REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this correction of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this co-ection of information, including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Dails Highway, Suite 1204. Arrington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC. 20503.

			jett (0704 0700); trushington, DC 20303.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	04 November 1996	Final: 01 June 1	993 - 30 September 1996
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
SYNTHESIS AND STUDIES OF A -PHOSPHORUS AND -ARSENIC	•N00014-93-1-0860 R&T Project 413500813		
6. AUTHOR(S)			•Dr. Harold E. Guard
Richard L. Wells			-
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Department of Chemistry Duke University Durham, NC 27708-0346			Final Report DU/DC/FR-1996
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING / MONITORING
Office of Naval Research 300 North Quincy Street Arlington, VA 22217-5000			AGENCY REPORT NUMBER -
11. SUPPLEMENTARY NOTES		 19	961113 130

12a. DISTRIBUTION / AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approved for Public Release Distribution Unlimited

DIEC QUALITY IMPRIMENTATION OF

13. ABSTRACT (Maximum 200 words)

Reactions between AlX3 (X = Cl, Br) and P(SiMe3)3 afforded the adducts X3Al•P(SiMe3)3. Et2AlP(SiMe3)2Al(Et)2As(SiMe3)2 was obtined from the equilibration of [Et2AlP(SiMe3)2]2 and [Et2AlAs(SiMe3)2]2. Reactions of Me3Al with Ph2AsH and Ph(Me3SiCH2)AsH afforded [Me2AlAsPh2]3•(C7H8)2 and [Me2AlAs(CH2SiMe3)Ph]3. Reactions of Ph3Al with E(SiMe3)3 (E = P or As) afforded Ph3Al•E(SiMe3)3.[E = P, As, respectively], and Ph₂AlCl with E(SiMe₃)₃ (E = P, As) yielded Ph₂(Cl)Al•E(SiMe₃)₃ [E = P, As]. Ph(Cl)2Al•P(SiMe3)3 was obtained from PhAlCl2 and P(SiMe3)3, and reactions of Et3Ga and (Me3SiCH2)3In with Sb(SiMe3)3 yielded Et3Ga•Sb(SiMe3)3 and (Me3SiCH2)3In•Sb(SiMe3)3, respectively. Reaction of (Me3CCH2)2GaCl or $(Me_3SiCH_2)_2InCl$ with $Sb(SiMe_3)_3$ afforded $[(Me_3CCH_2)_2GaSb(SiMe_3)_2]_X$ and $[(Me_3SiCH_2)_2InSb(SiMe_3)_2]_Z$, respectively. Reaction of GaCl3 with Sb(SiMe3)3 affords an intermediate material which, upon thermolysis, yields nanocrystalline GaSb with an approximate average particle size of 12 nm. Reaction of (Me3SiCH2)3Al with E(SiMe3)3 (E = P, As) gave (Me3SiCH2)3AlP(SiMe3)3 and (Me3SCH2)3AlAs(SiMe3)3, and reaction of (Me₃CCH₂)₃Al with E(SiMe₃)₃ (E = P, As) gave (Me₃CCH₂)₃AlP(Me₃SiCH₂)₃ and (Me₃CCH₂)₃AlAs(SiMe₃)₃. (Me₃SiCH₂)₂(Br)AlP(Me₃SiCH₂)₃ was obtained from the reaction of (Me₃SiCH₂)₂AlBr with P(SiMe₃)₃. [Me₃SiCH₂(Br)AlP(SiMe₃)₂]₂ and [Me₃SiCH₂(Br)AlAs(SiMe₃)₂]₂ were isolated as rearrangement products of the 1:1 lithium halide elimination reactions of (Me₃SiCH₂)₃AlBr with Li(SiMe₃)₂ (E = P, As). This metathetical system also led to the isolation of [(Me₃SiCH₂)₂AlP(SiMe₃)₂] and [(Me₃SiCH₂)₂AlAs(SiMe₃)₂]₂.

14. SUBJECT TERMS			15. NUMBER OF PAGES
aluminum, gallium, ind adduct, four-membered	16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT Unlimited

OFFICE OF NAVAL RESEARCH

AASERT Grant N00014-93-1-0860 R&T Project 4135008---13 01 June 1993 through 30 September 1996

In Conjunction with Parent Grants N00014-89-J-1545, R&T Project 4135008 (1989-1994) N00014-95-1-0194, R&T Project 3135008 (1994-1997)

Dr. Harold E. Guard

Final Report

SYNTHESIS AND STUDIES OF ALUMINUM-NITROGEN, -PHOSPHORUS AND ARSENIC CYCLES AND CLUSTERS

Submitted by: Professr Richard L. Wells Principal Investigator Department of Chemistry

Duke University

P. M. Gross Chemical Laboratory

Box 90346

Durham, NC 27708-0346

04 November 1996

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

Final Report for AASERT Grant #N00014-93-1-0860 R&T Project 4135008---13 01 June 1993 through 30 September 1996

SYNTHESIS AND STUDIES OF ALUMINUM-NITROGEN, -PHOSPHORUS AND ARSENIC CYCLES AND CLUSTERS

1.0 Summary

The attempted dehalosilylation reactions between AlX₃ (X = Cl, Br) and P(SiMe₃)₃ in toluene in 1:1 mole ratios afforded only the adducts Cl₃Al•P(SiMe₃)₃ (1) and Br₃Al•P(SiMe₃)₃ (2), respectively. Compounds 1 and 2 were characterized by ¹H, ¹³C, ²⁷Al, and ³¹P solution NMR spectroscopy, as well as partial elemental analysis. In addition, the solid state structures of the toluene solvates of 1 and 2 were determined by single-crystal X-ray analysis. Characterization revealed that the solid solvated adducts 1 and 2 are isostructural and their crystals are isomorphous. In each compound, the Al and the P atoms reside in tetrahedral environments, with each X₃Al•P(SiMe₃)₃ (X = Cl, Br) molecule associated with one interstitial toluene molecule in the crystals. These adducts are noteworthy in that they possess extremely short, essentially equal Al-P bond lengths [For 1: Al—P = 2.392(4) Å, and for 2: Al—P = 2.391(6) Å], which are the shortest found to date in aluminum-phosphorus molecular species.

The aluminum mixed-pnicogen compound $Et_2AlP(SiMe_3)_2Al(Et)_2As(SiMe_3)_2$ (3) is the first structurally-characterized compound to contain a four membered ring with two aluminum centers bridged by two different heavier group 15 atoms. Compound 3 was synthesized by the eqilibration of $[Et_2AlP(SiMe_3)_2]_2$ (4) and $[Et_2AlAs(SiMe_3)_2]_2$ (5) in a 1:1 mole ratio under ultrasonic conditions. Low-temperature X-ray crystasllographic analysis revealed that crystals of 3 belong to the monoclinic system, space group C2/c (C_2h^6), with unit cell dimensions of a=17.960(4), b=9.328(1), c=20.194(5) Å, and $\beta=100.33(2)^0$ for Z=4, and isomorphous with those of 4 and 5. The electron ionization (20 ev) mass spectrum of 3 shows a fragmentation pattern consistent with this compound and no peaks above m/z 400 consistent with either 4 or 5.

