Wrocław, 2016

Zakład Fizyki Budowli i Komputerowych Metod Projektowania Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska

Charakterystyka energetyczna domu jednorodzinnego

Wykonał: Piotr Kopka

Sprawdzający: dr inż. Łukasz Nowak

1. Obliczenie podstawowych charakterystyk cieplno- wilgotnościowych dla zadanej ściany zewnętrznej

1.1. Obliczenie wartości współczynnika przenikania ciepła $U_{\rm C}$ oraz porównanie z wymogami wg Warunków Technicznych 2014 r.

Ściana zewnętrzna trójwarstwowa

1.1.1. Schemat ściany zewnętrznej

1.1.2. Obliczenie całkowitego oporu cieplnego R_T dla ściany zewnętrznej

$$R_T = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_{se} \left[\frac{m^2 K}{W} \right]$$

Ściana zewnętrzna trójwarstwowa								
Nr	Warstwa -		λ_i	$R_i = d_i/\lambda_i$				
INI	waistwa	[m]	[W/mK]	$[m^2K/w]$				
	Środowisko wewnętrzne, og	rzewane						
-	Opór przejmowania od strony wewnętrznej R_{si}	-	-	0,130				
1	Tynk cementowo- wapienny	0,020	0,820	0,024				
2	Pustak MAX	0,290	0,225	1,289				
3	Wełna mineralna	0,150	0,039	3,846				
4	Beton komórkowy 600	0,120	0,210	0,571				
5	Tynk cementowy	0,006	1,000	0,006				
-	Opór przejmowania od strony zewnętrznej R_{se}	ı	ı	0,040				
	Środowisko zewnętrzr	ne						
	$\Sigma R = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_{se}$	[т ² К/И	/]	5,906				

1.1.3. Obliczenie współczynnika przenikania ciepła
$$U=\frac{1}{R_T}=\frac{1}{5,906}=0,169\frac{W}{m^2K}$$

1.1.4. Obliczenie poprawionego współczynnika przenikania ciepła U_C

$$U_C = U + \Delta U$$

1.1.5. Obliczenie członu korekcyjnego ΔU

$$\Delta U = \Delta U_g + \Delta U_f + \Delta U_r$$

 $\Delta U_g=0$ – poprawka ze względu na pustki powietrzne – założono brak pustek powietrznych ze względu na to, że warstwa izolacyjna jest wykonana w sposób ciągły z łączeniem na zakład

 $\Delta U_r = 0$ – poprawka ze względu na dach o odwróconym układzie warstw – nie dotyczy

1.1.6. Obliczenie wartości poprawki ΔU_f (ze względu na łączniki mechaniczne)

$$\Delta U = \Delta U_f$$

$$\Delta U_f = \alpha \frac{\lambda_f A_f n_f}{d_0} \left(\frac{R_1}{R_{T,h}} \right)^2$$

Przyjęto łącznik mechaniczny:

Średnica całkowita łącznika 10 mm

Średnica rdzenia ze stali ocynkowanej 8 mm

Długość 200 mm, w tym 50 mm zakotwienia

$$\alpha = 0.8$$

$$\lambda_f = 50 \frac{W}{mK}$$

$$A_f = 5.03 * 10^{-5} m^2$$

$$n_f = 4 \, szt/m^2$$

$$d_0=0,15m$$

$$R_1 = 3,846 \frac{m^2 K}{W}$$

$$R_{T,h} = 5,906 \frac{m^2 K}{W}$$

$$\Delta U = \Delta U_f = \alpha \frac{\lambda_f A_f n_f}{d_0} \left(\frac{R_1}{R_{Th}} \right)^2 = 0.8 * \frac{50 * 5.03 * 10^{-5} * 4}{0.15} * \left(\frac{3.846}{5.906} \right)^2 = 0.023 \frac{W}{m^2 K}$$

1.1.7. Podstawienie wartości U i ΔU do wzoru na U_C

$$U = 0.169 \frac{W}{m^2 K}$$

$$\Delta U = 0.023 \frac{W}{m^2 K}$$

$$U_C = U + \Delta U = 0.169 + 0.023 = 0.192 \frac{W}{m^2 K}$$

$$U_C = 0.19 \frac{W}{m^2 K} < U_{C,max} = 0.25 \frac{W}{m^2 K}$$

3. Charakterystyka energetyczna budynku – wymogi wg WT 2014 r.

3.1. U_C przegród

3.1.1. Połać dachowa

3.1.1.1. Podział połaci dachowej z podbitką na sekcje

3.1.1.2. Obliczenie oporu

Połać dachowa – przekrój przez krokiew i wełnę w podbitce

	Połać dachowa – sekcja a								
Nr	Warstwa		λ_i	$R_i = d_i/\lambda_i$					
111	w aistwa	[m]	[W/mK]	$[m^2K/w]$					
	Środowisko wewnętrzne, ogrzev	vane							
-	Opór przejmowania od strony wewnętrznej R_{si}	-	-	0,100					
1	Płyta GK 12,5 mm	0,0125	0,23	0,054					
2	Folia paroizolacyjna PE 0,2 mm Rockwool	-	-	0,000					
3	Wełna mineralna ISOVER SUPER MATA EPS 0,33	0,060	0,033	1,818					
4	Krokiew sosnowa 8x18 co 80 cm	0,180	0,160	1,125					
5	Membrana dachowa paroprzepuszczalna ISOVER 115	-	-	0,000					
6	Kontrłaty	-	-	0,000					
7	Łaty	-	-	0,000					
8	Dachówka ceramiczna	-	-	0,000					
_	Opór przejmowania od strony zewnętrznej R_{se}	_	-	0,040					
	Środowisko zewnętrzne								
	$\Sigma R = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R$	R_{se} $[m^2]$	K/W]	3,137					

Połać dachowa – przekrój przez wełnę między krokwiami i wełnę w podbitce

	Połać dachowa – sekcja b								
Nr	Warstwa		λ_i	$R_i = d_i/\lambda_i$					
111	waistwa	[m]	[W/mK]	$[m^2K/w]$					
	Środowisko wewnętrzne, ogrzev	vane							
-	Opór przejmowania od strony wewnętrznej R_{si}	-	-	0,100					
1	Płyta GK 12,5 mm	0,0125	0,23	0,054					
2	Folia paroizolacyjna PE 0,2 mm Rockwool	-	-	0,000					
3	Wełna mineralna ISOVER SUPER MATA EPS 0,33	0,060	0,033	1,818					
4	Wełna mineralna ISOVER SUPER MATA EPS 0,33	0,180	0,033	5,455					
5	Membrana dachowa paroprzepuszczalna ISOVER 115	-	-	0,000					
6	Kontrłaty	-	-	0,000					
7	Łaty	-	-	0,000					
8	Dachówka ceramiczna	-	-	0,000					
-	Opór przejmowania od strony zewnętrznej R_{se}	-	-	0,040					
	Środowisko zewnętrzne								
	$\Sigma R = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R$	R_{se} $[m^2]$	K/W	7,467					

Połać dachowa – przekrój przez krokiew i kantówkę w podbitce

	Połać dachowa – sekcja c								
Nr	Wagatrus		λ_i	$R_i = d_i/\lambda_i$					
INI	Warstwa	[m]	[W/mK]	$[m^2K/w]$					
	Środowisko wewnętrzne, ogrzev	vane							
-	Opór przejmowania od strony wewnętrznej R_{si}	-	ı	0,100					
1	Płyta GK 12,5 mm	0,0125	0,23	0,054					
2	Folia paroizolacyjna PE 0,2 mm Rockwool	-	1	0,000					
3	Kantówki drewniane w podbitce 4x6 co 60 cm	0,060	0,160	0,375					
4	Krokiew sosnowa 8x18 co 80 cm	0,180	0,160	1,125					
5	Membrana dachowa paroprzepuszczalna ISOVER 115	1	1	0,000					
6	Kontrłaty	-	-	0,000					
7	Łaty	-	1	0,000					
8	Dachówka ceramiczna	-	1	0,000					
-	Opór przejmowania od strony zewnętrznej R_{se}	-	1	0,040					
	Środowisko zewnętrzne								
	$\Sigma R = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R$	R_{se} $[m^2]$	K/W	1,694					

Połać dachowa – przekrój przez wełnę między krokwiami i kantówkę w podbitce

	Połać dachowa – sekcja d								
Nr	Warstwa		λ_i	$R_i = d_i/\lambda_i$					
111	w aistwa	[m]	[W/mK]	$[m^2K/w]$					
	Środowisko wewnętrzne, ogrzev	vane							
-	Opór przejmowania od strony wewnętrznej R_{si}	-	-	0,100					
1	Płyta GK 12,5 mm	0,0125	0,23	0,054					
2	Folia paroizolacyjna PE 0,2 mm Rockwool	-	-	0,000					
3	Kantówki drewniane w podbitce 4x6 co 60 cm	0,060	0,160	0,375					
4	Wełna mineralna ISOVER SUPER MATA EPS 0,33	0,180	0,033	5,455					
5	Membrana dachowa paroprzepuszczalna ISOVER 115	-	-	0,000					
6	Kontrłaty	-	-	0,000					
7	Łaty	-	-	0,000					
8	Dachówka ceramiczna	-	-	0,000					
-	Opór przejmowania od strony zewnętrznej R_{se}	-	-	0,040					
	Środowisko zewnętrzne								
	$\Sigma R = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R$	R_{se} $[m^2]$	(K/W)	6,024					

3.1.1.3. Obliczenie kresu górnego całkowitego oporu cieplnego R_T' dla połaci dachowej z podbitką (zgodnie z podziałem na sekcje a, b, c, d)

$$\begin{split} \frac{1}{R_T'} &= \frac{\dot{f_a}}{R_{Ta}} + \frac{f_b}{R_{Tb}} + \frac{f_c}{R_{Tc}} + \frac{f_a}{R_{Td}} \\ R_{Ta} &= 0,100 + \frac{0,0125}{0,23} + \frac{0,060}{0,033} + \frac{0,180}{0,160} + 0,040 = 3,137 \frac{m^2 K}{W} \\ R_{Tb} &= 0,100 + \frac{0,0125}{0,23} + \frac{0,060}{0,033} + \frac{0,180}{0,033} + 0,040 = 7,467 \frac{m^2 K}{W} \\ R_{Tc} &= 0,100 + \frac{0,0125}{0,23} + \frac{0,060}{0,160} + \frac{0,180}{0,160} + 0,040 = 1,694 \frac{m^2 K}{W} \\ R_{Td} &= 0,100 + \frac{0,0125}{0,23} + \frac{0,060}{0,160} + \frac{0,180}{0,033} + 0,040 = 6,024 \frac{m^2 K}{W} \\ A_{przekroju} &= 0,80 * 0,64 = 0,512 m^2 \\ f_a &= \frac{0,08 * 0,60}{0,512} = 0,0938 \\ f_b &= \frac{0,72 * 0,60}{0,512} = 0,8438 \\ f_c &= \frac{0,08 * 0,04}{0,512} = 0,0062 \\ f_d &= \frac{0,72 * 0,04}{0,512} = 0,0562 \\ \frac{1}{R_T'} &= \frac{f_a}{R_{Ta}} + \frac{f_b}{R_{Tb}} + \frac{f_c}{R_{Tc}} + \frac{f_d}{R_{Td}} = \frac{0,0938}{3,137} + \frac{0,8438}{7,467} + \frac{0,0062}{1,694} + \frac{0,0562}{6,024} = 0,156 \\ R_T' &= 6,410 \frac{m^2 K}{W} \end{split}$$

3.1.1.4. Podział połaci dachowej na warstwy

3.1.1.5. Obliczenie kresu dolnego całkowitego oporu cieplnego $R_T^{\prime\prime}$ dla połaci dachowej (zgodnie z podziałem na warstwy 1, 2, 3)

(Zgodnie z podziałem na warstwy 1, 2, 3)
$$R_T'' = R_{si} + R_1 + R_2 + R_3 + R_{se}$$

$$R_j = \frac{d_j}{\lambda_j''}$$

$$\lambda_j'' = \lambda_{aj} f_a + \lambda_{bj} f_b + \dots + \lambda_{qj} f_q$$

$$\lambda_1'' = 0,230 * (0,0938 + 0,8438 + 0,0062 + 0,0562) = 0,230 \frac{W}{mK}$$

$$\lambda_2'' = 0,160 * (0,0062 + 0,0562) + 0,033 * (0,0938 + 0,8438) = 0,041 \frac{W}{mK}$$

$$\lambda_3'' = 0,160 * (0,0938 + 0,0062) + 0,033 * (0,8438 + 0,0562) = 0,046 \frac{W}{mK}$$

$$R_T'' = R_{si} + R_1 + R_2 + R_3 + R_{se} = 0,100 + \frac{0,0125}{0,230} + \frac{0,060}{0,041} + \frac{0,180}{0,046} + 0,040$$

$$= 5,571 \frac{m^2 K}{W}$$

3.1.1.6. Obliczenie całkowitego oporu cieplnego
$$R_T$$
 dla połaci dachowej
$$R_T = \frac{R_T' + R_T''}{2} = \frac{6,410 + 5,571}{2} = 5,991 \frac{m^2 K}{W}$$

3.1.1.7. Obliczenie współczynnika przenikania ciepła U_c

$$U_C = \frac{1}{R_T} = \frac{1}{5,991} = 0.17 \frac{W}{m^2 K} < U_{C,max} = 0.20 \frac{W}{m^2 K}$$

- 3.1.2. Ściana piwnicy (stykająca się z gruntem)
- 3.1.2.1. Schemat ściany piwnicy (zagłębienie ściany w gruncie z = 2,38 m)

3.1.2.2. Obliczenie całkowitego oporu cieplnego
$$R_T$$
 dla ściany piwnicy
$$R_T=R_{si}+R_1+R_2+R_3+R_4+R_5\left[\frac{m^2K}{W}\right]$$

	Ściana zewnętrzna trójwarstwowa									
Nr	Warstwa	d _i [m]	$\frac{\lambda_i}{[\text{W/mK}]}$	$R_i = d_i/\lambda_i$ $[m^2K/w]$						
	Środowisko wewnętrzne, og	rzewane								
1	Opór przejmowania od strony wewnętrznej R_{si}	-	-	0,130						
1	Tynk cementowo- wapienny	0,020	0,820	0,024						
2	Bloczki betonowe	0,300	1,300	0,231						
3	Izolacja przeciwwilgociowa	ı	-	0,000						
4	Styropian	0,120	0,040	3,000						
5	Cegła pełna	0,120	0,770	0,156						
	Grunt									
	$\Sigma R = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5[m^2]$	K/W]		3,541						

3.1.2.3. Obliczenie współczynnika przenikania ciepła U_c

$$U_C = \frac{1}{R_T} = \frac{1}{3,541} = 0.28 \frac{W}{m^2 K} < U_{C,max} = 0.30 \frac{W}{m^2 K}$$

3.1.2.4. Odczytanie wartości $U_{equiv,bw}$ z tablicy 7 w PN EN 12831:2006 i interpolacja liniowa $z=2,38\ m$

$$U = 0.28 \frac{W}{m^2 K}$$

$$U_{equiv,bw} = 0.18 \frac{W}{m^2 K}$$

- 3.1.3. Podłoga na gruncie na parterze (poziom posadzki $z=0.0\ m$) oraz w piwnicy (poziom posadzki $z=2.38\ m$)
- 3.1.3.1. Schemat podłogi na gruncie (taki sam na parterze i w piwnicy)

