Modelos y Persistencia de Datos

Inteligencia de Negocios (Business Intelligence)

Alejandro Sierra

Sistemas de Apoyo a Decisiones (DSS)

- Características (Sprague 1980)
 - 1. Apunta a problemas de toma de decisiones poco especificados.
 - 2. Combinar técnicas y modelos analíticos con funciones de acceso y recuperación de datos.
 - 3. Fácil de usar e interactivo para personas no técnicas.
 - 4. Flexibilidad y capacidad de adaptarse a cambios en el ambiente de toma de decisiones.

Mapa general de BI

Fuentes:

- (OLTP)
- Maestras

Bodega de Datos

Consultas a la Bodega

Bodega de Datos (DW)

- Repositorio Central
- Datos provienen de fuentes internas y externas
- Limpios y transformados
- Formateados para consulta rápida.
- Tipos de bodegas (no excluyentes)
 - Almacén de datos Operacionales (ODS)
 - Bodega de Datos Empresarial (EDW)
 - Data Mart (DM)

Tipos de DW

Tipo	Detalle	Alcance	Historial	Uso
ODS	Máximo nivel de detalle	Empresa	Corto	Táctico, análisis de la operación en el día a día
EDW	Detalle y agregaciones	Empresa	Amplio	Táctico y Estratégico
DM	Agregaciones. Poco detalle	Tema específico	Amplio	Datos con alto valor para un grupo de personas, unidad de negocio,

Flujo de datos dentro de DW

Diseño Multidimensional

- Hecho
 - Es lo que se analiza
 - Normalmente solo contiene medidas (números)
 - Y relaciones con las dimensiones
 - Gran cantidad de filas
 - Ejemplo: Cantidad de productos vendidos
- Dimensión
 - Contiene criterios de análisis
 - Jerarquías
 - Sólo se conecta con otras dimensiones a través de los hechos
 - Ejemplos: Cuándo, Tienda, Cliente, Producto

Diseño Multidimensional

Jerarquías en las dimensiones

- Permiten hacer análisis con diferentes niveles de detalle
- Ej.
 - Tiempo
 - Año,
 - Trimestre,
 - Mes,
 - Semana,
 - Día
 - Producto
 - Línea,
 - Modelo,
 - Producto

Diseño Físico

- Diseño físico de un modelo multidimensional
 - Esquema en Estrella
 - Dimensiones completamente denormalizadas
 - Esquema en Copo de Nieve
 - Dimensiones normalizadas
 - Hibrido
- Las relaciones (PK y FK) se establecen mediante llaves subrogadas
 - Llaves sin significado de negocio.
 - Autoincrement, Hash, secuencias,....

Esquema en Estrella

Denormalizado

Jerarquías en Esquema Estrella (Dimensiones)

- Ejemplo de Jerarquía
 - Oficina, Ciudad, Departamento, Región
- Todos los niveles en una única tabla.
 - Alta redundancia
 - Muy pocos Joins para las consultas

Ejemplo Dimensión de Tiempo denormalizada

Fecha ID	Fecha	Dia Semana	Número Mes	Mes	Año
12654	09/09/15	Martes	9	Sept.	2015
12655	10/09/15	Miércoles	9	Sept.	2015
12684	06/10/15	Martes	10	Oct	2015

Copo de Nieve

- Se mantienen normalizadas las dimensiones
 - Cada nivel de la jerarquía está en una tabla diferente
- La tabla de hechos se relaciona con el nivel más detallado de la jerarquía
- Más fácil de actualizar
- Menos redundancia
- Más Joins para una consulta agregada

Copo de Nieve

Copo de Nieve Ejemplo dimensión de tiempo

Fecha	Dia Semana	Mes	Nombre	Año
08/09/2015	Martes	09/2015	Sept.	2015
09/09/2015	Miercoles	10/2015	Oct.	2016
		•••		

Hibrido

- Dimensiones que menos cambian denormalizadas
- Dimensiones que más cambian y relaciones muchos-muchos normalizadas.

Ejemplo (Tablero)

- Diseñar Estrella
- Hecho
 - Ventas
 - Cantidad, Valor
- Dimensiones
 - Tiempo
 - Día, Mes, Año
 - Producto
 - Producto, Línea
 - Cliente
 - Tienda
 - Tienda, Ciudad

Dimensiones Conformadas

Dimensiones relacionadas con varios Hechos Ej. Dimensión "Tiempo" Dim Dim Dim Nivel1 Nivel2 Nivel3 Hecho Hecho 2 Medidas Medidas Dim Dim Dim Nivel1 Nivel2

Dimensiones Degeneradas

- Se incluyen en la tabla de hechos
- Muy pocos atributos (Id de negocio, Etiqueta)
- No cambian constantemente
- No requieren llave subrogada

Cliente

Compra (Hecho)

- Medidas
 - Valor
 - Cantidad
- FKs
 - Id Producto
 - Id Cliente
 - Id Tiempo
 - Id Sucursal
- Dimensiones Degeneradas
 - Número Factura
 - Forma de Pago

Producto

Tiempo

Sucursal

Dimensiones que cambian en el tiempo

Opciones

- No mantener historial
 - Registro original
 - Sobreescribir
- Agregar filas
 - Se deben agregar campos para controlar versiones
 - Versiones infinitas
- Agregar columnas
 - Versiones limitadas
- Tabla con historial

Modelo Físico

ROLAP

- Relational OLAP
- Utilizar BD Relacionales para guardar dimensiones y hechos
 - Esquema Estrella y Copo de Nieve

MOLAP

- Multidimensional OLAP
- Propietario
- Cálculos agregados preparados y almacenados
- Alto desempeño
- HOLAP (Híbrido)
 - Detalles ROLAP
 - Agregados MOLAP

Análisis

- Reportes
 - Predefinidos, estáticos.
 - Cumplimiento de req. Gubernamentales
- OLAP
 - Interactivo
 - Drill Down Bajar en una Jerarquía
 - Ej. Ventas por año -> Ventas por Semestre
 - Roll Up Subir en una Jerarquía
 - Agregar/Remover dimensiones del análisis.
- Minería de Datos
 - Métodos estadísticos, aprendizaje, predicciones
 - Encontrar relaciones implícitas

Análisis OLAP

- Mapeo tablas-negocio
 - Tablas
 - Jerarquías
 - Nombres de Negocio
 - Significado de llaves foráneas
- El usuario final utiliza los metadatos de negocio que el motor OLAP convierte en metadatos técnicos para formular SQL

Inhibidores para BI

- Política / Poder
 - Los administradores se sienten intimidados y sienten que pierden poder.
 - Bl no toma decisiones. Ayuda a tomarlas y sustentarlas
- Visión a corto plazo
 - BI da respuestas que posiblemente ya se conocían.
 - http://blog.consultorartesano.com/2006/11/no-te-fes-de-los-consultores.html
- Resistencia al cambio
 - Una estrategia de BI completa requiere la participación de muchas áreas

Taller Modelo Multidimensional

- Construir Modelo estrella Y copo de nieve
 - Por lo menos 2 dimensiones con jerarquías.
 - Telco
 - Llamadas
 - Salud
 - Autorizaciones, Atenciones
 - Banca
 - Transacciones de tc
 - Seguros
 - Siniestros
 - Otro ...