QCM n° 5

Un peu de calcul.

Soit l'application $f: \mathbb{R} \longrightarrow \mathbb{R}$ Déterminer f([-4, 5]), $x \longmapsto x^2 + 4x + 1$ Échauffement n°1 $f^{-1}([-3,0]), f^{-1}(\{-4\}) \text{ et } f^{-1}(\{-2\}).$

Soit $C = \begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix}$. Calculer C^3 et C^{-1} . Échauffement n°2

QCM - cocher une case si la phrase qui suit est correcte.

Soit A et B deux ensembles. Question n°1

- $\Box (A \backslash B) \cup B = A$;
 - $\Box (A \backslash B) \cup B \supset A$;
- $\Box (A \cup B) \backslash B \subset A$;

- $\Box (A \backslash B) \cup B \subset A$;
- $\Box (A \cup B) \backslash B = A$;
- $\Box (A \cup B) \backslash B \supset A.$

Soit A et B deux ensembles. Question n°2

 \square Si $A \subset B$, $\mathscr{P}(A) \subset \mathscr{P}(B)$;

 \square Si $x \in A$, $x \in \mathscr{P}(A)$;

 \square Si $A \subset B$, $A \in \mathscr{P}(B)$;

 $\square A \subset \mathscr{P}(A)$.

Question n°3

- $\square \ \{3k \ , \ k \in \mathbb{Z}\} \cup \{3k+1 \ , \ k \in \mathbb{Z}\} = \{3k \ , \ 3k+1 \ , \ k \in \mathbb{Z}\} \ ;$
- $\Box \{e^{-x}, x \in \mathbb{R}\} = \{y \in \mathbb{R}, \exists x \in \mathbb{R}, y = e^{-x}\};$ $\Box \bigcap_{n \in \mathbb{N}^*} \left[1 + \frac{1}{n}, 2 + \frac{2}{n}\right] = [1, 2];$
- $\square \left(\bigcup_{n \in \mathbb{N}^*} \left[1 + \frac{1}{n}, 4 \frac{1}{n} \right] \right) \cap [2, 4] = \bigcup_{n \in \mathbb{N}^*} \left[2, 4 \frac{1}{n} \right] = [2, 4[.$

Question n°4 Soit E, F, G trois ensembles, et $f: E \to F$ et $g: F \to G$. Alors,

- \square si f est injective, $g \circ f$ aussi ;
- \square si $q \circ f$ est surjective, f aussi;
- \square si $g \circ f$ est injective, f aussi;
- \square si $g \circ f$ est bijective, f et g aussi.
- \square si f et g sont surjectives, $g \circ f$ aussi ;

Question n°5 Soit E, F deux ensembles, et f tout élément x ,	: $E \to F$. Soit $A \subset E$ et $B \subset F$. Alors, pour
$\Box x \in f(A)$ ssi il existe $y \in A$ tel que $y = f^{-1}(A)$ $\Box x \in f^{-1}(B)$ ssi il existe $y \in F$ tel que $x = f^{-1}(B)$ $\Box x \in f^{-1}(B)$ ssi il existe $y \in F$ tel que $f(x) = (A)$ $\Box x \in f^{-1}(B)$ ssi $f(x) \in B$;	$^{1}(y)$;
$\Box x \in f(B) \text{ ssi il existe } y \in B \text{ tel que } f(y) = x$	
Question n°6 Soit $A \in \mathcal{M}_n(\mathbb{K})$. \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB = BA = \mathbb{K}$. \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $BA = \mathrm{Id}_n$, a \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que $AB \subseteq \mathbb{K}$. \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que $AB \subseteq \mathbb{K}$. \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que $AB \subseteq \mathbb{K}$. \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que $AB \subseteq \mathbb{K}$. \square Si $A \neq 0$, il existe $B \in \mathcal{M}_n(\mathbb{K})$ différente de \mathbb{K} .	lors A est inversible; B = 0, alors A est nulle; B = BA = 0, alors A est nulle; B = 0, alors A ne peut pas être inversible;
Question n°7 Soient x et y deux réels tels que	$-1 < x \leqslant 3$ et $y \in [-1, 1]$. Alors
$ \Box -2 \leqslant x + y \leqslant 4. $ $ \Box 0 < x - y < 2. $	$\Box \ 1 < \frac{x}{y} \leqslant 3$ $\Box \ 0 \leqslant x^2 + y^2 \leqslant 10.$
Question n°8 Soit $A \subset \mathbb{R}$.	
\square A a un sup dans \mathbb{R} . \square A a un sup dans \mathbb{R} .	\square si A a un max, elle a un sup. \square si A a un sup, elle a un max.
Question n°9 Soit $A \subset \mathbb{R}$ ayant une borne supérieure notée a .	
$\Box \ a \in A.$ $\Box \ a \notin A.$ $\Box \ \text{pour tout} \ \varepsilon > 0, \]a - \varepsilon, a + \varepsilon [\cap A \neq \varnothing.$	
Question n°10 Soit $f: \mathbb{R} \to \mathbb{R}$. \square si f est strictement croissante, elle n'est pas \square si f est strictement décroissante, elle est maj \square si f a une limite en $+\infty$, elle a une borne sur \square si f a une limite finie en $+\infty$, elle a un max. \square si f est paire, elle a un min ou un max. \square si f est paire, elle a un inf ou un sup. \square si $ f $ est majorée, f aussi. \square si $ f $ est minorée, f aussi. \square si f est majorée, $ f $ aussi. \square si f est minorée, $ f $ aussi. \square si f est minorée, $ f $ aussi.	orée. p.