Граничні теореми.

В теорії імовірностей фігурують дві важливі концепції: закон великих чисел та центральна гранична теорема, про які поговоримо нижче.

1 Теоретичні відомості

Тут і надалі $\{\xi_n\}_{n\geq 1}$ деяка послідовність випадкових величин, $S_n:=\sum_{k=1}^n \xi_k$. Результати нижче можна узагальнити на послідовності випадкових векторів.

Закон великих чисел

Грубо кажучи, закон великих чисел інтерпретується як збіжність емпіричного середнього до теоретичного при збільшенні кількості спостережень.

Кажуть, що $\{\xi_n\}_{n\geq 1}$ задовольняє закон великих чисел (ЗВЧ), якщо

$$\frac{S_n - E[S_n]}{n} \to^P 0, \ n \to \infty$$

Послідовність $\{\xi_n\}_{n\geq 1}$ задовольняє ПЗВЧ, якщо

$$\frac{S_n - E[S_n]}{n} \to^{P_1} 0, \ n \to \infty$$

Зокрема, зауважимо, що коли $E[\xi_n] = \mu$ для всіх $n \ge 1$, то збіжності вище можна переподати у вигляді

$$\frac{S_n}{n} \to \mu, \ n \to \infty$$

Для дослідження послідовності на виконання закону великих чисел може допомогти, наприклад, умова на дисперсії членів послідовності:

Теорема (ЗВЧ у формі Чебишева) Послідовність некорельованих випадкових величин $\{\xi_n\}_{n\geq 1}$ задовольняє закон великих чисел, якщо $Var[\xi_n] = o(n), n \to \infty$.

Також для ЗВЧ досить припустити, що дисперсії членів послідовності обмежені (в деякій літературі обмеженість дисперсій також називають умовою ЗВЧ у формі Чебишева).

Теорема (ЗВЧ у формі Чебишева, альтернативна) Послідовність некорельованих випадкових величин $\{\xi_n\}_{n\geq 1}$ задовольняє закон великих чисел, якщо $\{Var[\xi_n]\}_{n\geq 1}$ утворює обмежену послідовність.

Якщо умова на дисперсії порушується, можна для н.о.р. випадкових величин перевірити чи є доданки інтегровними. Тоді ЗВЧ виконується і $S_n/n \to^P E[\xi_1]$. Довести це твердження можна методом характеристичних функцій.

Теорема (ЗВЧ у формі Леві) Нехай $\{\xi_n\}_{n\geq 1}$ є послідовністю н.о.р. інтегровних випадкових величин. Тоді ця послідовність задовольняє ЗВЧ:

$$S_n/n \to^P E[\xi_1], n \to \infty.$$

Для дослідження випадкової послідовності на посилений закон великих чисел, інколи може стати у нагоді умова Колмогорова.

Теорема (ПЗВЧ у формі Колмогорова) Нехай $\{\xi_n\}_{n\geq 1}$ є послідовністю попарно незалежних випадкових величин. Якщо збігається ряд

$$\sum_{n>1} \frac{Var[\xi_n]}{n^2},$$

то послідовність задовольняє ПЗВЧ.

Для незалежних однаково розподілених (н.о.р.) випадкових величин важливою є наступна теорема про необхідну та достатню умови виконання ПЗВЧ.

Теорема (Критерій Колмогорова про ПЗВЧ) Нехай $\{\xi_n\}_{n\geq 1}$ є послідовністю н.о.р. випадкових величин. Ця послідовність задовольняє ПЗВЧ тоді і тільки тоді, коли ξ_1 інтегровна.

Центральна гранична теорема

Центральна гранична теорема (далі ЦГТ) каже про те, що певних умов на розподіл членів випадкової послідовності, її стандартизована (центрована та нормована) сума матиме наближено нормальний розподіл. У класичній ЦГТ досить вимагати, щоб випадкові величини були н.о.р. зі скінченним другим моментом.

