

Algoritmo e Lógica de Programação.

Profa Mestre Sirley Ambrosia Vitorio Addão.

Zona Leste

- Mestrado em Ciência da Computação- IME- USP.
- Bacharelado em Ciência da Computação- PUC/SP.
- Licenciatura em Matemática- Uninove/SP.
- Coordenadora de Cursos.
- Professora Ensino Superiror.
- Coordenadora de Estágios.
- Coordenadora e Orientadora de TCC.

Profa Mestre Sirley Ambrosia Vitorio Addão. sirley.addao@fatec.sp.gov.br

Ementa.

- > Princípios de sistemas computacionais, representação binária, memória e endereçamento, compiladores.
- > Tipos de dados básicos, variáveis e representações gráficas dos principais comandos nas linguagens procedurais.
- Conceitos básicos sobre algoritmos e métodos para sua construção.
- Estruturas fundamentais de programas: sequencial, condicional e com repetição. Operadores lógicos.
- Estilo de codificação, indentação, legibilidade, comentários. Testes de mesa e unitários. Funções.
- Variáveis compostas homogêneas: vetores e matrizes.
- Conceitos de controle de versão e gestão de código fonte;
 Criação de repositórios locais e remotos.

Bibliografia Recomendada.

- CORMEN, T. H. et al. **Algoritmos**. Rio de Janeiro: Campus, 2012.
- ➤ DEITEL, H; DEITEL, P. C: Como programar. 6 ed. São Paulo: Pearson, 2011.
- ➤ MANZANO, J. A. N. G; OLIVEIRA, J. F. **Algoritmos:** Lógica para desenvolvimento de programação de computadores. São Paulo: Érica, 2009.
- ➤ MEDINA, M., FERTIG, C. Algoritmos e Programação: Teoria e Prática. São Paulo: Novatec, 2006

Critérios de Avaliação.

Fórmula: 0.35*P1+0.15*List+0.50*P2

Legendas:

- Prova Escrita Verificação de aprendizagem dos conceitos abordados.
- Lista de exercícios Avaliação Continuada e formativa.
- Prova prática Prova prática
- PJ- Projeto Interdisciplinar
- Prova substitutiva Avaliação substitutiva Substitui uma falta em prova ou a nota mais baixa, apenas para quem não atingir a nota mínima para aprovação.

Paradigmas de Programação.

- → Forma de se pensar, estruturar e desenvolver a programação.
 - → Forma como você desenvolve o código.
 - → Programação Estruturada

Utilizamos a lógica de forma natural em nosso dia a dia.

Sei que o livro está no armário.

Sei que o armário está fechado.

Logo, concluo que?????

tenho de abrir o armário para pegar o livro..

Utilizamos a lógica de forma natural em nosso dia a dia.

Sei que sou mais velho que João.

Sei que João é mais velho que José.

Então, concluo que?????

eu sou mais velho que José.

Lógica de programação pode ser definida como um conjunto de técnicas para encadear pensamentos a fim de atingir determinado objetivo.

O objetivo fundamental de toda programação é construir **algoritmos**

Algoritmo.

Sequência lógica de passos ou atividades que levam a solução de um problema.

"Algoritmo é uma seqüência finita de instruções ou operações cuja execução, em tempo finito, resolve um problema computacional, qualquer que seja sua instância", [Salvetti, 1999].

Problema: Trocar uma lâmpada Fatec

Sequência de Passos para Solução:

- Pegue uma escada;
- Posicione a escada embaixo da lâmpada queimada;
- Pegue uma lâmpada nova;
- 4. Suba na escada;
- Retire a lâmpada velha;
- Coloque a lâmpada nova.
- 7. Desça da escada.

"Algoritmo é uma seqüência finita de instruções ou operações cuja execução, em tempo finito, resolve um problema computacional, qualquer que seja sua instância", [Salvetti, 1999].

- Os programas de computadores são os algoritmos escritos numa linguagem de computador.
- Existem diversas linguagens de programação, tais como Java, C, C++,C# Python...

Na linguagem computacional temos três tipos de representações de algoritmos mais utilizadas:

- 1. descrição narrativa,
- 2. fluxograma e
- 3. pseudocódigo- Português Estruturado ou portugol

Descrição Narrativa

 A descrição narrativa consiste em entender o problema proposto e escrever sua solução através da linguagem natural que pode ser mais ou menos técnicas, dependendo da aplicação.

Fluxograma (representação gráfica)

- Através de um conjunto de símbolos gráficos, pré-definidos, descrevemos a sequência de passos/comandos para a solução do problema apresentado.
- Pseudocódigo utiliza regras rígidas e um conjunto de palavras reservadas para representar comandos, sem necessidade de conhecer a sintaxe de qualquer linguagem de programação.

Algoritmo.

ENTRADA: São os dados de entrada do algoritmo

PROCESSAMENTO: São os procedimentos utilizados para chegar ao resultado final

SAÍDA: São os dados já processados

Dois números

Processamento

Somar os números

Saída

Resposta

Identifique os dados de entrada, processamento e saída.

- **Problema**: Calcular a média aritmética dos alunos do 3ª Ano. Os alunos realizarão duas provas: p1 e p2.
- Para montar o algoritmo proposto, faremos três perguntas:
- a) Quais são os dados de entrada?
- b) Qual será o processamento a ser utilizado?
- c) Quais serão os dados de saída?

