21 Team Na Points	
Noobs	
22 Commar	nds
D Points	used in the game to reach the ciphertext
	used to reach the cipher text were as follows:
1. go 2. climb	and to reach the capital text were as reached.
3. pluck	
4. c 5. back	
6. give 7. back	
8. back 9. thrnxxtzy	
10. read	number 4(c) is not a regular command. It was just asked by the prompt to
	number 4(c) is not a regular command. It was just asked by the prompt to ue, so, we mentioned it.
33 Analysis	
iO Points	
	alysis of how you figured out the password? (Explain in less than 500 words)
We picked them	' and 'climb' commands to investigate the cave. We saw some mushrooms. using 'pluck' command. Then we were asked to press 'c' button to
	ve 'back' command to go back to the cave. Then we gave 'give' command ooms in the hole. After this, we recieved a message from a poor spirit
trapped in the h	ole. He said that say these magic words "thrnxxtzy" for the hidden door to
by giving 'back'	Also, the door lies in the main chamber. So, we went to the main chamber command two times. On reaching the main chamber now, we gave the
'read' command	nxxtzy'. The hidden door appears with the glass panel next to it. We gave to read the message there.
After doing so, v	we get the information that the password for this level is an element of the pup Z_p^* where p is a prime number. So, we studied about the
multiplicative gr	oup and undertood it's basic concepts. We found three pairs of numbers of
in each pair was	word " g^a) where g was an element in Z_p^" and a was an integer. The g the same. The pairs of numbers are given as follows:
(1973, 17632550	3618234519808008749742) 9039323911968355873643)
	(404861992487294722613) (27676832372575348833
	rmation about multiplicative groups related to this question is described
below:	
then a subset of	$_{\prime}$, $Z_{-}p$ is the set of non-negative integers less than p ([0,1,2,3 p -1]). $Z_{-}p^{A*}$ is this which is the multiplicative group for $Z_{-}p$ modulo p . The set $Z_{-}p^{A*}$ is the
common factors	etween 1 and p that are relatively prime to p (means they do not share any i. If p is a prime number, then $Z_p p^n$ is the set contining values from 1 to (p –
1). Eg. for number 1	2, the Z_p^* group will be (1, 5, 7, 11). mber, then a special cycle property is observed. If we take a number y:
y=g^x mod p	m Z_p^* and where p is a prime number the result will be cyclic (where we
keep repeating	the output in a sequence). Eg. N=9, we can select 2,4,5,7 or 8, so let's select
7. 7^1 % 9= 7	
7^2 % 9= 4 7^3 % 9= 1	
7^4 % 9= 7 O/p is (7,4,1,7,4,1,7	
Coming back to	our question, we are given that p is prime, so, we'll have this cyclic
property. Since,	p is a prime number, every number less than p is element of group (Z_p^n) .
	ssword"g^a" is also element of Z_p. iables to the given pair of values as follows:
(a2,r2)=(1973,176	55503618234519808008749742) 325509039323911968355873643)
(a3,r3)=(7596,98	486971404861992487294722613)
	code that generates inverse modulus(inv1,inv2,inv3) for values r1, r2 and in formula was basis of the algo for it. The Euclidean formula we used was:
x*p+y*r1=1 x*p+y*r2=1	
x*p+y*r3=1	
	erse of r1, r2 and r3. 90223471732904681640
inv2=228947149	478752602606353685125 771597409614445194812
r1=(password*g*	operty of group, we have 3 equations: a1]%p; _Eqn 1
r2=(password*g r3=(password*g	a2)%p;Eqn 2
Then we multiple	ed g^(a2+a3), g^(a1+a3), g^(a2+a1) to equation 1st 2nd and 3rd respectively.
Then we applied After doing so, v	inverse law to r1 ,r2 and r3. re got this equation:
r1*g^(a2+a3)=r2* Solving it:	^(a1+a3)=r3*g^(a2+a1) (where * is operation of Z_p)
	2=r1*g^(a2-a1), r3=r2*g^(a3-a2)
r3=r1*g^(7167), r2	=r1*g^(1544), r3=r2*g^(5623)
	; g^5623=r3*r2^(-1) ; g^1544=r2*r1^(-1)
can be applied t	and g*1544. Since gcd(5623,1544) is 1, the Extended Euclidean Algorithm of find the value of "g". According to the Extended Euclidean Algorithm, we
can find x and y	such that the below equation holds
ax+by=GCD(a,b)	
Here	572
and we have to	find two numbers x and y such that
By applying the	I (since GCD(1544,5623)=1) Extended Euclidean Algorithm, we found out that
x=-2298 and y=	531
Solving for LHS	
	=(111590994894663139264552154672)^(-2298) mod p =63673345919111482928118052957
(g^5623)^631=(4 (g^5623)^631=34	20413074251022028027270785553)*631 mod p 1726700838987729837401767230
Substituting the: (g*1544)*(-2298	se values:
	* g"5623 *651= 482928118052957*34726700838987729837401767230 mod p
(g^1544)^(-2298	°(g^5623)^631=52565085417963311027694339
Thus, g^1=g=525	65085417963311027694339 (using the Extended Euclidean Algorithm)
	the value of g in any one of the initial three equations to find out the oplied it in the first equation.
	35085417963311027694339)^429) mod p= 34519808008749742 mod p
password=(5256	55085417963311027694339)^(-429)^(431955503618234519808008749742
mod p)	55085417963311027694339)^(~429) mod p)*
	65085417963311027694339)*(~429) mod p)* 234519808008749742 mod p) mod p)

Assignment 3

GROUP
Manu Shukia
Birshabh Lakhwani
Divyamh Birst
2 Yow or oeti group
TOTAL FORTS
70 / 70 pts

GUESTION 1
Team Name
GUESTION 2
Commands
GUESTION 3
Analysis
GUESTION 4
Password

0 / 0 pts

10 / 10 pts