Università della Svizzera italiana

Institute of Computational Science ICS

Particle Simulations with OpenACC: Speedup and Scaling

Samuel A. Cruz Alegria, Alessandra M. de Felice, Hrishikesh R. Gupta

OpenACC

For a graph $\mathcal{G}(V, E)$ with n vertices and m edges:

- Incidence matrix: $A \in \mathbb{R}^{m \times n}$,
- Graph Laplacian matrix: $L \in \mathbb{R}^{n \times n}$,
- Vertex potentials: $x_i = \begin{cases} 1, & i \in V_k, \\ 0, & i \in \overline{V_k}. \end{cases}$

$$m{A} = egin{bmatrix} 1 & -1 & 0 & 0 \ 0 & 1 & -1 & 0 \ 0 & 0 & 1 & -1 \ 0 & 1 & 0 & 1 \ -1 & 0 & 0 & 1 \end{bmatrix}, m{L} = m{A}^T m{A} = egin{bmatrix} 2 & -1 & 0 & -1 \ -1 & 3 & -1 & -1 \ 0 & -1 & 2 & -1 \ -1 & -1 & -1 & 3 \end{bmatrix}$$

Calculate an edge separator using the Fiedler eigenvector of $\mathbf{L} \in \mathbf{R}^{n \times n}$.

2-Laplacian partitioning

$$\min_{V_k \subset V} \frac{\|\mathbf{A}\hat{\mathbf{x}}\|_2^2}{\|\hat{\mathbf{x}}\|_2^2} \approx \min_{\mathbf{x} \in \mathbb{R}^n} \frac{\|\mathbf{A}\mathbf{x}\|_2^2}{\|\mathbf{x}\|_2^2} = \min_{\mathbf{x} \in \mathbb{R}^n} \frac{\mathbf{x}^\top \mathbf{L}\mathbf{x}}{\mathbf{x}^\top \mathbf{x}} = \lambda_i^{(2)}$$
subject to $\mathbf{1}^\top \mathbf{x} = 0$

Feasible Projection

$$\widehat{\mathbf{x}} = \mathbf{x} - \frac{\mathbf{1}^{\top} \mathbf{x}}{n}$$

p-Laplacian partitioning

$$\min_{V_k \subset V} \frac{\|\mathbf{A}\hat{\mathbf{x}}\|_p^p}{\|\hat{\mathbf{x}}\|_p^p} \approx \min_{\mathbf{x} \in \mathbb{R}^n} \frac{\|\mathbf{A}\mathbf{x}\|_p^p}{\|\mathbf{x}\|_p^p} = \min_{\mathbf{x} \in \mathbf{R}^n} \frac{(\mathbf{A}\mathbf{x})^\top \phi_p(\mathbf{A}\mathbf{x})}{\mathbf{x}^\top \phi_p(\mathbf{x})} = \lambda_i^{(p)}$$
subject to $\mathbf{1}^\top \phi_p(\mathbf{x}) = 0$

$$\phi_p(x_i) = |x_i|^{p-2} x_i, \ i = 1, \dots, n$$

 $\phi_p^{-1}(x_i) = |x_i|^{\frac{1}{p-1}} \operatorname{sign}(x_i)$

$$\widehat{\mathbf{x}}_p = \phi_p^{-1} \left(\phi_p(\mathbf{x}) - \frac{\mathbf{1}^\top \phi_p(\mathbf{x})}{n} \right)$$

Particle Simulations

Algorithm 1 p-Laplacian Bisection

 \triangleright METIS or KaHIP bisection Input: \mathbf{x}_0 Input: x_0 Output: \mathbf{x}_n^{\min} $\triangleright p$ -Laplacian bisection

