}{\sqrt{u^2 + v^2}} \right)$$

003 10.0 points

Use the Chain Rule to find $\frac{dw}{dt}$ when

$$w = xe^{y/z}$$

and

$$x = t^2$$
, $y = 4 - t$, $z = 4 + t$.

1.
$$\frac{dw}{dt} = \left(2t - \frac{x}{z} - \frac{xy}{z}\right)e^{y/z}$$

$$2. \frac{dw}{dt} = \left(t - \frac{x}{z} - \frac{4xy}{z}\right)e^{y/z}$$

3.
$$\frac{dw}{dt} = \left(2t - \frac{x}{z} - \frac{xy}{z^2}\right)e^{y/z}$$

4.
$$\frac{dw}{dt} = \left(2t + \frac{x}{z} + \frac{xy}{z^2}\right)e^{y/z}$$

5.
$$\frac{dw}{dt} = \left(t + \frac{x}{z} + \frac{4xy}{z^2}\right)e^{y/z}$$

6.
$$\frac{dw}{dt} = \left(t + \frac{x}{z} + \frac{4xy}{z}\right)e^{y/z}$$

004 10.0 points

Use the Chain Rule to find $\frac{\partial z}{\partial s}$ when

$$z = x^2 - 3xy + y^2,$$

and

$$x = 2s + 3t, \qquad y = st.$$

1.
$$\frac{\partial z}{\partial s} = 4x - 6y - 3xs + 2ys$$

$$2. \frac{\partial z}{\partial s} = 6x - 6y - 3xs + 2ys$$

$$3. \ \frac{\partial z}{\partial s} = 4x - 6y - 3xt + 2yt$$

4.
$$\frac{\partial z}{\partial s} = 6x - 9y - 3xs + 2ys$$

5.
$$\frac{\partial z}{\partial s} = 6x - 9y - 3xt + 2yt$$

$$\mathbf{6.} \ \frac{\partial z}{\partial s} = 4x - 9y - 3xt + 2yt$$

005 10.0 points

Use the Chain Rule to find $\frac{\partial u}{\partial p}$ for

$$u = \frac{x+y}{y+z}$$

when

$$x = p + 8r + 9t,$$
 $y = p - 8r + 9t,$

and

$$z = p + 8r - 9t.$$

1.
$$\frac{\partial u}{\partial p} = -\frac{9t}{p^2}$$

$$2. \frac{\partial u}{\partial p} = \frac{9t^2}{p^3}$$

$$3. \ \frac{\partial u}{\partial p} = \frac{9}{p^2}$$

$$4. \frac{\partial u}{\partial p} = -\frac{9}{p^2}$$

$$5. \ \frac{\partial u}{\partial p} = \frac{9t}{p^2}$$

006 10.0 points

The radius of a right circular cylinder is increasing at a rate of 4 inches per minute while the height is decreasing at a rate of 7 inches per minute. Determine the rate of change of the volume when r=3 and h=4.

- 1. rate = 29π cu.in./min.
- 2. rate = 37π cu.in./min.
- 3. rate = 33π cu.in./min.
- 4. rate = 25π cu.in./min.
- 5. rate = 41π cu.in./min.

007 10.0 points

If z = f(x, y) and

$$x = r \cos 3\theta$$
, $y = 3r \sin \theta$,

express $\frac{\partial z}{\partial r}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

1.
$$\frac{\partial z}{\partial r} = 3 \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin 3\theta$$

2.
$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \sin 3\theta + 3 \frac{\partial z}{\partial y} \cos \theta$$

3.
$$\frac{\partial z}{\partial r} = 3r \left(\frac{\partial z}{\partial y} \cos \theta - \frac{\partial z}{\partial x} \sin 3\theta \right)$$

4.
$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\cos 3\theta + 3\frac{\partial z}{\partial y}\sin \theta$$

5.
$$\frac{\partial z}{\partial r} = 3r \Big(\frac{\partial z}{\partial y} \cos \theta + \frac{\partial z}{\partial x} \sin 3\theta \Big)$$

6.
$$\frac{\partial z}{\partial r} = r \left(3 \frac{\partial z}{\partial y} \cos \theta - \frac{\partial z}{\partial x} \sin 3\theta \right)$$

008 10.0 points

If z = f(x, y) and

$$f_x(4, 3) = 4, \qquad f_y(4, 3) = -2,$$

find $\frac{dz}{dt}$ at t = 5 when x = g(t), y = h(t) and

$$g(5) = 4, g'(5) = 5.$$

$$h(5) = 3, h'(5) = 2.$$

1.
$$\frac{dz}{dt} = 14$$

2.
$$\frac{dz}{dt} = 18$$

3.
$$\frac{dz}{dt} = 16$$

$$4. \ \frac{dz}{dt} = 12$$

$$5. \ \frac{dz}{dt} = 20$$