CONCEPT LEARNING

Concept is a subset of objects or events

defined over a larger set.

Concept is a boolean-valued function over this

larger set

Animal - larger dataset

Bird-subset

Boolean valued function- Whether the animal is member of the bird or not

What concept learning will do?

- Concept learning is the task of automatically inferring the general definition of some concept, given examples labelled as members or non members of the concept.
- Concept learning -> Finding the best hypothesis
- Concept learning is a learning task in which train our machine to learn some concept by giving predefined examples.(training data)
- Example: Task of learning the target concept "Days on which my friend X enjoys his favorite water sport"

Positive and negative training examples for the target concept "EnjoySport"

The attribute *EnjoySport* indicates whether or not Aldo enjoys his favorite water sport on this
day.

• The task is to learn to predict the value of *EnjoySport* for an arbitrary day, based on the values of its other attributes.

Example	7	Conce	st le	uning	dante.		
Concept	- :_	Good	days	for	water sports	(value:	yes,No)

Every concept has certain attributes

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

According to the dataset, a person enjoying the sports for some days or not enjoying sports some days.

We can represent like this: (Conjunction of all the attributes)-

L Sunny, warm, High, shong, warm, same, yes>

Consists of input and output variable

	•	<u> </u>				_	
Day	Sky	Airtemp	Humidity	Wind	Water	Forecast	Watersport
1.	Sunny	Wann	Normal	Strong	Walm	Same	yes
2.	Sunny	Wahm	High	Strong	Wanm	Same	yes
3.	Rainy	cold	High	Shory	Wasm	change	No
у.	Sunny	Worn	High	Strong	Cool	.change	yes

Positive and negative training example for the target Concept Enjoysport.

Concept-Enjoysport-yes/no

• Given:

- instances (X): set of items over which the concept is defined.
- target concept (c): $c: X \rightarrow \{0, 1\}$
- training examples (positive/negative) : <x,c(x)>
- training set D: available training examples
- set of all possible hypotheses: H

• Determine :

- to find h(x) = c(x) (for all x in X)

Hypothesis Representation

- Hyothesis: h, a conjunction of constraints on the instance attributes.
- Let each hypothesis be a vector of six constraints, specifying the values of the six attributes (*Sky*, *AirTemp*, *Humidity*, *Wind*, *Water*, and *Forecast*).

Instance space-training samples

· Each constraint can be

? Andicates any value is accepted for subtribute

p indicates that no value is accepted.

Shely the ringle required value of attribute

ag warm

Six attributes in the dataset can be represented like this:

enumples <?, cold, high,????

Most general hypothesis- All the days are good day for sports

Most specific hypothesis - No day is good day for sports

FIND-S Algorithm Finding A Maximally Specific Hypothesis

We will use hypothesis representation in Find S algorithm

6 attributes

Target variable or target concept- EnjoySport- Yes/No (Binary classification)

Sky has two possibilities – sunny or Rainy

AirTemp has possibilities- Warm or cold

Given the dataset, a person – enjoying sports some days / not enjoying sports some days

Task - EnjoySport

FIND-S: Step-1

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Six attributes are there. Initially all the 6 attributes are null.

1. Initialize h to the most specific hypothesis in H

FI	N	D-	S:	St	er)-2
					_	_

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySpor
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

^{2.} For each positive training instance x

• For each attribute constraint a_i in h

If the constraint a_i is satisfied by x

Then do nothing

Else replace a_i in h by the next more general constraint that is satisfied by x

[Checking with positive instance x]

Replace with the next general constraint

FIND-S: Step-2

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySpor
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

2. For each positive training instance x

• For each attribute constraint a_i in h

If the constraint a_i is satisfied by x

Then do nothing

Else replace a_i in h by the next more general constraint that is satisfied by x

	Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySpor
FIND-S: Step-2	1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
	2	Sunny	Warm	High	Strong	Warm	Same	Yes
	3	Rainy	Cold	High	Strong	Warm	Change	No
	4	Sunny	Warm	High	Strong	Cool	Change	Yes
2. For each positive tra	ining instanc	e x						
For each attri								
If the	constraint ai	is satisfie	d by x	4.				
Then	do nothing							
Else re	place ai in h	by the n	ext more ge	eneral constr	aint that i	s satisfied	d by x	

We ignore the training sample 3, because it contains negative training instance

[Checking with next positive instance]

Since the value of 5th attribute changes from 'Warm' to 'Cool' and 6th attribute changes from 'same' to 'Change', replace them with ['?'].

For the given dataset, this is the maximally specific hypothesis.

We have traced all the instances. So this is the final hypothesis. (ie. maximally specific hypothesis.)

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

$$Consistent(h,D) \equiv (\forall \langle x,c(x)\rangle \in D) \ h(x) = c(x)$$

In this algorithm, we have one consistent hypothesis.

The version space, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

Space Search

The hypothesis space search performed by FIND-S. The search begins (h_0) with the most specific hypothesis in H, then considers increasingly general hypotheses $(h_1 \text{ through } h_4)$ as mandated by the training examples. In the instance space diagram, positive training examples are denoted by "+," negative by "-," and instances that have not been presented as training examples are denoted by a solid circle.

Limitations:

- Negative samples are not considered
- it outputs just one hypothesis consistent with the training data there might be many.

To overcome this, we are going to candidate elimination algorithm.

Candidate Elimination Algorithm

To find the consistent hypothesis for the given set of training samples or training examples.

- Consider both positive and negative training samples.
- We will get more than one hypothesis.
- For positive example: tend to generalize specific hypothesis.
- For Negative example: tend to make general hypothesis more specific.

Given Dataset:

	Data set												
K	Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport					
1		Sunny	Warm	Normal	Strong	Warm	Same	Yes					
2		Sunny	Warm	High	Strong	Warm	Same	Yes					
3		Rainy	Cold	High	Strong	Warm	Change	No					
4		Sunny	Warm	High	Strong	Cool	Change	Yes					

Six attributes and target variable is :EnjoySport

Based on the dataset, sometimes person enjoys the sport and sometime he will not enjoy the sport.

person enjoying the sport – positive classification (yes)

if he is not enjoying the sport-negative classification (no)

Algorithm:

- Initialize G & S as most General and specific hypothesis.
- For each example e:

if e is +ve:

Make specific hypothesis more general.

else:

Make a general hypothesis more specific.

Step1:

The boundary sets are first <u>initialized</u> to G_o and S_o, the most general and most specific hypotheses in H.

$$S_0$$
 $\langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \rangle$

Step2:

For the first training sample (x1)

If the training sample is positive(+), steps are similar to FIND- S algorithm.

If +, Make specific hypothesis more general.(Start from start to bottom)

We have to check most specific boundary constraints with training sample, if it is inconsistent, replace with next general value. If it is consistent, no change in the hypothesis.

Since it is positive sample (+), no change in the most general boundary. G1 also same.

Take the next training sample.

Step3:

Step4:

To form G3, Compare the training sample d with S3. If any mismatch in both the attribute, write that attribute in G3, remaining all the attributes are '?' as it in G2.

Step5:

After forming S4, form the G4 also by comparing S4 with G3.

To form G4-> G3 attribute value must be greater than or equal to S4(Because G3 is most general than S4).

In G3 , first two are matching with S4. So we can keep as it is . The third one <?????,same> is not matching with S4. [Because "same" in G3 is lesser than "?" in S4. So we have to remove this]

S4 and G4 are final boundary values. We have to find out hypothesis between of S4 and G4. These hypothesis are called version space.

Version Space:

G4 is compared with S4. If any mismatch, replace with specific value in G4 hypothesis.[Check with every attribute]