CS & IT ENGINEERING

Database Management System

ER Model

DPP - 01 Discussion Notes

TOPICS TO BE COVERED

01 Question

02 Discussion

Which of the following statements about ER model is/are/ correct?

Relationship sets can have attributes of their own.

Many to many relationships cannot be represented in ER diagram.

Multi value attributes and weak entity set allowed in R

DBMS.

S₁ and S₃ only

S₂ and S₃ only

EI

 S_1 , S_2 and S_3

FDRMS

45 No Multivalued Attorbute

5 No Composite Attorbute

5 No Weak Entity.

Consider the following ERD:

Which of the following is the minimum number of relational table and foreign key required for above ERD?

- A. 3, 2
- B. 1, 1
- 2, 1
 - D. None of these

Ang (C)

2 Tables LF.k

Μ

Consider the following ER model:

Which of the following is the minimum number of relational tables and minimum number of foreign key required for

Consider the following ER model:

Assume X is the minimum number of tables, Y is the total number of attributes in relational tables and Z is the minimum number of foreign key, then find the value of X + Y + Z? (17) $\triangle S$

Consider the following ER diagram:

How many total attributes required for the minimized relations

of the above ER diagram?

A. 14

B. 15

18

None of these

Ang (c)

Consider the following ER diagram

Total number of RDBMS table in the above diagram?

Consider the following ER model: If 'x' entries in E_1 and 'y' entries in E_2 . How many entries in relation set (R)?

B. At most x

Exactly x

D. at least x and at most m

y entries

