Analysis

— Sommersemester 2014 —

DHBW Mannheim

Prof. Dr. Karl Stroetmann

21. April 2014

Dieses Skript ist einschließlich der LATEX-Quellen sowie der in diesem Skript diskutierten Programme unter

https://github.com/karlstroetmann/Analysis

im Netz verfügbar. Das Skript wird laufend überarbeitet. Wenn Sie auf Ihrem Rechner git installieren und mein Repository mit Hilfe des Befehls

git clone https://github.com/karlstroetmann/Analysis.git

klonen, dann können Sie durch Absetzen des Befehls

git pull

die aktuelle Version meines Skripts aus dem Netz laden.

Inhaltsverzeichnis

1	Ein l	leitung Überblick über die Vorlesung									
	1.1	Ziel der Vorlesung									
	1.3	Notation									
	1.4	Eine Bitte									
	1.1	Line Blood									
2	Die	Definition der reellen Zahlen									
	2.1	Dedekind-Schnitte									
	2.2	Geschichte									
3	Fols	gen und Reihen 18									
Ĭ	3.1	Folgen									
	3.2	Berechnung der Quadrat-Wurzel									
	3.3	Reihen									
	3.4	Potenz-Reihen									
	~										
3		tige und differenzierbare Funktionen 39									
	3.1	Stetige Funktionen									
	3.2	Bestimmung von Nullstellen									
		3.2.1 Die Regula Falsi									
		3.2.2 Das Sekanten-Verfahren									
	0.0	3.2.3 Das Illinois-Verfahren									
	3.3	Differenzierbare Funktionen									
	3.4	Mittelwert-Sätze									
	3.5	Monotonie und Konvexität									
	3.6	Die Exponential-Funktion									
4	Anv	Anwendungen der Theorie 74									
	4.1	Taylor-Reihen									
		4.1.1 Beispiele von Taylor-Entwicklungen									
	4.2	Polynom-Interpolation									
		4.2.1 Interpolation nach Newton									
		4.2.2 Der Interpolations-Fehler									
	4.3	Der Banach'sche Fixpunkt-Satz									
		4.3.1 Das Newton'sche Verfahren zur Berechnung von Nullstellen 94									
		4.3.2 Analyse des Newton'schen Verfahrens									
	4.4	Iterative Lösung linearer Gleichungs-Systeme									
_	Inte	egral-Rechnung 106									
5	5.1	egral-Rechnung Einführung des Integral-Begriffs									
	$\frac{5.1}{5.2}$	Regeln zur Berechnung von Integralen									
	5.4	5.2.1 Die Substitutions-Regel									
		o.z.i Die bubbutuuons-neger									

INHALTS VERZEICHNIS

	5.3 5.4 5.5	5.2.2 Partielle Integration 5.2.3 Das Integral von Umkehr-Funktionen 5.2.4 Beispiele	114 116 117 118 121
		5.5.1 Die Trapez-Regel	
6	Die 6.1 6.2 6.3	Kreiszahl π und die Euler'sche Zahl e sind irrational Die Euler'sche Zahl e ist irrational	128
7	Fou 7.1 7.2 7.3	Berechnung der Fourier-Koeffizienten	138 138
8	Rui	ndungsfehler	143

Kapitel 1

Einleitung

Der vorliegende Text ist ein Fragment eines Vorlesungs-Skriptes für die Analysis-Vorlesung für Informatiker. Ich habe mich bei der Ausarbeitung dieser Vorlesung im wesentlichen auf die folgenden Quellen gestützt:

- 1. Analysis I von Otto Forster [1].
- 2. Differential- und Integralrechnung I von Hans Grauert und Ingo Lieb [2].
- 3. Lehrbuch der Analysis, Teil 1 und Teil 2 von Harro Heuser [3, 4].
- 4. Differential and Integral Calculus, Volume 1 von Richard Courant [5].

Den Studenten empfehle ich das erste Buch in dieser Liste, denn dieses Buch ist auch in elektronischer Form in unserer Bibliothek vorhanden. Bei dem Buch von Richard Courant ist das Copyright mittlerweile abgelaufen, so dass Sie es im Netz unter

```
https://ia700700.us.archive.org/
34/items/DifferentialIntegralCalculusVolI/Courant-DifferentialIntegralCalculusVolI.pdf
finden können.
```

1.1 Überblick über die Vorlesung

Im Rahmen der Vorlesung werden die folgenden Gebiete behandelt:

- 1. Im zweiten Kapitel werden die reellen Zahlen mit Hilfe von Dedekind-Schnitten definiert.
- 2. Das dritte Kapitel führt den Begriff des Grenzwerts für Folgen und Reihen ein.
- 3. Das vierte Kapitel diskutiert die Begriffe Stetigkeit und Differenzierbarkeit.
- 4. Das fünfte Kapitel zeigt verschiedene Anwendungen der bis dahin dargestellten Theorie. Insbesondere werden *Taylor-Reihen* diskutiert. Diese können beispielsweise zur Berechnung der trigonometrischen Funktionen verwendet werden. Außerdem diskutieren wir in diesem Kapitel Verfahren zur numerischen Lösung von Gleichungen.
- 5. Das sechste Kapitel beschäftigt sich mit der Integralrechnung.
- 6. Im siebten Kapitel zeigen wir, dass π und e keine rationalen Zahlen sind.
- 7. Im letzten Kapitel diskutieren wir Fourier-Reihen.

1.2 Ziel der Vorlesung

Wir werden im Rahmen der Vorlesung nicht die Zeit haben, alle Aspekte der Analysis zu besprechen. Insbesondere werden wir viele interessante Anwendungen der Analysis in der Informatik nicht diskutieren können. Das ist aber auch gar nicht das Ziel dieser Vorlesung: Mir geht es vor allem darum, Ihnen die Fähigkeit zu vermitteln, sich selbstständig in mathematische Fachliteratur hineinarbeiten zu können. Dazu müssen Sie in der Lage sein, mathematische Beweise sowohl zu verstehen als auch selber entwickeln zu können. Dies ist ein wesentlicher Unterschied zu der Mathematik, an die sich viele von Ihnen auf der Schule gewöhnthaben: Dort werden primär Verfahren vermitteln, mit denen sich spezielle Probleme lösen lassen. Die Kenntnis solcher Verfahren ist allerdings in der Praxis nicht mehr wichtig, denn heutzutage werden solche Verfahren programmiert und daher besteht kein Bedarf mehr dafür, solche Verfahren von Hand anzuwenden. Aus diesem Grund wird in dieser Vorlesung der mathematische Beweis-Begriff im Vordergrund stehen. Die Analysis dient uns dabei als ein Beispiel einer mathematischen Theorie, an Hand derer wir das mathematische Denken üben können.

1.3 Notation

In diesem Skript definieren wir die Menge der natürlichen Zahlen $\mathbb N$ über die Formel

$$\mathbb{N} := \{1, 2, 3, \cdots \}.$$

Im Gegensatz zu der Vorlesung über Lineare Algebra im letzten Semester wird die Zahl 0 in diesem Skript also <u>nicht</u> als natürliche Zahl aufgefasst. Weiter definieren wir

$$\mathbb{N}_0 := \{0\} \cup \mathbb{N}.$$

1.4 Eine Bitte

Diese Skript enthält noch eine Menge Tipp-Fehler. Sollte Ihnen ein Fehler auffallen, so bitte ich um einen Hinweis unter der Adresse

karl.stroetmann@dhbw-mannheim.de.

Wenn Sie mit github vertraut sind, können Sie mir auch gerne einen Pull Request schicken.

Kapitel 2

Die Definition der reellen Zahlen

Bevor wir mit der eigentlichen Analysis beginnen müssen wir klären, was genau reelle Zahlen überhaupt sind. Anschaulich werden reelle Zahlen zur Angabe von Längen benötigt, denn in der Geometrie reicht es nicht, mit den rationalen Zahlen zu arbeiten. Das liegt daran, dass die Diagonale eines Quadrats der Seitenlänge 1 nach dem Satz des Pythagoras die Länge $\sqrt{2}$ hat. Wir hatten im letzten Semester aber gesehen, dass es keine rationale Zahl r gibt, so dass $r^2=2$ ist. Folglich reichen die rationalen Zahlen nicht aus, alle in der Geometrie möglichen Längen anzugeben.

2.1 Dedekind-Schnitte

Bis jetzt haben wir so getan, als wüssten wir schon, was reelle Zahlen sind. Aus der Schule bringen Sie gewiss eine anschauliche Vorstellung der reellen Zahlen mit, aber diese Vorstellung gilt es nun zu formalisieren, denn sonst können wir den Nachweis der *Vollständigkeit* der reellen Zahlen nicht führen. Unter der Vollständigkeit der reellen Zahlen verstehen wir anschaulich die Eigenschaft, dass es auf der reellen Zahlengeraden keine *Lücken* gibt.

Die zentrale Idee bei der Konstruktion der reellen Zahlen ist die Beobachtung, dass eine reelle Zahl x durch die Menge M_1 aller rationalen Zahlen kleiner als x und die Menge M_2 der rationalen Zahlen größer-gleich x bereits vollständig festgelegt wird. Definieren wir für eine reelle Zahl x

$$M_1 := \{ q \in \mathbb{Q} \mid q < x \} \quad \text{und} \quad M_2 := \{ q \in \mathbb{Q} \mid x \le q \},$$

so liegt x gerade zwischen M_1 und M_2 . Falls die Menge M_2 kein Minimum hat, so haben die rationalen Zahlen zwischen M_1 und M_2 eine Lücke. Die Idee ist nun, die reellen Zahlen als die Lücken der rationalen Zahlen zu definieren um dadurch sicherzustellen, dass es bei den reellen Zahlen keine Lücken mehr gibt. Versuchen wir den Begriff eines Lücke zu präzisieren, so kommen wir zur nun folgende Definition eines Dedekind'schen-Schnittes.

Definition 1 (Dedekind-Schnitt)

Ein Paar $\langle M_1, M_2 \rangle$ heißt *Dedekind-Schnitt* (Richard Dedekind, 1831-1916) falls folgendes gilt:

- 1. $M_1 \subseteq \mathbb{Q}$, $M_2 \subseteq \mathbb{Q}$.
- 2. $M_1 \neq \emptyset$, $M_2 \neq \emptyset$.
- 3. $\forall x_1 \in M_1 : \forall x_2 \in M_2 : x_1 < x_2$.

Diese Bedingung besagt, dass alle Elemente aus M_1 kleiner als alle Elemente aus M_2 sind. Diese Bedingung bezeichnen wir als die *Trennungs-Eigenschaft*.

4. $M_1 \cup M_2 = \mathbb{Q}$.

5. M_1 hat kein Maximum.

Da alle Elemente aus M_1 kleiner als alle Elemente von M_2 sind und da darüber hinaus $M_2 \neq \emptyset$ ist, ist M_1 sicher nach oben beschränkt. Aber wenn für ein y

$$\forall x \in M_1 : x \leq y$$

gilt, dann darf y eben kein Element von M_1 sein. Als Formel schreibt sich das als

$$\forall y \in Q : ((\forall x \in M_1 : x \le y) \to y \notin M_1).$$

Beispiel: Definieren wir

$$M_1 := \{ x \in \mathbb{Q} \mid x \le 0 \lor x^2 \le 2 \}$$
 und $M_2 := \{ x \in \mathbb{Q} \mid x > 0 \land x^2 > 2 \},$

so enthält M_1 alle die Zahlen, die kleiner oder gleich $\sqrt{2}$ sind, während M_2 alle Zahlen enthält, die größer als $\sqrt{2}$ sind. Das Paar $\langle M_1, M_2 \rangle$ ist dann ein Dedekind-Schnitt. Intuitiv spezifiziert dieser Dedekind-Schnitt die Zahl $\sqrt{2}$.

Das Beispiel legt nahe, die Menge der reellen Zahlen formal als die Menge aller Dedekind-Schnitte zu definieren

$$\mathbb{R} := \left\{ \langle M_1, M_2 \rangle \in 2^{\mathbb{Q}} \times 2^{\mathbb{Q}} \mid \langle M_1, M_2 \rangle \text{ ist eine Dedekind-Schnitt} \right\}.$$

Nach dieser Definition müssen wir nun zeigen, wie sich auf der so definierten Menge der reellen Zahlen die arithmetischen Operationen Addition, Subtraktion, Multiplikation und Division definieren lassen und wie die Relation \leq für zwei Dedekind-Schnitte definiert werden kann. Zusätzlich müssen wir nachweisen, dass unsere Definitionen die Eigenschaften haben, die wir von diesen Operationen erwarten.

Bei einem Dedekind-Schnitt $\langle M_1, M_2 \rangle$ ist die Menge M_2 durch die Angabe von M_1 bereits vollständig festgelegt, denn aus der Gleichung $M_1 \cup M_2 = \mathbb{Q}$ folgt sofort $M_2 = \mathbb{Q} \backslash M_1$. Die Frage ist nun, welche Eigenschaften eine Menge M haben muss, damit umgekehrt das Paar $\langle M, \mathbb{Q} \backslash M \rangle$ ein Dedekind-Schnitt ist. Die Antwort auf diese Frage wird in der nun folgenden Definition einer Dedekind-Menge gegeben.

Definition 2 (**Dedekind-Menge**) Eine Menge $M \subseteq \mathbb{Q}$ ist eine *Dedekind-Menge* genau dann, wenn die folgenden Bedingungen erfüllt sind.

- 1. $M \neq \emptyset$,
- 2. $M \neq \mathbb{O}$.
- 3. $\forall x, y \in \mathbb{Q} : (y < x \land x \in M \to y \in M).$

Die letzte Bedingung besagt, dass M nach unten abgeschlossen ist: Wenn eine Zahl x in M liegt, dann liegt auch jede Zahl, die kleiner als x ist, in M.

4. Die Menge M hat kein Maximum, es gibt also kein $m \in M$, so dass

$$x \leq M$$
 für alle $x \in M$ gilt.

Diese Bedingung können wir auch etwas anders formulieren: Wenn $x \in M$ ist, dann finden wir immer ein $y \in M$, dass noch größer als x ist, denn sonst wäre x ja das Maximum von M. Formal können wir das als

$$\forall x \in M : \exists y \in M : x < y$$

schreiben.

Aufgabe 1: Zeigen Sie, dass eine Menge $M \subseteq \mathbb{Q}$ genau dann eine Dedekind-Menge ist, wenn das Paar $\langle M, \mathbb{Q} \backslash M \rangle$ ein Dedekind-Schnitt ist.

Lösung: Da es sich bei der zu beweisenden Aussage um eine Äquivalenz-Aussage handelt, zerfällt der Beweis in zwei Teile.

"⇒": Zunächst nehmen wir an, dass $M \subseteq \mathbb{Q}$ eine Dedekind-Menge ist. Wir haben zu zeigen, dass dann $\langle M, \mathbb{Q} \backslash M \rangle$ ein Dedekind-Schnitt ist. Von den zu überprüfenden Eigenschaften ist nur die Trennungs-Eigenschaft nicht offensichtlich. Sei als $x \in M$ und $y \in \mathbb{Q} \backslash M$. Wir haben zu zeigen, dass dann

gilt. Wir führen diesen Nachweis indirekt und nehmen an, dass $y \leq x$. Da M nach unten abgeschlossen ist, folgt daraus aber $y \in M$, was im Widerspruch zu $y \in \mathbb{Q} \backslash M$ steht. Dieser Widerspruch zeigt, dass x < y ist und das war zum Nachweis der Trennungs-Eigenschaft zu zeigen.

"\(\infty\)": Nun nehmen wir an, dass $\langle M, \mathbb{Q} \backslash M \rangle$ ein Dedekind-Schnitt ist und zeigen, dass dann M eine Dedekind-Menge sein muss. Von den zu überprüfenden Eigenschaften ist nur Tatsache, dass M nach unten abgeschlossen ist, nicht offensichtlich. Sei also $x \in M$ und y < x. Wir haben zu zeigen, dass dann y ebenfalls ein Element von M ist. Wir führen diesen Nachweis indirekt und nehmen $y \in \mathbb{Q} \backslash M$ an. Aufgrund der Trennungs-Eigenschaft des Dedekind-Schnitts $\langle M, \mathbb{Q} \backslash M \rangle$ muss dann

gelten, was im Widerspruch zu y < x steht. Dieser Widerspruch zeigt, dass $y \in M$ gilt und das war zu zeigen.

Die letzte Aufgabe hat gezeigt, dass Dedekind-Schnitte und Dedekind-Mengen zu einander äquivalent sind. Daher werden wir im Folgenden mit Dedekind-Mengen arbeiten, denn das macht die Notation einfacher. Wir definieren dazu \mathcal{D} als die Menge aller rationalen Dedekind-Mengen, wir setzen also

$$\mathcal{D} := \left\{ M \in 2^{\mathbb{Q}} \mid M \text{ is Dedekind-Menge} \right\}$$

und identifizieren \mathcal{D} mit der Menge \mathbb{R} . Die nächste Aufgabe zeigt, wie wir auf der Menge \mathcal{D} eine lineare Ordnung definieren können.

Aufgabe 2: Auf der Menge \mathcal{D} definieren wir eine binäre Relation \leq durch die Festsetzung

$$A \leq B \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ A \subseteq B \quad \text{ für alle } A, B \in \mathcal{D}.$$

Zeigen Sie, dass die so definierte Relation \leq eine lineare Ordnung auf der Menge \mathcal{D} ist.

