Introduction to the Minimal Model Program and Singularities

Li4

September 16, 2024

1 Introduction, 9/4

Let X be an algebraic variety. We want to find a "good" representative in its birational class

$$\{X' \mid X \dashrightarrow X'\}_{\text{isom.}}$$

where $X \dashrightarrow X'$ means that there are Zariski open subsets $U \subseteq X$, $U' \subseteq X'$ such that U is isomorphic to U'.

Recall. (MMP in dimension 2) We start from a smooth projective surface S. If there does not exist a -1 curve in S, then we end the process. If there is a -1 curve $E \subseteq S$, then we can contract E to a point and get a new smooth projective surface T. We then replace S by T and do this process until it ends.

Here, we need a theorem so called Castelnuovo's contraction theorem, it provides us the smoothness of T. Its higher dimensional analog is called the basepoint-free theorem.

The higher dimensional analog of -1 curve is the nefness of K_X , or we say, the Cone theorem.

Theorem 1.1 (Castelnuovo). Let X be a d-dimensional smooth projective variety over an algebraic closed field \mathbf{k} , and let E be a divisor in X which is isomorphic to \mathbb{P}^{d-1} with $N_{E/X} \cong \mathcal{O}_X(E)|_E \cong \mathcal{O}_{\mathbb{P}^{d-1}}(-1)$. Then there exists a smooth projective variety Y and a point $P \in Y$ such that $X \cong \operatorname{Bl}_P Y$ and E is the exceptional divisor under this isomorphism.

Proof. Choose a very ample divisor H on X such that $H^1(X, \mathcal{O}_X(H)) = 0$. Since E is isomorphic to \mathbb{P}^{d-1} , there exists $a \in \mathbb{N}$ such that $\mathcal{O}_X(H)|_E \cong \mathcal{O}_{\mathbb{P}^{d-1}}(a)$.

First, we show that |H+aE| is basepoint-free. Since H is very ample, $|H+aE| \supseteq |H|$, so |H+aE| separates points away E. So it suffices to show that |H+aE| has no base points on E.

Fact. For $0 \le i \le a+1$, $H^1(X, \mathcal{O}_X(H+iE)) = 0$ by induction on i.

This shows that $H^0(X, \mathcal{O}_X(H + aE)) \to H^0(E, \mathcal{O}_X(H + aE)|_E)$ is surjective. By our assumption, $\mathcal{O}_X(H + aE)|_E \cong \mathcal{O}_{P^{d-1}}(a - a) = \mathcal{O}_{\mathbb{P}^{d-1}}$. Take $s \in H^0(X, \mathcal{O}_X(H + aE))$ that maps to $1 \in H^0(E, \mathcal{O}_E)$. Let $D = (s)_0$. Then $\operatorname{Supp}(D) \cap \operatorname{Supp}(E) = \emptyset$, i.e., there exists $D \in |H + aE|$ such that $q \notin \operatorname{Supp}(D)$ for all $q \in E$.

Hence, we get a morphism $\varphi = |H + aE| \colon X \to \mathbb{P}^N$ with $\varphi^* \mathcal{O}_{\mathbb{P}^N}(1) = \mathcal{O}(H + aE)$. Since $\mathcal{O}_X(H + aE)|_E \cong \mathcal{O}_E$, $\varphi(E)$ is a point $p_1 \in Y_1 := \varphi(X)$.

Since |H+aE| also separates tangent vectors on $X \setminus E$, we see that $\varphi \colon X \setminus E \cong Y_1 \setminus \{p_1\}$. Applying Stein factorization, we get

$$X \xrightarrow{\pi} Y \xrightarrow{\text{fin.}} Y_1$$

with π having connected fibers and $\pi_*\mathcal{O}_X = \mathcal{O}_Y$. Since E is irreducible, $\pi(E) = \{p\}$ and thus

$$X \setminus E \cong Y \setminus \{p\} \cong Y_1 \setminus \{p_1\}.$$

Now, we show that Y is smooth at p, i.e., $\mathcal{O}_{Y,p}$ is a regular local ring. This is equivalent to $\widehat{\mathcal{O}}_{Y,p}$ being local. Consider the diagram

$$E_n \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$\operatorname{Spec} \mathcal{O}_{Y,P}/\mathfrak{m}_P^n \longrightarrow Y.$$

By the theorem on formal functions,

$$\widehat{\mathcal{O}}_{Y,p} = \widehat{(\pi_* \mathcal{O}_X)}_p \cong \varprojlim_n \mathrm{H}^0(E_n, \mathcal{O}_{E_n}).$$

As a topological space, $E_n = E$ and $\mathcal{O}_{E_n} = \mathcal{O}_X/\mathfrak{m}_p^n \mathcal{O}_X$. Since $\pi^{-1}(p) = E$, $\mathfrak{m}_P \mathcal{O}_X \subseteq \mathscr{I}_E$ and using $\operatorname{Supp}(\mathcal{O}_X/\mathfrak{m}_P^n \mathcal{O}_X) = E$, $\mathscr{I}_E^m \subseteq \mathfrak{m}_P \mathcal{O}_X$ for some m. So the sequences

 $(\mathcal{O}_X/\mathfrak{m}_P^n\mathcal{O}_X)$ and $(\mathcal{O}_X/\mathscr{I}_E^n)$ are cofinal. Hence,

$$\varprojlim_n H^0(E_n, \mathcal{O}_{E_n}) \cong \varprojlim_n H^0(E, \mathcal{O}_X/\mathscr{I}_E^n).$$

Claim. We have

$$\mathrm{H}^0(E,\mathcal{O}_X/\mathscr{I}_E^n) \cong \mathbf{k}[[x_0,\ldots,x_{d-1}]]/\langle x_0,\ldots,x_{d-1}\rangle^n =: A_n$$

for each n (and hence $\widehat{O}_{Y,p} \cong \mathbf{k}[[x_0,\ldots,x_{d-1}]]$ is regular).

Proof of Claim. Consider the exact sequence

$$0 \longrightarrow \mathscr{I}_E^n/\mathscr{I}_E^{n+1} \longrightarrow \mathcal{O}_{E_{n+1}} \longrightarrow \mathcal{O}_{E_n} \longrightarrow 0.$$

Since $\mathscr{I}_E^n/\mathscr{I}_E^{n+1} \cong \operatorname{Sym}^n(\mathscr{I}_E/\mathscr{I}_E^2) \cong \mathcal{O}_{\mathbb{P}^{d-1}}(n)$ (by $\mathscr{I}_E/\mathscr{I}_E^2 = N_{E/X}^{\vee} \cong \mathcal{O}_{P^{d-1}}(1)$), we get the long exact sequence

$$0 \longrightarrow \mathrm{H}^0(\mathcal{O}_{\mathbb{P}^{d-1}}(n)) \longrightarrow \mathrm{H}^0(\mathcal{O}_{E_{n+1}}) \longrightarrow \mathrm{H}^0(\mathcal{O}_{E_n}) \longrightarrow H^1(\mathcal{O}_{\mathbb{P}^{d-1}}(n)) = 0.$$

For n = 1, $H^0(\mathcal{O}_E) = \mathbf{k} = A_1$ and $H^0(\mathcal{O}_{\mathbb{P}^{d-1}}(1)) = \langle x_0, \dots, x_{d-1} \rangle_{\mathbf{k}}$. So $H^0(\mathcal{O}_{E_2}) \cong A_2$. We prove the statement by induction on n. Suppose $H^0(\mathcal{O}_{E_n}) = A_n$. Lifting x_0, \dots, x_{d-1} to $H^0(\mathcal{O}_{E_{n+1}})$ and using $H^0(\mathcal{O}_{\mathbb{P}^{d-1}}) = \langle x_0^{i_0} \cdots x_{d-1}^{i_{d-1}} \mid i_0 + \cdots + i_{d-1} = n \rangle_{\mathbf{k}}$, we get $H^0(\mathcal{O}_{E_{n+1}}) = A_{n+1}$.

Finally, we show that $X \cong \operatorname{Bl}_P Y$. We already have $\mathfrak{m}_P \mathcal{O}_X \subseteq \mathscr{I}_{\mathscr{E}}$. Since the images of x_0, \ldots, x_{d-1} generate $\mathscr{I}_E/\mathscr{I}_E^2 \cong \mathcal{O}_{\mathbb{P}^{d-1}}(1), x_0, \ldots, x_{d-1}$ generate \mathscr{I}_E , so $\mathfrak{m}_P \mathcal{O}_X = \mathscr{I}_E = \mathcal{O}_X(-E)$ is invertible.

By universal property of blow-up, we get the diagram

$$X \xrightarrow{\rho} \operatorname{Bl}_{P} Y = Y'$$

$$\downarrow$$

$$Y.$$

Let

$$\operatorname{Exc}(\rho) := \{ x \in X \mid \rho^{-1} \text{ is not a morphism at } \rho(x) \}.$$

Fact. Let $\rho: X \to Y'$ be a birational map with $\operatorname{Exc}(\rho) \neq \emptyset$, X normal and Y' being \mathbb{Q} -factorial. Then $\operatorname{Exc}(\rho)$ is of pure codimension 1 in X and $\rho(\operatorname{Exc}(\rho))$ has codimension ≥ 2 .

In our case, $X \setminus E \cong Y \setminus \{p\} \cong Y' \setminus E'$, so $\rho(E) = E'$, which has codimension 1. The fact then shows that $\text{Exc}(\rho) = \emptyset$.

The category we work in the MMP.

- Objects: normal varieties, X, Y, \dots
- Morphisms: $X \xrightarrow{\pi} Y$ with connected fibers, or $\pi_* \mathcal{O}_X = \mathcal{O}_Y$ (contraction morphism)

Remark. • The MMP (or Mori's theory) does not say much about finite morphisms.

- For any morphism $\varphi \colon X \to Y$ we can always take its Stein factorization $X \xrightarrow{\pi} Y' = \operatorname{Spec} \varphi_* \mathcal{O}_X \xrightarrow{g} Y$ where π has connected fibers and g is finite.
- In characteristic 0, if the fivers of φ are connected, Y' normal, then g is an isomorphism. (In positive characteristic, think of the Frobenius morphism.)
- In Mori's theory, we focus on curves (not divisors). The curves contracted by φ is same as the curves contracted by π .

Definition 1.2. Let X be a proper variety. Denote by CDiv(X) the group of Cartier divisors of X,

$$Z_1(X) := \{C = \sum a_i C_i \mid a_i \in \mathbb{Z}, C_i \text{ is an integral curve}\}$$

the group of 1-cycles. We say C is an effective 1-cycle if $a_i \geq 0$.

We say two Cartier divisors D and D' are numerically equivalent, denoted by $D \equiv D'$, if $C \cdot D = C \cdot D'$ for each $C \in Z_1(X)$. We say two 1-cycles C and C' are numerically equivalent, denoted by $C \equiv C'$, if $C \cdot D = C' \cdot D$ for each $D \in \mathrm{CDiv}(X)$.

We denote

$$N^1(X)_R = (\operatorname{CDiv}(X) \otimes_{\mathbb{Z}} R) / \equiv,$$

 $N_1(X)_R = (Z_1(X) \otimes_{\mathbb{Z}} R) / \equiv$

for $R = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} . $N^1(X)$ is sometimes denoted by NS(X), called the Néron-Severi group, and its rank $\rho(X) = \dim_{\mathbb{R}} N^1(X)_{\mathbb{R}}$ is finite (when X is smooth over \mathbb{C} , by Lefschetz theorem).

The pairing

$$N^1(X)_R \otimes N_1(X)_R \longrightarrow R$$

is nondegenerate. The groups N^1 and N_1 are functorial: if $\pi: X \to Y$ is a proper morphism with Y proper, then there are maps $\pi^*: N^1(Y)_{\mathbb{Z}} \to N^1(X)_{\mathbb{Z}}$ and $\pi_*: N_1(X)_{\mathbb{Z}} \to N_1(X)_{\mathbb{Z}}$. These maps are related to the pairing by the projection formula

$$\pi^*D \cdot C = D \cdot \pi_*C.$$

Definition 1.3 (Mori cone). For $R = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, let

$$NE(X)_R = \{\sum a_i[C_i] \mid a_i \in R_{\geq 0}, C_i \text{ is an integral curve}\}.$$

Let $\overline{\mathrm{NE}}(X)$ be the closure of $\mathrm{NE}(X)_{\mathbb{R}}$ in $N_1(X)_{\mathbb{R}}$.

Definition 1.4. Let V be an \mathbb{R} -vector space and let K be a cone in V, i.e., $r \cdot K \subseteq K$ for any $r \in \mathbb{R}_{\geq 0}$. A subcone $F \subseteq K$ is called extremal if for any $u, v \in K$ with $u + v \in F$, we have $u, v \in F$. F is called an extremal ray of K if dim F = 1.

Fact. Let X, Y, Y' be projective varieties, $\pi: X \to Y$ be a morphism. Then

- (a) $NE(\pi) = NE(X/Y) := \ker \pi_* \cap NE(X)$ is an extremal face of NE(X).
- (b) Assume π is a contraction morphism and let $\pi': X \to Y'$ be another morphism. If $NE(\pi) \subseteq NE(\pi')$, then there exists a unique morphism $Y \to Y'$ satisfies the diagram

$$X \xrightarrow{\pi'} Y \xrightarrow{\pi'} Y'.$$

Theorem 1.5 (Kleiman's ampleness criterion). Let X be a projective variety and D be a Cartier divisor on X. Then D is ample if and only if

$$D_{>0} = \{ x \in N_1(X)_{\mathbb{R}} \mid D \cdot x > 0 \} \supseteq \overline{\mathrm{NE}}(X) \setminus \{0\}.$$

2 Ampleness criterion, 9/7

In the following, a scheme always mean a separated scheme of finite type over a field \mathbf{k} .

Theorem 2.1 (Nakai–Moishezon criterion). Let X be a projective scheme, D a Cartier divisor on X. Then D is ample if and only if $D^{\dim Y} \cdot Y > 0$ for every positive dimension closed subvariety $Y \subseteq X$.

Remark. The same result holds when X is proper and D is a \mathbb{Q} -Cartier divisor.

Definition 2.2. Let X be a proper scheme. A Cartier divisor D of X is **nef** (=numerically effective) if $D^{\dim Y} \cdot Y \geq 0$ for every subvariety $Y \subseteq X$.

Remark. If $D_1 \equiv D_2$, then D_1 is ample if and only if D_2 is ample; D_1 is nef if and only if D_2 is nef.

Lemma 2.3. Let X be a projective scheme of dimension n, H an ample Cartier divisor and D a Cartier divisor. Fix an integer $0 \le r \le n$. If $D^r \cdot Y \ge 0$ for every subvariety $Y \subseteq X$ of dimension r, then $D^r \cdot H^{n-r} \ge 0$.

Proof. We proceed by induction on dim X = n. Without loss of generality, we may assume that X is integral and 0 < r < n.

Since mH is very ample for some $m \gg 1$, there exists an effective divisor $Y \in |mH|$. Then

$$D^r \cdot H^{n-r} = \frac{1}{m} D^r \cdot H^{n-1-r} \cdot (mH) = \frac{1}{m} D^r \cdot H^{n-1-r} \cdot Y = \frac{1}{m} (D|_Y)^r \cdot (H|_Y)^{n-1-r},$$

which is nonnegative by induction.

Now, for H ample Cartier, D nef, and every subvariety $Y\subseteq X$ of dimension r, we have

$$(H+D)^r \cdot Y = H^r \cdot Y + \sum_{s=1}^r \binom{r}{s} D^s \cdot H^{r-s} \cdot Y$$
$$= (H|_Y)^r + \sum_{s=1}^r \binom{r}{s} (D|_Y)^s \cdot (H|_Y)^{r-s} \ge (H|_Y)^r > 0.$$

So H + D is ample by (2.1).

We define the (open) ample cone

$$Amp(X) = \{ D \in N^1(X)_{\mathbb{Q}} \mid D \text{ is ample} \}$$

and the nef cone

$$\operatorname{Nef}(X) = \{ D \in N^1(X)_{\mathbb{Q}} \mid D \text{ is nef} \}.$$

Corollary 2.4. The nef cone is the closure of the ample cone, the ample cone is the interior of the nef cone.

Proof. It is clear that $\overline{\mathrm{Amp}(X)} \subseteq \mathrm{Nef}(X)$ and $\mathrm{Amp}(X) \subseteq \mathrm{Nef}(X)^{\circ}$.

Fix an ample divisor H. For each $D \in \operatorname{Nef}(X)$, $D + \varepsilon H$ is ample for all $\varepsilon > 0$, so D lies in $\overline{\operatorname{Amp}(X)}$. For each $D \in \operatorname{Nef}(X)^{\circ}$, $D - \varepsilon H$ is still nef for some $\varepsilon > 0$, so $D = (D - \varepsilon H) + \varepsilon H \in \operatorname{Amp}(X)$.

Theorem 2.5 (Kleiman). Let X be a proper scheme. A Cartier divisor D is nef if and only if $D \cdot C \geq 0$ for every irreducible curve $C \subseteq X$.

Proof. The only if part is just the definition of nef. For the if part, we may assume that X is integral and projective by Chow's lemma: there exists a surjective birational morphism $\pi \colon X' \to X$ with X' projective.

We proceed by induction on $n = \dim X$. The statement is clearly true for n = 1. If $Y \subsetneq X$, then $D^{\dim Y} \cdot Y \geq 0$ by induction hypothesis, so it remains to prove $D^n \geq 0$ by (2.1).

Fix a very ample Cartier divisor H. Set $D_t = D + tH$. Consider the degree n polynomial

$$P(t) = D_t^n = D^n + \sum_{i=1}^{n-1} \binom{n}{i} (D^{n-i} \cdot H^i) t^i + H^n t^n.$$

Assume that $P(0) = D^n < 0$. Then it follows from $H^n > 0$ that there exists a largest $t_0 \in (0, \infty)$ such that $P(t_0) = 0$ and P(t) > 0 for $t > t_0$.

For $t \in (t_0, \infty) \cap \mathbb{Q}$, we see that D_t is ample: for every subvariety $Y \subseteq X$ of dimension r with 0 < r < n, $D|_Y$ is nef by induction, so

$$D_t^r \cdot Y = \sum_{s=1}^r \binom{r}{s} (D^s \cdot H^{r-s} \cdot Y) t^{r-s} + (H^r \cdot Y) t^r$$
$$= \sum_{s=1}^r \binom{r}{s} ((D|_Y)^s \cdot (H|_Y)^{r-s}) t^{r-s} + (H^r \cdot Y) t^r > 0$$

for t > 0. Also, $D_t^n = P(t) > 0$, so D_t is ample for all rational $t > t_0$.

Note that

$$P(t) = D_t^n = D_t^{n-1} \cdot (D + tH) = D_t^{n-1} \cdot D + t(D_t^{n-1} \cdot H) =: Q(t) + R(t).$$

Since $D \cdot C \geq 0$ for all irreducible curve C, D_t is ample for rational $t > t_0$, $Q(t) = D \cdot D_t^{n-1} \geq 0$ for all rational $t > t_0$, and hence $D \cdot D_{t_0}^{n-1} \geq 0$. Also,

$$R(t) = t(D+tH)^{n-1} \cdot H = t(D|_H + tH|_H)^{n-1} > 0$$

for t > 0 ($D|_H$ is nef and $H|_H$ is ample). So

$$0 = P(t_0) = Q(t_0) + R(t_0) \ge R(t_0) > 0,$$

a contradiction. So $D^n \geq 0$.

Theorem 2.6 (Kleiman's Ampleness criterion). Let X be a projective variety, D a Cartier divisor. Then D is ample if and only if

$$D_{>0} := \{ x \in N_1(X)_{\mathbb{R}} \mid D \cdot x > 0 \} \supseteq \overline{NE}(X) \setminus \{0\}.$$

Remark. If a divisor D satisfies

$$D_{>0} \supseteq NE(X) \setminus \{0\},\$$

we say that D is strictly nef.

Proof. Suppose that D is ample. Clearly, $D \cdot z \ge 0$ for each $z \in \overline{NE}(X)$. Assume that $D \cdot z = 0$ for some $z \in \overline{NE}(X) \setminus \{0\}$. Since the intersection pairing is nondegenerate, there exists a divisor such that $E \cdot z < 0$. Then

$$(D+tE)\cdot z=t(E\cdot z)<0$$

for all t > 0. So D + tE can not be ample for all t > 0, this contradicts the fact that D is ample.

For the if part, choose a norm $\|-\|$ on $N_1(X)_{\mathbb{R}}$ and an ample divisor H. Define

$$K = \{ z \in \overline{NE}(X) \mid ||z|| = 1 \},$$

which is a compact. The linear functional $z \mapsto D \cdot z$ is positive on K by our assumption. The linear functional $z \mapsto H \cdot z$ is bounded from above on K. So there exists $a, b \in \mathbb{Q}_{>0}$ such that $D \cdot z \geq a$ and $H \cdot z \leq b$ for all $z \in K$.

Now, for each $z \in \overline{NE}(X) \setminus \{0\}$,

$$(D - \frac{a}{b}H) \cdot \frac{z}{\|z\|} \ge a - \frac{a}{b} \cdot b = 0,$$

so $D - \frac{a}{b}H$ is nef, and thus $D = (D - \frac{a}{b}H) + \frac{a}{b}H$ is ample.

Proof of (2.1). If D is ample, then mD is very ample for $m \gg 1$. This gives us an embedding $f = |mD|: X \hookrightarrow \mathbb{P}^N$ such that $f^*\mathcal{O}_{\mathbb{P}^N}(1) = \mathcal{O}(mD)$. Then

$$(mD)^{\dim Y} \cdot Y = (mD|_Y)^{\dim Y} = \deg_{\mathbb{P}^N} f(Y) > 0.$$

Conversely, we may assume that X is integral. We show by induction on dim X that D is ample. If dim X = 1, then this is clearly true.

Claim. For $m \gg 1$,

 $H^0(mD) > 0.$

Proof of Claim. Since X is projective, we can write $D \sim A - B$ with A, B very ample. Then there are exact sequences

$$0 \longrightarrow \mathcal{O}_X(mD - B) \longrightarrow \mathcal{O}_X((m+1)D) \longrightarrow \mathcal{O}_A((m+1)D) \longrightarrow 0,$$

$$0 \longrightarrow \mathcal{O}_X(mD - B) \longrightarrow \mathcal{O}_X(mD) \longrightarrow \mathcal{O}_B(mD) \longrightarrow 0.$$

By induction, $(m+1)D|_A$ and $mD|_B$ are ample, so h^i of these line bundles are 0 for i > 0 and $m \gg 1$. Hence, for $i \geq 2$, $m \gg 1$,

$$h^{i}(mD) = h^{i}(mD - B) = h^{i}((m+1)D),$$

i.e., $h^i(mD)$ is a constant for $m \gg 1$. Then

$$\chi(mD) = H^0(mD) - h^1(mD) + \text{const.}$$

for $m \gg 1$. On the other hand, by Riemann–Roch we have

$$\chi(mD) = \frac{D^n}{n!} m^n + O(m^{n-1}).$$

So

$$H^{0}(mD) > \frac{D^{n}}{n!} m^{n} + O(m^{n-1}) - O(1) = \frac{D^{n}}{n!} m^{n} + O(m^{n-1}) > 0$$

for $m \gg 1$.

Since D is ample if and only if mD is ample, we may replace D by mD. The claim tells us that we may assume D is effective.

Since

$$\operatorname{Bs}|mD| = \bigcap_{0 \le D' \sim mD} \operatorname{Supp} D' \subseteq \operatorname{Supp}(mD) = \operatorname{Supp} D,$$

 $\mathcal{O}_X(mD)$ is g.g. away from Supp D. To show |mD| has no base points on Supp D, consider

$$0 \longrightarrow \mathcal{O}_X((m-1)D) \longrightarrow \mathcal{O}_X(mD) \longrightarrow \mathcal{O}_D(mD) \longrightarrow 0.$$

We get the long exact sequence

$$H^0(mD) \longrightarrow H^0(mD|_D) \longrightarrow H^1((m-1)|_D) \longrightarrow H^1(mD|_D) \longrightarrow H^1(mD|_D),$$

where $H^1(mD|_D) = 0$ for $m \gg 1$ since $D|_D$ is ample by induction hypothesis. This shows that $h^1(mD)$ decreases with respect to m, and hence stable for $m \gg 1$. Then $H^0(mD) \to H^0(mD|_D)$ is surjective for $m \gg 1$. Since $mD|_D$ is g.g. for $m \gg 1$, |mD| has no base point on Supp D.

Now, for $m \gg 1$, we get a projective morphism

$$\varphi = |mD| \colon X \longrightarrow \mathbb{P}^N.$$

Since $D \cdot C > 0$ for any irreducible curve $C \subseteq X$, all fibers are finite set (φ) is quasi-finite. This implies φ is a finite morphism. So $\mathcal{O}_X(mD) = \varphi^* \mathcal{O}_{\mathbb{P}^n}(1)$ is ample.

Corollary 2.7. Let X be a projective variety, H an ample divisor. Then

- (1) $\overline{NE}(X)$ is a strongly convex cone, i.e., $z, -z \in \overline{NE}(X)$ implies z = 0;
- (2) for each $a \in \mathbb{R}_{>0}$, $W_a := \{z \in \overline{NE}(X) \mid H \cdot z \leq a\}$ is compact. In particular, $W_a \cap NE(X)_{\mathbb{Z}}$ is a finite set.

Proof. For (1), if $z, -z \in \overline{NE}(X) \setminus \{0\}$, then both $H \cdot z, H \cdot (-z)$ are positive, a contradiction.

For (2), fix a norm $\|-\|$ on $N_1(X)_{\mathbb{R}}$. Assume that W_a is not compact. Since W_a is closed, it is not bounded, i.e., there exists a sequence z_i in W_a such that $\|z_i\| \to \infty$. Since $(z_i/\|z_i\|)$ is a bounded sequence there is a convergent subsequence $z_{i_j}/\|z_{i_j}\| \to y \in \overline{NE}(X)$ with $\|y\| = 1$, but

$$H \cdot y = \lim_{j} \frac{H \cdot z_{i_{j}}}{\|z_{i_{j}}\|} \le \lim_{j} \frac{a}{\|z_{i_{j}}\|} = 0,$$

a contradiction.

3 A rough introduction to Hilbert schemes and schemes of morphisms, 9/11

Let S be a scheme. We say a functor

$$F: \mathsf{Sch}^{\mathrm{op}}_{/S} \longrightarrow \mathsf{Sets}$$

is **representable** if there exists a object $M \in \operatorname{Sch}_{/S}$ such that $\operatorname{Hom}_S(-, M) \xrightarrow{\sim} F(-)$. In particular, there exists $U \in F(M)$, the image of id_M under $\operatorname{Hom}_S(M, M) \xrightarrow{\sim} F(M)$, such that

$$\operatorname{Hom}_S(T,M) \xrightarrow{\sim} F(T)$$

$$f \longmapsto f^*U.$$

Remark. The morphism U is frequently called the universal element or universal family over M. Also, the pair (M, U) is unique up to isomorphisms.

Fact. Let S be a scheme over \mathbf{k} ,

$$F \colon \mathsf{Sch}^{\mathrm{op}}_{/S} \longrightarrow \mathsf{Sets}$$

be a representable functor, represented by $M \in \operatorname{Sch}_{/S}$, $x_0 \in M$. Assume that we have an **obstruction theory** "at the point x_0 ". Then knowing its tangent space t_0 and obstruction space Ob_0 , we have

$$\dim t_0 \ge \dim_{x_0} M \ge \dim t_0 - \dim \mathrm{Ob}_0.$$

Indeed, $\widehat{\mathcal{O}}_{M,x_0}$ can be represented by dim Ob₀ equations in $\widehat{\mathcal{O}}_{\mathbb{A}^{\dim t_0}}$.

Definition 3.1. Fix a closed subscheme (or a quasi-projective scheme over S) X of \mathbb{P}_S^r and a polynomial $P \in \mathbb{Q}[m]$. We define the Hilbert functor

$$\operatorname{Hilb}_{X/S}^{P} \colon \operatorname{\mathsf{Sch}}^{\operatorname{op}}_{/S} \longrightarrow \operatorname{\mathsf{Sets}}$$

as follows: we send an object $T \in Sch_{S}$ to

$$\left\{ \begin{array}{c} \text{closed subschemes } Y \in X \times_S T, \\ \text{proper and flat over } T \text{ with } \chi(\mathcal{O}_{Y_t}(m)) = P(m) \end{array} \right\}.$$

Theorem 3.2 (Grothendieck). If S is a Noetherian scheme and X is a (quasi-)projective S-scheme, then the Hilbert functor $\mathbf{Hilb}_{X/S}^P$ is representable by a (quasi-)projective S-scheme $\mathbf{Hilb}_{X/S}^P$ (called the Hilbert scheme), and a universal family

$$\operatorname{Univ}_{X/S}^{P} \longleftrightarrow X \times_{S} \operatorname{Hilb}_{X/S}^{P}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hilb}_{X/S}^{P}$$

We then define the Hilbert scheme of X to be

$$\operatorname{Hilb}_{X/S} = \bigsqcup_{P \in \mathbb{O}[m]} \operatorname{Hilb}_{X/S}^{P}.$$

Example 3.3. Consider $P(m) \equiv 1$. Then $\operatorname{Hilb}_{X/S}^P = X$ and the universal family is $\Delta \subseteq X \times X$.

Suppose that S is Spec \mathbf{k} and $X \subseteq \mathbb{P}_k^r$ is a hypersurface of degree d. Let $V = \mathrm{H}^0(\mathcal{O}_{\mathbb{P}^r}(d))$,

$$P(m) = {m+r \choose r} - {m+r-d \choose r} = \frac{d}{(r-1)!} m^{r-1} + \text{l.o.t.}.$$

Then $\operatorname{Hilb}_X^P = \mathbb{P}(V^{\vee})$ and the universal family is

$$\left(\sum_{i_0+\dots+i_r=d} c_{i_0\dots i_r} x_0^{i_0} \dots x_r^{i_r} = 0\right) \subseteq \mathbb{P}^r \times \mathbb{P}(V^\vee).$$

Fact. Let $S = \operatorname{Spec} \mathbf{k}$ with \mathbf{k} algebraically closed. Assume that $Z \hookrightarrow X$ us a regular embedding. Then the tangent space of Hilb_X at [Z] is $\operatorname{H}^0(N_{Z/X})$, and the obstruction of Hilb_X at [Z] is $\operatorname{H}^1(N_{Z/X})$. Hence, we get

$$h^0(N_{Z/X}) \ge \dim_{[Z]} \operatorname{Hilb}_X \ge h^0(N_{Z/X}) - h^1(N_{Z/X}).$$

Definition 3.4. Let X, Y be objects of Sch_{S} . Define the functor of morphisms from X to Y to be

$$\begin{aligned} \mathbf{Mor}_S(X,Y) \colon & \mathsf{Sch}^{\mathrm{op}}_{/S} & \longrightarrow & \mathsf{Sets} \\ & T & \longmapsto & \mathrm{Hom}_T(X \times_S T, Y \times_S T). \end{aligned}$$

Theorem 3.5 (FGA explained). Let S be a Noetherian scheme, X a projective scheme over S, Y a quasi-projective scheme over S (so that $X \times_S Y$ is quasi-projective over S). Assume moreover that X is flat over S. Then $\mathbf{Mor}_S(X,Y)$ is represent by an open subscheme $\mathrm{Mor}_S(X,Y)$ in $\mathrm{Hilb}_{X\times_S Y/S}$.

Sketch of proof. For each $T \in \mathsf{Sch}_{/S}$, denote $(-)_T = -\times_S T$. Consider $f \in \mathsf{Hom}_T(X_T, Y_T)$ and

We get a morphism $(\mathrm{id}_{X_T}, f) \colon X_T \to X_T \times_T Y_T = (X \times_S Y)_T$ and the graph $\Gamma_T(f) = \mathrm{Im}(\mathrm{id}_{X_T}, f)$.

Since $Y \to S$ is separated, $\Gamma_T(f)$ is closed in $X_T \times_T Y_T$, so X, and hence $\Gamma_T(f)$, are proper and flat over S. This gives us a well-defined set map

$$\Gamma_T \colon \operatorname{\mathbf{Mor}}_S(X,T)(T) \longrightarrow \operatorname{\mathbf{Hilb}}_{X \times_S Y/S}(T)$$

$$f \longmapsto \Gamma_T(f),$$

which is functorial in T, i.e., there is a natural transformation of functors

$$\Gamma \colon \mathbf{Mor}_{S}(X,T) \longrightarrow \mathbf{Hilb}_{X \times_{S} Y/S}.$$

If $G \subseteq X_T \times_T Y_T$ is a family of closed subschemes of $X \times_S Y$ which is proper and flat over T, then

$$\{t \in T \mid \pi_t \colon G_t \xrightarrow{\sim} (X_T)_t\}$$

is open, where π is the projection $G \to X_T$. Hence, there exists an open subscheme $\operatorname{Mor}_S(X,Y)$ of $\operatorname{Hilb}_{X\times_SY/S}$ that represents $\operatorname{Mor}_S(X,Y)$.

Fact. Let $S = \operatorname{Spec} \mathbf{k}$ with \mathbf{k} algebraically closed.

(\spadesuit) Let X a projective variety, Y a quasi-projective variety, $f: X \to Y$ be a morphism such that Y is smooth along f(X).

Then the tangent space of Mor(X, Y) at [f] is $H^0(f^*T_Y)$, and the obstruction space of Mor(X, Y) at [f] is $H^1(f^*T_Y)$. Hence,

$$h^0(f^*T_Y) \ge \dim_{[f]} Mor(X, Y) \ge h^0(f^*T_Y) - h^1(f^*T_Y).$$

Indeed, by the construction we have

$$\dim_{[f]} \operatorname{Mor}(X, Y) = \dim_{[\Gamma(f)]} \operatorname{Hilb}_{X \times Y} \ge h^{0}(N_{\Gamma(f)/X \times Y}) - h^{1}(N_{\Gamma(f)/X \times Y}),$$

and $N_{\Gamma(f)/X\times Y}\cong f^*T_Y$.

Fix a closed subscheme B of X and $g: B \to Y$. We want to study $f: X \to Y$ satisfying the assumption (\spadesuit) with $f|_B = g$. There is a restriction

$$Mor(X, Y) \longrightarrow Mor(B, Y)$$

with fiber Mor(X, Y; g) at [g]. Consider the short exact sequence

$$0 \longrightarrow \mathscr{I}_B \longrightarrow \mathscr{O}_X \longrightarrow \mathscr{O}_B \longrightarrow 0.$$

Tensoring it with f^*T_Y , we get

$$0 \longrightarrow f^*T_Y \otimes \mathscr{I}_R \longrightarrow f^*T_Y \longrightarrow q^*T_Y \longrightarrow 0,$$

and hence the long exact sequence

$$0 \longrightarrow H^{0}(f^{*}T_{Y} \otimes \mathscr{I}_{B}) \longrightarrow H^{0}(f^{*}T_{Y}) \longrightarrow H^{0}(g^{*}T_{Y})$$
$$\longrightarrow H^{1}(f^{*}T_{Y} \otimes \mathscr{I}_{B}) \longrightarrow H^{1}(f^{*}T_{Y}) \longrightarrow H^{1}(g^{*}T_{Y}).$$

Fact. We have

$$h^0(f^*T_Y \otimes \mathscr{I}_B) \ge \dim_{[f]} \operatorname{Mor}(X, Y; g) \ge h^0(f^*T_Y \otimes \mathscr{I}_B) - h^1(f^*T_Y \otimes \mathscr{I}_B).$$

This is proved by Mori.