3.1.3.2. Obliczenie całkowitego oporu cieplnego R_T

$$R_T = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 \left[\frac{m^2 K}{W} \right]$$

	Podłoga na gruncie								
Nr	Warstwa		λ_i	$R_i = d_i/\lambda_i$					
111	waistwa	[m]	[W/mK]	$[m^2K/w]$					
	Środowisko wewnętrzne, og	rzewane							
-	Opór przejmowania od strony wewnętrznej R_{si}	-	-	0,170					
1	Wykładzina PCV	-	-	0,000					
2	Warstwa wyrównawcza z gładzi cementowej	0,040	1,000	0,040					
3	Folia PE	-	-	0,000					
4	Styropian twardy EPS200-033	0,120	0,033	3,636					
5	Papa termozgrzewalna	-	-	0,000					
6	Beton niekonstrukcyjny C8/10	0,100	1,000	0,100					
7	Podsypka piaskowa zagęszczona	0,300	0,400	0,750					
	Grunt			-					
	$\Sigma R = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_6$	$R_7 [m^2 K]$	/W]	4,696					

3.1.3.3. Obliczenie współczynnika przenikania ciepła
$$U_c$$

$$U_C = \frac{1}{R_T} = \frac{1}{4,696} = 0,21 \frac{W}{m^2 K} < U_{C,max} = 0,30 \frac{W}{m^2 K}$$

3.1.3.4. Obliczenie charakterystycznego parametru B' dla podłogi na parterze i dla piwnicy

dla parteru
$$B'_{parter} = \frac{A_g}{0.5P} = \frac{6.06*(10.86-5.76)}{0.5*(2*(10.86-5.76)+6.06)} = \frac{30.91 \, m^2}{8.13 \, m} = 3.80 \, m$$

dla piwnicy $B'_{piwnica} = \frac{A_g}{0.5P} = \frac{6.06*5.76}{0.5*(2*5.76+6.06)} = \frac{34.91 \, m^2}{8.79 \, m} = 3.97 \, m$

3.1.3.5. Odczytanie wartości $U_{equiv,bf}$ z tablicy $4 \div 6$ w PN EN 12831:2006 i interpolacja liniowa

dla parteru
$$z = 0.0 m$$
 $B' = 3.80 m$ $U_C = 0.21 \frac{W}{m^2 K}$ $U_{equiv,bf} = 0.17 \frac{W}{m^2 K}$

dla piwnicy

$$z = 2,38 m$$

 $B' = 3,97 m$
 $U_C = 0,21 \frac{W}{m^2 K}$
 $U_{equiv,bf} = 0,15 \frac{W}{m^2 K}$

3.1.4. Strop tarasu

3.1.4.1. Schemat warstw tarasu

Warstwa dociskowa z gładzi cementowej 22 mm
Warstwa poślizgowa z folii PE
Papa termozgrzewalna
Gładź cementowa 25 mm
Styropian EPS 032 Max Lambda 160 mm
Folia paroizolacyjna PE 0,2 mm Rockwool
Płyta żelbetowa 120 mm
Tynk cementowo- wapienny 20 mm

Płytki ceramiczne

3.1.4.2. Obliczenie całkowitego oporu cieplnego R_T

$$R_T = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 + R_{se} \left[\frac{m^2 K}{W} \right]$$

	Strop tarasu								
NI	Wagatana		λ_i	$R_i = d_i/\lambda_i$					
Nr	Warstwa	[m]	[W/mK]	$[m^2K/w]$					
	Środowisko wewnętrzne, ogrze	wane							
-	Opór przejmowania od strony wewnętrznej R_{si}	-	-	0,100					
1	Tynk cementowo- wapienny	0,020	0,820	0,024					
2	Płyta żelbetowa	0,120	1,700	0,071					
3	Folia paroizolacyjna PE 0,2 mm Rockwool	-	-	0,000					
4	Styropian EPS 032 Max Lambda	0,160	0,032	5,000					
5	Gładź cementowa	0,025	1,000	0,025					
6	Papa termozgrzewalna	-	-	0,000					
7	Warstwa poślizgowa z folii PE	-	-	0,000					
8	Warstwa dociskowa z gładzi cementowej	0,022	1,000	0,022					
9	Płytki ceramiczne	0,013	1,050	0,012					
_	Opór przejmowania od strony zewnętrznej R_{se}	_	_	0,040					
	Środowisko zewnętrzne								
ΣR =	$= R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9$	$+R_{se}$ [m^2K/W	5,294					

3.1.4.3. Obliczenie współczynnika przenikania ciepła
$$U_c$$

$$U_C = \frac{1}{R_T} = \frac{1}{5,294} = 0,19 \frac{W}{m^2 K} < U_{C,max} = 0,20 \frac{W}{m^2 K}$$

3.1.5. Strop przewieszony

3.1.5.1. Schemat warstw stropu przewieszonego

3.1.5.2. Obliczenie całkowitego oporu cieplnego
$$R_T$$

$$R_T = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_{se} \left[\frac{m^2 K}{W} \right]$$

	Strop przewieszony								
Nr	Warstwa	$R_i = d_i/\lambda_i$ $[m^2K/w]$							
	Środowisko wewnętrzne, ogrze	[m] wane	[W/mK]						
-	Opór przejmowania od strony wewnętrznej R_{si}	-	-	0,170					
1	Deski dębowe	0,025	0,260	0,096					
2	Gładź cementowa	0,035	1,000	0,035					
3	Folia PE	-	-	0,000					
4	Styropian EPS 032 Max Lambda	0,160	0,032	5,000					
5	Płyta żelbetowa	0,120	1,700	0,071					
6	Tynk cementowy	0,006	1,000	0,006					
-	Opór przejmowania od strony zewnętrznej R_{se}	-	-	0,040					
	Środowisko zewnętrzne								
	$\Sigma R = R_{si} + R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_{se} [$	m^2K/W]	5,418					

3.1.5.3. Obliczenie współczynnika przenikania ciepła
$$U_c$$

$$U_C = \frac{1}{R_T} = \frac{1}{5,418} = 0,18 \frac{W}{m^2 K} < U_{C,max} = 0,20 \frac{W}{m^2 K}$$

1.2. Rozkład temperatury

1.2.1. Rozkład temperatury- układ warstw zadany w temacie

1.2.1.1. Obliczenie temperatury na styku warstw w przegrodzie

temperatura w płaszczyźnie x przegrody

$$v_x = \theta_i - \frac{R_x(\theta_i - \theta_e)}{R_T} [°C]$$

różnica temperatur między poprzednią płaszczyzną, a płaszczyzną x przegrody

$$\Delta v_x = \frac{R_x(\theta_i - \theta_e)}{R_T} [^{\circ}C]$$

 θ_i - temperatura powietrza po wewnętrznej stronie przegrody [°C]

 θ_e - temperatura powietrza po zewnętrznej stronie przegrody [°C]

 R_x - opór cieplny policzony do płaszczyzny x poczynając od wewnętrznej strony przegrody $[m^2K/W]$

 R_T - całkowity opór cieplny przegrody $[m^2K/W]$

1.2.1.2. Przyjęcie temperatury projektowej zewnętrznej- θ_e Lubin \rightarrow II strefa klimatyczna \rightarrow $\theta_e=-18\,^{\circ}C$

1.2.1.3. Przyjęcie temperatury projektowej wewnętrznej- θ_i Przeznaczenie: przeznaczone na stały pobyt ludzi bez okryć zewnętrznych, niewykonywujących w sposób ciągły pracy fizycznej $\rightarrow \theta_i = 20~^{\circ}C$

1.2.1.4. Obliczenie wartości temperatury na stykach warstw

Nr	Matarial warstwee	Grubość	Współczynnik przewodzenia ciepła	Opór cieplny	Różnica temperatur na powierzchni	Temperatura na styku warstw
warstwy	Materiał warstwy	$d_x[m]$	$\lambda_x[W/mK]$	$R_x = d_x/\lambda_x$	$ \Delta v_x \\ = [(\theta_i - \theta_e)R_x] \\ /R_T $	[°C]
1	Powietrze wewnątrz budynku θ_i	-	-	0,130	0,84	
2	Tynk cementowo- wapienny	0,020	0,820	0,024	0,16	19,16
3	Pustak MAX	0,100	0,225	0,444	2,86	19,01
4	Pustak MAX	0,100	0,225	0,444	2,86	16,15
5	Pustak MAX	0,090	0,225	0,400	2,57	13,29
6	Wełna mineralna	0,050	0,039	1,282	8,25	10,72
7	Wełna mineralna	0,050	0,039	1,282	8,25	2,47
8	Wełna mineralna	0,050	0,039	1,282	8,25	-5,78
9	Beton komórkowy 600	0,100	0,210	0,476	3,06	-14,03
10	Beton komórkowy 600	0,020	0,210	0,095	0,61	-17,09
11	Tynk cementowy na siatce z włókna szklanego	0,006	1,000	0,006	0,04	-17,70
12	Powietrze zewnętrzne θ_e	-	-	0,040	0,26	,
			R_T	5,907		-18

1.2.1.5. Sporządzenie wykresu rozkładu temperatury

1.2.2. Rozkład temperatury- układ odwrócony

1.2.2.1. Obliczenie temperatury na styku warstw w przegrodzie

temperatura w płaszczyźnie x przegrody
$$v_x = \theta_i - \frac{R_x(\theta_i - \theta_e)}{R_T} [°C]$$

różnica temperatur między poprzednią płaszczyzną, a płaszczyzną x przegrody

$$\Delta v_x = \frac{R_x(\theta_i - \theta_e)}{R_T} [^{\circ}C]$$

 θ_i - temperatura powietrza po wewnętrznej stronie przegrody [°C]

 θ_e - temperatura powietrza po zewnętrznej stronie przegrody [°C]

 R_x - opór cieplny policzony do płaszczyzny x poczynając od wewnętrznej strony przegrody $[m^2K/W]$

 R_{T} - całkowity opór cieplny przegrody $[m^2K/W]$

1.2.2.2. Przyjęcie temperatury projektowej zewnętrznej- θ_e Lubin \rightarrow II strefa klimatyczna $\rightarrow \theta_e = -18\,^{\circ}C$

1.2.2.3. Przyjęcie temperatury projektowej wewnętrznej- θ_i Przeznaczenie: przeznaczone na stały pobyt ludzi bez okryć zewnętrznych, niewykonywujących w sposób ciągły pracy fizycznej $\rightarrow \theta_i = 20\,^{\circ}C$

1.2.2.4. Obliczenie wartości temperatury na stykach warstw

Nr	Materiał warstwy	Grubość	Współczynnik przewodzenia ciepła	Opór cieplny	Różnica temperatur na powierzchni	Temperatura na styku warstw
warstwy	Materiai warstwy	$d_x[m]$	$\lambda_x[W/mK]$	$R_x = d_x/\lambda_x$	$ \Delta v_x \\ = [(\theta_i - \theta_e)R_x] \\ /R_T $	[°C]
1	Powietrze wewnątrz budynku θ_i	-	-	0,130	0,84	
2	Tynk cementowy na siatce z włókna szklanego	0,006	1,000	0,006	0,04	19,16
3	Beton komórkowy 600	0,020	0,210	0,095	0,61	19,13
4	Beton komórkowy 600	0,100	0,210	0,476	3,06	18,51
5	Wełna mineralna	0,050	0,039	1,282	8,25	,
6	Wełna mineralna	0,050	0,039	1,282	8,25	7,20
7	Wełna mineralna	0,050	0,039	1,282	8,25	-1,05
8	Pustak MAX	0,090	0,225	0,400	2,57	-9,29
9	Pustak MAX	0,100	0,225	0,444	2,86	-11,87
10	Pustak MAX	0,100	0,225	0,444	2,86	-14,73
11	Tynk cementowo- wapienny	0,020	0,820	0,024	0,16	-17,59
12	Powietrze zewnętrzne θ_e	-	-	0,040	0,26	-17,74
			R_T	5,907		-18

1.2.2.5. Sporządzenie wykresu rozkładu temperatury

1.3. Sprawdzenie możliwości wystąpienia kondensacji pary wodnej i pleśni na powierzchni ściany zewnętrznej od strony pomieszczenia

1.3.1. Kondensacja powierzchniowa (t_s)

1.3.1.1. Przyjęcie temperatury powietrza zewnętrznego i wewnętrznego (θ_e,θ_i) oraz wilgotność względną powietrza wewnętrznego (φ_i)

Lubin
$$\rightarrow$$
 II strefa klimatyczna $\rightarrow \theta_e = -18 \, ^{\circ}C$

$$\theta_i = 20^{\circ}C$$

$$\varphi_i = 55\%$$

1.3.1.2. Obliczenie temperatury v_i na wewnętrznej powierzchni przegrody

$$v_{i} = \theta_{i} - \frac{R_{si}(\theta_{i} - \theta_{e})}{R_{T}}$$

$$R_{si} = 0.25 \frac{m^{2}K}{W}$$

$$R_{t} = 5.906 \frac{m^{2}K}{W}$$

$$v_{i} = \theta_{i} - \frac{R_{si}(\theta_{i} - \theta_{e})}{R_{T}} = 20 - \frac{0.25(20 + 18)}{5.906} = 18.39^{\circ}C$$

1.3.1.3. Obliczenie ciśnienia nasyconej pary wodnej p_{si} w powietrzu w pobliżu wewnętrznej powierzchni przegrody

$$p_{si} = \begin{cases} 610.5e^{\frac{17.269*\theta_i}{237.3+\theta_i}} & dla \ \theta_i \ge 0^{\circ} \\ 610.5e^{\frac{21.875*\theta_i}{265.5+\theta_i}} & dla \ \theta_i < 0^{\circ} \end{cases}$$

$$p_{si} = 610.5e^{\frac{17.269*\theta_i}{237.3+\theta_i}} = 610.5e^{\frac{17.269*20}{237.3+20}} = 2336.95 \ Pa$$

1.3.1.4. Obliczenie ciśnienia cząstkowego pary wodnej p_i na wewnętrznej powierzchni przegrody

$$p_i = \varphi_i * p_{si} = 0.55 * 2336.95 = 1285.32 Pa$$

1.3.1.5. Obliczenie Temperatury punktu rosy t_s dla powierzchni przegrody na podstawie ciśnienia p_i

$$t_{s} = \begin{cases} \frac{237,3 * \log_{e}(\frac{p_{i}}{610,5})}{17,269 - \log_{e}(\frac{p_{i}}{610,5})} & dla \ p_{i} \ge 610,5 \ Pa \\ \frac{265,5 * \log_{e}(\frac{p_{i}}{610,5})}{21,875 - \log_{e}(\frac{p_{i}}{610,5})} & dla \ p_{i} < 610,5 \ Pa \end{cases}$$

$$t_{s} = \frac{237,3 * \log_{e}(\frac{p_{i}}{610,5})}{17,269 - \log_{e}(\frac{p_{i}}{610,5})} = \frac{237,3 * \log_{e}(\frac{1285,32}{610,5})}{17,269 - \log_{e}(\frac{1285,32}{610,5})} = 10,69°C$$

1.3.1.6. Porównanie wartości temperatury wewnętrznej powierzchni przegrody v_i i temperatury punktu rosy t_s

$$v_i = 18,39^{\circ}C > t_s = 10,69^{\circ}$$

Nie ma ryzyka kondensacji powierzchniowej.

1.3.2. Ryzyko wystąpienia pleśni

Przykładowe obliczenia dla stycznia

1.3.2.1. Obliczenie średniej miesięcznej temperatury powietrza zewnętrznego θ_e i średniej miesięcznej wilgotności względnej powietrza φ_e

Wykorzystano dane dla Legnicy

$$\theta_e = 1.81^{\circ}C$$

 $\varphi_e = 80.77\% = 0.81$

1.3.2.2. Obliczenie ciśnienia nasyconej pary wodnej powietrza zewnętrznego p_{sat,θ_e} i ciśnienia pary wodnej powietrza zewnetrznego p_a

$$p_{sat,\theta_e} = \begin{cases} 610.5e^{\frac{17,269*\theta_e}{237,3+\theta_e}} & dla \ \theta_e \ge 0^{\circ} \\ 610.5e^{\frac{21,875*\theta_e}{265,5+\theta_e}} & dla \ \theta_e < 0^{\circ} \end{cases}$$

$$p_{sat,\theta_e} = 610.5e^{\frac{17,269*\theta_e}{265,5+\theta_e}} & dla \ \theta_e < 0^{\circ}$$

$$p_{sat,\theta_e} = 610.5e^{\frac{17,269*\theta_e}{237,3+\theta_e}} = 610.5e^{\frac{17,269*1,81}{237,3+1,81}} = 695,76 \ Pa$$

$$p_e = \varphi_e * p_{sat,\varphi_e} = 0.81 * 695,76 = 563,56 \ Pa$$

- 1.3.2.3. Przyjęcie temperatury powietrza w pomieszczeniu θ_i $\theta_i = 20^{\circ}C$
- 1.3.2.4. Przyjęcie klasy obciążenia wilgotnością wewnętrzną (według PN-EN ISO 13788:2013)

Przyjęto Klasę 3- mieszkania mało zagęszczone

1.3.2.5. Obliczenie klasy wilgotności wewnętrznej Δp i ciśnienia pary wodnej powietrza wewnętrznego p_i

$$\Delta p = \begin{cases} 810 \ Pa \ dla \ \theta_e \leq 0^{\circ}C \\ 40.5*(20-\theta_e) \ dla \ 0^{\circ}C < \theta_e < 20^{\circ}C \\ 0 \ dla \ \theta_e \geq 20^{\circ}C \end{cases}$$

$$\Delta p = 40.5*(20-\theta_e) = 40.5*(20-1.81) = 736.70 \ Pa$$

$$p_i = p_e + 1.1*\Delta p = 563.56 + 1.1*736.70 = 1373.93 \ Pa$$

1.3.2.6. Obliczenie minimalnego dopuszczalnego ciśnienia nasyconej pary wodnej na wewnętrznej powierzchni przegrody $p_{sat,\theta_{si}}$

$$p_{sat,\theta_{si}} = \frac{p_i}{0.8} = \frac{1373,93}{0.8} = 1717,41 \ Pa$$

1.3.2.7. Obliczenie minimalnej dopuszczalnej temperatury wewnętrznej powierzchni przegrody $\theta_{si,min}$

$$\theta_{si,min} = \begin{cases} \frac{237,3 * \log_{e}(\frac{p_{sat,\theta_{si}}}{610,5})}{17,269 - \log_{e}(\frac{p_{sat,\theta_{si}}}{610,5})} dla & p_{sat,\theta_{si}} \ge 610,5 Pa \\ \frac{265,5 * \log_{e}(\frac{p_{sat,\theta_{si}}}{610,5})}{21,875 - \log_{e}(\frac{p_{sat,\theta_{si}}}{610,5})} dla & p_{sat,\theta_{si}} < 610,5 Pa \end{cases}$$

$$\theta_{si,min} = \frac{237,3 * \log_e(\frac{p_{sat,\theta_{si}}}{610,5})}{17,269 - \log_e(\frac{p_{sat,\theta_{si}}}{610,5})} = \frac{237,3 * \log_e\left(\frac{1717,41}{610,5}\right)}{17,269 - \log_e\left(\frac{1717,41}{610,5}\right)} = 15,12°C$$

1.3.2.8. Obliczenie minimalnego czynnika temperaturowego $f_{R_{si},min}$

$$f_{R_{si},min} = \frac{\theta_{si,min} - \theta_e}{\theta_i - \theta_e} = \frac{15,12 - 1,81}{20 - 1,81} = 0,732$$

1.3.2.9. Obliczenie $f_{R_{si}}$ dla konstrukcji przegrody

$$f_{R_{si}} = \frac{\frac{1}{\overline{U}} - R_{si}}{\frac{1}{\overline{U}}} = \frac{\frac{1}{0,192} - 0.25}{\frac{1}{0,192}} = 0.952$$

1.3.2.10. Sporządzenie tabeli dla całego roku i sprawdzenie warunku $f_{R_{si}} > f_{R_{si},max} = \max(f_{R_{si},min})$

U	0,192										
R_{si}	0,250										
Miesiąc	θ_e	$arphi_e$	p_{sat, θ_e}	p_e	θ_i	Δp	Mnożnik	p_i	$p_{sat, \theta_{si}}$	$\theta_{si,min}$	$f_{R_{si},min}$
Styczeń	1,81	0,81	695,76	563,56	20	736,70	1,1	1373,93	1717,41	15,12	0,732
Luty	-0,93	0,80	565,32	452,25	20	810,00	1,1	1343,25	1679,07	14,77	0,750
Marzec	4,38	0,81	834,85	676,22	20	632,61	1,1	1372,10	1715,12	15,10	0,686
Kwiecień	8,12	0,74	1081,00	799,94	20	481,14	1,1	1329,19	1661,49	14,60	0,546
Maj	13,20	0,74	1516,65	1122,32	20	275,40	1,1	1425,26	1781,58	15,69	0,366
Czerwiec	16,55	0,74	1882,11	1392,76	20	139,73	1,1	1546,46	1933,07	16,97	0,122
Lipiec	18,44	0,73	2120,59	1548,03	20	63,18	1,1	1617,53	2021,91	17,68	-0,486
Sierpień	17,87	0,71	2046,03	1452,68	20	86,27	1,1	1547,57	1934,47	16,98	-0,417
Wrzesień	13,31	0,79	1527,58	1206,79	20	270,95	1,1	1504,83	1881,04	16,54	0,483
Październik	9,43	0,81	1181,21	956,78	20	428,09	1,1	1427,68	1784,60	15,72	0,595
Listopad	3,95	0,84	809,99	680,39	20	650,03	1,1	1395,42	1744,28	15,36	0,711
Grudzień	1,69	0,84	689,80	579,43	20	741,56	1,1	1395,14	1743,92	15,36	0,746
										$f_{R_{si}}$	$f_{R_{si},max}$
										0,952	0,750

$$f_{R_{si}} = 0.952 > f_{R_{si},max} = 0.750$$

Przegroda jest poprawnie zaprojektowana pod względem ryzyka pleśni.

- 1.4. Sprawdzenie możliwości wystąpienia kondensacji międzywarstwowej dla ściany zewnętrznej dla zadanego w temacie układu warstw oraz dla układu odwróconego
- 1.4.1. Kondensacja międzywarstwowa- układ warstw zadany w temacie

Przykładowe obliczenia dla warstwy 2- tynk cementowo- wapienny

1.4.1.1. Przyjęcie temperatury powietrza zewnętrznego i wewnętrznego (θ_e, θ_i) oraz wilgotności względnych powietrza zewnętrznego i wewnętrznego (φ_e, φ_i) Przyjęto:

$$\theta_e = -5^{\circ}C$$

$$\theta_i = 20^{\circ}C$$

$$\varphi_e = 85\%$$

$$\varphi_i = 55\%$$

1.4.1.2. Odczytanie współczynników materiałowych dla warstwy Współczynnik przewodzenie ciepła $\lambda = 0.820 W/mK$

Współczynnik przepuszczalności pary wodnej $\delta = 45 * 10^{-6} \frac{g}{m_* h_* Pa}$

1.4.1.3. Obliczenie oporu cieplnego R_i i dyfuzyjnego r_{wi} dla warstwy

$$R_i = \frac{d_i}{\lambda_i} = \frac{0,020}{0,820} = 0,024 \frac{m^2 K}{W}$$

$$r_{wi} = \frac{d_i}{\delta_i} = \frac{0,020}{45 * 10^{-6}} = 444 \frac{m^2 * h * Pa}{g}$$

1.4.1.4. Obliczenie różnicy temperatur
$$\Delta\theta_x$$
 na powierzchni styku warstw
$$\Delta\theta_x = \frac{R_x*(\theta_i-\theta_e)}{R_T} = \frac{0,024*(20-(-5))}{5,907} = 0,10°C$$

1.4.1.5. Obliczenie temperatury θ_x na powierzchni warstwy

$$\theta_{x,i} = \theta_{x,i-1} - \Delta\theta_x = 20 - 0.55 = 19.45$$
°C

1.4.1.6. Obliczenie ciśnienia nasyconej pary wodnej p_s na powierzchni warstwy dla jej temperatury θ_x

$$p_{s,\theta_x} = \begin{cases} 610.5e^{\frac{17,269*\theta_x}{237.3+\theta_x}} & dla \ \theta_x \ge 0^{\circ} \\ 610.5e^{\frac{21,875*\theta_x}{265.5+\theta_x}} & dla \ \theta_x < 0^{\circ} \end{cases}$$

$$p_{s,\theta_x} = 610.5e^{\frac{17,269*\theta_x}{237.3+\theta_x}} = 610.5e^{\frac{17,269*19.45}{237.3+19.45}} = 2259 \ Pa$$

1.4.1.7. Obliczenie ciśnienia pary wodnej p_i i p_e na powierzchniach warstw dla ciśnień nasyconej pary wodnej p_{si} i p_{se}

$$p_i = \varphi_i * p_{si} = 0.55 * 2337 = 1285 Pa$$

$$p_e = \varphi_e * p_{se} = 0.85 * 401 = 341 Pa$$

1.4.1.8. Obliczenie różnicy ciśnień cząstkowych pary wodnej
$$\Delta p$$
 na powierzchniach warstw
$$\Delta p = \frac{r_{wi}*(p_i-p_e)}{r_w} = \frac{444*(1285-341)}{5491} = 76 \ Pa$$

1.4.1.9. Obliczenie pozostałego ciśnienia cząstkowego pary wodnej p na powierzchniach warstw

$$p_{x,i} = p_{x,i-1} - \Delta p_x = 1285 - 5 = 1281 Pa$$

1.4.1.10. Zestawienie obliczonych wartości w tabeli dla zadanego układu warstw i temperatury powietrza zewnętrznego $\theta_e=-5^\circ C$

	Temperatur	a powietrza	a wewnętrz	nego θi		20	°C				
	Wilgotność	ć powietrza	wewnętrzn	nego фi		55	%				
	Temperatur	ra powietrz	a zewnętrzi	nego θe		-5	°C				
Wilgotność powietrza zewnętrznego фe				85	%						
1	2	3	4	5	6	7	8	9	10	11	12
			Współcz materia	ałowe			Różnica				
Nr w ar st	Materiał warstwy	Gruboś ć	przewo dzenia ciepła	prze pusz czaln ości pary wod nej	Opór cieplny warstw y	Opór dyfuzyjny warstwy	temperatur na powierzchn i warstw Δθx	Temperatura na powierzchni warstwy θx	Ciśnienie nasyconej pary wodnej ps	Różnica ciśnień cząstkowych pary na powierzchniach warstwy Δp	Ciśnienie cząstkowe pary wodnej p
w y		d	λ	δ	Ri= di/λi	rwi= di/δi	$\Delta\theta x = (\theta i - \theta e) x Rk/Rt$	θx,i=θx,i-1- Δθx	Według wzoru z pkt 1.3	Δp=rwi*(pi-pe)/Σrw	pxi=px,i-i- ∆px
		[m]	[W/mK	[10 ⁻⁶ g/m* h*Pa]	[m² K/W]	[m²*h*Pa/g	[°C]	[°C]	[Pa]	[Pa]	[Pa]
1	Powietrze wewnatrz	_	_	_	0,130	27	0,55	20,00	2337	5	1285
-	budynku θi				0,150		0,00	19,45	2259		1281
2	Tynk cem- wap	0,020	0,820	45	0,024	444	0,10	19,35	2244	76	1204
3	Pustak MAX	0,100	0,225	72	0,444	1389	1,88	17,47	1995	239	965
4	Pustak MAX	0,100	0,225	72	0,444	1389	1,88			239	
5	Pustak MAX	0,090	0,225	72	0,400	1250	1,69	15,58	1770	215	727
6	Wełna mineralna	0,050	0,039	480	1,282	104	5,43	13,89	1587	18	512
7	Wełna mineralna	0,050	0,039	480	1,282	104	5,43	8,47	1107	18	494
8	Wełna mineralna	0,050	0,039	480	1,282	104	5,43	3,04	759	18	476
9	Beton komórkowy 600	0,100	0,210	225	0,476	444	2,02	-2,39	501	76	458
10	Beton komórkowy	0,020	0,210	225	0,095	89	0,40	-4,40	422	15	381
11	600 Tynk	0,006	1,000	45	0,006	133	0,03	-4,81	408	23	366
	cementowy Powietrze						·	-4,83	407	-	343
12	zewnętrzne θe	-	-	$R_{T}=$	5,907	13 5491	0.17 $r_{\rm w} = \sum r_{\rm wi}$	-5,00	401	2	341

1.4.1.11. Wykres rozkładu ciśnień nasyconej pary wodnej i ciśnień cząstkowych pary wodnej w skali oporów dyfuzyjnych dla układu zadanego dla $\theta_e = -5^{\circ}C$

W każdej rozpatrywanej płaszczyźnie w przegrodzie ciśnienie nasyconej pary wodnej ps jest większe, niż ciśnienie cząstkowe pary wodnej p

 $p_s > p$

Kondensacja międzywarstwowa nie zachodzi. Przegroda jest poprawnie zaprojektowana i można ją eksploatować.

1.4.2. Kondensacja międzywarstwowa – zadany i odwrócony układ warstw wg metody PN-EN ISO 13788

1.4.2.1. Zadany układ warstw

Z obliczeń przeprowadzonych przy pomocy programu firmy Rockwool wynika, że kondensacja międzywarstwowa dla zadanego układu warstw nie zachodzi, przegroda jest poprawnie zaprojektowana i nadaje się do eksploatacji. Wynik ten zgadza się z wnioskiem uzyskanym przy pomocy obliczeń przedstawionych w punkcie 1.4.1. Raport z obliczeń załączono poniżej.

1.4.2.2. Odwrócony układ warstw

Z obliczeń przeprowadzonych przy pomocy programu firmy Rockwool wynika, że dla odwróconego układu warstw w przegrodzie występuje kondensacja międzywarstwowa pary wodnej, ale przewiduje się wyparowanie całego kondensatu podczas miesięcy letnich, zatem taką przegrodę można dopuścić do eksploatacji. Kondensacja występuję pomiędzy wełną mineralną i pustakiem MAX. Kondensacja ma miejsce od listopada do marca, przegroda jest zawilgocona od listopada do czerwca i wolna od zawilgocenia od lipca do października. Raport z obliczeń załączono poniżej.

3.2.a. Energia użytkowa na potrzeby c.o. i wentylacji – $Q_{H,nd}$

3.2.a.1. Dane meteorologiczne miesięczne (dla Legnicy)

	Dane meteorologiczne - miesięczne									
Lр	Miesiąc	Średnia temperatura powietrza zewnętrznego	temperatura powietrza Sumy miesięczne promieniowania całkowitego na płaszczyznę piono							
		[%6]				[kWh/(m²*m-c)]			
		[°C]	N90	NE_90	E90	SE_90	S90	SW_90	W90	NW_90
1	Styczeń	1,81	19,55	19,55	21,55	31,62	36,78	31,84	21,71	19,55
2	Luty	-0,93	23,10	23,25	29,08	38,86	41,58	33,62	25,27	23,10
3	Marzec	4,38	46,44	47,91	57,35	70,17	74,55	64,36	52,51	46,87
4	Kwiecień	8,12	65,89	70,84	80,84	88,21	89,79	86,29	78,78	69,86
5	Maj	13,2	88,79	99,85	110,22	111,35	106,58	111,19	108,47	97,53
6	Czerwiec	16,55	92,48	102,23	112,53	113,21	107,09	111,34	110,79	101,65
7	Lipiec	18,44	100,54	111,08	121,42	121,23	113,24	115,91	115,57	108,11
8	Sierpień	17,87	84,94	92,87	105,44	112,43	110,18	105,56	98,16	89,43
9	Wrzesień	13,31	57,11	57,91	61,20	65,67	68,76	66,83	62,18	58,12
10	Październik	9,43	35,75	36,04	42,60	57,21	67,86	60,42	44,95	36,17
11	Listopad	3,95	18,18	18,18 18,18 19,99 27,45 32,10 28,59 20,79 18,18						
12	Grudzień	1,69	17,09	17,09	18,18	27,10	31,66	27,68	18,58	17,09

3.2.a.2. Dane ogólne budynku

	Dane ogólne budynku								
	Dane geometryczne budynku								
A_{f}	A _f 158,58 [m ²] powierzchnia netto budynku (użytkowa i ruchowa)								
Ae	A _e 488,78 [m ²] powierzchnia przegród zewnętrznych (otaczających strefę ogrzewaną)								
V_{w}	449,98	[m³]	kubatura wentylowana (objętość powietrza w strefie ogrzewanej)						
Ve	V _e 716,40 [m³] kubatura ogrzewana (objętość strefy ogrzewanej po obrysie przegród zewnętrznych)								
A _e /V _e	0,68	[1/m]	współczynnik kształtu budynku						

3.2.a.3. Straty ciepła przez przenikanie

Przenoszenie ciepła przez przenikanie (straty ciepła)

 $Wsp\'ołczynnik \ przenoszenia \ ciepła \ przez \ przenikanie \ H_{tr} \ [W/K] \ H_{tr,i} = \Sigma_i [b_{tr,i} * (A_i * U_i + \Sigma_i L_i * \Psi_i)]$

Przegroda	Powierzchnia otworów	Całkowita powierzchnia przegrody (wraz z otworami)	Współczynnik redukcji temperatury	Powierzchnia przegrody (bez otworów)	Współczynnik przenikania ciepła	Współczynnik przenoszenia ciepła przez przenikanie
	A _{0,i}	$A_{total,i}$	$\mathbf{b}_{tr,i}$	$A_i = A_{total,i} - A_{0,i}$	U _i	$H_{\mathrm{tr,i}}$
	[m²]	[m²]	-	[m²]	[W/m ² *K]	[W/K]
Dach	-	113,33	1,0	113,33	0,17	19,27
Ściana N	4,41	57,62	1,0	53,21	0,19	10,11
Ściana S	6,75	61,87	1,0	55,12	0,19	10,47
Ściana W	10,10	47,71	1,0	37,61	0,19	7,15
Ściana E	14,22	44,15	1,0	29,93	0,19	5,69
Ściany piwnicy (stykające się z gruntem)	2,16	66,54	0,6	64,38	0,18	6,95
Podłoga na gruncie (z= 0,0m)	-	37,18	0,6	37,18	0,17	3,79
Podłoga na gruncie (z= 2,38m)	-	48,84	0,6	48,84	0,15	4,40
Okna N	-	4,41	1,0	4,41	0,8	3,53
Okna S	-	6,75	1,0	6,75	0,8	5,40
Okna W	-	8,10	1,0	8,10	0,8	6,48
Okna E	-	14,22	1,0	14,22	0,8	11,38
Drzwi zewnętrzne	-	2,00	1,0	2,00	1,3	2,60
Strop przewieszony	-	11,49	1,0	11,49	0,18	2,07
Taras	-	2,21	1,0	2,21	0,19	0,42

Liniowe mostki cieplne	b _{tr,i}	l _i	$\Psi_{e,i}$	H _{tr,i}					
Liniowe mostki ciepine	-	[m]	[W/mK]	[W/K]					
Dach - ściana zewnętrzna	1,0	42,32	-0,05	-2,12					
Naroża zewnętrzne ponad gruntem	1,0	19,24	-0,08	-1,54					
Naroża zewnętrzne pod gruntem	0,6	9,52	-0,07	-0,40					
Okno (drzwi) - ściana zewnętrzna	1,0	112,8	0,025	2,82					
Balkon	1,0	7,72	0,4	3,09					
Ściana zewnętrzna - podłoga na gruncie	0,6	45,42	0,01	0,27					
Całkowity współczynnik przenoszenia ciepła pr	Całkowity współczynnik przenoszenia ciepła przez przenikanie [W/K]								

Ciepło p	Ciepło przenoszone przez przenikanie Q _{tr} [kWh/m-c] Q _{tr} =H _{tr} *(θ _i -θ _e)*t _M /1000									
Miesiąc	Projektowa temperatura wewnętrzna	Średnia temperatura powietrza zewnętrznego	Liczba godzin w miesiącu	Ciepło przenoszone przez przenikanie						
	θί	$\theta_{\rm e}$	t _M	Q _{tr,n}						
	[°C]	[°C]	[h]	[kWh/m-c]						
Styczeń	20,32	1,81	744	1402,21						
Luty	20,32	-0,93	696	1505,92						
Marzec	20,32	4,38	744	1207,52						
Kwiecień	20,32	8,12	720	894,39						
Maj	20,32	13,2	744	539,37						
Czerwiec	20,32	16,55	720	276,38						
Lipiec	20,32	18,44	744	142,42						
Sierpień	20,32	17,87	744	185,60						
Wrzesień	20,32	13,31	720	513,91						
Październik	20,32	9,43	744	824,96						
Listopad	20,32	3,95	720	1200,09						
Grudzień	20,32	1,69	744	1411,30						
Całkowi	te ciepło przenoszon [kWh/rok	•	Q _{tr} =	10104,05						

3.2.a.4. Straty ciepła przez wentylację

3.2.a.4. Straty c			z epła przez wentylację (straty ciepła)
Współczyr	nnik przen	oszenia ciepł	a przez wentylację H_{ve} [W/K] H_{ve} = ρ_a * c_a * Σ_k ($b_{ve,k}$ * $V_{ve,k,n}$)
		Dla	wentylacji grawitacyjnej
$\rho_a^* c_a$	1200	[J/(m ³ *K)]	pojemność cieplna powietrza
		Podsta	awowy strumień powietrza
A _f	158,58	[m ²]	powierzchnia netto budynku (uzytkowa i ruchowa)
$V_{ve,1,s}$	0,00031	[m ³ /(m ² *s)]	uśredniony w czasie strumień powietrza zewnętrznego odniesiony do powierzchni ogrzewanej
b _{ve,1}	1	[-]	czynnik korekty temperatury dla strumienia powietrza zewnętrznego
$V_{ve,1} = V_0 = A_f^* V_{ve,1,s}$	0,04916	[m ³ /s]	uśredniony w czasie strumień powietrza zewnętrznego
	Dodatko	wy strumień	powietrza (budynek bez próby szczelności)
n	0,2	[1/h]	krotność wymiany powietrza w budynku spowodowana infiltracją powietrza
Vw	449,98	[m³]	kubatura wentylowana (objętość powietrza w strefie ogrzewanej)
b _{ve,2}	1	[-]	czynnik korekty temperatury dla strumienia powietrza infiltrującego
V _{ve,2} =V _{inf} =n*V _w /3600	0,02500	[m³/s]	uśredniony w czasie strumień powietrza infiltrującego
H _{ve} =	88,99	[W/K]	Całkowity współczynnik przenoszenia ciepła przez wentylację

	Ciepło przenoszone przez wentylację Q_{ve} [kWh/m-c] Q_{ve} =H $_{ve}$ *(θ_i - θ_e)*t $_M$ /1000									
Miesiąc	Projektowana temperatura wewnętrzna	Średnia temperatura powietrza zewnętrznego	Liczba godzin w miesiącu	Ciepło przenoszone przez wentylację						
	θ_{i}	θ_{e}	t _M	Q _{tr,n}						
	[°C]	[°C]	[h]	[kWh/m-c]						
Styczeń	20,32	1,81	744	1225,53						
Luty	20,32	-0,93	696	1316,17						
Marzec	20,32	4,38	744	1055,37						
Kwiecień	20,32	8,12	720	781,69						
Maj	20,32	13,2	744	471,41						
Czerwiec	20,32	16,55	720	241,56						
Lipiec	20,32	18,44	744	124,47						
Sierpień	20,32	17,87	744	162,21						
Wrzesień	20,32	13,31	720	449,15						
Październik	20,32	9,43	744	721,01						
Listopad	20,32	3,95	720	1048,88						
Grudzień	20,32	1,69	744	1233,47						
Całkowi	te ciepło przenoszone przez v	wentylację [kWh/rok]	Q _{ve} =	8830,92						

3.2.a.5. Zyski ciepła od promieniowania słonecznego

	Zyski ciepła od promieniowania słonecznego							
Parametry przeszkleń								
C 0,70 [-] udział pola oszklenia do całkowitego pola powierzchni okna								
$F_{sh,gl}$	1,00	[-]	czynnik redukcyjny ze względu na zacienienie od ruchomych urządzeń zacieniających					
F_{hor}	1,00	[-]	częściowy czynnik redukcyjny dla horyzontu					
F _{ov}	0,90	[-]	częściowy czynnik redukcyjny dla zadaszenia					
F _{fin}	1,00	[-]	częściowy czynnik redukcyjny dla pilastrów					
F _{sh} =F _{hor} *F _{ov} *F _{fin}	0,90	[-]	czynnik redukcyjny ze względu na zacienienie przegród zewnętrznych					
F _w	0,90	[-]	czynnik korekcyjny dla nierozpraszającego oszklenia					
g gl,n	0,55	[-]	współczynnik przepuszczalności energii słonecznej dla promieniowania prostopadłego do oszklenia					
g _{gl} =F _w *g _{gl,n}	0,50	[-]	współczynnik całkowitej przepuszczalności energii promieniowania słonecznego					

	Zyski ciepła od promieniowania słonecznego Q _{sol,n} [kWh/m-c] Q _{sol,n} =Σ _i [C _i *A _i *l _i *F _{sh,gl} *F _{sh} *g _{gl}]										 =Σ _i [C _i *A _i *I _i *F _{sh,gI} *F _{sh} *g	
Miesiąc			hnia o le otw		Sumy miesięczne promieniowania całkowitego na płaszczyznę pionową			Czynniki redukcyjne ze względu na zacienienie		Współczynnik całkowitej przepuszczalności energii	Miesięczne zyski ciepła od promieniowania słonecznego	
		A _i	[m²]		I _i [kWh/(m²*m-c)]					promieniowania	Sionecznego	
	N	S	w	E	N	S	w	E	F _{sh,gl}	F _{sh}	g _{gl} [-]	Q _{sol,n} [kWh/m-c]
		•			•	•	Okna od	dsłonięte				
Styczeń	4,41	6,75	4,50	0,00	19,55	36,78	21,71	21,55	1,00	1,00	0,50	149,74
Luty	4,41	6,75	4,50	0,00	23,10	41,58	25,27	29,08	1,00	1,00	0,50	171,95
Marzec	4,41	6,75	4,50	0,00	46,44	74,55	52,51	57,35	1,00	1,00	0,50	327,19
Kwiecień	4,41	6,75	4,50	0,00	65,89	89,79	78,78	80,84	1,00	1,00	0,50	433,52
Maj	4,41	6,75	4,50	0,00	88,79	106,58	108,47	110,22	1,00	1,00	0,50	554,11
Czerwiec	4,41	6,75	4,50	0,00	92,48	107,09	110,79	112,53	1,00	1,00	0,50	564,54
Lipiec	4,41	6,75	4,50	0,00	100,54	113,24	115,57	121,42	1,00	1,00	0,50	598,67
Sierpień	4,41	6,75	4,50	0,00	84,94	110,18	98,16	105,44	1,00	1,00	0,50	540,54
Wrzesień	4,41	6,75	4,50	0,00	57,11	68,76	62,18	61,20	1,00	1,00	0,50	345,04
Październik	4,41	6,75	4,50	0,00	35,75	67,86	44,95	42,60	1,00	1,00	0,50	283,43
Listopad	4,41	6,75	4,50	0,00	18,18	32,10	20,79	19,99	1,00	1,00	0,50	135,28
Grudzień	4,41	6,75	4,50	0,00	17,09	31,66	18,58	18,18	1,00	1,00	0,50	129,14
							Okna za	cienione)			
Styczeń	0,00	0,00	3,60	14,22	19,55	36,78	21,71	21,55	1,00	0,90	0,50	119,93
Luty	0,00	0,00	3,60	14,22	23,10	41,58	25,27	29,08	1,00	0,90	0,50	157,31
Marzec	0,00	0,00	3,60	14,22	46,44	74,55	52,51	57,35	1,00	0,90	0,50	313,26
Kwiecień	0,00	0,00	3,60	14,22	65,89	89,79	78,78	80,84	1,00	0,90	0,50	446,92
Maj	0,00	0,00	3,60	14,22	88,79	106,58	108,47	110,22	1,00	0,90	0,50	610,54
Czerwiec				14,22			110,79		1,00	0,90	0,50	623,40
Lipiec	0,00	0,00	3,60	14,22	100,54	113,24	115,57	121,42	1,00	0,90	0,50	668,18
Sierpień	0,00	0,00	3,60	14,22	84,94	110,18	98,16	105,44	1,00	0,90	0,50	577,78
Wrzesień	0,00	0,00	3,60	14,22	57,11	68,76	62,18	61,20	1,00	0,90	0,50	341,21
Październik	0,00	0,00	3,60	14,22	35,75	67,86	44,95	42,60	1,00	0,90	0,50	239,35
Listopad	0,00	0,00	3,60	14,22	18,18	32,10	20,79	19,99	1,00	0,90	0,50	111,97
Grudzień	0,00	0,00	3,60	14,22	17,09	31,66	18,58	18,18	1,00	0,90	0,50	101,47
Cał	kowite	e zysk	i ciepł	a od pr	omienio	wania sł	oneczne	go [kWh	/rok]		\mathbf{Q}_{sol} =	8544,47

