

Metody Obliczeniowe w Nauce i Technice

Sprawozdanie | Układy równań liniowych - metody bezpośrednie

Paweł Fornagiel | Informatyka rok II | Grupa 5

Data Wykonania: 23.05.2025 | Data Oddania: 23.05.2025

1. Omówienie przypadku

Dane są macierze liczb rzeczywistych zdefiniowane odpowiednio:

$$\mathbf{A_{I}}^{n \times n} = \begin{cases} a_{1j} = 1 \\ a_{ij} = \frac{1}{i+j-1} & \text{dla } i \neq 1 \end{cases} \quad i, j = 1, ..., n$$
 (1.1)

$$\mathbf{A_{II}}^{m \times m} = \begin{cases} a_{ij} = \frac{2i}{j} & \text{dla } j \ge i \\ a_{ij} = a_{ji} & \text{dla } j < i \end{cases} \quad i, j = 1, ..., n$$
 (1.2)

, gdzie:

- *i* numer wiersza macierzy
- *j* numer kolumny macierzy
- n, m wymiary macierzy

W niniejszym dokumencie przeprowadzono analizę numerycznego rozwiązywania układów równań liniowych postaci $\mathbf{A}\mathbf{x}=\mathbf{b}$ metodą eliminacji Gaussa, gdzie \mathbf{A} jest macierzą współczynników, \mathbf{x} wektorem niewiadomych, a \mathbf{b} wektorem wyrazów wolnych. Celem pracy jest zbadanie wpływu uwarunkowania macierzy oraz precyzji obliczeń na dokładność otrzymanych rozwiązań, poprzez wyznaczenie błędów pomiędzy wyznaczonymi a prawdziwymi wartościami wektora niewiadomych.

W zadaniu zbadano rozwiązywanie układu rownań dla n=2,...,20, m=2,...,200 oraz **dwóch precyzji obliczeń** oferowanych przez bibliotekę numpy: float32 (pojedyńcza precyzja) oraz float64 (podwójna precyzja).

2. Metodyka wyznaczania układów równań

W celach badania wprowadzony został wektor rzeczywisty

$$\overline{\mathbf{x}}^{k \times 1} = \begin{bmatrix} 1 \\ -1 \\ \vdots \\ -1 \\ 1 \end{bmatrix}$$
 (2.1)

, gdzie k to wymiar wektora (równy odpowiednio n w przypadku $\mathbf{A_I}$ oraz m w przypadku $\mathbf{A_{II}}$), zaś elementy wektora są **losową kombinacją liczb –1 i 1**. W eksperymencie, w celu uzyskania powtarzalnych wyników, **zawsze ustawiano random. seed na stałą wartość** podczas generowania wektora.

Z powyższego wektora otrzymywano wektor b w następujący sposób:

$$\mathbf{b} = \mathbf{A}\overline{\mathbf{x}} \tag{2.2}$$

Następnie, mając wyznaczony wektor \mathbf{b} przystąpiono do rozwiązywania układu równań $\mathbf{A}\mathbf{x} = \mathbf{b}$, gdzie \mathbf{x} jest wektorem niewiadomych.

Podejście to umożliwiło porównanie wyznaczonego wektora \mathbf{x} do $\overline{\mathbf{x}}$.

3. Pomiar poprawności wyznaczenia rozwiązania

Pomiar poprawności wyznaczenia rozwiązania układu równań przeprowadzony został, porównując prawdziwe składowe wektora z wartością metodą Gaussa. Za metrykę błędu przyjęty został **błąd bezwzględny**.

$$\|\mathbf{x}\|_{\max} = \max_{i \in 1, \dots, n} (|x_i - \overline{x_i}|) \tag{3.1}$$

, gdzie

- x_i i-ta wartość wyznaczonego wektora
- $\overline{x_i}$ *i*-ta wartość prawdziwego wektora

4. Wyznaczenie uwarunkowania macierzy

Współczynnik uwarunkowania macierzy A dany jest następująco:

$$\operatorname{cond}(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \tag{4.1}$$

, gdzie za normę $\|\cdot\|$ na potrzeby zadania przyjęto **normę operatorową**:

$$\|\mathbf{A}\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}| \tag{4.2}$$

W przypadku poniższej analizy, do wyznaczenia normy użyto funkcji biblioteki numpy: numpy.linalg.cond.

