

### Inteligência Artificial para Automação Industrial

# Insper

### APS1 - Projeto de Aprendizado de Máquina

Classificador de falhas de aplicações industriais acionadas por motores elétricos para máquinas rotativas

### **Objetivo**

Aplicar técnicas de Aprendizado de Máquina para desenvolver um classificador de falhas de aplicações industriais acionadas por motores elétricos para máquinas rotativas.



#### Exemplo de aplicações:









movimentações

ventiladores

bombas

agitadores esteiras

### **Dataset**

Dados obtidos de um simulador (dispositivo eletromecânico) de falhas de aplicações industriais acionadas por motores elétricos para máquinas rotativas.



<u>Dispositivo Eletromecânico</u>: sistema de transmissão mecânica do tipo rosca sem fim com engrenagem coroa, acoplado ao eixo de um motor elétrico do tipo Gaiola.



#### **Dataset**

Diferentes cenários para simular situação normal e de falhas:





Desacoplado



Sobrecarga



Desbalanceado



Desalinhado



### **Dataset**

Diferentes cenários para simular situação normal e de falhas:

| Cenários      | Descrição                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------|
| NORMAL        | Condição normal de operação Acoplamento do eixo sem fim com a engrenagem coroa                  |
| Desacoplado   | Sistema sem carga Desacoplamento do eixo sem fim com a engrenagem coroa                         |
| Sobrecarga    | Sistema com sobrecarga<br>Massa extra (± 981 g) sobre a coroa do sistema eixo sem fim           |
| Desbalanceado | Sistema com desbalanceamento<br>Massa de desbalanceamento (± 8,2 g) no disco acoplado ao eixo   |
| Desalinhado   | <b>Desalinhamento de acoplamento</b> Desalinhamento angular do eixo sem fim com o eixo do motor |

#### **Dataset**

Instrumentação para aquisição de dados:

| Sinais Coletados                                                                                      | Transdutor                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grandezas Elétricas  • I <sub>entrada</sub> [A]  • P <sub>entrada</sub> [W]  • I <sub>saida</sub> [A] | Marca KRON, modelos:<br>Transd. Analógico de Corrente AC true RMS W00-AR- W00-AR-1-0-<br>0-5-1-8-5-1 (range 0-5A)<br>Transd. Analógico de Potência Ativa W02-30-1-22-5-1-8-5-1 |
| Vibração Mecânica • Vibr.sensor1 [dB rms g] • Vibr.sensor2 [dB rms g]                                 | Marca PCB, modelo:<br>Mod.352C33. Sensitivity: (±10%) 100 mV/g , Measurement Range:<br>±50 g pk, Frequency Range: (±5%) 0.5 to 10000 Hz.                                       |

Transd. Corrente Alternada KRON W00-AR-1-0-0-5-1-8-5-1



Transd. Potência Ativa KRON W02-30-1-22-5-1-8-5-1



Acelerômetro
PCB Modelo 352C33



#### **Dataset**

Hardware de Aquisição de Sinais:

| Sinais Coletados                                                                                       | Hardware de Aquisição                                                        |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Grandezas Elétricas:<br>I <sub>entrada</sub> [A]<br>P <sub>entrada</sub> [W]<br>I <sub>saida</sub> [A] | Marca NI, modelo:<br>MyDAQ                                                   |
| Vibração Mecânica:<br>Vibr.sensor1 [dB rms g]<br>Vibr.sensor2 [dB rms g]                               | Marca NI, modelos:<br>cDAQ NI-9171 USB<br>Módulo NI-9234 para som e vibração |





Software de Aquisição de Sinais:





### **Dataset**

Disposição geral dos Transdutores e Hardware DAQ:





### **Dataset**

Atributos gerados com os sinais coletados.

