University of Denver Analytics Challenge

Team Members: Colin Eberl-Coe, Margaret Golz, Oluwaseun (Seun) Ogunmodede, Ryan Thorpe

Colorado School of Mines

March 4, 2016

Social Control Theory: Society "Buy In"

Example Case: Montbello

http://data.denvergov.org/dataset/city-and-county-of-denver-crime

http://www.city-data.com/neighborhood/Montbello-Denver-CO.html

Median household income in 2013:

Montbello: \$46,175 Denver: \$51,089

Input Data for Society "Buy In"

Montbello Economy vs. Colorado

http://www.city-data.com/neighborhood/Montbello-Denver-CO.html

Theft and Assault Time Analysis

Crime Category	Total	Weekday	Weekend	Weekend (%)
Burglary	48178	36911	11267	23.39%
Larceny	70126	51657	18469	26.34%
Theft from Motor Vehicle	51016	36593	14423	28.27%
Simple Assault	49266	32719	16547	33.59%
Aggravated Assault	35192	20590	14602	41.49%

Hotspots Time Analysis: Larceny

Time	Patterns and Location
0 – 300	-Parking lots -Fast Food Restaurants
300-600	-Decrease in theft
600-800	Slow Increase in larcenyDenver Airport on the radarParks and country clubs
800-1200	-Steady rise
1200-1400	- Sudden increase around restaurants (lunch) and near departmental stores
1400-1800	Steady rateDenver Airport is not a hot spot after approximately3 pm
1800-2100	-Decline in larceny -Downtown hot spots translated <i>(right top figure)</i>
2100-2300	-Steady rate
2300-2400	-Decline in larceny

HOTSPOTS: DOWNTOWN

HOTSPOT: ISOLATED EVENT

7800 Smith Rd, Denver, CO 80207

Statistical Methodology

■ Statistically, crimes are an example of events in a spatial point process, generated by $Pois(\lambda)$.

$$\lambda(x) = \lim_{|ds| \to 0} \frac{\mathbb{E}[N(ds)]}{|ds|}$$

where $N(\cdot)$ is the number of points in the distance ds away from any point s.

- The first assumption is *Complete Spatial Randomness*. This hypothesis was tested and the data do not display this behavior.
- Therefore, we modeled the crimes as spatially-varying a.k.a. an Inhomogeneous Poisson Process and estimated λ for each type of crime for each year with kernel-density smoothing:

$$\hat{\lambda}(s) = \sum_{\mathbf{x} \in N \cap D} \frac{k[(\mathbf{x} - s)/h]}{c(s)}$$

Simple and Aggravated Assault vs Street Checks

Optimization Model

Parameters:

- *Weight of crimes
- *Location of crimes

Variables:

*Location of each patrol

Objective:

*Minimize total distance between patrols and crimes in surrounding area

Constraints:

- *At least one patrol serves each crime
- *Crimes are evenly distributed between patrols

Optimization Results

