FIGURE 1

C.CAATCGCCCGGTGCGGTGCAGGGTCTCGGGCTAGTCATGGCGTCCCCGTCTCGGAGAC 'IGCAGACTAAACCAGTCATTACTTGTTTCAAGAGCGTTCTGCTAATCTACACTTTTATTTTC TGGATCACTGGCGTTATCCTTCTTGCAGTTGGCATTTGGGGCAAGGTGAGCCTGGAGAATTA CTTTTCTCTTTTAAATGAGAAGGCCACCAATGTCCCCTTCGTGCTCATTGCTACTGGTACCG TCATTATTCTTTTGGGCACCTTTGGTTGTTTTGCTACCTGCCGAGCTTCTGCATGGATGCTA AAACTGTATGCAATGTTTCTGACTCTCGTTTTTTTGGTCGAACTGGTCGCTGCCATCGTAGG ATTTGTTTTCAGACATGAGATTAAGAACAGCTTTAAGAATAATTATGAGAAGGCTTTGAAGC AGTATAACTCTACAGGAGATTATAGAAGCCATGCAGTAGACAAGATCCAAAATACGTTGCAT TGTTGTGGTGTCACCGATTATAGAGATTGGACAGATACTAATTATTACTCAGAAAAAGGATT TCCTAAGAGTTGCTGTAAACTTGAAGATTGTACTCCACAGAGAGATGCAGACAAAGTAAACA ATGAAGGTTGTTTTATAAAGGTGATGACCATTATAGAGTCAGAAATGGGAGTCGTTGCAGGA ATTTCCTTTGGAGTTGCTTCCAACTGATTGGAATCTTTCTCGCCTACTGCCWCTCTCG TGCCATAACAAATAACCAGTATGAGATAGTG**TAA**CCCAATGTATCTGTGGGCCTATTCCTCT CTACCTTTAAGGACATTTAGGGTCCCCCCTGTGAATTAGAAAGTTGCTTGGCTGGAGAACTG GTAGACCTAAAACTACACCAATAGGCTGATTCAATCAAGATCCGTGCTCGCAGTGGGCTGAT TCAATCAAGATGTATGTTTGCTATGTTCTAAGTCCACCTTCTATCCCATTCATGTTAGATCG TTGAAACCCTGTATCCCTCTGAAACACTGGAAGAGCTAGTAAATTGTAAATGAAGT

FIGURE 2

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA19902
><subunit 1 of 1, 245 aa, 1 stop, 1 unknown
><MW: -1, pI: 8.36, NX(S/T): 1

MASPSRRLQTKPVITCFKSVLLIYTFIFWITGVILLAVGIWGKVSLENYFSLLNEKATNVPF
VLIATGTVIILLGTFGCFATCRASAWMLKLYAMFLTLVFLVELVAAIVGFVFRHEIKNSFKN
NYEKALKQYNSTGDYRSHAVDKIQNTLHCCGVTDYRDWTDTNYYSEKGFPKSCCKLEDCTPQ
RDADKVNNEGCFIKVMTIIESEMGVVAGISFGVACFQLIGIFLAYCXSRAITNNQYEIV

Important features of the protein:

Signal peptide:

amino acids 1-42

Transmembrane domains:

amino acids 19-42, 61-83, 92-114, 209-230,

N-glycosylation site.

amino acids 134-138

Tyrosine kinase phosphorylation site.

amino acids 160-168, 160-169

N-myristoylation site.

amino acids 75-81, 78-84, 210-216, 214-220, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 69-80, 211-222

CCCACGCGTCCGGCGCGTGGCCTCGCGTCCATCTTTGCCGTTCTCTCGGACCTGTCACAAA GGAGTCGCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGCCCGGGAGGTAGAGAAAGTCAGT GCCGGGGTAGGCTCTGGAAAGGGCCCGGGAGAGAGGTGGCGTTGGTCAGAACCTGAGAAACA GCCGAGAGGTTTTCCACCGAGGCCCGCGTTGAGGGATCTGAAGAGGGTTCCTAGAAGAGGGGT GTTCCCTCTTCGGGGGTCCTCACCAGAAGAGGTTCTTGGGGGTCGCCCTTCTGAGGAGGCT GCGCTAACAGGCCCAGAACTGCCATTGGATGTCCAGAATCCCCTGTAGTTGATAATGTTG GGAATAAGCTCTGCAACTTTCTTTGGCATTCAGTTGTTAAAAACAAATAGGATGCAAATTCC TCAACTCCAGGTTATGAAAACAGTACTTGGAAAACTGAAAACTACCTAA**ATG**ATCGTCTTTG GTTGGGCCGTGTTCTTAGCGAGCAGAAGCCTTGGCCAGGGTCTGTTGTTGACTCTCGAAGAG CACATAGCCCACTTCCTAGGGACTGGAGGTGCCGCTACTACCATGGGTAATTCCTGTATCTG CCGAGATGACAGTGGAACAGATGACAGTGTTGACACCCAACAGCAACAGGCCGAGAACAGTG CAGTACCCACTGCTGACACAAGGAGCCAACCACGGGACCCTGTTCGGCCACCAAGGAGGGGC CGAGGACCTCATGAGCCAAGGAGAAAGAAACAAAATGTGGATGGGCTAGTGTTGGACACACT GGCAGTAATACGGACTCTTGTAGATAAGTAAGTATCTGACTCACGGTCACCTCCAGTGGAAT GAAAAGTGTTCTGCCCGGAACCATGACTTTAGGACTCCTTCAGTTCCTTTAGGACATACTCG CCAAGCCTTGTGCTCACAGGGCAAAGGAGAATATTTTAATGCTCCGCTGATGGCAGAGTAAA TGATAAGATTTGATGTTTTTGCTTGCTGTCATCTACTTTGTCTGGAAATGTCTAAATGTTTTC 'TGTAGCAGAAAACACGATAAAGCTATGATCTTTATTAGAG

FIGURE 4

 ${\tt MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNSCICRDDSGTDDSVDTQQQQ} \\ {\tt AENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKKQNVDGLVLDTLAVIRTLVDKO} \\$

Signal peptide:

amino acids 1-16

Casein kinase II phosphorylation site.

amino acids 22-26, 50-54, 113-117

N-myristoylation site.

amino acids 18-24, 32-38, 34-40, 35-41, 51-57

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56107</pre>

<subunit 1 of 1, 231 aa, 1 stop

<NX(S/T): 0

MEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVSGFLLFRSLPRHTFGLVQSKLFPFYFHISM GCAFINLCILASQHAWAQLTFWEASQLYLLFLSLTLATVNARWLEPRTTAAMWALQTVEKER GLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHGLSSLCNLGCVLSNGLCLAGLALEI RSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 86-103, 60-75

Casein kinase II phosphorylation site.

amino acids 82-86

Tyrosine kinase phosphorylation site.

amino acids 144-151

N-myristoylation site.

amino acids 4-10, 5-11, 47-53, 170-176, 176-182

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 54-65

G-protein coupled receptors proteins.

amino acids 44-85

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTT CTTGTATTATACAAGAAAGGAGTGTACCTATCACACACAGGGGGAAAAATGCTCTTTTGGGT GCTAGGCCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAG ACATCACTGATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCC AGAATGTCAAGAGGACTGCCCAGTGGGTGAAGAACCAAGTTGGGGAAAAGGTCTCTGGGGT CTACAGAGAACCTATTGAAGTGAACCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTC CTTTGGTCAAGAAAGCTCAAGGGAGAGTTATTAATGTCTCCAGTGTTTGGAGGTCGCCTTGCA ATCGTTGGAGGGGCTATACTCCATCCAAATATGCAGTGGAAGGTTTCAATGACAGCTTAAG ACGGGACATGAAAGCTTTTGGTGTGCACGTCTCATGCATTGAACCAGGATTGTTCAAAACAA ACTTGGCAGATCCAGTAAAGGTAATTGAAAAAAACTCGCCATTTGGGAGCAGCTGTCTCCA GACATCAAACAACAATATGGAGAAGGTTACATTGAAAAAAGTCTAGACAAACTGAAAGGCAA TAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTGCATGGACCACGCTCTAACAA GTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAATTTTCTGGATACCTCTG TCTCACATGCCAGCAGCTTTGCAAGACTTTTTATTGTTGAAACAGAAAGCAGAGCTGGCTAA TCCCAAGGCAGTG<u>TGA</u>CTCAGCTAACCACAAATGTCTCCTCCAGGCTATGAAATTGGCCGAT TTCAAGAACACCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACTCATTTAGA TCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGTCCCTG CTCAAGTTTTCTTTGAAAAGGAGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCTGT ATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATG ATCTTTACCGTGGCCTGCCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTT AAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56406

><subunit 1 of 1, 319 aa, 1 stop

>< MW: 35227, pI: 8.97, NX(S/T): 3

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLT
ESGSTALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDW
LTLEDYREPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGF
NDSLRRDMKAFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLD
KLKGNKSYVNMDLSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQK
AELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

GCGGGCTGTTGACGCGCTGCGATGCCTGCCTGCGAGGCAGGAGAAGCGGAGCTCTCGGTT CCTCTCAGTCGGACTTCCTGACGCCGCCAGTGGGCGGGCCCCTTGGGCCGTCGCCACCACT GTAGTCATGTACCCACCGCCGCCGCCGCCTCATCGGGACTTCATCTCGGTGACGCTGAG CTTTGGCGAGAGCTATGACAACAGCAAGAGTTGGCGGCGCGCTCGTGCTGGAGGAAATGGA AGCAACTGTCGAGATTGCAGCGGAATATGATTCTCTTCCTCCTTGCCTTTCTGCTTTTCTGT GGACTCCTCTTCTACATCAACTTGGCTGACCATTGGAAAGCTCTGGCTTTCAGGCTAGAGGA AGAGCAGAAGATGAGGCCAGAAATTGCTGGGTTAAAACCAGCAAATCCACCCGTCTTACCAG CTCCTCAGAAGGCGGACACCGACCCTGAGAACTTACCTGAGATTTCGTCACAGAAGACACAA AGACACCTCAGCGGGGACCACCTCACCTGCAGATTAGACCCCCAAGCCAAGACCTGAAGGA ATCCGCAGAGGACAGTCATCAGCTGGAGGGGAGCGGTGATCGAGCCTGAGCAGGGCACCGAG CTCCCTTCAAGAAGAGCAGAAGTGCCCACCAAGCCTCCCCTGCCACCGGCCAGGACACAGGG AAGGATACCGCAAGTTTGCATGGGGCCATGACGAGCTGAAGCCTGTGTCCAGGTCCTTCAGT GAGTGGTTTGGCCTCGGTCTCACACTGATCGACGCGCTGGACACCATGTGGATCTTGGGTCT GAGGAAAGAATTTGAGGAAGCCAGGAAGTGGGTGTCGAAGAAGTTACACTTTGAAAAGGACG TGGACGTCAACCTGTTTGAGAGCACGATCCGCATCCTGGGGGGGCTCCTGAGTGCCTACCAC CTGTCTGGGGACAGCCTCTTCCTGAGGAAAGCTGAGGATTTTGGAAATCGGCTAATGCCTGC CTTCAGAACACCATCCAAGATTCCTTACTCGGATGTGAACATCGGTACTGGAGTTGCCCACC CGCCACGGTGGACCTCCGACAGCACTGTGGCCGAGGTGACCAGCATTCAGCTGGAGTTCCGG GAGCTCTCCCGTCTCACAGGGGATAAGAAGTTTCAGGAGGCAGTGGAGAAGGTGACACAGCA CATCCACGGCCTGTCTGGGAAGAAGGATGGGCTGGTGCCCATGTTCATCAATACCCACAGTG GCCTCTTCACCCACCTGGGCGTATTCACGCTGGGCGCCCAGGGCCGACAGCTACTATGAGTAC CTGCTGAAGCAGTGGATCCAGGGCGGGAAGCAGGAGACACAGCTGCTGGAAGACTACGTGGA AGCCATCGAGGGTGTCAGAACGCACCTGCTGCGGCACTCCGAGCCCAGTAAGCTCACCTTTG TGGGGGAGCTTGCCCACGGCCGCTTCAGTGCCAAGATGGACCACCTGGTGTGCTTCCTGCCA GCTCATGGAGACTTGTTACCAGATGAACCGGCAGATGGAGACGGGGCTGAGTCCCGAGATCG TGCACTTCAACCTTTACCCCCAGCCGGGCCGTCGGGACGTGGAGGTCAAGCCAGCAGACAGG CACAACCTGCTGCGGCCAGAGACCGTGGAGAGCCTGTTCTACCTGTACCGCGTCACAGGGGA CCGCAAATACCAGGACTGGGGCTGGGAGATTCTGCAGAGCTTCAGCCGATTCACACGGGTCC CCTCGGGTGGCTATTCTTCCATCAACAATGTCCAGGATCCTCAGAAGCCCGAGCCTAGGGAC AAGATGGAGAGCTTCTTCCTGGGGGAGACGCTCAAGTATCTGTTCTTGCTCTTCTCCGATGA CCCAAACCTGCTCAGCCTGGACGCCTACGTGTTCAACACCGAAGCCCACCCTCTGCCTATCT GGACCCCTGCC<u>TAG</u>GGTGGATGGCTGCTGGTGTGGGGACTTCGGGTGGGCAGAGGCACCTTG CTGGGTCTGTGGCATTTTCCAAGGGCCCACGTAGCACCGGCAACCGCCAAGTGGCCCAGGCT CTGAACTGGCTCTGGGCTCCTCGTCTCTGCTTTAATCAGGACACCGTGAGGACAAGTGA GGCCGTCAGTCTTGGTGTGATGCGGGGTGGGCTGGGCCGCTGGAGCCTCCGCCTGCTTCCTC CAGAAGACACGAATCATGACTCACGATTGCTGAAGCCTGAGCAGGTCTCTGTGGGCCGACCA GAGGGGGCTTCGAGGTGGTCCCTGGTACTGGGGTGACCGAGTGGACAGCCCAGGGTGCAGC TCTGCCCGGGCTCGTGAAGCCTCAGATGTCCCCAATCCAAGGGTCTGGAGGGGCTGCCGTGA CTCCAGAGGCCTGAGGCTCCAGGGCTGGCTCTGGTGTTTACAAGCTGGACTCAGGGATCCTC CTGGCCGCCCGCAGGGGGCTTGGAGGGCTGGACGCCAAGTCCGTCTAGCTCACGGGCCCCT CCAGTGGAATGGGTCTTTTCGGTGGAGATAAAAGTTGATTTGCTCTAACCGCAA

FIGURE 10

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56529

><subunit 1 of 1, 699 aa, 1 stop

><MW: 79553, pI: 7.83, NX(S/T): 0

MAACEGRRSGALGSSQSDFLTPPVGGAPWAVATTVVMYPPPPPPPPHRDFISVTLSFGESYDN
SKSWRRRSCWRKWKQLSRLQRNMILFLLAFLLFCGLLFYINLADHWKALAFRLEEEQKMRPE
IAGLKPANPPVLPAPQKADTDPENLPEISSQKTQRHIQRGPPHLQIRPPSQDLKDGTQEEAT
KRQEAPVDPRPEGDPQRTVISWRGAVIEPEQGTELPSRRAEVPTKPPLPPARTQGTPVHLNY
RQKGVIDVFLHAWKGYRKFAWGHDELKPVSRSFSEWFGLGLTLIDALDTMWILGLRKEFEEA
RKWVSKKLHFEKDVDVNLFESTIRILGGLLSAYHLSGDSLFLRKAEDFGNRLMPAFRTPSKI
PYSDVNIGTGVAHPPRWTSDSTVAEVTSIQLEFRELSRLTGDKKFQEAVEKVTQHIHGLSGK
KDGLVPMFINTHSGLFTHLGVFTLGARADSYYEYLLKQWIQGGKQETQLLEDYVEAIEGVRT
HLLRHSEPSKLTFVGELAHGRFSAKMDHLVCFLPGTLALGVYHGLPASHMELAQELMETCYQ
MNRQMETGLSPEIVHFNLYPQPGRRDVEVKPADRHNLLRPETVESLFYLYRVTGDRKYQDWG
WEILQSFSRFTRVPSGGYSSINNVQDPQKPEPRDKMESFFLGETLKYLFLLFSDDPNLLSLD
AYVFNTEAHPLPIWTPA

Important features of the protein:

Transmembrane domain:

amino acids 21-40 and 84-105 (type II)

FIGURE 11

GGCGCCGCTAGGCCCGGAGGCCGGCCGGCCGGCTGCGAGCGCCTGCCCCATGCGCCGC CGCCTCTCCGCACG<u>ATG</u>TTCCCCTCGCGGAGGAAAGCGGCGCAGCTGCCCTGGGAGGACGGC AGGTCCGGGTTGCTCTCCGGCGGCCTCCCTCGGAAGTGTTCCGTCTTCCACCTGTTCGTGGC CTGCCTCTCGCTGGGCTTCTTCTCCCTACTCTGGCTGCAGCTCAGCTGCTCTGGGGACGTGG CCGCCCCTGAGCACTGGGAAGAGACGCATCCTGGGGCCCCCACCGCCTGGCAGTGCTGGT GCCCTTCCGCGAACGCTTCGAGGAGCTCCTGGTCTTCGTGCCCCACATGCGCCGCTTCCTGA GCAGGAAGAAGATCCGGCACCACATCTACGTGCTCAACCAGGTGGACCACTTCAGGTTCAAC CGGGCAGCGCTCATCAACGTGGGCTTCCTGGAGAGCAGCAACAGCACGGACTACATTGCCAT GCACGACGTTGACCTCCCTCTCAACGAGGAGCTGGACTATGGCTTTCCTGAGGCTGGGC CCTTCCACGTGGCCTCCCCGGAGCTCCACCCTCTCTACCACTACAAGACCTATGTCGGCGGC ATCCTGCTGCTCCCAAGCAGCACTACCGGCTGTGCAATGGGATGTCCAACCGCTTCTGGGG ${\tt CTGGGGCCGCGAGGACGAGTTCTACCGGCGCATTAAGGGAGCTGGGCTCCAGCTTTTCC}$ GCCCCTCGGGAATCACAACTGGGTACAAGACATTTCGCCACCTGCATGACCCAGCCTGGCGG CCTGCACTGTCCTCAACATCATGTTGGACTGTGACAAGACCGCCACACCCTGGTGCACATTC AGCTGAGCTGGATGGACAGTGAGGAAGCCTGTACCTACAGGCCATATTGCTCAGGCTCAGGA CAAGGCCTCAGGTCGTGGGCCCAGCTCTGACAGGATGTGGAGTGGCCAGGACCAAGACAGCA ·AGCTACGCAATTGCAGCCACCCGGCCGCCAAGGCAGGCTTGGGCTGGGCCAGGACACGTGGG GGACCCCCCTGCCTTCCTGCTCACCCTACTCTGACCTCCTTCACGTGCCCAGGCCTGTGGG TAGTGGGGAGGCTGAACAGGACAACCTCTCATCACCCTACTCTGACCTCCTTCACGTGCCC

FIGURE 12

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531</pre>

><subunit 1 of 1, 327 aa, 1 stop

><MW: 37406, pI: 9.30, NX(S/T): 1

MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLFVACLSLGFFSLLWLQLSCSGDVARAVR GQGQETSGPPRACPPEPPPEHWEEDASWGPHRLAVLVPFRERFEELLVFVPHMRRFLSRKKI RHHIYVLNQVDHFRFNRAALINVGFLESSNSTDYIAMHDVDLLPLNEELDYGFPEAGPFHVA SPELHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDEFYRRIKGAGLQLFRPSGI TTGYKTFRHLHDPAWRKRDQKRIAAQKQEQFKVDREGGLNTVKYHVASRTALSVGGAPCTVL NIMLDCDKTATPWCTFS

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 29-49 (type II)

N-glycosylation site.

amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 27-31

Tyrosine kinase phosphorylation site.

amino acids 226-233

N-myristoylation site.

amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

FIGURE 13

FIGURE 14

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56862</pre>

<subunit 1 of 1, 73 aa, 1 stop

<MW: 7879, pI: 7.21, NX(S/T): 0

MLLLTLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQ PRGEGEKVGDG

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

GGGACCCATGCGGCCGTGACCCCCGGCTCCCTAGAGGCCCAGCGCAGCCGCAGCGGACAAAG GAGCATGTCCGCGCGGGGAAGGCCCGTCCTCCGGCCGCCATAAGGCTCCGGTCGCCGCTGG GCCCGCGCGCTCCTGCCCGCCCGGGCTCCGGGGCGCCCGCTAGGCCAGTGCGCCGCCG CTCGCCCGCAGGCCCGGCCGCAGCATGGAGCCACCCGGACGCCGGGGGGCCGCGCGCAC GCCGCCGCTGTTGCTGCCGCTCTCGCTGTTAGCGCTGCTCGCGCTGCTGGGAGGCGGCGCG GCGGCGCGCGCGCCGCCGCCGCTGCAAGCACGATGGGCGCCCCGAGGGGCTGGC AGGGCGCGGCGCCGAGGGCAAGGTGGTGCAGCAGCCTGGAACTCGCGCAGGTCCT GCCCCAGATACTCTGCCCAACCGCACGGTCACCCTGATTCTGAGTAACAATAAGATATCCG AGCTGAAGAATGGCTCATTTTCTGGGTTAAGTCTCCTTGAAAGATTGGACCTCCGAAACAAT CTTATTAGTAGTATAGATCCAGGTGCCTTCTGGGGACTGTCATCTCTAAAAAGATTGGATCT GACAAACAATCGAATAGGATGTCTGAATGCAGACATATTTCGAGGACTCACCAATCTGGTTC GGCTAAACCTTTCGGGGAATTTGTTTTCTTCATTATCTCAAGGAACTTTTGATTATCTTGCG TCATTACGGTCTTTGGAATTCCAGACTGAGTATCTTTTGTGTGACTGTAACATACTGTGGAT GCATCGCTGGGTAAAGGAGAACATCACGGTACGGGATACCAGGTGTGTTTATCCTAAGT CACTGCAGGCCCAACCAGTCACAGGCGTGAAGCAGGAGCTGTTGACATGCGACCCTCCGCTT GAATTGCCGTCTTTCTACATGACTCCATCTCATCGCCAAGTTGTGTTTTGAAGGAGACAGCCT TCCTTTCCAGTGCATGGCTTCATATATTGATCAGGACATGCAAGTGTTGTGGTATCAGGATG GGAGAATAGTTGAAACCGATGAATCGCAAGGTATTTTTGTTGAAAAGAACATGATTCACAAC TGCTCCTTGATTGCAAGTGCCCTAACCATTTCTAATATTCAGGCTGGATCTACTGGAAATTG GGGCTGTCATGTCCAGACCAAACGTGGGAATAATACGAGGACTGTGGATATTGTGGTATTAG AGAGTTCTGCACAGTACTGTCCTCCAGAGAGGGTGGTAAACAACAAGGTGACTTCAGATGG CCCAGAACATTGGCAGGCATTACTGCATATCTGCAGTGTACGCGGAACACCCCATGGCAGTGG GATATATCCCGGAAACCCACAGGATGAGAGAAAAGCTTGGCGCAGATGTGATAGAGGTGGCT TTTGGGCAGATGATGATTATTCTCGCTGTCAGTATGCAAATGATGTCACTAGAGTTCTTTAT ATGTTTAATCAGATGCCCTCAATCTTACCAATGCCGTGGCAACAGCTCGACAGTTACTGGC TTACACTGTGGAAGCAGCCAACTTTTCTGACAAAATGGATGTTATATTTGTGGCAGAAATGA TTGAAAAATTTGGAAGATTTACCAAGGAGGAAAAATCAAAAGAGCTAGGTGACGTGATGGTT GAGCTCACGTTTATTCAACATATTCACCCAATATTGCTCTGGAAGCTTATGTCATCAAGTCT ACTGGCTTCACGGGGATGACCTGTACCGTGTTCCAGAAAGTGGCAGCCTCTGATCGTACAGG ACTTTCGGATTATGGGAGGCGGGATCCAGAGGGAAACCTGGATAAGCAGCTGAGCTTTAAGT GCAATGTTTCAAATACATTTTCGAGTCTGGCACTAAAGGTATGTTACATTCTGCAATCATTT AAGACTATTTACAGT<u>TAAA</u>ATTAGAATGCTCCAAATGTTCTGCTTCGCAAAATAACCTTATTA AAAGATTTTTTTTTGCAGGAAGATAGGTATTATTGCTTTTGCTACTGTTTTAAAGAAAACTA ACCAGGAAGAACTGCATTACGACTTTCAAGGGCCCTAGGCATTTTTGCCTTTGATTCCCTTT CTTCACATAAAAATATCAGAAATTACATTTTATAACTGCAGTGGTATAAATGCAAATATACT GATTTTAAGACAATAAGATGTTTTCATGGGCCCCTAAAAGTATCATGAGCCTTTGGCACTGC ATCAAAATTTTTGGCAGAAAACACAAATATGTCATATATCTTTTTTAAAAAAAGTATTTCA TTGAAGCAAGCAAAATGAAAGCATTTTTACTGATTTTTTAAAATTGGTGCTTTTAGATATATTT GACTACACTGTATTGAAGCAAATAGAGGAGGCACAACTCCAGCACCCTAATGGAACCACATT TTTTCACTTAGCTTTCTGTGGGCATGTGTAATTGTATTCTCTGCGGTTTTTAATCTCACAG TTGAATGAATGAACGAAAAAAAAAAAAAAAA

FIGURE 16

MEPPGRRRGRAQPPLLLPLSLLALLALLGGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGK
VVCSSLELAQVLPPDTLPNRTVTLILSNNKISELKNGSFSGLSLLERLDLRNNLISSIDPGA
FWGLSSLKRLDLTNNRIGCLNADIFRGLTNLVRLNLSGNLFSSLSQGTFDYLASLRSLEFQT
EYLLCDCNILWMHRWVKEKNITVRDTRCVYPKSLQAQPVTGVKQELLTCDPPLELPSFYMTP
SHRQVVFEGDSLPFQCMASYIDQDMQVLWYQDGRIVETDESQGIFVEKNMIHNCSLIASALT
ISNIQAGSTGNWGCHVQTKRGNNTRTVDIVVLESSAQYCPPERVVNNKGDFRWPRTLAGITA
YLQCTRNTHGSGIYPGNPQDERKAWRRCDRGGFWADDDYSRCQYANDVTRVLYMFNQMPLNL
TNAVATARQLLAYTVEAANFSDKMDVIFVAEMIEKFGRFTKEEKSKELGDVMVDIASNIMLA
DERVLWLAQREAKACSRIVQCLQRIATYRLAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCT
VFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSLALKVCYILQSFKTIYS

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 13-40 (type II)

N-glycosylation site.

amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336, 433-437, 453-457, 592-596

N-myristoylation site.

amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57, 57-63, 99-105, 123-129, 142-148, 162-168, 317-323, 320-326, 384-390, 403-409, 554-560

FIGURE 17

FIGURE 18

 ${\tt MSRSSKVVLGLSVLLTAATVAGVHVKQQWDQQRLRDGVIRDIERQIRKKENIRLLGEQIILT} \\ {\tt EQLEAEREKMLLAKGSQKS}$

Signal peptide:

amino acids 1-21

FIGURE 19

CTGTCGTCTTTGCTTCAGCCGCAGTCGCCACTGGCTGCCTGAGGTGCTCTTACAGCCTGTTC CAAGTGTGGCTTAATCCGTCTCCACCACCAGATCTTTCTCCGTGGATTCCTCTGCTAAGACC GCTGCCATGCCAGTGACGGTAACCCGCACCACCATCACAACCACCACGACGTCATCTTCGGG CCTGGGGTCCCCATGATCGTGGGGTCCCCTCGGGCCCTGACACAGCCCCTGGGTCTCCTTCGC CTGCTGCAGCTGGTGTCTACCTGCGTGGCCTTCTCGCTGGTGGCTAGCGTGGGCGCCTGGAC GGGGTCCATGGCCAACTGGTCCATGTTCACCTGGTGCTTCTGCTTCTCCGTGACCCTGATCA ${\tt TCCTCATCGTGGAGCTGTGCGGGCTCCAGGCCCGCTTCCCCCTGTCTTGGCGCAACTTCCCCC}$ ATCACCTTCGCCTGCTATGCGCCCTCTTCTGCCTCTCGGCCTCCATCATCTACCCCACCAC CTATGTCCAGTTCCTGTCCCACGGCCGTTCGCGGGACCACGCCATCGCCGCCACCTTCTTCT CCTGCATCGCGTGTGTGGCTTACGCCACCGAAGTGGCCTGGACCCGGGCCCGGCCCGGCGAG ATCACTGGCTATATGGCCACCGTACCCGGGCTGCTGAAGGTGCTGGAGACCTTCGTTGCCTG GCGTGGCGGTGTACGCCATCTGCTTCATCCTAGCGGCCATCGCCATCCTGCTGAACCTGGGG GAGTGCACCAACGTGCTACCCATCCCCTTCCCCAGCTTCCTGTCGGGGCTGGCCTTGCTGTC TGTCCTCCTCTATGCCACCGCCCTTGTTCTCTGGCCCCTCTACCAGTTCGATGAGAAGTATG GCGGCCAGCCTCGGCGCTCGAGAGATGTAAGCTGCAGCCGCAGCCATGCCTACTACGTGTGT GCCTGGGACCGCCGACTGGCTGTGGCCATCCTGACGGCCATCAACCTACTGGCGTATGTGGC TGACCTGGTGCACTCTGCCCACCTGGTTTTTGTCAAGGTC<u>TAA</u>GACTCTCCCAAGAGGCTCC CGTTCCCTCTCAACCTCTTTGTTCTTCTTGCCCGAGTTTTCTTTATGGAGTACTTCTTTCC CAATTCCTTGCACTCTAACCAGTTCTTGGATGCATCTTCTTCCTTTCCTTTTCCTCTTGCTGT TTCCTTCCTGTGTTGTTTGTTGCCCACATCCTGTTTTCACCCCTGAGCTGTTTCTCTTTTT CTTTTCTTTCTTTTTTTTTTTTTTAAGACGGATTCTCACTCTGTGGCCCAGGCTGGAG TGCAGTGGTGCGATCTCAGCTCACTGCAACCCCCGCCTCCTGGGTTCAAGCGATTCTCCTCC CCCAGCCTCCCAAGTAGCTGGGAGGACAGGTGTGAGCTGCCGCACCCAGCCTGTTTCTCTTT TTCCACTCTTCTTTTTCTCATCTCTTTTCTGGGTTGCCTGTCGGCTTTCTTATCTGCCTGT CCCACCTCCAAAGGTGCTGAGCTCACATCCACACCCCTTGCAGCCGTCCATGCCACAGCCCC CCAAGGGGCCCCATTGCCAAAGCATGCCTGCCCACCCTCGCTGTGCCTTAGTCAGTGTGTAC GTGTGTGTGTGTGTTTTGGGGGGTGGGGGGTGGGTAGCTGGGGATTGGGCCCTCTTTCT ATTTGGAGGTCAGTAATTTCCAATGGGCGGGAGGCATTAAGCACCGACCCTGGGTCCCTAGG CCCCGCTGGCACTCAGCCTTGCCAGAGATTGGCTCCAGAATTTTTGCCAGGCTTACAGAACAC CCACTGCCTAGAGGCCATCTTAAAGGAAGCAGGGGCTGGATGCCTTTCATCCCAACTATTCT CTGTGGTATGAAAAAG

FIGURE 20

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727

<subunit 1 of 1, 322 aa, 1 stop

<MW: 35274, pI: 8.57, NX(S/T): 1

MPVTVTRTTITTTTSSSGLGSPMIVGSPRALTQPLGLLRLLQLVSTCVAFSLVASVGAWTG
SMGNWSMFTWCFCFSVTLIILIVELCGLQARFPLSWRNFPITFACYAALFCLSASIIYPTTY
VQFLSHGRSRDHAIAATFFSCIACVAYATEVAWTRARPGEITGYMATVPGLLKVLETFVACI
IFAFISDPNLYQHQPALEWCVAVYAICFILAAIAILLNLGECTNVLPIPFPSFLSGLALLSV
LLYATALVLWPLYQFDEKYGGQPRRSRDVSCSRSHAYYVCAWDRRLAVAILTAINLLAYVAD
LVHSAHLVFVKV

Important features:

Transmembrane domains:

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192, 205-226, 235-255 and 294-312

N-glycosylation site.

amino acids 66-69

Glycosaminoglycan attachment site.

amino acids 18-21

FIGURE 21

GAACGTGCCACCATGCCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGT CTTGAACTCGTGACCTCATGATCCGCTCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGAC GCCTGGCCAGCCTATGCATTTTTAAGAAATTATTCTGTATTAGGTGCTGTGCTAAACATTGGGCACTACAGTGA CCAAAACAGACTGAATTCCCCAAGAGCCAAAGACCAGTGAGGGAGACCAACAAGAAACAGGAAATGCAAAAGAG ACCATTATTACTCACTATGACTAAGGGTCACAAATGGGGTACGTTGATGGAGAGTGATTTGTTAAGAGACTACA GAGGGAGGACAGACTACCAAGAGGGGGGCCAGGAAAGCTCCTCTGACGAGGTGGTATTTCAGCCCAAACTGGAA CTGAGAAAATAGCATGGGATTGGAGGAGGCTGGGGGAACACCACTTCTGCCGACCTGGGCAGGAGGCATTGAGG GCTTGAGAAAGGCAATGCAGTAGCAGTAGAAAGGACAGGGTAGGAGCAGGGACTTTGCAGGTGGAATCATTA GGTCTTATCAACAGATATGGGCAAGCAAAGCCAGGGGAGAATTGATGGTAATGCTGAGGTTTGGAGCCAGGCTA GATGGGACAGTGGTGGTGATGCAAAGGAAAGAGGTCAGGAAGCAGGGCCAGACGTGGGGAGAAGGTGTGGGGG TTTGGTTTCCATCTTGCCGAGTCTGCCGGAATGTGGATGGGAAGACCAAGAGGAGGAGCAAGGGGCAGAGGGGGA CGTGGTTCTTCATTTCCTGCCCTGCCTCCATCTCCTCTGGGTGCTGGGAAAGTGGAGGATTAGCTGAAGTTTTG CTTCTCGGGGCCTGTCTGAATCTCCATTGCTTTCTGGGAGGACATAATTCACCTGTCCTAGCTTCTTATCATCT GGTATGGGCATGTTAGGGGGAAGGTCATTGCTGTCAGAGGGGCACTGACTTTCTAATGGTGTTACCCAAGGTGA ATGTTGGAGACACAGTCGCGATGCTGCCCAAGTCCCGGCGAGCCCTAACTATCCAGGAGATCGCTGCGCTGGCC ${\tt AGGTCCTCCCTGCATGGTATGCAGCCCCTCCC} \underline{{\tt ATG}} \\ {\tt TTTCTGGCCACTTTGTCCTTCCCGTTTGCACAT}$ CCCTTTGGAACTGTTTCCTGTGAGTACATGCTGGGGTCTCCCCTTTCTTCCCTTGCTCAGGTGAATCTCAGCCC CTTCTCCCACCCAAAGGTTCACATGGATCCTAACTACTGCCACCCTTCCACCTCCCTGCACCTGTGCTCCCTGG CCTGGTCCTTTACCAGGCTTCTCCACCCTCCCCTATCTCCAGGTATTTCCCAGGTGGTGAAGGACCACGTGACC AAGCCTACCGCCATGGCCCAGGGCCGAGTGGCTCACCTCATTGAGTGGAAGGGCTGGAGCAAGCCGAGTGACTC ACCTGCTGCCCTGGAATCAGCCTTTTCCTCCTATTCAGACCTCAGCGAGGGCGAACAAGAGGGCTCGCTTTGCAG ${\tt CAGGAGTGGCTGAGCAGTTTGCCATCGCGGAAGCCAAGCTCCGAGCATGGTCTTCGGTGGATGGCGAGGACTCC}$ GCACCTCCAGGACCTGTTCACCGGCCACCGGTTCTCCCGGCCTGTGCGCCCAGGGCTCCGTGGAGCCTGAGAGCG ACTGCTCACAGACCGTGTCCCCAGACACCCTGTGCTCTAGTCTGTGCAGCCTGGAGGATGGGTTGTTGGGCTCC CCGGCCCGGCTGCCCCAGCTGCTGGGCGATGAGCTGCTTCTCGCCAAACTGCCCCCCAGCCGGGAAAGTGC CCGCGGAGGAGCCAGCCCCCTGCAAGGACTGCCAGCCACTTGCCCACCACTAACGGGCAGCTGGGAACGG CAGCGGCAAGCCTCTGACCTGGCCTCTTCTGGGGTGTCCTTAGATGAGGATGAGGCAGAGCCAGAGGAACA ${\tt G}\underline{{\tt TGA}} {\tt CCACATCATGCCTGGCAGTGGCATGCATCCCCCGGCTGCTGCCAGGGGCAGAGCCTCTGTGCCCAAGTG}$ $\tt CGGGGGTTGCCCGGGGCCTCTGGGGCATGGCTACAGCTGTGGCAGACAGTGATGTTCATGTTCTTAAAATGCCA$ CACACACATTTCCTCCTCGGATAATGTGAACCACTAAGGGGGTTGTGACTGGGCTGTGAGGGTGGGGTGGGA GAAAGCATGTACCCTCCACCCTTTTCCTGGCCCCCTAATGGGGCCCTGGGCCCTTTCCCAACCCCTCCTAGGATG TGCGGGCAGTGTGCTGGCGCCTCACAGCCAGCCGGGCTGCCCATTCACGCAGAGCTCTCTGAGCGGGAGGTGGA AGAAAGGATGGCTCTGGTTGCCACAGAGCTGGGACTTCATGTTCTTCTAGAGAGGGCCACAAGAGGGCCACAGG GCCCCAGCCAGGTGTTAATGCCCACGTAGTGGAGGCCTCTGGCAGATCCTGCATTCCAAGGTCACTGGACTGT ACGTTTTTATGGTTGTGGGAAGGGTGGGTTGAGAATTAAGGGCCTTGTAGGCTTTGGCAGGTAAGAGGGC ATTTAAGAATTTGTTTTATTAAATTAATATAAAAATCTTTGTAAATCTCTAAAA

FIGURE 22

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSPFSHPKVHMDPNYCHPSTSLHLCS
LAWSFTRLLHPPLSPGISQVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPAALESAFSSY
SDLSEGEQEARFAAGVAEQFAIAEAKLRAWSSVDGEDSTDDSYDEDFAGGMDTDMAGQLPLG
PHLQDLFTGHRFSRPVRQGSVEPESDCSQTVSPDTLCSSLCSLEDGLLGSPARLASQLLGDE
LLLAKLPPSRESAFRSLGPLEAQDSLYNSPLTESCLSPAEEEPAPCKDCQPLCPPLTGSWER
QRQASDLASSGVVSLDEDEAEPEEQ

Signal peptide:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232, 285-289, 324-328

Tyrosine kinase phosphorylation site.

amino acids 44-52

N-myristoylation site.

amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 11-22

FIGURE 23

GGCACCCTCCTGCTCAGTGCGACATTGTCACACTTAACCCATCTGTTTTCTCTAATGCACGA CAGATTCCTTTCAGACAGGACAACTGTGATATTTCAGTTCCTGATTGTAAATACCTCCTAAG CCTGAAGCTTCTGTTACTAGCCATTGTGAGCTTCAGTTTCTTCATCTGCAAAATGGGCATAA AAGCCTACAATGTTGGCCTTAGCCAAAATTCTGTTGATTTCAACGTTGTTTTATTCACTTCT ATCGGGGAGCCATGGAAAAGAAAATCAAGACATAAACACAACACAGAACATTGCAGAAGTTT TTAAAACAATGGAAAATAAACCTATTTCTTTGGAAAGTGAAGCAAACTTAAACTCAGATAAA GAAAATATAACCACCTCAAATCTCAAGGCGAGTCATTCCCCTCCTTTGAATCTACCCAACAA CAGCCACGGAATAACAGATTTCTCCAGTAACTCATCAGCAGAGCATTCTTTGGGCAGTCTAA AACCCACATCTACCATTTCCACAAGCCCTCCCTTGATCCATAGCTTTGTTTCTAAAGTGCCT TGGAATGCACCTATAGCAGATGAAGATCTTTTGCCCATCTCAGCACATCCCAATGCTACACC TGCTCTGTCTTCAGAAAACTTCACTTGGTCTTTGGTCAATGACACCGTGAAAACTCCTGATA ACAGTTCCATTACAGTTAGCATCCTCTCTTCAGAACCAACTTCTCCATCTGTGACCCCCTTG ATAGTGGAACCAAGTGGATGGCTTACCACAAACAGTGATAGCTTCACTGGGTTTACCCCTTA TCAAGAAAAAACAACTCTACAGCCTACCTTAAAATTCACCAATAATTCAAAAACTCTTTCCAA ATACGTCAGATCCCCAAAAAGAAAATAGAAATACAGGAATAGTATTCGGGGCCATTTTAGGT GCTATTCTGGGTGTCTCATTGCTTACTCTTGTGGGCTACTTGTTGTGTGGGAAAAAGGAAAAC GGATTCATTTTCCCATCGGCGACTTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACA ATGCACCGGAACCTTATGATGTGAGTTTTGGGAATTCTAGCTACTACAATCCAACTTTGAAT GATTCAGCCATGCCAGAAAGTGAAGAAAATGCACGTGATGGCATTCCTATGGATGACATACC TCCACTTCGTACTTCTGTATAGAACTAACAGCAAAAAGGCGTTAAACAGCAAGTGTCATCTA · · CATCCTAGCCTTTTGACAAATTCATCTTTCAAAAGGTTACACAAAATTACTGTCACGTGGAT TTTGTCAAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCAT CCAAAGGTTTTCTTTCTTACAATTTTTGGCCATCCTGAGGCATTTACTAAGTAGCCTTAATT TGTATTTTAGTAGTATTTTCTTAGTAGAAAATATTTGTGGAATCAGATAAAACTAAAAGATT TCACCATTACAGCCCTGCCTCATAACTAAATAATAAAAATTATTCCACCAAAAAATTCTAAA ACAATGAAGATGACTCTTTACTGCTCTGCCTGAAGCCCTAGTACCATAATTCAAGATTGCAT TTTCTTAAATGAAAATTGAAAGGGTGCTTTTTAAAGAAAATTTGACTTAAAGCTAAAAAGAG GACATAGCCCAGAGTTTCTGTTATTGGGAAATTGAGGCAATAGAAATGACAGACCTGTATTC TAGTACGTTATAATTTTCTAGATCAGCACACACATGATCAGCCCACTGAGTTATGAAGCTGA CAATGACTGCATTCAACGGGGCCATGGCAGGAAAGCTGACCCTACCCAGGAAAGTAATAGCT TCTTTAAAAGTCTTCAAAGGTTTTGGGAATTTTAACTTGTCTTAATATATCTTAGGCTTCAA TTATTTGGGTGCCTTAAAAACTCAATGAGAATCATGGT

FIGURE 24

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732</pre>

><subunit 1 of 1, 334 aa, 1 stop

><MW: 36294, pI: 4.98, NX(S/T): 13

MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENI
TTSNLKASHSPPLNLPNNSHGITDFSSNSSAEHSLGSLKPTSTISTSPPLIHSFVSKVPWNA
PIADEDLLPISAHPNATPALSSENFTWSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVE
PSGWLTTNSDSFTGFTPYQEKTTLQPTLKFTNNSKLFPNTSDPQKENRNTGIVFGAILGAIL
GVSLLTLVGYLLCGKRKTDSFSHRRLYDDRNEPVLRLDNAPEPYDVSFGNSSYYNPTLNDSA
MPESEENARDGIPMDDIPPLRTSV

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 235-262

N-glycosylation site.

amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159, 163-167, 218-222, 225-229, 298-302, 307-311

AACAGGATCTCCTCTTGCAGTCTGCAGCCCAGGACGCTGATTCCAGCAGCGCCTTACCGCGC AGCCCGAAGATTCACTATGCTGAAAATCGCCTTCAATACCCCTACCGCCGTGCAAAAGGAGG AGGCGCGCAAGACGTGGAGGCCCTCCTGAGCCGCACGGTCAGAACTCAGATACTGACCGGC AAGGAGCTCCGAGTTGCCACCCAGGAAAAAGAGGGCTCCTCTGGGAGATGTATGCTTACTCT CTTAGGCCTTTCATTCATCTTGGCAGGACTTATTGTTGGTGGAGCCTGCATTTACAAGTACT TCATGCCCAAGAGCACCATTTACCGTGGAGAGATGTGCTTTTTTGATTCTGAGGATCCTGCA AATTCCCTTCGTGGAGGAGGCCTAACTTCCTGCCTGTGACTGAGGAGGCTGACATTCGTGA GGATGACAACATTGCAATCATTGATGTGCCTGTCCCCAGTTTCTCTGATAGTGACCCTGCAG CAATTATTCATGACTTTGAAAAGGGAATGACTGCTTACCTGGACTTGTTGCTGGGGAACTGC TATCTGATGCCCCTCAATACTTCTATTGTTATGCCTCCAAAAAATCTGGTAGAGCTCTTTGG CAAACTGGCGAGTGGCAGATATCTGCCTCAAACTTATGTGGTTCGAGAAGACCTAGTTGCTG AAGTCCTTCCGCCTCGCAGAGACCTCTTGCTGGGTTTCAACAAACGTGCCATTGATAA ATGCTGGAAGATTAGACACTTCCCCAACGAATTTATTGTTGAGACCAAGATCTGTCAAGAGT **AA**GAGGCAACAGATAGAGTGTCCTTGGTAATAAGAAGTCAGAGATTTACAATATGACTTTAA CATTAAGGTTTATGGGATACTCAAGATATTTACTCATGCATTTACTCTATTGCTTATGCTTT AAAAAAGGAAAAAAAAAAAACTACTAACCACTGCAAGCTCTTGTCAAATTTTAGTTTAAT GGTTTAGATTTCTGAAAGCAGCATGAATATATCACCTAACATCCTGACAATAAATTCCATCC GTTGTTTTTTTGTTTGTTTTTTTTTTTTCTTTAAGTAAGCTCTTTATTCATCTTATG GTGGAGCAATTTTAAAATTTGAAATATTTTAAATTGTTTTTGAACTTTTTGTGTAAAATATA TCAGATCTCAACATTGTTGGTTTCTTTTGTTTTCATTTTGTACAACTTTCTTGAATTTAGA AATTACATCTTTGCAGTTCTGTTAGGTGCTCTGTAATTAACCTGACTTATATGTGAACAATT AATGCACAAAATTGTGTAGGTGCTGAATGCTGTAAGGAGTTTAGGTTGTATGAATTCTACAA

FIGURE 26

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828
<subunit 1 of 1, 263 aa, 1 stop
<MW: 29741, pI: 5.74, NX(S/T): 1
MVKIAFNTPTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSF</pre>

MVKIAFNTPTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSF ILAGLIVGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIA IIDVPVPSFSDSDPAAIIHDFEKGMTAYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASG RYLPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR HFPNEFIVETKICQE

Type II transmembrane domain:

amino acids 53-75

N-glycosylation site.

amino acids 166-170

Casein kinase II phosphorylation site.

amino acids 35-39, 132-136, 134-138

N-myristoylation site.

amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 63-74

FIGURE 27

GGAGGAGGGGGGGCAGGCCCAGCCCAGAGCAGCCCCGGGCACCAGCACGGACTCTCT $\mathtt{CTTCCAGCCCAGGTGCCCCCACTCTCGCTCCATTCGGCGGGAGCACCCAGTCCTGTACGCC}$ AAGGAACTGGTCCTGGGGGCACCATGGTTTCGGCGGCAGCCCCCAGCCTCCTCATCCTTCTG TTGCTGCTGCTGGGGTCTGTGCCTGCTACCGACGCCCGCTCTGTGCCCCTGAAGGCCACGTT CGCCACCTGGACCCCGGCCCTCAGCCCCACATCGATGGGGCCCCAGCCCACAACCCTGGGG GGCCCATCACCCCCCACCACTTCCTGGATGGGATAGTGGACTTCTTCCGCCAGTACGTGAT GCTGATTGCTGTGGGGCTCCCTGGCCTTTCTGCTGATGTTCATCGTCTGTGCCGCGGTCA TCACCCGGCAGAAGCAGAAGGCCTCGGCCTATTACCCATCGTCCTTCCCCAAGAAGAAGTAC GTGGACCAGAGTGACCGGGCCGGGGCCCCCGGGCCTTCAGTGAGGTCCCCGACAGAGCCCC CGACAGCAGGCCCGAGGAAGCCCTGGATTCCTCCCGGCAGCTCCAGGCCGACATCTTGGCCG CCACCCAGAACCTCAAGTCCCCCACCAGGGCTGCACTGGGCGGTGGGGACGGAGCCAGGATG GTGGAGGCCAGGGGCGCAGAGGAAGAGGGCAGCCAGGAGGGGGACCAGGAAGTCCA GGGACATGGGGTCCCAGTGGAGACACCAGAGGCGCAGGAGGAGCCGTGCTCAGGGGTCCTTG AGGGGGCTGTGGTGGCCGGTGAGGGCCAAGGGGAGCTGGAAGGGTCTCTCTTGTTAGCCCAG GAAGCCCAGGGACCAGTGGGTCCCCCGAAAGCCCCTGTGCTTGCAGCAGTGTCCACCCCAG TGTCTAACAGTCCTCCGGGCTGCCAGCCCTGACTGTCGGGCCCCCAAGTGGTCACCTCCCC TGCCAATCCCAGCATGTGCTGATTCTACAGCAGGCAGAAATGCTGGTCCCCGGTGCCCCGGA - GGAATCTTACCAAGTGCCATCATCCTTCACCTCAGCAGCCCCAAAGGGCTACATCCTACAGC ACAGCTCCCCTGACAAAGTGAGGGAGGGCACGTGTCCCTGTGACAGCCAGGATAAAACATCC CCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCCGGCCCAAACTACTTTTTAAAACA GCTACAGGGTAAAATCCTGCAGCACCCACTCTGGAAAATACTGCTCTTAATTTTCCTGAAGG TGGCCCCTGTTTCTAGTTGGTCCAGGATTAGGGATGTGGGGGTATAGGGCATTTAAATCCTC TCAAGCGCTCTCCAAGCACCCCCGGCCTGGGGGTGAGTTTCTCATCCCGCTACTGCTGCTGG GATCAGGTTGAATGAATGGAACTCTTCCTGTCTGGCCTCCAAAGCAGCCTAGAAGCTGAGGG GCTGTGTTTGAGGGGACCTCCACCCTGGGGAAGTCCGAGGGGCTGGGGAAGGGTTTCTGACG CCCAGCCTGGAGCAGGGGGGCCCTGGCCACCCCTGTTGCTCACACATTGTCTGGCAGCCTG TGTCCACAATATTCGTCAGTCCTCGACAGGGAGCCTGGGCTCCGTCCTGCTTTAGGGAGGCT CTGGCAGGAGGTCCTCTCCCCCATCCCTCCATCTGGGGCTCCCCCAACCTCTGCACAGCTCT

FIGURE 28

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852</pre>

><subunit 1 of 1, 283 aa, 1 stop

><MW: 29191, pI: 4.52, NX(S/T): 0

MVSAAAPSLLILLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTPAL SPTSMGPQPTTLGGPSPPTNFLDGIVDFFRQYVMLIAVVGSLAFLLMFIVCAAVITRQKQKA SAYYPSSFPKKKYVDQSDRAGGPRAFSEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSP TRAALGGGDGARMVEGRGAEEEEKGSQEGDQEVQGHGVPVETPEAQEEPCSGVLEGAVVAGE GQGELEGSLLLAQEAQGPVGPPESPCACSSVHPSV

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 94-118

N-myristoylation site.

amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199, 211-217, 238-244, 242-248

FIGURE 29

GGGAGGACAGGGAGTCGGAAGGAGGAGGACAGAGGGGGCACAGAGACGCAGAGCAAGGGCC GCAAGGAGGAGACCCTGGTGGGAGGAGACACTCTGGAGAGAGGGGGGCTGGGCAGAGATG AAGTTCCAGGGGCCCCTGCCTGCCTGCTGGCCCTCTGCCTGGCAGTGGGGAGGCTGG CCCCTGCAGAGCGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCC TGGGAGACGCCCTGAGCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGCAGCT GGCTCTAAAGTCAGTGAGGCCCTTGGCCAAGGGACCAGAGAAGCAGTTGGCACTGGAGTCAG GCAGGTTCCAGGCTTTGGCGCAGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATG CTCTGGGAAACACTGGGCACGAGATTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCA GATGCTGTCCGCGGCTCCTGGCAGGGGGTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGG AGGCCATGGCATCTTTGGCTCTCAAGGTGGCCTTGGAGGCCAGGGCCAGGGCAATCCTGGAG CCTCAGGGAGCTCCCTGGGGTCAAGGAGGCCAATGGAGGGCCACCAAACTTTGGGACCAACAC TCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAGAGCCAGCAACCAGAATGAAGGGT GCACGATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGGAGGCAGCGGC TCACAGTCGGGCAGCAGTGGCAGCAGCAATGGTGACAACAATGGCAGCAGCAGTGG TGGCAGCAGCAGTGGCAGCAGTGGCAGCAGTGGCGGCAGCAGTGGCGGCAGCAGTG GTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGTCCTCCTGGGGA TCCAGCACCGGCTCCTCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGACATAAACC GAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTGGA GGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGT TGGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCT GGAAGAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGA AGCTCTCGCATCCCGTGACCTCCAGACAAGGAGCCACCAGATTGGATGGGAGCCCCCACACT CCCTCCTTAAAACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTA

FIGURE 30

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59212</pre>

><subunit 1 of 1, 440 aa, 1 stop

><MW: 42208, pI: 6.36, NX(S/T): 1

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401
```

Cell attachment sequence.

amino acids 301-304

FIGURE 31

GACCGGTCCCTCCGGTCCTGGATGTGCGGACTCTGCTGCAGCCGAGGGCTGCAGGCCCGCCGGGCGGTGCTCACC GTGCCCTGGCTGGAGTTTCTCTCTTTTGCTGACCATGTTGTTCCCTTGCTGGAATATTACCGGGACATCTT CACTCTCCTGCTGCGCCTGCACCGGAGCTTGGTGTTGTCGCAGGAGAGTGAGGGGGAAGATGTGTTTCCTGAACA GAGGGTCCCTCATATGCCTTTGAGGTGGACACAGTAGCCCCAGAGCATGGCTTGGACAATGCGCCTGTGGTGGA ${\tt CCAGCAGCTGCTCTACACCTGCTGCCCCTACATCGGAGAGCTCCGGAAACTGCTCGCTTCGTGGGTGTCAGGCA}$ GTAGTGGACGGAGTGGGGGCTTCATGAGGAAAATCACCCCCACCACTACCACCAGCCTGGGAGCCCAGCCTTCC CGTAGAGTTCGTGGCAGAAGAATTGGATCAAACTGTGTCAAACATATCAAGGCTACACTGGTGGCAGATCTGG TGCGCCAGGCAGAGTCACTTCTCCAAGAGCAGCTGGTGACACAGGGAGAGGGAAGGGGGAGACCCAGCCCAGCTG TTGGAGATCTTGTGTTCCCAGCTGTGCCCTCACGGGGCCCAGGCATTGGCCCTGGGGCGGAGTTCTGTCAAAG GAAGAGCCCTGGGGCTGTGCGGGCGCTGCTTCCAGAGGAGACCCCGGCAGCCGTTCTGAGCAGTGCAGAGAACA GTGAAAGCAGCAGTGAGTCGCACACTTCGAGCCCAGGGTCCTGAACCTGCTGCCCGGGGGGGAGCGGAGGGGCTG $\tt CTCCCGCGCC\underline{TGA}CGTGCTCTCCTTGGCCGTGGGGCCACGGGACCCTGACGAGGGAGTCTCCCCAGAGCATCTG$ GAACAGCTCCTAGGCCAGCTGGGCCAGACGCTGCGGTGCCGCCAGTTCCTGTGCCCACCTGCTGAGCAGCATCT GGCAAAGTGCTCTGTGGAGTTAGCTTCCCTCCTCGTTGCAGATCAAATTCCTATCCTAGGGCCCCCGGCACAGT CCGGTTCCGCTGCAGCTGCTGAGCCCAAGAAATGTGGGGCTTCTGGCAGACACAAGGCCAAGGGAGTGGGA GCAGCCTCCACCAGGCCCAGTGGCCAGGGGACTTTGCTGAAGAATTAGCAACACTGTCTAATCTGTTTCTAGCC GAGCCCCACCTGCCAGAACCCCAGCTAAGAGCCTGTGAGTTGGTGCAGCCAAACCGGGGCACTGTGCTGGCCCA GAGCTAGGGCTGAGAAGTGGCCCTGCCTTGGGCATTGCACCAGAACCCTGGACCCCCGCCTCACGAGGAGGCCC AAGTGCCCAATGCAGACCCTCACTGGTTGGGGTGTAGCTGGGTCTACAGTCAGACTTCCTGCTCTAAGGGTGTC ACTGCCTGGCATCCCACCACGCGAATCCTAGAGGAAGGAGAGTTGGCCTGATTTGGGATTATGGCAGAAAAGTC GGCTTGTCAACACAGAATTCAAGCCTCATTTGCTATCCCAGCATCTCTTAAAACTTTGTAGTCTTGGAATTCAT GACAGAGGCAAATGACTCCTGCTTAACTTATGAAGAAAGTTAAAACATGAATCTTGGGAGTCTACATTTTCTTA TCACCAGGAGCTGGACTGCCATCTCCTTATAAATGCCTAACACAGGCCGGGTCTGGTGGCTCATGCCTGTAATC CCAGCACTTTGAGAGGCCTGAGGTCGGCGGACTGCCTGAGGTCAGGAATTCAAGACCAGCCTGGCCAACATGGC AAAACCCCATCTCTACTAAAAATAAAAAATTATTAGCTGGGCATGGTGGTGTGTCCTGTAATCCCAGCTACT CAGGAGGATGAGGCAGGAGACCTGCTTGAACCTGGAGGTGGAGGTTGCAGTGAGCCGAGGTCGCACCACTGCAC AACCTGACTTTCCCCCTGTACCTTCAGCCCCTGTGCAGGTAGTAACCTCTTGAGACCTCTCCCTGACCAGGGAC TCCCCACACGATGGCTCCTGCAATCTGCCACAGCTCTGGGGCGTGTCCTGTAGGGAAAGGCCCTGTTTTCCCTG AGGCGGGCTGGGCTTGTCCATGGGTCCGCGGAGCTGGCCGTGCTTGGCGCCCTGGCGTGTGTCTAGCTGCTTC TTGCCGGGCACAGAGCTGCGGGGTCTGGGGGGCACCGGGAGCTAAGAGCAGGCTCTGGTGCAGGGGTGGAGGCCT GTCTCTTAACCGACACCCTGAGGTGCTCCTGAGATGCTGGGTCCACCCTGAGTGGCACGGGGAGCAGCTGTGGC CGGTGCTCCTTCYTAGGCCAGTCCTGGGGAAACTAAGCTCGGGCCCTTCTTTGCAAAGACCGAGGATGGGGTGG GTGTGGGGGACTCATGGGGAATGGCCTGAGGAGCTACGTGTGAAGAGGGCGCCGGTTTGTTGGCTGCAGCGGCC TGGAGCGCCTCTCTCCTGAGCCTCAGTTTCCCTTTCCGTCTAATGAAGAACATGCCGTCTCGGTGTCTCAGGGC TATTAGGACTTGCCCTCAGGAAGTGGCCTTGGACGAGCGTCATGTTATTTTCACAACTGTCCTGCGACGTTGGC CTGGGCACGTCATGGAATGGCCCATGTCCCTCTGCTGCGTGGACGTCGCGGTCGGGAGTGCGCAGCCAGAGGCG GGGCCAGACGTGCGCCTGGGGGTGAGGGGGGGCGCCCCGGGAGGGCCTCACAGGAAGTTGGGCTCCCGCACCAC CAGGCAGGGCGGCTCCCGCCGCCGCCGCCACCACCGTCCAGGGGCCGGTAGACAAAGTGGAAGTCGCGCT TGGGCTCGCTGCGCAGCAGGTAGCCCTTGATGCAGTGCGGCAGCGCGTCGTCCGCCAGCTGGAAGCAGCGCCCG TCCACCAGCACGAACAGCCGGTGCGCCT

FIGURE 32

MCFLNKLLLLAVLGWLFQIPTVPEDLFFLEEGPSYAFEVDTVAPEHGLDNAPVVDQQLLYTC
CPYIGELRKLLASWVSGSSGRSGGFMRKITPTTTTSLGAQPSQTSQGLQAQLAQAFFHNQPP
SLRRTVEFVAERIGSNCVKHIKATLVADLVRQAESLLQEQLVTQGEEGGDPAQLLEILCSQL
CPHGAQALALGREFCQRKSPGAVRALLPEETPAAVLSSAENIAVGLATEKACAWLSANITAL
IRREVKAAVSRTLRAQGPEPAARGERRGCSRA

Signal peptide:

amino acids 1-18

N-glycosylation site.

amino acids 244-248

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 89-93

Casein kinase II phosphorylation site.

amino acids 21-25, 167-171, 223-227

N-myristoylation site.

amino acids 100-106, 172-178, 207-213

Microbodies C-terminal targeting signal.

amino acids 278-282

TCCCTTGACAGGTCTGGTGGCTGGTTCGGGGTCTACTGAAGGCTGTCTTGATCAGGAAACTG AAGACTCTCTGCTTTTGCCACAGCAGTTCCTGCAGCTTCCTTGAGGTGTGAACCCACATCCC TGCCCCCAGGGCCACCTGCAGGACGCCGACACCTACCCCTCAGCAGACGCCGGAGAGAAATG AGTAGCAACAAGAGCAGCGGTCAGCAGTGTTCGTGATCCTCTTTGCCCTCATCACCATCCT CATCCTCTACAGCTCCAACAGTGCCAATGAGGTCTTCCATTACGGCTCCCTGCGGGGCCGTA GCCGCCGACCTGTCAACCTCAAGAAGTGGAGCATCACTGACGGCTATGTCCCCCATTCTCGGC AACAAGACACTGCCTCTCGGTGCCACCAGTGTGTGATTGTCAGCAGCTCCAGCCACCTGCT CCACCACTGGCTACTCAGCTGATGTGGGCAACAAGACCACCTACCGCGTCGTGGCCCATTCC AGTGTGTTCCGCGTGCTGAGGAGGCCCCAGGAGTTTGTCAACCGGACCCCTGAAACCGTGTT AGCGAGCGGCCTGGTGTTCCCCAACATGGAAGCATATGCCGTCTCTCCCGGCCGCATGCGG CAATTTGACGACCTCTTCCGGGGTGAGACGGGCAAGGACAGGGAGAAGTCTCATTCGTGGTT GAGCACAGGCTGGTTTACCATGGTGATCGCGGTGGAGTTGTGTGACCACGTGCATGTCTATG GCATGGTCCCCCCAACTACTGCAGCCAGCGGCCCCGCCTCCAGCGCATGCCCTACCACTAC TACGAGCCCAAGGGGCCGGACGAATGTGTCACCTACATCCAGAATGAGCACAGTCGCAAGGG CAACCACCACCGCTTCATCACCGAGAAAAGGGTCTTCTCATCGTGGGCCCAGCTGTATGGCA TCACCTTCTCCCACCCCTCCTGGACC<u>TAG</u>GCCACCCAGCCTGTGGGACCTCAGGAGGGTCAG AGGAGAAGCAGCCTCCGCCCAGCCGCTAGGCCAGGGACCATCTTCTGGCCAATCAAGGCTTG CTGGAGTGTCTCCCAGCCAATCAGGGCCTTGAGGAGGATGTATCCTCCAGCCAATCAGGGCC TGGGGAATCTGTTGGCGAATCAGGGATTTGGGAGTCTATGTGGTTAATCAGGGGTGTCTTTC TTGTGCAGTCAGGGTCTGCGCACAGTCAATCAGGGTAGAGGGGGGTATTTCTGAGTCAATCTG AGGCTAAGGACATGTCCTTTCCCATGAGGCCTTGGTTCAGAGCCCCAGGAATGGACCCCCCA ATCACTCCCCACTCTGCTGGGATAATGGGGTCCTGTCCCAAGGAGCTGGGAACTTGGTGTTG CCCCTCAATTTCCAGCACCAGAAAGAGAGATTGTGTGGGGGGTAGAAGCTGTCTGGAGGCCC GGCCAGAGAATTTGTGGGGTTGTGGAGGTTGTGGGGGCGGTGGGGAGGTCCCAGAGGTGGGA GGCTGGCATCCAGGTCTTGGCTCTGCCCTGAGACCTTGGACAAACCCTTCCCCCTCTCTGGG CACCCTTCTGCCCACACCAGTTTCCAGTGCGGAGTCTGAGACCCTTTCCACCTCCCCTACAA GTGCCCTCGGGTCTGTCCTCCCGTCTGGACCCTCCCAGCCACTATCCCTTGCTGGAAGGCT CAGCTCTTTGGGGGTCTGGGGTGACCTCCCACCTCCTGGAAAACTTTAGGGTATTTTTGC GCAAACTCCTTCAGGGTTGGGGGACTCTGAAGGAAACGGGACAAAACCTTAAGCTGTTTTCT TAGCCCCTCAGCCAGCTGCCATTAGCTTGGCTCTTAAAGGGCCAGGCCTCCTTTTCTGCCCT CTAGCAGGAGGTTTTCCAACTGTTGGAGGCGCCTTTGGGGGCTGCCCCTTTGTCTGGAGTCA CTGGGGGCTTCCGAGGGTCTCCCTCGACCCTCTGTCGTCCTGGGATGGCTGTCGGGAGCTGT ATCACCTGGGTTCTGTCCCCTGGCTCTGTATCAGGCACTTTATTAAAGCTGGGCCTCAGTGG GGTGTGTTTGTCTCCTGCTCTTCTGGAGCCTGGAAGGAAAGGGCTTCAGGAGGAGGCTGTGA GGCTGGAGGGACCAGATGGAGGAGGCCAGCAGCTAGCCATTGCACACTGGGGTGATGGGTGG GGGCGGTGACTGCCCCAGACTTGGTTTTGTAATGATTTGTACAGGAATAAACACACCTACGC

FIGURE 34

MSSNKEQRSAVFVILFALITILILYSSNSANEVFHYGSLRGRSRRPVNLKKWSITDGYVPIL GNKTLPSRCHQCVIVSSSSHLLGTKLGPEIERAECTIRMNDAPTTGYSADVGNKTTYRVVAH SSVFRVLRRPQEFVNRTPETVFIFWGPPSKMQKPQGSLVRVIQRAGLVFPNMEAYAVSPGRM RQFDDLFRGETGKDREKSHSWLSTGWFTMVIAVELCDHVHVYGMVPPNYCSQRPRLQRMPYH YYEPKGPDECVTYIQNEHSRKGNHHRFITEKRVFSSWAQLYGITFSHPSWT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 9-31 (type II)

N-glycosylation site.

amino acids 64-68, 115-119

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 50-54

Casein kinase II phosphorylation site.

amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.

amino acids 253-262

N-myristoylation site.

amino acids 37-43, 114-120, 290-294

GTTTCTCATAGTTGGCGTCTTCTAAAGGAAAAACACTAAAATGAGGAACTCAGCGGACCGGGAGCGACGCAGCT GGGGCAAAGGTGAAAGAGTTTCAGAACAAGCTTCCTGGAACCCATGACCCATGAAGTCTTGTCGACATTTATAC CGTCTGAGGGTAGCAGCTCGAAACTAGAAGAAGTGGAGTGTTGCCAGGGACGGCAGTATCTCTTTGTGTGACCC TGGCGGCCTATGGGACGTTGGCTTCAGACCTTTGTGATACACC<u>ATG</u>CTGCGTGGGACGATGACGGCGTGGAGAG GAATGAGGCCTGAGGTCACACTGGCTTGCCTCCTCCTAGCCACAGCAGGCTGCTTTGCTGACTTGAACGAGGTC CCTCAGGTCACCGTCCAGCCTGCGTCCACCGTCCAGAAGCCCGGAGGCACTGTGATCTTGGGCTGCGTGGTGGA ACCTCCAAGGATGAATGTAACCTGGCGCCTGAATGGAAAGGAGCTGAATGGCTCGGATGATGCTCTGGGTGTCC TCATCACCCACGGGACCCTCGTCATCACTGCCCTTAACAACCACACTGTGGGACGGTACCAGTGTGGGCCCGG ATGCCTGCGGGGGCTGTGGCCAGCGTGCCAGCCACTGTGACACTAGCCAATCTCCAGGACTTCAAGTTAGATGT CCCAGGTCCGGTACAGCGTCAAACAAGAGTGGCTGGAGGCCTCCAGAGGTAACTACCTGATCATGCCCTCAGGG AACCTCCAGATTGTGAATGCCAGCCAGGAGGACGAGGGCATGTACAAGTGTGCAGCCTACAACCCAGTGACCCA GGAAGTGAAAACCTCCGGCTCCAGCGACAGGCTACGTGTGCGCCGCTCCACCGCTGAGGCTGCCCGCATCATCT ACCCCCCAGAGGCCCAAACCATCATCGTCACCAAAGGCCAGAGTCTCATTCTGGAGTGTGTGGCCAGTGGAATC CCACCCCACGGGTCACCTGGGCCAAGGATGGGTCCAGTGTCACCGGCTACAACAAGACGCGCTTCCTGCTGAG CAACCTCCTCATCGACACCACCAGCGAGGAGGACTCAGGCACCTACCGCTGCATGGCCGACAATGGGGTTGGGC AGCCCGGGGCAGCGGTCATCCTCTACAATGTCCAGGTGTTTGAACCCCCTGAGGTCACCATGGAGCTATCCCAG CTGGTCATCCCCTGGGGCCAGAGTGCCAAGCTTACCTGTGAGGTGCGTGGGAACCCCCCGCCCTCCGTGCTGTG GCTGAGGAATGCTGTGCCCCTCATCTCCAGCCAGCGCCTCCGGCTCTCCCGCAGGGCCCTGCGCGTGCTCAGCA TGGGGCCTGAGGACGAAGGCGTCTACCAGTGCATGGCCGAGAACGAGGTTGGGAGCGCCCATGCCGTAGTCCAG CTGCGGACCTCCAGGCCAAGCATAACCCCAAGGCTATGGCAGGATGCTGAGCTGGCTACTGGCACACCTCCTGT ATCACCCTCCAAACTCGGCAACCCTGAGCAGATGCTGAGGGGGGCAACCGGCGCTCCCCAGACCCCCAACGTCAG TGGGGCCTGCTTCCCCGAAGTGTCCAGGAGAGAGGGGGGCAGGGGGCTCCCGCCGAGGCTCCCATCATCCTCAGC TCGCCCCGCACCTCCAAGACAGACTCATATGAACTGGTGTGGCGGCCTCGGCATGAGGGCAGTGGCCGGGCGCC AATCCTCTACTATGTGGTGAAACACCGCAAGCAGGTCACAAATTCCTCTGACGATTGGACCATCTCTGGCATTC CAGCCAACCAGCACCGCCTGACCCTCACCAGACTTGACCCCGGGAGCTTGTATGAAGTGGAGATGGCAGCTTAC AACTGTGCGGGAGAGGGCCAGACAGCCATGGTCACCTTCCGAACTGGACGGCGCCCAAACCCGAGATCATGGC GCCTCTCCCCCCAGAAGCTCCCGACAGGCCCACCATCTCCACGGCCTCCGAGACCTCAGTGTACGTGACCTGG ATTCCCCGTGGGAATGGTGGGTTCCCAATCCAGTCCTTCCGTGTGGAGTACAAGAAGCTAAAGAAGTGGGAGA CTGGATTCTGGCCACCAGCGCCATCCCCCCATCGCGGCTGTCCGTGGAGATCACGGGCCTAGAGAAAGGCACCT GTGTCGGGCTACAGCGGTCGCGTGTACGAGAGGCCCGTGGCAGGTCCTTATATCACCTTCACGGATGCGGTCAA TGAGACCACCATCATGCTCAAGTGGATGTACATCCCAGCAAGTAACAACAACACCCCAATCCATGGCTTTTATA TCTATTATCGACCCACAGACAGTGACAATGATAGTGACTACAAGAAGGATATGGTGGAAGGGGACAAGTACTGG CACTCCATCAGCCACCTGCAGCCAGAGACCTCCTACGACATTAAGATGCAGTGCTTCAATGAAGGAGGGGAGAG CGAGTTCAGCAACGTGATGATCTGTGAGACCAAAGCTCGGAAGTCTTCTGGCCAGCCTGGTCGACTGCCACCCC CAACTCTGGCCCCACCACAGCCGCCCCTTCCTGAAACCATAGAGCGGCCGGTGGGCACTGGGGCCATGGTGGCT CGCTCCAGCGACCTGCCCTATCTGATTGTCGGGGTCGTCCTGGGCTCCATCGTTCTCATCATCGTCACCTTCAT CCCCTTCTGCTTGTGGAGGGCCTGGTCTAAGCAAAAACATACAACAGACCTGGGTTTTCCTCGAAGTGCCCTTC CACCCTCCTGCCCGTATACTATGGTGCCATTGGGAGGACTCCCAGGCCACCAGGCCAGTGGACAGCCCTACCTC AGTGGCATCAGTGGACGGGCCTGTGCTAATGGGATCCACATGAATAGGGGCTGCCCCTCGGCTGCAGTGGGCTA CCCGGGCATGAAGCCCCAGCAGCACTGCCCAGGCGAGCTTCAGCAGCAGAGTGACACCAGCAGCCTGCTGAGGC AGACCCATCTTGGCAATGGATATGACCCCCAAAGTCACCAGATCACGAGGGGTCCCAAGTCTAGCCCGGACGAG GGCTCTTTCTTATACACACTGCCCGACGACTCCACTCACCAGCTGCTGCAGCCCCATCACGACTGCTGCCAACG CCAGGAGCAGCCTGCTGTGGGCCAGTCAGGGGTGAGGAGAGCCCCCGACAGTCCTGTCCTGGAAGCAGTGT GGGACCCTCCATTCACTCAGGGCCCCCATGCTGCTTGGGCCTTGTGCCAGTTGAAGAGGTGGACAGTCCTGAC TCCTGCCAAGTGAGTGGAGGAGACTGGTGTCCCCAGCACCCCGTAGGGGCCTACGTAGGACAGGAACCTGGAAT ${\tt GCAGCTCTCCCCGGGGCCACTGGTGCGTGTGTCTTTTGAAACACCACCTCTCACAATT{\tt TAG}{\tt GCAGAAGCTGATA}$ CATAAGGAGTCCTACCCGTTGAGGTTGGAGAGGGAAAATAAAGAAGCTGCCACCTAACAGGAGTCACCCAGGAA AGCACCGCACAGGCTGGCGCGGGACAGACTCCTAACCTGGGGCCTCTGCAGTGGCAGGCGAGGCTGCAGGAGGC CCACAGATAAGCTGGCAAGAGGAAGGATCCCAGGCACATGGTTCATCACGAGCATGAGGGAACAGCAAGGGGCA CGGTATCACAGCCTGGAGACACCCACAGATGGCTGGATCCGGTGCTACGGGAAACATTTTCCTAAGATGCCC ATGAGAACAGACCAAGATGTGTACAGCACTATGAGCATTAAAAAACCTTCCAGAATCAATAATCCGTGGCAACA TATCTCTGTAAAAACAAACACTGTAACTTCTAAATAAATGTTTAGTCTTCCCTGTAAAA

FIGURE 36

MLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQPASTVQKPGGTVILGCVVEPP RMNVTWRLNGKELNGSDDALGVLITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTL ANLQDFKLDVQHVIEVDEGNTAVIACHLPESHPKAQVRYSVKQEWLEASRGNYLIMPSGNLQ IVNASOEDEGMYKCAAYNPVTQEVKTSGSSDRLRVRRSTAEAARIIYPPEAQTIIVTKGQSL ILECVASGIPPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCMADNGVGQPGA AVILYNVQVFEPPEVTMELSQLVIPWGQSAKLTCEVRGNPPPSVLWLRNAVPLISSQRLRLS RRALRVLSMGPEDEGVYQCMAENEVGSAHAVVQLRTSRPSITPRLWQDAELATGTPPVSPSK LGNPEQMLRGQPALPRPPTSVGPASPKCPGEKGQGAPAEAPIILSSPRTSKTDSYELVWRPR HEGSGRAPILYYVVKHRKQVTNSSDDWTISGIPANQHRLTLTRLDPGSLYEVEMAAYNCAGE GQTAMVTFRTGRRPKPEIMASKEQQIQRDDPGASPQSSSQPDHGRLSPPEAPDRPTISTASE TSVYVTWIPRGNGGFPIQSFRVEYKKLKKVGDWILATSAIPPSRLSVEITGLEKGTSYKFRV RALNMLGESEPSAPSRPYVVSGYSGRVYERPVAGPYITFTDAVNETTIMLKWMYIPASNNNT PIHGFYIYYRPTDSDNDSDYKKDMVEGDKYWHSISHLQPETSYDIKMQCFNEGGESEFSNVM ICETKARKSSGQPGRLPPPTLAPPQPPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVL IIVTFIPFCLWRAWSKQKHTTDLGFPRSALPPSCPYTMVPLGGLPGHQASGQPYLSGISGRA CANGIHMNRGCPSAAVGYPGMKPQQHCPGELQQQSDTSSLLRQTHLGNGYDPQSHQITRGPK ${\tt SSPDEGSFLYTLPDDSTHQLLQPHHDCCQRQEQPAAVGQSGVRRAPDSPVLEAVWDPPFHSG}.$ PPCCLGLVPVEEVDSPDSCQVSGGDWCPQHPVGAYVGQEPGMQLSPGPLVRVSFETPPLTI

. Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 16-30 (type II), 854-879

FIGURE 37

CGGGAGGCTGGGTCGTCATGATCCGGACCCCATTGTCGGCCTCTGCCCATCGCCTGCTCCTC CCAGGCTCCCGCGCCCACCCCCGCGCAACATGCAGCCCACGGGCCGCGAGGGTTCCCGCGC GCTCAGCCGCCGTATCTGCGGCGTCTGCTGCTCCTGCTACTGCTGCTGCTGCGGCAGC CCGTAACCCGCGGGGGAGACCACGCCGGGCGCCCCCAGAGCCCTCTCCACGCTGGGCTCCCCCAGCCTCTTCACCACGCCGGGTGTCCCCAGCGCCCTCACTACCCCAGGCCTCACTACGCCAGG TGGACGCCACAATGACCTGCCCCAGGTCCTGAGACAGCGTTACAAGAATGTGCTTCAGGAT GTTAACCTGCGAAATTTCAGCCATGGTCAGACCAGCCTGGACAGGCTTAGAGACGCCTCGT GGGTGCCCAGTTCTGGTCAGCCTCCGTCTCATGCCAGTCCCAGGACCAGACTGCCGTGCGCC ${\tt TCGCCCTGGAGCAGATTGACCTCATTCACCGCATGTGTGCCTCCTACTCTGAACTCGAGCTT}$ TGGTCACTCACTGGACAGCCTCTCTGTGCTGCGCAGTTTCTATGTGCTGGGGGTGCGCT ACCTGACACTTACCTTCACCTGCAGTACACCATGGGCAGAGAGTTCCACCAAGTTCAGACAC CACATGTACACCAACGTCAGCGGATTGACAAGCTTTGGTGAGAAAGTAGTAGAGGAGTTGAA CCGCCTGGGCATGATGATAGATTTGTCCTATGCATCGGACACCTTGATAAGAAGGGTCCTGG TTGAATGTTCCCGATGATATCCTGCAGCTTCTGAAGAACGGTGGCATCGTGATGGTGACACT GTCCATGGGGGTGCTGCAACCTGCTTGCTAACGTGTCCACTGTGGCAGATCACTTTG ACCACATCAGGGCAGTCATTGGATCTGAGTTCATCGGGATTGGTGGAAATTATGACGGGACT -GGCCGGTTCCCTCAGGGGCTGGAGGATGTGTCCACATACCCAGTCCTGATAGAGGAGTTGCT GAGTCGTASCTGGAGCGAGGAAGAGCTTCAAGGTGTCCTTCGTGGAAACCTGCTGCGGGTCT TCAGACAAGTGGAAAAGGTGAGAGAGGAGAGCCGCGGGGGCCCCGTGGAGGCTGAGTTT CCATATGGGCAACTGAGCACATCCTGCCACTCCCACCTCGTGCCTCAGAATGGACACCAGGC TACTCATCTGGAGGTGACCAAGCAGCCAACCAATCGGGTCCCCTGGAGGTCCTCAAATGCCT CCCCATACCTTGTTCCAGGCCTTGTGGCTGCCACCATCCCAACCTTCACCCAGTGGCTC TGCTGACACAGTCGGTCCCCGCAGAGGTCACTGTGGCAAAGCCTCACAAAGCCCCCTCTCCT AGTTCATTCACAAGCATATGCTGAGAATAAACATGTTACACATGGAAAA

FIGURE 38

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59817

><subunit 1 of 1, 487 aa, 1 stop, 2 unknown

><MW: 53569.32, pI: 7.68, NX(S/T): 5

MQPTGREGSRALSRRYLRRLLLLLLLLLLRQPVTRAETTPGAPRALSTLGSPSLFTTPGVPS ALTTPGLTTPGTPKTLDLRGRAQALMRSFPLVDGHNDLPQVLRQRYKNVLQDVNLRNFSHGQ TSLDRLRDGLVGAQFWSASVSCQSQDQTAVRLALEQIDLIHRMCASYSELELVTSAEGLNSS QKLACLIGVXGGHSLDSSLSVLRSFYVLGVRYLTLTFTCSTPWAESSTKFRHHMYTNVSGLT SFGEKVVEELNRLGMMIDLSYASDTLIRRVLEVSQAPVIFSHSAARAVCDNLLNVPDDILQL LKNGGIVMVTLSMGVLQCNLLANVSTVADHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLEDV STYPVLIEELLSRXWSEEELQGVLRGNLLRVFRQVEKVREESRAQSPVEAEFPYGQLSTSCH SHLVPQNGHQATHLEVTKQPTNRVPWRSSNASPYLVPGLVAAATIPTFTQWLC

Important features of the protein:

Signal peptide:

amino acids 1-36

Transmembrane domain:

amino acids 313-331

N-glycosylation sites.

. amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.

amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359, 357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 136-146

FIGURE 39

TGCTAGGCTCTGTCCCACAATGCACCCGAGAGCAGGAGCTGAAAGCCTCTAACACCCACAGA TCCCTCTATGACTGCAATGTGAGGTGTCCGGCTTTGCTGGCCCAGCAAGCCTGATAAGCATG AAGCTCTTATCTTTGGTGGCTGTGGTCGGGTGTTTGCTGGTGCCCCCAGCTGAAGCCAACAA GAGTTCTGAAGATATCCGGTGCAAATGCATCTGTCCACCTTATAGAAACATCAGTGGGCACA GTGCCTGGCCATGACGTGGAGGCCTACTGCCTGCTGTGCGAGTGCAGGTACGAGGAGCGCAG ACATGGCCTTCCTGATGCTGGTGGACCCTCTGATCCGAAAGCCGGATGCATACACTGAGCAA CTGCACAATGAGGAGGAGAATGAGGATGCTCGCTCTATGGCAGCAGCTGCTGCATCCCTCGG GGGACCCGAGCAAACACAGTCCTGGAGCGTGTGGAAGGTGCCCAGCAGCGGTGGAAGCTGC AGGTGCAGGAGCAGCAGAGACAGTCTTCGATCGGCACAAGATGCTCAGC<u>TAG</u>ATGGGCTGG TGTGGTTGGGTCAAGGCCCCAACACCATGGCTGCCAGCTTCCAGGCTGGACAAAGCAGGGGG CTACTTCTCCCTTCCCTCGGTTCCAGTCTTCCCTTTAAAAGCCTGTGGCATTTTTCCTCCTT CTCCCTAACTTTAGAAATGTTGTACTTGGCTATTTTGATTAGGGAAGAGGGATGTGGTCTCT ATGGAGACATTCGAGGCGCCTCAGGAGTGGATGCGATCTGTCTCTCCTGGCTCCACTCTTG CCGCCTTCCAGCTCTGAGTCTTGGGAATGTTGTTACCCTTGGAAGATAAAGCTGGGTCTTCA GGAACTCAGTGTCTGGGAGGAAAGCATGGCCCAGCATTCAGCATGTGTTCCTTTCTGCAGTG GTTCTTATCACCACCTCCCAGCCCCGGCGCCCTCAGCCCCAGCCCCAGCTCCAGCCCTG AGGACAGCTCTGATGGGAGAGCTGGGCCCCCTGAGCCCACTGGGTCTTCAGGGTGCACTGGA AGCTGGTGTTCGCTGTCCCCTGTGCACTTCTCGCACTGGGGCATGGAGTGCCCATGCATACT CTGCTGCCGGTCCCCTCACCTGCACTTGAGGGGTCTGGGCAGTCCCTCCTCTCCCCAGTGTC CACAGTCACTGAGCCAGACGGTCGGTTGGAACATGAGACTCGAGGCTGAGCGTGGATCTGAA CACCACAGCCCCTGTACTTGGGTTGCCTCTTGTCCCTGAACTTCGTTGTACCAGTGCATGGA GAGAAAATTTTGTCCTCTTGTCTTAGAGTTGTGTGTAAATCAAGGAAGCCATCATTAAATTG TTTTATTTCTCTCA

FIGURE 40

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278</pre>

<subunit 1 of 1, 183 aa, 1 stop

<MW: 20574, pI: 6.60, NX(S/T): 3

MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPM PVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPDAYTE QLHNEEENEDARSMAAAASLGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 90-112

N-glycosylation sites.

amino acids 21-24, 38-41 and 47-50

FIGURE 41

AGCGGGTCTCGCTTGGGTTCCGCTAATTTCTGTCCTGAGGCGTGAGACTGAGTTCATAGGGTCCTGGGTCCCCG AACCAGGAAGGGTTGAGGGAACACAATCTGCAAGCCCCCGCGACCCAAGTGAGGGGCCCCGTGTTGGGGTCCTC ATGCGGAGCAAGGATTCGTCCTGCTGCTGCTCCTACTGGCCGCGGTGCTGATGGTGGAGAGCTCACAGATCGG CAGTTCGCGGGCCAAACTCAACTCCATCAAGTCCTCTCTGGGCGGGGAGACGCCTGGTCAGGCCGCCAATCGAT CTGCGGCCATGTACCAAGGACTGGCATTCGGCGCAGTAAGAAGGGCAAAAACCTGGGGCAGGCCTACCCTTGT AGCAGTGATAAGGAGTGTGAAGTTGGGAGGTATTGCCACAGTCCCCACCAAGGATCATCGGCCTGCATGGTGTG TCGGAGAAAAAAGAAGCGCTGCCACCGAGATGGCATGTGCTGCCCCAGTACCCGCTGCAATAATGGCATCTGTA TCCCAGTTACTGAAAGCATCTTAACCCCTCACATCCCGGCTCTGGATGGTACTCGGCACAGAGATCGAAACCAC GGTCATTACTCAAACCATGACTTGGGATGGCAGAATCTAGGAAGACCACACTAAGATGTCACATATAAAAGG GCATGAAGGAGACCCCTGCCTACGATCATCAGACTGCATTGAAGGGTTTTGCTGTGCTCGTCATTTCTGGACCA AAATCTGCAAACCAGTGCTCCATCAGGGGGAAGTCTGTACCAAACAACGCAAGAAGGGTTCTCATGGGCTGGAA ATTTTCCAGCGTTGCGACTGTGCGAAGGGCCTGTCTTGCAAAGTATGGAAAGATGCCACCTACTCCTCCAAAGC CAGACTCCATGTGTGTCAGAAAATT<u>TGA</u>TCACCATTGAGGAACATCATCAATTGCAGACTGTGAAGTTGTGTAT TTAATGCATTATAGCATGGTGGAAAATAAGGTTCAGATGCAGAAGAATGGCTAAAATAAGAAACGTGATAAGAA TATAGATGATCACAAAAAGGGAGAAAGAAAACATGAACTGAATAGATTAGAATGGGTGACAAATGCAGTGCAGC CAGTGTTTCCATTATGCAACTTGTCTATGTAAATAATGTACACATTTGTGGAAAATGCTATTATTAAGAGAACA AGCACACAGTGGAAATTACTGATGAGTAGCATGTGACTTTCCAAGAGTTTAGGTTGTGCTGGAGGAGAGGTTTC CTTCAGATTGCTGATTGCTTATACAAATAACCTACATGCCAGATTTCTATTCAACGTTAGAGTTTAACAAAATA AAGAAAAAATCAGTCAATATTTCCAAATAATTGCAAAATAATGGCCAGTTGTTTAGGAAGGCCTTTAGGAAGA TGATACAAGACAAAAACAGTTCCTTCAGATTCTACGGAATGACAGTATATCTCTCTTTTATCCTATGTGATTCCT GCTCTGAATGCATTATATTTTCCAAACTATACCCATAAATTGTGACTAGTAAAATACTTACACAGAGCAGAATT TTCACAGATGGCAAAAAATTTAAAGATGTCCAATATATGTGGGAAAAGAGCTAACAGAGAGATCATTATTTCT ATAGAGACTTAAGCTGGATCTGTACTGCACTGGAGTAAGCAAGAAAATTGGGAAAACTTTTTCGTTTGTTCAGG TTTTGGCAACACATAGATCATATGTCTGAGGCACAAGTTGGCTGTTCATCTTTGAAACCAGGGGATGCACAGTC TAAATGAATATCTGCATGGGATTTGCTATCATAATATTTACTATGCAGATGAATTCAGTGTGAGGTCCTGTGTC CGTACTATCCTCAAATTATTTATTTTATAGTGCTGAGATCCTCAAATAATCTCAATTTCAGGAGGTTTCACAAA ATGTACTCCTGAAGTAGACAGAGTAGTGAGGTTTCATTGCCCTCTATAAGCTTCTGACTAGCCAATGGCATCAT CGGTTAAAAAATATAAGTAGGATAACTTGTAAAACCTGCATATTGCTAATCTATAGACACCACAGTTTCTAAAT TCTTTGAAACCACTTTACTACTTTTTTTAAACTTAACTCAGTTCTAAATACTTTGTCTGGAGCACAAAACAATA AAAGGTTATCTTATAGTCGTGACTTTAAACTTTTGTAGACCACAATTCACTTTTTAGTTTTCTTTTACTTAAAT CCCATCTGCAGTCTCAAATTTAAGTTCTCCCAGTAGAGATTGAGTTTGAGCCTGTATATCTATTAAAAATTTCA ACTTCCCACATATATTTACTAAGATGATTAAGACTTACATTTTCTGCACAGGTCTGCAAAAACAAAAATTATAA ACTAGTCCATCCAAGAACCAAAGTTTGTATAAACAGGTTGCTATAAGCTTGTGAAATGAAAATGGAACATTTCA ATCAAACATTTCCTATATAACAATTATTATATTTACAATTTGGTTTCTGCAATATTTTTCTTATGTCCACCCTT TTAAAAATTATTATTTGAAGTAATTTATTTACAGGAAATGTTAATGAGATGTATTTTCTTATAGAGATATTTCT TACAGAAAGCTTTGTAGCAGAATATATTTGCAGCTATTGACTTTGTAATTTAGGAAAAATGTATAATAAGATAA

FIGURE 42

MAALMRSKDSSCCLLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLA FGGSKKGKNLGQAYPCSSDKECEVGRYCHSPHQGSSACMVCRRKKKRCHRDGMCCPSTRCNN GICIPVTESILTPHIPALDGTRHRDRNHGHYSNHDLGWQNLGRPHTKMSHIKGHEGDPCLRS SDCIEGFCCARHFWTKICKPVLHQGEVCTKQRKKGSHGLEIFQRCDCAKGLSCKVWKDATYS SKARLHVCQKI

Signal peptide:

amino acids 1-25

FIGURE 43

GTGTTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCAACATCACGTTTTTAAAAATTGATT TAGCTGCATTTATTTAGTCAGTTTTCATTGCATAGTAATATTTTCATGTAGTATTTTCTAAG TTATATTTTAGTAATTCATATGTTTTAGATTATAGGTTTTAACATACTTGTGAAAATACTTG ATGTGTTTTAAAGCCTTGGGCAGAAATTCTGTATTGTTGAGGATTTGTTCTTTTATCCCCCT TTTAAAGTCATCCGTCCTTGGCTCAGGATTTGGAGAGCTTGCACCACCAAAAATGGCAAACA TCACCAGCTCCCAGATTTTGGACCAGTTGAAAGCTCCGAGTTTGGGCCAGTTTACCACCACC CCAAGTACACAGCAGAATAGTACAAGTCACCCTACAACTACTACTTCTTGGGACCTCAAGCC CCCAACATCCCAGTCCTCAGTCCTCAGTCATCTTGACTTCAAATCTCAACCTGAGCCATCCC CAGTTCTTAGCCAGTTGAGCCAGCGACAACAGCACCAGAGCCAGGCAGTCACTGTTCCTCCT CCTGGTTTGGAGTCCTTTCCTTCCCAGGCAAACTTCGAGAATCAACACCTGGAGACAGTCC CTCCACTGTGAACAAGCTTTTGCAGCTTCCCAGCACCACTGAAAATATCTCTGTGTCTG TCCACCAGCCACAGCCCAAACACATCAAACTTGCTAAGCGGCGGATACCCCCAGCTTCTAAG ATCCCAGCTTCTGCAGTGGAAATGCCTGGTTCAGCAGATGTCACAGGATTAAATGTGCAGTT TGGGGCTCTGGAATTTGGGTCAGAACCTTCTCTCTCTGAATTTGGATCAGCTCCAAGCAGTG AAAATAGTAATCAGATTCCCATCAGCTTGTATTCGAAGTCTTTAAGTGAGCCTTTGAATACA TCTTTATCAATGACCAGTGCAGTACAGAACTCCACATATACAACTTCCGTCATTACCTCCTG CAGTCTGACAAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGTCTTCCTCTTATGACC AGAGTTCTGTGCATAACAGGATCCCATACCAAAGCCCTGTGAGTTCATCAGAGTCAGCTCCA CAGCAAGCTACTCTTGTCATGGCTGGTGCCAACCAAACAGAGGAAGAGGATAGCTCACGTGA TGTGGAAAACACCAGTTGGTCAATGGCTCATTCGT**TAA**AAAGCAGCCCTTTTGCTTTTTTGT TTTTGGACCAGGTGTTGGCTGTGGTGTTATTAGAAATGTCTTAACCACAGCAAGAAGGAGGT GGTGGTCTCATATTCTTCTGCCCTAATCAGACTGCACCACAAGTGCAGCATACAGTATGCAT TTTAAAGATGCTTGGGCCAGGCGGGGTGGCTGATGCCCATAATCCCAGTGCTTTGGGGGGCC AAGGCAGGCAGATTGCCCAAGCTCAGGAGTTTGAGACCACCCTGGGCAACATGGTGAAACTC TGTCTCTACTAAAATACGAAAAACTAGCCGGGTGTGGTGGCGGCGCGTGCCTGTAATCCCAG CTACTTGGGAGGCTGAGGCACAAGAATCGCTTGAGCCAGCTTGGGCTACAAAGTGAGACTCC **GTCTGAAAAGA**

FIGURE 44

MCFKALGRNSVLLRICSFIPLLKSSVLGSGFGELAPPKMANITSSQILDQLKAPSLGQFTTT
PSTQQNSTSHPTTTTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPP
PGLESFPSQAKLRESTPGDSPSTVNKLLQLPSTTIENISVSVHQPQPKHIKLAKRRIPPASK
IPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAPSSENSNQIPISLYSKSLSEPLNT
SLSMTSAVQNSTYTTSVITSCSLTSSSLNSASPVAMSSSYDQSSVHNRIPYQSPVSSSESAP
GTIMNGHGGGGRSQQTLDSKYSSKLLLSWLVPTKQRKRIAHVMWKTPVGQWLIR

Signal peptide:

amino acids 1-24

FIGURE 45

GCCGAGTGGGACAAAGCCTGGGGCTGGGCGGGGCC<u>ATG</u>CGCTGCCATCCCGAATCCTGCT TTGGAAACTTGTGCTTCTGCAGAGCTCTGCTGTTCTCCTGCACTCAGCGGTGGAGGAGACGG ACGCGGGCTGTACACCTGCAACCTGCACCATCACTGCCACCTCTACGAGAGCCTGGCC GGTGCTGGCGGTGGCGCGCGCGCCCTTCTGACCTGCGTGAACCGCGGGCACGTGT GGACCGACCGCACGTGGAGGAGGCTCAACAGGTGGTGCACTGGGACCGGCAGCCGCCCGGG GTCCCGCACGACCGCCGGACCGCCTGCTGGACCTCTACGCGTCGGGCGAGCGCCGCCCTA CGGGCCCTTTTTCTGCGCGACCGCGTGGCTGTGGGCGCGGATGCCTTTGAGCGCGGTGACT TCTCACTGCGTATCGAGCCGCTGGAGGTCGCCGACGAGGGCACCTACTCCTGCCACCTGCAC CACCATTACTGTGGCCTGCACGAACGCCGCGTCTTCCACCTGACGGTCGCCGAACCCCACGC GGAGCCGCCCCCGGGGCTCTCCGGGCAACGGCTCCAGCCACAGCGGCCCCAGGCCCAG ACCCCACACTGGCGCGCGCCACAACGTCATCAATGTCATCGTCCCCGAGAGCCGAGCCCAC TTCTTCCAGCAGCTGGGCTACGTGCTGCCACGCTGCTCTTCATCCTGCTACTGGTCAC TGTCCTCCTGGCCGCCGCAGGCGCCGCGGAGGCTACGAATACTCGGACCAGAAGTCGGGAA AGTCAAAGGGGAAGGATGTTAACTTGGCGGAGTTCGCTGTGGCTGCAGGGGACCAGATGCTT GGCCCACAGCCCCTGCCTGCCAAGTACATCGACCTAGACAAAGGGTTCCGGAAGGAGAACT CTCGGGGCATCTCCTGATGCTCCGGGGCTCACCCCCCTTCCAGCGGCTGGTCCCGCTTTCCT GGAATTTGGCCTGGGCGTATGCAGAGGCCGCCTCCACACCCCTCCCCCAGGGGCTTGGTGGC AGCATAGCCCCCACCCTGCGGCCTTTGCTCACGGGTGGCCCTGCCCACCCCTGGCACAACC AAAATCCCACTGATGCCCATCATGCCCTCAGACCCTTCTGGGCTCTGCCCGCTGGGGGCCTG AAGACATTCCTGGAGGACACTCCCATCAGAACCTGGCAGCCCCAAAACTGGGGTCAGCCTCA GGGCAGGAGTCCCACTCCTCCAGGGCTCTGCTCCGGGGGCTGGGAGATGTTCCTGGAGGA GGACACTCCCATCAGAACTTGGCAGCCTTGAAGTTGGGGTCAGCCTCGGCAGGAGTCCCACT CCTCCTGGGGTGCTGCCTGCCACCAAGAGCTCCCCCACCTGTACCACCATGTGGGACTCCAG GCACCATCTGTTCTCCCCAGGGACCTGCTGACTTGAATGCCAGCCCTTGCTCCTCTGTGTTG CTTTGGGCCACCTGGGGCTGCACCCCTTCCTGCCCATCCCTACCCTAGCCTTG GGACTCTGCCTGGGCTGGAGTCTAGGGCTGGGGCTACATTTGGCTTCTGTACTGGCTGAGGA CAGGGGAGGGAGTTGGTTTGGGGTGGCCTGTGTTGCCACTCTCAGCACCCCACATTT AAAAA

FIGURE 46

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60618</pre>

<subunit 1 of 1, 341 aa, 1 stop

<MW: 38070, pI: 6.88, NX(S/T): 1

MALPSRILLWKLVLLQSSAVLLHSAVEETDAGLYTCNLHHHYCHLYESLAVRLEVTDGPPAT
PAYWDGEKEVLAVARGAPALLTCVNRGHVWTDRHVEEAQQVVHWDRQPPGVPHDRADRLLDL
YASGERRAYGPLFLRDRVAVGADAFERGDFSLRIEPLEVADEGTYSCHLHHHYCGLHERRVF
HLTVAEPHAEPPPRGSPGNGSSHSGAPGPDPTLARGHNVINVIVPESRAHFFQQLGYVLATL
LLFILLLVTVLLAARRRGGYEYSDQKSGKSKGKDVNLAEFAVAAGDQMLYRSEDIQLDYKN
NILKERAELAHSPLPAKYIDLDKGFRKENCK

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 237-262

N-glycosylation site.

amino acids 205-208

Cell attachment sequence.

amino acids 151-154

Coproporphyrinogen III oxidase proteins.

amino acids 115-140

FIGURE 47

 $\tt CGCCGGAGGCAGCGGCGTGGCGCAGCGGCGAC{\color{red} ATG} GCCGTTGTCTCAGAGGACGACTTT$ CAGCACAGTTCAAACTCCACCTACGGAACCACAAGCAGCAGTCTCCGAGCTGACCAGGAGGC ACTGCTTGAGAAGCTGCTGGACCGCCCCCCCTGGCCTGCAGAGGCCCGAGGACCGCTTCT GTGGCACATACATCATCTTCTTCAGCCTGGGCATTGGCAGTCTACTGCCATGGAACTTCTTT ATCACTGCCAAGGAGTACTGGATGTTCAAACTCCGCAACTCCTCCAGCCCAGCCACCGGGGA GGACCCTGAGGGCTCAGACATCCTGAACTACTTTGAGAGCTACCTTGCCGTTGCCTCCACCG TGCCCTCCATGCTGTGCCTGGTGGCCAACTTCCTGCTTGTCAACAGGGTTGCAGTCCACATC CGTGTCCTGGCCTCACTGACGGTCATCCTGGCCATCTTCATGGTGATAACTGCACTGGTGAA GGTGGACACTTCCTCCTGGACCCGTGGTTTTTTTGCGGTCACCATTGTCTGCATGGTGATCC TCAGCGGTGCCTCCACTGTCTTCAGCAGCAGCATCTACGGCATGACCGGCTCCTTTCCTATG AGGAACTCCCAAGCACTGATATCAGGAGGAGCCATGGGCGGGACGGTCAGCGCCGTGGCCTC ATTGGTGGACTTGGCTGCATCCAGTGATGTGAGGAACAGCGCCCTGGCCTTCTTCCTGACGG CCACCATCTTCCTCGTGCTCTGCATGGGACTCTACCTGCTGCTGTCCAGGCTGGAGTATGCC AGGTACTACATGAGGCCTGTTCTTGCGGCCCATGTGTTTTCTGGTGAAGAGGAGCTTCCCCA GGACTCCCTCAGTGCCCCTTCGGTGGCCTCCAGATTCATTGATTCCCACACACCCCCTCTCC GCCCCATCCTGAAGAAGACGGCCAGCCTGGGCTTCTGTGTCACCTACGTCTTCTTCATCACC AGCCTCATCTACCCCGCCGTCTGCACCAACATCGAGTCCCTCAACAAGGGCTCGGGCTCACT GTGGACCACCAAGTTTTTCATCCCCCTCACTACCTTCCTCCTGTACAACTTTGCTGACCTAT GTGGCCGGCAGCTCACCGCCTGGATCCAGGTGCCAGGGCCCAACAGCAAGGCGCTCCCAGGG TTCGTGCTCCTCCGGACCTGCCTCATCCCCCTCTTCGTGCTCTGTAACTACCAGCCCCGCGT CCACCTGAAGACTGTGGTCTTCCAGTCCGATGTGTACCCCGCACTCCTCAGCTCCCTGCTGG GGCTCAGCAACGGCTACCTCAGCACCCTGGCCCTCCTCTACGGGCCTAAGATTGTGCCCAGG GAGCTGGCTGAGGCCACGGGAGTGGTGATGTCCTTTTATGTGTGCTTGGGCTTAACACTGGG $\tt CTCAGCCTGCTCTACCCTCCTGGTGCACCTCATC{\color{red}{TAG}}{AAGGGAGGACACAAGGACATTGGTG$ CTTCAGAGCCTTTGAAGATGAGAAGAGAGTGCAGGAGGGCTGGGGGCCATGGAGGAAAGGCC GTGAGCCACGTCCATGCCCATTCCGTGCAAGGCAGATATTCCAGTCATATTAACAGAACACT CCTGAGACAGTTGAAGAAGAAATAGCACAAATCAGGGGTACTCCCTTCACAGCTGATGGTTA ACATTCCACCTTCTTTCTAGCCCTTCAAAGATGCTGCCAGTGTTCGCCCTAGAGTTATTACA AAGCCAGTGCCAAAACCCAGCCATGGGCTCTTTGCAACCTCCCAGCTGCGCTCATTCCAGCT GACAGCGAGATGCAAGCAAATGCTCAGCTCTCCTTACCCTGAAGGGGTCTCCCTGGAATGGA AGTCCCCTGGCATGGTCAGTCCTCAGGCCCAAGACTCAAGTGTGCACAGACCCCTGTGTTCT GCGGGTGAACAACTGCCCACTAACCAGACTGGAAAACCCAGAAAGATGGGCCTTCCATGAAT GCTTCATTCCAGAGGGACCAGAGGGCCTCCCTGTGCAAGGGATCAAGCATGTCTGGCCTGGG TTTTCAAAAAAAGAGGGATCCTCATGACCTGGTGGTCTATGGCCTGGGTCAAGATGAGGGTC GTATTCAAAAA

FIGURE 48

MAVVSEDDFQHSSNSTYGTTSSSLRADQEALLEKLLDRPPPGLQRPEDRFCGTYIIFFSLGI
GSLLPWNFFITAKEYWMFKLRNSSSPATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFL
LVNRVAVHIRVLASLTVILAIFMVITALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSI
YGMTGSFPMRNSQALISGGAMGGTVSAVASLVDLAASSDVRNSALAFFLTATIFLVLCMGLY
LLLSRLEYARYYMRPVLAAHVFSGEEELPQDSLSAPSVASRFIDSHTPPLRPILKKTASLGF
CVTYVFFITSLIYPAVCTNIESLNKGSGSLWTTKFFIPLTTFLLYNFADLCGRQLTAWIQVP
GPNSKALPGFVLLRTCLIPLFVLCNYQPRVHLKTVVFQSDVYPALLSSLLGLSNGYLSTLAL
LYGPKIVPRELAEATGVVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252, 305-330, 448-472

FIGURE 49

GACAGTGGAGGCAGTGGAGAGGACCGCGCTGTCCTGCTGTCACCAAGAGCTGGAGACACCA $ext{TCTCCCACCGAGAGTC}$ TCAGCCTGGTGGCCTCCCAGGACTGGAAGGCTGAACGCAGCCAAGACCCCTTCGAGAAATGC ATGCAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGACCTGGGGGCTCAATCGGACCCT GAAGCCCCAGAGGGTGATTGTGGTTGGCGCTGGTGGCCGGGCTGGTGGCCGCCAAGGTGC TCAGCGATGCTGGACAAGGTCACCATCCTGGAGGCAGATAACAGGATCGGGGGCCGCATC TTCACCTACCGGGACCAGAACACGGGCTGGATTGGGGAGCTGGGAGCCATGCGCATGCCCAG CTCTCACAGGATCCTCCACAAGCTCTGCCAGGGCCTGGGGGCTCAACCTGACCAAGTTCACCC AGTACGACAAGAACACGTGGACGGAGGTGCACGAAGTGAAGCTGCGCAACTATGTGGTGGAG AAGGTGCCCGAGAAGCTGGGCTACGCCTTGCGTCCCCAGGAAAAGGGCCACTCGCCCGAAGA CATCTACCAGATGGCTCTCAACCAGGCCCTCAAAGACCTCAAGGCACTGGGCTGCAGAAAGG CGATGAAGAAGTTTGAAAGGCACACGCTCTTGGAATATCTTCTCGGGGAGGGGAACCTGAGC $\tt CGGCCGGCCGTGCAGCTTCTGGGAGACGTGATGTCCGAGGATGGCTTCTTCTATCTCAGCTT$ CGCCGAGGCCCTCCGGGCCCACAGCTGCCTCAGCGACAGACTCCAGTACAGCCGCATCGTGG GTGGCTGGGACCTGCTGCCGCGCGCTGCTGAGCTCGCTGTCCGGGCTTGTGCTGTTGAAC GCGCCGTGGTGGCGATGACCCAGGGACCGCACGATGTGCACGTGCAGATCGAGACCTCTCC CCCGGCGCGGAATCTGAAGGTGCTGAAGGCCGACGTGGTGCTGACGGCGAGCGGACCGG CGGTGAAGCGCATCACCTTCTCGCCGCCGCTGCCCCGCCACATGCAGGAGGCGCTGCGGAGG $\tt CTGCACTACGTGCCGGCCACCAAGGTGTTCCTAAGCTTCCGCAGGCCCTTCTGGCGCGAGGA$ GCACATTGAAGGCGGCCACTCAAACACCGATCGCCCGTCGCGCATGATTTTCTACCCGCCGC $\tt CGCGCGAGGGCGCTGCTGCTGCTCGTACACGTGGTCGGACGCGGCGGCGGCGTTCGCC$ GGCTTGAGCCGGGAAGAGGCGTTGCGCTTGGCGCTCGACGACGTGGCGGCATTGCACGGGCC TGTCGTGCGCCAGCTCTGGGACGGCACCGGCGTCGTCAAGCGTTGGGCGGAGGACCAGCACA GCCAGGGTGGCTTTGTGGTACAGCCGCCGGCGCTCTGGCAAACCGAAAAGGATGACTGGACG GTCCCTTATGGCCGCATCTACTTTGCCGGCGAGCACACCGCCTACCCGCACGGCTGGGTGGA GACGGCGGTCAAGTCGGCGCTGCGCGCCGCCATCAAGATCAACAGCCGGAAGGGGCCTGCAT CGGACACGCCAGCCCCGAGGGGCACGCATCTGACATGGAGGGGCAGGGGCATGTGCATGGG GTGGCCAGCAGCCCTCGCATGACCTGGCAAAGGAAGAAGGCAGCCACCCTCCAGTCCAAGG CCAGTTATCTCTCCAAAACACGACCCACACGAGGACCTCGCATTAAAGTATTTTCGGAAAAA

FIGURE 50

MAPLALHLLVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRTLKPQRV
IVVGAGVAGLVAAKVLSDAGHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSSHRIL
HKLCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKVPEKLGYALRPQEKGHSPEDIYQMA
LNQALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFYLSFAEALR
AHSCLSDRLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQIETSPPARNL
KVLKADVVLLTASGPAVKRITFSPPLPRHMQEALRRLHYVPATKVFLSFRRPFWREEHIEGG
HSNTDRPSRMIFYPPPREGALLLASYTWSDAAAAFAGLSREEALRLALDDVAALHGPVVRQL
WDGTGVVKRWAEDQHSQGGFVVQPPALWQTEKDDWTVPYGRIYFAGEHTAYPHGWVETAVKS
ALRAAIKINSRKGPASDTASPEGHASDMEGQGHVHGVASSPSHDLAKEEGSHPPVQGQLSLQ
NTTHTRTSH

Signal peptide:

amino acids 1-21

FIGURE 51

AAGAACTCAGAGCCGGGAAGCCCCCATTCACTAGAAGCACTGAGAGATGCGGCCCCCTCGCAGGGTCTGAATTT CCTGCTGCTGCTGCTACAAAGATGCTTTTTATCTTTAACTTTTTGTTTTCCCCACTTCCGACCCCGGCGTTGATCT GCATCCTGACATTTGGAGCTGCCATCTTCTTGTGGCTGATCACCAGACCTCAACCCGTCTTACCTCTTCTTGAC CTGAACAATCAGTCTGTGGGAATTGAGGGAGGAGCACGGAAGGGGGTTTCCCAGAAGAACAATGACCTAACAAG TTGCTGCTTCTCAGATGCCAAGACTATGTATGAGGTTTTCCAAAGAGGACTCGCTGTGTCTGACAATGGGCCCT GCTTGGGATATAGAAAACCAAACCAGCCCTACAGATGGCTATCTTACAAACAGGTGTCTGATAGAGCAGAGTAC CTGGGTTCCTGTCTCTTGCATAAAGGTTATAAATCATCACCAGACCAGTTTGTCGGCATCTTTGCTCAGAATAG GCCAGAGTGGATCATCTCCGAATTGGCTTGTTACACGTACTCTATGGTAGCTGTACCTCTGTATGACACCTTGG GACCAGAAGCCATCGTACATATTGTCAACAAGGCTGATATCGCCATGGTGATCTGTGACACACCCCCAAAAGGCA TTGGTGCTGATAGGGAATGTAGAGAAAGGCTTCACCCCGAGCCTGAAGGTGATCATCCTTATGGACCCCTTTGA TGATGACCTGAAGCAAAGAGGGGAGAAGAGTGGAATTGAGATCTTATCCCTATATGATGCTGAGAACCTAGGCA AAGAGCACTTCAGAAAACCTGTGCCTCCTAGCCCAGAAGACCTGAGCGTCATCTGCTTCACCAGTGGGACCACA GGTGACCCCAAAGGAGCCATGATAACCCATCAAAATATTGTTTCAAATGCTGCTGCCTTTCTCAAATGTGTGGA ATGAAGACTTTGAAGCCCACATTGTTTCCCGCGGTGCCTCGACTCCTTAACAGGATCTACGATAAGGTACAAAA GTATCATCAGGCATGATAGTTTCTGGGACAAGCTCATCTTTGCAAAGATCCAGGACAGCCTGGGCGGAAGGGTT CGTGTAATTGTCACTGGAGCTGCCCCCATGTCCACTTCAGTCATGACATTCTTCCGGGCAGCAATGGGATGTCA GGTGTATGAAGCTTATGGTCAAACAGAATGCACAGGTGGCTGTACATTTACATTACCTGGGGACTGGACATCAG GTCACGTTGGGGTGCCCCTGGCTTGCAATTACGTGAAGCTGGAAGATGTGGCTGACATGAACTACTTTACAGTG AATAATGAAGGAGGTCTGCATCAAGGGTACAAACGTGTTCAAAGGATACCTGAAGGACCCTGAGAAGACACA GGAAGCCCTGGACAGTGATGGCTGGCTTCACACAGGAGACATTGGTCGCTGGCTCCCGAATGGAACTCTGAAGA TCATCGACCGTAAAAAGAACATTTTCAAGCTGGCCCAAGGAGAATACATTGCACCAGAGAAGATAGAAAATATC TACAACAGGAGTCAACCAGTGTTACAAATTTTTGTACACGGGGAGAGCTTACGGTCATCCTTAGTAGGAGTGGT GGTTCCTGACACAGATGTACTTCCCTCATTTGCAGCCAAGCTTGGGGTGAAGGGCTCCTTTGAGGAACTGTGCC GAACAGGTCAAAGCCATTTTTCTTCATCCAGAGCCATTTTCCATTGAAAATGGGCTCTTGACACCAACATTGAA AGCAAAGCGAGGAGAGCTTTCCAAATACTTTCGGACCCAAATTGACAGCCTGTATGAGCACATCCAGGAT<u>TAG</u>G ATAAGGTACTTAAGTACCTGCCGGCCCACTGTGCACTGCTTGTGAGAAAATGGATTAAAAACTATTCTTACATT TGTTTTGCCTTTCCTCCTATTTTTTTTAACCTGTTAAACTCTAAAGCCATAGCTTTTGTTTTATATTGAGACA TATAATGTGTAAACTTAGTTCCCAAATAAATCAATCCTGTCTTTCCCATCTTCGATGTTGCTAATATTAAGGCT AACATAACTTGCCAACAGTCTCTATGCTTATTTACATCTTCTACTGTTCAAACTAAGAGATTTTTAAATTCTGA AAAACTGCTTACAATTCATGTTTTCTAGCCACTCCACAAACCACTAAAATTTTAGTTTTTAGCCTATCACTCATG TCAATCATATCTATGAGACAAATGTCTCCGATGCTCTTCTGCGTAAATTAAATTGTGTGTACTGAAGGGAAAAGTT TGATCATACCAAACATTTCCTAAACTCTCTAGTTAGATATCTGACTTGGGAGTATTAAAAATTGGGTCTATGAC GTTTGCTGCTGAGCTGGAAGCTGTGGGGGAAGGAGTTGACAGGTGGGCCCAGTGAACTTTTCCAGTAAATGAAG ATTTTCTGTGAAGGAACCAACTGATCTCCCCCACCTTGGATTAGAGTTCCTGCTCTACCTTACCCACAGATAA CACATGTTGTTTCTACTTGTAAATGTAAAGTCTTTAAAATAAACTATTACAGATAAAAAA

FIGURE 52

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60775</pre>

<subunit 1 of 1, 739 aa, 1 stop

<MW: 82263, pI: 7.55, NX(S/T): 3

MDALKPPCLWRNHERGKKDRDSCGRKNSEPGSPHSLEALRDAAPSQGLNFLLLFTKMLFIFN
FLFSPLPTPALICILTFGAAIFLWLITRPQPVLPLLDLNNQSVGIEGGARKGVSQKNNDLTS
CCFSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGSCLLHKGYKSS
PDQFVGIFAQNRPEWIISELACYTYSMVAVPLYDTLGPEAIVHIVNKADIAMVICDTPQKAL
VLIGNVEKGFTPSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLGKEHFRKPVPPSPED
LSVICFTSGTTGDPKGAMITHQNIVSNAAAFLKCVEHAYEPTPDDVAISYLPLAHMFERIVQ
AVVYSCGARVGFFQGDIRLLADDMKTLKPTLFPAVPRLLNRIYDKVQNEAKTPLKKFLLKLA
VSSKFKELQKGIIRHDSFWDKLIFAKIQDSLGGRVRVIVTGAAPMSTSVMTFFRAAMGCQVY
EAYGQTECTGGCTFTLPGDWTSGHVGVPLACNYVKLEDVADMNYFTVNNEGEVCIKGTNVFK
GYLKDPEKTQEALDSDGWLHTGDIGRWLPNGTLKIIDRKKNIFKLAQGEYIAPEKIENIYNR
SQPVLQIFVHGESLRSSLVGVVVPDTDVLPSFAAKLGVKGSFEELCQNQVVREAILEDLQKI
GKESGLKTFEQVKAIFLHPEPFSIENGLLTPTLKAKRGELSKYFRTQIDSLYEHIQD

Important features:

Type II transmembrane domain:

amino acids 61-80

Putative AMP-binding domain signature.

amino acids 314-325

N-glycosylation site.

amino acids 102-105, 588-591 and 619-622

FIGURE 53

