Pontifícia Universidade Católica de Minas Gerais - Curso de Ciência da Computação

Disciplina: Fundamentos Teóricos da Computação

Professor: Zenilton Kleber Gonçalves do Patrocínio Júnior

b) O conjunto das palavras de { 0, 1 }* que não contêm 01 como sufixo

1ª AVALIAÇÃO - 35 pontos

Nome:		
1)	Forneça o diagrama de estados de um AFD que reconheça cada uma das seguintes	linguagens:
	a) O conjunto das palavras de $\{0\}^*\{1\}^*\{0\}^*$ com número par de 0s	(05 pontos)

2) Obtenha uma **GR** que gera a linguagem **AB** em que:

(05 pontos)

(05 pontos)

 $\mathbf{A} = \{ w \in \{ \mathbf{a}, \mathbf{b} \}^* | w \text{ possui um número ímpar de } \mathbf{a} \mathbf{s} \}; \mathbf{e}$

 $\mathbf{B} = \{ w \in \{ \mathbf{a}, \mathbf{c} \}^* | w \text{ possui um número par de } \mathbf{as} \}.$

- 3) Sabendo $\mathbf{L_1} = \{ 0^n \mid n \text{ \'e número primo } \}$ não é linguagem regular e que $\mathbf{L_2} = \{ 0^n \mid n \geq 1000 \}$ representa uma linguagem regular. Prove para cada linguagem abaixo se ela é ou não regular: (06 pontos)
 - a) $L_1 L_2$
 - b) $L_1 \cap L_2$
 - c) $L_1 \cup L_2$
- 4) Construa AP (apenas o diagrama) e GLC para as seguintes linguagens:

a)
$$L_2 = \{ x 2y \mid x, y \in \{0, 1\}^*, |x| = |y| + 1 \}$$
 (03 pontos)

- b) $L_3 = \{ a^m b^n c^k \mid m \geq n \text{ ou } n \leq k \}$ (04 pontos)
- 5) Considere a GLC produzida para L₃ no item (b) da Questão 4. Pede-se:
 - a) Forneça uma derivação mais à esquerda para a sentença **aaaabbcc** e uma árvore de derivação correspondente à derivação produzida; (03 pontos)
 - b) Mostre que sua gramática é ambígua. (04 pontos)