IOITC 2016 Practice Test Day 4

Lexicographic Toposort

The sequence a_1, a_2, \ldots, a_n is called a *permutation*, if it contains every integer from 1 to n.

The permutation of vertices a_1, a_2, \ldots, a_n is a topological sort of a directed graph, if for every directed edge from u to v, vertex u comes before v in this permutation.

The permutation a_1, a_2, \ldots, a_n is lexicographically smaller than the permutation b_1, b_2, \ldots, b_n , if there exists m such that $a_i = b_i$ for every $1 \le i < m$ and $a_m < b_m$.

Given a directed acyclic graph, add at most k directed edges to it in such a way, that the resulting graph still has no directed cycles and the lexicographically minimal topological sort of the graph is $maximum\ possible$.

Input

The first line of the input contains three integers n, m and k — the number of vertices and directed edges in the original graph, and the number of directed edges, that you are allowed to add $(1 \le n \le 100\,000; 0 \le m, k \le 100\,000)$. Each of the following m lines contains two integers u_i, v_i , describing directed edge from u_i to v_i $(1 \le u_i, v_i \le n)$. The graph has no directed cycles.

Output

The first line of the output should contain n integers — the lexicographically minimal topological sort of the modified graph.

Sample Input1

5 3 2

1 4

4 2

1 3

Sample Output1

5 1 4 2 3

Sample Input2

2 2 20

1 2

1 2

Sample Output2

1 2

Limits

Time: 2 seconds Memory: 256 MB