



## LD1086 SERIES

### 1.5A LOW DROP POSITIVE VOLTAGE REGULATOR ADJUSTABLE AND FIXED

- TYPICAL DROPOUT 1.3V AT 1.5A
- THREE TERMINAL ADJUSTABLE OR FIXED OUTPUT VOLTAGE 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 3.6V, 5V, 8V, 9V, 12V.
- GUARANTEED OUTPUT CURRENT UP TO 1.5A
- OUTPUT TOLERANCE  $\pm 1\%$  AT 25°C AND  $\pm 2\%$  IN FULL TEMPERATURE RANGE
- INTERNAL POWER AND THERMAL LIMIT
- WIDE OPERATING TEMPERATURE RANGE -40°C TO 125°C
- PACKAGE AVAILABLE : TO-220, D<sup>2</sup>PAK, D<sup>2</sup>PAK/A, DPAK
- PINOUT COMPATIBILITY WITH STANDARD ADJUSTABLE VREG



#### DESCRIPTION

The LD1086 is a LOW DROP Voltage Regulator able to provide up to 1.5A of Output Current. Dropout is guaranteed at a maximum of 1.5V at the maximum output current, decreasing at lower loads. The LD1086 is pin to pin compatible with the older 3-terminal adjustable regulators, but has better performances in term of drop and output tolerance .

A 2.85V output version is suitable for SCSI-2 active termination. Unlike PNP regulators, where a part of the output current is wasted as quiescent current, the LD1086 quiescent current flows into the load, so increase efficiency. Only a 10 $\mu$ F minimum capacitor is need for stability. The device is supplied in TO-220, D<sup>2</sup>PAK, D<sup>2</sup>PAK/A and DPAK. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within  $\pm 1\%$  at 25°C.

#### SCHEMATIC DIAGRAM



## LD1086 SERIES

### ABSOLUTE MAXIMUM RATINGS

| Symbol           | Parameter <sup>2</sup>               | Value              | Unit |
|------------------|--------------------------------------|--------------------|------|
| V <sub>I</sub>   | DC Input Voltage                     | 30                 | V    |
| I <sub>O</sub>   | Output Current                       | Internally Limited | mA   |
| P <sub>D</sub>   | Power Dissipation                    | Internally Limited | mW   |
| T <sub>stg</sub> | Storage Temperature Range            | -55 to +150        | °C   |
| T <sub>op</sub>  | Operating Junction Temperature Range | -40 to +125        | °C   |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

### THERMAL DATA

| Symbol                | Parameter                           | TO-220 | D <sup>2</sup> PAK | DPAK | Unit |
|-----------------------|-------------------------------------|--------|--------------------|------|------|
| R <sub>thj-case</sub> | Thermal Resistance Junction-case    | 3      | 3                  | 8    | °C/W |
| R <sub>thj-amb</sub>  | Thermal Resistance Junction-ambient | 50     | 62.5               |      | °C/W |

### APPLICATION CIRCUITS



## CONNECTION DIAGRAM (top view)



## ORDERING CODES

| TO-220    | D <sup>2</sup> PAK (*) | D <sup>2</sup> PAK/A (*) | DPAK (*)   | OUTPUT VOLTAGE |
|-----------|------------------------|--------------------------|------------|----------------|
| LD1086V15 | LD1086D2T15            | LD1086D2M15              | LD1086DT15 | 1.5 V          |
| LD1086V18 | LD1086D2T18            | LD1086D2M18              | LD1086DT18 | 1.8 V          |
| LD1086V25 | LD1086D2T25            | LD1086D2M25              | LD1086DT25 | 2.5 V          |
| LD1086V28 | LD1086D2T28            | LD1086D2M28              | LD1086DT28 | 2.85 V         |
| LD1086V33 | LD1086D2T33            | LD1086D2M33              | LD1086DT33 | 3.3 V          |
| LD1086V36 | LD1086D2T36            | LD1086D2M36              | LD1086DT36 | 3.6 V          |
| LD1086V50 | LD1086D2T50            | LD1086D2M50              | LD1086DT50 | 5.0 V          |
| LD1086V80 | LD1086D2T80            | LD1086D2M80              | LD1086DT80 | 8.0 V          |
| LD1086V90 | LD1086D2T90            | LD1086D2M90              | LD1086DT90 | 9.0 V          |
| LD1086V12 | LD1086D2T12            | LD1086D2M12              | LD1086DT12 | 12.0 V         |
| LD1086V   | LD1086D2T              | LD1086D2M                | LD1086DT   | ADJ            |

(\*) Available in Tape & Reel with the suffix "R" for fixed version and "-R" for adjustable version.

