e.g.
$$\alpha \in \Lambda^1 V^*$$
 and $\beta \in \Lambda^2 V^*$, then

Exe Suppose
$$\{e', \dots, e''\}$$
 is a basis of V^* , then
$$\begin{cases}
e^{i_1} \wedge \dots \wedge e^{i_k} \mid 1 \leq i_1 < \dots < i_k \leq n
\end{cases}$$

form a basis of
$$V^*, \otimes K$$
. Therefore dim $V^{*,\otimes K} = \binom{n}{K} = \frac{n!}{k!(n-K)!}$.

$$\Rightarrow \text{ 2} \quad V^* \wedge \cdots \wedge V^* \text{ has dim} = 1 \ \left(= \text{span} \left\{ e^! \wedge \cdots \wedge e^n \right\} \right)$$

$$= n \quad \text{vectors}$$
where $\left(e^! \wedge \cdots \wedge e^n \right) \left(v_1, \cdots, v_n \right) = \det \left(v_1, \cdots, v_n \right)$

Ruk For $\sigma \in S_n$ and $\sigma \neq 1$, then $e^{\sigma(i)} \wedge \dots \wedge e^{\sigma(u)}$ is not a leasis of $\Lambda^n V^*$ (by def). However, Since dim $\Lambda^n V^* = 1$, $\exists \lambda \in \mathbb{R}$ s.t. $e^{\sigma(i)} \wedge \dots \wedge e^{\sigma(u)} = \lambda \cdot e^{1} \wedge \dots \wedge e^{n}$

Apply this relation to (e, ..., en) (= e, 00... cen), we know 1 = 59 " (0) = 21

* PAKV admits the (Hodge) duality, via operation *:

** AkV* -> 1n-KV* for any K=10,...,n.

Explicitly on the level of basis element.

** (e'\lambda \cdots e^2ic) := \pm (e^2ich \lambda \cdots element) where \lambda in \cdots \

Rule: consider

If $sgn(\sigma) = +1$, then choose +1 in obf of * above If $sgn(\sigma) = -1$, then choose -1 in def of * arbon.

eg. *(1) = e'n.- 1e", *(e'n...ne")=1

eg, $\star(e^{l}\wedge \cdot \cdot \wedge e^{k}) = e^{k+l}\wedge \cdot \cdot \wedge e^{n} \implies \star(\star(e^{l}\wedge \cdot \wedge e^{k})) = \star(e^{k}\wedge \cdot \cdot \wedge e^{k}) = \pm e^{l}\wedge \cdot \cdot \wedge e^{k}$ Where sign \pm is precisely given by $(-1)^{k(n-k)}$.

Rmk Later we will see operator "x" enables us to carry out analysis on the space of (0,K)-tensors over a manifold, which eventually leads to a powerful homological theory - Hodge theory.

1) Exterior derivative

- Recall that over a manifold M, the local nuclei $SU_{a} \times (\mathbb{R}^{n})^{*}$, \mathbb{R}^{n} of \mathbb{R}^{n} glue together to get $(T^{*}M)^{\otimes K}$, when elements inside one called (0,K)-tensors. In the same way.

| Use | mode | Jhe | $\Lambda^{k}T^{*}M$ (a bundle over M | $\Lambda^{k}(IR^{n})^{*}$) | $\Lambda^{k}(IR^{n})^{*}$ | $\Lambda^{k}(I$

Denote by $\Omega^{k}(M) := \begin{cases} Sections : M \rightarrow \Lambda^{k}T^{*}M \end{cases}$ a k-form on M.

- $\Sigma(M)$: = $\oplus \Sigma^{k}(M)$ is an associative supercommutative algebra over the Co(M, 12 mC) wedge product. $\alpha, \beta \rightarrow \alpha \wedge \beta$ Hudge star operator. Rmk By def, 52°(M) = C°(M; RmC). There is a famous (RMC)-linear operator on D2(M), defined as follows. de 25k(W) ~> gae 25kH(W) by a function $d\alpha(X_1, -, X_{k+1}) := \sum_{1 \leq i \leq k+1} (-1)^{i-1} X_i (\alpha(X_1, ..., X_i, ..., X_{k+1}))$ computation vector fields in $\Gamma(TM)$

e.g. $\alpha = f \in \mathcal{N}^{\circ}(M)$, then $df(X) = D_X f$ (therefore, the correct way to explain the "differentiation of " in calculus is that it is a 1-form on M.)

