Capítulo 3-Circuitos Sequenciais

Projeto de Máquinas Mealy e Moore Profa. Eliete Caldeira

Máquinas Mealy e Moore

Máquina Mealy

- Mais geral
- As saídas dependem do estado atual e das entradas da máquina
- As saídas são representadas nos arcos de transição, separadas das entradas por uma barra

Máquina Moore

- As saídas dependem apenas do estado atual
- São um caso especial de Máquina Mealy
- As saídas são representadas junto dos estados

Máquina Medvedev:

- A saída é tomada diretamente de um flip-flop, ou seja, a saída é o próprio estado dos flip-flops. Um contador é um exemplo.
- As saídas de uma máquina Moore serão completamente síncronas em relação ao clock do circuito, enquanto saídas de máquinas Mealy podem mudar assincronamente.

Máquinas Mealy e Moore

Arquitetura padrão

Figure 6.49 Standard controller architecture—general view.

Máquinas Mealy e Moore

Arquiteturas

Figure 6.50 Controller architectures for: (a) a Moore FSM, (b) a Mealy FSM.

- Projete uma Máquina Moore que gere uma saída Z = 1 quando o padrão 10110 for detectado na entrada X
- Entrada serial X de um bit (0 ou 1)
- Saída Z:
 - \circ Z = 1 se x(t-4..t) = 10110
 - Z = 0 caso contrário

- Projete uma Máquina Moore que gere uma saída Z = 1 quando o padrão 10110 for detectado na entrada X
- Entrada serial X de um bit (0 ou 1)
- Saída Z:
 - \circ Z = 1 se x(t-4..t) = 10110
 - Z = 0 caso contrário
- Quantos estados deve ter o sistema?
- O que é preciso memorizar?

- Detecção do padrão 10110
- Estados:
 - Ini início e/ou nenhuma parte da sequência foi detectada (Z = 0)
 - 1B bit 1 da sequência foi detectado (Z = 0)
 - 2B bits 10 da sequência foi detectada (Z = 0)
 - 3B bits 101 da sequência foi detectada (Z = 0)
 - 4B bits1011 da sequência foi detectada (Z = 0)
 - 5B toda a sequência 10110 foi detectada (Z = 1)

Procedimento:

- Crie uma bolha no grafo para cada estado e coloque o nome (Ini, 1B, 2B, ...) e a saída Z correspondentes.
- Construa primeiro o caminho que leva à detecção completa da sequência marcando os ramos do caminho com a condição de X que leva ao próximo estado.
- Retorne em cada estado analisando quais os próximos estados se a entrada não pertence à sequência, ou seja, não é do valor esperado. Cada nó deve ter um ramo saindo para X = 0 e outro para X = 1.

Detecção do padrão 10110

- Detecção do padrão 10110
- Fazer o circuito seguindo o procedimento apresentado

Projeto do bloco de controle

Passos:

- Capture a FSM → Diagrama de bolhas ou de estados
- Crie a arquitetura → Defina entradas, saídas e o número de <u>flip-flops</u> para representar estados
- 3. Codifique os estados → um código por estado
- 4. Crie a tabela de estados
- 5. Implemente a lógica combinacional

- Projete uma Máquina Mealy que gere uma saída Z = 1 quando o padrão 10110 for detectado na entrada X
- Entrada serial X de um bit (0 ou 1)
- Saída Z:
 - \circ Z = 1 se x(t-4..t) = 10110
 - Z = 0 caso contrário

- Projete uma Máquina Mealy que gere uma saída Z = 1 quando o padrão 10110 for detectado na entrada X
- Entrada serial X de um bit (0 ou 1)
- Saída Z:
 - \circ Z = 1 se x(t-4..t) = 10110
 - Z = 0 caso contrário
- Quantos estados deve ter o sistema?
- O que é preciso memorizar?

