Was it worth it?

- This gives a different, and better, answer than any of the greedy methods.
- But how long does it take to find the answer?
- If we have n items, then the power set is the same size as the number of binary numbers with n digits – or 2ⁿ
- Exponential in size if we look at everything
- Even with decision tree approach, still probably exponential

Is it really that bad?

- Suppose we have 50 items
- Suppose we can generate and check each potential combination of these items in a microsecond (one millionth of a second)
- How long will it take to check all combinations?

About 36 years

The tradeoff

- A greedy algorithm is making the best (as defined by some metric) local choice at each step
- It is making a choice that is locally optimal
- But does not mean the solution found is globally optimal
- The tradeoff is that an approximation algorithm may find a good, but not best, solution, but take far less time than needed to find the best solution

Can we do better?

 There are few optimizations that might reduce the typical running time. For example, no need to generate overweight solutions.

•

- However, in a theoretical sense, the problem is hopeless. The 0/1 knapsack problem is inherently exponential in the number of items.
- In a practical sense, however, the problem is far from hopeless. For example, you might look up the idea of dynamic programming.