HL1 Assignment #18

1. Write the set $\{x \in \mathbb{R} \mid |x+2| < 3\}$ in interval notation.

2. Without the calculator solve $\sin 2x = \cos x$ for $x \in [-2\pi, 2\pi]$.

$$X = \frac{2}{4} \text{ or } \frac{5}{2} \text{ if } 7 \text{ full}$$

$$X = \frac{2}{4} \text{ or } \frac{5}{2} \text{ if } 7 \text{ full}$$

$$2 \text{ if } \sqrt{x} = \frac{7}{4}$$

3. The stem and leaf diagram shows the IQ scores for a class of elementary students.

Stem	Leaf	
9	3 8	2
10	2 5 8	3
11	1 3 3 6 7 8	٦
12	2555678	7
13	3 4 4 9	Y
14	2 4	2
15	1 Scale:	$9 \mid 3 = 93$

Calculate the mean IQ for the class.

4. Solve
$$3\log_2 x - 6\log_x 2 = 7$$
.

Let
$$\log_2 x = a$$
.
 $3a - \frac{b}{a} = 7$
 $3a^2 - 7a - b = 0$
 $(3a + 2)(a - 3) = 0$
 $a_1 = -\frac{7}{3}$
 $a_2 = 3$
 $x_1 = 2^{-\frac{7}{3}} = \frac{1}{34}$

x1= 23 = 8

5. Find the equation of the normal to the curve
$$y = x^3 + x^2 + x + 1$$
 at the point where $x = -1$.

$$f'(x) = 3x^{2} + 2x + 1$$

$$f'(x) = 3 - 2 + 1 = 2$$

$$\vdots \quad (x) = -\frac{1}{2}x + b,$$

$$(-1, 0)$$

$$\frac{1}{2} + b = 0$$

$$b = -\frac{1}{2}$$

$$\vdots \quad (x) = -\frac{1}{2}x - \frac{1}{2}$$

6. Write the series
$$1 \cdot 2 - 4 \cdot 5 + 7 \cdot 8 - 10 \cdot 11 + 13 \cdot 14 - \dots - 100 \cdot 101$$
 in sigma notation.

$$\sum_{i=0}^{33} (-1)^{i} (3n+1) (3n+2) \checkmark$$

7. Find the derivative of the function $f(x) = \frac{1}{\sqrt{x}}$ from first principles.

$$f(x) = \frac{1}{\sqrt{1}x}$$

$$f'(x) = \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1}x + h} - \frac{1}{\sqrt{1}x + h}$$

8. Prove
$$\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$
.

$$tan3\theta = tan(\theta+2\theta)$$

$$= tan \theta + tan2\theta$$

$$= tan \theta + \frac{2tan \theta}{1-tan^2 \theta}$$

$$= tan \theta - tan^2 \theta + \frac{2tan \theta}{1-tan^2 \theta}$$

$$= \frac{tan \theta - tan^2 \theta + 2tan \theta}{1-tan^2 \theta}$$

$$= \frac{3tan \theta - tan^2 \theta}{1-3tan^2 \theta}$$

9. Use the above result to show that the roots of the equation $t^3 - 3t^2 - 3t + 1 = 0$ are $\tan \alpha$, $\tan 5\alpha$ and $\tan 9\alpha$ where α is to be determined.

and tantz, tan 12, tan 12 are the three rests of the whice equation.

 $\frac{1}{1}\theta = \frac{\pi}{12}$

we have:

50 tan 3 0=1

Solutions to HL1 Assignment #18

1.
$$]-5,1[$$

2.
$$2\sin x\cos x - \cos x = 0$$
, whence $\cos x = 0$ or $\sin x = \frac{1}{2}$. Hence $x = -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, -\frac{11\pi}{6}, -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}$.

4. Letting
$$u = \log_2 x$$
 we have $3u - \frac{6}{u} = 7$, whence $3u^2 - 7u - 6 = 0$. So $\log_2 x = -\frac{2}{3}$ or $\log_2 x = 3$. Hence $x = 0.630 \, (3 \text{ s.f.})$ or $x = 8$.

5. Here
$$y' = 3x^2 + 2x + 1$$
. So $y'(-1) = 2$ and $m_N = -\frac{1}{2}$. Hence $N: y - 0 = -\frac{1}{2}(x+1)$.

6.
$$\sum_{n=0}^{33} (-1)^n (3n+1)(3n+2)$$

7.
$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h} = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}$$
. Rationalizing the numerator gives

$$f'(x) = \lim_{h \to 0} \frac{-1}{\sqrt{x}\sqrt{x+h}\left(\sqrt{x}+\sqrt{x+h}\right)},$$

whence
$$f'(x) = \frac{-1}{2x\sqrt{x}} = -\frac{1}{2}x^{-3/2}$$
.

8.
$$\tan 3\theta = \tan(\theta + 2\theta) = \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta}$$
. Letting $t = \tan \theta$ gives

$$\tan 3\theta = \frac{t + \frac{2t}{1 - t^2}}{1 - \frac{2t^2}{1 - t^2}} = \frac{3t - t^3}{1 - 3t^2},$$

as required.

9. Using the above result with
$$\tan 3\theta = 1$$
 gives $3t - t^3 = 1 - 3t^2$ or $t^3 - 3t^2 - 3t + 1 = 0$. So the solutions to the given equation are the solutions to $\tan 3\theta = 1$, whence $t = \tan \alpha$, $\tan 5\alpha$, $\tan 9\alpha$ where $\alpha = \frac{\pi}{12}$.

10.
$$n(P' \cap R' \cap N') = 7! - n(P \cup R \cup N) = 7! - (3 \cdot 6! - 3 \cdot 5! + 4!) = 3216.$$