1 (True or False) and Justify

[20 bodov]

Uveďte, či je tvrdenie pravdivé a nanajvýš tromi vetami svoj názor zdôvodnite.

(Úplne správna odpoveď je za 2.5 boda. Správna odpoveď úplne bez zdôvodnenia je za 0.5 boda. Nesprávna odpoveď, ako aj správna odpoveď s úplne nesprávnym zdôvodnením, sú za 0 bodov.)

- Q1 Definujme $LHALT = \{n \mid \text{Turingov stroj číslo } n \text{ na vstupe } n \text{ zastane po max. } n \text{ krokoch}\}.$ Množina LHALT je úplná pri many-to-one redukcii.
- Q2 Existujú rekurzívne vyčísliteľné množiny A a B také, že $A \cup B$ je rekurzívna, ale $A \cap B$ nie je rekurzívna.
- Q3 Nech P je program v Pascale, ktorý počíta primitívne rekurzívnu funkciu, pričom niekde v P sa vyskytuje priradenie "x:=4;". Ak toto priradenie zmeníme na "x:=7;", dostaneme opäť program počítajúci primitívne rekurzívnu funkciu.
- Q4 Majme nejaké efektívne číslovanie unárnych primitívne rekurzívnych funkcií. Nech p_n je funkcia číslo n v tomto číslovaní. Definujme $f(n) = p_n(n)$. Potom f je nutne primitívne rekurzívna.
- Q5 Existuje nejaká množina $M_{\text{sviňa}} \subseteq \mathbb{N}$, ktorá je najťažšia spomedzi úplne všetkých množín pri rekurzívnej many-to-one redukcii. Inými slovami, existuje $M_{\text{sviňa}} \subseteq \mathbb{N}$ taká, že $\forall A \subseteq \mathbb{N}: A \leq_m M_{\text{sviňa}}$.
- Q6 Nech D je sada Wangovych dlaždíc, ktorá má nasledujúcu vlastnosť: pre každé dve dlaždice $x, y \in D$, $x \neq y$ platí, že spodná strana x je odlišná od hornej strany y. Potom existuje deterministický konečný automat, ktorý rozpoznáva rovnaký jazyk ako D.
- Q7 Nech M je Minského registrový stroj, ktorý počíta unárnu funkciu f(x). Navyše o M vieme, že jeho výpočet pre ľubovoľné x skončí a počas tohto výpočtu hodnota v žiadnom registri neprekročí 47^x . Potom f je primitívne rekurzívna.
- Q8 Ak sú A a B rekurzívne vyčísliteľné, tak aj $\{a+b \mid a \in A \land b \in B\}$ je nutne rekurzívne vyčísliteľná.

2 Riešenie: (True or False) and Justify

- Q1 **FALSE.** Množina LHALT je rekurzívna: Náš program načíta n, zostrojí n-tý Turingov stroj, odsimuluje jeho n krokov a podľa toho, čo sa stane, odpovie a tak či tak skončí.
- Q2 **TRUE.** Napríklad $A = \mathbb{N}$ a B = HALT.
- Q3 **FALSE.** Napr. *P*, ktorý má vstupy x a y a ktorého telo hlavnej funkcie vyzerá približne nasledovne: begin x:=4; if (x=4) then return y else return A(y,y); end. Samozrejme, A(m,n) je volanie implementácie Ackermannovej funkcie.
- Q4 **FALSE.** Keby bola, musela by byť primitívne rekurzívna aj funkcia g(n) = f(n) + 1, tá sa ale líši od každej primitívne rekurzívnej funkcie.
- Q5 **FALSE.** Možných množín A je nespočítateľne veľa. Na druhej strane, všetkých rekurzívnych funkcií je len spočítateľne veľa, a každá z nich funguje ako redukcia pre práve jednu A. Preto nutne pre ľubovoľnú M existuje dokonca nespočítateľne veľa A takých, že $A \not \leq_m M$.
- Q6 **TRUE.** Ak existuje korektné dláždenie slova w sadou D, tak existuje korektné dláždenie, ktoré má len jeden riadok lebo v ľubovoľnom inom platí, že posledný riadok je zhodný s predposledným, a teda ho môžeme odstrániť. Existenciu jednoriadkového dláždenia ľahko skontrolujeme konečným automatom.
- Q7 **TRUE.** Všetkých možných konfigurácií na vstupe x je $c \cdot 47^{xr}$, kde r je počet registrov a c počet inštrukcii stroja M. Funkcia $g(x) = c \cdot 47^{xr}$ je primitívne rekurzívna a zároveň udáva horný odhad časovej zložitosti výpočtu stroja M, preto podľa vety o primitívne rekurzívnej časovej zložitosti je f primitívne rekurzívna.
- Q8 **TRUE.** Striedavo generujeme prvky A a B a zakaždým vyrobíme všetky možné súčty už vyrobených dvojíc.

