## Lecture 12

## Spectral Analysis of Time Series I

Readings: CC08 Chapter 13-14; BD16 Ch 4; SS17 Chapter 4.1-4.4

MATH 8090 Time Series Analysis Week 12 Spectral Analysis of Time Series I



Background

The Periodogram and Spectral Density

Spectral Estimatio

Whitney Huang Clemson University

Background

2 The Periodogram and Spectral Density

- Time domain methods [Box and Jenkins, 1970]:
  - Regress present on past

**Example**: 
$$Y_t = \phi Y_{t-1} + Z_t$$
,  $|\phi| < 1$ ,  $\{Z_t\} \sim WN(0, \sigma^2)$ 

- Capture dynamics in terms of "velocity", "acceleration", etc
- Frequency domain methods [Priestley, 1981]:
  - Regress present on periodic sines and cosines

**Example**: 
$$Y_t = \alpha_0 + \sum_{j=1}^p \left[ \alpha_{1j} \cos(2\pi\omega_j t) + \alpha_{2j} \sin(2\pi\omega_j t) \right]$$

Capture dynamics in terms of resonant frequencies

### **Searching Hidden Periodicities**

$$y_t = 3\cos\left(2\pi\left(\frac{10}{200}\right)t\right) + 2\cos\left(2\pi\left(\frac{32}{200}t + 0.3\right)\right)$$







Spectral Analysis of Time Series I



#### Background

The Periodogram and Spectral Density

#### The simplest case is the cosine wave

$$Y_t = A\cos(2\pi\omega t + \phi)$$
  
=  $\alpha_1\cos(2\pi\omega t) + \alpha_2\sin(2\pi\omega t)$ ,

#### where

- A is amplitude
- $\bullet$   $\omega$  is frequency, in cycles per time unit
- $\bullet$   $\phi$  is phase, determining the start point of the cosine function
- $\alpha_1 = A\cos(\phi), \ \alpha_2 = -A\sin(\phi), \ A = \sqrt{\alpha_1^2 + \alpha_2^2}, \ \phi = \tan^{-1}\frac{-\alpha_2}{\alpha_1}$

#### **Graphical Illustration of the Cosine Wave**

 $y(t) = A\cos(2\pi\omega t + \phi)$ 

lf

$$Y_t = A\cos(2\pi\omega t + \phi)$$
  
=  $\alpha_1\cos(2\pi\omega t) + \alpha_2\sin(2\pi\omega t)$ ,

and  $\phi$  is random, uniformly distribiuted on  $[-\pi,\pi)$ , then:

$$\mathbb{E}(Y_t) = 0$$

$$\mathbb{E}(Y_{t+h}Y_t) = \frac{1}{2}A^2\cos(2\pi\omega h)$$

 $\Rightarrow Y_t$  is weakly stationary

#### Background

The Periodogram and Spectral Density

## CLEMS N

Also

$$\begin{split} \mathbb{E}(\alpha_1) &= \mathbb{E}(\alpha_2) = 0, \\ \mathbb{E}(\alpha_1^2) &= \mathbb{E}(\alpha_2^2) = \frac{1}{2}A^2, \\ \text{and } \mathbb{E}(\alpha_1\alpha_2) &= 0. \end{split}$$

Alternatively, if the  $\alpha$ 's have these properties, then  $Y_t$  is stationary with the same mean and autocovariances:

$$\mathbb{E}(Y_t) = 0,$$

$$\mathbb{E}(Y_{t+h}Y_t) = \frac{1}{2}A^2\cos(2\pi\omega h).$$

#### Background

The Periodogram and Spectral Density

Specifal Estimation

$$Y_t = \sum_{k=1}^{K} \left[ \alpha_{k,1} \cos(2\pi\omega_k t) + \alpha_{k,2} \sin(2\pi\omega_k t) \right],$$

where:

- The  $\alpha$ 's are uncorrelated with zero mean;
- $\operatorname{Var}(\alpha_{k,1}) = \operatorname{Var}(\alpha_{k,2}) = \sigma_k^2$ ;

then  $Y_t$  is stationary with zero mean and autocovariances

$$\gamma(h) = \sum_{k=1}^{K} \sigma_k^2 \cos(2\pi\omega_k h)$$

$$\Rightarrow \gamma(0) = Vor(Y_t) = \sum_{k=1}^{K} \sigma_k^2$$



#### Background

The Periodogram and Spectral Density

#### **Examples of Periodic Time Series**





Source: Fig. 4.1. of Shumway and Stoffer, 2017

#### CLEMS N U N I V E R S I T Y

## **Folding Frequency and Aliasing**

Let's consider  $Y_{1,t} = \cos(2\pi(0.2)t)$  and  $Y_{2,t} = \cos(2\pi(1.2)t)$ 

- At t = 1,  $Y_{1,t} = \cos(0.4\pi t)$ ,  $Y_{2,t} = \cos(2.4\pi t) = \cos(2\pi t + 0.4\pi t) = \cos(0.4\pi t) = Y_{1,t}$
- This is true for all integer values of t

$$\Rightarrow \omega = 1.2$$
 is an alias of  $\omega = 0.2$ .

In general, all frequencies higher than  $\omega$  =  $\frac{1}{2}$  have an alias in  $0 \leq \omega \leq \frac{1}{2}$ 

•  $\omega = \frac{1}{2}$  is the folding frequency (aka Nyquist frequency), because the shortest period that can be observed is  $\frac{1}{\omega} = 2$ .

**Takeaway**: It suffices to limit attention to  $\omega \in [0, \frac{1}{2}]$ 

#### **Illustration of Aliasing**

 $\omega = 0.25$  and  $\omega = 0.75$  are aliased with one another





#### Background

The Periodogram and Spectral Density

Any time series sample  $y_1, y_2, \dots, y_n$  can be written

$$y_t = \alpha_0 + \sum_{j=1}^{(n-1)/2} \left[ \alpha_j \cos(2\pi j t/n) + \beta_j \sin(2\pi j t/n) \right],$$

if n is odd; if n is even, an extra term is needed

The (scaled) periodogram is

$$P(j/n) = \alpha_j^2 + \beta_j^2$$

the sample variance at each frequency component

 The R function spectrum can calculate and plot the periodogram







- Given data  $y_1, y_2, \dots, y_n$ , the discrete Fourier transform is
  - $d(\omega_j) = \frac{1}{\sqrt{n}} \sum_{t=1}^n y_t e^{-2\pi\omega_j t}, \quad j = 0, 1, \dots, n-1.$

- The frequencies  $\omega_j = j/n$  are the Fourier or fundamental frequencies
- Like any other Fourier transform, it has an inverse transform:

$$y_t = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} d(\omega_j) e^{2\pi\omega_j t}, \quad t = 1, 2, \dots, n$$

- The periodogram is  $I(\omega_i) = |d(w_i)|^2$ ,  $j = 0, 1, \dots, n-1$
- The scaled periodogram we used earlier is

$$P(\omega_j) = (4/n)I(\omega_j)$$

• In terms of sample autocovariances:  $I(0) = n\bar{y}^2$ , and for  $j \neq 0$ ,

$$I(\omega_j) = \sum_{h=-(n-1)}^{n-1} \hat{\gamma}(h) e^{-2\pi i \omega_j h}$$
$$= \hat{\gamma}(0) + 2 \sum_{h=1}^{n-1} \hat{\gamma}(h) \cos(2\pi \omega_j h).$$

#### Star Magnitude Example [Example 4.3, Shumway & Stoffer, 2017]







Spectral Analysis of Time Series I



The Periodogram and

- The periodogram shows which frequencies are strong in a finite sample  $\{y_1, y_2, \cdots, y_n\}$
- What about a population model for  $Y_t$ , such as a stationary time series?
- The spectral density plays the corresponding role

Every weakly stationary time series  $Y_t$  with autocovariances  $\gamma(h)$  has a non-decreasing spectrum or spectral distribution function  $F(\omega)$  for which

$$\gamma(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i \omega h} dF(\omega) = 2 \int_{0}^{\frac{1}{2}} \cos(2\pi \omega h) dF(\omega).$$

If  $F(\omega)$  is absolutely continuous, it has a spectral density function  $f(\omega)$  =  $F^{'}(\omega)$ , and

$$\gamma(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i \omega h} f(\omega) d\omega = 2 \int_{0}^{\frac{1}{2}} \cos(2\pi \omega h) f(\omega) d\omega$$

The autocovariance and the spectral distribution function contain the same information





Background

The Periodogram and Spectral Density

Under various conditions on  $\gamma(h)$ , such as

$$\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$$

 $f(\omega)$  can be written as the sum

$$f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i \omega_j h} = \gamma(0) + 2 \sum_{h=1}^{\infty} \gamma(h) \cos(2\pi \omega_j h)$$

### Properties of the spectral density:

- $f(\omega) \geq 0$ ;
- $f(-\omega) = f(\omega)$ ;

CLEMS N UNIVERSITY

For white noise  $\{Z_t\}$ , we have seen that  $\gamma(0) = \sigma_Z^2$  and  $\gamma(h) = 0$  for  $h \neq 0$ . Thus,

$$f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h)e^{-2\pi i\omega h}$$
$$= \gamma(0) = \sigma_Z^2$$

That is, the spectral density is constant across all frequencies: each frequency in the spectrum contributes equally to the variance.

This is the origin of the name *white noise*: it is like white light, which is a uniform mixture of all frequencies in the visible spectrum

$$|1 + \theta e^{-2\pi i\omega}|^2 = (1 + \theta e^{-2\pi i\omega})(1 + \theta e^{2\pi i\omega})$$
$$= 1 + \theta^2 + \theta(e^{2\pi i\omega} + e^{-2\pi i\omega})$$
$$= 1 + \theta^2 + 2\theta \cos(2\pi\omega).$$

Thus, we have:  $f(\omega) = \left[1 + \theta^2 + 2\theta \cos(2\pi\omega)\right] \sigma_Z^2$ 

Frequency



Time



Баскуп

Spectral Density



Background

120

120

The Periodogram and Spectral Density

Spectral Estimation

For an AR(1) 
$$Y_t = \phi Y_{t-1} + Z_t$$
, we have

$$\left[1 + \phi^2 - 2\phi\cos(2\pi\omega)\right]f(\omega) = \sigma_Z^2$$

Thus, we have:  $f(\omega) = \frac{\sigma_Z^2}{1+\phi^2-2\phi\cos(2\pi\omega)}$ 



 ARMA: using results about linear filtering, we shall show that the spectral density of the ARMA(p, q) process

$$\phi(B)Y_t = \theta(B)Z_t$$

is

$$f(\omega) = \sigma_Z^2 \frac{|\theta(e^{-2\pi i\omega})|^2}{|\phi(e^{-2\pi i\omega})|^2}$$

• Note that this gives the characteristic polynomials  $\phi(\cdot)$  and  $\theta(\cdot)$  a concrete meaning: they determine how strongly the series tends to fluctuate at each frequency

## CLEMS N

Background

The Periodogram and Spectral Density

Spectral Estimation

#### If n is large

# $\mathbb{E}\left[I(\omega_{j})\right] \approx \sum_{h=-(n-1)}^{n-1} \gamma(h) e^{-2\pi i \omega_{j} h}$ $\approx \sum_{-\infty}^{\infty} \gamma(h) e^{-2\pi \omega_{j} h} = \gamma(0) + 2 \sum_{h=1}^{\infty} \gamma(h) \cos(2\pi \omega_{j} h)$ $= f(\omega_{j}) \quad \bigcirc \quad .$

