experiment plans.md 7/6/2023

Frank Wolfe for NN training

Goals

- 1. Test wether SFW is suitable as a replacement for other popular optimizers like Adam or SGD.
 - 3 optimizers: SFW, Adam, SGD
- 2. Compare various constraint options for SFW:
 - o 5 constraints: \$L_1\$, \$L_2\$, \$L_\infty\$, \$K\$-sparse polytope, \$K\$-norm ball
- 3. See if SFW can be applied to the Chemistry problem to improve the result or insights gained.

Bonus:

1. Test parameters of constraints (other \$L_p\$ norms, other \$K\$ values), possibly plots of performance over \$p\$/ \$K\$.

Testing methodology

Goal 1. requires training multiple models with different optimizers.

Options:

- Apply automatic hyperparameter tuning to enable a fair comparison between optimizers as they might need different settings to work well.
- Train models on various datasets to ensure the results are transferable.
 - MNIST
 - o fashion MNIST
 - ChemReg/ ChemClass

Implementation

2 options:

 use existing code from paper, add automated model training of multiple models and hyperparameter tuning

pros:

- o better automatic hyperparameter tuning with many options
- likely faster training due to more efficient hyperparameter search
- o more flexible since most code is new

cons:

- o potentially more work
- fewer result output options already implemented
- 2. adapt code from Bachelor thesis to work with pytorch models **pros**:
 - hyperparameter search already implemented (although slow and not very flexible)
 - win ratio tables already implemented as useful result output with very detailed information

experiment plans.md 7/6/2023

training time already measured and output

cons:

- o getting result ouput may be difficult
- plots need to be implemented from scratch

Adapting Bachelor thesis code

The program is structured into three steps the user needs to perform:

- 1. create a config file and use it to train models with all combinations of the given hyperparameters
- 2. summarize the tracked metrics into more useful statistical values (extract best/ last accuracy value, summarize multiple runs, etc.)
- 3. create visualizations of the results. Current code generates two kinds of tables:
 - win ratio tables: compare the impact each hyperparameter has on the tracked metrics (training time, accuaracy, loss, etc.)
 - best/worst tables: list the best few and worst few models for each tracked metric with their hyperparameter values

Python file overview

Here, I list which files are used in the three steps described above with a very brief description of their purpose.

- 1. Set parameters for training runs
 - dense_parameter_study_[...].py config files to set hyperparameters for studies
 - dense_parameter_study.py controls parameter study
 - model_builder.py creates models (currently uses Tensorflow)
 - model trainer.py trains models (currently uses Tensorflow)
 - model_tester.py evaluates models on test data (currently uses Tensorflow)
 - pickleable history.py stores information about training runs
 - file_management.py handles saving and loading of most files
 - helper_functions.py generic helper functions
 - o my_adam.py custom Adam optimizer
 - o c_adam.py custom C-Adam optimizer
 - c_adam_hat.py custom C-Adam optimizer
 - fast_c_adam.py custom C-Adam optimizer
- 2. Summarize information of multiple runs
 - data_analysis.py controls data analysis
 - batch_summary.py extracts useful information from history files
 - load md files.py loads information about model parameters
 - top_n_list.py simplifies storing data for best/worst tables
 - file management.py handles saving and loading of most files
 - helper_functions.py generic helper functions
- 3. Create result visualizations

experiment plans.md 7/6/2023

- o result_output.py controls result output, creates win ratio tables and best/worst tables
- vertical_best_worst_output.py creates best/worst tables with latex formatting
- loss_conversion.py converts loss values between different loss functions
- file_management.py handles saving and loading of most files
- helper_functions.py generic helper functions

Changes to adapt code to pytorch

Adjusting this program to work with the new pytorch models would require:

- update model_trainer.py, model_builder.py and pickleable_history.py to work with pytorch
- add constraint settings to dense_parameter_study.py
- add new result output options that produce graphs. Some graphs may need access to information not currently saved in step 2. (e.g. accuracy over time during training)
 - may require changes to batch_summary.py