Теорема (Класична ЦГТ). Нехай $\{\xi_n\}_{n\geq 1}$ є послідовністю н.о.р. випадкових величин, причому існують скінченні $E[\xi_1] = \mu$ та $Var[\xi_1] = \sigma^2$. Тоді має місце слабка збіжність

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \to^W \eta \sim N(0, 1), \ n \to +\infty.$$

Умову ЦГТ можна послабити, відкинувши припущення про однакову розподіленість доданків. Відповідну ЦГТ у формі Ліндеберга тут ми сформулюємо для загальної схеми серій.

Загальною послідовністю серій будемо називати такий масив $\{\xi_k^{(n)},\ 1\leq k\leq k_n,\ n\geq 1\},$ що

- 1. Величини в кожній серії $\{\xi_k^{(n)}\}_{1 \le k \le k_n}$ незалежні в сукупності,
- 2. Існують $E[\xi_k^{(n)}] = \mu_k^{(n)}, \, \mu^{(n)} = \sum_{k=1}^{k_n} \mu_k^{(n)},$
- 3. Існують $Var[\xi_k^{(n)}] = (\sigma_k^{(n)})^2, (\sigma^{(n)})^2 = \sum_{k=1}^{k_n} (\sigma_k^{(n)})^2.$

Теорема (ЦГТ Ліндеберга для загальних серій). Нехай $\{\xi_k^{(n)},\ 1\leq k\leq k_n,\ n\geq 1\}$ є загальною послідовністю серій. Припустимо, що виконується умова Ліндеберга: для довільного $\varepsilon>0$

$$L_n(\varepsilon) = \frac{1}{(\sigma^{(n)})^2} \sum_{k=1}^{k_n} E[|\xi_k^{(n)} - \mu_k^{(n)}|^2 \mathbf{1}\{|\xi_k^{(n)} - \mu_k^{(n)}| \ge \varepsilon \sigma^{(n)}\}] \to 0, \ n \to \infty$$

Тоді розподіли стандартизованих сум $\xi^{(n)} = \sum_{k=1}^{k_n} \xi_k^{(n)}$ слабко збігатимуться до стандартного нормального розподілу, тобто

$$\frac{\xi^{(n)} - \mu^{(n)}}{\sigma^{(n)}} \to^W \eta \sim N(0, 1), \ n \to \infty.$$

1.1 Задача 1

Нехай $\{\xi_n\}_{n\geq 1}$ — послідовність н.о.р. випадкових величин, які мають бета-розподіл:

$$f(t) = \mathbf{1}_{(0,1)}(t) \cdot \frac{t^{\alpha-1}(1-t)^{\beta-1}}{B(\alpha,\beta)}, \ t \in \mathbb{R}$$

Показати, що для цієї послідовності:

- 1. Виконується ПЗВЧ.
- 2. Виконується ЦГТ.

Розв'язання.

ПЗВЧ справді має місце. Наприклад, досить перевірити виконання критерія Колмогорова про ПЗВЧ:

$$E[\xi_1] = \int_0^1 t \cdot \frac{t^{\alpha - 1} (1 - t)^{\beta - 1}}{B(\alpha, \beta)} dt = \frac{1}{B(\alpha, \beta)} \cdot \int_0^1 t^{(\alpha + 1) - 1} (1 - t)^{\beta - 1} dt = \frac{B(\alpha + 1, \beta)}{B(\alpha, \beta)}$$

Далі зауважимо, що $B(a,b)=\Gamma(a)\Gamma(b)/\Gamma(a+b)$ і також $\Gamma(z+1)=z\Gamma(z).$ Отже

$$E[\xi_1] = \frac{\alpha \Gamma(\alpha) \Gamma(\beta)}{(\alpha + \beta) \Gamma(\alpha + \beta)} \cdot \frac{1}{B(\alpha, \eta)} = \frac{\alpha}{\alpha + \beta} =: \mu < \infty$$

Отже, має місце збіжність середнього арифметичного до теоретичного середнього:

$$\frac{1}{n} \sum_{k=1}^{n} \xi_k \to^{P_1} E[\xi_1] = \frac{\alpha}{\alpha + \beta}, \ n \to \infty.$$

Легко побачити що класична ЦГТ теж має місце. Знайдемо другий теоретичний момент:

$$E[\xi_1^2] = |\text{Вправа}| = \frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)}$$

I звідси вже отримаємо дисперсію:

$$Var[\xi_1] = |$$
Вправа, раптом $| = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} =: \sigma^2 < \infty$

Отже, справді тоді

$$\frac{\sum_{k=1}^{n} \xi_k - n \cdot \mu}{\sqrt{n} \cdot \sigma} \to^W \eta \sim N(0, 1), \ n \to \infty.$$

2 Задачі

2.1 Задача 2

Нехай $\xi_n \to^W \xi$, $\eta_n \to^P c = const$. Довести, що тоді $\xi_n + \eta_n \to^W \xi + c$ та $\xi_n \cdot \eta_n \to^W \xi \cdot c$.

