Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019147

International filing date: 15 December 2004 (15.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-419391

Filing date: 17 December 2003 (17.12.2003)

Date of receipt at the International Bureau: 10 February 2005 (10.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年12月17日

出 願 番 号

特願2003-419391

Application Number: [ST. 10/C]:

[JP2003-419391]

出 願 人
Applicant(s):

トヨタ自動車株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 1月27日


```
特許願
【書類名】
              030887JP
【整理番号】
              平成15年12月17日
【提出日】
              特許庁長官殿
【あて先】
              F01L 9/00
【国際特許分類】
              F01L 13/00
【発明者】
              愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内
  【住所又は居所】
              江崎 修一
  【氏名】
【発明者】
                                 トヨタ自動車株式会社内
              愛知県豊田市トヨタ町1番地
  【住所又は居所】
              浅田 俊昭
   【氏名】
【発明者】
                                 トヨタ自動車株式会社内
              愛知県豊田市トヨタ町1番地
   【住所又は居所】
              辻 公壽
   【氏名】
【発明者】
                                 トヨタ自動車株式会社内
              愛知県豊田市トヨタ町1番地
   【住所又は居所】
              日下 康
   【氏名】
【特許出願人】
              000003207
   【識別番号】
               トヨタ自動車株式会社
   【氏名又は名称】
【代理人】
               100099645
   【識別番号】
   【弁理士】
               山本 晃司
   【氏名又は名称】
               03-5524-2323
   【電話番号】
【選任した代理人】
   【識別番号】
               100104765
   【弁理士】
               江上 達夫
   【氏名又は名称】
               03-5524-2323
   【電話番号】
 【選任した代理人】
   【識別番号】
               100107331
   【弁理士】
               中村 聡延
    【氏名又は名称】
               03-5524-2323
    【電話番号】
 【手数料の表示】
    【予納台帳番号】
               131913
               21,000円
    【納付金額】
 【提出物件の目録】
               特許請求の範囲 1
    【物件名】
               明細書 1
    【物件名】
```

図面 1

要約書 1

【物件名】

【物件名】

【書類名】特許請求の範囲

【請求項1】

電動機と、該電動機の回転運動をカムにより気筒開閉用の弁の直線運動に変換するカム 機構と、前記弁のリフト中の加速度特性が前記内燃機関の回転数に応じて変化するように 前記電動機を制御する電動機制御手段を備えたことを特徴とする内燃機関の動弁装置。

【請求項2】

前記電動機制御手段は、前記内燃機関の回転数が低い場合には、前記弁のリフト開始後 及びリフト終了前の所定区間の前記カムの速度が該所定区間に挟まれた中間区間の前記カ ムの速度よりも高くなり、前記内燃機関の回転数が高い場合には前記弁のリフト中に前記 カムが一定速度で回転するように前記電動機を制御することを特徴とする請求項1に記載 の動弁装置。

【請求項3】

前記電動機制御手段は、前記内燃機関の回転数が上昇するほど、前記所定区間と前記中 間区間との間における前記カムの回転速度の変動幅が減少するように前記電動機を制御す ることを特徴とする請求項2に記載の動弁装置。

【請求項4】

前記電動機制御手段は、前記内燃機関の回転数が低い場合には前記リフト中に前記カム が一定速度で回転し、前記内燃機関の回転数が高い場合には前記弁のリフト開始後及びリ フト終了前の所定区間の前記カムの速度が該所定区間に挟まれた中間区間の前記カムの速 度よりも低くなるように前記電動機を制御することを特徴とする請求項1に記載の動弁装 置。

【請求項5】

前記電動機制御手段は、前記内燃機関の回転数が上昇するほど、前記所定区間と前記中 間区間との間における前記カムの回転速度の変動幅が増加するように前記電動機を制御す ることを特徴とする請求項4に記載の動弁装置。

【書類名】明細書

【発明の名称】内燃機関の動弁装置

【技術分野】

[0001]

本発明は、内燃機関の吸気弁や排気弁を駆動する動弁装置に関する。

【背景技術】

[0002]

この種の動弁装置として、内燃機関のカム軸をステッピングモータで回転駆動して吸気 弁を開閉させる動弁装置が知られている(特許文献1)。その他に、本発明に関する先行 技術文献として特許文献2が存在する。

