

4

SEQUENCE LISTING

<110> Bowdish, Katherine S.
Frederickson, Shana
Renshaw, Mark

<120> RATIONALLY DESIGNED ANTIBODIES

<130> 1087-2

<140> 10/006,593
<141> 2001-12-05

<150> US 60/251,448
<151> 2000-12-05

<150> US 60/288,889
<151> 2001-05-04

<150> US 60/294,068
<151> 2001-05-29

<160> 118

<170> PatentIn version 3.1

<210> 1
<211> 14
<212> PRT
<213> artificial sequence

<220>
<223> TPO/mimetic peptide

<400> 1

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10

<210> 2
<211> 15
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 2

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Pro
1 5 10 15

<210> 3
<211> 18
<212> PRT

<213> artificial sequence

<220>

<223> EPO mimetic peptide

<400> 3

Asp Tyr His Cys Arg Met Gly Pro Leu Thr Trp Val Cys Lys Pro Leu
1 5 10 15

Gly Gly

<210> 4

<211> 16

<212> PRT

<213> human

<400> 4

Gly Asp Thr Ile Phe Gly Val Thr Met Gly Tyr Tyr Ala Met Asp Val
1 5 10 15

<210> 5

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 5

tatcgcgatt gcagtggcac tggc

24

<210> 6

<211> 59

<212> DNA

<213> artificial sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (34)..(35)

<223> n is a, c, g or t

<220>

<221> misc_feature

<222> (37)..(38)

<223> n is a, c, g or t

```

<400> 6
gccagccatt gccgcagcgt cggccttca atynnnnntc tcgcacaata atatatggc      59

<210> 7
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

<400> 7
ccgacgctgc ggcaatggct ggccggcgcgc gcgnnynnyt ggggccaagg gaccaccgt      59

<210> 8
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 8
tcaaaatcac cggaaccaga gc      22

<210> 9
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (33)..(33)
<223> n is a, c, g or t

<220>
<221> misc_feature

```

```

<222> (36)..(36)
<223> n is a, c, g or t

<400> 9
gccagccatt gccgcagcgt cgcccattca atnggggtc tcgcacaata atatatggc      59

<210> 10
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (36)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (39)..(39)
<223> n is a, c, g or t

<400> 10
ccgacgctgc ggcaatggct ggccgcgcgc gcggggnt ggggccaagg gaccaccgt      59

<210> 11
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (33)..(33)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (36)..(36)
<223> n is a, c, g or t

<400> 11
gccagccatt gccgcagcgt cgcccattca atnccncctc tcgcacaata atatatggc      59

<210> 12

```

<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (36)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (39)..(39)
<223> n is a, c, g or t

<400> 12
ccgacgctgc ggcaatggct ggcggcgcbc gcgggnggnt ggggccaagg gaccaccgt

59

<210> 13
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 13
gctgcccaac cagccatggc c

21

<210> 14
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

<400> 14
ccaaccctgc gccagtggct ggctgctcgc gctnnknka gagtcaccat taccgcggac

60

```

<210> 15
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 15
agcgtatccc ggaacgtcggt acgg 24

<210> 16
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<400> 16
agccagccac tggcgcaaggg ttggggccttc gatmnnmnna cagtagtaca ctgcaaaatc 60

<210> 17
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

```

```

<400> 17
ccaaccctgc gccagtggct ggctgctcgc gctnnknnkt tcggccaagg gaccaaggtg      60

<210> 18
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 18
ggccatggct ggttgggcag c      21

<210> 19
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<400> 19
agccagccac tggcgcgaggg ttgggccttc gatmnnmnna tagatgagga gcctgggagc      60

<210> 20
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature

```

```

<222> (37)..(38)
<223> n is a, c, g or t

<400> 20
ccaaccctgc gccagtggct ggctgctcgc gctnnknnkg gcataccaga caggttcagt      60

<210> 21
<211> 63
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (26)..(27)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (41)..(42)
<223> n is a, c, g or t

<400> 21
cacccaggc agtgggccca tgcgmnnatg atagtcnnm nntctcgac aataatatat      60
ggc                                         63

<210> 22
<211> 63
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (25)..(26)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)

```

```

<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (40)..(41)
<223> n is a, c, g or t

<400> 22
cgcatgggcc cactgacctg ggtgnnkaaa ccactgnnkn nktggggcca agggaccacg      60
gtc                                         63

<210> 23
<211> 63
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (26)..(27)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (41)..(42)
<223> n is a, c, g or t

<400> 23
cacccaggtc agtgggccccca tgcgmnatg atagtcmnnm nnacagttagt acactgcaaa      60
atc                                         63

<210> 24
<211> 63
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature

```

<222> (25)..(26)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (40)..(41)
<223> n is a, c, g or t

<400> 24
cgcatgggcc cactgacctg ggtgnnkaaa ccactgnnkn nkttcggcca agggaccaag 60
gtg 63

<210> 25
<211> 18
<212> PRT
<213> artificial sequence.

<220>
<223> TPO mimetic with flanking amino acids

<400> 25

Pro Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Gly Gly

<210> 26
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 26
ccgccccattg aagggcgcac gctgcggcaa tggctggcgg cgcgccggg aggc 54

<210> 27
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 27

Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Gly Gly

<210> 28
<211> 54
<212> DNA
<213> artificial sequence

<220>

<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 28

gggggtattg aagggccgac gctgcggcaa tggctggcgg cgcgccggg cgga 54

<210> 29
<211> 18
<212> PRT
<213> artificial sequence

<220>

<223> TPO mimetic with flanking amino acids

<400> 29

Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Gly Gly

<210> 30
<211> 54
<212> DNA
<213> artificial sequence

<220>

<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 30

ggcggtattg aagggccgac gctgcggcaa tggctggcgg cgcgccggg aggc 54

<210> 31
<211> 18

<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 31

Trp Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 32
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 32
tggctgattg aaggccgac gctgcggcaa tggctggcgg cgcgccgccc tgtc 54

<210> 33
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 33

Met Ile Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Val Gly

<210> 34
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 34
atgataattg aaggccgac gctgcggcaa tggctggcgg cgcgccggt tggc 54

<210> 35
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 35

Val Val Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 36
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 36
gtggtaattg aaggccgac gctgcggcaa tggctggcg cgcgccgccc tgtt 54

