第七章 代数系统

第八节 代数系统的基本概念

1、代数系统(结构)的概念

定义

X 是非空集合,X 及 X 上的 m 个运算 f_1, f_2, \ldots, f_m 构成代数系统U,记作 $U=\langle X, f_1, f_2, \ldots, f_m \rangle$ ($m \geq 1$)

注意:这m个运算 f_1,f_2,\ldots,f_m 的元数可能不同,此如 f_1 是一元运算, f_2 是二元运算, \ldots,f_m 是 k 元运算。

例如 $\langle N,+,\times \rangle$, $\langle \mathcal{P}(E), \sim, \cup, \cap, \oplus \rangle$

定义

U=<X, $f_1,f_2,\ldots,f_m>$ 是个代数系统,如果X 是个有限集合,则称U 是有限代数系统。

定义

给定两个代数系统 $U=\langle X, f_1, f_2, \ldots, f_m \rangle$, $V=\langle Y, g_1, g_2, \ldots, g_m \rangle$, 如果对应的运算 f_i 和 g_i 的元数相同($i=1,2,3,\ldots,m$),则称U=V是同类型代数系统。

例如 $<\mathcal{P}(E)$, \sim , \cap , \cup > 与 $<\{T,F\}$, \neg , \wedge , \vee > 是同类型的代数系统。

代数系统的同态与同构

观察下面两个代数系统:

 $< R^+, \times >, < R, + >$

R为实数集合,R⁺为大于0的实数集合, \times 、+ 为普通的实数乘法、加法运算。

表面上看这两个代数系统完全不同,实际它们 运算的性质却完全一样,都满足:可交换、可结 合、有幺元、每个元素可逆。

思考) > 如何能看出它们间有相同的性质呢?

建立 $R^+ \rightarrow R$ 上的映射: f(x)=lgx (双射)

2、代数系统的同态与同构

定义

设< X, ★>, $< Y, \circ>$ 是两个代数系统, ★和。 都是二元运算,如果存在映射 $f:X\to Y$,使得 对任何 $x_1, x_2 \in X$, 有 $f(x_1 \star x_2) = f(x_1) \circ f(x_2)$ 则称 f 是从 $< X, \star >$ 到 $< Y, \circ >$ 的同态映射,简称 这两个代数系统同态。记作 $X \hookrightarrow Y$ 。 并称< f(X),。>为< X, $\star >$ 的同态像。

- ∞如果ƒ是满射的, 称此同态是满同态。
- ∞如果ƒ是入射的, 称此同态是单一同态。
- α 如果f是双射的,称此同态是同构,记作 $X \cong Y$ 。
- ○○ 若 f 是< X, $\star >$ 到< X, $\star >$ 的同态(同构),则称之为自同态(自同构)。

■ N_k上的运算+_k和X_k ■

- ❖在 N_k 上定义运算 $+_k$ 和 \times_k ,我们分别称之为以k为模的加法和乘法。定义为:

任取[x],[y]
$$\in N_k$$
, [x] +_k [y]=[(x + y)(mod k)];
[x] ×_k[y]=[(x × y)(mod k)]

* 为了方便,将 N_k ={[0],[1],[2],...,[k-1]}简记成: N_k ={0,1,2,...,k-1}

例如代数系统 $< N_4, +_4>$: $N_4=\{0,1,2,3\}$ 任何 $x,y\in N_4$, $x+_4y=(x+y)\pmod 4$

	<n< th=""><th>4,</th><th>Ͱ₄:</th><th>> •</th><th>-</th></n<>	4,	Ͱ ₄ :	> •	-
+4	0	1	2	3	
0	0	1	2	3	
$\left \begin{array}{c}1\\2\end{array}\right $	1	2	3 0	0	
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	0 1 2 3	0	1	2	

代数系统同态举例

$$g(1+_4 2)=g(3)=1$$

 $g(1)\oplus g(2)=1\oplus 0=1$
手是 $g(1+_4 2)=g(1)\oplus g(2)$

其余类似可以验证, 因幺元不需验证, 所以共需验 证 9 个式子,然后可得出 $N_4 \sim B$

代数系统同构举例

例:证明
$$<$$
N₄,+₄>与 $<$ X, \circ >同构。

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$$f(1+_4 2)=f(3)=L$$

 $f(1)\circ f(2)=R\circ A=L$
于是 $f(1+_4 2)=f(1)\circ f(2)$

$$f(2+_42)=f(0)=S$$

 $f(2)\circ f(2)=A\circ A=S$
于是 $f(2+_42)=f(2)\circ f(2)$

其余式子可类似验证,最后可得出 $N_4 \cong X$

注意: 代数系统 $\langle X, \star \rangle$ 和 $\langle Y, \circ \rangle$ 同构的必要条件:

- 1. X 和Y 的基数相同,即 K[X]=K[Y]。
- 2. 运算★和 是同类型的。
- 3. 存在双射 $f:X\to Y$, 且满足同构关系式。

并不是所有的双射 $f:X \rightarrow Y$ 都满足同构关系式。

在构造双射时,要注意: 幺元与幺元对应;零元与零元对应; 逆元也要相互对应。

3、含有两个运算的代数系统的同构

定义

令 <*X*,+,×> 和 <*Y*,⊕,♦> 是含有两个运算 的代数系统, 其中 +、×、 ⊕、◆ 都是二元 运算,如果存在双射 $f: X \rightarrow Y$,使得 对任何 $x_1, x_2 \in X$,满足 $f(x_1+x_2)=f(x_1)\oplus f(x_2)$ 。(注意: +与 \oplus 对应) $f(x_1 \times x_2) = f(x_1) \diamond f(x_2)$ 。(注意: ×与◆对应) 则称这两个代数系统同构。

定理

代数系统间的同构关系≌是等价关系。

证明: 略。

第八节 结束