2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)

Large-Scale Ontology Storage and Query Using Graph Database-Oriented Approach

Mahmoud Elbattah
College of Engineering and Informatics
National University of Ireland Galway
m.elbattah1@nuigalway.ie

Introduction

Ontology Spectrum

Source: Poli, Roberto, Michael Healy, and Achilles Kameas, eds. *Theory and Applications of Ontology: Computer Applications*. Dordrecht: Springer, 2010.

Uses of Ontologies

COMMUNINCATION

between people and organizations

INTER-OPERABILITY between systems

SYSTEMS ENGINEERING

Reusable Components

Specification

Reliability

Potentials of Ontologies for Big Data

The Challenge: How to Store and Query Large-Scale Ontologies?

Proposed Approach

Our Approach: Native Graph-Driven Storage Model

- Freebase: A huge structured entity database.
- Entities (Topics) about people, places, and things.
- ≈ 57 million Topics
- ≈ 650 Domains

Ontology Graph Structure

Example

Ontology Graph Structure (cont'd)

≈ 500K Topic-Nodes

≈ 2K Type-nodes

≈ 2M Edges

Note:

Due to space/computing limitations, an experimental subset (≈500,000 topics) was used.

Query Experiments

Query Scenarios

Query Type	Query Description	Query Code (Cypher)
Exact Match Query	Return all Topics having the exact name of "Albert Einstein"	Match (n:Topic) Using Index n:Topic(TopicName) Where n.TopicName='Albert Einstein' Return n
Wildcard Query	Return all Topics having the name starting with "Albert Einstein"	Match (n:Topic) where n.TopicName=~'Albert Einstein.*' Return n
Predicate-based Query	Return 100 Topics being subclass of the "Book" Type	Match (n:Topic)-[:Subclass_of]- >(m:Type) Where m.TypeName='Book' Return n,m limit 100
	Return all Topics being subclass of the "Book" Type and having the name of "Albert Einstein"	Match (n:Topic)-[:Subclass_of]- >(m:Type) Where n.TopicName ='Albert Einstein' and m.TypeName='Book' Return n,m

Query Performance Results

Note:

Observations

• Exceptionally quick response times in case of exact, and simple/composite predicate-based queries (1 - 2 sec).

• However, the performance declines significantly in case of wildcard-based queries (≈18 sec).

Conclusions

- The graph database-oriented approach can present significant potentials for large-scale ontologies.
- Flexible schema-less modeling.
- Powerful query potentials.
- Complex graph traversal can answer queries requiring extensive navigation around a graph.
- Advantageous scalability compared to traditional relational models

Original Paper

The original paper can be accessed from:

- http://ieeexplore.ieee.org/document/7397191/
- https://www.researchgate.net/publication/304414637_Large-Scale_Ontology_Storage_and_Query_Using_Graph_Database-Oriented_Approach

Thank You!

Mahmoud Elbattah m.elbattah1@nuigalway.ie