

CURSO: ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

DISCIPLINA: MATEMÁTICA COMPUTACIONAL

PROJETO COMPUTACIONAL

PARTE I - GRUPO II

Diogo Martins Alves Nº 86980 (diogo.m.alves@tecnico.ulisboa.pt)

João Santiago Silva Nº 84081 (joao.santiago.s@tecnico.ulisboa.pt)

André Lopes Nº 84004 (andrefplopes@hotmail.com)

Data: 15/12/2017

1.-Resolução

Sendo $h=\frac{b-a}{m}$, e $x_i=a+i*h$, $\forall _{0\leq i\leq m}$, pela regra dos trapézios composta temos que:

$$T_m(f) = \frac{h}{2} \left(f(x_0) + \sum_{i=1}^{m-1} 2 * f(x_i) + f(x_m) \right)$$

e pela regra de Simpson composta:

$$S_m(f) = \frac{h}{3} \left(f(x_0) + 4 * \sum_{i=1}^{\frac{m}{2}} f(x_{2i-1}) + 2 * \sum_{i=1}^{\frac{m}{2}-1} f(x_{2i}) + f(x_m) \right)$$

Aplicando a regra de Romberg:

$$R_{j,0} = T_{m(j)}(f), j = 0, \dots, n$$

$$R_{j,k} = \frac{4^k * R_{j,k-1} - R_{j-1,k-1}}{4^k - 1}, j = k, \dots, n$$

Com k = 1 obtemos:

$$R_{j,1} = \frac{4^{1} * R_{j,0} - R_{j-1,0}}{4^{1} - 1} = \frac{4 * T_{m(j)} - T_{m(j-1)}}{3} = \frac{4 * T_{2^{j}} - T_{2^{j-1}}}{3}$$
$$= \frac{4}{3} * \frac{h_{1}}{2} \left(f(x_{0}) + \sum_{i=1}^{2^{j-1}} 2 * f(x_{i}) + f(x_{2^{j}}) \right)$$
$$- \frac{1}{3} \frac{h_{2}}{2} \left(f(y_{0}) + \sum_{i=1}^{2^{j-1} - 1} 2 * f(y_{i}) + f(y_{2^{j-1}}) \right)$$

Onde $h_1 = \frac{b-a}{2^j}$; $x_i = a + i * h_1 \; \forall \; _{0 \le i \le 2^j}$; $h_2 = \frac{b-a}{2^{j-1}} \; \text{e} \; y_i = a + i * h_2 \; \forall \; _{0 \le i \le 2^{j-1}}$, de onde se conclui que $h_2 = 2 * h_1 \; \text{e} \; y_i = x_{2i} \; \forall \; _{0 \le i \le 2^{j-1}}$, em que i é um número natural.

Assim fica:

$$R_{j,1} = \frac{4}{3} * \frac{h_1}{2} \left(f(x_0) + \sum_{i=1}^{2^{j-1}} 2 * f(x_i) + f(x_{2^j}) \right)$$

$$- \frac{1}{3} h_1 \left(f(x_0) + \sum_{i=1}^{2^{j-1}-1} 2 * f(x_{2^i}) + f(x_{2^j}) \right)$$

$$= \frac{h_1}{3} \left(f(x_0) + 4 * f(x_1) + 2 * f(x_2) + \dots + 2 * f(x_{2^{j-2}}) + 4 \right)$$

$$* f(x_{2^{j-1}}) + f(x_{2^j})$$

$$= \frac{h_1}{3} \left(f(x_0) + 4 * \sum_{i=1}^{2^{j-1}} f(x_{2^{i-1}}) + 2 * \sum_{i=1}^{2^{j-1}-1} f(x_{2^i}) + f(x_m) \right)$$

$$= S_{2^j}(f)$$

Como queríamos mostrar.

2. - Resolução

Código do programa feito em Matlab para calcular um integral através da regra dos Trapézios:

```
display('Insira os dados de entrada (função f:[a,b]->IR e um natural n):');
str = (input('Função f(x) = ', 's'));%função a estudar (string) ex: x.^-2
f = inline(str, 'x');%converte a string para uma função do matlab
a = input('Extremo inferior do intervalo a = ');
b = input('Extremo superior do intervalo b = ');
n = input('Número natural n = ');

h = (b-a)/n;
sum = f(a) + f(b);
for i = 1:n-1
    sum = sum + 2*f(a + i*h);
end
integral = sum *(h/2); %regra dos trapézios composta
fprintf('Integral = %.20f\n', integral);
```


