CS 4650/7650, Lecture 7 Finite-State Automata

Jacob Eisenstein

September 10, 2013

Finite state machines are a formalism that can be used in many different parts of NLP, but their application to morphology — the internal structure of words — is especially well-developed.

1 Review of Finite State Acceptors

Basics

- An alphabet Σ is a set of symbols
- A string ω is a sequence of symbols. The empty string ϵ contains zero symbols.
- A language $L \subseteq \Sigma^*$ is a set of strings.

An automaton is an abstract model of a computer which reads an input string and either accepts or rejects.

Chomsky Hierarchy Every automaton defines a language. Different automata define different classes of languages. The Chomsky Hierarchy:

- Finite-state automata define **regular** languages
- Pushdown automata define **context-free** languages
- Turing machines define recursively-enumerable languages

Finite-state automata A finite-state automaton $M = \langle Q, \Sigma, q_0, F, \delta \rangle$ consists of:

- A finite set of states $Q = \{q_0, q_1, \dots, q_n\}$
- A finite alphabet Σ of input symbols
- A start state $q_0 \in Q$
- A set of final states $F \subseteq Q$
- A transition function δ

Determinism

- In a deterministic (D)FSA, $\delta: Q \times \Sigma \to Q$.
- In a nondeterministic (N)FSA, $\delta: Q \times \Sigma \to 2^Q$
- We can determinize any NFSA using the powerset construction, but the number of states in the resulting DFSA may be 2^n .
- Any **regular expression** can be converted into an NFSA, and thus into a DFSA.

The English Dictionary as an FSA We can build a simple "chain" FSA which accepts any single word. So, we can define the English dictionary with an FSA.

- Take the **union** of all of the chain FSAs by defining epsilon transitions from the start state to chain FSAs for each word (5303 states / 5302 arcs using a 850 word dictionary of "basic English")
- Eliminate the epsilon transitions by pushing the first letter to the front (4454 states / 4453 arcs)
- **Determinize** (2609 / 2608)
- Minimize (744 / 1535). The cost of minimizing an acyclic FSA is O(E). (this data structure is called a trie)

Operations We've talked about three operations: union, determinization and minimization. Other important operations are **intersection** (only accept strings in both FSAs), **negation** (only accept strings not in FSA M), and **concatenation**. FSAs are closed under these operations, meaning that the output is still an FSA.

2 FSAs for Morphology

Back to morphology! Suppose that we want to write a program that accepts all **possible** English words, but none of the impossible ones:

- grace, graceful, gracefully
- disgrace, disgraceful, disgracefully, ...
- \bullet Google, Googler, Googleology,...
- *gracelyful, *disungracefully, ...

We could just make a list, and then take the union of the list using ϵ -transitions.

The list would get very long, and it would not account for productivity (our ability to make new words like *antiwordificationist*). So let's try to use finite state machines instead. Our FSA will have to encode rules about morpheme ordering, called *morphotactics*.¹

Let's start with some examples:

- $grace: q_0 \rightarrow_{\text{stem}} q_1$
- dis- $grace: q_0 \rightarrow_{prefix} q_1 \rightarrow_{stem} q_2$
- grace-ful: $q_0 \rightarrow_{\text{stem}} q_1 \rightarrow_{\text{suffix}} q_2$
- dis-grace-ful: $q_0 \rightarrow_{\text{prefix}} q_1 \rightarrow_{\text{stem}} q_2 \rightarrow_{\text{suffix}} q_3$

Can we generalize these examples?

¹Chomsky (1957) demonstrated that English is not finite-state language, but finite-state machinery can handle a huge range of morphology.

- This example abstracts away important details, like why wordificate is preferred to *wordifycate (this is an **orthographic** rule). "Two-level morphology" is an approach to handling such transformations in a finite-state framework.
- It also misses a key point: sometimes we have choices, and not all choices are equally good.
 - Google counts:
 - * superfast: 70M; ultrafast: 16M; hyperfast: 350K; megafast: 87K
 - * suckitude: 426K; suckiness: 378K
 - * nonobvious: 1.1M; unobvious: 826K; disobvious: 5K
 - Rather than asking whether a word is grammatically acceptable, we might like to ask how acceptable it is.
 - But finite state acceptors gives us no way to express *preferences* among technically valid choices.
 - We'll need to augment the formalism for this.

3 Weighted Finite State Automata

A weighted finite-state automaton $M = \langle Q, \Sigma, \pi, \xi, \delta \rangle$ consists of:

- A finite set of states $Q = \{q_0, q_1, \dots, q_n\}$
- A finite alphabet Σ of input symbols
- Initial weight function, $\pi: Q \to \mathbb{R}$
- Final weight function $\xi: Q \to \mathbb{R}$
- A transition function $\delta: Q \times \Sigma \times Q \to \mathbb{R}$

We have added a weight function that scores every possible transition.

- We can score any path through the WFSA by the sum of the weights.
- Arcs that we don't draw have infinite cost.
- The shortest-path algorithm can find the minimum-cost path for accepting a given string in $O(V \log V + E)$.

