

구현을 위한 딥러닝

- 고려대학교 물리학과 한승희

Contents

- 1 Types of Problems
- 2 Theoretical Background
- Bias Variance Tradeoff
- 4 About data
- 5 Implementation

Contents

Types of Problems

Types of Problems - 1

- Supervised Learning
- Unsupervised Learning
- Semi-Supervised Learning

Supervised Learning

- Majority of algorithms. Machine is trained using well-labeled data. (inputs and outputs are matched)
- Ex> Classification, Regression

Unsupervised Learning

- Learning happens without supervision. Only inputs are used to create a model.
- Ex> Clustering

Semi - Supervised Learning

Some data is labeled, some not. Since clean, perfectly labeled datasets aren't easy to come by, good for real world data.

Types of Problems - 2

- Classification
- Regression
- Clustering
- &Etc.

Classification

Predicts discrete number of values. The data is categorized under different labels

Classification

Sepal length +	Sepal width \$	Petal length +	Petal width \$	Species +
5.2	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.3	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
7.0	3.2	4.7	1.4	I. versicolor
6.4	3.2	4.5	1.5	I. versicolor
6.9	3.1	4.9	1.5	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor
6.5	2.8	4.6	1.5	I. versicolor
5.7	2.8	4.5	1.3	I. versicolor
6.3	3.3	4.7	1.6	I. versicolor
4.9	2.4	3.3	1.0	I. versicolor
6.6	2.9	4.6	1.3	I. versicolor
6.3	3.3	6.0	2.5	I. virginica
5.8	2.7	5.1	1.9	I. virginica
7.1	3.0	5.9	2.1	I. virginica
6.3	2.9	5.6	1.8	I. virginica
6.5	3.0	5.8	2.2	I. virginica
7.6	3.0	6.6	2.1	I. virginica
4.9	2.5	4.5	1.7	I. virginica

Regression

Predicts continuous values output. Mostly analysis using statistical model which is used to predict the numeric data instead of labels.

Clustering

❖ Task of partitioning the dataset into groups, called clusters. This splits the data in such a way that points within single cluster are very similar and points in different are different.

Contents

2

Theoretical Background

Perceptron (Neuron)

Multi Layer Perceptron

Activation ftn (Sigmoid)

$$\alpha(z) = \frac{1}{1 + e^{-zz}} : On 1$$

$$\alpha'(z) = -\frac{e^{-zz}}{(1 + e^{-zz})^2} = \frac{1}{1 + e^{-zz}} \cdot \frac{e^{-zz}}{1 + e^{-zz}}$$

$$= \alpha(z)(1 - \alpha(z)) : On 1$$

Example

But...Why?

Universal Approximation thm

- **The sum of the following form can approximate any continuous function** F on $[0,1]^n$ to any degree of accuracy:

Universal Approximation thm

See what happens with perceptron

Training – Loss ftn?

Loss ftns

- Mean Squared Error
- Mean Absolute Error
- KL-Divergence
- Categorical Cross Entropy
- etc.

Gradient Descent & Backpropagation

Momentum

$$\Theta_{n+1} = m \cdot \Theta_n - \eta \cdot \nabla_{\Theta} L(\Theta) \Big|_{\Theta_n}$$

Adagrad (adaptive gradient)

$$\Theta_{n+1} = \Theta_n - \frac{\eta}{\sqrt{G_n + \epsilon}} \nabla_{\Theta} L(\Theta) \Big|_{\Theta_n}$$

$$G_n = \sum_{i=1}^n \left[\nabla_{\Theta} L(\Theta) \Big|_{\Theta_i} \right]^2$$

RMSProp (root mean square propagation)

$$\Theta_{n+1} = \Theta_n - \frac{\eta}{\sqrt{G_n + \epsilon}} \nabla_{\Theta} L(\Theta) \Big|_{\Theta_n}$$

$$G_n = \gamma \cdot G_{n-1} + (1 - \gamma) \left[\nabla_{\Theta} L(\Theta) \Big|_{\Theta_n} \right]^2$$

Adam (adaptive moment estimation)

$$\begin{split} \hat{m}_{\Theta} &= \frac{m_{\Theta}^{n+1}}{1 - (\beta_1)^{n+1}} \quad \text{where} \quad m_{\Theta}^{n+1} = \beta_1 m_{\Theta}^n + (1 - \beta) \nabla_{\Theta} L(\Theta) \Big|_{\Theta_n} \\ \hat{G}_{\Theta} &= \frac{G_{\Theta}^{n+1}}{1 - (\beta_2)^{n+1}} \quad \text{where} \quad G_{\Theta}^{n+1} = \beta_2 G_{\Theta}^n + (1 - \beta_2) \left[\nabla_{\Theta} L(\Theta) \Big|_{\Theta_i} \right]^2 \\ \Theta_{n+1} &= \Theta_n - \eta \frac{\hat{m}_{\Theta}}{\sqrt{\hat{G}_{\Theta} + \epsilon}} \end{split}$$

- * About learning rate...
 - Google exercise

Contents

3

Bias - Variance Tradeoff

Bias vs Variance

Bias vs Variance

Bias vs Variance: BN

Bias vs Variance: dropout

Bias vs Variance: vanishing gradient

Vanishing Gradient: relu

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	-
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0, z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

activation stus

also, vid of negatives.

Contents

4

About data

Normalization vs Standardization

Normalization:

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Standardization:

$$X' = \frac{X - \mu}{\sigma}$$

Train-Valid-Test split

Contents

5

Implementation

Pima-Indian Diabetes dataset

https://www.kaggle.com/kumargh/pimaindiansdiab etescsv

Credit Card Fraud Detection

https://www.kaggle.com/mlg-ulb/creditcardfraud/