3.1 Mori's Bend-and-Break technique

Let X be a smooth projective variety, $f: C \to X$ a non-constant morphism, where C is a smooth projective curve. Fix a point $c_0 \in C$. Assume that

$$\dim_{[f]} \operatorname{Mor}(C, X; f|_{c_0}) \ge 1.$$

Then there exists a smooth affine pointed curve (T, t_0) and a nontrivial deformation family F of f fixing $\{c_0\}$:

$$F: C \times T \longrightarrow X$$

such that $F(c, t_0) = f(t)$ for each $c \in C$, $F(c_0, t) = f(c_0)$ for each $t \in T$, and $F|_{C \times \{t\}} \neq f$ for general $t \in T$. Let \overline{T} be a smooth compactification of T. Then we get

$$\overline{F} \colon C \times \overline{T} \dashrightarrow X$$

that extends F.

Claim 3.6. The morphism \overline{F} is not defined at (c_0, t_1) for some $t_1 \in \overline{T} \setminus T$.

If so, then we can resolve $C \times \overline{T}$ (note that $C \times \overline{T}$ is a surface) by blowing up points:

$$S \downarrow_{\varepsilon} e \\ C \times \overline{T} \xrightarrow{F} X$$

$$\downarrow_{\pi}$$

$$\overline{T}$$

The fiber $S_{t_0} = \pi^{-1}(t_0)$ is $C \times \{t_0\}$. So $S_{t_1} = \pi^{-1}(t_1)$ is the proper transform $C \times \{t_1\}$ of $C \times \{t_1\}$ in S union the exceptional divisor E for ε .

Since $\{c_0\} \times \overline{T}$ intersects $C \times \{t_1\}$ transversally,

$$\widetilde{\{c_0\} \times \overline{T} \cap C \times \{t_1\}} = \varnothing.$$

It follows from $e(\{c_0\} \times \overline{T}) = \{f(c_0)\}$ that $f(c_0) \in e(E) \subseteq X$.

Define

$$f' \colon C \stackrel{\varepsilon}{\longleftarrow} \widetilde{C \times \{t_1\}} \stackrel{e}{\longrightarrow} X$$

and $Z = e_*[E]$. We get:

Proposition 3.7 (Mori). There exists a (possibly constant) morphism $f': C \to X$ and a nonzero effective 1-cycle Z of rational curves with $f(c_0) \in \operatorname{Supp} Z$ such that

$$f_*[C] = e_*[S_{t_0}] \equiv e_*[S_{t_1}] = f'_*[C] + Z.$$

In particular, there exists a rational curve in X through $f(c_0)$.

Proof of (3.6). Assume that $\overline{F}: C \times \overline{T} \to X$ is a morphism. It contracts $\{c_0\} \times \overline{T}$ to a point $f(c_0) \in X$. By rigidity lemma, \overline{F} can be decomposed into $C \times \overline{T} \xrightarrow{p_1} C \xrightarrow{g} X$. Then

$$g(c) = g(p_1(c, t_0)) = F(c, t_0) = f(c)$$

for each c and hence $F|_{C\times\{t\}}=f$ for each $t\in T$. But then F is trivial, a contradiction.

4 Existence of rational curves, 9/14

Theorem 4.1 (MM 86). Let X be a projective normal variety of dimension $n \geq 1$ over an algebraically closed field \mathbf{k} of characteristic $p \geq 0$. Fix an ample Cartier divisor H on X. For a curve $C \subseteq X \setminus \operatorname{Sing} X$ with $K_X \cdot C < 0$ and a point $c \in C$, there exists a rational curve Γ on X through c with

$$0 \le H \cdot \Gamma \le 2n \frac{H \cdot C}{-K_X \cdot C}.$$

Remark. The curves C and Γ might have singularities and Γ might pass through Sing X.

Proposition 4.2. Let X, H, and \mathbf{k} be as above, C a smooth projective curve, and $f: C \to X$ a non-constant map. Let $B = \{c_1, \ldots, c_b\} \subseteq C$ be a finite subset. Assume that

$$\dim_{[f]} \operatorname{Mor}(C, X; f|_B) \ge 1.$$

Then there exists a rational curve Γ on X such that $f(c_{i_0}) \in \Gamma$ for some $1 \leq i_0 \leq b$ with

$$H \cdot \Gamma \le 2 \frac{H \cdot f_* C}{b}.$$

Proof. Let C' be the normalization of f(C). Then there exists a unique morphism $f' : C \to C'$ that factors through f. We note that

$$\deg f = [K(C) : K(f(C))] = [K(C) : K(C')] = \deg f'.$$

If $C' \cong \mathbb{P}^1$ and $\deg(C \to f(C)) \ge b/2$, just take $\Gamma = C$ (so that

$$H \cdot [f(C)] = \frac{H \cdot f_*[C]}{\deg f} \le 2 \frac{H \cdot f_*C}{b}.$$

From now on, we will assume that if $C' \cong \mathbb{P}^1$, then $\deg(C \to f(C)) < b/2$. By assumption, there exists a smooth affine pointed curve (T, t_0) , a nontrivial deformation

 $F: C \times T \to X$ such that $F|_{C \times \{t_0\}} = f$ and $F(\{c_i\} \times T) = \{f(c_i)\}$ for all $1 \le i \le b$. We first prove that $F(C \times T) \not\subseteq f(C)$. Indeed, we have

$$\dim_{[f']} \operatorname{Mor}(C, C'; f'|_B) \le h^0(C, (f')^* T_{C'} \otimes \mathscr{I}_B),$$

and

$$\deg((f')^*T_{C'} \otimes \mathscr{I}_B) = \deg f' \cdot \deg T_{C'} - b$$

$$\leq (\deg f')(2 - 2g(C')) - b.$$

Note that this is negative if $g(C') \ge 1$, and less than $b/2 \cdot 2 - b = 0$ if g(C') = 0. Hence, if $F(C \times T) \subseteq f(T)$, then there exists a unique map $F': C \times T \to C'$ that factors through F, and thus

$$1 = \dim T \le \dim_{[f']} \operatorname{Mor}(C, C'; f'|_B) = 0,$$

a contradiction. In particular, $F(C \times T)$ is a surface.

By rigidity lemma, T is not proper. Let \overline{T} be a smooth compactification of T. Consider a resolution

$$S \downarrow_{\varepsilon} e \downarrow_{\varepsilon} C \times \overline{T} \xrightarrow{-F} X$$

For i = 1, ..., b, wee denote $E_{i1}, ..., E_{in}$ the total transforms on S of the exceptional (-1)-curves by blowing up an (infinitely near) point over $\{c_i\} \times \overline{T}$. We see that the intersection number

$$E_{ij} \cdot E_{i'j'} = -\delta_{ii'}\delta_{jj'}.$$

Let T_i be the proper transform of $\{c_i\} \times \overline{T}$, let $\varepsilon^* \overline{T} = \varepsilon^* (\{p\} \times \overline{T})$ for a general point $p \in C$, and let $\varepsilon^* C = \varepsilon^* (C \times \{t_0\})$. Write

$$T_i \equiv \varepsilon^* \overline{T} - \sum_{j=1}^{n_i} \epsilon_{ij} E_{i,j},$$

where

$$\epsilon_{ij} = T_i \cdot E_{i,j} = \begin{cases} 1 & \text{if the blown up point is on the proper transform of } \{c_i\} \times \overline{T}, \\ 0 & \text{else.} \end{cases}$$

Write also

$$e^*H = e^*(H|_{e(S)}) \equiv a\varepsilon^*C + d\varepsilon^*\overline{T} - \sum_{i=1}^b \sum_{j=1}^{n_i} a_{ij}E_{ij} + G,$$

where $G \perp \langle \varepsilon^* C, \varepsilon^* T, E_{ij} \rangle$.

Since

$$\varepsilon^* \overline{T} \cdot \varepsilon^* \overline{T} = 0, \quad \varepsilon^* C \cdot \varepsilon^* \overline{T} = 1, \quad E_{ij} \cdot \varepsilon^* \overline{T} = 0,$$

and e^*H is nef,

$$a_{ij} = e^* H \cdot E_{ij} \ge 0, \quad a = e^* H \cdot \varepsilon^* \overline{T} \ge 0.$$

Since $e(T_i) = \{f(c_i)\},\$

$$0 = e^* H \cdot T_i = a - \sum_{j=1}^{n_i} \epsilon_{ij} a_{ij}.$$

Summing over i, we get

$$ba = \sum_{i=1}^{b} \sum_{j=1}^{n_i} \epsilon_{ij} a_{ij}.$$

Claim. The self intersection $G^2 \leq 0$.

Proof of Claim. Assume $G^2 > 0$. Since $\varepsilon^* C \cdot G = 0 = (\varepsilon^* C)^2$, so by Hodge index theorem, $\varepsilon^* C \equiv 0$. But $\varepsilon^* C \cdot \varepsilon^* \overline{T}$, a contradiction.

This gives us

$$0 < (e^*H)^2 = 2ad - \sum_{i,j} a_{ij}^2 + G^2 \le 2ad - \sum_{i,j} a_{ij}^2$$
$$= \frac{2d}{b} \sum_{i,j} \epsilon_{ij} a_{ij} - \sum_{i,j} a_{ij}^2$$
$$\le \sum_{i,j} \epsilon_{ij} a_{ij} \left(\frac{2d}{b} - a_{ij}\right).$$

So there exists some (i_0, j_0) such that

$$\varepsilon_{i_0j_0} > 0$$
, $a_{i_0j_0} > 0$, $\frac{2d}{b} - a_{i_0j_0} > 0$.

Since

$$H\cdot f_*C=e^*H\cdot \varepsilon^*C=d,\quad H\cdot e_*E_{i_0j_0}=e^*H\cdot E_{i_0j_0}=a_{i_0j_0},$$

it is clear that every irreducible component of $e_*E_{i_0j_0}$ has degree at most 2d/b.

The intersection $E_{i_0j_0} \cdot T_{i_0} = \epsilon_{i_0j_0} = 1$ tells us that the rational cycle $e_*E_{i_0j_0}$ passes through $f(c_{i_0})$. Pick an irreducible Γ of $e_*E_{i_0j_0}$ which passes through $f(c_{i_0})$ but is not contracted by e.

Proof of (4.1). First, suppose that p > 0. Define

$$C_m \xrightarrow{\operatorname{Fr}^m} C' \longrightarrow C \subseteq X,$$

where $C' \to C$ is the normalization and Fr is the Frobenius morphism. Note that $g := g(C') = g(C_m)$.

Let $B_m \subseteq C_m$ be a nonempty finite subset and $b_m = |B_m|$. Then

$$\dim_{[f]} \operatorname{Mor}(C_m, X; f|_{B_m}) \ge h^0(C_m, f^*T_X \otimes \mathscr{I}_{B_m}) - h^1(C_m, f^*T_X \otimes \mathscr{I}_{B_m})$$

$$= \chi(f^*T_X \otimes \mathscr{I}_{B_m})$$

$$= \deg(f^*T_X \otimes \mathscr{I}_{B_m}) + 1 - g(C_m)$$

$$= \deg(f^*T_X) - nb_m + n(1 - g)$$

$$= -p^m(K_X \cdot C) - nb_m + (1 - g),$$

which is positive if we take

$$b_m = \left| \frac{p^m(-K_X \cdot C) - 1}{n} \right| + 1 - g.$$

Note that this number is greater than 0 for $m \gg 1$ since $-K_X \cdot C > 0$.

By (4.2), there exists a rational curve $\Gamma_m \subseteq X$ through some point of $f(B_m)$ such that

$$0 \le H \cdot \Gamma_m \le \frac{2H \cdot f_*[C_m]}{b_m} = \frac{2p^m(H \cdot C)}{b_m}.$$

Since $\frac{p^m}{b_m}$ tends to $\frac{n}{-K_X \cdot C}$ as $m \to \infty$ and $H \cdot \Gamma_m$ is an integer,

$$H \cdot \Gamma_m \le 2n \frac{H \cdot C}{-K_X \cdot C} =: r$$

for $m \gg 1$.

Let

$$M_r = \bigsqcup_{\deg_H P(m) \le r} \operatorname{Mor}^{P(m)}(\mathbb{P}^1, X), \quad P(m) = \chi(\mathbb{P}^1, mg^*H),$$

be the quasi-projective scheme that parameterize $g: \mathbb{P}^1 \to X$ of degree at most r.

Fact. The image of the evaluation map $\operatorname{ev}_r : \mathbb{P}^1 \times M_r \to X$ is closed in X.

Then $C \cap \operatorname{Im}(\operatorname{ev}_r)$ is closed in C. But $C \cap \operatorname{Im}(\operatorname{ev}_r)$ can not be finite since we could then take B_m so that $f(B_m) \not\subseteq C \cap \operatorname{Im}(\operatorname{ev}_r)$. This shows that $C \subseteq \operatorname{Im}(\operatorname{ev}_r)$.

For p = 0, we prove this theorem via reduction modulo p. Consider a finitely generated \mathbb{Z} -algebra $R \subseteq \mathbf{k}$ over which X, C, c, H are defined. Note that all of these can be described by finite equations. Consider the diagram

$$X \longrightarrow X_R$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} \mathbf{k} \longrightarrow \operatorname{Spec} R,$$

so that C_R , c_R , H_R pulls-back to C, c, H, respectively. By shrinking Spec R, we may assume that C_R is smooth over Spec R (by generic smoothness), X_R is smooth along C_R , and that H_R is a relative ample Cartier divisor.

Let $g_R: \mathbb{P}^1_R \to X_R$ be the constant morphism that maps to $c_R \in C_R$. Consider the scheme

$$\bigsqcup_{0<\deg_{H_R}P\leq r}\operatorname{Mor}_{\operatorname{Spec} R}(\mathbb{P}^1_R,X_R;g_R)\xrightarrow{\rho}\operatorname{Spec} R,\quad r=2n\,\frac{H\cdot C}{-K_X\cdot C}.$$

Let \mathfrak{m} be a maximal ideal of R. Then char R/\mathfrak{m} is positive. By the positive characteristic case, $\mathfrak{m} \in \operatorname{Im} \rho$. Now, since $\operatorname{Im} \rho$ is a constructable subset of $\operatorname{Spec} R$ (by Chavalley's theorem), and $\operatorname{Im} \rho$ contains a dense subset $\operatorname{Max} R$ of $\operatorname{Spec} R$. The generic point η of $\operatorname{Spec} R$ lies in $\operatorname{Im} \rho$.

5 The covering trick, 9/18

To prove a vanishing for a certain \mathbb{Q} -divisor L, one could pull L back to a covering on which the problem simplifies in some ways.

Lemma 5.1 (Injectivity lemma). Let $\pi: Y \to X$ be a finite, surjective morphism of varieties over \mathbb{C} with X normal. Let \mathscr{E} be a locally free sheaf on X. Then the natural morphism

$$\mathrm{H}^j(X,\mathscr{E}) \longrightarrow \mathrm{H}^j(Y,\pi^*\mathscr{E})$$

induced by $\mathscr{E} \to \pi_* \pi^* \mathscr{E}$ is injective. In particular, if $H^j(\pi^* \mathscr{E}) = 0$ for some $j \geq 0$, then $H^j(\mathscr{E}) = 0$.

Proof. Since π is finite, K(Y)/K(X) is a finite field extension of degree $\deg \pi$. This gives us the trace map $\operatorname{tr}_{K(Y)/K(X)}: K(Y) \to K(X)$.

Now, we construct a map $\operatorname{tr}_{Y/X} \colon \pi_* \mathcal{O}_Y \to \mathcal{O}_X$ induced by $\operatorname{tr}_{K(Y)/K(X)}$. This problem is local, so we may assume $\pi \colon \operatorname{Spec} B \to \operatorname{Spec} A$. Note that $A \to B$ is injective since π is surjective. For each $\alpha \in K(Y)$, let

$$m_{\alpha,K(X)}(t) = t^d + \alpha_{d-1}t^{d-1} + \dots + \alpha_0$$

be the minimal polynomial of α in K(X). Then $d = [K(X)(\alpha) : K(X)]$ and

$$\operatorname{tr}_{K(Y)/K(X)}(\alpha) = -\frac{\operatorname{deg} \pi}{d} \alpha_{d-1}.$$

By our assumption, X, and hence A, are normal. Since π is finite, any $\beta \in B$ is integral over A, i.e., $m_{\beta,K(X)}(t) \in A[t]$. This shows that $\operatorname{tr}_{K(Y)/K(X)}(\beta) \in A$ and gives us the desired map $\operatorname{tr}_{Y/X}$.

Let $\operatorname{tr} = \frac{1}{\operatorname{deg} \pi} \operatorname{tr}_{Y/X} \colon \pi_* \mathcal{O}_Y \to \mathcal{O}_X$. Then $\operatorname{tr} \circ \pi^* = \operatorname{id}_{\mathcal{O}_X}$, i.e., $\pi_* \mathcal{O}_Y = \mathcal{O}_X \oplus \mathscr{F}$, where $\mathscr{F} = \operatorname{coker} \pi^*$. Then

$$\mathrm{H}^{j}(Y,\pi^{*}\mathscr{E})=\mathrm{H}^{j}(X,\pi_{*}\pi^{*}\mathscr{E})=\mathrm{H}^{j}(X,\mathscr{E}\otimes\pi_{*}\mathcal{O}_{Y})=\mathrm{H}^{j}(X,\mathscr{E})\oplus\mathrm{H}^{j}(X,\mathscr{E}\otimes\mathscr{F}).$$

Let X be an affine variety, $s \in \Gamma(X, \mathcal{O}_X)$ be a nonzero regular function. We define

$$Y = (t^m - s = 0) \subseteq X \times \mathbb{A}^1$$

so that $s^{1/m}$ make sense on Y. We see that $\pi\colon Y\to X$ is a cyclic covering branched along $D=\operatorname{div}(s)$. By gluing this construction, we get:

Proposition 5.2. Let X be a variety, \mathscr{L} an invertible sheaf of X. Fix an positive integer $m, s \in H^0(X, \mathscr{L}^{\otimes m})$ be a nonzero section, $D = \operatorname{div}(s)$. Then there exists a finite surjective morphism $\pi \colon Y \to X$ branched along D and a section $s' \in H^0(Y, \pi^*\mathscr{L})$ such that $(s')^m = \pi^*s$. The effective divisor $D' = \operatorname{div}(s')$ maps isomorphically to D. Moreover, if X and D are smooth, then so are Y and D'.

Proof. We only prove the "moreover part". If X and D are smooth, then $Y \setminus D' \to X \setminus D$ are étale shows that $Y \setminus D$ is smooth. Since D' maps to D isomorphically, D' is also smooth. Finally, D' is a smooth effective Cartier divisor, so $\mathcal{O}_{Y,y}$ is a regular local ring for $y \in D'$.

Theorem 5.3 (Kodaira vanishing). Let X be a smooth projective variety, A an ample divisor on X. Then $H^i(X, K_X + A) = 0$ for all i > 0.

Proof. Equivalently, we prove $H^j(X, -A) = 0$ for $j < n := \dim X$. Since A is ample, there exists a smooth divisor $D \in |mA|$ for $m \gg 1$. Then (5.2) tells us that there exists an m-fold cyclic covering $\pi \colon Y \to X$ branched along D with $\pi^*D = mD'$. By construction, $D' \in |\pi^*A|$ is a smooth effective ample divisor. By (5.1), it suffices to prove that $H^j(Y, -D') = 0$ for j < n. Note that D' is ample since D is ample.

Consider the exact sequence

$$0 \longrightarrow \mathcal{O}_Y(-D') \longrightarrow \mathcal{O}_Y \longrightarrow \mathcal{O}_{D'} \longrightarrow 0.$$

We get the long exact sequence

$$H^{j-1}(\mathcal{O}_Y) \longrightarrow H^{j-1}(\mathcal{O}_{D'}) \longrightarrow H^j(-D') \longrightarrow H^j(\mathcal{O}_Y) \longrightarrow H^j(\mathcal{O}_{D'}).$$

Fact. The map $r^{p,q}: H^{p,q}(Y) \to H^{p,q}(D')$ is bijective for $p+q \leq n-2$ and injective for p+q=n-1. This follows from the Lefschetz hyperplane theorem that

$$H^{j}(Y,\mathbb{C}) \xrightarrow{r} H^{j}(D',\mathbb{C})$$

$$\parallel \qquad \qquad \parallel$$

$$\bigoplus_{p+q=j} H^{p,q}(Y) \xrightarrow{\oplus r^{p,q}} \bigoplus_{p+q=j} H^{p,q}(D')$$

is bijective for $j \leq n-2$ and injective for j=n-1.

So
$$H^{j}(-D') = 0$$
 for $j \le n - 1$.

Definition 5.4. Let X be a smooth variety of dimension n. We say $D = \sum D_i$ has simple normal crossings (SNC) if each D_i is smooth and for each $p \in X$, $\mathcal{O}_{D,p} \cong \mathcal{O}_{X,p}/\langle z_1 \cdots z_k \rangle$ for some $k \leq n$ and some regular sequence (z_1, \ldots, z_n) of $\mathcal{O}_{X,p}$.

A Q-divisor $D = \sum d_i D_i$ has SNC support if $D_{\text{red}} = \sum D_i$ is a SNC divisor.

Theorem 5.5 (Kawamata–Viehweg vanishing). Let X be a smooth projective variety, D an ample \mathbb{Q} -divisor such that [D] - D has SNC support. Then for each i > 0,

$$H^i(X, K_X + \lceil D \rceil) = 0$$

Lemma 5.6 (Kawamata covering). Let X and D be as in the above theorem. Write

$$\lceil D \rceil - D = \sum_{i} a_i D_i, \quad 0 \le a_i < 1.$$

Then for sufficiently divisible $m \gg 1$, there exists a finite surjective morphism $\pi \colon Y \to X$ such that

- (1) K(Y)/K(X) is a Kummer extension;
- (2) Y is smooth and projective;
- (3) π^*D is an integral divisor;
- (4) the canonical divisor

$$K_Y = \pi^* \left(K_X + \sum_i (1 - \frac{1}{m}) D_i + \sum_j (1 - \frac{1}{m}) H_j \right)$$

and $\sum D_i + \sum H_j$ has SNC;

(5) $1 - \frac{1}{m} \ge a_i$ for all i.

Remark. The branch locus of π is $\bigcup D_i \cup \bigcup H_j$, and π preserves smoothness by adding branch locus artificially. Since X and Y are smooth, π is flat.

Lemma 5.7. Let X be a smooth variety, |V| a base-point-free linear system, $\sum D_i$ a SNC divisor. If $H \in |V|$ is a general divisor, then $H + \sum D_i$ again has SNC.

Proof. This is just Bertini's theorem.

Proof of (5.6). Let $n = \dim X$. Fix a very ample divisor A on X. Take a sufficiently divisible $m \gg 1$ so that $1 - \frac{1}{m} \geq a_i$, $ma_i \in \mathbb{N}$, and $mA - D_i$ is ample for each $i \in I$. By (5.7), we can take n general elements $H_1^{(i)}, \ldots, H_n^{(i)} \in |mA - D_i|$ such that $\sum D_i + \sum_{i,k} H_k^{(i)}$ has SNC.

Let $X = \bigcup U_{\lambda}$ be an affine open cover of X with transition functions of $\mathcal{O}_X(A)$

$$\{a_{\lambda\mu}\in \mathrm{H}^0(U_\lambda\cap U_\mu)\mid \mathcal{O}_X^\times\}$$

and local sections of $\mathcal{O}_X(mA)$

$$\{\varphi_{k\lambda}^{(i)} \in \mathrm{H}^0(U_\lambda, \mathcal{O}_X)\}$$

such that

$$(H_k^{(i)} + D_i)|_{U_\lambda} = \operatorname{div}(\varphi_{k\lambda}^{(i)})$$

and $\varphi_{k\lambda}^{(i)} = a_{\lambda\mu}^m \varphi_{k\mu}^{(i)}$ on $U_{\lambda} \cap U_{\mu}$.

Claim. The normalization Y of X in $K(X)[(\varphi_{k\lambda}^{(i)})^{1/m}]$ for some λ provides the desired cover.

(1), (3) and (4) are trivial by our construction. It remains to prove that Y is smooth and projective. Note that Y is projective since π is finite. For a closed point $x \in U_{\lambda}$, set $I_x = \{i \in I \mid x \in D_i\}$. Since $\bigcap_{k=1}^n H_k^{(i)} \cap D_i = \emptyset$, for each $i \in I_x$, there exists k_i such that $x \notin H_{k_i}^{(i)}$. Now the set

$$R_x := \{ \varphi_{k\lambda}^{(i)} \mid i \in I_x \} \cup \{ \varphi_{k\lambda}^{(i)} \mid i \notin I_x, x \in H_k^{(i)} \} \cup \{ \varphi_{k\lambda}^{(i)} / \varphi_{k\lambda}^{(i)} \mid i \in I_x, x \in H_k^{(i)} \}$$

forms a part of a regular system of parameters of the regular local ring $\mathcal{O}_{X,x}$. The set

$$T_x = \{ \varphi_{k\lambda}^{(i)} / \varphi_{ki\lambda}^{(i)} \mid i \in I_x, x \notin H_k^{(i)} \} \cup \{ \varphi_{k\lambda}^{(i)} \mid i \notin I_x, x \notin H_k^{(i)} \}$$

are all units in $\mathcal{O}_{X,x}$. Then Y is smooth at any $y \mapsto x$ by the following lemma:

Lemma 5.8. Let (R, \mathfrak{m}) be a regular local \mathbb{C} -algebra of dimension n with residue field \mathbb{C} , $\{z_1, \ldots, z_n\}$ a regular system of parameters, and $\{u_1, \ldots, u_s\} \subseteq R^{\times}$. Fix $m \in \mathbb{N}$, $1 \leq \ell \leq n$. Let

$$R' = R[z_1^{1/m}, \dots, z_\ell^{1/m}, u_1^{1/m}, \dots, u_s^{1/m}].$$

Then for any maximal ideal \mathfrak{m}' of R', $R'_{\mathfrak{m}'}$ is a regular local ring with a regular system of parameter $z_1^{1/m}, \ldots, z_\ell^{1/m}, z_{\ell+1}, \ldots, z_n$.

Proof of (5.8). We check that

$$\mathfrak{m}' = \langle z_1^{1/m}, \dots, z_{\ell}^{1/m}, z_{\ell+1}, \dots, z_n, u_1^{1/m} - \alpha_1, \dots, u_s^{1/m} - \alpha_s \rangle_{R'}$$

for some $\alpha_t \in \mathbb{C}^{\times}$. Indeed, since $\mathfrak{m}' \supseteq \mathfrak{m}' \cap R = \mathfrak{m} \ni z_i = (z_i^{1/m})^m$, z_j for $1 \le i \le \ell$, $\ell + 1 \le j \le n$, $\mathfrak{m}' \ni z_i^{1/m}$. On the other hand, since $R'/\mathfrak{m}' \cong \mathbb{C}$, $u_t^{1/m} + \mathfrak{m}'$ corresponds to some $\alpha_t \in C^{\times}$. So the RHS is contained in \mathfrak{m}' with $R'/RHS \cong \mathbb{C}$. So \mathfrak{m}' is equal to the RHS.

It suffices to show that

$$u_t^{1/m} - \alpha_t \in \langle z_1^{1/m}, \dots, z_{\ell}^{1/m}, z_{\ell+1}, \dots, z_n \rangle_{R'}$$

since then \mathfrak{m}' is generated by n elements. This is just because

$$u_t - \alpha_t^m = (u_t^{1/m} - \alpha_t)(u_t^{(m-1)/m} + u_t^{(m-2)/m}\alpha_t + \dots + \alpha_t^{m-1}) \in \mathfrak{m}' \cap R = \mathfrak{m}$$

and

$$u_t^{(m-1)/m} + u_t^{(m-2)/m} \alpha_t + \dots + \alpha_t^{m-1} \equiv m \alpha_t^{m-1} \neq 0 \pmod{\mathfrak{m}'}.$$

Proof of (5.5). Take a finite Galois covering $\pi: Y \to X$ as in the lemma. Let $G = \operatorname{Gal}(K(Y)/K(X))$. Then there exists a natural G-action of $\pi_*\mathcal{O}_Y(K_Y + \pi^*D)$, which compatible with the action of G on K(Y).

Claim.
$$(\pi_*\mathcal{O}_Y(K_Y + \pi^*D))^G \cong \mathcal{O}_X(K_X + \lceil D \rceil).$$

Since the functors $\Gamma(X,-)$ and $(-)^G$ commute for G-sheaves, assuming this claim we get

$$H^{i}(X, K_{X} + \lceil D \rceil) = H^{i}(X, \pi_{*}\mathcal{O}_{Y}(K_{Y} + \pi^{*}D))^{G}$$
$$= H^{i}(Y, K_{Y} + \pi^{*}D)^{G} = 0$$

since π^*D is ample (π is finite).

To prove the claim, let U be a Zariski open subset of X, then

$$\Gamma(U, (\pi_* \mathcal{O}_Y (K_Y + \pi^* D))^G)$$

$$= \{ f \in K(Y)^G \mid (\operatorname{div}(f) + K_Y + \pi^* D)|_{\pi^{-1}(U)} \ge 0 \}$$

$$= \{ f \in K(X) \mid (\operatorname{div}(f) + K_X + (1 - \frac{1}{m})(\sum_i D_i + \sum_j H_j) + D)|_U \ge 0 \}$$

$$= \{ f \in K(X) \mid (\operatorname{div}(f) + K_X + \lceil D \rceil)|_U \ge 0 \}$$

since
$$1 - \frac{1}{m} - a_i \in [0, 1)$$
.

6 Big divisors, 9/21

Definition 6.1. Let X be a projective variety, D a Cartier divisor. Define

$$\mathbb{N}(D) = \mathbb{N}(X, D) := \{ m \in \mathbb{N} \mid h^0(mD) \neq 0 \}.$$

This is a semigroup if $\mathbb{N}(D)$ is nonempty, and there exists $e \in \mathbb{N}$ such that $e\mathbb{Z}$ is the subgroup of \mathbb{Z} generated by $\mathbb{N}(D)$. This $e = e(D) = \gcd \mathbb{N}(D)$ is called the **exponent** of D.

We see that there exists $m_0 > 0$ such that for $m \ge m_0$, $me \in \mathbb{N}(D)$.

Lemma 6.2. Let X be a projective scheme over a field with dimension n. Fix a Cartier divisor B. Then

$$h^0(mB) = O(m^n).$$

Proof. Let H be a very ample divisor on X such that $h^i(mH)=0$ for all $i, m \in \mathbb{N}$ and $H-B \sim D \geq 0$ is ample. Then

$$h^{0}(mB) = h^{0}(mH - mD) \le h^{0}(mH) = \chi(mH) = \frac{H^{n}}{n!} m^{n} + O(m^{n-1}) = O(m^{n}).$$

Definition 6.3. Let X be a proper variety of dimension n. A Cartier divisor D is **big** if there exists c > 0 such that $h^0(mD) = c \cdot m^n$ for $m \in \mathbb{N}(X, D)$ large enough.

A Q-divisor D is big if there exists $k \in \mathbb{N}$ such that kD is Cartier and big.

An \mathbb{R} -divisor $D = \sum a_i D_i$ is big if each D_i is big and $a_i \in \mathbb{R}_{>0}$.

Definition 6.4. Let X be a normal variety. The **Iitaka dimension** of a Cartier divisor D is

$$\kappa(D) = \kappa(X, D) := \sup_{m \in \mathbb{N}(D)} \{\dim \operatorname{Im} \phi_{|mD|}\} \in \{-\infty\} \cup [0, \dim X],$$

where $\phi_{|mD|} \colon X \dashrightarrow \mathbb{P}H^0(mD)^{\vee}$ is the rational map induced by |mD|.

If X is non-normal, pass to its normalization $\nu \colon \widetilde{X} \to X$ and set

$$\kappa(X, D) = \kappa(\widetilde{X}, \nu^*D).$$

Remark. Let $f: X \to Y$ be a surjective morphism between smooth projective varieties with connected fibers. Let F be a general fiber of X. Iitaka conjectured that

$$\kappa(X) \ge \kappa(Y) + \kappa(F),$$

where $\kappa(-) = \kappa(-, K_{-})$ is the Kodaira dimension.

Example 6.5.

1. Choose a projective variety T of dimension $d \geq 1$ such that there exists non-trivial $\eta \in \operatorname{Pic} T$ with $\eta^{\otimes e} = \mathcal{O}_T$. Let Y be any projective variety of dimension k, B a

very ample divisor on Y. Let $X = Y \times T$, $\mathcal{O}_X(D) = \mathcal{O}_Y(B) \boxtimes \eta$. Then e(D) = e, $\mathbb{N}(D) = \mathbb{N}e$, and mD is base-point-free if $m \in \mathbb{N}(D)$. In this case, $\kappa(D) = k$.

2. Let $T \subseteq \mathbb{P}^2$ be a nodal plane cubic curve. Take a non-torsion line bundle $\eta \in \operatorname{Pic}^{\circ}(X) \cong \mathbb{G}_m$. Then $h^0(T, \eta^{\otimes m}) = 0$ for all m > 0 but

$$h^0(\widetilde{T}, m\nu^*\eta) = h^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}) = 1.$$

By taking product as in 1., one get examples with $h^0(X, mD) = 0$ for each $m \in N$ and $\kappa(X', D') \in \mathbb{N}$ arbitrary.

Proposition 6.6 (Characterization of big divisors). Let X be a projective variety of dimension n, D a Cartier divisor on X. Then the followings are equivalent:

- (1) D is big;
- (2) for any ample Cartier divisor A, there exists $m \in \mathbb{N}$, an effective divisor E such that $mD \sim A + E$;
- (2') for some ample Cartier divisor A, there exists $m \in \mathbb{N}$, an effective divisor E such that $mD \sim A + E$;
- (2") for some ample Cartier divisor A, there exists $m \in \mathbb{N}$, an effective divisor E such that $mD \equiv A + E$;
- (3) $\kappa(X, D) = \dim X$, i.e., for some m > 0, the rational map $\phi_{|m\nu^*D|} : \widetilde{X} \dashrightarrow \mathbb{P} \operatorname{H}^0(m\nu^*D)^{\vee}$ is birational onto its image.

Lemma 6.7 (Kodaira's lemma). Let X be a projective (proper) variety, D a big Cartier divisor. Then for any effective Cartier divisor F on X, we have

$$h^0(X, mD - F) > 0$$

for large $m \in \mathbb{N}(X, D)$.

Proof. Let $n = \dim X$. Then

$$h^{0}(X, mD - F) \ge h^{0}(X, mD) - h^{0}(F, mD|_{F}) = c \cdot m^{n} - O(m^{n-1}) > 0$$

for some c > 0 and large enough $m \in \mathbb{N}(D)$.

Proof of (6.6). (1) \Rightarrow (2). Suppose D is big. Take $r \gg 1$ such that $rA \sim H_r \geq 0$ and $(r+1)A \sim H_{r+1} \geq 0$. Apply Kodaira's lemma with $F = H_{r+1}$ to find $m \in \mathbb{N}(D)$ and $F' \in |mD - H_{r+1}|$ with $mD \sim H_{r+1} + F' \sim A + H_r + F'$. Take $E = H_r + F'$ we get what we want in (2).

The implications $(2) \Rightarrow (2') \Rightarrow (2'')$ are trivial.

 $(2") \Rightarrow (3)$. If $mD \equiv A + E$, then mD - E is ample. Take m larger, we may assume that $H \sim mD - E$ is very ample. We see that

$$\kappa(X, D) \ge \kappa(X, H) = \dim X,$$

as desired.

(3) \Rightarrow (1). First, we assume that X is normal and $Y = \operatorname{Im} \phi_{|D|} \subseteq \mathbb{P} \operatorname{H}^0(D)^{\vee}$ has dimension n. Then

$$h^{0}(\mathcal{O}_{Y}(m)) + \sum_{i>0} (-1)^{i} h^{i}(\mathcal{O}_{Y}(m)) = \chi(\mathcal{O}(m)) = \frac{\deg Y}{n!} m^{n} + O(m^{n-1}).$$

Since the second term in the LHS is $O(m^{n-1})$, we see that $h^0(\mathcal{O}_Y(m)) = \Omega(m^n)$. Let U be the largest Zariski open subset of X on which $\phi = \phi_{|D|}$ is defined. Since X is normal and Y is proper, it follows from the valuative criterion for properness that $\operatorname{codim}_X(X \setminus U) \geq 2$. $\phi \colon U \to Y$ is dominant implies that $\mathcal{O}_Y \to \phi_* \mathcal{O}_U$ is injective, and hence

$$\mathcal{O}_Y(m) \longrightarrow \phi_* \mathcal{O}_U \otimes \mathcal{O}_Y(m) = \phi_* \phi^* \mathcal{O}_Y(m) = \phi_* \mathcal{O}_U(mD)$$

is injective. This shows that

$$\phi_{|D|}^{\sharp} \colon \operatorname{H}^{0}(Y, \mathcal{O}_{Y}(m)) \longrightarrow \operatorname{H}^{0}(U, \mathcal{O}_{X}(mD)) = \operatorname{H}^{0}(X, \mathcal{O}_{X}(mD))$$

by Hartogs's extension theorem.

In general, let $\nu \colon \widetilde{X} \to X$ be the normalization. Then there exists a exact sequence

$$0 \longrightarrow \mathcal{O}_X \longrightarrow \nu_* \mathcal{O}_{\widetilde{X}} \longrightarrow \eta \longrightarrow 0,$$

where η is supported on a scheme of dimension at most n-1. Tensoring this sequence by $\mathcal{O}(mD)$, we get

$$h^{0}(\mathcal{O}_{X}(mD)) \leq h^{0}(\nu_{*}\mathcal{O}_{X} \otimes \mathcal{O}_{X}(mD))$$

$$\leq h^{0}(\mathcal{O}_{X}(mD)) + h^{0}(\eta \otimes \mathcal{O}_{X}(mD)) = h^{0}(\mathcal{O}_{X}(mD)) + O(m^{n-1}).$$

Since $\nu_*\mathcal{O}_{\widetilde{X}}\otimes\mathcal{O}_X(mD)=\nu_*\mathcal{O}_{\widetilde{X}}(m\nu^*D), \ \kappa(\widetilde{X},\mu^*D)=n$ if and only if $h^0(mD)>c\cdot m^n$ for some c>0 and large enough $m\in\mathbb{N}(D)$.

Proposition 6.8. Let X be a projective variety of dimension n, D a Cartier divisor. Then the followings are equivalent:

- (1) D is big and nef;
- (2) D is nef with $D^n > 0$;
- (3) there exists an effective divisor E such that $D \frac{1}{k}E$ is ample for $k \gg 1$.

Proof. (1) \Leftrightarrow (2). Since D is nef,

$$h^{0}(mD) = \chi(mD) - \sum_{i>0} (-1)^{i} h^{i}(mD) = \frac{D^{n}}{n!} m^{n} + O(m^{n-1}).$$

So D is big if and only if $D^n > 0$.

(1) \Rightarrow (3). Fix an ample divisor A, there exists $m \gg 1$ such that $mD \sim A + E$. For $k \geq m$,

$$kD = (k-m)D + mD \sim (k-m)D + A + E,$$

i.e., $D - \frac{1}{k}E = \frac{1}{k}((k-m)D + A)$ is ample.

(3)
$$\Rightarrow$$
 (1). Since Nef(X) = $\overline{\mathrm{Amp}(X)}$, $D \in \mathrm{Nef}(X)$. Since $kD = (kD - E) + E$, D is big.

Example 6.9. Choose X a smooth projective surface, E a (-1)-curve, A a very ample divisor on X. Then $D_{\ell} = A + \ell E$ is big for $\ell > 0$ but

$$D_{\ell}^2 = A^2 + 2\ell A \cdot E + \ell^2 E^2 < 0$$

for $\ell \gg 1$.

7 Discrepancies, 9/25

Definition 7.1. Let $f: Y \dashrightarrow X$ be a birational map of varieties, $Z = \overline{\{\eta\}}$ be a closed subvariety. The **birational (strict, or proper) transform** of Z is

$$f_*Z := \begin{cases} \overline{f(\eta)} \subseteq X & \text{if } \eta \in \text{dom } f, \\ 0 & \text{if } \eta \notin \text{dom } f. \end{cases}$$

If $g \colon X \to Y$ is a birational morphism, we define $g_*^{-1}Z = (g^{-1})_*Z$.

Remark. If f is not a morphism, then f_* need not preserve linear or algebraic equivalence.

In the following, we assume that X is a normal variety over an algebraically closed field \mathbf{k} with char $\mathbf{k} = 0$.

A Weil divisor $D = \overline{\{\eta\}}$ on X is a prime divisor that defines uniquely a map $v_D = v(D,X) \colon K(X)^{\times} \to \mathbb{Z}$ by using the DVR $\mathcal{O}_{X,\eta}$.

Definition 7.2. Let $f: Y \to X$ be a birational morphism from a normal variety. Any prime divisor $E \subseteq Y$ is called a **divisor over** X. The center of E is $\operatorname{center}_X(E) := \overline{f(E)} \subseteq X$. A rank 1 valuation $v: K(X)^{\times} \to \mathbb{Z}$ is **geometric** (or algebraic) if there exists a divisor E over X such that $v = v_E$.

Remark. If $E \subseteq Y \to X$ and $E' \subseteq Y' \to X$ are divisors over X, then $\operatorname{center}_X(E) = \operatorname{center}_X(E')$ and v(E,Y) = v(E',Y') if and only if $Y \to X \dashrightarrow Y'$ is an isomorphism at the generic points $e \in E$ and $e' \in E'$, i.e., $\mathcal{O}_{Y,e} = \mathcal{O}_{Y',e'}$.

Let X' be a normal variety that is birational to X. Then K := K(X) = K(X'). A geometric valuation $v(D = \overline{\{\eta\}}, X) : K^{\times} \to \mathbb{Z}$ corresponds to

$$\{f_*D \mid f \colon X \dashrightarrow Y \text{ bir.}, \eta \in \text{dom } f\}.$$

Recall that the set of Weil divisors (with R-coefficients) is denoted by

$$\operatorname{WDiv}(X)_R = Z^1(X) = \{D = \sum a_i D_i \mid D_i \text{ prime divisors}, a_i \in R\}.$$

Definition 7.3. Let $f: Y \dashrightarrow X$ be a birational map. We define $f_*: \mathrm{WDiv}(Y) \to \mathrm{WDiv}(X)$ by extending the coefficients. The map f is said to be **isomorphic in codimension** 1 if f_* is bijective.

Let $D = \sum a_i D_i \in \mathrm{WDiv}(X)$. Define a subsheaf $\mathcal{O}_X(D) \subseteq \mathscr{K}$ of the constant sheaf

corresponds to K(X) by

$$\Gamma(U, \mathcal{O}_X(D)) = \{ f \in K(X) \mid v_{D_i}(f) \ge -a_i \ \forall D_i \cap U \ne \emptyset \}.$$

Facts.

- The sheaf $\mathcal{O}_X(D)$ is divisorial sheaf, i.e., a reflexive sheaf of rank 1. Recall that a coherent sheaf \mathscr{F} is reflexive if $\mathscr{F} \xrightarrow{\sim} \mathscr{F}^{\vee\vee}$, $(-)^{\vee} = \mathscr{H}om(\mathscr{F}, \mathcal{O}_X)$.
- $D \sim D'$ if and only if $\mathcal{O}_X(D) \cong \mathcal{O}_X(D')$.
- There is a one-to-one correspondence between $\mathrm{WDiv}(X)$ and the set of divisorial sheaves. The class group $\mathrm{Cl}(X)$ then corresponds to the set of divisorial sheaves modulo isomorphisms.
- $\mathcal{O}_X(D+D')=(\mathcal{O}_X(D)\otimes\mathcal{O}_X(D'))^{\vee\vee}$. We define $\mathcal{O}_X(D)^{[m]}=\mathcal{O}_X(mD)$.
- If $D \geq 0$, then $\mathcal{O}_X(-D) \cong \mathscr{I}_D$.

Let U be the nonsingular part of X. Then X is normal implies that $\operatorname{codim}_X(X \setminus U) \geq 2$. Since $\omega_U = \det(\Omega^1_{X/\mathbf{k}}|_U) \in \operatorname{Pic} U$, $j_*\omega_U$ is a divisorial sheaf, called the **canonical sheaf** of X, and hence equal to $\mathcal{O}_X(K_X)$ for some $K_X \in \operatorname{WDiv}(X)$. $j_*\omega_U$, the divisor is called the **canonical divisor** of X. Note that by our construction, K_X is defined up to linear equivalences. Usually, we will fix a divisor K_X .

Remark. Let X be a normal projective variety. Then $\mathcal{O}_X(K_X)$ is isomorphic to the dualizing sheaf ω_X of X.

Definition 7.4. A divisor $D \in \mathrm{WDiv}(X)_{\mathbb{Q}}$ is \mathbb{Q} -Cartier if $mD \in \mathrm{CDiv}(X)$ for some $m \in \mathbb{Z}$.

The variety X is \mathbb{Q} -Gorenstein if K_X is \mathbb{Q} -Cartier, \mathbb{Q} -factorial if every Weil divisor is \mathbb{Q} -Cartier.

Definition 7.5. Let X be a normal variety, D a \mathbb{Q} -divisor. A **log resolution** of (X, D) is a proper birational morphism $f: Y \to X$ such that

• Y is smooth,

- $\operatorname{Exc}(f)$ is a divisor,
- $\operatorname{Exc}(f) + f_*^{-1}D$ has SNC support.

From Hironaka's theorem, log resolutions always exist for varieties over characteristic zero field.

Definition 7.6. Let X be a normal variety $\Delta = \sum a_i D_i$ be a \mathbb{Q} -divisor. Assume that $K_X + \Delta$ is \mathbb{Q} -Cartier, i.e., $m(K_X + \Delta) \in \mathrm{CDiv}(X)$ for some m.

Suppose $f: Y \to X$ is a birational map with Y normal. Set $V = Y \setminus \text{Exc}(f)$. Since

$$\mathcal{O}_Y(m(K_Y + f_*^{-1}\Delta))|_V \cong f^*\mathcal{O}_X(m(K_X + \Delta))|_V,$$

for each prime divisor $E \subseteq \operatorname{Exc}(f)$, there exists $a(E, X, \Delta) \in \mathbb{Q}$, called the **discrepancy** of E, such that $m \cdot a(E, X, \Delta) \in \mathbb{Z}$ and

$$m(K_Y + f_*^{-1}\Delta) \sim mf^*(K_X + \Delta) + \sum_{E \subseteq \operatorname{Exc}(f)} m \cdot a(E, X, \Delta)E.$$

We set $a(D_i, X, \Delta) = -a_i$ and $a(D, X, \Delta) = 0$ for any prime divisor $D \subseteq X$ with $D \neq D_i$ for each i.

Remark. The number $a(E, X, \Delta)$ depends only on the valuation v_E but not on the particular choice of f and Y. Some authors use log discrepancies, defined as $1+a(E, X, \Delta)$.

If we fix canonical divisors such that $f_*K_Y = K_X$, then the exact sequence

$$\bigoplus_{E\subseteq \operatorname{Exc}(f)} \mathbb{Q}E \longrightarrow \operatorname{WDiv}(Y)_{\mathbb{Q}} \longrightarrow \operatorname{WDiv}(X)_{\mathbb{Q}} \longrightarrow 0$$

shows that there exists $\Delta_Y \in \mathrm{WDiv}(Y)_{\mathbb{Q}}$ such that $K_Y + \Delta_Y = f^*(K_X + \Delta)$. Here, Δ_Y is uniquely determined as the sum of $f_*^{-1}\Delta$ and a \mathbb{Q} -divisor supported on $\mathrm{Exc}(f)$, i.e., $f_*\Delta_Y = \Delta$.

Definition 7.7. We define the discrepancy of Δ to be

$$\operatorname{discrep}(X, \Delta) := \inf \{ a(E, X, \Delta) \mid E \text{ is an exceptional divisor over } X \},$$

the total discrepancy of Δ to be

totaldiscrep
$$(X, \Delta) := \inf \{ a(E, X, \Delta) \mid E \text{ is a divisor over } X \}$$
.

Definition 7.8. Let X be a variety, $x \in X$ a (not necessarily closed) point, $D = \{(U_i, f_i)\}$ an effective Cartier divisor. The multiplicity of D at x is

$$\operatorname{mult}_x D := \operatorname{ord}(f_i) = \max\{d \in \mathbb{N} \mid x \in \mathfrak{m}_{X,x}^d\},\$$

where we choose i such that $x \in U_i$. If X is normal and $E = \overline{\{\eta\}}$ is a prime divisor, then

$$\operatorname{mult}_E D = \operatorname{mult}_{\eta} D = \operatorname{coeff}_E D.$$

Lemma 7.9. Let Z be a closed subvariety of a smooth variety X, $\Delta = \sum a_i D_i$ a \mathbb{Q} divisor on X. Let E be the irreducible component of $p^{-1}(Z)$ which dominates Z, where $p \colon \operatorname{Bl}_Z X \to X$ is the blow-up. Then

$$a(E, X, \Delta) = (\operatorname{codim}_X Z - 1) - \sum a_i \operatorname{mult}_Z D_i.$$

Proof. Replacing X by $X \setminus \operatorname{Sing} Z$, we may assume Z is smooth. Then

$$K_{\operatorname{Bl}_{Z}X} - p^{*}K_{X} = (\operatorname{codim}_{X}Z - 1)E,$$
$$p^{*}D_{i} - p_{*}^{-1}D_{i} = (\operatorname{mult}_{Z}D_{i})E$$

do the job.

Lemma 7.10. Let Y be a normal variety, $f: Y \to X$ a proper birational map, $\Delta_X \in \mathrm{WDiv}(X)_{\mathbb{O}}$. Write

$$K_Y + \Delta_Y = f^*(K_X + \Delta_X)$$

where $f_*K_Y = K_X$, $\Delta_Y \in \mathrm{WDiv}(Y)_{\mathbb{Q}}$ with $f_*\Delta_Y = \Delta_X$. Then for any divisor F over X,

$$a(F, Y, \Delta_Y) = a(F, X, \Delta_X).$$

In particular,

$$\operatorname{discrep}(X, \Delta_X) = \min_{E \subseteq \operatorname{Exc}(f)} \{\operatorname{discrep}(Y, \Delta_Y), a(E, X, \Delta_X)\},$$
$$\operatorname{totaldiscrep}(X, \Delta_X) = \operatorname{totaldiscrep}(Y, \Delta_Y).$$

Proof. If $F \subseteq Y$, the equality follows from the definition of Δ_Y .

Assume that F does not appear as a divisor on Y. Without loss of generality, let $F \subseteq Z$, with Z normal and $g: Z \to Y$ birational. Indeed, if $F \subseteq Y'$, then we take Z to be the normalization of the graph Γ_h of the birational map $h: Y \dashrightarrow Y'$.

To compute $a(F, Y, \Delta_Y)$, we find $\Delta_Z \in \mathrm{WDiv}(Z)_{\mathbb{Q}}$ such that

$$K_Z + \Delta_Z = g^*(K_Y + \Delta_Y)$$

and $g_*K_Z = K_Y$, $g_*\Delta_Z = \Delta_Y$. Then

$$K_Z + \Delta_Z = (f \circ g)^* (K_X + \Delta_X)$$

and $(f \circ g)_*K_Z = K_X$, $(f \circ g)_*\Delta_Z = \Delta_X$. The multiplicity of Δ_Z at F is

$$-a(F, X, \Delta_X) = \operatorname{mult}_F \Delta_Z = -a(F, Y, \Delta_Y).$$

Hence, $a(F, Y, \Delta_Y) = a(F, X, \Delta_X)$.

8 Singularities, 9/28

Proposition 8.1. Either discrep $(X, \Delta) = -\infty$ or

$$-1 \le \operatorname{totaldiscrep}(X, \Delta) \le \operatorname{discrep}(X, \Delta) \le 1.$$

Proof. Let $U = X \setminus \operatorname{Sing} X$. Then $\operatorname{discrep}(X, \Delta) \leq \operatorname{discrep}(U, \Delta|_U)$. So we may assume that X is smooth. Now let $Z = \overline{\{\eta\}}$ be any codimension 2 subvariety of X such that $\eta \notin D_i$ for each i, where $\Delta = \sum a_i D_i$. Consider the blow-up $\operatorname{Bl}_Z X \to X$ with center K = Z. Then (7.9) tells us that

$$a(E, X, \Delta) = 1 - \sum a_i \operatorname{mult}_Z D_i = 1.$$

Hence, $\operatorname{discrep}(X, \Delta) \leq 1$.

Now, suppose that $\operatorname{totaldiscrep}(X, \Delta) < -1$. Then there exists a divisor $E \subseteq Y$ over X such that $a(E, X, \Delta) = -1 - c$ with c > 0. Again, we may replace Y with $Y \setminus \operatorname{Sing} Y$, so that Y is smooth.

Write

$$K_Y + \Delta_Y = f^*(K_X + \Delta), \quad f_*K_Y = K_X, \quad f_*\Delta_Y = \Delta.$$

Then

$$\Delta_Y = (1+c)E + f_*^{-1}\Delta + \text{(other exceptional divisors)}.$$

Pick $Z_0 \subseteq E$, codim $_Y Z_0 = 2$ and not in the support of the last two terms of the above equation. Then $\operatorname{mult}_{Z_0} E = 1 + c$. Define $Y_1 = \operatorname{Bl}_{Z_0} Y$ and E_1 be an exceptional divisor that dominates Z. Then (7.9) together with (7.10) tell us

$$a(E_1, X, \Delta) = a(E_1, Y, \Delta_Y) = 1 - (1 + c) = -c.$$

Let $Z_1 = E_1 \cap (g_1)^{-1}_*E$. Then for $E_2 \subseteq Y_2 = \operatorname{Bl}_{Z_1} Y_1$ that dominates Z, same computation gives

$$a(E_2, X, \Delta) = a(E_2, Y, \Delta_Y) = -2c.$$

By induction, we can construct

$$E_m \subseteq Y_m = \operatorname{Bl}_{Z_{m-1}} Y_{m-1} \xrightarrow{g_m} Y_{m-1}, \quad Z_{m-1} = E_m \cap (g_{m-1})_*^{-1} E_m$$

such that $a(E_m, X, \Delta) = -mc$.

Definition 8.2. If $a_i \in [0,1]$ for each i, we call $D = \sum a_i D_i$ a boundary divisor. If $a_i \in (-\infty,1]$ for each i, we call D a subboundary divisor.

Proposition 8.3. Let X be a smooth variety, $\Delta = \sum a_i D_i$ be a subboundary divisor having SNC support. Then

$$\operatorname{discrep}(X, \Delta) = \min \left\{ 1, \min\{1 - a_i\}, \min_{D_i \cap D_j \neq \emptyset, i \neq j} \{1 - a_i - a_j\} \right\}.$$

Proof. Let $r(X, \Delta)$ be the RHS of the equation in the proposition.

Consider $\operatorname{Bl}_Z X \to X$ and E an exceptional divisor with $\operatorname{center}_X E = Z$, where $\operatorname{codim}_X Z = 2$. We see from (7.9) that

$$a(E, X, \Delta) = \begin{cases} 1 & \text{if } Z \not\subseteq \text{Supp } \Delta, \\ 1 - a_i & \text{if } Z \subseteq D_i, Z \not\subseteq D_j \ \forall j \neq i, \\ 1 - a_i - a_j & \text{if } Z \subseteq D_i \cap D_j, i \neq j. \end{cases}$$

This shows that $\operatorname{discrep}(X, \Delta) \leq r(X, \Delta)$.

It remains to prove discrep $(X, \Delta) \ge r(X, \Delta)$. For an exceptional divisor $E \subseteq Y$ over X, say $f: Y \to X$, we want to prove $a(E, X, \Delta) \ge r(X, \Delta)$.

Fact. After possibly shrinking X, there exists a sequence of blow-ups along smooth centers that factors f:

$$Y = X_m \longrightarrow X_{m-1} \longrightarrow \cdots \longrightarrow X_1 \stackrel{g_1}{\longrightarrow} X_0 \subseteq X.$$

We see that $r(X_0, \Delta|_{X_0}) \geq r(X, \Delta)$, so we may assume $X = X_0$. Now, we induction on m. For m = 1, $f: Y = \operatorname{Bl}_Z X \to X$, $\operatorname{codim}_X Z \geq 2$ such that $E + f_*^{-1}\Delta$ has SNC support (by shrinking X around a general point z of Z). Set $I = \{i \mid Z \subseteq D_i\}$. Since $\sum D_i$ has SNC, we see that $\#I \leq \operatorname{codim}_X Z$. Also,

$$a(E, X, \Delta) = (\operatorname{codim}_{X} Z - 1) - \sum_{i \in I} a_{i}$$

$$= (\operatorname{codim}_{X} Z - \#I) - 1 + \sum_{i \in I} (1 - a_{i})$$

$$\geq \begin{cases} 1 & \text{if } I = \emptyset, \\ 1 - a_{i_{0}} & \text{if } I = \{i_{0}\} \\ -1 + \sum_{i \in I_{0}} (1 - a_{i}) & \text{if } I_{0} \subseteq I, \#I_{0} = 2. \end{cases}$$

Hence, $a(E, X, \Delta) \ge r(X, \Delta)$.

For m > 1, write $Y \xrightarrow{f_1} X_1 = \operatorname{Bl}_Z X \xrightarrow{g_1} X$, $K_{X_1} + \Delta_1 = g_1^*(K_X + \Delta)$. WLOG,

$$\Delta_1 = -a(E_1, X, \Delta)E + (g_1)_*^{-1}\Delta$$

has SNC support. Note that we also have $-a(E_1, X, \Delta) \leq 1$ (since X is smooth and Δ has SNC support) so that Δ_1 is subboundary. So

$$r(X_1, \Delta_1) \ge \min \left\{ r(X, \Delta), 1 + a(E_1, X, \Delta) - \max_{E_1 \cap (g_1)_*^{-1} D_i = \emptyset} a_i \right\}$$

$$\ge \min \{ r(X, \Delta), a(E_1, X, \Delta) \} \ge r(X, \Delta)$$

by the m=1 case. By induction hypothesis on f_1 , one has

$$a(E, X, \Delta) = a(E, X_1, \Delta_1) \ge r(X_1, \Delta_1),$$

as desired.

Definition 8.4. • A pair (X, Δ) is called a pair if X is a normal variety, Δ is a boundary divisor, and $K_X + \Delta$ is \mathbb{Q} -Cartier.

- A pair $(X, \Delta = \sum a_i D_i)$ has SNC at a (not necessarily closed) point $x \in X$ if $\mathcal{O}_{X,x}$ is a regular local ring and there exists an open neighbourhood $U \subseteq X$ with local coordinate $z_1, \ldots, z_n \in \mathfrak{m}_{X,x}$ such that for each D_i , there exists c(i) such that $D_i = (z_{c(i)} = 0)$ near x.
- We define $\operatorname{snc}(X, \Delta)$ to be the largest open subset U of X such that $(U, \Delta|_U)$ has SNC , and $\operatorname{non-snc}(X, \Delta) = X \setminus \operatorname{snc}(X, \Delta)$.

Next we define the 6 classes of singularities that are most important for the MMP. Recall that

$$1 \ge \operatorname{discrep}(X, \Delta) \ge \operatorname{totaldiscrep}(X, \Delta) \ge -1.$$

if $\operatorname{discrep}(X, \Delta) \neq -\infty$. So we say a pair (X, Δ) is

- terminal if discrep $(X, \Delta) > 0$,
- canonical if $\operatorname{discrep}(X, \Delta) \ge 0$,
- purely log terminal (plt for short) if discrep $(X, \Delta) > -1$,
- log canonical (lc for short) if discrep $(X, \Delta) \ge -1$,
- Kawamata log terminal (klt for short) if totaldiscrep $(X, \Delta) > -1$,
- divisorial log terminal (dlt for short) if $a(E, X, \Delta) > -1$ whenever center $E \subseteq \text{non-snc}(X, \Delta)$.

Remark. We see that (X, Δ) is klt if and only if $\operatorname{discrep}(X, \Delta) > -1$ and $|\Delta| = 0$.

If Δ is only a subboundary divisor, then (X, Δ) is called sub-plt, sub-lc if discrep $(X, \Delta) > -1$, ≥ -1 , sub-klt if discrep $(X, \Delta) > -1$ and $\lfloor \Delta \rfloor \leq 0$.

If $\Delta = 0$, we say X has \star singularity if (X, 0) is \star . Note that in this case, plt = dlt = klt, so we simply called X lt.

If dim X = 1, then $(X, \sum a_i D_i)$ is termial = klt if $a_i < 1$ for each i, is canonical = plt = dlt = lc if $a_i \le 1$ for each i.

There are some trivial implications terminal \Rightarrow canonical, klt \Rightarrow plt \Rightarrow dlt \Rightarrow lc, terminal \Rightarrow klt, and canonical \Rightarrow plt.

Lemma 8.5 (monotonicity property). Let X be a normal variety, Δ , $\Delta' \in \mathrm{WDiv}_{\mathbb{Q}}$ so that (X, Δ) , $(X, \Delta + \Delta')$ are pairs. Let $E \subseteq Y \xrightarrow{f} X$ be a morphism with f birational. Then

$$a(E, X, \delta) = a(E, X, \Delta + \Delta') + \operatorname{coeff}_E f^*\Delta'.$$

In particular, if $\Delta' \geq 0$, then $a(E, X, \Delta) \geq a(E, X, \Delta + \Delta')$ for any divisor E over X and the inequality is strict if and only if $\operatorname{center}_X E \subseteq \operatorname{Supp} \Delta'$. Hence,

 $\operatorname{discrep}(X,\Delta) \geq \operatorname{discrep}(X,\Delta+\Delta'), \quad \operatorname{totaldiscrep}(X,\Delta) \geq \operatorname{totaldiscrep}(X,\Delta+\Delta').$

Proof. Write $K_Y + \Delta_Y = f^*(K_X + \Delta)$. Then

$$K_Y + \Delta_Y + f^* \Delta' = f^* (K_X + \Delta + \Delta').$$

So

$$a(E, X, \Delta + \Delta') = -\operatorname{coeff}_E(\Delta_1 + f^*\Delta') = a(E, X, \Delta) - \operatorname{coeff}_E f^*\Delta',$$

as desired.

Corollary 8.6. Let $\Delta = \sum a_i D_i$ be a sub-boundary divisor. Then

- (1) there exists a log resolution f for (X, Δ) such that $\sum f_*^{-1}D_i$ is smooth;
- (2) for any such log resolution f with

$$a := \min_{E \subseteq \operatorname{Exc}(f)} \{ a(E, X, \Delta) \} \ge -1,$$

we have

$$\operatorname{discrep}(X, \Delta) = \min \left\{ a, \min_{i} \{1 - a_i\}, 1 \right\}.$$

This implies that the infimum in the definitions of $\operatorname{discrep}(X, \Delta)$ and $\operatorname{totalcrep}(X, \Delta)$ is actually a finite infimum, and hence minimum.

Corollary 8.7. Given normal variety X. Let $f: Y \to X$ be any resolution of singularities. Assume that

$$a := \min_{E \subseteq \operatorname{Exc}(f)} \{ a(E, X) \} \ge 0.$$

Then

$$\operatorname{discrep}(X) = \min\{a, 1\}.$$

In particular, X has canonical (resp. terminal) singularities if and only if there exists a resolution $f: Y \to X$ with $K_Y = f^*K_X + \sum a_i E_i$ such that $a_i \ge 0$ (resp. $a_i > 0$) for each i.

Proof. Write $K_Y + \Delta_Y = f^*K_X$ with $f_*K_Y = K_X$, $f_*\Delta_Y = 0$. We have

$$\Delta_Y = -\sum_{E \subseteq \operatorname{Exc}(f)} a(E, X, \Delta)E \le 0.$$

So

$$\operatorname{discrep}(Y, \Delta_Y) \ge \operatorname{discrep}(Y, 0) = 1$$

since Y is smooth. This is an equality since discrep $(Y, \Delta_Y) \leq 1$. Hence,

$$\operatorname{discrep}(X) = \min_{E \subseteq \operatorname{Exc}(f)} \{ \operatorname{discrep}(Y, \Delta_Y), a(E, X) \} = \min_{E \subseteq \operatorname{Exc}(f)} \{ 1, a(E, X) \}.$$

Proof of (8.6). (1) By Hironaka's theorem, there exists a log resolution $g: Z \to X$ for (X, Δ) so that $\sum g_*^{-1}D_i$ has SNC. Then, by induction, a sequence of blow-ups over the mutual intersection of $g_*^{-1}D_i$'s gives f.

(2) Write $K_Y + \Delta_Y = f^*(K_X + \Delta)$ with $f_*K_Y = K_X$, $f_*\Delta_Y = \Delta$ as usual. Then

$$\Delta_Y = f_*^{-1} \Delta - \sum_{E \subseteq \operatorname{Exc}(f)} a(E, X, \Delta) E$$

is a subboundary divisor.

Set $b_E = -a(E, X, \Delta)$. Since Y is smooth and Δ_Y is a subboundary divisor having SNC, it follows from (8.3) that

$$\operatorname{discrep}(Y, \Delta_Y) = \min_{i, E, E' \subseteq \operatorname{Exc}(f), E \cap E' = \emptyset} \{ 1 - a_i - b_E, 1 - b_E - b_{E'}, 1 - a_i, 1 - b_E, 1 \}.$$

Since $1 - a_i - b_E$, $1 - b_E - b_{E'}$, $1 - b_E \ge -b_E$, this is at least

$$\min_{E\subseteq \text{Exc}(f)} \{-b_E, 1-a_i, 1\}.$$

Thus,

$$\begin{aligned} \operatorname{discrep}(X, \Delta) &= \min_{E \subseteq \operatorname{Exc}(f)} \{ \operatorname{discrep}(Y, \Delta_Y), -b_E \} \\ &= \min_{E \subseteq \operatorname{Exc}(f)} \{ 1 - a_i, -b_E, 1 \}, \end{aligned}$$

as desired.

Proposition 8.8. Let (X, Δ) be a sub-klt pair. Then there exists a log resolution $f: Y \to X$ for (X, Δ) such that if we write

$$K_Y + A_Y - B_Y = f^*(K_X + \Delta), \quad A_Y, B_Y \ge 0$$

and A_Y and B_Y have no common components, then Supp A_Y is smooth, i.e., disjoint union of smooth prime divisors.

Proof. For any log resolution $f: Y \to X$ for (X, Δ) , write

$$K_Y + \Delta_Y = f^*(K_X + \Delta)$$

with $f_*K_Y = K_X$, $f_*\Delta_Y = \Delta$, $\Delta = \sum d_iD_i$.

Since (X, Δ) is klt, there exists $m \in \mathbb{N}$ such that

totaldiscrep
$$(X, \Delta) > -1 + \frac{1}{m}$$
.

So $d_i \leq 1 - \frac{1}{m}$ and thus $d_{i_1} + d_{i_2} \leq 2 - \frac{2}{m}$ for any i, i_1, i_2 . Consider the partition

$$(0, 2 - \frac{2}{m}] = \bigsqcup_{k=1}^{2m-2} \left(\frac{k-1}{m}, \frac{k}{m}\right] = \bigsqcup_{k=1}^{2m-2} I_k.$$

We define

$$r(f) = (r_1, \dots, r_{2m-2}(f)) \in \mathbb{Z}_{\geq 0}^{2m-2}$$

by the formula

$$r_k(f) = \# \{(i_1, i_2) \mid D_{i_1} \cap D_{i_2} \neq \emptyset, i_1 < j_2, d_{i_1} + d_{i_2} \in I_k \}.$$

Consider the inverse lexicographic order \succeq_{invlex} on $\mathbb{Z}_{\geq 0}^{m-2}$. Then $(\mathbb{Z}_{\geq 0}^{2m-2}, \succeq_{\text{invlex}})$ satisfies descending chain condition.

For a given f, if r(f) = 0, then we are done. Otherwise, take the maximal k such that $r_k(f) \neq 0$ and (i_1, i_2) realizing it, i.e., $Z = D_{i_1} \cap D_{i_2}$ and $\operatorname{mult}_Z \Delta_Y = d_{i_1} + d_{i_2} \in I_k$. Consider $g: Y' = \operatorname{Bl}_Z Y \to Y$ and let $f' = f \circ g$, E the exceptional divisor g. Write

$$K_{Y'} + \Delta_{Y'} = (f')^* (K_X + \Delta) = f^* (K_Y + \Delta_Y)$$

with $g_*K_{Y'}=K_Y, g_*\Delta_{Y'}=\Delta_Y$. Then

$$e = \operatorname{coeff}_E \Delta_{Y'} = -a(E, Y, \Delta_Y) = -1 + (d_{i_1} + d_{i_2}) \in -1 + I_k$$

by (7.9).

Since $d_{i_{\ell}} \leq 1 - \frac{1}{m}$,

$$e + d_{i_{\ell}} \le -1 + \frac{k}{m} + 1 - \frac{1}{m} = \frac{k-1}{m},$$

i.e., $e + d_{i_{\ell}} \in I_{k'}$ for some k' < k. This means that the intersections of E and the strict transforms of D_{i_1} , D_{i_2} does not contribute to $r_{k'}(f')$ for $k' \ge k$. Hence, $r_{k'}(f') = r_{k'}(f) = 0$ for k' > k and $r_k(f') = r_k(f) - 1$, i.e., $r(f) \succ_{\text{invlex}} r(f')$. By the DCC condition, we get a log resolution f such that $r_k(f) = 0$ for all k.

Corollary 8.9. Let (X, Δ) be a sub-klt, $f: (Y, A_Y - B_Y) \to (X, \Delta)$ a special log resolution as in (8.8). If

$$a(E, X, \Delta) < 1 + \text{totaldiscrep}(X, \Delta)$$
 (\spadesuit)

for some divisor E over X, then center E is a divisor. In particular,

#{exceptional divisors
$$E$$
 over X with $a(E, X, \Delta) = 0$ }
$$\leq \#\{\text{exceptional divisors } E \text{ over } X \text{ with } (\clubsuit)\}$$

$$\leq \#\{f\text{-exceptional divisors}\} < \infty$$

Exceptional divisors E over X with $a(E, X, \Delta) = 0$ is called **crepant** (since it has zero discrepancy).

Proof. For an exceptional divisor E over Y, it follows from (8.5) that

$$a(E, X, \Delta) = a(E, Y, A_Y - B_Y) \ge a(E, Y, A_Y) \ge \operatorname{discrep}(Y, A_Y).$$

Write $A_Y = \sum a_i A_i \ge 0$. Then (8.3) and (7.10) tells us that

$$\operatorname{discrep}(Y, A_Y) = \min \left\{ 1, \min\{1 - a_i\}, \min_{A_i \cap A_j \neq \emptyset} \{1 - a_i - a_j\} \right\}$$

$$\geq 1 + \operatorname{totaldiscrep}(Y, A_Y - B_Y) = 1 + \operatorname{totaldiscrep}(X, \Delta).$$

9 Basepoint-free theorem, 10/2

Theorem 9.1 (Basepoint-free theorem). Let (X, Δ) be a projective klt pair, D a nef Cartier divisor on X such that there exists $a \in \mathbb{Q}_{>0}$ with $aD - (K_X + \Delta)$ is big and nef. Then |mD| is basepoint-free for large enough $m \in \mathbb{N}(X, D)$, i.e., D is semi-ample. **Remark.** If mD is bpf for all $m \gg 1$, then D = (m+1)D - mD is Cartier and D is nef, so these two condition in the bpf theorem are necessary.

Theorem 9.2 (Non-vanishing theorem, Shokurov). Let (X, Δ) be a projective klt pair, D a nef Cartier divisor such that there exists $a \in \mathbb{Q}_{>0}$ and an effective Cartier divisor A with $aD + A - (K_X + \Delta)$ is big and nef. Then

$$H^0(X, mD + A) \neq 0$$

for $m \gg 1$.

Lemma 9.3. Let X be a projective variety, M a big and nef \mathbb{Q} -Cartier \mathbb{Q} -divisor. Then there exists a resolution $f: Y \to X$, $\sum F_i$ a SNC divisor on Y with $\bigcup F_i \supseteq \operatorname{Exc}(f)$ such that for each $\eta > 0$, there exists $p_i \in (0, \eta) \cap \mathbb{Q}$ with

$$f^*M - \sum p_i F_i$$

ample.

Proof of (9.1) assuming (9.2). By the non-vanishing theorem, $|mD| \neq \emptyset$ for $m \gg 1$. For any integer $b \geq 2$, let B(b) be the reduced base locus of |bD|. Since X is noetherian, the decreasing sequence $\{B(b^r)\}$ stabilizes to a subset $B_{\infty}(b)$.

If all $B_{\infty}(b) = \emptyset$, then $B(2^r) = B(3^r) = \emptyset$ for $r \gg 1$. Then for $m \gg 1$, say $m = a2^r + b3^r$, we get

$$B(m) \subseteq B(2^r) \cup B(3^r) = \varnothing.$$

From now on, we assume that $B_{\infty}(b) = B(b^r) \neq \emptyset$ for some $b \geq 2$. There exists a log resolution $f: Y \to X$ and a SNC divisor $\sum F_i$ on Y (not necessarily f-exceptional) such that

- (a) $|b^r f^* D \sum r_i F_i|$ is basepoint-free, $r_i \ge 0$ for each i, and $\bigcup_{r_i > 0} f(F_i) = B_{\infty}(b) = B(b^r)$;
- (b) $K_Y \equiv f^*(K_X + \Delta) + \sum a_i F_i$ with $a_i > -1$ for each i (since (X, Δ) is klt);
- (c) $f^*(aD (K_X + \Delta)) \sum p_i F_i$ is ample for some $p_i \in (0, 1 + a_i) \cap \mathbb{Q}$ for each i.

Note that $a_i > 0$ only when F_i is f-exceptional since $\Delta \geq 0$.

Since $f^{-1}(B(b^r)) = \operatorname{Bs}|b^r f^* D|$, we want to find F_i with $r_i > 0$ such that $F_i \nsubseteq \operatorname{Bs}|b^r f^* D|$ for all $b \gg 1$.

For each $m \in \mathbb{N}$, $c \in \mathbb{Q}_{>0}$, we define $N_{m,c}$ by the formula

$$K_Y + N_{m,c} = mf^*D + \sum_i (-cr_i + a_i - p_i)F_i$$

so that

$$N_{m,c} = (m - cb^r - a)f^*D + c\left(b^r f^*D - \sum_i r_i F_i\right) + f^*(aD - (K_X + \Delta)) - \sum_i p_i F_i.$$

By our construction, $b^r f^* D - \sum r_i F_i$ is basepoint-free (and hence nef) and $f^* (aD - (K_X + \Delta)) - \sum p_i F_i$ is ample. Since $f^* D$ is nef, $N_{m,c}$ is ample if $m \geq cb^r + a$. Since $B_{\infty}(b) \neq \emptyset$, not all r_i are zero. Take

$$c = \min_{r_i > 0} \frac{1 + a_i - p_i}{r_i} \in \mathbb{Q}_{> 0}$$

so that $\min_i(-cr_i + a_i - p_i) = -1$.

By perturbing the p_i a little (so that the divisor is still ample), we may assume that there is only one $i=i_0$ such that $c=\frac{1+a_{i_0}-p_{i_0}}{r_{i_0}}$, $r_{i_0}>0$. Let $F=F_{i_0}$. We have then for $m\geq cb^r+a$,

$$K_Y + N_{m,c} = mf^*D + \sum_{i \neq i_0} (-cr_i + a_i - p_i)F_i - F = mf^*D + B - F.$$

Notice that $\lceil B \rceil$ is effective and f-exceptional (since F_i appears in $\lceil B \rceil$ implies $a_i > cr_i + p_i > 0$).

Pick m to be a power of b that is at least $\max\{b^r, cb^r + a\}$. We get

$$\lceil N_{m,c} \rceil = f^*D - K_Y + \lceil B \rceil - F,$$

and hence

$$\mathrm{H}^0(Y, mf^*D + \lceil B \rceil) \longrightarrow \mathrm{H}^0(F, mf^*D + \lceil B \rceil) \longrightarrow \mathrm{H}^1(Y, K_Y + \lceil N_{m,c} \rceil) = 0$$

by (5.5). Since $H^0(Y, mf^*D + \lceil B \rceil) \cong H^0(X, mD)$ and $f(F) \subseteq B_{\infty}(b) = B(m)$, all elements in $H^0(Y, mf^*D + \lceil B \rceil)$ vanish on $F = F_{i_0}$. This implies $H^0(F, mf^*D + \lceil B \rceil) = 0$. However, consider the pair $(F, (\lceil B \rceil - B)|_F)$. Since $f^*D|_F$ is nef Cartier and $\lceil B \rceil$ is effective Cartier,

$$N_{m,c}|_F = mf^*D|_F + \lceil B \rceil|_F - (K_F + (\lceil B \rceil - B)|_F)$$

is ample (and hence big and nef). So (9.2) shows that

$$H^0(F, mf^*D + \lceil B \rceil) \neq 0,$$

a contradiction.

10 Rationality theorem, 10/5

Theorem 10.1. Let (X, Δ) be a projective klt pair,

$$a = \min\{e \in \mathbb{N} \mid e(K_X + \Delta) \in \mathrm{CDiv}(X)\}\$$

the index of (X, Δ) , H a big and nef Cartier divisor on X. If $K_X + \Delta$ is not nef, then the nef value

$$r = r(H) := \sup\{t \in \mathbb{R} \mid H_t := H + t(K_X + \Delta) \text{ is nef}\} \in \mathbb{Q}$$

and r/a = u/v with $u, v \in \mathbb{Z}$, gcd(u, v) = 1, $0 < v \le a(\dim X + 1)$.

First, we observe that

$$[0,r] = \{t \in \mathbb{R} \mid H_t \text{ is nef}\}$$

since H is nef, $K_X + \Delta$ is not nef, and nef is a closed condition. Also, for $t \in [0, r) \cap \mathbb{Q}$,

$$H_t = \frac{t}{r} H_t + \frac{r - t}{r} H$$

is a sum of a nef divisor and a big and nef divisor, hence big and nef.

If r is not rational, we shall consider

$$\{(p,q) \in \mathbb{N}^2 \mid \frac{q-1}{p} < r < \frac{q}{p}\},$$

which has infinite size. Since $pH + (q-1)(K_X + \Delta) = pH_{(q-1)/p}$ is big and nef, we can apply vanishing theorem on $pH_{q/p} = pH_{(q-1)/p} + K_X + \Delta$, which is not nef, hence has base points.

Proof. Without loss of generality, we may assume that r > 0. Let $n = \dim X$ and $D(x,y) = xH + y(K_X + \Delta)$. We see from the above observation that D(x,y) is big and nef if $\frac{y}{x} \in [0,r) \cap \mathbb{Q}$.

First, we may assume that D(1,0) and D(1,a) are basepoint-free by (9.1). Indeed, take $t \in \mathbb{N}$ such that

$$D(t, a), \quad D(t, a) - (K_X + \Delta) = D(t, a - 1)$$

are big and nef. Then $H' \in mD(t,a)$ is basepoint-free for $m \gg 1$. Note that

$$H' + (K_X + \Delta) = D(mt, (m+1)a) = \frac{m-1}{3}D(2t, a) + \frac{m+2}{3}D(t, 2a).$$

So if we take t larger such that

$$D(2t, a-1), D(t, 2a-1)$$

are big and nef, then for $m \gg 0$ with $m \equiv 1 \pmod{3}$, H' and $H' + a(K_X + \Delta)$ are basepoint-free. Now, since

$$H' + r'(K_X + \Delta) = H + \frac{ma + r'}{mt}(K_X + \Delta),$$

we get $r = \frac{ma+r'}{mt}$, r' = mtr - ma, i.e., $r \in \mathbb{Q}$ if and only if $r' \in \mathbb{Q}$. Once we know r/a = u/v, r'/a = u'/v', we may choose m, t such that $\gcd(m,v) = \gcd(t,v) = 1$. Then $v \le v' \le a(n+1)$. Hence, we may replace H by H'.

For $\eta \in \mathbb{Q}_{>0}$, let

$$\Lambda_{\eta} = \{ (p,q) \in \mathbb{N}^2 \mid \frac{aq - \eta}{p} < r < \frac{aq}{p} \} = \{ (p,q) \in \mathbb{N}^2 \mid 0 < aq - rp < \eta \}.$$

It is clear that $\eta \leq \varepsilon$ implies $\Lambda_{\eta} \subseteq \Lambda_{\varepsilon}$.

If $r \notin \mathbb{Q}$, then Λ_{η} is an infinite set for all $\eta \in \mathbb{Q}_{>0}$ since $0 < q - \frac{r}{a}p < \frac{\eta}{a}$ has infinitely many solutions. If $r \in \mathbb{Q}$ and exists $(p_0, q_0) \in \Lambda_{\eta}$. Then $(p = p_0 + da, q = q_0 + dr)$ also lies in Λ_{η} for any $dr \in \mathbb{N}$. In each case, Λ_{η} is an infinite set whenever it is nonempty.

If $(p,q) \in \Lambda_{\eta}$, then $D(p,aq-\eta)$ is big and nef, whereas D(p,aq) is not nef, and hence not basepoint-free. Let $B(p,q) \neq \emptyset$ be the reduced base locus of D(p,aq). Notice that B(p,q) = X if and only if $|D(p,aq)| = \emptyset$.

If there exists $(p_0, q_0) \in \Lambda_1$, then $B(p, q) \subseteq B(p_0, q_0)$ for all $(p, q) \in \Lambda_1$ with $q \gg 1$. Indeed, for $(p, q) \in \Lambda_1$, let $q = \alpha q_0 + \beta$ with $0 \leq \beta < q_0$ with $\alpha, \beta \in \mathbb{N}$. Then

$$D(p, aq) = \alpha D(p_0, aq_0) + \beta D(1, a) + (p - \alpha p_0 - \beta)D(1, 0).$$

Since

$$p - \alpha p_0 - \beta > p - \alpha p_0 - q_0 \ge p - \frac{q}{q_0} p_0 - q_0$$
$$> \frac{aq - 1}{r} - \frac{q}{q_0} p_0 - q_0 = q \left(\frac{a}{r} - \frac{p_0}{q_0} \right) - \frac{1}{r} - q_0 > 0$$

for q large enough, we see that $B(p, aq) \subseteq B(p_0, aq_0)$ for q large enough (since D(1, a) and D(1, a) are basepoint-free).

Since X is noetherian, there is a closed subset B_{∞} of X such that $B_{\infty} = B(p,q)$ for all $(p,q) \in \Lambda_1$ with $q \gg 1$.

We proceed by contradiction assuming that either $r \notin \mathbb{Q}$ or r/a = u/v but v > a(n+1). Then $\Lambda_{1/(n+1)}$ is nonempty (and hence infinite). The first statement clear holds when $r \notin \mathbb{Q}$. For the other case, there exists $p, q \in \mathbb{N}$ such that $0 < vq - up = 1 < \frac{v}{a(n+1)}$ so that $0 < aq - rp < \frac{1}{n+1}$, i.e., $(p,q) \in \Lambda_{1/(n+1)}$.

We claim that there exists sufficiently large $(p,q) \in \Lambda_1$ such that $|D(p,aq)| \neq \emptyset$ (thus $B_{\infty} \subsetneq X$). Indeed, since $D(p,aq) - (K_X + \Delta) = D(p,aq - 1)$ is big and nef, $H^i(X, D(p,aq)) = 0$ for all i > 0. It is therefore enough to say $P(x,y) = \chi(X, D(x,ay))$ does not vanish at some point of Λ_1 .

Lemma 10.2. Assume $\Lambda_{\eta/(n+1)}$ is infinite. If a polynomial R(x,y) of degree at most n vanishes on all sufficiently large elements of Λ_{η} , then $R(x,y) \equiv 0$.

Proof of lemma. For $(p,q) \in \Lambda_{\eta/(n+1)}$ large enough, $(jp,jq) \in \Lambda_{\eta}$ for $1 \leq j \leq n+1$, and hence, R(jp,jq)=0. Since $\deg R \leq n$, $R|_{xq=yp}\equiv 0$. Thus, R vanishes on infinitely many such lines, so $R\equiv 0$.

In our case, since $\Lambda_{1/(n+1)}$ is infinite and

$$P(x,0) = \chi(X, xH) = \frac{H^n}{n!} x^n + O(x^{n-1}) \neq 0,$$

there exists $(p,q)_{\Lambda_1}$ with $h^0(X,D(p,aq)) = P(p,q) \neq 0$, as desired.

Define

$$\Lambda_1^{\infty} = \{ (p, q) \in \Lambda_1 \mid B(p, q) = B_{\infty} \}.$$

Fix $(p_0, q_0) \in \Lambda_1^{\infty}$ such that $(p, q) \in \Lambda_1^{\infty}$ if $q \geq q_0$. As in the proof of (9.1), there exists a log resolution $f: Y \to X$ and a SNC divisor $\sum F_i$ on Y (not necessarily exceptional) such that

(a) $|f^*D(p_0, aq_0) - \sum r_i F_i|$ is basepoint-free, $r_i \geq 0$ for each i, and

$$\bigcup_{r_i > 0} f(F_i) = B(p_0, q_0) = B_{\infty}.$$

- (b) $K_Y \equiv f^*(K_X + \Delta) + \sum a_i F_i$ with $a_i > -1$ for each i. Note that $a_i > 0$ only when F_i is f-exceptional since $\Delta \geq 0$.
- (c) $f^*D(p_0, aq_0 1) \sum p_i F_i$ is ample for some $p_i \in (0, 1 + a_i) \cap \mathbb{Q}$ for each i.

Since $B_{\infty} \neq \emptyset$, r_i are not all zero. As in the proof of (9.1), consider the log canonical threshold

$$c = \min_{r_i > 0} \frac{1 + a_i - p_i}{r_i}, \quad \min_i \{-cr_i + a_i - p_i\} = -1$$

and may assume there exists a unique i_0 such that $c = \frac{1+a_{i_0}-p_{i_0}}{r_{i_0}}$. Let $F = F_{i_0}$ and

$$B = \sum_{i \neq i_0} (-cr_i + a_i - p_i) F_i.$$

Notice that $\lceil B \rceil$ is effective, f-exceptional, and $F \not\subseteq \operatorname{Supp} B$.

Consider

$$\begin{split} N_{p,q} &= f^*D(p,aq) - K_Y + \sum_i (-cr_i + a_i - p_i)F_i \\ &= f^*D(p - (c+1)p_0, a(q - (c+1)q_0)) + (c+1)f^*D(p_0, q_0) \\ &- f^*(K_X + \Delta) + \sum_i (-cr_i - p_i)F_i \\ &= f^*D(p - (c+1)p_0, a(q - (c+1)q_0)) + c\left(f^*D(p_0, q_0) - \sum_i r_i F_i\right) \\ &+ \left(f^*D(p_0, aq_0 - 1) - \sum_i p_i F_i\right). \end{split}$$

The second term is basepoint-free, hence nef; the third term is ample by our assumption.

Set

$$Q(x,y) = \chi(F, (f^*D(x,ay) + \lceil B \rceil)|_F), \quad \eta_0 = \min\{1, (c+1)(aq_0 - rp_0)\}.$$

Lemma 10.3. If $q > (c+1)q_0$ and $aq - rp \in \Lambda_{\eta_0}$, then $N_{p,q}$ is ample and Q(p,q) = 0.

Proof of lemma. Since $q > (c+1)q_0$ and $aq - rp < (c+1)(aq_0 - rp_0)$ implies $f^*D(p - (c+1)p_0, a(q - (c+1)q_0))$ is nef, it follows from the above calculation that $N_{p,q}$ is ample.

Since

$$K_Y + N_{p,q} = f^*D(p, aq) + B - F,$$

we have

$$\lceil N_{p,q} \rceil = f^*D(p,aq) - K_Y + \lceil B \rceil - F,$$

SO

$$H^{0}(Y, f^{*}D(p, aq) + \lceil B \rceil) \longrightarrow H^{0}(F, (f^{*}D(p, aq) + \lceil B \rceil)|_{F})$$

$$\longrightarrow H^{1}(Y, f^{*}D(p, aq) + \lceil B \rceil - F) = 0$$

by (5.5) and $H^0(Y, f^*D(p, aq) + \lceil B \rceil) \cong H^0(X, f^*D(p, aq))$ since $\lceil B \rceil$ is f-exceptional. So all elements in $H^0(Y, f^*D(p, aq) + \lceil B \rceil)$ vanishes on $F = F_{i_0}$ $(f(F) \subseteq B_{\infty})$ implies $H^0(F, (f^*D(p, aq) + \lceil B \rceil)_F) = 0$.

Since $(f^*D(p,aq)+B)|_F-K_F=N_{p,q}|_F$ is ample, we get

$$Q(p,q) = \chi((f^*D(p,aq) + \lceil B \rceil)|_F) = 0.$$

For $q > (c+1)q_0$ and aq/p < r, we have $f^*D(p,aq)|_F$ is nef and $N_{p,q}|_F = (f^*D(p,aq) + B)|_F - K_F$ is ample by our assumption in (10.3).

Since for $m \gg 1$, $(f^*D(mp, amq) + B)|_F - K_F$ is still ample,

$$Q(mp, mq) = h^{0}((f^{*}D(mp, amq) + \lceil B \rceil)|_{F}) \neq 0$$

by (9.2). Then (10.2) implies $\Lambda_{\eta_0/(n+1)} = \emptyset$, and hence $r = u/v \in \mathbb{Q}$. When $(p,q) \in \Lambda_1$, $aq - rp = \frac{aqv - vp}{v}$ can take at most v values. So we may choose $(p_0, q_0) \in \Lambda_1^{\infty}$ such that $aq_0 - rp_0$ is maximal among elements of Λ_1^{∞} . If $(p,q) \in \Lambda_1^{\infty}$, $q > (c+1)q_0$,

$$aq - rp \le aq - rp_0 < (c+1)(aq_0 - rp_0),$$

so $(p,q) \in \Lambda_{\eta_0}$, and hence Q(p,q) = 0 by the above calculation. Since $\Lambda_{1/(n+1)}$ is infinite, (10.2) then shows that $Q \equiv 0$ a contradiction.

11 Cone theorem and length of extramal ray, 10/12

Theorem 11.1 (Cone theorem). Let (X, Δ) be a projective klt pair. Then

$$\mathcal{R} = \{ \text{all } (K_X + \Delta) \text{-negative extremal rays in } \overline{\text{NE}}(X) \}$$

is a countable set, and

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}(X)_{K_X + \Delta \ge 0} + \sum_{R \in \mathscr{R}} R.$$

These rays are locally discrete in the half-space $\overline{\rm NE}(X)_{K_X+\Delta<0}$.

For each $R \in \mathcal{R}$, there exists a rational curve Γ spanning R such that

$$0 < -(K_X + \Delta) \cdot \Gamma \le 2 \dim X.$$

Remark. For X smooth and $\Delta = 0$, the cone theorem was proved by Mori, and the bound was sharpened by $K_X \cdot \Gamma \leq \dim X + 1$.

Let $K_{\Delta} = K_X + \Delta$. One can perturb H such that $K_{\Delta} + rH$ meets $\overline{\text{NE}}(X)$ in an extremal ray. Since $r(H) \in \mathbb{Q}$, there are at most countably many such rays.

Theorem 11.2 (Contraction theorem). Let (X, Δ) be a projective klt pair, $\overline{\text{NE}}(X) \supseteq F$ a $(K_X + \Delta)$ -negative extremal face. Then there exists a unique (up to isomorphism) contraction $\text{cont}_F \colon X \to Z$, called the contraction of F, to a projective variety Z such that $\text{cont}_{F*} \mathcal{O}_X = \mathcal{O}_Z$ and for any irreducible curve $C \subseteq X$, $\text{cont}_F(C)$ is a point if and only if $[C] \in F$. In particular, $-(K_X + \Delta)$ is cont_F -ample.

The image of the injective (by projection formula) map $\operatorname{cont}_F^*\colon \operatorname{Pic} Z\to \operatorname{Pic} X$ is

$$\{L\in\operatorname{Pic} X\mid L\cdot C=0,\ \forall [C]\in F\}.$$

In particular, we have the exact sequence

$$0 \longrightarrow N^1(Z)_{\mathbb{R}} \xrightarrow{\operatorname{cont}_F^*} N^1(X)_{\mathbb{R}} \longrightarrow \langle F \rangle_{\mathbb{R}}^{\vee} \longrightarrow 0,$$

its dual exact sequence

$$0 \longrightarrow \langle F \rangle_{\mathbb{R}} \longrightarrow N_1(X)_{\mathbb{R}} \xrightarrow{\operatorname{cont}_{F*}} N_1(Z)_{\mathbb{R}} \longrightarrow 0,$$

and $\rho(Z) = \rho(X) - \dim F$.

Remark. Using this theorem, we can prove that $F = \overline{NE}(X/Z) = \overline{NE}(\text{cont}_F)$.

The complexes in the theorem is not exact in general, e.g., $X = E \times E$ is a abelian surface, where (E,0) is an elliptic curve, $N_1(X)_{\mathbb{R}} = N^1(X)_{\mathbb{R}} \ni f_1 = [\{0\} \times E], f_2 = [E \times \{0\}], \delta = [\Delta]$, the complex

$$0 \longrightarrow \langle f_2 \rangle_{\mathbb{R}} \longrightarrow N_1(X)_{\mathbb{R}} \xrightarrow{\operatorname{pr}_{2*}} N_1(E)_{\mathbb{R}} \longrightarrow 0$$

is not exact since $\operatorname{pr}_{2*}(\delta - f_1) = 0$ implies $0 = \delta^2 = (f_1 + af_2)^2 = 2a$ for some $a \neq 0$. Note that

$$\overline{\mathrm{NE}}(X) = \mathrm{Nef}(X) = \left\{ \alpha = xf_1 + yf_2 + z\delta \,\middle|\, \sum yz = 0, \sum x \ge 0 \right\}$$

is not polyhedral. If E is very general in the moduli, then $\{f_1, f_2, \delta\}$ is a basis of $N_1(X)_{\mathbb{R}}$.

Definition 11.3. Let $f: X \to Y$ be a proper morphism of varieties over a characteristic 0 algebraically closed field k, D a Cartier divisor on X.

- We say D is f-big if $\operatorname{rk} f_* \mathcal{O}_X(mD) > c \cdot m^n$ for some c > 0, and $m \gg 1$, where n is the dimension of the general fiber of f.
- We say D is f-free if $f^*f_*\mathcal{O}_X(D) \to \mathcal{O}_X(D)$ is surjective.

Theorem 11.4. Let X, Y be normal varieties over \mathbb{C} , $g: X \to Y$ be a projective morphism. Assume that (X, Δ) is a klt pair and $-(K_X + \Delta)$ is g-ample. Then every irreducible component $E \subseteq \operatorname{Exc}(f)$ is covered by rational curves Γ with $g(\Gamma)$ a point and such that

$$0 < -(K_X + \Delta) \cdot \Gamma \le 2(\dim E - \dim g(E)). \tag{\spadesuit}$$

Proof. Without loss of generality, we may assume that g has connected fibers (by replacing g with its Stein factorization). Since Y is normal, $E = g^{-1}(g(E))$.

Since for a flat family of curves whose general fibers are rational curves, any irreducible component of its special fiber is again a rational curve and a rational curve can only degenerate into a union of rational curves of lower degree, it suffices to show that passing through a general point of E, there exists a rational curve contracted by g and satisfies (\spadesuit) .

We may replace Y with the intersection of $\dim g(E)$ general hyperplane sections so that g(E) is a point (note that the conditions are preserved).

Let H be a very ample divisor on X, $e = \dim E$. Let $\nu \colon \widetilde{E} \to E$ be the normalization of E, C a smooth curve in $\widetilde{E} \setminus \operatorname{Sing} \widetilde{E}$, given by intersection of e - 1 general hyperplanes $D_1, \ldots, D_{e-1} \in |\nu^*H|$.

Claim. We have $(K_X + \Delta) \cdot H^{e-1} \cdot E \geq K_{\widetilde{E}} \cdot (\nu^* H)^{e-1}$, and the inequality is strict if $E \neq X$.

Proof of claim. If E = X, then

$$(K_X + \Delta) \cdot H^{\dim X - 1} \ge K_X \cdot H^{\dim X - 1}$$

since H is ample.

If $E \neq X$, then g is birational. We prove this by induction on e. If $e \geq 2$, then take a general normal hyperplane $X_1 \in |H|$. Let Y_1 be the normalization of $g(X_1)$, $E_1 = X_1 \cap E$ an irreducible component of dimension e-1 of $\operatorname{Exc}(g_1 \colon X_1 \to Y_1)$. Note that $\widetilde{E}_1 = \nu^{-1}(X_1) \in |\nu^*H|_{E_1}|$ is normal. Since $K_{X_1} \sim (K_X + H)|_{X_1}$, $K_{\widetilde{E}_1} \sim (K_{\widetilde{E}} + \nu^*H)|_{\widetilde{E}_1}$. Then

$$(K_{X_1} + \Delta_1) \cdot H^{e-2} \cdot E_1 = (K_X + H + \Delta)|_H \cdot H^{e-2}|_H \cdot H|_H$$
$$= (K_X + \Delta) \cdot H^{e-1} \cdot E + H^e \cdot E$$
$$K_{\widetilde{E}_1} \cdot (\nu^* H)^{e-2} = (K_{\widetilde{E}} + \nu^* H)|_{\widetilde{E}_1} \cdot (\nu^* H)^{e-2}$$
$$= K_{\widetilde{E}} \cdot (\nu^* H)^{e-1} + H^e \cdot E.$$

So it suffices to prove the case e = 1, i.e., $(K_X + \Delta) \cdot E > \deg K_{\widetilde{E}}$.

Assume to the contrary that $(K_X + \Delta) \cdot E \leq \deg K_{\widetilde{E}}$. Since $\operatorname{Pic}(E) \xrightarrow{\nu^*} \operatorname{Pic}(\widetilde{E})$ is surjective, there exists a Cartier divisor D_E on E such that $\nu^* \mathcal{O}(D_E) \cong \mathcal{O}(K_{\widetilde{E}}) = \omega_{\widetilde{E}}$. There exists an injective trace map $\nu_* \omega_{\widetilde{E}} \to \omega_E$ (since E is proper together with e = 1 implies E is projective, and hence ω_E is defined). We get

$$h^0(\omega_E \otimes \mathcal{O}(-D_E)) \ge h^0(\nu_*\omega_{\widetilde{E}} \otimes \mathcal{O}_X(-D_E)) = h^0(\omega_{\widetilde{E}} \otimes \nu^*\mathcal{O}(-D_E)) = 1.$$

Since $h^0(\omega_E \otimes \mathcal{O}(-D_E)) = h^1(E, D_E)$ by Serre duality (note that E has no embedded point, hence E is a Cohen–Macaulay curve).

By our assumption, $D_E - (K_X + \Delta)|_E$ has nonnegative degree. After shrinking Y, we may assume that Y is contractible and Stein so that the higher cohomologies of \mathbb{Z} and any coherent sheaf vanish. Moreover, we may assume that g induces an isomorphism over $Y \setminus g(E) = Y \setminus \{0\}$. Set $X_0 = g^{-1}(0) \supseteq E$. Since

$$\operatorname{Supp}(R^i g_* \mathbb{Z}) = \operatorname{Supp}(R^i g_* \mathscr{F}) = \{0\}$$

for any coherent sheaf \mathscr{F} on X and i > 0. Using Leray spectral sequence, we get

$$\mathrm{H}^i(X,\mathbb{Z}) \cong \mathrm{H}^0(Y,R^ig_*\mathbb{Z}) \cong \mathrm{H}^i(X_0,\mathbb{Z}), \quad \mathrm{H}^i(X,\mathscr{F}) \cong \mathrm{H}^0(Y,R^ig_*\mathscr{F}).$$

We can extend D_E to a Cartier divisor D on X if we replace X by a small analytic neighbourhood of E (see [Debarre, Higher-dimensional algebraic geometry]). Then $D - (K_X + \Delta)$ is g-nef by assumption and g-big since g is birational. Since (X, Δ) is klt, we get $R^i g_* \mathcal{O}_X(D) = 0$ for i > 0 by (5.5) (for complex analytic variety by N. Nakayama), and hence $H^i(X, D) = 0$ for i > 0. It follows that

$$0 = \mathrm{H}^1(X, D) \longrightarrow \mathrm{H}^1(E, D_E) \longrightarrow \mathrm{H}^2(X, \mathscr{I}_E(D)) \cong \mathrm{H}^0(Y, R^2 g_* \mathscr{I}_E(D)) = 0,$$

a contradiction.
$$\Box$$

Now, since $-(K_X + \Delta)$ is g-ample, $K_{\widetilde{E}} \cdot C < 0$ by our claim. Since $-\nu^*(K_X + \Delta)$ is ample on \widetilde{E} , it follows from (4.1) that for each $x \in C$, there exists a rational curve $\widetilde{\Gamma} \subseteq \widetilde{E}$ containing x with

$$-\nu^*(K_X + \Delta) \cdot \widetilde{\Gamma} \le 2e \frac{-\nu^*(K_X + \Delta) \cdot C}{-K_{\widetilde{E}} \cdot C} \le 2e$$

again by our claim. Therefore, E is covered by a rational curve $\Gamma = \nu_* \widetilde{\Gamma}$ with

$$0 < -(K_X + \Delta) \cdot \Gamma \le 2(\dim E - \dim g(E)).$$

Lemma 11.5. Let X be a normal variety, Y a proper variety. Suppose there is a proper birational morphism $f: Y \to X$. Let D be a Cartier divisor on X, F an effective exceptional divisor on Y. Then

$$\mathcal{O}_X(D) \cong f_* \mathcal{O}_Y(f^*D + F).$$

In particular, $H^0(X, D) \cong H^0(Y, f^*D + F)$ and $f_*\mathcal{O}_X(F) \cong \mathcal{O}_X$.

Proof. Since f is dominant, there is an injection

$$\mathcal{O}_X(D) \longrightarrow f_*\mathcal{O}_Y \otimes \mathcal{O}_X(D) = f_*f^*\mathcal{O}_X(D).$$

Also, since F is effective, there is an injection

$$f^*\mathcal{O}_X(D) \to f^*\mathcal{O}_X(D) \otimes \mathcal{O}_Y(F) = \mathcal{O}_Y(f^*D + F).$$

This gives us an injection $f_*f^*\mathcal{O}_X(D) \to f_*\mathcal{O}_X(f^*D+F)$. Hence, there exists a natural injection $\varphi \colon \mathcal{O}_X(D) \to f_*\mathcal{O}_Y(f^*D+F)$.

Since X is normal, $\operatorname{codim}_X \operatorname{dom} f^{-1} \geq 2$ and φ is isomorphic over $X \setminus \operatorname{dom} f^{-1}$, φ is an isomorphism.

Corollary 11.6. Let X be a normal variety, Y a proper factorial variety. Suppose there is a proper birational morphism $f: Y \to X$. Then

- (1) for an exceptional divisor E, E is effective if and only if $f_*\mathcal{O}_Y(E) \cong \mathcal{O}_X$;
- (2) if D, D' are Cartier divisors on X, F, F' are exceptional divisors on Y such that $f^*D + F \sim f^*D' + F'$, then $D \sim D'$ and F = F'.

Proof. (1) If E is effective, it follows from the lemma that $f_*\mathcal{O}_Y(E) \cong \mathcal{O}_X$. Conversely, we get

$$\mathcal{O}_Y = f^* \mathcal{O}_X \cong f^* f_* \mathcal{O}_Y(E) \longrightarrow \mathcal{O}_Y(E),$$

which gives a nonzero section in $H^0(\mathcal{O}_Y(E))$, i.e., E is effective.

(2) Write
$$F = F_1 - F_2$$
, $F' = F'_1 - F'_2$ with F_1 , F_2 , F'_1 , $F'_2 \ge 0$. Then
$$f^*(D - D') + F_1 + F'_2 \sim F_2 + F'_1.$$

It follows from the lemma that $D-D'\sim 0$. so $F_1+F_2'\sim F_2+F_1'$. By lemma,

$$H^{0}(Y, F_{1} + F'_{2}) = H^{0}(X, \mathcal{O}_{X}) \cong \mathbf{k}.$$

Hence,
$$F_1 + F'_2 = F_2 + F'_1$$
, i.e., $F_1 = F'_1$, $F_2 = F'_2$, $F = F'$.

12 Surface singularities

Theorem 12.1 (Mumford). Let X be a normal surface, $f: Y \to X$ a proper birational map from a smooth surface Y with exceptional curves E_i . Then $(E_i \cdot E_j)$ is negative definite.

Proof. We only prove the case when X is projective. Let H be the pullback of an ample Cartier divisor on X. Then $H^2 > 0$ and $H \cdot E_i = 0$. Let $D = e^i E_i \neq 0$. Then $H \cdot D = 0$. By Hodge index theorem, we get $D^2 \leq 0$ and the equality holds if and only if $D \equiv 0$.

