Dado que

$$\iint_{S} \frac{\mathbf{r} \cdot \mathbf{n}}{r^{3}} dS = \iint_{\partial M} \frac{\mathbf{r} \cdot \mathbf{n}}{r^{3}} dS + \iint_{\partial N} \frac{\mathbf{r} \cdot \mathbf{n}}{r^{3}} dS,$$

donde \mathbf{n} es la normal exterior a S, tenemos

$$\iint_{\partial M} \frac{\mathbf{r} \cdot \mathbf{n}}{r^3} dS = -\iint_{\partial N} \frac{\mathbf{r} \cdot \mathbf{n}}{r^3} dS.$$

Sin embargo, sobre $\partial N,$ $\mathbf{n}=-\mathbf{r}/r$ y $r=\varepsilon,$ puesto que ∂N es una esfera de radio $\varepsilon,$ de modo que

$$-\iint_{\partial N} \frac{\mathbf{r} \cdot \mathbf{n}}{r^3} dS = \iint_{\partial N} \frac{\varepsilon^2}{\varepsilon^4} dS = \frac{1}{\varepsilon^2} \iint_{\partial N} dS.$$

Pero $\iint_{\partial N} dS = 4\pi\varepsilon^2$, el área de la superficie de la esfera de radio ε . Esto prueba el resultado.

Ejemplo 6

La ley de Gauss tiene la siguiente interpretación física. El potencial debido a una carga puntual Q en $(0,\,0,\,0)$ está dado por

$$\phi(x, y, z) = \frac{Q}{4\pi r} = \frac{Q}{4\pi \sqrt{x^2 + y^2 + z^2}},$$

y el campo eléctrico correspondiente es

$$\mathbf{E} = -\nabla \phi = \frac{Q}{4\pi} \left(\frac{\mathbf{r}}{r^3} \right).$$

Por tanto, el Teorema 10 establece que el flujo eléctrico total $\iint_{\partial M} \mathbf{E} \cdot d\mathbf{S}$ (es decir, el flujo de \mathbf{E} hacia el exterior de una superficie cerrada ∂M) es igual a Q si la carga está dentro de M y cero en cualquier otro caso. Obsérvese que incluso si $(0,0,0) \notin M$, \mathbf{E} será distinto de cero sobre M.

Para una distribución de carga continua descrita por una densidad de carga ρ en una región W, el campo ${\bf E}$ está relacionado con la densidad ρ por

div
$$\mathbf{E} = \nabla \cdot \mathbf{E} = \rho$$
.

Entonces, por el teorema de Gauss,

$$\iint_{\partial W} \mathbf{E} \cdot d\mathbf{S} = \iiint_{W} \rho \, dV = Q;$$

es decir, el flujo que sale de la superficie es igual a la carga total en el interior. $\ \, \blacktriangle$