W-56

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED

December 1944 as Advance Restricted Report 4F01

FATIGUE STRENGTH AND RELATED CHARACTERISTICS

OF AIRCRAFT JOINTS

I - COMPARISON OF SPOT-WELD AND RIVET PATTERNS

IN 24S-T ALCLAD SHEET - COMPARISON OF

24S-T ALCLAD AND 75S-T ALCLAD

By H. W. Russell, L. R. Jackson, H. J. Grover, and W. W. Beaver Battelle Memorial Institute

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

MATIONAL ADVISORY COMMITTEE FOR AEROMAUTICS

ADVANCE RESTRICTED REPORT

FATIGUE STRENGTH AND RELATED CHARACTERISTICS OF AIRCRAFT JOINTS

I - COMPARISON OF SPOT-WELD AND RIVET PATTERNS

IN 24S-T ALCLAD SHEET - COMPARISON OF

24S-T ALCLAD AND 75S-T ALCLAD

By H. W. Russell, L. R. Jackson, H. J. Grover, and W. W. Beaver

SUMMARY

This report contains detailed results of a number of fatigue tests on spot-welded joints in aluminum alloys. The tests described include:

- l. Fatigue tests on spot-welded lap joints in sheets of unequal thickness of alclad 24S-T. These tests indicate that the fatigue strength of a spot-welded joint in sheets of two different gages is slightly higher than that of a similar joint in two sheets of the thinner gage but definitely lower than that of a similar joint in two sheets of the thicker gage.
- 2. Fatigue tests on spot-welded alclad 75S-T. Spot-welded lap-joint specimens of alclad 75S-T were not any stronger in fatigue than similar specimens of alclad 24S-T.
- 3. Fatigue tests on lap-joint specimens spot-welded after various surface preparations. These included AC welding wire-brushed surfaces, DC welding wire-brushed surfaces, and DC welding chemically cleaned surfaces. While the AC welds were strongest statically, the DC welds on wire-brushed surfaces were strongest in fatigue. Specimens prepared in this way were very nearly as strong as the best riveted specimens tested for comparison.
- 4. Fatigue tests on specimens spot-welded with varying voltage so as to include a wide range of static spot-weld strengths. The fatigue strengths were in the same order as the static strengths but showed less range.

- 5. Fatigue tests on lap-joint specimens with several patterns of spot welds. In general, those patterns which gave highest static strengths gave also highest fatigue strengths.
- 6. Fatigue tests on lap-joint specimens with various rivet patterns. Again fatigue strengths were in the same order as static strengths. These riveted joints were generally stronger in fatigue than corresponding spot-welded joints.

INTRODUCTION

This report describes the results of several investigations which are extensions of previous work. (See references 1, 2, and 3.)

Preceding reports have given results of tests on lap-joint specimens consisting of two sheets of 24S-T alclad of equal thickness joined by a single row of spot welds in a line transverse to the direction of loading.

Part I of this report describes tests on specimens comprising two sheets of different thickness joined by a single row of spot welds. All other tests described here concern specimens made of two sheets of equal thickness.

Part II describes tests on spot-welded specimens of alclad 75S-T alloy.

Part III gives results of tests on specimens spot-welded after different surface preparations. Part IV describes tests on specimens spot-welded at different voltages to obtain spots of widely varying size and static strength. These tests were made in an endeavor to learn what type of spot weld may be best in fatigue.

Part V describes a series of tests with multi-row lap joints. Part VI describes a few tests with one-row and with two-row riveted joints for comparison against results on spot-welded joints. These two groups of tests allowed some examination of the question of what spot-weld pattern is best in fatigue and of what fatigue joint efficiency may be attainable in spot-welded lap joints.

This investigation, conducted at Battelle Memorial Institute, was sponsored by, and conducted with financial assistance from, the National Advisory Committee for Aeronautics.

Acknowledgment is due Mr. E. S. Jenkins of the Curtiss-Wright Corporation and Dr. Maurice Nelles of the Lockheed Aircraft Corporation for advice and assistance in obtaining materials and jointed specimens for this investigation. Specimens for determining the effects of surface preparation were received through the courtesy of Mr. C. W. Steward of the Curtiss-Wright Corporation. Specimens for determining the effect of range in spot-weld size were furnished through the courtesy of Mr. R. C. McMaster of California Institute of Technology. Specimens of 75S-T were received through the courtesy of Mr. T. Piper of Northrop Aircraft, Inc.

I. SPOT-WELDED LAP JOINTS IN SHEETS OF UNEQUAL THICKNESS

Test Pieces and Static Tests

Two lots of specimens have been tested. Lot A comprised specimens using sheet gages 0.032 to 0.040 inch and 0.040 to 0.051 inch. The other lot, B, included gages 0.025 to 0.032 inch, 0.032 to 0.040 inch, and 0.032 to 0.051 inch. Each specimen was made by joining two pieces (each 9 in. long by 5 in. wide) by a single row of spots spaced 3/4 inch apart in a line along the center of a linch overlap section. (See, for example, fig. 1D in reference 1.)

Table 1 indicates the welding conditions. Figures 1 and 2 show sectioned welds. Table 2 gives average weld dimensions and static strength values. Values for some specimens made under comparable conditions with equal gage sheets have been included for comparison.

It may be observed from figures 1 and 2 and from table 2 that welds in sheets of unequal gage show generally greater percentage penetration in the thinner sheet. It also may be noted that the static strength of a weld joining different gage sheets is between the strength value for a weld joining two sheets of the thinner gage and the strength value for a weld joining two sheets of the thicker gage. The weld strength for the unequal sheets is nearer the lower of these strengths (that for a weld joining sheets of the lesser gage).

Fatigue Test Results

Tables 3 and 4 show the fatigue test results for the first lot of specimens. Figure 3 shows load-life curves plotted from

these data for the load ratios 0.25 and 0.75 (curves for R=0.50 have been omitted to avoid confusion, but these curves do not present any new features).

Table 5 showw fatigue test results for the other lot of samples and figure 4 the load-life curves plotted from these data.

In figures 3 and 4, there have been included curves for specimens made by spot-welding equal gage sheets. Fatigue failures (see, for example, fig. 2d) were similar to those in joints of equal-thickness sheet. In a few cases, at high loads, a button was torn out of the thinner sheet. (See, for example, fig. 2e.) In general, the fatigue-strength values bear out the observation made for static-strength values: the strength of a weld joining different gage sheets is slightly higher than that for a weld joining sheets of the thinner gage and definitely lower than that for a weld joining sheets of the thicker gage. It seems probable that this statement has limitations, and the conclusion should not be extended to unreasonable differences in sheet gage or applied without due regard for the welding conditions concerned.

II. FATIGUE TESTS ON SPOT-WELDED ALCIAD 75S-T

Test Pieces and Results of Fatigue Tests

Comparative tests were made on (1) sheet specimens of 75S-T and of 24S-T and on (2) spect-welded lap-joint specimens of 75S-T and of 24S-T. All specimens were made of 0.040-inch alclad sheet.

Monobloc sheet specimens were 1 inch wide at the center section. (See reference 3, fig. 1.) Tables 6 and 7 show data for these specimens, and figure 5 shows resulting lead-life curves. The 75S-T does not appear stronger in fatigue than the 24S-T despite the difference in static properties.

Each spot-welded specimen was made of two pieces 9 inches long by 5 inches wide joined by a single row of spots in the center of a 1-inch overlap section. Tables 8 and 9 show the fatigue test results, and figure 6 shows the load-life curves. For lifetimes beyond 10^5 cycles and for both load ratios (R = 0.25 and R = 0.60) used, the 75S-T specimens appear slightly weaker than the 24S-T specimens. It may be noted that the 75S-T spot welds were slightly (about 8 percent) stronger in static shear than the 24S-T welds.

Examination of Spot Welds

Figure 7 (a, b) shows spot welds in the alclad 24S-T; while figure 7 (c, d) shows welds in the 75S-T alclad.

Welds in the two materials are similar in size, shape, and general accearance. Hardness readings at the dendritic zone (where fatigue failure generally took place) gave 90 Vickers for the 75S-T against 100 for the 24S-T.

The photographs in figure 7 show characteristic fatigue failures. Except for the weld in figure 7b, the welds were from specimens loaded similarly (116 lb per spot at R = 0.25). It may be noted that failure in the 75S-T welds (c, d) occurred at the projection of the inner alclad. Failure in the 24S-T (a) took place in the sheet outside the weld slug. However, at higher loads (b), failure in the 24S-T occurred at the projection of the inner alclad.

Conclusions

For the tests made, spot-welded 75S-T-seemed no stronger in fatigue than spot-welded 24S-T.

It should be remembered that several factors may be concerned: the relative strengths of bare sheet materials, the effect of the cladding, and the type of spot weld.

III. LAP-JOINT SPECIMENS SPOT-WELDED WITH

VARIOUS SURFACE PREPARATIONS

Test Pieces and Static Test Results

Several test pieces of 0.040-inch alclad 24S-T spot-welded after various surface preparations were furnished through the courtesy of Mr. C. W. Steward of Curtiss-Wright. Table 10 lists five groups of specimens. There were three groups of spot-welded test pieces prepared by different processes. For each of these groups, two lots of specimens (A and B) were prepared at different times with, inadvertently, slightly different welding conditions. For comparison of joint efficiencies, two groups (4 and 5) of riveted specimens were furnished.

Figure 8 shows photographs of three failed specimens. One illustrates the spot-weld pattern characteristic of groups 1, 2, and 3, having three rows of spots, with the distance between spots in each row 1/2 inch and the distance between rows 1/2 inch. The other two specimens shown in figure 8 illustrate the rivet patterns of groups 4 and 5.

Table 10 also shows static strength values and static joint efficiency values. It may be noted that the AC wire-brushed specimens had a static joint efficiency (95 percent) considerably higher than that (83 percent) of the strongest riveted joints.

Fatigue Test Results

Nine specimens of each group were furnished. At Mr. Steward's suggestion, three of these were run at each of three presclected loads.

Table 11 presents the results of the fatigue tests. The method of running the tests at three preselected loads brings out the features of scatter in test results. However, with so few load values, it is not feasible to draw load-life curves or to calculate fatigue joint efficiency values for various constant lifetimes. Nevertheless, figure 9 shows approximate load-life curves in the form of scatter bands which do not attempt to distinguish among the different spot-weld groups. From these curves and from a fatigue curve (reference 3, fig. 5) for alclad 24S-T sheet, limiting values of joint efficiencies may be estimated. Such values are given in table 12. Comparison of these values with values for other specimens tested (see sec. 5 of this report) indicates that these test pieces were strong in fatigue.

From table 11, it may be observed that, of the spot-welded specimens tested here, those made by DC welding wire-brushed surfaces appeared slightly the strongest in the fatigue tests. From table 11 and figure 9, it appears that these same spot-welded specimens were nearly as strong as the best riveted specimens.

Examination of Spot Welds

Figures 10, 11, and 12 show photographs of sectioned spot welds. Table 13 gives average values of spot-weld dimensions for samples from the various groups.

Careful examination of table 13 affords an interesting observation. For the AC wire-brushed pieces, specimen 7 had a smaller nugget area and a smaller total weld area than specimen 8 but an appreciably longer fatigue life. This may be connected with the larger corona area of specimen 7. A similar observation applies on comparing specimens 1 and 2. Generally the same observation applies on comparing DC welded specimens with each other. The apparently important contribution of corona bonding to fatigue strength does not appear to extend to the comparison of AC welds with DC welds.

Conclusions

The following conslusions are suggested by the data described:

- 1. Spot-wolded joints can be made to have as high static joint efficiencies and nearly as high fatigue joint efficiencies as riveted joints.
- 2. Of the three types of spot-welded specimens (AC wire brush, DC wire brush, and DC chemically cleaned), the AC wire-brushed were strongest statically, but the DC wire-brushed strongest in fatigue.
- 3. There is a suggestion that, for a given type of welding (AC or DC), corona bonding contributes considerably to fatigue strength.