【特許文献1】特開平8-177536号公報

【特許文献2】特開昭59-68509号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

カム軸には回転に対する抵抗としてバルブスプリングや慣性に起因するカム軸トルクが 作用する。ところが、カム軸トルクは機関の回転数(回転速度)に応じて変動し、その変 動により所望の動弁特性が得られない回転域が発生するおそれがある。

[0004]

そこで、本発明は、機関回転数の変化に拘わりなく弁の動弁特性の制御精度を高く維持 できる内燃機関の動弁装置を提供することを目的とする。

【課題を解決するための手段】

[0005]

本発明は、電動機と、該電動機の回転運動をカムにより気筒開閉用の弁の直線運動に変 換するカム機構と、前記弁のリフト中の加速度特性が前記内燃機関の回転数に応じて変化 するように前記電動機の回転速度を制御する電動機制御手段を備えた内燃機関の動弁装置 により、上述した課題を解決する(請求項1)。

[0006]

カム軸には、弁を付勢するバルブスプリングの圧縮反力に伴うバルブスプリングトルク と、弁に同期して往復運動する動弁系部品の慣性力に伴う慣性トルクとがカム軸トルクと して作用する。カム軸が低速で回転している場合、カム軸トルクとしてはバルブスプリン グトルクが支配的である。バルブスプリングトルクはバルブスプリングの圧縮反力と、弁 の往復運動方向と直交する方向に関するカムの回転中心からカムの相手部品に対する接触 位置までの距離(オフセット量)との積で与えられる。また、圧縮反力は弁のリフト量に 比例して大きくなり、弁のリフト速度はオフセット量に比例して大きくなる。従って、低 回転域でカム軸トルクを低減するためには、リフト量がなるべく小さい段階でリフト速度 が最大となるようにカムのプロファイルを設計すればよい。

[0007]

その一方、カム軸の慣性トルクは回転速度の二乗に比例して増大し、カム軸が高回転し ている場合には慣性トルクの影響が相対的に増加して弁の加速度が最大となる位置でカム 軸トルクが最大となる。リフト開始から短時間でリフト速度を最大まで上昇させると、弁 の加速度が大きくなり、従って、カム軸の高回転時におけるカム軸トルクが著しく増加す る。そのため、高回転域におけるカム軸トルクを減らすためには弁の最大加速度が小さく なるようにカムのプロファイルを設計する必要がある。

[0008]

このようにバルブスプリングトルクと慣性トルクとは二律背反の関係にあり、カム軸の 低回転域又は高回転域のいずれか一方の回転域におけるカム軸トルクを減らすべくカムを 設計しても、他方の回転域においてカム軸トルクが増加し、その影響で所望の動弁特性が 得られないおそれがある。

[0009]

ところが、弁を電動機にて駆動する場合には、内燃機関の回転数が一定であっても、弁 のリフト中の加速度特性を電動機の回転速度の調整によって適宜に変化させることができ る。このような機能を活用すれば、カムがそのプロファイル設計上の最適な回転域から外 れて駆動されているときに生じるカム軸トルクの増加を抑えるようにカムの加速度を変化 させてカム軸トルクを機関回転数に拘わらず低く抑えることができる。例えば、低回転域 におけるバルブスプリングトルクを減らすべくリフト開始直後及びリフト終了直前の加速 度を高めるようにカムを設計した場合には、高回転域において、リフト開始直後及びリフ ト終了直前のリフト加速度が抑えられるように電動機の回転速度を変化させればよい。反 対に、高回転域における慣性トルクを減らようにリフト開始直後及びリフト終了直前の加 速度を抑えるようにカムを設計した場合には、低回転域において、リフト開始直後及び終 了直前のリフト加速度を上昇させるように電動機の回転速度を変化させればよい。

[0010]

本発明の動弁装置において、前記電動機制御手段は、前記内燃機関の回転数が低い場合 には、前記弁のリフト開始後及びリフト終了前の所定区間の前記カムの速度が該所定区間 に挟まれた区間の前記カムの速度よりも高くなり、前記内燃機関の回転数が高い場合には 前記弁のリフト中に前記カムが一定速度で回転するように前記電動機を制御してもよい(請求項2)。この場合には低速域において、弁のリフト量が小さい段階で弁に最大速度を 与えてバルブスプリングトルクを抑えることができる。高回転域ではカムを一定速度で回 転させることにより、高回転時における電動機の制御の負担を軽減して制御の応答性の不 足に起因する弁の動作制御の低下を防止することができる。なお、上記態様において、前 記電動機制御手段は、前記内燃機関の回転数が上昇するほど、前記所定区間と前記中間区 間との間における前記カムの回転速度の変動幅が減少するように前記電動機を制御するこ とが望ましい(請求項3)。このように速度を変化させることにより、内燃機関の回転数 の変化に対して弁の加速度特性を円滑に変化させてドライバビリティの悪化を防ぐことが できる。

[0011]

また、本発明の動弁装置において、前記電動機制御手段は、前記内燃機関の回転数が低 い場合には前記リフト中に前記カムが一定速度で回転し、前記内燃機関の回転数が高い場 合には前記弁のリフト開始後及びリフト終了前の所定区間の前記カムの速度が該所定区間 に挟まれた中間区間の前記カムの速度よりも低くなるように前記電動機を制御してもよい (請求項4)。この場合には高速域における弁の最大加速度を減少させて慣性トルクを抑 えることができる。なお、上記態様において、前記電動機制御手段は、前記内燃機関の回 転数が上昇するほど、前記所定区間と前記中間区間との間における前記カムの回転速度の 変動幅が増加するように前記電動機を制御することが望ましい(請求項5)。このように 速度を変化させることにより、内燃機関の速度の変化に対して弁の加速度特性を円滑に変 化させてドライバビリティの悪化を防ぐことができる。

【発明の効果】

[0012]

本発明によれば、機関回転数に応じて弁のリフト加速度特性が変化するように電動機を 制御することにより、機関回転数の変化に拘わりなくカム軸トルクを抑えて弁の開閉運動 に対する制御精度を向上させることができる。

【発明を実施するための最良の形態】

[0013]

(第1の形態)

図1は本発明の動弁装置をレシプロ式内燃機関の吸気弁の駆動に適用した一形態を示し ている。この形態では、内燃機関に設けられた複数のシリンダ1(図では一つのみ示す。)のそれぞれに2本の吸気弁2が設けられ、それらの吸気弁2がシリンダ1毎に設けられ た動弁装置11にて開閉駆動される。周知のように、吸気弁2はバルブヘッド2aとステ ム 2 b とを有している。ステム 2 b が不図示のシリンダヘッドに固定されるスリーブ 3 に 通されることにより、吸気弁2はステム2bの軸線方向に摺動自在に案内されている。ス

リーブ3から突出するフランジ4とステム2bに取り付けられたバルブスプリングリテー ナ5との間にはバルブスプリング6が圧縮状態で配置され、そのバルブスプリング6の圧 縮反力により吸気弁2はバルブヘッド2aが不図示の弁座と密着する方向(図1の上方) に付勢されている。

[0014]

動弁装置11は、駆動源としての電動機((以下、モータと呼ぶ。)12と、モータ1 2の回転運動を伝達する伝達機構としてのギア列13と、ギア列13から伝達された回転 運動を吸気弁2の直線的な開閉運動に変換するカム機構14とを備えている。モータ12 には、回転速度の制御が可能なDCブラシレスモータ等が使用される。モータ12には、 その回転位置を検出するためのレゾルバ、ロータリエンコーダ等の位置検出センサ12a が設けられている。ギア列13は、モータ12の出力軸(不図示)に取り付けられたモー タギア15の回転を中間ギア16を介してカム駆動ギア17に伝達する。ギア列13はモ ータギア15とカム駆動ギア17とが互いに等しい速度で回転するように構成されてもよ いし、モータギア15に対してカム駆動ギア17を増速又は減速させるように構成されて もよい。

[0015]

図2にも示したように、カム機構14は、カム駆動ギア17と同軸かつ一体回転可能に 設けられたカム軸20と、カム軸20に一体回転可能に設けられた2本のカム21と、各 カム21と吸気弁2との間に設けられたロッカーアーム22とを備えている。カム21は カム軸20と同軸の円弧状のベース円21bの一部を半径方向外側に向かって膨らませて ノーズ21 aを形成した板カムの一種として形成されている。

[0016]