e.g. $\alpha \in \Omega^{1}(M)$, then $d\alpha(X_{1}X_{2}) = X_{1}\alpha(X_{2}) - X_{2}\alpha(X_{1}) - \alpha([X_{1},X_{2}])$

eg. $\alpha \in \Omega^{2}(M)$, then $d\alpha(X_{1}, X_{2}, X_{3}) = X_{1}\alpha(X_{2}, X_{3}) - X_{2}\alpha(X_{1}, X_{3}) + X_{3}\alpha(X_{1}, X_{2})$ $-\alpha([X_{1}, X_{2}], X_{3}) + \alpha([X_{1}, X_{3}], X_{1}) - \alpha([X_{1}, X_{3}], X_{1}).$

How were this formula of do derived? asking for the arigin (optimal to explain the martenials below)

1. Since $\alpha = \sum_{k=1}^{\infty} \alpha_{k} - 1$ Since $\alpha = \sum_{k=1}^{\infty} \alpha_{k} - 1$ suffices $\alpha = 1$ forms

to figure out how I and I are related.

· Working locally, d is defined first in the Euclidean space IRh

Suppose coordinates of IR" are X1, ..., Xn, then

basis of J2'(12")

() (-forms are C(R)-linear combinations of dx, ..., dxn.

Define for $f \in C^{\infty}(\mathbb{R}^4)$, $df := \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$

3 For $\alpha \in \mathcal{S}'(\mathbb{R}^n)$ as $\alpha = \sum_{i=1}^n g_i dx_i$, define

 $d\alpha := \sum_{i=1}^{n} dg_{i} \wedge dx_{i} = \sum_{j=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial g_{i}}{\partial x_{j}} dx_{j} \right) \wedge dx_{i}$ $= \sum_{i \in j \in n} \left(\frac{\partial j_i}{\partial x_i} - \frac{\partial j_i}{\partial x_j} \right) dx_i \wedge dx_j$

(a) Define $d(\alpha \wedge \beta) := d\alpha \wedge \beta - \alpha \wedge d\beta$. (\Rightarrow $\alpha \in \mathcal{D}^{k}(\mathbb{R}^{n}), \beta \in \mathcal{D}^{k}(\mathbb{R}^{n}), d(\alpha n \beta) = d\alpha n \beta + (-1)^{k} \alpha n d \beta$).

(5) Verify that d is defined globally ("compatible" with transition map in the overlap Uan Up).

therefore, one can view of as the differentiation with respect to multi-index.

Ruk $d\left(df\right) = d\left(\frac{5}{i=1}\frac{3t}{3x_i}dx_i\right) = \frac{5}{5}\left(\frac{3t}{3x_i3x_j} - \frac{3t}{3x_i3x_i}\right)dx_i\lambda dx_j = 0.$ In a similar way, d(da) = 0 for $da \in \Sigma'(\mathbb{R}^n)$. Then, for a, $\beta \in \Sigma'(\mathbb{R}^n)$, $d(d(\alpha n\beta)) = d(d\alpha n\beta - \alpha nd\beta) = d\alpha nd\beta - d\alpha nd\beta = 0$ added: Fix a vector field X mm,

define $1x: \Sigma^{k}(M) \rightarrow \Sigma^{k-1}(M)$ by $(1x\alpha)(X_1, \dots, X_{k-1})$ $:= \alpha(X, X_1, \dots, X_{k-1})$ $\underbrace{\operatorname{Rmk}} \quad \Sigma^{k}(M) \xrightarrow{\chi_{x}} \Sigma^{k-1}(M) \xrightarrow{q} \Sigma^{k}(M)$ alway the 1st position > are they same? $\mathcal{D}_{\mathsf{F}}(\mathsf{W}) \xrightarrow{\mathsf{q}} \mathcal{D}_{\mathsf{FH}}(\mathsf{W}) \xrightarrow{\mathsf{J}_{\mathsf{X}}} \mathcal{D}_{\mathsf{F}}(\mathsf{W})$ eg. $M = \mathbb{R}^2$ $X(x_1, x_2) = (0, x_2)$ $\frac{1}{1} \frac{1}{1} \frac{1}$ $dx_1 \wedge dx_2 \xrightarrow{d} 0 \xrightarrow{7_x} 0$ Later we will see that d. 7x + 7x od has a geometric meaning.