Analiza klientów kart kredytowych

AUTHOR

Mateusz Waszkiewicz

1Wstęp

Poniższy tekst podejmuje się analizy klientów kart kredytowych i oceny ich ryzyka. Projekt został wzbogacony o elementy shiny i dla optymalnego komfortu powinien być oglądany na stronie projektu: Link do strony

Powodem takiego rozwiązania jest fakt, że shinyapps nie akceptuje dokumentów wzbogaconych o shiny (quarto).

1.1 Źródło danych

Dane opisujące dane kart kredytowych pochodzą ze zbioru <u>link do kaggle</u>. Składają się z 2 plików płaskich:

- application_record.csv tabela z danymi dotyczącymi danych aplikacyjnych klienta (18 kolumn, jeden okres, jeden wiersz per klient).
- credit_record.csv tabela z historycznymi zaległościami w spłatach klienta (3 kolumny, 60 różnych okresów, x wierszy).

1.2 Cel

Analiza ma dwa główne cele i stawia dwie hipotezy badawcze. Pierwszym celem jest analiza i zbudowanie profilu klienta - określenie jego podstawowych cech i zależności między cechami. Przestawienie tych cech w zależności od poziomu ryzyka braku terminowej spłaty karty. Drugim celem jest zbudowanie modelu predykcyjnego, który by rozróżniał dobrych i złych klientów na podstawie zarówno jego cech aplikacyjnych, jak i historii spłat. W analizie stawiane są dwie hipotezy:

- Klienci o wyższych zarobkach są bardziej terminowi w spłatach.
- Klienci posiadający samochód są bardziej terminowi w spłatach.

1.3 Przygotowanie danych

1.3.1 Krótkie podsumowanie

1.3.1.1 Zbiór application_record

Wszystkie kolumny w zbiorze danych to:

34.125.163.182:8080 1/16

Lista kolumn

Lista Kotuiiii
Nazwa kolumny
ID
CODE_GENDER
FLAG_OWN_CAR
FLAG_OWN_REALTY
CNT_CHILDREN
AMT_INCOME_TOTAL
NAME_INCOME_TYPE
NAME_EDUCATION_TYPE
NAME_FAMILY_STATUS
NAME_HOUSING_TYPE
DAYS_BIRTH
DAYS_EMPLOYED
FLAG_MOBIL
FLAG_WORK_PHONE
FLAG_PHONE
FLAG_EMAIL
OCCUPATION_TYPE
CNT_FAM_MEMBERS

Wymiary zbioru to: 438557x18. Liczba unikatowych ID w zbiorze to: 438510.

Liczba unikatowych ID nie jest równa liczbie wierszy, zatem występują duplikaty. Po usunięciu duplikatów wymiary zbioru to: 438463x18.

Podsumowanie brakujących wartości w zbiorze danych przedstawia się następująco:

Podsumowanie brakujących wartości

В	Brakujące wartości
ID	0

CODE_GENDER

	Brakujące wartości
FLAG_OWN_CAR	0
FLAG_OWN_REALTY	0
CNT_CHILDREN	0
AMT_INCOME_TOTAL	0
NAME_INCOME_TYPE	0
NAME_EDUCATION_TYPE	0
NAME_FAMILY_STATUS	0
NAME_HOUSING_TYPE	0
DAYS_BIRTH	0
DAYS_EMPLOYED	0
FLAG_MOBIL	0
FLAG_WORK_PHONE	0
FLAG_PHONE	0
FLAG_EMAIL	0
OCCUPATION_TYPE	0
CNT_FAM_MEMBERS	0

Podstawowe statystyki opisowe zbioru danych dla zmiennych ilościowych i jakościowych przedstawiają się następująco:

Podstawowe statystyki zmiennych numerycznych

	CNT_CHILDREN	AMT_INCOME_TOTAL	DAYS_BIRTH	DAYS_EMPLOYED	CNT_FA
Min.	0.0	26100	-25201.0	-17531.0	
1st Qu.	0.0	121500	-19484.0	-3103.0	
Median	0.0	161100	-15630.0	-1468.0	
Mean	0.4	187522	-15997.9	60564.5	
3rd Qu.	1.0	225000	-12514.0	-371.0	
Max.	19.0	6750000	-7489.0	365243.0	

