北京邮电大学 2018-2019 学年

线性代数期末试题(A)

注意: 请将所有题(包括填空题)的答案写在答题纸上,否则无效.

一. 填空题(每小题3分,共30分)

1. 已知 x_1, x_2, x_3 是方程 $x^3 + px + q = 0$ 的 3 个根,

则
$$\begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix} = \underline{\qquad}.$$

答案: 0

2. 己知 $\alpha = (1,-1,1)^T$, $A = E + \alpha \alpha^T$, 则 $A^2 =$ ______.

答案:
$$\begin{pmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{pmatrix}$$

3. 已知直线
$$L_1$$
: $x-1=y+2=-z-4$ 与直线 L_2 :
$$\begin{cases} x=1+2t \\ y=at-3$$
 共面, $z=t-2 \end{cases}$

则 *a* =_____.

答案: $\frac{1}{2}$

4. 将 3 阶矩阵
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
表示为两个初等矩阵相乘:

$$A = \underline{\hspace{1cm}}$$
.

答案:
$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\beta_3 = \alpha_1 + 6\alpha_2 + a\alpha_3$$
. 则当 $a =$ ______时, $\beta_1, \beta_2, \beta_3$ 线性相关.

答案:
$$a=9$$

答案:
$$a=9$$
6. 已知 A, A^*, B 都是 n 阶非零矩阵 (A^* 是 A 的伴随矩阵), 若 $AB=0$

(O为零矩阵),则 $r(B) = _$

答案: 1

7. 已知
$$A = \begin{pmatrix} 1 & 2 & 3 \\ x & y & z \\ 0 & 0 & 1 \end{pmatrix}$$
 的 3 个特征值为 1,223

答案: -1

8. 已知
$$A$$
与 $\begin{pmatrix} 1 & 1 & -3 \\ 0 & -2 & 4 \end{pmatrix}$ 相似, $|\lambda E - A| = _____.$

答案: (λ-1)(%

9. 已知 4 阶实对称矩阵
$$A$$
 满足 $A^2 + A = O$,其中 O 为零矩阵,若

Ax 在正交变换 x = Oy 下的标准形为

答:
$$f = -y_1^2 - y_2^2 - y_3^2$$

10 . 空间曲线
$$\begin{cases} x^2 + y^2 + z^2 = 9 \\ y - z = 1 \end{cases}$$
 在 xoy 面上的投影曲线方程

为_

答案:
$$\begin{cases} x^2 + 2y^2 - 2y - 8 = 0 \\ z = 0 \end{cases}$$

二. (10 分) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix}$ $(n \ge 2)$.

解: 将 D_n 按第一行展开,得

$$D_{n} = x \begin{vmatrix} x & y & \cdots & 0 & 0 \\ 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & x & y \\ 0 & 0 & \cdots & 0 & x \end{vmatrix} - y \begin{vmatrix} 0 & y & \cdots & 0 & 0 \\ 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & x & y \\ y & 0 & \cdots & 0 & x \end{vmatrix},$$

再将第二个行列式按第一列展开,得

$$D_{n} = x^{n} - y^{2} (-1)^{n} \begin{vmatrix} y & \cdots & 0 & 0 \\ x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & x & y \end{vmatrix} = x^{n} + (-1)^{n+1} y^{n}.$$

三. **(10 分)** 已知可逆矩阵
$$A = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 1 & 3 \\ 4 & 1 & 10 \end{pmatrix}$$
,若矩阵 B 满足

 $A^{-1}BA = 2A^{-1}B + E$, $\vec{x} B$.

解: 在等式 $A^{-1}BA = 2A^{-1}B + E$ 两端左乘 A, 得 BA = 2B + A,

$$B = A(A-2E)^{-1},$$

$$A-2E = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}, \quad (A-2E)^{-1} = \begin{pmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{pmatrix},$$

$$B = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 1 & 3 \\ 4 & 1 & 10 \end{pmatrix} \begin{pmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -21 & 4 & 4 \\ -8 & 1 & 2 \\ 12 & -2 & -1 \end{pmatrix}.$$

四. (10 分) 设 $\alpha_1 = (1,-2,3,1)^T$, $\alpha_2 = (2,0,4,-1)^T$

 $\alpha_3=(4,-4,10,-1)^T$, $\alpha_4=(3,-2,5,-2)^T$,求 α_1,α_2 , α_3 , α_4 的一组极大无关组,并将其余向量用该极大无关组线性表示.

解: 对 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 作初等行要换,化为行最简形,得

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) = \begin{pmatrix} 1 & 2 & 4 & 3 \\ -2 & 0 & -4 & -2 \\ 3 & 4 & 10 & 5 \\ 1 & +3 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

 α_1 , α_2 为 大组极大无关组, $\alpha_3 = 2\alpha_1 + \alpha_2$.