5. Dane techniczne

Zadanie zostało przeprowadzone z użyciem narzędzi o następujących parametrach:

- Komputer HP EliteBook 840 G6:
 - ► System operacyjny: Windows 11 x64
 - ► Procesor Intel(R) Core(TM) i5-8365U CPU 1.60GHz 1.90 GHz
 - ► Pamięć RAM: 8GB
- Środowisko: Jupyter Notebook
- Jezyk: Python 3.12.0
- Biblioteki języka: Numpy, Pandas, Matplotlib, Seaborn

6. Analiza wyników dla macierzy \mathbf{A}_{I}

6.1. Zestawienie wyników

Zestawienie wyników układu równań macierzy ${f A_I}$							
		Precyzja floa	nt32	Precyzja float64			
n	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_I})$	Czas wykonania [s]	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_I})$	Czas wykonania [s]	
2	2.3842e-07	1.8000e+01	3.6520e-04	2.2204e-16	1.8000e+01	9.1700e-05	
3	5.9605e-06	6.6000e+02	1.0720e-04	4.6629e-15	6.6000e+02	8.7200e-05	
4	3.1519e-04	2.0000e+04	6.2630e-04	1.8563e-13	2.0000e+04	1.1410e-04	
5	1.3683e-03	7.9856e+05	1.4500e-04	1.3481e-11	7.9789e+05	1.4810e-04	
6	3.2945e-01	2.8089e+07	3.4690e-04	1.3876e-10	2.7314e+07	3.5180e-04	
7	2.0802e+00	1.6369e+09	4.6560e-04	9.4483e-09	8.5789e+08	3.9890e-04	
8	3.5587e+01	3.8663e+09	3.2020e-04	2.1728e-09	2.9913e+10	4.3710e-04	
9	5.1618e+01	1.2384e+10	3.8860e-04	3.0540e-06	1.0355e+12	6.3560e-04	
10	3.1932e+01	4.9937e+09	4.3970e-04	2.5140e-04	3.3823e+13	7.3700e-04	
11	3.7023e+02	3.3577e+09	5.4920e-04	2.2511e-03	1.1111e+15	5.6220e-04	
12	3.3226e+01	3.5786e+09	9.1490e-04	2.1337e-01	3.8674e+16	5.4740e-04	
13	5.3608e+01	5.4909e+09	1.6627e-03	1.6644e+01	7.1077e+17	6.4620e-04	
14	3.8301e+01	4.6672e+09	3.0864e-03	2.2519e+01	6.1457e+17	7.4440e-04	
15	1.0133e+02	9.2775e+09	7.9620e-04	2.6680e+00	2.6349e+18	8.8630e-04	
16	5.5915e+01	1.5217e+10	9.7000e-04	1.6436e+01	6.3264e+17	1.0131e-03	
17	2.8959e+01	2.6438e+10	1.0813e-03	8.8916e+00	3.3941e+18	1.0933e-03	
18	5.4278e+01	1.8653e+10	1.4695e-03	7.6128e+01	4.3636e+20	2.0043e-03	
19	6.7806e+01	2.0498e+10	4.1616e-03	2.9033e+03	4.8968e+18	1.3233e-03	
20	1.7629e+01	3.2036e+10	2.5734e-03	1.1828e+02	1.8405e+18	1.4530e-03	

Tabela 1: Wyniki wyznaczone po rozwiązaniu układu równa
ń $\mathbf{A_I}\mathbf{x}=\mathbf{b}$

6.2. Wizualizacja wyników

Rysunek 1: Błąd maksymalny $\|\mathbf{x}\|_{\max}$ dla macierzy $\mathbf{A_I}$ po rozwiązaniu układu równań dla precyzji float32 oraz float64

Rysunek 2: Czas rozwiązywania układu metodą Gaussa dla macierzy ${\bf A_I}$ dla precyzji float
32 oraz float64

