Sample Questions

Computer Engineering / Artificial Intelligence and Data Science / Artificial Intelligence and Machine Learning / Computer Science and Engineering (Artificial Intelligence and Machine Learning) / Computer Science and Engineering (Data Science) / Computer Science and Engineering (Internet of Things and Cyber Security Including Block Chain Technology) / Cyber Security / Data Engineering / Internet of Things (IoT)

Subject Name: Engineering Mathematics IV

Semester: IV

Multiple Choice Questions

	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	The region of rejection of the null hypothesis H0 is known as	
Option A:	Critical region	
Option B:	Favourable region	
Option C:	Domain	
Option D:	Confidence region	
2.	Sample of two types of electric bulbs were tested for length of life and the following	
	data were obtained	
	Size Mean SD	
	Sample 1 8 1234 h 36 h	
	Sample 2 7 1036 h 40 h	
	The absolute value of test statistic in testing the significance of difference between	
	means is	
Option A:	t=10.77	
Option B:	t=9.39	
Option C:	t=8.5	
Option D:	t=6.95	
_		
3.	If X is a poisson variate such that $PX=1=PX=2$, then $P(X=3)$ is	
Option A:	4e23	
Option B:	4e2	
Option C:	43e2	
Option D:	4e2	
_		
4.	If A=1 0 0 0 0 2 0 0 3 , Then following is not the eigenvalue of adj A.	
Option A:	6	
Option B:	2	

Option C:	4
Option D:	3
· · · · · · · · · · · · · · · · · · ·	
5.	For the matrix 2 -1 1 1 1 2 -1 -1 2 the eigenvector corresponding to the distinct
	eigenvalue λ=2 is
Option A:	111
Option B:	-111
Option C:	211
Option D:	121
6.	The necessary and sufficient condition for a square matrix to be diagonalizable is
0.	that for each of it's eigenvalue
Option A:	algebraic multiplicity > geometric multiplicity
Option B:	algebraic multiplicity = geometric multiplicity
Option C:	algebraic multiplicity < geometric multiplicity
Option D:	algebraic multiplicity geometric multiplicity
option D.	argeorate manipherty geometre manipherty
7.	If the characteristic equation of a matrix A of order 3×3 is $3-72+11\lambda-5=0$, then
	by the Cayley-Hamilton theorem A-1 is equal to
Option A:	15(A3-7A2+11A)
Option B:	15(A2+7A+11I)
Option C:	15(A3+7A2+11A)
Option D:	15(A2-7A+11I)
8.	Value of an integral 01 Liv? judg along the nath y=v? is
Option A:	Value of an integral 01+ix2-iydz along the path y=x2 is 56-i6
Option B:	-56-i6
Option C:	56+i6
Option D:	-56+i6
9.	Integral 5z2+7z+1z+1 dz along a circle z=12is equal to
9.	integral 322+72+12+1 uz along a circle 2-1218 equal to
Option A:	1
Option B:	-1
Option C:	3/2
Option D:	0
10	Analysis function gots armonded as a Largest social if the gotion of the
10.	Analytic function gets expanded as a Laurent series if the region of convergence
Onting A	18
Option A:	rectangular
Option B:	triangular
Option C:	circular
Option D:	annular

11.	Residue of $fz=z2z+12(z-2)$ at a pole $z=2$ is	
Option A:	4/9	
Option B:	2/9	
Option C:	1/2	
Option D:	0	
10		
12.	z-transform of an unit impulse function $k=1$, at $k=0$ 0, otherwise is	
Option A:		
Option B:		
Option C:	-1	
Option D:	k	
13.	zsin $(3k+5)$, $k \ge 0$ is	
Option A:	z2sin 2-zsin 5 z2-2zcos 3+1	
Option B:	z2sin 5+zsin 2 z2-2zcos 3+1	
Option C:	z2sin 5-zsin 2 z2-2zcos 3+1	
Option D:	z2sin 2+zsin 5 z2-2zcos 3+1	
o process	22011 2 2011 2 22000 2 1	
14.	The inverse z-transform of fz=zz-1z-2 ,z>2 is	
Option A:	2k-2	
Option B:	2k-1	
Option C:	2k+1	
Option D:	2k+2	
15.	If the basic solution of LPP is $x=1$, $y=0$ then the solution is	
Option A:	Feasible and non-Degenerate	
Option B:	Non-Feasible and Degenerate	
Option C:	Feasible and Degenerate	
Option D:	Non-Feasible and non-Degenerate	
16.	If the primal LPP has an unbounded solution then the dual has	
Option A:	Unbounded solution	
Option B:	Bounded solution	
Option C:	Feasible solution	
Option D:	Infeasible solution	
17.	Dual of the following LPP is	
	Maximize $z=2x1+9x2+11x3$	
	Subject to $x1-x2+x3 \ge 3 -3x1+2x3 \le 1 \ 2x1+x2-5x3=1$	
	x1,x2,x3≥0	
Option A:	Minimize $w=-3y1+y2+y'$	
	Subject to $-y1-3y2+2y' \ge 2 \ y1+y' \ge 9 \ -y1+2y2-5y' \ge 11$	
	y1,y2≥0, y' unrestricted	

