Below is Giuseppe Peano's Arithmetices principia as first published, i.e. as "Arithmetices principia, nova methodo exposita" , which appeared translated to English in 1967 as "The principles of arithmetic, presented by a new method"4, as well as in 1973. This present document is the only (to my knowledge) side-by-side Latin-English translation of the Latin original. The mathematical notation (in the English, right, column) got updated to currently canonically-used or easy-to-decrypt symbols in the international and/or English mathematical community; which is also a feature currently unseen in any reprint. In the middle of each dotted horizontal line is the number of the page below in the original Latin edition of 1889. Parts irrelevant for the mathematical-content and/or current notation got greyed. Arithmetices principia The principles of arithmetic Nova methodo exposita Presented by a new method Ioseph Peano Giuseppe Peano in R. Academia militari professore professor at the Royal Military Academy Analysin infinitorum in R. Taurinensi Athenæo docente. teaching Analysis of the infinite at the Royal Turin Athenaeum. Labor et honor Work and honor Augustae Taurinorum At Turin Ediderunt Fratres Bocca Published by Libreria Bocca Regis bibliopolae At Rome At Florence Romae Florentiae Via del Corso, 216-217. Via del Corse, 216-217. Via Oerretani, 8. Via Oerretani, 8. 1889 1889 II Respecting rights Iuribus servatis At Turin, printed by Vincent Bona Augustae Taurinorum - Typis Vincentii Bona. IIIPreface Praefatio Quaestiones, quae ad mathematicae fundamenta pertinent, etsi hisce temporibus a multis trac-Questions pertaining tot the foundations of mathematics, although treated by many tatae, satisfacienti solutione et adhuc carent. Hic difficultas maxime ex sermonis ambiguitate still lack a satisfactory solution. The difficulty arises principally from the ambig oritur. nary language. Quare summi interest verba ipsa, quibus utimur attente perpendere. Hoc examen mihi proposui, For this reason it is of the greatest concern to consider attentively the words we use atque mei studii resultatus, et arithmeticae applicationes in hoc scripto expono. to do this, and am presenting in this paper the results of my study with application Ideas omnes quae in arithmeticae principiis occurrunt, signis indicavi, ita ut quaelibet propositio I have indicated by signs all the idea which occur in the fundamentals of arithmetic, s proposition is stated with just these signs. his tantum signis enuncietur. Signa aut ad logicam pertinent, aut proprie ad arithmeticam. Logicae signa quae hic occurrunt, The signs pertain either to logic or to arithmetic. The signs of logic that occur her sunt numero ad decem, quamvis non omnia necessaria. Horum signorum usus et propriten in number, although not all are necessary. The use of these signs and seve etas nonnullae in priore parte communi sermone explicantur. Ipsorum theoriam fusius hic properties are explained in ordinary language in the first part. I did not wish to p exponere nolui. Arithmeticae signa, ubi occurrunt, explicantur. theory more fully here. The signs of arithmetic are explained as they occur. With this notation every proposition assumes the form and precision equations enjoy His notationibus quaelibet propositio formam assumit atque praecisionem, qua in algebra aequationes gaudent, et a propositionibus ita scriptis aliea deducuntur, idque processis qui aeand from propositions so written others may be deduced, by a process which re quationum resolutioni assimilantur. Hoc caput totius scripti. solution of algebraic equations. That is the chief reason for writing this paper. Having made up the signs with which I can write arithmetical propositions, in trea Sique, confectis signis quibus arithmeticae propositiones scribere possim, in earum tractatione usus sum methodo, quam quia et in aliis studiis sequenda foret, breviter exponam. have used a method which, because it is to be followed in later studies, I shall pre-Ex arithmeticae signis quae caeteris, una cum logicae signis exprimere licet, ideas significant Those arithmetical signs which may be expressed by using others along with signs of quas definire possumus. Ita omnia definivi signa, si quatuor excipias, quae in explicationibus sent the ideas we can define. Thus I have defined every sign, if you except the for §1 continentur. Si, ut puto, haec ulterius reduci nequeunt, ideas ipsis expressas, ideis quae contained in the explanations of §1. If, as I believe, these cannot be reduced furth ideas expressed by them may not be defined by ideas already supposed to be known prius notae supponuntur, definire non licet. IVPropositiones, quae logicae operationibus a caeteris deducuntur, sunt theoremata; quae vero non, Propositions which are deduced from others by the operations of logic are theorem which this is not true I have called axioms. There are nine axioms here (§1), and t axiomata vocavi. Axiomata hic sunt novem (§1), et signorum, quae definitione carent, proprifundamental properties of the undefined signs. etates fundamentales exprimunt. In §1-6 numerorum proprietates communes demonstravi; brevitatis causa, demonstrationes praece-In §1-6 I have proved the ordinary properties of numbers; for the sake of brevity, I h dentibus similes omisi; demonstrationum communem formam immutare oportet ut logicae proofs which are similar to preceding ones. The ordinary form of proofs has had t signis exprimantur; haec transformatio interdum difficilior est, tamen inde demonstrationis in order that they may be expressed with the signs of logic. This transformation i rather difficult but the nature of the proof then becomes quite clear. In the follow natura clarissime patet. I have treated various things so that the power of the method is better seen. In sequentibus § varia tractavi, ut huius methodi potentia magis videatur. In the following sections I have treated various things so that the power of the metl In §7 are several theorems pertaining tot the theory of numbers. In §8 et 9 are foun In §7 nonnulla theoremata, quae ad numerorum theoriam pertinent, continentur. In §8 et 9 rationalium et irrationalium definitiones inveniuntur. tions of rationals and irrationals. Denique, in §10, theoremata exposui nonnulla, quae nova esse puto, ad entium theoriam perti-Finally, in §10 I have given several theorems, which I believe to be new, pertaining t nentia, quae cl. mus Cantor Punktmenge (ensemble de points) vocavit. of those entities which Professor Cantor has called Punktmenge (ensemble de pois In hoc scripto aliorum studiis usus sum. Logicae notationes et propositiones quae in num. II, In this paper I have used the research of others. The notations and propositions of III et IV continentur, si nonnullas excipias, ad multorum opera, inter quae Boole praecipue, are contained in numbers II, III, and IV, with some exceptions, represent the we referenda sunt.7 among them Boole especially. The sign \in , which must not be confused with the sign \subset , applications of the inverse Signum ϵ , quod cum signo S confundere