УСТРОЙСТВА СВЧ И АНТЕННЫ

Лекшия 7.

ВЛИЯНИЕ АМПЛИТУДНО-ФАЗОВОГО РАСПРЕДЕЛЕНИЯ ЛИНЕЙНОЙ РЕШЁТКИ НА ДИАГРАММУ НАПРАВЛЕННОСТИ. ПРЕОБРАЗОВАНИЕ ФУРЬЕ. АНТЕННЫ БЕГУЩЕЙ ВОЛНЫ.

7.1. Влияние амплитудного и фазового распределения

Преобразуем выражение для электрического поля линейной антенной решётки, состоящей из большого числа равноотстоящих одинаковых и одинаково ориентированных элементов, в интегральную форму.

$$\begin{aligned} \boldsymbol{E} &= \left(\sum_{-(N-1)/2}^{(N-1)/2} I_n e^{inkd \cos \vartheta} \right) \boldsymbol{F}_{el} \left(\vartheta, \varphi \right); \quad N - odd \ number, \\ \boldsymbol{E} &= \left(\sum_{-(N-1)/2}^{(N-1)/2} I(z_n) e^{ikz_n \cos \vartheta} \right) \boldsymbol{F}_{el} \left(\vartheta, \varphi \right); \quad (N-1)kd = L; \quad nd = z_n; \\ \boldsymbol{\vartheta} &= \pi/2 - \alpha \quad \boldsymbol{E} \approx \left(\int_{-L/2}^{L/2} I(z) e^{ikz \sin \alpha} dz \right) \boldsymbol{F}_{el} \left(\pi/2 - \alpha, \varphi \right); \end{aligned}$$

Угол диаграммы направленности для решётки обычно отсчитывается от нормали к решётке, что естественно для синфазных решёток. Функция распределения тока в решётке за пределы решётки продолжается нулём. Множитель решётки при этом имеет форму преобразования Фурье с бесконечными пределами.

7.2. Преобразование Фурье

$$F(f(x)) = \int_{-\infty}^{\infty} f(x)e^{2\pi i x u} dx = \hat{f}(u)$$

$$F^{-1}(\hat{f}(u)) = \int_{-\infty}^{\infty} \hat{f}(u)e^{-2\pi i x u} du = f(x)$$

$$u = \frac{\sin \alpha}{\lambda}$$

Некоторые свойства преобразования Фурье:

$$F(f(x/a)) = |a| \hat{f}(au)$$

$$F(f(x) \exp(-2\pi i x u_0)) = \hat{f}(u - u_0);$$

$$F(f(x - x_0)) = \exp(2\pi i x_0 u) \hat{f}(u);$$

$$F(f(x) * g(x)) = F\left(\int_{-\infty}^{\infty} f(t) g(x - t) dt\right) = \hat{f}(u) \hat{g}(u)$$

$$\int_{-\infty}^{\infty} f(x) \overline{g(x)} dx = \int_{-\infty}^{\infty} \hat{f}(u) \overline{\hat{g}(u)} du$$

Приведём таблицу вычисления множителя решётки для некоторых случаев распределения амплитуды в решётках. В третьем и четвёртом столбцах приведены выражения для ширины главного лепестка множителя решётки по половинной мощности и

по нулям. В пятом столбце приведены значения коэффициента использования излучающей апертуры решётки. Полное эффективное использование получается при равномерном распределении амплитуд возбуждающих токов в элементах. В шестом столбце помещены величины уровня первых боковых лепестков. По мере уменьшения амплитуды токов на краях решётки, возрастает ширина диаграммы направленности и уменьшается уровень боковых лепестков.

Таблица 1. Влияние амплитудного распределения поля на характеристики диаграммы направленности

