Computer Vision & Image Processing CSE 473 / 573

Instructor - Kevin R. Keane, PhD TAs - Radhakrishna Dasari, Yuhao Du, Niyazi Sorkunlu

Lecture 4 – September 6, 2017

Physical parameters of image formation

- Photometric
 - Type, direction, intensity of light reaching sensor
 - Surfaces' reflectance properties
 - Inference from shading

Image formation

• What determines the brightness of an image pixel?

Image formation - photometry

- The brightness of a pixel is a function of the brightness of the surface in the scene that projects to the pixel
- The brightness of the pixel is dependent on
 - How much light is incident on the surface and
 - The fraction of incident light that gets reflected
- We will now explore a few simple models of shading

Key issues

- Physical
 - what makes a pixel take its brightness values?
- Inference
 - what can we recover from the world using those brightness values?
- Human
 - What can people do?
 - which suggests problems we might be able to solve in computer vision

The interaction of light and surfaces

- What happens when a light ray hits a point on an object?
 - Some of the light gets absorbed
 - converted to other forms of energy (e.g., heat)
 - Some gets transmitted through the object
 - possibly bent, through refraction
 - or scattered inside the object (subsurface scattering)
 - Some gets reflected
 - · possibly in multiple directions at once
 - Really complicated things can happen
 - fluorescence

Source: Steve Seitz

Model

- Light arrives at a surface
 - from a light source
 - from another surface
- It is reflected into the camera
 - many possible effects
- It arrives at a sensor at the back of the camera
 - a record is made
 - this could be a linear or a non-linear function of the amount of light

From light rays to pixel values

Pixel brightness depends on:

- Camera response
- Surface reflection
- Illumination

From light rays to pixel values

Pixel brightness depends on:

- Camera response
- Surface reflection
- Illumination

Camera response

- Film
 - Record is made by chemical processes in the film
 - These are non-linear; typically,
 - dark patches are lighter than they should be
 - light patches are darker than they should be
 - these ensure that detail is visible

Camera response

- CCD
 - Linear devices
 - with non-linearities produced by electronics to mimic film
- Calibration
 - Can be hard to find curves of camera response vs light input
 - Instead, use calibration algorithms (no covered in our course)

From light rays to pixel values

Pixel brightness depends on:

- Camera response
- Surface reflection
- Illumination

Surface reflection

- Many effects can occur when light strikes a surface -- could be:
 - absorbed; transmitted; reflected; scattered
 - e.g. some people can see arteries, veins under their skin
 - because light is transmitted through skin, reflected at blood vessel, transmitted out
 - For simplicity, we assume that
 - surfaces don't fluoresce
 - surfaces don't emit light (i.e. are cool)
 - all the light leaving a point is due to that arriving at that point

The important reflection modes

- 1. Specular reflection (mirror like)
 - Pure mirror:
 - incoming, outgoing directions and normal are coplanar
 - incoming, outgoing angles to normal are equal
 - Most specular surfaces:
 - some light leaves the surface along directions near to the specular direction as well

2. Diffuse reflection

- Light leaves in equal amounts in each direction
 - so surface looks equally bright from each viewing direction

- The 2 most important reflection modes are
 - Diffuse reflection incident light is spread evenly over the whole hemisphere of out going directions
 - Specular reflection reflected light is concentrated in a single direction
 - Specular direction ${\bf S}$ is coplanar with the normal ${\bf N}$ and source direction L
 - Incident angle = reflection angle = θ

Diffuse reflection

- Light leaves the surface evenly in all directions
 - e.g. cotton cloth, carpets, matte paper, matte paints, most "rough" surfaces
- Described by one parameter: albedo
 - percentage of light arriving that leaves
 - range 0-1 practical range is smaller
- Light leaving is *albedo x light arriving*
 - Ambiguity: A surface could be dark because
 - It reflects a small percentage of the light arriving
 - There isn't very much light arriving

Diffuse reflection

- Light is reflected equally in all directions
 - Dull, matte surfaces like chalk or latex paint
 - Microfacets scatter incoming light randomly
 - Effect is that light is reflected equally in all directions
- Brightness of the surface depends on the incidence of illumination

How much light arrives?

