Robust Tube MPC Using Gain-Scheduled Policies for a Class of LPV Systems

James Fleming Qusay Hawari Mark Cannon

63rd IEEE Conference on Decision and Control, Milan, 2024 (Also accepted to L-CSS in joint submission)

Intro and Outline

An online QP-based robust MPC method for "LPV-A" systems like

$$x_{t+1} = A(\theta_t)x_t + Bu_t$$

where θ_t is time-varying but measurable at time t, and may have rate bounds.

Unlike previous online MPC algorithms for this, we optimise over policies $u_t = Kx_t + c_t(\theta_t)$ that are affine functions of θ_t , which reduces conservatism.

Outline:

Introduction and motivation
Methodology and MPC algorithm
Closed-loop properties
Simulation examples
Conclusion

Motivation - road vehicles

- The lateral dynamics of road vehicles depend strongly on forward speed, which leads naturally to a LPV or quasi-LPV system.
- Applications: motorcycle stability assistance, steering control of autonomous vehicles.
- Ongoing EPSRC research grant in the UK (EP/X015459/1: "Learning") of safety critical model predictive controllers for autonomous systems")

Introduction and motivation

Problem formulation

Consider an LPV-A system with parameter $\theta_t \in \mathbb{R}^q$ available at time t

$$x_{t+1} = A(\theta_t)x_t + Bu_t, \quad A(\theta_t) = A^{(0)} + \sum_{i=1}^q \Delta_A^{(i)}\theta_{t,i},$$
 (1)

where $\theta_t \in \Theta$ (a polytope). Minimise a worst-case quadratic function:

$$J_0 = \max_{\theta_0, \theta_1, \dots} \sum_{t=0}^{\infty} \left(x_t^T Q x_t + u_t^T R u_t \right)$$

subject to the constraints $Fx_t + Gu_t \leq \underline{1}$.

Assumptions:

- ullet The system is quadratically stabilisable by some $u_t = K(heta_t) x_t$
- For some $\theta \in \Theta$ the pair $(Q^{1/2}, A(\theta))$ is observable.

Parameter-dependent control policy

The MPC optimises over a control policy $u_{k|t}(\theta_k) = K(\theta_k)x_{k|t} + c_{k|t}(\theta_k)$:

$$u_{k|t}(\theta_k) = K(\theta_k) x_{k|t} + \underbrace{c_{k|t}^{(0)} + \sum_{i=1}^{q} c_{k|t}^{(i)} \theta_{k,i}}_{c_{k|t}(\theta_k)}$$
(2)

where $c_{k|t}^{(0)}$ and $c_{k|t}^{(i)}$ are nonzero for k < t + N and determined online via a QP.

- This is an 'affine-in-the-parameter' control policy.
- Conceptually similar to 'affine-in-the-disturbance': planned control action depends on parameters that have not been observed yet.

By substituting in (1), (2) can write dynamics, constraint in $x_{k|t}$ and $c_{k|t}$:

$$\begin{split} x_{k+1|t} &= \bar{A}(\theta_{k|t})x_{k|t} + Bc_{k|t}(\theta_{k|t}) \\ \bar{F}(\theta_k)x_t &+ Gc_{k|t}(\theta_k) \leq \underline{1} \end{split}$$
 where $\bar{A}(\theta) = A(\theta) + BK(\theta)$ and $\bar{F}(\theta) = F + BK(\theta)$.

