

Alejandro Ferrada

Filtros Pasivos

Tarea 2 – Armónicas en Sistemas de Baja

Escuela de Ingeniería Eléctrica

Resumen

La presenta tarea tiene como objetivo filtrar armónicos, y compensar reactivos para los dos sistemas dados (mismos usados en la tarea anterior). De tal forma que sus valores de interés (corriente de las componentes armónicas, distorsión, factor de potencia, etc.) estén dentro de la norma chilena. Se utiliza métodos iterativos, para calcular filtros para cada armónico paso a paso, y a su vez se distribuyen los condensadores de tal forma que en su totalidad se tenga un condensador equivalente necesario para compensar los reactivos del sistema.

Índice

INTRODUCCIÓN	5
PARÁMETROS DE SIMULACIÓN	6
MARCO TEÓRICO	7
DESARROLLO	8
SISTEMA 1	8
Fase A	9
FASE B	17
FASE C	24
FASES A, B y C	29
SISTEMA 2	31
FASE A	32
FASES A, B y C	37
CONCLUSIONES	38
ANEXO	39

Índice de Figuras

Figura 1 Parámetros "Simulation Control"	6
Figura 2 Herramienta Label	6
Figura 3 Sistema 1 en PSIM	8
Figura 4 Tensión y Corriente Fase A antes de los filtros	9
Figura 5 Forma de onda de tensión y corriente en la Fase A, posterior a los filtros	15
Figura 6 Filtros conecados en la fase A	15
Figura 7 Forma de onda de la fase B, con fase A filtrada	16
Figura 8 Tensión y corriente, Fase B sin filtros	17
Figura 9 Tensión y corriente en fase B, luego de los filtros	23
Figura 10 Filtros conectados en fase B	23
Figura 11 Tensión y Corriente en la fase C antes del filtro	24
Figura 12 Filtros conectados en la fase C	27
Figura 13 Tensión y corriente en fase C luego de los filtros	28
Figura 14 Corrientes en las tres fases luego de los filtros	29
Figura 15 Tensiones en las tres fases luego de conectar los filtros	30
Figura 16 Sistema 2 Simulado en PSIM	31
Figura 17 Tensión y Corriente sin filtro en fase A	32
Figura 18 Tensión y Corriente Luego de conectar los filtros	36
Figura 19 Corrientes en las tres fases, luego del filtro	37
Figura 20 Tensiones en las tres fases, luego del filtro	37

INTRODUCCIÓN

El avance de la tecnología de electrónica de potencia trae consigo el problema de los armónicos, los cuales causan, en general, pérdidas. La solución a este problema son los filtros, para el caso de la presente tarea se considerarán los filtros de tipo pasivo, y se calcularán a través de iteraciones, de tal forma que todos los armónicos queden dentro de la norma, asícomo también el factor de potencia y la distorsión armónica.

Los métodos iterativos para calcular los filtros, requiere que se simule por cada paso que se da, por lo que es necesario un software rápido y eficiente para resolver circuitos de potencia, como lo es PSIM.

PARÁMETROS DE SIMULACIÓN

Para simular los sistemas se utiliza el programa PSIM.

Las simulaciones se muestran para 6. Y 6.06 segundos, de esta manera se deja tiempo para que el circuito llega al estado estable.

El paso de simulación se estableció en e-6 segundos.

El siguiente simulation control muestra los parámetros comentados:

Figura 1 Parámetros "Simulation Control"

-

Cabe mencionar que además se hará uso de los "Labels", que permiten conectar puntos a distancia. Esta herramienta es necesaria debido al poco espacio existente entre las fases y el neutro.

Figura 2 Herramienta Label

MARCO TEÓRICO

Para calcular cada filtro R-L-C, se trabajará con la siguiente expresión:

$$R_{n} = \frac{K_{n} \cdot I_{1ef}}{(I_{nef}^{2} - K_{n}^{2} \cdot I_{1ef}^{2})} \cdot \left[R_{S} \cdot K_{n} \cdot I_{1ef} + \sqrt{(R_{S} \cdot I_{nef})^{2} + (n \cdot \omega \cdot L_{S})^{2} \cdot (I_{nef}^{2} - K_{n}^{2} \cdot I_{1ef}^{2})} \right]$$

$$L_{n} = \frac{R_{n} \cdot Q}{n \cdot \omega}$$

$$C_{n} = \frac{1}{n^{2} \cdot \omega^{2} \cdot L_{n}}$$

El cual, se evalúa para el armónico ${\bf n}$, se agrega el filtro calculado, y se recalcula los parámetros I_{1ef} , se itera progresivamente, hasta llegar a valores que cumplan con la norma chilena. Kn nos indica el porcentaje que deseamos de la armónica respecto a la fundamental. Q es el factor de calidad, el cual a mayor valor, más preciso se estará filtrando, es decir, se atenuará la armónica en cuestión, y no las que se encuentra en sus alrededores.

Para la compensación de reactivos, se considera que la capacitancia total permita obtener un factor de potencia deseado, en nuestro casos se figará a 0.95 [].

Sea:
$$\lambda = \frac{FP}{\sqrt{1-FP^2}}$$
 ; $Q_{DESEADO} = \frac{P}{\lambda}$

Luego, sea Q_{ACTUAL} la potencia reactiva que el sistema tiene antes del filtro, la potencia a reactiva por compensar se obtiene como:

$$Q_{COMPENSAR} = Q_{ACTUAL} - Q_{DESEADO}$$

Finalmente, la capacitancia total se obtiene del Q por compensar:

$$C_{TOTAL} = \frac{Q_{COMPENSAR}}{\omega V^2}$$

DESARROLLO

SISTEMA 1

A continuación se muestra el circuito simulado, representando el sistema 1:

Figura 3 Sistema 1 en PSIM

Donde los valores correspondientes fueron:

Fuentes de tensiones sinusoidales trifásicas balanceadas, de 50 [Hz] y 220[Vrms].

Ls = 20[uH]

Ld = 100[uH]

L0 = 10[mH]

 $R0 = 0.5 [\Omega]$ para la fase A y C. $R0 = 0.1 [\Omega]$ para la fase B.

Ángulo de disparo: 60°

Los filtros pasivos se conectarán entre el PCC y el neutro del sistema. La conexión al neutro se hará en el punto común de las fuentes de tensión por motivos de simplificación. Sin embargo, si se desea modelar de una manera más fiel a la realidad, la conexión debería ser posterior a la resistencia del neutro *Rn*, de este modo consideraría las pérdidas generadas por la corriente que circula en ella (provocadas por el desbalance de las fases).

Fase A

En la tarea anterior, se obtuvo para esta fase, la siguiente forma de onda:

Figura 4 Tensión y Corriente Fase A antes de los filtros

También se llegó a la siguiente evaluación de norma para las tensiones:

n	f [Hz]	% Van	% Norma	Cumple	n	f [Hz]	% Van	% Norma	Cumple
1	50.00083	100		SÍ	26	1300.022	0.00031	0.2	SÍ
2	100.0017	0.004442	2	SÍ	27	1350.023	0.35617	0.2	NO
3	150.0025	0.370579	5	sí	28	1400.023	0.000563	0.2	SÍ
4	200.0033	0.001747	1	SÍ	29	1450.024	0.352986	1.32069	SÍ
5	250.0042	0.363101	6	SÍ	30	1500.025	0.000754	0.2	SÍ
6	300.005	0.001261	0.5	SÍ	31	1550.026	0.350672	1.248387	SÍ
7	350.0058	0.371838	5	sí	32	1600.027	0.000414	0.2	SÍ
8	400.0067	0.000767	0.5	SÍ	33	1650.028	0.348858	0.2	NO
9	450.0075	0.369776	1.5	SÍ	34	1700.028	0.000661	0.2	SÍ
10	500.0083	0.00063	0.5	SÍ	35	1750.029	0.34577	1.128571	SÍ
11	550.0092	0.3648	3.5	SÍ	36	1800.03	0.000807	0.2	SÍ
12	600.01	0.000788	0.2	SÍ	37	1850.031	0.342817	1.078378	SÍ
13	650.0108	0.367423	3	SÍ	38	1900.032	0.000521	0.2	SÍ
14	700.0117	0.000355	0.2	SÍ	39	1950.033	0.340306	0.2	NO
15	750.0125	0.36673	0.3	NO	40	2000.033	0.000756	0.2	SÍ
16	800.0133	0.00045	0.2	SÍ	41	2050.034	0.337138	0.992683	SÍ
17	850.0142	0.362723	2	SÍ	42	2100.035	0.000863	0.2	SÍ
18	900.015	0.000706	0.2	SÍ	43	2150.036	0.333754	0.955814	SÍ
19	950.0158	0.362857	1.5	SÍ	44	2200.037	0.000621	0.2	SÍ
20	1000.017	0.000251	0.2	SÍ	45	2250.038	0.33059	0.2	NO
21	1050.018	0.362157	0.2	NO	46	2300.038	0.000844	0.2	SÍ
22	1100.018	0.000476	0.2	SÍ	47	2350.039	0.327195	0.891489	SÍ
23	1150.019	0.35868	1.5	SÍ	48	2400.04	0.000917	0.2	SÍ
24	1200.02	0.000714	0.2	SÍ	49	2450.041	0.323498	0.863265	SÍ
25	1250.021	0.357333	1.5	SÍ	50	2500.042	0.000711	0.2	SÍ

