### In [123]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.preprocessing import MinMaxScaler
import pylab as pl
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
```

## In [124]:

dating\_clean = pd.read\_csv('/home/amybirdee/hobby\_projects/dating\_site/dating\_clean.cs
v', delimiter = ',')

# In [125]:

dating\_clean.head()

### Out[125]:

|                     | age | body_type         | diet                    | drinks   | drugs                   | education                         | ethnicity                 | height | income |
|---------------------|-----|-------------------|-------------------------|----------|-------------------------|-----------------------------------|---------------------------|--------|--------|
| 0                   | 22  | a little<br>extra | strictly<br>anything    | socially | never                   | working on college/university     | asian,<br>white           | 75     | -1     |
| 1                   | 35  | average           | mostly<br>other         | often    | sometimes               | working on<br>space camp          | white                     | 70     | 80000  |
| 2                   | 38  | thin              | anything                | socially | no<br>response<br>given | graduated from<br>masters program | no<br>response<br>given   | 68     | -1     |
| 3                   | 23  | thin              | vegetarian              | socially | no<br>response<br>given | working on college/university     | white                     | 71     | 20000  |
| 4                   | 29  | athletic          | no<br>response<br>given | socially | never                   | graduated from college/university | asian,<br>black,<br>other | 66     | -1     |
| 5 rows × 21 columns |     |                   |                         |          |                         |                                   |                           |        |        |

#### In [126]:

#### In [127]:

```
dating_clean.head()
```

### Out[127]:

|   | age | height | sex |
|---|-----|--------|-----|
| 0 | 22  | 75     | m   |
| 1 | 35  | 70     | m   |
| 2 | 38  | 68     | m   |
| 3 | 23  | 71     | m   |
| 4 | 29  | 66     | m   |

### In [128]:

```
#defining the scaler
scaler = MinMaxScaler()
```

#### In [129]:

```
#scaling the numerical columns for model
dating_clean[['age', 'height']] = scaler.fit_transform(dating_clean[['age', 'height']])
```

#### In [130]:

```
dating_clean.head()
```

### Out[130]:

|   | age      | height   | sex |
|---|----------|----------|-----|
| 0 | 0.043478 | 0.787234 | m   |
| 1 | 0.184783 | 0.734043 | m   |
| 2 | 0.217391 | 0.712766 | m   |
| 3 | 0.054348 | 0.744681 | m   |
| 4 | 0 119565 | 0 691489 | m   |

#### In [131]:

```
#using pd.get_dummies on categorical data
dating_encoded = pd.get_dummies(dating_clean, columns = ['sex'], drop_first = True)
dating_encoded.head()
```

### Out[131]:

|   | age      | height   | sex_m |
|---|----------|----------|-------|
| 0 | 0.043478 | 0.787234 | 1     |
| 1 | 0.184783 | 0.734043 | 1     |
| 2 | 0.217391 | 0.712766 | 1     |
| 3 | 0.054348 | 0.744681 | 1     |
| 4 | 0.119565 | 0.691489 | 1     |

### In [132]:

```
#create 15 clusters - K = 15
k = range (1, 15)

#instantiate and fit KMeans for clusters 1-15
kmeans = [KMeans(n_clusters = i) for i in k]
score = [kmeans[i].fit(dating_encoded).score(dating_encoded) for i in range(len(kmeans))]

#plot the elbow method
pl.plot(k, score, color = 'red')
pl.xlabel('Number of clusters')
pl.ylabel('Score')
pl.title('Elbow score')
pl.show()
```



#### In [133]:

```
#choosing 2 clusters as that's when the curve starts to flatten
cluster = KMeans(n_clusters = 2)

#predict the cluster for all profiles
dating_encoded['cluster'] = cluster.fit_predict(dating_encoded)
cluster.labels_
```

### Out[133]:

```
array([0, 0, 0, ..., 0, 0, 0], dtype=int32)
```

#### In [134]:

```
dating_encoded.head()
```

### Out[134]:

|   | age      | height   | sex_m | cluster |
|---|----------|----------|-------|---------|
| 0 | 0.043478 | 0.787234 | 1     | 0       |
| 1 | 0.184783 | 0.734043 | 1     | 0       |
| 2 | 0.217391 | 0.712766 | 1     | 0       |
| 3 | 0.054348 | 0.744681 | 1     | 0       |
| 4 | 0.119565 | 0.691489 | 1     | 0       |

#### In [135]:

```
#creating a new dataframe which excludes the cluster column so this column won't be inc
luded in the principle componenet\
#analysis
excl_cluster = dating_encoded.drop('cluster', axis = 1)
```

#### In [136]:

```
#performing PCA (princliple component analysis) to reduce the dimensions so we can vis
ually see cluster segments.
#This will create a 2-dimensional picture
pca = PCA(n_components = 2)
dating_encoded['x'] = pca.fit_transform(excl_cluster)[:,0]
dating_encoded['y'] = pca.fit_transform(excl_cluster)[:,1]
dating_encoded.head()
```

### Out[136]:

|   | age      | height   | sex_m | cluster | Х         | у         |
|---|----------|----------|-------|---------|-----------|-----------|
| 0 | 0.043478 | 0.787234 | 1     | 0       | -0.406745 | -0.108589 |
| 1 | 0.184783 | 0.734043 | 1     | 0       | -0.402433 | 0.032559  |
| 2 | 0.217391 | 0.712766 | 1     | 0       | -0.400925 | 0.065106  |
| 3 | 0.054348 | 0.744681 | 1     | 0       | -0.404223 | -0.097840 |
| 4 | 0.119565 | 0.691489 | 1     | 0       | -0.400602 | -0.032776 |

#### In [163]:

```
#plotting the clusters
Kmeans_colors = ['red' if cluster == 0 else 'black' for cluster in cluster.labels_]

fig = plt.figure(figsize = (6, 6))
plt.scatter(x = 'x', y = 'y', data = dating_encoded, color = Kmeans_colors)
plt.xlabel('Principle component 1', fontsize = 12)
plt.ylabel('Principle component 2', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)
plt.title('KMeans clusters', fontsize = 12)
plt.tight_layout()
plt.savefig('kmeans_clusters')
```



### In [142]:

```
#extracting the cluster data
dating_cluster = dating_encoded[['cluster']]
dating_cluster.head()
```

#### Out[142]:

|   | cluster |
|---|---------|
| 0 | 0       |
| 1 | 0       |
| 2 | 0       |
| 3 | 0       |
| 4 | 0       |

### In [151]:

```
#merging dataframes based on index
merged = dating_clean.merge(dating_cluster, left_index = True, right_index = True)
merged.head()
```

# Out[151]:

|   | age      | height   | sex | cluster |
|---|----------|----------|-----|---------|
| 0 | 0.043478 | 0.787234 | m   | 0       |
| 1 | 0.184783 | 0.734043 | m   | 0       |
| 2 | 0.217391 | 0.712766 | m   | 0       |
| 3 | 0.054348 | 0.744681 | m   | 0       |
| 4 | 0.119565 | 0.691489 | m   | 0       |

### In [159]:

```
#grouping by clusters - the model created its clusters by sex - all males are in cluste
r 0 and all females in cluster 1
cluster_group = merged.groupby(['cluster', 'sex']).size()
cluster_group
```

### Out[159]:

# In [ ]: