

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

DESCRIPTION

The HCPL-4502/HCPL-2503, 6N135/6 and HCPL-2530/HCPL-2531 optocouplers consist of an AlGaAs LED optically coupled to a high speed photodetector transistor.

A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base-collector capacitance of the input transistor.

An internal noise shield provides superior common mode rejection of 10kV/µs. An improved package allows superior insulation permitting a 480 V working voltage compared to industry standard 0f 220 V.

FEATURES

- High speed-1 MBit/s
- Superior CMR-10 kV/µs
- Dual-Channel
- HCPL-2530/HCPL-2531
- Double working voltage-480V RMS
- CTR guaranteed 0-70°C
- U.L. recognized (File # E90700)

APPLICATIONS

- Line receivers
- Pulse transformer replacement
- Output interface to CMOS-LSTTL-TTL
- · Wide bandwidth analog coupling

Parameter	Symbol	Value	Units
Storage Temperature	T _{STG}	-55 to +125	°C
Operating Temperature	T _{OPR}	-55 to +100	°C
Lead Solder Temperature	TsoL	260 for 10 sec	°C
EMITTER			
DC/Average Forward Input Current Each Channel (Note 1)	I _F (avg)	25	mA
Peak Forward Input Current (50% duty cycle, 1 ms P.W.) Each Channel (Note 2)	I _F (pk)	50	mA
Peak Transient Input Current - (≤ 1 μs P.W., 300 pps) Each Channel	IF (trans)	1.0	А
Reverse Input Voltage Each Channel	V_R	5	V
(6N135/6N136 and HCPL-2503/4502)	_	100	
Input Power Dissipation (HCPL-2530/2531) Each Channel (Note 3)	PD	45	mW
DETECTOR			
Average Output Current Each Channel	I _O (avg)	8	mA
Peak Output Current Each Channel	I _O (pk)	16	mA
Emitter-Base Reverse Voltage (6N135, 6N136 and HCPL-2503 only)	V_{EBR}	5	V
Supply Voltage	V_{CC}	-0.5 to 30	V
Output Voltage	Vo	-0.5 to 20	V
Base Current (6N135, 6N136 and HCPL-2503 only)	I _B	5	mA
Output power (6N135, 6N136, HCPL-2503, HCPL-4502) (Note 4)		100	mW
dissipation (HCPL-2530, HCPL-2531) Each Channel	P_{D}	35	mW

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502 DUAL-CHANNEL HCPL-2530 HCPL-2531

INDIVIDUAL COMPONENT CHARACTERISTICS

	NENT CHARACTERIS		1 5		-		
Parameter	Test Condition		Device	Min	Тур**	Max	Unit
EMITTER	$(I_F = 16 \text{ mA}, T_A = 25^\circ)$	\ \/_			1.45	1.7	V
Input Forward Voltage	(I _F = 16 m	A)				1.8	
Input Reverse Breakdown Vo	* * * * * * * * * * * * * * * * * * * *			5.0			V
Temperature coefficient of fo	rward voltage (I _F = 16 m	A) $(\Delta V_F/\Delta T_A)$)		-1.6		mV/°C
DETECTOR							
	$(I_F = 0 \text{ mA}, V_O = V_{CC} = 5.5)$	·	All		0.001	0.5	
	(T _A =25°	C)					
Logic high output current		VV IOH	6N135				μΑ
Logio ingli catput carront	$(I_F = 0 \text{ mA}, V_O = V_{CC} = 15)$	V) .OH	6N136		0.005	1] ,,,
	$(T_A = 25^\circ)$	C)	HCPL-4502				
			HCPL-2503				
	$(I_F = 0 \text{ mA}, V_O = V_{CC} = 15)$	V)	All			50	
			6N135		120	200	μA
	$(I_F = 16 \text{ mA}, V_O = Operation)$	n)	6N136				
Logic low supply current	(V _{CC} = 15	V)	HCPL-4502		120		
Logic low supply current		I _{CCL}	HCPL-2503] μ/\
	$(I_{F1} = I_{F2} = 16 \text{ mA}, V_O = Operation)$	n)	HCPL-2530		200	400	
	(V _{CC} = 15	V)	HCPL-2531		200	400	
			6N135				
(I _f	$_{\rm c}$ = 0 mA, $V_{\rm O}$ = Open, $V_{\rm CC}$ = 15	V)	6N136		1	1	
	$(T_A = 25^\circ)$	C)	HCPL-4502			'	
			HCPL-2503				
		1	6N135				
Logic high supply current	$(I_F = 0 \text{ mA}, V_O = Operation)$	n) Icch	6N136			2	μΑ
	$(V_{CC} = 15)$	V)	HCPL-4502				
			HCPL-2503				
	$(I_F = 0 \text{ mA}, V_O = Operation II)$	n)	HCPL-2530		0.02	4	
	$(V_{CC} = 15)$	V)	HCPL-2531		0.02	4	

^{**} All typicals at $T_A = 25$ °C

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502 DUAL-CHANNEL HCPL-2530 HCPL-2531

Parameter	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
COUPLED	(I _F = 16 mA, V _O = 0.4 V) (V _{CC} = 4.5 V, T _A =25°C)	- CTR	6N135	7	18	50	%
			HCPL-2530				
			6N136	19	27	50	%
			HCPL-4502				
			HCPL-2531				
Current transfer ratio			HCPL-2503	12	27		%
(Note 5)		CIR	6N135	5	21		%
			HCPL-2530	5			70
	$(I_F = 16 \text{ mA}, V_O = 0.5 \text{ V})$		6N136				
	(V _{CC} = 4.5 V)		HCPL-4502	15	30		%
			HCPL-2531				
			HCPL-2503	9	30		%
Logic low output voltage output voltage	$(I_F = 16 \text{ mA}, I_O = 1.1 \text{ mA})$		6N135		0.18	0.4	
	$(V_{CC} = 4.5 \text{ V}, T_A = 25^{\circ}\text{C})$		HCPL-2530		0.18	0.5	1
]	6N136				
	$(I_F = 16 \text{ mA}, I_O = 3 \text{ mA})$		HCPL-4502		0.25	0.4	
	$(V_{CC} = 4.5 \text{ V}, T_A = 25^{\circ}\text{C})$	V _{OL}	HCPL-2503				
			HCPL-2531		0.25	0.5	
	$(I_F = 16 \text{ mA}, I_O = 0.8 \text{ mA})$		6N135			0.5	V
	$(V_{CC} = 4.5 \text{ V})$		HCPL-2530			0.5	
			6N136				
	$(I_F = 16 \text{ mA}, I_O = 2.4 \text{ mA})$		HCPL-4502			0.5	
	$(V_{CC} = 4.5 \text{ V})$		HCPL-2503			0.5	
			HCPL-2531				

^{**} All typicals at $T_A = 25$ °C

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502 DUAL-CHANNEL HCPL-2530 HCPL-2531

Parameter	Test Conditions	Symbol	Device	Min	Тур**	Max	Unit
T _A = 25°C,	(P = 4.1 k0 L = 16 mA) (Note 6) (Fig. 7)		6N135		0.45	1.5	110
	, (R _L = 4.1 k Ω , I _F = 16 mA) (Note 6) (Fig. 7)		HCPL-2530		0.43	1.5	μs
•			6N136				
	(R _L = 1.9 k Ω , I _F = 16 mA) (Note 7) (Fig. 7) T _A = 25°C		HCPL-4502		0.45	0.0	μs
Propagation delay			HCPL-2503		0.45	0.8	
time to logic low		J	HCPL-2531				
	$(R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 6) (Fig. 7)}$	T _{PHL}	6N135			2.0	
			HCPL-2530			2.0	μs
			6N136				
	(R _L = 1.9 k Ω , I _F = 16 mA) (Note 7) (Fig. 7)		HCPL-4502			1.0	μs
			HCPL-2503			1.0	
			HCPL-2531				
T _A = 25°C, Propagation delay time to logic high	(D. 44 kO I. 40 m A) (Note C) (Fig. 7)	- T _{PLH}	6N135		0.5	4.5	
	$R_{L} = 4.1 \text{ k}\Omega, I_{F} = 16 \text{ mA}) \text{ (Note 6) (Fig. 7)}$ (R _L = 1.9 k Ω , I _F = 16 mA) (Note 7) (Fig. 7) $T_{A} = 25^{\circ}\text{C}$		HCPL-2530		0.5	1.5	μs
			6N136			0.8	μs
			HCPL-4502				
			HCPL-2503				
			HCPL-2531				
	$(R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA})$ (Note 6) (Fig. 7) ($R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA})$ (Note 7) (Fig. 7)		6N135			0.0	
			HCPL-2530			2.0	μs
			6N136			1.0	
			HCPL-4502				
			HCPL-2503			1.0	μs
			HCPL-2531				
Common mode	$(I_F = 0 \text{ mA}, V_{CM} = 10 V_{P-P}, R_L = 4.1 \text{ k}\Omega)$		6N135		40.000		V/µs
	(Note 8) (Fig. 8) $T_A = 25^{\circ}C$		HCPL-2530		10,000		
transient	$(I_F = 0 \text{ mA}, V_{CM} = 10 V_{P-P})$	l long i	6N136				
immunity at	$T_A = 25^{\circ}C, (R_L = 1.9 \text{ k}\Omega)$	CM _H	HCPL-4502		10,000		\ //
logic high	(Note 8) (Fig. 8)		HCPL-2503				V/µs
			HCPL-2531				
	$(I_F = 16 \text{ mA}, V_{CM} = 10 V_{P-P}, R_L = 4.1 \text{ k}\Omega)$		6N135		10,000		\//::-
Common mode	(Note 8) (Fig. 8) $T_A = 25^{\circ}C$		HCPL-2530		10,000		V/µs
transient	$(I_F = 16 \text{ mA}, V_{CM} = 10 V_{P-P})$	1	6N136				
immunity at	$(R_L = 1.9 \text{ k}\Omega)$	CM _L	HCPL-4502		10,000		\//
logic low	(Note 8) (Fig. 8)		HCPL-2503		10,000		V/µs
			HCPL-2531				

^{**} All typicals at $T_A = 25$ °C

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit	
	(Relative humidity = 45%)						
Input-output	$(T_A = 25^{\circ}C, t = 5 s)$				1.0		
insulation leakage current	$(V_{I-O} = 3000 VDC)$	I _{I-O}			1.0	μΑ	
	(Note 9)						
Withstand insulation test voltage	$(RH \le 50\%, T_A = 25^{\circ}C)$	V _{ISO}	\/	2500			V
Withstand insulation test voltage	(Note 9) ($t = 1 \text{ min.}$)		2500			V_{RMS}	
Resistance (input to output)	(Note 9) $(V_{I-O} = 500 \text{ VDC})$	R _{I-O}		10 ¹²		Ω	
Capacitance (input to output)	(Note 9) (f = 1 MHz)	C _{I-O}		0.6		pF	
DC Current gain	$(I_O = 3 \text{ mA}, V_O = 5 \text{ V})$	HFE		150			
Input-Input (RH ≤ 45)	%, V _{I-I} = 500 VDC) (Note 10)			,	0.005		^
Insulation leakage current t =	5 s, (HCPL-2530/2531 only)	I _{I-I}		0.005		μΑ	
Input Input Posistance	$(V_{I-I} = 500 \text{ VDC}) \text{ (Note 10)}$	Д		10 ¹¹		Ω	
Input-Input Resistance	(HCPL-2530/2531 only)	R _{I-I}		10		7.2	
Input Input Canacitance	(f = 1 MHz) (Note 10)				0.03		n.E
Input-Input Capacitance	(HCPL-2530/2531 only)	C _{I-I}		0.03		pF	

^{**} All typicals at $T_A = 25$ °C

NOTES

- 1. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C.
- 2. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C.
- 3. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C.
- 4. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C.
- 5. Current Transfer Ratio is defined as a ratio of output collector current, I_O, to the forward LED input current, I_F, times 100%.
- 6. The 4.1 k Ω load represents 1 LSTTL unit load of 0.36 mA and 6.1k Ω pull-up resistor.
- 7. The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and 5.6 k Ω pull-up resistor.
- 8. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0$ V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8$ V).
- 9. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 10. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

SINGLE-CHANNEL 6N135, 6N136 **HCPL-2503 HCPL-4502**

1.2

DUAL-CHANNEL HCPL-2530 HCPL-2531

Fig. 1 Normalized CTR vs. Forward Current

Fig. 2 Normalized CTR vs. Temperature

Fig. 3 Output Current vs. Output Voltage

Fig. 4 Logic High Output Current vs. Temperature

Fig. 5 Propagation Delay vs. Temperature

Fig. 6 Propagation Delay vs. Load Resistance

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

Fig. 7 Switching Time Test Circuit

Fig. 8 Common Mode Immunity Test Circuit

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

NOTE

All dimensions are in inches (millimeters)

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

ORDERING INFORMATION

Option	Order Entry Identifier	Description
R2	.R2	Opto Plus Reliability Conditioning
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and reel
SDL	.SDL	Surface Mount; Tape and reel
W	.W	0.4" Lead Spacing

Corporate Headquarters

QT Optoelectronics 610 North Mary Avenue Sunnyvale, CA 94086 (408) 720-1440 Phone (408) 720-0848 Fax

European Sales

QT Optoelectronics
"Le Levant"
2, rue du Nouveau Bercy
F-94277-CHARENTON-LE PONT Cedex
FRANCE
33 [0] 1.45.18.78.78 Phone
33 [0] 1.43.75.77.57 Fax

North American Sales

QT Optoelectronics 16775 Addison Rd.,Suite 200 Addison, TX 75001 (972) 447-1300 Phone (972) 447-0784 Fax

Asia/Pacific Sales

QT Optoelectronics B613, 6th Floor East Wing, Wisma Tractors Jalan SS16/1, Subang Jaya 47500 Petaling Jaya Selangor Darul Eshan, Malaysia 603/735-2417 Phone 603/736-3382 Fax

European Sales

Quality Technologies Deutschland GmbH Max-Huber-Strasse 8 D-85737 Ismaning, Germany 49 [0] 89/96.30.51 Phone 49 [0] 89/96.54.74 Fax

European Sales

Quality Technologies (U.K) Ltd. 10, Prebendal Court, Oxford Road Aylesbury, Buckinghamshire HP19-3EY United Kingdom 44 [0] 1296/30.44.99 Phone 44 [0] 1296/39.24.32 Fax

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.