

CHAPITRE 6

Diagrammes d'interaction

Interactions

- Description du comportement, incluant un ensemble de messages échangés entre un ensemble d'objets à l'intérieur d'un contexte particulier afin d'accomplir un but spécifique,
- Modéliser l'aspect dynamique des collaborations,
- Modéliser le flux de contrôle dans une opération, une classe, une composante, un cas d'utilisation ou un système dans son ensemble,
- Représenter les messages échangés entre des objets, acteurs, etc.
 - Invocation (appel) d'une opération
 - Envoi d'un signal
 - Création et destruction d'objets

Objets et rôles

Les objets qui participent à une interaction sont :

- Des objets concrets
 - ex.: p est une personne en particulier
- Des objets prototypes
 - ex.: p est une personne en général
- Des acteurs
 - ex.: p est un acteur interagissant avec le système
- Un système ou un sous-système
 - ex.: s est un sous-système avec lequel des acteurs interagissent

Liens

- Connexion sémantique entre objets.
- > Instance d'une association.
- ➤ Lorsqu'il y a un lien entre deux objets, des <u>messages</u> peuvent être envoyés et reçus entre ces objets.

Types de messages échangés

	n <i>message synchrone</i> , correspondant généralement à l' <i>invocation ration</i> d'un objet. (En outre, un objet peut s'auto-envoyer un
Envoyer u	(anciennement ————) In message asynchrone, soit un signal ou encore l'invocation ne d'une opération d'un objet.
	• une valeur à l'appelant.
Créer Créer un c	objet

(ou parfois un message avec un stéréotype <<create>>)

Deux types de diagrammes d'interaction

Les deux types de diagrammes sont strictement équivalents l'un à l'autre, ils contiennent la même information. Toutefois, ils ne présentent pas l'information de la même façon.

> Diagramme de séquence:

Se concentre sur l'ordre séquentiel des messages.

➤ Diagramme de communication:

Se concentre sur l'organisation structurelle dans laquelle les objets s'envoient et reçoivent des messages.

Source: *Guide UML*, section « Diagrammes d'interaction » https://gigl-uml.github.io/Guide_uml_polymtl/diagrammes-d-interaction/

Cas particulier: le diagramme de séquence du système

Diagramme de séquence entre un acteur et le système

Diagramme de <u>séquence</u>

Ligne de vie

Représente l'existence d'un objet pendant une période de temps.

c:Client

Diagramme de séquence

Occurrence d'exécution (ou activation)

Représente le temps durant lequel un objet est actif, c'est-à-dire en train d'exécuter une

opération.

<u>c:Client</u>

Diagramme de séquence

La séquence des messages est spécifiée par la position verticale des messages échangés.

Des variations de notation peuvent exister. La norme UML a été mise à jour au fil des ans.

La séquence des messages est spécifiée par la position verticale des messages échangés.

c:Client

in temps

in tem

Synchronisation

- ➤ Mode par défaut des messages.
- ➤ Le contrôle est passé de l'appelant à l'appelé; l'opération de l'appelant est suspendue (wait).
- Le contrôle est rendu à l'appelant à la fin de l'opération appelée; l'appelant reprend l'exécution de l'opération en cours.

Concurrence

- > Spécifiée par l'utilisation de messages d'envoi.
- Un signal est envoyé à un objet; l'objet envoyeur continue son opération.

Diagramme de séquence

Les abonnés a et b peuvent échanger de l'information une fois connectés

Diagramme de communication

Structures de contrôle

Le diagramme de séquence peut inclure un certain nombre de structures:

- Branchements
 - > Tests
- Répétitions
 - > Boucles
 - Itérations

Cette notation était valide sous la norme UML 1.x.

Les tests (branchements)

La condition précède le message et elle est délimitée par des crochets

Cette notation était valide sous la norme UML 1.x.

Les tests (branchements): exemple

Pour accéder au laboratoire, l'utilisateur doit présenter sa carte d'identité. S'il a droit d'accès, un voyant vert s'allume et la porte s'ouvre

OPT

> Le fragment est parcouru si une condition est vérifiée

Équivalente à

Si Condition alors Action

ALT

Deux fragments à parcourir selon la valeur de la condition Équivalente à

Si Condition alors ActionA si non ActionB

BREAK

Le fragment est exécuté et met fin au fragment englobant si une condition est vérifiée

Les boucles (répétitions)

➤ La boucle se note comme le test, mais la condition est précédée d'un astérisque.

LOOP

Le fragment est répété tant qu'une condition est vérifiée Équivalente à

Tant que Condition faire Actions

