## UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN

# REVISIÓN DE ECONOMETRÍA I 15 de diciembre de 2011 – 18 horas

### EJERCICIO 1 (30 puntos) -

## (El ejercicio consta de 3 partes, cada una independiente de las otras)

Contando con datos de corte transversal sobre salarios y otras características individuales, se desea estimar una ecuación de salarios. Para ello se dispone de información sobre 1000 trabajadores norteamericanos en 1997 (Fuente: *Current Population Survey*; tomado de Hill, Griffiths y Lim, 2006).

### **PARTE A**

Considerando las siguientes variables:

WAGE: Salario corriente por hora, en dólares

EDUC: Años de educación formal

Source

EXPER: Años de experiencia laboral del trabajador

SS

EXPER2: Variable EXPER al cuadrado

FEMALE: Binaria que toma el valor 1 si la observación corresponde a mujer

#### Se estima el Modelo 1:

$$WAGE = \beta_1 + \beta_2 EDUC + \beta_3 EXPER + \beta_4 EXPER2 + \beta_5 FEMALE + \varepsilon$$

Number of obs = 1000

| Model<br>Residual                          | 12180.832<br>26800.6652                                  | 4<br>995                         |                     | 45.208<br>353419                         |                                           | Prob > F<br>R-squared<br>Adj R-squared                 | = 0.0000<br>= 0.3125<br>= 0.3097                         |
|--------------------------------------------|----------------------------------------------------------|----------------------------------|---------------------|------------------------------------------|-------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|
| Total                                      | 38981.4972                                               | 999                              | 39.0                | 205177                                   |                                           | ROOT MSE                                               | = 5.1899                                                 |
| wage                                       | Coef.                                                    | Std.                             | Err.                | t                                        | P> t                                      | [95% Conf.                                             | Interval]                                                |
| educ<br>exper<br>exper2<br>female<br>_cons | 1.19825<br>.3427591<br>0051238<br>-2.546047<br>-8.422098 | .0682<br>.0499<br>.0011<br>.3283 | 702<br>1639<br>1586 | 17.55<br>6.86<br>-4.40<br>-7.75<br>-8.09 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 1.064303<br>.2447<br>0074078<br>-3.190402<br>-10.46425 | 1.332198<br>.4408181<br>0028399<br>-1.901692<br>-6.37995 |

# Se pide 1) El Modelo 1 recoge cierto tipo de discriminación salarial por sexo. Interprete el coeficiente asociado a la variable "female".

Por otra parte, se sospecha que el comportamiento de los salarios es diferente en áreas metropolitanas y rurales, por lo que se define la siguiente variable:

METRO: Binaria que toma el valor 1 si la observación corresponde al área metropolitana (808 casos) y el valor 0 si corresponde al área rural (192 casos)

Para comprobar la intuición, se estima el mismo modelo separando las observaciones del área rural de las observaciones del área metropolitana, obteniéndose las siguientes salidas:

# 1a) Área metropolitana:

# $WAGE = \beta_1^M + \beta_2^M EDUC + \beta_3^M EXPER + \beta_4^M EXPER2 + \beta_5^M FEMALE + \varepsilon^M$

| Source                                     | SS                                                        | df                                        |                      | MS                                       |                                           | Number of obs                                             | = 808<br>= 91.99                                         |
|--------------------------------------------|-----------------------------------------------------------|-------------------------------------------|----------------------|------------------------------------------|-------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|
| Model<br>Residual                          | 10851.934<br>23682.3416                                   | 4<br>803                                  |                      | 2.98349<br>1923307                       |                                           | Prob > F<br>R-squared<br>Adj R-squared                    | = 0.0000<br>= 0.3142                                     |
| Total                                      | 34534.2755                                                | 807                                       | 42.7                 | 934021                                   |                                           | Root MSE                                                  | = 0.3108<br>= 5.4307                                     |
| wage                                       | Coef.                                                     | Std.                                      | Err.                 | t                                        | P> t                                      | [95% Conf.                                                | Interval]                                                |
| educ<br>exper<br>exper2<br>female<br>_cons | 1.212376<br>.3885087<br>0061527<br>-2.569077<br>-8.699911 | .0776<br>.0583<br>.0013<br>.3828<br>1.189 | 8417<br>8694<br>8345 | 15.61<br>6.66<br>-4.49<br>-6.71<br>-7.32 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 1.059942<br>.2739886<br>0088408<br>-3.320551<br>-11.03411 | 1.36481<br>.5030289<br>0034646<br>-1.817602<br>-6.365712 |

