

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181005104

FCC REPORT

Applicant: INDUSTRIA FUEGUINA DE RELOJERIA ELECTRONICA SA

Address of Applicant: SARMIENTO 2920 9420 RIO GRANDE, Argentina 9420

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: Smartway T1

Trade mark: Kodak

FCC ID: 2ALP3-T1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 26 Oct., 2018

Date of Test: 26 Oct., to 09 Nov., 2018

Date of report issued: 12 Nov., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	12 Nov., 2018	Original

Test Engineer Date: Tested by: 12 Nov., 2018

Reviewed by: 12 Nov., 2018

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	CO	NTENTS	3
		ST SUMMARY	
4			
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	19
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
	6.7.		
7	TES	ST SETUP PHOTO	48
R	FUT	CONSTRUCTIONAL DETAILS	49

Test Summary

Test Items	Section in CFR 47	Result			
Antenna requirement	15.203 & 15.247 (c)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(3)	Pass			
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass			
Power Spectral Density	15.247 (e)	Pass			
Band Edge	15.247 (d)	Pass			
Spurious Emission	15.205 & 15.209	Pass			
Pass: The FUT complies with the essential requirements in the standard					

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	INDUSTRIA FUEGUINA DE RELOJERIA ELECTRONICA SA
Address:	SARMIENTO 2920 9420 RIO GRANDE, Argentina 9420
Manufacturer:	INDUSTRIA FUEGUINA DE RELOJERIA ELECTRONICA SA
Address:	SARMIENTO 2920 9420 RIO GRANDE, Argentina 9420
Factory:	Vikin Communication Technology Co., Ltd
Address:	Room 1005, HSAE Technology Building, Hi-Tech Park, Nanshan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	Smartway T1
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	External Antenna
Antenna gain:	0.9 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2800mAh
AC adapter:	Model: KA1508-0501000AR Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3 2422MHz 6 2437MHz 9 2452MHz								
Note:								
Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.								

Report No: CCISE181005104

5.3 Test environment and test mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		

Transmitting mode	Keep the EUT in continuous transmitting with modulation
Transmining mode	T KEEN THE FILL IN CONTINUOUS TRANSMITTING WITH MOQUISTION

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty		
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)		
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)		

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE181005104

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018
EMI Test Software	AUDIX	E3	\	Version: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019		
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019		
Cable	HP	10503A	N/A	03-07-2018	03-06-2019		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The WiFi antenna is an Inernal antenna which cannot replace by end-user, the best case gain of the antenna is 0.9 dBi.

6.2 Conducted Emission

1				
Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz		
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kl	Hz		
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the loga			
Test procedure	line impedance stab 50ohm/50uH couplir 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. ling interference. In order positions of equipments	plators are connected to the pilization network (L.I.S.N.), and impedance for the measures are also connected to the season as a 500 hm/50 uH coupling it is refer to the block diagram are checked for maximum enter to find the maximum emit and all of the interface (263.4: 2014 on conducted)	which provides a suring equipment. he main power through mpedance with 50ohm of the test setup and um conducted ssion, the relative cables must be changed	
Test setup:		Reference Plane		
	AUX Equipment Test table/Insula Remark: E.U.T: Equipment Under LISN: Line Impedence Ste	E.U.T EMI Receiver	Ilter — AC power	
	Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for d			
Test mode:	Refer to section 5.3 for d	etails		
Test results:	Passed			

Measurement Data:

Product name:	Smartphone	Product model:	Smartway T1
Test by:	Yaro	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>db</u>		dBu₹	dBu∜	<u>ab</u>	
1	0.158	40.02	0.17	10.77	50.96	65.56	-14.60	QP
2	0.158	25.17	0.17	10.77	36.11	55.56	-19.45	Average
3	0.170	39.70	0.17	10.77	50.64	64.94	-14.30	QP
4	0.219	35.67	0.15	10.76	46.58	62.88	-16.30	QP
1 2 3 4 5 6 7 8	0.502	33.66	0.12	10.76	44.54	56.00	-11.46	QP
6	0.505	29.04	0.12	10.76	39.92	46.00	-6.08	Average
7	0.529	33.85	0.12	10.76	44.73	56.00	-11.27	QP
8	0.535	28.64	0.12	10.76	39.52	46.00	-6.48	Average
9	0.724	29.52	0.13	10.78	40.43	56.00	-15.57	QP
10	1.010	20.18	0.13	10.87	31.18	46.00	-14.82	Average
11	1.568	18.80	0.14	10.93	29.87	46.00	-16.13	Average
12	2.594	18.28	0.15	10.93	29.36			Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Smartphone	Product model:	Smartway T1
Test by:	Yaro	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5°C Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
=	MHz	dBu∜	<u>dB</u>	dB	dBu₹	−−dBuV	<u>dB</u>	
1	0.158	24.13	0.98	10.77	35.88	55.56	-19.68	Average
2	0.162	39.18	0.97	10.77	50.92	65.34	-14.42	QP
3	0.194	37.57	0.93	10.76	49.26	63.84	-14.58	QP
4	0.502	34.25	0.97	10.76	45.98	56.00	-10.02	QP
5	0.502	25.09	0.97	10.76	36.82	46.00	-9.18	Average
6	0.567	22.98	0.97	10.76	34.71			Average
7	0.724	31.76	0.97	10.78	43.51		-12.49	[[] - [[[]] - []
8	0.724	20.57	0.97	10.78	32.32			Average
1 2 3 4 5 6 7 8 9	0.968	30.83	0.97	10.86	42.66		-13.34	731333333
10	2.636	30.59	0.99	10.93	42.51		-13.49	100 NATORO
11	2.636	20.67	0.99	10.93				Average
12	3.173	18.93	0.99	10.91	30.83			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Toot CU	Maximum C	onducted Output	Limit(dDm)	Dogult	
Test CH	802.11b	802.11g	802.11n(H20)	Limit(dBm)	Result
Lowest	14.52	12.31	10.77		
Middle	13.60	12.86	10.87	30.00	Pass
Highest	13.66	12.73	10.77		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Toot CH	Test CH 6dB Emission Bandwidth (MHz)			Limit/IrLI¬\	Result
Test Ch	802.11b	802.11g	802.11n(H20)	Limit(kHz)	Result
Lowest	9.28	15.84	16.88		
Middle	9.68	16.56	17.84	>500	Pass
Highest	9.52	16.56	17.76		
Test CH	99% O	99% Occupy Bandwidth (MHz)			Result
Test CH	802.11b	802.11g	802.11n(H20)	Limit(kHz)	Result
Lowest	11.52	16.56	17.60		
Middle	11.60	16.80	17.68	N/A	N/A
Highest	12.00	16.96	17.68		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Limit:	8dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Test CH	Power	Spectral Density	Limit(dBm)	Result	
Test on	802.11b	802.11g	802.11n(H20)	Limit(ubin)	Result
Lowest	3.76	2.16	-1.53		
Middle	3.16	1.88	-2.19	8.00	Pass
Highest	3.34	1.87	-2.20		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

T (D)	500 D 145 0 O 11 45 047 ()		
Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	6.2 Radiated Emission Method								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2	013 and	KDE	3 558074				
	Test Frequency Range:	2.3GHz to 2.5G	Hz						
	Test Distance:	3m							
	Receiver setup:	Frequency	Detect		RBW		'BW	Remark	
		Above 1GHz	Peak RMS		1MHz 1MHz		MHz MHz	Peak Value Average Value	
	Limit:	Frequenc	-		nit (dBuV/m @		Remark		
		Above 1GI		54.00		•		verage Value	
		74.00 Peak Value							
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
	Test setup:	- 150cm	(Tumtable	,]	Ground Reference Plane Receiver	rn Antenna Pre-putier Co	Antenna To	wer	
	Test Instruments:	Refer to section	5.8 for d	etail	S				
	Test mode:	Refer to section	5.3 for d	etail	S				
	Test results:	Passed							
	<u> </u>								

802.11b mode:

Product Name:		Smartphone		Product Model:	Smartway T1		
Test	Ву:	Yaro		Test mode:	802.11b Tx mode		
Test	Channel:	Lowest channe	el	Polarization:	Vertical		
Test	Voltage:	AC 120/60Hz		Environment:	Temp: 24℃ Huni: 57%		
er use	Level (dBuV/m)						
110	Lover (abarrin)						
100					m		
80					FC/C PART 15 (PK)		
60					FCC PART 15 (AV)		
	mound	mym	monmo	mmmm			
40							
20							
20							
0	2310 2320		2350		2422		
	2310 2320		Frequenc	y (MHz)	2422		

