Chapter 1 - Matter and Structure of Atoms

"

Key point of the chapter:

- Classification of Matter(states, particles)
- *Change of State
- Structure of Atoms(History, Electronic *Structure, Isotopes)
- *Chemical Formulae(Nomenclatures, Oxidation Numbers)
- · Physical and Chemical Properties
- Separation of Mixtures

Classification of Matter

States of Matter

- Matters have volume & mass
- Matter can exist in three different physical states: solid, liquid, gas
- The states of matter can be changed by changing the temperature and/or pressure
 - Changes in pressure of temperature have greater impact on gas

Physical State	solid	liquid	gas
Volume	fixed volume	fixed volume	no fixed volume
Density	high	moderate to high	low
Shape	fixed shape	no fixed shape	no fixed shape
Fluidity	does not flow	generally flows	flows easily
Movement	vibrate in a fixed position	free to move	move freely
Particles	closely packed	slightly further apart	far apart from one another
Attraction Force & Kinetic Energy	E _k < F	E _k ≈F	E _k > F

ullet Attraction forces (F) between the particles won't change, but the kinetic energy (E_k) of particles will be affected by heat.

Particles

• There're three types of particles that made up matters: atoms, molecules, ions

The Change of State of Matter

- All states of matter show an increase in volume (expansion) when the temperature is
 increased and a decrease in volume (contraction) when the temperature is lowered
- Large increases/decreases in temperature and pressure can cause a substance to change its physical state

Boiling & Evaporation

- Evaporation take place over a range of temperatures, only take place from the surface of the liquid
 - the rate of evaporation may be affected by the temperature and surface area
 - o volatile: term that describes a liquid that evaporates easily
 - usually a liquid with low boiling point because there're weal intermolecular forces between the molecules in the liquid
- Boiling takes place at a specific temperature

Sublimation

- · Example of substances that sublimes:
 - iodine, dry ice (solid CO₂), mothballs, ammonium chloride (NH₄Cl)
- Ammonium chloride doesn't REALLY sublime, at a certain temperature, it decomposes to ammonia and hydrogen chloride (both gases), which appears to be sublimation but is not.

- lodine can exist in liquid state. The iodine seems to miss out the liquid stage if heated strongly because the temperature rises very quickly, the m.p. and b.p. are close together, the liquid stage is not seen as it boils quickly
 - To make iodine melt to form a liquid at atmospheric pressure:
 - heat the solid slowly
 - use some tools(electrical heater, oil bath) to control the rise of temperature carefully

Heating and Cooling Curves

- The temperature stays constant during the state changes.
- During heating, all the energy absorbed at m.p. and b.p. goes into weakening the attraction forces between particles without temperature rise.
- During colling, all the heat energy released at condensation point and freezing point is given out into increasing of the intermolecular forces without temperature falls.
- exothermic changes : freezing, condensing
- endothermic changes: melting, boiling, evaporation

Effect of impurities

- · A pure substance melts and boils at definite temperature.
- The presence of any impurity will lower the freezing/melting point of the solid
 - It makes it harder for the particles to arranged closely in fixed positions which is necessary if a substance is changed into a solid
 - It disrupts the formation of the lattice of the solid, less energy is required to break the lattice, this leads to a lower melting point
 - o lattice: a regular 3D arrangement of particles in a crystalline solid
- The presence of any impurity will increase the condensing/boiling point of the liquid
 - It makes it harder for the particles to gain high kinetic energy which is necessary if a substance is changed into a gas/vapour(mixture of two states)
 - the molecules need more energy(heat) than normal in order to escape from the liquid and become vapour.
- Thus, purity of substance is checked by determining the m.p. and b.p.
- These values can also be used to identify an unknown substance.

Structure of Atoms

The Historical Development of Atomic Model

- 1. John Dalton
 - o atomic model: all matter was made up of atoms
- 2. J.J. Thomson
 - plum pudding model: discovered electron(negatively charged particles)
- 3. Ernest Rutherford
 - Rutherford model: discovered protons(positively charged particles) and nucleus
- 4. Niels Bohr
 - Bohr model / planetary model: electrons move in specific energy levels or "shells"
 around the nucleus of an atom
- 5. James Chadwick

- discovered the neutron(electrically neutral / no electrical charge)
- o completing the picture of the three main subatomic particles that make up atoms

Characteristics of Protons, Neutrons and Electrons

Subatomic Particle	proton(p)	neutron(n)	electron(e)
Relative Mass	1	1	1 / 1840 (negligible)
Relative Charge	+1	0	-1
Location in Atom	in nucleus	in nucleus	surrounding/outside nucleus

- Atoms are electrically neutral, so every atoms have an equal number of protons and electrons to cancel out the charges
- The number of neutrons required to hold the nucleus together increases as the atomic size (atomic number) increases
 - Hydrogen atom is the only atom that has no neutron
 - Neutrons are important in making the nucleus of an atom stable
 - Protons are positively charged and would therefore repel each other.
 - The presence of the neutrons counteracts this repulsion and means that the nucleus can hold together.

