Sufficiency of quantum channels by Rényi divergences

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

Łódź, December 2018

A (quantum) divergence is a dissimilarity measure for pairs of (quantum) states:

$$D:(\rho,\sigma)\mapsto D(\rho\|\sigma)\in\mathbb{R}^+$$

A (quantum) divergence is a dissimilarity measure for pairs of (quantum) states:

$$D:(\rho,\sigma)\mapsto D(\rho\|\sigma)\in\mathbb{R}^+$$

• strict positivity: $D(\rho \| \sigma) = 0$ iff $\rho = \sigma$;

A (quantum) divergence is a dissimilarity measure for pairs of (quantum) states:

$$D: (\rho, \sigma) \mapsto D(\rho || \sigma) \in \mathbb{R}^+$$

- strict positivity: $D(\rho \| \sigma) = 0$ iff $\rho = \sigma$;
- monotonicity (data processing inequality):

$$D(\Phi(\rho)\|\Phi(\sigma)) \le D(\rho\|\sigma)$$

for any quantum channel Φ ;

A (quantum) divergence is a dissimilarity measure for pairs of (quantum) states:

$$D: (\rho, \sigma) \mapsto D(\rho || \sigma) \in \mathbb{R}^+$$

- strict positivity: $D(\rho \| \sigma) = 0$ iff $\rho = \sigma$;
- monotonicity (data processing inequality):

$$D(\Phi(\rho)\|\Phi(\sigma)) \le D(\rho\|\sigma)$$

for any quantum channel Φ ;

 operational significance: relation to performance of some procedures in information - theoretic tasks

► relative entropy:

$$S(\rho \| \sigma) = \operatorname{Tr} \rho(\log(\rho) - \log(\sigma));$$

► relative entropy:

$$S(\rho \| \sigma) = \operatorname{Tr} \rho(\log(\rho) - \log(\sigma));$$

more general f-divergences;

► relative entropy:

$$S(\rho \| \sigma) = \operatorname{Tr} \rho(\log(\rho) - \log(\sigma));$$

- more general f-divergences;
- distinguishability measures from hypothesis testing:

$$P_t(\rho \| \sigma) = \| \rho - t\sigma \|_1, \qquad t > 0;$$

► relative entropy:

$$S(\rho \| \sigma) = \operatorname{Tr} \rho(\log(\rho) - \log(\sigma));$$

- more general f-divergences;
- distinguishability measures from hypothesis testing:

$$P_t(\rho||\sigma) = ||\rho - t\sigma||_1, \qquad t > 0;$$

▶ distinguishability measures for *n* copies:

$$P_{t,n}(\rho\|\sigma) = \|\rho^{\otimes n} - t\sigma^{\otimes n}\|_1, \qquad t > 0, \ n \in \mathbb{N}.$$

Information loss and sufficient channels

Suppose Φ is a quantum channel.

Information loss and sufficient channels

Suppose Φ is a quantum channel.

Data processing inequality \equiv information loss:

application of the channel Φ cannot increase the ability do distinguish ρ and $\sigma.$

Information loss and sufficient channels

Suppose Φ is a quantum channel.

Data processing inequality \equiv information loss:

application of the channel Φ cannot increase the ability do distinguish ρ and σ .

 Φ is sufficient with respect to a set of states $\mathcal{S}\colon$ information is preserved for states in $\mathcal{S}.$

How can we formulate this?

How can we formulate this?

equality in data processing inequality for some of the divergences and all states in S;

How can we formulate this?

- equality in data processing inequality for some of the divergences and all states in S;
- ightharpoonup strongest definition all states in S can be recovered:

How can we formulate this?

- equality in data processing inequality for some of the divergences and all states in S;
- ightharpoonup strongest definition all states in S can be recovered:

How can we formulate this?

