Deep Learning Tutorial

李宏毅

Hung-yi Lee

Deep learning attracts lots of attention.

I believe you have seen lots of exciting results

before.

Deep learning trends at Google. Source: SIGMOD/Jeff Dean

This talk focuses on the basic techniques.

Outline

Lecture I: Introduction of Deep Learning Lecture II: Tips for Training Deep Neural Network Lecture III: Variants of Neural Network Lecture IV: Next Wave

Lecture I: Introduction of Deep Learning

Outline of Lecture I

Introduction of Deep Learning

Let's start with general machine learning.

Why Deep?

"Hello World" for Deep Learning

Machine Learning ≈ Looking for a Function

Speech Recognition

$$f($$
 $)=$ "How are you"

Image Recognition

Playing Go

Dialogue System

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

A set of function

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_2($$

$$)=$$
 "money"

$$f_1($$

$$f_2($$

$$) =$$
 "snake"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Training
Data

Supervised Learning

function input:

function օպերանա "monkey"

"cat"

"dog"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Three Steps for Deep Learning

Deep Learning is so simple

Three Steps for Deep Learning

Deep Learning is so simple

Human Brains

Neural Network

Neuron

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

Neural Network

Neural Network

Different connections leads to different network structure

Each neurons can have different values of weights and biases.

Presynaptic

Weights and hiases are network parameters θ

Fully Connect Feedforward Network

Fully Connect Feedforward Network

Fully Connect Feedforward Network

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given parameters θ , define a function

Given network structure, define a function set

Fully Connect Feedforward Network

Deep means many hidden layers

Output Layer (Option)

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Output Layer (Option)

Softmax layer as the output layer

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

Example Application

Input

x_{1} x_{2} x_{256} x_{256}

Ink \rightarrow 1 No ink \rightarrow 0

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

 Q: How many layers? How many neurons for each layer?

Trial and Error + Intuition

Q: Can the structure be automatically determined?

Three Steps for Deep Learning

Deep Learning is so simple

Training Data

Preparing training data: images and their labels

The learning target is defined on the training data.

Learning Target

Ink \rightarrow 1 No ink \rightarrow 0

The learning target is

Loss

A good function should make the loss of all examples as small as possible.

Loss can be the distance between the network output and target.

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{r=1}^{R} l_r$$

As small as possible

Find *a function in function set* that
minimizes total loss L

Find the network parameters θ^* that minimize total loss L

Three Steps for Deep Learning

Deep Learning is so simple

How to pick the best function

Find *network parameters* θ^* that minimize total loss L

Enumerate all possible values

E.g. speech recognition: 8 layers and 1000 neurons each layer

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* $\boldsymbol{\theta}^*$ that minimize total loss L

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* θ^* that minimize total loss L

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* θ^* that minimize total loss L

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* $\boldsymbol{\theta}^*$ that minimize total loss L

Hopfully, we would reach a minima

Gradient Descent - Difficulty

Gradient descent never guarantee global minima

You are playing Age of Empires ...
You cannot see the whole map.

 $(-\eta \partial L/\partial w_1, -\eta \partial L/\partial w_2)$

Compute $\partial L/\partial w_1$, $\partial L/\partial w_2$

This is the "learning" of machines in deep learning

Even alpha go using this approach.

People image

Actually

I hope you are not too disappointed:p

Backpropagation

- Backpropagation: an efficient way to compute $\partial L/\partial w$
 - Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201 5_2/Lecture/DNN%20backprop.ecm.mp4/index.html

Don't worry about $\partial L / \partial w$, the toolkits will handle it.

Concluding Remarks

Deep Learning is so simple

Outline of Lecture I

Introduction of Deep Learning

Why Deep?

"Hello World" for Deep Learning

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4	Why?	
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	→ 1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Analogy

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

less gates needed

Neural network

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler

less parameters

less data?

This page is for EE background.

Modularization

Deep → Modularization

Modularization

Each basic classifier can have sufficient training examples.

Deep → Modularization

Modularization can be trained by little data Deep → Modularization Classifier Girls with long hair Boy or Girl? Classifier Boys with Little data fine Basic **Image** Classifier Classifier Girls with short hair Long or short? Classifier Boys with Sharing by the short hair following classifiers www.aibbt.com 让未来触手可及 as module

Modularization

Deep → Modularization → Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Modularization

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV 2014* (pp. 818-833)

Deep → Modularization

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

www.aibbt.com 让未来触手可及

Outline of Lecture I

Introduction of Deep Learning

Why Deep?

