

Название:

(Группа)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 1

Расстояния Левенштейна и Дамерау-Левенштейна

(Подпись, дата)

(И.О. Фамилия)

Дисциплина: <u>Анализ алгоритмов</u>

Студент ИУ7-51Б

О.А. Тюрин

Содержание

\mathbf{B}	ведеі	ние	3				
1	А на	Описание расстояний и алгоритмов	4 5 5 5 6 6				
	1.2	Вывод	6				
2	Кон 2.1 2.2	иструкторская часть Разработка алгоритмов	7 8 11				
3	Tex	Технологическая часть					
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Требования к программному обеспечению Средства реализации Листинг кода 3.3.1 Рекурсивный алгоритм Левенштейна 3.3.2 Матричный алгоритм Левенштейна 3.3.3 Рекурсивный матричный алгоритм Левенштейна 3.3.4 Алгоритм Дамерау-Левенштейна Сравнительный анализ матричной и рекурсивной реализаций 3.4.1 Теоретический анализ затрачиваемой памяти Интерфейс программы Тестирование Вывод	12 12 12 13 13 14 14 14 15 16 18				
4	Эко 4.1 4.2 4.3 4.4	периментальная часть Примеры работы	19 19 20 21 21				
За	аклю	чение	22				

Введение

Расстояние Левенштейна (редакционное расстояние) - это минимальное кол-во редакторских операций, которое необходимо для превращения одной строки в другую.

Существуют следующие применения редакционных расстояний.

- 1) Поисковики (Google), автоисправление текста.
- 2) Биоинформатика.

Задачи для данной ЛР:

- 1) изучение алгоритмов Левенштейна и Дамерау-Левенштейна нахождения расстояния между строками;
- 2) получение практических навыков реализации указанных алгоритмов: двух алгоритмов в матричной версии и одного из алгоритмов в рекурсивной версии;
- 3) сравнительный анализ линейной и рекурсивной реализаций выбранного алгоритма определения расстояния между строками по затрачиваемым ресурсам (времени и памяти);
- 4) эксперементальное подтверждение различий во временной эффективности рекурсивной и нерекурсивной реализаций выбранного алгоритма определения расстояния между строками при помощи разработанного программного обеспечения на материале замеров процессорного времени выполнения реализации на варьирущихся длинах строк;
- 5) описание и обоснование полученных результатов в отчете о выполненной лабораторной работе.

1 Аналитическая часть

Задача по нахождению расстояния Левенштайна заключается в поиске минимального количества операций с единичным штрафом.

Вставка (I - Insert)

Удаление (D - Delete)

Замена (R - Replace)

Совпадение (M - Match)

Для превращения одной строки в другую.

В алгоритме Далмерау-Левенштайна добавляется ещё одна операция:

Транспозиция(Т)

Все операции, кроме "Совпадения имеют штраф 1. Операция "Совпадения" имеет штраф 0.

1.1 Описание расстояний и алгоритмов

1.1.1 Расстояние Левенштейна, рекурсивное определение расстояния

Введём понятие D(s1, s2) = минимальному количеству редакторских операций, с помощью которых строка s1 преобразуется в строку s2. Тогда расстояние Левенштейна можно записать следующим образом:

$$D(i,j) = \begin{cases} 0, i = 0, j = 0 \\ i, j = 0, i > 0 \\ j, i = 0, j > 0 \\ min(D(S_1[1,...,i], S_2[1,...,j-1]) + 1, \\ D(S_1[1,...,i-1], S_2[1,...,j]) + 1, \\ D(S_1[1,...,i-1], S_2[1,...,j-1]) + \\ \begin{bmatrix} 0, if S_1[i] = S_2[j], \\ 1, else \end{cases} \end{cases}$$
 Расстояние можно искать рекурсивно

по представленной формуле.

