b UNIVERSITÄT BERN

Internet of Things

II. Hardware Platforms

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 01.03.2021

Internet of Things: Hardware Platforms Table of Contents

UNIVERSITÄT

Radio Frequency Identification

- 1. Near-Field Communication
- 2. Far-Field Communication
- 3. NFC vs RFC

Sensor Nodes

- Sensor / Actor Node Architecture
- 2. Processor Implementation: Flexibility vs. Energy-Efficiency
- 3. Sensor Node Hardware Classification
- Tiered Sensor Network Architecture
- 5. Microprocessor Examples
- 6. Sensor Node Examples
- 7. Multi-Processor Sensor Nodes

3. Energy Consumption

- 1. Energy Sources
- Energy Scavenging / Harvesting
- 3. Processors
- 4. Communication
- 5. Multi-Hop Communication

1. Radio Frequency IDentification

UNIVERSITÄT

- > RFID tags carry identification number read by RFID reader
- > Types
 - Passive tags
 - a few KB of memory
 - consist of antenna, chip, encapsulation.
 - Energy from received signal is stored in capacitor.
 - Active tags
 - on-board battery and memory
 - stronger signal
 - 20-100 m communication range

- > Communication
 - Near-field
 - distance $< c/2\pi f$, f < 100 MHz
 - Load modulation based on induction: change of current detected by reader coil
 - ISO standard 15693
 - Far-field
 - 128 kHz, 13.56, 915, 2450 MHz
 - Backscattering: reflection or absorption of signal by changing antenna resistance
- > Collision avoidance needed
- > Extensions
 - Sensing by integrating tags sensitive to the environment, e.g., temperature
 - EEPROM for tag IDs (size: a few KB)

1. Radio Frequency Identification

1. Near-Field Communication

1. Radio Frequency Identification

2. Far-Field Communication

UNIVERSITÄT

1. Radio Frequency Identification

3. NFC vs RFID

- NFC
 - is one form of RFID.
 - operates at 13.56 MHz and extends the HF RFID standard.
 - supports two-way communications and peer-to-peer.

- NFC

 NFC

 NFC Phone active device

 NFC Reader active device
- Limited to close proximity, typically < 5 cm
- Industry body NFC Forum (<u>www.nfc-forum.org</u>)
 - NFC family protocols, allows storage and communication of binary data (including URLs, MIME objects).

2. Sensor Nodes

UNIVERSITÄT BERN

1. Sensor / Actor Node Architecture

2. Sensor Nodes

UNIVERSITÄT BERN

2. Processor Implementation:

Flexibility vs. Energy-Efficiency

- Electrical power P = U · I
 - U: voltage [Volt, V]
 - I: current [Ampere, A]
- Energy $W = P \cdot t$
- Battery capacity is often measured in Ah, i.e., how long a battery can supply a certain current with its nominal voltage.

2. Sensor Nodes

3. Sensor Node Hardware Classification

- System-on-Chip (SoC) nodes
 - Integration of CMOS, MEMS, and RF technologies on a single chip
 - Extremely low power and small sensor nodes
 - Special instruction sets, no software platforms available, limited support for (re)programming and configuration
 - Examples: Smart Dust, PicoNode
- Dedicated embedded sensor nodes
 - Commercial off-the-shelf (COTS) chip sets
 - Low power processing and communications
 - Full hardware access for programmers
 - Limited operating system support
 - C or assembler language programming
 - Examples: MICA, TelosB, Zolertia Re-Mote

- Augmented general-purpose computers
 - Sensor nodes based on embedded PCs or PDAs
 - Running COTS operating systems, middleware, and application software
 - Standard wireless communication technologies such as Bluetooth, WLAN, Zigbee
 - Wide range of sensors from microphones to cameras
 - Examples: Arduino, Raspberry Pi

ub

2. Sensor Nodes

4.1 Tiered Sensor Network Architecture

Compared to high-end IoT devices (e.g., smartphones, Raspberry Pls), low-end IoT devices typically

- have a factor of 10⁶ less memory,
- 10³ less CPU capacity,
- consume 10³ less power, and
- use networks with 10⁵
 less throughput.

