Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 «Программная инженерия» Системное и прикладное программное обеспечение

Лабораторная работа №6 **Работа с системой компьютерной вёрстки ТеX** Вариант: 81

> Выполнил: Студент 1 курса Садовой Григорий Владимирович Группа: Р3107 Преподаватель: Белозубов Александр Владимирович

Рис.1.

Рис.3.

(Напомним, что $e = \lim_{n\to\infty} (1+\frac{1}{n})^2 = 2,718..., -$ см. учебник «Алгебра и начала анализа 10» пп. 106, 113.

Т. Мартыненко, У. Ушаков

Ф493. Какое влияние оказывает Луна на траекторию движения Земли вокруг Солнца?

Ф494. В схеме, изображенной на рисунке 1, $R_2 = 90$ Ом, $R_3 = 300$ Ом, $R_4 = 60$ Ом, $L_2 = 900$ Г. Каковы значения R_1 и L_1 , если через гальванометр G ток не идёт независимо от того, подключен к клемам a и b источник постоянного или переменного тока?

XXIV Олимпиада ПНР (1975 г.)

Ф495. Три несмешивающиеся жидкости с плотностью ρ_1 , ρ_2 и ρ_3 заполняют замкнутую тонкуюцилиндрическую трубку, образующую кольцо, плоскость которого вертикальна (рис. 2.). Жидкость с плотность ρ_1 заполняет дугу кольца с углом α_1 , а жидкость с плотностью ρ_2 — дугу с углом α_2 . Какой угол α образует с вертикалью радиус кольца, проведенный к границе этих жидкостей? Поверхностным эффектами пренебречь.

 $\Phi 496^*$. В цилиндрический конденсатор в точке А впускается слегка расходящийся пучок положительных ионов с малым углом раствора α (рис. 3). Все ионы в пучке имеют одинаковую энергию. Те ионы, у которых вектор скорости в точке A направлен перпендикулярно AO, движутся по окружности радиуса $|AO|=r_0$, концентрической с обкладками конденсатора. Доказать, что пучок ионов будет фокусироваться в точке B такой, что $\widehat{AOB}=\pi\sqrt{2}$. Определить максимальную ширину пучка.

 $\Phi 497$. Диск радиуса r, вращающийся с угловой скоростью ω , бросают со скоростью \overrightarrow{v} под углом α к горизонту. Плоскость диска во время его движения остается вертикальной. Найти радиус кривизны траектории самой верхней точки диска в тот момент, когда диск достигнет максимальной высоты своего подъема.

Решение задач м436-м440; Ф448, Ф450-Ф452

М436. Дано 20 чисел $a_1, a_2, ..., a_10, b_1, b_2..., b_10$. Докажите, что множество из 100 чисел (необязательно различных) $a_1 + b_1, a_1 + b_2, ..., a_10 + b_10$ можно разбить на 10 подмножеств, по 10 чисел в каждом так, чтобы сумма чисел в каждом подмножестве была одной и той же.

Запишем наши 100 чисел в квадратичную таблицу так, как изображено на рисунке 1; на пересечении i-й строки и j-го столбца поставим число a_i+b_j . Образуем теперь 10 подмножеств так, как показано на рисунке 2 (на рисунке клетки-числа, относящиеся к одному и тому же подмножеству, обозначены одной и той же цифрой). Легко видеть, что в каждом столбце(в каждой строке) есть представители всех подмножеств, так что индекс i и j чисел a_i+b_j , входящих в каждое из подмножест, принимают все значения от 1 до 10 (ровно по одному разу). Поэтому сумма чисел в каждом подмножестве одна и та же: $a_1+a_2+..+a_10+b_1+b_2+b_10$.

С. Берколайко

	b_1	b_2	b_3				b_{10}	
a_1	$a_1 + b_1$	$a_2 + b_2$	$a_1 + b_3$	•	•	•	$a_1 + b_{10}$	
a_2	$a_2 + b_1$	$a_2 + b_2$	$a_2 + b_3$	•	•	•	$a_2 + b_{10}$	
a_3	$a_1 + b_1$	$a_3 + b_2$	$a_3 + b_3$	•	•	•	$a_3 + b_{10}$	
•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	
a_{10}	$a_1 + b_1$	$a_{10} + b_2$	$a_{10} + b_3$	•	•	•	$a_{10} + b_{10}$	

1	2	3	4	5	6	7	8	9	10
10	1	2	3	4	5	6	7	8	9
9	10	1	2	3	4	5	6	7	8
8	9	10	1	2	3	4	5	6	7
7	8	9	10	1	2	3	4	5	6
6	7	8	9	10	1	2	3	4	5
5	6	7	8	9	10	1	2	3	4
4	5	6	7	8	9	10	1	2	3
3	4	5	6	7	8	9	10	1	2
2	3	4	5	6	7	8	9	10	1

Рис.1.

Рис.2.