

Bundesamt für Eich- und Vermessungswesen Messen? • Preisermittlung Schlussfolgerungen • Einhaltung gewisser Grenzen (Toleranzen, Höchstexpositionen, Mindestdosen, ...) im Gesundheits-, Sicherheits-, Rechtswesen → Konformitätsentscheidungen, Prüfungen Prüfen, ob ein Produkte innerhalb der Spezifikationsgrenzen liegt und damit auch Entscheidungen über die Annahme oder Ablehnung von Produkten zu ermöglichen Bundesamt für Eich- und Vermessungswesen bev.gv.at Sicherheit, Vertrauenswürdigkeit und Kosten solcher Entscheidungen sind von der "Güte" der Messungen abhängig. • Ein Maß für die Güte kann die Messunsicherheit sein. Bundesamt für Eich- und Vermessungswesen Messunsicherheit im VIM VIM (internationales Wörterbuch der Metrologie) Messunsicherheit (Unsicherheit): Nicht-negativer, dem Messergebnis beigeordneter Parameter, der die Streuung der Werte kennzeichnet, die der Messgröße auf der Grundlage der benutzten Informationen zugewiesen wird.

Bundesamt für Eich- und Vermessungswesen Messunsicherheit Dieser Parameter kann sein: Standardabweichung Standardmessunsicherheit • Ein Vielfaches davon (z.B. Erweiterte Messunsicherheit) (Halbe) Intervallweite bei angegebener Überdeckungswahrscheinlichkeit Bundesamt für Eich- und Vermessungswesen bev.gv.at Messunsicherheit Messergebnis = Messwert & Messunsicherheit • Die Messunsicherheit ist ein Maß für die gesamte (aber unvollständige) Kenntnis über ein Messverfahren mit dem der Messwert ermittelt wurde (oder werden wird). Als solches ist sie subjektiv. (Weil Kenntnis nur ein Subjekt haben kann) 11 Bundesamt für Eich- und Vermessungswesen Messunsicherheit Messergebnis = Messwert & Messunsicherheit • Die Messunsicherheit ist <u>keine</u> objektive Eigenschaft des Messwerts oder gar des Messobjekts oder Messgerätes! • Die unterschiedlichen Verfahren zur Ermittlung der Messunsicherheit liefern eine numerische Beschreibung des aktuellen Standes der unvollständigen Kenntnis. 12

_	Bundesamt für Eich- und Vermessungswesen	bev.gv.at
	Messunsicherheit nach GUM	
	 Einführung des GUM wurde notwendig um systematische Messabweichungen behandeln. Zufällige und systematische Messabweichungen werden <u>nicht</u> unterschieden. (aus Tradition im GUM weiterhin Typ A / Typ B) 	zu
	Statistische Behandlung nicht notwendig (aber möglich)	
,	 GUM ist vollständig – man kann Teilprobleme separat behandeln und zum Gesamtproblem zusammensetzen 	
		14

■ Bundesamt für Eich- und Vermessungswesen	http://www.bipm.org/en/publications/guides/	.gv.at
GUM – mehr als nur ei	n Dokument	
measurement, JCGM 100:2 • Evaluation of measuremen	t data – Guide to the expression of uncertainty in 2008 Seit 1995 Seit 1995 t data – An introduction to the "Guide to the n measurement" and related documents, JCGM	
104:2009		
	nt data – Supplement 1 to the "Guide to the expression ment" – Propagation of distributions using a Monte 008	
+ viele weitere Dokumente	e, teilweise in Arbeit oder Begutachtung	
	15	

Bundesamt
für Eich- und
Vermessungswesen

GUM – Einer für Alles?

• Anwendbarkeit ziemlich restriktiv

• Praktisch ist lediglich eine einzige Klasse von Problemen behandelbar

• Noch dazu wurde ursprünglich ein enger Spezialfall publiziert der heute als
"Mainstream-GUM" firmiert. Unter "GUM" ist fast immer diese Vereinfachung
gemeint.

Bundesamt
für Eich- und
Vermessungswesen

Messunsicherheit nach GUM

Grundidee:

Der Messvorgang wird durch ein mathematisches Modell beschrieben
(Modellfunktion). Dabei wird streng zwischen Ergebnis (Ausgangsgröße) und
(unvollständiger) Kenntnis (Eingangsgrößen) unterschieden.

Das gesamte Wissen über die Eingangsgrößen wird in WahrscheinlichkeitsdichteVerteilungen (PDF) zusammengefasst.

Der GUM-Formalismus liefert eindeutig eine PDF für die Ausgangsgröße.

Bundesamt
für Eich- und
Vermessungswesen

Messunsicherheit nach GUM

Bedingungen:

Der GUM behandelt ausschließlich Situationen bei denen die Messgröße
(Ergebnis), deren Unsicherheit bestimmt werden soll von, meist mehreren,
Eingangsgrößen beeinflusst wird.

Die Art dieser Beeinflussung muss eindeutig bekannt sein.

Die Eingangsgrößen (PDF oder Werte + Unsicherheiten) müssen ebenfalls bekannt
sein.

Näherung: statt Fortpflanzung der PDF → Fortpflanzung der Unsicherheiten

19

Bundesamt
für Eich- und
Vermessungswesen

PDF – Alles Wissen über eine Größe

• Der GUM beschreiben die Kenntnis über eine Größe mittels
Wahrscheinlichkeitsdichte-Verteilungen (PDF).

• Eine PDF ist eine Funktion – ein Element aus einem unendlichdimensionalen
Raum! (Man braucht unendlich viele Werte um sie zu beschreiben)

■ Bundesamt becgvat	
für Eich- und Vermessungswesen	
Messunsicherheit nach GUM	
Grundidee des GUM:	
man wackelt an den Eingangsgrößen und beobachtet (beschreibt) das Wackeln	
der Ausgangsgröße.	
22	
■ Bundesamt bev.gv.at für Eich- und	
Vermessungswesen	
Messunsicherheit nach GUM	-
Der GUM Hintergrund:	
 Kenntnisse über Eingangsgrößen → PDF (Hilfestellung, Beispiele) 	
PDF von Eingangsgrößen → PDF der Ausgangsgrößen	
(eigentliche Substanz, mit Vereinfachungen und Verallgemeinerungen)	
23	
■ Bundesamt bevgvat	
für Eich- und Vermessungswesen	
Messunsicherheit nach GUM	
Allgemeine Voraussetzungen	
Alle Größen müssen physikalische Größen sein	
Ein Messmodel / Messfunktion muss gegeben sein (gindauting Regishung pulsehon Fingangs, und Ausganggrößen)	
(eindeutige Beziehung zwischen Eingangs- und Ausgangsgrößen) • Die Eingangsgrößen müssen bekannt sein	
(Dokument gibt Hilfestellung)	
24	

■ Bundesamt
für Eich- und
Vermessungswesen

Eingangsgrößen → Ausgangsgröße

Diese Begriffe sind grundlegend für die Messunsicherheitsbetrachtung nach GUM!

Die Bezeichnung (entnommen aus der Systemtheorie) gibt aber oft Anlass zu
Missverständnissen.

Die Ausgangsgröße ist jedenfalls das Messergebnis.

Eingangsgrößen werden je nach Anwendung auch als Einflussgrößen, Störgrößen,
Parameter, Korrekturen, Verbesserungen bezeichnet.

Bundesamt
für Eich- und
Vermessungswesen

Eingangsgrößen – Schätzwerte x;

Anzeige von Messgeräten

Mittelwerte aus Messreihen

Werte aus Kalibrierscheinen

Nennwerte (z.B. bei geeichten Messgeräten und Normalen)

Aus Literatur/Tabellenwerten

Aus Toleranzen/Spezifikationen

sonstige Erfahrungswerte

■ Bundesamt
für Eich- und
Vermessungswesen

GUM: Notwendige Informationen

Die Modellgleichung

▶ Beste Schätzwerte der Eingangsgrößen

◄ Schätzwert der Ausgangsgröße (der Messwert)

▶ Standardunsicherheiten der Eingangsgrößen

◄ Standardunsicherheit der Ausgangsgröße

◄ Die erweiterte Messunsicherheit des Ergebnisses

■ Bundesamt
für Eich- und
Vermessungswesen

GUM: Notwendige Informationen

Die Modellgleichung

▶ Beste Schätzwerte der Eingangsgrößen

◀ Schätzwert der Ausgangsgröße (der Messwert)

▶ Standardunsicherheiten der Eingangsgrößen

◀ Standardunsicherheit der Ausgangsgröße

◀ Die erweiterte Messunsicherheit des Ergebnisses

■ Bundesamt
für Eich- und
Vermessungswesen

Der Messwert

Der Messwert

Einsetzen der besten Schätzwerte x_i in die Modellgleichung f liefert den besten Schätzwert für die Messgröße y.

$$y = f\left(x_1, x_2, ..., x_N\right)$$

Meist handelt es sich dabei um so genannte Korrekturen oder Verbesserungen eines Rohwertes. Eine explizite Unterscheidung nach Art und Herkunft ist aber beim GUM nicht notwendig.

47

bev.gv.at

■ Bundesamt
für Eich- und
Vermessungswesen

GUM: Notwendige Informationen

Die Modellgleichung

▶ Beste Schätzwerte der Eingangsgrößen

◄ Schätzwert der Ausgangsgröße (der Messwert)

▶ Standardunsicherheiten der Eingangsgrößen

◄ Standardunsicherheit der Ausgangsgröße

◄ Die erweiterte Messunsicherheit des Ergebnisses

Bundesamt für Eich- und Vermessungswesen

Messergebnis, Standardunsicherheit
Bestimmung der Empfindlichkeitskoeffizienten c_i und Anwendung des "Fehler"-Fortpflanzungsgesetzes. $c_i = \frac{\partial f}{\partial X_i} \bigg|_{X_i} u(y) = \sqrt{\sum_{i=1}^N \left(c_i \cdot u(x_i)\right)^2}$

Bundesamt
für Eich- und
Vermessungswesen

GUM: Notwendige Informationen

Die Modellgleichung

Beste Schätzwerte der Eingangsgrößen

Schätzwert der Ausgangsgröße (der Messwert)

Standardunsicherheiten der Eingangsgrößen

Standardunsicherheit der Ausgangsgröße

Die erweiterte Messunsicherheit des Ergebnisses

 Bundesamt
für Eich- und
Vermessungswesen

Standardunsicherheit – Erweiterte Messunsicherheit

Die Standardunsicherheit ist ein Parameter mit das GUM-Verfahren funktioniert. Er hat nichts mit einem Grad des Vertrauens zu tun.

Die Erweiterte Messunsicherheit soll einen Vertrauensbereich* beschreiben. Ein Vertrauensbereich ist für den GUM überhaupt nicht notwendig, wohl aber für manche Anwender von Messergebnissen.

Das Multiplizieren der Standardunsicherheit mit einer Konstante (k) liefert keinerlei neue Information! Es ist eine andere Darstellung des selben Sachverhaltes.

* auch: Konfidenzintervall, Vertrauensintervall, Erwartungsbereich

Bundesamt
für Eich- und
Vermessungswesen

Dokumentation

Im GUM nicht explizit geregelt.

Prinzipielle Forderung: Alles was zu einer Rechnung notwendig war, so niederzuschreiben, dass eine andere Person das Ergebnis reproduzieren kann.

In Sekundärrichtlinien (z.B. EA-4/02) genauer geregelt: so genanntes Messunsicherheitsbudget (in Form eines "Kochrezeptes")

Bundesamt für Eich- und Vermessungswesen Dokumentation Beispiel aus EA-4/02 prob I_S 1000,5° 1 δV_{181} 0 μ V δV_{182} 0 μ V δV_{182} 0 μ V δV_{8} 0 μ V δv_{8} 0 °C δv_{8} 0 °C δv_{8} 0 °C 0,10 °C 1,00 μV 0,29 μV 1,15 μV Expression of the Uncertainty of Measurement in Calibration 0,058 °C 0,15 °C 0,173 °C 0,577 °C -0,024 °C rectangular normal 1,0 1,0 1,0 0,15 °C 0,173 °C 0,577 °C 54

Bundesamt für Eich- und Vermessungswesen **Beispiel 0: Kalibrierung** Als Prototyp einer Messung soll eine einfache Kalibrierung betrachtet werden. Dabei wird der angezeigte Wert eines Messgerätes (Prüfling) mit dem tatsächlichen Wert verglichen und angegeben. · An diesem Beispiel soll hauptsächlich die Modellbildung behandelt werden. Kalibrierung eines Digital-Voltmeters bei einer vorgegebenen Spannung unter festgelegten Bedingungen (Messbereich, Umgebungstemperatur, ...). • Die Wahl des Messgerätes ist willkürlich, die Ergebnisse können auf die verschiedensten Aufgaben leicht verallgemeinert werden (Masse, Windgeschwindigkeit, Druck, Temperatur, Beleuchtungsstärke, ...) Bundesamt für Eich- und Vermessungswesen bev.gv.at **Beispiel 0: Kalibrierung** • Die Schwierigkeiten beginnen schon mit der Festlegung der Messgröße y. Soll der angezeigte Wert oder der tatsächliche Wert als solche betrachtet werden? Offensichtlich sind beide unsicher. • Der GUM behandelt jedoch nur Probleme bei denen genau eine Größe das Ergebnis mit der gesuchten Messunsicherheit darstellt, alle anderen Größen sind die Einfluss- oder Eingangsgrößen. **Beispiel 0: Kalibrierung** "Trick" bei Kalibrierungen: Man behandelt die Messabweichung als gesuchte Größe! Messabweichung = angezeigter Wert – wahrer Wert Sowohl Anzeige wie wahrer Wert werden dadurch zu Einflussgrößen

66

= Bundesamt	bev.gv.at			
für Eich- und Vermessungswesen				
Beispiel 0: Kalibrierung – Herleitung der Modellfunktion		 	 	
$A = U_{\mathrm{P}} - U_{\mathrm{W}}$				_
$U_{ m P}$ – Anzeige des Prüflings $U_{ m W}$ – wahre Spannung an den Eingangs-Klemmen				
A – Anzeigenabweichung des Prüflings bei $U_{ m W}$				
Die "wahre" Spannung wird mit einem kalibrierten Normal-Multimeter (z.B. Agile	unt.			
3458A) bestimmt, welches parallel zum Prüfling geschaltet wird. Somit sollte an	iiic			
beiden Geräten die selbe Spannung anliegen.				
	67			
= Bundesamt	bev.gv.at			
für Eich- und Vermessungswesen				
Beispiel 0: Kalibrierung – Herleitung der Modellfunktion				
$A = (U_{\rm p} + \delta_{\rm thP}) - (U_{\rm N} + \delta_{\rm thN})$				
$N = (O_P + O_{thP}) \cdot (O_N + O_{thN})$				
$U_{ m N}$ – Anzeige des Normal-Multimeters				
$\delta_{ m hX}$ – Thermospannungen an den Eingangsklemmen Konventionell werden mit $\delta_{ m X}$ Einflussgrößen mit Erwartungswert 0 (aber mit				
endlicher Unsicherheit) bezeichnet.				
Die Modellfunktion formalisiert die "Verunreinigung" der beiden gemessenen				
Spannungen durch unvermeidliche Thermospannungen.				
	68			
= Bundesamt	bev.gv.at			
für Eich- und Vermessungswesen				
Beispiel 0: Kalibrierung – Herleitung der Modellfunktion				
$A = (U_{P} + \delta_{thP} + \delta_{d}) - (U_{N} + \delta_{thN} + \delta_{noise} + \delta_{cal} + \delta_{temp})$				
$I - (O_P + O_{thP} + O_d) - (O_N + O_{thN} + O_{noise} + O_{cal} + O_{temp})$				
$\delta_{ m d}$ – Einfluss des Ziffernschrittwert (Auflösung) des Prüflings				
$\delta_{ m cul}$ – Einfluss der Kalibrierunsicherheit des Normals (Rückführung) $\delta_{ m noise}$ – Rauschen des Normals				
$\delta_{ m lemp}$ – Temperatureinfluss auf Normal		 	 	
Andere Einflussgrößen werden Aufgrund der Erfahrung des Messtechnikers vernachlässigt (z.B. Eingangsimpedanz, parasitäre Ströme, Beharrungszustand, et	rc)			
vermounussige (e.o. emgangsimpedane, parasitare stronie, benan dilgszüstállu, et	69			

Bundesamt für Eich- und Vermessungswesen Beispiel 0: Kalibrierung – Herleitung der Modellfunktion Klammerausdruck $A = U_P - U_N + (\delta_{thP} + \delta_d - \delta_{thN} - \delta_{noise} - \delta_{cal} - \delta_{temp})$ ist gleich 0! Typische Struktur der Modellgleichung einer Kalibrierung: zwei Eingangsgrößen als tatsächliche Messwerte, jedoch mehrere die gar keinen Einfluss auf den Zahlenwert haben und auch gar nicht gemessen werden (können)! Diese Eingangsgrößen beschreiben die Kenntnis über den Messprozess — und sind für die Messunsicherheitsberechnung notwendig. >>> Berechnung in den Unterlagen GUM_Beispiel0.smu Bundesamt für Eich- und bev.gv.at Vermessungswesen Beispiel 0: Kalibrierung – Befunde Wie meist bei Kalibrierungen ist die Modelfunktion sehr einfach. Die Empfindlichkeitskoeffizienten (partielle Ableitungen) sind alle vom Betrag 1. Für konkrete Messunsicherheits-Berechnungen reichen daher einfachste Hilfsmittel (z.B. Excel). Die Struktur der Modelgleichung erlaubt offensichtliche Erweiterungen. Mehr Erfahrung \Rightarrow mehr Störgrößen \Rightarrow größere Unsicherheit Die 20 Einzelmessungen würden einen effektiven Freiheitsgrad von 19 erwarten lassen. Tatsächlich ist er aber viel größer und kann mit ∞ angenähert werden.

Beispiel 0: Kalibrierung – Ergebnis

Der Prüfling weist bei einer Eingangsspannung von 10 V (nominell) eine
Anzeigenabweichung von –242 μV auf. Die erweiterte Messunsicherheit für diesen
Wert beträgt 57 μV. $A = -242 \, μV \quad U(A) = 57 \, μV$ $A = -242 \, μV ± 57 \, μV$ $A = (-242 \, ± 57) \, μV$ $A = -242 \, (57) \, μV$

■ Bundesamt	bev.gv.at	
für Eich- und Vermessungswesen	8	
Beispiel 0: Kalibrierung – Ergebnis, relative Anga	abe	
Der Prüfling weist bei einer Eingangsspannung von 10 V (nominel Anzeigenabweichung von –0,000 024 2 auf. Die relative erweitert		
für diesen Wert beträgt 0,000 005 7.	le Messunsichernen	
A = -0,002 42 % U*(A) = 0,000 57 %		
$A = -24,2 \text{ ppm}$ $U^*(A) = 5,7 \text{ ppm}$		
$A = -24,2 \text{ ppm} \pm 5,7 \text{ ppm}$		
$A = (-24,2 \pm 5,7)$ ppm		
A = -24,2 (5,7) ppm		
	73	
- Dundanest		
Bundesamt für Eich- und	bev.gv.at	
Vermessungswesen		
Beispiel 0: Kalibrierung – Ergebnis, relative Anga	abe	
Achtung!		
Bezugswert für A und seine Unsicherheit ist die nominelle Eing	gangssnannung von	
10 V!	sangsspannang von	
Relative Messunsicherheit nach GUM beziehen sich immer auf	f den Messwert:	
A = -0,002 42 % U*(A) = 24 %		
Abweichungen können auch Null werden!		
RELATIVE ANGABEN VERMEIDEN!		
	74	
		1
■ Bundesamt für Eich- und	bev.gv.at	
Vermessungswesen		
Beispiel 1: Temperaturmessung		
Bestimmung der Temperatur eines Wasserbades mittels kalibrier und geprüften Ohmmeter.	tem Pt100 Sensor	
	(Dhycik)	
Annahme: Wassertemperatur $t_{\rm W}$ gleich der Sensortemperatur $t_{\rm Ser}$ Um für zukünftige Anwendungen gewappnet zu sein berücksichti		
eine Störgröße (z.B. Eintauchtiefe, Selbsterwärmung, Kontakt,)		
22 Storg, one (2.15. Emaderiality, Schooler warmang, Romand,)		
$t_{\mathrm{W}} = t_{\mathrm{Sensor}} + \delta_{\mathrm{K}}$		
	75	