## LD1086 SERIES

---

**ELECTRICAL CHARACTERISTICS OF LD1086#15 ( $V_I=4.5V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)**

| Symbol       | Parameter                              | Test Conditions                                                              | Min.  | Typ.  | Max.  | Unit |
|--------------|----------------------------------------|------------------------------------------------------------------------------|-------|-------|-------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA}$ $T_J = 25^\circ C$                                      | 1.485 | 1.5   | 1.515 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A$ $V_I = 3.4 \text{ to } 30V$                       | 1.47  | 1.5   | 1.53  | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA}$ $V_I = 3.1 \text{ to } 18V$ $T_J = 25^\circ C$          |       | 0.2   | 4     | mV   |
|              |                                        | $I_O = 0 \text{ mA}$ $V_I = 3.1 \text{ to } 15V$                             |       | 0.4   | 4     | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A$ $T_J = 25^\circ C$                                |       | 0.5   | 8     | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                   |       | 1     | 16    | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                 |       | 1.3   | 1.5   | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                               |       | 5     | 10    | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                             | 1.5   | 2     |       | A    |
|              |                                        | $V_I - V_O = 25V$                                                            | 0.05  | 0.02  |       | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C$ , 30ms pulse                                              |       | 0.01  | 0.04  | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}$ , $C_O = 25 \mu F$ , $I_O = 1.5A$<br>$V_I = 6.5 \pm 3V$ | 60    | 82    |       | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C$ $f = 10\text{Hz to } 10\text{KHz}$                        |       | 0.003 |       | %    |
| S            | Temperature Stability                  |                                                                              |       | 0.5   |       | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C$ 1000Hrs                                                  |       | 0.5   |       | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

**ELECTRICAL CHARACTERISTICS OF LD1086#18 ( $V_I=4.8V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)**

| Symbol       | Parameter                              | Test Conditions                                                              | Min.  | Typ.  | Max.  | Unit |
|--------------|----------------------------------------|------------------------------------------------------------------------------|-------|-------|-------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA}$ $T_J = 25^\circ C$                                      | 1.782 | 1.8   | 1.818 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A$ $V_I = 3.4 \text{ to } 30V$                       | 1.764 | 1.8   | 1.836 | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA}$ $V_I = 3.4 \text{ to } 18V$ $T_J = 25^\circ C$          |       | 0.2   | 4     | mV   |
|              |                                        | $I_O = 0 \text{ mA}$ $V_I = 3.4 \text{ to } 15V$                             |       | 0.4   | 4     | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A$ $T_J = 25^\circ C$                                |       | 0.5   | 8     | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                   |       | 1     | 16    | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                 |       | 1.3   | 1.5   | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                               |       | 5     | 10    | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                             | 1.5   | 2     |       | A    |
|              |                                        | $V_I - V_O = 25V$                                                            | 0.05  | 0.02  |       | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C$ , 30ms pulse                                              |       | 0.01  | 0.04  | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}$ , $C_O = 25 \mu F$ , $I_O = 1.5A$<br>$V_I = 6.8 \pm 3V$ | 60    | 82    |       | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C$ $f = 10\text{Hz to } 10\text{KHz}$                        |       | 0.003 |       | %    |
| S            | Temperature Stability                  |                                                                              |       | 0.5   |       | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C$ 1000Hrs                                                  |       | 0.5   |       | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

