จากพื้นฐานถึง Generalized Model

คู่มือสมการคณิตศาสตร์แบบครบถ้วน เอกสารอ้างอิงสำหรับนักศึกษาและนักวิจัย 27 มิถุนายน พ.ศ. 2568

Partial and Partia

Contents

1	สมก	ารพื้นฐาน (Basic Linear Regression)	4
	1.1	Simple Linear Regression (Feature เดียว)	4
	1.2	กรณีจุดข้อมูลไม่กี่จุด	4
2	สมก	ารสำหรับ Dataset ขนาดใหญ่	4
	2.1	Simple Linear Regression (Feature เดียว)	
	2.2	รูปแบบเมทริกซ์ (Simple Linear Regression)	5
3	Mul	tiple Linear Regression	5
	3.1	สมการทั่วไป	5
	3.2	รูปแบบเมทริกซ์ (Multiple Linear Regression)	5
	3.3	Normal Equations สำหรับ Multiple Regression	6
4	Gen	neralized Linear Model (GLM)	6
	4.1	neralized Linear Model (GLM) รูปแบบทั่วไป	
	4.2	องค์ประกอบของ GLM	
	4.3	ตัวอย่าง GLM สำหรับกรณีต่างๆ	7
	4.4	การประมาณค่าพารามิเตอร์ใน GLM	
5	Reg	ularized Regression	8
	5.1	Ridge Regression (L2 Regularization)	8
	5.2	LASSO Regression (L1 Regularization)	8
	5.3	Elastic Net Regression	8
6	Poly	ynomial Regression	9
	6.1	สมการพื้นฐาน	9
	6.2	Multivariate Polynomial Regression	9
7	Logi	istic Regression	9
	7.1	Binary Logistic Regression	9
	7.2	Maximum Likelihood Estimation	10
	7.3	Multinomial Logistic Regression	10
8	Rob	oust Regression	10
	8.1	Huber Regression	10
	8.2	Quantile Regression	10

9	สรุปและเปรียบเทียบ						
	9.1	ตารางสรุปสมการหลัก	11				
	9.2	ตารางเปรียบเทียบ Regularization	11				
	9.3	การวัดประสิทธิภาพ	12				
10	Cros	ss-Validation และ Model Selection	12				
	10.1	K-Fold Cross-Validation	12				
	10.2	Information Criteria	12				
	10.3	Regularization Path	13				
11	ข้อสร	มมุติและข้อจำกัด	13				
	11.1	ข้อสมมุติสำคัญ	13				
	11.2	การตรวจสอบข้อสมมุติ	13				
12	12 บทสรป						

1 สมการพื้นฐาน (Basic Linear Regression)

1.1 Simple Linear Regression (Feature เดียว)

สมการทั่วไป:

$$y = \beta_0 + \beta_1 x + \varepsilon \tag{1}$$

โดยที่:

- y =ตัวแปรตาม (dependent variable)
- x =ตัวแปรอิสระ (independent variable)
- β_0 = intercept (จุดตัดแกน y)
- β_1 = slope (ความชั้น)
- ε = error term (ค่าผิดพลาด)

สมการสำหรับการทำนาย:

$$\hat{y} = \beta_0 + \beta_1 x \tag{2}$$

1.2 กรณีจุดข้อมูลไม่กี่จุด

สำหรับ 2 จุด: $(x_1,y_1),(x_2,y_2)$

$$\beta_1 = \frac{y_2 - y_1}{x_2 - x_1} \tag{3}$$

$$\beta_0 = y_1 - \beta_1 x_1 \tag{4}$$

สำหรับ 3 จุด: $(x_1,y_1),(x_2,y_2),(x_3,y_3)$

ใช้ Least Squares Method:

$$\beta_1 = \frac{\sum_{i=1}^3 (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^3 (x_i - \bar{x})^2}$$
 (5)

$$\beta_0 = \bar{y} - \beta_1 \bar{x} \tag{6}$$

2 สมการสำหรับ Dataset ขนาดใหญ่

2.1 Simple Linear Regression (Feature เดียว)

ູສູປແບບທັ່ວໄປ:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, 2, \dots, n \tag{7}$$

สมการ Normal Equations:

$$\beta_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$
(8)

$$\beta_0 = \bar{y} - \beta_1 \bar{x} = \frac{1}{n} \sum_{i=1}^n y_i - \beta_1 \frac{1}{n} \sum_{i=1}^n x_i$$
 (9)

2.2 รูปแบบเมทริกซ์ (Simple Linear Regression)

