Munkres Ch. 2: Topological Spaces and Continuous Functions

Scott Donaldson

Jul. 2024

§12. Topological Spaces

§13. Basis for a Topology

1. (7/30/24)

Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

Proof. From the definition of an open set in a topological space, we know that an arbitrary union of open sets is again an open set. We will show that A is a union of open sets in X, and is therefore open.

For each $x \in A$, there exists an open set U_x containing x that is a subset of A. We claim that $A = \bigcup_{x \in A} U_x$.

Let $a \in A$. It is given that there exists a $U_a \subset A$ with $a \in U_x$. Therefore $a \in \bigcap_{x \in A} U_x$.

Conversely, let $a \in \bigcap_{x \in A} U_x$. Then a lies in some U_x such that $U_x \subset A$, and so $a \in A$. Thus $A = \bigcup_{x \in A} U_x$.

2. (7/30/24)

Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in Example 1 of §12. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is the finer.

Solution. Let the nine topologies on X be:

```
i)
                                        \{\varnothing, X\}
                              \{\varnothing, \{a\}, \{a,b\}, X\}
ii)
iii)
                        \{\varnothing, \{b\}, \{a,b\}, \{b,c\}, X\}
iv)
                                    \{\varnothing, \{b\}, X\}
                              \{\emptyset, \{a\}, \{b, c\}, X\}
v)
                     \{\varnothing, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}
vi)
vii)
                                  \{\varnothing, \{a,b\}, X\}
vii)
                          \{\varnothing, \{a\}, \{b\}, \{a, b\}, X\}
           \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, X\}
ix)
```

Then:

- i) is coarser than every other topology; ix) is finer than every other topology;
- ii) is finer than vii), is not comparable to iii), iv), v), and vi), and is coarser than viii);
- iii) is finer than iv) and vii), and is not comparable to v), vi), and viii);
- iv) is not comparable to v) and vii), and is coarser than vi) and viii);
- v) is not comparable to vi), vii), or vii);
- vi) is finer than vii) and is not comparable to viii); and
- vii) is coarser than viii).

3. (7/31/24)

Show that the collection \mathcal{T}_C given in Example 4 of §12 is a topology on the set X. Is the collection

$$\mathcal{T}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all of } X\}$$

a topology on X?

Proof. Let $\mathcal{T}_C = \{U \mid X - U \text{ is countable or is all of } X\}$. Now \mathcal{T}_C certainly contains \emptyset and X, since $X - \emptyset = X$ and $X - X = \emptyset$, a countable set.

We must next show that arbitrary unions and finite intersections of elements of \mathcal{T}_C are again elements of \mathcal{T}_C .

Let $\{U_{\alpha}\}$ be an indexed family of nonempty elements of \mathcal{T}_{C} . To show that $\bigcup U_{\alpha}$ is in \mathcal{T}_{C} , we compute:

$$X - \bigcup U_{\alpha} = \bigcap (X - U_{\alpha}),$$

and since each $X-U_{\alpha}$ is countable, their intersection is also countable. Therefore an arbitrary union of elements of \mathcal{T}_{C} lies in \mathcal{T}_{C} .

Finally, let $U_1, U_2, ..., U_n$ be nonempty elements of \mathcal{T}_C and consider $\bigcup_{i=1}^n U_i$. We have:

$$X - \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X - U_i),$$

which is a finite union of countable sets, and is therefore countable. Thus $\bigcup_{i=1}^{n} U_i$ is in \mathcal{T}_C , and so \mathcal{T}_C is a topology on X.

Next we consider $\mathcal{T}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all of } X\}$, and claim that it is not a topology on the set X. As a counterexample, suppose that

$$X = \mathbb{R},$$

 $U_a = \{x \in X \mid x < 0\}, \text{ and }$
 $U_b = \{x \in X \mid x > 0\}.$

Then $U_a \cup U_b = \{x \in X \mid x < 0 \text{ or } x > 0\}$, that is, the nonzero real numbers, whose complement is $\{0\}$, a finite set, and therefore the union of U_a and U_b is not a member of \mathcal{T}_{∞} . It is therefore not a topology on X.