| Dados                    | Sinais Coletados                               | Atributos Gerados                                                                                                                                                               |  |  |  |  |
|--------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Condição operacional     | Status da máquina                              | Normal = 0, Desacoplado = 1, Sobrecarga = 2, Desbalanceado = 3 e Desalinhado = 4                                                                                                |  |  |  |  |
| Grandezas Elétricas      | I <sub>entrada</sub> [A]                       | I <sub>entrada</sub> [A] DesvPad I <sub>entrada</sub> [A] Ampl I <sub>entrada</sub> [A] Kurtosis I <sub>entrada</sub> [A]                                                       |  |  |  |  |
|                          | P <sub>entrada</sub> [W]                       | P <sub>entrada</sub> [W] DesvPad P <sub>entrada</sub> [W] Ampl P <sub>entrada</sub> [W] Kurtosis P <sub>entrada</sub> [W]                                                       |  |  |  |  |
|                          | I <sub>saida</sub> [A]                         | I <sub>saida</sub> [A]<br>DesvPad I <sub>saida</sub> [A]<br>Ampl I <sub>saida</sub> [A]<br>Kurtosis I <sub>aaida</sub> [A]                                                      |  |  |  |  |
| Grandezas de<br>Vibração | Vibr. <sub>sensor1</sub> [dB <sub>rms</sub> g] | Magnit f Vibr. <sub>sensor1</sub> [dB <sub>rms</sub> g] Magnit 2f Vibr. <sub>sensor1</sub> [dB <sub>rms</sub> g] Magnit 3f Vibr. <sub>sensor1</sub> [dB <sub>rms</sub> g]       |  |  |  |  |
|                          | Vibr. <sub>sensor2</sub> [dB <sub>rms</sub> g] | Magnit f Vibr. <sub>sensor2</sub> [dB <sub>rms</sub> g]<br>Magnit 2f Vibr. <sub>sensor2</sub> [dB <sub>rms</sub> g]<br>Magnit 3f Vibr. <sub>sensor2</sub> [dB <sub>rms</sub> g] |  |  |  |  |

### **Dataset**

Atributos gerados com os sinais coletados.

| Atributos Gerados                                                                                         | Explicação                                                                                                              |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Normal = 0, Desacoplado = 1,<br>Sobrecarga = 2, Desbalanceado = 3,<br>Desalinhado = 4                     | Indicação manual da situação da bancada experimental. A situação é representada pelo intervalo de 0-4.                  |  |  |  |  |
| I <sub>entrada</sub> [A] P <sub>entrada</sub> [W] I <sub>saida</sub> [A]                                  | Média do sinal RMS de corrente (I) ou<br>potência (P), de entrada ou saída do<br>Inversor de Frequência                 |  |  |  |  |
| DesvPad I <sub>entrada</sub> [A]<br>DesvPad P <sub>entrada</sub> [W]<br>DesvPad I <sub>saida</sub> [A]    | Desvio Padrão do sinal RMS de corrente (I)<br>ou potência (P), de entrada ou saída do<br>Inversor de Frequência         |  |  |  |  |
| Ampl I <sub>entrada</sub> [A] Ampl P <sub>entrada</sub> [W] Ampl I <sub>saida</sub> [A]                   | Amplitude do sinal RMS de corrente (I) ou<br>potência (P), de entrada ou saída do<br>Inversor de Frequência             |  |  |  |  |
| Kurtosis I <sub>entrada</sub> [A]<br>Kurtosis P <sub>entrada</sub> [W]<br>Kurtosis I <sub>saida</sub> [A] | Curtose do sinal RMS de corrente (I) ou<br>potência (P), de entrada ou saída do<br>Inversor de Frequência               |  |  |  |  |
| Magnit f Vibr.sensor1 [dB rms g] Magnit 2f Vibr.sensor1 [dB rms g] Magnit 3f Vibr.sensor1 [dB rms g]      | Amplitude Power Spectrum do sinal de vibração, na frequência fundamental f (de rotação do motor) e suas harmônicas (2 x |  |  |  |  |
| Magnit f Vibr.sensor2 [dB rms g] Magnit 2f Vibr.sensor2 [dB rms g] Magnit 3f Vibr.sensor2 [dB rms g]      | 3 x f)                                                                                                                  |  |  |  |  |