Lösung: Es ist zu zeigen, dass die Relation \leq reflexiv, anti-symmetrisch und transitiv ist und dass außerdem die Linearitäts-Eigenschaft

$$A \leq B \vee B \leq A$$
 für alle Dedekind-Mengen $A, B \in \mathcal{D}$

gilt. Die Reflexivität, Anti-Symmetrie und Transitivität der Relation \leq folgen sofort aus der Reflexivität, Anti-Symmetrie und Transitivität der Teilmengen-Relation \subseteq . Es bleibt, den Nachweis der Linearitäts-Eigenschaft zu führen. Seien also $A,B\in\mathcal{D}$ gegeben. Falls A=B ist, gilt sowohl $A\subseteq B$ als auch $B\subseteq A$, woraus sofort $A\leq B$ und $B\leq B$ folgt. Wir nehmen daher an, dass $A\neq B$ ist. Dann gibt es zwei Möglichkeiten:

1. Fall: Es existiert ein $x \in \mathbb{Q}$ mit $x \in A$ und $x \notin B$.

Wir zeigen, dass dann $B \subseteq A$, also $B \le A$ gilt. Zum Nachweis der Beziehung $B \subseteq A$ nehmen wir an, dass $y \in B$ ist und müssen $y \in A$ zeigen.

Wir behaupten, dass y < x ist und führen den Beweis dieser Behauptung indirekt, nehmen also $x \le y$ an. Da die Dedekind-Menge B nach unten abgeschlossen ist und $y \in B$ ist, würde daraus

$$x \in B$$

folgen, was im Widerspruch zu der in diesem Fall gemachten Annahme $x \not\in B$ steht. Also haben wir

$$y < x$$
.

Da die Menge A als Dedekind-Menge nach unten abgeschlossen ist und $x \in A$ ist, folgt

$$y \in A$$
,

so dass wir $B \subseteq A$ gezeigt haben.

2. Fall: Es existiert ein $x \in \mathbb{Q}$ mit $x \in B$ und $x \notin A$.

Dieser Fall ist offenbar analog zum ersten Fall.

Definition 3 (Infimum) Eine Menge $\mathcal{M} \subseteq \mathcal{D}$ ist in \mathcal{D} nach unten beschränkt, falls es ein $U \in \mathcal{D}$ gibt, so dass gilt:

$$\forall A \in \mathcal{M} : U \leq A.$$

Eine Menge $I \in \mathcal{D}$ ist das *Infimum* einer Menge \mathcal{M} , wenn I die größte untere Schranke von \mathcal{M} ist, wenn also

$$\forall A \in \mathcal{M}: I \leq A \quad \text{ und } \quad \forall T \in \mathcal{D}: \Big(\big(\forall A \in \mathcal{M}: T \leq A \big) \to T \leq I \Big)$$

gilt. In diesem Fall schreiben wir

$$S = \inf(\mathcal{M}).$$

Definition 4 (Vollständige Ordnung) Ein Paar $\langle M, \leq \rangle$ bestehend aus einer Menge M und einer Relation $\leq \subseteq M \times M$ ist eine *vollständige* Ordnung genau denn, wenn folgendes gilt:

1. Die Relation < ist reflexiv auf M, es gilt

$$\forall x \in M : x \leq x$$
.

2. Die Relation < ist anti-symmetrisch, es gilt

$$\forall x, y \in M : x \leq y \land y \leq x \rightarrow x = y.$$

3. Die Relation < ist transitiv, es gilt

$$\forall x, y, z \in M : x < y \land y < z \rightarrow x < z.$$

4. Die Relation \leq ist linear, es gilt

$$\forall x, y \in M : x < y \lor y < x.$$

5. Jede nach unten beschränkte Menge $X \subseteq M$ besitzt ein Infimum.

Die ersten drei Eigenschaften der Definition einer vollständigen Ordnung fordern, dass $\langle M, \leq \rangle$ eine partielle Ordnung auf M ist, die ersten vier Eigenschaften fordern, dass $\langle M, \leq \rangle$ eine lineare Ordnung auf M ist und die fünfte Eigenschaft fordert schließlich die Vollständigkeit der Ordnung.

Bemerkung: Die Menge der rationalen Zahlen zusammen mit der üblichen \leq -Relation ist <u>nicht</u> vollständig, denn beispielsweise ist die Menge

$$M := \{ x \in \mathbb{Q} \mid x \ge 0 \land x^2 \ge 2 \}$$

nach unten beschränkt, aber innerhalb der rationalen Zahlen hat die Menge M kein Infimum, denn $\sqrt{2}$ ist keine rationale Zahl. In der nächsten Aufgabe werden wir sehen, dass die reellen Zahlen zusammen mit der oben definierten Ordnung \leq vollständig sind.

Aufgabe 3: Zeigen Sie, dass jede nicht-leere und in \mathcal{D} nach unten beschränkte Menge $\mathcal{M} \subseteq \mathcal{D}$ ein Infimum $I \in \mathcal{D}$ hat.

Lösung: Bevor wir das gesuchte Infimum konstruieren, gilt es eine technische Schwierigkeit zu überwinden, die aus der Forderung entsteht, dass Dedekind-Mengen kein Maximum besitzen. Wir definieren für eine beliebige Teilmenge $A \subseteq \mathbb{Q}$ die Menge A^- , die in dem Falle, dass die Menge A kein Maximum hat, mit der Menge A identisch ist. Andernfalls wird bei der Definition von A^- das Maximum aus der Menge A entfernt:

$$A^- := \left\{ \begin{array}{ll} A \backslash \{ \max(A) \} & \text{falls die Menge A ein Maximum hat;} \\ A & \text{sonst.} \end{array} \right.$$

Nun definieren wir zu der gegebenen Menge $\mathcal{M} \subseteq \mathcal{D}$ eine Menge J als

$$J := \{ q \in \mathbb{Q} \mid \forall A \in \mathcal{M} : q \in A \} = \bigcap \mathcal{M} \quad \text{und setzen } I := J^-.$$

Wir zeigen, dass die so definierte Menge I eine Dedekind-Menge ist.

1. Wir zeigen $I \neq \{\}$.

Nach Voraussetzung ist die Menge \mathcal{M} nach unten beschränkt. Also gibt es eine Dedekind-Menge $U \in \mathcal{D}$, so dass

$$U \subseteq A$$
 für alle $A \in \mathcal{M}$

gilt. Wegen $J = \bigcap \mathcal{M}$ folgt dann $U \subseteq J$. Nun gibt es zwei Möglichkeiten:

(a) I = J.

Damit gilt auch $U \subseteq I$ und da U als Dedekind-Menge nicht leer ist, folgt $I \neq \{\}$.

(b) $I = J \setminus \{\max(J)\}$, die Menge J hat also ein Maximum. Wegen $U \subseteq J$ ist $\max(J)$ dann sicher auch eine obere Schranke von U. Wäre $\max(J) \in U$, dann wäre $\max(J)$ auch das Maximum von U, was nicht sein kann, da U als Dedekind-Menge kein Maximum hat. Folglich gilt $\max(J) \notin U$ und damit folgt, dass

$$U \subseteq J \setminus {\max(J)} = I$$

gilt. Da $U \neq \emptyset$ ist, folgt auch $I \neq \emptyset$.

2. Wir zeigen $I \neq \mathbb{Q}$.

Nach Voraussetzung ist die Menge \mathcal{M} nicht leer. Sei $A \in \mathcal{M}$. Nach Definition von J gilt $J \subseteq A$ und wegen $I \subseteq J$ folgt $I \subseteq A$. Da A eine Dedekind-Menge ist, gilt $A \neq \mathbb{Q}$. Wegen $I \subseteq A$ folgt daraus sofort $I \neq \mathbb{Q}$.

3. Wir zeigen, dass I nach unten abgeschlossen ist.

Es sei also $x \in I$ und y < x. Dann gilt natürlich auch $x \in J$ und damit haben wir

$$x \in A$$
 für alle $A \in \mathcal{M}$.

Nun sind die Mengen $A \in \mathcal{M}$ alle Dedekind-Mengen und damit nach unten abgeschlossen. Damit folgt aus $x \in A$ und y < x also

$$y \in A$$
 für alle $A \in \mathcal{M}$.

Nach Definition der Menge J folgt daraus

$$y \in J$$
.

Aus $x \in J$ und y < x folgt, dass y sicher nicht das Maximum der Menge J ist. Damit gilt dann auch

und das war zu zeigen.

- 4. Wir zeigen, dass die Menge I kein Maximum hat. Wir führen dazu eine Fallunterscheidung nach der Definition von $I = J^-$ durch.
 - (a) Fall: I = J.

Dann hat die Menge J kein Maximum und damit hat auch I kein Maximum.

(b) Fall: $I = J \setminus \{a\}$ mit $a = \max(J)$.

Wir führen den Nachweis indirekt und nehmen an, dass es ein $b \in I$ mit $b = \max(I)$ gibt. Aus $b \in J$, und $a = \max(J)$ folgt dann b < a, denn der Fall b = a scheidet wegen $a \notin I$ aus. Das arithmetische Mittel von a und b liegt zwischen a und b, wir haben also

$$b < \frac{1}{2} \cdot (a+b) < a.$$

Da die Menge J nach unten abgeschlossen ist und $a \in J$ ist, folgt dann

$$\frac{1}{2} \cdot (a+b) \in J$$

und wegen $\frac{1}{2} \cdot (a+b) \neq a$ muss dann auch

$$\frac{1}{2} \cdot (a+b) \in I$$

gelten, denn die Mengen I und J stimmen ja bis auf das Element a überein. Wegen

$$b < \frac{1}{2} \cdot (a+b).$$

steht dies aber im Widerspruch zu $b = \max(I)$, so dass die Annahme, dass es ein $b \in I$ mit $b = \max(I)$ gibt, widerlegt ist.

Um den Beweis abzuschließen zeigen wir nun, dass I tatsächlich die kleinste untere Schranke der Menge \mathcal{M} ist. Aus der Definition

$$J := \bigcap \mathcal{M}$$

folgt zunächst $J\subseteq A$ für alle $A\in M.$ Wegen $I\subseteq J$ haben wir dann

$$I \subseteq A$$
 für alle $A \in \mathcal{M}$

und damit ist gezeigt, dass I eine untere Schranke der Menge \mathcal{M} ist. Es bleibt zu zeigen, dass I die größte untere Schranke der Menge \mathcal{M} ist. Sei also $U \in \mathcal{D}$ eine weitere untere Schranke von \mathcal{M} . Wir müssen zeigen, dass dann $U \subseteq I$ gilt. Die Aussage, dass U eine untere Schranke der Menge \mathcal{M} bedeutet, dass

$$U \subseteq A$$
 für alle $A \in \mathcal{M}$ gilt.

Sei nun $x \in U$. Dann gilt also auch

$$x \in A$$
 für alle $A \in \mathcal{M}$.

und aus der Definition $J = \bigcap \mathcal{M}$ folgt $x \in J$. Damit haben wir schon mal

$$U \subseteq J$$

gezeigt. Um auch die Ungleichung $U \subseteq I$ zu zeigen, nehmen wir an, dass zusätzlich zu $x \in U$ auch $x = \max(J)$ gilt. Aus $U \subseteq J$ folgt dann auch $x = \max(U)$, was aber nicht sein kann, denn U ist eine Dedekind-Menge und enthält daher kein Maximum. Daher wird x beim Übergang von J zu $I = J^-$ nicht aus der Menge J entfernt und es gilt auch $x \in I$. Insgesamt haben wir damit $U \subseteq I$ gezeigt und damit ist I tatsächlich die größte untere Schranke der Menge \mathcal{M} .

Definition 5 (Supremum) Eine Menge $\mathcal{M} \subseteq \mathcal{D}$ ist in \mathcal{D} nach oben beschränkt, falls es ein $O \in \mathcal{D}$ gibt, so dass gilt:

$$\forall A \in \mathcal{M} : A < O$$
.

Eine Menge $S \in \mathcal{D}$ ist das *Supremum* einer Menge \mathcal{M} , wenn S die kleinste obere Schranke von \mathcal{M} ist, wenn also

$$\forall A \in \mathcal{M}: A \leq S \quad \text{ und } \quad \forall T \in \mathcal{D}: \Big(\big(\forall A \in \mathcal{M}: A \leq T \big) \rightarrow S \leq T \Big)$$

gilt. In diesem Fall schreiben wir

$$S = \sup(\mathcal{M}).$$

Aufgabe 4: Zeigen Sie, dass jede nicht-leere und in \mathcal{D} oben beschränkte Menge $\mathcal{M} \subseteq \mathcal{D}$ ein Supremum $S \in \mathcal{D}$ hat.

Hinweis: Es gibt zwei Möglichkeiten, diesen Nachweis zu führen.

- 1. Wir definieren $S := \bigcup \mathcal{M}$. Es lässt sich zeigen, dass die so definierte Menge S bereits eine Dedekind-Menge ist und damit insbesondere kein Maximum enthält. Weiter können Sie dann nachweisen, dass tatsächlich $S = \sup(M)$ gilt.
- 2. Alternativ können Sie auch versuchen auszunutzen, dass wir bereits gezeigt haben, dass für eine nach unten beschränkte Menge $\mathcal{M} \subseteq \mathcal{D}$ das Infimum existiert.

Diese zweite Alternative ist deutlich einfacher als die erste, aber die erste Alternative hat den Vorteil, dass Sie damit einen unabhängigen Beweis der Vollständigkeit der reellen Zahlen erbringen.

Definition 6 (Addition von Dedekind-Mengen) Es seien A und B Dedekind-Mengen. Dann definieren wir die Summe A+B wie folgt:

$$A + B := \{x + y \mid x \in A \land y \in B\}.$$

Aufgabe 5: Es seien $A, B \in \mathcal{D}$. Zeigen Sie, dass dann auch $A + B \in \mathcal{D}$ ist.

Lösung: Wir zeigen, dass A + B eine Dedekind-Menge ist.

1. Wir zeigen $A + B \neq \{\}$.

Da A eine Dedekind-Menge ist, gibt es ein Element $a \in A$ und da B ebenfalls eine Dedekind-Menge ist, gibt es auch ein Element $b \in B$. Nach Definition von A+B folgt dann $a+b \in A+B$ und damit gilt $A+B \neq \{\}$.

2. Wir zeigen $A + B \neq \mathbb{Q}$.

Da A und B Dedekind-Mengen sind, gilt $A \neq \mathbb{Q}$ und $B \neq \mathbb{Q}$. Also gibt es $x, y \in \mathbb{Q}$ mit $x \notin A$ und $y \notin B$. Wir zeigen, dass dann $x + y \notin A + B$ ist und führen diesen Nachweis indirekt. Wir nehmen also an, dass

$$x + y \in A + B$$

gilt. Nach Definition der Menge A + B gibt es dann ein $a \in A$ und ein $b \in B$, so dass

$$x + y = a + b$$

ist. Aus $x \notin A$ und $a \in A$ folgt, dass

ist, denn da A eine Dedekind-Menge ist, würde aus $x \leq a$ sofort $x \in A$ folgern. Weil B eine

Dedekind-Menge ist, gilt dann auch

$$b < y$$
.

Addieren wir diese beiden Ungleichungen, so erhalten wir

$$a+b < x+y$$
,

was im Widerspruch zu der Gleichung x + y = a + b steht.

3. Wir zeigen, dass die Menge A + B nach unten abgeschlossen ist.

Sei also $x \in A + B$ und y < x. Nach Definition von A + B gibt es dann ein $a \in A$ und ein $b \in B$, so dass x = a + b gilt. Wir definieren

$$c:=x-y, \quad u:=a-rac{1}{2}\cdot c \quad \text{ und } \quad v:=b-rac{1}{2}\cdot c.$$

Aus y < x folgt zunächst c > 0 und daher gilt u < a und v < b. Da $a \in A$ ist und die Menge A als Dedekind-Menge nach unten abgeschlossen ist, folgt $u \in A$. Analog sehen wir, dass auch $v \in B$ ist. Insgesamt folgt dann

$$u + v \in A + B$$
.

Wir haben aber

$$u+v = a - \frac{1}{2} \cdot c + b - \frac{1}{2} \cdot c$$

$$= a+b-c$$

$$= a+b-(x-y) \qquad \text{denn } c = x-y$$

$$= x-(x-y) \qquad \text{denn } x = a+b$$

$$= y$$

Wegen $u + v \in A + B$ haben wir insgesamt $y \in A + B$ nachgewiesen, was zu zeigen war.

4. Wir zeigen, dass die Menge A+B kein Maximum enthält.

Wir führen den Beweis indirekt und nehmen an, dass ein $m \in A+B$ existiert, so dass $m=\max(A+B)$ gilt. Nach Definition der Menge A+B gibt es dann ein $a \in A$ und ein $b \in B$ so dass m=a+b ist. Sei nun $u \in A$. Wir wollen zeigen, dass $u \leq a$ ist. Wäre u > a, dann würde auch

$$u + b > a + b$$

gelten, und da $u+b\in A+B$ ist, könnte m dann nicht das Maximum der Menge A+B sein. Also gilt $u\leq a$. Dann ist aber a das Maximum der Menge A und außerdem in A enthalten. Dies ist ein Widerspruch zu der Voraussetzung, dass A eine Dedekind-Menge ist. \square

Aufgabe 6: Zeigen Sie, dass die Menge

$$O := \{ x \in \mathbb{Q} \mid x < 0 \}$$

eine Dedekind-Menge ist und zeigen Sie weiter, dass die Struktur $\langle \mathcal{D}, 0, + \rangle$ eine kommutative Gruppe ist.

Lösung: Wir zeigen zunächst, dass O eine Dedekind-Menge ist und weisen dazu die einzelnen Eigenschaften einer Dedekind-Menge nach.

- 1. $O \neq \{\}$, denn es gilt $-1 \in O$.
- 2. $O \neq \mathbb{Q}$, denn es gilt $1 \notin O$.
- 3. Die Menge O ist nach unten abgeschlossen.

Sei $x \in O$ und y < x. Nach Definition von O haben wir x < 0 und aus y < x und x < 0 folgt y < 0, also gilt nach Definition der Menge O auch $y \in O$.

