Mecánica

Presentación de Curso

Ing. Eduardo Flores Rivas

Facultad de Ingeniería Universidad Nacional Autónoma de México

Semestre 2026-1

Contenido

- Objetivo de la asignatura
- 2 Temario
- Calendario
- 4 Evaluación
- 5 Requisitos para calificación final
- 6 Contacto
- Bibliografía

Objetivo de la asignatura

Objetivo: El alumno aplicará los conceptos fundamentales de las ecuaciones diferenciales para resolver problemas físicos y geométricos.

Temario

TEMA	HORAS
1. Ecuaciones diferenciales de primer orden lineales y no lineales	15
2. Ecuaciones diferenciales lineales de orden superior	15
3. Transformada de Laplace y sistemas de ED lineales	20.5
4. Introducción a las ecuaciones diferenciales en derivadas parciales	13.5
TOTAL	64

Calendario

5 / 13

Evaluación

Rubros de evaluación

Exámenes parciales	65 %
Tareas	25 %
Series de ejercicios	10 %
TOTAL	100 %

Forma de trabajo

- Horario: martes y jueves de 13:00 a 15:00, salón J103.
- Tareas y series de ejercicios
 - ✓ Individuales
 - √ Escritas a mano (lapiz o digital)
 - ✓ Entregadas una semana después de que su solicitud (a menos de que se indique lo contrario)
 - ✓ Entregadas en Classroom.

Todo comportamiento antiético causara una calificacion de 0 en el entregable correspondiente. Copiar tareas o exámenes es un ejemplos de esto.

Exámenes parciales colegiados

La asignatura cuenta con exámenes parciales colegiados y tendrán lugar en las siguientes fechas:

• Primer examen parcial

- Examen tipo C: 10 de octubre (viernes)
- Exámenes tipo A y B: 11 de octubre (sábado)

Segundo examen parcial

- Examen tipo C: 7 de noviembre (viernes)
- Exámenes tipo A y B: 8 de noviembre (sábado)

Si alguien no puede asistir en sábado, favor de notificar al profesor para que puedan presentar el examen tipo C el viernes.

Por el contrario, si alguien desea presentarse el día sábado, pero necesita un justificante para sus actividades extraescolares, favor de notificar con tiempo al profesor para generar el comprobante.

Aula digital

Para la entrega de tareas y calificaciones, se usará Google Classroom, favor de ingresar con el siguiente código:

pob4i57n

Requisitos para calificación final

Para ser acreedor a calificación final, el alumno deberá haber cursado la asignatura.

Se considera que un alumno inscrito al grupo **cursó la asignatura** si cumple con:

- Presentar todos los exámenes parciales
- Entregar todas las series de ejercicios
- Entregar al menos el 50 % de las tareas

En caso de no cumplir con lo anterior, se asentará como calificación final **NP** (no presentado).

Todo alumno que cumpla con los requisitos y acumule un 70 % de calificación a lo largo del curso, quedará **exento del examen ordinario** (final).

Se considera un redondeo simétrico para la calificación final.

Examen ordinario

Si el alumno cursó la asignatura y no exentó, tiene las siguientes opciones:

- Presentar la primer vuelta del examen final
- Presentar la segunda vuelta del examen final (solo si no se aprobó la primer vuelta)
- No presentar examen final

En cualquier caso, si se presenta un examen ordinario y se aprueba (6, 7, 8, 9 o 10), dicha calificación será asentada en actas y es definitiva (no se puede renunciar a ella).

Por otro lado, si se decide presentar un examen ordinario y no se aprueba ni la primera ni la segunda vuelta, la calificación asentada será de **5** (no acreditado).

En caso de no estar exento y no presentar ninguna de las dos vueltas del examen final, se asentará **NP** (no presentado).

TAREA 1: Examen diagnóstico

Ingresar a la página de exámenes en línea de la DCB, iniciar sesión y contestar el examen de salida.

Clave del grupo 22 de Ecuaciones Diferenciales: **19534642** Subir a Classroom una captura de pantalla donde se vea que se han enviado las respuestas.

Exámenes en línea de la DCB

EXÁMENES DIAGNÓSTICO

POR ASIGNATURA

Semestre 2026-1

Se llevarán a cabo del lunes 11 de agosto a las 10:00 h al viernes 22 de agosto a las 18:00 h

Podrán consultarse los resultados del examen a partir del lunes 1 de septiembre de 2025 a las 10:00 h

El examen está disponible únicamente para asignaturas de Ciencias Básicas de los planes de estudio 2016, consulta la lista <u>aquí.</u>

Para poder contestar el examen, pide al profesor o profesora de tu grupo que te proporcione la clave de matriculación,

https://dcb.ingenieria.unam.mx/index.php/examenes-en-linea/

Contacto

Eduardo Flores Rivas Ingeniero Mecatrónico Facultad de Ingeniería, UNAM eduardo.flores@ingenieria.unam.edu

Bibliografía obligatoria y recomendada

- BEER, Ferdinand, JOHNSTON, Russell, MAZUREK, David Mecánica vectorial para ingenieros, estática. 10a. edición. México, McGraw-Hill. 2013.
- BEER, Ferdinand, JOHNSTON, Russell, CORNWELL, Phillip Mecánica vectorial para ingenieros, dinámica. 10a. edición. México. McGraw-Hill, 2013.
- HIBBELER, Russell
 Ingeniería mecánica, estática.
 12a. edición. México. Pearson Prentice Hall, 2010.
- HIBBELER, Russell
 Ingeniería mecánica, dinámica.

 12a. edición. México. Pearson Prentice Hall, 2010.

2026-1