Vision GNN-Powered Object Detection

Sagar Prakash Barad

Harnessing Vision GNNs as Backbone Feature Extractors for RetinaNet and Mask R-CNNs

RetinaNet ResNet + FPN + Focal Loss
Vision GNN

Dataset(s) - COCO Dataset, PubTables 1M Dataset, FinTab Dataset

Vision GNN Works by...

Graph Represnation

Benefits

- 1. Generalized Data Structure
- 2. Flexibility for Complex Objects
- 3. Part-Object Relationships

Graph Convolution

Heidari, N. (2020, March 27). Progressive Graph Convolutional networks for Semi-Supervised Node Classification. arXiv.org. https://arxiv.org/abs/2003.12277

$$\begin{aligned} \mathbf{h}_{\mathcal{N}_{v}}^{t} &= \operatorname{AGGREGATE}_{t} \left(\left\{ \mathbf{h}_{u}^{t-1}, \forall u \in \mathcal{N}_{v} \right\} \right) \\ \mathbf{h}_{v}^{t} &= \sigma \left(\mathbf{W}^{t} \cdot \left[\mathbf{h}_{v}^{t-1} \| \mathbf{h}_{\mathcal{N}_{v}}^{t} \right] \right) \\ \mathbf{h}_{\mathcal{N}_{v}}^{t} &= \max (\left\{ \sigma \left(\mathbf{W}_{\text{pool}} \mathbf{h}_{u}^{t-1} + \mathbf{b} \right), \forall u \in \mathcal{N}_{v} \right\} \right) \end{aligned}$$

like mean, sum or max function

$$\mathbf{h}_v^{(k)} = \sigma(\mathbf{W}^{(k)} \cdot f_k(\mathbf{h}_v^{(k-1)}, \{\mathbf{h}_u^{(k-1)}, \forall u \in S_{\mathcal{N}(v)}\}))$$

where $\mathbf{h}_{v}^{(0)} = \mathbf{x}_{v}$, $f_{k}(\cdot)$ is an aggregation function, $S_{\mathcal{N}(v)}$ is a random sample of the node v's neighbors.

Comparision with CNNS

ResNet50 Model Architecture

Sapireddy, S. R. (2023, July 1). ReSNEt-50: Introduction - Srinivas Rahul Sapireddy - Medium. Medium. https://srsapireddy.medium.com/resnet-50-introduction-b5435fdba66f

ViG Models

ViG-Ti

Flops(B): 7.1 **Params(M):** 1.3

ViG-S

Flops(B): 4.5 Params(M): 22.7 ViG-B

Flops(B): 17.7 **Params(M):** 86.8

ResNet -18

Flops(B): 1.82 Params(M6): 11.7 ResNet -50

Flops(B): 3.86 Params(M): 25.6 ResNet -101

Flops(B): 7.1 **Params(M):** 44.6

Model	Depth	Dimension D
ViG-Ti	12	192
ViG-S	16	320
iG-B	16	640

Table 3. ViG models on CIFAR Dataset

Model	Top-1	Top-5
ViG-Ti	66.1	97.67
ViG-S	65.64	97.95
ViG-B	67.71	98.78

Results on ImageNet®lk

Table 4. ViG models on ImageNet Dataset

Model	Top-1	Top-5
ViG-Ti	55.60	93.32
ViG-S	55.75	93.95

Conclsuion

- 1. ViG models (ViG-Ti, ViG-S, ViG-B) show promise in our training, with potential for comparable or superior performance to ResNet variants (ResNet-18, ResNet-50, ResNet-101) as we increase training epochs.
 - 2. ViG models match ResNet models in size (FLOPs and parameters) but outperform them in image classification.