7. Analiza wyników dla macierzy \mathbf{A}_{II}

7.1. Zestawienie wyników

	Zestawienie wyników układu równań macierzy \mathbf{A}_{II}						
	P	recyzja float:	32	P	recyzja floatí	54	
m	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_{II}})$	Czas wykonania [s]	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_{II}})$	Czas wykonania [s]	
2	0.0000e+00	3.0000e+00	1.3830e-04	0.0000e+00	3.0000e+00	8.7700e-05	
3	5.9605e-08	8.6667e+00	9.6000e-05	0.0000e+00	8.6667e+00	1.3150e-04	
4	1.1921e-07	1.6500e+01	1.4880e-04	4.4409e-16	1.6500e+01	1.6920e-04	
5	1.7881e-07	2.6800e+01	3.0810e-04	6.6613e-16	2.6800e+01	3.7360e-04	
6	7.7486e-07	3.9667e+01	3.8000e-04	1.5543e-15	3.9667e+01	3.2760e-04	
7	3.3379e-06	5.4571e+01	2.6510e-04	2.6645e-15	5.4571e+01	8.6220e-04	
8	4.6492e-06	7.2417e+01	2.8570e-04	5.9952e-15	7.2417e+01	3.5050e-04	
9	4.0531e-06	9.2381e+01	3.6410e-04	3.7748e-15	9.2381e+01	4.1470e-04	
10	5.2452e-06	1.1473e+02	4.1910e-04	3.7748e-15	1.1473e+02	6.9330e-04	
11	3.4571e-06	1.3978e+02	4.9360e-04	4.7740e-15	1.3978e+02	1.0787e-03	
12	9.3579e-06	1.6682e+02	5.5080e-04	1.7097e-14	1.6682e+02	7.4810e-04	
13	5.7220e-06	1.9676e+02	6.6160e-04	9.7700e-15	1.9676e+02	1.5144e-03	
14	1.5020e-05	2.2889e+02	7.3310e-04	1.5099e-14	2.2889e+02	1.7789e-03	
15	1.5497e-05	2.6329e+02	1.0880e-03	1.7875e-14	2.6329e+02	1.9094e-03	
16	1.6093e-05	3.0053e+02	9.5800e-04	3.8192e-14	3.0053e+02	1.1802e-03	
17	1.4424e-05	3.3973e+02	1.0539e-03	2.1538e-14	3.3973e+02	2.0254e-03	
18	1.0848e-05	3.8174e+02	1.1858e-03	1.8652e-14	3.8174e+02	3.0364e-03	
19	1.1444e-05	4.2604e+02	1.2885e-03	2.3093e-14	4.2604e+02	2.6777e-03	
20	1.0252e-05	4.7251e+02	1.7295e-03	2.0872e-14	4.7251e+02	2.2148e-03	
21	3.2842e-05	5.2192e+02	1.7867e-03	2.0539e-14	5.2192e+02	3.1445e-03	
22	1.8597e-05	5.7328e+02	1.6629e-03	3.5527e-14	5.7328e+02	5.2173e-03	
23	1.8001e-05	6.2736e+02	1.9596e-03	3.3529e-14	6.2736e+02	3.8076e-03	
24	1.7047e-05	6.8383e+02	1.9270e-03	2.5535e-14	6.8383e+02	5.6503e-03	
25	1.6212e-05	7.4237e+02	2.1478e-03	2.7978e-14	7.4237e+02	2.8219e-03	
26	1.5140e-05	8.0395e+02	2.2299e-03	2.7311e-14	8.0395e+02	3.9116e-03	
27	2.2173e-05	8.6749e+02	2.5199e-03	2.8200e-14	8.6748e+02	3.6975e-03	
28	1.3828e-05	9.3364e+02	2.5996e-03	4.7740e-14	9.3363e+02	3.6978e-03	
29	1.0014e-05	1.0023e+03	2.8688e-03	2.7311e-14	1.0023e+03	5.3264e-03	
30	1.8358e-05	1.0729e+03	2.9599e-03	5.2847e-14	1.0729e+03	5.2076e-03	
31	2.0504e-05	1.1466e+03	3.1092e-03	8.6153e-14	1.1466e+03	7.0689e-03	
32	2.3425e-05	1.2223e+03	3.4983e-03	2.0650e-14	1.2223e+03	6.4187e-03	
33	2.7359e-05	1.3006e+03	3.6364e-03	6.2839e-14	1.3006e+03	7.0590e-03	
34	2.5749e-05	1.3814e+03	3.6902e-03	6.0396e-14	1.3814e+03	6.3863e-03	
35	2.2769e-05	1.4641e+03	3.9454e-03	4.0412e-14	1.4641e+03	6.5046e-03	
36	2.5749e-05	1.5500e+03	4.1515e-03	4.5741e-14	1.5500e+03	8.6613e-03	
37	1.9729e-05	1.6379e+03	4.7668e-03	4.5963e-14	1.6378e+03	8.5621e-03	
38	2.4974e-05	1.7281e+03	7.0127e-03	5.3513e-14	1.7281e+03	1.3319e-02	
39	1.9789e-05	1.8211e+03	5.0778e-03	4.5963e-14	1.8211e+03	9.0586e-03	
40	2.5749e-05	1.9160e+03	1.0859e-02	5.7732e-14	1.9160e+03	8.4482e-03	
41	2.2411e-05	2.0140e+03	8.7635e-03	5.8176e-14	2.0140e+03	9.8322e-03	
42	2.4557e-05	2.1140e+03	5.8325e-03	6.3283e-14	2.1140e+03	1.0954e-02	
43	1.7405e-05	2.2164e+03	6.1692e-03	6.2395e-14	2.2163e+03	1.1861e-02	
44	2.0027e-05	2.3215e+03	6.1579e-03	4.9849e-14	2.3215e+03	1.4012e-02	
45	3.8147e-05	2.4286e+03	6.5556e-03	6.1950e-14	2.4286e+03	1.4040e-02	
46	3.1948e-05	2.5386e+03	7.0999e-03	1.3167e-13	2.5386e+03	2.1757e-02	
47	4.4823e-05	2.6508e+03	6.9084e-03	1.0036e-13	2.6508e+03	1.3766e-02	
48	4.5419e-05	2.7652e+03	7.4004e-03	1.0103e-13	2.7652e+03	1.5311e-02	
49	3.4451e-05	2.8826e+03	9.7965e-03	1.0147e-13	2.8825e+03	1.6408e-02	