2. Sensor Nodes

4.2 Tiered Sensor Network Architecture

- Sensor nodes are connected to a general-purpose network via gateway nodes.
- Sensor networks are often heterogeneous.
 Resource-intensive roles can be assigned to resource-rich nodes.

Tiered Networks with several advantages

- Cost-effectiveness
 - Special hardware required in a few nodes only
- Longevity
 - Expensive operations at nodes with line power
 - Few, simple operations by battery-powered nodes
- Scalability
 - Communication channels within a cluster
 - Interconnection of clusters by other channels

$u^{^{t}}$

b Universität Redn

2. Sensor Nodes

5.1 TI MSP 430FR2355 MCU

- 16 bit RISC microprocessor
- Memory
 - < 32 KB on-chip program FRAM</p>
 - < 4KB RAM</p>
 - 20 KB ROM library
- 12-bit A/D converters
- Multiple oscillators
 - Auxiliary clock: 32 kHz for self wake-up
 - High-speed digitally controlled oscillator (< 24 MHz)
- Operating modes at 3V (6 in total)
 - Active: 142 μA
 - Standby: 1.43 μA
 - Off (RAM is retained): 0.8 μA
- List price < 10 \$

u^{b}

UNIVERSITÄT

2. Sensor Nodes

5.2 ESP8266

- low-cost Wi-Fi microchip
- full TCP/IP stack
- 32-bit RISC microprocessor running at 80 MHz
- Memory
 - 32 KB instruction RAM
 - 32 KB instruction cache RAM
 - 80 KB user data RAM
 - 16 KB system data RAM
 - External flash < 16 MB

2. Sensor Nodes

6.1 Smart Dust

 Integrated circuit with sensor signal processing, communication, control, data storage, energy management

- Optical communications
 - Passive
 - No onboard light source
 - Dependent on mirror position, light is reflected (1) or not (0).
 - Active
 - Active steered laser uses on-board light source to send beam towards intended receiver.

2. Sensor Nodes

6.2.1 MICA Node Architecture

2. Sensor Nodes

b UNIVERSITÄT BERN

6.2.2 MICA Mote Power Consumption

Component	Rate	Startup time	Current consumption
MCU active	4 MHz	n/a	5.5 mA
MCU idle	4 MHz	1 µs	1.6 mA
MCU suspend	32 kHz	4 ms	< 0.02 mA
Radio transmit	40 kHz	30 ms	12 mA
Radio receive	40 kHz	30 ms	1.8 mA
Photoresistor	2 kHz	10 ms	1.235 mA
Temperature	2 Hz	500 ms	0.150 mA

UNIVERSITÄT

2. Sensor Nodes

6.3 TelosB

- > based on TI MSP 430 processor (8 MHz)
- > 10 KB RAM
- > IEEE 802.15.4 compliant RF transceiver, < 250 kbps
- > 1MB external Flash memory for data logging
- > Programming and data collection via USB

Operation	Telos	Mica2	MicaZ
Minimum Voltage	1.8V	2.7V	2.7V
Mote Standby (RTC on)	5.1 μA	19.0 μ A	27.0 μΑ
MCU Idle (DCO on)	54.5 μ A	3.2 mA	3.2 mA
MCU Active	1.8 mA	8.0 mA	8.0 mA
MCU + Radio RX	21.8 mA	15.1 mA	23.3 mA
MCU + Radio TX (0dBm)	19.5 mA	25.4 mA	21.0 mA
MCU + Flash Read	4.1 mA	9.4 mA	9.4 mA
MCU + Flash Write	15.1 mA	21.6 mA	21.6 mA
MCU Wakeup	6 μs	180 μs	$180~\mu s$
Radio Wakeup	580 μs	1800 μ s	860 μs

