ИТМО

Основы электротехники

Отчёт по лабораторной работе №4 Исследование трёхфазных электрических цепей Группа Р3334 Вариант 74

Выполнил: Баянов Равиль Динарович

Дата сдачи отчёта: 12.12.2024 10.01.2025г / см. 12.01.2025г

Дата защиты: -

Контрольный срок сдачи: 04.12.2024

Количество баллов:

Содержание

Цель работы	3
- Часть 1	
Схема исследуемой цепи	
Заполненная таблица 3.1	
Расчётные формулы и расчёты	
Векторные диаграммы напряжений и токов приёмника	
Часть 2	19
Схема исследуемой цепи	19
Заполненная таблица 3.2.	
Расчётные формулы и расчёты	23
Векторные диаграммы напряжений и токов приёмника	
Выводы по работе	

Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

Часть 1

Схема исследуемой цепи

1) Схема №1

4) Схема №4

Заполненная таблица 3.1

№	Вид нагрузки		U a, B	Ub , B	Uc , B	Ia, A	Ib, A	Ic, A	Ра, Вт	Pb , BT	P c , B	U _N	$\begin{matrix} I_{Nn} \\ , \\ A \end{matrix}$	Za, Ом	Zb, Om	Zc, Ом
1	Симметричн ая нагрузка с нулевым проводом	Изм	44,84 2	44,84 1	44,84 1	0,133	0,133	0,133	4,506	4,506	4,506	0	0	335,9 12	335,9 12	335,9 12
		Выч	44,99 8	44,99 7	44,99 7	0,134	0,134	0,134	4,522	4,522	4,522	0	0			
2	Симметричная нагрузка без нулевого провода	Изм	44,89 3	44,89 2	44,89 2	0,134	0,134	0,134	4,512	4,511	4,511	0	0		335,9 12	335,9 12
		Выч	44,99 8	44,99 7	44,99 7	0,134	0,134	0,134	4,522	4,522	4,522	0	0	12		
3	Несимметри чная	Изм	44,85 6	44,85 5	44,85 5	0,200	0,134	0,400	6,753	4,508	13,50 6	0	0,240	224,0	335,9 12	112,0 40
3	нагрузка с нулевым проводом	Выч	44,99 8	44,99 7	44,99 7	0,201	0,134	0,402	6,775	4,522	13,54 9	0	0,241	. 80		
4	Несимметричн ая нагрузка без нулевого провода	Изм	51,06 8	56,21 1	30,88 2	0,228	0,167	0,276	8,729	7,059	6,384	14,73 4	0		0 335,9 12	112,0 40
4		Выч	51,08 6	56,23 1	30,89 3	0,228	0,167	0,276	8,732	7,061	6,386	14,74 0	0	80		
5	Обрыв линейного провода с нулевым проводом	Изм	44,89 9	0	44,89 8	0,200	0	0,401	6,760	0	13,51 9	0	0,347	224,0 80) ∞	112,0 40
5		Выч	44,99 8	0	44,99 7	0,201	0	0,402	6,775	0	13,54 9	0	0,348			
6	Обрыв линейного провода без нулевого провода	Изм	51,07 7	0	30,88 8	0,228	0	0,276	8,730	0	6,385	14,73 7	0	224,0	0	112,0 40
		Выч	51,08 6	0	30,89 3	0,228) o	0,276	8,732	0	6,38	14,7 4 0	0	80		
7	Короткое замыкание одной фазы нагрузки без нулевого провода	Изм	77,77 6	44,90 3	77,77 4	0,349	0,927	0,700	27,22 1	-	54,40 4	44,90 3	0			
		Выч	77,94 0	44,99 8	77,93 8	0,350	0,929	0,701	27,27 9	- (54,63 5	44,99 8	0	224,0 80	0	112,0 40

Расчётные формулы и расчёты

$$\underline{Y}_a = \frac{1}{\underline{z}_{R_a} + \underline{z}_{L_a}}$$

$$\underline{Y}_b = \frac{1}{\underline{z}_{R_b} + \underline{z}_{L_b}}$$

$$\underline{Y}_{\mathcal{C}} = \frac{1}{z_{R_{\mathcal{C}}} + z_{L_{\mathcal{C}}}}$$

$$\underline{U}_{N_n} = \frac{\underline{E}_A \underline{Y}_a + \underline{E}_B \underline{Y}_b + \underline{E}_C \underline{Y}_C}{\underline{Y}_a + \underline{Y}_b + \underline{Y}_C}$$

$$\underline{E}_A = E_A e^{j0^o}$$

$$\underline{E}_B = E_B e^{-j120^o}$$

$$\underline{E}_C = E_C e^{j120^o}$$

$$\underline{U}_a = \underline{E}_A - \underline{U}_{N_n}$$

$$\underline{U}_b = \underline{E}_B - \underline{U}_{N_n}$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}}$$

$$\underline{I}_a = \underline{U}_a * \underline{Y}_a$$

$$\underline{I}_b = \underline{U}_b * \underline{Y}_b$$

$$\underline{I}_c = \underline{U}_c * \underline{Y}_c$$

$$\underline{I}_{N_n} = \underline{I}_a + \underline{I}_b + \underline{I}_c$$

$$P_a = U_a I_a \cos \varphi_a$$

$$P_b = U_b I_b \cos \varphi_b$$

$$P_c = U_c I_c \cos \varphi_c$$

Опыт №1:

$$\underline{Y}_{a} = \frac{1}{\underline{z}_{R_{a}} + \underline{z}_{L_{a}}} = \frac{1}{252 + j\omega L_{a}} = \frac{1}{252 + j314,159 \cdot 0,707}$$
$$= 0,003e^{-j41,393^{\circ}} [\text{Om}^{-1}]$$

$$\begin{split} & \underline{Y}_b = \frac{1}{Z_{R_b} + Z_{L_b}} = \frac{1}{252 + j314,159 \cdot 0,707} = \ 0,003e^{-j41,393^{\text{ll}}} \ [\text{Om}^{-1}] \\ & \underline{Y}_c = \frac{1}{Z_{R_c} + Z_{L_c}} = \frac{1}{252 + j314,159 \cdot 0,707} = \ 0,003e^{-j41,393^{\text{ll}}} \ [\text{Om}^{-1}] \\ & \underline{U}_{N_n} = \frac{E_A Y_a + E_B Y_b + E_C Y_C}{Y_a + Y_b + Y_c} \approx \ 0 \ [\text{B}] \\ & \underline{E}_A = E_A e^{j0^o} = 44,998 \cdot e^{j0^{\text{ll}}} [\text{B}] \\ & \underline{E}_B = E_B e^{-j120^o} = 44,998 \cdot e^{-j120^{\text{ll}}} [\text{B}] \\ & \underline{E}_C = E_C e^{j120^o} = 44,998 \cdot e^{j120^{\text{ll}}} [\text{B}] \\ & \underline{U}_a = \underline{E}_A - \underline{U}_{N_n} = 44,998 \cdot e^{j120^{\text{ll}}} [\text{B}] \\ & \underline{U}_b = \underline{E}_B - \underline{U}_{N_n} = 44,998 \cdot e^{j120^{\text{ll}}} [\text{B}] \\ & \underline{U}_c = \underline{E}_C - \underline{U}_{N_n} = 44,998 \cdot e^{j120^{\text{ll}}} [\text{B}] \\ & \underline{I}_a = \underline{U}_a * \underline{Y}_a = 44,998 \cdot e^{j0^0} \cdot 0,003e^{-j41,393^{\text{ll}}} = 0,134e^{-41,393^{\text{ll}}} [\text{A}] \\ & \underline{I}_b = \underline{U}_b * \underline{Y}_b = 44,998 \cdot e^{j120^0} \cdot 0,003e^{-j41,393^{\text{ll}}} = 0,134e^{-161,393^{\text{ll}}} [\text{A}] \\ & \underline{I}_{N_n} = \underline{I}_a + \underline{I}_b + \underline{I}_c \approx 0 \ [\text{A}] \\ & \underline{I}_{N_n} = \underline{I}_a + \underline{I}_b + \underline{I}_c \approx 0 \ [\text{A}] \\ & P_a = U_a I_a \cos \varphi_a = 44,998 \cdot 0,134 \cdot \cos(-41,393^{\text{ll}}) = 4,522 [\text{BT}] \\ & P_b = U_b I_b \cos \varphi_b = 44,998 \cdot 0,134 \cdot \cos(-41,393^{\text{ll}}) = 4,522 [\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(-41,393^{\text{ll}}) = 4,522 [\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(-41,393^{\text{ll}}) = 4,522 [\text{BT}] \\ \end{aligned}$$

