Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

- 1.-25. (Canceled)
- 26. (Withdrawn) A method for producing a chimeric non-human animal comprising a modified foreign chromosome(s) or a fragment(s) thereof, which comprises the steps of: (a) preparing a microcell comprising a foreign chromosome(s) or a fragment(s) thereof, and transferring said foreign chromosome(s) or a fragment(s) thereof into a cell with high homologous recombination efficiency through its fusion with said microcell; (b) in said cell with high homologous recombination efficiency, inserting a vector by homologous recombination into a desired site of said foreign chromosome(s) or a fragment(s) thereof, and/or a desired site of a chromosome(s) derived from said cell with high homologous recombination efficiency, thereby marking said desired site; (c) in said cell with high homologous recombination efficiency, causing deletion and/or translocation to occur at the marked site of said foreign chromosome(s) or a fragment(s) thereof; and (d) preparing a microcell comprising said foreign chromosome(s) or a fragment(s) thereof in which deletion or translocation has occurred, and transferring said foreign chromosome(s) or a fragment(s) thereof in which deletion into a pluripotent non-human animal cell through its fusion with said microcell.
- 27. (Withdrawn) The method of claim 26, wherein a plurality of said cells with high homologous recombination efficiency are subjected to whole cell fusion after steps (a) and (b) and are subjected to step (c).
- 28. (Withdrawn) The method of claim 27, wherein a plurality of said cells with high homologous recombination efficiency each comprise a distinct foreign chromosome(s) or a fragment(s) thereof.
- 29. (Withdrawn) The method of claim 26, wherein said targeting vector comprises a telomere sequence which is introduced into a desired site by insertion of the targeting vector.

- 30. (Withdrawn) The method of claim 29, wherein said deletion occurs at a site where said telomere sequence has been introduced.
- 31. (Withdrawn) The method of claim 26, wherein said targeting vector comprises a recognition sequence for a site-directed recombination enzyme, and said recognition sequence is introduced into a desired site by insertion of the targeting vector.
- 32. (Withdrawn) The method of claim 31, wherein a vector, which is capable of expressing a site-directed recombination enzyme, is introduced into said cell with high homologous recombination efficiency simultaneously with or after insertion of said targeting vector comprising said recognition sequence for a site-directed recombination enzyme, so that an activity of said site-directed recombination enzyme is expressed, resulting in deletion and/or translocation of said foreign chromosome(s) or a fragment(s) thereof at a site into which said recognition sequence is introduced.
- 33. (Withdrawn) The method of claim 32, wherein said translocation occurs between a plurality of foreign chromosomes or fragments thereof.
- 34. (Withdrawn) The method of claim 32, wherein said translocation occurs between said foreign chromosome(s) or a fragment(s) thereof and said chromosome(s) derived from said cell with high homologous recombination efficiency.
- 35. (Withdrawn) The method of claim 31, wherein said site-directed recombination enzyme is a Cre enzyme.
- 36. (Withdrawn) The method of claim 31, wherein said recognition sequence for site-directed recombination enzyme is a LoxP sequence.
- 37. (Withdrawn) The method of claim 26, wherein said cell with high homologous recombination efficiency is an embryonic stem cell (or ES cell).
- 38. (Withdrawn) The method of claim 26, wherein said cell with high homologous recombination efficiency is a chicken DT-40 cell.

