Deep RL and Beyond

2019 Fall

Yusung Kim yskim525@skku.edu

Distributed Prioritized Experience Replay [ICLR 2018]

► A distributed architecture based on Prioritized Experience Replay

- ► Actors paly and store Experience in shared memory
 - \blacktriangleright each actor uses a different epsilon value for ϵ -greedy
 - ightharpoonup periodically copy θ from Learner
- ► A single Learner with GPU learns from shared Experience Replay
 - ▶ Dueling Double Q-learning with PER & Multi-Step

Ape-X Architecture

360 actors, 139 FPS per actor (360 * 139 = 50K FPS)

Performance Results

Recurrent Experience Replay in Distributed Reinforcement Learning [ICLR 2019]

► Investigate the training of RNN-based RL agents from distributed prioritized experience replay

► Study the effects of parameter lag resulting in representational drift and recurrent state staleness

► The first record to exceed human-level performance in 52 of the 57 Atari games!

R2D2 Performance Results

Montezuma Revenge ...

GAMES	HUMAN	REACTOR	IMPALA(s/D)	APE-X	R2D2
frostbite	4334.7	8042.1	269.6/317.8	9328.6	315456.4
gopher	2412.5	69135.1	1002.4/66782.3	120500.9	124776.3
gravitar	3351.4	1073.8	211.5/359.5	1598.5	15680.7
hero	30826.4	35542.2	33853.2/33730.6	31655.9	39537.1
ice_hockey	0.9	3.4	-5.3/3.5	33.0	79.3
jamesbond	302.8	7869.3	440.0/601.5	21322.5	25354.0
kangaroo	3035.0	10484.5	47.0/1632.0	1416.0	14130.7
krull	2665.5	9930.9	9247.6/8147.4	11741.4	218448.1
kung fu master	22736.3	59799.5	42259.0/43375.5	97829.5	233413.3
montezuma_revenge	4753.3	2643.5	0.0/0.0	2500.0	2061.3
ms_pacman	6951.6	2724.3	6501.7/7342.3	11255.2	42281.7
name_this_game	8049.0	9907.1	6049.6/21537.2	25783.3	58182.7
phoenix	7242.6	40092.3	33068.2/210996.5	224491.1	864020.0

Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model [DeepMind 2019]

► A tree-based search with a learned model

- Without any knowledge of the underlying dynamics
 - No knowledge of the game rules

(Go, Chess, Shogi, and 57 Atari games)

MuZero Performance Results

Montezuma Revenge ...

Game	Random	Human	SimPLe 20	Ape-X [18]	R2D2 [21]	MuZero	MuZero normalized
centipede	2,090.87	12,017.04	_	12,974.00	599,140.30	1,159,049.27	11,655.6 %
chopper command	811.00	7,387.80	979.40	721,851.00	986,652.00	991,039.70	15,056.4 %
crazy climber	10,780.50	35,829.41	62,583.60	320,426.00	366,690.70	458,315.40	1,786.6 %
defender	2,874.50	18,688.89	-	411,944.00	665,792.00	839,642.95	5,291.2 %
demon attack	152.07	1,971.00	208.10	133,086.00	140,002.30	143,964.26	7,906.4 %
double dunk	-18.55	-16.40	-	24.00	23.70	23.94	1,976.3 %
enduro	0.00	860.53	-	2,177.00	2,372.70	2,382.44	276.9 %
fishing derby	-91.71	-38.80	-90.70	44.00	85.80	91.16	345.6 %
freeway	0.01	29.60	16.70	34.00	32.50	33.03	111.6 %
frostbite	65.20	4,334.67	236.90	9,329.00	315,456.40	631,378.53	14,786.7 %
gopher	257.60	2,412.50	596.80	120,501.00	124,776.30	130,345.58	6,036.8 %
gravitar	173.00	3,351.43	173.40	1,599.00	15,680.70	6,682.70	204.8 %
hero	1,026.97	30,826.38	2,656.60	31,656.00	39,537.10	49,244.11	161.8 %
ice hockey	-11.15	0.88	-11.60	33.00	79.30	67.04	650.0 %
jamesbond	29.00	302.80	100.50	21,323.00	25,354.00	41,063.25	14,986.9 %
kangaroo	52.00	3,035.00	51.20	1,416.00	14,130.70	16,763.60	560.2 %
krull	1,598.05	2,665.53	2,204.80	11,741.00	218,448.10	269,358.27	25,083.4 %
kung fu master	258.50	22,736.25	14,862.50	97,830.00	233,413.30	204,824.00	910.1 %
montezuma revenge	0.00	4,753.33	-	2,500.00	2,061.30	0.00	0.0 %
ms pacman	307.30	6,951.60	1,480.00	11,255.00	42,281.70	243,401.10	3,658.7 %
name this game	2,292.35	8,049.00	2,420.70	25,783.00	58,182.70	157,177.85	2,690.5 %
phoenix	761.40	7,242.60	-	224,491.00	864,020.00	955,137.84	14,725.3 %

Other Interesting Topics in RL

- Transfer, Multitask, and/or Meta Reinforcement Learning
- ► Imitation Learning and Inverse Reinforcement Learning
- ► Multi-Agent Reinforcement Learning
- ► Safe Reinforcement Learning
- **►** Exploration / Intrinsic Motivation

Exploration by Random Network Distillation [ICLR 2019]

Progress in Montezuma's Revenge

Go-Explore: a New Approach for Hard-Exploration Problems [Uber-Al 2019]

The mean score is 35,410 which beats human experts for the first time!

https://eng.uber.com/go-explore/

Concluding Remarks

- ► Have studied from MDP to Deep Reinforcement Learning.
- ▶ RL researches are getting general, stable, and scalable.
- ► Many open source codes & various RL environments
- Interests about RL have been growing rapidly.
- ► Above all, RL is really fun!