- Heuristically, the spectral density is the approximate expected value of the periodogram
- Conversely, the periodogram can be used as an estimator of the spectral density
- But the periodogram values have only two degrees of freedom each, which makes it a poor estimate

**Recall**: the discrete Fourier transform

$$d(\omega_j) = n^{-\frac{1}{2}} \sum_{t=1}^n y_t e^{-2\pi i \omega_j t}, \quad j = 0, 1, \dots, n-1,$$

and the periodogram

$$I(\omega_j) = |d(\omega_j)|^2, \quad j = 0, 1, \dots, n-1,$$

where  $\omega_j$  is one of the Fourier frequencies

$$\omega_j = \frac{j}{n}.$$

Periodogram is the squared modulus of the DFT

- For  $j=0,1,\cdots,n-1$   $d(\omega_j)=n^{-\frac{1}{2}}\sum_{t=1}^ny_te^{-2\pi i\omega_jt}$ 
  - $= n^{-\frac{1}{2}} \sum_{t=1}^{n} y_t \cos(2\pi\omega_j t) i \times n^{-\frac{1}{2}} \sum_{t=1}^{n} y_t \sin(2\pi\omega_j t)$  $= d_{\cos}(\omega_j) i \times d_{\sin}(\omega_j).$

- $d_{\cos}(\omega_j)$  and  $d_{\cos}(\omega_j)$  are the cosine transform and sine transform, respectively, of  $y_1, y_2, \cdots, y_n$
- The periodogram is  $I(\omega_j) = d_{\cos}(\omega_j)^2 + d_{\sin}(\omega_j)^2$

- For convenience, suppose that n is odd: n = 2m + 1
  - White noise: orthogonality properties of sines and cosines mean that  $d_{\cos}(\omega_1), d_{\sin}(\omega_1), d_{\cos}(\omega_2), d_{\sin}(\omega_2), \cdots, d_{\cos}(\omega_m), d_{\sin}(\omega_m)$ have zero mean, variance  $\frac{\sigma_Z^2}{2}$ , and uncorrelated
  - Gaussian white noise:
    - $d_{\cos}(\omega_1), d_{\sin}(\omega_1), d_{\cos}(\omega_2), d_{\sin}(\omega_2), \cdots, d_{\cos}(\omega_m), d_{\sin}(\omega_m)$ are i.i.d.  $N(0, \frac{\sigma_Z^2}{2})$
  - So for Gaussian white noise

$$I(\omega_j) \sim \frac{\sigma_Z^2}{2} \times \chi_2^2$$

The periodogram is not a consistent estimator of the spectral density (why?)



Background

The Periodogram and Spectral Density

Spectral Estimation

#### General case:

 $d_{\cos}(\omega_1), d_{\sin}(\omega_1), d_{\cos}(\omega_2), d_{\sin}(\omega_2), \cdots, d_{\cos}(\omega_m), d_{\sin}(\omega_m),$  have zero mean and are approximately uncorrelated, and

$$\operatorname{Var}\left[d_{\cos}(\omega_j)\right] \approx \operatorname{Var}\left[d_{\sin}(\omega_j)\right] \approx \frac{1}{2}f(\omega_j),$$

where  $f(\omega_j)$  is the spectral density function

If  $Y_t$  is Gaussian,

$$\frac{I(\omega_j)}{\frac{1}{2}f(\omega_j)} = \frac{d_{\cos}(\omega_j)^2 + d_{\sin}(\omega_j)^2}{\frac{1}{2}f(\omega_j)} \approx \chi_2^2,$$

and  $I(\omega_1), I(\omega_2), \cdots, I(\omega_m)$  are approximately independent

The periodogram is not a consistent estimator!

$$\frac{I(\omega_j)}{\frac{1}{2}f(\omega_j)} = \frac{d_{\cos}(\omega_j)^2 + d_{\sin}(\omega_j)^2}{\frac{1}{2}f(\omega_j)} \approx \chi_2^2,$$

and  $I(\omega_1), I(\omega_2), \cdots, I(\omega_m)$  are approximately independent

