软件学院本科生 2020--2021 学年第 2 学期算法导论课程期末考试试卷 (A 卷)

成绩:

得分

- 选择题(本题共 30 分,每小题 3 分)

1. 从渐近分析的角度看,哪个函数增长最快?

 $B.2n^3 + 5n^2 + n$ A.2n + 3

 $C.10^{n}$

D. n log n

快速排序的平均时间复杂度是(

A.O(n)

B.O(n log n)

 $C.O(n^2)$

D.O(log n)

3. 如果m 表示图中的边数,n 表示节点数。则 Prim 的时间复杂度为 (

)A.

B.O $(n\log m)$

 $C.O(m \log n) D. O(n+m)$

4. 下列哪些问题可以用动态编程法解决(

A.最小生成树 B. 稳定匹配 C. 合并两个有序数组

D.加权区间计划表

5. 考虑以下函数 f(n), g(n), 满足 f(n) = O(g(n)) 和 $g(n) \neq O(f(n))$? (

A. $f(n) = n^3, g(n) = n^2 \log(n^2)$

 $B.f(n) = \log \sqrt{n} , g(\overline{n}) = n \log \sqrt{n}$

 $C.f(n) = \sqrt{n} + 1, g(n) = 10\sqrt{n}$

 $D.f(n) = \log n + 1.001^n, q(n) = 1000 \log \sqrt{n}$

草稿 区

第1页, 共8页

6. 给定一个图 G,它的所有边都是正加权的。假设您按如下方式改变 G 中每条边的长度。G 中的每条最短路径也是 G'中的最短路径

吗? (

A.乘以 10

B.加 10

C.取其平方 (平方)

D.取其平方根(开平方)

7. 在下面的图中,从 A 到 E 的最短路径的长度是多少?

A. 14 B.15 C.16 D.17

8. 贪心算法与动态编程算法的主要区别是()。

A.最优子结构

B.定义最优解

C.构建最优解

D.贪心选择

9. 下面代码的时间复杂度是多少? (

int count = 0;

for (int
$$k = 1$$
; $k \le n$; $k *= 2$) for

$$(j = 1; j \le n; j++)$$

count++;

 $A.O(n \log n)$

 $B.O(\log n)$

C.O (n)

 $D.O(n^2)$

第2页, 共8页

10. 给定下列最爱顺序,当前的配对是{亚特兰大-泽维尔,波士顿-宙斯,芝加哥-约兰达}。哪一对是不稳定配对?(___)

	第一对	第二对	第三对
亚特兰大	泽维尔	约兰达	宙斯
波士顿	约兰达	泽维尔	宙斯
芝加哥	泽维尔	约兰达	宙斯

	第1名	第2名	第3名
泽维尔	波士顿	亚特兰大	芝加哥
约兰达	亚特兰大	波士顿	芝加哥
宙斯	亚特兰大	波士顿	芝加哥

A.亚特兰大-约兰达 B.波士顿-约兰达 C. 芝加哥-宙斯芝加哥-宙斯 D.波士顿-泽维尔

得分

二、填空题(本题共 20分, 每空 2分) 1.

- 1. 设计动态编程算法的步骤:将问题分解成一系列问题()。
 - a) 将问题分解成一系列_____;
- 2. 对下列函数进行排序: 6n+1, $\log \sqrt{n}\sqrt{2n}$, (2n+1)!, $3\sqrt{n}$ 对计算复杂度由高到低排序:

for (int k = 0; k < n; k++)

for (int i = 0; i < n; i++)

for (int j=0; j < n; j+++)

d[i][j] = min(d[i][j], d[i][k] + d[k][j])

第3页, 共8页

6. 在间隔调度问题中,我们按完成时间对调度表进行排序。当两个计划表的完成时间相同时、的那个 (起始时间(早/晚)的计划表优先级更高(应被安排)。

得分

三、简答题(本题共 20 分)

1. 根据下图回答问题。(**本小题 12** 分)

- a) 这个图的最小生成树(MST)中有多少条边?
- b) 这个图的最小生成树的总权重是多少?
- c) 描述在没有孤立节点的无向图中 Kruskal 算法的过程。

2. $f(n) = 17n^2\log_2 n + 5n + 3.$ 证明 f(n) 是 $\Theta(n(2)\log(2^{n}).$ (本小题 8 分)

得分

四、综合题(本题共 30 分)(注:凡是要求设计算法的题目,请写出详细的伪代码)。

1. 给你n个任务,每个任务由一对整数($t_i d_i$)描述。 t_i 是你完成 $task_i$ 所需的时间,而 d_i 是 $task_i$ 的到期时间(截止日期)。对于特定的日程表, $task_i$ 的完成时间用 f_i 表示。每个任务的延迟时间为 $L_i = \max(0, f_i - d_i)$ 。换句话说,如果某项任务在到期时间前完成,则其延迟为 0,否则其延迟等于完成时间减去到期时间。 您希望在安排任务时使最大延迟时间尽可能小(最大延迟时间最小化)。问题 a) 和 b) 是根据下表提出的,而 c) 和 d) 是一般性问题。(**本小题** 15 分)

任务编号	1	2	3
t_i	3	2	1
d_i	1	2	3

- a) 如果按 2-1-3 的顺序排列任务,最大延迟为 4;如果按 2-3-1 的顺序排列任务,最大延迟为多少?
- b) 请给出表中任务的最佳时间安排及其相应的最大延迟。(无需解释)
- c) 描述解决此问题的策略。
- d) 显示该策略的伪代码。

-	4百	
모.	Mai	12

2. 南开大学有三个校区: 八里台校区、津南校区和泰达校区。软件学院的大一、大二学生在津南校区学习,大三、大四学生在泰达校区学习。在泰达校区学习。因此,津南和泰达校区都设有教授办公室。

教授回答学生的问题。从一个校区到另一个校区,他需要花费一个小时的交通时间。因此,他回答问题的时间就会减少。每天在津南校区提问的学生人数记为 $J_1J_2J_3$, … J_n 每天在泰达校区提问的学生人数表示为 T_1,T_2,T_3 , … T_n 。如果如果教授从一个校区到另一个校区,则最多有 3 个学生的问题无法回答。例如,如果

教授只能回答其中的 2 个问题。如果有 1、2 或 3 个学生有问题,教授就无法回答任何人的问题。教授希望回答尽可能多的学生的问题。下表举例说明了每天提问的学生人数。教授最多可以回答 10+6+(11-3)+15=39 名学生的问题。根据计划,教授在泰达逗留 1 天和 2 天。第 3 天,教授前往津南,然后第 3 天和第 4 天留在津南。(第 1 天,教授可随意选择泰达或胶南,这对第 3 天和第 4 天不产生影响。

这不影响他回答问题的数量)。(本小题 15 分)

表 1 每天有问题的学生人数

i	1	2	3	4
J_i (济南)	1	2	11	15
T _i (泰达)	10	6	2	3

a) 通过给出一个没有返回正确答案的实例,说明下面的算法不能正确地解决这个问题。

for (int
$$i=1$$
; $i<=n$; $i++$) if
$$(T[i]>J[i])$$

$$cout<<"The"<< i<<"th day in TEDA campus."<< endl;$$
 否则

b) 给出解决这个问题的伪代码。您的代码应返回教授最多可以回答多少名学生的问题。

cout<< "The"<< i<< "th day in Jinnan campus."<< endl;

c) 假设总共有 n 天。用 big-O 表示,你的算法的时间复杂度是多少?