

《初等概率论》 第 2 讲

邓婉璐

目录

Review 概率空间

机牛的性贝

概率的连续性

小结

作业

《初等概率论》第2讲

邓婉璐

清华大学 统计学研究中心

September 21, 2018

目录

第2讲

7 拠が

Rowi

Review 概率空间

概率的连续

小结

作业

- Review
- ② 概率空间
- ③ 概率的性质
- 4 概率的连续性
- 5 小结
- 6 作业

Review

《初等概率论》 第 2 讲 邓婉璐

مهر که در یا د

Review 概事空间

概率空间 概率的性质 概率的连续

作业

概率模型的基本构成

- 样本空间 Ω: 一个试验的所有可能结果的集合;
- 概率:概率就是为试验结果的集合 A(称之为事件) 确定一个非负数 P(A) (称为事件 A 的概率). 此非负数刻画了我们对事件 A 的认识或所产生的信念程度.

概率公理

- ① (非负性) 对一切事件 A, 满足 $\mathbf{P}(A) \geq 0$.
- \mathbf{Q} (归一化) $\mathbf{P}(\Omega) = 1$.
- ③ (可列可加性) 若 $A_1,A_2,...$ 是互不相容的事件序列,满足 $\mathbf{P}ig(igcup_{n=1}^\infty A_nig) = \sum_{n=1}^\infty \mathbf{P}(A_n).$

Review

《初等概率论》 第 2 讲 邓磁璐

n 28

Revie

Itevie

概率空间

概率的性质

概率的连续

小结

作业

古典概型

- 情景证明
- 证明有放回无序的结论
- 多项式系数

Review

《初等概率论》 第2讲 邓婉璐

$$\Omega = \{(x, y) | 0 \le x, y \le 1\} = \bigcup_{(x, y)} \{(x, y)\}. \quad P(A) = area(A).$$

$$1 = P(\Omega) = P(\bigcup_{x,y} \{(x,y)\}) = \sum_{x,y} P(\{(x,y)\}) + \sum_{x,y} 0 = 0.$$

矛盾?!

$$P((x, y) \neq (0, 0)) = 1.$$

- 为什么把概率分配到事件上,而非每一个试验结果上?
- P(A) = 1, 几乎必然 (a.s. almost surely) 发生.
- 任意奇怪的集合都有概率么?

一、概率空间

《初等概率论》 第 2 讲 邓卓歌

邓婉璐

概率空间 概率的性质

概率的连续也 小结 444 |定义:事件域或 σ-域或 σ-代数 (σ-field 或 σ-algebra)

设 Ω 是样本空间, $\mathscr F$ 表示 Ω 的某些子集构成的集合,如果 $\mathscr F$ 满足以下三个条件:

- $0 \Omega \in \mathscr{F}$;
- ② 如果 $A \in \mathcal{F}$,则 $A^c \in \mathcal{F}$;
- $m{0}$ 如果 $A_n\in \mathcal{F}$, n=1,2,...,则 $\bigcup_{i=1}^n A_n\in \mathcal{F}$,

称 \mathscr{F} 是 Ω 上的事件域或 σ -域或 σ -代数,称 \mathscr{F} 中的元素为事件,称 (Ω,\mathscr{F}) 是可测空间 (measurable space).

- ♣ σ-代数的例子:
 - ① $\mathscr{F} = \{\Omega, \emptyset\}$, 平凡的 σ -代数;
 - ② $\mathcal{F} = \{\Omega \text{ 的所有子集}\}$,最大的 σ -代数;
 - ③ $\mathscr{F} = \{\Omega, \emptyset, A, A^c\}$ 是包含 A 的最小 σ -代数.
 - lacktriangle 对于固定的 Ω ,甚至可以构造出无穷多个 Ω 的 σ -代数.

一、概率空间

《初等概率论》 第 2 讲 邓婉璐

概率空间

● ほ

- Ω的任意子集未必是事件,只有 第中的元素才能称之为事件;
- ② 如果 Ω 是可列的,则 Ω 的任一子集都可测,当然此时 $\mathscr F$ 可以包含 Ω 的所有子集;
- ③ 如果 Ω 是不可列的,则存在 Ω 的不可测子集,此时这些不可测子集就不能把它们当成事件了,因为我们无法确定其概率.
- 罗 对集合的各种运算都是封闭的,包括事件列的极限运算.