The reactions of trimethylaluminum with diphenylarsine, Ph₂AsH, and phenyl(trimethylsilylmethyl)arsine, Ph(Me₃SiCH₂)AsH, in 1:1 mole ratios afford the trimeric compounds [Me₂AlAsPh₂]₃•(C₇H₈)₂ (6) and [Me₂AlAs(CH₂SiMe₃)Ph]₃ (7), respectively. Compounds 6 and 7 are the first Al-As six-membered ring compounds to be structurally characterized by single-crystal X-ray crystallography, as well as ¹H and ¹³C solution NMR spectroscopy. X-ray crystallographic analysis revealed that trimer 6 is a toluate which crystallizes in the monoclinic space group P 2₁/n, with a = 14.549(6) Å, b = 22.838(7) Å, c = 16.891(4) Å, and β = 105.12(5)° for Z = 4. Trimer 7 crystallizes in the triclinic system, space group P-1, and has two unique molecules in a unit cell with dimensions of a = 15.619(7) Å, b = 17.487(6) Å, c = 19.863(6) Å, α = 94.86(3)°, β = 101.41(3)°, and γ = 113.34(3)° for Z = 4. The six-membered Al-As rings in both 6 and 7 occupy chair conformations, furnishing both trimers with structural characteristics similar to cyclohexane. The Al and As centers of both 6 and 7 reside in pseudotetrahedral environments, with the Al—As bond lengths ranging from 2.512(3)Å to 2.542(3) Å in 6, and from 2.504(5) Å to 2.526(5) Å in 7.

The independent reactions of Ph₃Al with E(SiMe₃)₃ (E = P or As) in 1:1 mole ratios afforded the adducts Ph₃Al•E(SiMe₃)₃ [E = P (8) and As (9), respectively]. The attempted dehalosilylation reactions between Ph₂AlCl and E(SiMe₃)₃ (E = P or As) in 1:1 mole ratios yielded only the adducts Ph₂(Cl)Al•E(SiMe₃)₃ [E = P (10) and As (11)]. The adduct Ph(Cl)₂Al•P(SiMe₃)₃ (12)

was isolated from the reaction of equimolar amounts of PhAlCl₂ and P(SiMe₃)₃. Compounds **8-12** were characterized by NMR spectroscopy and partial elemental analysis. In addition, the solid-state structures of **8-10** were determined by single-crystal X-ray analysis. Compound **8** crystallizes in the monoclinic space group $P \, 2_1/n \, (C_{2h}^5)$, while **9** crystallizes in the triclinic space group $P \, -1(C_i^{-1})$, each with two discrete molecules per asymmetric unit. Crystals of compound **10** belong to the orthorhombic space group $P \, 2_1 2_1 2_1 (D_2^4)$. Compounds **8-10** are the first structurally-characterized compounds to contain phenyl-substituted Al centres bonded to heavier pnicogen atoms.

The independent 1:1 reactions of Et₃Ga and (Me₃SiCH₂)₃In with Sb(SiMe₃)₃ yield the simple Lewis acid-base adducts Et₃Ga•Sb(SiMe₃)₃ (13) and (Me₃SiCH₂)₃In•Sb(SiMe₃)₃ (14), respectively. Reaction of (Me₃CCH₂)₂GaCl or (Me₃SiCH₂)₂InCl with Sb(SiMe₃)₃ in a 1:1 mole ratio affords the dehalosilylation prodects [(Me₃CCH₂)₂GaSb(SiMe₃)₂]_x (15) and [(Me₃SiCH₂)₂InSb(SiMe₃)₂]₂ (16), respectively. These new compounds were characterized by multinuclear solution NMR (¹H and ¹³C), partial elemental analysis and for 13, 14, and 16, single crystal X-ray anlysis.

The 1:1 reaction of GaCl₃ with Sb(SiMe₃)₃ in pentane solution affords an intermediate material which, upon thermolysis, yields nanocrystalline GaSb (17) with an approximate average particle size of 12 nm. The product was characterized through powder X-ray diffraction, elemental analysis, and HRTEM.

