BRAC UNIVERSITY Department of Computer Science and Engineering

CSE 422: Artificial Intelligence Assignment -01

Question-01

A. For the following state space tree define the heuristic values for the following states such that it is admissible.

- **B.**Perform Best First Search and A* search algorithm on the following graph with the defined heuristic values.
- **C.**Now comment on the heuristic values defined whether it is consistent or no by showing the calculations needed. And correct the heuristic values to be consistent.
- **D.**For a state, from which the goal node is unreachable, what do you think the actual path cost and heuristic value should be?

Question-02

Nodes,n	h ₁ (n)	h ₂ (n)
Α	4	5
В	6	6
С	4	5
D	3	4
E	1	1
G	0	0

- A) From the above context, please explain briefly which heuristic function would be better?
- **B)** Now after choosing the heuristic, perform A* Search
- **C)** Demonstrate if the chosen heuristic is consistent or not.

Question-03

- 1. Given a gridworld of size 5x5, where moving in horizontal and vertical directions costs 1 and diagonal movements cost $\sqrt{2}$, you are running Graph A* from the bottom-left to the top-right corner. The heuristic h1(n) is the Manhattan distance to the goal. The heuristic h2(n) is the Euclidean distance to the goal. Now answer the following:
 - a. Are these two heuristics admissible? Why or why not? Explain using two nodes of your choice
 - b. Suppose you run A* using both heuristics. Which heuristic will expand fewer nodes in this weighted grid. Explain why?
 - c. If h1(n) is multiplied by 1.2, will it still be admissible? Will A* still be optimal?

Question-04

- **A.** What are the properties of Local Search? For what kind of problems can we find Local Search useful?
- B. Some examples of Local Search Algorithms
- C. What are the drawbacks of Hill Climb Search and its Remedies
- **D.** Demonstrate the drawbacks Local Maxima and Plateau of Hill-Climb Approach using 8-Puzzle
- **E**. What are the key steps of simulated annealing?
- **F**. How is the concept of probability implemented in Simulated annealing?
- **G**. What is the relationship between Temperature and the probabilistic value e^{del E/T}?