简洁非交互零知识证明 (zkSNARK) 概述

BerryChen0w0

2024.6.25

目录

1	摘要		3
2	研究	乙背景和写作目的	3
3	$\mathbf{z}\mathbf{k}\mathbf{S}$	NARK 简介	3
	3.1	零知识证明发展历程	3
	3.2	zkSNARK 概念解析	4
		3.2.1 知识论证 (argument of knowledge)	4
		3.2.2 非交互 (non-interactive)	5
		3.2.3 简洁 (succinct)	6
		3.2.4 零知识 (zero-knowledge)	6
4	$\mathbf{z}\mathbf{k}\mathbf{S}$	NARK 定义和性质	6
	4.1	zkSNARK 形式化定义	6
	4.2	zkSNARK 的性质	6
5	符号	台约定和预备知识	7
	5.1	符号约定	7
	5.2	Schwartz-Zippel 引理	7
6	zkS	NARK 的计算模型——算术电路	8
7	zkS	NARK 协议的构造	10
8	交互	式预言机证明 (Interactive Oracle Proof, IOP)	10
	8.1	IOP 的定义	10
		8.1.1 交互式证明 (IP)	10
		8.1.2 概率可验证证明 (PCP)	12
		8.1.3 交互式预言机证明 (IOP)	12
		8.1.4 多项式 IOP(polynomial IOP, pIOP)	12
	8.2	IOP 协议举例——sumcheck 协议	12

9	函数承诺 (function commitment)	14
	9.1 函数承诺的定义	14
	9.2 函数承诺协议举例——KZG 多项式承诺	. 14
	9.3 现有主要函数承诺协议概述	15
10	实现非交互和零知识	16
	10.1 实现非交互——Fiat-Shamir 变换	. 16
	10.2 实现零知识	16
11	zkSNARK 前沿研究和展望	17
	11.1 递归 SNARK(recursive SNARK)	17
	11.2 分布式 SNARK	17
	11.3 zkSNARK 研究展望	18

1 摘要

本文对简洁非交互零知识证明 (zkSNARK) 的知识体系进行了系统的梳理,从 zkSNARK 的概念解析、实现方法、前沿研究等多方面全面梳理了 zkSNARK 相关知识,构建了基础的 zkSNARK 的知识体系架构。其中,概念辨析方面,从 zkSNARK 名称入手,详细解析了 zkSNARK 的概念、定义和性质。实现方法方面,zkSNARK 主要包括了交互式预言机证明 (IOP) 和函数承诺 (function commitment) 两个主要组成部分,本文分别介绍了这两者,举例说明它们的含义和用法,并整理了现有的主要 IOP 和函数承诺;另外本文介绍了实现非交互和零知识的方法。前沿研究方面,主要介绍了递归 SNARK 和分布式 SNARK 两类提高效率、扩展可处理问题规模的 zkSNARK 设计思路,并对未来发展提出了展望。

2 研究背景和写作目的

当前,零知识证明技术发展迅速,且拥有广泛的应用场景。理论层面上,新的零知识证明协议层出不穷,百家争鸣;应用层面上,零知识证明在区块链交易隐私保护、区块链跨链交易、隐私保护投票、身份认证、隐私计算、联邦学习等众多场景中取得广泛应用,百花齐放。

在理论研究和实践应用中,广受关注的是简洁非交互零知识证明协议 (zero-knowledge Succinct Non-interactive ARgument of Knowledge, zkSNARK)。然而,zkSNARK 协议多种多样,构建它们的基础组件也各不相同。初学者想要人门 zkSNARK 研究领域有较高的门槛,往往遇到概念不清、知识和概念的关系混乱、对知识缺乏整体的把握等困难。完整的 zkSNARK 的知识体系构建和引导,对初学者将起到很大帮助。

目前关于 zkSNARK 协议的综述研究较少,尽管它们都具有很高的质量,但初学者阅读起来往往比较困难。综述论文如 [24, 18],内容完备,知识体系完整,但因为精炼了 zkSNARK 领域的大量知识,如果没有足够的基础知识储备,则比较难以理解文章精髓。学习读本如 [20] 涵盖了零知识证明的大量知识,娓娓道来循循善诱,但文本长达四五百页,不便于迅速构建起关于 zkSNARK 的知识体系。

因此,本文对简洁非交互零知识证明 (zkSNARK) 的知识体系进行系统地梳理,从 zkSNARK 的 概念解析、实现方法、前沿研究等多方面全面梳理了 zkSNARK 相关知识,以期构建基础的 zkSNARK 的知识体系架构,实现以下目标:

- 1. 提供快速认识 zkSNARK 的基本蓝图,使初学者读完后能够形成对 zkSNARK 体系化的了解。
- 2. 涵盖 zkSNARK 的概念辨析和理论构建, 搭建简单但较完整的 zkSNARK 知识框架。
- 3. 介绍 zkSNARK 的前沿研究,并提出两个有前景的发展方向。

3 zkSNARK 简介

3.1 零知识证明发展历程

零知识证明 (zero-knowledge proof) 是一个有趣且强大的密码学概念,它允许一方(证明者 (prover)) 在不透露关于某陈述 (statement) 本身的任何信息的情况下,说服另一方(验证者 (verifier)) 该陈述的真实性。零知识证明自 1985 年提出以来,经历了近四十年的发展,从偏向计算理论的抽象模型,到实

3 ZKSNARK 简介 4

用零知识证明协议的出现,再到如今简洁非交互零知识证明 (zero-knowledge Succinct Non-interactive ARgument of Knowledge, zkSNARK) 大放异彩,在众多领域中取得应用。本节给出零知识证明发展历史的简要介绍。

交互式零知识证明 零知识证明由 Shafi Goldwasser, Silvio Micali 和 Charles Rackoff 在 1985 年首次提出 [10]。他们提出了交互式证明 (Interactive Proof) 的概念,并定义了证明系统 (proof system) 的零知识性。论文中同时给出了二次剩余 (quadratic residue) 和二次非剩余 (quadratic nonresidue) 问题的零知识证明例子。

任意 NP 问题存在零知识证明 1987 年, [9] 证明了所有 NP 问题都有计算零知识的交互式证明协议。 文章给出了 3 染色问题的零知识证明协议构造,并证明了协议的完备性。因为 3 染色问题是 NP 完全 问题 (NP complete problem),即任意 NP 问题可以规约到 3 染色问题,从而证明了对任意 NP 问题存在交互式零知识证明。

非交互零知识证明 在 1990 年代,研究人员将这一概念扩展到非交互零知识证明 (NIZK)。在非交互证明中,证明者向验证者发送单个消息,使协议在实际场景中更加高效和实用。

简洁非交互零知识证明 2013 年, Pinocchio 协议 [19] 被提出。它是第一个有实用价值的通用零知识证明协议 (zkSNARK)。此后, 大量 zkSNARK 协议提出, 它们在证明大小 (proof size)、证明时间 (prover time)、验证时间 (verifier time)、是否需要可信设置 (trusted setup)、是否抗量子等方面各有优劣。目前较为常用的 zkSNARK 协议有 Bulletproof[]、Groth16[11]、Plonk[8] 等。

3.2 zkSNARK 概念解析

zkSNARK 是"简洁非交互零知识证明 (zero-knowledge Succinct Non-interactive ARgument of Knowledge)"的简称,它目前最为通用的一类零知识证明协议。前一节中所述 Pinocchio 协议、Groth16 协议、Plonk 协议等都属于 zkSNARK 协议。注意到 zkSNARK 的全称长而复杂,可以拆分为以下子概念:

- 1. 知识论证 (argument of knowledge)
- 2. 非交互 (non-interactive)
- 3. 简洁 (succinct)
- 4. 零知识 (zero-knowledge)

本节分别介绍这些子概念的由来和含义,以使读者理解 zkSNARK 的概念。

3.2.1 知识论证 (argument of knowledge)

设我们给定约束关系 R 和一个 x, 证明者 (Prover, P) 向验证者 (Verifier, V) 证明存在 w 使得 x 和 w 满足关系 R, 即证明存在 w 使 $(x,w) \in R$ 。

3 ZKSNARK 简介 5

传统证明系统 在传统证明系统中,证明过程是 P 发送 w 给 V, V 验证 $(x,w) \in R$ 是否成立。在这样的证明系统中存在以下两个问题: 证明大小 (proof size) 可能很大; V 的验证过程可能很耗时。

例如证明两个图同构时,问题可以描述为 $x = (\mathbb{G}_1, \mathbb{G}_2), w = \sigma, R = \{(x, w) | w(x[1]) = x[2]\}$ 。这里 $\mathbb{G}_1, \mathbb{G}_2$ 是两个图, σ 是两个图的同构映射。此时 P 需要把同构映射 $w = \sigma$ 发送给 V,V 需要验证 $\mathbb{G}_1, \mathbb{G}_2$ 在映射 σ 下是否同构。这里发送的映射 σ 规模(两个图中点到点的映射关系)已经和问题本身的规模(两个图的点和边表示)相当了。更进一步,如果是证明图不同构,则 V 需要验证所有可能的映射下 $\mathbb{G}_1, \mathbb{G}_2$ 都不同构,因为 n 个节点的图可能的映射有 n! 种,此时对 O(n) 的问题,V 所需的验证时间(verifier time,后面简记为 v-time)已经达到 O(n!) 了。

交互式证明系统 (interactive proof system) 在 [10] 中提出的交互式证明系统,试图解决传统证明系统中验证时间 (v-time)。交互式证明系统中,P 和 V 进行多轮交互,在最后一轮结束时,V 判断是否接受 P 的证明 (accept 还是 reject)。在交互式证明系统中,P 不需要把 w 发送给 V,而是根据 V 发送来的数据 (称为挑战 (challenge)) 和 w (称为见证 (witness)) 创建响应 (response) 数据 (即证明 (proof)) 发送给 V。这些响应数据对 V 来说需要是容易验证的。这样,证明大小 (proof size) 可以小于 w 的规模;验证时间也可以缩短。不过,这样的效率提高是有代价的——交互式证明系统是概率证明系统,即 P 可能以一定的概率构造出假的证明,骗过 V 的验证。好在实际应用中,可以通过增加交互轮数等方式,把出错的概率降低到很小以至可忽略的水平。

知识证明(proof of arguement) 前面所说的证明系统中,证明了存在 w 使得 $(x,w) \in R$ 。但我们 更希望 P 能够证明它知道这样的使得 $(x,w) \in R$ 的 w。例如在承诺方案中,Alice 用哈希函数 h 对某个消息 m 做出承诺,承诺值 y = h(m) 公开。之后 Alice 需要向 Bob 打开承诺(一般做法就是 Alice 把 m 发送给 Bob)以证明自己拥有数据 m,而不是仅仅证明"存在一个 m' 使得 h(m') = y"——毕竟一个哈希值有哈希原像是显然的,"知道某个哈希值的哈希原像" 才是值得证明的事情。

知识证明的具体定义,需要用到提取器 (extractor) 的概念:存在一个提取器 \mathbf{Ext} ,可以从 P 处提取出 w。在4.2节给出详细定义。

3.2.2 非交互 (non-interactive)

前面的证明系统都是交互式的,但交互式证明有一个缺点:一个证明者 P 不能同时向多个验证者 V 进行证明。

如果 P 需要向多个验证者 $V_1,...,V_m$ 证明,则必须和每一个 V_i 运行一次交互式证明协议。在验证者很多的场景中(例如区块链,每一笔交易需要链上多数节点验证同意),交互式证明的代价难以想象。

为此,我们希望拥有非交互式的证明协议,即证明者 P 生成一个证明 π , 验证者 V 验证 π , 即可判定是否接受证明。形式化地说,非交互式的知识证明协议 NARK(non-interactive argument of knowledge)是一个三元组 (S, P, V):

- 1. $S(C) \rightarrow gp$ 。初始化。这里 C 是电路(即表示一个约束关系)
- 2. $P(pp, x, w) \rightarrow \pi$ 。P 生成证明 π
- 3. $V(vp, x, \pi) \to acc/rej$ 。 V 验证证明

3.2.3 简洁 (succinct)

在 NARK 的基础上, 我们希望证明 (proof) 的大小尽可能小, 验证者的运行时间尽可能短。为此增加"简洁 (succinct)"的要求:

- 1. $len(\pi) = sublinear(|w|)$
- 2. time(V) = O(|x|, sublinear(|C|))

这里 sublinear 是指小于 O(x) 的级别,例如 $O(x^{\alpha}), 0 < \alpha < 1$

3.2.4 零知识 (zero-knowledge)

直观的理解"零知识",就是证明过程中 P 不向 V 透露任何有关 w 的信息,也就是 V 在证明前和证明后能够计算出的东西没有差别。

形式化地定义零知识,需要用到模拟器 (simulator): 定义 V 的视图 (view) 为证明过程中 V 接收到的所有数据,记为 $view_V$ 。存在模拟器可以模拟出 V 的视图 $view_V'$,若多项式时间的区分器 (distinguasher) 不能区分 $view_V$ 和 $view_V'$ (计算不可区分),则 (P,V) 证明协议是零知识的。在4.2节给出详细定义。

4 zkSNARK 定义和性质

在3.2节中,我们已经理解了 zkSNARK 名称中各个概念的含义。本节,我们可以给出 zkSNARK 的形式化定义,并严谨地定义和描述它的各种性质。

4.1 zkSNARK 形式化定义

给定一个约束关系 \mathcal{R} ,一个 zkSNARK 可以表示为一个多项式时间算法元组 $\Pi = ($ Setup, Prove, Verify)。其中:

- **Setup**(1^{λ} , \mathcal{R}) \rightarrow (pp, vp)。给定安全参数 λ 和关系 \mathcal{R} , 输出证明者和验证者需要使用的公共参数 pp 和 vp。
- **Prove** $(pp, x, w) \to \pi$ 。输入证明参数 pp、公共输入 x、见证 (witness)(即隐私输入)w。若 x 和 w 满足电路 \mathcal{R} 的约束关系,即 $(x, w) \in R$,该"Prove" 算法生成对应的证明 $(\text{proof})\pi$ 。
- Verify $(vp, x, \pi) \to b \in \{0, 1\}$ 。输入验证参数 vp、公共输入 x、证明 π 。该"Verify" 算法用于验证证明 π ,输出是一个布尔值 b,若验证通过则 b = 1,否则 b = 0。

4.2 zkSNARK 的性质

一个 zk-SNARK 体系具有完备性 (completeness)、知识可靠性 (knowledge soundness)、简洁性 (succinctness)、零知识 (zero-knowledge) 性质。¹

¹注意到,这里我们不强调"非交互性",实际上这一点在 zkSNARK 的定义中已经体现了: Prove 和 Verifiy 是独立的两个算法,其运行不需要与另一个算法交互。

• **完备性 (completeness)**。一个诚实的证明者 \mathcal{P} ,如果它确实知道一个见证 w 满足 $(x,w) \in \mathcal{R}$,那么它应该总能说服验证者 \mathcal{V} ,即它生成的证明 π 总能被验证者验证通过。形式化地说,对任意 $\lambda \in \mathbb{N}$ 和任意 $(x,w) \in \mathcal{R}$,有:

$$\Pr\left[\mathbf{Verify}(vp, x, \pi) = 1 \middle| (pp, vp) \leftarrow \mathbf{Setup}(1^{\lambda}, \mathcal{R}) \atop \pi \leftarrow \mathbf{Prove}(pp, x, w) \right] = 1$$
 (1)

• 知识可靠性 (knowledge soundness)。存在一个提取器 (simulator)Ext,对任意的证明者 \mathcal{P}^{*2} , 如果 \mathcal{P}^* 能够生成通过验证的证明 π ,则 Ext 可以以极大的概率提取出能通过验证的见证 w。即,存在一个多项式时间的提取器 Ext,对任意多项式时间的证明者 \mathcal{P}^* ,有:

$$\Pr\left[(x, w') \notin \mathcal{R} \middle| (pp, vp) \leftarrow \mathbf{Setup}(1^{\lambda}, \mathcal{R}) \\ \pi \leftarrow \mathbf{Prove}(pp, x, w), \ \mathbf{Verify}(vp, x, \pi) = 1 \right] = \mathsf{negl}. \tag{2}$$
$$w' \leftarrow \mathbf{Ext}^{\mathcal{P}^*}(pp, x)$$

- **简洁性** (succinctness)。如3.2.3节所述,简洁性要求证明 π 的长度是亚线性,验证时间至多是线性。
- **零知识** (zero-knowledge)。如3.2.4节所述,零知识性是指证明过程中,除了"陈述的正确性"以外,并不泄露任何更多的信息。具体来说,存在一个期望多项式时间的模拟器 Sim,使得对任意多项式时间的证明者 V^{*3} ,下列两个分布是计算不可区分的:

$$D_0 = \{ \pi_0 \leftarrow \mathbf{Prove}(pp, x, w) | (pp, vp) \leftarrow \mathbf{Setup}(1^{\lambda}, \mathcal{R}) \}$$

$$D_1 = \{ \pi_1 \leftarrow \mathbf{Sim}^{\mathcal{V}^*}(pp, x, w) | (pp, vp) \leftarrow \mathbf{Setup}(1^{\lambda}, \mathcal{R}) \}$$
(3)

5 符号约定和预备知识

5.1 符号约定

后文中,我们用 \mathbb{F}_p 表示素数 p 阶有限域, $\mathbb{F}_p^{\leq d}$ 表示有限域 \mathbb{F}_p 上的次数 $\leq d$ 的多项式的全体,即 $\mathbb{F}_p^{\leq d} = \{\sum_{i=0}^d a_i X^i, a_i \in \mathbb{F}_p\}$ 。

我们用大写 X 表示变量,小写 x 表示变量的某个取值。例如,f(X) 表示多项式,f(x) 表示多项式 f(X) 在 X=x 点的取值。

记号 $a \leftarrow A$ 表示 a 是由 A 计算得到的结果, $r \stackrel{\$}{\leftarrow} S$ 表示 r 是以均匀分布随机从 S 中选择的一个元素。

描述 zkSNARK 协议(包括 IOP 协议、多项式承诺协议等)时,假设协议中规定证明者 \mathcal{P} 应该 发送的值是 h(r),我们用 $\widehat{h(r)}$ 表示协议运行时 \mathcal{P} 实际发送的声称是 h(r) 的值。这是为了描述的方便,避免混淆。

5.2 Schwartz-Zippel 引理

Schwartz-Zippel 引理是交互式(概率)证明中非常重要的基础。本节给出这个引理的描述和简单理解。

 $^{^2}$ 这里证明者是任意的,即可能是不诚实的证明者,所谓"不诚实"就是说它可能不按照协议规定的 Prove 算法来进行证明(生成 π)

 $^{^3}$ 证明者也可以是不诚实的,即它不按照 Verify 的正确操作的做。例如他选择随机数不按照均匀分布来选,想以此套取 P 中关于 w 的信息

图 1: 算术电路

Schwartz-Zippel 引理 给定非零多项式 $f \in \mathbb{F}_p^{\leq d}[X]$,则对 $r \overset{\$}{\leftarrow} \mathbb{F}_p$,有

$$Pr[f(r) = 0] \le \frac{d}{p}$$

在实际应用中,一般 $p \approx 2^{128}$ 或 2^{256} ,而 $d \leq 2^{40}$,则 $\frac{d}{p}$ 非常小,是可忽略的(negl.)。

于是,若 $r \stackrel{\$}{\leftarrow} \mathbb{F}_p$, f(r) = 0,则 f 以极大的概率是零多项式。在协议中我们就可以相信 f(X) 是零多项式。

在6节中将看到,zkSNARK 的计算模型是算术电路,进而将算术电路上的约束关系转化为若干多项式恒等式,则验证 $(x,w) \stackrel{?}{\in} \mathcal{R}$ 就转化为验证多项式恒等式是否成立,也就是验证某多项式是否为零多项式 (f(X) = g(X) 就是 h(X) := f(X) - g(X) = 0)。chwartz-Zippel 引理的作用是极大地减少验证时间:从验证 $\forall x \in \mathbb{F}_p, h(x) = 0$,变为验证 $r \stackrel{\$}{\leftarrow} X, h(r) = 0$ 。

6 zkSNARK 的计算模型——算术电路

在零知识证明中,计算模型一般是算术电路 (arithmetic circuit),也就是把问题抽象成一个电路表示。电路,是由运算门和电线组成的。在算术电路中,只有加法门和乘法门两种运算门。图1是一个算术电路的例子。

把问题转化为电路后,还需要把电路中表示的各种约束条件,转化为数学化的表示,以便应用 zk-SNARK 对其进行证明。常用的约束表示有 R1CS[3] 和 QAP[19]。这两种约束表示是等价的,且存在简单的转化。本文仅以图1为例,介绍电路转化为 QAP 表示的方法。

