2.1 — Data 101 & Descriptive Statisti ECON 480 • Econometrics • Fall 2022

Dr. Ryan Safner

<u>Associate Professor of Economics</u>

safner@hood.edu ryansafner/metricsF22 metricsF22.classes.ryansafner.com

The Two Big Problems with Data

Two Big Problems with Data

- We want to use econometrics to identify causal relationships and make .hi[inferences] about them
- 1. Problem for identification: endogeneity
- 2. Problem for inference: randomness

Identification Problem: Endogeneity

- An independent variable (X) is exogenous if its variation is unrelated to other factors that affect the dependent variable (Y)
- An independent variable (X) is endogenous if its variation is related to other factors that affect the dependent variable (Y)
- Note: unfortunately this is different from how economists talk about "endogenous" vs. "exogenous" variables in theoretical models...

Identification Problem: Endogeneity

 An independent variable (X) is exogenous if its variation is unrelated to other factors that affect the dependent variable (Y)

Identification Problem: Endogeneity

• An independent variable (X) is **endogenous** if its variation is **related** to other factors that affect the dependent variable (Y), e.g. Z

Inference Problem: Randomness

- Data is random due to natural sampling variation
 - Taking one sample of a population will yield slightly different information than another sample of the same population
- Common in statistics, easy to fix
- Inferential Statistics: making claims about a wider population using sample data
 - We use common tools and techniques to deal with randomness

The Two Problems: Where We're Heading...Ultimately

Sample

statistical inference causal indentification

Causal indentification

Unobserved Parameters

- We want to identify causal relationships between population variables
 - Logically first thing to consider
 - Endogeneity problem
- We'll use **sample** *statistics* to **infer** something about population *parameters*
 - In practice, we'll only ever have a finite sample distribution of data
 - We don't know the population distribution of data
 - Randomness problem

Data 101

Data 101

- Data are information with context
- Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries

Data 101

- Variables are particular characteristics about an individual
 - e.g. age, income, profits, population, GDP,
 marital status, type of legal institutions
- Observations or cases are the separate individuals described by a collection of variables
 - e.g. for one individual, we have their age, sex, income, education, etc.
- individuals and observations are *not* necessarily the same:
 - e.g. we can have multiple observations on the same individual over time

Categorical Variables

- Categorical variables place an individual into one of several possible categories
 - e.g. sex, season, political party
 - may be responses to survey questions
 - can be quantitative (e.g. age, zip code)
- In R: character or factor type data
 - factor ⇒ specific possible categories

Question	Categories or Responses
Do you invest in the stock market?	Yes No
What kind of advertising do you use?	Newspapers Internet Direct mailings
What is your class at school?	Freshman Sophomore Junior Senior
I would recommend this course to another student.	Strongly Disagree Slightly Disagree Slightly Agree Strongly Agree
How satisfied are you with this product?	Very Unsatisfied Unsatisfied Satisfied Very Satisfied

Categorical Variables: Visualizing I

```
diamonds %>%
count(cut) %>%
mutate(frequency = n / sum(n),
percent = round(frequency * 100, 2))
```

Summary of diamonds by cut

cut	n	frequency	percent
Fair	1610	0.0298480	2.98
Good	4906	0.0909529	9.10
Very Good	12082	0.2239896	22.40
Premium	13791	0.2556730	25.57
Ideal	21551	0.3995365	39.95

- Good way to represent categorical data is with a frequency table
- Count (n): total number of individuals in a category
- Frequency: proportion of a category's occurrence relative to all data
 - Multiply proportions by 100% to get percentages

Categorical Variables: Visualizing II

- Charts and graphs are *always* better ways to visualize data
- A bar graph represents categories as bars, with lengths proportional to the count or relative frequency of each category

Categorical Data: Pie Charts

- Avoid pie charts!
- People are *not* good at judging 2-d differences (angles, area)
- People are good at judging 1-d differences (length)