Опыт №2:

$$\underline{Y}_{a} = \frac{1}{\underline{z}_{R_{a}} + \underline{z}_{L_{a}}} = \frac{1}{252 + j\omega L_{a}} = \frac{1}{252 + j314,159 \cdot 0,707}$$

$$= 0,003e^{-j41,393^{\circ}} [\text{Om}^{-1}]$$

$$\underline{Y}_{b} = \frac{1}{\underline{z}_{R_{b}} + \underline{z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\circ}} [\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{z_{R_{c}} + z_{L_{c}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\circ}} [\text{Om}^{-1}]$$

$$\underline{U}_{N_{n}} = \frac{\underline{E}_{A}\underline{Y}_{a} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{C}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{C}} \approx 0 \text{ [B]}$$

$$\underline{E}_{A} = E_{A}e^{j0^{\otimes}} = 44,998 \cdot e^{j0^{\otimes}} \text{[B]}$$

$$\underline{E}_{B} = E_{B}e^{-j120^{\otimes}} = 44,998 \cdot e^{-j120^{\otimes}} \text{[B]}$$

$$\underline{E}_{C} = E_{C}e^{j120^{\otimes}} = 44,998 \cdot e^{j120^{\otimes}} \text{[B]}$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j0^{\otimes}} \text{[B]}$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 44,998 \cdot e^{-j120^{\otimes}} \text{[B]}$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{-j120^{\otimes}} \text{[B]}$$

$$\underline{I}_{a} = \underline{U}_{a} * \underline{Y}_{a} = 44,998 \cdot e^{j0^{\otimes}} \cdot 0,003e^{-j41,393^{\otimes}} = 0,134e^{-j41,393^{\otimes}} \text{[A]}$$

$$\underline{I}_{b} = \underline{U}_{b} * \underline{Y}_{b} = 44,998 \cdot e^{-j120^{\otimes}} \cdot 0,003e^{-j41,393^{\otimes}} = 0,134e^{-j161,393^{\otimes}} \text{[A]}$$

$$\underline{I}_{C} = \underline{U}_{C} * \underline{Y}_{C} = 44,998 \cdot e^{j120^{\otimes}} \cdot 0,003e^{-j41,393^{\otimes}} = 0,134e^{j78,608^{\otimes}} \text{[A]}$$

$$\underline{I}_{N_{n}} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{C} = 0 \text{[A]}$$

$$P_{a} = U_{a}I_{a}\cos\varphi_{a} = 44,998 \cdot 0,134 \cdot \cos(-41,393^{\otimes}) = 4,522 \text{[BT]}$$

$$P_{b} = U_{b}I_{b}\cos\varphi_{b} = 44,998 \cdot 0,134 \cdot \cos(-41,393^{\otimes}) = 4,522 \text{[BT]}$$

$$P_{c} = U_{c}I_{c}\cos\varphi_{c} = 44,998 \cdot 0,134 \cdot \cos(-41,393^{\otimes}) = 4,522 \text{[BT]}$$

Опыт №3:

$$\underline{Y}_{a} = \frac{1}{\underline{Z}_{R_{a}} + \underline{Z}_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0472}$$

$$= 0,004e^{-j41,433^{\circ}}[\text{Om}^{-1}]$$

$$\underline{Y}_{b} = \frac{1}{\underline{Z}_{R_{b}} + \underline{Z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\circ}}[\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{z_{R_{c}} + z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{\circ}}[\text{Om}^{-1}]$$

$$\underline{U}_{N_{n}} = \frac{\underline{E}_{A}\underline{Y}_{a} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{C}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{C}} \approx 0 \text{ [B]}$$

$$\underline{E}_{A} = E_{A}e^{j0^{\circ}} = 44,998 \cdot e^{j0^{\circ}}[\text{B]}$$

$$\underline{E}_{B} = E_{B}e^{-j120^{\circ}} = 44,998 \cdot e^{-j120^{\circ}}[\text{B]}$$

$$\underline{E}_{C} = E_{C}e^{j120^{\square}} = 44,998 \cdot e^{j120^{\square}} [B]$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j0^{\square}} [B]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 44,998 \cdot e^{-j120^{\square}} [B]$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{\square}} [B]$$

$$\underline{I}_{a} = \underline{U}_{a} \cdot \underline{Y}_{a} = 44,998 \cdot e^{j0^{\square}} \cdot 0,004e^{-j41,433^{\square}} = 0,201e^{-j41,433^{\square}} [A]$$

