DYNAMIC PROGRAMMING

Prof. Zheng Zhang

Harbin Institute of Technology, Shenzhen

FIBONACCI NUMBERS

第1月:1只新生母兔,未成熟,1只 第2月: 无母兔生育, 1只母兔成熟, 1只 第3月: 1只母兔生育,无新母兔成熟,共2只 🤄 第4月: 1只母兔生育,另1只母兔成熟,共3只 第5月: 2只母兔生育,另1只母兔成熟,共5只生育 第6月: 3只母兔生育,另2只母兔成熟,共8只

Months and Numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34,

$$F(n) = \begin{cases} 1 & , n = 1 \\ 1 & , n = 2 \\ F(n-1) + F(n-2), n > 2 \end{cases}$$

TOP-DOWN

$$F(n) = \begin{cases} 1 & , n = 1 \\ 1 & , n = 2 \\ F(n-1) + F(n-2), n > 2 \end{cases}$$

▶ How to design algorithms and write procedure to solve F(n)?

```
public int fib(int n) {
    if (n < 1) {
       return -1;
    }
    if (n == 1 || n == 2) {
       return 1;
    }
    return fib(n - 1) + fib(n - 2);
}</pre>
```

Complexity: O(2ⁿ)

FIBONACCI NUMBERS

BOTTOM-UP

$$F(n) = \begin{cases} 1 & , n = 1 \\ 1 & , n = 2 \\ F(n-1) + F(n-2), n > 2 \end{cases}$$

Bottom-up

- First compute the smallest problem
 - \triangleright Record the values of F[0] and F[1].
- Then compute the bigger ones
 - \triangleright Record the value of F[2].
-
- Then compute the bigger ones
 - \triangleright Record the value of F[n-1].
- Compute the final problem
 - ightharpoonup Get F[n].

Complexity: O(n)

BOTTOM-UP

$$F(n) = \begin{cases} 1 & , n = 1 \\ 1 & , n = 2 \\ F(n-1) + F(n-2), n > 2 \end{cases}$$

BOTTOM-UP

Bottom-up


```
F(n) = \begin{cases} 1 & , n = 1 \\ 1 & , n = 2 \\ F(n-1) + F(n-2), n > 2 \end{cases} Bottom-up
```

```
public int fib(int n)
         fib_n_1 = 1, fib_n_2 = 1, fib_n = 0;
         if (n < 1)
           return -1;
         if (n == 1 || n == 2)
           return 1;
         for (i = 3; i \le n; ++i)
              fib_n = fib_n_1 + fib_n_2;
              fib_n_2 = fib_n_1;
              fib_n_1 = fib_n;
         return fib_n;
```

Avoid repeat computation and lower complexity O(n).

- Divide-and-Conquer (无记忆递归)
 - Independent subproblems
 - ➤ double counting common subproblems → inefficient
 - > Top-down design algorithm

"那些遗忘过去的人注定要重蹈覆辙。" ——乔治·桑塔亚纳

Dynamic Programming(有记忆的迭代)

- Divide into a series of subproblems
- Solve each subproblem only once, save its results in a table, and directly access it when you use it later, without repeating calculations, saving calculation time
- Bottom-up

Applications

Optimization & reused sub-problems

"全局谋划一域、以一域服务全局" ——习近平

OUTLINE

- Introduction to Dynamic Programming
- Famous Examples
 - ➤ Matrix-chain Multiplication
 - ➤ Longest Common Subsequence
 - ➤ Triangle Decomposition of Convex Polygon
 - ➤ The Optimal Binary Search Trees

Why?

The problem of Divide-and-Conquer

What?

> Treat the subproblems independently.

How?

- > If they are dependent, we will calculate redundantly.
- > Leads low efficiency.

Optimization Problem

- ➤ Given a group of constrains and the cost function, find a solution with *the* optimal value (min or max) in the solution space.
- Lots of the optimization can be divided into subproblems, which are *dependent*, so the solution of the subproblem can be *reused*.

Why?

What?

How?

Those who cannot remember the past are doomed to repeat it.

那些遗忘过去的人注定要重蹈覆辙。

----George Santayana,
The life of Reason,
Book I: Introduction and
Reason in Common
Sense (1905)

Why?

What?

How?

Dynamic Programming

- Divide into subproblem
- Solve each subproblem only once, store the solutions in a list, and access it when the solution is reused
- Bottom-up

"全局谋划一域、以一域服务全局" ——习近平

● 动态规划是一种算法设计的范式 (paradigm) 或思想, 不是 What? 解决某一具体问题的具体算法 How?