**ELECTRICAL CHARACTERISTICS OF LD1086#25 ( $V_I=5.5V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)**

| Symbol       | Parameter                              | Test Conditions                                                              | Min.  | Typ.  | Max.  | Unit |
|--------------|----------------------------------------|------------------------------------------------------------------------------|-------|-------|-------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA}$ $T_J = 25^\circ C$                                      | 2.475 | 2.5   | 2.525 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A$ $V_I = 4.1 \text{ to } 30V$                       | 2.45  | 2.5   | 2.55  | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA}$ $V_I = 4.1 \text{ to } 18V$ $T_J = 25^\circ C$          |       | 0.2   | 4     | mV   |
|              |                                        | $I_O = 0 \text{ mA}$ $V_I = 4.1 \text{ to } 18V$                             |       | 0.4   | 4     | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A$ $T_J = 25^\circ C$                                |       | 0.5   | 8     | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                   |       | 1     | 16    | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                 |       | 1.3   | 1.5   | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                               |       | 5     | 10    | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                             | 1.5   | 2     |       | A    |
|              |                                        | $V_I - V_O = 25V$                                                            | 0.05  | 0.2   |       | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C$ , 30ms pulse                                              |       | 0.008 | 0.04  | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}$ , $C_O = 25 \mu F$ , $I_O = 1.5A$<br>$V_I = 7.5 \pm 3V$ | 60    | 81    |       | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C$ $f = 10\text{Hz to } 10\text{KHz}$                        |       | 0.003 |       | %    |
| S            | Temperature Stability                  |                                                                              |       | 0.5   |       | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C$ 1000Hrs                                                  |       | 0.5   |       | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

**ELECTRICAL CHARACTERISTICS OF LD1086#285 ( $V_I=5.85V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)**

| Symbol       | Parameter                              | Test Conditions                                                               | Min.  | Typ.  | Max.  | Unit |
|--------------|----------------------------------------|-------------------------------------------------------------------------------|-------|-------|-------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA}$ $T_J = 25^\circ C$                                       | 2.821 | 2.85  | 2.879 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A$ $V_I = 4.5 \text{ to } 30V$                        | 2.793 | 2.85  | 2.907 | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA}$ $V_I = 4.5 \text{ to } 18V$ $T_J = 25^\circ C$           |       | 0.2   | 6     | mV   |
|              |                                        | $I_O = 0 \text{ mA}$ $V_I = 4.5 \text{ to } 18V$                              |       | 0.5   | 6     | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A$ $T_J = 25^\circ C$                                 |       | 1     | 12    | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                    |       | 2     | 20    | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                  |       | 1.3   | 1.5   | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                                |       | 5     | 10    | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                              | 1.5   | 2     |       | A    |
|              |                                        | $V_I - V_O = 25V$                                                             | 0.05  | 0.2   |       | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C$ , 30ms pulse                                               |       | 0.01  | 0.04  | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}$ , $C_O = 25 \mu F$ , $I_O = 1.5A$<br>$V_I = 7.85 \pm 3V$ | 60    | 80    |       | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C$ $f = 10\text{Hz to } 10\text{KHz}$                         |       | 0.003 |       | %    |
| S            | Temperature Stability                  |                                                                               |       | 0.5   |       | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C$ 1000Hrs                                                   |       | 0.5   |       | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

## LD1086 SERIES

---

**ELECTRICAL CHARACTERISTICS OF LD1086#33 ( $V_I=6.3V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)**

| Symbol       | Parameter                              | Test Conditions                                                              | Min.  | Typ.  | Max.  | Unit |
|--------------|----------------------------------------|------------------------------------------------------------------------------|-------|-------|-------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA}$ $T_J = 25^\circ C$                                      | 3.267 | 3.3   | 3.333 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A$ $V_I = 4.9 \text{ to } 30V$                       | 3.234 | 3.35  | 3.366 | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA}$ $V_I = 4.9 \text{ to } 18V$ $T_J = 25^\circ C$          |       | 0.5   | 6     | mV   |
|              |                                        | $I_O = 0 \text{ mA}$ $V_I = 4.9 \text{ to } 18V$                             |       | 1     | 6     | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A$ $T_J = 25^\circ C$                                |       | 1     | 10    | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                   |       | 7     | 25    | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                 |       | 1.3   | 1.5   | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                               |       | 5     | 10    | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                             | 1.5   | 2     |       | A    |
|              |                                        | $V_I - V_O = 25V$                                                            | 0.05  | 0.2   |       | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C$ , 30ms pulse                                              |       | 0.008 | 0.04  | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}$ , $C_O = 25 \mu F$ , $I_O = 1.5A$<br>$V_I = 8.3 \pm 3V$ | 60    | 79    |       | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C$ $f = 10\text{Hz to } 10\text{KHz}$                        |       | 0.003 |       | %    |
| S            | Temperature Stability                  |                                                                              |       | 0.5   |       | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C$ 1000Hrs                                                  |       | 0.5   |       | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