- equality in data processing inequality for some of the divergences and all states in S;
- strongest definition all states in S can be recovered:

Definition

We say that Φ is sufficient with respect to $\mathcal S$ if there is a channel Ψ (recovery map) such that

$$\Psi \circ \Phi(\rho) = \rho \quad \forall \rho \in \mathcal{S}.$$

D. Petz, Commun. Math. Phys., 1986

Sufficiency by divergences

Sufficiency by divergences

Theorem

Let $\sigma \in \mathcal{S}$ be faithful. Φ is sufficient with respect to \mathcal{S} if and only if

$$S(\Phi(\rho)\|\Phi(\sigma)) = S(\rho\|\sigma), \qquad \rho \in S$$

(relative entropy determines sufficiency).

D. Petz, Commun. Math. Phys., 1986

Sufficiency by divergences

Theorem

Let $\sigma \in \mathcal{S}$ be faithful. Φ is sufficient with respect to \mathcal{S} if and only if

$$S(\Phi(\rho)\|\Phi(\sigma)) = S(\rho\|\sigma), \qquad \rho \in S$$

(relative entropy determines sufficiency).

D. Petz, Commun. Math. Phys., 1986

Theorem

The same holds for a large class of f-divergences, e.g. the standard Rényi divergences.

D. Petz, M. Mosonyi, F. Hiai

For p,q probability measures over a finite set X, $0<\alpha\neq 1$:

$$D_{lpha}(p\|q) := rac{1}{lpha - 1} \log \sum_{x} p(x)^{lpha} q(x)^{1 - lpha}$$

For p,q probability measures over a finite set X, 0<lpha
eq 1:

$$D_{\alpha}(p||q) := \frac{1}{\alpha - 1} \log \sum_{x} p(x)^{\alpha} q(x)^{1 - \alpha}$$

unique family of divergences satisfying a set of postulates

For p,q probability measures over a finite set X, $0 < \alpha \neq 1$:

$$D_{\alpha}(p\|q) := \frac{1}{\alpha - 1} \log \sum_{x} p(x)^{\alpha} q(x)^{1 - \alpha}$$

- unique family of divergences satisfying a set of postulates
- fundamental quantities appearing in many information theoretic tasks

For p,q probability measures over a finite set X, $0<\alpha\neq 1$:

$$D_{\alpha}(p||q) := \frac{1}{\alpha - 1} \log \sum_{x} p(x)^{\alpha} q(x)^{1 - \alpha}$$

- unique family of divergences satisfying a set of postulates
- fundamental quantities appearing in many information theoretic tasks
- lacktriangleright relative entropy as a limit lpha
 ightarrow 1

Quantum extensions of Rényi divergences

Quantum extensions of Rényi divergences

Standard:

$$D_{\alpha}(
ho\|\sigma) = \frac{1}{lpha - 1}\log\left(\operatorname{Tr}
ho^{lpha}\sigma^{1 - lpha}\right)$$

D. Petz, Rep. Math. Phys., 1984

Quantum extensions of Rényi divergences

Standard:

$$D_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \left(\operatorname{Tr} \rho^{\alpha} \sigma^{1 - \alpha} \right)$$

D. Petz, Rep. Math. Phys., 1984

Sandwiched:

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right)^{\alpha} \right]$$

M. Müller-Lennert et al., J. Math. Phys., 2013

M. M. Wilde et al., Commun. Math. Phys., 2014

Standard version D_{α} ,

• strict positivity, monotonicity: $\alpha \in (0, 2]$;

¹K. M. R. Audenaert et al., Commun. Math. Phys., 2008

²F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008

³M. Mosonyi, and T. Ogawa, *Commun. Math. Phys.*, 2017, ⟨≥⟩ ⟨≥⟩ ≥ ∞ ⟨ ⊘

Standard version D_{α} ,

- ▶ strict positivity, monotonicity: $\alpha \in (0, 2]$;
- ▶ Operational significance known for $\alpha \in (0,1)$: error exponents in quantum hypothesis testing.^{1,2}

¹K. M. R. Audenaert et al., Commun. Math. Phys., 2008

²F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008

³M. Mosonyi, and T. Ogawa, *Commun. Math. Phys.*, 2017.