理查德·贝尔曼 (Richard Bellman) 在1950年代首次提出了这个名字,当时他正为美国兰德公司工作,主要为美国空军和政府项目服务。

"It's impossible to use the word, dynamic, in the pejorative sense...I thought dynamic programming was a good name. It was something not even a Congressman could object to." — 理查德·贝尔曼

理查德·贝尔曼(1920年8月26日 - 1984年3月19日),美国应用数学家, 美国国家科学院院士。

Why?

Elements of dynamic programming

What?

Optimal substructure (correctness)

How?

- A problem *exhibits optimal substructure* if an optimal solution to the problem is contained within its optimal solutions to subproblems.
- Overlapping subproblems (necessity)
- > When a recursive algorithm <u>revisits the same problem</u> over and over again, we say that the optimization problem has overlapping subproblems.

OPTIMAL SUBSTRUCTURE

Why? What?

How?

- > 1) Show that a solution to the problem consists of making a choice.
- > 2) Suppose the choices are known.
- > 3) Determine which subproblems ensue.
- > 4) Cut-and-paste.

Why?

The step of dynamic programming:

viidi:

How?

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution in a bottom-up fashion
- Construct an optimal solution from computed information

Matrix Chain Multiplication

PROBLEM DEFINITION

Inputs: Matrix chain $\langle A_1, A_2, \dots, A_n \rangle$

Outputs: $A_1A_2 \dots A_n$

If A is a $p \times q$ matrix, and B a $q \times r$ matrix, then normally we spend O(p*q*r) times to compute AB.

MOTIVATION

Matrix multiplication fulfill multiplication associativity.

Example:

$$(A_1 A_2 A_3 A_4)$$

$$= (A_1 (A_2 (A_3 A_4)))$$

$$= ((A_1 A_2) (A_3 A_4))$$

The complexity depends on the order

- Suppose A_1 a 10×100 matrix, A_2 a 100×5 matrix, A_3 a 5×50 matrix
- $T((A_1 A_2) A_3)=10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$
- $T(A_1 (A_2 A_3)) = 100 \times 5 \times 50 + 10 \times 100 \times 50 =$ 750000

SOLUTION SPACE

Denote the number of different solutions as P(n), the recursive function of P(n)

$$P(n) = \begin{cases} 1 & n = 1 \\ \sum_{k=1}^{n=1} P(k)P(n-k) & n > 1 \end{cases}$$

• *P*(*n*) *is Catalan number*

$$P(n) = C(n-1) = \frac{1}{n} \binom{2n-2}{n-1} = \Omega(\frac{4^n}{n^{3/2}})$$

P(n) is so big to solute the problem through enumeration methods.

Enumerating P(n) is Catalan number $P(n) = C(n-1) = \frac{1}{n} \binom{2n-2}{n-1} = \Omega(\frac{4^n}{n^{3/2}})$ won't work

STEP 1: STRUCTURE OF OPTIMAL SOLUTION

- Denote the multiplication $A_i A_{i+1} ... A_j$ as A[i:j]
- Suppose we cut at k, and get a optimal order

$$(A_1 A_2 ... A_n) = ((A_1 ... A_k)(A_{k+1} ... A_n))$$

- A[1:n]=A[1:k] A[k+1:n]
- Compatible of matrix multiplication
- We can prove A[1:k] and A[k+1:n] are optimal order too

STEP 1: STRUCTURE OF OPTIMAL SOLUTION

Multiplication Order The complexity depends on the order

- Suppose A_1 a 10 × 100 matrix, A_2 a 100 × 5 matrix, A_3 a 5 × 50 matrix
- $T((A_1 A_2) A_3)=10 \times 100 \times 5 + 10 \times 5 \times 50$ =7500
- $T(A_1 (A_2 A_3)) = 100 \times 5 \times 50 + 10 \times 100 \times 50$ = 750000

Cost = Cost of
$$A_{i...k}$$
 + Cost of $A_{k+1...j}$ + Cost of $A_{i...k}$ * $A_{k+1...j}$

$$p_{i-1}*p_k \qquad p_k*p_i$$

STEP 1: STRUCTURE OF OPTIMAL SOLUTION

Subproblem Overlapping

STEP 2: RECURSION

Denotation

```
m[i, j] ----the minimal cost(times) to calculate A[i:j] m[1, n] ----the minimal cost(times) to calculate A[1:n]
```