**Problem**:  $I(\omega_j)$  is an approximately unbiased estimator of  $f(\omega_j)$  but with too few degrees of freedom (df = 2) to be useful. Specifically,  $I(\omega) \stackrel{\cdot}{\sim} \frac{1}{2} f(\omega) \chi_2^2$ , which implies

$$\mathbb{E}[I(\omega)] \approx f(\omega)$$

and

$$Vor[I(\omega)] \approx f^2(\omega)$$

Consequently,  $\mathbb{Vor}[I(\omega)] \stackrel{n \to \infty}{\neq} 0$  and thus the periodogram is not a consistent estimator of the spectral density

Spectral Density

#### **Smoothing the Periodogram**





Backgroun

The Periodogram and Spectral Density





**Main idea**: "average" the values of the periodogram over "small" intervals of frequencies to reduce the estimation variability

CLEMS N

Background

The Periodogram and Spectral Density



$$\bar{f}(\omega_j) = \frac{1}{L} \sum_{k=-l}^{l} I(\omega_{j+k})$$



The Periodogram and Spectral Density

Spectral Estimation



A large m can effectively reduce the estimation variability but can also introduce bias

# Let's assume the true spectral density does not change much locally, then a Taylor expansion produces

$$\mathbb{E}[\bar{f}(\omega)] \approx \sum_{k=-l}^{l} W_l(k) f(\omega + \frac{k}{n})$$

$$\approx \sum_{k=-l}^{l} W_l(k) \left[ f(\omega) + \frac{k}{n} f'(\omega) + \frac{1}{2} (\frac{k}{n})^2 f''(\omega) \right]$$

$$\approx f(\omega) + \frac{1}{n^2} \frac{f''(\omega)}{2} \sum_{k=-l}^{l} k^2 W_l(k)$$

Bias 
$$\approx \frac{1}{n^2} \frac{f''(\omega)}{2} \sum_{k=-m}^{m} k^2 W_m(k)$$
  
Variance  $\approx f^2(\omega) \sum_{k=-m}^{m} W_m^2(k)$ 

**Example**: for Daniell rectangular spectral window, we have bias =  $\frac{2}{n^2(2l+1)}\left(\frac{l^3}{3}+\frac{l^2}{2}+\frac{l}{6}\right)$  and variance  $\frac{1}{2l+1}$ 

The distribution of  $\frac{\nu \bar{f}(\omega)}{f(\omega)}$  can be approximated by  $\chi^2_{df=\nu}$ , where

$$\nu = \frac{2}{\sum_{k=-l}^{l} W_l^2(k)}$$

 $\Rightarrow 100(1-\alpha)\%$  CI for  $f(\omega)$ 

$$\frac{\nu f(\omega)}{\chi_{df=\nu,1-\frac{\alpha}{2}}^2} < f(\omega) < \frac{\nu f(\omega)}{\chi_{df=\nu,\frac{\alpha}{2}}^2}$$

Taking logs we obtain an interval for the logged spectrum:

$$\log[\bar{f}(\omega)] + \log\left[\frac{\nu}{\chi_{\nu,1-\frac{\alpha}{2}}^2}\right] < \log[f(\omega)] < \log[\bar{f}(\omega)] + \log\left[\frac{\nu}{\chi_{\nu,\frac{\alpha}{2}}^2}\right]$$

The Periodogram and



The Periodogram and Spectral Density



CLEMS N UNIVERSITY

Background

The Periodogram and

Spectral Estimation



**Example**:  $Y_t = 3\cos(2\pi(0088)t) + \sin(2\pi(\frac{19}{96})t)$ ,  $t = 1, \dots, 96$ 





Background

The Periodogram and Spectral Density

Spectral Estimation



Tapering is one method used to improve the issue of spectral leakage, where power at non-Fourier frequencies leak into the

The Periodogram and Spectral Density