TABLA 1 Evaluación de la Norma para Armónicos de Tensión Fase A

Y también se obtuvo la siguiente tabla de armónicos de corriente:

n	f [Hz]	% lan	% Norma	Cumple	n	f [Hz]	% lan	% Norma	Cumple
1	50,000833				26	1300,0217	0,0086547	0,5	SÍ
2	100,00167	0,0086971	3	SÍ	27	1350,0225	2,32103	2	NO
3	150,0025	21,695286	12	NO	28	1400,0233	0,0066892	0,5	SÍ
4	200,00333	0,0080362	3	SÍ	29	1450,0242	2,1422154	2	NO
5	250,00417	12,805293	12	NO	30	1500,025	0,0033638	0,5	SÍ
6	300,005	0,0024634	3	SÍ	31	1550,0258	1,9804924	2	SÍ
7	350,00583	9,3054894	12	SÍ	32	1600,0267	0,0087088	0,5	SÍ
8	400,00667	0,0082936	3	SÍ	33	1650,0275	1,8610601	2	SÍ
9	450,0075	7,2215385	12	SÍ	34	1700,0283	0,0063504	0,25	SÍ
10	500,00833	0,0076369	1,375	SÍ	35	1750,0292	1,7384881	1	NO
11	550,00917	5,8387684	5,5	NO	36	1800,03	0,0036967	0,25	SÍ
12	600,01	0,0025603	1,375	SÍ	37	1850,0308	1,6212882	1	NO
13	650,01083	4,953719	5,5	SÍ	38	1900,0317	0,0087275	0,25	SÍ
14	700,01167	0,0084414	1,375	SÍ	39	1950,0325	1,5371488	1	NO
15	750,0125	4,2983658	5,5	SÍ	40	2000,0333	0,0060074	0,25	SÍ
16	800,01333	0,0073326	1,25	SÍ	41	2050,0342	1,4467099	1	NO
17	850,01417	3,7555944	5	SÍ	42	2100,035	0,0040359	0,25	SÍ
18	900,015	0,0027749	1,25	SÍ	43	2150,0358	1,3574282	1	NO
19	950,01583	3,3466238	5	SÍ	44	2200,0367	0,0087111	0,25	SÍ
20	1000,0167	0,0085651	1,25	SÍ	45	2250,0375	1,2951477	1	NO
21	1050,0175	3,0330083	5	SÍ	46	2300,0383	0,0056669	0,25	SÍ
22	1100,0183	0,0070179	0,5	SÍ	47	2350,0392	1,2243877	1	NO
23	1150,0192	2,7447826	2	NO	48	2400,04	0,0043712	0,25	SÍ
24	1200,02	0,0030507	0,5	SÍ	49	2450,0408	1,1539773	1	NO
25	1250,0208	2,5036991	2	NO	50	2500,0417	0,0086604	0,25	SÍ

TABLA 2 Evaluación de la Norma para Armónicos de Corriente Fase A

Los filtros se comienzan a calcular desde las armónicas más cercanas a la fundamental, hacia la más lejana. Si bien la norma exige un determinado porcentaje a cada armónica (de su amplitud respecto a la fundamental), los filtros se proyectarán para restringir la mitad de tal porcentaje. Por ejemplo, para la armónica n=3, por norma la restricción corresponde a un 12%, pero se proyectará para un 6%. Con esto se evitará que algunos armónicos vuelvan a salir de la norma, ya que conforme avance el algoritmo, las relaciones porcentuales del resto de los armónicos presentan ligeras variaciones.

Como se observa en la tabla 2, los filtros paralelos deben filtrar las armónicas: 3, 5, 11, 23, 25, 27, 29. 35. 37. 39, 41, 43, 45, 47 y 49.

Además, desde la tarea 1, se obtuvieron los siguientes valores:

Factor de potencia: 0.4347 [-]

Distorsión armónica tota (de corriente): 30.539%

Ambos se encuentran fuera de la norma, ya que el factor de potencia mínimo es de 0.93[-], y la distorsión máxima es de 15%.

Método de cálculo de filtros:

Principalmente se irá calculando con la ecuación presentada en la página 5. El factor de calidad Q se irá asignando, de tal forma que los condensadores de filtro **no superen los 400[µF]**, para trabajar con valores "factibles" de capacitancia. A medida que la iteración lleve a componentes armónicos más lejanos de la fundamental, se irá aumentando los condensadores.

Capacitancia total:

La capacitancia total para la fase A, está dada por:

$$\lambda = \frac{FP}{\sqrt{1 - FP^2}} = 9,7436[-]$$

$$Q_{DESEADO} = \frac{P}{\lambda} = \frac{19739,15}{9,7436} = 2025,858$$

$$Q_{COMPENSAR} = 38.517,86 - 2.025,858 = 36.492$$

$$C_{TOTAL} = \frac{Q_{COMPENSAR}}{\omega V^2} = \frac{36.492}{100\pi \cdot (220)^2} = 2400[\mu F]$$

A continuación se mostrará los cálculos de cada filtro paso a paso, indicando cómo varía la corriente fundamental a medida que se agregan más filtros pasivos, y comentando cual fue el resultado en cada iteración:

			FASE A									
ENTRADA	n=3	K3=6	11rms = $280.55/\sqrt{2}$	13rms = 61.2/ $\sqrt{2}$	Q=1000							
SALIDA	R3=5.0	0176[mΩ]	L3= 5.3229 [mH]	C3=211.4603[µ	F]							
RESULTADO			Dejó la armónica n=3 d	entro de la norma								
ENTRADA	n=5	K5=6	I1rms = 260.086 $/\sqrt{2}$	15rms = $35.693/\sqrt{2}$	Q=500							
SALIDA	R5=12	.398 [mΩ]	L5= 3.9463 [mH]	C5= 102.7009 [μF]								
RESULTADO			Dejó la armónica n=5 d	entro de la norma								
ENTRADA	n=11	K11=2.25	I1rms = $251.02/\sqrt{2}$	I11rms = $16.2 / \sqrt{2}$	Q=200							
SALIDA	R11= 2	22.6 [mΩ]	L11= 1.3077 [mH]	C11= 64.0325 [µ	ıF]							
RESULTADO			Dejó la armónica n=11 d	dentro de la norma								
ENTRADA	n=15	K15=2.25	$11 \text{rms} = 245.65 / \sqrt{2}$	115rms = 11.56/ $\sqrt{2}$	Q=50							
SALIDA	R15= 3	9.59 [mΩ]	L15= 0.4202 [mH]	C15= 107.1792 [μF]							
RESULTADO	De	jó la armóni	ca n=15 dentro de la no	rma. Sacó de norma la arm								

TABLA 3 Iteraciones Fase A Sistema 1

			FASE A (Parte 2)						
ENTRADA	n=13	K13=2.25	$11 \text{rms} = 236.83 / \sqrt{2}$	115rms = 15.09/ $\sqrt{2}$	Q=100				
SALIDA	R13=2	6.99 [mΩ]	L13= 0.6610 [mH]	C13=90.6973 [µ	F]				
RESULTADO Dejó la armónica n=13 dentro de la norma									
Para las siguientes armónicas, se dejará un factor de calidad Q muy bajo (20), para que filtre									
ENITO A D A	. 22	ı	mbién las armónicas cerd		0.20				
ENTRADA	n=23	K23=1	11rms = 229.45/ $√2$	123rms = 6.15/ $\sqrt{2}$	Q=20				
SALIDA	R23=4	9.99 [mΩ]	L23= 0.1384 [mH]	C23= 138.4055 [μF]				
RESULTADO		Dejó l	a armónica n=23, 25, 27	y 29 dentro de la norma.					
			Pero sacó de la nor	ma: n=7 y 21.					
ENTRADA	n=7	K7=3	11rms = $218.46/\sqrt{2}$	17rms = 27.09 $/\sqrt{2}$	Q=500				
SALIDA	R7=10).33 [mΩ]	L7= 2.3494 [mH]	C7=88.0125 [μl	:]				
RESULTADO			Dejó la armónica n=7 de	·	-				
ENTRADA	n=21	K21=1,15	I1rms = $214.51/\sqrt{2}$	I21rms = 2.48/ $\sqrt{2}$	Q=50				
SALIDA	R21=12.12 [mΩ] L21= 0.0918 [mH] C21=250.1580 [μF]								
RESULTADO			Dejó la armónica n=21 d		-				
			Pero sacó de la norma	a: n= 9, 17 y 19.					
ENTRADA	n=9	K9=2	11rms = $195.323/\sqrt{2}$	19rms = 15.09/ $\sqrt{2}$	Q=1000				
SALIDA	R9= 9.	283 [mΩ]	L9= 3.2833 [mH]	C9= 38.0986 [μ	F]				
RESULTADO			Dejó la armónica n=9 de		_				
ENTRADA	n=17	K23=2,5	11rms = $194.19/\sqrt{2}$	117rms = 14.09/ $\sqrt{2}$	Q=500				
SALIDA	R17= 3	4.56 [mΩ]	L17 =3.2359 [mH]	C17= 10.8344 [µ	ıFl				
RESULTADO			Dejó la armónica n=17 d						
ENTRADA	n=19	K19=2,5	11rms = 193.34 $/\sqrt{2}$	119rms = 65.46 $/\sqrt{2}$	Q=500				
SALIDA	R19= 8	.797 [mΩ]	L19= 0.7369 [mH]	C19= 38.0889 [µ	.Fl				
RESULTADO			Dejó la armónica n=19 d						
	uientes a	rmónicas, se	<u> </u>	dad Q muy bajo (20), para	que filtre				
		ta	mbién las armónicas cero	canas.					
ENTRADA	n=35	K35=0,5	11rms = 191.07/ $\sqrt{2}$	135rms = 2.797/ $\sqrt{2}$	Q=20				
SALIDA	R35= 7	 0.61 [mΩ]	L35= 0.1284 [mH]	C35= 64.4024 [µ	L				
RESULTADO			nónicas impares desde n	= 35 hasta n= 49 dentro de	•				
Pero sacó de la norma: n= 31 y 33									

			FASE A (Parte 3)			
ENTRADA	n=31	K31=1	I1rms = $186.51/\sqrt{2}$	131rms = 4.099/ $\sqrt{2}$	Q=20	
SALIDA	R31=7	8.92 [mΩ]	L31= 0.1621 [mH]	C31=65.0494 [μ	F]	
RESULTADO		De	ejó la armónica n=31 y 33	dentro de la norma.		
			Pero sacó de la norm	na: n=27 y 29.		
ENTRADA	n=27	K27=1	$11 \text{rms} = 182.00 / \sqrt{2}$	127rms = 3.912/ $\sqrt{2}$	Q=20	
			·	,		
	R27= 69.88 [mΩ] L27= 0.1648 [mH] C27= 84.3574 [μF]					
SALIDA	R27= 6	9.88 [mΩ]	L27= 0.1648 [mH]	C27= 84.3574 [µ	ıF]	
SALIDA RESULTADO	R27= 6		L27= 0.1648 [mH] ejó la armónica n=27 y 29		ıF]	
	R27= 6			dentro de la norma.	ıF]	
	R27= 6 n=25		ejó la armónica n=27 y 29	dentro de la norma.	Q=20	
RESULTADO		De	ejó la armónica n=27 y 29 Pero sacó de la no	dentro de la norma. rma: n=25.		
RESULTADO	n=25	De	ejó la armónica n=27 y 29 Pero sacó de la no	dentro de la norma. rma: n=25.	Q=20	
RESULTADO ENTRADA	n=25	De K25=1	ejó la armónica n=27 y 29 Pero sacó de la no I1rms = $176.33/\sqrt{2}$	dentro de la norma. rma: n=25. 125rms = 3.804 $/\sqrt{2}$ C25= 98.6727 [µ	Q=20	

TABLA 5 Iteraciones Fase A Sistema 1 (Parte 3)

Con la última iteración que se muestra en la tabla 5, se ha logrado que todas las armónicas queden dentro de la norma. Sin embargo, la suma total de capacitores aún no da la capacitancia total para compensar reactivos, que ha sido calculado al principio de este inciso. Por lo tanto se han agregado condensadores sintonizados con armónicas superiores (lejanos a la fundamental), para alcanzar la capacitancia total necesaria.

