深度学习与神经网络第一次课程项目

王逸群 19307110397

2022.3.18

目标:对输入的 16×16 手写数字灰度图进行识别,输出 $y \in \{-1,1\}^{10}$;

数据集:存储于digits.mat;

激活函数: Tanh 函数;

损失函数: 平方损失函数;

优化方法: 随机梯度下降法。

模型评估: 在测试集上的错误率为 47%, 在验证集上的错误率如图 1。

图 1: 原始模型在验证集上的错误率

1 网络结构

程序中,变量nHidden为一个向量,其维度表示网络隐藏层的个数,各个分量表示每个隐藏层的神经元个数。

基础模型中,nHidden = 10,将其修改得到的验证集和测试集错误率 如图 2和表 1所示。

图 2: 不同网络结构的模型在验证集上的错误率

可以看到,随着单层网络神经元个数的增加,模型在测试集上的错误率 逐渐减小,但是减小的程度趋缓。鉴于训练模型的时间成本随着网络神经元 个数的增加而增加,神经元个数的选取是精度与成本的权衡。

另一方面,随着网络隐藏层个数的增加,模型在测试集上的错误率逐渐增加,可能的原因是出现了过拟合现象。

网络结构	测试集错误率
nHidden = 10	0.470
nHidden = 50	0.255
nHidden = 100	0.228
nHidden = 200	0.181
nHidden = 300	0.177
nHidden = [10, 10]	0.536
nHidden = [10, 10, 10]	0.562

表 1: 不同网络结构的模型在测试集上的错误率

2 学习率与 Momentum

在基础模型中,学习率始终为alpha = 1e-3,且没有引入 Momentum。本节尝试使用修改学习率常数、学习率衰减、引入 Momentum 的方式来改进模型,得到的验证集和测试集错误率如图 3和表 2所示。

初始学习率	学习率衰减	Momentum	测试集错误率
alpha = 1e-3	无	无	0.470
alpha = 1e-2	无	无	0.267
alpha = 1e-4	无	无	0.584
alpha = 1e-3	无	0.9	0.322
alpha = 1e-2	指数衰减	无	0.277
alpha = 1e-2	余弦衰减	无	0.259

表 2: 不同学习方式的模型在测试集上的错误率

可以看到,随着常数学习率的增加,验证集错误率的收敛速度变快,但 是错误率变得越发不稳定。为了解决这个问题,采用指数衰减和余弦衰减两 种学习率衰减方式,两者效果相近。

另一方面,使用 Momenteum 也能改进模型的训练效果。

图 3: 采用不同优化方式的模型在验证集上的错误率

3 损失函数计算

基础模型中,在计算损失函数时,使用了矩阵计算,而非以下标作为循环变量的循环计算,并且避免进行不必要的条件判断。如反向传播算法:

```
% output layer
    error = 2 * error;
    gradOutput = gradOutput + Activation{end}' * error;
    error = sech(netActivation{end}) .^ 2 .* ...
        (error * weightsOutput');
6
   % hidden layers
    for indexHidden = length(nHidden) - 1: -1: 1
        gradHidden\{indexHidden\} \, = \, gradHidden\{indexHidden\} \, + \, \ldots
8
            Activation {indexHidden}' * error;
9
        error = (error * weightsHidden{indexHidden}') .* ...
10
11
            sech(netActivation{indexHidden}) .^ 2;
12
    end
   % input layer
    gradInput = gradInput + X(indexInput,:)' * error;
```

其中,error表示误差项,初始值是模型输出值与真实值的差;

4 正则化

基础模型中,没有加入正则化。本节尝试调整正则化参数来改进模型,得到的验证集和测试集错误率如图 4和表 3所示。

图 4: 不同正则化参数的模型在验证集上的错误率

可以看到,正则化参数为 0.05 时,正则化效果还不明显。之后,随着正则化参数的增加,验证集错误率的收敛速度变快,但是错误率也变大。

5 交叉熵损失函数

基础模型中,损失函数是平方损失函数。本节尝试加入 Softmax 函数、使用交叉熵损失函数来改进模型,得到的验证集和测试集错误率如图 5和表4所示。

正则化参数	测试集错误率
0	0.470
0.01	0.286
0.05	0.104
0.1	0.100
0.5	0.164
1	0.235

表 3: 不同正则化参数的模型在测试集上的错误率

图 5: 不同损失函数的模型在验证集上的错误率

损失函数	测试集错误率
平方损失函数	0.470
交叉熵损失函数	0.353

表 4: 不同损失函数的模型在测试集上的错误率

可以看到,使用交叉熵损失函数会减小模型的错误率,增加错误率的稳定性,但也会减小收敛速度。

6 偏置

基础模型中,输入带有偏置项。本节使得每个隐藏层中的一个神经元成为偏置项,以此来改进模型,得到的验证集和测试集错误率如图??和表??所示。