3.2.a.6. Wewnętrzne zyski ciepła

3.2.0	Wewnętrzne zyski ciepła Q _{int} Q _{int} =q _{int} *A _f *t _M /1000									
q _{int}	6,8	[W/m ²]	obciążenie cieplne p	oomieszczeń zyskami cieplnymi						
A_f	158,58	[m²]	powierzchnia netto	budynku (użytkowa i ruchowa)						
N	1iesiąc	Liczba godzin w miesiącu	Miesięczne wewnętrzne zyski ciepła	Efektywne miesięczne wewnętrzne zyski ciepła						
		t _M [h]	Q _{int,n} [kWh/m-c]	$Q_{int,eff,n} = \eta_{H,gn,n} * Q_{int,n} [kWh/m-c]$						
S	tyczeń	744	802,29	782,06						
	Luty	696	750,53	734,87						
Λ	/larzec	744	802,29	734,37						
K۷	wiecień	720	776,41	608,85						
	Maj	744	802,29	392,32						
Cz	erwiec	720	776,41	203,36						
I	Lipiec	744	802,29	103,42						
Si	erpień	744	802,29	145,01						
W	rzesień	720	776,41	464,41						
Paź	dziernik	744	802,29	670,33						
Li	stopad	720	776,41	749,56						
Gr	rudzień	744	802,29	784,50						
Ca	łkowite									
zys	vnętrzne ki ciepła Vh/rok]	Q _{int} =	9472,17	6373,06						

3.2.a.7. Współczynnik efektywności wykorzystania zysków ciepła

Współczynnik wykorzystania zysków ciepła Współczynnik wykorzystania zysków ciepła w budynku										
	Masa termiczna budynku - metoda uproszczona wg PN-EN ISO 13790, tablica 12									
Masa termiczna budyn	ku - metoda upros	zczona wg PN-EN	ISO 13790, tablica 12							
A_f	158,58	[m²]	powierzchnia użytkowa							
			pojemność cieplna							
C _m =165000*A _f	26165700	[J/K]	obudowy							
			budynku (klasa średnia)							
			całkowity współczynnik							
$H_{tr,adj}=H_{tr}$	101,82	[W/K]	przenoszenia							
			ciepła przez przenikanie							
			całkowity współczynnik							
$H_{ve,adj}=H_{ve}$	88,99	[W/K]	przenoszenia							
			ciepła przez wentylację							
$\tau = (C_m/3600)/(H_{tr,adj} + H_{ve,adj})$	38,09	[h]	stała czasowa budynku							
			stała czasowa							
тн,о	15	[h]	odniesienia							
			dla metody miesięcznej							
_	4	r 1	parametr liczbowy dla							
ан,о	1	[-]	metody miesięcznej							
			bezwymiarowy							
$a_{H}=a_{H,0}+(\tau/\tau_{H,0})$	3,54	[-]	parametr							
			liczbowy							
dla każdego miesiąca, jeżeli	γ _H =1	to	η _{H,gn} =a _H /(a _H +1)							
dla każdego miesiąca, jeżeli	γн≠1	to	$\eta_{H,gn} = (1 - \gamma_H^{aH})/(1 - \gamma_H^{aH+1})$							

Współczynnik wykorzystania zysków ciepła w trybie ogrzewania η _{H,gn} [-]					
Mississ	Q _{H,ht,n} =Q _{tr,n} +Q _{ve,n}	$Q_{H,gn,n}=Q_{sol,n}+Q_{int,n}$	γ _{H,n} =Q _{H,gn,n} /Q _{H,ht,n}	η _{H,gn,n}	
Miesiąc	[kWh/m-c]	[kWh/m-c]	[-]	[-]	
Styczeń	2627,73	1071,96	0,41	0,97	
Luty	2822,09	1079,78	0,38	0,98	
Marzec	2262,89	1442,74	0,64	0,92	
Kwiecień	1676,08	1656,85	0,99	0,78	
Maj	1010,78	1966,94	1,95	0,49	
Czerwiec	517,94	1964,35	3,79	0,26	
Lipiec	266,89	2069,14	7,75	0,13	
Sierpień	347,81	1920,60	5,52	0,18	
Wrzesień	963,06	1462,65	1,52	0,60	
Październik	1545,98	1325,07	0,86	0,84	
Listopad	2248,97	1023,65	0,46	0,97	
Grudzień	2644,77	1032,90	0,39	0,98	

3.2.a.8. Zapotrzebowanie na energię użytkową do ogrzewania i wentylacji

-	Zapotrzebowanie na energię użytkową do ogrzewania i wentylacji			
Energia użytl	Energia użytkowa do ogrzewania i wentylacji Q _{H,nd} [kWh/m-c] Q _{H,nd} =Q _{H,ht} -η _{H,gn} *Q _{H,gn}			
Miesiąc -	$\mathbf{Q}_{H,ht,n} = \mathbf{Q}_{tr,n} + \mathbf{Q}_{ve,n}$	η _{H,gn,n}	$\mathbf{Q}_{H,gn,n} = \mathbf{Q}_{sol,n} + \mathbf{Q}_{int,n}$	Q _{H,nd,n}
iviiesiąc	[kWh/m-c]	[-]	[kWh/m-c]	[kWh/m-c]
Styczeń	2627,73	0,97	1071,96	1582,80
Luty	2822,09	0,98	1079,78	1764,83
Marzec	2262,89	0,92	1442,74	942,28
Kwiecień	1676,08	0,78	1656,85	376,80
Maj	1010,78	0,49	1966,94	48,94
Czerwiec	517,94	0,26	1964,35	3,41
Lipiec	266,89	0,13	2069,14	0,17
Sierpień	347,81	0,18	1920,60	0,67
Wrzesień	963,06	0,60	1462,65	88,18
Październik	1545,98	0,84	1325,07	438,84
Listopad	2248,97	0,97	1023,65	1260,71
Grudzień	2644,77	0,98	1032,90	1634,77
Energia użytko	Energia użytkowa do ogrzewania i wentylacji [kWh/rok]			8142,41

 ${f 3.2.b.}$ Energia użytkowa na potrzeby przygotowania c.w.u. – ${f Q_{W,nd}}$

	Zapotrzebowanie na energię użytkową do przygotowania c.w.u. (ciepłej wody użytkowej)				
	Roczne zapotrzebowanie na energię użytkową do przygotowania c.w.u. Q _{w,nd} [kWh/rok]				
	$Q_{W,nd}=V_{Wi}*A_f*c_W*\rho_W*(\Phi_W-\Phi_0)*k_R*t_R/3600$				
V_{wi}	V _{wi} 1,4 [dm³/(m²*dzień)] jednostkowe zapotrzebowanie na c.w.u.				
A_f	158,58	[m ²]	powierzchnia netto budynku (użytkowa i ruchu)		
Cw	4,19	[kJ/(kg*K)]	ciepło właściwe wody		
ρ_{w}	1	[kg/dm³]	gęstość wody		
Фсw	55	[°C]	obliczeniowa temperatura c.w.u. w zaworze czerpalnym		
Фо	10	[°C]	obliczeniowa temperatura wody przed podgrzaniem		
k _R	0,9	[-]	współczynnik korekcyjny ze względu na przerwy w użytkowaniu		
t _R	365	365 [dzień] liczba dni w roku			
Q _{W,nd}	,,nd 3819,76 [kWh/rok] Roczne zapotrzebowanie na energię użytkową do przygotowania c.w.u.				

3.3. Energia końcowa dla systemu ogrzewczego – $Q_{k,H}$, dla systemu przygotowania c.w.u. – $Q_{k,W}$ oraz energie pomocnicze – $E_{el.pom,H}$ i $E_{el.pom,W}$

Zapotrzebowanie na energię pomocniczą dla systemów technicznych (ogrzewczego i przygotowania c.w.u.)				
Zapotrzebowanie na energię pomocniczą końcową E _{el,pom}				
dla systemu ogrzewczego - E _{el,pom,H}				
Rodzaj urządzenia pomocniczego	Zapotrzebowanie na moc elektryczną do napędu urządznia pomocniczego	Czas działania urządzenia pomocniczego w ciągu roku	Powierzchnia netto budynku (użytkowa i ruchowa)	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną dla budynku do systemu ogrzewczego
	q _{el,H,i} [W/m²]	t _{el,i} [h/rok]	A _f [m ²]	$\begin{aligned} E_{\text{el,pom,H}} &= \\ \Sigma_{i} q_{\text{el,H,i}} * t_{\text{el,i}} * A_{f} * 10^{-3} \\ & [kWh/rok] \end{aligned}$
Pompa obiegowa	0,45	5500	158,58	392,49
Napęd pomocniczy i regulacja kotła	0,45	2200	158,58	156,99
•	otrzebowanie na energię ko stemu ogrzewczego [kWh/ro	E _{el,pom,H}	549,48	
	dla systen	nu przygotowania o	C.w.u E _{el,pom,W}	
Rodzaj urządzenia pomocniczego	Zapotrzebowanie na moc elektryczną do napędu urządzenia pomocniczego	Czas działania urządzenia pomocniczego w ciągu roku	Powierzchnia netto budynku (użytkowa i ruchowa)	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną dla budynku do systemu ogrzewczego
	q _{el,H,i} [W/m²]	t _{el,i} [h/rok]	A _f [m²]	E _{el,pom,H} = Σ _i q _{el,H,i} *t _{el,i} *A _f *10 ⁻³ [kWh/rok]
pompa cyrkulacyjna	0,2	8760	158,58	277,83
Roczne zapotrzebowanie na energię końcową dla systemu przygotowania c.w.u. [kWh/rok] E _{el,pom,W} 277,83				277,83
Całkowite zapo	trzebowanie na energię poi	mocniczą końcową	dostarczoną do systemo	ów technicznych - E _{el,pom}
•	otrzebowanie na energię ko do systemów technicznych [E _{el,pom} =E _{el,pom,H} +E _{el,pom,W}	827,31	

Zapotrzebowanie na energię końcową dostarczaną do budynku				
Zapo	Zapotrzebowanie na energię końcową			
dla systemu ogrzewczego - Q _{k,H}				
$Q_{H,nd}$	8142,41	[kWh/rok]	roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji	
η _{н,tot} =η _{н,g} *η _{н,s} *η _{н,d} *η _{н,e}	0,79	[-]	średnia sezonowa sprawność systemu ogrzewania	
$Q_{k,H}=Q_{H,nd}/\eta_{H,tot}$	10306,85	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu ogrzewczego	
dla sy	stemu przyg	otowania c.w	∕.u Q _{k,W}	
$\mathbf{Q}_{W,nd}$	3819,76	[kWh/rok]	roczne zapotrzebowanie na energię użytkową do przygotowania c.w.u.	
X_{kotta}	0,60	[-]	udział w rocznym zapotrzebowaniu na energię użytkową do przygotowania c.w.u.	
$X_{kolektora}$	0,40	[-]	udział w rocznym zapotrzebowaniu na energię użytkową do przygotowania c.w.u.	
η _{W,tot,kolektora} =η _{W,tot,kotła} *(0,4/0,8)	0,29	[-]	średnia sezonowa sprawność kolektora w systemie przygotowania c.w.u.	
ηw,tot,kotła	0,58	[-]	średnia sezonowa sprawność kotła w systemie przygotowania c.w.u.	
$Q_{k,W,kotła} = X_{kotła} * Q_{W,nd} / \eta_{W,tot,kotła}$	3951,47	[kWh/rok]	roczne zapotrzebowanie na energię końcową kotła	
$Q_{k,W,kolektora}=X_{kolektora}*Q_{W,nd}$ $\eta_{W,tot,kolektora}$	5268,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową kolektora	
$\mathbf{Q}_{k,W} = \mathbf{Q}_{k,W,kotla} + \mathbf{Q}_{k,W,kolektora}$	9220,11	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu przygotowania c.w.u.	
	, , , , , , , , , , , , , , , , , , , ,			
Całkowite zapotrzebowanie na o	energię końc	ową dostarcz	aną do systemów technicznych - Q _K	
$\mathbf{Q}_{K} = \mathbf{Q}_{k,H} + \mathbf{E}_{el,pom,H} + \mathbf{Q}_{k,W} + \mathbf{E}_{el,pom,W}$	20354,27	[kWh/rok]	roczne zapotrzebowanie na energię końcową dostarczoną do systemów technicznych	

3.4. Energia pierwotna dla systemu ogrzewczego – $\mathbf{Q}_{p,H}$ i dla systemu przygotowania c.w.u. – $\mathbf{Q}_{p,W}$

c.w.u. – Q _{p,W} Zapotrzeb	owanie na	energie pier	wotną dostarczaną do budynku	
1822			energię pierwotną	
dla systemu ogrzewczego - Q _{р,н}				
W _H	1,1	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla systemu ogrzewczego	
Q _{k,H}	10306,85	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu ogrzewczego	
Wel	3,0	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla elektrycznych urządzeń pomocniczych w systemie ogrzewczym	
E _{el,pom,} H	549,48	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą dostarczoną do budynku dla systemu ogrzewczego	
$Q_{p,H}=w_H*Q_{k,H}+w_{el}*E_{el,pom,H}$	12985,97	[kWh/rok]	roczne zapotrzebowanie na energię pierwotną dla systemu ogrzewczego	
	dla syste	mu przygoto	owania c.w.u Q _{p,W}	
W w,kotła	1,1	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla kotła	
$\mathbf{Q}_{k,w,kotta}$	3951,47	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla kotła	
$oldsymbol{W}_{W,kolektora}$	0	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla kolektora	
$Q_{k,w,kolektora}$	5268,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla kolektora	
W _{el}	3,0	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla urządzeń elektrycznych w systemie przygotowania c.w.u.	
E _{el,pom,w}	277,83	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą dostarczoną do budynku dla systemu przygotowania c.w.u.	
$Q_{p,w} = w_{w,kotla} * Q_{k,w,kotla} + \\ w_{w,kolektora} * Q_{k,w,kolektora} + w_{el} * E_{el,pom,w}$	5180,12	[kWh/rok]	roczne zapotrzebowanie na energię pierwotną dla systemu przygotowania c.w.u.	
Całkowite zanotrzehowa	nie na ene	rgie końcow	ą dostarczoną do systemów technicznych - Qp	
$Q_p = Q_{p,H} + Q_{p,W}$	18166,09		roczne zapotrzebowanie na energię pierwotną dostarczoną do budynku	

3.5. Wskaźniki EU_H, EK i EP oraz porównanie wyników z WT 2014 r.

3.5.1. Energia użytkowa

	Energia użytkowa - efektywność energetyczna obudowy budynku					
Wskaźnik EU _H						
A _f	158,58	[m²]	powierzchnia netto budynku (użytkowa i ruchu)			
Q _{H,nd}	8142,41	[kWh/rok]	roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji			
EU _H =Q _{H,nd} /A _f	51,35	[kWh/(m²*rok)]	wskaźnik rocznego zapotrzebowania na energię końcową do ogrzewania i wentylacji			

$$EU_{H} = 51,35 \frac{kWh}{m^{2} * rok} < EU_{H,max} = 60 \frac{kWh}{m^{2} * rok}$$