UNIVERSITÄT RERN

2. Sensor Nodes

6.4 Zolertia Re-Mote

- 2 Radios for short and long range applications up to 20 km
 - ISM 2.4-GHz IEEE 802.15.4 & Zigbee compliant radio.
 - ISM 863-950-MHz ISM/SRD band IEEE 802.15.4 compliant radio.
- Processor: ARM Cortex-M3 32 MHz clock speed, 512 KB flash and 32 KB RAM
- Networking: 6LowPAN support
- 150 nA current using shutdown mode.
- supported in OSs such as Contiki and RIOT
- Sensors: Temperature and Humidity, Light, Barometer, Passive Infrared Motion, Moisture, Loudness, Rotary Angle, Rotation, Accelerometer & Gyroscope, Gas, Weather Meter, Dust (optical)

2. Sensor Nodes

6.5 Arduino nano 33 IoT

- low power 32-bit SAMD21 ARM CPU
- 48 MhZ clock speed
- WiFi and Bluetooth by NINA-W102 low power chipset operating in 2.4GHz range
- secure communication ensured by ECC608 crypto chip
- 256 KB CPU flash memory
- 32 KB SRAM
- Sensors
 - 9 axis inertial sensor
 - Humidity and temperature
 - Barometer
 - Microphone
 - Gesture, proximity, light colour and intensity

2. Sensor Nodes

6.6 Thunderboard Sense

- EFR32MG12 Mighty Gecko Wireless SoC with 38.4 MHz operating frequency
- 1024 kB flash memory and 256 kB RAM
- Sensors
 - Relative humidity and temperature
 - UV index and ambient light
 - Hall effect
 - Indoor air quality gas sensor
 - 6-axis inertial sensor
 - Barometric pressure
 - MEMS microphone
- 2.4 GHz BLE

$u^{^{\scriptscriptstyle b}}$

UNIVERSITÄT

2. Sensor Nodes

6.7 Particle Electron

- STM32F205RGT6120MHz ARM CortexM3 micro-controller
- 2G/3G module
- 1 MB flash memory
- 128 KB RAM

UNIVERSITÄT BEDN

2. Sensor Nodes

6.8 The Things Network

Things Uno is based on Arduino Leonardo with Microchip LoRaWAN module.

Gateways are routers equipped with a LoRa concentrator.

ub buniversităt

2. Sensor Nodes

7. Multi-Processor Sensor Nodes

- Single processor architecture is often designed for worst case and overprovisioned.
- Approach: multiple simpler processors in a multi-processor sensor node architecture
- Advantages
 - Configuration flexibility and energy savings
 - Clock speeds according to processor tasks
 - Parallel task execution

u^{b}

UNIVERSITÄT RERN

2. Sensor Nodes

7.1 Raspberry Pi 4

- Quad Core 1.5 GHz ARM 64bit CPU
- 2-8 GB SDRAM
- Wireless LAN (2.4/5 GHz) and Bluetooth Low Energy
- Gigabit Ethernet
- 40-pin extended General-Purpose I/O
- 4 USB ports
- Camera and display port
- Micro SD port for loading operating system and storing data

UNIVERSITÄT

2. Sensor Nodes

7.2 Pycom GPy

- Processor Tensilica Xtensa dual-core 32-bit LX6, up to 600 MIPS
- Memory: RAM: 520KB + 4MB; External Flash: 8MB.
- Communication
 - Bluetooth, WiFi, Cellular: single chip for both Long Term Evolution Cat. M and Narrow Band - IoT of 3rd Generation Partnership Project release 13.
- Energy Consumption
 - 3.5-5 V input power, deep sleep 24 μA, idle 60 mA, LTE Transmit max. 285 mA.
- Programmed in micro python; no low level programming skills required

D UNIVERSITÄT Bedn

2. Sensor Nodes

7.3 Jetson Nano

- Quad core ARM Cortex-A57 processor
- Machine learning and video encoding/decoding support
- 4 GB RAM, 16 GB flash memory
- Gigabit Ethernet, BLE or WiFi with external modules

