# Comparison of two theorem provers: Isabelle & Coq

A. Yushkovskiy S. Tripakis

Department of Computer Science School of Science **Aalto University** 

CS-E4000: Seminar in Computer Science autumn 2017

# Introduction

# PRINCIPLES OF MATHEMATICAL LOGIC

CHELSEA PUBLISHING COMPANY NEW YORK

#### Introduction

# PRINCIPLES OF MATHEMATICAL



CHELSEA PUBLISHING COMPANY NEW YORK



Outline

# Foundations of Formal Approach

A formal system Classical and Intuitionistic logics

# Two Theorem Provers

Isabelle Coq

# Comparison of the theorem provers

Comparison

Proof examples

# Elements of a Formal System

▶ A formula (judgement, statement)  $\phi \in \Phi$ :

$$\begin{split} \phi &:= p \mid q \mid \ldots \\ &\mid \phi_1 \wedge \phi_2 \mid \phi_1 \vee \phi_2 \mid \neg \phi_1 \mid \phi_1 \rightarrow \phi_2 \\ &\mid \textit{true} \mid \textit{false} \\ &\mid \ldots \end{split}$$

Propositional variables:  $p, q, ... \in V$ 

An axiom  $\phi_A \in A$ 

a transition function  $\tau:\Phi\to\Phi$ ▶ An inference rule  $\tau$ 

ightharpoonup A formula  $\phi$  provable from  $\Phi$ 

▶ A tautology ⊤  $\vdash \phi$ 

► A contradiction ⊥  $\vdash \neg \phi$ 

# Definition of the formal system

A formal system is a quadruple  $\Gamma = \langle A, V, \Omega, R \rangle$ , where

► A – set of axioms

► V – set of propositional variables

► R – set of inference rules

A formal proof of the formula  $\phi$  is a finite sequence of judgements

$$\psi_1 \xrightarrow{\tau_1} \psi_2 \xrightarrow{\tau_2} \dots \xrightarrow{\tau_n} \psi_n$$

where each  $\psi_i$  is either an axiom  $\phi_{A_i}$ , or a formula inferred from the set of previously derived formulas according the rules of inference.

# Classical Logic

example: The Hilbert System

#### Set of axioms:

$$A \rightarrow (B \rightarrow A)$$
 (A1)

$$(A \to (B \to C)) \to ((A \to B) \to (A \to C)) \tag{A2}$$

$$A \lor \neg A$$
 (EM)

#### Single inference rule (Modus Ponens)

$$\llbracket A, A \to B \rrbracket \longrightarrow B \tag{MP}$$

# Some provable tautologies:

# Intuitionistic Logic

a.k.a. Constructive Logic

#### Set of axioms:

$$A \rightarrow (B \rightarrow A)$$
 (A1)

$$(A \to (B \to C)) \to ((A \to B) \to (A \to C)) \tag{A2}$$

$$A \vee \neg A$$
 (EM)

#### Single inference rule (Modus Ponens)

$$\llbracket A, A \to B \rrbracket \longrightarrow B \tag{MP}$$

# Some provable tautologies:

# Isabelle: first acquaintance

- a generic proof assistant
- based on classical higher-order logic
- created in 1986 by
   Larry Paulson @ University of Cambridge, and
  - ► Tobias Nipkow @ Technische Universität München
- ▶ uses powerful functional language HOL
- ▶ the proof system core *Isabelle* is extended by various theories: Isabelle/HOL, Isabelle/ZF, Isabelle/CCL, etc.

# Example 1: Definition of basic datatypes

datatype bool = True | False datatype nat =
 zero ("0") | Suc nat

# Example 2: Definition of addition over nat

```
fun add :: "nat ⇒ nat ⇒ nat"
   "add (Suc m) n = Suc(add m n)"
```

# Coq: first acquaintance

- ▶ a formal proof management system
- ▶ based intuitionistic logic (Calculus of Inductive Constructions)
- reated at INRIA (Paris, France) in 1984
- ▶ uses powerful functional language Gallina
- ▶ has large collection of formalised theories
- widely used in software verification (proof code extraction)

#### Example 3: Definition of basic datatypes

Inductive False : Prop := . Inductive True : Prop := I : True. Inductive nat : Type := | 0 : nat | S : nat -> nat.

#### Example 4: Definition of addition over nat

Fixpoint add (n m: nat) : nat := match n with  $| O \Rightarrow m$   $| S n' \Rightarrow S (n' + m)$ end
where "n + m" :=
(add n m) : nat\_scope.

# Comparison

# Major similarities:

- both work in a similar way of verifying the proof or assisting in creation of the new one
- ightharpoonup premises  $\xrightarrow{tactics}$  goals (forward proof)
- ightharpoonup goals  $\xrightarrow{tactics}$  premises (backward proof)
- ▶ both have large amount of libraries with formalised theories
- ▶ both dispose the set of highly automated tactics
- both are being actively developed these days

# Major differences:

- ightharpoonup based on different logics  $\Rightarrow$ 
  - \* unprovable statements and invalid proofs in Coq
  - \* sometimes more complex proof in Coq
  - \* constructive proof in Coq



















# Summary

- ► Two widespread theorem provers were considered: Isabelle and Coq
- ► The key difference between them lie in differences between logical theories they based on
- Nonetheless, they both may be used to solve applied problems, such as software testing and verification

