# Database Management Systems (DBMS)

Lec 2: Relational model of data

Ramesh K. Jallu

IIIT Raichur

Date:22/01/21

### Recap

- Basic definitions in DBMS: DB system = data + DBMS
- Components in a DB system: H/w, s/w, data, users, and procedures
- Goals of a database system: Efficiency and conveniency
- File-processing system: redundancy and inconsistency, difficulty in accessing data, data isolation, intigrety, atomicity, security, and congruent access problems
- Advantages of using a DBMS approach: flexibility, up-to-date, etc.

#### Characteristics of a database

- 1. Self-describing nature of a database system
- 2. Insulation between program and data, and data abstraction
- 3. Support of multiple views of the data
- 4. Sharing of data and multiuser transaction processing

### Today's plan

- Categories of data models
- Relation schema and its characteristics
- Relational model constraints: Keys

#### Data models

- A collection of tools for describing data, data relationships, data semantics, and data constraints
- Categories:
  - 1. Relational model
  - 2. Entity-Relationship model
  - 3. Semi-structured model: flexible format for data exchange
  - Object-based model

#### 1. Relational model

- Proposed by Ted Codd of IBM Research in 1970
- Commercial implementation took place in early 80's, SQL/DS
- It is the primary data model for commercial data-processing appl.
- It retains the primary position over its half-century of existence
- Uses concept of relation in mathematics

### Relational model concepts

- This model represents the database as a collection of relations
- Each relation resembles a table of values and assigned a unique name
- Each row in the table represents a collection of related data values
- The names of the table and columns in the table are used or chosen to interpret the meaning of the values in each row

### Terminologies

- Tuple
- Attribute
- Domain of an attribute
- Atomic domain
- NULL value

### An example



### Another example

#### Instructor

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 12121 | Wu         | Finance    | 90000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 32343 | El Said    | History    | 60000  |
| 33456 | Gold       | Physics    | 87000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 58583 | Califieri  | History    | 62000  |
| 76543 | Singh      | Finance    | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |

#### Instructor

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

### Atomic domain

#### Instructor

| ID    | name       | dept_name  | salary | phone_number          |
|-------|------------|------------|--------|-----------------------|
| 10101 | Srinivasan | Comp. Sci. | 65000  | 8729244589,9394029483 |
| 12121 | Wu         | Finance    | 90000  |                       |
| 15151 | Mozart     | Music      | 40000  |                       |
| 22222 | Einstein   | Physics    | 95000  |                       |
| 32343 | El Said    | History    | 60000  | NULL                  |
| 33456 | Gold       | Physics    | 87000  |                       |
| 45565 | Katz       | Comp. Sci. | 75000  |                       |
| 58583 | Califieri  | History    | 62000  |                       |
| 76543 | Singh      | Finance    | 80000  | 865-8746-0984         |
| 76766 | Crick      | Biology    | 72000  |                       |
| 83821 | Brandt     | Comp. Sci. | 92000  | NULL                  |
| 98345 | Kim        | Elec. Eng. | 80000  | ITOLL                 |

#### Relational schema

- Relation schema defines the design and structure of a relation
  - For a relation R, with attributes A1,A2,...,An, the relation schema is denoted by R(A1,A2,...,An)
  - STUDENT(Name, Ssn, Home\_phone, Address, Office\_phone, Age, Gpa)
  - STUDENT(Name: string, Ssn: string, Home\_phone: string, Address: string, Office\_phone: string, Age: integer, Gpa: real)
- The degree or arity of relation is the no. of attributes in its relation

### Relational schema (cont.)

- Domain of an attribute A<sub>i</sub> is denoted by dom(A<sub>i</sub>)
  - A relation state r, r(R), of a relation schema R(A<sub>1</sub>,A<sub>2</sub>,...,A<sub>n</sub>) is a set of n-tuples r={t<sub>1</sub>,t<sub>2</sub>,...,t<sub>m</sub>}
  - Each tuple t<sub>i</sub> is an ordered list of n values t<sub>i</sub>=<v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>>, where each v<sub>j</sub> belongs to dom(A<sub>j</sub>)
  - $r(R) \subseteq dom(A_1) \times dom(A_2) \times ... \times dom(A_n)$

#### Characteristics and constraints

- Characteristics of a relation
  - a. Ordering of tuples in a relation
  - b. Ordering of values in a tuple
  - c. Values and NULLs in the tuples
- Constraints in a relational model
  - Domain constraints
  - Key constraints:  $t_i \neq t_j$  for  $i \neq j$
  - NULL constraints

#### Instructor

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 12121 | Wu         | Finance    | 90000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 32343 | El Said    | History    | 60000  |
| 33456 | Gold       | Physics    | 87000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 58583 | Califieri  | History    | 62000  |
| 76543 | Singh      | Finance    | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |

Instructor (ID, name, dept\_name, salary)

### Keys

- Keys are used to distinguish tuples in a given relation
  - Superkey: A subset K of attributes that uniquely identifies a tuple in the relation
  - If  $t_i$  and  $t_j$  are any two distinct tuples in a relation, then  $t_i[K] \neq t_j[K]$
  - Any relation contains a trivial superkey