Una vez que se alcanza la capacitancia total, se obtiene la siguiente forma de onda para la fase A:

Figura 5 Forma de onda de tensión y corriente en la Fase A, posterior a los filtros

En el cual, el factor de potencia es de 0,9856[-], y la distorsión armónica THDi es de 0,1446, los cuales se encuentran dentro de la norma.

Se puede observar cómo la forma de onda de la corriente se asemeja a una sinusoidal, además la profundidad de los *notches* se han disminuido en la forma de onda de la tensión.

Las nuevas componentes armónicas de corriente y de tensión, para la fase A, han sido evaluadas y se encuentran en el **Anexo, evaluación de la norma posterior a los filtros**.

Los filtros conectados se muestran a continuación:

Figura 6 Filtros conecados en la fase A

Si observamos la fase B, posterior a conectar los filtros en la fase A, se tiene lo siguiente:

Figura 7 Forma de onda de la fase B, con fase A filtrada

Se aprecia una gran ventaja: **los filtros que se conectan en una fase, no alteran la forma de onda de tensión y corriente para el resto de las fases.** Por lo que las iteraciones para las siguientes fases se pueden realizar de manera independiente.

FASE B

En la tarea anterior, se obtuvo para esta fase, la siguiente forma de onda:

Figura 8 Tensión y corriente, Fase B sin filtros

También se llegó a la siguiente evaluación de norma para las tensiones:

n	f [Hz]	% Vbn	% Norma	Cumple	n	f [Hz]	% Vbn	% Norma	Cumple
1	50,0008	100			26	1300,02	0,00487	0,2	SÍ
2	100,002	0,00812	2	SÍ	27	1350,02	0,67936	0,2	NO
3	150,003	1,21991	5	SÍ	28	1400,02	0,0049	0,2	SÍ
4	200,003	0,00627	1	SÍ	29	1450,02	0,61144	1,32069	SÍ
5	250,004	1,20776	6	SÍ	30	1500,03	0,00496	0,2	SÍ
6	300,005	0,00594	0,5	SÍ	31	1550,03	0,54175	1,24839	SÍ
7	350,006	1,18705	5	SÍ	32	1600,03	0,00505	0,2	SÍ
8	400,007	0,00576	0,5	SÍ	33	1650,03	0,47081	0,2	NO
9	450,008	1,15791	1,5	SÍ	34	1700,03	0,00515	0,2	SÍ
10	500,008	0,00561	0,5	SÍ	35	1750,03	0,40237	1,12857	SÍ
11	550,009	1,12556	3,5	SÍ	36	1800,03	0,00526	0,2	SÍ
12	600,01	0,00546	0,2	SÍ	37	1850,03	0,33442	1,07838	SÍ
13	650,011	1,0859	3	SÍ	38	1900,03	0,00537	0,2	SÍ
14	700,012	0,00532	0,2	SÍ	39	1950,03	0,26751	0,2	NO
15	750,013	1,03908	0,3	NO	40	2000,03	0,00547	0,2	SÍ
16	800,013	0,00519	0,2	SÍ	41	2050,03	0,20514	0,99268	SÍ
17	850,014	0,98995	2	SÍ	42	2100,04	0,00556	0,2	SÍ
18	900,015	0,00507	0,2	SÍ	43	2150,04	0,14628	0,95581	SÍ
19	950,016	0,93501	1,5	SÍ	44	2200,04	0,00564	0,2	SÍ
20	1000,02	0,00498	0,2	SÍ	45	2250,04	0,09345	0,2	SÍ
21	1050,02	0,87459	0,2	NO	46	2300,04	0,00568	0,2	SÍ
22	1100,02	0,00491	0,2	SÍ	47	2350,04	0,05817	0,89149	SÍ
23	1150,02	0,81327	1,5	SÍ	48	2400,04	0,0057	0,2	SÍ
24	1200,02	0,00487	0,2	SÍ	49	2450,04	0,06088	0,86327	SÍ
25	1250,02	0,74804	1,5	SÍ	50	2500,04	0,0057	0,2	sí

TABLA 6 Evaluación de la Norma para Armónicos de Tensión Fase B

Y la siguiente evaluación de norma para las corrientes:

n	f [Hz]	% Ibn	% Norma	Cumple	n	f [Hz]	% Ibn	% Norma	Cumple
1	50,0008				26	1300,02	0,00543	0,375	SÍ
2	100,002	0,00116	2,5	SÍ	27	1350,02	1,79577	1,5	NO
3	150,003	28,8313	10	NO	28	1400,02	0,00554	0,375	SÍ
4	200,003	0,00136	2,5	SÍ	29	1450,02	1,50689	1,5	NO
5	250,004	17,1352	10	NO	30	1500,03	0,00561	0,375	SÍ
6	300,005	0,00183	2,5	SÍ	31	1550,03	1,25117	1,5	SÍ
7	350,006	12,0324	10	NO	32	1600,03	0,00562	0,375	SÍ
8	400,007	0,00233	2,5	SÍ	33	1650,03	1,02363	1,5	SÍ
9	450,008	9,13086	10	SÍ	34	1700,03	0,0056	0,175	SÍ
10	500,008	0,00281	1,125	SÍ	35	1750,03	0,82713	0,7	NO
11	550,009	7,26406	4,5	NO	36	1800,03	0,00553	0,175	SÍ
12	600,01	0,00328	1,125	SÍ	37	1850,03	0,65263	0,7	SÍ
13	650,011	5,9319	4,5	NO	38	1900,03	0,00543	0,175	SÍ
14	700,012	0,00372	1,125	SÍ	39	1950,03	0,49773	0,7	SÍ
15	750,013	4,92116	4,5	SÍ	40	2000,03	0,0053	0,175	SÍ
16	800,013	0,00411	1,125	SÍ	41	2050,03	0,36551	0,7	SÍ
17	850,014	4,13889	4	SÍ	42	2100,04	0,00514	0,175	SÍ
18	900,015	0,00447	1,125	SÍ	43	2150,04	0,25078	0,7	SÍ
19	950,016	3,49966	4	SÍ	44	2200,04	0,00498	0,175	SÍ
20	1000,02	0,00478	1,125	SÍ	45	2250,04	0,15433	0,7	SÍ
21	1050,02	2,96369	4	SÍ	46	2300,04	0,0048	0,175	SÍ
22	1100,02	0,00505	0,375	SÍ	47	2350,04	0,08809	0,7	SÍ
23	1150,02	2,5183	1,5	NO	48	2400,04	0,00463	0,175	SÍ
24	1200,02	0,00526	0,375	SÍ	49	2450,04	0,07851	0,7	SÍ
25	1250,02	2,13306	1,5	NO	50	2500,04	0,00447	0,175	SÍ

TABLA 7 Evaluación de la Norma para Armónicos de Corriente Fase B

Tal como se hizo con la fase A, los filtros se comienzan a calcular desde las armónicas más cercanas a la fundamental, hacia la más lejana. Nuevamente los filtros se proyectarán para restringir la mitad de tal porcentaje, para evitar que algunos armónicos vuelvan a salir de la norma, ya que conforme avance el algoritmo, las relaciones porcentuales del resto de los armónicos presentan ligeras variaciones.

Como se observa en la tabla 2, los filtros paralelos deben filtrar las armónicas: 3, 5, 7, 11, 23, 25, 27, 29 y 35.

Además, desde la tarea 1, se obtuvieron los siguientes valores:

Factor de potencia: 0.4081 [-]

Distorsión armónica tota (de corriente): 39.179%

Ambos se encuentran fuera de la norma, ya que el factor de potencia mínimo es de 0.93[-], y la distorsión máxima es de 15%.

Método de cálculo de filtros:

Al igual que en la fase anterior, se irá calculando con la ecuación presentada en la página 5. El factor de calidad Q se irá asignando, de tal forma que los condensadores de filtro **no superen los 400[\mu F]**, para trabajar con valores "factibles" de capacitancia. A medida que la iteración lleve a componentes armónicos más lejanos de la fundamental, se irá aumentando los condensadores.

