Rank-76051 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_1 + X_1^2 X_2 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1503024729

General information

Number of lines	9
Number of points	29
Number of singular points	4
Number of Eckardt points	5
Number of double points	6
Number of single points	18
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5 ⁹
Type of lines on points	$3^5, 2^6, 1^{18}$

Singular Points

The surface has 4 singular points:

$$\begin{array}{l} 0: \ P_9 = \mathbf{P}(\omega,0,1,0) = \mathbf{P}(2,0,1,0) \\ 1: \ P_{10} = \mathbf{P}(\omega^2,0,1,0) = \mathbf{P}(3,0,1,0) \\ 2: \ P_{68} = \mathbf{P}(\omega^2,\omega^2,\omega,1) = \mathbf{P}(3,3,2,1) \end{array}$$

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\begin{split} \ell_1 &= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0,0,0,1,0,0)_9 \\ \ell_2 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_1 \\ \ell_3 &= \begin{bmatrix} 1 & 0 & \omega^2 & 0 \\ 0 & 1 & 1 & \omega^2 \end{bmatrix}_{76} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix}_{76} = \mathbf{Pl}(2,3,2,0,1,1)_{184} \\ \ell_4 &= \begin{bmatrix} 1 & 0 & \omega^2 & 0 \\ 0 & 1 & 0 & \omega \end{bmatrix}_{71} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}_{71} = \mathbf{Pl}(3,2,0,0,3,1)_{299} \\ \ell_5 &= \begin{bmatrix} 1 & 0 & \omega & 0 \\ 0 & 1 & 0 & \omega^2 \end{bmatrix}_{54} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix}_{54} = \mathbf{Pl}(2,3,0,0,2,1)_{238} \\ \ell_6 &= \begin{bmatrix} 1 & 0 & \omega & 0 \\ 0 & 1 & 1 & \omega \end{bmatrix}_{51} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix}_{51} = \mathbf{Pl}(3,2,3,0,1,1)_{188} \\ \ell_7 &= \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0,1,0,1,0,0)_{13} \\ \ell_8 &= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{122} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{122} = \mathbf{Pl}(0,1,1,1,1,1)_{202} \end{aligned}$$

Rank of lines: (16, 340, 356, 76, 71, 54, 51, 345, 122)

Rank of points on Klein quadric: (2, 9, 1, 184, 299, 238, 188, 13, 202)

Eckardt Points

The surface has 5 Eckardt points:

 $0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1),$

 $1: P_9 = \mathbf{P}(\omega, 0, 1, 0) = \mathbf{P}(2, 0, 1, 0),$

 $2: P_{10} = \mathbf{P}(\omega^2, 0, 1, 0) = \mathbf{P}(3, 0, 1, 0),$

 $3: P_{68} = \mathbf{P}(\omega^2, \omega^2, \omega, 1) = \mathbf{P}(3, 3, 2, 1),$

 $4: P_{79} = \mathbf{P}(\omega, \omega, \omega^2, 1) = \mathbf{P}(2, 2, 3, 1).$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_2$$

$$P_{34} = (0,3,0,1) = \ell_1 \cap \ell_4$$

$$P_{30} = (0,2,0,1) = \ell_1 \cap \ell_5$$

$$P_{38} = (0,0,1,1) = \ell_2 \cap \ell_8$$

$$P_{61} = (0, 2, 2, 1) = \ell_3 \cap \ell_7$$

 $P_{81} = (0, 3, 3, 1) = \ell_6 \cap \ell_7$

Single Points

The surface has 18 single points: The single points on the surface are:

$$0: P_0 = (1,0,0,0)$$
 lies on line ℓ_0 $3: P_{11} = (0,1,1,0)$ lies on line ℓ_7 $1: P_1 = (0,1,0,0)$ lies on line ℓ_1 $4: P_{12} = (1,1,1,0)$ lies on line ℓ_8 $2: P_8 = (1,0,1,0)$ lies on line ℓ_0 $5: P_{26} = (0,1,0,1)$ lies on line ℓ_1

 $\begin{array}{lll} 6: \ P_{27} = (1,1,0,1) \ \text{lies on line} \ \ell_8 \\ 7: \ P_{33} = (3,2,0,1) \ \text{lies on line} \ \ell_3 \\ 8: \ P_{36} = (2,3,0,1) \ \text{lies on line} \ \ell_6 \\ 9: \ P_{42} = (0,1,1,1) \ \text{lies on line} \ \ell_7 \\ 10: \ P_{46} = (1,2,1,1) \ \text{lies on line} \ \ell_3 \\ 11: \ P_{48} = (3,2,1,1) \ \text{lies on line} \ \ell_5 \\ 12: \ P_{50} = (1,3,1,1) \ \text{lies on line} \ \ell_6 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	$\begin{array}{c} 012345678 \\ \hline 001111100 \\ 00101101 \\ 11000011 \\ 11000101 \\ 110100101 \\ 110100101 \\ 100011011 \\ 011100100 \\ 001111100 \\ \end{array}$
0	001111100
1	001011010
2	110000011
3	100011011
4	110100101
5	110100101
6	100011011
7	011100100
8	001111100

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_2	P_9	P_9	P_{10}	P_{10}

Line 1 intersects

Line	ℓ_2	ℓ_4	ℓ_5	ℓ_7
in point	P_3	P_{34}	P_{30}	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_7	ℓ_8
in point	P_2	P_3	P_3	P_{38}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_7	ℓ_8
in point	P_9	P_9	P_{79}	P_{61}	P_{79}

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_6	ℓ_8
in point	P_9	P_{34}	P_9	P_{68}	P_{68}

Line 5 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_6	ℓ_8
in point	P_{10}	P_{30}	P_{79}	P_{10}	P_{79}

 ${\bf Line~6~intersects}$

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_7	ℓ_8
in point	P_{10}	P_{68}	P_{10}	P_{81}	P_{68}

Line 7 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_6
in point	P_3	P_3	P_{61}	P_{81}

Line 8 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_{38}	P_{79}	P_{68}	P_{79}	P_{68}

The surface has 29 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$10: P_{27} = (1, 1, 0, 1)$	$20: P_{51} = (2, 3, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$11: P_{30} = (0, 2, 0, 1)$	$21: P_{53} = (0,0,2,1)$
$2: P_2 = (0,0,1,0)$	$12: P_{33} = (3, 2, 0, 1)$	$22: P_{61} = (0, 2, 2, 1)$
$3: P_3 = (0,0,0,1)$	$13: P_{34} = (0, 3, 0, 1)$	$23: P_{62} = (1, 2, 2, 1)$
$4: P_8 = (1,0,1,0)$	$14: P_{36} = (2, 3, 0, 1)$	$24: P_{68} = (3,3,2,1)$
$5: P_9 = (2,0,1,0)$	15: $P_{38} = (0,0,1,1)$	$25: P_{69} = (0,0,3,1)$
$6: P_{10} = (3, 0, 1, 0)$	$16: P_{42} = (0, 1, 1, 1)$	$26: P_{79} = (2, 2, 3, 1)$
$7: P_{11} = (0, 1, 1, 0)$	17: $P_{46} = (1, 2, 1, 1)$	$27: P_{81} = (0,3,3,1)$
$8: P_{12} = (1, 1, 1, 0)$	$18: P_{48} = (3, 2, 1, 1)$	$28: P_{82} = (1,3,3,1)$
$9: P_{26} = (0, 1, 0, 1)$	$19: P_{50} = (1, 3, 1, 1)$	