Masahiro TAKIZAWA et al., S.N. 10/553,900 Page 2 Dkt. 1141/75271

Amendments to the Specification

Please amend the abstract at page 63, in the following manner:

High speed imaging by a propeller MRI method is enabled as a whole thanks to high speed computation by preventing an aliasing artifact even if the echoes acquired by one blade are decreased and by reducing the imaging time and the computational complexity. In a magnetic resonance imaging apparatus, an RF pulse is applied to a subject placed in a static magnetic field, a plurality of gradient magnetic fields are applied, and induced nuclear magnetic resonance signal (echo signal) is received by means of a multiple RF receiving coil unit composed of two or more RF receiving coils. A parallel MRI method is applied to echo signals acquired by reducing the echoes per blade of a propeller MRI method so as to remove the artifact to produce a reconstructed image. The reconstructed image is subjected to inverse Fourier transform to return it to the echo signals in a measurement space corresponding to the blade. The echo signals are girded in an arbitrarily predetermined coordinate system for image and combined. Such a processing is conducted for the echo signals of all the blades. A final image is reconstructed using the echo signals after the image creation in the coordinate system for image.