

On-Road Object Detection using Computer Vision Techniques for **Advanced Driver Assistance Systems (ADAS)**

Sai Sravan Manne Roll No. EDM13B018

Guided By: Dr. Binsu J Kailath

OBJECTIVE

- Understanding the current
 - on-road object detection techniques
- Developing the initial design
 - in MATLAB, and
 - later implementation using Python
 - with a major focus on optimizing its performance on GPU

INTRODUCTION

- Autonomous Driver Assistance Systems:
 - automate/adapt/enhance vehicle systems
- for safety and better driving
- Autopilot system:
 - disruptive technology in coming decade
- Several algorithms proposed in the past
 - based on edge/pattern/texture recognition
 - to identify on road objects
- In 2012 a new CNN
 - deep learning based algorithm
 - demonstrated highest level of accuracy
 - very minimum computation time
- However, requires high end GPU
 - increase in system cost
- ADAS need reaction time less than 30ms

METHODOLOGY

■ Following are a few techniques that are developed in recent years

Figure 1: LIDAR based detection

Figure 2: Histogram of oriented gradients(HOG) based feature extraction

Figure 3: Tracking based on feature point matching

- In general, neural network and LIDAR based solutions:
 - complex
 - requiring high end GPU,
 - for higher frame rates
- **■** Feature extraction based solutions require
 - image classifiers to eliminate false detections

- Lane out unnecessary area
- Custom filter smoothens
 - broken white lane line markings
 - illumination variations

RESULTS & DISCUSSION

Various stages of the Python function in sequential order

Figure 6: Input Video Frame

Figure 7: Truncated, grayscale output

Figure 8: Edge detection and threshold operation

Figure 9: Solid white lane line detection output

Figure 10: Road separation from surroundings

Figure 11: Custom designed filter output comparison

Figure 12: Reduced color intensity variation

Figure 13: Final output

System specification: windows workstation, Intel-i5, 8GB RAM, 3.2GHz

	FPS	Image Size
Proposed algorithm	38~40	[195,640]
[1],2016	36~38	[640,140]
[2],2016	10~13	LIDAR
[3],2016	24	[300,400]

APPLICATIONS

- This system can reduce
 - usage of high-end GPU in autopilot systems in automobiles
 - overall cost of system, to enhance autonomous vehicles in India

REFERENCES

- [1] Zhipeng Di; Dongzhi He, "Forward Collision Warning system based on vehicle detection and tracking," IEEE International Conference on Optoelectronics and Image Processing (ICOIP) 2016, Pages: 10 – 14.
- [2] Phanindra Amaradi etal, "Lane following and obstacle detection techniques in autonomous driving vehicles," IEEE International Conference on Electro Information Technology (EIT) 2016, Pages: 0674 - 0679.
- [3] Jyun-Min Dai etal, "A driving assistance system with vision based vehicle detection techniques." IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) 2016, Pages: 1 - 9.