图1中的全部约束可以写为:

$$x_1 \cdot w_1 = w_3$$

$$x_3 \cdot x_4 = w_4$$

$$w_3 \cdot (w_2 + x_2) = x_5$$

$$(w_4 + (w_2 + x_2)) \cdot 1 = w_5$$

其中 x_i 是公共输入, w_i 是见证 (witness), 1 记作 v_{one} 是一个始终赋值为常数 1 的变量。则电路中的

	$l_0(X)$	$l_1(X)$	$l_2(X)$	$l_3(X)$	$l_4(X)$	$l_5(X)$	$l_6(X)$	$l_7(X)$	$l_8(X)$	$l_9(X)$	$l_{10}(X)$
$X = r_1$	0	1	0	0	0	0	0	0	0	0	0
$X = r_2$	0	0	0	1	0	0	0	0	0	0	0
$X=r_3$	0	0	0	0	0	0	0	0	1	0	0
$X = r_4$	0	0	1	0	0	0	0	1	0	1	0

图 2: l_i(X) 取值表

	$r_0(X)$	$r_1(X)$	$r_2(X)$	$r_3(X)$	$r_4(X)$	$r_5(X)$	$r_6(X)$	$r_7(X)$	$r_8(X)$	$r_9(X)$	$r_{10}(X)$
$X = r_1$	0	0	0	0	0	0	1	0	0	0	0
$X = r_2$	0	0	0	0	1	0	0	0	0	0	0
$X=r_3$	0	0	1	0	0	0	0	1	0	0	0
$X = r_4$	1	0	0	0	0	0	0	0	0	0	0
	$o_0(X)$	$o_1(X)$	$o_2(X)$	$o_3(X)$	$o_4(X)$	$o_5(X)$	$o_6(X)$	$o_7(X)$	$o_8(X)$	$o_9(X)$	$o_{10}(X)$
$X = r_1$	0	0	0	0	0	0	0	0	1	0	0
$X = r_2$	0	0	0	0	0	0	0	0	0	1	0
$X=r_3$	0	0	0	0	0	1	0	0	0	0	0
$X = r_4$	0	0	0	0	0	0	0	0	0	0	1

图 3: $r_i(X)$, $o_i(X)$ 取值表

全部变量可以写成向量:

$$\mathbf{z} = (v_{one}, \mathbf{x}, \mathbf{w}) = (1, x_1, x_2, x_3, x_4, x_5, w_1, w_2, w_3, w_4, w_5) =: (z_0, z_1, ..., z_{10})$$

我们把每个约束条件(也就是每个乘法门)对应到一个随机的域元素上,令第 j 个约束条件对应到 $r_j \stackrel{\$}{\leftarrow} \mathbb{F}$ 。定义若干个多项式 $l_i(X), r_i(X), o_i(X)$,其中 $l_i(X)$ 对应变量 z_i ,令 $l_i(r_j)$ 表示变量 z_i 在第 j 个约束条件(第 j 个乘法门)中是否作为左输入。如果是,则 $l_i(r_j)=1$;如果不是, $l_i(r_j)=0$ 。 $r_i(X), o_i(X)$ 同理。

对上面的例子而言,我们就可以得到多项式 $l_0(X), l_1(X), ..., l_{10}(X)$ 如图2。类似地,得到 $r_i(X), o_i(X)$ 如图3所示。

由上面这些 $r_1, ..., r_4$ 点上的取值,我们可以插值(常用 Lagrange 多项式插值法)得到 $l_i(X), r_i(X), o_i(X), i=0,1,...,10$ 这些多项式的表达式。它们都是 3 次多项式(因为是由 4 个定点插值得到)。现在我们定义 多项式 L(X):

$$L(X) = \sum_{i=0}^{10} z_i \cdot l_i(X)$$

类似可定义 R(X), O(X)。 L(X), R(X), O(X) 称为选择多项式 (selector polynomial)。可以看到 $L(r_j) = \sum z_i \cdot l_i(r_j) = j$ 。 例如 $L(r_4) = z_2 + z_7 + z_9 = (x_2 + w_2 + w_4)$ 。 则第 j 个约束条件(第 j 个乘法门)对应可以写为多项式关系 $L(r_j)R(r_j) = O(r_j)$ 。

定义主多项式 (master polynomial) 为

$$p(X) = L(X)R(X) - O(X) = (\sum z_i \cdot l_i(X))(\sum z_i \cdot r_i(X)) - (\sum z_i \cdot o_i(X))$$

则电路的全部约束条件,就转化为 "p(X) 在 r_j , j=1,...,4 上取值都为 0",即 $\{r_j\}$ 是 p(X) 的零点。这意味着 $(X-r_j)$ 是 p(X) 的因式。定义消亡多项式 (vanishing polynomial):

$$V(X) = \sum_{j} (X - r_j)$$

则 V(X) 应当是 p(X) 的因式。即存在多项式 q(X) 使得 p(X) = V(X)q(X)。我们称 $q(X) = \frac{p(X)}{V(X)}$ 为商多项式 (quotient polynomial)

这样,我们得到了电路约束转化为 QAP 的形式:

$$p(X) = \left(\sum z_i \cdot l_i(X)\right) \cdot \left(\sum z_i \cdot r_i(X)\right) - \left(\sum z_i \cdot o_i(X)\right) = V(X)q(X) \tag{4}$$

7 zkSNARK 协议的构造

zkSNARK 协议拥有较为通用的构造流程,先实现交互式证明,再将其转为非交互式证明,最后实现零知识性质。具体流程如下:

- 1. 构造交互式预言机证明 (Interactive Oracle Proof)。在交互式预言机证明中, P 可以在预言机模型 (Oracle) 的帮助下向 V 证明某些函数具有某些性质。我们在第8章详细介绍交互式预言机证明。
- 2. 用函数承诺 (function commitment) 替换 IOP 中 Oracle 的角色,得到交互式的知识论证。函数承诺中,P可以对某个函数进行承诺,之后 V 可以在某个点上打开承诺,得到函数在这个点的取值。我们在第9章详细介绍函数承诺。
- 3. 用 Fait-Shamir 变换把交互式证明转化为非交互式证明,得到简洁非交互零知识证明 SNARK(succinct non-interactive argument of knowledge)。
- 4. 通过添加随机数实现零知识,得到 zkSNARK。我们在第10章详细介绍 Fait-Shamir 变换和引入 随机值实现零知识的方法。
- 5. 把 zkSNARK 应用到算术电路。对算术电路的介绍见第6章。 图4描述了整个构造流程。

8 交互式预言机证明 (Interactive Oracle Proof, IOP)

8.1 IOP 的定义

交互式预言机证明 (IOP) 可以视作交互式证明 (Interactive Proof, IP) 和概率可验证证明 (Probabilistically Checkable Pproofs, PCP) 的结合。我们首先介绍 IP 和 PCP, 再引出 IOP 的定义。