Standard version D_{α} ,

- ▶ strict positivity, monotonicity: $\alpha \in (0, 2]$;
- ▶ Operational significance known for $\alpha \in (0,1)$: error exponents in quantum hypothesis testing.^{1,2}

¹K. M. R. Audenaert et al., Commun. Math. Phys., 2008

²F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008

³M. Mosonyi, and T. Ogawa, *Commun. Math. Phys.*, 2017.

Standard version D_{α} ,

- ▶ strict positivity, monotonicity: $\alpha \in (0, 2]$;
- ▶ Operational significance known for $\alpha \in (0,1)$: error exponents in quantum hypothesis testing.^{1,2}

Sandwiched version \tilde{D}_{α} :

▶ strict positivity, monotonicity: $\alpha \in [1/2, 1) \cup (1, \infty]$;

¹K. M. R. Audenaert et al., Commun. Math. Phys., 2008

²F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008

³M. Mosonyi, and T. Ogawa, Commun. Math. Phys., 2017 (2) (2) (2)

Standard version D_{α} ,

- ▶ strict positivity, monotonicity: $\alpha \in (0, 2]$;
- ▶ Operational significance known for $\alpha \in (0,1)$: error exponents in quantum hypothesis testing.^{1,2}

Sandwiched version \tilde{D}_{α} :

- ▶ strict positivity, monotonicity: $\alpha \in [1/2, 1) \cup (1, \infty]$;
- ▶ Operational significance known for $\alpha > 1$: strong converse exponents in quantum hypothesis testing.³

¹K. M. R. Audenaert et al., Commun. Math. Phys., 2008

²F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008

³M. Mosonyi, and T. Ogawa, *Commun. Math. Phys.*, 2017 (≥) (≥) (≥) (∞)

Standard version D_{α} ,

- ▶ strict positivity, monotonicity: $\alpha \in (0, 2]$;
- ▶ Operational significance known for $\alpha \in (0,1)$: error exponents in quantum hypothesis testing.^{1,2}

Sandwiched version \tilde{D}_{α} :

- ▶ strict positivity, monotonicity: $\alpha \in [1/2, 1) \cup (1, \infty]$;
- ▶ Operational significance known for $\alpha > 1$: strong converse exponents in quantum hypothesis testing.³

¹K. M. R. Audenaert et al., Commun. Math. Phys., 2008

²F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008

³M. Mosonyi, and T. Ogawa, *Commun. Math. Phys.*, 2017 (≥) (≥) (≥) (∞)

Standard version D_{α} ,

- ▶ strict positivity, monotonicity: $\alpha \in (0, 2]$;
- ▶ Operational significance known for $\alpha \in (0,1)$: error exponents in quantum hypothesis testing.^{1,2}

Sandwiched version \tilde{D}_{α} :

- ▶ strict positivity, monotonicity: $\alpha \in [1/2, 1) \cup (1, \infty]$;
- ▶ Operational significance known for $\alpha > 1$: strong converse exponents in quantum hypothesis testing.³

Both versions: relative entropy as a limit for $\alpha \to 1$.

¹K. M. R. Audenaert et al., Commun. Math. Phys., 2008

²F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008

³M. Mosonyi, and T. Ogawa, Commun. Math. Phys., 2017 (2) (2)

Sufficiency of channels by Rényi divergences

The standard Rényi divergence D_{α} determines sufficiency for all $\alpha \in (0,2)$.

Sufficiency of channels by Rényi divergences

The standard Rényi divergence D_{α} determines sufficiency for all $\alpha \in (0,2)$.

This talk

The same holds for the sandwiched Rényi divergence \tilde{D}_{α} with $\alpha \in (1/2,1)$ and $\alpha > 1$.

AJ, Ann. H. Poincaré, 2018 AJ, arXiv:1707.00047

 \mathcal{M} a von Neumann algebra, $L_p(\mathcal{M})$ - Haagerup L_p -space, σ a faithful state, identified with an element in $L_1(\mathcal{M})$.