4. Die Menge O enthält kein Maximum, denn falls m das Maximum der Menge O wäre, dann wäre m < 0 und daraus folgt sofort $\frac{1}{2} \cdot m < 0$. Damit wäre dann nach Definition der Menge O auch

$$\frac{1}{2} \cdot m \in O.$$

Da andererseits aber

$$m < \frac{1}{2} \cdot m$$

ist, kann dann m nicht das Maximum der Menge O sein. Folglich hat die Menge O kein Maximum.

Als nächstes zeigen wir, dass die Menge O das links-neutrale Element bezüglich der Addition von Dedekind-Mengen ist, wir zeigen also, dass

$$O + A = A$$

gilt. Wir spalten den Nachweis dieser Mengen-Gleichheit in den Nachweis zweier Inklusionen auf.

1. " \subseteq ": Es sei $u \in O + A$. Wir müssen $u \in A$ zeigen.

Nach Definition von O + A existiert ein $o \in O$ und ein $a \in A$ mit u = o + a. Aus $o \in O$ folgt o < 0. Also haben wir

und da A als Dedekind-Menge nach unten abgeschlossen ist, folgt $u \in A$.

2. "\cong ": Sei nun $a \in A$. Zu zeigen ist $a \in O + A$.

Da die Menge A eine Dedekind-Menge ist, kann a nicht das Maximum der Menge A sein. Folglich gibt es ein $b \in A$, dass größer als a ist, wir haben also

$$a < b$$
.

Wir definieren u := a - b. Aus a < b folgt dann u < 0 und damit gilt $u \in O$. Damit haben wir

$$u + b \in O + A$$
.

Andererseits gilt

$$u + b = (a - b) + b = a,$$

so dass wir insgesamt $a \in O + A$ gezeigt haben.

Die Tatsache, dass für die Addition von Dedekind-Mengen sowohl das Kommutativ-Gesetz als auch das Assoziativ-Gesetz gilt, folgt unmittelbar aus der Kommutativität und der Assoziativität der Addition rationaler Zahlen.

Als nächstes geben wir für eine Dedekind-Menge A das additive Inverse -A an:

$$-A := \{ x \in \mathbb{Q} \mid \exists r \in \mathbb{Q} : r > 0 \land -x - r \notin A \}.$$

Die Menge -A enthält also die rationalen Zahlen x für die -x so groß ist, dass für ein geeignetes r > 0 die Zahl -x - r kein Element von A mehr ist. Als erstes zeigen wir, dass -A eine Dedekind-Menge ist.

1. Wir zeigen $-A \neq \emptyset$.

Da A eine Dedekind-Menge ist, ist $A \neq \mathbb{Q}$. Daher gibt es ein $y \in \mathbb{Q}$ mit $y \notin A$. Wir definieren

$$x := -(y+1)$$
 und $r := 1$.

Dann gilt offenbar

$$-x - r = y + 1 - 1 = y \not\in A$$

und nach Definition der Menge -A folgt $x \in -A$. Also haben wir $-A \neq \emptyset$ gezeigt.

2. Wir zeigen $-A \neq \mathbb{Q}$.

Da A eine Dedekind-Menge ist, gilt $A \neq \emptyset$. Also gibt es ein $y \in A$. Wir definieren

$$x := -y$$
.

Für beliebige $r \in \mathbb{Q}$ mit r > 0 gilt dann

$$-x - r = y - r < y$$

und das $y \in A$ ist und A als Dedekind-Menge nach unten abgeschlossen ist, folgt daraus

$$-x - r \in A$$
 für alle $r \in \mathbb{Q}$ mit $r > 0$.

Nach der Definition von -A folgt nun, dass x kein Element von -A ist. Also gilt $-A \neq \mathbb{Q}$.

3. Wir zeigen, dass die Menge -A nach unten abgeschlossen ist.

Sei als $x \in -A$ und y < x. Wir müssen zeigen, dass dann auch $y \in -A$ ist. Aus der Voraussetzung $x \in -A$ folgt, dass es ein $r \in \mathbb{Q}$ mit r > 0 gibt, so dass

$$-x - r \not\in A$$

ist. Aus y < x folgt -y > -x und damit gilt auch

$$-x - r < -y - r.$$

Wir zeigen, dass $-y-r\not\in A$ ist und führen diesen Nachweis indirekt: Wäre $-y-r\in A$, so folgt aus der Ungleichung -x-r<-y-r und der Tatsache, dass A als Dedekind-Menge nach unten abgeschlossen ist, dass $-x-r\in A$ wäre, was falsch ist. Also folgt $-y-r\not\in A$ und nach Definition von -A folgern wir $y\in -A$. Damit haben wir gezeigt, dass -A nach unten abgeschlossen ist.

4. Wir zeigen, dass -A kein Maximum hat.

Wir führen diesen Nachweis indirekt und nehmen an, dass $x = \max(-A)$ ist. Insbesondere ist x dann ein Element von -A und daher gibt es dann ein $r \in \mathbb{Q}$ mit r > 0 und $-x - r \notin A$. Die letzte Formel können wir auch als

$$-x - \tfrac{1}{2} \cdot r - \tfrac{1}{2} \cdot r \not \in A$$

schreiben, woraus wir folgern können, dass

$$x + \frac{1}{2} \cdot r \in -A$$

ist. Da andererseits $x < x + \frac{1}{2} \cdot r$ ist, kann dann aber x nicht das Maximum von -A sein. Dieser Widerspruch zeigt, dass die Menge -A kein Maximum hat.

Als nächstes zeigen wir, dass für jede Dedekind-Menge A die Gleichung

$$(-A) + A = O$$

gilt. Wir spalten den Nachweis dieser Mengengleicheit in zwei Teile auf.

1. " \subseteq ": Es sei $x + y \in -A + A$, also $x \in -A$ und $y \in A$. Wir haben zu zeigen, dass $x + y \in O$

Wegen $x \in -A$ gibt es nach Definition der Menge -A ein $r \in \mathbb{Q}$ mit r > 0, so dass $-x - r \notin A$ ist. Da $y \in A$ ist, muss y < -x - r gelten. Daraus folgt

$$x + y < -r < 0$$

und damit gilt $x + y \in O$.

2. "]": Es sei nun $o \in O$, also o < 0. Wir müssen ein $x \in -A$ und ein $y \in A$ finden, so dass o = x + y gilt.

Wir definieren

$$r := -\frac{1}{2} \cdot o.$$

Da o < 0 ist, folgt r > 0 und außerdem gilt $r \in \mathbb{Q}$. Wir definieren die Menge M als

$$M := \{ n \in \mathbb{Z} \mid n \cdot r \in A \}$$

Da $A \neq \mathbb{Q}$ ist, gibt es ein $z \in \mathbb{Q}$ so dass $z \notin A$ ist. Für die Zahlen $n \in \mathbb{Z}$, für die $n \cdot r > z$ ist, folgt dann $n \notin M$. Folglich ist die Menge M nach oben beschränkt und hat daher ein Maximum. Wir definieren

$$\widehat{n} := \max(M).$$

Dann gilt $\hat{n} + 1 \notin M$, also

$$(\widehat{n}+1)\cdot r \not\in A.$$

Wir definieren jetzt

$$x := \widehat{n} \cdot r$$
 und $y := -(\widehat{n} + 2) \cdot r$.

Nach Definition von \widehat{n} und M gilt dann $x \in A$ und aus $(\widehat{n} + 1) \cdot r \notin A$ folgt

$$-y-r = (\widehat{n}+2) \cdot r - r = (\widehat{n}+1) \cdot r \notin A$$

so dass $y \in -A$ ist. Außerdem gilt

$$x + y = \widehat{n} \cdot r - (\widehat{n} + 2) \cdot r = -2 \cdot r = 0.$$

Damit haben wir $O \subseteq A + -A$ gezeigt.

Aufgabe 7: Überlegen Sie, wie sich auf der Menge \mathcal{D} eine Multiplikation definieren lässt, so dass \mathcal{D} mit dieser Multiplikation und der oben definierten Addition ein Körper wird.

Lösung: Wir nennen eine Dedekind-Menge A positiv, wenn $0 \in A$ gilt. Für zwei positive Dedekind-Mengen A und B läßt sich die Multiplikation $A \cdot B$ als

$$A \cdot B := \{x \cdot y \mid x \in A \land y \in B \land x > 0 \land y > 0\} \cup \{z \in \mathbb{Q} \mid z \le 0\}$$

definieren. Wir zeigen, dass die so definerte Menge $A\cdot B$ eine Dedekind-Menge ist. Dazu weisen wir die einzelnen Eigenschaften getrennt nach.

1. Wir zeigen $A \cdot B \neq \{\}$.

Nach Definition von $A \cdot B$ gilt $0 \in A \cdot B$. Daraus folgt sofort $A \cdot B \neq \{\}$.

2. Wir zeigen $A \cdot B \neq \mathbb{Q}$.

Da A und B als Dedekind-Mengen von der Menge \mathbb{Q} verschieden sind, gibt es $u, v \in Q$ mit $u \notin A$ und $v \notin B$. Wir definieren $w := \max(u, v)$. Dann gilt

$$(\forall x \in A : x < w) \land (\forall y \in B : y < w)$$

Daraus folgt sofort, dass für alle $x \in A$ und $y \in B$ die Ungleichung

$$x \cdot y < w \cdot w$$

gilt. Das heißt aber $w^2 \not\in A \cdot B$.

3. Wir zeigen, dass $A \cdot B$ nach unten abgeschlossen ist.

Es sei $x \cdot y \in A \cdot B$ und $z \in \mathbb{Q}$ mit $z < x \cdot y$. Wir müssen $z \in A \cdot B$ zeigen. Wir führen eine Fall-Unterscheidung danach durch, ob z > 0 ist.

(a) Fall: z > 0. Dann definieren wir

$$\alpha := \frac{z}{x \cdot y}$$

Aus $z < x \cdot y$ folgt $\alpha < 1$. Wir setzen $u := \alpha \cdot x$ und folglich gilt u < x. Da A nach unten abgeschlossen ist, folgt $u \in A$. Damit haben wir insgesamt $u \cdot y \in A$. Es gilt aber

$$u\cdot y = \alpha\cdot x\cdot y = \frac{z}{x\cdot y}\cdot x\cdot y = z,$$

so dass wir insgesamt $z \in A \cdot B$ gezeigt haben.

- (b) Fall: $z \leq 0$. Dann folgt unmittelbar aus der Definition von $A \cdot B$, dass $z \in A \cdot B$ ist.
- 4. Wir zeigen, dass $A \cdot B$ kein Maximum hat.

Wir führen den Nachweis indirekt und nehmen an, dass die Menge $A \cdot B$ eine Maximum c hat. Es gilt dann

$$c \in A \cdot B \quad \text{ und } \quad \forall z \in A \cdot B : z \le c.$$

Nach Definition von $A \cdot B$ gibt es dann ein $a \in A$ und ein $b \in B$ mit $c = a \cdot b$. Wir zeigen, dass dann a das Maximum der Menge A ist. Sei also $u \in A$. Dann gilt

$$u \cdot b \in A \cdot B$$
 und folglich gilt $u \cdot b \le c = a \cdot b$.

Teilen wir die letzte Ungleichung durch b so folgt

$$u \leq a$$

und damit wäre a das Maximum der Menge A. Das ist eine Widerspruch zu der Tatsache, dass A eine Dedekind-Menge ist.

Bisher haben wir das Produkt $A \cdot B$ nur für den Fall definiert, dass A und B beide positiv sind. Es gibt aber noch drei weitere Fälle:

2. Fall: A ist positiv, aber B ist nicht positiv. Dann ist -B positiv und wir können

$$A \cdot B := -(A \cdot (-B))$$

definieren.

3. Fall: B ist positiv, aber A ist nicht positiv. Dann setzen wir

$$A \cdot B := -((-A) \cdot B).$$

4. Fall: Weder A noch B ist positiv. Wir definieren

$$A \cdot B := (-A) \cdot (-B).$$

Nun müssten wir noch nachweisen, dass für die so definierte Multiplikation zusammen mit der oben definierten Addition die Körper-Axiome gelten. Der detailierte Nachweis dieser Axiome ist für eine einführende Vorlesung aber zu zeitaufwendig.

Literatur-Hinweise

In dem Buch "Grundlagen der Analysis" von Edmund Landau [6] wird die oben skizzierte Konstruktion der reellen Zahlen im Detail beschrieben. Auch das Buch "Principles of Mathematical Analysis" von Walter Rudin [7] diskutiert die Konstruktion der reellen Zahlen mit Hilfe von Dedekind-Mengen ausführlich.

2.2 Geschichte

Die Vollständigkeit der reellen Zahlen kann anschaulich als die Aussage interpretiert werden, dass die Menge der reellen Zahlen keine Löcher hat. Diese Erkenntnis und die Konstruktion der reellen Zahlen mit Hilfe von Schnitten geht auf Richard Dedekind zurück, der die nach ihm benannten Schnitte in dem Buch Stetigkeit und irrationale Zahlen [8], das im Jahre 1872 erschienen ist, beschrieben hat.

Kapitel 3

Folgen und Reihen

Die Begriffe Folgen und Reihen sowie der Begriff des Grenzwerts bilden die Grundlage, auf der die Analysis aufgebaut ist. Da Reihen nichts anderes sind als spezielle Folgen, beginnen wir unsere Diskussion mit den Folgen.

3.1 Folgen

Definition 7 (Folge) Eine Funktion $f: \mathbb{N} \to \mathbb{R}$ bezeichnen wir als eine *reellwertige Folge*. Eine Funktion $f: \mathbb{N} \to \mathbb{C}$ bezeichnen wir als eine *komplexwertige Folge*.

Ist die Funktion f ein Folge, so schreiben wir dies kürzer als $(f(n))_{n\in\mathbb{N}}$ oder $(f_n)_{n\in\mathbb{N}}$ oder noch kürzer als $(f_n)_n$.

Beispiele:

- 1. Die Funktion $a: \mathbb{N} \to \mathbb{R}$, die durch $a(n) = \frac{1}{n}$ definiert ist, schreiben wir als die Folge $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$.
- 2. Die Funktion $a: \mathbb{N} \to \mathbb{R}$, die durch $a(n) = (-1)^n$ definiert ist, schreiben wir als die Folge $((-1)^n)_{n \in \mathbb{N}}$.
- 3. Die Funktion $a: \mathbb{N} \to \mathbb{R}$, die durch a(n) = n definiert ist, schreiben wir als die Folge $(n)_{n \in \mathbb{N}}$. Folgen können auch induktiv definiert werden. Um die Gleichung $x = \cos(x)$ zu lösen, können wir eine Folge $(x_n)_{n \in \mathbb{N}}$ induktiv wie folgt definieren:
 - 1. Induktions-Anfang: n = 1. Wir setzen

$$x_1 := 0.$$

2. Induktions-Schritt: $n \mapsto n+1$. Nach Induktions-Voraussetzung ist x_n bereits definiert. Wir definieren x_{n+1} als

$$x_{n+1} := \cos(x_n).$$

Wir können die ersten 40 Glieder dieser Folge mit dem in Abbildung 3.1 gezeigten SETLX-Programm berechnen. Wir erhalten dann die in der Tabelle 3.1 auf Seite 19 gezeigten Ergebnisse. Bei näherer Betrachtung der Ergebnisse stellen wir fest, dass die Folge $(x_n)_{n\in\mathbb{N}}$ in einem gewissen Sinne gegen einen festen *Grenzwert* strebt. Diese Beobachtung wollen wir in der folgenden Definition präzisieren. Vorab bezeichnen wir die Menge der positiven reellen Zahlen mit \mathbb{R}_+ , es gilt also

$$\mathbb{R}_+ = \{ x \in \mathbb{R} \mid x > 0 \}.$$

```
solve := procedure(k) {
    x := []; // x[n+1] stores x_{n}
    x[1] := 0.0;
    for (n in [1 .. k]) {
        x[n+1] := cos(x[n]);
        print("x_{$n$} = $x[n+1]$");
    }
}
```

Abbildung 3.1: Berechnung der durch $x_0 = 0$ und $x_{n+1} = \cos(x_n)$ definierten Folge.

n	x_n	n	x_n	n	x_n	n	x_n
0	0.000000	10	0.731404	20	0.738938	30	0.739082
1	1.000000	11	0.744237	21	0.739184	31	0.739087
2	0.540302	12	0.735605	22	0.739018	32	0.739084
3	0.857553	13	0.741425	23	0.739130	33	0.739086
4	0.654290	14	0.737507	24	0.739055	34	0.739085
5	0.793480	15	0.740147	25	0.739106	35	0.739086
6	0.701369	16	0.738369	26	0.739071	36	0.739085
7	0.763960	17	0.739567	27	0.739094	37	0.739085
8	0.722102	18	0.738760	28	0.739079	38	0.739085
9	0.750418	19	0.739304	29	0.739089	39	0.739085

Tabelle 3.1: Die ersten 40 Glieder der durch $x_0 = 0$ und $x_{n+1} = \cos(x_n)$ definierten Folge.

Definition 8 (Grenzwert) Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen den Grenzwert g, falls gilt:

$$\forall \varepsilon \in \mathbb{R}_+ : \exists K \in \mathbb{R} : \forall n \in \mathbb{N} : n \ge K \to |a_n - g| < \varepsilon.$$

In diesem Fall schreiben wir

$$\lim_{n \to \infty} a_n = g.$$

Anschaulich besagt diese Definition, dass fast alle Glieder a_n der Folge $(a_n)_{n\in\mathbb{N}}$ einen beliebig kleinen Abstand zu dem Grenzwert g haben. Für die oben induktiv definierte Folge x_n können wir den Nachweis der Konvergenz erst in einem späteren Kapitel antreten. Wir betrachten statt dessen ein einfacheres Beispiel und beweisen, dass

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

gilt.

