

TASK

Exploratory Data Analysis on the Automobile Data Set

Visit our website

Introduction

Automobile data set consists of three types of entities:

- 1. The specification of a vehicle based on a number of various characteristics (make, fueltype, aspiration, number-of-doors, body-style etc.).
- 2. Its insurance risk rating.
- 3. Its normalized losses in use as compared to other vehicle.

A risk factor is assigned on the vehicles linked to its price. +3 depicts that the vehicle is risky while 3 the auto is less risky. Lastly the average loss payment per insured vehicle year. This value is normalized for all vehicles within a particular size classification.

In addition, this is a Python based Exploratory Data Analysis (EDA) project done out of an Automobile Dataset, where we have explored and analysed three major factors of a car which are as below:

- 1. Price
- 2. Mileage
- 3. Performance

We have also identified the 'Best Car' under the 'Low Budget Car-Category'.

Dataset Description

The Automobile Dataset consists of various information relating to the built, engine power, make, mileage and body attributes of a car. The data types include integers, floating points and strings.

The variables have been segregated as below.

General Attributes	Physical Attributes	Technical Attributes	Safety Related
Make	No. of Doors	Fuel Type	Symbolling
Price	Body Style	Aspiration	Normalized losses
City MPG	Wheel Drive	Engine Type	
Highway MPG	Engine location	Fuel System	
Horsepower	Wheel Base	Bore	
	Length	Stroke	
	Width	Compression Ratio	

DATA CLEANING

The Dataset was loaded in a data frame for manipulation. Upon displaying the data, it was clearly visible that the dataset contained special character in more than one of the columns in the data set; this would create problems for the pandas library as it does not know how to handle this type of character within its fields. The following methods and visualizations were used during data cleaning: (please refer to the jupyter notebook called automobile.ipynb

- 1. Automobile = pd.read_csv('automobile.txt').
- 2. automobile.info ().
- 3. automobile. head(5).
- 4. automobile.describe().
- 5. automobile.isnull().sum()
- 6. Replace inappropriate values.

The first Step was to read the data set and load it to a data frame, secondly get all the data set info (records, column names, number of entries, data types etc.) to better understand the data set and what values it contains.

Thirdly display the first five records contained in the dataset to see if there any missing or inconsistent values found and in which fields. Fourthly describe the data set to get the statistics of the data.

Last two steps I check the number of missing values per column, in the case of this particular dataset there was no null values only a special character was found in a few columns. I replaced the special character with appropriate values for each field in the dataset to ensure consistency of data within my dataset to ensure that I perform a realistic EDA.

MISSING DATA

Missing data was found is the following columns:

- normalized_losses
- num-of-doors
- bore
- stroke
- horsepower
- peak-rpm
- price

All fields that contained no number of doors on the vehicle were dropped, because it does not make sense for a vehicle not to have any number of doors and an average cannot be used.

All other fields an average of the column was computed and used to replace the missing values. This was easy to compute and will not affect the dataset greatly as opposed to dropping the fields all together.

DATA STORIES AND VISUALISATIONS

Let us take a look at our dataset in-depth and try and visualize the meaning of our data through visualization. (Refer to jupyter notebook automobile.ipynb)

Figure 1. Fuel type versus Number of vehicles manufactured.

Figure 2. Vehicle make versus number of vehicles manufactured.

Figure 3: Turbo charged versus Naturally Aspirated engine vehicles produced.

Figure 4: Type of Wheel drive versus number of vehicles produced.

Figure 5: Histogram showing number of automobiles produced according to horsepower.

Figure 6. Weight of vehicle versus mileage in the city

Figure 7. Weight of vehicle versus mileage on the highway

Price Analysis

Figure 8. Price versus Engine Capacity/size

Figure 9. Drive wheel type versus Price of vehicles

Figure 10: Classification based on Price

Low Price Segment: isuzu - mazda

Medium Price segment: saab – Volvo

Premium Cars: porsche – jaguar

Attributes Correlating with Price

Average Price of Body Styles

Performance Analysis

Classification of Cars Based on Engine Power

Average Performance Cars: Chevrolet - mitsubishi Medium Performance Cars: audi -mercedes-benz

High Performance Cars: mercury - porsche

Average Peak RPM Comparison on Wheel Drive

Factors Influencing & Influenced by the Engine Power

Mileage Analysis

${\bf Mileage\ Comparison\ of\ Cars}$

Mileage Comparison with Other Attributes

Average Mileage of Different Wheel Drives

Average Mileage of Different Aspiration

Factors Influencing Mileage

Best Budget Car Analysis

Cars Qualifying for the 'Budget Car' Category

<u>make</u>	Price
isuzu	4458.25
chevrolet	6007.00
dodge	7790.12
plymouth	7963.43
honda 8184	1.69
subaru	8541.25
mitsubishi	9239.77
renault	9595.00
1 / I D	

toyota	9885.81
volkswagen	10077.50
nissan	10415.67
mazda	10644.00
saab	15223.33
audi	15307.86
peugot	15489.09
alfa-romero	15498.33
mercury	16503.00
volvo	18063.18
porsche	25120.40
bmw	26118.75
mercedes-be	nz 33647.00
jaguar	34600.00

Low Segment Price Range = 6000 to 17000

Feature Analysis of the Qualified Cars

Top 3 Qualifiers are Honda, Chevrolet and Toyota

Top 3 Qualifiers are Toyota, Honda and Dodge

Top 3 Qualifiers are Subaru, Chevrolet and Honda

Top 3 Qualifiers are Mercury, Honda and Chevrolet.

Final Qualifiers

Vehicle line	Avg Price
Honda	4
Chevrolet	3
Toyota	2
Subaru	2
Dodge	1
Mercury	1
Isuzu	1
Renault	1

The best 2 qualifiers are Honda and Chevrolet

From the above different types of visualization and analysis using key features of the automobile dataset it is found that:

- 1. Most of the vehicles use gas rather than diesel.
- 2. Front wheel drive has most number of vehicles followed by rear wheel drive and four wheel drive.
- 3. Most cars have naturally aspirated engines versus Turbo Engine.
- 4. Toyota is the make of the car which has most number of vehicles with more than 40% than the 2nd highest Nissan.
- 5. The bigger the engine size the more expensive the vehicle.
- 6. Vehicles with less weight travel more in the city and highway this tells us that more and more people prefer to drive smaller cars.
- 7. Honda and Chevrolet are the best-qualified cars if we look at all features analysis factors.

Conclusion

Analysis of the dataset can be concluded to show the following:

- Importance of drive wheels and curb weight.
- How the data set are distributed.
- Correlation between different fields and how they are related.
- Factors affecting Price of the Automobile.
- Mileage based on City and Highway driving for various make and attributes.
- Performance Analysis.
- Mileage analysis based on different attributes.

THIS REPORT WAS WRITTEN BY: Vincent Gerald Mukomba