Master MVA

Dynamic Programming & Reinforcement Learning TP1 - 13/11/2016

Achari Berrada Youssef

1 The On-Site Tree Cutting Problem:

Q1: The state X and the action A space are :

$$X = \{1, ..., \max_height, sick_state\}$$

$$A = \{1, 2\}$$

$$(P)_{i,j,a} = p_{i,j,a} = \mathbb{P}(x_{t+1} = j | x_t = i, a_t = a)$$

$$(R)_{i,a} = r_{i,a} = r(i, a)$$

$$1 \text{ for keep and 2 for cut}$$

$$\forall (i, j) \in X^2, a \in A$$

$$\forall (i, a) \in X \times A$$

The matrix P of size $|X| \times |X| \times |A|$ models the random effects.

Q2: **Policy Evaluation:** For a stationary policy π :

$$V^{\pi}(x) = \mathbb{E}_{x_0 = x} \left[\sum_{t=0}^{\infty} \gamma^t r(x_t, \pi(x_t)) \right]$$

• Dynamic Programming:

$$\begin{split} V^{\pi}(x) &= r(x,\pi(x)) + \gamma \sum_{y \in X} p(y|x,\pi(x)) V^{\pi}(y) \\ \Rightarrow \\ V^{\pi} &= R^{\pi} + \gamma P^{\pi} V^{\pi} \\ \Rightarrow \\ V^{\pi} &= (I - \gamma P^{\pi})^{-1} R^{\pi} \end{split}$$

ullet Reinforcement Learning with Monté-Carlo: In this method, we approximate the value with N trajectories, and each one has T steps.

$$\hat{V}^{\pi} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T} \gamma^{t} r(x_{t}^{i}, \pi(x_{t}^{i}))$$

Q3: Optimal Policy:

• Value Iteration:

1. For a given initial policy π_i , we compute the Value function V_0 using DP or RL methods.

1

- 2. For k = 1, ..., K, $V_{k+1} = \mathcal{T}V_k$ with \mathcal{T} is the Bellman operator.
- 3. Find the Greedy policy π_f with $\pi_f(x) = \operatorname*{argmax}_{a \in A} Q_K(x,a)$ with :

$$Q_k(x, a) = r(x, a) + \gamma \sum_{y \in X} p(y|x, a)V^k(y)$$

• Policy Iteration:

1. Let π_0 be the initial stationary policy,

- 2. For k=0,...,K-1, we evalute the policy π_k and compute V^{π_k} . Then we improve the policy by finding the greedy policy π_{k+1} with $\pi_{k+1}(x) = \operatorname*{argmax}_{a \in A} Q_k(x,a)$
- 3. Return π_K .

Q4: Optimal policy:

- Value iteration is computationally efficient but the convergence is asymptotic.
- Policy iteration converge is a small number of iterations but each iteration requires a full policy evaluation which might be expensive.

Figure 1: Value iteration error vs Policy iteration error