Observația 0.1. Dacă X este o variabilă aleatoare discretă ce ia valorile x_1, x_2, x_3, \ldots cu probabilitățile p_1, p_2, p_3, \ldots , atunci au loc următoarele.

1. Dacă I este un interval ce nu conține nici una din valorile posibile ale variabilei aleatoare discrete X, atunci

$$P(X \in I) = 0. (1)$$

2. Probabilitatea ca variabila aleatoare X să ia valori într-un interval I=(a,b] este dată de

$$P(a < X \le b) = \sum_{a < x_i \le b} p_i, \tag{2}$$

adică este egală cu suma probabilităților p_i corespunzătoare valorilor posibile x_i pentru care $a < x_i \le b$.

3. Suma tuturor probabilităților p_i corespunzătoare valorilor x_i este egală cu 1, adică

$$\sum_{i} p_i = 1 \tag{3}$$

Motivul este următorul:

$$\sum_{i\geq 1} p_i = \sum_{i\geq 1} P(X = x_i) = P(X \in \{x_1, x_2, x_3, \ldots\}) = P(\Omega) = 1.$$

Dacă~X~este~o~variabilă~aleatoare~discretă, vom spune~că funcția de distribuție corespunzătoare este o funcție de distribuție discretă~(sau~că~X~are~o~distribuție discretă).