In view of the relatively small number of specimens, these conclusions must be regarded as tentative.

IV. LAP-JOINT SPECIMENS WITH SPOT WELDS OF WIDELY

VARYING SIZE AND STATIC STREEGTH

Test Pieces and Static Strength

Nine panels with spot welds of successively larger sizes were received, together with radiographs of all welds, from California Institute of Technology through the courtesy of Mr. R. C. McMaster.

Table 14 gives the welding conditions for each panel. Figure 13 shows photographs of spots illustrating the variation in

spot size. (See also figs. 15, 16, 17, and 18.) Table 15 gives the results of measurements of the various spot dimensions and also values of static shear strength from tests on single-spot coupons. The terms used to designate weld dimensions have been defined in a previous report. (See reference 2, p. 4.)

Examination of the welds and calculations from the data in table 15 showed that the corona area was nearly constant throughout the range of welds (0.0316 sq in. for Panel 1 to 0.0320 sq in. for Panel 9). On the other hand, the weld-nugget area increased from 0.0398 to 0.0804 square inch. The static shear strength increased approximately in direct proportion to the nugget area.

Fatigue Test Results

Strips 3 inches wide containing three spot welds each were sheared from the various panels and tested in fatigue. All tests were run at a load ratio R=0.25.

Table 16 presents the results of the fatigue tests, and figure 14 shows load-life curves plotted from these data. To avoid confusion, only results for every odd-numbered panel have been plotted - results for other panels, in general, follow the same pattern.

Two observations are interesting. First, the spread in fatigue strengths is less than that in static-strength values. This seems particularly true for lower loads and longer lifetimes. Second, there is an increase in fatigue strength with increasing weld size and increasing static-strength values. Neither of these observations held for some previously reported tests on spot-welded lap joints (reference 2, p. 10). It seems that fatigue strengths may increase in the same order as static strengths, for welds varied in size only by varying the welding voltage.

Examination of Failed Specimens

Figures 15, 16, 17, and 18 show sections of spot welds from failed samples of the various panels.

It may be noticed that the smaller welds sheared at high loads but cracked from the alchad protrusion at lighter loads. Larger welds "pulled buttons" (figs. 16d and 17a) at higher loads

and sometimes gave rise to failure in the sheet at lighter loads. Overheated and cracked welds (see fig. 18c) showed no signs of weakness in fatigue or of failure through the transverse crack.

V. FATIGUE TESTS ON LAP JOINTS WITH

VARIOUS SPOT-WELD PATTERNS

Tost Pieces and Static Test Results

Table 17 outlines a series of tests on the effect on fatigue strength of varying the spot-weld pattern in simple lap joints, and table 15 shows strength properties of the sheet material used. The purpose was to determine the effects of such variables as the number of rows of spots, the spacing between spots, staggering spots in adjacent rows, and post-aging multirowed joints. The Boeing joint pattern has been included as representative of a joint that is successful in actual service conditions. Figures 19, 20, and 21 show photographs of various joint patterns.

Table 18 gives static test results on test pieces made from the various lots of sheet used for the spot-weld specimens.

Tables 19 and 20 give the welding conditions for the various jointed specimens. Figures 22, 23, and 24 show photographs of sectioned welds. In general, all welds were of good appearance. The one exception was for group 3 M2C, where welds appeared to be overheated.

Table 21 gives static strength values averaged for two representative specimens of each group. It may be observed that:

- l. Increasing the number of rows decreases the strength per spot but increases total joint strength and joint efficiency. (Cf. results for 3 BlC-D, 3 KlC-D, and 3 MlC-D.)
- 2. A spot spacing of 1/2 inch appears to afford a strong joint. (Cf. 3 KlC-D and 3 KlC-F. Note also the high joint efficiencies in groups 3 MlC-F to 3 M3C-F.)
- 3. There does not appear to be any notable effect due to staggering spots in adjacent rows. (Cf. 3 K1C-D and 3 L1C-D.)

- 4. Post-aging (10 hr at 370° F) before welding appears to increase the static joint efficiency; while post-aging after welding may even decrease the static joint efficiency.
- 5. The pattern consisting of three rows of spots, with the spots 1/2 inch apart in each row and with the rows 1/2 inch apart, gave very high static strongths. Of the specimens used in these tests, this pattern produced the strongest joint in static strongth (a joint stronger than the Booing joints tested).

These results are in reasonable accord with test results reported in the literature (references 4 and 5).

Fatigue Test Results

To insure that the alclad 245-T sheet used in making the spot-welded test pieces had normal fatigue strength properties, and to afford base curves for the evaluation of fatigue joint efficiencies, fatigue tests were run on samples of the particular lots of sheet materials used. The resulting data are given in tables 22, 23, and 24, and some of these data are shown as load-life curves in figures 25, 26, and 27. The values for the 0.040-inch sheet are nearly the same as those reported for other lots. (See reference 3, table 2.) Values for the 0.064-inch shoet are close to those for 0.040 inch. For both gages, the effect of post-aging (10 hr at 370° F) on fatigue strengths was slight and was in the direction of reducing the fatigue strongth (cf. reference 3, fig. 5). The 0.016-inch sheet tested appeared to have slightly higher fatigue strengths for lifetimes beyond 106 cycles at a load ratio of R = 0.25 than either the 0.040- or the 0.064-inch sheet.

Tables 25 through 36 give the results of fatigue tests on the variously patterned joints. Most of the tests were run at the load ratio R=0.25 for which the alternating component of load is high, so that effects produced by dynamic loading might be expected to show up. In many cases, a few tests were run at a higher load ratio (R=0.60) in order to note any possible unexpected effect of varying the ratio. Figures 28 through 32 show the results plotted as load-life curves.

In particular, figure 28 shows fatigue test results for specimens of 0.040-inch sheet having one row of spots and for specimens having two rows of spots. It seems fair to conclude that:

- 1. Two rows of spots afford a joint more than 50 percent stronger than a single row.
- 2. It does not make much difference whether the spots in the two rows are staggered or in alinement.
- 3. Using a 1/2-inch spacing between spots in a row gives a stronger joint than a spacing of 3/4 inch, both in static tests and in fatigue tests at R=0.25. However, the strength increase is somewhat dubious at lifetimes in excess of 2 \times 10 cycles.

Joint efficiency values will be discussed later.

Figure 29 shows load-life curves at R = 0.25 for specimens having three rows of spet welds. It may be observed that:

- 1. Joints with the spots spaced 1/2 inch apart in each row were stronger in fatigue (as well as in static tests) than joints with spots spaced 3/4 inch apart. (Cf. 3 MlC-D and 3 MlC-F.)
- 2. Post-aging the sheet before joining increased the static strength and did not significantly affect the fatigue strength. (Cf. 3 MlC-F and 3 M3C-F.)
- 3. Post-aging the joints after welding decreased slightly both the static strength and the fatigue strength. (Cf. 3 M1C-F and 3 M2C-F.)

Figures 30 and 31 show load-life curves for specimens with the Boeing type joint. It is interesting to note the relatively large decrease in fatigue strength with decreasing load and lifetimes increasing to 10 cycles.

Figure 32 shows load-life curves for lap-joint specimens of 0.064-inch sheet. It will be noticed that the same general results held for joints in 0.064-inch sheet as held for joints in 0.040-inch material.

Table 37 shows some values of joint efficiencies. Joint efficiency is here defined as the ratio of the strength per inch of joint to the strength-per-inch width of the sheet material at the same lifetime and at the same load ratio. Values for postaged sheet were used for all jointed specimens post-aged either before or after welding.

Figure 33 shows smoothed-out curves of joint efficiency against lifetime plotted from the values in table 37. With one exception, the fatigue joint efficiencies preserve the same order as the static values. The fatigue values are always lower and decrease somewhat with decreasing load and increasing lifetime. The one exception is the curve for 3 NIE-D (three rows of spots in 0.064-in. sheet) which shows joint efficiencies decreasing rapidly with decreasing load and increasing lifetime. This trend can be observed, of course, in the steep load-life curves for these specimens. (See fig. 32.) No explanation will be attempted now. In comparing the Boeing joint (5 UIC-F) results with results for the other patterns, it must be kept in mind that these Boeing joints were made with roller welds. Previous tests (reference 3) have indicated that roller welds may be slightly weaker in fatigue than spot welds.

Conclusions

Useful interpretation of the results noted above requires correlation with previously reported data and very careful consideration of the limitations necessary in drawing general conclusions from particular laboratory tests. It is believed desirable to omit premature conclusions from this progress report.

It may be observed that, in general, variations of fatigue strength with variations of spot-weld patterns have followed the order of variations in static strength.

VI. FATIGUE TESTS ON LAP-JOINT SPECIMENS

WITH VARIOUS RIVET PATTERNS

Test Pieces and Static Test Results

For purposes of comparison, tests were made on lap-joint specimens fastened by various patterns of flush rivets. Table

38 gives specifications for the test pieces and figures 34, 35, and 36 show photographs of the various types of joints. In choosing the rivet patterns, it was not the intention to duplicate exactly the spot-weld patterns but rather to use rivet spacings characteristic of good commercial practice.

Table 39 gives the results of static tests and shows static joint efficiency values (based on a static ultimate of 66,700 psi for the sheet as received and 69,000 psi for the post-aged sheet). The joint efficiency is here defined to be the strength per gross inch of the jointed specimen divided by the strength-per-inch width of a monobloc specimen of the same gage sheet.

It may be observed from the values listed in table 39 that:

- 1. For the single-row specimens (P1C-D and P1C-F), the 1/2-inch spacing gave a stronger joint than did the 3/4-inch spacing.
- 2. For the 3/4-inch spacing single row (PlC-D and P2C-D), the post-aged specimens gave a higher joint efficiency.
- 3. For specimens with two rows those (Q1C-D and TlC-D) with approximately 3/4-inch spacing between rows were stronger than those with closer spaced rows. Of these two, Q1C-D, which had its rivets in line, appeared stronger than TlC-D in which the rivets were staggered.

Fatigue Test Results

Tables 40 through 45 show the results of fatigue tests on the various specimens. Figures 37, 38, 39, and 40 show various load-life curves plotted from these data.

Figure 37 shows curves at three load ratios for group PlC-D (a single row of rivets spaced 3/4 in. apart). The dotted line shows, for R = 0.25, the curve for the same type of specimens post-aged (P2C-D). Apparently, although post-aging increased the static joint strength, it slightly decreased the fatigue strengths except at very high loads and very short lifetimes.

Figure 38 shows curves (solid lines) for specimens (PLC-F) with rivets spaced 1/2 inch apart. The specimens with the closer spaced rivets appear stronger both statically and in fatigue.

The strength difference is most marked at very low loads and long lifetimes. For example, at a lifetime of $3\times10^\circ$ cycles at a load ratio R=0.25, the 3/4—inch spacing gives only about 60 percent the strength of the 1/2-inch spacing.

Figure 39 shows curves at R=0.25 for specimens with rivets 3/4 inch apart in each row. The increase in strength on adding a second row 3/4 inch away is evident on comparing the two curves. The effect of staggering the spots for the two-row pattern is insignificant. (Both observations apply generally to fatigue curves at R=0.60.)

Figure 40 shows the load-life curves for three groups of specimens, all of which had a pattern consisting of two rows of staggered rivets spaced 3/4 inch apart in each row. The spacing between rows varied from 3/16 to 11/16 inch. Apparently, joints with the largest spacing between rows were strongest, being above that for the specimens (3 BlC-D) with a single row of spot welds and generally near the curve for specimens (3 LlC-D) with two rows of spots. Again the curve for specimens (QlC-D) with two rows of rivets lies very near that for specimens (3 MlC-F) with three rows of spot welds.