**ELECTRICAL CHARACTERISTICS OF LD1086#36 ( $V_I=6.6V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)**

| Symbol       | Parameter                              | Test Conditions                                                              | Min.  | Typ.  | Max.  | Unit |
|--------------|----------------------------------------|------------------------------------------------------------------------------|-------|-------|-------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA}$ $T_J = 25^\circ C$                                      | 3.564 | 3.6   | 3.636 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A$ $V_I = 5.2 \text{ to } 30V$                       | 3.528 | 3.6   | 3.672 | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA}$ $V_I = 5.2 \text{ to } 18V$ $T_J = 25^\circ C$          |       | 0.5   | 10    | mV   |
|              |                                        | $I_O = 0 \text{ mA}$ $V_I = 5.2 \text{ to } 18V$                             |       | 1     | 10    | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A$ $T_J = 25^\circ C$                                |       | 3     | 15    | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                   |       | 7     | 25    | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                 |       | 1.3   | 1.5   | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                               |       | 5     | 10    | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                             | 1.5   | 2     |       | A    |
|              |                                        | $V_I - V_O = 25V$                                                            | 0.05  | 0.2   |       | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C$ , 30ms pulse                                              |       | 0.01  | 0.04  | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}$ , $C_O = 25 \mu F$ , $I_O = 1.5A$<br>$V_I = 8.6 \pm 3V$ | 60    | 78    |       | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C$ $f = 10\text{Hz to } 10\text{KHz}$                        |       | 0.003 |       | %    |
| S            | Temperature Stability                  |                                                                              |       | 0.5   |       | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C$ 1000Hrs                                                  |       | 0.5   |       | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

**ELECTRICAL CHARACTERISTICS OF LD1086#50** ( $V_I=8V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)

| Symbol       | Parameter                              | Test Conditions                                                                   | Min. | Typ.  | Max. | Unit |
|--------------|----------------------------------------|-----------------------------------------------------------------------------------|------|-------|------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA} \quad T_J = 25^\circ C$                                       | 4.95 | 5     | 5.05 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A \quad V_I = 6.6 \text{ to } 30V$                        | 4.9  | 5     | 5.1  | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA} \quad V_I = 6.6 \text{ to } 20V \quad T_J = 25^\circ C$       |      | 0.5   | 10   | mV   |
|              |                                        | $I_O = 0 \text{ mA} \quad V_I = 6.6 \text{ to } 20V$                              |      | 1     | 10   | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A \quad T_J = 25^\circ C$                                 |      | 5     | 20   | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                        |      | 10    | 35   | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                      |      | 1.3   | 1.5  | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                                    |      | 5     | 10   | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                                  | 1.5  | 2     |      | A    |
|              |                                        | $V_I - V_O = 25V$                                                                 | 0.05 | 0.2   |      | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C, 30ms \text{ pulse}$                                            |      | 0.01  | 0.04 | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}, \quad C_O = 25 \mu F, \quad I_O = 1.5A$<br>$V_I = 10 \pm 3V$ | 60   | 75    |      | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C \quad f = 10\text{Hz to } 10\text{KHz}$                         |      | 0.003 |      | %    |
| S            | Temperature Stability                  |                                                                                   |      | 0.5   |      | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C \quad 1000\text{Hrs}$                                          |      | 0.5   |      | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

