פתרון מבחן 2025א' - תורת הקבוצות,

2025 באוגוסט 14

שאלה 1

'סעיף א

הגדירו מהי קבוצה סופית.

אומר אומר שיוויון עוצמות $[n]=\{0,1,\cdots,n-1\}$ כאשר כא כך שמתקיים מר $[n]=\{0,1,\cdots,n-1\}$ כאשר הורים עוצמות אם קיים מרכית עולל. $[n]=\{0,1,\cdots,n-1\}$ שהיא הד-חד ערכית ועל.

'סעיף ב

על. F ער ערכית חד־חד היא $F:A\to A$ אם א, A סופית קבוצה כי לכל נוכיח נוכיח

:הוכחה

|A| = |[n]| מהיות סופית נובע שקיים $n \in \mathbb{N}$ מקיים מובע סופית מהיות

 $n \neq 0$ אם n = 0 הטענה נכונה באופן ריק ולכן נניח שn = 0

על: Fיש ערכית ונטען הדרחד המספר המספר פונקציה קיימת פונקציה קיימת המינימלי המינימלי המינימלי המספר המספר המכעי המינימלי אינימת פונקציה אונימת פונקציה המינימלי המ

נניח בשלילה שיש לבין א ונסתכל על ונסתכל על ונסתכל א ונסתכל א ונסתכל על א ונסתכל א ונסתכל א ונסתכל א ונסתכל א ונסתכל על וניח א ונסתכל על וניח א ונסתכל על וניח א ונסתכל על וניח א ונסתכל על וונסתכל על וניח א ונסתכל על וונסתכל וונסתכ

$$H(j) = \begin{cases} k & j = n_0 - 1 \\ n_0 - 1 & j = k \\ j & j \neq n_0 - 1 \land j \neq k \end{cases}$$

ערכית. אירח והיא והיא והיא והיא א $H\circ F:A\to [n_0-1]$ ש־ל, נבחין א $H\circ F$ על על

 $|A|=|n_0|$, כלומר אבל (מהגדרת שיוויון עוצמות), אבל אבל אבל $|A|=|n_0|$ ולכן (מהגדרת שיוויון עוצמות), אבל אבל אבל ולכן אבל אבל אבל אבל מהגדרת שיוויון עוצמות)

 $|[n]|=|[n_0]|\Longrightarrow |\{0,\cdots,n-1\}|=|\{0,\cdots,n_0-1\}|$ את הטענה אבל זה באינדוקציה, אבל באינדוקציה, אבל זה באחרונה אביד להראות באדול באינדוקציה, אבל זה נובע כי

שאלה 2

'סעיף א

. $\{f:\mathbb{N} \to \mathbb{N} \mid$ ערכית את חד־חד הקבוצה הקבוצה את נחשב החד

 $A:=\{f:\mathbb{N}\to\mathbb{N}\mid$ בתרון: נסמן $f\}$ הד־חד ערכית וסמן

באמצעות משפט קנטור־שרדר־ברנשטיין:

 $|\mathbb{N}^\mathbb{N}|=2^{leph_0}$ וונטען שמתקיים $A\subseteq\{f:\mathbb{N} o\mathbb{N}\}:=B=\mathbb{N}^\mathbb{N}$ ראשית נבחין שמתקיים

2 ניקח את \mathbb{N} להיות נציג של או את \mathbb{N} ואת נציג של

 $2^{\aleph_0} \leq |\mathbb{N}^\mathbb{N}|$ כלומר כלומר | $[2]^\mathbb{N}| \leq |\mathbb{N}^\mathbb{N}|$ כלומר | $[2]^\mathbb{N} \subseteq \mathbb{N}^\mathbb{N}$ כלומר : \geq

 $f:\mathbb{N} o \mathbb{N} \subseteq \mathbb{N} imes \mathbb{N}$ כלומר $\{(n,f(n)) \mid n \in \mathbb{N}\}$ נשים לב שמתקיים $f:\mathbb{N} o \mathbb{N}$ שכן $\mathbb{N} o \mathbb{N} = \mathbb{N}$ שכן $\mathbb{N} o \mathbb{N} = \mathbb{N}$ שכן $\mathbb{N} o \mathbb{N} = \mathbb{N}$ היא סדרת הזוגות הסדוריים $\mathbb{N} = \mathbb{N}$ כלומר $\mathbb{N} = \mathbb{N} = \mathbb{N}$ בשים לב שמתקיים $\mathbb{N} = \mathbb{N}$ ולכן $\mathbb{N} = \mathbb{N}$

 $|A| \leq 2^{\aleph_0}$ מתקיים $A \subseteq B$ מהיות , ומהיות מתקיים מתקיים מתקיים ממשפט קנטור-שרדר-ברנשטיין מתקיים או