GGAGGCGGAGGCGGGGCCGAGCAGTGAGGGCCCTAGCGGGCCCGAGCGGG CCGGT<u>ATG</u>GACGACTGGAAGCCCAGCCCCTCATCAAGCCCTTTGGGGCTCGGAAGAAGCGG AGCTGGTACCTTGCAGGAGTATAAACTGACAAACCAGCGGGCCCTGCGGAGATTCTGTCA GACAGGGGCCGTGCTTTTCCTGCTGGTGACTGTCATTGTCAATATCAAGTTGATCCTGGACA CTCGGCGAGCCATCAGTGAAGCCAATGAAGACCCAGAGCCAGAGCAAGACTATGATGAGGCC CTAGGCCGCCTGGAGCCCCCACGGCGCAGAGGCAGTGGTCCCCGGCGGGTCCTGGACGTAGA GGTGTATTCAAGTCGCAGCAAAGTATATGTGGCAGTGGATGGCACCACGGTGCTGGAGGATG AGGCCCGGGAGCAGGCCCGGGGCATCCATGTCATTGTCCTCAACCAGGCCACGGGCCACGTG ATGGCAAAACGTGTTTTGACACGTACTCACCTCATGAGGATGAGGCCATGGTGCTATTCCT CAACATGGTAGCGCCCGGCCGAGTGCTCATCTGCACTGTCAAGGATGAGGGCTCCTTCCACC TCAAGGACACAGCCAAGGCTCTGCTGAGGAGCCTGGCCAGGCCAGGCTGGCCCTGGGC TGGAGGGACACATGGGCCTTCGTGGGACGAAAAGGAGGTCCTGTCTTCGGGGAGAAACATTC TAAGTCACCTGCCCTCTTCCTGGGGGGACCCAGTCCTGCTGAAGACAGATGTGCCATTGA GCTCAGCAGAAGAGGCAGAGTGCCACTGGGCAGACACAGAGCTGAACCGTCGCCGCCGGCGC TTCTGCAGCAAAGTTGAGGGCTATGGAAGTGTATGCAGCTGCAAGGACCCCACACCCATCGA GTTCAGCCCTGACCCACTCCCAGACAACAAGGTCCTCAATGTGCCTGTGGCTGTCATTGCAG GGAACCGACCCAATTACCTGTACAGGATGCTGCGCTCTCTGCTTTCAGCCCAGGGGGTGTCT CCTCAGATGATAACAGTTTTCATTGACGGCTACTATGAGGAACCCATGGATGTGGTGGCACT GTTTGGTCTGAGGGGCATCCAGCATACTCCCATCAGCATCAAGAATGCCCGCGTGTCTCAGC ACTACAAGGCCAGCCTCACTGCCACTTTCAACCTGTTTCCGGAGGCCAAGTTTGCTGTGTT ACTGGAGGAGGATGACAGCCTGTACTGCATCTCTGCCTGGAATGACCAGGGGTATGAACACA CGGCTGAGGACCCAGCACTACTGTACCGTGTGGAGACCATGCCTGGGCTGGGCTGGGTGCTC AGGAGGTCCTTGTACAAGGAGGAGCTTGAGCCCAAGTGGCCTACACCGGAAAAGCTCTGGGA TTGGGACATGTGGATGCCTGAACACGCCGGGGCCGAGAGTGCATCATCCCTGACG TTTCCCGATCCTACCACTTTGGCATCGTCGGCCTCAACATGAATGGCTACTTTCACGAGGCC TACTTCAAGAAGCACAAGTTCAACACGGTTCCAGGTGTCCAGCTCAGGAATGTGGACAGTCT GAAGAAAGAAGCTTATGAAGTGGAAGTTCACAGGCTGCTCAGTGAGGCTGAGGTTCTGGACC ACAGCAAGAACCCTTGTGAAGACTCTTTCCTGCCAGACACAGAGGGCCACACCTACGTGGCC TTTATTCGAATGAGAAAGATGATGACTTCACCACCTGGACCCAGCTTGCCAAGTGCCTCCA TATCTGGGACCTGGATGTGCGTGGCAACCATCGGGGCCTGTGGAGATTGTTTCGGAAGAAGA ACCACTTCCTGGTGGGGGGTCCCGGCTTCCCCCTACTCAGTGAAGAAGCCACCCTCAGTC TCCCTCCATCCTGTAGGATTTTGTAGATGCTGGTAGGGGCTGGGGCTACCTTGTTTTTAACA TGAGACTTAATTACTAACTCCAAGGGGAGGGTTCCCCTGCTCCAACACCCCGTTCCTGAGTT AAAAGTCTATTTACTTCCTTGTTGGAGAAGGGCAGGAGAGTACCTGGGAATCATTACG ATCCCTAGCAGCTCATCCTGCCCTTTGAATACCCTCACTTTCCAGGCCTGGCTCAGAATCTA ACCTATTTATTGACTGTCCTGAGGGCCTTGAAAACAGGCCGAACCTGGAGGGCCTGGATTTC TTTTTGGGCTGGAATGCTGCCCTGAGGGTGGGGCTGTTTACTCAGGAAACTGCTGTGCC GACACTGGACCAGGCCTCCTCAGCCTTCTCTTTGTCCAGATTTCCAAAGCTGGATAAGTT

FIGURE 54

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA61185</pre>

><subunit 1 of 1, 660 aa, 1 stop

><MW: 75220, pI: 6.76, NX(S/T): 0

MDDWKPSPLIKPFGARKKRSWYLTWKYKLTNQRALRRFCQTGAVLFLLVTVIVNIKLILDTR
RAISEANEDPEPEQDYDEALGRLEPPRRRGSGPRRVLDVEVYSSRSKVYVAVDGTTVLEDEA
REQGRGIHVIVLNQATGHVMAKRVFDTYSPHEDEAMVLFLNMVAPGRVLICTVKDEGSFHLK
DTAKALLRSLGSQAGPALGWRDTWAFVGRKGGPVFGEKHSKSPALSSWGDPVLLKTDVPLSS
AEEAECHWADTELNRRRRFCSKVEGYGSVCSCKDPTPIEFSPDPLPDNKVLNVPVAVIAGN
RPNYLYRMLRSLLSAQGVSPQMITVFIDGYYEEPMDVVALFGLRGIQHTPISIKNARVSQHY
KASLTATFNLFPEAKFAVVLEEDLDIAVDFFSFLSQSIHLLEEDDSLYCISAWNDQGYEHTA
EDPALLYRVETMPGLGWVLRRSLYKEELEPKWPTPEKLWDWDMWMRMPEQRRGRECIIPDVS
RSYHFGIVGLNMNGYFHEAYFKKHKFNTVPGVQLRNVDSLKKEAYEVEVHRLLSEAEVLDHS
KNPCEDSFLPDTEGHTYVAFIRMEKDDDFTTWTQLAKCLHIWDLDVRGNHRGLWRLFRKKNH
FLVVGVPASPYSVKKPPSVTPIFLEPPPKEEGAPGAPEOT

Important features of the protein:
Transmembrane domain:

amino acids 38-55

· ·Homologous region to Mouse GNT1 amino acids 229-660

FIGURE 55

 $\verb|CCTGTTTAAAGAACCTAAGCACCATTTAAAGCCACTGGAAATTTGTTGTCTAGTGGTTGTGGGTGAA| \\$ ${\tt TAAAGGAGGCAGA}{\tt ATG}{\tt GATGATTTCATCTCCATTAGCCTGCTGTCTCTGGCTATGTTGGTGGGATG}$ TTACGTGGCCGGAATCATTCCCTTGGCTGTTAATTTCTCAGAGGAACGACTGAAGCTGGTGACTGTT TTGGGTGCTGGCCTTCTCTGTGGAACTGCTCTGGCAGTCATCGTGCCTGAAGGAGTACATGCCCTTT ATGAAGATATTCTTGAGGGAAAACACCACCAAGCAAGTGAAACACATAATGTGATTGCATCAGACAA ATTGGTGTTTCCCTCGTTCTGGGCTTCGTTTTCATGTTGCTGGTGGACCAGATTGGTAACTCCCATG TGCATTCTACTGACGATCCAGAAGCAGCAAGGTCTAGCAATTCCAAAATCACCACCACGCTGGGTCT GGTTGTCCATGCTGCAGCTGATGGTGTTGCTTTGGGAGCAGCAGCATCTACTTCACAGACCAGTGTC CAGTTAATTGTGTTTGTGGCAATCATGCTACATAAGGCACCAGCTGCTTTTGGACTGGTTTCCTTCT TGATGCATGCTGGCTTAGAGCGGAATCGAATCAGAAAGCACTTGCTGGTCTTTGCATTGGCAGCACC AGTTATGTCCATGGTGACATACTTAGGACTGAGTAAGAGCAGTAAAGAAGCCCTTTCAGAGGTGAAC GCCACGGGAGTGGCCATGCTTTTCTCTGCCGGGACATTTCTTTATGTTGCCACAGTACATGTCCTCC GGAAGTGGCAGCCCTGGTTCTGGGTTGCCTCATCCCTCTCATCCTGTCAGTAGGACACCAGCAT<u>TAA</u> ATGTTCAAGGTCCAGCCTTGGTCCAGGGCCGTTTGCCATCCAGTGAGAACAGCCGGCACGTGACAGC TACTCACTTCCTCAGTCTCTTGTCTCACCTTGCGCATCTCTACATGTATTCCTAGAGTCCAGAGGGG AGGTGAGGTTAAAACCTGAGTAATGGAAAAGCTTTTAGAGTAGAAACACATTTACGTTGCAGTTAGC TATAGACATCCCATTGTGTTATCTTTTAAAAGGCCCTTGACATTTTGCGTTTTAATATTTCTCTTAA CCCTATTCTCAGGGAAGATGGAATTTAGTTTTAAGGAAAAGAGGAGAACTTCATACTCACAATGAAA GCTACTTTATCCATTGATTTTTAACATGGTTCCCACCATGTAAGACTGGTGCTTTAGCATCTATGCC ACATGCGTTGATGGAAGGTCATAGCACCCACTCACTTAGATGCTAAAGGTGATTCTAGTTAATCTGG GATTAGGGTCAGGAAAATGATAGCAAGACACATTGAAAGCTCTCTTTATACTCAAAAGAGATATCCA TTGAAAAGGGATGTCTAGAGGGATTTAAACAGCTCCTTTGGCACGTGCCTCTCTGAATCCAGCCTGC CATTCCATCAAATGGAGCAGGAGGGGGGGGGGGGGTTCTAAAGAGGTGACTGGTATTTTGTAGCAT TCCTTGTCAAGTTCTCCTTTGCAGAATACCTGTCTCCACATTCCTAGAGAGGAGCCAAGTTCTAGTA GTTTCAGTTCTAGGCTTTCCTTCAAGAACAGTCAGATCACAAAGTGTCTTTGGAAATTAAGGGATAT TAAATTTTAAGTGATTTTTGGATGGTTATTGATATCTTTGTAGTAGCTTTTTTTAAAAGACTACCAA . . CCTCTAGGGACCTAAATACTAGGTCAGCTTTGGCGACACTGTGTCTTCTCACATAACCACCTGTAGC AAGATGGATCATAAATGAGAAGTGTTTGCCTATTGATTTAAAGCTTATTGGAATCATGTCTCTTGTC TCTTCGTCTTTTCTTTGCTTTTCTTAACTTTTCCCTCTAGCCTCTCCTCGCCACAATTTGCTGCT TACTGCTGGTGTTAATATTTGTGTGGGATGAATTCTTATCAGGACAACCACTTCTCGAACTGTAATA ATGAAGATAATATCTTTATTCTTTATCCCCTTCAAAGAAATTACCTTTGTGTCAAATGCCGCTT TGTTGAGCCCTTAAAATACCACCTCCTCATGTGTAAATTGACACAATCACTAATCTGGTAATTTAAA TAAACCCTGTCTTGTCAAATAAGTGTATAATATTGTATTATTAATTTTATTTTACTTTCTATACCAT TTCAAAACACATTACACTAAGGGGGAACCAAGACTAGTTTCTTCAGGGCAGTGGACGTAGTATGTTTG GGATCAGCAGCTGTGGAAATAAAGCTTGTGAGCCCTCTGCTGGCCACAGTGAGGAAAGTAGCACAAA TAGGATACAGTTGTATGTAGTCATTGGCAACAATTGCATACAATTTTACTACCAAGAGAAGGTATAG TATGGAAAGTCCAAATGACTTCCTTGATTGGATGTTAACAGCTGACTGGTGAGACTTGAGGTTTC CAGATTGTAGTGTCAAAAAAAA

FIGURE 56

MDDFISISLLSLAMLVGCYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHAL
YEDILEGKHHQASETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVDQ
IGNSHVHSTDDPEAARSSNSKITTTLGLVVHAAADGVALGAAASTSQTSVQLIVFVAIMLHK
APAAFGLVSFLMHAGLERNRIRKHLLVFALAAPVMSMVTYLGLSKSSKEALSEVNATGVAML
FSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLILSVGHQH

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 37-56, 106-122, 211-230, 240-260, 288-304

FIGURE 57

GCTCGAGGCCGCGGCGGGGGAGAGCGACCCGGGCGGCCTCGTAGCGGGGCCCCGGATCCC CGAGTGGCGGCCGGAGCCTCGAAAAGAGATTCTCAGCGCTGATTTTGAGATGATGGCCTTGG GAAACGGGCGTCGCAGCATGAAGTCGCCGCCCTCGTGCTGGCCGCCCTGGTGGCCTGCATC ATCGTCTTGGGCTTCAACTACTGGATTGCGAGCTCCCGGAGCGTGGACCTCCAGACACGGAT AGAACGAGTTCCAGGGAGAGCTGGAGAAGCAGCGGGAGCAGCTTGACAAAATCCAGTCCAGC CACAACTTCCAGCTGGAGAGCGTCAACAAGCTGTACCAGGACGAAAAGGCGGTTTTGGTGAA TAACATCACCACAGGTGAGAGGCTCATCCGAGTGCTGCAAGACCAGTTAAAGACCCTGCAGA GGAATTACGGCAGGCTGCAGCAGGATGTCCTCCAGTTTCAGAAGAACCAGACCAACCTGGAG AGGAAGTTCTCCTACGACCTGAGCCAGTGCATCAATCAGATGAAGGAGGTGAAGGAACAGTG TGAGGAGCGAATAGAAGAGGTCACCAAAAAGGGGAATGAAGCTGTAGCTTCCAGAGACCTGA GTGAAAACAACGACCAGAGACAGCCGCCCCAAGCCCTCAGTGAGCCTCAGCCCAGGCTGCAG GCAGCAGGCCTGCCACACACAGAGGTGCCACAAGGGAAGGGAAACGTGCTTGGTAACAGCAA GTCCCAGACACCAGCCCCCAGTTCCGAAGTGGTTTTGGATTCAAAGAGACAAGTTGAGAAAG AGGAAACCAATGAGATCCAGGTGGTGAATGAGGAGCCTCAGAGGGACAGGCTGCCGCAGGAG CCAGGCCGGGAGCAGGTGGTAGACAGACCTGTAGGTGGAAGAGGCTTCGGGGGAGCCGG AGAACTGGGCCAGACCCCACAGGTGCAGGCTGCCCTGTCAGTGAGCCAGGAAAATCCAGAGA TGGAGGGCCCTGAGCGAGACCAGCTTGTCATCCCCGACGGACAGGAGGAGGAGCAGGAAGCT GCCGGGGAAGGGAGAACCAGCAGAAACTGAGAGGAGAAGATGACTACAACATGGATGAAAA . TGAAGCAGAATCTGAGACAGACAAGCAGCCCTGGCAGGGAATGACAGAAACATAGATG TTTTTAATGTTGAAGATCAGAAAAGAGACACCATAAATTTACTTGATCAGCGTGAAAAGCGG AATCATACACTCTGAATTGAACTGGAATCACATATTTCACAACAGGGCCGAAGAGATGACTA TGA

FIGURE 58

MMGLGNGRRSMKSPPLVLAALVACIIVLGFNYWIASSRSVDLQTRIMELEGRVRRAAAERGA
VELKKNEFQGELEKQREQLDKIQSSHNFQLESVNKLYQDEKAVLVNNITTGERLIRVLQDQL
KTLQRNYGRLQQDVLQFQKNQTNLERKFSYDLSQCINQMKEVKEQCEERIEEVTKKGNEAVA
SRDLSENNDQRQQLQALSEPQPRLQAAGLPHTEVPQGKGNVLGNSKSQTPAPSSEVVLDSKR
QVEKEETNEIQVVNEEPQRDRLPQEPGREQVVEDRPVGGRGFGGAGELGQTPQVQAALSVSQ
ENPEMEGPERDQLVIPDGQEEEQEAAGEGRNQQKLRGEDDYNMDENEAESETDKQAALAGND
RNIDVFNVEDQKRDTINLLDQREKRNHTL

Signal peptide:

amino acids 1-29

FIGURE 59

 ${\tt GGATGCAGAAAGCCTCAGTGTTGCTCTTCCTGGCCTGGGTCTGCTTCCTCTTCTACGCTGGCATTGCCCTCTTC}$ CCTGCCATGGGGGAGCCAAGGGAAACCTGGGGCCTGCTGGATGGCTTCCCGATTTTCGCGGGTTGTTTGGTGC TGATAGATGCTCTGCGATTTGACTTCGCCCAGCCCCAGCATTCACACGTGCCTAGAGAGCCTCCTGTCTCCCTA $\tt CCCTTCCTGGGCAAACTAAGCTCCTTGCAGAGGATCCTGGAGATTCAGCCCCACCATGCCCGGCTCTACCGATC$ ATGCTGGTAGTAACTTCGCCAGCCACGCCATAGTGGAAGACAATCTCATTAAGCAGCTCACCAGTGCAGGAAGG CGTGTAGTCTTCATGGGAGATGATACCTGGAAAGACCTTTTCCCTGGTGCTTTCTCCAAAGCTTTCTTCTTCCC ATCCTTCAATGTCAGAGACCTAGACACAGTGGACAATGGCATCCTGGAACACCTCTACCCCACCATGGACAGTG GTGAATGGGACGTGCTGATTGCTCACTTCCTGGGTGTGGACCACTGTGGCCACAAGCATGGCCCTCACCACCCCT GAAATGGCCAAGAAACTTAGCCAGATGGACCAGGTGATCCAGGGACTTGTGGAGCGTCTGGAGAATGACACACT GCTGGTAGTGGCTGGGGACCATGGGATGACCACAAATGGAGACCATGGAGGGGACAGTGAGCTGGAGGTCTCAG CTGCTCTCTTTCTGTATAGCCCCACAGCAGTCTTCCCCAGCACCCCACCAGAGGAGCCAGAGGTGATTCCTCAA GTTAGCCTTGTGCCCACGCTGGCCCTGCTGGGCCTGCCCATCCCATTTGGGAATATCGGGGAAGTGATGGC TGAGCTATTCTCAGGGGGTGAGGACTCCCAGCCCCACTCCTCTGCTTTAGCCCAAGCCTCAGCTCTCCATCTCA ATGCTCAGCAGGTGTCCCGATTTCTTCATACCTACTCAGCTGCTACTCAGGACCTTCAAGCTAAGGAGCTTCAT CAGCTGCAGAACCTCTTCTCCAAGGCCTCTGCTGACTACCAGTGGCTTCTCCAGAGCCCCAAGGGGGCTGAGGC GACACTGCCGACTGTGATTGCTGAGCTGCAGCAGTTCCTGCGGGGAGCTCGGGCCATGTGCATCGAGTCTTGGG TCTCAGTGGGCAATATCCCCAGGCTTTCCATTCTGCCCTCTACTCCTGACACCTGTGGCCTGGGGCCTGGTTGG GGCCATAGCGTATGCTGGACTCCTGGGAACTATTGAGCTGAAGCTAGATCTAGTGCTTCTAGGGGCTGTGGCTG TTTCCCATCCCTGGGCCCGTCCTGTTACTCCTGCTGTTTCGCTTGGCTGTTTTCTTCTCTGATAGTTTTGTTGT GCCAGCTGCTTCCACCTAAGCTACTCACAATGCCCCGCCTTGGCACTTCAGCCACAAACCCCCCCACGGCAC AATGGTGCATATGCCCTGAGGCTTGGAATTGGGTTGCTTTTATGTACAAGGCTAGCTGGGCTTTTTCATCGTTG AGAATTTATGGTATGGAGCTTGTGTGGCGGCGCTGGTGGCCCTGTTAGCTGCCGTTGCGCTTCTGGCCTCGCCGC TATGGTAATCTCAAGAGCCCCGAGCCACCCATGCTCTTTGTGCGCTGGGGACTGCCCCTAATGGCATTGGGTAC TGCTGCCTACTGGGCATTGGCGTCGGGGGCAGATGAGGCTCCCCCCCGTCTCCGGGTCCTGGTCTCTGGGGCAT CCATGGTGCTGCCTCGGGCTGTAGCAGGGCTGGCTGCTTCAGGGCTCGCGCTGCTGCTCTGGAAGCCTGTGACA GTGCTGGTGAAGGCTGGGGCAGGCGCTCCAAGGACCAGGACTGTCCTCACTCCCTTCTCAGGCCCCCCCACTTC GGACCAAATCTCAGGGTCCCCTGACTGTGGCTGCTTATCAGTTGGGGAGTGTCTACTCAGCTGCTATGGTCACA GCCCTCACCCTGTTGGCCTTCCCACTTCTGCTGTTGCATGCGGAGCGCATCAGCCTTGTGTTCCTGCTTCTGTT TCTGCAGAGCTTCCTTCTCCTACATCTGCTTGCTGCTGGGATACCCGTCACCACCCCTGGTCCTTTTACTGTGC CATGGCAGGCAGTCTCGGCCTCGTGGCCACACAGACCTTCTACTCCACAGGCCACCAGCCTGTCTTT $\tt CCAGCCATCCATTGGCATGCAGCCTTCGTGGGATTCCCAGAGGGTCATGGCTCCTGTACTTGGCTGCCTGTTT$ GCTAGTGGGAGCCAACACCTTTGCCTCCCACCTCTTTTGCAGTAGGTTGCCCACTGCTCCTGCTCTGGCCTT TCCTGTGTGAGAGTCAAGGGCTGCGGAAGAGACAGCCCCCCAGGGAATGAAGCTGATGCCAGAGTCAGACCC GAGGAGGAAGAGGAGCCACTGATGGAGATGCGGCTCCGGGATGCGCCTCAGCACTTCTATGCAGCACTGCTGCA GCTGGGCCTCAAGTACCTCTTTATCCTTGGTATTCAGATTCTGGCCTGTGCCTTGGCAGCCTCCATCCTTCGCA GGCATCTCATGGTCTGGAAAGTGTTTGCCCCTAAGTTCATATTTGAGGCTGTGGGCTTCATTGTGAGCAGCGTG GGACTTCTCCTGGGCATAGCTTTGGTGATGAGAGTGGATGGTGCTGTGAGCTCCTGGTTCAGGCAGCTATTTCT GGCCCAGCAGAGGTAGCCTAGTCTGTGATTACTGGCACTTGGCTACAGAGAGTGCTGGAGAACAGTGTAGCCTG GCCTGTACAGGTACTGGATGATCTGCAAGACAGGCTCAGCCATACTCTTACTATCATGCAGCCAGGGGCCGCTG ACATCTAGGACTTCATTATTCTATAATTCAGGACCACAGTGGAGTATGATCCCTAACTCCTGATTTGGATGCAT CTGAGGGACAAGGGGGGGGTCTCCGAAGTGGAATAAAATAGGCCGGGCGTGGTGACTTGCACCTATAATCCCA GCACTTTGGGAGGCAGAGGTGGGAGGATTGCTTGGTCCCAGGAGTTCAAGACCAGCCTGTGGAACATAACAAGA CCCCGTCTCTACTATTTAAAAAAAAGTGTAATAAAATGATAATAT

FIGURE 60

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809</pre>

<subunit 1 of 1, 1089 aa, 1 stop

<MW: 118699, pI: 8.49, NX(S/T): 2

MQKASVLLFLAWVCFLFYAGIALFTSGFLLTRLELTNHSSCQEPPGPGSLPWGSQGKPGACW MASRFSRVVLVLIDALRFDFAQPQHSHVPREPPVSLPFLGKLSSLQRILEIQPHHARLYRSQ VDPPTTTMQRLKALTTGSLPTFIDAGSNFASHAIVEDNLIKQLTSAGRRVVFMGDDTWKDLF PGAFSKAFFFPSFNVRDLDTVDNGILEHLYPTMDSGEWDVLIAHFLGVDHCGHKHGPHHPEM AKKLSQMDQVIQGLVERLENDTLLVVAGDHGMTTNGDHGGDSELEVSAALFLYSPTAVFPST PPEEPEVIPQVSLVPTLALLLGLPIPFGNIGEVMAELFSGGEDSQPHSSALAQASALHLNAQ QVSRFLHTYSAATQDLQAKELHQLQNLFSKASADYQWLLQSPKGAEATLPTVIAELOOFLRG ARAMCIESWARFSLVRMAGGTALLAASCFICLLASQWAISPGFPFCPLLLTPVAWGLVGAIA YAGLLGTIELKLDLVLLGAVAAVSSFLPFLWKAWAGWGSKRPLATLFPIPGPVLLLLLFRLA VFFSDSFVVAEARATPFLLGSFILLLVVQLHWEGQLLPPKLLTMPRLGTSATTNPPRHNGAY ALRLGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGGRAKNLWYGACVAALVALLA AVRLWLRRYGNLKSPEPPMLFVRWGLPLMALGTAAYWALASGADEAPPRLRVLVSGASMVLP RAVAGLAASGLALLLWKPVTVLVKAGAGAPRTRTVLTPFSGPPTSQADLDYVVPQIYRHMQE EFRGRLERTKSQGPLTVAAYQLGSVYSAAMVTALTLLAFPLLLLHAERISLVFLLLFLOSFL LLHLLAAGIPVTTPGPFTVPWQAVSAWALMATQTFYSTGHQPVFPAIHWHAAFVGFPEGHGS CTWLPALLVGANTFASHLLFAVGCPLLLLWPFLCESQGLRKRQQPPGNEADARVRPEEEEEP LMEMRLRDAPQHFYAALLQLGLKYLFILGIQILACALAASILRRHLMVWKVFAPKFIFEAVG FIVSSVGLLLGIALVMRVDGAVSSWFRQLFLAQQR

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850, 1016-1034, 1052-1070

Leucine zipper pattern.

amino acids 843-864

N-glycosylation sites.

amino acids 37-40, 268-271

FIGURE 61

TGCCGCTGCCGCCGCTGCTGTTGCTCCTGGCGCGCCCTTGGGGACGGGCAGTTCCCTGT GTCTCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGAATGT TCATCACAAATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGT CCTGACAGCTCCAGAGAGAGAGAGAGAATCCAGAAGACCTTCCTGTTTCCATGCAACAA TATACTCCAATCTGAAGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCC CAGTGTGTGACCAACCACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGT ACACGTGGAGTCCTTCGTCCCAGGGCCCCCTCGCCGTGCTCAGCCTTCTGAGAAGCAGTGTG CCAGGACTTTGAAAGATCAATCATCAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTG CCCATATCTATTACCGTGTTTCTTTTTCTGTGATGGGCTATTCCATCTACCGATATATCCA CGTTGGCAAAGAGAAACACCCAGCAAATTTGATTTTGATTTATGGAAATGAATTTGACAAAA GATTCTTTGTGCCTGCAAAAAATCGTGATTAACTTTATCACCCTCAATATCTCGGATGAT TCTAAAATTTCTCATCAGGATATGAGTTTACTGGGAAAAAGCAGTGATGTATCCAGCCTTAA TGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGAGGAGAGAGGGGGGAAACATTTAG GGTATGCTTCGCATTTGATGGAAATTTTTTGTGACTCTGAAGAAAACACGGAAGGTACTTCT CTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAAACAGTCATTGAATATGA ATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTTGCAGG CAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCGCAGGAGCA CACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACGACCCTGGTCGACTGGGATCCCC AAACTGGCAGGCTGTGTATTCCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCGAG TCCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGT TATATGTGCAGATGGAAAACTGATGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAAC AAGTGAGTCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGT TTGTCAGTGTCTGAGAATTACTTATTTCTTTTTCTCTATTCTCATAGCACGTGTGTGATTG GTTCATGCATGTAGGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGT TGTTCTATGCAGAGAAAGCAGTCAATAAATGTTTGCCAGACTGGGTGCAGAATTTATTCAGG TGGGTGT

FIGURE 62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62815</pre>

<subunit 1 of 1, 442 aa, 1 stop

<MW: 49932, pI: 4.55, NX(S/T): 5

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQ
QIYSNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQ
CARTLKDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFD
KRFFVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKH
LGYASHLMEIFCDSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSL
QEEVSTQGTLLESQAALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWD
PQTGRLCIPSLSSFDQDSEGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEW
GLYVOMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 63

CGGACGCGTGGCCGACGCGTGGCCGGACGCTTCTCTGCGGGGAGACGCCAGCCTGCG TCTGCCATGGGGCTCGGGTTGAGGGGCTGGGGACGTCCTCTGCTGACTGTGGCCACCGCCCT GATGCTGCCCGTGAAGCCCCCCGCAGGCTCCTGGGGGGCCCAGATCATCGGGGGCCACGAGG TGACCCCCCACTCCAGGCCCTACATGGCATCCGTGCGCTTCGGGGGCCAACATCACTGCGGA GGCTTCCTGCTGCGAGCCCGCTGGGTGGTCTCGGCCGCCCACTGCTTCAGCCACAGAGACCT TGTTTGGCATCGATGCTCTCACCACGCACCCCGACTACCACCCCATGACCCACGCCAACGAC ATCTGCCTGCTGCGGCTGAACGGCTCTGCTGTCCTGGGCCCTGCAGTGGGGCTGCTGAGGCT TCGTGTCTGACTTTGAGGAGCTGCCGCCTGGACTGATGGAGGCCAAGGTCCGAGTGCTGGAC CCGGACGTCTGCAACAGCTCCTGGAAGGGCCACCTGACACTTACCATGCTCTGCACCCGCAG TGGGGACAGCCACAGACGGGGCTTCTGCTCGGCCGACTCCGGAGGGCCCCTGGTGTGCAGGA ACCGGGCTCACGGCCTCGTTTCCTTCTCGGGCCTCTGGTGCGGCGACCCCAAGACCCCCGAC GTGTACACGCAGGTGTCCGCCTTTGTGGCCTGGATCTGGGACGTGGTTCGGCGGAGCAGTCC CCAGCCCGGCCCCTGCCTGGGACCACCAGGCCCCCAGGAGAAGCCGCCTGAGCCACAACCT TGCGGCATGCAAATGAGATGGCCGCTCCAGGCCTGGAATGTTCCGTGGCTGGGCCCCACGGG AAGCCTGATGTTCAGGGTTGGGGTGGGACGGCAGCGGTGGGGCACACCCATTCCACATGCA

FIGURE 64

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845</pre>

><subunit 1 of 1, 283 aa, 1 stop

><MW: 30350, pI: 9.66, NX(S/T): 2

MGLGLRGWGRPLLTVATALMLPVKPPAGSWGAQIIGGHEVTPHSRPYMASVRFGGQHHCGGF LLRARWVVSAAHCFSHRDLRTGLVVLGAHVLSTAEPTQQVFGIDALTTHPDYHPMTHANDIC LLRLNGSAVLGPAVGLLRLPGRRARPPTAGTRCRVAGWGFVSDFEELPPGLMEAKVRVLDPD VCNSSWKGHLTLTMLCTRSGDSHRRGFCSADSGGPLVCRNRAHGLVSFSGLWCGDPKTPDVY TOVSAFVAWIWDVVRRSSPOPGPLPGTTRPPGEAA

Signal peptide:

amino acids 1-30

FIGURE 65

GAGCTACCCAGGCGGCTGGTGTGCAGCAAGCTCCGCGCCGACTCCGGACGCCTGACGCCTGA CGCCTGTCCCCGGCCCGGCATGAGCCGCTACCTGCTGCCGCTGTCGGCGCTGGGCACGGTAG CAGGCGCCGCGTGCTGCTCAAGGACTATGTCACCGGTGGGGCTTGCCCCAGCAAGGCCACC ATCCCTGGGAAGACGGTCATCGTGACGGGCGCCCAACACAGGCATCGGGAAGCAGACCGCCTT GGAACTGGCCAGGAGGGGGGCAACATCATCCTGGCCTGCCGAGACATGGAGAAGTGTGAGG CGGCAGCAAAGGACATCCGCGGGGAGACCCTCAATCACCATGTCAACGCCCGGCACCTGGAC TTGGCTTCCCTCAAGTCTATCCGAGAGTTTGCAGCAAAGATCATTGAAGAGGAGGAGCGAGT GGACATTCTAATCAACAACGCGGGTGTGATGCGGTGCCCCCACTGGACCACCGAGGACGGCT TCGAGATGCAGTTTGGCGTTAACCACCTGGGTCACTTTCTCTTGACAAACTTGCTGCTGGAC AAGCTGAAAGCCTCAGCCCCTTCGCGGATCATCAACCTCTCGTCCCTGGCCCATGTTGCTGG GCACATAGACTTTGACGACTTGAACTGGCAGACGAGGAAGTATAACACCAAAGCCGCCTACT GCCAGAGCAAGCTCGCCATCGTCCTCTTCACCAAGGAGCTGAGCCGGCGGCTGCAAGGCTCT GGTGTGACTGTCAACGCCCTGCACCCCGGCGTGGCCAGGACAGAGCTGGGCAGACACACGGG CATCCATGGCTCCACCTTCTCCAGCACCACACTCGGGCCCATCTTCTGGCTGCTGGTCAAGA GCCCGAGCTGGCCGCCCAGCCCAGCACATACCTGGCCGTGGCGGAGGAACTGGCGGATGTT TCCGGAAAGTACTTCGATGGACTCAAACAGAAGGCCCCGGCCCCCGAGGCTGAGGATGAGGA GGTGGCCCGGAGGCTTTGGGCTGAAAGTGCCCGCCTGGTGGGCTTAGAGGCTCCCTCTGTGA $\tt GGGAGCAGCCCTCCCCAGA\underline{TAA}CCTCTGGAGCAGATTTGAAAGCCAGGATGGCGCCTCCAG$ ACCGAGGACAGCTGTCCGCCATGCCCGCAGCTTCCTGGCACTACCTGAGCCGGGAGACCCAG GACTGGCGGCCGCATGCCCGCAGTAGGTTCTAGGGGGCGGTGCTGGCCGCAGTGGACTGGC AGGGGCCATCTGATGCTTCCCCTGGGAATCTAAACTGGGAATGGCCGAGGAGGAAGGGGCTC TGTGCACTTGCAGGCCACGTCAGGAGAGCCAGCGGTGCCTGTCGGGGAGGGTTCCAAGGTGC TCCGTGAAGAGCATGGCCAAGTTGTCTGACACTTGGTGGATTCTTGGGTCCCTGTGGGACCT TGTGCATGCATGGTCCTCTCTGAGCCTTGGTTTCTTCAGCAGTGAGATGCTCAGAATAACTG CTGTCTCCCATGATGGTGTGGTACAGCGAGCTGTTGTCTGGCTATGGCATGGCTGTGCCGGG GGTGTTTGCTGAGGGCTTCCTGTGCCAGAGCCCAGCCAGAGAGCAGGTGCAGGTGTCATCCC GAGTTCAGGCTCTGCACGGCATGGAGTGGGAACCCCACCAGCTGCTGCTACAGGACCTGGGA TTGCCTGGGACTCCCACCTTCCTATCAATTCTCATGGTAGTCCAAACTGCAGACTCTCAAAC TTGCTCATTT

FIGURE 66

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64842</pre>

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35932, pI: 8.45, NX(S/T): 1

MSRYLLPLSALGTVAGAAVLLKDYVTGGACPSKATIPGKTVIVTGANTGIGKQTALELARRG GNIILACRDMEKCEAAAKDIRGETLNHHVNARHLDLASLKSIREFAAKIIEEEERVDILINN AGVMRCPHWTTEDGFEMQFGVNHLGHFLLTNLLLDKLKASAPSRIINLSSLAHVAGHIDFDD LNWQTRKYNTKAAYCQSKLAIVLFTKELSRRLQGSGVTVNALHPGVARTELGRHTGIHGSTF SSTTLGPIFWLLVKSPELAAQPSTYLAVAEELADVSGKYFDGLKQKAPAPEAEDEEVARRLW AESARLVGLEAPSVREQPLPR

Signal peptide:

amino acids 1-17

FIGURE 67

 ${\tt GAAGTTCGCGAGCGCTGGC} \underline{{\tt ATG}} {\tt TGGTCCTGGGGGCGCGCTGCTGCTGGCGGTGCTG}$ GCGCTCGGGACAGGAGACCCAGAAAGGGCTGCGGCTCGGGGCGACACGTTCTCGGCGCTGAC CAGCGTGGCGCGCCCTGGCGCCCGAGCGCCGGCTGCTGGGGCTGCTGAGGCGGTACCTGC GAGGATTCAACAACCCCTGTGGCTAACCCTCTGCTTGCATTTACTCTCATCAAACGCCTGCA GTCTGACTGGAGGAATGTGGTACATAGTCTGGAGGCCAGTGAGAACATCCGAGCTCTGAAGG ATGGCTATGAGAAGGTGGAGCAAGACCTTCCAGCCTTTGAGGACCTTGAGGGAGCAGCAAGG GCCCTGATGCGGCTGCAGGACGTGTACATGCTCAATGTGAAAGGCCTGGCCCGAGGTGTCTT TCAGAGAGTCACTGGCTCTGCCATCACTGACCTGTACAGCCCCAAACGGCTCTTTTCTCTCA CAGGGGATGACTGCTTCCAAGTTGGCAAGGTGGCCTATGACATGGGGGATTATTACCATGCC ATTCCATGGCTGGAGGAGGCTGTCAGTCTCTTCCGAGGATCTTACGGAGAGTGGAAGACAGA GGATGAGCAAGTCTAGAAGATGCCTTGGATCACTTGGCCTTTGCTTATTTCCGGGCAGGAA ATGTTTCGTGTGCCCTCAGCCTCTCTCGGGAGTTTCTTCTCTACAGCCCAGATAATAAGAGG ATGGCCAGGAATGTCTTGAAATATGAAAGGCTCTTGGCAGAGAGCCCCAACCACGTGGTAGC TGAGGCTGTCATCCAGAGGCCCAATATACCCCACCTGCAGACCAGAGACACCTACGAGGGGC TATGTCAGACCCTGGGTTCCCAGCCCACTCTCTACCAGATCCCTAGCCTCTACTGTTCCTAT GAGACCAATTCCAACGCCTACCTGCTGCTCCAGCCCATCCGGAAGGAGGTCATCCACCTGGA GCCCTACATTGCTCTCACCATGACTTCGTCAGTGACTCAGAGGCTCAGAAAATTAGAGAAC TTGCAGAACCATGGCTACAGAGGTCAGTGGTGGCATCAGGGGAGAAGCAGTTACAAGTGGAG TACCGCATCAGCAAAAGTGCCTGGCTGAAGGACACTGTTGACCCAAAACTGGTGACCCTCAA CCACCGCATTGCTGCCCTCACAGGCCTTGATGTCCGGCCTCCCTATGCAGAGTATCTGCAGG TGGTGAACTATGGCATCGGAGGACACTATGAGCCTCACTTTGACCATGCTACGTCACCAAGC GGTGGAAGCTGGAGGAGCCACAGCCTTCATCTATGCCAACCTCAGCGTGCCTGTGGTTAGGA ATGCAGCACTGTTTTGGTGGAACCTGCACAGGAGTGGTGAAGGGGACAGTGACACACTTCAT GCTGGCTGTCCTGTCGGGGGGGAGATAAGTGGGTGGCCAACAAGTGGATACATGAGTATGG ACAGGAATTCCGCAGACCCTGCAGCTCCAGCCCTGAAGACTGAACTGTTGGCAGAGAGAAGC TGGTGGAGTCCTGTGGCTTTCCAGAGAAGCCAGGAGCCAAAAGCTGGGGTAGGAGAGAAAA AGCAGAGCAGCCTCCTGGAAGAAGGCCTTGTCAGCTTTGTCTGTGCCTCGCAAATCAGAGGC AAGGGAGAGGTTGTTACCAGGGGACACTGAGAATGTACATTTGATCTGCCCCAGCCACGGAA AGTTCAGATACTCTCTGTTGGGAACAGGACATCTCAACAGTCTCAGGTTCGATCAGTGGGTC TTTTGGCACTTTGAACCTTGACCACAGGGACCAAGAAGTGGCAATGAGGACACCTGCAGGAG GGGCTAGCCTGACTCCCAGAACTTTAAGACTTTCTCCCCACTGCCTTCTGCTGCAGCCCAAG CAGGGAGTGTCCCCCTCCCAGAAGCATATCCCAGATGAGTGGTACATTATATAAGGATTTTT TTTAAGTTGAAAACAACTTTCTTTTCTTTTTGTATGATGGTTTTTTAACACAGTCATTAAAA ATGTTTATAAATCAAAA

FIGURE 68

MGPGARLAALLAVLALGTGDPERAAARGDTFSALTSVARALAPERRLLGLLRRYLRGEEARL RDLTRFYDKVLSLHEDSTTPVANPLLAFTLIKRLQSDWRNVVHSLEASENIRALKDGYEKVE QDLPAFEDLEGAARALMRLQDVYMLNVKGLARGVFQRVTGSAITDLYSPKRLFSLTGDDCFQ VGKVAYDMGDYYHAIPWLEEAVSLFRGSYGEWKTEDEASLEDALDHLAFAYFRAGNVSCALS LSREFLLYSPDNKRMARNVLKYERLLAESPNHVVAEAVIQRPNIPHLQTRDTYEGLCQTLGS QPTLYQIPSLYCSYETNSNAYLLLQPIRKEVIHLEPYIALYHDFVSDSEAQKIRELAEPWLQ RSVVASGEKQLQVEYRISKSAWLKDTVDPKLVTLNHRIAALTGLDVRPPYAEYLQVVNYGIG GHYEPHFDHATSPSSPLYRMKSGNRVATFMIYLSSVEAGGATAFIYANLSVPVVRNAALFWW NLHRSGEGDSDTLHAGCPVLVGDKWVANKWIHEYGQEFRRPCSSSPED

Signal peptide:

amino acids 1-19

FIGURE 69

GAGATAGGGAGTCTGGGTTTAAGTTCCTGCTCCATCTCAGGAGCCCCTGCTCCCACCCCTAG GAAGCCACCAGACTCCACGGTGTGGGGCCAATCAGGTGGAATCGGCCCTGGCAGGTGGGGCC ACGAGCGCTGGCTGAGGGACCGAGCCGGAGGCCCCGGAGCCCCCGTAACCCGCGCGGGGAG TGGCTCAAGTTTTCACTTATCATCTATTCCACCGTGTTCTGGCTGATTGGGGCCCTGGTCCT GTCTGTGGGCATCTATGCAGAGGTTGAGCGGCAGAAATATAAAACCCTTGAAAGTGCCTTCC TGGCTCCAGCCATCATCCTCATCCTCCTGGGCGTCGTCATGTTCATGGTCTCCTTCATTGGT GTGCTGGCGTCCCTCCGTGACAACCTGTACCTTCTCCAAGCATTCATGTACATCCTTGGGAT CTGCCTCATCATGGAGCTCATTGGTGGCGTGGTGGCCTTGACCTTCCGGAACCAGACCATTG ACTTCCTGAACGACAACATTCGAAGAGGAATTGAGAACTACTATGATGATCTGGACTTCAAA AACATCATGGACTTTGTTCAGAAAAAGTTCAAGTGCTGTGGCGGGGAGGACTACCGAGATTG GAGCAAGAATCAGTACCACGACTGCAGTGCCCCTGGACCCCTGGCCTGTGGGGTGCCCTACA CCTGCTGCATCAGGAACACGACAGAAGTTGTCAACACCATGTGTGGCTACAAAACTATCGAC AAGGAGCGTTTCAGTGTGCAGGATGTCATCTACGTGCGGGGCTGCACCAACGCCGTGATCAT CTGGTTCATGGACAACTACACCATCATGGCGTGCATCCTCCTGGGCATCCTGCTTCCCCAGT TCCTGGGGGTGCTGCTGACGCTGCTGTACATCACCCGGGTGGAGGACATCATCATGGAGCAC ATGCTGCTTGTGCTACCCCAATTAGGGCCCAGCCTGCCATGGCAGCTCCAACAAGGACCGTC TGGGATAGCACCTCTCAGTCAACATCGTGGGGCTGGACAGGGCTGCGGCCCCTCTGCCCACA CTCAGTACTGACCAAAGCCAGGGCTGTGTGTGCCTGTGTGTAGGTCCCACGGCCTCTGCCTC $\tt CCCAGGGAGCAGAGCCTGGGCCTCCCCTAAGAGGCTTTCCCCGAGGCAGCTCTGGAATCTGT$ GAGCCTGAGGCTCTGCTCAGGGCCCATTTCATCTCTGGCAGTGCCTTGGCGGTGGTATTCAA GGCAGTTTTGTAGCACCTGTAATTGGGGAGAGGGAGTGTGCCCCTCGGGGCAGGAGGGAAGG GCATCTGGGGAAGGGCAGGGGAAGAGCTGTCCATGCAGCCACGCCCATGGCCAGGTTGGC CTCTTCTCAGCCTCCCAGGTGCCTTGAGCCCTCTTGCAAGGGCGGCTGCTTCCTTGAGCCTA GTTTTTTTTACGTGATTTTTGTAACATTCATTTTTTTTGTACAGATAACAGGAGTTTCTGAC TAATCAAAGCTGGTATTTCCCCGCATGTCTTATTCTTGCCCTTCCCCCAACCAGTTTGTTAA

FIGURE 70

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64863</pre>

><subunit 1 of 1, 294 aa, 1 stop

><MW: 33211, pI: 5.35, NX(S/T): 3

MPRGDSEQVRYCARFSYLWLKFSLIIYSTVFWLIGALVLSVGIYAEVERQKYKTLESAFLAP
AIILILLGVVMFMVSFIGVLASLRDNLYLLQAFMYILGICLIMELIGGVVALTFRNQTIDFL
NDNIRRGIENYYDDLDFKNIMDFVQKKFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCC
IRNTTEVVNTMCGYKTIDKERFSVQDVIYVRGCTNAVIIWFMDNYTIMACILLGILLPQFLG
VLLTLLYITRVEDIIMEHSVTDGLLGPGAKPSVEAAGTGCCLCYPN

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 22-42, 57-85, 93-116, 230-257

FIGURE 71

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGA CACCTGGGAAG<u>ATG</u>GCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACC TTGATCCAAGCCACCCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGA AAAGCTGACACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGC TCAGTGCCATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACC GTCCTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAA GCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCA ACACGCCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATC CGCATGGACACCAGTGCAAGTGGCCCCACCCGCCTGGTCCTCAGTGACTGTGCCACCAGCCA AGGTCATGAACCTCCTAGTGCCATCCCTGCCCAATCTAGTGAAAAACCAGCTGTGTCCCGTG ATCGAGGCTTCCTTCAATGGCATGTATGCAGACCTCCTGCAGCTGGTGAAGGTGCCCATTTC CCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTATCCTGCCATCAAGGGTGACACCATTC AGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTTCAATAAC TCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCGTTCAGCCTCATCGTGAGTCA GGACGTGGTGAAAGCTGCAGTGGCTGCTGTTCTCCAGAAGAATTCATGGTCCTGTTGG ACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGAAAAG GCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTT TTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTTTCCCTCCA GTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGTTTTAC ACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTGAT GAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCC ACTCCATCCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTG AAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCC AGCCTCCTTGTGGAAACCCAGCTCTCCTGTCTCCCAGTGAAGACTTGGATGGCAGCCATCAG GGAAGGCTGGGTCCCAGCTGGGAGTATGGGTGTGAGCTCTATAGACCATCCCTCTCTGCAAT CAATAAACACTTGCCTGTGAAAAA

FIGURE 72

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881
><subunit 1 of 1, 484 aa, 1 stop</pre>

><MW: 52468, pI: 7.14, NX(S/T): 3

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAM REKPAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPL VKTIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMN LLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYL GAKLLDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVL PESAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEAL RPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSIL LPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:
Signal peptide:

amino acids 1-21

N-glycosylation sites. amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins. amino acids 407-457

FIGURE 73

GAGCGAACATGGCAGCGCTTGGCGGTTTTGGTGTCTCTGTGACCATGGTGGTGGCGCTG AGTTCCGTCGCCTTGTGAAAGCCCCACCGAGAAATTACTCCGTTATCGTCATGTTCACTGCT CTCCAACTGCATAGACAGTGTGTCGTTTGCAAGCAAGCTGATGAAGAATTCCAGATCCTGGC AAACTCCTGGCGATACTCCAGTGCATTCACCAACAGGATATTTTTTGCCATGGTGGATTTTG ATGAAGGCTCTGATGTATTTCAGATGCTAAACATGAATTCAGCTCCAACTTTCATCAACTTT CCTGCAAAAGGGAAACCCAAACGGGGTGATACATATGAGTTACAGGTGCGGGGTTTTTCAGC TGAGCAGATTGCCCGGTGGATCGCCGACAGAACTGATGTCAATATTAGAGTGATTAGACCCC CAAATTATGCTGGTCCCCTTATGTTGGGATTGCTTTTTGGCTGTTATTGGTGGACTTGTGTAT CTTCGAAGAAGTAATATGGAATTTCTCTTTAATAAAACTGGATGGGCTTTTGCAGCTTTGTG TTTTGTGCTTGCTATGACATCTGGTCAAATGTGGAACCATATAAGAGGACCACCATATGCCC ATAAGAATCCCCACACGGGACATGTGAATTATATCCATGGAAGCAGTCAAGCCCAGTTTGTA GCTGAAACACACATTGTTCTTGTTTAATGGTGGAGTTACCTTAGGAATGGTGCTTTTATG GACTTGTTGTATTATTCTTCAGTTGGATGCTCTCTATTTTTAGATCTAAATATCATGGCTAC CCATACAGCTTTCTGATGAGT<u>TAA</u>AAAGGTCCCAGAGATATATAGACACTGGAGTACTGGAA ATTGAAAAACGAAAATCGTGTGTGTTTGAAAAGAAGAATGCAACTTGTATATTTTGTATTAC CTCTTTTTTCAAGTGATTTAAATAGTTAATCATTTAACCAAAGAAGATGTGTAGTGCCTTA ACAAGCAATCCTCTGTCAAAATCTGAGGTATTTGAAAATAATTATCCTCTTAACCTTCTCTT CCCAGTGAACTTTATGGAACATTTAATTTAGTACAATTAAGTATATTATAAAAATTGTAAAA CTACTACTTTGTTTTAGTTAGAACAAAGCTCAAAACTACTTTAGTTAACTTGGTCATCTGAT TTTATATTGCCTTATCCAAAGATGGGGAAAGTAAGTCCTGACCAGGTGTTCCCACATATGCC TGTTACAGATAACTACATTAGGAATTCATTCTTAGCTTCTTCATCTTTGTGTGGATGTGTAT ACTTTACGCATCTTTCCTTTTGAGTAGAGAAATTATGTGTGTCATGTGGTCTTCTGAAAATG GAACACCATTCTTCAGAGCACACGTCTAGCCCTCAGCAAGACAGTTGTTTCTCCTCCTCCTT TCTCTAAATACAGGATTATAATTTCTGCTTGAGTATGGTGTTAACTACCTTGTATTTAGAAA GATTTCAGATTCATCCATCTCCTTAGTTTTCTTTTAAGGTGACCCATCTGTGATAAAAATA TAGCTTAGTGCTAAAATCAGTGTAACTTATACATGGCCTAAAATGTTTCTACAAATTAGAGT TTGTCACTTATTCCATTTGTACCTAAGAGAAAATAGGCTCAGTTAGAAAAGGACTCCCTGG GAGGTCAGGAGTTCGAGACCATCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATAT AAAAATTAGCTGGGTGTGGCAGGAGCCTGTAATCCCAGCTACACAGGAGGCTGAGGCAC GAGAATCACTTGAACTCAGGAGATGGAGGTTTCAGTGAGCCGAGATCACGCCACTGCACTCC

FIGURE 74

MAARWRFWCVSVTMVVALLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDKFR RLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVDFDEG SDVFQMLNMNSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNY AGPLMLGLLLAVIGGLVYLRRSNMEFLFNKTGWAFAALCFVLAMTSGQMWNHIRGPPYAHKN PHTGHVNYIHGSSQAQFVAETHIVLLFNGGVTLGMVLLCEAATSDMDIGKRKIMCVAGIGLV VLFFSWMLSIFRSKYHGYPYSFLMS

Signal peptide:

amino acids 1-29

Transmembrane domains:

amino acids 183-205, 217-237, 217-287, 301-321

FIGURE 75

AAGCAACCAAACTGCAAGCTTTGGGAGTTGTTCGCTGTCCCTGCCCTGCTCTGCTAGGGAGA GAACGCCAGAGGGAGGCGGCTGGCCCGGCGGCAGGCTCTCAGAACCGCTACCGGCGATGCTA CTGCTGTGGGTGTCGGTGGCGGCTTGGCGCTGGCGGTACTGGCCCCCGGAGCAGGGGA GCAGAGGCGGAGAGCAGCCAAAGCGCCCAATGTGGTGCTGGTCGTGAGCGACTCCTTCGATG GAAGGTTAACATTTCATCCAGGAAGTCAGGTAGTGAAACTTCCTTTTATCAACTTTATGAAG ACACGTGGGACTTCCTTTCTGAATGCCTACACAAACTCTCCAATTTGTTGCCCATCACGCGC AGCAATGTGGAGTGGCCTCTTCACTCACTTAACAGAATCTTGGAATAATTTTAAGGGTCTAG ATCCAAATTATACAACATGGATGGATGTCATGGAGAGGCATGGCTACCGAACACAGAAATTT GGGAAACTGGACTATACTTCAGGACATCACTCCATTAGTAATCGTGTGGAAGCGTGGACAAG AGATGTTGCTTTCTTACTCAGACAAGAAGGCAGGCCCATGGTTAATCTTATCCGTAACAGGA CTAAAGTCAGAGTGATGGAAAGGGATTGGCAGAATACAGACAAAGCAGTAAACTGGTTAAGA AAGGAAGCAATTAATTACACTGAACCATTTGTTATTTACTTGGGATTAAATTTACCACACCC TTACCCTTCACCATCTTCTGGAGAAAATTTTGGATCTTCAACATTTCACACATCTCTTTATT GGCTTGAAAAAGTGTCTCATGATGCCATCAAAATCCCAAAGTGGTCACCTTTGTCAGAAATG CACCCTGTAGATTATTACTCTTCTTATACAAAAAACTGCACTGGAAGATTTACAAAAAAAGA AATTAAGAATATTAGAGCATTTTATTATGCTATGTGTGCTGAGACAGATGCCATGCTTGGTG AAATTATTTTGGCCCTTCATCAATTAGATCTTCTTCAGAAAACTATTGTCATATACTCCTCA GACCATGGAGAGCTGGCCATGGAACATCGACAGTTTTATAAAATGAGCATGTACGAGGCTAG TGCACATGTTCCGCTTTTGATGATGGGACCAGGAATTAAAGCCGGCCTACAAGTATCAAATG TGGTTTCTCTTGTGGATATTTACCCTACCATGCTTGATATTGCTGGAATTCCTCTGCCTCAG AACCTGAGTGGATACTCTTTGTTGCCGTTATCATCAGAAACATTTAAGAATGAACATAAAGT CAAAAACCTGCATCCACCCTGGATTCTGAGTGAATTCCATGGATGTAATGTGAATGCCTCCA CCTACATGCTTCGAACTAACCACTGGAAATATATAGCCTATTCGGATGGTGCATCAATATTG CCTCAACTCTTTGATCTTTCCTCGGATCCAGATGAATTAACAAATGTTGCTGTAAAAATTTCC AGAAATTACTTATTCTTTGGATCAGAAGCTTCATTCCATTATAAACTACCCTAAAGTTTCTG CTTCTGTCCACCAGTATAATAAAGAGCAGTTTATCAAGTGGAAACAAAGTATAGGACAGAAT TATTCAAACGTTATAGCAAATCTTAGGTGGCACCAAGACTGGCAGAAGGAACCAAGGAAGTA TGAAAATGCAATTGATCAGTGGCTTAAAACCCATATGAATCCAAGAGCAGTTGTTTAAAAATAGTGTTCTAGAGATACATATAAATATATTACAAGATCATAATTATGTATTTT ·AAATGAAACAGTTTTAATAATTACCAAGTTTTGGCCGGGCACAGTGGCTCACACCTGTAATC CCAGGACTTTGGGAGGCTGAGGAAAGCAGATCACAAGGTCAAGAGATTGAGACCATCCTGGC CAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAATTAGCTGGGCGCGGTGGTGCACA CCTATAGTCTCAGCTACTCAGAGGCTGAGGCAGGAGGATCGCTTGAACCCGGGAGGCAGCAG TTGCAGTGAGCTGAGATTGCGCCACTGTACTCCAGCCTGGCAACAGAGTGAGACTGTGTCGC TATTTTAAGATAAAATGCCAATGATTATAAAATCACATATTTTCAAAAATGGTTATTATTTA GGCCTTTGTACAATTTCTAACAATTTAGTGGAAGTATCAAAAGGATTGAAGCAAATACTGTA ACAGTTATGTTCCTTTAAATAATAGAGAATATAAAATATTGTAATAATATGTATCATAAAAAT

FIGURE 76

</usr/segdb2/sst/DNA/Dnaseqs.min/ss.DNA64885

<subunit 1 of 1, 536 aa, 1 stop

<MW: 61450, pI: 9.17, NX(S/T): 7

MLLLWVSVVAALALAVLAPGAGEQRRRAAKAPNVVLVVSDSFDGRLTFHPGSQVVKLPFINF
MKTRGTSFLNAYTNSPICCPSRAAMWSGLFTHLTESWNNFKGLDPNYTTWMDVMERHGYRTQ
KFGKLDYTSGHHSISNRVEAWTRDVAFLLRQEGRPMVNLIRNRTKVRVMERDWQNTDKAVNW
LRKEAINYTEPFVIYLGLNLPHPYPSPSSGENFGSSTFHTSLYWLEKVSHDAIKIPKWSPLS
EMHPVDYYSSYTKNCTGRFTKKEIKNIRAFYYAMCAETDAMLGEIILALHQLDLLQKTIVIY
SSDHGELAMEHRQFYKMSMYEASAHVPLLMMGPGIKAGLQVSNVVSLVDIYPTMLDIAGIPL
PQNLSGYSLLPLSSETFKNEHKVKNLHPPWILSEFHGCNVNASTYMLRTNHWKYIAYSDGAS
ILPQLFDLSSDPDELTNVAVKFPEITYSLDQKLHSIINYPKVSASVHQYNKEQFIKWKQSIG
QNYSNVIANLRWHQDWQKEPRKYENAIDQWLKTHMNPRAV

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-111, 166-169, 193-196, 262-265, 375-378, 413-416, 498-501

Sulfatases proteins:

amino acids 286-315, 359-369, 78-97

FIGURE 77

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAG AGCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCCATG GCCTCTCTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGGCACACT GGTTGCCATGCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAG TGTGACATCTATAGCACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGAT GGTGACATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCA CAGTCTTCTGCCAGGAATCCCGAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTC ATCCTTGGAGGCCTCCTGGGATTCATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGA CTTCTACTCACCACTGGTGCCTGACAGCATGAAATTTGAGATTGGAGAGGCTCTTTACTTGG GCATTATTTCTTCCCTGTTCTCCCTGATAGCTGGAATCATCCTCTGCTTTTCCTGCTCATCC CAGAGAAATCGCTCCAACTACTACGATGCCTACCAAGCCCAACCTCTTGCCACAAGGAGCTC TCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGAGTTCAATTCCTACAGCCTGACAGGGT ATGTGTGAAGAACCAGGGGCCAGAGCTGGGGGGTGGCTGGGTCTGTGAAAAACAGTGGACAG CACCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGTGTCAGAAGGTGCTGCTGAGG ATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGGGGCTAGTGTAACAGCATG CAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCCTCACCTTGCTGCTC CCCTGCCCTAAGTCCCCAACCTCAACTTGAAACCCCATTCCCTTAAGCCAGGACTCAGAGG ATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACATCCCACTG - ACTGACCCTCTGTGATCAAAGACCCTCTCTCTGGCTGAGGTTGGCTCTTAGCTCATTGCTGG GGATGGGAAGGAGAAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTCCC TCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCC AGACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAG GATGCAGGATGGGAGGACAGGCAGCCTGGGACATTTAAAAAAATA

FIGURE 78

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64886</pre>

><subunit 1 of 1, 230 aa, 1 stop

><MW: 24549, pI: 8.56, NX(S/T): 1

MASLGLQLVGYILGLLGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGIT QCDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVF FILGGLLGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCS SQRNRSNYYDAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 79

GCACTGCTGCTGTCCCATCAGCTGCTCTGAAGCTCCATGGTGCCCAGAATCTTCGCTCCTGC
TTATGTGTCAGTCTGTCTCCTCTTTGTGTCCAAGGGAAGTCATCGCTCCCGCTGGCTCAG
AACCATGGCTGTGCCAGCCGGCACCCAGGTGTGGAGAACAAGATCTACAACCCCTTGGAGCAG
TGCTGTTACAATGACGCCATCGTGTCCCTGAGCGAGACCCGCCAATGTGGTCCCCCCTGCAC
CTTCTGGCCCTGCTTTGAGCTCTGCTGTCTTGATTCCTTTGGCCTCACAAACGATTTTGTTG
TGAAGCTGAAGGTTCAGGGTGTGAATTCCCAGTGCCACTCATCTCCCATCTCCAGTAAATGT
GAAAGCAGAAGACGTTTTCCCTGAGAAGAAAAAATCAACTTTCACTAAGGCATC
TCAGAAACATAGGCTAAGGTAATATGTGTACCAGTAGAGAAGCCTGAGGAATTTACAAAATG
ATGCAGCTCCAAGCCATTGTATGGCCCATGTGGGAGACTGATGGAGAATGACAGT
AGATTATCAGGAAATAAATAAAGTGGTTTTTCCAATGTACACACCTGTAAAA

FIGURE 80

MVPRIFAPAYVSVCLLLLCPREVIAPAGSEPWLCQPAPRCGDKIYNPLEQCCYNDAIVSLSE TRQCGPPCTFWPCFELCCLDSFGLTNDFVVKLKVQGVNSQCHSSPISSKCESRRRFP

Signal peptide:

FIGURE 81

FIGURE 82

 ${\tt MAPRGCIVAVFAIFCISRLLCSHGAPVAPMTPYLMLCQPHKRCGDKFYDPLQHCCYDDAVVP} \\ {\tt LARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCDSARTSDDRLCRSVS}$

Signal peptide:

FIGURE 83

GCGCGTCCGACGGCGAC<u>ATG</u>GGCGTCCCCACGGCCCTGGAGGCCGGCAGCTGGCGCTGGGGA TCCCTGCTCTTCGCTCTTCCTGGCTGCGTCCCTAGGTCCGGTGGCAGCCTTCAAGGTCGC CACGCCGTATTCCCTGTATGTCTGTCCCGAGGGGCAGAACGTCACCCTCACCTGCAGGCTCT TGGGCCCTGTGGACAAAGGGCACGATGTGACCTTCTACAAGACGTGGTACCGCAGCTCGAGG GGCGAGGTGCAGACCTGCTCAGAGCGCCGGCCCATCCGCAACCTCACGTTCCAGGACCTTCA CCTGCACCATGGAGGCCACCAGGCTGCCAACACCAGCCACGACCTGGCTCAGCGCCACGGGC TGGAGTCGGCCTCCGACCACCATGGCAACTTCTCCATCACCATGCGCAACCTGACCCTGCTG GATAGCGGCCTCTACTGCTGCCTGGTGGTGGAGATCAGGCACCACCACTCGGAGCACAGGGT CCATGGTGCCATGGAGCTGCAGGTGCAGACAGGCAAAGATGCACCATCCAACTGTGTGGTGT ACCCATCCTCCCCAGGATAGTGAAAACATCACGGCTGCAGCCCTGGCTACGGGTGCCTGC CTCCAACCGCCGTGCCCAGGAGCTGGTGCGGATGGACAGCAACATTCAAGGGATTGAAAACC CCGGCTTTGAAGCCTCACCACCTGCCCAGGGGATACCCGAGGCCAAAGTCAGGCACCCCCTG TCCTATGTGGCCCAGCGCAGCCTTCTGAGTCTGGGCGGCATCTGCTTTCGGAGCCCAGCAC CCCCCTGTCTCCTCCAGGCCCCGGAGACGTCTTCTTCCCATCCCTGGACCCTGTCCCTGACT $\tt CTCCAAACTTTGAGGTCATC\underline{TAG} \tt CCCAGCTGGGGGACAGTGGGCTGTTGTGGCTGGGTCTGG$ GGCAGGTGCATTTGAGCCAGGGCTGGCTCTGTGAGTGGCCTCCTTGGCCTCGGCCCTGGTTC CCTCCCTCCTGCTCTGGGCTCAGATACTGTGACATCCCAGAAGCCCAGCCCCTCAACCCCTC TGGATGCTACATGGGGATGCTGGACGGCTCAGCCCCTGTTCCAAGGATTTTGGGGTGCTGAG ATTCTCCCCTAGAGACCTGAAATTCACCAGCTACAGATGCCAAATGACTTACATCTTAAGAA GTCTCAGAACGTCCAGCCCTTCAGCAGCTCTCGTTCTGAGACATGAGCCTTGGGATGTGGCA GCATCAGTGGGACAAGATGGACACTGGGCCACCCTCCCAGGCACCAGACACAGGGCACGGTG GAGAGACTTCTCCCCCGTGGCCGCCTTGGCTCCCCCGTTTTGCCCGAGGCTGCTCTTCTGTC ACCTTCCCCAGCTGCCTCCTACCAGCAGTTTCTCTGAAGATCTGTCAACAGGTTAAGTCAAT CTGGGGCTTCCACTGCCTGCATTCCAGTCCCCAGAGCTTGGTGGTCCCGAAACGGGAAGTAC ATATTGGGGCATGGTGGCCTCCGTGAGCAAATGGTGTCTTGGGCAATCTGAGGCCAGGACAG GTGGAGAGGGGCACCTGCCCCCCCCCCCCCCCATCCCCTACTCCCACTGCTCAGCGCGGGCC ATTGCAAGGGTGCCACACAATGTCTTGTCCACCCTGGGACACTTCTGAGTATGAAGCGGGAT

FIGURE 84

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64897</pre>

><subunit 1 of 1, 311 aa, 1 stop

><MW: 33908, pI: 6.87, NX(S/T): 6

MGVPTALEAGSWRWGSLLFALFLAASLGPVAAFKVATPYSLYVCPEGQNVTLTCRLLGPVDK GHDVTFYKTWYRSSRGEVQTCSERRPIRNLTFQDLHLHHGGHQAANTSHDLAQRHGLESASD HHGNFSITMRNLTLLDSGLYCCLVVEIRHHHSEHRVHGAMELQVQTGKDAPSNCVVYPSSSQ DSENITAAALATGACIVGILCLPLILLLVYKQRQAASNRRAQELVRMDSNIQGIENPGFEAS PPAQGIPEAKVRHPLSYVAQRQPSESGRHLLSEPSTPLSPPGPGDVFFPSLDPVPDSPNFEVI

Signal peptide:

amino acids 1-28

Transmembrane domain:

FIGURE 85

TTCCCCGCGTTCTCTTCCACCTTTCTCTTCTTCCCACCTTAGACCTCCCTTCCTGCCCTCC TTTCCTGCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGG CTCCGCTCCCGGACCAGCGGCCTGACCCTGGGGAAAGGATGGTTCCCGAGGTGAGGGTCCTC AGACATGTTCTGCCTTTTCCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACT TGGAGCCACAAGGCCTGATGTACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCATGTGAGT TGTTACCGCCTCCACTGTCCGCCTGTCCACTGCCCCCAGCCTGTGACGGAGCCACAGCAATG CTGTCCCAAGTGTGTGGAACCTCACACTCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCC AGCACAACGGGACCATGTACCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCC CGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCAC AACCTGCCCGAACCAGGCTGCCCAGCCCCTCCCACTGCCAGACTCCTGCTGCCAAGCCT GCAAAGATGAGCAAGTGAGCAATCGGATGAAGAGGACAGTGTGCAGTCGCTCCATGGGGTG AGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAAGAGAGGCCCGGGCACCCCAGC CCCCACTGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTTCAGACCCAAGGGAGCAG GCAGCAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCTGTGTGCATGGCGGG AAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGCCCTTGCCCTG CATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCCCACCGAGT · · ACCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGGACAAA GCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTCCT CGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGG CCTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAG AGAGGTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGA AAGTCAGGAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCAC GAAGGTCACTGGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGA CAAAGTGACCAAGACATAACAAAGACC<u>TAA</u>CAGTTGCAGATATGAGCTGTATAATTGTTGTT

FIGURE 86

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902</pre>

><subunit 1 of 1, 451 aa, 1 stop

><MW: 49675, pI: 7.15, NX(S/T): 1

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCT CSEGAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIF SAHELFPSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEED SVQSLHGVRHPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKH KKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKC CKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLV KDEETEAQRGEVPGPRPHSQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPG AEGHGQSRQSDQDITKT

Signal peptide:

FIGURE 87

FIGURE 88

 ${\tt MDSLRKMLISVAMLGAGAGVGYALLVIVTPGERRKQEMLKEMPLQDPRSREEAARTQQLLLA} \\ {\tt TLQEAATTQENVAWRKNWMVGGEGGASGRSP}$

Signal peptide:

FIGURE 89

CAGGAGAGAAGCCACCCCCCCCCCCCCCAAAGCTAACCCTCGGGCTTGAGGGGAAGA GGCTGACTGTACGTTCCTACTCTGGCACCACTCTCCAGGCTGCC<u>ATG</u>GGGCCCAGCACC CCTCTCCTCATCTTGTTCCTTTTGTCATGGTCGGGACCCCTCCAAGGACAGCAGCACCACCT TGTGGAGTACATGGAACGCCGACTAGCTGCTTTAGAGGAACGGCTGGCCCAGTGCCAGGACC AGAGTAGTCGGCATGCTGAGCTGCGGGACTTCAAGAACAAGATGCTGCCACTGCTGGAG GTGGCAGAGAGGGCGGGGGGCACTCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGGA TCGTCTGGAGCGGGAGGTAGACTATCTGGAGACCCAGAACCCAGCTCTGCCCTGTGTAGAGT TTGATGAGAAGGTGACTGGAGGCCCTGGGACCAAAGGCAAGGGAAGAAGGAATGAGAAGTAC GATATGGTGACAGACTGTGGCTACACAATCTCTCAAGTGAGATCAATGAAGATTCTGAAGCG ATTTGGTGGCCCAGCTGGTCTATGGACCAAGGATCCACTGGGGCAAACAGAGAAGATCTACG TGTTAGATGGGACACAGATGACACAGCCTTTGTCTTCCCAAGGCTGCGTGACTTCACCCTT GCCATGCCTGCCCGGAAAGCTTCCCGAGTCCGGGTGCCCTTCCCCTGGGTAGGCACAGGGCA GCTGGTATATGGTGGCTTTCTTTATTTTGCTCGGAGGCCTCCTGGAAGACCTGGTGGAGGTG GTGAGATGGAGAACACTTTGCAGCTAATCAAATTCCACCTGGCAAACCGAACAGTGGTGGAC AGCTCAGTATTCCCAGCAGAGGGGCTGATCCCCCCCTACGGCTTGACAGCAGACACCTACAT CGACCTGGTAGCTGATGAGGAAGGTCTTTGGGCTGTCTATGCCACCCGGGAGGATGACAGGC ACTTGTGTCTGGCCAAGTTAGATCCACAGACACTGGACACAGAGCAGCAGTGGGACACACCA TGTCCCAGAGAGAATGCTGAGGCTGCCTTTGTCATCTGTGGGACCCTCTATGTCGTCTATAA CACCCGTCCTGCCAGTCGGGCCCGCATCCAGTGCTCCTTTGATGCCAGCGGCACCCTGACCC CTGAACGGCCACCCCTTATTTTCCCCGCAGATATGGTGCCCATGCCAGCCTCCGCTAT AACCCCGAGAACGCCAGCTCTATGCCTGGGATGATGGCTACCAGATTGTCTATAAGCTGGA GATGAGGAAGAAGAGGGGGGTTTGAGGGGGCTAGCCTTGTTTTTTGCATCTTTCTCACTC CCATACATTTATATTATCCCCACTAAATTTCTTGTTCCTCATTCTTCAAATGTGGGCCAG TTGTGGCTCAAATCCTCTATATTTTTAGCCAATGGCAATCAAATTCTTTCAGCTCCTTTGTT TCATACGGAACTCCAGATCCTGAGTAATCCTTTTAGAGCCCGAAGAGTCAAAACCCTCAATG TTCCCTCCTGCTCTGCCCCATGTCAACAAATTTCAGGCTAAGGATGCCCCAGACCCAGG GCTCTAACCTTGTATGCGGGCAGGCCCAGGGAGCAGCAGCAGTGTTCTTCCCCTCAGAGTG TCAGTGTCCTGAGGAACAGGACTTTCTCCACATTGTTTTGTATTGCAACATTTTGCATTAAA AAAAAAAAAAAAAAAAA

FIGURE 90

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64905</pre>

<subunit 1 of 1, 406 aa, 1 stop

<MW: 46038, pI: 6.50, NX(S/T): 2

MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKM LPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGR RNEKYDMVTDCGYTISQVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRL RDFTLAMAARKASRVRVPFPWVGTGQLVYGGFLYFARRPPGRPGGGGEMENTLQLIKFHLAN RTVVDSSVFPAEGLIPPYGLTADTYIDLVADEEGLWAVYATREDDRHLCLAKLDPQTLDTEQ QWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLTPERAALPYFPRRYGAH ASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 177-180, 248-251

FIGURE 91

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAG AGCCTCTCCGTGGCTTCCGCACCTTGAGCATTAGGCCAGTTCTCCTCTTCTCTAATCCAT CCGTCACCTCTCCTGTCATCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCCATGG CTCTCATGCTCAGTTTGGTTCTGAGTCTCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTT GGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAGGACGCAGCATTCTCCTGTTCCTGTC TCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGTTCTCTAGCGTGG TCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATCAAGGCAGG ACAAAACTGGTGAAGGATTCTATTGCGGAGGGGGGGCGCATCTCTCTGAGGCTGGAAAACATTAC TGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCA TCTGGGAGCTACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTT GATAGAGACATCCAGCTACTCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTG TGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAACGCCGGGAGCATATCCTGTTCCATG CGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAGGAGATACCTTTTTCGA GCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTATTTTTTG GCATTGTTGGACTGAAGATTTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGAC TGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGAC TCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATA GAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCT TCTCAGAGTTTCCAAGCAGGAAACATTACTGGGAGGTGGACGGAGGACACAATAAAAGGTG ATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGT TTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTATGAGTG ${ t TTGAAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCC}$ ATAGTCATCTGCCCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGC AATCCCAGAGACAAGCAACAGTGAGTCCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGG ${\tt GTGAAATG}$ GATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCAGATGAAGGGGGACTGGCCTGTCC AGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAGAACCG TCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGC TTAGATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTA AAAAA

FIGURE 92

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSS
VVHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQK
AIWELQVSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMH
GLFDVEISLTVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLF
FGIVGLKIFFSKFQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLS
PDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTC
RFEGLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLP
RGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

THE RESERVE

FIGURE 93

GCGATGGTGCGCCGGTGGCGGCGGCGGCGGTTGCGGAGGCTTCCTTGGTCGGATTGCA CCGTCGCCTCAGCCGCCTCGGCGGGGAATGTCACCGGTGGCGGCGGGGCCGCGGGGCAGGTG GACGCGTCGCCGGGCCCCGGGTTGCGGGGCGAGCCCAGCCCCTTCCCTAGGGCGACGGC TCCCACGGCCCAGGCCCCGAGGACCGGGCCCCCGCGCGCCACCGTCCACCGACCCCTGGCTG CGACTTCTCCAGCCCAGTCCCCGGAGACCACCCCTCTTTGGGCGACTGCTGGACCCTCTTCC ACCACCTTTCAGGCGCCGCTCGGCCGACCACCCCTCCGGCGGCGGAACGCACTTC GACCACCTCTCAGGCGCCGACCAGACCCGCGCGCCCACCCTTTCGACGACCACTGGCCCGG CGCCGACCACCCTGTAGCGACCACCGTACCGGCGCCCACGACTCCCCGGACCCCGACCCCC TTCGCCTCCTCCAGAGTATGTATGTAACTGCTCTGTGGTTGGAAGCCTGAATGTGAATCGCT GCAACCAGACCACAGGGCAGTGTGAGTGTCGGCCAGGTTATCAGGGGGCTTCACTGTGAAACC TGCAAAGAGGGCTTTTACCTAAATTACACTTCTGGGCTCTGTCAGCCATGTGACTGTAGTCC ${\tt ACATGGAGCTCTCAGCATACCGTGCAACAGGG{\underline{TAA}}GCAACAGAGGGTGGAACTGAAGTTTATT}$ TTATTTTAGCAAGGGAAAAAAAAGGCTGCTACTCTCAAGGACCATACTGGTTTAAACAAAG GAGGATGAGGGTCATAGATTTACAAAATATTTTATATACTTTTATTCTCTTACTTTATATGT TATATTTAATGTCAGGATTTAAAAACATCTAATTTACTGATTTAGTTCTTCAAAAGCACTAG AGTCGCCAATTTTCTCTGGGATAATTTCTGTAAATTTCATGGGAAAAAATTATTGAAGAAT AAATCTGCTTTCTGGAAGGGCTTTCAGGCATGAAACCTGCTAGGAGGTTTAGAAATGTTCTT ATGTTTATTAATATACCATTGGAGTTTGAGGAAATTTGTTGTTTGGTTTATTTTTCTCTCTA ATCAAAATTCTACATTTGTTTCTTTGGACATCTAAAGCTTAACCTGGGGGTACCCTAATTTA TTTAACTAGTGGTAAGTAGACTGGTTTTACTCTATTTACCAGTACATTTTTGAGACCAAAAG TAGATTAAGCAGGAATTATCTTTAAACTATTATGTTATTTGGAGGTAATTTAATCTAGTGGA ATAATGTACTGTTATCTAAGCATTTGCCTTGTACTGCACTGAAAGTAATTATTCTTTGACCT TATGTGAGGCACTTGGCTTTTTGTGGACCCCAAGTCAAAAAACTGAAGAGACAGTATTAAAT AATGAAAAAAATAATGACAGGTTATACTCAGTGTAACCTGGGTATAACCCAAGATCTGCTGC CACTTACGAGCTGTGTTCCTTGGGCAAGTAATTTCCTTTCACTGAGCTTGTTTCTTCTCAAG GTTGTTGTGAAGATTAAATGAGTTGATATATAAAATGCCTAGCACATGTCACTCAATAAA TTCTGGTTTGTTTTAATTTCAAAGGAATATTATGGACTGAAATGAGAGAACATGTTTTAAGA ACTTTTAGCTCCTTGACAAGAAGTGCTTTATACTTTAGCACTAAATATTTTTAAATGCTTTA TAAATGATATTATACTGTTATGGAATATTGTATCATATTGTAGTTTATTAAAAATGTAGAAG AGGCTGGGCGCGGTGGCTCACGCCTGTAATCCTAGCACTTTGGGAGGCCAAGGCGGGTGGAT CACTTGAGGCCAGGAGTTCTAGATGAGCCTGGCCAGCAGTGAAACCCCGTCTCTACTAAA AATACAAACAAATTAGCTGGGCGTGGTGGCACACCCTGTAGTCCCAGCTACTCGGGAGGCT GAGGCAGGAGAATCGGTTGAACCCGGGAGGTGGAGGTTGCAGTGAGCTGAGATCGCGCCACT

FIGURE 94

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952

><subunit 1 of 1, 258 aa, 1 stop

><MW: 25716, pI: 8.13, NX(S/T): 5

MRSLPSLGGLALLCCAAAAAAVASAASAGNVTGGGGAAGQVDASPGPGLRGEPSHPFPRATA
PTAQAPRTGPPRATVHRPLAATSPAQSPETTPLWATAGPSSTTFQAPLGPSPTTPPAAERTS
TTSQAPTRPAPTTLSTTTGPAPTTPVATTVPAPTTPRTPTPDLPSSSNSSVLPTPPATEAPS
SPPPEYVCNCSVVGSLNVNRCNQTTGQCECRPGYQGLHCETCKEGFYLNYTSGLCQPCDCSP
HGALSIPCNR

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

FIGURE 95

TGCGGCGCAGTGTAGACCTGGGAGGATGGGCGGCCTGCTGCTGCTGCTTTTCTGGCTTTTGG
TCTCGGTGCCCAGGGCCCAGGCCGTGTGGTTGGGAAGACTGGACCCTGAGCAGCTTCTTGGG
CCCTGGTACGTGCTTGCGGTGGCCTCCCGGGAAAAGGGCTTTGCCATGGAGAAGGACATGAA
GAACGTCGTGGGGGTGGTGACCCTCACTCCAGAAAACAACCTGCGGACGCTGTCCTCTC
AGCACGGGCTGGGAGGGTGTACCAGAGTGTCATGGACCTGATAAAGCGAAACTCCGGATGG
GTGTTTGAGAATCCCTCAATAGGCGTGCTGGAGCTCTTGGGTGCTGCCACCAACTTCAGAGA
CTATGCCATCATCTTCACTCAGCTGGAGTTCGGGGACGAGCCCTTCAACACCGTGGAGCTGT
ACAGTCTGACGGAGACCAGCCAGGAGGCCATGGGGCTCTTCACCAAGTGGAGCAGAGC
CTGGGCTTCCTGTCACAGTAGCAGCCAGCTGCAGAAGGACCTCACCTGTGCTCACAAGAT
CCTTCTGTGAGTGCTGCGTCCCCAGTAGGGATGGCGCCCACAGGGTCCTTGACCTCGGCCA
GTGTCCACCCACCTCGCTCAGCGGCTCCCGGGGCCCAACAGCATCACAGAATAAAGCGATTC
CACAGCA

FIGURE 96

MGGLLLAAFLALVSVPRAQAVWLGRLDPEQLLGPWYVLAVASREKGFAMEKDMKNVVGVVVT LTPENNLRTLSSQHGLGGCDQSVMDLIKRNSGWVFENPSIGVLELWVLATNFRDYAIIFTQL EFGDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Signal peptide:

FIGURE 97

CCTGCTCTGGGGGGGGGGGGGGGGGGAGGACAGCAAGTAAACTGCTGACGATGCAGAGTT CCGTGACGGTGCAGGAAGGCCTGTGTGTCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCAT GGCTGGATTTACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGA CCAGGATGCTCCAGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACC GATTCCACCTCCTTGGGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGA AGAAGTGATGCGGGGAGATACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAA ACATCACCGGCTCTCTGTGAATGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAG GCACCCTGGAGTCCGGCTGCCCCCAGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAG GGGACACCCCTATGATCTCCTGGATAGGGACCTCCGTGTCCCCCCTGGACCCCTCCACCAC CCGCTCCTCGGTGCTCACCCTCATCCCACAGCCCCAGGACCATGGCACCAGCCTCACCTGTC AGGTGACCTTCCCTGGGGCCAGCGTGACCACGAACAAGACCGTCCATCTCAACGTGTCCTAC CCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGAGACGGCACAGTATCCACAGTCTTGGG AAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCTGCGCCTGGTCTGTGCAGTTGATG CAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGAGAGGCCTGACCCTGTGCCCC TCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCACCTGAGGGATGCAGCTGA ATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCTGAACGTCTCCCTGC AGAGCAAAGCCACATCAGGAGTGACTCAGGGGGGTGGTCGGGGGGAGCTGGAGCCACAGCCCTG GTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAATCGGCAAG . .GCCAGCAGCGGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTCAGCCT CTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCAGCT TCTGCCCGCTCCTCAGTGGGGGAAGGAGAGCTCCAGTATGCATCCCTCAGCTTCCAGATGGT GAAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCC ${ t ACAGA}{ t TGA}{ t GAAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGA}$ GAAGTCAGAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACT ATGAATTATGTGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAAT

FIGURE 98

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWF
REGANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKG
SIKWNYKHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVS
PLDPSTTRSSVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDG
TVSTVLGNGSSLSLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWV
HLRDAAEFTCRAQNPLGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRS
CRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYA
SLSFQMVKPWDSRGQEATDTEYSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

FIGURE 99

FIGURE 100

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65404</pre>

<subunit 1 of 1, 170 aa, 1 stop</pre>

<MW: 19457, pI: 9.10, NX(S/T): 0

MKTLFLGVTLGLAAALSFTLEEEDITGTWYVKAMVVDKDFPEDRRPRKVSPVKVTALGGGKL EATFTFMREDRCIQKKILMRKTEEPGKYSAYGGRKLMYLQELPRRDHYIFYCKDQHHGGLLH MGKLVGRNSDTNREALEEFKKLVQRKGLSEEDIFTPLQTGSCVPEH

Important features:

Signal peptide:

FIGURE 101

GTTCCGCAGATGCAGAGGTTGAGGTGGCTGCGGGACTGGAAGTCATCGGGCAGAGGTCTCAC AGCAGCCAAGGAACCTGGGGCCCGCTCCTCCCCCTCCAGGCCATGAGGATTCTGCAGTTAA TCCTGCTTGCTCTGGCAACAGGGCTTGTAGGGGGAGACCAGGATCATCAAGGGGTTCGAG TGCAAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTGTTCGAGAAGACGCGGCTACTCTGTGG GGCGACGCTCATCGCCCCAGATGGCTCCTGACAGCAGCCCACTGCCTCAAGCCCCGCTACA TAGTTCACCTGGGGCAGCACCACCTCCAGAAGGAGGGGGCTGTGAGCAGACCCGGACAGCC ACTGAGTCCTTCCCCCACCCGGCTTCAACAACAGCCTCCCCAACAAGACCACCGCAATGA CATCATGCTGGTGAAGATGGCATCGCCAGTCTCCATCACCTGGGCTGTGCGACCCCTCACCC TCTCCTCACGCTGTGTCACTGCTGGCACCAGCTGCCTCATTTCCGGCTGGGGCAGCACGTCC AGCCCCAGTTACGCCTGCCTCACACCTTGCGATGCGCCAACATCACCATCATTGAGCACCA GAAGTGTGAGAACGCCTACCCCGGCAACATCACAGACACCATGGTGTGTGCCAGCGTGCAGG AAGGGGCAAGGACTCCTGCCAGGGTGACTCCGGGGGCCCTCTGGTCTGTAACCAGTCTCTT CAAGGCATTATCTCCTGGGGCCAGGATCCGTGTGCGATCACCCGAAAGCCTGGTGTCTACAC GAAAGTCTGCAAATATGTGGACTGGATCCAGGAGACGATGAAGAACAAT**TAG**ACTGGACCCA CCCACCACAGCCCATCACCCTCCATTTCCACTTGGTGTTTTGGTTCCTGTTCACTCTGTTAAT AAGAAACCCTAAGCCAAGACCCTCTACGAACATTCTTTGGGCCTCCTGGACTACAGGAGATG CTGTCACTTAATAATCAACCTGGGGTTCGAAATCAGTGAGACCTGGATTCAAATTCTGCCTT GAAATATTGTGACTCTGGGAATGACAACACCTGGTTTGTTCTCTGTTGTATCCCCAGCCCCA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 102

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65405</pre>

<subunit 1 of 1, 250 aa, 1 stop

<MW: 27466, pI: 8.87, NX(S/T): 4

MRILQLILLALATGLVGGETRIIKGFECKPHSQPWQAALFEKTRLLCGATLIAPRWLLTAAH CLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITW AVRPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIIEHQKCENAYPGNITDTM VCASVQEGGKDSCQGDSGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYVDWIQETMKNN

Important features:

Signal peptide:

amino acids 1-18

Serine proteases, trypsin family, histidine active site. amino acids 58-63

N-glycosylation sites.

amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site.

amino acids 145-148

Kringle domain proteins.

amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein

amino acids 199-209, 47-63, 220-243

Apple domain proteins

amino acids 222-249, 189-222

FIGURE 103

FIGURE 104

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65406
<subunit 1 of 1, 222 aa, 1 stop
<MW: 25794, pI: 6.24, NX(S/T): 1</pre>

MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDG YLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGY AEGKIPPDATLIFEIELYAVTKGPRSIETFKQIDMDNDRQLSKAEINLYLQREFEKDEKPRD KSYQDAVLEDIFKKNDHDGDGFISPKEYNVYOHDEL

Important features:

Endoplasmic reticulum targeting sequence. amino acids 219-222

N-glycosylation site.

amino acids 45-48

FKBP-type peptidyl-prolyl cis-trans isomerase amino acids 87-223, 129-142

EF-hand calcium-binding domain proteins amino acids 202-214, 195-214

FIGURE 105

FIGURE 106

 ${\tt MQGPLLLPGLCFLLSLFGAVTQKTKTSCAKCPPNASCVNNTHCTCNHGYTSGSGQKLFTFPL} \\ {\tt ETCNARHGGSRL}$

Signal peptide:

FIGURE 107

AGGGAAAGGGTGACCTCTGAGATTCCCCCTTTTCCCCCAGACTTTGGAAGTGACCCACCATGG GGCTCAGCATCTTTTTGCTCCTGTGTGTTCTTGGGCTCAGCCAGGCAGCCACACCGAAGATT TTCAATGGCACTGAGTGTGGGCGTAACTCACAGCCGTGGCAGGTGGGGCTGTTTGAGGGCAC CAGCCTGCGCTGCGGGGTGTCCTTATTGACCACAGGTGGGTCCTCACAGCGGCTCACTGCA CAGATCCGGCACAGCGGCTTCTCTGTGACCCATCCCGGCTACCTGGGAGCCTCGACGAGCCA CGAGCACGACCTCCGGCTGCCGGCTGCCCGTCCGCGTAACCAGCAGCGTTCAAC CCCTGCCCTGCCCAATGACTGTGCAACCGCTGGCACCGAGTGCCACGTCTCAGGCTGGGGC ATCACCAACCACCCACGGAACCCATTCCCGGATCTGCTCCAGTGCCTCAACCTCTCCATCGT CTCCCATGCCACCTGCCATGGTGTATCCCGGGAGAATCACGAGCAACATGGTGTGTGCAG GCGCGTCCCGGGGCAGGATGCCTGCCAGGGTGATTCTGGGGGCCCCCTGGTGTGTGGGGGA GTCCTTCAAGGTCTGGTGTCCTGGGGGTCTGTGGGGCCCTGTGGACAAGATGGCATCCCTGG AGTCTACACCTATATTTGCAAGTATGTGGACTGGATCCGGATGATCATGAGGAACAACTGAC CTGTTTCCTCCACCTCCACCCCACCCCTTAACTTGGGTACCCCTCTGGCCCTCAGAGCACC AATATCTCCTCCATCACTTCCCCTAGCTCCACTCTTGTTGGCCTGGGAACTTCTTGGAACTT TAACTCCTGCCAGCCCTTCTAAGACCCACGAGCGGGGTGAGAGAGTGTGCAATAGTCTGGA ATAAATATAAATGAAGGAGGGCAAAAAAAAAAAA

FIGURE 108

MGLSIFLLCVLGLSQAATPKIFNGTECGRNSQPWQVGLFEGTSLRCGGVLIDHRWVLTAAH CSGSRYWVRLGEHSLSQLDWTEQIRHSGFSVTHPGYLGASTSHEHDLRLLRLRLPVRVTSSV QPLPLPNDCATAGTECHVSGWGITNHPRNPFPDLLQCLNLSIVSHATCHGVYPGRITSNMVC AGGVPGQDACQGDSGGPLVCGGVLQGLVSWGSVGPCGQDGIPGVYTYICKYVDWIRMIMRNN

Signal peptide:

FIGURE 109

GCGGCCACACGCAGCTAGCCGGAGCCCGGACCAGGCGCCTGTGCCTCCTCGTCCCTCGC $\tt CGCGTCCGCGAAGCCTGGAGCCGGGGAGCCCCGCGCTCGCC{\color{red} \underline{ATG}} TCGGGCGAGCTCAGCA \\$ ACAGGTTCCAAGGAGGGAAGGCGTTCGGCTCAAAGCCCGGCAGGAGAGGAGGCTGGCC GAGATCAACCGGGAGTTTCTGTGTGACCAGAAGTACAGTGATGAAGAGAACCTTCCAGAAAA GCTCACAGCCTTCAAAGAGAAGTACATGGAGTTTGACCTGAACAATGAAGGCGAGATTGACC TGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTGGAGATGAAG AAGATGATCTCAGAGGTGACAGGAGGGGTCAGTGACACTATATCCTACCGAGACTTTGTGAA CATGATGCTGGGGAAACGGTCGGCTGTCCTCAAGTTAGTCATGATGTTTGAAGGAAAAGCCA TCATCAATGTCTTTGTAAAGCACAAATTATCTGCCTTAAAGGGGGCTCTGGGTCGGGGAATCCTGAGCCTTGGGTCCCCTCCCTCTTCTTCCCCTCCTTCCCCGCTCCCTGTGCAGAAGGGCTG ATATCAAACCAAAAACTAGAGGGGCCAGGGCCAGGGCAGGCTTCCAGCCTGTGTTCCC CTCACTTGGAGGAACCAGCACTCTCCATCCTTTCAGAAAGTCTCCAAGCCAAGTTCAGGCTC ACTGACCTGGCTCTGACGAGGACCCCAGGCCACTCTGAGAAGACCTTGGAGTAGGGACAAGG CTGCAGGGCCTCTTTCGGGTTTCCTTGGACAGTGCCATGGTTCCAGTGCTCTGGTGTCACCC AGGACACACCACTCGGGGCCCCGCTGCCCAGCTGATCCCCACTCATTCCACACCTCTTCT CATCCTCAGTGATGTGAAGGTGGGAAGGAAGGAGCTTGGCATTGGGAGCCCTTCAAGAAGG CGTGCAGCCCTACTGTCCCTTACTGGGGCAGCAGAGGGCTTCGGAGGCCAGAAGTGAGGCCTG GGGTTTGGGGGGAAAGGTCAGCTCAGTGCTGTTCCACCTTTTAGGGAGGATACTGAGGGGAC CAGGATGGGAGAATGAGGAGTAAAATGCTCACGGCAAAGTCAGCAGCACTGGTAAGCCAAGA

FIGURE 110

 ${\tt MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTAFKEKYMEFDLN}$ ${\tt NEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVNMMLGKRSAVLKLVM}$ ${\tt MFEGKANESSPKPVGPPPERDIASLP}$

FIGURE 111A

CGCGCTCCCCGCGCGCCTCCTCGGGCTCCACGCGTCTTGCCCCGCAGAGGCAGCCTCCTCCA GGAGCGGGCCCTGCACACC**ATG**GCCCCCGGGTGGGCAGGGGTCGGCGCCGCCGTGCGCGCC CGCCTGGCGCTGGCGTGGCGAGCGTCCTGAGTGGGCCTCCAGCCGTCGCCTGCCC CACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCACGGGCTGGGCCTCCGCGCGGTTC CTCGGGGCATCCCCGCAACGCTGAGCGCCTTGACCTGGACAGAAATAATATCACCAGGATC ACCAAGATGGACTTCGCTGGGCTCAAGAACCTCCGAGTCTTGCATCTGGAAGACAACCAGGT CAGCGTCATCGAGAGGGCGCCTTCCAGGACCTGAAGCAGCTAGAGCGACTGCGCCTGAACA AGAATAAGCTGCAAGTCCTTCCAGAATTGCTTTTCCAGAGCACGCCGAAGCTCACCAGACTA GATTTGAGTGAAAACCAGATCCAGGGGATCCCGAGGAAGGCGTTCCGCGGCATCACCGATGT GAAGAACCTGCAACTGGACAACCACATCAGCTGCATTGAAGATGGAGCCTTCCGAGCGC TGCGCGATTTGGAGATCCTTACCCTCAACAACAACAACATCAGTCGCATCCTGGTCACCAGC TTCAACCACATGCCGAAGATCCGAACTCTGCGCCTCCACTCCAACCACCTCTACTGCGACTG CCACCTGGCCTGGCTCTCGGATTGGCTGCGACAGCGACAGTTGGCCAGTTCACACTCT GCATGGCTCCTGTGCATTTGAGGGGCTTCAACGTGGCGGATGTGCAGAAGAAGGAGTACGTG TGCCCAGCCCCCACTCGGAGCCCCCATCCTGCAATGCCAACTCCATCTCCTGCCCTTCGCC CTGCACGTGCAGCAATAACATCGTGGACTGTCGAGGAAAGGGCTTGATGGAGATTCCTGCCA ACTTGCCGGAGGGCATCGTCGAAATACGCCTAGAACAGAACTCCATCAAAGCCATCCCTGCA GGAGCCTTCACCCAGTACAAGAAACTGAAGCGAATAGACATCAGCAAGAATCAGATATCGGA TATTGCTCCAGATGCCTTCCAGGGCCTGAAATCACTCACATCGCTGGTCCTGTATGGGAACA AGATCACCGAGATTGCCAAGGGACTGTTTGATGGGCTGGTGTCCCTACAGCTGCTCCTCCTC AATGCCAACAÄGATCAACTGCCTGCGGGTGAACACGTTTCAGGACCTGCAGAACCTCAACTT GCTCTCCCTGTATGACAACAAGCTGCAGACCATCAGCAAGGGGCTCTTCGCCCCTCTGCAGT CCATCCAGACACTCCACTTAGCCCAAAACCCATTTGTGTGCGACTGCCACTTGAAGTGGCTG GCCGACTACCTCCAGGACAACCCCATCGAGACAAGCGGGGCCCGCTGCAGCAGCCCGCGCCG ACTCGCCAACAAGCGCATCAGCCAGATCAAGAGCAAGAAGTTCCGCTGCTCAGGCTCCGAGG ATTACCGCAGCAGCTTCAGCAGCGAGTGCTTCATGGACCTCGTGTGCCCCGAGAAGTGTCGC TGTGAGGGCACGATTGTGGACTGCTCCAACCAGAGCTGGTCCGCATCCCAAGCCACCTCCC TGAATATGTCACCGACCTGCGACTGAATGACAATGAGGTATCTGTTCTGGAGGCCACTGGCA TCTTCAAGAAGTTGCCCAACCTGCGGAAAATAAATCTGAGTAACAATAAGATCAAGGAGGTG CGAGAGGGAGCTTTCGATGGAGCAGCCAGCGTGCAGGAGCTGATGCTGACAGGGAACCAGCT GGAGACCGTGCACGGGCGCGTGTTCCGTGGCCTCAGTGGCCTCAAAACCTTGATGCTGAGGA GTAACTTGATCAGCTGTGTGAGTAATGACACCTTTGCCGGCCTGAGTTCGGTGAGACTGCTG TCCCTCTATGACAATCGGATCACCACCATCACCCCTGGGGCCTTCACCACGCTTGTCTCCCT GTCCACCATAAACCTCCTGTCCAACCCCTTCAACTGCAACTGCCACCTGGCCTGGCTCGGCA AGTGGTTGAGGAAGAGCGGATCGTCAGTGGGAACCCTAGGTGCCAGAAGCCATTTTTCCTC AAGGAGATTCCCATCCAGGATGTGGCCATCCAGGACTTCACCTGTGATGGCAACGAGGAGAG TAGCTGCCAGCTGAGCCCGCGCTGCCCGGAGCAGTGCACCTGTATGGAGACAGTGGTGCGAT GCAGCAACAAGGGGCTCCGCGCCCTCCCCAGAGGCATGCCCAAGGATGTGACCGAGCTGTAC CTGGAAGGAAACCACCTAACAGCCGTGCCCAGAGAGCTGTCCGCCCTCCGACACCTGACGCT TATTGACCTGAGCAACAACAGCATCAGCATGCTGACCAATTACACCTTCAGTAACATGTCTC ACCTCTCCACTCTGATCCTGAGCTACAACCGGCTGAGGTGCATCCCCGTCCACGCCTTCAAC GGGCTGCGGTCCCTGCGAGTGCTAACCCTCCATGGCAATGACATTTCCAGCGTTCCTGAAGG ACTGCAGTCTTCGGTGGCTGTCGGAGTGGGTGAAGGCGGGGTACAAGGAGCCTGGCATCGCC CGCTGCAGTAGCCCTGAGCCCATGGCTGACAGGCTCCTGCTCACCACCCCAACCCACCGCTT

FIGURE 111B

TACAGCTACAAGGGCAAGGACTGCACTGTGCCCATCAACACCTGCATCCAGAACCCCTGTCA TGGGCTTTGAGGGCCAGCGGTGTGAGATCAACCCAGATGACTGTGAGGACAACGACTGCGAA AACAATGCCACCTGCGTGGACGGGATCAACAACTACGTGTGTATCTGTCCGCCTAACTACAC AGGTGAGCTATGCGACGAGGTGATTGACCACTGTGTGCCTGAGCTGAACCTCTGTCAGCATG AGGCCAAGTGCATCCCCCTGGACAAAGGATTCAGCTGCGAGTGTGCCCTGGCTACAGCGGG AAGCTCTGTGAGACAGACAATGATGACTGTGTGGCCCACAAGTGCCGCCACGGGGCCCAGTG CGTGGACACAATCAATGGCTACACATGCACCTGCCCCCAGGGCTTCAGTGGACCCTTCTGTG AACACCCCCCACCCATGGTCCTACTGCAGACCAGCCCATGCGACCAGTACGAGTGCCAGAAC GGGGCCCAGTGCATCGTGGTGCAGCAGGAGCCCACCTGCCGCTGCCCACCAGGCTTCGCCGG CCCCAGATGCGAGAAGCTCATCACTGTCAACTTCGTGGGCAAAGACTCCTACGTGGAACTGG CCTCCGCCAAGGTCCGACCCCAGGCCAACATCTCCCTGCAGGTGGCCACTGACAAGGACAAC GGCATCCTTCTCTACAAAGGAGACAATGACCCCCTGGCACTGGAGCTGTACCAGGGCCACGT GCGGCTGGTCTATGACAGCCTGAGTTCCCCTCCAACCACAGTGTACAGTGTGGAGACAGTGA ATGATGGGCAGTTTCACAGTGTGGAGCTGGTGACGCTAAACCAGACCCTGAACCTAGTAGTG CCCCTCTACCTTGGAGGCATCCCCACCTCCACCGGCCTCTCCGCCTTGCGCCAGGGCACGG ACCGGCCTCTAGGCGGCTTCCACGGATGCATCCATGAGGTGCGCATCAACAACGAGCTGCAG GACTTCAAGGCCCTCCCACCACAGTCCCTGGGGGTGTCACCAGGCTGCAAGTCCTGCACCGT GTGCAAGCACGGCCTGTGCCGCTCGGAGAAGGACAGCGTGGTGTGCGAGTGCCGCCCAG GCTGGACCGGCCCACTCTGCGACCAGGAGGCCCGGGACCCCTGCCTCGGCCACAGATGCCAC CATGGAAAATGTGTGGCAACTGGGACCTCATACATGTGCAAGTGTGCCGAGGGCTATGGAGG GGACTTGTGTGACAACAAGAATGACTCTGCCAATGCCTGCTCAGCCTTCAAGTGTCACCATG GGCAGTGCCACATCTCAGACCAAGGGGAGCCCTACTGCCTGTGCCAGCCCGGCTTTAGCGGC GAGCACTGCCAACAAGAGAATCCGTGCCTGGGACAAGTAGTCCGAGAGGTGATCCGCCGCCA GAAAGGTTATGCATCATGTGCCACAGCCTCCAAGGTGCCCATCATGGAATGTCGTGGGGGGCT GTGGGCCCCAGTGCCAGCCCACCGCAGCAGCGGCGGAAATACGTCTTCCAGTGCACG . GACGGCTCCTCGTTTGTAGAAGAGGTGGAGAGACACTTAGAGTGCGGCTGCCTCGCGTGTTC CTAAGCCCCTGCCGCCTGCCACCTCTCGGACTCCAGCTTGATGGAGTTGGGACAGCC ATGTGGGACCCCTGGTGATTCAGCATGAAGGAAATGAAGCTGGAGAGGAAGGTAAAGAAGA AAAAA

FIGURE 112

MAPGWAGVGAAVRARLALALALASVLSGPPAVACPTKCTCSAASVDCHGLGLRAVPRGIPRN AERLDLDRNNITRITKMDFAGLKNLRVLHLEDNQVSVIERGAFQDLKQLERLRLNKNKLQVL PELLFQSTPKLTRLDLSENQIQGIPRKAFRGITDVKNLQLDNNHISCIEDGAFRALRDLEIL TLNNNNISRILVTSFNHMPKIRTLRLHSNHLYCDCHLAWLSDWLRQRRTVGQFTLCMAPVHL RGFNVADVQKKEYVCPAPHSEPPSCNANSISCPSPCTCSNNIVDCRGKGLMEIPANLPEGIV EIRLEQNSIKAIPAGAFTQYKKLKRIDISKNQISDIAPDAFQGLKSLTSLVLYGNKITEIAK GLFDGLVSLQLLLLNANKINCLRVNTFQDLQNLNLLSLYDNKLQTISKGLFAPLQSIQTLHL AQNPFVCDCHLKWLADYLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGSEDYRSRFS SECFMDLVCPEKCRCEGTIVDCSNQKLVRIPSHLPEYVTDLRLNDNEVSVLEATGIFKKLPN LRKINLSNNKIKEVREGAFDGAASVQELMLTGNQLETVHGRVFRGLSGLKTLMLRSNLISCV SNDTFAGLSSVRLLSLYDNRITTITPGAFTTLVSLSTINLLSNPFNCNCHLAWLGKWLRKRR IVSGNPRCQKPFFLKEIPIQDVAIQDFTCDGNEESSCQLSPRCPEQCTCMETVVRCSNKGLR ALPRGMPKDVTELYLEGNHLTAVPRELSALRHLTLIDLSNNSISMLTNYTFSNMSHLSTLIL SYNRLRCIPVHAFNGLRSLRVLTLHGNDISSVPEGSFNDLTSLSHLALGTNPLHCDCSLRWL SEWVKAGYKEPGIARCSSPEPMADRLLLTTPTHRFQCKGPVDINIVAKCNACLSSPCKNNGT CTQDPVELYRCACPYSYKGKDCTVPINTCIQNPCQHGGTCHLSDSHKDGFSCSCPLGFEGQR CEINPDDCEDNDCENNATCVDGINNYVCICPPNYTGELCDEVIDHCVPELNLCQHEAKCIPL ${\tt DKGFSCECVPGYSGKLCETDNDDCVAHKCRHGAQCVDTINGYTCTCPQGFSGPFCEHPPPMV}$ LLQTSPCDQYECQNGAQCIVVQQEPTCRCPPGFAGPRCEKLITVNFVGKDSYVELASAKVRP QANISLQVATDKDNGILLYKGDNDPLALELYQGHVRLVYDSLSSPPTTVYSVETVNDGQFHS VELVTLNQTLNLVVDKGTPKSLGKLQKQPAVGINSPLYLGGIPTSTGLSALRQGTDRPLGGF HGCIHEVRINNELQDFKALPPQSLGVSPGCKSCTVCKHGLCRSVEKDSVVCECRPGWTGPLC DQEARDPCLGHRCHHGKCVATGTSYMCKCAEGYGGDLCDNKNDSANACSAFKCHHGQCHISD QGEPYCLCQPGFSGEHCQQENPCLGQVVREVIRRQKGYASCATASKVPIMECRGGCGPQCCQ PTRSKRRKYVFQCTDGSSFVEEVERHLECGCLACS

Signal peptide:

amino acids 1-27

FIGURE 113

GGATGCAGGACGCTCCCCTGAGCTGCCTGTCACCGACTAGGTGGAGCAGTGTTTCTTCCGCA
GACTCAACTGAGAAGTCAGCCTCTGGGGCAGGCACCAGGAATCTGCCTTTTCAGTTCTGTCT
CCGGCAGGCTTTGAGGATGAAGGCTGCGGGCATTCTGACCCTCATTGGCTGCCTGGTCACAG
GCGCCGAGTCCAAAATCTACACTCGTTGCAAACTGGCAAAAATATTCTCGAGGGCTGGCCTG
GACAATTACTGGGGCTTCAGCCTTGGAAACTGGATCTGCATGGCATATTATGAGAGCCGGCTA
CAACACCACAGCCCCGACGGTCCTGGATGACGGCAGCATCGACTATGGCATCTTCCAGATCA
ACACCTTCGCGTGGTGCAGACCGCGGAAAGCTGAAGGAGAACAACCACTGCCATGTCGCCTGC
TCAGCCTTGATCACTGATGACCTCACAGATGCAATTATCTGTGCCAGGAAAATTGTTAAAGA
GACACAAGGAATGAACTATTGGCAAGGCTGGAAGAACATTGTTGAGGGCAGAGACCTGTCCG
AGTGGAAAAAAGGCTGTGAGGTTTCCTAAACTGGAACTGGACCCAGGATGCTTTTGCAGCAAC
GCCCTAGGATTTGCAGTGAATGTCCAAATGCCTGTGTCATCTTTTCCCGTTTCCTCCCAATA
TTCCTTCTCAAACTTGGAGAGAGGAAAATTAAGCTATACTTTTAAGAAAAATAATATTTCCAT

FIGURE 114

MKAAGILTLIGCLVTGAESKIYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYNTTAP TVLDDGSIDYGIFQINSFAWCRRGKLKENNHCHVACSALITDDLTDAIICARKIVKETQGMN YWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide:

amino acids 1-19

FIGURE 115

CAGGCCATTTGCATCCCACTGTCCTTGTGTTCGGAGCCAGGCCACACCGTCCTCAGCAGTGT CATGTGTTAAAAACGCCAAGCTGAATATATCATGCCCCTATTAAAACTTGTACATGGCTCCC CATTGGTTTTTGGAGAAAAGTTCAAGCTTTTTACCTTGGTGTCTGCCTGTATCCCAGTGTTC AGGCTGGCTAGACGGCGGAAGAAGATCCTATTTTACTGTCACTTCCCAGATCTGCTTCTCAC CAAGAGAGATTCTTTTCTTAAACGACTATACAGGGCCCCAATTGACTGGATAGAGGAATACA CCACAGGCATGCCAGACTGCATCTTAGTCAACAGCCAGTTCACAGCTGCTGTTTTTAAGGAA ACATTCAAGTCCCTGTCTCACATAGACCCTGATGTCCTCTATCCATCTCTAAATGTCACCAG CTTTGACTCAGTTGTTCCTGAAAAGCTGGATGACCTAGTCCCCAAGGGGAAAAAATTCCTGC TGCTCTCCATCAACAGATACGAAAGGAAGAAAATCTGACTTTGGCACTGGAAGCCCTAGTA CAGCTGCGTGGAAGATTGACATCCCAAGATTGGGAGAGGGTTCATCTGATCGTGGCAGGTGG TTATGACGAGAGTCCTGGAGAATGTGGAACATTATCAGGAATTGAAGAAAATGGTCCAAC AGTCCGACCTTGGCCAGTATGTGACCTTCTTGAGGTCTTTCTCAGACAAACAGAAAATCTCC CTCCTCCACAGCTGCACGTGTGTGTTTTACACACCAAGCAATGAGCACTTTGGCATTGTCCC TCTGGAAGCCATGTACATGCAGTGCCCAGTCATTGCTGTTAATTCGGGTGGACCCTTGGAGT CCATTGACCACAGTGTCACAGGGTTTCTGTGTGAGCCTGACCCGGTGCACTTCTCAGAAGCA AGTGAAGGAAAATTTTCCCCTGAAGCATTTACAGAACAGCTCTACCGATATGTTACCAAAC TGCTGGTA<u>TAA</u>TCAGATTGTTTTTAAGATCTCCATTAATGTCATTTTTATGGATTGTAGACC CAGTTTTGAAACCAAAAAGAAACCTAGAATCTAATGCAGAAGAGATCTTTTAAAAAAATAAA CTTGAGTCTTGAATGTGAGCCACTTTCCTATATACCACACCTCCCTGTCCACTTTTCAGAAA AACCATGTCTTTTATGCTATAATCATTCCAAATTTTGCCAGTGTTAAGTTACAAATGTGGTG TCATTCCATGTTCAGCAGAGTATTTTAATTATTTTTCTCGGGATTATTGCTCTTCTGTCTA TAAATTTTGAATGATACTGTGCCTTAATTGGTTTTCATAGTTTAAGTGTGTATCATTATCAA AGTTGATTAATTTGGCTTCATAGTATAATGAGAGCAGGGCTATTGTAGTTCCCAGATTCAAT CATAGCGAGAGTGCTCTGTATTTTTTTTAAGATAATTTGTATTTTTGCACACTGAGATATAA TAAAAGGTGTTTATCATAAAAAAAAAAAAAAAAAAAA

FIGURE 116

MPLLKLVHGSPLVFGEKFKLFTLVSACIPVFRLARRRKKILFYCHFPDLLLTKRDSFLKRLY
RAPIDWIEEYTTGMADCILVNSQFTAAVFKETFKSLSHIDPDVLYPSLNVTSFDSVVPEKLD
DLVPKGKKFLLLSINRYERKKNLTLALEALVQLRGRLTSQDWERVHLIVAGGYDERVLENVE
HYQELKKMVQQSDLGQYVTFLRSFSDKQKISLLHSCTCVLYTPSNEHFGIVPLEAMYMQCPV
IAVNSGGPLESIDHSVTGFLCEPDPVHFSEAIEKFIREPSLKATMGLAGRARVKEKFSPEAF
TEQLYRYVTKLLV

Signal peptide:

amino acids 1-15

FIGURE 117

 ${\tt GACTACGCCGATCCGAGACGTGGCTCCCTGGGCGGCAGAACC} \underline{{\tt ATG}} {\tt TTGGACTTCGCGATCTT}$ CGCCGTTACCTTCTTGCTGGCGTTGGTGGGAGCCGTGCTCTACCTCTATCCGGCTTCCAGAC AAGCTGCAGGAATTCCAGGGATTACTCCAACTGAAGAAAAAGATGGTAATCTTCCAGATATT GTGAATAGTGGAAGTTTGCATGAGTTCCTGGTTAATTTGCATGAGAGATATGGGCCTGTGGT CTCCTTCTGGTTTGGCAGGCGCCTCGTGGTTAGTTTGGGCACTGTTGATGTACTGAAGCAGC ATATCAATCCCAATAAGACATCGGACCCTTTTGAAACCATGCTGAAGTCATTATTAAGGTAT CAATCTGGTGGTGGCAGTGTGAAAACCACATGAGGAAAAAATTGTATGAAAATGGTGT GACTGATTCTCTGAAGAGTAACTTTGCCCTCCTCCTAAAGCTTTCAGAAGAATTATTAGATA ATGAAGTCTGTTACACAGATGGTAATGGGTAGTACATTTGAAGATGATCAGGAAGTCATTCG CTTCCAGAAGAATCATGGCACAGTTTGGTCTGAGATTGGAAAAGGCTTTCTAGATGGGTCAC TTGATAAAAACATGACTCGGAAAAAACAATATGAAGATGCCCTCATGCAACTGGAGTCTGTT TTAAGGAACATCATAAAAGAACGAAAAGGAAGGAACTTCAGTCAACATATTTTCATTGACTC CTTAGTACAAGGGAACCTTAATGACCAACAGATCCTAGAAGACAGTATGATATTTTCTCTGG CCAGTTGCATAATAACTGCAAAATTGTGTACCTGGGCAATCTGTTTTTTAACCACCTCTGAA GAAGTTCAAAAAAATTATGAAGAGATAAACCAAGTTTTTGGAAATGGTCCTGTTACTCC AGAGAAAATTGAGCAGCTCAGATATTGTCAGCATGTGCTTTGTGAAACTGTTCGAACTGCCA AACTGACTCCAGTTTCTGCCCAGCTTCAAGATATTGAAGGAAAAATTGACCGATTTATTATT CCTAGAGAGACCCTCGTCCTTTATGCCCTTGGTGTGCTACTTCAGGATCCTAATACTTGGCC ATCTCCACACAAGTTTGATCCAGATCGGTTTGATGATGAATTAGTAATGAAAACTTTTTCCT CACTTGGATTCTCAGGCACACAGGAGTGTCCAGAGTTGAGGTTTGCATATATGGTGACCACA GTACTTCTTAGTGTATTGGTGAAGAGACTGCACCTACTTTCTGTGGAGGGACAGGTTATTGA AACAAAGTATGAACTGGTAACATCATCAAGGGAAGAAGCTTGGATCACTGTCTCAAAGAGAT AT**TAA**AATTTTATACATTTAAAATCATTGTTAAATTGATTGAGGAAAACAACCATTTAAAAA AAATCTATGTTGAATCCTTTTATAAACCAGTATCACTTTGTAATATAAACACCTATTTGTAC TTAA

FIGURE 118

MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGITPTEEKDGNLPDIVNSGSLHEFLVNLH
ERYGPVVSFWFGRRLVVSLGTVDVLKQHINPNKTSDPFETMLKSLLRYQSGGGSVSENHMRK
KLYENGVTDSLKSNFALLLKLSEELLDKWLSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFE
DDQEVIRFQKNHGTVWSEIGKGFLDGSLDKNMTRKKQYEDALMQLESVLRNIIKERKGRNFS
QHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQKKLYEEINQVF
GNGPVTPEKIEQLRYCQHVLCETVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVL
QDPNTWPSPHKFDPDRFDDELVMKTFSSLGFSGTQECPELRFAYMVTTVLLSVLVKRLHLLS
VEGQVIETKYELVTSSREEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

FIGURE 119

FIGURE 120

 ${\tt MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLG} \\ LFAVELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVT \\ EMALFVTVFGLKKKPF$

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 121

FIGURE 122

MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALASECAQHLSLPLRYVVVSHT AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGEDGLVYEGRGWNFTGAHSGHLWNP MSIGISFMGNYMDRVPTPQAIRAAQGLLACGVAQGALRSNYVLKGHRDVQRTLSPGNQLYHL IQNWPHYRSP

Signal peptide:

amino acids 1-20

FIGURE 123

GACTCGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGG ATGATGGTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCCAGCCCCGGCCC CGGGTGCCTCGGAAGCGGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCT CCTAGGGCTGCTGGCCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCCAACCGCC CGAACCACAGCCCCCACCCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGCGACTTCTAC TCCAACATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAA TGGGACCTTCAGCGTCCACTTCCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCC TCGTGCCCCCAGTAAAGCTGTAGAGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAG GCCTCCAAAATCTTCAACTGCCGGATGGAGTGGAGAAGGTAGAACGGGGCCGCCGGACCTC GCTTTGCACCCACGACCCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCAGCCACCT GGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTGTCTACATCGCCTTCTACAGCACGGACTAT CGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTACCATAGTGATACCCCCTACTACCCATC TGGGTGACCCGGGGCAGGCCAGAGGCCAGGCCAGGGCTGGAAGGACAGGCCTGCCCATGC ACGAGGAGATGCCAAGTGGGGCCAAGTCTCAAGTGGCAGAAAAGGGTCCCAAGTG CTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGTGGGCT CTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGGTCCCCGAGGCC TGTGGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGCCCTTGGTT CTTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGGAGATTTCATCAGTGTGGACAGCCTG TCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGGGC CAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCGCCCTTGAGCCCCTTGTCGTGTGCTGAGCATG GCATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTC CAGCCAGGCCACCCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATT GCTGATGGCACACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCC ACAGCCCATCCGCGTGCTGTGTGTCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAG CATCCATGTCCCGGAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCC CGGATCTGGATGGCGCCGCCTCTCAGCAGCGGGCACGGGTGGGGCGGGGCCGGGCCGCAGA GAAACCGCTGATTGCTGACTTTTGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTT GCCCCGGGGCA