Categorical Data: Alternatives to Pie Charts I

• Try something else: a stacked bar chart

```
diamonds %>%
     count(cut) %>%
   ggplot(data = .)+
     aes(x = "",
         y = n) +
    geom col(aes(fill = cut))+
     geom label(aes(label = cut,
                     color = cut),
                position = position stack(vjust = 0.5
10
     guides(color = F,
11
12
            fill = F) +
     theme_void()
13
```


Categorical Data: Alternatives to Pie Charts II

• Try something else: a *lollipop chart*

```
diamonds %>%
     count(cut) %>%
     mutate(cut name = as.factor(cut)) %>%
   ggplot(., aes(x = cut name, y = n, color = cut))+
    geom point(stat="identity",
               fill="black",
 6
               size=12) +
     geom segment(aes(x = cut name, y = 0,
 9
                       xend = cut name,
10
                      yend = n), size = 2)+
     geom text(aes(label = n),color="white", size=3)
11
     coord_flip()+
12
     labs(x = "Cut") +
13
     theme pander(base family = "Fira Sans Condensed"
14
15
                   base size=20)+
     guides(color = F)
16
```


Categorical Data: Alternatives to Pie Charts III

• Try something else: a treemap

Quantitative Data I

- Quantitative variables take on numerical values of equal units that describe an individual
 - Units: points, dollars, inches
 - Context: GPA, prices, height
- We can mathematically manipulate *only* quantitative data
 - e.g. sum, average, standard deviation
- In R: numeric type data
 - integer if whole number
 - double if has decimals

Discrete Data

- **Discrete data** are finite, with a countable number of alternatives
- Categorical: place data into categories
 - e.g. letter grades: A, B, C, D, F
 - e.g. class level: freshman, sophomore, junior, senior
- Quantitative: integers
 - e.g. SAT Score, number of children, age (years)

Continuous Data

- Continuous data are infinitely divisible, with an uncountable number of alternatives
 - e.g. weight, length, temperature, GPA
- Many discrete variables may be treated as if they are continuous
 - e.g. SAT scores (whole points), wages (dollars and cents)

Spreadsheets

id	name	age	sex	income
1	John	23	Male	41000
2	Emile	18	Male	52600
3	Natalya	28	Female	48000
4	Lakisha	31	Female	60200
5	Cheng	36	Male	81900

- The most common data structure we use is a spreadsheet
 - In R: a data frame or tibble
- A row contains data about all variables for a single individual
- A column contains data about a single variable across all individuals

Spreadsheets: Indexing

id	name	age	sex	income
1	John	23	Male	41000
2	Emile	18	Male	52600
3	Natalya	28	Female	48000
4	Lakisha	31	Female	60200
5	Cheng	36	Male	81900

 Each .hi-purple[cell] can be referenced by its row and column (in that order!), df [row, column]

```
1 example[3,2] # value in row 3, column 2
# A tibble: 1 × 1
  name
  <chr>
1 Natalya
```

 Recall with tidyverse you can do this with select() and filter() or slice()

Spreadsheets: Notation

- It is common to use some notation like the following:
- Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series on variable X
 - n individual observations
 - x_i is the value of the i^{th} observation for $i=1,2,\cdots,n$

Quick Check

Let *x* represent the score on a homework assignment:

75, 100, 92, 87, 79, 0, 95

- 1. What is *n*?
- 2. What is x_1 ?
- 3. What is x_6 ?

Datasets: Cross-Sectional

id	name	age	sex	income
1	John	23	Male	41000
2	Emile	18	Male	52600
3	Natalya	28	Female	48000
4	Lakisha	31	Female	60200
5	Cheng	36	Male	81900

- Cross-sectional data: observations of individuals at a given point in time
- Each observation is a unique individual

 x_i

- Simplest and most common data
- A "snapshot" to compare differences across individuals

Datasets: Time-Series

Year	GDP	Unemployment	CPI
1950	8.2	0.06	100
1960	9.9	0.04	118
1970	10.2	0.08	130
1980	12.4	0.08	190
1985	13.6	0.06	196

