Data Mining Regras de Classificação

Prof. Dr. Joaquim Assunção

DEPARTAMENTO DE COMPUTAÇÃO APLICADA CENTRO DE TECNOLOGIA UFSM 2022

Notas legais

- Este material foi cedido pelo Dr. Eamonn Keogh (University of California - Riverside, US) para as aulas de mineração de dados na UFSM.
- Se você deseja usar este material para outros fins, entre em contato com o autor (eamonn@cs.ucr.edu).

Tradução e adaptação: Dr. Joaquim Assunção (joaquim@inf.ufsm.br).

Problema de Classificação Uma definição informal

Dada uma coleção de dados anotados. Neste caso, 5 instâncias de *Katydid* (gafanhoto A) e 5 *Grasshoper* (gafanhoto B). Decida que tipo de inseto o exemplo não rotulado é.

Para cada domínio de interesse, podemos medir as características

Minha_Colecao

Podemos usar características em um conjunto de dados.

O problema de classificação agora pode ser expressado como:

• Dado um conjunto de treino (Minha_Colecao), Descubra o rótulo da classe de uma Instância nunca vista (inseto novo)

Inseto ID	Abdômen	Antena	Classe do inseto
1	2.7	5.5	Grasshopper
2	8.0	9.1	Katydid
3	0.9	4.7	Grasshopper
4	1.1	3.1	Grasshopper
5	5.4	8.5	Katydid
6	2.9	1.9	Grasshopper
7	6.1	6.6	Katydid
8	0.5	1.0	Grasshopper
9	8.3	6.6	Katydid
10	8.1	4.7	Katydids

Inseto novo =	11	5.1	7.0	??????
	4.4	• • •	, • 0	

Grasshoppers

Katydids

Adaptado do original de Dr. Eamonn Keogh. (University of California - Riverside, US)

Grasshoppers

Vamos usar esse conjunto, ligeiramente, maior como exemplo...

Cada um destes objetos de dados são chamados de...

- exemplares
- examplos de treino
- instâncias
- tuplas

Voltaremos em breve. Agora, vamos Jogar...

Aqui está a regra, se o primeiro valor for menor que o segundo é A, caso contrario é B.

A regra é a seguinte: Se o quadrado da soma das barras for menor ou igual a 100, é um A. Caso contrário é um B.

As regras fazem sentido, mas não estou certo quanto a exclusividade das mesmas... vontade de assistir os Simpsons

Relembrando a regra. Se a barra esquerda for menor que a direita é A, caso contrário é B.

Deixa eu ver... aqui, achei! .. A regra é, se as duas barras tiverem o mesmo tamanho é A. as outras são B.

 $10\ 20\ 30\ 40\ 50\ 60\ 70\ 80\ 90\ 100$

A regra é: Se a soma do quadrado das

Se a soma do quadrado das barras é menor ou igual a 100 é A. Caso contrário é B.

Inseto desconhecido →

11

5.1

7.0

???????

- Podemos projetar o inseto desconhecido no mesmo espaço dos demais dados do conjunto.
- Agora que abstraímos os detalhes, será mais fácil falar dos dados.

Natydids

Grasshoppers

Classificador linear simples

R.A. Fisher 1890-1962

Se o atributo desconhecido está acima da linha então

a classe é **Katydid senão**

a classe é **Grasshopper**

Natydids

Grasshoppers

Esse mesmo tipo de classificador pode ser usado

em mais espaços dimensionais...

... Podemos visualizar como um n-dimensional hiperplano.

Podemos pensar o que aconteceria neste mesmo exemplo se não tivéssemos a Terceira dimensão...

Já não podemos ter uma acurácia perfeita com um classificador linear...

Poderíamos tentar solucionar esse problema com um classificador quadrático ou cubico...

No entanto, não é uma ideia muito boa...

Quais dos #jogos podem ser resolvidos com um classificador linear simples?

- 1) Perfeito
- 2) Inútil
- 3) Muito bom

10 9 8 5 5 5 6 7 8 9 10

Problemas que podem ser resolvidos por um classificador linear são chamados de Separáveis linearmente.

Hands On!

• Use read.csv para ler o arquivo "insetos00.csv". Na sequência defina um modelo linear simples para classificar os insetos com as seguintes características como Grasshoper e katydid (respectivamente):

Abdômen= 3.2 e Antena=4.2

Abdômen= 7.2 e Antena=4.1

Tech help

Use abline (y, inclinacao) para definir sua linha