

A Connection Between Star Formation Rate and Dark Matter Halos at z~6 in 2013 Planck Cosmology

Felipe L. Gómez-Cortés Universidad de Los Andes Bogotá, Colombia

Objetive

To find an analytical relation beetween Dark Matter Haloes (DMH) from cosmological simulations, and Galaxy UV Luminosity Functions (LF) from observations at redshift 5.9 using the Markov Chain Monte Carlo method.

Observational Data

- McLure et al 2009: UKIRT & Subaru
- •Willott et al 2013: CFH
- Bouwens et al 2014a: HST

DMH Catalog

In 2013 the Multidark
Consortium
performed the **Big MD** simulation
using 2013 Planck
Cosmology

http://www.multidark.org/

DMH Catalog

$$V = (1 \text{ Mpc } h^{-1})^3$$

Mass Range: 10¹⁰- 10¹⁴ M_{SUN}

http://www.multidark.org/

Galaxy Luminosity

Each DMH hosts one galaxy with luminosity given by:

$$L = L_0 M \left[\left(\frac{M}{M_0} \right)^{-\beta} + \left(\frac{M}{M_0} \right)^{\gamma} \right]^{-1}$$

A connection between SFR & DMH at z~6 in 2013 Planck cosmology Felipe L. Gómez-Cortés

Galaxy Luminosity

Each DMH hosts one galaxy with luminosity given by:

$$L = L_0 M \left[\left(\frac{M}{M_0} \right)^{-\beta} + \left(\frac{M}{M_0} \right)^{\gamma} \right]^{-1}$$

Galaxy Intrinsic Magnitude

The Intrinsic magnitude comes from the luminosity as:

$$M_{\rm UV} = 51.82 - 2.5 \log_{10}(L_{\rm UV})$$

Dust Attenuation

The dust attenuation effect may be taken account.

Faint & small galaxies have less dust than Bright & bigger galaxies.

Meurer *et al* 1999, Smit *et al* 2012 & Bouwens *et al* (2012, 2014b)

Dust Attenuation

$$A_{1600} = 4.43 + 1.99\beta$$

$$\langle \beta \rangle = \frac{d\beta}{dM_{\rm UV}} (M_{\rm UV} + 19.5) + \beta_{M_{\rm UV}}$$

$$M_{\rm obs} = \frac{M_{\rm UV} - 4.61455}{1.2587}$$

Meurer *et al* 1999, Smit *et al* 2012 & Bouwens *et al* (2012, 2014b)

Star Formation Rate

Once having the UV luminosity from each galaxy, we can compute the SFR:

SFR
$$(M_{\odot} \text{yr}^{-1}) = 1.4 \times 10^{-28} L_{\nu} \text{ (erg s}^{-1} \text{Hz}^{-1})$$

Madau et al 1998, Kennicutt et al 1998.

$$\chi^2 = \sum \frac{(O - E)^2}{E}$$

Markov Chain Monte Carlo 64-boxes

SFR & DMH

When the correct set of parameters is found, we get the relation:

$$SFR = k \times L_0 M \left[\left(\frac{M}{M_0} \right)^{-\beta} + \left(\frac{M}{M_0} \right)^{\gamma} \right]^{-1}$$

SFR as function DMH at z~6