With the possible exception of the curve for a single row of rivets, the order of the joint efficiencies in fatigue is much the same as that for static values (fig. 4). Thus, while the results indicate a generally lower joint efficiency in fatigue than in static tests, they imply that riveted joints are better than spot-welded ones in fatigue only as they are also better statically (fig. 42). It also appears possible that spot-welded joints can be made that are as strong in fatigue as riveted joints at the possible expense of having an extra row of spot welds.

Battelle Memorial Institute, Columbus, Ohio, June 1, 1944.

REFERENCES

- 1. Russell, H. W., Jackson, L. R., Grover, H. J., and Beaver, W. W.: Fatigue Characteristics of Spot-Welded 24S-T Aluminum Alloy. NACA ARR No. 3F16, 1943.
- 2. Russell, H. W.: Fatigue Strength and Related Characteristics of Spot-Welded Joints in 24S-T Alclad Sheet. NACA ARR No. 3LO1, 1943.
- 3. Russell, H. W., Jackson, L. R., Grover, H. J., and Beaver, W. W.: Fatigue Strength and Related Characteristics of Joints in 24S-T Alclad Sheet. NACA ARR No. 4E30, 1944.
- 4. Steward, C. W.: Spot-Weld Joint Efficiency for Aluminum Alloys. Welding Jour. Supp., vol. 8, no. 10, Oct. 1943.
- 5. Field, Gordon H., Sutton, H., and Dixon, H. E.: Spot Welding of Light Alloys. Welding Jour. Supp., vol. 8, no. 11, Nov. 1943. (Reprinted from Inst. of Welding Trans., April 1943.)

TABLE 1. WELDING CONDITIONS FOR SHEET OF UNEQUAL THICKNESS

A. Specimens of Lot A Welded on a PMCO-2-8 Sciaky Welder

Settings	-	•032 - •040	•040 - •05	1		
Max. energy relay		162	180			
Resistance blocks		5&6	5&6			
Contactor pales		8	8			
Initiating switch		30	35			
Welding press., gag	;e	50	54			
Forging press., gag	ge ge	50	54			
Forge time relay		3	3	3		
Pressure Appln		variable	variable			
Hold time relay		6 6				
В	· Specimens Winfield	of Lot B Welded rocker arm type a machine	on a Taylor- stored energy			
		Sheet Th	nicknesses			
Settings	025 - 032,	032 - 932,	032 - 040,	032 - 051		
Pressure (Lbs.)	680	800	910	850		
Charging Voltage	1200	1350	1400	1350		
Capacity (mfds)	960	960	1200	1200		
Holding time (dial)	3	3	3	3		

TABLE 2. WELD DIMENSIONS AND STATIC STRENGTHS - SHEETS UNEQUAL GAGE

Specimen Designation	Gages of Sheet	Diameter df Weld	Penetration of Weld	Indentation in Thinnest Sheet	Static (Lbs./Spot)	(2) Remarks
EIBC-D	.032"040"	0.190" - 0.01"	50% in 0.040** 80% in 0.032**	0.004	529	Welded on PMCO-2-S
(1)	.040"040"	0.230	65%	0.005"	615	Sciaky machine
EICD-D	•040 ⁿ - •051 ⁿ	0.190*	50% in 0.051 th 75% in 0.040 th	0.004*	675	
EIAB-D	0.025" - 0.032"	0.120	35% in 0.032% 50% in 0.025	0.004*	310	Welded on Taylor - Win-
	0.032" - 0.032"	0.125	50%	0.002	378	field rocker arm type
MIBC-D	0.032" - 0.040"	0.140"	50% in 0.040" 65% in 0.032"	0.004	438	stored energy machine
(1)	0.040" - 0.040"	0.175 ^{ts}	58%	0.006	520	
EIBD-D	0.032" - 0.051"	0.190*	65% in 0.051 ^{††} 45% in 0.032 ^{††}	0.00619	484	

⁽¹⁾ These comparison values have been taken from previously reported work. In general the welding conditions were similar to those given in Table 1.

⁽²⁾ Static values were obtained at Battelle on six spot specimens exactly like those tested in fatigue. Values reported by the welders for single spot coupons vary slightly from those given above but show exactly the same order for different gages.

TABLE 3. FATIGUE TEST RESULTS FOR SPOT-WELDED LAP JOINT SPECIMENS OF SHEETS OF UNEQUAL THICKNESS

Specimens of Lot A, Sheets 0.032" to 0.040"

		Maximum Load	1		
Specimen No.	Total Lbs.	Lbs./In.	Lbs./Spot	Cycles to Failure	Remarks
Ratio •25					
BIBC-9D	1650	330	275	14,800	.040" sheet cracked welds pulled in .02
7	1500	300	250	19,200	Welds pulled in .032" sheet
1	1250	250	208	61,700	Partially pulled welds in .032" sheet
2	1000	200	167	260,500	Fatigue cracks in both sheets
3	875	175	146	489,400	Fatigue cracks in both sheets
5	780	156	130	545,200	Fatigue cracks in .032 sheets
6	780	156	130	547,700	Fatigue cracks in .032 sheets
4	750	150	125	1,576,800	44 A4 A4 A4
8	650	130	108	1,861,900	97 99 99 99 99
10	625	125	104	3,174,400	99 99 99 99
Ratio .50	C 3 - 2				
16	2100*	420	350	7,300	Pulled welds in .032" sheet
13	1800	360	300	35,300	10 10 10 10 11
12	1500	300	250	120,500	Fatigue cracks in both sheets
11	1250	250	208	286,900	
36	1200	240	200	342,100	Fatigue cracks in .032 sheet
15	1000	200	167	1,115,100	H H H M M
18	850	170	142	2,384,100	Fatigue cracks in .032 sheet
17	825	165	138	1,446,800	Fatigue cracks in •032" sheet
19	750	150	125	4,036,900	Fatigue cracks in •040 sheet
20	700	140	117	>18,936,700	ratigue cracks in solo sneet
Reload	1800	360	300	34,300	Pulled welds in .032" sheet
14	600	120	100	>10,213,200	Lutted Metas IU .035 Busef
Reload	1500	300	250	172,200	Fatigue cracks in both sheets
latio .75		,			
22	2600	420	433	23,000	
32	2300	460	383	113,200	Pulled welds in .032" sheet
26	2000	400	333	121,300	H H H H H
24	1750	350	291	326,800	Fatigue cracks in .040" sneet
35	1500	300	250	1,130,300	Fatigue cracks in both sheets
25	1400	280	233	1,085,100	M M M M M
27	1250	250	208	1,567,200	25 29 25 21 29
34	1200	240	200	3,822,500	11. 11 11 11 11
21	1125	225	188	4,263,000	Fatigue cracks in 040" sheet
23	1000	200	167	4,320,700	Fatigue cracks in .032" sheet
33	900	180	150	>15,972,900	Taragas III .U)C suest
Reload	1500	300	250	1,544,700	Fatigue cracks in both sheets

TABLE 4. FATIGUE TEST RESULTS FOR SPOT-WELDED LAP JOINT SPECIMENS OF SHEETS OF UNEQUAL THICKNESS

Specimens of Lot A, Sheets 0.040" to 0.051"

		Maximum Load	d		
Specimen No.	Total Lbs.	Lbs./In.	Lbs./Spot	Cycles to Failure	Remarks
Ratio •25					λ.
EICD-8D	2250	450	375	7,000	Pulled welds in .040" sheet
7	2100	420	350	14,300	n n n n n
3	2000	400	333	14,900	10 20 10 20 20
1	1750	350	292	39,500	Fatigue cracks in .040" she
2	1350	270	225	109,400	14 04 01 01 11
4	1100	220	183	228,700	19 29 01 19 61
5	875	175	146	1,097,200	19 14 93 19 99
10	850	170	142	767,100	18 19 10 11 11
28	825	165	137	1,705,800	
6	800	160	133	> 9,849,300	
Reload	1500	300	250	123,100	Fatigue cracks in .040" she
atio .50					
19	2750	550	458	1,100	Pulled welds in .040" sheet
13	2375	475	396	32,400	FF 17 15 16 66
18	2250	450	375	39,400	
. 12	2000	400	333	108,500	Fatigue cracks in both shee
11	1500	300	250	220,700	U to 12 11 10
17	1400	280	233	427,700	Fatigue worse in .040" shee
14	1125	225	187	1,268,100	Fatigue cracks in .040" she
16	1000	200	167	3,039,900	18 89 90 18 82
16	1000	200	167	> 9,412,200	
Reload	1750	350	292	144,800	
9	900	180	150	>10,229,400	
Reload	1500	300	250	263,300	Fatigue cracks in both sheet
27	3250	650	542	40,700	Pulled welds in .040" sheet
25	2850	570	475	179,200	H H H H
22	2500	500	417	429,200	Fatigue cracks in both sheet
35	2400	480	400	286,900	Pulled welds in both sheets
36	2100	420	350	426,300	Fatigue cracks in both sheet
21	2000	400	333	1,291,800	11 11 11 11
23	1700	340	283	2,255,000	Fatigue cracks in .040" shee
26	1600	320	267	3,485,500	
32	1500	300	250	2,576,000	Fatigue cracks in .040" shee
34	1400	280	233	> 17,886,500	
Reload	2500	500	417	148,900	Fatigue cracks in .040" shee
33	1300	260	217	> 11,472,500	
Reload	2700	540	450	143,400	Pulled welds in .040" sheet
20	1200	240	200	> 10,368,400	
Reload	2400	480	400	344,900	Fatigue cracks in both sheet

TABLE 5. FATIGUE TEST RESULTS FOR SPOT-WELDED LAP JOINT SPECIMENS OF SHEETS OF UNEQUAL THICKNESS

Specimens of Lot B

		Maximum Load	i		
Specimen No.	Total Lbs.	Lbs./In.	Lbs./Spot	Cycles to Failure	Remarks
			Sheet 0.025" t	0.032"	
Ratio .25	1000	200	167	7 400	Sheared welds
ELAB 2 D C 7	1000 875	175	146	7,400	3 sheared welds - 3 pulled buttons
1	750	150	125	65,000	Fatigue cracks in both sheets
3	625	125	104	318,100	n n n n
9	540	108	90	936,600	Fatigue cracks in 0.025" sheet
4	500	100	83	1,119,400	99 97 99 11 91
5	400	80	67	1,822,200	15 19 19 19 17
8	400	80	67	4,154,100	11 11 11 11
6	360	72	60	4,755,600	11 11 11 10
			Sheet 0.032"	to 0.040"	
EIBC 2 D	1250	250	208	20,800	Fatigue cracks in 0.032" sheet
1	900	180	150	177,000	H H H H H
3	650	130	108	944,600	11 11 11 11 11
4	550	110	92	1,287,700	51 19 11 10
			Sheet 0.032"	to 0.051"	
EIBD 2 D	1500	300	250	11,700	Sheared welds
C 4	1200	240	200	79,700	Fatigue cracks in 0.032" sheet
					Buttons pulled in 0.051" sheet
1	1000	200	167	245,000	Fatigue cracks in 0.032" sheet
7	810	162	135	770,300	Fatigue cracks in 0.032" sheet
8	810	162	135	595,500	11 11 11 11 11
3	750	150	126	1,706,000	Fatigue cracks in both sheets
5	675	135	112	1,407,600	Fatigue cracks in 0.032 sheet
6 Paland	600	120	100	> 17,166,900	
Reload 2nd Reload	300 2500	60	50	> 1,967,400	
Reload 9	550	500 110	417 92	300	Sheared welds
3	350	110	36	2,344,800	Fatigue cracks in 0.032 sheet

