Total I	No. o	of Questions : 4] SEAT No. :
PA-1	679	
111 1	LU1.	
[5931]-1002		
F.E. (Common)		
ENGINEERING PHYSICS		
(2019 Pattern) (Semester - I) (107002)		
Time :	: 1 H	[Max. Marks: 30
Instructions to the candidates:		
1	1)	Solve Q Lor Q 2 and Solve Q.3 or Q.4.
2	2)	Neat diagrams must be drawn wherever necessary.
3	3)	Figures to the right indicate full marks.
4	4)	Use of logarithmic tables, slide rule, Mollier charts, electronic pocket
		calculator and steam tables is allowed.
5	5)	Assume suitable data, if necessary.
		9. v
Q1) a	a)	What is Fraunhofer diffraction. State the equations for resultant amplitude
21)	<i>)</i>	and resultant intensity between the diffracted waves in Fraunhofer
		diffraction due to a single slit. State the conditions of maximum and
		minimum intensity. [6]
_		
t	o)	State and explain Malus law with proof. [5]
(2)	White light falls at an angle of 45° on a thin film of soap bubble having
·	- /	refractive index 1.33. At what minimum thickness of the film it will appear
		bright yellow of wave length 5896 A° in the reflected light. [4]
		OR OR
Q2) a	a)	What is double refraction? Explain Huygen's theory of double refraction.

[6]

What is interference of light? Explain the use of thin film as antireflection b) coating. **[5]**

What is the highest order spectrum that is visible with light of wavelength c) 6000 A° by means of grating having 5000 lines per centimeter. **[4]**

- Q3) a) Explain the construction and working or a carbon dioxide laser. [6]
 - b) What are optical fibres? Distinguish between step index optical fibre and graded index optical fibre. (Any 4 pts) [5]
 - c) Calculate the numerical aperture and acceptance angle of an optical fibre having core refractive index 1.49 and cladding refractive index 1.44. [4]

OR

- Q4) a) What are optical fibres? Draw a neat labelled diagram of cross section of optical fibre showing total internal reflection. State the advantages of optical fibre communication over the conventional communication system. (Any 4 pts.) [6]
 - b) What is holography? Explain recording of a hologram using laser. [5]
 - c) What is LASER? State the important characteristics of LASER. [4]

[5931]-1002

2 Portage of the state of the s