002.1426854.1 -18-

- 39. (Withdrawn) The method of claim 26, which further comprises a step of screening cells comprising a foreign chromosome(s) or a fragment(s) thereof in which deletion and/or translocation has occurred.
- 40. (Withdrawn) The method of claim 39, wherein said screening is based on expression of a marker gene.
- 41. (Withdrawn) The method of claim 40, wherein said marker gene is a drugresistance gene.
- 42. (Withdrawn) The method of claim 40, the marker gene is a green fluorescent protein-encoding gene derived from the jellyfish Aequorea victoria or a modified gene thereof.
- 43. (Withdrawn) The method of claim 26, wherein in the step (d), a microcell is produced from said cell with high homologous recombination efficiency; said foreign chromosome(s) or a fragment(s) thereof, in which deletion and/or translocation has occurred is transferred into a CHO cell through its fusion with said microcell; a microcell is produced from the CHO cell; and then said foreign chromosome(s) or a fragment(s) thereof in which deletion and/or translocation has occurred is transferred into a pluripotent cell through its fusion with said microcell.
- 44. (Withdrawn) The method of claim 26, said pluripotent cell is an embryonic stem cell (or ES cell).
- 45. (Withdrawn) The method of claim 26, said foreign chromosome(s) or a fragment(s) thereof is derived from a human.
- 46. (Withdrawn) A method for producing a non-human animal comprising a modified foreign chromosome(s) or a fragment(s) thereof, which comprises the steps of: (a) preparing a microcell comprising a foreign chromosome(s) or a fragment(s) thereof, and transferring said foreign chromosome(s) or a fragment(s) thereof into a cell with high homologous recombination efficiency through its fusion with said microcell; (b) in said cell with high homologous recombination efficiency, inserting a vector by homologous recombination into a desired site of said foreign chromosome(s) or a fragment(s) thereof,

and/or a desired site of a chromosome(s) derived from said cell with high homologous recombination efficiency, thereby marking said desired site; (c) in said cell with high homologous recombination efficiency, causing deletion and/or translocation to occur at the marked site of said foreign chromosome(s) or a fragment(s) thereof; (d) preparing a microcell comprising said foreign chromosome(s) or a fragment(s) thereof, in which deletion and/or translocation has occurred, and transferring said foreign chromosome(s) or a fragment(s) thereof into a cell derived from a non-human animal through its fusion with said microcell; and (e) transplanting the nucleus of said cell derived from the non-human animal into an enucleated unfertilized egg derived from a homologous non-human animal of the same species.

1

- 47. (Withdrawn) The method of claim 46, wherein a plurality of said cells with high homologous recombination efficiency are subjected to whole cell fusion after steps (a) and (b) and are subjected to the step (c).
- 48. (Withdrawn) The method of claim 47, wherein a plurality of said cells with high homologous recombination efficiency comprise a distinct foreign chromosome(s) or a fragment(s) thereof.
- 49. (Withdrawn) The method of claim 46, wherein said targeting vector comprises a telomere sequence, which is introduced into a desired site by insertion of the targeting vector.
- 50. (Withdrawn) The method of claim 49, wherein said deletion occurs at a site into which a telomere sequence has been introduced.
- 51. (Withdrawn) The method of claim 46, wherein said targeting vector comprises a recognition sequence for site-directed recombination enzyme, and said recognition sequence is introduced into a desired site by insertion of the targeting vector.
- 52. (Withdrawn) The method of claim 51, wherein a vector, which is capable of expressing a site-directed recombination enzyme, is introduced into said cell with high homologous recombination efficiency simultaneously with or after insertion of said targeting vector comprising said recognition sequence for a site-directed recombination enzyme, so that

002.1426854.1 -20-

an activity of said site-directed recombination enzyme is expressed, resulting in deletion and/or a translocation of said foreign chromosome(s) or fragment(s) thereof at a site into which said recognition sequence is introduced.