Descrição Narrativa	Fluxograma	Português Estruturado
Ativa o scaneamento de teclado, aguarde a digitação e em seguida armazene o dado digitado nas variáveis de memória indicadas	p1,p2	leia (p1,p2);
Efetue o cálculo da média e armazene o resultado na memória na variável m	m <- (p1+p2) /2	m ← (p1+p2) /2
Envie para a tela a mensagem "Média é ", m	"Média é ", m	escreva ("Média é ", m)

Comandos/instruções	Fluxograma	Português Estruturado
Entrada de dados(in)		
	p1,p2	leia (p1,p2);
Atribuição	m <- (p1+p2) /2	m ← (p1+p2) /2
Saída(out)	"Média é ", m	escreva ("Média é ", m)

Fluxograma	Português Estruturado/pseudo- código/portugol	Java
p1,p2 m <- (p1+p2) /2	leia (p1,p2);	Scanner entrada; p1=entrada.nextDouble; p2=entrada.nextDouble;
	m ← (p1+p2) /2	m = (p1+p2) /2;
"Média é ", m	escreva ("Média é ", m)	System.out.println("Média é " +m);

 Teste de Mesa: Após desenvolver um algoritmo ele deverá sempre ser testado. Este teste é chamado de TESTE DE MESA, que significa, seguir as instruções do algoritmo de maneira precisa para verificar se o procedimento utilizado está correto ou não.

Entrada e Saída de dados

Comandos de Entrada de Dados:

Comandos de Saída de Dados:

Variáveis

- As informações no computador são armazenadas temporariamente em sua memória principal.
- Para encontrar o conteúdo procurado é preciso usar um identificador (nome da variável)
- ** *posições de memória***

Variáveis - nomenclaturas

- O primeiro caractere deve ser uma letra.
- Os nomes podem ser formados por letras, dígitos e o caractere underline_.
- Não devem ter acentos ou caracteres especiais

Constantes

Um dado é constante quando não sofre nenhuma variação, seu valor é constante do início ao fim da execução do programa, assim como é constante para execuções diferentes.

Exemplo:

#constante PI = 3.141617;

Tipos Primitivos de Dados.

- ✓ Números Inteiros (int)
- ✓ Números Reais (float, double)
- ✓ Caracteres (char)
- √ Lógicos (booleanos)
- √ Vazio (void)
- ✓ String (cadeia de caracteres)

Descrição Narrativa: Cálculo de soma

- 1. Exiba na tela a mensagem "Digite o primeiro número: "
- 2. Ative o teclado, receba o dado e o armazene na memória na variável x
- 3. Mostre na tela "Digite o segundo número:"
- 4. Ative o teclado, receba o dado e guarde na memória em y
- 5. Execute o cálculo x + y e armazene na memória em s. (usar Comando de atribuição ←)
- 6. Envie para a tela a mensagem "A soma vale: ", s

Fluxograma: Cálculo de soma

Português Estruturado: Cálculo de soma

```
Programa Soma
var s, x, y: inteiro
Inicio
 escreva ("Digite o primeiro número: ")
 leia (x)
 escreva ("Digite o segundo número: ")
 leia (y)
 S \leftarrow X + Y
escreva ("A soma vale: ", s)
Fim.
```

Java: Cálculo de soma

```
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner entrada= new Scanner(System.in);
int s,x,y;
System.out.print("Digite o primeiro número: ");
x=entrada.nextInt();
System.out.print("Digite o segundo número: ");
y=entrada.nextInt();
S=X+Y;
System.out.println("A soma vale : "+s);
```

Java: Cálculo de soma

Operador/ Comando de atribuição (¬ ou

←) O comando de atribuição é utilizado para alocar/armazenar um valor na variável.

Operador Aritmético	Referência do operador
+	Adição
-	Subtração
*	Multiplicação
/	Divisão
DIV	Quociente
MOD	Resto da divisão
**	Exponenciação

Para cada exercício a seguir, represente o fluxograma, o pseudo-código e o código em Java para solucionar os problemas solicitados.

- 1) A subtração de dois números reais.
- 2) A multiplicação de dois números reais.
- 3) O total a ser pago por uma compra. Você deve receber o preço unitário de um produto e a quantidade a ser comprada.

- 4) Calcule e apresente o valor do volume de uma lata de óleo, utilizando a fórmula Volume = 3,14159 * Raio * Raio * Altura.
- 5) Armazenar o valor 20 em uma variável X e o valor 5 em uma variável Y. A seguir, armazenar a soma do valor de X com o de Y em uma variável Z.

- 6) A média ponderada de duas notas de provas, a primeira tem peso 4 e a segunda tem peso 6.
- 7) A média ponderada de duas notas de provas com seus respectivos pesos.

8) Calcular o consumo médio de um automóvel (medido em Km/l), você deve receber a distância total percorrida(em Km) e o volume de combustível consumido para percorrê-la (litros).

Dica: a principal questão a ser levantada na obtenção do algoritmo pedido consiste na formulação da expressão usada para calcular o consumo médio (CM) a partir da distância total percorrida (DIST) e do volume de combustível consumido (VOL).

9) Receber o número total de horas trabalhadas em um mês, o valor a ser pago por hora trabalhada, calcule o salário bruto a ser pago, o valor de desconto de INSS e o salário líquido, considerando 12% de desconto de INSS sobre o salário bruto. Imprimir o resultado dos três cálculos.

10) Alterar os exercícios utilizando o comando System.out.printf

