- 1) Simule a execução da busca em profundidade (DFS) no grafo G_1 definido pelo conjunto de arestas: **0-6 0-1 0-5 1-2 2-6 6-7 7-8 7-10 10-8 5-3 5-4 4-11 4-9 4-3 9-11 11-12** (Adote a representação por listas de adjacência e insira as arestas, na ordem dada, num grafo inici-
- almente vazio.) Faça um desenho da arborescência de busca em profundidade do grafo.

2) A tabela abaixo define o dígrafo G_2 com vértices A, B, C, D, E, F. Suponha que, em cada vértice, a lista de adjacências dos arcos que saem do vértice está em ordem alfabética (a, b, c,...). Lista de arcos:

vértice	F	F	Α	В	Е	Α	D	Α	inicio
arco	a	b	С	d	e	f	g	h	
vértice	Α	D	D	Е	С	Е	С	В	fim

Simule a execução da função de busca em largura (BFS). Em que ordem os vértices serão visitados se executarmos uma *busca em largura* a partir do vértice F? Faça um desenho da arborescência da *busca em largura* a partir de F até o vértice mais distante.

3) Considere o dígrafo G₃ de ordem 11, armazenado na matriz de adjacências abaixo:

	1	2	3	4	5	6	7	8	9	10	11
1	0	1	0	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0	0
3	1	0	0	1	0	1	0	0	0	0	0
4	0	0	1	0	1	0	0	0	0	0	0
5	0	0	0	0	0	1	0	0	1	0	0
6	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	1	0	0	0	0	1
8	0	0	0	0	0	0	1	0	0	1	1
9	0	0	0	0	0	1	0	1	0	0	0
10	0	0	0	0	1	0	0	0	1	0	0
11	0	0	0	0	0	0	1	0	0	0	0

- a) Empregando a busca em profundidade (DFS), demonstre a sequência de visitas, e faça também um desenho da *floresta de busca em profundidade*.
- b) Determine o número de componentes e, demonstre quais vértices pertencem a cada componente.
- c) Existem ciclos nesse dígrafo? Mostre os ciclos.
- 4) Considere o grafo G₄ de ordem 11, armazenado na matriz de adjacências abaixo:

	1	2	3	4	5	6	7	8	9	10	11
1	0	1	1	0	0	0	0	0	0	0	0
2	1	0	1	0	0	0	0	0	0	0	0
3	1	1	0	1	0	1	0	0	0	0	0
4	0	0	1	0	1	0	0	0	0	0	0
5	0	0	0	1	0	1	0	0	0	1	0
6	0	0	1	0	1	0	1	0	0	0	0
7	0	0	0	0	0	1	0	1	0	0	1
8	0	0	0	0	0	0	1	0	1	1	1
9	0	0	0	0	1	1	0	1	0	1	0
10	0	0	0	0	1	0	0	1	1	0	0
11	0	0	0	0	0	0	1	1	0	0	0

- a) Empregando a busca em largura(BFS), demonstre a sequência de visitas a partir do vértice 1
 e, faça também um desenho da floresta da busca em largura e mostrando as distâncias
 percorridas.
- b) Determine o número de componentes e, demonstre quais vértices pertencem a cada componente.