Розв'язання.

Спочатку доведемо перший результат. Через φ_{ν} позначимо характеристичну функцію випадкової величини ν .

Покажемо, що $\varphi_{\xi_n+\eta_n} \to \varphi_{\xi+\eta}$ поточково. Дійсно, для довільного $t \in \mathbb{R}$ оцінимо

$$0 \le |\varphi_{\xi_n + \eta_n}(t) - \varphi_{\xi + \eta}(t)| = |E[e^{it(\xi_n + \eta_n)}] - E[e^{it(\xi + \eta)}]| \le$$

$$\le |E[e^{it(\xi_n + \eta_n)} - E[e^{it(\xi_n + c)}]|| + |E[e^{it(\xi_n + c)}] - E[\xi + c]| \le E[h_t(\eta_n)] + |\varphi_{\xi_n}(t) - \varphi_{\xi}(t)|,$$

де $h_t(x) = |e^{itx} - e^{itc}| \in C_b(\mathbb{R})$. Зауважимо, що другий доданок прямує до нуля згідно теореми Леві про неперервність. Перший доданок, власне $E[h_t(\eta_n)]$, теж прямує до нуля, оскільки з означення слабкої збіжності маємо

$$E[h_t(\eta_n)] \to E[h_t(0)] = 0, \ n \to \infty.$$

Поєднуючи попередні результати, маємо слабку збіжність суми послідовностей.

Тепер покажемо слабку збіжність добутку. В принципі досить довести результат при c=0, оскільки

$$\xi_n \cdot \eta_n = \xi_n \cdot (\eta_n - c + c) = \xi_n \cdot (\eta_n - c) + \xi_n \cdot c$$

і далі можна використати перший результат задачі.

Насправді досить показати, що $\xi_n \cdot \eta_n \to^P 0$, що еквівалентно слабкій у випадку збіжності до сталої. Беремо довільне $\varepsilon > 0$ і нехай C > 0 обрано так, щоб $\pm \varepsilon/C$ була точкою неперервності F_{ε} :

$$P(|\xi_n \eta_n| \ge \varepsilon) = P(|\xi_n \eta_n| \ge \varepsilon, |\eta_n| < C) + P(|\xi_n \eta_n| \ge \varepsilon, |\eta_n| \ge C)$$

З монотонності імовірності маємо, що другий доданок можна оцінити так:

$$P(|\xi_n \eta_n| \ge \varepsilon, |\eta_n| \ge C) \le P(|\eta_n| \ge C),$$

наперед зауваживши що імовірність справа прямує до 0 згідно збіжності за ймовірності η_n до нуля. Далі, розберемося з першим доданком. Неважко переконатися у вкладенні

$$\{|\xi_n\eta_n|\geq \varepsilon, |\eta_n|\geq C\}\subset \{|\xi_n|\geq \varepsilon/C\}.$$

Тоді з монотонності імовірності отримаємо

$$P(|\xi_n \eta_n| \ge \varepsilon, |\eta_n| \ge C) \le P(|\xi_n| \ge \varepsilon/C) = 1 - F_{\xi_n}(\varepsilon/C) + F_{\xi_n}(-\varepsilon/C)$$

Отже, попередньо маємо таку ланку нерівностей:

$$0 \le P(|\xi_n \eta_n| \ge \varepsilon) \le 1 - F_{\xi_n}(\varepsilon/C) + F_{\xi_n}(-\varepsilon/C) + P(|\eta_n| \ge C).$$

