תרגול 3

2019 באפריל 2019

חבורות ותתי חבורות

הבאים התנאים את מקיימת כפל (י) עם פעולת עם קבוצה היא חבורה הגדרה: הגדרה הגדרה היא קבוצה G

- $g \cdot h \in G$ מתקיים $g,h \in G$ סגירות: לכל .1
- $(g \cdot h) \cdot k = g \cdot (h \cdot k)$ מתקיים $g,h,k \in G$ לכל :סכיביות: .2
- $.e\cdot g=g\cdot e=g$ מתקיים: $g\in G$ כך שלכל קיים פלי: קיים אדיש פפלי: קיים .3
 - $g \cdot g^{-1} = g^{-1} \cdot g = e$ כך כך כך $g^{-1} \in G$ קיים $g \in G$ לכל. 4

2 שאלה 1

2.1 סעיף א

 $h\cdot g=k\cdot g\Rightarrow h=k$ וגם $g\cdot h=g\cdot k\Rightarrow h=k$ מתקיים: $g,h,k\in G$ הוכיחו כי לכל נוכיח צמצום משמאל:

$$g \cdot h = g \cdot k \Rightarrow g^{-1} \cdot g \cdot h = g^{-1} \cdot g \cdot k \Rightarrow h = k$$

הוכחת צמצום מימין באופן דומה.

סעיף ב 2.2

מצאו את כל טבלאות הכפל האפשריות של חבורות מסדר 4.

.e אוא בריבוע הוא בו כל המקרה נתחיל

,						
k	h	g	e			
k	h	g	e	e		
h	k	e	g	g		
g	e	k	h	h		
e	g	h	k	k		

נשים לב שמתקיימת תכונה מעניינת: אבלית ויש סימטריות ל $\forall x \in G: x^2 = e$ מעניינת: מעניימת תכונה שם מיוחד ונקראת חבורת קליין.

: פונקבל בריבוע איבר איבר מתקיים $g^2=h$ מייכ מתקיים הייב שווה ל-eאם אם איבר בריבוע איבר איבר אם אם א

k	h	g	e	
k	h	g	e	e
e	k	h	g	g
g	e	k	h	h
h	g	e	k	k

נשים לב כי מהטבלה מתקיים:

 $e = g^0, g = g^1, h = g^2, k = h \cdot g = g^2 \cdot g = g^3$

החבורה. איבר היוצר את החבורה הציקלית מסדר 4. לכן נקרא ל-g האיבר היוצר את החבורה. גם בטבלה זו יש סימטריה על האלכסון, ולכן גם היא אבלית.

2.3 סעיף ג

 $: U_5$ נביט בחבורה

$$.U_5 = \{1, 2, 3, 4\}$$

אינה U_5 אינה לנו שהחבורה כבר אומר בריבוע: בריבוע: אינה האיברים מעלים את מעלים אומר לנו בדוק מה בריבוע: יוצר: יוצר:

$$.2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 3$$

.4 מסדר הציקלית החבורה איז אז U_5 או וצר את וצר ($2^{-1}=3$ ההופכי גם ולמעשה לכן לכן (נולמעשה או מסדר).

כעת נרצה למצוא עוד חבורה, שהיא איזומורפית לחבורה הציקלית. U_6, U_7 לא יעבדו לנו (למה ?). נבדוק את נרצה למצוא עוד חבורה, שהיא איזומורפית לחבורה ביע

: איבוע חבורת חכונת מתקיימית לב לב ונשים איברי איברי איברי את נבדוק את נבדוק . $U_8=\{1,3,5,7\}$

$$.1^2 = 1, 3^2 = 1, 5^2 = 1, 7^2 = 1$$

לכן זו חבורת קליין

2 שאלה 3

: הישר הסכום את נגדיר G_1,G_2 בהינתן שתי בהינתן

$$G_1 \oplus G_2 := \{(g_1, g_2) | g_1 \in G_1, g_2 \in G_2\}$$

 $(g_1, g_2) \cdot (h_1, h_2) = (g_1 h_1, g_2 h_2)$

סעיף א 3.1

הוא חבורה. $G_1 \oplus G_2$ הישר הסכום כי הוכיחו

- 1. סגירות מתקיימת מהגדרת הקבוצה.
 - : אסוציאטיביות מתקיים .2

$$((g_1, g_2) \cdot (h_1, h_2)) \cdot (k_1, k_2)$$

$$= (g_1 h_1, g_2 h_2)(k_1, k_2)$$

$$= (g_1 h_1 k_1, g_2 h_2 k_2)$$

$$= (g_1, g_2)(h_1 k_1, h_2 k_2)$$

$$= (g_1, g_2)((h_1, h_2)(k_1, k_2)$$

- $(g_1,g_2)(e_1,e_2)=(g_1,g_2)$: איבר אדיש: .3
 - .4 קיום הופכי: מידי כמעט כמו אדיש.

סעיף ב 3.2

 $|A|G_1 \oplus G_2|$ מצאו את ו $|G_1| = n, |G_2| = m$ נתון לנו כי:

יש לנו $g_2 \in G_2$ את אופציות לבחור או ויש לנו $g_1 \in G_1$ את אופציות לבחור את יש לנו ויש לנו $g_1 \in G_1$ אופציות לבחור את וויש לנו $|G_1 \oplus G_2| = n \cdot m$

3.3 סעיף ג

:נתונה לנו $G=U_6\oplus U_{10}$ זשבו את

$$|G|$$
1.1

$$(5,3)\cdot(5,7)$$
 .2

$$(5,7)^{-1}$$
 .3

. עמטה והו למעשה החירה ל-nל היים בין לnל ל-חירה את כמות מחזירה ע $\varrho(n)$ אויילר פונקציית נחשב (נחשב הוכ|G|

 $|U_6| = |\{1, 5\}| = 2, |U_{10}| = |\{1, 3, 7, 9\}| = 4 \Rightarrow |G| = 2 \cdot 4 = 8$

:(5,3) י נחשב את נחשב את

$$(5,3)(5,7) = (25,21) = (1,1)$$

 $:(5,7)^{-1}$ נחשב את

 $(5,7)^{-1}=(5,3)$ מהחישוב הוקדם ניתן לראות כי בהכרח מתקיים

3 שאלה 4

 $.g^n=e$ מתקיים $g\in G$ לכל מסדר מסדר מסדר חבורה חבורה G אם כי הוכיחו

. $g^n \cdot h = h$ כסמן: $h \coloneqq g_1 \cdot g_2 \cdots g_n$ נסמן: מתקיים:

 $g^n \cdot h = g^n \cdot g_1 \cdots g_n = (gg_1)(gg_2) \cdots (gg_n)$

. בחבורה שונים שונים איברים לעיל העיל המכפלה לעיל האיברים שונים בחבורה. ניעזר בכלל הצמצום, ונקבל כי כל האיברים במכפלה לעיל המ

 $g_1\cdots g_n=h$ אלו כל איברי החבורה, ומקומטטיביות נוכל לקבל לקבל ומכפלה איברי החבורה, לכן אלו ל

. כנדרש. $g^n h = h = eh \Rightarrow g^n = e$ ולכן: $g^n \cdot h = h$ כנדרש.