第9章二次型

1. 下列矩阵中,是正定矩阵的是(

$$(\mathbf{A})\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

$$(B)\mathbf{B} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 5 & 0 \\ -1 & 0 & -2 \end{bmatrix}$$

$$(C) \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

$$(D)\mathbf{D} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 5 \end{bmatrix}$$

2. 设二次型 $f(x_1,x_2,x_3) = x^T A x = x_1^2 + 5x_2^2 + x_3^2 - 4x_1x_2 + 2x_2x_3$,则对任意 $x \neq 0$,均 有(

 $(A) f(x_1, x_2, x_3) > 0$

(B) $f(x_1, x_2, x_3) \geqslant 0$

(C) $f(x_1, x_2, x_3) < 0$

(D) $f(x_1, x_2, x_3) \leq 0$

3. 设A为 3 阶实对称矩阵,将A的第 1 行元素乘 2 得到矩阵 B,再将矩阵 B的第 1 列元素乘 2 得 到矩阵 C,若矩阵 A 可逆,则矩阵 A^{-1} 与矩阵 C^{-1} ().

(A) 合同但不相似

(B) 相似但不合同

(C) 合同且相似

(D) 不合同也不相似

4. 设二次型 $f(x_1, x_2, x_3) = x^T A x$ 的秩为 1, A 为 3 阶实对称矩阵, 且 A 中各行元素之和为 3,则 f 在正交变换 x = Qy 下的标准形为 .

5. 设二次型 $f(x_1,x_2,x_3) = (x_1+x_2+x_3)^2+(x_1-x_2-2x_3)^2+(x_1-x_2+ax_3)^2$ 的秩等于 2, 则 a =____.

6. 若二次型

$$f(x_1, x_2, x_3) = x_1^2 + ax_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 2ax_1x_3$$

的正、负惯性指数都是 1,则 a =____.

8. 已知 $f(x_1,x_2,x_3) = 5x_1^2 + 5x_2^2 + cx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为 2. 确定常数 c 的值,并 求正交变换 x = Qy, 化二次型 f 为标准形.

9. 设实对称矩阵
$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{bmatrix}$$
,求使得二次型 $f_1(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{x}$

 $x^{T}A^{*}x$ 都化为标准形的正交变换x = Qy,并写出它们的标准形.

10. 设
$$\mathbf{A}$$
为3阶实对称矩阵,且有可逆矩阵 $\mathbf{P} = \begin{bmatrix} 1 & -1 & b \\ 1 & a & 0 \\ 1 & 0 & 1 \end{bmatrix}$ 满足 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$,求:

- (1) 二次型 $x^{T}Ax$ 的规范形及二次型 $x^{T}A^{*}x$ 的标准形;
- $(2)(A^*)^{-1}$.

B维.

- 1. 设 $\mathbf{A} = (a_{ij})_{n \times n}$,则二次型 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n} (a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n)^2$ 的矩阵 是(
 - $(\mathbf{A})\mathbf{A}^2$
- $(B)A + A^{T}$
- $(\mathbf{C})\mathbf{A}^{\mathrm{T}}\mathbf{A}$
- $(D)AA^{T}$
- **2.** 设 A 为 3 阶实对称矩阵, A_{ij} 是 A 中元素 a_{ij} 的代数余子式, $i,j = 1,2,3,x = [x_1,x_2,x_3]^T$, $y = [y_1, y_2, y_3]^T$,若 $f(x_1, x_2, x_3) = x^T A x$ 经正交变换 x = P y 化为 $3y_1^2 - 2y_2^2 + y_3^2$,则 $g(x_1, x_2, x_3) = x^T A x$ 经正交变换 x = P y 化为 $y_1^2 - 2y_2^2 + y_3^2$,则 $y_2^2 - y_3^2 + y_3^2 = x_1 + y_$ $\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{A_{ij}}{|A|} x_i x_j$ 经可逆变换 x = Qy 可化为规范形().
 - $(A) y_1^2 + y_2^2 + y_3^2$

(B) $y_1^2 + y_2^2 - y_3^2$

(C) $-y_1^2 + y_2^2 - y_3^2$

- (D) $-y_1^2 y_2^2 y_3^2$
- 3. 设 A 为 3 阶实对称矩阵, $A^2 + 2A = O$,r(A) = 2,且 A + kE 为正定矩阵,其中 E 为 3 阶单位 矩阵,则 k 应满足的条件是(
 - (A)k > 0

