INTRODUÇÃO À PROGRAMAÇÃO

Prof.^a Priscilla Abreu

priscilla.braz@rj.senac.br

Roteiro de Aula

- Matrizes
- Exercícios

Objetivo da aula

Manipular matrizes bidimensionais.

VARIÁVEIS HOMEGÊNEAS BIDIMENSIONAIS

Análise e Desenvolvimento de Sistemas 2021.2

INTRODUÇÃO

Nas últimas aulas vimos o conceito de vetor. Vejamos como poderíamos declarar um vetor para armazenar as cinco notas de um aluno:

float notas[5];

valor	10.0	7.5	4.3	8.2	6.0
posição	0	1	2	3	4

Para armazenar e percorrer os dados deste vetor necessitamos de um contador que terá a função de controlar a posição em que cada valor será armazenado neste vetor.

E se ao invés de armazenar as 5 notas de um aluno, eu quisesse armazenar 5 notas de 5 alunos?

USO DE MATRIZES!!!

Análise e Desenvolvimento de Sistemas 2021.2

INTRODUÇÃO

Notas:

Ana
João
Carla
Aline
Pedro

10.0	7.5	4.3	8.2	6.0
9.5	8.0	3.6	7.8	9.0
6.5	4.9	5.7	6.0	7.2
3.5	1.0	5.0	3.6	4,4
10.0	9.0	9.5	8.9	9.2

INTRODUÇÃO

As matrizes são, comumente referenciadas através de suas dimensões (quantidade de linhas e colunas).

A notação comum é: MxN, onde:

- M é a dimensão vertical (quantidade de linhas)
- N é dimensão horizontal (quantidade de colunas)

Exemplo:

Matrizes bidimensionais

Estrutura de dados com mais de um índice

Sintaxe C:

tipo de dado matriz[tamanho][tamanho];

Exemplos:

float matNotas[15][4];

int matriz[3][5];

INTRODUÇÃO

Índices / posições:

Matrizes bidimensionais

Como acessar um elemento da matriz?

```
scanf("%d", &mat[0][2]);
printf("%d", mat[0][2]);
mat[2][3]= mat[3][2] * 3;
```


Matrizes bidimensionais

Se quisermos atribuir valores a todas as posições da matriz:

```
#include <stdio.h>
int main(){
    int mat[2][2];
    printf("Informe um valor para a posição [0][0]");
    scanf("%d",&mat[0][0]);
    printf("Informe um valor para a posição [0][1]");
    scanf("%d",&mat[0][1]);
    printf("Informe um valor para a posição [1][0]");
    scanf("%d",&mat[1][0]);
    printf("Informe um valor para a posição [1][1]");
    scanf("%d",&mat[1][1]);
```

Análise e Desenvolvimento de Sistemas 2021.2

Matrizes bidimensionais

Preenchendo uma matriz

- Entretanto, à medida que a quantidade de elementos da matriz aumenta, fica complicado manipularmos manualmente todas as posições.
- O melhor caminho é utilizar laços de repetição!

Matrizes bidimensionais

Controle da posição das matrizes:

- Necessário mais de um contador;
- Matrizes de duas dimensões: controle de linha e coluna.
- Acessamos as linhas e para cada linha acessamos todas as colunas.
- Uso de dois contadores.

Matrizes bidimensionais

Preenchendo uma matriz

- Necessário mais de um contador;
- Matrizes de duas dimensões: controle de linha e coluna.
- Uso de dois contadores.

Exemplo:

```
int mat[3][3], lin,col;
for(lin=0; lin<3; lin++)
    for (col=0; col<3;col++)
        scanf("%d", &mat[lin][col]);</pre>
```


Matrizes bidimensionais – exemplo

```
#include <stdio.h>
#define maxL 2
#define maxC 2
int main(){
  int mat[maxL][maxC], lin, col;
  for (lin=0;lin<maxL;lin++){</pre>
     for (col=0;col<maxC;col++){
       printf("Digite um número: ");
       scanf("%d",&mat[lin][col]);
```


Matrizes bidimensionais – exemplo

```
for (lin=0;lin<max;lin++){
     for(col=0;col<max;col++){
        printf("%d ",mat[lin][col]);
                             o elemento da linha 1 e coluna 1
     printf("\n");
                     Informe o elemento da linha 1 e coluna 2
                     Informe o elemento da linha 2 e coluna 1
                     Informe o elemento da linha 2 e coluna 2
```


Matrizes bidimensionais – exemplo

	0	1
0	1	
1		

```
for (lin=0;lin<max;lin++){
  for (col=0;col<max;col++){
    printf("Digite um número: ");
    scanf("%d",&mat[lin][col]);
  }
}</pre>
```

lin: 0 col: 0

```
■ C:\Users\prisc\OneDrive\SENAC\2020.1\Int
Digite um n·mero: 1
```


Matrizes bidimensionais – exemplo

	0	1
0	1	5
1		

```
for (lin=0;lin<max;lin++){
  for (col=0;col<max;col++){
    printf("Digite um número: ");
    scanf("%d",&mat[lin][col]);
  }
}</pre>
```

lin: 0 col: 1

```
■ C:\Users\prisc\OneDrive\SENAC\202(
Digite um n·mero: 1
Digite um n·mero: 5_
```


Matrizes bidimensionais – exemplo

	0	1
0	1	5
1	9	

```
for (lin=0;lin<max;lin++){
  for (col=0;col<max;col++){
    printf("Digite um número: ");
    scanf("%d",&mat[lin][col]);
}</pre>
```

lin: 1 col: 0

```
C:\Users\prisc\OneDrive\SENAC\2(
Digite um n·mero: 1
Digite um n·mero: 5
Digite um n·mero: 9
```


Matrizes bidimensionais – exemplo

	0	1
0	1	5
1	9	7

```
for (lin=0;lin<max;lin++){
  for (col=0;col<max;col++){
    printf("Digite um número: ");
    scanf("%d",&mat[lin][col]);
  }
}</pre>
```

```
lin: 1 col: 1
```

```
C:\Users\prisc\OneDrive\SENAC\

Digite um n·mero: 1

Digite um n·mero: 5

Digite um n·mero: 9

Digite um n·mero: 7_
```


Matrizes bidimensionais – exemplo

```
Multiplicar os valores lidos de uma matriz 4x4 por 2.
#include <stdio.h>
#define max 4
int main(){
  int mat[max][max], lin, col;
  for (lin=0;lin<max;lin++){
     for (col=0;col<max;col++){
       printf("Digite um número: ");
       scanf("%d",&mat[lin][col]);
       mat[lin][col]=mat[lin][col]*2;
```


Matrizes bidimensionais – exemplo

Multiplicar os valores lidos de uma matriz 4x4 por 2.

```
for (lin=0;lin<max;lin++){
     for (col=0;col<max;col++){
        printf("%d ",mat[lin][col]);
     }
     printf("\n");
    }
}</pre>
```


Matrizes bidimensionais – exemplo

Criar uma matriz identidade

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrizes bidimensionais – exemplo

Criar uma matriz identidade

Posições da matriz:

Lin	0	1	2
Col	0		
0	00	01	02
1	10	11	12
2	20	21	22

$$egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Matrizes bidimensionais – exemplo

Criar uma matriz identidade

Posições da matriz:

EM COMUM?

Lin Col	0	1	2
0	00	01	02
1	10	11	12
2	20	21	22

 $egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$

O QUE ESSAS

POSIÇÕES TEM

Matrizes bidimensionais – exemplo

Criar uma matriz identidade

```
int matriz[3][3]; for (lin=0;lin<3;lin++) for (col=0; col<3; col++){ if (lin == col) matriz[lin][col] = 1; else matriz[lin][col] = 0;
```


Matrizes bidimensionais – CONSTANTES

Vantagem e importância da utilização de constantes:

Se houver necessidade de alterar a dimensão do vetor, basta alterar o valor da constante **max**.

Matrizes bidimensionais – CONSTANTES

```
#include <stdio.h>
#define maxL 3
#define maxC 4
int main(){
  int mat[maxL][maxC];
  int lin,col;
  for (lin=0;lin<maxL;lin++){
     for (col=0;col<maxC;col++){
       printf("Digite um número: ");
       scanf("%d",&mat[lin][col]);
       mat[lin][col]=mat[lin][col]*2;
```

```
for (lin=0;lin<maxL;lin++){
     for (col=0;col<maxC;col++){
         printf("%d ",mat[lin][col]);
     }
     printf("\n");
    }
}</pre>
```


Matrizes bidimensionais

- Nesta aula vimos estruturas de dados homogêneas que permitem armazenar e manipular um conjunto de dados do mesmo tipo por meio de uma mesma variável.
- Matrizes são estruturas de dados com duas ou mais dimensões (dois ou mais índices). Seu acesso está associado ao uso de estruturas de repetição, de acordo com sua dimensão.

Matrizes bidimensionais – EXERCÍCIO

Faça um programa que leia valores inteiros em duas matrizes 3x3 e imprima a matriz soma das duas.

Exemplo:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 6 & 7 & 8 \\ 10 & 11 & 12 \end{bmatrix}$$

DÚVIDAS?

Análise e Desenvolvimento de Sistemas 2021.2