3 Formalizmus [10 bodov]

V tejto úlohe klaďte hlavný dôraz na presnosť a korektnosť práce s formalizmom z prednášky.

Uvažujme jazyk **predikátovej logiky prvého rádu**, ktorý obsahuje symboly 01+*=¬∧∨→∀∃() uvwxyzP. Všetkým symbolom priraďujeme v našom svete ich tradičnú interpretáciu v rámci aritmetiky na prirodzených číslach. (Symboly uvwxyz predstavujú premenné, symbol P predstavuje binárny predikát.) Ku každému z nasledujúcich tvrdení zostrojte jeden možný reťazec, ktorý mu zodpovedá.

- a) (2 body) "x delí y"
- b) (3 body) "súčin dvoch nenulových čísel je vždy väčší ako ich súčet"
- c) (3 body) "pravdivosť P závisí len od súčtu jeho vstupov"
- d) (2 body) "existuje binárny predikát, ktorý nikdy nevráti hodnotu true"

4 Riešenie: Formalizmus

Nižšie uvedené riešenia nie sú jediné správne.

- a) $\exists z (x*z=y)$
- b) Tvrdenie x > y vieme sformalizovať napr. nasledovne: $(\exists u (x=y+u+1))$. (Nie je to jediný spôsob. Iná možnosť by bola napr. $(\exists u ((x=y+u) \land (\neg (u=0))))$.)

Pomocou symbolu > by sme vedeli naše tvrdenie sformalizovať nasledovne:

```
\forall x (\forall y ((x>0 \land y>0) \rightarrow (x*y>x+y))).
```

Po rozpísaní > teda dostávame:

```
\forall x \, (\forall y \, (\, (\, (\exists u \, (x=u+1)\,) \, \land \, (\exists v \, (y=v+1)\,)\,) \, \rightarrow \, (\exists w \, (x \, {}^*y=x+y+w+1)\,)\,)\,)
```

- c) $\forall x (\forall y (\forall u (\forall v ((x+y=u+v) \rightarrow ((P(x,y) \rightarrow P(u,v)) \land (P(u,v) \rightarrow P(x,y)))))))$ (slovne: ak majú dva vstupy (x,y) a (u,v) rovnaký súčet, tak P(x,y) platí práve vtedy, ak aj P(u,v).)
- d) chyták: takéto tvrdenie nevieme v rámci logiky prvého rádu formalizovať

5 Známa pôda

 $[15 \, bodov]$

V tejto úlohe sa pýtam na priamo odprednášané veci, ukážte, že im dostatočne rozumiete.

- a) (10 bodov) Nájdite všetky dvojice množín (A, B), pre ktoré platí, že A je rekurzívna a $A \equiv_m B$.
- b) (5 bodov) Dokážte/vyvráťte: Ak B je rekurzívne vyčísliteľná a $A \leq_m B$, tak A je rekurzívne vyčísliteľná.

6 Riešenie: Známa pôda

Lema 1: Ak platí $B \leq_m A$ a A je rekurzívna, tak aj B je rekurzívna.

Dôkaz: Keďže $B \leq_m A$, existuje rekurzívna f taká, že $\forall b : b \in B \iff f(b) \in A$. Keďže A je rekurzívna, má rekurzívnu charakteristickú funkciu χ_A . Pre charakteristickú funkciu množiny B zjavne platí $\chi_B(x) = \chi_A(f(x))$, a teda je nutne aj χ_B rekurzívna.

Dôsledok 1: Do úvahy teda prichádzajú len dvojice (A, B), kde sú obe množiny rekurzívne.

Lema 2: Ak sú A a B rekurzívne množiny, $B=\emptyset$ a $B\neq \mathbb{N},$ tak $A\leq_m B.$

Dôkaz: Zoberme ľubovoľné $b \in B$ a $\bar{b} \notin B$. Nech χ_A je charakteristická funkcia množiny A. Definujme $f(x) = b\chi_A(x) + \bar{b}(1 - \chi_A(x))$. Zjavne f je rekurzívna (lebo χ_A je rekurzívna) a tiež zjavne je f many-to-one redukciou A na B, q.e.d.

Lema 3: Ak A je neprázdna, tak neplatí $A \leq_m \emptyset$. Ak A nie je rovná \mathbb{N} , tak neplatí $A \leq_m \mathbb{N}$.

Dôkaz: V prvom prípade existuje $a \in A$, ktorý nemáme na čo zobraziť. V druhom prípade existuje $a \notin A$, ktorý nemáme na čo zobraziť.

