

Introduction to SoC

Instructor: NCTU

SoC: System on Chip

System

A collection of all kinds of components and/or subsystems that are appropriately interconnected to perform the specified functions for end users.

- A SoC design is a "product creation process" which
 - Starts at identifying the end-user needs (or system)
 - Hardware
 - Software
 - Ends at delivering a product with enough functional satisfaction to overcome the payment from the end-user

SoC Evolution

What is SoC in your mind?

Definition: integration of a complete system onto a single IC

Board to Chip

Is it possible to design a 100-Billion-Transistor SOC in 100 Days?

A/MS=analog/mixed signal

ASIC = application-specific IC

CPU = central processing unit

PLD = programmable logic device

I/O pads **CPU** Memory core pads pads **DSP** Control 0 core **DSP** A/MS book I/O pads

Board components

Virtual components

SoC Architecture

SoC Architecture

Hardware:

- Analog: ADC, DAC, PLL, TxRx, RF...etc.
- Digital: Processor, Interface, Accelerator...etc.
- Storage: SRAM, DRAM, FLASH, ROM...etc.
- Software: OS, Application

Memory		RF
		Mixed Signal
Processor Embedded Software	DSP or	JTAG
RTOS	Special FU OCB Architecture	Interface
Configurable Hardware		Peripherals

System on a Chip

SOC is industry trend

System-Board

IP/System-Board

Tomorrow

Integration

SOC

SoC Applications

Source: Semiconductor Research Corp.

Example: Mobile Phone

Yesterday

- Voice only; 2 processors
- 4 year product life cycle
- Short talk time

Today

Single Chip

- 5~8 Processors
- Memory
- Graphics
- Bluetooth
- GPS
- Radio
- WLAN

- Voice, data, video, SMS
- <12 month product life cycle</p>
- Lower power; longer talk time

Oystem

Source: EI-SONICS

SoC Design Considerations

- Architecture strategy
- Design-for-test strategy
- Validation strategy
- Synthesis and backend strategy
- Integration strategy

Why SoC?

Why?

- Complex applications
 - Semiconductor density ↑ 58% per year, but design productivity ↑21% annually.
- Process technology allows it
- High performance
- Miniaturization
- Battery life
- Short market windows
- Cost sensitivity

Characteristics

- Very large transistor counts on a single IC
- Mixed technologies on the same chip
 - Digital, memory, analog, FPGA
 - Hardware and software
- Multiple clock frequencies
- Hierarchical design with embedded reusable IP cores

4

Where SoC Goes To?

Architecture Strategy

- Central processing core
- DSP cores
- On chip bus
- Easy plug-and-play IPs
- I/O, peripherals
- Platform-based design methodology
 - Parameterization
 - Function partition

Alternative Computing Subsystem

- Control-dominated subsystem
 - controls & coordinates system tasks
 - performs *reactive* tasks
 (e.g. user interface)
- Data-dominated subsystem
 - regular & predictable
 transformational tasks
 - well-defined DSP kernels with high parallelism

SOC Complexity / Abstraction

Yesterday

- Processor-centric (1 or 2)
- •Simple I/O
- Manageable Complexity

Today

- Many processing units
- Large amount of I/O
- Overwhelming Complexity!

Source: EI-SONICS

Conquer the SoC Complexity

Use a known real entity

- A pre-designed component (IP, VC reuse)
- A platform (architecture reuse)

Partition

- Based on functionality
- Hardware and software

Modeling

- At different level
- Consistent and accurate

What is IP?

Intellectual Property (IP)

Intellectual Property means products, technology, software, etc. that have been protected through patents, copyrights, or trade secrets.

Virtual Component (VC)

- A block that meets the Virtual Socket Interface Specification and is used as a component in the Virtual Socket design environment. Virtual Components can be of three forms Soft, Firm, or Hard. (VSIA)
- Also named mega function, macro block, reusable component

SoC and SIP

- System-on-Chip (SoC)
- Semiconductor Intellectual Property (IP)
 - Also known as cores, virtual components (VCs)
 - Memory, processors, DSPs, I/O, perpherials

■ SoC = \sum IPs ?

Core(IP)-Based Design

IP, VC, PE, FU, ...

- Memory controller
- Interrupt controller
- Power management controller
- Internal memories
- Bridges
- Caches
- Other functions

Hard, Soft, Firm IPs

Hard core

- Large logic circuits
- An ART
- E.g. ARM core

Soft core

- Tiny logic circuits
- Synthesize layout using standard cells with ASIC flow
- E.g. IPs

■ Firm core

- Medium logic circuits
- Need tight integration with custom cells
- Tile-based layout like Hard core
- E.g. FPGA CAD tools

Types of IP

Firm IP:

- gate level or synthesizable RT level data
- Some technology and/or physical constraints
- some flexibility on form & function
- Predictable size and speed

Hard IP:

("physical")

- Polygon level data
- Technology specific
- Fixed form & function
- Well characterized

Soft IP: ("Core")

- RT level or above
- Technology portable
- Flexible form & function
- Estimated size and speed

Differences in Design Between IC and IP

Limitation of IC design

- Number of I/O pin
- Design and Implement all the functionality in the silicon

Soft IP

- No limitation on number of I/O pin
- Parameterized IP Design: design all the functionality in HDL code but implement desired parts in the silicon
- IP compiler/Generator: select what you want !!
- More high level auxiliary tools to verify design
- More difficult in chip-level verification

Hard IP

- No limitation on number of I/O pin
- Provide multiple level abstract model
- Design and Implement all the functionality in the layout

IP Value

- Foundation IP Cell, MegaCell
- Star IP ARM (low power)
- Niche IP JPEG, MPEGII, TV, Filter
- Standard IP USB, IEEE1394, ADC, DAC
-

IP Sources

- Legacy IP
 - from previous IC
- New IP
 - specifically designed for reuse
- Licensed IP
 - from IP vendors

Why IP?

