Power-Aware Scheduling with Dynamic Priorities

Raj Rajkumar Lecture #11

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Carnegie Mellon

Outline

- Static voltage scaling with EDF
- Cycle-conserving Dynamic Voltage Scaling
- Look-Ahead Dynamic Voltage Scaling

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Quiz 2 Statistics

Average 65.49

Std. Deviation 9.85

Max 77

Min 40

Bectrical & Computer 18-648: Embedded Real-Time Systems

Carnegie Mellon

Static Voltage Scaling: Example Taskset

- Taskset: $\tau_1 = (1, 4)$ and $\tau_2 = (2, 8)$
- $U = 1/4 + 2/8 = 0.5 @ F_{max}$
- What is the value of scaling factor k at which the taskset is still schedulable @ (F_{max}/k) ?
 - U = (1k)/4 + (2k)/8 = k (1/4 + 2/8) = 1
 - Solving for k,
 - k = 2
 - Therefore, we should operate at $f = F_{max} / 2$ in order to meet all task deadlines.

18-648: Embedded Real-Time Systems

Carnegie Mellon

Static Voltage Scaling: Example (1 of 2)

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Cycle-Conserving EDF

- Idea: When a task instance is released, we know its worst-case execution time but not its actual execution time. Let's assume worst-case execution on arrival.
- When the task instance completes, the actual cycles used are compared against the worst case, and cycles saved are given to run other remaining tasks at lower frequency.

select_frequency():

use lowest frequency such that $U^1 + U^2 + ... U^n \le 1$

upon task_release (τ_i) :

set U^i to C_i / T_i

select_frequency()

upon $task_completion(\tau_i)$:

set U^i to c_i / T_i // c_i is the actual cycles used in this invocation select_frequency()

18-648: Embedded Real-Time Systems

Carnegie Mellon

Cycle-Conserving EDF Example

Task	C_{i}	Period	U_{i}
1	3	8	0.375
2	3	10	0.300
3	1	14	0.071

A atual	Task	Instance #1 c _i	Instance #2 c _i
Actual Execution Times at f _{max}	1	2	1
	2	1	1
	3	1	1

Look-Ahead EDF

- Defers as much work as possible.
- Sets the operating frequency to meet the minimum work that must be done now to ensure all future deadlines to be met.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Conclusions

- RT-DVS schemes are designed to ensure
 - predictability while saving as much energy as possible in real-time systems.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems