Surveymetodik Föreläsning 8

Måns Magnusson

Avd. Statistik, LiU

Översikt

- 1 Regressionsestimation
 - Regressionsestimation som kalibrering

Section 1

Regressionsestimation

Introduktion till regressionsestimation

Vi har tidigare talat om kvotestimation med modellen

$$y_i = \hat{B}x_i$$

- Om vi inte kan anta att y = 0 då x = 0 så kan inte kvotestimation användas
- Då kan vi istället använda regressionsestimation med modellen

$$y = \mathbf{x}^T \mathbf{B} = B_0 + B_1 x_1 + ... + B_p x_p$$

Precis som tidigare, två situationer: Antingen känner vi till populationstotalernan för x (t_x), eller inte.

Introduktion till regressionsestimation II

- Exempel på användning om vi inte känner till t_x
 - Vi kan vara intresserad av populationsregressionskoefficienterna

$$\mathbf{B} = B_0, B_1, ..., B_p$$

- lacksquare Exempel på användning om vi **känner** till $\mathbf{t_x}$
 - lacktriangle Vi kan använda lacktriangle för att **förbättra precisionen** i $\hat{y}_{\mathcal{U}}$ eller \hat{t}_y
 - Vi kan använda $\mathbf{t_x}$ för att **kalibrera** $\hat{y}_{\mathcal{U}}$ eller \hat{t}_y till kända $\mathbf{t_x}$.
 - Detta är den vanligaste metoden för att hantera bortfallsfel och ramfel.

Regressionsestimation: Estimatorer

Skattningen av regressionskoefficienterna vid OSU görs på exakt samma sätt som vid vanlig regression:

$$\hat{B}_1 = \frac{\sum_{i \in \mathcal{S}} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i \in \mathcal{S}} (x_i - \bar{x})^2} \text{ och } B_0 = \bar{y}_{\mathcal{S}} - \hat{B}_1 \bar{x}_{\mathcal{S}}$$

eller (*)

$$\hat{\mathbf{B}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Exempel: Exempel på olika modeller

Regressionsestimation: Estimatorer II

• Om vi känner till $\bar{\mathbf{x}}$ kan vi använda \mathbf{x} som **hjälpvariabel(er)** för att skatta $\bar{\mathbf{y}}_{\mathcal{U}}$ med **bättre precision** på följande sätt (*):

$$\hat{ar{y}}_{reg} = \hat{B_0} + \hat{B}_1 ar{x}_{1,\mathcal{U}} = ext{regressionsskattning av } ar{y}_{\mathcal{U}}$$

eller

$$\hat{y}_{reg} = \bar{y}_{\mathcal{S}} - (\bar{x}_{\mathcal{U}} - \bar{x}_{\mathcal{S}})\hat{B}_1$$

$$\hat{t}_{yreg} = \hat{t}_y - (t_x - \hat{t}_x)\hat{B}_1$$

eller mer generellt

$$\begin{split} \hat{\bar{y}}_{reg} &= \bar{y}_{\mathcal{S}} - (\bar{\mathbf{x}}_{\mathcal{S}} - \bar{\mathbf{x}}_{\mathcal{U}})^T \hat{\mathbf{B}} \\ \hat{t}_{yreg} &= \hat{t}_{y} - (\mathbf{t_{x}} - \hat{\mathbf{t}_{x}})^T \hat{\mathbf{B}} \end{split}$$

- Precis som kvotskattningen är regressionsskattningar **inte** väntevärdesriktiga. Varför?
- Men vad händer om vi använder en modell som inte fungerar?

Exempel: Genomsnittsinkomster

Vi vill uppskatta genomsnittsinkomsten i 16 bostadsområden (y). Vi vet det genomsnittliga utgifter för försörjningsstöd (x) för alla områden och drar ett urval på n=5.

I populationen (alla områden) är R = -0.927 och $B_1 = -4.821$.

Exempel: Genomsnittsinkomster II

Skillnaden mellan modellen för kvotestimatorn (röd), regressionsestimatorn (blå) och den 'vanliga' skattningen $\bar{y}_{\mathcal{S}}$ (svart).

Exempel: Genomsnittsinkomster III

Teoretiska fördelningen med K = 4368 stycken teoretiska urval.

	obs.1	obs.5	P_S	mean_hat_x	mean_hat_y	BO	B1	mean_hat_yreg
1289	28867	29020	0.000229	950	29100	34787	-5.99	28957
2905	29079	29004	0.000229	971	28961	31733	-2.86	28951
3918	28586	29020	0.000229	981	28925	34412	-5.59	28965
1631	28979	29004	0.000229	963	29016	30304	-1.34	29000
1615	28979	29004	0.000229	961	29025	31442	-2.51	28992
381	28867	29249	0.000229	978	28940	33425	-4.59	28957
919	28867	29249	0.000229	967	29013	34489	-5.66	28974
4088	28586	29004	0.000229	996	28880	34375	-5.52	28999
1456	28979	29155	0.000229	956	29070	33031	-4.14	28994
3165	28919	29249	0.000229	965	29042	33349	-4.46	29000
1262	28867	28752	0.000229	974	28977	35302	-6.49	28977
4147	28815	29155	0.000229	973	28985	35281	-6.47	28975
2982	29079	28752	0.000229	955	29057	33957	-5.13	28957
3538	28919	29020	0.000229	977	28951	33298	-4.45	28964
96	28867	28752	0.000229	1003	28821	33677	-4.84	28960

Exempel: Genomsnittsinkomst IV

Samlingfördelningen för \hat{y}_{reg} och $\hat{y}_{\mathcal{U}}$ då $\bar{y}_{\mathcal{U}}$ =28970.373.

Effekten av kvotestimation

Skillnaden mellan kvotestimatorn och den "vanliga" estimatorn

$$E(\hat{y}_{reg}) = 28970.754$$
 $E(\hat{y}_{\mathcal{U}}) = 28970.373$ $Var(\hat{y}_{reg}) = 807.838$ $Var(\hat{y}_{\mathcal{U}}) = 3957.185$ $Bias(\hat{y}_{reg}) = 0.382$ $Bias(\hat{y}_{\mathcal{U}}) = 0$ $MSE(\hat{y}_{reg}) = 807.984$ $MSE(\hat{y}_{\mathcal{U}}) = 3957.185$

Regressionsestimation: Variansberäkningar

- Vi är (som vanligt) intresserade av $Var(\hat{y}_{reg})$ för att kunna skapa ett konfidensintervall för $\hat{y}_{\mathcal{U}}$
- Detta görs (precis som för kvotestimatorn) genom att beräkna residualerna

$$e_i = y_i - \hat{B}_0 - \hat{B}_1 x_i$$

eller mer generellt

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\hat{\mathbf{B}}$$

■ Det är sedan residualerna som används för att beräkna $Var(\hat{\bar{y}}_{reg})$ på följande sätt

$$SE(\hat{y}_{reg}) = \sqrt{\left(1 - \frac{n}{N}\right) \frac{s_e^2}{n}}$$

där

$$s_e^2 = \frac{\sum_{i \in \mathcal{S}} e_i^2}{n-1}$$
 eller $s_e^2 = \frac{\sum_{i \in \mathcal{S}} e_i^2}{n-p}$

där p är antalet parametrar i modellen.

Exempel: Skogsvolym

- Inom skogsindustrin är det av intresse att uppskatta trävolym per hektar
- Skogsföretag A vill uppskatta den totala volymen träd för ett område på 17010 ha.
- Som hjälpinformation finns laserscanning av hela området.
- Skogsföretag samlar slumpmässigt in volymen från 18 slumpmässiga ytor (1 ha).
- Laserscanning har gjorts för hela området med en uppskattning av volymen till 1807641 m³ träd

Exempel: Skogsvolym II

```
(Intercept)
    18.317
                  0.792
             x y_hat
    98.1
         98.28 96.1
                      2.015
1
   192.8 206.44 181.7
                      11.048
    56.5
         25.64 38.6
                      17.859
4
    25.1
         37.39 47.9 -22.829
5
   66.9
         36.91
               47.5
                      19.322
6
   68.9
        50.52 58.3
                      10.627
7
   90.1
         45.65 54.5
                      35.671
8
   14.6
         4.38
               21.8
                      -7.189
   127.1 116.88 110.8
                      16.235
   160.7 172.54 154.9
                      5.747
   77.8 74.81 77.5
                      0.212
11
12 178.2 190.49 169.1
                      9.079
13 110.3 128.12 119.7
                      -9.477
14 133.8 178.61 159.7 -25.927
15
   47.9
         50.01
                57.9
                      -9.994
16
    39.1
         46.80
               55.4 -16.277
17 138.9 161.47 146.1
                      -7.209
18
   24.8
        44.75 53.7 -28.913
```

Exempel: Skogsvolym III

Subsection 1

Regressionsestimation som kalibrering

Regressionsestimation som kalibrering

- Regressionsestimatorn kan användas för kalibrering (precis som kvotestimatorn).
- Denna estimator kallas ibland generalized regression estimation (GREG) och utrycks som (se Lohr (2009, s. 458 f.))

$$\hat{t}_{\textit{yGREG}} = \hat{t}_{\textit{y}} - (\mathbf{t_x} - \mathbf{\hat{t}_x})\mathbf{\hat{B}}$$

$$\hat{t}_{yGREG} = \sum_{i \in \mathcal{S}} w_i g_i y_i$$

där

$$g_i = 1 + (\mathbf{t_x} - \mathbf{\hat{t}_x})^T \left(\sum_{j \in \mathcal{S}} w_j \frac{1}{\sigma_j^2} \mathbf{x}_j \mathbf{x}_j^T \right)^{-1} \frac{1}{\sigma_i^2} \mathbf{x}_i$$

■ På detta sätt kalibreras skattningarna till de kända totalerna t_x

$$\hat{t}_{xGREG} = \sum_{i \in \mathcal{S}} w_i g_i x_i = t_x$$

Lohr, S., 2009. Sampling: design and analysis, 2nd Edition. Thomson.