<210> 37
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 37

Gly Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Asp

<210> 38
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 38
ggggccgattg aagggccgac gctgcggcaa tggctggcgg cgcgcgccc cgat

54

<210> 39
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 39

Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 40
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 40
ttgccaattg aagggccgac gctgcggcaa tggctggcgg cgcgcgccc tgtt

54

<210> 41
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 41

Ser Leu Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Ile

<210> 42
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 42
tcactgattg aaggccgac gctgcggcaa tggctggcgg cgcgcgccc catc

54

<210> 43
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 43

Thr Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 44
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 44
acaatgattg aaggccgac gctgcggcaa tggctggcgg cgcgcgccc cgtt

54

<210> 45
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 45

Thr Thr Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 46
<211> 54

<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 46
acgacaattg aaggccgac gctgcggcaa tggctggcgg cgcgcgccc tgtc 54

<210> 47
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 47

Thr Arg Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Cys Ser

<210> 48
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 48
acacggattg aaggccgac gctgcggcaa tggctggcgg cgcgcgctg cagc 54

<210> 49
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic with flanking amino acids

<400> 49

Gln Thr Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Asp

```

<210> 50
<211> 54
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding TPO mimetic with flanking amino acids

<400> 50
cagacaattg aagggccgac gctgcggcaa tggctggcg cgcgccgccc tcac      54

<210> 51
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<400> 51
agccagccac tggcgcaagg ttgggccttc gatmnnmnnt cccatccact caagcccttg      60

<210> 52
<211> 270
<212> DNA
<213> artificial sequence

<220>
<223> portion of vector

<400> 52
actagtccga aaccgtctac cccaccgggc tcttcctgcg gtggccgcac cgcccgctcg      60
gaggaaaaag tgaaaacctt gaaagcttag aactccgagc tggcgtaaac tgccaacatg      120
ctgcgcgaac aggtggcaca gctgaaacag aaagttatga accatggcg ggttgtctag      180
ggccaggccg gccagcacca tcaccatcac catggccgcac acccgtacga cgttccggac      240
tacgcttctt aggaggggtgg tggctctgag                                270

```

<210> 53
<211> 81
<212> PRT
<213> artificial sequence

<220>
<223> portion of polypeptide encoded by Seq.52

<400> 53

Pro Lys Pro Ser Thr Pro Pro Gly Ser Ser Cys Gly Gly Arg Ile Ala
1 5 10 15

Arg Leu Glu Glu Lys Val Lys Thr Leu Lys Ala Gln Asn Ser Glu Leu
20 25 30

Ala Ser Thr Ala Asn Met Leu Arg Glu Gln Val Ala Gln Leu Lys Gln
35 40 45

Lys Val Met Asn His Gly Gly Cys Ala Ser Gly Gln Ala Gly Gln His
50 55 60

His His His His Gly Ala Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
65 70 75 80

Ser

<210> 54
<211> 699
<212> DNA
<213> human

<400> 54
gagggtcagtc tgctcgagca gtctggggct gaggtgaaga agcctgggtc ctcggtaag 60
gtctcctgca gggcttctgg aggcacccttc aacaattatg ccatcagctg ggtgcacag 120
gcccttggac aagggtttga gtggatggga gggatcttcc ctttccgtaa tacagcaaag 180
tacgcacaac acttccaggg cagagtaccattaccgcgg acgaatccac gggcacagcc 240
tacatggagc tgagcagcct gagatcttag gacacggcca tatattatttg tgcgagaggg 300
gatacgattt ttggagtgac catggataac tacgctatgg acgtctgggg ccaagggacc 360
acggtcacccg tctccgcagc ctccaccaag ggcccacatgg tcttccccct ggcacccctcc 420
tccaaagagca cctctggggg cacagcggcc ctgggctgcc tggtaagga ctacttcccc 480
gaaccgggtga cggtgtcggt gaactcaggg cccctgacca gcggcgtgca caccttcccc 540

```
gctgtcctac agtcctcagg actctactcc ctcagcagcg tggtgaccgt gccctccagc      600
agcttggca cccagaccta catctgcaac gtgaatcaca agcccagcaa caccaaggta      660
gacaagaaaat ttgagccaa atcttgtac aaaactagt                               699
```

```
<210> 55
<211> 646
<212> DNA
<213> human
```

```
<400> 55
gagctcacgc agtctccagg caccctgtct ttgtctccag gggaaagagc caccctctcc      60
tgcaggggca gtcacagtgt tagcagggcc tacttagcct ggtaccagca gaaacctggc      120
caggctcca ggctcctcat ctatggtaca tccagcaggg ccactggcat cccagacagg      180
ttcagtggca gtgggtctgg gacagacttc actctcacca tcagcagact ggagcctgaa      240
gattttcag tgtactactg tcagcagttt ggtggctcac cgtggttcgg ccaagggacc      300
aagggtggAAC tcaaacgaac tgtggctgca ccatctgtct tcatactccc gccatctgat      360
gagcagttga aatctggAAC tgcctctgtt gtgtgcctgc tgaataactt ctatcccaga      420
gaggccaaAG tacagtggAA ggtggataAC gccctccaAT cgggtAACTC ccaggagAGT      480
gtcacagAGC aggacAGCAA ggacAGCACC tacAGCCTCA gcAGCACCCt gacgCTgAGC      540
aaAGCAGACT acgagAAAACA caaaGTCTAC gcCTGCGAAG tcACCCATCA gggcCTgAGC      600
ttgccccgtca caaAGAGCTT caacAGGGGA gagtgTTAGT tctAGA                               646
```

```
<210> 56
<211> 28
<212> PRT
<213> artificial sequence
```

```
<220>
<223> portion of artificial heavy chain variable region
```

```
<220>
<221> misc_feature
<222> (6)..(7)
<223> Xaa is any of 14 amino acids
```

```
<220>
<221> misc_feature
<222> (22)..(23)
<223> Xaa is any of 14 amino acids encoded by the triplet NNY which eli-
minates all stops
```

<400> 56

Tyr Tyr Cys Ala Arg Xaa Xaa Ile Glu Gly Pro Thr Leu Arg Gln Trp
1 5 10 15

Leu Ala Ala Arg Ala Xaa Xaa Trp Gly Gln Gly Thr
20 25

<210> 57
<211> 84
<212> DNA
<213> artificial sequence

<220>
<223> nucleotides encoding artificial CDR3

<220>
<221> misc_feature
<222> (16)..(17)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (64)..(65)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (67)..(68)
<223> n is a, c, g or t

<400> 57 tattattgtg cgagannrnn rattgaaggg ccgacgctgc ggcaatggct ggccggcg 60

gcgnnyntt ggggccaagg gacc 84

<210> 58
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

```

<220>
<221> misc_feature
<222> (34)..(35)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c, g or t

<400> 58
ccaaccctgc gccagtggct ggctgctcgc gctnnknnkt ggtaccagca gaaacctggc      60

<210> 59
<211> 60
<212> DNA
<213> artificial sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (38)..(39)
<223> n is a, c, g or t

<400> 59
agccagccac tggcgcaagg ttgggccttc gatmnnmnng caggagaggg tggctttc      60

<210> 60
<211> 5149
<212> DNA
<213> artificial sequence

<220>
<223> vector

<400> 60
gggaaattgt aagcgttaat attttgtaa aattcgcgtt aaattttgt taaatcagct      60
catttttaa ccaataggcc gaaatcgca aaatccctta taaatcaaaa gaatagaccg      120
agatagggtt gagtgttgc ccagttgga acaagagtcc actattaaag aacgtggact      180
ccaacgtcaa agggcgaaaa accgtctatc agggcgatgg cccactacgt gaaccatcac      240

```

cctaatcaag	ttttttgggg	tcgaggtgcc	gtaaagcact	aaatcggaac	cctaaaggga	300
ccccccgatt	tagagcttga	cggggaaagc	cggcgaacgt	ggcgagaaag	gaagggaaaga	360
aagcgaaagg	agcgggcgct	agggcgctgg	caagtgtac	ggtcacgctg	cgcgttaacca	420
ccacacccgc	cgcgttaat	gcgcgcgtac	agggcgcgtc	aggtggcact	tttcggggaa	480
atgtgcgcgg	aacccttatt	tgtttatttt	tctaaataca	ttcaaataatg	tatccgtca	540
tgagacaata	accctgataa	atgcttaat	aatattgaaa	aaggaagagt	atgagtattc	600
aacatttccg	tgtcgccctt	attccctttt	ttgcggcatt	ttgccttcot	gttttgctc	660
acccagaaac	gctggtgaaa	gtaaaagatg	ctgaagatca	gttgggtgca	cgagtgggtt	720
acatcgaact	ggatctcaac	agcggtaaga	tccttgagag	tttcgcccc	gaagaacgtt	780
ttccaatgat	gagcactttt	aaagttctgc	tatgtggcgc	ggtattatcc	cgtattgacg	840
ccgggcaaga	gcaactcggt	cgcgcatac	actattctca	gaatgacttg	gttgagttact	900
caccagtcac	agaaaagcat	cttacggatg	gcatgacagt	aagagaatta	tgcagtgctg	960
ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc	ggaggaccga	1020
aggagctaac	cgctttttg	cacaacatgg	gggatcatgt	aactcgccctt	gatcggttggg	1080
aaccggagct	gaatgaagcc	ataccaaacg	acgagctgta	caccacgatg	cctgttagcaa	1140
tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	tactctagct	tcccgcaac	1200
aattaataga	ctggatggag	gcggataaaag	ttgcaggacc	acttctgcgc	tcggcccttc	1260
cggctggctg	gtttattgct	gataaatctg	gagccggtga	gcgtgggtct	cgcgttatca	1320
ttgcagcact	ggggccagat	ggtaagccct	cccgtatcgt	agttatctac	acgacgggga	1380
gtcaggcaac	tatggatgaa	cgaaatagac	agatcgctga	gataggtgcc	tcactgatta	1440
agcattggta	actgtcagac	caagtttact	catatatact	ttagattgat	ttaaaacttc	1500
attttaatt	taaaaggatc	taggtgaaga	tccttttga	taatctcatg	acccaaatcc	1560
cttaacgtga	gtttcggttc	cactgagcgt	cagacccgt	agaaaagatc	aaaggatctt	1620
ctttagatcc	ttttttctg	cgcgtaatct	gctgcttgca	aacaaaaaaaaa	ccacccgtac	1680
cagcggttgt	ttgtttgccg	gatcaagagc	taccaactct	ttttccgaag	gtaactggct	1740
tcagcagagc	gcagatacca	aatactgtcc	ttcttagtgc	gccgtatgta	ggccaccact	1800
tcaagaactc	tgttagcacccg	cctacatacc	tcgctctgct	aatcctgtta	ccagtggtcg	1860
ctgccagtg	cgataagtgc	tgtcttaccg	ggttggactc	aagacgatag	ttaccggata	1920
aggcgcagcg	gtcggtgtga	acgggggggtt	cgtgcacaca	gcccgacttg	gagcgaacga	1980

cctacaccga	actgagatac	ctacagcgtg	agctatgaga	aagcgccacg	cttcccgaag	2040
ggagaaaaggc	ggacaggat	ccggtaagcg	gcagggtcgg	aacaggagag	cgcacgaggg	2100
agcttccagg	gggaaacgcc	tggtatctt	atagtccctgt	cgggttcgc	cacctctgac	2160
ttgagcgtcg	attttgtga	tgctcgtcag	gggggcggag	cctatggaaa	aacgccagca	2220
acgcggcctt	tttacggttc	ctggcctttt	gctggccttt	tgctcacatg	ttcttcctg	2280
cgttatcccc	tgattctgtg	gataaccgta	ttaccgcctt	tgagtgagct	gataccgctc	2340
gccgcagccg	aacgaccgag	cgcagcgagt	cagtgagcga	ggaagcggaa	gagcgcccaa	2400
tacgcaaacc	gcctctcccc	gcmcgttggc	cgattcatta	atgcagctgg	cacgacaggt	2460
ttcccgactg	gaaagcgggc	agtgagcgca	acgcaattaa	tgtgagttag	ctcactcatt	2520
aggcacccca	ggctttacac	tttatgcttc	cggtctgtat	gttgtgtgga	attgtgagcg	2580
gataacaatt	gaattcagga	ggaatttaaa	atgaaaaaga	cagctatcgc	gattgcagtg	2640
gcactggctg	gttgcgtac	cgtggcccag	gcggccgagc	tcggccatgg	ctgggtggc	2700
agcgagtaat	aacaatccag	cggctgccgt	aggcaatagg	tatttcatta	tgactgtctc	2760
cttggcgact	agctagtttta	gaattcgtaa	tcatggtcat	agctgtttcc	tgtgtgaaat	2820
tgttatccgc	tcacaattcc	acacaacata	cgagccggaa	gcataaaagtg	taaagcctgg	2880
gggcctaata	gagtgagcta	actcacatta	attgcgttgc	gctcaactgcc	cgctttccag	2940
tcgggaaacc	tgtcgtgtta	ctaatgatgg	tgatggtgat	ggctagttt	gtcacaagat	3000
ttgggctcaa	ctttcttgc	caccttggtg	ttgctggct	tgtgattcac	gttgcagatg	3060
taggtctggg	tgcccaagct	gctggagggc	acggtcacca	cgctgctgag	ggagtagagt	3120
cctgaggact	gtaggacagc	cggaaaggtg	tgcacgcccgc	tggtcagggc	gcctgagttc	3180
cacgacacccg	tcgcccgttc	ggggaaagtag	tccttgacca	ggcagcccaag	ggccgctgtg	3240
cccccagagg	tgctcttgg	ggagggtgcc	agggggaaaga	ccgatgggcc	cttggtgag	3300
gctgcccaga	cggtgaccgt	ggtaccagca	gaaacctggc	caggctccca	ggctcctcat	3360
ctatggtaca	tccagcaggg	ccactggcat	cccagacagg	ttcagtggca	gtgggtctgg	3420
gacagacttc	actctcacca	tcagcagact	ggagcctgaa	gattttgcag	tgtactactg	3480
tcagcagtat	ggtggctcac	cgtggttcgg	ccaagggacc	aaggtggaac	tcaaacgaac	3540
tgtggctgca	ccatctgtct	tcatcttccc	gccatctgat	gagcagttga	aatctggaac	3600
tgcctctgtt	gtgtgcctgc	tgaataactt	ctatccaga	gaggccaaag	tacagtggaa	3660

ggtgataac	gcctccaat	cggtaactc	ccaggagagt	gtcacagagc	aggacagcaa	3720
ggacagcacc	tacagcctca	gcagcacccct	gacgctgagc	aaagcagact	acgagaaaaca	3780
caaagtctac	gcctgcgaag	tcacccatca	gggcctgagt	tgcggcgta	caaagagctt	3840
caacggagga	gagtgttaat	tctagataat	taatttaggag	gaatttaaaa	tgaaataacct	3900
attgcctacg	gcagccgctg	gattgttatt	actcgctgcc	caaccagcca	tggccgaggt	3960
gcagctgctc	gagatgagcg	ataaaaattat	tcacctgact	gacgacagtt	ttgacacgga	4020
tgtactcaaa	gcggacgggg	cgatcctcgt	cgatttctgg	gcagagtgg	gcggccgtg	4080
caaaatgatc	gccccgattc	tggatgaaat	cgctgacgaa	tatcagggca	aactgaccgt	4140
tgcaaaaactg	aacatcgatc	aaaaccctgg	caactgcgccc	aaatatggca	tccgtggtat	4200
cccgactctg	ctgctgttca	aaaacggtga	agtggcggca	accaaagtgg	gtgcacttgt	4260
ctaaaggtca	gttgaagag	ttcctcgacg	ctaaccctggc	gtacccgtac	gacgttccgg	4320
actacggttc	tactagtccg	aaaccgtcta	ccccaccggg	ctcttcctgc	ggtggccgca	4380
tcgcccgtct	ggagaaaaaa	gtaaaaaccc	tgaaagctca	gaactccgag	ctggcgtcca	4440
ctgccaacat	gctgcgcgaa	caggtggcac	agctgaaaca	gaaagttatg	aaccatggcg	4500
gttgtgctag	tggccaggcc	ggccagcacc	atcaccatca	ccatggcgca	taccgtacg	4560
acgttccgga	ctacgcttct	taggagggtg	gtggctctga	gggtggcggt	tctgagggtg	4620
gcggctctga	gggaggcggt	tccgggttg	gctctggttc	cggtgatttt	gattatgaaa	4680
agatggcaaa	cgctaataag	ggggctatga	ccgaaaatgc	cgatgaaaac	gcgctacagt	4740
ctgacgctaa	aggcaaactt	gattctgtcg	ctactgatta	cggtgctgct	atcgatggtt	4800
tcattggta	cgttccggc	cttgctaattg	gtaatggtgc	tactggtgat	tttgctggct	4860
ctaattccca	aatggctcaa	gtcggtgacg	gtgataattc	accttaatg	aataatttcc	4920
gtcaatattt	acttccctc	cctcaatcg	ttgaatgtcg	ccctttgtc	tttagcgctg	4980
gtaaaccata	tgaattttct	attgattgtg	acaaaataaa	cttattccgt	ggtgtctttg	5040
cgtttctttt	atatgttgc	acctttatgt	atgtatttc	tacgtttgct	aacatactgc	5100
gtaataagga	gtcttaagct	agctaattaa	tttaagcggc	cgcagatct		5149

<210> 61
 <211> 18
 <212> PRT
 <213> artificial sequence.

<220>

<223> TPO mimetic with flanking amino acids

<400> 61

Asn Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Arg Gly

<210> 62

<211> 41

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 62

taggatgcgg ccgcacaggt cttttttttt tttttttttt t

41

<210> 63

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 63

ccatgttaggc tgtgcccgtg gatt

24

<210> 64

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 64

ccacgggcac agcctacatg gagc

24

<210> 65

<211> 54

<212> DNA

<213> artificial sequence

<220>

<223> nucleic acid encoding TPO mimetic peptide flanking sequence

<400> 65

ttgccaattg aagggccgac gctgcggcaa tggctggcgg cgcgccgcgc ttgtt

54

<210> 66
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> TPO mimetic peptide with flanking sequence

<400> 66

Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
1 5 10 15

Pro Val

<210> 67
<211> 472
<212> PRT
<213> artificial sequence

<220>
<223> Humanized antibody heavy chain

<400> 67

Met Lys Trp Ser Trp Val Ile Leu Phe Leu Leu Ser Val Thr Ala Gly
1 5 10 15

Val His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
20 25 30

Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe
35 40 45

Ser Asn Tyr Trp Ile Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu
50 55 60

Glu Trp Met Gly Glu Ile Leu Pro Gly Ser Gly Ser Thr Glu Tyr Thr
65 70 75 80

Glu Asn Phe Lys Asp Arg Val Thr Met Thr Arg Asp Thr Ser Thr Ser
85 90 95

Thr Val Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val
100 105 110

Tyr Tyr Cys Ala Arg Leu Pro Ile Glu Gly Pro Thr Leu Arg Gln Trp
115 120 125

Leu Ala Ala Arg Ala Pro Val Trp Gly Gln Gly Thr Leu Val Thr Val
130 135 140

Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys
145 150 155 160

Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys
165 170 175

Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu
180 185 190

Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu
195 200 205

Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr
210 215 220

Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val
225 230 235 240

Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
245 250 255

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
260 265 270

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
275 280 285

Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val
290 295 300

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
305 310 315 320

Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
325 330 335

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly
340 345 350

Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
355 360 365

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
370 375 380

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
385 390 395 400

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
405 410 415

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
420 425 430

Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe
435 440 445

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
450 455 460

Ser Leu Ser Leu Ser Leu Gly Lys
465 470

<210> 68
<211> 1419
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding humanized antibody heavy chain

<400> 68
atgaagtgga gctgggttat tctttcctc ctgtcagtaa ctgccggcgt ccactccaa 60
gtccaaactgg tgcaatccgg cgccgaggtc aagaagccag gggcctcagt caaagtgtcc 120
tgtaaagcta gcggctataat tttttctaat tattggattc aatgggtgcg tcaggcccc 180
gggcagggcc tggaaatggat gggtgagatc ttaccgggct ctggtagcac cgaatatacc 240
gaaaatttta aagaccgtgt tactatgacg cgtgacactt cgactagttac agtatacatg 300
gagctctcca gcctgcgatc ggaggacacg gccgtctatt attgcgcg 360

gaaggggccga	cgctgcggca	atggctggcg	gchgccccgc	ctgtttgggg	tcaaggaacc	420
ctggtcactg	tctcgagcgc	ctccaccaag	ggcccatccg	tcttccccct	ggcgccctgc	480
tccaggagca	cctccgagag	cacagccgccc	ctgggctgcc	tggtaagga	ctactcccc	540
gaaccggta	cggtgtcgta	gaactcaggc	gccctgacca	gcggcgtgca	cacccccc	600
gctgtcctac	agtccctcagg	actctactcc	ctcagcagcg	tggtgaccgt	gccctccagc	660
aacttcggca	cccagaccta	cacctgcaac	gtagatcaca	agcccagcaa	ccaaggtg	720
gacaagacag	ttgagcgc当地	atgttgtgtc	gagtgc当地	cgtgc当地	accacctgtg	780
gcaggaccgt	cagtcttccct	cttccccccaa	aaacccaaagg	acaccctcat	gatctcccgg	840
acccctgagg	tcacgtgc当地	ggtgggtggac	gtgagccagg	aagaccccgaa	ggtccagttc	900
aactggta	cggatggc当地	ggaggtgcat	aatgccaaga	caaagccgccc	ggaggagc当地	960
ttcaacagca	cgtaccgtgt	ggtcagcgtc	ctcaccgtcc	tgcaccagga	ctggctgaac	1020
ggcaaggagt	acaagtgc当地	ggtctccaa	aaaggcctcc	cgtcctccat	cgagaaaacc	1080
atctccaaag	ccaaagggca	gccccgagag	ccacaggtgt	acaccctgccc	cccattccag	1140
gaggagatga	ccaagaacca	ggtcagcctg	acctgc当地	tcaaaggctt	ctacccagc	1200
gacatcgccg	tggagtgggaa	gagcaatggg	cagccggaga	acaactacaa	gaccacgc当地	1260
cccggtctgg	actccgacgg	ctccttcttc	ctctacagca	ggctaaccgt	ggacaagagc	1320
aggtggcagg	agggaaatgt	cttctcatgc	tccgtgatgc	atgaggctct	gcacaaccac	1380
tacacacaga	agagcctctc	cctgtctctg	ggtaaatga			1419

<210> 69
 <211> 236
 <212> PRT
 <213> artificial sequence

<220>
 <223> Humanized antibody light chain

<400> 69

Met	Asp	Met	Arg	Val	Pro	Ala	Gln	Leu	Leu	Gly	Leu	Leu	Leu	Leu	Trp
1															15

Leu	Arg	Gly	Ala	Arg	Cys	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser
20															30

Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Gly Ala Ser
35 40 45

Glu Asn Ile Tyr Gly Ala Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys
50 55 60

Ala Pro Lys Leu Leu Ile Tyr Gly Ala Thr Asn Leu Ala Asp Gly Val
65 70 75 80

Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
85 90 95

Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Asn
100 105 110

Val Leu Asn Thr Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
115 120 125

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
130 135 140

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
180 185 190

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235

<210> 70
<211> 711
<212> DNA
<213> artificial sequence

<220>
<223> nucleic acid encoding humanized antibody light chain

<400> 70
atggacatga gggccccgc tcagctcctg gggctcctgc tactctggct ccgagggtgcc 60
agatgtgata tccagatgac ccagtcccg tcctccctgt ccgcctctgt gggcgatagg 120
gtcaccatca cctgcggcgc cagcgaaaac atctatggcg cgctgaactg gtatcaacag 180
aaacccggaa aagctccgaa gcttctgatt tacggtgcga cgaacctggc agatggagtc 240
ccttctcgct tctctggatc cggtccggaa acggattca ctctgaccat cagcagtctg 300
cagcctgaag acttcgtcac gtattactgt cagaacgttt taaatactcc gttgactttc 360
ggacagggtta ccaagggtgaa aataaaacga actgtggctg caccatctgt cttcatcttc 420
ccgcacatctg atgagcagtt gaaatctgga actgcctctg ttgtgtgcct gctgaataac 480
ttctatccca gagaggccaa agtacagtgg aaggtggata acgcctcca atcgggtaac 540
tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 600
ctgacgctga gcaaagcaga ctacgagaaa cacaaagtct acgcctgcga agtcacccat 660
caggcctga gtcgcccgt cacaaagagc ttcaacaggg gagagtgtta g 711

