(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 December 2000 (14.12.2000)

PCT

(10) International Publication Number WO 00/75120 A1

(51) International Patent Classification⁷: C07D 277/38, 277/62, 417/04, 417/14, C07F 9/6539, A61K 31/426, 31/427, A61P 35/00

(21) International Application Number: PCT/US00/15188

(22) International Filing Date: 2 June 2000 (02.06.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/137,810

4 June 1999 (04.06.1999) US

- (71) Applicant: AGOURON PHARMACEUTICALS, INC. [US/US]; 10350 North Torrey Pines Road, La Jolla, CA 92037-1020 (US).
- (72) Inventors: CHU, Shao, Song; 1604 Jerrilynn Place, Encinitas, CA 92024 (US). ALEGRIA, Larry, Andrew; 9632 Galvin Avenue, San Diego, CA 92126 (US). BENDER, Steven, Lee; 915 Reese Street, Oceanside, CA 92054 (US). BENEDICT, Suzanne, Pritchett; 4648 Narragansett Avenue, San Diego, CA 92107 (US). BORCHARDT, Allen, J.; 5419 Via Carancho, San Diego, CA 92111 (US). KANIA, Robert, Steve; 4284 Corte Favor, San Diego, CA 92130 (US). NAMBU, Mitchell, David; 3105 Ducommun Avenue, San Diego, CA 92122 (US). TEMPCZYK-RUSSELL, Anna, Maria; 4785 Caminito

Borrego, San Diego, CA 92130 (US). SARSHAR, Sepehr; 2460 Oxford Avenue, Cardiff by The Sea, CA 92007 (US).

- (74) Agents: PINO, Mark, J.; Shanks & Herbert, TransPotomac Plaza, Suite 306, 1033 North Fairfax Street, Alexandria, VA 22314 et al. (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DIAMINOTHIAZOLES AND THEIR USE FOR INHIBITING PROTEIN KINASES

(57) Abstract: Diaminothiazole compounds of formula (I) that modulate and/or inhibit the activity of certain protein kinases are described. These pharmaceutical compounds and compositions containing them capable of mediating tyrosine kinase transduction signal in order modulate and/or inhibit unwanted cell proliferation. The invention is also directed to the therapeutic or

prophylactic use of pharmaceutical compositions containing such compounds, and to methods of treating cancer as well as other disease states associated with unwanted angiogenesis and/or cellular proliferation, such as diabetic retinopathy, neovascular glaucoma, rheumatoid arthritis, and psoriasis, by administering effective amounts of such compounds.

DIAMINOTHIAZOLES AND THEIR USE FOR INHIBITTING PROTEIN KINASES

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 60/137,810, filed June 4, 1999.

FIELD OF THE INVENTION

This invention is directed to diaminothiazole compounds that modulate and/or inhibit the activity of certain protein kinases, and to pharmaceutical compositions containing such compounds. The invention is also directed to the therapeutic or prophylactic use of such compounds and compositions, and to methods of treating cancer as well as other disease states associated with unwanted angiogenesis and/or cellular proliferation, by administering effective amounts of such compounds.

10

15

20

BACKGROUND OF THE INVENTION

Protein kinases are a family of enzymes that catalyze phosphorylation of the hydroxy group of specific tyrosine, serine, or threonine residues in proteins.

Typically, such phosphorylation dramatically perturbs the function of the protein, and thus protein kinases are pivotal in the regulation of a wide variety of cellular processes, including metabolisim, cell proliferation, cell differentiation, and cell survival. Of the many different cellular functions in which the activity of protein kinases is known to be required, some processes represent attractive targets for therapeutic intervention for certain disease states. Two examples are angiogenesis and cell-cycle control, in which protein kinases play a pivotal role; these processes are essential for the growth of solid tumors as well as for other diseases.

Angiogenesis is the mechanism by which new capillaries are formed from existing vessels. When required, the vascular system has the potential to generate new capillary networks in order to maintain the proper functioning of tissues and organs. In the adult, however, angiogenesis is fairly limited, occurring only in the process of wound healing and neovascularization of the endometrium during menstruation. See Merenmies et al., *Cell Growth & Differentiation*, 8, 3-10 (1997). On the other hand, unwanted angiogenesis is a hallmark of several diseases, such as retinopathies, psoriasis, rheumatoid arthritis, age-related macular degeneration (AMD), and cancer (solid tumors). Folkman, *Nature Med.*, 1, 27-31 (1995). Protein kinases which have been shown to be involved in the angiogenic process include three members of the growth factor receptor tyrosine kinase family: VEGF-R2 (vascular endothelial growth factor receptor 2, also known as KDR (kinase insert domain receptor) and as FLK-1); FGF-R (fibroblast growth factor receptor); and TEK (also known as Tie-2).

VEGF-R2, which is expressed only on endothelial cells, binds the potent angiogenic growth factor VEGF and mediates the subsequent signal transduction through activation of its intracellular kinase activity. Thus, it is expected that direct inhibition of the kinase activity of VEGF-R2 will result in the reduction of angiogenesis even in the presence of exogenous VEGF (see Strawn et al., *Cancer Research*, 56, 3540-3545 (1996)), as has been shown with mutants of VEGF-R2 which fail to mediate signal transduction. Millauer et al., *Cancer Research*, 56, 1615-1620 (1996). Furthermore, VEGF-R2 appears to have no function in the adult beyond that of mediating the angiogenic activity of VEGF. Therefore, a

selective inhibitor of the kinase activity of VEGF-R2 would be expected to exhibit little toxicity.

Similarly, FGF-R binds the angiogenic growth factors aFGF and bFGF and mediates subsequent intracellular signal transduction. Recently, it has been suggested that growth factors such as bFGF may play a critical role in inducing angiogenesis in solid tumors that have reached a certain size. Yoshiji et al., *Cancer Research*, 57, 3924-3928 (1997). Unlike VEGF-R2, however, FGF-R is expressed in a number of different cell types throughout the body and may or may not play important roles in other normal physiological processes in the adult. Nonetheless, systemic administration of a small-molecule inhibitor of the kinase activity of FGF-R has been reported to block bFGF-induced angiogenesis in mice without apparent toxicity. Mohammadi et al., *EMBO Journal*, 17, 5896-5904 (1998).

5

10

15

20

TEK (also known as Tie-2) is another receptor tyrosine kinase expressed only on endothelial cells which has been shown to play a role in angiogenesis. The binding of the factor angiopoietin-1 results in autophosphorylation of the kinase domain of TEK and results in a signal transduction process which appears to mediate the interaction of endothelial cells with peri-endothelial support cells, thereby facilitating the maturation of newly formed blood vessels. The factor angiopoietin-2, on the other hand, appears to antagonize the action of angiopoietin-1 on TEK and disrupts angiogenesis. Maisonpierre et al., *Science*, 277, 55-60 (1997).

As a result of the above-described developments, it has been proposed to treat angiogenesis by the use of compounds inhibiting the kinase activity of VEGF-R2, FGF-R, and/or TEK. For example, WIPO International Publication No. WO 97/34876 discloses certain cinnoline derivatives that are inhibitors of VEGF-R2, which may be used for the treatment of disease states associated with abnormal angiogenesis and/or increased vascular permeability such as cancer, diabetes, psoriasis, rheumatoid arthritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, arterial restinosis, autoimmune diseases, acute inflammation and ocular diseases with retinal vessel proliferation.

5

10

15

20

In addition to its role in angiogenesis, protein kinases also play a crucial role in cell-cycle control. Uncontrolled cell proliferation is the insignia of cancer. Cell proliferation in response to various stimuli is manifested by a de-regulation of the cell division cycle, the process by which cells multiply and divide. Tumor cells typically have damage to the genes that directly or indirectly regulate progression through the cell division cycle.

Cyclin-dependent kinases (CDKs) are serine-threonine protein kinases that play critical roles in regulating the transitions between different phases of the cell cycle. See, e.g., the articles compiled in *Science*, 274, 1643-1677 (1996). CDK complexes are formed through association of a regulatory cyclin subunit (e.g., cyclin A, B1, B2, D1, D2, D3, and E) and a catalytic kinase subunit (e.g., cdc2 (CDK1), CDK2, CDK4, CDK5, and CDK6). As the name implies, the CDKs display an absolute dependence on the cyclin subunit in order to phosphorylate

their target substrates, and different kinase/cyclin pairs function to regulate progression through specific phases of the cell cycle.

5

10

15

20

It is CDK4 complexed to the D cyclins that plays a critical part in initiating the cell-division cycle from a resting or quiescent stage to one in which cells become committed to cell division. This progression is subject to a variety of growth regulatory mechanisms, both negative and positive. Aberrations in this control system, particularly those that affect the function of CDK4, have been implicated in the advancement of cells to the highly proliferative state characteristic of malignancies, particularly familial melanomas, esophageal carcinomas, and pancreatic cancers. See, e.g., Kamb, *Trends in Genetics*, 11, 136-140 (1995); Kamb et al., *Science*, 264, 436-440 (1994).

The use of compounds as anti-proliferative therapeutic agents that inhibit CDKs is the subject of several patent publications. For example, U.S. Patent No. 5,621,082 to Xiong et al. discloses nucleic acid encoding an inhibitor of CDK6, and European Patent Publication No. 0 666 270 A2 describes peptides and peptide mimetics that act as inhibitors of CDK1 and CDK2. WIPO International Publication No. WO 97/16447 discloses certain analogs of chromones that are inhibitors of cyclin-dependent kinases, in particular of CDK/cyclin complexes such as CDK4/cyclin D1, which may be used for inhibiting excessive or abnormal cell proliferation, and therefore for treating cancer. WIPO International Publication No. WO 99/21845 describes 4-aminothiazole derivatives that are useful as CDK inhibitors.

There is still a need, however, for small-molecule compounds that may be readily synthesized and are effective in inhibiting one or more CDKs or CDK/cyclin complexes. Because CDK4 may serve as a general activator of cell division in most cells, and complexes of CDK4 and D-type cyclins govern the early G₁ phase of the cell cycle, there is a need for effective inhibitors of CDK4, and D-type cyclin complexes thereof, for treating one or more types of tumors. Also, the pivotal roles of cyclin E/CDK2 and cyclin B/CDK1 kinases in the G₁/S phase and G₂/M transitions, respectively, offer additional targets for therapeutic intervention in suppressing deregulated cell-cycle progression in cancer.

5

10

15

20

Another protein kinase, CHK1, plays an important role as a checkpoint in cell-cycle progression. Checkpoints are control systems that coordinate cell-cycle progression by influencing the formation, activation and subsequent inactivation of the cyclin-dependent kinases. Checkpoints prevent cell-cycle progression at inappropriate times, maintain the metabolic balance of cells while the cell is arrested, and in some instances can induce apoptosis (programmed cell death) when the requirements of the checkpoint have not been met. See, e.g., O'Connor, *Cancer Surveys*, 29, 151-182 (1997); Nurse, *Cell*, 91, 865-867 (1997); Hartwell et al., *Science*, 266, 1821-1828 (1994); Hartwell et al., *Science*, 246, 629-634 (1989).

One series of checkpoints monitors the integrity of the genome and, upon sensing DNA damage, these "DNA damage checkpoints" block cell-cycle progression in G₁ and G₂ phases, and slow progression through S phase.

O'Connor, *Cancer Surveys*, 29, 151-182 (1997); Hartwell et al., *Science*, 266,

1821-1828 (1994). This action enables DNA repair processes to complete their tasks before replication of the genome and subsequent separation of this genetic material into new daughter cells takes place. Importantly, the most commonly mutated gene in human cancer, the p53 tumor-suppressor gene, produces a DNA damage checkpoint protein that blocks cell-cycle progression in G₁ phase and/or induces apoptosis (programmed cell death) following DNA damage. Hartwell et al., *Science*, 266, 1821-1828 (1994). The p53 tumor suppressor has also been shown to strengthen the action of a DNA damage checkpoint in G₂ phase of the cell cycle. See, e.g., Bunz et al., *Science*, 282, 1497-1501 (1998); Winters et al., *Oncogene*, 17, 673-684 (1998); Thompson, *Oncogene*, 15, 3025-3035 (1997).

Given the pivotal nature of the p53 tumor suppressor pathway in human cancer, therapeutic interventions that exploit vulnerabilities in p53-defective cancer have been actively sought. One emerging vulnerability lies in the operation of the G₂ checkpoint in p53 defective cancer cells. Cancer cells, because they lack G₁ checkpoint control, are particularly vulnerable to abrogation of the last remaining barrier protecting them from the cancer-killing effects of DNA-damaging agents: the G₂ checkpoint. The G₂ checkpoint is regulated by a control system that has been conserved from yeast to humans. Important in this conserved system is a kinase, CHK1, which transduces signals from the DNA-damage sensory complex to inhibit activation of the cyclin B/Cdc2 kinase, which promotes mitotic entry. See, e.g., Peng et al., *Science*, 277, 1501-1505 (1997); Sanchez et al., *Science*, 277, 1497-1501 (1997). Inactivation of CHK1 has been shown to both abrogate G₂ arrest induced by DNA damage inflicted by either anticancer

agents or endogenous DNA damage, as well as result in preferential killing of the resulting checkpoint defective cells. See, e.g., Nurse, *Cell*, 91, 865-867 (1997); Weinert, *Science*, 277, 1450-1451 (1997); Walworth et al., *Nature*, 363, 368-371 (1993); and Al-Khodairy et al., *Molec. Biol. Cell*, 5, 147-160 (1994).

5

10

15

20

Selective manipulation of checkpoint control in cancer cells could afford broad utilization in cancer chemotherapeutic and radiotherapy regimens and may, in addition, offer a common hallmark of human cancer "genomic instability" to be exploited as the selective basis for the destruction of cancer cells. A number of factors place CHK1 as a pivotal target in DNA-damage checkpoint control. The elucidation of inhibitors of this and functionally related kinases such as Cds1/CHK2, a kinase recently discovered to cooperate with CHK1 in regulating S phase progression (see Zeng et al., *Nature*, 395, 507-510 (1998); Matsuoka, *Science*, 282, 1893-1897 (1998)), could provide valuable new therapeutic entities for the treatment of cancer.

Integrin receptor binding to ECM initiates intracellular signals mediated by FAK (Focal Adhesion Kinase) that are involved in cell motility, cellular proliferation, and survival. In human cancers, FAK overexpression is implicated in tumorigenesis and metastatic potential through its role in integrin mediated signaling pathways.

Tyrosine kinases can be of the receptor type (having extracellular, transmembrane and intracellular domains) or the non-receptor type (being wholly intracellular).

At least one of the non-receptor protein tyrosine kinases, namely, LCK, is believed to mediate the transduction in T-cells of a signal from the interaction of a cell-surface protein (Cd4) with a cross-linked anti-Cd4 antibody. A more detailed discussion of non-receptor tyrosine kinases is provided in Bolen, *Oncogene*, 8, 2025-2031 (1993), which is incorporated herein by reference

5

10

15

20

In addition to the protein kinases identified above, many other protein kinases have been considered to be therapeutic targets, and numerous publications disclose inhibitors of kinase activity, as reviewed in the following: McMahon et al, *Oncologist*, 5, 3-10 (2000); Holash et al., *Oncogene*, 18, 5356-62 (1999); Thomas et al., *J. Biol. Chem.*, 274, 36684-92 (1999); Cohen, *Curr. Op. Chem. Biol.*, 3, 459-65 (1999); Klohs et al., *Curr. Op. Chem. Biol.*, 10, 544-49 (1999); McMahon et al., *Current Opinion in Drug Discovery & Development*, 1, 131-146 (1998); Strawn et al., *Exp. Opin. Invest. Drugs*, 7, 553-573 (1998). WIPO International Publication WO 00/18761 discloses certain substituted 3-cyanoquinolines as protein kinase inhibitors. As is understood by those skilled in the art, it is desirable for kinase inhibitors to possess both high affinity for the target kinase as well as high selectivity versus other protein kinases.

SUMMARY OF THE INVENTION

The present invention relates to compounds falling within formula I below which modulate and/or inhibit the activity of protein kinases, as well as to pharmaceutically acceptable prodrugs, pharmaceutically active metabolites, and pharmaceutically acceptable salts thereof (such compounds, prodrugs, metabolites and salts are collectively referred to as "agents"). The invention is also directed to

pharmaceutical compositions containing such agents and their therapeutic use in treating diseases mediated by kinase activity, such as cancer, as well as other disease states associated with unwanted angiogenesis and/or cellular proliferation, such as diabetic retinopathy, neovascular glaucoma, rheumatoid arthritis and psoriasis. Further, the invention is related to methods of modulating and/or inhibiting the kinase activity associated with VEGF-R, FGF-R, CDK complexes, TEK, CHK1, LCK, and FAK.

In one general aspect, the invention relates to protein kinase inhibitors of the Formula I:

10

15

5

wherein:

R¹ is hydrogen, a substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula R⁶-CO or R⁶-CS where R⁶ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, alkenyl, aryl, heteroaryl, alkoxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen or substituted or unsubstituted alkyl, aryl, or heteroaryl;

R² is hydroxy, halo, cyano, or nitro, or substituted or unsubstituted alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula (A)

where R_a is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula (B)

$$C \qquad R_a \qquad (B)$$

5

where R_a is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula (C)

where R_b and R_c are independently hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or

a group of the formula (D)

where R_d is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, hydroxy, alkoxy, amino, alkylamino, dialkylamino, or acylamino, and R_e is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, amino, alkylamino, or dialkylamino, or a group of the formula (E)

where $R_{\rm f}$ is alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or

a group of the formula (F)

5

where \boldsymbol{R}_g and \boldsymbol{R}_h are each independently hydrogen, alkyl, cycloalkyl, heterocycloalkyl,

10 aryl, or heteroaryl, or

a group of the formula (G)

where R_i is alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, or a group of formula

(A), formula (B), formula (C), formula (H), or formula (I) as defined herein, or
a group of the formula (H)

where R_j is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, hydroxy, alkoxy, amino, or a group of formula (A), formula (B), formula (C) or formula (D) as defined herein, and R_k is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl,

heteroaryl, or a group of formula (A), formula (B), formula (C), formula (D), formula
 (E), or formula (F) as defined herein, or
 a group of the formula (I)

$$\searrow$$
 R_l (I)

where R₁ is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, or a group

of formula (C) as defined herein,

or R² is a substituted or unsubstituted cycloalkyl, heterocycloalkyl, or aryl that is fused to Q;

X is C or N; and

15

20

Q is a divalent radical having 2 or 3 ring atoms (in the ring formed by Q together with X, C* and N* in Formula I) each independently selected from C, N, O, S, C-R⁵ and N-R⁵, where R⁵ is alkyl, aryl, heteroaryl, alkoxy, hydroxy, halo, cyano, or amino, which together with C* and N* (in Formula I) form a five- or six-membered aromatic or nonaromatic ring.

The invention is also directed to pharmaceutically acceptable prodrugs, pharmaceutically active metabolites, and pharmaceutically acceptable salts of the compounds of Formula I.

In a preferred general embodiment, the invention relates to compounds having the Formula II:

$$\begin{array}{c|c}
H & & & \\
N & & & \\
R^1 & & & \\
S & & & \\
\hline
X & & \\
X & & \\
\hline
X & & \\
X & &$$

wherein:

10

15

R¹ is substituted or unsubstituted aryl or heteroaryl, or a group of the formula R⁶-CO or R⁶-CS where R⁶ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl alkenyl, aryl, heteroaryl, alkoxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen or a substituted or unsubstituted alkyl, aryl, or heteroaryl;

R² is as defined above;

X is C or N; and

Y and Z are each independently C, N, S, O, C-R⁵ or N-R⁵ where R⁵ is as defined above;

and pharmaceutically acceptable prodrugs, pharmaceutically active metabolites, and pharmaceutically acceptable salts thereof. Advantageous methods of making the compounds of the Formula II are also described.

More preferably, the invention is directed to compounds of Formula II wherein: R¹ is substituted or unsubstituted aryl or heteroaryl, or R⁶-CO or R⁶-CS where R⁶ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl,

alkenyl, aryl, heteroaryl, alkoxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen or substituted or unsubstituted alkyl, aryl, or heteroaryl; R² is substituted or unsubstituted aryl or heteroaryl; X and Y are each independently C or N; and Z is S or O. In another preferred embodiment of compounds of the Formula II, R¹ and R² are each independently substituted aryl, X is C, Y is C or N, and Z is S or O. More preferably, R¹ is a substituted or unsubstituted alkyl, R² is a substituted aryl, X is C, Y is C or N, and Z is S or O.

In another preferred general embodiment, the invention relates to compounds of Formula III:

$$\begin{array}{c|c} H \\ N \\ \hline \\ R^1 \end{array}$$

wherein:

10

15

5

 R^1 is substituted or unsubstituted aryl or heteroaryl, or R^6 -CO or R^6 -CS where R^6 is a substituted or unsubstituted alkyl, alkenyl, aryl, heteroaryl, alkoxy, or N- R^7 R^8 where R^7 R^8 are each independently hydrogen, alkyl, aryl, or heteroaryl;

Ш

R³ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen, alkyl, aryl, or heteroaryl;

R⁴ is hydrogen, hydroxy, lower alkyl, halo, lower alkoxy, amino, nitro, or trifluoromethyl; and

Y and Z are each independently C, N, S, O, C-R⁵ or N-R⁵ where R⁵ is unsubstituted or substituted alkyl or aryl;

as well as pharmaceutically acceptable prodrugs, pharmaceutically acceptable metabolites, and pharmaceutically acceptable salts thereof.

Especially preferred are compounds of Formula IV:

$$\begin{array}{c|c}
H & R^{4(a)} \\
\hline
R^1 & S & C & R^{4(b)} \\
\hline
Z & V & H & R^3
\end{array}$$
IV

wherein:

15

R¹ is substituted or unsubstituted aryl or heteroaryl, or R⁶-CO where R⁶ is a substituted or unsubstituted alkyl, alkenyl, aryl, heteroaryl, alkoxy, cycloalkyl, heterocycloalkyl, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen, alkyl, aryl, or heteroaryl;

R³ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen, alkyl, aryl, or heteroaryl;

R⁴ is independently selected from hydrogen, hydroxy, lower alkyl, halo, lower alkoxy, amino, nitro, and trifluoromethyl;

Y is C or N; and

Z is S or O;

5

10

15

20

as well as pharmaceutically acceptable prodrugs, pharmaceutically acceptable metabolites, and pharmaceutically acceptable salts thereof.

More preferably, the invention is directed to compounds of Formula IV, wherein:

R¹ is substituted or unsubstituted aryl or heteroaryl, or R⁶-CO where R⁶ is N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen, alkyl, aryl, or heteroaryl; R³ is substituted or unsubstituted alkyl, aryl, heteroaryl, or alkoxy; R^{4(a)} and R^{4(b)} are independently hydrogen, lower alkyl, or halo; Y is C or N; and Z is S or O. Even more preferred are compounds of Formula IV, wherein: R¹ is substituted or unsubstituted aryl or heteroaryl, or R⁶-CO where R⁶ is N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen, alkyl, aryl, or heteroaryl; R³ is substituted or unsubstituted aryl, heteroaryl, or alkoxy; R^{4(a)} is chloro, fluoro, or methyl; R^{4(b)} is fluoro; Y is N; and Z is O.

The invention also relates to a method of modulating and/or inhibiting the kinase activity of VEGF-R, FGF-R, TEK, a CDK complex, CHK1, TEK, LCK, and/or FAK by administering a compound of the formula I or a pharmaceutically acceptable prodrug, pharmaceutically active metabolites, or pharmaceutically acceptable salt thereof. There is also provided compounds of the present invention that have selective kinase activity—i.e., they possess significant activity against one specific kinase while possessing less or minimal activity against a different kinase. In one preferred embodiment of the invention, compounds of the present invention are those of Formula I possessing substantially higher potency against

VEGF receptor tyrosine kinase than against FGF-R1 receptor tyrosine kinase. The invention is also directed to methods of modulating VEGF receptor tyrosine kinase activity without significantly modulating FGF receptor tyrosine kinase activity.

The invention also relates to pharmaceutical compositions each comprising: an effective amount of an agent selected from compounds of Formula I and pharmaceutically acceptable salts, pharmaceutically active metabolites, and pharmaceutically acceptable prodrugs thereof; and a pharmaceutically acceptable carrier or vehicle for such agent. The invention further provides methods of treating cancer as well as other disease states associated with unwanted angiogenesis and/or cellular proliferation, comprising administering effective amounts of such agents to a patient in need of such treatment.

5

10

15

20

DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS

The inventive compounds of the Formula I, II, III, and IV are useful for mediating the activity of protein kinases. More particularly, the compounds are useful as anti-angiogenesis agents and as agents for modulating and/or inhibiting the activity of protein kinases, thus providing treatments for cancer or other diseases associated with cellular proliferation mediated by protein kinases.

The term "alkyl" as used herein refers to straight- and branched-chain alkyl groups having one to twelve carbon atoms. Exemplary alkyl groups include methyl (Me), ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl (t-Bu), pentyl, isopentyl, tert-pentyl, hexyl, isohexyl, and the like. The term "lower alkyl" designates

an alkyl having from 1 to 8 carbon atoms (a C_{1-8} -alkyl). Suitable substituted alkyls include fluoromethyl, difluoromethyl, trifluoromethyl, 2-fluoroethyl, 3-fluoropropyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, and the like.

The term "alkenyl" refers to straight- and branched-chain alkenyl groups having from two to twelve carbon atoms. Illustrative alkenyl groups include prop-2-enyl, but-2-enyl, but-3-enyl, 2-methylprop-2-enyl, hex-2-enyl, and the like.

5

10

15

20

The term "cycloalkyl" refers to partially saturated or unsaturated carbocycles having from three to twelve carbon atoms, including bicyclic and tricyclic cycloalkyl structures. Suitable cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like.

A "heterocycloalkyl" is intended to mean a partially saturated or unsaturated monocyclic radical containing carbon atoms, preferably 4 or 5 ring carbon atoms, and at least one heteroatom selected from nitrogen, oxygen and sulfur.

The terms "aryl" (Ar) and "heteroaryl" refer to monocyclic and polycyclic unsaturated or aromatic ring structures, with "aryl" referring to those that are carbocycles and "heteroaryl" referring to those that are heterocycles. Examples of aromatic ring structures include phenyl, naphthyl, 1,2,3,4-tetrahydronaphthyl, furyl, thienyl, pyriolyl, pyridyl, pyridinyl, pyrazolyl, imidazolyl, pyrazinyl, pyridazinyl, 1,2,3-triazinyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1-H-tetrazol-5-yl, indolyl, quinolinyl, benzofuranyl, benzothiophenyl (thianaphthenyl), and the like. Such moieties may be optionally substituted by one or more suitable substituents, for example, a substituent selected from a halogen (F, Cl, Br or I); lower alkyl; OH; NO₂; CN; CO₂H; O-lower alkyl; aryl; aryl-lower alkyl; CO₂CH₃; CONH₂; OCH₂CONH₂;

NH₂; SO₂NH₂; OCHF₂; CF₃; OCF₃; and the like. Such moieties may also be optionally substituted by a fused-ring structure or bridge, for example OCH₂-O.

The term "alkoxy" is intended to mean the radical –O-alkyl. Illustrative examples include methoxy, ethoxy, propoxy, and the like. The term "lower alkoxy" designates an alkoxy having from 1 to 8 carbon atoms

The term "aryloxy" represents -O—aryl, where aryl is defined above.

The term "halogen" represents chlorine, fluorine, bromine or iodine. The term "halo" represents chloro, fluoro, bromo or iodo.

In general, the various moieties or functional groups for variables in the

formulae may be optionally substituted by one or more suitable substituents.

Exemplary substituents include a halogen (F, Cl, Br, or I), lower alkyl, -OH, -NO₂, -CN, -CO₂H, -O-lower alkyl,

-aryl, -aryl-lower alkyl, -CO₂CH₃, -CONH₂, -OCH₂CONH₂, -NH₂, -SO₂NH₂, haloalkyl (e.g.,

-CF₃, -CH₂CF₃), -O-haloalkyl (e.g., -OCF₃, -OCHF₂), and the like.

5

20

The terms "comprising" and "including" are used in an open, non-limiting sense.

Compounds of the invention are encompassed by Formula I. Although

Formula I depicts a double bond between C* and N*, the artisan will understand that
when Q together with C* and N* form a five- or six-membered aromatic ring, the
presence of the double bond is not necessarily between C* and N*, as other canonical
forms of the aromatic ring exist. It is therefore understood that all possible canonical
forms of the aromatic ring formed by Q together with C* and N* are also intended to

be covered by Formula I. The compounds of the invention are preferably those of the Formula II, more preferably those of the Formula III, and even more preferably those of the Formula IV.

Some of the inventive compounds may exist as single stereoisomers (i.e., essentially free of other stereoisomers), racemates, and/or mixtures of enantiomers and/or diastereomers. All such single stereoisomers, racemates and mixtures thereof are intended to be within the scope of the present invention. Preferably, the inventive compounds that are optically active are used in optically pure form.

5

10

15

20

As generally understood by those skilled in the art, an optically pure compound having one chiral center (i.e., one asymmetric carbon atom) is one that consists essentially of one of the two possible enantiomers (i.e., is enantiomerically pure), and an optically pure compound having more than one chiral center is one that is both diastereomerically pure and enantiomerically pure. Preferably, the compounds of the present invention are used in a form that is at least 90% optically pure, that is, a form that contains at least 90% of a single isomer (80% enantiomeric excess ("e.e.") or diastereomeric excess ("d.e.")), more preferably at least 95% (90% e.e. or d.e.), even more preferably at least 97.5% (95% e.e. or d.e.), and most preferably at least 99% (98% e.e. or d.e.).

Additionally, the formulas are intended to cover solvated as well as unsolvated forms of the identified structures. For example, Formula I includes compounds of the indicated structure in both hydrated and non-hydrated forms.

Other examples of solvates include the structures in combination with isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, or ethanolamine.

In addition to compounds of the Formula I, II,III, and IV, the invention includes pharmaceutically acceptable prodrugs, pharmaceutically active metabolites, and pharmaceutically acceptable salts of such compounds.

A "pharmaceutically acceptable prodrug" is a compound that may be converted under physiological conditions or by solvolysis to the specified compound or to a pharmaceutically acceptable salt of such compound.

5

10

15

20

A "pharmaceutically active metabolite" is intended to mean a pharmacologically active product produced through metabolism in the body of a specified compound or salt thereof. Metabolites of compound may be identified using routine techniques known in the art and their activities determined using tests such as those described herein.

A "pharmaceutically acceptable salt" is intended to mean a salt that retains the biological effectiveness of the free acids and bases of the specified compound and that is not biologically or otherwise undesirable. A compound of the invention may possess a sufficiently acidic, a sufficiently basic, or both functional groups, and accordingly react with any of a number of inorganic or organic bases, and inorganic and organic acids, to form a pharmaceutically acceptable salt. Exemplary pharmaceutically acceptable salts include those salts prepared by reaction of the compounds of the present invention with a mineral or organic acid or an inorganic base, such as salts including sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogenphosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates,

oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyne-1,4-dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates, phenylacetates, phenylpropionates, phenylbutyrates, citrates, lactates, γ -hydroxybutyrates, glycollates, tartrates, methane-sulfonates, propanesulfonates, naphthalene-1-sulfonates, naphthalene-2-sulfonates, and mandelates.

5

10

15

20

If the inventive compound is a base, the desired pharmaceutically acceptable salt may be prepared by any suitable method available in the art, for example, treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyrovic acid, oxalic acid, glycolic acid, salicylic acid, a pyranosidyl acid, such as glucuronic acid or galacturonic acid, an alphahydrozy acid, such as citric acid or tartaric acid, an amino acid, such as aspartic acid or glutamic acid, an aromatic acid, such as benzoic acid or cinnamic acid, a sulfonic acid, such as p-toluenesulfonic acid or ethanesulfonic acid, or the like.

If the inventive compound is an acid, the desired pharmaceutically acceptable salt may be prepared by any suitable method, for example, treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), an alkali metal hydroxide or alkaline earth metal hydroxide, or the like. Illustrative examples of suitable salts include organic salts derived from amino acids, such as glycine and arginine, ammonia, primary, secondary,

and tertiary amines, and cyclic amines, such as piperidine, morpholine and piperazine, and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum and lithium.

5

10

15

20

In the case of agents that are solids, it is understood by those skilled in the art that the inventive compounds and salts may exist in different crystal or polymorphic forms, all of which are intended to be within the scope of the present invention and specified formulas.

Therapeutically effective amounts of the agents of the invention may be used to treat diseases mediated by modulation or regulation of protein kinases. An "effective amount" is intended to mean that amount of an agent that, when administered to a mammal in need of such treatment, is sufficient to effect treatment for a disease mediated by the activity of one or more protein kinases, such as tryosine kinases. Thus, e.g., a therapeutically effective amount of a compound of the Formula I, salt, active metabolite or prodrug thereof is a quantity sufficient to modulate, regulate, or inhibit the activity of one or more protein kinases such that a disease condition which is mediated by that activity is reduced or alleviated. The amount of a given agent that will correspond to such an amount will vary depending upon factors such as the particular compound, disease condition and its severity, the identity (e.g., weight) of the mammal in need of treatment, but can nevertheless be routinely determined by one skilled in the art. "Treating" is intended to mean at least the mitigation of a disease condition in a mammal, such as a human, that is affected, at least in part, by the activity of one or more protein kinases, such as tyrosine kinases, and includes: preventing the disease condition from occurring in a mammal,

particularly when the mammal is found to be predisposed to having the disease condition but has not yet been diagnosed as having it; modulating and/or inhibiting the disease condition; and/or alleviating the disease condition.

The inventive agents may be prepared using the reaction routes and synthesis schemes as described below, employing the techniques available in the art using starting materials that are readily available.

5

In one general synthetic process, compounds of Formula I are prepared according to the following reaction scheme:

VI

A solution of an isothiocyanate, e.g., R¹-N=C=S and cyanamide is reacted with 1.1 to 1.5 molar equivalents of 1,8-diazabicylclo[5.4.0]undec-7-ene ("DBU") in a suitable solvent, such as acetonitrile, at an appropriate temperature (preferably room temperature) for approximately 40-80 minutes, generating intermediate V. Without isolation, intermediate V is further allowed to react

with a compound of Formula VI, where LG is a suitable leaving group such as

I

5

chloro, bromo, or mesyloxy, under the same conditions for an additional 0.5 to 24 hours (h) to yield a compound of Formula VII.

In some instances, the compound of Formula VII is not isolated, but is directly

- 5 converted to the compound of Formula I by continued reaction at a temperature between room temperature and 80 °C, preferably 50 °C, for 1 to 24 h.

 Conventional work-up and purification yields final compound I. Alternatively, a compound of Formula VII is isolated and purified, and then is converted to a compound of Formula I by treatment with a suitable base, such as potassium t
 10 butoxide, lithium hexamethyldisilazide, or lithium diisopropylamide, in an appropriate solvent, such as THF, for 0.5 to 24 h at a temperature between –78 °C and room temperature. Various compounds of Formula VI are commercially available or known, for example, 2-(chloromethyl)benzimidazole, 2-(chloromethyl)guinoline, 2-picolyl chloride, 2-acetamido-4-
- (chloromethyl)thiazole, 6-(chloromethyl)-2-isopropylpyrimidin-4-ol, 4-chloromethyl-2-(4-chlorophenyl)thiazole, 3-(chloromethyl)-1,2,4-oxadiazole, 3-(chloromethyl)-5-(3,5-dimethylisoxazol-4-yl)-1,2,4-oxadiazole, 3-bromomethyl-6,7-dimethoxy-1-methyl-2(1h)-quinoxalinone, 2-chloromethyl-5-methoxybenz-imidazole, 5-(tert-butyl)-3-(chloromethyl)-1,2,4-oxadiazole, 5-chloro-3-
- 20 (chloromethyl)-1,2,4-thiadiazole, 3-(chloromethyl)-5-(3-thienyl)-1,2,4-oxadiazole, 5-[4-(chloromethyl)-1,3-thiazol-2-yl]isoxazole, 5-(chloromethyl)-3-[3,5-di(trifluoromethyl)styryl]-1,2,4-oxadiazole, 5-chloro-4-(chloromethyl)-1,2,3-thiadiazole, 5-(chloromethyl)-3-(4-chlorophenyl)-1,2,4-oxadiazole, 3-chloro-2-

(chloromethyl)-5-(trifluoromethyl)pyridine, 5-(chloromethyl)-3-[(2-pyridylsulfonyl)methyl]-1,2,4-oxadiazole, 3-(chloromethyl)-5-methylisoxazole, 2-chloromethyl-4,6-dimethoxypyrimidine, 3-(chloromethyl)-5-(4-chlorophenyl)-4H-1,2,4-triazole, 2-(chloromethyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole, 4-chloromethyl-5-methyl-2-phenyl-oxazole, 3-(chloromethyl)-1-(3,5-dichlorophenyl)-5-methyl-1h-pyrazole, and 3-(chloromethyl)-5-(1,2,3-thiadiazol-4-yl)-1,2,4-oxadiazole. Compounds of Formula VI may also be prepared by methods known to those skilled in the art. See, e.g., Mylari et al., *J. Med. Chem.*, 35, 457-465 (1992); Baiocchi et al., *Heterocyclic Chem.*, 16, 1469-1474 (1979), which are incorporated by reference herein.

A compound of Formula VIII may be prepared by conventional acylation of 3-aminobenzonitrile, followed by heating at 60-100 °C with hydroxylamine in a suitable solvent, such as ethanol or isopropanol, for 1 to 24 hours. A compound of Formula VI(a) may be prepared by treatment of a compound of Formula VIII with chloroacetyl chloride and a suitable base, such as diispropylethylamine ("DIEA"), in an appropriate solvent, such as dichloromethane. Conventional aqueous work-up provides a crude intermediate, which is further heated at 100 °C in a suitable solvent, such as dioxane, for 0.5 to 4 hours, to yield, after conventional isolation and purification, a compound of Formula VI(a).

15

Compounds of Formula II, where X is C and Y and Z are independently C, N, or O, may also be prepared by the above described general procedure. To an R¹-isothiocyanate solution in acetonitrile is added cyanamide, followed by the addition of DBU, while maintaining the internal temperature of the reaction at approximately 15-30 °C. After stirring 1-2 hours, a suitable reactant that allows for the cyclization and formation as described above of a compound of Formula II is added in the presence of a catalytic amount of tetra-butylammonium iodide.

For example, the reaction of 3-chloromethyl-5-R²-[1,2,4]oxadiazole (VI(a)) with compound VII for about two hours at approximately 50 °C provides after purification the cyclized compound II(a).

II(a)

Inventive compounds of Formulas II, III, and IV may also be prepared by other processes, including the general procedure shown in the following reaction scheme.

A compound of Formula II, where X and Y are C and Z is S, may be prepared by adding DBU to a solution of R¹-isothiocyanato and cyanamide in a suitable solvent at an appropriate temperature, preferably acetonitrile at room temperature for approximately 40-80 minutes. To this reaction mixture is added bromo-acetonitrile and additional DBU, to yield, after conventional work-up and purification, an intermediate 2-R¹-amino-4-amino-thiazole-5-carbonitrile intermediate IX. The reaction of intermediate IX with dihydrogen sulfide in triethylamine/pyridine at about 0 °C provides intermediate X. Intermediate X is converted to a compound II(b) by stirring a solution of compound X and 2-bromo-1-R²-ethanone in methanol overnight at room temperature. After removal of the methanol, the crude compound II(b) is worked up using conventional isolation techniques and purified using silica column chromatography.

5

10

Compounds of Formula $\Pi(c)$ may also be prepared directly from compound X by reacting it with a α -bromo-acetic acid ester or a α -bromolactone under the same conditions as described in the preparation of compounds $\Pi(b)$.

$$R^1$$
 NH_2
 N

5

10

By treating compound IX with a suitable 2-amino-alcohol and a catalytic amount of ZnCl₂, a compound of Formula II(d) is produced after standard acid work-up and purification by silica chromatography. Compounds of Formula II(e) may also be prepared from compounds IX by refluxing in a suitable aprotic solvent, such as toluene, a solution of IX, TMSN₃, and a catalytic amount of Bu₂SnO. After refluxing, the solvent is removed and the residue is redissolved in ethyl acetate, washed with a appropriate aqueous acid solution, and dried over a suitable drying agent. After the removal of the solvent, the residue is triturated in ethyl ether and compound II(e) is collected by filtration.

$$R^{1}$$
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{5}
 R^{2}
 R^{4}
 R^{4}
 R^{5}
 R^{5

Compounds of Formula III may also be prepared directly from compound II(b) where R^2 is 3-nitrophenyl by reducing the nitro group with a suitable reducing agent to form the amino substituted phenyl (II(f)). Preferably, a solution of compound II(b) where R^2 is 3-nitrophenyl and stannous chloride is dissolved in dimethylformamide ("DMF") under inert atmosphere conditions and stirred at between 40-60 0 C until II(f) is formed.

5

10

The intermediate $\Pi(f)$ may be reacted with a suitable acylating agent under standard acylating conditions to form a compound of the Formula $\Pi(a)$. A preferable acylating procedure involves dissolving compound $\Pi(f)$ in DMF and tetrahydrofuran ("THF") and adding pyridine and a suitable acid chloride or acyl chloroformate at -30 to 0 °C. The reaction is quenched with a proton source (e.g.,

methanol) and purified by preparative C-18 reverse phase HPLC to provide compound III(a).

Other compounds of Formula I may be prepared in manners analogous to the general procedures described above or the detailed procedures described in the examples herein. The affinity of the compounds of the invention for a receptor may be enhanced by providing multiple copies of the ligand in close proximity, preferably using a scaffolding provided by a carrier moiety. It has been shown that provision of such multiple valence compounds with optimal spacing between the moieties dramatically improves binding to a receptor. See for example, Lee et al., *Biochem*, 23, 4255 (1984). The multivalency and spacing can be controlled by

5

10

selection of a suitable carrier moiety or linker units. Such moieties include molecular supports which contain a multiplicity of functional groups that can be reacted with functional groups associated with the compounds of the invention. Of course, a variety of carriers can be used, including proteins such as BSA or HAS, a multiplicity of peptides including, for example, pentapeptides, decapeptides, pentadecapeptides, and the like. The peptides or proteins can contain the desired number of amino acid residues having free amino groups in their side chains; however, other functional groups, such as sulfhydryl groups or hydroxyl groups, can also be used to obtain stable linkages.

