- 問題 1

数列 $(a_n)_{n=0}^\infty$, $(b_n)_{n=0}^\infty$ に対して、正項級数 $\sum_{n=0}^\infty a_n^2$ と $\sum_{n=0}^\infty b_n^2$ がともに収束するとする。この時、級数 $\sum_{n=0}^\infty a_n b_n$ は絶対収束することを示せ。

解答 一般に 2 つの数 a,b に対して次の不等式が成り立つことに注意する。

$$|ab| \le \frac{a^2 + b^2}{2}.$$

これを使えば部分和について

$$\sum_{k=0}^{n} |a_k b_k| \le \sum_{k=0}^{n} \frac{a_k^2 + b_k^2}{2} = \frac{1}{2} \sum_{k=0}^{n} a_k^2 + \frac{1}{2} \sum_{k=0}^{n} b_k^2$$

が成り立つ。仮定より正項級数 $\sum_{n=0}^{\infty}a_n^2$ と $\sum_{n=0}^{\infty}b_n^2$ がともに収束することから、

$$\sum_{k=0}^{n} |a_k b_k| \le \frac{1}{2} \sum_{k=0}^{\infty} a_k^2 + \frac{1}{2} \sum_{k=0}^{\infty} b_k^2$$

よって、正項級数 $\sum_{n=0}^{\infty}|a_nb_n|$ は収束する、つまり級数 $\sum_{n=0}^{\infty}a_nb_n$ は絶対収束する。

問題 2

実数 s に対して、正項級数 $\sum_{n=1}^{\infty} \frac{1}{n^s}$ が収束するか発散するか答えよ。

解説 教科書定理または典型例 4.1.16 にあるように、答えは s>1 の時収束で $s\le1$ の時発散ですが、この事実は覚えるようにしましょう。以下に記す積分を使った証明法も重要です。なお、ダランベールの判定法やコーシーの判定法は極限が 1 になり使えません。

解答 $s\leq 0$ の時は $\frac{1}{n^s}\geq 1$ より発散するので、s>0 の場合を考える。この時、関数 $f(x)=\frac{1}{x^s}$ は x>0 で単調減少するので、部分和について、

$$\int_{1}^{n+1} f(x)dx \le \sum_{k=1}^{n} f(k) = \sum_{k=1}^{n} \frac{1}{k^{s}} \le f(1) + \int_{1}^{n} f(x)dx$$

が成り立つ。ここで

$$\int_{1}^{n} f(x)dx = \int_{1}^{n} \frac{1}{x^{s}} dx = \begin{cases} \left[\frac{1}{1-s} x^{1-s} \right]_{1}^{n} = \frac{1}{1-s} n^{1-s} - \frac{1}{1-s} & s < 1 \text{ の時} \\ [\log x]_{1}^{n} = \log n & s = 1 \text{ の時} \\ \left[-\frac{1}{s-1} \frac{1}{x^{s-1}} \right]_{1}^{n} = \frac{1}{s-1} - \frac{1}{s-1} \frac{1}{n^{s-1}} & s > 1 \text{ の時} \end{cases}$$

となり、 $n \to \infty$ とすると s < 1 の時と s = 1 の時は正の無限大に発散し、s > 1 の時は $\frac{1}{s-1}$ に収束する。よって、 $s \le 1$ の時、

$$\sum_{k=1}^{n} \frac{1}{k^{s}} \ge \int_{1}^{n+1} f(x)dx = \int_{1}^{n+1} \frac{1}{x^{s}} dx \to \infty$$

なので左辺も発散する。s>1の時、

$$\sum_{k=1}^{n} \frac{1}{k^{s}} \le f(1) + \int_{1}^{n} f(x)dx = 1 + \int_{1}^{n} \frac{1}{x^{s}}dx \to 1 + \frac{1}{s-1}$$

なので、正項級数 $\sum_{n=1}^{\infty} \frac{1}{n^s}$ は収束する。以上をまとめると正項級数 $\sum_{n=1}^{\infty} \frac{1}{n^s}$ は s>1 の時収束し $s\leq 1$ の時発散する。