 (b_0,b_1,\cdots) סט כל האינסופיות הבינאריות סט כל כל כי כי כי כי כי כי בחין כי האינסופיות כי כי כי משביל הצד השני, בשביל האינסופיות כי

. זוגי ואחרת איזוגי. אם $b_n=0$ אם לכל האך, כלומר, מתקיים מתקיים bרצף לכל כך שלכל קבי גדיר קנגדיר $f_b(n)$ אז כך כל כלומר, כלומר, כלומר, מתקיים ליט מתקיים $\varphi:\{0,1\}^{\mathbb{N}}\to A$

. נבחין שכל $f_b(n)$ היא חד־חד ערכית ממונוטוניות עולה ממש בגלל $f_b(n)$

 $.ig|\{0,1\}^\mathbb{N}ig|\leq |A|$ אז יש k כך שמתקיים k כלומר b_k כלומר b_k ולכן b_k ולכן b_k ולכן b_k אז יש b_k כך שמתקיים b_k כלומר b_k כלומר b_k כלומר b_k כלומר b_k ולכן b_k כעת נטען שמתקיים b_k ווא פשוט נובע מאריתמטיקה של עוצמות שכן b_k ולכן b_k ולכן b_k ווא שמתקיים b_k וואם שמתקיים b_k ולכן ממשפט קנטור-שרדר-ברנשטיין מתקיים b_k וואם שמתקיים b_k ולכן ממשפט קנטור-שרדר-ברנשטיין מתקיים b_k וואם שמתקיים b_k

באמצעות טיעון אלכסון:

 $\sigma(n) = \sigma_n$ ונסמן על פונקציה $\sigma: \mathbb{N} \to A$ יש ולכן בת-מנייה מ-בת-מנייה בשלילה ביים מניח נניח בשלילה

יבית: בצורה רקורסיבית: $f:\mathbb{N} \to \mathbb{N}$ נגדיר

$$f(0) = \min \mathbb{N} \setminus \{\sigma_0(0)\}\$$

. כלומר, 0 אם $0 \neq 0$ ו־1 אם אחרת כלומר, $\sigma_0(0) \neq 0$

נגדיר

$$f(n+1) = \min \mathbb{N} \smallsetminus \big\{ f(0), \cdots, f(n), \sigma_{n+1}(n+1) \big\}$$

 σ_n נטען ש־ $f:\mathbb{N} o\mathbb{N}$ היא חד–חד ערכית ושונה מכל נטען

לכל n מתקיים n אז יהי n המינימלי כך שעבורו קיים לכל $\sigma_n(n) \neq f(n)$ מתקיים $n \in \mathbb{N}$ או הראות שהיא הד-חד ערכית: נניח שהיא לא חד-חד ערכית, אז יהי $\sigma_n(n) \neq f(n)$ וזו סתירה ולכן $f(n) \notin \{f(0), \cdots, f(n-1)\}$, כלומר $f(n) \neq f(n) \neq f(n)$ וזו סתירה ולכן $f(n) \neq f(n)$ הד-חד ערכית וזו סתירה להיות σ על, ולכן σ לא בת-מנייה.

'סעיף ב

 $A:=\{f:\mathbb{N} o\mathbb{R}\mid$ מד־חד ערכית $f\}$ הקבוצה את עוצמת הקבוצה

עוצמות של ומאריתמטיקה $A\subseteq\{f:\mathbb{N} o\mathbb{R}\}=\mathbb{R}^\mathbb{N}$ שמתקיים לב שמת נשים בא ומאריתמטיקה ומאריתמטיקה פתרון:

$$\left|\mathbb{R}^{\mathbb{N}}\right| = \left(2^{\aleph_0}\right)^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} \underset{(\star)}{\equiv} 2^{\aleph_0}$$

.(1 מטלה אוור) א $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ מטלה שראינו (\star) כאשר

ערכית. חד־חד f_a ידי f_a ור f_a ור חד־חד ערכית. ולכל $f_a:\mathbb{N}\to\mathbb{R}$ נגדיר $f_a:\mathbb{N}\to\mathbb{R}$ נגדיר שמתקיים $a\in(0,1)$, ולכל $a\in(0,1)=a$ מתקיים לכל $a\in\mathbb{N}$ מתקיים לכל $a\in\mathbb{N}$ מתקיים לכל מחדים לכל מ

$$f_{a_1}(n) = a_1 + n \neq a_2 + n = f_{a_2}$$

 $|B|=2^{leph_0}$ נגדיר B להיות אוסף הפונקציות הנ"ל ונקבל

 $|B|=2^{\aleph_0}\leq |A|$ ולכן $B\subset A$ נבחין שמתקיים

 $|A|=2^{\aleph_0}$ וגם שמתקיים $|A|<2^{\aleph_0}$ ולכן ממשפט קנטור-שרדר-ברנשטיין מתקיים אווגם ראינו שמתקיים אווגם או

3