

In case of dispute the only valid reference is the original Italian edition

RESISTANCE TO TRANSIENT INTERFERENCE AND VOLTAGE CHANGE IN SUPPLY LINES OF OFF-VEHICLE ELECTRICAL AND ELECTRONIC SYSTEMS

16-2103

Page 1/29

Date 05.07.2010

Origin: ISO 7637/1 and 7637/2 with modifications

Supervisor: IVECO STD. 19-0201

Manager: IVECO STD. 19-0201

1 PURPOSE

To define equipment and test procedures for off-vehicle testing of resistance to transient interference and voltage change in supply lines for electrical and electronic systems.

2 SUBJECT

This standard applies to equipment installed on vehicles with 12 V and 24 V electrical systems equipped with either "Diesel" or "Otto" cycle internal combustion engines.

3 GENERAL TEST CONDITIONS

Tests shall be performed for electronic devices already susccessfully submitted to functional tests as specified in general IVECO procurement specification 18-2252 and in appropriate standards.

3.1 **Test environment** (unless otherwise specified)

Ambient:

room of suitable size to house instrumentation and test setup of 2 x 1 m min.

Test environment:

to be free from interference which might adversely affect test results and set to the following parameters:

- Temperature: 23 ± 5 °C-- Relative humidity: 45 - 70 %.

Atmospheric pressure: 860 thru 1060 mbars.

Edition	Date	Description of modifications	Group
. 1	13.09.1989	New.	
9	18.01.2002	Changed paras. 4.3.2 (Table I with relevant references) and para. 6.5.2.	
10	04.04.2003	Supervisor and Manager introduced. Changed paras 4.3.2, 5.7.2 and Table at para. 6.5.2	
11	01.04.2006	Revised for updating to Technical Advances ISO 7637/1 and ISO 7637/2.	
12	05.04.2007	Table 12 updated.	
13	02.02.2009	Supervisor changed, paras.: 4, 5.1.4, 5.2, 5.2.8 and 7. Updated Manager function and added para. 5.2.8.3.	PEL
14	15.05.2010	Supervisor and Manager changed.	
15	05.07.2010	Supervisor and Manager changed. Changed paras.: 3.2, 4, 5.1.3.3, 5.1.4.1.1, 5.1.4.2.1, 5.1.4.3.1, 5.2, 5.2.6, 5.2.8.1, 5.2.8.2, 7 and References. Added paras.: 5.2.8.4, 5.2.8.5, 5.2.8.6 and 5.2.8.7.	

AS UPDATE STATUS OF PRINTOUTS CANNOT BE MONITORED, CHECK WEB SITE FOR THE LATEST DOCUMENT EDITION.

2/29 Page

05.07.2010 Date

Test voltage 3.2

As specified on drawing or on specific Standard of device under test. For test pulses (Figures 3 - 4 - 5 - 6 - 7 - 8 - 9 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 -21 - 22) system voltage or battery voltage are as shown in Table 1 below:

Table 1

Voltage	For 12 V systems [V]	For 24 V systems [V]
U _A	13.5 ± 0.5	27 ± 1
U _B	12 ± 0.2	24 ± 0.4

 U_A Where: system voltage (engine on);

battery voltage (engine off); U_{B}

TEST PULSE LEVEL AND THEIR FUNCTIONAL CLASS 4

Use test levels shown in Table 2. If malfunction is found, test starting from lower ratings up to the value threshold at which it is immune.

Table 2

Type of	N° of pul- ses and dura-	Type of function		Test level Device power supply		Description of pulses
pulse	tion of test		12 V	24V	acceptability	от раносо
1	500	NP	Vs = - 100 V	Vs = - 450 V		para.
Spike (-)	500	Р	Vs = - 300 V	Vs = - 600 V	С	5.1.4.1
		NP	Vs = + 50 V	Vs = + 50 V	В	
0.05acres Spike (-)	500	P	Vs = + 100 V	Vs = + 100 V	A	para. 5.1.4.2
2b	10	NP	Vs = + 10 V	Vs = + 20 V	В	para.
Spike (-)	10	Р	Vs = + 10 V	Vs = + 20 V	А	5.1.4.3
3a	20 min	NP	Vs = - 112 V	Vs = - 150 V	В	para.
Burst (-)	30 min.	Р	Vs = - 150 V	Vs = - 200 V	Α	5.1.4.4
					<u>'</u>	1
3b Burst (+)	30 min.	NP	Vs = + 75 V	Vs = + 150 V	В	para. 5.1.4.4
			-	1	(continued (==)