- Time-series data: observations of the *same* individual(s) over time
- Each observation is a time period

 \mathcal{X}_t

- Often used for macroeconomics, finance, and forecasting
- Unique challenges for time series
- A "moving picture" to see how individuals change over time

Datasets: Panel

City	Year	Murders	Population
Philadelphia	1986	5	3.700
Philadelphia	1990	8	4.200
D.C.	1986	2	0.250
D.C.	1990	10	0.275
New York	1986	3	6.400

- Panel, or longitudinal dataset: a time-series for each cross-sectional entity
 - Must be same individuals over time
- Each obs. is an individual in a time period

 χ_{it}

- More common today for serious researchers;
 unique challenges and benefits
- A combination of "snapshot" comparisons over time

Descriptive Statistics

Variables and Distributions

- Variables take on different values, we can describe a variable's .hi[distribution] (of these values)
- We want to *visualize* and *analyze* distributions to search for meaningful patterns using **statistics**

Two Branches of Statistics

- Two main branches of statistics:
- 1. **Descriptive Statistics:** describes or summarizes the properties of a sample
- 2. **Inferential Statistics:** infers properties about a larger population from the properties of a sample¹

Histogram

- A common way to present a *quantitative* variable's distribution is a **histogram**
 - The quantitative analog to the bar graph for a categorical variable
- Divide up values into **bins** of a certain size, and count the number of values falling within each bin, representing them visually as bars

Bin width = 0.20

Histogram: Bin Size

- A common way to present a *quantitative* variable's distribution is a **histogram**
 - The quantitative analog to the bar graph for a categorical variable
- Divide up values into **bins** of a certain size, and count the number of values falling within each bin, representing them visually as bars
 - Changing the bin-width will affect the bars

Bin width = 0.50

Histogram: Example

Example

A class of 13 students takes a quiz (out of 100 points) with the following results:

 $\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$

Histogram: Example

\bigcirc

Example

A class of 13 students takes a quiz (out of 100 points) with the following results:

```
\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}
```


Descriptive Statistics

- We are often interested in the *shape* or *pattern* of a distribution, particularly:
 - Measures of center
 - Measures of dispersion
 - **Shape** of distribution

Measures of Center

Mode

- The .himode of a variable is simply its most frequent value
- A variable can have multiple modes

\bigcirc

Example

A class of 13 students takes a quiz (out of 100 points) with the following results:

{0, 62, 66, **71**, **71**, 74, 76, 79, 83, 86, 88, 93, 95}

Mode

- There is no dedicated mode () function in R, surprisingly
- A workaround in dplyr:

```
1 quizzes %>%
2 count(scores) %>%
3 arrange(desc(n))
```

	scores	n		
	<dpl></dpl>	<int></int>		
	71	2		
	0	1		
	62	1		
	66	1		
	74	1		
1-5 of 12 rows	Previous 1 2 3 Next			

Multi-Modal Distributions

- Looking at a histogram, the modes are the "peaks" of the distribution
 - Note: depends on how wide you make the bins!
- May be unimodal, bimodal, trimodal, etc

Symmetry and Skew I

- A distribution is **symmetric** if it looks roughly the same on either side of the "center"
- The thinner ends (far left and far right) are called the **tails** of a distribution

Symmetry and Skew I

- If one tail stretches farther than the other, distribution is **skewed** in the direction of the longer tail
 - In this example, skewed to the left

Outliers

- Outlier: "extreme" value that does not appear part of the general pattern of a distribution
- Can strongly affect descriptive statistics
- Might be the most informative part of the data
- Could be the result of errors
- Should always be explored and discussed!

Arithmetic Mean (Population)

• The natural measure of the center of a *population*'s distribution is its "average" or arithmetic mean μ

$$\mu = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- For N values of variable x, "mu" is the sum of all individual x values (x_i) from 1 to N, divided by the N number of values¹
- See today's appendix for more about the summation operator, , it'll come up again!