"Hello World" for Deep Learning

If you want to learn theano:

Keras

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Theano%20DNN.ecm.mp4/index.html

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Le cture/RNN%20training%20(v6).ecm.mp4/index.html

Very flexible

Need some effort to learn

Interface of TensorFlow or Theano

Easy to learn and use (still have some flexibility)

You can modify it if you can write TensorFlow or Theano

Keras

- François Chollet is the author of Keras.
 - He currently works for Google as a deep learning engineer and researcher.
- Keras means horn in Greek
- Documentation: http://keras.io/
- Example: https://github.com/fchollet/keras/tree/master/examples

使用 Keras 心得

Deep Learning研究生

朋友覺得我在

我妈覺得我在

大眾覺得我在

指導教授覺得我在

我以為我在

事實上我在

Example Application

Handwriting Digit Recognition

MNIST Data: http://yann.lecun.com/exdb/mnist/ "Hello world" for deep learning

Keras provides data sets loading function: http://keras.io/datasets/

Keras

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

```
28x28
   500
   500
             Softmax
          y_1
```

```
model = Sequential()
```

```
model.add( Dense( output_dim=500 ) )
model.add( Activation('sigmoid') )
```

```
model.add( Dense(output_dim=10 ) )
model.add( Activation('softmax') )
```

www.aibbt.com 让未来触手可及

Keras

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

Step 3.1: Configuration

```
model.compile(loss='mse', optimizer=SGD(lr=0.1), metrics=['accuracy'])  w \leftarrow w - \eta \partial L / \partial w  0.1
```

Step 3.2: Find the optimal network parameters

Step 3.2: Find the optimal network parameters

https://www.tensorflow.org/versions/ro.g/tutorials/mnist/beginners/index.html

Keras

Save and load models

http://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

How to use the neural network (testing):

```
score = model.evaluate(x_test,y_test)
case 1: print('Total loss on Testing Set:', score[0])
print('Accuracy of Testing Set:', score[1])
```

case 2: result = model.predict(x_test)

Keras

- Using GPU to speed training
 - Way 1
 - THEANO_FLAGS=device=gpu0 python YourCode.py
 - Way 2 (in your code)
 - import os
 - os.environ["THEANO_FLAGS"] = "device=gpu0"

Live Demo

Lecture II: Tips for Training DNN

Recipe of Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

NO

Overfitting!

NO

Neural Network

Do not always blame Overfitting

Deep Residual Learning for Image Recognition www.aibbt.com 让未来触手可及 http://arxiv.org/abs/1512.03385

Recipe of Deep Learning

Different approaches for different problems.

e.g. dropout for good results on testing data

Good Results on Testing Data?

Good Results on Training Data?

Recipe of Deep Learning

Choosing Proper Loss

Let's try it

Square Error

Cross Entropy

Let's try it

Testing:

	Accuracy
Square Error	0.11
Cross Entropy	0.84

www.aibbt.com 让未来触手可及

Choosing Proper Loss

Recipe of Deep Learning

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

We do not really minimize total loss!

Mini-batch

Mini-batch

- Randomly initialize network parameters
- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once
- Until all mini-batches have been picked

one epoch

www.aibbt.com 让未来触手可及 Repeat the above process

Mini-batch

model.fit(x_train, y_train, batch size=100, nb epoch=20)

100 examples in a mini-batch

Repeat 20 times

- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once :
- Until all mini-batches have been picked

one epoch

Mini-batch

- Randomly initialize network parameters
- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once

L is different each time when we update parameters!

Mini-batch

Original Gradient Descent

With Mini-batch

The colors represent the total loss.

Mini-batch is Faster

Not always true with parallel computing.

Original Gradient Descent

Update after seeing all examples

With Mini-batch

If there are 20 batches, update 20 times in one epoch.

Mini-batch has better performance!

Testing:

Mini-batch is Better!

	Accuracy
Mini-batch	0.84
No batch	0.12

Shuffle the training examples for each epoch

www.aibbt.com 让未来触手可及

Recipe of Deep Learning

Hard to get the power of Deep ...

Let's try it

Testing:

	Accuracy
3 layers	0.84
9 layers	0.11

www.aibbt.com 让未来触手可及

Vanishing Gradient Problem

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

Vanishing Gradient Problem

Smaller gradients

Intuitive way to compute the derivatives ...

$$\frac{\partial l}{\partial w} = ? \frac{\Delta l}{\Delta w}$$

Hard to get the power of Deep ...

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

www.aibbt.com 让未来触手可及

Let's try it

```
model.add( Activation('sigmoid') )
model.add( Activation('relu') )
```

Let's try it

Testing:

9 layers	Accuracy
Sigmoid	0.11
ReLU	0.96

• 9 layers

www.aibbt.com 让未来触手可及

ReLU - variant

Leaky ReLU

Parametric ReLU

α also learned by gradient descent

Maxout

ReLU is a special cases of Maxout

• Learnable activation function [lan J. Goodfellow, ICML'13]

You can have more than 2 elements in a group.

