

Week15 PA3-hint EE4033 Algorithms, Fall 2023

Presenter: Yuan-Hsiang Lu

b07901030@ntu.edu.tw

Outline

EE4033 Algorithms

- Problem Formulation
- I/O Format
- Important Assumptions
- Command Lines: PA3 / Checker / Submission Checker
- Evaluation
- Submission
- Tips
- Q & A

Problem Formulation: Cycle Breaking

Given

- A graph G = (V, E) which may contain cycles
- V: vertice
- E: edges with weights

Objective

- Remove some edges to make the graph acyclic and connected with minimum total cost (weight)
- Cycle Breaking Problem / Cycle Removal Problem

Problem Formulation: Three Types of Graph Instances

- Unweighted undirected graph find optimal solution
 - All edges weights equal to 1
- Weighted undirected graph find optimal solution
 - General case
 - Including positive/negative/zero edge weights
- Weighted directed graph no need to find optimal solution
 - Edges are directional
 - Minimum feedback arc set problem
 - NP-hard problem

Input Format

1st line

- 'u': undirected graph

- 'd': directed graph

• 2nd line

- an integer *n* of the total number of vertices
- the indice of vertices are from 0 to n 1

• 3rd line

- an integer m of the total number of edges
- The following *m* lines
 - three integers i, j, w
 - an edge from vertex i to vertex j with weight w
 - w: -100 \sim 100
- A single 0 at the end of input

Sample Input 1	Sample Input 2
u	d
8	8
9	9
0 1 3	0 1 3
0 2 5	0 2 5
1 3 10	1 4 8
1 4 8	2 5 9
2 5 9	3 1 10
3 4 5	3 5 11
3 5 11	4 3 5
3 6 12	4 7 6
4 7 6	6 3 12
0	0

Output Format

- 1st line
 - The total weight of removed edges to make the input graph acyclic
- The following lines
 - A list of these removed edges and their weights
 - The order of *i* and *j* can be different from the input for undirected graph
 - The output edges can be in arbitrary order
- If the input graph has no cycles,
 you should output a line with single "0" (zero)

Sample Output 1	Sample Output 2
8	5
0 1 3	4 3 5
3 4 5	

Important Assumptions

- The input graph has only one connected component
- The output graph (after removing all reported edges) should remain connected

- For undirected graph instances
 - $n \le 10,000$
 - m \leq 20,000,000
- For directed graph instances
 - $n \le 5,000$
 - m ≤10,000

Command Line - PA3

- The executable binary should be named as cb
- Command format:

```
./cb [input_filename] [output_filename]
```

• Example:

```
./cb public_case_1.in public_case_1.out
```

Command Line - Checker

- To verify your results
 - A binary file that can be executed on Linux systems
 - It checks
 - if the output edges are from the input set
 - if the resulted graph is acyclic and connected
- Usage:

```
./pa3_checker [input_filename] [output_filename]
```

Example:

```
./pa3_checker public_case_1.in public_case_1.out
```

Command Line - Submission Checker

- Create a directory named <studentID>_pa3 (e.g. b07901030_pa3/)
 - src/<all your source code>
 - bin/cb
 - doc/report.pdf
 - makefile
 - README
- Compress your directory into a tgz file named <studentID>_pa3.tgz
 tar --exclude='*puts*' -zcvf <studentID>_pa3.tgz <studentID>_pa3/

Usage:

bash checkSubmitPA3.sh <studentID>_pa3.tgz

Evaluation

- Runtime limit for each case: 60 seconds
- 2 cases for unweighted undirected graph (12%)
 - 6 pts for correctness per case
- 3 cases for weighted undirected graph (18%)
 - 6 pts for correctness per case
- 4 cases for weighted directed graph (40%)
 - 2 pts for correctness and 8 pts for performance per case
- README (10%)
- Report (10%)
- Submission Format (10%)

Submission

Submit your to <studentID>_pa3.tgz NTU COOL before
 1pm, December 27, 2023 (Wed.)

Penalty for late submission: 20% per day

All submissions will be subject to duplication checking
 Do Not Plagiarize

- Key words
 - cycle breaking problem, cycle removal problem
 - breadth-first search, depth-first search
 - minimum spanning tree
- How to deal with difficult optimization problems?
 - Develop efficient heuristics
 - Greedy/local search methods
- For directed graph, perhaps...
 - Treat it as undirected graph first
 - Then optimize the solution

Q&A

 Please email TA Yuan-Hsiang Lu at b07901030@ntu.edu.tw for any questions