If D is effective, then $D \not\equiv 0$ since Y is a complete smooth surface, hence projective. In general, write $D = D^+ - D^-$, where D^+ is the positive part and D^- is the negative part. Then

$$D^{2} = (D^{+})^{2} - 2D^{+} \cdot D^{-} + (D^{-})^{2} \le (D^{+})^{2} + (D^{-})^{2} < 0.$$

Lemma 12.2. Let S be a smooth surface, $C = \sum C_i \subseteq S$ be a sum of irreducible curves with $(C_i \cdot C_j)$ negative definite. Let $A = a^i C_i$, $a^i \in \mathbb{R}$ and assume that $A \cdot C_i \geq 0$ for each i. Then

- (1) $a^i \leq 0$ for each i;
- (2) if C is connected and $A \neq 0$, then $a^i < 0$ for each i.

Proof. Write $A = A^+ - A^-$ as usual. Assume that $A^+ \neq 0$. Then $(A^+)^2 < 0$ by our assumption. Hence, there is a component C_i of A^+ such that $C_i \cdot A^+ < 0$. Since C_i is not a component of A^- , $C_i \cdot A^- \geq 0$. Then $C_i \cdot A = C_i \cdot (A^+ - A^-) < 0$, a contradiction. This proves (1).

For (2), assume that C is connected and $\varnothing \neq \operatorname{Supp} A^- \subsetneq \operatorname{Supp} C$. Then there exists C_i such that $C_i \not\subseteq \operatorname{Supp} A^-$ but $C_i \cap \operatorname{Supp} A^- \neq \varnothing$. So

$$C_i \cdot A = -C_i \cdot A^- < 0,$$

a contradiction.

Corollary 12.3. Under the same condition in the above lemma. Assume C is connected. Then

$$\mathcal{Z}_{\text{num}} = \left\{ Z \in \bigoplus \mathbb{Z}C_i \setminus \{0\} \mid Z \cdot C_i \le 0, \ \forall i \right\}$$

has a unique minimal element.

Note that \mathcal{Z}_{num} is a semigroup, and all $Z \in \mathcal{Z}_{\text{num}}$ is effective by our lemma.

Proof. Given $\alpha_i \in \mathbb{Z}_{<0}$ for each j. Then there exists $m^i/m \in \mathbb{Q}$, m^i , $m \in \mathbb{Z}$ such that

$$((m^i/m)C_i) \cdot C_j = \alpha_j < 0.$$

Our lemma implies that $m^i > 0$ for each i. So $m^i C_i \in \mathcal{Z}_{num}$. Take any two elements $Z = m^i C_i$, $Z' = (m^i)' C_i$. Define $n^i = \min\{m^i, (m^i)'\}$ and put $Z \wedge Z' = n^i C_i$.

Fix any i, we show that $(Z \wedge Z') \cdot C_i \leq 0$. Without loss of generality, we may assume that $m^i \leq (m^i)'$. Then

$$(Z \wedge Z') \cdot C_i = m^i C_i^2 + \sum_{j \neq i} n^j C_j \cdot C_i \le m^i C_i^2 + \sum_{j \neq i} m^j C_j \cdot C_i = Z \cdot C_i \le 0.$$

So $Z \wedge Z' \in \mathcal{Z}_{\text{num}}$. Hence, $\bigwedge_{Z \in \mathcal{Z}_{\text{num}}} Z$ is the unique minimal element of \mathcal{Z}_{num} .

Definition 12.4. Let $x \in X$ be a normal surface singularity, $f: Y \to X$ be any resolution. Write $f^{-1}(x)_{\text{red}} = \sum E_i$. The **fundamental cycle** $Z_f = Z_{\text{num}}$ of $f^{-1}(x)_{\text{red}}$ is the unique minimal element of the set

$$\left\{ Z \in \bigoplus \mathbb{Z} E_i \setminus \{0\} \mid Z \cdot E_i \le 0, \ \forall i \right\}.$$

Proposition 12.5 (Laufer's algorithm). We define Z_i recursively:

- 1. Choose any E_{i_1} and define $Z_1 = E_{i_1}$.
- 2. Assume that $Z_1, \ldots, Z_{\nu-1}$ are defined. If there exists i_{ν} such that $Z_{\nu-1} \cdot E_{i_{\nu}} > 0$, then define $Z_{\nu} = Z_{\nu+1} + E_{i_{\nu}}$.
- 3. If $Z_{\nu_0} \cdot E_i \leq 0$ for each i, then stop, and $Z_{\text{num}} = Z_{\nu_0}$.

This procedure will stop at a finite stage. The sequence Z_1, \ldots, Z_{ν_0} reaching Z_{num} is called a computation sequence.

Proof. We can prove by induction that every $Z_i \leq Z_{\text{num}}$, hence stop in finite steps.

Definition 12.6. Let S be a smooth surface, D a divisor on S. We define the **arithmetic genus** of D to be

$$p_a(D) = \frac{D^2 + K_S \cdot D}{2} + 1.$$

Proposition 12.7. If D is effective, then $p_a(D) = 1 - \chi(D, \mathcal{O}_D)$. If D is irreducible, then $p_a(D) \geq 0$, and $p_a(D) = 0$ if and only if $D \cong \mathbb{P}^1$.

Proof. By Nagata's compactification theorem, we may assume that S is a complete smooth surface. We get

$$\chi(\mathcal{O}_S) = \chi(\mathcal{O}_S(-D)) + \chi(\mathcal{O}_D) = \frac{(-D) \cdot (-D - K_S)}{2} + \chi(\mathcal{O}_S) + \chi(\mathcal{O}_D)$$

by Riemann-Roch, i.e., $p_a(D) = 1 - \chi(\mathcal{O}_D)$.

We have $p_a(D) = 1 - (h^0(\mathcal{O}_D) - h^1(\mathcal{O}_D)) = h^1(\mathcal{O}_D)$. If $D \cong \mathbb{P}^1$, then $p_a(D) = h^1(\mathcal{O}_D) = 0$. Conversely, if $p_a(D) = 0$, take a normalization $\nu \colon \widetilde{D} \to D$ and consider the exact sequence

$$0 \longrightarrow \mathcal{O}_D \longrightarrow \nu_* \mathcal{O}_{\widetilde{D}} \longrightarrow \nu_* \mathcal{O}_{\widetilde{D}} / \mathcal{O}_D \longrightarrow 0.$$

We get

$$0 \longrightarrow H^{0}(\mathcal{O}_{D}) \longrightarrow H^{0}(\nu_{*}\mathcal{O}_{\widetilde{D}}) \longrightarrow H^{0}(\nu_{*}\mathcal{O}_{\widetilde{D}}/\mathcal{O}_{D}) \longrightarrow H^{1}(\mathcal{O}_{D})$$

$$\parallel \qquad \qquad \parallel$$

$$\mathbf{k} \qquad \qquad \mathbf{k}$$

So $H^0(\nu_*\mathcal{O}_{\widetilde{D}}/\mathcal{O}_D) = 0$ and ν is an isomorphism. Hence, D is a smooth proper curve with $H^1(\mathcal{O}_D) = 0$, i.e., $D \cong \mathbb{P}^1$.

Corollary 12.8. Let Z_{num} be the fundamental cycle of $f^{-1}(x)_{\text{red}} = \sum E_i$, where $f: Y \to X$ and $x \in X$ is a normal surface singularity. Then $p_a(Z_{\text{num}}) \geq 0$.

Proof. Let $Z_1, \ldots, Z_{\nu_0} = Z_{\text{num}}$ be a computational sequence. By construction, $Z_{\nu} = Z_{\nu-1} + E_{i_{\nu}}$ and $Z_{\nu-1} \cdot E_{i_{\nu}} > 0$. Then

$$p_a(Z_{\nu}) = p_a(Z_{\nu-1} + E_{i_{\nu}}) = p_a(Z_{\nu-1}) + p_a(E_{i_{\nu}}) + Z_{\nu-1} \cdot E_{i_{\nu}} - 1 \ge p_a(Z_{\nu-1})$$

since $p_a(E_{i_{\nu}}) \geq 0$. Hence, $p_a(Z_{\text{num}}) \geq p_a(Z_{i_1}) \geq 0$.

Definition 12.9. For a resolution $f: Y \to (X, x)$, we define

$$p_a(f) = \sup\{p_a(Z) \mid Z > 0, \text{ Supp } Z \subseteq f^{-1}(x)\} \ge p_a(Z_{\text{num}}).$$

Remark. There are three kinds of genus: $\dim(R^1f_*\mathcal{O}_Y)_x$, $p_a(f)$, and $p_a(Z_{\text{num}})$. These are independent of choices of the resolution f by taking common resolutions.

Definition 12.10. We define

- the geometric genus of (X,x) to be $p_g(X,x) = \dim(R^1 f_* \mathcal{O}_Y)_x$;
- the arithmetic genus of (X, x) to be $p_a(X, x) = p_a(f)$;
- the fundamental genus of (X, x) to be $p_f(X, x) = p_a(Z_{\text{num}})$.

Proposition 12.11. For a normal surface singularity (X, x),

$$p_q(X, x) \ge p_a(X, x) \ge p_f(X, x) \ge 0.$$

Proof. It suffices to show that $p_g(X, x) \ge p_a(X, x)$. Let Z be a divisor on Y with Z > 0, Supp $Z \subseteq f^{-1}(x)$. Consider the exact sequence

$$0 \longrightarrow \mathcal{O}_Y(-Z) \longrightarrow \mathcal{O}_Y \longrightarrow \mathcal{O}_Z \longrightarrow 0.$$

We get

$$R^1 f_* \mathcal{O}_Y \longrightarrow R^1 f_* \mathcal{O}_Z \longrightarrow R^2 f_* \mathcal{O}_Y (-Z) = 0$$

since the fiber dimension of f is at most 1. Since $R^1f_*\mathcal{O}_Z$ has support $\{x\}$, this is equal to $H^1(Z,\mathcal{O}_Z)$. Then

$$p_a(Z) = 1 - h^0(\mathcal{O}_Z) + h^1(\mathcal{O}_Z) \le h^1(\mathcal{O}_Z) \le \dim(R^1 f_* \mathcal{O}_Y)_x = p_g(X, x).$$

Definition 12.12. Let (X, x) be a normal surface singularity. It is called **rational** if $p_g(X, x) = 0$. It is called **strongly elliptic** if $p_g(X, x) = 1$, **weakly elliptic** if $p_a(X, x) = 1$.

Theorem 12.13 (Artin). Let (X, x) be a normal surface singularity. Then the followings are equivalent:

- (i) $p_q(X, x) = 0$;
- (ii) $p_a(X, x) = 0$;
- (iii) $p_f(X, x) = 0$.

Proof. See [Ishii, Theorem 7.3.1].

Theorem 12.14. Let (X, x) be a normal surface singularity. Then the followings are equivalent:

1. $p_a(X, x) = 1$;

2.
$$p_f(X, x) = 1$$
.

Proof. See [Laufer, On minimally elliptic singularities, Corollary 4.2].

13 Du Val singularities

Proposition 13.1. Let (X, x) be a rational surface singularity, $Z = Z_{\text{num}}$ a fundamental cycle of a resolution. Then $\text{mult}_x X = -Z^2$ and the embedding dimension e. $\dim(X, x) = -Z^2 + 1$.

Definition 13.2. A normal surface singularity (X, x) is called a rational double point (RDP) if (X, x) is rational and $\operatorname{mult}_x X = 2$.

Remark. If (X, x) is an RDP, then $-Z^2 = \operatorname{mult}_x X = 3$, e. $\dim(X, x) = 3$, and hence (X, x) is a rational hypersurface singularity in $(\mathbb{C}^3, 0)$.

Proposition 13.3. A surface singularity (X, x) is an RDP if and only if it is ADE.

Proof. Write $(X,x)\cong (F=0,0)\subseteq (\mathbb{C}^3,0)$. Then $\operatorname{mult}_0F=3$. So we can write

$$F = x^2 + a(y, z)x + b(y, z) \sim x^2 + f(y, z).$$

If $\operatorname{mult}_0 f = 2$, then

$$F = x^2 + f \sim x^2 + y^2 + z^m$$

for some $m \geq 2$. This gives us the A-types.

Claim. $(X,0) = (x^3 + uy^3 + u_az^ay + u_bz^b = 0,0)$ is canonical if and only if either $a \le 3$ and $u_a(0) \ne 0$ or $b \le 5$ and $u_b(0) \ne 0$.

Now, there are three cases:

- $a \ge 3$ and b = 4
- a = 3 and b > 5
- $a \ge 4$ and b = 5

For the first case and the third case, $a \ge b-1$ and b=4 or 5. So

$$f = uy^3 + u_a z^a y + u_b z^b = \mathcal{O}^{\times} y^3 + v_1 z^a y + \mathcal{O}^{\times} z^b = \mathcal{O}^{\times} y^3 + (v_1 z^{a-b} y + \mathcal{O}^{\times}) z^b.$$

If $a \geq b$, we get

$$F = x^2 + y^3 + z^b$$
, $b = 4, 5$,

i.e., (E_6) and (E_8) . Assume a = b - 1. Then

$$\begin{split} f &= \mathcal{O}^{\times}y^3 + v_1z^{b-1}y + \mathcal{O}^{\times}z^b \\ &= \mathcal{O}^{\times}y^3 + \mathcal{O}^{\times}(z + \mathcal{O}^{\times}v_1y/b)^b - *z^{b-2}y^2 - \sum_{i \geq 3} *z^{b-i}y^i \\ &\sim \mathcal{O}^{\times}y^3 + v_2z^{b-2}y^2 + \mathcal{O}^{\times}z^b \\ &\sim \mathcal{O}^{\times}y^3 + \mathcal{O}^{\times}z^b \end{split}$$

because $z(b-2) \ge b$, which gives us, again, (E₆) and (E₈).

For the second case,

$$f = \mathcal{O}^{\times} y^3 + \mathcal{O}^{\times} yz^3 + v_3 z^b, \quad b > 5.$$

By blowing-up the origin, we see in $y = y_1 z_1$, $z = z_1$, we get

$$\overline{f} = z_1^3 (\mathcal{O}^{\times} y_1^3 + \mathcal{O}^{\times} y_1 z_1 + v_3 z_1^{b-3}).$$

Since $\operatorname{mult}_0 \overline{f} = 2$ and \overline{f}_2 is not a square (if b = 5, we get $z_1(\mathcal{O}^{\times}y + v_3z_1)$; if b > 5 then we get $\mathcal{O}^{\times}y_1z_1$), \overline{f} is reducible and so is f. Since $f_3 = c \cdot y^5$, one of the factor of f is of the form (y + *). Hence,

$$f \sim y(\mathcal{O}^{\times}y^2 + v_4yz^2 + \mathcal{O}^{\times}z^3) \sim y(\mathcal{O}^{\times}y^2 + \mathcal{O}^{\times}z^3) \sim y^3 + yz^3,$$

i.e., (E_7) .

14 Elliptic surface singularities

Let $f: Y \to X$ be a minimal resolution of a normal surface singularity. Write $f^{-1}(0)_{\text{red}} = \sum E_i$. We may assume that X and Y are affine.

Definition 14.1. Write

$$K_Y = f^* K_X + \sum a^i E_i.$$

Since $f^{-1}(0)$ is connected, either $a_i < 0$ for each i or $a_i = 0$ for each i. We define the **anti-canonical cycle** Z_K to be $-\sum a^i E_i$, and write $Z_K = \lfloor Z_k \rfloor + (Z_k - \lfloor Z_k \rfloor) = Z + \Delta_Y$.

We say (X,0) is **numerically Gorenstein** if Z_k is an integral divisor, i.e., $\Delta_Y = 0$.

Remark. It follows from the definition that the anti-canonical cycle $Z_k = 0$ if and only if (X, 0) is Du Val.

The singularity (X,0) is numerically Gorenstein if and only if the complex line bundle $\Omega^2_{X\setminus\{0\}}$ is topologically trivial.

If (X,0) is numerically Gorenstein, then $Z_{\text{num}} \leq Z_k$.

Proposition 14.2. Let L be an f-nef line bundle on Y, $Z = |Z_k|$. Then

$$H^0(Y, L) \longrightarrow H^0(Z, L|_Z)$$

is surjective and

$$H^1(Y, L) \longrightarrow H^1(Z, L|_Z)$$

is an isomorphism.

Proof. Pushing-forward the exact sequence

$$0 \longrightarrow L(-Z) \longrightarrow L \longrightarrow L|_Z \longrightarrow 0,$$

we get the long exact sequence

$$f_*L \longrightarrow f_*(L|_Z) \longrightarrow R^1 f_*L(-Z) \longrightarrow R^1 f_*L \longrightarrow R^1 f_*(L|_Z) \longrightarrow R^2 f_*L(-Z)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \qquad \parallel \qquad \qquad \qquad \qquad 0,$$

where $R^1 f_* L(-Z) = 0$ follows from the following facts: $K_Y + \Delta_Y + Z \equiv_f 0$, $L(-Z) - (K_Y + \Delta_Y) \equiv_f L$ is f-nef and f-big (by definition), and (Y, Δ_Y) is klt. Hence, $H^0(L) \to H^0(L|_Z)$ is surjective and $H^1(L) \xrightarrow{\sim} H^1(L|_Z)$ since X and Y are affine.

Proposition 14.3. The sheaf $\omega_X/f_*\omega_Y$ is dual to $R^1f_*\mathcal{O}_Y$. In particular, $R^1f_*\mathcal{O}_Y \cong \mathbb{C} = \mathcal{O}_{X,0}/\mathfrak{m}_{X,0}$ if and only if $f_*\omega_Y = \mathfrak{m}_{X,0}\omega_X$.

Proof. For an open neighbourhood V of $0 \in X$, take $U = f^{-1}V$, $E = \operatorname{Exc} f$. We get

$$\mathrm{H}_{E}^{0}(U,\omega_{Y}) \longrightarrow \mathrm{H}^{0}(U,\omega_{Y}) \longrightarrow \mathrm{H}^{0}(U\setminus E,\omega_{Y}) \longrightarrow \mathrm{H}_{E}^{1}(U,\omega_{Y}) \longrightarrow \mathrm{H}^{1}(U,\omega_{Y}).$$

Note that

$$\mathrm{H}_{E}^{0}(U,\omega_{Y}) = \{ s \in \mathrm{H}^{0}(U,\omega_{Y}) \mid \mathrm{Supp}\, s \subseteq E \} = 0$$

and $H_E^1(U,\omega_Y) = H_E^1(U',\omega_Y) = H_E^1(Y,\omega_Y) = H_E^1(\omega_Y)$ for any $U' \supseteq E$. So we get

$$0 \longrightarrow f_*\omega_Y \longrightarrow \omega_X|_{X\setminus\{0\}} \longrightarrow \mathrm{H}^1_E(\omega_Y) \longrightarrow R^1f_*\omega_Y$$
$$\omega_X \qquad \qquad 0$$

by X normal and Grauert–Riemenshneider Vanishing theorem. Hence,

$$\omega_X/f_*\omega_Y \cong \mathrm{H}^1_E(\omega_Y),$$

which is dual to $R^1 f_*(\omega_Y \otimes \omega_Y^{-1})$ by local duality theorem, see [Ishii, Cor 3.5.15].

Definition 14.4 (Ried). We say (X,0) is an elliptic Gorenstein surface singularity if K_X os Cartier and $R^1f_*\mathcal{O}_Y \cong \mathbb{C}$ (strongly elliptic).

Theorem 14.5 (Laufer 77). Working with the minimal resolution f, the followings are equivalent:

- (i) $p_a(Z_{\text{num}}) = 1$ and any connected proper subdivisor of $\sum E_i = f^{-1}(0)_{\text{red}}$ contracts to a rational singularity.
- (ii) $p_a(Z_{\text{num}}) = 1$ and $p_a(D) < 1$ for all $0 < D < Z_{\text{num}}$.
- (iii) $Z_{\text{num}} = Z_K$.
- (iv) (X,0) is elliptic Gorenstein.

Lemma 14.6. In the minimal resolution of a Gorenstein surface singularity (X, 0), we have $h^1(\mathcal{O}_D) < h^1(\mathcal{O}_{Z_K})$ for each $0 < D < Z_K$.

Remark (Reid). For numerically Gorenstein (X,0), the cohomological cycle Z_{coh} is equal to Z_K if and only if (X,0) is Gorenstein.

Proof. Notice that $K_Y = -Z_K$ (since X is Gorenstein). By Serre duality,

$$H^{1}(\mathcal{O}_{Z_{K}})^{\vee} \cong H^{0}(\omega_{Z_{K}}) = H^{0}(\mathcal{O}_{Z_{K}}(K_{Y} + Z_{K})) = H^{0}(Z_{K}, \mathcal{O}_{Z_{K}}),$$

$$H^{1}(\mathcal{O}_{D})^{\vee} \cong H^{0}(\omega_{D}) = H^{0}(\mathcal{O}_{D}(K_{Y} + Z_{K})) = H^{0}(D, \mathcal{O}_{D}(D - Z_{K})).$$

Consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{Z_K}(D-Z_K) \longrightarrow \mathcal{O}_{Z_K} \longrightarrow \mathcal{O}_{Z_K-D} \longrightarrow 0.$$

Since $H^0(\mathcal{O}_{Z_K}) \to H^0(\mathcal{O}_{Z_K-D})$ is nontrivial because both contain the constant sections,

$$h^1(\mathcal{O}_D) = h^0(\mathcal{O}_D(D - Z_K)) < h^0(\mathcal{O}_{Z_K}) = h^1(\mathcal{O}_{Z_K}),$$

as desired.

Corollary 14.7. Assume that (X,0) is an elliptic Gorenstein surface singularity. Set $Z = Z_{\text{num}} = Z_K$ for the minimal resolution $f: Y \to X$. Then either

- Z is an irreducible and reduced curve of $p_a(Z) = 1$, or
- for each irreducible component $E_i \subseteq f^{-1}(0)_{\text{red}}$ is a smooth rational curve with $E_i \cdot (-Z + E_i) = -2$.

Proof. Since \mathcal{O}_Y is f-nef, (14.2) tells us that $H^1(Y, \mathcal{O}_Y) \cong H^1(Z, \mathcal{O}_Z)$. So $h^1(\mathcal{O}_Z) = \dim R^1 f_* \mathcal{O}_Y = 1$. If Z is irreducible and reduced, then $p_a(Z) = h^1(\mathcal{O}_Z) = 1$. Otherwise, $E_i < Z$, and hence $p_a(E_i) = h^1(\mathcal{O}_{E_i}) < h^1(Z) = 1$. So $p_a(E_i) = 0$, i.e., $E_i \cong \mathbb{P}^1$. Since $K_Y = -Z$, the last formula is just adjunction formula.

Example 14.8. We say (X,0) is a **simple elliptic singularity** if Z is a smooth elliptic curve E. For example, $(X,0)=(x^3+y^3+z^3=0,0)\subseteq (\mathbb{C}^3,0)$. Then $Z_{\text{num}}=E=Z_K$ and $E^2=-3$.

We say (X,0) is a **cusp surface singularity** if $E = \sum E_i$ is a nodal rational curve (I_1) or E_i forms a cycle (I_r) , $r \geq 3$.

We say (X,0) is a Brieskorn–Pham singularity if $(X,0)=(x^a+y^b+z^c=0,0)$. It is known that

$$p_g(X,0) = \#\{(i,j,k) \mid i,j,k>0, \frac{i}{a} + \frac{j}{b} + \frac{k}{c} \le 1\}.$$

For example, when (a, b, c) = (2, 3, 18k), $p_a = p_f = 1$ but $p_g = 3k > 1$.

15 Elliptic surface singularities II

Let $f: Y \to X$ be a minimal resolution of an elliptic surface singularity, $Z = Z_{\min} = Z_K$ be the fundamental cycle. We may assume that $\mathcal{O}(K_X) \cong \mathcal{O}_X$. Then $K_Y = -Z$. Set $L = \mathcal{O}_Y(-Z) \cong \omega_Y$. We understand

$$R(Y,L) = \bigoplus_{n=0}^{\infty} H^{0}(Y, L^{\otimes n})$$

by reducing the problem first to Z and then to a 0-dimensional subscheme of Z.

Lemma 15.1. Let V be a proper (possibly non-reduced) curve such that $H^1(\mathcal{O}_V) = 0$, L a nef line bundle on V. Then

- (1) L is globally generated, and
- (2) $H^1(V, L) = 0$.

Proof. Let $V_{\text{red}} = \bigcup V_i$. Pick general points $p_i \in V_i$, and Cartier divisors $D_i \subseteq V$ such that $D_i \cap V_i = \{p_i\}$. Set $m_i = \deg_{V_i}(L|_{V_i})$ and $L' = \mathcal{O}_V(\sum m_i D_i)$. Notice that the exponential sequence

$$0 \longrightarrow \mathbb{Z}_V \longrightarrow \mathcal{O}_V \longrightarrow \mathcal{O}_V^{\times} \longrightarrow 1$$

is exact even if \mathcal{O}_V has nilpotent elements [see, compact complex surfaces, p.63]. So we get

$$0 = \mathrm{H}^1(\mathcal{O}_V) \longrightarrow \mathrm{H}^1(\mathcal{O}_V^{\times}) \stackrel{\mathrm{c}_1}{\longrightarrow} \mathrm{H}^2(V, \mathbb{Z}) = \bigoplus \mathbb{Z}[V_i]$$
$$L \longmapsto (\deg_{V_i} L|_{V_i})_i.$$

Since $c_1(L) = c_1(L')$, we see that $L \cong L'$ is globally generated, except possibly at the points p_i . By varying p_i , we get (1).

For (2), it follows from (1) that $H^0(V, L) \otimes \mathcal{O}_V \xrightarrow{ev} L$ is surjective. Let $d = h^0(V, L)$. Then we get

$$0 = H^{1}(\mathcal{O}_{V})^{\otimes d} \longrightarrow H^{1}(V, L) \longrightarrow H^{2}(\ker \operatorname{ev}) = 0,$$

i.e.,
$$H^1(V, L) = 0$$
.

Proposition 15.2. Let L be a nef line bundle on Z such that $\deg_Z L > 0$. Then

(1) $H^1(Z, L) = 0;$

- (2) there exists a section $s \in H^0(Z, L)$ such that (s = 0) is a 0-dimensional subscheme that does not intersect Sing Z_{red} and $s|_{Z_{\text{red}}}$ has no multiple zeroes;
- (3) it there exists an irreducible component $C \subsetneq Z$ such that $\deg_C(L|_C) > 0$, set Z' = Z C, then $H^0(Z, L) \to H^0(Z', L|_{Z'})$ is surjective.

Proof. Recall that by (14.2), $h^1(\mathcal{O}_Z) = h^1(\mathcal{O}_Y) = \dim R^1 f_* \mathcal{O}_Y = 1$. Note that L is ample (consider the normalization $\nu \colon \widetilde{Z} \to Z$, which is finite surjective, we see that $\deg_Z \nu^* L = \deg \nu \cdot \deg_Z L > 0$, so $\nu^* L$, and hence L is ample). If Z is irreducible and reduced, then $p_a(Z) = 1$. This gives (1), and (2) is just Bertini's theorem. Otherwise, there exists C as in (3). Then (14.6) gives us $h^1(\mathcal{O}_{Z'}) < h^1(\mathcal{O}_Z) = 1$, or $h^1(\mathcal{O}_{Z'}) = 0$. Since $L|_{Z'}$ is nef on Z', (15.1) shows that $L|_{Z'}$ is globally generated and $H^1(Z', L|_{Z'}) = 0$. By (14.7), $C \cong \mathbb{P}^1$ and $-C \cdot Z' = C \cdot (-Z + C) = -2$. Consider the exact sequence

$$0 \longrightarrow L(-Z')|_C \longrightarrow L \longrightarrow L|_{Z'} \longrightarrow 0.$$

We get the long exact sequence

$$\mathrm{H}^0(L) \longrightarrow \mathrm{H}^0(L|_{Z'}) \longrightarrow \mathrm{H}^1(L(-Z')|_C) \longrightarrow \mathrm{H}^1(L) \longrightarrow \mathrm{H}^1(L|_{Z'}) = 0.$$

Since $\deg_C L(-Z')|_C = \deg_C(L|_C) - 2 \ge -1$, we get $\mathrm{H}^1(L(-Z')|_C) = 0$. So $\mathrm{H}^1(Z,L) = 0$, that is, (1). The left part of the long exact sequence gives (3), and (2) is just by Bertini's theorem by lifting a general section in $\mathrm{H}^0(L|_{Z'})$.

We fix some notations. Assume that L is a nef line bundle on Z with $s \in H^0(Z, L)$ satisfying the conditions in (15.2). Set V = (s = 0). Then $A = \mathcal{O}_V$ is a semi-local ring with Jacobson radical \mathfrak{m} . Write

$$A = \bigoplus_{i=1}^r A_i, \quad \mathfrak{m} = \bigoplus_{i=1}^r \mathfrak{m}_i,$$

where (A_i, \mathfrak{m}_i) are local Artinian \mathbb{C} -algebras. Set $V_i = \operatorname{Spc} A_i \subseteq Z$, which are Cartier divisors. Then $V = \sum V_i$. We define the **socle** of \mathfrak{m} to be

$$\operatorname{socle}(\mathfrak{m}) = \{ a \in \mathfrak{m} \mid \mathfrak{m}a = 0 \}.$$

Note that if $A_i = \mathbb{C}[t]/(t^a)$, then $\operatorname{socal}((t)) = (t^{a-1})$.

Consider the exact sequence

$$0 \longrightarrow \mathcal{O}_Z(-V) \longrightarrow \mathcal{O}_Z \longrightarrow \mathcal{O}_V \longrightarrow 0.$$

Tensoring this with L, we get

$$0 \longrightarrow \mathcal{O}_Z \longrightarrow L \longrightarrow L|_V \longrightarrow 0.$$

Set

$$W_L = \operatorname{Im}(H^0(Z, L) \to H^0(V, L|_V)) \subseteq H^0(V, L|_V) = A \otimes L.$$

Remark. The subset W_L is a vector subspace of $A \otimes L$, which is in general not an A-submodule.

Lemma 15.3. We have

- (1) if $A \neq 0$, then $\operatorname{codim}_{A \otimes L} W_L = 1$;
- (2) for each j, the composition $W_L \to A \otimes L \to A/A_j \otimes L$ is surjective;
- (3) if $\mathfrak{m} \neq 0$, the composition $W_L \to A \otimes L \to A/\operatorname{socle}(\mathfrak{m}) \otimes L$ is surjective;
- (4) if $\dim_{\mathbb{C}} A = \deg_{\mathbb{Z}} L \geq 2$, then W_L generates $A \otimes L$ as an A-module.

Proof. For (1), consider the exact sequence

$$H^0(Z, L) \longrightarrow A \otimes L \longrightarrow H^1(\mathcal{O}_Z) \longrightarrow H^1(L).$$

Since $\deg_Z L = \dim_{\mathbb{C}} A > 0$, $\mathrm{H}^1(L) = 0$. (1) now follows from the fact that $\mathrm{H}^1(\mathcal{O}_Z) = \mathbb{C}$.

For each j, $\mathcal{O}_{V\setminus V_j}(V) = A/A_j \otimes L$. Since

$$0 \longrightarrow \mathcal{O}_Z(V_j) \longrightarrow L \longrightarrow L|_{V \setminus V_j} \longrightarrow 0$$

Since $\mathcal{O}_Z(V_j)$ has positive degree on Z, $H^1(Z, \mathcal{O}_Z(V_j)) = 0$. Thus, $H^0(Z, L) \to A/A_j \otimes L$ and hence $W_L \to A/A_j \otimes L$ is surjective, i.e., (2).

Assume $\mathfrak{m} \neq 0$, thus $\operatorname{socle}(\mathfrak{m}) \neq 0$. Let $C \subseteq Z$ be an irreducible component such that V has a non-reduced point (comes from $\operatorname{socle}(\mathfrak{m})$) on C. Then $\deg_C(L|_C) > 0$ and Z is not reduced along C. Set Z' = Z - C > 0. Let s' be the restriction of s to $L|_{Z'}$, $V' = (s' = 0) \subseteq Z'$. Then we get the long exact sequence

$$\mathrm{H}^0(L|_{Z'}) \longrightarrow \mathrm{H}^0(L|_{V'}) \longrightarrow \mathrm{H}^1(\mathcal{O}_{Z'}).$$

Since $H^0(L) \to H^0(L|_{Z'})$ is surjective by (15.2) and $H^1(\mathcal{O}_{Z'}) = 0$ by (14.6), we get the surjection $H^0(L) \to H^0(L|_{V'})$. Since $\mathcal{O}_{V'}$ surjects $A/\operatorname{socle}(\mathfrak{m})$, $A/\operatorname{socle}(\mathfrak{m}) \otimes L$ is a quotient of $H^0(L|_{V'})$, this proves (3).

If (4) fails, then all elements of W_L vanish at a point $V = \operatorname{Spec} A$, but (2) and (3) show that this cannot happen.

Proposition 15.4 (Laufer 77, Reid 76). Let (X,0) be an elliptic Gorenstein surface singularity, Z the fundamental cycle for the minimal resolution $f: Y \to X$, L a nef line bundle on Z. Let $k = \deg_Z L \ge 1$ and

$$R(Z,L) = \bigoplus_{n=0}^{\infty} H^{0}(Z,L^{\otimes n}).$$

- (i) If $k \geq 2$, then L is globally generated.
- (ii) If $k \geq 3$, then R(Z, L) is generated by its elements of deg 1. If k = 2, then R(Z, L) is generated by its elements of deg 1 and 2. If k = 2, then R(Z, L) is generated by its elements of deg 1, 2, and 3. More precisely,

$$R(Z, L) = \mathbb{C}[x_1, \dots, x_k]/I$$
, $\deg x_i = 1$, $I = \langle \deg 2, 3 \text{ elements} \rangle$

for $k \geq 3$;

$$R(Z,L) = \mathbb{C}[x,y,z]/(z^2 + q_4(x,y)), \quad \deg(x,y,z) = (1,1,2), \ \deg q_4 = 4$$

for k=2;

$$R(Z,L) = \mathbb{C}[x,y,z]/(z^2 + y^3 + ayx^4 + bx^6), \quad \deg(x,y,z) = (1,2,3), \ a,b, \in \mathbb{C}.$$

Proof. We have $\dim_{\mathbb{C}} A = \deg_{\mathbb{Z}} L = k \geq 1$. Assume $k \geq 2$, then we have the diagram

$$\begin{array}{cccc}
\mathcal{O}_{Z} & & \downarrow \\
\downarrow & & \downarrow \\
H^{0}(Z,L) \otimes \mathcal{O}_{Z} & \longrightarrow & L \\
\downarrow & & \downarrow & \downarrow \\
W_{L} \otimes \mathcal{O}_{V} & \longrightarrow & L|_{V} = A \otimes L
\end{array}$$

By (15.3), W_L generates $A \otimes L$ as an A-module. So $H^0(Z, L) \otimes \mathcal{O}_Z \to L$ is surjective, i.e., L is globally generated, which proves (i).

