

Angle Resolved Photoemission Spectroscopy

From fundamentals to the heart of condensed matter

6-7 FEBRERO, 2023

Lecture #4: Frontiers in ARPES Time, Space, and Spin

Thanks to Luca Moreschini & Shuolong Yang

6-7 FEBRERO, 2023

ARPES + something else!

- 1. Spin detection
- 2. Time-resolution
- 3. Spatial resolution

Spin polarimetry

Mott scattering
+ stability, - efficiency

coupling between the atomic orbital momentum and the spin of the electron

different cross section for two different scattering directions exchange scattering (VLEED)stability, + efficiency

coupling between the ferromagnet magnetic moment and the spin of the electron

different reflectivity for two opposite magnetization directions

Spin polarimetry

Mott scattering + stability, - efficiency

different cross section for two different scattering directions

different reflectivity for two opposite magnetization directions

C. Jozwiak et al., Rev. Sci. Instrum. 81, 053904 (2010)

Electron analyzers for spin polarimetry

From hemispherical analyzers to time-of-flight analyzers

Hemispherical EA-Mott

+ resolution/stability vs hv

- efficiency (serial acquisition)

analyser sample entrance slit mini-Mott mini-Mott entrance slit TOF-Mott
resolution/stability vs hv
+ efficiency (parallel acquisition)

Coupling spin detection and ARPES

Mott polarimetrs two axes in parallel

VLEED polarimeters one axis at a time

Coupling spin detection and ARPES - a few examples

Hemispherical EA + Mott

Hemispherical EA + VLEED

T. Okuda *et al.*, *Rev. Sci. Instrum.* **82**, 103302 (2011) T. Okuda *et al.*, *Rev. Sci. Instrum.* **201**, 23 (2015)

Rashba systems - examples

Au(111)

Electry E

Bi (111)

Bi/Ag(111)

surface states in heavy metals

A Takayama *et al.*, New J. Phys. **16** 055004 (2014)

Shockley states in noble metals

interface states in surface alloys

F. Meier et al., Phys. Rev. B 77, 165431 (2008)

Spin-Resolved ARPES using VLEED detection

Angle-resolved photoelectron spectroscopy + something else

Time-Resolved ARPES: Visualizing Electron Dynamics

Slides courtesy of Shuolong Yang (U. Chicago)

Surface states in topological insulators

Topological insulator Bi₂Se₃

Coherent vibration of FeSe electronic bands

Perturbation launches coherent modes

Gerber* and Yang* et al. Science 357, 71 (2017)

^[1] Smallwood et al. Science 336, 1137 (2012) [2] Schmitt et al. Science 321, 1649 (2008)

^[3] Sobota et al. Phys. Rev. Lett. 111, 136802 (2013) [4] Mahmood et al. Nat. Phys. Advance Online Publication (2016)

^[1] Smallwood et al. Science 336, 1137 (2012) [2] Schmitt et al. Science 321, 1649 (2008)

^[3] Sobota et al. Phys. Rev. Lett. 111, 136802 (2013) [4] Mahmood et al. Nat. Phys. Advance Online Publication (2016)

^[1] Smallwood et al. Science 336, 1137 (2012) [2] Schmitt et al. Science 321, 1649 (2008)

^[3] Sobota et al. Phys. Rev. Lett. 111, 136802 (2013) [4] Mahmood et al. Nat. Phys. Advance Online Publication (2016)

^[1] Smallwood et al. Science 336, 1137 (2012) [2] Schmitt et al. Science 321, 1649 (2008)

^[3] Sobota et al. Phys. Rev. Lett. 111, 136802 (2013) [4] Mahmood et al. Nat. Phys. Advance Online Publication (2016)

TR-ARPES some useful reviews

experiment

- S. Mathias et al., J. of Phys.: Conf. Ser. 148, 012042 (2009)
- U. Bovensiepen and P. S. Kirchmann, Laser Photonics Rev. 6, 589 (2012)
- C. Giannetti et al., Adv. in Phys. 65, 58 (2016)
- C. L. Smallwood et al., Europhys. Lett. 115, 27001 (2016)

theory

- H. Aoki et al., Rev. Mod. Phys. 86, 779 (2014)
- A. F. Kemper et al., Ann. Phys. 1600235 (2017)

Angle-resolved photoelectron spectroscopy + something else

The case for going smaller

Take $1 - \mu$ ARPES with deflectors

- deflection

sample

data: J. Katoch and S. Ulstrup

Take 3 - nanoARPES

50 µm

<120 nm spatial resolution 100 times slower than µARPES

(almost) nanoARPES with KB optics

Spatially Resolved ARPES: on micro-structures

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICAL SCIENCES

Strong interlayer interactions in bilayer and trilayer moiré superlattices

Saien Xie^{1,2,3}*, Brendan D. Faeth¹, Yanhao Tang⁴, Lizhong Li⁴, Eli Gerber⁴, Christopher T. Parzyck¹, Debanjan Chowdhury¹, Ya-Hui Zhang⁵, Christopher Jozwiak⁶, Aaron Bostwick⁶, Eli Rotenberg⁶, Eun-Ah Kim¹, Jie Shan^{1,3,4}, Kin Fai Mak^{1,3,4}, Kyle M. Shen^{1,3}*

Spatially Resolved ARPES: on micro-structures