FIGURE 124

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521

><subunit 1 of 1, 252 aa, 1 stop

><MW: 28127, pI: 8.91, NX(S/T): 5

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMAN STLLGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVD HGNGTFSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGR RTSLCTHDPAKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPY YPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 125

GTGAATGTGAGGGTTTGATGACTTTCAGATGTCTAGGAACCAGAGTGGGTGCAGGGGCCCCA GGCAGGGCTGATTCTTGGGCGGAGGAGAGTAGGGTAAAGGGTTCTGCATGAGCTCCTTAAAG GACAAAGGTAACAGAGCCAGCGAGAGAGCTCGAGGGGAGACTTTGACTTCAAGCCACAGAAT TGGTGGAAGTGTGCGCGCCGCCGCCGTCGTCCTCCTGCAGCGCTGTCGACCTAGCCGCTAG CATCTTCCCGAGCACCGGGATCCCGGGGTAGGAGGCGACGCGGGCGAGCACCAGCGCCAGCC GGCTGCGGCTGCCCACACGGCTCACCATGGGCTCCGGGCGCGCGGGCGCTGTCCGCGGTGCCG GCCGTGCTGCTGGTCCTCACGCTGCCGGGGCTGCCCGTCTGGGCACAGAACGACACGGAGCC CATCGTGCTGGAGGGCAAGTGTCTGGTGGTGTGCGACTCGAACCCGGCCACGGACTCCAAGG GCTCCTCTTCCTCCCCGCTGGGGATATCGGTCCGGGCGGCCAACTCCAAGGTCGCCTTCTCG GCGGTGCGGAGCACCAACCACGAGCCATCCGAGATGAGCAACAAGACGCGCATCATTTACTT GAAAAGGAATTTACAGTTTCCAGTTTTCACGTGATTAAAGTCTACCAGAGCCAAACTATCCAG GTTAACTTGATGTTAAATGGAAAACCAGTAATATCTGCCTTTGCGGGGGACAAAGATGTTAC TCGTGAAGCTGCCACGAATGGTGTCCTGCTCTACCTAGATAAAGAGGATAAGGTTTACCTAA AACTGGAGAAAGGTAATTTGGTTGGAGGCTGGCAGTATTCCACGTTTTCTGGCTTTCTGGTG TTCCCCCTATAGGATTCAATTTCTCCATGATGTTCATCCAGGTGAGGGATGACCCACTCCTG AGTTATTGGAAGATCATTTTTCATCATTGGATTGATGTCTTTTATTGGTTTCTCATGGGTG GATATGGATTCTAAGGATTCTAGCCTGTCTGAACCAATACAAAATTTCACAGATTATTTGTG TGTGTCTGTTTCAGTATATTTGGATTGGGACTCTAAGCAGATAATACCTATGCTTAAATGTA ACAGTCAAAAGCTGTCTGCAAGACTTATTCTGAATTTCATTTCCTGGGATTACTGAATTAGT TACAGATGTGGAATTTTATTTGTTTAGTTTTAAAAGACTGGCAACCAGGTCTAAGGATTAGA AAACTCTAAAGTTCTGACTTCAATCAACGGTTAGTGTGATACTGCCAAAGAACTGTATACTG AAAACTTGGATTTTTTTTTTCAGTAACTGGTATTATGTTTTCTCTTAAAATAAGGTAATGAA GAATGCTTCATAGTTGTATTTTAATTGTATATGTGAAAGAGTCATATTTTCCAAGTTATATT TTCTAAGAAGAAGAATAGATCATAAATCTGACAAGGAAAAAGTTGCTTACCCAAAATCTAAG TGCTCAATCCCTGAGCCTCAGCAAACAGCTCCCCTCCGAGGGAAATCTTATACTTTATTGC - TCCGTAGACATGACCACTTTATTAACTGGTGGTGGGATGCTGTTGTTTCTAATTATACCTAT TTTTCAAGGCTTCTGTTGTATTTGAAGTATCATCTGGTTTTGCCTTAACTCTTTAAATTGTA TATATTTATCTGTTTAGCTAATATTAAATTCAAATATCCCATATCTAAATTTAGTGCAATAT TTAATATATGTTAAAAAAA

FIGURE 126

MGSGRRALSAVPAVLLVLTLPGLPVWAQNDTEPIVLEGKCLVVCDSNPATDSKGSSSSPLGI SVRAANSKVAFSAVRSTNHEPSEMSNKTRIIYFDQILVNVGNFFTLESVFVAPRKGIYSFSF HVIKVYQSQTIQVNLMLNGKPVISAFAGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVG GWQYSTFSGFLVFPL

Signal peptide:

amino acids 1-27

FIGURE 127

FIGURE 128

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658

><subunit 1 of 1, 257 aa, 1 stop

><MW: 28472, pI: 9.33, NX(S/T): 0

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDN KDGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGF GIMSGVFSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKW GILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKN FLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

 Sodium:neurotransmitter symporter family protein amino acids 31-65

FIGURE 129

CGGCAACCAGCCGCCACCACCGCTGCCACTGCCGCCCTGCCGGGGCCATGTTCGCTCTGGGCTTGCCCTTC TTGGTGCTCTTGGTGGCCTCGGTCGAGAGCCATCTGGGGGGTTCTGGGGGCCCAAGAACGTCTCGCAGAAAGACGC CGAGTTTGAGCGCACCTACGTGGACGAGGTCAACAGCGAGCTGGTCAACATCTACACCTTCAACCATACTGTGA CCCGCAACAGGACAGAGGGCGTGCGTGTGTCTGTGAACGTCCTGAACAAGCAGAAGGGGGCGCCGTTGCTGTTT GTGGTCCGCCAGAAGGAGGCTGTGGTGTCCTTCCAGGTGCCCCTAATCCTGCGAGGGATGTTTCAGCGCAAGTA CCTCTACCAAAAAGTGGAACGAACCCTGTGTCAGCCCCCCACCAAGAATGAGTCGGAGATTCAGTTCTTCTACG TGGATGTGTCCACCCTGTCACCAGTCAACACCACATACCAGCTCCGGGTCAGCCGCATGGACGATTTTGTGCTC AGGACTGGGGAGCAGTTCAGCTTCAATACCACAGCAGCACCAGCACCAGTACTTCAAGTATGAGTTCCCTGAAGG CGTGGACTCGGTAATTGTCAAGGTGACCTCCAACAAGGCCTTCCCCTGCTCAGTCATCTCCATTCAGGATGTGC TGTGTCCTGTCTATGACCTGGACAACGTAGCCTTCATCGGCATGTACCAGACGATGACCAAGAAGGCGGCC ATCACCGTACAGCGCAAAGACTTCCCCAGCAACAGCTTTTATGTGGTGGTGGTGATGAAGACCGAAGACCAAGC CTGCGGGGGCTCCCTGCCTTTCTACCCCTTCGCAGAAGATGAACCGGTCGATCAAGGGCACCGCCAGAAAACCC TGTCAGTGCTGGTGTCTCAAGCAGTCACGTCTGAGGCATACGTCAGTGGGATGCTCTTTTGCCTGGGTATATTT CTCTCCTTTTACCTGCTGACCGTCCTCCTGGCCTGCTGGGAGAACTGGAGGCAGAAGAAGAACACCTGCTGGT GGCCATTGACCGAGCCTGCCCAGAAAGCGGTCACCCTCGAGTCCTGGCTGATTCTTTTCCTGGCAGTTCCCCTT ATGAGGGTTACAACTATGGCTCCTTTGAGAATGTTTCTGGATCTACCGATGGTCTGGTTGACAGCGCTGGCACT GGGGACCTCTCTTACGGTTACCAGGGCCGCTCCTTTGAACCTGTAGGTACTCGGCCCCGAGTGGACTCCATGAG CTCTGTGGAGGAGGATGACTACGACACATTGACCGACATCGATTCCGACAAGAATGTCATTCGCACCAAGCAAT ACCTCTATGTGGCTGACCTGGCACGGAAGGACAAGCGTGTTCTGCGGAAAAAGTACCAGATCTACTTCTGGAAC ATTGCCACCATTGCTGTCTTCTATGCCCTTCCTGTGGTGCAGCTGGTGATCACCTACCAGACGGTGGTGAATGT ACATCCTCAGCAACCTGGGGTACATCCTGCTGGGGCTGCTTTTCCTGCTCATCATCCTGCAACGGGAGATCAAC CACAACCGGGCCCTGCTGCGCAATGACCTCTGTGCCCTGGAATGTGGGATCCCCAAACACTTTGGGCTTTTCTA TCCAGTTTGACACATCGTTCATGTACATGATCGCCGGACTCTGCATGCTGAAGCTCTACCAGAAGCGGCACCCG CTTTGGCAAAGGGAACACGGCGTTCTGGATCGTCTTCTCCATCATTCACATCATCGCCACCCTGCTCCTCAGCA CGCAGCTCTATTACATGGGCCGGTGGAAACTGGACTCGGGGATCTTCCGCCGCATCCTCCACGTGCTCTACACA GACTGCATCCGGCAGTGCAGCGGGCCGCTCTACGTGGACCGCATGGTGCTGCTGGTCATGGGCAACGTCATCAA CTGGTCGCTGCCTATGGCCTTATCATGCGCCCCAATGATTTCGGTTCCTACTTGTTGGCCATTGGCATCT GCAACCTGCTCCTTTACTTCGCCTTCTACATCATCATGAAGCTCCGGAGTGGGGAGAGGATCAAGCTCATCCCC GCAGAAAACCCCTGCAGAGTCGAGGGAGCACAACCGGGACTGCATCCTCCGACTTCTTTGACGACCACGACA ACTGTGCAGCGGGACAAGATCTATGTCTTC<u>TAG</u>CAGGAGCTGGGCCCTTCGCTTCACCTCAAGGGGCCCTGAGC TCCTTTGTGTCATAGACCGGTCACTCTGTCGTGCTGTGGGGATGAGTCCCAGCACCGCTGCCCAGCACTGGATG GCAGCAGGACAGCCAGGTCTAGCTTAGGCTTGGCCTGGGACAGCCATGGGGTGGCATGGAACCTTGCAGCTGCC CTCTGCCGAGGAGCAGGCCTGCTCCCCTGGAACCCCCAGATGTTGGCCAAATTGCTGCTTTCTTCAGTGTTG CCCCATTTCATGCCTTGCATTTTGCCCGTCCTCCTCCCCACAATGCCCCAGCCTGGGACCTAAGGCCTCTTTTT CCTCCCATACTCCACTCCAGGGCCTAGTCTGGGGCCTGAATCTCTGTCCTGTATCAGGGCCCCAGTTCTCTTT GCCAGCTGGTGCCAGACTTTTGGTGCTAAGGCCTGCAAGGGGCCTGGGGCAGTGCGTATTCTCTTCCCTCTGAC CTGTGCTCAGGGCTGGCTCTTTAGCAATGCGCTCAGCCCAATTTGAGAACCGCCTTCTGATTCAAGAGGGCTGAA CCCCTTCCCTTCCTTTCCAGGCCCTTAGTCTTGCCAAACCCCAGCTGGTGGCCTTTCAGTGCCATTGACAC TGCCCAAGAATGTCCAGGGGCAAAGGAGGGATGATACAGAGTTCAGCCCGTTCTGCCTCCACAGCTGTGGGCAC CCCAGTGCCTACCTTAGAAAGGGGCTTCAGGAAGGGATGTGCTGTTTCCCTCTACGTGCCCAGTCCTAGCCTCG TACCTATGAAACCTTGGAGTTTACAAAGAATTGCCCCAGCTCTGGGCACCCTGGCCACCCTGGTCCTTGGATCC AATGTGTTTTTCTCCCAAACTTGTTTTTATAGCTCTGCTTGAAGGGCTGGGAGATGAGGTGGGTCTGGATCTTT TCAAAAAAAAAAAAAA

FIGURE 130

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66659

><subunit 1 of 1, 832 aa, 1 stop

><MW: 94454, pI: 6.94, NX(S/T): 12

MFALGLPFLVLLVASVESHLGVLGPKNVSQKDAEFERTYVDEVNSELVNIYTFNHTVTRNRT
EGVRVSVNVLNKQKGAPLLFVVRQKEAVVSFQVPLILRGMFQRKYLYQKVERTLCQPPTKNE
SEIQFFYVDVSTLSPVNTTYQLRVSRMDDFVLRTGEQFSFNTTAAQPQYFKYEFPEGVDSVI
VKVTSNKAFPCSVISIQDVLCPVYDLDNNVAFIGMYQTMTKKAAITVQRKDFPSNSFYVVVV
VKTEDQACGGSLPFYPFAEDEPVDQGHRQKTLSVLVSQAVTSEAYVSGMLFCLGIFLSFYLL
TVLLACWENWRQKKKTLLVAIDRACPESGHPRVLADSFPGSSPYEGYNYGSFENVSGSTDGL
VDSAGTGDLSYGYQGRSFEPVGTRPRVDSMSSVEEDDYDTLTDIDSDKNVIRTKQYLYVADL
ARKDKRVLRKKYQIYFWNIATIAVFYALPVVQLVITYQTVVNVTGNQDICYYNFLCAHPLGN
LSAFNNILSNLGYILLGLLFLLIILQREINHNRALLRNDLCALECGIPKHFGLFYAMGTALM
MEGLLSACYHVCPNYTNFQFDTSFMYMIAGLCMLKLYQKRHPDINASAYSAYACLAIVIFFS
VLGVVFGKGNTAFWIVFSIIHIIATLLLSTQLYYMGRWKLDSGIFRRILHVLYTDCIRQCSG
PLYVDRMVLLVMGNVINWSLAAYGLIMRPNDFASYLLAIGICNLLLYFAFYIIMKLRSGERI
KLIPLLCIVCTSVVWGFALFFFFQGLSTWQKTPAESREHNRDCILLDFFDDHDIWHFLSSIA

Important features of the protein:

Signal peptide:

amino acids 1-18

Transmembrane domains:

amino acids 292-317, 451-470, 501-520, 607-627, 751-770

Leucine zipper pattern.

amino acids 497-518

N-glycosylation sites.

amino acids 27-30, 54-57, 60-63, 123-126, 141-144, 165-168, 364-367, 476-479, 496-499, 572-575, 603-606, 699-702

FIGURE 131

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGC TCTCTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGGGCCTGTCCTG ACCATGTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCCAGGCTCTCCCCAAGGC CCAGCCTGCAGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACC TGACCAAGTTGCCGCTGCCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCA GGCAAGGCAACTGAGGGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAG GGCCCTGGACCGAGAGGAGCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATG GACATGTCTTGTGGGGTCCACAGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTG CCCCATTTCTCTCAAGCCATCTACAGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCC CTTCCTCTTCCTTGAGGCTTCAGACCGGGATGAGCCAGGCACAGCCAACTCGGATCTTCGAT TCCACATCCTGAGCCAGGCTCCAGCCCAGCCTTCCCCAGACATGTTCCAGCTGGAGCCTCGG CTGGGGGCTCTGGCCCTCAGCCCCAAGGGGAGCACCAGCCTTGACCACGCCCTGGAGAGGAC CTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGACCAGGCCTCAGGCCACCAGGCCACTG CCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGTCCCTAGAGCCTATCCACCTGGCA GAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTACACTGGAGTGGGGGTGATGT GCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAATGCAGAGGGAAACCTCT ACGTGACCAGAGAGCTGGACAGAGAAGCCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAG TGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCTCAGTCCAC CAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCAGATGCCCCCGGCTCCCCCAATTCC CACGTTGTGTATCAGCTCCTGAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTCCA GGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACA TCCTGCTTCTGGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGT GAAGTCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACCTTCCCAGAT TGGGCCTATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCA TTGATGCTGACCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACA GAAGGGACTTTTGGCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAA GAACCTCAGTTATGAGGCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGCGA AGCTGGTGGGGCCAGGCCCAGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGA - GTGATGCCACCCCCAAGTTGGACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCC AGCCGGCTCTTTCCTGCTGACCATCCAGCCCTCCGACCCCATCAGCCGAACCCTCAGGTTCT CCCTAGTCAATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCCGGGGAGGTGCACACC GCCCAGTCCCTGCAGGGCGCCCAGCCTGGGGACACCTACACGGTGCTTGTGGAGGCCCAGGA TACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAATACCTCTGCACACCCCGCCAAGACCATG GCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCTGGCCAGTGGGCACGGTCCCTACAGC TTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGCGCCTCCAGACTCTCAATGGTTC CCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGAGCCACGTGAACACATAATCCCCGTGG TGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGATCGTGTCGCTGCAAC GTGGAGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGGCATGCCCACGAAGCTGTCGGC AGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTCATTTTCACCC ACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCTGAAGGCG ACTGTCTGATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTCCC CTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAAC TTTATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCA

FIGURE 132

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSG

KATEGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVP

HFSQAIYRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRL

GALALSPKGSTSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAE

NLKVLYPHHMAQVHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQN

SHGEDYAAPLELHVLVMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSH

VVYQLLSPEPEDGVEGRAFQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCE

VEVAVTDINDHAPEFITSQIGPISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTE

GTFGLDWEPDSGHVRLRLCKNLSYEAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERV

MPPPKLDQESYEASVPISAPAGSFLLTIQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTA

QSLQGAQPGDTYTVLVEAQDTALTLAPVPSQYLCTPRQDHGLIVSGPSKDPDLASGHGPYSF

TLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEPREHIIPVVVSHNAQMWQLLVRVIVCRCNV

EGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLILIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 133

 $\texttt{CCGGGGAC} \underline{\textbf{ATG}} \\ \texttt{AGGTGGATACTGTTCATTGGGGCCCTTATTGGGTCCAGCATCTGTGGCCAA} \\$ GAAAAATTTTTTGGGGACCAAGTTTTGAGGATTAATGTCAGAAATGGAGACGAGATCAGCAA AGATCCCAGGGCTTAGAGTACGCAGTGACAATTGAGGACCTGCAGGCCCTTTTAGACAATGA AGATGATGAAATGCAACAATGAAGGGCAAGAACGGAGCAGTAATAACTTCAACTACGGGG CAGCACTGGGAAAGGCGTGAGGCGGCCGTTTGGCTGAATGCAGGCATCCATTCCCGAG AGTGGATCTCCCAGGCCACTGCAATCTGGACGGCAAGGAAGATTGTATCTGATTACCAGAGG GATCCAGCTATCACCTCCATCTTGGAGAAAATGGATATTTTCTTGTTGCCTGTGGCCAATCC TGATGGATATGTGTATACTCAAACTCAAAACCGATTATGGAGGAAGACGCGGTCCCGAAATC CTGGAAGCTCCTGCATTGGTGCTGACCCAAATAGAAACTGGAACGCTAGTTTTTGCAGGAAAG GGAGCCAGCGACAACCCTTGCTCCGAAGTGTACCATGGACCCCACGCCAATTCGGAAGTGGA GGTGAAATCAGTGGTAGATTTCATCCAAAAACATGGGAATTTCAAGGGCTTCATCGACCTGC ACAGCTACTCGCAGCTGCTGATGTATCCATATGGGTACTCAGTCAAAAAGGCCCCAGATGCC GAGGAACTCGACAAGGTGGCGAGGCTTGCGGCCAAAGCTCTGGCTTCTGTGTCGGCCACTGA GTACCAAGTGGGTCCCACCTGCACCACTGTCTATCCAGCTAGCGGGAGCAGCATCGACTGGG CGTATGACAACGGCATCAAATTTGCATTCACATTTGAGTTGAGAGATACCGGGACCTATGGC TTCCTCCTGCCAGCTAACCAGATCATCCCCACTGCAGAGGAGACGTGGCTGGGGCTGAAGAC ${\tt CATCATGGAGCATGTGCGGGACAACCTCTAC} \underline{{\tt TAG}} \underline{{\tt GCGATGGCTCTGCTCTACTTTAT}$ TTGTACCCACACGTGCACGCACTGAGGCCATTGTTAAAGGAGCTCTTTCCTACCTGTGTGAG $\tt CGTGTGTCCTGGCGGTGTCCCTGCAAGAACTGGTTCTGCCAGCCTGCTCAATTTTGGTCCTG$ AGCATCACCCCTTCCTGGGTGGCATGTCTCTCTCTCTCATTTTTAGAACCAAAGAACATC TGAGATGATTCTCTACCCTCATCCACATCTAGCCAAGCCAGTGACCTTGCTCTGGTGGCACT GTGGGAGACACCACTTGTCTTTAGGTGGGTCTCAAAGATGATGTAGAATTTCCTTTAATTTC TCGCAGTCTTCCTGGAAAATATTTTCCTTTGAGCAGCAAATCTTGTAGGGATATCAGTGAAG ·GTCTCTCCCTCCTCTCTCTGTTTTTTTTTTTTTTTGAGACAGAGTTTTGCTCTTGTTGCC CAGGCTGGAGTGTGATGGCTCGATCTTGGCTCACCACAACCTCTGCCTCCTGGGTTCAAGCA ATTCTCCTGCCTCAGCCTCTTGAGTAGCTTGGTTTATAGGCGCATGCCACCATGCCTGGCTA ATTTTGTGTTTTTAGTAGAGACAGGGTTTCTCCATGTTGGTCAGGCTGGTCTCAAACTCCCA ACCTCAGGTGATCTGCCCTCCTTGGCCTCCCAGAGTGCTGGGATTACAGGTGTGAGCCACTG TGCCGGGCCCGTCCCTTTTTTAGGCCTGAATACAAAGTAGAAGATCACTTTCCTTCAC ACCAGGATGGCGGAGGGGATCTGTGTCACTGTAGGTACTGTGCCCAGGAAGGCTGGGTGAA GTGACCATCTAAATTGCAGGATGGTGAAATTATCCCCATCTGTCCTAATGGGCTTACCTCCT CTTTGCCTTTTGAACTCACTTCAAAGATCTAGGCCTCATCTTACAGGTCCTAAATCACTCAT CTGGCCTGGATAATCTCACTGCCCTGGCACATTCCCATTTGTGCTGTGTGTATCCTGTGTT TCTGTCTATTTTGTATCCTGGACCACAGTTCCTAAGTAGAGCAAGAATTCATCAACCAGCT TTGTTTTTTTGCTTTTACCAAACATGTCTGTAAATCTTAACCTCCTGCCTAGGATTTGTACA

FIGURE 134

MRWILFIGALIGSSICGQEKFFGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSFNR
PVDVLVPSVSLQAFKSFLRSQGLEYAVTIEDLQALLDNEDDEMQHNEGQERSSNNFNYGAYH
SLEAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKGVRRPAVWLNAGIHSREWI
SQATAIWTARKIVSDYQRDPAITSILEKMDIFLLPVANPDGYVYTQTQNRLWRKTRSRNPGS
SCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQKHGNFKGFIDLHSY
SQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTEYQVGPTCTTVYPASGSSIDWAYD
NGIKFAFTFELRDTGTYGFLLPANQIIPTAEETWLGLKTIMEHVRDNLY

Signal peptide:

amino acids 1-16

FIGURE 135

CAACCATGCAAGGACAGGGCAGGAGAAGAGGAACCTGCAAAGACATATTTTGTTCCAAAATG GCATCTTACCTTTATGGAGTACTCTTTGCTGTTGGCCTCTGTGCTCCAATCTACTGTGTGTC CCCGGCCAATGCCCCCAGTGCATACCCCCGCCTTCCTCCACAAAGAGCACCCCTGCCTCAC AGGTGTATTCCCTCAACACCGACTTTGCCTTCCGCCTATACCGCAGGCTGGTTTTGGAGACC CCGAGTCAGAACATCTTCTCTCCCCTGTGAGTGTCTCCACTTCCCTGGCCATGCTCTCCCT AAAGACCTGACCTTGAAGATGGGAAGTGCCCTCTTCGTCAAGAAGGAGCTGCAGCTGCAGGC AAATTTCTTGGGCAATGTCAAGAGGCTGTATGAAGCAGAAGTCTTTTCTACAGATTTCTCCA ACCCCTCCATTGCCCAGGCGAGGATCAACAGCCATGTGAAAAAGAAGACCCAAGGGAAGGTT GTAGACATAATCCAAGGCCTTGACCTTCTGACGGCCATGGTTCTGGTGAATCACATTTTCTT TGGGCGAGCAGGTCACTGTGCAAGTCCCCATGATGCACCAGAAAGAGCAGTTCGCTTTTGGG GTGGATACAGAGCTGAACTGCTTTGTGCTGCAGATGGATTACAAGGGAGATGCCGTGGCCTT CTTTGTCCTCCCTAGCAAGGGCAAGATGAGGCAACTGGAACAGGCCTTGTCAGCCAGAACAC TGATAAAGTGGAGCCACTCACTCCAGAAAAGGTGGATAGAGGTGTTCATCCCCAGATTTTCC ${\tt ATTTCTGCCTCCTACAATCTGGAAACCATCCTCCCGAAGATGGGCATCCAAAATGCCTTTGA}$ CAAAAATGCTGATTTTTCTGGAATTGCAAAGAGAGACTCCCTGCAGGTTTCTAAAGCAACCC ACAAGGCTGTGCTGGATGTCAGTGAAGAGGGCACTGAGGCCACAGCAGCTACCACCAAG TTCATAGTCCGATCGAAGGATGGTCCCTCTTACTTCACTGTCTCCTTCAATAGGACCTTCCT GATGATGATTACAAATAAAGCCACAGACGGTATTCTCTTTCTAGGGAAAGTGGAAAATCCCA CTAAATCCTAGGTGGGAAATGGCCTGTTAACTGATGGCACATTGCTAATGCACAAGAAATAA CAAACCACATCCTCTTTCTGTTCTGAGGGTGCATTTGACCCCAGTGGAGCTGGATTCGCTG GCAGGGATGCCACTTCCAAGGCTCAATCACCAAACCATCAACAGGGACCCCAGTCACAAGCC AACACCCATTAACCCCAGTCAGTGCCCTTTTCCACAAATTCTCCCAGGTAACTAGCTTCATG GGATGTTGCTGGGTTACCATATTTCCATTCCTTGGGGCTCCCAGGAATGGAAATACGCCAAC CCAGGTTAGGCACCTCTATTGCAGAATTACAATAACACATTCAATAAAACTAAAATATGAAT AAAAAA

FIGURE 136

MASYLYGVLFAVGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLVLE
TPSQNIFFSPVSVSTSLAMLSLGAHSVTKTQILQGLGFNLTHTPESAIHQGFQHLVHSLTVP
SKDLTLKMGSALFVKKELQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVKKKTQGK
VVDIIQGLDLLTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMMHQKEQFAF
GVDTELNCFVLQMDYKGDAVAFFVLPSKGKMRQLEQALSARTLIKWSHSLQKRWIEVFIPRF
SISASYNLETILPKMGIQNAFDKNADFSGIAKRDSLQVSKATHKAVLDVSEEGTEATAATTT
KFIVRSKDGPSYFTVSFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide:
amino acids 1-20

FIGURE 137

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGC CTGAGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAG CCTTTATCTCTTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAG TCTTGGTACATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACACATGAAGAGACAC AGAAAGGAAATGTTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCC AATGAGACTAGCACCTCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACAGC CACCAACTCTGGGTCCAGTGTGACCTCCAGTGGGGTCAGCACAGCCACCATCTCAGGGTCCA GCGTGACCTCCAATGGGGTCAGCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGG ATCAGCACAGCCACCAACTCTGAGTTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAA CCTCCAGTGGGGCCAGCACAGTCACCAACTCTGGGTCCAGTGTGACCTCCAGTGGAGCCAGC ACTGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCAACTCTGA GTCTAGCACACTCTCCAGTGGGGCCAGCACAGCCACCAACTCTGACTCCAGCACAACCTCCA GTGGGGCTAGCACAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACAGCC ACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGAGTCCAG CACAACCTCCAGTGGGGCCAGCACCACCAACTCTGAGTCCAGAACGACCTCCAATGGGG CTGGCACAGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCCAGCACAGCCACCAAC TCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACGAC CTCCAGTGGGGCCAGCACCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCTAGCA CAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCACCAACTCTGAG TCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCCAG TGGGGCCAACACAGCCACCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCCAACACAGCCA CCAACTCTGAGTCCAGCACTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGC ACAACCTCCAGTGGGGTCAGCACAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGC TAGCACAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACAGCCACCAACT $\tt CTGAGTCTAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACCAACCA$ TCCAGTGGGGCCAACAGCCACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAAC AGCCTGGTGGGTCCCTGGTGCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCG -GCCGTGGGGCTCTTTGCTGGGCTCTTCTTCTGTGAGAAACAGCCTGTCCCTGAGAAACAC CTTTAACACAGCTGTCTACCACCCTCATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAG GGAATCATGGAGCCCCCACAGGCCCAGGTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTA TCATCGATAGCCATGGAGATGAGCGGGAGGAACAGCGGGCCC<u>TGA</u>GCAGCCCCGGAAGCAAG CCAGGAGACCCCTCCCAGCTTTGTTTGAGATCCTGAAAATCTTGAAGAAGGTATTCCTCACC TTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATATTGCTCATTTAGCTAAGAAATAA CTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTCCATCTGGCATTCAAAA AAAAAAAAAAAAA

FIGURE 138

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATI
SGSSVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSE
SSTPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSS
TTSSGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTT
SNGAGTATNSESSTTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSS
GASTATNSDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGA
NTATNSESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEAST
ATNSESSTVSSGISTVTNSESSTTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAV
SEAKPGGSLVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGP
GPGGNHGAPHRPRWSPNWFWRRPVSSIAMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 139

GGGAGAGAGGATAAATAGCAGCGTGGCTTCCCTGGCTCCTCTCTGCATCCTTCCCGACCTTC CCAGCAATATGCATCTTGCACGTCTGGTCGGCTCCTGCTCCCTTCTGCTACTGGGGGCC CTGTCTGGATGGCCGCCAGCGATGACCCCATTGAGAAGGTCATTGAAGGGATCAACCGAGG GCTGAGCAATGCAGAGAGAGAGGTGGGCAAGGCCCTGGATGGCATCAACAGTGGAATCACGC ATGCCGGAAGGGAAGTGGAGAAGGTTTTCAACGGACTTAGCAACATGGGGAGCCACACCGGC AAGGAGTTGGACAAAGGCGTCCAGGGGCTCAACCACGGCATGGACAAGGTTGCCCATGAGAT CAACCATGGTATTGGACAAGCAGGAAAGGAAGCAGAGAAGCTTGGCCATGGGGTCAACAACG CTGCTGGACAGGCCGGGAAGGAAGCAGACAAAGCGGTCCAAGGGTTCCACACTGGGGTCCAC CAGGCTGGGAAGGAAGCAGAGAAACTTGGCCAAGGGGTCAACCATGCTGCTGACCAGGCTGG AAAGGAAGTGGAGAAGCTTGGCCAAGGTGCCCACCATGCTGGCCAGGCCGGGAAGGAGC TGCAGAATGCTCATAATGGGGTCAACCAAGCCAGCAAGGAGGCCAACCAGCTGCTGAATGGC AACCATCAAAGCGGATCTTCCAGCCATCAAGGAGGGGCCACAACCACGCCGTTAGCCTCTGG GGCCTCAGTCAACACGCCTTTCATCAACCTTCCCGCCCTGTGGAGGAGCGTCGCCAACATCA TGCCCTAAACTGGCATCCGGCCTTGCTGGGAGAATAATGTCGCCGTTGTCACATCAGCTGAC ATGACCTGGAGGGGTTGGGGGTGGGGGACAGGTTTCTGAAATCCCTGAAGGGGGTTGTACTG GGATTTGTGAATAAACTTGATACACCA

FIGURE 140

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66675</pre>

><subunit 1 of 1, 247 aa, 1 stop

><MW: 25335, pI: 7.00, NX(S/T): 0

MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITHAG REVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAG QAGKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAGKELQN AHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWRSVANIMP

Important features of the protein:

Signal peptide:

amino acids 1-25

Homologous region to circumsporozoite (CS) repeats: amino acids 35-225

FIGURE 141

CTCCGGGTCCCCAGGGGCTGCCCGGGCCGGCCTGGCAAGGGGGACGAGTCAGTGGACACTCCAGGAAGAGCGG CGGGGGCGGACCGCGGGGGGGGGGCTGCCGCCCGTGAGTCCGGCCGAGCCACCTGAGCCCGAGCCGCGGGACACC GCCGCCTCGGCCACCGCTGCTGCTCCTGCTGCTGCTGCTCCTGCTGCAGCCGCCGCCTCCGACCTGGGCGC TCAGCCCCGGATCAGCCTGCCTCTGGGCTCTGAAGAGCGGCCATTCCTCAGATTCGAAGCTGAACACATCTCC AACTACACGCCCTTCTGCTGAGCAGGGATGGCAGGACCCTGTACGTGGGTGCTCGAGAGGCCCTCTTTGCACT CAGTAGCAACCTCAGCTTCCTGCCAGGCGGGGAGTACCAGGAGCTGCTTTGGGGTGCAGACGCAGAGAAAAC AGCAGTGCAGCTTCAAGGGCCAGGGACCCACAGCGGGACTGTCAAAACTACATCAAGATCCTCCTGCCGCTCAGC GGCAGTCACCTGTTCACCTGTGGCACAGCAGCCTTCAGCCCCATGTGTACCTACATCAACATGGAGAACTTCAC CCTGGCAAGGGACGAGAAGGGGAATGTCCTCCTGGAAGATGGCAAGGGCCGTTGTCCCTTCGACCCGAATTTCA AGTCCACTGCCCTGGTGGTTGATGGCGAGCTCTACACTGGAACAGTCAGCAGCTTCCAAGGGAATGACCCGGCC ATCTCGCGGAGCCAAAGCCTTCGCCCCACCAAGACCGAGAGCTCCCTCAACTGGCTGCAAGACCCAGCTTTTGT GGCCTCAGCCTACATTCCTGAGAGCCTGGGCAGCTTGCAAGGCGATGATGACAAGATCTACTTTTTCTTCAGCG TGGCTTCCCCTTCAACGTGCTGCAGGATGTCTTCACGCTGAGCCCCAGGCCCCAGGACTGGCGTGACACCCTTT TCTATGGGGTCTTCACTTCCCAGTGGCACAGGGGAACTACAGAAGGCTCTGCCGTCTGTGTCTTCACAATGAAG GATGTGCAGAGAGTCTTCAGCGGCCTCTACAAGGAGGTGAACCGTGAGACACAGCAGTGGTACACCGTGACCCA AGCTCCCAGACCGCGTGCTGAACTTCCTCAAGGACCACTTCCTGATGGACGGCAGGTCCGAAGCCGCATGCTG CTGCTGCAGCCCCAGGCTCGCTACCAGCGCGTGGCTGTACACCGCGTCCCTGGCCTGCACCACACCTACGATGT AGCTGCAGATCTTCTCATCGGGACAGCCCGTGCAGAATCTGCTCCTGGACACCCACAGGGGGGCTGCTGTATGCG GCCTCACACTCGGGCGTAGTCCAGGTGCCCATGGCCAACTGCAGCCTGTACCGGAGCTGTGGGGACTGCCTCCT CGCCCGGGACCCCTACTGTGCTTGGAGCGGCTCCAGCTGCAAGCACGTCAGCCTCTACCAGCCTCAGCTGGCCA CCAGGCCGTGGATCCAGGACATCGAGGGAGCCAGCGCCAAGGACCTTTGCAGCGCGTCTTCGGTTGTGTCCCCG TCTTTTGTACCAACAGGGGAGAAGCCATGTGAGCAAGTCCAGTTCCAGCCCAACACAGTGAACACTTTGGCCTG CCCGCTCCTCTCCAACCTGGCGACCCGACTCTGGCTACGCAACGGGGCCCCCGTCAATGCCTCGGCCTCCTGCC ACGTGCTACCCACTGGGGACCTGCTGGTGGGCACCCAACAGCTGGGGGAGTTCCAGTGCTGGTCACTAGAG ${\tt GAGGGCTTCCAGCAGCTGGTAGCCAGCTACTGCCCAGAGGTGGTGGAGGACGGGGTGGCAGACCAAACAGATGA}$ GGGTGGCAGTGTACCCGTCATTATCAGCACATCGCGTGTGAGTGCACCAGCTGGTGGCAAGGCCAGCTGGGGTG CAGACAGGTCCTACTGGAAGGAGTTCCTGGTGATGTGCACGCTCTTTTGTGCTGGCCGTGCTCCCCAGTTTTA TTCTTGCTCTACCGGCACCGGAACAGCATGAAAGTCTTCCTGAAGCAGGGGGAATGTGCCAGCGTGCACCCCAA GACCTGCCCTGTGGTGCTGCCCCCTGAGACCCGCCCACTCAACGGCCTAGGGCCCCCTAGCACCCCGCTCGATC ACCGAGGGTACCAGTCCCTGTCAGACAGCCCCCCGGGGGCCCGAGTCTTCACTGAGTCAGAGAAGAGGCCACTC AGCATCCAAGACAGCTTCGTGGAGGTATCCCCAGTGTGCCCCCGGCCCCGGGTCCGCCTTGGCTCGGAGATCCG TCAACTGGACCTCCCCTCCGCTCTGCTCTTCGTGGAACACGACCGTGGTGCCCGGCCCTTGGGAGCCTTGGAGC CAGCTGGCCTGCTCCCAGTCAAGTAGCGAAGCTCCTACCACCCAGACACCCAAACAGCCGTGGCCCCAGA AAAAACAATTCCAAATGTGAAACTAGAATGAGAGGGAAGAGATAGCATGCCATGCACCACACACGGCTGCTCCA GTTCATGGCCTCCCAGGGGTGCTGGGGATGCATCCAAAGTGGTTGTCTGAGACAGAGTTGGAAACCCTCACCAA CTGGCCTCTTCACCTTCCACATTATCCCGCTGCCACCGGCTGCCCTGTCTCACTGCAGATTCAGGACCAGCTTG GGCTGCGTGCGTTCTGCCAGTCAGCCGAGGATGTAGTTGTTGCTGCCGTCGTCCCACCACCACCAGGGAC CAGAGGGCTAGGTTGGCACTGCGGCCCTCACCAGGTCCTGGGCCTCGGACCCAACTCCTGGACCTTTCCAGCCTG TATCAGGCTGTGGCCACACGAGAGGACAGCGCGAGCTCAGGAGAGATTTCGTGACAATGTACGCCTTTCCCTCA GAATTCAGGGAAGAGACTGTCGCCTGCCTTCCTCCGTTGTTGCGTGAGAACCCGTGTGCCCCTTCCCACCATAT ACCCTCCATCCCTCACCTTCCCACTCTAAGGGATATCAACACTGCCCAGCACAGGGGCCCTGAATTTATGTG GTTTTTATACATTTTTTAATAAGATGCACTTTATGTCATTTTTTAATAAAGTCTGAAGAATTACTGTTTAAAAA AAAAAA

FIGURE 142

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA67962</pre>

><subunit 1 of 1, 837 aa, 1 stop

><MW: 92750, pI: 7.04, NX(S/T): 6

MLRTAMGLRSWLAAPWGALPPRPPLLLLLLLLLLLQPPPPTWALSPRISLPLGSEERPFLRF
EAEHISNYTALLLSRDGRTLYVGAREALFALSSNLSFLPGGEYQELLWGADAEKKQQCSFKG
KDPQRDCQNYIKILLPLSGSHLFTCGTAAFSPMCTYINMENFTLARDEKGNVLLEDGKGRCP
FDPNFKSTALVVDGELYTGTVSSFQGNDPAISRSQSLRPTKTESSLNWLQDPAFVASAYIPE
SLGSLQGDDDKIYFFFSETGQEFEFFENTIVSRIARICKGDEGGERVLQQRWTSFLKAQLLC
SRPDDGFPFNVLQDVFTLSPSPQDWRDTLFYGVFTSQWHRGTTEGSAVCVFTMKDVQRVFSG
LYKEVNRETQQWYTVTHPVPTPRPGACITNSARERKINSSLQLPDRVLNFLKDHFLMDGQVR
SRMLLLQPQARYQRVAVHRVPGLHHTYDVLFLGTGDGRLHKAVSVGPRVHIIEELQIFSSGQ
PVQNLLLDTHRGLLYAASHSGVVQVPMANCSLYRSCGDCLLARDPYCAWSGSSCKHVSLYQP
QLATRPWIQDIEGASAKDLCSASSVVSPSFVPTGEKPCEQVQFQPNTVNTLACPLLSNLATR
LWLRNGAPVNASASCHVLPTGDLLLVGTQQLGEFQCWSLEEGFQQLVASYCPEVVEDGVADQ
TDEGGSVPVIISTSRVSAPAGGKASWGADRSYWKEFLVMCTLFVLAVLLPVLFLLYRHRNSM
KVFLKQGECASVHPKTCPVVLPPETRPLNGLGPPSTPLDHRGYQSLSDSPPGARVFTESEKR
PLSIQDSFVEVSPVCPRPRVRLGSEIRDSVV

Transmembrane domains:

.amino acids 23-46 (type II), 718-738

FIGURE 143A

AGCCCAGCCAGCCGGAGGACGCGGGCAGGGCGGGACGGGACCCGGACTCGTCGCCGCCGTCGTCGCCGT CGTGCCGGCCCCGCGTCCCCGCGCGCGAGCGGGAGGAGCCGCCGCCACCTCGCGCCCGAGCCGCCTAGCGCG CCTCGCGGCGCTAGGGCGGGCTGGCCTCCGTGGGCGGGGCAGCCGGGCTGAGGGCGCGCGGAGCCTGCGGCGGC AGCGTGCTCGTGGTCCTGGGCTTCGTGCTGCCTCGCGGCTCCTGCCCCGGGCTTCCGAGCTGAA GCGAGCGGCCCACGGCGCCGCCGCCGAGGGCTGCCGGTCCGGGCAGGCGGCGGCTTCCCAGGCCGGC GGGCGCGCGGCGATGCGCGCGCGCGCGCAGCTCTGGCCGCCCGGCTCGGACCCAGATGGCGGCCCGCCGACAGG AACTTTCTCTTCGTGGGAGTCATGACCGCCCAGAAATACCTGCAGACTCGGGCCGTGGCCGCCTACAGAACATG GTCCAAGACAATTCCTGGGAAAGTTCAGTTCTTCTCAAGTGAGGGTTCTGACACATCTGTACCAATTCCAGTAG TGCCACTACGGGGTGTGGACGACTCCTACCCGCCCCAGAAGAAGTCCTTCATGATGCTCAAGTACATGCACGAC CACTACTTGGACAAGTATGAATGGTTTATGAGAGCAGATGATGACGTGTACATCAAAGGAGACCGTCTGGAGAA GAAAACTGGCCCTGGAGCCTGGTGAGAACTTCTGCATGGGGGGGCCTGGCGTGATCATGAGCCGGGAGGTGCTT CGGAGAATGGTGCCGCACATTGGCAAGTGTCTCCGGGAGATGTACACCACCCATGAGGACGTGGAAGGTGGGAAG GTGTGTCCGGAGGTTTGCAGGGGTGCAGTGTGTCTGGTCTTATGAGATGCGGCAGCTTTTTTATGAGAATTACG AGCAGAACAAAAAGGGGTACATTAGAGATCTCCATAACAGTAAAATTCACCAAGCTATCACATTACACCCCAAC AAAAACCCACCTACCAGTACAGGCTCCACAGCTACATGCTGAGCCGCAAGATATCCGAGCTCCGCCATCGCAC AATACAGCTGCACCGCGAAATTGTCCTGATGAGCAAATACAGCAACACAGAAAATTCATAAAGAGGACCTCCAGC GGAAAATACTTGTATTCGGCAGTTGACGGCCAGCCCCTCGAAGAGGAATGGACTCCGCCCAGAGGGAAGCCTT GGACGACATTGTCATGCAGGTCATGGAGATGATCAATGCCAACGCCAAGACCAGAGGGCGCATCATTGACTTCA AAGAGATCCAGTACGGCTACCGCCGGGTGAACCCCATGTATGGGGCTGAGTACATCCTGGACCTGCTTCTG TACAAAAAGCACAAAGGGAAGAAATGACGGTCCCTGTGAGGAGGCACGCGTATTTACAGCAGACTTTCAGCAA TGTCCTTTCTCTCAAACTCCCTGAAGAAGCTCGTCCCCTTTCAGCTCCCTGGGTCGAAGAGTGAGCACAAAGAA CCCAAAGATAAAAGATAAACATACTGATTCCTTTGTCTGGGCGTTTCGACATGTTTGTGAGATTTATGGGAAA CTTTGAGAAGACGTGTCTTATCCCCAATCAGAACGTCAAGCTCGTGGTTCTGCTTTTCAATTCTGACTCCAACC $\tt CTGACAAGGCCAAACAAGTTGAACTGATGAGAGATTACCGCATTAAGTACCCTAAAGCCGACATGCAGATTTTG$ CCTGTGTCTGGAGAGTTTTCAAGAGCCCTGGCCCTGGAAGTAGGATCCTCCCAGTTTAACAATGAATCTTTGCT CTTCTTCTGCGACGTCGACCTCGTGTTTACTACAGAATTCCTTCAGCGATGTCGAGCAAATACAGTTCTGGGCC AACAAATATATTTTCCAATCATCTTCAGCCAGTATGACCCAAAGATTGTTTATAGTGGGAAAGTTCCCAGTGAC AACCATTTTGCCTTTACTCAGAAAACTGGCTTCTGGAGAAACTATGGGTTTTGGCATCACGTGTATTTATAAGGG ·AGATCTTGTCCGAGTGGGTGGCTTTGATGTTTCCATCCAAGGCTGGGGGCTGGAGGATGTGGACCTTTTCAACA AGGTTGTCCAGGCAGGTTTGAAGACGTTTAGGAGCCAGGAAGTAGGAGTAGTCCACCGTCCACCATCCTGTCTTT TGTGATCCCAATCTTGACCCCAAACAGTACAAAATGTGCTTGGGGTCCAAAGCATCGACCTATGGGTCCACCCA GCAGCTGGCTGAGATGTGGCTGGAAAAAAATGATCCAAGTTACAGTAAAAGCAGCAATAATAATGGCTCAGTGA TGATCAGTTTTTGAAGTCCGTATACAAGGATATATTTTACAAGTGGTTTTCTTACATAGGACTCCTTTAAGATT GAGCTTTCTGAACAAGAAGGTGATCAGTGTTTGCCTTTGAACACATCTTCTTGCTGAACATTATGTAGCAGACC TGCTTAACTTTGACTTGAAATGTACCTGATGAACAAAACTTTTTTAAAAAAATGTTTTCTTTTGAGACCCTTTG CTCCAGTCCTATGGCAGAAAACGTGAACATTCCTGCAAAGTATTATTGTAACAAAACACTGTAACTCTGGTAAA AAGCCATTTCATGTTCCAGTTGTAAGATAAGGAAATGTGATAATAGCTGTTTCATCATTGTCTTCAGGAGAGCT TTCCAGAGTTGATCATTTCCTCTCATGGTACTCTGCTCAGCATGGCCACGTAGGTTTTTTGTTTTGTTTTTT GTTCTTTTTTTGAGACGGAGTCTCACTCTGTTACCCAGGCTGGAATGCAGTGGCGCAATCTTGGCTCACTTTAA CCTCCACTTCCCTGGTTCAAGCAATTCCCCTGCCTTTGCCTCCCGAGTAGCTGGGATTACAGGCACACCACC ACGCCCAGNTAGTTTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGCAAGCCCAGCTGGCCACGTAGGTT TTAAAGCAAGGGGCGTGAAGAAGGCACAGTGAGGTATGTGGCTGTTCTCGTGGTAGTTCATTCGGCCTAAATAG ACCTGGCATTAAATTTCAAGAAGGATTTGGCATTTTCTCTTCTTGACCCTTCTCTTTAAAGGGTAAAATATTAA TGTTTAGAATGACAAAGATGAATTATTACAATAAATCTGATGTACACAGACTGAAACATACACACATACACCCT TTTCATTCTTTCATTACTGTTTTGTTTTATCCTTTGTATCTGAAATACCTTTAATTTAATATATTGTTGTTGTT TATTTGCAGTAAACCGATCTCCAAAGATTTCCTTTTGGAAACGCTTTTTCCCCTCC

FIGURE 143B

TTAATTTTATATTCCTTACTGTTTTTACTAAATATTAAGTGTTCTTTGACAATTTTGGTGCTCATGTGTTTTTGG
GGACAAAAGTGAAATGAATCTGTCATTATACCAGAAAGTTAAATTCTCAGATCAAATGTGCCTTAATAAATTTG
TTTTCATTTAGATTTCAAACAGTGATAGACTTGCCATTTTAATACACGTCATTGGAGGGCTGCGTATTTGTAAA
TAGCCTGATGCTCATTTGGAAAAATAAACCAGTGAACAATATTTTTCTATTGTACTTTTCGAACCATTTTGTCT
CATTATTCCTGTTTTAGCTGAAGAATTGTATTACATTTGGAGAGAAAAAACCTTAAACACGAAAAAA

FIGURE 144

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836

><subunit 1 of 1, 802 aa, 1 stop

><MW: 91812, pI: 9.52, NX(S/T): 3

MAARGRRAWLSVLLGLVLGFVLASRLVLPRASELKRAGPRRRASPEGCRSQAAASQAGGAR
GDARGAQLWPPGSDPDGGPRDRNFLFVGVMTAQKYLQTRAVAAYRTWSKTIPGKVQFFSSEG
SDTSVPIPVVPLRGVDDSYPPQKKSFMMLKYMHDHYLDKYEWFMRADDDVYIKGDRLENFLR
SLNSSEPLFLGQTGLGTTEEMGKLALEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYT
THEDVEVGRCVRRFAGVQCVWSYEMRQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPP
YQYRLHSYMLSRKISELRHRTIQLHREIVLMSKYSNTEIHKEDLQLGIPPSFMRFQPRQREE
ILEWEFLTGKYLYSAVDGQPPRRGMDSAQREALDDIVMQVMEMINANAKTRGRIIDFKEIQY
GYRRVNPMYGAEYILDLLLLYKKHKGKKMTVPVRRHAYLQQTFSKIQFVEHEELDAQELAKR
INQESGSLSFLSNSLKKLVPFQLPGSKSEHKEPKDKKINILIPLSGRFDMFVRFMGNFEKTC
LIPNQNVKLVVLLFNSDSNPDKAKQVELMRDYRIKYPKADMQILPVSGEFSRALALEVGSSQ
FNNESLLFFCDVDLVFTTEFLQRCRANTVLGQQIYFPIIFSQYDPKIVYSGKVPSDNHFAFT
QKTGFWRNYGFGITCIYKGDLVRVGGFDVSIQGWGLEDVDLFNKVVQAGLKTFRSQEVGVVH
VHHPVFCDPNLDPKQYKMCLGSKASTYGSTQQLAEMWLEKNDPSYSKSSNNNGSVRTA

Signal peptide:

amino acids 1-23

FIGURE 145

GGACAACCGTTGCTGGGTGTCCCAGGGCCTGAGGCAGGACGGTACTCCGCTGACACCTTCCC TTTCGGCCTTGAGGTTCCCAGCCTGGTGGCCCCAGGACGTTCCGGTCGCATGGCAGAGTGCT ACGGACGACGCCTATGAAGCCCTTAGTCCTTCTAGTTGCGCTTTTGCTATGGCCTTCGTCTG TGCCGGCTTATCCGAGCATAACTGTGACACCTGATGAAGAGCAAAACTTGAATCATTATATA CAAGTTTTAGAGAACCTAGTACGAAGTGTTCCCTCTGGGGAGCCAGGTCGTGAGAAAAAATC TAACTCTCCAAAACATGTTTATTCTATAGCATCAAAGGGATCAAAATTTAAGGAGCTAGTTA CACATGGAGACGCTTCAACTGAGAATGATGTTTTAACCAATCCTATCAGTGAAGAAACTACA TTGCCAGTTGTTACTGAATCATCTACAAGTCCATATGTTACCTCATACAAGTCACCTGTCAC CACTTTAGATAAGAGCACTGGCATTGAGATCTCTACAGAATCAGAAGATGTTCCTCAGCTCT CAGGTGAAACTGCGATAGÀAAAACCCGAAGAGTTTGGAAAGCACCCAGAGAGTTGGAATAAT GATGACATTTTGAAAAAATTTTAGATATTAATTCACAAGTGCAACAGGCACTTCTTAGTGA CACCAGCAACCCAGCATATAGAGAAGATATTGAAGCCTCTAAAGATCACCTAAAACGAAGCC TTGCTCTAGCAGCAGCAGCAGAACATAAATTAAAAACAATGTATAAGTCCCAGTTATTGCCA GTAGGACGAACAAGTAATAAAATTGATGACATCGAAACTGTTATTAACATGCTGTGTAATTC TAGATCTAAACTCTATGAATATTTAGATATTAAATGTGTTCCACCAGAGATGAGAGAAAAAG CTGCTACAGTATTCAATACATTAAAAAATATGTGTAGATCAAGGAGAGTCACAGCCTTATTA AAAGTTTATTAAACAATAATATAAAAATTTTAAACCTACTTGATATTCCATAACAAAGCTGA TTTAAGCAAACTGCATTTTTTCACAGGAGAAATAATCATATTCGTAATTTCAAAAGTTGTAT AAAAATATTTTCTATTGTAGTTCAAATGTGCCAACATCTTTATGTGTCATGTGTTATGAACA ATTTTCATATGCACTAAAAACCTAATTTAAAATAAAATTTTGGTTCAGGAAAAAA

FIGURE 146

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68864

><subunit 1 of 1, 350 aa, 1 stop

><MW: 39003, pI: 5.59, NX(S/T): 1

MKPLVLLVALLLWPSSVPAYPSITVTPDEEQNLNHYIQVLENLVRSVPSGEPGREKKSNSPK
HVYSIASKGSKFKELVTHGDASTENDVLTNPISEETTTFPTGGFTPEIGKKKHTESTPFWSI
KPNNVSIVLHAEEPYIENEEPEPEPEPAAKQTEAPRMLPVVTESSTSPYVTSYKSPVTTLDK
STGIEISTESEDVPQLSGETAIEKPEEFGKHPESWNNDDILKKILDINSQVQQALLSDTSNP
AYREDIEASKDHLKRSLALAAAAEHKLKTMYKSQLLPVGRTSNKIDDIETVINMLCNSRSKL
YEYLDIKCVPPEMREKAATVFNTLKNMCRSRRVTALLKVY

Signal peptide:

amino acids 1-19

FIGURE 147