TABLE 6. FATIGUE TEST RESULTS FOR MONOBLOCK SPECIMENS OF 24S-T ALCLAD 1.000" X 0.040" AT CENTER SECTION

	Maximum	Load		Type of	
Specimen No.	Total Lbs.	p.s.i.	Cycles to Failure	Failure	
Ratio .25					
4AlC 5	2560	64,000	26,700	1/4" off center	
4	1948	50,000	112,000	3/8 ^m ditto	
1	1560	40,000	234,900	9/16" "	
2	1166	30,000	927,100	1/2" "	
3	1054	27,000	>11,410,500	Did not fail	
Ratio .60					
7	2496	64,000	138,500	7/16" off cente:	
6	2106	54,000	492,900	1/4" ditto	
8	1710	44,100	1,722,200	1/8" "	
	Sta	tic Tensil	e Results		
Specimen No.	Static Ultipes.i		Static Yield, p.s.i.	Elongation. % in 2"	
4AlC 9	67,180		41,800	15.3	
10	66,150	Chest And	41,100	15.7	

TABLE 7. FATIGUE TEST RESULTS FOR MONOBLOCK SPECIMENS OF 758-T ALCLAD 1.000" X 0.040" AT CENTER SECTION

Specimen We	Maximum Total Lbs.	CONTRACTOR SERVICE AND ADDRESS OF THE PERSONS ASSESSED.	Good on the Post of	Type o	
Specimen No.	Total Los.	p. s. i.	Cycles to Failu	re Failu	re
Ratio .25					
XAIC 6 3 5 1	2496 1948 1634 1560	64,000 50,000 43,000 40,000	22,400 72,900 65,000 111,900	1/8"	
4 2 Reload	1292 1170 1655	34,000 30,000 45,000	250,700 >10,116,300 84,600	1/4" 01	er "
Ratio .60	2220 1362	57,000 35,000	347,400 >12,117,200	9/16 ^m of	Y center
, David	1950	50,000	921,900		
	8	Static Tens	sile Results		
Specimen No.	ctatic Ultim	nate,	static Yield, p.s.i.		
(A1C 9	78,300 77,600		66,800 66,600	9.3 9.6	

TABLE 8. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS OF 24S-T ALCLAD WITH ONE ROW OF SPOT WELDS 3/4" SPACED

(Group 4BICD)

		Maximum Load					
Specimen No.	Total Lbs.	Lbs./Spot	Lbs./In.		Cycles to Failure		Remarks
Ratio .25							
4BIC 4D	2000	333	400		2,900	She	ar
0 1	1500	250	300		8,000		and pulled buttor
2	1000	167	200		3,800		igue eracks
5	800	133	160		5,600		ditto
3	700	116	140	5,45	3,800		*
Ratio ,60							
8	2000	333	400	40	9,500	P111	led buttons
6	1500	250	300		9,200	-	igue cracks
7	1000	167	200	1,683			ditto
9	800	133	160 >	13,743	3,700		
Reload	1700	283	340		7,300	Pul	led bottons
		Static Te	ensile Resu	ults			
				St	atic Ulti	nate	
	Specimen N	0.	Total	Lbs.	Lbs./Sp	ot	Lbs./Inch
4B	IC 14D		2700		450		533
C	15		2600	/	433		507

TABLE 9. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS
OF 75S-T ALCIAD WITH ONE ROW OF SPOT WELDS
3/4 INCH SPACED

(Group BlC-D

		Maximum Loa	d		
Specimen No.	Total Lbs.	Lbs./Spot	Lbs./In.	Cycles to Failure	Remarks
Ratio .25					
B1C-3D	2000	333	400	3,800	Shear
1	1500	250	300	32,000	Fatigue cracks
2 4	1000	167	200	147,100	Ditto
4	700	116	140	983,200	11
5	580	97	116	1,279,100	11
	480	80	96	> 11,462,500	8
Reload	1000	166	200	197,500	"
Ratio .60	2400	400	480	8,500	Shear and pulled
0	2000	333	400	36,300	Pulled buttons
9 7	1500	250	300	149,200	Fatigue cracks
8	1000	167	200	895,800	Ditto
			Static Ten	sile Results	
			Static U	Itimate	
Specimen No.		Total Lb			/In.

W-FR

TABLE 10. SPECIFICATIONS OF SPECIMENS WITH VARIED SURFACE PREPARATIONS AND WELDING CONDITIONS

Group	Surface Preparation	Welding conditions (2)	Static Load, (lbs.)	(3) Joint Eff.	Cracks via X-ray	Remarks
1	Sol. 14 etch. (1) Wire brushed. Welded with 10 min. B. Diversey cleaner.	pe. D.O. weld. Tip force 1370#, 1.65KV 800 mfd, 195 turns ratio 700#/ spot setup D.C. weld. Tip force hed.1200#, 1.88KV 800 mfd, 195 turns ratio Dome tips 3*A 825#/spot setup	4840 4530	89.0 ⁽⁵⁾	No Yes	Specially made welds with fused Alclad ring around nugget (good corona bonding) adds approx. 35% to spot strength. Note larger welds compared to first group of specimens.
2	A. Alcohol dip and wing Sol. 14 etch only B. Diversey cleaner then Clepo etch only	pe. D.C. weld. Tip force 1370#, 1.75KV, 800 mfd. 195 turns ratio 570#/ spot setup D.C. weld. Tip force 1200#, 1.85KV, 800 mfd. 195 turns ratio Dome tips 3*R, 650#/spot setup	3800	73.4 ⁽⁵⁾ 70.3 ⁽⁴⁾	Yes	Corona bonding poor. Larger nuggets than Group 1. Lower eff. due chem cleaning. Note larger welds compared to first group of specimens.
3	Sol. 14 etch. Wire broed. Welded within 10 r. B. Diversey cleaner.	min.timing Sc; 750 spot setup A.C. weld. Tip force med. 600 24700 amp. tim-	5180	95.0 ⁽⁵⁾	No No	Good corona bonding adds approx. 40% to spot strength. Note larger welds compared to first group of specimens.
Ħ	5-Al7ST 100° rivets 3 dimpled. 1000#/rivet	/16" diam. Both sheets	4100		73.6 ⁽⁵⁾	
5	12-A17ST 100° rivets,	1/8 [#] diam.	7410		82.7(4)	Believed to be best tivet combination

⁽¹⁾ Sol. 14 developed by R.P.I.

⁽²⁾ D. C. welds made on Federal Model P3-12-RA machine, throat 21", Tips ElK alloy 3" R. A. C. welds made on Federal P3-12-RA, throat 21", G. E. Control Panel CR7503, Tips 3" R.

⁽³⁾ Average values for these specimens.
(4) Based on actual dimensions and 66,400 p.s.i. for parent metal.
(5) Based on actual dimensions and 66,900 " " "

The above information was furnished through the courtesy of Mr. C. W. Steward.

TABLE 11. FATIGUE TEST RESULTS FOR SPECIMENS WITH VARIED SURFACE PREPARA-TIONS AND WELDING CONDITIONS

TABLE 11. CONTINUED

Specimen and Group	Maximum Load (Total Eds.)	Cycles to Pailure	Average Cycles to Failure	Specimen and Group	Maximum Load (Total Lbs.)	Cycles to Failure	Average Cycles to Failure
Group 1: D.C. Welds wire brush			(Lot B)	Group 3: AC Welds wire brush			(Lot B)
Lot A				Lot A			
1	3070	15,300		1	3070	6,200	
4	1535	104,900		4	1535	89,300	
7	920	2,243,800		7	920	512,100	
ot B				Lot B			
2	3070	14,100]	13,550	2	3070	5,4007	6,050
3	3070	13,000	20,000	3	3070	6,700	0,000
5	1535	98,400	110,350	5	1535	81,5007	81,150
6	1535	122,300	220,000	6	1535	80,800	01,100
8	920	600,000	590, 900	8	920	287,5001	275,800
9	920	583,800]		9	920	264,100	210,000
roup 2: D.C. Welds				Group 4: 5 rivets			
chem clean				i	3070	6,2007	
				2	3070	8,200	6,400
ot A				3	3070	4,800	
1	3070	19,700		4	1535	89,3001	
4 7	1535	65,800		5	1535	99,800 >	109,600
ot B	920	307,900		6	1535	139,700	
2	3070	3,700]		7	920	719,3001	
3	3070	4,400	4,050	8	920	106,300 > -	597,000
5	1535	73,500		9	920	665,400	
6	1535	73,700	 73,600				
8	920	412,100]		Group 5: 12 rivets	7000		
9	920	500,000	426,050	2	3070 3070	11,300	10,300
				3	3070	10,300	20,000
				7 4	1535	9,300	
				5	1535	140,2007	abor too
				6	1535	129,700	148,400
				7	920	175,200 2,167,800	
				8	920	1,157,300	1.503.600
				9	920	1,205,600	
					300	1,000,000]	
				THE RESIDENCE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE OWNER, WH	The same of the sa	American III	

TABLE 13. FATIGUE STRENGTH AS A FUNCTION OF SPOT SIZE IN SPOT WELDS MADE WITH DIFFERENT SURFACE PREPARATION

Specimen	Lbs Total	Cycles to Failure	Corona Diameter, Inches (Total)	Corona Area*, Square Inches	Nugget Diameter, Inches	Nugget Area, Sq. Inches	Weld Penetration % of Total Sheet (2 X 0.040)
AC-WB-#1	3070	8300	0.278	•0502	0.115	•0104	50
AC-WB-#2	3070	5400	0.288	•0389	0.183	•0264	65
AC-WB-#7	920	512,100	0.275	•0469	0.126	•0125	50
AC-WB-#8	920	287,500	0.290	.0416	0.177	e0246	65
DC-WB-#1	3070	15,300	0.230	.0242	0.149	.0174	50
DC-WB-#2	3070	14,100	0.250	•0275	0.166	.0216	65
DC-WB-#7	920	2,243,800	0.285	•0384	0.180	.0255	65
DC-WB-48	920	600,000	0.265	•0269	0.190	•0283	65
DC-CC-#1	3070	19,700	0.260	•0277	0.180	•0265	50
DC-CC-#2	5070	3,700	0.256	•0202	0.200	.0314	65
DC-CC-#7	920	307,900	0.251	•0296	0.159	•0199	50
DC-CC-#8	920	412,100	0.258	•0218	0.197	•0305	50

AC - Alternating current

DC - Direct gurrent

WB - Wire brush cleaned

CC - Chemically cleaned

TABLE 12. APPROXIMATE JOINT EFFICIENCIES FOR SPECIMENS WITH VARYING SURFACE PREPARATIONS

Specimen		Joint Eff. in Per Cent at Various Lifetimes							
Туре	104 Oyoles	5 x 10 ⁴ Oycles	10 ⁵ Cycles	5 x 10 ⁵ Cycles	10 ⁶ Oycles				
Spot welded Riveted	54-63 58-64	38-47 42-47	31-42 40-44	30-38 36-41	39 36-41				

Above are approximate limiting values from the scatter bands shown in Figure 3. Calculations use gross area in both cases and sheet data from Reference 3 page 302.

TABLE 14. WELDING CONDITIONS FOR PANELS FROM CALIFORNIA INSTITUTE OF TECHNOLOGY

Material:	0.040" to 0.040" Alclad 24S-T Taylor-Winfield Hi-wave, condenser				
Machine:					
71	1100 lbs.	er, 440 line volts.			
Electrode pressure:		(constant)			
Capacitance:	960 mfd.	(constant)			
Voltage:		(variable)			
Throat:	3linches	(constant)			
Arm:	9 1/2 inches	(constant)			
Radius top electrode	4 inches	(constant)			
Radius bottom electrode	4 inches	(constant)			
Material clean	ed in Oakite #63 and	d Oakite #64			
Panel No.	Vol	tage			
,	13				
1	1500				
2	150	00			
	150 160				
2 3 4		00			
3	16	00			
3 4	160	00 00 00			
3 4 5	166 170 180	00 00 00 25			
3 4 5 6	160 170 180 190	00 00 00 25			

^{*} Area assumed bonded. The extent of bonding was estimated from the appearance of welds after the sheets were torn apart.