Zestawienie wyników układu równań macierzy ${f A}_{\Pi}$						
	i	recyzja float:	Precyzja float64			
m	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_{II}})$	Czas wykonania [s]	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_{II}})$	Czas wykonania [s]
50	8.2910e-05	3.0018e+03	7.6266e-03	1.0458e-13	3.0018e+03	2.0034e-02
51	4.8757e-05	3.1239e+03	8.7296e-03	1.2013e-13	3.1239e+03	1.5280e-02
52	4.1962e-05	3.2483e+03	8.8118e-03	1.2013e-13	3.2482e+03	1.6511e-02
53	6.9857e-05	3.3748e+03	9.2244e-03	1.0325e-13	3.3747e+03	1.5096e-02
54	6.2346e-05	3.5043e+03	1.0667e-02	1.0036e-13	3.5042e+03	1.7429e-02
55	6.7592e-05	3.6357e+03	1.0883e-02	9.5257e-14	3.6357e+03	2.0407e-02
56	4.8876e-05	3.7699e+03	1.1435e-02	1.2523e-13	3.7698e+03	1.5457e-02
57	3.7670e-05	3.9064e+03	1.1544e-02	1.1191e-13	3.9063e+03	1.3349e-02
58	5.3763e-05	4.0449e+03	1.2187e-02	1.3034e-13	4.0449e+03	1.4380e-02
59	6.7115e-05	4.1866e+03	1.2177e-02	1.1369e-13	4.1866e+03	1.7207e-02
60	1.0568e-04	4.3303e+03	1.3588e-02	1.3101e-13	4.3302e+03	2.3419e-02
61	9.5487e-05	4.4765e+03	1.3453e-02	1.1680e-13	4.4764e+03	2.4064e-02
62	1.2511e-04	4.6252e+03	1.3731e-02	1.6409e-13	4.6251e+03	1.3486e-02
63	1.0526e-04	4.7758e+03	1.3434e-02	1.0636e-13	4.7758e+03	1.4511e-02
64	7.4923e-05	4.9296e+03	1.3088e-02	1.3134e-13	4.9296e+03	2.2008e-02
65	8.0585e-05	5.0854e+03	1.3498e-02	9.8588e-14	5.0854e+03	1.4843e-02
66	6.9499e-05	5.2436e+03	1.3265e-02	1.0680e-13	5.2436e+03	1.6205e-02
67	8.7857e-05	5.4046e+03	1.4010e-02	1.2790e-13	5.4045e+03	1.8775e-02
68	9.6917e-05	5.5674e+03	1.5384e-02	1.5821e-13	5.5673e+03	2.0267e-02
69	9.7573e-05	5.7333e+03	1.6253e-02	1.7175e-13	5.7332e+03	2.1577e-02
70	1.1176e-04	5.9012e+03	1.5025e-02	1.7308e-13	5.9012e+03	1.8642e-02
71	1.4699e-04	6.0716e+03	1.5818e-02	1.8197e-13	6.0715e+03	2.0017e-02
72	1.2577e-04	6.2447e+03	1.6571e-02	1.9662e-13	6.2446e+03	1.9136e-02
73	1.2332e-04	6.4197e+03	1.5999e-02	2.0095e-13	6.4196e+03	2.3590e-02
74	1.2279e-04	6.5976e+03	1.6053e-02	2.2160e-13	6.5975e+03	2.9679e-02
75	1.2749e-04	6.7778e+03	1.8060e-02	2.2549e-13	6.7776e+03	2.5317e-02
76	1.1671e-04	6.9602e+03	1.8623e-02	2.5002e-13	6.9600e+03	2.8706e-02
77	1.5384e-04	7.1454e+03	1.9870e-02	2.6368e-13	7.1453e+03	2.8694e-02
78	1.2499e-04	7.3326e+03	2.1908e-02	2.0695e-13	7.3324e+03	2.5922e-02
79	1.4144e-04	7.5227e+03	2.1481e-02	2.3181e-13	7.5224e+03	2.8290e-02
80	1.3602e-04	7.7149e+03	2.4730e-02	2.9954e-13	7.7147e+03	2.7487e-02
81	1.4085e-04	7.9094e+03	2.2474e-02	3.1852e-13	7.9092e+03	2.4027e-02
82	1.4734e-04	8.1068e+03	2.2588e-02	3.1286e-13	8.1066e+03	3.0376e-02
83	1.6129e-04	8.3062e+03	2.3420e-02	3.0886e-13	8.3059e+03	3.1433e-02
84	1.6761e-04	8.5082e+03	2.4987e-02	5.1337e-13	8.5080e+03	2.8610e-02
85	1.6397e-04	8.7127e+03	2.5227e-02	5.2913e-13	8.7125e+03	3.2641e-02
86	1.5551e-04	8.9191e+03	2.7776e-02	4.9649e-13	8.9190e+03	3.0544e-02
87	1.1986e-04	9.1288e+03	2.7749e-02	4.9472e-13	9.1286e+03	3.2595e-02
88	1.2857e-04	9.3405e+03	5.0697e-02	4.5342e-13	9.3401e+03	3.1470e-02
89	1.8001e-04	9.5546e+03	4.6589e-02	4.6751e-13	9.5543e+03	3.5301e-02
90	1.5312e-04	9.7711e+03	4.2227e-02	4.5730e-13	9.7709e+03	3.2781e-02
91	1.3745e-04	9.9899e+03	4.5611e-02	3.4739e-13	9.9895e+03	3.0084e-02
92	1.5771e-04	1.0211e+04	2.7577e-02	5.1315e-13	1.0211e+04	3.4676e-02
93	1.6081e-04	1.0435e+04	2.7438e-02	5.7365e-13	1.0435e+04	3.5936e-02
94	1.4102e-04	1.0661e+04	2.7862e-02	5.6444e-13	1.0661e+04	4.3078e-02
95	1.4520e-04	1.0890e+04	2.8511e-02	5.6954e-13	1.0890e+04	3.8548e-02
96	1.5199e-04	1.1121e+04	2.8115e-02	5.5600e-13	1.1121e+04	4.9435e-02
97	1.8901e-04	1.1355e+04	2.8982e-02	5.5755e-13	1.1355e+04	4.1309e-02