Beweis: Für jedes $\varepsilon > 0$ müssen wir eine Zahl K angeben, so dass für alle natürlichen Zahlen n, die größer-gleich K sind, die Abschätzung

$$\left|\frac{1}{n} - 0\right| < \varepsilon$$

gilt. Wir definieren $K:=\frac{1}{\varepsilon}+1$. Damit ist K wohldefiniert, denn da ε positiv ist, gilt sicher auch $\varepsilon \neq 0$. Nun benutzen wir die Voraussetzung $n \geq K$ für $K=\frac{1}{\varepsilon}+1$:

$$n \ge \frac{1}{\varepsilon} + 1$$

$$\Rightarrow n > \frac{1}{\varepsilon} \qquad | \cdot \varepsilon$$

$$\Rightarrow n \cdot \varepsilon > 1 \qquad | \cdot \frac{1}{n}$$

$$\Rightarrow \varepsilon > \frac{1}{n}$$

Da andererseits $0 < \frac{1}{n}$ gilt, haben wir insgesamt für alle n > K

$$0 < \frac{1}{n} < \varepsilon$$

$$\Rightarrow \left| \frac{1}{n} \right| < \varepsilon$$

$$\Rightarrow \left| \frac{1}{n} - 0 \right| < \varepsilon$$

gezeigt und damit ist der Beweis abgeschlossen.

Aufgabe 8:

(a) Beweisen Sie unter Rückgriff auf die Definition des Grenzwert-Begriffs, dass

$$\lim_{n\to\infty}\frac{1}{2^n}=0$$

gilt.

(b) Beweisen Sie unter Rückgriff auf die Definition des Grenzwert-Begriffs, dass

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

gilt.

Wir formulieren und beweisen einige unmittelbare Folgerungen aus der obigen Definition des Grenzwerts.

Satz 9 (Eindeutigkeit des Grenzwerts) Konvergiert die Folge $(a_n)_{n\in\mathbb{N}}$ sowohl gegen den Grenzwert g_1 als auch gegen den Grenzwert g_2 , so gilt $g_1=g_2$.

Beweis: Wir führen den Beweis indirekt und nehmen an, dass $g_1 \neq g_2$ ist. Dann definieren wir $\varepsilon = \frac{1}{2} \cdot |g_2 - g_1|$ und aus der Annahme $g_1 \neq g_2$ folgt $\varepsilon > 0$. Aus der Voraussetzung, dass $(a_n)_{n \in \mathbb{N}}$ gegen g_1 konvergiert folgt, dass es ein K_1 gibt, so dass gilt:

$$\forall n \in \mathbb{N} : n \ge K_1 \to |a_n - g_1| < \varepsilon$$

Analog folgt aus der Voraussetzung, dass $(a_n)_{n\in\mathbb{N}}$ gegen g_2 konvergiert, dass es ein K_2 gibt, so dass gilt:

$$\forall n \in \mathbb{N} : n \geq K_2 \rightarrow |a_n - g_2| < \varepsilon$$

Wir setzen $K := \max(K_1, K_2)$. Alle $n \in \mathbb{N}$, die größer-gleich K sind, sind dann sowohl größer-gleich K_1 als auch größer-gleich K_2 . Unter Benutzung der *Dreiecksungleichung*¹ erhalten wir für alle $n \geq K$ die folgende Kette von Ungleichungen:

 $^{^1}$ Sind $a,b\in\mathbb{R},$ so gilt $|a+b|\leq |a|+|b|.$ Diese Ungleichung trägt den Namen Dreiecksungleichung.

$$2 \cdot \varepsilon = |g_2 - g_1|$$

$$= |(g_2 - a_n) + (a_n - g_1)|$$

$$\leq |g_2 - a_n| + |a_n - g_1|$$
 (Dreiecksungleichung)
$$< \varepsilon + \varepsilon$$

$$= 2 \cdot \varepsilon$$

Aus dieser Ungleichungs-Kette würde aber $2 \cdot \varepsilon < 2 \cdot \varepsilon$ folgen und dass ist ein Widerspruch. Somit ist die Annahme $g_1 \neq g_2$ falsch und es muss $g_1 = g_2$ gelten.

Bemerkung: Die Schreibweise $\lim_{n\to\infty} a_n = g$ wird durch den letzten Satz im Nachhinein gerechtfertigt.

Aufgabe 9: Zeigen Sie, dass die Folge $((-1)^n)_{n\in\mathbb{N}}$ nicht konvergent ist.

Lösung: Wir führen den Beweis indirekt und nehmen an, dass die Folge $((-1)^n)_{n\in\mathbb{N}}$ konvergiert. Bezeichnen wir diesen Grenzwert mit s, so gilt also

$$\forall \varepsilon \in \mathbb{R}_+ : \exists K \in \mathbb{R} : \forall n \in \mathbb{N} : n \ge K \to |(-1)^n - s| < \varepsilon$$

Daher gibt es für $\varepsilon = 1$ eine Zahl K, so dass

$$\forall n \in \mathbb{N} : n \ge K \to \left| (-1)^n - s \right| < 1$$

gilt. Da aus $n \geq K$ sicher auch $2 \cdot n \geq K$ und $2 \cdot n + 1 \geq K$ folgt, hätten wir dann für $n \geq K$ die beiden folgenden Ungleichungen:

$$\left| (-1)^{2 \cdot n} - s \right| < 1$$
 und $\left| (-1)^{2 \cdot n + 1} - s \right| < 1$

Wegen $(-1)^{2 \cdot n} = 1$ und $(-1)^{2 \cdot n+1} = -1$ haben wir also

$$|1-s| < 1 \quad \text{und} \quad |-1-s| < 1.$$
 (3.1)

Wegen $-1-s=(-1)\cdot(1+s)$ und $|a\cdot b|=|a|\cdot|b|$ können wir die letzte Ungleichung noch vereinfachen zu

$$\left|1+s\right|<1. \tag{3.2}$$

Aus den beiden Ungleichungen |1-s| < 1 und |1+s| < 1 erhalten wir nun einen Widerspruch:

$$2 = |1+1|$$

$$= |(1-s)+(s+1)|$$

$$\leq |1-s|+|1+s| (Dreiecksungleichung)$$

$$< 1+1 wegen der Ungleichungen (3.1) und (3.2)$$

$$= 2$$

Fassen wir diese Ungleichungs-Kette zusammen, so haben die (offensichtlich falsche) Ungleichung 2 < 2 abgeleitet. Damit haben wir aus der Annahme, dass die Folge gegen den Grenzwert s konvergiert, einen Widerspruch hergeleitet.

Definition 10 (beschränkte Folgen) Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist beschränkt, falls es eine Schranke S gibt, so dass

$$\forall n \in \mathbb{N} : |a_n| \leq S$$

gilt.

Die Folge $((-1)^n)_{n\in\mathbb{N}}$ ist durch die Schranke S=1 beschränkt, denn offenbar gilt

$$|(-1)^n| = 1 \le 1,$$

aber die Folge $(n)_{n\in\mathbb{N}}$ ist nicht beschränkt, denn sonst gäbe es eine Zahl S, so dass für alle natürlichen Zahlen n die Ungleichung $n\leq S$ gilt. Da es beliebig große natürliche Zahlen gibt, kann dies nicht sein.

Satz 11 (Beschränktheit konvergenter Folgen) Jede konvergente Folge ist beschränkt.

Beweis: Es sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge und es gelte

$$\lim_{n\to\infty} a_n = g.$$

Dann gibt es für beliebige $\varepsilon > 0$ ein K, so dass gilt

$$\forall n \in \mathbb{N} : n \ge K \to |a_n - g| < \varepsilon.$$

Wir können also für $\varepsilon = 1$ ein K finden, so dass

$$\forall n \in \mathbb{N} : n \ge K \to |a_n - g| < 1$$

gilt. Wir können ohne Einschränkung der Allgemeinheit davon ausgehen, dass K eine natürliche Zahl ist, denn wenn K keine natürliche Zahl ist, können wir K einfach durch die erste natürliche Zahl ersetzen, die größer als K ist. Dann definieren wir

$$S := \max\{|a_0|, |a_1|, \cdots, |a_K|, 1 + |g|\}.$$

Wir behaupten, dass S eine Schranke für die Folge $(a_n)_{n\in\mathbb{N}}$ ist, wir zeigen also, dass für alle $n\in\mathbb{N}$ gilt:

$$|a_n| \leq S$$

Um diese Ungleichung nachzuweisen, führen wir eine Fall-Unterscheidung durch:

1. Fall: $n \leq K$. Dann gilt offenbar

$$|a_n| \in \{|a_0|, |a_1|, \cdots, |a_K|, 1+|g|\}.$$

und daraus folgt sofort

$$|a_n| \le \max\{|a_0|, |a_1|, \cdots, |a_K|, 1+|g|\} = S.$$

2. Fall: n > K. Dann haben wir

$$|a_n| = |a_n - g + g|$$

 $\leq |a_n - g| + |g|$ (Dreiecksungleichung)
 $< 1 + |g|$ wegen $n > K$
 $\leq S$.

Aus den letzten beiden Sätzen folgt nun sofort, dass die Folge $(n)_{n\in\mathbb{N}}$ nicht konvergiert, denn diese Folge ist noch nicht einmal beschränkt.

Satz 12 (Summe konvergenter Folgen) Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei Folgen, so dass

$$\lim_{n \to \infty} a_n = a \quad \land \quad \lim_{n \to \infty} b_n = b$$

gilt, dann konvergiert die Folge $(a_n + b_n)_{n \in \mathbb{N}}$ gegen den Grenzwert a + b, in Zeichen:

$$\lim_{n \to \infty} (a_n + b_n) = \left(\lim_{n \to \infty} a_n\right) + \left(\lim_{n \to \infty} b_n\right).$$

Beweis: Es sei $\varepsilon > 0$ fest vorgegeben. Wir suchen ein K, so dass

$$\forall n \in \mathbb{N} : n \ge K \to |(a_n + b_n) - (a + b)| < \varepsilon$$

gilt. Nach Voraussetzung gibt es für beliebige $\varepsilon' > 0$ ein K_1 und ein K_2 , so dass

$$\forall n \in \mathbb{N} : n \ge K_1 \to |a_n - a| < \varepsilon' \quad \text{und} \quad \forall n \in \mathbb{N} : n \ge K_2 \to |b_n - b| < \varepsilon'$$

gilt. Wir setzen nun $\varepsilon' := \frac{1}{2} \cdot \varepsilon$. Dann gibt es also K_1 und K_2 , so dass

$$\forall n \in \mathbb{N} : n \ge K_1 \to \left| a_n - a \right| < \frac{1}{2} \cdot \varepsilon \quad \text{und} \quad \forall n \in \mathbb{N} : n \ge K_2 \to \left| b_n - b \right| < \frac{1}{2} \cdot \varepsilon$$

gilt. Wir definieren $K := \max(K_1, K_2)$. Damit gilt dann für alle $n \ge K$:

$$|(a_n + b_n) - (a + b)| = |(a_n + b_n) - (a + b)|$$

$$= |(a_n - a) + (b_n - b)|$$

$$\leq |(a_n - a)| + |(b_n - b)|$$
 (Dreiecksungleichung)
$$< \frac{1}{2} \cdot \varepsilon + \frac{1}{2} \cdot \varepsilon$$

$$= \varepsilon.$$

Damit ist die Behauptung gezeigt.

Aufgabe 10: Zeigen Sie: Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei Folgen, so dass

$$\lim_{n \to \infty} a_n = a \quad \land \quad \lim_{n \to \infty} b_n = b$$

gilt, dann konvergiert die Folge $(a_n - b_n)_{n \in \mathbb{N}}$ gegen den Grenzwert a - b, in Zeichen:

$$\lim_{n \to \infty} (a_n - b_n) = \left(\lim_{n \to \infty} a_n\right) - \left(\lim_{n \to \infty} b_n\right).$$

Satz 13 (Produkt konvergenter Folgen) Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei Folgen, so dass

$$\lim_{n \to \infty} a_n = a \quad \land \quad \lim_{n \to \infty} b_n = b$$

gilt, dann konvergiert die Folge $(a_n \cdot b_n)_{n \in \mathbb{N}}$ gegen den Grenzwert $a \cdot b$, in Zeichen:

$$\lim_{n \to \infty} (a_n \cdot b_n) = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\lim_{n \to \infty} b_n\right).$$

Beweis: Es sei $\varepsilon > 0$ fest vorgegeben. Wir suchen ein K, so dass

$$\forall n \in \mathbb{N} : n \ge K \to |(a_n \cdot b_n) - (a \cdot b)| < \varepsilon$$

gilt. Da die Folge $(a_n)_{n\in\mathbb{N}}$ konvergent ist, ist diese Folge auch beschränkt, es gibt also eine Zahl S, so dass

$$|a_n| \leq S$$
 für alle $n \in \mathbb{N}$

gilt. Nach Voraussetzung gibt es für beliebige $\varepsilon_1 > 0$ ein K_1 und für beliebige $\varepsilon_2 > 0$ ein K_2 , so dass

$$\forall n \in \mathbb{N} : n \ge K_1 \to |a_n - a| < \varepsilon_1 \quad \text{und} \quad \forall n \in \mathbb{N} : n \ge K_2 \to |b_n - b| < \varepsilon_2$$

gilt. Wir setzen nun $\varepsilon_1 := \frac{\varepsilon}{2 \cdot (|b|+1)}$ und $\varepsilon_2 := \frac{\varepsilon}{2 \cdot S}$. Dann gibt es also K_1 und K_2 , so dass

$$\forall n \in \mathbb{N} : n \ge K_1 \to \left| a_n - a \right| < \frac{\varepsilon}{2 \cdot (|b| + 1)} \quad \text{und} \quad \forall n \in \mathbb{N} : n \ge K_2 \to \left| b_n - b \right| < \frac{\varepsilon}{2 \cdot S}$$

gilt. Wir definieren $K := \max(K_1, K_2)$. Damit gilt dann für alle $n \ge K$:

$$|a_n \cdot b_n - a \cdot b| = |(a_n \cdot b_n - a_n \cdot b) + (a_n \cdot b - a \cdot b)|$$

$$\leq |(a_n \cdot b_n - a_n \cdot b)| + |(a_n \cdot b - a \cdot b)| \quad \text{(Dreiecksungleichung)}$$

$$= |a_n| \cdot |b_n - b| + |a_n - a| \cdot |b|$$

$$\leq S \cdot |b_n - b| + |a_n - a| \cdot (|b| + 1)$$

$$< S \cdot \frac{\varepsilon}{2 \cdot S} + \frac{\varepsilon}{2 \cdot (|b| + 1)} \cdot (|b| + 1)$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Damit ist die Behauptung gezeigt.

Aufgabe 11: Zeigen Sie: Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei Folgen, so dass

$$\lim_{n \to \infty} a_n = a \quad \land \quad \lim_{n \to \infty} b_n = b$$

gilt und gilt $b_n \neq 0$ für alle $n \in \mathbb{N}$, sowie $b \neq 0$, so konvergiert die Folge $(a_n/b_n)_{n \in \mathbb{N}}$ gegen den Grenzwert a/b, in Zeichen:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\left(\lim_{n \to \infty} a_n\right)}{\left(\lim_{n \to \infty} b_n\right)} = \frac{a}{b}.$$

Lösung: Zunächst können wir das Problem vereinfachen, wenn wir die Folge $(a_n/b_n)_{n\in\mathbb{N}}$ als Folge von Produkten schreiben:

$$\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}} = \left(a_n\right)_{n\in\mathbb{N}} \cdot \left(\frac{1}{b_n}\right)_{n\in\mathbb{N}}$$

Falls wir zeigen können, dass

$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{b}$$

gilt, dann folgt die Behauptung aus dem Satz über das Produkt konvergenter Folgen. Bei unserer Suche nach einem Beweis starten wir damit, dass wir die Behauptung noch einmal hinschreiben:

$$\forall \varepsilon \in \mathbb{R}_{+} : \exists K \in \mathbb{R} : \forall n \in \mathbb{N} : n \ge K \to \left| \frac{1}{b_{n}} - \frac{1}{b} \right| < \varepsilon$$
(3.3)

Wir müssen also für alle $\varepsilon>0$ ein K finden, so dass für alle natürlichen Zahlen n>K die Ungleichung

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| < \varepsilon \tag{3.4}$$

gilt. Irgendwie müssen wir die Voraussetzung, dass die Folge $(b_n)_{n\in\mathbb{N}}$ gegen b konvergiert, ausnutzen. Diese Voraussetzung lautet ausgeschrieben

$$\forall \varepsilon' \in \mathbb{R}_+ : \exists K' \in \mathbb{R} : \forall n \in \mathbb{N} : n \ge K \to |b_n - b| < \varepsilon'$$
(3.5)

Wir zeigen zunächst eine Abschätzung für die Beträge $|b_n|$, die wir später brauchen. Hier hilft uns die Voraussetzung, dass $b \neq 0$ ist. Setzen wir in Ungleichung (3.5) für ε' den Wert $\frac{1}{2} \cdot |b|$ ein, so erhalten wir eine Zahl K_1 , so dass für alle natürlichen Zahlen $n \geq K_1$

$$\left|b_n - b\right| < \frac{1}{2} \cdot |b|$$

gilt. Damit folgt:

$$|b| = |b - b_n + b_n|$$

$$\Rightarrow |b| \leq |b - b_n| + |b_n|$$

$$\Rightarrow |b| < \frac{1}{2} \cdot |b| + |b_n|$$

$$\Rightarrow \frac{1}{2} \cdot |b| < |b_n|$$

$$\Rightarrow \frac{2}{|b|} > \frac{1}{|b_n|}$$

Damit wissen wir also, dass für alle $n > K_1$ die Ungleichung

$$\frac{1}{2} \cdot |b| < |b_n|$$

gilt. Um nun für ein gegebenes $\varepsilon > 0$ die Ungleichung (3.4) zu zeigen, setzen wir in der Voraussetzung (3.5) $\varepsilon' = \frac{1}{2} \cdot |b|^2 \cdot \varepsilon$ und erhalten ein K_2 , so dass für alle $n > K_2$ die Ungleichung

$$\left|b - b_n\right| < \frac{1}{2} \cdot |b|^2 \cdot \varepsilon \tag{3.6}$$

gilt. Setzen wir $K := \max(K_1, K_2)$, so erhalten wir für alle n > k die folgende Ungleichungs-Kette:

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b \cdot b_n} \right|$$

$$= \frac{1}{|b| \cdot |b_n|} \cdot |b - b_n|$$

$$< \frac{2}{|b| \cdot |b|} \cdot |b - b_n| \quad \text{wegen } \frac{2}{|b|} > \frac{1}{|b_n|}$$

$$< \frac{2}{|b| \cdot |b|} \cdot \frac{1}{2} \cdot |b|^2 \cdot \varepsilon \quad \text{wegen } (3.6)$$

Damit haben wir für $n \geq K$ die Ungleichung $\left|\frac{1}{b_n} - \frac{1}{b}\right| < \varepsilon$ hergeleitet und der Beweis ist abgeschlossen.