Compounds that potently regulate, modulate, or inhibit the protein kinase activity associated with receptors, FGF, CDK complexes, TEK, CHK1, LCK, and FAK, among others, and which inhibit angiogenesis and/or cellular profileration is desirable and is one preferred embodiment of the present invention. The present invention is further directed to methods of modulating or inhibiting protein kinase activity, for example in mammalian tissue, by administering an inventive agent. The activity of the inventive compounds as modulators of protein kinase activity, such as the activity of kinases, may be measured by any of the methods available to those skilled in the art, including *in vivo* and/or *in vitro* assays. Examples of suitable assays for activity measurements include those described in Parast C. et al., *BioChemistry*, 37, 16788-16801 (1998); Jeffrey et al., *Nature*, 376, 313-320 (July 27, 1995); WIPO International Publication No. WO 97/34876; and WIPO International Publication No. WO 96/14843. These properties may be assessed,

for example, by using one or more of the biological testing procedures set out in the examples below.

5

10

15

20

The active agents of the invention may be formulated into pharmaceutical compositions as described below. Pharmaceutical compositions of this invention comprise an effective modulating, regulating, or inhibiting amount of a compound of Formula I, II, III or IV and an inert, pharmaceutically acceptable carrier or diluent. In one embodiment of the pharmaceutical compositions, efficacious levels of the inventive agents are provided so as to provide therapeutic benefits involving modulation of protein kinases. By "efficacious levels" is meant levels in which the effects of protein kinases are, at a minimum, regulated. These compositions are prepared in unit-dosage form appropriate for the mode of administration, e.g., parenteral or oral administration.

An inventive agent is administered in conventional dosage form prepared by combining a therapeutically effective amount of an agent (e.g., a compound of Formula I) as an active ingredient with appropriate pharmaceutical carriers or diluents according to conventional procedures. These procedures may involve mixing, granulating and compressing or dissolving the ingredients as appropriate to the desired preparation.

The pharmaceutical carrier employed may be either a solid or liquid.

Exemplary of solid carriers are lactose, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like. Exemplary of liquid carriers are syrup, peanut oil, olive oil, water and the like. Similarly, the carrier or diluent may include time-delay or time-release material known in the art, such as glyceryl monostearate or

glyceryl distearate alone or with a wax, ethylcellulose, hydroxypropylmethylcellulose, methylmethacrylate and the like.

A variety of pharmaceutical forms can be employed. Thus, if a solid carrier is used, the preparation can be tableted, placed in a hard gelatin capsule in powder or pellet form or in the form of a troche or lozenge. The amount of solid carrier may vary, but generally will be from about 25 mg to about 1 g. If a liquid carrier is used, the preparation will be in the form of syrup, emulsion, soft gelatin capsule, sterile injectable solution or suspension in an ampoule or vial or non-aqueous liquid suspension.

5

10

15

20

To obtain a stable water-soluble dose form, a pharmaceutically acceptable salt of an inventive agent is dissolved in an aqueous solution of an organic or inorganic acid, such as 0.3M solution of succinic acid or citric acid. If a soluble salt form is not available, the agent may be dissolved in a suitable cosolvent or combinations of cosolvents. Examples of suitable cosolvents include, but are not limited to, alcohol, propylene glycol, polyethylene glycol 300, polysorbate 80, gylcerin and the like in concentrations ranging from 0-60% of the total volume. In an exemplary embodiment, a compound of Formula I is dissolved in DMSO and diluted with water. The composition may also be in the form of a solution of a salt form of the active ingredient in an appropriate aqueous vehicle such as water or isotonic saline or dextrose solution.

It will be appreciated that the actual dosages of the agents used in the compositions of this invention will vary according to the particular complex being used, the particular composition formulated, the mode of administration and the

particular site, host and disease being treated. Optimal dosages for a given set of conditions can be ascertained by those skilled in the art using conventional dosage-determination tests in view of the experimental data for an agent. For oral administration, an exemplary daily dose generally employed is from about 0.001 to about 1000 mg/kg of body weight, with courses of treatment repeated at appropriate intervals. Administration of prodrugs are typically dosed at weight levels which are chemically equivalent to the weight levels of the fully active form.

5

10

15

20

The compositions of the invention may be manufactured in manners generally known for preparing pharmaceutical compositions, e.g., using conventional techniques such as mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing. Pharmaceutical compositions may be formulated in a conventional manner using one or more physiologically acceptable carriers, which may be selected from excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically.

Proper formulation is dependent upon the route of administration chosen. For injection, the agents of the invention may be formulated into aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers known in

the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained using a solid excipient in admixture with the active ingredient (agent), optionally grinding the resulting mixture, and processing the mixture of granules after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients include: fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; and cellulose preparations, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as crosslinked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.

5

10

15

20

Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, polyvinyl pyrrolidone, Carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active agents.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate, and, optionally, stabilizers. In soft

capsules, the active agents may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

5

10

15

20

For administration intranasally or by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane,

dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of gelatin for use in an inhaler or insufflator and the like may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit-dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active agents may be prepared as appropriate oily injection suspensions. Suitable

lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

5

10

15

20

For administration to the eye, a compound of the Formula I, II, III, or IV is delivered in a pharmaceutically acceptable ophthalmic vehicle such that the compound is maintained in contact with the ocular surface for a sufficient time period to allow the compound to penetrate the corneal and internal regions of the eye, including, for example, the anterior chamber, posterior chamber, vitreous body, aqueous humor, vitreous humor, cornea, iris/cilary, lens, choroid/retina and selera. The pharmaceutically acceptable ophthalmic vehicle may be an ointment, vegetable oil, or an encapsulating material. A compound of the invention may also be injected directly into the vitreous and aqueous humor.

Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use. The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g, containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described above, the compounds may also be formulated as a depot preparation. Such long-acting formulations may be administered by implantation (for example, subcutaneously, intramuscularly, or

intraocularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion-exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

5

10

15

20

A pharmaceutical carrier for hydrophobic compounds is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The cosolvent system may be a VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) cotains VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may be substituted for dextrose.

Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release

system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days.

5 Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed.

10

15

20

The pharmaceutical compositions also may comprise suitable solid- or gelphase carriers or excipients. Examples of such carriers or excipients include calcium carbonate, calcium phosphate, sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.

Some of the compounds of the invention may be provided as salts with pharmaceutically compatible counter ions. Pharmaceutically compatible salts may be formed with many acids, including hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free-base forms.

The preparation of preferred compounds of the present invention is described in detail in the following examples, but the artisan will recognize that the chemical reactions described may be readily adapted to prepare a number of other protein kinase inhibitors of the invention. For example, the synthesis of non-exemplified compounds according to the invention may be successfully performed by modifications apparent to those skilled in the art, e.g., by appropriately protecting interfering groups, by changing to other suitable reagents known in the art, or by making routine modifications of reaction conditions. Alternatively, other reactions

disclosed herein or known in the art will be recognized as having applicability for preparing other compounds of the invention.

EXAMPLES

5

10

15

20

In the examples described below, unless otherwise indicated all temperatures are set forth in degrees Celsius and all parts and percentages are by weight. Reagents were purchased from commercial suppliers such as Aldrich Chemical Company or Lancaster Synthesis Ltd. and were used without further purification unless otherwise indicated. Tetrahydrofuran (THF) and N, N-dimethylforamide (DMF) were purchased from Aldrich in Sure seal bottles and used as received. All solvents were purified using standard methods readily known to those skilled in the art, unless otherwise indicated.

The reactions set forth below were done generally under a positive pressure of nitrogen or with a drying tube, at ambient temperature (unless otherwise stated), in anhydrous solvents, and the reaction flasks were fitted with rubber septa for the introduction of substrates and reagents via syringe. Glassware was oven dried and/or heat dried. Analytical thin layer chromatography (TLC) was performed on glass-backed silica gel 60 F 254 plates Analtech (0.25 mm) and eluted with the appropriate solvent ratios (v/v), and are denoted where appropriate. The reactions were assayed by TLC and terminated as judged by the consumption of starting material.

Visualization of the tip plates was done with a *p*-anisaldehyde spray reagent or phosphomolybdic acid reagent (Aldrich Chemical 20 wt% in ethanol) and activated with heat. Work-ups were typically done by doubling the reaction volume with the reaction solvent or extraction solvent and then washing with the indicated aqueous

solutions using 25% by volume of the extraction volume unless otherwise indicated. Product solutions were dried over anhydrous Na₂SO₄ prior to filtration and evaporation of the solvents under reduced pressure on a rotary evaporator and noted as solvents removed *in vacuo*. Flash column chromatography (Still et al., *J. Org. Chem.*, 43, 2923 (1978)) was done using Baker grade flash silica gel (47-61 μm) and a silica gel: crude material ratio of about 20:1 to 50:1 unless otherwise stated. Hydrogenolysis was done at the pressure indicated in the examples or at ambient pressure.

¹H-NMR spectra were recorded on a Bruker instrument operating at 300 MHz and ¹³C-NMR spectra were recorded operating at 75 MHz. NMR spectra were obtained as CDCl₃ solutions (reported in ppm), using chloroform as the reference standard (7.25 ppm and 77.00 ppm) or CD₃OD (3.4 and 4.8 ppm and 49.3 ppm), or internally tetramethylsilane (0.00 ppm) when appropriate. Other NMR solvents were used as needed. When peak multiplicities are reported, the following abbreviations are used: s (singlet), d (doublet), t (triplet), m (multiplet), br (broadened), dd (doublet of doublets), dt (doublet of triplets). Coupling constants, when given, are reported in Hertz (Hz).

Infrared (IR) spectra were recorded on a Perkin-Elmer FT-IR Spectrometer as neat oils, as KBr pellets, or as CDCl₃ solutions, and when given are reported in wave numbers (cm⁻¹). The mass spectra were obtained using LSIMS or electrospray. All melting points (mp) are uncorrected.

EXAMPLE A(1)

5

10

15

20

4-(4'-Amino-4-phenyl-[2,5']bithiazolyl-2'-ylamino)-benzenesulfonamide

The starting material was prepared using Steps (i) and (ii) described below.

Step (i): To a solution of 4-(aminosulfonyl)phenylisothiocyanate (1.12 g, 5.0 mmol) and cyanamide (0.23 g, 5.5 mmol) in acetonitrile (50 ml) was added DBU (0.83 g, 5.5 mmol), and the resulting mixture was stirred at room temperature for 60 minutes. To the reaction mixture was added bromo-acetonitrile (0.66 g, 5.5 mmol) followed by DBU (0.83 g, 5.5 mmol) 30 minutes afterward. The reaction mixture was stirred overnight at room temperature, the solvent was removed at the reduced pressure, and the residue was dissolved in EtOAc (200 ml). The EtOAc solution was washed with 0.1 N HCl (150 ml x 3) and brine and dried with MgSO₄ and concentrated. The residue was purified by silica gel chromatography (EtOAc) to provide 0.73 g (48 %) of 2-(4-aminosulfonylphenyl)amino-4-amino—thiazole-5-carbonitrile.

5

10

15

20

Step (ii): To a solution of 2-(4-aminosulfonylphenyl)amino-4-amino—thiazole-5-carbonitrile (0.59 g, 2 mmol) in 20% triethylamine/pyridine (50 ml) was bubbled H₂S gas at ice-water temperature for 30 minutes. Then the reaction solution was sealed and stirred at room temperature overnight. Argon gas was bubbled through the reaction solution for 60 minutes to replace the H₂S, and then the solvents were removed at reduced pressure. The residue was dissolved in EtOAc, and the

EtOAc solution was then washed with 5% citric acid (50 ml x 3) followed by brine. The solvent was removed *in vacuo* and the residue was triturated in Et_2O . The product 2-(4-aminosulfonylphenyl)amino-4-amino-thiazole-5-carbothioamide was collected by filtration (0.56 g, 95%).

- To prepare the title compound, a solution of 2-(4-aminosulfonylphenyl)amino-4-amino-thiazole-5-carbothioamide (164 mg, 0.5 mmol) and α-bromoacetophenone (110 mg, 0.55 mmol) in MeOH (20 ml) was stirred at room temperature overnight.

 The solvent was removed *in vacuo* and the residue was dissolved in EtOAc (50 ml).

 The EtOAc solution was washed with saturated NaHCO₃ (10 ml), followed by brine.

 Purification of the residue by silica gel chromatography provided 4-(4'-amino-4-
- Purification of the residue by silica gel chromatography provided 4-(4'-amino-4 phenyl-[2,5']bithiazolyl-2'-ylamino)-benzenesulfonamide. Mp 233-235 °C (decomp.). ¹H NMR (CD₃OD): δ 7.96 (s, 1H), 7.82 (s, 4H), 7.44-7.25 (m, 4H). ESIMS (MH⁺): 430; (M-H): 428.

Anal. Calcd for C₁₈H₁₅N₅O₂S₃: C, 50.33; H, 3.52; N, 16.30; S, 22.39. Found:

C, 50.62; H, 3.54; N, 16.03; S, 22.12.In a manner similar to that used to prepare

Example A(1), the following Examples A(2) through A(71) were prepared.

EXAMPLE A(2)

4-[4'-Amino-4-(4-methoxy-phenyl)-[2,5']bithiazolyl-2'-ylamino]-benzenesulfonamide

20

mp 195-198 °C. ¹H NMR (CD₃OD): δ 7.78 (d, J = 8.80 Hz, 2H), 7.75 (s, 4H), 7.13 (s, 1H), 6.88 (d, J = 8.86 Hz, 2H), 3.75 (s, 3H). FABMS (MH⁺): 460. Anal. Calcd for C₁₈H₁₅N₅O₂S₃: C, 50.33; H, 3.52; N, 16.30; S, 22.39. Found: C, 50.62; H, 3.54; N, 16.03; S, 22.12.

5 EXAMPLE A(3)

benzenesulfonamide

4-[4'-Amino-4-(2-methoxy-phenyl)-[2,5']bithiazolyl-2'-ylamino]-

mp 231-235 $^{\circ}$ C (decomp). R_f (75% EtOAc/Hex) = 0.56. 1 H NMR (CD₃OD): δ 8.10 (dd, J = 7.79, 1.73 Hz, 1H), 7.79-7.70 (m, 4H), 7.57 (s, 1H), 7.25-7.19 (m, 1H), 7.03-6.93 (m, 2H), 3.84 (s, 3H). FABMS (MH⁺): 460.

EXAMPLE A(4)

4-[4'-Amino-4-(2,4-difluoro-phenyl)-[2,5']bithiazolyl-2'-ylamino]-

benzenesulfonamide

15

mp 233-238 °C. ¹H NMR (CD₃OD): δ 8.26-8.21 (m, 1H), 7.88 (s, 4H), 7.47 (s,1H), 7.14-7.07 (m, 2H). ESIMS (MH⁺): 466; [M-H]: 464.

Anal. Calcd for $C_{18}H_{13}F_2N_5O_2S_3\cdot 0.4H_2O$: C, 45.73; H, 2.94; N, 14.82; S, 20.35.

Found: C, 45.82; H, 2.78; N, 14.77; S, 20.38.

EXAMPLE A(5)

4-[4'-Amino-4-(4-fluoro-phenyl)-[2,5']bithiazolyl-2'-ylamino]-benzenesulfonamide

5

mp 254-257°C. ¹H NMR (CD₃OD): δ 8.01-7.91 (m, 2H), 7.88-7.76 (m, 4H), 7.35 (s, 1H), 7.20-7.09 (m, 2H).

Anal. Calcd for C₁₈H₁₄FN₅O₂S₃: C, 48.31; H, 3.15; N, 15.65; S, 21.49. Found: C, 48.40; H, 3.26; N, 15.44; S, 21.68.

$10 \quad EXAMPLE A(6)$

4-[4'-Amino-4-(2,4-dichloro-phenyl)-[2,5']bithiazolyl-2'-ylamino]-

benzenesulfonamide

mp 173-175 °C (decomp). ¹H NMR (CD₃OD): δ 7.97-7.93 (m, 1H), 7.87-7.81 (m, 4H), 7.67-7.59 (m, 1H), 7.57 (s, 1H), 7.45-7.39 (m, 1H). FABMS (MH⁺): 498.

Anal. Calcd for C₁₈H₁₃Cl₂N₅O₂S₃: C, 43.38; H, 2.63; N, 14.05; S, 19.30. Found: C, 43.32; H, 2.78; N, 13.84; S, 19.06%.

EXAMPLE A(7)

4-[4'-Amino-4-(3-chloro-5-fluoro-4-methyl-phenyl)-[2,5']bithiazolyl-2'-ylamino]-benzenesulfonamide

5 mp 208-212 °C. ¹H NMR (DMSO-d₆): δ 10.63 (s, NH), 7.95 (t, J = 8.42 Hz, 1H), 7.73 (q, J = 9.00 Hz, 4H), 7.55 (d, J = 2.32 Hz, 1H), 7.35 (d, J = 8.55 Hz, 1H), 7.17 (s, NH₂), 6.96 (s, NH₂), 2.28 (s, 3H). ESIMS (MH⁺): 496.

Anal. Calcd for C₁₉H₁₅ClFN₅O₂S₃: C, 46.01; H, 3.05; N, 14.12; S, 19.12. Found: C, 45.93; H, 3.23; N, 13.86; S, 19.47.

10 EXAMPLE A(8)

4-[4'-Amino-4-(4-hydroxy-phenyl)-[2,5']bithiazolyl-2'-ylamino]-

benzenesulfonamide

mp 168-170 °C (decomp). ¹H NMR (CD₃OD): δ 7.83 (s, 4H), 7.79-7.76 (d, J = 8.59 Hz, 2H), 7.16 (s,1H), 6.85-6.82 (d, J = 8.46 Hz, 2H). FABMS (MH⁺): 446.

Anal. Calcd for C₁₈H₁₅N₅O₃S₃·0.5H₂O: C, 47.56; H, 3.55; N, 15.41; S, 21.16. Found: C, 47.87; H, 3.59; N, 15.09; S, 21.11.

EXAMPLE A(9)

4-(2,4-Difluoro-phenyl)-N^{2'}-(3,4,5-trimethoxy-phenyl)-[2,5']bithiazolyl-2',4'-diamine

5

10

mp 180-183 °C (decomp). ¹H NMR (CD₃OD): δ 8.26-8.23 (m, 1H), 7.41 (d, J = 2.2 Hz, 1H), 7.13-7.05 (m, 2H), 7.02 (s, 2H), 3.90 (s, 6H), 3.78 (s, 3H). FABMS (MH⁺): 476.

Anal. Calcd for C₂₁H₁₈ F₂N₄O₃S₂: C, 52.93; H, 3.81; N, 11.76; S, 13.46. Found: C, 52.81; H, 3.72; N, 11.58; S, 13.45.

EXAMPLE A(10)

4-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenol

mp 129-133 $^{\circ}$ C (decomp). 1 H NMR (CD₃OD): δ 7.80 (d, J = 8.09 Hz, 2H), 7.16 (s, 1H), 7.02 (s, 2H), 6.86 (d, J = 8.09 Hz, 2H), 3.90 (s, 6H), 3.78 (s, 3H). ESIMS (MH+): 457; (M-H): 455.

Anal. Calcd for $C_{21}H_{20}$ $N_4O_4S_2\cdot 1.0Et_2O$: C, 56.58; H, 5.70; N, 10.56; S, 12.08. Found: C, 56.27; H, 5.48; N, 10.69; S, 12.00.

EXAMPLE A(11)

5

4-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-benzoic acid ethyl ester

mp 240-245 °C (decomp). ¹H NMR (CD₃OD): δ 8.18-8.16 (d, J = 8.46 Hz, 2H), 8.09-8.06 (d, J = 8.09 Hz, 2H), 7.06 (s, 1H), 4.38 (q, J = 7.35 Hz, 2H), 3.85 (s, 6H), 3.68 (s, 3H), 1.41-1.37 (t, J = 6.99 Hz, 3H). FABMS (MH⁺): 513.

Anal. Calcd for C₂₂H₂₀N₄O₅S₂·0.3Et₂O: C, 56.59; H, 5.09; N, 10.48; S, 11.99. Found:
 C, 56.24; H, 4.83; N, 10.26; S, 11.86.

EXAMPLE A(12)

4-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-benzene-1,2-diol

15

mp 132-137 °C (decomp). ¹H NMR (CD₃OD): δ 7.42-7.41 (d, J = 2.20 Hz, 1H), 7.32-7.28 (dd, J = 7.65, 1.84 Hz, 1H), 7.11 (s, 1H), 7.07 (s, 2H), 6.85-6.82 (d, J = 8.45 Hz, 1H), 3.90 (s, 6H), 3.78 (s, 3H). FABMS (MH $^{+}$): 473.

EXAMPLE A(13)

5 4-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-2-methoxy-phenol

mp 202-203 °C. ¹H NMR (CD₃OD): δ 7.42 (s, 1H), 7.39 (d, J = 2.11 Hz, 1H), 7.15 (s, 1H), 6.99 (s, 2H), 6.97 (d, J = 2.10 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 6H), 3.76 (s,

10 3H). FABMS (MH⁺): 487.

Anal. Calcd for $C_{22}H_{22}N_4O_5S_2$: C, 54.31; H, 4.56; N, 11.51; S, 13.18. Found: C, 54.52; H, 4.70; N, 11.26; S, 13.32.

EXAMPLE A(14)

4-[4'-Amino-4-(4-fluoro-phenyl)-5-methyl-[2,5']bithiazolyl-2'-ylamino]-

15 benzenesulfonamide

mp 145-148 °C (decomp). ¹H NMR (CD₃OD): δ 7.90-7.82 (m, 4H), 7.76-7.70 (m, 2H), 7.22-7.17 (m, 2H), 2.56 (s, 3H). HRFABMS: Calcd. for C₁₉H₁₆FN₅O₂S₃ (MH⁺): 461.0450. Found: 461.0466.

EXAMPLE A(15)

5 4-[4'-Amino-5-(4-fluoro-benzyl)-4-methyl-[2,5']bithiazolyl-2'-ylamino]-benzenesulfonamide

mp 130-135 °C (decomp). ¹H NMR (CD₃OD): δ 7.76-7.68 (m, 4H), 7.17-7.12 (m, 2H), 6.97-6.90 (m, 2H), 3.97 (s, 2H), 2.23 (s, 3H).

10 Anal. Calcd for C₂₀H₁₈FN₅O₂S₃: C, 50.51; H, 3.81; N, 14.73; S, 20.23. Found: C, 50.40; H, 3.73; N, 14.64; S, 20.37.

EXAMPLE A(16)

4-[4'-Amino-4-(3-hydroxy-phenyl)-[2,5']bithiazolyl-2'-ylamino]-

benzenesulfonamide

15

mp 205-209 °C (decomp). ¹H NMR (CD₃OD): δ 7.94-7.81 (m, 4H), 7.43-7.39 (m, 2H), 7.33 (s,1H), 7.24 (t, J = 8.17 Hz, 1H), 6.80-6.75 (m, 1H). FABMS (MH⁺): 445.

Anal. Calcd for C₁₈H₁₅N₅O₃S₃: C, 48.53; H, 3.39; N, 15.72; S, 21.59. Found: C, 48.74; H, 3.47; N, 15.44; S, 21.31.

EXAMPLE A(17)

3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenol

5

10

mp 226-230 °C. ¹H NMR (CD₃OD): δ 7.43-7.41 (m, 2H), 7.31 (s, 1H), 7.28-7.23 (m, 1H), 7.02 (s, 2H), 6.80-6.77 (m, 1H), 3.90 (s, 6H), 3.78 (s, 3H). FABMS (MH⁺): 456.

Anal. Calcd for C₂₁H₂₀ N₄O₄S₂: C, 55.25; H, 4.42; N, 12.27; S, 14.05. Found: C, 55.39; H, 4.56; N, 12.07; S, 14.05.

EXAMPLE A(18)

5-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-benzene-1,3-diol

15 mp 198-202 °C. ¹H NMR (CD₃OD): δ 7.21 (s, 1H), 6.99 (s, 2H), 6.91 (d, J = 2.06 Hz, 2H), 6.27 (t, J = 2.03 Hz, 1H), 3.88 (s, 6H), 3.77 (s, 3H). FABMS (MH⁺): 473.

Anal. Calcd for C₂₁H₂₀N₄O₅S₂·0.5H₂O: C, 52.38; H, 4.40; N, 11.63; S, 13.32. Found: C, 52.53; H, 4.44; N, 11.83; S, 13.47.

EXAMPLE A(19)

3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-5-methoxy-

5 phenol

$$H_3CO$$
 H_3CO
 H_3C

mp 208-210 °C. ¹H NMR (CD₃OD): δ 7.14 (s, 1H), 6.89-6.86 (m, 2H), 6.85 (s, 2H), 6.23 (t, J = 2.06 Hz, 1H), 3.75 (s, 6H), 3.69 (s, 3H), 3.63 (s, 3H). FABMS (MH⁺): 486.

Anal. Calcd for C₂₂H₂₂N₄O₅S₂·0.5H₂O: C, 54.20; H, 4.57; N, 11.49; S, 13.16. Found:
 C, 54.02; H, 4.71; N, 11.09; S, 13.56.

EXAMPLE A(20)

4-[4'-Amino-4-(4-hydroxy-phenyl)-[2,5']bithiazolyl-2'-ylamino]-

benzenesulfonamide

15

mp 200-203°C (decomp). ¹H NMR (CD₃OD): δ 7.30 (s, 1H), 6.98 (s, 2H), 6.83 (d, J = 2.93 Hz, 1H), 6.56 (d, J = 2.93 Hz, 1H), 3.88 (s, 6H), 3.81 (s, 3H), 3.76 (s, 3H); FABMS (MH⁺): 565/567.

Anal. Calcd for $C_{22}H_{21}BrN_4O_5S_2 \cdot 0.5H_2O$: C, 46.00; H, 3.86; N, 9.75; S, 11.16.

5 Found: C, 46.26; H, 3.69; N, 9.55; S, 11.09.

EXAMPLE A(21)

3-[4'-Amino-2'-(4-sulfamoyl-phenylamino)-[2,5']bithiazolyl-4-yl]-benzoic acid

¹H NMR (DMSO-d₆): δ 10.94 (s, OH), 8.46 (s, 1H), 8.18 (d, J = 7.80 Hz, 1H), 7.92 (d, J = 7.80 Hz, 1H), 7.78 (m, 4H), 7.56 (t, J = 7.80 Hz, 1H), 7.22 (brd, NH₂), 7.04 (brd, NH₃).

Anal. Calcd for C₁₉H₁₅N₅O₄S₃·0.3EtOAc: C, 48.52; H, 3.51; N, 14.01; S, 19.24. Found: C, 48.37; H, 3.67; N, 13.97; S, 19.24.

EXAMPLE A(22)

5-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-2-chloro-phenol

mp 235-238°C. ¹H NMR (CD₃OD): δ 7.61 (d, J = 1.92 Hz, 1H), 7.47-7.39 (m, 2H), 7.37 (s, 1H), 7.05 (s, 2H), 3.94 (s, 6H), 3.82 (s, 3H). FABMS (MH⁺): 490. Anal. Calcd for C₂₁H₁₉ClN₄O₄S₂: C, 51.37; H, 3.90; N, 11.41; S, 13.06. Found: C, 51.38; H, 3.95; N, 11.32; S, 12.72.

5 EXAMPLE A(23)

2-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenol

mp 186-190°C (decomp). ¹H NMR (CD₃OD): δ 7.88 (dd, J = 7.99, 1.61 Hz, 1H,), 7.62 (s, 1H), 7.27-7.20 (m, 1H), 7.04 (s, 2H), 6.98-6.91 (m, 2H), 3.92 (s, 6H), 3.80 (s, 3H). FABMS (MH⁺): 457.

Anal. Calcd for $C_{21}H_{20}N_4O_4S_2$: C, 55.25; H, 4.42; N, 12.27; S, 14.05. Found: C, 55.28; H, 4.62; N, 11.96; S, 13.72.

EXAMPLE A(24)

10

15

4-(4'-Amino-4-p-tolyl-[2,5']bithiazolyl-2'-ylamino)-benzenesulfonamide

111 NIAD (DAGO), \$7.00 7.04 (--, 411) 7.2

¹H NMR (DMSO): δ 7.92-7.84 (m, 4H), 7.32 (m, 3H), 7.11 (s, 2H), 2.39 (s, 3H). FABMS (M⁺): 443; (MNa⁺): 466.

EXAMPLE A(25)

2-(4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-benzene-1,4-diol

5 mp 208-212 °C (decomp).; 'H NMR (CD₃OD): δ 7.56 (s, 1H), 7.31 (d, J = 2.80 Hz,1H), 7.00 (s, 2H), 6.77 (d, J = 8.69 Hz, 1H), 6.68 (dd, J = 8.72, 2.87 Hz, 1H), 3.89 (s, 6H), 3.77 (s, 3H).

ESIMS (MH⁺): 473.

Anal. Calcd for $C_{21}H_{20}N_4O_5S_2 \cdot 0.45H_2O$: C, 52.47; H, 4.38; N, 11.66; S, 13.34.

10 Found: C, 52.77; H, 4.48; N, 11.23; S, 12.98.

EXAMPLE A(26)

3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-4-bromophenol

mp 214-216 °C. ¹H NMR (CD₃OD): δ 7.47 (d, J = 8.67 Hz, 1H), 7.38 (s, 1H), 7.26 (d, J = 3.02, 1H), 7.07 (s, 2H), 6.72 (dd, J = 8.69, 3.07 Hz, 1H), 3.89 (s, 6H), 3.76 (s, 3H). FABMS (MH $^{+}$): 535/537.

Anal. Calcd for C₂₁H₁₉BrN₄O₄S₂: C, 47.11; H, 3.58; N, 10.46; S, 11.85. Found: C, 47.31; H, 3.65; N, 10.26; S, 11.85.

EXAMPLE A(27)

5

2-(4'-Amino-4-benzo[b]thiophen-3-yl-[2,5']bithiazolyl-2'-ylamino)-

benzenesulfonamide

10 mp 155-160 °C (decomp). ¹H NMR (CD₃OD): δ 8.39 (d, J = 7.94 Hz, 1H), 8.01 (s, 1H), 7.96 (d, J = 7.72 Hz, 1H), 7.86 (s, 4H), 7.50-7.39 (m, 3H). FABMS (MH⁺): 485.

EXAMPLE A(28)

4-{4'-Amino-4-[4-(2,4-dichloro-phenyl)-furan-2-yl]-[2,5']bithiazolyl-2'-ylamino}-

15 benzenesulfonamide

mp 225-230 °C (decomp). ¹H NMR (CD₃OD): δ 8.00 (d, J = 8.62, 1H), 7.86 (s, 4H), 7.58 (d, J = 2.10, 1H), 7.45 (dd, J = 8.60, 2.12 Hz, 1H), 7.40 (s, 1H), 7.29 (d, J = 3.61 Hz, 1H), 6.97 (d, J = 3.59, 1H). FABMS (MH⁺): 564/566.

$5 \quad EXAMPLE A(29)$

3-(4'-Amino-2'-propylamino-[2,5']bithiazolyl-4-yl)-phenol

¹H NMR (CD₃COCD₃): δ 8.43 (s, 1H), 7.50 (d, 1H), 7.43 (d, 1H), 7.30-7.20 (m, 3H), 6.55 (s, 2H), 3.40 (t, 2H), 1.69 (sextet, 2H), 0.97 (t, 3H). ESIMS (MH⁺): 333;

EXAMPLE A(30)

(MNa⁺): 355; (MH⁻): 331.

10

3-(4'-Amino-2'-methylamino-[2,5']bithiazolyl-4-yl)-phenol

¹H NMR (CD₃COCD₃): δ 8.40 (s, 1H), 7.50 (d, 1H), 7.43 (d, 1H), 7.31-7.15 (m, 3H), 6.63 (s, 2H), 3.00 (d, 3H). ESIMS (MH⁺): 305; (M-H⁻): 303.

EXAMPLE A(31)

3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-N-phenethyl-

5 benzamide

ESMS (MH⁺): 588.

Anal. Calcd for $C_{30}H_{29}N_5O_4S_2$: C, 61.31; H, 4.97; N, 11.92; S, 10.91. Found: C, 61.02; H, 4.86; N, 11.72; S, 10.83.

10 EXAMPLE A(32)

3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-N-benzyl-benzamide

ESMS (MH⁺): 574.

15 EXAMPLE A(33)

3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-N-phenyl-benzamide

ESMS (MH⁺): 560.

Anal. Calcd for $C_{28}H_{25}N_5O_4S_2\cdot 0.8\ H_2O$: C, 58.58; H, 4.67; N, 12.20; S, 11.17. Found: C, 58.68; H, 4.49; N, 12.23; S, 11.33.

5 EXAMPLE A(34)

3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-N-(4-isopropyl-3-methyl-phenyl)-benzamide

ESMS (MH⁺): 616.

Anal. Calcd for C₃₂H₃₃N₅O₄S₂·0.4 H₂O: C, 61.69; H, 5.47; N, 11.24; S, 10.29. Found:
 C, 61.76; H, 5.26; N, 11.08; S, 10.18.

EXAMPLE A(35)

3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-N-(2-methyl-quinolin-6-yl)-benzamide

ESMS (MH⁺): 625.

Anal. Calcd for $C_{32}H_{28}N_6O_4S_2\cdot 0.2\ H_2O$: C, 58.41; H, 4.36; N, 12.65; S, 9.66. Found: C, 58.40; H, 4.31; N, 12.28; S, 9.54.

5 EXAMPLE A(36)

[3-(4'-Amino-2'-p-tolylamino-[2,5']bithiazolyl-4-yl)-phenyl]-carbamic acid benzyl ester

¹H NMR (CD₃COCD₃): δ 8.85 (s, 1H), 8.21 (s, 1H), 7.70-7.25 (m, 14H), 6.52 (s, 2H),

10 5.30 (s, 2H), 2.41 (s, 3H). ESIMS (MH⁺): 514; (MH⁻): 512.

EXAMPLE A(37)

N-{3-[4'-Amino-2'-(3-diethylamino-propylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-benzamide

¹H NMR (DMSO-D₆): δ 10.39 (s, 1H), 9.12 (s, 1H), 8.35 (s, 2H), 7.96 (m, 3H), 7.79 (m, 1H), 7.69-7.39 (m, 6H), 3.36 (m, 2H), 3.12 (m, 6H), 2.93 (m, 2H), 1.20 (m, 6H). ESIMS (MH⁺): 507.

5 EXAMPLE A(38)

N-[3-(4'-Amino-2'-phenethylamino-[2,5']bithiazolyl-4-yl)-phenyl]-benzamide

¹H NMR (DMSO-D₆): δ 10.39 (s, 1H), 8.42-7.15 (m, 16H), 6.85 (s, 1H), 5.20 (broad s, 2H), 2.90 (m, 2H), 3.50 (m, 2H). ESIMS (MH⁺): 498.

10 **EXAMPLE A**(39)

3-[4'-Amino-4-(3-benzoylaminophenyl)-[2,5']bithiazolyl-2'-ylamino]-benzoic acid methyl ester

¹H NMR (DMSO-D₆): δ 10.39 (s, 1H), 10.38 (s, 1H), 8.37 (s, 1H), 8.16 (s, 1H), 8.18 (d, 1H), 7.98 (d, 2H), 7.84 (d, 1H), 7.70 (d, 1H), 7.65-7.39 (m, 8H), 7.10 (broad s, 2H), 3.89 (s, 3H). ESIMS (MH⁺): 528; (MNa⁺): 550; (MH⁻): 526.

EXAMPLE A(40)

5 3-[4'-Amino-4-(3-benzoylaminophenyl)-[2,5']bithiazolyl-2'-ylamino]-benzoic acid ethyl ester

¹H NMR (DMSO-D₆): δ 10.80 (s, 1H), 10.38 (s, 1H), 8.37 (s, 1H), 8.16 (s, 1H), 8.15 (d, 2H), 8.00 (d, 2H), 7.88 (d, 1H), 7.75-7.40 (m, 8H), 7.10 (broad s, 1H), 4.38 (quartet, 2H), 1.39 (t, 3H). ESIMS (MH⁺): 542; (MNa⁺): 564.

EXAMPLE A(41)

10

N-{3-[4'-Amino-2'-(benzo[1,3]dioxol-5-ylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-benzamide

¹H NMR (DMSO-D₆): δ 10.41 (m, 2H), 8.35 (s, 1H), 8.00-6.88 (m, 14H), 6.10 (s, 2H).

ESIMS (MH⁺): 514; (MH⁻): 512.

EXAMPLE A(42)

N-{3-[4'-Amino-2'-(3,5-dimethylphenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-benzamide

5 ¹H NMR (CD₃OD): δ 8.36-6.79 (m, 16H), 6.68 (s, 1H) 2.28 (s, 6H). ESIMS (MH*)*: 993; (MNa*)*: 1015.

EXAMPLE A(43)

N-{3-[4'-Amino-2'-(indan-5-ylamino)-[2,5']bithiazolyl-2'-ylamino]-phenyl}-benzamide

10

¹H NMR (CD₃OD): δ 8.50-7.15 (m, 17H), 2.95 (m, 4H), 2.15 (m, 2H). ESIMS (MH⁺): 510; (MNa⁺): 532; (MH): 508.

EXAMPLE A(44)

[3-(4'-Amino-2'-m-tolylamino-[2,5']bithiazolyl-4-yl)-phenyl]-benzamide

¹H NMR (CD₃OD): δ 8.25-6.81 (m, 18H), 2.29 (s, 3H). ESIMS (MH⁺): 484; (MNa⁺): 506.

EXAMPLE A(45)

5 N-{3-[4'-Amino-2'-(2,3-dihydro-benzo[1,4]dioxin-6-ylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-benzamide

¹H NMR (CD₃OD): δ 8.42-6.83 (m, 17H), 4.29 (m, 4H). ESIMS (MH⁺): 528; (MNa⁺): 550.

10 **EXAMPLE** A(46)

N-{3-[4'-Amino-2'-(3-methylsulfanyl-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-benzamide

¹H NMR (DMSO-D₆): δ 10.39 (s, 1H), 8.89 (d, 2H), 8.51-6.91 (m, 18H). ESIMS (MH⁺)*: 1029.

EXAMPLE A(47)

N-{3-[4'-Amino-2'-(3,4-dimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-

5 benzamide

¹H NMR (CD₃OD): δ 8.32 (s, 1H), 7.98 (d, 2H), 7.78-6.91 (m, 14H), 3.88 (s, 3H), 3.81 (s, 3H). ESIMS (MH⁺): 530; (MNa+): 552.

EXAMPLE A(48)

N-{3-[2'-(3-Acetylamino-4-methyl-phenylamino)-4'-amino-[2,5']bithiazolyl-4-yl]-phenyl}-benzamide

¹H NMR (CD₃OD): δ 8.32 (s, 1H), 7.98 (d, 2H), 7.72-7.15 (m, 15H), 2.22 (s, 3H), 1.98 (s, 3H). ESIMS (MH⁺): 541; (MNa⁺): 563; (MK⁺): 579; (MH⁻): 539.

15 **EXAMPLE A(49)**

N-{3-[4'-Amino-2'-(1,4-dioxo-1,2,3,4-tetrahydro-phthalazin-6-ylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-benzamide

¹H NMR (DMSO-D₆): δ 11.11 (s, 1H), 10.39 (s, 1H), 8.35 -7.10 (m, 17H). ESIMS (MNa⁺): 576; (MH): 552.

EXAMPLE A(50)

5 3-[4'-Amino-4-(3-benzoylamino-phenyl)-[2,5']bithiazolyl-2'-ylamino]-benzoic acid

¹H NMR (DMSO-D₆): δ 10.79 (s, 1H), 10.39 (s, 1H), 8.35 (s, 1H), 8.18-7.34 (m, 16H). ESIMS (MH⁺): 514; (MNa⁺): 536; (MH⁻): 512.

EXAMPLE A(51)

4-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-ethylbenzoate

¹H NMR (d₆-DMSO): δ 1.2 (t, 3H), 4.3 (q, 2H), 7.4 (t, 1H), 7.5-8.0 (m, 14H), 8.35 (s br, 1H), 10.4 (s, 1H), 10.95 (s, 1H). ESIMS (MH⁺): 542; (M-H⁻): 540.

EXAMPLE A(52)

5 4-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-methoxyphenyl

¹H NMR (CD₃OD): δ 2.6 (s, 3H), 7.2-7.8 (m, 11H), 8.35 (s br, 1H), 7.9 (d, 2H), 8.2 (s br, 1H). ESIMS (MH⁺): 500; (M+Na+): 522; (M+K+): 538.

EXAMPLE A(53)

3-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-pyridine

¹H NMR (d₆-DMSO): δ 7.1 (s br, 1H), 7.4 (t, 1H), 7.5-7.7 (m, 7H), 7.85 (m, 1H), 8.0 (m, 2H), 8.25-8.4 (m, 3H), 9.0 (d, 1H), 10.4 (s, 1H), 10.95 (s, 1H). ESIMS (M+Na⁺): 493; (M-H): 469.

5 EXAMPLE A(54)

2-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-thiophene carboxylic acid methyl ester

¹H NMR (d₆-DMSO): δ 3.8 (s, 3H), 7.0 (s br, 2H), 7.4 (t, 1H), 7.5-7.7 (m, 6H), 7.85 10 (m, 1H), 8.0 (m, 3H), 8.15 (d, 1H), 8.35 (m, 1H), 10.4 (m, 1H). ESIMS (MH⁺): 534; (M+Na⁺): 556; (M-H⁻): 532.

EXAMPLE A(55)

4-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-phenylsulfonylpiperidine

¹H NMR (d₆-DMSO): δ 1.2-1.6 (m, 6H), 3.1 (m, 4H), 7.3-8.5 (m, 14H), 8.9 (d, 1H), 10.4 (s, 1H), 10.5 (s, 1H), 11.2 (s, 1H). ESIMS (MH⁺): 617; (M-H)⁻: 615.

EXAMPLE A(56)

5 4-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-nitrophenyl

¹H NMR (d₆-DMSO): δ7.2-7.9 (m, 13H), 8.2 (d, 2H), 8.3 (s, 1H), 10.3 (s, 1H), 11.2 (s, 1H). ESIMS (MH⁺): 515; (M-H): 513.

EXAMPLE A(57)

10 4-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-*trans*-benzoyl-DL-homoserine lactone

¹H NMR (d₆-DMSO): δ 2.5 (m, 1H), 2.7 (m, 1H), 4.35 (m, 1H), 4.5 (m, 1H), 4.8 (m, 1H), 7.2 (m, 1H), 7.45 (m, 3H), 7.55 (m, 4H), 7.75 (m, 5H), 7.85 (m, 3H), 8.0 (m, 3H), 8.35 (m, 1H). ESIMS (MH⁺): 597; (M+Na⁺): 619.

5 EXAMPLE A(58)

4-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-acetophenone

¹H NMR (d₆-DMSO): δ 2.5 (s, 3H), 7.1 (s br, 1H), 7.42 (t, 1H), 7.5-7.7 (m, 6H), 7.8 (m, 4H), 8.0 (m, 5H), 8.35 (t br, 1H). ESIMS (MH⁺): 512; (M+Na⁺): 534; (M-H):

EXAMPLE A(59)

510.

10

(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-cyclohexane

¹H NMR (CDCl₃): δ 1.0–2.0 (m, 10H), 3.2 (m br, 1H), 5.2 (s, 2H), 7.0 (d, 1H), 7.4-8.0 (m, 11H). ESIMS (MH⁺): 506; (M-H)⁻: 504.

EXAMPLE A(60)

5 3-(4'-Amino-4-(3-benzamidophenyl)-[2,5']bithiazolyl-2'-ylamino)-methoxypropane

¹H NMR (CDCl₃): δ 1.5 (m, 1H), 1.8 (m, 1H), 2.0 (m, 2H), 3.1 (s, 3H), 3.3 (m, 2H), 5.0 (s, 2H), 7.2-7.4 (m, 12H). ESIMS (MH⁺): 496; (M-H)⁻: 494.

EXAMPLE A(61)

10 4-[4'-Amino-4-(3-benzyloxy-5-hydroxy-phenyl)-[2,5]bithiazolyl-2'-ylamino]-benzenesulfonamide

mp 185-187 °C (decomp). ¹H NMR (CD₃OD): δ 7.88 (s, 4H), 7.56-7.32 (m, 6H), 7.10-7.03 (m, 2H), 6.45 (t, J = 2.23 Hz, 1H), 5.13 (s, 2H). ESIMS (MH⁺): 552; (M-H⁻):; 550.

5 Anal. Calcd for C₂₅H₂₁N₅O₄S₃.·0.3EtOAc: C, 54.43; H, 4.08; N, 12.12; S, 16.64. Found: C, 54.54; H, 4.00; N, 12.06; S, 16.59.

EXAMPLE A(62)

4-[4-(3-Allyloxy-5-hydroxyphenyl)-4'-amino-[2,5']bithiazolyl-2'-ylamino]-benzenesulfonamide

10

15

mp 200-202 °C. 1 H NMR (CD₃OD): δ 11.12 (s, NH), 9.81 (s, NH₂), 8.07-8.00 (m, 4H), 7.86 (s, NH₂), 7.48 (s, 1H), 7.30-7.23 (m, 2H), 6.57 (s, 1H), 6.34-6.23 (m, 1H), 5.68-5.52 (m, 2H), 5.32-5.28 (m, 2H). ESIMS (MH+): 502; (M-H-): 501. Anal. Calcd for $C_{21}H_{19}N_{5}O_{4}S_{3}$: C, 50.29; H, 3.82; N, 13.96; S, 19.18. Found: C, 50.31; H, 3.93; N, 13.74; S, 19.05.

EXAMPLE A(63)

4-(4'-Amino-4-styryl-[2,5']bithiazolyl-2'-ylamino)-benzenesulfonamide

mp 140-143 °C (decomp). ¹H NMR (CD₃OD): δ 7.80-7.72 (m, 4H), 7.50-7.46 (m, 1H), 7.38-7.06 (m, 6H), 6.95 (s, 1H). FABMS Calcd for C₂₀H₁₇N₅O₂S₃: 455.0544.

5 Found 455.0529.

EXAMPLE A(64)

4-{4'-Amino-4-[2-(4-hydroxy-phenyl)-vinyl]-[2,5']bithiazolyl-2'-ylamino}-benzenesulfonamide

10 mp 138-140 °C (decomp). ¹H NMR (CD₃OD): δ 10.90 (s, NH), 7.73 (q, J = 15.32 Hz, 4H), 7.36 (d, J = 8.75 Hz, 2H), 7.22 (d, J = 15.80 Hz, 1H), 7.18 (s, NH₂), 7.06 (s, 1H), 6.90 (d, J = 16.1 Hz, 1H), 6.84 (s, NH₂), 6.70 (d, J = 8.62, 2H). FABMS Calcd for C₂₀H₁₇N₅O₃S₃: 471.0494. Found: 471.0502.

EXAMPLE A(65)

4-{4'-Amino-4-[2-(3-hydroxy-4-methoxy-phenyl)-ethenyl]-[2,5']bithiazolyl-2'-ylamino}-benzenesulfonamide

mp 190-193 °C (decomp). ¹H NMR (CD₃OD): δ 10.71 (s, NH₂), 9.83 (s, NH2), 7.63 (q, J = 15.40, 4H), 7.10-7.03 (m, 2H), 6.98 (s, 1H), 6.86 (s, NH₂), 6.83-6.72 (m, 3H, NH₂), 3.60 (s, 3H). ESIMS (MNa+): 524.

5 Anal. Calcd for C₂₁H₁₉N₅O₄S₃.·0.4EtOAc: C, 50.56; H, 4.17; N, 13.05; S, 17.92. Found: C, 50.50; H, 4.35; N, 12.75; S, 17.88.

EXAMPLE A(66)

4-[4'-Amino-4-(4-phenyl-buta-1,3-dienyl)-[2,5']bithiazolyl-2'-ylamino]-benzenesulfonamide

10

mp 193-195 °C (decomp). ¹H NMR (CD₃OD): δ 10.92 (s, NH), 7.82 (q, J = 15.92, 4H), 7.53 (d, J = 7.42, 2H), 7.36 (t, J = 7.41 Hz, 2H), 7.28-7.06 (m, 2H, 2NH₂), 6.77 (m, 2H). ESIMS (MH+): 482.

EXAMPLE A(67)

4-(4'-Amino-4-benzoyl-[2,5']bithiazolyl-2'-ylamino)-benzenesulfonamide

mp 255-260 0C (decomp). ¹H NMR (CD₃OD): δ 10.99 (s, 1H), 8.12 (s, 1H), 8.04-8.02 (m, 2H), 7.78 (q, J = 12.1 Hz, 4H), 7.72-7.66 (m, 1H), 7.60-7.55 (m, 2H), 7.26 (s, NH₂), 7.05 (br, NH₂). ESIMS (MNa+): 480; (M-H-): 456.

EXAMPLE A(68)

5 Ethyl 4'-amino-2'-(4-sulfamoyl-phenylamino)-[2,5']bithiazolyl-4-carboxylate

¹H NMR (DMSO-D₆): δ 11.0 (s, NH), 8.12 (s, H), 7.80 (m, 4H), 7.32 (s, NH₂), 7.08 (br, NH₂), 4.35 (q, J = 8.7 Hz, 2H), 1.30 (t, J = 8.7 Hz, 3H). FABMS Calcd for C₁₅H₆N₅O₄S₃(MH+): 426.0364. Found: 426.0356.

10 **EXAMPLE** A(69)

15

4-[4'-Amino-4-(4-chloro-3-hydroxy-phenyl)-[2,5']bithiazolyl-2'-ylamino]-benzenesulfonamide

¹H NMR (CD₃OD): δ 7.97 (s, 4H), 7.63 (s, 1H), 7.58-7.46 (m, 3H). FABMS (MH⁺): 480.

EXAMPLE A(70): 4-(4'-Amino-4-biphenyl-4-yl-[2,5']bithiazolyl-2'-ylamino)-benzenesulfonamide

¹H NMR (CD₃OD): δ 8.09-8.00 (m, 1H), 7.88 (s, 4H), 7.72-7.63 (m, 3H), 7.51-7.40 (m, 3H), 7.38-7.29 (m, 1H). EIMS (M-H): 504.

Anal. Calcd for $C_{24}H_{19}N_5O_2S_3$: C, 57.01; H, 3.79; N, 13.85; S, 19.02. Found: C, 56.87; H, 3.81; N, 13.57; S, 19.16.

Example A(71): 4-(4'-Amino-4-benzoyl-[2,5']bithiazolyl-2'-ylamino)-*N*-(2-dimethylamino-ethyl)-benzenesulfonamide

10

5

¹H NMR (CD₃OD): δ 7.88 (s, 1H), 7.84-7.78 (m, 2H), 7.69-7.47 (m, 5H), 7.40-7.34 (m, 2H), 2.63 (t, J = 6.70 Hz, 2H), 2.06 (t, J = 6.60 Hz, 2H), 1.84 (s, 6H). FABMS Calcd for $C_{23}H_{24}N_6O_3S_3$: 529.1150. Found: 529.1158.

Example A(72): 4-[4-Amino-4-(3-amino-benzoyl)-[2,5']bithiazoyl-2'-ylamino]-

15 benzenesulfonamide.

¹H NMR (DMSO): δ 10.91 (s, 1H), 7.99 (s, 1H), 7.86-7.84 (m, 4H), 7.27 (s, 2H), 7.23-7.06 (m, 5H), 6.81-6.90 (m, 1H), 5.38 (s, 2H). HRFABMS (M+Na⁺): Calcd.: 495.0344. Found: 495.0330.

5 Example A(73): 4'-Amino-5-benzyl-2'-(4-sulfamoyl-phenylamino)[2,5']bithiazolyl-4carboxylic acid ethyl ester

10 H NMR (CD3OD): δ 7.76 (s, 4H), 7.18 (m, 5H), 4.40 (s, 2H), 4.30 (q, J=7.8 Hz, 2H), 1.26 (t, J=7.8 Hz, 3H).

EXAMPLE B(1)

15

(3-{5-[4-Amino-2-(trityl-amino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-phenyl)-carbamic acid *tert*-butyl ester

The starting material for use in preparing the title compound was prepared according to the following Steps (i) and (ii).

Step (i): To a solution of 3.15g (26.7mmol, 1.0 eq.) of 3-aminobenzonitrile in 10mL of CH_2Cl_2 was added a solution of 6.4 g (29.4 mmol, 1.1 eq.) of di-*tert*butyl dicarbonate in 10 mL of CH_2Cl_2 , followed by 320 mg (2.7 mmol, 0.1 eq.) of DMAP and 8 mL (80.1 mmol, 3.0 eq.) of pyridine. CO_2 evolved and the reaction was followed by TLC until completion. The solvent was pumped off, the residue was taken up in EtOAc, and washed with 1N HCl and brine. The organic layer was dried over Na_2SO_4 and the solvent was removed. The crude product was purified on SiO_2 (2% $Et_2O-CH_2Cl_2$ eluant) to yield 5.4 g of 3-(t-butoxycarbamoyl)benzonitrile (yield 93%). Rf = 0.9 (10% $Et_2O-CH_2Cl_2$). ¹H NMR (CDCl₃): δ 1.5 (s, 9H), 6.6 (s br, 1H), 7.35 (m, 2H), 7.55 (m, 1H), 7.82 (m, 1H).

Step (ii): To a solution of 2 g (9.17mmol, 1.0 eq.) of 3-(t-butoxycarbamoyl)benzonitrile in 25 mL of EtOH was added 0.84 mL (13.76 mmol, 1.5 eq.) of 50% aqueous solution of NH₂OH. The reaction was placed in an oil bath at 80 °C and heated to 85 °C for 4 h. The solvent was removed *in vacuo*, and residual water was removed by azeotroping the residue with THF-toluene. Without purification, the crude hydroxyamidine (R_f = 0.1 in 10% Et₂O-CH₂Cl₂) was dissolved in 45 mL of DMF and 2.1 mL (12 mmol, 1.3 eq.) of diisopropylethyl amine and 110 mg (0.92 mmol, 0.1 eq.) of DMAP were added. The mixture was cooled to –50 °C, and a solution of 0.88 mL (11 mmol, 1.2 eq.) of chloroacetyl chloride in 15 mL of CH₂Cl₂ (or DMF) was added dropwise, under argon. The reaction was stirred at –50 °C for 1 h, and then poured into EtOAc and washed with 1N HCl and brine. The organic layer was dried over Na₂SO₄ and the solvent was removed. The residue was taken up in 50 mL of dioxane and placed in an oil bath at 110 °C for about 1 h. The

solvent was removed and the residue was purified on SiO_2 (Et₂O-hexane eluant) to yield 2 g of 5-chloromethyl-3-(3-(t-butoxy-carbamoyl)phenyl)-[1,2,4]-oxadiazole as a white solid (70% overall yield for three steps). $R_f = 0.9$ (10% $Et_2O-CH_2Cl_2$). ¹H NMR (CDCl₃): δ 1.5 (s, 9H), 4.75 (s, 2H), 6.62 (s br, 1H), 7.45 (dd, 1H), 7.62 (d br, 1H), 7.75 (m, 1H), 8.05 (m, 1H).

The title compound was prepared as follows. To a solution of tritylisothiocyanate (5.0 mmol) and cyanamide (5.5 mmol) dissolved in anhydrous THF (10 mL) was added 1,8-diazabicyclo [5.4.0]undec-7-ene (5.5 mmol). After stirring for 2 hours, the reaction was diluted with acetonitrile (15 mL) and then treated with 5-chloromethyl-3-(3-(t-butoxy-carbamoyl)phenyl)-[1,2,4]-oxadiazole (2.5 mmol) and 1,8-diazabicyclo [5.4.0]undec-7-ene (2.75 mmol). The product was isolated after 1 hour by concentrating the crude reaction *in vacuo*, and chromatographing the resulting oil (gradient elution, 20% EtOAc/hexane to 40% EtOAc/hexane), giving 1.30 g of product (84% yield). ¹H NMR (CDCl₃): δ 7.79 (1H, s), 7.60 (2H, m), 7.24 (16H, m), 6.91 (1H, s), 6.48 (1H, s), 5.77 (2H, s), 1.52 (3H, s), 1.46 (6H, s). ESIMS (MH¹): 617.

The following Examples B(2) through B(36) were prepared in a similar fashion to Example B(1).

EXAMPLE B(2)

5

10

15

3-(3-tert-Butyloxycarboxy-aminophenyl)-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-acetone): δ 1.5 (s, 9H), 3.7 (s, 3H), 3.85 (s, 6H), 7.0 (s br, 2H), 7.05 (s, 2H), 7.4 (t, 1H), 7.75 (d, 2H), 8.35 (s, 1H), 8.6 (s br, 1H), 9.7 (s br, 1H). ESIMS (MH⁺): 541; (M-H⁻): 539.

5 Anal. Calcd for C₂₅H₂₈N₆O₆S: C, 55.54; H, 5.22; N, 15.55; S, 5.93. Found: C, 56.45; H, 5.67; N, 14.88; S, 5.58.

EXAMPLE B(3)

5-[3-(4-tert-Butyl-phenyl)-[1,2,4] oxadiazol-5-yl] - $N^2-(3,4,5-trimethoxy-phenyl)$ -thiazole-2,4-diamine

10

MS (FAB) [m+]/z Calc'd: 481. Found 481.

Anal. Calc'd: C, 59.86; H, 5.65; N, 14.54; S, 6.66. Found: C, 58.36; H, 5.53; N, 13.95; S, 6.36.

EXAMPLE B(4)

5-[3-(3-Methoxymethoxy-phenyl)-[1,2,4]oxadiazol-5-yl]- N²-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

¹HNMR (300 MHz, DMSO-d₆): δ 3.41 (s, 3H), 3.64 (s, 3H), 3.81 (s, 6H), 5.29 (s, 2H), 7.01 (s, 2H), 7.22 (m, 1H), 7.34 (br s, 2H), 7.47 (m, 1H), 7.70 (m, 2H), 10.76 (s, 1H).

Anal. Calcd for C₂₂H₂₃N₅O₆S • H₂O: C, 52.48; H, 5.00; N, 13.91. Found: C, 52.47;
 H, 4.98; N, 13.75.

Example B(5): 3-(3-(tert-butyloxycarboxyamino)-6-fluoro-phenyl)-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

10

¹H NMR (CDCl₃): δ 1.5 (s, 9H), 3.7 (s, 3H), 3.85 (s, 6H), 6.6 (s br, 2H), 6.7 (s br, 1H), 7.05 (t, 1H), 7.55 (m br, 1H), 7.85 (m, 1H). ESIMS [MH]⁺: 559.

Example B(6): 3-(2-methyl-5-(tert-butyloxycarboxyamino)-phenyl)-5-[2-[(3,4,5 trimethoxyphenyl)-amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

15

¹H NMR (CDCl₃): δ 1.5 (s, 9H), 2.55 (s, 3H), 3.85 (s, 3H), 3.87 (s, 6H), 6.65 (s br, 2H), 7.22 (d br, 1H), 7.28 (s, 1H), 7.55 (d br, 1H), 7.85 (m br, 1H). ESIMS [MH]⁺: 555.

5 Example B(7): 3-[3-[(3-methoxybenzoyl)amino]-6-methyl-phenyl]-5-[2-[4-(N,N-dimethylaminophenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d_6 -DMSO): δ 2.55 (s, 3H), 2.9 (s, 6H), 3.85 (s, 3H), 6.75 (m, 2H), 7.18 (m,

10 3H), 7.35-7.6 (m, 6H), 7.95 (dd, 1H), 8.35 (d, 1H), 10.3 (s br, 1H), 10.4 (s br, 1H). ESIMS [MH]⁺: 542, [M+Na]⁺: 564.

Anal. Calcd. for C28 H27 N7 O3 S: C, 58.22; H, 5.41, N, 16.97; S, 5.55. Found: C, 58.01; H, 5.54, N, 16.13; S, 5.22.

Example B(8): 3-[3-[(1-ethyl-3-methyl-1H-Pyrazole-5-carboxy)-amino]-6-methyl-

phenyl]-5-[2-(3-hydroxymethylphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (MeOD): δ 1.4 (t, 3H), 2.3 (s, 3H), 2.6 (s, 3H), 4.5 (q, 2H), 4.65 (s, 2H), 6.75 (s, 1H), 7.1 (d br, 1H), 7.35 (m, 2H), 7.55 (m, 1H), 7.65 (m br, 1H), 7.8 (dd, 1H), 8.25 (d, 1H). ESIMS [MH]⁺: 531.

5 Example B(9): 3-[3-[(1-ethyl-3-methyl-1H-Pyrazole-5-carboxy)-amino]-6-methyl-phenyl]-5-[2-(3-methylpyrrolidinephenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (MeOD): δ 1.4 (t, 3H), 1.8 (m br, 4H), 2.3 (s, 3H), 2.6 (s br, 7H), 3.7 (s, 2H), 4.5 (q, 2H), 6.75 (s, 1H), 7.18 (m, 3H), 7.35 (m, 2H), 7.55 (m br, 1H), 7.65 (s br, 1H), 7.8 (dd, 1H), 8.28 (d, 1H). ESIMS [MH]⁺: 584.

Example B(10): 3-[3-[(1-ethyl-3-methyl-1H-Pyrazole-5-carboxy)-amino]-6-methyl-phenyl]-5-[2-(4-methylpyrrolidinephenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

10

¹H NMR (d₆-DMSO): δ 1.32 (t, 3H), 1.7 (m br, 4H), 2.2 (s, 3H), 2.6 (s, 3H), 3.3 (m, 4H), 3.6 (s, 2H), 4.45 (q, 2H), 6.85 (s, 1H), 7.3 (m, 5H), 7.6 (d, 2H), 7.92 (dd, 1H), 8.28 (d, 1H), 10.25 (s, 1H), 10.8 (s br, 1H). ESIMS [MH]⁺: 584.

5 Anal. Calcd. for C30 H33 N9 O2 S: C, 61.73; H, 5.70, N, 21.60; S, 5.49. Found: C, 61.52; H, 5.61, N, 21.52; S, 5.46.

Example B(11): (R,S)-3-[3-(2-hydroxy-4-methyl pentanoyl)amino]-6-methyl-phenyl]-5-[2-(3-methylpyrrolidinephenyl)amino]-4-amino-5-thiazolyl]-1,2,4 oxadiazole

10

¹H NMR (MeOD): δ 1.0 (dd, 6H), 1.65 (m, 3H), 1.9 (m, 4H), 2.6 (s, 3H), 2.8 (m br, 4H), 3.85 (s, 2H), 4.2 (dd, 1H), 7.13 (d br, 1H), 7.35 (m, 3H), 7.56 (m br, 1H), 7.72 (m br, 2H), 8.28 (d, 1H).

Example B(12)N: (3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazoyl}-4-chloro-phenyl)-carbamic acid tert-butyl ester

¹H-NMR (d₆-acetone): δ 9.71 (s, 1H), 8.71 (s, 1H), 8.20 (m, 1H), 7.78 (m, 1H), 7.52 (m, 1H), 7.06 (s, 2H), 6.95 (s, 2H), 3.85 (s, 6H), 3.72 (s, 3H), 1.50 (s, 9H). ESIMS: (MH)⁺: 575(100%), 577(30%).

Example B(13): (5-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-carbamic acid tert-butyl ester

¹H-NMR (d₆-acetone) δ 9.71 (s, 1H), 8.68 (m, 1H), 8,24 (m, 1H), 7.28 (m, 1H), 7.04 (s, 2H), 6.99 (s, 2H), 3.85 (s, 6H), 3.72 (s, 3H), 1.51 (s, 9H). ESIMS (MH)⁺: 577. Example B(14): (5-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-4-chloro-2-fluoro-phenyl)-carbamic acid tert-butyl ester

10

5

¹H-NMR (d₆-acetone): δ 9.72 (s, 1H), 8.68 (m, IH), 7.49 (m, 1H), 7.07 (s, 2H), 6.97(s, 2H), 3.85 (s, 6H), 3.72 (s, 3H), 1.51 (s, 9H). ESIMS(MH)⁺: 593(100%), 595(30%). Example B(15): (5-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-y1]-[1,2,4]oxadiazol-3-yl}-2,4-dichloro-phenyl)-carbamic acid tert-butyl ester

¹H-NMR (d₆-acetone): δ 9.73 (s, 1H), 8.71 (s, 1H), 7.96 (s, 1H), 7.72 (s, 1H), 7.07 (s, 2H), 6.98 (s, 2H), 3.85 (s, 6H), 3.72 (s, 3H), 1.52 (s, 9H). ESIMS(MH)⁺: 609(100%),611 (60%).

Example B(16): N-(3-{5-[4-Amino-2-(3,4,5-methylamino)-thiazol-5-yl][1,2,4]oxadiazol-3-yl]-4-methyl-phenyl}-carbamic acid *tert*-butyl

¹H-NMR (d₆-acetone): δ 8.48 (s, 1H), 8.20 (m, 1H), 7.69(m, 1H), 7.55 (m, 1H), 7.28 (m, 1H), 6.77 (s, 2H), 3.02 (d, 3H), 2.55 (s, 3H), 1.55 (s, 9H). ESIMS: (MH)⁺: 403, (MNa)⁺: 425.

Example B(17): N-(3-{5-[4-Amino-2-(3,4,5-methylamino)-thiazol-5-yl]-

5 [1,2,4]oxadiazol-3-yl]-4-methyl-phenyl}-3-methoxy-benzamide

¹H-NMR (d₆-dmso): δ 10.33 (s, 1H), 8.59 (m, 1H), 8.35 (m, 1H), 7.95 (m, 1H), 7.55 (m, 2H), 7.45 (m, 2H), 7.36 (m, 1H), 7.19 (m, 2H), 3.88 (s, 3H), 2.91 (m, 3H), 2.50 (s, 3H). ESIMS: (MH)⁺:437, (MNa)⁺: 459.

Example B(18): N-(5-{5-[4-Amino-2-(6-morpholin-4-yl-pyridin-3-ylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

¹H-NMR (d₆-dmso): δ 10.62 (s, 1H), 10.27 (s, 1H), 8.39 (m, 1H), 8.33 (m, 1H), 7.85 (m, 1H), 7.63 (m, 3H), 7.48 (m, 1H), 7.30 (s, 2H), 7.20 (m, 1H), 6.88 (m, 1H), 3.85 (s, 3H), 3.70 (m, 4H), 3.42 (m, 4H). ESIMS: (MH)⁺: 607.

Example B(19): N-{5-[5-(4-Amino-2-isopropylamino-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide

 1 H-NMR (d₆-acetone): δ 9.37 (s, 1H), 8.70 (m, 1H), 7.65-7.60 (m, 3H), 7.45 (m, 1H), 7.34 (m, 1H), 7.18 (m, 1H), 6.78 (s, 2H), 3.96 (m, 1H), 3.90 (s, 3H), 1.30 (d, 6H).

5 ESIMS: (MH)⁺: 487.

Example B(20): N-(5-{5-[4-Amino-2-(pyridin-3-ylamino)-thiazol-5-yl]- [1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide-TFA salt

¹H-NMR (d₆-acetone and d₆-dmso): δ 11.07 (s, 1H), 9.94 (s, 1H), 8.98 (m, 1H), 8.54 (m, 1H), 8.30 (m, 2H), 7.64 (m, 3H), 7.48-7.36 (m, 4H), 7.18 (m, 2H), 3.89 (s, 3H). ESIMS: (MH)⁺: 522.

Example B(21): {5-[5-(4-Amino-2-isopropylamino-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-2,4-difluoro-phenyl}-carbamic acid tert-butyl ester

¹H-NMR (d₆-acetone): δ 8.42 (s, 1H), 8.18 (m, 1H), 7.70 (m, 1H), 7.67 (m, 1H), 7.26 (m, 1H), 6.73 (s, 2H), 3.97 (m, 1H), 2.54 (s, 3H), 1.50 (s, 9H), 1.29 (d, 6H). ESIMS: (MH)⁺: 431.

Example B(22): N-{3-[5-(4-Amino-2-isopropylamino-thiazol-5-yl)-[1,2,4]oxadiazol-5-yl]-4-methyl-phenyl}-3-methoxy-benzamide

¹H-NMR (d₆-acetone): δ 9.59 (s, 1H), 8.42 (m, 1H), 8.03 (m, 1H), 7.57(m, 2H), 7.43-7.7.37 (m, 3H), 7.14 (m, 1H), 6.73 (s, 2H), 3.97 (m, 1H), 3.88 (s, 3H), 2.60 (s, 3H), 1.29 (d, 6H). ESIMS: (MH)⁺: 465.

Example B(23): {3-[5-(4-Amino-2-phenyl-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-4-methyl-phenyl}-carbamic acid tert-butyl ester

¹H-NMR (d₆-acetone): δ 9.78 (s, 1H), 8.44 (s, 1H), 7.72 (m, 3H), 7.42 (m, 2H), 7.39 (m, 1H), 7.11 (m, 1H), 6.91 (s, 2H), 2.57 (s, 3H), 1.51 (s, 9H). ESIMS: (MH)⁺: 465.

Example B(24): (3-{5-[4-Amino-2-(1H-benzoimidazol-5-yl)-thiazol-5-yl][1,2,4]oxadiazol-3-yl}-4-methyl-phenyl)-carbamic acid tert-butyl ester

Example B(25): (3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenyl)-thiazol-5-yl][1,2,4]oxadiazol-3-yl}-4-methyl-phenyl)-carbamic acid tert-butyl ester

¹H-NMR (d₆-acetone): δ 9.62 (s, 1H), 8.23 (m, 1H), 8.09 (m, 1H), 7.15-7.05 (m, 2H), 7.39 (m, 3H), 6.82 (s, 2H), 6.91 (s, 2H), 4.07-3.85 (s, 9H), 3.76 (s, 3H), 1.49 (s, 9H). ESIMS: (MH)⁺: 571.

5 Example B(26): 2-Ethyl-5-methyl-2H-pyrazole-3-carboxylic acid {3-[5-(4-amino-2-phenyl-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-4-methyl-phenyl}-amide

¹H-NMR (d₆-acetone): δ 10.75 (s, 1H), 9.42 (m, 1H), 8.38 (m, 1H), 7.99 (m, 1H), 7.20 (m, 2H), 7.45-7.35 (m, 3H), 7.12 (m, 1H), 6.90 (s, 2H), 6.74 (s, 1H), 4.55 (quartet, 2H), 2.62 (s, 3H), 2.21 (s, 3H), 1.39 (t, 3H). ESIMS: (MH)⁺: 500, (MNa)⁺: 523. Example B(27): 2-Ethyl-5-methyl-2H-pyrazole-3-carboxylic acid [3-(5-{4-amino-2-[6-(4-methyl-piperazin-1-yl)-pyridin-3-yl]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-4-methyl-phenyl]-amide

¹H-NMR (CD₃OD): δ 8.37 (m, 1H), 8.25 (m, 1H), 7.89 (m, 1H), 7.77 (m, 1H), 7.34 (m, 1H), 6.87 (m, 1H), 6.73 (m, 1H), 4.51 (quartet, 2H), 3.58 (m, 4H), 2.72 (m, 4H), 2.58 (s, 3H), 2.46 (s, 3H), 2.28 (s, 3H), 1.42 (t, 3H). ESIMS: (MH)⁺: 600.

5 Example B(28): N-[5-(5-{4-Amino-2-[6-(4-methyl-piperazin-1-yl)-pyridin-3-yl]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-2-chloro-4-methyl-phenyl]-3-methoxy-benzamide

¹H-NMR (d₆-acetone and d₆-dmso): δ 10.51 (s, 1H), 9.89 (s, 1H), 8.47 (m, 2H), 7.91 (m, 1H), 7.70-7.51 (m, 3H), 7.45 (m, 1H), 7.20-7.14 (m, 3H), 6.89 (m, 1H), 3.91 (s, 3H), 3.58 (m, 4H), 2.67 (s, 3H), 2.58 (m, 4H), 2.36 (s, 3H). ESIMS: (MH)⁺: 632.

Example B(29): 2-Hydroxy-4-methyl-pentanoic acid [3-(5-{4-amino-2-[6-(4-methyl-piperazin-1-yl)-pyridin-3-yl]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-4-methyl-phenyl]-amide

¹H-NMR (CD₃OD): δ 8.47 (m, 1H), 8.28 (m, 1H), 8.01 (m, 1H), 7.68 (m, 1H), 7.32 (m, 1H), 7.00 (m, 1H), 4.20 (m, 1H), 3.41-3.31 (m, 7h), 2.99 (m, 4H), 2.59 (s, 3H), 1.93 (m, 1H), 1.65 (m, 2H), 1.10 (d, 6H). ESIMS: (MH)⁺: 578.

5 Example B(30): 2-Ethyl-5-methyl-2H-pyrazole-3-carboxylic acid (3-{5-[4-amino-2-(4-hydroxy-phenyl)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-4-methyl-phenyl)-amide

¹H-NMR (d₆-acetone): δ 9.77 (s, 1H), 9.43 (s, 1H), 8.36 (m, 1H), 7.98 (m, 1H), 7.66 (m, 2H), 7.41-7.36 (m, 3H), 6.90 (s, 2H), 6.75 (s, 1H), 4.64 (m, 2H), 4.54 (quartet, 2H), 4.14 (m, 1H), 2.61 (s, 3H), 2.20 (s, 3H), 1.39 (t, 3H). ESIMS: (MH)⁺: 531. Example B(31): (Z)-2-Methyl-but-2-enoic acid [3-(5-{4-amino-2-[4-(4-methyl-piperazin-1-yl)-phenyl]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-4-methyl-phenyl]-amide

¹H-NMR (d₆-acetone): δ 10.55 (s, 1H), 9.92 (s, 1H), 8.60 (m, 1H), 8.24 (m, 1H), 7.81 (m, 2H), 7..31 (m, 1H), 7.22 (s, 2H), 6.87 (m, 1H), 5.61 (m, 1H), 3.45 (m, 4H), 2.50 (s, 3H), 2.40 (m, 4H), 2.22 (s, 3H), 1.92 (s, 3H), 1.72 (d, 3H). ESIMS: (MH)⁺: 546. Example B(32): (Z)-2-Methyl-but-2-enoic acid (3-{5-[4-amino-2-(3-pyrrolidin-1-ylmethyl-phenyl)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-4-methyl-phenyl)-amide

5

15

¹H-NMR (CD₃OD): δ 8.31 (m, 1H), 7.80 (m, 2H), 7.68 (m, 1H), 7.50 (m, 2H), 7.32 (m, 1H), 5.70 (m, 1H), 4.33 (s, 2H), 2.59 (s, 3H), 2.16 (s, 3H), 2.10 (m, 4H), 1.99 (m, 4H), 1.80 (m, 3H). ESIMS: (MH)⁺: 530.

Example B(33): (3-{5-[4-Amino-2-(3-pyrrolidin-1-ylmethyl-phenyl)-thiazol-5-yl][1,2,4]oxadiazol-3-yl}-4-methyl-phenyl)-carbamic acid tert-butyl ester

¹H-NMR (d₆-acetone): δ 10.48 (s, 1H), 8.61 (m, 1H), 8.47 (m, 1H), 8.23 (m, 1H), 7.74 (m, 1H), 7.63 (m, 1H), 7.38-7.28 (m, 5H), 4.33 (s, 2H), 3.47 (m, 4H), 2.80 (m, 4H), 2.58 (s, 3H), 1.51 (s, 9H), ESIMS: (MH)⁺: 548.

Example B(34): (3-{5-[4-Amino-2-(3-pyrrolidin-1-ylmethyl-phenyl)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-4-methyl-phenyl)-carbamic acid isobutyl ester

¹H-NMR (d₆-acetone): δ 10.46 (s, 1H), 8.75 (m, 1H), 8.52 (m, 1H), 8.26 (m, 1H), 7.74 (m, 1H), 7.63 (m, 1H), 7.36-7.27 (m, 3H), 7.22 (s, 2H), 4.29 (s, 2H), 3.92 (d, 2H), 3.22 (m, 4H), 3.09 (m, 4H), 2.57 (s, 3H), 1.98 (m, 1H), 0.97 (d, 6H), ESIMS: (MH)⁺:548.

¹H-NMR (d₆-acetone): δ 9.79 (s, 1H), 8.45 (s, 1H), 8.11-8.15 (m, 2H), 7.71 (m, 1H), 7.64 (m, 1H), 7.39 (m, 1H), 7.29 (m, 1H), 6.79 (s, 2H), 2.57 (s, 3H), 1.51 (s, 9H). ESIMS: (MH) $^+$: 505.

Example B(35): 3-[3-[(3-methoxybenzoyl)amino]-6-methyl-phenyl]-5-(2-phenylamino)-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-DMSO): δ 2.55 (s, 3H), 3.85 (s, 3H), 7.1 (m, 1H), 7.18 (m, 1H), 7.2 (s br, 2H), 7.4 (m, 2H), 7.45 (m, 2H), 7.55 (m, 2H), 7.7 (dd, 2H), 7.95 (dd, 1H), 8.35 (d, 1H), 10.35 (s br, 1H), 10.85 (s br, 1H). ESIMS [MH]⁺: 499.

Anal. Calcd. for C26 H22 N6 O3 S: C, 62.64; H, 4.45, N, 16.86; S, 6.43. Found: C, 62.41; H, 4.54, N, 16.72; S, 6.30.

Example B(36): 3-[3-[(3-methoxybenzoyl)amino]-6-methyl-phenyl]-5-[2-[3-amino-6-(4-morpholinyl)-pyridinyl]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

10

5

¹H NMR (d₆-DMSO): δ 2.55 (s, 3H), 3.4 (m, 4H), 3.7 (m, 4H), 3.85 (s, 3H), 6.9 (d, 1H), 7.15 (m, 1H), 7.22 (s br, 1H), 7.35 (d, 1H), 7.45 (m, 1H), 7.55 (m, 2H), 7.85 (dd, 1H), 7.95 (dd, 1H), 8.4 (dd, 2H), 9.75 (s br, 1H), 10.35 (s br, 1H), 10.7 (s br, 1H).

15 ESIMS [MH]⁺: 585.

Example B(37): 5-{3-[3-(5-Methyl-2H-[1,2,4]triazol-3-yl)-phenyl]-[1,2,4-oxadiazol-5-yl}-N2-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

- (A) To 1 (6.0g, 37.5 mmol) in 120mL EtOH was added hydrazine (6.24mL, 200mmol, 5.3 eq.) dropwise. The resulting solution was placed in a 90 °C oil bath. The reaction was allowed to stir until 1 disappeared by TLC (~2h).
- The reaction was allowed to cool, the solvent was reduced to ~50mL by rotary evaporation, and 2 precipitated as a white solid. The solid was collected by filtration. The volume of the filtrate was further reduced to ~20mL and diluted with ether (10mL) allowing a second crop of 2 to be collected. The two crops were combined after ¹H NMR showed them to be equally pure (yield: 5.07g, 83%).
- 10 Rf 1 = $0.8 (25\%CH_2Cl_2-EtOAc)$, Rf 2= $0.2 (25\%CH_2Cl_2-EtOAc)$.

2: ¹H-NMR (d₆-dmso): δ 9.98 (s, 1H), 8.21 (m, 1H), 8.14 (m, 1H), 8.00 (m, 1H), 7.71 (m, 1H), 4.60 (s, 2H).

(B) To a solution of acetamidine HCl (2.3g, 24.6 mmol, 1eq) in 20mL

anhydrous ethanol was added NaOEt (24.6mL, 1M in EtOH, 1eq) under argon. After

30 min. the cloudy solution was filtered through a fritted funnel packed with celite.

To the resulting clear solution was added 2. Upon addition of 2 the reaction turns yellow and cloudy. The solution clears after ~5 min. of stirring and then a heavy

precipitate forms. The reaction is allowed to stir until 2 disappears by TLC (3h). Rf 2=0.75 (30%EtOH: 30%CHCl3: 40%EtOAc), Rf of uncyclized intermediate = 0.2 (30%EtOH: 30%CHCl3: 40%EtOAc). The reaction was stirred on ice for 30 min. and then filtered to yield a white solid (2.125g, 85%). 2.07g of this intermediate was dissolved in 10mL xylenes and 0.52mL 1-octanol and placed in a 150 °C oil bath. After ~15h full conversion to 3 was observed by TLC and white crystals had precipitated. The reaction was placed in an ice-MeOH bath for 15 min. and then filtered. The crystals were washed with cold xylenes and then dried to yield 1.636g 3 (83%). Rf 3=0.6 (30%EtOH: 30%CHCl3: 40%EtOAc). 3: 1 H-NMR (1 H-NMR (1 H-NMR) (1 H

5

10

15

20

Compound 3 was further reacted in a similar manner according to the procedure of B(1) to form Example B(37). 1 H-NMR (d₆ acetone): δ 8.85 (m, 1H), 8.26 (m, 1H), 8.15 (m, 1H), 7.63(m, 1H), 7.09 (s, 2H), 7.01 (s, 2H), 3.86 (s, 6H), 3.72 (s, 3H), 2.49 (s, 3H). ESIMS: (MH)⁺: 507.

Examples B(38) and B(39) are formed in a similar manner to the procedure described in B(37).

Example B(38): 5-{3-[3-(5-isopropyl-2H-[1,2,4]triazol-3-yl)-phenyl]-[1,2,4]oxadiazol-5-yl}-N2-(3.4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

¹H-NMR (d₆-acetone): δ 13.79 (s, 1H), 10.78 (s, 1H), 8.63 (m, 1H), 8.15 (m, 2H), 7.63 (m, 1H), 7.36 (s, 2H), 7.02 (s, 2H), 3.81 (s, 6H), 3.72 (s, 3H), 3.13 (septet, 1H), 1.33

5 (d, 6H). ESIMS: (MH)⁺: 535.

Example B(39): 5-(3-{5-[5-Isobutyl-2H-[1,2,4]triazol-3-yl)-phenyl-[1,2,4]oxadiazol-5-yl) –N2-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

¹H-NMR (d₆-acetone): δ 12.75 (s, 1H), 9.68 (s, 1H), 8.81 (m, 1H), 8.23 (m, 1H), 8.11 (m, 1H), 7.58 (m, 1H), 7.02 (s, 2H), 6.93 (s, 2H), 3.77 (s, 6H), 3.67 (s, 3H), 2.51 (d, 2H), 2.01 (m, 1H), 0.98 (d, 6H). ESIMS: (MH)⁺: 549.

EXAMPLE B(40)

EXAMPLE B(41)

5 EXAMPLE B(42)

EXAMPLE B(43)

10 EXAMPLE C(1)

4-(3-Aminophenyl)-N²-(3,4,5-trimethoxyphenyl)-[2,5']bithiazolyl-2',4'-diamine

A solution of (3-nitrophenyl)-N²-trimethoxyphenyl-[2,5]bithiazolyl-2'.4'diamine (1 mmol), prepared as in Example A(1), and stannous chloride (3 mmol) in DMF (3 mL), under an argon atmosphere, was stirred at 50 °C (internal temperature) for 2.5 h. The resulting dark-brown solution was diluted with ethyl acetate (10 mL) 5 and NaHCO₂ (10 mL), causing formation of a precipitate, which was removed by filtration and rinsed with 50% DMF/ethyl acetate (20 mL) until the filtrate was nearly colorless. The filtrate was then washed with NaHCO₃ (30 mL), brine (30 mL), dried over MgSO₄, filtered, stripped of solvent, and purified by flash chromatography (gradient elution, 10% acetone/CH₂Cl₂ to 40% acetone/CH₂Cl₂) to give 4-(3aminophenyl)-N²-(3,4,5-trimethoxyphenyl)-[2,5']bithiazolyl-2',4'-diamine. Mp 205-10 210 °C (decomp). ¹H NMR (DMSO-d_s): δ 10.35 (br d, NH_s), 7.41 (s, 1H), 7.18 (s, 1H), 7.07 (d, 1H, J = 4.82 Hz, 1H), 7.00 (s, 2H), 6.95 (s, 1H), 6.57-6.52 (m, 1H), 5.13 $(br d, NH_2)$, 3.80 (s, 6H), 3.65 (s, 3H). FABMS (MH^+) : 456. Anal. Calcd for C₂₁H₂₁ N₅O₃S₂: C, 55.37; H, 4.65; N, 15.37; S, 14.08. Found: C, 15 55.59; H, 4.72; N, 15.11; S, 13.92.

EXAMPLE C(2)

3-[3-Aminophenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

A solution of 267 mg (0.49 mmol) of 3-(3-t-butyloxycarboxy-aminophenyl)5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole
(prepared according to Example B(2)) in 3 mL of 50% trifluoroacetic acid in

5 dichloromethane was stirred for 60 minutes at ambient temperature and then poured onto ice. 3N NaOH was added dropwise until the solution was basic, and the mixture was extracted with EtOAc. The organic layer was washed with NaHCO₃ and brine, and dried over Na₂SO₄. The solvent was removed to yield 204 mg (95% yield) of the title compound as a light yellow solid.

¹H NMR (d₆-acetone): δ 3.6 (s, 3H), 3.75 (s, 6H), 4.8 (s br, 2H), 6.75 (m, 1H), 6.85 (s br, 2H), 6.95 (s, 2H), 7.1 (t, 1H), 7.25 (m, 1H), 7.35 (m, 1H), 9.6 (s br, 1H). ESIMS (MH⁺): 441; (M-H⁻): 439.

Anal. Calcd for $C_{20}H_{20}N_6O_4S$: C, 54.53; H, 4.58; N, 19.08; S, 7.28. Found: C, 54.79; H, 4.59; N, 18.81; S, 7.09.

15 EXAMPLE C(3)

4-[4'-Amino-4-(3-amino-phenyl)-[bithiazolyl-2'-ylamino]-benzenesulfonamide

In a similar manner to that described above for Examples C(1) and C(2), the title compound was prepared.

¹H NMR (CD₃OD): δ 7.88 (s, 4H), 7.42 (s, 1H), 7.40-7.29 (m, 2H), 7.25-7.18 (m,

5 1H), 6.80-6.72 (m, 1H). FABMS (MH⁺): 445.

Example C(4): 3-[3-amino-6-fluorophenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

 1 H NMR (CDCl₃-MeOD 10:1): δ 3.85 (s, 3H), 3.95 (s, 6H), 6.75 (m, 2H), 7.1 (m, 2H),

10 7.7 (s br, 1H). ESIMS [MH]⁺: 459.

Example C(5): 3-[2-fluoro-4-methoxy-5-aminophenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-DMSO): δ 3.6 (s, 3H), 3.8 (s, 6H), 4.0 (s, 3H), 6.95 (s br, 2H), 7.2 (m, 3H), 8.65 (d, 1H), 9.05 (s br, 1H). ESIMS [MH]⁺: 489.

Example C(6): 3-(3-amino-6-methyl-phenyl)-5-[2-[(3,4,5 trimethoxyphenyl)-amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (CDCl₃): δ 2.05 (s, 3H), 3.8 (s, 9H), 6.2 (s br, 2H), 6.6 (s br, 2H), 6.8 (m br, 1H), 7.05 (m br, 1H), 7.45 (s br, 1H). ESIMS [MH]⁺: 455.

Example C(7): 5-[3-(5-Amino-2-chloro-phenyl)-[1,2,4]oxadiazol-5-yl]-N2-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

10

5

¹H-NMR (d₆-acetone): δ 9.58 (s, 1H), 7.13 (m, 2H), 6.92 (s, 2H), 6.78 (s, 2H), 6.70 (m, 1H), 4.91 (s, 2H), 3.78 (s, 6H), 3.58 (s, 3H). ESIMS:(MH)⁺: 475 (100%),477 (30%.)

Example C(8):5-[3-(5-Amino-2,4,-difluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-N2-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

¹H-NMR (d₆-acetone): δ 9.72 (s, 1H), 7.63 (m, 1H), 7.09 (m, 1H), 7.05 (s, 2H), 6.94 (s, 2H), 4.83 (s, 2H), 3.85 (s, 6H), 3.72 (s, 3H). ESIMS (MH)⁺: 477.

Example C(9): 5-[3-(5-Amino-2-chloro-4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-N-

5 (3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

¹H-NMR (d₆-dmso) δ 10.76 (s, lH), 7.36 (m, 2H), 7.18 (s, 2H), 6.93 (s, 2H), 5.60 (s, 2H), 3.86 (s, 6H), 3.73 (s, 3H). ESIMS (MH)⁺ 493(100%),495(30%).

EXAMPLE D(1)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl} acetamide

Acetic anhydride (21.3 μ L, 0.2250 mmol) was added to a solution of 4-(3-aminophenyl)-N²-(3,4,5-trimethoxyphenyl)-[2,5']bithiazolyl-2',4'-diamine (50.0 mg, 0.1125 mmol), prepared as described in Example C(1), dissolved in pyridine (28.5 μ L, 0.352 mmol), DMF (70 μ L), and THF (700 μ L) at -15 °C (bath temperature).

- After 30 minutes, the reaction was quenched with MeOH (0.5 mL), concentrated, and purified by preparative C-18 reverse-phase HPLC (gradient elution, 95% H₂O/0.1% TFA/CH₃CN to 5% H₂O/0.1% TFA/CH₃CN), giving 46 mg (82% yield) of N-{3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}acetamide.

 ¹H NMR (CDCl₃): δ 7.97 (s, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 1H),
- 7.30 (t, J = 7.6 Hz, 1H), 7.27 (s, 1H), 7.19 (s, 1H), 6.55 (s, 2H), 5.90-6.10 (bs, 1H), 3.82 (s, 6H), 3.78 (s, 3H), 2.14 (s, 3H). ESIMS (MH⁺): 498.

Anal. Calcd. for $C_{23}H_{23}N_5O_4S_2\cdot(0.5 H_2O, 0.5 \text{ acetone})$: C, 54.93; H, 5.08; N, 13.08; S, 11.97. Found: C, 54.73; H, 4.80; N, 13.21; S, 11.98.

In a manner analogous to that described for Example D(1), the following

Examples D(2) through D(57) were prepared.

EXAMPLE D(2)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-C-phenyl-methanesulfonamide

¹H NMR (CDCl₃): δ 7.61 (s, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.26-7.16 (m, 5H), 7.03 (s, 1H), 7.00 (s, 2H), 6.51 (s, 2H), 6.42 (s, 1H), 5.90-6.00 (bs, 2H), 4.26 (s, 2H), 3.78 (s, 6H), 3.74 (s, 3H). ESIMS (MH⁺): 610.

Anal. Calcd. for C₂₈H₂₇N₅O₅S₃·0.3 H₂O: C, 54.67; H, 4.52; N, 11.39. Found: C,

5 54.70; H, 4.52; N, 11.04.

EXAMPLE D(3)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-methanesulfonamide

¹H NMR (CDCl₃): δ 7.81 (s, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H), 7.26 (s, 1H), 7.24 (s, 1H), 6.73 (bs, 1H), 6.70 (s, 2H), 3.92 (s, 6H), 3.89 (s, 3H), 3.12 (s, 3H). ESIMS (MH⁺): 534.

Anal. Calcd. for $C_{22}H_{23}N_5O_5S_3\cdot 0.9$ TFA: C, 44.92; H, 3.79; N, 11.01; S, 15.12. Found: C, 44.94; H, 3.87; N, 11.12.

15 EXAMPLE D(4)

{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid phenyl ester

¹H NMR (CDCl₃): δ 8.04 (s, 1H), 7.64 (t, J = 7.2 Hz, 1H), 7.46-7.38 (m, 5H), 7.28-7.18 (m, 4H), 7.14 (s, 1H), 7.05 (s, 1H), 6.64 (s, 2H), 6.09 (bs, 1H), 3.91 (s, 6H), 3.87 (s, 3H). ESIMS (MH⁺): 576.

Anal. Calcd. for C₂₈H₂₅N₅O₅S₂·0.3 DMF: C, 58.08; H, 4.57; N, 12.42; S, 10.73.
 Found: C, 58.33; H, 4.39; N, 11.53; S, 10.68.

EXAMPLE D(5)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-2-phenyl-acetamide

10

15

¹H NMR (CDCl₃): δ 7.89 (s, 1H), 7.64 (d, *J* = 7.4 Hz, 1H), 7.47-7.32 (m, 7H), 7.14 (s, 1H), 7.10 (s, 1H), 6.64 (s, 2H), 6.06 (bs, 2H), 3.91 (s, 6H), 3.87 (s, 3H), 3.79 (s, 2H). ESIMS (MH⁺): 574.

Anal. Calcd. for C₂₉H₂₇N₅O₄S₂: C, 60.71; H, 4.74; N, 12.21; S, 11.18. Found: C, 60.88; H, 4.78; N, 12.00; S, 11.14.

EXAMPLE D(6)

{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid methyl ester

¹H NMR (CDCl₃): δ 8.14 (s, 1H), 7.82 (d, J = 6.9 Hz, 1H), 7.59 (m, 3H), 7.34 (s,

5 1H), 6.90 (s, 1H), 6.85 (s, 2H), 6.40-6.20 (bs, 1H), 4.12 (s, 6H), 3.78 (s, 3H), 2.14 (s, 3H). ESIMS (MH⁺): 514.

Anal. Calcd. for $C_{23}H_{23}N_5O_5S_2\cdot 0.35H_2O$: C, 53.13; H, 4.60; N, 13.47; S, 12.34.

Found: C, 53.10; H, 4.58; N, 13.34; S, 12.11.

EXAMPLE D(7)

1-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-3-methyl-urea

¹H NMR (CDCl₃): δ 8.63 (bs, 1H), 7.90 (s, 1H), 7.61 (s, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.31 (s, 1H), 7.07 (s, 1H), 6.75 (s, 2H), 6.00-6.10 (bs, 1H), 5.35 (bs, 1H), 3.87 (s, 6H), 3.81 (s, 3H), 2.80 (d, *J* = 4.3 Hz, 3H). ESIMS (MH⁺): 513.

Anal. Calcd. for $C_{23}H_{24}N_6O_4S_2\cdot0.4H_2O$: C, 53.14; H, 4.81; N, 16.17; S, 12.34. Found: C, 53.15; H, 4.75; N, 16.12; S, 12.46.

EXAMPLE D(8)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-

5 propionamide

¹H NMR (CDCl₃): δ 8.27 (s, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.41 (s, 1H), 7.33 (s, 1H), 6.84 (s, 2H), 6.20-6.35 (bs, 1H), 4.11 (s, 6H), 4.07 (s, 3H), 2.64 (q, J = 7.6 Hz, 2H), 1.50 (t, J = 7.5 Hz, 3H). ESIMS (MH⁺): 512.

Anal. Calcd. for $C_{24}H_{25}N_5O_4S_2$: C, 56.34; H, 4.93; N, 13.69; S, 12.54. Found: C, 56.22; H, 5.01; N, 13.48; S, 12.73.

EXAMPLE D(9)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-

15 isobutyramide

10

¹H NMR (CDCl₃): δ 9.16 (s, 1H), 8.54 (s, 1H), 8.06 (s, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.03 (s, 1H), 6.77 (s, 2H), 6.00-6.20 (bs, 1H), 3.81 (s, 6H), 3.75 (s, 3H), 2.18 (m, 3H), 0.95 (d, J = 6.3 Hz, 6H). ESIMS (MH⁺): 540.

Anal. Calcd. for C₂₆H₂₉N₅O₄S₂·0.5 H₂O: C, 56.91; H, 5.51; N, 12.76; S, 11.69. Found:
 C, 57.33; H, 5.57; N, 12.28; S, 11.64.

EXAMPLE D(10)

{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid isopropyl ester

10

15

¹H NMR (CDCl₃): δ 7.93 (s, 1H), 7.60 (d, J = 6.9 Hz, 1H), 7.40 (m, 3H), 7.13 (s, 1H), 6.65 (s, 2H), 6.62 (s, 1H), 6.08 (bs, 2H), 5.06 (m, J = 6.4 Hz, 1H), 3.92 (s, 6H), 3.87 (s, 3H), 1.33 (d, J = 6.4 Hz, 6H). ESIMS (MH⁺): 542.

Anal. Calcd. for C₂₅H₂₇N₅O₅S₂: C, 55.44; H, 5.02; N, 12.93; S, 11.84. Found: C, 55.15; H, 5.14; N, 12.46; S, 11.75.

EXAMPLE D(11)

4-Chloro-pyridine-2-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

HRFABMS: Calcd. for $C_{27}H_{23}CIN_6O_4S_2(MH^+)$: 594.0911. Found: 594.0927. Anal. Calcd for $C_{27}H_{23}CIN_6O_4S_2$: C, 54.94; H, 3.90; N, 14.12; S, 10.78. Found: C, 54.43; H, 3.87; N, 14.01; S, 10.92.

5 EXAMPLE D(12)

{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid benzyl ester

¹H NMR (CDCl₃): δ 7.93 (s, 1H), 7.61 (d, J = 7.0 Hz, 1H), 7.40 (m, 7H), 7.12 (s,

10 1H), 6.76 (s, 1H), 6.64 (s, 2H), 6.07 (bs, 2H), 5.25 (s, 2H), 3.91 (s, 6H), 3.87 (s, 3H). ESIMS (MH⁺): 590.

Anal. Calcd. for C₂₉H₂₇N₅O₅S₂: C, 59.07; H, 4.62; N, 11.88; S, 10.88. Found: C, 58.84; H, 4.64; N, 11.71; S, 11.07.

EXAMPLE D(13)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-2,2,2-trifluoro-acetamide

¹H NMR (CDCl₃): δ 8.14 (s, 1H), 7.96 (bs, 1H), 7.79 (d, J = 6.4 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.17 (s, 1H), 6.65 (s, 2H), 6.05 (bs, 2H), 3.92 (s, 6H), 3.87 (s, 3H). ESIMS (MH⁺): 552.

5 HRMS (FAB), m/z Calcd. for C₂₃H₂₀F₃N₅O₄S₂ (MH⁺): 552.0987. Found: 552.0981.
EXAMPLE D(14)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-2,2-difluoro-acetamide

¹H NMR (CDCl₃): δ 8.15 (s, 1H), 7.98 (bs, 1H), 7.75 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.17 (s, 1H), 6.66 (s, 2H), 6.08 (bs, 2H), 3.93 (s, 6H), 3.89 (s, 3H), 3.52 (s, 1H). ESIMS (MH⁺): 534.

HRMS (FAB), m/z Calcd. for $C_{23}H_{21}F_2N_5O_4S_2$ (M+Cs⁺): 666.0057. Found: 666.0032. EXAMPLE D(15)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-2-phenoxy-acetamide

¹H NMR (CDCl₃): δ 8.27 (s, 1H), 8.06 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.32 (m, 4H), 7.07 (s, 1H), 6.56 (s, 2H), 6.01 (bs, 2H), 4.58 (s, 2H), 3.82 (s, 6H), 3.78 (s, 3H). ESIMS (MH⁺): 590.

5 Anal. Calcd. for C₂₉H₂₇N₅O₅S₂·(0.7 H₂O, 0.2 EtOAc): C, 57.73; H, 4.88; N, 11.30; S, 15.74. Found: C, 57.97; H, 4.59; N, 11.08; S, 10.33.

EXAMPLE D(16)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-3-phenyl-propionamide

10

15

¹H NMR (CDCl₃): δ 7.97 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.40 (m, 3H), 7.12 (s, 1H), 7.06 (s, 1H), 6.64 (s, 2H), 6.07 (bs, 1H), 3.91 (s, 6H), 3.87 (s, 3H), 3.11 (t, J = 7.5 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H). ESIMS (MH⁺): 588. Anal. Calcd. for $C_{30}H_{29}N_5O_5S_2$: C, 61.31; H, 4.97; N, 11.92; S, 10.91. Found: C, 60.67; H, 5.09; N, 11.77; S, 10.69.

EXAMPLE D(17)

{3-[4'-Amino-2'-(2,4-dimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid benzyl ester

¹H NMR (CDCl₂): δ 7.65 (s, 1H), 7.48 (d, J = 9.4 Hz, 1H), 7.37 (d, J = 7.3 Hz, 1H),

5 7.16 (m, 7H), 6.85 (s, 1H), 6.54 (s, 1H), 6.31 (m, 3H), 6.00-5.70 (bs, 2H), 5.00 (s, 2H), 3.65 (s, 3H), 3.60 (s, 3H). ESIMS (MH⁺): 560.

Anal. Calcd. for $C_{28}H_{25}N_5O_4S_2\cdot 0.7 H_2O$: C, 59.14; H, 4.61; N, 12.32; S, 11.28. Found: C, 59.51; H, 4.41; N, 11.82; S, 10.90.

EXAMPLE D(18)

15

10 {3-[4'-Amino-2'-(2,5-dimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}carbamic acid benzyl ester

¹H NMR (CDCl₃): δ 7.91 (s, 1H), 7.65 (d, *J* = 9.4 Hz, 1H), 7.37 (d, *J* = 7.3 Hz, 1H), 7.16 (m, 7H), 6.85 (s, 1H), 6.54 (s, 1H), 6.31 (m, 3H), 6.00-5.70 (bs, 2H), 5.00 (s, 2H), 3.65 (s, 6H), 3.60 (s, 3H). ESIMS (MH⁺): 560.

Anal. Calcd. for $C_{28}H_{25}N_5O_4S_2$: C, 60.09; H, 4.50; N, 12.51; S, 11.46. Found: C, 60.52; H, 4.64; N, 12.00; S, 10.96.

EXAMPLE D(19)

{3-[4'-Amino-2'-(4-phenoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid benzyl ester

¹H NMR (CDCl₃): δ 7.90 (s, 1H), 7.61 (d, *J* = 7.4 Hz, 1H), 7.46 (m, 10H), 7.11 (m, 8H), 6.81 (s, 1H), 6.08 (bs, 2H), 5.25 (s, 2H). ESIMS (MH⁺): 592.
 Anal. Calcd. for C₃₂H₂₅N₅O₃S₂: C, 64.96 H, 4.26; N, 11.84; S, 10.84. Found: C, 64.68; H, 4.36; N, 11.58; S, 10.65.

EXAMPLE D(20)

10 [3-(4'-Amino-2'-phenylamino-[2,5']bithiazolyl-4-yl)-phenyl]-carbamic acid benzyl ester

¹H NMR (CDCl₃): δ 7.81 (s, 1H), 7.55 (d, J = 7.3 Hz, 1H), 7.30 (m, 12H), 7.10 (m, 1H), 7.02 (s, 1H), 6.68 (s, 1H), 6.10-5.90 (bs, 2H), 5.15 (s, 2H). ESIMS (MH⁺): 500.

15 HRMS (FAB), m/z Calcd. for $C_{26}H_{21}N_5O_2S_2$ (MH⁺): 500.1215. Found: 500.1232. EXAMPLE D(21)

Benzofuran-2-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

ESMS (MH⁺): 600.

Anal. Calcd for $C_{30}H_{25}N_5O_5S_2 \cdot 0.75 H_2O$: C, 58.76; H, 4.36; N, 11.42; S, 10.46.

Found: C, 58.74; H, 4.08; N, 11.46; S, 10.41.

5 EXAMPLE D(22)

{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid naphthalen-1-yl ester

ESMS (MH⁺): 626.

Anal. Calcd for C₃₂H₂₇N₅O₅S₂·0.7 H₂O: C, 60.21; H, 4.48; N, 10.97; S, 10.05. Found:
 C, 60.24; H, 4.31; N, 10.72; S, 10.03.

EXAMPLE D(23)

{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid 1-R-phenyl-ethyl ester

ESMS (MH⁺): 604.

Anal. Calcd for $C_{30}H_{29}N_5O_5S_2\cdot 0.4\ H_2O$: C, 58.98; H, 4.92; N, 11.46; S, 10.50. Found: C, 58.93; H, 4.90; N, 11.41; S, 10.27.

5 EXAMPLE D(24)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-benzamide

ESMS (MH⁺): 560.

10 Anal. Calcd for $C_{28}H_{25}N_5O_4S_2$: C, 60.09; H, 4.50; N, 12.51; S, 11.46. Found: C, 60.07; H, 4.54; N, 12.45; S, 11.42.

EXAMPLE D(25)

{3-[4'-Amino-2'-(4-sulfamoyl-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid benzyl ester

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

ESMS (MH⁺): 579.

EXAMPLE D(26)

 $4-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5'] bithiazolyl-4-yl]-4-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5'] bithiazolyl-4-yl]-4-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5'] bithiazolyl-4-yl]-4-yl$

5 phenylcarbamoyloxymethyl}-benzoic acid methyl ester

ESMS (MH⁺): 648.

Anal. Calcd for $C_{31}H_{29}N_5O_7S_2$: C, 57.48; H, 4.51; N, 10.81; S, 9.90. Found: C, 57.66; H, 4.52; N, 10.64; S, 10.08.

10 EXAMPLE D(27)

 $N-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5'] bithiazolyl-4-yl]-phenyl\}-3-isopropyl-benzamide$

ESMS (MH+): 602.

Anal. Calcd for $C_{31}H_{31}N_5O_4S_2$: C, 61.88; H, 5.19; N, 11.64; S, 10.66. Found: C, 61.45; H, 5.38; N, 11.30; S, 10.38.

EXAMPLE D(28)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-4-

5 fluoro-benzamide

ESMS (MH⁺): 578.

Anal. Calcd for $C_{28}H_{24}N_5O_4S_2\cdot 0.3\ H_2O$: C, 57.68; H, 4.25; N, 12.01; S, 11.00. Found: C, 57.64; H, 4.32; N, 11.79; S, 10.97.

10 **EXAMPLE D(29)**

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-3-bromo-benzamide

ESMS (MH⁺): 638/640.

15 Anal. Calcd for C₂₈H₂₄BrN₅O₄S₂: C, 52.67; H, 3.79; N, 10.97; S, 10.04. Found: C, 52.49; H, 3.99; N, 10.36; S, 9.71.

EXAMPLE D(30)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-4-chloro-3-methyl-benzamide

ESMS (MH+): 608/610.

5 Anal. Calcd for $C_{29}H_{26}$ $ClN_5O_4S_2\cdot 0.6$ H_2O : C, 56.27; H, 4.43; N, 11.32; S, 10.36.

Found: C, 56.36; H, 4.38; N, 11.14; S, 10.14.

EXAMPLE D(31)

 $N-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5'] bithiazolyl-4-yl]-phenyl\}-3,4-dimethyl-benzamide$

10

ESMS (MH⁺): 588.

EXAMPLE D(32)

 $N-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5'] bithiazolyl-4-yl]-phenyl\}-3-methoxy-4-methyl-benzamide$

ESMS (MH⁺): 604.

Anal. Calcd for $C_{30}H_{29}N_5O_5S_2\cdot0.6H_2O$: C, 58.52; H, 5.07; N, 11.08; S, 10.14. Found: C, 58.48; H, 5.03; N, 10.75; S, 9.95.

5 EXAMPLE D(33)

2,4-Dimethyl-thiazole-5-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

ESMS (MH⁺): 595.

Anal. Calcd for C₂₇H₂₆N₆O₄S₃·0.2 H₂O: C, 54.22; H, 4.77; N, 13.08; S, 14.97. Found:
 C, 54.59; H, 4.89; N, 12.61; S, 14.73.

EXAMPLE D(34)

5-Methyl-thiophene-2-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

ESMS (MH⁺): 580.

Anal. Calcd for $C_{27}H_{25}N_5O_4S_3$: C, 55.94; H, 4.35; N, 12.08; S, 16.59. Found: C, 55.78; H, 4.26; N, 11.80; S, 16.58.

5 EXAMPLE D(35)

5-Chloro-thiophene-2-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

ESMS (MH⁺): 600/602.

Anal. Calcd for C₂₆H₂₂ClN₅O₄S₃: C, 52.03; H, 3.69; N, 11.67; S, 16.03. Found: C, 51.61; H, 3.82; N, 11.46; S, 16.01.

EXAMPLE D(36)

5-Bromo-thiophene-2-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{N} \end{array}$$

ESMS (MH⁺): 644/646.

Anal. Calcd for C₂₆H₂₂BrN₅O₄S₃·0.8 H₂O: C, 47.39; H, 3.61; N, 10.63; S, 14.60.

Found: C, 47.31; H, 3.51; N, 10.57; S, 14.70.

5 EXAMPLE D(37)

5-Bromo-furan-2-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

ESMS (MH⁺): 628/630.

Anal. Calcd for $C_{26}H_{22}BrN_5O_5S_2\cdot0.5H_2O$: C, 48.98; H, 3.64; N, 10.99; S, 10.06.

Found: C, 48.98; H, 3.43; N, 10.79; S, 9.80.

EXAMPLE D(38)

 $N-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5'] bithiazolyl-4-yl]-phenyl\}-3-methyl-benzamide$

ESMS (MH⁺): 574.

Anal. Calcd for C₂₉H₂₇N₅O₄S₂·0.5 H₂O·0.5 CH₂Cl₂: C, 56.67; H, 4.68; N, 11.20; S, 10.26. Found: C, 56.76; H, 4.39; N, 11.04; S, 10.12.

$5 \quad EXAMPLE D(39)$

 $N-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5'] bithiazolyl-4-yl]-phenyl\}-3-ethyl-benzamide$

ESMS (MH⁺): 588.

Anal. Calcd for C₃₀H₂₉N₅O₄S₂·0.4 H₂O: C, 60.56; H, 5.05; N, 11.77; S, 10.78. Found:
 C, 6063; H, 4.87; N, 11.57; S, 10.65.

EXAMPLE D(40)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-3-chloro-benzamide

ESMS (MH+): 594/596.

Anal. Calcd for $C_{28}H_{24}ClN_5O_4S_2\cdot0.5\ H_2O\cdot0.3\ CH_2Cl_2$: C, 54.07; H, 4.11; N, 11.14; S, 10.20. Found: C, 54.16; H, 3.88; N, 10.95; S, 10.10.

5 EXAMPLE D(41)

N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-3-methoxy-benzamide

ESMS (MH⁺): 590.

10 Anal. Calcd for $C_{29}H_{27}N_5O_5S_2\cdot 0.85\ H_2O:\ C, 57.57;\ H, 4.78;\ N, 11.58;\ S, 10.60.$

Found: C, 57.62; H, 4.58; N, 11.40; S, 10.53.

EXAMPLE D(42)

5-Methyl-thiazole-2-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

ESMS (MH⁺): 581.

Anal. Calcd for $C_{26}H_{24}N_6O_4S_3$: C, 53.78; H, 4.17; N, 14.47; S, 16.57. Found: C, 53.57; H, 4.24; N, 14.23; S, 16.47.

5 EXAMPLE D(43)

{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-carbamic acid *tert*-butyl ester

ESMS (MH⁺): 556.

Anal. Calcd for C₂₆H₂₉N₅O₅S₂·0.4 H₂O: C, 55.48; H, 35.34; N, 12.44; S, 11.39.
 Found: C, 55.33; H, 5.28; N, 12.55; S, 11.12.

EXAMPLE D(44)

3-[3-Benzyloxycarboxy-aminophenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-acetone): δ 3.7 (s, 3H), 3.85 (s, 6H), 5.2 (s, 2H), 6.95 (s br, 2H), 7.05 (s, 2H), 7.4 (m, 6H), 7.8 (d, 2H), 8.35 (s, 1H), 8.95 (s br, 1H), 9.7 (s br, 1H). ESIMS (MH⁺): 575; (M-H⁻): 573.

5 EXAMPLE D(45)

3-[3-Acetamidophenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-DMSO): δ 2.0 (s, 3H), 3.6 (s, 3H), 3.75 (s, 6H), 6.95 (s, 2H), 7.25 (s br, 2H), 7.4 (t, 1H), 7.75 (m, 2H), 8.2 (s, 1H), 10.1 (s br, 1H), 10.7 (s br, 1H). ESIMS (M+Na⁺): 505; (M-H⁻): 481.

EXAMPLE D(46)

3-[3-Benzamidophenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-acetone): δ 3.7 (s, 3H), 3.85 (s, 6H), 7.0 (s br, 2H), 7.05 (s, 2H), 7.6 (m, 5 4H), 7.9 (m, 1H), 8.05 (m, 2H), 8.1 (m, 1H), 8.6 (m br, 1H), 9.75 (s br, 1H). ESIMS (MH⁺): 545; (M+Na⁺): 567; (M-H): 543.

EXAMPLE D(47)

3-[3-(3-Methylbenzamido)phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

10

¹H NMR (d₆-acetone): δ 2.2 (s, 3H), 3.5 (s, 3H), 3.65 (s, 6H), 6.75 (s br, 2H), 6.85 (s, 2H), 7.2 (d, 2H), 7.3 (t, 1H), 7.65 (m, 3H), 7.95 (d, 1H), 8.35 (s br, 1H), 9.5 (s br, 2H). ESIMS (MH⁺): 559; (M+Na⁺): 581; (M-H⁻): 557.

Anal. Calcd for $C_{28}H_{26}N_6O_5S$: C, 60.20; H, 4.69; N, 15.04; S, 5.74. Found: C, 60.34; H, 4.82; N, 14.39; S, 5.50

EXAMPLE D(48)

5

3-[3-(3-Methoxybenzamido)phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-acetone): δ 3.7 (s, 3H), 3.85 (s, 6H), 3.9 (s, 3H), 7.0 (s br, 2H), 7.1 (s, 2H), 7.15 (m, 1H), 7.45 (t, 1H), 7.55 (t, 1H), 7.65 (m, 2H), 7.9 (m, 1H), 8.15 (m, 1H), 8.6 (m, 1H), 9.7 (d br, 2H). ESIMS (MH⁺): 575; (M+Na⁺): 597; (M-H⁻): 573.

Anal. Calcd for C₂₈H₂₆N₆O₆S: C, 58.53; H, 4.56; N, 14.63; S, 5.58. Found: C, 58.89;
 H, 4.78; N, 13.88; S, 5.35

EXAMPLE D(49)

3-[3-(3-Trifluoromethylbenzamido)phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-DMSO): δ 3.65 (s, 3H), 3.85 (s, 6H), 7.0 (s, 2H), 7.25 (s br, 2H), 7.55 (t, 1H), 7.8 (m, 2H), 8.0 (d, 1H), 8.1 (d, 1H), 8.32 (d, 1H), 8.35 (d, 1H), 8.45 (s br, 1H), 10.7 (s, 1H), 10.8 (s, 1H). ESIMS (MH⁺): 613; (M+Na⁺):; 635; (M-H⁻): ;611.

Anal. Calcd for C₂₈H₂₃F₃N₆O₅S: C, 54.90; H, 3.78; F 9.30; N, 13.72; S, 5.23. Found: C, 53.55; H, 3.95; N, 12.24; S, 4.67.

EXAMPLE D(50)

3-[3-(3-Chlorobenzamido)phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

10

¹H NMR (d₆-acetone): δ 3.6 (s, 3H), 3.75 (s, 6H), 6.85 (s br, 2H), 6.95 (s, 2H), 7.45 (m, 3H), 7.75 (d, 1H), 7.9 (d, 1H), 8.0 (m, 2H), 8.45 (s, 1H), 9.6 (s br, 1H), 9.7 (s br, 1H). ESIMS (MH⁺): 579/581; (M-H): 577/579.

Anal. Calcd for C₂₇H₂₃ClN₆O₅S: C, 56.01; H, 4.00; Cl, 6.12; N, 14.51; S, 5.54.

Found: C, 55.53; H, 4.23; Cl, 6.31; N, 14.00; S, 5.33.

EXAMPLE D(51)

3-[3-(2-Carboxy-5-methylthiazolyl)-aminophenyl]-5-[2-[(3,4,5-

5 trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-DMSO): δ 2.6 (s, 3H), 3.65 (s, 3H), 3.85 (s, 6H), 7.0 (s, 2H), 7.38 (s br, 2H), 7.55 (t, 1H), 7.85 (m, 2H), 8.05 (m, 1H), 8.65 (m, 1H), 10.75 (s, 1H), 10.95 (s, 1H). ESIMS (M+Na⁺): 588; (M-H): 564.

Anal. Calcd for C₂₅H₂₃N₇O₅S₂: C, 53.09; H, 4.10; N, 17.33; S, 11.34. Found: C,
 50.46; H, 4.39; N, 16.10; S, 10.47.

EXAMPLE D(52)

3-[3-(3-Chlorobenzamido)phenyl]-5-[2-(3-aminopyridyl)-4-amino-5-thiazolyl]-1,2,4-oxadiazole

15

¹H NMR (d₆-DMSO): δ 7.42 (m, 3H), 7.57 (m, 2H), 7.7 (m, 1H), 7.85 (m, 1H), 7.98 (m, 1H), 8.07 (m, 2H), 8.2 (m, 1H), 8.3 (m, 1H), 8.48 (m, 1H), 8.88 (d br, 1H), 10.6 (s br, 1H), 11.1 (s br, 1H). ESIMS (MH⁺): 490/492; (M-H⁻): 577/579.

Anal. Calcd for $C_{23}H_{16}ClN_7O_2S$: C, 56.38; H, 3.29; N, 20.01; S, 6.54. Found: C,

5 53.07; H, 3.41; N, 18.01; S, 5.90.

EXAMPLE D(53)

2-Methyl-thiazole-5-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

10 ESMS (MH⁺): 581.

Anal. Calcd for $C_{26}H_{24}N_6O_4S_3\cdot 0.5 H_2O$: C, 52.95; H, 4.27; N, 14.25; S, 16.31. Found: C, 52.99; H, 4.27; N, 14.21; S, 16.39.

EXAMPLE D(54)

6-Chloro-pyridine-2-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-

15 phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

ESMS (MH+): 595/597.

Anal. Calcd for C₂₇H₂₃ClN₆O₄S₂·(0.5 H₂O, 0.5 CH₂Cl₂): C, 51.08; H, 3.90; N, 13.00; S, 9.92. Found: C, 51.04; H, 3.65; N, 12.54; S, 9.63.

EXAMPLE D(55)

 $N-\{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']$ bithiazolyl-4 yl]-phenyl}-2-

5 chloro-isonicotinamide

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{N} \\ \text{N}$$

HRFABMS: Calcd. for $C_{27}H_{23}CIN_6O_4S_2(MNa^+)$: 617.0808. Found: 617.0832. Anal. Calcd for $C_{27}H_{23}CIN_6O_4S_2\cdot 0.6\ H_2O$: C, 53.52; H, 4.03; N, 13.87; S, 10.58. Found: C, 53.53; H, 3.85; N, 13.39; S, 10.42.

10 **EXAMPLE D(56)**

N-(3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-phenyl)-3,5-dimethyl-benzamide trifluoroacetate salt

¹H NMR (CD₃COCD₃): δ 9.65 (s, 1H), 8.56 (s, 1H), 8.13 (d, 1H), 7.88 (d, 1H), 7.67 (s, 2H), 7.53 (m, 1H), 7.24 (s, 1H), 7.07 (s, 3H), 3.86 (s, 6H), 3.75 (s, 3H), 2.39 (s, 6H). ESIMS: (MH⁺): 573; (MNa⁺): 595; (MH⁻): 571.

EXAMPLE D(57)

N-(3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-phenyl)-2-methyl-benzamide trifluoroacetate salt

¹H NMR (CD₃COCD₃): δ 9.58 (s, 1H), 8.60 (s, 1H), 8.08 (d, 1H), 7.89 (d, 1H), 7.67 (s, 2H), 7.56 (m, 2H), 7.36 (m, 3H), 7.07 (s, 3H), 3.86 (s, 6H), 3.73 (s, 3H), 2.49 (s, 3H). ESIMS: (MH⁺): 559; (MNa⁺): 581; (MH⁻): 557.

Example D(58): N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-4-hydroxy-3,5-dimethyl-benzamide

10

A solution of 4-(3-aminophenyl)-N²-(3,4,5-trimethoxyphenyl)[2,5']bithiazolyl-2',4'-diamine (100mg, 0.2195 mmol) from example C(1), 4hydroxy-3,5-dimethylbenzoic acid (38.3 mg, 0.2305 mmol), triethylamine (64 μL,
0.4609mmol), and DMF (1.0 mL) were treated with HATU (O-(7-azabenzotriazol-1yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate) (87.6 mg, 0.2305 mmol), and
stirred for 30 minutes at room temperature. The crude product was purified by

preparative C-18 reverse phase HPLC (gradient elution, 95% $H_2O/0.1\%$ TFA/C H_3CN to 5% $H_2O/0.1\%$ TFA/C H_3CN), giving 33 mg (25% yield) of title compound as a yellow powder.

Anal. Calcd. for C₃₀H₂₉N₅O₅S₂·0.5 H₂O: C, 58.81; H, 4.94; N, 11.43; S, 14.36.

5 Found: C, 58.81; H, 4.87; N, 11.50; S, 10.50. ESIMS (MNa⁺): 626

The following examples D(59) through D(61) were prepared in manner analogous to D(58).

Example D(59): N-{3-[4'-Amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-2-bicyclo[2.2.1]hept-2-yl-acetamide

10

Anal. Calcd. for $C_{30}H_{33}N_5O_4S_2\cdot 0.8~H_2O$: C, 59.44; H, 5.75; N, 11.55; S, 10.58.

Found: C, 59.43; H, 5.55; N, 11.40; S, 10.54. ESIMS (MH⁺): 592

Example D(60): Quinoline-3-carboxylic acid {3-[4'-amino-2'-(3,4,5-trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

$$\begin{array}{c} \text{OMe} \\ \text{MeO} \\ \text{N} \\ \text{N}$$

Anal. Calcd. for $C_{31}H_{26}N_6O_4S_2\cdot 0.3 H_2O$: C, 60.43; H, 4.35; N, 13.64; S, 10.41.

Found: C, 60.49; H, 4.36; N, 13.77; S, 10.40. ESIMS (MH⁺): 611.

Example D(61): 5-Phenyl-oxazole-4-carboxylic acid {3-[4'-amino-2'-(3,4,5-

5 trimethoxy-phenylamino)-[2,5']bithiazolyl-4-yl]-phenyl}-amide

ESIMS (MH⁺): 627. In a manner analogous to that described for Example D(1), the

10 following Examples D(62) through D(77) were prepared.

Example D(62): Hex-5-ynoic acid (3-{5-[4-amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-phenyl)-amide

¹H- NMR (d₆-acetone): δ 9.72 (s, 1H), 9.35 (s, 1H), 8.39 (m, 1H), 7.92 (m, 1H), 7.82 (m, 1H), 7.46 (m, 1H), 7.06 (s, 2H), 6.98 (s, 2H), 3.85 (s, 6H), 3.72 (s, 3H), 2.57 (s, 2H), 2.33 (t, 2H), 1.93 (m, 3H). ESIMS: (MH)⁺: 535, (MH)⁻: 533.

Example D(63): N-[3(5-{4-Amino-2-[3-(2H-tetrazol-5-yl)-phenylamino]-thiazol-

5 5-yl]-[1,2,4]oxadiazol-3-yl)-phenyl]-3-chloro-benzamide

¹H-NMR(d₆-dmso): δ 11.04 (s, 1H), 10.59(s, 1H), 8.46(s, 1H), 8.17 (m, 1H), 8.11 (m, 2H), 7.98 (m, 1H), 7.83 (m, 2H), 7.69 (m, 2H), 7.56 (m, 3H), 7.42 (m, 3H). ESIMS: (MH)⁺: 557(100%), 559(30%).

Example D(64): N-(3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-,2,4]oxadiazol-3-yl}-4-chloro-phenyl)-3-chloro-benzamide

¹H-NMR (d₆-DMSO): δ 10.79 (s, 1H), 10.66 (s, 1H), 8.39 (m, 1H), 8.06 (m, 3H), 7.68 (m, 1H), 7.65 (m, 2H), 7.33 (s, 2H), 7.02 (s, 2H), 3.81 (s, 6H), 3.65 (s, 3H). ESIMS: (MH)⁺: 613 (100%),615 (60%).

Example D(65): N-(3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]- [1,2,4]oxadiazyl}-4-chloro-phenyl)-3-methoxy-benzamide

¹H-NMR (d₆-DMSO): δ 10.79 (s, 1H), 10.53 (s, 1H), 8.40 (m, 1H), 8.07 (m, 1H), 7.66 (m, 1H), 7.55 (m, 3H), 7.33 (s, 2H), 7.19 (m, 1H), 6.96 (s, 2H), 3.85 (s, 3H), 3.81 (s, 6H), 3.65 (s, 3H). ESIMS: (MH)⁺: 609 (100%), 611 (30%).

Example D(66): N-(5- $\{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]$ oxadiazol-3-yl $\}$ -2,4-difluoro-phenyl)-3-chloro-benzamide

¹H-NMR (d₆ acetone) δ 9.73 (s, 1H), 9.58 (s, 1H), 8.73 (m, 1H), 8.07 (m, 1H), 8.02 (m, 1H), 7.65 (m, 2H), 7.42 (m, 1H), 7.06 (s, 2H), 6.98 (s, 2H), 3.85 (s, 6H), 3.72 (s, 3H).

ESIMS: (MH)⁺: 615(100%),617(30%).

5

Example D(67): N-(5-{5-[4-Amino-2-(3,4,5-trimethoxy-pheny-1-amino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

¹H-NMR (d₆ acetone): δ 9.71 (s, 1H), 9.41 (s,1H), 8.73 (m, 1H), 7.61 (m, 2H), 7.47 (m, 1H), 7.37 (m, 1H), 7.21 (m, 1H), 7.06 (s, 2H), 6.98 {s, 2H), 3.90 (s, 3H), 3.85 (s, 6H), 3.72(s, 3H). ESIMS: (MH)⁺: 611.

5 Example D(68): N-(3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1, 2,4]oxadiazol-3-yl}-phenyl)-yl }-phenyl)-3-cyano-benzamide

¹H-NMR (d₆-acetone): δ 9.91 (s, lH), 9.73 (s, lH), 8.55 (m, lH), 8.45 (m, lH), 8.38 (m, lH), 8.13 (m, lH), 8.03 (m, lH), 7.92 (m, lH), 7.80 (m, lH), 7.56(m, lH), 7.07 (s, 2H), 7.00 (s, 2H), 3.86 (s, 6H), 3.73 (s, 3H). ESIMS: (MH)⁺: 570.

Example D(69): N-(5-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-

5 [1,2,4]oxadiazol-3-yl}-4-chloro-2-fluoro-phenyl)-3-chloro-benzamide

¹H-NMR (d₆-acetone}: δ 9.73 (s, 1H), 9.63 (s, 1H), 8.74 (m, 1H), 8.07 (m, 1H), 8.03 (m, 1H), 7.68 (m, 2H), 7.63 (m, 1H), 7.07 (s, 2H), 6.98 (s, 2H), 3.86(s, 6H), 3.73 (s, 3H).

10 ESIMS: (MH)⁺: 631(100%), 633(60%), 635(10%).

Example D(70): N-(5-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-4-chloro-2-fluoro-phenyl)-3-methoxy-benzamide TFA salt

¹H-NMR (d₆-acetone): δ 9.74 (s, 1H), 9.45 (s, 1H), 8.74 (m, 1H), 7.61 (m, 2H), 1.46 (m, 1H), 7.19 (m, 1H), 7.06 (s, 3H), 6.97 (s, 2H), 3.89 (s, 3H), 3.85 (s, 6H), 3.72 (s,

3H).

ESIMS: (MH)⁺: 627(100%), 629(30%).

Example D(71): N-(3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]- [1,2,4]oxadiazol-3-yl-phenyl)-3-carboxyimido-benzamide

5

¹H-NMR (d₆-acetone): δ 9.91 (s, 1H), 9.73 (s, 1H), 8.58 (m, 2H), 8.21 (m, 1H), 8.15 (m, 2H), 7.85 (m, 1H), 7.66 (m, 2H), 7.57 (m, 1H), 7.06 (s, 2H), 7.00 (s, 2H), 3.85 (s, 6H), 3.72 (s, 3H). ESIMS: (MH)⁺: 588.

Example D(72): Example: 3-[2-fluoro-5-[(3-methoxybenzoyl)amino]-phenyl]-5-[2-10 [(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-DMSO): δ 3.7 (s, 3H), 3.85 (s, 6H), 3.9 (s, 3H), 7.05 (s, 2H), 7.25 (m, 1H), 7.6 (m, 6H), 8.15 (m, 1H), 8.55 (m, 1H), 10.5 (s, 1H), 10.85(s, 1H). ESIMS [MH]⁺: 593.

15 Anal. Calcd: C, 56.75; H, 4.25; F, 3.21, N, 14.18; S, 5.41. Found: C, 56.55; H, 4.48, N, 13.20; S, 5.39.

Example D(73): 3-[3-(3-chlorobenzoyl)amino)-6-fluoro-phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-DMSO): δ 3.7 (s, 3H), 3.85 (s, 6H), 6.95 (s, 2H), 7.05 (s, 2H), 7.35 (t, 1H), 7.6 (m, 2H), 8.0 (m, 2H), 8.15 (m, 1H), 8.55 (m, 1H), 9.7 (s br, 1H), 9.85(s br, 1H). ESIMS [MH]⁺: 597, 599.

5

Example D(74): 3-[3-[(3-methoxybenzoyl)amino]-6-methyl-phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (MeOD): δ 2.6 (s, 3H), 3.75 (s, 3H), 3.85 (s, 6H), 3.9 (s, 3H), 7.0 (s, 2H), 7.15 (m, 1H), 7.35 (d, 1H), 7.45 (t, 1H), 7.55 (m, 2H), 7.8 (m, 1H), 8.35 (d, 1H). ESIMS [MH]⁺: 589.

Anal. Calcd. for C29 H28 N6 O6 S: C, 59.17; H, 4.79, N, 14.28; S, 5.45. Found: C, 60.07; H, 5.30, N, 13.69; S, 5.07.

Example D(75): 3-[3-[(3-chlorobenzoyl)amino]-6-methyl-phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (MeOD): δ 2.6 (s, 3H), 3.75 (s, 3H), 3.85 (s, 6H), 7.0 (s, 2H), 7.35 (m, 1H), 7.57 (m, 2H), 7.8 (m, 1H), 7.9 (m, 1H), 8.0 (m, 1H), 8.35 (d, 1H). ESIMS [MH]⁺: 593, 595.

Anal. Calcd. for C28 H25 Cl N6 O5 S: C, 56.71; H, 4.25, N, 14.17; S, 5.41. Found:C, 56.66; H, 4.38, N, 13.54; S, 4.89.

Example D(76): 3-[3-[(4-morpholinylmethyl)benzoyl]amino]phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

10

¹H NMR (d₆-acetone): δ 2.6 (m, 4H), 3.7 (s, 2H), 3.8 (m, 4H), 3.9 (s, 3H), 4.0 (s, 6H), 7.1 (s, 2H), 7.2 (s, 2H), 7.65 (m, 3H), 8.0 (d br, 1H), 8.15 (d, 2H), 8.3 (d br, 1H), 9.8 (s br, 1H), 10.05 (s br, 1H). ESIMS [MH]⁺: 644.

Example D(77): 3-[3-[4-[(4-methyl-1-piperazinyl)methyl]-benzoyl]amino]phenyl]-5-[2-[(3,4,5-trimethoxyphenyl)amino]-4-amino-5-thiazolyl]-1,2,4-oxadiazole

¹H NMR (d₆-acetone): δ 2.6 (m br, 8H), 3.5 (s br, 2H), 3.6 (s, 3H), 3.7 (s, 6H), 6.8 (s, 2H), 6.9 (s, 2H), 7.4 (m, 3H), 7.75 (m, 1H), 7.9 (d, 2H), 8.0 (m, 1H), 8.4 (m, 1H), 9.55 (s br, 1H), 9.65 (s br, 1H). ESIMS [MH]⁺: 657.

EXAMPLE D(78)

EXAMPLE E(1)

10 {3-[5-(2,4-Diaminothiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-phenyl}-carbamic acid *tert*-butyl ester.

A solution of 1.3 mmol of (3-{5-[4-amino-2-(trityl-amino)-thiazol-5-yl][1,2,4]oxadiazol-3-yl}-phenyl)-carbamic acid *tert*-butyl ester, prepared as described in Example B(1), dissolved in 8 ml of 1:1 formic acid/diethyl ether was stirred at

5 room temperature until the starting material had been consumed by TLC (typically 5 h). The resulting light yellow solution was stripped of all solvent *in vacuo*, heated gently under high vacuum to remove residual formic acid, and then recrystallized from methylene chloride, giving 255 mg of the title compound (53% yield) as a light-yellow powder.

¹H NMR (DMSO-*d*₆): δ 9.54 (s, 1H), 8.177 (s, 1H), 8.07 (s, 2H), 7.65-7.59 (m, 3H), 7.39 (t, 1H), 7.12 (bs, 2H), 1.49 (s, 9H). ESMS (MH⁺): 375.

Anal. Calcd for C₁₉H₁₅ClN₆O₂S₃: C, 46.48; H, 3.08; N, 17.12; S, 19.59. Found: C, 46.47; H, 3.21; N, 17.10; S, 19.43.

EXAMPLE E(2)

15 N-[3-(2',4'-Diamino-[2,5']bithiazolyl-4-yl)-phenyl]benzamide

A solution of 4-amino-2-(trityl-amino)-thiazole-5-carbothioic acid amide (304 mg, 0.73 mmol) and *N*-(3-Bromoacetyl-phenyl)-benzamide (300 mg, 0.94 mmol) in

MeOH (30 ml) was stirred at room temperature overnight. The solvent was removed *in vacuo* and the residue was dissolved in EtOAc (100 ml). The EtOAc solution was washed with a saturated aqueous solution of NaHCO3 (3 x 25 ml). The organic layer was separated, dried over MgSO4, and concentrated. Purification of the residue was achieved by silica gel chromatography (75% EtOAc/DCM) providing N-[3-(2',4'-diamino-[2,5']bithiazolyl-4-yl)-phenyl]-benzamide (110 mg, 39% yield). mp 159-163 °C (decomp). 1H NMR (CD₃OD): δ 8.33 (s, 1H), 8.00-7.97 (m, 2H), 7.75-7.71 (m, 2H), 7.64-7.52 (m, 3H), 7.43 (t, J = 7.74 Hz, 1H), 7.33 (s, 1H). FABMS Calcd for C₁₉H₁₅N₅OS₂: 394.0796. Found: 394.0802

10 EXAMPLE E(3)

5

N-[3-(2',4'-Diamino-[2,5']bithiazolyl-4-yl)phenyl]-5-chloro-thiophene-2-carboxamide

Starting material was prepared following Steps (i) and (ii) described below.

Step (i): Oxalyl chloride (4.9 mL, 56.00 mmol) was added to solution of 5
15 chloro-thiophene-2-carboxylic acid (4.78 g, 29.40 mmol), DMF (0.25 mL), and

CH₂Cl₂ (50 ml) at room temperature. After stirring overnight, the reaction was

stripped of solvent and unreacted oxalyl choride *in vacuo*, giving a colorless oil. The

oil was dissolved in CH₂Cl₂ (50 mL), and treated with 3-aminoacetophenone (3.78 g,

28.00 mmol) and triethylamine (4.68 mL, 33.60 mmol). After stirring for 1 h, the

20 mixture was diluted with 800 mL of ethyl acetate, extracted with 1N HCl, 1N

NaHCO₃, brine, and dried over MgSO₄. The resulting solution was concentrated *in*

vacuo to a volume of 100 mL, giving 5-chloro-thiophene-2-carboxylic acid (3-acetyl-phenyl)-amide as a white powder, which was collected by filtration and dried under high vacuum (8.12 g, 81% yield).

5

10

15

20

Step (ii): A solution of 5-chloro-thiophene-2-carboxylic acid (3-acetyl-phenyl)-amide (2.0g, 7.17 mmol) and CuBr₂ (3.19 g, 14.34 mmol) in EtOAc (100 ml) was heated to reflux. Progress of the reaction was monitored every 30 minutes by TLC. After 2.5 h, starting material was still present, so additional CuBr₂ (0.75 g) was added. After an additional 1.5 h, TLC indicated that all starting material had been consumed. The reaction was reduced in volume by 50% *in vacuo*, diluted with CH₂Cl₂ (50 mL), filtered through a plug of silica, which was eluted with 40% ethyl acetate/CH₂Cl₂ (300 mL). The resulting solution was concentrated *in vacuo*, giving a colorless oil, which was taken up in CH₂Cl₂ (2 mL) and precipitated with diethyl ether (10 mL), giving 5-chloro-thiophene-2-carboxylic acid (3-bromoacetyl-phenyl)-amide (2.06 g, 80% yield) as white powder.

The title compound was prepared as follows. To a solution of 1.07 g (3.0 mmol) of 4-amino-2-(trityl-amino)-thiazole-5-carbothioic acid amide (prepared analogously to the starting material described in step (ii) of Example A(1)) dissolved in DMF (12 mL), was added 5-chloro-thiophene-2-carboxylic acid (3-bromoacetyl-phenyl)-amide. After 15 minutes, the reaction was diluted with MeOH (12 mL), treated with TFA (4 mL), and stirred overnight. The resulting solution was concentrated *in vacuo*, diluted with ethyl acetate, extracted with 1M NaHCO₃, extracted with brine, dried over MgSO₄, concentrated, and purified by flash chromatography (gradient elution: 5% CH₃CN/CH₂Cl₂ to 30% CH₃CN/CH₂Cl₂),

giving 0.47 g (36% yield) of N-[3-(2',4'-diamino-[2,5']bithiazolyl-4-yl)phenyl]-5-chloro-thiophene-2-carboxamide.

¹H NMR (DMSO- d_6): δ 10.41 (s, 1H), 8.23 (s, 1H), 7.95 (d, J = 4.1 Hz, 2H), 7.73-7.65 (m, 4H), 7.48 (s, 1H), 7.41 (t, J = 8.1 Hz, 1H), 7.29 (d, J = 4.1 Hz, 1H), 6.90 (s, 2H).

EXAMPLE E(4)

5

(2',4'-Diamino-[2,5']bithiazolyl-4-yl)-phenyl-methanone

The title compound was prepared in a manner similar to Example E(3).

¹H NMR (CD₃OD): δ 8.02-7.99 (m, 2H), 7.94 (s, 1H), 7.76 (s, NH₂), 7.70-7.64 (m, 1H), 7.57-7.52 (m, 2H), 6.85 (bs, NH₂). FABMS (MH⁺): 303. FABMS Calcd for C₁₃H₁₀N₄OS₂ (MNa+): 325.0194. Found: 325.0182.

EXAMPLE F(1)

5-Chloro-thiophene-2-carboxylic acid {3-[4'-amino-2'-(3-methyl-ureido)-

15 [2,5']bithiazolyl-4-yl]-phenyl}-amide

A solution of N-[3-(2',4'-diamino-[2,5']bithiazolyl-4-yl)phenyl]-5-chloro-thiophene-2-carboxamide (0.2307 mmol) (prepared as in Example E(3)), dissolved in

anhydrous THF (5.0 mL) and anhydrous N-methylpyrolidinone (1.0 mL) at –78°C, was treated phenyllithium (0.2307 mmol), followed by methylisocyanate (0.3461 mmol). After 5 minutes a second portion of phenyllithium (0.2307 mmol) was added slowly. After stirring for an additional 15 minutes, the reaction was quenched with acetic acid (0.6921 mmol), and methanol (0.5 mL), concentrated, and purified by reverse phase HPLC. The major component was collected, dissolved in ethyl acetate, extracted with NaHCO₃, brine, dried over MgSO₄, concentrated until a precipitate formed, and filtered. Mass of the resulting light-yellow powder after drying under high vacuum was 46 mg (41% yield).

10 ESMS (MH⁺): 491/493.

5

Anal. Calcd for C₁₉H₁₅ClN₆O₂S₃: C, 46.48; H, 3.08; N, 17.12; S, 19.59. Found: C, 46.47; H, 3.21; N, 17.10; S, 19.43.

In an analogous manner to that described in Example F(1), the following Examples F(2) through F(15) were prepared.

15 EXAMPLE F(2)

N-[3-(2'-Acetylamino-4'-amino-[2,5']bithiazolyl-4-yl)-phenyl]-5-chloro-thiophene-2-carboxamide

ESMS (MH⁺): 476/478.

20 Anal. Calcd for C₁₉H₁₄N₅O₂S₃: C, 47.94; H, 2.96; N, 14.17; S, 19.46. Found: C, 47.66; H, 3.39; N, 13.87; S, 19.21.

EXAMPLE F(3)

(4'-Amino-4-{3-[(5-chloro-thiophene-2-carbonyl)-amino]-phenyl}-[2,5']bithiazolyl-2'-yl)-carbamic acid methyl ester

5 ESMS (MH⁺): 492/494.

EXAMPLE F(4)

N-{3-[5-(2-Acetylamino-4-amino-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-phenyl}-3-chloro-benzamide

¹H NMR (CD₃COCD₃/DMSO-d₆): δ 10.55 (s, 1H), 8.60 (m, 1H), 8.20 (m, 2H), 8.15 (m, 1H), 8.19 (m, 1H), 7.66-7.50 (m, 4H), 7.12 (s, 2H), 2.22 (s, 3H). ESIMS: (MNa⁺): 477; (MH⁻): 453.

EXAMPLE F(5)

Thiophene-2-carboxylic acid (4-amino-5-{3-[3-(3-chloro-benzoylamino)-phenyl]-

15 [1,2,4]oxadiazol-5-yl}-thiazol-2-yl)-amide

¹H NMR (DMSO-d₆): δ 13.19 (s, 1H), 10.60 (s, 1H), 8.52 (s, 1H), 8.32 (m, 1H), 8.09-7.88 (m, 5H), 7.72-7.56 (m, 3H), 7.29 (m, 1H), 7.22 (s, 2H). ESIMS: (MH⁺): 523; (MNa⁺): 545; (MH⁻): 521.

EXAMPLE F(6)

5 N-{3-[5-(4-Amino-2-propionylamino-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-phenyl}-3-chloro-benzamide

¹H NMR (DMSO-d₆): δ 12.41 (s, 1H), 10.57 (s, 1H), 8.48 (s, 1H), 8.06 (m, 2H), 7.96 (m, 1H), 7.85 (m, 1H), 7.70 (m, 1H), 7.67-7.55 (m, 2H), 7.15 (s, 2H), 2.46 (q, 2H),

10 1.09 (t, 3H). ESIMS: (MNa⁺): 491; (MH⁻): 467.

EXAMPLE F(7)

N-{3-[5-(4-amino-2-benzoylamino-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-phenyl}-3-chloro-benzamide

¹H NMR (DMSO-d₆): δ 13.08 (s, 1H), 10.57 (s, 1H), 8.50 (s, 1H), 8.43-8.10 (m, 4H), 8.07 (m, 1H), 7.97 (m, 1H), 7.86 (m, 1H), 7.71-7.52 (m, 6H), 7.14 (s, 2H). ESIMS: (MH⁺): 517; (MNa⁺): 539; (MH⁻): 515.

EXAMPLE F(8)

 $N-(3-\{5-[4-Amino-2-(3-methyl-ureido)-thiazol-5-yl]-[1,2,4] oxadiazol-3-yl\}-phenyl)-3-methyl-benzamide$

ESMS (MH⁺): 450.

Anal. Calcd for C₂₁H₁₉N₇O₃S: C, 56.11; H, 4.26; N, 21.81; S, 7.13. Found: C, 55.97;
 H, 4.39; N, 21.54; S, 6.89.

EXAMPLE F(9)

N-[3-(2'-Acetylamino-4'-amino-[2,5']bithiazolyl-4-yl)-phenyl]benzamide

¹H NMR (CD₃OD): δ 8.27-8.24 (m, 1H), 7.89-7.85 (m, 2H), 7.67-7.61 (m, 2H), 7.51-7.31 (m, 5H), 2.14 (s, 3H). ESIMS (MH⁺): 436; (M-H⁻): 434.

Example F(10): N-{3-[4'-Amino-2'-(3-methyl-ureido)-[2,5']bithiazolyl-4-yl]-phenyl}-3-chloro-benzamide

Anal. Calcd. for $C_{21}H_{17}ClN_6O_2S_2\cdot 1.0~H_2O$: C, 50.14; H, 3.81; N, 16.71; S, 12.75.

Found: C, 51.12; H, 3.64; N, 16.96; S, 12.87. ESIMS (MH⁺): 485/487.

Example F(11): N-{3-[4'-Amino-2'-(3-methyl-ureido)-[2,5']bithiazolyl-4-yl]-phenyl}-

5 3-methoxy-benzamide

Anal. Calcd. for $C_{22}H_{20}N_6O_3S_2\cdot 0.7\ H_2O$: C, 53.58; H, 4.37; N, 17.04; S, 13.00.

Found: C, 53.60; H, 4.34; N, 17.04; S, 12.93. ESIMS (M-H⁻): 479.

Example F(12): N-(3-{5-[4-Amino-2-(3-phenyl-ureido)-thiazol-5-yl]-

[1,2,4]oxadiazol-3-yl}-phenyl)-3-methyl-benzamide

Anal. Calcd. for $C_{26}H_{21}N_7O_3S$: C, 61.04; H, 4.14; N, 19.17; S, 6.27. Found: C, 60.78; H, 4.18; N, 19.05; S, 6.08. ESIMS (MH⁺): 512.

Example F(13): N-(3-{5-[4-Amino-2-(3-isopropyl-ureido)-thiazol-5-yl]-

[1,2,4]oxadiazol-3-yl}-phenyl)-3-methyl-benzamide

5

10

Anal. Calcd. for $C_{23}H_{23}N_7O_3S$: C, 57.85; H, 4.85; N, 20.53; S, 6.71. Found: C, 57.65; H, 4.97; N, 20.47; S, 6.64. ESIMS (MH⁺): 478.

Example F(14): N-(3-{5-[4-Amino-2-(3-benzyl-ureido)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-phenyl)-3-methyl-benzamide

Anal. Calcd. for $C_{27}H_{23}N_7O_3S\cdot 0.9\ H_2O$: C, 59.85; H, 4.61; N, 18.10; S, 5.92. Found: C, 59.86; H, 4.55; N, 17.86; S, 5.78. ESIMS (MH⁺): 526.

Example F(15): N-{3-[5-(4-Amino-2-methanesulfonylamino-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-phenyl}-3-methyl-benzamide

ESIMS (MNa⁺): 493.

Example F(16): N-(4'-Amino-4-benzoyl-[2,5']bithiazolyl-2'-yl)-acetamide

5 ¹H NMR (CD₃OD): δ 6.81-6.69 (m, 2H), 6.41-6.18 (m, 3H), 6.07-5.91 (m, 1H), 0.93 (s, 3H).

FABMS Calcd for C₁₅H₁₂N₄O₂S₂Na: 367.0299. Found: 367.0991.

EXAMPLE G(1)

5-Pyridin-2-yl- N^2 -(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

10

15

3, 4, 5-Trimethoxyphenyl isothiocynate (250 mg, 1.11 mmol, 1 equiv.) and cyanamide (56 mg, 1.33 mmol, 1.2 equiv.) were taken up in acetonitrile-*tert*-butanol (1:1, 10 mL) at 23 °C. To this was added KO-*t*-Bu (286 mg, 2.55 mmol, 2.3 equiv.) and 2-chloromethylpyridine hydrochloride (182 mg, 1.11 mmol, 1.00 equiv.). The reaction mixture was allowed to stir for 1.5 h at 23 °C. The mixture was diluted with water (20 mL) and the white solids were filtered, washed with ether and dried (257

mg). The dried residue (60 mg, 0.167 mmol, 1.00 equiv.) was dissolved in THF (3 mL), cooled to -78 °C and was treated with *n*-butyllithium (0.261 mL, 1.6 M, 2.5 equiv.). The mixture was allowed to warm to 23 °C, was quenched with saturated sodium bicarbonate, and organics were extracted into ethyl acetate. The concentrated residue was purified by silica gel chromatography (ethyl acetate/hexane: 1:1, 48.3 mg, 80%).

MS (FAB) [m+]/z Calcd: 359. Found: 359. MS (FAB) [m-]/z Calcd: 357. Found: 357.

Anal. Calcd: C, 56.97; H, 5.06; N, 15.63; S, 8.95. Found: C, 56.18; H, 5.10; N, 15.31; S, 8.68.

The following Examples G(2) through G(9) were prepared in a similar manner to Example G(1).

EXAMPLE G(2)

N²-Phenyl-5-pyridin-2-yl-thiazole-2,4-diamine

15

5

MS (FAB) [m+]/z Calcd: 269. Found: 269.

Anal. Calcd: C, 62.66; H, 4.51; N, 20.88; S, 11.95. Found: C, 62.71; H, 4.46; N, 20.76; S, 11.91.

EXAMPLE G(3)

 N^2 -(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-5-pyridin-2-yl-thiazole-2,4-diamine

MS (FAB) [m+]/z Calcd: 327. Found: 327.

Anal. Calc'd: C, 58.88; H, 4.32; N, 17.17; S, 9.82. Found: C, 59.00; H, 4.29; N, 16.92; S, 9.58.

5 EXAMPLE G(4)

N²-(3,4-Dimethoxy-phenyl)-5-pyridin-2-yl-thiazole-2,4-diamine

MS (FAB) [m+]/z Calcd: 329. Found: 329.

Anal. Calcd: C, 58.52; H, 4.91; N, 17.06; S, 9.76. Found: C, 58.43; H, 4.89; N,

10 17.03; S, 9.67.

EXAMPLE G(5)

5-Quinolin-2-yl- N^2 -(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

MS (FAB) [m+]/z Calcd: 408. Found: 408.

15 Anal. Calcd: C, 61.75; H, 4.94; N, 13.72; S, 7.85. Found: C, 61.96; H, 4.80; N, 13.05; S, 7.54.

EXAMPLE G(6)

5-(6-Bromo-pyridin-2-yl)-2-*N*-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

¹H NMR (300 MHz, CDCl₃): δ 7.35 (t, 1H), 6.98 (d, 1H), 6.76 (d, 1H), 6.62 (s, 2H), 3.85 (s, 6H), 3.82 (s, 3H).

MS (FAB) [m+H]/z Calcd: 437. Found: 438.

5 Anal. Calcd: C, 46.69; H, 3.92; N, 12.81; S, 7.33. Found: C, 46.66; H, 3.84; N, 12.68; S, 7.25.

EXAMPLE G(7)

 $5-(5-\text{Thiophen-}3-\text{yl-}[1,2,4]\text{oxadiazol-}3-\text{yl})-N^2-(3,4,5-\text{trimethoxy-phenyl})-\text{thiazole-}2,4-\text{diamine}$

10

MS (FAB) [m+]/z Calcd: 431. Found: 431.

Anal. Calcd: C, 50.10; H, 3.97; N, 16.23; S, 14.86. Found: C, 50.45; H, 3.96; N, 15.31; S, 14.46.

EXAMPLE G(8)

4-{4-Amino-5-[1-(4-chloro-benzyl)-1H-imidazol-2-yl]-thiazol-2-ylamino}-benzenesulfonamide

EXAMPLE G(9)

4-[4-Amino-5-(5-nitro-benzothiazol-2-yl)-thiazol-2-ylamino]-benzenesulfonamide

¹H NMR (DMSO-d₆): δ 8.35 (s, 1H), 8.02 (d, J = 6.5 Hz, 1H), 7.90 (d, J = 6.5 Hz,

5 1H), 7.72 (m, 4H), 7.64 (br, NH₂), 7.22 (br, NH₂)

EXAMPLE H(1)

4-(4'-Amino-4-hydroxy-[2,5']bithiazolyl-2'-ylamino)-benzenesulfonamide

The title compound of this example and Examples H(2) through H(6) were prepared in a manner similar to that described in Example A(1) et seq. from 2-arylamino-4-amino-thiazole-5-carbothioamides and α -bromo esters, α -bromolactones, or α -bromo-nitriles, as appropriate.

¹H NMR (DMSO-d₆): δ 7.88 (s, 4H), 7.39 (s, 1H). ESIMS (MH⁺): 370; (M-H)⁻: 368.

15 EXAMPLE H(2)

4-[4'-Amino-4-hydroxy-5-(4-hydroxy-phenyl)-[2,5']bithiazolyl-2'-yl-amino]-benzenesulfonamide

¹H NMR (DMSO-d₆): δ 9.52 (s, 1H), 7.83 (m, 4H), 7.32, (s, 2H), 7.06 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 5.38 (s, 1H). ESIMS (MH⁺): 462.

Anal. Calcd for C₁₈H₁₅N₅O₄S₃·0.2H₂O·0.2Et₂O: C, 47.04; H, 3.65; N, 14.59; S, 20.04.

5 Found: C, 46.78; H, 3.59; N, 14.36; S, 20.73.

EXAMPLE H(3)

4'-Amino-2'-(4-dimethylamino-phenylamino)-5-(2-hydroxy-phenyl)-

[2,5']bithiazoly-4-ol

¹H NMR (DMSO-d₆): δ 7.30 (m, 2H), 7.04 (m, 2H), 6.68 (m, 4H), 2.88 (s, 6H). ESIMS (MH⁺): 426; (M-H)⁻: 424.

EXAMPLE H(4)

4-[4'-Amino-4-hydroxy-5-(2-hydroxy-phenyl)-[2,5']bithiazoly-2'-ylamino]-

benzenesulfonamide

15

¹H NMR (CD₃OD): δ 7.82 (m, 4H), 7.02 (m, 2H), 6.62 (m, 2H). ESIMS (MH⁺): 462; (M-H): 460.

EXAMPLE H(5)

4-[4'-Amino-4-hydroxy-5-(2-hydroxy-ethyl)-3'H-1'-[2,5]bithiazolyl-2'-ylamino]-

5 benzenesulfonamide

¹H NMR (DMSO-d_δ): δ 7.83 (s, 4H), 4.72 (m, 1H), 4.26 (m, 1H), 3.52 (m, 2H), 2.30 (m, 1H), 1.78 (m, 1H). ESIMS (MH⁺): 414; (M-H): 412.

Anal. Calcd for $C_{14}H_{15}N_5O_4S_3$: C, 40.67; H, 3.66; N, 16.94; S, 23.26. Found: C,

10 40.81; H, 3.76; N, 16.76; S, 23.02.

EXAMPLE H(6)

4-(4,4'-Diamino-[2,5']bithiazolyl-2'-ylamino)-benzenesulfonamide

¹H NMR (DMSO-D₆): δ 11.0 (s, NH), 8.12 (s, H), 7.80 (m, 4H), 7.32 (s, NH₂), 7.08 (br s, NH₂), 7.02 (s, NH₂). ESIMS (MH+): 369; (M-H-): 367.

EXAMPLE I(1)

 $S-5-(4-Benzyl-4,5-dihydro-oxazol-2-yl)-N^2-(3,4,5-trimethoxyl-phenyl)-thiazole-2,4-diamine$

A mixture of 4-amino-2-(3,4,5-trimethoxy-phenylamino)-thiazole-5-carbonitrile (153 mg, 0.5 mmol), 2(S)-amino-3-phenyl-propan-1-ol (84 mg, 0.55 mmol), and a catalytic amount of dry ZnCl₂ in chlorobenzene (15 ml) was refluxed for four hours. The solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate and washed with 0.1 N HCl, brine and dried with MgSO4. The product (53 mg) was obtained after silica chromatography purification (hexanes/ethyl acetate=1/1).

5

15

¹H NMR (CDCl₃): δ 7.33-7.22 (m, 5H), 6.58 (s, 2H), 4.50 (m, 1H), 4.24 (t, *J* = 9.0 H, 1H), 4.01 (t, *J* = 9.0 Hz, 1H), 3.86 (s, 6H), 3.82 (s, 3H), 3.11 (m, 1H), 2.70 (m, 1H). ESIMS (MH⁺): 441; (M-H⁻): 439.

The following Examples I(2) through I(19) were prepared in a similar manner: EXAMPLE I(2)

R-5-(4-Benzyl-4,5-dihydro-oxazol-2-yl)-N²-(3,4,5-trimethoxyl-phenyl)-thiazole-2,4-diamine

¹H NMR (CDCl₃): δ 7.33-7.22 (m, 5H), 6.58 (s, 2H), 4.50 (m, 1H), 4.24 (t, J = 9.0 Hz, 1H), 4.01 (t, J = 9.0 Hz, 1H), 3.86 (s, 6H), 3.82 (s, 3H), 3.11 (m, 1H), 2.70 (m, 1H).

Anal. Calcd for $C_{22}H_{24}N_4O_4S$: C, 59.98; H, 5.49; N, 12.72; S, 7.28. Found: C, 59.88; H, 5.54; N, 12.67; S, 7.21.

EXAMPLE I(3)

5

 $S-5-(4-Isobutyl-4,5-dihydro-oxazol-2-yl)-N^2-(3,4,5-trimethoxyl-phenyl)-thiazole-2,4-diamine$

¹H NMR (CDCl₃): δ 6.57 (s, 2H), 5.71 (brd, NH₂), 4.36 (m, 1H), 4.26 (m, 1H), 3.85-3.80 (m, 10H), 1.80 (m, 1H), 1.62 (m, 1H), 1.35 (m, 1H), 0.95 (m, 6H). ESIMS (MH⁺): 407.

EXAMPLE I(4)

 $5-\{(4R)-[(1R)-Benzyloxy-ethyl]-4,5-dihydro-oxazol-2-yl\}-N^2-(3,4,5-trimethoxyl-1)$

15 phenyl)-thiazole-2,4-diamine

¹H NMR (CDCl₃): δ 7.35-7.25 (m, 5H), 6.58 (s, 2H), 5.70 (brd, NH₂), 4.70-4.59 (m, 2H), 4.48 (m, 1H), 4.25 (m, 2H), 3.86 (s, 6H), 3.83 (s, 3H), 3.77 (m, 1H), 1.14 (m, 3H). ESIMS (MH⁺): 485.

EXAMPLE I(5)

5 S-4-[4-Amino-5-(4-phenyl-4,5-dihydro-oxazol-2-yl)-thiazol-2-ylamino]-benzenesulfonamide

¹H NMR (CD₃OD): δ 7.82 (m, 4H), 7.34 (m, 5H), 5.26 (t, J = 8 Hz, 1H), 4.72 (t, J = 7.80 Hz, 1H), 4.16 (t, J = 7.80 Hz, 1H).

Anal. Calcd for C₁₈H₁₇N₅O₃S₂0.5Et₂O: C, 53.08; H, 4.90; N, 15.48; S, 14.17. Found:
 C, 53.36; H, 4.79; N, 15.66, S, 14.33.

EXAMPLE I(6)

 $S-5-(4-Phenyl-4,5-dihydro-oxazol-2-yl)-N^2-(3,4,5-trimethoxyl-phenyl)-thiazole-2,4-diamine$

15

¹H NMR (CDCl₃): δ 7.37-7.26 (m, 5H), 6.59 (s, 2H), 5.80 (brd, NH₂), 5.32 (t, J = 7.80 Hz, 1H), 4.65 (t, J = 7.80 Hz, 1H), 4.09 (t, J = 7.80 Hz, 1H). FABMS (MH⁺): 427.

EXAMPLE I(7)

5 R-5-(4-Phenyl-4,5-dihydro-oxazol-2-yl)-N²-(3,4,5-trimethoxyl-phenyl)-thiazole-2,4-diamine

¹H NMR (CDCl₃): δ 7.37-7.26 (m, 5H), 6.59 (s, 2H), 5.80 (brd, NH₂), 5.32 (t, J = 7.80 Hz, 1H), 4.65 (t, J = 7.80 Hz, 1H), 4.09 (t, J = 7.80 Hz, 1H). FABMS (MH⁺): 427.

EXAMPLE I(8)

10

 $S-5-[4-(3-Benzyloxy-phenyl)-4,5-dihydro-oxazol-2-yl]-N^2-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine$

¹HNMR (300 MHz, CDCl₃): δ 3.83 (s, 3H), 3.87 (s, 6H), 4.08 (dd, J = 8, 8 Hz, 1H), 4.62 (dd, J = 8, 10 Hz, 1H), 5.05 (s, 2H), 5.30 (dd, J = 8, 8 Hz, 1H), 5.80 (s, 2H), 6.59 (s, 2H), 6.90 (m, 3H), 7.33 (m, 6H). HRMS (FAB) (MH⁺⁾) Calcd: 533.1859. Found: 533.18477.

EXAMPLE I(9)

5

S-3-{2-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-4,5-dihydrooxazol-4-yl}-phenol

To a solution of S-5-[4-(3-benzyloxyphenyl)-4,5-dihydro-oxazo-2-yl]-N2-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine (prepared as described in Example I(8)) (20 mg, 0.038 mmol) in DMF (0.5 ml), Pd black (10 mg) and ammonium formate (10 mg, 0.14 mmol) were added. The reaction mixture was stirred at room temperature for 42 h. The reaction mixture was diluted with CH₂Cl₂ (5 ml) and 10 filtered through Celite. The product (4mg) was obtained after the removing of the solvent.

¹HNMR (300 MHz, CD₃OD): δ 3.74 (s, 3H), 3.85 (s, 6H), 4.28 (dd, J = 8, 8 Hz, 1H), 4.84 (m, 1H), 5.20 (dd, J = 8, 9 Hz, 1H), 6.74 (m, 3H), 6.93 (s, 2H), 7.18 (dd, J = 8, 8)Hz, 1H). HRMS (FAB) (MH⁺) Calcd: 443.1389. Found: 443.1377.

15 EXAMPLE I(10)

S-5-[4-(4-Benzyloxy-phenyl)-4,5-dihydro-oxazol-2-yl]-N²-(3,4,5-trimethoxy-phenyl)thiazole-2,4-diamine

¹HNMR (300 MHz, CDCl₃): δ 3.82 (br s, 9H), 4.06 (dd, J = 8, 8 Hz, 1H), 4.60 (dd, J= 9, 9 Hz, 1H), 5.05 (s, 2H), 5.26 (dd, J = 9, 9 Hz, 1H), 5.89 (br s, 2H), 6.58 (s, 2H), 20

6.94 (d, J = 9 Hz, 2H), 7.20 (J = 9 Hz, 2H), 7.39 (m, 5H). HRMS (FAB) (MH⁺) Calcd: 533.1859. Found: 533.1876.

EXAMPLE I(11)

S-4-{2-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-4,5-dihydro-

5 oxazol-4-yl}-phenol

The title compound was prepared from the compound of Example I(10) in a manner similar to that described for Example I(9).

¹HNMR (300 MHz, CD₃OD): δ 3.73 (s, 3H), 3.80 (s, 6H), 4.12 (dd, *J* = 8, 8 Hz, 1H), 4.70 (dd, *J* = 9, 9 Hz, 1H), 5.16 (dd, *J* = 8, 8 Hz, 1H), 6.70 (d, *J* = 8 Hz, 2H), 6.92 (s, 2H), 7.12 (d, *J* = 8 Hz, 2H). HRMS (FAB) (MH⁺) Calcd: 443.1389. Found: 443.1377.

EXAMPLE I(12)

15

(R/S)-5-[4-(4-Bromo-phenyl)-4,5-dihydro-oxazol-2-yl]-N²-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

MS (FAB) [m+H]/z Calcd: 505. Found: 505.

Anal. Calcd: C, 49.91; H, 4.19; N, 11.09; S, 6.34. Found: C, 49.32; H, 4.02; N, 10.59; S, 6.05.

20 **EXAMPLE I**(13)

(R/S)-5-[4-(2-Bromo-phenyl)-4,5-dihydro-oxazol-2-yl]- N^2 -(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

MS (FAB) [m+H]/z Calcd: 505. Found: 505.

5 Anal. Calcd: C, 49.91; H, 4.19; N, 11.09; S, 6.34. Found: C, 49.32; H, 4.02; N, 10.59; S, 6.05.

EXAMPLE I(14)

(R/S)-5-[4-(3-Bromo-phenyl)-4,5-dihydro-oxazol-2-yl]- N^2 -(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

10

MS (FAB) [m+H]/z Calcd: 505. Found: 505.

Anal. Calcd: C, 49.91; H, 4.19; N, 11.09; S, 6.34. Found: C, 50.16; H, 4.41; N, 9.64; S, 5.4.

EXAMPLE I(15)

15 (R/S)-5-(4-Methyl-4,5-dihydro-oxazol-2-yl)- N^2 -(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

MS (FAB) [m+]/z Calcd: 364. Found: 364.

Anal. Calcd: C, 52.73; H, 5.53; N, 15.37; S, 8.8. Found: C, 50.58; H, 5.36; N, 13.92; S, 7.84.

EXAMPLE I(16)

 $5-(4-Methyl-5-phenyl-4,5-dihydro-oxazol-2-yl)-N^2-(3,4,5-trimethoxy-phenyl)-$

5 thiazole-2,4-diamine

MS (FAB) [m+H]/z Calcd: 441. Found: 441.

Anal. Calcd: C, 59.98; H, 5.49; N, 12.72; S, 7.28. Found: C, 59.38; H, 5.49; N, 12.50; S, 7.16.

10 **EXAMPLE I**(17)

(R/S)-5-(4-Isopropyl-4,5-dihydro-oxazol-2-yl)- N^2 -(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

MS (FAB) [m+H]/z Calcd: 393. Found: 393.

15 Anal. Calcd: C, 55.08; H, 6.16; N, 14.28; S, 8.17. Found: C, 55.62; H, 6.33; N, 13.07; S, 7.73.

EXAMPLE I(18)

 $5-(4(R)-Methyl-5(S)-phenyl-4,5-dihydro-oxazol-2-yl)-N^2-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine$

MS (FAB) [m+H]/z Calcd: 441. Found: 441.

Anal. Calcd: C, 59.98; H, 5.49; N, 12.72; S, 7.28. Found: C, 59.38; H, 5.49; N, 12.50; S, 7.16.

5 <u>EXAMPLE I(19)</u>

(R/S)-5-(5-Methyl-4,5-dihydro-oxazol-2-yl)- N^2 -(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine

MS (FAB) [m+H]/z Calcd: 365. Found: 365.

10 Anal. Calcd: C, 52.73; H, 5.53; N, 15.37; S, 8.8. Found: C, 50.91; H, 5.27; N, 14.03; S, 8.09.

EXAMPLE I(20)

15 EXAMPLE J(1)

5-(2H-Tetrazol-5-yl-)-N-(3,4,5-trimethoxyl)-thiazole-2,4-diamine

A solution of 4-amino-2-(3,4,5-trimethoxy-phenylamino)-thiazole-5-carbonitrile (110 mg, 0.35 mmol), TMSN₃ (115 mg, 1.0 mmol) and catalytic amount of Bu₂SnO in toluene was refluxed for four days (additional amounts of TMSN₃ and Bu₂SnO were added during the reaction). Solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate and washed with 0.1 N HCl, brine and dried with MgSO₄. The solvent was removed and the residue was triturated in ethyl ether. The final product (30 mg) was collected by filtration:

¹H NMR (CD₃OD): δ 6.99 (s, 2H), 3.89 (s, 6H), 3.77 (s, 3H). ESIMS (MH⁺): 350; (M-H): 348.

The following example was prepared in a similar manner:

EXAMPLE J(2)

N-(4-Dimethylamino-phenyl)-5-(2H-tetrazol-5-yl)-thiazole-2,4-diamine

15

¹H NMR (CD₃OD): δ 7.38 (d, J = 5.40 Hz, 2H), 6.85 (d, J = 5.40 Hz, 2H), 2.95 (s, 6H). ESIMS (MH⁺): 302; (M-H): 301.

EXAMPLE K(1)

3-{5-[4-Amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-phenol

To a solution of 200 mg (0.412 mmol) of 5-[3-(3-methoxymethoxy-phenyl)
[1,2,4]oxadiazol-5-yl]-N²-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine (prepared in Example B(4)) in 8 mL of 50% aqueous dioxane was added trifluoroacetic acid (8 mL) with water bath cooling at 15 °C. After 2 hours at room temperature, toluene was added, and the solution was concentrated *in vacuo* with the water bath at 22 °C. With five milliliters of solvent left, the solution was poured into cold aqueous sodium bicarbonate. This solution was extracted with two portions of dichloromethane, which was subsequently washed with brine and dried over sodium sulfate. Radial silica chromatography eluting with 5-10% methanol/dichloromethane gave 3-{5-[4-amino-2-(3,4,5-trimethoxy-phenylamino)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-phenol (60 mg) as a pale-yellow solid.

¹HNMR (300 MHz, DMSO-d₆): δ 3.64 (s, 3H), 3.81 (s, 6H), 6.95 (m, 3H), 7.34 (m, 2H), 7.49 (m, 2H), 9.76 (s, 1H), 10.76 (s, 1H).
 Anal. Calcd for C₂₀H₁₉N₅O₅S: C, 54.41; H, 4.34; N, 15.86. Found: C, 54.40; H, 4.40; N, 15.86.

EXAMPLE L(1)

 $5-\{6-(Furan-2-yl)-pyridin-2-yl\}-N^2-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine$

To a solution of 5-(6-Bromo-pyridin-2-yl-2-*N*-(3,4,5-trimethoxy-phenyl)thiazole-2,4-diamine (prepared as in Example G(6)) (60 mg, 0.137 mmol, 1.0 equiv)
in DMF (0.7 mL) was added 2-furantributyltin (130 μL, 0.411 mmol, 3.0 equiv),
triethylamine (95 μL, 0.685 mmol, 5.0 equiv) and dichlorobis(triphenylphosphine)palladium (19 mg, 0.027 mmol, 0.2 equiv.). The reaction mixture was heated to 85
°C for 18 h, cooled and partitioned between ethyl acetate and sodium bicarbonate.
The organic layer was dried over sodium sulfate, decanted and concentrated. The
material was purified by silica gel chromatography (1:1 ethyl acetate/hexane) to give
5-{6-(furan-2-yl)pyridin-2-yl}-*N*²-(3,4,5-trimethoxy-phenyl)-thiazole-2,4-diamine
(30.5 mg, 53% yield).

MS (FAB) [m+]/z Calcd: 424. Found: 424.

Anal. Calcd: C, 59.42; H, 4.75; N, 13.20; S, 7.55. Found: C, 59.56; H, 4.71; N, 13.10; S, 7.44.

The following Examples L(2) and L(3) were prepared in a similar fashion as Example L(1).

EXAMPLE L(2)

 $5-(6-\text{Thiophen-}2-\text{yl-pyridin-}2-\text{yl})-N^2-(3,4,5-\text{trimethoxy-phenyl})-\text{thiazole-}2,4-\text{diamine}$

20 MS (FAB) [m+H]/z Calcd: 441. Found: 441.

Anal. Calcd: C, 57.25; H, 4.58; N, 12.72; S, 14.56. Found: C, 56.57; H, 4.60; N, 12.47; S, 14.33.

EXAMPLE L(3)

 $5-(6-\text{Thiophen-}3-\text{yl-pyridin-}2-\text{yl})-N^2-(3,4,5-\text{trimethoxy-phenyl})-\text{thiazole-}2,4-\text{diamine}$

5

15

MS (FAB) [m+]/z Calcd: 440; Found: 440.

Anal. Calcd: C, 57.25; H, 4.58; N, 12.72; S, 14.56. Found: C, 56.57; H, 4.60; N, 12.47; S, 14.33.

EXAMPLE M(1)

4-Benzylsulfanylmethyl-N-(4-isopropyl-phenyl)-[2,5']bithiazolyl-2'4'-diamine

A solution of 204 mg (0.7 mmol) of 4-amino-2-(4-isopropyl-phenylamino)-thiazol-5-carbothioamide (prepared as in Example A(1), Step (ii)) and 1,3-dibromoacetone (154 mg, 0.72 mmol) was stirred in MeOH (10 ml) at room temperature for 2 hours. The resultant reaction mixture was then diluted with ethyl ether (150 ml). A yellow-brown solid was filtered off, rinsed with ethyl ether, and dried in vacuum to give a crude intermediate as brown solid (298 mg, 91% yield).

Without further purification, the above intermediate (50 mg, 0.12 mmol) was dissolved in DMF (10 mL) with DIEA (17 mg, 0.14 mmol). Benzyl mercapten (17 mg, 0.14 mmol) was then added. The resultant mixture was stirred at room temperature for 2 hours. Solvent was removed under reduced pressure and the residue was re-dissolved in ethyl acetate (100 mL). The organic solution was extracted with saturated NaHCO₃ (3 x 20ml) followed by brine. The organic layer was dried over magnesium sulfate and concentrated to furnish a brown solid. The final product was subsequently purified by preparative HPLC to provide 4-benzylsulfanylmethyl-N-(4-isopropyl-phenyl)-[2,5']bithiazolyl-2'4'-diamine (9 mg, 18% yield). HNMR (DMSO-d₆): 87.91 (s, 1H), 7.20-7.38 (m, 9H), 6.65 (s, 1H), 5.98 (s, 2H), 3.73 (s, 1H), 3.63 (s, 2H), 2.9 (heptet, J = 6.9 Hz, 1H), 1.22-1.24 (d, J = 6.9 Hz, 6H). FABMS (M+): 452; FABMS (MNa+): 475. Example N(1): 4'-Amino-2'-(4-methanesulfonyl-phenylamino)-[2,5']bithiazoyl-4-carboxylic acid trifluoro-acetic acid salt.

The title compound was prepared as follows: to a solution of 4-Amino-2-(4-sulfamoyl-phenylamino)-thiazol-5-carbothioic acid amide (164 mg, 0.5 mmol) in DMF, bromopyruvic acid (125 mg, 0.75 mmol) was added, and the resultant mixture was stirred at ambient temperature for 2 hours. Following removal of solvent, the residue was dissolved with ethyl acetate and washed with water and

brine, then dried with MgSO₄. Purification of the residue by preparative HPLC provided the title compound as a yellow power in 34% yield.

¹H NMR (DMSO): δδ 10.08 (s, 1H), 8.04 (s, 1H), 7.88-7.78 (m, 4H), 7.31 (s, 4H). HRFABMS (MH⁺): Calcd.: 398.0051. Found: 398.0059.

5 Example N(2): 4-Amino-2'-(4-sulfamoyl-phenylamino)-[2,5']-bithiazoyl-4-carboxylic acid (2-dimethylamino-ethyl)-amide.

The title compound was prepared as follows: a mixture of 4'-Amino-2'-(4-methanesulfonyl-phenylamino)-[2,5']bithiazoyl-4-carboxylic acid (64 mg, 0.13 mmol), PyBop (81 mg, 0.16 mmol), N,N-dimethylethylenediamine (28 μ l, 0.25 mmol) and DIEA (65 μ l, 0.38 mmol) in DMF was stirred at ambient temperature for 2 hours. The solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate. The ethyl acetate solution was extracted with saturated solution of NaHCO₃ followed by brine, and dried with MgSO₄. Purification of the residue by preparative HPLC provided the title compound as a yellow power in 17% yield.

¹H NMR (DMSO): δδ 10.91 (s, 1H), 8.72 (t, 1H, J=12.3), 7.80 (dd, 4H, J=27.1), 7.73 (s, 1H), 7.28 (s, 2H), 7.20 (s, 2H), 2.61-2.51 (m, 4H), 2.25 (s, 6H).

HRFABMS (MH⁺): Calcd.: 468.0946. Found: 468.0955.

10

15

In a manner similar to that used to prepare Example N(2), the following Examples N(3) and N(4) were prepared.

Example N(3): 4'-Amino-2'-(4-sulfamoyl-phenylamino)-[2,5']bithiazolyl-4-carboxylic acid methoxy-methyl-amide

5

mp 195-198 0 C.; 1 H NMR (CD₃OD): δ 9.80 (s, NH), 7.80-7.65 (m, 4H), 7.54 (s,

 $10 \hspace{0.5cm} 1H), \hspace{0.1cm} 6.60 \hspace{0.1cm} (s, NH_2), \hspace{0.1cm} 6.32 \hspace{0.1cm} (s, NH_2), \hspace{0.1cm} 3.61 \hspace{0.1cm} (s, 3H), \hspace{0.1cm} 3.22 \hspace{0.1cm} (s, 3H).$

FABMS (MH⁺): 441.

Example N(4): 4'-Amino-2'-(4-sulfamoyl-phenylamino)-[2,5']bithiazolyl-4 carboxylic

acid phenylamide

15

¹H NMR (CD₃OD): δ 7.91 (s, 1H), 7.88-7.71 (m, 4H), 7.40-7.22 (m, 4H), 7.17-7.09 (m, 1H).

FABMS Calcd for $C_{19}H_{16}N_6O_3S_3$: 473.0524. Found: 473.0540.

Example O(1): N-[5-(5-{4-Amino-2-[3-(2-morpholin-4-yl-ethyl)-ureido]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-2,4-difluoro-phenyl]-3-methoxy-benzamide

Step(i): A solution of activated carbamate (prepared in step(ii)), amine, and

5 DMF (0.60 mL) were stirred at room temperature for 1 h. The resulting solution was
concentrated in vacuo, then purified by "Chromatatron" radial chromatography (10%
methanol/methylene chloride), giving 35 mg (72% yield) of the title compound as a
white solid.

Anal. Calcd. for C₂₆H₂₆F₂N₈O₅ S·1.2 H₂O: C, 50.19; H, 4.60; N, 18.01; S, 5.15.

10 Found: C, 50.16; H, 4.35; N, 17.95; S, 5.22. ESIMS (MH⁺): 601

Step(ii): Preparation of the activated carbamate (4-{4-Amino-5-[3-(2,4-difluoro-5-{[1-(3-methoxy-phenyl)-methanoyl]-amino}-phenyl)-[1,2,4]oxadiazol-5-yl]-thiazol-2-ylcarbamoyloxy}-benzoic acid methyl ester). A solution of N-{5-[5-(2,4-Diamino-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide (533 mg, 1.20 mmol) prepared analogously to example E(1), dissolved in

anhydrous THF (20.0 mL) and anhydrous N-methylpyrolidinone (1.0 mL) at –78 °C, was treated with phenyllithium (0.660 mL, 01.20 mmol), followed by p-carboxymethyl chloroformate (772 mg, 3.60 mmol) dissolved in anhydrous THF (5.0 mL), in one portion (internal temperature rose to -55 °C). After 5 minutes a second portion of phenyllithium (0.660 mL, 1.20 mmol) was added slowly. After stirring for an additional 15 minutes the reaction was quenched with acetic acid (0.30 mL), warmed to room temperature, diluted with ethyl acetate, extracted with 1:1 mixture of brine and sodium bicarbonate solution, dried with magnesium sulfate, and filtered. The resulting solution was concentrated *in vacuo* until only ~50 ml of solvent remained, and a white precipitate had formed. The white solid was collected by filtration, giving 446 mg (60% yield) of the activated carbamate. ESIMS (MNa⁺): 645.

5

10

15

The following examples O(2) through O(32) were prepared in manner analogous to O(1).

Example O(2): N-{5-[5-(4-Amino-2-{3-[3-(2-oxo-pyrrolidin-1-yl)-propyl]-ureido}-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide

Anal. Calcd. for $C_{27}H_{26}F_2N_8O_5S\cdot 1.5\ H_2O$: C, 50.07; H, 4.57; N, 17.52; S, 5.01. Found: C, 50.60; H, 4.58; N, 17.42; S, 5.17. ESIMS (MH⁺): 613.

Example O(3): N-(5-{5-[4-Amino-2-(3-carbamoylmethyl-ureido)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for C₂₂H₁₈F₂N₈O₅S·0.6 H₂O: C, 47.86; H, 4.05; N, 20.09; S, 5.11. Found: C, 47.92; H, 3.95; N, 20.01; S, 5.44. ESIMS (MNa⁺): 567.

5 Example O(4): N-(5-{5-[4-Amino-2-(3-methyl-ureido)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{21}H_{17}F_2N_7O_4S \cdot (0.9 \text{ DMF}, 0.5 H_2O)$: C, 49.47; H, 4.10; N, 19.23; S,

10 5.57. Found: C, 49.58; H, 4.24; N, 19.33; S, 5.63. ESIMS (M-H⁻): 500.

Example O(5): N-[5-(5-{4-Amino-2-[3-(tetrahydro-furan-2-ylmethyl)-ureido]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-2,4-difluoro-phenyl]-3-methoxy-benzamide

Anal. Calcd. for C₂₅H₂₃F₂N₇O₅S·0.5 H₂O: C, 51.72; H, 4.17; N, 16.89; S, 5.52.

Found: C, 51.61; H, 4.09; N, 16.87; S, 5.57. ESIMS (MNa⁺): 594.

Example O(6): N-{5-[5-(4-Amino-2-{3-[2-(2-hydroxy-ethoxy)-ethyl]-ureido}-thiazol-5-yl)-[1,2,4]oxadiazol-3-yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide

5

Anal. Calcd. for $C_{24}H_{23}F_2N_7O_6S\cdot 1.0~H_2O$: C, 48.56; H, 4.25; N, 16.52; S, 5.40.

Found: C, 48.67; H, 4.04; N, 16.63; S, 5.50. ESIMS (M-H⁻): 574.

Example O(7): N-(5-{5-[4-Amino-2-(3-isobutyl-ureido)-thiazol-5-yl]-

10 [1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{24}H_{23}F_2N_7O_4S\cdot0.6~H_2O$: C, 52.00; H, 4.40; N, 17.69; S, 5.78.

Found: C, 52.02; H, 4.29; N, 17.87; S, 5.85. ESIMS (MH⁺): 544.

Example O(8): N-(5-{5-[4-Amino-2-(3-pyridin-2-ylmethyl-ureido)-thiazol-5-yl]-[1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for C₂₆H₂₀F₂N₈O₄S·1.0 H₂O: C, 52.34; H, 3.72; N, 18.78; S, 5.37.

Found: C, 52.24; H, 3.75; N, 18.74; S, 5.32. ESIMS (MH⁺): 579.

Example O(9): N-(5-{5-[4-Amino-2-(3-pyridin-3-ylmethyl-ureido)-thiazol-5-yl]-

5 [1,2,4]oxadiazol-3-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{26}H_{20}F_2N_8O_4S\cdot0.8~H_2O$: C, 52.66; H, 3.67; N, 18.90; S, 5.41.

Found: C, 52.57; H, 3.99; N, 18.92; S, 5.16. ESIMS (MH⁺): 579.

Example O(10): N-[5-(5-{4-Amino-2-[3-(2-hydroxy-ethyl)-ureido]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-2,4-difluoro-phenyl]-3-methoxy-benzamide

Anal. Calcd. for C₂₂H₁₉F₂N₇O₅S: C, 49.72; H, 3.6; N, 18.45; S, 6.03. Found: C, 49.45; H, 3.80; N, 18.30; S, 5.97. ESIMS (M-H⁻): 530.

Example O(11): N-[5-(5-{4-Amino-2-[3-(trans-4-hydroxy-cyclohexyl)-ureido]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-2,4-difluoro-phenyl]-3-methoxy-benzamide

5 Anal. Calcd. for C₂₆H₂₅F₂N₇O₅S·2.8 H₂O: C, 49.10; H, 4.85; N, 15.42; S, 5.04. Found: C, 49.06; H, 4.71; N, 15.39; S, 4.79. ESIMS (M-H⁻): 584. Example O(12): N-[3-(5-{4-Amino-2-[3-(3-morpholin-4-yl-propyl)-ureido]-thiazol-5-yl}-[1,2,4]oxadiazol-3-yl)-phenyl]-3-methyl-benzamide

10

Anal. Calcd. for $C_{27}H_{30}N_8O_4S\cdot 1.5~H_2O$: C, 54.99; H, 5.64; N, 19.00; S, 5.44. Found: C, 54.83; H, 45.49; N, 18.50; S, 15.30. ESIMS (MH⁺): 563.

Example O(13): N-{5-[4'-Amino-2'-(3-benzyl-ureido)-[2,5']bithiazolyl-4-yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide

15

Anal. Calcd. for $C_{28}H_{22}F_2N_6O_3S_2$: C, 56.75; H, 3.74; N, 14.18; S, 10.82. Found: C, 56.70; H, 3.85; N, 14.09; S, 10.70. ESIMS (MH⁺): 593.

Example O(14): N-(5-{4'-Amino-2'-[3-(2-methoxy-1-methyl-ethyl)-ureido]-[2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{25}H_{24}F_2N_6O_4S_2$: C, 52.25; H, 4.21; N, 14.63; S, 11.16. Found: C,

52.06; H, 4.21; N, 14.55; S, 11.09. MALDI FTMS (MH⁺): 575.1341, Found 575.1342.

Example O(15): N-[5-(4'-Amino-2'-{3-[3-(2-oxo-pyrrolidin-1-yl)-propyl]-ureido}-

10 [2,5']bithiazolyl-4-yl)-2,4-difluoro-phenyl]-3-methoxy-benzamide

Anal. Calcd. for C₂₈H₂₇F₂N₇O₄S₂·1.1 H₂O: C, 51.94; H, 4.55; N, 15.14; S, 9.90. Found: C, 52.38; H, 4.79; N, 14.64; S, 9.48. MALDI FTMS (MNa⁺): 650.1426,

Found 650.1394.

5

Example O(16): N-{5-[4'-Amino-2'-(3-pyridin-2-ylmethyl-ureido)-[2,5']bithiazolyl-4-yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide

Anal. Calcd. for $C_{27}H_{21}F_2N_7O_3S_2$: C, 54.63; H, 3.57; N, 16.52; S, 10.80. Found: C, 54.44; H, 3.68; N, 16.33; S, 10.60. MALDI FTMS (MH⁺): 594.1188, Found 594.1191.

5 Example O(17): N-{5-[4'-Amino-2'-(3-pyridin-3-ylmethyl-ureido)-[2,5']bithiazolyl-4-yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide

Anal. Calcd. for $C_{27}H_{21}F_2N_7O_3S_2\cdot 0.5$ H_2O : C, 53.81; H, 3.68; N, 16.27; S, 10.64.

Found: C, 53.95; H, 3.78; N, 16.21; S, 10.68. MALDI FTMS (MH⁺): 594.1188,

10 Found 594.1185.

Example O(18): N-{5-[4'-Amino-2'-(3-pyridin-4-ylmethyl-ureido)-[2,5']bithiazolyl-4-yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide

Anal. Calcd. for $C_{27}H_{21}F_2N_7O_3S_2\cdot 0.5\ H_2O$: C, 53.81; H, 3.68; N, 16.27; S, 10.64. Found: C, 53.83; H, 3.60; N, 16.33; S, 10.80. MALDI FTMS (MH⁺): 594.1188, Found 594.1198.

Example O(19): N-(5-{4'-Amino-2'-[3-((R)-2-hydroxy-propyl)-ureido]-

5 [2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for C₂₄H₂₂F₂N₆O₄S₂: C, 51.42; H, 3.96; N, 14.99; S, 11.44. Found: C, 50.95; H, 4.12; N, 14.97; S, 11.22. MALDI FTMS (MH⁺): 561.1185, Found 561.1212.

Example O(20): N-(5-{4'-Amino-2'-[3-((S)-2-hydroxy-propyl)-ureido]-[2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{24}H_{22}F_2N_6O_4S_2\cdot 1.0\ H_2O$: C, 49.82; H, 4.18; N, 14.53; S, 11.08. Found: C, 49.77; H, 3.92; N, 14.74; S, 10.96. ESIMS (MNa⁺): 583.

Example O(21): N-(5-{4'-Amino-2'-[3-((R)-1-hydroxymethyl-propyl)-ureido][2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{25}H_{24}F_2N_6O_4S_2\cdot 0.5~H_2O$: C, 51.45; H, 4.32; N, 14.40; S, 10.99.

Found: C, 51.32; H, 4.30; N, 14.53; S, 11.06. ESIMS (MNa⁺): 597.

Example O(22): N-(5-{4'-Amino-2'-[3-((S)-1-hydroxymethyl-propyl)-ureido]-

5 [2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{25}H_{24}F_2N_6O_4S_2\cdot 0.5~H_2O$: C, 51.45; H, 4.32; N, 14.40; S, 10.99.

Found: C, 51.49; H, 4.26; N, 14.66; S, 11.16. ESIMS (MNa⁺): 597.

Example O(23): N-[5-(4'-Amino-2'-{3-[(S)-1-(tetrahydro-furan-2-yl)methyl]-ureido}-

10 [2,5']bithiazolyl-4-yl)-2,4-difluoro-phenyl]-3-methoxy-benzamide

Anal. Calcd. for $C_{26}H_{24}F_2N_6O_4S_2\cdot 0.5$ H_2O : C, 52.43; H, 4.23; N, 14.11; S, 10.77.

Found: C, 52.55; H, 4.29; N, 14.44; S, 10.53. ESIMS (M-H⁻): 585.

Example O(24): N-[5-(4'-Amino-2'-{3-[(R)-1-(tetrahydro-furan-2-yl)methyl]-ureido}-

15 [2,5']bithiazolyl-4-yl)-2,4-difluoro-phenyl]-3-methoxy-benzamide

Anal. Calcd. for $C_{26}H_{24}F_2N_6O_4S_2\cdot 0.6\ H_2O$: C, 52.27; H, 4.25; N, 14.07; S, 10.73.

Found: C, 52.29; H, 4.33; N, 14.33; S, 10.55. ESIMS (M-H): 585.

Example O(25): N-{5-[4'-Amino-2'-(3-cyclohexylmethyl-ureido)-[2,5']bithiazolyl-4-

5 yl]-2,4-difluoro-phenyl}-3-methoxy-benzamide

Anal. Calcd. for $C_{28}H_{28}F_2N_6O_3S_2\cdot 0.5\ H_2O$: C, 55.34; H, 4.81; N, 13.83; S, 10.55.

Found: C, 55.26; H, 4.78; N, 14.00; S, 10.56. MALDI FTMS (MH⁺): 599.1705, Found 621.1525.

Example O(26): N-(5-{4'-Amino-2'-[3-(2-morpholin-4-yl-ethyl)-ureido][2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{27}H_{27}F_2N_7O_4S_2\cdot 1.0~H_2O$: C, 51.17; H, 4.61; N, 15.47; S, 10.12.

Found: C, 51.00; H, 4.39; N, 15.12; S, 9.75. MALDI FTMS (MH⁺): 616.1607, Found 616.1597.

Example O(27): N-(5-{4'-Amino-2'-[3-(2-pyrrolidin-1-yl-ethyl)-ureido]-[2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{27}H_{27}F_2N_7O_3S_2$: C, 54.08; H, 4.54; N, 16.35; S, 10.69. Found: C,

5 53.93; H, 4.66; N, 16.11; S, 10.51. MALDI FTMS (MH⁺): 600.1658, Found 600.1640.

Example O(28): N-[5-(4'-Amino-2'-{3-[2-(2-hydroxy-ethoxy)-ethyl]-ureido}-[2,5']bithiazolyl-4-yl)-2,4-difluoro-phenyl]-3-methoxy-benzamide

10 Anal. Calcd. for $C_{25}H_{24}F_2N_6O_5S_2\cdot 1.0\ H_2O$: C, 49.33; H, 4.31; N, 13.81; S, 10.54. Found: C, 49.47; H, 4.08; N, 13.87; S, 10.49. MALDI FTMS (MH⁺): 591.1290, Found 591.1276.

Example O(29): N-(5-{4'-Amino-2'-[3-(2-pyridin-2-yl-ethyl)-ureido]-[2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

15

Anal. Calcd. for $C_{28}H_{23}F_2N_7O_3S_2\cdot 1.8\ H_2O$: C, 52.54; H, 4.19; N, 15.32; S, 10.02. Found: C, 52.56; H, 4.07; N, 15.54; S, 10.03. MALDI FTMS (MH⁺): 608.1345, Found 608.1346.

Example O(30): N-(5-{4'-Amino-2'-[3-(2-pyridin-4-yl-ethyl)-ureido]-[2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

5

15

Anal. Calcd. for $C_{28}H_{23}F_2N_7O_3S_2\cdot 1.0 H_2O$: C, 53.75; H, 4.03; N, 15.67; S, 10.25. Found: C, 53.32; H, 4.01; N, 15.50; S, 9.90. MALDI FTMS (MH⁺): 608.1345, Found 608.1327.

Example O(31): N-{3-[4'-Amino-5-methyl-2'-(3-methyl-ureido)-[2,5']bithiazolyl-4-yl]-phenyl}-3-methoxy-benzamide

The precursor (N-[3-(2',4'-Diamino-5-methyl-[2,5']bithiazolyl-4-yl)-phenyl]-3-methoxy-benzamide) to the activated carbamate from which this example was prepared, was synthesized analogously to example E(3) only starting with 3-aminopropiophenone rather than 3-aminoacetophenone.

Anal. Calcd. for $C_{23}H_{22}N_6O_3S_2\cdot 0.6\ H_2O$: C, 54.66; H, 4.63; N, 16.63; S, 12.69. Found: C, 54.50; H, 4.48; N, 16.77; S, 12.70. ESIMS (MH⁺): 495.

Example O(32): N-(5-{4'-Amino-2'-[3-(2-pyridin-3-yl-ethyl)-ureido]-[2,5']bithiazolyl-4-yl}-2,4-difluoro-phenyl)-3-methoxy-benzamide

Anal. Calcd. for $C_{28}H_{23}F_2N_7O_3S_2\cdot 0.5\ H_2O$: C, 54.53; H, 3.92; N, 15.90; S, 10.40.

5 Found: C, 54.35; H, 4.02; N, 16.05; S, 10.30. ESIMS (MH⁺): 608. The exemplary compounds described above may be tested for their activity as described below.

BIOLOGICAL TESTING; ENZYME ASSAYS

10

15

20

The stimulation of cell proliferation by growth factors such as VEFG, FGF, and others is dependent upon their induction of autophosphorylation of each of their respective receptor's tyrosine kinases. Therefore, the ability of a protein kinase inhibitor to block cellular proliferation induced by these growth factors is directly correlated with its ability to block receptor autophosphorylation. To measure the protein kinase inhibition activity of the compounds, the following constructs were devised.

VEGF-R2 Construct for Assay: This construct determines the ability of a test compound to inhibit tyrosine kinase activity. A construct (VEGF-R2Δ50) of the cytosolic domain of human vascular endothelial growth factor receptor 2 (VEGF-R2) lacking the 50 central residues of the 68 residues of the kinase insert domain was expressed in a baculovirus/insect cell system. Of the 1356 residues of full-length VEGF-R2, VEGF-R2Δ50 contains residues 806-939 and 990-1171, and also one

point mutation (E990V) within the kinase insert domain relative to wild-type VEGF-R2. Autophosphorylation of the purified construct was performed by incubation of the enzyme at a concentration of 4 μM in the presence of 3 mM ATP and 40 mM MgCl₂ in 100 mM Hepes, pH 7.5, containing 5% glycerol and 5 mM DTT, at 4 °C for 2 h. After autophosphorylation, this construct has been shown to possess catalytic activity essentially equivalent to the wild-type autophosphorylated kinase domain construct. See Parast et al., *Biochemistry*, 37, 16788-16801 (1998).

5

10

15

20

FGF-R1 Construct for Assay: The intracellular kinase domain of human FGF-R1 was expressed using the baculovirus vector expression system starting from the endogenous methionine residue 456 to glutamate 766, according to the residue numbering system of Mohammadi et al., *Mol. Cell. Biol.*, 16, 977-989 (1996). In addition, the construct also has the following 3 amino acid substitutions: L457V, C488A, and C584S.

LCK Construct for Assay: The LCK tyrosine kinase was expressed in insect cells as an N-terminal deletion starting from amino acid residue 223 to the end of the protein at residue 509, with the following two amino acid substitutions at the N-terminus: P233M and C224D.

CHK-1 Construct for Assay: C-terminally His-tagged full-length human CHK1 (FL-CHK1) was expressed using the baculovirus/insect cell system. It contains 6 histidine residues (6 x His-tag) at the C-terminus of the 476 amino acid human CHK1. The protein was purified by conventional chromatographic techniques.

CDK2/Cyclin A Construct for Assay: CDK2 was purified using published methodology (Rosenblatt et al., *J. Mol. Biol.*, 230, 1317-1319 (1993)) from insect

cells that had been infected with a baculovirus expression vector. Cyclin A was purified from *E. coli* cells expressing full-length recombinant cyclin A, and a truncated cyclin A construct was generated by limited proteolysis and purified as described previously (Jeffrey et al., *Nature*, 376, 313-320 (July 27, 1995)).

CDK4/Cyclin D Construct for Assay: A complex of human CDK4 and cyclin D3, or a complex of cyclin D1 and a fusion protein of human CDK4 and glutathione-S-transferase (GST-CDK4), was purified using traditional biochemical chromatographic techniques from insect cells that had been co-infected with the corresponding baculovirus expression vectors.

FAK Construct for Assay. The catalytic domain of human FAK (FAKcd409) was expressed using the baculovirus vector expression system. The 280 amino acid domain expressed comprises residues methionine 409 to glutamate 689. One amino acid substitution exists (P410T) relative to the sequence assession number L13616 published by Whithey, G.S. et al., DNA Cell Biol 9, 823-830, 1993. The protein was purified using classical chromatography techniques.

. VEGF-R2 Assay

5

10

15

20

Coupled Spectrophotometric (FLVK-P) Assay

The production of ADP from ATP that accompanies phosphoryl transfer was coupled to oxidation of NADH using phosphoenolpyruvate (PEP) and a system having pyruvate kinase (PK) and lactic dehydrogenase (LDH). The oxidation of NADH was monitored by following the decrease of absorbance at 340 nm ($e_{340} = 6.22$ cm⁻¹ mM⁻¹) using a Beckman DU 650 spectrophotometer. Assay conditions for phosphorylated VEGF-R2 Δ 50 (indicated as FLVK-P in the tables below) were the following: 1 mM

PEP; 250 μ M NADH; 50 units of LDH/mL; 20 units of PK/mL; 5 mM DTT; 5.1 mM poly(E₄Y₁); 1 mM ATP; and 25 mM MgCl₂ in 200 mM Hepes, pH 7.5. Assay conditions for unphosphorylated VEGF-R2 Δ 50 (indicated as FLVK in the tables) were the following: 1 mM PEP; 250 μ M NADH; 50 units of LDH/mL; 20 units of PK/mL; 5 mM DTT; 20 mM poly(E₄Y₁); 3 mM ATP; and 60 mM MgCl₂ and 2 mM MnCl₂ in 200 mM Hepes, pH 7.5. Assays were initiated with 5 to 40 nM of enzyme. K_i values were determined by measuring enzyme activity in the presence of varying concentrations of test compounds. The data were analyzed using Enzyme Kinetic and Kaleidagraph software.

ELISA Assay

5

10

15

20

Formation of phosphogastrin was monitored using biotinylated gastrin peptide (1-17) as substrate. Biotinylated phosphogastrin was immobilized using streptavidin coated 96-well microtiter plates followed by detection using anti-phosphotyrosine-antibody conjugated to horseradish peroxidase. The activity of horseradish peroxidase was monitored using 2,2'-azino-di-[3-ethylbenzathiazoline sulfonate(6)] diammonium salt (ABTS). Typical assay solutions contained: 2 μM biotinylated gastrin peptide; 5 mM DTT; 20 μM ATP; 26 mM MgCl₂; and 2 mM MnCl₂ in 200 mM Hepes, pH 7.5. The assay was initiated with 0.8 nM of phosphorylated VEGF-R2Δ50. Horseradish peroxidase activity was assayed using ABTS, 10 mM. The horseradish peroxidase reaction was quenched by addition of acid (H₂SO₄), followed by absorbance reading at 405 nm. K₁ values were determined by measuring enzyme activity in the presence of varying concentrations of test compounds. The data were analyzed using Enzyme Kinetic and Kaleidagraph software.

FGF-R Assay

The spectrophotometric assay was carried out as described above for VEGF-R2, except for the following changes in concentration: FGF-R = 50 nM, ATP = 2 mM, and poly(E4Y1)=15 mM.

5 LCK Assay

The spectrophotometric assay was carried out as described above for VEGF-R2, except for the following changes in concentration: LCK = 60 nM, MgCl₂ = 0 mM, poly(E4Y1) = 20 mM.

CHK-1 Assay

10

15

The production of ADP from ATP that accompanies phosphoryl transfer to the synthetic substrate peptide Syntide-2 (PLARTLSVAGLPGKK) was coupled to oxidation of NADH using phosphoenolpyruvate (PEP) through the actions of pyruvate kinase (PK) and lactic dehydrogenase (LDH). The oxidation of NADH was monitored by following the decrease of absorbance at 340 nm (\leq 340=6.22 cm⁻¹ mM⁻¹) using a HP8452 spectrophotometer. Typical reaction solutions contained: 4 mN PEP; 0.15 mM NADH; 28 units of LDH/ml; 16 units of PK/ml; 3 mM DTT; 0.125 mM Syntide-2; 0.15 mM ATP; 25 mM MgCl₂ in 50 mM TRIS, pH 7.5; and 400 mM NaCl. Assays were initiated with 10 nM of FL-CHK1. K_i values were determined by measuring initial enzyme activity in the presence of varying concentrations of test compounds.

20 The data were analyzed using Enzyme Kinetic and Kaleidagraph software.

CDK2/Cyclin A and CDK4/Cyclin D Assays

Cyclin-dependent kinase activity was measured by quantifying the enzymecatalyzed, time-dependent incorporation of radioactive phosphate from [32P]ATP into

a recombinant fragment of the retinoblastoma protein. Unless noted otherwise, assays were performed in 96-well plates in a total volume of 50 μL, in the presence of 10 mM HEPES (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]) (pH 7.4), 10 mM MgCl₂, 25 µM adenosine triphosphate (ATP), 1 mg/mL ovalbumin, 5 µg/mL leupeptin, 1 mM dithiothreitol, 10 mM β-glycerophosphate, 0.1 mM sodium vanadate, 1 mM sodium fluoride, 2.5 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid (EGTA), 2% (v/v) dimethylsulfoxide, and 0.03 - 0.2 μCi [32 P]ATP. The substrate (0.3-0.5 µg) was purified recombinant retinoblastoma protein fragment (Rb) (residues 386-928 of the native retinoblastoma protein; 62.3 kDa, containing the majority of the phosphorylation sites found in the native 106-kDa protein, as well as a tag of six histidine residues for ease of purification). Reactions were initiated with CDK2 (150 nM CDK2/Cyclin A complex) or CDK4 (50 nM CDK4/Cyclin D3 complex), incubated at 30°C, and terminated after 20 minutes by the addition of ethylenediaminetetraacetic acid (EDTA) to 250 mM. The phosphorylated substrate was then captured on a nitrocellulose membrane using a 96well filtration manifold, and unincorporated radioactivity was removed by repeated washing with 0.85% phosphoric acid. Radioactivity was quantified by exposing the dried nitrocellulose membranes to a phosphorimager. Apparent K, values were measured by assaying enzyme activity in the presence of different compound concentrations and subtracting the background radioactivity measured in the absence of enzyme. The kinetic parameters (kcat, Km for ATP) were measured for each enzyme under the usual assay conditions by determining the dependence of initial rates on ATP concentration. The data were fit to an equation for competitive

5

10

15

20

inhibition using Kaleidagraph (Synergy Software), or were fit to an equation for competitive tight-binding inhibition using the software KineTic (BioKin, Ltd.). Measured K_i values for known inhibitors against CDK4 and CDK2 agreed with published IC₅₀ values. The specific activity of CDK4 was the same whether complexed to full-length cyclin D3 or the truncated Cyclin D3 construct; both complexes also yielded very similar K_i values for selected inhibitors.

FAK Assay

5

10

20

FAK HTS utilized the fluorescence polarization assay provided by LJL Biosystems. The kinase reaction contained: 100mM Hepes pH 7.5, 10mM MgCl₂, 1mM DTT, 1mM ATP, and 1mg/ml poly Glu-Tyr (4:1). The reaction is initiated by the addition of 5nM FAKcd409. The reaction is terminated by the addition of EDTA followed by addition of fluor-labelled peptide and anti-phosphotyrosine antibody, both provided by LJL Biosystems. Inhibition results are read on a Analyst (LJL) detector.

15 HUVEC Proliferation Assay

This assay determines the ability of a test compound to inhibit the growth factor-stimulated proliferation of human umbilical vein endothelial cells ("HUVEC"). HUVEC cells (passage 3-4, Clonetics, Corp.) were thawed into EGM2 culture medium (Clonetics Corp) in T75 flasks. Fresh EGM2 medium was added to the flasks 24 hours later. Four or five days later, cells were exposed to another culture medium (F12K medium supplemented with 10% fetal bovine serum (FBS), 60 µg/ml endothelial cell growth supplement (ECGS), and 0.1 mg/ml heparin). Exponentially-growing HUVEC cells were used in experiments

thereafter. Ten to twelve thousand HUVEC cells were plated in 96-well dishes in $100~\mu l$ of rich, culture medium (described above). The cells were allowed to attach for 24 hours in this medium. The medium was then removed by aspiration and $105~\mu l$ of starvation media (F12K+1% FBS) was added to each well. After 24 hours, $15~\mu l$ of test agent dissolved in 1% DMSO in starvation medium or this vehicle alone was added into each treatment well; the final DMSO concentration was 0.1%. One hour later, $30~\mu l$ of VEGF (30~ng/ml) in starvation media was added to all wells except those containing untreated controls; the final VEGF concentration was 6~ng/ml. Cellular proliferation was quantified 72 hours later by MTT dye reduction, at which time cells were exposed for 4 hours MTT (Promega Corp.). Dye reduction was stopped by addition of a stop solution (Promega Corp.) and absorbance at $595~\lambda$ was determined on a 96-well spectrophotometer plate reader.

 IC_{50} values were calculated by curve-fitting the response of A^{595} to various concentrations of the test agent; typically, seven concentrations separated by 0.5 log were employed, with triplicate wells at each concentration. For screening compound library plates, one or two concentrations (one well per concentration) were employed, and the % inhibition was calculated by the following formula:

% inhibition = (control – test) divided by (control – starvation)

20 where

5

10

15

control = A^{595} when VEGF is present without test agent test = A^{595} when VEGF is present with test agent starvation = A^{595} when VEGF and test agent are both absent.

Cancer Cell Proliferation (MV522) Assay

5

10

15

20

therapeutic usefulness in treating cancer, it is important to demonstrate the inhibitor's ability to block cellular proliferation in response to a growth factor that is involved in mediating a proliferative disorder. The protocol for assessing cellular proliferation in cancer cells is similar to that used for assessments in HUVEC cells. Two thousand lung cancer cells (line MV522, acquired from American Tissue Cultural Collection) were seeded in growth media (RPMI1640 medium supplemented with 2 mM glutamine and 10% FBS). Cells are allowed to attach for 1 day prior to addition of test agents and /or vehicles. Cells are treated simultaneously with the same test agents used in the HUVEC assay. Cellular proliferation is quantified by MTT dye reduction assay 72 hours after exposure to test agents. The total length of the assay is 4 days vs. 5 for HUVEC cells because MV522 cells are not exposed to starvation medium.

In Vivo Assay of Retinal Vascular Development in Neonatal Rats

The development of the retinal vascular in rats occurs from postnatal day 1 to postnatal day 14 (P1-P14). This process is dependent on the activity of VEGF (J. Stone, et al, *J. Neurosci.*, 15, 4738 (1995)). Previous work has demonstrated that VEGF also acts as a survival factor for the vessels of the retina during early vascular development (Alon, et. al, *Nat. Med.*, 1, 1024 (1995)). To assess the ability of specific compounds to inhibit the activity of VEGF *in vivo*, compounds were formulated in an appropriate vehicle, usually 50% polyethylene glycol, average molecular weight 400 daltons, and 50% solution of 300 mM sucrose in

deionized water. Typically, two microliters (2 µl) of the drug solution was injected into the midvitreous of the eye of rat pups on postnatal day 8 or 9. Six days after the intravitreal injection, the animals were sacrificed and the retinas dissected free from the remaining ocular tissue. The isolated retinas were then subjected to a histochemical staining protocol that stains endothelial cells specifically (Lutty and McLeod, Arch. Ophthalmol., 110, 267 (1992)), revealing the extent of vascularization within the tissue sample. The individual retinas are then flatmount onto glass slides and examined to determine the extent of vascularization. Effective compounds inhibit the further development of the retinal vasculature and induce a regression of all but the largest vessels within the retina. The amount of vessel regression was used to assess the relative potency of the compounds after in vivo administration. Vessel regression is graded on subjective scale of one to three pluses, with one plus being detectable regression judged to be approximately 25 percent or less, two pluses being judged to be approximately 25-75 % regression and three pluses give to retinas with near total regression (approximately 75% or greater). In the development model, the compound Example B(30) is one of the most effective compounds tested to date, being graded a two plus (++) when a dose of 2 µl of 5 mg/ml initial drug concentration was given.

5

10

15

20 In Vivo Assay of Retinal Vascular Development in Neonatal Rat Model of Retinopathy of Prematurity

A second model of VEGF dependent retinal neovascularization was employed to evaluate the activities of this series of compounds. In this model

(Penn et. al, *Invest. Ophthalmol. Vis. Sci.*, 36, 2063, (1995)), rats pups (n=16) with their mother are placed in a computer controlled chamber that regulates the concentration of oxygen. The animals are exposed for 24 hours to a concentration of 50% oxygen followed by 24 hours at a concentration of 10% oxygen. This alternating cycle of hyperoxia followed by hypoxia is repeated 7 times after which the animals are removed to room air (P14). Compounds are administered via intravitreal injection upon removal to room air and the animals are sacrificed 6 days later (P20). The isolated retinas are then isolated, stained mounted and analyzed as detail above in the development model. The effectiveness was also graded as is described for the development model. Example D(74) is the most effective compound tested to date in this model (++).

The results of the testing of the compounds using various assays are summarized in the tables below, where a notation of "% @" indicates the percent inhibition at the stated concentration and "NI" indicates no inhibition.

15 **TABLE 1**

5

10

Example	FLVK-P	FLVK	LCK	CHK-1	FGF-R K _i	CDK2	CDK4	HUVEC	MV522
	K _i (nM)	$K_i(nM)$	Ki (nM)	K _i (nM)	(nM)	Ki (nM)	Ki (nM)	IC ₅₀	IC_{50}
								(nM)	(μM)
A(36)	31% @								
	0.05								
A(37)	22% @ 5								
A(38)	7% @								
	0.05								
A(39)	74% @ 1								
A(40)	51%@1								
A(41)	70% @ 1								
A(42)	7.3								
A(43)	68% @ 1								
A(44)	82% @ 1								
A(45)	9.7								
A(46)	74% @ 1								

A(47)	7.9	T			T		260	>10
A(48)	3.1		 				350	>10
	49% @ 1						550	
A(50)	8.9						>700	>10
	38% @ 1						2700	
	75% @ 1							
A(53)	24					 	370	>10
A(54)	1% @ 1				<u> </u>	 	370	710
A(55)	14% @ 1							
	84							
A(56) A(57)	6.7		 					
	65% @ 1			 				
A(58)	i i				1			
A (50)	μM NI @ 5		 					
A(59)					-			
	11% @ 5		 				700	2.65
B(2)	16.5		 		ļ		>700	3.65
C(1)	300*		 ***************************************	 	_			
D(1)	46			ļ				
D(10)	56*							
D(11)	1.9		 		ļ	ļ		
D(12)	2	2.6					160	>10
D(13)	120*		 	ļ				
D(14)	120*							
D(15)	240*							
D(16)	11.8				ļ			
	33% @ 5							
	55% @ 5							
	38% @ 5							
D(2)	98							
D(20)	3.7						990	>10
D(21)	60*						200	>10
D(22)	89*							
D(23)	150						130	>10
D(24)	1.8	2	,,				110	>10
D(25)	1						745	
	38% @ 5							
	μΜ							
D(27)	1.8						82	>10
D(28)	6		 					
D(29)	1.4						32	>10
D(3)	63	*****	 				>700	>10
D(30)	2.9						48	>10
D(31)	4.8							
D(32)	3.9						59	>10
D(33)	3.8	3.6	 	†	†		120	>10
D(34)	0.85	2.5		 	1		89	9
D(35)	1.8			 			42	>10
D(36)	2		 	 			43	>10
D(30)			 	J		<u> </u>	1 43	>10

D(37)	3.4					T	-	150	>10
D(38)	0.93							40	>10
	1.4							62	>10
D(39)	7.6*							240	>10
D(4)	1.1	1 4				ļ		39	>10
D(40)	1.1	1.4						37	>10
D(41)		0.77						53	
D(42)	0.34	0.77							>10
D(43)	2.9							241	>10
D(44)	5.4	2.1						373	>10
D(45)	43% @ 1							235	0.65
7 (16)	μM							100	10
D(46)	17.1							123	>10
D(47)	1.1	0.34						13	>10
D(48)	4.1							40	>10
D(49)	1.6					ļ		15	>10
D(5)	63*								
D(50)	1.4							17	>10
D(51)	32*	0.62						40	>10
D(52)	27% @								
	50								
D(53)	2.5								
D(54)	6.3								
D(55)	6.3								
D(56)	0.81								
D(57)	18								
D(6)	38% @								
	5; 25*								
D(7)	120*								
D(8)	29*								
D(9)	47*								
E(2)	390	38	ï						
F(1)	0.91	1.4						29	
F(2)	3.9	4.7		·····				86	
F(3)	80								
F(4)	33% @								
	50					}			
F(5)	31% @								
[()	50								
F(6)	34% @	······							
	50								
F(7)	114					†			
F(8)	1.9					†		22	
F(9)	7.8	0.6	12% at 1					21	>10
(3)	'.0	2.0	12 /0 at 1 μΜ						710
<u>L</u>	1		μινι	<u> </u>	L	1	1	<u> </u>	

Notes: * = determined with ELISA assay rather than spectrophotometric assay.

TABLE 2

MV522	HUVEC	CDK4	CDK2	FGF-R	CHK-1	LCK	FLVK-P	Example
ΙC ₅₀ (μΜ)	IC ₅₀ (μ M)	K _i (μM)	K _i (µM)		$K_{i}\left(\mu M\right)$	$K_i (\mu M)$	$K_i (\mu M)$	•
		4.6			NI @ 20		1.4*	A(1)
		9.1	13.4	45% @ 5			0.028	A(10)
		33% @ 100	NI @ 100				NI @ 1000	A(11)
		2.7	6.7	190			0.034	A(12)
					11% @ 5		0.81*	A(13)
		7.0	3.1				1.9*	A(14)
		7.8	2.7				25*	A(15)
		0.98	0.22				0.022*	A(16)
>10	>1.0	29	2.1	2.4		21% @ 1	0.003	A(17)
				38% @ 5				A(18)
					0.39		0.004	A(19)
		7.3	1.8				2.9*	A(2)
0.49	0.58	66	0.71	420		24% @ 5	0.007	A(20)
		45	8.2		***************************************		8.8*	A(21)
					54% @ 5		0.021	A(22)
				47% @ 5		34% @ 5	0.039	A(23)
		64% @ 10	3.4				5.5*	A(24)
					0.29		0.10*	A(25)
7.5	>1.0			52% @ 5			0.014	A(26)
		31	3.2				38% @ 100 *	A(27)
		24	13				131*	A(28)
>10	>1	13	6.4			10% @ 5	0.078	A(29)
		8.4	2.5				64*	A(3)
		22	4.8				0.11	A(30)
							31% @ 5	A(31)
							21% @ 5	A(32)
							22% @ 5	A(33)
							43% @	A(34)

	5				1			
A(35)	390*							
A(4)	1 390				57% @	42% @		
A(4)					10	10		
A(5)	 				27% @	30% @		
A(J)					10	10		
A(6)					36% @	54% @	********	
11(0)					10	10		
A(61)	24%				2.7	10		1
11(01)	@ 1					:		
A(62)	1 1				0.53	4.4		
A(63)	<u> </u>				2.0	20		
A(64)					0.52			
A(65)		***************************************			0.15	2.1		
A(66)	<u> </u>					NI @ 1		
A(67)	0.11				0.015	0.67		
A(68)	"			L	0.13	4.5	L	1
A(69)					4	7.2		
A(7)					25% @	28% @		
(//					10	10		
A(70)					NI @	NI @		
()					100	100		
A(71)	1				29	190		
A(72)					0.16	48% @		
` ′						5μΜ		1
A(73)					36% @	NI @		
, ,					100μΜ			
A(8)	0.058*				0.80	0.42		
A(9)	1.9*				29% @	NI @		
					100	100		
B(3)	NI @							
	300							
B(4)	0.2							
G(9)								
C(2)	49% @							
	1				<u> </u>			
C(3)					2.7	4.6		
D(2)	98							
D(3)	0.063							
E(4)	<u> </u>				8.8	21		ļ
G (1)	57*					50		
G(2)	18% @					5.7		
	100*							
G(3)	13% @					6.2		
	20*							
G(4)	42% @		NI @			11.4		
	300*		100					
G(5)	NI @							
	1000*							<u> </u>

G(6)	NI @	<u>:</u>				100		
	300 μM							
G(7)	1.6*				21%@	NI @ 10		
, ,					10			
G(8)					18	31% @		
						100		
H(1)	3.6*				0.65	3.8	*****	
H(2)					10.4	11		
H(3)	6.1*				8.8	1.7		
H(4)					2.6	2.1		
H(5)					29% @	NI @		
` ,					100	100		
H(6)					0.2	1.2		
I(1)	>100						61	
I(10)	15% @							
	5							
I(11)	0.53							
I(12)	71% @					V		
	20							
I(13)	1.25*							
I(14)	1.17*							
I(15)	73*							
I(16)	178*							
I(17)	35*		***************************************					
I(18)	2.7*							
I(19)	34*				*****			
I(20)	46% @							
` '	100 μM							
I(2)	NI @					NI @		
` ′	600*					100		
I(3)	40% @	***************************************				NI @		
` ´	300*					100		
I(4)	NI @					NI @		
` '	100*					100		
I(5)	0.77*		NI @ 40			47% @		
						100		
I(6)	0.1		NI @ 40	22				
I(7)	5.2*							
I(8)	12% @							
	5							
I(9)	0.083							
J(1)	64*					NI @		
						100		
J(2)	53*					29%@		
						100	·	
K(1)	0.006	42%@			0.62	6.7	0.95	5.4
		1						
L(1)	NI @							
	1000*							

L(3)	NI @				
	NI @ 300 μM				
L(2)	NI @ 300*				
M(1)			NI @ 100	NI @ 100	

Note: * = determined with ELISA assay rather than spectrophotometric assay

Table 3

Example	FLVK-P	FLVK	LCK	CHK1	FGF-P	CDK2	CDK4	HUVEC	MV522
_	\mathbf{K}_{i}	Ki	K _i (nM)	K _i (nM)	K _I (nM)	$\mathbf{K}_{\mathbf{i}}$	K_{i}	IC ₅₀	IC_{50}
	(nM)	(nM)	(% inh @ 1 uM)		(% inh	(nM)	(nM)	(nM)	(µM)
					@ 1 uM)				
D(67)		Slow	1		13			4.1	>10
		binder							
D(70)	91%@	3.5	61		59			5.4	>10
	50 nM								
B(9)		0.36	91		78				
B(34)		88% @							
		50 nM							
B(8)		0.1							
B(27)		0.3							
B(10)		0.13							
B(11)		0.7							
B(30)		0.085							
B(29)		0.9							
D(20)	·								*******
B(28)		3							
B(32)		1.8							,
B(31)		5.1							
B(33)		82%							
B(26)		2.8							
2(20)									
O(31)		0.23							

N(1)	24% @			NI @ 25		2700			
11(1)	1μΜ			μM		2.00			
N(2)	1		***************************************	'		120	1300		
N(3)						100	1100		
N(4)						58	480		
14(4)						56	400		
D(66)		1	15		55			4.2	>10
O4	87% @ 50 nM	0.19	3		9			0.64	
O(10)		94			***************************************			6.7	
O(3)		0.57							
O(2)		0.33	7		28			0.58, 1.9	
O(1)		0.28							
O(5)		0.22							
O(6)		0.15							
O(7)		0.16						5.2	
O(8)		0.21							
O(9)		0.42						4.3	
O(11)		0.45						14	
O(14)		Slow binder	0		10			16	
O(24)		22% @ 50 nM							
O(23)		29% @ 50 nM							
O(22)		1.5							
O(21)	61% @ 50 nM	1.1							
O(20)		Slow binder							
O(19)		Slow binder							
O(18)		Slow binder	,						· · · · · · · · · · · · · · · · · · ·
O(17)		Slow binder							

0(16)	T T	11% @	·····	T	<u> </u>	1	T .	T	
O(16)		50 nM							
0(15)			2		20	<u> </u>		-	
O(15)		0.5	2		28				
O(13)	····	Slow		·		 	<u> </u>	140	
0(13)		binder						140	
O(30)	<u> </u>	39% @							
O(30)		50 nM							
O(29)		Slow							
0(29)									
0(22)		binder				 	_		
O(32)		Slow							
0(20)		binder				ļ			
O(28)		0.29							
O(27)		1.7				<u> </u>			
0(21)		1./							
O(26)		1.4							
0(20)									
O(25)		28%@							
` ′		50 nM							
D(65)		1	9.3		37			4.3	2.1
` ′			91						
D(73)		1.2	41		56			6	4.45
D(72)		0.9	35	NI	49	NI	NI	4.7	>10
D(12)		0.9	33	111	77	111	111	7.7	/10
D(74)	91%@	Slow	92		61			5.2	2.9/13
2(7.1)	50 nM	binder						3.2	2.5713
B(36)	30 1111	0.56	72	 	23	 		 	
2(00)		0.50	, –						
B(35)		0.26	34		39				
_(=,									
B(7)		61%@				<u> </u>			
, ,		50 nM							
D(63)		51%@				†		>10000	
_ (/		50 nM							
D(64)		1.4	3.2		84	<u> </u>		10-100	2
_ (- ',			9.4						
D(75)		Slow	1.1		64			7.8	0.75/2.0
` ,		binder	97						
D(76)		2.7						>1000	
F(10)		0.14	42		47			8.5	0.27/
									0.74
B(14)	13% @	0.76	10		46			11	>10
	50 nM								
B(12)		1.6	29		52			15	3.6
D(69)		0.5	79		78			15	2.3

F(11)		0.26	15	25		12	9.6/>10
B(16)		3% @ 50 nM					
B(18)		0.9	NI	8%		10	1.9
B(20)		80%					
O(12)		0.19	21	33		45	4.4
F(13)		0.25	29	25		16	
F(14)		0.36				150	
F(12)		2.2	1,1,11,11,11			>300	
B(6)		0.61				56	
D(61)		Slow binder	4	9		165	>10
D(77)		2.6					
D(78)	9% @ 1 μM						
D(59)		2.8	44	54		>100	3.1
D(60)		1.4	11	10		>100	
D(68)		0.69				>100	
D(71)		4.1					
D(58)		1.4	29	23		>100	>10
B(17)		3.4				63	1.3
B(23)		1.7					
B(24)		2.1					
B(21)		10% @ 50 nM					
B(22)		54% @ 50 nM				>1000	
B(19)		36% @ 50 nM					
B(25)		29					
B(39)		6.3				>100	

B(40)	31% @		·······	 T				
D(40)	1 μM							
B(41)	1 μινι	0% @	······					
D(41)								
D(40)		50 nM	·····	 				
B(42)		12% @						
D(42)		50 nM		 				
B(43)		11% @						
D(27)		50 nM					1000	
B(37)		36% @					>1000	
D (20)	ļ	50 nM		 			500	
B(38)		13% @					>700	
	<u> </u>	50 nM					7 00	
C(8)		21% @					>700	
		50 nM		 				
C(7)		17					300	
D(10)		1.0		-			200	
B(13)		1.3					300	
D(15)		1.7					100	
B(15)		1./					100	
C(5)		15% @					-	
C(3)		50 nM						
D(62)		20% @					500	
D(02)		50 nM					300	
C(6)		33		-			300	
C(0)		33					300	
C(9)		8					300	
		J					500	
C(4)		3% @			······································			
		50 nM						
B(5)		2.3						
`-'								
F(15)		5% @						
		50 nM						
F(16)					480	35% @		
						5μM		

CHK1 High-throughput screening results shown in Table 4

Table 4

Example	%
-	inhibition
	@ 20 uM
A4	-10.2
A4	17.9
A5	-16.1

A5	25.3
A6	-10.2
A6 A7 A7 A8	25.4
A7	-16.6
A7	19.3
A8	-6.2
A8	57.4
A8 H3 H3	16.9
H3	10.3
H4	0.9
H2	-1.7
A16	35.4
A21	-7.2
H5	13.4
A70	3.8
G8	-4
G8	-4.8
G8	-3 -3 -3.7
G8	-3
C3	-3.7
СЗ	2.9
C3	-3.7
СЗ	-3.7
C3 C3 C3 C3 A69	2.9 -3.7 -3.7 4.8
A69	2.7
A69 A69	3.8
A69	3.8
A63	3.8
A63	5.4
A63 A63	9.8
A64	1.1
A64	7.2
A64	8.3
A66	3.6
A66	6.6
A66	9.1
A68	-0.7
A68 A68 A68	-4.4
A68	6.1
A62	9.1 -0.7 -4.4 6.1 7.4
A62	12.2
H6	17.4
H6	15.2
H6	6.5
A67	15.3
,,,,,	10.0

A67	6.9
A67	4.2
A65	3.2
A65 A65	2.5
A65	8.2
E4	5
F4	6.4
B5	10.7
B5	1
E4 E4 B5 B5 B5	9.7
F16	4.3
F16	7.6
F16 A73 A73 A73	7.6
A73	14.3
A/3	14.4
A73	7.3
N3	14.4 7.3 5.2
N3	2
N3	5.8
J2	16
J1	20.8
13	20.1
14	19.4
12	16.1
12 15 16	3.3 9.6
16	9.6
A24	13.3
17	4.1
17	-3.1
I 12	5.1
	5.3
I 12	-0.6
A1 A1	36.6
A1	49.8
A2	2.6
A2	7.6
A3	2.8
A2 A3 A3 A15 A15 I 13 I 14 I 15 I 15 I 19	7.6 2.8 -1.9 -4.1 -1.2 11.3 11.9 -1.5 14.8 -1.3 -2.7 13.7
A15	-4.1
A15	-1.2
I 13	11.3
I 14	11.9
l 15	-1.5
115	14.8
110	-1 3
I 19	-27
1 16	12.7
1 10	13./

A28	0.4
A28 I(20)	9.3
I(20)	-9.4
I(20) A27 A27 J18	6.5
A27	-5.5
A27	2 12 -8.2
J18	12
A9	-8.2
A9	4.9
A10	4.9 -5.9
A10	36.2
A11	-7
A11	36.2 -7 12.2 -7
A12	-7
A9 A9 A10 A10 A11 A11 A12 A12 A17 A17 A23 A23 C1	24.7
A17	10.8
A17	41.4
A23	-7.2 4.2 12.4
A23	4.2
C1	12.4
l A18	60.8
D2 D2 D3 D3	0.8
D2	-5
D3	8.6
D3	6.7
A20	62.7
D4	9.3
D5	1.3
D5 D5 D6	-5.3
D6	6.1
D6	18.6
A13	5
A19	78.5
D7	10.1
D7	14.3
D8	6.6
D8	-5.7 3.7 4.3
D9	3.7
D9	4.3
D8 D9 D9 D10 D10 D12 D13	4
D10	-1.5
D12	11
D13	5.5
D13	8.0
D14	12.3
	

D14 0 D15 8.9 D15 1.2 D16 4.1 A22 7.5 A25 19.7 A26 42.5 D17 5.3 D17 19 D18 6.4 D18 12.1 D19 9 D19 4.2 D20 13.4	
D15 8.9 D15 1.2 D16 4.1 A22 7.5 A25 19.7 A26 42.5 D17 5.3 D17 19 D18 6.4 D19 9 D19 4.2	
D15 1.2 D16 4.1 A22 7.5 A25 19.7 A26 42.5 D17 5.3 D17 19 D18 6.4 D18 12.1 D19 9 D19 4.2	
D17 5.3 D17 19 D18 6.4 D18 12.1 D19 9 D19 4.2	
D17 5.3 D17 19 D18 6.4 D18 12.1 D19 9 D19 4.2	
D17 5.3 D17 19 D18 6.4 D18 12.1 D19 9 D19 4.2	
D17 5.3 D17 19 D18 6.4 D18 12.1 D19 9 D19 4.2	
D18 12.1 D19 9 D19 4.2	
D18 12.1 D19 9 D19 4.2	
D18 12.1 D19 9 D19 4.2	
D18 12.1 D19 9 D19 4.2	_
D19 9 D19 4.2	
D19 4.2	_
019 4.2	
D20 12.4	
D20 13.4	
D20 13.4 A31 2.5 I 10 16.1	
A31 2.5 I 10 16.1 I 9 6.9	
19 6.9	
111 -5.7 A32 -3.8 A33 9.6	
A32 -3.8	
I 11 -5.7 A32 -3.8 A33 9.6 A33 -3.8 A34 4.6 A34 -3.4 A35 9.9	
A33 -3.8 A34 4.6	
A34 4.6	
A34 -3.4	
A35 9.9	
A35 -2.1	
D21 -0.7	
D22 1.8	
D23 2.9	
D24 5.4	
K1 34.1	
B4 6.7	
A29 7.1	
D25 -8.7	
D26 44.7	_
A30 3.4 A36 2.8 A37 16 D27 5.1 D27 12.2	
A36 2.8	
A37 16	
D27 5.1	
D27 12.2	_
D28 6.7	
D28 6.7 D28 26.9	
D20 20.9	
D29 4.3	
D29 4.3	
D29 4.3	

D31	0.8
D31	8.8
D32	1.7
D32	13.8
A38	9.1
A38	9.8
A39 A40	2.2
A40	1
A41	3.8
A53	4
A56	-2.9
A58	-7.2
A55	0.1
A55 A52 A42	2
A42	-0.1
A43	-3
A44	-7.1
A44 A45 A46	-1
A46	0.9
Δ57	-6.1
A57 A48	1.3
D33	-0.3
D34	-0.3
D33 D34 D35	4.5
D36	2.5
D37	4.2
D38	8.4
D39	-1.4
	17.7
D40 D41	
	12.6
F9 A49	15.3
D42	14.1
	1.8
A50	30.1
B2	5.9
B2 D44 D45 D46 D47 D48 D49	0
D45	2.4
D46	3.9
D47	1 0.5
D48	8.5
D49	4.9
D50 D51	5.6
D51	3.8
D52	25.9
B40	8

D78	9.4
F2	3.5
F1 F4 F5 F6 D53	3.4
F4	10.3
F5	10.5
F6	8.4
D53	5.1
F8	55.8
F8	21.1
F8	34
F8	1.8
F8	1.9
D56	1.8 1.9 6.5
F7	173
D55	7.3
F8 F8 F8 F8 F8 D56 F7 D55 D11 B5 C4	7.3 13.3
B5	4.3
C4	16.9
D72	5.1
D73	5.3
D63	5.3 7.4
B12	3.1
C7	35.6
D73 D63 B12 C7 D64 D65	6.4
D65	4.9
B13	3
C8	12.4
D66 D67 D58 D58	3.8
D67	5.6
D58	4
D58	-1.7
D58	0.1
C9	8.6
C9	6.5
C9	15.1
C9 D60 D60 D60 D68 D68 D68 F12 F12 F12	6.7
D60	-4.1
D60	3.7
D68	10.2
D68	-4.1 3.7 10.2 7 14.1
D68	14.1
F12	10.3
F12	10.3 6.3
F12	13.2
B41	8.6
	<u></u>

B41	7.3
B41	12.9
C5	4.7
C5	2
C5	3.7
F13	9
F13	11.3
F13 F13 F13	12.9
B14	8
B14 B14	1.5
B14	2.8
C9	14.8
C9 C9 C9	5.5
C9	16.5
F14	14
F14 F14 F14 B15	10.2
F14	18.1
B15	9
B15	4.1
B15	9.1
B6	9.1 4.6
B6	-2.1
B6	-1.3
C6	24.5
C6	5.4
C6 D74	4.4
D74	11.3
D74	3.1
D74	14.3
D75	9.3
D75	4.9
D75	18.8
B42	4.7
B42	0.4
B42 B43	9.5
	8.1
B43	2.8
B43	11.8
B16	82.8
B16	78.9
B16	55.4
B16	38.6
B16	29.1
B16	77.5
B16	82

03	17.1
03	24.5
B21	4.5
B21	20.6
B35	4.4
B35	14.1
B36	6.2
B36	15.1
B25	3
B25	10.3
B26	7.5
B26	13.3
B27	-1.4
B27	1.3

FAK High-throughput screening results shown in Table 5

TABLE 5

Inhibition of FAK at 10 uM	
compound	
In HTS Del	phia assay
Example	% inhibition of
	FAK
A4	6
A5	10
A6	0 2
A7	2
A8	17
H3	19
H4	6
H2	18
A16	36
A21	26
H5	42
H5	17
H5	3
H5	3
A70	11
J2	-7
J1	-4
13	3 -5
14	-5
12	-6

l5	2
16	10
	-2 12 7 -1 -3 5 8
A24 17 112 A1 A2 A3 A15 115 119 119	
17	-1
1 12	-3
A1	5
A2	8
A3	9
A15	0
l 15	3
l 19	57
l 19	7
l 19	5
A28	4
120	- 2
A27	2
A9 .	4
A10	0 3 57 7 5 4 -2 2 4 -4 15
A11	15
A12	8
A17	-2
A23	4
A28 I20 A27 A9 A10 A11 A12 A17 A23 C1 A18 D1 D2 D3	8 -2 4 -2 29 -3 26 20 20 17 7
A18	29
D1	-3
D2	26
D3	20
A20 D4 D5 D6	20
7.20 D4	17
D5	7
D6	23
A13	23 12 37
A19	27
D7	23
D8	
	8
D9	22
D10	4
D12	29
D12 D13 D14 D15 D16	12 23 17
D14	23
D15	17
D16	17
A22	13
A25	57
A25	90

	· <u>-</u>
A25	88
A25	88
A26	17
D17	24
D18	14
D19	24 14 7
D20	25
A31	27 12 12
18	12
18 18	12
19	26
I 11	26 -18 -3 -17 -13
A32	-;;
A33	-17
A34	-13
A35	-10 -10
D21	-10
D22	-10 -1 2 -12 -4 17
	40
D23	-12
D24	-4
K1	
B4	49
B4	36 11
B4	11
B4	46
B4	32
A29	-8
D25	6
D26	51
D26	19
A30	-16
A36	-6
A37	-2
A38	83
A38	23
A38	12
A39	-10
A40	-6
A41	97
A41	18
A41	12
A53	-10
A56	-7
A58	-9
A55	59
	<u> </u>

A55	11
A55	16
A52	9
A42	-15
A43	-19
A44	-15
A45	-13
A46	-14
A57	-18
A48	-18 -2 -7
D33	-7
D34	-9
D35	-19
D36	1
D37	6
D38	-14
D39	-21
D40	-6
D41	-19
F9	-13
A49	-13 -13
D42	-5
A50	-14
B2	-17
D44	-9
D45	-9
D46	-14
D47	-19

Example	% inhibition
A4	-7
A4	-10
A5	-8
A 5	-10
A 6	-15
A6	-16
A 7	-10
A7	-9
A8	-12

40	4.4
A8	-14
НЗ	-11
НЗ	-9
H4	-2
H4	1
H2	0
H2	5
A16	94
A16	96
A21	4
A21	-1
H5	4
H5	2
A70	-11
A70	2
G8	-16
G8	-30
СЗ	-19
СЗ	0
A69	40
A69	15
A63	-6
A63	-24
A63	-22
A63	-23
A64	-20
A64	-34
A66	-38
A66	-39
A68	-18
A68	-18

A62	7
A62	6
H6	-13
H6	-30
A67	-29
A67	-33
A65	-31
A65	-39
E4	9
E4	17
B5	-4
B5	-13
F16	-13
F16	-16
A73	-23
A73	-30
N3	-12
N3	-17
J2	-2
J2	-10
J1	-8
J1	-13
13	4
13	-5
14	11
14	-1
12	19
12	6
15	6
15	0
16	6
	L

A24 -4 A24 -13 B3 30 B3 26 I7 9 I7 19 I12 -7 A1 -4 A1 -4 A1 82 A2 -9 A2 5 A3 -9 A3 3 A15 -9 A15 -7 I13 -2 I13 -7 I14 -24 I15 -7 I15 -11 I19 4 I16 -3 I16 -1 A28 -14 A28 -8 I20 9	I 6	15
B3 30 B3 26 17 9 17 19 17 19 112 -7 112 -7 A1 -4 A1 82 A2 -9 A2 5 A3 -9 A3 3 A15 -9 A15 -7 113 -2 113 -7 114 -24 114 -23 115 -7 115 -11 119 -5 119 4 116 -3 116 -1 A28 -14 A28 -8 120 9	A24	-4
B3 26 I7 9 I7 19 I12 -7 I12 -7 A1 -4 A1 82 A2 -9 A2 5 A3 -9 A3 3 A15 -9 A15 -7 I13 -2 I13 -7 I14 -24 I14 -23 I15 -7 I15 -11 I19 4 I19 4 I16 -3 I16 -1 A28 -14 A28 -8 I20 9	A24	-13
17 9 17 19 112 -7 112 -7 A1 -4 A1 82 A2 -9 A2 5 A3 -9 A3 3 A15 -9 A15 -7 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	B3	30
I 7 19 I 12 -7 I 12 -7 A1 -4 A1 82 A2 -9 A2 5 A3 -9 A3 3 A15 -9 A15 -7 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I 20 9	B3	26
I 12 -7 I 12 -7 A1 -4 A1 82 A2 -9 A2 5 A3 -9 A3 3 A15 -9 A15 -7 I 13 -2 I 13 -7 I 14 -24 I 14 -24 I 15 -7 I 15 -11 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I 20 9	I 7	9
I 12 -7 A1 -4 A1 82 A2 -9 A2 5 A3 -9 A3 3 A15 -9 A15 -7 I 13 -2 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	17	19
A1 -4 A2 -9 A2 5 A3 -9 A3 3 A15 -9 A15 -7 I 13 -2 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	l 12	
A1 82 A2 -9 A3 -9 A3 3 A15 -9 A15 -7 I 13 -2 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	l 12	
A2 -9 A3 -9 A3 3 A15 -9 A15 -7 I 13 -2 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	A1	-4
A2 5 A3 -9 A3 3 A15 -9 A15 -7 I 13 -2 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 -5 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I 20 9	A1 ·	82
A3 -9 A3 3 A15 -9 A15 -7 I 13 -2 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 -5 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I 20 9		-9
A3 3 A15 -9 A15 -7 I 13 -2 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 -5 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I 20 9		5
A15 -9 A15 -7 I 13 -2 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 -4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9		
A15 -7 I 13 -2 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 -5 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	A3	
I 13 -2 I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 -5 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	A15	
I 13 -7 I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 -5 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	1	
I 14 -24 I 14 -23 I 15 -7 I 15 -11 I 19 -5 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9		
I 14 -23 I 15 -7 I 15 -11 I 19 -5 I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9		
1 15		
1.15		
1 19		
I 19 4 I 16 -3 I 16 -1 A28 -14 A28 -8 I 20 9	1.15	-11
I 16 -3 I 16 -1 A28 -14 A28 -8 I20 9	l 19	-5
I 16 -1 A28 -14 A28 -8 I20 9	l 19	
A28 -14 A28 -8 I20 9		
A28 -8 I20 9	I 16	
I20 9	A28	-14
120 7		
<u> </u>	120	7

A27	-14
A27	-11
J18	3
J18	-8
A9	-6
A9	-5
A10	-2
A10	-5
A11	-8
A11	-10
A12	-16
A12	-16
A17	33
A17	9
A23	-5
A23	-6
C1	8
C1	11
A18	25
A18	32
D1	2
D1	13
D2	-3
D2	7
D3	-4
D3	0
A20	46
A20	56
D4	-3
D4	-5
D5	-1

D5	17
D6	-2
D6	-3
A13	7
A13	27
A19	76
A19	86
D7	-6
D7	-1
D8	-5
D8	12
D9	-8
D9	-10
D10	-5
D10	5
D12	-7
D12	-10
D13	-8
D13	-1
D14	-9
D14	-10
D15	-3
D15	-6
D16	-2
D16	4
A22	35
A22	38
A25	60
A25	47
A26	72
A26	72
	· · · · · · · · · · · · · · · · · · ·

D17	-10
D17	-10
D18	-6
D18	-9
D19	-4
D19	-10
D20	-6
D20	-10
A31	-6
A31	-7
I 10	8
I 10	-1
18	9
18	-1
19	45
19	35
111	30
111	25
A32	8
A32	11
A33	2
A33	4
A34	-3
A34	-8
A35	-5
A35	-9
D21	0
D21	10
D22	-6
D22	24
D23	-6

D23	1
D24	-4
D24	-7
K1	92
K1	96
B4	56
B4	43
A29	-6
A29	-11
D25	-9
D25	1
D26	-2
D26	0
A30	-3
A30	9
A36	-11
A36	-15
A37	34
A37	37
D27	79
D27	86
D28	-15
D28	-7
D29	-2
D29	-9
D30	-24
D30	-18
D31	-11
D31	0
D32	-20
D32	-13
	·

НЗ	-6
H3	-9
A39	2
A39	7
A40	-6
A40	-6
A41	-6
A41	-9
A53	-8
A53	-10
A56	8
A56	3
A58	6
A58	0
A55	-3
A55	-7
A52	1
A52	-6
A42	-1
A42	-8
A43	6
A43	-2
A44	-5
A44	-10
A45	-4
A45	-6
A46	-2
A46	-9
A57	2
A57	-7
A48	-8

A48	-8
D33	-3
D33	-7
D34	-1
D34	-5
D35	8
D35	4
D36	19
D36	6
D37	-5
D37	-8
D38	2
D38	-7
D39	22
D39	8
D40	-2
D40	-10
D41	0
D41	-7
F9	24
F9	14
A49	-7
A49	-10
D42	1
D42	-10
A50	8
A50	2
B2	13
B2	2
D44	58
D44	56
L	L=

D45	17
D45	. 10
D46	27
D46	19
D47	51
D47	46
D48	22
D48	24
D49	75
D50	42
D50	44
D51	16
D52	-26
D52	-13
B40	-26
B40	-29
D78	-22
D78	-15
F2	-18
F2	-15
F1	19
F1	25
F4	-10
F4	-15
F5	-16
F 5	-10
F6	-14
F6	1
D53	-15
D53	-2
F8	81

F8	82
D56	73
D56	71
F7	-2
F7	-21
D55	-14
D55	-35
D11	-25
D11	-41
B5	34
B 5	33
C4	-5
C4	9
D72	65
D72	69
D73	69
D73	73
D63	-130
D63	-126
B12	43
B12	44
C7	55
C7	57
D64	92
D64	93
D65	94
D65	93
B13	30
B13	36
C8	33
C8	35

D66	79
D67	73
D67	75
D58	-14
D58	-12
C9	-19
C9	-16
C60	-11
C60	-9
C68	-8
C68	-7
F12	-9
F12	-14
B41	-28
B41	-26
C5	-6
C5	-11
F13	54
F13	56
B14	-11
B14	-17
C9	19
C9	18
F14	2
F14	-2
B15	5
B15	-2
B6	11
B6	10
C6	19
C6	11
L	

D74	96
D74	94
D75	92
D75	91
B42	-7
B42	-11
B43	-16
B43	-17
O3	31
O3	42
B21	-3
B21	2
B35	96
B36	91
B36	93
B25	-6
B25	0
B26	76
B27	91
B27	94

Synthetic Protocol for Combinatorial Examples in Tables A-D

The four library building blocks 2-(4-aminosulfonylphenyl)amino,4aminoithiazole-5-carbothioamide, 2-(4-dimethylaminophenyl)amino,4aminoithiazole-5-carbothioamide, 2-(3,4,5-trimethoxylaminosulfonylphenyl)amino,4aminoithiazole-5-carbothioamide and 2-(4-isopropylphenyl)amino,4-aminoithiazole5-carbothioamide were synthesized in a manner similar to that of step (i) and (ii) in
Example A above.

All the compounds in Table A-D were synthesized by the chemistry similar to that used to prepare Example A(1) except: A stock solution of corresponding 4 above carbothioamides in 10% DMF/methanol was distributed into a 96 deep well plate so that each well contained 5 μ Moles of material. Then, 5 μ moles of 63 α -halid ketones were added to individual wells of each plate. After the reaction plates were shaken at room temperature for 16 hours, approximately 10 mg of Merrifield resin and 10 mg of N-(2-mercaptoethyl)aminomethyl polystyrene resin were added to each well. The reaction plates were shaken for another 2 hours. The reaction mixture was then filtered and the filtrates of each reaction well were collected individually into a receiving 96-well plate. The compounds were obtained after the removal of solvent.