non licet, inversionis in logica applicationes, et paucas a few other conventions, I have adopted so that I could express any proposition w alias institui conventiones, ut ad exprimendam quamlibet propositionem pervenirem. In arithmeticae demonstrationibus usus sum libro: H. Grassmann, Lehrbuch der Arithmetik, In the proofs of arithmetic I used the book H. Grassmann, Lehrbuch der Arithmetik (I Berlin 1861. Utilius quoque mihi fuit recens scriptum: R. Dedekind, Was sind und was sollen die Zahlen; Also quite useful to me was the recent work by R. Dedekind, Was sind und wa Braunschweig, 1888, in quo quaestiones, quae ad numerorum fundamenta pertinent, acute Zahlen (Braunschweig, 1888), in which questions pertaining to the foundations examinantur. are acutely examined. My booklet should be taken as a sample of this new method. With these notations Hic meus libellus ut novae methodi specimen habendus est. Hisce notationibus innumeras alias and prove innumerable other propositions, such as those which pertain to rational propositiones, ut quae ad rationales et irrationales pertinent, enunciare et demonstrare possumus. Sed, ut aliae theoriae tractentur, nova signa, quae nova indicant entia, instituere tionals. But in order to treat other theories, it is necessary to adopt new signs to i necesse est. Puto vero his tantum logicae signis propositiones cuiuslibet scientiae exprimi entities. I believe, however, that with only these signs of logic the propositions of can be expressed, so long as the signs which represent the entities of the science posse, dummodo adiungantur signa quae entia huius scientiae representant. VITable of signs Signorum tabula Signum Significatio Pag. Sign Meaning Signs of logic Logicam signa propositio VIIproposition proposition \mathbf{X} classis CLASS class VII, X and $_{
m et}$ VIII, X, XI U vel orVIII, X non not Λ absurdum aut nihil VIII, XI false or nothing VIII, XI \mathbf{C} deducitur aut continetur one deduces or is contained in \subset VIII est aequalis equals \mathbf{X} is (an element of) or est is (a) is a inversed[] inversionis signum XIsign of the inverse XIIqui $vel[\epsilon]$ such that or isn't isn't theoremXVI Th Theorema Theorem hypothesis Hypothesis Hypothesis Hp thesis TsThesis Thesis logic \mathbf{L} Logica Logic Signs of arithmetic Arithmeticae signa Signa 1, 2, ..., =, >, <, +, -, \times vulgarem habent significationem. Divisionis signum est /. The signs 1, 2, ..., =, >, <, +, -, * have their usual meaning. The sign numerus integer positivus positive integers R12postive rational numbers num. rationalis positivus \mathbb{R} quantitas, sive numerus realis positivus 16 quantity or postive real numbers Q Np numerus primus 9 prime number $\mathbf{M}^{\mathrm{aximum}}$ \mathbf{M} maximus 6 maximum \mathbf{M} 6 minimus minimum \mathbf{m}_{inimum} $Gr^{eatest\ bound}$ \mathbf{T} terminus, vel limes summus 15terminus or greatest bound divides \mathbf{D} dividit 9 divides is divisible D est multiplex is divisible is Prime with 6 est primus cum is prime with π Signa composita Composite signs is not less than non est minor $= \cup >$ est aequalis aut maior is equal to or greater than \geq is a divisor эDdivisor is a divisor is the $\,$ M эDmaximus divisor is the greatest divisor divisor VII Logicae notationes. I. De punctuatione. Litteris a, b, ...x, y, ...x', y', ... entia indicamus indeterminata quaecumque. Entia vero dete signis, sive litteris P, K, N, \dots indicamus. Signa plerumque in eadem linea scribemus. Ut ordo pateat quo ea coniungere oporteat thesibus ut in algebra, sive punctis .:::: etc. utimur. Ut formula punctis divisa, intelligatur, primum signa quae nullo puncto seperantur co sunt, postea quae uno puncto, deinde quae duobus punctis, etc. Ex. g. $sint \ a,b,c,... \ signa \ quaecumque$. Tunc $ab \ . \ cd \ significat \ (ab)(cd); \ et \ ab \ . \ cd : ef$ significat (((ab)(cd))((ef)(gh)))k. Punctuationis signa omittere licet si formulae quae diversa punctuatione existerent habeant sensum; vel si una tantum formula, et ipsa quam scribere volumus, sensum Ut ambiguitatis periculum absit, aritmeticae operationum signis .: nunquam utimur. Parenthesum figura una est (); si in eadem formula, parentheses et puncta occurant, quae parenthesibus continentur, colligantur. II. De propositionibus. Signo P significatur propositio. Signum \cap legitur et. Sint a, b propositiones; tunc $a \cap b$ est simultanea af a, b. Brevitatis causa, loco $a \cap b$ vulgo scribemus $a \ b$. Signum – legitur non. Sit a quaedam P; tunc –a est negatio propositioni Signo \cup legitur vel. Sint a, b propositiones; tunc $a \cup b$ idem est ac -: -a. [Signo V significatur verum, sive identitas; sed hoc signo numquam utim Signum Λ significat falsum, sive absurdum. [Signum C significat est consequentia; ita b C a legitur b est consequent hoc signo nunquam utimur]. Signum O significat deducitur; ita $a \circ b$ significat quod $b \circ a$. Si proposit minata continent x, y,..., scilicet sunt inter ipsa entia conditiones, tu quaecumque sunt x, y, ..., a propositione a deducitur b. Si vero ambig loco $\mathcal{O}_{x,y,\dots}$, scribemus solum \mathcal{O} . Signum = significat est aequalis. Sint a, b propositiones; tunc a = b idem s O a; propositio $a =_{x,y,...} b$ idem significat quod $a O_{x,y,...} b$. $b O_{x,y,...} a$. III. Logicae propositiones. Sint a, b, c, ... propositiones. Tunc erit: $a \supset a$ 1. 2. $a \supset b \cdot b \supset c : \supset : a \supset c$ $a = b \cdot = : a \supset b \cdot b \supset a.$ 3. 4. a = a $a = b \cdot = b = a$ 5. 6. $a = b \cdot b \supset c : \supset \cdot a \supset c$ 7. $a \supset b \cdot b = c : \supset \cdot a \supset c$ 8. $a = b \cdot b = c : \mathcal{O} \cdot a = c$ 9. $a = b \cdot O \cdot a \cdot O b$ $a = b \cdot \Im \cdot b \Im a$ 10. 11. $ab \supset a$ 12. ab = baa(bc) = (ab)c = abc13.14.aa = a15. $a = b \cdot \Im \cdot ac = bc$ 16. $a \supset b$. \supset . $ac \supset bc$ $a \supset b \cdot c \supset d : \supset \cdot ac \supset bd$ 17. $a \supset b \cdot a \supset c := \cdot a \supset bc$ 18. 19. $a = b \cdot c = d : O \cdot ac = bd$ 20.-(-a) = a21. $a = b \cdot = -a = -b$. $a \supset b = -b \supset -a =$ 22.23. $a \cup b \cdot = :: -a \cdot -b$ 24. $-(ab) = (-a) \cup (-b)$ $-(a \cup b) = (-a)(-b)$ 25. $a \supset a \cup b$ 26.27. $a \cup b = b \cup a$ $a \cup (b \cup c) = (a \cup b) \cup c = a \cup b \cup c$ 28.29. $a \cup a = a$ $a (b \cup c) = ab \cup ac$ 30. 31. $a = b \cdot O \cdot a \cup c = b \cup c$ 32. $a \supset b . \supset . a \cup c \supset b \cup c$ 33. $a \supset b \cdot c \supset d : \supset : a \cup c \cdot \supset : b \cup d$ $b \supset a \cdot c \supset a := b \cup c \supset a$ 34.35. $a - a = \Lambda$ 36. $a \Lambda = \Lambda$ 37. $a \cup \Lambda = a$ 38. $a \supset \Lambda . = . a = \Lambda$ $a \supset b = a - b = \Lambda$ 39. 40. $\Lambda \supset a$ $a \cup b = \Lambda$. $= : a = \Lambda$. $b = \Lambda$ 41. $a \circlearrowleft b \circlearrowleft c := : ab \circlearrowleft c$ 42. 