over the basis (u_1, \ldots, u_n) . Since φ is represented by the column vector λ^{\top} over the dual basis (v_1^*, \ldots, v_m^*) , we see that $f^{\top}(\varphi)$ is represented by the column vector

$$(\lambda A)^{\top} = A^{\top} \lambda^{\top}$$

over the dual basis (u_1^*, \ldots, u_n^*) . The matrix defining f^{\top} over the dual bases (v_1^*, \ldots, v_m^*) and (u_1^*, \ldots, u_n^*) is indeed A^{\top} .

Conceptually, we will show later (see Section 30.1) that the linear map $f^{\top} \colon F^* \to E^*$ is defined by

$$f^{\top}(\varphi) = \varphi \circ f,$$

for all $\varphi \in F^*$ (remember that $\varphi \colon F \to K$, so composing $f \colon E \to F$ and $\varphi \colon F \to K$ yields a linear form $\varphi \circ f \colon E \to K$).

4.3 Change of Basis Matrix

It is important to observe that the isomorphism $M: \operatorname{Hom}(E, F) \to \operatorname{M}_{n,p}$ given by Proposition 4.2 depends on the choice of the bases (u_1, \ldots, u_p) and (v_1, \ldots, v_n) , and similarly for the isomorphism $M: \operatorname{Hom}(E, E) \to \operatorname{M}_n$, which depends on the choice of the basis (u_1, \ldots, u_n) . Thus, it would be useful to know how a change of basis affects the representation of a linear map $f: E \to F$ as a matrix. The following simple proposition is needed.

Proposition 4.3. Let E be a vector space, and let (u_1, \ldots, u_n) be a basis of E. For every family (v_1, \ldots, v_n) , let $P = (a_{ij})$ be the matrix defined such that $v_j = \sum_{i=1}^n a_{ij}u_i$. The matrix P is invertible iff (v_1, \ldots, v_n) is a basis of E.

Proof. Note that we have P = M(f), the matrix (with respect to the basis (u_1, \ldots, u_n)) associated with the unique linear map $f : E \to E$ such that $f(u_i) = v_i$. By Proposition 3.18, f is bijective iff (v_1, \ldots, v_n) is a basis of E. Furthermore, it is obvious that the identity matrix I_n is the matrix associated with the identity id: $E \to E$ w.r.t. any basis. If f is an isomorphism, then $f \circ f^{-1} = f^{-1} \circ f = \text{id}$, and by Proposition 4.2, we get $M(f)M(f^{-1}) = M(f^{-1})M(f) = I_n$, showing that P is invertible and that $M(f^{-1}) = P^{-1}$.

An important corollary of Proposition 4.3 yields the following criterion for a square matrix to be invertible. This criterion was already proven in Proposition 3.14 but Proposition 4.3 yields a shorter proof.

Proposition 4.4. A square matrix $A \in M_n(K)$ is invertible iff its columns (A^1, \ldots, A^n) are linearly independent.

Proof. First assume that A is invertible. If $\lambda_1 A^1 + \cdots + \lambda_n A^n = 0$ for some $\lambda_1, \ldots, \lambda_n \in K$, then

$$A\lambda = \lambda_1 A^1 + \dots + \lambda_n A^n = 0,$$