IVECO Standard

16-2103

Page 3/29

Date 05.07.2010

(r continued)

Туре	N°of pul- ses		Test	level	Class		
of pulse	and dura- tion of	Type of function	Device por	wer supply	of acceptability	Description of pulses	
paico	test		12 V	24V			
3b Burst (+)	30 min.	Р	Vs = + 100 V	Vs = + 200 V	Α	para. 5.1.4.4	
		Davida a sa at	$U_{B} = 13.5 \text{ V}$ $V_{S} = 4.5 \text{ V}$ $V_{A} = 6 \text{ V}$ $V_{B} = 15 \text{ ms}$ $V_{B} = 2 \text{ S}$		В		
4 Cranking	5	Devices on at cranking	$U_B = 13.5 \text{ V}$ $V_S = 5 \text{ V}$ $V_A = 9.5 \text{ V}$ $V_{AB} = 40 \text{ ms}$ $V_{AB} = 20 \text{ s}$	$U_{B} = 27 \text{ V}$ $V_{S} = 8 \text{ V}$ $V_{A} = 12 \text{ V}$ $V_{G} = 100 \text{ ms}$ $V_{B} = 20 \text{ s}$	А	para. 5.2.8.1	
		Devices off at cranking	$U_{B} = 13.5 \text{ V}$ $V_{S} = 5 \text{ V}$ $V_{A} = 6 \text{ V}$ $V_{B} = 40 \text{ ms}$ $V_{B} = 500 \text{ ms}$	$U_{B} = 27 \text{ V}$ $V_{S} = 8 \text{ V}$ $V_{A} = 12 \text{ V}$ $V_{G} = 50 \text{ ms}$ $V_{B} = 500 \text{ ms}$	С		
			18 = 300 1113	18 - 300 1113			
Starting		Devices on at cranking	See	See	А	nara	
profile	10	Devices off at cranking	Figure 21 Table 12	Figure 21 Table 13	С	5.2.8.6	
Sinusoid changes of	5 s each	Devices on at cranking	6 - 8 V	0 10 1/	A	para.	
supply vol- tage	frequency	Devices off at cranking	6 - 8 V	8 - 10 V	С	5.2.8.7	
			0 V per 2 ms wit	th duty cycle 1:9	A		
Micro breaks	15 cycles each time	All (NP/P)	0 V per 10 ms with duty cycle 1:9		В	para. 5.1.4.4 para. 5.2.8.1	
		• • •	0 V per 50 ms w	ith duty cycle 1:9	С		

(continued ₪)

IVECO Standard

16-2103

Page 4/29

Date 05.07.2010

(F continued)

-	ses and dura- tion of test	Type of function	Device pov	wer supply	Class of	Description			
puise				Device power supply		of pulses			
			12 V	24V	acceptability				
Drop of supply voltage	15	All (NP/P)	12 V to 4.5 per 10 ms	24 V to 9 per 10 ms	В	para. 5.2.8.4			
Perfor- mance on restoring power sup-	15	Devices on at cranking	Soo Figuros	18 - 10 - 20	А	para.			
ply after voltage drop	15	Devices off at cranking	See Figures 18 - 19 - 20		С	5.2.8.5			
0.12acres		Systems with alternator	87 V	173 V					
Load dump without	10	without anti load dump	without anti load dump	without anti load dump		anti load dump 400 ms 350 ms	350 ms	А	para. 5.1.4.5
zener		tection diodes	$R_i = 1 \Omega$	$R_i = 1.4 \Omega$					
5b Load dump with zener	10	Systems with alternator and anti load dump centralized pro- tection zener diodes	40 V 58 V		А	para. 5.1.4.6			
Key off/on	200	cycle 1 Ta = 10 s Ts = 12 s	Td = 200 per step Tp = 3	10 ms	A	para.			
cycle	200	cycle 2 Ta = 10 s Ts = 12 s	Td = 1.7 - 4.9 ms per step 50 ms Tp = 5.7 s		^	5.2.8.3			

Page 5/29

Date 05.07.2010

4.1 Functional classes

Electronic device operation conditions during EMC tests refer to classes below:

- CLASS A: All functions comply with requirements, both during and after test.

- CLASS B: All functions comply with requirements both during and after tests;

however, one or more of them may be out of tolerance within limits as per

specific Procurement Specification or Product Specification.

However, these functions will return within tolerance as soon as interference disappears.

- CLASS C: A function may have failed but it will be brought back within tolerance

when interference stops through an automatic reset function setting device

back to a condition consistent with selected parameters.