Capacitancia total:

La capacitancia total para la fase A, está dada por:

$$\lambda = \frac{FP}{\sqrt{1 - FP^2}} = 9,7436[-]$$

$$Q_{DESEADO} = \frac{P}{\lambda} = \frac{46.086,63}{9,7436} = 4729,6$$

$$Q_{COMPENSAR} = 93.234,47 - 4729,6 = 88.505$$

$$C_{TOTAL} = \frac{Q_{COMPENSAR}}{\omega V^2} = \frac{88.505}{100\pi \cdot (220)^2} = 5800[\mu F]$$

A continuación se mostrará los cálculos de cada filtro paso a paso, indicando cómo varía la corriente fundamental a medida que se agregan más filtros pasivos, y comentando cual fue el resultado en cada iteración:

			FASE B					
ENTRADA	n=3	K3=3	I1rms = $684.2756/\sqrt{2}$	13rms = 197.285/ $\sqrt{2}$	Q=1400			
SALIDA	R3=1.9	9525[mΩ]	L3= 2.9003 [mH]	C3=388.1636[µl	F]			
RESULTADO			Dejó la armónica n=3 der	ntro de la norma				
ENTRADA	n=5	n=5 K3=3 I1rms = $646.8355/\sqrt{2}$		15rms = 116.312/ $\sqrt{2}$	Q=1000			
SALIDA	R5=5.:	1725[mΩ]	L5= 3.2929 [mH]	C5=123.0771[μΙ	F]			
RESULTADO			Dejó la armónica n=5 der	ntro de la norma				
ENTRADA	n=7	K7=3	11rms = $636.24/\sqrt{2}$	17rms = 80.985/ $\sqrt{2}$	Q=300			
SALIDA	R7=10.	0831[mΩ]	L7= 1.3755 [mH]	C7=150.3266[μΙ	F]			
RESULTADO	Dejó l	a armónica r	n=7 dentro de la norma. Sa	acó de norma las armónic	as 15 y 17			
ENTRADA	n=11	K11=2	I1rms = 623.6897/ $\sqrt{2}$	111rms = 48.275/ $\sqrt{2}$	Q=100			
SALIDA	R11=17	.2591[mΩ]	L11= 0.4494 [mH]	C11=167.6639[µF]				
RESULTADO	De	jó la armóni	ca n=11 dentro de la norm	na. Sacó de norma la armo	ónica 9			
ENTRADA	n=9	K9=2		996/ $\sqrt{2}$ 19rms = 64.896/ $\sqrt{2}$	Q=300			
SALIDA	R9=10.	4480[mΩ]	L9= 1.1086 [mH]	C9=112.8372[μΙ	F]			
RESULTADO			Dejó la armónica n=9 dentro de la norma					
ENTRADA	n=13	K13=2	I1rms = 601.1782/ $\sqrt{2}$	113rms = 34.246/ $\sqrt{2}$	Q=100			
SALIDA	R13=2	8.863mΩ]	L13= 0.6577 [mH]	C13=91.149[μF]				
RESULTADO			Dejó la armónica n=13 de	ntro de la norma				
ENTRADA	n=15	K15=1.5	11rms = $594.006/\sqrt{2}$	115rms = 27.349/ $\sqrt{2}$	Q=100			
SALIDA	R15= 2	9.04 [mΩ]	L15= 0.6162 [mH]	C15= 73.0839 [μ	F]			
RESULTADO			Dejó la armónica n=15 de	ntro de la norma				
ENTRADA	n=23	K23=0,75	11rms = 588.37 $/\sqrt{2}$	123rms = 15.44 $/\sqrt{2}$	Q=100			
SALIDA	R23= 3	9.58 [mΩ]	L23= 0.5478 [mH]	C23= 34.9615 [μ	F]			
RESULTADO			Dejó la armónica n=23 de	ntro de la norma				
ENTRADA	n=25	K25=0,75	11rms = 585.79/ $\sqrt{2}$	125rms = 11.255 $/\sqrt{2}$	Q=70			
SALIDA	R25= 2	4.22 [mΩ]	L25= 0.2159 [mH]	C25= 75.0827 [μ	F]			
RESULTADO		Dejó la armónica n=23 dentro de la norma Pero sacó de la norma n=17,19 y 21						

	FASE B (Parte 2)									
ENTRADA	n=17	K17=1.5	11rms = 579.66/ $\sqrt{2}$	117rms = 24.52/ $\sqrt{2}$	Q=100					
SALIDA	R17= 3	5.42 [mΩ]	L17= 0.6633 [mH]	C17= 52.8575 [µ	ιF]					
RESULTADO		De	ejó la armónica n=17 y 19	dentro de la norma						
ENTRADA	n=21 K21=100		I1rms = 575.76 $/\sqrt{2}$	121rms = 28.64 $/\sqrt{2}$	Q=100					
SALIDA	R21= 3	7.94 [mΩ]	L21= 0.5751 [mH]	C21= 39.9481 [µ	ιF]					
RESULTADO			Dejó la armónica n=21 d	entro de la norma.						
			Pero sacó la armónica n	=19 de la norma.						
ENTRADA	n=19	K19=3	I1rms = $572.99 / \sqrt{2}$	119rms = $25.29 / \sqrt{2}$	Q=300					
SALIDA	R19= 3	8.15 [mΩ]	L19= 0.6393 [mH]	C19= 43.9035 [µ	ιF]					
RESULTADO			Dejó la armónica n=19 d	entro de la norma						
ENTRADA	n=35	K35=0.1	I1rms = 569.8 $/\sqrt{2}$	135rms = $5.041/\sqrt{2}$	Q=10					
SALIDA	R35=17	.2591[mΩ]	L35= 0.4494 [mH]	C35=167.6639[µ	ιF]					
		Dejó la	armónica n=35 dentro d	e la norma						
T	ODAS	LAS ARMO	ÓNICAS ESTÁN DEN	TRO DE LA NORMA						

TABLA 9 Iteraciones Fase B Sistema 1 (Parte 2)

Al igual como ocurría con la fase A, no se ha compensado los reactivos aun cuando las armónicas han sido filtradas. Por lo tanto se han agregado más condensadores, de valores cercano a los 400 microfaradios, sintonizado con armónicas muy lejanas a la fundamental (para no afectar las armónicas ya filtradas).

A continuación se muestra la forma de onda de tensión y corriente en la fase B, luego de conectar todos los filtros.

Figura 9 Tensión y corriente en fase B, luego de los filtros

En esta fase los valores de corriente es comparable con los valores de tensión. El factor de potencia obtenido luego de los filtros, es de 0.948 [-], y el THDi es de 12,67%, ubicándose ambos dentro de los valores de la norma chilena.

Los filtros sintonizados con cada componente armónica se muestra a continuación:

Figura 10 Filtros conectados en fase B

La reevaluación de esta fase según la norma, con los filtros conectados, se encuentra en el anexo.

FASE C

De la tarea anterior, se obtuvo la siguiente forma de onda de la tensión y corriente por la fase C:

Figura 11 Tensión y Corriente en la fase C antes del filtro

También se llegó a la siguiente evaluación de la norma eléctrica, para las armónicas de tensiones:

n	f [Hz]	% Vcn	% Norma	Cumple	n	f [Hz]	% Vcn	% Norma	Cumple
1	50,0008	100		SÍ	26	1300,02	0,00487	0,2	SÍ
2	100,002	0,00812	2	SÍ	27	1350,02	0,67936	0,2	NO
3	150,003	1,21991	5	SÍ	28	1400,02	0,0049	0,2	SÍ
4	200,003	0,00627	1	SÍ	29	1450,02	0,61144	1,32069	SÍ
5	250,004	1,20776	6	SÍ	30	1500,03	0,00496	0,2	SÍ
6	300,005	0,00594	0,5	SÍ	31	1550,03	0,54175	1,24839	SÍ
7	350,006	1,18705	5	SÍ	32	1600,03	0,00505	0,2	SÍ
8	400,007	0,00576	0,5	SÍ	33	1650,03	0,47081	0,2	NO
9	450,008	1,15791	1,5	SÍ	34	1700,03	0,00515	0,2	SÍ
10	500,008	0,00561	0,5	SÍ	35	1750,03	0,40237	1,12857	SÍ
11	550,009	1,12556	3,5	SÍ	36	1800,03	0,00526	0,2	SÍ
12	600,01	0,00546	0,2	SÍ	37	1850,03	0,33442	1,07838	SÍ
13	650,011	1,0859	3	SÍ	38	1900,03	0,00537	0,2	SÍ
14	700,012	0,00532	0,2	SÍ	39	1950,03	0,26751	0,2	NO
15	750,013	1,03908	0,3	NO	40	2000,03	0,00547	0,2	SÍ
16	800,013	0,00519	0,2	SÍ	41	2050,03	0,20514	0,99268	SÍ
17	850,014	0,98995	2	SÍ	42	2100,04	0,00556	0,2	SÍ
18	900,015	0,00507	0,2	SÍ	43	2150,04	0,14628	0,95581	SÍ
19	950,016	0,93501	1,5	SÍ	44	2200,04	0,00564	0,2	SÍ
20	1000,02	0,00498	0,2	SÍ	45	2250,04	0,09345	0,2	SÍ
21	1050,02	0,87459	0,2	NO	46	2300,04	0,00568	0,2	SÍ
22	1100,02	0,00491	0,2	SÍ	47	2350,04	0,05817	0,89149	SÍ
23	1150,02	0,81327	1,5	SÍ	48	2400,04	0,0057	0,2	SÍ
24	1200,02	0,00487	0,2	SÍ	49	2450,04	0,06088	0,86327	SÍ
25	1250,02	0,74804	1,5	SÍ	50	2500,04	0,0057	0,2	SÍ

TABLA 10 Evaluación de la norma para las armónicas de Tensión de la fase C

Y además se evaluó las armónicas de corriente:

n	f [Hz]	% Icn	% Norma	Cumple	n	f [Hz]	% Icn	% Norma	Cumple
1	50,0008	100			26	1300,02	0,00592	0,5	SÍ
2	100,002	0,00863	3	SÍ	27	1350,02	2,46978	2	NO
3	150,003	23,8695	12	NO	28	1400,02	0,00834	0,5	SÍ
4	200,003	0,00764	3	SÍ	29	1450,02	2,27566	2	NO
5	250,004	14,4262	12	NO	30	1500,03	0,00327	0,5	SÍ
6	300,005	0,00137	3	SÍ	31	1550,03	2,0982	2	NO
7	350,006	10,0832	12	SÍ	32	1600,03	0,00543	0,5	SÍ
8	400,007	0,00734	3	SÍ	33	1650,03	1,94615	2	SÍ
9	450,008	7,91938	12	SÍ	34	1700,03	0,00832	0,25	SÍ
10	500,008	0,00797	1,375	SÍ	35	1750,03	1,81426	1	NO
11	550,009	6,45652	5,5	NO	36	1800,03	0,00376	0,25	SÍ
12	600,01	0,00172	1,375	SÍ	37	1850,03	1,68751	1	NO
13	650,011	5,3908	5,5	SÍ	38	1900,03	0,00493	0,25	SÍ
14	700,012	0,00687	1,375	SÍ	39	1950,03	1,57323	1	NO
15	750,013	4,68292	5,5	SÍ	40	2000,03	0,00822	0,25	SÍ
16	800,013	0,00818	1,25	SÍ	41	2050,03	1,47835	1	NO
17	850,014	4,10268	5	SÍ	42	2100,04	0,00421	0,25	SÍ
18	900,015	0,00222	1,25	SÍ	43	2150,04	1,3822	1	NO
19	950,016	3,6268	5	SÍ	44	2200,04	0,00446	0,25	SÍ
20	1000,02	0,0064	1,25	SÍ	45	2250,04	1,29161	1	NO
21	1050,02	3,27153	5	SÍ	46	2300,04	0,00807	0,25	SÍ
22	1100,02	0,0083	0,5	SÍ	47	2350,04	1,22043	1	NO
23	1150,02	2,95993	2	NO	48	2400,04	0,00462	0,25	SÍ
24	1200,02	0,00275	0,5	SÍ	49	2450,04	1,14443	1	NO
25	1250,02	2,68856	2	NO	50	2500,04	0,00402	0,25	sí

TABLA 11 Evaluación de la norma para armónicas de corriente en la fase C

Las armónicas de tensión y de corriente de la fase C presentan cierta similitud con la fase A. Esto permitió a **realizar las mismas iteraciones que en la fase A** (Ajustado a los valores de la fase C), y se llegó al mismo resultado, es decir, siguiendo los pasos de la fase A se logró filtrar los armónicos y estar dentro de la norma, corregir el factor de potencia, y reducir el THDi a valores de norma.

A continuación se muestran los filtros utilizados en la fase C:

Figura 12 Filtros conectados en la fase C

Se aprecia la misma secuencia de componentes armónicos utilizados en la fase A.

A continuación se muestran las formas de onda de tensión y corriente en la fase C luego de conectar todos los filtros:

Figura 13 Tensión y corriente en fase C luego de los filtros.

Se observa que el factor de potencia se mejoró a 0,988[-], y el THDi se redujo a 0,1296 [-], cumpliendo ambos valores con la norma chilena.

La reevaluación de esta fase según la norma, con los filtros conectados, se encuentra en el anexo.

FASES A, B y C

Para finalizar, se observará las tensiones y corrientes de las tres fases juntas. Las corrientes se muestran a continuación:

Figura 14 Corrientes en las tres fases luego de los filtros

Las tres corrientes tienden a ser sinusoidales con los filtros, se observa la similitud entre la fase A (color rojo) y la fase C (color verde), debido a la misma secuencia de iteraciones que se utilizó en ambas fases. También se puede apreciar los desfases entre ellas. La corriente por la fase B continúa siendo de mayor amplitud.

También se muestra las tensiones luego de los filtros:

Figura 15 Tensiones en las tres fases luego de conectar los filtros

Las profundidades de los notches han sido notoriamente disminuidas, las formas de estas ondas son prácticamente sinusoidales.

SISTEMA 2

A continuación se muestra el circuito simulado, representando el sistema 2:

Figura 16 Sistema 2 Simulado en PSIM

Donde los valores correspondientes fueron:

Fuentes de tensiones sinusoidales trifásicas balanceadas, de 50 [Hz] y 220[Vrms].

Ls = 500[uH]

 $Rs = 0,1[\Omega]$

C = 2500[uF]

 $R0 = 25 [\Omega]$

Este sistema, a diferencia del anterior, es desbalanceado, por lo tanto **basta con calcular el filtro para una sola fase, y se conectan las mismas para las otras fases**. Por lo tanto, se analizará con la fase A, y se observará las otras fases implementando exactamente el mismo filtro.

FASE A

Las formas de onda de tensión y corrientes (sin filtros conectados) se muestra a continuación:

Figura 17 Tensión y Corriente sin filtro en fase A

Se observa una forma de onda de tensión tendiendo a una forma triangular, con variaciones de pendiente entre algunas amplitudes, mientras que la corriente presenta un par de pequeños impulsos en cada semiciclo.

Las armónicas de tensiones evaluada en la norma chilena, se muestra a continuación:

n	f [Hz]	% Van	% Norma	Cumple	n	f [Hz]	% Van	% Norma	Cumple
1	50,000833	100			26	1300,0217	0,0003087	0,2	sí
2	100,00167	0,0043984	2	SÍ	27	1350,0225	0,001619	0,2	sí
3	150,0025	0,0062732	5	SÍ	28	1400,0233	0,0002526	0,2	sí
4	200,00333	0,0014594	1	SÍ	29	1450,0242	0,4605148	1,3206897	sí
5	250,00417	3,6350058	6	SÍ	30	1500,025	0,0007236	0,2	sí
6	300,005	0,0023981	0,5	SÍ	31	1550,0258	0,4019279	1,2483871	sí
7	350,00583	3,0194236	5	SÍ	32	1600,0267	0,0006673	0,2	sí
8	400,00667	0,0004729	0,5	SÍ	33	1650,0275	0,0019405	0,2	SÍ
9	450,0075	0,0019374	1,5	SÍ	34	1700,0283	0,0006289	0,2	SÍ
10	500,00833	0,0007835	0,5	SÍ	35	1750,0292	0,3845636	1,1285714	sí
11	550,00917	0,9561554	3,5	SÍ	36	1800,03	0,0008176	0,2	sí
12	600,01	0,0002222	0,2	SÍ	37	1850,0308	0,3449228	1,0783784	sí
13	650,01083	1,1762064	3	SÍ	38	1900,0317	0,0003288	0,2	sí
14	700,01167	0,0008132	0,2	SÍ	39	1950,0325	0,0016186	0,2	sí
15	750,0125	0,0020794	0,3	SÍ	40	2000,0333	0,0004879	0,2	SÍ
16	800,01333	0,0003938	0,2	SÍ	41	2050,0342	0,3218679	0,9926829	SÍ
17	850,01417	0,6923943	2	SÍ	42	2100,035	0,0005381	0,2	sí
18	900,015	0,0010192	0,2	SÍ	43	2150,0358	0,3080904	0,955814	sí
19	950,01583	0,7011244	1,5	SÍ	44	2200,0367	0,0005848	0,2	sí
20	1000,0167	0,0006504	0,2	SÍ	45	2250,0375	0,0016091	0,2	sí
21	1050,0175	0,0022163	0,2	sí	46	2300,0383	0,0004496	0,2	SÍ
22	1100,0183	0,0007546	0,2	SÍ	47	2350,0392	0,2697595	0,8914894	sí
23	1150,0192	0,557373	1,5	SÍ	48	2400,04	0,0007955	0,2	sí
24	1200,02	0,0005869	0,2	SÍ	49	2450,0408	0,2822218	0,8632653	sí
25	1250,0208	0,5026062	1,5	SÍ	50	2500,0417	0,0005652	0,2	SÍ

TABLA 12 Evaluación de la norma para armónicas de tensión

La evaluación de la norma para las armónicas de corriente se muestra a continuación:

n	f [Hz]	% lan	% Norma	Cumple	n	f [Hz]	% lan	% Norma	Cumple
1	50,000833				26	1300,0217	0,0015124	0,375	SÍ
2	100,00167	0,0057109	2,5	SÍ	27	1350,0225	0,0010496	1,5	SÍ
3	150,0025	0,0052254	10	SÍ	28	1400,0233	0,0014631	0,375	SÍ
4	200,00333	0,0090446	2,5	SÍ	29	1450,0242	1,3617538	1,5	SÍ
5	250,00417	62,359102	10	NO	30	1500,025	0,0019742	0,375	SÍ
6	300,005	0,0179247	2,5	SÍ	31	1550,0258	1,1119803	1,5	SÍ
7	350,00583	36,952447	10	NO	32	1600,0267	0,0012284	0,375	SÍ
8	400,00667	0,0062293	2,5	SÍ	33	1650,0275	0,0008662	1,5	SÍ
9	450,0075	0,0029885	10	SÍ	34	1700,0283	0,0012197	0,175	SÍ
10	500,00833	0,0030869	1,125	SÍ	35	1750,0292	0,9421135	0,7	NO
11	550,00917	7,4451128	4,5	NO	36	1800,03	0,0016564	0,175	SÍ
12	600,01	0,0053848	1,125	SÍ	37	1850,0308	0,7987992	0,7	NO
13	650,01083	7,75711	4,5	NO	38	1900,0317	0,0010658	0,175	SÍ
14	700,01167	0,0031204	1,125	SÍ	39	1950,0325	0,0007502	0,7	SÍ
15	750,0125	0,0018768	4,5	SÍ	40	2000,0333	0,0010416	0,175	SÍ
16	800,01333	0,0023091	1,125	SÍ	41	2050,0342	0,673219	0,7	SÍ
17	850,01417	3,4917857	4	SÍ	42	2100,035	0,0014019	0,175	SÍ
18	900,015	0,0032438	1,125	SÍ	43	2150,0358	0,614593	0,7	SÍ
19	950,01583	3,1628173	4	SÍ	44	2200,0367	0,0009703	0,175	SÍ
20	1000,0167	0,002034	1,125	SÍ	45	2250,0375	0,0006775	0,7	SÍ
21	1050,0175	0,0013478	4	SÍ	46	2300,0383	0,0009124	0,175	SÍ
22	1100,0183	0,0018037	0,375	SÍ	47	2350,0392	0,4925913	0,7	SÍ
23	1150,0192	2,0757805	1,5	NO	48	2400,04	0,0011838	0,175	SÍ
24	1200,02	0,0024279	0,375	SÍ	49	2450,0408	0,49385	0,7	SÍ
25	1250,0208	1,7232946	1,5	NO	50	2500,0417	0,0009117	0,175	SÍ

TABLA 13 Evaluación de la norma para armónicos de corriente

El método para calcular los filtros **es el mismo utilizado en el sistema 1**. A pesar de ser una carga capacitiva, la componente fundamental tiene un factor de desplazamiento pequeño, por lo que si sólo se filtran los componentes armónicos, el factor de potencia se mejorará automáticamente, al igual que el THDi. Esta ventaja permite obtener buenos resultados, filtrando con condensadores cuidadosamente pequeños (para no aumentar los reactivos). A continuación se muestran las iteraciones realizadas:

			FASE A						
ENTRADA	n=5	K5=3	$11 \text{rms} = 23.05 / \sqrt{2}$	I5rms = $14.374/\sqrt{2}$	Q=8000				
SALIDA	R5=1.	.511[mΩ]	L5= 7.6960 [mH]	C5=52.6615 [μΙ	F]				
RESULTADO			Dejó la armónica n=5 de	entro de la norma					
ENTRADA	n=7	K7=3	$11 \text{rms} = 26.25 / \sqrt{2}$	17rms = 8.48/ $\sqrt{2}$	Q=5000				
SALIDA	R7=4.	.069[mΩ]	L7= 9.2524 [mH]	C7=22.3486[µԲ	:]				
RESULTADO			Dejó la armónica n=7 de	entro de la norma					
ENTRADA	n=11	K11=2	I1rms = $28.421/\sqrt{2}$	I11rms = 1.83/ $\sqrt{2}$	Q=1000				
SALIDA	R7=20	0.32[mΩ]	L7= 5.8826 [mH]	C7=14.2345 [μΙ	=]				
RESULTADO		De	ejó la armónica n=11 y 13	dentro de la norma					
ENTRADA	n=23	K11=0,6	$11 \text{rms} = 28.57 / \sqrt{2}$	123rms = 0.47/ $\sqrt{2}$	Q=500				
SALIDA	R23= 49.17[mΩ] L23= 3.4027 [mH] C23= 5.6288 [μF]								
RESULTADO		De	ejó la armónica n=23 y 25	dentro de la norma					
T	TODAS LAS ARMÓNICAS ESTÁN DENTRO DE LA NORMA								

Sólo bastaron 4 iteraciones para llevar los componentes armónicos a la norma chilena. Además, el sistema queda inmediatamente con un factor de potencia y un THDi dentro de la norma.