 \mathcal{M} a von Neumann algebra, $L_p(\mathcal{M})$ - Haagerup L_p -space, σ a faithful state, identified with an element in $L_1(\mathcal{M})$. Kosaki L_p -spaces: complex interpolation

 \mathcal{M} a von Neumann algebra, $L_p(\mathcal{M})$ - Haagerup L_p -space, σ a faithful state, identified with an element in $L_1(\mathcal{M})$.

Kosaki L_p -spaces: complex interpolation

continuous embedding

$$\mathcal{M} \to L_1(\mathcal{M}), \quad x \mapsto \sigma^{1/2} x \sigma^{1/2}$$

 \mathcal{M} a von Neumann algebra, $L_p(\mathcal{M})$ - Haagerup L_p -space, σ a faithful state, identified with an element in $L_1(\mathcal{M})$.

Kosaki L_p -spaces: complex interpolation

continuous embedding

$$\mathcal{M} \to L_1(\mathcal{M}), \quad x \mapsto \sigma^{1/2} x \sigma^{1/2}$$

interpolation spaces

$$L_p(\mathcal{M}, \sigma) := C_{1/p}(\mathcal{M}, L_1(\mathcal{M}))$$
 with norm $\|\cdot\|_{p,\sigma}, \quad 1 \le p \le \infty$

 \mathcal{M} a von Neumann algebra, $L_p(\mathcal{M})$ - Haagerup L_p -space, σ a faithful state, identified with an element in $L_1(\mathcal{M})$.

Kosaki L_p -spaces: complex interpolation

continuous embedding

$$\mathcal{M} \to L_1(\mathcal{M}), \quad x \mapsto \sigma^{1/2} x \sigma^{1/2}$$

interpolation spaces

$$L_p(\mathcal{M},\sigma):=C_{1/p}(\mathcal{M},L_1(\mathcal{M}))$$
 with norm $\|\cdot\|_{p,\sigma},\quad 1\leq p\leq \infty$

• for 1/p + 1/q = 1, the map

$$i_p: L_p(\mathcal{M}) \to L_1(\mathcal{M}), \qquad k \mapsto \sigma^{1/2q} k \sigma^{1/2q}$$

is an isometric isomorphism of $L_p(\mathcal{M})$ onto $L_p(\mathcal{M}, \sigma)$.

Extension to non-faithful σ : by restriction to support $s(\sigma)=e$

$$L_p(\mathcal{M},\sigma)=\{h\in L_1(\mathcal{M}),\ h=ehe\in L_p(e\mathcal{M}e,\sigma|_{e\mathcal{M}e})\}.$$

Extension to non-faithful σ : by restriction to support $s(\sigma) = e$

$$L_p(\mathcal{M},\sigma)=\{h\in L_1(\mathcal{M}),\ h=ehe\in L_p(e\mathcal{M}e,\sigma|_{e\mathcal{M}e})\}.$$

For normal states ρ , σ and $1 < \alpha < \infty$:

$$ilde{D}_{lpha}(
ho\|\sigma) = \left\{egin{array}{ll} rac{lpha}{lpha-1}\log(\|
ho\|_{lpha,\sigma}) & ext{if }
ho \in L_{lpha}(\mathcal{M},\sigma) \ & ext{otherwise}. \end{array}
ight.$$

Extension to non-faithful σ : by restriction to support $s(\sigma) = e$

$$L_p(\mathcal{M},\sigma)=\{h\in L_1(\mathcal{M}),\ h=ehe\in L_p(e\mathcal{M}e,\sigma|_{e\mathcal{M}e})\}.$$

For normal states ρ , σ and $1 < \alpha < \infty$:

$$ilde{D}_{lpha}(
ho\|\sigma) = \left\{egin{array}{ll} rac{lpha}{lpha-1}\log(\|
ho\|_{lpha,\sigma}) & ext{if }
ho \in L_{lpha}(\mathcal{M},\sigma) \ & ext{otherwise}. \end{array}
ight.$$

Extends the sandwiched Rényi divergence to von Neumann algebras.

