

Prácticas

•
$$L = \{0^n u^2 : u \in \{0, 1\}, u \neq 0\}$$
 $(A = \{0, 1, 2\})$

Transformaremos el autómata NO a uno D.

8	0	1	2
90	[go.g.]	{9,}	Ø
<u> </u>	Ø	Ø Ø	{q2}
g-2		\mathscr{D}	Ø

					6		
	S¥	0	1	2	\sim . $\stackrel{\circ}{\circ}$		
	{40}	{q0, 9,}A	89.3B	Ø	(q_o) (A)		
	A [qo,q.]	[90,93]A	3315	[923 C	1 1/2		
	15 8913	ø	Ø	[92] C	2 2 2		
	C [92]	Ø	Ø	Ø	2 (0)		
O Z							
					J		

Ejercicio 20: d) Número de ceros mú Chiplo de 4. 1* (1*01*01*01*01*)* averenos pasar el siguiente automata a expressón regular. Xi = ER desde gi hosta un estado final X = 1 x +0 x x, = 1 x, + 0 x2 + 1 x, 2, = 0 x, + E Salemos que $\chi_i = A \chi_i + B \implies \chi_i = A * B$ 1 = 1 + 0x, 2=01*0x,+E X, = 1 x, + 0(01*0x, +E) + 11*0x, = 1 x, +001*0 x, +0 + 11*0x, = (1+001*0) x, +11*0x, +0 = (1+001*0+11*0)x,+0 = (1+001+0+11*0)+0

 $x_0 = b x_0 + a x_1$ $x_0 = b^* a x_1$ $x_0 = x_2$ $x_1 = b x_1 + a x_2$ $x_1 = b^* a x_2$ $x_1 = b^* a b^* a x_1$ $x_2 = b x_2 + a x_1$ $x_2 = b^* a x_1$ $x_1 = (b^* a b^* a)^*$ $x_0 = b^* a (b^* a b^* a)^*$ $x_0 = b^* a (b^* a b^* a)^*$ $x_0 = b^* a (b^* a b^* a)^*$

Método de eliminación de ostados

La expresión entonces serva: b*ab*a(b+ab*a)*