Option B:	Minimize w=-3y1+y2+y3	
1	Subject to $-y1-3y2+2y3 \ge 2 \ y1+y3 \ge 9 \ -y1+2y2-5y3 \ge 11$	
	y1,y2,y3≥0	
Option C:		
o passa o s	Subject to $-y1-3y2+2y' \ge 3 \ y1+y' \ge 1 \ -y1+2y2-5y' \ge 1$	
	$y1,y2 \ge 0$, y' unrestricted	
Option D:	Minimize w=2y1+9y2+11y3	
Option D.	Subject to $-y1-3y2+2y3 \ge 3 \ y1+y3 \ge 1 \ -y1+2y2-5y3 \ge 1$	
	$y1,y2 \ge 0$, y' unrestricted	
	y 1, y 2 = 0, y am estreted	
10		
18.	Consider the NLPP:	
	Maximize $z=f(x_1,x_2)$, subject to the constraint $h=gx_1,x_2-b \le 0$.	
	Let L=f-λg, then the Kuhn-Tucker conditions are	
Option A:	$\partial Lx1 \ge 0$, $\partial Lx2 \ge 0$, $\lambda h \ge 0$, $h \ge 0$, $\lambda \ge 0$	
Option B:	$\partial Lx1=0$, $\partial Lx2=0$, $\lambda h=0$, $h\leq 0$, $\lambda \geq 0$	
Option C:	$\partial Lx1=0$, $\partial Lx2=0$, $\lambda h\geq 0$, $h\leq 0$, $\lambda \leq 0$	
Option D:	$\partial Lx1 \ge 0$, $\partial Lx2 \ge 0$, $\lambda h \ge 0$, $h \ge 0$, $\lambda = 0$	
19.	In a non-linear programming problem,	
Option A:	All the constraints should be linear	
Option B:	All the constraints should be non-linear	
Option C:	Either the objective function or atleast one of the constraints should be non-linear	
Option D:	The objective function and all constraints should be linear.	
20.	Pick the non-linear constraint	
Option A:	xy+y≥7	
Option B:	2x-y≤5	
Option C:	x+y≤6	
Option D:	x+2y=9	
21.	$A = \begin{bmatrix} 2 & 3 \end{bmatrix}$	
	The Eigen values of adjA where $\begin{bmatrix} A = \\ 0 \\ 1 \end{bmatrix}$	
Option A:	1, 1	
Option B:	1, 2	
Option C:	3, 4	
Option D:	2,5	
22.	If the algebraic multiplicity 't' of λ is equal to the geometric multiplicity 's', then	
	the matrix is	
Option A:	Orthogonal	
Option B:	Symmetric	
Option C:	Diagonalizable	
Option D:	None of these	

23.	[8 -6 2]
	$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ The product of eigen values for
	$A = \begin{bmatrix} -6 & 7 & -4 \end{bmatrix}$
	The product of eigen values for $\begin{bmatrix} 2 & -4 & 3 \end{bmatrix}$ is
Option A:	4
Option B:	0
Option C:	-5
Option D:	3
24.	T
	Two of the eigen values of a 3×3 matrix are -1 , 2. If the determinant of the matrix is 4, then its third eigen value is
Option A:	2
Option B:	-2
Option C:	7
Option D:	5
25	
25.	The value of the sample statistic which separates the regions of acceptance and
Ontion A:	rejection, is called the Accepted value
Option A: Option B:	Critical value
Option C:	Rejected Value
Option C:	Separated value
Option D.	Separated varie
26	- 0.05
26.	The table value of Z at $\alpha = 0.05$ is
Option A:	$Z_{\alpha} = 1.96$
Option B:	$Z_{\alpha} = 2.58$
Option C:	$Z_{\alpha} = 2.145$
Option D:	$Z_{\alpha} = 1.254$
1	
27.	If a random variable X follows Poisson distribution such that
	P(X = 1) = 2P(X = 2), the mean and the variance of the distribution is
Option A:	7
Option B:	4
Option C:	-1
Option D:	1
28.	$f(z) = \frac{\sin z}{z}$ The function $f(z) = \frac{\sin z}{z}$ has the singularity at $z = 0$ is of the type
	The function $f(z) = \frac{z}{z}$ has the singularity at $z = 0$ is of the type
Option A:	Non isolated singularity
Option B:	Isolated singularity
Option C:	Removable singularity
Option D:	Isolated essential singularity

