Binary Adders and Subtractors

Outline:

- Half Adder
- Full Adder
- Ripple Carry Adder
- Carry-Lookahead (CLA) Adder
- 74x283 4-bit Adder
- 16-bit Group-ripple Adder
- Subtractor

Half Adder (HA): Adds 2 bits. Has 2 inputs and 2 outputs.

Constructing the truth table and finding Boolean expressions for HS and CO:

Full Adder (FA): Adds 3 bits. Has 3 inputs and 2 outputs.

$$\begin{array}{c} \text{Cin (carry in)} \\ + X \\ + Y \\ \hline \text{Cout} \quad S \end{array}$$

Constructing the truth table for FA and finding Boolean expressions for S and Cout:

<u>Ripple Carry Adder:</u> cascading Full Adders, with the carry output from one Full Adder connected to the carry input of the next Full Adder.

A 4-bit Ripple Carry Adder:

$$\begin{array}{c} a_3 \ a_2 \ a_1 \ a_0 \\ + \ b_3 \ b_2 \ b_1 \ b_0 \\ \hline c_4 \ s_3 \ s_2 \ s_1 \ s_0 \end{array}$$

The input carry in the least significant position is 0. The output carry in each position is the input carry of the next-higher-order position.

A: $a_3 a_2 a_4 a_5$

B: b b 2 b b bo 03 a, a 2 Α COUT CIN COUT CIN COUT CIN COUT CIN S S S S

A ripple adder is slow. In the worst case, a carry must propagate from the least significant Full Adder to the most significant one:

Carry-Lookahead Adder: Calculates the carryout for each stage ahead of addition to speed up the computation, but it requires more complex circuits.

Some Definitions:

carry generate (gi):

For a particular combination of inputs a_i and b_i , the adder stage i is said to generate a carry if it produces a $c_{out}=1$ (that is $c_{i+1}=1$), independent of what lower-order input bits $(a_0,...,a_{i-1})$ and, $b_0, ..., b_{i-1}, c_0$) are.

carry propagate (pi):

For a particular combination of inputs a_i and b_i, the adder stage i is said to propagate a carry if it produces a $c_{out}=1$ (that is $c_{i+1}=1$), when $c_{in}=1$ (that is $c_i=1$).

COUT CIN

For adder stage *i*:

		ı				
ai	b_i	Ci	Si	c_{i+1}		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0		pagate	
1	0	0	11	0	mente	
1	0	1	0	1 190	pagate	
	_1	0	0	T) ger	wate	a-marte
1	1	1	1	1 y gen	erete /	propagate
q:	= a;	.bi	1	0	, C .	p.
01				in = gi	+ 62.	1 2
ი	0:1	ab:		= Q'.Y): 4 C.	(a; (b);)
11 -	- 00	&bi		1	, , , ,	
(When	Gasi	der th	e las	term as	genun	ite)

If last term uses Considered as propagate, then
$$P_i = a_i + b_i$$

A

Carry equations in a 4-bit CLA adder:

$$c_{1} = g_{0} + c_{0} \cdot p_{0} = a_{0} \cdot b_{0} + c_{0} \cdot (a_{0} + b_{0})$$

$$c_{2} = g_{1} + c_{1} \cdot p_{1}$$

$$= a_{1} \cdot b_{1} + a_{0} \cdot b_{0} + c_{0} \cdot (a_{0} + b_{0}) \cdot (a_{1} + b_{1})$$

$$= c_{3} = g_{2} + p_{2} \cdot c_{2}$$

$$= g_{2} + p_{2} \cdot (g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot c_{0})$$

$$= g_{2} + p_{2} \cdot g_{1} + p_{2} \cdot p_{1} \cdot g_{0} + p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{4} = g_{3} + p_{3} \cdot c_{3}$$

 $= g_3 + p_3 \cdot (g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0 + p_2 \cdot p_1 \cdot p_0 \cdot c_0)$

 $= g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1 + p_3 \cdot p_2 \cdot p_1 \cdot g_0 + p_3 \cdot p_2 \cdot p_1 \cdot p_0 \cdot c_0$

- This is a 4-bit CLA adder.
- Generates active-low version for " g_i " and " p_i "
- Uses the "OR" version for implementing "p_i"

A more detailed look:

Carry equations in a 74x283 adder:

$$\begin{array}{lll} \textbf{c}_1 &=& p_0 \cdot (g_0 + c_0) \\ \textbf{c}_2 &=& p_1 \cdot (g_1 + c_1) \\ &=& p_1 \cdot (g_1 + p_0 \cdot (g_0 + c_0)) \\ &=& p_1 \cdot (g_1 + p_0) \cdot (g_1 + g_0 + c_0) \\ \textbf{c}_3 &=& p_2 \cdot (g_2 + c_2) \\ &=& p_2 \cdot (g_2 + p_1 \cdot (g_1 + p_0) \cdot (g_1 + g_0 + c_0)) \\ &=& p_2 \cdot (g_2 + p_1) \cdot (g_2 + g_1 + p_0) \cdot (g_2 + g_1 + g_0 + c_0) \\ \textbf{c}_4 &=& p_3 \cdot (g_3 + c_3) \\ &=& p_3 \cdot (g_3 + p_2 \cdot (g_2 + p_1) \cdot (g_2 + g_1 + p_0) \cdot (g_2 + g_1 + g_0 + c_0)) \\ &=& p_3 \cdot (g_3 + p_2) \cdot (g_3 + g_2 + p_1) \cdot (g_3 + g_2 + g_1 + p_0) \cdot (g_3 + g_2 + g_1 + g_0 + c_0) \end{array}$$

16-bit Group-Ripple Adder:

Building 16-bit Adder by cascading 4 4-bit CLA adders:

4-bit Ripple Adder/Subtractor:

$$X \oplus Y = X.Y' + X.Y$$

$$X \oplus I = X.0 + X.I$$

$$= 0 + X'$$

$$= X'$$