3.1 Applications of WFSAs

We can use WFSAs to score derivational morphology as suggested above. But let's start with a simpler example:

Edit distance . We can build an edit distance machine for any word. Here's one way to do this (there are others):

- Charge 0 for "correct" symbols and rightward moves
- Charge 1 for self-transitions (insertions)
- Charge 1 for rightward epsilon transitions (deletions)
- Charge 2 for "incorrect" symbols and rightward moves (substitutions)
- Charge ∞ for everything else

The total edit distance is the sum of costs across the best path through machine.

Probabilistic models For probabilistic models, we make the path costs equal to the likelihood:

$$\delta(q_1, s, q_2) = P(s, q_2|q_1) \tag{1}$$

Note that the total score for a path is now the *product* of the transitions. This enables probabilistic models, such as N-gram language models.

- A unigram language model is just one state, with V edges.
- A bigram language model will have V states, with V^2 edges.
- The text shows how to do an interpolated bigram/unigram language model. (Actually I think there's a better way, with only V+3 states rather than 2V+4.)
 - Recall that the model is

$$\hat{P}(y|x) = \lambda P_2(y|x) + (1 - \lambda)P_1(y), \tag{2}$$

with \hat{P} indicating the interpolated probability, P_2 indicating the bigram probability, and P_1 indicating the unigram probability.

- Note that unlike the basic n-gram language models, our interpolated model has non-determinism: do we choose the bigram context or the unigram context?
- For a sequence a, b, a, we want the final path score to be

$$(\lambda P_2(a|*) + (1-\lambda)P_1(a))(\lambda P_2(b|a) + (1-\lambda)P_1(a))(\lambda P_2(b|a) + (1-\lambda)P(b))$$
(3)

Notice that a lot of the details are different between these three examples:

- Scoring
 - In the derivational morphology FSA, we wanted a boolean "score": is the input a valid word or not?
 - In the edit distance WFSA, we wanted a numerical (integer) score, with lower being better.
 - In the interpolated language model, we wanted a numerical (real) score, with higher being better.

• Nondeterminism

- In the derivational morphology FSA, we accept if there is any path to a terminating state.
- In the edit distance WFSA, we want the score of the single best path.
- In the interpolated language model, we want to sum over non-deterministic choices.
- How can we combine all of these possibilities into a single formalism? The answer is semiring notation.

3.2 Semirings

A semiring is a system $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$

- \mathbb{K} is the set of possible values, e.g. $\{\mathbb{R}_+ \cup \infty\}$, the non-negative reals union with infinity
- ullet \oplus is an addition operator
- ullet \otimes is a multiplication operator
- \bullet $\overline{0}$ is the additive identity
- ullet $\overline{1}$ is the multiplicative identity

A semiring must meet the following requirements:

- $(a \oplus b) \oplus c = a \oplus (b \oplus c), (\overline{0} \oplus a) = a, a \oplus b = b \oplus a$
- $(a \otimes b) \otimes c = a \otimes (b \otimes c), \ a \otimes \overline{1} = \overline{1} \otimes a = a$
- $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c), (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$
- $a \otimes \overline{0} = 0 \otimes \overline{a} = \overline{0}$

Some semirings of interest:

Name	\mathbb{K}	\oplus	\otimes	$\overline{0}$	$\overline{1}$	Applications
Boolean	$\{0, 1\}$	V	\wedge	0	1	identical to an unweighted
						FSA
Probability	\mathbb{R}_+	+	×	0	1	sum of probabilities of all
						paths
Log-probability	$\mathbb{R}\cup-\infty\cup\infty$	\oplus_{\log}	+	∞	0	negative log marginal prob-
						ability
Tropical	$\mathbb{R}\cup-\infty\cup\infty$	\min	+	∞	0	best single path
where $\bigoplus_{\log}(a,b)$ is defined as $-\log(e^{-a}+e^{-b})$.						

Semirings allow us to compute a more general notion of the "shortest path" for a WFSA.

- Our initial score is $\overline{1}$
- When we take a step, we use \otimes to combine the score for the step with the running total.
- When nondeterminism lets us take multiple possible steps, we combine their scores using \oplus .

Example Let's see how this works out for our language model example.

$$score(\{a,b,a\}) = \overline{1}$$

$$\otimes (\lambda P_2(a|*) \oplus (1-\lambda) \otimes P_1(a))$$

$$\otimes (\lambda P_2(b|a) \oplus (1-\lambda) \otimes P_1(b))$$

$$\otimes (\lambda P_2(a|b) \oplus (1-\lambda) \otimes P_1(a))$$

Now if we plug in the **probability semiring**, we get

$$score(\{a, b, a\}) = 1$$

$$\times (\lambda P_2(a|*) + (1 - \lambda)P_1(a))$$

$$\times (\lambda P_2(b|a) + (1 - \lambda)P_1(b))$$

$$\times (\lambda P_2(a|b) + (1 - \lambda)P_1(a))$$

• The score of the input will the **sum** of probabilities across all paths that successfully process the input.

- Note that if we really want to have a score that we can minimize, we should use the log-probability semiring, where the score will be the **negative** log-probability. Minimizing this is equivalent to maximizing the (log) probability.
- What happens if we use the tropical semiring?

Software There are mature software toolkits for working with finite state machines. OpenFST is a C++ package which I have had some experience with; it's fast and relatively well-documented. XFST and Carmel are other options.