Inteligência Artificial

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

18 de Abril de 2024

Busca cega

Busca com aprofundamento iterativo e limitada

- Busca em profundidade limitada:
 - Resolve o problema de busca em profundidade em árvores infinitas;
 - Evita o problema de caminhos muito longos ou infinitos;
 - Impõe um limite máximo de profundidade para os caminhos gerados;
- Busca em profundidade iterativo:
 - Combina busca em profundidade com busca em largura;
 - Faz a busca em profundidade aumentando gradualmente o limite de profundidade;
 - Ideal quando se tem espaço de busca grande e profundidade não conhecida;
 - Limites com valores crescentes;
 - Partindo do zero;
 - Encontrar a primeira solução.

Busca com aprofundamento iterativo

Busca de custo uniforme

- Modifica a busca em largura:
 - Expande o nó da fronteira com menor custo de caminho;
 - Na fronteira do espaço de estados;
 - Cada operador pode ter um custo associado diferente;
 - Medido pela função g(n), para o nó n;
 - g(n) é o custo do caminho da origem ao nó n.
- Na busca em largura: g(n) = profundidade(n).

Busca de custo uniforme

Busca de custo uniforme

- F = S
 - testa se S é o estado objetivo, expande-o e guarda seus filhos A, B e C ordenadamente na fronteira
- F = {A, B, C}
 - testa A, expande-o e guarda seu filho G_a ordenadamente
 - obs: o algoritmo de geração e teste guarda na fronteira todos os nós gerados, testando se um nó é o objetivo apenas quando ele é retirado da lista!
- $F = \{B, G_a, C\}$
 - testa B, expande-o e guarda seu filho GB ordenadamente
- $F = \{G_b, G_a, C\}$
 - testa G_b e para!

- Projeto Shakey;
- Robô móvel;
- Planejar suas próprias ações;
- Graph traverser;
- Função heurística h(n);
- Estimativa do custo do caminho restante até o objetivo;
- Orientar a busca em direção e regiões mais promissoras no espaço de busca.

- Admissibilidade:
 - Nunca superestima o custo para alcança o objetivo;
 - Estimativa de custo nunca for maior do que o custo real;
- Consistência;
 - A estimativa de custo de um estado nunca é aumentada ao longo do caminho até o objetivo;
- A*:
- Caminhos de menor custo;
- Caminhos ótimos (Álgebra de custos)

- Aplicações no mundo real;
- Jogos;
- Navegação de GPS;
- Movimento de robôs;
- Planejamento de rotas em logística;
- Design de circuitos integrados.

- Menor custo de deslocamento de um ponto de origem A até o destino B;
- Fórmula de custo tem uma combinação total dada por:
 - f(x) = g(x) + h(x);
 - g(x) = função de custo sobre uma posição de origem até a posição;
 - h(x) = Função heurística.
- 8-puzzle h(x) é a distância de Manhattan entre a posição atual de x e sua posição final;
- Lista aberta;
- Lista fechada;

A	В	С	D	E
F	G	Н	ı	J
К	L	М	N	0
Р	Q	R	s	Т
U	v	w	х	Υ

A	В	С	D	E
F	G	н	I	J
к	L	M	N	0
Р	Q	R	S	Т
U	V	W	Х	Υ

14 / 15

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024