# CLORETOS INSOLUVES

Agt Hg2+ Pb2+

# Introdução ao Grupo I

Ag+ Pb2+ Hg22+

O Grupo I é constituído por cátions que precipitam na presença do íon cloreto (Cl<sup>-</sup>), são ele: a Prata (Ag<sup>+</sup>), Chumbo (Pb<sup>2+</sup>) e Mercurioso (Hg<sub>2</sub><sup>2+</sup>), que ao reagirem com o ácido clorídrico diluído formam sais de cloretos insolúveis. Experimentalmente todos os sais insolúveis de cloreto são brancos, gerando um estímulo visual turvo quando formados.

O ácido clorídrico provoca e sustenta uma acidez no meio devido a liberação de íons H<sup>+</sup>, O que pode prevenir, na solução, a precipitação dos oxicloretos de bismuto e antimônio por exemplo, ambos de coloração esbranquiçada e insolúveis em meio aquoso. O que, por sua vez, poderia também gerar resultados equivocados.

É importante frisar que o HCl utilizado deve ser necessariamente diluído para que o precipitado não seja redissolvido devido à formação complexos de cloreto solúveis fracamente dissociados, ocasionados pelo excesso de íons cloreto.

A precipitação de cloretos é o primeiro passo na identificação dos cátions do Grupo I, entretanto, para que esses cátions sejam isolados é necessário analisar as características restritas de seus respectivos sais e, dessa forma, fazer uso de recursos e reagentes que atuem na sua separação individual. Os reagentes usados para a classificação dos cátions mais comuns são o ácido clorídrico, o ácido sulfídrico (sulfeto de hidrogênio), o sulfeto de amônio e o carbonato de amônio.



## Identificação do Grupo I

Ag<sup>+</sup> Pb<sup>2+</sup> Hg<sub>2</sub><sup>2+</sup>

- Passo 1: À solução amostra contendo os íons, goteje ácido clorídrico (HCl) 3,0 mol.L<sup>-1</sup> até completar a precipitação. observe a formação de um sólido branco e promova a centrifugação. Reserve o sobrenadante, pois neste pode conter cátions dos grupos II, III, IV e V. Ao precipitado, promova a lavagem com 4 gotas de água e 2 gotas de HCl 3,0 mol.L<sup>-1</sup>.
- Passo 2: Ao precipitado, adicione água destilada aquecida e agite utilizando um bastão de vidro. Novamente, leve a mistura para a centrífuga e separe o sobrenadante do precipitado.
- Passo 3: Na sobrenadante, adicione cromato de potássio (K<sub>2</sub>CrO<sub>4</sub>) e observe. Caso, na amostra haja íons de chumbo (Pb<sup>2+</sup>), será formado um precipitado de coloração amarela intensa.
- Passo 4: Ao precipitado, adicione 3mL de hidróxido de amônio (NH<sub>4</sub>OH) concentrado (28-30%) e observe. Caso haja íons de mercúrio ( $Hg_2^{2+}$ ) na amostra, formará um precipitado preto. Centrifugue e guarde o sobrenadante.
- Passo 5: Ao sobrenadante, adicione respectivamente 3mL de ácido nítrico ( $HNO_3$ ) concentrado (65%) e goteje cloreto de sódio (NaCl), observe. Caso haja íons de prata ( $Ag^+$ ) na amostra, um precipitado branco será formado.

## Beleza!... mas por quê?

#### Passo 1: Adição de HCL

Os cátions do Grupo I são identificados pela adição do ácido clorídrico diluído, já que a Ag<sup>+</sup>, Pb<sup>2+</sup> e Hg<sub>2</sub><sup>2+</sup> formam precipitado ao entrar em contato com o íon cloreto, independentemente do valor de pH.