- 1: function PLAPLACIAN($\boldsymbol{A}, \mathbf{x}_0, b^{\max}, \beta, \max_i t$)
- $r_c^{\min} \leftarrow \text{RCCut}(\mathbf{x}_0)$
- p=2, $\mathbf{x}=\mathbf{x}_0$
- for $k=0:\max_i t do$
- $p_k = 1 + e^{-\beta k/\text{max_iters}}$ 5:
- $\mathbf{x}_k^{\min} \leftarrow \text{pLaplacianDescent}(\boldsymbol{A}, p_k)$
- 7: end for
- return \mathbf{x}_n^{\min}
- 9: end function

return \mathbf{x}_n^{\min}

15: end function

Algorithm 2 p-Laplacian Descent \triangleright approximation of the p-eigenvector \triangleright p-Laplacian bisection Output: \mathbf{x}_p^{\min} 1: function PLAPLACIANDESCENT($\mathbf{A}, \mathbf{x}_0, p$) while not converged do $r_c = RCCut(\mathbf{x})$

 $b_n = \operatorname{ImBal}(\mathbf{x})$ if $r_c < r_c^{\min}$ and $b_r < b_r^{\max}$ then ▶ and minimum cut $\mathbf{g} \leftarrow \nabla f(\mathbf{x})$ $\alpha \leftarrow \operatorname{argmin} f\left(\phi_p^{-1}\left(\mathbf{x} - \alpha\mathbf{g}\right)\right)$ 11: 12: 13:

• Ratio Cheeger cut: $\operatorname{RCCut}(V_k, \overline{V}_k) = \frac{\operatorname{cut}(V_k, \overline{V}_k)}{\min\{|V_k|, |\overline{V}_k|\}}$, with $\operatorname{cut}(V_k, \overline{V}_k) = \|\mathbf{A}\mathbf{x}\|_p^p$.

14:

- Node imbalance: $b_r^2 = \frac{\left| |V_2| |\overline{V}_2| \right|}{|V|}$.
- Reduced computational complexity: $O(n^3) \to O(m)$.

Particle Simulations integrated with OpenACC

34(2.9)

- Consistent and valid improvement over a METIS or KaHIP partition.
- The level of improvement achieved depends on the structure of the graph in question and the optimality or near optimality of the original cut

From a total of 186 graphs initialized with a METIS cut, improvements over 10% were observed for 47.3% of them, while for the 102 graphs initialized with a KaHIP partition improvements over 10% were observed for 15.7% of them.

25(21.9)

Parallel particle simulations

6495rte

6,495 9,019

Motivation - ICS and Master Programme

The bisection of a finite-element mesh on an XC50 compute node of Piz Daint at the Swiss National Supercomputing Centre indicates that the p-Laplacian algorithm is suitable for parallel computation and is able to utilize the capabilities of modern computer hardware.

15,360,000 elements, 2,618,021 nodes

CPU	Peak FLOPS	(Peak MEM.)	Elapsed time (s)			
Intel Xeon	499.2 GFLOPS	$68~\mathrm{GB/s}$	1862.3 (1 core)			
E5-2690 v3 CPU	_	_	$284.8 \ (12 \ cores)$			
Nvidia P100 GPU	4.7 TFLOPS	$732~\mathrm{GB/s}$	28.2			

ICS Cluster

Method	edgecut	(METIS%)	$\max_{i \le 128} \left V_i^{128} \right $	$b_r^{128}(\%)$
METIS	600,450	_	120,000	0
p-Laplacian	558,492	7.5	120,939	0.78
Hybrid	570,240	5.3	120,660	0.55

Part 1: Serial Input mesh

partitioning on shared memory computer (METIS)

Part 2: Parallel partitioning on distributed memory computer (p-Laplacian)

Visualisation and Performance

The elapsed time is measured on SGI UV300 for METIS and part 1 of the hybrid method, and P100 GPUs on Piz Daint XC50 nodes. The largest finite-element mesh partitioned, consisting of 1.9 billion tetrahedra, corresponds to an application using 77% of the Piz Daint system (4,096 compute nodes).

