Question 1

- (a) $\{\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \ldots\}$
- (b) $\{\ldots, -13, -8, -3, 2, 7, 12, 17, \ldots\}$

Question 2

- (a) False
- (b) True
- (c) True
- (d) True
- (e) True
- (f) True
- (g) False

Question 3

Proof. Let A and B be sets. We want to prove that A = B, which means that $A \subseteq B$ and $B \subseteq A$. First, assume that x is an element of A. Then, by the definition of A, we can write x as x = 4k + 1 for some integer k. We can then do the following manipulations:

$$x = 4k + 1$$

$$= 4k + 1 - 8 + 8$$

$$= 4k + 8 - 7$$

$$= 4(k + 2) - 7.$$

Since k+2 is an integer, x is by definition an element of B. Therefore, $A \subseteq B$. Similarly, assume that x is an element of B. Then, by the definition of B, we can write x as x=4j-7 for some integer j. We can then do the following manipulations:

$$x = 4j - 7$$

$$= 4j - 7 + 8 - 8$$

$$= 4j - 8 + 1$$

$$= 4(j - 2) + 1.$$

Since j-2 is an integer, x is by definition an element of A. Therefore, $B\subseteq A$. Since $A\subseteq B$ and $B\subseteq A$, we have proven that A=B.

Question 4

(a)

$$\begin{split} (A \cup \overline{B}) \cap C &= (\{a, b, \{2\}\} \cup \{1, \{2\}, a\}) \cap \{1, \{2\}, c\} \\ &= \{1, \{2\}, a, b\} \cap \{1, \{2\}, c\} \\ &= \{1, 2\} \end{split}$$

(b)

$$\begin{split} A \cup (\overline{B} \cap C) &= \{a, b, \{2\}\} \cup (\{1, \{2\}, a\} \cap \{1, \{2\}, c\}) \\ &= \{a, b, \{2\}\} \cup \{1, \{2\}\} \\ &= \{1, \{2\}, a, b\} \end{split}$$

Question 5

- (a) Disproof. Let $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$, and $C = \{2, 3, 5\}$. Then, $A \cap B = \{2, 3\} = A \cap C$. However, $B \neq C$, as $4 \in B$ but $4 \notin C$, and $5 \in C$ but $5 \notin B$. Therefore, the statement is false.
- (b) Disproof. Let $A=\{1,2,3\},\ B=\{2,3,4\},\ \text{and}\ C=\{1,2,3,4\}.$ Then, $A\setminus B=\{1\}=A\setminus C.$ However, $B\neq C,$ as $4\in B$ but $4\notin C.$ Therefore, the statement is false. \square

Question 6

Proof. Let A and B be sets. We want to show that $A \subseteq B$ if and only if $\overline{B} \subseteq \overline{A}$. First, $A \subseteq B$ is equivalent to saying $x \in A \to x \in B$. This is logically equivalent to its contrapositive, that being $x \notin B \to x \notin A$, which is the definition of $\overline{B} \subseteq \overline{A}$. Since we have this sequence of logically equivalent statements, we have shown that $A \subseteq B \leftrightarrow \overline{B} \subseteq \overline{A}$.

Question 7

- (a) Proof. Let A and B be sets. We want to show that $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Assuming that $x \in \overline{A \cap B}$, we have $x \notin A \cap B$. By the definition of the set intersection, this means that $x \notin A$ or $x \notin B$. By the definition of the set complement, this means that $x \in \overline{A}$ or $x \in \overline{B}$. This can be rewritten using the set union as $x \in \overline{A} \cup \overline{B}$. Since these are all bidirectional logical equivalences, we have shown that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- (b) *Proof.* Let A be a set. We want to show that $A \cap \emptyset = \emptyset$. Seeking a contradiction, assume that $A \cap \emptyset \neq \emptyset$. Suppose that $x \in A \cap \emptyset$. By definition of the set intersection, we have $x \in A$ and $x \in \emptyset$. However, the empty set has

no elements, so x cannot be in \emptyset . Thus, we have reached a contradiction, and our assumption that $A \cap \emptyset \neq \emptyset$ must be false. Therefore, $A \cap \emptyset = \emptyset$. \square