The F-test for Linear Regression

Definitions for Regression with Intercept

- n is the number of observations, p is the number of regression parameters.
- Corrected Sum of Squares for Model: SSM = $\sum_{i=1}^{n} (y_i^{-1} \overline{y})^2$, also called sum of squares for regression.
- Sum of Squares for Error: SSE = $\sum_{i=1}^{n} (y_i y_i^*)^2$, also called sum of squares for residuals.
- Corrected Sum of Squares Total: $SST = \sum_{i=1}^{n} (y_i \overline{y})^2$ This is the sample variance of the y-variable multiplied by n - 1.
- For multiple regression models, SSM + SSE = SST.
- Corrected Degrees of Freedom for Model: DFM = p 1
- Degrees of Freedom for Error: DFE = n p
- Corrected Degrees of Freedom Total: DFT = n 1 Subtract 1 from n for the corrected degrees of freedom. Horizontal line regression is the null hypothesis model.
- For multiple regression models with intercept, DFM + DFE = DFT.
- Mean of Squares for Model: MSM = SSM / DFM
- Mean of Squares for Error: MSE = SSE / DFE
 The sample variance of the residuals.
- In a manner analogous to Property 10 of <u>Properties of Random Variables</u>, which states that s^2 is unbiased for σ^2 , it can be shown that MSE is unbiased for σ^2 for multiple regression models.
- Mean of Squares Total: MST = SST / DFT
 The sample variance of the y-variable.
- In general, a researcher wants the variation due to the model (MSM) to be large with respect to the variation due to the residuals (MSE).
- **Note:** the definitions in this section are not valid for regression through the origin models. They require the use of uncorrected sums of squares.

The F-test

• For a multiple regression model with intercept, we want to test the following null hypothesis and alternative hypothesis:

$$H_0$$
: $\beta_1 = \beta_2 = ... = \beta_{p-1} = 0$

 H_1 : $\beta_i \neq 0$, for at least one value of j

This test is known as the overall **F-test for regression**.

- Here are the five steps of the overall F-test for regression
 - 1. State the null and alternative hypotheses:

$$H_0$$
: $\beta_1 = \beta_2 = ... = \beta_{p-1} = 0$

 H_1 : $\beta_i \neq 0$, for at least one value of j

2. Compute the test statistic assuming that the null hypothesis is true:

- 3. Find a (1 α)100% confidence interval I for (DFM, DFE) degrees of freedom using an F-table or statistical software.
- 4. Accept the null hypothesis if $F \in I$; reject it if $F \notin I$.
- 5. Use statistical software to determine the p-value.
- **Practice Problem:** For a multiple regression model with 35 observations and 9 independent variables (10 parameters), SSE = 134 and SSM = 289, test the null hypothesis that all of the regression parameters are zero at the 0.05 level.

Solution: DFE = n - p = 35 - 10 = 25 and DFM = p - 1 = 10 - 1 = 9. Here are the five steps of the test of hypothesis:

State the null and alternative hypothesis:

$$H_0$$
: $\beta_1 = \beta_2 = 1, ..., = \beta_{p-1} = 0$

 H_1 : $\beta_i \neq 0$ for some j

2. Compute the test statistic:

$$F = MSM/MSE = (SSM/DFM) / (SSE/DFE) = (289/9) / (134/25) = 32.111 / 5.360 = 5.991$$

- 3. Find a (1 0.05)×100% confidence interval for the test statistic. Look in the F-table at the 0.05 entry for 9 df in the numerator and 25 df in the denominator. This entry is 2.28, so the 95% confidence interval is [0, 2.34]. This confidence interval can also be found using the R function call qf(0.95, 9, 25).
- Decide whether to accept or reject the null hypothesis: 5.991 ∉ [0, 2.28], so reject H₀.
- 5. Determine the p-value. To obtain the exact p-value, use statistical software. However, we can find a rough approximation to the p-value by examining the other entries in the F-table for (9, 25) degrees of freedom:

Level	Confidence Interval	F-value
0.100	[0, 0.900]	1.89
0.050	[0, 0.950]	2.28
0.025	[0, 0.975]	2.68
0.010	[0, 0.990]	2.22
0.001	[0, 0.999]	4.71

The F-value is 5.991, so the p-value must be less than 0.005.

• Verify the value of the F-statistic for the Hamster Example.

Technical Details for the Overall F-Test

- If t_1 , t_2 , ..., t_m , are independent, $N(0, \sigma^2)$ random variables, then $\sum_{i=1}^m t_i^2$ is a χ^2 (chi-squared) random variable with m degrees of freedom.
- It can be shown that if H₀ is true and the residuals are unbiased, homoscedastic, independent, and normal:
 - 1. SSE / σ^2 has a χ^2 distribution with DFE degrees of freedom.
 - 2. SSM / σ^2 has a χ^2 distribution with DFM degrees of freedom.
 - 3. SSE and SSM are independent random variables.
- If u is a χ^2 random variable with n degrees of freedom, v is a χ^2 random variable with m degrees of freedom, and u and v are independent, then if F = (u/n)/(v/m) has an **F** distribution with (n,m) degrees of freedom. See the F-tables in the Statistical Tables.

- By the previous information, if H_0 is true, $F = [(SSM/\sigma)/DFM]/[(SSE/\sigma)/DFE]$ has an F distribution with (DFM, DFE) degrees of freedom.
- But $F = [(SSM/\sigma)/DFM]/[(SSE/\sigma)/DFE] = (SSM/DFM)/(SSE/DFE) = MSM/MSE, so F is independent of <math>\sigma$.

The R² and Adjusted R² Values

- For simple linear regression, R^2 is the square of the sample correlation r_{xy} .
- For multiple linear regression with intercept (which includes simple linear regression), it is defined as $r^2 = SSM / SST$.
- In either case, R^2 indicates the proportion of variation in the y-variable that is due to variation in the x-variables.
- Many researchers prefer the **adjusted** R^2 value = \overline{R}^2 instead, which is penalized for having a large number of parameters in the model:

$$\overline{R}^2 = 1 - (1 - R^2)(n - 1) / (n - p)$$

• Here derivation of \overline{R}^2 : R^2 is defined as 1 - SSE/SST or 1 - R^2 = SSE/SST. To take into account the number of regression parameters p, define the adjusted R-squared value as

$$1 - \overline{R}^2 = MSE/MST$$
,

where MSE = SSE/DFE = SSE/(n-p) and MST = SST/DFT = SST/(n-1). Thus,

1 -
$$\overline{R}^2$$
 = [SSE/(n - p)] / [SST/(n - 1)]
= (SSE/SST)(n - 1) / (n - p)

SO

$$\overline{R}^2 = 1 - (SSE/SST)(n - 1) / (n - p)$$

= 1 - (1 - R²)(n - 1) / (n - p)