Grammarless Parsing for Joint Inference

Jason Naradowsky joint work with Tim Vieira_[JHU] and David Smith_[NE]

UMass Amherst & Macquarie University

Outline

- Joint Inference
- Factor graphs and Message Passing Inference
- Modeling Syntax with Combinatorial Factors
- Joint Models of NER and Syntax
- Conclusions

- Goal: Construct complete NLP systems
- But, most models for NLP tasks are developed independently for pipelined system.
- The problem?

- Goal: Construct complete NLP systems
- But, most models for NLP tasks are developed independently for pipelined system.
- The problem? Error Propagation

It's like that game of telephone

I lack that great homophone?

- Goal: Construct complete NLP systems
- But, most models for NLP tasks are developed independently for pipelined system.
- The problem? Error Propagation

= 53% Accuracy on End Task! [McCallum 09]

Can we do better?

Joint Inference [advantages]

- Combine the models for independent problems and perform inference over the combined model.
- Minimizes inconsistencies between models and prevents error propagation.
- Joint modeling has shown improvement in:
 - parsing and NER [Finkel & Manning 09]
 - parsing and morphology [Lee, et al 2011]
 - NER and coref [Haghighi 2010]
- Why then...don't we always use it?

Joint Inference [disadvantages]

- Complexity:
 - requires more coding, more troubleshooting, longer training
- Representation:
 - all models need to be implemented in a in a single framework
 - frameworks convenient for one problem are often inconvenient for another

Joint Inference [example]

• Two Tasks:

```
NER:

GPE

the [district of Columbia]
```


Grammar Augmentation

 Conflate two tasks by combining the label sets of both tasks and making one prediction [Finkel & Manning 09]

Grammar Augmentation

- Conflate two tasks by combining the label sets of both tasks and making one prediction
- Disadvantages:
 - Label set size (G) increases multiplicatively with each task;
 O(lGln³) decodes
 - Problems must be describable via parsing

An Alternative? Factor Graphs

- Factor Graphs are capable of representing common NLP models
- It pairs them automatically with efficient inference techniques via belief propagation
- Flexible connections between parts of models (just add a factor between them!)
- Label set growth between tasks is only additive (vs. multiplicative in grammar augmentation approach to joint inference)

Outline

- Joint Inference
- Factor graphs and Message Passing Inference
- Modeling Syntax with Combinatorial Factors
- Joint Models of NER and Syntax
- Conclusions

- A probabilistic model
- Represents a factorization of a function over variables:

$$P(x_1,x_2,x_3) = f_A(x_1)f_B(x_1,x_2)f_C(x_3)$$

as a bipartite graph of factors and variables:

 Principled Method for Constructing Joint Models:

Factor Graphs: problems?

- A densely connected clique creates a troublesome graphical model:
 - Exponential growth with sentence length
 - Lots of cycles = poor inference
 - Lots of messages = lots of computation
- Yet, there are many cubic time algorithms for constraining nested bracketings...

...can we do better?

Combinatorial Factors

 Sum-Product for Inference in Factor Graphs contains two types of messages:

- Variables \rightarrow Factors: $\prod_{i \in \mathcal{N}(i) \setminus \{c\}} m_{\phi_{c'} \rightarrow Y_i}(y_i)$
- Factors \rightarrow Variables: $\sum_{y_{c\setminus\{i\}}} \phi_c(y_c) \prod_{i'\in c\setminus\{i\}} m_{Y_{i'}\to\phi_c}(y_{i'})$
- Combinatorial Factors:
 - Connect many variables (often globally)
 - Override default behavior
 - Implement efficient combinatorial algorithms

Outline

- Joint Inference
- Factor graphs and Message Passing Inference
- Modeling Syntax with Combinatorial Factors
- Joint Models of NER and Syntax
- Conclusions

Parsing in Factor Graphs

- CKY-Tree
 - A Combinatorial Factor for constraining span variables to form a properly nested tree.
 - Implementation is simply inside-outside algorithm, computing expectations over spans without any grammatical rules.
 - Cubic time
- The global factor coordinating boolean variables produces a parser yielding unlabeled trees.

Extending to Labeled Parsing

- Bracket Model:
 - CKY-Tree
 - n² boolean span variables
- Labeled Bracket Model (LBM)
 - + ILI n² boolean label variables
 - + n² AtMost1 factors connecting label variables to span variables:
 - When span variable is on, assign a label
 - When span variable is off, don't

Parsing Results

Accuracy on WSJ*

 Stanford parsers with horizontal and vertical markov order of 1

^{*} Results from Ontonotes distribution of WSJ, which differs from historical release.

NP Accuracy on WSJ*

• Why care about NP accuracy in particular?

^{*} Results from Ontonotes distribution of WSJ, which differs from historical release.

Outline

- Joint Inference
- Factor graphs and Message Passing Inference
- Modeling Syntax with Combinatorial Factors
- Joint Models of NER and Syntax
- Conclusions

Joint Parsing & NER

- A Strong Correlation:
 - Whenever we find a named-entity, we know there is a constituent NP span in the syntax
 - Whenever we find a non-NP constituent span, we know a named-entity cannot exist for that span
- Named entities cannot cross syntactic spans

Joint Parsing & NER

Coordination Factors

- Special-purpose logical factors used for connecting components of different models
- Implement a soft NAND function
 - fire when all connected variables are true
 - Learn a set of coordinating feature weights

NER Results (F1)

NER Results - Joint Model (F1)

Addendum: Parsing with Rules

- Rule complexity is additive: $O(\ln^3 + |G|)$
- Rules are sparse: only correct predictions of grammarless model, do not specify a full derivation
- Grammar constructed via perceptron updates on top of the labeled prediction model

Rule Parsing Results

Conclusions

- Joint inference again improves performance on syntax and NER, yielding best-reported results on OntoNotes data set
- A New Parser Decomposition for Factor Graphs
 - Constrain variables [strong local information] to form valid parses with combinatorial factors [strong global information]
 - More efficient than grammar-based parsing
 - Relies on logical factors to connect components of different models in flexible ways
 - Extensible for joint inference to other factor graph models and other NLP tasks