Reaction of (Me₃SiCH₂)₃Al with E(SiMe₃)₃(E = P, As) in a 1:1 mole ratio affords the Lewis acid-base adducts (Me₃SiCH₂)₃AlP(SiMe₃)₃ (18) and (Me₃SiCH₂)₃AlAs(SiMe₃)₃ (19). Similarly, the 1:1 mole ratio reaction of Np3Al with E(SiMe₃)₃ (E = P, As) leads to the isolation of (Me₃CCH₂)₃AlP(SiMe₃)₃ (20) and (Me₃CCH₂)₃AlAsT(SiMe₃)₃ (21). The adduct (Me₃SiCH₂)₂(Br)AlP(SiMe₃)₃ (22) was obtained from the 1:1 mole ratio reaction of (Me₃SiCH₂)₂AlBr with P(SiMe₃)₃. The dimers [Me₃SiCH₂(Br)AlP(SiMe₃)₂]₂ (23) and [Me₃SiCH₂(Br)AlAs(SiMe₃)₂]₂ (24) were isolated as rearrangement products of the 1:1 lithium halide elimination reactions of (Me₃SiCH₂)₂AlBr with LiE(SiMe₃)₂ (E = P, As). This metathetical system also led to the isolation of [(Me₃SiCH₂)₂AlP(SiMe₃)₂]₂ (25) and [(Me₃SiCH₂)₂AlAs(SiMe₃)₂]₂ (26). Various physical and spectroscopic data, including a multinuclear variable temperature NMR study of 23 and 24, were obtained for the above compounds, along with the X-ray crystal structures of 19-24 and 26.

2.0 Publications and Presentations at Meetings Describing Results Obtained

2.1 Publications

- 1. R. L. Wells, A. T. McPhail, J. A. Laske, and P. S. White, "Synthesis and Characterization of Aluminum-Phosporus Adducts: X-ray Crystal Structures of Cl₃Al•P(SiMe₃)₃•C₇H₈ and Br₃Al•P(SiMe₃)₃•C₇H₈", *Polyhedron* **1994**, *13*, 2737.
- 2. J. A. Laske Cooke, R. L. Wells, and P. S. White, "First Example of an Aluminum-Phosphorus-Arsenic Mixed-Pnicogen Ring Compound: X-ray Crystal Structure of Et₂AlP(SiMe₃)₂Al(Et)₂As(SiMe₃)₂", Organometallics **1995**, 14, 3562.
- 3. J. A. Laske Cooke, A. P. Purdy, R. L. Wells, and P. S. White, "Reactions of Trimethylaluminum with Secondary Arsines: Synthesis and Characterization of Phenyl[(trimethylsilyl)methyl]arsine and the X-ray Crystal Structures of the Trimers [Me₂AlAsPh₂]₃•(C₇H₈)₂] and [Me₂AlAs(CH₂SiMe₃)Ph]₃" Organometallics **1996**, 15, 84.

- 4. J. A. Laske Cooke, H. Rahbarnoohi, A. T. McPhail, R. L. Wells, and P. S. White, "Reactions of Phenylaluminum Compounds with E(SiMe₃)₃ (E = P or As): X-ray Crystal Structures of Ph₃Al•E(SiMe₃)₃ (E = P or As) and Ph₂(Cl)Al•P(SiMe₃)₃", *Polyhedron* **1996**, *15*, 3033.
- 5. R. A. Baldwin, E. E. Foos, R. L. Wells, P. S. White, A. L. Rheingold, and G. P. A. Yap, "Synthesis and Characterization of Potential Single-Source Precursors to Group 13-Antimonides", *Organometallics* in press.
- 6. R. A. Baldwin, E. E. Foos, and R. L. Wells, "Facile Preparation of Nanocrystalline Gallium Antimonide", *Mater. Res. Bulletin* in press.
- 7. R. L. Wells, E. E. Foos, A. L. Rheingold, L. M. Liable-Sands, P. S. White "Synthesis and Characterization of Alkylaluminum-Phosphorus and-Arsenic Compounds Incorporating the (Trimethylsilyl)methyl and neo-Pentyl Ligands", in preparation.

