

Wstęp do Modelu Standardowego

Multiplety hadronowe

Agnieszka Obłąkowska-Mucha

Wydział Fizyki i Informatyki Stosowanej Katedra Oddziaływań i Detekcji Cząstek

Model Standardowy na obrazkach (pierwszy wykład)

Standard Model of Elementary Particles

Model Standardowy ma już 50 lat!

Jak z kwarków zbudować hadrony

- W latach 30-tych znane były: p, n, e, potem miony i piony oraz neutrina.
- Odkrycie cząstek, które powstały w oddz. silnych, ale żyły zbyt długo (10⁻⁸ -10⁻⁹s czas charakterystyczny dla rozpadów słabych), np: $\pi p \to K^0 \Lambda$ doprowadziło do hipotezy istnienia kwarka nowego rodzaju: dziwnego s i odkrycia wielu nowych stanów.
- Pojawiła się potrzeba ich klasyfikacji. Z trzech kwarków (u d s grupa SU(3)) można zbudować (w stanie podstawowym)
 9 mezonów i 27 barionów:

$$q = \begin{cases} u & \text{mezony} \quad 3 \otimes \overline{3} = 1 \oplus 8 \\ d & \text{bariony} \quad 3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 10 \end{cases}$$

- W połowie lat 60 obserwowana symetria w świecie znanych cząstek doprowadziła Gell-Manna i Zweig'a do hipotezy istnienia kwarków.
- Schemat ułożenia znanych hadronów w "multiplety" opisany jest przez Kwarkowy Model hadronów.
- Kwarki uważane były za obiekty czysto matematyczne, a ich funkcja falowa musiała odzwierciedlać własności hadronów i zasady zachowania, jakim podlegają.
- W Modelu Kwarkowym opisujemy hadrony składające się z trzech najlżejszych kwarków u, d i s.
- Na początek zakłada się, że kwarki poruszają się z prędkościami nierelatywistycznymi

Mezony

Klasyfikacja hadronów ze względu na SPIN (całkowity) J i parzystość P

- Zakładając istnienie tylko trzech kwarków (u,d,s) można było wytłumaczyć całe spektrum.
- Pomiędzy multipletami o różnej dziwności występuje (prawie) stała różnica mas, równa masie kwarka s.
- Różne stany ładunkowe mają niewielkie różnice mas (oddział. elektromagnetyczne.
- Będziemy konstruować "Reguły gry", które tłumaczą takie ułożenie hadronów oraz brak około 9 barionów.

UCZELNIA BADAWCZA NICLATYWA DISKONALIŚCI

Bariony

Trzy kwarki tworzą bariony (stany podstawowe):

Jakie reguły (symetrie) pozwalają na takie uporządkowanie cząstek? 1964 Gell-Mall, Zweig – pomysł kwarków i modelu kwarkowego.

Model kwarkowy (powrót)

Model Kwarkowy dla trzech kwarków (u,d,s):

- opisywał obserwowane stany i przewidywał nowe,
- wyjaśniał ułożenie hadronów w multiplety,
- pozwalał na konstrukcję funkcji falowej,
- dlaczego nie obserwujemy pojedynczego kwarka?

Momenty pędu

Orbitalny moment pędu L (kręt) – moment pędu związany z ruchem obrotowym kwarków względem siebie, Kręt jest wielokrotnością $\hbar L = n \hbar$ i przyjmuje 2l + 1 stanów, np. $L = 2, L_z = \{-2, -1, 0, 1, 2\}$

Stan o L = 0 – stan podstawowy,

wyższe L > 0 – wzbudzenia orbitalne

Całkowity moment pędu J: $\vec{J} = \vec{S} + \vec{L}$; J = |L - S| ... |L + S|

Spin **S** cząstki złożonej = całkowitemu momentowi pędu **J** w jej układzie spoczynkowym

stan spinowy cząstki jest opisany przez podanie dwóch liczb kwantowych:

$$(s, s_z), s = 0, \frac{1}{2}, 1, \frac{3}{2}, a s_z = -s, -s + 1, ..., s - 1, s$$

układ dwóch fermionów może być opisany za pomocą bazy:

$$|S = 1; S_3 = 1\rangle = \uparrow \uparrow$$

$$|S = 1; S_3 = 0\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow + \downarrow \uparrow)$$

$$|S = 1; S_3 = -1\rangle = \downarrow \downarrow$$

$$|S = 0; S_3 = 0\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow)$$
SINGLET, funkcja antysymetryczna