五. (12分) 已知方程组
$$\begin{cases} x_1 - 2x_2 + 2x_3 - x_4 = 1 \\ x_1 - 2x_2 + 4x_3 = 1 \\ 2x_1 - 4x_2 + 2x_3 - 3x_4 = t \end{cases}$$

 $\left(x_1 - 2x_2 + x_3 - 2x_4 = 2 \right)$

(1) 求t; (2) 求该方程组的通解.

解: (1) 对方程组的增广矩阵作初等行变换, 化为行阶梯形, 得

$$B = A(A-2E)^{-1},$$

$$A-2E = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}, \quad (A-2E)^{-1} = \begin{pmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{pmatrix},$$

$$B = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 1 & 3 \\ 4 & 1 & 10 \end{pmatrix} \begin{pmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -21 & 4 & 4 \\ -8 & 1 & 2 \\ 12 & -2 & -1 \end{pmatrix}.$$

四. (10 分) 设 $\alpha_1 = (1,-2,3,1)^T$, $\alpha_2 = (2,0,4,1)^T$

 $\alpha_3 = (4,-4,10,-1)^T$, $\alpha_4 = (3,-2,5,-2)^T$, 求 $\alpha_4,\alpha_2,\alpha_3,\alpha_4$ 的一组极大无关组,并将其余向量用该极大无关组线性表示.

解:对 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 作初等行变换,化为行最简形,得

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) = \begin{pmatrix} 1 & 2 & 4 & 3 \\ -2 & 0 & -4 & -2 \\ 3 & 4 & 10 & 5 \\ 1 & +3 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

 α_1 , α_3 , α_4 为于组极大无关组, $\alpha_3 = 2\alpha_1 + \alpha_2$.

五.) (12 分) 已知方程组
$$\begin{cases} x_1 - 2x_2 + 2x_3 - x_4 = 1 \\ x_1 - 2x_2 + 4x_3 = 1 \\ 2x_1 - 4x_2 + 2x_3 - 3x_4 = t \end{cases}$$
 有解.

(1) 求t; (2) 求该方程组的通解.

解: (1) 对方程组的增广矩阵作初等行变换, 化为行阶梯形, 得

$$\begin{pmatrix} 1 & -2 & 2 & -1 & 1 \\ 1 & -2 & 4 & 0 & 1 \\ 2 & -4 & 2 & -3 & t \\ 1 & -2 & 1 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 2 & -1 & 1 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & t-2 \end{pmatrix} ,$$

故t=2

(2)继续对上述行阶梯形矩阵作初等行变换,化为行最简形,得

$$\begin{pmatrix}
1 & -2 & 2 & -1 & 1 \\
0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1 & t-2 \\
0 & 0 & 0 & 0 & t-2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -2 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}, \, \text{原方程}$$

组同解于 $\begin{cases} x_1 - 2x_2 = -3 \\ x_3 = 1 \end{cases}$,取特解 $\eta = (-3, 0, 1, -2)^T$, $x_4 = -2$

对应齐次方程组
$$\begin{cases} x_1 - 2x_2 = 0 \\ x_3 = 0 \end{cases}$$
 的通解为
$$x_4 = 0$$

 $x = x_2(2,1,0,0)^T$, x_2 为任意实数.

所求方程组的通解为

$$x = k(2,1,0,0)^T + (-3,0,1,-2)^T$$
, k 为任意实数.

六. **(10 分)** 设 α_1 = (1,-1,1,-1), α_2 = (-1,2,0,1), α_3 = (-1,1,0,0),利用施密特正交化方法,求与 α_1 , α_2 , α_3 等价的正交向量组 β_1 , β_2 , β_3 ,其中 β_1 = α_1 .

解:
$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$\begin{pmatrix} 1 & -2 & 2 & -1 & 1 \\ 1 & -2 & 4 & 0 & 1 \\ 2 & -4 & 2 & -3 & t \\ 1 & -2 & 1 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 2 & -1 & 1 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & t-2 \end{pmatrix} ,$$

故t=2.

(2)继续对上述行阶梯形矩阵作初等行变换,化为行最简形,得

$$\begin{pmatrix}
1 & -2 & 2 & -1 & 1 \\
0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & t-2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -2 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}, \, \text{原方程}$$

组同解于
$$\begin{cases} x_1 - 2x_2 = -3 \\ x_3 = 1 \end{cases}$$
,取特解 $\eta = (-3, 0, 1, -2)^T$,
$$x_4 = -2$$

对应齐次方程组
$$\begin{cases} x_1 - 2x_2 = 0 \\ x_3 = 0 \end{cases}$$
 的通解为 $x_4 = 0$

 $x = x_2(2,1,0,0)^T$, x_2 为任意实数.