	Ze	stawienie wy	ı równań macierzy A _{II}			
	Precyzja float32			Precyzja float64		
m	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_{II}})$	Czas wykonania [s]	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_{II}})$	Czas wykonania [s]
98	1.5438e-04	1.1591e+04	3.1002e-02	5.4068e-13	1.1590e+04	4.5516e-02
99	2.9159e-04	1.1829e+04	3.0355e-02	5.7843e-13	1.1829e+04	5.1495e-02
100	1.7178e-04	1.2070e+04	3.1283e-02	5.3735e-13	1.2070e+04	4.4066e-02
101	1.7047e-04	1.2313e+04	3.0937e-02	5.7443e-13	1.2313e+04	4.4843e-02
102	1.6451e-04	1.2559e+04	4.0262e-02	5.5023e-13	1.2558e+04	4.7823e-02
103	2.0266e-04	1.2807e+04	3.7813e-02	6.9389e-13	1.2807e+04	4.6113e-02
104	2.0373e-04	1.3058e+04	4.1942e-02	6.2417e-13	1.3057e+04	4.4009e-02
105	2.0766e-04	1.3311e+04	4.4606e-02	6.0385e-13	1.3310e+04	4.2650e-02
106	2.0123e-04	1.3566e+04	4.4733e-02	6.0996e-13	1.3565e+04	5.0947e-02
107	1.7381e-04	1.3824e+04	7.0755e-02	6.3238e-13	1.3823e+04	4.7421e-02
108	1.9467e-04	1.4084e+04	5.2489e-02	6.9089e-13	1.4083e+04	4.6300e-02
109	2.2662e-04	1.4346e+04	4.8918e-02	6.2628e-13	1.4346e+04	5.0996e-02
110	2.6357e-04	1.4612e+04	6.0896e-02	5.8376e-13	1.4611e+04	6.0067e-02
111	2.3019e-04	1.4879e+04	1.4116e-01	6.9744e-13	1.4878e+04	5.4805e-02
112	2.4700e-04	1.5149e+04	5.4711e-02	7.5384e-13	1.5148e+04	5.1629e-02
113	2.1923e-04	1.5422e+04	5.3274e-02	8.4677e-13	1.5421e+04	4.8914e-02
114	2.0343e-04	1.5696e+04	5.5924e-02	6.0596e-13	1.5695e+04	5.1602e-02
115	2.8622e-04	1.5974e+04	5.1279e-02	6.6391e-13	1.5973e+04	4.9944e-02
116	2.8682e-04	1.6253e+04	5.0050e-02	6.5048e-13	1.6252e+04	5.4255e-02
117	3.4785e-04	1.6535e+04	7.9152e-02	6.3805e-13	1.6534e+04	6.0676e-02
118	3.2830e-04	1.6819e+04	5.1699e-02	7.1787e-13	1.6819e+04	6.5569e-02
119	3.2049e-04	1.7106e+04	4.8397e-02	6.5359e-13	1.7105e+04	5.5121e-02
120	2.8944e-04	1.7395e+04	4.5919e-02	6.5392e-13	1.7395e+04	5.6022e-02
121	2.7251e-04	1.7687e+04	5.1931e-02	7.3141e-13	1.7687e+04	5.3855e-02
122	2.7961e-04	1.7982e+04	4.8355e-02	7.8770e-13	1.7981e+04	6.1336e-02
123	2.7055e-04	1.8279e+04	4.8072e-02	7.5762e-13	1.8278e+04	6.1752e-02
124	2.5141e-04 2.7609e-04	1.8577e+04 1.8879e+04	4.6962e-02 6.6955e-02	7.6106e-13	1.8576e+04 1.8878e+04	6.8969e-02
125	2.7609e-04 2.9755e-04	1.9183e+04	6.6955e-02 6.1441e-02	7.8182e-13 7.5973e-13	1.9182e+04	7.7676e-02 7.1718e-02
127	2.5737e-04	1.9490e+04	7.1383e-02	8.3245e-13	1.9488e+04	6.5060e-02
128	2.8110e-04	1.9798e+04	5.4231e-02	8.6153e-13	1.9797e+04	6.4747e-02
129	2.8855e-04	2.0108e+04	5.9537e-02	8.8940e-13	2.0108e+04	7.2976e-02
130	3.2651e-04	2.0422e+04	5.7233e-02	8.9095e-13	2.0422e+04	8.6395e-02
131	3.9148e-04	2.0739e+04	6.3538e-02	8.2923e-13	2.0738e+04	7.6286e-02
132	3.9899e-04	2.1058e+04	6.8909e-02	9.4091e-13	2.1056e+04	7.5841e-02
133	4.5383e-04	2.1378e+04	5.8053e-02	9.2626e-13	2.1377e+04	6.7772e-02
134	3.6383e-04	2.1702e+04	5.7552e-02	1.0063e-12	2.1700e+04	9.8885e-02
135	3.3760e-04	2.2027e+04	5.7599e-02	8.2911e-13	2.2026e+04	7.3559e-02
136	6.3270e-04	2.2356e+04	6.4045e-02	2.0686e-12	2.2354e+04	7.1868e-02
137	6.1035e-04	2.2686e+04	6.6915e-02	1.1640e-12	2.2684e+04	1.0115e-01
138	8.6790e-04	2.3020e+04	7.0961e-02	1.3789e-12	2.3018e+04	8.5798e-02
139	6.6721e-04	2.3354e+04	6.9778e-02	1.2941e-12	2.3353e+04	7.3269e-02
140	7.0459e-04	2.3693e+04	7.3074e-02	1.0547e-12	2.3691e+04	1.0086e-01
141	6.8259e-04	2.4033e+04	1.3211e-01	1.3352e-12	2.4031e+04	1.0513e-01
142	6.8557e-04	2.4376e+04	1.4670e-01	1.3169e-12	2.4373e+04	1.1106e-01
143	7.0047e-04	2.4722e+04	2.0089e-01	1.2288e-12	2.4719e+04	9.3815e-02
144	8.3005e-04	2.5069e+04	1.5305e-01	1.1707e-12	2.5066e+04	1.0418e-01
145	6.9654e-04	2.5419e+04	8.5641e-02	9.8010e-13	2.5416e+04	1.4579e-01
146	8.0812e-04	2.5771e+04	9.2891e-02	1.0121e-12	2.5769e+04	1.6037e-01
147	8.4746e-04	2.6126e+04	1.0393e-01	1.0376e-12	2.6123e+04	1.4785e-01
148	6.9904e-04	2.6483e+04	1.9777e-01	9.4147e-13	2.6481e+04	3.4293e-01