Перейдемо до верхньої границі при $n \to \infty$ і пригадуємо, що $F_{\xi_n} \to^O F_{\xi}$:

$$0 \le \overline{\lim}_{n \to \infty} P(|\xi_n \eta_n| \ge \varepsilon) \le 1 - F_{\xi}(\varepsilon/C) + F_{\xi}(-\varepsilon/C)$$

Спрямувавши $C \rightarrow 0+$, отримаємо

$$0 \le \overline{\lim}_{n \to \infty} P(|\xi_n \eta_n| \ge \varepsilon) \le 1 - F_{\xi}(+\infty) + F_{\xi}(-\infty) = 1 - 1 + 0 = 0.$$

Тобто $\overline{\lim}_{n\to\infty}P(|\xi_n\eta_n|\geq\varepsilon)=0\ (0\leq\underline{\lim}(\ldots)\leq\overline{\lim}(\ldots)=0).$ Отже, $\xi_n\eta_n\to^P0$, значить і $\xi_n\eta_n\to^W0$ при $n\to\infty$.

В принципі результат для суми можна схожим чином 'провернути' як вийшло для добутків.

2.2 Задача 3 (дельта-метод / теорема неперервності)

Нехай $g \in C^1(\mathbb{R})$, $\{\xi_n\}_{n\geq 1}$ є послідовністю н.о.р. випадкових величин, що задовольняє класичну ЦГТ. Показати, що має місце слабка збіжність

$$\sqrt{n}(g(\overline{\xi}_n) - g(\mu)) \to^W \sigma g'(\mu)\eta, \ \eta \sim N(0, 1),$$

де
$$E[\xi_1] = \mu$$
, $Var[\xi_1] = \sigma^2$, $\overline{\xi}_n = \frac{1}{n} \sum_{k=1}^n \xi_k$.

Розв'язання.

Скористаємося формулою Тейлора із залишковим членом у формі Лагранжа:

$$\sqrt{n}(g(\overline{\xi}_n) - g(\mu)) = g'(\mu_n)\sqrt{n}(\overline{\xi}_n - \mu),$$

де $\mu_n = \mu \cdot \lambda_n + \overline{\xi}_n \cdot (1 - \lambda_n), \ \lambda_n \in (0, 1).$ Відомо, що $\overline{\xi}_n \to^{P1} \mu$ згідно ПЗВЧ (переконайтесь), отже

$$|\mu_n - \mu| = |\overline{\xi}_n - \mu| \cdot |1 - \lambda_n| \le |\overline{\xi}_n - \mu| \to^{P_1} 0, \ n \to \infty$$

Отже $\mu_n \to^{P1} \mu$ і, оскільки g' є неперервною на \mathbb{R} , маємо що $g'(\mu_n) \to^{P1} g'(\mu)$.

Тепер зауважимо, що $\sqrt{n}(\overline{\xi}_n-\mu)\to^W\sigma\eta,\ \eta\sim N(0,1)$. Дійсно, оскільки має місце класична ЦГТ, то

$$\sqrt{n}(\overline{\xi}_n - \mu) = \sigma \cdot \frac{n\overline{\xi_n} - n\mu}{\sqrt{n}\sigma} \to^W \sigma \cdot \eta, \ n \to \infty$$

Залишається скористатися теоремою Слуцького, бо по суті оперуємо добутком двох слабко збіжних послідовностей до сталої та випадкової величини відповідно:

$$\sqrt{n}(q(\overline{\xi}_n) - q(\mu)) \to^W \sigma q'(\mu)\eta, \ n \to \infty.$$

2.3 Задача 4

Випадкові величини $\{\xi_n\}_{n\geq 1}$ незалежні та мають розподіл

$$P(\xi_n = \pm n^{\alpha}) = \frac{n^{-\beta}}{2}, \ P(\xi_n = 0) = 1 - n^{-\beta},$$

де $2\alpha > \beta - 1$. Довести, що для загальної послідовності серій $\{\xi_k, 1 \leq k \leq n, n \geq 1\}$ умова Ліндеберга виконується тоді і лише тоді, коли $\beta \in [0,1)$.

Розв'язання.

Вимога на $\beta \geq 0$ очевидна, щоб $\{P(\xi_n = x) \mid x \in \{-n, 0, n\}\}$ задало імовірнісний розподіл. Тому достатньо переконатися у тому, щоб $\beta < 1$.

