Nome: Igor Costa Doliveira NUSP: 11391446

1. Simulação de amplificador

Os parâmetros S de um amplificador GaAs MESFET ($Z0=50\Omega$) são:

f(GHz)	S_{11}	S_{12}	S_{21}	S_{22}
3.0	0.80∠–89°	0.03∠56°	2.86∠99°	0.76∠−41°
4.0	0.72∠–116°	0.03∠57°	2.60∠76°	0.73∠–54°
5.0	0.66∠–142°	0.03∠62°	2.39∠54°	0.72∠–68°

Temos que em 3 GHz o amplificador tem estabilidade condicional porque K < 1 e mu < 1:

```
1 delta = s11*s22 - s12*s21;

2 K = (1 - (abs(s11)**2) - (abs(s22)**2) + (abs(delta)**2))/(2*abs(s12*s21));

3 mu = (1-abs(s11)**2)/(abs(s22 - (delta*s11.conjugate())) + abs(s12*s21));

0.5916268455125475 < 1

0.771691866731513 > 1

0.9360041977016981 > 1
```

Já em 4 GHz temos que o amplificador tem estabilidade incondicional porque atendeu os critérios abaixo:

```
1 delta = s11*s22 - s12*s21;

2 K = (1 - (abs(s11)**2) - (abs(s22)**2) + (abs(delta)**2))/(2*abs(s12*s21));

3 mu = (1-abs(s11)**2)/(abs(s22 - (delta*s11.conjugate())) + abs(s12*s21));

0.48752686574033216 < 1

1.1947592616576408 > 1

1.0400684251172099 > 1
```

Por último, em 5 GHz temos que o amplificador tem estabilidade incondicional porque atendeu os critérios abaixo:

```
1 delta = s11*s22 - s12*s21;

2 K = (1 - (abs(s11)**2) - (abs(s22)**2) + (abs(delta)**2))/(2*abs(s12*s21));

3 mu = (1-abs(s11)**2)/(abs(s22 - (delta*s11.conjugate())) + abs(s12*s21));

0.4176867952758771 < 1

1.5373937165120812 > 1

1.0893970391088454 > 1
```

Como na frequência de 4 GHz o amplificador tem estabilidade incondicional é necessário que $\Gamma in < 1$ e $\Gamma out < 1$ para TODOS ZS e ZL, logo abaixo encontra-se o cálculo do Γ L e Γ s e do ganho de trandutância máximo.

```
1 B1 = 1 + abs(s11)**2 - abs(s22)**2 - abs(delta)**2
2 B2 = 1 + abs(s22)**2 - abs(s11)**2 - abs(delta)**2
3 C1 = s11 - delta*s22.conjugate()
4 C2 = s22 - delta*s11.conjugate()
5 Ts1 = (B1 + cmath.sqrt(B1**2 - 4*(abs(C1))**2))/(2*C1); print(abs(Ts1))
6 Ts2 = (B1 - cmath.sqrt(B1**2 - 4*(abs(C1))**2))/(2*C1); print(abs(Ts2))
7 Tl1 = (B2 + cmath.sqrt(B2**2 - 4*(abs(C2))**2))/(2*C2); print(abs(Tl1))
8 Tl2 = (B2 - cmath.sqrt(B2**2 - 4*(abs(C2))**2))/(2*C2); print(abs(Tl2))

1.1471054160629666
0.871759461682385
1.141173709496366
0.8762907799911809

1 GTmax = ((abs(s21)**2) * (1-abs(Tl2)**2)) / ((1 - abs(Ts2)**2) * (abs(1 - s22*Tl2))**2); print('\n',GTmax)
46.88345061751798
```