PRÁCTICO 2 - Álgebra de Boole

Postulados y teoremas del álgebra booleana

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z) = xy + xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table
AND	x —		X Y F
	YF	F = XY	0 1 0 1 0 0
OR	х F		1 1 1 X Y F
		F = X + Y	0 0 0 0 1 1
			1 0 1 1 1
NOT (inverter)	x — F	$F=\overline{X}$	X F 0 1 1 0
NAND	х ү F	$F = \overline{X \cdot Y}$	X Y F 0 0 1 0 1 1 1 0 1
NOR	Х Y F	$F = \overline{X + Y}$	X Y F 0 0 1 0 1 0 1 0 0 1 1 0

Ejercicio 1:

Simplificar las siguientes funciones booleanas a un número mínimo de literales.

- a. x.y + x.y'
- b. (x + y).(x + y')
- c. x.y.z + x'.y + xyz'
- d. z.x + z.x'.y
- e. (A + B)'.(A' + B')'
- $f. \quad y.(w.z' + w.z) + x.y$

Ejercicio 2:

Reducir a un número mínimo de literales las siguientes funciones booleanas:

- a. (B.C' + A'.D).(A.B' + C.D')
- b. B'.D + A'.B.C' + A.C.D + A'.B.C
- c. [(A.B)'.A].[(A.B)'.B]
- d. A.B' + C'.D'
- a. Graficar las expresiones encontradas en "b" y "d" mediante cualquier tipo de compuertas del número de entradas necesarias.
- b. Encontrar expresiones equivalentes a las funciones "b" y "d", pero utilizando sólo compuertas NAND del número de entradas necesarias.
- c. Graficar las expresiones encontradas en el punto anterior.

Ejercicio 3:

La función OR-exclusiva, denotada por "^" tiene dos entradas y una salida. Si **a** y **b** son las entradas y **c** es la salida, entonces **c** es '1' sólo cuando exactamente una de las entradas vale '1'. En el resto de los casos es '0'.

- a. Hacer una tabla de verdad de la función OR-exclusiva.
- b. Encontrar la expresión equivalente a la función OR-exclusiva utilizando sólo suma de productos y graficar con compuertas.
- c. Encontrar la expresión equivalente a la función OR-exclusiva utilizando sólo producto de sumas y graficar con compuertas.
- d. Implementar una OR-exclusiva de 3 entradas usando OR-exclusivas de 2 entradas.

Ejercicio 4:

Mostrar que la función NAND (Not AND) es universal en el sentido de que las funciones NOT, AND, OR y NOR se pueden expresar como productos negados. Graficar las implementaciones de las compuertas NOT, AND, OR y NOR con compuertas NAND.

Ejercicio 5:

Mostrar que la función NOR (Not OR) es universal en el sentido de que las funciones NOT, OR, AND y NAND se pueden expresar como sumas negadas. Graficar las implementaciones de las compuertas NOT, OR, AND y NAND con compuertas NOR.

Ejercicio 6 (extra):

- a. ¿Cuántas funciones booleanas de *n* variables hay?
- b. Demostrar que utilizando solo compuertas AND/OR no alcanza para definir todas funciones de *n* variables.