29.	c = z+3
	Evaluate $\int_{C} \frac{z+3}{(z+8)(z+5)} dz$ where c is the circle z=2
Option A:	1
Option B:	I 2-:
Option C:	2πi 0
Option D:	
30.	$f(z) = \frac{1}{z}$
	Pole of $f(z) = \frac{1}{(z-3)^2(z-2)^3}$
Option A:	z = 3 pole of order 2 and $z = 2$ pole of order 3
Option B:	z = 3 and $z = 2$ are simple pole
Option C:	z = -3 pole of order 2 and $z = -2$ pole of order 3
Option D:	z = -3 and $z = -2$ are simple pole
1	
31.	$f(z) \equiv \frac{z-1}{z-1}$
	The analytic function $f(z) = \frac{z-1}{z^2+1}$ has singularity at
Option A:	1 and -1
Option B:	1 and i
Option C:	1 and $-i$
Option D:	i and $-i$
32.	$\begin{pmatrix} 1 & k > 0 \end{pmatrix}$
32.	$U(k) = \begin{cases} 1, & k \geq 0 \\ 0, & k \geq 0 \end{cases}$
	The Z- transform of Discrete Unit Step function $U(k) = \begin{cases} 1, & k \ge 0 \\ 0, & k < 0 \end{cases}$ is given by
Option A:	$Z\{U(k)\} = \frac{Z}{k}$
	$Z\{U(k)\} = \frac{z}{z-1}, k \ge 0$
Option B:	$Z(U(k)) = \frac{Z}{2}$
	$Z\{U(k)\} = \frac{z}{z+1}, k \ge 0$ $Z\{U(k)\} = \frac{z^2+1}{z}, k \ge 0$ $Z\{U(k)\} = \frac{z}{z^2+1}, k \ge 0$
Option C:	z^2+1
	$Z\{U(k)\} = \frac{1}{z}$ $k \ge 0$
Option D:	- , ·· - ·
option 2.	$ Z\{U(k)\} = \frac{z}{z^2 + 1}$ $k > 0$
	2 T1, N = 0
33.	Find the Z- transform of $fk = ak$, $k \ge 0$
Option A:	zz+a
Option B:	11-az
Option C:	11+az
Option D:	zz-a
i	,