- CLASS D: A function may have failed and will not be brought back within tolerance

when interference ceases till an -external reset occurs.

- CLASS E: One or more device functions may have failed both during and after test

These functions are not brought back within tolerance when interference ceases, until device is repaired or replaced.

NOTE: It is not acceptable that devices under test subjected to max. test severity will irreversibly fail (Functional Class E).

4.2 Classification of component/system defects and their test levels

4.2.1 **Defect classification**

- P: Prioritary defect affecting vehicle control that may be perceived by driver or other road user, or generating operational downgrading which may cause confusion to other road users.
- **NP**: Non priority defect which does not impact vehicle control or any secondary function for system under test .

5 IMMUNITY TO TRANSIENT INTERFERENCE ON POWER SUPPLY LINES

5.1 Test procedure to check immunity to transient interference on power supply lines (for pulses specified in paras. 5.1.4.1, 5.1.4.2, 5.1.4.3, 5.1.4.4, 5.1.4.5, 5.1.4.6)

5.1.1 Test Apparatus

5.1.1.1 Pulse generator: must be able to generate pulses as defined in **Figures 3**, **4**, **5**, **6**, **7**, **8**, **9**. The tolerances on specifications are \pm 10% for time, \pm 2% for resistance Ri and \pm 10% for voltage.

IVECO Standard

16-2103

Page 6/29

Date 05.07.2010

- 5.1.1.2 0 40 V, 80 A uninterruptible adjustble voltage power supply, as per IVECO STD. 16-2108, coupled to 12 V, 70 Ah, 350 A battery. (1 battery for 12 V tests 2 batteries in series for 24V tests).
- 5.1.1.3 Digital oscilloscope with memory, pass band $F \ge 200$ MHz; sampling by single pulse: 4 x 10 sampling/s per channel.

Voltage probes with following characteristics:

- attenuation: 10 x (R \geq 10 M Ω , C \leq 12 pF, 500 V max, pass band F \geq 200 MHz);
- attenuation: 10 x (R \geq 10 M Ω , C \leq 2.5 pF, 1500 V max, pass band F \geq 120 MHz).
- 5.1.1.4 Ground: high-conductivity sheet metal (Cu, Al, Brass).

 Min. thickness 1 mm, min. size 2 x 1 m. Ground shall be connected to building ground through suitable conductor (copper braid or strip welded to ground mass).
- 5.1.1.5 Test setup in insulating material (wood) of suitable size to support ground mass.
- 5.1.1.6 Simulator to reproduce system sensors and actuators. Simulator signals shall not be affected by interference such as test pulses of **Figures 3**, **4**, **5**, **6**, **7**, **8**, **9**. **12**, but must transfer supply line interference (from generator) to actuators and/or sensors conmerced.

5.1.2 **Test setup preparation**

- 5.1.2.1 Place equipment as per para. 5.1.1 on test setup as shown in **Figure 1** or **Figure 2** (GENERAL PURPOSE system).
- 5.1.2.2 Device under test (D.U.T.) shall be placed 50 ± 5 mm away from test setup surface and insulated from it, unless direct grounding to frame is specifically required, in which case connection with test surface shall be as short as possible.
- 5.1.2.3 Prepare the power supply line (positive or negative) across device under test and interference generator using 2 off Cu 2.5 mm section cables², 500 ± 50 mm long parallel to one another 20 ± 2 mm away, 50 ± 5 mm removed from ground.
- 5.1.2.4 Connect device under test, all input and output lines (supply, sensors, co-ntrols, actuators, etc...) as specified on drawing; if a common connector is used for supply lines, control lines and power lines, the cables of the latter shall be $90^{\circ} \pm 15^{\circ}$ to supply cables and as close as possible to the terminals.
- 5.1.2.5 Connect battery/ies (with 13.5 \pm 0.1 V or 27 \pm 0.2 V uninterruptible power supply) to pulse generator. "Negative" battery/ies terminal to be directly connected to ground.
- 5.1.2.6 Connect oscilloscope to generator output.
- 5.1.2.7 Select test pulses and adjust both pulse width and pulse frequency with device under test not connected to generator.

Figure 2 Injection of transient interference in supply line

Placement of equipment

NOTE:

 $(\widehat{\mathsf{A}})$

2 cables 20 \pm 2 mm away from each other, 500 \pm 50 mm length, Cu 2.5 mm² section and 50 \pm 5 mm from ground mass.