For (ii), let T be any section of $L|_V$ generating $L|_V$. Note that $H^0(V, L|_V^{\otimes n}) = A \cdot T^n$ and $R(V, L|_V) = A[T]$. Consider the long exact sequences

$$0 \longrightarrow \mathrm{H}^0(L^{n-1}) \longrightarrow \mathrm{H}^0(L^n) \longrightarrow \mathrm{H}^0(L|_V^n) \longrightarrow \mathrm{H}^1(L^{n-1}).$$

When $n \geq 2$, $\deg_Z L^{n-1} > 0$ and L^{n-1} is nef on Z, so $\mathrm{H}^1(L^{n-1}) = 0$. Let $R_Z = R(Z, L)$. Then

$$R_Z/s \cdot R_Z(n) = \begin{cases} A \cdot T^n & n \ge 2, \\ W_L & n = 1, \\ \mathbb{C} & n = 0. \end{cases}$$

For the proof of (ii), see [KM, p.141-143].

Definition 15.5. Given $d \in \mathbb{N}$ and $w_1, \ldots, w_d \in \mathbb{N}$. Let $R = \mathbf{k}[x_1, \ldots, x_d]$. We define the weight of a monomial $x^M = \prod x_i^{m_i} \in R$ to be $w(x^M) = \sum m_i w_i$. For $f = \sum a_M x^M \in R$, defined the weight of f to be $w(f) = \min_{a_M \neq 0} \{w(x^M)\}$. We get the ideal

$$\mathfrak{m}^w(n) = \{ f \in R \mid w(f) \ge n \}.$$

The weighted blow-up of \mathbb{A}^d at 0 with weight w is

$$\mathrm{Bl}_0^w \mathbb{A}^d = \mathrm{Proj}_R \left(\bigoplus \mathfrak{m}^w(n) \right).$$

For any $X \subseteq \mathbb{A}^d$, this define $\mathrm{Bl}_0^w X$ as the strict transform of X in $\mathrm{Bl}_0^w \mathbb{A}^d$.

Theorem 15.6 (Laufer 77, Reid 76). Under the same notations as in (15.4), define $k = -Z^2 = \deg_Z L$.

- (i) If $k \geq 3$, then $\operatorname{mult}_0 X = k = \operatorname{e.dim}(X, 0)$. Choose any embedding $(X, 0) \subseteq (\mathbb{C}^k, 0)$. Let x_i be the coordinate on \mathbb{C}^k , $w(x_i) = 1$.
- (ii) If k = 1 or 2, then $\operatorname{mult}_0 X = 2$ and e. $\dim(X, 0) = 3$. After an analytic coordinate change, it can be given by the equations

$$z^{2} + q(x, y) = 0$$
, mult₀ $q = 4$, $w(x, y, z) = (1, 1, 2)$

for k=2;

$$z^{2} + y^{3} + yq_{4}(x) + q_{6}(x) = 0$$
, mult₀ $q_{i} \ge i$, $w(x, y, z) = (1, 2, 3)$.

(iii) Consider the weighted blow-up $g \colon \overline{Y} = \operatorname{Bl}_0^w X \to X$. Then g factors through f and \overline{Y} has only Du Val singularity.

Remark. For k = 2, we can choose $x = x_1$, $y = x_1y_1$, $z = x_1^2z_1$. For k = 1, we can choose $x = x_1$, $y = x_1^2y_1$, $z = x_1^3z_1$.

If $k=2, \overline{Y}$ is the normalization of the standard blow up $\mathrm{Bl}_0 X$.

16 Cohen–Macaulay and duality

Definition 16.1. Let (R, \mathfrak{m}) be a noetherian local ring, M a finite R-module. We say

- M is Cohen–Macaulay (C–M) if dim $M := \dim\{\mathfrak{p} \in \operatorname{Spec} R \mid M_{\mathfrak{p}} \neq 0\}$ is equal to depth M, i.e., the maximal length of the M-regular sequences;
- M satisfies Serre's condition S_k $(k \ge 0)$ if depth $M \ge \min\{k, \dim M\}$.

Definition 16.2. Let X be a noetherian scheme, \mathscr{F} a coherent sheaf on M. We say

- \mathscr{F} is C–M at a closed point $x \in X$ if \mathscr{F}_x is a C–M module over $\mathcal{O}_{X,x}$;
- \mathscr{F} is C-M if \mathscr{F} is C-M at all closed point $x \in \operatorname{Supp} \mathscr{F}$;
- X is C-M if \mathcal{O}_X is C-M;
- \mathscr{F} is S_k if \mathscr{F}_x is S_k for every $x \in X$.

Remark. A scheme is normal is just R_1 (regular in codimension 1) and S_2 . A coherent sheaf \mathscr{F} with dim Supp $\mathscr{F} = \dim X$ is C-M if and only if it is $S_{\dim X}$. Hence, an isolated surface singularity is C-M if and only if it is normal.

Proposition 16.3. Let $h \in \mathfrak{m}$ be a non-zero divisor on M. Then M is C-M (resp. S_k) if and only if M/hM is C-M (resp. S_{k-1}).

Remark. For $R = M = \mathcal{O}_{X,x}$, $x \in X$, M is C-M if and only if there exists $h \in \mathfrak{m}_{X,x}$ which is a non-zero divisor on $\mathcal{O}_{X,x}$ such that $x \in H = (h = 0)$ is C-M. So a 3-fold

singluarity (X, x) which is regular in codimension 1 is C–M if and only if there exists a normal surface $x \in H \subseteq X$.

Proposition 16.4. Let $f: X \to Y$ be a finite surjective morphism of varieties over an algebraically closed field \mathbf{k} of characteristic 0. If X is C–M and Y is normal, then Y is also C–M.

Proof. Since Y is normal, we have the map $f^*: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is injective and there exists a section $\operatorname{tr} = \operatorname{tr}_{X/Y} / \operatorname{deg} f$ such that $\operatorname{tr} \circ f^* = \operatorname{id}_{\mathcal{O}_Y}$. So $f_*\mathcal{O}_X = \mathcal{O}_Y \oplus \operatorname{coker} f^*$. Hence, a sequence from \mathcal{O}_Y is \mathcal{O}_Y -regular if it is $f_*\mathcal{O}_X$ -regular.

Theorem 16.5 (Serre duality for C–M sheaves). Let X be a projective scheme of pure dimension n over an algebraically closed field \mathbf{k} of characteristic 0. Let \mathscr{F} be a C–M sheaf on X such that Supp \mathscr{F} is of pure dimension n. Then there exists a dualizing sheaf ω_X such that $H^i(X,\mathscr{F})$ is dual to $H^{n-i}(X,\mathscr{H}om_{\mathcal{O}_X}(\mathscr{F},\omega_X))$.

Sketch of proof. Take a finite morphism $f: X \to P = \mathbb{P}^n_k$ (which exists by Noether normalization). Then $H^i(X, \mathscr{F}) = H^i(P, f_*\mathscr{F})$ and \mathscr{F} is C-M if and only if $f_*\mathscr{F}$ is locally free.

Let $\omega_X = f!\omega_P := \mathscr{H}om_{\mathcal{O}_P}(f_*\mathcal{O}_X, \omega_P)$. Then $\mathrm{H}^i(X, \mathscr{F}) = \mathrm{H}^i(P, f_*\mathscr{F})$ is dual to $\mathrm{H}^{n-i}(X, \mathscr{H}om_{\mathcal{O}_X}(\mathscr{F}, \omega_X)) = \mathrm{H}^{n-i}(P, \omega_P \otimes (f_*\mathscr{F})^\vee)$. Here, we note that

$$\omega_P \otimes (f_* \mathscr{F})^{\vee} = \mathscr{H}om(f_* \mathscr{F}, \omega_P) = \mathscr{H}om(\mathscr{F}, f^! \omega_P) = \mathscr{H}om(\mathscr{F}, \omega_X).$$

Corollary 16.6. Let X and \mathscr{F} be as in (16.5). Let D be an ample Cartier divisor on X. Then \mathscr{F} is C-M if and only if $H^i(X, \mathscr{F}(-rD)) = 0$ for every i < n and $r \gg 1$.

Proof. If \mathscr{F} is C-M, then

$$\mathrm{H}^i(X,\mathscr{F}(-rD))=\mathrm{H}^{n-i}(X,\mathscr{H}om_{\mathcal{O}_X}(\mathscr{F},\omega_X)(rD))^\vee=0$$

for n - i > 0 and $r \gg 1$.

Conversely, we induction on n. The n=0 case is trivial. For n>0, take any $x \in X$. Since $h^0(\mathscr{F}(-rD))=0$, there does not exist any subsheaf \mathscr{F}' of \mathscr{F} with support

 $\{x\}$ (otherwise $h^0(\mathscr{F}'(-rD)) = 0$). For $r' \gg 0$, there exists $s \in H^0(\mathcal{O}_X(r'D))$ such that s(x) = 0 and s does not vanish at any associated point of \mathscr{F} (this is a finite set). Then $s \colon \mathscr{F} \to \mathscr{F}(r'D)$ is injective. Set Y = (s = 0). Then it is easy to see that $H^i(Y, \mathscr{F}_Y(-rD)) = 0$ for i < n - 1, $r \gg 1$. Since \mathscr{F}_Y is C-M by induction hypothesis and thus \mathscr{F} is C-M at x by (16.3).

17 Rational singularities

Definition 17.1. Let $f: X \to Y$ be a resolution of singularity (over characteristic 0 field \mathbf{k}). We say $f: X \to Y$ is a **rational resolution** if $f_*\mathcal{O}_X = \mathcal{O}_Y$ and $R^i f_*\mathcal{O}_X = \mathcal{O}_Y$ for i > 0. We say that Y has rational singularities if every resolution is rational.

Remark. For char $\mathbf{k} = p > 0$, one need to assume also that $R^i f_* \omega_X = 0$ for i > 0. In char $\mathbf{k} = 0$, this holds by Grauert–Riemenschneider vanishing.

Theorem 17.2 (Kempf). Let Y be a variety over an algebraically closed field \mathbf{k} of characteristic 0. Then the followings are equivalent:

- (1) Y has rational singularities;
- (2) there exists a rational resolution of Y;
- (3) Y is C–M and there exists a resolution $f: X \to Y$ such that $f_*\omega_X = \omega_Y$.

Remark. Let X, Y e projective scheme of pure dimension $n, f: X \to Y$ a generically finite morphism.

For each coherent sheaf \mathscr{F} on X, we have $0 \leq \dim \operatorname{Supp} R^j f_* \mathscr{F} \leq n - j - 1$ for j > 0, so $\operatorname{H}^i(X, R^j f_* \mathscr{F}) = 0$ for $i + j \geq n$, j > 0 by Grothendieck vanishing.

Consider the Leray spectral sequence $E_2^{ij} = H^i(Y, R^j f_* \mathscr{F}) \Rightarrow H^{i+j}(X, \mathscr{F})$, we then get a surjection

$$H^n(Y, f_*\mathscr{F}) \longrightarrow H^n(X, \mathscr{F}).$$

Apply this to $\mathscr{F} = \omega_X$ and using the duality, we get the injection

$$H^0(X, \mathscr{H}om(\omega_X, \omega_X)) \longrightarrow H^0(X, \mathscr{H}om(f_*\omega_X, \omega_Y)).$$

The relative trace map $\operatorname{tr}_{X/Y} : f_*\omega_X \to \omega_Y$ is defined to be the image of $\operatorname{id}_{\omega_X}$.

The higher direct images $R^p f_* \mathcal{O}_X$ and $f_* \omega_X$ are in fact independent of the resolution $f: X \to Y$.

Proof of (17.2). We prove only the case when Y is projective. By the remark above, we see that (1) is equivalent to (2). Let $f: X \to Y$ be a resolution and D an ample Cartier divisor on Y. Then (5.5) implies that

$$H^{n-i}(X, \mathcal{O}_X(-rf^*D))^{\vee} = H^i(X, \omega_X(rf^*D)) = 0$$

for i > 0 and r > 0.

Consider the spectral sequence

$$E_2^{ij} = \mathrm{H}^i(X, R^j f_* \mathcal{O}_X \otimes \mathcal{O}_Y(-rD)) \Rightarrow \mathrm{H}^{i+j}(X, \mathcal{O}_X(-rf^*D)).$$

Suppose (2) and let f be a rational resolution. Then $R^j f_* \mathcal{O}_X$, and hence E_2^{ij} , is 0 for j > 0. This shows that the spectral sequence degenerates at E_2 . Hence,

$$H^i(Y, \mathcal{O}_Y(-rD)) = H^i(X, \mathcal{O}_X(-rf^*D)) = 0.$$

By (16.6), Y is C-M.

When i = n, we get by duality that

$$H^{0}(Y, \omega_{Y} \otimes \mathcal{O}_{Y}(rD))^{\vee} = H^{n}(Y, \mathcal{O}_{Y}(-rD))$$

$$\cong H^{n}(X, \mathcal{O}_{X}(-rf^{*}D))$$

$$= H^{0}(X, \omega_{X} \otimes \mathcal{O}_{X}(rf^{*}D))^{\vee}$$

$$= H^{0}(Y, f_{*}(\omega_{X} \otimes \mathcal{O}_{X}(rf^{*}D)))^{\vee} = H^{0}(Y, f_{*}\omega_{X} \otimes \mathcal{O}_{X}(rD))^{\vee}$$

So, if we choose r such that $\omega_Y \otimes \mathcal{O}_Y(rD)$ and $f_*\omega_X \otimes \mathcal{O}_X(rD)$ are globally generated, then we see that $\operatorname{tr}_{X/Y}: f_*\omega_X \to \omega_Y$ is an isomorphism. This proves that (2) implies (3).

For the converse, we induction on $n = \dim Y$. Note that $R^n f_* \mathcal{O}_X = 0$. We claim that $R^i f_* \mathcal{O}_X = 0$ outside a zero dimensional subset for all i > 0. Let H be a general hyperplane, which is a C-M scheme, and let $H' = H \times_Y X$. Then

$$f_*\omega_{H'} = f_*(\omega_X(H') \otimes \mathcal{O}_{H'}) = f_*\omega_X \otimes \mathcal{O}_H(H) = \omega_Y \otimes \mathcal{O}_H(H) = \omega_H.$$

By induction, $\mathcal{O}_H \otimes R^i f_* \mathcal{O}_X = R^i f_* \mathcal{O}_{H'} = 0$ for all i > 0. So

$$R^i f_* \mathcal{O}_Y \otimes \mathcal{O}_X(-H) \longrightarrow R^i f_* \mathcal{O}_X$$

is surjective. Then by Nakayama lemma, Supp $R^i f_* \mathcal{O}_X \cap H = \emptyset$. This proves our claim.

This shows that $E_2^{ij} = 0$ for i, j > 0. For j = 0, $E_2^{i0} = \mathrm{H}^i(Y, f_*\mathcal{O}_X \otimes \mathcal{O}_Y(-rD)) = 0$ (by $f_*\mathcal{O}_X \cong \mathcal{O}_Y$, we will prove this later) for i < n and $r \gg 1$ since Y is C-M. Leray spectral sequence then implies that for j < n - 1,

$$H^0(Y, R^j f_* \mathcal{O}_X \otimes \mathcal{O}_Y(-rD)) = E_2^{0j} \cong H^j = H^j(X, \mathcal{O}_X(-rf^*D)) = 0$$

by (5.5). Since dim Supp $R^j f_* \mathcal{O}_X = 0$, we see that $R^j f_* \mathcal{O}_X = 0$ for 0 < j < n - 1.

Also, we have

$$E_n^{0,n-1} \xrightarrow{d_n^{0,n-1}} E_n^{n,0} \xrightarrow{\alpha} \operatorname{coker}(d_n^{0,n-1}) \longrightarrow 0$$

 $E_2^{0,n-1}$ $E_2^{n,0}$

18 Terminalization of canonical threefolds

Let X be an algebraic (resp. analytic) threefold with at worst canonical singularities. Then

$$e(X) := \#\{\text{exceptional divisor } E \text{ over } X \text{ with } a(E, X) = 0\}$$

is a finite number by [KM, Prop 2.36].

Theorem 18.1 (Reid). There exists a crepant projective partial resolution $\pi_X \colon X^{\text{ter}} \to X$ such that X^{ter} has only terminal singularities.

Remark. The Reid's terminalization construction is functorial for open embedding, and copatible with $(-)^{an}$, i.e., $(\pi_X)^{an} = \pi_{X^{an}}$.

Sketch of proof. We use induction on e(X). The base case e(X) = 0 is trivial since this implies X is already terminal.

For general case, let $p \in \operatorname{Sing} X$ and take an index 1 cover $(\widetilde{X}, \widetilde{p}) \to (X, p)$. There are three cases:

- (a) $(\widetilde{X}, \widetilde{p})$ is NOT a cDV point for some $p \in \operatorname{Sing} X$;
- (b) $(\widetilde{X}, \widetilde{p})$ is a cDV point for all $p \in \operatorname{Sing} X$ and $\dim \operatorname{Sing} X = 1$;
- (c) $(\widetilde{X}, \widetilde{p})$ is a cDV point for all $p \in \operatorname{Sing} X$ and $\dim \operatorname{Sing} X = 0$.

For (a) and (b), we will find a crepant projective birational map $f: Y \to X$ such that e(Y) < e(X), and we are done by induction. For (c), this implies X is terminal.

For (a), consider the Galois group $G = \operatorname{Gal}(\widetilde{X}/X)$. Let $\widetilde{f} \colon \widetilde{Y} \to \widetilde{X}$ be the weighted blow-up constructed in $(\ref{eq:constructed})$, where

$$w = \operatorname{wt}(x, y, z, t) = \begin{cases} (3, 2, 1, 1) & \text{if } k = 1, \\ (2, 1, 1, 1) & \text{if } k = 2, \\ (1, 1, 1, 1) & \text{if } k \ge 3. \end{cases}$$

The ideas $\mathfrak{m}^w(n)$ are G-invariant, so we can descend the crepant resolution \widetilde{f} to $f: Y = \widetilde{Y}/G \to X$, which is also crepant.

For (b), let C be an 1-dimensional irreducible component of $\operatorname{Sing} X$ with its reduced structure. Let I be the defining ideal of C. For $\nu \in \mathbb{Z}_{\geq 0}$, let $I^{(\nu)}$ be the ν^{th} symbolic power of I, i.e., the ideal sheaf consisting of germs of functions that have multiplicity at least ν at a general point of C. Consider $f: Y = \operatorname{Proj}_X(\bigoplus I^{(\nu)}) \to X$. Then Y is canonical, $K_Y = f^*K_X$ and every fiber $f^{-1}(x)$ are of dimension at most 1, and equals to 1 if $x \in C$.

For (c), we see that if
$$(\widetilde{X}, \widetilde{p})$$
 is terminal, then (X, p) is terminal.

19 Quotient singularities over \mathbb{C}

Recall that a singularity (X, x) is a quotient singularity if there exists a smooth germ (Y, 0) and a finite group G acting on (Y, 0) such that $(X, x) \cong (Y, 0)/G$.

Let (X, x) be a terminal threefold singularity of index r. Take an index 1 cover $(Y, 0) \to (X, x)$, where $Gal(Y/X) \cong \mu_r$. Then (Y, 0) is an isolated cDV point or a smooth point.

A group G giving a quotient singularity can be a linear group:

Theorem 19.1. Let (X, x) be a quotient singularity of dimension n. Then there exists a finite subgroup $G' \leq \operatorname{GL}(n, \mathbb{C})$ such that $(X, x) \cong (\mathbb{A}^n, 0)/G'$ as germs. In particular, a quotient singularity is algebraic.

Proof. By definition, there exists a smooth germ (Y, y) and a finite group G such that $(X, x) \cong (Y, y)/G$. Without loss of generality, we may assume the stabilizer G_y is G (otherwise, we take an analytic neighbourhood Y' of y such that $Y' \cap G_y = \{y\}$, then $(X, x) \cong (Y', y)/G_y$).

Let \mathfrak{m} be the maximal ideal of $\mathcal{O}_{Y,y}$. Since $G = G_y$, \mathfrak{m} is invariant under the action of G. (Algebraically, the stabilizer $G_y = (G \times \{y\}) \times_Y \operatorname{Spec} \kappa(y)$.) This defines a representation $\rho \colon G \to \operatorname{GL}(\mathfrak{m}/\mathfrak{m}^2)$. Take a regular system of parameters z^1, \ldots, z^n of \mathfrak{m} so that z^1, \ldots, z^n forms a basis of $\mathfrak{m}/\mathfrak{m}^2$. Then $\operatorname{GL}(\mathfrak{m}/\mathfrak{m}^2)$ is isomorphic to $\operatorname{GL}(n, \mathbb{C})$. Write

$$\rho(g) \begin{pmatrix} z^1 \\ \vdots \\ z^n \end{pmatrix} = \begin{pmatrix} g(z^1) \\ \vdots \\ g(z^n) \end{pmatrix}.$$

Define $y^i \in \mathcal{O}_{Y,y}$ by

$$Y = \begin{pmatrix} y^1 \\ \vdots \\ y^n \end{pmatrix} = \frac{1}{\#G} \sum_{g \in G} \rho(g^{-1}) \begin{pmatrix} g(z^1) \\ \vdots \\ g(z^n) \end{pmatrix}.$$

Then $y^i - z^i \in \mathfrak{m}^2$ and hence y^1, \ldots, y^n form a regular system of parameters of \mathfrak{m} . Write

$$Z = \begin{pmatrix} z^1 \\ \vdots \\ z^n \end{pmatrix}.$$

For each $h \in G$,

$$(\#G) \cdot h \cdot Y = \sum_{g \in G} \rho(g^{-1})h \circ g \circ Z = \sum_{g \in G} \rho(h(gh)^{-1})(gh) \circ Z$$
$$= \sum_{g \in G} \rho(h)\rho(g^{-1})g \circ Z = (\#G) \cdot \rho(h) \cdot Y.$$

So G acts on Y is linear with respect to y^1, \ldots, y^n , and we set $G' = \rho(G)$.

Remark. Even if (Y, y) is singular with embedding dimension e, there exists a finite subgroup $\rho(G) \leq \operatorname{GL}(e, \mathbb{C})$ such that $(X, x) \cong (Y, 0)/\rho(G) \subseteq (\mathbb{A}^e, 0)/\rho(G)$.

Definition 19.2. An element $g \in GL(n, \mathbb{C}) \setminus \{id\}$ is a **pseudo-reflection** (p-rf) if ord $g < \infty$ and Fix $g = \{x \in \mathbb{C}^n \mid gx = x\}$ has codimension 1.

A subgroup of $GL(n, \mathbb{C})$ generated by p-rfs is called a p-rf group. A finite subgroup of $GL(n, \mathbb{C})$ is **small** if it does not contain p-rfs.

Theorem 19.3 (Chevalley–Shephard–Todd). If $H \leq GL(n, \mathbb{C})$ is a finite p-rf group, then $\mathbb{A}^n/H \cong \mathbb{A}^n$.

Corollary 19.4. If (X, x) is a quotient singularity of dimension n, then there exists a small finite subgroup $G \leq \operatorname{GL}(n, \mathbb{C})$ such that $(X, x) \cong (\mathbb{A}^n, 0)/G$.

Proof. Let $G' \leq \operatorname{GL}(n, \mathbb{C})$ be a finite group such that $(X, x) \cong (\mathbb{A}^n, 0)/G'$. Let H be the subgroup of G' generated by p-rfs in G'. Then H is a normal subgroup: for $g \in G'$ and $h \in H$ a p-rf, we have

$$Fix(ghg^{-1}) = g \cdot Fix(h).$$

Consider G = G'/H that acts on $\mathbb{A}^n/H \cong \mathbb{A}^n$. Then

$$\mathbb{A}^n/G \cong \frac{\mathbb{A}^n/H}{G'/H} \cong \mathbb{A}^n/G'.$$

Now, we need to check that G is small. For $g \in G' \setminus H$, we have

$$\operatorname{codim}\operatorname{Fix}(hg) \geq 2$$

for all $h \in H$. Let $\phi \colon \mathbb{A}^n \to \mathbb{A}^n/H$ be the projection. Then $gH \cdot \phi(x) = \phi(x)$ if and only if gx = hx for some $h \in H$. So

$$\operatorname{Fix}(gH) = \bigcup_{h \in H} \phi(\operatorname{Fix}(hg))$$

has codimension at least 2 since ϕ is a finite morphism.

Corollary 19.5. Let $(Y,0) \subseteq (\mathbb{A}^{n+1},0)$ be an n-dimensional hypersurface singularity. Let G be a finite group acting on Y. Then there exists a small, finite group $G' \subseteq GL(n+1,\mathbb{C})$ acting on Y such that

$$(X,0) \cong (Y,0)/G \cong (Y,0)/G' \subseteq (\mathbb{A}^n,0)/G$$

Corollary 19.6. A quotient singularity is log terminal.

Proof. Let (X, x) be a quotient singularity. There exists a small finite group $G \leq GL(n, \mathbb{C})$ such that $(X, x) \cong (\mathbb{A}^n, 0)/G$. Since G is small, G acts on \mathbb{A}^n freely in codimension 1, so the projection $\mathbb{A}^n \to \mathbb{A}^n/G$ is crepant. Since \mathbb{A}^n is smooth, \mathbb{A}^n , and hence \mathbb{A}^n/G , is log terminal.

Definition 19.7. Let (Y,0) be a smooth germ admitting a cyclic action μ_r which fixes 0. We fix a primitive character $\chi \colon \mu_r \to \mathbb{C}^{\times}$. We say $f \in \mathcal{O}_{Y,0}$ is **semi-invariant** with respect to χ if there exists $\operatorname{wt}(f) \in \mathbb{Z}/r\mathbb{Z}$, called the weight of f with respect to χ , such that $g(f) = \chi(g)^{\operatorname{wt}(f)} f$ for all $g \in \mu_r$.

We write $\mathbb{A}^n/\frac{1}{r}(a^1,\ldots,a^n)$ for the quotient \mathbb{A}^n/μ_r in which every coordinate x^i of \mathbb{A}^n is semi-invariant with $\operatorname{wt}(x^i)=a^i$. Explicitly,

$$\mu_r = \left\langle \begin{pmatrix} \zeta^{a^1} & & \\ & \ddots & \\ & & \zeta^{a^n} \end{pmatrix} \right\rangle \leq \operatorname{GL}(n, \mathbb{C}),$$

where ζ is a primitive $r^{\rm th}$ roots of unity.

A (small) cyclic quotient singularity of type $\frac{1}{r}(a^1,\ldots,a^n)$ is a singularity (analytically) isomorphic to $(\mathbb{A}^n/\frac{1}{r}(a^1,\ldots,a^n),0)$ (with μ_r small).

Remark. If gcd(b,r) = 1, then $\mathbb{A}^n/\frac{1}{r}(a^1,\ldots,a^n) \cong \mathbb{A}^n/\frac{1}{r}(ba^1,\ldots,ba^n)$ by taking χ^b instead of χ .

Lemma 19.8. Let $\overline{M} = \mathbb{Z}_n$ with dual lattice $\overline{N} = \mathbb{Z}^n$ and let $N = \overline{N} + \frac{1}{r}(a^1, \dots, a^n) \cdot \mathbb{Z}$. Let e_1, \dots, e_n be the standard basis of $N_{\mathbb{R}}$, Σ the fan consisting faces of the cone $\sigma = \text{Cone}(e_1, \dots, e_n)$. Then $\mathbb{A}^n / \frac{1}{r}(a^1, \dots, a^n)$ is isomorphic to X_{Σ} .

Proof. An element $\alpha \in N_{\mathbb{R}}$ lies in N if and only if $\alpha \equiv \frac{1}{r}(ka^1, \dots, ka^n) \pmod{\mathbb{Z}}^n$ for some k. So an element $m = (m_1, \dots, m_n) \in \overline{M}_{\mathbb{R}}$ lies in $M = N^{\vee}$ if and only if $\frac{1}{r} \sum_{i=1}^{r} a^i m_i \in \mathbb{Z}$.

Since $\mathbb{A}^n = \operatorname{Spec} \mathbb{C}[\sigma^{\vee} \cap \overline{M}]$ and the affine coordinate ring of $\mathbb{A}^n/\frac{1}{r}(a^1,\ldots,a^n)$ is

 $\mathbb{C}[x^1,\ldots,x^n]^G$ where

$$G = \left\langle g = \begin{pmatrix} \zeta^{a^1} & & \\ & \ddots & \\ & & \zeta^{a^n} \end{pmatrix} \right\rangle,$$

we only need to check $\mathbb{C}[\sigma^{\vee} \cap \overline{M}]^G = \mathbb{C}[\sigma^{\vee} \cap M]$. For each $m \in \overline{M}$, $g \cdot x^m = \zeta^{\sum a^i m_i} x^m$. So x^m is G-invariant if and only if $\frac{1}{r} \sum a^i m_i \in \mathbb{Z}$, i.e., $m \in M$, as desired.

Definition 19.9. An element $e \in N \setminus \{0\}$ is primitive if $\mathbb{Z} \cdot e = N \cap R \cdot e$ in $N_{\mathbb{R}}$.

Fix a primitive element $e = \frac{1}{r}(w^1, \dots, w^n) \in N \cap \sigma$. Let $\Sigma^*(e)$ be the star subdivision of Σ at e, i.e., the fan in $N_{\mathbb{R}}$ consisting of faces of $\operatorname{Cone}(e_1, \dots, e_{i-1}, e, e_i, \dots, e_n)$ for $1 \leq i \leq n$. The weighted blow-up of $X = \mathbb{A}^n / \frac{1}{r}(a^1, \dots, a^n)$ with weights $\operatorname{wt}(x^1, \dots, x^n) = e$ is

$$\pi \colon B = X_{\Sigma^*(e)} \longrightarrow X = X_{\Sigma}.$$

It is isomorphic outside $\bigcap_{w^i \neq 0} (x^i = 0)$ in X.

Let E be the exceptional divisor of π .

Proposition 19.10. Suppose that $\mu_r \subseteq \mathrm{GL}(n,\mathbb{C})$ is small. Then

$$K_B = \pi^* K_X + \left(\frac{1}{r} \sum w^i - 1\right) E,$$

i.e., $a(E, X) = \frac{1}{r} \sum w^i - 1$.

Fix $r \in \mathbb{N}$. For $k \in \mathbb{Z}$, let $\overline{k} = k - \lfloor \frac{k}{r} \rfloor r$.

Theorem 19.11 (Reid–Tai criterion). A small cyclic quotient singularity of type $\frac{1}{r}(a^1, \ldots, a^n)$ is terminal (resp. canonical) if and only if $\frac{1}{r} \sum \overline{ka^i} > 1$ (resp. ≥ 1) for all 0 < k < r.

Proof. Use the description of $X = \mathbb{A}^n / \frac{1}{r}(a^1, \dots, a^n) = X_{\Sigma}$.

Suppose that X is terminal (resp. canonical). Then for 0 < k < r, take a primitive element $\frac{1}{r}(b^1,\ldots,b^n)$ in N from the ray $\mathbb{R}^+ \cdot \frac{1}{r}(\overline{ka^1},\ldots,\overline{ka^n})$. Let E_k be the excepsional divisor obtained by the weighted blow-up of X_{Σ} with wt $(x^1,\ldots,x^n)=\frac{1}{r}(b^1,\ldots,b^n)$. Since

$$a(E_k, X) = \frac{1}{r} \sum b^i - 1 > 0 \quad (\text{resp. } \ge 0),$$

we get $\frac{1}{r} \sum \overline{ka^i} \ge \frac{1}{r} \sum \overline{b^i} > 1$ (resp. ≥ 1).

Conversely, take a unimodular subdivision of X_{Σ} which provides a log resolution of X_{Σ} [CLS, Thm 11.2.2]. Every exceptional prime divisor E corresponds to a ray in $N_{\mathbb{R}}$ generated by a primitive element $\alpha = \frac{1}{r}(c^1, \ldots, c^n)$ in which at least two of $c^i > 0$.

Recall that $\alpha \in \sigma \cap N \subseteq N$ if and only if $\alpha \equiv \frac{1}{r}(ka^1, \ldots, ka^n) \pmod{\mathbb{Z}^n}$ for some $0 \leq k < r$, i.e., $(c^1, \ldots, c^n) \equiv (ka^1, \ldots, ka^n) \pmod{r}$. This implies $c^i \geq \overline{ka^i}$ for all i.

Now,

$$a(E, X) = \frac{1}{r} \sum_{i=1}^{r} c^{i} - 1 \ge \begin{cases} 1 & \text{if } k = 0, \\ \frac{1}{r} \sum_{i=1}^{r} \overline{ka^{i}} - 1 & \text{if } 0 < k < r. \end{cases}$$

So $\frac{1}{r} \sum \overline{ka^i} > 1$ (resp. ≥ 1) implies a(E, X) > 0 (resp. ≥ 0) for any exceptional divisor E, i.e., X is terminal (resp. canonical).

In 3 dimension, the condition of Reid–Tai criterion is well-understood:

Theorem 19.12 (White). Let $r \in \mathbb{N}$, a^1 , a^2 , $a^3 \in \mathbb{Z}$. If $\overline{ka^1} + \overline{ka^2} + \overline{ka^3} > r$ for all 0 < k < r, then $r \mid a^i + a^j$ for some $1 \le i < j \le 3$.

Remark. When r = 1, 2, this is trivial. Without loss of generality, we may assume $r \geq 3$. We explain an abstract approach due to [Morrison and Stevens, Terminal quotient singularities in dimension three and four]. The proof by [White, Lattice tetrahedra] is in 1964.

Definition 19.13. A **Dirichlet character** of $(\mathbb{Z}/r\mathbb{Z})^{\times}$ is a group homomorphism

$$\chi \colon (\mathbb{Z}/r\mathbb{Z})^{\times} \to \mathbb{C}^{\times}.$$

We sometimes extend it to $\mathbb{Z} \to \mathbb{C}$ by letting $\chi(n) = 0$ if $\gcd(n, r) > 1$.

The **conductor** f of χ is the minimal number $r' \mid r$ such that χ factors through $(\mathbb{Z}/r\mathbb{Z})^{\times} \to (\mathbb{Z}/r'\mathbb{Z})^{\times}$.

We say χ is even if $\chi(-1) = 1$, odd if $\chi(-1) = -1$.

Definition 19.14. We define $B_1: \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}$ by letting

$$B_1(q) = \begin{cases} q - \lfloor q \rfloor - \frac{1}{2} & \text{if } q \notin \mathbb{Z} \\ 0 & \text{if } q \in \mathbb{Z}. \end{cases}$$

Note that B_1 is an odd function.

We define the generalized Bernoulli number

$$B_{1,\chi} = \sum_{a \in (\mathbb{Z}/r\mathbb{Z})^{\times}} \chi(a) B_1\left(\frac{a}{f}\right) \in \mathbb{C}.$$

Proposition 19.15 (Dirichlet). If χ is odd, then $B_{1,\chi} \neq 0$.

Sketch of proof. Consider the Dirichlet function

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}, \quad \text{Re } s > 1.$$

It may be continued analytically to $\mathbb C$ except for a simple pole at s=1 when $\chi=1$.