Recursion cost

$$\begin{cases} m[i,j] = 0 & \text{if } i = j \\ m[i,j] = \min_{i \le k \le j} \{ m[i,k] + m[k+1,j] + p_{i-1} p_k p_j \} & \text{if } i \le j \end{cases}$$

$$m[i, j] = \min_{i \le k < j} \{ m[i, k] + m[k+1, j] + p_{i-1}p_kp_j \}$$

$$m[1,1] \quad m[1,2] \quad m[1,3] \quad m[1,4] \quad m[1,5]$$

$$m[2,2] \quad m[2,3] \quad m[2,4] \quad m[2,5]$$

$$m[3,3] \quad m[3,4] \quad m[3,5]$$

$$m[4,4] \quad m[4,5]$$

$$m[5,5]$$

$$m[2,4] = \min \left\{ m[2,2] + m[3,4] + p_1p_2p_4 \\ m[2,3] + m[4,4] + p_1p_3p_4 \\ k = 2 \text{ or } 3 \right\}$$

$$m[i,j] = min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \}$$

$$m[2, 4] = min \begin{cases} m[2, 2] + m[3, 4] + p_1 p_2 p_4 \\ m[2, 3] + m[4, 4] + p_1 p_3 p_4 \end{cases}$$


```
public static void matrixChain(int [] p, int [][] m, int [][] s)
                                                                      m[1,2]
                                                                                 m[1,3]
                                                                                            m[1,4]
                                                           m[1,1]
   int n=p.length-1;
   for (int i = 1; i \le n; i++) m[i][i] = 0; /* 2 \mbox{\em $\mathbb{R}$}^*/
                                                                                            m[2,4]
                                                                      m[2,2]
                                                                                 m[2,3]
   for (int r = 2; r <= n; r++) /* 计算第r对角线*/
     for (int i = 1; i \le n-r+1; i++) {
                                                                                 m[3,3]
                                                                                            m[3,4]
       int j = i+r-1;
                                                                                            m[4,4]
       m[i][j] = \infty;
       for (int k = i; k < j; k++) /* \# m[i,j] */
         int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
                   /* q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_i */
                                                                 S[i,j]记录A<sub>i</sub>A<sub>i+1</sub>...A<sub>i</sub>的
         if (t < m[i][j]) {
                                                                     最优划分处
          m[i][j] = t;
                                   Complexity:
          s[i][j] = k;
                                         It is based on the ternary recurrence of r, i, k.
                                         So the time complexity is O(n^3) while the
                                         space complexity is O(n^2).
```

STEP 4: CONSTRUCTING

```
Print-Optimal-Parens(s, i, j)
                                                         s[1,3]
                                                  s[1,2]
                                                                 s[1,4]
                                                                 s[2,4]
                                                         s[2,3]
 1. IF j=i THEN Print "A_i";
                                                                 s[3,4]
 2. ELSE Print "("
            Print-Optimal-Parens(s, i, s[i, j])
            Print-Optimal-Parens(s, s[i, j]+1, j)
 5.
            Print ")"
 6.
```

EXAMPLE

A1	A2	А3	A4	A5	A6
30×35	35×15	15×5	5×10	10×20	20×25

$$m[2][5] = \min \begin{cases} m[2][2] + m[3][5] + p_1 p_2 p_5 = 0 + 2500 + 35 \times 15 \times 20 = 13000 \\ m[2][5] = \min \end{cases} \begin{cases} m[2][3] + m[4][5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \times 5 \times 20 = 7125 \\ m[2][4] + m[5][5] + p_1 p_4 p_5 = 4375 + 0 + 35 \times 10 \times 20 = 11375 \end{cases}$$

$$A[i:j] = A_i...A_i$$

$$P(k) = \#$$
 ways to

$$P(k) = \#$$
 ways to parenthesize k matrices

$$(A_1...A_k)(A_k...A_n) = A [i:j]*A[k+1:n], 1 \le k < n$$

$$P(1)=1; P(n) = sum_{1 \le k \le n} P(k) * P(n-k), n > 1$$

P(n)=C(n-1), where C(n)=
$$\Omega(4^{n}/n^{3/2})$$

ONGEST COMMON SEQUENCE

Longest Common Subsequence (LCS)

- Definition
- Characterizing LCS
- Recursive solution
- Bottom-up to computing the length of LCS
- Construct Optimal solution

DEFINITION

Subsequence

Definition: A sequence $\mathbf{Z} = \langle z_1, z_2, ..., z_k \rangle$ is a subsequence of $\mathbf{X} = \langle x_1, x_2, ..., x_m \rangle$ if there exists a <u>strictly increasing sequence</u> $\langle i_1, i_2, ..., i_k \rangle$ of indices of \mathbf{X} such that for all j = 1, 2, ..., k, we have $x_{ij} = z_j$. **Example**: $\mathbf{Z} = \langle A, B, C, D \rangle$ is a subsequence of $\mathbf{X} = \langle A, C, B, C, A, D \rangle$ with corresponding index sequence $\langle 1, 3, 4, 6 \rangle$.