Connect battery "negative" terminal directly to ground

Page 9/29

Date 05.07.2010

5.1.3 Measurement procedure

5.1.3.1 Connect supply line of device under test to pulse generator, set device to standard operating conditions as specified by Supplier or relevant procurement specification and apply preferably a physical stimulation to sensors.

- 5.1.3.2 Apply specified pulses to device under test and take note of behavior of component under test.
- 5.1.3.3 For test pulses 1 (para. 5.1.4.1), 2a (para. 5.1.4.2) and 2b (para. 5.1.4.3), apply interference to supply terminals undergoing opening at position +15 (key on) and + 30 if required by project manager (battery direct line).

Other interference 3a (para. 5.1.4.4), 3b (para. 5.1.4.4), 5a (para 5.1.4.5), 5b (para. 5.1.4.6) shall be applied both at position +15 (key on) and +30 (battery direct line).

5.1.4 Test pulses

5.1.4.1 **Test pulse 1**

Applicable to equipment which on board the vehicle remain connected in parallel to inductive load when power supply is not on.

5.1.4.1.1 Apply test pulse to +15 (under key) and, if requested by project manager, to + 30 (battery direct) as shown in **Figure 3** with amplitude, number of cycles and time specified for class of equipment under test (see **Table 2**).

Figure 3

Page 10/29

Date 05.07.2010

Table 3

Parameters	12 V				24 V		
V _s	- 50 V	to	- 300 V	- 150 V	to	- 600 V	
Ua	1:	3,5 ± 0.5	5 V	27 ± 1 V			
R _i		10Ω			50Ω		
t _d		2 ms			1 ms		
t _r		1 (0)	us		3 (-1,5)) μs	
t ₁	0.5 s to 5 s			0.5 s	to	5 s	
t ₂	200 ms			200 ms			
t ₃	≤100 μs				≤ 100 μs	S	

5.1.4.2 **Test pulse 2a**

Applicable to devices which on board the vehicle remain connected in parallel to inductive load when power supply is discontinued due to wiring inductance.

5.1.4.2.1 Apply test pulse to +15 (under key) and, if requested by project manager, to + 30 (battery direct) as shown in **Figure 4** with amplitude, number of cycles and time specified for class of equipment under test (see Table 2).

Figure 4

Page 11/29

Date 05.07.2010

Table 4

Parameters	12 V			24 V		
V _s	25 V	to	100 V	25 V	to	100 V
Ua	1	$3,5 \pm 0.5$	V	27 ± 1 V		
R _i		2Ω		2Ω		
t _d		0.05 ms		0.05 ms		
t _r		$\binom{0}{1^{0,5}}$			$\binom{0}{1^{0,5}}$	
		μs			Ļ	ıs
t ₁	0.2 s to 5 s			0.2 s	to	5 s
t ₂	200 ms			200 ms		
t ₃	≤ 100 μs				≤ 100 μs	·

5.1.4.3 **Test pulse 2b**

Applicable to devices which on board the vehicle remain connected to inductive load (DC motors) acting as generators when power supply is discontinued.

5.1.4.3.1 Apply test pulse to +15 (under key) and, if requested by project manager, to + 30 (battery direct) as shown in **Figure 5** with amplitude, number of cycles and time specified for class of equipment under test (see **Table 2**).

Figure 5

Table 5

Parameters	12 V	24 V				
V _s	10 V	20 V				
Ua	13,5 ± 0.5 V	27 ± 1 V				
R_i	0Ω to 0.05 Ω					
t _d	0.2 to	o 2 s				
t ₁₂	1 ms ±0.5 ms					
t _r	1 ms ± 0.5 ms					
t ₆	1 ms ±	0.5 ms				

PUBLISHED BY SATIZ - NORMAZIONE

IVECO Standard

16-2103

Page 12/29

Date 05.07.2010

5.1.4.4 **Test pulse 3a and 3b**

(Negative and positive bursts)

The features of these interference pulses due to opening/closing of circuits are linked to both capacity and inductance of vehicle wiring harness.

5.1.4.4.1 Apply test pulse shown in **Figure 6** and in **Figure 7** with amplitude, test cycle time and test time specified for class of equipment under test on both +15 (under key) and +30 (battery direct) (see **Table 2**).

