Klassische Physik 1 Hausaufgaben Blatt Nr. 1

Jun Wei Tan,* Saed Othman, and Mattis Liebermann

Julius-Maximilians-Universität Würzburg

(Dated: November 5, 2023)

Aufgabe 1.1

Man löst die Gleichungen

$$\frac{1}{2}(v_{max,1})(t_{min,1}) = d \tag{1}$$

$$v_{max,1} = a_1 t' \tag{2}$$

$$v_{max,1} = (t' - t_{min,1})a_2 \tag{3}$$

Aus (2) folgt $t' = v_{max,1}/a_1$. Wir setzen das in (3) ein. Es ergibt sich

$$v_{max,1} = \left(\frac{v_{max,1}}{a_1} - t_{min,1}\right) a_2.$$

Daraus folgt:

$$v_{max,1}\left(1 - \frac{a_2}{a_1}\right) = -t_{min,1}a_2.$$

(b) Noch einmal setzen wir das in (1) ein:

$$\frac{1}{2} \left[-t_{min,1} a_2 \left(1 - \frac{a_2}{a_1} \right)^{-1} \right] (t_{min,1}) = d.$$

Die Lösung ist

$$t_{min,1} = \left[-\frac{2d}{a_2} \left(1 - \frac{a_2}{a_1} \right) \right]^{1/2}.$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Aus (1) folgt

$$v_{max,1} = \frac{2d}{t_{mn,1}}.$$

Also

$$v_{max,1} = \left[\left[-\frac{1 - \frac{a_2}{a_1}}{2a_2 d} \right]^{-1/2} \right]$$

Es gilt

$$\begin{split} t_1 = & \frac{v_{max,2}}{a_1} \\ t_2 = & -\frac{v_{max,2}}{a_2} \\ s_1 = & \frac{1}{2} a_1 t_1^2 = \frac{v_{max,2}^2}{2a_1} \\ s_2 = & \frac{1}{2} v_{max,2} t_2 = -\frac{v_{max,2}^2}{2a_2} \\ s_3 = & v_{max,2} t_3 = d - s_1 - s_2 \\ t_3 = & \frac{d - s_1 - s_2}{v_{max,2}} \\ = & \frac{d}{v_{max,2}} - \frac{v_{max,2}}{2a_1} + \frac{v_{max,2}}{2a_2} \\ t_{min,2} = & t_1 + t_2 + t_3 \\ = & \frac{d}{v_{max,2}} + \frac{v_{max,2}}{2a_1} - \frac{v_{max,2}}{2a_2} \end{split}$$

$$x = v_0 t \cos \theta$$
$$y = v_0 t \sin \theta - \frac{1}{2} g t^2$$
$$y = x \tan \theta - \frac{g x^2}{2v_0^2 \cos^2 \theta}$$

Wir brauchen $y(l) = h_1 - h_0$, oder

$$h_1 - h_0 = l \tan \theta - \frac{gl^2}{2v_0^2 \cos^2 \theta}.$$

Daraus folgt

$$v_0^2 = \frac{gl^2}{2\cos^2\theta (l\tan\theta - (h_1 - h_0))}.$$

Es folgt daraus:

$$y = x \tan \theta - (l \tan \theta - (h_1 - h_0)) \frac{x^2}{l^2}.$$

(b) Sei φ der Eintreffwinkel des Balls, und φ' der Winkel des Balls beim Überfliegen des Korbrandes. Es gilt dann $\varphi \approx \varphi'$.

Zudem gilt:

$$\tan \varphi = \frac{U}{d\pi}$$

Die Trajektorie des Balls wird beschrieben durch

$$y(x) = -\frac{g}{2v_0^2 \cos^2 \alpha} x^2 + \tan \alpha x + h_0.$$

Der Ball passiert den Korbrand an der Stelle $x_R = l - \frac{d}{2}$.

Es gilt

$$y'(x_R) = -\frac{g}{v_0^2 \cdot \cos^2 \alpha} x_R + \tan \alpha.$$

Somit lautet die Tangentenfunktion an der Stelle x_R

$$t(x_R) = \left(-\frac{g}{v_0^2 \cos^2 \alpha} x_R + \tan \alpha\right) (x - x_R) - \frac{g}{2v_0^2 \cdot \cos^2 \alpha} x_R^2 + \tan \alpha x_R + h_0$$

mit der Steigung

$$m = -\frac{g}{v_0^2 \cos^2 \alpha} x_R + \tan \alpha.$$

Es gilt dann

$$m = \tan \varphi = \frac{U}{2\pi}$$
$$-\frac{g}{v_0^2 \cos^2 \alpha} \left(l - \frac{d}{2} \right) + \tan \alpha = \frac{U}{d\pi}$$
$$\alpha = \arctan \left(\frac{U}{d\pi} + \frac{g}{v_{0,x}^2} \left(l - \frac{d}{2} \right) \right).$$

Der Winkel α muss also mindestens $\arctan\left(\frac{U}{d\pi} + \frac{g}{v_{0,x}^2}\left(l - \frac{d}{2}\right)\right)$ betragen.

Aufgabe 1.3

Es gilt

$$x: m_1 g \sin \alpha = m_3 g \sin \beta$$
$$y: m_1 g \cos \alpha + m_3 g \cos \beta = m_2 g$$

Also

$$m_{3} = m_{1} \frac{\sin \alpha}{\sin \beta}$$

$$m_{1} \cos \alpha + m_{1} \frac{\sin \alpha}{\sin \beta} \cos \beta = m_{2}$$

$$m_{1} = \frac{m_{2}}{\cos \alpha + \cos \beta} \left(\frac{\sin \alpha}{\sin \beta}\right)$$

$$= \frac{m_{2} \sin \beta}{\sin(\alpha + \beta)}$$

$$m_{3} = \frac{m_{2} \sin \alpha}{\sin(\alpha + \beta)}$$

$$\vec{\mathbf{F}} = -\left[\begin{pmatrix} 0 \\ -m_1 g \end{pmatrix} + m_1 g \begin{pmatrix} \sin \alpha \\ -\cos \alpha \end{pmatrix} \right]$$
$$= m_1 g \begin{pmatrix} -\sin \alpha \\ 1 + \cos \alpha \end{pmatrix}$$

Aufgabe 1.4

(a)

(b) $a_y = 0$ (Zwangsbedingung), $a_x = \frac{1}{3m} \left(|F_2| - |F_1| \right)$

(c)

$$\vec{\mathbf{F}}_1 \xleftarrow{\bullet} \vec{\mathbf{F}}_2$$

$$a_1 = a_2 = \frac{1}{3m} \left(|\vec{\mathbf{F}}_2| - |\vec{\mathbf{F}}_1| \right).$$

(d)

(e)

$$m_{1}a = T - F_{1}$$

$$m_{2}a = F_{2} - T$$

$$(m_{1} + m_{2})a = T - F_{1} + F_{2} - T$$

$$= F_{2} - F_{1}$$

$$= 3ma$$

$$a = \frac{1}{3m} (F_{2} - F_{1})$$