- 53. (Withdrawn) The method of claim 52, wherein said translocation occurs between a plularity of foreign chromosomes or fragments thereof.
- 54. (Withdrawn) The method of claim 52, wherein said translocation occurs between said foreign chromosome(s) or a fragment(s) thereof and said chromosome derived from a cell with high homologous recombination efficiency.
- 55. (Withdrawn) The method of claim 51, wherein said site-directed recombination enzyme is a Cre enzyme.
- 56. (Withdrawn) The method of claim 51, wherein said recognition sequence for a site-directed recombination enzyme is a LoxP sequence.
- 57. (Withdrawn) The method of claim 46, wherein said cell with high homologous recombination efficiency is an embryonic stem cell (or ES cell).
- 58. (Withdrawn) The method of claim 46, wherein said cell with high homologous recombination efficiency is a chicken DT-40 cell.
- 59. (Withdrawn) The method of claim 46, which further comprises a step of screening cells containing a foreign chromosome(s) or a fragment(s) thereof in which deletion and/or translocation has occurred.
- 60. (Withdrawn) The method of claim 59, wherein said screening is based on expression of a marker gene.
- 61. (Withdrawn) The method of claim 60, wherein said marker gene is a drugresistant gene.
- 62. (Withdrawn) The method of claim 60, wherein said marker gene is a green fluorescent protein-encoding gene derived from the jellyfish Aequorea victoria or a modified gene thereof.

- 63. (Withdrawn) The method of claim 46, wherein, in the step (d), a microcell is produced from said cell with high homologous recombination efficiency; said foreign chromosome(s) or fragment(s) thereof, in which deletion and/or translocation have/has occurred, is/are transferred into a CHO cell through its fusion with the microcell; a microcell is produced from the CHO cell; and then said foreign chromosome(s) or a fragment(s) thereof, in which deletion and/or translocation has occurred, is transferred into a cell derived from a non-human animal through its fusion with the microcell.
- 64. (Withdrawn) The method of claim 46, said cell derived from a non-human animal is a culture cell derived from an embryo or a blastocyst.
- 65. (Withdrawn) The method of claim 46, said cell derived from a non-human animal is a culture cell derived from a fetus or an adult.
- 66. (Withdrawn) The method of claim 46, said cell derived from a non-human animal is a fibroblast cell derived from fetus.
- 67. (Withdrawn) The method of claim 46, said foreign chromosome(s) or a fragment(s) thereof is derived from a human.
- 68. (Withdrawn) A non-human animal, which retains a chromosomal fragment(s) obtained by deletion of a foreign chromosome(s) or a fragment(s) thereof.
- 69. (Withdrawn) The non-human animal of claim 68, wherein said chromosomal fragment(s) comprises: (i) a marker gene and a telomere sequence, and/or (ii) a recognition sequence for a site-directed recombination enzyme.
- 70. (Withdrawn) A non-human animal, comprising a recombinant foreign chromosome(s) obtained by translocation between a plurality of foreign chromosomes or fragments thereof.
- 71. (Withdrawn) The non-human animal of claim 70, wherein said recombinant chromosomal fragment(s) comprises: (i) a marker gene and a telomere sequence; and/or (ii) a recognition sequence for a site-directed recombination enzyme.

- 72. (Withdrawn) The non-human animal of claim 70, wherein said recombinant foreign chromosome(s) is independently maintained in the nucleus of the non-human animal cell.
- 73. (Withdrawn) The non-human animal of claim 70, wherein said recombinant foreign chromosome(s) is derived from a human.
- 74. (Withdrawn) The non-human animal of claim 70, wherein the recombinant foreign chromosome(s) is derived from human chromosomes #14 and #2.
- 75. (Withdrawn) The non-human animal of claim 70, wherein said recombinant foreign chromosome(s) is derived from human chromosomes #14 and #22.
- 76. (Withdrawn) The non-human animal of claim 70, wherein said recombinant foreign chromosome(s) comprises genes for a heavy-chain and a light-chain of a human antibody.
- 77. (Withdrawn) The non-human animal of claim 70, wherein said recombinant foreign chromosome(s) comprises genes for a heavy-chain and a light-chain * gene of a human antibody.
 - 78. (Withdrawn) The non-human animal of claim 70, which is a mouse.
 - 79. (Withdrawn) The non-human animal of claim 70, which is an ungulata.
 - 80. (Withdrawn) The non-human animal of claim 70, which is a bovine.
 - 81. (Withdrawn) The non-human animal of claim 70, which is an ovine.
 - 82. (Withdrawn) The non-human animal of claim 70, which is an avian.
 - 83. (Withdrawn) The non-human animal of claim 70, which is a chicken.
 - 84. (Canceled)
- 85. (Withdrawn) A method for modifying a foreign chromosome(s) or a fragment(s) thereof in a cell, which comprises the steps of: (a) preparing a microcell