#### Instructor

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 12121 | Wu         | Finance    | 90000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 32343 | El Said    | History    | 60000  |
| 33456 | Gold       | Physics    | 87000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 58583 | Califieri  | History    | 62000  |
| 76543 | Singh      | Finance    | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |

### An other example



### Keys (cont.)

- If K is a superkey, then so is any superset of K
- We are interested in *minimal* superkey (a.k.a. Key)
- A relation schema may have more than one key. Such minimal superkeys are called candidate keys
- One of the candidate keys is designated as primary key and other candidate keys are designated as unique keys

### Keys (cont.)

#### CAR

| License_number     | Engine_serial_number | Make       | Model   | Year |
|--------------------|----------------------|------------|---------|------|
| Texas ABC-739      | A69352               | Ford       | Mustang | 02   |
| Florida TVP-347    | B43696               | Oldsmobile | Cutlass | 05   |
| New York MPO-22    | X83554               | Oldsmobile | Delta   | 01   |
| California 432-TFY | C43742               | Mercedes   | 190-D   | 99   |
| California RSK-629 | Y82935               | Toyota     | Camry   | 04   |
| Texas RSK-629      | U028365              | Jaguar     | XJS     | 04   |

CAR(<u>License\_number</u>, Engine\_serial\_number, Make, Model, Year)

CAR(License\_number, <a href="mailto:Engine\_serial\_number">Engine\_serial\_number</a>, Make, Model, Year)

### Primary key constraints

- It is customary to list the primary key attributes of a relation schema before the other attributes
- The primary key should be chosen such that its attribute values are never, or are very rarely, changed
  - E.g., address should not be chosen
- Entity integrity constraint: primary key value cannot be NULL

#### Relational databases

#### **EMPLOYEE** Ssn Fname **B**date Sex Salary Super\_ssn Minit Address Dno Lname DEPARTMENT Dnumber Mgr\_start\_date **Dname** Mgr\_ssn DEPT\_LOCATIONS Dnumber Dlocation **PROJECT** Pnumber Plocation Pname Dnum WORKS\_ON Essn Pno Hours DEPENDENT Dependent\_name Relationship Sex **B**date Essn

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | <u>Dnumber</u> | Mgr_ssn   | Mgr_start_date |
|----------------|----------------|-----------|----------------|
| Research       | 5              | 333445555 | 1988-05-22     |
| Administration | 4              | 987654321 | 1995-01-01     |
| Headquarters   | 1              | 888665555 | 1981-06-19     |

#### DEPT\_LOCATIONS

| <u>Dnumber</u> | Dlocation |
|----------------|-----------|
| 1              | Houston   |
| 4              | Stafford  |
| 5              | Bellaire  |
| 5              | Sugarland |
| 5              | Houston   |

#### WORKS\_ON

| Essn      | <u>Pno</u> | Hours |
|-----------|------------|-------|
| 123456789 | 1          | 32.5  |
| 123456789 | 2          | 7.5   |
| 666884444 | 3          | 40.0  |
| 453453453 | 1          | 20.0  |
| 453453453 | 2          | 20.0  |
| 333445555 | 2          | 10.0  |
| 333445555 | 3          | 10.0  |
| 333445555 | 10         | 10.0  |
| 333445555 | 20         | 10.0  |
| 999887777 | 30         | 30.0  |
| 999887777 | 10         | 10.0  |
| 987987987 | 10         | 35.0  |
| 987987987 | 30         | 5.0   |
| 987654321 | 30         | 20.0  |
| 987654321 | 20         | 15.0  |
| 888665555 | 20         | NULL  |

#### **PROJECT**

| Pname           | Pnumber | Plocation | Dnum |
|-----------------|---------|-----------|------|
| ProductX        | 1       | Bellaire  | 5    |
| ProductY        | 2       | Sugarland | 5    |
| ProductZ        | 3       | Houston   | 5    |
| Computerization | 10      | Stafford  | 4    |
| Reorganization  | 20      | Houston   | 1    |
| Newbenefits     | 30      | Stafford  | 4    |

#### DEPENDENT

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

#### Relational database schema

- For a given relational database with relations R<sub>1</sub>,R<sub>2</sub>,...,R<sub>m</sub>
  - A relational database schema S is a set of relation schemas
  - $S = \{R_1, R_2, ..., R_m\}$  and a set of integrity constraints
  - e.g., COMPANY = {EMPLOYEE, DEPARTMENT, DEPT\_LOCATIONS, PROJECT, WORKS\_ON, DEPENDENT}
  - Referential integrity constraint: used to maintain consistency among tuples in two relations

### Foreign key

- Let R1 and R2 be two relations. A set of attributes K in R1 is a foreign key of R1
  - The attributes in K have the same domain(s) as the primary key attributes of R2
  - A value of K in a tuple ti of R1 either occurs as a value of primary key in some tuple of tj of R2 or is NULL
  - ti[K] = tj[primary key]
- R1 is called the referencing relation and R2 is called the referenced relation

### What we learned today?

- Relational data model
- Constraints in the model

## Thank you!