DETERM.
$$2 \times 2$$
: $A = \begin{pmatrix} Q_{M} & Q_{M2} \\ Q_{21} & Q_{22} \end{pmatrix}$

$$|A| = Q_{M} \cdot Q_{22} - Q_{12} Q_{21}$$
DETERM. 3×3 : $A = \begin{pmatrix} Q_{M} & Q_{M2} & Q_{23} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{22} & Q_{23} & Q_{23} \\ Q_{23} & Q_{23} & Q_{23} \\ Q_{23} & Q_{23} & Q_{23} \\ Q_{23} & Q_{23} & Q_{23} \\ Q_{24} & Q_{23} & Q_{24} & Q_{23} \\ Q_{25} & Q_{25} & Q_{25} & Q_{25} \\ Q_{25} & Q_{25}$

$$|A| = 1[-2](-3) + (-1)[3](-1) + (0)(-2)(0) - (-1)(2)[-3]^{+}$$

$$- (1)(3)(0) - (0)(-2)(-1) =$$

$$= 8 + 3 + 0 - 6 = 3$$

$$A : LAPLACE N. 1$$

$$FA USO DEI CONTPLEMENTI ALGEBRICA
$$|A| : LAPLACE N. 1$$

$$|A| :$$$$

Qua
$$\rightarrow$$
 $\bigcap_{12} = (-1)^{2} \cdot \det \begin{pmatrix} +ag | iare \\ 1 \cdot Ruge \\ 2 \cdot Golome \end{pmatrix} = \begin{bmatrix} 12 \cdot 0 & 0 \\ 3 \cdot 2 & 0 \\ 2 \cdot Golome \end{pmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 0 & 0 \\ 1 \cdot$

=
$$A_{44} = (-1)^8 \cdot 101100$$

 $4+(-1)^8 \cdot 101100$
= $-[-2-6+3] = [-5] = 5$ R. deff=5
PROPRIETA DEI DETERMINANTI
(2 COLONNE)
4) SCAMBIANDO 2 RIGHEY IL DET. CATBIA
DI SEGNO R₁-R₂
 $A = (2 \ 3)$
 $A = (4 \ 5)$
 $A = (2 \ 3)$
 $A = (4 \ 5)$
 $A = (4 \ 5)$

$$A = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 2 & -3 & 0 & 0 \\ 4 \times 4 & 4 & 5 & 2 \\ 5 & 5 & 3 & 2 \end{pmatrix} = 1 \cdot (-3) \cdot (-2) \cdot 2 = 12$$

R.
$$191=12$$

6) FACCIATIO UNIA TRASFORMAZIONE

LINEARE AD UNA RIGA (O COLONNIA)

R₃ \rightarrow R₃ + 3 R₄

R; + λ R;

A = (4 5 2)

O -1 3 / R₃ + R₃ + 3 R₄

(0, -1, 3) \rightarrow (0, -1, 3) + 3 (1, 2, -1)

= (0, -1, 3) + (3, 6, -3) = (3, 5, 0)

NUOVA MATRICE

B = (4 5 2)

NUOVA MATRICE

Get B = det P perche Po exeguito

una Trass. liveorii

	_																				
\vdash																					
\vdash																					
	+																			\vdash	
\vdash																				\vdash	

	_																				
\vdash																					
\vdash																					
	+																			\vdash	
\vdash																				\vdash	

	_																				
\vdash																					
\vdash																					
	+																			\vdash	
\vdash																				\vdash	

	_																				
\vdash																					
\vdash																					
	+																			\vdash	
\vdash																				\vdash	

	_																				
\vdash																					
\vdash																					
	+																			\vdash	
\vdash																				\vdash	