3. - Resolução

Código do programa feito em Matlab para calcular um integral através da regra de Romberg:

```
display('Insira os dados de entrada (função f:[a,b]->IR, um natural n e uma estimativa
para o erro):');
str = (input('Função f(x) = ', 's'));%função a estudar (string) ex: x.^-2
f = inline(str, 'x');%converte a string para uma função do matlab
a = input('Extremo inferior do intervalo a = ');
b = input('Extremo superior do intervalo b = ');
n = input('Número natural n = ');
epsilon = input('Tolerância de erro = ');

k = 1;
while( abs(Romberg( k , k , f , a , b )-Romberg( k-1 , k-1 , f , a , b )) >= epsilon ) 
%enquanto a condição não for verificada, incrementar k
        k = k+1;
end

integral = Romberg( log2(n) , k , f , a , b ); %regra de Romberg
fprintf('Integral = %.20f\n', integral);
```

Função que calcula os valores da função de Romberg:

4(a). - Resolução

Sendo
$$I = \int_1^2 f(x) dx$$
 em que $f(x) = \frac{1}{x^2}$

Resolvendo o integral fica
$$\int_{1}^{2} \frac{1}{x^{2}} dx = \left(-\frac{1}{x}\right)_{1}^{2} = -\frac{1}{2} + 1 = \frac{1}{2} = 0.5$$

Aplicando os programas anteriores obtemos os seguintes resultados:

MATEMÁTICA COMPUTACIONAL

2017-2018, MEEC

	Regra dos Trapézios		Regra de Romberg (k = 1)	
Nós de integração	TI (C)	LET	D (6)	LERI
(n)	$T_n(f)$	$ E_n^T $	$R_{log_2(n),1}(f)$	$ E_n^R $
1	0, 6250000000000000	0,2083333333333334	0, 416666666666666	0,0833333333333334
2	0,5 3472222222222	0,030092592592593	0,50 4629629629629	0,004629629629629
4	0,5 08993764172335	0,008576152683295	0,500 417611489040	0,000417611489040
8	0,50 2270850326336	0,002240971282000	0,5000 29879044336	0,000029879044336
16	0,50 0569170126996	0,000567226733113	0,50000 1943393883	0,000001943393883
32	0,500 142384590821	0,000142261845392	0,500000 122745429	0,000000122745429
64	0,5000 35601916756	0,000035594224689	0,5000000 07692067	0,000000007692067
128	0,5000 08900839995	0,000008900358920	0,50000000 481075	0,000000000481075
256	0,50000 2225232553	0,000002225202481	0,500000000 30072	0,000000000030072
512	0,50000 0556309547	0,000000556307668	0,5000000000 1879	0,00000000001879
1024	0,500000 139077475	0,000000139077358	0,50000000000 117	0,000000000000117

(A negrito encontram-se os algarismos significativos das aproximações obtidas.)

4.(b). - Resolução

Como $f \in C^2([1,2])$, a seguinte fórmula de erro relativa ao método dos trapézios é aplicável:

$$E_m^T(f) = -\frac{b-a}{2} * h^2 * f''(\xi)$$

Se $m=m(j)=2^j$, então $h=h(j)=\frac{b-a}{2^j}$, de onde resulta que $\frac{h(j)}{h(j+1)}=2$

Fazendo o quociente

$$\frac{E_{2j}^{T}(f)}{E_{2j+1}^{T}(f)} = \frac{-\frac{b-a}{2} * h(j)^{2} * f''(\xi_{1})}{-\frac{b-a}{2} * h(j+1)^{2} * f''(\xi_{2})} = 4 * \frac{f''(\xi_{1})}{f''(\xi_{2})}$$

Se j for suficiente grande, $f''(\xi_1) \approx f''(\xi_2)$, então $E_{2^j}^T(f) \approx 4 * E_{2^{j+1}}^T(f)$.

Como $R_{j,0}=T_{2^j}(f)$, então fazendo a regressão linear $f(j)=k*\varphi(j)$, em que $f(j)=|E_{2^j}^T|$ e $g(j)=|E_{2^{j+1}}^T|$, se obtermos um valor próximo de 4 para k, significa que os valores de $R_{j,0}$ confirmam a ordem de precisão da regra dos trapézios. Para isto, utilizaremos apenas os valores de $j\geq 5$, para que a aproximação $f''(\xi_1)\approx f''(\xi_2)$ faça sentido:

 $\vec{f} = (0,002240971282000; 0,000567226733113; 0,000142261845392; 0,000035594224689; 0,000008900358920; 0,0000002225202481; 0,000000556307668)$

 $\vec{\varphi} = (0,000567226733113; 0,000142261845392; 0,000035594224689; 0,000008900358920; 0,000002225202481; 0,000000556307668; 0,000000139077358)$

$$\langle \overrightarrow{\varphi}, \qquad \overrightarrow{\varphi} \rangle * k = \langle \overrightarrow{f}, \qquad \overrightarrow{\varphi} \rangle \Leftrightarrow 3,43336 * 10^{-7} * k = 0,0000013572351629$$

 $\Leftrightarrow k \approx 3,95$

Conclui-se que os valores de $R_{j,0}$ confirmam a ordem de precisão da regra dos trapézios.

