Data Warehouse Design

Knowledge Objectives

- 1. Distinguish demand and data driven approaches
- 2. Enumerate project phases
- 3. Enumerate steps in dimensional modeling
- 4. Enumerate factual requirements
- 5. Explain compatibility of facts

DESIGN METHOD

Approaches

- Data-driven/Supply-driven
- Requirement-driven/Demand-driven

Project phases

- Technology
- II. Data
 - Dimensional modeling
 - Logical schema
 - Relationships with sources
 - 2. Physical design
 - Deployment
 - Optimization
 - Indexing
 - Partitioning
 - 3. Data staging design and implementation
 - Extraction
 - Transformation
 - Quality improvement
 - Data preparation
 - Load
- III. Applications

5

Dimensional modeling

- Analyse sources
 - a. Understand available source schema
 - b. Rengineer them to discover unexpressed relationships
 - c. Identify data useful for decisión making
 - d. Assess data quality
 - e. Align different sources
- Requirement analysis
 - a. Identify facts
 - Determine granularities
 - b. Determine volumes and workloads
- 3. Create a star schema for each fact
 - Includes measures, dimensions and hierarchies
- 4. Validate the queries
- 5. Translate the schema into relational tables

Factual requirements

- Measures
 - Additivity
- Dimensions
 - Hierarchies
- Queries
 - Granularities
- History length

Overlapping Compatible Fact Schemata

Conditions:

- a) Shared hierarchies
- b) Comparable fact schemata
 - Share a piece of multidimensional space

Result:

- a) Unite measures
- b) Merge hierarchies
- c) Intersect dimensional instances

CLOSING

Summary

- Demand-driven vs Data-driven
- Project phases
- Dimensional modeling

Bibliography

M. Golfarelli and S. Rizzi. Data Warehouse Design. McGrau-Hill, 2009