CS3231 Tutorial 7

1. Remove useless symbols from the following grammar using the algorithm done in class.

$$S \rightarrow A|AA|AAA$$

$$A \rightarrow ABa|ACa|a$$

$$B \rightarrow ABa|Ab|\epsilon$$

$$C \rightarrow Cab|CC$$

$$D \rightarrow CD|Cd|CEa$$

$$E \rightarrow b$$

2. Eliminate ϵ productions from the grammar

$$S \to ABaC$$

$$A \to AB$$

$$B \to b|\epsilon$$

$$C \to D|\epsilon$$

$$D \to d$$

3. Remove all unit productions from the grammar

$$S \rightarrow CBa|D$$

$$A \rightarrow bbC$$

$$B \rightarrow Sc|ddd$$

$$C \rightarrow eA|f|C$$

$$D \rightarrow E|SABC$$

$$E \rightarrow gh$$

4. Convert the following to Chomsky normal form grammar without useless symbols:

$$S \to AB|CA$$

$$A \to a$$

$$B \to BC|AB$$

$$C \to aB|b|ACC|\epsilon$$

5. Could you give an algorithm to test whether the language generated by a CFG is (a) empty, (b) finite, (c) infinite?

- 6. Give an algorithm that constructs Unit(A) for all nonterminals A in a CFG.
- 7. (Hard) Greibach Normal Form: A grammar is said to be in Greibach Normal Form, if all the productions in the grammar are of the form: $A \to a\alpha$, where a is a terminal and α is a string of zero or more variables (non-terminals). Prove that, for every non-empty context free language L, which does not contain ϵ , one can have a Greibach Normal Form grammar.

Hint: Assume the original grammar given for the language L is in Chomsky Normal form. Assume that the variables in the grammar are A_1, \ldots, A_m . Let G_0 be the original grammar.

- (a) First, inductively define G_i (generating the same language L) to have the following properties:
- (P1) G_i has variables A_1, \ldots, A_m and B_1, \ldots, B_i ,
- (P2) all the productions of G_i are of form (i) $A_j \to \alpha$ (where α starts with either a terminal, or a variable A_r , with $r \ge \min(i+1,j+1)$), OR (ii) $B_j \to \alpha$, where α starts with a terminal or A_k for some k.

The above can be achieved as follows. Suppose in G_{i-1} we have productions of the form $A_i \to \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_r$ and $A_i \to A_i\beta_1 \mid A_i\beta_2 \mid \ldots \mid A_i\beta_w$, where α_s either start with a terminal or A_k for some k > i (note that by inductive property P2, above holds). Now replace the above productions by:

$$A_i \to \alpha_1 B_i \mid \alpha_2 B_i \mid \dots \mid \alpha_r B_i$$

 $A_i \to \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_r$

and

$$B_i \to \beta_1 \mid \beta_2 \mid \ldots \mid \beta_w,$$

$$B_i \to \beta_1 B_i \mid \beta_2 B_i \mid \dots \mid \beta_w B_i$$

Here if β_r starts with a $B_{r'}$, r' < i, then replace $B_{r'}$ in these productions by the RHS of all productions of $B_{r'}$.

(note that above is "correct" replacement as the language generated does not change).

Now for j > i, replace each production in G_{i-1} of form $A_j \to A_i \gamma$ by the set of productions $A_j \to \alpha_1 B_i \gamma \mid \alpha_2 B_i \gamma \dots \mid \alpha_r B_i \gamma$ and

$$A_j \to \alpha_1 \gamma \mid \alpha_2 \gamma \dots \mid \alpha_r \gamma.$$

Now verify that the grammar so generated, G_i , satisfies the properties (P1) and (P2).

(b) Let us rename the variables in G_m as

 B_i renamed to C_i

 A_i renamed to C_{m+i} .

Then, we have the property that any production of form $C_r \to \alpha$, has α starting with either a terminal or a variable C_w , where w > r. Use this property to convert the grammar into Greibach normal form.