Statistinės hipotezės

Prieš pradedant spręsti 13 užduotį reikėtų susipažinti su paskaitose aptariamais statistinių hipotezių tikrinimo uždaviniais ir jų sprendimo būdais.

Trumpai priminsime kai kurias sąvokas. Tegu $x = \langle x_1, x_2, ..., x_n \rangle$ yra imtis, gauta stebint atsitiktinio dydžio X reikšmes. Šios imties vidurkiu ir dispersija vadinami skaičiai

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

Pagal imties x duomenis su reikšmingumo lygmeniu α tikrinama statistinė hipotezė H_0 . Hipotezės H_0 tikrinimo kriterijus priklauso nuo to, kokia yra jos alternatyva, įprastai žymima H_1 . Kriterijaus p-reikšme žymėsime p_R . Hipotezė H_0 priimama, jei $p_R \geq \alpha$.

- 1. Hipotezės apie normaliojo atsitiktinio dydžio parametrus. Tarkime, kad $X \sim \mathcal{N}(a; \sigma^2)$ su nežinomais vidurkiu EX = a ir dispersija $DX = \sigma^2$.
- 1.1 Hipotezė apie vidurkį. Su reikšmingumo lygmeniu α tikrinsime statistinę hipotezę

$$H_0: a = a_0.$$

Pirmiausiai pagal turimus imties duomenis apskaičiuojame

$$t = \frac{\bar{x} - a_0}{s/\sqrt{n}} \,. \tag{1}$$

Jei hipotezė H_0 teisinga, tai t yra atsitiktinio dydžio $T_{n-1} \sim \mathcal{S}t(n-1)$ reikšmė. Pažymėkime $F_{\mathcal{S}t}(u;n-1) = P(T_{n-1} < u)$ Studento atsitiktinio dydžio T_{n-1} pasiskirstymo funkciją, $t_{\alpha}(n-1) = F_{\mathcal{S}t}^{-1}(\alpha;n-1)$ atsitiktinio dydžio T_{n-1} lygmens α kvantilį.

Hipotezė H_0 priimama, kai

- 1) $t \le t_{1-\alpha}(n-1) \iff p_R = 1 F_{St}(t; n-1) \ge \alpha$, jei $H_1: a > a_0$;
- 2) $|t| \le t_{1-\alpha/2}(n-1) \iff p_R = 2(1 F_{St}(|t|; n-1)) \ge \alpha$, jei $H_1: a \ne a_0$;
- 3) $t \ge -t_{1-\alpha}(n-1) \iff p_R = F_{\mathcal{S}t}(t; n-1) \ge \alpha$, jei $H_1: a < a_0$.
- 1.2 Hipotezė apie dispersiją. Su reikšmingumo lygmeniu α tikrinsime statistinę hipotezę

$$H_0: \sigma^2 = \sigma_0^2$$
.

Pirmiausiai pagal turimus imties duomenis apskaičiuojame

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \,. \tag{2}$$

Jei hipotezė H_0 teisinga, tai χ^2 yra atsitiktinio dydžio $\chi^2_{n-1} \sim \chi^2(n-1)$ reikšmė. Pažymėkime $F_2(u;n-1) = P(\chi^2_{n-1} < u)$ "chi kvadratu" atsitiktinio dydžio χ^2_{n-1} pasiskirstymo funkciją, $\chi^2_{\alpha}(n-1) = F_2^{-1}(\alpha;n-1)$ atsitiktinio dydžio χ^2_{n-1} lygmens α kvantilį.

Hipotezė H_0 priimama, kai

- 1) $\chi^2 \leq \chi^2_{1-\alpha}(n-1) \iff p_R = 1 F_2(\chi^2; n-1) \geq \alpha$, jei $H_1: \sigma^2 > \sigma_0^2$;
- 2) $\chi_{\alpha/2}^2(n-1) \le \chi^2 \le \chi_{1-\alpha/2}^2(n-1) \iff p_R = 2\min\{F_2(\chi^2; n-1), 1 F_2(\chi^2; n-1)\} \ge \alpha$, jei $H_1: \sigma^2 \ne \sigma_0^2$;
- 3) $\chi^2 \ge \chi_{\alpha}^2(n-1) \iff p_R = F_2(\chi^2; n-1) \ge \alpha$, jei $H_1: \sigma^2 < \sigma_0^2$.
- 2. Hipotezės apie sėkmės tikimybę. Tarkime, kad bandymo rezultatas yra atsitiktinis dydis $X \sim \mathcal{B}(1;p)$ su nežinoma sėkmės tikimybe p, o atlikę n nepriklausomų bandymų gavome m sėkmių. Su reikšmingumo lygmeniu α tikrinsime statistinę hipotezę

$$H_0: p = p_0.$$

Nagrinėsime du kriterijus, kurie pasirenkami priklausomai nuo imties dydžio.

