Sprawozdanie

Bartosz Zasieczny

17 listopada 2013

Spis treści

1	Zad	anie	1
2	Aparat matematyczny		
	2.1	Metoda Newtona	1
		2.1.1 Uwagi	2
	2.2	Metoda bisekcji	2
		Regula falsi	
		2.3.1 Wzory	3
	2.4	Metoda złotego podziału	3
		2.4.1 Algorytm	:

1 Zadanie

Korzystając z omówionych na wykładzie iteracyjnych metod aproksymacji pierwiasków, zaproponować sposób wyznaczania **ekstremum lokalnego** funkcji $f \in C^1[a,b]$. Wykonać eksperymenty m. in. dla: $f(x) = \sin(2\pi x), x \in [0,1]; f(x) = e^{-x^2}, x \in [-1,1]; f(x) = \frac{x}{1+x^2}, x \in [0,10]; f(x) = x^2 + x - 1, x \in [-1,2].$

2 Aparat matematyczny

W poszukiwaniu ekstremów funkcji będziemy używać poniższych metod. Niektóre z nich pozwalają na znalezienie ekstremum wprost, inne będą skupiać się na poszukiwaniu miejsca zerowego pierwszej pochodnej funkcji tam gdzie to możliwe.

2.1 Metoda Newtona

Metoda Newtona polega na iteracyjnym wyznaczaniu kolejnych przybliżeń pierwiastka f(x) poprzez:

- znalezienie stycznej do jej wykresu w punkcie x_i (zaczynając od punktu startowego x_0);
- biorąc wartosć dziedziny w punkcie przecięcia stycznej z osią X za i+1-sze przyblizenie pierwiastka (czyli x_{i+1}).

Kroki powtarzamy aż do otrzymania wymaganej precyzji. Kolejne przybliżenia x_{i+1} wyznaczamy za pomocą wzoru:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

2.1.1 Uwagi

- Charakterystyka tego zadania uniemożliwia użycie samej metody Newtona dla pewnych danych może ona wskazać przybliżenia pierwiastka f(x) spoza pożądanego przedziału. Problemem też jest dobór odpowiedniego punktu startowego dlatego w przypadku tego zadania należy stosować tę metodę tylko po wstępnym przybliżania pierwiastka funkcji przez inne metody iteracyjne.
- W przypadku tego zadania każda badana funkcja musi posiadać co najmniej dwie pochodne.

2.2 Metoda bisekcji

Dla funkcji f(x) ciągłej w przedziale [a,b] i przyjmującej na jego końcach wartości o różnych znakach (f(a)f(b) < 0) należy wykonać następujące kroki:

- 1. sprawdzić, czy srodek przedziału jest pierwiastkiem funkcji (sprawdzić czy f(x) dla wartości dziedziny $x_0 = \frac{a+b}{2}$ ma wartość $f(x_0) = 0$;
- 2. jeśli tak, to zakończyć algorytm i zwrócić x_0 ;
- 3. w p. p. sprawdzić który z przedziałów ($[a, x_0]$ czy $[x_0, b]$) spełnia własnosć f(a')f(b') < 0 i zastosować do niego pierwszy krok algorytmu.

2.3 Regula falsi

Metoda falszywej prostej wyznacza przyblizenia pierwiastka f(x) spełniającej następujące założenia w przedziale [a, b]:

- f(x) jest ciągła w przedziale [a, b];
- f(x) w przedziale [a, b] ma **dokładnie jeden** pierwiastek;
- f(x) na końcach przedziału [a, b] przyjmuje różne znaki wartości (f(a)f(b) < 0);

- $\forall_{x \in [a.b]} \exists_{f'(x)} \land \exists_{f''(x)};$
- $\forall_{x',x''\in[a,b]} sgn f'(x') = sgn f'(x'') \wedge sgn f''(x') = sgn f''(x'')$.

Aby wyznaczyć przybliżenie pierwiastka nalezy wykonać nastepujące kroki:

- 1. przez punkty A = (a, f(a)) i B = (b, f(b)) przeprowadzana jest prosta;
- 2. punkt przecięcia x_i osi X jest przyblizeniem pierwiastka;
- 3. jeśli precyzja przybliżenia jest zadowalająca to kończymy algorytm;
- 4. w p. p. wybierany jeden z przedziałów ($[a, x_i]$ czy $[x_i, b]$) taki, który spełnia własnosć f(a')f(b') < 0 i stosujemy do niego pierwszy krok algorytmu.

2.3.1 Wzory

$$x_0 = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

$$x_{i+1} = \begin{cases} \frac{x_i f(a) - af(x_i)}{f(a) - f(x_i)} & \text{gdy} \quad f(a) f(x_i) \le 0\\ \frac{x_i f(b) - bf(x_i)}{f(b) - f(x_i)} & \text{gdy} \quad f(b) f(x_i) < 0 \end{cases}$$

dla i = 1, 2, ...

2.4 Metoda złotego podziału

Ta metoda w odróżnieniu od poprzednich pozwala szukać lokalnego ektremum wprost, bez konieczności odwoływania się do pochodnych danej funkcji i poszukwiania ich zer. Żeby funkcja f(x) mogła zostać zbadana za pomocą tej metody, musi być ona w przedziale [a,b], w którym poszukujemy ekstremum, unimodalna – tzn. ciągła i posiadać w tym przedziale dokładnie jedno ekstremum.

2.4.1 Algorytm

Pierwszy krok algorytmu:

$$\begin{cases} x_L^{(0)} := b^{(0)} - (b^{(0)} - a^{(0)})k \\ x_R^{(0)} := a^{(0)} + (b^{(0)} - a^{(0)})k \end{cases}$$

Następnie iterujemy po przypadkach, aż do uzyskania zadowalającej precyzji:

$$\bullet \ f(x_L^{(i)}) > f(x_R^{(i)}) \Rightarrow \begin{cases} a^{(i+1)} := x_L^{(i)} \\ b^{(i+1)} := b^{(i)} \\ x_L^{(i+1)} := x_R^{(i)} \\ x_R^{(i+1)} := a^{(i)} + (b^{(i+1)} - a^{(i+1)})k \end{cases}$$

$$\bullet \ f(x_L^{(i)}) < f(x_R^{(i)}) \Rightarrow \begin{cases} a^{(i+1)} := a^{(i)} \\ b^{(i+1)} := x_R^{(i)} \\ x_L^{(i+1)} := b^{(i+1)} - (b^{(i+1)} - a^{(i+1)})k \\ x_R^{(i+1)} := x_L^{(i)} \end{cases}$$