ReadAntenna Cable Aux Preamp Limit Over Freq Level Factor Loss Factor Factor Level Line Limit Remark MHz dB dBuV/m dBuV/m dBuV dB/m dB dB dB 0.00 49.46 74.00 -24.54 Peak 1 2390,000 17.40 27.37 4.69 0.00 2 2390.000 8.56 27.37 0.00 0.00 40.62 54.00 -13.38 Average 4.69

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smartphone	Product Model:	Smartway T1	
Test By:	Yaro	Test mode:	802.11b Tx mode	
Test Channel:	Lowest channel	nannel Polarization: H		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	
110 Level (dBuV/m)				

	ReadAntenna Cable Freq Level Factor Loss Fa							Limit Line		Remark
	MHz	dBu∇	dB/m		<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	dB	
1 2	2390.000 2390.000		27.37 27.37						-23.86 -12.81	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smartphone	Product Model:	Smartway T1
Test By:	Yaro	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

					and the second second					
	Freq		Antenna Factor							
	MHz	dBu∀	<u>dB</u> /m	<u>ap</u>	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smartphone	Product Model:	Smartway T1	
Test By:	Yaro	Test mode:	802.11b Tx mode	
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq		Antenna Factor							Remark
-	MHz	dBu∜	dB/m	<u>ab</u>	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483,500 2483,500						51.26 41.85			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Produ	Product Name:		phone			Produc	t Model:	Sma	Smartway T1		
Test E	Ву:	Yaro				Test m	ode:	802	802.11g Tx mode		
Test C	Channel:	Lowes	t channel			Polariz	ation:	Vert	ical		
Test V	/oltage:	AC 12	0/60Hz			Enviro	nment:	Ten	np: 24℃	Huni: 57%	
110 Le	vel (dBuV/m)								_		
100									^	man	
80									FCC	PART 15 (PK)	
60	- 455 540 - 510 4		~ .					1000	FCC	PART 15 (AV)	
40	~~~~	muser	N KANAN	www.	many	~~~~	mure c	~2			
20											
023	10 2320		14	2350	Frequenc	y (MHz)				2422	
	Freq		ntenna Factor		Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	₫BuV	dB/m		<u>db</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
1 2	2390.000 2390.000	20.31 10.11	27.37 27.37	4.69 4.69					-21.63 -11.83	Peak Average	

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

0.00 58.87 74.00 -15.13 Peak 0.00 47.92 54.00 -6.08 Average

Product Name:	Smartphone		Product Model:	Smartway T1
Test By:	Yaro		Test mode:	802.11g Tx mode
Test Channel:	Lowest channel		Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		Environment:	Temp: 24℃ Huni: 57%
110 Level (dBuV/m)			12 21	
100				Jan J
80				FCC PART 15 (PK)
60				FCC PART 15 (AV)
40	Manage Control	~~~~~	manne	2
20				
02310 2320	23	50 Frequency	(MHz)	242
Freq	ReadAntenna C Level Factor		Preamp Factor Level	Limit Over Line Limit Remark
<u>MH</u> z	dBuV dB/m		dB dBu√/m d	BuV/m dB −−−−−

0.00

0.00

Remark:

1 2

2390.000 26.81 2390.000 15.86 27.37 27.37

4.69

4.69

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smartphone	Produc	t Model:	Sma	Smartway T1		
Test By:	Yaro		Test mo	ode:	802.	11g Tx m	ode
Test Channel:	Highest channel		Polariza	ation:	Verti	Vertical	
Test Voltage:	AC 120/60Hz		Enviror	ment:	Tem	p: 24 ℃	Huni: 57%
110 Level (dBuV/m)							
3220							
100							
	1	1					
80						FCC P	ART 15 (PK)
		7 ~ -					
60		~ (1	-1-	. ^ ^	FCC P	ART 15 (AV)
				2	- 0 .		
40				- 0			
20							
02452							2500
		Frequency	(MHz)				
Freq	ReadAntenna Cabi Level Factor Los	le Aux ss Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV dB/m	<u>ab</u> ab	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	B	
1 2483.500 2 2483.500	22.73 27.57 4.8 12.85 27.57 4.8	81 0.00 81 0.00	0.00 0.00	55.11 45.23	74.00 54.00	-18.89 -8.77	Peak Average
Pomork:							अपर

