Devoir à la maison n° 16 : corrigé

Problème 1 — Méthode de Newton

Partie I – Description de la méthode de Newton

- 1. La fonction f est continue, strictement décroissante sur l'intervalle [a,b] et f(a) et f(b) sont de signes opposés. Le théorème des valeurs intermédiaires permet d'affirmer l'existence et l'unicité de $c \in]a,b[$ tel que f(c)=0.
- 2. Description de la méthode de Newton.
 - a. Une équation de la tangente à la courbe représentative de f au point d'abscisse u est y = f'(u)(x u) + f(u). Cette droite coupe l'axe des abscisses en un point d'ordonnée nulle, donc son abscisse x vérifie

$$x = u - \frac{f(u)}{f'(u)}$$

b. Pour tout $n \in \mathbb{N}$, x_{n+1} est l'abscisse de l'intersection de la tangente à la courbe représentative de f au point d'abscisse x_n avec l'axe des abscisses.

3. a. Puisque f est dérivable sur I et que f' est dérivable et ne s'annule pas sur I, la fonction g est dérivable sur I et pour tout $x \in I$

$$g'(x) = \frac{f(x)f''(x)}{f'^2(x)}$$

b. Puisque f' < 0 sur I, f est décroissante sur I. De plus, f(c) = 0 donc f est positive sur [a, c] et négative sur [c, b]. Enfin, $f'' \ge 0$ sur I. On en déduit que $g' \le 0$ sur [a, c] et $g' \ge 0$ sur [c, b]. Ainsi g est croissante sur [a, c] puis décroissante sur [c, b].

c. Par croissance de g sur [a, c], pour tout $x \in [a, c]$

$$g(\alpha) \leqslant g(x) \leqslant g(c)$$

 $\mathrm{Or}\ g(\mathfrak{a}) \,=\, \mathfrak{a} \,-\, \tfrac{f(\mathfrak{a})}{f'(\mathfrak{a})} \,\geqslant\, \mathfrak{a}\ \mathrm{car}\ f(\mathfrak{a}) \,>\, \mathfrak{0}\ \mathrm{et}\ f'(\mathfrak{a}) \,<\, \mathfrak{0}\ \mathrm{et}\ g(\mathfrak{c}) \,=\, \mathfrak{c}\ \mathrm{car}\ f(\mathfrak{c}) \,=\, \mathfrak{0}.\ \mathrm{Ainsi}\ \mathrm{pour}\ \mathrm{tout}\ x \,\in\, [\mathfrak{a},\mathfrak{c}],$ $g(x) \in [a, c]$. Autrement dit, $g([a, c]) \subset [a, c]$.

d. Une récurrence simple montre que $x_n \in [a, c]$ pour tout $n \in \mathbb{N}$.

Partie II – Convergence de la méthode de Newton

a. Pour tout $n \in \mathbb{N}$, 1.

$$x_{n+1} - x_n = g(x_n) - x_n = -\frac{f(x_n)}{f'(x_n)} \ge 0$$

car $f'(x_n) < 0$ et $f(x_n) \ge 0$ puisque $x_n \in [a, c]$. Ainsi (x_n) est croissante.

- b. On a vu que (x_n) est à valeurs dans [a, c] donc en particulier elle est majorée par c. Puisque (x_n) est croissante, elle converge. Puisque g est continue, (x_n) converge vers un point fixe de g i.e. un zéro de f. Puisque c est l'unique zéro de f sur I, (x_n) converge vers c.
- **2.** Etude du type de convergence de $(x_n)_{n\in\mathbb{N}}$.
 - a. |f'| est strictement positive et continue sur le segment I. Elle est donc minorée par une constante strictement positive m.

De plus, f" est continue sur le segment I : elle y est donc bornée. D'où l'existence de M.

b. La fonction f est de classe \mathcal{C}^2 sur I. L'inégalité de Taylor-Lagrange donne, pour tout $x \in I$

$$|f(c)-f(x)-(c-x)f'(x)|\leqslant M\frac{(c-x)^2}{2}$$

En utilisant la question précédente, on obtient :

$$\left| \frac{f(c) - f(x)}{f'(x)} - (c - x) \right| \leqslant \frac{(c - x)^2}{2} \times \frac{M}{m}$$

soit

$$|g(x) - c| \leqslant \frac{(c - x)^2}{2} \times \frac{M}{m}$$

c. Comme $x_n-x\underset{n\to+\infty}{\longrightarrow}0,$ il existe $N\in\mathbb{N}$ tel que $K|x_N-c|<1.$

Prouvons par récurrence que pour tout $n \ge N$,

$$|x_n - c| \leqslant K^{2^{n-N}-1} |x_N - c|^{2^{n-N}}$$

Cette propriété est vraie au rang n = N (c'est une égalité). Supposons la vraie à un certain rang $n \ge N$. D'après la question précédente :

$$|x_{n+1} - c| = |g(x_n) - c| \le K(x_n - c)^2$$

En appliquant notre hypothèse de récurrence, on obtient :

$$|x_{n+1} - c| \leqslant K^{2^{n+1-N}-1} |x_N - c|^{2^{n+1-N}}$$

et la propriété est vérifiée au rang n+1. On conclut en utilisant le principe de récurrence. Il suffit alors de prendre $C=\frac{1}{K}$ et $k=(K|x_n-c|)^{2^{-N}}$. Comme $0< K|x_n-c|<1$, on a bien 0< k<1.

d. Pour tout $n \ge N$:

$$\frac{|x_n - c|}{q^n} \leqslant \frac{Ck^{2^n}}{q^n}$$

De plus,

$$\ln\left(\frac{Ck^{2^n}}{q^n}\right) = \ln C + 2^n \ln k - n \ln q \underset{n \to +\infty}{\sim} 2^n \ln k \underset{n \to +\infty}{\longrightarrow} -\infty \qquad \text{car } k \in]0,1[$$

D'où $\lim_{n\to+\infty} \frac{|x_n-c|}{q^n} = 0$ et $x_n-c = o(q^n)$.