Properties of $ilde{D}_{\!lpha}$ on von Neumann algebras

For $\alpha > 1$:

strict positivity;

Properties of $ilde{D}_{\!lpha}$ on von Neumann algebras

For $\alpha > 1$:

- strict positivity;
- (Araki) relative entropy as limit value:

$$\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$$

Properties of \tilde{D}_{α} on von Neumann algebras

For $\alpha > 1$:

- strict positivity;
- (Araki) relative entropy as limit value:

$$\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$$

monotonicity with respect to positive trace preserving maps:

$$\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$$
 restricts to a contraction

$$L_{\alpha}(\mathcal{M}, \sigma) \to L_{\alpha}(\mathcal{N}, \Phi(\sigma)), \qquad \alpha > 1$$

Properties of \tilde{D}_{α} on von Neumann algebras

For $\alpha > 1$:

- strict positivity;
- (Araki) relative entropy as limit value:

$$\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$$

monotonicity with respect to positive trace preserving maps:

$$\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$$
 restricts to a contraction

$$L_{\alpha}(\mathcal{M}, \sigma) \to L_{\alpha}(\mathcal{N}, \Phi(\sigma)), \qquad \alpha > 1$$

Properties of \tilde{D}_{α} on von Neumann algebras

For $\alpha > 1$:

- strict positivity;
- (Araki) relative entropy as limit value:

$$\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$$

monotonicity with respect to positive trace preserving maps:

$$\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$$
 restricts to a contraction

$$L_{\alpha}(\mathcal{M}, \sigma) \to L_{\alpha}(\mathcal{N}, \Phi(\sigma)), \qquad \alpha > 1$$

Corollary

S is monotone under positive trace preserving maps.

 \mathcal{S} a set of normal states on \mathcal{M} , $\sigma \in \mathcal{S}$ faithful, Φ a channel, $\alpha > 1$.

 \mathcal{S} a set of normal states on \mathcal{M} , $\sigma \in \mathcal{S}$ faithful, Φ a channel, $\alpha > 1$.

Theorem

Assume that $S \subseteq L_{\alpha}(\mathcal{M}, \sigma)$. Then Φ is sufficient with respect to S if and only if

$$\|\Phi(\rho)\|_{\alpha,\Phi(\sigma)} = \|\rho\|_{\alpha,\sigma}, \qquad \rho \in \mathcal{S}.$$

 \mathcal{S} a set of normal states on \mathcal{M} , $\sigma \in \mathcal{S}$ faithful, Φ a channel, $\alpha > 1$.

Theorem

Assume that $S \subseteq L_{\alpha}(\mathcal{M}, \sigma)$. Then Φ is sufficient with respect to S if and only if

$$\|\Phi(\rho)\|_{\alpha,\Phi(\sigma)} = \|\rho\|_{\alpha,\sigma}, \qquad \rho \in \mathcal{S}.$$

Easy proof for $\alpha = 2$:

▶ $L_2(\mathcal{M}, \sigma)$ is a Hilbert space, Φ a contraction, let $Φ_σ := Φ^*$;

 $\mathcal S$ a set of normal states on $\mathcal M$, $\sigma \in \mathcal S$ faithful, Φ a channel, $\alpha > 1$.

Theorem

Assume that $S \subseteq L_{\alpha}(\mathcal{M}, \sigma)$. Then Φ is sufficient with respect to S if and only if

$$\|\Phi(\rho)\|_{\alpha,\Phi(\sigma)} = \|\rho\|_{\alpha,\sigma}, \qquad \rho \in \mathcal{S}.$$

Easy proof for $\alpha = 2$:

- ▶ $L_2(\mathcal{M}, \sigma)$ is a Hilbert space, Φ a contraction, let $Φ_σ := Φ^*$;
- norm is preserved iff $\Phi_{\sigma} \circ \Phi(\rho) = \rho$;

 \mathcal{S} a set of normal states on \mathcal{M} , $\sigma \in \mathcal{S}$ faithful, Φ a channel, $\alpha > 1$.

Theorem

Assume that $S \subseteq L_{\alpha}(\mathcal{M}, \sigma)$. Then Φ is sufficient with respect to S if and only if

$$\|\Phi(\rho)\|_{\alpha,\Phi(\sigma)} = \|\rho\|_{\alpha,\sigma}, \qquad \rho \in \mathcal{S}.$$

Easy proof for $\alpha = 2$:

- ▶ $L_2(\mathcal{M}, \sigma)$ is a Hilbert space, Φ a contraction, let $Φ_σ := Φ^*$;
- ▶ norm is preserved iff $\Phi_{\sigma} \circ \Phi(\rho) = \rho$;
- ▶ $Φ_σ$ is a channel such that $Φ_σ ∘ Φ(σ) = σ$.

 \mathcal{S} a set of normal states on \mathcal{M} , $\sigma \in \mathcal{S}$ faithful, Φ a channel, $\alpha > 1$.

Theorem

Assume that $S \subseteq L_{\alpha}(\mathcal{M}, \sigma)$. Then Φ is sufficient with respect to S if and only if

$$\|\Phi(\rho)\|_{\alpha,\Phi(\sigma)} = \|\rho\|_{\alpha,\sigma}, \qquad \rho \in \mathcal{S}.$$

Easy proof for $\alpha = 2$:

- ▶ $L_2(\mathcal{M}, \sigma)$ is a Hilbert space, Φ a contraction, let $Φ_σ := Φ^*$;
- ▶ norm is preserved iff $\Phi_{\sigma} \circ \Phi(\rho) = \rho$;
- ▶ $Φ_σ$ is a channel such that $Φ_σ ∘ Φ(σ) = σ$.

 $\mathcal S$ a set of normal states on $\mathcal M$, $\sigma \in \mathcal S$ faithful, Φ a channel, $\alpha > 1$.

Theorem

Assume that $S \subseteq L_{\alpha}(\mathcal{M}, \sigma)$. Then Φ is sufficient with respect to S if and only if

$$\|\Phi(\rho)\|_{\alpha,\Phi(\sigma)} = \|\rho\|_{\alpha,\sigma}, \qquad \rho \in \mathcal{S}.$$

Easy proof for $\alpha = 2$:

- ▶ $L_2(\mathcal{M}, \sigma)$ is a Hilbert space, Φ a contraction, let $Φ_σ := Φ^*$;
- ▶ norm is preserved iff $\Phi_{\sigma} \circ \Phi(\rho) = \rho$;
- Φ_{σ} is a channel such that $\Phi_{\sigma} \circ \Phi(\sigma) = \sigma$.

 Φ_{σ} - Petz dual, universal recovery map.

Universal recovery map

Theorem

 Φ is sufficient with respect to $\mathcal S$ if and only if all $\rho \in \mathcal S$ are invariant states for the channel $\Phi_\sigma \circ \Phi$.

D. Petz, Quart. J. Math. Oxford, 1988

Universal recovery map

Theorem

 Φ is sufficient with respect to $\mathcal S$ if and only if all $\rho \in \mathcal S$ are invariant states for the channel $\Phi_\sigma \circ \Phi$.

D. Petz, Quart. J. Math. Oxford, 1988

Mean ergodic theorem: there is a faithful normal conditional expectation \boldsymbol{E} such that

$$\Phi_{\sigma} \circ \Phi(\rho) = \rho \iff \rho \circ E = \rho.$$

Let $\rho \in \mathcal{S} \subset L_{\alpha}(\mathcal{M}, \sigma)$, then

$$\rho = t\sigma^{1/2\beta}\tau^{1/\alpha}\sigma^{1/2\beta}$$

for a normal state τ , t > 0, $\alpha^{-1} + \beta^{-1} = 1$.

Let $\rho \in \mathcal{S} \subset L_{\alpha}(\mathcal{M}, \sigma)$, then

$$\rho = t\sigma^{1/2\beta}\tau^{1/\alpha}\sigma^{1/2\beta}$$

for a normal state τ , t > 0, $\alpha^{-1} + \beta^{-1} = 1$. Introduce the family:

$$\rho_{\alpha'} := t_{\alpha'} \sigma^{1/2\beta'} \tau^{1/\alpha'} \sigma^{1/2\beta'} \in L_{\alpha'}(\mathcal{M}, \sigma), \qquad \alpha' > 1$$

Let $\rho \in \mathcal{S} \subset L_{\alpha}(\mathcal{M}, \sigma)$, then

$$\rho = t\sigma^{1/2\beta}\tau^{1/\alpha}\sigma^{1/2\beta}$$

for a normal state τ , t > 0, $\alpha^{-1} + \beta^{-1} = 1$. Introduce the family:

$$\rho_{\alpha'} := t_{\alpha'} \sigma^{1/2\beta'} \tau^{1/\alpha'} \sigma^{1/2\beta'} \in L_{\alpha'}(\mathcal{M}, \sigma), \qquad \alpha' > 1$$

By interpolation:

If
$$\|\Phi(\rho_{\alpha'})\|_{\alpha',\Phi(\sigma)} = \|\rho_{\alpha'}\|_{\alpha',\sigma}$$
 for some $\alpha' > 1$, then for all.

Let $\rho \in \mathcal{S} \subset L_{\alpha}(\mathcal{M}, \sigma)$, then

$$\rho = t\sigma^{1/2\beta}\tau^{1/\alpha}\sigma^{1/2\beta}$$

for a normal state τ , t > 0, $\alpha^{-1} + \beta^{-1} = 1$. Introduce the family:

$$\rho_{\alpha'} := t_{\alpha'} \sigma^{1/2\beta'} \tau^{1/\alpha'} \sigma^{1/2\beta'} \in L_{\alpha'}(\mathcal{M}, \sigma), \qquad \alpha' > 1$$

By interpolation:

If
$$\|\Phi(\rho_{\alpha'})\|_{\alpha',\Phi(\sigma)} = \|\rho_{\alpha'}\|_{\alpha',\sigma}$$
 for some $\alpha' > 1$, then for all.

By properties of conditional expectations:

If
$$\Phi_{\sigma} \circ \Phi(\rho_{\alpha'}) = \rho_{\alpha'}$$
 for some $\alpha' > 1$, then for all.

For $\alpha \in (1/2,1)$, we have $\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2} \in L_{2\alpha}(\mathcal{M})$. Put

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{2\alpha}{\alpha - 1} \log \| \sigma^{\frac{1 - \alpha}{2\alpha}} \rho^{1/2} \|_{2\alpha}$$

For $\alpha \in (1/2,1)$, we have $\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2} \in L_{2\alpha}(\mathcal{M})$. Put

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{2\alpha}{\alpha - 1} \log \| \sigma^{\frac{1 - \alpha}{2\alpha}} \rho^{1/2} \|_{2\alpha}$$

 \triangleright can be obtained using Araki-Masuda L_p -norms;

For
$$\alpha \in (1/2,1)$$
, we have $\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2} \in L_{2\alpha}(\mathcal{M})$. Put

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{2\alpha}{\alpha - 1} \log \| \sigma^{\frac{1 - \alpha}{2\alpha}} \rho^{1/2} \|_{2\alpha}$$

- \triangleright can be obtained using Araki-Masuda L_p -norms;
- strict positivity;

For $\alpha \in (1/2,1)$, we have $\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2} \in L_{2\alpha}(\mathcal{M})$. Put

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{2\alpha}{\alpha - 1} \log \| \sigma^{\frac{1 - \alpha}{2\alpha}} \rho^{1/2} \|_{2\alpha}$$