 $\mathscr{F} = \{\Omega, \emptyset, A, A^c, B, B^c, AB, AB^c, A^cB, A^cB^c, A \cup B, A^c \cup B, A \cup B^c, A^c \cup B^c, AB \cup A^cB^c, AB^c \cup A^cB\}$

邓婉璐

概率空间

一、概率空间

 \clubsuit \mathscr{F} 和 \mathscr{G} 是两个 σ -域,但 $\mathscr{F} \cup \mathscr{G}$ 并不一定是 σ -域.

$$\Omega = \{a, b, c\}, \quad \mathscr{F} = \{\Omega, \emptyset, \{a\}, \{b, c\}\}, \quad \mathscr{G} = \{\Omega, \emptyset, \{c\}, \{a, b\}\}\}$$
 于是 $\mathscr{F} \cup \mathscr{G} = \{\Omega, \emptyset, \{a\}, \{c\}, \{a, b\}, \{b, c\}\},$

但是 $\{a\} \cup \{c\} = \{a,c\} \notin \mathcal{F} \cup \mathcal{G}$.

 \clubsuit 如果 \mathscr{F} 和 \mathscr{G} 是两个 σ -城,且 $\mathscr{F}\subset\mathscr{G}$,则 $\mathscr{F}\cup\mathscr{G}$ 是 δ -城.

一、概率空间

《初等概率论》 第 2 讲

邓婉璐

概率空间

概率的连续也 小结

「定义:概率或概率测度 (probability measure)

设 (Ω, \mathscr{F}) 是可测空间, \mathbb{P} 是定义在 \mathscr{F} 上的函数,如果 \mathbb{P} 满足下面三个条件:

- ① (非负性) 对任意的 $A\in \mathscr{F},\,\mathbb{P}(A)\geq 0;$
- ② (完全性) ℙ(Ω) = 1;
- ③ (可列可加性, σ -additivity) 对于 $\mathscr F$ 中互不相交 (disjoint) (或互不相容) 的事件 $A_1,A_2,...$, 有

$$\mathbb{P}\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \sum_{n=1}^{\infty} \mathbb{P}(A_n),$$

 \mathfrak{h} \mathbb{P} 为 \mathscr{F} 上的概率测度 (probability measure), 简称概率 (probability), \mathfrak{h} $(\Omega, \mathscr{F}, \mathbb{P})$ 为概率空间 (probability space).

概率空间

《初等概率论》 第2讲 邓婉璐

概率空间

 \clubsuit 对于 $A \in \mathscr{F}$, 如果 $\mathbb{P}(A) = 1$,称 A 以 概率 1 发生或几乎 处处发生,这里的几乎处处是指对几乎每个 $\omega \in \Omega$. 几乎处处 有时又称为几乎必然,记作 a.s. (almost surely)。

♣ $(\Omega, \mathscr{F}, \mathbb{P})$ 的构造: 简单例子

- ① 拗一枚硬币. $\Omega = \{H, T\}, \mathcal{F} = \{\Omega, \emptyset, \{H\}, \{T\}\},$ $\mathbb{P}(\{H\}) = p = 1 - \mathbb{P}(\{T\})$, 其中 $p \in [0,1]$ 是某个固定实 数.
- ② 掷一枚骰子. $\Omega=\{1,2,...,6\},$ $\mathscr{F}\neq 2^{\Omega}(\Omega$ 的所有子 集构成的集合, 称为幂集, power sets), $\mathbb{P}(\{i\}) = 1/6$, i = 1, ..., 6, 对任意的 $A \in \mathcal{F}$, $\mathbb{P}(A) = \#(A)/6$.
- ❸ 反复掷一枚不均匀的硬币,直到正面向上. $\Omega = \{ T^n H \colon n \ge 0 \} \cup \{ T^\infty \}.$ $\mathbb{P}(T^n H) = (1-p)^n p, \quad \mathbb{P}(T^{\infty}) = \lim_{n \to \infty} (1-p)^n = 0$

二、概率的性质

《初等概率论》 第 2 讲

邓**婉璐** 目录

概率空间

概率的连续性

作业

1. $\mathbb{P}(\emptyset) = 0$.