<210> 71
<211> 22
<212> PRT
<213> artificial sequence

<220>
<223> EPO mimetic with random flanking amino acids

<220>
<221> MISC_FEATURE
<222> (1)..(2)
<223> Xaa is any amino acid

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa is any amino acid

<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> Xaa is any amino acid

<220>

<221> MISC_FEATURE
<222> (21)..(22)
<223> Xaa is any amino acid

<400> 71

Xaa Xaa Asp Tyr His Xaa Arg Met Gly Pro Leu Thr Trp Val Xaa Lys
1 5 10 15

Pro Leu Gly Gly Xaa Xaa
20

<210> 72
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 72
taggatgcgg ccgcacaggt c

21

<210> 73
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 73
cacgcgcaca acacgtctag aracatccag atgaccagg

39

<210> 74
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 74
cacgcgcaca acacgtctag agmcatccag ttgaccagg

39

<210> 75
<211> 39
<212> DNA
<213> artificial sequence

<220>

<223> primer

<400> 75
cacgcgcaca acacgtctag agccatccrg atgaccagg 39

<210> 76
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 76
cacgcgcaca acacgtctag agtcatctgg atgaccagg 39

<210> 77
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 77
cacgcgcaca acacgtctag agatattgtg atgaccagg 39

<210> 78
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 78
cacgcgcaca acacgtctag agatrttgtg atgactcag 39

<210> 79
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 79
cacgcgcaca acacgtctag agaaatttgtg ttgacrcag 39

<210> 80
<211> 39
<212> DNA

<213> artificial sequence
<220>
<223> primer

<400> 80
cacgcgcaca acacgtctag agaaaatagtg atgacgcag 39

<210> 81
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 81
cacgcgcaca acacgtctag agaaaattgta atgacacag 39

<210> 82
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 82
cacgcgcaca acacgtctag agacatcgtg atgaccagg 39

<210> 83
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 83
cacgcgcaca acacgtctag agaaaacgaca ctcacgcag 39

<210> 84
<211> 39
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 84
cacgcgcaca acacgtctag agaaaattgtg ctgactcag 39

<210> 85		
<211> 39		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 85		
cacgcgcaca acacgtctag agatgtttag atgacacag		39
<210> 86		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 86		
attaatacga ctcactatacg gg		22
<210> 87		
<211> 20		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 87		
aattaaccct cactaaaggg		20
<210> 88		
<211> 59		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 88		
agccagccac tggcgcaagg ttgggccttc gatcggttgc ctgatgagga gctttggcg		59
<210> 89		
<211> 59		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 89		

agccagccac tggcgcaggg ttgggccttc gatcgggttt tgaataatga aaatagcag	59
<210> 90	
<211> 59	
<212> DNA	
<213> artificial sequence	
<220>	
<223> primer	
<400> 90	
agccagccac tggcgcaggg ttgggccttc gatcgggttg taaatgagca rcttaggag	59
<210> 91	
<211> 59	
<212> DNA	
<213> artificial sequence	
<220>	
<223> primer	
<400> 91	
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatgagga gcctggmg	59
<210> 92	
<211> 59	
<212> DNA	
<213> artificial sequence	
<220>	
<223> primer	
<400> 92	
agccagccac tggcgcaggg ttgggccttc gatcgggtta taaattaggc gccttggag	59
<210> 93	
<211> 59	
<212> DNA	
<213> artificial sequence	
<220>	
<223> primer	
<400> 93	
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatyagga gctgtggag	59
<210> 94	
<211> 58	
<212> DNA	
<213> artificial sequence	
<220>	

<223> primer

<400> 94
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatcagga gcttagga 58

<210> 95
<211> 58
<212> DNA
<213> artificial sequence

<220>

<223> primer

<400> 95
agccagccac tggcgcaggg ttgggccttc gatcgggttr tagatcagga gcttaggg 58

<210> 96
<211> 58
<212> DNA
<213> artificial sequence

<220>

<223> primer

<400> 96
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatcaggg acttaggg 58

<210> 97
<211> 58
<212> DNA
<213> artificial sequence

<220>

<223> primer

<400> 97
agccagccac tggcgcaggg ttgggccttc gatcgggtta tagatcaggy gcttaggg 58

<210> 98
<211> 59
<212> DNA
<213> artificial sequence

<220>

<223> primer

<400> 98
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gggtcccctc gaggttcag 59

<210> 99
<211> 59
<212> DNA

```

<213> artificial sequence

<220>
<223> primer

<400> 99
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gaatcccacc tcgattcag      59

<210> 100
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 100
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gggtccctga ccgattcag      59

<210> 101
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 101
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gcatcccagm caggttcag      59

<210> 102
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 102
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gtatcccagc caggttcag      59

<210> 103
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 103
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gagtsccaga yaggttcag      59

```

```

<210> 104
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 104
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gggtcccwga cagtttcag      59

<210> 105
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 105
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gggtcccatac aaggtttcag      59

<210> 106
<211> 59
<212> DNA
<213> artificial sequence

<220>
<223> primer

<400> 106
ccaaccctgc gccagtggct ggctgctcgc gctcgtggtg gggtcccatac tcggtttcag      59

<210> 107
<211> 102
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide

<400> 107
aattcaagga gttaattatg aaaaaaaacccg cgatttgcgtat tgccgtggcg ctggccggct      60
ttgcgaccgt gccccaggcg gcctctagaa tctgcggccg ca                         102

<210> 108
<211> 102
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide

```

<400> 108		
ctagtgcggc cgcatattct agaggccgcc tggccacgg tcgcaaagcc cgccagcgcc	60	
accgcaatcg caatcgccgt tttttcata attaactcct tg	102	
<210> 109		
<211> 36		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 109		
ggagtctaga taactgtggc tgcaccatct gtcttc	36	
<210> 110		
<211> 37		
<212> DNA		
<213> artificial sequence		
<220>		
<223> primer		
<400> 110		
aggagcggcc gcttaacact ctccccgtt gaagctc	37	
<210> 111		
<211> 4883		
<212> DNA		
<213> artificial sequence		
<220>		
<223> vector		
<400> 111		
gggaaattgt aagcgtaat attttgtt aaattcgctt aaattttgt taaatcagct	60	
catttttaa ccaataggcc gaaatcgca aaatccctt taaaatcaaaa gaatagaccg	120	
agatagggtt gagtggtt ccagtttgg acaagagtcc actattaaag aacgtggact	180	
ccaacgtcaa agggcgaaaa accgtctatc agggcgatgg cccactacgt gaaccatcac	240	
cctaatcaag tttttgggg tcgaggtgcc gtaaagcact aaatcggaac cctaaaggga	300	
ccccccgatt tagagcttga cggggaaagc cggcgaacgt ggcgagaaag gaaggaaaga	360	
aagcgaaagg agcgggcgct agggcgctgg caagtgttagc ggtcacgctg cgcgttaacca	420	
ccacacccgc cgcgcttaat gcggcgctac agggcgcgtc aggtggcact tttcgaaaa	480	
atgtgcgcgg aacccttatt tttttatccc tctaaataca ttcaaataatg tatccgctca	540	

tgagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc	600
aacatttccg tgcgcctt attcccttt ttgcggcatt ttgccttcct gttttgctc	660
accaggaaac gctggtaaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt	720
acatcgact ggatctcaac agcgtaaga tccttgagag tttcgcccc gaagaacgtt	780
ttccaatgat gagcacttt aaagttctgc tatgtggcgc ggtattatcc cgtattgacg	840
ccggcaaga gcaactcggt cggcatac actattctca gaatgacttg gttgagtact	900
caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgctg	960
ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga	1020
aggagctaac cgcttttg cacaacatgg gggatcatgt aactcgccct gatcggttggg	1080
aaccggagct gaatgaagcc ataccaaacg acgagctgta caccacgatg cctgttagcaa	1140
tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct tcccgcaac	1200
aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc	1260
cggctggctg gtttattgct gataaatctg gagccggtga gcgtgggtct cgccgtatca	1320
ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga	1380
gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta	1440
agcattggta actgtcagac caagtttact catataact ttagattgat taaaacttc	1500
attttaatt taaaaggatc taggtgaaga tccttttga taatctcatg accaaaatcc	1560
cttaacgtga gtttcgttc cactgagcgt cagacccgt agaaaagatc aaaggatctt	1620
cttgagatcc ttttttctg cgcgtaatct gctgcttgca aaaaaaaaaa ccaccgctac	1680
cagcgggtt ttgtttgccg gatcaagagc taccaactct tttccgaag gtaactggct	1740
tcagcagagc gcagatacca aatactgtcc ttctagtgta gccgttagtta ggccaccact	1800
tcaagaactc tgtaccccg cctacatacc tcgctctgct aatcctgtta ccagtggctg	1860
ctgccaggcg cgataagtgc tgtcttaccg ggtggactc aagacgatag ttaccggata	1920
aggcgcagcg gtcgggctga acggggggtt cgtcacaca gcccagctt gacgaaacga	1980
cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg cttccgaag	2040
ggagaaaaggc ggacaggtat ccgtaagcg gcagggtcgg aacaggagag cgacgaggg	2100
agcttccagg gggaaacgcc tggtatctt atagtcctgt cgggttcgc cacctctgac	2160
ttgagcgtcg atttttgtga tgctcgtag gggggcggag cctatggaaa aacgcccagca	2220

acgcggcctt	tttacggttc	ctggcctttt	gctggccttt	tgctcacatg	ttcttcctg	2280
cgttatcccc	tgattctgtg	gataaccgta	ttaccgcctt	tgagttagct	gataaccgctc	2340
gccgcagccg	aacgaccgag	cgcagcgagt	cagttagcga	ggaagcggaa	gagcgcggaa	2400
tacgcaaacc	gcctctcccc	gcgcgttggc	cgattcatta	atgcagctgg	cacgacaggt	2460
ttcccgaactg	gaaagcgggc	agttagcgca	acgcaattaa	tgtgagttag	ctcactcatt	2520
aggcacccca	ggctttacac	tttatgcttc	cggctcgtat	gttgtgtgga	attgtgagcg	2580
gataacaatt	gaattcaagg	agttaattat	aaaaaaaacc	gcgattgcga	ttgcgggtggc	2640
gctggcgggc	tttgcgaccg	tggcccaaggc	ggcctctaga	taactgtggc	tgcaccatct	2700
gtcttcatct	tcccgccatc	tgatgagcag	ttgaaatctg	gaactgcctc	tggtgtgdc	2760
ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaaggtgga	taacgcctc	2820
caatcgggta	actcccagga	gagtgtcaca	gagcaggaca	gcaaggacag	cacctacagc	2880
ctcagcagca	ccctgacgct	gagcaaagca	gactacgaga	aacacaaagt	ctacgcctgc	2940
gaagtcaccc	atcagggcct	gagctcgccc	gtcacaaaaga	gcttcaacag	gggagagtg	3000
taagcggccg	cactagatat	aattaaggag	ataaaatatga	aatatctgct	gccgaccgcg	3060
gcggcgggcc	tgctgctgct	ggcggcgcag	ccggcgatgg	cgctcgagct	gatgagccat	3120
ggaagctgtg	tcgcctgcac	caggctccca	cggtcggtgg	tgcggtgcgc	ttctgggttt	3180
cgctgcctac	agccgacacg	tcgagcttcg	tgcccctaga	gttgcgcgtc	acagcagcct	3240
ccggcgctcc	gcgatatcac	cgtgtcatcc	acatcaatga	agtagtgctc	ctagacgccc	3300
ccgtggggct	ggtggcgcgg	ttggctgacg	agagcggcca	cgtagtgttg	cgctggctcc	3360
cggccctga	gacacccatg	acgtctcaca	tccgctacga	ggtggacgtc	tcggccggca	3420
acggcgcagg	gagcgtacag	agggtgagaa	tcctggaggg	cgcacccgag	tgtgtgctga	3480
gcaacctgcg	gggcccggacg	cgctacaccc	tcgcccgtcc	cgcgcgtatg	gctgagccga	3540
gcttcggcgg	cttctggagc	gcctggtcgg	agcctgtgtc	gctgctgacg	cctagcgcacc	3600
tggacccct	catcctgacg	ctctccctca	tcctcggtgt	catcctggtg	ctgctgaccg	3660
tgctcgct	gctctccac	cgccgggctc	tgaagcagaa	gatctggcct	ggcatcccga	3720
gcccgagag	cgagttgaa	ggcctcttca	ccacccacaa	ggtaacttc	cagctgtggc	3780
tgtaccagaa	tgatggctgc	ctgtggtgga	gcccctgcac	ccccttcacg	gaggacccac	3840
ctgcttcct	ggaagtccctc	tcagagcgct	gctgggggac	gatgcaggca	gtggagccgg	3900
ggacagatga	tgagggccca	tcggcttcc	ccctggcacc	ctcctccaag	agcacctctg	3960

