

UNIVERSIDAD ESCUELA COLOMBIANA DE INGENIERIA DESARROLLO ORIENTADO POR OBJETOS - (DOPO) 2025 - 02

Integrantes: Dana Valeria Leal Guzmán - José Luis Lancheros Ayora	Semana 04
Profesores: Orlando Antonio Gelves - María Irma Diaz Rozo	Ciclo No1

PROYECTO INICIAL

CICLO NÚMERO UNO

RETROESPECTIVA

- . ¿Cuáles fueron los mini-ciclos definidos? Justifíquenlos.
- 2. ¿Cuál es el estado actual del proyecto en términos de mini-ciclos? ¿por qué?
- 3. ¿Cuál fue el tiempo total invertido por cada uno de ustedes? (Horas/Hombre)
- 4. ¿Cuál consideran fue el mayor logro? ¿Por qué?
- 5. ¿Cuál consideran que fue el mayor problema técnico? ¿Qué hicieron para resolverlo?
- 6. ¿Qué hicieron bien como equipo? ¿Qué se comprometen a hacer para mejorar los resultados?
- Considerando las prácticas XP incluidas en los laboratorios. ¿cuál fue la más útil? ¿por qué?
 ¿Qué referencias usaron? ¿Cuál fue la más útil? Incluyan citas con estándares adecuados.
- 1) ¿Cuáles fueron los mini-ciclos definidos? Justifiquenlos
 - Mini-ciclo 1 Preparar el tablero (setup): crear tiendas y robots con placeStore y placeRobot. Además, comprobar si ya hay algo en la posición con hasStoreInLocation y hasRobotInLocation.
 - Lo hicimos de esta forma ya que consideramos que sin esto no hay "juego", necesitamos ubicar piezas y validar que no se pisen.
 - Mini-ciclo 2 Cambios durante el juego: quitar elementos (removeStore, removeRobot) y mover robots (moveRobot).
 Pensamos que es la parte dinámica del juego, eliminar o actualizar y aplicar.
 - Pensamos que es la parte dinámica del juego, eliminar o actualizar y aplicar la regla de negocio (si el robot termina en una tienda con stock, se calcula la ganancia y se vacía la tienda).
 - Mini-ciclo 3 Reinicios rápidos: resupplyStores, returnRobots, reboot, finish. El juego debe reiniciar condiciones sin crear otro objeto: reabastecer, volver robots al origen, poner profit en 0 o limpiar todo.
 - Mini-ciclo 4 Consultas: Profit, stores() y robots(), y ok()(cómo quedó la última operación).
 - Ya que necesitamos leer el estado de forma segura y saber si lo último salió bien o mal.
- 2) Estado actual del proyecto (por mini-ciclos) y por qué

Listo: 1 (setup), 3 (reinicios) y 4 (consultas) funcionan bien según nuestras pruebas

PONELA GIAMPI II

UNIVERSIDAD ESCUELA COLOMBIANA DE INGENIERIA DESARROLLO ORIENTADO POR OBJETOS - (DOPO) 2025 - 02

3) Tiempo total invertido por persona (Horas/Hombre)

José 11 horas

Dana 11 Horas

- 4) Mayor logro y por qué
 - Organizar el trabajo por mini-ciclos. Ya que facilitó probar cada parte por separado y evitó efectos secundarios.
- 5) Mayor problema técnico y cómo lo resolvimos
 - **Problema:** la variable ok se quedaba en false al final de removeStore, removeRobot y moveRobot aunque la operación hubiera salido bien; además, moveRobot permitía posiciones fuera del rango.
 - **Solución propuesta:** usar una bandera local (removed/moved) y al final hacer ok = removed/moved.
- 6) ¿Qué hicimos bien como equipo? ¿Qué prometemos mejorar?
 - · Bien hecho:
 - o Programación por parejas con rotación y comunicación clara.
 - o Commits pequeños por mini-ciclo y mensajes entendibles.
 - o Diseño simple primero y documentación Javadoc.
 - · Mejorar: pensar mas en casos de borde
- 7) Práctica XP más útil y por qué
 - Más útil: programación por parejas + entregas pequeñas por mini-ciclo.

Por qué: recibimos feedback inmediato, menos errores y foco en terminar funcionalidades completas paso a paso.

8) Referencias usadas

Kölling, M. (s. f.). BlueJ Documentation. https://www.bluej.org/