证明. 因为 $\Omega=\Omega+\emptyset+\emptyset+\cdots$, 由概率公理 (3) 得

$$\mathbb{P}(\Omega) = \mathbb{P}(\Omega + \emptyset + \emptyset + \cdots)$$
$$= \mathbb{P}(\Omega) + \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) + \cdots.$$

由概率公理 (2), 得

$$1 = 1 + \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) + \cdots,$$

Вp

$$0 = \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) + \cdots.$$

再由概率公理 (1), 得

$$\mathbb{P}(\emptyset) = 0.$$

概率的性质

第2讲

邓婉璐

2. (概率的有限可加性)

对 $A_i \in \mathcal{F}, i = 1, ..., n$, 且 $A_i \cap A_j = \emptyset, i \neq j$, 则

$$\mathbb{P}\Big(\bigcup_{i=1}^{n} A_i\Big) = \sum_{i=1}^{n} \mathbb{P}(A_i).$$

证明. 令 $A_{n+1}=A_{n+2}=\cdots=\emptyset,$ 则 $\cup_{i=1}^nA_i=\bigcup_{i=1}^\infty A_i,$ 且当 $i\neq j$ 时, $A_i\cap A_j=\emptyset$,由概率公理 (3) 和概率性质 1,

可得

$$\mathbb{P}\Big(\bigcup_{i=1}^n A_i\Big) = \mathbb{P}\Big(\bigcup_{i=1}^\infty A_i\Big) = \sum_{i=1}^\infty \mathbb{P}(A_i) = \sum_{i=1}^n \mathbb{P}(A_i).$$

邓婉璐

二、概率的性质

得

数 $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

 $\operatorname{\mathfrak{Sp}}: \mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A).$

推论:

① (概率的单调性) 如果 $A, B \in \mathcal{F}$, 且 $A \subset B$, 则 $\mathbb{P}(A) < \mathbb{P}(B)$.

3. 如果 $A \in \mathcal{F}$, 则 $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

 $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A),$

证明. 因为 $B = A \cup (B \setminus A)$ 且 $A \cap (B \setminus A) = \emptyset$, 由性质 2 得

4. 如果 $A, B \in \mathcal{F}$, 且 $A \subset B$, 则 $\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$.

 $1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c).$

证明. 因为 $A \cap A^c = \emptyset$, $A \cup A^c = \Omega$, 由性质 2 和概率公理 (2)

二、概率的性质

《初等概率论》 第 2 讲 邓婉璐

日录 Review

概率的性质

作业

5. 如果 A, B ∈ ℱ, 则 P(A ∪ B) = P(A) + P(B) - P(A ∩ B).
 证明. 因为 A ∪ B = A ∪ (B \ A), 且 A ∩ (B \ A) = Ø, 由性质2 和 4 得

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A)$$
$$= \mathbb{P}(A) + \mathbb{P}(B \setminus (A \cap B))$$
$$= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

推论:

(有限次可加性, finite subadditivity, 或 Boole's inequality) 如果 $A_i \in \mathcal{F}, i = 1, ..., n,$ 则

$$\mathbb{P}\Big(\bigcup_{i=1}^{n} A_i\Big) \le \sum_{i=1}^{n} \mathbb{P}(A_i).$$

概率的性质

《初等概率论》 第2讲 邓婉璐

$$\begin{array}{c} 6. \text{ } & \text{ } &$$

7. (Bonferroni's inequality) 如果 $A_i \in \mathcal{F}, i = 1, ..., n$, 则

$$\mathbb{P}\Big(\bigcup_{i=1}^n A_i\Big) \geq \sum_{1 \leq i \leq n} \mathbb{P}(A_i) - \sum_{1 \leq i < j \leq n} \mathbb{P}(A_i \cap A_j).$$

(Kounias's inequality)

(Kounias's inequality)
$$\mathbb{P}\Big(\bigcup_{i=1}^{n} A_i\Big) \leq \min_{k} \left\{ \sum_{1 \leq i \leq n} \mathbb{P}(A_i) - \sum_{i: i \neq k} \mathbb{P}(A_i \cap A_k) \right\}.$$