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTG ACCTCCAAATCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACA GGAATATCCATGGCTTTTGGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACA GTGGCAAGTCACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGAGGACGCCGTGTTCT CCTGCTCCTCTTTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAG TTCCATGCTGTGGTCCACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACA GTATCGAGGGAGAACTGAGTTTGTGAAGGACTCCATTGCAGGGGGGGCGTGTCTCTAAGGC TAAAAAACATCACTCCCTCGGACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTAC GATGAGGAGGCCACCTGGGAGCTGCGGGTGGCAGCACTGGGCTCACTTCCTCATTTCCAT CGTGGGATATGTTGACGGAGGTATCCAGTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGC CCACAGCCAAGTGGAAAGGTCCACAAGGACAGGATTTGTCTTCAGACTCCAGAGCAAATGCA GATGGGTACAGCCTGTATGATGTGGAGATCTCCATTATAGTCCAGGAAAATGCTGGGAGCAT ATTGTGTTCCATCCACCTTGCTGAGCAGAGTCATGAGGTGGAATCCAAGGTATTGATAGGAG AGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTATTTTACTCGGGTTACTCTGTGGT GCCCTGTGTGGTGTTGTCATGGGGATGATAATTGTTTTCTTCAAATCCAAAGGGAAAATCCA GGCGGAACTGGACTGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACG CAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAA ACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAA GAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGGAGACATTACTGGGAGGTGGACGTGGGAC AAAATGTAGGGTGGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGAAGAACAATGTG ACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTCAC ATTCAATCCCCATTTTATCAGCCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCC CTGCTGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGA GGAAAAGGGGACTCCCATATTCATATGTCCAGTGTCCTGGGGA<u>TGA</u>GACAGAGAAGACCCTG CTTAAAGGGCCCCACACACAGACCCAGACACAGCCAAGGGAGAGTGCTCCCGACAGGTGGC CCCAGCTTCCTCCGGAGCCTGCGCACAGAGAGTCACGCCCCCCACTCTCCTTTAGGGAGC TGAGGTTCTTCTGCCCTGAGCCCTGCAGCAGCAGCAGCAGCAGCTTCCAGATGAGGGGGGAT TGGCCTGACCCTGTGGGAGTCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCA CATTAGGTTTAGTTTGTGAAAACTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCC CAGGCTCCTCATTTGCTAGTCACGGACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGA CAACGAATGTGAATCATGCTTGCAGGTTTGAGGGCACAGTGTTTGCTAATGATGTTTTTTA TATTATACATTTTCCCACCATAAACTCTGTTTGCTTATTCCACATTAATTTACTTTTCTCTA TACCAAATCACCCATGGAATAGTTATTGAACACCTGCTTTGTGAGGCTCAAAGAATAAAGAG GAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCATTACCTGATACCAAAACCAGGCAAAG AAAACAGAAGAAGAAGGAAGGAAAACTACAGGTCCATATCCCTCATTAACACAGACAAAAAA TTCTAAATAAATTTTAACAAATTAAACTAAACAATATATTTAAAGATGATATATAACTACT CAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAATATCAACCAGTGTAATT

FIGURE 148

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68866

><subunit 1 of 1, 466 aa, 1 stop

><MW: 52279, pI: 6.16, NX(S/T): 2

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHA
VVHLYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEE
ATWELRVAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGY
SLYDVEISIIVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALC
GVVMGMIIVFFKSKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLS
PNNGYWVLRLTTEHLYFTFNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLT
CQFEGLLRPYIQHAMYDEEKGTPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 149

 $\verb|CCTTCACAGGACTCTTCATTGCTGGTTGGCAATGTATCGGCCAGATGTGGTGAGGGCTA| \\$ GGAAAAGAGTTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTC CTGGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAA TTACTATAGCACATTGTCATTTACAACTGACAAACTATATGCTGAGTTTGGCAGAGAGGCTT CTAACAATTTTACAGAAATGAGCCAGAGACTTGAATCAATGGTGAAAAATGCATTTTATAAA TCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTCAGTCAACAGAAGCATGG AGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGAAACTGTAG ATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTA TTGCTGCGGAACACGAAGAAGTAAAACTCTAGGTCAGGATCTCAGGATCGTTGGTGGGACAG AAGTAGAAGAGGGTGAATGGCCCTGGCAGGCTGCAGTGGGATGGGAGTCATCGCTGT GGAGCAACCTTAATTAATGCCACATGGCTTGTGAGTGCTGCTCACTGTTTTACAACATATAA GAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACAATAAAACCTTCGAAAATGAAACGGG GTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACATGACTATGATATTTCT CTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTCTCCCTGA TGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTTGTGACAGGATTTGGAGCACTGAAAA ATGATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACT TGCAATGAACCTCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTT AGAAGGAAAAACAGATGCATGCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTA GAGATATCTGGTACCTTGCTGGAATAGTGAGCTGGGGAGATGAATGTGCGAAAACCCAACAAG CCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTGGATTACTTCAAAAACTGGTATC<u>TA</u> TTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCAATAAAC TGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTG CCAGATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATA ATACAATATTACATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTGTCAGAATTTTGAC TTGTTGACATAAATTTGTAATGCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTC TAAGAAGAAAAAATCCCCTACATTTTATTGGCACAGAAAGTATTAGGTGTTTTTCTTAGT GGAATATTAGAAATGATCATATTCATTATGAAAGGTCAAGCAAAGACAGCAGAATACCAATC TCCTTATTTTCATTTCCAAACAACTACTATGATAAATGTGAAGAAGATTCTGTTTTTTTGTG ACCTATAATAATTATACAAACTTCATGCAATGTACTTGTTCTAAGCAAATTAAAGCAAATAT TTATTTAACATTGTTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

FIGURE 150

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871</pre>

><subunit 1 of 1, 423 aa, 1 stop

><MW: 47696, pI: 8.96, NX(S/T): 3

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTD
KLYAEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICR
FHSTEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTL
GQSLRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFG
VTIKPSKMKRGLRRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDV
MFVTGFGALKNDGYSQNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGD
SGGPLVSSDARDIWYLAGIVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 151

GTCGAAGGTTATAAAAGCTTCCAGCCAAACGGCATTGAAGTTGAAGATACAACCTGACAGCA CAGCCTGAGATCTTGGGGATCCCTCAGCCTAACACCCCACAGACGTCAGCTGGTGGATTCCCG $\tt CTGCATCAAGGCCTACCCACTGTCTCCA\underline{TG}CTGGGCTCTCCCTGCCTTCTGTGGCTCCTGGC$ CGTGACCTTCTTGGTTCCCAGAGCTCAGCCCTTGGCCCCTCAAGACTTTGAAGAAGAGAGGAGG CAGATGAGACTGAGACGCGTGGCCGCCTTTGCCGGCTGTCCCCTGCGACTACGACCACTGC AGGACTCTCCAGCCCGCCCAGCCGCCGACCCGCCGCGCATGGGAGAAGTGCGCATTGCGG CCGAAGAGGGCCGCGCAGTGGTCCACTGGTGTGCCCCCTTCTCCCCGGTCCTCCACTACTGG CTGCTGCTTTGGGACGCGAGCGAGGCTGCGCAGAAGGGGCCCCCGCTGAACGCTACGGTCCG CAGAGCCGAACTGAAGGGGCTGAAGCCAGGGGGCATTTATGTCGTTTGCGTAGTGGCCGCTA ACGAGGCCGGGCAAGCCGCGTGCCCCAGGCTGGAGGAGAGGGCCTCGAGGGGGCCGACATC CCTGCCTTCGGGCCTTGCAGCCGCCTTGCGGTGCCGCCCAACCCCCGCACTCTGGTCCACGC GGCCGTCGGGGTGGGCACGGCCCTGGCCCTGCTAAGCTGTGCCGCCCTGGTGTGGCACTTCT GCCTGCGCGATCGCTGGGGCTGCCCGCGCCGAGCCGCCCGAGCCGCAGGGGGCGCTC<u>TGA</u> AAGGGGCCTGGGGGCATCTCGGGCCACAGACAGCCCCACCTGGGGCGCTCAGCCTGGCCCCCG GCTCCAGGGCCACGGGGAGTCATGGTTCTCAGGACTGAGCGCTTGTTTAGGTCCGGTACTT

FIGURE 152

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68874

><subunit 1 of 1, 238 aa, 1 stop

><MW: 25262, pI: 6.44, NX(S/T): 1

MLGSPCLLWLLAVTFLVPRAQPLAPQDFEEEEADETETAWPPLPAVPCDYDHCRHLQVPCKE LQRVGPAACLCPGLSSPAQPPDPPRMGEVRIAAEEGRAVVHWCAPFSPVLHYWLLLWDGSEA AQKGPPLNATVRRAELKGLKPGGIYVVCVVAANEAGASRVPQAGGEGLEGADIPAFGPCSRL AVPPNPRTLVHAAVGVGTALALLSCAALVWHFCLRDRWGCPRRAAARAAGAL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 194-220

N-glycosylation site.

amino acids 132-135

FIGURE 153

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCC CCCAGCGCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGC ${ t TTCTCCCTTACGGGGCTCACA} { t ATG} { t GCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCCTGCT}$ CTACGCCCTCAATCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGA TGAGGGACTACCTAAATAATGTTCTCACTTTAACTGCAGAAACGAGGGTAGAGGAAGCAGTC ATTTTGACTTACTTTCCTGTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTTCCTTATCAT TGTGGGGATGTTAGGATATTGTGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACT TTGGAAGTTTGCTTGTCATTTTCTGTGTAGAACTGGCTTTGTGGCGTTTGGACATATGAACAG GAACTTATGGTTCCAGTACAATGGTCAGATATGGTCACTTTGAAAGCCAGGATGACAAATTA GCTGTGGAGTAGTATTTCACTGACTGGTTGGAAATGACAGAGATGGACTGGCCCCCAGAT TCCTGCTGTTTAGAGAATTCCCAGGATGTTCCAAACAGGCCCACCAGGAAGATCTCAGTGA CCTTTATCAAGAGGGTTGTGGGAAGAAATGTATTCCTTTTTGAGAGGAACCAAACAACTGC ${f AGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAATCCTGGCCATGATTCTCACC}$ ATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGGACAGACCAAATGATGTC CTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACTGTTGAAACCAAGCC ${ t TGTCAAGAATCTTTGAACACACATCCATGGCAAACAGCTTTAATACACACTTTGAGATGGAG$ GAGTTA<u>TAA</u>AAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACTTGTGAATT TTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAATAACA CCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTCAC CACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGC CTGTGTATGACTTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTC CGCATCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTT CTACCAACTAGTATATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATA AATATTGGTGACTACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAA GAGCAAGCTAACACATTGTCTTAAGCTGATCAGGGATTTTTTGTATATAAGTCTGTGTTAAA TCTGTATAATTCAGTCGATTTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAA - ATTTGTCCTGTATAGCATCATTATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGT CCTGGGCTTATATTACACATATAACTGTTATTTAAATACTTAACCACTAATTTTGAAAATTA CCAGTGTGATACATAGGAATCATTATTCAGAATGTAGTCTGGTCTTTAGGAAGTATTAATAA GAAAATTTGCACATAACTTAGTTGATTCAGAAAGGACTTGTATGCTGTTTTTCTCCCAAATG AAGACTCTTTTTGACACTAAACACTTTTTAAAAAGCTTATCTTTGCCTTCTCCAAACAAGAA GCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAATAGTGTTCTTTTTCTCCAGAAAAAT GCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATTCTTTGTTTTATTTCACTGATTA GAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTATTTCTCAGAATATGGAA AGAAAATTAAAATGTGTCAATAAATATTTTCTAGAGAGTAA

FIGURE 154

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880</pre>

><subunit 1 of 1, 305 aa, 1 stop

><MW: 35383, pI: 5.99, NX(S/T): 0

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPV VHPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQ WSDMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREF PGCSKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWAL YYDRREPGTDQMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 155

GAGAGAGGCAGCATGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCC CCTGTGTGGGGAGGCCCTCCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAG ACCGGGAGGATCACAGAGCCAGC<u>ATG</u>TTACAGGATCCTGACAGTGATCAACCTCTGAACAGC CTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCCATGGAGACCTTCAGAAAGGTGGGGAT CCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTGGTTGTCCTCATCAAGG TGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAG CTGTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTT CCCCGAAGGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGG ACTCGGCCACAGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAG ACAGCCTGTAGGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGA TGTTGTTGAAATCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTC TCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTGTGGGAAGAGCCTGAAGACCCCCCGT GTGGTGGGTGGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCAGTACGA CAAACAGCACGTCTGTGGAGGGAGCCTCTGGACCCCCACTGGGTCCTCACGGCAGCCCACT GCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGC AGCTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAA CCATCTGTCTGCCCTTCTTTGATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGA TGGGGCTTTACGAAGCAGAATGGAGGGAAGATGTCTGACATACTGCTGCAGGCGTCAGTCCA GGTCATTGACAGCACACGGTGCAATGCAGACGATGCGTACCAGGGGGAAGTCACCGAGAAGA TGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGTGACAGTGGTGGGCCC CTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGGCTGCGG GGGCCCGAGCACCCCAGGATATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATG CCCTGCCCACCTGGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCC CTCTGCCCACAGCCTCAGCATTTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCC TCGCAGCCCAGAGGCGCCCAGAGGAAGTCAGCCCCTAGCTCGGCCACACTTGGTGCTCCC AGCATCCCAGGGAGAGACACCCCACTGAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAA GGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCCCAGATCACTGTGGG CTGGAGAGGAAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAAGCCTA CTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTT ACCTACTGTTGTCATTGTTATTACAGCTATGGCCACTATTATTAAAGAGCTGTGTAACATCT CTGGCAAAAAAAAAAA

FIGURE 156

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885</pre>

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47644, pI: 5.18, NX(S/T): 2

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYF
LCGQPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWF
SACFDNFTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSL
HCLACGKSLKTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDV
FNWKVRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFD
EELTPATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE
GGVDTCQGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 157

CCAGGGTCAGATACTATGCAGGGGATGAACGTAGGGCACTTAGCTTCTTCCACCAGAAGGGCCTCCAGGATTTT GACACTCTGCTCCTGAGTGGTGATGGAAATACTCTCTACGTGGGGGCTCGAGAAGCCATTCTGGCCTTGGATAT ${\tt CCTTTAAGAAGAGAGCAATGAGACACAGTGTTTCAACTTCATCCGTGTCCTGGTTTCTTACAATGTCACCCAT}$ $\tt CTCTACACCTGCGGCACCTTCGCCTTCAGCCCTGCTTGTACCTTCATTGAACTTCAAGATTCCTACCTGTTGCC$ CATCTCGGAGGACAAGGTCATGGAGGGAAAAGGCCCAAAGCCCCTTTGACCCCGCTCACAAGCATACGGCTGTCT TGGTGGATGGGATGCTCTATTCTGGTACTATGAACAACTTCCTGGGCAGTGAGCCCATCCTGATGCGCACACTG CATCGCGGGTGGCTAGAGTCTGCAAGAATGACGTGGGCGGCGAAAAGCTGCTGCAGAAGAAGTGGACCACCTTC CTGAAGGCCCAGCTGCTCTGCACCCAGCCGGGGCAGCTGCCCTTCAACGTCATCCGCCACGCGGTCCTGCTCCC $\tt CGCCGATTCTCCCACAGCTCCCACATCTACGCAGTCTTCACCTCCCAGTGGCAGGTTGGCGGGACCAGGAGCT$ CTGCGGTTTGTGCCTTCTCTCTTGGACATTGAACGTGTCTTTAAGGGGGAAATACAAAGAGTTGAACAAAGAA ACTTCACGCTGGACTACTTATAGGGGCCCTGAGACCAACCCCCGGCCAGGCAGTTGCTCAGTGGGCCCCTCCTC AATCTGGCGTGGAGTATACACGGCTTGCAGTGGAGACAGCCCAGGGCCTTGATGGGCACAGCCATCTTGTCATG TACCTGGGAACCACACAGGGTCGCTCCACAAGGCTGTGGTAAGTGGGGACAGCAGTGCTCATCTGGTGGAAGA GCTTCTCAGGAGGTGTCTGGAGGGTGCCCCGAGCCAACTGTAGTGTCTATGAGAGCTGTGTGGACTGTGTCCTT GCCCGGGACCCCACTGTGCCTGGGACCCTGAGTCCCGAACCTGTTGCCTCCTGTCTGCCCCCAACCTGAACTC CTGGAAGCAGGACATGGAGCGGGGGAACCCAGAGTGGCCATGGCCCCATGAGCAGGAGCCTTCGGC $\tt CTCAGAGCCGCCGCAAATCATTAAAGAAGTCCTGGCTGTCCCCAACTCCATCCTGGAGCTCCCCTGCCCCCAC$ CTGTCAGCCTTGGCCTCTTATTATTGGAGTCATGGCCCAGCAGCAGTCCCAGAAGCCTCTTCCACTGTCTACAA TGGCTCCTCTTGCTGATAGTGCAGGATGGAGTTGGGGGTCTCTACCAGTGCTGGGCAACTGAGAATGGCTTTT CCCCGGGAGCATGTGAAGGTCCCGTTGACCAGGGTCAGTGGTGGGGCCGCCCTGGCTGCCCAGCAGTCCTACTG GCCCCACTTTGTCACTGTCACTGTCCTTTGCCTTAGTGCTTTCAGGAGCCCTCATCATCCTCGTGGCCTCCC CATTGAGAGCACTCCGGGCTCGGGGCAAGGTTCAGGGCTGTGAGACCCTGCGCCCTGGGGAGAAGGCCCCGTTA AGCAGAGACCACCTCCAGTCTCCCAAGGAATGCAGGACCTCTGCCAGTGATGTGGACGCTGACAACAACTG GCGGCCCAAGCACAGCCCTGACTAGGATGACAGCAGCACAAAAGACCACCTTTCTCCCCTGAGAGGAGCTTCTG CTACTCTGCATCACTGATGACACTCAGCAGGGTGATGCACAGCAGTCTGCCTCCCCTATGGGACTCCCTTCTAC $\hbox{-}CAAGCACATGAGCTCTCTAACAGGGTGGGGGCTACCCCCAGACCTGCTCCTACACTGATATTGAAGAACCTGGA$ GAGGATCCTTCAGTTCTGGCCATTCCAGGGACCCTCCAGAAACACAGTGTTTCAAGAGACCCTAAAAAACCTGC CTGTCCCAGGACCCTATGGTAATGAACACCAAACATCTAAACAATCATATGCTAACATGCCACTCCTGGAAACT TTCCCTTACCAGTCGTGCACCGCTGACTCCCAGGAAGTCTTTCCTGAAGTCTGACCACCTTTCTTCTTGCTTCA GTTGGGGCAGACTCTGATCCCTTCTGCCCTGGCAGAATGGCAGGGGTAATCTGAGCCTTCTTCACTCCTTTACC CTAGCTGACCCCTTCACCTCTCCCCTTCTCCTTTTCCTTTGTTTTTGGGATTCAGAAAACTGCTTGTCAGAGACTG TTTATTTATTAAAAAATATAAGGCTTAAAAAAA

FIGURE 158

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71166

><subunit 1 of 1, 761 aa, 1 stop

><MW: 83574, pI: 6.78, NX(S/T): 4

MALPALGLDPWSLLGLFLFQLLQLLLPTTTAGGGGQGPMPRVRYYAGDERRALSFFHQKGLQ
DFDTLLLSGDGNTLYVGAREAILALDIQDPGVPRLKNMIPWPASDRKKSECAFKKKSNETQC
FNFIRVLVSYNVTHLYTCGTFAFSPACTFIELQDSYLLPISEDKVMEGKGQSPFDPAHKHTA
VLVDGMLYSGTMNNFLGSEPILMRTLGSQPVLKTDNFLRWLHHDASFVAAIPSTQVVYFFFE
ETASEFDFFERLHTSRVARVCKNDVGGEKLLQKKWTTFLKAQLLCTQPGQLPFNVIRHAVLL
PADSPTAPHIYAVFTSQWQVGGTRSSAVCAFSLLDIERVFKGKYKELNKETSRWTTYRGPET
NPRPGSCSVGPSSDKALTFMKDHFLMDEQVVGTPLLVKSGVEYTRLAVETAQGLDGHSHLVM
YLGTTTGSLHKAVVSGDSSAHLVEEIQLFPDPEPVRNLQLAPTQGAVFVGFSGGVWRVPRAN
CSVYESCVDCVLARDPHCAWDPESRTCCLLSAPNLNSWKQDMERGNPEWACASGPMSRSLRP
QSRPQIIKEVLAVPNSILELPCPHLSALASYYWSHGPAAVPEASSTVYNGSLLLIVQDGVGG
LYQCWATENGFSYPVISYWVDSQDQTLALDPELAGIPREHVKVPLTRVSGGAALAAQQSYWP
HFVTVTVLFALVLSGALIILVASPLRALRARGKVQGCETLRPGEKAPLSREQHLQSPKECRT
SASDVDADNNCLGTEVA

Signal peptide:

amino acids 1-30

Transmembrane domains:

amino acids 136-156, 222-247, 474-490, 685-704

FIGURE 159

AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAG TGAGC<u>ATG</u>GCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTCTCCCTGGGGTCCTGCTC TCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAGAG GTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCTTGCA CCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTGTGGAAGAAACTTTAGG TGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAGTGCAGTC ATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATA GTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGC CATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTC CAGTATTCCGTTCCTGACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTG ATGTTCTTTAGTTTCTGCAGGAGGCAACACCATCAA GGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGT GGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTAT GTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGC CAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGA ATCCGGAAATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGG AAGTGTCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGA CTGGCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCG GGCAGAATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGGGATCCCTCTTT GGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCCAAAAAGTTTGGTGTTTCTATTCAGTT AAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGAT ACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAG CGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGCGCGCCGACCCTCAAGCCCTA TGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGC ${\tt TCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGT}$ GGGGCCAGAAAGGTGAAGGAGACA<u>TAA</u>GGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGG GCGATGTCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTC TAGTTATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGC CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACTTG TCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCCTGCCCC TACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGTTTCTGTTT TGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAGAGTTCAGGGC CGGACACAGGCTCACAGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCACAGTGAGCTCCT TCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAAAATAAAAGTTTACA GCGTTATCTCTCCCCAACCTCACTAA

FIGURE 160

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71169</pre>

><subunit 1 of 1, 523 aa, 1 stop

><MW: 59581, pI: 8.68, NX(S/T): 1

MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGP FMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQCSHF LNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIPLSYVPV FRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWF INSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNP EIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQ NSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYK SAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT LGTLWLCGKLLGMAVWWLRGARKVKET

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 483-504

FIGURE 161

CTCCATCCCCCAGGTCCAGCCCTCAGTGCTGTCCCATCCAGCAGGGCTACCCTGAAGCTCT GGCTGCAGCCCTCCCGTCCAGTGGGCAGGCGGCTTCATCCCTCCTTTCTCTCCCAAAGCCCA ACTGCTGTCACTGCATGCTCTGCCAAGGAGGAGGAACTGCAGTGACAGCAGGAGTAAGAGT GGGAGGCAGACAGACTGGGACACAGGTATGGAGAGGGGGTTCAGCGAGCCTAGAGAGGGC AGACTATCAGGGTGCCGGCGGTGAGAATCCAGGGAGAGGGGGGGAAACAGAAGAGGGGCCAGA AGACCGGGGCACTTGTGGGTTGCAGAGCCCCTCAGCC<u>ATG</u>TTGGGAGCCAAGCCACACTGGC GGGTGGCCCAGGAGGGGTCAGAGCCCGTCCTGCTGGAGGGGGAGTGCCTGGTGGTCTGTGA GCCTGGCCGAGCTGCTGCAGGGGGGCCCGGGGGAGCCCCTGGGAGAGGCACCCCCTGGGC GAGTGGCATTTGCTGCGGTCCGAAGCCACCACCATGAGCCAGCAGGGGAAACCGGCAATGGC ACCAGTGGGGCCATCTACTTCGACCAGGTCCTGGTGAACGAGGGCGGTGGCTTTGACCGGGC CTCTGGCTCCTTCGTAGCCCCTGTCCGGGGTGTCTACAGCTTCCGGTTCCATGTGGTGAAGG TGTACAACCGCCAAACTGTCCAGGTGAGCCTGATGCTGAACACGTGGCCTGTCATCTCAGCC TTTGCCAATGATCCTGACGTGACCCGGGAGGCAGCCACCAGCTCTGTGCTACTGCCCTTGGA CCCTGGGGACCGAGTGTCTCTGCGCCTGCGTCGGGGGAATCTACTGGGTGGTTGGAAATACT CAAGTTTCTCTGGCTTCCTCATCTTCCCTCTCTGAGGACCCAAGTCTTTCAAGCACAAGAAT CCAGCCCTGACAACTTTCTTCTGCCCTCTCTTGCCCCAGAAACAGCAGAGGCAGGAGAGAG ACTCCCTCTGGCTCCTATCCCACCTCTTTGCATGGGACCCTGTGCCAAACACCCCAAGTTTAA CTCCCAGCCACCTGCTGCATCTGTTCCTGCCTGCAGCCCTAGGATCAGGGCAAGGTTTGGCA AGAAGGAAGATCTGCACTACTTTGCGGCCTCTGCTCCTCCGGTTCCCCACCCCAGCTTCCT GCTCAATGCTGATCAGGGACAGGTGGCGCAGGTGAGCCTGACAGGCCCCCACAGGAGCCCAG ATGGACAAGCCTCAGCGTACCCTGCAGGCTTCTTCCTGTGAGGAAAGCCAGCATCACGGATC TCAGCCAGCACCGTCAGAAGCTGAGCCAGCACCGTATGGGCTAGGGTGGGAGGCTCAGCCAC GGCTGTCCTTCTATGCTGGATCCCAGATGGACTCTGGCCCTTACCTCCCCACCTGAGATTAG - GGTGAGTGTGTTTGCTCTGGCTGAGAGCAGAGCTGAGAGCAGGTATACAGAGCTGGAAGTGG ACCATGGAAAACATCGATAACCATGCATCCTCTTGCTTGGCCACCTCCTGAAACTGCTCCAC CTTTGAAGTTTGAACTTTAGTCCCTCCACACTCTGACTGCCTCCTCCTCCTCCCAGCTCTC TCACTGAGTTATCTTCACTGTACCTGTTCCAGCATATCCCCACTATCTCTCTTTTCTCCTGAT CAGACCCTCTCCTGCCAGTATGCTAAACCCTCCCTCTCTTTTCTTATCCCGCTGTCCCATT GGCCCAGCCTGGATGAATCTATCAATAAAACAACTAGAGAATGGTGGTCAGTGAGACACTAT AGAATTACTAAGGAGAAGATGCCTCTGGAGTTTGGATCGGGTGTTACAGGTACAAGTAGGTA TGTTGCAGAGGAAAATAAATATCAAACTGTATACTAAAATTAAAAA

FIGURE 162

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180

><subunit 1 of 1, 205 aa, 1 stop

><MW: 21521, pI: 7.07, NX(S/T): 1

MLGAKPHWLPGPLHSPGLPLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGGA ALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVY SFRFHVVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRG NLLGGWKYSSFSGFLIFPL

Signal peptide:

amino acids 1-32

FIGURE 163

GCTGTTTCTCTCGCGCCACCACTGGCCGCCGGCCGCAGCTCCAGGTGTCCTAGCCGCCCAGC CTCGACGCCGTCCCGGGACCCCTGTGCTCTGCGCGAAGCCCTGGCCCCGGGGGCCGGGGCAT GAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTGACC GGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACT GGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAA GGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTGTACTGG GAGTGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTG CTCTACTTCACTTGGCTGTTTTGACTGGAACACCCCAAGAAAGGTGGCAGGAGGTCACA GTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGA AGACACACACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATG GGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGG CATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACC TGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAAT GGGAGTGGCAATGCTATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCC TGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATG GAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTC GAGGAGGCTCCTGGGGCCGATGGGTCCAGAAGAGTTCCAGAAATACATTGGTTTCGCCCC ATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCA .AGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAG CAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCA GCCAATTCCCTGGAGGAACCAGCTGCAAATCACTTTTTTGCTCTGTAAATTTGGAAGTGTCA AAAAAAAAAAAAAAA

FIGURE 164

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71184</pre>

><subunit 1 of 1, 388 aa, 1 stop

><MW: 43831, pI: 9.64, NX(S/T): 3

MKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRS
KVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRS
QWVRNWAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFP
GIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSM
PGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFA
PCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDK
HKTKFGLPETEVLEVN

Important features of the protein:

Transmembrane domain:

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-245, 318-323, 378-383

FIGURE 165

GGGCGCGGGTGGGGGCCGGGGCGGCGCGCCGCACTCGCTGAGGCCCCGACGCAGGGCCGGGCCCGGGCCC $\tt CGGCGGCTGCAGGCTTGTCCAGCCGGAAGCCCTGAGGGCAGCTGTTCCCACTGGCTCTGCTGACCTTGTGCCTT$ GGACGGCTGTCCTCAGCGAGGGGCCGTGCACCCGCTCCTGAGCAGCGCCCATGGGCCTGCTGGCCTTCCTGAAGA CCCAGTTCGTGCTGCACCTGCTGGTCGGCTTTGTCTTCGTGGTGAGTGGTCTGGTCATCAACTTCGTCCAGCTG GAGCCAACTGGTCATGCTGCTGGAGTGGTCCTGCACGGAGTGTACACTGTTCACGGACCAGGCCACGGTAG ATGTGTGAGCGCTTCGGAGTGCTGGGGAGCTCCAAGGTCCTCGCTAAGAAGGAGCTGCTCTACGTGCCCCTCAT CGGCTGGACGTGGTACTTTCTGGAGATTGTGTTCTGCAAGCGGAAGTGGGAGGAGGACCGGGACACCGTGGTCG AAGGGCTGAGGCGCCTGTCGGACTACCCCGAGTACATGTGGTTTCTCCTGTACTGCGAGGGGACGCGCTTCACG GAGACCAAGCACCGCGTTAGCATGGAGGTGGCGGCTGCTAAGGGGCTTCCTGTCCTCAAGTACCACCTGCTGCC GCGGACCAAGGGCTTCACCACCGCAGTCAAGTGCCTCCGGGGGACAGTCGCAGCTGTCTATGATGTAACCCTGA ACTTCAGAGGAAACAAGAACCCGTCCCTGCTGGGGATCCTCTACGGGAAGAAGTACGAGGCGGACATGTGCGTG AGGAGATTTCCTCTGGAAGACATCCCGCTGGATGAAAAGGAAGCAGCTCAGTGGCTTCATAAACTGTACCAGGA GAAGGACGCGCTCCAGGAGATATATATCAGAAGGGCATGTTTCCAGGGGAGCAGTTTAAGCCTGCCCGGAGGC CGTGGACCCTCCTGAACTTCCTGTCCTGGGCCACCATTCTCCTGTCTCCCCTCTTCAGTTTTGTCTTGGGCGTC ACTGATAGGAGAATCGCTTGAACCTGGGAGGTGGAGATTGCAGTGAGCTGAGATGGCATCACTGTACTCCAGCC TGAAGATGGTACCTTGAGATTTTTCAGGCTAATGAAAAAAGAATGAAGGAAAATTAACAGCCTCAGAGACCCAT TGGCCACAAGCTGATGAAAAACAGTAACCTACCCACTCAGGAAGCTCAGTGAACTCCAATGAGGATGAATATCA GAGATCCACACCTAGATATTTCATAATCAAAGTGTCAAATGACAAAGAATCTTGAAAGCAGCAAGAGATGAGCA ACTTATCTTGTTCAAAGGATCTTTGATCAGATTAACAGCTCATTTCTCCTCAGAAATCATGGGAGCCAGGAGAT AGTGGGATGAACACTGTTGAAGGCAAAACCTTCAACTGTAATTATTGGACTTTTGAGTCTTAGATGGTCCTGAC CTCTTTGTCTTCAGGGACAGTTTTTCAATTTAATCCCTAATAACAATTAGTCAAGCTTCCTTGACCTGTAGGAA GGCCTGTCTTTAGGCCGGGCACAGTGGCTTACACCTGTAATCCCAGCACTTTGGGAGGCCCAGACGGGTGGATC ATTTGGGGTCAGGCTGATCTCAAACTCCTGAGTTCAGGTGATCTGCCCGCCTCAGCCTCCCAAAGTGTTGTGAT TGCAGGCGTGAGCCACTGCGCCTGGCCGGAATTTCTTTTTAAGGCTGAATGATGGGGGCCAGGCACGATGGCTC AGACGTGTTAGCCAGGCTGGTCTCGATCTCCTGACCTCAAGTGACCACCTGCCTCAGCCTCCCAAAGTACTGGG ATTACAGGCGTGAGCCACTGTGCCTGGCCTTGAGCATCTTGTGATGTGCTTATTGGCCATTTGTATATCTTCTA - AGACAGGGTCTTGTTCTGTTGCCCAGGCTGGAGTACAGTGGCACAGTCTTGGCTCACTGCAGCCTCGACCTCCT TTTTTGTATTTTTTGTGGAGACAGCATTTCACCATGATGCCCAGGCTGGTCTTGAACTCCTGAGCTCAAGTGAT CTGCCTGCTTCAGCCTCCCAAAGTGCTGGGATTACAGACATGAGCCACTGCACCTGGCAAACTCCCAAAATTCA ACACACACACAAAAAACCACCTGATTCAAAATGGGCAGAGGGGCCGGGTGTGGCCCCAACTACCAGGGAGAC TGAAGTGGGAGGATCGCTTGGGCATGAGAAGTCGAGGCTGCAGTGAGTCGAGGTTGTGCGACTGCATTCCAGCC TGGACAACAGAGTGAGACCCTGTCTC

FIGURE 166

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213</pre>

><subunit 1 of 1, 368 aa, 1 stop

><MW: 42550, pI: 9.11, NX(S/T): 1

MGLLAFLKTQFVLHLLVGFVFVVSGLVINFVQLCTLALWPVSKQLYRRLNCRLAYSLWSQLV
MLLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFEIDFLCGWTMCERFGVLGSSKVLAKK
ELLYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHR
VSMEVAAAKGLPVLKYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGKK
YEADMCVRRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWTLLN
FLSWATILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGESLEPGRWRLQ

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

FIGURE 167

GATATTCTTTATTTTAAGAATCTGAAGTACT<u>ATG</u>CATCACTCCCTCCAATGTCCTGGGGCCA GATAGCTGGGGTCTGAGACCTGCTTCCTCAGTAAAATTCCTGGGATCTGCCTATACCTTCTT TTCTCTAACCTGGCATACCCTGCTTAAAGCCTCTCAGGGCTTCTCTCTGTTCTTAGGATCAA AGTATTTAGAGCTACAAGAGCCCTCATGGTCTGGCCCCTGCCCCCTGGCCAGCTTCATTGT ACATGTGGTGTTCTTGTCGTTCCTG<u>TAA</u>TGTGGTATGCCATGGGGTCTTTGCACAAGCCT TTCCTCTTTGGCTGGACACTGTTCCCTGCCCCCCCCATACTCTTCCTACTTAATATGTAGTC ATCCTGCAGATTTCAATTCTAACATCATTTTCTCCAGGGATCCTGGCCTGACAGAATCTCAT CTTGTTTAATGCTCTCATAAGACCACTTGTTTCCCTTTTGCAGCACTTGCCACTCAGTTGTA TCTTTATGTGCGTTTGTGGTTGTATGGGTTGTGTCTGTTCCCCAGAATGCCCAGCTCTGAGC CATGTTTTAGAGACTAAATGGAGGAGGAGATGAGGAAAAGATTGAAATCTCTCAGTTCACCA TGCAGGTCCTGATTCAGTAGGCCCAGGTTGGGCATCTCTAACAAACTCCCACGTGATGCTGA TGCTGGTCCTATGAACTATACTAAATAGTAAGAATCTATGGAGCCAGGCTGGGCATGGTGGC TCAAGACTAGCCTGGCCAACATGGTGGAACCCCATCTGTACTAAAAATACACAAATTAGCTG GGCATGGTGGCACATGCCTGTAGTCCCAGCTACTTGGGAGGCTGAAGCAAGAGAATCGCTTG AACCTGGGAGGCGGAGGTTGCAGTGAGCCGAGATCAGGCCACTGTATTCCAACCAGGGTGAC AGAGTGAGACTCTATGTCCAAAAAAAAAAAAA

FIGURE 168

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234</pre>

><subunit 1 of 1, 143 aa, 1 stop

><MW: 15624, pI: 9.58, NX(S/T): 0

MHHSLQCPGAATRHIHLCVCFSFALALGHFLLISLVGKGLSLSCGVGGRQAGLRLIRPWVRR EGKINFYTNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPSWS GPCPPGOLHCTCGVLLSFL

Important features of the protein: Signal peptide:

amino acids 1-28

FIGURE 169

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGA TTATAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCAC ATTAAAATCTGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGT CACTGTGGCTCTGGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCAC ACCGTCCCTCGAAGCCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTC ACCAACTGTCTCACGTCTGGAGGCACTGACTCGGGCAGTGCAGGTGAGCCTCTTGGTA GCTGCGGCTTTCAAGGTGGGCCTTGCCCTGGCCGTAGAAGGGATTGACAAGCCCGAAGATTT CATAGGCGATGGCTCCCACTGCCCAGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGG CTAACCTTTTCATGTCCTGCACATCACCTGATCCATGGGCTAATCTGAACTCTGTCCCAAGG AACCCAGAGCTTGAGTGAGCTGTGGCTCAGACCCAGAAGGGGTCTGCTTAGACCACCTGGTT TATGTGACAGGACTTGCATTCTCCTGGAACATGAGGGAACGCCGGAGGAAAGCAAAGTGGCA GGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATGGAGGTGTTGGGTTATCACAAGGC ATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGAAGGGCTGCCGATGGCGCATGACACACT CGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGATCCACGTACCAGCTGCTG AAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAATCTGCGATCACCAG TGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGGCTAATG GCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCTGTGCG AACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGGCT CAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGT TCAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAAATTTGAAACCCCAAA TCCAAACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATG CCAACATTTTGGGAGGCCGAGGCGGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTG GCCAACATGGTGAAACCCCTGTCTCTACTAAAAATACAAAAAACTAGCCAGGCATGGTGGT GTGTGCCTGTATCCCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGT GAAGGAGGCTGAGACAGGAGAATCACTTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGA AAAAATAAAAAAAGAATTATGGTTATTTGTAA

FIGURE 170

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277</pre>

><subunit 1 of 1, 109 aa, 1 stop

><MW: 11822, pI: 8.63, NX(S/T): 0

MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTA SPCWPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRRD

Signal peptide:

amino acids 1-15

FIGURE 171

GCGGGCCGCGAGTCCGAGACCTGTCCCAGGAGCTCACGTGACCTGTCACTGCCTC CCGCCGCCTCCTGCCCGCGCCATGGGCCTGGGCTCAGCCGCACTGGGCGCCGCCTTCGCCACTGGCCTCTTCCTGGGGAGGCGGT GCCCCCATGGCGAGGCCGGCGAGAGCAGTGCCTGCTTCCCCCCGAGGACAGCCGCCTGTGG CAGTATCTTCTGAGCCGCTCCATGCGGGAGCACCCGGCGCTGCGAAGCCTGAGGCTGCTGAC $\tt CCTGGAGCAGCCGCAGGGGGATTCTATGATGACCTGCGAGCAGGCCCAGCTCTTGGCCAACC$ TGGCGCGCTCATCCAGGCCAAGAAGGCGCTGGACCTGGGCACCTTCACGGGCTACTCCGCC CTGGCCCTGGCCCTGCCCCGCGGACGGGCGCGTGGTGACCTGCGAGGTGGACGCGCA GCCCCGGAGCTGGGACGCCCCTGTGGAGGCAGGCCGAGCCGAGCACAAGATCGACCTCC GGCTGAAGCCCGCCTTGGAGACCCTGGACGACCTGCTGGCGGCGGCGGCGAGCCGCACCTTC GCTGCTGCGACCCGGAGGCATCCTCGCCGTCCTCAGAGTCCTGTGGCGCGGGAAGGTGCTGC GACGTCAGGGTCTACATCAGCCTCCTGCCCCTGGGCGATGGACTCACCTTGGCCTTCAAGAT CTAGGGCTGGCCCCTAGTGAGTGGGCTCGAGGGAGGGTTGCCTGGGAACCCCAGGAATTGAC

FIGURE 172

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71282</pre>

><subunit 1 of 1, 262 aa, 1 stop

><MW: 28809, pI: 8.80, NX(S/T): 1

MTQPVPRLSVPAALALGSAALGAAFATGLFLGRRCPPWRGRREQCLLPPEDSRLWQYLLSRS
MREHPALRSLRLLTLEQPQGDSMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALALAL
PADGRVVTCEVDAQPPELGRPLWRQAEAEHKIDLRLKPALETLDELLAAGEAGTFDVAVVDA
DKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYIS
LLPLGDGLTLAFKI

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 8-30, 109-130

N-glycosylation site.

amino acids 190-193

. Tyrosine kinase phosphorylation site.

amino acids 238-246

N-myristoylation sites.

amino acids 22-27, 28-33, 110-115, 205-210, 255-260

Amidation sites.

amino acids 31-34, 39-42

FIGURE 173

CCGCCGCGCAGCCGCTACCGCCGCTGCAGCCGCTTTCCGCGGCCTGGGCCTCTCGCCGTCA GCATGCCACACGCCTTCAAGCCCGGGGACTTGGTGTTCGCTAAGATGAAGGGCTACCCTCAC CATCTTTTCTTTGGCACACACGAAACAGCCTTCCTGGGACCCAAGGACCTGTTCCCCTACG ACAAATGTAAAGACAAGTACGGGAAGCCCAACAAGAGGAAAGGCTTCAATGAAGGGCTGTGG GAGATCCAGAACAACCCCCACGCCAGCTACAGCGCCCCTCCGCCAGTGAGCTCCTCCGACAG CGAGGCCCCGAGGCCAACCCCGCGACGCAGTGACGCTGACGAGGACGATGAGGACCGGG GGGTCATGGCCGTCACAGCGGTAACCGCCACAGCTGCCAGCGACAGGATGGAGAGCGACTCA GACTCAGACAAGAGTAGCGACAACAGTGGCCTGAAGAGGAAGACGCCTGCGCTAAAGATGTC GGTCTCGAAACGACCCGAAAGGCCTCCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCG AAGAGGAGAACTCGGAAAGCTCATCTGAGTCGGAGAAGACCAGCGACCAGGACTTCACACCT GGCGCCGTCAGCCTCCGACTCCAAGGCCGATTCGGACGGGGCCAAGCCTGAGCCGG TCTGTGAAGAGCCTCCGAGGGGCAGGAAGCCAGCGGAGAAGCCTCTCCCGAAGCCGCGAGG GCGGAAACCGAAGCCTGAACGGCCTCCGTCCAGCTCCAGCAGTGACAGTGACAGCGACGAGG TGGACCGCATCAGTGAGTGGAAGCGGCGGGACGAGGCGCGGAGCTGGAGGCCCGG GCGGAGCGCGAGCGGCCGACCGCGGGGAGCCTGAGCGGGCAGCGGCGGCAGCAGCGGGG ACGAGCTCAGGGAGGACGATGAGCCCGTCAAGAAGCGGGGACGCAAGGGCCGGGGCCGGGGT GAAGAAGCCGCAGTCCTCAAGCACAGAGCCCGCCAGGAAACCTGGCCAGAAGGAGAAGAGAG TGCGGCCGAGGAGAAGCAACAAGCCAAGCCCGTGAAGGTGGAGCGGACCCGGAAGCGGTCC GAGGGCTTCTCGATGGACAGGAAGGTAGAGAAGAAGAAGAGCCCTCCGTGGAGGAGAAGCT GCAGAAGCTGCACAGTGAGATCAAGTTTGCCCTAAAGGTCGACAGCCCGGACGTGAAGAGGT GCCTGAATGCCCTAGAGGAGCTGGGAACCCTGCAGGTGACCTCTCAGATCCTCCAGAAGAAC ACAGACGTGGTGGCCACCTTGAAGAAGATTCGCCGTTACAAAGCGAACAAGGACGTAATGGA GAAGGCAGCAGAAGTCTATACCCGGCTCAAGTCGCGGGTCCTCGGCCCAAAGATCGAGGCGG TGCAGAAAGTGAACAAGGCTGGGATGGAGAAGGAGAAGGCCGAGGAGAAGCTGGCCGGGGAG - GAGCTGGCCGGGGAGGAGCCCCCCAGGAGAAGGCGGAGGACAAGCCCAGCACCGATCTCTC AGCCCCAGTGAATGGCGAGGCCACATCACAGAAGGGGGAGAGCGCAGAGGACAAGGAGCACG AGGAGGTCGGGACTCGGAGGGGGCCAAGGTGTGGCTCCTCTGAAGACCTGCACGACAGC GTACGGGAGGGTCCCGACCTGGACAGGCCTGGGAGCGACCGGCAGGAGCGCGAGAGGGCACG GGGGGACTCGGAGGCCCTGGACGAGGAGAGCC<u>TGA</u>GCCGCGGGCAGCCAGGCCCAGCCCCGC CCGAGCTCAGGCTGCCCCTCTCCTCCCCGGCTCGCAGGAGCAGAGCAGAGAACTGTGGG GAACGCTGTGCTGTTTTGTTTCCCTTGGGTTTTTTTTTCCTGCCTAATTTCTGTGATT TCCAACCAACATGAAATGACTATAAACGGTTTTTTAATGA

FIGURE 174

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286

><subunit 1 of 1, 671 aa, 1 stop

><MW: 74317, pI: 7.61, NX(S/T): 0

MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPPNKYPIFFFGTHETAFLGPKDLFPYD
KCKDKYGKPNKRKGFNEGLWEIQNNPHASYSAPPPVSSSDSEAPEANPADGSDADEDDEDRG
VMAVTAVTATAASDRMESDSDSDKSSDNSGLKRKTPALKMSVSKRARKASSDLDQASVSPSE
EENSESSSESEKTSDQDFTPEKKAAVRAPRRGPLGGRKKKKAPSASDSDSKADSDGAKPEPV
AMARSASSSSSSSSSDSDVSVKKPPRGRKPAEKPLPKPRGRKPKPERPPSSSSSDSDSDEV
DRISEWKRRDEARRRELEARRRREQEEELRRLREQEKEEKERRERADRGEAERGSGGSSGD
ELREDDEPVKKRGRKGRGRGPPSSSDSEPEAELEREAKKSAKKPQSSSTEPARKPGQKEKRV
RPEEKQQAKPVKVERTRKRSEGFSMDRKVEKKKEPSVEEKLQKLHSEIKFALKVDSPDVKRC
LNALEELGTLQVTSQILQKNTDVVATLKKIRRYKANKDVMEKAAEVYTRLKSRVLGPKIEAV
QKVNKAGMEKEKAEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGESAEDKEHE
EGRDSEEGPRCGSSEDLHDSVREGPDLDRPGSDRQERERARGDSEALDEES

Signal peptide:

amino acids 1-13

FIGURE 175