**ELECTRICAL CHARACTERISTICS OF LD1086#80** ( $V_I=11V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)

| Symbol       | Parameter                              | Test Conditions                                                                   | Min. | Typ.  | Max. | Unit |
|--------------|----------------------------------------|-----------------------------------------------------------------------------------|------|-------|------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA} \quad T_J = 25^\circ C$                                       | 7.92 | 8     | 8.08 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A \quad V_I = 9.8 \text{ to } 30V$                        | 7.84 | 8     | 8.16 | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA} \quad V_I = 9.8 \text{ to } 20V \quad T_J = 25^\circ C$       |      | 1     | 18   | mV   |
|              |                                        | $I_O = 0 \text{ mA} \quad V_I = 9.8 \text{ to } 20V$                              |      | 2     | 18   | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A \quad T_J = 25^\circ C$                                 |      | 8     | 30   | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                        |      | 12    | 60   | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                      |      | 1.3   | 1.5  | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                                    |      | 5     | 10   | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                                  | 1.5  | 2     |      | A    |
|              |                                        | $V_I - V_O = 25V$                                                                 | 0.04 | 0.2   |      | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C, 30ms \text{ pulse}$                                            |      | 0.01  | 0.04 | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}, \quad C_O = 25 \mu F, \quad I_O = 1.5A$<br>$V_I = 13 \pm 3V$ | 54   | 71    |      | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C \quad f = 10\text{Hz to } 10\text{KHz}$                         |      | 0.003 |      | %    |
| S            | Temperature Stability                  |                                                                                   |      | 0.5   |      | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C \quad 1000\text{Hrs}$                                          |      | 0.5   |      | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

## LD1086 SERIES

---

**ELECTRICAL CHARACTERISTICS OF LD1086#90** ( $V_I=12V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)

| Symbol       | Parameter                              | Test Conditions                                                                   | Min. | Typ.  | Max. | Unit |
|--------------|----------------------------------------|-----------------------------------------------------------------------------------|------|-------|------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA } T_J = 25^\circ C$                                            | 8.91 | 9     | 9.09 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A \quad V_I = 11 \text{ to } 30V$                         | 8.82 | 9     | 9.18 | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA } V_I = 11 \text{ to } 20V \quad T_J = 25^\circ C$             |      | 1     | 20   | mV   |
|              |                                        | $I_O = 0 \text{ mA } V_I = 11 \text{ to } 20V$                                    |      | 2     | 20   | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A \quad T_J = 25^\circ C$                                 |      | 8     | 30   | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                        |      | 12    | 60   | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                      |      | 1.3   | 1.5  | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                                    |      | 5     | 10   | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                                  | 1.5  | 2     |      | A    |
|              |                                        | $V_I - V_O = 25V$                                                                 | 0.05 | 0.2   |      | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C, 30ms \text{ pulse}$                                            |      | 0.01  | 0.04 | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}, \quad C_O = 25 \mu F, \quad I_O = 1.5A$<br>$V_I = 14 \pm 3V$ | 54   | 70    |      | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C \quad f = 10\text{Hz to } 10\text{KHz}$                         |      | 0.003 |      | %    |
| S            | Temperature Stability                  |                                                                                   |      | 0.5   |      | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C \quad 1000\text{Hrs}$                                          |      | 0.5   |      | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