- Example: Helium

A helium atom has these charged particles in it:

2 protons charge +2 these charges

2 electrons charge -2 ____ cancel out

We say the charges balance.

The atom has no overall electrical charge.

A helium atom has:

2 protons mass 2 units

2 neutrons mass 2 units

2 electrons with hardly any mass

So a helium atom has a total mass of:

2 + 2 = 4 units

Atomic Number and Mass Number

 We can represent a particular atom of an element by combining the chemical symbol of the element with the nucleon(A) and atomic(Z) numbers of the atom.

 $_{\mathrm{Z}}^{\mathrm{A}}\mathrm{X}$

• Example: representing the structure of iodine atoms, using the above format

 $^{127}_{53}\mathrm{I}$ Iodine-127

- Atomic number / proton number (Z) = number of protons in the nucleus of an atom
- Nucleon number / mass number (A) = number of protons + number of neutrons
- number of electrons = number of protons = atomic number
- number of neutrons = mass number atomic number (A-Z)

Isotopes

- Isotopes are atoms of the same element that have the same proton number but a
 different nucleon number. Many Isotopes are radioactive because their nuclei are
 unstable (radioisotopes).
- · Many elements have naturally occurring isotope.
- Hydrogen, the simplest element, has two naturally occurring isotopes: hydrogen and deuterium. A third Isotope, tritium, can be made artificially.

- The isotopes of an element have the same chemical properties.
 - Isotopes have the same electronic configuration. It determine the way it forms bonds and react with other atoms.
- The isotopes differ in some of their physical properties (such as density, rate of diffusion)
 - Examples
 - difference in density between ordinary ice and heavy-water ice(deuterium oxide,
 D₂O)
 - radioactivity of tritium and carbon-14 (radioisotopes)

- Relative Atomic Mass (A_r)

- A single atom cannot be weighed on a balance.
- Masses of all atoms are compared to the mass of a carbon-12 atom.
- One atom of carbon-12 is given the mass of 12 precisely.
- 1 atomic mass unit (a.m.u) = $\frac{1}{12}$ × mass of one atom of carbon-12

· Examples of value obtained for other element

0	Element	Atomic Symbol	Relative Atomic Mass (A _r)
	carbon	С	12
	hydrogen	Н	1
	copper	Cu	64

 Most elements exist naturally as a mixture of isotopes, therefore, the value we use for the atomic mass of an element is an average mass.

$$A_r(X) = (\text{isotope}_1 \text{ abundace} \times \text{mass of isotope}_1) + (\text{isotope}_2 \text{ abundace} \times \text{mass of isotope}_2)$$

Examples

0

0

 Iridium has two isotopes. These isotopes are iridium-191 and iridium-193. A natural sample of iridium consists of 37.3% of iridium-191.

$$egin{aligned} A_r(Ir) &= (191 imes 37.3\%) + (193 imes (100 - 37.3)\%) \ &= (191 imes 37.3\%) + (193 imes 62.7\%) \ &= 192.254 \end{aligned}$$

Electronic Configuration of Elements

- Bohr's atomic theory
 - · electrons are in orbit around the central nucleus of an atom
 - the electron orbits are called electron shells / energy levels and have different energy
 - · shells that are further from the nucleus have higher energies
 - the shells are filled starting with the one with lowest energy (closest to the nucleus)
 - the first shell can hold only two electrons
 - the outermost shells can hold eight electrons to give a stable arrangement of electrons
 - If the number of electrons of an atom is more than 20, the third shell will hold 18 electrons.

 If the numbers of electrons is 20 or less, the third shell will hold 8 electrons
 - electron arrangement / configuration: the way in which the electrons are distributed in the shells of an atom

Example of Electron Configurations of The First 20 Elements

Element	Symbol	Atomic Number (Z)	Electron configuration
hydrogen	Н	1	1
boron	В	5	2.3
oxygen	0	8	2.6
neon	Ne	10	2.8
magnesium	Mg	12	2.8.2
phosphorus	Р	15	2.8.5
potassium	К	19	2.8.8.1

Another way of showing electron structure

Periodic Table

• The electron configuration of an element determines the group number and period number of that element in the periodic table

Chemical Formulae

Nomenclature of Inorganic Compounds

- Binary Covalent Compounds

- · Covalent / molecular compounds are form when nonmetal elements bond to each other
- The first element in the formula is simply listed using the name of the element.
- The second element is named by taking the stem of the element name and adding the suffix -ide.
- A system of numerical prefixes is used to specify the number of atoms in a molecule.

Atoms in Compound	Prefix on the Name of the Element
1	mono-*(not used for the first element's name)
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Examples

Chemical Formula	IUPAC name
NO	nitrogen monoxide
SF ₆	sulfur hexoxide
CIO ₂	chlorine dioxide
NCI ₃	nitrogen trifluoride
I ₂ O ₅	diiodine pentoxide

Exceptions

• Compounds that are always called by the common names

chemical formula	common name
H ₂ O	water
NH ₃	ammonia
CH ₄	methane
PH ₃	phosphine

• Common name that getting used more frequently than systematic name

chemical formula	systematic name	common name
NO	nitrogen monoxide	nitric oxide
N ₂ O	dinitrogen monoxide	nitrous oxide
NaCl	sodium chloride	table salt
NaHCO ₃	sodium hydrogencarbonate/bicarbonate	baking soda
MgSO ₄	magnesium sulfate	Epsom salt

Ionic Compounds

- Ionic compounds are formed when metal atoms lose one or more of their electrons to nonmetal atoms.
- Ionic compounds are made up of ions.
- Some elements can form two different ions, we can use two ways too distinct them:
 - Stock System (Modern approach)
 - Common System

lon	stem	charge	modern name	common name
Iron	ferr-	2+	iron(II) ion	ferrous ion
		3+	iron(III) ion	ferric ion
copper	cupr-	1+	copper(I) ion	cuprous ion
		2+	copper(II) ion	cupric ion

Common Cations

Car	tions with 1+	Co	itions with 2+	Ca	tions with 3+
Lit Nat K+ Cu+ Ag+	lithium ion Sodium ion potassium ion Copper(I) ion silver ion	Mg2+	magnesium ion calcium ion barium ion	Al ^{3†} Cr ^{3†} Fe ^{3†}	aluminium ion chromium(II) ion iron(II) ion
H+	hydrogen ion	Co ^{2†} Ni ^{2†} Cu ^{2†} Zn ^{2†}	cobalt(I) ion nickel(I) ion Copper(I) ion	P64+ S14+	lions with 4+ lead(IV) ion Silicon(IV) ion
		Sn2+ Pb2+	-zinc ion -tin(I) ion lead (I) ion	Sh.	fin (IV) ion

Common Anions

A	nions with 1-	fnions with 2-	A	vions with 3-
	fluoride ion	oxide ion	1	nitride ion
	chloride ion	sulphide ion	P3-	phospide ion
Br ⁻	bromide ion	peroxide ion	Ani	ions with 4-
工- *H-	jodide ion hydride ion			carbide ion

Examples

Compounds	Name
NaCl	sodium chloride
CaBr ₂	calcium bromide
Mg ₃ N ₂	magnesium nitride

Nomenclature of Acids

- Acids that doesn't Contain Oxoanion

- Naming as Ionic compounds
 - first write the cation(usually hydrogen), then write the anion
 - o lonic name is preferred when the compound is not acting as an acid
 - i.e. pure HCl in gas phase
- Naming as Acids
 - Add prefix hydro- to the name of anion, then replace the last syllable from –ide to –ic acid.
 - Acid name is preferred when the compound acts as an acid
 - particularly when it is in solution form in water

• Examples

Compounds	name(aqueous)	name(gas)
HCI	hydrochloric acid	hydrogen chloride
HBr	hydrobromic acid	hydrogen bromide
H ₂ S	hydrosulfuric acid	hydrogen sulfide
HF	hydrofluoric acid	hydrogen fluoride
Н	hydroiodic acid	hydrogen iodine
*HCN	hydrocyanic acid	hydrogen cyanide

