1

0.1 Дасгал, бодлогууд

Дараалсан интегралуудаар өгөгдсөн хоёрлосон интегралын интегралчлах мужийн хилүүдийг олж зургаар дүрсэл.

1.
$$\int_{1}^{3} dx \int_{x^{2}}^{x+9} f(x,y)dy$$

$$2. \int_{0}^{4} dy \int_{y}^{10-y} f(x,y)dx$$

3.
$$\int_{1}^{3} dx \int_{\frac{x}{3}}^{2x} f(x,y) dy$$

4.
$$\int_{-6}^{2} dy \int_{\frac{y^2}{4} - 1}^{2 - y} f(x, y) dx$$

5.
$$\int_{0}^{3} dx \int_{0}^{\sqrt{25-x^2}} f(x,y)dy$$

6.
$$\int_{-1}^{2} dx \int_{x^2}^{x+2} f(x,y) dy$$

өгөгдсөн D мужийн хувьд $\iint\limits_D f(x,y) dx dy$ интегралыг дараалсан интегралд шилжүүлж хязгааруудыг тавь.

7.
$$O(0;0), A(1;0), B(1;1)$$
 цэгүүдэд оройтой гурвалжин

8.
$$x=3; x=5; 3x-2y+4=0; 3x-2y+1=0$$
 параллелограмм

9.
$$x^2 + y^2 \ge 0, \ x \ge 0, \ y \ge 0$$

10.
$$x + y \le 1, \ x - y \le 1, \ x \ge 0$$

11.
$$y \ge x^2, \ y \le 4 - x^2$$

12.
$$x \ge y^2, \ x - y \le 2$$

13.
$$O(0;0), A(2;0), B(1;1), C(0;1)$$
 цэгүүдэд оройтой трапец

14.
$$(x-2)^2 + (y-3)^2 \le 4$$

15.
$$\frac{x^2}{4} + \frac{y^2}{9} \le 1$$

16.
$$y = x, y = 2x, x + y = 6$$
 талуудтай гурвалжин

17.
$$y - 2x \le 0, \ 2y - x \ge, \ xy \le 2$$

18.
$$y=x,\ y=x+3,\ y=-2x+1,\ y=-2x+5$$
 талуудтай параллелограмм

Интегралчлах хувьсагчуудын дарааллыг соль.

$$19. \qquad \int\limits_{0}^{1} dx \int\limits_{2x}^{3x} f(x,y) dy$$

20.
$$\int_{0}^{1} dy \int_{y}^{\sqrt{y}} f(x,y) dx$$

21.
$$\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x,y)dy$$

22.
$$\int_{0}^{4} dx \int_{3x^{2}}^{12x} f(x, y) dy$$

23.
$$\int_{0}^{1} dy \int_{\frac{y^{2}}{2}}^{\sqrt{3-y^{2}}} f(x,y)dx$$

24.
$$\int_{0}^{2} dx \int_{2x}^{6-x} f(x,y)dy$$

25.
$$\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$$

26.
$$\int_{-2}^{2} dx \int_{-\sqrt{\frac{4-x^2}{2}}}^{\sqrt{\frac{4-x^2}{2}}} f(x,y)dy$$

27.
$$\int_{0}^{a} dx \int_{\frac{a^{2}-x^{2}}{2a}}^{\sqrt{a^{2}-x^{2}}} f(x,y)dy$$

28.
$$\int_{0}^{1} dx \int_{0}^{x} f(x,y)dy + \int_{1}^{2} dx \int_{0}^{2-x} f(x,y)dy$$

Туйлын координатын системд шилжүүлж бод.

29.
$$\int_{0}^{a} dx \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} dy$$

30.
$$\int_{0}^{R} dx \int_{0}^{\sqrt{R^2 - x^2}} \ln(1 + x^2 + y^2) dy$$

31.
$$\iint_{D} (h - 2x - 3y) dx dy$$
, $D: x^2 + y^2 \le R^2$, $h = const$

32.
$$\iint_{D} \sqrt{R^2 - x^2 - y^2} dx dy, \quad D: x^2 + y^2 \le Rx$$

33.
$$\iint\limits_D \sqrt{a^2-x^2-y^2} dx dy, \quad D \,:\, (x^2+y^2)^2 \,=\, a^2(x^2-y^2), \ x \,\geq\, 0$$
 (Бернуллийн лемнискат)

өгөгдсөн шугамуудаар хүрээлэгдсэн талбайг хоёрлосон интегралаар бод.

