7.4 关系的性质

定义7.11 设R为A上的关系,

- (1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$, 则称 R 在 A 上是自反(Reflexive)的.
- (2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$, 则称 R 在 A 上是反自反(Irreflexive)的.

实例:

自反:全域关系 E_A ,恒等关系 I_A ,小于等于关系 L_A ,整除关系 D_A 反自反:实数集上的小于关系、幂集上的真包含关系.

$$A=\{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中 $R_1=\{<1,1>,<2,2>\}$ $R_2=\{<1,1>,<2,2>,<3,3>,<1,2>\}$ $R_3=\{<1,3>\}$

 R_2 自反, R_3 反自反, R_1 既不是自反的也不是反自反的.

对称性与反对称性

定义7.12 设 R 为 A上的关系,

- (1) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R$), 则称 R 为 A上对 称(Symmetric)的关系.
- (2) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y)$, 则称 R 为 A上的反对称(Antisymmetric)关系.

实例:对称关系:A上的全域关系 E_A ,恒等关系 I_A 和空关系 \emptyset 反对称关系:恒等关系 I_A 和空关系也是A上的反对称关系.

设 $A = \{1,2,3\}, R_1, R_2, R_3 和 R_4 都是A上的关系, 其中$

$$R_1 = \{<1,1>,<2,2>\}, R_2 = \{<1,1>,<1,2>,<2,1>\}$$

$$R_3 = \{<1,2>,<1,3>\}, R_4 = \{<1,2>,<2,1>,<1,3>\}$$

 R_1 : 对称和反对称;

 R_2 : 只有对称;

 R_3 : 只有反对称;

 R_4 : 不对称、不反对称

传递性

定义7.13 设R为A上的关系, 若

 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)$,则称 R 是A上的传递(Transitive)关系.

实例: A上的全域关系 E_A ,恒等关系 I_A 和空关系 Ø,小于等于和小于关系,整除关系,包含与真包含关系设 $A=\{1,2,3\}$, R_1 , R_2 , R_3 是A上的关系,其中

$$R_1 = \{<1,1>,<2,2>\}$$

 $R_2 = \{<1,2>,<2,3>\}$
 $R_3 = \{<1,3>\}$

 R_1 和 R_3 是A上的传递关系, R_2 不是A上的传递关系.

关系性质的实例

关系的实例:

- 1. 空关系, $R=\{<1,2>,<1,3>\}$ 也是传递的,因为他们使得前件为假;
- 2. 对于所有非空集合,下面三种特殊的关系:

空关系:

反自反,对称,反对称,传递性

全关系:

自反,对称,传递

相等关系:

自反,对称,反对称,传递

关系性质成立的充要条件

定理7.9 设R为A上的关系,则

- (1) R 在A上自反当且仅当 $I_A \subseteq R$
- (2) R 在A上反自反当且仅当 $R \cap I_A = \emptyset$
- (3) R 在A上对称当且仅当 $R=R^{-1}$
- (4) R 在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
- (5) R 在A上传递当且仅当 $R \circ R \subseteq R$

证明 只证(1)、(3)、(4)、(5)

(1) 必要性

任取 $\langle x,y \rangle$,由于R在A上自反必有

$$\langle x,y \rangle \in I_A \Rightarrow x,y \in A \land x=y \Rightarrow \langle x,y \rangle \in R$$

从而证明了 $I_A\subseteq R$

充分性.

任取x,有

$$x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$$

因此 R 在A上是自反的.

(3) 必要性.

$$< x,y> \in R \Leftrightarrow < y,x> \in R \Leftrightarrow < x,y> \in R^{-1}$$

所以 $R = R^{-1}$

充分性.

任取
$$< x,y>$$
,由 $R = R^{-1}$ 得

$$\langle x,y \rangle \in R \Rightarrow \langle y,x \rangle \in R^{-1} \Rightarrow \langle y,x \rangle \in R$$

所以R在A上是对称的

(4) 必要性. 任取<x,y>, 有

$$< x,y> \in R \cap R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in R \land \langle x,y \rangle \in R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in R \land \langle y,x \rangle \in R$$

$$\Rightarrow x=y \land x,y \in A$$

$$\Rightarrow \langle x,y \rangle \in I_A$$

这就证明了 $R \cap R^{-1} \subseteq I_A$

(4)充分性.

$$< x,y> \in R \land < y,x> \in R$$

$$\Rightarrow \langle x,y \rangle \in R \land \langle x,y \rangle \in R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in R \cap R^{-1}$$

$$\Rightarrow \langle x,y \rangle \in I_A$$

$$\Rightarrow x=y$$

从而证明了R在A上是反对称的.

(5) 必要性.

关系性质的三种等价条件

	自反性	反自反性	对称性	反对称性	传递性
集合	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R \circ R \subseteq R$
关系	主对角	主对角线	矩阵是	若r _{ij} =1,且	M ² 中1位置,
矩阵	线元素	元素全是0	对称矩阵	$i\neq j$,则 $r_{ji}=0$	M中相应位
	全是1				置都是1
关系	每个顶	每个顶点	两点之间	两点之间有	点x _i 到x _j 有
图	点都有	都没有环	有边,是	边,是一条有	边, x_j 到 x_k
	环		一对方向	向边	有边,则 x_i
			相反的边		到 x_k 也有边

1. 如何理解运算的封闭性?

举例: 加法和乘法运算对于自然数集是封闭的;

减法对于整数集是封闭的;

除法对于非零的有理数集是封闭的;

2. 关系的这些性质,对于集合的交、并、差、补、逆和合成 这些运算具有封闭性吗?

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√
$R_1 \cap R_2$	V	V		V	√
$R_1 \cup R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	×
R_1 – R_2	×	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×
$R_1 \circ R_2$	$\sqrt{}$	×	×	×	×

下面选证部分结论.

1.对称性对于交运算封闭

证: 对称性, $xR_1 \cap R_2 y \Leftrightarrow xR_1 y \wedge xR_2 y \Leftrightarrow yR_1 x \wedge yR_2 x \Leftrightarrow yR_1 \cap R_2 x$

2.自反性对于并运算封闭

证: 自反性, $xR_1x \Rightarrow xR_1x \lor xR_2x \Leftrightarrow xR_1 \cup R_2x$ (并不要求 R_2 有自反性)

3.反对称对于差运算封闭

证: 反对称, $xR_1-R_2y \wedge yR_1-R_2x \Rightarrow xR_1y \wedge yR_1x \Rightarrow x=y(R_1$ 有反对称性)

4.传递性对于逆运算封闭

证: 传递, $xR_1^{-1}y \wedge yR_1^{-1}z \Leftrightarrow yR_1x \wedge zR_1y \Rightarrow zR_1x \Leftrightarrow xR_1^{-1}z$

5.自反性对于合成运算封闭

证: 自反, $xR_1x \wedge xR_2x \Rightarrow xR_1 \circ R_2x$

补充:

1.对称性对于补运算封闭

证: 反证法, $x\sim R_1 y$,假设 $y\sim R_1 x$,那么 $yR_1 x$,则 $xR_1 y$,与 $x\sim R_1 y$ 矛盾

课后习题

P140:

23 (做"传递性")