#### **Rational Unified Process**

#### 1. Características

- Es un método de diseño e implementación de sistemas orientado a objetos.
- Difiere de las metodologías ágiles en el nivel de documentación y en cómo se elaboran las actividades.

#### 2. Gráfica etapas de RUP



Se puede derivar lo siguiente de la gráfica mostrada:

- El RUP es un proceso que está compuesto como de mini modelos de cascada, esto si es que se generaliza el significado de sus partes; ver la parte de Disciplines.
- No es necesario seguir todas las etapas correspondientes a las Disciplines, esto depende del sistema a ser analizado; por ejemplo para algunos casos las partes de Business Modeling o de Environment son dejadas de lado.
- Se puede decir que las Phases son realizadas de manera serial.
   Revisar de [1] la página 6 donde dice que las "Phases are the Seasons of a Project"

En cada Phase existe una piedra angular o milestone la cual consta de unos entregables, por ejemplo:



En la gráfica sacada de [1] se pueden ver los entregables de cada una de las fases; el RUP también se conoce como una metodología del tipo go/not-go, es decir que si los stakeholders no se encuentran satisfechos esto podría traer como consecuencia que el proyecto se detenga o incluso que sea desechado.

Acerca de la naturaleza iterativa compare las gráficas que a continuación se dan [2]:





**Requirement:** Según [2] un requerimiento es una necesidad que un sistema debe de satisfacer. Las etapas para desarrollar esta actividad son:

- a) Eliciting
- b) Organizing
- c) Documenting

Se debe de recordar que al final, independiente de la metodología usada, se debe de generar un documento donde se especifiquen los requerimientos denominado *requirements specification*.

Entender los requerimientos o necesidades del usuario es una fase fundamental a fin de poder pasar a la siguiente etapa la cual es el diseño de un sistema. En el diseño de un sistema se hace lo que se conoce como *arquitectura del sistema*; acá es donde se especifican sus partes o componentes y cómo estas se comunican unas con otras a través de interfaces [3].

*Ejercicio:* Leer el documento adjunto titulado Requirements Engineering, donde se expresa un ejemplo de la determinación de requerimientos así como de las etapas que se siguen según otro autor.

A continuación se describen algunas técnicas para la elicitación de requerimientos, esto servirá también para ver donde acoplarlas a su proyecto [3]:

|                                           | Main info source |      | Strong on |        |
|-------------------------------------------|------------------|------|-----------|--------|
| Technique                                 | Domain           | User | Current   | Future |
| Interview                                 |                  | х    | Х         |        |
| Delphi technique                          |                  | X    | X         |        |
| Brainstorming session                     |                  | X    |           | X      |
| Task analysis                             |                  | X    | X         |        |
| Scenario (use-case) analysis              |                  | X    | X         | X      |
| Ethnography                               | X                |      | X         |        |
| Form analysis                             | X                |      | X         |        |
| Analysis of natural language descriptions | X                |      | X         |        |
| Synthesis of reqs from an existing system | X                |      | X         |        |
| Domain analysis                           | X                |      | X         |        |
| Use of reference models                   | X                |      | X         |        |
| Business Process Redesign (BPR)           | X                |      | X         | X      |
| Prototyping                               |                  | Х    |           | Х      |

*Recordatorio:* Recuerde que existen dos tipos de requerimientos:

a) Funcionales: Especifica lo que un sistema va a realizar. Por ejemplo:

Se requiere en un sistema de bibliotecas que se puedan hacer búsquedas colocando datos incompletos de un autor.

b) No funcionales: Son restricciones que se establecen en los sistemas, a veces no son negociables; estas restricciones influyen en cómo un sistema realizará una tarea dada. Por ejemplo:

La fiabilidad del sistema de bibliotecas deberá presentar una tasa de servicio no disponible menor al 1% del total acumulado de cortes de servicio del sistema en un determinado periodo de tiempo.

*Ejercicio:* Tome un proyecto que haya realizado en un curso anterior y trate de llenar algunas secciones del IEEE 830 con respecto a los requerimientos del sistema.

#### 3. Fases de RUP

#### 3.1 Inception

- Se delimita el proyecto, se tratan de obtener fondos para el mismo
- Se pueden hacer prototipos de las interfaces de usuario
- Las herramientas de trabajo se instalan y son asignadas al equipo del trabajo

#### 3.2 Elaboration

- Los requerimientos de usuario son determinados con mayor detalle.

- Se prueba la arquitectura del sistema, mediante un prototipo, de tal manera que se pueda observar si puede hacer frente a los riesgos altos del sistema.
- Se utilizan herramientas de modelado, ver la gráfica obtenida de [2], esto para poder tener un mejor entendimiento del sistema.



Revise el adjunto llamado Elaboration Phase pag. 5 donde se da un ejemplo de las fases que podría comprender la etapa de elaboración.

La relación de UML con el RUP es ejemplificada en la siguiente figura [4]:

# Sample Unified Process Artifacts and Timing (s-start; r-refine)

| Discipline        | Artifact                    | Incep. | Elab. | Const. | Trans. |
|-------------------|-----------------------------|--------|-------|--------|--------|
|                   | Iteration^                  | 11     | EL.En | CL.Cn  | T1T2   |
| Business Modeling | Domain Model                |        | s     |        |        |
| Requirements      | Use-Case Model              | S      | r     |        |        |
|                   | Vision                      | а      | r     |        |        |
|                   | Supplementary Specification | S      | r     |        |        |
|                   | Glossary                    | S      | r     |        |        |
| Design            | Design Model SW             |        | SS    | rr     |        |
|                   | Architecture Document Data  |        | S     |        |        |
|                   | Model                       |        |       |        |        |
| Implementation    | Implementation Model        |        | s     | r      | r      |
| Project Managemen | t SW Development Plan       | S      | r     | r      | r      |
| Testing           | Test Model                  |        | S     | r      |        |
| Environment       | Development Case            | S      | r     |        |        |

# Sample Unified Process Artifact Relationships Domain Model



#### 3.3 Construcción:

- Abarca las partes de diseño de una solución, codificación y prueba del software,
- Es la etapa previa a la conocida etapa de producción.
- Se debe de tener una versión estable y documentada del sistema.

#### 3.4 Transition

- El sistema entra en producción.
- Se incrementa el testeo con participación de los usuarios finales.

# 4. Disciplinas:

# 4.1 Business Modeling

- Comprende entender a la organización.

#### 4.3 Requirements

- Utilizar técnicas para comprender los requerimientos del usuario.
- Debe de haber participación activa de los stakeholders y delimitar el alcance del sistema.

Es conveniente tomar en cuenta que los requerimientos de usuario son cambiantes.

### 4.3 Análisis y Diseño

- Una vez que se tienen los requerimientos se procede a diseñar una solución.
- Construcción de pruebas de concepto.
- Diseño de los componentes de un sistema.

# 4.4 Implementación

- Escribir los programas
- Realización de los Unit testing

#### 4.5 Test

- Se realizan diversas pruebas a fin de determinar si es que se han alcanzado los requerimientos del usuario.

# Referencias

Algunas referencias que pueden ser de ayuda son las siguientes:

- [1] A manager's introduction to the Rational Unified Process de Scott W. Ambler; esta referencia Brinda una vision general de RUP.
- [2] The Rational Unified Process: An Introduction de Philippe Krutchen.
- [3] Software Engineering: Principles and Practice de Hans van Vliet.
- [4] Applying UML and Patterns: An Introduction de Craig Larman.