1.1.2 Расстояние Левенштейна, матричное определение расстояния

Вводится матрица, размерностью $[Len(S_1) + 1\mathbf{X}Len(S_2) + 1]$ Первая строки и столбец матрицы заполняются от 0 до Len(S) (первые 3 пункта системы из предыдущего пункта).

$$A = \begin{pmatrix} \emptyset & C & T & O & JI & B \\ \emptyset & 0 & 1 & 2 & 3 & 4 & 5 \\ T & 1 & & & & & \\ E & 2 & & & & & \\ JI & 3 & & & & & \\ O & 4 & & & & & \end{pmatrix}$$

Далее для нахождения ответа применяется последняя формула из системы, описанной в предыдущем пункте.

$$A = \begin{pmatrix} \emptyset & C & T & O & JI & B \\ \emptyset & 0 & 1 & 2 & 3 & 4 & 5 \\ T & 1 & 1 & 1 & 2 & 3 & 4 \\ E & 2 & 2 & 2 & 2 & 3 & 4 \\ JI & 3 & 3 & 3 & 3 & 2 & 3 \\ O & 4 & 4 & 4 & 3 & 3 & 3 \end{pmatrix}$$

Ответ в правом нижнем углу.

Чтобы определить, какая именно цепочка преобразований привела к ответу представим матрицу как карту высот: нужно спуститься на санках из клетки с ответом в левый верхний угол. В нашем случае:

$$I: ТЕЛО \rightarrow СТЕЛО$$

M: T = T

 $\mathbf{R} \colon \mathbf{E} \to \mathbf{O}$

 $\mathbf{M}: \boldsymbol{\Pi} = \boldsymbol{\Pi}$

 $\mathbf{R} : \mathcal{O} \to \mathcal{B}$

1.1.3 Расстояние Левенштейна, рекурсивное матричное определение расстоя-

Аналогичен алогритму из предыдущего пункта с той лишь разницей, что матрица начинает заполнение "с конца". Вычисляем значение ячейки матрицы только в том случае, если значения там ещё нет (аналогично ∞ в алгоритме Дейкстры). Ответ всё так же в правом нижнем углу.

1.1.4Алгоритм поиска расстояния Дамерау-Левенштейна

Расстояние Дамерау-Левенштейна вычисляется по следующей формуле:

Расстояние Дамерау-Левенштенна вычисляется по следующей формуле.
$$D(i,j) = \begin{cases} 0, & i=0, j=0\\ i, & j=0, i>0\\ j, & i=0, j>0 \end{cases}$$

$$min(\\ D(S_1[i], S_2[j-1]) + 1, & j>0 \ //I\\ D(S_1[i-1], S_2[j]) + 1, & i>0 \ //D\\ D(S_1[i-1], S_2[j-1]) + \\ \begin{bmatrix} 0, & \text{если} & S1[i] == S2[j], \ //M\\ 1, & \text{иначе} \ //R\\ D(S_1[i-2], S_2[j-2]) + 1 & \text{если} \ i=1, j=1, S_1[i] = S_2[j-1], S_1[i-1] = S_2[j] \end{cases}$$

1.2Вывод

Были рассмотрены алгоритмы нахождения расстояния Левенштейна и нахождения расстояния Дамерау-Левенштейна. Главное отличие - наличие операции транспозиции.

2 Конструкторская часть

Требования к вводу:

- 1) на вход подаются две строки;
- 2) одна и та же буква в разном регистре считается как разный символ.

Требования к программе::

1) Две пустые строки являются корректным вводом, который программа должна обработать.

2.1 Разработка алгоритмов

В данном разделе представлены схемы реализуемых алгоритмов. Схема рекурсивного алгоритма поиска расстояния Левенштейна представлена на рис. 1

Рис. 1: Схема рекурсивного алгоритма поиска расстояния Левенштейна

Схема матричной реализации алгоритма поиска расстояния Левенштейна представлена на рис. 2

Рис. 2: Схема матричной реализации алгоритма поиска расстояния Левенштейна

Схема рекурсивного матричного алгоритма поиска расстояния Левенштейна представлена на рис. 3

Рис. 3: Схема рекурсивной матричной реализации алгоритма поиска расстояния Левенштейна

Схема алгоритма поиска расстояния Дамерау-Левенштейна представлена на рис. 4

Рис. 4: Схема алгоритма поиска расстояния Дамерау-Левенштейна

2.2 Вывод

Были рассмотрены и обозначены требования к программе, а также к входным и выходным параметрам в программе. Также были рассмотрены и представлены схемы всех рассматриваемых алгоритмов.

3 Технологическая часть

В данном разделе будет описана технологическая часть лабораторной работы: требования к ПО, листинг кода, сравнительный анализ всех алгоритмов.