Maxout

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

Recipe of Deep Learning

Learning Rates

Set the learning rate η carefully

Learning Rates

Set the learning rate η carefully

Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

Adagrad

Original:
$$w \leftarrow w - \eta \partial L / \partial w$$

Adagrad:
$$w \leftarrow w - \eta_w \partial L / \partial w$$

Parameter dependent learning rate

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} \frac{\text{constant}}{g^i \text{ is } \partial L / \partial w \text{ obtained}}$$
 at the i-th update

Summation of the square of the previous derivatives

www.aibbt.com 让未来触手可及

Adagrad

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$w_1 = \frac{g^0}{0.1}$$

 W_2 20.0

Learning rate:

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1} \qquad \frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22} \qquad \frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

Observation:

- 1. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger learning rate, and vice versa

2. Smaller derivatives, larger learning rate, and vice versa

Not the whole story

- Adagrad [John Duchi, JMLR'11]
- RMSprop
 - https://www.youtube.com/watch?v=O3sxAc4hxZU
- Adadelta [Matthew D. Zeiler, arXiv'12]
- "No more pesky learning rates" [Tom Schaul, arXiv'12]
- AdaSecant [Caglar Gulcehre, arXiv'14]
- Adam [Diederik P. Kingma, ICLR'15]
- Nadam
 - http://cs229.stanford.edu/proj2015/054_report.pdf

Recipe of Deep Learning

Hard to find optimal network parameters

The value of a network parameter w

In physical world

Momentum

Momentum

Still not guarantee reaching global minima, but give some hope

Adam

RMSProp (Advanced Adagrad) + Momentum

```
model.compile(loss='categorical crossentropy',
                                                   optimizer=SGD(lr=0.1),
                                                   metrics=['accuracy'])
model.compile(loss='categorical crossentropy',
                                                   optimizer=Adam(),
                                                   metrics=['accuracy'
                                                     Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
                                                     and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise
                                                     square g_t \odot g_t. Good default settings for the tested machine learning problems are \alpha = 0.001,
                                                     \beta_1 = 0.9, \, \beta_2 = 0.999 and \epsilon = 10^{-8}. All operations on vectors are element-wise. With \beta_1^t and \beta_2^t
                                                      we denote \beta_1 and \beta_2 to the power t.
                                                     Require: \alpha: Stepsize
                                                      Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
                                                     Require: f(\theta): Stochastic objective function with parameters \theta
                                                      Require: \theta_0: Initial parameter vector
                                                        m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
                                                        v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                        t \leftarrow 0 (Initialize timestep)
                                                        while \theta_t not converged do
                                                          g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
                                                          m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
                                                          v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
                                                          \hat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
                                                          \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
                                                          \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
                                                        returny 强 6Resulting parameter)及
```

Let's try it

Testing:

	Accuracy
Original	0.96
Adam	0.97

• ReLU, 3 layer

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on **Training Data? Network Structure**

Why Overfitting?

Training data and testing data can be different.

Learning target is defined by the training data.

The parameters achieving the learning target do not necessary have good results on the testing data.

Panacea for Overfitting

- Have more training data
- Create more training data (?)

Handwriting recognition:

Why Overfitting?

For experiments, we added some noises to the

testing data

```
-1.36230370e-01,
                    1.03749340e-01,
                                       1.15432226e-01,
 2.58670464e-01,
                    1.48774333e+00,
                                       1.92885328e+00,
 1.70038673e+00,
                    2.46242981e+00,
                                       1.21244572e+00,
-9.28660713e-01,
                    3.63209761e-01,
                                      -1.81327713e+00,
-1.97910760e-01,
                    4.32874592e-01,
                                      -5.40565788e-01,
 2.95630655e-01,
                    2.07984424e+00,
                                      -1.84243292e+00,
-5.11166017e-01,
                   -5.80935128e-01,
                                       1.06273647e+00,
 1.80551097e-02,
                    2.27983997e-02,
                                      -1.67979148e+00,
 8.12423001e-01,
                   -6.25888706e-01,
                                      -1.25027082e+00,
 6.15135458e-01,
                   -1.21394611e-01,
                                      -1.28089527e+00,
 3.24609806e-01,
                    6.70569391e-01,
                                       1.49161323e-01,
                                      -9.37629233e-02,
 8.01573609e-01,
                    6.43116741e-01,
 1.74677366e+00,
                    6.80996008e-01,
                                      -7.03717611e-01,
 1.02079749e-01,
                    1.19505614e+00,
                                      -2.77959386e-01,
                                      -4.08310762e-01,
-5.21652916e-02,
                    3.53683601e-01,
-1.81042967e+00,
                   -9.03308062e-01,
                                       1.05404509e+00,
-9.80876877e-01,
                    3.52078891e-01,
                                       6.65981840e-01,
1.06550150e+00,
                   -2.28433613e-01,
                                       3.64483904e-01,
                   -7.52612872e-02,
                                      -2.97058082e-01,
-1.51484666e+00,
-7.27414382e-01,
                   -2.45875340e-01,
                                      -1.27948942e-01,
-3.69310620e-01,
                   -2.62300428e+00,
                                       2.11585073e+00,
 6.85561585e-01,
                   -1.57443985e-01,
                                       1.38128777e+00,
 6.84265587e-02,
                    3.12536292e-01,
                                       4.54253185e-01,
-7.88471875e-01,
                   -6.58403343e-02,
                                      -1.41847985e+00,
-1.39753340e-01,
                   -5.55354856e-01,
                                      -5.01917779e-01,
 6.93118522e-01,
                   -2.45360497e-01,
                                      -1.26943186e+00,
-2.62323855e-01)
```