We see that $L(1,\chi) \neq 0$ when $\chi \neq 1$: regarding

$$\operatorname{Gal}(\mathbb{Q}(\zeta_r)/\mathbb{Q}) \cong (\mathbb{Z}/r\mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times},$$

we let $K = \mathbb{Q}(\zeta_r)^{\ker \chi}$. Consider the Dedekind zeta function

$$\zeta_K(s) = \prod_{a=0}^{b-1} L(s, \chi^a),$$

where b is the order of χ . This function has a simple pole at s=1, so none of the factors $L(s,\chi^a)$, a>0, can vanish at s=1. In particular, $L(1,\chi)\neq 0$.

From functional equation, we have

$$L(1-n,\chi) \neq 0$$

when $n \in \mathbb{N}$ and n is even (resp. odd) if χ is even (resp. odd).

One can define

$$\sum_{a=1}^{f} \frac{\chi(a)te^{at}}{e^{ft} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}.$$

When $\chi = 1$, $B_{n,1}$ is the ordinary Bernoulli number B_n . Since

$$B_{n,\chi} = f^{n-1} \sum_{a \in (\mathbb{Z}/r\mathbb{Z})^{\times}} \chi(a) B_n \left(\frac{a}{f}\right),$$

where

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}.$$

By a contour integration, one can see that

$$L(1-n,\chi) = -\frac{B_{n,\chi}}{n}.$$

Hence if χ is odd, by taking n=1,

$$B_{1,\chi} = -L(0,\chi) \neq 0.$$

Definition 19.16. Let $V = \mathbb{C}[(\mathbb{Z}/r\mathbb{Z})^{\times}]$, the group algebra of $(\mathbb{Z}/r\mathbb{Z})^{\times}$ over \mathbb{C} generated by σ_a , $a \in (\mathbb{Z}/r\mathbb{Z})^{\times}$. For $q \in \frac{1}{r}\mathbb{Z}/\mathbb{Z} \subseteq \mathbb{Q}/\mathbb{Z}$, define

$$S(q) = \sum_{a \in (\mathbb{Z}/r\mathbb{Z})^{\times}} B_1(aq)\sigma_a \in V.$$

Let W be the vector subspace of V generate by

$$\{S(q) \mid q \in \frac{1}{r}\mathbb{Z}/\mathbb{Z}\}.$$

Let $W^{\perp} \subseteq V^{\vee}$ be the orthogonal complement with respect to the natural pairing $V \otimes V^{\vee} \to \mathbb{C}$.

For each $a \in (\mathbb{Z}/r\mathbb{Z})^{\times}$, let $\lambda_a = \sigma_a^{\vee} + \sigma_{-a}^{\vee} \in V^{\vee}$ so that

$$\lambda_a(S(q)) = B_1(aq) + B_1(-aq) = 0.$$

Hence $\lambda_a \in W^{\perp}$.

Theorem 19.17. The \mathbb{C} -vector space W^{\perp} is generated by $\{\lambda_a \mid a \in (\mathbb{Z}/r\mathbb{Z})^{\times}\}$. In particular, dim W^{\perp} = dim $W = \phi(r)/2$.

Proof. Let $\chi: (\mathbb{Z}/r\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be an arbitrary character with conductor f. Using

$$\mathbb{Z}/f\mathbb{Z} \cong \frac{1}{f}\mathbb{Z}/\mathbb{Z} \subseteq \mathbb{Q}/\mathbb{Z},$$

we define

$$w_{\chi} = \sum_{a \in (\mathbb{Z}/f\mathbb{Z})^{\times}} \chi(a) S\left(\frac{a}{f}\right) = \sum_{b \in (\mathbb{Z}/r\mathbb{Z})^{\times}} \left(\sum_{a \in (\mathbb{Z}/f\mathbb{Z})^{\times}} \chi(a) B_1\left(\frac{ba}{f}\right)\right) \sigma_b \in W.$$

The coefficient of σ_1 is $B_{1,\chi} \neq 0$ if χ is odd.

Notice that there is an representation $\rho \colon (\mathbb{Z}/r\mathbb{Z})^{\times} \to \mathrm{GL}(V)$ by letting $\rho(a)(\sigma_b) = \sigma_{ab}$. We see that

$$\rho(c)(\omega_{\chi}) = \sum_{b \in (\mathbb{Z}/r\mathbb{Z})^{\times}} \left(\sum_{a \in (\mathbb{Z}/f\mathbb{Z})^{\times}} \chi(a) B_{1} \left(\frac{ba}{f} \right) \right) \sigma_{cb}$$

$$= \sum_{b \in (\mathbb{Z}/r\mathbb{Z})^{\times}} \left(\sum_{a \in (\mathbb{Z}/f\mathbb{Z})^{\times}} \chi(a) B_{1} \left(\frac{c^{-1}ba}{f} \right) \right) \sigma_{b}$$

$$= \sum_{b \in (\mathbb{Z}/r\mathbb{Z})^{\times}} \left(\sum_{a \in (\mathbb{Z}/f\mathbb{Z})^{\times}} \chi(ca) B_{1} \left(\frac{ba}{f} \right) \right) \sigma_{b} = \chi(c) w_{\chi}.$$

So w_{χ} lies in the χ -eigenspace of the $(\mathbb{Z}/r\mathbb{Z})^{\times}$ -action. So all non-zero w_{χ} are linearly independent. Hence,

$$\{w_{\chi} \mid \chi \text{ is odd}\}$$

is a linearly independent subset of W, and hence dim $W \ge \phi(r)/2$.

On the other hand,

$$\operatorname{codim}_V W = \dim W^{\perp} \ge \dim \langle \lambda_a \mid a \in (\mathbb{Z}/r\mathbb{Z})^{\times} \rangle = \frac{\phi(r)}{2}.$$

Since dim $V = \phi(r)$, we get the result.

Proof of (19.12). Write $a(k) = \overline{ka^1} + \overline{ka^2} + \overline{ka^3}$. Observe that

$$\overline{kb} + \overline{(r-k)b} = \begin{cases} r & \text{if } \overline{kb} \neq 0, \\ 0 & \text{if } \overline{kb} = 0. \end{cases}$$

So $a(k) + a(r - k) = r \cdot \#\{i \mid \overline{ka^i} \neq 0\}.$

By the assumption, a(k) > r for all 0 < k < r, so

$$a(k) + a(r-k) > 2r$$

and hence equal to 3r. This implies $\overline{ka^i} + \overline{(r-k)a^i} = r$ for all 0 < k < r. Hence, $\gcd(a^i,r) = 1$ for all i.

Furthermore, since r < a(k) < 2r,

$$a(k) = \overline{k(a^1 + a^2 + a^3)} + r$$

and thus $gcd(a^1 + a^2 + a^3, r) = 1$. This equation can be rewritten as

$$\sum \left(\overline{ka^i} - \frac{r}{2}\right) = \overline{k(a^1 + a^2 + a^3)} - \frac{r}{2}.$$

So

$$\sum B_1(a^i q) = B_1((a^1 + a^2 + a^3)q)$$

for each $q \in \frac{1}{r}\mathbb{Z}/\mathbb{Z}$. Consider

$$\mu = \sum \sigma_{a^i}^{\vee} - \sigma_{a^1 + a^2 + a^3}^{\vee} \in V.$$

Since

$$\mu(S(q)) = \sum B_1(a^i q) - B_1((a^1 + a^2 + a^3)q) = 0,$$

we get $\mu \in W^{\perp} = \langle \sigma_a^{\vee} + \sigma_{-a}^{\vee} \mid a \in (\mathbb{Z}/r\mathbb{Z})^{\times} \rangle$. Hence, $a^1 + a^2 + a^3 \equiv a^k$ for some k, as desired.

Theorem 19.18 (Terminal Lemma). A cyclic quotient threefold singularity (X,0) is terminal if and only if it is of type $\frac{1}{r}(1,-1,b)$ for some $\gcd(r,b)=1$ and $\mu_r\subseteq \mathrm{GL}(3)$ is small.

Proof. If (X,0) is of type $\frac{1}{r}(1,-1,b)$, then

$$\sum \overline{ka^i} = k + (r - k) + \overline{kb} > r$$

for all 0 < k < r. Hence, by (19.11), (X, 0) is terminal.

Conversely, if $(X,0) = \mathbb{A}^3/\frac{1}{r}(a^1,a^2,a^3)$ is terminal, then (X,0) is isolated. So μ_r acts on X freely outside 0, i.e., the action is small. This shows that $\gcd(r,a^i)=1$. By (19.11) and (19.12), we may assume that $a^1+a^2=r$ after permutation. Take $a\in\mathbb{Z}$ such that $\overline{aa^1}=1$. Then (X,0) becomes of type $\frac{1}{r}(\overline{aa^1},\overline{aa^2},\overline{aa^3})=\frac{1}{r}(1,-1,b)$, in which $\gcd(b,r)=1$.

20 Terminal singularities of higher index

Let $\mathfrak{m} \leq \mathcal{O}_{\mathbb{A}^4,0}$ be the maximal ideal. Write $f = f_2 + f_3 + \cdots \in \mathfrak{m}$, where f_2 is the quadratic part of f, f_3 is the cubic part of f, and so on. Write, for example, $x_1x_2 \in f$ if the coefficient of x_1x_2 in f is nonzero.

Theorem 20.1 (Mori). Let $(Y,0) \subseteq (\mathbb{A}^4,0)$ be a cDV singularity (not smooth) defined by f=0 with an action μ_r with weight $\operatorname{wt}(x^1,\ldots,x^4)=(a^1,\ldots,a^4)$.

If $(X,0) = (Y,0)/\mu_r \subseteq \mathbb{A}^4/\frac{1}{r}(a^1,\ldots,a^4)$ is a terminal singularity, then one of the followings holds after changing expression of type $\frac{1}{r}(a^1,\ldots,a^4)$ and orbifold coordinates x^1,\ldots,x^4 :

Name/ind.	type of action	f	condition
cA/r	$\frac{1}{r}(1,-1,0,b)$	$x^1x^2 + g(x^3, (x^4)^n)$	$g \in \mathfrak{m}^2$, $\gcd(b,r) = 1$
cAx/4	$\frac{1}{4}(1,3,2,1)$	$(x^1)^2 + (x^2)^2 + g(x^3, (x^4)^2)$	$g\in\mathfrak{m}^2$
cAx/2	$\frac{1}{2}(1,0,1,1)$	$(x^1)^2 + (x^2)^2 + g(x^3, x^4)$	$g\in\mathfrak{m}^4$
cD/3	$\frac{1}{3}(0,1,2,2)$	$(x^1)^2 + g(x^2, x^3, x^4)$	$g \in \mathfrak{m}^3, g_3 = \begin{cases} (x^2)^3 + (x^3)^3 + (x^4)^3 \\ (x^2)^3 + x^3(x^4)^2 \\ (x^2)^3 + (x^3)^3 \end{cases}$
cD/2	$\frac{1}{2}(1,1,0,1)$	$(x^1)^2 + g(x^2, x^3, x^4)$	$g \in \mathfrak{m}^3, x^2 x^3 x^4 \text{ or } (x^2)^2 x^3 \in g$
cE/2	$\frac{1}{2}(1,0,1,1)$	$(x^1)^2 + (x^2)^2 + x^2g(x^3, x^4) + h(x^3, x^4)$	$g \in \mathfrak{m}^4, h_4 \neq 0.$

Remark. cA/r should be considered as the main series and the other cases are the exceptional case.

Proposition 20.2 (RI). Let $A = \mathbb{A}^n/\frac{1}{r}(a^1,\ldots,a^n)$ with orbifold coordinate x^1,\ldots,x^n , (X,0) be the analytic subspace of A defined by a semi-invariant function $f \in \mathcal{O}_{\mathbb{A}^n,0}$. Suppose that μ_r acts on (f=0) freely in codimension 1. Let $N = \mathbb{Z}^n + \frac{1}{r}(a^1,\ldots,a^n) \cdot \mathbb{Z}$, $\sigma = \text{Cone}(e_1,\ldots,e_n) \subseteq N_{\mathbb{R}}$.

If (X,0) is terminal (resp. canonical), then for each $\frac{1}{r}(b^1,\ldots,b^n)\in N\cap\sigma$ with $\#\{i\mid b^i>0\}\geq 3$, the weighted order $\mathrm{ord}(f)$ of f with respect to $\mathrm{wt}(x^1,\ldots,x^n)=(b^1,\ldots,b^n)$ satisfies

$$\operatorname{ord}(f) + r < (\operatorname{resp.} \leq) \sum b^i.$$

Remark. In Reid's notation ([YPG, p. 372] or [Ishii, Def. 8.3.10]), set $\alpha = \frac{1}{r}(b^1, \dots, b^n)$ and

$$\alpha\left(\prod x^i\right) = \frac{1}{r}\sum b^i, \quad \alpha(f) = \frac{1}{r}\operatorname{ord}(f)$$

where $\alpha(g) = \min\{\langle \alpha, m \rangle \mid \chi^m \in g\}$ for $g \in \mathbb{C}[\sigma^{\vee} \cap M]$.

We shall demonstrate Mori's theorem in the case when (Y, 0) is (an isolated) cA.

- (Ri) If $d = \gcd(a^i, r) > 1$, then some power of $x^i \in f$. Indeed, the action of some element of μ_r fixes the x^i -action pointwisely, i.e., let $a^i = d(a^i)'$, r = dr', then $\zeta^{r'} \cdot x^i = (\zeta^{r'})^{a^i} x^i = x^i$.
- (Rii) We have $gcd(a^i, a^j, r) = 1$ for distinct $1 \le i < j \le 4$. Otherwise the action is not free on $(f = 0) \cap (x^i x^j$ -plane), which has positive dimension at the origin.

Remark. If σ is a coordinate change of $(\mathbb{A}^n, 0)$ i.e., $\sigma \in \operatorname{Aut}(\mathcal{O}_{\mathbb{A}^n, 0})$, then

$$\frac{1}{r} \sum_{i=0}^{r-1} \tau^{-i} \sigma \tau^i$$

is an orbifold coordinate change of μ_r acting on \mathbb{A}^n , where τ is given by a generator of μ_r .

Since (Y, 0) is singular, cA, so $f \in \mathfrak{m}^2$ and f_2 has rank ≥ 2 .

Lemma 20.3. After orbifold coordinate change, either

- (i) $f = x^1 x^2 + g(x^3, x^4)$, or
- (ii) $f = (x^1)^2 + (x^2)^2 + g(x^3, x^4)$ with $x^3 x^4 \notin g_2$.

Proof. We claim that $f_2 = x^1x^2 + g_2(x^3, x^4)$ or $(x^1)^2 + (x^2)^2 + h_2(x^3, x^4)$ with $x^3x^4 \notin h_2$. The lemma follows from the claim and Tougeron's implicit function theorem.

If $(x^i)^2 \in f_2$, then we can eliminate the linear term in x^i . After orbifold coordinate change, write $f_2 = p_2(x^1, \dots, x^i) + (x^{i+1})^2 + \dots + (x^4)^2$ for some $0 \le i \le 4$ so that $(x^\ell)^2 \notin p_2$ for all $\ell = 1, \dots, i$.

- If $p_2 = 0$, then $f_2 = \sum (x^i)^2$, and we get (ii).
- If $p_2 \neq 0$, we may assume $x^1 x^2 \in p_2$ and thus $i \geq 2$. Write

$$f_2 \sim x^1 x^2 + a(x^3, x^4) x^1 + b(x^3, x^4) x^2, c(x^3, x^4) = x^1 x^2 + g(x^3, x^4),$$

i.e.,
$$(i)$$
.

When $f = x^1 x^2 + g(x^3, x^4)$, we shall derive cA/r or cAx/4: for 0 < k < r, let

$$\operatorname{ord}_k(f)$$

be the weighted order of f with respect to $\operatorname{wt}(x^1,\ldots,x^4)=(\overline{ka^1},\ldots,\overline{ka^4})$. By (Rii), $\#\{i\mid \overline{ka^i}>0\}\geq 3$, so it follows from (20.2) that

$$\operatorname{ord}_k(f) + r < \sum \overline{ka^i} \tag{\spadesuit}$$

for all 0 < k < r. Let $p = \gcd(a^1 + a^2, r)$. Since $(x^1)^{\ell}$, $(x^2)^{\ell} \notin f$, using (Ri) we get $\gcd(a^i, r) = 1$ for i = 1, 2.

We claim that $p \mid a^3$ or $p \mid a^4$. Otherwise $0 < s = \frac{r}{p} < r$ and all $\overline{sa^i} > 0$. Without loss of generality, we may assume that $\overline{sa^3} + \overline{sa^4} \le r$ (otherwise replace each a^i by $\overline{-a^i}$). Since $p \mid a^1 + a^2$, $\overline{sa^1} + \overline{sa^2} = r$. By (\spadesuit) ,

$$\operatorname{ord}_s(f) + r < \sum \overline{sa^i} \le r + r = 2r.$$

However,

$$\operatorname{ord}_s(f) \equiv \operatorname{ord}_s(x^1 x^2) \equiv s(a^1 + a^2) \equiv 0 \pmod{r},$$

a contradiction. So we may assume that $p \mid a^3$.

Next, we show that $q = \gcd(a^4, r) = 1$. Since $p \mid a^3, p \mid r$, and $\gcd(a^3, a^4, r) = 1$ by (Rii), we see that $\gcd(a^4, p) = 1$. If q > 1, then there exists $\ell > 0$ such that $(x^4)^{\ell} \in f$ by (Ri). Then

$$\ell a^4 = \text{wt}((x^4)^{\ell}) \equiv \text{wt}(x^1 x^2) = a^1 + a^2 \pmod{r},$$

and hence $q \mid a^1 + a^2$. But then $q \mid \gcd(a^1 + a^2, p)$, a contradiction.

Let $gcd(a^3, r) = pg$. If g > 1, then some power of $x^3 \in f$, so $pg \mid a^1 + a^2$ (as before). This implies $pg \mid p$, a contradiction. Hence, $gcd(a^3, r) = p = gcd(a^1 + a^2, r)$.

One can now write

$$f = x^1 x^2 + g(x^3, (x^4)^p), \quad g \in \mathfrak{m}^2.$$

If p = r, then

$$(a^1,a^2,a^3,a^4) \equiv (a^1,-a^1,0,a^4) \pmod{r},$$

where a^1 , a^4 are coprime to r. We get the cA/r case.

Now we shall assume that p < r. If $k(a^1 + a^2) \equiv \pm p \pmod{r}$ for some 0 < k < r, then $\overline{ka^i}$ for each i = 1, 2, 3, 4. Indeed, since

$$k(a^1 + a^2) \equiv \pm p \not\equiv 0 \pmod{r},$$

 $r \nmid k$ and hence $\gcd(k, r/p) = 1$. So $r \nmid ka^i$ for i = 1, 2, 3, 4 (note that $p = \gcd(a^3, r)$).

Let

$$\mathscr{S} = \{ k \in \{1, \dots, r-1\} \mid k(a^1 + a^2) \equiv \pm p \pmod{r}, \ \overline{ka^3} + \overline{ka^4} \le r \}.$$

We see that

$$\#\mathscr{S} = \begin{cases} p & \text{if } r > 2p, \\ \frac{p}{2} & \text{if } r = 2p, \end{cases}$$

since the first condition gives 2p, p solutions, respectively, and the second condition cuts the solutions into half (note that $gcd(a^3, a^4, r) = 1$.

For $k \in \mathscr{S}$,

$$\operatorname{ord}_k(f) + r < \sum \overline{ka^i} \le \overline{ka^1} + \overline{ka^2} + r,$$

and

$$\operatorname{ord}_k(f) \equiv \operatorname{ord}_k(x^1 x^2) \equiv \overline{ka^1} + \overline{ka^2} \pmod{r}.$$

So $\overline{ka^1} + \overline{ka^2} - \operatorname{ord}_k(f) = r$ and $\operatorname{ord}_k(f) \equiv \pm p \pmod{r}$. This implies $\operatorname{ord}_k(f) = p$ or r - p.

Let

$$\mathscr{S}_1 = \{k \in \mathscr{S} \mid \operatorname{ord}_k(f) = p\},$$

 $\mathscr{S}_2 = \{k \in \mathscr{S} \mid \operatorname{ord}_k(f) = r - p, \ r > 2p\}.$

Then $\mathscr{S} = \mathscr{S}_1 \sqcup \mathscr{S}_2$ and $\mathscr{S}_2 = \emptyset$ if r = 2p.

If $k \in \mathcal{S}_1$, then

$$\operatorname{ord}_k(x^1x^2 + g(x^3, (x^4)^p)) = \operatorname{ord}_k(f) = p \ge 2.$$

Since $\operatorname{ord}_k(x^1x^2) > p$, $\operatorname{ord}_k(g) = p$. Since $g \in \mathfrak{m}^2$, we must have $(x^4)^p \in g$ and hence $\overline{ka^4} = 1$, i.e., there is at most one 0 < k < r such that $\overline{ka^4} = 1$.

If $k \in \mathscr{S}_2$, then $\overline{ka^1} + \overline{ka^2} = 2r - p$. So $r - p < \overline{ka^i} < r$ for i = 1, 2. Hence, by $\gcd(r, a^1) = 1$,

$$\#\mathscr{S}_2 \le \#((r-p,r) \cap \mathbb{N}) = p-1.$$

Now, when r = 2p,

$$1 \le \frac{p}{2} = \#\mathscr{S} = \#\mathscr{S}_1 \le 1.$$

So p=2 and r=4. One can set

$$\operatorname{wt}(x^1, x^2, x^3, x^4) = (1, 1, 2, a^4)$$

with $a^4 = 1$ or 3. By (\spadesuit) with k = 1, we get

$$\operatorname{ord}_1(f) + 4 < 4 + a^4$$
.

So $a^4 = 3$.

Since $\mathscr{S}_1 \neq \varnothing$, $(x^4)^2 \in g$. Thus after orbifold coordinate change, one can write

$$f = 4x^{1}x^{2} + (x^{3})^{n} + (x^{4})^{2} = (x^{1} + x^{2})^{2} + (x^{4})^{2} + (x^{3})^{n} - (x^{1} - x^{2})^{2}$$

with $n \ge 3$ odd. This gives cAx/4.

Assume r > 2p, we will derive a contradiction. Since

$$p = \#\mathcal{S} = \#\mathcal{S}_1 + \#\mathcal{S}_2 \le 1 + (p-1) = p,$$

 $\mathscr{S}_2 = \{0 < k < r \mid r - p < \overline{ka^1} < r\}$. Since $\gcd(a^i, r) = 1$, i = 1, 2, there exists $0 < k_i < r$ such that $k_i a^1 \equiv r - i \pmod{r}$. Then $2k_1 \equiv k_2 \pmod{r}$ and $k_1, k_2 \in \mathscr{S}_2$ when p > 2. We see that

$$\overline{k_i a^2} = 2r - p - (r - i) = r - p + i$$

for i = 1, 2. But then

$$2(r-p+1) \equiv 2k_1a^2 \equiv k_2a^2 \equiv r-p+2 \pmod{r},$$

i.e., $r \mid p$, a contradiction.

This shows that p must be 2, and thus r is even. In this case, $\#\mathscr{S}_1 = \#\mathscr{S}_2 = 1$, say $\mathscr{S}_i = \{k_i\}, i = 1, 2$. Then $\overline{k_2 a^1} = \overline{k_2 a^2} = r - 1$, and hence $a^1 = a^2$. Since $k_1 \in \mathscr{S}_1$, we get

$$2 \cdot \overline{k_1 a^1} = \overline{k_1 a^1} + \overline{k_1 a^2} = r + 2.$$

So $2k_1a^1 \equiv 2 \pmod{r}$ and $(x^4)^2 \in g$ with $\overline{k_1a^4} = 1$ as above. This gives

$$(\overline{2k_1a^1}, \overline{2k_1a^2}, \overline{2k_1a^4}) = (2, 2, 2).$$

By (\spadesuit) with $k=2k_1$, we get

$$4 + r \le \operatorname{ord}_{2k_1}(f) + r < 6 + \overline{2k_1a^3},$$

or $r-2 < \overline{2k_1a^3} < r$. But $\overline{2k_1a^3}$ is even since r is even, a contradiction.

Remark. By the above proof, we have seen in the case (i), (X, 0) is cA/r or cAx/4 and $(x^4)^2 \in f$ if (X, 0) is cAx/4.

For case (ii), i.e., $f = (x^1)^2 + (x^2)^2 + g(x^3, x^4)$, we shall derive cA/2, cAx/4, cAx/2 with $x^3x^4 \notin g$.

We claim that r is a power of 2. Otherwise there exists odd $s \mid r, s > 2$. Consider the (crepant) finite morphism $Y/\mu_s \to Y/\mu_r$. We see that Y/μ_s is also terminal. Without loss of generality, we may assume that r > 2 is odd.

Since $(x^1)^2 + (x^2)^2$ is semi-invariant,

$$2a^1 = \text{wt}((x^1)^2) \equiv \text{wt}((x^2)^2) = 2a^2 \pmod{r}.$$

Then $a^1=a^2$, and hence reduces to case (i) by changing the coordinate $(x^1)^2+(x^2)^2=(x^1+\sqrt{-1}x^2)(x^1-\sqrt{-1}x^2)$. Since r is odd, we must get cA/r, which is of type $\frac{1}{r}(1,-1,0,b)=\frac{1}{r}(a^1,-a^1,0,1)$, i.e., $\gcd(a^1,r)=1$ and $a^1=a^2\equiv -a^1\pmod{r}$. But then $r\mid 2a^1$ and hence $r\mid 2$, a contradiction.

Next, we show that r=2 or 4. Otherwise, $8 \mid r$ and we may assume that r=8. Similarly, $2a^1=2a^2 \pmod 8$, i.e., $a^1\equiv a^2 \pmod 4$. One can apply to Y/μ_4 the result of the case (i) by the same method above and get either cA/4 or cAx/4. The case cA/4 never occurs since $\gcd(a^1,4)=1$ and $a^1=a^2\equiv -a^1 \pmod 4$, a contradiction. For the case cAx/4,

$$rk f_2 = 3,$$

say $(x^1)^2$, $(x^2)^2$, $(x^4)^2 \in f$. Then

$$2a^1 \equiv 2a^2 \equiv 2a^4 \pmod{8},$$

or $a^1 \equiv a^2 \equiv a^4 \pmod 4$. Then we may assume $a^1 = a^2$ after permutation. This contradicts to the cA/8 case.

Suppose that r=4. If $a^1=a^2$, one can derive the case cAx/4. This condition is satisfied after permutation whenever $rk f_2 \geq 3$. We only have to deal with the case $f_2=(x^1)^2+(x^2)^2$ with $a^1 \neq a^2$. Since $2a^1 \equiv 2a^2 \pmod 4$ and $\gcd(a^1,a^2,4)=1$, we may assume that $a^1=1, a^2=3$.

Apply to Y/μ_2 the result of the case (i), we see that it is of type $\frac{1}{2}(1, 1, 0, b)$ and thus exactly one of a^3 , a^4 is even, say $2 \mid a^3$. Since $\gcd(a^3, r) > 1$, it follows from (Ri) that $(x^3)^{\ell} \in f$ for some ℓ . So

$$\ell a^3 = \text{wt}((x^3)^{\ell}) \equiv \text{wt}((x^1)^2) = 2 \pmod{4}.$$

This shows that $a^3 = 2$. Possibly permuting x_1 and x_2 and changing a_i with $4 - a_i$, one can take $f_2 = (x^1)^2 + (x^2)^2$ and $(a^1, a^2, a^3, a^4) = (1, 3, 2, 1)$, which is cAx/4.

For r = 2, if $a^1 = a^2$, then cA/2 as above. For $f_2 = (x^1)^2 + (x^2)^2$ with $a^1 = 1$, $a^2 = 0$. Then $gcd(a^2, a^j, r) = 1$ for j = 3, 4 implies $a^3 = a^4 = 1$, which is cAx/2.

21

22 Threefold flips after Shokurov

Recall that for a klt (or plt) pair (X, Δ) , a flipping contraction for (X, Δ) is a small projective birational morphism $f: X \to Z$ with $-(K_X + \Delta)$ being f-ample and $\rho(X/Z) = 1$.

Proposition 22.1. For a dlt pair (X, Δ) , TFAE:

- (1) (X, Δ) is plt;
- (2) $|\Delta|$ is normal;
- (3) $[\Delta]$ is the disjoint union of its irreducible components.

Reduction of klt flips to pl (prelimiting) flips

Definition 22.2. Let (X, S + B) be a klt pair with $\lfloor S + B \rfloor = S$ irreducible and $S \not\subseteq \operatorname{Supp} B$.

A pl flipping contraction is a flipping contraction $f: X \to Z$ for $K_X + S + B$ such that X is \mathbb{Q} -factorial and S is f-negative (or F-anti ample).

Remark. This definition is slightly more restrictive than [K+92, Def. 18.6], [C+07, Def. 4.3.1], [Sho03, 1.1].

Theorem 22.3. klt flips exist in dimension n provided that:

 $(PL)_n$ pl flips exists in dimension n, and

 $(ST)_n$ special termination holds in dimension n.

In general, $(MMP)_{n-1} \implies (ST)_n$, so we know that $(ST)_n$ holds for $n \leq 4$. Our goal is to prove that flips of threefold pl flipping contractions exist.

Let $f: X \to Z$ be a flipping contraction for $K_X + S + B$. We note that existence of flips is local on Z in the Zariski topology, we always assume that Z is affine.

Set $A = H^0(Z, \mathcal{O}_Z) = H^0(X, \mathcal{O}_X)$ be the affine coordinate ring. So the pl flip exists if and only if

$$R(X, K_X + S + B) := \bigoplus_{i \ge 0} H^0(X, \mathcal{O}_X(i(K_X + S + B)))$$

is a finitely generated A-algebra.

Definition 22.4. A function algebra on X is a graded A-subalgebra $V = \bigoplus_{i \geq 0} V_i$ of the polynomial algebra $\mathbb{C}(X)[T]$ where $V_0 = A$ and each $V_i \subseteq \mathbb{C}(X)$ is a coherent A-module.

We say V is **bounded** (by D) if there exists $D \in WDiv(X)$ such that

$$V \subseteq \mathrm{H}^0(X, \mathcal{O}_X(iD)) \quad \forall i.$$

Let $S = \overline{\{\eta\}} \subseteq X$ be an irreducible subvariety of codimension 1. We say V is regular along S if

(1)
$$V \subseteq \mathcal{O}_{X_0,S} = \mathcal{O}_{X,n} \subseteq \mathbb{C}(X),$$

(2) $V_1 \not\subseteq \mathfrak{m}_{X,S} = \{ \varphi \in \mathbb{C}(X) \mid \nu_S(\varphi) \geq 1 \}.$

If V is regular along S, the restricted algebra $V^0 = \operatorname{res}_S V$ is

$$V^0 = \bigoplus V_i^0,$$

where V_i^0 is the image of V_i under $\mathcal{O}_{X,S} \to \mathcal{O}_{X,S}/\mathfrak{m}_{X,S} = \mathbb{C}(S)$ (so $V_1^0 \neq 0$).

Remark. If V is bounded by D, regular along S, and $S \nsubseteq \operatorname{Supp} F$, then $V^0 = \operatorname{res}_S V$ is also bounded.

Fix any f-negative $D \in \mathrm{WDiv}(X)$. Then $\rho(X/Z) = 1$ implies that $D \sim r(K_X + S + B)$ for some $r \in \mathbb{Q}^+$. So $R(X, K_X + S + B)$ is finitely generated if and only if R(X, D) is finitely generated by [KM, Cor. 6.14 (4)].

Lemma 22.5. Let $f: X \to Z$ be a pl flipping contraction for $K_X + S + B$, $0 \le D \in \text{WDiv}(X)$ be f-negative such that $S \subseteq \text{Supp } D$. Then the flip of f exists if and only if $R^0 = \text{res}_S R(X, D)$ is finitely generated.

Proof. If the flip of f exists, then R = R(X, D), and hence R^0 , is finitely generated.

Conversely, since $\rho(X/Z) = 1$ and Z is affine, we may assume that $D \sim S$. Then there exists $t \in \mathbb{C}(X)$ such that $\operatorname{div}(t) + D = S \geq 0$, so $t \in H^0(X, \mathcal{O}_X(D))$.

Claim. The kernel of $R \to R^0$ is generated by t.

Proof of Claim. For $\varphi \in R_n$, we have $\operatorname{div}(\varphi) + nD \geq 0$ and φ has a zero along S. So

$$0 \le \operatorname{div}(\varphi) + nD - S = \operatorname{div}(\varphi/t) + (n-1)D,$$

and hence, $\varphi/t \in R_{n-1}$ and $\varphi = t \cdot \varphi/t \in \langle t \rangle$.

Hence, R is finitely generated.

Remark. Let S be an f-negative irreducible divisor. Then $f_*\mathcal{O}_X(S)$ is globally generated. Let $\varphi \in H^0(Z, f_*\mathcal{O}_X(S)) = H^0(X, \mathcal{O}_X(S))$ be a general section and $D := \operatorname{div}(\varphi) + S \geq 0$. Then $0 \leq D \sim S$ and $S \not\subseteq \operatorname{Supp} D$.

Now, we need to prove that the restricted algebra R^0 is finitely generated. We will see that this is equivalent to R_S , a pbd algebra associated with R^0 , is finitely generated. We will show that R_S is a Shokurov algebra for all dimension, and a Shakurov algebra with mobile system on a surface is finitely generated.

Definition 22.6. Let X be a normal variety. Consider a category with objects of the form $Y \to X$ proper birational from a normal variety Y (called a model of X). Morphisms between the objects $Y \to X$ and $Y' \to X$ are just morphisms $Y \to Y'$ so that the diagram commutes.

An (integral) Weil \mathbf{b} -R-divisor (b for birational) on X is an element

$$\mathbf{D} \in \mathbf{WDiv}(X)_R := \varprojlim \mathrm{WDiv}(Y)_R,$$

where the projective limit is take over all models $f: Y \to X$ of X under $f_*: WDiv(Y)_R \to WDiv(X)_R$.

Remark. If $f: Y \to X$ is a model of X, then $f_*: \mathbf{WDiv}(Y) \to \mathbf{WDiv}(X)$ is an isomorphism.

A Zariski–Riemann space if a subring of a field K is a locally ringed space whose points are valuation rings $k \subseteq R \subseteq K$. Then $\mathfrak{X} := \varprojlim Y$ is a Zariski–Riemann space. Note that \mathfrak{X} is nor a scheme anymore for dim $X \geq 2$. We have

$$\mathrm{WDiv}(\mathfrak{X}) = \varprojlim \mathrm{WDiv}(Y) = \mathbf{WDiv}(X).$$

Definition 22.7. Let $\mathbf{D} = \sum d_{\Gamma}\Gamma$ be a b-divisor on X. For each $U \subseteq X$, define

$$\mathrm{H}^0(U,\mathcal{O}_X(\mathbf{D})) = \{ \varphi \in \mathbb{C}(X) \mid \nu_{\Gamma}(\varphi) + d_{\Gamma} \geq 0 \text{ for } \Gamma \text{ with center on } U \}.$$

In general, it is often not quasi-coherent. However, it is a coherent sheaf in cases of interest to us.

For $Y \to X$ a model of X, the trace of **D** on Y is $\operatorname{tr}_Y \mathbf{D} = \mathbf{D}_Y = \sum_{\Gamma \in \operatorname{WDiv}(Y)} d_{\Gamma} \Gamma$.