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smartphone	Product Model:	Smartway T1
Test By:	Yaro	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Factor			Level	Line		Remark
	MHz	dBu∇		 <u>ab</u>	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBu√/m	<u>dB</u>	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	Smartphone	Product Model:	Smartway T1
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				30						
	Freq		Antenna Factor					Limit Line		
	MHz	dBu∀	$-\overline{dB}/\overline{m}$		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu∜/m	<u>dB</u>	
1 2	2390.000 2390.000			4.69 4.69					-20.85 -9.82	Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Produc	ct Name:	Smartp	hone			Produc	t Model:	Sma	artway T1	
Test B	y:	Yaro				Test mo	ode:	802	.11n(HT20	D) Tx mode
Test C	hannel:	Lowest	channel			Polariza	ation:	Hor	izontal	
Test Vo	oltage:	AC 120)/60Hz			Enviror	ment:	Ten	np: 24 ℃	Huni: 57%
110 Le	vel (dBuV/m)									
100									SW	my
80									FCC P	ART 15 (PK)
60								JM	FCC P	ART 15 (AV)
40	mm	v~~~	Maria	· www	man	~~~	~	2		
20										
0 23	10 2320		2	2350	requency	(MHz)				2422
	Freq		ntenna Factor	Cable	Aux	Preamp	Level	Limit Line		Remark
	MHz	dBu∀	dB/m	₫B	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1 2	2390.000 2390.000	25.63 15.77	27.37 27.37	4.69 4.69	0.00 0.00		57.69 47.83		-16.31 -6.17	Peak Average
										80

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smartphone	Product Model:	Smartway T1
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	D J.								
Freq									
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	MHz 500	Treq Level MHz dBuV 500 22.28	Treq Level Factor MHz dBuV dB/m 500 22.28 27.57	Treq Level Factor Loss MHz dBuV dB/m dB 500 22.28 27.57 4.81	Treq Level Factor Loss Factor MHz dBuV dB/m dB dB 500 22.28 27.57 4.81 0.00	MHz dBuV dB/m dB dB dB 500 22.28 27.57 4.81 0.00 0.00	Treq Level Factor Loss Factor Factor Level MHz dBuV dB/m dB dB dB dBuV/m 500 22.28 27.57 4.81 0.00 0.00 54.66	Treq Level Factor Loss Factor Factor Level Line MHz dBuV dB/m dB dB dB dBuV/m dBuV/m 500 22.28 27.57 4.81 0.00 0.00 54.66 74.00	req Level Factor Loss Factor Factor Level Line Limit

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smartphone	Product Model:	Smartway T1
Test By:	Yaro	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor					Over Limit	
-	MHz	dBu∇	$-\overline{dB}/\overline{m}$	 <u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

·	FCC Part 15 C Section 15.247 (d)
Test Method:	
i oot iiioti ioo.	ANSI C63.10:2013 and KDB 558074
	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2	Radiated Emission Me	ethod						
	Test Requirement:	FCC Part 15 C S	ection 15.	.209 a	and 15.205			
	Test Method:	ANSI C63.10:201	3					
	Test Frequency Range:	9kHz to 25GHz						
	Test Distance:	3m						
	Receiver setup:	Frequency	Detecto	or	RBW	VI	3W	Remark
	•	30MHz-1GHz	Quasi-pe	eak	120KHz	300	KHz	Quasi-peak Value
		Above 1GHz	Peak		1MHz		/IHz	Peak Value
	1 to the		RMS		1MHz : (dBuV/m @3r		/lHz	Average Value Remark
	Limit:	Frequency 30MHz-88MH	7	LIIIIII	. <u>(аваулп @зг</u> 40.0	11)	Oı	uasi-peak Value
		88MHz-216MH			43.5			uasi-peak Value
		216MHz-960MI			46.0			uasi-peak Value
		960MHz-1GH	Z		54.0			uasi-peak Value
		Above 1GHz			54.0		1	Average Value
	Test Procedure:				74.0 e top of a rota			Peak Value
		The table was highest radia? The EUT was antenna, who tower. The antenna the ground to Both horizon make the med. For each suscase and the meters and to find the med. The test-reconspecified Base. If the emission the limit spen of the EUT we have 10dB med.	as rotated ation. s set 3 m ich was m height is o determinatal and versus assurements assurements assurements the rota tand aximum reliver system of the color of	eters nount s varied for the entical able with Months with Months tennal able	away from the don the top ed from one ne maximum value on, the EUT was turned from the examination on, the EUT was turned from the examination on the ed. Otherwise re-tested of the examination of the exa	ne into of a neter value s of the was a beginn 0 of mode stopped the ne by	erferent variable to four of the fance ante arrange hts fro degree tect Funde. e was 1 ped and emissione us	r meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees
	Test setup:	Below 1GHz EUT Turn Table Ground P	0.8m	4m			_	