Why Overfitting?

 For experiments, we added some noises to the testing data

Testing:		Accuracy
	Clean	0.97
	Noisy	0.50

Training is not influenced.

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Weight Decay YES Dropout Good Results on **Training Data? Network Structure**

Early Stopping

Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Weight Decay YES Dropout Good Results on **Training Data? Network Structure**

Weight Decay

Our brain prunes out the useless link between

neurons.

Doing the same thing to machine's brain improves the performance.

Weight Decay

Layer 1 Layer 2

Weight decay is one kind of regularization

Close to zero (萎

Useless

(萎縮了)

Weight Decay

Implementation

Original:
$$w \leftarrow w - \eta \frac{\partial L}{\partial w}$$

$$\lambda = 0.01$$

Weight Decay:

$$w \leftarrow \boxed{0.99} w - \eta \frac{\partial L}{\partial w}$$

Smaller and smaller

Keras: http://keras.io/regularizers/

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Weight Decay YES Dropout Good Results on **Training Data?** Network Structure

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%,
 all the weights times (1-p)%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- ➤ However, if you know your partner will dropout, you will do better.

Dropout - Intuitive Reason

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- ➤ Using one mini-batch to train one network
- >Some parameters in the network are shared

More about dropout

- More reference for dropout [Nitish Srivastava, JMLR'14] [Pierre Baldi, NIPS'13][Geoffrey E. Hinton, arXiv'12]
- Dropout works better with Maxout [lan J. Goodfellow, ICML'13]
- Dropconnect [Li Wan, ICML'13]
 - Dropout delete neurons
 - Dropconnect deletes the connection between neurons
- Annealed dropout [S.J. Rennie, SLT'14]
 - Dropout rate decreases by epochs
- Standout [J. Ba, NISP'13]
 - Each neural has different dropout rate

Let's try it

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on **Training Data?** Network Structure CNN is a very good example! (next lecture) www.aibbt.com 让未来触手可及

Concluding Remarks of Lecture II

Recipe of Deep Learning

Let's try another task

Document Classification

Data

```
In [9]: y train.shape
                                           Out[9]: (8982, 46)
In [12]: x train[0]
                                          In [10]: x test.shape
Out[12]:
array([ 0., 1., 1., 0., 1., 1., 1., 1., 10ut[10]: (2246, 1000)
               1.,
                   1., 1., 0., 1., 0.,
                                          0
                                     0.,
                                           In [11]: y test.shape
               0.,
                   0., 1., 1., 0.,
                                     0.,
                                         Out[11]: (2246, 46)
                            0., 0.,
               0.,
                   0.,
                        0.,
                                     0.,
                        0.,
               1.,
                            0., 0.,
                   0.,
                                     0.,
                                         0.,
                                              0., 0.,
                   0.,
                        0.,
                            1., 1.,
                                              0.,
               0.,
                                     0.,
                                         0.,
                                                  0.,
           0.,
                            0., 0.,
                                     0.,
               0.,
                                         0.,
                                              0.,
                                                  0.,
                        0.,
           0.,
               0.,
                            1., 0., 1.,
                                         0.,
                                              0.,
                                                  0.,
           0.,
               0.,
                   0.,
                        0.,
                            0., 0., 1.,
                                         0.,
                                              0.,
                                                  0.,
           0.,
               1.,
                   0., 1.,
                            0., 0.,
                                     0.,
                                         0.,
                                              0.,
                                                  0.,
                            0., 0.,
                   0.,
                        0.,
                                     0., 1.,
           0.,
               0.,
                                              0.,
                                                  0.,
                                                       1.,
           0.,
               0.,
                   0.,
                        0.,
                            0., 0.,
                                     0.,
                                         0.,
                                              0.,
                                                  0.,
                            0., 0.,
                                         0.,
           0.,
               0.,
                   0.,
                        0.,
                                     0.,
                                              0.,
                                                  0.,
                            0., 0.,
                                         0.,
           0.,
               0.,
                   0.,
                        1.,
                                     0.,
                                              0.,
                                                  0.,
           0.,
               1.,
                   0., 0., 0., 0., 0.,
                                         0.,
                                              0.,
                                                  0.,
      0., 1., 0., 0., 0., 0., 0., 0.,
                                         0.,
                                              0.,
                                                  0.,
In [13]: y train[0]
Out[13]:
           0., 0., 1., 0., 0., 0., 0., 0., 0.,
                                                  0.,
array([ 0.,
               0.,
                   0., 0., 0., 0., 0., 0., 0.,
           0.,
                                                  0.,
               0.,
                   0., 0., 0., 0., 0., 0., 0.,
                                                  0.,
           0., 0., 0., 0., 0., 0.])
```

