Theory of Automata and Formal Language Lecture-27

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj June 5, 2021

Closure Properties of Context Free Languages

Theorem: Show that the family of context free languages is closed under union operation.

Proof: Let L_1 and L_2 be two context free languages generated by context free grammar $G_1=(V_1,\Sigma_1,S_1,P_1)$ and $G_1=(V_2,\Sigma_2,S_2,P_2)$ respectively.

Now, we construct the grammar G as the following;-

$$G = (V, \Sigma, S, P)$$

Where, $V = V_1 \cup V_2 \cup \{S\}$

$$\Sigma = \Sigma_1 \cup \Sigma$$

and
$$P = P_1 \cup P_2 \cup \{S \rightarrow S_1 | S_2\}$$

Now, we have to show that

$$L(G) = L(G_1) \cup L(G_2)$$

$$Let \times \in L(G) \Leftrightarrow S \stackrel{*}{\Rightarrow} \times$$

$$\Leftrightarrow S \Rightarrow S_1 \stackrel{*}{\Rightarrow} \times \text{ or }$$

$$S \Rightarrow S_2 \stackrel{*}{\Rightarrow} \times \text{ or }$$

$$\Leftrightarrow S_1 \stackrel{*}{\Rightarrow} \times \text{ or } S_2 \stackrel{*}{\Rightarrow} \times$$

$$\Leftrightarrow \times \in L(G_1) \text{ or } \times \in L(G_2)$$

$$\Leftrightarrow \times \in L(G_1) \cup L(G_2)$$
The form $L(G_1) \cup L(G_2)$

Therefore, $L(G) = L(G_1) \cup L(G_2)$

Clearly, G is a CFG for $L_1 \cup L_2$, therefore $L_1 \cup L_2$ is also a context free language.

Theorem: Show that the family of context free languages is closed under concatenation operation.

Proof: Let L_1 and L_2 be two context free languages generated by context free grammar $G_1 = (V_1, \Sigma_1, S_1, P_1)$ and $G_1 = (V_2, \Sigma_2, S_2, P_2)$ respectively.

Now, we construct the grammar G as the following;-

$$G=(V,\Sigma,S,P)$$
 Where, $V=V_1\cup V_2\cup \{S\}$ $\Sigma=\Sigma_1\cup \Sigma$ and $\mathsf{P}=P_1\cup P_2\cup \{S o S_1.S_2\}$

Now, we have to show that

$$\begin{split} \mathsf{L}(\mathsf{G}) &= \mathsf{L}(\mathsf{G}_1).\mathsf{L}(\mathsf{G}_2) \\ \mathsf{Let} \ \mathsf{x} \in \mathsf{L}(\mathsf{G}) \Leftrightarrow \mathsf{S} \overset{*}{\Rightarrow} \mathsf{x} \\ &\Leftrightarrow \mathsf{S} \Rightarrow \mathsf{S}_1.\mathsf{S}_2 \overset{*}{\Rightarrow} \mathsf{x} \\ &\Leftrightarrow \mathsf{S}_1 \overset{*}{\Rightarrow} \mathsf{x}_1 \ \mathsf{and} \ \mathsf{S}_2 \overset{*}{\Rightarrow} \mathsf{x}_2 \ (\mathsf{Let} \ \mathsf{x} = \mathsf{x}_1 \mathsf{x}_2) \\ &\Leftrightarrow \mathsf{x}_1.\mathsf{x}_2 \in \mathsf{L}(\mathsf{G}_1).\mathsf{L}(\mathsf{G}_2) \\ &\Leftrightarrow \mathsf{x} \in \mathsf{L}(\mathsf{G}_1).\mathsf{L}(\mathsf{G}_2) \end{split}$$

Therefore, $L(G) = L(G_1).L(G_2)$

Clearly, G is a CFG for $L_1.L_2$, therefore $L_1.L_2$ is also a context free language.

Theorem: Show that the family of context free languages is closed under kleene closure operation.

Proof: Let L is a context free languages and G is a context free grammar generating L.

$$G = (V, \Sigma, S, P)$$

Now, we construct a grammar G' as the following:-

$$G' = (V', \Sigma, S', P')$$

Where, $V' = V \cup \{S'\}$

$$\mathsf{P'} = \mathsf{P} \cup \{ S' \to SS' | \epsilon \}$$

Now, we have to show that $L(G') = (L(G))^*$.

Let
$$x \in L(G') \Leftrightarrow S' \stackrel{*}{\Rightarrow} x$$

 $\Leftrightarrow S' \Rightarrow S.S.S......S(n - times) \stackrel{*}{\Rightarrow} x$
 $\Leftrightarrow S \stackrel{*}{\Rightarrow} x_1, S \stackrel{*}{\Rightarrow} x_2S \stackrel{*}{\Rightarrow} x_n \text{ (Let } x = x_1 x_2x_n)$
 $\Leftrightarrow x_1 \in L(G), x_2 \in L(G),, x_n \in L(G)$
 $\Leftrightarrow x_1.x_2......x_n \in (L(G))^n$
 $\Leftrightarrow x \in (L(G))^* (L(G))^n \subseteq (L(G))^*$

Therefore, $L(G') = (L(G))^*$.

Therefore, G' is a grammar generating the language L*. Hence L* is a context free language

Theorem: Show that the family of context free languages is not closed under intersection operation.

Proof: Consider the two context free languages:-

$$L_1 = \{a^n b^n c^m \mid n \ge 0, m \ge 0\}$$

$$L_2 = \{a^n b^m c^m \mid n > 0, m > 0\}$$

The intersection of these languages is

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$$

We know that this language is not context free.

Therefore, the family of context free languages is not closed under intersection operation.

Theorem: Show that the family of context free languages is not closed under complement operation.

Proof: Consider the following formula

$$L_1 \cap L_2 = (\bar{L_1} \cup \bar{L_2})$$
(1)

Suppose the context free languages are closed under complement operation.

From (1), If L_1 and L_2 are context free languages, then L_1 and L_2 are also context free language.

Since L_1 and L_2 are context free, therefore $L_1 \cup L_2$ will also be context free

language. Therefore $(L_1 \cup L_2)$ is also context free.

Since the R.H.S. of equation (1) is context free, therefore L.H.S. is also context free. But, by previous theorem $L_1 \cap L_2$ is not context free, therefore context free languages is not closed under complement operation.