43. $a \ \Im \ . \ b = c : = . \ ab = ac$ Sit α quoddam relationis signum (ex. gr. =, O), ita ut α - . $a \alpha b$ scribemus $a - \alpha b$; scilicet: $a -= b \cdot = : - \cdot a = b$ $a - \Im b = : - . a \Im b$ Ita signum - = significat *non est aequalis*. Si propositio significat: sunt x quae conditioni a satisfaciunt. Signu Similter, si α et β sunt relationis signa, loco α α b, et α . $\alpha \beta$. b et a . $\alpha \cup \beta$. b . Ita, si a et b sunt propositi deducitur b, sed non vice versa. $a \cdot O - = b : = a \cdot D \cdot b \cdot b - O a$ Formulae: $a \supset b \cdot b \supset c \cdot a - \supset c := \Lambda$ $a = b \cdot b = c \cdot a - = c := \Lambda$ $a \circlearrowleft b \cdot b \circlearrowleft -= c : \circlearrowleft \cdot a \circlearrowleft -= c$ $a \circlearrowleft -= b \cdot b \circlearrowleft c : \circlearrowleft \cdot a \circlearrowleft -= c$ Sed his notationibus raro utimur. IV. De classibus. Signo K significatur classis, sive entium Signum \in significat *est*. Ita $a \in b$ legitur a $a \in P$ significat a est quaedam propositiLoco $-(a \in b)$ scribemus $a - \in b$; signum $a - \epsilon b \cdot = : - \cdot a \epsilon b$ Signum $a, b, c \in m$ significat: a, b et c su 45. $a, b, c \in m := : a \in m : b \in m : c \in$ Sit a classis; tunc -a significatur classis 46. $a \in K \cdot O : x \in -a \cdot = \cdot x - \epsilon a$ Sint a, b classes; $a \cap b$, sive a b, est clas quae eodem tempore sunt a et b; $a \cup b$ est $a, b \in K . O :: a x \in . a b := : x \in a$ 47. 48. $a, b \in K . O : a \cup x \in . a \cup b : = : a$ Signum Λ indicat classem quae nullum e $a \in K \cdot O :: a = \Lambda := : x \in a \cdot =_x \Lambda$ [Signo V, quod classem ex omnibus indiv utimur]. Signum 3 significat continetur. Ita a 3 b $a, b \in K . O :: a O b := : x \in a . O_x$ [Formula $b \in a$ significare potest classisHic signa Λ et \mathcal{I} significationem habent ambiguitas. Nam si de propositionibus vero de classibus, nihil et continetur. Formula a = b, si a et b sint classes, sign 51. $a, b \in K . O : a = b : = : x \in a . = x$ Propositiones 1...41 quoque subsistunt, si $a \in b . O . b \in K$ 52. $a \in b . O . b -= \Lambda$ 54. $a \in b$. b = c : O . $a \in c$ 55. $a \in b$. $b \supset c : \supset a \in c$ Sit s classis, et k classis quae in s contin ex uno tantum constat individuo. Itaqu 56. $s \in K \cdot k \supset s : \supset :: k \in s \cdot = :: k - =$

Inversionis signum est [

particulares exponimus

1. Sit *a* propositio, indete

quibus a, sive solutiones

quae conditioni a satisfa

 $a \in P \cdot O : [x \in] a \cdot e$ $a \in K \cdot O : [x \in] \cdot x$

57.

59. $\alpha \in P : \mathcal{D} :: x \in . [x \in] \alpha := \alpha$ Sint α , β propositiones indeterminatum continentes x ; erit: 60. $[x \in] (\alpha \beta) = ([x \in] \alpha) ([x \in] \beta)$ 61. $[x \in] -\alpha = - [x \in] \alpha$ 62. $[x \in] (\alpha \cup \beta) = [x \in] \alpha \cup [x \in] \beta$	59. α is a proposition $\rightarrow [(x \in \overline{x} \in \alpha) = \alpha]$ Let α, β be propositions containing the indeterminate x . We will have: 60. $[\overline{x} \in (\alpha \land \beta)] = [(\overline{x} \in \alpha) \land (\overline{x} \in \beta)]$ 61. $(\overline{x} \notin \alpha) = [(\neg \overline{x}) \in \alpha]$ 62. $[\overline{x} \notin (\alpha \cup \beta)] = [(\overline{x} \in \alpha) \cup (\overline{x} \in \beta)]$	
 63. α Ͻx β . = . [xε] α Ͻ [xε] β 64. α =x β . = . [xε] α = [xε] β 2. Sint x, y entia quacumque; system ex ente x et ex ente y compositum ut novum ens consideramus, et signo (x, y) indicamus; similiterque si entium numerus maior fit. Sit α propositio indeterminata continens x, y; tunc [(x, y)ε] α significat classem entibus (x, y) 	 63. (α (→ / ⊂) β) = [(x̄ ∈ α) (→ / ⊂) (x̄ ∈ β)] 64. (α = β) = [(x̄ ∈ α) = (x̄ ∈ β)] 2. Let x, y be any entities. We shall consider the system composed of the entity x and the entity y as a new entity, and indicate it by the sign (x, y); and similarly if the number of entities becomes larger. Let α be a proposition containing the indeterminate x, y; then 	
constitutam, quae conditioni α satisfaciunt. Erit: 65. $\alpha \supset_{x,y} \beta . = . [(x,y) \in] \alpha \supset [(x,y) \in] \beta$ 66. $[(x,y) \in] \alpha - = \Lambda . = [x \in] . [y \in] \alpha - = \Lambda : - = \Lambda$ 3. Sit $x \alpha y$ relatio inter indeterminata x et y (ex. g. in logica relationes $x = y, x - = y, x \supset y$; in arithmetica $x < y, x > y$, etc). Tunc signo $[\epsilon \alpha] y$ ea x indicamus, quae relationi $x \alpha y$	 [(x,y)ε] α indicates the class of entities (x,y) which satisfy the condition α. We have: 65. 66. 3. Let x α y be a relation between the indeterminates x and y (eg. in logic, the relations x = y x ≠ y, x → y; in arithmetic, x < y, x > y,). Then the sign [ε α] y denotes the x that satisfy 	',
satisfaciunt. Commoditatis causa, loco $[\epsilon]$, signo \ni utimur. Ita $\ni \alpha \ y \ . = : [x \ \epsilon] \ . x \ \alpha \ y$, et signum \ni legitur qui , vel $quae$. Ex. gr. sit y numerus; tunc $\ni < y$ classem indicat numeris x compositam qui conditioni $x < y$ satisfaciunt, scilicet, qui sunt minores y , vel simpliciter minores y . Similiter, quum signum D significet $dividit$, vel est $divisor$, formula \ni D significat qui $dividunt$ vel divisores. Deducitur $x \in \ni \alpha \ y = x \ \alpha \ y$.	the relation $x \alpha y$. For the sake of convenience, we use the sign \ni instead of the sign $[\varepsilon]$. Thus, $\ni \alpha y . = : [x \varepsilon] . x \alpha y$, and the sign \ni is read <i>the objects that</i> . For example, let y be a number; then $\forall x < y$ denotes the class formed by the numbers x that satisfy the condition $x < y$, that is, <i>the objects that are smaller than y</i> , or simply <i>the objects smaller than y</i> . Similarly, if the sign D means <i>divides</i> or <i>is a divisor of</i> , the formula $\ni D$ means <i>the objects that</i>	.,
4. Sit α formula indeterminate continens x . Tunc scriptura $x'[x]\alpha$, quae legitur x' loco x in α substituto, formulam indicat quae obtinetur si in α , loco x , x' legimus. Deducitur $x[x]\alpha = \alpha$.	divide or the divisors. It follows that $x \in \exists \alpha \ y = x \ \alpha \ y$. 4. Let α be a formula containing the indeterminate x . Then the expression $x'[x]\alpha$, which is read x' being substituted for x in α , denotes the formula obtained if, in α , we read x' for x . It follows that $x[x]\alpha = \alpha$.	
5. Sit α formula, quae indeterminata $x,y,$ continet. Tunc $ (x',y',) [x,y,] \alpha, $ XIII quae legitur $x'y',$ loco $x,y,$ in α substitutis, formulam indicat quae obtinetur si in α loco $x,y,$, litterae $x'y',$ scribantur. Deducitur $(x,y) [x,y] \alpha = \alpha. $	5. Let α be a formula that contains the indeterminates $x,y,$ Then $(x',y',) \ [x,y,] \ \alpha,$ which is read $x',y',$ being substituted for $x,y,$ in α , denotes the formula obtained if, in α , the letters $x'_1,y',$ are written for $x,y,$ It follows that $(x,y) \ [x,y] \ \alpha = \alpha$.	ė
VI. De functionibus. Logicae notationes quae praecedunt exprimendae cuilibet arithmeticae propositioni sui iisdemque tantum utimur. Hic notationes alias nonnullas breviter explicamus, quae fieri possunt.		