Option A: $a^k F(z/a)$ Option B: $\frac{d}{dz}\{f(z)\}$ Option C: $F(z/a)$ Option D: $z^{-a}F(z/a)$ 35. For a maximizing LPP, during the simplex method, the criteria for a variable to enter into the basis is Option A: Minimum ratio test Option B: Maximum ratio test Option D: Maximum deviation entry Option D: Maximum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: If involves dual variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option B: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the pivot number. Option C: dividing every number in the pivot row by the pivot number. Option C: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	34.	If $Z\{f(k)\}=F(z)$ then $Z\{a^k f(k)\}$ is
Option B: $\frac{d}{dz} \{f(z)\}$ Option C: $F[z'_a]$ Option D: $Z^{-n}F[a'_z]$ 35. For a maximizing LPP, during the simplex method, the criteria for a variable to enter into the basis is Option A: Minimum ratio test Option B: Maximum ratio test Option D: Maximum deviation entry Option D: Maximum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option B: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option A:	$a^k F\left(\frac{z}{a}\right)$
35. For a maximizing LPP, during the simplex method, the criteria for a variable to enter into the basis is Option A: Minimum ratio test Option C: Maximum ratio test Option D: Maximum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$	Option B:	$\frac{d}{dz}\{f(z)\}$
35. For a maximizing LPP, during the simplex method, the criteria for a variable to enter into the basis is Option A: Minimum ratio test Option C: Maximum ratio test Option D: Maximum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$	Option C:	F(z/a)
enter into the basis is Option A: Minimum ratio test Option B: Maximum ratio test Option D: Minimum deviation entry Option D: Maximum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option D:	$Z^{-n}F\left\langle a/z\right\rangle$
enter into the basis is Option A: Minimum ratio test Option B: Maximum ratio test Option D: Minimum deviation entry Option D: Maximum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is		
Option B: Maximum ratio test Option C: Minimum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the profit row by the corresponding number in the profit row. Option C: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	35.	
Option C: Minimum deviation entry Option D: Maximum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option A:	Minimum ratio test
Option D: Maximum deviation entry 36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option B:	Maximum ratio test
36. The advantage of dual simplex algorithm is that Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the pivot row by the pivot number. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option C:	Minimum deviation entry
Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: Option A: Option B: dividing every number in the profit row by the pivot number. Option C: dividing every number in the pivot row by the corresponding number in the profit row. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option D:	Maximum deviation entry
Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: Option A: Option B: dividing every number in the profit row by the pivot number. Option C: dividing every number in the pivot row by the corresponding number in the profit row. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is		
Option A: It starts with a basic feasible solution Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: Option A: Option B: dividing every number in the profit row by the pivot number. Option C: dividing every number in the pivot row by the corresponding number in the profit row. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	36	The advantage of dual simpley algorithm is that
Option B: It involves artificial variable Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the pivot row by the pivot number. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is		i i
Option C: It does not involve artificial variable Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the pivot row by the pivot number. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is		
Option D: It involves dual variables 37. In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the pivot row by the pivot number. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	-	
Option A: In a Simplex table, the pivot row is computed by Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the pivot row by the pivot number. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$	_	
Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the pivot row by the pivot number. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is		
Option A: dividing every number in the profit row by the pivot number. Option B: dividing every number in the pivot row by the corresponding number in the profit row. Option C: dividing every number in the pivot row by the pivot number. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	37.	In a Simplex table, the pivot row is computed by
Option C: dividing every number in the pivot row by the pivot number. Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option A:	dividing every number in the profit row by the pivot number.
Option D: dividing every number in the net profit row by the corresponding number in the gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option B:	
gross profit row. 38. The value of Lagrange's multiplier λ for the following NLPP is Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option C:	dividing every number in the pivot row by the pivot number.
Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$	Option D:	
Optimize $z = 6x_1^2 + 5x_2^2$ Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$		
Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	38.	The value of Lagrange's multiplier λ for the following NLPP is
Subject to $x_1 + 5x_2 = 7$ $x_1, x_2 \ge 0$ Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is		Optimize $z = 6x_1^2 + 5x_2^2$
Option A: $\lambda = 31/84$ Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is		Subject to $x_1 + 5x_2 = 7$
Option B: $\lambda = 84/31$ Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is		
Option C: $\lambda = 13/74$ Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option A:	$\lambda = 31/84$
Option D: $\lambda = 31/64$ 39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option B:	$\lambda = 84/31$
39. If the objective function of NLLP is maximization type, then in Kuhn-Tucker conditions is	Option C:	$\lambda = 13/74$
conditions is	Option D:	$\lambda = 31/64$
conditions is		
Option A: $\lambda = 0$	39.	
	Option A:	λ=0

Option B:	λ <0	
Option C:	$\lambda \geq 0$	
Option D:	λ is not defined	
option D.	7 Is not defined	
	In a non-linear programming problem (NLPP),	
40.		
Option A:	All the constraints should be linear	
Option B:	All the constraints should be non-linear	
Option C:	Either the objective function or at least one of the constraints should be non-linear	
Option D:	The objective function and all constraints should be linear.	
option B.	The objective function and an constraints should be linear.	
41.	If A=2 3 1 0 -1 0 0 0 3 then eigen values of A2+2I are	
Option A:	6,3,11	
Option B:	2,-1,3	
Option C:	4,3,-1	
Option D:	0,3,2	
Truck D.	-7-7-	
42.	If A=-2 2 -3 2 1 -6 -1 -2 0 then by Cayley-Hamilton theorem	
Option A:	2A3+A2-10A-45I=0	
Option B:	A3-A2+16A-5I=0	
Option C:	A3+A2-21A-45I=0	
Option D:	A3+2A2-2A-9I=0	
43.	If A=2 1 1 2 is diagonalisable then the diagonal matrix is	
Option A:	D=1003	
Option B:	D=-1 0 0 3	
Option C:	D=2 0 0 3	
Option D:	D=-1 0 0 5	
1		
4.4		
44.	If A is a singular matrix of order 3×3 then one of the eigen value of A is	
Option A:		
Option B:	0	
Option C: Option D:	3	
Option D:	-1	
45.	If C the upper half of the unit circle then the value of ZdZ over C is	
Option A:	πί	
Option B:	0	
Option C:	-πi	
Option D:	2πί	
46.	The value of $CZ+3(Z-4)(Z+2)2$, $C:Z=1$ is	
Option A:	The value of $CZ+3(Z-4)(Z+2)Z$, $C:Z=1$ is 0	
Option B:	0 4πi	
орион в.	TIU	

