

Advanced Machine Learning- Exercise 3 Graphical Models and Exact Inference

M.Sc. Ömer Sali & M.Sc. Jonathon Luiten <lastname>@vision.rwth-aachen.de

RWTH Aachen University - Computer Vision Group http://www.vision.rwth-aachen.de/

2019-06-05

Content

- 1. Bayesian Networks
- 2. Bayes Ball, D-Separation
- 3. Bayes Net Toolbox
- 4. Factor Graphs, Sum-Product Algorithm

Content

- 1. Bayesian Networks
- 2. Bayes Ball, D-Separation
- Bayes Net Toolbox
- 4. Factor Graphs, Sum-Product Algorithm

Undirected

graph

Bayes Networks - Recap

- ► Two basic kinds of graphical models
 - Directed graphical models or Bayesian Networks
 - Undirected graphical models or Markov Random Fields
- Key components
 - ► Nodes : Random variables
 - Edges : Directed or undirected
 - The value of a random variable may be known or unknown.

Known variables Unknown variables

ables

Directed

graph

Bayes Networks - Recap

Chains of nodes:

$$p(a)$$
 $p(b|a)$ $p(c|b)$

Knowledge about a is expressed by the prior probability:

Dependencies are expressed through conditional probabilities:

Joint distribution of all three variables:

$$p(a, b, c) = p(c|a, b)p(a, b)$$
$$= p(c|b)p(b|a)p(a)$$

Bayes Networks - Recap

► Convergent connections:

- Here the value of c depends on both variables a and b.
- ▶ This is modeled with the conditional probability:

► Therefore, the joint probability of all three variables is given as:

$$p(a, b, c) = p(c|a, b)p(a, b)$$
$$= p(c|a, b)p(a)p(b)$$

Bayes Networks - Recap

Computing the joint probability

$$p(x_1,...,x_7) = p(x_1)p(x_2)p(x_3)$$

$$p(x_4|x_1,x_2,x_3)$$

$$p(x_5|x_1,x_3)$$

$$p(x_6|x_4)p(x_7|x_4,x_5)$$

General factorization

$$p(\mathbf{x}) = \prod_{k=1}^K p(x_k|pa_k)$$

We can directly read off the factorization of the joint from the network structure!

Bayes Networks - Question

- Elections are coming up!
- Political Parties: Party A, Party B, Party C
- ▶ Promised spending: low(I), moderate(m), high(h)
- Party A favors health care (h = 0.8, m = 0.15).
- Party A equally likely to promise spending in all 3 categories in education.
- Party B favors education (h = 0.7, m = 0.15).
- ► Party *B* equally likely to promise spending in all 3 categories in health care.
- ▶ Party *C* makes lots of promises (h = 0.8, l = 0.2) in both areas

- ► P: political party.
- ► *SE*: promised spending in education.
- ► *SH*: promised spending in health care.
- E: election is imminent.

Bayes Network - Solution (cont.)

PΕ	P(SH = h P, E)	P(SH = m P, E)	P(SH = I P, E
A T	0.8	0.15	0.05
B T	0.33	0.33	0.33
C T	0.8	0.0	0.2
A F	0.01	0.1	0.89
BF	0.01	0.1	0.89
C F	0.01	0.1	0.89

PF	P(SF - h P F)	P(SE = m P, E)	P(SF - IIP F)
AT	0.33	0.33	0.33
BT	0.7	0.15	0.15
C T	0.8	0.0	0.2
A F	0.01	0.1	0.89
BF	0.01	0.1	0.89
C F	0.01	0.1	0.89

Bayes Networks - Solution (cont.)

$$p(P = ?|SH = m, SE = h, E = T) = \frac{p(P = ?, SH = m, SE = h, E = T)}{p(SH = m, SE = h, E = T)}$$

$$p(P = ?, SH = m, SE = h, E = T) = p(P = ?)p(E = T)$$

$$p(SE = h|P = ?, E = T)$$

$$p(SH = m|P = ?, E = T)$$

$$p(SH = m,SE = h,E = T) = p(E = T)$$

$$\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p}) \right]$$

$$p(SE = h|E = T, P = \mathbf{p})$$

Bayesian Networks

Bayes Networks - Solution (cont.)

