Resumen de Límites - Hoja de Trucos

Definiciones de Límites

Definición Precisa del Límite

Decimos que $\lim_{x\to a} f(x) = L$ si para todo $\varepsilon > 0$, existe un $\delta > 0$ tal que siempre que $0 < |x-a| < \delta$, entonces $|f(x) - L| < \varepsilon$.

Definición Práctica del Límite

Decimos que $\lim_{x\to a} f(x) = L$ si podemos hacer que f(x) esté tan cerca de L como queramos, tomando valores de x suficientemente cercanos a a, sin que x = a.

Límite por la Derecha

 $\lim_{x\to a^+} f(x) = L$: Similar a la definición anterior, pero requiriendo que x > a.

Límite por la Izquierda

 $\lim_{x\to a^-} f(x) = L$: Similar a la definición anterior, pero requiriendo que x < a.

Límite al Infinito

 $\lim_{x\to\infty} f(x) = L$: Podemos hacer que f(x) esté tan cerca de L como queramos, tomando x suficientemente grande y positivo.

Límite por la Derecha

 $\lim_{x\to a} f(x) = \infty$: Podemos hacer que f(x) sea arbitrariamente grande (positivo), tomando x suficientemente cercano a a, sin que x = a.

Relación entre límites y límites unilaterales

Relaciones Importantes

- Si $\lim_{x\to a} f(x) = L$, entonces $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L$.
- Si $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L$, entonces $\lim_{x\to a} f(x) = L$.
- Si $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$, entonces $\lim_{x\to a} f(x)$ no existe.

Propiedades de los Límites

Propiedades Básicas

Sean $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ límites existentes, y c una constante. Entonces:

- 1. $\lim_{x\to a} [cf(x)] = c \cdot \lim_{x\to a} f(x)$
- 2. $\lim_{x\to a} [f(x) \pm g(x)] = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)$
- 3. $\lim_{x\to a} [f(x)g(x)] = (\lim_{x\to a} f(x)) (\lim_{x\to a} g(x))$
- 4. $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$, siempre que $\lim_{x\to a} g(x) \neq 0$
- 5. $\lim_{x\to a} [f(x)]^n = [\lim_{x\to a} f(x)]^n$
- 6. $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$

Evaluaciones Básicas en el Infinito

Límites Comunes

- $\lim_{x\to\infty} e^x = \infty$, $\lim_{x\to-\infty} e^x = 0$
- $\lim_{x\to\infty} \ln x = \infty$, $\lim_{x\to 0^+} \ln x = -\infty$
- Si r > 0, entonces $\lim_{x \to \infty} \frac{b}{x^r} = 0$
- Si r > 0 y x^r es real para x < 0, entonces $\lim_{x \to -\infty} \frac{b}{x^r} = 0$
- $n \text{ par: } \lim_{x \to \pm \infty} x^n = \infty$
- n impar: $\lim_{x\to\infty} x^n = \infty, \, \lim_{x\to-\infty} x^n = -\infty$

Técnicas de Evaluación

Funciones Continuas

Si f(x) es continua en a, entonces $\lim_{x\to a} f(x) = f(a)$.

Composición de Funciones Continuas

Si f(x) es continua en b y $\lim_{x\to a} g(x) = b$, entonces $\lim_{x\to a} f(g(x)) = f(b)$.

Factorización y Cancelación

Ejemplo:

$$\lim_{x \to 2} \frac{x^2 - 6x + 8}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(x - 4)}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{x - 4}{x + 2} = \frac{-2}{4} = -\frac{1}{2}$$

Racionalización

Ejemplo:

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{(x - 9)(\sqrt{x} + 3)} = \lim_{x \to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{6}$$

Regla de L'Hôpital

Si $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ o $\frac{\pm \infty}{\pm \infty}$, entonces:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Funciones Continuas

Algunas funciones continuas

- Polinomios: continuos para todo x.
- Funciones racionales: continuas excepto donde el denominador es cero.
- Raíces impares ($\sqrt[n]{x}$, n impar): continuas para todo x.
- Raíces pares ($\sqrt[n]{x}$, n par): continuas para $x \ge 0$.
- Función exponencial e^x : continua para todo x.
- Logaritmo natural $\ln x$: continua para x > 0.
- Funciones trigonométricas básicas: $\cos x$, $\sin x$ son continuas para todo x.

Teorema del Valor Intermedio

Teorema del Valor Intermedio

Sea f(x) continua en [a,b]. Sea M un valor entre f(a) y f(b). Entonces existe un número c tal que a < c < b y f(c) = M.