	Zestawienie wyników układu					
	Precyzja float32			Precyzja float64		
m	$\ \mathbf{x}\ _{\max}$	$\operatorname{cond}(\mathbf{A_{II}})$	Czas wykonania [s]	$\ \mathbf{x}\ _{\max}$	$\mathrm{cond}(\mathbf{A_{II}})$	Czas wykonania [s]
149	7.1239e-04	2.6843e+04	1.8933e-01	9.6911e-13	2.6840e+04	1.7961e-01
150	5.7805e-04	2.7205e+04	1.5508e-01	9.5590e-13	2.7202e+04	1.4062e-01
151	5.2589e-04	2.7569e+04	6.2108e-01	1.2055e-12	2.7567e+04	2.2819e-01
152	7.4065e-04	2.7938e+04	1.1917e-01	1.3429e-12	2.7934e+04	9.9450e-02
153	9.3335e-04	2.8307e+04	1.8858e-01	1.0130e-12	2.8303e+04	1.2622e-01
154	7.8785e-04	2.8677e+04	1.2270e-01	1.0600e-12	2.8675e+04	9.7102e-02
155	8.9025e-04	2.9050e+04	1.1831e-01	1.6125e-12	2.9049e+04	1.0041e-01
156	6.9916e-04	2.9428e+04	1.9611e-01	1.4335e-12	2.9426e+04	9.8190e-02
157	7.6473e-04	2.9807e+04	2.1644e-01	1.6893e-12	2.9805e+04	1.3750e-01
158	1.0018e-03	3.0189e+04	1.7965e-01	1.3700e-12	3.0187e+04	1.4617e-01
159	1.4026e-03	3.0573e+04	1.3342e-01	3.0035e-12	3.0571e+04	1.3915e-01
160	2.0429e-03	3.0959e+04	1.3608e-01	2.2033e-12	3.0957e+04	1.4200e-01
161	1.3638e-03	3.1350e+04	1.2223e-01	1.4061e-12	3.1346e+04	1.6274e-01
162	1.1579e-03	3.1741e+04	1.3620e-01	3.6724e-12	3.1737e+04	1.3300e-01
163	1.6330e-03	3.2133e+04	1.1755e-01	2.1143e-12	3.2131e+04	1.2937e-01
164	1.4409e-03	3.2530e+04	1.4299e-01	2.2209e-12	3.2527e+04	1.4656e-01
165	1.9638e-03	3.2928e+04	1.2438e-01	2.7003e-12	3.2925e+04	1.5394e-01
166	1.7001e-03	3.3329e+04	1.3295e-01	2.4750e-12	3.3326e+04	1.5953e-01
167	1.4168e-03	3.3734e+04	1.1585e-01	2.2102e-12	3.3729e+04	1.4767e-01
168	1.6521e-03	3.4141e+04	1.1785e-01	2.5271e-12	3.4135e+04	1.7149e-01
169	1.8095e-03	3.4549e+04	1.2391e-01	2.6512e-12	3.4543e+04	1.7738e-01
170	1.2180e-03	3.4959e+04	1.3490e-01	2.1243e-12	3.4954e+04	1.6447e-01
171	1.3077e-03	3.5373e+04	1.2414e-01	2.2953e-12	3.5367e+04	1.7103e-01
172	1.0850e-03	3.5789e+04	1.1932e-01	2.9816e-12	3.5782e+04	1.6409e-01
173	1.1333e-03	3.6204e+04	1.2098e-01	3.8610e-12	3.6200e+04	1.6547e-01