Sit s quaedam classis; supponimus aequalitatem inter entia systematis s definitam, quaedam classis; supponimus aequalitatem inter entia systematis s definitam, quaedam conditionibus satisfaciat: $a=a$ $a=b \ . \ b=c \ . \ O \ . \ a=c$	Let S be a class; we assume that equality is defined between the objects of the satisfy the conditions: $a=a.$ $(a=b)=(b=a)$ $[(a=b) \wedge (b=c)] \rightarrow a=c$	yste
Sit φ signum, sive signorum aggregatus, ita ut si x est ens classis s , scriptura φ x nove indicet ens; supponimus quoque aequalitatem inter entia φ x definitam; et si x et y entia classis s , et est $x=y$, supponimus deduci posse φ $x=\varphi$ y . Tunc signum φ dic functionis praesignum in classi s , et scribemus $\varphi \ni F'$ s . $s \in K \cdot \Im :: \varphi F' s := \therefore x, y \in s : x=y : \Im_{x,y} \cdot \varphi x = \varphi y$	sunt φx denotes a new object; we assume also that equality is defined between the	ne ob ible (
Verum si, cum sit x quodlibet ens classis s , scriptura $x\phi$ novum indicet ens, et, ex, $x=1$ deducitur $x\phi=y\phi$, tunc dicimus ϕ esse functionis postsignum in classi s et scriben $s'F$. $s \in K \ . \ \exists :: \phi \ s'F \ . = \therefore x, y \in s \ . \ x=y: \exists_{x,y} \ . \ x\phi=y\phi$	hus $\varphi \in \mathbb{R}$ from $x = y$, then we say that φ is a <i>function postsign in the class S</i> , and we will the following set of \mathbb{R} and \mathbb{R} and \mathbb{R} is a function postsign in the class \mathbb{R} .	rite
Exempla. Sit a numerus; tunc a + est functionis praesignum in numerorum classe, et functionis postsignum; quicumque enim est numerus x , formulae $a + x$ et $x + a$ nov indicant numeros, et ex $x = y$ deducitur $a + x = a + y$, et $x + a = y + a$. Itaque $a \in \mathbb{N} . \Im : a + . \in . F' \mathbb{N}$ $a \in \mathbb{N} . \Im : + a . \in . N'F$		
Sit φ functionis praesignum in classe s . Tunc $[\varphi]y$ classem significat iis x constitutam, conditioni $\varphi x = y$ satisfaciunt; scilicet: $Def. s \in K \ . \ \varphi \in F' \ s : \Im : [\varphi]y \ . = . \ [x \in] \ (\varphi x = y)$	quae Let φ be a function presign in the class S . Then $[\varphi]y$ denotes the class compose satisfy the condition $\varphi x = y$; that is, $Def.$ XIV	d of
Classis $[\varphi]y$ vel unum vel plura, vel etiam nullum individuum continere potest. Erit: $s \in K$. $\varphi \in F'$ $s : O : y = \varphi$ $x . = .$ $x \in [\varphi]y$ Si vero φy uno tantum constat individuo, erit $y = \varphi x . = .$ $x = [\varphi]y$ Sit φ functions postsignum; similiter ponimus: $s \in K$. $\varphi \in s'F : O : y \varphi = x \in (x \varphi = y)$.	The class $[\varphi]y$ may contain one or several individuals, or none at all. We have: But if φy consists of just one individual, we have $y=\varphi x$. = . $x=[\varphi]y$ Let φ be a function postsign; we write similarly:	
Signum [] dicitur <i>inversionis signum</i> , eiusque usus nonullos in logica iam exposuimus. α est propositio indeterminatum continens x , atque A est classis individuis x compositioni α satisfaciunt, erit $x \in \alpha$. = α , tunc α = [$x \in$] α , ut in V , i. Sit α formula indeterminate continens x , sitque φ functionis praesignum, quod litterate praepositum, formulam α gignat; scilicet sit $\alpha = \varphi x$; tunc erit $\varphi = \alpha[x]$, et si x' est	is a proposition containing the indeterminate x and A is a class composed of x that satisfy the condition α , we have $x \in A$. $= \alpha$, and then $A = [x \in A]$ $= \alpha$ as in Let α be a formula containing the indeterminate x and let α be a function president.	the i V, i. gn th
ens, erit $\varphi x' = \alpha[x]x'$, scilicet, si α est formula indeterminatum continens x , tunc $\alpha[x]$ significat id quod obtinetur si in α , loco x, x' ponatur. Similiter, sit α formula indeterminate continens x , sitque φ functionis postsignum, ut deducitur $\varphi = [x]\alpha$; tunc, si x' est novum ens, erit $x'\varphi = x'[x]\alpha$, scilicet $x'[x]\alpha$ rursun	and if x' is a new object, we have $\varphi x' = \alpha[x]x'$, that is, if α is a formula containdeterminate x , then $\alpha[x]x'$ means what is obtained when, in α , we put x' for $\alpha = \alpha$; Similarly, let α be a formula containing the indeterminate x and let φ be a function	ining or x .
id quod obtinetur si in a , loco x, x' legatur, ut in V , 4. Alios quoque usus in logica signum [] habere potest, quos breviter esponimus, quum iputamur. Sint a et b duae classes; tunc $[a \cap]b$ sive $b[\cap a]$ classes indicat x , quae condiberation $b = a \cap x$, sive $b = x \cap a$ satisfaciunt. Si b in a non continetur, nulla classis huic condibation satifacit; si b in a continetur, signum $b[\cap a]$ omnes indicat classes quae b continent	in these ways. Let a and b be two classes; then $[a \cap]b$ sive $b[\cap a]$, or $b[\cap a]$ defining a that satisfy the condition $b = a \cap x$, or $b = x \cap a$. If b is not contained in a , in	shall note: o cla
$b \cup -a$ continentur. In Arithmetica, sint a, b numeri; tunc $[b+a]$ sive $[a+]b$ numerum indicat x , qui conditi $b=x+a$, sive $b=a+x$ satisfacit, nempe $b-a$. Similiter erit $b[\times a]=[a\times]b=b/a$. Et analysi hoc signum usuvenire potest; itaque		
$y=\sin x$. = . $x\in [\sin]y$		
in s contenta; tunc φk classem indicat omnibus φx compositam, ubi x sunt entia classiscilicet $ \begin{aligned} & \textit{Def.} & s \in \mathbf{K} \cdot k \in \mathbf{K} \cdot k \text{ O } s \cdot \varphi \in F' s : \text{O} \cdot \varphi k = [y \in] \ (k \cdot [\varphi] y : - = \Lambda) \end{aligned} $ Sive $s \in \mathbf{K} \cdot k \in \mathbf{K} \cdot k \text{ O } s \cdot \varphi \in F' s : \text{O} \cdot \varphi k = [y \in] \ ([x \in] : x \in k \cdot [\varphi] x = y : - = \Lambda) $ $ \end{aligned} \end{aligned}$	contained in S ; then φC denotes the class consisting of all φx , where the x are class C ; that is $Def.$ Or $Def.$	the o
Itaque, si $\varphi \in F's$, tunc φ s classem indicat omnibus φ x constitutam, ubi x sint entia constitution. Erit: $s \in K : \varphi \in F's : y \in \varphi s : \Im : \varphi[\varphi]y = y$ $s \in K : a, b \in K : a $	lassis s . Thus, if $\varphi \in F'S$, then φs denotes the class composed of all φx , where the x are class S . We have:	e obje
$s \in K$. $a,b \in K$. $b \ni s$. $a \ni b$. $\varphi \in F's : \ni \ni$. $\varphi a \ni \varphi b$ $s \in K$. $a,b \in K$. $a \ni s$. $b \ni s$. $\varphi \in F's : \ni \ni$. $\varphi(ab) \ni (\varphi a)(\varphi b)$ Sit a quaedam classis; tunc $a \cap K$, sive $K \cap a$, sive Ka , classes omnes indicat formae $a \cap x \cap a$, xa , ubi x est classis quacumque; scilicet Ka indicat classes quae in a continent Formula $x \in Ka$ idem significat quod $x \in K$. $x \ni a$. Hac conventione quandoque utin	tur. where x is any class; that is Ka denotes the classes that are contained in a .	The f
Formula $x \in Ka$ idem significat quod $x \in K$. $x \ni a$. Hac conventione quantoque utility KN isgnificat $numerorum$ $classem$. Similiter, si a est classis, $K \cup a$ indicat classes quae a continent. Sit a numerus; tunc a $N + a$, $numeros$ indicat $numero$ a $maiores$; $a \times N$, sive $N \times a$, sive Na indicat $multiple$ $numeri$ a ; a^N indicat $potestas$ $numeri$ a ; N^2 , N^3 , indicat $numeros$ $quadratos$, velocity.	means a class of numbers. + N , sive Similarly, if A is a class, $K \cup A$ indicates the classes that contain A . Let a be a raise $a + N$, or $N + a$, denotes the numbers greater than the number a ; $a \times N$, or N	$\times a$, o
cubos, Functional signorum aequalitatem, productum, potestas, ita definire licet: Def. $s \in K$. $\varphi, \psi \in F's : \Im : \varphi = \psi : = : x \in s$. $\Im . \varphi x = \psi x$ Def. $s \in K$. $\varphi \in F's$. $\psi \in F'\varphi s$. $x \in s : \Im$. $\psi \varphi x = \psi(\varphi x)$	denote the squares, the cubes, Equality, product and powers can be defined thus for function signs: Def. Def.	