- Detecção do padrão 10110
- Estados:
 - Ini início e/ou nenhuma parte da sequência foi detectada (Z = 0) para x=0 e para x=1)
 - ∘ 1B primeiro bit 1 da sequência foi detectado (Z = 0 para x=0 e para x=1)
 - 2B bits 10 da sequência foi detectada (Z = 0 para x=0 e para x=1)
 - \circ 3B bits 101 da sequência foi detectada (Z = 0 para x=0 e para x=1)
 - 4B bits 1011 da sequência foi detectada (Z = 1 para x = 0 e para Z = 0 para x = 1)

Procedimento:

- Crie uma bolha no grafo para cada estado e coloque o nome (Ini, 1B, 2B...).
- Construa primeiro o caminho que leva à detecção completa da sequência, marcando os ramos do caminho com a condição de X que leva ao próximo estado e a saída correspondente.
- Retorne em cada estado analisando quais os próximos estados se a entrada não pertence à sequência, ou seja, não é do valor esperado, marcando os novos ramos do caminho com a condição de X que leva ao próximo estado e a saída correspondente. Cada nó deve ter um ramo saindo para X = 0 e outro para X = 1, com as respectivas saídas.

Detecção do padrão 10110

- Detecção do padrão 10110
- Fazer o circuito seguindo o procedimento apresentado

Projeto do bloco de controle

Passos:

- Capture a FSM → Diagrama de bolhas ou de estados
- Crie a arquitetura → Defina entradas, saídas e o número de <u>flip-flops</u> para representar estados
- 3. Codifique os estados → um código por estado
- 4. Crie a tabela de estados
- 5. Implemente a lógica combinacional

- Faca a máquina de estados para controlar as luzes traseiras de um Ford Thunderbird 1965.
- Há 3 lanternas em cada lado que piscam segundo a sequência mostrada abaixo indicando para que lado o carro está virando quando se dá seta.
- A máquina de estados tem duas entradas que são as indicações de seta para direita ou esquerda e mais uma de pisca alerta. Nesse caso todas as seis lâmpadas devem acender e apagar conjuntamente.
- Pode-se considerar que há um sinal de clock cuja frequência corresponde à frequência desejada para o "liga" e "desliga" das lanternas.

Entradas:

- LEFT o motorista quer virar à esquerda
- RIGHT o motorista quer virar à direita
- HAZ o motorista ligou o pisca alerta (*hazard mode*)

Saídas:

- LC, LB e LA Lâmpadas da esquerda
- RA, RB e RC lâmpadas da direita

- Deve haver um estado para cada situação da tabela:
 - IDLE 000 000 Lâmpadas apagadas
 - L1 001 000 1 lâmpada acesa esquerda
 - L2 011 000 2 lâmpadas acesas esquerda
 - L3 111 000 3 lâmpadas acesas esquerda
 - R1 000 100 1 lâmpada acesa direita
 - R2 000 110 2 lâmpadas acesas direita
 - R3 000 111– 3 lâmpadas acesas direita
 - LR3 111 111 Todas as lâmpadas acesas

- Primeira versão
 - O valor 1 no ramo indica que a transição ocorre independente das entradas

- Problemas da primeira versão:
 - E se mais de uma entrada for "setada" simultaneamente?

Ex: Pisca alerta e seta para esquerda? A máquina indica dois estados de destino! Impossível!

Resolvendo...

- Problemas da segunda versão
- Se alguém apertar o pisca alerta enquanto uma seta estiver ligada, a máquina irá primeiro completar a sequência de lâmpadas para depois entrar no modo de piscaalerta.

Terceira versão, dando prioridade ao pisca alerta

Mais seguro pois permite ligar piscaalerta mesmo durante a sequência de lâmpadas das setas Tem-se a opção de ir direto para o pisca-alerta, a partir de qualquer estado da maquina

Copyright © 1999 by John F. Wakerly

Projeto Thunderbird

Table 7-16
State assignment for T-bird tail lights state machine.

