VARIABLES ALÉATOIRES À VALEURS RÉELLES

I- LOI DE PROBABILITÉ – FONCTION DE RÉPARTITION

- Variable aléatoire : on considère une expérience aléatoire d'un univers Ω . Définir une variable aléatoire (v.a. par la suite) X, c'est associer à chaque issue de Ω un nombre réel.
- La loi de probabilité de X est l'association entre les différentes valeurs de X et les probabilités correspondantes.
 - La loi de probabilité est la fonction qui à k associe **P(X=k)**.
- La fonction de répartition de la v.a.X est la fonction F, de IR dans [0; 1], qui à x associe

$$F(x) = P(X \le x).$$

Propriété: Pour $a \le b$, on a: $P(a \le X \le b) = F(b) - F(a)$

II- ESPÉRANCE MATHÉMATIQUE, VARIANCE, ÉCART-TYPE

A. Espérance mathématique

Comme son nom l'indique, l'espérance mathématique représente la valeur à laquelle on s'attend que la variable aléatoire soit égale. C'est pourquoi **on parle aussi de moyenne**.

B. Variance, Écart-type

la variance d'une v.a. X est, si elle existe, est la moyenne des carrés des écarts à la moyenne...

Propriété: On a toujours $V(X) \ge 0$

L'écart-type de X est
$$\sigma$$
 (X) = $\sqrt{V(X)}$

C'est l'écart moyen à la moyenne.

C. Couple de deux variables aléatoires X et Y

La **loi du couple** (X, Y) est donnée par $P(X = x \cap Y = y)$. Les lois respectives de X et de Y sont appelées **loi marginales** de X et de Y.

• Indépendance de deux v.a.

$$\rightarrow$$
 Si P $(X = x_i \text{ et } Y = y_j) = P $(X = x_i)^* P (Y = y_j)$$

• Espérance d'une somme de deux v.a.

$$E(X+Y) = E(X) + E(Y)$$

• Variance de la somme de deux v.a. Indépendantes

$$V(X + Y) = V(X) + V(Y)$$
 SI X et Y indépendantes

• Ecart-type de la somme de deux v.a. Indépendantes

SI X et Y indépendantes :

$$V(X + Y) = V(X) + V(Y)$$
$$= \sigma^{2}(X) + \sigma^{2}(Y)$$

DONC:

$$\sigma(X + Y) = \sqrt{\sigma^2(X) + \sigma^2(Y)}$$

III- LOIS USUELLES

A. Lois discrètes usuelles

- La loi binomiale (phrase à savoir) s'utilise lorsqu'une même expérience aléatoire, répétée n fois de façon indépendante (tirage avec remise), a deux issues possibles:
 - "succès", avec la probabilité p
 - "échec", avec la probabilité 1 p.

Alors, la variable aléatoire X associée au nombre de succès suit une loi binomiale de paramètres n et p.

On a alors : P(X = k) se détermine à la calculatrice

$$P(X \le t) = P(X = 0) + P(X = 1) + ... + P(X = k)$$
 se détermine à la calculatrice

et:
$$P(X \ge t) = 1 - P(X < t)$$

Son espérance est np et son écart-type : $\sqrt{np(1-p)}$

La loi de Poisson s'utilise généralement lorsqu'une variable aléatoire représente un phénomène rare.

On a dans ce cas:

$$P(X = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$
 se détermine à la calculatrice

$$P(X \le t) = P(X = 0) + P(X = 1) + ... + P(X = t)$$
 se détermine à la calculatrice

$$P(X \ge t) = 1 - P(X < t)$$

Son espérance est λ et son écart-type : $\sqrt{\lambda}$

B. Lois continues usuelles

Une variable aléatoire suit une **loi uniforme sur [a;b]** si et seulement si, pour tout intervalle I inclus dans [a;b], la probabilité de l'événement « $X \in I$ » est l'aire du domaine $\{M(x;y); x \in I \text{ et } 0 \le y \le \frac{1}{h-a}\}$

Dans ce cas, pour tout intervalle [x1,x2] inclus dans [a;b], $P(X \in [x1,x2]) = \frac{x2-x1}{b-a}$

Son espérance est $\frac{a+b}{2}$ et son écart-type est : $\frac{b-a}{2\sqrt{3}}$

Dans le cas d'une variable aléatoire qui suit une **loi normale d'espérance** *m* **et d'écart-type** σ, on calcule directement une probabilité avec la **calculatrice**.