Autonomous LPV formulation of predictions

Concatenate $c_{k|t}^{(i)}$ into a vector $d_{k|t}$ that specifies policy at time k, then:

Concatenate $d_{k|t}$ into a vector \underline{d}_t that specifies policy over $k = t \dots t + N$:

$$d_{k|t} = \left[egin{array}{c} c_{k|t}^{(0)} \ c_{k|t}^{(1)} \ \cdots \ c_{k|t}^{(q)} \end{array}
ight], \quad \underline{d}_t = \left[egin{array}{c} d_{t|t} \ d_{t+1|t} \ dots \ d_{t+N-1|t} \end{array}
ight]$$

It is possible to write the prediction dynamics in the equivalent form

$$\begin{bmatrix} x_{k+1|t} \\ \underline{d}_{k+1|t} \end{bmatrix} = \begin{bmatrix} \bar{A}(\theta_{k|t}) & BS(\theta_{k|t}) \\ 0 & T \end{bmatrix} \begin{bmatrix} x_{k|t} \\ \underline{d}_{k|t} \end{bmatrix}$$
(3)

where $S(\theta)$ 'selects' the required combination of $c_{k|t}^{(i)}$ values and ${\cal T}$ 'shifts' up the components of $\underline{d}_{k|t}$ (shown in paper).

Upper bound on cost

This autonomous formulation as an LPV system allows us to bound the cost using a set of Lyapunov-like LMIs. If there is a $W \succeq 0$ such that:

$$W - \begin{bmatrix} \bar{A}(\theta) & BS(\theta) \\ 0 & T \end{bmatrix}^T W \begin{bmatrix} \bar{A}(\theta) & BS(\theta) \\ 0 & T \end{bmatrix}$$

$$\succeq \begin{bmatrix} Q + (K(\theta))^T RK(\theta) & 0 \\ 0 & (S(\theta))^T RS(\theta) \end{bmatrix}$$
(4)

for all $\theta \in \Theta$. Then the cost is upper bounded as

$$\max_{\theta_0,\theta_1,\dots} \sum_{k=t}^{\infty} \left(x_{k|t}^T Q x_{k|t} + u_{k|t}^T R u_{k|t} \right) \le \left[\begin{array}{c} x_t \\ \underline{d}_t \end{array} \right]^T W \left[\begin{array}{c} x_t \\ \underline{d}_t \end{array} \right]$$

Outline of proof: Pre- and post- multiply (4) by $[x_t \underline{d}_t]^T$ and its transpose, then sum over $k = t, ..., \infty$.

To apply constraints, bound the $x_{k|t}$ within polyhedra ("tube cross-sections"):

$$\mathcal{T}(\alpha_{k|t}) = \{ x \in \mathbb{R}^n \mid Vx \le g(\alpha_{k|t}) \}$$

where $\alpha_{k|t}$ are parameters of the "tube", and $g(\alpha)$ is an affine function.

Optimize over $c_{k|t}^{(i)}$ AND $\alpha_{k|t}$.

From $\mathcal{T}(\alpha_{k|t}) = \{x \in \mathbb{R}^n \mid \forall x \leq g(\alpha_{k|t})\}$ the tube cross-sections have facet normals in fixed directions, but several parameterisations are possible.

Homothetic:

$$\mathcal{T}(z_{k|t},b_{k|t}) = \{x \in \mathbb{R}^n \mid Vx \leq Vz_{k|t} + b_{k|t}\underline{1}\}$$

(translate and scale a polyhedra around the state space, low complexity, few variables required)

Different distances to each facet:

$$\mathcal{T}(z_{k|t},\underline{b}_{k|t}) = \{x \in \mathbb{R}^n \mid Vx \leq Vz_{k|t} + \underline{b}_{k|t}\}$$

(many more variables, but also less conservatism in resulting MPC)

 $T(\alpha_k)$

Applying constraints to tube

Need to ensure that the tube contains the state, and satisfies constraints:

To contain all predicted states:

$$x_{0|t} \in \mathcal{T}(\alpha_{0|t})$$

$$x_{k|t} \in \mathcal{T}(\alpha_{k|t}) \Rightarrow x_{k+1|t} \in \mathcal{T}(\alpha_{k+1|t})$$

i.e. must be subset of the preimage:

To satisfy constraints:

$$x_{k|t} \in \mathcal{T}(\alpha_{k|t}) \Rightarrow x_{k+1|t} \in \mathcal{T}(\alpha_{k+1|t})$$

i.e. must be subset of the feasible set:

$$\mathcal{T}(\alpha_{k|t}) \subseteq \{x \in \mathbb{R}^n \mid \bar{F}(\theta_k)x_t + Gc_{k|t}(\theta_k) \le \underline{1}\}$$

From subset conditions to linear constraints

We give a lemma to reformulate these subset conditions as linear constraints:

Lemma 1 (subsets of affinely-parameterised sets)

Let $\mathcal{P}_1(\beta_1) = \{x : V_1 x \leq g_1(\beta_1)\}$ and $\mathcal{P}_2(\beta_2) = \{x : V_2 x \leq g_2(\beta_2)\}$ and, for any particular value of β_1^* , let H^* be the matrix with rows h_i^T :

$$h_i^T = \underset{h \ge 0, \ h^T V_1 = v_{2,i}^T}{\operatorname{arg\,min}} h^T g_1(\beta_1^*)$$

Then $\mathcal{P}_1(\beta_1) \subseteq \mathcal{P}_2(\beta_2)$ if the inequalities $H^*g_1(\beta_1) \leq g_2(\beta_2)$ hold.

Outline of proof: Consider the LP $\max_{x \in \mathcal{P}_1(\beta_1)} v_{2,i}^T x$ which has the dual:

$$\min_{h \ge 0, \ h^T V_1 = v_{2,j}^T} h^T g_1(\beta_1)$$

The rows of H^* correspond to feasible (suboptimal) points for this dual, so if $H^*g_1(\beta_1) \leq g_2(\beta_2)$ then $\max_{x \in \mathcal{P}_1(\beta_1)} v_{2,i}^T x \leq g_{2,i}(\beta_2)$ for all rows $v_{2,i}^T$ of V_2 .

Tube constraints

We wished for the tube cross-sections to satisfy the subset conditions:

$$\{x \in \mathbb{R}^n \mid Vx \le g(\alpha_{k|t})\} \subseteq \{x \in \mathbb{R}^n \mid V(\bar{A}_{k|t}(\theta_k)x + Bc_{k|t}(\theta_k)) \le g(\alpha_{k+1|t})\}$$

$$\{x \in \mathbb{R}^n \mid Vx \le g(\alpha_{k|t})\} \subseteq \{x \in \mathbb{R}^n \mid \bar{F}(\theta_k)x + Gc_{k|t}(\theta_k) \le \underline{1}\}.$$

By applying Lemma 1 we can obtain linear constraints in the form:

$$H_{p}(\theta_{k})g(\alpha_{k|t}) + VBc_{k|t}(\theta_{k}) \leq g(\alpha_{k+1|t})$$

$$H_{f}(\theta_{k})g(\alpha_{k|t}) + Gc_{k|t}(\theta_{k}) \leq \underline{1},$$

We can also obtain conditions for the terminal tube cross-section by putting $\alpha_{k|t} = \alpha_{t+N|t}$ and $c_{k|t}(\theta_k) = 0$ for all $k \geq t + N$.

(this forces the final tube cross-section to be a positively invariant set satisfying the constraints)

MPC Algorithm

Putting everything together, the online MPC optimisation is a QP:

$$\begin{aligned} & \underset{x,\alpha_{k|t},c_{k|t}^{(i)}}{\min} & \begin{bmatrix} x_t \\ \underline{d}_t \end{bmatrix}^T W \begin{bmatrix} x_t \\ \underline{d}_t \end{bmatrix} \\ & \text{subject to} & Vx_t \leq g(\alpha_t), \\ & H_p(\theta_k)g(\alpha_{k|t}) + VBc_{k|t}(\theta_k) \leq g(\alpha_{k+1|t}), \\ & H_f(\theta_k)g(\alpha_{k|t}) + Gc_{k|t}(\theta_k) \leq \underline{1}, \\ & H_p(\theta_N)g(\alpha_{N|t}) \leq g(\alpha_{N|t}), \\ & H_f(\theta_N)g(\alpha_{N|t}) \leq \underline{1}, \\ & \text{for all } \theta_k \in \Theta \\ & \text{for all } k = t, \ldots, t + N - 1 \end{aligned}$$

If desired, can apply rate bounds via pre-processing of Θ_k (details in paper).

