## Требования к оформлению:

- 1. Подпишите работу сверху: id\_for\_online, фамилию, имя, номер группы.
- 2. Должно быть выписано решение задачи, только ответ не засчитывается.
- 3. Для каждого пункта задания обведите полученный численный ответ или формулу в торжественную рамочку.

## **Requirements:**

- 1. State your identity at the top of the sheet: id\_for\_online, first name, last name, group number.
- 2. Full solutions are required, answer without explanations is not graded.
- 3. You should draw a pretty box around every final numeric answer or formula.

Каждый студент в качестве значения k выбирает свой id\_for\_online.

## Задача:

Имеется случайная выборка  $X_1,...,X_n$  из распределения с функцией плотности

$$f(x) = \begin{cases} \lambda e^{-\lambda(x-k)}, \text{ если } x > k; \\ 0, \text{ иначе.} \end{cases}$$

- 1. Методом моментов, используя первый начальный момент, найдите оценку параметра  $\lambda$ .
- 2. Методом максимального правдоподобия найдите:
  - а) оценку параметра  $\lambda$ ;
  - б) оценку вероятности  $\mathbb{P}(X_1 > k + 1)$ .
- 3. Вычислите информацию Фишера о параметре  $\lambda$ , содержащуюся во всей выборке.
- 4. Вычислите асимптотическую дисперсию оценки максимального правдоподобия  $\hat{\lambda}$ .
- 5. Вычислите асимптотическую дисперсию оценки максимального правдоподобия  $\hat{\mathbb{P}}(X_1 > k+1).$
- 6. Найдите оценку максимального правдоподобия асимптотической дисперсии оценки максимального правдоподобия  $\hat{\mathbb{P}}(X_1 > k+1)$ .



You should use your id\_for\_online as the value of constant k.

## **Problem:**

We have a random sample  $X_1, ..., X_n$  from a distribution with the density function

$$f(x) = \begin{cases} \lambda e^{-\lambda(x-k)}, & \text{if } x > k; \\ 0, & \text{otherwise.} \end{cases}$$

- 1. Estimate the parameter  $\lambda$  using method of moments with first moment.
- 2. Using maximum likelihood estimate:
  - a) the parameter  $\lambda$ ;
  - б) the probability  $\mathbb{P}(X_1 > k+1)$ .
- 3. Finde the theoretical Fisher information on  $\lambda$  in the whole sample.
- 4. Find the asymptotic variance of maximum likelihood estimator  $\hat{\lambda}$ .
- 5. Find the asymptotic variance of maximum likelihood estimator  $\hat{\mathbb{P}}(X_1 > k+1)$ .
- 6. Find the maximum likelihood estimator for asymptotic variance of maximum likelihood estimator  $\hat{\mathbb{P}}(X_1 > k+1)$ .