Riešenie podúlohy a): Sú to dvojice (\emptyset, \emptyset) , (\mathbb{N}, \mathbb{N}) a (A, B), kde A a B sú rekurzívne množiny rôzne od \emptyset a \mathbb{N} .

Dôkaz: Ľahko overíme, že (\emptyset, \emptyset) aj (\mathbb{N}, \mathbb{N}) vyhovujú zadaniu. Zvyšok vyplýva z Dôsledku 1, Lemy 2 a Lemy 3.

Riešenie podúlohy b): Tvrdenie platí.

Dôkaz: Analogicky s Lemou 1. Keďže $A \leq_m B$, existuje rekurzívna f taká, že $\forall a: a \in A \iff f(a) \in B$. Keďže B je rekurzívne vyčísliteľná, je jej čiastočná charakteristická funkcia χ_B' čiastočne rekurzívna. Pre čiastočnú charakteristickú funkciu množiny A zjavne platí $\chi_A'(x) = \chi_B'(f(x))$, a teda je nutne aj χ_A' čiastočne rekurzívna. Dôkaz inými slovami: Príslušnosť do A vieme čiastočne rozhodovať nasledovne: pre vstup a spočítam f(a) a následne generujem prvky B a v okamihu, keď vygenerujem f(a), akceptujem.

7 Exkurzia do neznáma

[15 + bodov]

V tejto úlohe sa pýtam na niečo, čo som neprednášal, a chcem vidieť, ako si s tým poradíte.

Hovoríme, že funkcia g je vylepšením f (značíme $g \heartsuit f$), ak g vzniká z funkcií successor, zero, projekcií **a funkcie f** pomocou konečného počtu operácií kompozície, primitívnej rekurzie a minimalizácie. Hovoríme, že množina B je vylepšením A (značíme $B \heartsuit A$), ak pre ich charakteristické funkcie platí $\chi_B \heartsuit \chi_A$.

- a) (5 bodov) Dokážte/vyvráťte: $\forall A \subseteq \mathbb{N} : \overline{A} \heartsuit A$.
- b) (5 bodov) Dokážte/vyvráťte: $\forall A, B \subseteq \mathbb{N}: \exists C \subseteq \mathbb{N}: A \heartsuit C \land B \heartsuit C$.
- c) (5 bodov) Dokážte/vyvráťte: Relácia ♡ je reláciou ekvivalencie.
- d) (bonus) Dokážte/vyvráťte: $\forall A \subseteq \mathbb{N}: \exists B \subseteq \mathbb{N}: A \heartsuit B \land \neg (B \heartsuit A).$

8 Riešenie: Exkurzia do neznáma

Zadanie jedným možným spôsobom formalizuje v reči čiastočne rekurzívnych funkcií pojem Turingovskej redukcie. Pre názornosť budeme v riešení písať $g \leq_{\heartsuit} f$ namiesto $g \heartsuit f$, aby sme zvýraznili nesymetrickosť definície tejto relácie.

- a) Tvrdenie platí. Charakteristickú funkciu $\chi_{\overline{A}}$ môžeme zapísať napr. nasledovne: $\chi_{\overline{A}}(x) = 1 \chi_A(x)$ a táto funkcia sa zjavne dá z χ_A povoleným spôsobom zostrojiť.
- b) Môžeme napríklad definovať $C = \{2a \mid a \in A\} \cup \{2b+1 \mid b \in B\}$, teda C je "označeným zjednotením" A a B. Potom $\chi_A(x) = \chi_C(2x)$ a $\chi_B(x) = \chi_C(2x+1)$ sú obe zjavne χ_C -rekurzívne.
- c) Relácia \leq_{\heartsuit} nie je reláciou ekvivalencie, lebo nie je symetrická. Napríklad platí $\emptyset \leq_{\heartsuit} HALT$, ale neplatí $HALT \leq_{\heartsuit} \emptyset$.

Dôkaz: Nech $z^1(x)=0$ je charakteristická funkcia pre \emptyset . Zjavne z^1 je čiastočne rekurzívna, preto ju vieme vyrobiť aj bez pomoci χ_{HALT} , a teda platí $\emptyset \leq_{\heartsuit} HALT$.

A naopak, keďže z^1 je čiastočne rekurzívna, tak z^1 -rekurzívne funkcie sú práve všetky čiastočne rekurzívne funkcie. Preto totálne z^1 -rekurzívne funkcie sú práve všetky totálne rekurzívne funkcie. To ale znamená, že medzi nimi nie je charakteristická funkcia množiny HALT, ktorá rekurzívna nie je. Čiže neplatí $HALT \leq_{\bigcirc} \emptyset$, q.e.d.