Arithmetic Mean (Sample)

• When we have a *sample*, we compute the **sample mean** \bar{x}

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

• For n values of variable x, "x-bar" is the sum of all individual x values (x_i) divided by the n number of values

Arithmetic Mean (Sample)

C Ex

<dbl>

1 72.6

Example

 $\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$

$$\bar{x} = \frac{1}{13}(0 + 62 + 66 + 71 + 71 + 74 + 76 + 79 + 83 + 86 + 88 + 93 + 95)$$

$$\bar{x} = \frac{944}{13}$$

$$\bar{x} = 72.62$$

```
1 quizzes %>%
2  summarize(mean = mean(scores))
# A tibble: 1 × 1
  mean
```


Arithmetic Mean: Affected by Outliers

• If we drop the outlier (0)

```
Example  \{62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}   \bar{x} = \frac{1}{12} (62 + 66 + 71 + 71 + 74 + 76 + 79 + 83 + 86 + 88 + 93 + 95)   = \frac{944}{12}   = 78.67
```

```
1 quizzes %>%
2  filter(scores > 0) %>%
3  summarize(mean = mean(scores))

# A tibble: 1 × 1
  mean
  <dbl>
1 78.7
```


Median

- The median is the midpoint of the distribution
 - 50% to the left of the median, 50% to the right of the median
- Arrange values in numerical order
 - For odd *n*: median is middle observation
 - For even *n*: median is average of two middle observations

Mean, Median, and Outliers

Mean, Median, Symmetry, & Skew I

• Symmetric distribution: mean \approx median

```
1 symmetric %>%
2 summarize(mean = mean(x),
3 median = median(x))

# A tibble: 1 × 2
  mean median
  <dbl> <dbl>
1 4 4
```


Mean, Median, Symmetry, & Skew II

• Left-skewed: mean < median

Mean, Median, Symmetry, & Skew III

• Right-skewed: mean > median

```
1 rightskew %>%
2 summarize(mean = mean(x),
3 median = median(x))

# A tibble: 1 × 2
  mean median
  <dbl> <dbl>
1 3.38 3
```


Measures of Dispersion

Range

- The more variation in the data, the less helpful a measure of central tendency will tell us
- Beyond just the center, we also want to measure the spread
- Simplest metric is range = max min

Five Number Summary I

- Common set of summary statistics of a distribution: "five number summary":
- 1. Minimum value
- 2. 25^{th} percentile (Q_1 , median of first 50% of data)
- 3. 50^{th} percentile (median, Q_2)
- 4. 25^{th} percentile (Q_3 , median of last 50% of data)
- 5. Maximum value

```
1 # Base R summary command (includes Mear
2 summary(quizzes$scores)

Min. 1st Qu. Median Mean 3rd Qu.
Max.
0.00 71.00 76.00 72.62 86.00
95.00
```


Five Number Summary II

• The n^{th} percentile of a distribution is the value that places n percent of values beneath it

Boxplot I

- Boxplots are a great way to visualize the 5 number summary
- Height of box: Q_1 to Q_3 (known as interquartile range (IQR), middle 50% of data)
- Line inside box: median (50th percentile)
- "Whiskers" identify data within $1.5 \times IQR$
- Points beyond whiskers are outliers
 - common definition: Outlier $> 1.5 \times IQR$

Boxplot Comparisons I

• Boxplots (and five number summaries) are great for comparing two distributions

```
      Quiz 1 : {0,62,66,71,71,74,76,79,83,86,88,93,95}

      Quiz 2 : {50,62,72,73,79,81,82,82,86,90,94,98,99}
```


Boxplot Comparisons II

```
1 quizzes_new %>% summary()
student quiz_1 quiz_2
```

student	quiz_I	quiz_2		
Min. : 1	Min. : 0.00	Min. :50.00		
1st Qu.: 4	1st Qu.:71.00	1st Qu.:73.00		
Median : 7	Median :76.00	Median :82.00		
Mean : 7	Mean :72.62	Mean :80.62		
3rd Qu.:10	3rd Qu.:86.00	3rd Qu.:90.00		
Max. :13	Max. :95.00	Max. :99.00		

