상임감사위원

팀 장	처 장	본부장

등록번호	설계처 -
보존기간	2016
결재일자	2016
공개구분	공 개

건 설 처 장 : 화경품질처장 :

국민 안전성 향상 및 시공성·경제성 개선을 위한 콘크리트 라이닝 세부 설계기준(안)

2016. 5.

설계계획팀장:

설계기준부장 :

도로설계팀장:

목 차

| . 검 토 목 적

Ⅱ. 라이닝 설계

Ⅲ. 현실태 및 문제점

Ⅳ. 개선방안 검토

∨. 검 토 결 론

Ⅵ . 적용병안 및 기대**조**과

설 계 처

Ⅰ │ 검 토 목 적

터널의 미관, 내부시설물 보호 및 구조체로서의 기능을 수행하는 콘크리트 라이닝의 세부기준이 미흡함에 따라 이를 수립하여 고속도로 이용객의 안전성 을 향상시키고, 시공성·경제성 향상을 도모하고자 함

√ 콘크리트 라이닝의 역할 [터널설계기준, 2007]

- ① 내구연한 동안 구조체로서의 역학적 기능
- ② 터널내장재로서 미관유지 기능
- ③ 터널 내부 시설물 보호 및 보존기능
- ④ 점검 및 보수 관리기능

□ 라이닝 설계

□ 설계개념

- o 장기적으로 지보재(숏크리트, 록볼트 등)의 기능저하에 따른 추가 하중을 부담하도록 설계
 - ※ 일반적으로 NATM 터널은 지보재로 지반을 안정시키고 지반변형이 수렴된 후에 라이닝 콘크리트를 시공하기 때문에 라이닝에는 외력이 작용하지 않아 비역학적 기능을 가지는 경우 가 많으나, 숏크리트의 열화 등 예상치 못한 외력에 대비하기 위하여 구조검토 시행

□ 작용하중

o 발생이 예상되는 다양한 하중을 조합하여 적용

□ 현행 설계법

o 무근콘크리트로 허용응력설계법 수행 후 발생응력이 허용응력을 초과할 경우 강도설계법 적용 후 철근보강

현실태 및 문제점

□ 세부기준이 미흡하여 과업별 검토 결과 상이

o 하중재하형상, 하중조합, 라이닝 단부 경계조건 등 [붙임#1]

구 분		검토조건	비고
이완하중		155/vir 155/vi	
	[Case 1]	[Case 2] [Case 3]	
잔류수압	No.		
	[Case 1]	[Case 2]	
설계방법	철근보강시 강도설계법으 재검토 필요	-로 무근·철근 모두 적용 가능	
	[허용응력설계법]	[강도설계법]	
단부 경계조건	COLUMN TO THE PART OF THE PART		
	단면형상	[힌지] [스프링]	
지반반력계수	$K_S = \frac{E_S}{R} \times L$ (Wölfer	전) $K_s = \frac{E_s}{(1+\nu)R} \times L \text{ (AFTES식)}$	
	[Case 1]	[Case 2]	

- ※ 이완하중고의 경우 국내외에서 최적화를 위한 다양한 연구가 진행되고 있음
- o 동일한 하중조건에서도 검토방법에 따라 결과 상이

구 분	차로	암반등급	이완하중	보강	비고
OO-OO고속도로 4공구	2	V	0.2(B+H _t)	무근	담양
OO-OO고속도로 11공구	2	V	0.2(B+H _t)	<u> 철근</u>	성산
●●-●●고속도로 1공구	2	V	0.2(B+H _t)	무근	부산
●●-●●고속도로 4공구	2	V	0.2(B+H _t)	무근	부산
△△-△△고속도로 5공구	2	V	0.2(B+H _t)	<u> 철근</u>	춘천
△△-△△고속도로 15공구	2	V	0.2(B+H _t)	무근	양양
▲▲-▲▲고속도로 3공구	2	V	0.2(B+H _t)	무근	울산
▲▲-▲▲고속도로 4공구	2	V	0.2(B+H _t)	무근	포항

- □ 라이닝 보강시 시공성, 경제성 향상 필요
 - o 암질이 불량하여 **철근으로 보강**한 구간의 경우 **구조검토 결과** 와 관계없이 동일한 규격으로 복철근 배근
 - 최근 국내 지하철, 철도 등 다양한 터널에서 구조계산 결과를 바탕으로 **인장/압축 철근 구분** 사례

호남 고속철도 1-2공구	경부 고속철도 13-3공구
(a) D19 (b) D19 (c) D19	(b) 022 (c) 022 (d) 022 (d) 022

o 전단철근의 경우 구조검토 결과와 관계없이 동일한 형상(스터럽) 으로 배근되어 시공성 불리

시공현황 가외철근

- **문제점** 실질적으로 간격유지(조립용 철근)만
- 필요하나 폐합형배근**(스터럽)** 반영 으로 비경제적
- 철근배근 복잡으로 시공성 저하 및 품질관리 어려움

가외철근

- 스터럽 : 보의 주철근을 둘러싸고 이에 직각되게 또는 경사지게 배치한 복부보강근 으로서 전단력 및 비틀림모멘트에 저항하도록 배치한 보강철근
- 조립용 철근 : 철근을 조립할 때 철근의 위치를 확보하기 위하여 사용하는 보조철근

♡ 개선방안 검토

□ 콘크리트 라이닝 세부 설계기준 정립

개념도	모델링	설기	ᅨ법
선택수임 수행이원하동 가중 수행이원하동	3	허용응력설계법(무근) 한 라이닝 단면력 산정 반생응력 산정 반생응력 산정 반생응력 한정 반생응력과 허용응력 비교 한 (만족시) 검토종료	강도설계법(철근) (한 (불만족시) 라이닝 단면력 재산정 (한) 부족한 단면력만큼 철근보강 실시
① 하중재하방향 ②) 지반반력계수	③ 단부경계조건	④ 설계절차

하중재하방향

- (이완하중) 발파 및 굴착에 따른 **지반의 이완**으로 발생하므로 **중력 방향**으로 작용하는 것이 타당
- (잔류수압) 배수터널 특성을 감안하고 **부재에 직각방향**으로 작용 하는 것이 타당
 - ⇒ 이완하중 및 잔류수압 형상은 **산지부 암반터널(배수터널)**에 한하여 적용하며, 이외의 경우에는 별도 검토 필요

구	분	이완하중 (중력방향)	잔류수압 (부재 직각방향)
쳥	상		

② 지반반력계수

- 지반공학적 특성을 반영한 AFTES식 적용
 - ⇒ 당초대비 보수적이나. 안전성 향상을 위해 적정식 반영

구 분	당 초 (W	'ölfer식)	개 선	(AFTES, 미공병단이론식)
특 징	지반공학적 특성을 반영하자	디 않고, 출처가 불명확	지반공학적	특성을 반영하고, 출처가 명확
이론식	Es : 주변지 R : Lining의	$\frac{S}{K} \times L$ 선 길이당 스프링 계수 기반의 탄성계수 등가반경(R= $\sqrt{\frac{A}{\pi}}$) 양과 중앙 사이의 길이	여기서,	$\begin{split} K_s &= \frac{E_s}{(1+\nu)R} \times L \\ \text{Ks} : 단위접선 길이당 스프링 계수} \\ \text{Es} : 주변지반의 탄성계수} \\ \text{R} : \text{Lining의 57번경} (\text{R} = \sqrt{\frac{A}{\pi}}) \\ \text{L} : 부재 중앙과 중앙 사이의 길이 _{_{\mathrm{T}}} _{_{T$

③ 단부 경계조건

- 단부도 아치부와 동일한 암반임을 감안하여 스프링으로 처리 ⇒ 당초 조건이 실거동 대비 과소평가되므로, 안전성 향상을 위해 개선

구 분	당 초 (힌지)		개 선 (스프링)
특징,	▪ 하부지반 침하 미고려	1-18	• 하부지반 침하 반영
	● 실제 거동 대비 과소평가		• 실제 거동대비 보수적 평 가
(예시)	• 연직방향으로 적용		• 라이닝 축선에 따라 적용

경계조	건별 검토여	[붙임#2]			
구	분	지점조건 : 힌지	지점조건 : 스프링	증·감	비고
	아치부	28.990	31.764	2.774	9.57%
모멘트 (kN·m)	어깨부	-25.935	-24.793	1.142	4.40%
(1314111)	측벽부	-71.218	-35.569	-35.649	-50.06%
÷ -1	아치부	515.532	513.028	-2.504	-0.49%
축 력 (kN)	어깨부	558.302	555.879	-2.423	-0.43%
(KIV)	측벽부	616.134	610.768	-5.366	-0.87%
	아치부	45.003	45.736	0.733	1.63%
전단력 (kN·m)	어깨부	39.183	37.402	-1.781	-4.55%
(1314111)	측벽부	73.093	35.866	-37.227	-50.93%

④ 설계절차

- 해석이 간편하고 하중조합에 대한 근거가 명확한 강도설계법 적용
 - ⇒ 향후 한계상태설계법 정착 후 전환

□ 합리적 보강방안 검토

- o 인장측, 압축측 철근 구분을 통한 철근배치 최적화 [붙임#3]
 - (철근규격) **모든 하중조합** 중 부재에 발생하는 최대값을 반영
 - (보강범위) **모든 하중조합** 중 **가장 넓은 영역에 겹이음길이**를 더하여 선정
 - (적용대상) **암질이 균등**하고 이상 하중이 예상되지 않는 **일반구간에** 한하여 반영(파쇄대, 편토압 발생구간 등 제외)
 - ☞ **시공**시 현장기술자가 최종 판단하여 정산(설계시 일정물량 반영)

o 시공성 향상을 위한 전단철근 개선

- (현행) 전단보강 필요유무와 관계없이 스터럽 형태로 철근 배치
- (개선) 전단보강 불필요 구간 철근 형상 변경 (조립용 철근)

※ 개선형상(조립철근) 배근방법

철근의 이동 방지를 위해 지그재그로 배근

Ⅳ 검토결론

□ 안전성 향상을 위한 라이닝 콘크리트 세부 설계기준 정립

※ 이완하중 및 잔류수압 형상은 **신지부 암반터널(배수터널)**에 한하여 적용하며, 이외의 경우에는 별도 검토 필요

□ 합리적 보강방안 검토

- o 인장측, 압축측 철근 구분을 통한 철근배치 최적화
 - **암질이 균등**하고 **이상 하중이 예상되지 않는 일반구간**에 **한하여** 반영 (파쇄대, 편토압 발생구간 등 제외)
 - ☞ **시공**시 현장기술자가 최종 판단하여 정산(설계시 일정물량 반영)

o 시공성 향상을 위한 전단철근 개선

구 분	당 초(스터립)	개 선(조립용 철근)
철근 형상		

적용방안 및 기대효과

□ 적용방안

o 설계중인 노선 : 본 기준 적용

o 시공중인 노선 : 공사 주관(시행)부서에서 판단 후 적용

□ 기대효과

- o 세부기준 정립을 통해 더욱 안전한 고속도로 서비스 제공
- o 합리적 보강방안 수립으로 경제성 및 시공성 향상
- * 설계중인 노선 적용시(미착공 포함) : 약 84억원 절감 **[붙임#4]**

[붙임#1]

과업별 세부 적용 현황

□ 항목별 검토조건

구 분		검토	조건		비고
이완하중		8.051/112		13.69/m²	
	1)	(2	2)	3	
잔류수압	New York)	How How		
	1		2		
설계방법	철근 : 강도설계법	무근 : 허용응력설계법 철근 : 강도설계법		무근 : 강도설계법 철근 : 강도설계법	
	1		2		<u> </u>
단부 경계조건	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	O	O	0	
	단면형상 (1 2		
지반반력계수	$K_S = \frac{E_S}{R} \times L$ (Wö	olfer식)	$K_s = \frac{1}{(1)}$	$\frac{E_s}{(+\nu)R} \times L$ (AFTES식)	
	1			2	

□ 과업별 적용 현황

구 분	이완하중	잔류수압	설계방법	단부조건	지반반력계수	비고
상주영덕 0공구	2	1	1	1	1	고속 도로
충주제천 0공구	1	1	1	1	1	고속 도로
부산외곽 0공구	1	1	1	1	1	고속 도로
춘천양양 0공구	1	1	1	1	1	고속 도로
울산포항 0공구	1	1	1	1	2	고속 도로

구 분	이완하중	잔류수압	설계방법	단부조건	지반반력계수	비고
	2	1	1	1	1	고속 도로
춘천양양 0공구	2	1	1	1	1	고속 도로
함양울산 0공구	1	1	1	1	1	고속 도로
함양울산 0공구	1	1	1	1	1	고속 도로
함양창녕 0공구	1	1	1	1	1	고속 도로
포항영덕 0공구	1	1	1	1	1	고속 도로
파주포천 0공구	1	1	1	1	1	고속 도로
보령태안 0공구	1	1	1	1	1	국도
거제마산 0공구	2	1	1	1	1	국도
 신림봉천 0공구	2	1	1	1	1	강남 순환
	1	1	1	2	2	고속 철도
원주제천 0공구	1	1	1	1	1	철도
원주강릉 0공구	1	1	1	2	2	철도
동해선 보완0공구	1	1	2	1	2	철도

[붙임#2]

경계조건별 검토 결과

□ 검토조건

- 지보패턴 D-1 [암반등급(V)] - 무보강

fck = 27.0 MPa fy = 400.0 MPa

단면의 두께 H = 350.00 mm (아치부), H = 350 mm (어깨부),

H = 545.00 mm (어깨부) ※여굴량을 반영하여 보수적 결과 유도

단 면 폭 B = 1000.00 mm

< 검토단면 형상 >

당초(힌지+Wölfer)	변경(스프링+AFTES)
	2 January 2 2

- 경계조건 및 지반 스프링계수 산정
- o 헌지 (Wölfer공식)

구 분	Es (MPa)	R (m)	포아송비(ប)	Ks(kN/m³)	Kv(kN/m³)
암반등급(V)	800	5.75	0.30	139,044	_

ㅇ 스프링 (AFTES)

구 분	Es (MPa)	R (m)	포아송비(v)	Ks(kN/m³)	Kv(kN/m³)
암반등급(V)	800	5.75	0.30	106,957	좌측 : 513,009,466 우측 : 491,066,954

□ 검토결과

- 조건별 검토결과

구분	힌지 + Wölfer	스프링 + 미공병단
모 멘 트	A STATE OF THE PARTY OF THE PAR	The state of the s
축	A Control of the Cont	GO ATT LAND TO STATE OF THE STA
전 단 력	The state of the s	Co.

구	분	힌지 + Wölfer	스프링(Kv) + 미공병단
모멘트	아치부	28.990	31.764
_	어깨부	-25.935	-24.793
(kN·m)	측벽부	-71.218	-35.569
	아치부	515.532	513.028
	어깨부	558.302	555.879
(kN)	측벽부	616.134	610.768
전단력	아치부	45.003	45.736
	어깨부	39.183	37.402
(kN·m)	측벽부	73.093	35.866

[붙임#3]

철근 최적배치 검토 예

□ 검토조건

- 지보패턴 P-6 [암반등급(V)] - 철근보강

fck = 27.0 MPa fy = 400.0 MPa

단면의 두께 H = 300.00 mm (아치부), H = 300~416 mm (어깨부),

H = 416~517.00 mm (어깨부)

단 면 폭 B = 1000.00 mm

유 효 깊 이 D = 240.00 mm 피 복 두 께 Dc = 60.00 mm

- 경계조건 및 지반 스프링계수 산정

구 분	Es (MPa)	R (m)	K단위길이(kN/m²)	비고
암반등급(V)	700	5.259	133,105	지보패턴 P-5

검토단면 해석모델 형상	경계조건
	A STATE OF THE PARTY OF THE PAR

- 하중조합

구 분	자 중	이완	잔류	온도	하중	내외면	온도차	건조수축	비고
T E	শেষ	하중	수압	+15℃	-15℃	+5℃	-5°C	-15℃	91 1 2
극한 1	1.4								
극한 2	1.2	1.6	1.6	1.2		1.2			단 면
극한 3	1.2	1.6	1.6		1.2		1.2	1.2	검 토
극한 4	1.2	1.2	1.2						
사용 5	1.0	1.0	1.0						사용성
사용 6	1.0	1.0	1.0	1.0		1.0			사용성 검토
사용 7	1.0	1.0	1.0		1.0		1.0	1.0	મ Tu

□ 검토 결과

- 단면력 산정

구	분	모멘트 (kN·m)	축력 (kN)	전단력 (kN·m)	사용하중 모멘트 (kN・m)	
아치부	Mmax	180.89	3043.24	193.13	158.40	
아시구	Pmax	40.20	3160.41	193.13		
어깨부	Mmax	249.45	3163.11	170.95	159.08	
VI#I∓	Pmax	238.74	3237.23	170.95		
ᄎᄖᄖ	Mmax	340.50	3206.99	525.61	010.04	
측벽부	Pmax	317.23	3290.66	525.61	216.04	

- 단면 검토

1) 당초 (인장, 압축측 동일 철근 사용)

구	분	Pu	ΦPn	Mu	ФMn	사용 철근	
이커브	Mmax	3043.24	3707.07	180.89	220.34	H22@125 (인장측)	
아치부	Pmax	3160.41	4794.55	40.20	132.58	H22@125 (압축측)	
	Mmax	3163.11	5008.36	249.45	394.97	H22@125 (인장측) H22@125 (압축측)	
어깨부	Pmax	3237.23	5156.88	238.74	380.31		
ᄎᄖᄓ	Mmax	3206.99	5811.37	340.50	617.01	H22@125 (인장측)	
측벽부	Pmax	3290.66	6077.42	317.23	585.88	H22@125 (압축측)	

2) 변경 (인장, 압축측 철근 구분 사용)

구	분	Pu	ΦPn	Mu	ΦMn	사용 철근	
아치부	Mmax	3043.24	3553.97	180.89	211.24	H22@125 (인장측) H19@125 (압축측)	
	Pmax	3160.41	4386.10	40.20	114.33		
어깨부	Mmax	3163.11	4845.83	249.45	382.15	H22@125 (인장측)	
	Pmax	3237.23	4991.92	238.74	368.14	H19@125 (압축측)	
측벽부	Mmax	3206.99	5648.56	340.50	599.73	H22@125 (인장측) H19@125 (압축측)	
	Pmax	3290.66	5911.22	317.23	569.67		

- 배근도

당초 (인장, 압축측 동일 철근 사용)	변경 (인장, 압축측 철근 구분 사용)

- 철근량 비교 (1M당)

구분	_	초	변	경		
1 &	(인장, 압축측 동일 철근 사용)		(인장, 압축측 철근 구분 사용)		증ㆍ감	비고
직경	총길이(mm)	총중량(ton)	총길이(mm)	총중량(ton)		
H22	349,088	1.061	200,000	0.608	0.453 ton(감)	주철근
H19	_	_	155,488	0.350	0.350 ton(증)	주철근
H13	300,214	0.298	300,214	0.298	_	배력근
총계		1.359		1.256	0.103 ton(감)	7.58% 감소

※ 단위중량: H22=3.040kg/m, H19=2.250kg/m, H13=0.298kg/m

[붙임#4]

공사비 절감금액 산출근거

□ 기초자료

o km당 절감액(현장 적용사례)

구 분	터널명	연장	절감액	절감액(억원/km)	비고
내 용	양북1터널 (양남터널)	7.5km	6.9억 원 ※ 설계심의시 제시값 [기술심사처-448호, 2014.03.04)	0.9억	울산 포항

o 설계중(미발주 포함)인 터널

구 분	노 선	터널명	연장(km)	비고
	7.		93.2km	
		소 계	42.1	
	새만금~전주	원당터널 등 6개소	10.6	
설계중	광주~강진	봉황1터널 등 12개소	19.9	
	서울~세종 (안성~구리)	치재터널 등 14개소	11.6	
		소 계	51.1	
미발주	함양~밀양	지곡터널 등 37개소	51.1	

□ 노선적용시 절감액

- o 절감액 산출
- km당 절감액 x 터널연장
- = 0.9억원/km x 93.2km = 83.9억원