In [8]: x train.shape Out[8]: (8982, 1000)

MSE

ReLU

www.aibbt.com 让未来触手可及

Dropout

	Accuracy
Adam	0.77
+ dropout	0.79

→w/o dropout → dropout

Lecture III: Variants of Neural Networks

Variants of Neural Networks

Convolutional Neural Network (CNN)

Widely used in image processing

Recurrent Neural Network (RNN)

Why CNN for Image?

 When processing image, the first layer of fully connected network would be very large

Can the fully connected network be simplified by considering the properties of image recognition?

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

• The same patterns appear in different regions.

Why CNN for Image

 Subsampling the pixels will not change the object bird

We can subsample the pixels to make image smaller

Less parameters for the network to process the image

Three Steps for Deep Learning

Deep Learning is so simple

cat dog

Can repeat many times

Property 1

Some patterns are much smaller than the whole image

Property 2

The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Flatten

Can repeat many times

cat dog **Fully Connected** Feedforward network 00000000 Flatten

Can repeat many times

CNN – Convolution

Those are the network parameters to be learned.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1
Matrix

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2
Matrix

Property 1 Each filter detects a small pattern (3 x 3).

CNN – Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -1

6 x 6 image

CNN – Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

We set stride=1 below

6 x 6 image

CNN — Convolution

Filter 1

stride=1

6 x 6 image

Property 2

CNN — Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

4 x 4 image

CNN – Zero Padding

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

You will get another 6 x 6 images in this way

Zero padding

CNN – Colorful image

cat dog

Can repeat many times

CNN – Max Pooling

	1 -1 -1	-1 1 -1	-1 -1 1	Filter 1		-1 -1 -1	1 1 1	-1 -1 -1	Filter 2
-3	-1 1		-3	-1	-1		1	-1 -2	-1
-3	-3		0 -2	1 -1 www.aibbt.com iJ	-1 -1 -末来触手可及		1	-2 -4	3

CNN – Max Pooling

www.aibbt.com 让未来触手可及

Smaller than the original image

The number of the channel is the number of filters

Can repeat many times

cat dog

Can repeat many times

(Ignoring the non-linear activation* function after the convolution.)

(Ignoring the non-linear activation*ftmction after the convolution.)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

image

Convolutional Neural Network

Learning: Nothing special, just gradient descent

Playing Go

Network

•

Next move (19 x 19 positions)

19 x 19 vector

Black: 1

white: -1

none: 0

Fully-connected feedword network can be used

But CNN performs much better.

Playing Go

record of previous plays

進藤光 v.s. 社清春

黑:5之五

→ 白: 天元

→ 黑: 五之5

Training:

Target:

"天元" = 1

else = 0

Target:

"五之 5" = 1

else = 0

Why CNN for playing Go?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

The same patterns appear in different regions.

Why CNN for playing Go?

Subsampling the pixels will not change the object

Max Pooling How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1 with a different bies for each position and applies a softmax func-Alpha Go does not use Max Pooling tion. The Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

Variants of Neural Networks

Convolutional Neural Network (CNN)

Recurrent Neural Network

(RNN)

Neural Network with Memory

Example Application

Slot Filling

Example Application

 y_2 y_1 Solving slot filling by Feedforward network? Input: a word (Each word is represented as a vector) **Taipei**

1-of-N encoding

How to represent each word as a vector?

1-of-N Encoding lexicon = {apple, bag, cat, dog, elephant}

The vector is lexicon size.

Each dimension corresponds to a word in the lexicon

The dimension for the word is 1, and others are 0 $apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ bag & = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ cat & = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ elephant & = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

Beyond 1-of-N encoding

Dimension for "Other"

Word hashing

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

dest

 y_1

time of

 y_2

departure

Example Application

www.aibbt.com 让未来触手可及

time of

Three Steps for Deep Learning

Deep Learning is so simple

Recurrent Neural Network (RNN)

RNN

The same network is used again and again.

