Implementacja i analiza indeksowo-sekwencyjnej organizacji plików

Wojciech Trapkowski 8 grudnia 2024

1 Wprowadzenie

Celem projektu jest implementacja i analiza indeksowo-sekwencyjnej organizacji plików (ISAM - Indexed Sequential Access Method), która łączy zalety dostępu sekwencyjnego i bezpośredniego do danych. Metoda ta została opracowana przez IBM w latach 60-tych i do dziś stanowi podstawę wielu systemów bazodanowych.

Podstawowe założenia tej organizacji plików obejmują:

- Przechowywanie danych w uporządkowanej sekwencji rekordów, pogrupowanych w strony o stałym rozmiarze
- Utrzymywanie oddzielnego pliku indeksowego, zawierającego klucze i wskaźniki do odpowiadających im stron w pliku głównym
- Wykorzystanie obszaru przepełnień do obsługi nowych rekordów, których nie można umieścić w pierwotnie przydzielonych stronach
- Okresową reorganizację pliku w celu optymalizacji jego struktury

Organizacja ISAM zapewnia wydajne operacje wyszukiwania dzięki indeksom, zachowując jednocześnie możliwość sekwencyjnego przetwarzania danych. Jest szczególnie efektywna w systemach, gdzie stosunek operacji odczytu do zapisu jest wysoki, a dane są względnie statyczne.

2 Struktury plików

- Struktura pliku indeksowego zawiera strony indeksowe, gdzie każdy wpis składa się z klucza początkowego oraz wskaźnika do odpowiedniej strony w pliku głównym.
- Struktura pliku głównego składa się z nagłówka zawierającego liczbę stron oraz wskaźnik do obszaru przepełnień (strażnika), a następnie sekwencji stron zawierających rekordy.
- Obszar przepełnień służy do przechowywania rekordów, które nie mogą być umieszczone w pierwotnie przydzielonych stronach. Każdy rekord w obszarze głównym może wskazywać na dodatkowe rekordy w obszarze przepełnień.
- Organizacja rekordów w stronach opiera się na strukturze Page, która zawiera stałą liczbę wpisów. Każdy wpis zawiera klucz, wartość (PE-SEL), wskaźnik do obszaru przepełnień oraz flagę usunięcia.

3 Szczegóły implementacyjne

3.1 Buforowanie w pamięci operacyjnej

- Mechanizm buforowania zaimplementowany jest w klasie PageBuffer, która wykorzystuje inteligentne wskaźniki do zarządzania stronami w pamięci.
- Wielkość bufora jest określona przez stałą, która definiuje maksymalną liczbę stron przechowywanych jednocześnie w pamięci.
- Strategia zastępowania stron opiera się na liczbie referencji do strony usuwane są strony z pojedynczą referencją. Przed usunięciem strony z bufora, jej zawartość jest zapisywana na dysk.
- System śledzi liczbę operacji odczytu i zapisu poprzez liczniki.

3.2 Parametry implementacyjne

 Rozmiar strony (PAGE_SIZE) jest stałą określającą liczbę rekordów w pojedynczej stronie.

- Współczynnik wypełnienia (α) określa maksymalną liczbę rekordów w stronie po reorganizacji.
- Współczynnik obszaru przepełnień (β) definiuje stosunek rozmiaru obszaru przepełnień do obszaru głównego
- Reorganizacja jest wykonywana gdy liczba rekordów w obszarze przepełnień przekroczy ustalony próg (γ) .

4 Format pliku testowego

4.1 Struktura rekordu

W implementacji rekord jest reprezentowany jako pojedyncza liczba całkowita typu uint64_t, przechowująca numer PESEL.

5 Prezentacja wyników

5.1 Interfejs użytkownika

Program oferuje interaktywny interfejs wiersza poleceń oraz możliwość wykonywania komend z pliku. Dostępne są następujące tryby pracy:

- \bullet Tryb interaktywny oznaczony znakiem zachęty $\ensuremath{\mathcal{L}}$
- $\bullet\,$ Tryb wsadowy wykonywanie komend z pliku

5.2 Dostępne komendy

Program obsługuje następujące polecenia:

- insert <klucz> <wartość> wstawia nowy rekord
- update <klucz> <wartość> aktualizuje istniejący rekord
- search <klucz> wyszukuje rekord o podanym kluczu
- remove <klucz> usuwa rekord o podanym kluczu
- print wyświetla zawartość całej bazy danych

- print_stats wyświetla statystyki (liczba operacji I/O)
- generate <liczba_kluczy> generuje zadaną liczbę losowych rekordów
- reorganise wymusza reorganizację struktury
- flush wymusza zapis buforowanych danych na dysk
- help wyświetla listę dostępnych komend
- exit/quit kończy działanie programu

5.3 Format wyświetlania

- Wyniki wyszukiwania są wyświetlane w formacie: wartość rekordu lub komunikat "Not found" dla nieznalezionych kluczy
- Błędy operacji są sygnalizowane odpowiednimi komunikatami
- Statystyki pokazują liczbę operacji odczytu i zapisu wykonanych na dysku

