Likelihood ratio tests

Recap: likelihood ratio test

Let X_1, \ldots, X_n be a sample from a distribution with parameter $\theta \in \mathbb{R}^d$. We wish to test $H_0: \theta \in \Theta_0$ vs. $H_A: \theta \in \Theta_1$.

The **likelihood ratio test** (LRT) rejects H_0 when

$$rac{\sup\limits_{ heta\in\Theta_{1}}L(heta|\mathbf{X})}{\sup\limits_{ heta\in\Theta_{0}}L(heta|\mathbf{X})}>k,$$

where
$$k$$
 is chosen such that $\sup_{\theta\in\Theta_0}\beta_{LR}(\theta)\leq \alpha.$

Example: linear regression with normal data

Suppose we observe
$$(X_1,Y_1),\ldots,(X_n,Y_n)$$
, where $Y_i=\beta^TX_i+\varepsilon_i$ and $\varepsilon_i\stackrel{iid}{\sim}N(0,\sigma^2)$. Partition $\beta=(\beta_{(1)},\beta_{(2)})^T$. We wish to test $H_0:\beta_{(2)}=0$ vs. $H_A:\beta_{(2)}\neq 0$. Full model $(H_A): \forall i=\beta^TX_i+\xi_i$ section $(H_A): \forall i=\beta^TX_i+\xi_i$ section $(H_A): \forall i=\beta^TX_i+\xi_i$ section $(H_a): \forall i=\beta^TX_i+\xi_i$ where $(H_a): \forall i=\beta^TX_i+\xi_i$ is section $(H_a): \forall i=\beta^TX_i+\xi_i$ where $(H_a): \forall i=\beta^TX_i+\xi_i$ is section $(H_a): \forall i=\beta^TX_i+\xi_i$ and $(H_a): \forall i=\beta^TX_i+\xi_i$ and $(H_a): \forall i=\beta^TX_i+\xi_i$ where $(H_a): \forall i=\beta^TX_i+\xi_i$ is section $(H_a): \forall i=\beta^TX_i+\xi_i$ and $(H_a): \forall i=\beta^TX_i+\xi_i$ and

$$SUP L(\beta, \sigma^{2}|X,Y)$$

$$SUP L(\beta, \sigma^{2}|X,Y)$$

$$SUP L(\beta, \sigma^{2}|X,Y)$$

$$SUP L(\beta, \sigma^{2}|X,Y)$$

$$SUP L(\beta, \sigma^{2}|X,Y) - \log L(\beta, \sigma^{2}, \sigma^$$

SSEFUI /(n-P)

SUP L (B, o2 1X, Y)

rejects Ha if

LRT:

SUP
$$L(\lambda|x) = \sup_{\lambda \neq \lambda_0} L(\lambda|x)$$

MLE:
$$\hat{\lambda} = \frac{1}{2} \sum_{i=1}^{2} x_i$$

Example: Poisson sample

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} Poisson(\lambda).$ We wish to test $H_0:\lambda=\lambda_0$ vs. $H_A:\lambda\neq\lambda_0.$

Write down the LRT statistic, and simplify as much as possible.

$$L(\lambda | x) = \prod_{i=1}^{n} \frac{x^{x_i} e^{-\lambda}}{x_i!} = \frac{\lambda^{x_i} e^{-\lambda}}{\prod_i x_i!}$$

$$SUP L(\lambda | x) = L(\lambda_0 | x) \qquad SUP L(\lambda | x) = L(\lambda | x)$$

$$\lambda = \lambda_0$$

$$LRT \text{ rejects when}$$

$$\frac{\lambda^{x_i} e^{-\lambda}}{\lambda^{x_i} e^{-\lambda}} > L$$

Asymptotics of the LRT

Suppose we observe iid oute
$$X_1, ..., X_n$$
 and went to tot
 $H_0: \Theta = \Theta_0$ vs. $H_A: \Theta \neq \Theta_0$ ($\Theta \in \mathbb{R}$)
under H_0 , $-2(\log L(\Theta_0 | X) - \log L(\widehat{\Theta} | X)) \xrightarrow{\partial} X_1^2$
 $= 2\log\left(\frac{L(\widehat{\Theta} | X)}{L(O_0 | X)}\right)$

- ① using Taylor expansion: $2l(\hat{\theta}) 2l(\theta_0) \approx -l''(\hat{\theta})(\hat{\theta} \theta_0)$
- (3) Apply Slutsky's & continuous mapping theorem

Generalization to higher dimensions