Itaque, in definitionis hypothesi, erit $\psi \varphi$ novum functionis praesignum; idque $producti$ $signorum \ \psi \ et \ \varphi$ vocatur. Similiterque, si φ , ψ sunt functionis postsigna. Haec valet propositio: $s \in K \ . \ \varphi \in F's \ . \ \varphi s \ \Im \ s : \Im : \varphi \varphi s \ \Im \ s \ . \ \varphi \varphi \varphi s \ \Im \ s \ . \ etc.$	Thus, if we assume this definition, we have the new function presign $\psi \varphi$; it is considered of the signs ψ and φ . Similarly if φ , ψ are function postsigns. The following proposition holds:	alled
Funcitones $\varphi\varphi, \varphi\varphi\varphi, \dots$ iteraiae vocantur, et communiter signis $\varphi^2, \varphi^3, \dots$ indicantur, ut operationis φ potestates. Si vero φ est functionis postsignum, ha faciliori notatione, absque ambiguitate, uti licer	The functions $\varphi\varphi, \varphi\varphi\varphi,$ are said to be <i>iterated</i> and are generally denoted by the as powers of the operation φ . XVI But if φ is a function postsign, we can use the following more convenient notation ambiguity:	
Def. $s \in K$. $\varphi \in s'F$. $s\varphi \ni s : \ni : \varphi 1 = \varphi$. $\varphi 2 = \varphi \varphi$. $\varphi 3 = \varphi \varphi \varphi$. etc. In definitionis hypothesi, si $m, n \in N$, erit φ $(m+n) = (\varphi m)(\varphi n)$; $(\varphi m)n = \varphi(mn)$ Si hac definitione in Arithmetica utimur, haec invenimus. Numerum qui sequitur num signo faciliori $a+$ indicare possumus; tunc $a+1, a+2,$ et, si b est numerus, $a+b$, shabent $a+, a++,$ quod a definitione in §1 patet. Propositionem 6 in §1 scribere po	ensum follows the number a by the more convenient sign $a+$; then $a+1$, $a+2$,, an	the n
$N+$ O $N.$ Si a,b,c sunt numeri, tunc $a:+b$. c significat $a+bc$, et $a:\times b$. c significal Multi aliis proprietatibus gaudent functionem signa, praesertim si conditioni satisfacion $\varphi x=\varphi y$. O . $x=y$. Functionis signum quod huic conditioni satisfacit vocatur a claratery	below. Proposition 6 in §1 can be written $N+$ $\supset N$. If a,b,c are numbers, the means $a+bc$, and $a:\times b$. c means ab^c . Function signs possess many other properties, especially if they satisfy the concrissimo O. $x=y$. A function sign that satisfies this condition is called equivalent ⁸ by	n a :
Dedekind $simile$ (ähnliche Abbildung). Sed his exponendis locus deest. Declarationes. $Defenitio$, vel breviter Def . est propositio formam habens $x=a$, sive α D		
signorum aggregatus sensum habens notum; x est signum, vel signos significatione adhuc carnes; α vero est conditio sub qua definitio dat	without meaning, and α is the condition under which the defi	nitio orem
Theorema, (Theor. vel Th) est propositio quae demonstratur. Si theorem ubi α et β sunt propositiones, tunc α dicitur Hypothesis (Hyp. vel bro (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc		the t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel bro	the <i>thesis</i> (Thes. or Ts.). Hyp. and Ts. depend on the form of sunt. $\alpha \circlearrowleft \beta \text{ instead of } -\beta \circlearrowleft -\alpha, \text{ then } -\beta \text{ is the Hp, abd } -\alpha \text{ the Ts.};$ Ts. do not exist. In any \S below, the sign P followed by a number denotes the properties of the properties o	if we
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the <i>thesis</i> (Thes. or Ts.). Hyp. and Ts. depend on the form of sunt. $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any β below, the sign P followed by a number denotes the propositions numero. number in the same β . Propositions of logic are indicated by the proposition.	if we
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the <i>thesis</i> (Thes. or Ts.). Hyp. and Ts. depend on the form of α O β instead of $-\beta$ O $-\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any β below, the sign P followed by a number denotes the propositions numero. The proposition of logic are indicated by the proposition of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the proposition of logic are indicated by the proposition.	if we
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of α O β instead of $-\beta$ O $-\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any \S below, the sign P followed by a number denotes the propositions numero. number in the same \S . Propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line	if we consist the same with th
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of α O β instead of $-\beta$ O $-\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any \S below, the sign P followed by a number denotes the propositions numero. number in the same \S . Propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next ling. The numeriset de additione. Explicationes. Signo N signor N	if we consist the state with the sta
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of a \Im β instead of $-\beta$ \Im $-\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any \S below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line. Explicationes. Signo N signor and Ts. depend on the form of α \Im β instead of $-\beta$ \Im $-\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any \S below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line. Explicationes. Signo N signor α and Ts. depend on the form of α α α in α in α in α in α on α in α	if we consist the state with the sta
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo 1 a + 1 a + 1 a = 1. $1 \in N$ 2. $a \in N \cdot D \cdot a = a$ 3. $a, b, c \in N \cdot D \cdot a = b$. $a \in N \cdot D \cdot a = b$	if we consist the state with the sta