Closed-loop properties of algorithm

Theorem 1 - Closed-loop recursive feasibility If a solution to the optimisation problem exists at time t and the system evolves according to the dynamics (1), then a solution also exists at time t+1.

Outline of proof: By construction: if a solution existed at time t-1, can use same solution at t appended with $c_{t+N|t}(\theta) = 0$ and $\alpha_{t+N|t} = \alpha_{t+N-1|t-1}$

Theorem 2 - Exponential stability The state x_t and the control parameters d_{τ} converge exponentially to zero in closed-loop:

$$\begin{bmatrix} x_t \\ \underline{d}_t \end{bmatrix}^T W \begin{bmatrix} x_t \\ \underline{d}_t \end{bmatrix} \leq \varepsilon^{\frac{t}{n}-1} \begin{bmatrix} x_0 \\ \underline{d}_0 \end{bmatrix}^T W \begin{bmatrix} x_0 \\ \underline{d}_0 \end{bmatrix}, \quad 0 \leq \varepsilon < 1$$

Outline of proof: We can show that the upper bound on the cost is a Lyapunov function, which is guaranteed to decrease over time due to the observability assumption on $(Q^{1/2}, A(\theta))$.

- Tested using two example systems from the existing literature.
- Implemented using Yalmip and the OSQP solver.
- Compared with LMI-based MPC methods and QP-based tube MPC without the parameter-dependant control policy.

Example systems were taken from:

- [1] Y. Lu and Y. Arkun, "Quasi-min-max MPC algorithms for LPV systems," Automatica, vol. 36, no. 4, pp. 527-540, 2000.
- [2] J. Fleming, B. Kouvaritakis, and M. Cannon, "Robust tube MPC for linear systems with multiplicative uncertainty," IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1087-1092, Apr. 2015.

Example 1 - Simulation Results

Dashed: Quasi-min-max MPC [1], Solid: LPV Tube MPC (N=5) with scheduled policy. Constraint boundaries are also shown as dotted lines.

MPC Algorithm	N=5 (Alg. 1)	N=10 (Alg. 1)	Quasi-min-max [1]	
Solver	OSQP	OSQP	MOSEK	
Closed-loop cost	11.2	11.1	14.8	
Computational time /ms	5.41	10.43	7.81	

Comparison of cost and computation time for Example ${\bf 1}$

Example 2 - Simulation Results

MPC Algorithm	Robust (Alg.1)	LPV (Alg.1)	$+ \ rate \ bound$	$+ \ scheduling$	Robust [2]
ROA volume	5863	7731	8979	9824	6198
Closed-loop cost	4530	4522	3045	3002	4546
Computation time $/ ms$	3.08	3.16	3.19	4.37	5.70

Comparison of cost and computation time for Example 2

Dotted: Robust Tube MPC. Dashed: LPV Tube MPC with measurement of θ_t . Dotdash: Tube MPC with rate bounds. Solid: Tube MPC with scheduled policy.

Conclusion and future work

Summary:

- We presented a Tube MPC for LPV systems using a parameter-dependent control policy,
- Restricted to LPV systems where parameter affects only the A matrix,
- Gives improvements in closed-loop cost and region of attraction compared to some existing methods,

Current/future work:

- Implementation into a MATLAB library (to be shared on github),
- Application on a real-world motorcycle stabilisation problem,
- Further improvements to cost bound (currently only the tube constraints are relaxed based on parameter rate bounds).