ggggcacagc	ggccctggc	tgccctggtca	aggactactt	ccccgaaccg	gtgacggtgt	4020
cgtggaactc	aggcgccctg	accagcggcg	tgcacacacctt	cccggtgtc	ctacagtccct	4080
caggactcta	ctccctcagc	agcgtggta	ccgtgccctc	cagcagctt	ggcacccaga	4140
cctacatctg	caacgtgaat	cacaagccca	gcaacaccaa	ggtggacaag	aaagttgagc	4200
ccaaatcttg	tgacaaaact	agtggccagg	ccggccagca	ccatcaccat	caccatggcg	4260
cataccgta	cgacgttccg	gactacgctt	cttaggaggg	tggtggtct	gagggtggcg	4320
gttctgaggg	tggcggtct	gagggaggcg	gttccggtgg	tggctctgg	tccggtgatt	4380
ttgattatga	aaagatggca	aacgctaata	agggggctat	gaccgaaaat	gccgatgaaa	4440
acgcgctaca	gtctgacgct	aaaggcaaac	ttgattctgt	cgctactgat	tacggtgctg	4500
ctatcgatgg	tttcatttgt	gacgttccg	gccttgctaa	tggtaatgg	gctactggtg	4560
attttgctgg	ctctaattcc	caaatggctc	aagtcggta	cggtgataat	tcacccttaa	4620
tgaataattt	ccgtcaatat	ttaccttccc	tccctcaatc	ggttgaatgt	cgccctttt	4680
tcttagcgc	tggtaaacca	tatgaatttt	ctattgattt	tgacaaaata	aacttattcc	4740
gtgggtgtctt	tgcgtttctt	ttatatgttg	ccacctttat	gtatgtattt	tctacgttt	4800
ctaacatact	gcgtataaaag	gagtcttaag	ctagctaatt	aatttaagcg	gccggccgca	4860
gatctgctct	ctgaggagga	tct				4883

<210> 112
 <211> 8
 <212> PRT
 <213> artificial sequence

<220>
 <223> part of mimetic

<400> 112

Gly Pro Thr Leu Arg Gln Trp Leu
1 5

<210> 113
 <211> 18
 <212> PRT
 <213> artificial sequence

<220>
 <223> artificial CDR2

<220>

```
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa is any amino acid
```

```
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Xaa is any amino acid
```

```
<400> 113
```

```
Gly Xaa Gly Pro Thr Leu Arg Gln Trp Leu Xaa Tyr Ala Gln Lys Phe
1 5 10 15
```

```
Gln Gly
```

```
<210> 114
<211> 48
<212> DNA
<213> artificial sequence
```

```
<220>
<223> primer
```

```
<220>
<221> misc_feature
<222> (26)..(27)
<223> n is a, c, g or t
```

```
<400> 114
cagccactgg cgcaagggttg ggccmnnccc tcccatccac tcaagccc 48
```

```
<210> 115
<211> 60
<212> DNA
<213> artificial sequence
```

```
<220>
<223> primer
```

```
<220>
<221> misc_feature
<222> (25)..(26)
<223> n is a, c, g or t
```

```
<400> 115
ggcccaaccc tgcgccagtg gctgnnktaa gcacagaaat tccagggcag agtcaccatt 60
```

```

<210> 116
<211> 354
<212> DNA
<213> artificial sequence

<220>
<223> nucleotides encoding variable region of light chain

<400> 116
gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgttaggaga cagagtacc 60
atcacttgcc gggcgagtca gagtattagt agtttgcgtgg cctggtatca gcagaaacca 120
ggaaagctc ctaagctcct gatctataac ccgatcgaag gcccaaccct gcgccagtg 180
ctggctactc gcgcgtcggtgg tggggtccc tcaaggttca gcggcagtgg atctggaca 240
gatttcactc tcaccatcag cagcctgcag cctgaagatt ttgcaactta ttactgccaa 300
cagtataata gttaccctcc cactttcgac cctgggacca aagtggatata caaa 354

<210> 117
<211> 233
<212> PRT
<213> human

<400> 117

Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
1 5 10 15

Ser Ser Val Lys Val Ser Cys Arg Ala Ser Gly Gly Thr Phe Asn Asn
20 25 30

Tyr Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp
35 40 45

Met Gly Gly Ile Phe Pro Phe Arg Asn Thr Ala Lys Tyr Ala Gln His
50 55 60

Phe Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Gly Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Ile Tyr Tyr
85 90 95

Cys Ala Arg Gly Asp Thr Ile Phe Gly Val Thr Met Gly Tyr Tyr Ala
100 105 110

```

Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ala Ala Ser
115 120 125

Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr
130 135 140

Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro
145 150 155 160

Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val
165 170 175

His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
180 185 190

Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile
195 200 205

Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val
210 215 220

Glu Pro Lys Ser Cys Asp Lys Thr Ser
225 230

<210> 118
<211> 212
<212> PRT
<213> human

<400> 118

Glu Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu Arg
1 5 10 15

Ala Thr Leu Ser Cys Arg Ala Ser His Ser Val Ser Arg Ala Tyr Leu
20 25 30

Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr
35 40 45

Gly Thr Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro Glu
65 70 75 80

Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Gly Ser Pro Trp Phe
85 90 95

Gly Gln Gly Thr Lys Val Glu Leu Lys Arg Thr Val Ala Ala Pro Ser
100 105 110

Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala
115 120 125

Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val
130 135 140

Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser
145 150 155 160

Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr
165 170 175

Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys
180 185 190

Glu Val Thr His Gln Gly Leu Ser Leu Pro Val Thr Lys Ser Phe Asn
195 200 205

Arg Gly Glu Cys
210