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the single the sin
ubi α et β sunt propositiones, tunc α dicitur $Hypothesis$ (Hyp. vel brown (Thes. vel Ts.). Hyp. ac Ts. a Theorematis forma pendent; nam si loc $-\alpha$, erit $-\beta$ Hp, et $-\alpha$ Ts.; si vero scribemus $\alpha - \beta = \Lambda$, Hp. ac Ts. abs In quolibet \S signum P quod quidam numerus sequatur, propositionem numero signatam. Logicae propositiones indicantur signo L et propositiones quae in una linea non continentur, in altera linea, nullo intermediate propositiones. Arithmetices Principia.	the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the propositions of logic are indicated by the proposition. Formulas that do not fit on one line are continued on the next line and the number of the propositions. Explicationes. Signo N signo $\alpha \supset \beta$ instead of $-\beta \supset -\alpha$, then $-\beta$ is the Hp, abd $-\alpha$ the Ts.; Ts. do not exist. In any § below, the sign P followed by a number denotes the proposition. Formulas that do not fit on one line are continued on the next line and $-\alpha$ the Ts.; Ts. do not exist. 1. $1 \in N$ 2. $\alpha \in N \cup \alpha = \alpha$ 3. $\alpha, b, c \in N \cup \alpha = \alpha$ 4. $\alpha, b \in N \cup \alpha = \alpha$ 5. $\alpha = b, b \in N \cup \alpha = \alpha$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha, b \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha = 1 \in N$ 8. $\alpha \in N \cup \alpha = 1 \in N$ 9. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 1. $\alpha \in N \cup \alpha = 1 \in N$ 2. $\alpha \in N \cup \alpha = 1 \in N$ 3. $\alpha \in N \cup \alpha = 1 \in N$ 4. $\alpha \in N \cup \alpha = 1 \in N$ 5. $\alpha \in N \cup \alpha = 1 \in N$ 6. $\alpha \in N \cup \alpha = 1 \in N$ 7. $\alpha \in N \cup \alpha $	if we consist the second in t

6. Dem. 7. Dem. 8. Dem. 9. Dem. 10. 11. 12. Dem. 13. Dem. 14. Dem. 15. Dem. 16. Dem. 17. Dem. 18. Dem. 19. Dem.	a, b ∈ N, b − a ∈ N, (L56) : 0: b − a − a ∧ 0: a < b. (2)(3). 0. Theor. a, b ∈ N, a < b : 0. b − a ∈ N, (b − a) ∈ [x ∈](x + a = b) : 0: Thes. a, b, c ∈ N, 0: c = b − a, = c + a = b. Hyp, P5, P1: 0: b − a ∈ N, (b − a) ∈ [x ∈](x + a = b) : 0: Thes. a, b, c ∈ N, 0: c = b − a, = c + a = b. Hyp, §1 P22. P6: 0: c ∈ b − a, = c + a = b − a + a, = c + a = b. a, b ∈ N, 0: a + b − a = b. (a + b, b)[b, c) P7: 0. Theor. a, b, c ∈ N, a < b : 0: c + (b − a) = c + b − a. Hyp, P6: 0: (b − a) + a = b: 0: c + (b − a) + a = c + b. P7: 0: Thesis. a, b, c ∈ N, a < b : 0: c + (b − a) = c + b − c. a, b, c ∈ N, a > b + c: 0. a − (b + c) = a − b − c. a, b, c ∈ N, a > b + c: 0. a − (b + c) = a + c − b. a, b, c ∈ N, 0: a > b − c: 0. a − (b − c) = a + c − b. a, b, c ∈ N, 0: a < b − b: 0. a + b − a ∈ N. P5: 0: Thesis. a, b, c ∈ N, 0: a < b − c: 0. a + b − a ∈ N. P5: 0: Thesis. a, b, c ∈ N, 0: a < b − c: 0. a + b − a ∈ N. P5: 0: Thesis. a, b, c ∈ N, 0: a < b − c: 0. a + c < b + c. Hyp, 0: b − a ∈ N, c − b ∈ 0: (b − a) + (c − b) ∈ N: 0: c − a ∈ N: 0. Thesis. a, b, c ∈ N, 0: a < b − c: 0. a + c < b + c. Hyp, 0: a < b − c: 0. a ∈ C. 0. a + c < b + b'. Hyp, 0: a < b − c: 0. a ∈ C. 0. a + c < b + b'. Hyp, 0: a < b − c: 0. a − a ∈ N. a, b, c ∈ N, a < b < c: 0. c − a > c − b. Hyp, 0: a + a' < b + a', b + a' < b + b' : 0. Thesis. a, b, c ∈ N, a < b < c: 0. c − a > c − b. Hyp, 0: a < b + c = b ∈ N. (c − b) + (b − a) = c − a : 0. Thesis. a ∈ N, 0: a = 1. ∪ a > 1. 1 ∈ [a ∈] Thesis. a ∈ N, 0: a + b = b. ā a ∈ N, \$1 P8: 0: a + 1 = 1: 0: 1 ∈ [b ∈] Thesis. (1)(2). 0. Theor. a, b ∈ N, a < b a = b : A. Hyp: 0: b − a ∈ N. (b − a) + a = a. P19: 0: A. a, b ∈ N, a > b a = b : A. Hyp: 0: b − a ∈ N. (b − a) + a = a. P19: 0: A. a, b ∈ N, a > b a = b : A. a, b ∈ N, a > b a = b : A. a, b ∈ N, a > b a = b : A. a, b ∈ N, a > b a = b : A. a, b ∈ N, a > b a = b : A. a, b ∈ N, a > b a = b : A. a, b ∈ N, a > b : 0 = a ∈ N. P18: 0: a = b = 1. ∪ a = b	(1) (2) (3) (4) (5) (6) (7) (8)	5			
	$a,b \in \mathbb{N}$. $b \in [b \in]$ Ts .(8): \bigcirc : $b+1 \in [b \in]$ Ts. (1)(9). \bigcirc . Theor. §3. De maximis et minimis. Explicationes.	(9)				. Maxima and minima. $oxed{ ext{F}}$
	Sit $a \in KN$, hoc est sit a quaedam numerorum classis; tun legatur $minimus$ $intermode$ Definitiones.	$r a$. $a \in A$	<i>K</i> N .⊃∶ <i>I</i>	ximus inter a , et $\mathbb{N}a$ $Ma = [x \in](x \in a :: a . \in > x := \Lambda. $ $\mathbb{N}a = [x \in](x \in a :: a . \in < x := \Lambda. $	7	
		 Dem. 4. 5. 		Theoremata. $n \in \mathbb{N} . a \in K \ \mathbb{N} . a = \Lambda . a \ni > n = \Lambda : \Im . Ma \in N . \ a \in K \ \mathbb{N} . a = \Lambda . a \ni > 1 = \Lambda : \Im : a = 1 : \Im . Ma = 1 : \Omega . Ma = $	$egin{aligned} & Ta:0: Ma \in N. \ & = \Lambda. \ & a:0: Ma \in N. \end{aligned}$	(1) (2) (3) (4) (5) (7) (Th.)
				Definiti 1. 2.	$a \in \mathbb{N} . \mathfrak{I} . a \times a, b \in \mathbb{N} . \mathfrak{I} . a$	$1=a.$ ă $c imes (b+1)=a imes b+a.$ $c imes (b+c)=(ab)+c; abc=(ab)$ Theoremata. $c imes a, b \in \mathbb{N}$. $\exists ab \in \mathbb{N}$. $\exists ab \in \mathbb{N}$. $\exists ab \in \mathbb{N}$
					Dem. 4.	$a, b \in N . P1 : 0 : a \times 1 \in$ $a, b \in N . b \in [b \in] Ts : 0$ $: 0 : a(b+1) \in N : 0 :$ $(1)(2) . 0 . Theor.$ $a, b, c \in N . 0 . (a+b)$
					4. Nota. Dem.	$a,b,c \in \mathbb{N}$. $\Im.(a+b)$ Haec est prop. 5^a E $a,b \in \mathbb{N}$. $P1:\Im:1 \in$ $a,b,c \in \mathbb{N}$. $c \in [c \in]'$ $:\Im:(a+b)c+a+$ $:\Im:(a+b)(c+1) =$ Ts.