Probability of Probability of Probability of "arrive" in each slot "Taipei" in each slot "on" in each slot V^1 store store a^2 a^2 X^1 x^2 x^3 arrive **November** 2nd Taipei 让未来触手可及

The values stored in the memory is different.

www.aibbt.com 让未来触手可及

Of course it can be deep ...

Bidirectional RNN

Long Short-term Memory (LSTM)

LSTM

LSTM

LSTM

Extension: "peephole"

www.aibbt.com 让未来触手可及

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

Three Steps for Deep Learning

Deep Learning is so simple

Learning Target

Three Steps for Deep Learning

Deep Learning is so simple

Learning

RNN Learning is very difficult in practice.

www.aibbt.com 让未来触手可及

Unfortunately

RNN-based network is not always easy to learn
 Real experiments on Language modeling

The error surface is rough.

Why?

$$w=1$$
 \Rightarrow $y^{1000}=1$ Large $\partial L/\partial w$ Learning rate?

 $w=0.99$ \Rightarrow $y^{1000}\approx 0$ small $\partial L/\partial w$ Large $\partial L/\partial w$ Learning rate?

 $w=0.01$ \Rightarrow $y^{1000}\approx 0$ \Rightarrow $\partial L/\partial w$ Learning rate?

 $w=0.01$ \Rightarrow $y^{1000}\approx 0$

Helpful Techniques

Long Short-term Memory (LSTM)

Can deal with gradient vanishing (not gradient explode)

Memory and input are added

➤ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU):
simpler than LSTM www.aibbt.com [Cho, EMNLP'14]

Helpful Techniques

Clockwise RNN

[Jan Koutnik, JMLR'14]

Structurally Constrained Recurrent Network (SCRN)

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

➤ Outperform or be comparable with LSTM in 4 different tasks

More Applications

Probability of Probability of Probability of "arrive" in each slot "Taipei" in each slot "on" in each slot Input and output are both sequences with the same length RNN can do more than that! X^1 arrive November 2nd Taipei

Many to one

Keras Example:

https://github.com/fchollet/keras/blob/master/examples/imdb_lstm.py

Input is a vector sequence, but output is only one vector

Many to Many (Output is shorter)

- Both input and output are both sequences, but the output is shorter.
 - E.g. Speech Recognition

Problem?

Why can't it be "好棒棒"

Many to Many (Output is shorter)

- Both input and output are both sequences, but the output is shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

- Both input and output are both sequences with different lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

- Both input and output are both sequences with different lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)


```
06/12 10:39
                                          06/12 10:40
推
                                          06/12 10:41
          tion:
                                          06/12 10:47
         host:
                                          06/12 10:59
          403:
                                          06/12 11:11
                                          06/12 11:13
推
                                          06/12 11:17
                                          06/12 11:32
                                          06/12 12:15
推 tlkagk:
```

Ref:http://zh.pttpedia.wikia.com/wiki/%E6%8E%A5%E9%BE%8D%E6%8E%A8%E6%96%87 (鄉學·曾科教

- Both input and output are both sequences with different lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

One to Many

Input an image, but output a sequence of words

[Kelvin Xu, arXiv'15][Li Yao, ICCV'15] A vector for whole is woman image **CNN** Input image **Caption Generation**

www.aibbt.com 让未来触手可及

Application: Video Caption Generation

Video Caption Generation

- Can machine describe what it see from video?
- Demo: 曾柏翔、吳柏瑜、盧宏宗

Concluding Remarks

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)

Lecture IV: Next Wave

Outline

Supervised Learning

- Ultra Deep Network
- Attention Model

New network structure

Reinforcement Learning

Unsupervised Learning

- Image: Realizing what the World Looks Like
- Text: Understanding the Meaning of Words
- Audio: Learning human language without supervision

Skyscraper

https://zh.wikipedia.org/wiki/%E9%9B%99%E5%B3%B0%E5%A1%94#/me

dia/File:BurjDubaiHeight.svg

, www.aibbt.com 让未来触手可及

7.3%

http://cs231n.stanford.e du/slides/winter1516_le cture8.pdf

8 layers

16.4%

AlexNet (2012)

Worry about overfitting?

Worry about training first!

This ultra deep network have special structure.

Residual Net

16.4%

AlexNet (2012)

VGG (2014)

7.3%

6.7%

GoogleNet www.ai62.01让4种射手可及

152 layers

3.57%

 Ultra deep network is the ensemble of many networks with different depth.