**ELECTRICAL CHARACTERISTICS OF LD1086#120** ( $V_I=15V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)

| Symbol       | Parameter                              | Test Conditions                                                                   | Min.  | Typ.  | Max.  | Unit |
|--------------|----------------------------------------|-----------------------------------------------------------------------------------|-------|-------|-------|------|
| $V_O$        | Output Voltage (note 1)                | $I_O = 0 \text{ mA } T_J = 25^\circ C$                                            | 11.88 | 12    | 12.12 | V    |
|              |                                        | $I_O = 0 \text{ to } 1.5A \quad V_I = 13.8 \text{ to } 30V$                       | 11.76 | 12    | 12.24 | V    |
| $\Delta V_O$ | Line Regulation                        | $I_O = 0 \text{ mA } V_I = 13.8 \text{ to } 25V \quad T_J = 25^\circ C$           |       | 1     | 25    | mV   |
|              |                                        | $I_O = 0 \text{ mA } V_I = 13.8 \text{ to } 25V$                                  |       | 2     | 25    | mV   |
| $\Delta V_O$ | Load Regulation                        | $I_O = 0 \text{ to } 1.5A \quad T_J = 25^\circ C$                                 |       | 12    | 36    | mV   |
|              |                                        | $I_O = 0 \text{ to } 1.5A$                                                        |       | 24    | 72    | V    |
| $V_d$        | Dropout Voltage                        | $I_O = 1.5A$                                                                      |       | 1.3   | 1.5   | V    |
| $I_q$        | Quiescent Current                      | $V_I \leq 30V$                                                                    |       | 5     | 10    | mA   |
| $I_{sc}$     | Short Circuit Current                  | $V_I - V_O = 5V$                                                                  | 1.5   | 2     |       | A    |
|              |                                        | $V_I - V_O = 25V$                                                                 | 0.05  | 0.2   |       | A    |
|              | Termal Regulation                      | $T_A = 25^\circ C, 30ms \text{ pulse}$                                            |       | 0.01  | 0.04  | %/W  |
| SVR          | Supply Voltage Rejection               | $f = 120 \text{ Hz}, \quad C_O = 25 \mu F, \quad I_O = 1.5A$<br>$V_I = 17 \pm 3V$ | 54    | 66    |       | dB   |
| eN           | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C \quad f = 10\text{Hz to } 10\text{KHz}$                         |       | 0.003 |       | %    |
| S            | Temperature Stability                  |                                                                                   |       | 0.5   |       | %    |
| S            | Long Term Stability                    | $T_A = 125^\circ C \quad 1000\text{Hrs}$                                          |       | 0.5   |       | %    |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

**ELECTRICAL CHARACTERISTICS OF LD1086#** ( $V_I = 4.25V$ ,  $C_I = C_O = 10\mu F$ ,  $T_A = -40$  to  $125^\circ C$ , unless otherwise specified.)

| Symbol           | Parameter                              | Test Conditions                                                                          | Min.  | Typ.  | Max.  | Unit    |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------|-------|-------|-------|---------|
| $V_O$            | Output Voltage (note 1)                | $I_O = 10mA \quad T_J = 25^\circ C$                                                      | 1.237 | 1.25  | 1.263 | V       |
|                  |                                        | $I_O = 10mA$ to $1.5A \quad V_I = 2.85$ to $30V$                                         | 1.225 | 1.25  | 1.275 | V       |
| $\Delta V_O$     | Line Regulation                        | $I_O = 10mA \quad V_I = 2.8$ to $16.5V \quad T_J = 25^\circ C$                           |       | 0.015 | 0.2   | %       |
|                  |                                        | $I_O = 10mA \quad V_I = 2.8$ to $16.5V$                                                  |       | 0.035 | 0.2   | %       |
| $\Delta V_O$     | Load Regulation                        | $I_O = 10mA$ to $1.5A \quad T_J = 25^\circ C$                                            |       | 0.1   | 0.3   | %       |
|                  |                                        | $I_O = 0$ to $1.5A$                                                                      |       | 0.2   | 0.4   | %       |
| $V_d$            | Dropout Voltage                        | $I_O = 1.5A$                                                                             |       | 1.3   | 1.5   | V       |
| $I_{O(min)}$     | Minimum Load Current                   | $V_I = 30V$                                                                              |       | 3     | 10    | mA      |
| $I_{sc}$         | Short Circuit Current                  | $V_I - V_O = 5V$                                                                         | 1.5   | 2.3   |       | A       |
|                  |                                        | $V_I - V_O = 25V$                                                                        | 0.05  | 0.2   |       | A       |
|                  | Termal Regulation                      | $T_A = 25^\circ C$ , 30ms pulse                                                          |       | 0.01  | 0.04  | %/W     |
| SVR              | Supply Voltage Rejection               | $f = 120$ Hz, $C_O = 25 \mu F$ , $C_{ADJ} = 25 \mu F$ , $I_O = 1.5A$ $V_I = 6.25 \pm 3V$ | 60    | 88    |       | dB      |
| $I_{ADJ}$        | Adjust Pin Current                     | $V_I = 4.25V \quad I_O = 10 mA$                                                          |       | 40    | 120   | $\mu A$ |
| $\Delta I_{ADJ}$ | Adjust Pin Current Change              | $I_O = 10mA$ to $1.5A \quad V_I = 2.8$ to $16.5V$ (note 1)                               |       | 0.2   | 5     | $\mu A$ |
| eN               | RMS Output Noise Voltage (% of $V_O$ ) | $T_A = 25^\circ C \quad f = 10Hz$ to $10KHz$                                             |       | 0.003 |       | %       |
| S                | Temperature Stability                  |                                                                                          |       | 0.5   |       | %       |
| S                | Long Term Stability                    | $T_A = 125^\circ C \quad 1000Hrs$                                                        |       | 0.5   |       | %       |

