

Final Project Presentation (Lukas Lechner, Claudio Nardin, Dominic Egger)

Background

- » Goal: Evaluate a machine learning model for smile detection in pictures using Viola & Jones features
- » Dataset:
 - 13165 samples (3690 positives, 9475 negatives)
 - 64x64 images of cropped faces
 - many false annotations
- » Viola & Jones feature extraction:
 - Compute Haar-like features using integral images
 - Use AdaBoost to find efficient classifiers
 - Create Cascade filters

Method

- » OpenCV's implementation of Viola & Jones feature extractor and detection were used
- » Jupyter notebook
- » Initially, OpenCV's default smile cascade was used
- » After evaluation, a custom cascade was trained
- Performance was then compared against LeNet

Demo

- » Given image dataset has a high number of controversial or even false annotations
- » Impact on evaluation and performance

Trial 1: default classifier

scaleFactor: 1.1 minNeighbors: 3

		True	
		Positive	Negative
d.	Positive	3486	5833
Pre	Negative	120	3697

Precision: 0.374 Recall: 0.967

Accuracy: 0.547

Trial 2: default classifier

scaleFactor: 1.3 minNeighbors: 10

		True		
		Positive	Negative	
ا ټِ	Positive	2134	677	
Pre	Negative	1472	8853	

Precision: 0.76 Recall: 0.59 Accuracy: 0.84 Trial 3: custom classifier

training specs:

sample width/height: 20/10 pos/neg sample size: 1000/500

stages: 20

detection specs: scaleFactor: 1.1 minNeighbors: 3

		True	
		Positive	Negative
q.	Positive	3606	1215
Pre	Negative	0	8315

Precision: 0.75 Recall: 1.00 Accuracy: 0.91 Trial 4: custom classifier

training specs:

sample width/height: 20/10 pos/neg sample size: 1000/500

stages: 20

detection specs: scaleFactor: 1.1 minNeighbors: 4

		True	
		Positive	Negative
- q	Positive	3606	689
Pre	Negative	0	8841

Precision: 0.84 Recall: 1.00 Accuracy: 0.95

» A number of trials were conducted, 4 of which will be used to illustrate the progression of the project

Trial 1: default classifier

scaleFactor: 1.1
minNeighbors: 3

		True		
		Positive	Negative	
d.	Positive	3486	5833	
Pre	Negative	120	3697	

Precision: 0.374 Recall: 0.967

Accuracy: 0.547

Trial 2: default classifier

scaleFactor: 1.3
minNeighbors: 10

		True	
		Positive	Negative
ا ن	Positive	2134	677
Pred	Negative	1472	8853

Precision: 0.76 Recall: 0.59 Accuracy: 0.84 Trial 3: custom classifier

training specs:

sample width/height: 20/10
pos/neg sample size: 1000/500

stages: 20

detection specs:
scaleFactor: 1.1
minNeighbors: 3

		True	
		Positive	Negative
ا ښ	Positive	3606	1215
Pre	Negative	0	8315

Precision: 0.75 Recall: 1.00 Accuracy: 0.91 Trial 4: custom classifier

training specs:

sample width/height: 20/10
pos/neg sample size: 1000/500

stages: 20

detection specs: scaleFactor: 1.1 minNeighbors: 4

		True	
		Positive	Negative
ا ن	Positive	3606	689
$_{ m l}$	Negative	0	8841

Precision: 0.84 Recall: 1.00 Accuracy: 0.95

$LeNet\ performance:$

	precision	recall	F1 score	support
not smiling	0.95	0.93	0.94	1895
smiling	0.83	0.88	0.85	738
avg/total	0.92	0.91	0.92	2633

Trial 4 custom cascade performance:

	precision	recall	F1 score	support
not smiling	1.0	0.93	0.96	9475
smiling	0.84	1.00	0.91	3690
avg/total	0.96	0.95	0.95	13165

Conclusion

- » Cascade classifier trained on the dataset outperforms LeNet for smile detection
- » Further surveys considering portability would be necessary to determine performance more accurately

Mastertitelformat bearbeiten