002.1426854.1 -23-

containing a foreign chromosome(s) or a fragment(s) thereof, and transferring said foreign chromosome(s) or a fragment(s) thereof into a cell with high homologous recombination efficiency through its fusion with the microcell; (b) in said cell with high homologous recombination efficiency, inserting a targeting vector by homologous recombination into a desired site of said foreign chromosome(s) or a fragment(s) thereof and/or a desired site of a chromosome(s) derived from said cell with high homologous recombination efficiency, thereby marking said desired site; and (c) in said cell with high homologous recombination efficiency, causing deletion or translocation to occur at the marked site of said foreign chromosome(s) or a fragment(s) thereof.

- 86.-92. (Canceled)
 - 93. (Currently amended) A recombinant chromosome comprising:
- (i) the <u>human chromosome #14</u> centromere of human chromosome #14 <u>SC20</u>, Accession Number FERM BP-7583;
 - (ii) two telomere sequences;
 - (iii) at least one recognition sequence for a site-directed recombination enzyme;
- (iv) at least two chromosome fragments <u>from different human chromosomes</u>, wherein <u>each fragment comprises an antibody gene locus</u> that had not been adjacently located in a <u>natural chromosome or in a naturally occurring chromosome fragment</u>; and
 - (v) a marker gene,

wherein the said recognition sequence for the [[a]] site-directed recombination enzyme is located between the said two chromosome fragments.

- 94.-95. (Canceled)
- 96. (Currently Amended) The recombinant chromosome of claim 93, wherein one of the fragments is a chromosome fragment is a fragment of human chromosome #2 fragment.

- 97. (Currently Amended) The recombinant chromosome of claim 93, wherein one of the fragments is a chromosome fragment is a fragment of human chromosome #22 fragment.
- 98. (Previously presented) The recombinant chromosome of claim 93, wherein one of the chromosome fragments is a human chromosome #14 fragment and wherein another one of the chromosome fragments is a human chromosome #2 fragment.
- 99. (Previously presented) The recombinant chromosome of claim 98, wherein said chromosome #14 fragment comprises a human antibody heavy-chain gene locus and said chromosome #2 fragment comprises a human antibody light-chain kappa gene locus.
- 100. (Previously presented) The recombinant chromosome of claim 98, wherein said chromosome #14 fragment comprises the entire region of the human antibody heavy-chain gene locus and said chromosome #2 fragment comprises the entire region of the human antibody light-chain kappa gene locus.
- 101. (Previously presented) The recombinant chromosome of claim 93, wherein one of the chromosome fragments is a human chromosome #14 fragment and wherein another one of the chromosome fragments is a human chromosome #22 fragment.
- 102. (Previously presented) The recombinant chromosome of claim 101, wherein said chromosome #14 fragment comprises a human antibody heavy-chain gene locus and said chromosome #22 fragment comprises a human antibody light-chain lambda gene locus.
- 103. (Previously presented) The recombinant chromosome of claim 101, wherein said chromosome #14 fragment comprises the entire region of the human antibody heavy-chain gene locus and said chromosome #22 fragment comprises the entire region of the human antibody light-chain lambda gene locus.
- 104. (Previously presented) The recombinant chromosome of claim 93, which is generated by chromosome recombination between the chromosome fragment denoted as SC20 and another chromosome fragment.

