Alexander Quessy

104 Taybridge Road London - SW11 5PZ - United Kingdom

(+44) 07825 628 885 • ⋈ ag15777@bristol.ac.uk

PhD student researching the use of unsupervised reinforcement learning for autonomous control in uncertain environments. Interested in the use of machine learning to model complex real-world systems and automate decision-making under uncertainty.

Education

University of Bristol

Thesis title: Learning Generalizable Policies through Unsupervised Reinforcement Learning

2020-Present

Aims to develop methods to learn generalizable policies through unsupervised learning. This was initially motivated by the problem of navigating fixed-wing aircraft to landing spots in GPS denied environments.

MEng Aerospace Engineering

University of Bristol First Class Honors 2015-2019

Research Papers

- o Alexander Quessy, Thomas S. Richardson, Mark Hansen (2022) Vision based Semantic Runway Segmentation from Simulation with Deep Convolutional Neural Networks AIAA Scitech 2022 Forum
- Alexander Quessy, Thomas S. Richardson (2021) Rewardless Open-Ended Learning (ROEL) Preprint
- Alexander Quessy, Thomas S. Richardson (2022) Quad2Plane: An Intermediate Training Procedure for Online Exploration in Aerial Robotics via Receding Horizon Control Preprint
- Alexander Quessy, Thomas S. Richardson, Sebastian East (2023) Safe Reinforcement Learning with Minimal Supervision **Preprint**
- o Alexander Quessy, Thomas S. Richardson, Sebastian East (2023) Automating Fixed Wing Forced Landings with Offline Reinforcement Learning Under Review IMAV2023

Work Experience

University of Bristol Bristol, UK

Postgraduate Teaching Assistant

2020-Present

Teaching assistant for various classes in Computer Science & Aerospace Engineering, notably:

- Machine Learning: Fundamental undergraduate course in machine learning, covering classical topics such as probabilistic inference, neural networks and PCA.
- Data Science: Focused on the practical application of data science, the course covers key elements of the data-science pipeline, ranging from: data-wrangling and ingress to visualization and analysis. Students are assessed based on a coursework assignment where I supervise 2 group projects:
 - UK Metal and Mining Corporate Earning Analysis: analyze the key components that drive the earnings of the largest mining companies listed on the FTSE 350 Metal and Mining index, based on economic & financial data collected from Bloomberg Terminal.
 - Tropical Cyclone Prediction: investigate the significance of data resolution on cyclone forecasting.
- o Aircraft Vehicle Design and System Integration: Graduate level course where I supervise a group of students in the design & development of a commercial jet transport aircraft working closely with Airbus's future design office.
- Bristol mini-RL Conference: Organized a Reinforcement Learning conference with 3 other PhD students, this included: securing funding, inviting researchers to present and organizing a venue & schedule along with presenting my own research on Safe-RL.

Aeros Flight Training Gloucester Airport, UK

Flying Instructor

2017-2019

Instructed part-time during undergraduate term-time and full-time during holidays for a range of UK pilot licenses from ab-initio private licenses to commercial multi-engine instrument ratings. The role often required clear and concise communication with students, air traffic control, operations & engineering along with careful judgement and planning to ensure training was executed safely & concisely whilst complying with UK Civil Aviation Authority regulation. I continue to instruct freelance, mainly in aerobatics and multi-engine instrument training from London Biggin Hill Airport.

Expertise

- Fluent in Python and MATLAB
- Experience building scalable software for High Performance Computing with GPU acceleration (CUDA) using containerization software (Docker) and shell scripting (Bash)
- Experience with machine learning frameworks (PyTorch & TensorFlow)
- Proficient in version control software (Git)
- Familiar with C, C++, and Rust