3. Energy Consumption

1. Energy Sources

Energy source	Power density	Energy density	
Batteries (zinc-air)		1050 -1560 mWh/cm ³	
Batteries (rechargeable lithium)		300 mWh/cm3 (3 - 4 V)	
Solar (outdoors)	15 mW/cm² (direct sun) 0.15mW/cm² (cloudy day)		
Solar (indoors)	0.006 mW/cm² (standard office desk) 0.57 mW/cm² (< 60W desk lamp)		
Vibrations	0.01 - 0.1 mW/cm ³		
Acoustic noise	3E-6 mW/cm ² at 75 Db 9.6E-4 mW/cm ² at 100 Db		
Passive human-powered systems	1.8 mW (shoe inserts)		
Nuclear reaction	80 mW/cm ³ 1E6 mWh/cm ³		

b Universität Bedn

3. Energy Consumption

2. Energy Scavenging / Harvesting

- Photovoltaic
- Temperature gradients
- Vibrations
- Pressure variations
- Flow of air / liquid

3. Energy Consumption

3.1 Energy Saving for Sleep Modes

$$- E_{\text{saved}} = (t_{\text{event}} - t_{1}) P_{\text{active}} - (\tau_{\text{down}} (P_{\text{active}} + P_{\text{sleep}})/2 + (t_{\text{event}} - t_{1} - \tau_{\text{down}}) P_{\text{sleep}})$$

-
$$E_{\text{overhead}} = \tau_{\text{up}} (P_{\text{active}} + P_{\text{sleep}})/2$$

Sleep mode is only beneficial for E_{saved} > E_{overhead}

3. Energy Consumption

b UNIVERSITÄT BERN

3.2 Energy Dissipation - Dynamic Voltage Scaling

Static

- Leakage of current to ground at all times
- Approach: shut down components

Dynamic

- Switching power dissipated by capacitor is $P_{dynamic} = C \cdot F \cdot V^2$
 - C: capacity
 - F: frequency with which the voltage is switched across the capacitor
 - V: supply voltage
 - Power goes up by square of the voltage and linearly with frequency
 - Example: reduction of switching power by a factor of 4 by reducing the voltage by ½
- Approach: Dynamic Voltage Scaling
 - method of reducing the average power consumption in embedded systems
 - accomplished by reducing the switching losses of the system by reducing the frequency and voltage of the system.

UNIVERSITÄT

3. Energy Consumption

3.3 Dynamic Voltage Scaling

Processor: Intel StrongARM SA-1100

UNIVERSITÄT RERN

3. Energy Consumption

4.1 Transceiver Tasks

Service to upper layer (packet, byte, bit interface)

Support of several frequency channels

- State changes

Transmit: active transmit part

- Receive: active receive part

Idle: ready to receive, but not active

Sleep: switched off

- Modulation
- Coding
- Carrier sensing

u^{b}

b Universität Rern

3. Energy Consumption

4.2 Zigbee Transceiver (IEEE 802.15.4)

3. Energy Consumption

4.3 Energy Consumption for Transmitting/Receiving

3. Energy Consumption

4.4 Startup Costs for Transmission

Sensor node: µAMPS

- Today's transceivers require an initial startup time on the order of hundreds of microseconds, during which transients in the analog electronics need to settle.
 - Substantial amounts of energy are consumed during the startup period.

The average energy cost per transmitted bit decreases with increasing packet size.

UNIVERSITÄT RERN

3. Energy Consumption

5. Multi-Hop Communication

- $E \sim d^n$
- E: energy required for communication,
 d: distance, n: path loss factor
- h: number of hops
- hop distance = d / h
- E(h,d): Energy needed for multi-hop communication, depending on how many hops are used
- α: sum of distant-independent components of communication power, e.g., receiver, bias current, startup
- β: sum of distant-dependent terms, e.g. power amplifier, path loss

Thanks

$u^{'}$

for Your Attention

UNIVERSITÄT BERN

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 01.03.2021