3.1 Требования к программному обеспечению

Входные данные: два слова: str1, str2

Выходные данные: редакционное расстояние данных слов, а также матрица решения для

матричных реализаций

Среда выполнения: Windows 10 x64

3.2 Средства реализации

Для выполнения данной лабораторной работы использовался ЯП Python 3.9.0

3.3 Листинг кода

В данном разделе будет представлен листинг кода разработанных алгоритмов (листинги 1 - 4).

3.3.1 Рекурсивный алгоритм Левенштейна

Листинг 1: Рекурсивный алгоритм Левенштейна

```
def lev rec (source, target):
 1
         if len(source) == 0 or len(target) == 0:
 2
              return abs(len(source) - len(target))
3
4
         if (\operatorname{source}[-1] = \operatorname{target}[-1]):
5
              additional = 0
6
7
         else:
8
              additional = 1
9
         return \min(\text{lev}_{\text{rec}}(\text{source}, \text{target}[:-1]) + 1,
10
                        {\tt lev\_rec\,(\,source\,[:-1]\,,\ target\,)}\ +\ 1\,,
11
                        lev\_rec(source[:-1], target[:-1]) + additional)
12
```

3.3.2 Матричный алгоритм Левенштейна

Листинг 2: Матричный алгоритм Левенштейна

```
def lev matrix (source, target)
1
        data = [[i + j \text{ for } j \text{ in } range(len(target) + 1)]
2
3
                     for i in range(len(source) + 1)
4
       for i in range(1, len(source) + 1)
5
6
            for j in range (1, len(target) + 1)
7
                if (source[i-1] = target[j-1])
                     additional = 0
8
9
                else
                     additional = 1
10
11
                data[i][j] = min(data[i - 1][j] + 1,
12
                             data[i][j-1]+1,
13
                             data[i - 1][j - 1] + additional)
14
15
       return data[-1][-1]
16
```

3.3.3 Рекурсивный матричный алгоритм Левенштейна

Листинг 3: Рекурсивный матричный алгоритм Левенштейна

```
1
   def lev matrix rec(matrix, row, column, source, target):
2
       if row = 0:
3
            return column
       if column = 0:
4
            return row
5
       if matrix[row][column] == -1:
6
7
            matrix [row] [column] = min(lev matrix rec(matrix, row,
                column - 1, source, target) + 1,
8
9
            lev_matrix_rec(matrix, row - 1, column, source, target) + 1,
            lev_matrix_rec(matrix, row - 1, column - 1, source, target) +
10
                int(source[row - 1] != target[column - 1]))
11
12
       return matrix [row][column]
13
14
   def lev matrix recursion (source, target):
15
       matrix = [[-1 \text{ for } j \text{ in } range(len(target) + 1)]
16
            for i in range(len(source) + 1)]
17
       lev matrix rec(matrix, len(source), len(target), source, target)
18
19
20
       return matrix[-1][-1]
```

3.3.4 Алгоритм Дамерау-Левенштейна

Листинг 4: Алгоритм Дамерау-Левенштейна

```
def damer lev(source, target):
1
        data = [[i + j \text{ for } j \text{ in } range(len(target) + 1)]
2
3
                for i in range(len(source) + 1)
4
        for i in range (1, len(source) + 1):
5
6
            for j in range(1, len(target) + 1):
7
                if source [i-1] = target[j-1]:
8
                     additional = 0
9
                else:
                     additional = 1
10
                data[i][j] = min(data[i-1][j] + 1,
11
                     data[i][j - 1] + 1,
12
                     data[i-1][j-1] + additional)
13
14
                if (i > 1 \text{ and } j > 1 \text{ and }
15
                     source[i - 1] = target[i - 2] and
16
                     source [i - 2] = target [i - 1]:
17
                     data[i][j] = min(data[i][j], data[i-2][j-2] + 1)
18
19
20
       return data[-1][-1]
```

3.4 Сравнительный анализ матричной и рекурсивной реализаций

Алгоритмы Левенштейна и Дамерау — Левенштейна не отличаются друг от друга с точки зрения использования памяти.

Рассмотрим разницу между рекурсивной и матричной реализациями:

Рекурсивная версия алгоритма работает существенно медленне матричной реализации ввиду многократного вызова функции. На каждый вызов необходимо производить соответствующие операции со стеком. Более того, главным недостатком является - повторное вычисление тех значений, которые были посчитаны на более ранних этапах рекурсии. В матричных реализация будет затрачена дополнительная память на хранение матриц и дополнительных переменных в цикле, однако время работы подобной реализации будет значительно быстрее рекурсивной.