Option C:	-πi	
Option D:	2πί	
Option D.		
47.	fz=sin z z has the singularity at z=0 is of the type	
Option A:	Non isolated singularity	
Option B:	Isolated singularity	
Option C:	Isolated essential singularity	
Option D:	Removable singularity	
48.	If $fz=z2(z+2)(z-1)2$ then residue at the pole $z=-2$ is	
Option A:	· · · · · · · · · · · · · · · · · · ·	
	13	
Option B:		
Option C:	29	
Option D:	0	
49.	The Z-transform of $fk = 3k$, $k < 0$ is	
Option A:	z3-z , z<3	
Option B:	33-z , z<3	
Option C:	zz-3 , z<3	
Option D:	z3-z , z>3	
•	·	
50.	If Z transform of fk=F(Z) then Zakf(k) is	
Option A:	akF(za)	
Option B:	ddzF(z)	
Option C:	F(za)	
Option D:	znF(z)	
51.	Inverse Z-transform of zz-4, z>4 is	
Option A:	-4k, k≥0	
Option B:	4k, k≥0	
Option C:	-4k, k≤0	
Option D:	4k, k<0	
Pron 2.	, 10	
52.	If a random variable X follows Poisson distribution such that P (X=1) =	
	3P(X=2) then mean and variance of the distribution are	
Option A:	Mean = 1, variance = 1	
Option B:	Mean = 0, variance = 1	
Option C:	Mean = $2/3$, variance = $2/3$	
Option D:	Mean = $3/2$, variance = $1/2$	
	If X is a normal variate with mean 9 and S.D. 6, then P(X-15)1	
	is (given area between $z=0$ to $z=1$ is 0.3413)	
53.		
Option A:	0.3413	

-	
Option C: 0.6826	
Option D: 0.2316	
54. To test independence of a	tributes, the degree of freedom is
Option A: (r-1)(c+1)	
Option B: (r-1)(c-1)	
Option C: (r+1)(c-1)	
Option D: $(r+1)(c+1)$	
55. Basic feasible solution of	the LPP is said to be degenerate if
Option A: One or more values of bas	ic variable are zero.
Option B: All basic variables are pos	itive.
Option C: All basic variables are neg	gative.
Option D: Some basic variables are p	positive and some basic variables are negative.
<u> </u>	onical form, then the primal-dual pair is said to be
Option A: Symmetric	
Option B: Asymmetric	
Option C: Standard	
Option D: Pseudo	
57. The Standard form of follo	owing LPP is
Minimise $Z = -2x1+x2$	5 Wang 211 15
Subject to $3x1-2x2 \ge -2$	1
x1+4x2≤7	
x1,x2≥0	
Option A: Maximise $Z' = -2x1 + x2$	
Subject to $3x1-2x2=4$	
x1+4x2=7	
x1,x2≥0	
Option B: Maximise $Z'=2x1-x2$	
Subject to 3x1-2x2+s	1=4
x1+4x2+s2=7	
x1,x2,s1,s2≥0	
Option C: MaximiseZ'= 2x1-x2	
Subject to 3x1-2x2+s	1=4
x1+4x2+s2=7	
x1,x2,s1,s2≥0	
Option D: MaximiseZ'= 2x1-x2	
Subject to -3x1+2x2+	s1=4