NOTE 1: See short-circuit current curve for available output current at fixed dropout.

## LD1086 SERIES

---

**TYPICAL CHARACTERISTICS** (unless otherwise specified  $T_J = 25^\circ\text{C}$ ,  $C_L=C_O=10\mu\text{F}$ )

**Figure 1 : Output Voltage vs Temperature**



**Figure 2 : Output Voltage vs Temperature**



**Figure 3 : Output Voltage vs Temperature**



**Figure 4 : Short Circuit Current vs Dropout Voltage**



**Figure 5 : Line Regulation vs Temperature**



**Figure 6 : Load Regulation vs Temperature**



**Figure 7 : Dropout Voltage vs Temperature**



**Figure 8 : Dropout Voltage vs Output Current**



**Figure 9 : Adjust Pin Current vs Input Voltage**



**Figure 10 : Adjust Pin Current vs Temperature**



**Figure 11 : Adjust Pin Current vs Output Current**



**Figure 12 : Quiescent Current vs Output Current**



## LD1086 SERIES

**Figure 13 : Quiescent Current vs Input Voltage**



**Figure 14 : Supply Voltage Rejection vs Output Current**



**Figure 15 : Supply Voltage Rejection vs Frequency**



**Figure 16 : Supply Voltage Rejection vs Temperature**



**Figure 17 : Minimum Load Current vs Temperature**



**Figure 18 : Stability for Adjustable**



**Figure 19 : Stability for 2.85V****Figure 20 : Stability for 12V****Figure 21 : Line Transient****Figure 22 : Line Transient****Figure 23 : Line Transient****Figure 24 : Load Transient**

## LD1086 SERIES

**Figure 25 : Load Transient**



**Figure 26 : Thermal Protection**



## TO-220 MECHANICAL DATA

| DIM. | mm.   |      |       | inch  |       |       |
|------|-------|------|-------|-------|-------|-------|
|      | MIN.  | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |
| A    | 4.40  |      | 4.60  | 0.173 |       | 0.181 |
| C    | 1.23  |      | 1.32  | 0.048 |       | 0.051 |
| D    | 2.40  |      | 2.72  | 0.094 |       | 0.107 |
| D1   |       | 1.27 |       |       | 0.050 |       |
| E    | 0.49  |      | 0.70  | 0.019 |       | 0.027 |
| F    | 0.61  |      | 0.88  | 0.024 |       | 0.034 |
| F1   | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
| F2   | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
| G    | 4.95  |      | 5.15  | 0.194 |       | 0.203 |
| G1   | 2.4   |      | 2.7   | 0.094 |       | 0.106 |
| H2   | 10.0  |      | 10.40 | 0.393 |       | 0.409 |
| L2   |       | 16.4 |       |       | 0.645 |       |
| L4   | 13.0  |      | 14.0  | 0.511 |       | 0.551 |
| L5   | 2.65  |      | 2.95  | 0.104 |       | 0.116 |
| L6   | 15.25 |      | 15.75 | 0.600 |       | 0.620 |
| L7   | 6.2   |      | 6.6   | 0.244 |       | 0.260 |
| L9   | 3.5   |      | 3.93  | 0.137 |       | 0.154 |
| DIA. | 3.75  |      | 3.85  | 0.147 |       | 0.151 |



