Work in Progress: The Euler Equation Implied Rate Under Heterogeneous Preferences

Pearl Li

November 18, 2015

Literature

- Hara (2009): aggregating heterogeneous discount rates and risk attitudes into a representative agent
- Tesfatsion (2006): agent-based computational modeling

Raw Data

Quarterly data from 1960:Q1 to 2015:Q2

- FRED (Federal Reserve Economic Data from the St. Louis Fed)
 - Civilian noninstitutional population
 - Effective fed funds rate
 - Employment ratio
 - Weekly hours worked (non-farm)
 - Nominal consumption of nondurable goods
 - Nominal consumption of services
 - Real disposable income
 - Real GDP
 - Chain quantity index: nondurable goods
 - Chain quantity index: services
- Continuous Commodity Index

Generated Series

- Nominal consumption $t = \text{nondurable goods}_t + \text{services}_t$
- Real consumption_t (in chained 2009 dollars) = 2009 nominal consumption \times chain quantity index_t
- ullet Consumption deflator $_t = rac{ ext{nominal consumption}_t}{ ext{real consumption}_t}$
- Gross $inflation_t = \frac{consumption\ deflator_t}{consumption\ deflator_{t-1}}$
- Labor fraction $_t = \text{hours worked}_t \times \text{employment ratio}_t$, rescaled to have mean $\frac{1}{3}$
- Leisure fraction $_t = 1 labor fraction_t$

Most series following Collard and Dellas (2012)

VAR Model

- Estimate VAR(4) (written below in companion form)
- Lag order 4 chosen for optimal likelihood ratio as in Fuhrer (2000), Collard and Dellas (2012)

$$y_t = A_0 + A_1 Y_{t-1} + \nu_t$$
$$\nu_t \stackrel{\text{iid}}{\sim} N(0, \Sigma)$$

$$y_t = \begin{bmatrix} \log(\text{real consumption}_t) \\ \text{net inflation}_t \\ \text{leisure fraction}_t \\ \log(\text{real disposable income}_t) \\ \log(\text{income less consumption}_t) \\ \text{effective FFR}_t \\ \text{CCI}_t \end{bmatrix} Y_t = \begin{bmatrix} y_t \\ y_{t-1} \\ y_{t-2} \\ y_{t-3} \end{bmatrix}$$

$$Y_t = \begin{bmatrix} y_t \\ y_{t-1} \\ y_{t-2} \\ y_{t-3} \end{bmatrix}$$

VAR Estimates

- Sample: 1960:Q2 to 2015:Q2 (221 observations)
- Log likelihood: 2282.281
- Ljung-Box statistic: 4544.5290 (*p*-value 0.0000)
- Conditional moments:
 - $E_t Y_{t+1} = A_0 + A_1 Y_t$
 - $\operatorname{Cov}_t Y_{t+1} = \hat{\Sigma}$

CRRA Implied Rates

- CRRA utility $u(C_t) = \frac{C_t^{1-\alpha}}{1-\alpha}$
- Euler equation $\frac{1}{1+r_t} = \beta \frac{E_t u'(C_{t+1})}{u'(C_t)} = \beta \left(\frac{E_t C_{t+1}}{C_t}\right)^{-\alpha}$
- From Canzoneri et al. (2007): assuming consumption is conditionally lognormal, real interest rate given by

$$\frac{1}{1+r_t} = \beta \exp \left[-\alpha (\mathsf{E}_t c_{t+1} - c_t) + \frac{\alpha^2}{2} \mathsf{Var}_t c_{t+1} \right]$$

where c_t is log of real consumption C_t

• $\beta=0.9926$, $\alpha=2$ as in Collard and Dellas (2012)

L

CRRA Implied Rates

CRRA Implied Rates

	Collard and Dellas (2012)	Li (2015)
Mean implied rate	6.70	6.66
SD implied rate	2.09	2.13
Mean FFR	1.99	1.98
SD implied rate	2.51	2.30
Correlation	0.05	0.0146

References

- Canzoneri, Matthew B., Robert E. Cumby, and Behzad T. Diba (2007) "Euler Equations and Money Market Interest Rates: A Challenge for Monetary Policy Models," *Journal of Monetary Economics*.
- Collard, Fabrice and Harris Dellas (2012) "Euler equations and monetary policy," *Economics Letters*.
- Fuhrer, Jeffrey C. (2000) "Habit Formation in Consumption and Its Implications for Monetary Policy Models," *American Economic Review*.
- Hara, Chiaki (2009) "Heterogeneous Impatience in a Continuous-Time Model," http://www.kier.kyoto-u.ac.jp/DP/DP665.pdf.
- Tesfatsion, Leigh (2006) "Agent-Based Computational Modeling and Macroeconomics," in *Post Walrasian Macroeconomics: Beyond the Dynamic Stochastic General Equilibrium Model*: Cambridge University Press.