1

Digital Signal Processing

Suraj kumar AI21BTECH11029

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	1
4	Z-transform	2
5	Impulse Response	3
6	DFT and FFT	5

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://github.com/kumarsuraj151/ EE3900/blob/master/codes/2_digital%20 filter/Sound Noise.way

- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are
- 2.3 Write the python code for removal of out of band noise and execute the code.

audible along with background noise.

Solution:

import soundfile as sf from scipy import signal #read .wav file input signal,fs = sf.read('Sound Noise.wav' #sampling frequency of Input signal sampl freq=fs #order of the filter order=4 #cutoff frquency 4kHz cutoff freq=4000.0 #digital frequency Wn=2*cutoff freq/sampl freq # b and a are numerator and denominator polynomials respectively b, a = signal.butter(order, Wn, 'low') #filter the input signal with butterworth filter output signal = signal.filtfilt(b, a, input signal) $\#output\ signal = signal.lfilter(b,\ a,input$ signal) #write the output signal into .wav file sf.write('Sound_With_ReducedNoise.wav', output signal, fs)

2.4 The output of the python script Problem 2.3 is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 Difference Equation

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. .

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/3 diffrence%20equation/xnyn.py

Fig. 3.2

3.3 Repeat the above exercise using c

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathbb{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$\mathcal{Z}\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem (3.1). **Solution:**

$$Z(x(n)) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$= x(0)z^{0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} +$$
(4.7)
$$(4.8)$$

$$x(4)z^{-4} + x(5)z^{-5}$$

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$
(4.9)

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.10}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.11)

$$\implies \frac{Y(z)}{X(z)} = \frac{1+z^{-2}}{1+\frac{1}{2}z^{-1}} \tag{4.12}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.13)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (4.15)

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.16}$$

and from (4.14),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.17)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.18}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.19}$$

(4.28)

Solution:

$$Z(a^{n}u(n)) = \sum_{n=-\infty}^{\infty} a^{n}u(n)z^{-n}$$
 (4.20)

$$=\sum_{n=0}^{\infty} a^n z^{-n}$$
 (4.21)

$$= \frac{1}{1 - az^{-1}}, \quad \left| az^{-1} \right| < 1 \quad (4.22)$$

$$= \frac{1}{1 - az^{-1}}, \quad |a| < |z| \tag{4.23}$$

using the fomula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.24)

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution: The following code plots Fig. 4.6.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/4_Z %20transform/dtft.py

It is bounded between (0,4) and periodic with period (2π)

$$H\left(e^{j\omega}\right) = \frac{1 + e^{-2j\omega}}{1 + \frac{e^{-j\omega}}{2}}\tag{4.25}$$

$$\implies \left| H\left(e^{j\omega}\right) \right| = \frac{\left| 1 + e^{-2j\omega} \right|}{\left| 1 + \frac{e^{-j\omega}}{2} \right|}$$

$$\left| 1 + e^{2j\omega} \right|$$

$$(4.25)$$

$$= \frac{\left|1 + e^{2j\omega}\right|}{\left|e^{2j\omega} + \frac{e^{j\omega}}{2}\right|}$$

$$= \frac{\left|1 + \cos 2\omega + j\sin 2\omega\right|}{\left|e^{j\omega} + \frac{1}{2}\right|}$$

$$(4.27)$$

$$= \frac{\left|4\cos^2(\omega) + 4j\sin(\omega)\cos(\omega)\right|}{|2e^{j\omega} + 1|}$$

$$= \frac{|4\cos(\omega)||\cos(\omega) + j\sin(\omega)|}{|2\cos(\omega) + 1 + 2j\sin(\omega)|}$$
(4.30)

$$\therefore \left| H\left(e^{j\omega}\right) \right| = \frac{|4\cos(\omega)|}{\sqrt{5 + 4\cos(\omega)}} \tag{4.31}$$

4.7 Express h(n) in terms of $H(e^{j\omega})$.

Solution:

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.32)$$

5 Impulse Response

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.12).

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.2}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.12),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.3)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \tag{5.4}$$

using (4.19) and (4.6).

5.3 Sketch h(n). Is it bounded? Convergent? **Solution:** The following code plots Fig. 5.3.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/5 _impluse%20responce/hn.py

Fig. 5.3: h(n) as the inverse of H(z)

Yes, it is bounded and Convergent

- 5.4 Convergent? Justify using the ratio test.
- 5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.5}$$

Is the system defined by (3.2) stable for the impulse response in (5.2)?

Solution:

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^n u(n) + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^{n-2} u(n-2)$$
(5.6)

$$= \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n + \sum_{n=2}^{\infty} \left(-\frac{1}{2}\right)^{n-2}$$
 (5.7)

$$=\frac{2}{3}+\frac{2}{3}=\frac{4}{3}\tag{5.8}$$

hence the system defined by (3.2) is stable for the impulse response in (5.2)?

- 5.6 Verify the above result using python code
- 5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2),$$
 (5.9)

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 5.3.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/5 impluse%20responce/hndef.py

Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{n=-\infty}^{\infty} x(k)h(n-k)$$
 (5.10)

Comment. The operation in (5.10) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/5 impluse%20responce/ynconv.py

- 5.9 Express the above convolution using a Teoplitz matrix.
- 5.10 Show that

$$y(n) = \sum_{n = -\infty}^{\infty} x(n - k)h(k)$$
 (5.11)

Fig. 5.8: y(n) from the definition of convolution

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$

and H(k) using h(n).

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/6 _dft%20and%20fft/yndft.py

- 6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT.
- 6.5 Wherever possible, express all the above equations as matrix equations.

Fig. 6.3: y(n) from the DFT