3.5.2. Energia końcowa

Energia końcowa - sprawność systemów technicznych budynku, koszty eksploatacji budynku					
Wskaźnik EK					
A _f	158,58	[m²]	powierzchnia netto budynku (użytkowa i ruchu)		
$Q_k=Q_{K,H}+Q_{k,W}+E_{el,pom}$	20354,27	[kWh/rok]	roczne zapotrzebowanie na energię końcową dostarczoną do systemw technicznych		
EK=Q _k /A _f	128,35	[kWh/(m²*rok)]	wskaźnik rocznego zapotrzebowania na energię końcową		

3.5.3. Energia pierwotna

	Energia pierwotna - wpływ budynku na środowisko, wykorzystanie odnawialnych źródeł energii					
Wskaźnik EP						
A_f	158,58	[m²]	powierzchnia netto budynku (użytkowa i ruchu)			
$Q_p=Q_{p,H}+Q_{p,W}$	18166,09	[kWh/rok]	roczne zapotrzebowanie na energię pierwotną dostarczoną do systemw technicznych			
EP=Q _p /A _f	114,55	[kWh/(m²*rok)]	wskaźnik rocznego zapotrzebowania na energię pierwotną			
EP _{H+W}	120	[kWh/(m ² *rok)]	maksymalna wartość wskaźnika rocznego zapotrzebowania na energię pierwotną wg WT2014			

$$EP_{H+W} = 114,55 \frac{kWh}{m^2 * rok} < EP_{H+W,max} = 120 \frac{kWh}{m^2 * rok}$$

3.6. Emisja CO2 oraz udział OZE

3.6.1. Emisja CO₂

3.6.1. Emisja CO ₂	Jednostko	owa wielkość emis	ji CO₂ w budynku				
Jednost	kowa wielk	ość emisji CO₂ prz	ez system ogrzewczy E _{CO2,H}				
$Q_{k,H}$	10306,85	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu ogrzewczego				
W _{e,H}	55,82	[t CO ₂ /TJ]	wskaźnik emisji CO₂ dla gazu ziemnego				
E _{CO2,H} =36*10 ⁻⁷ *Q _{k,H} *W _{e,H}	2,07	[t CO₂/rok]	wielkość emisji CO₂ pochodząca z procesu spalania paliw przez system ogrzewczy				
Jednostkowa	wielkość er	misji CO₂ przez sys	tem przygotowania c.w.u. E _{co2,w}				
Q _{k,W,kotła} 3951,47 [kWh/rok] roczne zapotrzebowanie na energię końcową dla kotła							
W _e ,w,kotła	55,82	[t CO ₂ /TJ]	wskaźnik emisji CO₂ dla gazu ziemnego				
$Q_{k,W,kolektora}$	5268,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla kolektora				
$W_{e,W,kolektora}$	0	[t CO ₂ /TJ]	wskaźnik emisji CO ₂ dla kolektora				
E _{CO2,W} =36*10 ⁻⁷ *(Q _{k,W,kotła} *W _{e,W,kotła} +Q _{k,W,kolektora} *W _{e,W,kolektora})	0,79	[t CO₂/rok]	wielkość emisji CO ₂ pochodząca z procesu spalania paliw przez system przygotowania c.w.u.				
Jednostkowa wielkość er	nisji CO₂ pr	zez urządzenie por	mocnicze w systemach technicznych E _{CO2,pom}				
Е _{el,pom,} н	549,48	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą końcową dla systemu ogrzewczego				
$W_{e,pom,H}$	236,4	[t CO ₂ /TJ]	wskaźnik emisji CO ₂ dla energii elektrycznej z sieci elektroenergetycznej systemowej				
E _{el,pom,W}	277,83	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą końcową dla systemu przygotowania c.w.u.				
$W_{e,pom,W}$	236,4	[t CO ₂ /TJ]	wskaźnik emisji CO ₂ dla energii elektrycznej z sieci elektroenergetycznej systemowej				
$E_{CO2,pom}=36*10^{-7}*$ ($E_{el,pom,H}*W_{e,pom,H}+E_{el,pom,W}*W_{e,pom,W}$)	0,70	[t CO₂/rok]	wielkość emisji CO ₂ pochodząca z procesu spalania paliw przez urządzenie pomocnicze w systemach technicznych				
Jednostkowa wielkość emisji CO ₂ w budynku E _{CO2}							
A _f	158,58	[m²]	powierzchnia netto budynku (użytkowa i ruchu)				
$E_{CO2}=(E_{CO2,H}+E_{CO2,W}+E_{CO2,pom})/A_f$	0,023	[t CO ₂ /(m ² *rok)]	wielkość emisji CO ₂ pochodząca z procesu spalania paliw w budynku				

3.6.2. Udział OZE

Wykorzystanie odnawialnych źródeł energii (OZE)							
Udział odnawialnych źróde	Udział odnawialnych źródeł energii w rocznym zapotrzebowaniu na energię końcową U _{OZE}						
Q _{k,} h,oze	0	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu ogrzewczego zapewniane przez odnawialne źródło energii				
$Q_{k,W,OZE}$	5268,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla przygotowania c.w.u. zapewniane przez odnawialne źródło energii				
E _{el,pom,OZE}	0	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą końcową zapewniane przez odnawialne źródło energii				
Q_{k}	20354,27	[kWh/rok]	roczne zapotrzebowanie na energię końcową dostarczoną do systemów technicznych				
U_{OZE} =100%* ($Q_{k,H,OZE}$ + $Q_{k,w,OZE}$ + $E_{el,pom,OZE}$)/ Q_k	25,88	[%]	Udział odnawialnych źródeł energii w rocznym zapotrzebowaniu na energię końcową				

3.7. Sporządzenie świadectwa charakterystyki energetycznej budynku

Wartość obliczeniowa rocznej ilości zużywanego nośnika energii

System ogrzewania

1) Gaz ziemny

$$C_H = \frac{Q_{k,H} * 3,6}{A_f * W_0} = \frac{10306,85 * 3,6}{158,58 * 36,12} = 6,48 \frac{m^3}{rok * m^2}$$

2) Energia elektryczna

$$C_{el,H} = \frac{E_{el,pom,H}}{A_f} = \frac{549,48}{158,58} = 3,47 \frac{kWh}{rok * m^2}$$

System przygotowania c.w.u.

1) Gaz ziemny

$$C_W = \frac{Q_{k,W,kotla} * 3,6}{A_f * W_0} = \frac{3951,47 * 3,6}{158,58 * 36,12} = 2,48 \frac{m^3}{rok * m^2}$$

2) Kolektory słoneczne

$$C_{W,kolektora} = \frac{Q_{k,W,kolektora}}{A_f} = \frac{5268,63}{158,58} = 33,22 \frac{kWh}{rok * m^2}$$

3) Energia elektryczna

$$C_{el,W} = \frac{E_{el,pom,W}}{A_f} = \frac{277,83}{158,58} = 1,75 \frac{kWh}{rok * m^2}$$

4. Charakterystyka energetyczna budynku – wariant niskoenergetyczny

4.1. Proponowane zmiany projektowe

Zaproponowano zastosowanie wentylacji mechanicznej nawiewno – wywiewnej z odzyskiem ciepła w celu uzyskania standardu budynku niskoenergetycznego $(EU_H \le 40 \frac{kWh}{m^2*rok})$

4.2.a. Energia użytkowa na potrzeby c.o. i wentylacji – $Q_{H,nd}$

4.2.a.1. Dane meteorologiczne miesięczne (dla Legnicy)

	Dane meteorologiczne - miesięczne									
Lр	Miesiąc	Średnia temperatura powietrza zewnętrznego	Sumy miesięczne promieniowania całkowitego na płaszczyznę pionow						pionową	
		[%C]				[kWh/(m²*m-c)]			
		[°C]	N90	NE_90	E90	SE_90	S90	SW_90	W90	NW_90
1	Styczeń	1,81	19,55	19,55	21,55	31,62	36,78	31,84	21,71	19,55
2	Luty	-0,93	23,10	23,25	29,08	38,86	41,58	33,62	25,27	23,10
3	Marzec	4,38	46,44	47,91	57,35	70,17	74,55	64,36	52,51	46,87
4	Kwiecień	8,12	65,89	70,84	80,84	88,21	89,79	86,29	78,78	69,86
5	Maj	13,2	88,79	99,85	110,22	111,35	106,58	111,19	108,47	97,53
6	Czerwiec	16,55	92,48	102,23	112,53	113,21	107,09	111,34	110,79	101,65
7	Lipiec	18,44	100,54	111,08	121,42	121,23	113,24	115,91	115,57	108,11
8	Sierpień	17,87	84,94	92,87	105,44	112,43	110,18	105,56	98,16	89,43
9	Wrzesień	13,31	57,11	57,91	61,20	65,67	68,76	66,83	62,18	58,12
10	Październik	9,43	35,75	36,04	42,60	57,21	67,86	60,42	44,95	36,17
11	Listopad	3,95	18,18	18,18	19,99	27,45	32,10	28,59	20,79	18,18
12	Grudzień	1,69	17,09	17,09	18,18	27,10	31,66	27,68	18,58	17,09

4.2.a.2. Dane ogólne budynku

	Dane ogólne budynku					
	Dane geometryczne budynku					
A_f	158,58	[m ²]	powierzchnia netto budynku (użytkowa i ruchowa)			
A _e	488,78	[m ²]	powierzchnia przegród zewnętrznych (otaczających strefę ogrzewaną)			
V_{w}	449,98	[m³]	kubatura wentylowana (objętość powietrza w strefie ogrzewanej)			
Ve	716,40	[m³]	kubatura ogrzewana (objętość strefy ogrzewanej po obrysie przegród zewnętrznych)			
A _e /V _e	0,68	[1/m]	współczynnik kształtu budynku			

4.2.a.3. Straty ciepła przez przenikanie

Przenoszenie ciepła przez przenikanie (straty ciepła)

 $Wsp\'ołczynnik \ przenoszenia \ ciepła \ przez \ przenikanie \ H_{tr} \ [W/K] \ H_{tr,i} = \Sigma_i [b_{tr,i} * (A_i * U_i + \Sigma_i L_i * \Psi_i)]$

Przegroda	Powierzchnia otworów	Całkowita powierzchnia przegrody (wraz z otworami)	Współczynnik redukcji temperatury	Powierzchnia przegrody (bez otworów)	Współczynnik przenikania ciepła	Współczynnik przenoszenia ciepła przez przenikanie
	A _{0,i}	$A_{total,i}$	$\mathbf{b}_{tr,i}$	$A_i = A_{total,i} - A_{0,i}$	U _i	$H_{\mathrm{tr,i}}$
	[m²]	[m²]	-	[m²]	[W/m ² *K]	[W/K]
Dach	-	113,33	1,0	113,33	0,17	19,27
Ściana N	4,41	57,62	1,0	53,21	0,19	10,11
Ściana S	6,75	61,87	1,0	55,12	0,19	10,47
Ściana W	10,10	47,71	1,0	37,61	0,19	7,15
Ściana E	14,22	44,15	1,0	29,93	0,19	5,69
Ściany piwnicy (stykające się z gruntem)	2,16	66,54	0,6	64,38	0,18	6,95
Podłoga na gruncie (z= 0,0m)	-	37,18	0,6	37,18	0,17	3,79
Podłoga na gruncie (z= 2,38m)	-	48,84	0,6	48,84	0,15	4,40
Okna N	-	4,41	1,0	4,41	0,8	3,53
Okna S	-	6,75	1,0	6,75	0,8	5,40
Okna W	-	8,10	1,0	8,10	0,8	6,48
Okna E	-	14,22	1,0	14,22	0,8	11,38
Drzwi zewnętrzne	-	2,00	1,0	2,00	1,3	2,60
Strop przewieszony	-	11,49	1,0	11,49	0,18	2,07
Taras	-	2,21	1,0	2,21	0,19	0,42

Liniowe mostki cieplne	b _{tr,i}	l _i	$\Psi_{e,i}$	$H_{tr,i}$			
Limowe mostki ciepine	-	[m]	[W/mK]	[W/K]			
Dach - ściana zewnętrzna	1,0	42,32	-0,05	-2,12			
Naroża zewnętrzne ponad gruntem	1,0	19,24	-0,08	-1,54			
Naroża zewnętrzne pod gruntem	0,6	9,52	-0,07	-0,40			
Okno (drzwi) - ściana zewnętrzna	1,0	112,8	0,025	2,82			
Balkon	1,0	7,72	0,4	3,09			
Ściana zewnętrzna - podłoga na gruncie	0,6	45,42	0,01	0,27			
Całkowity współczynnik przenoszenia ciepła	Całkowity współczynnik przenoszenia ciepła przez przenikanie [W/K]						

Ciepło p	Ciepło przenoszone przez przenikanie Q _{tr} [kWh/m-c] Q _{tr} =H _{tr} *(θ _i -θ _e)*t _M /1000						
Miesiąc	Projektowa temperatura wewnętrzna	Średnia temperatura powietrza zewnętrznego	Liczba godzin w miesiącu	Ciepło przenoszone przez przenikanie			
	θί	$\theta_{\rm e}$	t _M	Q _{tr,n}			
	[°C]	[°C]	[h]	[kWh/m-c]			
Styczeń	20,32	1,81	744	1402,21			
Luty	20,32	-0,93	696	1505,92			
Marzec	20,32	4,38	744	1207,52			
Kwiecień	20,32	8,12	720	894,39			
Maj	20,32	13,2	744	539,37			
Czerwiec	20,32	16,55	720	276,38			
Lipiec	20,32	18,44	744	142,42			
Sierpień	20,32	17,87	744	185,60			
Wrzesień	20,32	13,31	720	513,91			
Październik	20,32	9,43	744	824,96			
Listopad	20,32	3,95	720	1200,09			
Grudzień	20,32	1,69	744	1411,30			
Całkowi	te ciepło przenoszon [kWh/rok	Q _{tr} =	10104,05				

4.2.a.4. Straty ciepła przez wentylację

		P	rzenoszenie ciepła przez wentylację (straty ciepła)			
	Współczynnik przenoszenia ciepła przez wentylację H_{ve} [W/K] H_{ve} = ρ_a * c_a * Σ_k ($b_{ve,k}$ * $V_{ve,k,n}$)					
		DI	a wentylacji mechanicznej nawiewno - wywiewnej			
ρ _a *c _a	1200	[J/(m ³ *K)]	pojemność cieplna powietrza			
			Podstawowy strumień powietrza			
A_f	158,58	[m ²]	powierzchnia netto budynku (uzytkowa i ruchowa)			
$\eta_{\text{oc,1}}$	0,8	[-]	skuteczność odzysku ciepła z powietrza wywiewanego			
$\eta_{\sf GWC}$	η _{GWC} 0 [-] skuteczność gruntowego wymiennika ciepła					
ηος	0,8	[-]	łączna miesięczna skuteczność zastosowania urządzeń do odzysku cieła			
b _{ve,1}	0,2	[-]	czynnik korekty temperatury dla strumienia powietrza zewnętrznego			
V _{ve,1} =V _{su}	0,111	[m ³ /s]	uśredniony w czasie strumień powietrza zewnętrznego			
			Dodatkowy strumień powietrza			
$V_{\rm w}$	449,98	[m³]	kubatura wentylowana (objętość powietrza w strefie ogrzewanej)			
n ₅₀	1,5	[1/h]	krotność wymiany powietrza w budynku wywołana różnicą ciśnień 50 Pa			
е	0,02	[-]	współczynnik osłonięcia budynku			
f	20	[-]	współczynnik osłonięcia budynku			
V_{su}	400	[m³/h]	strumień powietrza nawiewanego mechanicznie			
V_{ex}	400	[m³/h]	strumień powietrza wywiewanego mechanicznie			
b _{ve,2}	1	[-]	czynnik korekty temperatury dla strumienia powietrza infiltrującego			
$V_{ve,2}=V_{x,su}$	0,00375	[m ³ /s]	uśredniony w czasie strumień powietrza infiltrującego			
H _{ve}	31,14	[W/K]	Całkowity współczynnik przenoszenia ciepła przez wentylację mechaniczną			