สมการเมทริกซ์:

$$y = X\beta + \varepsilon \tag{10}$$

โดยที่:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$
(11)

สมการหาค่าพารามิเตอร์:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y} \tag{12}$$

3 Multiple Linear Regression

3.1 สมการทั่วไป

รูปแบบพื้นฐาน:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon \tag{13}$$

สำหรับ n จุดข้อมูล:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_n x_{in} + \varepsilon_i, \quad i = 1, 2, \dots, n$$
 (14)

3.2 รูปแบบเมทริกซ์ (Multiple Linear Regression)

สมการเมทริกซ์:

$$y = X\beta + \varepsilon \tag{15}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$
(16)

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}, \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$
(17)

สมการหาค่าพารามิเตอร์:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y} \tag{18}$$

3.3 Normal Equations สำหรับ Multiple Regression

สมการระบบ:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y} \tag{19}$$

รูปแบบกระจาย:

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_{i1} + \beta_2 \sum_{i=1}^{n} x_{i2} + \dots + \beta_p \sum_{i=1}^{n} x_{ip}$$
 (20)

$$\sum_{i=1}^{n} x_{i1} y_i = \beta_0 \sum_{i=1}^{n} x_{i1} + \beta_1 \sum_{i=1}^{n} x_{i1}^2 + \beta_2 \sum_{i=1}^{n} x_{i1} x_{i2} + \dots + \beta_p \sum_{i=1}^{n} x_{i1} x_{ip}$$
 (21)

$$\sum_{i=1}^{n} x_{ip} y_i = \beta_0 \sum_{i=1}^{n} x_{ip} + \beta_1 \sum_{i=1}^{n} x_{ip} x_{i1} + \beta_2 \sum_{i=1}^{n} x_{ip} x_{i2} + \dots + \beta_p \sum_{i=1}^{n} x_{ip}^2$$
 (23)

4 Generalized Linear Model (GLM)

4.1 ฐปแบบทั่วไป

สมการพื้นฐาน:

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta} \tag{24}$$

- $g(\cdot)$ = link function
- $\mu_i = E[y_i]$ = expected value
- \mathbf{x}_i = vector ของ covariates สำหรับ observation ที่ i

4.2 องค์ประกอบของ GLM

1. Random Component:

$$y_i \sim f(y_i|\theta_i,\phi) \tag{25}$$

2. Systematic Component:

$$\eta_i = \mathbf{x}_i^T \boldsymbol{\beta} \tag{26}$$

3. Link Function:

$$g(\mu_i) = \eta_i \tag{27}$$

4.3 ตัวอย่าง GLM สำหรับกรณีต่างๆ

Linear Regression:

- Distribution: Normal
- Link function: Identity, $g(\mu)=\mu$
- $\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$

Logistic Regression:

- Distribution: Binomial
- Link function: Logit, $g(\mu) = \log \left(\frac{\mu}{1-\mu}\right)$
- $\log\left(\frac{\mu_i}{1-\mu_i}\right) = \mathbf{x}_i^T \boldsymbol{\beta}$

Poisson Regression:

- Distribution: Poisson
- Link function: Log, $g(\mu) = \log(\mu)$
- $\log(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$

4.4 การประมาณค่าพารามิเตอร์ใน GLM

Maximum Likelihood Estimation:

$$\hat{\boldsymbol{\beta}} = \arg\max_{\boldsymbol{\beta}} \log L(\boldsymbol{\beta}) \tag{28}$$

Iteratively Reweighted Least Squares (IRLS):

$$\boldsymbol{\beta}^{(t+1)} = \left(\mathbf{X}^T \mathbf{W}^{(t)} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{z}^{(t)}$$
(29)

- $\mathbf{W}^{(t)}$ = diagonal weight matrix
- $\mathbf{z}^{(t)}$ = working response vector

5 Regularized Regression

5.1 Ridge Regression (L2 Regularization)

Cost Function:

$$J(\beta) = \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \alpha \|\beta\|_{2}^{2}$$
(30)

รูปแบบกระจาย:

$$J(\beta) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \alpha \sum_{j=1}^{p} \beta_j^2$$
 (31)

สมการหาค่าพารามิเตอร์:

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = \left(\mathbf{X}^T \mathbf{X} + \alpha \mathbf{I} \right)^{-1} \mathbf{X}^T \mathbf{y}$$
 (32)