Die bisher bewiesenen Sätzen können wir benutzen um die Grenzwerte von Folgen zu berechnen. Wir geben ein Beispiel:

 \Diamond

 \Diamond

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}}$$

$$= \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \frac{1}{n}}$$

$$= \frac{1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}}$$

$$= \frac{1}{1+0}$$

Satz 14 Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei konvergente Folgen, so dass

$$\forall n \in \mathbb{N} : a_n \leq b_n$$

gilt, dann gilt auch

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n.$$

Aufgabe 12: Beweisen Sie den letzten Satz.

Definition 15 (monoton) Eine Folge $\left(a_n\right)_{n\in\mathbb{N}}$ ist monoton steigend falls

$$\forall n \in \mathbb{N} : a_n \leq a_{n+1}$$

gilt. Analog heißt eine Folge monoton fallend falls

$$\forall n \in \mathbb{N} : a_n \geq a_{n+1}.$$

Ein Beispiel für eine monoton fallende Folge ist die Folge $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$, denn es gilt

Satz 16 Ist die Folge $(a_n)_{n\in\mathbb{N}}$ monoton fallend und beschränkt, so ist die Folge auch konvergent.

Beweis: Wir definieren zunächst die Menge M_1 als als die Menge aller unteren Schranken der Folge $(a_n)_{n\in\mathbb{N}}$

$$M_1 := \{ x \in \mathbb{Q} \mid \forall n \in \mathbb{N} : x \le a_n \}.$$

Weil wir vorausgesetzt haben, dass die Folge $(a_n)_{n\in\mathbb{N}}$ beschränkt ist, ist die Menge M_1 sicher nicht leer. Es gibt nun zwei Möglichkeiten: Die Menge M_1 hat ein Maximum oder die Menge M_1 hat kein Maximum. Wir betrachten diese beiden Fälle getrennt.

1. Das Maximum der Menge M_1 existiert. In diesem Fall definieren wir

$$s := \max(M_1).$$

Aufgabe 13: Zeigen Sie, dass dann

$$\lim_{n \to \infty} a_n = s$$

gilt.

2. Die Menge M_1 hat kein Maximum. In diesem Fall definieren wir die Menge M_2 als das Komplement der Menge M_1 :

$$\begin{array}{rcl} M_2 &=& \mathbb{Q}\backslash M_1\\ &=& \mathbb{Q}\backslash \big\{x\in \mathbb{Q}\mid \forall n\in \mathbb{N}: x\leq a_n\big\}\\ &=& \big\{x\in \mathbb{Q}\mid \neg \forall n\in \mathbb{N}: x\leq a_n\big\}\\ &=& \big\{x\in \mathbb{Q}\mid \exists n\in \mathbb{N}: \neg x\leq a_n\big\}\\ &=& \big\{x\in \mathbb{Q}\mid \exists n\in \mathbb{N}: a_n< x\big\} \end{array}$$

Aus dieser Definition folgt unmittelbar, dass $M_1 \cup M_2 = \mathbb{Q}$ ist. Wir wissen schon, dass $M_1 \neq \emptyset$, aber es gilt auch $M_2 \neq \emptyset$, denn offenbar liegt die Zahl $a_0 + 1$ in der Menge M_2 .

Um zu zeigen, dass das Paar $\langle M_1, M_2 \rangle$ ein Dedekind-Schnitt ist, müssen wir noch

$$\forall x_1 \in M_1 : \forall x_2 \in M_2 : x_1 < x_2$$

zeigen. Sei also $x_1 \in M_1$ und $x_2 \in M_2$. Nach Definition von M_2 gibt es dann eine natürliche Zahl n, für die $a_n < x_2$ ist. Nach Definition von M_1 gilt für alle natürlichen Zahlen m die Ungleichung $x_1 \leq a_m$. Insbesondere gilt die Ungleichung dann auch für die natürliche Zahl n, wir haben also

$$x_1 \le a_n < x_2$$
 und damit $x_1 < x_2$.

Folglich ist $\langle M_1, M_2 \rangle$ ein Dedekind-Schnitt und wegen der Vollständigkeit der reellen Zahlen gibt es eine Trennungs-Zahl s mit der Eigenschaft, dass

$$\forall x_1 \in M_1 : x_1 \le s \quad \text{und} \quad \forall x_2 \in M_2 : s \le x_2$$

gilt. Wir zeigen, dass diese Zahl s der gesuchte Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$ ist, wir zeigen also, dass

$$\lim_{n \to \infty} a_n = s$$

gilt. Dazu beweisen wir zunächst, dass $s \in M_1$ ist. Wir führen diesen Nachweis indirekt und nehmen an, dass $s \in M_2$ ist. Dann gibt es ein $n \in \mathbb{N}$, so dass

$$a_n < s$$

ist. Der arithmetische Mittelwert von a_n und s liegt zwischen a_n und s, es gilt also

$$a_n < \frac{1}{2} \cdot (a_n + s) < s.$$

Nach Definition der Trennungs-Zahl s folgt aus $\frac{1}{2} \cdot (a_n + s) < s$, dass

$$\frac{1}{2} \cdot (a_n + s) \in M_1$$

ist. Nach Definition von M_1 gilt dann

$$\frac{1}{2} \cdot (a_n + s) \leq a_n$$

$$\Rightarrow a_n + s \leq 2 \cdot a_n$$

$$\Rightarrow s \leq a_n.$$

Das steht im Widerspruch zu $a_n < s$ und widerlegt die Annahme $s \in M_2$. Folglich gilt $s \in M_1$ und nach Definition von M_1 haben wir damit für alle $n \in \mathbb{N}$

$$s < a_n$$
.

Sei nun ein $\varepsilon > 0$ vorgegeben. Wir betrachten die Zahl $s + \varepsilon$. Wegen $s < s + \varepsilon$ muss diese Zahl ein Element der Menge M_2 sein. Nach Definition von M_2 gibt es ein $n_0 \in \mathbb{N}$, so dass

$$a_{n_0} < s + \varepsilon$$

gilt. Aufgrund der Monotonie folgt dann aber für alle $n \geq n_0$

$$a_n \leq a_{n_0} < s + \varepsilon$$
.

Insgesamt haben wir

$$s \le a_n \le a_{n_0} < s + \varepsilon$$

und daraus folgt

$$|a_n - s| < \varepsilon$$

für alle $n \ge n_0$ und damit ist bewiesen, dass $\lim_{n \to \infty} a_n = s$ gilt.

Aufgabe 14: Die Folge $(a_n)_{n\in\mathbb{N}}$ sei monoton steigend und beschränkt. Zeigen Sie, dass der Grenzwert

$$\lim_{n\to\infty} a_n$$

existiert.

Aufgabe 15: Es seien $a, b \in \mathbb{R}$ und es gelte a < b. Zeigen Sie, dass dann auch

$$a < \frac{1}{2} \cdot (a+b)$$
 und $\frac{1}{2} \cdot (a+b) < b$

gilt.

Definition 17 (Infimum, Supremum) Eine Teilmenge M der reellen Zahlen ist nach *oben* (bzw. *nach unten*) *beschränkt*, falls es eine Schranke $o \in \mathbb{R}$ (bzw. $u \in \mathbb{R}$) gibt, so dass gilt:

$$\forall x \in M : x \le o \quad (bzw. \ \forall x \in M : x \ge u).$$

Eine Zahl s ist das *Supremum* einer Menge M, wenn s die kleinste obere Schranke von M ist, es muss also gelten:

$$\forall x \in M : x \le s \quad \text{und} \quad \forall t \in \mathbb{R} : \left(\left(\forall x \in M : x \le t \right) \to s \le t \right)$$

In diesem Fall schreiben wir

$$s = \sup(M).$$

Analog ist eine Zahl s das Infimum einer Menge M, wenn s die größte untere Schranke von M ist, es muss also gelten:

$$\forall x \in M : s \le x \quad \text{und} \quad \forall t \in \mathbb{R} : \left(\left(\forall x \in M : t \le x \right) \to t \le s \right)$$

In diesem Fall schreiben wir

$$s = \inf(M)$$
.

Aufgabe 16: Zeigen Sie unter Verwendung des Vollständigkeit der reellen Zahlen: Jede nichtleere nach unten beschränkte Menge M besitzt ein Infimum.

Lösung: Wir konstruieren das Infimum als Trennungs-Zahl eines Dedekind-Schnitts. Wir definieren den Dedekind-Schnitt $\langle M_1, M_2 \rangle$ wie folgt:

1. $M_1 := \{ u \in \mathbb{R} \mid \forall x \in M : u \leq x \}.$

 M_1 ist also die Menge der unteren Schranken von M. Da wir vorausgesetzt hatten, dass M nach unten beschränkt ist, ist klar dass $M_1 \neq \emptyset$ gilt.

2. Damit $\langle M_1, M_2 \rangle$ ein Dedekind-Schnitt wird, muss M_2 das Komplement von M_1 in der Menge \mathbb{R} sein:

$$M_2 := \mathbb{R} \backslash M_1$$

$$= \mathbb{R} \backslash \left\{ u \in \mathbb{R} \mid \forall x \in M : u \leq x \right\}$$

$$= \mathbb{R} \backslash \left\{ v \in \mathbb{R} \mid \forall x \in M : v \leq x \right\}$$

$$= \left\{ v \in \mathbb{R} \mid \neg \left(\forall x \in M : v \leq x \right) \right\}$$

$$= \left\{ v \in \mathbb{R} \mid \exists x \in M : \neg (v \leq x) \right\}$$

$$= \left\{ v \in \mathbb{R} \mid \exists x \in M : x < v \right\}$$

 M_2 ist also die Menge der Zahlen, die keine unteren Schranken von M sind. Da die Menge M nicht leer ist, gibt es ein $x \in M$. Wegen x < x + 1 ist x + 1 keine untere Schranke von M, also gilt $x + 1 \in M_2$ und damit gilt $M_2 \neq \emptyset$.

Um nachzuweisen, dass $\langle M_1, M_2 \rangle$ ein Dedekind-Schnitt ist, müssen wir nur noch zeigen, dass für alle $u \in M_1$ und alle $v \in M_2$ die Ungleichung u < v gilt. Seien also $u \in M_1$ und $v \in M_2$ gegeben. Aus der Definition von M_2 folgt dann, dass es eine Zahl $x \in M$ gibt, so dass

gilt. Da M_1 die Menge der unteren Schranken von M ist, folgt aus $x \in M$ sofort

$$u \leq x$$

Aus den letzten beiden Ungleichungen folgt nun

$$u \le x < v$$
 also $u < v$.

Also ist $\langle M_1, M_2 \rangle$ ein Dedekind-Schnitt und nach dem Vollständigkeits-Axioms gibt es eine Trennungs-Zahl s. Wir behaupten, dass s das Infimum der Menge M ist. Dazu müssen wir zwei Dinge zeigen:

1. s ist eine untere Schranke von M.

Wir nehmen an, dass $s \in M_2$ ist. Nach Definition von M_2 gibt es dann eine Zahl $z \in M$, so dass

gilt. Wir betrachten den arithmetischen Mittelwert von s und z, der natürlich zwischen diesen beiden Zahlen liegen muss:

$$z < \frac{1}{2} \cdot (z+s) < s.$$

Da s die Trennungs-Zahl des Dedekind-Schnitts $\langle M_1, M_2 \rangle$ ist, folgt aus $\frac{1}{2} \cdot (z+s) < s$ sofort $\frac{1}{2} \cdot (z+s) \in M_1$. Da M_1 aber die Menge der unteren Schranken der Menge M ist, und $z \in M$ ist, folgt

$$\frac{1}{2} \cdot (z+s) \le z.$$

Das steht im Widerspruch zu der Ungleichung $z<\frac{1}{2}\cdot(z+s)$ und zeigt, dass die Annahme $s\in M_2$ falsch ist. Also muss $s\in M_1$ sein. Da M_1 die Menge der unteren Schranken der Menge M ist, ist auch s eine untere Schranke der Menge M:

$$\forall x \in M : s \leq x$$
.

2. s ist die größte untere Schranke von M.

Für die Trennungs-Zahl s des Dedekind-Schnitts $\langle M_1, M_2 \rangle$ gilt:

$$\forall u \in M_1 : u \leq s.$$

Setzen wir hier die Definition von M_1 ein, so erhalten wir:

$$\forall u \in M_1 : u \leq s$$

$$\Rightarrow \forall u \in \mathbb{R} : u \in M_1 \to u \leq s$$

$$\Rightarrow \forall u \in \mathbb{R} : u \in \{u \in \mathbb{R} \mid \forall x \in M : u \leq x\} \to u \leq s$$

$$\Rightarrow \forall u \in \mathbb{R} : (\forall x \in M : u \leq x) \to u \leq s$$

Diese Formel drückt aus, dass alle unteren Schranken der Menge M unterhalb von s liegen. Da wir oben schon gezeigt haben, dass s eine untere Schranke von M ist, folgt also, dass s die größte untere Schranke ist.

Die Begriffe Supremum und Infimum sind Verallgemeinerungen der Begriffe Minimum und Maximum. Betrachten wie die Menge

$$M = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \land n > 0 \right\}.$$

Diese Menge hat kein Minimum, aber 0 ist die größte untere Schranke dieser Menge, es gilt also

$$0 = \inf \left\{ \frac{1}{n} \mid n \in \mathbb{N} \land n > 0 \right\}.$$

Definition 18 (Cauchy-Folge)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge (Augustin-Louis Cauchy, 1789-1857), falls gilt:

$$\forall \varepsilon \in \mathbb{R}_+ : \exists K \in \mathbb{R} : \forall m, n \in \mathbb{N} : m \ge K \land n \ge K \to |a_m - a_n| < \varepsilon.$$

In einer Cauchy-Folge $(a_n)_{n\in\mathbb{N}}$ liegen also die einzelnen Folgenglieder a_n mit wachsendem n immer dichter zusammen. Wir werden sehen, dass eine Folge genau dann konvergent ist, wenn die Folge eine Cauchy-Folge ist.

Satz 19 Jede konvergente Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge.

Beweis: Es sei $a := \lim_{n \to \infty} a_n$. Sei $\varepsilon > 0$ gegeben. Aufgrund der Konvergenz der Folge $(a_n)_{n \in \mathbb{N}}$ gibt es dann ein K, so dass

$$\forall n \in \mathbb{N} : n \ge K \to |a_n - a| < \frac{\varepsilon}{2}$$

gilt. Damit gilt für alle $m,n\in\mathbb{N}$ mit $m\geq K$ und $n\geq K$ die folgende Abschätzung:

$$|a_m - a_n| = |(a_m - a) + (a - a_n)|$$

$$\leq |a_m - a| + |a - a_n|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Damit ist gezeigt, dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist.

Satz 20 Jede Cauchy-Folge ist beschränkt.

Beweis: Wenn $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist, dann finden wir eine Zahl K, so dass für alle natürlichen Zahlen m, n, die größer-gleich K sind, die Ungleichung

$$|a_n - a_m| < 1$$

gilt. Sei nun h eine natürliche Zahl, die größer als K ist. Wir definieren

$$S := \max\{|a_0|, |a_1|, |a_2|, \cdots, |a_h|, 1 + |a_h|\}$$

und zeigen, dass S eine Schranke der Cauchy-Folge $(a_n)_{n\in\mathbb{N}}$ ist, wir zeigen also

$$\forall n \in \mathbb{N} : |a_n| \leq S.$$

Falls $n \leq h$ ist, ist diese Ungleichung evident. Für alle n > h haben wir die folgende Abschätzung:

$$|a_n| = |a_n - a_h + a_h|$$

$$\leq |a_n - a_h| + |a_h|$$

$$< 1 + |a_h|$$

$$\leq S.$$

Damit ist der Beweis abgeschlossen.

Theorem 21 Jede Cauchy-Folge ist konvergent.

Beweis: Der Beweis verläuft ähnlich wie der Nachweis, dass eine monotone und beschränkte Folge konvergent ist. Wir definieren zunächst ein Paar von Mengen $\langle M_1, M_2 \rangle$ wie folgt:

1.
$$M_1 := \{ x \in \mathbb{R} \mid \exists K \in \mathbb{N} : \forall n \in \mathbb{N} : n \ge K \to x \le a_n \}.$$

Anschaulich ist M_1 die Menge aller unteren Grenzen für die Mehrheit der Folgenglieder: Ist $x \in M_1$, so müssen von einem bestimmten Index K an alle weiteren Folgenglieder a_n durch x nach unten abgeschätzt werden.