A.Obłąkowska-Mucha
WFIIS AGH Kraków

Spin układu dwóch fermionów

Nowa baza, w której wektory będą stanami własnymi operatora permutacji:

$$P_{12} |s_1, s_2\rangle = |s_2, s_1\rangle$$

$$|1,1\rangle = |\frac{1}{2},\frac{1}{2}\rangle |\frac{1}{2},\frac{1}{2}\rangle = \uparrow \uparrow$$

$$|1,0\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle + |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle) = \frac{1}{\sqrt{2}}(\uparrow\downarrow + \downarrow\uparrow)$$

stany symetryczne wzgl $1 \leftrightarrow 2$ (na zad sprawdzić!)

$$|1,-1\rangle = |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle = \downarrow\downarrow$$

$$|0,0\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle - |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle) = \frac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow)$$

MEZONY: dwa kwarki o s=1/2 i o ustawieniach:

stan antysymetryczny wzgl $1 \leftrightarrow 2$

$$\uparrow \uparrow$$
 $S = 1 i S_Z = \{+1,0,1\}$ TRYPLET

$$2 \otimes \overline{2} = 3 \oplus 1$$

$$\uparrow \downarrow S = 0 \text{ i } S_Z = 0$$
 SINGLET

Pomiar spinu cząstki:

1. pomiar przekrojów czynnych σ dla procesu typu $a+b\to c+d$. Zależy on od liczby dostępnych stanów spinowych:

$$\sigma(a+b\rightarrow c+d) \propto (2S_c+1)(2S_d+1)$$

2. mierząc rozkłady kątowe produktów jej rozpadu.

Całkowity moment pędu mezonów

Mezony grupowane są w multipletach według ich spinu i krętu.

Gdy L = 0 S = 0 mówimy o pseudoskalarach o J = 0,

Orbitalne wzbudzenia z L = 1, to skalary o J = 0 lub wektory aksjalne o J = 1 lub J = 2

	L	J
	0	0
S=0	1	1
	2	2
	0	1
S=1	1	0, 1, 2
	2	1, 2, 3

$$\vec{J} = \vec{S} + \overline{L}$$

$$J = |L - S| \dots |L + S|$$

Constituent-quark model

Operator parzystości przestrzennej

- Operator parzystości przestrzennej \widehat{P} powoduje inwersję osi układu współrzędnych.
- Odwrócenie trzech osi odpowiada zmianie znaku jednej osi i obrotowi o 180°.
- Nazywana również odbiciem zwierciadlanym.

Inwersja przestrzenna - def:
$$\widehat{P} \, \Psi(\vec{r}) = \Psi(-\vec{r})$$
 Dla stanów własnych: $\widehat{P} \, \Psi(\vec{r}) = p \, \Psi(\vec{r})$ $\Psi(-\vec{r}) = p \, \Psi(\vec{r})$

A jak jeszcze raz:
$$\widehat{P} \Psi(-\vec{r}) = p^2 \Psi(\vec{r})$$
 $\Psi(\vec{r}) = p^2 \Psi(\vec{r})$

stąd parzystość:
$$p = \pm 1$$

Stan własny operatora \widehat{P} , jest to wewnętrzna parzystość cząstki p.