- Acids that Contains Oxoanion & Others

chemical formula	name	ion	name of ion
HNO,	nitrous acid	NO5	nitrate ion nitrate(II) ion
HNO3	ni-tric acid	Noi	nitrate (III) ion nitrate ion nitrate(V) ion
H2 CO3	Carbonic acid	+100=	hydrogencarbonate ion bicarbonate ion
		C032-	Carbonale (IV) ion
CH3 COOH	ethonoic acid	CH2 COD-	ethanoate ion acetate ion
HMn04	permaganic acid	Mn 04-	maganate (VI) ion permaganate ion
H2503	Sulfurous acid	5032-	sulphite ion Sulphate (IV)ion
H2504	sulfuric acid	5042-	sulphate (TI) ion
H2Cr04	chromic acid	Cr042-	Chromate(VI) ion
H2Cr2O+	dichromic acid	Cr20+2"	dichromate(VI) ion
H3 PO4	phosphoric acid	PO4-	phospate (V) ion
HCIO	hydrochlorous acid Chloric(I) acid	C10-	hydrochlorite im Chlorate(I) ion
HCIO.	Chlorous acid Chloric(A) acid	0102	chlorite ion chlorate (II) ion
HC103	chloric acid chloric(V) acid	C105	Chbrate ion
HC104	perchloric and chloric (VI) acid	0104	chlorate (T) ion perchlorate ion Chlorate (VI) ion
40	water	oH-	hydroxide ion
*NH2	ammonia	NH4 [†]	ammonium ion

Oxidation Numbers

An atom's oxidation number (or oxidation state) is the imaginary charge that the atom
would have if all of the bonds to the atom were completely ionic.

- Guidelines

• An atom of a free element has an oxidation number of 0.

- A monatomic ion has an oxidation number equal to its charge.
 - \circ i.e. the oxidation number of Cu²⁺ is +2, Br ⁻ is -1
- · When combined with other elements
 - o alkali metals (Group IA) always have an oxidation number of +1
 - o alkaline earth metals (Group IIA) always have an oxidation number of +2
 - oxidation number of aluminum ions is always +3
 - transition metal ions have variable oxidation number

Transition Metal	Oxidation Number of Metal	Examples of Compounds
copper	+1	CuO ₂
	+2	CuO
iron	+2	FeCl ₂
	+3	FeCl ₃
manganese	+2	MnO
	+4	MnO ₄
	+7	Mn ₂ O ₇

- Fluorine has an oxidation number of -1 in all compounds.
- Hydrogen has an oxidation number of +1 in most compounds.
 - The major exception is when hydrogen is combined with metals, as in NaH, a, H or
 LiAlH₄ (metal hydrides). In these cases, the oxidation number of hydrogen is -1
- Oxygen has an oxidation number of -2 in most compounds.
 - The major exception is in **peroxides** (compounds containing O_2^{2-}), where oxygen has an oxidation number of **-1**
 - i.e. H₂O₂, Na₂O₂
- The other halogens (Cl, Br, I) have an oxidation number of -1 in compounds
 - unless combined with oxygen or fluorine.
 - i.e. the oxidation number of Cl n the ion ClO₄ is +7
- The sum of the oxidation numbers for all atoms in a neutral compound is equal to zero
- While he sum for all atoms in a polyatomic ion is equal to the charge on the ion.
 - Consider the polyatomic ion NO₃⁻. Each O atom has an oxidation number of -2. Since
 the overall charge on the ion is -1, the oxidation number of the N atom must be +5.
- One thing to note is that oxidation numbers are written with the sign (+ or -) before the
 number. This is in contrast to the charges on ions, which are written with the sign after
 the number.

Physical and Chemical Properties

Physical Properties and Physical Change

- Physical Properties

Characteristics that can be observed without changing the substances that make up the material

Examples	
boiling point	melting point
odor	lustre(the brightness that a shiny surface has)
density	attraction to magnet
electrical conductivity	thermal conductivity
color	malleability(ability to be drawn in sheets)
hardness	ductility(ability to be drawn in wires)

- Physical Changes

- The substances present remain chemically the same, no new substances are formed
- · often easy to reverse

Examples	Reversibility
a liquid boiling	reversible
salt dissolving in water	reversible
wood being chopped	irreversible
a mixture of color being separated out	reversible
peeling an orange	irreversible

Chemical Properties and Chemical Change

- Chemical Properties

• Characteristics that indicate if a material can undergo a certain chemical change

Examples	
chemical stability	ability to oxide
radioactivity	half-life
flammability	acidity

- Chemical Change

- the major feature of a chemical change, or reaction, is that new substance(s) are made during the reaction
- · many reactions are difficult to reverse
- during a chemical reaction, energy can be given out (exothermic change) or taken in (endothermic change)
 - there're many more exothermic change than endothermic change
- Examples
 - the formation of rust
 - baking a cake
 - photosynthesis in plants
 - o explosion

Differences between Chemical and Physical Changes

Physical Changes	Chemical Changes
don't form new substances, substances change in size, shape or state	form new substances
involves the transfer of energy from one substance to another	substances gain or lose energy, heat and light may be produced
often reversible	often irreversible

Separation of Mixtures

Details

1. Evaporation

- Used to separate a solute from a solution by heating the solution until the solvent evaporates, leaving behind a solid residue
- separate solid(soluble) from liquid

2. Crystallization

- Used to separate a solid solute from a liquid solution by cooling the solution until the solute crystallizes out.
- The crystals can then be collected and dried to obtain a purified solid.
- separate solid(soluble) from liquid

3. Filtration

- Used to separate a solid from a liquid or gas by passing the mixture through a filter medium
- o separate solid(insoluble) from liquid or gas

4. Decantation

- Used to separate a solid from a liquid by carefully pouring off the liquid without disturbing the solid at the bottom of the container
- This method is often used in conjunction with other methods, such as centrifugation or filtration, to separate the solid from the liquid more effectively.
- separate solid(insoluble) from a liquid

5. Centrifugation

- Used to separate solid particles from a liquid by spinning the mixture at a high speed,
 which causes the denser particles to settle at the bottom
- separate solid(insoluble) from a liquid

6. Sublimation

- Used to separate a mixture of a solid and a volatile component that sublimes when heated.
- Involves heating the mixture until the volatile component sublimes, leaving behind the solid residue.
- separate solid from a solid (one can sublimes)

7. Distillation

- Based on the different boiling points of the two liquids
- Useful when the boiling points of the two liquids differ significantly
- The mixture is heated until the liquid with the lowest boiling point evaporates, then the vapor is collected and condensed to obtain a purified liquid.
- separate liquid from a liquid (miscible)

8. Separating Funnel

- Used when the two liquids have different densities and are immiscible.
- Involves pouring the mixture into a separatory funnel and allowing it to settle, then draining off the denser liquid from the bottom of the funnel
- separate liquid from a liquid (immiscible)

9. Solvent Extraction

- Used when the two liquids have different solubilities in a particular solvent.
- The mixture is mixed with a solvent that selectively dissolves one of the liquids, and the two liquids are separated by draining off the solvent layer, usually using separatory funnel.
- separate a solid and a liquid (dissolving the solid into a solvent)

10. Fractional distillation

- Used when the boiling points of the two liquids are close to each other
- Involves using a fractionating column to separate the components based on their vapor pressures
- The mixture is heated, and the vapor is allowed to rise up through the column. As the vapor rises, it cools and condenses on the column's surface, and the more volatile component condenses and drips back into the flask. The less volatile component condenses further up the column and is collected separately.
- separate liquid from a liquid (miscible, similar boiling point)

11. Diffusion

- Used to separate the two mixtures that have different molecular sizes.
- Diffusion is a process in which molecules move from an area of higher concentration to an area of lower concentration.
- However, diffusion alone may not be an effective method to separate two mixtures.
- dialysis
 - Separate the mixture through diffusion by using a semipermeable membrane.
 - A semipermeable membrane is a barrier that allows only certain molecules to pass through it.
 - By placing the mixture on one side of the membrane, the smaller molecules will diffuse through the membrane more easily than the larger molecules.

- gas diffusion
 - The two mixtures are separated by a barrier that allows gas molecules to pass through it
 - The gas molecules will diffuse through the barrier based on their size and concentration, allowing the two mixtures to be separated.
- separate two gas

12. Paper Chromatography

Stage 1

- The solution is spotted and allowed to dry.
 The original spot is identified as A.
- The solvent begins to move up the paper by capillary action.

Stage 2

 The solvent moves up the paper, taking different components along at different rates.

Stage 3

- The separation of the mixture is complete.
- The different components string out along the paper.
- Used to separate a mixture based on the differences in the components' solubility and attraction to a stationary phase and a mobile phase.
- separate two or more dissolve solid in a solution