174	1.2824e-03	3.6624e+04	1.1421e-01	1.9265e-12	3.6621e+04	1.2380e-01
175	1.7191e-03	3.7048e+04	1.2829e-01	2.2382e-12	3.7043e+04	1.9093e-01
176	1.7651e-03	3.7473e+04	1.2721e-01	2.3278e-12	3.7469e+04	1.5812e-01
177	1.8704e-03	3.7900e+04	1.1707e-01	2.7078e-12	3.7896e+04	2.1091e-01
178	1.9984e-03	3.8332e+04	1.4965e-01	3.3205e-12	3.8326e+04	1.6586e-01
179	1.0630e-03	3.8763e+04	1.3929e-01	2.7549e-12	3.8759e+04	1.6871e-01
180	1.5768e-03	3.9201e+04	1.2044e-01	2.4696e-12	3.9193e+04	2.1153e-01
181	9.3687e-04	3.9638e+04	1.1338e-01	2.6842e-12	3.9631e+04	1.7860e-01
182	1.0780e-03	4.0076e+04	1.4649e-01	2.4448e-12	4.0071e+04	1.9444e-01
183	1.3640e-03	4.0520e+04	1.2765e-01	3.1279e-12	4.0513e+04	2.0102e-01
184	1.5057e-03	4.0963e+04	1.3540e-01	3.1806e-12	4.0958e+04	1.9040e-01
185	1.8866e-03	4.1412e+04	1.3118e-01	2.5249e-12	4.1404e+04	1.9964e-01
186	1.7650e-03	4.1862e+04	1.5528e-01	2.2277e-12	4.1854e+04	1.5976e-01
187	1.5537e-03	4.2311e+04	1.3536e-01	3.3437e-12	4.2306e+04	1.9940e-01
188	2.0661e-03	4.2767e+04	1.3461e-01 1.4286e-01	2.6245e-12 3.3737e-12	4.2760e+04 4.3217e+04	1.7068e-01
189	1.6919e-03	4.3226e+04				2.0362e-01
190	1.5785e-03 1.7966e-03	4.3684e+04 4.4144e+04	1.9333e-01 2.4334e-01	3.2674e-12 3.0784e-12	4.3676e+04 4.4138e+04	2.0221e-01 2.1082e-01
191	1.8140e-03	4.4144e+04 4.4608e+04	2.4554e-01 1.5105e-01	3.6539e-12	4.4138e+04 4.4601e+04	2.2123e-01
192	1.8140e-03 1.9972e-03	4.4608e+04 4.5076e+04	2.1043e-01	2.8834e-12	4.4601e+04 4.5068e+04	2.2123e-01 2.1989e-01
194	1.4806e-03	4.5546e+04	2.1612e-01	3.9941e-12	4.5537e+04	2.0444e-01
194	2.0491e-03	4.6017e+04	1.7745e-01	4.5652e-12	4.6008e+04	1.9123e-01
196	1.9000e-03	4.6487e+04	1.5607e-01	2.7600e-12	4.6482e+04	2.1743e-01
197	1.3421e-03	4.6963e+04	1.6989e-01	2.8753e-12	4.6958e+04	2.0993e-01
198	1.8345e-03	4.7446e+04	1.6850e-01	2.7925e-12	4.7436e+04	1.9823e-01
199	2.0335e-03	4.7927e+04	2.3307e-01	2.8667e-12	4.7917e+04	1.9536e-01
179	2.03330-03	7.7278+04	2.53076-01	2.000/6-12	7.//1/C+U4	1.73306-01