$$p(P = ?|SH = m, SE = h, E = T) = \frac{p(P = ?, SH = m, SE = h, E = T)}{p(SH = m, SE = h, E = T)}$$

$$p(P = ?, SH = m, SE = h, E = T) = p(P = ?)p(E = T)$$

$$p(SE = h|P = ?, E = T)$$

$$p(SH = m|P = ?, E = T)$$

$$p(SH = m|P = ?, E = T)$$

$$\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p}) \right]$$

$$p(SE = h|E = T, P = \mathbf{p})$$

Bayesian Networks

$$P(P = ?| ...) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = A| \dots) = \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \Big[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \Big]}$$

$$P(P = A|...) = \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$
$$= \frac{0.33 \cdot 0.33 \cdot 0.35}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.37 + 0.33 \cdot 0 \cdot 0.8}$$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = A | \dots) = \frac{p(P = A)p(SE = h | P = A, E = T)p(SH = m | P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m | E = T, P = \mathbf{p})p(SE = h | E = T, P = \mathbf{p}) \right]}$$
$$= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.7 + 0.33 - 0.08}$$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \Big[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \Big]}$$

$$P(P = A | \dots) = \frac{p(P = A)p(SE = h | P = A, E = T)p(SH = m | P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m | E = T, P = \mathbf{p})p(SE = h | E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.7 + 0.33 - 0.08} = 0.17647$$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \Big[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \Big]}$$

$$P(P = A | \dots) = \frac{p(P = A)p(SE = h | P = A, E = T)p(SH = m | P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m | E = T, P = \mathbf{p})p(SE = h | E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = 0.17647$$

$$P(P = B | \dots) = \frac{p(P = B)p(SE = h | P = B, E = T)p(SH = m | P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m | E = T, P = \mathbf{p})p(SE = h | E = T, P = \mathbf{p}) \right]}$$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = A|...) = \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.7 + 0.33 \cdot 0.7} = 0.17647$$

$$P(P = B | \dots) = \frac{p(P = B)p(SE = h | P = B, E = T)p(SH = m | P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m | E = T, P = \mathbf{p})p(SE = h | E = T, P = \mathbf{p}) \right]}$$
$$= \frac{0.33 \cdot 0.33 \cdot 0.33 \cdot 0.7}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0 \cdot 0.8}$$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \Big[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \Big]}$$

$$P(P = A|...) = \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.35 \cdot 0.7 + 0.33 - 0.08} = 0.17647$$

$$P(P = B | \dots) = \frac{p(P = B)p(SE = h | P = B, E = T)p(SH = m | P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m | E = T, P = \mathbf{p})p(SE = h | E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.3}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.38}$$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = A| \dots) = \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = 0.17647$$

$$P(P = B| \dots) = \frac{p(P = B)p(SE = h|P = B, E = T)p(SH = m|P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.7}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7} = 0.8235$$

$$P(P = ?| ...) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = A | \dots) = \frac{p(P = A)p(SE = h | P = A, E = T)p(SH = m | P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m | E = T, P = \mathbf{p})p(SE = h | E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.08} = 0.17647$$

$$P(P = B | \dots) = \frac{p(P = B)p(SE = h | P = B, E = T)p(SH = m | P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m | E = T, P = \mathbf{p})p(SE = h | E = T, P = \mathbf{p}) \right]}$$
$$= \frac{0.33 \cdot 0.33 \cdot 0.7}{0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.7 + 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = 0.8235$$

$$P(P=C|\ldots) = \frac{p(P=C)p(SE=h|P=C,E=T)p(SH=m|P=C,E=T)}{\sum_{\mathbf{p}\in P} \left[p(P=\mathbf{p})p(SH=m|E=T,P=\mathbf{p})p(SE=h|E=T,P=\mathbf{p})\right]}$$

12/32

Bayes Networks - Solution

$$\begin{split} P(P = ?| \dots) &= \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]} \\ P(P = A| \dots) &= \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]} \\ &= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = \mathbf{0.17647} \\ P(P = B| \dots) &= \frac{p(P = B)p(SE = h|P = B, E = T)p(SH = m|P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]} \\ &= \frac{0.33 \cdot 0.33 \cdot 0.7}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = \mathbf{0.8235} \\ P(P = C| \dots) &= \frac{p(P = C)p(SE = h|P = C, E = T)p(SH = m|P = C, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]} \end{split}$$

Bavesian Networks M.Sc., Ömer Sali & M.Sc., Jonathon Luiten

 $0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0 \cdot 0.8$

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = A| \dots) = \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{p(SS \cdot 0.33 \cdot 0.15)}{p(SS \cdot 0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33 \cdot 0.7}$$

$$P(P = B| \dots) = \frac{p(P = B)p(SE = h|P = B, E = T)p(SH = m|P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{p(SS \cdot 0.33 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.83}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SE = h|P = C, E = T)p(SH = m|P = C, E = T) \right]}$$

$$= \frac{p(SS \cdot 0.33 \cdot 0.33 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.83 \cdot 0.83}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.03}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.83}$$