- Assume source is far away
 - So light travels in parallel rays
 - (Light arriving) is proportional to (number of rays striking surface)
 - Surface A below receives less light than surface B
- Drawing yields
 - (number of rays striking surface) proportional to $cos(\theta)$
 - where $\boldsymbol{\theta}$ is angle between normal and direction of travel
- Shadows
 - If point can't see the light source, it is in shadow

Diffuse reflection: Lambert's law

$$B = \rho \left(\mathbf{N} \cdot \mathbf{S} \right)$$
$$= \rho \left\| \mathbf{S} \right\| \cos \theta$$

B: radiosity (total power leaving the surface per unit area)

 ρ : albedo (fraction of incident irradiance reflected by the surface)

N: unit normal

S: source vector (magnitude proportional to intensity of the source)

Specular reflection

- Radiation arriving along a source direction leaves along the specular direction (source direction reflected about normal)
- Some fraction is absorbed, some reflected
- On real surfaces, energy usually goes into a lobe of directions
- Phong model: reflected energy falls of with
- Lambertian + specular model: sum of diffuse and specular term

$$\cos^{n}\left(\delta\theta\right)$$

Specular reflection

Diffuse + Specular model

- Most surfaces can be modeled as diffuse + specular
 - surface parameters:
 - diffuse albedo,
 - specular albedo,
- This justifies the following strategy for many analyses
 - Find and remove specularities
 - which are small, and bright
 - More sophisticated specularity finders use color information
 - Ignore the missing points, and treat the rest of the image as diffuse

Diffuse + Specular model cont'd

Choose the source effects to model:

- Simplest case is the local shading model
 - assume light comes from the source, no interreflections
 - Assume source is at an infinitely distance
- Again we are working with N(x) and S(x) and p(x) is albedo at x.
- Let Vis(S,x) be a function that is 1 when x can see the source, and 0 otherwise
- Then the intensity at x is given as:

$$I(\mathbf{x}) = \rho(\mathbf{x})(\mathbf{N} \cdot \mathbf{S}) Vis(\mathbf{S}, \mathbf{x}) + \rho(\mathbf{x}) A + M$$
Image Diffuse term Ambient Specular mirror-like term

From light rays to pixel values

Pixel brightness depends on:

- Camera response
- Surface reflection
- Illumination

Shadows

- Most shadows aren't dark
 - because shadow points get light from other surfaces, not just light source
- Area sources
 - Large, bright areas
 - e.g. diffuser boxes, the sky
 - Yield smooth, blurry shadows
 - Points that can see the whole source are brighter
 - Points that can see only part of the source are darker (penumbra)
 - Points that can see no part of the source are darkest (umbra)
- Other surfaces behave like area sources
 - Smooth, blurry shadows are common (and sometimes too faint to see)

- Orientation of surface affects how much light the surface gathers
- Patch A is tilted from the source with θ close to 90° collects less energy (it cuts fewer rays per unit surface area)
- Patch B is facing the source with θ close to 0° so it appears brighter
- The darker surfaces are turned away from the illumination direction

Area sources

Area sources generate complex shadows with smooth boundaries

- The surface patch sees the source disappearing slowly behind the occluder
- Patch A is darker than B
 - Shadowing effect but no clear boundary (instead is a smooth gradient)
- Chair leg casts a complex shadow with 2 distinct regions
 - Umbra no source is seen at all
 - Penumbra source is partially seen

Light and shading - Crucial points

- Image brightness is affected by
 - · amount of light arriving at surface
 - surface type (diffuse, specular) and amount reflected at surface
 - camera sensitivity
- There are significant ambiguities
 - eg low albedo surface in bright light
 - · vs high albedo surface in low light
 - each might reflect about the same amount
- Most surfaces can be modeled as diffuse + specular
 - generally, find and remove specularities
 - treat the rest as diffuse
- Shadows occur when a light source is obstructed by an object.
 - occupies all of the space behind the opaque object with light in front of it.

Inference from shading

- Radiometric calibration and high dynamic range images
- The shape of specularities
- Inferring lightness and illumination
- Photometric stereo: shape from multiple shaded images

Photometric stereo (shape from shading)

• Can we reconstruct the shape of an object based on shading cues?

