Extreme values: Iterative methods.

Discrete Mathematics and Optimization Bioinformatics

1. Iterative methods

How to find extreme values?

Definition

An iterative method to find an extreme value of a function $f:D\subset\mathbb{R}^n\to\mathbb{R}$ is a procedure to find a sequence

$$\mathbf{x}_k = h(\mathbf{x}_{k-1}), \ k \ge 1,$$

from some initial value \mathbf{x}_0 such that \mathbf{x}_k converges to the optimal value.

Key issues:

- Convergence: Find a region D such that, for $\mathbf{x}_0 \in D$, \mathbf{x}_k converges to the optimal value of f.
- Efficiency: $\epsilon_k = \|\mathbf{x}_k \mathbf{r}\|$ the error at k-th iteration. Convergence is of the order p if $\frac{\epsilon_{k+1}}{\epsilon_{k}^p} \leq M < 1$.
- Robustness: range of functions where the method is efficient
- Stability: convergence and efficiency are stable for small changes in starting point.

1. Iterative methods

How to find extreme values?

Definition

An iterative method to find an extreme value of a function $f:D\subset\mathbb{R}^n\to\mathbb{R}$ is a procedure to find a sequence

$$\mathbf{x}_k = h(\mathbf{x}_{k-1}), \ k \ge 1,$$

from some initial value \mathbf{x}_0 such that \mathbf{x}_k converges to the optimal value.

Examples of iterative methods

- Newton method.
- Method of Steepest Descent.

Most modern iterative methods are variations of one of the two improving their features.

Recall the univariate Newton method for finding zeroes of a differentiable function.

Definition

Let $g : \mathbb{R} \to \mathbb{R}$ be differentiable and $x_0 \in \mathbb{R}$. The Newton method consists in, starting at x_0 , defining the sequence

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

Recall the univariate Newton method for finding zeroes of a differentiable function.

Definition

Let $g : \mathbb{R} \to \mathbb{R}$ be differentiable and $x_0 \in \mathbb{R}$. The Newton method consists in, starting at x_0 , defining the sequence

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

- There are various sufficient conditions which guarantee that the method converges to a solution r of g(x) = 0:
 - ▶ If g(a) < 0, g(b) > 0, $|g'(x)| \ge m$, $|g''(x)| \le M$ (smoothness of g)
 - $x_0 \in (r-c, r+c)$ (closedness of x_0 to the solution).
- When it converges it does so efficiently $|x_{k+1} r| \le C|x_k r|^2$ (quadratic convergence).

Recall the univariate Newton method for finding zeroes of a differentiable function.

Definition

Let $g : \mathbb{R} \to \mathbb{R}$ be differentiable and $x_0 \in \mathbb{R}$. The Newton method consists in, starting at x_0 , defining the sequence

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

Example:
$$g(x) = x^3 - 2x^2 + x - 2$$

<i>X</i> ₀	1.2	4	1
<i>X</i> ₁	3.57730	2.35849	crack!
<i>X</i> ₂	2.70966	2.07345	
<i>X</i> 3	2.22393	2.00399	
<i>X</i> ₄	2.03212	2.00001	

Recall the univariate Newton method for finding zeroes of a differentiable function.

Definition

Let $g : \mathbb{R} \to \mathbb{R}$ be differentiable and $x_0 \in \mathbb{R}$. The Newton method consists in, starting at x_0 , defining the sequence

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

Example in optimization: Minimum of $g(x) = x^2 + 3e^{-x}$.

- $g''(x) = 2 + 3e^{-x} > 0$: convex function (has a global minimum).
- $g'(x) = 2x 3e^{-x} = 0$ (critical points)

$$x_{k+1} = x_k - \frac{2x_k - 3e^{-x_k}}{2 + 3e^{-x_k}}.$$

Find critical points of f: find zeroes of $\nabla f = \mathbf{0}$.

$$\nabla f: \mathbb{R}^n \to \mathbb{R}^n
\mathbf{x} = (x_1, \dots, x_n) \mapsto \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$

The gradient of $g = \nabla f$ is the Hessian $\nabla^2 f$ of f

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$\mathbf{x}_{k+1} = \mathbf{x}_k - (\nabla \mathbf{g}(\mathbf{x}_k))^{-1} \mathbf{g}(\mathbf{x}_k)$$

Alternatively,

$$abla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

If \mathbf{x}_0 is 'close' to a zero of \mathbf{g} and \mathbf{g} is sufficiently smooth, then \mathbf{x}_k tends to \mathbf{r} with $\mathbf{g}(\mathbf{r}) = \mathbf{0}$.

(ESCI) Iterative methods 4 /

イロト (部) (を注) (注)

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$abla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

If $\mathbf{g}(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_n(\mathbf{x}))$, each step requires solving the linear system

$$g_1(\mathbf{x}_k) - \nabla g_1(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) = 0,$$

:

$$g_n(\mathbf{x}_k) - \nabla g_n(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) = 0$$

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$\nabla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Example: Zero of $g(x, y) = (4x^3 + 4xy^2, 4x^2y + 4y^3)$:

- Starting point (a, a): $g(a, a) = (8a^3, 8a^3)$.
- Compute the gradients of components of g

$$\nabla g_1(x,y) = (12x^2 + 4y^2, 8xy), \nabla g_1(a,a) = (16a^2, 8a^2)$$
$$\nabla g_2(x,y) = (8xy, 4x^2 + 12y^2), \nabla g_2(a,a) = (8a^2, 16a^2)$$