A continuación se muestran las formas de onda de tensión y de corriente para la fase A

Figura 18 Tensión y Corriente Luego de conectar los filtros

Se observa que el factor de potencia mejoró a 0.978[-], y el THDi disminuyó a 0.07 [-]. Cumpliendo ambos con la norma chilena.

Si se conecta estos mismos filtros a las otras fases, se tiene los mismos resultados (debido al balance que presenta el circuito).

FASES A, B y C

A continuación se muestran las corrientes y las tensiones de las tres fases juntas, luego de haber conectado los filtros.

Figura 19 Corrientes en las tres fases, luego del filtro

Se observa la existencia de armónico en altas frecuencias, a pesar de ello el THDi es suficientemente bajo para estar dentro de la norma (inferior al 15%).

Figura 20 Tensiones en las tres fases, luego del filtro

Las tensiones son cuasi sinusoidales, se observa el balance entre las tres fases.

CONCLUSIONES

Los métodos iterativos para calcular los filtros debían actualizar los datos con cada paso que se avanza, es decir, los parámetros cambian a medida que se itera. Se hace hincapié a la corriente fundamental, la cual también cambia cada vez que se conecta un filtro, y por lo tanto su valor debe ir cambiando al evaluarlo en la expresión matemática.

A pesar de que el sistema 1 era desbalanceado, presentaba la ventaja que al conectar filtros en una de las fases, no repercutía en las demás, ni en tensión ni en corriente.

Al filtrar corrientes con los R-L-C en serie y sintonizados, las tensiones también iban cumpliendo la norma, a medida que se filtraban los componentes críticos

Para el sistema 1, la fase A presentó cierta similitud con la fase C, lo que permitió que se repitieran las iteraciones, llegando a resultados similares.

En el sistema 1 se logró filtrar las componentes armónicas, hacerlas cumplir con la norma, mejorar el factor de potencia a 0,93[-] o superior, y en todas las fases el THDi se llevó a menos de 15%. Todo lo anterior con condensadores que no superaron los 400 microfaradios.

El sistema dos presentó la ventaja de compensar reactivos con tan solo filtrar los armónicos mediante filtros paralelos. Si bien la carga es capacitiva, y no se debe conectar filtros R-L-C en paralelo, resultó que el factor de desplazamiento de la fundamental era bastante bueno, por lo que bastó con filtrar armónicas, usando condensadores pequeños para no aumentar la naturaleza capacitiva del sistema, haciendo que todas las condiciones se cumpliera, sin realizar más conexiones después de que las componentes estén dentro de la norma (como ocurrió con el sistema 1)

El sistema 2, al ser balanceado, bastó con calcular los filtros de una sola fase, y luego se repetía para el resto.

ANEXO

n°	N	V	V%	Norma V%	Cumple	n°	N	V	V%	Norma V%	Cumple
1	50,0008	311,1317	100,0000			26	1300,0217	0,0005	0,0002	0,2000	SI
2	100,0017	0,0147	0,0047	2,0000	SI	27	1350,0225	0,3424	0,1101	0,2000	SI
3	150,0025	0,2499	0,0803	5,0000	SI	28	1400,0233	0,0011	0,0004	0,2000	SI
4	200,0033	0,0046	0,0015	1,0000	SI	29	1450,0242	0,3176	0,1021	1,3207	SI
5	250,0042	0,0265	0,0085	6,0000	SI	30	1500,0250	0,0005	0,0002	0,2000	SI
6	300,0050	0,0030	0,0010	0,5000	SI	31	1550,0258	0,2559	0,0823	1,2484	SI
7	350,0058	0,2691	0,0865	5,0000	SI	32	1600,0267	0,0006	0,0002	0,2000	SI
8	400,0067	0,0022	0,0007	0,5000	SI	33	1650,0275	0,0866	0,0278	0,2000	SI
9	450,0075	0,1868	0,0600	1,5000	SI	34	1700,0283	0,0008	0,0002	0,2000	SI
10	500,0083	0,0019	0,0006	0,5000	SI	35	1750,0292	0,1816	0,0584	1,1286	SI
11	550,0092	0,3680	0,1183	3,5000	SI	36	1800,0300	0,0005	0,0002	0,2000	SI
12	600,0100	0,0015	0,0005	0,2000	SI	37	1850,0308	0,1242	0,0399	1,0784	SI
13	650,0108	0,3751	0,1206	3,0000	SI	38	1900,0317	0,0003	0,0001	0,2000	SI
14	700,0117	0,0010	0,0003	0,2000	SI	39	1950,0325	0,1129	0,0363	0,2000	SI
15	750,0125	0,4723	0,1518	0,3000	SI	40	2000,0334	0,0006	0,0002	0,2000	SI
16	800,0133	0,0015	0,0005	0,2000	SI	41	2050,0342	0,1575	0,0506	0,9927	SI
17	850,0142	0,3597	0,1156	2,0000	SI	42	2100,0350	0,0007	0,0002	0,2000	SI
18	900,0150	0,0010	0,0003	0,2000	SI	43	2150,0359	0,1740	0,0559	0,9558	SI
19	950,0158	0,0831	0,0267	1,5000	SI	44	2200,0367	0,0003	0,0001	0,2000	SI
20	1000,0167	0,0009	0,0003	0,2000	SI	45	2250,0375	0,0981	0,0315	0,2000	SI
21	1050,0175	0,1006	0,0323	0,2000	SI	46	2300,0384	0,0006	0,0002	0,2000	SI
22	1100,0183	0,0011	0,0003	0,2000	SI	47	2350,0392	0,0939	0,0302	0,8915	SI
23	1150,0192	0,3357	0,1079	1,5000	SI	48	2400,0400	0,0006	0,0002	0,2000	SI
24	1200,0200	0,0008	0,0002	0,2000	SI	49	2450,0409	0,1106	0,0356	0,8633	SI
25	1250,0208	0,3585	0,1152	1,5000	SI	50	2500,0417	0,0001	0,0000	0,2000	SI

TABLA 14 Evaluación de la Norma para tensión, luego de los filtros. Fase A Sistema 1

n°	N	1	ι%	Norma 100- 1000%	Cumple	n°	N	1	1%	Norma 100- 1000%	Cumple
1	50,0008	129,0174	100,0000			26	1300,0217	0,0020	0,0016	0,5000	SI
2	100,0017	0,0697	0,0540	3,0000	SI	27	1350,0225	2,0193	1,5652	2,0000	SI
3	150,0025	13,6660	10,5924	12,0000	SI	28	1400,0233	0,0042	0,0033	0,5000	SI
4	200,0033	0,0383	0,0297	3,0000	SI	29	1450,0242	1,7376	1,3468	2,0000	SI
5	250,0042	0,7280	0,5643	12,0000	SI	30	1500,0250	0,0049	0,0038	0,5000	SI
6	300,0050	0,0354	0,0275	3,0000	SI	31	1550,0258	1,3151	1,0193	2,0000	SI
7	350,0058	6,0876	4,7185	12,0000	SI	32	1600,0267	0,0013	0,0010	0,5000	SI
8	400,0067	0,0149	0,0116	3,0000	SI	33	1650,0275	0,4171	0,3233	2,0000	SI
9	450,0075	3,3440	2,5919	12,0000	SI	34	1700,0283	0,0024	0,0018	0,2500	SI
10	500,0083	0,0084	0,0065	1,3750	SI	35	1750,0292	0,8222	0,6373	1,0000	SI
11	550,0092	5,3054	4,1122	5,5000	SI	36	1800,0300	0,0035	0,0027	0,2500	SI
12	600,0100	0,0110	0,0085	1,3750	SI	37	1850,0308	0,5349	0,4146	1,0000	SI
13	650,0108	4,5889	3,5568	5,5000	SI	38	1900,0317	0,0016	0,0012	0,2500	SI
14	700,0117	0,0061	0,0047	1,3750	SI	39	1950,0325	0,4618	0,3579	1,0000	SI
15	750,0125	5,0244	3,8944	5,5000	SI	40	2000,0334	0,0019	0,0014	0,2500	SI
16	800,0133	0,0050	0,0038	1,2500	SI	41	2050,0342	0,6095	0,4725	1,0000	SI
17	850,0142	3,3551	2,6005	5,0000	SI	42	2100,0350	0,0036	0,0028	0,2500	SI
18	900,0150	0,0064	0,0049	1,2500	SI	43	2150,0359	0,6447	0,4997	1,0000	SI
19	950,0158	0,6968	0,5401	5,0000	SI	44	2200,0367	0,0012	0,0009	0,2500	SI
20	1000,0167	0,0039	0,0030	1,2500	SI	45	2250,0375	0,3472	0,2691	1,0000	SI
21	1050,0175	0,7659	0,5936	5,0000	SI	46	2300,0384	0,0017	0,0013	0,2500	SI
22	1100,0183	0,0037	0,0029	0,5000	SI	47	2350,0392	0,3166	0,2454	1,0000	SI
23	1150,0192	2,3152	1,7945	2,0000	SI	48	2400,0400	0,0027	0,0021	0,2500	SI
24	1200,0200	0,0065	0,0051	0,5000	SI	49	2450,0409	0,3600	0,2790	1,0000	SI
25	1250,0208	2,2830	1,7696	2,0000	SI	50	2500,0417	0,0018	0,0014	0,2500	SI