	x1+4x2+s2=7
	$x1,x2,s1,s2 \ge 0$
58.	If 3, 3 0 0 3 , 3 0 0 0 3 0 0 0 3 are the principal minor determinants of Hessian
	matrix at X0, then X0 is a
Option A:	Minima
Option B:	Maxima
Option C:	Saddle point
Option D:	No conclusion
59.	If the objective function of NLLP is maximization type, then in Kuhn-Tucker
39.	conditions is
Option A:	$\lambda = 0$
Option B:	$\lambda < 0$
Option C:	
_	$\lambda \ge 0$ is not defined
Option D:	1s not defined
	The value of Lagrange's multiplier for the following NLPP is
	Optimise $Z=7x12+5x22$
60.	Subject to $2x1+5x2=7$
	x1,x2≥0
Option A:	λ=49/39
Option B:	$\lambda = 14/36$
Option C:	λ=98/39
Option D:	$\lambda = 39/64$

Descriptive Questions

1	In an exam taken by 800 candidates, the average and standard deviation of marks
	obtained (normally distributed) are 40% and 10% respectively. What should be the
	minimum score if 350 candidates are to be declared as passed
2	If A= [2 1 1 0 1 1 0 1 2], By using Cayley-Hamilton theorem find the matrix
2	represented by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 + 2A + I$
	Evaluate the following integral using Cauchy-Residue theorem.
3	$I = \int_C \frac{z^2 + 3z}{\left(z + \frac{1}{4}\right)^2 (z - 2)} dz \text{ where c is the circle } \left z - \frac{1}{2} \right = 1$
4	Obtain inverse z-transform $\frac{z+2}{z^2-2z-3}$, $1 < z < 3$
	Solve by the Simplex method
5	$Maximize z = 10x_1 + x_2 + x_3$
5	Subject to $x_1 + x_2 - 3x_3 \le 10 \ 4x_1 + x_2 + x_3 \le 20$
	$x_1, x_2, x_3 \ge 0$
6	Using Lagrange's multipliers solve the following NLPP
	Optimise $z = 4x_1 + 8x_2 - x_1^2 - x_2^2$
	Subject to $x_1 + x_2 = 2$
	$x_1, x_2 \ge 0$

7	By using Cayley-Hamilton theorem find A^{-1} and A^{-2} where $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$					
8	Evaluate $\int_{0}^{1+i} (x^2 + iy) dz$ along the path (i) $y = x$, (ii) $y = x^2$. Is the line integral independent of the path?					
9	Find the Z-transform of $\left\{ \left(\frac{1}{3}\right)^{ k } \right\}$					
10	A car hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of day on which i) neither car is used ii) some demand is refused.					
11	Find the dual of the following LPP Maximize $z = 2x_1 - x_2 + 3x_3$ Subject to $x_1 - 2x_2 + x_3 \ge 4$; $2x_1 + x_3 \le 10$; $x_1 + x_2 + 3x_3 = 20$ $x_1, x_3 \ge 0$ x_2 unrestricted.					
12	Using the method of Lagrange's multiplier solve the following NLPP Optimize $z = 2x_1 + 6x_2 - x_1^2 - x_2^2 + 14$ Subject to $x_1 + x_2 = 4$; $x_1, x_2 \ge 0$					
13	Find the Eigen values and Eigen vectors of $A = [2 \ 1 \ 1 \ 2 \ 1 \ 0 \ 0 \ 1]$					
14	Evaluate $\oint \frac{4z^2+1}{(2z-3)(z+1)^2} dz$, $C: z = 4$ using Cauchy's residue theorem. Find the Z transform of $\left\{ \left(\frac{1}{2}\right)^{ k } \right\}$					
15	Find the Z transform of $\left\{ \left(\frac{1}{2}\right)^{ k } \right\}$					
16	A certain drug administered to 12 patients resulted in the following change in their blood pressure. 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4 Can we conclude that the drug increases the blood pressure?					
17	Solve the following LPP by simplex method Maximise $Z = 3x_1 + 5x_2$ Subject to $3x_1 + 2x_2 \le 18$ $x_1 \le 4$, $x_2 \le 6$ $x_1, x_2 \ge 0$					
18	Solve the following NLPP using Kuhn-Tucker conditions $Maximise Z = 16x_1 + 6x_2 - 2{x_1}^2 - {x_2}^2 - 17$ $Subject \ to 2x_1 + x_2 \le 8$ $x_1, x_2 \ge 0$					
19	When the first proof of 392 pages of a book of 1200 pages were read, the distribution of printing mistakes were found to be as follows.					