$$\underline{I}_{b} = \underline{U}_{b} \cdot \underline{Y}_{b} = 44,998 \cdot e^{-j120^{\square}} \cdot 0,003e^{-j41,393^{\square}} = 0,134e^{-j161,393^{\square}} [A]$$

$$\underline{I}_{c} = \underline{U}_{c} \cdot \underline{Y}_{c} = 44,998 \cdot e^{j120^{\circ}} \cdot 0,009e^{-j41,433^{\square}} = 0,402e^{j78,568^{\square}} [A]$$

$$\underline{I}_{N_{n}} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 0,201e^{-j41,433^{\square}} + 0,134e^{-j161,393^{\square}} + 0,402e^{j78,568^{\square}}$$

$$= 0,241e^{j64,668^{\square}} [A]$$

$$P_{a} = U_{a}I_{a} \cos \varphi_{a} = 44,998 \cdot 0,201 \cdot \cos(-41,433^{\square}) = 6,775[BT]$$

$$P_{b} = U_{b}I_{b} \cos \varphi_{b} = 44,998 \cdot 0,134 \cdot \cos(-41,393^{\square}) = 4,522[BT]$$

$$P_{c} = U_{c}I_{c} \cos \varphi_{c} = 44,998 \cdot 0,402 \cdot \cos(-41,433^{\square}) = 13,549[BT]$$

Опыт №4:

$$\begin{split} \underline{Y}_{a} &= \frac{1}{\underline{Z}_{R_{a}} + \underline{Z}_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0,472} \\ &= 0,004e^{-j41,433^{\text{ll}}}[\text{Om}^{-1}] \\ \underline{Y}_{b} &= \frac{1}{\underline{Z}_{R_{b}} + \underline{Z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\text{ll}}}[\text{Om}^{-1}] \\ \underline{Y}_{c} &= \frac{1}{Z_{R_{c}} + Z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{\text{ll}}}[\text{Om}^{-1}] \\ \underline{U}_{N_{n}} &= \frac{\underline{E}_{A}Y_{a} + \underline{E}_{B}Y_{b} + \underline{E}_{C}Y_{c}}{Y_{a} + Y_{b} + Y_{c}} = \\ &= \frac{44,998(e^{j0^{\text{ll}}} \cdot 0,004e^{-j41,433^{\text{ll}}} + e^{-j120^{\text{ll}}} \cdot 0,003e^{-j41,393^{\text{ll}}} + e^{j120^{\text{ll}}} \cdot 0,009e^{-j41,433^{\text{ll}}}) \\ &= 14,740e^{j106,094^{\text{ll}}}[\text{B}] \\ \underline{E}_{A} &= E_{A}e^{j0^{\text{ll}}} = 44,998 \cdot e^{j0^{\text{ll}}}[\text{B}] \\ \underline{E}_{B} &= E_{B}e^{-j120^{\text{ll}}} = 44,998 \cdot e^{j120^{\text{ll}}}[\text{B}] \\ \underline{E}_{C} &= E_{C}e^{j120^{\text{ll}}} = 44,998 \cdot e^{j120^{\text{ll}}}[\text{B}] \end{split}$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j0^{\circ}} - 14,740e^{j106,094^{\circ}} = 51,086e^{-j16,094^{\circ}} [B]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 44,998 \cdot e^{-j120^{\circ}} - 14,740e^{j106,094^{\circ}} = 56,231e^{-j109,114^{\circ}} [B]$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{\circ}} - 14,740e^{j106,094^{\circ}} = 30,893e^{j126,585^{\circ}} [B]$$

$$\underline{I}_{a} = \underline{U}_{a} \cdot \underline{Y}_{a} = 51,086e^{-j16,094^{\circ}} \cdot 0,004e^{-j41,433^{\circ}} = 0,228e^{-j57,527^{\circ}} [A]$$

$$\underline{I}_{b} = \underline{U}_{b} \cdot \underline{Y}_{b} = 56,231e^{-j109,114^{\circ}} \cdot 0,003e^{-j41,393^{\circ}} = 0,167e^{-j150,507^{\circ}} [A]$$

$$\underline{I}_{c} = \underline{U}_{c} \cdot \underline{Y}_{c} = 30,893e^{j126,585^{\circ}} \cdot 0,009e^{-j41,433^{\circ}} = 0,276e^{j85,153^{\circ}} [A]$$

$$\underline{I}_{N_{n}} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 0[A]$$

$$P_{a} = U_{a}I_{a}\cos\varphi_{a} = 51,086 \cdot 0,228 \cdot \cos(-41,433^{\circ}) = 8,732 [BT]$$

$$P_{b} = U_{b}I_{b}\cos\varphi_{b} = 56,231 \cdot 0,167 \cdot \cos(-41,433^{\circ}) = 7,061 [BT]$$

$$P_{c} = U_{c}I_{c}\cos\varphi_{c} = 30,893 \cdot 0,276 \cdot \cos(-41,433^{\circ}) = 6,386 [BT]$$