Analogamente para $R_{i,1}$ com a regra de Simpson:

Como $f \in C^4([1,2])$, a seguinte fórmula de erro relativa ao método de Simpson é aplicável:

$$E_m^S(f) = -\frac{b-a}{180} * h^4 * f^{(4)}(\xi)$$

Se $m=m(j)=2^j$, então $h=h(j)=\frac{b-a}{2^j}$, de onde resulta que $\frac{h(j)}{h(j+1)}=2$

Fazendo o quociente

$$\frac{E_{2^{j}}^{s}(f)}{E_{2^{j+1}}^{s}(f)} = \frac{-\frac{b-a}{180} * h(j)^{4} * f^{(4)}(\xi_{1})}{-\frac{b-a}{180} * h(j+1)^{4} * f^{(4)}(\xi_{2})} = 16 * \frac{f^{(4)}(\xi_{1})}{f^{(4)}(\xi_{2})}$$

Se j for sufficiente grande, $f^{(4)}(\xi_1) \approx f^{(4)}(\xi_2)$, então $E_{2j}^S(f) \approx 16 * E_{2j+1}^S(f)$.

Como $R_{j,1}=S_{2^j}(f)$, então fazendo a regressão linear $f(j)=k*\varphi(j)$, em que $f(j)=|E_{2^j}^S|$ e $g(j)=|E_{2^{j+1}}^S|$, se obtermos um valor próximo de 16 para k, significa que os valores de $R_{j,1}$ confirmam a ordem de precisão da regra de Simpson. Para isto, utilizaremos apenas os valores de $j\geq 5$, para que a aproximação $f''(\xi_1)\approx f''(\xi_2)$ faça sentido:

 $\vec{f} = (0,000029879044336; 0,000001943393883; 0,000000122745429; \\ 0,000000007692067; 0,000000000481075; 0,000000000030072; 0,00000000001879)$

 $\vec{\varphi} = (0.000001943393883; 0.000000122745429; 0.000000007692067;$

0,000000000481075; 0,000000000030072; 0,00000000001879; 0,0000000000117)

$$<\vec{\varphi}, \qquad \vec{\varphi}>*k = <\vec{f}, \qquad \vec{\varphi}>\Leftrightarrow 0,00000000003791906*k$$

= 0,5,83062 * 10⁻¹¹ $\Leftrightarrow k \approx 15,38$

Conclui-se que os valores de $R_{j,1}$ confirmam a ordem de precisão da regra de Simpson.

5.(a). - Resolução

Código da função em Matlab J(m,x) que calcula os valores da função de Bessel usando o método de Romberg:

Programa auxiliar desenvolvido para traçar os gráficos das funções J_0 , J_1e J_2 :

Gráficos obtidos:

5.(b). - Resolução

Código do programa feito em Matlab para produzir o "density plot":

```
%A imagem é constituida por quatro quadrantes, todos eles simétricos entre si, peloarkled
que só é preciso calcular valores para um
r max = 10E-6; %distância do centro da imagem até às bordas
lambda = 500E-9; %comprimento de onda
step = 200; %número de pixels em horizontal/verticalmente num quadrante
i m = 0.0000015; %variável para a função de escala
i M = 0.1; %variável para a função de escala
K = 2*pi/lambda;
l = Q(r)(J(1, K * r)/(K*r)).^2; %função de difração da luz
y = zeros(2*step, 2*step, 3); %inicialização da matriz rgb
for i=0:step
    for j=0:step
         %quandrante superior esquerdo
        r = sqrt((r max*(step-i)/step).^2 + (r max*(step-j)/step).^2); %distância ao✔
centro da imagem
        y(i+1,j+1,1) = log(l(r)/i m)/log(i M/i m); %função de escala
        y(i+1,j+1,2) = y(i+1,j+1,1); %green = red
        y(i+1,j+1,3) = y(i+1,j+1,1); %blue = red
         %quadrante superior direito
        y(2*step - (i+1), j+1,1) = y(i+1,j+1,1);
y(2*step - (i+1), j+1,2) = y(i+1,j+1,1);
        y(2*step - (i+1), j+1,3) = y(i+1,j+1,1);
         %quadrante inferior esquerdo
        y((i+1), 2*step - (j+1), 1) = y(i+1, j+1, 1);
        y((i+1), 2*step - (j+1), 2) = y(i+1, j+1, 1);

y((i+1), 2*step - (j+1), 3) = y(i+1, j+1, 1);
         %quadrante inferior direito
        y(2*step - (i+1), 2*step - (j+1), 1) = y(i+1, j+1, 1);
        y(2*step - (i+1), 2*step - (j+1), 2) = y(i+1, j+1, 1);
        y(2*step - (i+1), 2*step - (j+1), 3) = y(i+1, j+1, 1);
    end
end
figure
imshow(y); %plot da imagem
```

Imagem obtida:

