Financial Audio Analysis:

Leveraging Speech for Sentiment Classification and Predictability

Springboard DSC - Capstone Project 3
John Arancio

Can financial sentiment analysis be improved using speech audio?

- Sentiment good indicator of market momentum
 - Price action
- NLP sentiment improvement with audio
 - More accurate?
 - NLP sentiment for annotation/labeling
- Audio provides a different way to interpret

sentiment

- Can increase confidence in prospective decisions
- Signal confluence

Approach

Ensemblement + Wrangling

- Web scraped YouTube videos
 - Extract audios
- Transcribe audios
- Segmentation
 - By sentence uttered
- Labeling segments
 - NLP transformer
 - FinBERT
- Padding and reformatting
 - o 16-bit, mono, 16000 Hz
 - o 8 seconds length

Exploratory Data Analysis

- Class distribution
- Audio properties count (duration, sample rates etc.)
- View waveplots, spectrograms

- Split original dataset
- Augmented train set
 - o Oversample

- Oversampled dataset training/validation
- Evaluate original test set

Augmentations

- Sample denoising
- Sample shifting
- Sample frequency mask
- Sample time mask

Baseline Modeling

- Logistic Regression
- Support Vector Classifier (SVC)
- XGBoost

		0 (BEARISH)	1 (BULLISH)	2 (NEUTRAL)	W.AVG
LOG. REGRESSION	PRECISION	0.40	0.38	0.48	0.43
	RECALL	0.27	0.45	0.51	0.43
	F1	0.32	0.41	0.50	0.42
		0	1	2	
XGBOOST	PRECISION	0.70	0.56	0.44	0.55
	RECALL	0.16	0.20	0.89	0.47
	F1	0.26	0.29	0.58	0.40
		0	1	2	
SVC (SKLEARN)	PRECISION	0.92	0.90	0.92	0.91
	RECALL	0.95	0.93	0.88	0.91
	F1	0.93	0.92	0.90	0.91
		0	1	2	
SVC (RAPIDS)	PRECISION	0.94	0.90	0.92	0.92
	RECALL	0.95	0.93	0.89	0.92
	F1	0.94	0.91	0.90	0.92

Extended Modeling

CNN VERSION	TEST LOSS	TEST ACCURACY
v1 (Shallow + tuned)	0.9341	0.5358
v2 (Larger filters + depth)	0.8658	0.5871
v3 (Depth + dropout)	0.8323	0.6192
v4 (Depth + dropout - FC dropout)	0.8134	0.6345

		0 (BEARISH)	1 (BULLISH)	2 (NEUTRAL)	W.AVG
CNN v1	PRECISION	0.60	0.33	0.43	0.45
	RECALL	0.35	0.42	0.58	0.45
	F1	0.50	0.42	0.49	0.47
		0	1	2	
CNN v2	PRECISION	0.44	0.55	0.61	0.53
	RECALL	0.50	0.52	0.58	0.53
	F1	0.51	0.52	0.54	0.52
		0	1	2	
CNN v3	PRECISION	0.63	0.57	0.59	0.60
	RECALL	0.67	0.50	0.58	0.58
	F1	0.67	0.53	0.60	0.60
		0	1	2	
CNN v4	PRECISION	0.65	0.60	0.65	0.63
	RECALL	0.64	0.61	0.63	0.63
	F1	0.66	0.52	0.65	0.61

- 4 CNN models
 - Depth added with each version
- V₄
 - Max depth
 - Dropout regularization
 - Removed FC dropout

- Inconsistent results across models
 - SVC performed the best
 - F1(weighted avg): 0.92
 - Precision(weighted avg): 0.92
 - Recall(weighted avg): 0.92
 - Logistic Regression performed the worse
 - F1(weighted avg): 0.42
 - Precision(weighted avg): 0.43
 - Recall(weighted avg): 0.43
- CNN v4 has potential
 - o Test loss: 0.8134
 - Test accuracy: 0.6345
 - Overfitting (epochs 10-15)
 - Learning rate, no change in training

Why are our results inconsistent?

- Possibilities:
 - To many augmentations
 - Unbalanced dataset
 - Mel-spectrograms not intricate enough for models to properly generalize

Conclusions

- Mel-spectrograms useful for SVC
- There are useful properties within each class
- Automated annotation process successful
 - Each class was represented by audio properly
- Sentiment can be classified using audio
- Re-evaluate augmentations
- Re-evaluate dataset balancing

Recommendations

- 1. Based off of SVC recall score, it can be used to positively predict bearish audios, being right 95% of the time.
- 2. Since both SVC and XGBoost have a 89% recall rate in predicting neutral audios, either one can be utilized.
- SVC will be the best option in predicting bullish audios (93% recall), so
 if you chose one model only the best option is our support vector
 classifier (SVC).