Représentation:

Il faut retenir que:

- $P(X \le m) = P(X \ge m) = 0.5$
- $P(m-\sigma \le X \le m+\sigma) = 0.68$
- $P(m-2\sigma \le X \le m+2\sigma) = 0.95$
- P $(m 3\sigma \le X \le m + 3\sigma) = 0.997$
- La loi exponentielle est utilisée pour les questions relatives à la fiabilité d'un dispositif. C'est la loi suivie par une variable aléatoire T lorsque le taux d'avarie λ est constant. On définit donc, pour $t \ge 0$:
 - La **fonction de défaillance** (=failure), qui donne la probabilité pour que le système ait une défaillance avant l'instant *t*:

$$F(t)=P(T \le t)=1-e^{-\lambda t}$$

 La fonction de fiabilité (= reliability), qui donne la probabilité pour que le système n'ait pas de défaillance avant l'instant t:

$$R(t) = P(T > t) = 1 - P(T \le t) = 1 - F(t) = e^{-\lambda t}$$

• La **M.T.B.F.** (Moyenne de Temps de Bon Fonctionnement, ou encore, en anglais, Mean Time Between Failures), est l'espérance mathématique de la variable aléatoire *T*.

On a M.T.B.F. =
$$\frac{1}{\lambda}$$

• De plus $\sigma(T) = \frac{1}{\lambda}$.

C. Approximation

Les conditions ne sont pas à connaître

1. d'une loi binomiale par une loi de poisson

Si
$$n \ge 30$$
, $p \le 0.1$ et $np < 15$ OU lorsque $p \le 0.1$ et $np \le 10$ alors $B(n, p) \sim P(\lambda)$ où $\lambda = np$

Sous ces conditions, une loi binomiale de paramètres n et p peut être approchée par une loi de Poisson de paramètre $\lambda = np$

2.d'une loi binomiale par une loi normale

Si
$$n \ge 30$$
, $np > 5$ $np(1-p) > 5$ alors $B(n, p) \sim N(m, \sigma)$

Sous ces conditions, une loi binomiale de paramètres n et p peut être approchée par une loi normale de moyenne (espérance) m = np et d'écart-type $\sigma = \sqrt{np(1-p)}$.

→ Cas d'une loi BINOMIALE :

Pour déterminer P(X = k): MENU STAT \rightarrow DIST

Choix : BINM Choix : BPD

x est la valeur de k

numtrial est le nombre d'essais (le paramètre n) p est la probabilité de succès (le paramètre p)

Pour déterminer $P(X \le k)$: MENU STAT \rightarrow DIST

Choix: BINM Choix: BCD

x est la valeur de k

numtrial est le nombre d'essais (le paramètre n) p est la probabilité de succès (le paramètre p)

- Pour déterminer $P(X \ge k)$: on fait $P(X \ge k) = 1 - P(X \le k) = 1 - P(X \le k - 1)$

→ Cas d'une loi de POISSON :

- Pour déterminer P(X = k): **MENU STAT** \rightarrow **DIST**

Choix : POISN Choix : PPD

On entre ensuite k et le paramètre λ

Pour déterminer $P(X \le k)$: MENU STAT \rightarrow DIST

Choix : POISN Choix : PCD

On entre ensuite k et le paramètre λ

- Pour déterminer P(X > k): on fait $P(X \ge k) = 1 - P(X \le k) = 1 - P(X \le k - 1)$

→ Cas d'une loi NORMALE :

Pour déterminer $P(X \le k)$: MENU STAT \rightarrow DIST

Choix : NORM Choix : NCD

Lower: - 10^{99} (correspond à - ∞)

Upper: k

 $\sigma = \text{ecart-type } \sigma$

 $\mu = espérance/moyenne m$

Pour déterminer $P(a \le X \le b)$: MENU STAT \rightarrow DIST

Choix : NORM Choix : NCD

Lower: a

Upper : b $\sigma = \text{ecart-type } \sigma$

 $\mu = espérance/moyenne m$

- Pour déterminer P(X > k): **MENU STAT** \rightarrow **DIST**

Choix : NORM Choix : NCD

Lower: k

Upper : 10^{99} (correspond à $+\infty$)

 σ = ecart-type σ

 $\mu = espérance/moyenne m$

Mémo – Utilisation de la calculatrice

→ Cas d'une loi BINOMIALE : Pour déterminer P(X = k)Pour déterminer $P(X \le k)$: Pour déterminer $P(X \ge k)$: on fait $P(X \ge k) = 1 - P(X \le k) = 1 - P(X \le k - 1)$ → Cas d'une loi de POISSON : Pour déterminer P(X = k): Pour déterminer $P(X \le k)$: Pour déterminer P(X > k): on fait $P(X \ge k) = 1 - P(X \le k) = 1 - P(X \le k - 1)$ → Cas d'une loi NORMALE : Pour déterminer $P(X \le k)$: Pour déterminer $P(a \le X \le b)$:

Pour déterminer P(X > k):