

Arquiteturas Paralelas: redes de conexão

Paulo Sérgio Lopes de Souza pssouza@icmc.usp.br

Universidade de São Paulo / ICMC / SSC — São Carlos Laboratório de Sistemas Distribuídos e Programação Concorrente

Redes de Conexão: conceitos básicos

- Redes de conexão permitem transferências de dados e sinais de controle entre:
 - Computadores, processadores, memórias, E/S e outros dispositivos
- São vitais para desempenho de aplicações concorrentes
 - Conceito de programa armazenado força vários acessos à memória
 - Afeta granulação das porções paralelas
 - Espera-se que transmitam mensagens
 - Corretamente e tão rápido quanto possível

Redes de Conexão: conceitos básicos

- Podem ser representadas por grafos
 - Nós são os dispositivos conectados
 - Computadores, CPUs, Memórias, E/S, switches, ...
 - Possuem N entradas e M saídas
 - Arestas são os links de comunicação
 - Meio físico (fios/fibras) capazes de transportar informações
 - Switches
 - Permitem a conexão dinâmica de dispositivos
 - Mapeamento dinâmico de mensagens das portas de E para S
 - Podem usar crossbars físicos, memórias (buffers temporários), multiplexadores, barramentos,...

Interfaces

- Conectividade entre nós e a rede
- Resp por (des)empacotamento Inf para roteamento, Detecção/correção de erros

Figure 2.6. Classification of interconnection networks: (a) a static network; and (b) a dynamic network.

Redes de Conexão: principais propriedades

- Topologia: como dispositivos e links s\u00e3o organizados
 - Dinâmica & Estática
- Diâmetro da rede: distância máxima entre quaisquer dois nós da rede
 - Opta-se pelo menor caminho, caso haja redundância
 - Determina o maior atraso entre dois nós
- Grau do nó: número de links, ou de entrada ou de saída
- Latência: atraso na transferência entre dois nós da rede
 - Latência de software e de hardware
- Conectividade de nó/aresta:
 - Nr de elementos que precisam falhar para que a rede fique desconexa
 - Quanto maior, maior é a tolerância à desconexão na rede
- Largura do canal: determina quantos bits são enviados simultaneamente
- Custo do hardware de rede: há várias métricas como nr de links, nr de fios, nr de switches, interfaces, ...

Redes de Conexão: principais propriedades

- Throughput da rede: capacidade total de transmissão por unidade de tempo
- Roteamento: estabelece um caminho entre nós origem e destino
 - Determina qual canal de saída deve ser usado
 - Balanceamento da carga sobre os links e nós
 - Evitam deadlocks quando mensagens são bloqueantes
- Chaveamento: determina como uma msg é transmitida pelo caminho já determinado
 - Por circuito: reserva o caminho todo previamente
 - Por pacotes: msg dividida em pacotes, transmitidos independentemente
 - Pctes podem usar caminhos diferentes e chegar fora da ordem
 - Store-and-forward: recebe pacotes, armazena e os envia
 - Cut-Through: envia pacotes assim que os recebe, formando um pipeline
- Bloqueantes & Não bloqueantes
 - Na não bloqueante nós livres podem transmitir em paralelo a outras msgs
- Dimensão da Rede: arranjo do nós na rede: linear (1D), mesh/malha (2D), ...
- Broadcast & Multicast: envio a todos & um grupo de nós na rede

Topologias em Redes de Conexão

- Diferentes topologias visam:
 - Reduzir custo da rede
 - Fornecer escalabilidade
 - Aumentar desempenho
- Desejam-se alguns aspectos como:
 - Diâmetro pequeno para ter pequenas distâncias nas transmissões
 - Nós com graus pequenos reduzem sobrecarga de hardware nos nós
 - Latências menores
 - Throughputs maiores
 - Alta conectividade
 - Facilidade de extensão
- Objetivos podem ser conflitantes
 - Latência vs throughput, graus menores de nós vs alta conectividade

Topologias Dinâmicas: redes em barramento

Figure 2.7. Bus-based interconnects (a) with no local caches; (b) with local memory/caches.

Topologias Dinâmicas: redes crossbar

FIGURE 2.7

Topologias Dinâmicas: redes multi-estágio (ômega)

Figure 2.10. A perfect shuffle interconnection for eight inputs and outputs.

Topologias Dinâmicas: redes multi-estágio (ômega)

Figure 2.11. Two switching configurations of the 2 x 2 switch: (a)

Pass-through; (b) Cross-over.

Topologias Dinâmicas: redes multi-estágio (ômega)

Figure 2.12. A complete omega network connecting eight inputs and eight outputs.

Topologias Dinâmicas: redes ômega são bloqueantes

Figure 2.13. An example of blocking in omega network: one of the messages (010 to 111 or 110 to 100) is blocked at link AB.

Topologias Dinâmicas: redes butterfly

Topologias Dinâmicas: butterfly - benes

Topologias Estáticas: totalmente conectada e estrela

Figure 2.14. (a) A completely-connected network of eight nodes; (b) a star connected network of nine nodes.

Topologias Estáticas: linha e anel

Figure 2.15. Linear arrays: (a) with no wraparound links; (b) with wraparound link.

Topologias Estáticas: malha 2D e torus 2D/3D

Figure 2.16. Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

Topologias Estáticas: cubo e hipercubo

Figure 2.17. Construction of hypercubes from hypercubes of lower dimension.

Topologias Din/Est: redes baseadas em árvores

Figure 2.18. Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree network.

Figure 2.19. A fat tree network of 16 processing nodes.

Grama et al. (2003)

Referências

GRAMA, A.; KUMAR, U.; GUPTA, A.; KARYPIS, G. Introduction to Parallel Computing, 2nd Edition, 2003.

Stallings, W.; Computer Organization and Architecture: Designing for Performance. Ninth Edition. Pearson. 2013.

Tanenbaum, A. S.; Austin, T.; Structured Computer Organization. Sixth Edition. Pearson. 2013.

Patterson, D. A.; Hennessy, J. L.; Computer Organization and Design: the hardware / software interface. Fith Edition. Elsevier, 2014.

Rauber, T.; Rünger, G.; Parallel Programming for Multicore and Cluster Systems. Second Edition. Springer. 2013.

Arquiteturas Paralelas: redes de conexão

Paulo Sérgio Lopes de Souza pssouza@icmc.usp.br

Universidade de São Paulo / ICMC / SSC – São Carlos Laboratório de Sistemas Distribuídos e Programação Concorrente