โดยที่ $\alpha \geq 0$ คือ regularization parameter และ I คือ identity matrix

5.2 LASSO Regression (L1 Regularization)

Cost Function:

$$J(\beta) = \frac{1}{2n} \| \mathbf{y} - \mathbf{X}\beta \|_{2}^{2} + \alpha \| \beta \|_{1}$$
 (33)

รูปแบบกระจาย:

$$J(\beta) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \alpha \sum_{j=1}^{p} |\beta_j|$$
 (34)

Optimization Problem:

$$\hat{\boldsymbol{\beta}}_{\text{lasso}} = \arg\min_{\boldsymbol{\beta}} \left\{ \frac{1}{2n} \left\| \mathbf{y} - \mathbf{X}\boldsymbol{\beta} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{\beta} \right\|_{1} \right\} \tag{35}$$

5.3 Elastic Net Regression

Cost Function:

$$J(\beta) = \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \alpha \left(\rho \|\beta\|_{1} + \frac{1-\rho}{2} \|\beta\|_{2}^{2}\right)$$
(36)

- $\alpha \geq 0$ = regularization strength
- $0 \le \rho \le 1$ = mixing parameter
- เมื่อ ho=1 จะเป็น LASSO
- เมื่อ ho=0 จะเป็น Ridge

6 Polynomial Regression

6.1 สมการพื้นฐาน

Polynomial ระดับ d:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_d x^d + \varepsilon \tag{37}$$

รูปแบบเมทริกซ์:

$$y = X\beta + \varepsilon \tag{38}$$

โดยที่:

$$\mathbf{X} = \begin{bmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^d \\
1 & x_2 & x_2^2 & \cdots & x_2^d \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^d
\end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_d \end{bmatrix}$$
(39)

6.2 Multivariate Polynomial Regression

สำหรับ 2 ตัวแปร (degree 2):

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \varepsilon$$
(40)

รูปแบบทั่วไป:

$$y = \sum_{i=0}^{d} \sum_{j=0}^{d-i} \beta_{ij} x_1^i x_2^j + \varepsilon$$
 (41)

7 Logistic Regression

7.1 Binary Logistic Regression

Logit Function:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p \tag{42}$$

Probability Function:

$$p(y=1|\mathbf{x}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}} = \frac{1}{1 + e^{-\mathbf{x}^T \boldsymbol{\beta}}}$$
(43)

Sigmoid Function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
, โดยที่ $z = \mathbf{x}^T \boldsymbol{\beta}$ (44)

7.2 Maximum Likelihood Estimation

Log-Likelihood:

$$\ell(\beta) = \sum_{i=1}^{n} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$
(45)

Cost Function (Cross-Entropy):

$$J(\beta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$
(46)

7.3 Multinomial Logistic Regression

สำหรับ K classes:

$$p(y = k | \mathbf{x}) = \frac{e^{\mathbf{x}^T \boldsymbol{\beta}_k}}{\sum_{j=1}^K e^{\mathbf{x}^T \boldsymbol{\beta}_j}}, \quad k = 1, 2, \dots, K$$
 (47)

Softmax Function:

$$\operatorname{softmax}(z_k) = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}} \tag{48}$$

8 Robust Regression

8.1 Huber Regression

Huber Loss Function:

$$L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2 & \text{if } |r| \le \delta \\ \delta|r| - \frac{1}{2}\delta^2 & \text{if } |r| > \delta \end{cases}$$
 (49)

โดยที่ $r = y - \mathbf{x}^T \boldsymbol{\beta}$ และ δ คือ threshold parameter

8.2 Quantile Regression

สำหรับ quantile ที่ τ (0 < τ < 1):

$$\hat{\boldsymbol{\beta}}_{\tau} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \rho_{\tau}(y_i - \mathbf{x}_i^T \boldsymbol{\beta})$$
 (50)

โดยที่:

$$\rho_{\tau}(u) = u(\tau - \mathbf{1}_{u < 0}) = \begin{cases} \tau u & \text{if } u \ge 0\\ (\tau - 1)u & \text{if } u < 0 \end{cases}$$
 (51)