P011C

D<sup>2</sup>PAK MECHANICAL DATA

| DIM. | mm.  |      |       | inch  |       |       |
|------|------|------|-------|-------|-------|-------|
|      | MIN. | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |
| A    | 4.4  |      | 4.6   | 0.173 |       | 0.181 |
| A1   | 2.49 |      | 2.69  | 0.098 |       | 0.106 |
| A2   | 0.03 |      | 0.23  | 0.001 |       | 0.009 |
| B    | 0.7  |      | 0.93  | 0.027 |       | 0.036 |
| B2   | 1.14 |      | 1.7   | 0.044 |       | 0.067 |
| C    | 0.45 |      | 0.6   | 0.017 |       | 0.023 |
| C2   | 1.23 |      | 1.36  | 0.048 |       | 0.053 |
| D    | 8.95 |      | 9.35  | 0.352 |       | 0.368 |
| D1   |      | 8    |       |       | 0.315 |       |
| E    | 10   |      | 10.4  | 0.393 |       | 0.409 |
| E1   |      | 8.5  |       |       | 0.335 |       |
| G    | 4.88 |      | 5.28  | 0.192 |       | 0.208 |
| L    | 15   |      | 15.85 | 0.590 |       | 0.624 |
| L2   | 1.27 |      | 1.4   | 0.050 |       | 0.055 |
| L3   | 1.4  |      | 1.75  | 0.055 |       | 0.068 |
| M    | 2.4  |      | 3.2   | 0.094 |       | 0.126 |
| R    |      | 0.4  |       |       | 0.016 |       |
| V2   | 0°   |      | 8°    | 0°    |       | 8°    |



011P6G

**D<sup>2</sup>PAK/A MECHANICAL DATA**

| DIM. | mm.  |      |       | inch  |      |       |
|------|------|------|-------|-------|------|-------|
|      | MIN. | TYP. | MAX.  | MIN.  | TYP. | MAX.  |
| A    | 4.40 |      | 4.60  | 0.173 |      | 0.181 |
| A1   | 2.49 |      | 2.69  | 0.098 |      | 0.106 |
| B    | 0.7  |      | 0.93  | 0.027 |      | 0.036 |
| B2   | 1.14 |      | 1.7   | 0.044 |      | 0.067 |
| C    | 0.45 |      | 0.60  | 0.017 |      | 0.023 |
| C2   | 1.21 |      | 1.36  | 0.047 |      | 0.053 |
| D    | 8.95 |      | 9.35  | 0.352 |      | 0.368 |
| E    | 10   |      | 10.4  | 0.393 |      | 0.409 |
| G    | 4.88 |      | 5.28  | 0.192 |      | 0.208 |
| L    | 15   |      | 15.85 | 0.590 |      | 0.106 |
| L2   | 1.27 |      | 1.4   | 0.050 |      | 0.055 |



## DPAK MECHANICAL DATA

| DIM. | mm.  |      |      | inch  |       |       |
|------|------|------|------|-------|-------|-------|
|      | MIN. | TYP. | MAX. | MIN.  | TYP.  | MAX.  |
| A    | 2.2  |      | 2.4  | 0.086 |       | 0.094 |
| A1   | 0.9  |      | 1.1  | 0.035 |       | 0.043 |
| A2   | 0.03 |      | 0.23 | 0.001 |       | 0.009 |
| B    | 0.64 |      | 0.9  | 0.025 |       | 0.035 |
| B2   | 5.2  |      | 5.4  | 0.204 |       | 0.212 |
| C    | 0.45 |      | 0.6  | 0.017 |       | 0.023 |
| C2   | 0.48 |      | 0.6  | 0.019 |       | 0.023 |
| D    | 6    |      | 6.2  | 0.236 |       | 0.244 |
| E    | 6.4  |      | 6.6  | 0.252 |       | 0.260 |
| G    | 4.4  |      | 4.6  | 0.173 |       | 0.181 |
| H    | 9.35 |      | 10.1 | 0.368 |       | 0.397 |
| L2   |      | 0.8  |      |       | 0.031 |       |
| L4   | 0.6  |      | 1    | 0.023 |       | 0.039 |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© <http://www.st.com>

