pent avoir plus	F(a) = F(b)
Forchion injective. £a, b e A tq. si un élément d peut avoir plus	F(a) = F(b)
si un élément d	
	le l'ensemble de dépar
	le fin, chaque élémen
	ent de départ.
Fonction sujective YbEB: Jae	A tq $f(a) = b$.
chaque élément lie à au moirs de départ	t de l'ensemble de his un dénent de l'en
Fonction bijective à la fois injective	e et surjectue.
Scéance 2	
	ons possibles de n €
est n!	
Choix le nombre de selections pos	sibles de kell indisce
pamineM est (n)=	$\frac{n!}{k!(n-k)!} = \binom{n}{n-k}$
Binome de Newton. (5c+y) = E	$\binom{n}{k} \propto k y^{n-k}$
Scéance 3	
Combinaison avec répétition le nombre de mo	anières de sélectionnes :
	s d'objets ou avanger
	, sous ordre et avec rég
· [20] [4] [2] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	$\begin{pmatrix} 1 - 1 \end{pmatrix} = \begin{pmatrix} 5 + d - 1 \end{pmatrix}$
d	-1/=(5)
Sélection kobjets parmin o	ordonnée non-ordonné
Sans repetition n!	$i = K \cdot \begin{pmatrix} 1 \\ K \end{pmatrix} \qquad \begin{pmatrix} 1 \\ K \end{pmatrix}$
	nk $\binom{n+k-1}{n}$

 $\sum_{N=k}^{\infty} \binom{N}{k} = \binom{M+1}{k+1}$ Sonne parallèle Scéance 4 Graphes non-diriges pow u, v E V et e e E, fu, vf = fv, uf ou et v sont les extrénités de e o u et v sont adjacents/voisins e u et v Sont incidents à e pour d(v), le nombre d'arêtes incidentes à v Z d (v) = 2 | E | (handshaking theorem) Graphes dirigés pour a, v e V et e e E, $\{u,v\}\neq\{v,u\}$ e est une arête sortant de u e est une arête entrant dans v vest un successeur de u u est un prédécesseur de v. pour d'(v), le nombre d'arêtes entrant dans v et d'(v), le nombre d'avetes sortant de V, $\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = |E|$ Scéance 5 Graphe simple non-dirige, sours boncle ni avoite multiple. composante connece, alors si: > tous les degrés sont pairs: Cravit d'Euler - tous les degrés sont pairs sant max 2: Chemin d'Ever Faiblement connexe (graphe dirigé) si 2 sommets sont toujours lies Sans prendre en compte la direction des arcs. Fortement connexe (graphe dirigé) si 2 sommets sont toujours lies en prevant la direction des aucs en considération.

Maths Discretes Rappels Scéance 6. oà n sommets, a Arbre m-aire entier > i = (n-1)/m sommets internes. -> L = [(m-1)n + 1]/m Femilles o à i sommets internes; a: > n = mi+ 1 sommets > L = (m-1) i + 1 feuilles o à l'feuilles; a: > n = (m(-1)/(m-1) sommets $\rightarrow i = (\ell - 1)/(m - 1)$ sommets internes on = i + L. o h≥ log n [], hauteur de l'aubre Arbre couvrant minimal. Algorithme de Prim o on ajoute un sommet adjacent dont l'aire à le poids minimal à l'aire en création. Algorithme de Kruskal

o on ajoure les arêtes par ordre crossant de poids, ignocant celles qui deviennent redordantes (créant un cycle).

Sceance 7

Code de Priiher

sommet adjacent, celui de poids le plus faible est retire g et le sommet adjacent est retenu. jusqu'à ce qu'il ne reste que 2 sonnets

Scéance 8 Nombre d'or $\varphi^{2} = \varphi + 1, \quad \varphi = \frac{1 + \sqrt{5}}{2}$ Fibonacci Fn+1 = Fn + Fn-1 Equations de récurrence eg: an = xan-, + xan-z, oc, yell x quand los coefficients sont constants · la solution générale de l'équation homogène associée est tronvée. e la solution ponticulière est travée si l'équation n'est pas homogène x quand les coefficients ne sont pas constants a on improvise por l'equation HA (goodles) . idem que quand constant et pas homogène. > la somme des solutions fourni la solution spécifique. Scéance 9 Comportement asymptomique of $(n) \in O(g(n))$ si 3 CER, N∈Ntq f(n) ≤ Cg(n): Vn∈N o $f(n) \in \Omega(g(n))$ si FCER, NEIN to fin) > Cg(n): VneN · f(n) e O(g(n))si f(n) = O(g(n)) et f(n) = Q(g(n)) Master theorem. pour $a(n) = \kappa a(\frac{n}{\beta}) + F(n)$, où $\kappa > 1$, $\beta > 1$ et $F: N \rightarrow \mathbb{R}_+$ 1. f(n) ∈ O (n logp x-E) *, alors (* pom E>0). $a(n) \in \Theta(n^{\log_{\beta} \alpha})$ 2. $f(n) \in \Theta(n^{\log \beta} x)$, alors a(n) e \(\text{O}\)(n\logp\) \log_2\n) s. f(n) ∈ Ω (n logp x + E) et x f(n/B) < Cf(n)
pour C< 1, alors $a(n) \in \Theta(f(n))$