Residual Networks are Exponential Ensembles of Relatively Shallow Networks https://arxiv.org/abs/1605.06431

FractalNet

FractalNet: Ultra-Deep
Neural Networks without
Residuals
https://arxiv.org/abs/1605.0
7648
Resnet in Resnet

Resnet in Resnet: Generalizing Residual Architectures https://arxiv.org/abs/1603.080 29

Good Initialization?

All you need is a good init http://arxiv.org/pdf/1511.06422v7.pdf

Residual Network

Highway Network

Deep Residual Learning for Image Recognition

Training Very Deep Networks https://arxiv.org/pdf/1507.062

http://arxiv.org/abs/1512.03385.com 让未来最多v2.pdf

Outline

Supervised Learning

- Ultra Deep Network
- Attention Model

New network structure

Reinforcement Learning

Unsupervised Learning

- Image: Realizing what the World Looks Like
- Text: Understanding the Meaning of Words
- Audio: Learning human language without supervision

Attention-based Model

http://henrylo1605.blogspot.tw//2015/05/blog-post_56.html

Attention-based Model

Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Attain%20(v3).e cm.mp4/index.html www.aibbt.com 让未来触手可及

Attention-based Model v2

Reading Comprehension

Reading Comprehension

 End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015.

The position of reading head:

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow Prediction: yellow				

Keras has example:

https://github.com/fchollet/keras/blob/master/examples/babi_memnn.py

Visual Question Answering

source: http://visualqa.org/

Visual Question Answering

Visual Question Answering

 Huijuan Xu, Kate Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering. arXiv Pre-Print, 2015

Is there a red square on the bottom of the cat?

GT: yes Prediction: yes

Speech Question Answering

- TOEFL Listening Comprehension Test by Machine
- Example:

Audio Story: (The original story is 5 min long.)

Question: "What is a possible origin of Venus' clouds?"

Choices:

- (A) gases released as a result of volcanic activity
- (B) chemical reactions caused by high surface temperatures
- (C) bursts of radio energy from the plane's surface
- (D) strong winds that blow dust into the atmosphere

Simple Baselines

Experimental setup: 717 for training, 124 for validation, 122 for testing

Model Architecture

Everything is learned from training examples

Model Architecture

Word-based Attention

Model Architecture

Sentence-based Attention

Supervised Learning

Supervised Learning

[Tseng & Lee, Interspeech 16] [Fang & Hsu & Lee, SLT 16]

Outline

Supervised Learning

- Ultra Deep Network
- Attention Model

New network structure

Reinforcement Learning

Unsupervised Learning

- Image: Realizing what the World Looks Like
- Text: Understanding the Meaning of Words
- Audio: Learning human language without supervision

Scenario of Reinforcement Learning

Scenario of Reinforcement Learning Agent learns to ta

Agent learns to take actions to maximize expected reward.

http://www.sznews.com/news/conte nt/2013-11/26/content_8800180.htm

Supervised v.s. Reinforcement

Scenario of Reinforcement Learning Agent learns to ta

Agent learns to take actions to maximize expected reward.

Supervised v.s. Reinforcement

Supervised:

Next move: **"5-5"**

Next move: "3-3"

Reinforcement Learning

First move ____ many moves

Difficulties of Reinforcement Learning

- It may be better to sacrifice immediate reward to gain more long-term reward
 - E.g. Playing Go
- Agent's actions affect the subsequent data it receives
 - E.g. Exploration

Deep Reinforcement Learning

Application: Interactive Retrieval

Interactive retrieval is helpful.

[Wu & Lee, INTERSPEECH 16]

Deep Reinforcement Learning

Different network depth

More applications

- Alpha Go, Playing Video Games, Dialogue
- Flying Helicopter
 - https://www.youtube.com/watch?v=0JL04JJjocc
- Driving
 - https://www.youtube.com/watch?v=0xo1Ldx3L
 5Q
- Google Cuts Its Giant Electricity Bill With DeepMind-Powered Al
 - http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai

To learn deep reinforcement learning

- Lectures of David Silver
 - http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Te aching.html
 - 10 lectures (1:30 each)
- Deep Reinforcement Learning
 - http://videolectures.net/rldm2015_silver_reinfo rcement_learning/

Outline

Supervised Learning

- Ultra Deep Network
- Attention Model

New network structure

Reinforcement Learning

Unsupervised Learning

- Image: Realizing what the World Looks Like
- Text: Understanding the Meaning of Words
- Audio: Learning human language without supervision

Does machine know what the world look like?