	Above 1GHz
	Horn Anlenna Tower AE EUT Ground Reference Plane Test Receiver Test Receiver Controller
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Name:	Smart	phone			Produc	t Model:	Sm	artway T1	1	
est By:		Yaro				Test me	ode:	Wi-	Fi Tx mod	de	
Fest By: Yaro Test mode: Wi-Fi Tx mode Fest Frequency: 30 MHz ~ 1 GHz Polarization: Temp: 24°C Huni: 57% ReadAntenna Cable Aux Preamp Freq Level Factor Level Limit Over Frequency MHz MHz MHz MHz MHz MHz MHz MH											
Test By: Yaro Test mode: Wi-Fi Tx mode Test Frequency: 30 MHz ~ 1 GHz Polarization: Horizontal Test Voltage: AC 120/60Hz Environment: Temp: 24°C Huni: 57% 80 Level (dBuV/m) 70 FCC PART15 CLASS B 40 30 50 100 200 500 1000 Frequency (MHz) ReadAntenna Cable Aux Preamp Limit Over Freq Level Factor Loss Factor Factor Level Line Limit Remark											
Love	L/dDuller\										
30 Leve	(dBuv/m)									7	
70											
60									ECC DAR	T15 CL	ASSB
50									TCCTAIL	113 CL	
10											
311						2.20					
50				2		when.	4		5	Mary and the	manufacture from
	.1.	144		Â	n pl	many	The ball angular bearing	Charge March of the sales and	5 March March	dissources	und ale on
20	Survey And Apriles	Moureum	mad	Å	Jagent Wall South	many	Mapping the Ma	Benjalah paraglah sa	5 Mary Landy Landy	distribution	and alexan
20	Supering And spring	Marken	mad	À	Jage of the Jack	many	Maple of the Market	(hazabedin ^a rt-adokar	5 mushly harry	dinor may be de-	sand altricor
10	Pagget and	Moureum	J. W. W.		John Profession of		Western Labour	hazaketu ett valdhar		disconnect and	
10	Pagget and				100	y (MHz)	Magazara Lakerra		500	distributed the state of the st	
10	50	Read	Ant enna	Cable	Aux	y (MHz) Preamp	and .	Limit	500 Over		100
10	50 Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	y (MHz) Preamp Factor	Level	Limit Line	500 Over Limit		100
030	50 Freq	Read! Level	Antenna Factor ——dB/m	Cable Loss dB	Aux Factor ———dB	y (MHz) Preamp Factor —————dB	Level	Limit Line dBuV/m	500 Over Limit	Reman	100
030	50 Freq MHz 47.160 109.412	Read/ Level dBuV 30.50 36.71	Antenna Factor dB/m 13.88 12.27	Cable Loss ——————————————————————————————————	Aux Factor dB 0.00 0.00	y (MHz) Preamp Factor dB 29.84 29.46	Level dBuV/m 15.81 21.56	Limit Line dBuV/m 40.00 43.50	0ver Limit 	Remain	100
030	50 Freq MHz 47.160	Read! Level dBuV	Antenna Factor dB/m	Cable Loss dB	Aux Factor 	y (MHz) Preamp Factor dB 29.84 29.46 28.77	Level dBuV/m 15.81 21.56 24.51	Limit Line dBuV/m 40.00 43.50 43.50	Over Limit 	Remaii QP QP QP QP	100
10	50 Freq MHz 47.160 109.412 210.048	Read/ Level dBuV 30.50 36.71 38.52	Antenna Factor — dB/m 13.88 12.27 11.90	Cable Loss 	Aux Factor dB 0.00 0.00	y (MHz) Preamp Factor dB 29.84 29.46 28.77 28.47	Level dBuV/m 15.81 21.56	Limit Line dBuV/m 40.00 43.50 43.50 46.00 46.00	0ver Limit 	Rema: QP QP QP QP QP QP	100