8.1.1 交互式证明 (IP)

在交互式证明 (IP)[10] 中,存在证明者 \mathcal{P} 和验证者 \mathcal{V} 两方, \mathcal{P} 向 \mathcal{V} 证明某陈述的正确性。 \mathcal{P} 和 \mathcal{V} 之间进行多轮交互,在最后一轮交互结束后, \mathcal{V} 判断是否接受 \mathcal{P} 的证明。在每一轮交互中,验证者 \mathcal{V} 首先发送一个挑战 (challenge) $chall_i$ 给证明者 \mathcal{P} ,然后 \mathcal{P} 经过计算,产生一个对 $chall_i$ 的应答 (response) $resp_i$ 给 \mathcal{V} 。如图5展示了交互式证明的一般过程。

图 4: zkSNARK 构造流程

图 5: 交互式证明 (IP)

图 6: 交互式预言机证明 (IOP)

8.1.2 概率可验证证明 (PCP)

概率可验证证明 (PCP) 由论文 [7,1] 等给出。PCP 中,证明者 \mathcal{P} 生成证明 (proof),概率多项式时间的验证者 \mathcal{V} 可以以预言机形式查询证明的某些位置 PCP [r,q] 表示这样的语言类: \mathcal{V} 使用至多 r 比特的随机数(即证明长度至多 2^r 个比特),查询证明中的至多 q 个位置。注意,PCP 不是交互式的,而是 \mathcal{P} 直接生成整个证明 (proof) 发送给 \mathcal{V} 。

8.1.3 交互式预言机证明 (IOP)

交互式预言机证明 (IOP) 有 Eli Ben-Sasson 等人在 2016 年给出形式化定义 [4]。IOP 中证明者 \mathcal{P} 和验证者 \mathcal{V} 进行多轮交互,在每一轮交互中, \mathcal{V} 不需要完整读取 \mathcal{P} 发送的消息,而是可以以预言机形式访问 \mathcal{P} 的消息,即可以访问消息的任意位置,并得到该位置的信息。实际上, \mathcal{P} 并不发送完整的消息给 \mathcal{V} ,而是发送一个消息的预言机 (Oracle), \mathcal{V} 可以向预言机查询消息在任意位置的值。

为方便理解 Oracle,可以把它视作一个绝对可靠的第三方。 \mathcal{P} 把消息发送给 Oracle, \mathcal{V} 可以向 Oeacle 查询消息的某些位置。图6展示了 IOP 每一轮交互的过程。注意,把 Oracle 视作可靠的第三方是一种便捷的理解方式,实际上密码学中的 Oracle 是一个理论模型,并不存在"第三方"。

8.1.4 多项式 IOP(polynomial IOP, pIOP)

我们在第6章已经看到,zkSNARK 是把问题转化为电路,进而转化为多项式约束,然后对多项式约束做证明。因此,zkSNARK 使用的 IOP 是对多项式做证明的 IOP,即多项式 IOP(polynomial IOP, pIOP)。pIOP 是这样的 IOP: \mathcal{P} 发送的消息都是对多项式的预言机。即,每一轮交互中, \mathcal{P} 发送的是对某多项式 $f_i(X)$ 的预言机(可以理解为图6中的 $resp_i:=f_i(X)$), \mathcal{V} 查询 $f_i(X)$ 在任意点 $r\in\mathbb{F}_p$ 上的取值(可以理解为图6中的 $resp_i[r]:=f_i(r)$)。

8.2 IOP 协议举例——sumcheck 协议

sum-check 协议 [17] 是一个经典的 IOP 协议。

给定一个 v 个变量的多项式 $g(X) = g(X_1, X_2, ..., X_v) \in \mathbb{F}_p^{\leq d}$, sum-check 协议是证明

$$H := \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_v \in \{0,1\}} g(b_1, b_2, ..., b_v)$$

$$(5)$$

 $^{^4}$ 所谓"预言机形式",可以理解为: ν 可以访问证明的任意位置,且一定会得到这个位置的准确信息。但同时, ν 的这种访问不会向 ν 泄露任何关于证明内容的分布的信息

Description of Sum-Check Protocol.

- At the start of the protocol, the prover sends a value C₁ claimed to equal the value H defined in Equation (4.1).
- In the first round, \mathcal{P} sends the univariate polynomial $g_1(X_1)$ claimed to equal

$$\sum_{(x_2,\ldots,x_v)\in\{0,1\}^{v-1}} g(X_1,x_2,\ldots,x_v).$$

V checks that

$$C_1 = g_1(0) + g_1(1),$$

and that g_1 is a univariate polynomial of degree at most $\deg_1(g)$, rejecting if not. Here, $\deg_j(g)$ denotes the degree of $g(X_1, \dots, X_\nu)$ in variable X_i .

- V chooses a random element $r_1 \in \mathbb{F}$, and sends r_1 to P.
- In the jth round, for 1 < j < v, \mathcal{P} sends to \mathcal{V} a univariate polynomial $g_j(X_j)$ claimed to equal

$$\sum_{(x_{j+1},\ldots,x_{\nu})\in\{0,1\}^{\nu-j}}g(r_1,\ldots,r_{j-1},X_j,x_{j+1},\ldots,x_{\nu}).$$

 \mathcal{V} checks that g_j is a univariate polynomial of degree at most $\deg_j(g)$, and that $g_{j-1}(r_{j-1}) = g_j(0) + g_j(1)$, rejecting if not.

- V chooses a random element $r_i \in \mathbb{F}$, and sends r_i to P.
- In Round ν , \mathcal{P} sends to \mathcal{V} a univariate polynomial $g_{\nu}(X_{\nu})$ claimed to equal

$$g(r_1,\ldots,r_{\nu-1},X_{\nu}).$$

 $\mathcal V$ checks that $g_{\mathcal V}$ is a univariate polynomial of degree at most $\deg_{\mathcal V}(g)$, rejecting if not, and also checks that $g_{\mathcal V-1}(r_{\mathcal V-1})=g_{\mathcal V}(0)+g_{\mathcal V}(1)$.

- \mathcal{V} chooses a random element $r_v \in \mathbb{F}$ and evaluates $g(r_1, \dots, r_v)$ with a single oracle query to g. \mathcal{V} checks that $g_v(r_v) = g(r_1, \dots, r_v)$, rejecting if not.
- If $\mathcal V$ has not yet rejected, $\mathcal V$ halts and accepts.

图 7: sum-check 协议

即给定 g(X), \mathcal{P} 证明 H 是由上述求和正确计算得到的结果。

 \mathcal{V} 当然可以自己计算这个求和的值 H,验证它和 \mathcal{P} 发送的声称是 H 的值 \widehat{H} 是否相等。但计算这个求和的时间成本是 $O(2^v)$,这对 \mathcal{V} 来说不够高效。交互式的 sum-check 协议通过与 \mathcal{P} 交互, \mathcal{V} 的时间复杂度可以降低到 O(v)。

sum-check 协议的详细描述如图7所示 [20]。

在第 j 轮中, \mathcal{P} 发送一个声称是 $g_j(X_j) := \sum_{b_{j+1},b_{j+2},...,b_v} g(r_1,r_2,...,r_{j-1},X_j,b_{j+1},...,b_v)$ 的多项式 $\widehat{g_j(X_j)}$, \mathcal{V} 检查:

- $\deg(\hat{g_j}) \stackrel{?}{\leq} \deg(g)$ 。这是保证 $\hat{g_j}$ 的次数不超过原始的多项式,从而确保 Schwartz-Zippel 引理可用。
- $\widehat{g}_i(0) + \widehat{g}_i(1) \stackrel{?}{=} \widehat{g}_{i-1}(r_{i-1})$ 。 这是确保 \widehat{g}_i 是由 \widehat{g}_{i-1} 正确生成的。

之后 \mathcal{V} 选择一个随机数 $r_j \stackrel{\$}{\leftarrow} \mathbb{F}_p$ 发送给 \mathcal{P}, \mathcal{P} 计算 $g_{j+1}(X_{j+1}) := \sum_{b_{j+2},\dots,b_v} g(r_1,r_2,\dots,r_j,X_{j+1},b_{j+2},\dots,b_v)$ 直到最后一轮, \mathcal{V} 额外检查 $\widehat{g_v(r_v)} \stackrel{?}{=} g(r_1,\dots,r_v)$ 。 若检查通过,则由 Schwartz-Zippel 引理,可以 以极大概率认为 $\widehat{g_v(X_v)} = g_v(X_v)$,进而可以以极大概率认为 $\widehat{g_{v-1}(X_{v-1})} = g_{v-1}(X_{v-1})$,进而… 可以以 极大概率认为 $\widehat{g_1(X_1)} = g_1(X_1)$ 。 又因为 $\widehat{H} := C_1 = \widehat{g_1}(0) + \widehat{g_1}(1)$,于是可以以极大概率认为 $\widehat{H} = H$ 。

一般情况下,多项式 g 对每个变量 X_i 的次数 $\deg_i(g)$ 都是较小的常数值。于是,sum-check 协议 的 \mathcal{V} 时间复杂度是 O(v), \mathcal{P} 的时间复杂度是 $O(2^v)$ 。

9 函数承诺 (function commitment)

9.1 函数承诺的定义

函数承诺 (function commitment) 是对函数的承诺方案。具体来说,对一组函数 $\mathcal{F}, f \in \mathcal{F},$ 函数 承诺是一个多项式时间算法元组 $\Pi = (\mathbf{Setup}, \mathbf{Commit}, \mathbf{Eval})$:

- **Setup**(1^{λ}) $\to gp$ 。输入安全参数 λ ,生成公共参数 gp。
- Commit(gp, f, r) \to com $_f$ 。对函数 $f \in \mathcal{F}$ 做承诺,生成承诺值 com $_f$ 。这里的 r 是一个随机数,用于实现隐藏性 (hiding) ("隐藏性" 定义见本节后文)。
- Eval($\mathcal{P}, \mathcal{V}, \mathsf{com}_f, x \in X, y \in Y$): 这里 X 是函数的定义域,Y 是值域。Eval 算法是证明者 \mathcal{P} 向验证者 \mathcal{V} 证明 f(x) = y。

 $\mathcal{P}(gp, f, x, y, r) \to \pi$ 。证明者生成对 f(x) = y 的证明 π 。

 $\mathcal{V}(gp,\mathsf{com}_f,x,y,\pi) \to b \in \{0,1\}$ 。验证者验证证明,若验证通过则 b=1,否则 b=0。

函数承诺具有绑定性 (biding)、隐藏性 (hiding) 两条性质。

• 绑定性 (biding)。即一个承诺 com 对应一个函数,难以找到两个函数 f 和 g,使得 com g = com g 。 形式化地说:

$$\Pr\left[\mathsf{com}_f = \mathsf{com}_g \,\middle|\, \forall f, g \in \mathcal{F}\,\right] = \mathsf{negl}. \tag{6}$$

• 隐藏性 (hiding)。即承诺 com 并不泄露被承诺的函数 f 的任何信息。形式化地说,对任意 $f,g \in \mathcal{F}$,下列两个分布不可区分:

$$D_f = \{ \mathsf{com}_f \leftarrow \mathbf{Commit}(gp, f, r_f) | r_f \overset{\$}{\leftarrow} \mathbb{F}_p \} D_g = \{ \mathsf{com}_g \leftarrow \mathbf{Commit}(gp, g, r_g) | r_g \overset{\$}{\leftarrow} \mathbb{F}_p \}$$
 (7)

9.2 函数承诺协议举例——KZG 多项式承诺

KZG 协议 [12] 是一个非常经典且常用的函数承诺协议。它是一个多项式承诺协议,即被承诺的函数是(单变量)多项式。

KZG 协议描述如下: 给定素数 p 阶双线性群 \mathbb{G} , \mathbb{G}_T , g 是 \mathbb{G} 的生成元, e 是双线性映射 $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ 。函数簇(多项式簇) $\mathcal{F} := \mathbb{F}_p^{\leq d}[X]$ 。对 $f \in \mathcal{F}$ 做 KZG 承诺:

Algorithm 1 Setup $(1^{\lambda}) \rightarrow qp$

- 1: $\tau \stackrel{\$}{\leftarrow} \mathbb{F}_p$
- 2: $gp = (g, g^{\tau}, g^{\tau^2}, ..., g^{\tau^d})$
- 3: delete au
- 4: return gp

Algorithm 2 Commit $(gp, f, r) \rightarrow \mathsf{com}_f$

1:
$$f(X) = f_0 + f_1 X + f_2 X^2 + \dots + f_d X^d$$

$$\mathsf{com}_f = g^{f(\tau)}$$
2: $= g^{f_0 + f_1 X + f_2 X^2 + \dots + f_d X^d}$

$$= (g)^{f_0} \cdot (g^{\tau})^{f_1} \cdot (g^{\tau^2})^{f_2} \cdot \dots \cdot (g^{\tau^d})^{f_d}$$
3: $\mathbf{return} \ \mathbf{com}_f$

Eval 要证明 f(u) = v。如果 $f(u) = \hat{v}$,那么 u 是 $f(X) - \hat{v}$ 的零点,即存在 $q(X) \in \mathbb{F}_p^{\leq d}[X]$ 使得 $f(X) - \hat{v} = (X - u)q(X)$ 。于是:

Algorithm 3 Eval : $\mathcal{P}(g\overline{p,f,x,y,r}) \to \pi$

- 1: compute $q(X) = \frac{f(X) \hat{v}}{X u}$
- 2: $\pi := \mathsf{com}_q = g^{q(\tau)}$
- 3: return π

Algorithm 4 Eval: $V(gp, com_f, x, y, \pi) \rightarrow b \in \{0, 1\}$

- 1: **if** $e(\text{com}_f/g^{\hat{v}}, g) = e(g^{\tau u}, \pi)$ **then**
- 2: b := 1
- 3: **else**
- 4: b := 0
- 5: end if
- 6: **return** b

