Regression Problem

Loss Function

F(Features, params)=Targets

DistanceFunction(RealTarget, EstimatedTarget)

Min(Σ(DistanceFunction(RealTarget[i],EstimatedTarget[i]))

EstimatedTarget[i]=F(Features[i],params)

Min(Σ(DistanceFunction(RealTarget[i], F(Features[i], params))

=> use params of F to find optimal Targets that are very close to real targets

Example: Linear Regression

Example: Polynomal Fit

Regularisation

Linear Regression

Σ||Ax[i]-b[i]||

 $\Sigma(||Ax[i]-b[i]||+||Lx[i]|+||Lx[i]||)$

Regaluarisation

Ridge $\lambda ||x[i]|| / Lasso \lambda |x[i]| / Elastic Net <math>\lambda 1 ||x[i]|| + \lambda 2 |x[i]|$ -> feature selection

Example: (Random) Forest

Samples

Finding optimal parameters PN

+ Decision parameter which tree wins

R2 Score

Model Validation

		Train On			
		1	2	3	4
Test On	1	0.9	0.7	0.5	0.9
	2	0.5	8.0	0.6	0.6
	3	0.6	0.6	0.9	0.7
	4	0.7	0.2	0.5	0.9

only with Testset

if possible cross validated

cross validation datasets

Final Model Validation

yields a confidence SCORE +- error ->How often will I hit the right target

but know what you are doing!

can overlap

and be chosen randomly