Lecture 17 (Feb. 22)

Forced Undanged Harmonic oscillator

my"+ky = F(t)
external force

We are especially interested in the case $T = F_o coswt \qquad (periodic driving force)$

my" + ky = Focoswt

Solution to the homogeneous egn.

C, cosw.t + C, sin W.t

Wo = 1/m (Assume W + Wo for now)

Find a special soln to inhomogeneous egn

T(+) = ALOSWY

(Ve don't include a sine function because no first order derivative in DE)

Y"(+) = - w A (05 w t

-mw Acosut + k Acosut= fo coswt

$$A = \frac{F_o}{k - w^2 m} = \frac{F_o}{m(w_o^2 - w^2)} \qquad (k = m w_o^2)$$

$$2f$$
 $y(0) = 0$, $y'(0) = 0$

$$C_1 + \frac{F_0}{m(W_1^2 - W^2)} = 0$$

$$y = \frac{F_0}{m(w_0^2 - w^2)} (w_0 w_0 t - (w_0 w_0 t))$$

$$\frac{\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}}{2 + \infty}$$

$$=-\frac{2\overline{+o}}{m(w_o^2-w^2)}\sin\frac{w+w_o}{2}+\sin\frac{w-w_o}{2}+$$

amplitude: |2 Fo | vapid oscillating

 $\sin \frac{9}{2}t$ has more rapid oscillation than $\sin \frac{1}{2}t$

amplitude $\frac{2}{9}|\sin \frac{1}{2}t|$: Periodic variation.
This type of motion is called beats

What happens when w=w.?

$$y = \frac{2F_0}{m(w^2-w_0^2)} \sin \frac{w-w_0}{2} + \sin \frac{w+w_0}{2} +$$

$$y = \frac{1}{2} + \sin t$$

The amplitude of oscillation blows up
The amplitude of oscillation blows up If the frequency of the driving force is exactly the same with the natural frequency of the
harmonic oscillator
This is called "resonance"
Forced Darped Harmonic Oscillator.
$my'' + yy' + ky = F_0 \cos wt$
general solutions
y = C, y, + Gy, + A coswt +B sinut
roots of the characteristic egns visas
$mr^2 + Yr + k = 0$
170 $1.7.$ real and negative
Or complex with negative real part
y,(+) →0 as +>∞
ye is called the "transient soln"
Y is called the "steady state solution"
or "forced response"

Electrical vibration

I: electrical current

$$V_{c} + V_{R} + V_{L} = V$$

$$V_{c} = \frac{q}{c}$$

$$V_{R} = R I = R \frac{dq}{dt} \qquad I = \frac{dq}{dt}$$

$$V_{L} = L \frac{dI}{dt} = L \frac{d^{2}q}{dt^{2}}$$

$$L \frac{dq}{dt} + R \frac{dq}{dt} + \frac{1}{c}q = V(t)$$

$$q(t_{0}) = q_{0} \qquad q'(t_{0}) = I(t_{0}) = I_{0}$$

$$I(t, 0) = I_0$$
, $I'(t, 0) = \frac{d^3q}{dt^2}(t, 0)$
= $\frac{1}{L}(V(t, 0) - \frac{1}{L}Q(t, 0) - RI(t, 0))$

Gen	eral	produce	of	method	of	undetermined
	ſ		1)	
C-06+	(. - i ~ i en=	3				

$$ay'' + by' + (y = G(t))$$

$$G(t) = P_{n}(t) e^{\lambda t} \binom{(0)\beta t}{\sin \beta t}$$

D Find homogeneous solutions C, y, + C, y,

D Seek special soln Y as a linear combination of G and its devivatives

3 Ask: Are there any terms in Y solutions to the homogeneous eqn? Yes

No

go to sep@

multiply: Y by t

9 Insert Y into DE and datermine the settinients.

Example: y"+y=cost

O. C, Lost + Gsint

& Sock partialar som

1) Yes Lost, sint are solns to the

3 Repeated, Wo.

$$A = 0$$
, $B = \frac{1}{2}$