二、概率的性质

《初等概率论》 第 2 讲 邓婉璐

> 求 eview

概率的性质

小结

作业

8. (可列次可加性, σ -subadditivity) 如果 $A_i \in \mathcal{F}, i = 1, 2, ...$,则

$$\mathbb{P}\Big(\bigcup_{i=1}^{\infty} A_i\Big) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

证明. 今 $B_1=A_1$, $B_n=A_n\setminus\bigcup_{i=1}^{n-1}A_i$,则 $\bigcup_{i=1}^{\infty}A_i=\bigcup_{i=1}^{\infty}B_i$ 且 $B_i\cap B_j=\emptyset$, $i\neq j$, $B_n\subset A_n$. 由概率公理 (3) 和概率的单调性,得

$$\mathbb{P}\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \mathbb{P}\Big(\bigcup_{i=1}^{\infty} B_i\Big) = \sum_{i=1}^{\infty} \mathbb{P}(B_i) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

100 A 110 A

二、概率的性质

《初等概率论》 第 2 讲

邓婉璐

Review 概率空间

概率的连续性

小结

9. 如果 $A_i \in \mathcal{F}, i = 1, 2, ...,$ 则

$$\mathbb{P}\Big(\bigcap_{i=1}^{\infty} A_i\Big) \ge 1 - \sum_{i=1}^{\infty} \mathbb{P}(A_i^c).$$

特别地

$$\mathbb{P}(A_1 \cap A_2) \ge 1 - \mathbb{P}(A_1^c) - \mathbb{P}(A_2^c).$$

证明. 由性质 3 和 8 得,

$$\mathbb{P}\Big(\bigcap_{i=1}^{\infty} A_i\Big) = 1 - \mathbb{P}\Big(\Big(\bigcap_{i=1}^{\infty} A_i\Big)^c\Big) = 1 - \mathbb{P}\Big(\bigcup_{i=1}^{\infty} A_i^c\Big)$$
$$\geq 1 - \sum_{i=1}^{\infty} \mathbb{P}(A_i^c).$$

特别地, 令 $A_3=A_4=\cdots=\Omega$, 由性质 (1), 可得第二个结论.

《初等概率论》 第 2 讲

邓婉璐

Review

概率空间 概率的性质

概率的连续

作业

定义:事件列的上极限与下极限

设 $\{A_i, i=1,2,...\}$ 是 Ω 中的事件列, 定义:

① $\{A_i, i=1,2,...\}$ 的上极限,记作 $\limsup_{n \to \infty} A_n$,定义为:

$$\limsup_{n\to\infty}A_n=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k=\{\omega\in\Omega:\omega\text{ \it \&}\,\text{\it \#\,}\text{\it f\,}\text{\it \pm\,}\text{\it \'e}\text{\it 3\,}\text{\it f\,}\text{\it A}_i\}.$$

② $\{A_i, i=1,2,...\}$ 的下极限,记作 $\liminf_{n \to \infty} A_n$, 定义为:

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_k$$

$$= \{ \omega \in \Omega : \omega$$
 属于所有的 A_i 除了有限个之外 $\}$.

③ 如果 $\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$,则称事件列 $\{A_i\}$ 的极限存在,记作 $\lim_{n \to \infty} A_n$.

《初等概率论》 第 2 讲

邓婉璐

邓婉璐

Review 概率空间 概率的性质

概率的连续性

对给定的事件列 $\{A_i, i=1,2,...\}$,

- ① 如果 $A_1 \subset A_2 \subset \cdots$, 称事件列 $\{A_i, i=1,2,...\}$ 是单调递增的;
- ② 如果 $A_1\supset A_2\supset\cdots$,称事件列 $\{A_i,i=1,2,...\}$ 是单调递减的;

- ♣ 单调增序列和单调减序列统称为单调序列.
- lacktriangleda 对于单调增序列 $\{A_i\}$,则 $\lim_{n o\infty}A_n=igcup_{i=1}^\infty A_i$.
- ♣ 对于单调减序列 $\{A_i\}$,则 $\lim_{n\to\infty}A_n=\bigcap_{i=1}^nA_i$.