- \triangleright can be obtained using Araki-Masuda L_p -norms;
- strict positivity;
- ightharpoonup relative entropy as a limit $\alpha \to 1$;

For $\alpha \in (1/2,1)$, we have $\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2} \in L_{2\alpha}(\mathcal{M})$. Put

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{2\alpha}{\alpha - 1} \log \| \sigma^{\frac{1 - \alpha}{2\alpha}} \rho^{1/2} \|_{2\alpha}$$

- \triangleright can be obtained using Araki-Masuda L_p -norms;
- strict positivity;
- relative entropy as a limit $\alpha \to 1$;
- monotonicity with respect to channels;

For $\alpha \in (1/2,1)$, we have $\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2} \in L_{2\alpha}(\mathcal{M})$. Put

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{2\alpha}{\alpha - 1} \log \| \sigma^{\frac{1 - \alpha}{2\alpha}} \rho^{1/2} \|_{2\alpha}$$

- \triangleright can be obtained using Araki-Masuda L_p -norms;
- strict positivity;
- relative entropy as a limit $\alpha \to 1$;
- monotonicity with respect to channels;
- lacktriangle a duality between $ilde{D}_lpha$ and $ilde{D}_{lpha^*}$, $lpha^*:=rac{lpha}{2lpha-1}.$

Let $\alpha \in (1/2,1)$, then by polar decomposition:

$$\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2}=\tau^{1/2\alpha}u\in L_{2\alpha}(\mathcal{M})$$

for some $\tau \in L_1(\mathcal{M})^+$ and $u \in \mathcal{M}$ partial isometry.

Let $\alpha \in (1/2, 1)$, then by polar decomposition:

$$\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2}=\tau^{1/2\alpha}u\in L_{2\alpha}(\mathcal{M})$$

for some $\tau \in L_1(\mathcal{M})^+$ and $u \in \mathcal{M}$ partial isometry. By duality, we can show that

$$\tilde{D}_{\alpha}(\rho\|\sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega\|\sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

Let $\alpha \in (1/2, 1)$, then by polar decomposition:

$$\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2}= au^{1/2\alpha}u\in L_{2\alpha}(\mathcal{M})$$

for some $au \in L_1(\mathcal{M})^+$ and $u \in \mathcal{M}$ partial isometry. By duality, we can show that

$$\tilde{D}_{\alpha}(\rho\|\sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega\|\sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

with

$$\omega = t\sigma^{1/2\beta^*}\tau^{1/\alpha^*}\sigma^{1/2\beta^*} \in L_{\alpha^*}(\mathcal{M}, \sigma).$$

From

$$\tilde{D}_{\alpha}(\rho\|\sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega\|\sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

From

$$\tilde{D}_{\alpha}(\rho\|\sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega\|\sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

we see that

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) \implies \tilde{D}_{\alpha^*}(\omega\|\sigma) = \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

From

$$\tilde{D}_{\alpha}(\rho\|\sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega\|\sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

we see that

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) \implies \tilde{D}_{\alpha^*}(\omega\|\sigma) = \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

▶ Since $\alpha^* > 1$, this implies that $\Phi_{\sigma} \circ \Phi(\omega) = \omega$;

From

$$\tilde{D}_{\alpha}(\rho\|\sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega\|\sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

we see that

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) \implies \tilde{D}_{\alpha^*}(\omega\|\sigma) = \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

- ▶ Since $\alpha^* > 1$, this implies that $\Phi_{\sigma} \circ \Phi(\omega) = \omega$;
- the same is true for τ;

From

$$\tilde{D}_{\alpha}(\rho\|\sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega\|\sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

we see that

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) \implies \tilde{D}_{\alpha^*}(\omega\|\sigma) = \tilde{D}_{\alpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

- Since $\alpha^* > 1$, this implies that $\Phi_{\sigma} \circ \Phi(\omega) = \omega$;
- the same is true for τ;
- using properties of conditional expectations, we get that also $\Phi_{\sigma} \circ \Phi(\rho) = \rho$.