Dla układu parzystość (wewnętrzna) jest multiplikatywną liczbą kwantową:

$$\Psi(AB) = \Psi(A)\Psi(B)$$

- Będziemy sprawdzać, czy parzystość jest zachowana w oddziaływaniach (tzn, czy \widehat{P} komutuje z H):
 - \widehat{P} jest zachowane w oddz. silnych i elektromagnetycznych,
 - \widehat{P} nie jest zachowana w oddz. słabych.
- Harmoniki sferyczne mają dobrze określoną parzystość $p = (-1)^l$: (zad)

Parzystość mezonów

- Parzystość układu kwantowego zależy od parzystości ruchu względnego i parzystości składników.
- Układ 2 cząstek z krętem L ma parzystość: $P = P_1 P_2 (-1)^L$ $P_{Tot} = P_{wew} P_{wzgl}$
- Zakł, że fermiony i antyfermiony maja przeciwne parzystości, (kwarki i leptony +1)
 Bozony i antybozony te same parzystości, (foton, inne bozony pośredniczące -1)
- Zatem para kwark antykwark ma parzystość $(+1)(-1)(-1)^L = (-1)^{L+1}$

- Parzystość wewn. protonu przyjmujemy P = +1.
- Innych cząstek liczymy lub wyznaczamy dośw.

	L	J	P	J ^P
	0	0	-1	0 —
S=0	1	1	+1	1+
	2	2	-1	2 —
	0	1	-1	1 –
S=1	1	0, 1, 2	+1	0+, 1 +, 2 +
	2	1, 2, 3	-1	1-,2-,3-

Operator sprzężenia ładunkowego

Sprzężenie ładunkowe, zmienia znak ładunku i momentu magnetycznego (zależy od ładunku) na przeciwny.

Operator sprzężenia ładunkowego C, działając na funkcję falową, przyporządkowuje jej funkcję falową antycząstki:

$$\text{def:} \quad \widehat{C} \, \psi = \bar{\psi}$$

dla stanów własnych:
$$\widehat{\boldsymbol{c}}|\psi(p,\lambda)\rangle = \eta_{\boldsymbol{c}}|\psi(p,\lambda)\rangle$$

powtórne działanie operatorem:
$$\hat{C}\hat{C}|\psi\rangle = \eta_C\hat{C}|\bar{\psi}\rangle = \eta_C\eta_C|\psi\rangle$$

wartości własne:
$$\eta_C = \pm 1$$

Operator $\widehat{\pmb{C}}$ zmienia cząstkę (nawet elektrycznie obojętną) w jej antycząstkę. Jeżeli stan danej cząstki (jej funkcja falowa) jest stanem własnym $\widehat{\pmb{C}}$, to cząstka = antycząstka Stanami własnymi $\widehat{\pmb{C}}$ są tylko obojętne bozony.

Układ cząstka-antycząstka jest stanem własnym $\widehat{\pmb{C}}$. $\widehat{\pmb{C}}|f\bar{f}\rangle = \eta_{\cal C}|\bar{f}f\rangle$ W dodatku działanie $\widehat{\pmb{C}}$ jest takie samo, jak $\widehat{\pmb{P}}$: czyli zamienia fermiony miejscami...

jeżeli:
$$|\bar{q}q\rangle = |\bar{q}q\rangle \text{ to } \eta_C = +1$$

$$|\bar{q}q\rangle = -|\bar{q}q\rangle \text{ to } \eta_C = -1$$

$$\hat{C}(\pi^{0}) = +(\pi^{0})$$

$$\hat{C}(\gamma) = -(\gamma)$$

$$\hat{C}(e^{-}) = (e^{+})$$

Spektroskopia mezonów

mezon	S	L	J	P	J PC	np
pseudosklarny	0	0	0	-1	0-+	π^0
pseudowektorowy	0	1	1	+1	1+-	h ₁
	0	2	2	-1	2-+	η_2
wektorowy	1	0	1	-1	1	ϱ^0
skalarny wektor aksjalny tensorowy	1	1	0, 1, 2	+1	0 ⁺⁺ 1 ⁺⁺ 2 ⁺⁺	$\begin{bmatrix} a^0 \\ a_1 \\ f_2 \end{bmatrix}$

Notacja spektroskopowa: 2S+1L

Stany L= 0, 1, 2, 3 oznaczamy jako S, P, D, F, np. dla L=0, 1 S₀ lub 3 S₁

$$\hat{P}(\vec{p}) = \hat{P}(m \ d\vec{r}/dt) = -\vec{p}$$
 wektor $\hat{P}(\vec{M}) = \hat{P}(\vec{r} \times \vec{p}) = (-\vec{r}) \times (-\vec{p}) = \vec{M}$ pseudowektor