 $(B)k \geqslant 0$

(C)k > 2

- $(D)k \geqslant 2$
- 4. 下列二次型中,是正定二次型的是(
- $(A) f_1(x_1, x_2, x_3, x_4) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_4)^2 + (x_4 x_1)^2$
- (B) $f_2(x_1,x_2,x_3,x_4) = (x_1+x_2)^2 + (x_2+x_3)^2 + (x_3+x_4)^2 + (x_4+x_1)^2$
- (C) $f_3(x_1,x_2,x_3,x_4) = (x_1-x_2)^2 + (x_2+x_3)^2 + (x_3-x_4)^2 + (x_4+x_1)^2$
- (D) $f_4(x_1, x_2, x_3, x_4) = (x_1 x_2)^2 + (x_2 + x_3)^2 + (x_3 + x_4)^2 + (x_4 + x_1)^2$
- 5. 设 3 阶矩阵 A 的列向量组为 $\alpha_1,\alpha_2,\alpha_3$,行向量组为 β_1,β_2,β_3 ,即 $A = [\alpha_1,\alpha_2,\alpha_3] = \beta_2$

$$B = [-\alpha_1, \alpha_2, -\alpha_3]$$
与 $C = \begin{bmatrix} -\beta_1 \\ \beta_2 \\ -\beta_3 \end{bmatrix}$ 均是对称矩阵,则 B 与 C ().

(A) 相似但不合同

(B) 合同但不相似

微信公众号: 神灯考研

客服微信: KYFT104 QQ群: 118105451

(C) 不相似也不合同

- (D) 相似且合同
- 6. 实二次型 $f(x_1,x_2,\dots,x_n)$ 的秩为 r,符号差为 s,且 f 和一 f 对应的矩阵合同,则必有(
- (A)r 是偶数,s=1

(B)r 是奇数,s=1

(C)r 是偶数,s=0

- (D)r 是奇数,s=0
- 7. 设 3 阶实对称矩阵 A 的各行元素之和均为 2, 其主对角线元素之和为 5, 秩 r(A) = 2, 则二次型 $f(x_1,x_2,x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 满足条件 $x_1^2 + x_2^2 + x_3^2 = 1$ 的最大值为(
 - (A) $\frac{1}{5}$

(C)2

(D)3

- 8. 设二次型 $f(x_1,x_2,x_3) = (x_1 + x_2)^2 + (x_2 + kx_3)^2 + (x_3 + x_1)^2$ 的秩为 2,则该二次型经正交 变换所得的标准形为
- 9. 设 A 为 4 阶实对称矩阵,且 $A^2 + A = 0$. 若 A 的秩为 3,则二次型 $f(x_1, x_2, x_3, x_4) = x^T A x$ 在 正交变换下的标准形为 .
- 10. 若 $f(x_1, x_2, x_3) = x_1^2 + 2ax_1x_2 2x_1x_3 + x_2^2 + 4x_2x_3 + 5x_3^2$ 的规范形为 $y_1^2 + y_2^2 + y_3^2$,则 a 的 取值范围为
- 11. 已知 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \boldsymbol{\alpha}_2 = \begin{bmatrix} a \\ 1 \end{bmatrix}, \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, 若二次型 f(x_1, x_2) = \sum_{i=1}^{L} (\boldsymbol{\alpha}_i, \boldsymbol{x})^2$ 正定,其中 $(\boldsymbol{\alpha}_i, \boldsymbol{x})$ 表 示向量 α_i , x 的内积,则 a 的取值范围是.

12. 已知
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & -4 \end{bmatrix}$$
, $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -5 \end{bmatrix}$, 若存在可逆矩阵 \mathbf{C} , 使 $\mathbf{C}^{\mathsf{T}}\mathbf{A}\mathbf{C} = \mathbf{A}$, 则 $\mathbf{C} = \mathbf{A}$

- 13. 二次型 $f(x_1,x_2,x_3) = 2x_1x_2 + 2x_1x_3 6x_2x_3$ 的正惯性指数为
- 14. 设 A 是 3 阶实对称矩阵, $\lambda_1 = \lambda_2 = 3$ 是 A 的二重特征值, $\alpha_1 = [1,1,0]^T$, $\alpha_2 = [2,1,1]^T$, $\alpha_3 = [1, -1, 2]^T$ 都是 A 的属于特征值 3 的特征向量. 又设二次型 $f(x) = x^T Ax$ 的符号差为 2,则矩 阵 A =
 - 15. 设 α 为3维实单位列向量,求:
 - (1) 齐次线性方程组($E-\alpha\alpha^{T}$)x=0的通解;
 - (2) 矩阵方程($E \alpha \alpha^{T}$) $X = O_{3\times 3}$ 的全部解;
 - (3) 二次型 $f(x) = x^{\mathrm{T}}(E \alpha \alpha^{\mathrm{T}})x$ 的秩与正惯性指数.
- 16. 设二次型 $f(x_1, x_2, x_3) = x^T Ax(A = 3)$ 阶实对称矩阵) 经正交变换x = Qy 化为标准形 $2y_1^2 = y_2^2$ $y_2^2 - y_3^2$. 又设 $A^* \alpha = \alpha$, 其中 A^* 是 A 的伴随矩阵, $\alpha = [1, 1, -1]^T$.
 - (1) 求正交矩阵 Q;
 - (2) 求 $f(x_1,x_2,x_3)$ 的表达式;
 - (3) 用配方法将 $f(x_1,x_2,x_3)$ 化为标准形,写出标准形和配方法对应的可逆线性变换.
 - 17. 已知矩阵 $A = \begin{bmatrix} 8 & 2 & 0 \end{bmatrix}$ 可相似对角化.
 - (1) 求常数 a 的值;