6 Eksperymenty

6.1 Metodologia

- Przeprowadzone testy obejmowały analizę wydajności programu poprzez żonglowanie wszystkimi kluczowymi parametrami:
 - Rozmiar strony (współczynnik blokowania pliku)
 - Rozmiar bufora przechowującego strony w pamięci operacyjnej
 - Liczba rekordów w bazie danych
 - Współczynnik wypełnienia strony (α)
 - Współczynnik rozmiaru obszaru przepełnień (β)
 - Próg reorganizacji (γ)
- Mierzone metryki obejmowały:

- Liczba operacji dyskowych przy:
 - * Usuwaniu rekordów
 - * Aktualizacji rekordów
 - * Wyszukiwaniu rekordów
 - * Wstawianiu nowych rekordów
 - * Reorganizacji struktury
- Zużycie pamięci przez pliki bazy danych
- Metodyka pomiarów:
 - Każda operacja była wykonywana na świeżo zainicjalizowanej bazie danych
 - Liczniki operacji I/O były zerowane przed każdą operacją
 - Pomiary były agregowane dla serii identycznych operacji w celu uzyskania średnich wartości
 - Testy przeprowadzano dla różnych kombinacji parametrów, aby zbadać ich wzajemny wpływ

6.2 Wyniki

Tabela 1 przedstawia wyniki przeprowadzonych testów wydajnościowych. Poszczególne kolumny reprezentują:

- Kolumny operacji dyskowych (I/O):
 - A Liczba operacji dyskowych przy usuwaniu rekordów
 - B Liczba operacji dyskowych przy aktualizacji istniejących rekordów
 - C Liczba operacji dyskowych przy wyszukiwaniu rekordów
 - D Liczba operacji dyskowych przy wstawianiu nowych rekordów
 - E Liczba operacji dyskowych podczas reorganizacji struktury
- Parametry pamieciowe:
 - F Całkowita pamięć zajmowana przez pliki bazy danych (KB)
 - G Współczynnik blokowania pliku (rozmiar strony)

- H Rozmiar bufora przechowującego strony w pamięci operacyjnej
- Parametry konfiguracyjne:
 - I Liczba rekordów w bazie danych
 - -J Współczynnik wypełnienia strony (α)
 - K Współczynnik rozmiaru obszaru przepełnień (β)
 - L Próg reorganizacji (γ)

	В	С	D	Е	F	G	Н	I	J	K	L
0	0	0	2	998	82	4	4	1,000	0.5	0.13	0.5
0	0	0	2	492	72	8	4	1,000	0.5	0.13	0.5
0	0	4	2	244	66	16	4	1,000	0.5	0.13	0.5
0	0	0	0	1,476	659	16	512	10,000	0.5	0.13	0.5
0	0	2	0	644	440	16	512	10,000	0.75	0.13	0.5
0	0	2	0	644	440	16	512	10,000	0.75	0.13	0.5
0	0	0	230	1,104	842	16	512	10,000	0.75	0.5	0.5
0	0	0	0	484	674	16	512	10,000	0.75	0.5	1
0	0	0	2	228	333	16	512	10,000	1	0.5	1
0	0	2	230	228	549	16	512	10,000	1	1	1

7 Wnioski

- Wpływ rozmiaru strony:
 - Większy rozmiar strony znacząco redukuje liczbę operacji I/O
 - Jednak zbyt duży rozmiar strony może prowadzić do nieefektywnego wykorzystania pamięci
 - Optymalny rozmiar strony zależy od charakterystyki danych i częstotliwości operacji
- Wpływ rozmiaru bufora:
 - Większy bufor stron znacząco zmniejsza liczbę fizycznych operacji I/O
 - Szczególnie efektywny przy operacjach wyszukiwania i aktualizacji
 - Należy znaleźć kompromis między wydajnością a zużyciem pamięci operacyjnej

- Wpływ współczynnika α (wypełnienie strony):
 - Wartości w przedziale 0.5 0.75 okazały się optymalne
 - Niższe wartości α skutkują większym rozmiarem plików
 - Wyższe wartości α zwiększają częstotliwość reorganizacji i liczbę operacji przy wstawianiu
- Wpływ współczynnika β (rozmiar obszaru przepełnień):
 - Silnie wpływa na całkowite zużycie pamięci
 - Mniejsze wartości β są zalecane dla optymalizacji przestrzeni
 - -Zbyt niski β może prowadzić do częstszych reorganizacji
- Wpływ współczynnika γ (próg reorganizacji):
 - Niższe wartości γ prowadzą do częstszych reorganizacji, ale utrzymują strukturę w lepszej kondycji
 - Wyższe wartości γ zmniejszają częstotliwość reorganizacji, ale mogą prowadzić do degradacji wydajności wyszukiwania
 - Optymalny γ zależy od proporcji operacji odczytu do zapisu
- Ograniczenia metody:
 - Koszt reorganizacji może być znaczący dla dużych zbiorów danych
 - Wymaga odpowiedniego dostrojenia parametrów do konkretnego przypadku użycia