34.125.163.182:8080 3/16

Academic degree

Higher education

CNT_CHILDREN AMT_INCOME_TOTAL DAYS_BIRTH DAYS_EMPLOYED CNT_FAI

Liczby wystąpień wartości zmiennej CODE_GENDER	
	Liczba wystąpień
F	294378
М	144085
Liczby wystąpień wartości zmiennej FLAG_OWN_CAR	
	Liczba wystąpień
N	275396
Υ	163067
Liczby wystąpień wartości zmiennej FLAG_OWN_REALTY	
	Liczba wystąpień
N	134454
Y	304009
Liczby wystąpień wartości zmiennej NAME_INCOME_TYPE	
	Liczba wystąpień
Commercial associate	100726
Pensioner	75478
State servant	36183
Student	17
Working	226059
Liczby wystąpień wartości zmiennej NAME_EDUCATION_TYPE	
	Liczba wystąpień

34.125.163.182:8080 4/16

312

117499

Liczba wystąpień
14845
4051
301756
ΓATUS
Liczba wystąpień
36521
299768
27249
55255
19670
_TYPE
Liczba wystąpień
1539
393748
14211
3920
5973
19072
L
Liczba wystąpień
438463
IONE

34.125.163.182:8080 5/16

348083

0

	Liczba wystąpień
1	90380

Liczby wystąpień wartości zmiennej FLAG_PHONE

	Liczba wystąpie
0	31229
1	12617

Liczby wystąpień wartości zmiennej FLAG_EMAIL

	Liczba wystąpień
0	391023
1	47440

Liczby wystąpień wartości zmiennej OCCUPATION_TYPE

	Liczba wystąpień
	134177
Accountants	15980
Cleaning staff	5843
Cooking staff	8074
Core staff	42993
Drivers	26085
High skill tech staff	17283
HR staff	774
IT staff	604
Laborers	78225
Low-skill Laborers	2140
Managers	35477
Medicine staff	13518
Private service staff	3455

34.125.163.182:8080 6/16

	Liczba wystąpień
Realty agents	1041
Sales staff	41092
Secretaries	2044
Security staff	7993
Waiters/barmen staff	1665

1.3.1.2 Zbiór credit_record

Wszystkie kolumny w zbiorze danych to:

Nazwy kolmn
Nazwa kolumny
ID
MONTHS_BALANCE
STATUS

Wymiary zbioru to: 1048575x3. Liczba unikatowych ID w zbiorze to: 45985. Jest to liczba większa niż w pierwszym zbiorze. Będzie trzeba na to zwrócić uwagę podczas łączenia tabel.

Podsumowanie brakujących wartości w zbiorze danych przedstawia się następująco:

Podsumowanie brakujących wartości

	Brakujące wartości
ID	0
MONTHS_BALANCE	0
STATUS	0

Podstawowe statystyki opisowe zbioru danych dla zmiennych ilościowych i jakościowych przedstawiają się następująco:

Podstawowe statystyki zmiennych numerycznych

	MONTHS_BALANCE
Min.	-60.00
1st Qu.	-29.00

34.125.163.182:8080 7/16

	MONTHS_BALANCE
Median	-17.00
Mean	-19.14
3rd Qu.	-7.00
Max.	0.00

Liczby wystąpień wartości zmiennej STATUS

	Liczba wystąpień
0	383120
1	11090
2	868
3	320
4	223
5	1693
С	442031
X	209230

Zbiory nie zawierają braków danych, a wszystkie odpowiednie kolumny zostały zamienione na czynnik (ang. factor), kolejnym krokiem będzie połączenie zbiorów w jeden i stworzenie odpowiednich zmiennych oznaczających opóźnienia w spłatach.

1.4 Połączenie zbiorów

1.4.1 Stworzenie zmiennej celu

Przed połączeniem obu zbiorów należy dostosować zbiór **credit_record** do formy docelowej (jeden wiersz per ID). Kolejnym krokiem będzie zatem pogrupowanie zbioru ze względu na ID, jednak aby tego dokonać najpierw należy się blżej przyjrzeć zmiennej **STATUS**. Zmienna **STATUS** jest tutaj jedną z najważniejszych, ponieważ symbolizuję opóźnienie w spłacie, jej oznaczenia są następujące:

- 0 do 29 dni opóźnienia.
- 1 od 30 do 59 dni opóźnienia.
- 2 od 60 do 89 dni opóźnienia.
- 3 od 90 do 119 dni opóźnienia.
- 4 od 120 do 149 dni opóźnienia.
- 5 powyżej 150 dni opóźnienia, zaległe długi albo spisanie.

34.125.163.182:8080 8/16

- C w pełni spłacone.
- X brak kredytu w danym miesiącu.

W celu stworzenia optymalnej zmiennej celu oznaczjącą złego klienta, została dokonana dodatkowa analiza zmiennej **TARGET** w zależności od wybranego okna obserwacji. Rozważane okna to - aktualny miesiąc, ostatnie 3 miesiące, ostatnie pół roku, ostatni rok, cała historia. Zbudowana próbka do analizy jest oparta na tym czy kiedykolwiek w takim oknie wystąpiło opóźnienie spłaty dla danego **ID**.

W oparciu o powyższy wykres dość jasno można stwierdzić, że opóźnienia powyżej 30 dni zdarzają się bardzo sporadycznie i zbudowanie zmiennej celu na ich postawie nie ma większego sensu. W efekcie została stworzona nowa zmienna pomocnicza, która definiuje dobrych i złych klientów w sposób następujący:

$$isBad = egin{cases} 1 & ext{if STATUS} \in \{1,2,3,4,5\} \ 0 & ext{otherwise} \end{cases}$$

Jest to niezgodne z ogólnoświatowym standardem bankowym, w którym opóźnienie w spłacie powyżej 90 dni oznacza wejście w stan default, jednak jak widać tylko nieznaczna część klientów ma opóźnienia > 90, co może utrudnić późniejsze analizy. Zostały stworzone następujące zmienne pomocnicze:

- *isBad* czy klient jest aktualnie w stanie default.
- $isBad_3$ czy klient był w stanie default w ciągu ostatnich 3 miesięcy.
- $isBad_6$ czy klient był w stanie default w ciągu ostatnich 6 miesięcy.
- $isBad_12$ czy klient był w stanie default w ciągu ostatnich 12 miesięcy.

34.125.163.182:8080 9/16

• *isBad_ever* - czy klient kiedykolwiek był w stanie default.

W idealnych warunkach takie zmienne wykorzystane w modelowaniu powinny patrzeć w przyszłość, a nie w przeszłość, natomiast tylko na taką możliwość pozwalają wybrane dane.

1.4.2 Sprawdzenie ID

Oba zbiory zostały połączone za pomoca kolumny **ID**. Tylko klienci znajdujący się w obu początkowych zbiorach znajdują się w połaczonej tabeli. Nowy zbiór ma 36457 wierszy. Znaczne ograniczenie liczby wierszy wynika z małego pokrycia **ID** z tabeli application_record przez tabelę credit_record.

2 Profil klienta

Postawowe wykresy zmiennych opisujących cechy klientów nie są bardzo interesujące. Parę ciekawszych wniosków ogólnych dotyczących danych: - Wszyscy klienci mają telefon komórkowy (ta zmienna została wykluczona z późniejszego modelowania). - W zbiorze jest 2 razy więcej kobiet niż mężczyzn. - Zdecydowana większośc nie ma dzieci. - Zdecydowana większość ma średnią edukację. - Telefony domowe (zmienna **FLAG_PHONE**) są mało popularne w badanym zbiorze. - Zmienna dotycząca posiadania samochodu (istotna z punktu widzenia stawianych hipotez) ma relatywnie równy rozkład.

2.1 Profil klienta ze względu na poziom ryzyka

34.125.163.182:8080 10/16

Poniższy wykres prezentuje profil klienta ze względu na nowo stworzone zmienne ryzyka. Wykres ma możliwość pokazania wartości absolutnych, jak i wartości procentowych udziałów zmiennej ryzyka. Dzięki temu można łatwiej werfyikować proporcję złych i dobrych klientów w ramach poszczególnych zmiennych.

