IS 456: 2000

ANNEX C

(Clauses 22.3.2, 23.2.1 and 42.1)

CALCULATION OF DEFLECTION

C-1 TOTAL DEFLECTION

C-1.1 The total deflection shall be taken as the sum of the short-term deflection determined in accordance with C-2 and the long-term deflection, in accordance with C-3 and C-4.

C-2 SHORT-TERM DEFLECTION

C-2.1 The short-term deflection may be calculated by the usual methods for elastic deflections using the short-term modulus of elasticity of concrete, $E_{\rm c}$ and an effective moment of inertia $I_{\rm eff}$ given by the following equation:

$$I_{\text{eff}} = \frac{I_{\text{r}}}{1.2 - \frac{M_{\text{r}}}{M} \frac{z}{d} \left(1 - \frac{x}{d}\right) \frac{b_{\text{w}}}{b}}; \text{ but}$$

$$I_{\text{r}} \le I_{\text{eff}} \le I_{\text{gr}}$$

where

I = moment of inertia of the cracked section,

 $M_{r} = \text{cracking moment, equal to } \frac{f_{cr} I_{gr}}{y_{t}} \text{ where}$

 $f_{\rm cr}$ is the modulus of rupture of concrete, $I_{\rm gr}$ is the moment of inertia of the gross section about the centroidal axis, neglecting the reinforcement, and $y_{\rm t}$ is the distance from centroidal axis of gross section, neglecting the reinforcement, to extreme fibre in tension,

M = maximum moment under service loads,

z = lever arm,

x = depth of neutral axis,

d = effective depth,

 $b_{yy} = breadth of web, and$

b =breadth of compression face.

For continuous beams, deflection shall be calculated using the values of I_r , $I_{\rm gr}$ and $M_{\rm r}$ modified by the following equation:

$$X_{e} = k_{1} \left[\frac{X_{1} + X_{2}}{2} \right] + (1 - k_{1}) X_{o}$$

where

 X_{c} = modified value of X_{c} ,

 X_1, X_2 = values of X at the supports,

 X_0 = value of X at mid span,

 k_1 = coefficient given in Table 25, and

 $X = \text{value of } I_r, I_{gr} \text{ or } M_r \text{ as appropriate.}$

C-3 DEFLECTION DUE TO SHRINKAGE

C-3.1 The deflection due to shrinkage $a_{\rm cs}$ may be computed from the following equation:

$$a_{\rm cs} = k_3 \, \Psi_{\rm cs} \, l^2$$

where

 k_3 is a constant depending upon the support conditions,

0.5 for cantilevers,

0.125 for simply supported members,

0.086 for members continuous at one end,

0.063 for fully continuous members.

 Ψ_{cs} is shrinkage curvature equal to $k_4 \frac{\varepsilon_{cs}}{D}$

where ε_{cs} is the ultimate shrinkage strain of concrete (see 6.2.4).

$$k_4 = 0.72 \times \frac{P_1 - P_c}{\sqrt{P_t}} \le 1.0 \text{ for } 0.25 \le P_t - P_c < 1.0$$

$$= 0.65 \times \frac{P_{t} - P_{c}}{\sqrt{P_{t}}} \le 1.0 \text{ for } P_{t} - P_{c} \ge 1.0$$

Table 25 Values of Coefficient, k₁ (Clause C-2.1)

k_2	0.5 or less	0,6	0.7	0.8	0.9	1.0	1.1	1.2	. 1,3	1.4
k,	0	0.03	0.08	0.16	0.30	0.50	0.73	0.91	0.97	1.0
NOTE $-k_s$, is given by										

$$k_2 = \frac{M_1 + M_2}{M_{\rm Fl} + M_{\rm F2}}$$

where

 M_1, M_2 = support moments, and $M_{\text{FI}}, M_{\text{F2}}$ = fixed end moments.

IS 456: 2000

where
$$P_{\rm t} = \frac{100 \, A_{\rm st}}{bd}$$
 and $P_{\rm o} = \frac{100 \, A_{\rm sc}}{bd}$

and D is the total depth of the section, and l is the length of span.

C-4 DEFLECTION DUE TO CREEP

C-4.1 The creep deflection due to permanent loads $a_{\rm cc\,(perm)}$ may be obtained from the following equation:

$$a_{\text{cc (perm)}} = a_{\text{i,cc (perm)}} - a_{\text{i (perm)}}$$

the great manager by the contract contract of

Commence of the second state

english and was a street of the con-

were any tity of the first angle of the

Light Confidence of the Policy of the Confidence of t

geren in de grantske komatinen i dit de men i de fransk De letomer i demokratier bleddiger ekster i de glober i de fransk

A gravitation of the state of t

gerak artika di sejeri di kabupatèn di kebagai ke Salah kebagai mentendak di sejeri di kebagai kebagai kebagai kebagai kebagai kebagai kebagai kebagai kebagai k

STATE TAXABLE SHOPE IN

where

a_{lcc (perm)} = initial plus creep deflection due to permanent loads obtained using an elastic analysis with an effective modulus of elasticity.

$$E_{ce} = \frac{E_c}{1+\theta}$$
; θ being the creep coefficient, and

 $a_{i(perm)}$ = short-term deflection due to permanent load using E_a .

The state of the state of the state of