Funkcja falowa hadronów – część flavorowa

$\chi(zapachowa) \propto |uds\rangle$

Zaczniemy od budowy funkcji falowej dla trzech najlżejszych kwarków (u, d, s)

 $m(u) \sim 0.3 \text{ GeV}$

 $m(d) \sim 0.3 \text{ GeV}$

 $m(s) \sim 0.5 \, GeV$

Kwarki są uwięzione w mezonach $q\bar{q}$ (9 cząstek)

lub w barionach qqq - 27 stanów?

Model kwarkowy - bariony

Baryon angular momentum quantum numbers for L = 0, 1, 2, 3

Spin (S)	Orbital angular momentum (L)	Total angular momentum (<i>J</i>)	Parity (P) (See below)	Condensed notation (J ^P)
	0	1/2	+	1/2+
1,	1	³ / ₂ , ¹ / ₂	-	3/2-, 1/2-
1/2	2	5/2, 3/2	+	5/2+, 3/2+
	3	⁷ / ₂ , ⁵ / ₂	-	7/2-, 5/2-
3/2	0	³ / ₂	+	3/2+
	1	⁵ / ₂ , ³ / ₂ , ¹ / ₂	_	5/2-, 3/2-, 1/2-
	2	7/2, 5/2, 3/2, 1/2	+	7/2+, 5/2+, 3/2+, 1/2+
	3	9/2, 7/2, 5/2, 3/2	_	9/2 ⁻ , ⁷ /2 ⁻ , ⁵ /2 ⁻ , 3/2 ⁻

http://en.wikipedia.org/wiki/Baryon

Masy hadronów

Przyczynki do mas hadronów:

- 1. Masy konstytuentne kwarków (liczone jako ułamek masy hadronu masa z oddziaływaniem),
- 2. Efekty związane z kulombowskim oddz. kwarków (rzędu 1-2 MeV),
- 3. Rozszczepienie nadsubtelne:
 - oddz. momentów magnetycznych (Δm =1-2 MeV),
 - kolorowe oddz. magnetyczne przesunięcie poziomów energetycznych dla kwarków. Formuła masowa (A- stała):

$$M_{q\bar{q}} = m_1 + m_2 + A \frac{\overrightarrow{S_1} \cdot \overrightarrow{S_2}}{m_1 m_2}$$

A co z masą barionów?

Cząstka jako poziom energetyczny w Modelu Kwarkowym

Atom wodoru o masie rzędu 1 GeV – różnica energii pomiędzy powłokami mała (eV) i widzimy stany o rożnych energiach jako jeden stan

Dla stanów związanych kwarków, rozszczepienia tak duże, że widoczne są nowe cząstki.

Masy hadronów

W eksperymentach z rozproszeniami wysokoenergetycznych cząstek udaje się oddzielić masę kwarka od chmury gluonów. Dostajemy w ten sposób tzw. masę prądową ("gołą"):

kwark	masa prądowa [MeV]	masa konstytuentna [MeV]
u	1.5-3.3	330
d	3,5-6	330
S	80-130	500
С	1150-1350	1600
b	4100-4400	4200
t	170 900	171 000

masa kostytuentna = masa prądowa + pole gluonowe

np proton: m=938 MeV "goła" masa 3 kwarków = 11 MeV Gluony są bezmasowe, ale przenoszą energię.

Dla lekkich kwarków m prądowa < m konstytuentnej.

Dla ciężkich kwarków – wynik zależy od skali i przyjętych modeli.

Masy hadronów

Masy hadronów policzone z formuły masowej i wyznaczone doświadczalnie są ze sobą zgodne:

	masa obliczona [MeV]	masa zmierzona [MeV]	
π	140	138	mezony skalarne
K	484	496	Iniozony skatarno
ρ	780	770	
ω	939	939	
٨	1116	1114	wektorowe
Σ	1193	1179	

Czwarty element

Istnienie hadronów z 4. kwarkiem zostało przewidziane teoretycznie (w przeciwieństwie do kwarka s). Oszacowano jego masę na ok. 2 GeV.