《初等概率论》 第 2 讲

邓婉璐

目录

概率空间

概率的性质

概率的连续性

作业

定理

设 $\{A_i\}$ 和 $\{B_i\}$ 是事件列.

① 如果 $\{A_i\}$ 是单调增序列,则

$$\mathbb{P}\Big(\lim_{n\to\infty}A_n\Big)=\lim_{n\to\infty}\mathbb{P}(A_n)$$

② 如果 $\{B_j\}$ 是单调减序列,则

$$\mathbb{P}\Big(\lim_{n\to\infty}B_n\Big)=\lim_{n\to\infty}\mathbb{P}(B_n)$$

证明. (1) 因为 $\{A_i\}$ 是单调增的,所以

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup \bigcup_{i=1}^{\infty} (A_i - A_{i-1}).$$

 $\mathbb{P}\Big(\lim_{n\to\infty} A_n\Big) = \mathbb{P}(A_1) + \sum_{i=1}^{n} \{\mathbb{P}(A_i) - \mathbb{P}(A_{i-1})\}$

 $= \lim_{n \to \infty} \mathbb{P}(A_n).$

 $1 - \mathbb{P}\Big(\lim_{n \to \infty} B_n\Big) = \mathbb{P}\Big(\lim_{n \to \infty} (\Omega - B_n)\Big)$

 $= \mathbb{P}(A_1) + \lim_{n \to \infty} \sum_{i=0}^{n} {\{\mathbb{P}(A_i) - \mathbb{P}(A_{i-1})\}}$

 $= \lim_{n \to \infty} \mathbb{P}(\Omega - B_n) = 1 - \lim_{n \to \infty} \mathbb{P}(B_n).$

(2). 因为 $\{B_i\}$ 是单调减序列,所以 $\{\Omega - B_i\}$ 是单调增

 $\mathbb{P}\left(\lim B_n\right) = \lim \mathbb{P}(B_n).$

由概率公理(3)得

序列, 因此

ВP

第2讲 邓婉璐

Rov

椒寒杏汤

极速的性)

概率的连续性

作业

定理

Borel-Cantelli 引理. 设 $\{A_i\}$ 是事件列.

□ 如果

$$\sum_{j=1}^{\infty} \mathbb{P}(A_n) < \infty,$$

则 $P(\limsup A_n) = 0.$

② 如果 $\{A_i\}$ 是相互独立的,且

$$\sum_{j=1}^{\infty} \mathbb{P}(A_n) = \infty,$$

 $\mathbb{M} P(\limsup_{n \to \infty} A_n) = 1.$

小结

第2讲

邓婉璐

Review 既率空间

R率的性质 R率的连续性

小结

作业

知识点

- 概率空间(事件域、概率是一种度量)
- ●概率的性质(利用公理推演得到):有限、可列;等式、不等式;极限

技巧

- 类比熟悉的概念/技巧,理解、掌握新概念(e.g. 数列的极限、集合的极限)
- 应用 e^x 的 Taylor 展开公式进行近似
- 复杂概念/定理,找简单例子,通过逐层拆解进行理解

《初等概率论》 第 2 讲

邓婉璐

Review 概率空间 概率的性质

概率的连续性

小结

作业

- 设 $\mathscr{F}_1,\,\mathscr{F}_2$ 都是 Ω 上的事件域,验证 $\mathscr{F}_1\cap\mathscr{F}_2$ 也是 Ω 上的事件域。
- 设 $\Omega=\bigcup_{i=1}^n A_i$, 且事件 $A_i,i=1,...,n$ 互不相交,每个事件 A_i 发生的概率为正数。设 $\mathscr F$ 是包含所有 A_i 的最小事件域,问 $\mathscr F$ 中有多少个元素?
- 设 $\{A_n, n=1,2,...\}$ 是 $\mathscr F$ 中的事件列,证明:如果 $\lim_{n\to\infty}A_n$ 存在,那么 $P(\lim_{n\to\infty}A_n)=\lim_{n\to\infty}P(A_n)$.
- 证明概率的性质的第7条。任选两个不等式中的一个 (Bonferroni's inequality 或 Kounias's inequality), 进 行证明即可。

《初等概率论》 第 2 讲

邓婉璐

目录

Review

.

.

概率的连续作

小结

作业

祝大家中秋节快乐!