Опыт №5:

$$\underline{Y}_{a} = \frac{1}{\underline{Z}_{R_{a}} + \underline{Z}_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0,472}$$

$$= 0,004e^{-j41,433^{\circ}} [\text{Om}^{-1}]$$

$$\underline{Y}_{b} = \frac{1}{\underline{Z}_{R_{b}} + \underline{Z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = \infty [\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{Z_{R_{c}} + Z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{\circ}} [\text{Om}^{-1}]$$

$$\underline{U}_{N_{n}} = \frac{\underline{E}_{A}\underline{Y}_{a} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{C}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}} \approx 0 \text{ [BT]}$$

$$\underline{E}_{A} = E_{A}e^{j0^{\circ}} = 44,998 \cdot e^{j0^{\circ}} [\text{BT}]$$

$$\underline{E}_{B} = E_{B}e^{-j120^{\circ}} = 44,998 \cdot e^{j120^{\circ}} [\text{BT}]$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j0^{\circ}} [\text{BT}]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 0 [\text{BT}]$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{\circ}} [\text{BT}]$$

$$\underline{I}_{a} = \underline{U}_{a} \cdot \underline{Y}_{a} = 44,998 \cdot e^{j0^{\square}} \cdot 0,004e^{-j41,433^{\square}} = 0,201e^{(-j41,433^{\square})}[A]$$

$$\underline{I}_{b} = \underline{U}_{b} \cdot \underline{Y}_{b} = 0 \cdot 0,003e^{-j41,393^{\square}} = 0 [A]$$

$$\underline{I}_{c} = \underline{U}_{c} \cdot \underline{Y}_{c} = 44,998 \cdot e^{j120^{\square}} \cdot 0,009e^{-j41,433^{\square}} = 0,402e^{j78,568^{\square}}[A]$$

$$\underline{I}_{N_{n}} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 0,201e^{(-j41,433^{\square})} + 0 + 0,402e^{j78,568^{\square}}$$

$$= 0,348e^{j48,567^{\square}}[A]$$

$$P_{a} = U_{a}I_{a}\cos\varphi_{a} = 44,998 \cdot 0,201 \cdot \cos(-41,433^{\square}) = 6,775 [BT]$$

$$P_{b} = U_{b}I_{b}\cos\varphi_{b} = 0 [BT]$$

$$P_{c} = U_{c}I_{c}\cos\varphi_{c} = 44,998 \cdot 0,402 \cdot \cos(-41,433^{\square}) = 13,549 [BT]$$

OHET Ne6:
$$\underline{Y}_{a} = \frac{1}{\underline{Z}_{R_{a}} + \underline{Z}_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0,472} = 0,004e^{-j41,433^{\circll}} [\text{Om}^{-1}]$$

$$\underline{Y}_{b} = \frac{1}{\underline{Z}_{R_{b}} + \underline{Z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = \infty [\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{Z_{R_{c}} + Z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{\circll}} [\text{Om}^{-1}]$$

$$\underline{U}_{N_{n}} = \frac{\underline{E}_{A}\underline{Y}_{a} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{c}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}} = \frac{44,998(e^{j0^{\circll}} \cdot 0,004e^{-j41,433^{\circll}} + e^{j120^{\circll}} \cdot 0,009e^{-j41,433^{\circll}})}{0,004e^{-j41,433^{\circll}} + 0,009e^{-j41,433^{\circll}}} = 25,979e^{j90^{\circll}} [B]$$

$$\underline{E}_{A} = E_{A}e^{j0^{\circll}} = 44,998 \cdot e^{j0^{\circll}} [B]$$