Bayesian Networks M.Sc. Ömer Sali & M.Sc. Jonathon Luiten

$$\begin{split} P(P = ?| \dots) &= \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]} \\ P(P = A| \dots) &= \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]} \\ &= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = \mathbf{0.17647} \\ P(P = B| \dots) &= \frac{p(P = B)p(SE = h|P = B, E = T)p(SH = m|P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]} \\ &= \frac{0.33 \cdot 0.33 \cdot 0.7}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = \mathbf{0.8235} \\ P(P = C| \dots) &= \frac{p(P = C)p(SE = h|P = C, E = T)p(SH = m|P = C, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]} \end{split}$$

$$P(P = C | \dots) = \frac{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p}) p(SH = m | E = T, P = \mathbf{p}) p(SE = h | E = T, P = \mathbf{p}) \right]}{0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0 \cdot 0.8} = \mathbf{0}$$

Bayesian Networks M.Sc. Ömer Sali & M.Sc. Jonathon Luiten

12/32

Bayes Networks - Solution

$$P(P = ?| \dots) = \frac{p(P = ?)p(SE = h|P = ?, E = T)p(SH = m|P = ?, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$P(P = A| \dots) = \frac{p(P = A)p(SE = h|P = A, E = T)p(SH = m|P = A, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.15}{0.33 \cdot 0.15 \cdot 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = 0.17647$$

$$P(P = B| \dots) = \frac{p(P = B)p(SE = h|P = B, E = T)p(SH = m|P = B, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.33 \cdot 0.7}{0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.33} = 0.8235$$

$$P(P = C| \dots) = \frac{p(P = C)p(SE = h|P = C, E = T)p(SH = m|P = C, E = T)}{\sum_{\mathbf{p} \in P} \left[p(P = \mathbf{p})p(SH = m|E = T, P = \mathbf{p})p(SE = h|E = T, P = \mathbf{p}) \right]}$$

$$= \frac{0.33 \cdot 0.0.8}{0.33 \cdot 0.15 \cdot 0.33 + 0.33 \cdot 0.33 \cdot 0.7 + 0.33 \cdot 0.0.8} = 0$$

It is highly probable that politician belongs to Party B!

Bayesian Networks M.Sc. Ömer Sali & M.Sc. Jonathon Luiten

▶ If we know that Party C is not fielding any candidates in our constituency then p(P = A) = p(P = B) = 0.5.

$$P(P = \mathbf{A} | \dots) = \frac{0.5 \cdot 0.33 \cdot 0.15}{0.5 \cdot 0.15 \cdot 0.33 + 0.5 \cdot 0.33 \cdot 0.7 + 0 \cdot 0 \cdot 0.8} = 0.17647$$

$$P(P = \mathbf{B}|\ldots) = \frac{0.5 \cdot 0.33 \cdot 0.7}{0.5 \cdot 0.15 \cdot 0.33 + 0.5 \cdot 0.33 \cdot 0.7 + 0 \cdot 0 \cdot 0.8} = 0.8235$$

$$P(P = \mathbf{C} | \dots) = \frac{0 \cdot 0 \cdot 0.8}{0.5 \cdot 0.15 \cdot 0.33 + 0.5 \cdot 0.33 \cdot 0.7 + 0 \cdot 0 \cdot 0.8} = 0$$

The distribution does not change!

Content

- 1. Bayesian Networks
- 2. Bayes Ball, D-Separation
- 3. Bayes Net Toolbox
- 4. Factor Graphs, Sum-Product Algorithm

D-Separation -Reminder

- Definition
 - Let X, Y, and Z be non-intersecting subsets of nodes in a directed graph.
 - ▶ A path from *X* to *Y* is blocked if it contains a node such that either
 - The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set Z of observed variables, or
 - The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set Z.
 - If all paths from X to Y are blocked, X is said to be d-separated from Y given Z.

Bayes Ball, D-Separation

M.Sc. Ömer Sali & M.Sc. Jonathon Luiten

"Bayes Ball"- Recap

- Game¹
 - ► Can you get a ball from node in set *X* to node in set *Y* without being blocked by node set *Z*?
 - Depending on its direction and the previous node, the ball can
 - Pass through (from parent to all children, from child to all parents)
 - Bounce back (from any parent/child to all parents/children)
 - Be blocked

¹Reference :R.D. Shachter, Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams), UAI'98, 1998

"Bayes Ball" - Recap

An unobserved node $W \not\in V$ passes through balls from parents and additionally bounces back balls from children

An **observed** node $W \in V$ **bounces back** balls from parents, but **blocks** balls from children

⇒ The Bayes Ball algorithm determines those nodes that are d-separated from the query node.

18/32

"Bayes Ball" - Q&A

RWTHAACHEN UNIVERSITY

"Bayes Ball" - Q&A

Let's play Bayes Ball...

No variable is conditionally independent of A given B

Let's play Bayes Ball...

F and C are conditionally independent of A given J

Let's play Bayes Ball...