TABLA 15 Evaluación de la Norma para corriente, luego de los filtros. Fase A Sistema 1

n°	N	V	V %	Norma V%	Cumple	n°	N	V	V%	Norma V%	Cumple
1	50,0008	310,5045	100,0000			26	1300,0217	0,0184	0,0059	0,2000	SI
2	100,0017	0,0236	0,0076	2,0000	SI	27	1350,0225	0,0851	0,0274	0,2000	SI
3	150,0025	0,4149	0,1336	5,0000	SI	28	1400,0233	0,0182	0,0059	0,2000	SI
4	200,0033	0,0268	0,0086	1,0000	SI	29	1450,0242	0,1301	0,0419	1,3207	SI
5	250,0042	0,2778	0,0895	6,0000	SI	30	1500,0250	0,0180	0,0058	0,2000	SI
6	300,0050	0,0199	0,0064	0,5000	SI	31	1550,0258	0,4997	0,1609	1,2484	SI
7	350,0058	0,8429	0,2715	5,0000	SI	32	1600,0267	0,0187	0,0060	0,2000	SI
8	400,0067	0,0188	0,0061	0,5000	SI	33	1650,0275	0,2097	0,0675	0,2000	SI
9	450,0075	0,6662	0,2146	1,5000	SI	34	1700,0283	0,0186	0,0060	0,2000	SI
10	500,0083	0,0183	0,0059	0,5000	SI	35	1750,0292	0,1134	0,0365	1,1286	SI
11	550,0092	0,8814	0,2839	3,5000	SI	36	1800,0300	0,0185	0,0060	0,2000	SI
12	600,0100	0,0180	0,0058	0,2000	SI	37	1850,0308	0,1206	0,0388	1,0784	SI
13	650,0108	1,1158	0,3594	3,0000	SI	38	1900,0317	0,0186	0,0060	0,2000	SI
14	700,0117	0,0181	0,0058	0,2000	SI	39	1950,0325	0,0745	0,0240	0,2000	SI
15	750,0125	0,7820	0,2518	0,3000	SI	40	2000,0334	0,0185	0,0060	0,2000	SI
16	800,0133	0,0181	0,0058	0,2000	SI	41	2050,0342	0,0411	0,0133	0,9927	SI
17	850,0142	0,9228	0,2972	2,0000	SI	42	2100,0350	0,0185	0,0060	0,2000	SI
18	900,0150	0,0184	0,0059	0,2000	SI	43	2150,0359	0,0254	0,0082	0,9558	SI
19	950,0158	0,7615	0,2453	1,5000	SI	44	2200,0367	0,0185	0,0059	0,2000	SI
20	1000,0167	0,0186	0,0060	0,2000	SI	45	2250,0375	0,0152	0,0049	0,2000	SI
21	1050,0175	0,5433	0,1750	0,2000	SI	46	2300,0384	0,0185	0,0059	0,2000	SI
22	1100,0183	0,0187	0,0060	0,2000	SI	47	2350,0392	0,0073	0,0023	0,8915	SI
23	1150,0192	0,2341	0,0754	1,5000	SI	48	2400,0400	0,0185	0,0059	0,2000	SI
24	1200,0200	0,0185	0,0060	0,2000	SI	49	2450,0409	0,0018	0,0006	0,8633	SI
25	1250,0208	0,1208	0,0389	1,5000	SI	50	2500,0417	0,0185	0,0059	0,2000	SI

TABLA 16 Evaluación de la Norma para tensión, luego de los filtros. Fase B Sistema 1

n°	N	1	1%	Norma 100- 1000%	Cumple	n°	N	1	1%	Norma 100- 1000%	Cumple
1	50,0008	326,9535	100,0000			26	1300,0217	0,0285	0,0087	0,5000	SI
2	100,0017	0,8792	0,2689	3,0000	SI	27	1350,0225	0,5847	0,1788	2,0000	SI
3	150,0025	21,6533	6,6228	12,0000	SI	28	1400,0233	0,0258	0,0079	0,5000	SI
4	200,0033	0,6495	0,1987	3,0000	SI	29	1450,0242	0,7918	0,2422	2,0000	SI
5	250,0042	8,8588	2,7095	12,0000	SI	30	1500,0250	0,0231	0,0071	0,5000	SI
6	300,0050	0,1896	0,0580	3,0000	SI	31	1550,0258	2,6336	0,8055	2,0000	SI
7	350,0058	19,2137	5,8766	12,0000	SI	32	1600,0267	0,0255	0,0078	0,5000	SI
8	400,0067	0,1077	0,0330	3,0000	SI	33	1650,0275	1,0422	0,3188	2,0000	SI
9	450,0075	11,8636	3,6285	12,0000	SI	34	1700,0283	0,0238	0,0073	0,2500	SI
10	500,0083	0,0736	0,0225	1,3750	SI	35	1750,0292	0,5593	0,1711	1,0000	SI
11	550,0092	12,8583	3,9327	5,5000	SI	36	1800,0300	0,0224	0,0069	0,2500	SI
12	600,0100	0,0567	0,0173	1,3750	SI	37	1850,0308	0,5563	0,1702	1,0000	SI
13	650,0108	13,7811	4,2150	5,5000	SI	38	1900,0317	0,0218	0,0067	0,2500	SI
14	700,0117	0,0487	0,0149	1,3750	SI	39	1950,0325	0,3248	0,0994	1,0000	SI
15	750,0125	10,5472	3,2259	5,5000	SI	40	2000,0334	0,0209	0,0064	0,2500	SI
16	800,0133	0,0429	0,0131	1,2500	SI	41	2050,0342	0,1830	0,0560	1,0000	SI
17	850,0142	8,7705	2,6825	5,0000	SI	42	2100,0350	0,0202	0,0062	0,2500	SI
18	900,0150	0,0398	0,0122	1,2500	SI	43	2150,0359	0,1240	0,0379	1,0000	SI
19	950,0158	6,4990	1,9877	5,0000	SI	44	2200,0367	0,0195	0,0060	0,2500	SI
20	1000,0167	0,0375	0,0115	1,2500	SI	45	2250,0375	0,0881	0,0270	1,0000	SI
21	1050,0175	4,2193	1,2905	5,0000	SI	46	2300,0384	0,0189	0,0058	0,2500	SI
22	1100,0183	0,0351	0,0107	0,5000	SI	47	2350,0392	0,0621	0,0190	1,0000	SI
23	1150,0192	1,7022	0,5206	2,0000	SI	48	2400,0400	0,0184	0,0056	0,2500	SI
24	1200,0200	0,0314	0,0096	0,5000	SI	49	2450,0409	0,0444	0,0136	1,0000	SI
25	1250,0208	0,8582	0,2625	2,0000	SI	50	2500,0417	0,0180	0,0055	0,2500	SI

TABLA 17 Evaluación de la Norma para corriente, luego de los filtros. Fase B Sistema 1

n°	N	V	V%	Norma V%	Cumple	n°	N	V	V%	Norma V%	Cumple
1	50,0008	311,1769	100,0000			26	1300,0217	0,0180	0,0058	0,2000	SI
2	100,0017	0,0255	0,0082	2,0000	SI	27	1350,0225	0,3640	0,1170	0,2000	SI
3	150,0025	0,1184	0,0381	5,0000	SI	28	1400,0233	0,0176	0,0056	0,2000	SI
4	200,0033	0,0190	0,0061	1,0000	SI	29	1450,0242	0,3080	0,0990	1,3207	SI
5	250,0042	0,1598	0,0514	6,0000	SI	30	1500,0250	0,0183	0,0059	0,2000	SI
6	300,0050	0,0186	0,0060	0,5000	SI	31	1550,0258	0,2633	0,0846	1,2484	SI
7	350,0058	0,2940	0,0945	5,0000	SI	32	1600,0267	0,0181	0,0058	0,2000	SI
8	400,0067	0,0182	0,0059	0,5000	SI	33	1650,0275	0,1006	0,0323	0,2000	SI
9	450,0075	0,2007	0,0645	1,5000	SI	34	1700,0283	0,0178	0,0057	0,2000	SI
10	500,0083	0,0181	0,0058	0,5000	SI	35	1750,0292	0,1653	0,0531	1,1286	SI
11	550,0092	0,3736	0,1201	3,5000	SI	36	1800,0300	0,0183	0,0059	0,2000	SI
12	600,0100	0,0183	0,0059	0,2000	SI	37	1850,0308	0,1343	0,0431	1,0784	SI
13	650,0108	0,4054	0,1303	3,0000	SI	38	1900,0317	0,0181	0,0058	0,2000	SI
14	700,0117	0,0180	0,0058	0,2000	SI	39	1950,0325	0,1192	0,0383	0,2000	SI
15	750,0125	0,5008	0,1609	0,3000	SI	40	2000,0334	0,0179	0,0058	0,2000	SI
16	800,0133	0,0178	0,0057	0,2000	SI	41	2050,0342	0,1424	0,0458	0,9927	SI
17	850,0142	0,3590	0,1154	2,0000	SI	42	2100,0350	0,0184	0,0059	0,2000	SI
18	900,0150	0,0183	0,0059	0,2000	SI	43	2150,0359	0,1841	0,0592	0,9558	SI
19	950,0158	0,0970	0,0312	1,5000	SI	44	2200,0367	0,0180	0,0058	0,2000	SI
20	1000,0167	0,0181	0,0058	0,2000	SI	45	2250,0375	0,1037	0,0333	0,2000	SI
21	1050,0175	0,1154	0,0371	0,2000	SI	46	2300,0384	0,0179	0,0058	0,2000	SI
22	1100,0183	0,0178	0,0057	0,2000	SI	47	2350,0392	0,0781	0,0251	0,8915	SI
23	1150,0192	0,3302	0,1061	1,5000	SI	48	2400,0400	0,0183	0,0059	0,2000	SI
24	1200,0200	0,0185	0,0059	0,2000	SI	49	2450,0409	0,1253	0,0403	0,8633	SI
25	1250,0208	0,3808	0,1224	1,5000	SI	50	2500,0417	0,0178	0,0057	0,2000	SI

