минимизация с учетом резкости

Что обсуждаем?

Минимизация с учетом резкости (SAM)

Предпосылки

- Остренькие функции потерь
- Много локальных минимумов

Функция потерь на тренировочных данных

Функция потерь на тренировочных данных

Реальная функция потерь

Наша оценка функции потерь

Функция потерь на тренировочных данных

Наша оценка функции

- Спойлер: ничего нового
- Просто новый подсчет "градиента"

- Спойлер: ничего нового
- Просто новый подсчет "градиента"
- ullet Считаем оценку на эпсилон $\hat{oldsymbol{\epsilon}}(oldsymbol{w})$

$$\hat{\boldsymbol{\epsilon}}(\boldsymbol{w}) = \rho \operatorname{sign}\left(\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right) \left|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right|^{q-1} / \left(\left\|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right\|_q^q\right)^{1/p}$$

- Спойлер: ничего нового
- Просто новый подсчет "градиента"
- ullet Считаем оценку на эпсилон $\hat{oldsymbol{\epsilon}}(oldsymbol{w})$

$$\hat{\boldsymbol{\epsilon}}(\boldsymbol{w}) = \rho \operatorname{sign}\left(\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right) \left|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right|^{q-1} / \left(\left\|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right\|_q^q\right)^{1/p}$$

Оцениваем градиент

$$\nabla_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \approx \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(w)|_{\boldsymbol{w} + \hat{\boldsymbol{\epsilon}}(\boldsymbol{w})}$$

- Спойлер: ничего нового
- Просто новый подсчет "градиента"
- ullet Считаем оценку на эпсилон $\hat{oldsymbol{\epsilon}}(oldsymbol{w})$

$$\hat{\boldsymbol{\epsilon}}(\boldsymbol{w}) = \rho \operatorname{sign}\left(\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right) \left|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right|^{q-1} / \left(\left\|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right\|_{q}^{q}\right)^{1/p}$$

Оцениваем градиент

$$\nabla_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \approx \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})|_{\boldsymbol{w} + \hat{\boldsymbol{\epsilon}}(\boldsymbol{w})}$$

• Обучаем

Сравнения с другими моделями

Сравнения с другими моделями

		CIFAR-10		CIFAR-100	
Model	Augmentation	SAM	SGD	SAM	SGD
WRN-28-10 (200 epochs)	Basic	$2.7_{\pm 0.1}$	$3.5_{\pm 0.1}$	$16.5_{\pm 0.2}$	$18.8_{\pm 0.2}$
WRN-28-10 (200 epochs)	Cutout	$2.3_{\pm 0.1}$	$2.6_{\pm 0.1}$	$14.9_{\pm 0.2}$	$16.9_{\pm 0.1}$
WRN-28-10 (200 epochs)	AA	2.1 $_{\pm < 0.1}$	$2.3_{\pm 0.1}$	$13.6_{\pm 0.2}$	$15.8_{\pm 0.2}$
WRN-28-10 (1800 epochs)	Basic	$2.4_{\pm 0.1}$	$3.5_{\pm 0.1}$	$16.3_{\pm 0.2}$	$19.1_{\pm 0.1}$
WRN-28-10 (1800 epochs)	Cutout	$2.1_{\pm 0.1}$	$2.7_{\pm 0.1}$	$14.0_{\pm 0.1}$	$17.4_{\pm 0.1}$
WRN-28-10 (1800 epochs)	AA	1.6 $_{\pm 0.1}$	$2.2_{\pm < 0.1}$	12.8 \pm 0.2	$16.1_{\pm 0.2}$
Shake-Shake (26 2x96d)	Basic	$2.3_{\pm < 0.1}$	$2.7_{\pm 0.1}$	15.1 $_{\pm 0.1}$	$17.0_{\pm 0.1}$
Shake-Shake (26 2x96d)	Cutout	$2.0_{\pm < 0.1}$	$2.3_{\pm 0.1}$	$14.2_{\pm 0.2}$	$15.7_{\pm 0.2}$
Shake-Shake (26 2x96d)	AA	1.6 \pm <0.1	$1.9_{\pm 0.1}$	12.8 \pm 0.1	$14.1_{\pm 0.2}$
PyramidNet	Basic	2.7 _{±0.1}	$4.0_{\pm 0.1}$	14.6 _{±0.4}	$19.7_{\pm 0.3}$
PyramidNet	Cutout	$1.9_{\pm 0.1}$	$2.5_{\pm 0.1}$	$12.6_{\pm 0.2}$	$16.4_{\pm 0.1}$
PyramidNet	AA	1.6 $_{\pm 0.1}$	$1.9_{\pm 0.1}$	11.6 \pm 0.1	$14.6_{\pm 0.1}$
PyramidNet+ShakeDrop	Basic	$2.1_{\pm 0.1}$	$2.5_{\pm 0.1}$	$13.3_{\pm 0.2}$	$14.5_{\pm 0.1}$
PyramidNet+ShakeDrop	Cutout	1.6 \pm <0.1	$1.9_{\pm 0.1}$	11.3 $_{\pm 0.1}$	$11.8_{\pm 0.2}$
PyramidNet+ShakeDrop	AA	1.4 $_{\pm < 0.1}$	$1.6_{\pm < 0.1}$	$10.3_{\pm 0.1}$	$10.6_{\pm 0.1}$