3.0 Presentations at Meetings

1

- 1. J. L. Laske, R. L. Wells, A. T. McPhail, and P. White, "Synthesis, Characterization and Decomposition Studies of Aluminum-Phosphorus Adducts: X-ray Crystal Structures of Me₂(Cl)Al•P(SiMe₃)₃ and X₃Al•P(SiMe₃)₃•C₇H₈ (X = Cl, Br)", Abstracts of Papers, 207th American Chemical Society National Meeting 1994, INOR 479, San Diego, CA (paper presented by J. L. Laske, graduate student).
- 2. J. L. Laske, R. L. Wells, A. T. McPhail, and P. White, "Synthesis, Characterization and Decomposition Studies of Aluminum-Phosphorus Adducts: X-ray Crystal Structures of Me₂(Cl)Al•P(SiMe₃)₃ and X₃Al•P(SiMe₃)₃•C₇H₈ (X = Cl, Br)", 108th Sectional Conference of the North Carolina Section of the American Chemical Society **1994**, Durham, NC (paper presented by J. L. Laske, graduate student).
- 3. R. A. Baldwin, S. R. Aubuchon, M. S. Lube, J. A. Laske, R. L. Wells, and P. S. White, "On the Preparation and Characterization of Binary and Ternary 13-15 Materials", Abstracts of Papers, 208th American Chemical Society National Meeting **1994**, INOR 406, Washington, DC (poster presented by R. A. Baldwin, graduate student).
- 4. M. S. Lube, R. L. Wells, L. J. Jones III, R. A. Baldwin, J. A. Laske, A. T. McPhail, and P. S. White, "Synthesis and Characterization of Potential Precursors to Ternary 13-15 Semiconductors", Abstracts of Papers, 208th American Chemical Society National Meeting 1994, INOR 407, Washington, DC (poster presented by M. S. Lube, graduate student).
- 5. J. A. Laske, R. L. Wells, and P. S. White, "Organoaluminum-pnicogen Chemistry: Synthesis, Characterization and Decomposition Studies of Potential Precursors to AIP, AlAs, and Al_xGa_{1-x}E_y (E = P, As)", Abstracts of Papers, 209th American Chemical Society National Meeting **1995**, INOR 28, Anaheim, CA (paper presented by J. A. Laske, graduate student).
- 6. J. A. Laske, R. L. Wells, and P. S. White, "Organoaluminum-pnicogen Chemistry: Synthesis, Characterization and Decomposition Studies of Potential Precursors to AlP, AlAs, and Al_xGa_{1-x}E_y (E = P, As)", 109th Sectional Conference of the North Carolina Section of the American Chemical Society 1995, Chapel Hill, NC (paper presented by J. A. Laske, graduate student).

- 7. J. A. Laske, H. Rahbarnoohi, R. L. Wells, A. T. McPhail, and P. S. White, "Reactions of Triphenylaluminum and Phenylaluminum halides with Silyl Pnicogen Compounds", Abstracts of Papers, 210th American Chemical Society National Meeting 1995, INOR 28, Chicago, IL (paper presented by R. L. Wells).
- 8. R. A. Baldwin, E. E. Foos, R. L. Wells, G. P. A. Yap, and A. L. Rheingold, "Preparation and Characterization of Compounds Containing a Group 13 Element-Antimony Bond: Facile Synthesis of Nanocrystalline GaSb", Abstracts of Papers, 211th American Chemical Society National Meeting, March 24-29, 1996, INOR 198, New Orleans, LA (poster presented by R. A. Baldwin and E. E. Foos, graduate students).
- 9. R. A. Baldwin, E. E. Foos, R. L. Wells, G. P. A. Yap, and A. L. Rheingold, "Preparation and Characterization of Compounds Containing a Group 13 Element-Antimony Bond: Facile Synthesis of Nanocrystalline GaSb", 110th Sectional Conference of the North Carolina Section of the American Chemical Society, Raleigh, NC, April 13, 1996. (paper presented by E. E. Foos, graduate student).

2.2 Students Supported by the Grant

- 1. Janeen. A. Laske Cooke, June 1993 September 1995; completed requirements for the Ph.D degree in September 1993.
- 2. Edward E.Foos, September 1995 September 1996; currently a third-year graduate student.