34.
$$xy = 4, y = x, x = 4$$

35.
$$y = x^2$$
, $4y = x^2$, $y = 4$

36.
$$y = x^2$$
, $4y = x^2$, $x = 2$, $x = -2$

37.
$$y^2 = 4 + x$$
, $x + 3y = 0$

38.
$$ay = x^2 - 2ax, y = x$$

39.
$$y = \ln x, \ x - y = 1, \ y = -1$$

40.
$$ax = y^2 - 2ay$$
, $x + y = 0$

41.
$$y = \sin x, \ y = \cos x, \ x = 0$$

42.
$$y^2 = a^2 - ax$$
, $y = a + x$

43.
$$\rho = 4(1 + \cos \varphi), \ \rho \cos \varphi = 3$$

44.
$$\rho = a(1 - \cos \varphi), \ \rho = a$$
 (кардиодын гадна талд байгаа хэсэг)

өгөгдсөн шугамуудаар зааглагдсан талбайн массын төвийг хоёрлосон интегралаар тодорхойл.

45.
$$y = x^2, y = 0, x = 4$$

$$46. \quad y^2 = ax, \ y = x$$

47.
$$x^2 + y^2 = a^2$$
, $y = 0$

48.
$$Ox$$
 тэнхлэг ба $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ астроидаар хүрээлэгдсэн талбай

49.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 эллипсээс Ox тэнхлэгээр таслагдсан хэсэг

50.
$$y = a + \frac{x^2}{a}, \ y = 2x, \ x = 0$$
 шугамуудаар хүрээлэгдсэн талбайн инерцийн моментыг Oy тэнхлэгийн хувьд тодорхойл

51.
$$A(1;1),\ B(2;1),\ C(3;3)$$
 цэгүүдэд оройтой гурвалжны талбайн инерцийн моментыг Ox тэнхлэгийн хувьд бод

өгөгдсөн гадаргуунуудаар хязгаарлагдсан биеийн эзэлхүүнийг хоёрлосон интегралаар тодорхойл.

52.
$$z = x^2 + y^2$$
, $x + y = 4$, $x = 0$, $y = 0$, $z = 0$

53.
$$z = x + y + a$$
, $y^2 = ax$, $x = a$, $z = 0$, $y = 0$, $(y > 0)$

0.1. ДАСГАЛ, БОДЛОГУУД

54. $x^2 + y^2 = a^2$, $x^2 + z^2 = a^2$

55.
$$z^2 = xy$$
, $x = a$, $x = 0$, $y = a$, $y = 0$

56.
$$az = x^2 - y^2$$
, $z = 0$, $x = a$

57.
$$z^2 = xy$$
, $x + y = a$

Туйлын координатад шилжүүлж бод.

58.
$$z^2 = (x+a)^2$$
, $x^2 + y^2 = a^2$

59.
$$z = \frac{4}{x^2 + y^2}$$
, $z = 0$, $x^2 + y^2 = 1$, $x^2 + y^2 = 4$

60.
$$az = x^2 + y^2$$
, $z = 0$, $x^2 + y^2 \pm ax = 0$

61.
$$az = a^2 - x^2 - y^2$$
, $z = 0$, $x^2 + y^2 \pm ax = 0$

62.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Гадаргуугийн талбайг хоёрлосон интегралаар тодорхойл.

63. $2z=x^2$ цилиндр гадаргуугаас $y=\frac{x}{2},\ y=2x,\ x=2\sqrt{2}$ хавтгайнуудаар таслагдсан гадаргуу

1

64. $z^2 = 2xy$ конус гадаргуугаас $x = a, \ y = a, \ x \ge 0, \ y \ge 0$ хавтгайнуудаар таслагдсан хэсэг

65. $y^2 + z^2 = x^2$ конус гадаргуугаас $x^2 + y^2 = a^2$ цилиндрийн дотор таслагдсан хэсэг

66. az = xy гадаргуугаас $x^2 + y^2 = a^2$ цилиндрийн дотор таслагдсан хэсэг

67. $x^2 + y^2 = z^2$ конус гадаргуугаас $z^2 = 2px$ цилиндрийн дотор таслагдсан хэсэг

68. $x^2 + z^2 = a^2$ цилиндр гадаргуугийн $x^2 + y^2 = a^2$ цилиндрийн дотор орших хэсэг

69. $x^2 + y^2 + z^2 = a^2$ бөмбөрцгийн $x^2 + y^2 \pm ax = 0$ цилиндрийн дотор орших хэсэг

70. $x^2 + y^2 = 2az$ параболоидын $x^2 + y^2 = 3a^2$ цилиндрийн дотор орших хэсгийн гадаргуу