(Extremely Simple) Radiative Transfer in a Stellar Atmosphere

ASTP-720 Final Project

Marko Ristic

github.com/markoris/ASTP720/tree/master/FINAL

Stellar Atmospheres: proton-proton chain

Stellar Atmospheres: blackbody radiation

- Photon(s) could be at any temperature
- How many we see depends on the wavelength in which we observe
- Simplest case: assume photon emitted as blackbody radiation

Stellar Atmospheres: plane-parallel atmosphere

- Blackbody since star is opaque as depth into atmosphere increases
- ds small enough such that stellar atmosphere is effectively plane-parallel
- Photon travels outward toward surface of the star
- Along its path, it runs into a bunch of other stuff

Radiative Transfer: a bunch of other stuff

- Main factors at play:
 - opacity
 - density
 - step size
 - current intensity
 - source function
- For simplicity:
 - opacity and density bundled together
 - new parameter alpha
 - represents all absorption/scattering effects
 - source function = Planck function

$$-\frac{1}{\kappa_{\lambda}\rho}\,\frac{d\,I_{\lambda}}{ds}=I_{\lambda}-S_{\lambda}$$

$$\frac{dI_{\nu}}{ds} = \alpha_{\nu} [S_{\nu} - I_{\nu}]$$

Computational Approach: finite differencing

• Effectively a derivative

$$f'(a)pprox rac{f(a+h)-f(a)}{h}$$

$$\frac{dI_{\nu}}{ds} = \alpha_{\nu} [S_{\nu} - I_{\nu}]$$

- Replaced f'(a) with dl/ds
- Rearrange until solved for I(s+ds)

$$lpha_{m{
u}}\left[S_{m{
u}}-I_{m{
u}}(s)
ight]=rac{I(s+ds)-I(s)}{ds}$$

$$I(s+ds)=\left(lpha_
u\left[S_
u-I_
u(s)
ight]
ight)ds+I(s)$$

Code Assumptions

- Blackbody emission of photons
- Photon moving out of star radially (not Monte Carlo)
- Simple absorption term which scales as 1/r
- Very simple quantum efficiency for camera
- Three camera viewing filters

Physics Example

Parameters Considered

			R	-1	Z	Y	J			
λ (nm)	365	476	621	754	900	1020	1220	1630	2190	
T (K)	40000	20000	8750	6750	5600	4450	3050	1850	1000	600
	0	В	A	F	G	K	M	L	Т	Y

O Star Intensities at Given Wavelengths T = 40000 K10¹⁷ 10¹⁵ 10^{13} 10^{11} 200 400 600 800 1000 S

B Star Intensities at Given Wavelengths 10¹⁷ T = 20000 K 10^{16} 10^{15} H 10¹² 10^{11} 10¹⁰ 200 400 600 800 1000

S

A Star Intensities at Given Wavelengths 10¹⁶ T = 8750 K10¹⁵ 1014 F 10¹³ 10¹² 10^{11} 10¹⁰ 10⁹ 200 400 600 800 1000 S

M Star Intensities at Given Wavelengths T = 3050 K10¹³ 10¹² 10^{11} € 10¹⁰ 10⁹ 10⁸ 10⁷ 200 400 600 800 1000 S

Camera + Filters

- Suppose you wanted to know how your CCD and selected filters would affect the recorded intensity
- Johnson U, R, and I filters
- Camera with piece-wise quantum efficiency
 - Very efficient under a wavelength threshold
 - Much less efficient above that wavelength
 - (why? who knows, probably some grad student's fault)

G Star Intensities at Given Wavelengths Similar to the Sun! 10^{14} 10¹³ 10¹² 10^{11} 10¹⁰ 10⁹ 200 400 600 800 1000 S

Possible Future Additions

- Include Monte Carlo approach with some constant wind
- Consider a more complex source function
- Consider a more complex absorption term with wavelength dependency
 - Not a grey opacity
- Expand from 1D to 3D

Conclusion

- Radiative transfer is really hard
- Treat everything as a blackbody
- Finite differencing is great (once you actually realize in what form your differential equation needs to be)
- Don't let grad students make CCDs