State	Q2	Q1	Q0
IDLE	0	0	0
L1	0	0	1
L2	0	1	1
L3	0	1	0
R1	1	0	1
R2	1	1	1
R3	1	1	0
LR3	1	0	0

s	Q2	Q1	Q0	Transition expression	S *	Q2*	Q1*	Q0*
IDLE	0	0	0	(LEFT + RIGHT + HAZ)'	IDLE	0	0	0
IDLE	0	0	0	$LEFT \cdot HAZ' \cdot RIGHT'$	L1	0	0	1
IDLE	0	0	0	HAZ + LEFT · RIGHT	LR3	1	0	0
IDLE	0	0	0	$RIGHT \cdot HAZ' \cdot LEFT'$	R1	1	0	1
L1	0	0	1	HAZ'	L2	0	1	1
L1	0	0	1	HAZ	LR3	1	0	0
L2	0	1	1	HAZ'	L3	0	1	0
L2	0	1	1	HAZ	LR3	1	0	0
L3	0	1	0	1	IDLE	0	0	0
R1	1	0	1	HAZ'	R2	1	1	1
R1	1	0	1	HAZ	LR3	1	0	0
R2	1	1	1	HAZ'	R3	1	1	0
R2	1	1	1	HAZ	LR3	1	0	0
R3	1	1	0	1	IDLE	0	0	0
LR3	1	0	0	1	IDLE	0	0	0

Table 7-17
Transition list for T-bird tail lights state machine.

Projete um sistema que controle o número de carros em um estacionamento com entrada e saída única. O sistema tem dois sensores A e B posicionados como na figura. Considere que qualquer veículo cobre os dois em algum momento. O sistema deve detectar se um carro está entrando ou saindo e, respectivamente, incrementar ou decrementar um contador. O acumulado não deve ter erros se carro desistir no meio do caminho. Considere que o clock do sistema é muito rápido em relação à velocidade do carro.

Projete um sistema que controle o número de carros em um estacionamento com entrada e saída única. O sistema tem dois sensores A e B posicionados como na figura. Considere que qualquer veículo cobre os dois em algum momento. O sistema deve detectar se um carro está entrando ou saindo e, respectivamente, incrementar ou decrementar um contador. O acumulado não deve ter erros se carro desistir no meio do caminho. Considere que o clock do sistema é muito rápido em relação à velocidade do carro.

Estados:

- S1 Nenhum sensor ativado
- S2 Sensor A ativado
- S3 Sensores A e B ativados
- S4 Sensor B ativado

 Máquina Mealy do sistema considerando duas entradas e duas saídas AB/INC DEC

Fazer o circuito seguindo o procedimento

Projeto do bloco de controle

Passos:

- Capture a FSM → Diagrama de bolhas ou de estados
- Crie a arquitetura → Defina entradas, saídas e o número de <u>flip-flops</u> para representar estados
- 3. Codifique os estados → um código por estado
- 4. Crie a tabela de estados
- 5. Implemente a lógica combinacional

Projetos com flip-flops diferentes

Tipos de flipflops e tabelas de excitação

Projetos com flip-flops diferentes

 Arquiteturas de Máquinas Mealy e Moore para outros flip-flops

Neste caso, a memória não é um registrador de N bits, mas tem n flip-flops do tipo escolhido

Figure 7-36 Clocked synchronous state-machine structure (Moore machine).

Copyright © 1999 by John F. Wakerly

Exemplo com flip-flop JK

Projete o circuito da figura usando flip-flops JK

> Pode-se considerar que não há saídas externas ou que estas são os próprios estados

Exemplo com flip-flop JK

 Tabela de excitação do flip-flop e tabela de transição de estados

Tabela de excitação do JK

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

Present state			Next state			Inputs					
C	В	A	C	В	A	J_C	K_C	J_B	K_B	J_A	K_A
0	0	0	0	1	0	0	X	1	X	0	X
0	0	1	1	0	0	1	X	0	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	0	0	1	0	X	X	1	X	0
1	0	0	1	1	0	X	0	1	X	0	X
1	0	1	0	0	0	X	1	0	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X
1	1	1	0	0	0	X	1	X	1	X	1

Exemplo com flip-flop JK

Minimização das funções de entradas dos flip-flops

$$J_A = B.\overline{C}$$

$$K_A = \overline{B} + C$$

$$J_B = \overline{A}$$

$$K_B = A + C$$

$$J_C = A.\overline{B}$$

$$K_C = A + B$$

Exemplo com Flip-flop JK

Circuito final

Exemplo com flip-flop T

 Projete de um contador binário de 2 bits com habilita de contagem e bit de direção, usando flip-flop tipo T

Para ser continuado....