Ci	Ciepło przenoszone przez wentylację Q _{ve} [kWh/m-c] Q _{ve} =H _{ve} *(θ _i -θ _e)*t _M /1000						
Miesiąc	Projektowana temperatura wewnętrzna	Średnia temperatura powietrza zewnętrznego	Liczba godzin w miesiącu	Ciepło przenoszone przez wentylację			
	θ_{i}	θ_{e}	t _M	Q _{ve,n}			
	[°C]	[°C]	[h]	[kWh/m-c]			
Styczeń	20,32	1,81	744	428,84			
Luty	20,32	-0,93	696	460,56			
Marzec	20,32	4,38	744	369,30			
Kwiecień	20,32	8,12	720	273,53			
Maj	20,32	13,2	744	164,96			
Czerwiec	20,32	16,55	720	84,53			
Lipiec	20,32	18,44	744	43,56			
Sierpień	20,32	17,87	744	56,76			
Wrzesień	20,32	13,31	720	157,17			
Październik	20,32	9,43	744	252,30			
Listopad	20,32	3,95	720	367,03			
Grudzień	20,32	1,69	744	431,62			
Całkowite	Całkowite ciepło przenoszone przez wentylację [kWh/rok] Q _{ve} = 3090,14						

4.2.a.5. Zyski ciepła od promieniowania słonecznego

	Zyski ciepła od promieniowania słonecznego						
	Parametry przeszkleń						
С	0,70	[-]	udział pola oszklenia do całkowitego pola powierzchni okna				
F _{sh,gl}	1,00	[-]	czynnik redukcyjny ze względu na zacienienie od ruchomych urządzeń zacieniających				
F _{hor}	1,00	[-]	częściowy czynnik redukcyjny dla horyzontu				
F _{ov}	0,90	[-]	częściowy czynnik redukcyjny dla zadaszenia				
F _{fin}	1,00	[-]	częściowy czynnik redukcyjny dla pilastrów				
F _{sh} =F _{hor} *F _{ov} *F _{fin}	0,90	[-]	czynnik redukcyjny ze względu na zacienienie przegród zewnętrznych				
F _w	0,90	[-]	czynnik korekcyjny dla nierozpraszającego oszklenia				
g gl,n	0,55	[-]	współczynnik przepuszczalności energii słonecznej dla promieniowania prostopadłego do oszklenia				
g _{gl} =F _w *g _{gl,n}	0,50	[-]	współczynnik całkowitej przepuszczalności energii promieniowania słonecznego				

	Zyski ciepła od promieniowania słonecznego Q _{sol,n} [kWh/m-c] Q _{sol,n} =Σ _i [C _i *A _i *I _i *F _{sh,gl} *F _{sh} *g _{gl}]											
Miesiąc	Powierzchnia okien (w świetle otworu)		Sumy miesięczne promieniowania całkowitego na płaszczyznę pionową I _i [kWh/(m²*m-c)]		Czynniki redukcyjne ze względu na zacienienie		Współczynnik całkowitej przepuszczalności energii promieniowania	Miesięczne zyski ciepła od promieniowania słonecznego				
	N	S	w	E	N	S	w	E	F _{sh,gl}	F _{sh}	g _{gl} [-]	Q _{sol,n} [kWh/m-c]
			l				Okna od	dsłonięte				
Styczeń	4,41	6,75	4,50	0,00	19,55	36,78	21,71	21,55	1,00	1,00	0,50	149,74
Luty	4,41	6,75	4,50		23,10	41,58	25,27	29,08	1,00	1,00	0,50	171,95
Marzec	4,41	6,75	4,50	0,00	46,44	74,55	52,51	57,35	1,00	1,00	0,50	327,19
Kwiecień	4,41	6,75	4,50	0,00	65,89	89,79	78,78	80,84	1,00	1,00	0,50	433,52
Maj	4,41	6,75	4,50	0,00	88,79	106,58	108,47	110,22	1,00	1,00	0,50	554,11
Czerwiec	4,41	6,75	4,50	0,00	92,48	107,09	110,79	112,53	1,00	1,00	0,50	564,54
Lipiec	4,41	6,75	4,50	0,00	100,54	113,24	115,57	121,42	1,00	1,00	0,50	598,67
Sierpień	4,41	6,75	4,50	0,00	84,94	110,18	98,16	105,44	1,00	1,00	0,50	540,54
Wrzesień	4,41	6,75	4,50	0,00	57,11	68,76	62,18	61,20	1,00	1,00	0,50	345,04
Październik	4,41	6,75	4,50	0,00	35,75	67,86	44,95	42,60	1,00	1,00	0,50	283,43
Listopad	4,41	6,75	4,50	0,00	18,18	32,10	20,79	19,99	1,00	1,00	0,50	135,28
Grudzień	4,41	6,75	4,50	0,00	17,09	31,66	18,58	18,18	1,00	1,00	0,50	129,14
							Okna za	cienione)			
Styczeń	0,00	0,00	3,60	14,22	19,55	36,78	21,71	21,55	1,00	0,90	0,50	119,93
Luty	0,00	0,00	3,60	14,22	23,10	41,58	25,27	29,08	1,00	0,90	0,50	157,31
Marzec	0,00	0,00	3,60	14,22	46,44	74,55	52,51	57,35	1,00	0,90	0,50	313,26
Kwiecień	0,00	0,00	3,60	14,22	65,89	89,79	78,78	80,84	1,00	0,90	0,50	446,92
Maj	0,00	0,00	3,60	14,22	88,79	106,58	108,47	110,22	1,00	0,90	0,50	610,54
Czerwiec	0,00	0,00	3,60	14,22	92,48	107,09	110,79	112,53	1,00	0,90	0,50	623,40
Lipiec	0,00	0,00	3,60	14,22	100,54	113,24	115,57	121,42	1,00	0,90	0,50	668,18
Sierpień	0,00	0,00	3,60	14,22	84,94	110,18	98,16	105,44	1,00	0,90	0,50	577,78
Wrzesień	0,00	0,00	3,60	14,22	57,11	68,76	62,18	61,20	1,00	0,90	0,50	341,21
Październik	0,00	0,00	3,60	14,22	35,75	67,86	44,95	42,60	1,00	0,90	0,50	239,35
Listopad	0,00	0,00	3,60	14,22	18,18	32,10	20,79	19,99	1,00	0,90	0,50	111,97
Grudzień	0,00	0,00	3,60	14,22	17,09	31,66	18,58	18,18	1,00	0,90	0,50	101,47
Całl	kowit	e zyski	i ciepł	a od pr	omienio	wania sł	oneczne	go [kWh	/rok]		Q _{sol} =	8544,47

4.2.a.6. Wewnętrzne zyski ciepła

	Wewnętrzne zyski ciepła Q _{int} Q _{int} =q _{int} *A _f *t _M /1000								
q_{int}	6,8	[W/m²]	[W/m²] obciążenie cieplne pomieszczeń zyskami cieplnymi						
Af	158,58	[m²]	powierzchnia netto budynku (użytkowa i ruchowa)						
N	/liesiąc	Liczba godzin w miesiącu	Miesięczne wewnętrzne zyski ciepła	Efektywne miesięczne wewnętrzne zyski ciepła					
		t _M [h]	Q _{int,n} [kWh/m-c]	$Q_{int,eff,n}=\eta_{H,gn,n}*Q_{int,n}$ [kWh/m-c]					
S	tyczeń	744	802,29	773,20					
	Luty	696	750,53	728,89					
٨	/larzec	744	802,29	687,82					
K۷	wiecień	720	776,41	510,33					
	Maj 744		802,29	285,72					
Cz	Czerwiec 720		776,41	142,60					
ı	Lipiec 744		802,29	72,11					
Si	erpień	744	802,29	101,23					
W	rzesień	720	776,41	350,99					
Paź	ździernik	744	802,29	584,59					
Li	stopad	720	776,41	735,45					
Gr	Grudzień 744		802,29	777,38					
wev	łkowite wnętrzne ki ciepła	Q _{int} =	9472,17	5750,29					
	Wh/rok]								

4.2.a.7. Współczynnik efektywności wykorzystania zysków ciepła

Współcz	Współczynnik wykorzystania zysków ciepła w budynku					
Masa termiczna budy	/nku - metoda upros:	zczona wg PN-EN ISO	13790, tablica 12			
A _f	158,58	[m ²]	powierzchnia użytkowa			
C _m =165000*A _f	26165700	[J/K]	pojemność cieplna obudowy budynku (klasa średnia)			
H _{tr,adj} =H _{tr}	101,82	[W/K]	całkowity współczynnik przenoszenia ciepła przez przenikanie			
H _{ve,adj} =H _{ve}	31,14	[W/K]	całkowity współczynnik przenoszenia ciepła przez wentylację			
$\tau = (C_m/3600)/(H_{tr,adj} + H_{ve,adj})$	54,67	[h]	stała czasowa budynku			
Тн,о	15	[h]	stała czasowa odniesienia dla metody miesięcznej			
a _{H,0}	1	[-]	parametr liczbowy dla metody miesięcznej			
а _н =а _{н,0} +(т/т _{н,0})	4,64	[-]	bezwymiarowy parametr liczbowy			
dla każdego miesiąca, jeżeli	γ _H =1	to	η _{н,gn} =a _н /(a _н +1)			
dla każdego miesiąca, jeżeli	γн≠1	to	$\eta_{H,gn} = (1 - \gamma_H^{aH})/(1 - \gamma_H^{aH+1})$			

Współczynn	Współczynnik wykorzystania zysków ciepła w trybie ogrzewania η _{H,gn} [-]							
Miesiąc	$Q_{H,ht,n}=Q_{tr,n}+Q_{ve,n}$	Q _{H,gn,n} =Q _{sol,n} +Q _{int,n}	γ _{H,n} =Q _{H,gn,n} /Q _{H,ht,n}	η _{H,gn,n}				
iviiesiąc	[kWh/m-c]	[kWh/m-c]	[-]	[-]				
Styczeń	1831,05	1071,96	0,59	0,96				
Luty	1966,48	1079,78	0,55	0,97				
Marzec	1576,82	1442,74	0,91	0,86				
Kwiecień	1167,92	1656,85	1,42	0,66				
Maj	704,33	1966,94	2,79	0,36				
Czerwiec	360,91	1964,35	5,44	0,18				
Lipiec	185,97	2069,14	11,13	0,09				
Sierpień	242,36	1920,60	7,92	0,13				
Wrzesień	671,07	1462,65	2,18	0,45				
Październik	1077,26	1325,07	1,23	0,73				
Listopad	1567,12	1023,65	0,65	0,95				
Grudzień	1842,92	1032,90	0,56	0,97				

4.2.a.8. Zapotrzebowanie na energię użytkową do ogrzewania i wentylacji

Zap	Zapotrzebowanie na energię użytkową do ogrzewania i wentylacji						
Energia użyt	Energia użytkowa do ogrzewania i wentylacji Q _{H,nd} [kWh/m-c] Q _{H,nd} =Q _{H,ht} -η _{H,gn} *Q _{H,gn}						
Miesiąc	$\mathbf{Q}_{H,ht,n} = \mathbf{Q}_{tr,n} + \mathbf{Q}_{ve,n}$	η _{H,gn,n}	$\mathbf{Q}_{H,gn,n} = \mathbf{Q}_{sol,n} + \mathbf{Q}_{int,n}$	Q _{H,nd,n}			
iviiesiąc	[kWh/m-c]	[-]	[kWh/m-c]	[kWh/m-c]			
Styczeń	1831,05	0,96	1071,96	797,95			
Luty	1966,48	0,97	1079,78	917,83			
Marzec	1576,82	0,86	1442,74	339,93			
Kwiecień	1167,92	0,66	1656,85	78,89			
Maj	704,33	0,36	1966,94	3,85			
Czerwiec	360,91	0,18	1964,35	0,11			
Lipiec	185,97	0,09	2069,14	0,00			
Sierpień	242,36	0,13	1920,60	0,01			
Wrzesień	671,07	0,45	1462,65	9,86			
Październik	1077,26	0,73	1325,07	111,75			
Listopad	1567,12	0,95	1023,65	597,47			
Grudzień	1842,92	0,97	1032,90	842,09			
Energia użytko	owa do ogrzewania i wen [kWh/rok]	Q _{H,nd} =	3699,74				

4.2.b. Energia użytkowa na potrzeby przygotowania c.w.u. – $Q_{w,nd}$

	Zapotrzebowanie na energię użytkową do przygotowania c.w.u. (ciepłej wody użytkowej)						
	Roczne zapotrzebowanie na energię użytkową do przygotowania c.w.u. Q _{w,nd} [kWh/rok]						
	$Q_{W,nd}=V_{Wi}*A_f*c_W*\rho_W*(\Phi_W-\Phi_0)*k_R*t_R/3600$						
V_{wi}	V _{wi} 1,4 [dm³/(m²*dzień)] jednostkowe zapotrzebowanie na c.w.u.						
Af	158,58	[m²] powierzchnia netto budynku (użytkowa i ruchu)					
Cw	4,19	[kJ/(kg*K)] ciepło właściwe wody					
ρ_{w}	1	[kg/dm³] gęstość wody					
Фсw	55 [°C] obliczeniowa temperatura c.w.u. w zaworze czerpalnym						
Фо	10	[°C]	obliczeniowa temperatura wody przed podgrzaniem				
k _R	0,9 [-] współczynnik korekcyjny ze względu na przerwy w użytkowaniu						
t _R	R 365 [dzień] liczba dni w roku						
Q _{W,nd}	3819,76	[kWh/rok]	Roczne zapotrzebowanie na energię użytkową do przygotowania c.w.u.				