Сравнения с другими моделями: ResNet

Model Epoch		SAM		Standard Training (No SAM)		
Wiodei	Epoch	Top-1	Top-5	Top-1	Top-5	
ResNet-50	100	$22.5_{\pm 0.1}$	$6.28_{\pm 0.08}$	$22.9_{\pm 0.1}$	$6.62_{\pm 0.11}$	
	200	21.4 $_{\pm 0.1}$	$5.82_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.37_{\pm 0.04}$	
	400	$oldsymbol{20.9}_{\pm 0.1}$	$5.51_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.40_{\pm 0.06}$	
ResNet-101	100	$20.2_{\pm 0.1}$	$5.12_{\pm 0.03}$	$21.2_{\pm 0.1}$	$5.66_{\pm 0.05}$	
	200	19.4 $_{\pm 0.1}$	$4.76_{\pm 0.03}$	$20.9_{\pm 0.1}$	$5.66_{\pm 0.04}$	
	400	$19.0_{\pm < 0.01}$	$4.65_{\pm 0.05}$	$22.3_{\pm 0.1}$	$6.41_{\pm 0.06}$	
ResNet-152	100	$19.2_{\pm < 0.01}$	$4.69_{\pm 0.04}$	$20.4_{\pm < 0.0}$	$5.39_{\pm 0.06}$	
	200	$18.5_{\pm 0.1}$	$4.37_{\pm 0.03}$	$20.3_{\pm 0.2}$	$5.39_{\pm 0.07}$	
	400	$18.4_{\pm < 0.01}$	$4.35_{\pm 0.04}$	$20.9_{\pm < 0.0}$	$5.84_{\pm 0.07}$	

Сравнения с другими моделями: файнтюнинг

Dataset	EffNet-b7 + SAM	EffNet-b7	Prev. SOTA (ImageNet only)	EffNet-L2 + SAM	EffNet-L2	Prev. SOTA
FGVC_Aircraft	$6.80_{\pm 0.06}$	$8.15_{\pm 0.08}$	5.3 (TBMSL-Net)	4.82 _{±0.08}	$5.80_{\pm 0.1}$	5.3 (TBMSL-Net)
Flowers	$0.63_{\pm 0.02}$	$1.16_{\pm 0.05}$	0.7 (BiT-M)	$0.35_{\pm 0.01}$	$0.40_{\pm 0.02}$	0.37 (EffNet)
Oxford_IIIT_Pets	$3.97_{\pm 0.04}$	$4.24_{\pm 0.09}$	4.1 (Gpipe)	$2.90_{\pm 0.04}$	$3.08_{\pm 0.04}$	4.1 (Gpipe)
Stanford_Cars	$5.18_{\pm 0.02}$	$5.94_{\pm 0.06}$	5.0 (TBMSL-Net)	$4.04_{\pm 0.03}$	$4.93_{\pm 0.04}$	3.8 (DAT)
CIFAR-10	$0.88_{\pm 0.02}$	$0.95_{\pm 0.03}$	1 (Gpipe)	$0.30_{\pm 0.01}$	$0.34_{\pm 0.02}$	0.63 (BiT-L)
CIFAR-100	7.44 $_{\pm 0.06}$	$7.68_{\pm 0.06}$	7.83 (BiT-M)	$3.92_{\pm 0.06}$	$4.07_{\pm 0.08}$	6.49 (BiT-L)
Birdsnap	$13.64_{\pm0.15}$	$14.30_{\pm 0.18}$	15.7 (EffNet)	$9.93_{\pm 0.15}$	$10.31_{\pm 0.15}$	14.5 (DAT)
Food101	$7.02_{\pm 0.02}$	$7.17_{\pm 0.03}$	7.0 (Gpipe)	$3.82_{\pm 0.01}$	$3.97_{\pm 0.03}$	4.7 (DAT)
ImageNet	$15.14_{\pm0.03}$	15.3	14.2 (KDforAA)	11.39 $_{\pm 0.02}$	11.8	11.45 (ViT)

Сравнение: устойчивость к шуму в данных

Method	Noise rate (%)			
	20	40	60	80
Sanchez et al. (2019)	94.0	92.8	90.3	74.1
Zhang & Sabuncu (2018)	89.7	87.6	82.7	67.9
Lee et al. (2019)	87.1	81.8	75.4	-
Chen et al. (2019)	89.7	-	-	52.3
Huang et al. (2019)	92.6	90.3	43.4	-
MentorNet (2017)	92.0	91.2	74.2	60.0
Mixup (2017)	94.0	91.5	86.8	76.9
MentorMix (2019)	95.6	94.2	91.3	81.0
SGD	84.8	68.8	48.2	26.2
Mixup	93.0	90.0	83.8	70.2
Bootstrap + Mixup	93.3	92.0	87.6	72.0
SAM	95.1	93.4	90.5	77.9
Bootstrap + SAM	95.4	94.2	91.8	79.9

Подбор гиперпараметров

m - размер батча

р - радиус области

СПАСИБО ЗА ВНИМАНИЕ

Литература и ссылки

- Статья: https://arxiv.org/abs/2010.01412
- Github с реализацией: https://github.com/google-research/sam
- Лучшие модели с которыми сравнивались
- EffNet: https://arxiv.org/abs/1905.11946
- GPipe: https://arxiv.org/abs/1811.06965
- DAT: https://arxiv.org/abs/1811.07056
- MentorMix: https://arxiv.org/abs/1911.09781