 ${\cal C}$ is conditionally independent of ${\cal A}$ given ${\cal D}, {\cal G}, {\cal E}$

Content

- 1. Bayesian Networks
- 2. Bayes Ball, D-Separation
- 3. Bayes Net Toolbox
- 4. Factor Graphs, Sum-Product Algorithn

Bayes Net Toolbox - Solution

- If John calls, probability of burglary = 0.02
- lacktriangle If there is a burglary, probability that John calls =0.85
- If John & Mary call, and there is no earthquake, probability of burglary = 0.34

Bayes Net Toolbox - Solution

- ▶ If E=True, SE=high and SH=moderate
 - ▶ The probability of candidate being in party A = 0.176471
 - ▶ The probability of candidate being in party B = 0.823529
 - ▶ The probability of candidate being in party C = 0.000000

Bayes Net Toolbox - Solution

- ► If E=True, SE=high and SH=moderate and p(P = C) = 0
 - ▶ The probability of candidate being in party A = 0.176471
 - ▶ The probability of candidate being in party B = 0.823529
 - ▶ The probability of candidate being in party C = 0.000000

Content

- 1. Bayesian Networks
- 2. Bayes Ball, D-Separation
- 3. Bayes Net Toolbox
- 4. Factor Graphs, Sum-Product Algorithm

Factor Graphs - Reminder

- Joint probability
 - Can be expressed as product of factors:

$$p(\mathbf{x}) = \prod_{s \in \mathsf{ne}(x)} F_s(x, X_s)$$

- ► Factor graphs make this explicit through separate factor nodes
- Converting a directed polytree
 - Conversion to undirected tree creates loops due to moralization!
 - Conversion to a factor graph again results in a tree!

- Objectives
 - Efficient, exact inference algorithm for finding marginals
- Procedure:
 - Pick an arbitrary node as root
 - Compute and propagate messages from the leaf nodes to the root, storing received messages at every node
 - Compute and propagate messages from the root to the leaf nodes, storing received messages at every node
 - Compute the product of received messages at each node for which the marginal is required, and normalize if necessary

$$p(x) \propto \prod_{s \in \mathsf{ne}(x)} \mu_{f_s \to x}(x)$$

- Computational effort
 - ▶ Total number of messages = $2 \cdot$ number of graph edges

- ► Two kinds of messages
 - Message from factor node to variable nodes:
 - Sum of factor contributions

$$\mu_{f_s \to x}(x) \equiv \sum_{X_s} F_s(x, X_s)$$

$$= \sum_{X_s} f_s(x_s) \prod_{m \in ne(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

- Message from variable node to factor node:
 - Sum of factor contributions

$$\mu_{\mathsf{x}_m \to \mathsf{f}_{\mathsf{s}}}(\mathsf{x}_m) = \prod_{l \in \mathsf{ne}(\mathsf{x}_m) \setminus \mathsf{f}_{\mathsf{s}}} \mu_{\mathsf{f}_l \to \mathsf{x}_m}(\mathsf{x}_m)$$

⇒ Simple propagation scheme

Factor Graph - Solution

Conversion of Bayesian Network to Factor Graph

Step 2

$$\mu_{W \to f_C}(W) = \mu_{f_A \to W}(W)$$

$$\mu_{D \to f_E}(D) = \mu_{f_B \to D}(D)$$

$$\mu_{f_D \to S}(S) = \mu_{J \to f_D}(J) f_D(S, J = T)$$

Step 4

$$\mu_{S \to f_C}(S) = \mu_{f_D \to S}(S) \mu_{f_E \to S}(S)$$

$$\mu_{S \to f_D}(S) = \mu_{f_C \to S}(S) \mu_{f_E \to S}(S)$$

$$\mu_{S \to f_E}(S) = \mu_{f_C \to S}(S) \mu_{f_D \to S}(S)$$

Step 6

$$\mu_{W \to f_A}(W) = \mu_{f_C \to W}(W)$$
$$\mu_{D \to f_B}(D) = \mu_{f_E \to D}(D)$$

Termination

$$p(S) = \mu_{f_D \to S}(S) \mu_{f_C \to S}(S) \mu_{f_E \to S}(S)$$

$$= \mu_{f_E \to S}(S) f_D(S, J = T) \sum_{\text{ne}(f_E) \setminus \{S\}} \mu_{W \to f_C}(W) f_C(S, W) \cdot \sum_{\text{ne}(f_C) \setminus \{S\}} \mu_{D \to f_E}(D) \mu_{T \to f_E}(T) f_E(S, D, T)$$

$$= f_D(S, J = T) \sum_{\text{ne}(f_C) \setminus S} f_A(W) f_C(S, W) \sum_{\text{ne}(f_E) \setminus S} f_B(D) f_E(S, D, T)$$

Results

$$p(S = T) = 0.7692$$
 $p(S = F) = 0.2308$

▶ If we have no observation we have

$$p(S = T) = 0.4$$
 $p(S = F) = 0.6$

Factor Graphs, Sum-Product Algorithm