TABLE 15. PROPERTIES OF SPOT WELDS FROM CALIFORNIA INSTITUTE OF TECHNOLOGY SPECIMENS

Panel Number	Avg. Weld Nug Radiographs, Inches	get Diameter Micrographs, Inches	Avg. Corona l Radiographs, Inches	Diameter (1) Micrographs, Inches	Average Penetration, Inches	Max. Offset from Center Line, Inches	Max. Indentation on One Side, Inches	Average (2) Static Shear Strength, Pounds/Spot	Remarks
1	0.131 -0.010	0.102-0.010	0.214-0.010	0.225-0.001	0.020±0.003	0	0.004	230±30	A few abnormally large welds are in this group. Some
2	0.139=0.010	0.122-0.010	0.224-0.010	0.236±0.001	0.031-0.002	0	0.005	320-20	welds unbonded with included Alclad. Very evenly shaped, no cracks or includ-
3 4	0.170±0.010 0.179±0.010	0.162 - 0.005 0.171 - 0.010	0.247 [±] 0.010 0.250 [±] 0.010	0.249 ⁴ 0.001 0.259 ⁴ 0.002	0.037-0.003 0.040-0.005	0 0.002	0.006	419 [±] 20 490 [±] 20	ed Alclad in nugget. Ditto #2 Nugget shape becomes distorted, other-
5	0.198-0.010	0.193-0.005	0.260-0.004	0.27000001	0.051-0.005	0.003	0.007	570±10	wise OK. Nugget rounded on
6	0.213 +0.010	0.202-0.010	0.271-0.010	0.285-0.002	0.058 -0.005	0.004	0.007	583 ± 5	one side. Nugget approaching
7	0.228-0.010	0.220±0.005	0.283±0.007	0.294-0.002	0.06220.008	0.005	0.008	735 ± 10	"dumbbell shape". Some small transvers
8	0.244 = 0.010	0.245-0.005	0.301-0.010	0.312-0.005	0.065 0.005	0.007	0.010	963-10	cracking. Cracks and porosity Nugget melted through
9	0.252 -0.020	0.248-0.010	0.314-0.020	0.320-0.015	0.070-0.005	0.007	0.012	1075 -40	outer Alclad. A few abnormally small welds are in
									small welds are in this group. All wel overheated with cracks, porosity and melting of outer Alclad.

Total diameter of corona ring - not a direct measurement of corona area.
 Average of results from 3 specimens.

Note: Nearly all welds were round with respect to the surface having the same diameters parallel and perpendicular to the direction of testing.

TABLE 16. FATIGUE TEST RESULTS FOR SPECIMENS WITH A WIDE RANGE OF SPOT WELD SIZE AND STATIC STRENGTH VALUES

Specimens: 3" Wide, 0.040" - 0.040" Alclad 245-T.
3 Spots in row Transverse to Loading

	T			 	
Specimen No.	Maximum Total		Lbs./	Cycles to Failure	Turne of Prock
110 8	103.	Spot	111.	ratture	Type of Break
Ratio .25 HIC 1-3 1-4 1-2	522 398 318	174 133 106	174 133 106	59,000 1,613,900 2,958,000	Shear Fatigue crack
2-3	750	250	250	2,90p	Shear
2-4	570	190	190	130,100	
2-2	474	158	158	831,900	
2-5	390	130	130	2,499,000	
3-3	900	300	300	4,800	
3-1	615	205	205	138,500	
3-2	393	131	131	1,206,200	
3-4	348	116	116	3,410,100	
4-1	736	245	245	800	Shear
4-3	735	245	245	46,900	
4-2	468	156	156	974,400	
4-4	390	130	130	4,158,000	
5-1	846	282	282	44,100	Pulled buttons
5-4	540	180	180	321,500	
5-3	339	113	113	>9,275,100	
Reload	1200	400	400	3,200	
6-1	864	288	288	17,200	
6-2	552	184	184	416,000	
6-3	480	160	160	818,000	
6-4	408	136	136	2,298,600	
7-1	1104	368	368	13,100	
7-4	840	280	280	82,700	
7-2	702	234	234	147,400	
7-3	450	150	150	2,351,800	
8-1	1428	476	476	5,500	
8-2	912	304	304	67,400	
8-3	630	210	210	331,100	
8-4	420	140	140	4,075,600	
9-1	1596	532	532	2,100	Pulled buttons
9-2	1014	338	338	102,900	
9-3	720	240	240	247,300	
9-4	450	150	150	>10,238,700	
Reload	1800	600	600	3,300	

TABLE 17. SPECIFICATIONS FOR SPECIMENS WITH VARIOUS SPOT WELD PATTERNS

Specimen Designation	No. Rows	Total No. Spots	Spot Spacing (Inches)	Overlap (Inches)	Distance (2) Between Rows (Inches)	Remarks
0.016" sheet	4	40(1)	효	1½	(See Fig. 3)	Boeing joint
0.040° sheet 3 BlC-D	1	6	3/4	1		
3 KlC-D 3 KlC-F 3 LlC-D	2 2 2	12 18 12	3/4 12/2 3/4	1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	L L L L S	
3 M1C-D 3 M1C-F M2C-F	3 3 3	18 29 29	3/4 (3) (3)	2 2 2	-	Post-aged (3)
3 M3C-F	3	29	1 2	2	½ S	after welding Post-aged be- fore welding(3)
5 Uic-F	4	40(1)	1/2	2	(See Fig. 3)	
0.064" sheet 3 BIE-D	1	6	3/4	1		
3 N1E-D 3 N2E-D	3	18 18	3/4 3/4	2½ 2½ 2½	3/4 S 3/4 S	Post-aged (3)
3 N3E-D	3	18	3/4	21/2	3/4 S	after welding Post-aged be- fore welding(3)

TABLE 18. STATIC TEST RESULTS FOR SHEET USED IN SPOT WELD PATTERN SPECIMENS

(All Sheet 24SeT Alclad)
(All Test Pieces 1" Wide at Center Section)

		Ultimate	Yield	Elongation
Specimen	Gage (Inches)	(p.s.i.)	(Q.2% in 2") (p.s.i.)	(in 2") (%)
As Received Alf 8 Alf 9	0.016 0.016	66,250 66,250	45,600 46,100	13.2 13.9
3 AlC 12	0.040	66,200	46,800	14.2
3 AlC 13	0.040	66,700	45,600	14.1
5 AlC 9	0.040	67,200	43,680	14.3
5 AlC 10	0.040	67,200	43,680	16.6
3 AlE 12	0.064	69,900	50,266	16.2
3 AlE 13	0.064	69,900	50,266	16.4
Post-Aged* 3 A2C 22 3 A2C 23	0.040 0.040	68,700 69,000	64,200 63,900	4.5
3 A2E 20	0.064	73,200	68,300	4.8
3 A2E 21	0.064	73,200	67,900	4.5

^{*} Heat treated ten hours at 370°F.

(3) Heat treated ten hours at 370°F.

⁽¹⁾ In these tests, the total number of spots varied slightly from one specimen to another. Values given here are average ones. Slight variations in individual groups are discussed in the text.

⁽²⁾ S denotes spots in adjacent rows staggered, L spots in Tine. See Figures 19, 20 and 21 for illustrations.

TABLE 19. WELDING CONDITIONS FOR LAP JOINTS WITH VARIOUS SPOT PATTERNS

Machine: Federal Spot Welding Machine, Model P3-12-RA Roytheon Condenser Discharge Unit, Spec. No. W-4508.

Specimen Groups	ng	Etchant					
Surface Preparation B B1C-D, 3 K1C-D, 3 K1C-F,)							
3 Llc-D, 3 Mlc-D, 3 Mlc- 3 Ble-D, 3 Nle-D, 3 N2E-		ру	Cle	эро			
3 N3E-D							
3 M2C-F, 3 M3C-F	Acetone d	lip and	wipe R.H	P.I. Sol'n. 14			
Specimen Groups	Tip Force (Lbs.)	K.V.	Mfd.	Turns Ratio			
	Machine Settings						
3 Blc-D, 3 Klc-D, 3 Klc-	F,)						
3 Llc-D, 3 Mlc-D, 3 Mlc-	F,) 1200	1.75	800	195			
3 M2C-F, 3 M3C-F							
3 B1E-D, 3 N1E-D, 3 N2E-	D 2000	1.98	1800	390			
3 N3E-D	2000	1.80	1800	390			

Note: 3" Rad. dome tips used for all groups.

TABLE 20. WELDING CONDITIONS FOR BOEING JOINT SPECIMENS

- 1. Details for joints in 0.016" sheet are not available. Conditions were those of commercial practice.
- 2. Joints in 0.040" sheet were made on a Federal Condenser Discharge Roll Spot Welder, Serial 8908, 440 volt, 60 cycles. Conditions?

Etch - Six minutes in Oakite 84-A Upper Wheel: $(10^n$ diameter $(\frac{1}{2}^n$ wide face with $1\frac{1}{2}^n$ radius

Lower Wheel: $(11\frac{1}{8})^n$ diameter $(7/8)^n$ wide flat face

TABLE 21. STATIC STRENGTH FOR LAP JOINTS WITH VARIOUS SPOT PATTERNS

Specimen Group	Total Lbs.	Lbs. per Spot	Joint Eff.
U1F-F	3,330	61	68
3 BlC-D	3,805	634	29
3 KlC-D	6,930	577	52
3 KlC-F	8,970	500	68
3 L1C-D	6,615	550	50
3 MlC-D	8,860	493	67
3 MlC-F	10,250	354	77
3 M2C-F	9,360	319	68*
3 M3C-F	11,050	381	80*
5 UlC-F	9,700	226	72
3 BIE-D	6,970	1,161	31
3 NIE-D	14,750	820	. 66
3 NZE-D	17,170	955	75*
3 N3E-D	18,240	1,013	80*

**TSJd static ultimate of post-aged sheet.

TABLE 22. FATIGUE TEST RESULTS FOR MONOBLOCK SPECIMENS OF SHEET USED FOR BOEING JOINT SPECIMENS

	Maximu	m Load		Position
Specimen No.	Lbs.	p.s.i.	Cycles to Failure	
(0.016" gage Ratio .25	as recei	ved)		
AlF 5 4 2 1 6 3 Reload	1024 966 836 640 578 482 644	64,000 60,000 52,000 40,000 35,000 30,000 40,000	28,400 31,100 72,700 368,000 3,147,300 > 9,947,100 306,400	Failed 1/8" off ctr. Failed in center Failed 1/16" off ctr. Failed 5/8" off ctr. Failed in center Did not fail Failed in center
Ratio .60 Alf 10 12 11 7 Reload	966 912 880 800 976	60,000 57,000 55,000 50,000 62,000	551,400 545,200 2,708,500 >10,168,800 497,100	Failed 1/2" off ctr. """ Failed 11/32" off ctr. Did not fail Failed 1/8" off ctr.
(0.040" gage Ratio .25	as recei			
5 AlC 8 3 1 2 4 5	2600 2410 2010 1610 1360 1044	65,000 60,000 50,000 40,000 34,000 26,000	32,800 63,600 117,100 262,500 563,400 2,384,900	
5 AlC 7	2400 1800	60,000 45,000	239,800 2,942,800	