Aside: Making Nice Summary Tables I

- I don't like the options available for printing out summary statistics
- So I wrote my own R function called summary_table() that makes nice summary tables (it uses dplyr and tidyr!). To use:
- 1. Download the summaries. R file from the website¹ and move it to your working directory/project folder
- 2. Load the function with the source() command:²

```
1 source("summaries.R")
```


Aside: Making Nice Summary Tables II

function

3. The function has at least 2 arguments: the data frame (automatically piped in if you use the pipe!) and then all variables you want to summarize, separated by commas¹

```
mpg %>%
      summary table(hwy, cty, cyl)
# A tibble: 3 \times 9
  Variable
             Obs
                   Min
                           01 Median
                                         03
                                              Max Mean `Std. Dev.`
           <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
  <chr>
                                                               <dbl>
             234
                                  17
                                               35 16.9
                                                                4.26
1 cty
2 cyl
             234
                                                8 5.89
                                                                1.61
3 hwy
             234
                                  24
                                               44 23.4
                                                                5.95
                     12
                           18
```

1. There is one restriction: No variable name can have an underscore (condition) from the solution of the solu

Aside: Making Nice Summary Tables III

4. When rendered in Quarto, it looks nicer:

```
1 mpg %>%
2 summary_table(hwy, cty, cyl) %>%
3 knitr::kable(., format="html")
```

Variable	Obs	Min	Q1	Median	Q3	Max	Mean	Std. Dev.
cty	234	9	14	17	19	35	16.86	4.26
cyl	234	4	4	6	8	8	5.89	1.61
hwy	234	12	18	24	27	44	23.44	5.95

Measures of Dispersion: Deviations

• Every observation i deviates from the mean of the data:

$$deviation_i = x_i - \mu$$

- There are as many deviations as there are data points (n)
- We can measure the average or standard deviation of a variable from its mean
- Before we get there...

Variance (Population)

• The population variance σ^2) of a population distribution measures the average of the squared deviations from the population mean (μ)

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

- Why do we square deviations?
- What are these units?

Standard Deviation (Population)

• Square root the variance to get the **population standard deviation** σ , the average deviation from the population mean (in same units as x)

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Variance (Sample)

• The **sample variance** s^2 of a *sample* distribution measures the average of the *squared* deviations from the *sample* mean (\bar{x})

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

• Why do we divide by n-1?

Standard Deviation (Sample)

• Square root the sample variance to get the **sample standard deviation** s, the average deviation from the *sample* mean (in same units as x)

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Sample Standard Deviation: Example

Example

Calculate the sample standard deviation for the following series:

$$\{2, 4, 6, 8, 10\}$$

```
1 sd(c(2,4,6,8,10))
```

[1] 3.162278

The Steps to Calculate sd(), Coded I

```
1 # first let's save our data in a tibble
2 sd_example \leftarrow tibble(x = c(2,4,6,8,10))
```

```
1 # first find the mean (just so we know)
2
3 sd_example %>%
4    summarize(mean(x))

# A tibble: 1 × 1
   `mean(x)`
        <dbl>
1     6
```

```
# now let's make some more columns:

2 sd_example <- sd_example %>%

mutate(deviations = x - mean(x), # take deviations from mean

deviations_sq = deviations^2) # square them
```


The Steps to Calculate sd(), Coded II

The Steps to Calculate sd(), Coded III

Sample Standard Deviation: You Try

Example

Calculate the sample standard deviation for the following series:

$$\{1, 3, 5, 7\}$$

```
1 \operatorname{sd}(c(1,3,5,7))
```

[1] 2.581989

Descriptive Statistics: Populations vs. Samples

Population parameters

- Population size: N
- Mean: μ
- Variance: $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$
- Standard deviation: $\sigma = \sqrt{\sigma^2}$

Sample statistics

- Population size: *n*
- Mean: \bar{x}
- Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$
- Standard deviation: $s = \sqrt{s^2}$