沙佐/一人/シロー アラホルアコメエエ

(2) 求正交变换 x = Py,使得二次型 $f = x^T Ax$ 化为标准形,并写出标准形.

18. 已知
$$f(x,y) = x^2 + 4xy + y^2$$
,求正交变换 $\begin{bmatrix} x \\ y \end{bmatrix} = P\begin{bmatrix} u \\ v \end{bmatrix}$ 中的矩阵 P ,使得

$$f(x,y) = 2u^2 + 2\sqrt{3}uv.$$

19. 设矩阵
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & k & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
,已知 \mathbf{A} 的一个特征值为 3.

- (1) 求 k;
- (2) 求矩阵 P,使(AP) $^{\mathrm{T}}(AP)$ 为对角矩阵.
- 20. 设 A 为 m 阶实对称矩阵且正定,B 为 $m \times n$ 实矩阵, B^{T} 为 B 的转置矩阵. 证明: $B^{T}AB$ 为正定 矩阵的充分必要条件是 r(B) = n.
 - 21. (1) 设 n 元实二次型 $f(x_1,x_2,\dots,x_n) = x^T A x$,其中 A 有特征值 $\lambda_1,\lambda_2,\dots,\lambda_n$,且满足 $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$,

证明:对任意n维列向量x,有

$$\lambda_1 x^{\mathrm{T}} x \leqslant x^{\mathrm{T}} A x \leqslant \lambda_n x^{\mathrm{T}} x;$$

 $f(x_1, x_2, x_3)$ 的最大值.

- 1. 设 \mathbf{A} 是 3 阶实对称矩阵, $\lambda = 5$ 是 \mathbf{A} 的二重特征值,对应的特征向量为 $\boldsymbol{\xi}_1 = [1, -1, 2]^T$, $\boldsymbol{\xi}_2 = [1, -1, 2]^T$, $\boldsymbol{\xi}_3 = [1, -1, 2]^T$ $[1,2,1]^{\mathrm{T}}$,则二次型 $f(x_1,x_2,x_3) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ 在 $\mathbf{x}_0 = [1,5,0]^{\mathrm{T}}$ 的值 $f(1,5,0) = \mathbf{x}_0^{\mathrm{T}} \mathbf{A} \mathbf{x}_0 \mid_{\mathbf{x}_0 = [1,5,0]^{\mathrm{T}}} =$
- 2.(1)设二次型 $f(x,y,z) = 2x^2 + y^2 4xy 4yz$,用正交变换 x = Qy 将其化为标准形,并写 出 **Q**;
 - (2) 求函数 $g(x,y,z) = \frac{2x^2 + y^2 4xy 4yz}{x^2 + y^2 + z^2} (x^2 + y^2 + z^2 \neq 0)$ 的最大值,并求出一个最大值点.
 - 3. 已知二次型 $f(x_1, x_2, x_3) = [x_1, x_2, x_3] \begin{bmatrix} 1 & -4 & 6 \\ 0 & a & -12 \\ 0 & 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ 的规范形为 z_1^2 .
 - (1) 求常数 a,b 的值;
 - (2) 求一个正交变换 x = Qy,将二次型 $f(x_1, x_2, x_3)$ 化为标准形.
- **4.** (1) 设 $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2 + 6x_3^2 2x_1x_2 + 2x_1x_3 6x_2x_3$,用可逆线性变换将 f 化为标 准形,求出所作的可逆线性变换,并说明二次型的对应矩阵 A 是正定矩阵;

(2) 设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -3 \\ 1 & -3 & 6 \end{bmatrix}$$
,求可逆矩阵 \mathbf{D} ,使 $\mathbf{A} = \mathbf{D}^{\mathrm{T}}\mathbf{D}$.

- 5. 设方阵 A_1 与 B_1 合同, A_2 与 B_2 合同,证明: $\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ 与 $\begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$ 合同.
- 6. 设 A 与 B 均为正交矩阵,并且 |A|+|B|=0.证明:A+B 不可逆.

微信公众号【神灯考研】 考研人的精神家园