GTTGGTTCTCCTGGATCTTCACCTTACCAACTGCAGATCTTGGGACTCATCAGCCTCAATAATTATATAAATT AACACCATTTGAAAGAGAACATTGTTTTCATC<u>ATG</u>AATGCTAATAAAGATGAAAGACTTAAAGCCAGAAGCCAA GATTTTCACCTTTTTCCTGCTTTGATGATGCTAAGCATGACCATGTTGTTTCTTCCAGTCACTGGCACTTTGAA GCAAAATATTCCAAGACTCAAGCTAACCTACAAAGACTTGCTGCTTTCAAATAGCTGTATTCCCTTTTTTGGGTT CACATCTTTCTACTCAGTCTGGTTGACTTAAACAAAAATTTTAAGAAGATTTATTGGCCTGCTGCAAAGGAACG GGTGGAATTATGTAAATTAGCTGGGAAAGATGCCAATACAGAATGTGCAAATTTCATCAGAGTACTTCAGCCCT ATAACAAAACTCACATATATGTGTGTGGAACTGGAGCATTTCATCCAATATGTGGGTATATTGATCTTGGAGTC TACAAGGAGGATATTATATTCAAACTAGACACACATAATTTGGAGTCTGGCAGACTGAAATGTCCTTTCGATCC ${\tt TCAGCAGCCTTTTGCTTCAGTAATGACAGATGAGTACCTCTACTCTGGAACAGCTTCTGATTTCCTTGGCAAAG}$ ATACTGCATTCACTCGATCCCTTGGGCCTACTCATGACCACCACTACATCAGAACTGACATTTCAGAGCACTAC TGGCTCAATGGAGCAAAATTTATTGGAACTTTCTTCATACCAGACACCTACAATCCAGATGATGATAAAATATA $\tt TTTCTTCTTCGTGAATCATCTCAAGAAGGCAGTACCTCCGATAAAACCATCCTTTCTCGAGTTGGAAGAGTTT$ $\tt GTAAGAATGATGTAGGAGGACAACGCAGCCTGATAAACAAGTGGACGACTTTTCTTAAGGCCAGACTGATTTGC$ TGAAAGAATCCTGTAGTATATGGAGTCTTTACTACAACCAGCTCCATCTTCAAAGGCTCTGCTGTTTGTGTGT ATAGCATGGCTGACATCAGAGCAGTTTTTAATGGTCCATATGCTCATAAGGAAAGTGCAGACCATCGTTGGGTG CAGTATGATGGGAGAATTCCTTATCCACGGCCTGGTACATGTCCAAGCAAAACCTATGACCCACTGATTAAGTC CACCCGAGATTTTCCAGATGATGTCATCAGTTTCATAAAGCGGCACTCTGTGATGTATAAGTCCGTATACCCAG $\tt TTGCAGGAGGACCAACGTTCAAGAGAATCAATGTGGATTACAGACTGACACAGATAGTGGTGGATCATGTCATT$ ACATGGAATTGTCTCTGAAGCAGCAACAATTGTACATTGGTTCCCGAGATGGATTAGTTCAGCTCTCCTTGCAC AGATGCGACACTTATGGGAAAGCTTGCGCAGACTGTTGTCTTGCCAGAGACCCCTACTGTGCCTGGGATGGAAA $\tt CCCAGTGCTGGGACATCGAAGACAGCATTAGTCATGAAAACTGCTGATGAAAAGGTGATTTTTGGCATTGAATTT$ AACTCAACCTTTCTGGAATGTATACCTAAATCCCAACAAGCAACTATTAAATGGTATATCCAGAGGTCAGGGGA TGAGCATCGAGAGGAGTTGAAGCCCGATGAAAGAATCATCAAAACGGAATATGGGCTACTGATTCGAAGTTTGC A GAAGAAGGATTCTGGGATGTATTACTGCAAAGCCCAGGAGCACACTTTCATCCACACCATAGTGAAGCTGACTTTGAATGTCATTGAGAATGAACAGATGGAAAATACCCAGAGGGCAGAGCATGAGGAGGGCCAGGTCAAGGATCT ATTGGCTGAGTCACGGTTGAGATACAAAGACTACATCCAAATCCTTAGCAGCCCAAACTTCAGCCTCGACCAGT ACTGCGAACAGATGTGGCACAGGGAGAAGCGGAGACAGAGAAACAAGGGGGGCCCAAAGTGGAAGCACATGCAG GAAATGAAGAAGAAACGAAATCGAAGACATCACAGAGACCTGGATGAGCTCCCTAGAGCTGTAGCCACG<u>TAG</u>TT TTCTACTTAATTTAAAGAAAGAATTCCTTACCTATAAAAACATTGCCTTCTGTTTTGTATATCCCTTATAGTA ATTCATAAATGCTTCCCATGGAGTTTTGCTAAGGCACAAGACAATAATCTGAATAAGACAATATGTGATGAATA -TAAGAAAGGGCAAAAAATTCATTTGAACCAGTTTTCCAAGAACAAATCTTGCACAAGCAAAGTATAAGAATTAT $\tt CCTAAAAATAGGGGGTTTACAGTTGTAAATGTTTTATGTTTTGAGTTTTGGAATTTATTGTCATGTAAATAGTT$ GAGCTAAGCAAGCCCCGAATTTGATAGTGTATAAGGTGCTTTATTCCCTCGAATGTCCATTAAGCATGGAATTT ACCATGCAGTTGTGCTATGTTCTTATGAACAGATATATCATTCCTATTGAGAACCAGCTACCTTGTGGTAGGGA ATAAGAGGTCAGACACAAATTAAGACAACTCCCATTATCAACAGGAACTTTCTCAGTGAGCCATTCACTCGTGG TTGATTTACTGAAGGGCACTAATGTTTCCCCCAGGATTTCTATTGACTAGTCAGGAGTAACAGGTTCACAGAGA TTAATAAGATATGGGAAAATATTTTAATAAAACAAGGAAAACATAATGATGTATAATGCATCCTGATGGGAAGG CATGCAGATGGGATTTGTTAGAAGACAGAAGGAAAGACAGCCATAAATTCTGGCTTTTGGGGAAAACTCATATCC CCATGAAAAGGAAGAACAATCACAAATAAAGTGAGAGTAATGTAATGGAGCTCTTTTCACTAGGGTATAAGTAG CTGCCAATTTGTAATTCATCTGTTAAAAAAAATCTAGATTATAACAAACTGCTAGCAAAATCTGAGGAAACATA TTGTGATTATATTTGAGTGAATAGGAGAAAACAATATATAACACACAGAGAATTAAGAAAATGACATTTCTGGG GÁGTGGGGATATATATTTGTTGAATAACAGAACGAGTGTAAAATTTTAACAACGGAAAGGGTTAAATTAACTCT TTGACATCTTCACTCAACCTTTTCTCATTGCTGAGTTAATCTGTTGTAATTGTAGTATTGTTATTTTGTAATTTAA CAATAAATAAGCCTGCTACATGT

FIGURE 176

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71883</pre>

><subunit 1 of 1, 777 aa, 1 stop

><MW: 89651, pI: 7.97, NX(S/T): 3

MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVTGTLKQNIPRLKLTYKDLLLSNSCIPFL
GSSEGLDFQTLLLDEERGRLLLGAKDHIFLLSLVDLNKNFKKIYWPAAKERVELCKLAGKDA
NTECANFIRVLQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFD
PQQPFASVMTDEYLYSGTASDFLGKDTAFTRSLGPTHDHHYIRTDISEHYWLNGAKFIGTFF
IPDTYNPDDDKIYFFFRESSQEGSTSDKTILSRVGRVCKNDVGGQRSLINKWTTFLKARLIC
SIPGSDGADTYFDELQDIYLLPTRDERNPVVYGVFTTTSSIFKGSAVCVYSMADIRAVFNGP
YAHKESADHRWVQYDGRIPYPRPGTCPSKTYDPLIKSTRDFPDDVISFIKRHSVMYKSVYPV
AGGPTFKRINVDYRLTQIVVDHVIAEDGQYDVMFLGTDIGTVLKVVSISKEKWNMEEVVLEE
LQIFKHSSIILNMELSLKQQQLYIGSRDGLVQLSLHRCDTYGKACADCCLARDPYCAWDGNA
CSRYAPTSKRRARRQDVKYGDPITQCWDIEDSISHETADEKVIFGIEFNSTFLECIPKSQQA
TIKWYIQRSGDEHREELKPDERIIKTEYGLLIRSLQKKDSGMYYCKAQEHTFIHTIVKLTLN
VIENEQMENTQRAEHEEGQVKDLLAESRLRYKDYIQILSSPNFSLDQYCEQMWHREKRRQRN
KGGPKWKHMOEMKKKRNRRHHRDLDELPRAVAT

Important features of the protein:

Signal peptide:

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 32-37

FIGURE 177

CCCTGACCTCCCTGAGCCACACTGAGCTGGAAGCCGCAGAGGTCATCCTGGAGCATGCCCACCGCGGGGAGCAG ACAACCTCCCAGGTAAGCTGGGAGCAAGACCTGAAGCTGTTTCTTCAGGAGCCTGGTGTATTTTCCCCCACCCC AGAGTGGCCTGGAGAAAGAGGTTCAGCGCTTGACCAGCCGAGCTGCCCGTGACTACAAGATCCAGAACCATGGG CATCGGGTGAGGTGGGGGGCACAGGTGTCATGTGCACCTTCTTGTCTCAGCAAGAAGAGCTGAGAGAGGGGGAT AGTTAAGAGCACAGTTTTTGGAGCTAGACCGACATAGGTTCAAATTCTCTTGTTGCTTCCTAGTTCTGTAGC CCCAGGTAAGGGAGTGACTTAACCTCTCGGACTTCAATTTCCTCATCACTAAAGTAGGGCCAATAATAGCACC CACCTCATAGGGAAGATTAAATGACATAATGTATGTG<u>ATG</u>CAACTAGCAAAGTACCAGTCCCATAGTAAGTCAT GCCCACAGTATTTCCACCCACCCCTGTTCTCTGCCTTCCCAACCAGGTACTGCAACGACTGGAGCAGAGGCGG CAGCAGGCTTCAGAGCGGGGGGCTCCAAGCATAGAACAGAGGTTACAGGAAGTGCGAGAGAGCATCCGCCGGGC ACAGGTGAGCCAGGTGAAGGGGGCTGCCCGGCTGGCCCTGCTGCAGGGGGCTTGGCTTAGATGTGGAGCGCTGGC TGAAGCCAGCCATGACCCAGGCCCAGGATGAGGTGGAGCAGGAGCGGCGGCTCAGTGAGGCTCGGCTGTCCCAG AGGGACCTCTCTCCAACCGCTGAGGATGCTGAGCTTTCTGACTTTGAGGAATGTGAGGAGACGGGAGAGCTCTT TGAGGAGCCTGCCCCCAAGCCCTGGCCACGAGGGCCCTCCCCTGCCCTGCACACGTGGTATTTCGCTATCAGG CAGGGCGTGAGGATGAGCTGACAATCACGGAGGGTGAGTGGCTGGAGGTCATAGAGGAGGGGGAGATGCTGACGAA TGGGTCAAGGCTCGGAACCAGCACGGCGAGGTAGGCTTTGTCCCTGAGCGATATCTCAACTTCCCGGACCTCTC CCTCCCAGAGAGCAGCCAAGACAGTGACAATCCCTGCGGGGCAGAGCCCACAGCATTCCTGGCACAGGCCCTGT ACAGCTACACCGGACAGAGTGCAGAGGAGCTGAGCTTCCCTGAGGGGGCACTCATCCGTCTGCTGCCCCGGGCC CAAGATGGAGTAGATGACGGCTTCTGGAGGGGAGAATTTGGGGGCCGTGTTGGGGTCTTCCCCTCCTGCTGGT GGAAGAGCTGCTTGGCCCCCAGGGCCACCTGAACTCTCTGACCCTGAACAGATGCTGCCGTCCCCTTCTCCTC CTGGACTTCCCTGGGTTCCTGGACATGATGGCACCTCGACTCAGGCCGATGCGTCCACCACCTCCCCCGCCGGC ${\tt TAAAGCCCCGGATCCTGGCCACCCAGATCCCCTCACC\underline{TGA}}{\tt AGGCCAGGGAAGCCTTGACCCCCAGTGATGCTGC}$ TGTCCCTATCTTCAAGCTGTCAGACCACACCATCAATGATCCAGAGCAACACACCAAAAGCTGGAATCGCCCT TATTTCCACCCTCACCTCCAAGGGTGGAAACTTGCCCCTTCCCATTTCTAGAGCTGGAACCCACTCCTTTTTTT CCCATTGTTCTATCATCTCTAGGACCGGAACTACTACCTTCTCTCTGTCATGACCCTATCTAGGGTGGTGAAA TGCCTGAAATCTCTGGGGCTGGAAACCATCCATCAAGGTCTCTAGTAGTTCTGGCCCACCTCTTTCCCCACCCT GGCTCCATGACCCACCCCACTCTGGATGCCAGGGTCACTGGGGTTGGGCTGGGGAGAGACAGGCCTTGGGAA TCAGGAGCTGGAGCCAGGATGCGAAGCAGCTGTAATGGTCTGAGCGGATTTATTGACAATGAATAAAGGGCACG AAGGCCAGGCCAGGCCTCTTGTGCTAAGAGGGCAGGGGCCTACGGTGCTATTGCTTTAGGGGCCCA CCACGGCAGGGCCTGCTCCCAGCTGCCACGCTCTATCATATGGAGCGAGGTGTTGGGGAAGGCGGGGCAGGC AGCCTGTTGCAGGCAGGGGAAGGAGAGAGAGAGTGAGGGCCTGTGACCTCTCCTGAGGCCCCCAGCCTGAGACTG TGCAACTCCAGGTGGAAGTAGAGCTGGTCCCTCAGCTGGGGGGGCAGTGCTGTCCAGTGGAGGGGAGGGCTTTCA CGCCCACCCCCCTGGCCCTGCCAGCTGGTAGTCCATCAGCACAATGAAGGAGACTTGGAGAAGAGAGAAGAA TAACACTGTTGCTTCCTGTTCAAGCTGTGTCCAGCTTTTCCCCTGGGGCTCCAGGACCTTCCCTACCTCCACCA ${\tt CCAAACCAAGGGATTTATAGCAAAGGCTAAGCCTGCAGTTTACTCTGGGGGGTTCAGGGAGCCGAAAGGCTTAAA}$ TAGTTTAAGTAGGTGATGGGAAGATGAGATTACCTCATTTAGGGCTCAGGCAGACTCACCTCACATACTCCCTG CTCCCTGTGGTAGAGACACCTGAGAGAAAGGGGAGGGGTCAACAATGAGAGACCAGGAGTAGGTCCTATCAGTG CCCCCAGAGTAGAGAGCAATAAGAGCCCAGCCCAGTGCAGTCCCGGCTGTTTTTCCTACCTGGTGATCAGAA CCTGCCTTGGGCTGCCCTCCCCCAGACCCCTGACCACCCCCTGGGTCCTGTCCCCCACCAGAGCCCCAGCTCCT GTCTGTGGGGGAGCCATCACGGTGTTCGTGCAGTCCATAGCGCTTCTCAATGTGTGTCACCCGGAACCTGGGAG GGGAGGGAACACTGGGGTTTAGGACCACAACTCAGAGGCTGCTTGGCCCTCCCCTCTGACCAGGGACATCCTGA GTTTGGTGGCTACTTCCCTCTGGCCTAAGGTAGGGGAGGCCTTCTCAGATTGTGGGGCACATTGTGTAGCCTGA CTTCTGCTGGAGCTCCCAGTCCAGGAGGAAAGAGCCCAAGGCCCACTTTTGGGATCAGGTGCCTGATCACTGGGC CCCCTACCTCAGCCCCCTTTCCCTGGAGCACCTGCCCACCTGCCCACAGAGAACACAGTGGTCTCCCCTGTC CGGGGGCGCTTTTTCCTTGGAGCGTCCCTGACGGACAAGTGGAGGCCTCTTGCTGCGGCTGCAATGGAT CCACACTGGACAGCAGGAGGAGGAGTGAGGGTAACATTTCCATTTCCCTTCATGTTTTGTTTCTTACGTTCT TTCAGCATGCTCCTTAAAACCCCAGAAGCCCCAATTTCCCCCAAGCCCCATTTTTTCTTGTCTTTATCTAATAAA CTCAATATTAAG

FIGURE 178

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401

><subunit 1 of 1, 370 aa, 1 stop

><MW: 40685, pI: 4.53, NX(S/T): 0

MQLAKYQSHSKSCPTVFPPTPVLCLPNQVLQRLEQRRQQASEREAPSIEQRLQEVRESIRRA QVSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAELS DFEECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTITEGEWLEVIEEGDADEW VKARNQHGEVGFVPERYLNFPDLSLPESSQDSDNPCGAEPTAFLAQALYSYTGQSAEELSFP EGALIRLLPRAQDGVDDGFWRGEFGGRVGVFPSLLVEELLGPPGPPELSDPEQMLPSPSPPS FSPPAPTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPPAKAPDPGHPDPLT

FIGURE 179A

AGAAGGCAGAGACAGGGCACAGAAGCGGCCCAGACAGAGTCCTACAGAGGGAGAGGCCAGAGAAGCTGCA GAAGACACAGGCAGGAGAGACAAAGATCCAGGAAAGGAGGGCTCAGGAGGAGAGTTTGGAGAAGCCAGACCCC TGGGCACCTCTCCCAAGCCCAAGGACTAAGTTTTCTCCATTTCCTTTAACGGTCCTCAGCCCTTCTGAAAACTT TGCCTCTGACCTTGGCAGGAGTCCAAGCCCCCAGGCTACAGAGAGGAGCTTTCCAAAGCTAGGGTGTGGAGGAC ${ t TTGGTGCCCTAGACGGCCTCAGTCCCTCCCAGCTGCAGTACCAGTGCC} { t ATG} { t TCCCAGACAGGCTCGCATCCCGG}$ GAGGGGCTTGGCAGGGGGCTGGCTGTGGGGAGCCCAACCCTGCCTCCTGCTCCCCATTGTGCCGCTCTCCTGGC TGGTGTGGCTGCTTCTGCTGCCTCTCTCCTGCCCTCAGCCCGGCTGGCCAGCCCCCTCCCCCGGGAG ${\tt CCGCTTGCAGGCCTTTGGGGAGACGCTGCTACTAGAGCTGGAGCAGGACTCCGGTGTGCAGGTCGAGGGGCTGA}$ AATGGAGATCCGGAGTCGGTGGCATCTCTGCACTGGGATGGGGGAGCCCTGTTAGGCGTGTTACAATATCGGGG GGCTGAACTCCACCTCCAGCCCCTGGAGGGAGGCACCCCTAACTCTGCTGGGGGACCTGGGGCTCACATCCTAC GCCGGAAGAGTCCTGCCAGCGGTCAAGGTCCCATGTGCAACGTCAAGGCTCCTCTTGGAAGCCCCAGGCCCCAGA $\tt CCCCGAAGAGCCCAAGCGCTTTGCTTCACTGAGTAGATTTGTGGAGACACTGGTGGTGGCAGATGACAAGATGGC$ GTGGGGCCCAGTGCTCCAGACCCTGCGCAGCTTCTGTGCCTGCAGCGGGGCCTCAACACCCCTGAGGACTC TGGGTATGGCTGATGTGGGCACCGTCTGTGACCCGGCTCGGAGCTGTGCCATTGTGGAGGATGATGGGCTCCAG GGTCCCCCTGCAGTGCCCGCTTCATCACTGACTTCCTGGACAATGGCTATGGGCACTGTCTCTTAGACAAACCA GAGGCTCCATTGCATCTGCCTGTGACTTTCCCTGGCAAGGACTATGATGCTGACCGCCAGTGCCAGCTGACCTT CGGGCCCGACTCACGCCATTGTCCACAGCTGCCGCCCCTGTGCTGCCCTCTGGTGCTCTTGGCCACCTCAATG GCCATGCCATGTGCCAGACCAAACACTCGCCCTGGGCCGATGGCACACCCTGCGGGCCCGCACAGGCCTGCATG GGTGGTCGCTGCCTCCACATGGACCAGCTCCAGGACTTCAATATTCCACAGGCTGGTGGCTGGGGTCCTTGGGG ACCATGGGGTGACTGCTCGGACCTGTGGGGGTGGTGTCCAGTTCTCCTCCCGAGACTGCACGAGGCCTGTCC CCCGGAATGGTGGCAAGTACTGTGAGGGCCGCCGTACCCGCTTCCGCTCCTGCAACACTGAGGACTGCCCAACT GGCTCAGCCCTGACCTTCCGCGAGGAGCAGTGTGCTGCCTACAACCACCGCACCGACCTCTTCAAGAGCTTCCC GGGCACTGGGCTACTACTATGTGCTGGAGCCACGGGTGGTAGATGGGACCCCCTGTTCCCCGGACAGCTCCTCG GTCTGTGTCCAGGGCCGATGCATCCATGCTGGCTGTGATCGCATCATTGGCTCCAAGAAGAAGTTTGACAAGTG ${\tt CATGGTGTGCGGAGGGACGGTTCTGGTTGCAGCAAGCAGTCAGGCTCCTTCAGGAAATTCAGGTACGGATACA}$ ATCTACTTGGCCCTGAAGCTGCCAGATGGCTCCTATGCCCTCAATGGTGAATACACGCTGATGCCCTCCCCAC AGATGTGGTACTGCCTGGGGCAGTCAGCTTGCGCTACAGCGGGGCCACTGCAGCCTCAGAGACACTGTCAGGCC AGCTTCTTCGTGCCCCGGCCGACCCCTTCAACGCCACGCCCCACTCCCCAGGACTGGCTGCACCGAAGAGCACA GGGCTGTGGGCGTGAGACCTGCCCTCCTCTCTGCCCTAATGCGCAGGCTGGCCCTGCCCTGGTTTCCTGCCCT TATTTAGCACCAGGGAAGGGACAAGGACTAGGGTCCTGGGGAACCTGACCCCTGACCCCTCATAGCCCTCACC ATGTGTGTGTGCTTATGTATGAGGTACAACCTGTTCTGCTTTCCTCTTCCTGAATTTTATTTTTTGGGAAAAGA TTTTTTTGAGACAGAATCTCGCTCTGTCGCCCAGGCTGGAGTGCAATGGCACAATCTCGGCTCACTGCATCCTC ${\tt CGCCTCCCGGGTTCAAGTGATTCTCATGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCTCCTGCCACCACGCC}$ CCAGCTAATTTTTGTTTTGTTTTGTTTTGGAGACAGAGTCTCGCTATTGTCACCAGGGCTGGAATGATTTCAGCT CACTGCAACCTTCGCCACCTGGGTTCCAGCAATTCTCCTGCCTCAGCCTCCCGAGTAGCTGAGATTATAGGCAC $\tt CTACCACCACGCCCGGCTAATTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTCTCG$ AACTCCTGACCTTAGGTGATCCACTCGCCTTCATCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCC TGGCCACGCCCAACTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGCTGCTCTTGAAC TCCTGACCTCAGGTAATCGACCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCACGCCCGG TACATATTTTTAAATTGAATTCTACTATTTATGTGATCCTTTTGGAGTCAGACAG

FIGURE 179B

FIGURE 180

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73492</pre>

><subunit 1 of 1, 837 aa, 1 stop

><MW: 90167, pI: 8.39, NX(S/T): 1

MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLLASLLPSARLASPLPREEEIV FPEKLNGSVLPGSGAPARLLCRLQAFGETLLLELEQDSGVQVEGLTVQYLGQAPELLGGAEP GTYLTGTINGDPESVASLHWDGGALLGVLQYRGAELHLQPLEGGTPNSAGGPGAHILRRKSP ASGQGPMCNVKAPLGSPSPRPRRAKRFASLSRFVETLVVADDKMAAFHGAGLKRYLLTVMAA AAKAFKHPSIRNPVSLVVTRLVILGSGEEGPQVGPSAAQTLRSFCAWQRGLNTPEDSGPDHF DTAILFTRQDLCGVSTCDTLGMADVGTVCDPARSCAIVEDDGLQSAFTAAHELGHVFNMLHD NSKPCISLNGPLSTSRHVMAPVMAHVDPEEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHL PVTFPGKDYDADRQCQLTFGPDSRHCPQLPPPCAALWCSGHLNGHAMCQTKHSPWADGTPCG PAQACMGGRCLHMDQLQDFNIPQAGGWGPWGPWGDCSRTCGGGVQFSSRDCTRPVPRNGGKY CEGRRTRFRSCNTEDCPTGSALTFREEQCAAYNHRTDLFKSFPGPMDWVPRYTGVAPQDQCK LTCQARALGYYYVLEPRVVDGTPCSPDSSSVCVQGRCIHAGCDRIIGSKKKFDKCMVCGGDG SGCSKQSGSFRKFRYGYNNVVTIPAGATHILVRQQGNPGHRSIYLALKLPDGSYALNGEYTL MPSPTDVVLPGAVSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRYSFFVPRPT PSTPRPTPQDWLHRRAQILEILRRRPWAGRK

Important features of the protein:

Signal peptide:

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristoylation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

FIGURE 181

CAAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCC AAGAAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTTGGTATCCTGGCCCTAACTCT AATTGTCCTGTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACA TGGAGCACACTTCTACAGCAATGGAGAAGAAGAAGATTTACATGGAAATTGATCCTGTG ACCAGAACTGAAATATTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTT TAAAAACGGATACACTGGCATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGA TTAAAGTGATTCCTGAATTTTCTGAACCAGAAGAGGGAAATAGATGAAGAAGAAATTACC ACAACTTTCTTTGAACAGTCAGTGATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGA TTTTCTTAAAAATTCCAAAATTCTGGAGATTTGTGATAACGTGACCATGTATTGGATCAATC CCACTCTAATATCAGTTTCTGAGTTACAAGACTTTGAGGAGGAGGAGAAGATCTTCACTTT AGAGAAGACCCGTCACGCCAGACAAGCAAGTGAGGAAGAACTTCCAATAAATGACTATACTG AAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGGGTTATTGTTGTATTTACTGCCGT CGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTAGGCTACTACCCATATCCATA GCATGCTGGGGAGGGTCTAATAGGAGGTTTGAGCTCAAATGCTTAAACTGCTGGCAACATAT AATAAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCT CTCCAGAATTACTTGTAGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACATTATCACC AAAAAAAAAAAAAAAA

FIGURE 182

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73727

><subunit 1 of 1, 317 aa, 1 stop

>< MW: 37130, pI: 5.18, NX(S/T): 3

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAY

DMEHTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKT

QIKVIPEFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWI

NPTLISVSELQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDY

TENGIEFDPMLDERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWV

ARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 183

GCGGAACTGGCTCCGGCTGGCACCTGAGGAGCGGCGTGACCCCGAGGGCCCAGGGAGCTGCC $\tt CGGCTGGCCTAGGCAGCAGCCGCACCATGGCCAGCACGGCCGTGCAGCTTCTGGGCTTCCT$ GCTCAGCTTCCTGGGCATGGTGGGCACGTTGATCACCACCATCCTGCCGCACTGGCGGAGGA $\mathsf{TGTGTGTGGCACAGCACAGGCATCTACCAGTGCCAGATCTACCGATCCCTGCTGGCGCTGCC$ GCGCCTGCGCCGTCATCGGGATGAAGTGCACGCGCTGCGCCAAGGGCACACCCGCCAAGACC CTCCTGGACCACCAACGACGTGGTGCAGAACTTCTACAACCCGCTGCTGCCCAGCGGCATGA AGTTTGAGATTGGCCAGGCCCTGTACCTGGGCTTCATCTCCTCGTCCCTCTCGCTCATTGGT GGCACCCTGCTTTGCCTGTCCTGCCAGGACGAGGCACCCTACAGGCCCTACAGGCCCCGCC CAGGGCCACCACGACCACTGCAAACACCGCACCTGCCTACCAGCCACCAGCTGCCTACAAAG ACAATCGGGCCCCTCAGTGACCTCGGCCACGCACGCGGGTACAGGCTGAACGACTACGTG AATGGAGGCAGGGGTTCCAGCACAAGTTTACTTCTGGGCAATTTTTGTATCCAAGGAAATA ATGTGAATGCGAGGAAATGTCTTTAGAGCACAGGGGACAGAGGGGGAAATAAGAGGAGGAGAA TTATGTGGGTGATTTGATAACAAGTTTAATATAAAGTGACTTGGGAGTTTGGTCAGTGGGGT

FIGURE 184

MASTAVQLLGFLLSFLGMVGTLITTILPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIY QCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAILGGTL FILAGLLCMVAVSWTTNDVVQNFYNPLLPSGMKFEIGQALYLGFISSSLSLIGGTLLCLSCQ DEAPYRPYQAPPRATTTTANTAPAYQPPAAYKDNRAPSVTSATHSGYRLNDYV

Important features of the protein: Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

FIGURE 185

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCG CAGGCGGCAGGCCGGCCAGGATC<u>ATG</u>TCCACCACCACGCAAGTGGTGGCGTTCCT CCTGTCCATCCTGGGGCTGGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCC AGGACCTGTACGACAACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGC GTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCCTATTTCACCATCCTGGGACTTCCAGC CATGCTGCAGGCAGTGCGAGCCCTGATGATCGTAGGCATCGTCCTGGGTGCCATTGGCCTCC TGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTGCCAAAGCC AACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGT GTCTGTGTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCG GCATGGGTGGGATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTG GGCTGGGTCGCTGGAGGCCTCACACTAATTGGGGGTTGTGATGTGCATCGCCTGCCGGGG CCTGGCACCAGAAGAACCAACTACAAAGCCGTTTCTTATCATGCCTCAGGCCACAGTGTTG CCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTTTGGGTCCAACACCAAAAACAAGAAG ATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATCCTTCCAAGCACGACTA TGTGTAATGCTCTAAGACCTCTCAGCACGGGCGGAAGAACTCCCGGAGAGCTCACCCAAAA AACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGC CTCGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCC ACCATAAAACAGCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTAT ATTTTGATGATTTAGACAGACTCCCCCTCTTCCTCCTAGTCAATAAACCCATTGATGATCTA TTTCCCAGCTTATCCCCAAGAAACTTTTGAAAGGAAAGAGTAGACCCAAAGATGTTATTTT CTGCTGTTTGAATTTTGTCTCCCCACCCCCAACTTGGCTAGTAATAAACACTTACTGAAGAA GAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTTACACTG TGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTG CTGTTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAG TTAAGTCCTAAATATAGTTAAAATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGA AATAGCCTCACCCCTACATGTGGATAGAAGGAAATGAAAAAATAATTGCTTTGACATTGTCT ATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCCATGAAAAGCTCACACCTGTAATC CTAGCACTTTGGGAGGCTGAGGAGGAAGGATCACTTGAGCCCAGAAGTTCGAGACTAGCCTG GGCAACATGGAGAĞCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCATGGTG GCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGG TCCTGTCTAAAAAAATAAAAAATAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAA ACTAATTCTTTAA

FIGURE 186

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734

><subunit 1 of 1, 261 aa, 1 stop

><MW: 27856, pI: 8.50, NX(S/T): 1

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTE CRPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIM FIVSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTL IGGVMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTE DEVQSYPSKHDYV

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 187

GGAAAAACTGTTCTCTTCTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCG GAGTCCAGCTGGCTAAAACTCATCCCAGAGGATAATGCCAACCCATGCCTTAGAAATCGCTG GGCTGTTTCTTGGTGGTGTTGGAATGGTGGCCACAGTGGCTGTCACTGTCATGCCTCAGTGG AGAGTGTCGGCCTTCATTGAAAACAACATCGTGGTTTTTTGAAAACTTCTGGGAAGGACTGTG GATGAATTGCGTGAGGCAGGCTAACATCAGGATGCAGTGCAAAATCTATGATTCCCTGCTGG CTCTTTCTCCGGACCTACAGGCAGCCAGAGGACTGATGTGTGCTGCTTCCGTGATGTCCTTC TTGGCTTTCATGATGGCCATCCTTGGCATGAAATGCACCAGGTGCACGGGGGACAATGAGAA GGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCATCATCACGGGCATGGTGGTGC TCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATAACTCAATAGTGAAT GTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCACTGGTGCT GATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTTGTTGCAACGAAAAGAGCAGTAGCTACA GATACTCGATACCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCG CATGCAAATGACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTA CTGTTCTTAACTGCCTAATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAA GCTATTTCAGCAGAATGAGATATTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAAT TTGTTTTCTAAGGTGGTTCAAGCATCTACTCTTTTTATCATTTACTTCAAAATGACATTGCT AAAGACTGCATTATTTTACTACTGTAATTTCTCCACGACATAGCATTATGTACATAGATGAG TCCATTACACTGAATAAATAGAACTCAACTATTGCTTTTCAGGGAAATCATGGATAGGGTTG AAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCATTTATAATGA AGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATATGCTG TTCTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCA AACTGCTTTTCCAGGGCTATACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAAGTGATG GAAATCATATGTATGGATATATTTTAATAAGTATTTGAGTACAGACTTTGAGGTTTCATC ACAAAAAAGTTGTCCTTTGAGAACTTCACCTGCTCCTATGTGGGTACCTGAGTCAAAATTG TCATTTTTGTTCTGTGAAAAATAAATTTCCTTCTTGTACCATTTCTGTTTAGTTTTACTAAA ATCTGTAAATACTGTATTTTTCTGTTTATTCCAAATTTGATGAAACTGACAATCCAATTTGA AAGTTTGTGTCGACGTCTGTCTAGCTTAAATGAATGTGTTCTATTTGCTTTATACATTTATA TTAATAAATTGTACATTTTTCTAATT

FIGURE 188

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735

><subunit 1 of 1, 225 aa, 1 stop

><MW: 24845, pI: 9.07, NX(S/T): 0

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRM QCKIYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGI IFIITGMVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVF CCNEKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

FIGURE 189

TCGCC<u>ATG</u>CCTCTGCCGGAATGCAGATCCTGGGAGTCGTCCTGACACTGCTGGGCTGGGTG AATGGCCTGGTCTCCTGTGCCCATGTGGAAGGTGACCGCTTTCATCGGCAACAGCAT ${\tt CGTGGTGGCCAGGTGGTGTGGGAGGCCTGTGGATGTCCTGCGTGGTGCAGAGCACCGGCC}$ AGATGCAGTGCAAGGTGTACGACTCACTGCTGGCGCTGCCACAGGACCTGCAGGCTGCACGT GCCCTCTGTGTCATCGCCCTCCTTGTGGCCCTGTTCGGCTTGCTGGTCTACCTTGCTGGGGC CAAGTGTACCACCTGTGTGGAGGAGAAGGATTCCAAGGCCCGCCTGGTGCTCACCTCTGGGA TTGTCTTTGTCATCTCAGGGGTCCTGACGCTAATCCCCGTGTGCTGGACGGCGCATGCCATC ATCCGGGACTTCTATAACCCCCTGGTGGCTGAGGCCCAAAAGCGGGAGCTGGGGGCCTCCCT GCCCTCGGGGGGGTCCCAGGGCCCAGCCATTACATGGCCCGCTACTCAACATCTGCCCCT GCCATCTCTCGGGGGCCCTCTGAGTACCCTACCAAGAATTACGTCTGACGTGGAGGGGAATG GGGGCTCCGCTGGCGCTAGAGCCATCCAGAAGTGGCAGTGCCCAACAGCTTTGGGATGGGTT CGTACCTTTGTTTCTGCCTCCTGCTATTTTTCTTTTGACTGAGGATATTTAAAATTCATTT GAAAACTGAGCCAAGGTGTTGACTCAGACTCTCACTTAGGCTCTGCTGTTTCTCACCCTTGG ATGATGGAGCCAAAGAGGGGATGCTTTGAGATTCTGGATCTTGACATGCCCATCTTAGAAGC TGTCCCCAAGAGTTCCTGCTGCTGCTGGGGGCTGGGCTTCCCTAGATGTCACTGGACAGCTG CCCCCCATCCTACTCAGGTCTCTGGAGCTCCTCTCTCACCCCTGGAAAAACAAATCATCTG TTAACAAAGGACTGCCCACCTCCGGAACTTCTGACCTCTGTTTCCTCCGTCCTGATAAGACG TCCACCCCCAGGGCCAGGTCCCAGCTATGTAGACCCCCGCCCCCACCTCCAACACTGCACC CTTCTGCCCTGCCCCCTCGTCTCACCCCCTTTACACTCACATTTTTATCAAATAAAGCATG TTTTGTTAGTGCA

FIGURE 190

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73736
><subunit 1 of 1, 220 aa, 1 stop
><MW: 23292, pI: 8.43, NX(S/T): 0
MASAGMQILGVVLTLLGWVNGLVSCALPMWKVTAFIGNSIVVAQVVWEGLWMSCVVQSTGQM
QCKVYDSLLALPQDLQAARALCVIALLVALFGLLVYLAGAKCTTCVEEKDSKARLVLTSGIV
FVISGVLTLIPVCWTAHAIIRDFYNPLVAEAQKRELGASLYLGWAASGLLLLGGGLLCCTCP
SGGSOGPSHYMARYSTSAPAISRGPSEYPTKNYV</pre>

Transmembrane domains:

amino acids 8-30 (type II), 82-102, 121-140, 166-186

FIGURE 191

GCCAAGGAGAACATCATCAAAGACTTCTCTAGACTCAAAAGGCTTCCACGTTCTACATCTTG AGCATCTTCTACCACTCCGAATTGAACCAGTCTTCAAAGTAAAGGCAATGGCATTTTATCCC TTGCAAATTGCTGGGCTGGTTCTTGGGTTCCTTGGCATGGTGGGGGACTCTTGCCACAACCCT TCTGCCTCAGTGGTGGAGTATCAGCTTTTGTTGGCAGCAACATTATTGTCTTTGAGAGGCTC TTGCTCTCTCTTGATCGCCCTGCTTATTGGCATCTGTGGCATGAAGCAGGTCCAGTGCACA GGCTCTAACGAGAGGGCCAAAGCATACCTTCTGGGAACTTCAGGAGTCCTCTTCATCCTGAC GGGTATCTTCGTTCTGATTCCGGTGAGCTGGACAGCCAATATAATCATCAGAGATTTCTACA ACCCAGCCATCCACATAGGTCAGAAACGAGAGCTGGGAGCAGCACTTTTCCTTGGCTGGGCA AGCGCTGCTGTCCTCTTCATTGGAGGGGGTCTGCTTTGTGGATTTTGCTGCTGCAACAGAAA ATACGACAATGCTTAGTAAGACCTCCACCAGTTATGTCTAATGCCTCCTTTTTGGCTCCAAGT ATGGACTATGGTCAATGTTTTTTATAAAGTCCTGCTAGAAACTGTAAGTATGTGAGGCAGGA GAACTTGCTTTATGTCTAGATTTACATTGATACGAAAGTTTCAATTTGTTACTGGTGGTAGG AATGAAAATGACTTACTTGGACATTCTGACTTCAGGTGTATTAAATGCATTGACTATTGTTG GACCCAATCGCTGCTCCAATTTTCATATTCTAAATTCAAGTATACCCATAATCATTAGCAAG TGTACAATGATGACTACTTATTACTTTTTGACCATCATGTATTATCTGATAAGAATCTAAA GTTGAAATTGATATTCTATAACAATAAAACATATACCTATTCTA

FIGURE 192

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73737
><subunit 1 of 1, 173 aa, 1 stop
><MW: 18938, pI: 9.99, NX(S/T): 1
MNCIRQARVRLQCKFYSSLLALPPALETARALMCVAVALSLIALLIGICGMKQVQCTGSNER
AKAYLLGTSGVLFILTGIFVLIPVSWTANIIIRDFYNPAIHIGQKRELGAALFLGWASAAVL
FIGGGLLCGFCCCNRKKQGYRYPVPGYRVPHTDKRRNTTMLSKTSTSYV

Important features of the protein: Transmembrane domains: amino acids 31-51, 71-90, 112-133

N-glycosylation site. amino acids 161-164

FIGURE 193

FIGURE 194

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73739

><subunit 1 of 1, 85 aa, 1 stop

><MW: 9232, pI: 7.94, NX(S/T): 0

 $\verb"MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITYGN"$

ECHLCTESLKSNGRVQFLHDGSC

Signal peptide:

amino acids 1-19

FIGURE 195

FIGURE 196

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742
><subunit 1 of 1, 148 aa, 1 stop
><MW: 17183, pI: 8.77, NX(S/T): 0</pre>

MAASPARPAVLALTGLALLLLLCWGPGGISGNKLKLMLQKREAPVPTKTKVAVDENKAKEFL GSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYYGDYYQRHYD EDSAIGPRSPYGFRHGASVNYDDY

Signal peptide:

amino acids 1-30

FIGURE 197

CGGCTCGAGCCCGCGGAAGTGCCCGAGGGGCCCGCATGGAGCTGGGGGAGCCGGGCGCTC CCGCTGAGGGCGGGGACCCACTGCCCCAGCCGTCAGGGGACCCCAACGCCATCCCAGCCCAGC GAGACACAGAGGTCAAGCTGCACAGCCAGAGCCCAGCACGGGGTTCACAGCAACACCGCCAG CCCCGGACTCCCCGCAGGAGCCCCTCGTGCTACGGCTGAAATTCCTCAATGATTCAGAGCAG GTGGCCAGGGCCTGGCCCCACGACACCATTGGCTCCTTGAAAAGGACCCAGTTTCCCGGCCG GGAACAGCAGGTGCGACTCATCTACCAAGGGCAGCTGCTAGGCGACGACACCCAGACCCTGG GCAGCCTTCACCTCCCAACTGCGTTCTCCACTGCCACGTGTCCACGAGAGTCGGTCCC CCAAATCCCCCTGCCCGCGGGGTCCGAGCCCGGCCCCTCCGGGCTGGAAATCGGCAGCCT GCTGCTGCCCCTGCTGCTGCTGCTGCTGCTCTGGTACTGCCAGATCCAGTACCGGC CCTTCTTTCCCCTGACCGCCACTCTGGGCCTGGCCGGCTTCACCCTGCTCCTCAGTCTCCTG ${\tt GCCTTTGCCATGTACCGCCCG}{\tt TAG}{\tt TGCCTCCGCGGGCGCTTGGCAGCGTCGCCGGCCCCTCC}$ GGACCTTGCTCCCCGCGCCGCGGGGGGGGGCTGCTGCCCAGGCCCGCCTCTCCGGCCTG CCTCTTCCCGCTGCCCTGGAGCCCAGCCCTGCGCGCAGAGGACTCCCGGGACTGGCGGAGG CCCCGCCTGCGACCGCCGGGGCTCGGGGCCACCTCCCGGGGCTGCTGAACCTCAGCCCGCA CTGGGAGTGGGCTCCTCGGGGTCGGGCATCTGCTGTCGCTCGGCCCCGGGCAGAGCCG GGCCGCCCGGGGGCCCGTCTTAGTGTTCTGCCGGAGGACCCAGCCGCCTCCAATCCCTGAC AGCTCCTTGGGCTGAGTTGGGGACGCCAGGTCGGTGGAGGCTGGTGAAGGGGAGCGGGGAG AAAAAAA

FIGURE 198

MTLIEGVGDEVTVLFSVLACLLVLALAWVSTHTAEGGDPLPQPSGTPTPSQPSAAMAATDSM RGEAPGAETPSLRHRGQAAQPEPSTGFTATPPAPDSPQEPLVLRLKFLNDSEQVARAWPHDT IGSLKRTQFPGREQQVRLIYQGQLLGDDTQTLGSLHLPPNCVLHCHVSTRVGPPNPPCPPGS EPGPSGLEIGSLLLPLLLLLLLLWYCQIQYRPFFPLTATLGLAGFTLLLSLLAFAMYRP

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 195-217

FIGURE 199

FIGURE 200

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746</pre>

><subunit 1 of 1, 148 aa, 1 stop

><MW: 16896, pI: 6.05, NX(S/T): 1

MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKI NENADGSFDYGLFQINSHYWCNDYKSYSENLCHVDCQDLLNPNLLAGIHCAKRIVSGARGMN NWVEWRLHCSGRPLSYWLTGCRLR

Signal peptide:

amino acids 1-18

FIGURE 201

TCTGACCTGACTGGAAGCGTCCAAAGAGGGACGGCTGTCAGCCCTGCTTGACTGAGAACCCA CCAGCTCATCCCAGACACCTCATAGCAACCTATTTATACAAAGGGGGAAAGAACACCTGAG AATTTGAAGTCCCTGTGAATGGGCTTTCAGAAGGCAATTAAAGAAATCCACTCAGAGAGGAC TTGGGGTGAAACTTGGGTCCTGTGGTTTTCTGATTGTAAGTGGAAGCAGGTCTTGCACACGC TGTTGGCAAATGTCAGGACCAGGTTAAGTGACTGGCAGAAAAACTTCCAGGTGGAACAAGCA ACCCATGTTCTGCTGCAAGCTTGAAGGAGCCTGGAGCGGGAGAAAGCTAACTTGAACATGAC CTGTTGCATTTGGCAAGTTCTAGCAACATGCTCCTAAGGAAGCGATACAGGCACAGACCATG CAGACTCCAGTTCCTCCTGCTGCTCCTGATGCTGGGATGCTCCTGATGATGGTGGCGATGT GAAGCCAGGTACCGCCTGGACTTTGGGGAATCCCAGGATTGGGTACTGGAAGCTGAGGATGA GGGTGAAGAGTACAGCCCTCTGGAGGGCCTGCCACCCTTTATCTCACTGCGGGAGGATCAGC TGCTGGTGGCCGTGGCCTTACCCCAGGCCAGAAGGAACCAGAGCCAGGGCAGGAGAGGTGGG AGCTACCGCCTCATCAAGCAGCCAAGGAGGCAGGATAAGGAAGCCCCAAAGAGGGGACTGGGG GGCTGATGAGGACGGGGAGGTGTCTGAAGAAGAGGGGTTGACCCCGTTCAGCCTGGACCCAC GTGGCCTCCAGGAGGCACTCAGTGCCCGCATCCCCCTCCAGAGGGCTCTGCCCGAGGTGCGG TTTCCATGATGAGGCCTGGTCCACTCTCCTGCGGACTGTACACAGCATCCTCGACACAGTGC TCTGCTCTCAGCGAATATGTGGCCAGGCTGGAGGGGGTGAAGTTACTCAGGAGCAACAAGAG GCTGGGTGCCATCAGGGCCCGGATGCTGGGGGCCACCAGAGCCACCGGGGATGTGCTCGTCT TCATGGATGCCCACTGCGAGTGCCACCCAGGCTGGCTGGAGCCCCTCCTCAGCAGAATAGCT GGTGACAGGAGCCGAGTGGTATCTCCGGTGATAGATGTGATTGACTGGAAGACTTTCCAGTA TTACCCCTCAAAGGACCTGCAGCGTGGGGTGTTGGACTGGAAGCTGGATTTCCACTGGGAAC CTTTGCCAGAGCATGTGAGGAAGGCCCTCCAGTCCCCCATAAGCCCCATCAGGAGCCCTGTG GTGCCCGGAGAGGTGGTGGCCATGGACAGACATTACTTCCAAAACACTGGAGCGTATGACTC TCTTATGTCGCTGCGAGGTGGTGAAAACCTCGAACTGTCTTTCAAGGCCTGGCTCTGTGGTG GCTCTGTTGAAATCCTTCCCTGCTCTCGGGTAGGACACATCTACCAAAATCAGGATTCCCAT GTCATTCAAAGAAACCTTCTACAAGCATAGCCCAGAGGCCTTCTCCTTGAGCAAGGCTGAGA AGCCAGACTGCATGGAACGCTTGCAGCTGCAAAGGAGACTGGGTTGTCGGACATTCCACTGG TTTCTGGCTAATGTCTACCCTGAGCTGTACCCATCTGAACCCAGGCCCAGTTTCTCTGGAAA GCTCCACACACTGGACTTGGGCTCTGTGCAGACTGCCAGGCAGAAGGGGACATCCTGGGCT GTCCCATGGTGTTGGCTCCTTGCAGTGACAGCCGGCAGCAACAGTACCTGCAGCACACCAGC GATTCTTCAGAACTGCACGGAGGAAGGCCTGGCCATCCACCAGCAGCACTGGGACTTCCAGG AGAATGGGATGATTGTCCACATTCTTTCTGGGAAATGCATGGAAGCTGTGGTGCAAGAAAAC AATAAAGATTTGTACCTGCGTCCGTGTGATGGAAAAGCCCGCCAGCAGTGGCGATTTGACCA GATAAATGCTGTGGATGAACGA<u>TGA</u>ATGTCAATGTCAGAAGGAAAAGAGAATTTTTGGCCATC AAAATCCAGCTCCAAGTGAACGTAAAGAGCTTATATATTTCATGAAGCTGATCCTTTTGTGT GTGTGCTCCTTGTGTTAGGAGAGAAAAAAGCTCTATGAAAGAATATAGGAAGTTTCTCCTTT TCACACCTTATTTCATTGACTGCTGGCTGCTTA

FIGURE 202

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73760</pre>

><subunit 1 of 1, 639 aa, 1 stop

><MW: 73063, pI: 6.84, NX(S/T): 2

MLLRKRYRHRPCRLQFLLLLLMLGCVLMMVAMLHPPHHTLHQTVTAQASKHSPEARYRLDFG
ESQDWVLEAEDEGEEYSPLEGLPPFISLREDQLLVAVALPQARRNQSQGRRGGSYRLIKQPR
RQDKEAPKRDWGADEDGEVSEEEELTPFSLDPRGLQEALSARIPLQRALPEVRHPLCLQQHP
QDSLPTASVILCFHDEAWSTLLRTVHSILDTVPRAFLKEIILVDDLSQQGQLKSALSEYVAR
LEGVKLLRSNKRLGAIRARMLGATRATGDVLVFMDAHCECHPGWLEPLLSRIAGDRSRVVSP
VIDVIDWKTFQYYPSKDLQRGVLDWKLDFHWEPLPEHVRKALQSPISPIRSPVVPGEVVAMD
RHYFQNTGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIYQNQDSHSPLDQEATL
RNRVRIAETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRLGCRTFHWFLANVYPEL
YPSEPRPSFSGKLHNTGLGLCADCQAEGDILGCPMVLAPCSDSRQQQYLQHTSRKEIHFGSP
QHLCFAVRQEQVILQNCTEEGLAIHQQHWDFQENGMIVHILSGKCMEAVVQENNKDLYLRPC
DGKARQQWRFDQINAVDER

Signal peptide:

amino acids 1-28

FIGURE 203

CGCCAAGCATGCAGTAAAGGCTGAAAATCTGGGTCACAGCTGAGGAAGACCTCAGAC<u>ATG</u>GA GTCCAGGATGTGGCCTGCTGCTGCTGTCCCACCTCCTCCTCTCTGGCCACTGCTGTTGC TGCCCTCCCACCGCTGCTCAGGGCTCTTCATCCTCCCCTCGAACCCCACCAGCCCCAGCC CACCCCAGCCACCCATCAGGCTTTGAGGAGGGGCCGCCCTCATCCCAATACCCCTGGGCT ATCGTGTGGGGTCCCACCGTGTCTCGAGAGGATGGAGGGGACCCCAACTCTGCCAATCCCGG ATTTCTGGACTATGGTTTTGCAGCCCCTCATGGGCTCGCAACCCCACACCCCAACTCAGACT CCATGCGAGGTGATGGAGATGGGCTTATCCTTGGAGAGGCACCTGCCACCCTGCGGCCATTC CTGTTCGGGGGCCGTGGGGAAGGTGTGGACCCCCAGCTCTATGTCACAATTACCATCTCCAT CATCATTGTTCTCGTGGCCACTGGCATCATCTTCAAGTTCTGCTGGGACCGCAGCCAGAAGC GACGCAGACCCTCAGGGCAGCAAGGTGCCCTGAGGCAGGAGGAGAGCCAGCAGCCACTGACA GACCTGTCCCCGGCTGGAGTCACTGTGCTGGGGGCCTTCGGGGACTCACCTACCCCACCCC TGACCATGAGGAGCCCCGAGGGGGACCCCGGCCTGGGATGCCCCACCCCAAGGGGGCTCCAG CCTTCCAGTTGAACCGGTGAGGGCAGGGGCAATGGGATGGGAGGGCAAAGAGGGAAGGCAAC CTCCCACAGCCCCTGGCCCTCCCAAGGGGGCTGGACCAGCTCCTCTCTGGGAGGCACCCTTC CTTCTCCCAGTCTCTCAGGATCTGTGTCCTATTCTCTGCTGCCCATAACTCCAACTCTGCCC TCTTTGGTTTTTCTCATGCCACCTTGTCTAAGACAACTCTGCCCTCTTAACCTTGATTCCC CCTCTTTGTCTTGAACTTCCCCTTCTATTCTGGCCTACCCCTTGGTTCCTGACTGTGCCCTT TCCCTCTTCCTCAGGATTCCCCTGGTGAATCTGTGATGCCCCCAATGTTGGGGTGCAGCC AAGCAGGAGGCCAAGGGCCGGCACAGCCCCCATCCCACTGAGGGTGGGGCAGCTGTGGGGA GCTGGGGCCACAGGGGCTCCTGGCTCCTGCCCCTTGCACACCACCCGGAACACTCCCCAGCC CCACGGGCAATCCTATCTGCTCGCCCTCCTGCAGGTGGGGGCCTCACATATCTGTGACTTCG GGTCCCTGTCCCCACCCTTGTGCACTCACATGAAAGCCTTGCACACTCACCTCCACCTTCAC AGGCCATTTGCACACGCTCCTGCACCCTCTCCCCGTCCATACCGCTCCGCTCAGCTGACTCT TGGTCAGCGTTTCCTGCACACTTTACCTCTCATGTGCGTTTCCCGGCCTGATGTTGTGGTGG GTGCTGCTCCAGAGGTGGGTGGGAGGTGAGCTGGGGGCTCCTTGGGCCCTCATCGGTCATGG TCTCGTCCCATTCCACACCATTTGTTTCTCTGTCTCCCCATCCTACTCCAAGGATGCCGGCA TCACCCTGAGGGCTCCCCCTTGGGAATGGGGTAGTGAGGCCCCAGACTTCACCCCCAGCCCA CTGCTAAAATCTGTTTTCTGACAGATGGGTTTTGGGGAGTCGCCTGCTGCACTACATGAGAA TCTGTGTGTGTGCCATTCTCTGGACTTCAGAGCCCCCTGAGCCAGTCCTCCCTTCCCAGCCT CCCTTTGGGCCTCCCTAACTCCACCTAGGCTGCCAGGGACCGGAGTCAGCTGGTTCAAGGCC CCTCCCTCCTTCCACTCTCCTTCCTTTTGCTTCCCTGCCCTTTCCCCCTCCTCAGGTT GTGATATATTTTTGTATTATCTCTTTCTTCTTCTTGTGGTGATCATCTTGAATTACTGTG GGATGTAAGTTTCAAAATTTTCAAATAAAGCCTTTGCAAGATAA

FIGURE 204

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 205

FIGURE 206

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398</pre>

><subunit 1 of 1, 121 aa, 1 stop

><MW: 12073, pI: 4.11, NX(S/T): 0

MASCLALRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTG PPAPTVAPGPEDSTAQERLDQGGGSLGPGAIAAIVIAALLATCVVLALVVVALRKFSAS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 116-119

N-myristoylation site.

amino acids 91-96

FIGURE 207

CGGCTGTCTGCACTGCCACAGCAACTTCTCCAAGAAGTTCTCCTTCTACCGCCACCATGTGA ACTTCAAGTCCTGGTGGGTGGGCGACATCCCCGTGTCAGGGGGCGCTGCTCACCGACTGGAGC GACGACACGATGAAGGAGCTGCACCTGGCCATCCCCGCCAAGATCACCCGGGAGAAGCTGGA CCAAGTGGCGACAGCAGTGTACCAGATGATGGATCAGCTGTACCAGGGGAAGATGTACTTCC CCGGGTATTTCCCCAACGAGCTGCGAAACATCTTCCGGGAGCAGGTGCACCTCATCCAGAAC ACCCAGCCTAGCACCTGAAGGATCAATGCCATCACCCCGCGGGGACCTCCCCTAAGTAGCCC CCAGAGGCGCTGGGAGTGTTGCCACCGCCCTCCCCTGAAGTTTGCTCCATCTCACGCTGGGG CGACTGTCAGCACCGCTGTGGCATCTTCCAGTACGAGACCATCTCCTGCAACAACTGCACAG GCCAGGGCCCTACTGTCCCTGGGGTCCCAGGCTCTCCTTGGAGGGGGCTCCCCGCCTTCCAC CTGGCTGTCATCGGGTAGGGCGGGGCCGTGGGTTCAGGGGCGCACCACTTCCAAGCCTGTGT GGTGAGTATGTGTGGGGCACAGGCTGGCTCCCTCAGCTCCCACGTCCTAGAGGGGGCTCCCGA GGAGGTGGAACCTCAACCCAGCTCTGCGCAGGAGGCGGCTGCAGTCCTTTTCTCCCTCAAAG GTCTCCGACCCTCAGCTGGAGGCGGGCATCTTTCCTAAAGGGTCCCCATAGGGTCTGGTTCC ACCCCATCCCAGGTCTGTGGTCAGAGCCTGGGAGGGTTCCCTACGATGGTTAGGGGTGCCCC ATGGAGGGGCTGACTGCCCCACATTGCCTTTCAGACAGGACACGAGCATGAGGTAAGGCCGC AGATCAGTGGGGGCACTGCAGGTGGGGCTCTCCCTATACCTGGGACACCTGCTGGATGTCAC CTCTGCAACCACACCCATGTGGTGGTTTCATGAACAGACCACGCTCCTCTGCCTTCTCCTGG CCTGGGACACACAGAGCCACCCCGGCCTTGTGAGTGACCCAGAGAAGGGAGGCCTCGGGAGA AGGGGTGCTCGTAAGCCAACACCAGCGTGCCGCGCCTGCACACCCTTCGGACATCCCAGGC ACGAGGGTGTCGTGGATGTGGCCACACATAGGACCACACGTCCCAGCTGGGAGGAGAGGCCT GGGGCCCCCAGGGAGGGAGGCAGGGGGGGGGGACATGGAGAGCTGAGGCAGCCTCGTCTCC CCGCAGCCTGGTATCGCCAGCCTTAAGGTGTCTGGAGCCCCCACACTTGGCCAACCTGACCT TGGAAGATGCTGCTGAGTGTCTCAAGCAGCACTGACAGCAGCTGGGCCTGCCCCAGGGCAAC GTGGGGGCGGAGACTCAGCTGGACAGCCCCTGCCTGTCACTCTGGAGCTGGGCTGCTGCTGC CTCAGGACCCCTCTCCGACCCCGGACAGAGCTGAGCTGGCCAGGGCCAGGAGGCCGGGAGG GAGGGAATGGGGGTGGGCTGTGCGCAGCATCAGCGCCTGGGCAGGTCCGCAGAGCTGCGGGA TGTGATTAAAGTCCCTGATGTTTCTC

FIGURE 208

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399</pre>

><subunit 1 of 1, 157 aa, 1 stop

><MW: 17681, pI: 7.65, NX(S/T): 1

MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDIPVSGALLTDWSDDTMK ELHLAIPAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNIFREQVHLIQNAIIER HLAPGSWGGGQLSREGPSLAPEGSMPSPRGDLP

Signal peptide:

amino acids 1-15

FIGURE 209

AGCAGGAGCAGGAGAGGGACAATGGAAGCTGCCCCGTCCAGGTTCATGTTCCTCTTATTTCT CCTCACGTGTGAGCTGCCGGAAGTTGCTGCAGAAGTTGAGAAATCCTCAGATGGTCCTG GTGCTGCCCAGGAACCCACGTGGCTCACAGATGTCCCAGCTGCCATGGAATTCATTGCTGCC ACTGAGGTGGCTGTCATAGGCTTCTTCCAGGATTTAGAAATACCAGCAGTGCCCATACTCCA TAGCATGGTGCAAAAATTCCCAGGCGTGTCATTTGGGATCAGCACTGATTCTGAGGTTCTGA CACACTACAACATCACTGGGAACACCATCTGCCTCTTTCGCCTGGTAGACAATGAACAACTG AATTTAGAGGACGAAGACATTGAAAGCATTGATGCCACCAAATTGAGCCGTTTCATTGAGAT CAACAGCCTCCACATGGTGACAGAGTACAACCCTGTGACTGTGATTGGGTTATTCAACAGCG TAATTCAGATTCATCTCCTCTGATAATGAACAAGGCCTCCCCAGAGTATGAAGAGAACATG CACAGATACCAGAAGGCAGCCAAGCTCTTCCAGGGGAAGATTCTCTTTATTCTGGTGGACAG TGGTATGAAAGAAATGGGAAGGTGATATCATTTTTCAAACTAAAGGAGTCTCAACTGCCAG CTTTGGCAATTTACCAGACTCTAGATGACGAGTGGGATACACTGCCCACAGCAGAAGTTTCC TGAATCAGAAGGAAAGACTCCAAAGGTGGAACTCTGACTTCTCCTTGGAACTACATATGGCC AAGTATCTACTTTATGCAAAGTAAAAAGGCACAACTCAAATCTCAGAGACACTAAACAACAG ACACACGCGCACACACACACACAGAGCTTCATTTCCTGTCTTAAAATCTCGTTTTCTC CATACTCTGTAAGCCCATCTGTAACACACCTAGATCAAGGCTTTAAGAGACTCACTGTGATG CCTCTATGAAAGAGAGGCATTCCTAGAGAAAGATTGTTCCAATTTGTCATTTAATATCAAGT TTGTATACTGCACATGACTTACACACAACATAGTTCCTGCTCTTTTAAGGTTACCTAAGGGT TGAAACTCTACCTTCTTTCATAAGCACATGTCCGTCTCTGACTCAGGATCAAAAACCAAAGG ATGGTTTTAAACACCTTTGTGAAATTGTCTTTTTGCCAGAAGTTAAAGGCTGTCTCCAAGTC CCTGAACTCAGCAGAAATAGACCATGTGAAAACTCCATGCTTGGTTAGCATCTCCAACTCCC TATGTAAATCAACAACCTGCATAATAAATAAAAGGCAATCATGTTATA

