This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

1. A method of decentralized control of variable frequency drives on a single branch comprising the steps of:

selecting a control protocol;

providing a power input branch having a single group installation branch protection; connecting in series with the input branch at least two drive branches with the input branch, each of the drive branches having a drive with individual overload protection; and transmitting a control signal based on the selected control protocol from the input branch to the drive branches.

- 2. A method according to claim 1, wherein said control protocol selecting step comprises selecting the control protocol from PROFIBUS, InterBus, DeviceNet, and CANopen.
- 3. A method according to claim 1 further comprising selecting a maximum rated fuse for the group installation branch protection.
- 4. A method according to claim 1, wherein said drive branch connecting step comprises:

 connecting a first drive branch with the input branch; and

 connecting in parallel with the first drive branch from a load side of the group installation

branch protection of the input branch at least one additional drive branch;

wherein said drive branches include a field distributor connected with a drive.

- 5. A method according to claim 4 further comprising selecting a field distributor based on the selected control protocol prior to said drive branch connecting step.
- 6. A method according to claim 5, wherein the field distributor has a disconnect switch for load disconnection.
- 7. A method according to claim 6 further comprising selecting a field bus interface of the field distributor based on the selected control protocol when selecting the field distributor.
- 8. A method according to claim 4 further comprising connecting at least one of at least one sensor and at least one actuator to the field distributor.
- 9. A method according to claim 1 further comprising selecting a control input from a programmable logic controller, personal computer, and workstation, prior to said control signal transmitting step.
- 10. A method of decentralized control of variable frequency drives on a single branch comprising the steps of:

providing an input branch having a single group installation branch protection; connecting in series at least two field distributors to the input branch, each of the field distributors having a disconnect switch for load disconnection and line protection;

connecting a drive having integrated overload protection to each of the field distributors; and transmitting a control signal from the input branch to the field distributors.

- 11. A method according to claim 10 further comprising:

 selecting a control protocol prior to said input branch providing step; and

 selecting a field bus interface for the field distributors based on the selected control protocol.
- 12. A method according to claim 11, wherein said field bus interface selecting step is performed by selecting from PROFIBUS, InterBus, DeviceNet, and CANopen type interfaces.
- 13. A method according to claim 10 further comprising selecting the drive from a variable speed drive and a fixed speed drive prior to said drive connecting step.
- 14. A method according to claim 10, wherein said drive connecting step is performed using a plug connector.
- 15. A method according to claim 10 further comprising selecting a maximum rated fuse for the group installation branch protection.

- 16. A method according to claim 10 further comprising the step of selecting a control input from a programmable logic controller, personal computer, and workstation, prior to said control signal transmitting step.
- 17. A control system for group drive installations on a single branch, said system comprising: an input branch having a group installation branch protection;
 - a first drive installation connected with said input branch;

at least one subsequent drive installation connected in parallel with said first drive installation at a load side of said group installation branch protection, each of said first drive installation and said at least one subsequent drive installation comprising:

- a field distributor; and
- a motor connected to said field distributor; and

an interconnecting line connecting said input branch, said first drive installation, and said at least one subsequent drive installation.

- 18. A control system according to claim 17, wherein said input branch comprises:
 - a field bus; and

a power input branch having a power supply connected to the group installation branch protection and a control power input.

19. A control system according to claim 18 further comprising a bus controller connected to said field bus, wherein said bus controller transmits a signal to control said geared drive.

- 20. A control system according to claim 19, wherein said bus controller is selected from a programmable logic controller, a personal computer, and a workstation.
- 21. A control system according to claim 19 further comprising at least one actuator connected to said field distributor, wherein said at least one actuator is controlled by a signal transmitted from said bus controller.
- 22. A control system according to claim 17, wherein said field distributor comprises:
 - a field bus interface; and
 - a field distributor connection module coupled with said field bus interface.
- 23. A control system according to claim 22, wherein said field distributor connection module comprises at least one digital input connector and at least one digital output connector.
- 24. A control system according to claim 22, wherein said field bus interface is selected from an interface compatible with one of DeviceNet, InterBus, CANopen, and PROFIBUS protocols.
- 25. A control system according to claim 17, wherein said field distributor comprises an integrated frequency inverter.
- 26. A control system according to claim 18, wherein said interconnecting line comprises power input branch after leaving branch protection, control power input, and field bus.

- 27. A control system according to claim 17, wherein said field distributor is connected to said motor via a hybrid cable.
- 28. A control system according to claim 27, wherein said field distributor has a motor disconnect.