Figure 6
Pulse 3a – Negative burst

Table 6

Parameters		12 V			24 V		
V _s	-37 V	to	-150 V	-50 V	to	-200 V	
Ua	1	3,5 ± 0.5	V	27 ± 1 V			
R _i		50Ω		50Ω			
t _d		0,1) μs	0,1 (+0,1) 0 μs			
t _r	5	ns ±1.5 i	าร	5 ns ± 1.5 ns			
t ₁		100 μs			100 μs		
t ₄		10 ms			10 ms		
t ₅		90 ms		90 ms			

Page 13/29

Date 05.07.2010

Figure 7
Pulse 3b – Positive burst

Table 7

Parameters		12 V			24 V		
Vs	25 V	to	100 V	50 V	to	200 V	
Ua		13,5 ± 0.5	V	27 ± 1 V			
R _i		50Ω		50Ω			
t _d	0,1	(+0,1) 0 µs		0,1 (+0,1) μs			
t _r	į	5 ns ±1.5 n	s	5 ns ±1.5 ns			
t ₁		100 μs		100 μs			
t ₄		10 ms			10 ms		
t ₅		90 ms			90 ms		

Page 14/29

Date 05.07.2010

5.1.4.5 Test pulse 5a (load dump without centralized protection)

IVECO Standard

Applicable to devices which remain connected to source alternator, with engine running, when circuit for connection to battery is opened.

5.1.4.5.1 Apply test pulse shown in **Figure 8** when using alternators without centralized protection during load dump (i.e., without Zener diodes) with amplitude, number of cycles and time corresponding to class of equipment under test both on +15 (under key) and on +30 (battery direct) (see **Table 2**).

Table 8

Parameters		12 V			24 V		
V _s	22 V	to	87 V	43 V	to	173 V	
Ua		13,5 ± 0.5 \	V	27 ± 1 V			
R _i ⁽¹⁾	0,5Ω	to	4Ω	1Ω	to	8Ω	
t _d		400 ms		350 ms			
t _r		(0) - \(0 \) ms			(0) - 和 ms	1	
t ₁		60s			60s		

Internal resistance (R_i) of pulse simulator can be calculated using the following formula:

$$R_i = \frac{10 \times V_n \times N_R}{0.8 \times I_R \times 12000 \text{ giri/min}}$$

V_n = Nominal generator voltage

N_r = Actual alternator speed

I_r = Generator current rating at 6000 RPM.

⁽¹⁾ Internal resistance of an alternator during load dump is basically a function of speed and excitation current.

Page 15/29

Date 05.07.2010

5.1.4.6 Test pulse 5b (Load Dump with centralized protection through Zener diodes)

5.1.4.6.1 Apply test pulse shown in **Figure 9** load dump generated by alternators with centralized protection through Zener diodes on both +15 (key on) and +30 (battery direct line).

Table 9

Parameters		12 V			24 V		
V _s		87 V		173 V			
U _a		13,5 ± 0.5	V	27 ± 1 V			
V _z ⁽²⁾		40 V			58 V		
R _i	0,5Ω	to	4Ω	1Ω to 8Ω			
t _d		400 ms		350 ms			
t _r	4 ms	to	5 ms	10 ms			
t ₁	60s 60s						

⁽²⁾ Value of V_z is obtained by adding 2 V to reverse voltage of Zener diodes on vehicle alternator where component/system under test will be placed.

Page 16/29

Date 05.07.2010

5.2 **Test procedure for monitoring performance under supply voltage fluctuations** (for pulses specified in paras. 5.2.8.1, 5.2.8.2, 5.2.8.3, 5.2.8.4, 5.2.8.5, 5.2.8.6 and 5.2.8.7)

Above pulses involve the following tests:

- temporary voltage drop immunity test on power lines;
- microbreaks immunity tests;
- tests of changes due to incorrect operation of key switch (on/off key cycle).
- Performance on restoration of power supply after voltage drop;
- Sinusoidal changes of supply voltage;
- Start cycle;
- Temporary drop of supply voltage.

5.2.1 **Test apparatus**

For this type of pulse, further to equipment of paras. 5.1.1.3, 5.1.1.4, 5.1.1.5, 5.1.1.6, the following must be available:

- 5.2.1.1 Signal generator, with arbitrary wave forms and the following characteristics: frequency band 0.001 Hz to 20 KHz, horizontal resolution \geq 4000 points, vertical resolution \geq 10 bits.
- 5.2.1.2 Programmable power supply unit with 0 40 V output voltage, current output over 80 A, internal resistance $R_i = 0.01~\Omega$, pass band above 10 kHz and pilot voltage through signal generator.
- 5.2.1.3 Graphic plotter with recording capability of slow events.