ロッカーアーム22はバルブロッカー軸23に回転自在に取り付けられ、その一端部2 2 a は吸気弁2のステム2 b の上端に接し、他端部22 b はラッシュアジャスター24と 接している。ラッシュアジャスター24がロッカーアーム22の一端部22aを押し上げ ることにより、ロッカーアーム22の一端部22aは吸気弁2の上端部と接触した状態に 保たれている。カム21が回転することにより、ロッカーアーム22がバルブロッカー軸 23を中心として揺動し、その揺動に伴って吸気弁2がステム2bの軸線方向に直線運動 してシリンダ1が開閉される。

$[0\ 0\ 1\ 7]$

図1に戻って、動弁装置11には、モータ12の動作を制御する電動機制御手段として のモータ制御装置30が設けられている。モータ制御装置30は、マイクロプロセッサと その動作に必要な主記憶装置等の周辺部品とを備えたコンピュータユニットである。なお 、複数の動弁装置11が設けられる場合において、モータ制御装置30はそれぞれの動弁 装置11に対して共用されてもよい。あるいは、シリンダ1毎又は動弁装置11毎にモー タ制御装置30が設けられてもよい。モータ制御装置30は動弁装置11の制御専用に設 けられてもよいし、他の用途で設けられたコンピュータユニットをモータ制御装置30と して併用してもよい。例えば、内燃機関の燃料噴射量を制御するエンジンコントロールユ ニット(ECU)をモータ制御装置として兼用してもよい。

[0018]

モータ制御装置30には、情報入力手段として、上述した位置検出センサ12aととも に、クランク軸の角度に対応した信号を出力するクランク角センサ31等の各種のセンサ が接続されている。モータ制御装置30はこれらのセンサの出力を参照しつつ、そのRO Mに記憶された弁制御プログラムに従ってモータ12の動作を制御する。本発明の特徴に 拘わる制御として、モータ制御装置30は、吸気弁2の機関回転数に応じて吸気弁2の加 速度特性が変化するようにモータ12の回転速度を変化させる。以下、この点について詳 細に説明する。

[0019]

図 3 は吸気弁 2 のリフト量 Y 、リフト速度 V 及びリフト加速度 A とカム 2 1 の回転角 θ との対応関係を示している。但し、カム軸20の回転速度は内燃機関のクランク軸(機関 出力軸)の回転速度の1/2の速度(以下、これを基本速度と呼ぶ。)で一定と仮定している。また、図3では、吸気弁2がリフトを開始するときのカム角(リフト開始角) θ rから最大リフト量Y0 m a x が与えられるときのカム角(最大リフト角) θ y までの吸気弁2の動弁特性を示しており、最大リフト角 θ y から吸気弁2のリフトが終了するときのカム角までの動弁特性は最大リフト角 θ y に引いた縦軸と対称に現れるものとする。カム速度V及びカム加速度Aの正負は吸気弁2が開く方向を正方向として定義している。

[0020]

[0021]

そこで、まず高回転域における慣性トルクを抑えることを優先して、内燃機関の最高回転数における最大加速度Amaxが許容限度まで低下するようにカム21のプロファイルを設計する。この場合、吸気弁2のリフト中においてカム21を基本速度で駆動すれば、最大速度カム角 θ vが遅れて低回転域におけるバルブスプリングトルクが増大する。これを避けるため、低回転域においてリフト開始直後及びリフト終了直前のモータ12の回転速度を基本速度よりも上昇させ、それにより、図3に矢印Iで示すように吸気弁2の最大加速度Amaxを増加させる。これにより、最大速度カム角 θ vを矢印IIで示すように早めてバルブスプリングトルクを抑え、それによりカム軸トルクを低減させる。

[0022]

図4は、吸気弁2の加速度特性を上記のように変化させるためにモータ制御装置30が制御するモータ12の回転速度(モータ速度)及び出力トルク(モータトルク)の変化を示すタイムチャートである。なお、この図では、機関回転数に拘わりなくモータ12によりカム21を同一方向に連続して回転駆動するものとする。

[0023]

[0024]

内燃機関がアイドリング回転数と最高回転数との間の中間的回転数で運転されている場合にも、モータ制御装置30は図4に実線Lt3、及びLv3で示すようにリフト開始直後及びリフト終了直前の所定区間Xs、Xeにてモータトルク及びモータ速度を増減させ

るが、その際の変動幅は機関回転数が上昇するほど小さく制御される。例えば、図4に示 すようにリフト開始直後及びリフト終了直前に与えるべきモータトルクの変動幅の絶対値 を△ | T | とすれば、その値△ | T | は図 5 に示すように機関回転数が増加する程に小さ く設定され、最高回転数Nemaxに達した時点で $\Delta+T+=0$ 、すなわち加減速のない 一定速度の運転状態となる。