Większość zmiennych zdaje się mieć podobną proporcję ryzykownych klientów w ramach grup. Posiadający samochód jednak zdają się być mniej ryzykowni od klientów, którzy samochodu nie posiadają. Parę innych obserwacji dotyczących poszczególnych w ramach swoich dziedzin: - Studenci są najbardziej ryzykowną grupą. - Ludzie z wyższą edukacją są najmniej ryzykowną grupą. - Single są zdecydowanie najbardziej ryzykowną grupą.

3 Modelowanie

Zmienną wybraną jako zmienna celu w modelowaniu została zmienna **isBad_12**, 12 miesięczne okna obserwacji są dość klasycznym podejściem w ryzyku kredytowym. Taki okres gwarantuje wystarczająco dużą liczbę złych klientów do analizy.

3.1 Regresja logistyczna

34.125.163.182:8080 11/16

Modelem, który będzie służył do weryfikacji hipotez będzie prosty model regresji logistycznej. Zostały stworzone 2 modele - jeden prosty ze wszystkimi zmiennymi, drugi - model stepwise, w którym nastąpi automatyczna selekcja zmiennych na postawie kryterium AIC.

	Dependent variable:	
	isBa	d_12
	(1)	(2)
CODE_GENDERM	0.073	
	(0.064)	
FLAG_OWN_CARY	-0.149 ^{***}	-0.142 ^{***}
	(0.057)	(0.054)
FLAG_OWN_REALTYY	-0.122**	-0.137**
	(0.054)	(0.053)
CNT_CHILDREN	-2.114 ^{***}	-2.154 ^{***}
	(0.481)	(0.479)
AMT_INCOME_TOTAL	0.00000***	0.00000***
	(0.00000)	(0.00000)
NAME_INCOME_TYPEPensioner	3.173***	3.158 ^{***}
	(0.603)	(0.598)
NAME_INCOME_TYPEState servant	-0.045	-0.004
	(0.101)	(0.097)
NAME_INCOME_TYPEStudent	0.326	0.354
	(1.060)	(1.059)
NAME_INCOME_TYPEWorking	-0.110 [*]	-0.101 [*]
	(0.062)	(0.061)
NAME_EDUCATION_TYPEHigher education	10.738	10.843
	(133.601)	(133.457)
NAME_EDUCATION_TYPEIncomplete higher	10.925	11.021
	(133.601)	(133.457)
NAME_EDUCATION_TYPELower secondary	10.475	10.601
	(133.601)	(133.458)
NAME_EDUCATION_TYPESecondary / secondary special	10.887	10.998
	(133.601)	(133.457)
NAME_FAMILY_STATUSMarried	-0.065	-0.070
	(0.089)	(0.088)
NAME_FAMILY_STATUSSeparated	2.010***	2.032***
	(0.498)	(0.496)
NAME_FAMILY_STATUSSingle / not married	2.104***	2.134***
	(0.481)	(0.479)
NAME_FAMILY_STATUSWidow	1.860***	1.885***
	(0.507)	(0.505)
NAME_HOUSING_TYPEHouse / apartment	1.024*	

