2.3) THE MIPERBOLA A hypebola in the plane consists of all points the difference of whose distances from two placed points Fr and Fr (the Joil) remains at a constant value of 2a Contict must be less than the distance between the foci). By dej = 1r-51 = 2a To determine the curve analysically we choose ares so that F, and Fr are at (-c,0) and (c,0) (Proof to be done in tutgerisk class) For a point (x,y) on the hyperbola and r and s as shown we have =) | \((x+c)^2+y^2 - \((c-x)^2+y^2\) | = 2a (7) The simplification of eggin (7) is similar to there of egg (2) and is less as an exercise.

again results in egg (3) $(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$

-	
	Note this time to a so we set
	62 = c2 - a2 8 + 50b into 3 to get
١	$-b^{2}x^{2} + a^{2}y = a^{2}(-b^{2})$
	J
	$\frac{1}{2}$ $x^2 - a^2 - 1$ 9 which is the
	=> $\frac{x^2 - y^2}{a^2} = 1$ ① which is the Standard Join of the eg = of the hyperbolk.
	Standard Join of
+	Co eg - of the
+	hyperbolk.
+	
_	NOTE
	For a Lyperbola, we think of ar as the
	number Ender the anadrotic vericale with
	positive sion
7	Note For a hyperbola, we think of a 2 as the number order the quadratic variable with positive sign,
1	
	Skaled W. 1 1 1 2 2 2 1
-	Example 1 Sketch ble Lyperbola 22-g2=1
	01
	showing the asymptotes + Joci.
4	Showing the asymptotes + Joci.
	<u>Jol</u>
-	Sol = $Asymptotes$ $g = t(3/4) \times From (8)$ $c^2 = a^2 + b^2 = 16 + 9 = 25 \Rightarrow c = 5$
_	
	C'= a2+62 = 16+9 = 25 => C=5
	: The foci are (-5,0) and (5,0)
	y = 3/4 X
-	F, Fz
-	-8 74 4 8 X
-	
-	
	y = -3, x
	J 14
- T	

Like the garah la Joes Les allipse + PARABOLA l, lz_ Directrises: $\begin{array}{cccc}
\lambda &=& \pm a^2 &=& \pm a \\
a^2 & & & & \\
c & & & \\
c & & & \\
\end{array}$ 2 UYPER BOLA $\frac{\partial^2 F_1}{\partial x^2} = \frac{1}{2} \frac{\partial^2 F_2}{\partial x^2} = \frac{1}{2}$ -a in tutorido for ellipse exercise for hyperbola. THE 3.1 (Proof exercise)

THE P is a point on an ellipse or hyperbola then Distance from P to a focus = c Distance from P to the a associated directrix contricity of the ellipse DEF The number the eccent of hyperbo.

Find the eccentricity + directrices for the hyperbola x2 y2-1 = 5 (saw earlier) ° 0 <u>a</u> . . 10 . .

In view of eg " (1) and (2) and the def of a partioln given in Chp 2, all 3 consic sections can be defined concidely as Jellows: -DEF =: STNTHETIC DESCRIPTIONS Let F be a point in the plane and I a line not containing F. Let e be any positive number. The curve in the plane consisting of all points P such that Distance from P to F = e 1) a parabola i je = 1 2) on ellipse i je = 1 3) a hyperbola i je > 1 Find the eg of the hyperbola with a focus at (-1, 2) associated dired-ix y=1 and with eccentricity 3/2. $e = \frac{\Gamma}{S} = \sqrt{(x+1)^2 + (y-2)^2} = \frac{3}{2}$ $= (x+1)^{2} + (y-2)^{2} = \frac{9(y-1)^{2}}{4}$ $= 7 + x^2 - 5y^2 + 8x + 2y + 11 = 0$