Code: 15A05302

B.Tech II Year I Semester (R15) Regular & Supplementary Examinations November/December 2017

DISCRETE MATHEMATICS

(Common to CSE & IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) What is proposition and mention types of proposition?
- (b) Define Tautology and contradiction.
- (c) What is power set? Give one example
- (d) Using the laws of set theory, simplify the following:

(i)
$$A \cap (B-A)$$

(ii)
$$(A - B) \cup (A \cap B)$$

- (e) Define semi groups and monoids.
- (f) If $G = (z_6, +)$ and given that $H = \{0, 2, 4\}$, then show that H is non empty subset of G under the binary operation.
- (g) If G=(V,E) is an undirected graph with |V|=v and |E|=e and no loops, show that $2e \le v^2-v$
- (h) A connected planner graph has 9 vertices having degrees 2, 2, 2, 3, 3, 3, 4, 4, 5. How many edges are there? How many faces are there?
- (i) Determine the coefficient of xyz^5 and x^3z^4 in the expansion of $(x+y+z)^7$.
- (j) Obtain the sequence generated by $(1-4x)^{-1/2}$

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

- 2 (a) Show that $p \wedge (\neg q \vee r)$ and $p \vee (q \wedge \neg r)$ are logically not equivalent.
 - (b) Hypothesis: If I join JNTU then I will get best education. If I get best education, then I will get job in USA. If I get job in USA then I will become a millionaire. I joined JNTU.

Conclusion: I will become a millionaire.

Give an argument using rules of inference to show that the conclusion follows from the hypothesis.

OR

3 Establish the validity of the following argument with reasons.

$$u \to r$$

$$(r \land s) \to (p \lor t)$$

$$q \to (u \land s)$$

$$t \to r$$

[UNIT – II]

4 Prove the following for any sets A, B, C

(i) If
$$A \cap C = B \cap C$$
 and $A \cup C = B \cup C$ then $A = B$

(ii) If
$$A\Delta C = B\Delta C$$
 then $A = B$

OR

If m, n are the positive integers with $1 < n \le m$ then prove that:

$$S(m+1, n) = S(m, n-1) + nS(m, n)$$

Contd. in page 2

Code: 15A05302

R15

UNIT – III

- 6 Prove that under semi group homomorphism, the properties of:
 - (i) Associativity.
 - (ii) Idem potency.
 - (iii) commutativity are preserved.

OR

- Determine the number of assignments of the Boolean variables w and y that will result in the value 1 for the following expressions when the value of x is 1.
 - (i) $\overline{x}y + w$
 - (ii) $\overline{x}y + xw$
 - (iii) xy + w (iv) x + xy + w

UNIT - IV

If G = (V, E) is an undirected graph or multigraph with no isolated vertices, then G has an Euler circuit if and only if G is connected and every vertex in G has even degree

OR

9 If G = (V, E) is a loop free undirected graph with $|v| = n \ge 3$ and if $|E| \ge \binom{n-1}{2} + 2$ then G has a Hamilton cycle.

UNIT – V

A committee of eight is to be formed from 16 men and 10 women. In how many ways can the committee be formed if: (i) There are no restrictions? (ii) There must be 4 men and 4 women. (iii) There should be an even number of women. (iv) More women than men. (v) At least 6 men.

OR

Find a formula to express $0^2 + 1^2 + 2^2 + \dots + n^2$ as a function of n
