Structured Traversals for ((Multiply) Recursive) Algebraic Datatypes

G. Cassian Alexandru

January 12, 2021

Presentation generated from .1hs sources using 1hs2TeX


```
length :: [a] \rightarrow Int
length = \lambdacase
[] \rightarrow 0
(x:xs) \rightarrow 1 + length xs
filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
filter p = go where
go [] = []
go (x:xs) = if p x then [x] else [] ++ go xs
```

```
length :: [a] → Int
length = λcase
[] → 0
(x:xs) → 1 + length xs

filter :: (a → Bool) → [a] → [a]

filter p = go where
  go [] = []
  go (x:xs) = if p x then [x] else [] ++ go xs
```

```
length :: [a] → Int
length = λcase
[] → 0
(x:xs) → 1 + length xs

filter :: (a → Bool) → [a] → [a]
filter p = go where
  go [] = []
  go (x:xs) = if p x then [x] else [] ++ go xs
```

- List Design pattern?
- Design Patterns are a poor man's abstraction
- Recognize common structure & find correct abstract notion

Traversals

List 2 3


```
g p x xs =
  bool [] [x] (p x) ++ xs
   even
    g even
       g even
          g even
```

```
g p x xs =
  bool [] [x] (p x) ++ xs

g even

1     g even
2     g even
```

```
g p x xs =
  bool [] [x] (p x) ++ xs

g even

1  g even
2  4:[]
```

```
g p x xs =
  bool [] [x] (p x) ++ xs

g even
/ \
1 2:4:[]
```

```
g p x xs =
  bool [] [x] (p x) ++ xs
2:4:[]
```

data
$$List$$
 a = Nil | $Cons$ a ($List$ a) **data** $BooL$ = TT | FF

GADT Syntax:

data List a where

 $\mathit{Nil} :: \mathit{List}$ a

 $Cons :: a \rightarrow (List a) \rightarrow (List a)$

data BooL where

FF :: BooL

TT :: BooL

```
data List a where
  Nil :: List a
  Cons :: a \rightarrow (List a) \rightarrow (List a)
data BooL where
  FF :: BooL
  TT :: BooL
list :: b \rightarrow (a \rightarrow b \rightarrow b) \rightarrow List a \rightarrow b
list nil cons = fold where
  fold Nil = nil
  fold (x "Cons" xs) = x "cons" fold xs
bool. :: b \rightarrow b \rightarrow Bool. \rightarrow b
bool tt ff = fold where
  fold FF = ff
  fold TT = tt
```

```
data List a where
  Nil :: List a
  Cons :: a \rightarrow (List a) \rightarrow (List a)
data BooL where
  FF :: BooL
  TT :: BooL
list :: b \rightarrow (a \rightarrow b \rightarrow b) \rightarrow List a \rightarrow b
list nil cons = fold where
  fold Nil = nil
  fold (x 'Cons' xs) = x 'cons' fold xs
bool. :: b \rightarrow b \rightarrow Bool. \rightarrow b
bool tt ff = fold where
  fold FF = ff
  fold TT = tt
```

Structural Functors

```
data ListF c x = NilF | ConsF c x -- deriving Functor
data BoolF x = TTF | FFF deriving Functor

instance Functor (ListF c) where
  fmap :: (a → b) → (((ListF c) a) → ((ListF c) b))
  fmap f = λcase
    NilF → NilF
    ConsF c a → ConsF c (f a)
```

If you are unfamiliar with functors: In our case regarding them as a computational context with holes suffices.

Structural Functors

```
data ListF c x = NilF | ConsF c x -- deriving Functor
data BoolF x = TTF | FFF deriving Functor

instance Functor (ListF c) where
  fmap :: (a → b) → (((ListF c) a) → ((ListF c) b))
  fmap f = λcase
    NilF → NilF
    ConsF c a → ConsF c (f a)
```

If you are unfamiliar with functors: In our case regarding them as a computational context with holes suffices.

- The structural functors encode where the recursion should happen
- Relation to original datatype not yet wholly clear
- → Introduce a little Category Theory

Structure

1 Category Theory

Endofunctors

Let $\mathcal C$ be a Category. An *Endofunctor* is a pair of maps, on the objects and morphisms of the category respectively: $F_0:\mathcal C_0\to\mathcal C_0$, $F_1:\mathcal C_1\to\mathcal C_1$ Such that:

$$\blacksquare$$
 $F_1(h:A\rightarrow B):F_0A\rightarrow F_0B$

$$F_1(id_A) = id_{F_0A}$$

$$F_1(h \circ g) = (F_1 h) \circ (F_1 g)$$

• fmap @f (h
$$\cdot$$
 g) = fmap @f h \cdot fmap @f g

The category we are regarding is *Hask*, where objects are Haskell types, and morphisms are functions between them. This is usually interpreted as a *CPO* (complete partial order). We will mention what notions are specic to *CPO*s.

Algebras

Let $F: \mathcal{C} \to \mathcal{C}$ be an endofunctor $A_0 \in \mathcal{C}_0$, $\phi: A \to FA$. Then $A \xrightarrow{\phi} FA$ is an Algebra, and A its Carrier. We can phrase the business logic of the previously seen functions as such (using the transformation $A^B \times A^C \sim A^{B+C}$):

```
type Algebra f a = f a \rightarrow a

boolBL :: b \rightarrow b \rightarrow Algebra BoolF b

boolBL tt ff = \lambdacase

TTF \rightarrow tt

FFF \rightarrow ff

listBL :: b \rightarrow (a \rightarrow b \rightarrow b) \rightarrow Algebra (ListF a) b

listBL nil cons = \lambdacase

NilF \rightarrow nil

x 'ConsF' b \rightarrow x 'cons' b
```


To conclude this exercise, we want to generalize the function for recursively applying the business logic (So a function subsuming list and booL seen earlier):

list :: $b \rightarrow (a \rightarrow b \rightarrow b) \rightarrow List \ a \rightarrow b$

booL :: b \rightarrow b \rightarrow BooL \rightarrow b We define a type family to associate the structural functors with their types.

type family CI (f :: * \rightarrow *) :: *

type instance CI (ListF a) = List a type instance CI (BooLF) = BooL

Then our that function would have type cata :: $Algebra f b \rightarrow CI f \rightarrow b$. To get to its definition, we must interleave some more Cat.Th.

cata :: Algebra f b \rightarrow (CI f) \rightarrow b

cata = undefined

Algebra
$$FA \qquad \downarrow_{\phi}$$

Algebra-Hom:

$$(A, \phi) \rightarrow (B, \psi)$$

 $FA \xrightarrow{Ff} FB$
 $\downarrow \phi \qquad \qquad \downarrow \psi$
 $A \xrightarrow{f} B$

Initial Algebra:

$$(A, \kappa)$$

$$FA \xrightarrow{Fh} FB$$

$$\kappa^{-1} \uparrow \downarrow \kappa \qquad \qquad \downarrow \psi$$

$$A \xrightarrow{Fh} B$$

Initiality requirement: $h = \kappa^{-1}$; Fh; ψ

As Program

```
newtype Fix f = In { out :: f (Fix f) }
```