5.2.2 **Test setup layout**

- 5.2.3 Place equipment as per para. 5.2.1 on test setup as shown in **Figure 10** or **Figure 11** (GENERAL PURPOSE system) overleaf.
- 5.2.4 Perform operations as per paras 5.1.2.2 5.1.2.3 5.1.2.4.
- 5.2.5 Connect oscilloscope or graph plotter to programmable power supply unit output.
- 5.2.6 Set test instrumentation of programmable power supply unit to obtain voltage changes as shown in Figure 12 13 14 15 16 17 18 19 20 21 22, and in Table 12 and 13.

Page 19/29

Date 05.07.2010

5.2.7 Test procedure

5.2.7.1 Connect device under test to the programmable supply and set unit to standard usage conditions as specified by Supplier or procurement specification preferably applying physical stimulation to sensors.

5.2.7.2 Apply specified voltage changes to the device under test, both on supply terminals not subjected to opening (position +15 under key control) and on terminals connected to battery direct line (position +30). If not specified, apply test parameters applicable to similar devices.

5.2.8 Test pulses

5.2.8.1 Test pulse 4 (Cranking)

Applicable to electronic devices connected to power supply during engine cranking to simulate supply voltage drop.

5.2.8.1.1 Apply test pulse as shown in **Figure 12** with amplitude, number of cycles and time specified for class of device under test (see **Table 2**) both to +15 (under key) and to +30 (battery direct).

Table 10

Parameters		12 V			24 V	
U _b		12 ± 0.2 \	/		24 ± 0.4 \	/
V _s	4.5 V	to	5 V	8 V	to	12 V
$V_a (V_a > V_s)$	6 V	to	9.5 V	12 V	to	19 V
R _i	0Ω	to	$0,02\Omega$	0Ω	to	$0,02\Omega$
t ₆	15 ms	to	40 ms	50 ms	to	100 ms
t ₇		≤ 50 ms			≤ 50 ms	
t ₈	0.5 s	to	20 s	0.5 s	to	20 s
t _r		≤ 5 ms			≤ 10 ms	
t _f	5 ms	to	100 ms	10 ms	to	100 ms

Page 20/29

Date 05.07.2010

5.2.8.2 Microbreaks of power supply line

5.2.8.2.1 Applicable to devices connected to power supply to simulate microbreaks generated by bounce-back on key switch and/or loose contacts on connectors, verifying that the system is still properly operating at interference injection (unless otherwise specified).

5.2.8.2.2 Apply test pulse, both +15 (under key) and +30 (battery direct), with parameters shown in **Figure 13** with amplitude, number of cycles and time specified for class of device under test (see **Table 2**).

Table 11

Parameters	V _s = 12 V	V _s = 24 V		
V _s	- 12 V	- 24 V		
R _i	0,01Ω	0,01Ω		
t ₆	2 - 10 - 50 [ms]	2 - 10 - 50 [ms]		
t ₈	18 - 90 - 450 [ms]	18 - 90 - 450 [ms]		
t _r	≤100 μs	≤ 330 μs		
t _f	≤ 20 μs	≤ 20 μs		

The duty-cycle between t_6 and t_8 must always be 1 : 9.

5.2.8.3 Key on/off operation.

To simulate voltage interference on power supply lines due to incorrect operation of ignition key switch.

Page 21/29

Date 05.07.2010

5.2.8.3.1 Application of specified interference to key + (+ 15)

IVECO Standard

- Set signal generator to have voltage electrical characteristics and interference times at programmable power supply unit output, as specified in **Figure 14** first, then in **Figure 15**.

- Check for proper operation of device under test under the specific operating condition tested comparing characteristic parameters of signals from sensors to reference parameters.
- At the end of interference application, after achieving or exceeding application time or number of required pulses, enter test results with actual test time and malfunctions identified, if any.

Figure 14 - First Key Off/On cycle

Ri \leq 0,01 Ω (power supply unit internal resistance);

 $t_a = 10 s$ (power supply time OFF);

 t_d = 200 - 800 ms (time) increased in 10 ms steps;

 $t_p = 3*td (period);$

 $t_b = 10 s (burst time);$

 $t_a = 12 s$ (power supply time ON);

 t_r \leq 100 μ s;

 $t_f \leq 100 \,\mu s;$

 U_{at} = 13.5 \pm 0.5 V for 12 V supply systems;

 $27 \text{ V} \pm 1 \text{ V}$ for 24 V supply systems.

