INDIVIDUAL WORK: Deadline: 09/02/2023

Sent the pdf file with answers by email to

leandro.coelho@ufpr.br SUBJECT: List of exercises 02

List of exercises 02 Metaheuristics

Leandro dos Santos Coelho

Pontifícia Universidade Católica do Paraná (PUCPR), Escola Politécnica

Pós-Graduação em Engenharia de Produção e Sistemas (PPGEPS), Graduação em Engenharia de Controle e Automação (Mecatrônica)

Rua Imaculada Conceição, 1155, CEP 80215-901, Curitiba, PR, Brasil

Universidade Federal do Paraná (UFPR), Graduação e Pós-Graduação em Engenharia Elétrica, Campus Centro Politécnico Av. Cel. Francisco H. dos Santos, 100, CEP 81530-000, Curitiba, PR, Brasil

e-mail: leandro.coelho@pucpr.br; lscoelho2009@gmail.com; leandro.coelho@ufpr.br

Currículo Lattes: http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4792095Y4

Google Scholar: https://scholar.google.com/citations?user=0X7VkC4AAAAJ&hl=pt-PT

Question 01 (a)

Omplete the following tables with the steps of a genetic algorithm (GA) during an evolutionary cycle.

a) Generation of the initial population of solutions and evaluation of objective function

Set the initial generations counter: generation = 0

Member of	Genotype (binary representation)			(floati	(maximization) objective		
population	Base 2				Base 1	function, f	
	g_1	g_2	g_3	\mathbf{x}_1	\mathbf{X}_2	\mathbf{x}_3	$\mathbf{f} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$
1	001.110	001.100	011.100	1.750	1.500	3.500	6.750
2		000.010		0.125		1.875	
3	101.010	110.011	100.110				
4	010.011	010.110	000.000			0.000	
Best member							

Question 01 (b), (c)

Example: In the member 1, g_1 with 001.11 has cut in 00 | 1.11

b) Apply the **crossover operation** after selection using roulette selection Selected the same cut point in the 3rd position (left to right)

Selected	Genotype			Phenotype			
members	(binary representation)			(floating point representation)			
to match	Base 2			Base 10			
(parents)	g_1	g_2 ,	g_3	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	
1': 1 and 2							
2': 1 and 2							
3': 2 and 3							
4': 2 and 3							

C) Apply the mutation operation

Members to		Genotype		Phenotype			
apply the	(bina	ry representa	ntion)	(floating point representation)			
mutation		Base 2		Base 10			
(offspring)	$g_1^{"}$	g_2 "	g_3 "	\mathbf{x}_1 "	x ₂ "	\mathbf{x}_{3} "	
1': yes							
2': no							
3': yes							
4': no							

Question 01 (d)

d) New population of solutions and evaluation of objective function

Update the generation counter i.e. generation = generation + 1 and return to Step b

Member	Genotype				(maximization)		
of	of the current population			of t	objective		
population	(binary representation)			(floati	function, f		
	Base 2				New		
	g_1 "	g_2 "	g_3 "	\mathbf{x}_{1} "	\mathbf{x}_{2} "	$\mathbf{x_3}$ "	$\mathbf{f} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$
1"							
2"							
3"							
4"							
Current best							
member							

What are the **differences** between heuristics, metaheuristics, and hyperheuristics?

Considering the optimization problem min f(x) illustrated in figure.

- a) What are the independent variables of f(x)?
- b) What are the decision variables of f(x)?
- c) Rewrite this problem as a maximization problem.

- a) What is the **difference** between exploration and exploitation?
- b) What is the **difference** between intensification and diversification?
- c) What is the **difference** between global search and local search?

How the exploration and exploitation strategies are designed in a standard particle swarm optimization approach?

We want to a binary GA (Genetic Algorithm) to find x to a resolution of 0.1 to minimize the two-dimensional Rastrigin function (n=2) on the domain [-5,5].

$$f(x_1 \cdots x_n) = 10n + \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i))$$
$$-5 \le x_i \le 5$$
minimum at $f(0, \dots, 0) = 0$

- a) How many genes do we need for each chromosome:
- b) How many bits do we need in each gene?
- c) Given your answer to part (b), what is the resolution of each element of *x*?

How could you change the differential evolution algorithm to be non-elitist?

What are the differences between standard (classical) evolutionary programming and evolution strategy when applied to continuous optimization?

Present step-by-step the approach named harmony search algorithm (Geem et al., 2001) applied to a general continuous optimization problem?

See

https://sites.google.com/a/hydroteq.com/www/

https://www.sciencedirect.com/science/article/abs/pii/S2210650218303791

Geem, Z. W., Kim, J. H., Loganathan, G.V., 2001. A new heuristic optimization algorithm: Harmony search. Simulation. 76(2), pp. 60–68. 10.1177/003754970107600201

Support materials

Quote

It is during our darkest moments that we must focus to see the light.

Aristotle (384-322 BC)

Greek philosopher and polymath during the Classical period in Ancient Greece.