3.4.1 Теоретический анализ затрачиваемой памяти

Рекурсивная реализация алгоритма Левенштейна. Для получения конечной оценки затрачиваемой памяти необходимо память, затрачиваемую на единичный вызов функции умножить на максимальную глубину рекурсии, то есть на n+m, где n и m - длины сравниваемых строк s1 и s2 соответственно.

- 1. ссылки на строки s1, s2: (m + n) * sizeof(str),
- 2. длины строк: 2 * sizeof(int),
- 3. дополнительная переменная внутри алгоритма: sizeof(int)
- 4. адрес возврата

```
memory = (m + n) * ((m + n) * sizeof(str) + 2 * sizeof(int) + 4 bytes)
```

Матричная реализация алгоритма Левенштейна

- 1. строки: sizeof(str) * (n + m)
- 2. матрица: sizeof(int) * (n + 1) * (m + 1)
- 3. дополнительная переменная внутри алгоритма: sizeof(int)

```
memory = sizeof(str) * (n + m) + sizeof(int) * (n + 1) * (m + 1) + sizeof(int)
```

Рекурсивный матричный алгоритм Левенштейна. Аналогично обычному рекурсивному алгоритму для получения конечной оценки затрачиваемой памяти необходимо память, затрачиваемую на каждом рекурсивном вызове умножить на максимальную глубину рекурсии.

- 1. строки: sizeof(str) * (n + m)
- 2. матрица: sizeof(int) * (n + 1) * (m + 1)

```
memory = (m + n) * (sizeof(str) * (n + m) + sizeof(int) * (n + 1) * (m + 1))
```

При каждой необходимости предварительного подсчёта значения (рек. вызова)

- 1. передача строки и столбца: 2 * sizeof(int)
- 2. дополнительная переменная: sizeof(int)
- 3. адрес возврата

```
memory = (m + n) * (2 * sizeof(int) + sizeof(int) + 4 bytes)
```

Матричная реализация алгоритма Дамерау-Левенштейна

- 1. строки: sizeof(str) * (n + m)
- 2. матрица: sizeof(int) * (n + 1) * (m + 1)
- 3. дополнительная переменная внутри алгоритма: sizeof(int)

```
memory = sizeof(str) * (n + m) + sizeof(int) * (n + 1) * (m + 1) + sizeof(int)
```

3.5 Интерфейс программы

При запуске программы пользователя встречает меню выбора реализаций алгоритма:

```
Menu:

1. Levenshtein distance recursion
2. Levenshtein distance matrix
3. Levenshtein distance matrix recursion
4. Damerau-Levenshtein distance matrix
5. All in one
6. Time analysis
```

Рис.5: Меню программы

После выбора необходимой реализации пользователю предлагают ввести строки s1 и s2. После ввода программа выдаёт результат:

```
Menu:

1. Levenshtein distance recursion
2. Levenshtein distance matrix
3. Levenshtein distance matrix recursion
4. Damerau-Levenshtein distance matrix
5. All in one
6. Time analysis
1
Input source: abc
Input target: abl
Distance = 1
```

Рис.6: Ввод строк и результат работы программы

3.6 Тестирование

Тестирование проводилось по методу черного ящика. При сравнении результатов двух функций использовалась функция random string, которая генерирует случайную строку нужной длины.

Листинг 5: Функция random string

```
def random_string(str_len):
    letters = string.ascii_lowercase
    return ''.join(random.choice(letters) for i in range(str_len))
```

