Нейросети, перцептрон

Что было до?

Что было до?

Classic pipeline

Handcrafted features, generated by experts.

Чего мы хотим?

Чего мы хотим?

Чтобы "правильные" признаки можно было "выучить"

Чего мы хотим?

Чтобы "правильные" признаки можно было "выучить"

NN pipeline: example

Простой пример

- 1. Линейная модель
- 2. Сигмоида
- 3. Логистическая регрессия

NN pipeline: example

Функция активации (сигмоида в нашем случае) нужна, т.к. иначе можно было бы просто "схлопнуть" нейросеть в одну логистическую регрессию, т.к. несколько последовательно примененных линейных преобразований все еще являются линейным преобразованием, а вот сигмоида - нет.

NN pipeline: example

Нейросеть - последовательность преобразований, преобразующих объект из исходного пр-ва в пр-во целевое

Нейросеть состоит из слоев, например - линейные слои (Wx+b), нелинейные (активация), входной, выходной

Функция активации - функция, применяемая к выходу слоя

Activation functions: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Activation functions: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Требование к функции активации - она должна быть дифференцируема

Обратное распространение ошибки

Обратное распространение ошибки

Прежде чем обсудить backpropagation, повторим изученное

Допустим, у нас есть какой-то набор чисел х0.

Мы применяем к нему какую-то функцию f0, которая переводит x0 в x1. При этом размерности x0 и x1 могут отличаться.

Потом мы применяем какую-то функцию f1, которая делает x1 -> x2, и так далее.

В конце концов мы получаем xN, к которому применяем линейную или логистическую регрессию (обозначим ее m) и получаем наш ответ - у

Допустим, у нас есть какой-то набор чисел х0.

Мы применяем к нему какую-то функцию f1, которая переводит x0 в x1. При этом размерности x0 и x1 могут отличаться.

Потом мы применяем какую-то функцию f2, которая делает x1 -> x2, и так далее.

В конце концов мы получаем xN, к которому применяем линейную или логистическую регрессию (обозначим ее m) и получаем наш ответ - у

Получившийся у равен:

$$y = m(xN) = m(fN(xN-1)) = = m(fN(....f2(x1)...)) = m(fN(...f2(f1(x0)))$$

Допустим, у нас есть какой-то набор чисел х0.

Мы применяем к нему какую-то функцию f1, которая переводит x0 в x1. При этом размерности x0 и x1 могут отличаться.

Потом мы применяем какую-то функцию f2, которая делает x1 -> x2, и так далее.

В конце концов мы получаем xN, к которому применяем линейную или логистическую регрессию (обозначим ее m) и получаем наш ответ - у

Получившийся у равен:

$$y = m(xN) = m(fN(xN-1)) = = m(fN(....f2(x1)...)) = m(fN(...f2(f1(x0)))$$

Мы получили сложную функцию. И для ее дифференцируемости мы требуем дифференцируемость всех функций f_i

Backpropagation and chain rule

Chain rule is just simple math: $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$

Backprop is just way to use it in NN training.

source: http://cs231n.github.io

Пример

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Еще раз вспомним, как мы представляли нейросеть:

$$g(x) := f^L(W^L f^{L-1}(W^{L-1} \cdots f^1(W^1 x) \cdots))$$

$$g(x) := f^L(W^L f^{L-1}(W^{L-1} \cdots f^1(W^1 x) \cdots))$$

W - веса слоя f - функция активации

Очередной слой получает на свой вход выход предыдущего слоя, т.е. f(W*x), где x - вход предыдущего слоя.

$$g(x) := f^L(W^L f^{L-1}(W^{L-1} \cdots f^1(W^1 x) \cdots))$$

Допустим, на какой-то итерации мы пропустили наши данные через нейросеть и получили ответ.

Посчитаем loss - функцию потерь от верного ответа и нашего предсказания, функцию, на которую будет оптимизироваться нейросеть.

$$C(y, f^{L}(W^{L}f^{L-1}(W^{L-1}\cdots f^{2}(W^{2}f^{1}(W^{1}x))\cdots)))$$

$$g(x) := f^L(W^L f^{L-1}(W^{L-1} \cdots f^1(W^1 x) \cdots))$$

Допустим, на какой-то итерации мы пропустили наши данные через нейросеть и получили ответ.

Посчитаем loss - функцию потерь от верного ответа и нашего предсказания, функцию, на которую будет оптимизироваться нейросеть.

$$C(y, f^{L}(W^{L}f^{L-1}(W^{L-1}\cdots f^{2}(W^{2}f^{1}(W^{1}x))\cdots)))$$

По методу обратного распространения ошибки считаем производную для каждого веса и обновляем его

Перцептрон (англ. *Perceptron*) — простейший вид нейронных сетей. В основе лежит математическая модель восприятия информации мозгом, состоящая из сенсоров, ассоциативных и реагирующих элементов.

x_1	x_2	$x_1 XOR x_2$
0	0	0
0	1	1
1	0	1
1	1	0