Гип распределения $-1 \le x \le 1$	Диаграмма паправленности E(u)		Ширина ДН по половинной мощности (градусы)	Угол от макен- мума до 1-го нуля	Уровень боковых лепестков (дБ)	e КИП
f(x) = 1	$l \frac{\sin u}{u}$		$50.8\frac{\lambda}{l}$	$57.3\frac{\lambda}{I}$	13.2	1.0
	cin u	$\Delta = 1.0$	$0 50.8 \frac{\lambda}{l}$	$57.3\frac{\lambda}{l}$	13.2	1.0
$f(x) = 1 - (1 - \Delta)x^2$	$l(1+L)\frac{\sin u}{u}$	$\Delta = .8$	$52.7\frac{\lambda}{T}$	$60.7 \frac{\lambda}{l}$	15.8	0.994
	$L = (1 - \Delta) \frac{d^2}{du^2}$	$\Delta = .$	$55.6\frac{\lambda}{l}$	$65.3\frac{\lambda}{l}$	17.1	0.970
		$\Delta = 0$	$65.9\frac{\lambda}{l}$	$81.9\frac{\lambda}{l}$	20.6	0.833
$\cos \frac{\pi x}{2}$	$\frac{\pi l}{2} \frac{\cos u}{\left(\frac{\pi}{2}\right)^2 -}$		$68.8\frac{\lambda}{l}$	$85.9\frac{\lambda}{l}$	23	0.810
$\cos^2 \frac{\pi x}{2}$	$\frac{l}{2} \frac{\sin u}{u} \frac{\pi^2}{\pi^2 - u^2}$		$83.2\frac{\lambda}{T}$	$114.6\frac{\lambda}{l}$	32	0.667
f(x) = 1 - x	$\frac{l}{2} \left(\frac{\sin \frac{u}{2}}{\frac{u}{2}} \right)$	2	$73.4\frac{\lambda}{l}$	$114.6\frac{\lambda}{l}$	26.4	0.75

7.3. Линейные антенны бегущей волны.

Линейные антенны бегущей волны — это диэлектрические, спиральные и импедансные антенны. Основной излучающий элемент в них - отрезок открытого волновода с замедленной волной поверхностного типа. Из-за конечности отрезка волновода волна не только распространяется вдоль него, но, одновременно, отражаясь от концов и неоднородностей, возбуждает высшие типы волн и излучается в пространство.

При описании свойств антенн бегущей волны мы пользуемся развитой теорией дискретных линейных антенных решёток, устремляя число отдельных излучателей к бесконечности, а расстояние между ними к нулю. При этом мы считаем, что длина антенны определяется предельным соотношением: $Nd \xrightarrow[d \to 0]{N \to \infty} L$.

Поскольку поверхностная волна в волноводе замедленная, коэффициент замедления больше единицы: $\xi > 1$. При этом главный лепесток диаграммы направленности множителя решётки больше, чем наполовину, обрезается правым концом зоны видимости. От этого реальный главный лепесток сужается, а боковые лепестки возрастают. При сужении главного лепестка КНД антенны увеличивается, достигая максимума $D \approx 7.2 L/\lambda$ при $|\xi| = 1 + \lambda/2L$. Если коэффициент замедления задан, то это соотношение позволяет рассчитать оптимальную длину антенны бегущей волны:

$$L_{opt} = \frac{0.5\lambda}{|\xi| - 1};$$

Результаты приближённого расчёта ширин диаграммы направленности (тем же методом, как в прошлой лекции) для линейных антенн с непрерывным распределением излучающих элементов, с постоянной амплитудой и замедленной фазовой скоростью приведены во второй и третьей строках таблицы:

Влияние положения границы зоны видимости на характеристики диаграммы направленности

				T	аблица 2.
$\Psi_{\text{макс}}$	M(Ψ)	یک	$\Delta heta_{0.5}$	$\Delta \theta_0$	КНД
$\geq \pi$	sin Ψ/Ψ	$\leq 1 - \lambda/L$	$\frac{51^{\circ}\lambda}{L\sqrt{1-\xi^2}}$	$\frac{115^{\circ}\lambda}{L\sqrt{1-\xi^2}}$	$2L/\lambda$
0	sinΨ/Ψ	1	$108^{\circ}\sqrt{\lambda/L}$	$162^{\circ}\sqrt{\lambda/L}$	$4L/\lambda$
-π/2	$\frac{\pi}{\sqrt{2}}\sin\Psi/\Psi$	$1 + \lambda/2L$	$61^{\circ}\sqrt{\lambda/L}$	$115^{\circ}\sqrt{\lambda/L}$	$7.2L/\lambda$

Параметры реальных антенн бегущей волны обычно принимают промежуточные значения между рассмотренными крайними случаями. Диаграммы направленности антенн бегущей волны отличаются повышенным уровнем боковых лепестков.

7.4. Диэлектрические антенны.

Применим полученные соотношения к диэлектрическим антеннам. Коэффициент замедления в диэлектрическом волноводе зависит от диэлектрической проницаемости диэлектрика и от соотношения диаметра волновода с длиной волны. Эта зависимость представлена на рис.7.1.

Рис. 7.1. Коэффициент замедления в диэлектрическом волноводе

Величина замедления определяется соотношением долей волны (по мощности), распространяющихся внутри и вне диэлектрика. При маленьком диаметре волна

распространяется вне диэлектрика, влияние диэлектрика мало сказывается на скорости распространения. При большом отношении d/λ волна вся сосредотачивается в диэлектрике, и в пределе её скорость уменьшается в $\sqrt{\varepsilon}$ раз. При промежуточных значениях d/λ коэффициент замедления принимает промежуточные значения в соответствии с рис. 7.1.

Диэлектрическая антенна образуется добавлением к отрезку диэлектрического волновода устройства электромагнитного возбуждения, как показано на рис.. 7.2.

Рис.7.2. Диэлектрические антенны и варианты их возбуждения

Вверху на рисунке показана цилиндрическая диэлектрическая антенна (1), возбуждаемая штырём (3), соединённым с центральной жилой коаксиального кабеля на входе. Промежуточное звено между коаксиалом и диэлектрическим волноводом — отрезок полого металлического волновода, закороченного с одной стороны. Внизу показаны варианты устройства возбуждения.

Из каких соображений выбираются параметры антенны? Чтобы максимум излучения антенны находился впереди на оси, в возбуждающем волноводе должна распространяться волна основного типа (для круглого волновода волна H_{11} , для прямоугольного или квадратного Н₁₀). Для более широкополосного согласования желательно, чтобы волны высших типов были запредельными. Это определяет выбор диаметра возбуждающего волновода. Как видно из приведённой таблицы 2, для уменьшения ширины диаграммы направленности отношение L/\(\lambda\) должно быть как можно больше. Но в этом случае замедление ξ близко к единице. Таких соотношений можно достигнуть либо выбором тонкого цилиндрического стержня, либо выбором диэлектрика с низким в. Для снижения среднего є иногда выбирают диэлектрик в форме полой трубки. При выборе тонкого диэлектрического стержня с диаметром меньшим диаметра возбуждающего волновода выходящая из него волна не "перехватится" диэлектрическим волноводом, а излучится непосредственно из сечения стыка. Чтобы большая часть выходящей мощности перехватывалась бы диэлектрическим волноводом, нужно, чтобы диэлектрик заполнил всё выходное сечение. Но в этом случае может оказаться величина замедления слишком большой, при этом оптимальная длина антенны слишком маленькой, что приведёт к расширению диаграммы направленности. Кроме того, в волноводе с большим замедлением большая часть мощности сосредоточена внутри диэлектрика и слабо излучается из диэлектрического волновода. Возникнет сильное отражение от конца волновода, из-за чего будет нарушен эффект бегущей волны и ухудшено согласование антенны. Чтобы воспрепятствовать этому, диэлектрический волновод выполняют не цилиндрическим, а коническим, как показано на рис. 7.2. Конусная форма приведёт к более интенсивному излучению при прохождении волны вдоль стержня, и, как следствие, к уменьшению отражения от конца. При расчёте геометрии такой антенны нужно ориентироваться на средний диаметр стержня.

7.5. Ребристо-стержневая (импедансная) антенна

Вместо диэлектрического волновода для создания антенны бегущей воны применяют ребристо-стержневую структуру показанную на рис.10.3. Для обеспечения режима поверхностной волны импеданс структуры по боковой поверхности охватывающего цилиндра должен быть индуктивным.. Преимущество металлических ребристо-стержневых структур перед использованием диэлектрика состоит в том, что металл в существенно меньшей степени подвержен старению материала, связанному с изменением параметров, приводящему к расстройке антенны.

Рис. 7.3. Ребристо-стержневой волновод

Принципы расчёта таких антенн аналогичны принципам расчёта диэлектрических. Для проектирования необходимо знать зависимость коэффициента замедления от геометрических размеров (D,d S,t, показанных на рис.7.3.

7.6. Спиральные антенны.

Рис. 7.4. Разновидности цилиндрических однозаходных спиральных антенн (слева – с левой намоткой, справа – с правой)

Ещё один тип широко используемых антенн бегущей волны – это спиральные антенны. Цилиндрическая спиральная структура также является волноводом с замедленными поверхностными волнами.

Рассматривая проволочную спиральную антенну как линейную антенную решётку, в качестве единичного элемента следует выбрать один виток спирали. Будем предполагать, что диаметр d провода на порядок меньше диаметра D цилиндра, на который намотана спираль.