- 105. (Previously presented) The recombinant chromosome of claim 104, wherein said recombinant chromosome comprises the entire region of the human antibody heavy chain gene locus.
- 106. (Previously presented) The recombinant chromosome of claim 104, which is generated by chromosome recombination between the chromosome fragment denoted as SC20 and a fragment of a chromosome other than the human chromosome #14.
- 107. (Previously presented) The recombinant chromosome of claim 106, wherein the fragment of a chromosome other than the human chromosome #14 is a fragment of a human chromosome #2, which comprises a human antibody light-chain kappa gene locus.
- 108. (Previously presented) The recombinant chromosome of claim 106, wherein the fragment of a chromosome other than the human chromosome #14 is a fragment of human chromosome #22, which comprises a human antibody light-chain lambda gene locus.
- 109. (Previously presented) The recombinant chromosome of claim 93, which comprises both a human antibody heavy-chain gene locus and a human antibody light-chain gene locus.
- 110. (Previously presented) The recombinant chromosome of claim 93, which comprises both the entire region of the human antibody heavy-chain gene locus and the entire region of the human antibody light-chain gene locus.
- 111. (Previously presented) The recombinant chromosome of claim 93, wherein said recognition sequence is the loxP sequence and said site-directed recombination enzyme is the Cre recombinase.
- 112. (Previously presented) The recombinant chromosome of claim 93, wherein said recognition sequence is the FRP sequence and said site-directed recombination enzyme is the FLP recombinase.

113.-116. (Canceled)

- 117. (Currently Amended) A method for producing a recombinant chromosome, comprising:
- (a) preparing a first isolated cell comprising a fragment of human chromosome #14 from SC20, Accession Number FERM BP-7583, which that has a centromere and a recognition sequence for a site-directed recombination enzyme positioned at desired site in said fragment;
- (b) preparing a second isolated cell comprising a second chromosome fragment, which comprises (i) a human antibody gene locus and (ii), which comprises a recognition sequence for a site-directed recombination enzyme positioned at desired site in said second chromosome fragment;
 - (c) fusing said first cell with said second cell to produce a hybrid cell; and
 - (d) expressing a site-directed recombination enzyme in said hybrid cell,

wherein said enzyme causes site-directed recombination between the SC20 human chromosome #14 fragment said fragment of human chromosome #14 and the said second chromosome fragment to generate a recombinant chromosome, wherein said recombinant chromosome comprises the centromere of human chromosome #14 and a portion of the second chromosome fragment.

- 118. (Previously presented) The method of claim 117, wherein said recombinant chromosome is transferred from said hybrid cell into a new cell type via microcell fusion.
- 119. (Previously presented) The method of claim 118, wherein said new cell type is a CHO cell.
- 120. (Previously presented) The method of claim 117, wherein said first cell and said second cell are chicken DT-40 cells.
- 121. (Previously presented) The method of claim 117, wherein said site-directed recombination is detected by the expression of a reporter gene.

...-27-

- 122. (Previously presented) The method of claim 121, wherein said reporter gene is a green fluorescent protein gene or functional variant thereof.
- 123. (Previously presented) The method of claim 117, wherein said recognition sequence in said human chromosome #14 fragment and said recognition sequence in said second chromosome fragment are loxP sequences, and said site-directed recombination enzyme is the Cre recombinase.
- 124. (Previously presented) The method of claim 117, wherein said recognition sequence in said human chromosome #14 fragment and said recognition sequence in said second chromosome fragment is the FRP sequence and said site-directed recombination enzyme is the FLP recombinase.
 - 125. (Canceled)
- 126. (Previously presented) The method of claim 117, said second chromosome fragment is a fragment of either human chromosome #2 or human chromosome #22, comprising a human antibody light chain gene locus.
 - 127.-134. (Canceled)
- 135. (Currently amended) A cell comprising the recombinant chromosome of any one of claims 93 or 113.
- 136. (Previously presented) The method of claim 117, wherein said recognition sequence for a site-directed recombination enzyme is positioned at said desired site in said human chromosome #14 fragment and said second chromosome fragment by a targeting vector.
 - 137. (Canceled)
- 138. (Previously presented) The method of claim 122, wherein said green fluorescent protein gene or functional variant thereof, is obtained from the jellyfish *Aequorea* victoria.
 - 139.-143. (Canceled)