Luca della Robbia, Cantoria, 1438

Surface model: Monge patch

A Monge patch is a representation of a piece of surface as a height function. An orthographic camera, that maps (x,y,z) to (x,y) in the camera is viewing a Monge patch, i.e. the shape of the surface is represented a function of position in the image

Surface model continued

- Photometric stereo is a method for recovering a representation of the Monge patch from image data
 - Reason about image intensity for different images of the surface under different illumination conditions
 - Recover height of surface at each image pixel
 - Fix the positions of the camera and surface
 - Illuminate using faraway source (local shading model)

$$B(\mathbf{x}) = \rho(\mathbf{x}) \mathbf{N}(\mathbf{x}) \mathbf{S}(\mathbf{x})$$

• The intensity value of a pixel at (x,y) is now

$$I(x, y) = kB(\mathbf{x})$$

Image model

- **Known:** source vectors S_i and pixel values $I_i(x,y)$
 - *j* is the index of the illumination source
- **Unknown:** surface normal N(x,y) and albedo $\rho(x,y)$
- ullet Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$I_{j}(x, y) = kB(\mathbf{x})$$

$$= kB(x, y)$$

$$k \rho(x, y)(\mathbf{N}(x, y) \cdot \mathbf{S}_{j})$$

$$= (\rho(x, y)\mathbf{N}(x, y)) \cdot (k \mathbf{S}_{j})$$

$$= \mathbf{g}(x, y) \cdot \mathbf{V}_{j}$$

Image model cont'd

- g(x,y) describes the surface
- Vj is a property of the illumination and camera
- We can have a dot product between the vector field g(x,y) and the vector Vj
- So for n sources (if n is sufficently large), we can stack up the known
 Vj into a matrix V
- For each point in the image, we stack up the intensity measurement from each of the n sources

Least squares problem

- For each pixel, set up a linear system:
- Obtain least-squares solution for g(x,y) (which we defined as N(x,y) $\rho(x,y)$)
- Since N(x,y) is the unit normal, $\rho(x,y)$ is given by the magnitude of g(x,y)
- Finally, $N(x,y) = g(x,y) / \rho(x,y)$

$$\begin{bmatrix} I_{1}(x, y) \\ I_{2}(x, y) \\ \vdots \\ I_{n}(x, y) \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{1}^{T} \\ \mathbf{V}_{2}^{T} \\ \vdots \\ \mathbf{V}_{n}^{T} \end{bmatrix} \mathbf{g}(x, y)$$

$$\begin{bmatrix} (n \times 1) \\ known \end{bmatrix} \begin{pmatrix} (n \times 3) \\ known \end{pmatrix} \begin{pmatrix} (3 \times 1) \\ unknown \end{pmatrix}$$

F&P 2nd ed., sec. 2.2.4

Example

Surface recovered by integration

Limitations

- Orthographic camera model
- Simplistic reflectance and lighting model
- No shadows
- No inter-reflections
- No missing data
- Integration is tricky

Computer vision application

Finding the direction of light source

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Computer vision application

Detecting composite photos:

Real photo

M. K. Johnson and H. Farid, <u>Exposing Digital Forgeries by Detecting Inconsistencies in Lighting</u>, ACM Multimedia and Security Workshop, 2005.

Computer vision application

Estimating natural illumination from a single outdoor image:

From a single image (left), they estimate the most likely sky appearance (middle) and insert a 3-D object (right). Illumination estimation was done entirely automatically

J-F. Lalonde, A. A. Efros and S G. Narasimhan, <u>Estimating Natural Illumination</u> <u>from a Single Outdoor Image</u>, International Journal on Computer Vision, 98(2):123-145, 2012.

Slide Credits

- David A. Forsyth UIUC
- Svetlana Lazebnik UIUC

Next class

- Color
- Readings for next lecture:
 - Forsyth and Ponce Chapter 3; Szeliski 2.3.2 (optional)
- Readings for today:
 - Forsyth and Ponce 2.1, 2.2.4; Szeliski 2.2 (optional)

Questions

