Mushroom Classification System

Objective:

The main objective of the project is to help people who are not familiar with the mushroom types by classifying the mushroom is edible or poisonous

Benefits:

- Identify mushroom edibility
- Preventing health issues
- Enriching nutrition intake
- Promoting good mushrooms

Architecture Diagram

Data Validation and Data Transformation:

- Data type of columns The data type of columns is in the form of String .When user select a category of each column , it take as a String
- Null values in columns If user forget to give value of any column, then default value will consider as a selected value
- Name of columns The name of the columns are as per the columns name of the dataset

Model Training:

Data from Kaggle:

Data got from Kaggle as csv file used to train the model

- Data Preprocessing
 - Performing EDA to get insight of data like identifying imbalance data and distribution
 - Check for null values in the columns. If present impute the null values.
 - Encode the categorical values with numeric values.
 - Performing statistical hypothesis test to analyze correlation between categorical variable
- Model Selection

After the data is encoded ,By using 4 algorithms 'SVM', 'RandomForestClassifier', 'XGBClassifier' and 'LogisticRegression'. We done GridSearch through all models to calculate the AUC scores for all models and select the model with the best score.

Prediction:

- Select the Test data
- We performed data pre-processing techniques on test data.
- Model is used to predict the Test data.
- Once the prediction is done. We measure the accuracy of the predictions using confusion matrix and accuracy matrix.
 Confusion matrix saved as a image file

Q & A:

Q1) What's the source of data?

We got data from Kaggle platform

Q 2) What was the type of data?

The data was Categorical values.

Q 3) What's the complete flow you followed in this Project?

Refer slide 4th for better Understanding

Q 4) What database used?

We are not used any database, as we store the model as a binary file in the localstorage

Q 5) Where the application is hosted?

The application source code is hosted in GitHub, Live application is running in Heroku

Q 6) Does user needs to register to access this application?

No, it is open to all to access free of cost and free of registration

Q7) What techniques were you using for data pre-processing?

- Analyze data for imbalance
- Perform statistical test to identify the relationship between target variable and features
- Check for null values . Impute if any
- Converting categorical data into numeric values (Encoding)

Q 8) How training was done or what models were used?

- The categorical columns were encoded
- After training data is ready, Algorithms like SVM, XGBoost, Random Forest, Logistic Regression were used through GridSearch and selected best model base on score

Q 9) How Prediction was done?

The data collected from user .We Perform the same life cycle till the data is Encoded . Then load the model and do prediction.

Q 10) What are the different stages of deployment?

- ▶ When the model is ready we deploy it in Fire environment .Where SIT and UAT is performed over it.
- ▶ Once We get Sign off from Fire we deploy in Earth and UAT is performed over it.
- After getting the sign off from Earth we deploy in production