Листинг 6: Тестирование

```
1
   import unittest
 2
   from main import lev rec, lev matrix, lev matrix recursion, damer lev
 3
   from main import random string
 4
 5
 6
    class TestDistanse (unittest. TestCase):
 7
 8
        def testEmpty(self):
             self.assertEqual(self.function("", ""), 0)
 9
10
        def testSame (self):
11
             self.assertEqual(self.function("abc", "abc"), 0)
12
             self.assertEqual(self.function("0", "0"), 0)
13
14
        def testDifferent(self):
15
             self.assertEqual(self.function("a", ""), 1)
16
             self.assertEqual(self.function("", "1"), 1)
17
             self.assertEqual(self.function("b", "c"), 1)
18
              \begin{array}{lll} self.assertEqual (\ self.function ("bc", "b") \,, & 1) \\ self.assertEqual (\ self.function ("bc", "c") \,, & 1) \end{array} 
19
20
             self.assertEqual(self.function("ab", "cd"), 2)
21
22
23
24
    class TestLevDistanse(TestDistanse):
25
        def setUp(self):
26
             self.function = lev matrix
        def testTypo(self):
27
             self.assertEqual(self.function("ac", "ca"), 2)
28
             self.assertEqual(self.function("abc", "cba"), 2)
29
```

```
30
31
32
   class TestDamLevDistanse (TestDistanse):
33
        def setUp(self):
            self.function = damer lev
34
35
        def testTypo(self):
            self.assertEqual(self.function("ac", "ca"), 1)
36
            self.assertEqual(self.function("abc", "cba"), 2)
37
38
39
   class TestTwoFunctions(unittest.TestCase):
40
41
42
       n = 15
43
        def testCompareSameLen(self):
44
            for i in range (TestTwoFunctions.n):
45
                 str1 = random string(5)
46
                 str2 = random string(5)
                 self.assertEqual(self.f1(str1, str2), self.f2(str1, str2))
47
48
49
        def testCompareDifLen(self):
            for i in range (TestTwoFunctions.n):
50
51
                 str1 = random string(3)
52
                str2 = random string(5)
53
                 self.assertEqual(self.f1(str1, str2), self.f2(str1, str2))
54
55
        def testCompareEmpty(self):
            for i in range (TestTwoFunctions.n):
56
57
                 str1 = random string(4)
                 str2 = random string(5)
58
59
                 self.assertEqual(self.f1(str1, str2), self.f2(str1, str2))
60
61
62
   class TestLev (TestTwoFunctions):
        def setUp(self):
63
64
            self.f1 = lev rec
            self.f2 = lev\_matrix
65
66
67
   class TestDamLev(TestTwoFunctions):
68
        def setUp(self):
69
70
            self.fl = lev matrix recursion
            self.f2 = damer lev
71
72
73
   \mathbf{i}\,\mathbf{f}\ \_\_\mathrm{name}\_\_\ ==\ `\_\_\mathrm{main}\_\_\ ':
74
75
        suite = unittest.TestLoader().loadTestsFromTestCase(TestLev)
        suite.addTests(unittest.TestLoader().
76
77
                     loadTestsFromTestCase(TestDamLev))
        suite.addTests(unittest.TestLoader().
78
                     loadTestsFromTestCase(TestDamLevDistanse))
79
```

```
80 suite.addTests(unittest.TestLoader().
81 loadTestsFromTestCase(TestLevDistanse))
82 unittest.TextTestRunner().run(suite)
83 #unittest.main()
```

Все тесты пройдены успешно

3.7 Вывод

Были разработаны, протестированы и проанализированы спроектированные алгоритмы: вычисления расстояния Левенштейна рекурсивно, с заполнением матрицы и рекурсивно с заполнением матрицы, а также вычисления расстояния Дамерау-Левенштейна с заполнением матрицы.

4 Экспериментальная часть

В данной части работы будут приведены примеры работы программ, а также анализ алгоритмов на основе экспериментальных данных.

4.1 Примеры работы

Проверка на пустые строки:

```
source = ""

target = ""

Levenshtein Recursive: 0

Levenshtein Matrix: 0

Levenshtein Matrix Recursive: 0

Damerau Levenshtein: 0
```

Проверка на на равенство строк:

```
source = "abc"
target = "abc"
Llevenshtein Recursive: 0
Levenshtein Matrix: 0
Levenshtein Matrix Recursive: 0
Damerau Levenshtein: 0
```

Операция удаления:

```
source = "abc"
target = "ab"
Levenshtein Recursive: 1
Levenshtein Matrix: 1
Levenshtein Matrix Recursive: 1
Damerau Levenshtein: 1
```

Операция замены:

```
source = "abf"
target = "abc"
Levenshtein Recursive: 1
Levenshtein Matrix: 1
Levenshtein Matrix Recursive: 1
Damerau Levenshtein: 1
```

Операция вставки:

```
source = "ab"
targer = "abc"
Levenshtein Recursive: 1
Levenshtein Matrix: 1
Levenshtein Matrix Recursive: 1
Damerau Levenshtein: 1
```

Операция перестановки

```
source = "abc"
target = "acb"
Levenshtein Recursive: 2
Levenshtein Matrix: 2
Levenshtein Matrix Recursive: 2
Lamerau Levenshtein: 1
```

4.2 Постановка эксперимента по замеру времени

Были произведены замеры для строк длиной от 0 до 9.

