$\label{eq:modello} \mbox{Modello CPL } (\mbox{\it Capacitated Plant Location}) \mbox{\it Multi} \\ \mbox{prodotto}$

Insiemi

- V_1 = insieme dei siti potenziali; (indice i);
- V_2 = insieme dei siti da servire; (indice j);
- P = insieme dei prodotti; (indice p);
- A = insieme dei tragitti (i, j) che uniscono i siti $i \in V_1$ ed $j \in V_2$;

Parametri

- d_{pj} = domanda di prodotto $p \in P$ richiesto da sito $j \in V_2$; $\forall p \in P, \forall j \in V_2$
- $dist_{ij}$ = distanza tra sito $i \in V_1$ e sito $j \in V_2$; $\forall (i, j) \in A$
- $c = \cos$ to di trasporto per unità di prodotto ed unità di distanza;

Nota: Si suppone costante.

- $c_{pij} = \cos$ to per rifornire sito $j \in V_2$ tramite sito $i \in V_1$ soddisfacendo intera domanda d_{pj} ; $\forall p \in P, \forall (i,j) \in A$

$$c_{pij} = 2 \cdot c \cdot dist_{ij} \cdot d_{pj}$$

Nota: Il valore 2 consente di tenere conto del costo associato sia all'andata che al ritorno, considerando di percorrere 2 volte la distanza $dist_{ij}$.

Variabili

- x_{pij} = frazione di domanda d_{pj} espressa dal sito $j \in V_2$ e soddisfatta dal sito $i \in V_1$ relativamente al prodotto $p \in P$; $\forall p \in P, \forall (i,j) \in A$

Nota: $0 \le x_{pij} \le 1$

$$-y_i = \begin{cases} 1 & \text{se il sito } i \in V_1 \text{ è attivato; } \forall i \in V_1 \\ 0 & \text{altrimenti} \end{cases}$$

Condizione di Ammissibilità

$$\sum_{p \in P} \sum_{j \in V_2} d_{pj} \le \sum_{i \in V_1} q_i$$

Formulazione Matematica

$$min \sum_{i \in V_1} f_i \cdot y_i + \sum_{p \in P} \sum_{j \in V_2} c_{pij} \cdot x_{pij}$$
 (1)

s.v

$$\sum_{i \in V_1} x_{pij} = 1 \qquad \forall p \in P, \ \forall j \in V_2$$
 (2)

$$\sum_{p \in P} \sum_{j \in V_2} d_{pj} \cdot x_{pij} \le q_i \cdot y_i \qquad \forall i \in V_1$$
 (3)

$$x_{pij} \ge 0 \qquad \forall p \in P, \ \forall (i,j) \in A$$
 (4)

$$y_i \in \{0, 1\} \qquad \forall i \in V_1 \tag{5}$$