End Term Exam (Part-1)

MATHEMATICS-I

SOLUTIONS (Series: A)

1. Consider the sequence $a_n = \frac{n}{n+2}$. The minimum n_0 such that $|a_n - 1| < \frac{1}{100}$ for $n \ge n_0$, is (A) 198, (B) 199, (C) 200, (D) 201.

Ans. (B)

2. Given $\epsilon > 0$, the largest δ which fits the definition of continuity of the function

$$f(x) = \begin{cases} \frac{x+3}{2} & \text{if } x \le 1\\ \frac{7-x}{3} & \text{if } 1 \le x \end{cases}$$

$$(\mathbf{A}) \ \epsilon/2, \qquad (\mathbf{B}) \ \epsilon/3, \qquad (\mathbf{C}) \ 2\epsilon, \qquad (\mathbf{D}) \ 3\epsilon.$$

Ans. (C)

3. The function $f(x)=e^{-\frac{1}{|x|}}$ for $x\neq 0$ and f(0)=0 is concave up in m open intervals and concave down in n open intervals. Then (m,n) equals.

(A) (0,1),

 $(\mathbf{B}) (1,0),$

 (\mathbf{C}) (1,2),

 (\mathbf{D}) (2,1).

Ans. (C)

4. The sequence $a_n = \sum_{k=1}^{n} (-1)^k$ is

(A) bounded but not convergent,

(B) both bounded and convergent,

(C) convergent but not bounded,

(D) neither bounded nor convergent.

Ans. (A)

5. Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Let $P = \left\{0, \frac{1}{10}, \frac{2}{10}, \cdots, 1\right\}$ and $Q = \left\{0, \frac{1}{100}, \frac{2}{100}, \cdots, 1\right\}$

be the partitions of [0,1]. Then

 $(A \ L(P, f) \le L(Q, f) \le U(Q, f) \le U(P, f),$ $(C) \ L(Q, f) \le L(P, f) \text{ and } U(Q, f) \le U(P, f),$ (B) $L(Q, f) \le L(P, f) \le U(P, f) \le U(Q, f)$,

(**D**) None of above.

Ans. (A)

6. The curve $r = 2\cos\theta, 0 \le \theta \le \pi$ represents a

(A) circle,

(B) cardioid,

(C) lemniscate,

(D) ray.

Ans. (A)

7. Parametric equations of the line through P(-1,4,2) and in the direction of $\overrightarrow{v}=(1,2,3)$ is:

Ans. x = -1 + t, y = 4 + 2t, z = 2 + 3t.

8. Let f be a scalar field defin	${f ned}$ on R^2 and suppose directions	al derivatives of f exist for all
directions. Then f is contin	nuous. TRUE or FALSE	•

Ans. FALSE

9. The value of the double integral $\int \int_D e^{-(x^2+y^2)} dA$, where D is the region between the two circles $x^2+y^2=1$ and $x^2+y^2=4$ is (A) $\pi(e^{-1}-e^{-3})$, (B) $\pi(e^{-1}-e^{-4})$, (C) $\pi(e^{-2}-e^{-3})$, (D) $\pi(e^{-2}-e^{-4})$.

Ans. (B)

10. The value of the line integral $\int_C x - y \, ds$, where C is the line segment from (1,3) to (5,-2) is:

Ans. $\frac{5}{2}\sqrt{41}$.