$$\underline{E}_{B} = E_{B}e^{-j120^{\circll}} = 44,998 \cdot e^{j120^{\circll}} [B]$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{\circll}} - 25,979e^{j90^{\circll}} = 51,959e^{-j29,999^{\circll}} [B]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 0 [B]$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{\circll}} - 25,979e^{j90^{\circll}} = 25,979e^{150,001^{\circll}} [B]$$

$$\underline{I}_{a} = \underline{U}_{a} \cdot \underline{Y}_{a} = 51,959e^{-j29,999^{\circll}} \cdot 0,004e^{-j41,433^{\circll}} = 0,232e^{-j71,432^{\circll}} [A]$$

$$\underline{I}_{b} = \underline{U}_{b} \cdot \underline{Y}_{b} = 0 [A]$$

 $I_c = U_c \cdot Y_c = 25,979e^{150,001^{\circ}} \cdot 0,009e^{-j41,433^{\circ}} = 0,232e^{j108,568^{\circ}}$ [A]

$$\begin{split} \underline{I_{N_n}} &= \underline{I_a} + \underline{I_b} + \underline{I_c} = 0 \text{ [A]} \\ P_a &= U_a I_a \cos \varphi_a = 51,959 \cdot 0,232 \cdot \cos(-41,433) = 9,033 \text{ [BT]} \\ P_b &= U_b I_b \cos \varphi_b = 0 \text{ [BT]} \\ P_c &= U_c I_c \cos \varphi_c = 25,979 \cdot 0,232 \cdot \cos(-41,433) = 4,516 \text{[BT]} \end{split}$$

Добавляйте расчет для опыта 7

Векторные диаграммы напряжений и токов приёмника

1.

2.

4.

5.

Часть 2

Схема исследуемой цепи

1) Схема №1

Схема №2

Заполненная таблица 3.2

№	Вид нагрузки		Ia, A	Ib, A	Ic, A	Iab, A	Ibc, A	Ica, A	Pab, Вт	Pbc, Вт	Рса, Вт	Zab, Ом	Zbc, Ом	Zca, Ом
		Изм	0,401	0,402	0,402	0,232	0,232	0,232	13,064	13,063	13,064	335,91 2	335,91 2	335,91
1	Симметричная нагрузка	Выч	0,402	0,402	0,402	0,232	0,232	0,232	13,064	13,063	13,064	335,91 2	335,91 2	335,91
		Изм	0,917	0,505	0,836	0,348	0,232	0,696	19,603	13,063	39,206	224,08 0	335,91 2	112,04 0
2	Несимметричная нагрузка	Выч	0,920	0,505	0,836	0,348	0,232	0,696	19,603	13,063	39,206	224,08 0	335,91 2	112,04 0
		Изм	0,915	0,348	0,696	0,348	0,000	0,696	19,603	0	39,206	224,08 0	335,91 2	112,04 0
3	Обрыв одной фазы нагрузки	Выч	0,920	0,348	0,696	0,348	0,000	0,696	19,603	0	39,206	224,08 0	335,91 2	112,04 0
		Изм	0,345	0,348	0,000	0,348	0,000	0,000	19,603	0	0	224,08 0	335,91 2	112,04 0
4	Обрыв двух фаз нагрузки	Выч	0,348	0,348	0,000	0,348	0,000	0,000	19,603	0	0	224,08 0	335,91 2	112,04 0
	Обрыв	Изм	0,000	0,350	0,350	0,116	0,232	0,116	3,775	13,063	6,538	224,08 0	335,91 2	112,04 0
5	линейного провода с симметричной нагрузкой	Выч	0,000	0,350	0,350	0,116	0,232	0,116	3,775	13,063	6,538	224,08 0	335,91 2	112,04
	Обрыв	Изм	0,832	0,000	0,836	0,139	0,139	0,696	7,834	7,826	39,206	224,08 0	335,91 2	112,04 0
6	линейного провода с несимметрично й нагрузкой	Выч	0,833	0,000	0,836	0,139	0,139	0,696	7,834	7,826	39,206	224,08	335,91 2	112,04 0

Расчётные формулы и расчёты

$$\underline{U}_{ab} = \underline{E}_A - \underline{E}_B \\
\underline{U}_{bc} = \underline{E}_B - \underline{E}_C \\
\underline{U}_{ca} = \underline{E}_C - \underline{E}_A \\
\underline{I}_{ab} = \underline{U}_{ab}\underline{Y}_{ab} \\
\underline{I}_{bc} = \underline{U}_{bc}\underline{Y}_{bc} \\
\underline{I}_{ca} = \underline{U}_{ca}\underline{Y}_{ca} \\
\underline{I}_A = \underline{I}_{ab} - \underline{I}_{ca}$$