9.3 现有主要函数承诺协议概述

现有函数承诺协议主要可以分为三类:基于双线性对 (bilinear pairing) 的,基于离散对数 (discrete logarithm) 的,基于哈希 (hashing) 的。

基于双线性对的函数承诺(多项式承诺)。上述 KZG 协议就是基于双线性对的函数承诺协议。这类协议的优点是:证明 (proof) 大小是常数级,这是所有函数承诺中最小的。另外, KZG 还有一个优点是它可以批量承诺,即多多个多项式在多个点上的取值,可以整合到一个承诺中 [5],于是也只需要一个常数大小的 proof 即可。

缺点是: 1) 需要可信初始化设置 (trusted setup),即需要一个可信第三方运行 **Setup** 算法。前面 KZG 协议中我们看到,**Setup** 完成后需要删除 τ 。而在缺乏信任的实际应用场景中,往往不存在完美的可信第三方。2) 不抗量子。这是因为双线性对需要使用特殊的密码学群 \mathbb{G} 和 \mathbb{G}_T ,它们是不抗量子的。

基于离散对数的函数承诺。Bulletproofs[6] 是这类函数承诺的典型例子。除了提供函数承诺之外, Bulletproofs 还可以提供范围证明,即证明某值在某范围内,这是 Bulletproofs 协议的特别之处。其他基于离散对数的函数承诺还有 Hyrax[21], Dory[15] 等。

	Cryptographi c tool	P-time	Proof size	V-time	setup	Post- quantum
KZG	pairing	O(d)	0(1) 0(1)		universal	no
Bulletproofs		O(d)	$O(\log d)$	O(d)		no
Hyrax	Discrete logarithm	O(d)	$O(\sqrt{d})$	$O(\sqrt{d})$	transparent	
Dory		O(d)	$O(\log d)$	$O(\log d)$		
FRI		$O(d \log d)$	$O(\log^2 d)$	$O(\log^2 d)$		
Ligero	hash	O(d)	$O(\sqrt{d})$	$O(\sqrt{d})$		
Brakedown		O(d)	$O(\log^k d)$	$O(\sqrt{d})$	transparent	yes
Orion		O(d)	$O(\log^2 d)$	$O(\sqrt{d})$		

图 8: 主要函数承诺协议汇总

这类函数承诺不需要可信初始化设置。我们把不需要可信初始化设置的 SNARK 协议称为"透明" (transparent) 的。但这类协议同样不抗量子,因为离散对数问题不是抗量子的。

基于哈希的函数承诺 。典型的例子是 FRI 协议 [2], FRI 协议也是基于哈希的函数承诺中证明大小最小的。其他协议后 Ligero, Brakedown, Orion 等。这类协议既是透明的,又是抗量子的,在安全性上表现最好。但它们的证明大小较大,验证时间也较长,因而目前实际应用中采用不多。

图8整理了主要函数承诺的类型、性能和安全性表现。

10 实现非交互和零知识

10.1 实现非交互——Fiat-Shamir 变换

zkSNARK 是非交互式的证明协议,但在构造 zkSNARK 时,往往是先构造出交互式的协议,然后将其转化为非交互式。Fiat-Shamir 变换就是从交互式转为非交互式的便利工具。

对一个有 Prover 和 Verifier 两方的交互式协议,如果 Verifier 向 Prover 发送的所有消息都是均匀分布的随机值,则称这个协议是公币协议 (public coin protocol)。

对公币的交互式协议,用 Fiat-Shamir 变换可以将其变为非交互式协议,即让第 i 轮中 V 发送的 随机值由前 i 轮中交互过的所有消息的哈希值来确定:

$$r_i = hash(x_i, i, r_{i-1})$$

10.2 实现零知识

经过前面的步骤,我们已经得到非交互式的简洁的知识证明了 (SNARK)。最后一步是实现零知识性。基本思路是向协议中添加随机值,使得含有"知识"的数据被混淆成一个"随机"值。我们以向 KZG 添加零知识性 [23] 为例说明这一点。

前述 KZG 协议 [12] 不是零知识的,是因为承诺值 $com_f = g^{f(\tau)}$ 是确定性的,即它和 f(X) 函数 ——对应。例如,如果 $com_f = 0$,则攻击者根据 Schwartz-Zippel 引理,即可推断出 f(X) 大概率是零 多项式。这就泄露了关于 f(X) 的知识。

添加零知识的思路是引入随机值。把 com_f 改为 $\mathsf{com}_f = g^{f(\tau)+r\eta}$,其中 $r, \eta \overset{\$}{\leftarrow} \mathbb{F}_p$ 是两个随机值,称为随机化子 (randomizer)。这样, com_f 和 f(X) 就没有一一对应关系了, $f(\tau) + r\eta$ 也成为一个 \mathbb{F}_p 上的随机值,于是 com_f 在攻击者看来也成为一个随机值。

引入随机值后,相应地需要修改 **Eval**: 验证 $f(X)+r\eta-\hat{v}=(x-u)(q(X)+r'\eta)+\eta(r-r'(x-u))$, 证明 $(\operatorname{proof})\pi=q^{q(\tau)+r'\eta},q^{r-r'(\tau-u)}$

11 zkSNARK 前沿研究和展望

笔者对 zkSNARK 的前沿研究并没有全面的把握,这里只是给出两个笔者感兴趣的方向: 递归 SNARK 和分布式 SNARK。这两者都是在提高 SNARK 的效率、扩展它可以处理的问题规模等方面 的努力,且都有不错的成果产出。

11.1 递归 SNARK(recursive SNARK)

考虑到一些 SNARK (像 groth16,plonk-KZG), 证明大小较小, 但证明时间长; 另一些 (基于 FRI, hash 等) 证明时间短, 但证明大小较大, 递归 SNARK 的思路是把两者结合起来, 以获得证明时间较短、证明大小也较小的 SNARK。

思路是,先用一个证明大小大、证明时间短的 $\operatorname{snark}(P,V)$ 对问题 C 生成一个 proof ,然后再用一恶搞证明大小小、证明时间长的 $\operatorname{snark}(P',V')$,证明这个 proof 能够通过 V 验证,即 P' 是证明 $V(\operatorname{proof})=1$ 的。这样两个 snark 结合在一起,构成一个 $\operatorname{recursive}$ snark ,它的证明大小就比较小(是 P' 产生的 proof '),P 证明时间也比较短(因为 P 比较快,对问题 C 证明;而 P' 虽然慢,但是是对算 法 V 做证明,这个问题规模较小,所以耗时不会太长)。

recursive snark 可以不只两层,使用这种 recursion 的思路,可以套很多层。这可以用来解决增量计算的问题。例如,区块链上的 zkRollup,layer2 向 layer1 提交交易证明时,是把 layer2 上的若干交易打包在一起,生成一个零知识证明 π 来证明 "所有这些交易都是合法的",把交易和 π 提交到 layer1,之后 layer1 验证 π 通过,即可确认打包的所有交易的合法性。