					5. Dem.	(1)(2). \circ . Theor. $a \in \mathbb{N} . \circ . \cdot 1 \times a = a$. $1 \in [a \in] \text{ Ts.}$ $a \in [a \in] \text{ Ts.} \circ . \cdot 1 \times a$ $a + 1 . \times . \cdot 1 \times (a + a)$ (1)(2). \circ . Theor.
					6. 7. Dem.	$a, b \in \mathbb{N} . \Im . ba + a =$ $a, b \in \mathbb{N} . \Im . ab = ba$ $a \in \mathbb{N} . P5 . P1 : \Im . a$ $a, b \in \mathbb{N} . b \in [b \in] Ts$ $: \Im : ab = ba : \Im : a$ $.P6 : \Im : a(b+1) =$
					8. Dem. 9. Dem.	(1)(2).5. Theor. $a,b,c \in \mathbb{N}$.5. $a(b+c)$ P4. P7:5. Theor. $a,b,c \in \mathbb{N}$. $a=b:5$: $a,b \in \mathbb{N}$. $a=b:5$:
					10. Dem. 11.	$a(c+1) = b(c+1)$ $:: 0: c \in \mathbb{N} . 0. \text{ Ts}$ $a, b, c \in \mathbb{N} : a < b: 0$ $\text{Hyp. } 0: b - a \in \mathbb{N} . (bc: 0: (b-a)c = a, b, c \in \mathbb{N} . a < b: 0$
					Dem.12.13.14.15.	Hyp . $0:b-a \in \mathbb{N}$. 1 $:0:bc-ac \in \mathbb{N}$: $a,b,c \in \mathbb{N}$. $0:a < b$ a>b.=.ac>bc $a,b,a',b' \in \mathbb{N}$. $a < a$ $a,b \in \mathbb{N}$: $0:ab.> \cup$ $a,b,c \in \mathbb{N}$. $0:a(bc)$:
					Dem.	$a,b \in \mathbb{N}$. P1:0:1 \in $a,b,c \in \mathbb{N}$. $c \in [c \in]'$ $a(bc)+ab=abc$ 0: $a(b(c+1))=a$ (1)(2).0. Theor.
						§5. I

1. 2. 3. 4.		$p, q, p', q' \in \mathbb{N}$ $\Im_x . x \frac{p}{q} = x$	$q \in \mathbb{N} \cdot \frac{p}{q} = x : \mathbf{-} = 0$		E N :						
	5. Dem.		$p'q$ \therefore $\bigcirc \therefore pq$	$0 :: \frac{p}{q} = \frac{p'}{q'} \cdot = \cdot P$ $\cdot qq', qq' \frac{p}{q}, qq'$ $= qq' \frac{p'}{q'} \cdot qq' \frac{p}{q} = P'$ $\cdot' = p'q.$	$\frac{p'}{q'} \in \mathbb{N} \cdot \mathbb{P}2$ $= pq' \cdot qq' \frac{p'}{q'} =$	(Eucl. VII (1)	, 19)		Theorems.		
	6. 7.		$xp'q:\mathfrak{I}:(x^{L}_{q})$ $(1)(2).\mathfrak{I}.$ Th. $m,p,q\in\mathbb{N}.\mathfrak{I}.$ $p,q\in\mathbb{N}.m\in\mathbb{N}$	$\frac{p}{q} = (x \frac{p'}{q'})qq'$ $\frac{p}{q} = \frac{mp}{mq}.$ $[.mDp.mDq]$		(Eucl. VII	, 17)				
	8.9.10.		q' . $p,q,p',q' \in \mathbb{N}$. $M \ni D(p,q)$. $p,q,p',q' \in \mathbb{N}$.	$p'\pi q' \cdot \frac{p}{q} = \frac{p'}{q'} :$ $\frac{p}{q} = \frac{p'}{q'} \cdot p\pi q \cdot q$	$^{\prime} < q := \Lambda$.	(Eucl. VII					
	11.12.12'.13.		$p,q\in { m N}$.9 ::[m	$[e]: m \in \mathbb{N} . m^{e}$	$\in \mathbf{N} : - = \Lambda.$		14				
	13'. 14.		$\Lambda.$ $a,b,c \in \mathbb{R}.\Im::[0]$ $rac{m}{q}.b = rac{n}{q}.c = 0$	$(m,n,p,q)\in]:$ $=rac{p}{q}:\cdot=\Lambda.$	$a \in \mathbb{N}$. $a = \frac{r}{t}$. $b = \frac{s}{t}$ \therefore $m, n, p, q \in \mathbb{N}$. $a = \frac{s}{t}$						
	15. 16. 17.			$a = b \cdot ma \in \mathbb{N}$	$N: \mathfrak{I}.mb \in N.$						
		19. 20.		Definition $a,b \in \mathbb{R}$. $\mathfrak{I}: a$ xb . $a,b \in \mathbb{R}$. $\mathfrak{I}: b$	$< b . = \therefore x \in \mathbf{N} . xa$	$a,xb\in { m N}: \mathfrak{I}.xa<$				Definitions.	orems.
			21. 22. 23. 24.		$p,q,p',q' \in \mathbb{N}$. $a = \frac{r}{p}$ $p,q,p',q' \in \mathbb{N}$. $\frac{1}{q}$	$\frac{p}{q} \cdot b = \frac{q}{r} : 0 : a < b . = .$ $0 : \frac{p}{q} < \frac{p'}{q'} \cdot = .pq' < p'$ $\frac{p}{q} \cdot b = \frac{r}{q} : 0 : a < b . = .$ $\frac{p}{q} < \frac{p'}{q'} : 0 . \frac{p}{q} < \frac{p+p'}{q+q'} < .$	q. $p > q$.			The	Acins.
			25. 26. 27. 28.		$a,b \in \mathbb{R} : \mathfrak{I} : \mathfrak{I} : a < a$	$< a : \neg = \Lambda.$ $0 : \mathbf{R} \cdot \mathbf{\vartheta} > a \cdot \mathbf{\vartheta} < b : \neg$	$=\Lambda$.				
			29.		$\Ima \cdot a$ $a,b,c \in \mathbf{R} : \Ima$	- < b . a - = b . a - > b . a - > b . a - > b . a - > b . a - > b . a - > b . a - > a > a - > a > a - a -	< c.	15			Def
				30. 31. 32.		$N: \Im_x . xa + xb = x$ $a, b \in \mathbb{R} . \Im :: b - a = \therefore$	$[x \in](x \in \mathbf{R} . a + x = b).$ $(c \in \mathbf{R} . x \in \mathbf{N} . xa, (xa)b)$				
				33.	34. 35.	$a,b\in \mathrm{R}$. O . $b/a=[x\in]$ Th p,q,r $a,b\in]$	heoremata. $r \in \mathbb{N} . \Im \frac{p}{r} + \frac{q}{r} = \frac{p+q}{r}.$ $\mathbb{R} . \Im . a + b \in \mathbb{R}.$	<i>a-p</i>			
					36. 37. 38. 39. 40. 41.	$a,b\in p,q,p$ $a,b\in p,q,p$	$c \in \mathbf{N} \cdot p < q : \Im \cdot \frac{q}{r} - \frac{p}{r} = \mathbf{R} \cdot a < b : \Im \cdot b - a \in \mathbf{R}.$ $c', q' \in \mathbf{N} \cdot \Im \cdot \frac{p}{q} \frac{p'}{q'} = \frac{pp'}{qq'}.$ $\mathbf{R} \cdot \Im \cdot ab \in \mathbf{R}.$ $c', q' \in \mathbf{N} \cdot \Im \cdot \frac{p}{q} / \frac{p'}{q'} = \frac{pq'}{p'q}.$ $\mathbf{R} \cdot \Im \cdot b/a \in \mathbf{R}.$				
					42.	$p,q\in$	$(N.0. \frac{p}{q} = \frac{p}{q})$. §9. Rationalum system	Explicatio Si $a \in K R$, signu		ninus summus, vel l	imes summus
								ens relationes 1		Definitiones. $a \in K R . x \in R : S$ $a \in K R . x \in R : S$	$0:: x < \mathrm{T} a . = :$
								3		$a \in K R . x \in R : C$ $T a.$	0:x > Ta. =: x Theorema.