Тут $\xi_k^{(n)}=\xi_k,\,k_n=n,\,\mu_k^{(n)}=0$ та $(\sigma_k^{(n)})^2=k^{2\alpha-\beta}$. Отже $\mu^{(n)}=0$ та $(\sigma^{(n)})^2=\sum_{k=1}^n k^{2\alpha-\beta}$. Для довільного $\varepsilon>0$ розглянемо умову Ліндеберга

$$L_n(\varepsilon) = \frac{1}{(\sigma^{(n)})^2} \sum_{k=1}^n E[|\xi_k|^2 \mathbf{1}\{|\xi_k| \ge \varepsilon \sigma^{(n)}\}]$$

Побачимо, що доданок, $E[|\xi_k|^2 \mathbf{1}\{|\xi_k| \geq \varepsilon \sigma^{(n)}\}]$, можна перезаписати так:

$$E[|\xi_k|^2 \mathbf{1}\{|\xi_k| \ge \varepsilon \sigma^{(n)}\}] = \begin{cases} 0, & k^{\alpha} < \varepsilon \left(\sum_{k=1}^n k^{2\alpha - \beta}\right)^{1/2}, \\ E[|\xi_k|^2] = k^{2\alpha - \beta}, & k^{\alpha} \ge \varepsilon \left(\sum_{k=1}^n k^{2\alpha - \beta}\right)^{1/2}. \end{cases}$$

Тому

$$L_n(\varepsilon) = \left(\sum_{k=1}^n k^{2\alpha-\beta}\right)^{-1} \cdot \sum_{k=1}^n k^{2\alpha-\beta} \cdot \mathbf{1} \left\{ k^{\alpha} \ge \varepsilon \left(\sum_{k=1}^n k^{2\alpha-\beta}\right)^{1/2} \right\}$$

Для дослідження $L_n(\varepsilon)$ при $n \to \infty$ скористаємося теоремою Штольца:

$$\overline{\lim}_{n\to\infty} L_n(\varepsilon) = \overline{\lim}_{n\to\infty} \frac{n^{2\alpha-\beta} \cdot \mathbf{1} \left\{ n^{\alpha} \ge \varepsilon \left(\sum_{k=1}^n k^{2\alpha-\beta} \right)^{1/2} \right\}}{n^{2\alpha-\beta}} = \overline{\lim}_{n\to\infty} \mathbf{1} \left\{ n^{\alpha} \ge \varepsilon \left(\sum_{k=1}^n k^{2\alpha-\beta} \right)^{1/2} \right\},$$

Тому треба дослідити при яких $\beta \geq 0$ має місце збіжність індикатора до нуля. Тобто, щоб для деякого $N \geq 1$ мала місце нерівність

$$B_n = \frac{n^{\alpha}}{\left(\sum_{k=1}^n k^{2\alpha-\beta}\right)^{1/2}} < \varepsilon, \ n \ge N.$$

Але ж $\varepsilon > 0$ — довільне, тобто по суті треба показати що $B_n \to 0$ при $n \to \infty$. А це значить показати збіжність до ∞ суми $n^{-2\alpha} \sum_{k=1}^n k^{2\alpha-\beta}$.

А тепер переконайтеся, що це можливо при $\beta < 1$. Можливо є сенс розглянути знову теорему Штольца, а там (скориставшись розкладом Тейлора $1 - (1 - 1/x)^{2\alpha}$ при $x \to \infty$)

$$\lim_{n \to \infty} \frac{n^{2\alpha - \beta}}{n^{2\alpha} - (n-1)^{2\alpha}} = \lim_{n \to \infty} \frac{n^{-\beta}}{1 - ((n-1)/n)^{2\alpha}} = \lim_{x \to \infty} \frac{x^{-\beta}}{1 - (1-1/x)^{2\alpha}} = \lim_{x \to \infty} \frac{x^{-\beta}}{2\alpha(1/x) + o(1/x)} = \lim_{x \to \infty} \frac{1}{2\alpha x^{\beta - 1} + x^{\beta - 1}(o(1/x)/(1/x))} = +\infty \Leftrightarrow \beta - 1 < 0$$

2.4 Задача 5

Знайдіть достатню умову ПЗВЧ для послідовності незалежних випадкових величин $\{\xi_n\}_{n\geq 1}$ таких, що

- 1. $\xi_n \sim \text{Pois}(\lambda_n)$,
- 2. $\xi_n \sim \text{Exp}(\lambda_n)$.

