Dijkstrin algoritam na steroidima:

Sažete hijerarhije

Mireo

Software development and innovation company

PROFESIONALNI CESTOVNI GPS NAVIGACIJSKI SUSTAVI

SVJETSKO TRŽIŠTE

- U svijetu se godišnje proda više od 50 milijuna navigacijskih uređaja
- Platforme: Embedded Linux, Windows CE, iOS, Android, Blackberry, QNX

Mireo je jedan od vodećih nezavisnih proizvođača softvera za GPS navigacijske uređaje u svijetu

- vrhovi (čvorovi) grafa su križanja
- bridovi (grane) su cestovni segmenti među križanjima

 složenost Dijkstrinog algoritma je O(m + n·log(n))

m – broj grana n – broj čvorova

KRIŽANJA I SEGMENTI U STVARNIM KARTAMA

	# križanja	#segmenata
Zapadna Europa	18·10 ⁶	42.2·10 ⁶
Europa	40.4·10 ⁶	85.7·10 ⁶
USA	23.9·10 ⁶	57.7·10 ⁶

Složenosti Dijkstrinog algoritma za Europu: ~ O(900.000.000)

TRIKOVI

- Traži paralelno u okolini početne i završne točke ("dvosmjerno") unutar malog radijusa (npr. 20 km). U traženju koristi sve ceste.
- Nastavi pretragu u većem radijusu (npr. 100 km), ali uzimajući u obzir samo državne ceste i autoceste.
- Nastavi pretragu uz korištenje isključivo autocesta.

NEDOSTACI

- Veliki problem s netočno izračunatim putevima nastalim zbog heuristika
- Još uvijek preveliki memorijski i računski zahtjevi

PRIMJER

Prosječno vrijeme izračunavanja najkraćeg puta od Karlsruhe-a do jednog od 13 glavnih gradova zapadnoeuropskih država je **59 sekundi** na komercijalnom uređaju.

CILJEVI

- Računanje puteva mora biti matematički egzaktno
- Optimizacije i kreiranje hijerarhijskih nivoa ne smiju ovisiti o klasifikaciji prometnica
- Algoritam mora raditi u uvjetima mobilnih uređaja (ARM procesor, limitirana radna i vanjska memorija)
- Računanje proizvoljnog puta u Europi mora trajati kraće od 1 sekunde

KONSTRUKCIJA

- Određivanje linearnog uređaja na skupu vrhova (enumeriranje vrhova 1..n) obzirom na "važnost" križanja.
- Izbacivanje jednog po jednog vrha u redoslijedu od najmanjeg prema najvećem (obzirom na uređaj) uz uvjet da su najkraći putevi u preostalom grafu prekrivaču sačuvani.
- Konstrukcija grafa za traženje iz grafa prekrivača korištenjem samo "uzlaznih" grana.

Sažimanje vrha 1

UZLAZNI GRAF

$$G_{\uparrow}:=(V, E_{\uparrow})$$
 gdje je $E_{\uparrow}:=\{(u, v) \in E^* : u < v\}$

SILAZNI GRAF

$$G_{\downarrow}:=(V, E_{\downarrow})$$
 gdje je $E_{\downarrow}:=\{(u, v) \in E^* : u > v\}$

- · Za pronalazak najkraćeg s-t puta koristimo dvosmjerni modificirani Dijkstrin algoritam.
- U smjeru od početnog vrha s koristimo samo uzlazni graf G₁.
- U smjeru od ciljnog vrha t koristimo samo silazni graf G↓.
- Ako i samo ako postoji najkraći s-t put u G obje će se pretrage susresti u vrhu v čiji je redni broj veći od svih drugih rednih brojeva vrhova na s-t putu.

PROSJEČNO VRIJEME RAČUNANJA SLUČAJNO ODABRANOG PUTA (UREĐAJ S ARM PROCESOROM)

Vrijeme računanja

Zapadna Europa

72.4 ms

Europa

84.2 ms

USA

56.5 ms

Ubrzanje: ~ 3000 puta!