Common subsequence

We say that a sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y.

The longest-common-subsequence problem (LCS)

Input: $X = \langle x_1, x_2, ..., x_m \rangle$, $Y = \langle y_1, y_2, ..., y_n \rangle$.

Output: The common subsequence Z that max(|Z|).

EXAMPLE

DNA:
AGCCCTAAGGGCTACCTAGCTT

DNA:
GACAGCCTACAAGCGTTAGCTTG

How similar the two species are?

EXAMPLE

DNA: DNA:

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

LCS: AGC CTAA GCT TAGCTT

EXAMPLE

springtime

horseback

pioneer

snowflake

maelstrom

heroically

becalm

scholarly

Brute-force algorithm:

For every subsequence of X, check whether it's a subsequence of Y.

Time: $\Theta(n2^m)$

CHARACTERIZING LCS

The *i*-th *prefix* of X---- X_i

Given
$$X = \langle x_1, x_2, ..., x_m \rangle$$
, the *i*-th prefix of X is $X_i = \langle x_1, x_2, ..., x_i \rangle$.

Example:
$$X = (A, B, D, C, A)$$
; $X_1 = (A)$, $X_2 = (A, B)$, $X_3 = (A, B, D)$

Optimal substructure of an LCS

Let $X = \langle x_1, x_2, ..., x_m \rangle$, $Y = \langle y_1, y_2, ..., y_n \rangle$, be sequences, and let $Z = \langle z_1, z_2, ..., z_k \rangle$, be any LCS of X and Y.

If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} ; If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y; If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} ;

RECURSION SOLUTION

Define c[i, j] as the length of an LCS of the sequences X_i and Y_j . The recursive formula is

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

RECURSION SOLUTION

We could write a recursive algorithm based on this formulation. Try with "bozo", "bat".

Lots of repeated subproblems.

Instead of recomputing, store in a table.

OVERLAPPING PROBLEM

RECURSION SOLUTION

	C[0,0] C[0,1] C[0,2] C[0,3] C[0,4]
C[i-1, j-1] C[i-1,j]	C[1,0] C[1,1] C[1,2] C[1,3] C[1,4]
C[i, j-1] C[i, j]	C[2,0] $C[2,1]$ $C[2,2]$ $C[2,3]$ $C[2,4]$
i i i	C[3,0] C[3,1] C[3,2] C[3,3] C[3,4]

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ Max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

COMPUTING THE LENGTH OF AN LCS

```
Input: Sequences X and Y
Output: The length of LCS: C; Optimal solution information: B
LCS-length(X, Y)
Procedures: LCS-length(X, Y)
              m \leftarrow \text{length}(X); n \leftarrow \text{length}(Y);
        2. FOR i\leftarrow 1 TO m DO C[i,0]\leftarrow 0;
             FOR j\leftarrow 1 TO n DO C[0,j]\leftarrow 0;
             FOR i \leftarrow 1 TO m DO
        5.
                  FOR j\leftarrow 1 TO n DO
                     IF x_i = y_i THEN
        6.
                         C[i,j] \leftarrow C[i-1,j-1]+1; B[i,j] \leftarrow " \setminus ";
        7.
        8.
                     ELSE IF C[i-1,j] \ge C[i,j-1] THEN
        9.
                         C[i,j] \leftarrow C[i-1,j]; B[i,j] \leftarrow "\uparrow";
      10.
                     ELSE C[i,j] \leftarrow C[i,j-1]; B[i,j] \leftarrow "\leftarrow";
```

11.