Приближённо можно считать, что электромагнитная волна распространяется вдоль провода со скоростью света. Если $\pi D/\lambda <<1$, излучение одного витка подобно излучению малой рамки, с синфазным током вдоль провода рамки, Диаграмма направленности такая же, как у магнитного диполя, ориентированного вдоль оси спирали, и, следовательно, с нулём излучения вдоль оси. Поляризация излучения такого витка спирали линейная, с силовыми линиями вектора E, замыкающимися вокруг оси спирали. Естественно,

диаграмма направленности всей спирали при $\pi D/\lambda << 1$ тоже будет иметь нуль излучения, совпадающий с нулём излучения одного элемента.

Рис.7.5. Диаграммы направленности спиральных антенн при разных соотношениях диаметра спирали и длины волны; а) $\pi D/\lambda <<1$, б) $\pi D \sim \lambda$, в) $\pi D \sim 2\lambda$

Если $\pi D \sim \lambda$, то есть, по длине витка укладывается примерно одна волна, картина излучения витка спирали будет совсем другой. При $\pi D \sim \lambda$ в противоположных точках витка фазы токов будут отличаться на 180°, значит, токи будут направлены в одну сторону, и их излучение будет складываться вдоль оси спирали. В направлениях, перпендикулярных оси, излучение токов в противоположных точках витка будет частично вычитаться, за счёт разности хода между противоположными точками. Максимум излучения витка спирали будет направлен вдоль оси спирали. Излучение витка будет излучение турникетной антенны, c электрическими ориентированными перпендикулярно оси спирали и запитанными в квадратуре. Поляризация излучения вдоль оси спирали будет близка к круговой, а в направлениях, перпендикулярных оси, поляризация излучения витка спирали будет близка к линейной. Если наша спираль правой намотки, то излучение в направлении бегущей волны будет право-поляризованным, а осевое излучение в обратном направлении будет левополяризованным.

В целом, по спирали будет бежать волна тока немного быстрее света, если $\pi D < \lambda$, и немного медленнее, если $\pi D > \lambda$. Главный лепесток множителя решётки будет ориентирован вдоль оси спирали в сторону бегущей волны. Главный лепесток полной диаграммы направленности будет обужаться за счёт направленности излучения одного витка и будет иметь правую круговую поляризацию.

Излучение от волны, бегущей по спирали в обратную сторону, поляризовано по кругу в левом направлении. Диаграмма направленности этого излучения промодулирована задними лепестками множителя решётки. Оно отразится от экрана в начале спирали, и после отражения направление вращения круговой поляризации изменится на противоположное. После отражения это излучение будет право-вращающимся и будет интерферировать с главным лепестком. Кроме основной волны, бегущей по спирали, в ней возникнет волна, отражённая от конца спирали и бегущая в сторону экрана. Амплитуда этой волны будет меньше основной. Главный лепесток излучения этой волны, (бегущей по спирали с правой намоткой), будет поляризовано с правым вращением. Однако, после отражения от экрана, поляризация этого излучения сменится на противоположную, и, при интерференции с главным основным лепестком будет уменьшать коэффициент эллиптичности в главном направлении.

Однозаходная цилиндрическая спиральная антенна довольно широкополосна, может работать в полосе частот, определяемой неравенством:

$$0.75 < \pi D/\lambda < 1.33$$
,

при этом, усиление этой антенны может быть больше, чем определено формулами в таблице, за счёт обужения главного лепестка при интерференции с задним лепестком, отражённым от экрана, и диаграммой направленности одного витка. Входное сопротивление такой антенны, ориентировочно, близко к 140 Омам. Оптимальный угол намотки спирали берётся в пределах (12° - 14°). Обычно диаметр экрана берётся в пределах: (0.6 - 1)λ. На рис.10.6 показаны типичные диаграммы направленности однозаходной цилиндрической антенны с металлическим экраном, меняющиеся в

диапазоне частот $\pi D/\lambda = [0.8 \ 1.0 \ 1.2]$. Изрезанность диаграммы направленности свидетельствует об интерференции в ней при излучении разных типов волн.

Рис.7.6 Типичные диаграммы направленности 10-витковой цилиндрической спиральной антенны при угле намотки 12.8° и отношении $\pi D/\lambda = [0.8 \ 1.0 \ 1.2]$

Широкополосность спиральной антенны может быть увеличена, также, как и диэлектрической, за счёт перехода от цилиндрической формы к конической (рис. 7.7). При этом также уменьшается отражение от конца спирали, и от этого коэффициент эллиптичности в главном направлении возрастает.

Рис. 7.7. Однозаходные конические спирали с разными вариантами питания. Слева – спираль внизу соединена с внутренним проводником коаксиала, наружный проводник коаксиала соединён с экраном, справа – спираль с верхним питанием