Для каждой размерности было проведено 100 вызовов функции. После чего получившеесся время было поделено на 100. Таким образом было получено аппроксимированное значение времени выполнения функции

Результаты замеров процессорного времени:

Был проведен замер времени работы каждого из алгоритмов.

len	Lev(R)	Lev(M)	Lev(MR)	DamLev
3	0.00003	0.00001	0.00001	0.00001
4	0.00017	0.00001	0.00002	0.00001
5	0.00105	0.00002	0.00014	0.00002
6	0.00505	0.00003	0.00004	0.00005
7	0.03235	0.00004	0.00006	0.00006
8	0.18632	0.00006	0.00007	0.00008
9	1.39152	0.00011	0.00024	0.00012

График 1: Замеры времени работы алгоритмов

Синий цвет - Рекурсивная реализация Коричневый цвет - Матричная реализация Чёрный цвет - Рекурсивная матричная реализация Красный цвет - Алгоритм Дамерау-Левенштейна

Легенда:

График 2: Замеры времени работы алгоритмов

4.3 Сравнительный анализ на материале экспериментальных данных

Рекурсивный алгоритм Левенштейна работает дольше итеративных реализаций, время его работы увеличивается в геометрической прогрессии. При увеличении длины строк становится очевидна выигрышность по времени матричного варианта.

Рекурсивный алгоритм с заполнением матрицы превосходит простой рекурсивный на аналогичных данных. Алгоритм Дамерау — Левенштейна по времени выполнения сопоставим с алгоритмом Левенштейна. В нём добавлены дополнительные проверки, и по сути он является алгоритмом другого смыслового уровня.

По расходу памяти итеративные алгоритмы проигрывают рекурсивному: максимальный размер используемой памяти в них растёт как произведение длин строк, в то время как у рекурсивного алгоритма — как сумма длин строк.

4.4 Вывод

Теоретические расчёты подтвердились результатами, полученными на пратике: рекурсивный алгоритм ввиду многократного вызова функции и пересчёта уже известных значений выполняется крайне долго, рекурсивная матричная реализация выполняется быстрее, но всё равно из-за операций со стеком и вызовом самой себя уступает по времени обычной матричной реализации. Алгоритм Дамерау-Левенштейна уступает по времени обычной матричной реализации ввиду дополнительной проверки на перестановку символов.

Заключение

Цель достигнута и все задачи выполнены.

В ходе работы были изучены алгоритмы поиска расстояния Левенштейна и Дамерау-Левенштейна. Реализованы алгоритмы поиска расстояния Левенштейна с заполнением матрицы, а также реализован рекурсивный алгоритм поиска расстояния Левенштейна. Экспериментально было установлено, что из трех алгоритмов Левенштейна самым медленным является рекурсивный, а самым требовательным по памяти - рекурсивный алгоритм с заполнением матрицы, однако так же было установлено, что за счет ее заполнения не происходит повторных вычислений, что существенно повышает скорость выполнения. Сравнение матричного алгоритма Левенштейна и Дамерау-Левенштейна показало, что последний работает медленее, в силу того, что на каждой итерации цикла выполняется дополнительная проверка и в случае ее справедливости еще и дополнительные вычисления.

Из написанного выше можно сделать вывод, что именно матричный алгоритм Левенштейна следует использовать при решении задач на нахождение минимального редакционного расстояния.

Список литературы

- [1] Дж. Макконнелл. Анализ алгоритмов. Активный обучающий подход. М.: Техносфера, 2017.-267c
- [2] Нечёткий поиск в тексте и словаре [электронный ресурс]. Режим доступа: https://habr.com/ru/post/114997/, свободный (Дата обращения: 5.10.20)
- [3] Официальный сайт Python, документация [электронный ресурс]. Режим доступа: https://docs.python.org/3.9, свободный (Дата обращения: 8.10.20)