所求方程组的通解为

$$x = k(2,1,0,0)^T + (-3,0,1,-2)^T$$
, k 为任意实数.

六. **(10 分)** 设
$$\alpha_1 = (1,-1,1,-1)$$
 , $\alpha_2 = (-1,2,0,1)$, $\alpha_3 = (-1,1,0,0)$, 利用施密特正交化方法,求与 $\alpha_1,\alpha_2,\alpha_3$ 等价的正交向量组 β_1,β_2,β_3 , 其中 $\beta_1 = \alpha_1$.

解:
$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$=(-1,2,0,1)-\frac{-4}{4}(1,-1,1,-1)=(0,1,1,0);$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2$$

$$= (-1,1,0,0) - \frac{-2}{4}(1,-1,1,-1) - \frac{1}{2}(0,1,1,0) = -\frac{1}{2}(1,0,0,1).$$

七. (12 分) 已知二次型 $f = 4x_1^2 + 5x_2^2 + 3x_3^2 - 4x_1x_2$ 在 换 x = Py 下化为标准形 $f = y_1^2 + ay_2^2 + by_3^2$ (a < 6),其中

 $x = (x_1, x_2, x_3)^T$, $y = (y_1, y_2, y_3)^T$.

(1) 求 a,b; (2) 求正交矩阵

解: (1) f在x下的矩阵为4(2)-2 5 0 2 0 3

,另两个特征值为a,b,则

1 = 11, $|A| = 28 = ab \cdot 1$,

 $p_1 = \frac{1}{3}(2,1,2)^T$; $x^m (A-4E)x = 0$, $a^m A = A = A$

征向量为 $p_2 = \frac{1}{3}(1,2,-2)^T$; 求解 (A-7E)x = 0, 得 A 的对应

 $\lambda_3 = 7$ 的单位特征向量为 $p_3 = \frac{1}{3}(-2, 2, 1)^T$.

$$=(-1,2,0,1)-\frac{-4}{4}(1,-1,1,-1)=(0,1,1,0);$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2$$

$$= (-1,1,0,0) - \frac{-2}{4}(1,-1,1,-1) - \frac{1}{2}(0,1,1,0) = -\frac{1}{2}(1,0,0,1).$$

七. (12分) 已知二次型 $f = 4x_1^2 + 5x_2^2 + 3x_3^2 - 4x_1x_2$ 在

换 x = Py 下化为标准形 $f = y_1^2 + ay_2^2 + by_3^2 (a < b)$, 其中 $x = (x_1 x_1 x_2)^T$

 $x = (x_1, x_2, x_3)^T$, $y = (y_1, y_2, y_3)^T$.

(1) 求 a,b; (2) 求正交矩阵

解: (1) f在x下的矩阵为 4 2 2 2 2 3 3

值,另两个特征值为a,b,则

$$a+b=trA-1=11, |A|=28=ab\cdot 1,$$

x解(A-E)x=0,得A的对应 $\lambda=1$ 的单位特征向量为

 $p_1 = \frac{1}{3}(2,1,2)^T$; $x^T = x^T = x^$

征向量为 $p_2 = \frac{1}{3}(1,2,-2)^T$; 求解 (A-7E)x = 0, 得 A 的对应

 $\lambda_3 = 7$ 的单位特征向量为 $p_3 = \frac{1}{3}(-2, 2, 1)^T$.

$$\Rightarrow P = \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ 1 & 2 & 2 \\ 2 & -2 & 1 \end{pmatrix}$$
,则在正交变换 $x = Py$ 下, f 化为标准形

$$f = y_1^2 + 4y_2^2 + 7y_3^2.$$

八. (6 分) 已知 A 为 n 阶可逆矩阵, A 为 A 的伴随矩阵.

求证: $(A^*)^* = |A|^{n-2} A$.

证明:已知A可逆,所以 $|A| \neq 0$.

由 $AA^* = |A|E$ 可得 $A^* = |A|A^{-1}$,

在等式 $A' = |A|A^{-1}$ 两端分别取逆、取行列式,得

$$(A^*)^{-1} = (|A|A^{-1})^{-1} = \frac{A}{|A|}, |A^*| = |A|^{n-1}.$$

再由
$$A^* = |A|A^{-1}$$
,可知 $(A^*)^* = |A^*|(A^*)^{-1} = |A|^{n-1} \frac{A}{|A|} = |A^{n-2}|A$.