IISER Kolkata Mid-Semester Examination First Year Semester I; 2015 Time One Hour; Full Marks 20 Answer all questions

- 1. Calculate the area bounded by the pair of curves $y = 4x x^2$, and y = x.
- 2. A curve is given by $x^2 4x + y^2 = 0$. Find the equation of the tangent and normal to the curve at (0,0).
 - 3. Find $\frac{du}{dt}$ where $u = e^x \sin y + e^y \sin x$; $\left[x = \frac{1}{2t}, y = 2t\right]$.
- 4. Evaluate $\int \mathbf{A} \cdot \frac{d\mathbf{A}}{dt} dt$ between points P and Q where $\mathbf{A}(P) = 2\mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $\mathbf{A}(Q) = 4\mathbf{i} 2\mathbf{j} + 3\mathbf{k}$.
- 5. Check whether the vector $\mathbf{F} = r\mathbf{r}$ is conservative or not. If it is, find a scalar function ϕ so that $\mathbf{F} = -\nabla \phi$.

$$f(n) = \frac{f^{0}(n)}{0!} (n-\alpha)^{0} + \frac{1}{(1)!} \frac{f^{1}(n)}{1!} (n-\alpha)^{1} + \frac{1}{(1)!} \frac{f^{2}(n)}{2!} (n-\alpha)^{2}$$
IISER Kolkata

IISER Kolkata **End-Semester Examination** First Year Semester I; 2015 MA1101: Mathematics-I

Time Three Hours; Full Marks 50

Answer all questions (Q1-5: 4 marks; Q6-10: 6 marks)

1. Evaluate $\int_{(0,0)}^{(2,1)} \{ (10x^4 - 2xy^3) dx - 3x^2y^2 dy \}$ along the path $x^4 - 6xy^3 = 4y^2$. 2. Evaluate $\int_1^2 \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) dt$ where $\mathbf{A} = t\mathbf{i} - 3\mathbf{j} + 2t\mathbf{k}$, $\mathbf{B} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$, $\mathbf{C} = 3\mathbf{i} + t\mathbf{j} - \mathbf{k}$

3. Evaluate $\iint_S \mathbf{r} d\mathbf{S}$, either directly or by using any theorem that you know, where the surface S encloses a sphere of radius unity and r is the position vector.

A. Show that $\nabla r^3 = 3r\mathbf{r}$.

5. Show that $\sqrt{r} = 5rr$.

5. The area of an ellipse is given as $\frac{1}{2} \int_C (xy - ydx)$. Find the area of the ellipse $x = a \cos \theta, y = b \sin \theta$.

By Muthing by B

6. A system of linear equations is given by

3x + y + 2z = 3,

2x - 3y - z = -2, and

x + y + z = 1.

Write down the coefficient matrix. Find its inverse and hence find a solution for the system of equations.

7. A matrix A is given by

 $\mathbf{A} = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 4 \end{pmatrix}$. Find the eigenvalues of the matrix. Find out the eigen vectors. Check that one

can form an orthonormal basis with these vectors. Show by direct calculation that you can construct a matrix X out of these eigenvectors which diagonalizes the matrix A by a similarity transformation.

8 (a). Show that $(AB)^{-1} = A^{-1}B^{-1}$ where A and B are square matrices.

(b). A and B are Hermitian square matrices. If x is an eigenvector of A, shoow that it is also an

eigenvector of B.

9(a). With the help of a comparison test, show that the harmonic series

 $\frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$

is a divergent series.

(b). With the help of a ratio test. check that

 $\frac{3}{4} + 2(\frac{3}{4})^2 + 3(\frac{3}{4})^3 + \dots$

is a convergent series.

10. Use Taylor's formula to verify that (a). $\ln(a+x) = \ln a + \frac{x}{a} - \frac{x^2}{2a^2} + \frac{x^3}{3a^3} + ...$

(b). $\tan(\frac{\pi}{4} + x) = 1 + 2x + 2x^2$ for small x. Hence find the value of $\tan 46^\circ$.