I pokolenie	Q	masa	II pokolenie	Q	masa
u	+2/3	0.35 GeV	С	+2/3	1.5 GeV
d	-1/3	0.35 GeV	S	-1/3	0.5 GeV

Charm – liczba kwantowa c jest zachowana w oddz. silnych i elm, nie zachowana w słabych (podobnie jak s).

Najlżejsze MEZONY POWABNE to skalary $D^0(cu), D^+(cd), D_s^+(cs)$

Mezony "czarmowe" wektorowe mają taki sam skład kwarkowy, ale spiny kwarków ustawione są równolegle: $D^{*0}(cu)$, $D^{*+}(cd)$, $D_s^{*+}(cs)$

Rozpady czarmowych mezonów zachodzą poprzez oddziaływania słabe τ~10⁻¹²s, przeważnie na mezony dziwne (z kwarkiem s).

Czwarty kwark – multiplety czarmowe

Trzecie pokolenie – kwark piękny (b)

Skoro mieliśmy trzy pokolenia leptonów, powinno być również 3. pokolenie kwarków. W 1977 w Tevatronie odkryto stan związany kwarków b anty-b.

$$p+(Cu,Pt)\to \mu^+\mu^-+X$$

number of events (arbitrary units) $m(\mu^{+}\mu^{-})(\text{GeV})$ Nazwano ten stan $\Upsilon(9460)$ Oszacowano m(b) = 4.7 GeV

no i odkrywano nowe

stany....

State	Quark	M (MeV)	Γ/τ	J^{PC}	I
$\Upsilon(1^1S_3)$	$bar{b}$	9460	54 keV	1	0
$\Upsilon(2^1S_3)$	$bar{b}$	10023	32 keV	1	0
$\Upsilon(3^1S_3)$	$bar{b}$	10355	20 keV	1	0
$\Upsilon(4^1S_3)$	$bar{b}$	10580	$20\mathrm{MeV}$	1	0
B^+	$u\bar{b}$	5279	1.6 ps	0-	1/2
B^0	$dar{b}$	5279	1.5 ps	0-	1/2
B_s^0	$sar{b}$	5368	1.5 ps	0-	0
B_c^+	$car{b}$	6286	0.5 ps	0^-	0

Bottonium

Późniejsze wyniki (CLEO 1980):

Spektrum "bottonium"

Ostatni element

$$\begin{pmatrix} c \\ s \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{t} \\ \mathbf{b} \end{pmatrix}$$

$$+\frac{2}{3}$$
 $-\frac{1}{3}$

Poszukiwanie "brata" kwarka b o ładunku Q=+2/3 zajęło 20 lat.

Kwark t miał być bardzo ciężki i produkowany musiał być w parach.

1995 roku w Tevatronie ogłoszono 27 przypadków przy \sqrt{s} = 2 TeV w procesie: $p + \bar{p} \rightarrow t \bar{t} + X$

$$t \to W^+ + b \to W^+ + jet(\bar{b})$$

$$W \rightarrow e \nu_e$$

$$\bar{t} \rightarrow W^- + \bar{b} \rightarrow W^- + jet(b)$$
 $W \rightarrow q \bar{q} \rightarrow jet \ 2 + jet \ 3$

$$W \rightarrow q \bar{q} \rightarrow jet 2 + jet 3$$

Szuka się:

- jeden elektron (mion),
- jedno neutrino,
- 4 pęki hadronów (2 z b),

tu widać "przemianę" kwarka t w kwark b – jest to możliwe TYLKO w oddziaływaniach słabych

Topowy przypadek

Kwark t

Masa t mogła być wyznaczona bezpośrednio poprzez masę produktów jego rozpadu:

 $M(t) = 174.2 \pm 3.3 \text{ GeV}$

Kwark t jest tak ciężki, że zanim utworzy stan związany, ulega rozpadowi.

Jego czas życia jest krótszy niż typowy czas hadronizacji.

Brak "toponium"!

Brak top - hadronów.