Exist c_1, c_2 , and n_0 that $\Theta(g(n)) = \{f(n) : 0 \le c_1 g(n) \le f(n) \le c_2 g(n)\}$ for all $n \ge n_0$

Exist c_1, c_2 , and n_0 that $o(g(n)) = \{f(n) : 0 \le f(n) < cg(n)\}$ for all $n \ge n_0$

For Example: $2n^2 = O(n^2)$, but $2n^2 \neq o(n^2)$.

$$f(n) = \omega(g(n))$$
 if and only if $g(n) = o(f(n))$

Because $\Theta(g(n))$ is a set, $f(n) \in \Theta(g(n))$, but we always write $f(n) = \Theta(g(n))$.

Property:

1. Transitivity: $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$

2. Reflexivity: $f(n) = \Theta(f(n))$

3. Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$

4. Transpose Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Omega(f(n))$

$$f(n) = o(g(n))$$
 if and only if $g(n) = \omega(f(n))$
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

$$1 + x \le e^x \le 1 + x + x^2$$

Fibonacci:
$$F_i = \frac{\rho^i - \bar{\rho^i}}{\sqrt{5}}$$

 ρ is golden ratio F_i equal to $\frac{\rho^i}{\sqrt{5}}$ rounded to the nearist integer