TABLE 23. FATIGUE TEST RESULTS FOR MONOBLOCK SPECIMENS OF OF 0.040" 248-F ALCLAD

O.064" 24S-T ALCLAD

	1			Charles Call death and the Control of the Control o					
Specimen No.	Maxin Total Lbs.	p.s.i.	Cycles to Failure	Position of Break	Specimen No.	Maximum L Total Lbs.	p.s.i.	Cycles to Failure	Position of Break
Ratio .25		As receiv	red		Ratio .25	As rec	eived		
					3 A1E 9	4224	66,000	36,400	Failed 1/8 off ctr.
3 A1C 6	2600	65,000	26,000 49,200	Failed in center	8	3840	60,000	48,400	Failed a off center
4 1	2000 1760 1520	50,000 44,000 38,000	101,000 171,300 301,000	Failed 1/4" off center Failed in center Failed 1/2" off center	6	32.00	50,000	53,600	
17	1288	33,000	410,200 775,100	Failed 1/2" off center Failed 1/8" off center	1	2560	40,000	201.300	Failed in center
7 9	1080	27,000 25,500	910,200 2,333,200	Failed 1/2" off center Failed in center	2	2180	34,000	439,300	11 10 11
8	960	24,000	7,546,900	Failed in lower grip	3	1860	29,000	894,500	Failed 7/16" off ctr.
Ratio .50					7	1730	27,000	> 10,273,300	Removed unbroken
11	2605 2205	65,000 55,000	99,500 206,100	Failed 3/8" off center Failed 1/4" off center	4	1600	25,000	> 9,900,000	Removed unbroken
14 16 18	1522 1440 1320	38,000 36,000 33,000	1,434,800 2,946,400 >11,347,700	Failed in center Failed 1/4" off center Did not fail	Ratio .25	Post-a	ged		
Reload	2000	50,000	224,800	Failed in center	3 A2E 17	4550	71,000	5,800	Failed 1 off ctr.
Ratio .75					16	3840	60,000	33,000	Failed 5/8" off
	2600 2210	65,000 55,000	805,600 4,423,600	Failed in center	18	3644	57,000	34,200	center Failed 1/8" off center
Ratio .25		Post-aged	•		14	3200	50,000	113,600	Failed 1/16" off
	2000	50,000	72,200	Failed in center	10	2560	40,000	187,600	Failed 3/4" off
25 20	1600 1200	40,000 30,000	145,200 469,300	Failed 1/8" off center Failed 1/2" off center	11	1920	30,000	756,800	Failed in off ctr.
24 Reload	972 1556	25,000	>11,835,800 55,400	Did not fail Failed 1/4" off center	15	1730	27,000	>10,705,700	
	2400	60,000	30,200	Failed 1/4" off center	Reload	2560	40,000	176,900	

^{*} Heat treated ten hours at 370°F.

TABLE 25. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH A SINGLE ROW OF SPOT WELDS

(Group 3 BlC-D 0.040" Sheet) *

		ximum Load	d		
Specimen No.	Total Lbs.	Lbs./ Spot	Lbs./ Inch	Cycles to Failure	Remarks
Ratio .25					
3 B1C-1 D	3200	533	640	300	Pulled buttons
2	2000	666	400	9,700	11 11
3	1250	208	250	397,300	Fatigue cracks
5	1000	167	200	1,132,300	Fatigue cracks
6	900	150	180	1,015,600	Fatigue cracks
8	775	129	155	2,386,500	Fatigue cracks
11	650	108	130	> 10,003,100	11 11
Reload	1200	200	240	376,700	11 11
Ratio .60					
3 B1C-9 D	3000	500	600	4,400	Five pulled but-
4	2000	333	400	121,000	tons, 1 shear Five pulled but-
7	1250	808	250	1,170,700	tons Fatigue cracks
12	1000	166	200	>10,807,800	Did not fail
Reload	1800	300	360	108,700	Pulled buttons
10	950	158	190	>10,141,500	Did not fail
Reload	2500	416	500	11,000	Pulled buttons

TABLE 26. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH TWO ROWS OF S POT WELDS

(Group 3 K1C-D 0.040" Sheet)*

1					
	Specimen No.	Total Lbs.	Maximum Load Lbs./Spot	Lbs./Inch	Cycles to Failure
	Ratio .25				
	3 KlC-3D	4000	333	800	2,300
	1	3000	250	600	13,700
	12	3000	250	667	18,200
	2	2500	208	500	105,100
	14	2400	200	533	92,600
;-	4	1800	150	360	541,200
-	13	1800	150	400	349,500
	5	1400	117	280	1,393,800
	7	1250	104	250	3,244,800
	Ratio .60				
	3 Klc-8D	1800	150	360	1,745,900
	9	1400	117	280	> 36,001,400

^{*} Specimen 3 BlC-D: Single row of spots 3/4" apart in 1" overlap.

TABLE 27. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH TWO ROWS OF SPOT WELDS

(Group 3 KlC-F 0.040% Sheet)*

TABLE 28. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH TWO ROWS OF SPOT WELDS

(Group 3 L1C-D 0.040" Sheet)*

Specimen No.	Motal Lbs.	Lbs./Spot		Cycles to Failure
Ratio .25				SIRE Michiganini que discritor à successión mondinant de sellent mayor que que que que que que de significa de
3 KlC-9F	5000	277	1000	6,500
8	4000	222	800	21,600
î	3000	167	600	72,500
2	1800	100	360	476,100
3	1800	100	360	568,000
5	1500	83	300	6,614,500
6	1000	56	200	>10,786,400
Ratio .60				
3 KlC-13F	6000	333	1200	11,500
11	4500	250	900	95,000
7	3000	167	600	774,900
10	1800	100	360	1,707,800
12	1400	78	280	>12,210,100
Reload	3000	167	600	1,001,700

	3000	101	600	1,001,700	
*5	Specimens 3	Di Sy	stance be	g within each row $\frac{1}{2}^{n}$. tween rows $\frac{1}{2}^{n}$. ternate rows in line (of load);	

Specimen		imum Load		Cycles	
No.	Total Lbs.	Lbs./Spot	Lbs./Inch	to Failure	
Ratio .25					
3 L1C-2D	4000	333	800	3,500	
5	3400	283	680	7,700	
1	2400	200	480	83,300	
3	1750	146	350	331,000	
6	1300	108	260	913,000	
8	1000	83	200	>11,582,200	
Ratio .60					
3 L1C-9D	4500	375	900	34,600	
4	3400	283	680	126,800	
7	2000	167	400	1,072,400	
10	1750	146	350	>10,269,100	
Reload	2500	209	500	723,100	

*Specimens 3 L1C-D: Spot spacing within each row 3/4".

Distance between rows 1/2".

Spots of alternate rows staggered.

Overlap 1 1/2".

TABLE 29. PATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH THREE ROWS OF SPOT WELDS STAGGERED

(Group 3 M1C-D 0.040% Sheet)*

TABLE 30. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH THREE ROWS OF SPOT WELDS

(Group 3 M1C-F 0.040" Sheet) *

Tot	tal Lbs.	Maximum Los	Lbs./Inch	Cycles to Failure	Remarks
+	-				
5					
2D 6	3000	333	1200	2,700	
3 8	5000	278	1000	13,450	
0 4	1400	244	880	62,700	Result uncertain
2 3	800	211	760	71,800	ing test.
1 3	8000	167	600	133,100	
6 2	2400	133	48G	180,100	
3 1	700	94	340	1,146,700	
5 1	400	78	280	>10,694,500	
d 2	200	122	440	363,300	
0					
1 8	1000	444	1600	1,000	
8 6	000	333	1200	27,500	
7 4	000	222	800	175,200	
4 3	0000	167	600	623,000	
9 1	.800	100	360	4,301,700	

*Specimens	3	Spot spacing within each row 3/4". Distance between rows 1/2".	
		Spots of alternate rows staggered. Overlap 28.	b

Specimen	Ma	Cycles		
No.	Total Lbs.	Lbs./Spot	Lbs./Inch	to Failure
Ratio .25				
3 M1C-16F	8000	276	1600	2,900
3	7000	241	1400	12,000
1	6000	207	1200	18,600
2	4200	145	840	60,600
4	2800	97	560	382,500
5	2400	83	480	811,000
6	2000	69	400	1,476,100
10	1600	55	320	> 9,468,500
Ratio .60				
3 MIC-15F	9400	324	1880	7,800
9	8000	275	1600	32,700
8	6000	207	1200	134,000
14	4700	161	940	212,500
7	3800	131	760	1,965,800
13	3000	103	600	>12,626,600
Reload	3800	131	760	857,000
SERVICE CONTRACTOR CON				

^{*}Specimens 3 M1C-F: Spot spacing within each row 1/2".

Distance between rows 1/2".

Spots of alternate rows staggered.

Overlap 2".

TABLE 31. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH THREE ROWS OF SPOT WELDS

(Group 3 M2C-F 0.040" Sheet)*

TABLE 32. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH THREE ROWS OF SPOT WELDS

(Group 3 M3C-F 0.040" Sheet)*

Specimen No.	Maximum Load Total Lbs. Lbs./Spot		Lbs./Inch	Cycles to Failure	
Ratio .25					
3 M2C- 6F	6000	207	1200	5,800	
2	3800	131	760	75,900	
1	2400	184	480	396,200	
3	1800	62	360	856,000	
4	1400	48	280	11,360,300	
Reload	3200	110	640	100,300	
Ratio .60					
3 M2C-10F	7500	258	1500	12,100	
7	6000	207	1200	27,400	
5	4000	138	800	218,600	
9	3000	104	600	1,134,100	

*Specim	ens .	5 MZ(;-j
---------	-------	-------	-----

Spot spacing within each row 1/2". Distance between rows 1/2". Spots of alternate rows staggered. Overlap 2".

Post-aged after welding (heat treated 10 hrs. at 370°F.)

Specimen No.	Total Lbs.	Maximum Lo Lbs./Spot	Lbs./Inch	Cycles to Failure	Remarks
Ratio .25					
3 M3C-4F	7000	241	1400	11,800	
1	5800	190	1100	23,700	
2	3800	131	760	101,500	
3	2600	90	520	320,800	
8	2000	69	400	2,716,900	
10	1700	60	340	> 10,344,600	
Reload	3800	131	760	118,400	
Ratio .60					
3 M3C-6F	6000	207	1200	96,800	
5	3800	131	760	700,700	
7	2800	97	560	1,667,000	Result uncertain
9	2400	83	480	>11,161,700	ing run,
Reload	3800	131	760	750,800	

*Specimens 3 M3C-F: Spot spacing within each row $1/2^n$. Distance between rows $1/2^n$. Spots of alternate rows staggered.
Overlap 2. Post-aged before welding (heat treated 10 hours at 370°F.)

TABLE 33. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH BOEING TYPE SPOT WELD PATTERN

(Group UlF-F Boeing Joint in 0.016 Sheet)*

TABLE 34. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS 0.040 INCH BORING TYPE JOINT

(Group 5 UlC-F - 0.040 Inch Sheet)

Specimen No.	Max Total Lbs.	imum Load	Lbs./Inch	Cycles to Failure
Ratio .25				
Ulf 11	F 3000	75	600	10,600
2	2000	50	400	40,900
1	1580	39	318	87,600
17	1400	35	280	109,200
3	1250	31	250	114,400
4	1000	25	200	207,200
5	750	19	150	485,200
6	500	12.5	100	1,021,100
7	360	9	72.	2,204,400
12	260	6.5	52 >	10,044,700
Reload	3000	75.0	600	100
Ratio .60				
14	3000	75	608	34,200
13	2000	50	400	141,700
18	1400	35	280	436,800
19	1000	25	200	1,067,000
20	720	18	144	1,528,500

*Specimens UlF-F:	Spot spacing within each row 1/2". No. of rows of spots - 4.
	Distance between inner rows 3 /4". Distance between outer rows 1 1/8".
	Overlap 1 1/2".

		aximum Load			
Specimen No.	Total Lbs.	Lbs./Weld	Lbs./In.	Cycles to Failure	
Ratio .25					
5 UlC-11F 9 1 2 4 10 6 Reload	7500 6000 4200 3000 1750 1500 1250 4000	178 143 100 70 35 29 93	1500 1200 840 600 350 300 250 800	4,400 12,000 38,600 137,100 1,283,900 3,141,400 > 13,591,000 39,900	
Ratio .60 5 UlC-12F 8 2 7	7500 5700 3000 2200 1850	183 129 70 53 42	1500 1140 600 440 370	23,500 78,300 137,100 2,863,500 > 34,000,000	