|                                    |          |                   | ΔG°                          |
|------------------------------------|----------|-------------------|------------------------------|
| Ag <sup>+</sup> + Cl <sup>-</sup>  | <b>→</b> | PbCl <sub>2</sub> | -127.01 kJ mol <sup>-1</sup> |
| Pb <sup>+2</sup> + Cl <sup>-</sup> | <b>→</b> | PbCl <sub>2</sub> | -359.41 kJ mol <sup>-1</sup> |
| $Hg_2^{+2} + Cl^{-1}$              | <b>→</b> | $Hg_2CI_2$        | -210,75 kJ mol <sup>-1</sup> |

## Passo 2: Adição da água deionizada aquecida.

Apesar de serem considerados insolúveis ao cloreto, entre eles há uma diferença discrepante nos valores de Kps, fazendo com que o cloreto de chumbo (II) se solubilize primeiro quando adicionado água deionizada quente.

| Nome                    | Fórmula           | pKps  | Solubilidade (%)    |                     |
|-------------------------|-------------------|-------|---------------------|---------------------|
|                         |                   |       | Frio                | Quente              |
| Cloreto de prata        | AgCl              | 9,75  | 0,000089 (0°C)      | 0,00217 (100°C)     |
| Cloreto de chumbo (II)  | PbCl <sub>2</sub> | 17,84 | <b>0,673</b> (0°C)  | <b>3,34</b> (100°C) |
| Cloreto de mercúrio (I) | HgCl              | 4,77  | <b>0,0014</b> (0°C) | 0,0007 (43°C)       |
|                         |                   |       |                     | pKps = -Log(Kps)*   |

#### Passo 3: Identificação do chumbo.

Nesta etapa, os íons Ag<sup>+</sup> e Hg<sub>2</sub><sup>2+</sup> já não compõe mais o sobrenadante, visto que estes mantem-se insolúveis à 100°C e são separados na centrifugação.

Ao reagir o cromato de potássio com íons de chumbo, é formado o sólido cromato de chumbo (II) (PbCrO<sub>4</sub>) que possui cor amarela.

## Passo 4: Identificação do mercúrio.

Ao adicionar hidróxido de amônio (NH<sub>4</sub>OH) em uma mistura contendo o sal de cloreto de mercúrio (I), haverá uma reação de oxirredução, onde ocorre o desproporcionamento do Hg<sup>+</sup>, que se reduz a Hg<sup>0</sup><sub>(I)</sub> e se oxida a HgNH<sub>2</sub>Cl<sub>(s)</sub>, que é chamado de amidocloreto de mercúrio. Visualmente há a predominância da cor preta, entretanto, estes precipitados possuem cores destintas. O Hg<sup>0</sup><sub>(I)</sub> apresenta coloração preta enquanto o amidocloreto de mercúrio (II) apresenta a coloração cinza.

$$2HgCl_{(s)} + 2NH_{3(aq)} \Leftarrow Hg^{0}_{(s)} + HgNH_{2}Cl_{(s)} + NH_{4}^{+}_{(aq)} + 2Cl_{(aq)}^{-}$$

Diferente do mercúrio, a prata forma um complexo solúvel ao reagir com o hidróxido de amônia, chamado diaminoprata  $[Ag(NH_3)_2]^+$ .

$$AgCl_{(s)} + 2NH_3 \Leftarrow [Ag(NH_3)_2]^+_{(aq)} + Cl^-_{(aq)}$$
  $\beta_2 = 5.95 \cdot 10^{-6}$ 

#### Passo 5: Identificação da prata.

Como foi informado no item anterior, o complexo formado entre a amônia e a prata é solúvel, portanto, é necessário desfazer este complexo para promover a precipitação da prata. Ao adicionar o ácido nítrico, os ligantes amônia do complexo são protonados, se desligando do complexo na forma de íons amônio. Dessa forma, os íons Ag<sup>+</sup> ficam livres para reagir com o coreto oriundo do NaCl, gerando precipitado de AgCl.

$$[Ag(NH_3)_2]^+(aq) + Cl^-(aq) + 2HNO_{3(aq)} = AgCl_{(s)} + 2NH_4^+(aq) + 2NO_3^-(aq)$$