

Project Initialization and Planning Phase

Date	15 july 2024	
Team ID	739907	
Project Title	Price prediction of natural gas using machine learning approach	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

To address the problem of accurately predicting natural gas prices, we propose a comprehensive solution leveraging advanced machine learning techniques.

Project Overview		
Objective	This project aims to leverage machine learning (ML) techniques to develop a robust predictive model for natural gas prices, providing valuable insights and tools for stakeholders in the energy sector	
Scope	The future scope for predicting the price of natural gas using machine learning approaches is promising, with several potential avenues for advancement and application.	
Problem Statement		
Description	How can machine learning techniques be applied to predict natural gas prices more accurately than traditional methods by effectively capturing and modeling the complex relationships among the various influencing factors.	
Impact	Makes user in understanding the price and demand of natural in present and future. Resulting in understanding volatility and complexity of natural gas prices.	
Proposed Solution		
Approach	To address the problem of accurately predicting natural gas prices, we propose a comprehensive solution leveraging advanced machine learning techniques.	
Key Features	Data Collection and Preprocessing, Feature Engineering and Selection, . Model Development, . Model Training and Validation, Model Evaluation	

and Communican Doubermont and Visualization Continuous Insurancement	
and Comparison, . Deployment and Visualization, Continuous Improvement	
and Adaptation, Implementation Plan, Expected Outcomes.	

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	e.g., 2 x NVIDIA V100 GPUs		
Memory	RAM specifications	e.g., 8 GB		
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD		
Software				
Frameworks	Python frameworks	e.g., Flask		
Libraries	Additional libraries	e.g., scikit-learn, pandas, numpy,		
Development Environment	IDE, version control	e.g.,Google colab, anaconda prompt, pycharm, Git.		
Data				
Data	Source, size, format	e.g., Kaggle dataset, 10 images		