Die Beschränktheit der Cauchy-Folge impliziert, dass die Menge M_1 nicht leer ist, denn wenn für alle $n \in \mathbb{N}$ die Ungleichung $|a_n| \leq S$ gilt, dann gilt insbesondere $-S \leq a_n$ und daraus folgt $-S \in M_1$.

2. Da das Paar $\langle M_1, M_2 \rangle$ eine Dedekind-Schnitt werden soll, definieren wir M_2 als das Komplement von M_1 in \mathbb{R} :

$$\begin{array}{ll} M_2 &:=& \mathbb{R}\backslash M_1\\ &=& \mathbb{R}\backslash \left\{x\in \mathbb{R}\mid \exists K\in \mathbb{N}: \forall n\in \mathbb{N}: n\geq K\rightarrow x\leq a_n\right\}\\ &=& \left\{x\in \mathbb{R}\mid \neg \exists K\in \mathbb{N}: \forall n\in \mathbb{N}: n\geq K\rightarrow x\leq a_n\right\}\\ &=& \left\{x\in \mathbb{R}\mid \forall K\in \mathbb{N}: \exists n\in \mathbb{N}: n\geq K\wedge a_n< x\right\} \end{array}$$

Die Menge M_2 enthält also alle die reellen Zahlen x, für die wir Folgenglieder a_n mit beliebig großem Index n finden können, die kleiner als x sind.

Auch M_2 ist nicht leer. Dies folgt wieder aus der Beschränktheit von $(a_n)_{n\in\mathbb{N}}$, denn wenn für alle $n\in\mathbb{N}$ die Ungleichung $|a_n|\leq S$ erfüllt ist, dann gilt offenbar $S+1\in M_2$.

Als nächstes zeigen wir, dass

$$\forall x_1 \in M_1 : \forall x_2 \in M_2 : x_1 < x_2$$

gilt. Wegen $x_1 \in M_1$ gibt es nach Definition von M_1 eine natürliche Zahl K, so dass alle Folgenglieder a_n , deren Index $n \geq K$ ist, die Ungleichung

$$x_1 \le a_n \tag{3.7}$$

erfüllen. Wegen $x_2 \in M_2$ gibt es nach Definition von M_2 dann eine natürliche Zahl $n_0 \geq K$, so dass

$$a_{n_0} < x_2$$
 (3.8)

gilt. Für dieses n_0 gilt natürlich auch die Ungleichung (3.7), so dass wir insgesamt

$$x_1 \le a_{n_0} < x_2$$

und damit

$$x_1 < x_2$$

haben. Damit ist das Paar $\langle M_1, M_2 \rangle$ ein Dedekind-Schnitt. Aus der Vollständigkeit der reellen Zahlen folgt nun, dass eine Trennungs-Zahl s mit der Eigenschaft

$$\forall x_1 \in M_1 : x_1 \leq s \quad \text{und} \quad \forall x_2 \in M_2 : s \leq x_2$$

existiert. Wir zeigen, dass

$$\lim_{n\to\infty} a_n = s$$

gilt. Sei $\varepsilon>0$ gegeben. Wir suchen eine Zahl K, so dass für alle natürlichen Zahlen $n\geq K$ die Ungleichung

$$|a_n - s| < \varepsilon$$

gilt. Wir betrachten zunächst die Zahl $s-\frac{\varepsilon}{2}$. Wegen $s-\frac{\varepsilon}{2} < s$ folgt $s-\frac{\varepsilon}{2} \in M_1$. Damit existiert dann eine Zahl K_1 , so dass für alle $n \in \mathbb{N}$ mit $n \geq K_1$ die Ungleichung

$$s - \frac{\varepsilon}{2} \le a_n \tag{3.9}$$

gilt. Da die Folge $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist, gibt es eine Zahl K_2 , so dass für alle $m,n\in\mathbb{N}$ mit $m>K_2$ und $n>K_2$ die Ungleichung

$$\left| a_n - a_m \right| < \frac{\varepsilon}{2} \tag{3.10}$$

gilt. Wir setzen nun $K = \max(K_1, K_2)$ und betrachten die Zahl $s + \frac{\varepsilon}{2}$, die wegen $s < s + \frac{\varepsilon}{2}$ sicher in M_2 liegt. Nach Definition von M_2 finden wir dann eine natürliche Zahl m, die größer als K ist, so dass

$$a_m < s + \frac{\varepsilon}{2} \tag{3.11}$$

gilt. Für diese Zahl m gilt sicher auch die Ungleichung (3.9), so dass wir insgesamt

$$s - \frac{\varepsilon}{2} \le a_m < s + \frac{\varepsilon}{2}$$

haben. Daraus folgt sofort

$$\left| a_m - s \right| \le \frac{\varepsilon}{2}. \tag{3.12}$$

Aufgrund der Ungleichung (3.10) haben wir jetzt für alle natürlichen Zahlen n > K:

$$|a_n - s| = |(a_n - a_m) + (a_m - s)|$$

$$\leq |(a_n - a_m)| + |(a_m - s)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Damit ist der Beweis abgeschlossen.

3.2 Berechnung der Quadrat-Wurzel

Wir präsentieren nun eine Anwendung der bisher entwickelte Theorie und zeigen, wie die Quadrat-Wurzel einer reellen Zahl berechnet werden kann. Es sei eine reelle Zahl a > 0 gegeben. Gesucht ist eine reelle Zahl b > 0, so dass $b^2 = a$ ist. Unsere Idee ist es, die Zahl b iterativ als Lösung einer Fixpunkt-Gleichung zu berechnen. Wir definieren eine Folge b_n induktiv wie folgt:

I.A.: n = 0.

$$b_0 := \left\{ \begin{array}{ll} 1 & \text{falls } a \le 1, \\ a & \text{sonst.} \end{array} \right.$$

I.S.: $n \mapsto n+1$.

$$b_{n+1} := \frac{1}{2} \cdot \left(b_n + \frac{a}{b_n} \right).$$

Um diese Definition zu verstehen, nehmen wir zunächst an, dass der Grenzwert dieser Folge existiert und den Wert $b \neq 0$ hat. Dann gilt

$$b = \lim_{n \to \infty} b_n$$

$$= \lim_{n \to \infty} b_{n+1}$$

$$= \lim_{n \to \infty} \frac{1}{2} \cdot \left(b_n + \frac{a}{b_n} \right)$$

$$= \frac{1}{2} \cdot \left(\lim_{n \to \infty} b_n + \frac{a}{\lim_{n \to \infty} b_n} \right)$$

$$= \frac{1}{2} \cdot \left(b + \frac{a}{b} \right)$$

Damit ist b also eine Lösung der Gleichung $b = \frac{1}{2} \cdot \left(b + \frac{a}{b}\right)$. Wir formen diese Gleichung um:

$$b = \frac{1}{2} \cdot \left(b + \frac{a}{b}\right) | \cdot 2$$

$$\Leftrightarrow 2 \cdot b = b + \frac{a}{b} | -b$$

$$\Leftrightarrow b = \frac{a}{b} | \cdot b$$

$$\Leftrightarrow b^2 = a | \sqrt{-}$$

$$\Leftrightarrow b = \sqrt{a}$$

Falls die oben definierte Folge $(b_n)_{n\in\mathbb{N}}$ einen Grenzwert hat, dann ist dieser Grenzwert also die Wurzel der Zahl a. Wir werden die Konvergenz der Folge nachweisen indem wir zeigen, dass die Folge $(b)_{n\in\mathbb{N}}$ einerseits monoton fallend und andererseits nach unten beschränkt ist. Dazu betrachten wir zunächst die Differenz $b_{n+1}^2 - a$:

$$b_{n+1}^{2} - a = \frac{1}{4} \cdot \left(b_{n} + \frac{a}{b_{n}}\right)^{2} - a$$

$$= \frac{1}{4} \cdot \left(b_{n}^{2} + 2 \cdot a + \frac{a^{2}}{b_{n}^{2}}\right) - a$$

$$= \frac{1}{4} \cdot \left(b_{n}^{2} - 2 \cdot a + \frac{a^{2}}{b_{n}^{2}}\right)$$

$$= \frac{1}{4} \cdot \left(b_{n} - \frac{a}{b_{n}}\right)^{2}$$

$$> 0.$$

denn das Quadrat einer reellen Zahl ist immer größer-gleich Null. Addieren wir auf beiden Seiten der Ungleichung

$$b_{n+1}^2 - a \ge 0$$

die Zahl a, so haben wir

$$b_{n+1}^2 \geq a \quad \text{ und damit auch } \quad b_{n+1} \geq \sqrt{a} \quad \text{ für alle } n \in \mathbb{N}$$

gezeigt. Nach unserer Definition der Folge $(b_n)_{n\in\mathbb{N}}$ gilt diese Ungleichung auch für den ersten Wert n=0, so dass wir also insgesamt die Ungleichung

$$b_n^2 \ge a$$
 und $b_n \ge \sqrt{a}$ für alle $n \in \mathbb{N}$

gezeigt haben. Daraus folgt, dass \sqrt{a} eine untere Schranke der Folge $(b_n)_{n\in\mathbb{N}}$ ist. Dividieren wir die erste Ungleichung durch b_n , so folgt

$$b_n \ge \frac{a}{b_n}$$
.

Die Zahl $\frac{1}{2} \cdot \left(b_n + \frac{a}{b_n}\right)$ ist der arithmetische Mittelwert der Zahlen b_n und $\frac{a}{b_n}$ und muss daher zwischen diesen beiden Zahlen liegen:

$$b_n \ge \frac{1}{2} \cdot \left(b_n + \frac{a}{b_n} \right) \ge \frac{a}{b_n}.$$

Dieser Mittelwert ist aber gerade b_{n+1} , es gilt also

$$b_n \ge b_{n+1} \ge \frac{a}{b_n}$$
.

Dies zeigt, dass die Folge $(b_n)_{n\in\mathbb{N}}$ monoton fallend ist und damit muß die Folge auch konvergieren. Wir hatten oben schon gezeigt, dass der Grenzwert dieser Folge dann den Wert \sqrt{a} haben muss, es gilt also

$$\lim_{n \to \infty} b_n = \sqrt{a}$$

Abbildung 3.2 auf Seite 35 zeigt die Definition einer Prozedur mySqrt() in SETLX, die die ersten 9 Glieder der Folge berechnet und dann jeweils mit Hilfe der Funktion nDecimalPlaces() die ersten 100 Stellen der Werte ausgibt.

Die von diesem Programm berechnete Ausgabe ist in Abbildung 3.3 gezeigt. Sie können sehen, dass die Folge sehr schnell konvergiert. b_2 stimmt auf 2 Stellen hinter dem Komma mit dem Ergebnis überein, bei b_3 sind es bereits 5 Stellen, bei b_4 sind es 11 Stellen, bei b_5 sind es 23 Stellen, bei b_6 sind es 47 Stellen, bei b_7 haben wir 96 Stellen und ab dem Folgeglied b_8 ändern sich die ersten 100 Stellen hinter dem Komma nicht mehr.

In modernen Mikroprozessoren wird übrigens eine verfeinerte Version des in diesem Abschnitt beschriebenen Verfahrens eingesetzt. Die Verfeinerung besteht im wesentlichen darin, dass zunächst ein guter Startwert b_0 in einer Tabelle nachgeschlagen wird, die restlichen Folgeglieder werden dann

in der Tat über die Rekursionsformel $b_{n+1} = \frac{1}{2} \cdot \left(b_n + \frac{a}{b_n}\right)$ berechnet.

```
mySqrt := procedure(a) {
    if (a <= 1) {
        b := 1;
    } else {
        b := a;
    }
    for (n in [1 .. 9]) {
        b := 1/2 * (b + a/b);
        print("$n$: $nDecimalPlaces(b, 100)$");
    }
    return b;
}</pre>
```

Abbildung 3.2: Ein SetlX-Programm zur iterativen Berechnung der Quadrat-Wurzel.

Abbildung 3.3: Berechnung der Quadrat-Wurzel mit Hilfe der Folge $b_{n+1} = \frac{1}{2} \cdot (b_n + \frac{a}{b_n})$.

3.3 Reihen

Definition 22 (Reihe) Ist $(a_n)_{n\in\mathbb{N}}$ eine Folge, so definieren wir die Folge der *Partial-Summen* $(s_n)_{n\in\mathbb{N}}$ durch die Festsetzung

$$s_n := \sum_{i=0}^n a_i.$$

Diese Folge bezeichnen wir auch als unendliche Reihe. Die Folge $\left(a_n\right)_{n\in\mathbb{N}}$ bezeichnen wir als die der Reihe $\left(\sum_{i=0}^n a_i\right)_{n\in\mathbb{N}}$ zugrunde liegende Folge. Falls die Folge der Partial-Summen konvergiert, so schreiben wir den Grenzwert als

$$\sum_{i=0}^{\infty} a_i := \lim_{n \to \infty} \sum_{i=0}^{n} a_i.$$

Gelegentlich treten in der Praxis Folgen $(a_n)_{n\in\mathbb{N}}$ auf, für welche die Folgenglieder a_i erst ab einem Index k>0 definiert sind. Beispielsweise ist die Folge $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ erst ab k=1 definiert. Um auch aus solchen Folge bequem Reihen bilden zu können, definieren wir in einem solchen Fall die Partial-Summen s_n durch

$$s_n = \sum_{i=k}^n a_i,$$

wobei wir vereinbaren, dass $\sum_{i=k}^{n} a_i = 0$ ist, falls k > n ist.

Satz 23 (Bernoullische Ungleichung) Es sei $x \in \mathbb{R}$, $n \in \mathbb{N}$ und es gelte $x \ge -1$. Dann gilt $(1+x)^n > 1+n \cdot x$.

Diese Ungleichung wird als Bernoullische Ungleichung (Jakob Bernoulli, 1655-1705) bezeichnet.

Beweis: Wir beweisen die Ungleichung durch vollständige Induktion nach n.

I.A.: n = 0. Es gilt

$$(1+x)^0 = 1 > 1 = 1 + 0 \cdot x.$$
 \checkmark

I.S.: $n \mapsto n+1$. Nach Induktions-Voraussetzung gilt

$$(1+x)^n \ge 1 + n \cdot x \tag{3.13}$$

Da $x \ge -1$ ist, folgt $1+x \ge 0$ positiv, so dass wir die Ungleichung 3.13 mit 1+x multiplizieren können. Dann erhalten wir die folgende Ungleichungs-Kette

$$(1+x)^{n+1} \geq (1+n \cdot x) \cdot (1+x)$$

$$= 1 + (n+1) \cdot x + n \cdot x^2$$

$$\geq 1 + (n+1) \cdot x$$

Also haben wir insgesamt

$$(1+x)^{n+1} \ge 1 + (n+1) \cdot x$$

gezeigt.

 \mathbf{Satz} 24 Es sei $q \in \mathbb{R}$ mit |q| < 1. Dann gilt

$$\lim_{n \to \infty} q^n = 0.$$

Beweis: Wir nehmen zunächst an, dass q positiv ist. Aus q < 1 folgt dann

$$1 < \frac{1}{q}$$
 und damit $0 < \frac{1}{q} - 1$.

Wir definieren nun

$$x := \frac{1}{a} - 1.$$

Mit Hilfe der Bernoullischen Ungleichung sehen wir nun, dass Folgendes gilt:

$$\frac{1}{q^n} = \left(1 + \left(\frac{1}{q} - 1\right)\right)^n$$

$$\geq 1 + n \cdot \left(\frac{1}{q} - 1\right)$$

$$= 1 + n \cdot x.$$

Durch Invertierung dieser Ungleichung erhalten wir

$$q^n \le \frac{1}{1 + n \cdot x}$$

Ist nun ein $\varepsilon > 0$ gegeben, so definieren wir

$$K:=\left(\frac{1}{\varepsilon}-1\right)\cdot\frac{1}{x}+1.$$

Dann gilt für alle $n \geq K$:

$$\left(\frac{1}{\varepsilon} - 1\right) \cdot \frac{1}{x} + 1 \leq n$$

$$\Rightarrow \qquad \left(\frac{1}{\varepsilon} - 1\right) \cdot \frac{1}{x} < n$$

$$\Rightarrow \qquad \left(\frac{1}{\varepsilon} - 1\right) < n \cdot x$$

$$\Rightarrow \qquad \frac{1}{\varepsilon} < 1 + n \cdot x$$

$$\Rightarrow \qquad \frac{1}{1 + n \cdot x} < \varepsilon$$

Insgesamt haben wir nun für alle $n \geq K$ gezeigt, dass

$$0 < q^n \le \frac{1}{1 + n \cdot x} < \varepsilon$$

gilt, also haben wir für $n \geq K$

$$|q^n| < \varepsilon$$
.

Für q = 0 ist diese Ungleichung offenbar auch gültig und wenn q negativ ist, gilt -q > 0, so dass die Ungleichung für -q gilt:

$$|(-q)^n| < \varepsilon$$
.

Wegen $|(-q)^n| = |q^n|$ folgt daraus also, dass für alle q die Ungleichung

$$|q^n| < \varepsilon$$
 für $n \ge K$

gültig ist und damit ist die Behauptung bewiesen.

Wir präsentieren nun einige Beispiele für konvergente Reihen:

1. Wir betrachten die Folge $\left(\frac{1}{n\cdot(n+1)}\right)_{n\in\mathbb{N}}$, die nur für $n\geq 1$ definiert ist. Für die Partial-Summen zeigen wir durch Induktion über n, dass gilt:

$$\sum_{i=1}^{n} \frac{1}{i \cdot (i+1)} = 1 - \frac{1}{n+1} \tag{3.14}$$

(a) (Induktions-Anfang) n = 1: Einerseits haben wir für n = 1

$$\sum_{i=1}^{n} \frac{1}{i \cdot (i+1)} = \sum_{i=1}^{1} \frac{1}{i \cdot (i+1)} = \frac{1}{1 \cdot (1+1)} = \frac{1}{2},$$

andererseits gilt

$$1 - \frac{1}{n+1} = 1 - \frac{1}{1+1} = 1 - \frac{1}{2} = \frac{1}{2}.$$

(b) (Induktions-Schritt) $n \mapsto n+1$:

$$\begin{array}{rcl} \sum\limits_{i=1}^{n+1} \frac{1}{i \cdot (i+1)} & = & \sum\limits_{i=1}^{n} \frac{1}{i \cdot (i+1)} + \frac{1}{(n+1) \cdot (n+2)} \\ & \stackrel{IV}{=} & 1 - \frac{1}{(n+1)} + \frac{1}{(n+1) \cdot (n+2)} \\ & = & 1 - \frac{n+2-1}{(n+1) \cdot (n+2)} \\ & = & 1 - \frac{n+1}{(n+1) \cdot (n+2)} \\ & = & 1 - \frac{1}{n+2} \end{array}$$

Aus Gleichung (3.14) folgt nun sofort

$$\sum_{i=1}^{\infty} \frac{1}{i \cdot (i+1)} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{i \cdot (i+1)} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1.$$

2. Wir betrachten die Folge $\left(q^n\right)_{n\in\mathbb{N}}$ für eine Zahl $q\in\mathbb{R}.$ Für die Partial-Summen gilt

$$s_n = \sum_{i=0}^n q^i.$$

Wir betrachten den Ausdruck $(1-q) \cdot s_n$:

$$(1-q) \cdot s_n = (1-q) \cdot \sum_{i=0}^n q^i$$

$$= \sum_{i=0}^n q^i - q \cdot \sum_{i=0}^n q^i$$

$$= \sum_{i=0}^n q^i - \sum_{i=0}^n q^{i+1}$$

$$= \sum_{i=0}^n q^i - \sum_{i=1}^{n+1} q^i$$

$$= \left(q^0 + \sum_{i=1}^n q^i\right) - \left(\sum_{i=1}^n q^i + q^{n+1}\right)$$

$$= q^0 - q^{n+1}$$

$$= 1 - q^{n+1}$$

Es gilt also

$$(1-q)\cdot\sum_{i=0}^{n}q^{i}=1-q^{n+1}$$

Dividieren wir diese Gleichung durch (1-q), so erhalten wir für die Partial-Summen den Ausdruck

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}.$$

Falls |q|<1 ist, konvergiert die Folge $\left(q^n\right)_{n\in\mathbb{N}}$ gegen 0. Damit gilt für |q|<1

$$\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}.$$

Die Reihe $\left(\sum_{i=0}^n q^i\right)_{n\in\mathbb{N}}$ wird als geometrische Reihe bezeichnet.

Definition 25 (Alternierende Reihe) Hat eine Reihe die Form

$$\left(\sum_{i=0}^{n}(-1)^{i}\cdot a_{i}\right)_{n\in\mathbb{N}}$$

und gilt entweder

$$\forall i \in \mathbb{N} : a_i > 0 \quad \text{oder} \quad \forall i \in \mathbb{N} : a_i < 0$$

so sprechen wir von einer alternierenden Reihe.

Beispiel:

$$\left(\sum_{i=1}^{n} \frac{(-1)^{i}}{i}\right)_{n \in \mathbb{N}}$$
 ist eine alternierende Reihe.

Definition 26 (Null-Folge) Die Folge $(a_n)_{n\in\mathbb{N}}$ ist eine *Null-Folge* wenn gilt:

$$\lim_{n\to\infty} a_n = 0.$$

Satz 27 (Leibniz-Kriterium, (Gottfried Wilhelm Leibniz, 1646-1716))

Wenn die Folge $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Null-Folge ist, dann konvergiert die alternierende Reihe

$$\left(\sum_{i=0}^{n} (-1)^i \cdot a_i\right)_{n \in \mathbb{N}.}$$

Beweis: Die Partial-Summen s_n sind durch

$$s_n = \sum_{i=0}^n (-1)^i \cdot a_i$$

definiert. Wir betrachten zunächst die Folge der Partial-Summen mit geraden Indizes, wir betrachten also die Folge $(s_{2n})_{n\in\mathbb{N}}$ und zeigen, dass diese Folge monoton fallend ist. Es gilt

$$s_{2\cdot(n+1)} = s_{2\cdot n} + (-1)^{2\cdot n+1} \cdot a_{2\cdot n+1} + (-1)^{2\cdot n+2} \cdot a_{2n+2} = s_{2\cdot n} - a_{2\cdot n+1} + a_{2\cdot n+2}.$$
 (3.15)

Daraus folgt

$$\begin{array}{rcl} s_{2\cdot(n+1)} & \leq & s_{2\cdot n} \\ \Leftrightarrow & s_{2\cdot n} - a_{2\cdot n+1} + a_{2\cdot n+2} & \leq & s_{2\cdot n} \\ \Leftrightarrow & a_{2\cdot n+2} & \leq & a_{2\cdot n+1} \end{array}$$

Die letzte Ungleichung ist aber nicht anderes als die Monotonie der Folge $(a_n)_{n\in\mathbb{N}}$.

Als nächstes zeigen wir durch vollständige Induktion, dass die Folge der Partial-Summen mit geraden Indizes nach unten beschränkt ist, genauer gilt

$$s_{2\cdot n} \ge a_0 - a_1.$$

Um dies nachzuweisen, zeigen wir durch vollständige Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$s_{2\cdot n+1} \ge a_0 - a_1$$
.

I.A.: n = 0.

$$s_{2\cdot 0+1} = s_1 = a_0 - a_1.$$

I.S.: $n \mapsto n+1$

$$\begin{array}{lll} s_{2\cdot(n+1)+1} &=& s_{2\cdot n+1} + a_{2\cdot n+2} - a_{2\cdot n+3} \\ \\ &\geq & a_0 - a_1 + a_{2\cdot n+2} - a_{2\cdot n+3} & \text{nach Induktions-Voraussetzung} \\ \\ &\geq & a_0 - a_1 & \text{wegen } a_{2\cdot n+2} \geq a_{2\cdot n+3}. \end{array}$$

Nun gilt für $n \ge 1$

$$s_{2\cdot n} = s_{2\cdot n-1} + a_{2\cdot n} \ge s_{2\cdot n-1} \ge a_0 - a_1$$

und für n = 0 ist $s_0 = a_0 \ge a_0 - a_1$. Da wir nun gezeigt haben, dass die Folge $(s_{2\cdot n})_{n\in\mathbb{N}}$ sowohl monoton fallend als auch nach unten beschränkt ist, folgt aus Satz 16, dass diese Folge konvergent ist. Der Grenzwert dieser Folge sei s:

$$s := \lim_{n \to \infty} s_{2 \cdot n}.$$

Dann konvergiert auch die Folge $(s_n)_{n\in\mathbb{N}}$ gegen s. Dies sehen wir wie folgt: Sei $\varepsilon>0$ gegeben. Weil $(s_{2\cdot n})_{n\in\mathbb{N}}$ gegen s konvergiert gibt es eine Zahl K_1 , so dass für alle $n\geq K_1$ die Ungleichung

$$\left| s_{2\cdot n} - s \right| < \frac{1}{2} \cdot \varepsilon \tag{3.16}$$

erfüllt ist. Weil $(a_n)_{n\in\mathbb{N}}$ eine Null-Folge ist gibt es außerdem eine Zahl K_2 , so dass für alle $n\geq K_2$ die Ungleichung

$$\left|a_n - 0\right| < \frac{1}{2} \cdot \varepsilon \tag{3.17}$$

gilt. Wir setzen $K := \max(2 \cdot K_1 + 1, K_2)$ und zeigen, dass für alle $n \geq K$ die Ungleichung

$$|s_n - s| < \varepsilon$$

gilt. Wir erbringen diesen Nachweis über eine Fall-Unterscheidung:

1. n ist gerade, also gilt $n = 2 \cdot m$.

$$|s_n - s| = |s_{2 \cdot m} - s|$$

$$< \frac{1}{2} \cdot \varepsilon$$

$$< \varepsilon,$$

denn aus $n = 2 \cdot m$ und n > K folgt $m > K_1$.

2. n ist ungerade, also gilt $n = 2 \cdot m + 1$.

$$|s_n - s| = |s_{2 \cdot m+1} - s|$$

$$= |s_{2 \cdot m+1} - s_{2 \cdot m} + s_{2 \cdot m} - s|$$

$$\leq |s_{2 \cdot m+1} - s_{2 \cdot m}| + |s_{2 \cdot m} - s|$$

$$< |a_{2 \cdot m+1}| + \frac{1}{2} \cdot \varepsilon$$

$$< \frac{1}{2} \cdot \varepsilon + \frac{1}{2} \cdot \varepsilon$$

$$= \varepsilon,$$

denn aus $n = 2 \cdot m + 1$ und n > K folgt $m > K_1$ und $n \ge K_2$.

Damit ist der Beweis abgeschlossen.

Aufgabe 17: Wenn die Folge $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Null-Folge ist, dann gilt für den Grenzwert der zugehörigen alternierende Reihe

$$\sum_{i=0}^{\infty} (-1)^i \cdot a_i \leq a_0.$$

Hinweis: Zeigen Sie durch vollständige Induktion über n, dass für die Partial-Summen s_n gilt:

$$s_n \leq a_0$$
.

Lösung:

I.A.: n = 0.

$$s_0 = a_0 \le a_0.$$

I.S.: $n \mapsto n+1$.

Wir führen eine Fall-Unterscheidung durch:

(a) n ist gerade, also gilt $n = 2 \cdot m$ für ein geeignetes $m \in \mathbb{N}$.

$$\begin{array}{lll} s_{n+1} & = & s_{2\cdot m+1} \\ & = & s_{2\cdot m} + (-1)^{2\cdot m+1} \cdot a_{2\cdot m+1} \\ & = & s_n - a_{2\cdot m+1} \\ & \leq & a_0 - a_{2\cdot m+1} & \text{nach Induktions-Voraussetzung} \\ & \leq & a_0 & \text{denn } a_{2\cdot m+1} \geq 0 \end{array}$$

(b) n ist ungerade, also gilt $n = 2 \cdot m + 1$ für ein geeignetes $m \in \mathbb{N}$.

$$\begin{array}{lll} s_{n+1} & = & s_{2 \cdot m+2} \\ & = & s_{2 \cdot m} + (-1)^{2 \cdot m+1} \cdot a_{2 \cdot m+1} + (-1)^{2 \cdot m+2} \cdot a_{2 \cdot m+2} \\ & = & s_n - a_{2 \cdot m+1} + a_{2 \cdot m+2} \\ & \leq & s_n & \text{denn } a_{2 \cdot m+2} \leq a_{2 \cdot m+1} \\ & \leq & a_0 & \text{nach IV} \end{array}$$

Die Behauptung folgt nun aus der Tatsache, dass ≤-Beziehungen zwischen konvergenten Folgen für die Grenzwerte erhalten bleiben.

Satz 28 (Cauchy'sches Konvergenz-Kriterium für Reihen)

Die Reihe $(\sum_{i=0}^n a_i)_{n\in\mathbb{N}}$ ist genau dann konvergent, wenn es für alle $\varepsilon>0$ eine Zahl K gibt, so dass gilt:

$$\forall n, l \in \mathbb{N} : n \ge K \to \left| \sum_{i=n+1}^{n+l} a_i \right| < \varepsilon.$$

Beweis: Nach den Sätzen aus dem Abschnitt über Folgen ist die Folge $(s_n)_{n\in\mathbb{N}}$ der durch

$$s_n = \sum_{i=0}^n a_i$$

definierten Partial-Summen genau dann konvergent, wenn $(s_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist, wenn also gilt:

$$\forall \varepsilon \in \mathbb{R}_+ : \exists K \in \mathbb{R} : \forall m, n \in \mathbb{N} : m > K \land n \ge K \to |s_m - s_n| < \varepsilon.$$

In der letzen Formel können wir ohne Einschränkung der Allgemeinheit annehmen, dass $n \leq m$ gilt. Dann ist m = n + l für eine natürliche Zahl l. Setzen wir hier die Definition der Partial-Summen ein, so erhalten wir

$$|s_m - s_n| = |s_{n+l} - s_n|$$

$$= \left| \sum_{i=0}^{n+l} a_i - \sum_{i=0}^n a_i \right|$$

$$= \left| \sum_{i=n+1}^{n+l} a_i \right|$$

und damit ist klar, dass die Ungleichung des Satzes äquivalent dazu ist, dass die Folge der Partial-Summen eine Cauchy-Folge ist. $\hfill\Box$

Korollar 29

Wenn die Reihe $\left(\sum\limits_{i=0}^{n}a_{n}\right)_{n\in\mathbb{N}}$ konvergent ist, dann ist die Folge $\left(a_{n}\right)_{n\in\mathbb{N}}$ eine Null-Folge.

Beweis: Nach dem Cauchy'schen Konvergenz-Kriterium gilt

$$\forall \varepsilon \in \mathbb{R}_+ : \exists K \in \mathbb{R} : \forall n, l \in \mathbb{N} : n \ge K \to \left| \sum_{i=n+1}^{n+l} a_i \right| < \varepsilon.$$

Setzen wir hier l=1 so haben wir insbesondere

$$\forall \varepsilon \in \mathbb{R}_+ : \exists K \in \mathbb{R} : \forall n \in \mathbb{N} : n \ge K \to \left| \sum_{i=n+1}^{n+1} a_i \right| < \varepsilon.$$

Wegen

$$\left|\sum_{i=n+1}^{n+1} a_i\right| = |a_{n+1}|$$

folgt also

$$\forall \varepsilon \in \mathbb{R}_+ : \exists K \in \mathbb{R} : \forall n \in \mathbb{N} : n \ge K \to |a_{n+1}| < \varepsilon.$$

Diese Formel drückt aus, dass $(a_n)_{n\in\mathbb{N}}$ eine Null-Folge ist.

Mit Hilfe des letzten Satzes können wir zeigen, dass die harmonische Reihe

$$\left(\sum_{i=0}^{n} \frac{1}{i}\right)_{n \in \mathbb{N}}$$

divergiert. Wäre diese Reihe konvergent, so gäbe es nach dem Cauchy'schen Konvergenz-Kriterium eine Zahl K, so dass für alle $n \ge K$ und alle l die Ungleichung

$$\sum_{i=n+1}^{n+l} \frac{1}{i} < \frac{1}{2}$$

gilt. Insbesondere würde diese Ungleichung dann für l=n gelten. Für beliebige n gilt aber die folgende Abschätzung:

$$\sum_{i=n+1}^{n+n} \frac{1}{i} \ge \sum_{i=n+1}^{2 \cdot n} \frac{1}{2 \cdot n} = n \cdot \frac{1}{2 \cdot n} = \frac{1}{2}$$

Damit erfüllt die harmonische Reihe das Cauchy'sche Konvergenz-Kriterium nicht.

Satz 30 (Majoranten-Kriterium) Für die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gelte:

- 1. $\forall n \in \mathbb{N} : 0 \le a_n \le b_n$.
- 2. Der Grenzwert $\sum\limits_{i=0}^{\infty}b_i$ existiert.

Dann existiert auch der Grenzwert $\sum_{i=0}^{\infty} a_i$.

Beweis: Es gilt

$$\sum_{i=0}^{n} a_i \le \sum_{i=0}^{n} b_i \le \sum_{i=0}^{\infty} b_i.$$

Also ist die Folge $\left(\sum\limits_{i=0}^n a_i\right)_{n\in\mathbb{N}}$ monoton wachsend und beschränkt und damit konvergent.

Bemerkung: Oft wird im Majoranten-Kriterium die Voraussetzung $\forall n \in \mathbb{N}: 0 \leq a_n \leq b_n$ abgeschwächt zu

$$\forall n \in \mathbb{N} : n \ge K \to 0 \le a_n \le b_n.$$

Hierbei ist K dann eine geeignet gewählte Schranke. Die Gültigkeit dieser Form des Majoranten-Kriteriums folgt aus der Tatsache, dass das Abändern endlich vieler Glieder einer Reihe für die Frage, ob eine Reihe konvergent ist, unbedeutend ist.

Aufgabe 18: Zeigen Sie mit dem Majoranten-Kriterium, dass die Reihe $\left(\sum\limits_{i=1}^{n}\frac{1}{i^2}\right)_{n\in\mathbb{N}}$ konvergiert.

Lösung: Es gilt

$$i+1 \ge i \qquad | \cdot (i+1)$$

$$\Rightarrow \quad (i+1)^2 \ge i \cdot (i+1) \qquad | \frac{1}{\cdot}$$

$$\Rightarrow \quad \frac{1}{(i+1)^2} \le \frac{1}{i \cdot (i+1)}$$

Damit ist die Reihe $\left(\sum_{i=1}^n \frac{1}{i \cdot (i+1)}\right)_{n \in \mathbb{N}}$ eine konvergente Majorante der Reihe $\left(\sum_{i=1}^n \frac{1}{(i+1)^2}\right)_{n \in \mathbb{N}}$. Wegen

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{1}{1^2} + \sum_{i=1}^{\infty} \frac{1}{(i+1)^2}$$

folgt die Konvergenz aus dem Majoranten-Kriterium.

Bemerkung: Wir werden später zeigen, dass

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \quad \text{gilt.}$$

Satz 31 (Minoranten-Kriterium) Für die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gelte:

- 1. $\forall n \in \mathbb{N} : 0 \le a_n \le b_n$
- 2. Der Grenzwert $\sum_{i=0}^{\infty} a_i$ existiert nicht.

Dann existiert auch der Grenzwert $\sum\limits_{i=0}^{\infty}b_{i}$ nicht.

Beweis: Wir führen den Beweis indirekt und nehmen an, dass $\sum_{i=0}^{\infty} b_i$ existiert. Nach dem Majoranten-Kriterium müßte dann auch der Grenzwert $\sum_{i=0}^{\infty} a_i$ existieren und dass steht im Widerspruch zur Voraussetzung.

Aufgabe 19: Zeigen Sie, dass die Reihe

$$\left(\sum_{i=0}^{n} \frac{1}{\sqrt{i+1}}\right)_{n \in \mathbb{N}}$$

nicht konvergiert.

Lösung: Wir benutzen das Minoranten-Kriterium und zeigen, dass die Reihe $\left(\sum_{i=0}^{n} \frac{1}{n+1}\right)_{n\in\mathbb{N}}$ eine divergente Minorante der Reihe $\left(\sum_{i=0}^{n} \frac{1}{\sqrt{n+1}}\right)_{n\in\mathbb{N}}$ ist:

$$\frac{1}{n+1} \leq \frac{1}{\sqrt{n+1}} \mid \frac{1}{\cdot}$$

$$\Leftrightarrow n+1 \geq \sqrt{n+1} \mid \cdot^{2}$$

$$\Leftrightarrow (n+1)^{2} \geq n+1 \quad \mid \cdot \frac{1}{n+1}$$

$$\Leftrightarrow n+1 \geq 1 \quad \mid -1$$

$$\Leftrightarrow n \geq 0$$

Da die letzte Ungleichung offenbar für alle $n \in \mathbb{N}$ wahr ist, ist der Beweis abgeschlossen.

Satz 32 (Quotienten-Kriterium) Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und $q\in\mathbb{R}$ eine Zahl, so dass gilt:

- 1. $0 \le q < 1$
- $2. \ \forall n \in \mathbb{N} : 0 \le a_n$
- 3. $\forall n \in \mathbb{N} : a_{n+1} \leq q \cdot a_n$

Dann konvergiert die Reihe $\left(\sum\limits_{i=0}^{n}a_{i}\right)_{n\in\mathbb{N}}$

Beweis: Wir zeigen, dass die geometrische Reihe $\left(\sum\limits_{i=0}^n a_0\cdot q^i\right)_{n\in\mathbb{N}}$ eine konvergente Majorante der

Reihe $\left(\sum_{i=0}^{n} a_{n}\right)_{n\in\mathbb{N}}$ ist. Dazu zeigen wir durch Induktion über n dass folgendes gilt:

$$\forall n \in \mathbb{N} : a_n \le a_0 \cdot q^n$$

I.A. : n = 0. Wegen $q^0 = 1$ gilt trivialerweise

$$a_0 \leq a_0 \cdot q^0$$
.

I.S. : $n \mapsto n+1$. Es gilt:

$$a_{n+1} \leq q \cdot a_n$$
 nach Voraussetzung
$$\leq q \cdot a_0 \cdot q^n$$
 nach Induktions-Voraussetzung
$$= a_0 \cdot q^{n+1}.$$

Bemerkung: Beim Quotienten-Kriterium sind eigentlich nur die Beträge der Folgenglieder $|a_n|$ wichtig, denn es läßt sich folgende Verschärfung des Quotienten-Kriteriums zeigen: Ist $(a_n)_{n\in\mathbb{N}}$ eine Folge, $q\in\mathbb{R}$ und $K\in\mathbb{R}$, so dass

$$0 \le q < 1 \quad \land \quad \forall n \in \mathbb{N} : n \ge K \to \left| \frac{a_{n+1}}{a_n} \right| \le q$$

gilt. Dann konvergiert die Reihe $\left(\sum\limits_{i=0}^{n}a_{n}\right)_{n\in\mathbb{N}}$.

Beispiel: Wir zeigen mit Hilfe des Quotienten-Kriteriums, dass die Reihe $\left(\sum_{i=0}^n \frac{z^i}{i!}\right)_{n\in\mathbb{N}}$ für alle $z\in\mathbb{C}$ konvergiert. Für z=0 ist die Konvergenz der Reihe trivial und sonst betrachten wir den Quotienten a_{n+1}/a_n für diese Reihe, setzen $K=2\cdot|z|$ und $q=\frac{1}{2}$ und zeigen, dass das Quotienten-Kriterium erfüllt ist, denn für alle $n\geq K$ gilt:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{|z^{n+1}|}{(n+1)!}}{\frac{|z^n|}{n!}} = \frac{|z^{n+1}| \cdot n!}{|z^n| \cdot (n+1)!} = \frac{|z|}{n+1} \le \frac{|z|}{K} = \frac{|z|}{2 \cdot |z|} = \frac{1}{2}.$$

Satz 33 (Wurzel-Kriterium) Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und $q\in\mathbb{R}$ eine Zahl, so dass

- 1. $0 \le q < 1$
- 2. $\forall n \in \mathbb{N} : 0 \leq a_n$
- 3. $\forall n \in \mathbb{N} : n > 0 \rightarrow \sqrt[n]{a_n} < q$

gilt. Dann konvergiert die Reihe $\left(\sum\limits_{i=0}^{n}a_{n}\right)_{n\in\mathbb{N}}$

Beweis: Auch hier können wir den Nachweis der Konvergenz dadurch führen indem wir zeigen, dass die geometrische Reihe $\left(\sum\limits_{i=0}^{n}q^{i}\right)_{n\in\mathbb{N}}$ eine konvergente Majorante ist: Für n>0 gilt

$$a_n \le q^n \Leftrightarrow \sqrt[n]{a_n} \le q.$$

Bemerkung: Beim Wurzel-Kriterium sind eigentlich nur die Beträge der Folgenglieder $|a_n|$ wichtig, denn es läßt sich folgende Verschärfung des Quotienten-Kriteriums zeigen: Ist $(a_n)_{n\in\mathbb{N}}$ eine Folge, $q\in\mathbb{R}$ und $K\in\mathbb{R}$, so dass

$$0 \le q < 1 \quad \land \quad \forall n \in \mathbb{N} : n \ge K \to \sqrt[n]{|a_n|} \le q$$

gilt. Dann konvergiert die Reihe $\left(\sum_{i=0}^{n} a_n\right)_{n\in\mathbb{N}}$.

Beispiel: Wir zeigen mit dem Wurzel-Kriterium, dass die Reihe $\left(\sum_{i=0}^{n} \frac{1}{i!}\right)_{n \in \mathbb{N}}$ konvergiert. Wir setzen K=4 und $q=\frac{1}{2}$. Zunächst können Sie mit vollständiger Induktion leicht zeigen, dass für alle natürlichen Zahlen $n \geq 4$ die Ungleichung $n! \geq 2^n$ gilt. Damit haben wir für $n \geq 4$:

$$\sqrt[n]{\frac{1}{n!}} \le \frac{1}{2} \quad \Leftrightarrow \quad \frac{1}{n!} \le \left(\frac{1}{2}\right)^n \quad \Leftrightarrow \quad n! \ge 2^n.$$

3.4 Potenz-Reihen

Es bezeichne x eine Variable und $(a_n)_{n\in\mathbb{N}}$ sei eine Folge von Zahlen. Dann bezeichnen wir den Ausdruck

$$\sum_{n=0}^{\infty} a_n \cdot x^n$$

als formale Potenz-Reihe. Wichtig ist hier, dass x keine feste Zahl ist, sondern eine Variable, für die wir später reelle (oder auch komplexe) Zahlen einsetzen. Wenn wir in einer Potenz-Reihe für x eine feste Zahl einsetzen, wird aus der Potenz-Reihe eine gewöhnliche Reihe. Der Begriff der Potenz-Reihen kann als eine Verallgemeinerung des Begriffs des Polynoms aufgefaßt werden.

Beispiele:

- 1. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ ist eine formale Potenz-Reihe. Wir haben oben mit Hilfe des Quotienten-Kriteriums gezeigt, dass diese Reihe für beliebige reelle Zahlen konvergiert.
- 2. $\sum_{n=1}^{\infty} \frac{x^n}{n}$ ist eine formale Potenz-Reihe. Setzen wir für x den Wert 1 ein, so erhalten wir die divergente harmonische Reihe. Für x=-1 erhalten wir eine alternierende Reihe, die nach dem Leibniz-Kriterium konvergent ist.

In der Theorie der Potenz-Reihen ist die Frage entscheidend, welche Zahlen wir für die Variable x einsetzen können, so dass die Reihe konvergiert. Diese Frage wird durch die folgenden Sätze beantwortet.

Satz 34 Wenn die Potenz-Reihe

$$\sum_{n=0}^{\infty} a_n \cdot x^n$$

für einen Wert $u \in \mathbb{C}$ konvergiert, dann konvergiert die Reihe auch für alle $v \in \mathbb{C}$, für die |v| < |u| ist.

Beweis: Da die Reihe $\sum_{n=0}^{\infty} a_n \cdot u^n$ konvergiert, folgt aus dem Korollar zum Cauchy'schen Konvergenz-Kriterium, dass die Folge $(a_n \cdot u^n)_{n \in \mathbb{N}}$ eine Null-Folge ist. Also gibt es eine Zahl K, so dass für alle $n \geq K$ die Ungleichung

$$|a_n \cdot u^n| \le 1$$

gilt. Wir definieren

$$q := \left| \frac{v}{u} \right|.$$

Aus |v| < |u| folgt q < 1. Dann haben wir für alle $n \ge K$ die folgende Abschätzung:

$$|a_n \cdot v^n| = |a_n \cdot u^n| \cdot \left| \frac{v^n}{u^n} \right| = |a_n \cdot u^n| \cdot q^n \le q^n.$$

Diese Abschätzung zeigt, dass die geometrische Reihe eine konvergente Majorante der Reihe $a_n \cdot v^n$ ist. Damit folgt die Konvergenz der Reihe $\sum_{n=0}^{\infty} a_n \cdot v^n$ aus dem Majoranten-Kriterium.

Satz 35 Wenn die Potenz-Reihe $\sum_{n=0}^{\infty}a_n\cdot x^n$ für einen Wert $u\in\mathbb{C}$ divergiert, dann divergiert die Reihe auch für alle $v\in\mathbb{C}$, für die |u|<|v| ist.

Beweis: Würde die Reihe $\sum_{n=0}^{\infty} a_n \cdot v^n$ konvergieren, dann müßte nach Satz 34 auch die Reihe $\sum_{n=0}^{\infty} a_n \cdot u^n$ konvergieren.

Die letzten beiden Sätze ermöglichen es nun, den Begriff Konvergenz-Radius zu definieren. Es sei

$$\sum_{n=0}^{\infty} a_n \cdot x^n$$

eine formale Potenz-Reihe. Wenn diese Reihe für alle $x \in \mathbb{C}$ konvergiert, dann sagen wir, dass der Konvergenz-Radius den Wert ∞ hat. Andernfalls definieren wir den Konvergenz-Radius als

$$R := \sup \left\{ |u| \mid u \in \mathbb{C} \land \sum_{n=0}^{\infty} a_n \cdot u^n \text{ konvergient} \right\}.$$

Aus den letzten beiden Sätzen folgt dann:

- 1. $\forall z \in \mathbb{C} : |z| < R \to \sum_{n=0}^{\infty} a_n \cdot z^n$ konvergiert.
- 2. $\forall z \in \mathbb{C} : |z| > R \to \sum_{n=0}^{\infty} a_n \cdot z^n$ divergiert.

In der Gauß'schen Zahlen-Ebene ist die Menge $\{z \in \mathbb{C} \mid |z| < R\}$ das Innere eines Kreises mit dem Radius R um den Nullpunkt. Der folgende Satz gibt uns eine effektive Möglichkeit, den Konvergenz-Radius zu berechnen.

Satz 36 Es sei

$$\sum_{n=0}^{\infty} a_n \cdot z^n$$

eine formale Potenz-Reihe und die Folge

$$\left(\frac{|a_n|}{|a_{n+1}|}\right)_{n\in\mathbb{N}}$$

konvergiere. Dann ist der Konvergenz-Radius R durch folgende Formel gegeben:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

Beweis: Es sei $u \in \mathbb{C}$ mit |u| < R. In diesem Fall müssen wir zeigen, dass die Reihe

$$\sum_{n=0}^{\infty} a_n \cdot u^n$$

konvergiert. Wir werden diesen Nachweis mit Hilfe Quotienten-Kriteriums erbringen. Wir setzen $q:=\frac{|u|}{R}<1$ und zeigen, dass für alle hinreichend großen n die Ungleichung

$$\frac{|a_{n+1} \cdot u^{n+1}|}{|a_n \cdot u^n|} \le q$$

erfüllt ist. Aus

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

folgt, dass es für beliebige $\varepsilon > 0$ eine Zahl K gibt, so dass für alle $n \geq K$ die Ungleichung

$$\left| \left| \frac{a_n}{a_{n+1}} \right| - R \right| < \varepsilon$$

gilt. Wir setzen $\varepsilon := \frac{1}{2}(R - |u|)$. Wir zeigen, dass dann für alle $n \ge K$ die Ungleichung $\left| \frac{a_n}{a_{n+1}} \right| > \frac{1}{2}(R + |u|)$ gilt:

$$\left| \left| \frac{a_n}{a_{n+1}} \right| + \left(R - \left| \frac{a_n}{a_{n+1}} \right| \right) \right| = |R| = R$$

$$\Rightarrow \left| \frac{a_n}{a_{n+1}} \right| + \left| \left(R - \left| \frac{a_n}{a_{n+1}} \right| \right) \right| \ge R$$

$$\Rightarrow \left| \frac{a_n}{a_{n+1}} \right| + \varepsilon > R$$

$$\Rightarrow \left| \frac{a_n}{a_{n+1}} \right| + \frac{1}{2} (R - |u|) > R$$

$$\Rightarrow \left| \frac{a_n}{a_{n+1}} \right| > R - \frac{1}{2} (R - |u|)$$

$$\Rightarrow \left| \frac{a_n}{a_{n+1}} \right| > \frac{1}{2} (R + |u|).$$

Jetzt können wir zeigen, dass die Reihe $\sum_{n=0}^{\infty} a_n \cdot u^n$ das Quotienten-Kriterium erfüllt, denn für alle $n \geq K$ gilt:

$$\left| \frac{a_{n+1} \cdot u^{n+1}}{a_n \cdot u^n} \right| = \left| \frac{a_{n+1}}{a_n} \right| \cdot |u| = \frac{|u|}{\left| \frac{a_n}{a_{n+1}} \right|} < \frac{|u|}{\frac{1}{2} (R + |u|)} < \frac{|u|}{\frac{1}{2} (R + R)} = \frac{|u|}{R} = q$$

Um den Beweis abzuschließen müssen wir noch zeigen, die Reihe $\sum_{n=0}^{\infty} a_n \cdot u^n$ divergiert wenn R < |u| ist. Dies folgt aus der Tatsache, dass die Folge $\left(a_n \cdot u^n\right)_{n \in \mathbb{N}}$ für |u| > R keine Null-Folge ist. Die Details bleiben dem Leser überlassen.

Bemerkung: Der obige Satz bleibt auch richtig, wenn

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \infty$$

ist, denn dann ist die Potenz-Reihe $\sum_{n=0}^{\infty} a_n \cdot x^n$ für alle $u \in \mathbb{C}$ konvergent.

Beispiel: Die Potenz-Reihe $\sum_{n=1}^{\infty} \frac{x^n}{n}$ hat den Konvergenz-Radius R=1, denn es gilt

$$\lim_{n\to\infty}\left|\frac{\frac{1}{n}}{\frac{1}{n+1}}\right|=\lim_{n\to\infty}\frac{n+1}{n}=1+\lim_{n\to\infty}\frac{1}{n}=1+0=1.$$

Satz 37 (Hadamard) Es sei $\sum_{n=0}^{\infty} a_n \cdot x^n$ eine Potenz-Reihe und die Folge $\left(\sqrt[n]{|a_n|}\right)_{n\in\mathbb{N}}$ konvergiere. Dann gilt

$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

Bemerkung: Setzen wir $\frac{1}{\infty} = 0$, so bleibt die Formel

$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

auch in dem Fall $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 0$ richtig, denn dann gilt $R = \infty$.

Beispiel: Die Potenz-Reihe $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$ hat den Konvergenz-Radius $R=\infty$, denn es gilt

$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Literaturverzeichnis

- [1] Forster, Otto: Analysis I, Differential- und Integralrechnung einer Veränderlichen. Vieweg & Teubner, 11te Auflage, 2011.
- [2] Grauert, Hans und Ingo Lieb: Differential- und Integralrechnung I. Springer, 1967.
- [3] Heuser, Harro: Lehrbuch der Analysis, Teil 1. Teubner Verlag, 15te Auflage, 2003.
- [4] Heuser, Harro: Lehrbuch der Analysis, Teil 2. Teubner Verlag, 14te Auflage, 2008.
- [5] Courant, Richard: Differential and Integral Calculus, volume 1. Blackie & Son Limited, 2nd edition, 1937.
- [6] Landau, Edmund: Grundlagen der Analysis. Akademische Verlagsgesellschaft, 1930. http://www.scribd.com/doc/2452802/Landau-Edmund-Grundlagen-der-Analysis.
- [7] Rudin, Walter: *Principles of Mathematical Analysis*. McGraw-Hill International, 3rd edition, 1976.
- [8] Dedekind, Richard: Stetigkeit und irrationale Zahlen. Friedrich Vieweg und Sohn, 1872.
- [9] Dowell, M. and P. Jarrat: A modified regula falsi method for computing the root of an equation. BIT Numerical Mathematics, 11(2):168–174, 1971.
- [10] Rosenlicht, Maxwell: *Integration in finite terms*. The American Mathematical Monthly, 79(9):963–972, November 1972.
- [11] Goldberg, David: What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1):5-48, 1991. Available from http://www.validlab.com/goldberg/paper.ps.