2.1 Normalioji aproksimacija. Didelėms imtims hipotezės H_0 tikrinimo kriterijus yra panašus į **1.1** kriterijų. Šiuo atveju $\bar{x} = m/n$. Jeigu hipotezė H_0 yra teisinga, tai $EX = p_0$, $DX = p_0(1 - p_0)$, o skaičius

$$z = \frac{m/n - p_0}{\sqrt{p_0(1 - p_0)/n}} \tag{3}$$

yra normaliojo atsitiktinio dydžio $Z \sim \mathcal{N}(0;1)$ reikšmė. Pažymėkime

 $\Phi(u) = P(Z < u)$ standartinio normaliojo atsitiktinio dydžio Z pasiskirstymo funkciją,

 $z_{\alpha} = \Phi^{-1}(\alpha)$ atsitiktinio dydžio Z lygmens α kvantilį.

Hipotezė H_0 priimama, kai

- 1) $z \le z_{1-\alpha} \iff p_R = 1 \Phi(z) \ge \alpha$, jei $H_1: p > p_0$;
- 2) $|z| \le z_{1-\alpha/2} \iff p_R = 2(1 \Phi(|z|)) \ge \alpha$, jei $H_1: p \ne p_0$;
- 3) $z \ge -z_{1-\alpha} \iff p_R = \Phi(z) \ge \alpha$, jei $H_1: p < p_0$.
- **2.2 Kriterijus mažoms imtims.** Kai n nėra labai didelis, galima taikyti "tikslų" kriterijų. Tegu S_n yra sėkmių skaičius, atlikus n bandymų. Skaičiuojame atsitiktinio dydžio S_n reikšmių sąlygines tikimybes $P(S_n = k \mid H_0)$. Hipotezė H_0 priimama, kai
 - 1) $p_R = P(S_n \ge m \mid H_0) \ge \alpha$, jei $H_1: p > p_0$;
 - 2) $p_R = 2 \min \{ P(S_n \ge m \mid H_0), P(S_n \le m \mid H_0) \} \ge \alpha$, jei $H_1: p \ne p_0$;
 - 3) $p_R = P(S_n \le m \mid H_0) \ge \alpha$, jei $H_1: p < p_0$.
- 3. Hipotezė apie koreliacijos koeficientą. Tegu $\langle (x_1, y_1), (x_2, y_2), ..., (x_n, y_n) \rangle$ yra imtis, gauta stebint dvimačio atsitiktinio dydžio (X, Y) reikšmes. Su reikšmingumo lygmeniu α tikrinsime statistinę hipotezę apie koreliacijos koeficiento $\rho = \rho(X, Y)$ lygybę nuliui

$$H_0: \rho = 0.$$

Pirmiausiai pagal turimus imties duomenis apskaičiuojame empirinį koreliacijos koeficientą

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

ir

$$t_r = r\sqrt{\frac{n-2}{1-r^2}}. (4)$$

Jei hipotezė H_0 teisinga, tai t_r yra Studento atsitiktinio dydžio $T_{n-2} \sim \mathcal{S}t(n-2)$ reikšmė. Todėl hipotezė H_0 priimama, kai

- 1) $t_r < t_{1-\alpha}(n-2) \iff p_R = 1 F_{St}(t_r; n-2) > \alpha$, jei $H_1: \rho > 0$;
- 2) $|t_r| \le t_{1-\alpha/2}(n-2) \iff p_R = 2(1 F_{St}(|t_r|; n-2)) \ge \alpha$, jei $H_1: \rho \ne 0$;
- 3) $t_r \ge -t_{1-\alpha}(n-2) \iff p_R = F_{\mathcal{S}t}(t_r; n-2) \ge \alpha$, jei $H_1: \rho < 0$.
- 4. Kvantilių ir p— reikšmių skaičiavimo pavyzdžiai. Skaičiavimams naudotos Excel funkcijos.

$$t_{0.95}(8) = \text{t.inv}(0,95; 8) \approx 1,85955.$$

$$\chi^2_{0.05}(40) = \text{chisq.inv}(0, 95; 40) \approx 55,75848.$$

 $z_{0.95} = \text{norm.s.inv}(0.95) \approx 1.64485.$

 $F_{St}(1,2;9) = \text{t.dist}(1,2;9;true) \approx 0.86961.$

 $F_2(6,4;\,11) = F_{\chi^2}(6,4;\,11) = \mathtt{chisq.dist}(6,4;\,11;\,true) \approx 0,15461.$

 $\Phi(0,352) = \text{norm.s.dist}(0,352; true) \approx 0,63758.$

Jeigu $S_9 \sim \mathcal{B}(9; 0, 7)$, tai

$$P(S_9 \ge 4) = 1 - P(S_9 \le 3) = 1 - \text{binom.dist}(3; 9; 0, 7; true) \approx 0,97471.$$