Specimens 5 UIC-F - 4 rows of roll welds 1/2" spaced 7/8" between center rows 1-3/4" between outer rows 2" overlap

TABLE 35. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH ONE ROW OF SPOT WELDS

(Group 3 BlE-D - 0.064" Sheet) *

TABLE 36. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH THREE ROWS OF SPOT WELDS (0.064" SHEET)

	1	Caximum Load		
Specimen No.	Total Lbs.	Lbs./Spot	Lbs./In.	Cycles to Failure
Ratio .25 3 BlE-14D 1 12 3 4 5 6 Reload	4000 3000 2400 1750 1300 1100 850 2400	667 500 400 291 217 183 142 400	800 600 480 350 260 220 170 480	5,500 35,300 116,700 639,500 1,297,100 1,573,600 > 10,000,000 136,500
Ratio ,60 3 BIE-10D 8 7 11 13	5200 4000 2000 1500 1200	867 667 333 250 200	1040 800 400 300 240	1,700 78,500 1,262,100 3,700,000 > 20,433,400

Spot welds 3/4" spaced 1" overlap

		Maximum Lo	ad	
Specimen No.	Total Lbs.	Lbs./Spot	Lbs./In.	Cycles to Failure
Rat10 .25 3 NIE-ID 2 3 5	As 6000 4000 2600 1500 900	received 333 222 144 83 50	(Group 3 N1 1200 800 520 300 180	E-D) (1) 43,000 127,500 586,800 2,544,000 >11,879,600
Ratio .60 3 NIE-9D 4 6	7000 5000 2800	388 278 156	1400 1000 560	335,200 557,300 4,324,600
Batio 25 3 W2E-1D 2 3 5 7	Post 6000 4000 2400 1600 1250	-aged(2) af 333 222 133 89 69	ter welding 1200 800 480 320 250	(Group 3 N2E-D)(1) 29,100 87,700 499,800 1,301,600 2,448,200
Ratio .60 3 N2E HD 6	5000 3500	2 75 194	1000	385,300 907,900
Ratio .25 3 N3E-3D 1 8 2 4 Reload	Sheet post. 7500 3800 2400 1500 950 1900	-aged (2) be 417 211 133 83 52 105	1500 760 480 300 190 380	g (Group 3 N3D-D (1) 24,300 168,200 421,100 4,690,200 > 7,925,000 527,600

⁽¹⁾ Specimens 3 NIE-D, 3 N2E-D, and 3 N3E-D; 3 rows of spot welds staggered 3/4" between rows 3/4" spacing within the rows

⁽²⁾ Heat treated 10 hours at 370°F.

TABLE 37. JOINT EFFICIENCY VALUES FOR SPOT-WELDED PATTERNS

TABLE 38. SPECIFICATIONS FOR RIVETED LAP JOINT SPECIMENS

			Variou	s Lifetim	es for R =	0.25	
	Static	104	4 × 10 ¹	105	4 x 10 ⁵	106	4 x 10 ⁶
			0.040" 248	-T Alclad	lap joints		
3 B1C-D 3 K1C-D 3 L1C-D 3 L1C-D 3 K1C-F 3 M1C-F 3 M2C-F 5 U1C-F	29 52 50 67 68 77 68 80 72	15 23 27 40 35 54 54 46	15 22.5 22.5 33 29 41 37 41 32	14 24 23 31 26 37 39 37 30	17 28 25 32 26 39 37.5 39	17 28 22 34 31 38 37 38 29	15 24 25 31 23 35 32 35 29
			0.0648 5A2	-T Alclad	lap joint	8	
3 Ble-D 3 Nie-D 3 Nie-D 3 Nie-D	31 66 75 80	17	15 31 29 33	17 30 25 30	17 26 23 26	16 22 19 22	11 14 13 14
			0.016" 248	-T Alclad	with Boein	g type jo	oints
Ulf-f	68	57	42	40	5/1	17	11

Joint efficiency here means the ratio of the fatigue strength of a gross width of join to the fatigue strength of the same width of sheet at the same lifetime under the same load ratio.

6	Specimen Designation	Width (Inches)	No. Rows	Total No.	Rivet Spacing (Inches)	Overlap (Inches)	Distance (2) Between Rows (Inches)
-	PlC-D) (1)P2C-D) PlC-F	4 1/2	1	6	3/4	3/4	
Consultation of the Consul	Qlc-D Rlc-D Slc-D Tlc-D	4 1/2 4 15/16 4 15/16 4 15/16	2 2 2 2	12 13 13 13	3/4 3/4 3/4 3/4	7/16 15/16 1 1/8 1 5/16	3/4 L 3/16 S 3/8 S 11/16 S

- P2C-D specimens were post-aged after riveting.
 S denotes rivets in adjacent rows staggered, L rivets in line.

Riveting Procedure

- 1. All material 0.040" Alclad 248-T.
- 2. Rivets AN426AD-5, 100° countersunk, 5/32 D. Rivet material Al7S-T specification An-FF-R551.
- 3. Both sheets drilled with hand motor using #21 (0.159") drill.
- Holes burred with countersunk type burring tool.

 4. Surface skin dimpled 100° on one shot rivet gun (Chicago Pneumatic)

 5. Sub-dimpled other skin 110° on same equipment.
- 6. Riveting performed with a Chicago Pnoumatic Squeezer.

TABLE 39. STATIC TEST RESULTS FOR RIVETED LAP JOINT SPECIMENS

Specimen	Stati	c Ultimate Va	lues	Static Joint
Designation	Total lbs.	Lbs./Rivet	Lbs./Inch(1)	Eff. (%)
Plc-D	4160	693	925	35
P2C-D	5130	855	1140	41
PlC-F	6940	694	1385	52
Q1C-D	8700	725	1935	75
RIC-D	8750	675	1762	67
SIC-D	9100	700	1820	69
T1C-D	9290	715	1858	70

 Note, in Table 1, that specimens of different groups differ considerably in width.

(2) Joint efficiencies are baselon gross width of the jointed test pieces and on 66,700 p.s.i. static ultimate for as received sheet and 69,000 static ultimate for post aged sheet.

TABLE 40. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH ONE ROW OF FLUSH RIVETS

		P1C-D) (1) .	As received	
	-	aximum Load	·	
	Total	/	/-	Cycles to
Specimen No.	Lbs.	Lbs./Rivet	Lbs./In.	Failure
Ratio .25	7,500	677	g64	17 500
P1C-25D	3800	633		17,500
22	3600	600	823 668	
10	3000	500		55,000
15	2550	425	570	93,300
2	2550	425	566	75,400
1	2400	400	534	101,600
14	2400	400	538	131,400
16	2100	350	466	175,900
3 4	2100	350	466	180,200
	1800	300	400	305,600
5	1560	260	347	572,000
5 6 7 8	1350	225	300	937,800
7	1140	190	254	1,288,800
8	960	160	213	1,677,900
9	810	135	180	> 8,438,000
Ratio .50				
P1C-20D	3900	650	873	57,600
11	3000	500	668	228,500
17	2400	400	526	423,800
18	1800	300	406	704,300
19	1440	240	322	2,406,300
Ratio .60				
P1C-26D	3800	633	858	186,600
27	2800	467	626	318,800
28	2000	333	14ft 8	927,300
30	1700	283	390	1,773,900
29	1600	267	360	1,680,900
31	1500	250	337	3,730,000
Ratio .75 PlC-23D	3900	650	880	747.300
24	3300	550	745	1,828,900
21	3000	500	678	8,008,200
	(Group	P2C-D) (1)	Post-aged	(2)
Ratio .25	4500	750	1010	5,700
46	3380	565	762	29,700
43	2400	400	534	96,700
#7	1680	280	374	261,300
		200		
45	1200		267	778,800
47	900	150	205	1,264,400
48	750	125	150	3,436,800

(1) Specimens PIG-D, P2C-D: 4-1/2" wide, single row of rivets 3/4" apart, 3/4" overlap.

(2) Heat treated 10 hours at 370°F.

TABLE 41. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH ONE ROW OF FLUSH RIVETS

(Group PlC-F)

TABLE 42. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH TWO ROWS OF FLUSH RIVETS. (GROUP Q1C-D)*

) h	faximum Load							
Specimen No.	Total Lbs.	Lbs./Rivet	Lbs./In.	Cycles to Failure	Specimen No.	Total Lbs.	Lbs./Rivet	Lbs./in.	Cycles to Failure
Ratio .25 PIC-14F 8 7 3 1 2	6000 5100 4500 3600 3000 2500 2000	600 510 450 360 300 250 200	1220 1030 914 730 608 506 405	10,500 15,100 23,800 37,800 101,200 140,900 923,800	Ratio •25 QlC 9D 6 4 1 2 3 5	7500 6000 4800 3600 2640 1920 1680	576 500 400 300 220 160 140	1550 1340 1080 810 590 427 375	10,100 18,700 37,800 89,000 298,800 1,665,000 3,473,600
56 atio .50 PIC-10F 11 18	1750 1700 5000 3500 2350	175 170 500 350 235	35¼ 3¼¼ 1010 700 450	50,700 188,900 527,300	Ratio .50 11 14 Ratio .60	4200 3000	350 250	940 670	142,200 1,733,700 31,500
16 atio .60 PlC-23F 20 21 22	6000 3800 2600 2300	600 380 260 230	1212 772 520 467	49,000 253,200 615,900 634,600	15 8 7 16 Reload	6000 3800 3000 2500 3500	500 292 250 192 291	1343 840 678 559 760	89,700 453,600 734,300 > 9,972,000 1,371,600
24 25 25 P1C-17F 15	2000 1800 5500 4200	200 180 550 420	1100 846	1,099,500 4,377,000 266,900 539,600	* Specimens Q1	within	each row. I	istance be	ets 3/4" spacing tween rows 3/4".

Specimens PlC-F: 5" wide, single row of rivets 1/2" apart, 3/4" overlap

TABLE 43. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH TWO ROWS OF FLUSH RIVETS (GROUP RIC-D)*

	Max	imum Load		Cycles to
Specimen No.	Total Lbs.	Lbs/Rivet	Lbs./in.	Failure
atio 25				
RIC 7D	7500	577	1500	5,100
6	5500	422	1100	12,700
1	4000	308	800	37,000
2	2800	215	560	93,200
3	2000	154	400	436,200
4	1600	123	320	2,223,300
5	1350	104	270	3,941,800
8	1200	92	243	> 13,018,200
Reload	3000	231	608	97,800
atio .60				
15	8000	615	1600	32,600
11	6000	461	1200	70,600
10	4200	323	709	181,000
9	3000	231	608	1,292,700
16	2832	218	566	2,268,400
14	2700	208	544	8,242,300

^{*} Specimens RlC-D. 4 15/16" wide. Two rows of rivets, 3/4" spacing within each row. Distance between rows 3/16". Rivets staggered Overlap 15/16".

TABLE 44. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH TWO ROWS OF FLUSH RIVETS (GROUP SIC-D)*

		ximum Load		Cycles to
Specimen No.	Total Lbs.	Lbs./Rivet	Lbs./in.	Failure
atio .25				
81C 14D	8400	646	1700	4,300
6	6800	522	1360	12,100
1	6000	461	1200	17,900
2 3	4000	308	810	60,000
	3000	230	605	179,800
4 7	2200	170	446	695,000
7	1850	142	369	2,616,900
5	1700	131	342	>10,060,400
atio .60				
15	8400	646	1700	25,800
8	6800	522	1360	61,400
10	5200	400	1040	156,000
9	4000	308	008	302,000
11	3000	230	600	4,116,400
19	3000	230	600	8,151,700

^{*} Specimens 81C-D. 4 15/16" wide. Two rows of rivets, 3/4" spacing within each row. Distance between each row 3/8". Rivets staggered. Overlap 1 1/8".

TABLE 45. FATIGUE TEST RESULTS FOR LAP JOINT SPECIMENS WITH TWO ROWS OF FLUSH RIVETS (GROUP TIC-D)*

Specimen No.	ь	aximum Load	Cycles to		
	Total Lbs.	Lbs./Rivet	Lbs./in.	Failure	
Ratio .25					
TlC 5D	8000	615	1600	10,500	
1 2	6000	461 338	1200	25,000 68,000	
3	2800	215	560	317,500	
4	2200	169	228	1,533,800	
6	2000	154	414	5,565,800	
Ratio .60					
11	8500	654	1700	37,000	
9	5400	415	1080	190,900	
7	3800	292	760	1,889,200	
10	3300	254	670	2,511,900	
8	3000	230	608	7,600,000	

* Specimens TlC-D. 4 15/16" wide. Two rows of rivets, 3/4"
spacing within each row. Distance between
each row 11/16". Rivets staggered. Overlap
1 5/16".

TABLE 46. JOINT EFFICIENCIES FOR RIVETED TEST PIECES

		Joint Efficiency in Per Cent (2)						
Specimen (1) Designation	Static	10 ⁴ Cycles	4 x 10 ⁴ Cycles	10 ⁵ Cycles	4 x 10°	10 ⁶ Cycles	4 x 10 ⁶ Cycles	
P1C-D	35	35	30	26	26	24	20	
P2C-D	38	36	29	28	27	21	14	
P1C-F	52	46	31	29	31			
Q1C-D	73	60	41	39	39	40	42	
R1C-D	66	47	31	29	28	28	27	
S1C-D	68	53	38	36	36	35	37	
T1C-D	70	62	41	39	39	40	42	

(1) For meaning of specimen designation, see Table 38.

(2) Defined as ratio of strength per inch of joint to strength at same lifetime of an inch width of monoblock sheet.

All fatigue joint efficiency values quoted above are for a load ratio R = 0.25.

Figure 1.- Spot welds in dissimilar gauge sheet - Company B welds.

Figure 2.- Spot welds in dissimilar gauge sheet - Company C welds.

FIG. 3 - FATIGUE CURVES FOR SPOT-WELDED SHEETS OF DIFFERENT GAGES. (ALL SPECIMENS 5" WIDE, WITH 6 SPOT-WELDS, 3" BETWEEN CENTERS, ON SCIAKY MACHINE.)

FIG. 4 - FATIGUE CURVES FOR SPOT -WELDED SHEETS OF DIFFERENT GAGES (ALL SPECIMENS 5" WIDE, WITH 6 SPOT WELDS, 3" BETWEEN CENTERS, ON TAYLOR-WINFIELD MACHINE.)

FIG. 5 - FATIGUE CURVES FOR MONOBLOCK SPECIMENS OF ALCLAD SHEET (24S-T AND 75S-T). (SPECIMENS 1.000" X 0.040" AT CENTER SECTION.)

FIG. 6-FATIGUE CURVES FOR SPOT-WELDED LAP JOINT SPECIMENS OF ALCLAD 75S-T AND OF ALCLAD 24 S-T.

(a) 116 lbs./spot R = 0.25

(b) 166 lbs./spotR = 0.25

Keller's etch

10X 29165

24S-T Alclad

(c) 116 lbs./spot R = 0.25

(d) 116 lbs./spotR = 0.25

Keller's etch

10X° 29166

75S-T Alclad

Figure 7.- Comparison of fatigued spot welds made in 24S-T Alclad and 75S-T Alclad sheet.

Figure 8.- Photograph of fatigue test pieces.

Each specimen was 10" long, and 2" wide at the center section, and had a 2" overlap. The material was 0.040" Alclad 24S-T.

FIG. 9 - SCATTER BANDS FOR SPOT-WELD AND RIVET LAP JOINT SPECIMENS WITH DIFFERENT SURFACE PREPARATION.

FIG. 14 - FATIGUE CURVES FOR SPOT-WELDED LAP JOINTS WITH VARYING WELD SIZE.

Figure 10.- Spot welds from panels cleaned by wire brushing A.C. welds.

#1 - 3070 lbs. 15,300 cycles

Keller's etch

(a)

10X 29681

#2 - 3070 lbs. 14,100 cycles

Keller's etch

(b)

10X 29682

#7 - 920 lbs. 2,243,800 cycles

Keller's etch

(c)

10X 29683

#8 - 920 lbs. 600,000 cycles

Keller's etch

(d)

10X 29684

Figure 11.- Spot welds from panels cleaned by wire brushing D.C. welds.

Keller's etch

(a)

10X 29685

Keller's etch

(b)

10X 29686

Keller's etch

(c)

10X 29687

Keller's etch

(d)

10X 29688 #1 - 3070 lbs. 19,700 cycles

#2 - 3070 lbs. 3700 cycles

#7 - 920 lbs. 307,900 cycles

#8 - 920 lbs. 412,100 cycles

Figure 12.- Spot welds from panels cleaned by chemical methods - D.C. welds.

Panel #1, Weld #2 Dark area - weld Light area - corona

5X (a)

29167

Panel #5, Weld #64 Optimum weld size

5X (b) 29168

Panel #8, Weld #108 Note crack in center

5X (c) 29169

Figure 13.- Sheared spot welds showing weld area and surrounding corona.

Panel #1, Specimen #4 133 lbs./spot 1,613,900 cycles

Keller's etch

(a)

10X 29170

Panel #1, Specimen #3 174 lbs./spot 59,000 cycles

Keller's etch

(b)

10X 29171

Panel #2, Specimen #3 250 lbs./spot 2,900 cycles

Keller's etch

(c)

10X 29172

Panel #3, Specimen #2 131 lbs./spot 1,206,200 cycles

Keller's etch

(d)

10X 29173

Figure 15. - Spot welds in Panels #1, #2, and #3.

Panel #4, Specimen #1 245 lbs./spot 800 cycles

Keller's etch

(a)

10X 29174

Panel #5, Specimen #4 180 lbs./spot 321,500 cycles

Keller's etch

(b)

10X 29175

Panel #6, Specimen #2 184 lbs./spot 416,000 cycles

Keller's etch

(c)

10X 29176

Panel #6, Specimen #1 280 lbs./spot 17,200 cycles

Keller's etch

10X (d) 29177

Figure 16. - Spot welds in Panels #4, #5, and #6.

Panel #7, Specimen #1 368 lbs./spot 13,100 cycles

Keller's etch

(a)

10X 29178

Panel #7, Specimen #4 280 lbs./spot 82,700 cycles

Keller's etch

(b)

10X 29179

Panel #7, Specimen #3 150 lbs./spot 2,351,800 cycles

Keller's etch

(c)

10X 29180

Figure 17. - Spot welds in Panel #7.

(a)

Panel #8, Specimen #2 304 lbs./spot 67,400 cycles

Keller's etch

10X (b) 29182

Panel #8, Specimen #4 140 lbs./spot 4,075,600 cycles

Panel #9, Specimen #3 240 lbs./spot 247,300 cycles

Keller's etch

(c)

10X 29183

29181

Figure 18. - Spot welds in Panels #8 and #9.

(a) 29388 Spot welds in line (Test 3 KlC-D)

(b) 29388 Spot welds staggered (Test 3 L1C-D)

Figure 19.- Lap joint specimens with two rows of spot welds Specimens 5" wide, with $1\frac{1}{2}$ " overlap. Spots $\frac{1}{2}$ " apart within rows. Spacing between rows $\frac{1}{2}$ ".

(a) 29392 Spot spacing 1/2" within row (Test 3 M1C-F)

(b) 29392 Spot spacing 3/4" within row (Test 3 M1C-D)

Figure 20.- Lap joint specimens with three rows of spot welds Specimens 5" wide, with 2" overlap. Spacing between rows $\frac{1}{2}$ ". Note spots in adjacent rows staggered.

3/4" between inner rows
3/16" between outer and
nearest inner row
1-1/2" overlap

1/2" between welds in a row

(a) 29391 0.016" sheet (Test U1F-F)

Roll welds, rows staggered 1/2" between welds in a row 7/8" between inner rows 7/16" between outer and nearest inner row 2" overlap

(b) 29391 0.040" sheet (Test 5 UlC-F)

Figure 21.- Lap joint specimens with Boeing type joint.

Figure 22.- Representative welds from spot pattern specimens (0.040")

Figure 23.- Representative welds from spot pattern specimens (0.064")

Keller's etch

(a)

10X 29665

0.016" - Fatigued-sectioned parallel to direction of testing

Keller's etch

(b)

10X 29666

0.016" - As received-parallel to direction of testing

. Keller's etch

(c)

10X

0.016" - As received-normal to testing

Keller's etch

(d)

10X 29667

0.040" - Roller weld-parallel to direction of rolling

Keller's etch

(e)

10X

29667

0.040" - Roller weld-normal to direction of rolling

Figure 24. - Spot welds from Boeing joint specimens.

FIG. 25-FATIGUE CURVES FOR U.040" ALCLAD 24S-T SHEET (SPECIMENS 1.000" X 0.040" AT CENTER SECTION)

FIG. 26 - FATIGUE CURVES FOR 0.064" 24 S-T ALCLAD SHEET (SPECIMENS 1.000" X 0.064" AT CENTER SECTION).

FIG. 27-FATIGUE CURVES FOR 0.016" 24 S-T ALCLAD SHEET (SPECIMENS 1.000" AT CENTER SECTION.)

FIG. 28-FATIGUE CURVES FOR LAP JOINTS 0.040"-0.040" WITH ONE AND TWO ROWS OF SPOT-WELDS.

FIG. 31 - FATIGUE CURVES FOR LAP JOINT 0.040" SPECIMENS WITH BOEING TYPE SPOT-WELD PATTERN.

FIG. 32 - FATIGUE CURVES FOR LAP JOINT SPECIMENS OF 0.064" SHEET WITH ONE AND WITH TWO ROWS OF SPOT-WELDS.

FIG. 33 - JOINT EFFICIENCY CURVES FOR SPOT-WELDED LAP JOINT SPECIMENS.

FIG. 37 - FATIGUE CURVES FOR LAP JOINT SPECIMENS WITH ONE ROW OF RIVETS, GROUP PIC-D:
RIVETS SPACED 3 APART GROUP P2C-D: SAME BUT SHEET POSTAGED.

(a) 29389 Specimen P1C-D - 4-1/2" wide - 3/4" rivet spacing

(b) 29389 Specimen PlC-F - 5" wide -1/2" rivet spacing

Figure 34.- Lap joint specimens with one row of flush rivets.

(a) 29390

Rivets in line (Q1C-D)

(b) 29390

Rivets staggered (T1C-D)

Figure 35.- Lap joint specimens with two rows of flush rivets $\frac{3}{4}$ " spaced, $\frac{3}{4}$ " between rows.

T1C-D 11/16" between rows

(a) 29391

S1C-D 3/8" between rows

(b) 29386

R1C-D 1/4" between rows

(c) 29386

Figure 36.- Lap joint specimens with two rows of flush rivets staggered, $\frac{3}{4}$ " rivet spacing within rows.

FIG. 38-FATIGUE CURVES FOR LAP JOINT SPECIMENS WITH ONE ROW OF RIVETS GROUP PIC-F RIVETS $\frac{1}{2}$ APART. GROUP PIC-D: RIVETS $\frac{3}{4}$ APART.

FIG. 39 - FATIGUE CURVES FOR LAP JOINT SPECIMENS WITH ONE AND WITH TWO ROWS OF RIVETS.

Figs. 40,41

FIG. 40-FATIGUE CURVES FOR LAP JOINT SPECIMENS WITH TWO ROWS OF FLUSH RIVETS STAGGERED - EFFECT OF VARYING SPACING BETWEEN ROWS.

FIG. 41-JOINT EFFICIENCY VALUES FOR RIVETED LAP JOINT SPECIMENS FOR DETAILS OF SPECIMEN GROUPS SEE TABLE 38.

