2/10/2016 Coursera

Feedback — How Do We Find Disease-Causing Mutations? (Weeks 2-3)

Help Center

You submitted this quiz on **Tue 9 Feb 2016 10:15 PM PST**. You got a score of **10.00** out of **10.00**.

Question 1

Give the suffix array of "ananas\$". Return your answer as a list of integers separated by spaces (e.g., 0 1 2 3 4).

You entered:

6024135

Your Answer		Score	Explanation
6024135	~	2.00	
Total		2.00 / 2.00	

Question 2

True or False: A key feature of the Burrows-Wheeler Transform is that it transforms repeats into runs.

Your Answer		Score	Explanation
True	~	1.00	
O False			
Total		1.00 / 1.00	

Question 3

2/10/2016 Coursera

Find the Burrows-Wheeler transform of Text = GATTGCTTTT\$.

You entered:

TGG\$TTTTATC

Your Answer

Score

Explanation

TGG\$TTTTATC

✓ 2.00

Total

2.00 / 2.00

Question 4

If BWT(Text) = TTCCATTGGA\$, what is Text? (Don't forget to add the "\$" to the end of Text...)

You entered:

TGTACCATGT\$

Your Answer		Score	Explanation
TGTACCATGT\$	~	2.00	
Total		2.00 / 2.00	

Question 5

Which of the following structures did we use in this chapter to decrease memory when solving the Multiple Pattern Matching Problem with the Burrows-Wheeler transform? (Select all that apply.)

✓ checkpoint arrays✓ 0.25✓ partial suffix arrays✓ 0.25	
✓ partial suffix arrays ✓ 0.25	
■ skew diagrams ✓ 0.25	
□ breakpoint graphs ✓ 0.25	

2/10/2016 Coursera

Total 1.00 / 1.00

Question 6

Say that you know that two strings of length 363 match with at most 5 mismatches, but you don't know what the strings are. What is the largest value of k such that we can guarantee that the two strings share a k-mer?

You entered:

Your Answer		Score	Explanation
60	~	2.00	
Total		2.00 / 2.00	