Page 22/29

Date 05.07.2010

Figure 15 - Key Off/On cycle

Ri \leq 0,01 Ω (power supply unit internal resistance);

 t_d

 $t_a = 10 s$ (power supply time OFF);

0

 $t_d = 1.7 - 4.9 s$ (time) increased in 50 ms steps;

 $t_p = 5.7 \text{ s (period)};$

 $t_a = 12 s$ (power supply time ON);

 $t_r \leq 100 \, \mu s;$

 $t_f \leq 100 \,\mu s;$

 U_{at} = 13.5 \pm 0.5 V for 12 V supply systems; 27 \pm 1 V for 24 V supply systems.

Page 23/29

Date 05.07.2010

5.2.8.4 Temporary drops in supply voltage.

To be applied simultaneously to all relevant inputs of device under test as specified in **Figure 16** and **17**, with increase and decrease time of < 10 ms.

Figure 16 - Short voltage drop for 12 V nominal voltage system.

t = time in seconds;

U = test in volts;

Usmin. = min. supply voltage.

Figure 17 - Short voltage drop for 24 V nominal voltage system.

t = in seconds;

U = in V.

Page 24/29

Date 05.07.2010

5.2.8.5 Performance after on restoration of power supply after voltage drop

To verify the behavior of the device/system at power supply restoring after repeated voltage drops.

The test can be used for systems having reset functions, e.g. systems equipped with microcontrollers.

The systems/components for which this test is required shall undergo the following procedure:

- supply the system/component at constant voltage for 10 s at least, at a variable value each time, with decrement intervals of 0.5 V, from min. operating voltage to 0 V.
- after 10 s at each test voltage, restore supply voltage to min. operating value, keep it unchanged for 10 s, then check if behavior of system/component complies with requirements, as specified for the function to be performed.

Figure 18
Voltage drop test for systems/components included in start-up chain

Figure 19 Voltage drop test for systems/components non operating at the first start-up step

Page 25/29

Date 05.07.2010

Figure 20 Voltage drop test for systems/components not operating during the start-up step

5.2.8.6 Start cycle

This test is to check the behaviour of device both at and after cranking.

Apply the start cycle 10 times to all significant inputs simultaneously, as specified in **Figure 21** e **Tables 12** or **13** an interval of 1 or 2 s between one cycle and the next, as recommended.

One or more profiles can be selected according to the type of application as specified in table.

Figure 21

Page 26/29

Date 05.07.2010

Table 12 - Initial profile values for 12 V nominal voltage systems.

Parameter		Level/voltage/time of starting profile					
Para	imeter	I	II	III	IV	Tolerances	
Valtaria	U _S [V]	8	4,5	3	6	0.0	
Voltage	U _F [V]	9,5	6,5	5	6,5	- 0,2	
	t _r [ms]		· ·	5			
	t ₆ [ms]		1	5			
Life test	t ₇ [ms]		± 10 %				
	t ₈ [ms]						
	t _f [ms]	40	40 100				
	oply voltage V]		Min. opera	ting status			
$U_{smin.}$	U _{smax.}						
6	16	Α	В	В	А		
8	16	Α	В	С	В		
9	16	В	С	С	С		
10,5	16	В					

Table 13 - Initial profile values for 24 V nominal voltage systems.

Parameter		Level/voltage/time of starting profile					
		I	II	III	Tolerances		
	U _S [V]	10	8	6	. 0.0		
Voltage	U _F [V]	20	15	10	+ 0,2		
	t _r [ms]		10				
	t ₆ [ms]						
Life test	t ₇ [ms]	50			± 10 %		
	t ₈ [s]	1	10	1			
	t _f [ms]	40	100	40			
Power supply voltage [V]		_					
U _{smin.} U _{smax.}		N					
10	32	A	В	С			
16	32	В	С	С			
22	32	В	С	С			

Page 27/29

Date 05.07.2010

5.2.8.7 Sinusoid changes of supply voltage

Voltage decrease at startup of engine:

Figure 22

Table 14

Test level	Nominal power supply voltage of the device			
	12	24		
V _{b1}	12 V	24		
V _{b2}	6 V	8		
V _{b3}	8 V	10		

 $R_i \leq 0.01 \Omega$ (internal resistance of power supply unit);

 $t_1 = 5 s, 2 s;$

 $t_2 = 2 s;$

 $F_1 = 1 Hz;$

 $F_2 = 5 Hz;$

Application point: + 15 key and + 30 battery.

6 ACCESSIBILITY LIMITS

The functional class achieved (A - B - C - D - E) for the product under test at **application of pulses** shall be equivalent to or higher than requirements for all test levels. In case of device malfunction, perform a manual check of minimum levels **of parameters set for pulses** to which the device starts operating again properly (sensitivity limit search).

7 PRESENTATION OF RESULTS

Results shall be reported for each test level (\leq at the level defined), for each type of pulse and limit value t_1 (repetition time) identifying malfunctions, if any, and specifying whether temporary or permanent, together with their functional classes. E.g., see the **Table 15** overleaf.

Page 28/29

Date 05.07.2010

Table 15

of	N°of pul-		Test	level	Class	
	ses and dura-	Type of function	Device power supply		of	RESULT
	tion of test		12 V	24V	acceptability	
1	500	NP	Vs = - 100 V	Vs = - 450 V	С	A - B - C
Spike (-)	500	Р	Vs = - 300 V	Vs = - 600 V		
0.05acres	500	NP	Vs = + 50 V	Vs = + 50 V	В	A - B
Spike (-)	500	Р	Vs = + 100 V	Vs = + 100 V	Α	Α
2b	10	NP	Vs = + 10 V	Vs = + 20 V	В	A - B
Spike (-)	10	Р	Vs = + 10 V	Vs = + 20 V	Α	Α
0.07acres	20 min	NP	Vs = - 112 V	Vs = - 150 V	В	A - B
Burst (-)	30 min.	Р	Vs = - 150 V	Vs = - 200 V	Α	Α
3b	20 min	NP	Vs = + 112 V	Vs = + 150 V	В	A - B
Burst (+)	30 min.	Р	Vs = +150 V	Vs = + 200 V	А	А
4 Cranking 5		Devices on at cranking	$U_{B} = 13.5 \text{ V}$ $V_{S} = 4.5 \text{ V}$ $V_{A} = 6 \text{ V}$ $V_{B} = 15 \text{ ms}$ $V_{B} = 2 \text{ s}$		В	A - B
	5		$U_{B} = 13.5 \text{ V}$ $V_{S} = 5 \text{ V}$ $V_{A} = 9.5 \text{ V}$ $V_{A} = 9.5 \text{ V}$ $V_{B} = 40 \text{ ms}$ $V_{B} = 20 \text{ s}$	$U_B = 27 \text{ V}$ $V_S = 8 \text{ V}$ $V_A = 12 \text{ V}$ $V_{A} = 100 \text{ ms}$ $V_{A} = 100 \text{ ms}$	А	А
		Devices off at cranking	$U_{B} = 13.5 \text{ V}$ $V_{S} = 5 \text{ V}$ $V_{A} = 6 \text{ V}$ $V_{B} = 40 \text{ ms}$ $V_{B} = 500 \text{ ms}$	$U_{B} = 27 \text{ V}$ $V_{S} = 8 \text{ V}$ $V_{A} = 12 \text{ V}$ $V_{G} = 50 \text{ ms}$ $V_{B} = 500 \text{ ms}$	С	A - B - C
Starting	10	Devices on at cranking	See Figure 21	See Figure 21	А	Α
profile	10	Devices off at cranking	Table 12	Table 13	С	A - B - C
inusoidal	5 s cooh	Devices on at cranking			Α	Α
_	requeries	Devices off at cranking	6 - 8 V	8 - 10 V	С	A - B - C

(continued [])

PUBLISHED BY SATIZ - NORMAZIONE

Page 29/29

Date 05.07.2010

(r continued)

Type of pulse	N°of pul-	Type of function	Test level Device power supply		Class of	RESULT
	ses and dura- tion of test					
			12 V	24V	acceptability	
			0 V per 2 ms with duty cycle 1:9		Α	А
Micro breaks	15	All (NP/P)	0 V per 10 ms with duty cycle 1:9		В	A - B
Dicano		(1.1.7.7)	0 V per 50 ms w	rith duty cycle 1:9	С	A - B - C
Drops	15	All (NP/P)	12 V to 4.5 per 24 V to 9 per 10 ms ms		В	A - B
Perfor- mance onrestora- tion of		Devices on at cranking	See Figures 18 - 19 - 20		А	А
power sup- ply after voltage drop	13	Devices off at cranking	See Figures 16 - 19 - 20		С	A - B - C
Key off/on	200	All (AID (D)	cycle 1 Ta = 10 s Ts = 12 s Td = 200 - 800 ms per step 10 ms Tp = 3 x Td cycle 2 Ta = 10 s Ts = 12 s Td = 1.7 - 4.9 ms per step 50 ms Tp = 5.7 s			
cycle	200	All (NP/P)			Α	A

REFERENCES

IVECO STD.: 16-2108, 18-2252, 19-0201.

ISO: 7637/1, 7637/2