普通的思路是,打包所有交易后统一生成证明,但这样为所有交易生成证明,问题的规模(电路规模)就比较大,这样证明时间就比较长,证明的大小可能也比较大。如图9。而使用递归 SNARK,就可以为若干个交易先生成证明 π_1 ,然后再产生若干笔交易后,生成 π_2 ,如此下去,每一个 π_i 的生成时间和证明大小都比较小。等积累到一定数量的交易后,生成一个 " $\pi_1,\pi_2,...,\pi_n$ 都是可以通过验证的合法证明 (proof)"的证明 π ,作为所有交易的合法性证明,提交到 layer1。这样,总的证明时间较短,证明大小也比较小。如图10。

Nova[14] 和 SuperNova[13] 是典型的递归 SNARK 协议。

11.2 分布式 SNARK

这种方案侧重于 zkSNARK 协议的工程实现方面,通过分布式地实现 zkSNARK 协议算法(特别是 **Prove** 算法,这是当前 zkSNARK 协议的效率瓶颈),提高协议的效率和能够处理的问题规模。

图 9: zkRollup 的简单思路

图 10: zkRollup 的递归 SNARK 思路

DIZK[22] 是首个使用分布式实现思路提高 zkSNARK 协议的效率和能够处理的问题规模的。文章 使用 Apache Spark 分布式架构对 Groth16 协议 [11] 设计了分布式实现,效果是: 1) 能够处理的问题规模(电路规模)比当时最佳协议大两个数量级; 2) 平均每个门的处理时间(证明时间)比当前最佳快两个数量级。

Pianist[16] 不仅在工程上分布式实现了 SNARK, 而且针对 SNARK 协议进行了改进。文章提出了分布式 pIOP,将其与分布式多项式承诺方案结合。文章基于 Plonk 协议做了分布式转化和改进,并在 zkRollup 场景中进行了测试,实验表明 Pianist 实现了很高的性能优化。

11.3 zkSNARK 研究展望

我认为, zkSNARK 有两个很有前景的研究方向: 不需要可信设置的(即透明 (transparent)的)、抗量子的 zkSNARK,即透明 (transparent)的 zkSNARK;提高 zkSNARK的效率和扩展可以处理的问题的规模。

透明的、抗量子的 zkSNARK 。当前高效的 zkSNARK 构造,一般是用双线性对的或基于离散对数的函数承诺。这两类函数承诺构造处的 zkSNARK 都不抗量子,且其中基于双线性对是函数承诺还需依赖可信设置。"可信第三方"在实际的缺乏信任的使用场景中是不存在的,因此设计透明的 zkSNARK 很有必要。同时,量子计算、量子计算机的发展很快,抗量子的 zkSANRK 研究也很有价值。目前有的透明且抗量子的 zkSNARK 一般基于编码和哈希函数,它们的证明大小和验证时间都不够理想(至少是对数级),需要设计高效的透明抗量子 zkSNARK。

提高 zkSNARK 效率、扩展可处理问题的规模 。当前的 zkSNARK 效率瓶颈主要在证明者 \mathcal{P} 生成证明的步骤,同时计算设备的存储资源有限,这两点限制了 zkSNARK 在大规模的问题(即问题转化为的电路规模很大)上的应用。在实际应用场景中,问题的规模往往是非常大的,现有的 zkSNARK 为他们生成证明可能需要数十分钟甚至数小时,这是不可接受的。为此,需要进一步提高 zkSNARK 的效率,并扩展它们可以处理的问题的规模。

为实现这种提升,现有两种思路,一种是设计递归 SNARK,将大问题拆分为小问题;另一种是采用分布式设计实现 zkSNARK 协议。这两种思路目前都在起步阶段,其设计仍然较为简单(例如 DIZK,仅仅是对 groth16 协议进行了工程上的分布式实现),却已经取得了较好的效果。未来在这两个方向上有很大的发展空间。

参考文献

- [1] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In *Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing*, STOC '91, page 21–32, New York, NY, USA, 1991. Association for Computing Machinery.
- [2] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Fast reed-solomon interactive oracle proofs of proximity. In *Electron. Colloquium Comput. Complex.*, 2017.
- [3] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for c: Verifying program executions succinctly and in zero knowledge (extended version).
- [4] E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive Oracle Proofs, page 31–60. Jan 2016.
- [5] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment schemes for multiple points and polynomials. Cryptology ePrint Archive, Paper 2020/081, 2020. https://eprint.iacr.org/2020/081.
- [6] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy (SP), May 2018.
- [7] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols. *Theoretical Computer Science*, 134(2):545–557, 1994.
- [8] A. Gabizon, Z. Williamson, and O. Ciobotaru. Plonk: Permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. *IACR Cryptology ePrint Archive, IACR Cryptology ePrint Archive*, Jan 2019.
- [9] O. Goldreich, S. Micali, and A. Wigderson. How to prove all np-statements in zeroknowledge, and a methodology of cryptographic protocol design. *International Cryptology Con*ference, International Cryptology Conference, Jan 1987.

参考文献 20

[10] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, page 291–304, Jan 1985.

- [11] J. Groth. On the Size of Pairing-Based Non-interactive Arguments, page 305–326. Jan 2016.
- [12] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-Size Commitments to Polynomials and Their Applications, page 177–194. Jan 2010.
- [13] A. Kothapalli and S. Setty. SuperNova: Proving universal machine executions without universal circuits. Cryptology ePrint Archive, Paper 2022/1758, 2022. https://eprint.iacr.org/2022/ 1758.
- [14] A. Kothapalli, S. Setty, and I. Tzialla. Nova: Recursive Zero-Knowledge Arguments from Folding Schemes, page 359–388. Jan 2022.
- [15] J. Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial commitments.
- [16] T. Liu, T. Xie, J. Zhang, D. Song, and Y. Zhang. Pianist: Scalable zkrollups via fully distributed zero-knowledge proofs.
- [17] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. In *Proceedings* [1990] 31st Annual Symposium on Foundations of Computer Science, Dec 2002.
- [18] A. Nitulescu. zk-snarks: A gentle introduction.
- [19] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical verifiable computation. *IACR Cryptology ePrint Archive,IACR Cryptology ePrint Archive*, Jan 2013.
- [20] J. Thaler. Proofs, arguments, and zero-knowledge, 7 2023.
- [21] R. Wahby, J. Thaler, M. Walfish, S. Nyu, and N. Georgetown. Doubly-efficient zksnarks without trusted setup.
- [22] H. Wu, W. Zheng, A. Chiesa, R. Popa, and I. Stoica. Dizk: A distributed zero knowledge proof system. *IACR Cryptology ePrint Archive,IACR Cryptology ePrint Archive*, Jan 2018.
- [23] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vram: Faster verifiable ram with program-independent preprocessing. In 2018 IEEE Symposium on Security and Privacy (SP), pages 908–925, 2018.
- [24] 李威翰, 张宗洋, 周子博, and 邓臣. 简洁非交互零知识证明综述. 密码学报, 9(03):379-447, 1 月 2022.