Remark. The linear system of **D** is defined to be

$$|\mathbf{D}| = \mathbb{P} H^0(X, \mathcal{O}_X(\mathbf{D})).$$

Note that in general, $\mathbb{P} H^0(X, \mathbf{D})$ is a proper subspace of $\mathbb{P} H^0(X, \mathbf{D}_X)$.

Example 22.8. For $\varphi \in \mathbb{C}(X)^{\times}$, $\operatorname{\mathbf{div}}(\varphi) = \sum \nu_{\Gamma}(\varphi)\Gamma$, where we sum over all geometric valuation Γ with center on X. b-divisors of this form are called **principal** b-divisors. As before, we say $\mathbf{D}_1 \sim \mathbf{D}_2$ if $\mathbf{D}_1 - \mathbf{D}_2 = \operatorname{\mathbf{div}}_X(\varphi)$ for some $\varphi \in \mathbb{C}(X)^{\times}$.

Let $B \in \mathrm{WDiv}(X)_{\mathbb{Q}}$ with $K_X + B$ \mathbb{Q} -Cartier. The discrepancy b-divisor $\mathbf{A} = \mathbf{A}(X, B)$ is the b-divisor with trace \mathbf{A}_Y defined by

$$K_Y = f^*(K_X + B) + \mathbf{A}_Y$$

on models $f: Y \to X$ of X.

Let $D \in \mathrm{WDiv}(X)$, \widehat{D} (in an abuse of notation, write D instead of \widehat{D}) is the b-divisor with trace $\widehat{D}_Y = f_*^{-1}D$ on models $f \colon Y \to X$ of X.

Remark. Let **D** be a b-divisor on X. If there exists a model f: Y|toX of X and $0 \le D_Y \in \mathrm{CDiv}(Y)_{\mathbb{Q}}$ such that $\mathbf{D} = \overline{D}_Y$, then $\mathcal{O}_X(\mathbf{D}) = f_*\mathcal{O}_X(D_Y)$ is coherent. In general, for any $0 \le \mathbf{D} \le \overline{D}_Y$, $\mathcal{O}_X(\mathbf{D})$ is coherent.

Lemma 22.9 (C+07, Lem. 2.3.14). Let X be a smooth variety, $D \in \mathrm{WDiv}_{\mathbb{Q}}$ has SNC support, $\mathbf{A} = \mathbf{A}(X, D)$ the discrepancy b-divisor of (X, D). If $f: Y \to X$ is a model of X, then

$$\lceil \mathbf{A}_Y \rceil = f^* \lceil \mathbf{A}_X \rceil + \sum \delta^i E_i,$$

whree the E_i 's are f-exceptional divisors and $\delta^i > 0$.

Proof. By definition, $D = -\mathbf{A}_X$. This gives

$$K_Y = f^*(K_X + D) + \mathbf{A}_Y$$
$$= f^*(K_X + \{-\mathbf{A}_X\}) + \mathbf{A}_Y - \lceil f^*\mathbf{A}_X \rceil.$$

By assumption, $(X, \{-\mathbf{A}_X\})$ is a klt pair, so we get

$$\sum \delta^i E_i = \lceil \mathbf{A}_Y - \lceil f^* \mathbf{A}_X \rceil \rceil \ge 0,$$

as desired.

Using this lemma, one can show that for a normal variety X and a \mathbb{Q} -divisor D such that $K_X + D$ Cartier, the sheaf $\mathcal{O}_X(\lceil \mathbf{A}(X,D) \rceil)$ is coherent. If $D \geq 0$, this is a multiplier ideal sheaf $\mathfrak{I}(D)$.

Definition 22.10. For $D \in \mathrm{WDiv}(X)_{\mathbb{Q}}$ and a vector subspace $0 \neq V \subseteq \mathrm{H}^0(X, \mathcal{O}_X(D))$, the mobile (movable) part of D with respect to V is

$$\operatorname{Mob}_V D := \sum_{\Gamma} \left(-\inf_{0 \neq \varphi \in V} \nu_{\Gamma}(\varphi) \right) \Gamma.$$

When $V = H^0(\mathcal{O}_X(D))$, we simply write Mob D.

For $C \in \mathrm{WDiv}(X)_{\mathbb{Q}}$, we say D is C-saturated if $\mathrm{Mob}\lceil D + C \rceil \leq D$.

Remark. If D is not integral, the definition says $\operatorname{Mob}_V D = \operatorname{Mob}_V \lfloor D \rfloor$. If D is integral, $\operatorname{Mob} D = D - \operatorname{Fix} |D|$, where $\operatorname{Fix} |D|$ is the biggest divisor $F \geq 0$ such that $F \leq D'$ for all $D' \in |D|$. The support $\operatorname{Supp}(\operatorname{Fix} |D|)$ is the divisorial part of $\operatorname{Bs} |D|$. If $|\lceil D + C \rceil| = \emptyset$, then D is always C-saturated. Therefore only $|D| \neq \emptyset$, $|\lceil D + C \rceil| = \emptyset$ is useful.

We say that a property \mathscr{P} holds on high models $(Y \to X \text{ of } X)$ if \mathscr{P} holds on a particular model $Y \to X$ of X and on every higher models $Y' \to Y \to X$.

Definition 22.11. A b-divisor **D** on X is **C**-saturated if \mathbf{D}_Y is \mathbf{C}_Y -saturated on high model $Y \to X$ of X. If $Y \to X$ is a model such that \mathbf{D}_Y is \mathbf{C}_Y -saturated, we say that saturation holds on Y. (For a klt pair (X, B) and $\mathbf{C} = \mathbf{A}(X, B)$, we sometimes replace \mathbf{C}_{Y^-} by canonical.)

We say **D** is exceptionally saturated over X if it is \widehat{E} -saturated for all E effective and exceptional over X.

Proposition 22.12. Let D be a \mathbb{Q} -Cartier integral divisor. Then the \mathbb{Q} -Cartier closure \overline{D} is exceptionally saturated over X.

Proof. For each model $f: Y \to X$ of X,

$$f_*\mathcal{O}_Y(\lceil f^*D + \sum a^i E_i \rceil) = \mathcal{O}_Y(D)$$

if all E_i are f-exceptional and all $a^i \ge 0$. So $\text{Mob}[f^*D + \sum a^i E_i] = \text{Mob} f^*D \le f^*D$, as desired.

Lemma 22.13. Let X be a normal variety, $B \in \mathrm{WDiv}(X)_{\mathbb{Q}}$ such that $K_X + B$ is \mathbb{Q} -Cartier, \mathbf{D} a b-divisor on X, $\mathbf{A} = \mathbf{A}(X, B)$. Let $Y \to X$ be a model of X satisfying

- (1) Y is smooth and $\mathbf{D}_Y + \mathbf{A}_Y$ has SNC support,
- (2) $\overline{\mathbf{D}}_Y = \mathbf{D}$, i.e., it descends to Y.

Then canoincal saturation holds on Y if and only if it holds on any higher model $f: Y' \to Y$, i.e.,

$$\operatorname{Mob}[\mathbf{D}_Y + \mathbf{A}_Y] \le \mathbf{D}_Y \quad \iff \quad \operatorname{Mob}[\mathbf{D}_{Y'} + \mathbf{A}_{Y'}] \le \mathbf{D}_{Y'}.$$

Proof. By (2),

$$K_{Y'} = f^*(K_X + \{-\mathbf{D}_Y - \mathbf{A}_Y\}) + \mathbf{D}_{Y'} + \mathbf{A}_{Y'} - f^*[\mathbf{D}_Y + \mathbf{A}_Y].$$

By (1), $(Y, \{-\mathbf{D}_Y - \mathbf{A}_Y\})$ is klt. So

$$\left[\mathbf{D}_{Y'} + \mathbf{A}_{Y'}\right] = f^* \left[\mathbf{D}_Y + \mathbf{A}_Y\right] + E,$$

where E is f-exceptional and effective. This gives us the result by using the previous lemma.

From now on, we always tacitly assume that the sheaf $\mathcal{O}_X(\mathbf{D})$ of b-divisor is coherent.

Definition 22.14. A sequence $\mathbf{D}_{\bullet} = \{\mathbf{D}_i\}_{i=1}^{\infty}$ of b-divisors is convex if $\mathbf{D}_1 > 0$ and

$$\mathbf{D}_{i+j} \ge \frac{i}{i+j} \mathbf{D}_i + \frac{j}{i+j} \mathbf{D}_j \quad \forall i, j.$$

(Note that this is slightly different with the usual convexity.)

We say \mathbf{D}_{\bullet} is bounded if there exists $D \in \mathrm{CDiv}(X)_{\mathbb{Q}}$ such that $\mathbf{D}_i \leq \overline{D}$ for all i.

Remark. If D_{\bullet} is convex, then it is increasing in the sense that $D_i \leq D_j$ if $i \mid j$.

If moreover \mathbf{D}_{\bullet} is bounded, then we define

$$\lim_{i \to \infty} \mathbf{D}_i = \sup \mathbf{D} \in \mathrm{WDiv}(X)_{\mathbb{R}}.$$

Definition 22.15. A pseudo-b-divisorial (pbd) algebra is the function algebra

$$R = R(X, \mathbf{D}_{\bullet}) = \bigoplus_{i>0} \mathrm{H}^{0}(X, \mathcal{O}_{X}(i\mathbf{D}_{i}))$$

naturally associated to a convex sequence \mathbf{D}_{\bullet} (called the characteristic sequence of the pbd algebra) of b-divisors.

Note that R_i is a subalgebra of $\mathbb{C}(X)$ and the convexity of \mathbf{D}_{\bullet} implies that $R_i \cdot R_j \subseteq R_{i+j}$.

We say that $R(X, \mathbf{D}_{\bullet})$ is bounded if it is bounded sa a function algebra, equivalently, \mathbf{D}_{\bullet} is bounded.

Definition 22.16. A convex sequence D_{\bullet} of effective b-divisors is C-a-saturated (a for asymptotically) if

$$\operatorname{Mod}[j\mathbf{D}_{iY} + \mathbf{C}_Y] \le j\mathbf{D}_{jY}$$

for all i, j on higher models $Y \to X$ of $Y(i, j) \to X$. We say this saturation is uniform if Y(i, j) is independent of i, j.

A pbd algebra $R(X, \mathbf{D}_{\bullet})$ is canonically a-saturated if \mathbf{D}_{\bullet} is canonically a-saturated.

Definition 22.17. A Shokurov algebra is a bounded canonically a-saturated pbd-algebra.

The finite generation conjecture states that for a klt pair (X, B) and birational contraction $X \to Z$ to an affine space Z such that $-(K_X + B)$ is big and nef over Z (called a weak Fano contraction), all Shokurov algebras on X are finitely generated.

Remark. In general, the restricted algebra $R^0 = \operatorname{res}_S R$ is NOT a pbd algebra.

Definition 22.18. An integral b-divisor \mathbf{D} is mobile (b-free) if there exists a model $Y \to X$ of X such that $|\mathbf{D}_Y|$ is free and $\overline{\mathbf{D}}_Y = \mathbf{D}$.

For $D \in \mathrm{WDiv}(X)_{\mathbb{R}}$, $V \subseteq \mathrm{H}^0(X, \mathcal{O}_X(D))$ a vector subspace, the mobile b-part of D with respect to V is

$$\mathbf{Mob}_{V} D = \sum_{\Gamma \subseteq Y \to X} \left(-\inf_{0 \neq \varphi \in V} \nu_{\Gamma}(\varphi) \right) \Gamma$$

Remark. If D is integral Q-Cartier and $f: Y \to X$ is a model of X, then

$$(\mathbf{Mob}_V D)_Y = f^*D - \mathrm{Fix}\, f^*|V|.$$

If, in addition, $V = H^0(\mathcal{O}_X(D))$,

$$(\mathbf{Mob}\,D)_Y = \mathrm{Mob}\,f^*D = \mathrm{Mob}[f^*D].$$

Lemma 22.19. The mobile b-part $\mathbf{Mob}\,D$ of a \mathbb{Q} -Cartier $D \in \mathrm{WDiv}(X)$ is exceptional saturated over X.

Proof. Let $f: Y \to X$ be a model of X and E an effective exceptional divisor. We have

$$\operatorname{Mob}[(\operatorname{\mathbf{Mob}} D)_Y + E] \leq \operatorname{Mob}[f^*D + E] = \operatorname{Mob}[f^*D] = (\operatorname{\mathbf{Mob}} D)_Y,$$

as desired.

Lemma 22.20. Let $V = \bigoplus_{i \geq 0} V_i$ be a function algebra on X. We define the b-divisors

$$\mathbf{M}_{i} = \sum_{\Gamma \subset V \to X} \left(-\inf_{\varphi \in V_{i}} \nu_{\Gamma}(s) \right) \Gamma$$

Then \mathbf{M}_i has the properties:

- (1) $V_i \subseteq \mathrm{H}^0(X, \mathbf{M}_i);$
- (2) \mathbf{M}_i is mobile;
- (3) $\mathbf{M}_i + \mathbf{M}_j \leq \mathbf{M}_{i+j}$.

Proof. For each $s \in V_i$,

$$\mathbf{div}(s) + \mathbf{M}_i = \sum_{\Gamma} \left(\nu_{\Gamma}(s) + \left(-\inf_{\varphi \in V_i} \nu_{\Gamma}(s) \right) \right) \Gamma \geq 0$$

This gives (1). (3) simply follows from $V_i \cdot V_j \subseteq V_{i+j}$. For (2), fix any resolution $g \colon Y \to X$. By definition,

$$(\mathbf{M}_i)_Y = \sum_{\Gamma \subseteq V} \left(-\inf_{\varphi \in V_i} \nu_{\Gamma}(s) \right) \Gamma.$$

Consider the linear system

$$\Lambda_i = \{ (\mathbf{M}_i)_Y + \mathbf{div}(\varphi)_Y \mid \varphi \in V_i \} \subseteq |(\mathbf{M}_i)_Y|$$

and the blow-up $h: Y' \to Y$ along Bs Λ_i . Then $h^*\Lambda_i$, and hence $h^*|(\mathbf{M}_i)_Y|$, is free. By definition,

$$(\mathbf{M}_i)_{Y'} = h^*(\mathbf{M}_i)_Y - \inf\{h^*(\mathbf{M}_i)_Y + \mathbf{div}(\varphi)_{Y'} \mid \varphi \in V_i\} = h^*(\mathbf{M}_i)_Y.$$

Hence, \mathbf{M}_i is mobile (b-free).

Lemma 22.21. Let $V = \bigoplus_{i \geq 0} V_i$ be a function algebra on X. There exists a pbd algebra $R^V = R(X, \mathbf{D}_{\bullet})$ such that

- (0) R^V is integral over V;
- (1) V is bounded if and only if R^V is bounded;
- (2) V is finitely generated if and only if \mathbb{R}^{V} is finitely generated.

Proof. By the above lemma, there exists a sequence of mobile b-divisors \mathbf{M}_{\bullet} . Multiplying by a suitable rational rational function, WLOG, $\mathcal{O}_X \subseteq V_1$, i.e., the b-divisor $\mathbf{M}_1 > 0$. We take $\mathbf{D}_i = \mathbf{M}_i/i$ so that \mathbf{D}_{\bullet} is convex. We get a pbd algebra

$$R^V = R(X, \mathbf{D}_{\bullet}) = \bigoplus H^0(X, \mathbf{M}_i) \supseteq V.$$

If R^V is bounded, then there exists a divisor D such that $V_i \subseteq H^0(X, \mathbf{M}_i) \subseteq H^0(X, iD)$, and hence V is bounded. Conversely, if $V_i \subseteq H^0(X, iD)$, then using

$$\mathbf{M}_i = \sum \left(-\inf_{\varphi \in V_i} \nu_{\Gamma}(\varphi) \right) \Gamma,$$

we see that $\mathbf{M}_i \leq i\overline{D}$. This gives (1)

For a proof of (0), see [Sho03, Prop. 4.15(6)]. Moreover,

$$\bigoplus_{j\geq 0} V_i^j \subseteq \bigoplus_{j\geq 0} \mathrm{H}^0(X, j\mathbf{M}_i)$$

is an integral extension.

Now, if R^V is finitely generated, then by a truncation, we may assume that R^V is generated by $(R^V)_1$. Since R^V is integral over $V' := \bigoplus V_1^j$, R^V is a finitely generated V'-module. Then V is also a finitely generated V'-module, hence a finite algebra.

Conversely, it follows from the construction that V and R^V are function algebra with the same quotient field. By Noether's theorem on the finiteness of the integral closure, if V is a finitely generated algebra, so is R^V .

Lemma 22.22 (Limiting criterion). Assume that $R = R(X, \mathbf{D}_{\bullet})$ is a pbd algebra such that $\mathbf{M}_{i} = i\mathbf{D}_{i}$ is mobile. Then R is finitely generated if and only if there exists $i_{0} \in \mathbb{N}$ such that $\mathbf{D}_{i_{0}} = \mathbf{D}_{ii_{0}}$ for all i.

Remark. Assume there exists a proper birational map $X \to Z$, where Z is affine. Then each pbd algebra arises from a mobile sequence.

Proof. Suppose such i_0 exists. By passing to a truncation, we may assume that $i_0 = 1$. Then $R = \bigoplus_{i \geq 0} H^0(X, i\mathbf{M}_1)$. Let $Y \to X$ be a model of X such that $|(\mathbf{M}_1)_Y|$ is free and $(\overline{\mathbf{M}}_1)_Y = \mathbf{M}_1$. Then $R = R(Y, (\mathbf{M}_1)_Y)$ is finitely generated.

Conversely, since R is finitely generated, there exists $i_0 \in \mathbb{N}$ such that $R^{(i_0)} = \bigoplus H^0(X, \mathbf{M}_{ii_0})$ is finitely generated by degree 1 elements. Then

$$H^{0}(X, \mathbf{M}_{ii_{0}}) = H^{0}(X, \mathbf{M}_{ii_{0}})^{i} \subseteq H^{0}(X, i\mathbf{M}_{i_{0}}).$$

Since \mathbf{D}_0 is convex, $\mathbf{M}_{ii_0} = ii_0 \mathbf{D}_{ii_0} \ge ii_0 \mathbf{D}_{i_0} = i \mathbf{M}_{i_0}$. So we get another side of inclusion, i.e., $\mathbf{D}_{ii_0} = \mathbf{D}_{i_0}$.

Definition 22.23. Let \mathbf{M} be a mobile b-divisor on X. Let $X \supseteq S$ be an irreducible normal subvariety of codimension 1 with $S \not\subseteq \operatorname{Supp} \mathbf{M}_X$. We define mobile restriction of \mathbf{M} to S as follows: pick a model $Y \to X$ such that $|\mathbf{M}_Y|$ is free and $\overline{\mathbf{M}}_Y = \mathbf{M}$ and the strict transform $S' \subseteq Y$ of S is normal. We define

$$\mathbf{M}^0 = \operatorname{res}_S \mathbf{M} = \overline{\mathbf{M}}_Y|_{S'} \in \mathbf{WDiv}(S') \cong \mathbf{WDiv}(S).$$

We can prove that $(\mathbf{M}_1 + \mathbf{M}_2)^0 = \mathbf{M}_1^0 + \mathbf{M}_2^0$ and $\mathbf{M}_1 \ge \mathbf{M}_2 \implies \mathbf{M}_1^0 \ge \mathbf{M}_2^0$.

Recall that R = R(X, D) is finitely generated if and only if $R^0 = \operatorname{res}_S R$ is finitely generated. Note that $R \subseteq R(X, \mathbf{D}_{\bullet}) = \bigoplus H^0(X, \mathbf{M}_i)$, where $\mathbf{M}_i = \mathbf{Mob}(iD)$, and $R^0 \subseteq R(S, \mathbf{D}'_{\bullet}) = \bigoplus H^0(S, M'_i)$ (by restriction).

Lemma 22.24. We have

$$R_S := \bigoplus_{i \ge 0} \mathrm{H}^0(S, \mathbf{M}_i^0) = R(S, \mathbf{D}'_{\bullet}).$$

Proof. By definition, for each $i \geq 0$, pick a model $Y \supseteq S'$ such that

$$(\mathbf{M}_{i}^{0})_{S'} = (\mathbf{M}_{i})_{Y}|_{S}$$

$$= \sum_{\Gamma \subseteq Y} \left(-\inf_{\varphi \in \mathbf{H}^{0}(X, iD)} \nu_{\Gamma}(\varphi) \right) \Gamma|_{S}$$

$$= \sum_{\Gamma' \subseteq S'} \left(-\inf_{\varphi \in \mathbf{Im}(\mathbf{H}^{0}(X, iD) \to \mathbb{C}(S))} \nu_{\Gamma'}(\varphi) \right) \Gamma' = (\mathbf{M}_{i}')_{S'}.$$

Lemma 22.25 (C+07, Lem. 2.4.3). The algebra R_S is a Shokurov algebra, i.e., a bounded a-saturated pbd-algebra.

Proof. Since $(R^{\circ})_i \subseteq H^0(S, iD|_S)$, R_S is a bounded pbd algebra. It suffices to show that R_S is a-saturated. By constuction, $\mathbf{M}_i = \mathbf{Mob}(iD)$ and thus $(\mathbf{M}_i)_Y = \mathbf{Mob}(f^*iD)$ on models $f: Y \to X$ of X.

Fix i, j > 0 and choose a model $f: Y \to X$ (depends on i, j) such that

- (i) f is a log resolution $(S + B + (\mathbf{M}_i)_X + (\mathbf{M}_j)_X)$;
- (ii) $|(\mathbf{M}_i)_Y|$, $|(\mathbf{M}_j)_Y|$ are free and $\mathbf{M}_i = \overline{(\mathbf{M}_i)_Y}$, $\mathbf{M}_j = \overline{(\mathbf{M}_j)_Y}$.

Write

$$K_Y = f^*(K_X + S + B) - f_*^{-1}(S + B) + F = f^*(K_X + S + B) - \mathbf{A}_Y.$$

Let $\mathbf{A}' = \mathbf{A} + \widehat{S}$, where \widehat{S} is the strict transform b-divisor of S. Since $\mathbf{A}'_Y = -f_*^{-1}B + F$, it follows by the adjunction that

$$\mathbf{A}'_Y|_S = \mathbf{A}(S, \mathrm{Diff}_S(B))_{S'},$$

where $S' = \widehat{S}_Y$. Recall that $R_S = R(S, \mathbf{D}_{\bullet}^0)$, where $\mathbf{D}_i^0 = \mathbf{M}_i^0/i$.

Claim. $\operatorname{Mob}(\lceil j(\mathbf{D}_i^0)_{S'} + \mathbf{A}(S, \operatorname{Diff}_S(B))_{S'} \rceil) \leq j(\mathbf{D}_j^0)_{S'}$ for each i, j with $i \geq j$.

Proof of claim. Consider

$$0 \longrightarrow \mathcal{O}_Y(-S') \longrightarrow \mathcal{O}_Y \longrightarrow \mathcal{O}_{S'} \longrightarrow 0.$$

We have

$$0 \longrightarrow \mathcal{O}_Y(\lceil (j\mathbf{D}_i + \mathbf{A})_Y \rceil) \longrightarrow \mathcal{O}_Y(\lceil (j\mathbf{D}_i + \mathbf{A}')_Y \rceil) \longrightarrow \mathcal{O}_{S'}(\lceil (j(\mathbf{D}_i^0)_{S'} + \mathbf{A}(S, \mathrm{Diff}_S(B))_{S'} \rceil) \longrightarrow 0.$$

This gives

$$\mathrm{H}^0(Y, \lceil (j\mathbf{D}_i + \mathbf{A}')_Y \rceil) \longrightarrow \mathrm{H}^0(S', \lceil (j(\mathbf{D}_i^0)_{S'} + \mathbf{A}(S, \mathrm{Diff}_S(B))_{S'} \rceil) \longrightarrow \mathrm{H}^1(Y, \lceil (j\mathbf{D}_i + \mathbf{A})_Y \rceil) = 0$$

by (5.5) since

$$(j\mathbf{D}_i + \mathbf{A})_Y = K_Y + \frac{j}{i}(\mathbf{M}_i)_Y - f^*(K_X + S + B).$$

Therefore, to prove the claim, we can change to compare $\text{Mob}[(j\mathbf{D}_i^0 + \mathbf{A}')_Y]$ with $j(\mathbf{D}_j)_Y$. Then

$$\begin{aligned} \operatorname{Mob}\lceil (j\mathbf{D}_{i}^{0} + \mathbf{A}')_{Y} \rceil &= \operatorname{Mob}\lceil \frac{i}{j} \operatorname{Mob}(f^{*}(iD)) + \mathbf{A}'_{Y} \rceil \\ &\leq \operatorname{Mob}\lceil \frac{i}{j} \operatorname{Mob}(f^{*}(iD)) + F \rceil \qquad (\lceil -f_{*}^{-1}B \rceil = 0) \\ &\leq \operatorname{Mob}\lceil \frac{i}{j} f^{*}(iD) + F \rceil = \operatorname{Mob}\lceil f^{*}(jD) \rceil = j(\mathbf{D}_{j})_{Y}. \qquad \Box \end{aligned}$$

Hence, R_S is a-saturated.

The finite generation conjecture implies R_S is finitely generated, and hence R is finitely generated.

23 A Shokurov algebra with mobile system on surface is finitely generated

Let $R(X, \mathbf{D}_{\bullet})$ be a Shokurov algebra with $M_i = i\mathbf{D}_i$ is mobile for each i.

Proposition 23.1. Let (X, B) be a klt pair of dimension n. Assume that klt MMP holds in dimension n. Then there exists $(X^{\text{ter}}, B^{\text{ter}})$ a terminal pair and a projective birational morphism $\varphi \colon X^{\text{ter}} \to X$ such that $K_{X^{\text{ter}}} + B^{\text{ter}} = \varphi^*(K_X + B)$.

Remark. We say that $(X^{\text{ter}}, B^{\text{ter}})$ is a terminal model of (X, B). It is unique when n = 2.

If (X, B) is a 2-dimensional klt pair and there is a birational weak (log) Fano contraction $f: X \to Z$, i.e., $-(K_X + B)$ is f-big and f-nef with $f_*\mathcal{O}_X = \mathcal{O}_Z$. Then $-(K_{X^{\text{ter}}} + B^{\text{ter}}) = -\varphi^*(K_X + B)$ is $f\varphi$ -big and $f\varphi$ -nef. Without loss of generality, we may assume that (X, B) is a 2-dimensional terminal pair since $R(X, \mathbf{D}_{\bullet}) = R(X^{\text{ter}}, \mathbf{D}_{\bullet})$.

Theorem 23.2. Let (X, B) be a 2-dimensional terminal pair, i.e., X is smooth and $\operatorname{mult}_x B < 1$ for each $x \in X$, with a birational weak (log) Fano contraction $f \colon X \to Z$. Let \mathbf{M} be a mobile, canonically saturated b-divisor on X. Then

- (1) \mathbf{M} descends to X;
- (2) \mathbf{M}_X is nef (note that this is not true in higher dimensions).

Proof. Let $g: Y \to X$ be a high enough log resolution of (X, B) such that

- (a) canonical saturation holds on Y;
- (b) $\overline{\mathbf{M}}_Y = \mathbf{M}$ and $|\mathbf{M}_Y|$ is free.

Assuming (1), $\mathbf{M}_Y = g^* \mathbf{M}_X$, so for each irreducible curve $C \subseteq X$,

$$\mathbf{M}_X \cdot [C] = g^* \mathbf{M}_X \cdot g^* [C] \ge 0$$

since \mathbf{M}_Y is free, and hence nef. For (1), write

$$K_Y = g^*(K_X + B) - g_*^{-1}B + \sum a^i E_i, \quad a^i > 0.$$

Let $E = \lceil \mathbf{A}(X, B)_Y \rceil = \lceil \sum a^i E_i \rceil$.

Claim. $E \cap D = \emptyset$ for a general member $D \in |\mathbf{M}_Y|$. (If so, $|\mathbf{M}_Y|$ avoids Supp $E = \operatorname{Exc}(g)$ altogether, and thus $\mathbf{M}_Y = g^* \mathbf{M}_X$.)

It follows from (a) that $Mob[M_Y + E] \leq M_Y$. So

$$\mathbf{M}_{Y} + E - \mathrm{Mob}[\mathbf{M}_{Y} + E] > E.$$

This shows that $\operatorname{Fix} |\mathbf{M}_Y + E| \geq E$. Since $|\mathbf{M}_Y|$ is free, $E = \operatorname{Fix} |\mathbf{M}_Y + E|$. Consider the exact sequence

$$0 \longrightarrow \mathcal{O}_Y(\mathbf{M}_Y - D + E) \longrightarrow \mathcal{O}_Y(\mathbf{M}_Y + E) \longrightarrow \mathcal{O}_D(\mathbf{M}_Y + E) \longrightarrow 0.$$

We get (let h = fg)

$$h_*\mathcal{O}_Y(\mathbf{M}_Y + E) \longrightarrow h_*\mathcal{O}_D(\mathbf{M}_Y + E) \longrightarrow R^1h_*\mathcal{O}_Y(E)$$

by (5.5) since

$$E = K_Y + \lceil -q^*(K_X + B) \rceil$$

and $-g^*(K_X + B)$ is h-big and h-nef. Since Z is affine,

$$H^0(Y, \mathbf{M}_Y + E) \longrightarrow H^0(D, (\mathbf{M}_Y + E)|_D)$$

is surjective. Therefore, $E \cap D = \operatorname{Bs} |(\mathbf{M}_Y + E)|_D| = \emptyset$ (since the question is local, we may assume that X, Y, and hence D, are affine.)

Now, since $R(X^{\text{ter}}, \mathbf{D}_{\bullet})$ is bounded, there exists a divisor $G = \sum G_j$ on X^{ter} such that $\text{Supp}(\mathbf{M}_i)_{X^{\text{ter}}} \subseteq G$ for each i. Then all \mathbf{M}_i descend to X^{ter} and if $X'' \to X^{\text{ter}}$ is a log resolution of $(X^{\text{ter}}, B^{\text{ter}} + G)$, then canonical a-saturation holds uniformly on models $Y \to X''$ higher than X'', i.e.,

$$\text{Mob}[j(\mathbf{D}_i)_Y + \mathbf{A}_Y] \le j(\mathbf{D}_j)_Y.$$

So we may assume that (X, B) is terminal and there exists a divisor G on X such that $\operatorname{Supp}(\mathbf{D}_i)_X \subseteq G$. Then

$$\mathbf{D} = \lim_{i \to \infty} \mathbf{D}_i \in \mathbf{WDiv}(X)_{\mathbb{R}}$$

and Supp $\mathbf{D}_X \subseteq G$.

Lemma 23.3. The divisor D_X is semiample.

Proof. Since $\mathbf{M}_i = i\mathbf{D}_i$ is mobile, $(\mathbf{M}_i)_X$ is nef, and hence \mathbf{D}_X is also nef. Since Z is affine, it contains no projective curves. So every projective curve in X is in the fiber of f. This shows that

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}(X/Z) = \overline{\mathrm{NE}}(X/Z)_{(K_X + B + \varepsilon(\mathrm{ample})) < 0},$$

which is a finite rational polyhedral. The dual cone Nef(X) is generated by the semiample divisors supporting the contractions of its extremal faces. So all nef divisors on X are semiample.

Recall that Supp $\mathbf{D}_X \subseteq G = \sum G_j$. Let $N'_{\mathbb{Z}} = \bigoplus \mathbb{Z} \cdot G_j \subseteq \mathrm{WDiv}(X)$. Since \mathbf{D}_X is semiample, we can choose effective bpd divisors $P_k \in N'_{\mathbb{Z}}$ such that

$$\mathbf{D}_X \in \sum \mathbb{R}^+ P_k \subseteq \sum R^+ G_j \subseteq N_{\mathbb{Z}}' \otimes \mathbb{R}.$$

Assume that \mathbf{D}_X is not rational.

Proposition 23.4. If \mathbf{D}_X is not rational, then for each $\varepsilon > 0$, there exists $m \in \mathbb{N}$ and $M \subseteq N'_{\mathbb{Z}}$ such that

- (1) |M| is free;
- (2) $||m\mathbf{D}_X M|| < \varepsilon;$
- (3) $m\mathbf{D}_X M$ is not effective.

Lemma 23.5. Choose $\gamma \in \mathbb{Q}^+$ small enough such that $(X, B + \gamma G)$ is klt. Set $\mathbf{A} = \mathbf{A}(X, B)$. We have $\lceil \mathbf{A} - \gamma \overline{G} \rceil \geq 0$. Assume \mathbf{D}_X is not rational, and let $M \in N_{\mathbb{Z}}'$ as in the previous proposition. If $0 < \varepsilon < \gamma$, then on every model $f: Y \to X$ of X,

$$\operatorname{Mob}[m\mathbf{D}_Y + \mathbf{A}_Y] \ge f^*M.$$

Proof. Since $\mathbf{D}_i = \overline{(\mathbf{D}_i)_X}$ for each i, $\mathbf{D} = \overline{\mathbf{D}}_X$ and thus $\mathbf{D}_Y = f^*\mathbf{D}_X$. Set $F = m\mathbf{D}_X - M$. Then $f^*F > -\varepsilon f^*G$ by (2). So

$$m\mathbf{D}_Y + \mathbf{A}_Y = f^*M + f^*F + \mathbf{A}_Y > f^*M - \gamma f^*G + \mathbf{A}_Y.$$

Taking round up and consider their mobile part, we have

$$\operatorname{Mob}[m\mathbf{D}_Y + \mathbf{A}_Y] \ge \operatorname{Mob}(f^*M + [\mathbf{A}_Y - \gamma f^*G]) \ge \operatorname{Mob} f^*M = f^*M.$$

Now, we have

$$\operatorname{Mob}[m(\mathbf{D}_i)_Y + \mathbf{A}_Y] < m(\mathbf{D}_m)_Y < m\mathbf{D}_Y.$$

Taking limit in i, we get

$$f^*M \leq \operatorname{Mob}[m\mathbf{D}_Y + \mathbf{A}_Y] \leq m\mathbf{D}_Y$$

i.e., $(m\mathbf{D} - \overline{M})_Y \geq 0$. But then, $(m\mathbf{D} - \overline{M})_X \geq 0$, a contradiction. Hence, \mathbf{D} is rational.

Finally, the characteristic sequence \mathbf{D}_{\bullet} is eventually constant and hence $R(X, \mathbf{D}_{\bullet})$ is finitely generated by limiting criterion. Indeed, \mathbf{D}_X is now rational and semiample, so there exists $m \in \mathbb{N}$ such that $M = m\mathbf{D}_X$ is integral and free. As before, $(X, B + \gamma G)$ klt, $\lceil \mathbf{A} - \gamma \overline{G} \rceil \geq 0$, and

$$\overline{M}_Y \ge m(\mathbf{D}_m)_Y \ge \mathrm{Mob}\lceil (\overline{M} + \mathbf{A})_Y \rceil \ge \mathrm{Mob}\lceil (\overline{M} + \mathbf{A} - \gamma \overline{G})_Y \rceil \ge \mathrm{Mob}\lceil \overline{M}_Y \rceil = \overline{M}_Y.$$

Hence $(\mathbf{D}_m)_Y = \mathbf{D}_Y$, as desired.