Розв'язання.

Скористаємося достатньою умовою ПЗВЧ у формі Колмогорова:

$$\sum_{n>1} \frac{Var[\xi_n]}{n^2} < \infty.$$

Відомо, що $Var[\xi_n] = \lambda_n$ при $\xi_n \sim \mathrm{Pois}(\lambda_n)$ та $Var[\xi_n] = 1/\lambda_n^2$ при $\xi_n \sim \mathrm{Exp}(\lambda_n)$. Отже, щоб послідовність задовольняла ПЗВЧ у разі $\xi_n \sim \mathrm{Pois}(\lambda_n)$ достатньо вимагати збіжності ряду

$$\sum_{n\geq 1} \frac{\lambda_n}{n^2},$$

а при $\xi_n \sim \operatorname{Exp}(\lambda_n)$ досить збіжності ряду

$$\sum_{n>1} \frac{1}{(n\lambda_n)^2}$$

2.5 Задача 6

Для випадкових величин $\{\xi_n\}_{n\geq 1}$ ряд $\sum_{n\geq 1}\xi_n/n$ збігається майже напевно і $E[\xi_n]=0$. Довести, що ця послідовність випадкових величин задовольняє ПЗВЧ.

Розв'язання.

Для цього доведемо наступний результат: нехай $\{a_n\}_{n\geq 1}$ – така послідовність чисел, що

$$S_n = \sum_{k=1}^n \frac{a_k}{k} \to c \in \mathbb{R}, \ n \to \infty.$$

Тоді має місце збіжність середніх арифметичних:

$$A_n = \frac{1}{n} \sum_{k=1}^n a_k \to 0, \ n \to \infty.$$

Дійсно, беремо $n \ge 2$ та покладемо $S_0 = 0$:

$$A_n = \frac{1}{n} \sum_{k=1}^n a_k = \frac{1}{n} \sum_{k=1}^n k \frac{a_k}{k} = \frac{1}{n} \sum_{k=1}^n \sum_{l=1}^k \frac{a_k}{k} = \frac{1}{n} \sum_{l=1}^n \sum_{k=l}^n \frac{a_k}{k} = \frac{1}{n} \sum_{l=1}^n (S_n - S_{l-1}) = S_n - \frac{1}{n} \sum_{l=1}^n S_{l-1}.$$

Останній доданок дослідимо використовуючи теорему Штольца:

$$\lim_{n \to \infty} \frac{\sum_{l=1}^{n} S_{l-1}}{n} = \lim_{n \to \infty} \frac{\sum_{l=1}^{n} S_{l-1} - \sum_{l=1}^{n-1} S_{l-1}}{n - (n-1)} = \lim_{n \to \infty} \frac{S_n}{1} = c$$

Отже, згідно арифметичних дій над збіжними послідовностями отримаємо

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} \frac{\sum_{l=1}^n S_{l-1}}{n} = c - c = 0.$$

Тепер згадаємо основну задачу. Відомо, що $\sum_{k=1}^n \xi_k/k \to^{P1} c$ для деякого $c \in \mathbb{R}$. Згідно доведеного вище результату, $\sum_{k=1}^n \xi_k/n \to^{P1} 0$, що власне треба було довести.

Коментар. Можна довести більш загальний результат для збіжних рядів, що називається лемою Кронекера:

Лема (Кронекера). Нехай $\{x_n\}_{n\geq 1}$ – така послідовність чисел, що

$$\sum_{k=1}^{n} x_k \to c \in \mathbb{R}, \ n \to \infty$$

Тоді для довільної необмеженої неспадної послідовності $\{b_n\}_{n\geq 1}\subset (0,\infty)$ має місце збіжність

$$\frac{1}{b_n} \sum_{k=1}^n b_k x_k \to 0, \ n \to \infty.$$