Опыт №1:

 $I_B = I_{bc} - I_{ab}$

 $I_C = I_{ca} - I_{bc}$

$$\begin{split} \underline{Y}_{a} &= \frac{1}{\underline{z}_{R_{a}} + \underline{z}_{L_{a}}} = \frac{1}{252 + j\omega L_{a}} = \frac{1}{252 + j314,159 \cdot 0,707} \\ &= 0,003e^{-j41,393^{\text{\tiny \square}}} [\text{Om}^{-1}] \\ \underline{Y}_{b} &= \frac{1}{\underline{z}_{R_{b}} + \underline{z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\text{\tiny \square}}} [\text{Om}^{-1}] \\ \underline{Y}_{c} &= \frac{1}{z_{R_{c}} + z_{L_{c}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\text{\tiny \square}}} [\text{Om}^{-1}] \\ \underline{E}_{A} &= E_{A}e^{j0^{\text{\tiny \square}}} = 44,998 \cdot e^{j0^{\text{\tiny \square}}} [\text{B}] \\ \underline{E}_{B} &= E_{B}e^{-j120^{\text{\tiny \square}}} = 44,998 \cdot e^{-j120^{\text{\tiny \square}}} [\text{B}] \\ \underline{E}_{C} &= E_{C}e^{j120^{\text{\tiny \square}}} = 44,998 \cdot e^{j120^{\text{\tiny \square}}} [\text{B}] \\ \underline{U}_{ab} &= \underline{E}_{A} - \underline{E}_{B} = 44,998 \cdot e^{j0^{\text{\tiny \square}}} - 44,998 \cdot e^{-j120^{\text{\tiny \square}}} = 77,938e^{j30^{\text{\tiny \square}}} \\ \underline{U}_{bc} &= \underline{E}_{C} - \underline{E}_{A} = 44,998 \cdot e^{j120^{\text{\tiny \square}}} - 44,998 \cdot e^{j120^{\text{\tiny \square}}} = 77,938e^{j30^{\text{\tiny \square}}} \\ \underline{U}_{ab} &= \underline{U}_{ab}\underline{Y}_{ab} = 77,938e^{j30^{\text{\tiny \square}}} \cdot 0,003e^{-j41,393^{\text{\tiny \square}}} = 0,232e^{-j131,393^{\text{\tiny \square}}} [\text{A}] \\ \underline{I}_{bc} &= \underline{U}_{bc}Y_{bc} &= 77,938e^{j30^{\text{\tiny \square}}} \cdot 0,003e^{-j41,393^{\text{\tiny \square}}} = 0,232e^{-j131,393^{\text{\tiny \square}}} [\text{A}] \end{split}$$

$$\underline{I}_{ca} = \underline{U}_{ca}\underline{Y}_{ca} = 77,938e^{j30^{\circ}} \cdot 0,003e^{-j41,393^{\circ}} = 0,232e^{j108,608^{\circ}} [A]$$

$$\underline{I}_{A} = \underline{I}_{ab} - \underline{I}_{ca} = 0,232e^{-j11,393^{\circ}} - 0,232e^{j108,608^{\circ}} = 0,402e^{-j41,393^{\circ}} [A]$$

$$\underline{I}_{B} = \underline{I}_{bc} - \underline{I}_{ab} = 0,232e^{-j131,393^{\circ}} - 0,232e^{-j11,393^{\circ}} = 0,402e^{-j161,393^{\circ}} [A]$$

$$\underline{I}_{C} = \underline{I}_{ca} - \underline{I}_{bc} = 0,232e^{j108,608^{\circ}} - 0,232e^{-j131,393^{\circ}} = 0,402e^{j78,608^{\circ}} [A]$$

Векторные диаграммы напряжений и токов приёмника

Все диаграммы построены для токов источников, а не приемников!

1.

2.

4.

5.

Выводы по работе

Выполнив данную лабораторную работу, мы узнали принцип работы трёхфазных электрических цепей. Выяснили как соотносятся между собой значения элементов цепи со способом соединения трёхфазной цепи и с равномерной, и неравномерной нагрузкой и с наличием и отсутствием нулевого провода. Заметим, что наличие нулевого провода балансирует напряжения на фазах в независимости от того какой ток протекает в этих фазах.