Ref: https://openai.com/blog/generative-models/

Deep Dream

• Given a photo, machine adds what it sees

http://deepdreahtgefeerator.com/

Deep Dream

• Given a photo, machine adds what it sees

http://deepdreahtgefeerator.com/

Deep Style

Given a photo, make its style like famous paintings

https:///dreamstopeapp.com/

Deep Style

• Given a photo, make its style like famous paintings

https://dreamstopeapp.com/

Deep Style

Generating Images by RNN

Generating Images by RNN

Pixel Recurrent Neural Networks

https://arxiv.org/abs/1601.06759 Real World www.aibbt.com 让未来触手可及

Generating Images

 Training a decoder to generate images is unsupervised

Training data is a lot of images

Auto-encoder

Not state-ofthe-art approach

Generating Images

- Training a decoder to generate images is unsupervised
- Variation Auto-encoder (VAE)
 - Ref: Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114
- Generative Adversarial Network (GAN)
 - Ref: Generative Adversarial Networks, http://arxiv.org/abs/1406.2661

Which one is machine-generated?

Ref: https://openai.com/blog/generative-models/

書漫書!!!

https://github.com/mattya/chainer-DCGAN

Outline

Supervised Learning

- Ultra Deep Network
- Attention Model

New network structure

Reinforcement Learning

Unsupervised Learning

- Image: Realizing what the World Looks Like
- Text: Understanding the Meaning of Words
- Audio: Learning human language without supervision

 Machine learn the meaning of words from reading a lot of documents without supervision

http://top-breaking-news.com/ www.aibbt.com 让未来触手可及

 Machine learn the meaning of words from reading a lot of documents without supervision

 Generating Word Vector/Embedding is unsupervised

Training data is a lot of text

- Machine learn the meaning of words from reading a lot of documents without supervision
- A word can be understood by its context

蔡英文、馬英九 are something very similar

馬英九 520宣誓就職

蔡英文 520宣誓就職

You shall know a word by the company it keeps

Word Vector

Word Vector $V(Germany) \approx V(Berlin) - V(Rome) + V(Italy)$

Characteristics

$$V(hotter) - V(hot) \approx V(bigger) - V(big)$$

 $V(Rome) - V(Italy) \approx V(Berlin) - V(Germany)$
 $V(king) - V(queen) \approx V(uncle) - V(aunt)$

Solving analogies

Rome : Italy = Berlin : ?

Compute
$$V(Berlin) - V(Rome) + V(Italy)$$

Find the word w with the closest V(w)

 Machine learn the meaning of words from reading a lot of documents without supervision

Demo

- Model used in demo is provided by 陳仰德
- Part of the project done by 陳仰德、林資偉
- TA: 劉元銘
- Training data is from PTT (collected by 葉青峰)

Outline

Supervised Learning

- Ultra Deep Network
- Attention Model

New network structure

Reinforcement Learning

Unsupervised Learning

- Image: Realizing what the World Looks Like
- Text: Understanding the Meaning of Words
- Audio: Learning human language without supervision

Learning from Audio Book

Machine does not have any prior knowledge

Machine listens to lots of audio book

Like an infant

Audio Word to Vector

Audio segment corresponding to an unknown word

Audio Word to Vector

 The audio segments corresponding to words with similar pronunciations are close to each other.

Sequence-to-sequence Auto-encoder

Audio Word to Vector

- Results

Visualizing embedding vectors of the words

WaveNet (DeepMind)

Concluding Remarks

Concluding Remarks

Lecture I: Introduction of Deep Learning

Lecture II: Tips for Training Deep Neural Network

Lecture III: Variants of Neural Network

Lecture IV: Next Wave

AI 即將取代多數的工作?

New Job in Al Age

AI訓練師

(機器學習專家、 資料科學家)

http://www.express.co.uk/news/science/651202/First-step-towards-The-Terminator-becoming-reality-AI-beats-champ-of-world-s-oldest-game

AI訓練師

機器不是自己會學嗎? 為什麼需要 AI 訓練師

> 戰鬥是寶可夢在打, 為什麼需要寶可夢訓練師?

AI訓練師

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

寶可夢訓練師

- 寶可夢訓練師要挑選適合的寶可夢來戰鬥
 - 寶可夢有不同的屬性
- 召喚出來的寶可夢不一定 能操控
 - E.g. 小智的噴火龍
 - 需要足夠的經驗

AI訓練師

- 在 step 1, AI訓練師要挑 選合適的模型
 - 不同模型適合處理不同的問題
- 不一定能在 step 3 找出 best function
 - E.g. Deep Learning
 - 需要足夠的經驗

AI訓練師

- 厲害的 AI , AI 訓練師功不可沒
- •讓我們一起朝 AI 訓練師之路邁進

http://www.gvm.com.tw/web only_content_10787.html

台大電機系資料科學與智慧網路組首屆招生:

碩士生甄試20名,考試入學10名

博士生甄試2名,考試入學1名

△ 招生公告: 105.09.20

→ 報名期間:105.10.04~10.12

₩ 招生網址:

· 招生說明會:

爲 時間:105.09.28 12:20

→ 地點:台大博理館 112 R