TABLA 18 Evaluación de la Norma para tensión, luego de los filtros. Fase C Sistema 1

n°	N	1	1%	Norma 100- 1000%	Cumple	n°	N	1	1%	Norma 100- 1000%	Cumple
1	50,0008	122,4277	100,0000			26	1300,0217	0,0043	0,0035	0,5000	SI
2	100,0017	0,0359	0,0293	3,0000	SI	27	1350,0225	2,0809	1,6997	2,0000	SI
3	150,0025	6,5116	5,3188	12,0000	SI	28	1400,0233	0,0091	0,0074	0,5000	SI
4	200,0033	0,0408	0,0333	3,0000	SI	29	1450,0242	1,7893	1,4615	2,0000	SI
5	250,0042	5,6283	4,5973	12,0000	SI	30	1500,0250	0,0090	0,0073	0,5000	SI
6	300,0050	0,0158	0,0129	3,0000	SI	31	1550,0258	1,3551	1,1068	2,0000	SI
7	350,0058	6,3252	5,1664	12,0000	SI	32	1600,0267	0,0057	0,0046	0,5000	SI
8	400,0067	0,0112	0,0091	3,0000	SI	33	1650,0275	0,4216	0,3444	2,0000	SI
9	450,0075	3,5052	2,8630	12,0000	SI	34	1700,0283	0,0075	0,0061	0,2500	SI
10	500,0083	0,0122	0,0099	1,3750	SI	35	1750,0292	0,8381	0,6846	1,0000	SI
11	550,0092	5,6547	4,6188	5,5000	SI	36	1800,0300	0,0074	0,0060	0,2500	SI
12	600,0100	0,0081	0,0067	1,3750	SI	37	1850,0308	0,5455	0,4456	1,0000	SI
13	650,0108	4,7995	3,9202	5,5000	SI	38	1900,0317	0,0060	0,0049	0,2500	SI
14	700,0117	0,0056	0,0046	1,3750	SI	39	1950,0325	0,4585	0,3745	1,0000	SI
15	750,0125	5,2649	4,3004	5,5000	SI	40	2000,0334	0,0080	0,0065	0,2500	SI
16	800,0133	0,0113	0,0092	1,2500	SI	41	2050,0342	0,6164	0,5035	1,0000	SI
17	850,0142	3,5357	2,8880	5,0000	SI	42	2100,0350	0,0071	0,0058	0,2500	SI
18	900,0150	0,0081	0,0066	1,2500	SI	43	2150,0359	0,6457	0,5274	1,0000	SI
19	950,0158	0,7282	0,5948	5,0000	SI	44	2200,0367	0,0057	0,0046	0,2500	SI
20	1000,0167	0,0071	0,0058	1,2500	SI	45	2250,0375	0,3376	0,2758	1,0000	SI
21	1050,0175	0,7927	0,6475	5,0000	SI	46	2300,0384	0,0074	0,0060	0,2500	SI
22	1100,0183	0,0088	0,0072	0,5000	SI	47	2350,0392	0,3174	0,2592	1,0000	SI
23	1150,0192	2,4151	1,9727	2,0000	SI	48	2400,0400	0,0065	0,0053	0,2500	SI
24	1200,0200	0,0085	0,0070	0,5000	SI	49	2450,0409	0,3518	0,2874	1,0000	SI
25	1250,0208	2,3704	1,9362	2,0000	SI	50	2500,0417	0,0063	0,0051	0,2500	SI

TABLA 19 Evaluación de la Norma para corriente, luego de los filtros. Fase C Sistema 1

n°	N	V	v %	Norma V%	Cumple	n°	N	V	v %	Norma V%	Cumple
1	50.0008	311.9635	100.0000			26	1300.0217	0.0018	0.0006	0.2000	SÍ
2	100.0017	0.0139	0.0045	2.0000	SÍ	27	1350.0225	0.2833	0.0908	0.2000	SÍ
3	150.0025	0.5268	0.1689	5.0000	SÍ	28	1400.0233	0.0009	0.0003	0.2000	SÍ
4	200.0033	0.0055	0.0018	1.0000	SÍ	29	1450.0242	0.8327	0.2669	1.3207	SÍ
5	250.0042	0.0272	0.0087	6.0000	SÍ	30	1500.0250	0.0025	0.0008	0.2000	SÍ
6	300.0050	0.0035	0.0011	0.5000	SÍ	31	1550.0258	1.2378	0.3968	1.2484	SÍ
7	350.0058	0.0537	0.0172	5.0000	SÍ	32	1600.0267	0.0008	0.0003	0.2000	SÍ
8	400.0067	0.0025	0.0008	0.5000	SÍ	33	1650.0275	0.2812	0.0901	0.2000	SÍ
9	450.0075	0.4131	0.1324	1.5000	SÍ	34	1700.0283	0.0005	0.0002	0.2000	SÍ
10	500.0083	0.0022	0.0007	0.5000	SÍ	35	1750.0292	0.6446	0.2066	1.1286	SÍ
11	550.0092	0.0581	0.0186	3.5000	SÍ	36	1800.0300	0.0014	0.0005	0.2000	SÍ
12	600.0100	0.0016	0.0005	0.2000	SÍ	37	1850.0308	1.0156	0.3256	1.0784	SÍ
13	650.0108	2.2093	0.7082	3.0000	SÍ	38	1900.0317	0.0020	0.0006	0.2000	SÍ
14	700.0117	0.0027	0.0009	0.2000	SÍ	39	1950.0325	0.2658	0.0852	0.2000	SÍ
15	750.0125	0.4123	0.1322	0.3000	SÍ	40	2000.0334	0.0009	0.0003	0.2000	SÍ
16	800.0133	0.0023	0.0007	0.2000	SÍ	41	2050.0342	0.5910	0.1894	0.9927	SÍ
17	850.0142	2.4012	0.7697	2.0000	SÍ	42	2100.0350	0.0021	0.0007	0.2000	SÍ
18	900.0150	0.0028	0.0009	0.2000	SÍ	43	2150.0359	0.8318	0.2666	0.9558	SÍ
19	950.0158	2.1189	0.6792	1.5000	SÍ	44	2200.0367	0.0011	0.0004	0.2000	SÍ
20	1000.0167	0.0006	0.0002	0.2000	SÍ	45	2250.0375	0.2633	0.0844	0.2000	SÍ
21	1050.0175	0.2343	0.0751	0.2000	SÍ	46	2300.0384	0.0006	0.0002	0.2000	SÍ
22	1100.0183	0.0006	0.0002	0.2000	SÍ	47	2350.0392	0.5701	0.1828	0.8915	SÍ
23	1150.0192	0.0376	0.0121	1.5000	SÍ	48	2400.0400	0.0016	0.0005	0.2000	SÍ
24	1200.0200	0.0007	0.0002	0.2000	SÍ	49	2450.0409	0.7402	0.2373	0.8633	SÍ
25	1250.0208	1.2031	0.3856	1.5000	SÍ	50	2500.0417	0.0019	0.0006	0.2000	SÍ

TABLA 20 Evaluación de la Norma para tensión, luego de los filtros. Fase A Sistema 2

n°	N	1	ι%	Norma 50- 100%	Cumple	n°	N	1	1%	Norma 50- 100%	Cumple
1	50.0008	28.7522	100.0000			26	1300.0217	0.0005	0.0019	0.3750	SÍ
2	100.0017	0.0014	0.0050	2.5000	SÍ	27	1350.0225	0.0669	0.2328	1.5000	SÍ
3	150.0025	1.1069	3.8497	10.0000	SÍ	28	1400.0233	0.0003	0.0012	0.3750	SÍ
4	200.0033	0.0005	0.0018	2.5000	SÍ	29	1450.0242	0.1829	0.6360	1.5000	SÍ
5	250.0042	0.0375	0.1303	10.0000	SÍ	30	1500.0250	0.0007	0.0023	0.3750	SÍ
6	300.0050	0.0005	0.0016	2.5000	SÍ	31	1550.0258	0.2544	0.8847	1.5000	SÍ
7	350.0058	0.0505	0.1757	10.0000	SÍ	32	1600.0267	0.0000	0.0001	0.3750	SÍ
8	400.0067	0.0004	0.0013	2.5000	SÍ	33	1650.0275	0.0541	0.1883	1.5000	SÍ
9	450.0075	0.2932	1.0199	10.0000	SÍ	34	1700.0283	0.0003	0.0009	0.1750	SÍ
10	500.0083	0.0004	0.0015	1.1250	SÍ	35	1750.0292	0.1173	0.4079	0.7000	SÍ
11	550.0092	0.0346	0.1205	4.5000	SÍ	36	1800.0300	0.0002	0.0008	0.1750	SÍ
12	600.0100	0.0005	0.0017	1.1250	SÍ	37	1850.0308	0.1746	0.6072	0.7000	SÍ
13	650.0108	1.0825	3.7650	4.5000	SÍ	38	1900.0317	0.0006	0.0019	0.1750	SÍ
14	700.0117	0.0009	0.0030	1.1250	SÍ	39	1950.0325	0.0436	0.1515	0.7000	SÍ
15	750.0125	0.1748	0.6081	4.5000	SÍ	40	2000.0334	0.0004	0.0013	0.1750	SÍ
16	800.0133	0.0007	0.0025	1.1250	SÍ	41	2050.0342	0.0917	0.3189	0.7000	SÍ
17	850.0142	0.8991	3.1271	4.0000	SÍ	42	2100.0350	0.0005	0.0018	0.1750	SÍ
18	900.0150	0.0009	0.0032	1.1250	SÍ	43	2150.0359	0.1234	0.4292	0.7000	SÍ
19	950.0158	0.7100	2.4694	4.0000	SÍ	44	2200.0367	0.0001	0.0004	0.1750	SÍ
20	1000.0167	0.0002	0.0007	1.1250	SÍ	45	2250.0375	0.0371	0.1290	0.7000	SÍ
21	1050.0175	0.0709	0.2466	4.0000	SÍ	46	2300.0384	0.0003	0.0010	0.1750	SÍ
22	1100.0183	0.0002	0.0007	0.3750	SÍ	47	2350.0392	0.0772	0.2687	0.7000	SÍ
23	1150.0192	0.0112	0.0391	1.5000	SÍ	48	2400.0400	0.0002	0.0008	0.1750	SÍ
24	1200.0200	0.0002	0.0007	0.3750	SÍ	49	2450.0409	0.0959	0.3336	0.7000	SÍ
25	1250.0208	0.3062	1.0649	1.5000	SÍ	50	2500.0417	0.0005	0.0017	0.1750	SÍ

TABLA 21 Evaluación de la Norma para corriente, luego de los filtros. Fase A Sistema 2