Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of determining, in a predefined target
position, the sound pressure (Δp) resulting from sound emitted from a surface element
(ΔS) of a sound emitting surface (S), the method-comprising comprising:
-measuring, using a three-dimensional array of a plurality of
microphones arranged in a first predefined measuring position relative to the surface element
(ΔS), a first three-dimensional distribution of sound pressure;
-calculating, calculating, based on the first three-dimensional distribution of sound
pressure, the air-particle an air-particle velocity (u_n) on the surface element (ΔS) and
perpendicular to the surface element (ΔS), resulting from the sound emitted from the surface
(S), (<u>S);</u>
- arranging a sound source capable of emitting a volume velocity (Q _v) in
the target position, position;
-causing causing the sound source to emit the volume velocity (Q_v) , (Q_v) ;
-measuring, using a three-dimensional array of a plurality of
microphones arranged in a second predefined measuring position relative to the surface
element (ΔS) and with the volume velocity (Q_v) emitted from the sound source in the target
position creating a dominating sound, a second three-dimensional distribution of sound
pressure, <u>pressure;</u>
-calculating, calculating, based on the second three-dimensional distribution of
sound pressure, the sound a sound pressure (p_V) at the surface element (ΔS) resulting from the
volume velocity (Q _v) emitted from the sound source in the target position;

-determining	determining the transfer transfer function $H = p_v/Q_v$ as the ratio of the	
sound pressure (p _v)	at the surface element (ΔS) to the volume velocity (Q_v) emitted from the	
sound source in the	target position, position; and	
-determining	determining the sound pressure (Δp) in the target position as	
$\Delta p = H \cdot (u_n \cdot \Delta p)$	aS).	
2. (Cur	rently Amended) A method of determining, in a predefined target	
position, the sounda	sound pressure (Δp) resulting from sound emitted from a surface element	
(ΔS) of a sound emi	tting surface (S), the method-comprising comprising:	
-measuring,	measuring, using a three-dimensional array of a plurality of	
microphones arrang	ed in a first predefined measuring position relative to the surface element	
(ΔS), a first three-di	imensional distribution of sound pressure, pressure;	
-calculating,	calculating, based on the first three-dimensional distribution of sound	
pressure, the air-par	tielean air-particle velocity (u_n) perpendicular to the surface element (ΔS)	
and on the surface e	element (ΔS), and the sound pressure (p) on the surface element	
(ΔS) , resulting from	the sound emitted from the surface (S),(S);	
-arranging	arranging a sound source capable of emitting a volume velocity (Q_v) in	
the target position,	position;	
-causing	causing the sound source to emit the volume velocity (Q_v) , (Q_v) ;	
-measuring,	measuring, using a three-dimensional array of a plurality of	
microphones arranged in a second predefined measuring position relative to the surface		
element (ΔS) and with the volume velocity (Q_v) emitted from the sound source in the target		
position creating a dominating sound, a second three-dimensional distribution of sound		
pressure, pressure;		

calculating, based on the second three-dimensional distribution of sound pressure, the sound pressure (p_V) at the surface element (ΔS) and the component of the particle particle velocity ($u_{V,n}$) perpendicular to the surface element (ΔS) resulting from the volume velocity (Q_v) emitted from the sound source in the target position, position; and

-determining determining the sound pressure (Δp) in the target position in accordance with the formula

$$\Delta p = \iint_{\Delta S} \left[\frac{p_{\nu}}{Q_{\nu}} u_n - \frac{u_{\nu,n}}{Q_{\nu}} p \right] dS.$$

- 3. (Currently Amended) A method according to claim 1 wherein claim 1, the target position is a listening position suitable for being occupied by a human being.
- 4. (Currently Amended) A method according to elaim 1 whereinclaim 1, the airparticle velocity (u_n) perpendicular to the surface element (ΔS) resulting from the sound emitted from the surface (S) is calculated, based on the first three-dimensional distribution of sound pressure, using a Near-Field Acoustical Holography (NAH) method, and that the sound pressure (p_V) at the surface element (ΔS) resulting from the volume velocity (Q_v) emitted from the sound source in the target position is calculated, based on the second three-dimensional distribution of sound pressure, using a Near-Field Acoustical Holography (NAH) method.
- 5. (Currently Amended) A method according to elaim 2-whereinclaim 2, the airparticle velocity (u_n) perpendicular to the surface element (ΔS) and the sound pressure (p) resulting from the sound emitted from the surface (S) are calculated, based on the first three-dimensional distribution of sound pressure, using a Near-Field Acoustical Holography (NAH) method, and that

the sound pressure (p_V) at the surface element (ΔS) and the air-particle velocity $(u_{V,n})$ perpendicular to the surface element ΔS resulting from the volume velocity (Q_v) emitted from the sound source in the target position are calculated, based on the second three-dimensional distribution of sound pressure, using a Near-Field Acoustical Holography (NAH) method.

- 6. (Currently Amended) A method according to elaim-1claim 1, wherein by using using, as the volume velocity sound source source, a simulator simulating acoustic properties of at least a head of a human being, the simulator having a simulated ear with an orifice and a sound source for outputting sound signals through the orifice of the simulated ear.
- 7. (Currently Amended) A method according to elaim 6 wherein claim 6, the simulator simulates the acoustic properties of the head and a torso of a human being.
- 8. (Currently Amended) A method according to elaim 1 wherein by using, as the three-dimensional array of a plurality of microphones, an array having two parallel layers of microphones, where each layer comprises a plurality of microphones arranged in a two-dimensional grid.
- 9. (Currently Amended) A method according to elaim 1 whereinclaim 1, by using, as the three-dimensional array of a plurality of microphones, an array comprising a combination of pressure microphones and particle velocity sensors.
- 10. (Currently Amended) A method according to elaim 9-whereinclaim 9, by using, as the three-dimensional array of a plurality of microphones and velocity sensors, a planar array of combination sensors, each being able to measure both the sound pressure and the particle velocity component perpendicular to the array plane.

11. (Currently Amended) A method according to elaim 2 claim 2, the sound pressure (Δp) in the target position is determined as an approximation in accordance with the formula

$$\Delta p = \left[\frac{p_{\nu}}{Q_{\nu}} u_n - \frac{u_{\nu,n}}{Q_{\nu}} p \right] \Delta S.$$