1) The radioactive & non radiation recombination life times of minority carrier in active region of a double heterojunction LED are so nsec & 90nsec rep. Determine the total carrier recombin -ation life time Exptical power generaled internally if the peak emission would not si 870n m Et the deive current is 40 mA M= 01XF8.0= MAOF8=X sol Cy = bonsec ; Cmr = 9008 J=40mA=0.04A. Total recombination lifetime

Total recombination lifetime

The following the followin "i) Internal optical power Pint 2 Mint hc I = (T) (hc?) = (36) [6.825×10-34×3×108×0.04 (1.602×10-19)(0.87×10-6) 2 0.0342 Wat -2 34.22 mW A double heteroju" In6, ASP LED operating at 1810nm has rediative & non-radiative recombination times of 30 & 100 ns resp. The current injected is 40 mA Calculate · Bulk recommonshivation lifetim. Internal quantum afficiency internal power levels.

Given: Or 1310 nm

Tr= 3018 Time 100 ns

12 10mA = 0.0UA

& But Recomb ijethu (T.)

$$\frac{1}{C} = \frac{1}{77} + \frac{1}{700} = \frac{13}{300} + \frac{1}{100} = \frac{13}{300}$$

C= 23.074ng Internal quantum efficiency [Mint]

Internal power Level (fint) in paring I southing (is

2 0.769 x 6.625×10-34 x 3×603×6.64 1.602×10-19 x 1310×168

~ 0.02913 = 29.13 mW

8) In a 10013 pulse 6 × 106 photon atwardingth of 1300 mm fall on the Infrats photodetector On the Average 5.4×106 electron have pairs are generated. Calculate the quantum efficiency. X = 1300 pm 98 20 211001 pg 9

no. 9 photons = 5.4 × 106 = 0.9 = 90% Photons que enugy 1.53×10 are incident on a protochode which has a responsivity of o.65 A/w. If the optical power level to 10 paw. Collenate the photo current generated Photo current Ip & R. Pin = 10.65 X 10 X10-6 2 OF 6.5 MA



Light Emiller 4 Light enritting diody \* Surface emitting (ELED): difficult to Edge enitting (ELED): eouier to focus 4 Laser riods \* narmer beam a foutat Quantum Ufficiency & power! Puternal quantum efficiency (nint) is radio of radiative recombination rate to the total recombination rate Ryr + non radioty Mint = Rr Rr+Rnr  $r = \frac{n}{Br}$ If n are ten excess carrier, then sudiative lifetime, & non-radiative lifetime  $T_r = \underline{M}$ The Enternal quantum 4t & given . The recombi -notion of carrier on (Buk recombinationlife time) It Rnr Br

$$\frac{\text{Mint}}{1 + \frac{\text{Cr}}{\text{Tor}}}$$
The transfer of the tran

recombination per second

$$Rr = Rnr = \frac{1}{9}$$
 $9$ 
 $1/9$ 
 $1/9$ 

Optical Rr = Nin x 1/9
Power generated by LFD

iller & (interprete Rrh ? ) Lower Will

From output of device. The external quantum of the calculat the emitted power. The external quantum quant eff to defined on the ratio of photony enretted

MA