#### **Dataset**

Registros salvos em arquivo CSV: 🗐 Dataset APS1\_Sinais Eletricos e Vibracao\_csv.xls

|                        | tempo_s | tipo_setup | I_entrada_A | P_entrada_W | I_saida_A | DesvPad_I_entrada_A | DesvPac<br>_P_entrada_W |                      | Amp_I_entrada_A | Amp_P_entrada_W             | Amp_     |
|------------------------|---------|------------|-------------|-------------|-----------|---------------------|-------------------------|----------------------|-----------------|-----------------------------|----------|
| 0                      | 0.00    | 0.0        | 0.44905     | 63.67320    | 1.43660   | 0.042740            | 21.869566               | 0.113479             | 0.175           | 91.738                      |          |
| 1                      | 0.08    | 0.0        | 0.44610     | 69.40320    | 1.67860   | 0.048945            | 1.600020                | 0.854342             | 0.227           | 7.359                       |          |
| 2                      | 0.16    | 0.0        | 0.45175     | 69.11385    | 1.39950   | 0.042337            | 5.220348                | 0.284000             | 0.207           | 24.185                      |          |
| 3                      | 0.24    | 0.0        | 0.43510     | 68.85665    | 1.39705   | 0.063224            | 3.437546                | 0.219507             | 0.228           | 16.040                      |          |
| 4                      | 0.32    | 0.0        | 0.45055     | 70.52860    | 1.43375   | 0.048497            | 1.240032                | 0.111967             | 0.222           | 4.394                       |          |
|                        |         |            |             |             |           |                     |                         |                      |                 |                             |          |
| 2500                   | 39.68   | 4.0        | 0.46575     | 68.42795    | 1.59235   | 0.042147            | 8.0588                  | D                    | ados            | tipo_s                      | etup     |
| 2501                   | 39.76   | 4.0        | 0.44705     | 62.32815    | 1.57365   | 0.068987            | 15.8766                 | Condição operacional |                 | . –                         | <u>'</u> |
| 2502                   | 39.84   | 4.0        | 0.47110     | 76.04075    | 1.77275   | 0.045194            | 34.7997                 |                      |                 | 0.0 - Norma                 | al       |
| 2503                   | 39.92   | 4.0        | 0.47745     | 72.86850    | 1.39700   | 0.043033            | 0.8264                  |                      |                 | 1.0 - Desac                 | oplad    |
| 2504                   | 40.00   | 4.0        | 0.48705     | 70.70715    | 1.51215   | 0.114987            | 12.3669                 |                      |                 | 2.0 – Sobre                 | carga    |
| 2505 rows × 20 columns |         |            |             |             |           |                     |                         |                      |                 | 3.0 - Desba<br>4.0 - Desali |          |

### **Requisitos do Projeto**

- 1. Seguir todas as etapas necessárias de um projeto de A.M. (\* vide próximo slide)
- 2. Documentar as etapas do projeto: markdown do arquivo Jupyter Notebook e linhas de comentários
- 3. Adotar ferramentas necessárias para cada etapa quanto mais recursos utilizados corretamente, melhor a avaliação do projeto
- 4. Desenvolver função para entrada de valores de atributos e posterior classificação de falha
- 5. Entrega: arquivo Jupyter Notebook (.ipynb) e seu arquivo pdf.

Prazo de entrega: 19/set

### Etapas de projeto de Aprendizado de Máquina

(\*) Em cor azul, destaque das atividades da APS1

#### 1. Analisar o Panorama Geral

- Abordar o problema
- Escolher medida de desempenho
- Verificar hipóteses

#### 2. Obter Dados

- Instrumentar/ Aquisitar dados
- Armazenar dados

### 3. Explorar os Dados

- Visualizar dados
- Analisar dados

#### 4. Pré-processar os Dados

- Limpar dados
- Criar novas características
- Normalizar/ Padronizar
- Selecionar características

#### 5. Desenvolver Modelo

- Escolher algoritmo(s)
- Treinar/ Ajustar / Avaliar
- Selecionar algoritmo

#### 6. Implementação

- 7. Monitoramento Contínuo
- 8. Avaliação de Resultado