RETURN C and B

CONSTRUCTING AN LCS

- Initial call is
 - PRINT-LCS (B, X, m, n)
- \triangleright B[i, j] points to table entry whose subproblem we used in solving LCS of X_i and Y_i .
- When $b[i, j] = \mathbb{N}$, we have extended LCS by one character. So longest common subsequence = entries With \mathbb{N} in them.

```
Print-LCS(B, X, i, j)
```

- 1. IF i=0 OR j=0 THEN Return;
- 2. IF B[i, j] = `` ``THEN Print-LCS(B, X, i-1, j-1) Print x_i
- 3. ELSE IF $B[i, j] = "\uparrow"$ THEN Print-LCS(B, X, i-1, j)
- 4. ELSE Print-LCS(B, X, i, j-1)

	\dot{j}	0	1	2	3	4	5	6	7	8	9	10
i		$\mathcal{Y}_{\mathbf{j}}$	а	m	p	и	t	a	t	i	0	n
0	x_i		0	^ 0	0	0	0	0	0	0	0	0
1	S	0	0↑	Q†	0↑	0↑	0↑	0↑	0↑	0↑	0↑	0↑
2	p	0	0↑	0↑	1-7,	1←	-1	1←	1←	1←	1←	1←
3	a	0	15	1←	1↑	1↑	1↑	-25	2←	2←	2←	2←
4	n	0	1↑	1↑	1↑	1↑	1↑	2↑	2↑	21	2↑	3×
5	k	0	1↑	1↑	1↑	1↑	1↑	2↑	2↑	2↑	2↑	3↑
6	i	0	1↑	1↑	1↑	1↑	1↑	2↑	2↑	3.5-	-3	3↑
7	n	0	1↑	1↑	1↑	1↑	1↑	2↑	2↑	3↑	3↑	45
8	g	0	1↑	1↑	1↑	1↑	1↑	2↑	2↑	3↑	3↑	4 ↑

TRIANGLE DECOMPOSITION OF CONVEX POLYGON

DEFINITION

- Convex polygon $P = \{v_0, v_1, ..., v_{n-1}\}.$
- Triangle decomposition: chords (党) set T that decompose polygon into disjoint triangle.
- We can improve that in a triangle decomposition of an *n* vertices convex polygon, there happened to be *n*-3 chords and *n*-2 triangles.

DEFINITION

Weighting function w

For example:

$$w(v_i v_j v_k) = |v_i v_j| + |v_j v_k/ + |v_i v_k/$$

where $|v_i v_j/$ is the Euclid distance between v_i and v_j .

Optimal triangle decomposition

- Input: polygon P and weighting function W
- Output: triangle decomposition *T*, to minimize

$$\sum\nolimits_{S\in\mathcal{S}_{T}}W\left(s\right)$$

STRUCTURE OF OPTIMAL SOLUTION

- $P = (v_0, v_1, ..., v_n)$ is a n+1 vertices polygon
- T_p is an optimal triangle decomposition, v_k is the decomposition point.

The structure of optimal solution

$$T_P = T(v_0, ..., v_k) \cup T(v_k, ..., v_n) \cup \{v_0 v_k, v_k v_n, v_0 v_n\}$$

TRIANGULAR DECOMPOSITION AND MATRIX-CHAIN-ORDER

A matrix chain is corresponding to a binary tree.

For example:

 $((A_1(A_2A_3))(A_4(A_5A_6)))$ is converted to a binary tree.

CONSTRUCT OPTIMAL SOLUTION

- It is coordinate with the Matrix-chain-Order.
- By modifying Matrix-chain-order, we can construct optimal triangle decomposition.

RECURSIVE SOLUTION

$$t[1][n] = \begin{cases} 0 & n = 1\\ \min_{1 \le k < n} \{t[1][k] + t[k+1][n] + w(v_0 v_k v_n)\} & n > 1 \end{cases}$$

$$t[i][j] = \begin{cases} 0 & i = j \\ \min_{1 \le k < j} \{t[i][k] + t[k+1][j] + w(v_{i-1}v_k v_j)\} & i > j \end{cases}$$

$$\begin{cases}
m[i,j] = 0 & \text{if } i = j \\
m[i,j] = \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j
\end{cases}$$