■ Bundesamt für Eich- und Vermessungswesen	bev.gv.at
Beispiel 1: Temperaturmessung	
Temperatur des Sensors wird über elektrischen Widerstand bestimmt ÖVE ÖNORM EN 60751_2009	
$R = R_0 \Big(\mathbf{I} + A \cdot t_{\text{Sensor}} + B \cdot t_{\text{Sensor}}^2 \Big) \qquad t_{\text{Sensor}} = \frac{-R_0 \cdot A + \sqrt{R_0^2 \cdot A^2 - 4R_0 \cdot B(R_0 - R_0)}}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot A \cdot B(R_0 - R_0)}{2R_0 \cdot B} + \frac{R_0 \cdot B(R_0 - R_0)}{2R_0 \cdot$	<u>- R)</u>
Die Größen R_0,A,B werden aus einem Kalibrierschein entnommen.	
	77

Bundesamt
für Eich- und
Vermessungswesen

Beispiel 1: Temperaturmessung

Gerät zur Widerstandsmessung:

Agilent 3458A

Vierleiter-Messung

Umgebungstemperatur 20 °C

Auto-Kalibration ein

Auto-Nullung ein

Prüfungsschein 1 Jahr 2 Monate alt

Beispiel 1: Temperaturmessung

Alle Effekte (auch die Prüfung/Kalibrierung) sollten von den Spezifikationen des Gerätes abgedeckt sein $R = R_{\rm M} + \delta_{\rm spec} + \delta_{\rm NMI}$

= B	undesamt	bev.gv.at	1
fi	ir Eich- und ermessungswesen		
	nwendung der Kalibrierergebnisse		
D	er Verwender möchte sein kalibriertes Voltmeter für die Überprüfung von 9 V rockenbatterien einsetzen.		
	ür dieses Voltmeter besitzt er einen sechs Monate alten Kalibrierschein eines kkreditierten Kalibrierlabors.		
D	as Labor hat bei einer nominellen Eingangsspannung von 10 V eine nzeigenabweichung von –0,24 mV gefunden. Für diesen Messwert wird eine		
е	rweiterte Messunsicherheit von 0,06 mV angegeben.		
		85	
_			
			1
	undesamt ir Eich- und	bev.gv.at	
	ermessungswesen		
A	nwendung der Kalibrierergebnisse		
	r misst die Spannung (9,001 22 V) und gibt eine Messunsicherheit von 0,06 mV a	n	-
_	r missi die Spannung (5,001 22 v) und gibt eine Wessunsicherheit von 0,00 m v a		
E	r hat die Mess <u>abweichung</u> seines Voltmeters nicht berücksichtigt!		
D	ie Messabweichung ("Fehler") ist offensichtlich viel größer als die angegebene		
N	Messunsicherheit.		
		86	
			-
			-
= в	undesamt	bev.gv.at	
	ir Eich- und ermessungswesen		
A	nwendung der Kalibrierergebnisse		
	r misst die Spannung (9,001 22 V) korrigiert sie um +0,24 mV (9,001 46 V) und gi	ht	
e	r misst die Spannung (9,001 22 V) korrigiert sie um +0,24 mV (9,001 46 V) und gi ine Messunsicherheit von 0,06 mV an.	UL	
S	chon besser.		
Ir N	nplizite Annahme: lessabweichung und Messunsicherheit sind bei 9 V und 10 V gleich.		
D	ieses Vorwissen muss begründet sein.		
		87	