FIGURE 210

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76401

><subunit 1 of 1, 273 aa, 1 stop

><MW: 30480, pI: 4.60, NX(S/T): 1

MEAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPTWLTDVPAAMEFIAATEVAVIG FFQDLEIPAVPILHSMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDI ESIDATKLSRFIEINSLHMVTEYNPVTVIGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAA KLFQGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTLDDEWDTLPTAEVSVEHVQNF CDGFLSGKLLKENRESEGKTPKVEL

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 143-162

FIGURE 211

GGAGAGCCGCGGCTGGGACCGGAGTGGGGAGCGCGCGTGGAGGTGCCACCCGGCGCGCGTG GCGGAGAGATCAGAAGCCTCTTCCCCAAGCCGAGCCAACCTCAGCGGGGACCCGGGCTCAGG ${\tt GACGCGGCGGCGGCGACTGCAGTGGCTGGACG}$ GCGGTGATTGCAGCCCCAGACAGCCGGCGCTGGCTGGTGGTGGTGCTGGCGGCGCGCTTGG GCTCTTGACAGCTGGAGTATCAGCCTTGGAAGTATATACGCCAAAAGAAATCTTCGTGGCAA ATGGTACACAAGGGAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACTGGCGGGTTGACC TCAGTCTCCTGGAGCTTCCAGCCAGAGGGGGCCGACACTACTGTGTCGTTTTTCCACTACTC CCAAGGGCAAGTGTACCTTGGGAATTATCCACCATTTAAAGACAGAATCAGCTGGGCTGGAG ACCTTGACAAGAAGATGCATCAATCAACATAGAAAATATGCAGTTTATACACAATGGCACC TATATCTGTGATGTCAAAAACCCTCCTGACATCGTTGTCCAGCCTGGACACATTAGGCTCTA TGTCGTAGAAAAAGAGAATTTGCCTGTGTTTCCAGTTTGGGTAGTGGTGGGCATAGTTACTG CTGTGGTCCTAGGTCTCACTCTGCTCATCAGCATGATTCTGGCTGTCCTCTATAGAAGGAAA AACTCTAAACGGGATTACACTGGCTGCAGTACATCAGAGAGTTTGTCACCAGTTAAGCAGGC TCCTCGGAAGTCCCCCTCCGACACTGAGGGTCTTGTAAAGAGTCTGCCTTCTGGATCTCACC AGGGCCCAGTCATATATGCACAGTTAGACCACTCCGGCGGACATCACAGTGACAAGATTAAC AAGTCAGAGTCTGTGGTGTATGCGGATATCCGAAAGAAT<u>TAA</u>GAGAATACCTAGAACATATC CTCAGCAAGAAACCAAACCGGACTCTCGTGCAGAAAATGTAGCCCATTACCACATGT AGCCTTGGAGACCCAGGCAAGGACAAGTACACGTGTACTCACAGAGGGAGAGAAAGATGTGT ACAAAGGATATGTATAAATATTCTATTTAGTCATCCTGATATGAGGAGCCAGTGTTGCATGA TGAAAAGATGGTATGATTCTACATATGTACCCATTGTCTTGCTGTTTTTTGTACTTTTTTC AGGTCATTTACAATTGGGAGATTTCAGAAACATTCCTTTCACCATCATTTAGAAATGGTTTG CCTTAATGGAGACAATAGCAGATCCTGTAGTATTTCCAGTAGACATGGCCTTTTAATCTAAG GGCTTAAGACTGATTAGTCTTAGCATTTACTGTAGTTGGAGGATGGAGATGCTATGATGGAA AATACCCATTGGCTATGCCACTTGAAAACAATTTGAGAAGTTTTTTTGAAGTTTTTCTCACT AAATGTGTCATATCAATTCTGGATTCATAATAGCAAGGATTAGCAAAGGATAAATGCCGAAG GTCACTTCATTCTGGACACAGTTGGATCAATACTGATTAAGTAGAAAATCCAAGCTTTGCTT GAGAACTTTTGTAACGTGGAGAGTAAAAAGTATCGGTTTTA

FIGURE 212

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76510

><subunit 1 of 1, 269 aa, 1 stop

><MW: 29082, pI: 9.02, NX(S/T): 3

MAASAGAGAVIAAPDSRRWLWSVLAAALGLLTAGVSALEVYTPKEIFVANGTQGKLTCKFKS
TSTTGGLTSVSWSFQPEGADTTVSFFHYSQGQVYLGNYPPFKDRISWAGDLDKKDASINIEN
MQFIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVWVVVGIVTAVVLGLTLLISMI
LAVLYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLPSGSHQGPVIYAQLDHSG
GHHSDKINKSESVVYADIRKN

Signal peptide:

amino acids 1-37

Transmembrane domain:

amino acids 161-183

FIGURE 213

 $\tt GCCGGCTGTGCAGAGACGCC\underline{ATG}{\tt TACCGGCTCCTGTCAGCAGTGACTGCCCGGGCTGCCGCC}$ CCCGGGGGCTTGGCCTCAAGCTGCGGACGACGCGGGGTCCATCAGCGCGCCGGGCTGCCGCC TCTCGGCCACGGCTGGGGCCCTCGGGCTGGGGCTGGCGCTCGGGGTGAAGC TGGCAGGTGGGCTGAGGGGCGCGGCCCCGGCGCCCCGGCCCCGACCCTGAGGCG TCGCCTCTGGCCGAGCCGCCACAGGAGCAGTCCCTCGCCCGTGGTCTCCGCAGACCCCGGC GCCGCCCTGCTCCAGGTGCTTCGCCAGAGCCATCGAGAGCAGCCGCGACCTGCTGCACAGGA TCAAGGATGAGGTGGCCACCGGCATAGTGGTTGGAGTTTCTGTAGATGGAAAAGAAGTC TGGTCAGAAGGTTTAGGTTATGCTGATGTTGAGAACCGTGTACCATGTAAACCAGAGACAGT TATGCGAATTGCTAGCATCAGCAAAAGTCTCACCATGGTTGCTCTTGCCAAATTGTGGGAAG CAGGGAAACTGGATCTTGATATTCCAGTACAACATTATGTTCCCGAATTCCCAGAAAAAGAA TATGAAGGTGAAAAGGTTTCTGTCACAACAAGATTACTGATTTCCCATTTAAGTGGAATTCG TCATTATGAAAAGGACATAAAAAAGGTGAAAGAAGGAAAGCTTATAAAGCCTTGAAGATGA TGAAAGAGAATGTTGCATTTGAGCAAGAAAAGGAAGGCAAAAGTAATGAAAAGAATGATTTT ACTAAATTTAAAACAGAGCAGGAGAATGAAGCCAAATGCCGGAATTCAAAACCTGGCAAGAA AAAGAATGATTTTGAACAAGGCGAATTATATTTTGAGAGAAAAGTTTGAAAAATTCAATTGAAT CCCTAAGATTATTTAAAAATGATCCTTTGTTCTTCAAACCTGGTAGTCAGTTTTTGTATTCA CTATATGCAGAAAATATTCCATGACTTGGATATGCTGACGACTGTGCAGGAAGAAAACGAGC CAGTGATTTACAATAGAGCAAGGTAAATGAATACCTTCTGCTGTGTCTAGCTATATCGCATC TTAACACTATTTTATTAATTAAAAGTCAAATTTTCTTTGTTTCCATTCCAAAATCAACCTGC TGTTTATAAAGTAAAAAA

FIGURE 214

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76522</pre>

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41221, pI: 8.54, NX(S/T): 0

MYRLLSAVTARAAAPGGLASSCGRRGVHQRAGLPPLGHGWVGGLGLGLGLGLKLGVKLAGGLRG
AAPAQSPAAPDPEASPLAEPPQEQSLAPWSPQTPAPPCSRCFARAIESSRDLLHRIKDEVGA
PGIVVGVSVDGKEVWSEGLGYADVENRVPCKPETVMRIASISKSLTMVALAKLWEAGKLDLD
IPVQHYVPEFPEKEYEGEKVSVTTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAF
EQEKEGKSNEKNDFTKFKTEQENEAKCRNSKPGKKKNDFEQGELYLREKFENSIESLRLFKN
DPLFFKPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLDMLTTVQEENEPVIYNRAR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

FIGURE 215

 ${\tt AGGCTGGTGGGAAGAAGCCGAG}{\tt ATG}{\tt GCGGCAGCCAGCGCTGGGGCAACCCGGCTGCTCCTGC}$ TCTTGCTGATGGCGGTAGCAGCGCCCAGTCGAGCCCGGGGCAGCGGCTGCCGGGCCGGGACT GGTGCGCGAGGGCTGGGGCGGAAGGTCGAGAGGGCGAGGCCTGTGGCACGGTGGGGCTGCT GCTGGAGCACTCATTTGAGATCGATGACAGTGCCAACTTCCGGAAGCGGGGCTCACTGCTCT CGACTCCGGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATCCCAAGGCGACCCGG GGCCCTGGATGGCCTGGAAGCTGGTGGCTATGTCTCCTCCTTTGTCCCTGCGTGCTCCCTGG TGGAGTCGCACCTGTCGGACCAGCTGACCCTGCACGTGGATGTGGCCGGCAACGTGGTGGGC GTGTCGGTGGTGACGCACCCCGGGGGCTGCCGGGGCCATGAGGTGGAGGACGTGGACCTGGA GCTGTTCAACACCTCGGTGCAGCTGCAGCCGCCCACCACCCCAGGCCCTGAGACGGCGG CCTTCATTGAGCGCCTGGAGATGGAACAGGCCCAGAAGGCCCAAGAACCCCCAGGAGCAGAAG TCCTTCTTCGCCAAATACTGGATGTACATCATTCCCGTCGTCCTGTTCCTCATGATGTCAGG AGCGCCAGACACCGGGGGCCAGGGTGGGGGTGGGGGGTGGTGGTGGGGGTAGTGGCC ${ t TTTGCTGTGTGCCACCCTCCCTG} { t TAA} { t GTCTATTTAAAAACATCGACGATACATTGAAATGTG}$ TGAACGTTTTGAAAAGCTACAGCTTCCAGCAGCCAAAAGCAACTGTTGTTTTGGCAAGACGG TCCTGATGTACAAGCTTGATTGAAATTCACTGCTCACTTGATACGTTATTCAGAAACCCAAG GAATGGCTGTCCCCATCCTCATGTGGCTGTGTGGAGCTCAGCTGTGTTGTGTGGCAGTTTAT TAAACTGTCCCCCAGATCGACACGCAAAAAAAA

FIGURE 216

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76529</pre>

><subunit 1 of 1, 269 aa, 1 stop

><MW: 28004, pI: 5.80, NX(S/T): 1

MAAASAGATRLLLLLLMAVAAPSRARGSGCRAGTGARGAGAEGREGEACGTVGLLLEHSFEI
DDSANFRKRGSLLWNQQDGTLSLSQRQLSEEERGRLRDVAALNGLYRVRIPRRPGALDGLEA
GGYVSSFVPACSLVESHLSDQLTLHVDVAGNVVGVSVVTHPGGCRGHEVEDVDLELFNTSVQ
LQPPTTAPGPETAAFIERLEMEQAQKAKNPQEQKSFFAKYWMYIIPVVLFLMMSGAPDTGGQ
GGGGGGGGGGGGGGGCCCVPPSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 226-243

FIGURE 217

GGAGCGCTGCTGGAACCCGAGCCGGAGCCGAGCCACAGCGGGGAGGGTGGCCTGGCGGCCT GGAGCCGGACGTGTCCGGGGGCGTCCCCGCAGACCGGGGCAGCAGGTCGTCCGGGGGCCCACC AACTGGACTTCTATCAGGTCTACTTCCTGGCCCTGGCAGCTGATTGGCTTCAGGCCCCCTAC CTCTATAAACTCTACCAGCATTACTACTTCCTGGAAGGTCAAATTGCCATCCTCTATGTCTG TGGCCTTGCCTCTACAGTCCTCTTTGGCCTAGTGGCCTCCTCCCTTGTGGATTGGCTGGGTC GCAAGAATTCTTGTGTCCTCTTCTCCCTGACTTACTCACTATGCTGCTTAACCAAACTCTCT ${\tt CAAGACTACTTTGTGCTGCTAGTGGGGCGAGCACTTGGTGGGCTGTCCACAGCCCTGCTCTT}$ CTCAGCCTTCGAGGCCTGGTATATCCATGAGCACGTGGAACGGCATGACTTCCCTGCTGAGT GTGGCAGCTGAGGCTGTAGCCAGCTGGATAGGGCTGGGGCCTGTAGCGCCCTTTGTGGCTGC CATCCCTCTCCTGGCTCTGGCAGGGCCCTTGGCCCTTCGAAACTGGGGGGAGAACTATGACC GGCAGCGTGCCTTCTCAAGGACCTGTGCTGGAGGCCTGCGCTGCCTCCTGTCGGACCGCCGC GTGCTGCTGGGCACCATACAAGCTCTATTTGAGAGTGTCATCTTCATCTTTGTCTTCCT CTGGACACCTGTGCTGGACCCACACGGGGCCCCTCTGGGCATTATCTTCTCCAGCTTCATGG CAGCCAGCCTGCTTGGCTCTTCCCTGTACCGTATCGCCACCTCCAAGAGGTACCACCTTCAG CTCTACCAGCCCAGGCCAGGAGAGTCCGGTGGAGTCCTTCATAGCCTTTCTACTTATTGAGT TGGCTTGTGGATTATACTTTCCCAGCATGAGCTTCCTACGGAGAAAGGTGATCCCTGAGACA CCTTGTCCTCCATGACAGTGATCGAAAAACAGGCACTCGGAATATGTTCAGCATTTGCTCTG CTGTCATGGTGATGGCTCTGCCGGCAGTGGTGGACTCTTCACCGTGGTAAGGCATGATGCT ${\tt GAGCTGCGGGTACCTTCACCTACTGAGGAGCCCTATGCCCCTGAGCTG} {\color{red}{\bf TAA}} {\tt CCCCACTCCAG}$ GACAAGATAGCTGGGACAGACTCTTGAATTCCAGCTATCCGGGATTGTACAGATCTCTCTGT GACTGACTTTGTGACTGTCCTGTGGTTTCTCCTGCCATTGCTTTTGTGTTTTGGGAGGACATGA TGGGGGTGATGGAAAGAAGATGCCAAAAGTTCCCTCTGTGTTACTCCCATTTAGAAA ATAAACACTTTTAAATGATCAAAAAAAAAAAA

FIGURE 218

MLVTAYLAFVGLLASCLGLELSRCRAKPPGRACSNPSFLRFQLDFYQVYFLALAADWLQAPY
LYKLYQHYYFLEGQIAILYVCGLASTVLFGLVASSLVDWLGRKNSCVLFSLTYSLCCLTKLS
QDYFVLLVGRALGGLSTALLFSAFEAWYIHEHVERHDFPAEWIPATFARAAFWNHVLAVVAG
VAAEAVASWIGLGPVAPFVAAIPLLALAGALALRNWGENYDRQRAFSRTCAGGLRCLLSDRR
VLLLGTIQALFESVIFIFVFLWTPVLDPHGAPLGIIFSSFMAASLLGSSLYRIATSKRYHLQ
PMHLLSLAVLIVVFSLFMLTFSTSPGQESPVESFIAFLLIELACGLYFPSMSFLRRKVIPET
EQAGVLNWFRVPLHSLACLGLLVLHDSDRKTGTRNMFSICSAVMVMALLAVVGLFTVVRHDA
ELRVPSPTEEPYAPEL

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 41-55, 75-94, 127-143, 191-213, 249-270, 278-299, 314-330, 343-359, 379-394, 410-430

FIGURE 219

GCGACGCGCGGGGGGGGGGGAGAGGAAACGCGGCCCGGGCCCGGCCCTGGAGATG GTCCCCGGCGCGCGGGCTGTTTTCTCTCGTGCTCTGGCTCCCGCGTGCGTCGCGCCCA CGGCTTCCGTATCCATGATTATTTGTACTTTCAAGTGCTGAGTCCTGGGGACATTCGATACA TCTTCACAGCCACACCTGCCAAGGACTTTGGTGGTATCTTTCACACAAGGTATGAGCAGATT CACCTTGTCCCCGCTGAACCTCCAGAGGCCTGCGGGGAACTCAGCAACGGTTTCTTCATCCA AGGAGCACGGCGGGCGGCGGTGATCATCTCTGACAACGCAGTTGACAATGACAGCTTCTAC GTGGAGATGATCCAGGACAGTACCCAGCGCACAGCTGACATCCCCGCCCTCTTCCTGCTCGG CCGAGACGGCTACATGATCCGCCGCTCTCTGGAACAGCATGGGCTGCCATGGGCCATCATTT CCATCCCAGTCAATGTCACCAGCATCCCCACCTTTGAGCTGCTGCAACCGCCCTGGACCTTC TGGTAGAAGAGTTTGTCCCACATTCCAGCCATAAGTGACTCTGAGCTGGGAAGGGGAAACCC AGGAATTTTGCTACTTGGAATTTGGAGATAGCATCTGGGGACAAGTGGAGCCAGGTAGAGGA AAAGGGTTTGGGCGTTGCTAGGCTGAAAGGGAAGCCACACCACTGGCCTTCCCTTCCCCAGG GCCCCCAAGGGTGTCTCATGCTACAAGAAGAGGCCAAGAGACAGGCCCCAGGGCTTCTGGCTA GAACCCGAAACAAAGGAGCTGAAGGCAGGTGGCCTGAGAGCCATCTGTGACCTGTCACACT CACCTGGCTCCAGCCTCCCCTACCCAGGGTCTCTGCACAGTGACCTTCACAGCAGTTGTTGG AGTGGTTTAAAGAGCTGGTGTTTGGGGACTCAATAAACCCTCACTGACTTTTTAGCAATAAA

FIGURE 220

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76532</pre>

><subunit 1 of 1, 188 aa, 1 stop

><MW: 21042, pI: 5.36, NX(S/T): 2

MVPGAAGWCCLVLWLPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQ IHLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNAVDNDSF YVEMIQDSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFELLQPPWTFW

Signal peptide:

amino acids 1-20

FIGURE 221

FIGURE 222

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76538
><subunit 1 of 1, 116 aa, 1 stop
><MW: 12910, pI: 6.41, NX(S/T): 1
MELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPILSYWPYGCHCGLGGRGQPKDATDW
CCQTHDCCYDHLKTQGCGIYKDNNKSSIHCMDLSQRYCLMAVFNVIYLENEDSE</pre>

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 1-24

N-glycosylation site.

amino acids 86-89

N-myristoylation sites.

amino acids 20-25, 45-50

Phospholipase A2 histidine active site.

amino acids 63-70

FIGURE 223

CTCGCTTCTTCCTGGATGGGGGCCCAGGGGGCCCAGGAGAGTATAAAGGCGATGTGGAG
GGTGCCCGGCACAACCAGACGCCCAGTCACAGGCGAGAGCCCTGGGATGCACCGGCCAGAGG
CCATGCTGCTGCTCCACGCTTGCCCTCCTGGGGGGGCCCCACCTGGGCAGGGAAGATGTAT
GGCCCTGGAGGAGGCAAGTATTTCAGCACCACTGAAGACTACGACCATGAAATCACAGGGCT
GCGGGTGTCTGTAGGTCTTCTCCTGGTGAAAAAGTGTCCAGGTGAAACTTGGAGACTCCTGGG
ACGTGAAACTGGGAGCCTTAGGTGGGAATACCCAGGAAGTCACCCTGCAGCCAGGCGAATAC
ATCACAAAAGTCTTTGTCGCCTTCCAAGCTTTCCTCCGGGGTATGGTCATGTACACCAGCAA
GGACCGCTATTTCTATTTTGGGAAGCTTGATGGCCAGATCTCCTTGGCATCAAGAGCATTGGC
TTTGAATGGAATTATCCACTAGAGGAGCCGACCACTGAGCCACCAGTTAATCTCACATACTC
AGCAAACTCACCCGTGGGTCGCTAGGGTGGGGTATGGGCCATCCGAGCTGAGCCATCTGT
GTGGTGGTGGCTGATGGTACTGGAGTAACTGGGGCCATCCGAGCTGAATCCACCAATA
AATAAAGCTTCTGCAGAAAA

FIGURE 224

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76541

><subunit 1 of 1, 178 aa, 1 stop

><MW: 19600, pI: 5.89, NX(S/T): 1

MHRPEAMLLLTLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSVGLLLVKSVQVK LGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDGQISS AYPSQEGQVLVGIYGQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR

Signal peptide:

amino acids 1-22

GCTGAGCGTGTGCGCGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCT GAACTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAG CCCCAAATTGCCTGGAAGAATACATCATGTTTTTCGATAAGAAGAAATTGTAGGATCCAGTT TTTTTTTAACCGCCCCCCCCCCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATAT CCATGAAGATCCTATTACCTAGGAAGATTTTGATGTTTTGCTGCGAATGCGGTGTTGGGATT TATTTGTTCTTGGAGTGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCT CCCAAGGGGTCCAATTTTTCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTG ACAGGGGCTGTCATGCAACTGGCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAA CAATACAAAGGATGGGTTTCAATGTAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTT ATAGCCCCCACTGTCTTACTGACAATGCTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTG TAGGTGTGAAGGCAAAATGGTATATTGTGAATCTCAGAAATTACAGGAGATACCCTCAAGTA TATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCTATAACAGCCTTCAAAAACTTAAGTATAAT CAATTTAAAGGGCTCAACCAGCTCACCTGGCTATACCTTGACCATAACCATATCAGCAATAT TGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGAGCTGATTCTTAGTTCCAATAGAA TCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATTTACGGAACTTGGATCTGTCC TATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGGCTTGCGGAAGCTGCTGAGTTT ACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCAAGACTGCCGCAACC TGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATGTCTTTGCTGGC TTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGTCATAG GACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGATC GAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGA TTCCAACAAGCTCACATTTATTGGTCAAGAGATTTTTGGATTCTTTGGATATCCCTCAATGACA TCAGTCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTG AAAAGTTTTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGG AGTAAATGTGATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGT TTGATCTGGCCAGGGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCAT GAGAGCAAACCCCCTTTGCCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGC TGACGCCGAGCACATCTCTTTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCG TGCTCGTCATCCTGCTGGTTATCTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAG CTGCAGCAGCGCTCCCTCATGCGAAGGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAAT GACTCCCAGCACCCAGGAATTTTATGTAGATTATAAACCCACCAACACGGAGACCAGCGAGA TGCTGCTGAATGGGACGGGACCCTGCACCTATAACAAATCGGGCTCCAGGGAGTGTGAGGTA TGAACCATTGTGATAAAAAGAGCTCTTAAAAGCTGGGAAATAAGTGGTGCTTTATTGAACTC TGGTGACTATCAAGGGAACGCGATGCCCCCCCCCCCTCCCCTCTCCCTCTCACTTTGGTGG ATCAACCCATTGAAATTTAAATACCACAATCAATGTGAAGCTTGAACTCCGGTTTAATATAA TACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTTGTTTTAAGATAAAACT TCTTTCATAGGTAAAAAAAAAAA

FIGURE 226

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77301</pre>

><subunit 1 of 1, 513 aa, 1 stop

><MW: 58266, pI: 9.84, NX(S/T): 4

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAG CLGLSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYF LNNTFRPVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELL DLGYNRIRSLARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTM SWTWSSLQRLDLSGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLA GNIWECSRNICSLVNWLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLA RALPKPTFKPKLPRPKHESKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVSWKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLN GTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 227

AGTTCTGAGAAAGAAGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCTT TAAATATGTCAAGATCCAGACTTTTCAGTGTCACCTCAGCGATCTCAACGATAGGGATCTTG TGTTTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCATGCGAAGAAGATGAAATGTGTGT AAATTATAATGACCAACACCCTAATGGCTGGTATATCTGGATCCTCCTGCTGCTGGTTTTGG ATTGATTCTCACAGGCGCACCATGGCAGTTTTTGCTGTTTGGAGACTTGGACTCTATTTATGG GACAGAAGCAGCTGTGAGTCCAACTGTTGGAATTCACCTTCAAACTCAAACCCCTGACCTAT ATCCTGTTCCTGCTCCATGTTTTGGCCCTTTAGGCTCCCCACCTCCATATGAAGAAATTGTA AAAACAACCTGATTTTAGGTGTGGATTATCAATTTAAAGTATTAACGACATCTGTAATTCCA AAACATCAAATTTAGGAATAGTTATTTCAGTTGTTGGAAATGTCCAGAGATCTATTCATATA GTCTGAGGAAGGACAATTCGACAAAAGAATGGATGTTGGAAAAAATTTTGGTCATGGAGATG TTTAAATAGTAAAGTAGCAGGCTTTTGATGTCACTGCTGTATCATACTTTTATGCTACAC AACCAAATTAATGCTTCTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAGTAGTT TCCATCACATTTAGGACTCCACTGCAGTATACAGCACCACTTTTCTGCTTTAAACTCTTTC CTAGCATGGGGTCCATAAAAATTATTATAATTTAACAATAGCCCAAGCCGAGAATCCAACAT GTCCAGAACCAGAACCAGAAAGATAGTATTTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAA GAAAAGTTTGGAGTTGAAGGGTAAAGGATAAATGAAGAGGAAAAGGAAAAGATTACAAGTCT AGGAGATTGCTGAAGATATAGAGCACATATAATGCCAACACGGGGAGAAAAGAAAATTTCCC CTTTTACAGTAATGAATGTGGCCTCCATAGTCCATAGTGTTTCTCTGGAGCCTCAGGGCTTG GCATTTATTGCAGCATCATGCTAAGAACCTTCGGCATAGGTATCTGTTCCCATGAGGACTGC AGAAGTAGCAATGAGACATCTTCAAGTGGCATTTTGGCAGTGGCCATCAGCAGGGGGACAGA CAAAAACATCCATCACAGATGACATATGATCTTCAGCTGACAAATTTGTTGAACAAAACAAT AAACATCAATAGATATCTAAAAA

FIGURE 228

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303</pre>

><subunit 1 of 1, 146 aa, 1 stop

><MW: 16116, pI: 4.99, NX(S/T): 0

MSRSRLFSVTSAISTIGILCLPLFQLVLSDLPCEEDEMCVNYNDQHPNGWYIWILLLLVLVA ALLCGAVVLCLQCWLRRPRIDSHRRTMAVFAVGDLDSIYGTEAAVSPTVGIHLQTQTPDLYP VPAPCFGPLGSPPPYEEIVKTT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

TTCTCCAGCTCGATCTGGAGGCTGCTTCGCCAGTGTGGGACGCAGCTGACGCCCGCTTATTA GCTCTCGCTGCGTCGCCCCGGCTCAGAAGCTCCGTGGCGGCGGCGACCGTGACGAGAAGCCC ACGGCCAGCTCAGTTCTCTTCTACTTTGGGAGAGAGAGAAAGTCAGATGCCCCTTTTAAACT CCCTCTTCAAAACTCATCTCCTGGGTGACTGAGTTAATAGAGTGGATACAACCTTGCTGAAG CAATCTCAAGAAAAATATGTCCCAGAAATTGAGTTTACTGTTGCTTGTATTTGGACTCATT TGGGGATTGATGTTACTGCACTATACTTTTCAACAACCAAGACATCAAAGCAGTGTCAAGTT ACGTGAGCAAATACTAGACTTAAGCAAAAGATATGTTAAAGCTCTAGCAGAGGAAAATAAGA ACACAGTGGATGTCGAGAACGGTGCTTCTATGGCAGGATATGCGGATCTGAAAAGAACAATT GCTGTCCTTCTGGATGACATTTTGCAACGATTGGTGAAGCTGGAGAACAAAGTTGACTATAT TGTTGTGAATGGCTCAGCAGCCAACACCCACCAATGGTACTAGTGGGAATTTGGTGCCAGTAA ${\tt CCACAAATAAAAGAACGAATGTCTCGGGCAGTATCAGA}{{\tt TAG}}{\tt CAGTTGAAAATCACCTTGTGC}$ TGCTCCATCCACTGTGGATTATATCCTATGGCAGAAAAGCTTTATAATTGCTGGCTTAGGAC AGAGCAATACTTTACAATAAAAGCTCTACACATTTTCAAGGAGTATGCTGGATTCATGGAAC TCTAATTCTGTACATAAAATTTTAAAGTTATTTGTTTGCTTTCAGGCAAGTCTGTTCAATG CTGTACTATGTCCTTAAAGAGAATTTGGTAACTTGGTTGATGTGGTAAGCAGATAGGTGAGT TTTGTATAAATCTTTTGTGTTTGAGATCAAGCTGAAATGAAAACACTGAAAAACATGGATTC ATTTCTATAACACATTTATTTAAGTATATAACACGTTTTTTGGACAAGTGAAGAATGTTTAA TCATTCTGTCATTTGTTCTCAATAGATGTAACTGTTAGACTACGGCTATTTGAAAAAATGTG CTTATTGTACTATATTTTGTTATTCCAATTATGAGCAGAGAAAGGAAATATAATGTTGAAAA TAATGTTTTGAAATCATGACCCAAAGAATGTATTGATTTGCACTATCCTTCAGAATAACTGA AGGTTAATTATTGTATATTTTTAAAAATTACACTTATAAGAGTATAATCTTGAAATGGGTAG CAGCCACTGTCCATTACCTATCGTAAACATTGGGGCAATTTAATAACAGCATTAAAATAGTT GTAAACTCTAATCTTATACTTATTGAAGAATAAAAGATATTTTTATGATGAGAGTAACAATA AAGTATTCATGATTTTCACATACATGAATGTTCATTTAAAAGTTTAATCCTTTGAGTGTCT ATGCTATCAGGAAAGCACATTATTTCCATATTTGGGTTAATTTTGCTTTTATTATATTTGGTC TAGGAGGAAGGGACTTTGGAGAATGGAACTCTTGAGGACTTTAGCCAGGTGTATATAATAAA CTTTATGAAATTTTGAATTTGTATAACAGATGCATTAGATATTCATTTTATATAATGGCCAC TTAAAATAAGAACATTTAAAATATAAACTATGAAGATTGACTATCTTTTCAGGAAAAAAGCT GTATATAGCACAGGGAACCCTAATCTTGGGTAATTCTAGTATAAAACAAATTATACTTTTAT CTCTATAGTAACTGCTTAAGTGCAGCTAGCTTCTAGATTTAGACTATATAGAATTTAGATAT TGTATTGTTCGTCATTATAATATGCTACCACATGTAGCAATAATTACAATATTTTATTAAAA CTGTCTACCTTTATGTGAAGAAATTAATTATATGCCATTGCCAGGT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648
><subunit 1 of 1, 140 aa, 1 stop</pre>

><MW: 15668, pI: 10.14, NX(S/T): 5

MFFTISRKNMSQKLSLLLLVFGLIWGLMLLHYTFQQPRHQSSVKLREQILDLSKRYVKALAE ENKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNL VPVTTNKRTNVSGSIR

Important features of the protein: Signal peptide:

amino acids 1-26

CGCGGCCGGGCCGCGGGTGAGCGTGCCGAGGCGGCTGTGGCGCAGGCTTCCAGCCCCCAC $\mathtt{C}\overline{\mathtt{ATG}}\mathtt{C}\mathtt{CCGTGCCTGCTGCTGCCGGCCGTGAGTGGGGCCCAGACAACCCGGCCATGCT}$ TCCCCGGGTGCCAATGCGAGGTGGAGACCTTCGGCCTTTTCGACAGCTTCAGCCTGACTCGG GTGGATTGTAGCGGCCTGGGCCCCCACATCATGCCGGTGCCCATCCCTCTGGACACAGCCCA CTTGGACCTGTCCTCCAACCGGCTGGAGATGGTGAATGAGTCGGTGTTGGCGGGGCCGGGCT ACACGACGTTGGCTGGCCTGGATCTCAGCCACAACCTGCTCACCAGCATCTCACCCACTGCC TTCTCCCGCCTTCGCTACCTGGAGTCGCTTGACCTCAGCCACAATGGCCTGACAGCCCTGCC AGCCGAGAGCTTCACCAGCTCACCCCTGAGCGACGTGAACCTTAGCCACAACCAGCTCCGGG AGGTCTCAGTGTCTGCCTTCACGACGCACAGTCAGGGCCGGGCACTACACGTGGACCTCTCC TCAGAGCCTGAACCTGGCCTGGAACCGGCTCCATGCCGTGCCCAACCTCCGAGACTTGCCCC TGCGCTACCTGAGCCTGGATGGGAACCCTCTAGCTGTCATTGGTCCGGGTGCCTTCGCGGGG $\tt CTGGGAGGCCTTACACACCTGTCTCTGGCCAGCCTGCAGAGGCTCCCTGAGCTGGCGCCCAG$ TGGCTTCCGTGAGCTACCGGGCCTGCAGGTCCTGGACCTGTCGGGCAACCCCAAGCTTAACT GGGCAGGAGCTGAGGTGTTTTCAGGCCTGAGCTCCCTGCAGGAGCTGGACCTTTCGGGCACC AACCTGGTGCCCTGCCTGAGGCGCTGCTCCTCCACCTCCCGGCACTGCAGAGCGTCAGCGT GGGCCAGGATGTGCGGTGCCGGCGCCTGGTGCGGGAGGCACCTACCCCCGGAGGCCTGGĊT CCAGCCCAAGGTGCCCCTGCACTGCGTAGACACCCGGGAATCTGCTGCCAGGGGCCCCACC \mathtt{ATCTTG} CAAATGGTGTGGCCCAGGGCCACATAACAGACTGCTGTCCTGGGCTGCCTCAG GTCCCGAGTAACTTATGTTCAATGTGCCAACACCAGTGGGGAGCCCGCAGGCCTATGTGGCA GCGTCACCACAGGAGTTGTGGGGCCTAGGAGGGCTTTGGACCTGGGAGCCACACCTAGGAGC AAAGTCTCACCCCTTTGTCTACGTTGCTTCCCCAAACCATGAGCAGAGGGACTTCGATGCCA AACCAGACTCGGGTCCCCTCCTGCTTCCCCTCACTTATCCCCCAAGTGCCTTCCCTCAT GTTCAGGTCCACTGGGCTGAGTGTCCCCTTGGGCCCATGGCCCAGTCACTCAGGGGCGAGTT TCTTTTCTAACATAGCCCTTTCTTTGCCATGAGGCCATGAGGCCCGCTTCATCCTTTTCTAT TTCCCTAGAACCTTAATGGTAGAAGGAATTGCAAAGAATCAAGTCCACCCTTCTCATGTGAC AGATGGGGAAACTGAGGCCTTGAGAAGGAAAAAGGCTAATCTAAGTTCCTGCGGGCAGTGGC ATGACTGGAGCACAGCCTCCTGCCTCCAGCCCGGACCCAATGCACTTTCTTGTCTCCTCTA ATAAGCCCCACCCTCCCCGCCTGGGCTCCCCTTGCTGCCCTTGCCTGTTCCCCATTAGCACA GGAGTAGCAGCAGGACAGGCAAGAGCCTCACAAGTGGGACTCTGGGCCTCTGACCAGCT GTGCGGCATGGGCTAAGTCACTCTGCCCTTCGGAGCCTCTGGAAGCTTAGGGCACATTGGTT CCAGCCTAGCCAGTTTCTCACCCTGGGTTGGGGTCCCCCAGCATCCAGACTGGAAACCTACC CATTTTCCCCTGAGCATCCTCTAGATGCTGCCCCAAGGAGTTGCTGCAGTTCTGGAGCCTCA TCTGGCTGGGATCTCCAAGGGGCCTCCTGGATTCAGTCCCCACTGGCCCTGAGCACGACAGC CCTTCTTACCCTCCCAGGAATGCCGTGAAAGGACAAGGTCTGCCCGACCCATGTCTATGC TCTACCCCCAGGGCAGCATCTCAGCTTCCGAACCCTGGGCTGTTTCCTTAGTCTTCATTTTA TAAAAGTTGTTGCCTTTTTAACGGAGTGTCACTTTCAACCGGCCTCCCCTACCCCTGCTGGC CGGGGATGGAGACATGTCATTTGTAAAAGCAGAAAAAGGTTGCATTTGTTCACTTTTGTAAT ATTGTCCTGGGCCTGTGTTGGGGTGTTGGGGGAAGCTGGGCATCAGTGGCCACATGGGCATC AGGGGCTGGCCCACAGAGACCCCACAGGGCAGTGAGCTCTGTCTTCCCCCACCTGCCTAGC

FIGURE 232

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77652</pre>

><subunit 1 of 1, 353 aa, 1 stop

><MW: 37847, pI: 6.80, NX(S/T): 2

MPWPLLLLLAVSGAQTTRPCFPGCQCEVETFGLFDSFSLTRVDCSGLGPHIMPVPIPLDTAH
LDLSSNRLEMVNESVLAGPGYTTLAGLDLSHNLLTSISPTAFSRLRYLESLDLSHNGLTALP
AESFTSSPLSDVNLSHNQLREVSVSAFTTHSQGRALHVDLSHNLIHRLVPHPTRAGLPAPTI
QSLNLAWNRLHAVPNLRDLPLRYLSLDGNPLAVIGPGAFAGLGGLTHLSLASLQRLPELAPS
GFRELPGLQVLDLSGNPKLNWAGAEVFSGLSSLQELDLSGTNLVPLPEALLLHLPALQSVSV
GQDVRCRRLVREGTYPRRPGSSPKVPLHCVDTRESAARGPTIL

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 215-232, 287-304

FIGURE 233

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGG GGACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT<u>ATG</u>CGTCAATTCCCCA GTTCCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGC CACGACCTGTGCCACCCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCAC GGGAGGCTTGGCAGTTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCC TCTAGTCTTGCCTTCAGCCTTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGG ACTGAAGACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATG GATTTTCTGAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTA AGGAGGACTGAGTCTTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTT GCTAAGACTCTATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCC GGAAGATCAGCAGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCAT GCCCACATGACATGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCA CTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGCTTTGGGGGAACTAGACATTCTTC TGCAATGGATGGAGGACAGAATAGGAGGAAAGTGATGCTGCTGCTAAGAATATTCGAGGT CAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGCATGACCCCCAAACCACCATCTCTTTACT GTACTAGTCTTGTGCTGGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGAT TGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTT ATTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAG AGCAGGTGATGTATTTTATACAGTAAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCT AGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGA TATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATT GCACATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTAT CTTCCAGCCAGGAATCCTACACGGCCAGCATGTATTTCTACAAATAAAGTTTTCTTTGCATA ССАААААААААААААА

FIGURE 234

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83500</pre>

><subunit 1 of 1, 261 aa, 1 stop

><MW: 29667, pI: 8.76, NX(S/T): 0

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRP EIFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNL QEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTP DHYTLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALG ELDILLQWMEETE

Important features of the protein: Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 235

 $\texttt{CCGTTATCGTCTTGCGCTACTGCTGA} \underline{\textbf{ATG}} \\ \texttt{TCCGTCCCGGAGGAGGAGGAGGCTTTTGCCG} \\$ CTGACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGC CGAGCTAGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAG CTCTTGCTCGGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACA GCCCTAGGGATCATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCAT TTACAGACACGTAGTGTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTG TGTTTGGCAAAAGTGAAGATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATG GCTGGTGTTATTGGCCAGTTTTTAGCCAATCCAACTGACCTAGTGAAGGTTCAGATGCAAAT GGAAGGAAAAGGAAACTGGAAGGAAAACCATTGCGATTTCGTGGTGTACATCATGCATTTG CAAAAATCTTAGCTGAAGGAGGAATACGAGGGCTTTGGGCAGGCTGGGTACCCAATATACAA AGAGCAGCACTGGTGAATATGGGAGATTTAACCACTTATGATACAGTGAAACACTACTTGGT ATTGAATACACCACTTGAGGACAATATCATGACTCACGGTTTATCAAGTTTATGTTCTGGAC TGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCATCAAAAGCAGAATAATGAATCAACCA TCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTACCATCTTGGCTGAGAATGACCC TTTTAA

FIGURE 236

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77568

><subunit 1 of 1, 323 aa, 1 stop

><MW: 36064, pI: 9.33, NX(S/T): 1

MSVPEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGA RESAPYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEH YPLWKSVIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGI RGLWAGWVPNIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTP ADVIKSRIMNQPRDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLT YEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 237

GCCTGAAGTCGGCGTGGGCGTTTGAGGAAGCTGGGATACAGCATTTAATGAAAAATTTATGC TTAAGAAGTAAAAATGGCAGGCTTCCTAGATAATTTTCGTTGGCCAGAATGTGAATGTATTG ACTGGAGTGAGAGAAATGCTGTGGCATCTGTTGTCGCAGGTATATTGTTTTTTACAGGC TGGTGGATAATGATTGATGCAGCTGTGGTGTATCCTAAGCCAGAACAGTTGAACCATGCCTT TCACACATGTGGTGTATTTTCCACATTGGCTTTCTTCATGATAAATGCTGTATCCAATGCTC AGGTGAGAGGTGATAGCTATGAAAGCGGCTGTTTAGGAAGAACAGGTGCTCGAGTTTGGCTT TTCATTGGTTTCATGTTGATGTTTGGGTCACTTATTGCTTCCATGTGGATTCTTTTTGGTGC ATATGTTACCCAAAATACTGATGTTTATCCGGGACTAGCTGTGTTTTTCAAAATGCACTTA TATTTTTTAGCACTCTGATCTACAAATTTGGAAGAACCGAAGAGCTATGGACCTGAGATCAC TTCTTAAGTCACATTTTCCTTTTGTTATATTCTGTTTGTAGATAGGTTTTTTATCTCTCAGT ACACATTGCCAAATGGAGTAGATTGTACATTAAATGTTTTGTTTCTTTACATTTTTATGTTC TGAGTTTTGAAATAGTTTTATGAAATTTCTTTATTTTTCATTGCATAGACTGTTAATATGTA TATAATACAAGACTATATGAATTGGATAATGAGTATCAGTTTTTTATTCCTGAGATTTAGAA CTTGATCTACTCCCTGAGCCAGGGTTACATCATCTTGTCATTTTAGAAGTAACCACTCTTGT CTCTCTGGCTGGCACGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG CCGATTGCTTGAGGTCAAGTGTTTGAGACCAGCCTGGCCAACATGGCGAAACCCCATCTACT AAAAATACAAAAATTAGCCAGGCATGGTGGTGGTGCCTGTAATCCCAGCTACCTGGGAGGC TGAGGCAGGAGAATCGCTTGAACCCGGGGGGCAGAGGTTGCAGTGAGCTGAGTTTGCGCCAC TCTGATTTCTGAAGATGTACAAAAAAATATAGCTTCATATATCTGGAATGAGCACTGAGCCA TAAAAGGTTTTCAGCAAGTTGTAACTTATTTTGGCCTAAAAATGAGGTTTTTTTGGTAAAGA AAAAATATTTGTTCTTATGTATTGAAGAAGTGTACTTTTATATAATGATTTTTTAAATGCCC AAAGGACTAGTTTGAAAGCTTCTTTTAAAAAGAATTCCTCTAATATGACTTTATGTGAGAA

FIGURE 238

' MAGFLDNFRWPECECIDWSERRNAVASVVAGILFFTGWWIMIDAAVVYPKPEQLNHAFHTCG VFSTLAFFMINAVSNAQVRGDSYESGCLGRTGARVWLFIGFMLMFGSLIASMWILFGAYVTQ NTDVYPGLAVFFQNALIFFSTLIYKFGRTEELWT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 23-42 (type II), 60-80, 97-117, 128-148

FIGURE 239

GTTGATGGCAAACTTCCTCAAAGGAGGGCAGAGCCTGCGCAGGGCAGGAGCAGCTGGCCCA CTGGCGGCCCGCAACACTCCGTCTCACCCTCTGGGCCCACTGCATCTAGAGGAGGGCCGTCT GTGAGGCCACTACCCCTCCAGCAACTGGGAGGTGGGACTGTCAGAAGCTGGCCCAGGGTGGT GGTCAGCTGGGTCAGGGACCTACGGCACCTGCTGGACCACCTCGCCTTCTCCATCGAAGCAG GGAAGTGGGAGCCTCGAGCCCTCGGGTGGAAGCTGACCCCAAGCCACCCTTCACCTGGACAG GATGAGAGTGTCAGGTGTGCTTCGCCTCCTGGCCCTCATCTTTGCCATAGTCACGACATGGA GCCTCGCCCACCAAGGAGATCCAGGTTAAAAAGTACAAGTGTGGCCTCATCAAGCCCTGCCC AGCCAACTACTTTGCGTTTAAAATCTGCAGTGGGGCCGCCAACGTCGTGGGCCCTACTATGT GCTTTGAAGACCGCATGATCATGAGTCCTGTGAAAAACAATGTGGGCAGAGGCCTAAACATC GCCCTGGTGAATGGAACCACGGGAGCTGTGCTGGGACAGAAGGCATTTGACATGTACTCTGG AGATGTTATGCACCTAGTGAAATTCCTTAAAGAAATTCCGGGGGGTGCACTGGTGCTGGTGG CCTCCTACGACGATCCAGGGACCAAAATGAACGATGAAAGCAGGAAACTCTTCTCTGACTTG GGGAGTTCCTACGCAAAACAACTGGGCTTCCGGGACAGCTGGGTCTTCATAGGAGCCAAAGA AGGGATGGCCAGAGCTGCTGGAGATGGAGGGCTGCATGCCCCCGAAGCCATTT<u>TAG</u>GGTGGC GCAGGGGCTGAGGAGGAGGAGCAGGGGGGTGCTGCGTGGAAGGTGCTGCAGGTCCTTGCACGC TGTGTCGCGCCTCTCCTCGGAAACAGAACCCTCCCACAGCACATCCTACCCGGAAGACC AGCCTCAGAGGGTCCTTCTGGAACCAGCTGTCTGTGGAGAAATGGGGTGCTTTCGTCAGGG ACTGCTGACGGCTGGTCCTGAGGAAGGACAAACTGCCCAGACTTGAGCCCAATTAAATTTTA TTTTTGCTGGTTTTGAAAAAAAAAAAAAAAAAAAAA

FIGURE 240

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59814</pre>

<subunit 1 of 1, 224 aa, 1 stop

<MW: 24963, pI: 9.64, NX(S/T): 1

MRVSGVLRLLALIFAIVTTWMFIRSYMSFSMKTIRLPRWLAASPTKEIQVKKYKCGLIKPCP ANYFAFKICSGAANVVGPTMCFEDRMIMSPVKNNVGRGLNIALVNGTTGAVLGQKAFDMYSG DVMHLVKFLKEIPGGALVLVASYDDPGTKMNDESRKLFSDLGSSYAKQLGFRDSWVFIGAKD LRGKSPFEQFLKNSPDTNKYEGWPELLEMEGCMPPKPF

Important features:

Signal peptide:

amino acids 1-15

ATP/GTP-binding site motif A (P-loop).

amino acids 184-191

N-glycosylation site.

amino acids 107-110

FIGURE 241

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGATTTGTCCTGGGGAT CCAGAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACA TCACTCCTCCCTCTCTCTCTCTCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCC $\tt CTGCACCCCTTCCTGGGACACT \underline{ATG} TTGTTCTCCGCCCTCCTGCTGGAGGTGATTTGGATCC$ TGGCTGCAGATGGGGGTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCA GACATTTGACCCTGATTTGCCTGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGC GGTGGACTTCCCCGAAAATATGTAGCTGCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATC CCCAGGGGGGTCAGAACACCAGATCAACAGTGAAGCCACATTTGCAGAGCTCCACATTGTAC ATTATGACTCTGATTCCTATGACAGCTTGAGTGAGGGCTGCTGAGAGGCCTCAGGGCCTGGCT GTCCTGGGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAG TCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTCAGTGCCTCCCTTCAACCTAAGAG TGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAGATTTCAATGGAACAGCT GGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAAGCTTCTGGTACAGA ACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCATCCAAGCAGGA CCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAACCGAA $AGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCA{\color{red}{TAA}}ATTCCTTCTCAGA{\color{red}{TACCA}}$ TGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTG GCCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAG GAATGGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTA GGAGGAAATGAGGAAATCGCTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGG GAAGTTTGGGATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCTTTCCCTAGATA TACTGCGGGATCTCTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATA TATTTGGAAATTAAAGTTTCTGACTTT

FIGURE 242

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812</pre>

><subunit 1 of 1, 337 aa, 1 stop

><MW: 37668, pI: 6.27, NX(S/T): 1

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLP
ALQPHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQ
INSEATFAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRH
KDQKTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTL
FSTEEEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYF
IARKIRKKRLENRKSVVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 243

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTTGTACATTTTGCCTC GTGGACCCAAAGGTAGCAATCTGAAACATGAGGAGTACGATTCTACTGTTTTGTCTTCTAGG CGGATCAGGGAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTG ATACCATTAACACAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGG AATGACACCTGGTACCCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAAC TGCACCCACATGTGTTACCAATTTTTGTCACACAACTTGGAGCCCAGGGCACTATCCTAAGC TCAGAGGAATTGCCACAAATCTTCACGAGCCTCATCATCCATTCCTTGTTCCCGGGAGGCAT CCTGCCCACCAGTCAGGCAGGGGCTAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAG GAGCAGGTGTAAATCCTGCCACCCAGGGAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGC ACAGATGACGACTTTGCAGTGACCACCCCTGCAGGCATCCAAAGGAGCACACATGCCATCGA GGAAGCCACCACAGAATCAGCAAATGGAATTCAGTAAGCTGTTTCAAATTTTTTCAACTAAG CTGCCTCGAATTTGGTGATACATGTGAATCTTTATCATTGATTATATTATGGAATAGATTGA GACACATTGGATAGTCTTAGAAGAAATTAATTCTTAATTTACCTGAAAATATTCTTGAAATT TCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAACAATAATTCAATGGATAAAT CTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATATTAAAACATATTTGGAAA AAAAAAAAAAAAAAA

FIGURE 244

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQM LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

FIGURE 245

GGAGAGAGGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGGCG GAGCCAGACGCTGACCACGTTCCTCTCCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCG GCAGCCGGGAGCCATGCGACCCCAGGGCCCCGCCGCCCCCCGCAGCGGCTCCGCGGCCTCC TGCTGCTGCTGCTGCAGCTGCCCGCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAG CAAAAGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGG GCCAGCAGGAGTGCCTGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTG GGATCCCAGGTCGGGATGGATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAG GAGTCCTGGACACCCAACTACAAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCT TGGGAAAATTGCGGAGTGTACATTTACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGT TCAGTGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTC CCCTGAAATGAATTCAACAATTAATATTCATCGCACTTCTTCTGTGGAAGGACTTTGTGAAG GAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAA GGAGATGCTTCTACTGGATGGAATTCAGTTTCTCGCATCATTATTGAAGAACTACCAAAATA GACATTTTAAATAAGTTTATGTATACATCTGAATGAAAAGCAAAGCTAAATATGTTTACAGA GGTTTCAATATTTTTTTAGTTGGTTAGAATACTTTCTTCATAGTCACATTCTCTCAACCTA TAATTTGGAATATTGTTGTGGTCTTTTGTTTTTTCTCTTAGTATAGCATTTTTAAAAAAATA AAAAATTATTTCCAACA

FIGURE 246

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393</pre>

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217