9 สรุปและเปรียบเทียบ

9.1 ตารางสรุปสมการหลัก

รูปแบบ	สมการพื้นฐาน	Cost Function	การหาพารามิเตอร์
Linear	$y = \beta_0 + \beta_1 x + \varepsilon$	$rac{1}{2n}\left\ y - X oldsymbol{eta} ight\ _2^2$	$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
Ridge	$y = \mathbf{x}^T \boldsymbol{\beta} + \varepsilon$	$\frac{1}{2n} \ \mathbf{y} - \mathbf{X}\boldsymbol{\beta}\ _2^2 + \alpha \ \boldsymbol{\beta}\ _2^2$	$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X} + \alpha \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$
LASSO	$y = \mathbf{x}^T \boldsymbol{\beta} + \varepsilon$	$rac{1}{2n} \left\ \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right\ _2^2 + \alpha \left\ \boldsymbol{\beta} \right\ _1$	Coordinate Descent
Logistic	$\log \frac{p}{1-p} = \mathbf{x}^T \boldsymbol{\beta}$	$-\frac{1}{n}\sum[y\log p + (1-y)\log(1-p)]$	Newton-Raphson
Polynomial	$y = \sum_{i=0}^{d} \beta_i x^i + \varepsilon$	$rac{1}{2n}\left\ y - X oldsymbol{eta} ight\ _2^2$	$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Table 1: สรุปสมการ Regression ทุกประเภท

9.2 ตารางเปรียบเทียบ Regularization

Method	Penalty	คุณสมบัติหลัก	ข้อดี/ข้อเสีย
Ridge	L2: $\ oldsymbol{eta}\ _2^2$	Shrink coefficients	ดี: Stable, เสีย: ไม่ feature se-
			lection
LASSO	L1: $\left\ oldsymbol{eta} ight\ _1$	Sparse solutions	ดี: Feature selection, เสีย: Un-
			stable
Elastic Net	L1 + L2	ทั้งสองอย่าง	ดี: Balanced, เสีย: Extra param-
			eter

Table 2: เปรียบเทียบ Regularization Methods

9.3 การวัดประสิทธิภาพ

สำหรับ Regression:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (52)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 (53)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (54)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(55)

สำหรับ Classification:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
 (56)

$$Precision = \frac{TP}{TP + FP}$$
 (57)

$$Recall = \frac{TP}{TP + FN}$$
 (58)

$$F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$
 (59)

10 Cross-Validation และ Model Selection

10.1 K-Fold Cross-Validation

CV Error:

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$
 (60)

โดยที่ MSE_i คือ Mean Squared Error ของ fold ที่ i

10.2 Information Criteria

Akaike Information Criterion (AIC):

$$AIC = 2k - 2\ln(\hat{L}) \tag{61}$$

Bayesian Information Criterion (BIC):

$$BIC = k \ln(n) - 2 \ln(\hat{L}) \tag{62}$$

โดยที่:

- k = จำนวนพารามิเตอร์
- n = จำนวนข้อมูล
- \hat{L} = maximum likelihood

10.3 Regularization Path

สำหรับ LASSO และ Ridge:

$$\alpha_{\rm optimal} = \arg\min_{\alpha} CV(\alpha) \tag{63}$$

Grid Search:

$$\alpha \in \{10^{-4}, 10^{-3}, \dots, 10^2\}$$
 (64)

11 ข้อสมมุติและข้อจำกัด

11.1 ข้อสมมุติสำคัญ

- 1. Linearity: ความสัมพันธ์เชิงเส้นระหว่าง predictors และ response
- 2. Independence: ความเป็นอิสระของ observations
- 3. Homoscedasticity: ความคงที่ของ variance
- 4. Normality: การแจกแจงปกติของ residuals (สำหรับ Linear Regression)
- 5. No Multicollinearity: ตัวแปรอิสระไม่มีความสัมพันธ์กันสูง

11.2 การตรวจสอบข้อสมมุติ

Residual Analysis:

$$e_i = y_i - \hat{y}_i \tag{65}$$

Standardized Residual
$$=\frac{e_i}{\sqrt{\text{MSE}(1-h_{ii})}}$$
 (66)

โดยที่ h_{ii} คือ leverage values

Durbin-Watson Test สำหรับ Autocorrelation:

$$DW = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$
 (67)

12 บทสรุป

เอกสารนี้ได้นำเสนอสมการ Linear Regression ตั้งแต่ระดับพื้นฐานจนถึงขั้นสูง ครอบคลุม:

- Linear Regression: Simple และ Multiple
- Regularized Methods: Ridge, LASSO, Elastic Net
- Generalized Linear Models: GLM framework
- Polynomial Regression: สำหรับ non-linear relationships
- Logistic Regression: สำหรับ classification
- Robust Methods: Huber และ Quantile regression
- Model Selection: Cross-validation และ Information criteria

สมการเหล่านี้เป็นพื้นฐานสำคัญในการวิเคราะห์ข้อมูลและการเรียนรู้ของเครื่อง (Machine Learning) ที่นักศึกษา และนักวิจัยควรเข้าใจอย่างถ่องแท้