	No of	0	1	2	3	4			
	mistakes in	Ü	1	2	3	7			
	page (X)								
	No. of pages	275	72	30	7	5			
	(f)								
	Fit a poisson dis	tribution to	the above d	ata and tec	t the goodne	ace of fit			
	Fit a poisson distribution to the above data and test the goodness of fit.								
20	Show that the matrix $\begin{bmatrix} 4 & 6 & 6 & 1 & -1 & 3 & 2 & -5 & -2 \end{bmatrix}$ is not diagonalizable.								
21	If $f(z) = \frac{z-1}{(z-3)(z+1)}$ obtain Taylor's and Laurent's series expansions of $f(z)$ in the								
	domain $ z < 1&1 < z < 3$ respectively.								
22	If $f(k) = \frac{1}{2^k} * \frac{1}{3^k}$ find $z\{f(k)\}, k \ge 0$								
22	Z** 3**								
	Solve using dual	-							
23	Minimize $z = 2x_1 + 2x_2 + 4x_3$ Subject to $2x_1 + 2x_2 + 5x_3 + 5x_4 + 5x_5 = 2x_4 + 4x_4 + 6x_5 = 5$								
23	Subject to $2x_1 + 3x_2 + 5x_3 \ge 2 \ 3x_1 + x_2 + 7x_3 \le 3 \ x_1 + 4x_2 + 6x_3 \le 5$ $x_1, x_2, x_3 \ge 0$								
					_ •				
	Solve following NLPP using Kuhn-Tucker method								
2.4	Maximize $z = 2x_1^2 - 7x_2^2 - 16x_1 + 2x_2 + 12x_1x_2 + 7$								
24	Subject to $2x_1 + 5x_2 \le 105$								
	$x_1, x_2 \ge 0$								
				[2	2 1				
				A = 1	3 1				
25	$A = \begin{vmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{vmatrix}$								
	Find the eigen values and eigen vectors of								
	2								
26	Evaluate by Cauchy's residue theorem $\int_{C} \frac{z^{2}}{(z-1)^{2}(z-2)} dz$; where $C: Z = 2.5$								
	Evaluate by Cauchy's residue theorem $\binom{J}{C}(z-1)^2(z-2)$; where $C: Z =2.5$								
27	Find the inverse z-transforms of $F(z) = \frac{z}{(z-1)(z-2)}$; $ z > 2$								
28	In an examination marks obtained by students in Mathematics, Physics and								
	Chemistry are normally distributed with means 51, 53 and 46 with standard								
	deviation 15, 12, 16 respectively. Find the probability of securing total marks i) 180								
	or above, ii) 80 or below								
29	Using Simplex method solve the following LPP								
	$Maximize z = 5x_1 + 3x_2$								
	Subject to $x_1 + x_2 \le 2$								
	$5x_1 + 2x_2 \le 10$								

	$3x_1 + 8x_2 \le 12, x_1, x_2 \ge 0$				
	Solve the following NLPP by using Kuhn-Tucker conditions:				
30	Maximize $z = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$				
	Subject to $2x_1 + x_2 \le 5$				
	$x_1, x_2 \ge 0$				
31	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 - 11 - 12 - 11 - 12 \end{bmatrix}$				
	$\begin{bmatrix} 1 \ 2 \ \end{bmatrix}$ Hence compute A^{-1}				
32	Evaluate $\int_C \frac{z^2 - 3z + 2}{(z - 3)(z - 4)} dz$, $C: z = 3.5$				
33	Find the inverse Z transform of $\frac{3z^2+2z}{z^2-3z+2}$, $1 < z < 2$				
34	In a competitive examination the top 15% of the students appeared will get grade A, while the bottom 20% will be declared fail. If the grades are normally distributed with mean % of marks 65 and S.D. 10, determine the lowest % of marks to receive grade A.				
	Write the dual of the following LPP				
	Maximise $Z = 3x_1 + x_2 - x_3$ Subject to $x_1 + x_2 + x_3 \ge 8$				
35	$2x_1 - x_2 + 3x_3 = 4$				
	$-x_1 + x_3 \le 6$				
	$x_1, x_3 \ge 0, x_2$ is unrestricted.				
36	Using Lagrange's multipliers solve				
	Optimise $Z = 3x_1^2 + 2x_2^2 + 4x_1 + 2x_2$ Subject to $3x_1 + 5x_2 = 11$				
	$x_1, x_2 \ge 0$				
	<u>l</u>				