									4.	Signum	$x \in \mathbb{R}$. $\Im :: x =$ $\mathbb{Q} \text{ legitur } quan$ exceptis.
											5.6.7.
											8.

And the control of th	rt, please contact me via http://vincentverheyen.com/contact. It is possible to contribute to the flourishid on.
y Vincent Verheyen. Last updated on 17/8/2015. I encourage you to use your reason for good. If you want my support when you have an intelligence like mine. Thank you and good luck studying. ke to thank Mauro Allegranzo and acknowledge his support of this work and his various comments during its creatic at the property of this work and his various comments during its creatic analysis of logic, Cambridge, 1847. **Eculus of logic**, Camb. and Dublin Math. Journal, 1848.** **stigation of the laws of thought, London, 1854.** **errectionskreis des Logitkhalculus, Leipzig, 1877.** **nonnulla quae ad logicam pertinent tractavit in praecedenti opera.** **ch der Arithmetik und Algebra, Leipzig, 1873.** **chröder theorias brevissime exposui in meo libro **Calcolo geometrico, Torino, 1888.** **erec, On the Algebra of logic; American Journal, III, 15; VII, 180.** **The principles of science, London, 1883.** **, The calculus of equivalent statements, Proceedings of the London Math. Society, 1878, Vol. IX, 9. Vol X, 16.** **e Peano's footnote (translated):** **thematical analysis of logic (Cambridge, 1847.)* **leculus of logic, Camb. and Dublin Math. J., 3 (1848), 193-98.** **stigation of the laws of thought (London, 1854).** **errectionskreis des Logitkalculus (Leipzig, 1877).** **ready treated several matters pertaining to logic in a preceding work.** **ch der Arithmetik und Algebra (Leipzig, 1873).** **ery brief presentation of the theories of Boole and Schröder in my book **Calcolo geometric** etc. (Torino, 1888).** **The calculus of equivalent statements, **Proc. London Math. Soc., 9 (1878), 9-20; 10 (1878), 16-28.** **errectionskreis des fediculus of equivalent statements, **Proc. London Math. Soc., 9 (1878), 9-20; 10 (1878), 16-28.** **er translation, mentioned at the beginning of this current document, translated "ahnlich" literally to "similar", inste "similar" has another meaning and instead we would say "equivalent"."	on. ead of "equivalent". However, additional information can be found in a footnote of the first translation:
culus of logic, Camb. and Dublin Math. Journal, 1848. stigation of the laws of thought, London, 1854. er: erationskreis des Logikkalculus, Leipzig, 1877. nonnulla quae ad logicam pertinent tractavit in praecedenti opera. ch der Arithmetik und Algebra, Leipzig, 1873. chröder theorias brevissime exposui in meo libro Calcolo geometrico, Torino, 1888. erce, On the Algebra of logic; American Journal, III, 15; VII, 180. The principles of science, London, 1883. , The calculus of equivalent statements, Proceedings of the London Math. Society, 1878, Vol. IX, 9. Vol X, 16. e Peano's footnote (translated): thematical analysis of logic (Cambridge, 1847.) leculus of logic, Camb. and Dublin Math. J., 3 (1848), 193-98. stigation of the laws of thought (London, 1854). er: erationskreis des Logikkalculus (Leipzig, 1877). ready treated several matters pertaining to logic in a preceding work. ch der Arithmetik und Algebra (Leipzig, 1873). ery brief presentation of the theories of Boole and Schröder in my book Calcolo geometric etc. (Torino, 1888). erce, 'On the Algebra of logic,' American J. Math., 3 (1880), 15-57; 7 (1885), 180-202. The principles of science (London, 1883). " "The calculus of equivalent statements,' Proc. London Math. Soc., 9 (1878), 9-20; 10 (1878), 16-28. er translation, mentioned at the beginning of this current document, translated "ähnlich" literally to "similar", instersimilar" has another meaning and instead we would say "equivalent"."	
nonnulla quae ad logicam pertinent tractavit in praecedenti opera. Sch der Arithmetik und Algebra, Leipzig, 1873. Schröder theorias brevissime exposui in meo libro Calcolo geometrico, Torino, 1888. Perce, On the Algebra of logic; American Journal, III, 15; VII, 180. The principles of science, London, 1883. The calculus of equivalent statements, Proceedings of the London Math. Society, 1878, Vol. IX, 9. Vol X, 16. Peano's footnote (translated): thematical analysis of logic (Cambridge, 1847.) leculus of logic, Camb. and Dublin Math. J., 3 (1848), 193-98. stigation of the laws of thought (London, 1854). er: erationskreis des Logikkalculus (Leipzig, 1877). ready treated several matters pertaining to logic in a preceding work. ch der Arithmetik und Algebra (Leipzig, 1873). ery brief presentation of the theories of Boole and Schröder in my book Calcolo geometric etc. (Torino, 1888). erce, 'On the Algebra of logic,' American J. Math., 3 (1880), 15-57; 7 (1885), 180-202. The principles of science (London, 1883). "The calculus of equivalent statements,' Proc. London Math. Soc., 9 (1878), 9-20; 10 (1878), 16-28. er translation, mentioned at the beginning of this current document, translated "ähnlich" literally to "similar", inster" similar" has another meaning and instead we would say "equivalent"."	
thematical analysis of logic (Cambridge, 1847.) leading of the laws of thought (London, 1854). er: erationskreis des Logikkalculus (Leipzig, 1877). ready treated several matters pertaining to logic in a preceding work. ch der Arithmetik und Algebra (Leipzig, 1873). ery brief presentation of the theories of Boole and Schröder in my book Calcolo geometric etc. (Torino, 1888). erce, 'On the Algebra of logic,' American J. Math., 3 (1880), 15-57; 7 (1885), 180-202. The principles of science (London, 1883), "The calculus of equivalent statements,' Proc. London Math. Soc., 9 (1878), 9-20; 10 (1878), 16-28. ert translation, mentioned at the beginning of this current document, translated "ähnlich" literally to "similar", instersimilar" has another meaning and instead we would say "equivalent"."	
er: erationskreis des Logikkalculus (Leipzig, 1877). ready treated several matters pertaining to logic in a preceding work. ch der Arithmetik und Algebra (Leipzig, 1873). ery brief presentation of the theories of Boole and Schröder in my book Calcolo geometric etc. (Torino, 1888). erce, 'On the Algebra of logic,' American J. Math., 3 (1880), 15-57; 7 (1885), 180-202. The principles of science (London, 1883). , 'The calculus of equivalent statements,' Proc. London Math. Soc., 9 (1878), 9-20; 10 (1878), 16-28. er translation, mentioned at the beginning of this current document, translated "ähnlich" literally to "similar", instead" "similar" has another meaning and instead we would say "equivalent"."	
erce, 'On the Algebra of logic,' American J. Math., 3 (1880), 15-57; 7 (1885), 180-202. The principles of science (London, 1883). "The calculus of equivalent statements,' Proc. London Math. Soc., 9 (1878), 9-20; 10 (1878), 16-28. er translation, mentioned at the beginning of this current document, translated "ähnlich" literally to "similar", instead" "similar" has another meaning and instead we would say "equivalent"."	
er translation, mentioned at the beginning of this current document, translated "ähnlich" literally to "similar", instead "similar" has another meaning and instead we would say "equivalent"."	