Задание 1 Стрижак Даниил

1 Распределение Максвелла

Из-за того, что в системе рассматривается всего 1000 частиц, то распределение Максвелла не установится никогда, но имеет смысл говорить о том, когда распределение будет "очень похоже"на Максвелловское.

Посмотрим на линеаризованную зависимость расперделения по модулям скоростей, т.е. зависимость $\ln \frac{N}{V^2}$ от V^2 , где N – количество частициц в промежутке, равном 0.1 от разницы между наибольшим и наименьшим значениям (Метод простой скользящей средней).

Ниже приведены зависимости при $K=2,\,10,\,50$ и 80 шагов интегрирования:

После 80 шага можно считать, что распределение Максвелла почти установилось. Нелинеарезированное распределение выглядит так:

А распределения по модулям скоростей так:

На самом деле распределение Максвелла — один из критериев установившегося равновесия в системе и говорить о том, что оно установилось стоит только тогда, когда все критерии будут удовлетворять теории. Один из них обсуждается в следующем пункте; после установления равновесия будет установлено и распределение Максвелла в максимально близком приближении к реальности. При времени перерасчета $dt=0{,}0001$ количество шагов примерно равно 4000.

2 Время динамической памяти

Для расчета времени динамической памяти стоит запустить симуляцию при двух разных временах перерасчета $dt_1=0.0001$ и $dt_2=0.001$ и посчитать невязки скоростей и радиусвекторов: $<(v_1-v_2)^2>(t)$ и $<(r_1-r_2)^2>(t)$. Кривые выходят на плато на 4000 шаге т. е. 0,4 секунды собственного времени.

3 Уравнения состояния

3.1 Зависимости разных величин от плотности

При температуре T=2.0 запустим программу несколько раз, рассчитав давление, как среднее значение величины $P=P_m+P_f$, начиная с 4000 шага до последнего.

$$< P_f > = \frac{1}{3V} < \sum_{j=0}^{N} \sum_{i < j} \mathbf{F_{ij}} \cdot \mathbf{r_{ij}} >$$
 $< P_m > = \frac{3N}{2V} < E_k >$

Полученные данные, путем моделирования вынесены в таблицу:

$\frac{L}{2}$	Давление	Сжимаемость	$rac{P_{ ext{KUHET.}}}{P_{ ext{KUHET.}} + P_{ ext{ПОТЕНЦ.}}}$	Плотность
5.30	43.87	_	0.154	0.839
5.35	37.28	0.479	0.166	0.816
5.40	32.18	0.679	0.176	0.793
5.45	29.10	0.849	0.187	0.772
5.50	25.70	0.798	0.196	0.751
5.55	22.27	1.051	0.210	0.731
5.60	20.56	1.157	0.216	0.711
5.65	17.64	1.258	0.230	0.693
5.70	16.34	2.096	0.238	0.674
5.75	15.13	1.983	0.247	0.657
5.80	13.71	2.486	0.259	0.640
5.85	13.05	2.842	0.263	0.624
5.90	12.26	3.008	0.272	0.608
5.95	11.36	2.533	0.280	0.593
6.00	10.27	2.590	0.292	0.578
6.05	9.43	3.443	0.301	0.564
6.10	8.83	3.786	0.309	0.550
6.15	8.58	4.134	0.313	0.537
6.20	7.88	4.171	0.320	0.524
6.25	7.42	4.138	0.332	0.512
6.30	6.72	4.070	0.343	0.500
6.35	6.25	4.820	0.348	0.488
6.40	5.74	4.510	0.360	0.477
6.45	5.53	5.074	0.364	0.466
6.50	5.53	5.241	0.363	0.455
6.55	5.25	5.896	0.373	0.445
6.60	4.67	5.611	0.386	0.434
6.65	4.44	6.044	0.392	0.425
6.70	4.28	6.206	0.392	0.415
6.75	3.95	6.084	0.409	0.406
6.80	3.60	6.001	0.420	0.398
6.85	3.54	6.056	0.419	0.389
6.90	3.57	6.038	0.416	0.381
6.95	3.39	5.995	0.428	0.372
7.00	3.23	_	0.431	0.364

Для расчета сжимаемости $\beta=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_T$ воспользуемся методом сплайнов 3 степени, чтобы рассчитать производную $\left(\frac{\partial V}{\partial P}\right)_T$.

Построим полученные зависимости давления от плотности $P(\rho)$ (слева) и сжимаемости от плотности $\beta(\rho)$ (справа):

Можно заметить, что при малой плотности зависимость давления от плотности является линейной, что так же подтверждается независимостью значения сжимаемости от плотности в диапазоне до 0.42 условных единиц плотности.

Так же построим зависимость $\frac{P_{\text{кинет.}}}{P_{\text{кинет.}} + P_{\text{потенц.}}}(\rho)$:

3.2 Обрезка потенциала

При обрезке потенциала стоит ввести добавочное давление:

$$\Delta P^{\text{tail}} = (1/2)4\pi \rho^2 \int_{r_c}^{\infty} d\mathbf{r} \, r^2 \mathbf{r} \cdot \mathbf{f}(r) = \frac{16}{3} \pi \rho^2 \epsilon \sigma^3 \left[\frac{2}{3} \left(\frac{\sigma}{r_c} \right)^9 - \left(\frac{\sigma}{r_c} \right)^3 \right]$$

Для проверки данной формулы достаточно провести измерения для 7 различных r_{cut} при объеме 1728 условных единиц (длина стороны куба равна 12, $P_0 = 10.27$):

r_{cut}	Р	ΔP	$P^{ m Teop}$	ошибка
5.5	10.33	-0.06	-0.058	3.4%
5.0	10.35	-0.08	-0.078	2.5%
4.5	10.37	-0.10	-0.106	5.6%
4.0	10.44	-0.16	-0.151	5.9%
3.5	10.48	-0.21	-0.226	7.0%
3.0	10.65	-0.38	-0.359	5.8%
2.5	10.88	-0.61	-0.619	1.4%

Среднее отклонение от теоретических значений поправки давления в среднем -5%, что говорит о точности теоретического расчета и правильного построения модели.

4 Оценка ошибки усреднения

Методом блочных средних оценим ошибку расчета полной энергии:

5 Заключение

Код нужно переписать так, чтобы с ним было удобно работать и разбираться стороннему пользователю, однако все поставленные задачи выполнить удалось; полученные данные и зависимости схожи теоретическим, а так же полученным в других работах. Github – https://github.com/Striz-lab/modelling/.