Tabela 2: Wyniki wyznaczone po rozwiązaniu układu równań $\mathbf{A}_\Pi \mathbf{x} = \mathbf{b}$

7.2. Wizualizacja wyników

Rysunek 3: Błąd maksymalny $\|\mathbf{x}\|_{\max}$ dla macierzy $\mathbf{A_{II}}$ po rozwiązaniu układu równań dla precyzji float32 oraz float64

Rysunek 4: Czas rozwiązywania układu metodą Gaussa dla macierzy ${f A_{II}}$ dla precyzji float
32 oraz float64

8. Analiza uwarunkowania macierzy

8.1. Zestawienie współczynników uwarunkowania

Zestawienie współczynników uwarunkowania macierzy							
	cond	$l(A_I)$	$\mathrm{cond}(\mathrm{A_{II}})$				
n i m	float32	float64	float32	float64			
2	1.8000e+01	1.8000e+01	3.0000e+00	3.0000e+00			
3	6.6000e+02	6.6000e+02	8.6667e+00	8.6667e+00			
4	2.0000e+04	2.0000e+04	1.6500e+01	1.6500e+01			
5	7.9856e+05	7.9789e+05	2.6800e+01	2.6800e+01			
6	2.8089e+07	2.7314e+07	3.9667e+01	3.9667e+01			
7	1.6369e+09	8.5789e+08	5.4571e+01	5.4571e+01			
8	3.8663e+09	2.9913e+10	7.2417e+01	7.2417e+01			
9	1.2384e+10	1.0355e+12	9.2381e+01	9.2381e+01			
10	4.9937e+09	3.3823e+13	1.1473e+02	1.1473e+02			
11	3.3577e+09	1.1111e+15	1.3978e+02	1.3978e+02			
12	3.5786e+09	3.8674e+16	1.6682e+02	1.6682e+02			
13	5.4909e+09	7.1077e+17	1.9676e+02	1.9676e+02			
14	4.6672e+09	6.1457e+17	2.2889e+02	2.2889e+02			
15	9.2775e+09	2.6349e+18	2.6329e+02	2.6329e+02			
16	1.5217e+10	6.3264e+17	3.0053e+02	3.0053e+02			
17	2.6438e+10	3.3941e+18	3.3973e+02	3.3973e+02			
18	1.8653e+10	4.3636e+20	3.8174e+02	3.8174e+02			
19	2.0498e+10	4.8968e+18	4.2604e+02	4.2604e+02			
20	3.2036e+10	1.8405e+18	4.7251e+02	4.7251e+02			

Tabela 3: Współczynniki uwarunkowania macierzy $\mathbf{A_{I}}$ oraz $\mathbf{A_{II}}$

8.2. Wizualizacja współczynników uwarunkowania

Rysunek 5: Współczynnik uwarunkowania dla n=2,...,20 dla ${\bf A_I}$ w precyzjach float32 oraz float64

Rysunek 6: Współczynnik uwarunkowania dla m = 2, ..., 200 dla ${\bf A_{II}}$ w precyzjach float
32 oraz float
64

Rysunek 7: Porównanie współczynników uwarunkowania dla n i m=2,...,20 dla ${\bf A_I}$ oraz ${\bf A_{II}}$ w precyzji float64

9. Wnioski

Wpływ doboru macierzy na uwarunkowanie

Rysunek 7 wskazuje, że odpowiednia definicja macierzy ma duży wpływ na współczynnik uwarunkowania. W przypadku ${\bf A_I}$, przypominającej **macierz Hilberta**, współczynnik uwarunkowania wzrasta wykładniczo, podczas gdy w przypadku macierzy ${\bf A_{II}}$ wzrasta on liniowo. Mimo wszystko, w obu przypadkach wzrasta on wraz z zwiększaniem wymiarów n i m.

Wpływ uwarunkowania macierzy na dokładność rozwiązania

Dla macierzy ${\bf A_I}$ można zauważyć bardzo szybki wzrost współczynnika uwarunkowania wraz ze wzrostem wymiaru n co znacząco wpływało na wzrost błędu rozwiązania – szczególnie przy niższej precyzji float32. Wysoka wartość ${\rm cond}({\bf A_I})$ prowadziła do istotnej utraty dokładności.

Macierz A_{II} była znacznie lepiej uwarunkowana, co przekładało się na **błędy maksymalne** mniejsze o kilka rzędów wielkości, nawet przy większych rozmiarach układu (Rysunek 3).

Wpływ precyzji obliczeń na dokładność rozwiązania

W przypadku ${\bf A_I}$ dla pojedyńczej precyzji, rząd błędu $\approx 10^1$ osiągany jest dla $n \geq 8$, podczas gdy ten sam wynik w przypadku podwójnej precyzji osiągany jest dla $n \geq 14$.

Jeżeli chodzi o ${\bf A_{II}}$ pomiędzy pojedyńczą a podwójną precyzją występuje różnica rządu błędu o $\approx 10^{10}$ dla każdego n>2. Mimo tego, błędy w przypadku pojedyńczej precyzji osiągają maksymalnie $\approx 10^-4$.

Złożoność czasowa rozwiązania

Czas rozwiązywania układów, którego złożoność obliczeniowa wynosi teoretycznie $O(n^3)$, wzrastał

Metody Obliczeniowe w Nauce i Technice Układy równań liniowych - metody bezpośrednie

wraz z wymiarem macierzy, lecz nie w sposób drastyczny – metoda eliminacji Gaussa okazała się wydajna dla zastsowoanych wymiarów macierzy.