	7	_
\sim		
~		
\neg L	JL	

	0	1	2	3	4	5
0	0	2	3	1	5	6
1	2	0	3	4	8	6
2	3	3	0	10	13	7
3	1	4	10	0	12	5
4	5	8	13	12	0	3
5	6	6	7	5	3	0

m[][]		1	2	3	4	5
	1	0				
	2		0			
	3			0		
	4				0	
	5					0

$$i = 1, j = 2 : \{v_0, v_1, v_2\}$$

$$k = 1 : m[1][2] = \min\{m[1][1] + m[2][2] + w(v_0v_1v_2)\} = 8$$

$$i = 2, j = 3 : \{v_1, v_2, v_3\}$$

Three vertices

$$k = 2 : m[2][3] = \min\{m[2][2] + m[3][3] + w(v_1v_2v_3)\} = 17$$

$$i = 3, j = 4 : \{v_2, v_3, v_4\}$$

$$k = 3 : m[3][4] = \min\{m[3][3] + m[4][4] + w(v_2v_3v_4)\} = 35$$

$$i = 4, j = 5 : \{v_3, v_4, v_5\}$$

$$k = 4 : m[4][5] = \min\{m[4][4] + m[5][5] + w(v_3v_4v_5)\} = 20$$

s[][]

m[][]		1	2	3	4	5
	1	0	8			
	•		•	18		

	T	2	5	4	5
1	0	8			
2		0	17		
3			0	35	
4				0	20
5					0

	1	2	3	4	5
1	0	1			
2		0	2		
3			0	3	
4				0	4
5					Λ

$$i = 1, j = 3 : \{v_0, v_1, v_2, v_3\}$$

$$m[1][3] = \min \begin{cases} k = 1, m[1][1] + m[2][3] + w(v_0 v_1 v_3) = 24 \\ k = 2, m[1][2] + m[3][3] + w(v_0 v_2 v_3) = 22 \end{cases};$$

Four vertices

$$i = 2, j = 4 : \{v_1, v_2, v_3, v_4\}$$

$$m[2][4] = \min \begin{cases} k = 2, m[2][2] + m[3][4] + w(v_1v_2v_4) = 59 \\ k = 3, m[2][3] + m[4][4] + w(v_1v_3v_4) = 41 \end{cases};$$

$$i = 3, j = 5 : \{v_2, v_3, v_4, v_5\}$$

$$m[3][5] = \min \begin{cases} k = 3, m[3][3] + m[4][5] + w(v_2v_3v_5) = 42 \\ k = 4, m[3][4] + m[5][5] + w(v_2v_4v_5) = 58 \end{cases};$$

 $\mathbf{s}[\][$

m[][]		1	2	3	4	5
	1	0	8	22		
	2		0	17	41	
	3			0	35	42
	4				0	20
	5					0

				\	4 37	
]		1	2	3	4	5
	1	0	1	2		
	2		0	2	3	
	3			0	3	3
	4				0	4
	5					0

$$i = 1, j = 4 : \{v_0, v_1, v_2, v_3, v_4\}$$

Five vertices

$$m[1][4] = \min \begin{cases} k = 1, m[1][1] + m[2][4] + w(v_0v_1v_4) = 56 \\ k = 2, m[1][2] + m[3][4] + w(v_0v_2v_4) = 64; \\ k = 3, m[1][3] + m[4][4] + w(v_0v_3v_4) = 40 \end{cases}$$

$$i = 2, j = 5 : \{v_1, v_2, v_3, v_4, v_5\}$$

$$m[2][5] = \min \begin{cases} k = 2, m[2][2] + m[3][5] + w(v_1v_2v_5) = 58 \\ k = 3, m[2][3] + m[4][5] + w(v_1v_3v_5) = 52; \\ k = 4, m[2][4] + m[5][5] + w(v_1v_4v_5) = 58 \end{cases}$$

m[][]

	1	2	3	4	5
1	0	8	22	40	
2		0	17	41	52
3			0	35	42
4				0	20
5					0

s[][]		1	2	3	4	5
	1	0	1	2	3	
	2		0	2	3	3
	3			0	3	3
	4				0	4
	5					0

Six vertices

$$i = 1, j = 5 : \{v_0, v_1, v_2, v_3, v_4, v_5\}$$

$$m[1][4] = \min \begin{cases} k = 1, m[1][1] + m[2][5] + w(v_0v_1v_5) = 66 \\ k = 2, m[1][2] + m[3][5] + w(v_0v_2v_5) = 66 \\ k = 3, m[1][3] + m[4][5] + w(v_0v_3v_5) = 54 \end{cases}; \quad v_5 \leqslant k = 4, m[1][4] + m[5][5] + w(v_0v_4v_5) = 54 \end{cases}$$

m[][]		1	2	3	4	5
	1	0	8	22	40	54
	2		0	17	41	52
	3			0	35	42
	4				0	20
	5					0

]		1	2	3	4	5
	1	0	1	2	3	3
	2		0	2	3	3
	3			0	3	3
	4				0	4
	5					0

s[][