■ Bundesamt	bevgvat
für Eich- und Vermessungswesen	
Anwendung der Kalibrierergebnisse	
Er misst die Spannung (9,001 22 V) korrigiert sie um +0,24 mV mal 9/10 (9,001 44 und gibt eine Messunsicherheit von 0,054 mV an.	1 V)
Vielleicht auch gut.	
Implizite Annahme die Messabweichung und Messunsicherheit skalieren linear mi	nit
der Eingangsspannung. Dieses Vorwissen muss begründet sein.	
Dieses volwissen muss begrundet sein.	
	88
■ Bundesamt für Eich- und Vermessungswesen	becgvat
Anwendung der Kalibrierergebnisse	
Aber er will vielleicht auch eine 1,5 V Zelle messen.	
Was dann?	
Dieser Kalibrierschein alleine ist offensichtlich nicht ausreichend um diese Frage zu	zu
lösen	
	89
■ Bundesamt für Eich- und	bevgvat
Vermessungswesen	
Anwendung der Kalibrierergebnisse	
Der Verwender misst mit diesem Messgerät eine Spannung nahe 10 V und verwer den Wert unkorrigiert.	endet
Im Allgemeinen würde die angegebene Kalibrierunsicherheit (aus dem	
Kalibrierschein) die Rückführungsunsicherheit weit unterschätzen. Das weiß er und will die Sache bereinigen.	
• • • • • • • • • • • • • • • • • • • •	
	90

Bundesamt für Eich- und Vermessungswesen

Anwendung der Kalibrierergebnisse

Schmutzige Lösung – vom GUM (F2.4.5) sanktioniert, aber nicht empfohlen
die Abweichung wird nicht korrigiert aber als Standardunsicherheit interpretiert!
Die Rückführungs-Standardunsicherheit ergibt sich zu 244
$$\mu$$
V:

$$u_{trac} = \sqrt{A^2 + \left(\frac{U(A)}{2}\right)^2}$$
A und $U(A)$ aus Kalibrierschein

Bundesamt
für Eich- und
Vermessungswesen

Messunsicherheit gefunden!
Konformitätsentscheidungen

	•
■ Bundesamt bevgvat für Eich- und Vermessungswesen	
Zusammenfassung	
 Messunsicherheit ist keine objektive Eigenschaft der Messung oder des Messobjektes 	
 Sie ist ein Maß für die unvollständige Kenntnis über das Messverfahren 	
 Der GUM ist eine standardisierte Methode um Unsicherheiten bei Messergebnissen zu beschreiben. 	
 Gegenüber anderen Methoden bietet er sowohl prinzipielle als auch praktische Vorteile 	
106	
■ Bundesamt bevgvat	1
■ Bundesamt bevgvat für Eich- und Vermessungswesen	
Zusammenfassung	
 Seine Anwendung ist ohne großen mathematischen Hintergrund möglich 	
Die mittels GUM behandelbaren Messprobleme müssen einen bestimmten	
Muster entsprechen (Eingangsgrößen::Model::Ausgangsgrößen)	
Die Basis des GUMs ist das Modell und die Schätzung der Eingangsgrößen.	
107	
= Bundesamt bergrat	
für Eich- und Vermessungswesen	
Zusammenfassung	
▶ Unabdingbar ist die mathematische Formulierung des Messprozesses → Modellgleichung	
▶ Die Mehrzahl der Kalibrierverfahren haben recht einfache Modellgleichungen	
Es gibt einige Computerprogramme die den GUM benutzerfreundlich	
implementieren. Im allgemeinen kann von einer manuellen Anwendung des GUM abgeraten werden	
108	

■ Bundesamt für Eich- und Vermessungswesen	bev.gv.at
Zusammenfassung	
 Messergebnisse dienen oftmals zur Entscheidu oder verletzt werden. 	ng ob Spezifikationen eingehalten
 Es gibt zwei unterschiedliche Verfahren wie ein Messergebnisses getroffen werden kann. 	e Entscheidung aufgrund eines
 Kalibrier-/Prüf-/Eichscheine sind wichtige Hilfst Unsicherheitskomponenten zu erhalten (und zu 	
	109