

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Sistemas Urbanos Inteligentes

Modelos de lenguaje

Hans Löbel

El lenguaje es uno de los grandes logros de la inteligencia humana

El lenguaje puede verse como un mecanismo para codificar información...

El lenguaje es uno de los grandes logros de la inteligencia humana

...pero para extraer esa información, también hay que saber decodificarlo

En esta clase cubriremos ambas tareas desde la óptica de las redes neuronales

- Cómo codificar lenguaje de manera simple y con muchos datos.
- Cómo mejorar esta codificación integrándola con la decodificación.
- ¿Y qué tiene que ver esto con los sistemas urbanos?
- Una parte importante de las preferencias, opiniones y comportamientos de los habitantes pueden inferirse del texto que generan.
- Si bien esto lo veremos en el contexto de lenguaje, es aplicable a cualquier tipo de secuencia.

¿Cómo podemos codificar lenguaje?

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.


```
('the', 8),
(',', 5),
('very', 4),
('.', 4),
('who', 4),
('and', 3),
('good', 2),
('it', 2),
('to', 2),
('a', 2),
('for', 2),
('can', 2),
('this', 2),
('of', 2),
('drama', 1),
('although', 1),
('appeared', 1),
('have', 1),
('few', 1),
('blank', 1)
```

.

¿Qué problemas tiene esta codificación?

- No genera un espacio semántico: vectores cercanos no son semánticamente similares
- No considera el orden de los elementos (letras, palabras, etc.)
- Nuestro primer enfoque intentará solucionar esto utilizando representaciones continuas y muchos datos.

 Típicamente las palabras son representadas mediante una codificación one-hot

x: I love to eat

y: Pizzas

Al terminar el entrenamiento, el producto esencial es la matriz de *embedding*

- La matriz de embedding entrega para cada palabra del vocabulario una representación vectorial.
- Dado el entrenamiento conjunto entre embedding y clasificador, la representación aprendida es buena para clasificar.
- Resulta que al entrenar con muchos datos, esta representación, además de ser buena para clasificar, captura un espacio semántico para las palabras.
- Las técnicas de word embeddings más populares son word2vec y Glove.

A diferencia de los que vimos antes, el espacio de *word embeddings* captura relaciones a través de operaciones vectoriales

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

A diferencia de los que vimos antes, el espacio de *word embeddings* captura relaciones a través de operaciones vectoriales

A diferencia de los que vimos antes, el espacio de *word embeddings* captura relaciones a través de operaciones vectoriales

FRANC	E JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRI	A GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIU	M SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMA	NY CHRIST	MSX	PINKISH	PUNCHED	$_{ m BIT/S}$
ITALY	SATAN	IPOD	PURPLISH	POPPED	$_{ m BAUD}$
GREEC	E KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDE	N INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWA	Y VISHNU	$^{ m HD}$	GRAYISH	SCREWED	MEGAHERTZ
EUROP	E ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGA	RY PARVATI	GEFORCE	SILVERY	SLASHED	$_{\rm GBIT/S}$
SWITZERL	AND GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

¿Cómo podríamos mejorar esta codificación?

- La matriz de embedding genera codificaciones para palabras, pero no para frases.
- Para codificar una frase se requiere un paso extra, como sumar o promediar las representaciones.
- Nuestro segundo enfoque intentará solucionar esto al considerar explícitamente y de manera conjunta el orden de las palabras tanto en la codificación como la decodificación.

- Con el fin de capturar más información contextual, los modelos seq2seq utilizan redes recurrentes para entrada y salida.
- En general, todos utilizan una arquitectura *encoder-decoder*:
 - Una red recurrente codificadora (encoder) procesa la secuencia de entrada y genera un representación vectorial (estado oculto) que captura la información relevante.
 - Una red recurrente decodificadora (decoder) utiliza esta representación para generar una salida adecuada.
- Ambas redes se entrenan de manera conjunta en este esquema, permitiendo capturar información contextual más rica.

- Al usar una representación latente intermedia, las secuencias de entrada y salida pueden tener largos distintos.
- Esto nos entrega la intuición que esta representación codifica la información relevante de la entrada.
- Además, al usar secuencias, esta representación considera el orden de las palabras, a diferencia de BoW.

El vector de contexto es un vector latente como cualquier otro

En todos estos casos, la entrada no son las palabras en sí, sino que los *embeddings* de cada una de estas

$$h_t = \sigma(W_{xh}x_t + W_{hh}h_{t-1})$$

2 Decoder RNN

$$if(t > 1)$$

$$y_t = \sigma(W_{ry}r_t + W_{yy}y_{t-1})$$

$$r_t = \sigma(W_{rr}r_{t-1})$$

$$if(t = 1)$$

$$y_1 = \sigma(W_{ry}r_1)$$

$$r_1 = \sigma(W_{rr}C)$$

$$C = \sigma(W_{hC}h_T)$$

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je suis étudiant

También es posible utilizar modelos con configuraciones más complejas

Veamos un ejemplo real: traducción de texto automática (Sutskever et al., 2014)

- Basado en modelo *encoder-decoder*. Ambos son implementados con LSTM de 4 capas.
- El vector de contexto entregado al *decoder* es el último estado oculto del *encoder*.
- Para terminar una secuencia, se utiliza el símbolo especial <EOS>.
- Durante el entrenamiento, los valores reales de la traducción son utilizados como entrada al *decoder*. En "producción", se utilizan los outputs del paso anterior.

Veamos un ejemplo real: traducción de texto automática (Sutskever et al., 2014)

Al graficar en 2D (PCA) el vector de contexto para distintas frases, vemos que este captura información semántica y que además es sensible al orden de las palabras.

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Sistemas Urbanos Inteligentes

Modelos de lenguaje

Hans Löbel