## 1b) Área rural:

$$WAGE = \beta_1^R + \beta_2^R EDUC + \beta_3^R EXPER + \beta_4^R EXPER2 + \beta_5^R FEMALE + \varepsilon^R$$

| Source                                     | SS                                                        | df                               |                     | MS                                      |                                           | Number of obs                                           |    | 192<br>21.18                                        |
|--------------------------------------------|-----------------------------------------------------------|----------------------------------|---------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------------------|----|-----------------------------------------------------|
| Model<br>Residual                          | 1211.6449<br>2674.92219                                   | 4<br>187                         |                     | .911225<br>3043967                      |                                           | Prob > F<br>R-squared<br>Adj R-squared                  | =  | 0.0000<br>0.3118<br>0.2970                          |
| Total                                      | 3886.56709                                                | 191                              | 20.                 | 3485188                                 |                                           | Root MSE                                                | =  | 3.7821                                              |
| wage                                       | Coef.                                                     | Std.                             | Err.                | t                                       | P> t                                      | [95% Conf.                                              | In | terval]                                             |
| educ<br>exper<br>exper2<br>female<br>_cons | .9847127<br>.1501267<br>0007924<br>-2.091492<br>-5.484085 | .1295<br>.0826<br>.0018<br>.5527 | 382<br>3695<br>7063 | 7.60<br>1.82<br>-0.42<br>-3.78<br>-2.87 | 0.000<br>0.071<br>0.672<br>0.000<br>0.005 | .729204<br>0128963<br>0044805<br>-3.181832<br>-9.258684 | -i | .240221<br>3131498<br>0028956<br>.001151<br>.709486 |

Se pide 2) De acuerdo con ambas salidas, ¿afirmaría Ud. que hay diferencias entre el área rural y el área metropolitana? Justifique su respuesta objetivamente, planteando el contraste que considere adecuado (presente hipótesis nula y alternativa, estadístico de prueba, su distribución bajo H<sub>0</sub>, región crítica y concluya con un nivel de significación del 5%)

#### **PARTE B**

A la vista de los resultados anteriores, se resuelve incluir la variable "METRO" en el Modelo 1. Por otra parte, como es habitual en la estimación de ecuaciones de salario se sospecha la existencia de heteroscedasticidad, por lo que se decide transformar la variable dependiente en logaritmos, obteniéndose el Modelo 2:

$$Ln(WAGE) = \beta_1 + \beta_2 EDUC + \beta_3 EXPER + \beta_4 EXPER2 + \beta_5 FEMALE + \beta_6 METRO + \varepsilon$$

| Source<br>Model<br>Residual                         | SS<br>109.674497<br>195.61444                                      | df<br>5<br>994                                     |                             | MS<br>9348995<br>5795211                        |                                                    | Number of obs<br>F( 5, 994)<br>Prob > F<br>R-squared<br>Adj R-squared | = 111.46<br>= 0.0000<br>= 0.3592                                 |
|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-----------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|
| Total                                               | 305.288937                                                         | 999                                                | . 305                       | 5594532                                         |                                                    | Root MSE                                                              | = .44362                                                         |
| lnwage                                              | Coef.                                                              | Std.                                               | Err.                        | t                                               | P> t                                               | [95% Conf.                                                            | Interval]                                                        |
| educ<br>exper<br>exper2<br>female<br>metro<br>_cons | .1076051<br>.0365293<br>0005814<br>2510979<br>.1086895<br>.3669512 | .0058<br>.0042<br>.0000<br>.0280<br>.0357<br>.0924 | 713<br>1995<br>1892<br>7312 | 18.41<br>8.55<br>-5.84<br>-8.94<br>3.04<br>3.97 | 0.000<br>0.000<br>0.000<br>0.000<br>0.002<br>0.000 | .0961361<br>.0281475<br>0007766<br>306219<br>.0385724<br>.1854917     | .119074<br>.044911<br>0003861<br>1959769<br>.1788067<br>.5484107 |

Se pide 3) Exponga las consecuencias que generaría la presencia de heteroscedasticidad sobre las propiedades de los estimadores MCO.

# Se pide 4) Explique (justificando) con qué objetivo se toma la variable WAGE en logaritmos

Para descartar (o no) la presencia de heteroscedasticidad, se conservan los residuos del Modelo 2, y a partir de sus cuadrados ("RESIDLN2") se estima la siguiente regresión: auxiliar:

| Source            | SS                       | df        |             | MS                |       | Number of obs                                | 2 00                 |
|-------------------|--------------------------|-----------|-------------|-------------------|-------|----------------------------------------------|----------------------|
| Model<br>Residual | 4.61374244<br>89.2721991 | 17<br>982 |             | .396614<br>908553 |       | F( 17, 982) Prob > F R-squared Adi R-squared | = 0.0000<br>= 0.0491 |
| Total             | 93.8859415               | 999       | .093        | 979921            |       | Root MSE                                     | = 0.0327<br>= .30151 |
| resid1n2          | Coef.                    | Std.      | Err.        | t                 | P> t  | [95% Conf.                                   | Interval]            |
| educ              | .0096057                 | .031      | 5374        | 0.30              | 0.761 | 0522827                                      | .0714941             |
| exper             | 0118814                  | .020      | 7183        | -0.57             | 0.566 | 0525386                                      | .0287758             |
| exper2            | .0003162                 | .00       | 1124        | 0.28              | 0.778 | 0018895                                      | .002522              |
| female            | 0823372                  | .1258     | 3173        | -0.65             | 0.513 | 3292389                                      | .1645644             |
| metro             | 0078853                  | .1682     | 2365        | -0.05             | 0.963 | 3380297                                      | .322259              |
| educ2             | .0000753                 |           | 0919        | 0.08              | 0.935 | 0017281                                      | .0018788             |
| exper4            | -1.69e-07                | 4.39      | e-07        | -0.39             | 0.700 | -1.03e-06                                    | 6.92e-07             |
| educ_exper        | .0006362                 | .001      | 3341        | 0.48              | 0.634 | 0019818                                      | .0032543             |
| educ_exper2       | 0000384                  | .0000     | 0311        | -1.24             | 0.217 | 0000994                                      | .0000226             |
| educ_female       | .0132717                 | .0080     | <b>0587</b> | 1.65              | 0.100 | 0025425                                      | .0290859             |
| educ_metro        | 0024129                  | .011      | 3729        | -0.21             | 0.832 | 0247308                                      | .019905              |
| exper3            | .0000147                 | .0000     | 0392        | 0.37              | 0.708 | 0000622                                      | .0000915             |
| exper_female      | .0026011                 | .0058     |             | 0.44              | 0.659 | 0089701                                      | .0141724             |
| exper_metro       | .015076                  |           | 7358        | 2.05              | 0.041 | .0006367                                     | .0295152             |
| exper2_fem~e      | 0001346                  | .000      | 1381        | -0.98             | 0.330 | 0004056                                      | .0001363             |
| exper2_metro      | 0002838                  |           | 0168        | -1.69             | 0.091 | 0006134                                      | .0000459             |
| female_metro      | 0985429                  | .0492     |             | -2.00             | 0.046 | 1951482                                      | 0019375              |
| _cons             | 0105208                  | . 300     | 0662        | -0.03             | 0.972 | 6005347                                      | .5794931             |

Se pide 5) En base a la salida de la regresión auxiliar, realice la prueba de detección de heteroscedasticidad. Plantee con qué nombre se conoce la prueba en cuestión, la hipótesis nula y la alternativa. Plantee el estadístico utilizado en la prueba, la distribución del mismo bajo H<sub>0</sub> y la región crítica a un nivel de significación de 5%. Concluya.

## **PARTE C**

Tras analizar distintas alternativas, se resuelve estimar el modelo por MCGF, para lo cual se realiza una inspección gráfica y se opta por asumir que la varianza de la perturbación se incrementa con los años de educación del siguiente modo:

$$E(\varepsilon\varepsilon'|X) = \sigma_{\varepsilon}^2 diag(EDUC_i^2)$$



Se pide 6) Explique en qué consiste el método de MCGF. Para ello presente la fórmula matricial del estimador  $\hat{\beta}_{MCGF}$ , explicitando la forma de las matrices utilizadas. Explique por qué podría considerarse que esta

estimación implica ponderar cada observación por la inversa del desvío estándar esperado de su perturbación.

Se pide 7) ¿Qué otra posibilidad conoce para realizar la estimación del modelo sorteando el problema de la heteroscedasticidad detectado en la Parte B? Explíquela conceptualmente.

## EJERCICIO 2 (20 puntos) -

Se desea estimar el modelo:

[E] 
$$Y_t = \beta X_{1t} + \varepsilon_t$$
,  $\varepsilon_t \sim iid(0; \sigma^2) (\beta \neq 1)$ 

En forma matricial, el modelo es: 
$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} X_{11} \\ X_{12} \\ \vdots \\ X_{1n} \end{bmatrix} \beta + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Se sabe que, en realidad,  $X_{1t}$  se determina simultáneamente con  $Y_t$ , de acuerdo con la relación:  $X_{1t} = Y_t + X_{2t}$ , donde  $E(X_{2t}\varepsilon_t) = 0$ ,  $\forall t$ .

Se pide:

- a) Demostrar que  $E(X_1, \varepsilon_t) = (1 \beta)^{-1} \sigma^2$ ,  $\forall t$
- b) ¿Qué ocurre con las propiedades del estimador MCO de  $\beta$  al cumplirse la relación demostrada en a)?
- c) Escriba explícitamente la expresión de un estimador de  $\beta$  alternativo al de MCO, para este caso concreto. Justifique su elección.
- d) Si se dispone de una muestra de 60 observaciones a partir de la cual se han obtenido los siguientes productos mixtos:

Obtenga la estimación de  $\beta$  por el método propuesto en c) y por le método de los MCO.

(Ejemplo: 
$$\sum_{t=1}^{t=60} Y_t X_{1t} = 40$$
)

|          | $Y_t$ | $X_{lt}$ | $X_{2t}$ |
|----------|-------|----------|----------|
| $Y_t$    | 100   | 40       | -60      |
| $X_{lt}$ |       | 80       | 40       |
| $X_{2t}$ |       |          | 100      |