Домашнее задание 5. Вариант 165. Дискретная математика.

Группа Р3116, Билошицкий Михаил Владимирович, ИСУ 367101.

Исходная таблица соединений $R(G_1)$:

V/V	e 1	e 2	e ₃	e 4	e 5	e 6	e 7	e 8	e 9	e 10	e 11	e 12	p(e)
e 1	0	1	0	0	1	0	0	1	1	0	1	1	6
e 2	1	0	0	0	1	1	1	0	1	0	1	1	7
e ₃	0	0	0	0	0	1	1	1	1	0	1	1	6
e 4	0	0	0	0	1	1	0	0	0	1	1	1	5
e 5	1	1	0	1	0	0	0	1	0	1	1	0	6
e ₆	0	1	1	1	0	0	0	1	1	0	0	1	6
e 7	0	1	1	0	0	0	0	1	1	1	1	0	6
e 8	1	0	1	0	1	1	1	0	1	0	1	1	8
e 9	1	1	1	0	0	1	1	1	0	0	1	0	7
e 10	0	0	0	1	1	0	1	0	0	0	0	1	4
e 11	1	1	1	1	1	0	1	1	1	0	0	0	8
e ₁₂	1	1	0	1	0	1	0	1	0	1	0	0	6

Исходная таблица соединений $R(G_2)$:

V/V	X ₁	X2	X 3	X 4	X 5	X 6	X7	X 8	Х9	X ₁₀	X ₁₁	X ₁₂	p(x)
X1	0	1	1	0	0	0	0	0	1	1	1	1	6
X2	1	0	1	0	1	0	1	0	1	0	1	1	7
Х3	1	1	0	1	0	0	0	1	0	1	0	1	6
X 4	0	0	1	0	1	0	0	1	1	0	0	1	5
X 5	0	1	0	1	0	1	0	0	1	1	1	0	6
X6	0	0	0	0	1	0	1	1	0	1	1	1	6
X 7	0	1	0	0	0	1	0	1	0	1	1	1	6
X 8	0	0	1	1	0	0	1	0	1	0	0	0	4
X 9	1	1	0	1	1	0	0	1	0	1	0	0	6
X10	1	0	1	0	1	1	1	0	1	0	1	1	8
X11	1	1	0	0	1	1	1	0	0	1	0	1	7
X12	1	1	1	1	0	1	1	0	0	1	1	0	8

Для графа G_1 $\Sigma \rho(e) = 75$, список $\rho(e) = \{6, 7, 6, 5, 6, 6, 6, 8, 7, 4, 8, 6\}$ Для графа G_2 $\Sigma \rho(x) = 75$, список $\rho(x) = \{6, 7, 6, 5, 6, 6, 6, 4, 6, 8, 7, 8\}$

1. Разобьем вершины обоих графов на классы по их степеням:

	$\rho(e) = \rho(x)$ = 8	$\rho(e) = \\ \rho(x) = 7$	$\rho(e) = \rho(x) = 6$	$ \rho(e) = \rho(x) \\ = 5 $	$\rho(e) = \rho(x)$ = 4
E	e ₈ , e ₁₁	e 2, e 9	e ₁ , e ₃ , e ₅ , e ₆ , e ₇ , e ₁₂	e 4	e ₁₀
X	X10, X12	X2, X11	X1, X3, X5, X6, X7, X9	X 4	X8

2. Из таблицы сразу можно заметить соответствие вершин графов:

Ε	Х
e 4	X 4
e ₁₀	X8

3. Для определения соответствия вершин с $\rho(x) = \rho(y) = 8$ попробуем связать вершины из классов с $\rho(x) = \rho(y) = 5$ и $\rho(x) = \rho(y) = 4$ с неустановленными вершинами:

ı	=	X			
e4 e10	e1 e2 e3 e5 e6 e7 e8 e9 e11 e12	x4 x8	x1 x2 x3 x5 x6 x7 x9 x10 x11 x12		

4. Анализ связей вершин показывает соответствие вершин e_7 и x_7 . С учётом этого устанавливаем следующие соответствия:

E	х			
e4	x4			
e1	x1			
e2	x2			
e3	x3			
e5	x5			
e6	x6			
e8	x9			
e9	x10			
e11	x11			
e12	x12			

5. Анализ связей вершин показывает соответствие вершин e_{11} и x_{12} , e_6 и x_5 . С учётом этого устанавливаем следующие соответствия:

6. Анализ связей вершин показывает соответствие вершин e_{12} и x_9 , e_5 и x_3 , e_1 и x_1 . С учётом этого устанавливаем следующие соответствия:

7. Анализ связей вершин показывает соответствие вершин e_9 и x_{11} , e_2 и x_2 , e_8 и x_{10} , e_3 и x_6 . Все вершины имеют свою связь.

Таким образом, можно сделать вывод о том, что графы G_1 и G_2 изоморфны.