Table A

5

10

EXAMPLES	VEGF [□]	CHK1 ^b	CDK2°	CDK4 ^d
H,CO N S N S OH	34	47.7	-10.3	65.4
ptic N	3	9.2	11.6	-1
H ₃ C O N S S S CH ₃	57	46.3	7.3	33.1
H ₃ C O N S CI	26	32	-0.2	18.3
HCO CH ₃	24	49.5	-4.8	35.1

H,C O C I NH ₂ NH ₂ O C I	38	23	12.4	31.3
H,C O H,S OH,S	-2	20	-3.5	-5.1
H ₂ C O OH ₃	19	3.7	-2.1	1.9
H,C O N N N N N O CH ₃	-5	9.9	4.9	-19.9
H ₃ C O NH ₂ CI	18	11.2	0.1	-6.9
H ₂ C OH ₃	3	6.1	12.2	17
H ₃ C-O-CH ₃ NH ₂ NH ₃	41	15.3	-13	3
H ₂ C OH ₃	27	2.7	23.2	-4
H ₃ C O N S	25	36.6	1.9	11.6
H ₂ C ₀ CH ₃ NH ₂ NH ₂ N ₁ C ₀ N ₂ N ₂ N ₂ N ₃ C ₀ N ₃ C ₁ N ₃	-8	15.2	-14.4	-5.6
H ₂ CO NH ₂ CH ₃	3	11.7	-4.4	-17.8
H,C O S S S S	-2	18.7	20.4	-4.7

H ₂ C O NH ₂ NH ₂	18	10.3	15.6	-0.3
H ₃ C O N S NH ₂	32	31.3	3.8	23.7
HC N NH, HC N HC N HC N NH, HC	26	17.9	13.6	19.5
	22	32.9	5.4	-16
H ₂ CO NH ₂	53	48.3	35	32.3
MC CONTRACTOR	-4	22.3	14.6	2.2
H ₃ C O NH ₂	53	31.3	14.3	24.5
H ₃ C O NH ₂ NH ₂ F	26	16.5	-5	-27.6
H ₂ C ₂ CH ₃	-6	8.8	6.6	-14.9
H ₂ C O N S S S CI	1	12.1	7.3	-31.7
H ₂ C ₀ OH ₃ OH	66	48.3	3	17.5
H ₃ C O N NH ₂ OH H ₃ C O CH ₃ OH CH ₃ OH	38	27.9	28.4	7.8
H ₃ C O N S S CI CI	50	48.8	10.3	32.3
H,C O N S NH ₂ OH ₃	47	12	1.2	-7.3

H ₃ C O NH ₃	59	41.9	26.7	26.4
Man Miles	22	23.9	-12.3	-14.7
H ₂ C O N S N S	23	21.1	-0.2	-40.1
H,C O N S N S O CH ₃	49	56	11.8	36.4
	34	34.1	19	13.7
CH ₃ NH ₂ CH ₃ CH ₃ CH ₃	56	48.7	7.3	37.1
H ₃ C O N N S N S S	38	29.4	1.7	11.7
HGC CO	52	38.1	12	31
NH ₂ CH ₃ CH ₃ CH ₃ CH ₃	17	22.4	4.2	-3.4
H ₃ C O CH ₃	-1	8.5	13.9	-17.7
H ₂ CH ₃ OH ₃ N S	20	31.9	-7.8	-14.6
	37	0.5	4.6	-21.1
H ₂ C CH ₃ NH ₂ NH ₂ NH ₃ NH	-3	10.4	13.8	-9

	11	21.6	-2.7	20.2
HC. OH, NH ₂ S	16	4.7	23.1	-24
H ₁ C OH ₃ H ₁ C OH ₃ H ₂ C OH ₃ H ₃ C OH ₃ H ₄ C OH ₃ H ₄ C OH ₃	-11	25.3	5.3	-0.1
H,C O NH ₂	46	14.1	-1	-18. <i>7</i>
H ₂ C ₂ O ₂ O ₄ O ₃ O ₄ O ₃ O ₄ O ₃ O ₄ O ₃ O ₄ O ₅ O ₄ O ₅ O ₄ O ₅ O ₄ O ₅	34	21.2	-0.4	-48.1
H,C. O CH,	35	41.4	4.4	22.8
H ₂ C OH ₃ OH ₃ OH ₃ OH ₃ OH ₃	51	48.3	19.8	50.6
H ₁ C O NH ₂	14	2.7	11.2	-19.9
H _G C O CH ₃	27	30.9	-7.5	8.2
H ₁ C O N N S N N O N CI	-3	0.9	17.5	-10.4
H,C CH,	-13	8.9	11.3	-34.4
H,C,C,C,H,	50	-7.4	1.6	-8.4

H ₃ C ₀ O ₁ O ₁ O ₁ O ₁ O ₁ O ₂ O ₁ O ₂ O ₁ O ₂ O ₂ O ₂ O ₃ O ₁ O ₂ O ₂ O ₃ O ₂ O ₃ O ₄ O ₃ O ₂ O ₃ O ₄ O ₃ O ₄ O ₅	26	26.2	-6	4.7
H ₃ C O N S F F F	60	32.5	-12.1	28.7
H ₂ C NH ₃ NH ₃ CH ₃	-5	1.3	6.3	-4.5
H ₃ C O NH ₃	41	13.2	9.1	11.5
H ₃ C O N NH ₂ CI CI CI N NH ₂ CI	15	6.4	3.9	29.3
H.C. CHy	3	25.4	-6	-6.5
H ₂ C O N S S S S	19	13.5	15.6	-10.5

Table B

EXAMPLES	VEGF [□]	CHK1 ^b	CDK2°	CDK4 ^d
H ₂ N ₂ OH OH	49	28.5	55.9	57.2
H,N, SON NH2	12	7.8	25.5	-8.9
H ₂ N ₂ O ₃ O ₃ O ₄ O ₃ O ₄ O ₅	34	26.6	68.2	59.6
H ₂ N ₂ Br	6	7.9	60.5	56.4
H,N,S,O	-2	13.1	17.6	-28.2
H,N,S	-2	3.3	21.4	25
H,N,S,NH ₂	21	18.7	18.9	16

5

		•		
H ₂ N SCO NH ₂ NH ₃ CH ₃	33	-2.1	20.5	-9.6
H ₂ N S NH ₂ CH ₃	3	-3.9	12.5	-1.2
H ₂ N ₂ C ₁	27	4.4	18.5	10.9
HA S CH,	8	-2.3	28.4	41.2
H ₂ N ₂ S NH ₂ NH ₂ S NH ₃	48	6.9	10.7	9.3
HAND DAY	3	1.1	29.8	-13
H'N S	47	25.6	55.4	57.8
H.J.N. g. NH ₂	3	11	27.7	-16.3
H,N,SON, NH ₂ CH ₃ CI	2	15.9	8.3	-28
H.J.N.S.O.	-3	12.3	11.2	-11.3
H,N,S,P,NH ₂	13	3.7	13.3	16.3
H ₂ N ₂ S C ₁	32	14.7	63	79.2
H,M, S, M, C, M, C	-2	2.9	-4.5	-3.9

H,N,S	29	20.1	21.4	31.8
H ₂ N ₂ S NH ₃ NH ₃ S NH ₃	43	33.7	74.7	61.2
	8	4.4	20.7	-27
H ₂ N ₂ S ₃	13	13.6	14.6	39.7
H,N,S,N,S,N,S,F,F	38	17.5	12.4	-5.3
H,N,S, NH ₂	30	10.8	17.8	-28.6
H ₂ N, SON NH ₂ CI	9	11.7	1.3	-3.1
HAN SO NHS OH	56	18.7	57.9	51.3
H ₂ N ₂ CH ₃ CH ₃	25	13.4	40.7	46
H,N,S CI	11	19.8	66.8	58
NH ₂ CH ₃	50	0.2	19.6	-13.5
H,N,O	11	11.3	51.6	65
HAN SON SON SON SON SON SON SON SON SON SO	43	6.8	37.2	-1.9

H ₂ N S NH ₂	23	11.2	8.2	-33.4
H,N, S HO CI CH-9	29	25.6	69.5	62.5
	⁻ 18	18.3	45.7	57.5
H-N-S NH ₂ S CH ₃	23	28.4	67	59.9
H,N,SON,NH ₂	11	10.7	54.2	40.9
H ₂ N _S S CI	19	9.7	56	70.6
H ₂ C CH ₃	-2	13.1	35.9	31.8
HLAN SO NHE FF	2	4.2	4.5	-3.6
HJAN JOHN JOHN JOHN JOHN JOHN JOHN JOHN JOH	7	15.3	56.6	42.2
H ₂ N S NH ₂	9	-1.6	29	2.3
H ₂ N ₂ C _{CH₃} C _{H₃} C _{CH₃}	-2	1.3	14.1	-3.5
HJN S NH	3	9.7	61.4	53.4
H ₂ N ₂ S NH ₂ S CH ₃	3	5.6	9.2	-0.3

H ₂ N ₂ CH ₃ NH ₂ CH ₃ H ₃ CCH ₃	-9	17.5	25	17
H ₂ N ₂ O _N NH ₂	34	12.3	60.8	43.3
H ₂ N ₂ S ^O O _{H₃}	23	15.2	5.9	-4.2
H,N,SON,SON,SON,SON,SON,SON,SON,SON,SON,S	9	11.4	52.6	53.3
H ₂ N ₂ CH ₃ CH ₃ CH ₃ CH ₃	33	29	77.2	64.1
H,N,S, NH ₂	-1	-1.2	12	-0.5
HIM SO CI	5	21.1	68	75
HAN SO CH	-5	0.5	16.1	-31.3
H ₂ N ₂ COH ₃	-13	10.8	-9.9	-7.2
HAN SCH,	33	-7.3	25.4	-4.8
Hyn Co	9	21.7	53.9	58
HLM SO ON STATE OF ST	40	21.6	74.1	58.2
HUN SO CH3	10	6.1	34.8	29.3

HAN SO NHA NHA S	10	0.4	48.9	44.1
HAN SO CHAS	-4	3.3	23.2	14
HJM CO OF SON NH2	-4	13.6	16.6	-15
H ₂ N ₂ O Br	15	16.4	17.6	-0.3

Table C

5

EXAMPLES	VEGFª	CHK1 ^b	CDK2°	CDK4 ^d
H ₃ C OH ₃ OH OH	28	31.6	23.8	62.7
H _C CH ₃	-2	10.7	17.2	51.2
H ₃ C CH ₃	50	27.4	17.5	76.5
H ₃ C OH ₃ NH ₂ NH ₂ S CI	25	9.2	26	84.7

H,C CH ₂ NH	7	23.5	14.2	71.5
H ₂ C C NH ₂ NH ₂ C C I	3	-7.9	15.1	49.7
H ₃ C CH ₃	-13	15.6	6.3	53.3
H ₃ C NH ₂ NH ₂ CH ₃	-2	0.8	14.2	55.9
H ₂ C CH ₃	-10	1.8	-22.6	38.2
H ₃ C NH ₃ NH ₃ CI	-2	-0.2	10.8	53.1
H ₁ C H ₃	12	-5.2	12.2	79.4
H ₂ C CH ₃	19	4.7	27.8	60.9
H ₂ CH ₃	9	-5.7	15	28.7
H,C CH, NH, O-N	16	32.2	17.7	63
H ₃ C NH ₃ NH ₃ NN ₄ NN ₅ NN ₆ NN ₇	-4	6	17.8	35.6
H ₂ C CH ₃	-7	9	11.7	9.1
H,C NH ₂	-9	3.2	9.6	0.7

H,C CH,S	7	7.1	5.9	58.4
H\$ NH2 NH2	23	21.4	25.7	81.4
HE STORY	5	-0.9	11.1	49.8
Hp	14	23.8	22	50.6
HS NH3	48	39.8	16.1	80.7
HS SM,	-4	7.5	7.3	45.9
Hp CH3	22	17.6	19	53.3
HC CH3	5	10.9	21.2	39.5
H ₂ CH ₃ NH ₃ NH ₃ N ₁ O ₁ O ₁ O ₂	-2	7.2	24.7	35.3
H\$ NH2 NH2 CI	-4	0.3	10.4	-7.9
H.C. CH.S. NH.S. OH	49	25	10.5	77
H,C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	45	5.1	14.1	74.6
H,C CI	30	19.3	12.5	72.7

H ₂ C CH ₃	14	-2.5	23.3	50
H ₃ C + H ₃ C NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ C	33	13	21.8	61.8
Hot Children	5	8.8	21.7	48
H ₃ C H ₃	-4	4	23.3	-42.5
H ₅ C H ₅ CH ₅	51	38.9	31.8	72.8
H ₂ C + 3	39	18.9	-4.3	75.5
H ₃ C NH ₂ CH ₃ CH ₃	47	32.3	38.6	79.6
H ₃ C H ₃ NH ₂ CH ₃	12	14.2	38.3	79
H ₂ C NH ₂ S CI	42	17.8	31	79.9
H ₂ C CH ₃	19	11.6	5.2	74.4
H ₃ C CH ₃	-4	3.7	8.7	48.3
H ₂ CH ₃	21	20.9	29.1	59.5
	7	-4.2	4.8	56.1

H ₂ C CH ₃ H ₂ C CH ₃	13	6.5	6.2	61.4
H,C CH ₃	15	14.1	26	85.1
H _C CH _S SCH _S	5	-4.7	4	2.4
H ₁ C CH ₃ H ₂ C CH ₃ H ₄ C CH ₃ H ₄ C CH ₃	-6	7.9	20.9	46.8
H ₃ C CH ₃	22	0.2	18.5	59.4
H ₃ C H ₃ NH ₂ NH ₂ CH ₃	10	3.8	16	49.3
H ₂ C N N N N N N N N N N N N N N N N N N N	26	26	29.2	81.6
H ₂ C CH ₃	59	34.9	39.9	84.7
H ₃ C NH ₂ NN ₂ NN ₃ NN ₄	13	-4.7	2.4	50.4
H ₃ CH ₃	18	22.8	28.2	88.6
H ₂ C CI	-5	-9	18.5	-26.5
CH ₅ CH ₅ CH ₅ CH ₅ CH ₅	-14	0.7	3.6	10.3
H ₂ CH ₃	14	-12.8	6.6	44.3

H ₂ C CL F F F	3,1	14.8	26	86.2
H _C C NH ₂ F F	46	19.7	30.6	91.5
H ₂ C CH ₃ CH ₃ CH ₃	9	-5.3	12.2	73
H ₃ C CH ₃	25	-4.3	9.3	72
H,C CH, NH, NH, NH, NH, NH, NH, NH, NH, NH, N	-3	0.7	10.1	37.8
H ₂ C H ₃ NH ₂ CI	-11	3.4	17	33.2
H ₅ C H ₅ Br	5	12	14.6	48.1

Table D

EXAMPLES	VEGF [□]	CHK1 ^b	CDK2°	CDK4 ^d
H ₃ C NH ₃ OH	34	46.5	16.8	53
H ₂ Cr ^N C ₃ Cr ^N C ₃ Cr ^N	5	19.6	26.9	45.5
CH ₃ H ₃ C ^N N S N S CH ₃ CH ₃	32	43.9	24	64.1
H ₂ C N S N S CI	18	22.8	17.6	69.1

HC-N C N C N C C C C C C C C C C C C C C	-2	16	4.1	59.8
March Control of the	5	-7.6	17.7	35.6
H ₃ C ^M ₃	0	14.8	-6.4	8.7
H ₃ CH ₃	16	15.2	17.7	61.6
H ₃ C ^O H ₃ N N N N N N N N N N N N N N N N N N N	1	3.1	6.7	35.4
H,C-N-C-I	10	2.5	11.2	36.5
H ₀ C NH ₃ CH ₃	13	14.1	15.6	68.7
H ₂ C M ₂ CH ₃	13	2.7	6.1	19.1
H,C-N-S-N-S-OH,	9	-4.5	13.4	33.7
H ₂ C NH ₃ O	17	39.5	8.3	46.2
H ₁ C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N	8	17.8	22.1	50.4
H ₃ C-N-S-N-H ₂ CH ₃ CI	2	16.6	11.7	15.2
H ₂ C NH ₂ NH ₂	-12	5	14.5	-12.6

H ₃ C N N N N N N N N N N N N N N N N N N N	11	8.2	14.3	36.4
HC-N-S-N-S-N-S-CI	19	26.9	17.3	76.1
Ho No	25	8.1	8.3	59.8
H,C-N	16	40.8	5	56.5
H ₂ C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	41	41.7	34.8	56
H _O C N C N C N C N C N C N C N C N C N C N	-4	5.5	8.7	49.4
H ₂ C NH ₂ NH ₂ NH ₃	28	32.5	31.7	63.6
H ₃ C N S S S F	8	4.2	3.3	8.1
H ₂ C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	6	13.8	17.1	27
H ₂ C N S S CI	0	5.1	9.2	-6.5
H ₂ C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	46	47.1	26.6	66.8
H,C N CH ₃ H,C N CH ₃ OH ₃ OH ₄ OH ₅	24	27.2	29.8	52.4
H ₂ CC NH ₂ CI NH ₂ CI	35	41.4	33.3	64.4

H ₂ C ^N NH ₂ NH ₂ OH ₃	21	-0.9	16.1	23.3
H ₂ C-N-S-N-S-N-S-N-S-N-S-N-S-N-S-N-S-N-S-N-	28	38.1	6.3	69.4
H,C MH,	16	23.3	0.6	57.5
H ₃ C ^N NH ₃	17	13.1	17.2	-48.3
H,C N S S OH ₃	36	41.1	24.1	69.3
HOPE STORY	27	29.3	38.3	63.5
H ₁ C N S S CH ₃	31	41.9	17.1	64.3
H ₂ C NH ₂ S S S S S S S S S S S S S S S S S S S	23	34.8	29.8	83
PH ₃ CH ₃	29	26.8	37.3	65.1
H ₂ C CH ₃	18	32.9	3.1	74.4
H ₃ C-N-N-I ₃ NH ₃	5	13.1	33.4	60.3
H,C N NH ₂ NH ₂	20	32.7	-2.5	43.7
	23	9.8	27.1	48.5

H ₃ C CH ₃	17	18.8	20.5	70.9
H ₀ C-N N N S S S S OH ₀	14	26	24.6	81.8
H ₃ C NH ₃ S NH ₃	26	3.2	23.3	12.1
H,C OH, H,C OH, H,C OH,	6	37.1	18.3	73.2
H ₁ C N S NH ₂	30	17.5	19.7	65.1
CH ₃ H ₃ C-N S N S OH ₃	10	7.8	16.3	-20.3
H ₂ C NH ₃	25	38.5	19.8	45.9
H ₃ C NH ₃ NH ₂ CH ₃ CH ₃ CH ₃ CH ₃	33	37	33.9	62.7
H.C. N. S.	5	0.8	24	29.6
H,C PL CI	9	27	8.2	76.5
H ₂ C-N-L ₂ CI	1	-2.8	12.6	-17.5
HOLINA SALANDA	-8	9.5	-6	36.2
No Charles Andrews	24	-4.6	27.8	48.5

H ₂ C N ₂ C C F F	26	37.5	29.1	82.6
H ₂ C ^N S ^{NH₂} F F	34	25.2	20.3	64.3
H ₂ C-N-1 N-1 S-N-1 OH ₃	16	17.4	14.6	57.8
H _C C-N-1 N-1 N-1 S-1 S-1 S-1	22	12.6	23.5	57.7
H ₃ C N S NH ₂ C C C C C C C C C C C C C C C C C C C	3	5.2	36.7	45.2
H _C C NH ₂	-3	7.6	16.9	29.6
H ₅ C ^N S ^{NH} ₂ Br	17	14.2	29	30.1
a. % Inhibition at 20 μM				
b . % Inhibition at 20 μM				
c . % Inhibition at 1.0 μM d . % Inhibition at 1.0 μM				
u. // ππισιτοιται το μινι				

Combinatorial procedure for the synthesis of Urea functionalized thiazole derivatives and inhibition of HUVEC Profileration

$$Ar = \begin{cases} Ar = \begin{cases} Ar = Ar \end{cases} & Ar \end{cases}$$

$$Ar = \begin{cases} Ar = Ar \end{cases} & Ar \end{cases}$$

$$Ar = \begin{cases} Ar = Ar \end{cases} & Ar \end{cases}$$

$$Ar = \begin{cases} Ar = Ar \end{cases} & Ar \end{cases}$$

Solutions of 263 amines (1.5 μmol), and Et₃N (0.1393 μL, 1.0 μmol),

dissolved in DMF (15 μL), were distributed in to the wells of a 96-well plate. In cases where the amine was used as a hydrochloride salt, additional Et₃N (0.4179 μL, 3.0 μmol) was added to liberate the free base. Each of the wells was treated with a solution of ρ-carboxy phenol carbamate (0.5395 mg, 1.0 μmol) dissolved in DMF (30 μL), then agitated for 24h at room temperature. The crude reaction mixtures were concentrated using a GeneVacTM apparatus, and then diluted with DMSO to a final concentration of 10 mM, yielding the examples shown in Table E.

Table E

Inhibition of HUVEC Proliferati	on	
MOLSTRUCTURE	% inhibition @ 10 nM	% inhibition @ 50 nM
OH HIS STATE	28	62
NH ₂ NH ₃ NH	7	126
CHARS THE	-5	33
THE STATE OF THE S	-38	39
HIN HIS STOPPED	-13	29
HIN THE STATE OF T	-3	3
	19	83
THE STATE OF THE S	25	18
Child State of the	46	87
	28	123

		
CT plans of plans	39	0
	22	25
O H H C C C C C C C C C C C C C C C C C	-11	114
The state of the s	-18	55
	-22	23
Mark of the state	-25	36
HO JATS STATE	-6	21
HOUNT STATE OF THE	-1	8
THE THE	25	32
F H H S NH2	20	15
	9	39
Shr.	34	49

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	10
POPINIO PIO	19	67
HO OF OH H IN S IN A S	-8	38
OH NH2 OH NH2	-17	52
HAN THE STATE OF T	4	35
OH NH ₂ N A	5	24
A A S S A A A A A A A A A A A A A A A A	15	115
JH HIS STOPPED	20	77
	16	19
CH NH ₂	13	62
HO J J J J J J J J J J J J J J J J J J J	23	24
	13	92

	1	121
HIN NH2 NH2	4	39
PLANTS PLANTS	-2	128
Charles of the contract of the	7	17
	8	. 42
	-5	103
THE STATE OF	3	105
	-2	116
HO THE STATE OF TH	-3	42
HO JAJS THE	44	72
N H H S NH2	-8	15
THE STATE OF THE S	-11	46

· ·		
	14	3
A HALS STATES	-5	62
	-7	45
H ₂ N H ₂ NH ₂	12	25
NH ₂ NH	-1	-23
	35	97
HO HIS STATE	38	No data
H'N H'S STATE OF STAT	19	23
The state of the s	42	23
CL HIR ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	-15	15
Jaly Salah	-29	108
MANUS TO PLOS	12	28

Om his of his	1	101
The property of the second sec	-2	22
	-9	67
The state of the s	0	35
HAN HAS STATES	30	1
THE STATE OF THE S	7	68
A PLANTING	-2	71
	32	24
THE STATE OF THE S	-22	-3
	2	117
	15	49
STATE OF THE	9	86

HO PHASE STATES	-34	7
N H H S C H C	-3	3
HO-LAT HAR BANK AND HAR BANK AN	-1	37
HO NH ₂	42	52
HO, S. O. H. H. S. C. L. H. J. L. H. J. C. L. H. J. L. H. J. C. L. H. J.	45	46
THE HE STEP STEP STEP STEP STEP STEP STEP STE	30	135
HO X H L S S T H L S	7 .	88
THE STATE OF THE S	-24	45
	-10	125
H ₂ N H ₂ S S S NH	27	46
XH H S T S T S T S T S T S T S T S T S T	44	34
OH PLANT THE STATE OF THE STATE	4	2

HAR STANDS	1	-43
HO STATES TO A STA	-8	8
	17	98
HN S S S	26	36
HO DE STATE OF THE	2	65
	-5	97

## **Inhibition of HUVEC Proliferation**

MOLSTRUCTURE	% inhibition @ 50 nM
	60
NH ₂ F F F F F C C C C C C C C C C C C C C	111
NH ₂ F	42
	40
HN H S S S S S S S S S S S S S S S S S S	89
	65
	81
NH ₂ NH ₂ NH ₂	55
NH ₂ F	92
	105

## **Inhibition of HUVEC Proliferation**

MOLSTRUCTURE	inhibition @ 50 nM
NH ₂ N ₂ N ₃ N ₄ N ₄ N ₄ N ₅ N ₄ N ₅ N ₄ N ₅ N ₅ N ₅ N ₆ N ₇	<b>8</b> 9
NH ₂ NH ₂ NH	78
NH ₂ F NH	93
NH ₂ F F F NH	82
HN H S NH S NH	99
H ₂ N NH ₂ NH ₂ NH	88
NH ₂ NH ₃ NH ₃	80
NH ₂ F NH	96
NH ₂ F NH	107
NH ₂ NH ₂ NH ₃	106

Combinatorial Procedure for Examples in Table I

0.1 M Solutions of the acid, the amine template, *o*-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetra-methyluronium hexafluorophosphate and triethylamine were prepared separately in anhydrous DMF. To each tube in an array of 8x11 culture tubes (10x75 mm) was added 110 µL (0.011 mmol) of a different acid. To this was added 100 µL (0.01 mmol) of the amine solution, 110 µL (0.011 mmol) of the triethylamine solution followed by 110 µL (0.011 mmol) of the *o*-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetra-methyluronium hexafluorophosphate solution. The reactions were stirred in a heating block at 60 °C for 6 h. The reaction mixtures were transferred to a 1 mL 96-well plate using a liquid handler. The solvents were removed using the SpeedVac[™] apparatus and the crude reaction mixtures were redissolved in DMSO to give a final theoretical concentration of 10 mM. Screening results are shown in Table I.

#### Table I

15

10

## MOL>MOLSTRUCTURE

# % inhibition @ 150 nM

8

7

-32

H,N N NH S

**WO** 00/75120

PCT/US00/15188

-7

H₂N N NH

H₂N N NH

HAN AND 42

H_IN NH

S

64

-11 42

-14

304

-3

HAN THE HAND AGE OF THE HAND A

0

72 -2 6 7 -3

-3

-6 -25 21 -20

H₂N X NH

42

Han The Handrage Control of the Cont

H₂N N N H S 1

Combinatorial Procedure for Examples in Table II

5

10

0.1 M solutions of the acid, the amine template, *o*-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetra-methyluronium hexafluorophosphate and triethylamine were prepared separately in anhydrous DMF. To each tube in an array of 8x11 culture tubes (10x75 mm) was added 105 µL (0.0105 mmol) of a different acid. To this was added 100 µL (0.01 mmol) of the amine solution, 105 µL (0.0105 mmol) of the triethylamine solution followed by 105 µL (0.0105 mmol) of the *o*-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetra-methyluronium hexafluorophosphate solution. The reactions were stirred in a heating block at 50 °C for 3 h. The reaction mixtures were transferred to a 1 mL 96-well plate using a liquid handler. The solvents were removed using the SpeedVac[™] apparatus and the crude reaction mixtures were redissolved in DMSO to give a final theoretical concentration of 10 mM. Screening results are shown in Table II.

Table II

STRUCTURE	% inhibition @ 10 nM	% inhibition @ 1 nM
H ₂ N N N N N N N N N N N N N N N N N N N	-40	-8
	-14	-5

	-33	183
\$\frac{5}{2} \\ \frac{5}{2} \\ \frac	93	0
	-26	1

H ₂ CH ₃	-45	10
	2	-18
	30	-4

H ₃ C, N N N N N N N N N N N N N N N N N N N	2	-3
CH ₃ Chiral	2	-4
H ₁ N _N	-14	1

H ₂ C OH ₃	-40	-12
CHChiral N N N N N N N N N N N N N N N N N N N	-21	-2
H ₂ C H ₃ C H ₂ C	-13	8

H ₂ N N N N N N N N N N N N N N N N N N N	-15	23
	-8	-5
CH ₃ H ₂ N  N  N  N  N  N  N  N  N  N  N  N  N	-12	-1

CH ₃	-11	-14
	25	8
	16	32

H ₂ N S N N S N N S N N S N N S N N S N N S N N S N N S N N S N N N N N N N N N N N N N N N N N N N N	12	-17
H. Z. S. Z. G. Z. G.	2	-20
CH3 N N N N N N N N N N N N N N N N N N N	-27	-7

H. S.	4	-1
	-10	-5
	-31	25

-18	4
	2
91	2

	10	
H ₂ & d & d & d & d & d & d & d & d & d &	11	3
	5	6

-6	-8
-25	18
13	-2

	-10	2
	-22	32
H ₂ O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O + S O	39	10

H ₂ O CH ₃	-13	25
H ₂ C, N Z S S Z S S Z S S Z S S Z S S Z S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S S Z S S S S Z S S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S Z S S S S Z S S S Z S S S S Z S S S S Z S S S S S Z S S S S S S Z S S S S S S S S Z S S S S S S S S S S S S S S S S S S S S	60	-11
H ₂ C H ₃ C	17	5

		· · · · · · · · · · · · · · · · · · ·
CH, N S S S S S S S S S S S S S S S S S S	27	47
	0	10
	67	-12

CH ₃ N N N N N N N N N N N N N N N N N N N	-2	-3
H ₂ CH ₃ C	21	11
	. 29	-1

CH ₂ Chiral	-6	16
	-10	6
H ₂ S S S S S S S S S S S S S S S S S S S	106	O

H ₂ N N N N N N N N N N N N N N N N N N N		
	-15	4
H ₂ N	43	2
CH ₃ H ₂ N  OH ₃	27	3

HAN	50	11
	9	-8
CHChiral N N N N N N N N N N N N N N N N N N N	-11	-11

	69	2
	20	-2
CH ₃ H ₂ N S S O O O O O O O O O O O O O	97	49

	-7	6
	<b>1</b> .	10
243 0-43 0-43 0-43 0-43 0-43 0-43 0-43 0-	-1	-18

62	5
42	34
-11	4

H ₂ A ₃	47	7
	-21	-11
D-N N N N N N N N N N N N N N N N N N N	-7	<b>-1</b>

H ₂ N/N S	-9	4
	. 82	29
CH3 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	19	17

CH ₃ N  N  N  N  N  N  N  N  N  N  N  N  N	18	11
H _N + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0	-12
H ₃	78	<b>-1</b>

H ₂ N N N N N N N N N N N N N N N N N N N	62	1
CH ₃ N N N N N N N N N N N N N N N N N N N	13	15
CH ₃ N N N N N	12	-2

H ₂ N N N N N N N N N N N N N N N N N N N	26	-9
H ₂ N N N N N N N N N N N N N N N N N N N	4	16
	41	17

OHçhiral H ₂ N N	29	32
HO, , , , O	-4	21
H ₂ O-N-O OH ₂ Chiral N N N N N N N N N N N N N N N N N N N	71	7

	46	-34
HCN NS N ON	55	1
	<b>45</b>	54

HAN A PART OF THE	19	20
F C S S S S S S S S S S S S S S S S S S	21	14

STRUCTURE	% inhibition @ 10 nM	% inhibition @ 1 nM
H. O. J. O.	111	25
	4	-4

	21	7
H ₂ C N N N N N N N N N N N N N N N N N N N	47	-7
# 1	28	3

CH ₃ CCH ₃ CH ₃ CCH ₃ N  H ₂ CH ₃ N	1	6
H ₂ OH ₃ H ₂ OH ₃ H ₃ OH ₃ H ₄ OH ₃ H ₅ OH ₃	69	5
H _N , och, och, och, och, och, och, och, och	51	30

H,C, C, Z, S, Z,	72	13
Hy CH ₃ Chiral	6	4
Chiral Ch	. 2	25

H ₂ C CH ₃ H ₃ C CH ₃ H ₄ C CH ₃ H ₅ C CH ₅	16	5
CH ₃ Chiral	13	-4
H ₃ , d ₃ , d ₄ , d ₃ , d ₄ , d ₅ ,	72	35

H ₂ , A ₃ ,	16	-4
	6	16
H ₃ C + CH ₃	40	-5

	40	-1
CH ₃	21	23
H ₂ C CH ₃	-7	6

H ₂ C CH ₃ H ₃ C CH ₃ H ₄ C CH ₃ H ₅ C CH ₃	-11	8
H. F. O. F.	23	1
H ₂ N CH ₃	21	-4

CH ₃ OCH ₃ CH ₃ OCH ₃ CH ₃ OCH ₃ CH ₃ OCH ₃	59	-7
H ₃ OCH ₃ H ₃ OCH ₃ H ₄ N  N  N  N  N  N  N  N  N  N  N  N  N	67	4
H ₂ C CH ₃ H ₂ N N N N N N N N N N N N N N N N N N N N	35	12

H ₂ N ₂ N ₃ N ₄ C _C H ₃	33	-2
	23	-18
H ₂ CH ₃ H ₂ CH ₃ C	94	35

CH ₃ CH ₃ CH ₃ CH ₃ N  N  N  N  N  N  N  N  N  N  N  N  N	15	12
H, A,	18	7
H ₂ CH ₃ H ₃ CH ₃ H ₄ CH ₃ H ₅ CH ₃	19	<b>-4</b>

H ₃ C CH ₃ H ₃ C CH ₃ H ₃ N  OH ₃ N  N  N  N  N  N  N  N  N  N  N  N  N	-8	10
H ₂ CH ₃	1	-17
	99	25

H ₂ C CH ₃ H ₃ C CH ₃ H ₄ C CH ₄ H ₄ C	12	-9
	99	-1
H ₃ d d d d d d d d d d d d d d d d d d d	109	-23

H ₃ CH ₃	16	-36
DH ₃	41	34
	123	60

H ₂ N OH ₃ H ₃ N OH ₃ H ₄ N N OH ₃ OH ₃ N OH ₃ N OH ₃ OH ₃ N OH ₃ N OH ₃ OH ₃ N OH	37	19
F, F	0	6
H ₃ CH ₃	74	32

H ₂ N ₂ N ₃ H ₃ N ₄ N ₃ H ₃ N ₄ N ₃ H ₃ N ₄ N ₅ H ₃ N ₄ N ₅ H ₃ N ₅ N ₅ H ₄ N ₅ N ₅ H ₅ N ₅ N ₅ H	42	-23
H ₂ C CH ₃ H ₃ C CH ₃	32	-31
H ₃ C N N OH ₃	18	-21

CH ₃ Chiral	-3	-44
	-20	-18 ·
H ₃ C A ₃	59	-26

H, N, O, CH, S	-7	11
	1	5
4° 4° 4° 4° 4° 4° 4° 4° 4° 4° 4° 4° 4° 4	-24	-13

H, N, H, O,	25	-12
\$\frac{1}{2} \\ \frac{1}{2} \\ \frac	13	-14
H ₃ C O ₄ Chiral	3	-2

H ₂ C H ₃ C	48	-9
H ₃ C H ₃ C CH ₃	8	-27
H ₃ C C C C C C C C C C C C C C C C C C C	93	35

H ₂ C + CH ₃ H ₃ C + CH ₃ H ₄ C + CH ₃ H ₅ C + CH ₅ H ₅ C	11	-21
	5	39
H ₃ CH ₃	1	9

H ₂ CH ₃	66	-2
CH ₃	-14	-7
H, CH, CH, CH, CH, CH, CH, CH, CH, CH, C	-11	2

H ₃ C CH ₃ H ₃ C	78	21
H ₃ C	5	-21
H ₃ CH ₃ H ₃ CH ₃ C	65	9

H ₂ N S Chiral	24	-30
H ₂ N S	43	-12
H ₂ N CH ₃ OCH ₃ H ₂ N CH ₃	11	-36

	-7	-43
CH ₃	6	24
H ₂ N OH ₃ H ₃ N OH ₃ H ₄ N OH ₃ H ₄ N OH ₃ H ₅ N OH ₅ H ₅ N	64	29

H ₂ CH ₃	29	14
Hy CH3	9	45
CH, S d d d d d d d d d d d d d d d d d d	-24	23

H ₂ CH ₃ C	11	6
H ₂ C, d ₃	-18	-8
	44	-4

H ₂ C ₁ C ₃ Chiral	-11	-34
	-18	16
H ₂ N Chiral	63	-11

H ₂ C C C C C C C C C C C C C C C C C C C	31	13
HC NE HC	18	18
	21	27

H _N H _y C	11	10
HO H	20	7

The exemplary compounds described above may be formulated into pharmaceutical compositions according to the following general examples.

# 5 Example 1: Parenteral Composition

To prepare a parenteral pharmaceutical composition suitable for administration by injection, 100 mg of a water-soluble salt of a compound of Formula I is dissolved in DMSO and then mixed with 10 mL of 0.9% sterile saline. The mixture is incorporated into a dosage unit form suitable for administration by injection.

#### 10 Example 2: Oral Composition

To prepare a pharmaceutical composition for oral delivery, 100 mg of a compound of Formula I is mixed with 750 mg of lactose. The mixture is incorporated

into an oral dosage unit form, such as a hard gelatin capsule, which is suitable for oral administration.

### **Example 3: Intraocular Composition**

5

10

To prepare a sustained-release pharmaceutical composition for intraocular delivery, a compound of Formula I is suspended in a neutral, isotonic solution of hyaluronic acid (1.5% conc.) in phosphate buffer (pH 7.4) to form a 1% suspension.

It is to be understood that the foregoing description is exemplary and explanatory in nature, and is intended to illustrate the invention and its preferred embodiments. Through routine experimentation, the artisan will recognize apparent modifications and variations that may be made without departing from the spirit of the invention. Thus, the invention is intended to be defined not by the above description, but by the following claims and their equivalents.

#### **CLAIMS**

What is claimed is:

1. A compound of the Formula I:

5 wherein:

10

R¹ is hydrogen, a substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula R⁶-CO or R⁶-CS where R⁶ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, alkenyl, aryl, heteroaryl, alkoxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen or substituted or unsubstituted alkyl, aryl, or heteroaryl;

R² is hydroxy, halo, cyano, or nitro, or substituted or unsubstituted alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula (A)

where  $R_a$  is hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula (B)



where  $R_a$  is hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or

# 5 a group of the formula (C)



where  $R_b$  and  $R_c$  are independently hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula (D)



10

15

where  $R_d$  is hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, hydroxy, alkoxy, amino, alkylamino, dialkylamino, or acylamino, and  $R_e$  is hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, amino, alkylamino, or dialkylamino, or a group of the formula (E)

5



where  $R_{\rm f}$  is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or

# 10 a group of the formula (F)



where  $R_g$  and  $R_h$  are each independently hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of the formula (G)



15

where  $R_i$  is alkyl or substituted or unsubstituted cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of formula (A), formula (B), formula (C), formula (H), or formula (I), or

a group of the formula (H)



5

10

15

20

where  $R_j$  is hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, hydroxy, alkoxy, or amino, or a group of formula (A), formula (B), formula (C) or formula (D), and  $R_k$  is hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of formula (A), formula (B), formula (C), formula (D), formula (E), or formula (F), or a group of the formula (I)



where  $R_1$  is hydrogen or substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl, or a group of formula (C),

or R² is a substituted or unsubstituted cycloalkyl, heterocycloalkyl, or aryl that is fused to Q;

X is C or N; and

Q is a divalent radical having 2 or 3 ring atoms each independently selected from C, N, O, S, C-R⁵ and N-R⁵, where R⁵ is hydroxy, halo, cyano, or amino, or substituted or unsubstituted alkyl, aryl, heteroaryl, alkoxy, which together with C* and N* form a five- or six-membered aromatic or nonaromatic ring;

or a pharmaceutically acceptable prodrug, pharmaceutically active metabolite, or pharmaceutically acceptable salt thereof.

# 2. A compound of the Formula II:

5

$$\begin{array}{c|c}
H & H \\
N & H \\
N & H
\end{array}$$

$$\begin{array}{c|c}
N & R^2 \\
Z & Y
\end{array}$$
II

wherein:

 $\boldsymbol{R}^{\boldsymbol{1}}$  is substituted or unsubstituted aryl or heteroaryl, or a group of the

#### 10 formula

R⁶-CO or R⁶-CS where R⁶ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, alkenyl, aryl, heteroaryl, alkoxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen or substituted or unsubstituted alkyl, aryl, or heteroaryl;

R² is as defined in claim 1;

# 15 X is C or N; and

Y and Z are each independently C, N, S, O, C-R⁵ or N-R⁵ where R⁵ is as defined in claim 1;

or a pharmaceutically acceptable prodrug, pharmaceutically active metabolite, or pharmaceutically acceptable salt thereof.

3. A compound, pharmaceutically acceptable prodrug, pharmaceutically active metabolite, or pharmaceutically acceptable salt according to claim 2, wherein:

 $R^{1}$  is substituted or unsubstituted aryl or heteroaryl, or  $R^{6}$ -CO or  $R^{6}$ -CS where  $R^{6}$ 

is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, alkenyl, aryl, heteroaryl, alkoxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen or substituted or unsubstituted alkyl, aryl, or heteroaryl;

 $R^2$  is substituted or unsubstituted aryl or heteroaryl; X and Y are each independently C or N; and Z is S or O.

- 4. A compound, pharmaceutically acceptable prodrug,
- pharmaceutically active metabolite, or pharmaceutically acceptable salt according to claim 3, wherein:

R¹ and R² are each independently a substituted aryl;

X is C;

Y is C or N; and

20 Z is S or O.

5

10

5. A compound of the Formula III:

$$\begin{array}{c|c} H & & \\ N & & \\ R^1 & & \\ S & & \\ Z & & \\ \end{array}$$

Ш

wherein:

5

10

15

 $R^1$  is substituted or unsubstituted aryl or heteroaryl, or  $R^6$ -CO or  $R^6$ -CS where  $R^6$  is a substituted or unsubstituted alkyl, alkenyl, aryl, heteroaryl, alkoxy, or N- $R^7$  $R^8$  where  $R^7$  $R^8$  are each independently hydrogen, alkyl, aryl, or heteroaryl;

R³ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen, alkyl, aryl, or heteroaryl;

R⁴ is hydrogen, hydroxy, lower alkyl, halo, lower alkoxy, amino, nitro, or trifluoromethyl; and

Y and Z are each independently C, N, S, O, or C-R⁵ or N-R⁵ where R⁵ is unsubstituted or substituted alkyl or aryl; or a pharmaceutically acceptable prodrug, pharmaceutically acceptable metabolite, or pharmaceutically acceptable salt thereof.

6. A compound of the Formula IV:

$$\begin{array}{c|c} H & R^{4(a)} \\ \hline \\ R^{1} & S & C \\ \hline \\ Z & Y & H \\ \hline \\ IV & \end{array}$$

wherein:

5

10

15

 $R^1$  is substituted or unsubstituted aryl or heteroaryl, or  $R^6$ -CO where  $R^6$  is a substituted or unsubstituted alkyl, alkenyl, aryl, heteroaryl, alkoxy, cycloalkyl, heterocycloalkyl, or  $N-R^7R^8$  where  $R^7R^8$  are each independently hydrogen, alkyl, aryl, or heteroaryl;

R³ is substituted or unsubstituted alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, or N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen, alkyl, aryl, or heteroaryl;

R⁴ is independently hydrogen, hydroxy, lower alkyl, halo, lower alkoxy, amino, nitro, or trifluoromethyl; and

Y is C or N; and

Z is S or O;

or a pharmaceutically acceptable prodrug, pharmaceutically acceptable metabolite, or pharmaceutically acceptable salt thereof.

7. A compound, pharmaceutically acceptable prodrug, pharmaceutically acceptable metabolite, or pharmaceutically acceptable salt according to claim 6, wherein:  $R^1$  is substituted or unsubstituted aryl or heteroaryl, or  $R^6$ -CO where  $R^6$  is N- $R^7R^8$  where  $R^7R^8$  are each independently

hydrogen, alkyl, aryl, or heteroaryl;  $R^3$  is substituted or unsubstituted alkyl, aryl, heteroaryl, or alkoxy;  $R^{4(a)}$  and  $R^{4(b)}$  are each independently hydrogen, lower alkyl, or halo; Y is C or N; and Z is S or O.

- 8. A compound, pharmaceutically acceptable prodrug,
- pharmaceutically acceptable metabolite, or pharmaceutically acceptable salt according to claim 7, wherein: R¹ is substituted or unsubstituted aryl or heteroaryl, or R⁶-CO where R⁶ is N-R⁷R⁸ where R⁷R⁸ are each independently hydrogen, alkyl, aryl, or heteroaryl; R³ is substituted or unsubstituted aryl, heteroaryl, or alkoxy; R^{4(a)} is chloro, fluoro, or methyl; R^{4(b)} is fluoro; Y is N; and Z is O.
  - 9. A pharmaceutical composition comprising:

15

20

- (a) a therapeutically effective amount of a compound, pharmaceutically acceptable prodrug, pharmaceutically active metabolite, or pharmaceutically acceptable salt of claim 1; and
- (b) a pharmaceutically acceptable carrier, diluent, vehicle or excipient therefor.
- 10. A method of treating a mammalian disease condition mediated by protein kinase activity, comprising administering to a mammal in need thereof a therapeutically effective amount of a compound, pharmaceutically acceptable prodrug, pharmaceutically active metabolite, or pharmaceutically acceptable salt as defined in claim 1.
- 11. A method according to claim 10, wherein the mammalian disease condition is associated with tumor growth, cell proliferation, or angiogenesis.

12. A method of modulating the activity of a protein kinase receptor, comprising contacting the kinase receptor with an effective amount of a compound, pharmaceutically acceptable prodrug, pharmaceutically active metabolite, or pharmaceutically acceptable salt as defined in claim 1.

5 13. A method according to claim 12, wherein the protein kinase receptor is a VEGF receptor.

#### INTERNATIONAL SEARCH REPORT

PCT/US 00/15188

CLASSIFICATION OF SUBJECT MATTER PC 7 C07D277/38 C07D C07D417/14 C07F9/6539 C07D277/62 C07D417/04 A61P35/00 A61K31/427 A61K31/426 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07D C07F A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages WO 99 21845 A (AGOURON PHARMACEUTICALS, 1 - 13Y INC.) 6 May 1999 (1999-05-06) cited in the application the whole document 1-13 WO 92 20642 A (RHONE-POULENC RORER Υ INTERNATIONAL) 26 November 1992 (1992-11-26) the whole document WO 99 65884 A (BRISTOL-MYERS SQUIBB 1 - 13P,Y COMPANY) 23 December 1999 (1999-12-23) the whole document 1 WO 99 24416 A (BRISTOL-MYERS SQUIBB A COMPANY) 20 May 1999 (1999-05-20) the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 18/10/2000 21 September 2000 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Allard, M Fax: (+31-70) 340-3016

#### INTERNATIONAL SEARCH REPORT

Information on patent family members

Intermonal Application No
PCT/US 00/15188

Patent document cited in search report			Publication date	Patent family member(s)		Publication date
WO	9921845	Α	06-05-1999	AU NO	1366499 A 20001955 A	17-05-1999 16-06-2000
	0000642		 26-11-1992	AT	159009 T	15-10-1997
WO	9220642	Α	20-11-1992	AU	658646 B	27-04-1995
				AU	1993492 A	30-12-1992
				CA	2102780 A	11-11-1992
				DE	69222637 D	13-11-1997
				DE	69222637 T	26-02-1998
				DK	584222 T	23-02-1998
				EP	0584222 A	02-03-1994
				ES	2108120 T	16-12-1997
				GR	3024955 T	30-01-1998
				JP	6507643 T	01-09-1994
				MX	9202181 A	01-05-1993
				SG	64322 A	27-04-1999
				ÜS	5409930 A	25-04-1995
				US	5480883 A	02-01-1996
				US	5710158 A	20-01-1998
				ÜS	5795889 A	18-08-1998
				ÜS	5646153 A	08-07-1997
				ÜS	5721237 A	24-02-1998
				ÜS	5714493 A	03-02-1998
				ÜS	6057320 A	02-05-2000
				ÜŠ	RE36256 E	20-07-1999
WO	9965884	Α	23-12-1999	AU	4431199 A	05-01-2000
WO.	9924416	<u>_</u>	20-05-1999	AU	1295599 A	31-05-1999
		• •		NO	20002153 A	11-05-2000