34.125.163.182:8080 12/16

2	2023, 11:58	Analiza klientów kart kredytowych
		(0.587)
	NAME_HOUSING_TYPEMunicipal apartment	0.949
		(0.604)
	NAME_HOUSING_TYPEOffice apartment	1.388**
		(0.637)
	NAME_HOUSING_TYPERented apartment	1.153 [*]
		(0.613)
	NAME_HOUSING_TYPEWith parents	1.170**
		(0.595)
	DAYS_BIRTH	0.00004*** 0.00004**
		(0.00001) (0.00001)
	DAYS_EMPLOYED	-0.00001*** -0.00001**
		(0.0000) (0.0000)
	FLAG_WORK_PHONE1	-0.094 -0.105*
		(0.067) (0.063)
	FLAG_PHONE1	-0.019
		(0.058)
	FLAG_EMAIL1	0.203** 0.204**
		(0.080) (0.080)
	OCCUPATION_TYPEAccountants	-0.017
		(0.161)
	OCCUPATION_TYPECleaning staff	0.320
		(0.208)
	OCCUPATION_TYPECooking staff	0.443**
		(0.174)
	OCCUPATION_TYPECore staff	0.160
		(0.104)
	OCCUPATION_TYPEDrivers	-0.005
		(0.131)
	OCCUPATION_TYPEHigh skill tech staff	0.221
		(0.137)
	OCCUPATION_TYPEHR staff	1.029***
		(0.354)
	OCCUPATION_TYPEIT staff	0.701
		(0.445)
	OCCUPATION_TYPELaborers	0.128
		(0.093)
	OCCUPATION_TYPELow-skill Laborers	0.420
		(0.328)
	OCCUPATION_TYPEManagers	0.193*
		(0.110)

34.125.163.182:8080 13/16

1023, 11133	A Walled Kile Heavy Kare Ki caytovych
OCCUPATION_TYPEMedicine staff	0.252*
	(0.150)
OCCUPATION_TYPEPrivate service staff	-0.505
	(0.348)
OCCUPATION_TYPERealty agents	0.397
	(0.437)
OCCUPATION_TYPESales staff	0.007
	(0.109)
OCCUPATION_TYPESecretaries	0.426
	(0.339)
OCCUPATION_TYPESecurity staff	0.262
	(0.197)
OCCUPATION_TYPEWaiters/barmen staff	0.245
	(0.339)
CNT_FAM_MEMBERS	2.102*** 2.137***
	(0.479) (0.477)
Constant	-18.241 -17.217
	(133.606) (133.461)
Observations	27,410 27,410
Log Likelihood	-6,476.869 -6,496.554
Akaike Inf. Crit.	13,047.740 13,037.110
Note:	<i>p<0.1; p<0.05;</i> p<0.01

Wnioski z regresji: - Klienci posiadający samochód mają istotnie mniejsze ryzyko. - Rodzaj zarobków nie ma większego znaczenia o ile nie jest to emerytura, natomiast wielkość zarobków już ma. Podobnie prezentuje się podsumowanie zawodów - konkretne nie mają znaczenia, ale już czas na rynku pracy owszem. - Edukacja okazała się zmienną nieistotną. - Zmienne związane z rodziną były isostnymi czynnikami - zarówno liczba dzieci, liczba członków rodziny, jak i status matrymonialny były istotnymi zmiennymi.

3.2 Drzewa decyzyjne

Kolejnym rozważanym modelem były drzewa decyzyjne. Zostały skonstruowane 3 drzewa decyzyjne o różnej wielkości (ze względu na **Complexity Parameter**).

Wielkość drzwa

34.125.163.182:8080 14/16

Drzewa decyzyjne okazały się słabym wyborem dla tego zbioru danych. Małe drzewa w ogóle nie mają podziałów.

3.3 Porównanie wyników

Jako ostatni etap porównano różne skonstruowane modele ze względu na własności statystyczne. Wszystkie statystki są dostępne do wględu zarówno na zbiorze treningowym, jak i testowym.

Zbiór do porównania wyników

3.3.1 Krzywa ROC

34.125.163.182:8080 15/16

Wszystkie modele prezentują bardzo słabą moc predykcyjną, jednak regresja logistyczna wydaje się radzić lepiej. Wszystkie modele mają minimalnie gorsze właściwości na zbiorze testowym, jednak tam dalej ten trend się utrzymuje - regresja logistyczna jest lepszym wyborem.

4 Podsumowanie

Zbiór okazał się być mocno problematyczny do modelowania - brak wymiaru czasu w aplication_record, patrzenie wstecz zamiast do przodu w credit_record i mocno ograniczony iloczyn tych zbiorów po połączeniu za pomocą ID znacząco utrudniały zadanie. Nie oznacza to, że nie da się wyciągnąć żadnych wniosków - obie hipotezy zostały potwierdzone za pomocą analizy graficznej i regresji logistycznej.

34.125.163.182:8080 16/16