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

ADOVE 1GHZ				002.445					
			Tast als	802.11b					
				annel: Lowe					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	tector: Peak Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	47.34	36.06	6.81	41.82	48.39	74.00	-25.61	Vertical	
4824.00	47.35	36.06	6.81	41.82	48.40	74.00	-25.60	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	38.51	36.06	6.81	41.82	39.56	54.00	-14.44	Vertical	
4824.00	38.15	36.06	6.81	41.82	39.20	54.00	-14.80	Horizontal	
Test channel: Middle channel									
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	47.35	36.32	6.85	41.84	48.68	74.00	-25.32	Vertical	
4874.00	48.09	36.32	6.85	41.84	49.42	74.00	-24.58	Horizontal	
			Dete	ctor: Averaç	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	38.41	36.32	6.85	41.84	39.74	54.00	-14.26	Vertical	
4874.00	38.96	36.32	6.85	41.84	40.29	54.00	-13.71	Horizontal	
Test channel: Highest channel									
			De	tector: Peak	Value		I		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	48.28	36.58	6.89	41.86	49.89	74.00	-24.11	Vertical	
4924.00	47.88	36.58	6.89	41.86	49.49	74.00	-24.51	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	39.24	36.58	6.89	41.86	40.85	54.00	-13.15	Vertical	
4924.00 Remark:	38.67	36.58	6.89	41.86	40.28	54.00	-13.72	Horizontal	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g					
			Test ch	annel: Lowe					
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	47.73	36.06	6.81	41.82	48.78	74.00	-25.22	Vertical	
4824.00	47.86	36.06	6.81	41.82	48.91	74.00	-25.09	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	38.49	36.06	6.81	41.82	39.54	54.00	-14.46	Vertical	
4824.00	38.41	36.06	6.81	41.82	39.46	54.00	-14.54	Horizontal	
Test channel: Middle channel									
			De	tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	47.62	36.32	6.85	41.84	48.95	74.00	-25.05	Vertical	
4874.00	47.53	36.32	6.85	41.84	48.86	74.00	-25.14	Horizontal	
			Dete	ctor: Averag	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	38.52	36.32	6.85	41.84	39.85	54.00	-14.15	Vertical	
4874.00	38.16	36.32	6.85	41.84	39.49	54.00	-14.51	Horizontal	
			Test ch	annel: Highe	est channel				
			De	tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	48.13	36.58	6.89	41.86	49.74	74.00	-24.26	Vertical	
4924.00	47.65	36.58	6.89	41.86	49.26	74.00	-24.74	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	38.79	36.58	6.89	41.86	40.40	54.00	-13.60	Vertical	
4924.00	38.53	36.58	6.89	41.86	40.14	54.00	-13.86	Horizontal	
Remark [.]									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	20)					
				annel: Lowe						
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.13	36.06	6.81	41.82	49.18	74.00	-24.82	Vertical		
4824.00	47.95	36.06	6.81	41.82	49.00	74.00	-25.00	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	38.67	36.06	6.81	41.82	39.72	54.00	-14.28	Vertical		
4824.00	38.51	36.06	6.81	41.82	39.56	54.00	-14.44	Horizontal		
	Test channel: Middle channel									
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.59	36.32	6.85	41.84	48.92	74.00	-25.08	Vertical		
4874.00	47.63	36.32	6.85	41.84	48.96	74.00	-25.04	Horizontal		
			Dete	ctor: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	38.18	36.32	6.85	41.84	39.51	54.00	-14.49	Vertical		
4874.00	38.47	36.32	6.85	41.84	39.80	54.00	-14.20	Horizontal		
			Test ch	annel: Highe	est channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	48.25	36.58	6.89	41.86	49.86	74.00	-24.14	Vertical		
4924.00	48.31	36.58	6.89	41.86	49.92	74.00	-24.08	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	38.93	36.58	6.89	41.86	40.54	54.00	-13.46	Vertical		
4924.00	38.17	36.58	6.89	41.86	39.78	54.00	-14.22	Horizontal		
Remark [.]										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.