[0025]

以上のようにモータ12のトルク及び速度を制御すれば、カム21のプロファイルが最 高回転数における慣性トルクを抑えることを優先して設計されていても、低回転域におけ る吸気弁2の加速度特性をリフト量が比較的小さいリフト開始直後及びリフト終了直前の 限られた区間Xs、Xeにて最大リフト速度Vmaxが発生するように変化させ、それに より低回転域におけるバルブスプリングトルクを抑えてモータ12に加わる負荷を低減す ることができる。

[0026]

(第2の形態)

上述した第1の形態では、カム21のプロファイルを高回転域における慣性トルクの低 減を優先して設計しているが、本発明はその逆の態様によって実現されてもよい。その一 形態を図6~図8に示す。

[0027]

この例では、まず前提として、低回転域におけるバルブスプリングトルクを抑えること を優先して、最大リフト速度 V m a x を与える最大速度カム角 θ v が可能な限り早くなる ようにカム21のプロファイルを設計する。この場合、機関回転数に拘わりなくカム21 を基本速度で駆動すれば、機関回転数が上昇するほどその二乗に比例してリフト開始直後 及びリフト終了直前における最大加速度Amaxが増加して高回転域における慣性トルク が著しく大きくなる。これを避けるため、機関回転数がアイドリング回転数から上昇する に従って、その回転速度の二乗に反比例してリフト開始直後及びリフト終了直前における 吸気弁2の最大加速度が低下するようにモータ12の回転速度を変化させる。それにより 、図6に矢印IIIで示すように吸気弁2の最大加速度Amaxを抑えるとともに、最大速 度カム角 θ v を矢印IVで示すように遅らせて高回転域における慣性トルクの増加を抑える

[0028]

図7は、吸気弁2の加速度特性を上記のように変化させるためにモータ制御装置30が 制御するモータ12の回転速度(モータ速度)及び出力トルク(モータトルク)の変化を示 すタイムチャートである。この図でも、機関回転数に拘わりなくモータ12によりカム2 1を同一方向に連続して回転駆動するものとする。

モータ制御装置30は、内燃機関がアイドリング回転数で回転している場合、図7に実 線Lt4で示すようにモータトルクを一定値T4に固定し、モータ12の回転速度を実線 Lv4で示すように一定速度V4に固定する。速度V4は内燃機関がアイドリング回転数 で運転されているときの基本速度でカム21を回転させるために必要なモータ12の回転 速度に等しい。これに対して、内燃機関が最高回転数で運転されている場合、モータ制御 装置30は、同図に実線Lt5で示すようにリフト開始直後及びリフト終了直前の所定区 間Xs、Xeにおいて、モータトルクを最高回転数に対応した基本速度でカム21を駆動 するために必要なトルクT5に対して減少及び増加させ、それにより該区間Xs、Xeに おけるモータ12の回転速度を最高回転数に対応した基本速度でカム21を駆動するため に必要な速度V5よりも低下させる。これらの区間Xs、Xeに挟まれたリフト中の中間 区間Xmにおいて、モータ制御装置30はモータトルクをT5に維持し、モータ12の回 転速度を速度V5よりも高く設定する。その理由は、モータ12を速度V5に固定して駆 動した場合と吸気弁2のバルブ時間面積(リフト量の曲線で囲まれた範囲の面積)を一致 させるためである。

[0030]

内燃機関がアイドリング回転数と最高回転数との間の中間的回転数で運転されている場 合にもモータ制御装置30は図7に実線Lt6、及びLv6で示すようにリフト開始直後 及びリフト終了直前の所定区間Хѕ、Хеにてモータトルク及びモータ速度を変化させる が、その際の変動幅は機関回転数が上昇するほど大きくなる。例えば、図7に示すように リフト開始直後及びリフト終了直前に与えるべきモータトルクの変動幅の絶対値を△│T |とすれば、図8に示したようにアイドリング回転数Neidでは△ |T |=0、すなわ ち加減速のない一定速度の運転状態であるが、回転数が上昇するほどトルク変動幅の絶対 値丨T丨が増加して高回転数Nemaxにおいて最も大きくトルクが増減される。

[0031]

以上のようにモータ12のトルク及び速度を制御すれば、カム21のプロファイルが低 回転域におけるバルブスプリングトルクを抑えるよう設計されていても、高回転域におけ る吸気弁2の最大加速度の増加を抑え、それにより慣性トルクを小さく制限してモータ1 2に加わる負荷を低減することができる。

[0032]

本発明は以上の実施形態に限らず種々の形態にて実施してよい。例えば、以上の実施形 態では機関回転数に拘わらずモータ12を同一方向に連続して回転させているが、本発明 は、最大リフト量が得られるカム角に達する前にカム21の回転方向を切り替える揺動駆 動モードにてモータ12を動作させる場合にも適用可能である。動弁装置11はシリンダ 1毎に分けて設けられてもよいし、複数のシリンダ1に対して一つの動弁装置11が共用 されてもよい。本発明は排気弁を駆動する動弁装置に対して適用されてもよい。ロッカー アームを使用せず、カムと吸気弁とを直接的に接触させるいわゆる直打方式の動弁装置に も本発明は適用できる。

[0033]

上記の形態においては、モータトルクの変動幅の絶対値△ | T | を図5又は図8に示し たように連続的に変化させているために、内燃機関の回転数の変化に伴う吸気弁2のリフ ト特性の不連続な変化を抑えることができ、そのためにドライバビリティの悪化を防止で きる。但し、本発明はこのような連続的な変化を与える例に限らず、モータトルクやモー タ速度の変動幅を二以上の有限段数で断続的に変化させてもよい。本発明は吸気行程の開 始から排気行程の終了までの間に機関出力軸としてのクランク軸が2回転する4サイクル 式の内燃機関に限らず、機関出力軸が一回転する間に吸気から排気までを完了する2サイ クル式の内燃機関にも適用可能である。この場合、カムの基本速度は機関出力軸の回転速 度と一致する。つまり、カムを回転駆動する際の基本速度は、内燃機関の機関出力軸の回 転速度を吸気行程の開始から排気行程の終了までの間の当該機関出力軸の回転数で除して 得られる速度として定義されるものである。

【図面の簡単な説明】

[0034]

- 【図1】本発明の一形態に係る動弁装置の斜視図。
- 【図2】図1の動弁装置の正面図。
- 【図3】図1の動弁装置が吸気弁に与えるリフト特性を示す図。
- 【図4】図1のモータ制御装置によるモータ速度及びモータトルクの制御を示すタイ ムチャート。
- 【図5】図4のモータトルク変動幅の絶対値△ | T | と機関回転数との対応関係を示
- 【図6】図1の動弁装置が吸気弁に与えるリフト特性の他の例を示す図。
- 【図7】図1のモータ制御装置によるモータ速度及びモータトルクの制御の他の例を 示すタイムチャート。
- 【図8】図7のモータトルク変動幅の絶対値△ | T | と機関回転数との対応関係を示 す図。
- 【図9】揺動駆動モードにおけるカムの動作を示す図。

【符号の説明】

- [0035]
- 1 シリンダ
- 2 吸気弁
- 6 バルブスプリング
- 11 動弁装置
- 12 モータ (電動機)
- 14 カム機構
- 20 カム軸
- 21 カム
- 22 ロッカーアーム
- 30 モータ制御装置(電動機制御手段)

【書類名】図面【図1】

【図2】

11____

【図3】

【図4】

【図5】

【図9】

【書類名】要約書

【要約】

機関回転数の変化に拘わりなく弁の動弁特性の制御精度を高く維持できる内燃 【課題】 機関の動弁装置を提供する。

【解決手段】 モータ12と、モータ12の回転運動をカム21により吸気弁2の直線運 動に変換するカム機構14と、吸気弁2のリフト中の加速度特性が内燃機関の回転数に応 じて変化するようにモータ12の回転速度を制御するモータ制御装置30とを動弁装置1 1に設ける。カム21がそのプロファイル設計上の最適な回転域から外れて駆動されてい るときに生じるカム軸トルクの増加を抑えるように、モータ制御装置30にてカム21の 加速度を変化させてカム軸トルクを機関回転数に拘わらず低く抑える。

図 3 【選択図】

特願2003-419391

出願人履歴情報

識別番号

[000003207]

1. 変更年月日 [変更理由]

1990年 8月27日 新規登録

住 所

氏 名

愛知県豊田市トヨタ町1番地

トヨタ自動車株式会社