- Don't know how to do it
- Cannot wait for new in-house development
- Standard/Compatibility calls for it
 - PCI, USB, IEEE1394, Bluetooth
 - Software compatibility
- Configurable

Why Configurable?

- All IPs are typically customized to meet specific SoC specification
- Software upgradability
- Short product cycles
- E.g. External memory controller supports
 - memory types (sync. Or async.)
 - Sizes,
 - Widths,
 - Banks,
 - Etc.

SoC: A Finer View

- SoC = ∫ (IPs + Platform)
- Platform, or Semiconductor Infrastructure IP
 - Interconnect/Inter-block communication
 - Performance optimization
 - Test
 - Diagnosis
 - Repair
 - Power management

General-Purpose Metamer

- PE granularity
 - (usually imply # of functionalities)
- Interconnection routability
 - neighbor (1-D) / mesh (2-D)
 - crossbar
 - bus
- Initialization mechanism
- Configuration overhead

PE Granularity

- Smallest unit of the reconfigurable fabric that can be reprogrammed
- tradeoffs between flexibility and reconfiguration overhead

On-Chip-Bus, OCB

Requirements

- Have to connect many local IPs
 - Heterogeneous traffic
 - Scalable capability
 - QoS

Types

- Wire (zero hop)
- Bus (single hop)
- Switch, router (multi-hop)
- Circuit-switched
- Packet-switched

Example: ARM OCB - AMBA

- Advanced Microcontroller Bus Architecture (AMBA)
- AMBA 2.0 specifies
 - the Advanced High-performance Bus (AHB)
 - the Advanced System Bus (ASB)
 - the Advanced Peripheral Bus (APB)
 - test methodology

Virtual Component Interface (VCI)

What is VCI

 A request-response protocol, contents and coding, for the transfer of requests and responses

Why VCI

Other IP blocks not available 'wrapped' to the on-chip communications may work with IP wrappers. VSI Alliance VCI is the best choice to start with for an adaptation layer

VCI specifies

- Thee levels of protocol
 - Advanced VCI (AVCI),
 - Basic VCI (BVCI), and
 - Peripheral VCI (PVCI)
- Transaction language

Platform

■ A platform is a suite of reusable parts (IP) of many system designs in a limited spectrum of applications

Source: SOC Design Overview /MOE, R.O.C.

Platform Example

Hardware, Software and Testbench Export

Source: Cadence

DFT Strategy

- DFT is usually implemented using a full scan, muxed flip-flop of scan insertion.
- For embedded memories, Built in Self-test (BIST) and Module Test are best used.

Benefits of Platform-based Design

Simplify backbone design:

- A platform provides an architecture reference which is proved to be a applicable architecture.
- Simple modification is enough to be suitable to similar systems.

Save repetitive design time:

- Existing IPs for the platform can be adopted to accelerate the build up time.
- Based on existing platform ease the replace of custom design.

Ease the verification:

The environment provided by a platform helps to verify the custom modification in each step.

Early evaluation:

 A virtual prototyping provides early system performance data and H/S partitioning information.

Benefits of Using SoC

- Reduce overall system cost
- Increase performance
- Lower power consumption
- Reduce size

SoC - New Design Era

New design consideration

- Design methodology
 ✓ Platform-based design ►
- Functionality implementation
 - ▶ Personal reuse
 - ▶ In-house reuse
 - ▶ IP reuse
 - ▶ Architecture reuse

- Parameterized and blockwise design
- ▶ IP Compiler/Generator

Reuse without redesign

- Multi-level design descriptions
- Physical design consideration/constraint

The New System Design Paradigm

Block-Based Design

Platform-Based Design

Orthogonalization of concerns: the separation

of function and architecture, of communication and computation

SoC Current Status

- Time-to-market pressure
- ASIC/ASSP ratio: 80/20 in 2000, but 50/50 now
- In-house ASIC design is down, replaced by off-the-shelf, programmable ASSP
- Heterogeneous multi-processor SoC platform
- Problem is that each system is an ad-hoc solution
 - No effective programming model
 - Poor SW productivity

Set Top Box Controller

IBM's SoC

Generic Wireless / Computing

Emotion Engine in PS2

Snapshot

■ 30mm wafer and Pentium 4TM

Feature Technology and Size

When compared to the 0.18-micron process, the new 0.13-micron process results in less than 60 percent the die size and nearly 70 percent improvement in performance

The 90-nm process will be manufactured on 300mm wafers

NEC devises low-k film for second-generation 65-nm process