• First iteration: $(a, a) \rightarrow (x, y)$

$$16a^{2}(x-a) + 8a^{2}(y-a) = -8a^{3}$$
$$8a^{2}(x-a) + 16a^{2}(y-a) = -8a^{3}$$

(ロト(日ト(日)(夏) を見) 夏 グ Q (ご ESCI) Iterative methods 5/6

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$\nabla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Example: Zero of $g(x, y) = (4x^3 + 4xy^2, 4x^2y + 4y^2)$:

- Starting point (a, a): $g(a, a) = (8a^3, 8a^3)$.
- First iteration: $(a, a) \rightarrow (x, y)$

$$16a^{2}(x-a) + 8a^{2}(y-a) = -8a^{3}$$
$$8a^{2}(x-a) + 16a^{2}(y-a) = -8a^{3}$$

• Solution is (2a/3, 2a/3). Iteration gives $((2/3)^k a, (2/3)^k a) \rightarrow (0, 0)$. (Obvious in this case)

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$abla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Use in optimization: Minimum of $f(x, y) = x^4 + 2x^2y^2 + y^4$.

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$\nabla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Use in optimization: Minimum of $f(x, y) = x^4 + 2x^2y^2 + y^4$.

• *f* is convex: global minimum.

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$\nabla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Use in optimization: Minimum of $f(x, y) = x^4 + 2x^2y^2 + y^4$.

- f is convex: global minimum.
- Solve $g(x, y) = \nabla f(x, y) = (4x^3 + 4xy^2, 4x^2y + 4y^3) = (0, 0).$

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$\nabla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Use in optimization: Minimum of $f(x, y) = x^4 + 2x^2y^2 + y^4$.

- f is convex: global minimum.
- Solve $g(x, y) = \nabla f(x, y) = (4x^3 + 4xy^2, 4x^2y + 4y^3) = (0, 0).$

•
$$Hf(x,y) = \begin{pmatrix} 12x^2 + 4y^2 & 8xy \\ 8xy & 4x^2 + 12y^2 \end{pmatrix}$$

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$abla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Use in optimization: Minimum of $f(x, y) = x^4 + 2x^2y^2 + y^4$.

- f is convex: global minimum.
- Solve $g(x,y) = \nabla f(x,y) = (4x^3 + 4xy^2, 4x^2y + 4y^3) = (0,0).$
- $Hf(x,y) = \begin{pmatrix} 12x^2 + 4y^2 & 8xy \\ 8xy & 4x^2 + 12y^2 \end{pmatrix}$
- If starting point is (1,1), the next point (x,y) is the solution of the system

Iterative methods

$$16(x-1) + 8(y-1) = -8$$
$$8(x-1) + 16(y-1) = -8$$

giving (2/3, 2/3). Iteration gives $((2/3)^k, (2/3)^k) \to (0, 0)$.

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$abla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Optimization of quadratic functions:

- $f(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T \mathbf{b} + c$, Q invertible.
- $\mathbf{g}(\mathbf{x}) = \nabla f(\mathbf{x}) = 2Q\mathbf{x} + \mathbf{b}$
- Given x₀,

$$\mathbf{x}_1 = \mathbf{x}_0 - \frac{1}{2}Q^{-1}(2Q(\mathbf{x}_0) + \mathbf{b}) = -\frac{1}{2}Q^{-1}(\mathbf{b}),$$

which is the critical point of f.

For quadratic functions with ${\it Q}$ invertible the Newton method reaches the critical point in one step.

(ESCI)

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$abla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Optimization of quadratic functions: Example

•
$$f(x,y) = 2x^2 + 2xy + y^2 - x + 2y + 3 = (x,y) \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + (x,y) \begin{pmatrix} -1 \\ 2 \end{pmatrix} + 3.$$

- Critical point $(x_c, y_c) = -\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3/2 \\ -5/2 \end{pmatrix}$.
- Since Q is positive definite, (3/2, -5/2) is a global minimum of f.

Definition

Let $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and $\mathbf{x}_0 \in \mathbb{R}$. The Newton method consists in defining the sequence

$$\nabla \mathbf{g}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)=-\mathbf{g}(\mathbf{x}_k).$$

Newton method has quadratic convergence under some conditions:

Theorem

Let $f \in \mathcal{C}^3(\mathbb{R}^n)$. If f has a critical point at \mathbf{x}_c and $Hf(\mathbf{x}_c)$ is invertible then, for every \mathbf{x}_0 close to \mathbf{x}_c the Newton method converges to \mathbf{x}_c with quadratic order.

The key fact is that Newton method uses second order approximation to $\mathbf{g}(\mathbf{x}) = \nabla f(\mathbf{x})$ in Taylor expansion:

$$\nabla f(\mathbf{x}) = \nabla f(\mathbf{x}_0) + \mathbf{x}_0^T H f(\mathbf{x}_0) \mathbf{x}_0 + o(\|\mathbf{x} - \mathbf{x}_0\|^2).$$

Newton method uses the quadratic term (a quadratic function) and takes its minimum as approximation to the minimum of f.

(ESCI) Iterative methods 5/6

Summary

- Iterative methods define successive approximations to an optimal value of a function.
- Key aspects of iterative methods are convergence, efficiency, stability and robustness.
- Newton method is an iterative method based on second order approximation of sufficiently smooth functions.
- With a good guess for initial point, it has quadratic order of convergence.
- For quadratic functions it converges in one step.
- There are variations of the Newton method:
 - Quasi Newton methods (trying to avoid computation of the Hessian).
 - Levenberg-Marquardt algorithm (modification when Hessian is not definite in nonlinear least squares minimization)
 - **>**