4.3. Energia końcowa dla systemu ogrzewczego – $Q_{k,H}$, dla systemu przygotowania c.w.u. – $Q_{k,W}$ oraz energie pomocnicze – $E_{el.pom,H}$ i $E_{el.pom,W}$

Zapotrzebowanie na energię pomocniczą dla systemów technicznych (ogrzewczego i przygotowania c.w.u.)							
Zapotrzbowanie na energię pomocniczą końcową E _{el,pom}							
dla sy	stemu ogrzewczeg	o - E _{el,pom,H}					
Zapotrzebowanie na moc elektryczną do napędu urządznia pomocniczego	Czas działania urządzenia pomocniczego w ciągu roku	Powierzchnia netto budynku (użytkowa i ruchowa)	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną dla budynku do systemu ogrzewczego				
q _{el,H,i} [W/m²]	t _{el,i} [h/rok]	$A_f[m^2]$	$\begin{split} E_{\text{el,pom,H}} &= \\ \Sigma_{\text{i}} q_{\text{el,H,i}} * t_{\text{el,i}} * A_{\text{f}} * 10^{-3} \\ & [\text{kWh/rok}] \end{split}$				
0,45	5500	158,58	392,49				
0,45	2200	158,58	156,99				
	<u> </u>	E _{el,pom,H}	549,48				
dla systen	nu przygotowania o	C.W.U E _{el,pom,W}					
Zapotrzebowanie na moc elektryczną do napędu urządzenia pomocniczego	Czas działania urządzenia pomocniczego w ciągu roku	Powierzchnia netto budynku (użytkowa i ruchowa)	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną dla budynku do systemu ogrzewczego				
q _{el,н,і} [W/m²]	t _{el,i} [h/rok]	A _f [m²]	$E_{el,pom,H}=$ $\Sigma_i q_{el,H,i} * t_{el,i} * A_f * 10^{-3}$ [kWh/rok]				
0,2	8760	158,58	277,83				
Roczne zapotrzebowanie na energię końcową dla systemu przygotowania c.w.u. [kWh/rok] E _{el,pom,W} 277,83							
trzebowanie na energię por	mocniczą końcową	dostarczoną do systemó	ów technicznych - E _{el,pom}				
	•	E _{el,pom} =E _{el,pom,H} +E _{el,pom,W}	827,31				
	Zapotrzebowanie na moc elektryczną do napędu urządznia pomocniczego Qel,H,i [W/m²] 0,45 0,45 Otrzebowanie na energię kotemu ogrzewczego [kWh/roda) Zapotrzebowanie na moc elektryczną do napędu urządzenia pomocniczego Qel,H,i [W/m²] 0,2 Otrzebowanie na energię kotemu ogrzewczego	Zapotrzebowanie na moc elektryczną do napędu urządznia pomocniczego w ciągu roku Qel,H,i [W/m²] tel,i [h/rok] 0,45 5500 0,45 2200 Otrzebowanie na energię końcową temu ogrzewczego [kWh/rok] dla systemu przygotowania o celektryczną do napędu urządzenia pomocniczego w ciągu roku Zapotrzebowanie na moc elektryczną do napędu urządzenia pomocniczego w ciągu roku Qel,H,i [W/m²] tel,i [h/rok] 0,2 8760 Otrzebowanie na energię końcową temu ogrzewczego [kWh/rok]	Zapotrzebowanie na energię pomocniczą końcową E _{el,pom} , dla systemu ogrzewczego - E _{el,pom,H} Zapotrzebowanie na moc elektryczną do napędu urządzenia pomocniczego w ciągu roku Q _{el,H,i} [W/m²] t _{el,i} [h/rok] Af [m²] 0,45 5500 158,58 0,45 2200 158,58 Otrzebowanie na energię końcową temu ogrzewczego [kWh/rok] E _{el,pom,H} Zapotrzebowanie na moc elektryczną do napędu urządzenia pomocniczego w ciągu roku Powierzchnia netto budynku (użytkowa i ruchowa) Zapotrzebowanie na moc elektryczną do napędu urządzenia pomocniczego w ciągu roku Q _{el,H,i} [W/m²] t _{el,i} [h/rok] Af [m²] 0,2 8760 158,58 Otrzebowanie na energię końcową t przygotowania c.w.u. [kWh/rok] E _{el,pom,W}				

Zapotrzebowanie na energię końcową dostarczaną do budynku						
Zapo	trzebowanie	na energię k	ońcową			
d	lla systemu o	grzewczego -	$\mathbf{Q}_{k,H}$			
Q _{H,nd}	3699,74	[kWh/rok]	roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji			
η _{н,tot} =η _{н,g} *η _{н,s} *η _{н,d} *η _{н,e}	0,79	[-]	średnia sezonowa sprawność systemu ogrzewania			
$Q_{k,H}=Q_{H,nd}/\eta_{H,tot}$	4683,21	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu ogrzewczego			
dla sy	stemu przyg	otowania c.w	7.u Q _{k,W}			
$\mathbf{Q}_{W,nd}$	3819,76	[kWh/rok]	roczne zapotrzebowanie na energię użytkową do przygotowania c.w.u.			
X_{kotta}	0,60	[-]	udział w rocznym zapotrzebowaniu na energię użytkową do przygotowania c.w.u.			
$X_{kolektora}$	0,40	[-]	udział w rocznym zapotrzebowaniu na energię użytkową do przygotowania c.w.u.			
ηw,tot,kolektora=ηw,tot,kotła*(0,4/0,8)	0,29	[-]	średnia sezonowa sprawność kolektora w systemie przygotowania c.w.u.			
$\eta_{W, { m tot}, { m kot}}$ a	0,58	[-]	średnia sezonowa sprawność kotła w systemie przygotowania c.w.u.			
$Q_{k,W,kotła} = X_{kotła} * Q_{W,nd} / \eta_{W,tot,kotła}$	3951,47	[kWh/rok]	roczne zapotrzebowanie na energię końcową kotła			
$Q_{k,W,kolektora} = X_{kolektora} * Q_{W,nd} / $ $\eta_{W,tot,kolektora}$	5268,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową kolektora			
$\mathbf{Q}_{k,W} = \mathbf{Q}_{k,W,kotta} + \mathbf{Q}_{k,W,kolektora}$	9220,11	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu przygotowania c.w.u.			
Całkowite zapotrzebowanie na	energię końo	cową dostarc	zną do systemów technicznych - Q _K			
$\mathbf{Q}_{K} = \mathbf{Q}_{k,H} + \mathbf{E}_{el,pom,H} + \mathbf{Q}_{k,W} + \mathbf{E}_{el,pom,W}$	14730,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dostarczoną do sytemów technicznych			

4.4. Energia pierwotna dla systemu ogrzewczego – $Q_{p,H}$ i dla systemu przygotowania c.w.u. – $Q_{p,W}$

Zapotrzeb	owanie na	energie pier	wotną dostarczaną do budynku
•			energię pierwotną
	dla	systemu ogra	zewczego - Q _{p,H}
W _H	1,1	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla systemu ogrzewczego
Q _{k,H}	4683,21	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu ogrzewczego
W _e l	3,0	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla elektrycznych urządzeń pomocniczych w systemie ogrzewczym
E _{el,pom,H}	549,48	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą dostarczoną do budynku dla systemu ogrzewczego
$Q_{p,H}=w_H*Q_{k,H}+w_{el}*E_{el,pom,H}$	6799,97	[kWh/rok]	roczne zapotrzebowanie na energię pierwotną dla systemu ogrzewczego
	dla syste	mu przygoto	owania c.w.u Q _{p,W}
W w,kotła	1,1	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla kotła
$\mathbf{Q}_{lk,w,kotta}$	3951,47	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla kotła
$oldsymbol{W}$ w,kolektora	0	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla kolektora
$Q_{k,w,kolektora}$	5268,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla kolektora
W _{el}	3,0	[-]	współczynnik nakładu nieodnawialnej energii pierwotnej dla urządzeń elektrycznych w systemie przygotowania c.w.u.
E _{el,pom,w}	277,83	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą dostarczoną do budynku dla systemu przygotowania c.w.u.
$Q_{p,w} = w_{w,kotla} * Q_{k,w,kotla} + \\ w_{w,kolektora} * Q_{k,w,kolektora} + w_{el} * E_{el,pom,w}$	5180,12	[kWh/rok]	roczne zapotrzebowanie na energię pierwotną dla systemu przygotowania c.w.u.
Całkowite zapotrzebowa	nie na ene	rgię końcow	ą dostarczoną do systemów technicznych - Q _p
$Q_p = Q_{p,H} + Q_{p,W}$	11980,09	[kWh/rok]	roczne zapotrzebowanie na energię pierwotną dostarczoną do budynku

4.5. Wskaźniki EU_H, EK i EP oraz porównanie wyników z WT 2014 r.

4.5.1. Energia użytkowa

	Energia użytkowa - efektywność energetyczna obudowy budynku						
Wskaźnik EU _H							
A _f	158,58 [m²] powierzchnia netto budynku (użytkowa i ruchu)						
Q _{H,nd}	3699,74	[kWh/rok]	roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji				
EU _H =Q _{H,nd} /A _f	23,33	[kWh/(m²*rok)]	wskaźnik rocznego zapotrzebowania na energię końcową do ogrzewania i wentylacji				

$$EU_{H} = 23,33 \frac{kWh}{m^{2} * rok} < EU_{H,max} = 40 \frac{kWh}{m^{2} * rok}$$

4.5.2. Energia końcowa

Energia końc	Energia końcowa - sprawność systemów technicznych budynku, koszty eksploatacji budynku						
Wskaźnik EK							
A _f	A _f 158,58 [m²] powierzchnia netto budynku (użytkowa i ruchu)						
$Q_k=Q_{K,H}+Q_{k,W}+E_{el,pom}$	14730,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dostarczoną do systemw technicznych				
EK=Q _k /A _f	92,89	[kWh/(m ² *rok)]	wskaźnik rocznego zapotrzebowania na energię końcową				

4.5.3. Energia pierwotna

	Energia pierwotna - wpływ budynku na środowisko, wykorzystanie odnawialnych źródeł energii								
Wskaźnik EP									
A _f	158,58	[m²]	powierzchnia netto budynku (użytkowa i ruchu)						
$Q_p = Q_{p,H} + Q_{p,W}$	11980,09	[kWh/rok]	roczne zapotrzebowanie na energię pierwotną dostarczoną do systemw technicznych						
EP=Q _p /A _f	75,55	[kWh/(m²*rok)]	wskaźnik rocznego zapotrzebowania na energię pierwotną						
EP _{H+W}	120	[kWh/(m ² *rok)]	maksymalna wartość wskaźnika rocznego zapotrzebowania na energię pierwotną wg WT2014						

$$EP_{H+W} = 75,55 \frac{kWh}{m^2 * rok} < EP_{H+W,max} = 120 \frac{kWh}{m^2 * rok}$$

4.6. Emisja CO_2 oraz udział OZE

4.6.1. Emisja CO₂

4.0.1. Elilisja CO ₂	Jednostko	owa wielkość emisj	i CO₂ w budynku							
Jednostkowa wielkość emisji CO₂ przez system ogrzewczy Е _{со2,н}										
Q _{k,H}	4683,21	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu ogrzewczego							
W _{e,H}	55,82	[t CO ₂ /TJ]	wskaźnik emisji CO₂ dla gazu ziemnego							
E _{CO2,H} =36*10 ⁻⁷ *Q _{k,H} *W _{e,H}	0,94	[t CO₂/rok]	wielkość emisji CO₂ pochodząca z procesu spalania paliw przez system ogrzewczy							
Jednostkowa wielkość emisji CO₂ przez system przygotowania c.w.u. E _{CO2,W}										
$Q_{k,W,kotfa}$	3951,47	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla kotła							
W _{e,W,kotła}	55,82	[t CO ₂ /TJ]	wskaźnik emisji CO₂ dla gazu ziemnego							
$Q_{k,W,kolektora}$	5268,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla kolektora							
$W_{e,W,kolektora}$	0	[t CO ₂ /TJ]	wskaźnik emisji CO ₂ dla kolektora							
E _{CO2,W} =36*10 ⁻⁷ *(Q _{k,W,kotła} *W _{e,W,kotła} + Q _{k,W,kolektora} *W _{e,W,kolektora})	0,79	[t CO ₂ /rok]	wielkość emisji CO₂ pochodząca z procesu spalania paliw przez system przygotowania c.w.u.							
Jednostkowa wielkość er	nisji CO₂ pr	zez urządzenie pon	nocnicze w systemach technicznych E _{CO2,pom}							
E _{el,pom,H}	549,48	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą końcową dla systemu ogrzewczego							
$W_{e,pom,H}$	236,4	[t CO₂/TJ]	wskaźnik emisji CO ₂ dla energii elektrycznej z sieci elektroenergetycznej systemowej							
E _{el,pom,W}	277,83	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą końcową dla systemu przygotowania c.w.u.							
$W_{e,pom,W}$	236,4	[t CO₂/TJ]	wskaźnik emisji CO ₂ dla energii elektrycznej z sieci elektroenergetycznej systemowej							
E _{CO2,pom} =36*10 ⁻⁷ * (E _{el,pom,H} *W _{e,pom,H} +E _{el,pom,W} *W _{e,pom,W})	0,70 [t CO ₂ /rok]		wielkość emisji CO ₂ pochodząca z procesu spalania paliw przez urządzenie pomocnicze w systemach technicznych							
Jednostkowa wielkość emisji CO ₂ w budynku E _{CO2}										
A_f	158,58	[m²]	powierzchnia netto budynku (użytkowa i ruchu)							
$E_{CO2}=(E_{CO2,H}+E_{CO2,W}+E_{CO2,pom})/A_f$	0,015	[t CO ₂ /(m ² *rok)]	wielkość emisji CO₂ pochodząca z procesu spalania paliw w budynku							

4.6.2. Udział OZE

Wykorzystanie odnawialnych źródeł energii (OZE)										
Udział odnawialnych źródeł energii w rocznym zapotrzebowaniu na energię końcową U _{OZE}										
Q _{k,H,OZE}	0	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla systemu ogrzewczego zapewniane przez odnawialne źródło energii							
$Q_{k,W,OZE}$	5268,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dla przygotowania c.w.u. zapewniane przez odnawialne źródło energii							
E _{el,pom,OZE}	0	[kWh/rok]	roczne zapotrzebowanie na energię pomocniczą końcową zapewniane przez odnawialne źródło energii							
Q_k	14730,63	[kWh/rok]	roczne zapotrzebowanie na energię końcową dostarczoną do systemów technicznych							
$U_{OZE}=100\%*$ $(Q_{k,H,OZE}+Q_{k,w,OZE}+E_{el,pom,OZE})/Q_{k}$	35,77	[%]	Udział odnawialnych źródeł energii w rocznym zapotrzebowaniu na energię końcową							

5. Tabelaryczne zestawienie wyników obliczeń charakterystyki energetycznej oraz ilości materiałów izolacyjnych wg pkt 3 i 4

Budynek	Uść	Udach	Uść.grunt.	U _{podł1}	U _{podł2}	Ustrop.przew.	U _{taras}	Qtr	Q _{ve}	Qsol*ηH,gn	Q _{int} *η _{H,gn}	Q _{H,nd}	Qw,nd
Бийупек	[W/(m ² *K)]						[kWh/rok]						
pkt 3	0,19	0,17	0,18	0,17	0,15	0,18	0,19	10104,05	8830,92	4419,50	6373,06	8142,41	3819,76
pkt 4	0,19	0,17	0,18	0,17	0,15	0,18	0,19	10104,05	3090,14	3744,16	5750,29	3699,74	3819,76

Budynek	$\eta_{H,tot}$ $\eta_{W,tot}$		$Q_{k,H}$	$Q_{k,W}$	$Q_{p,H}$	$Q_{p,W}$	EU _H	EK	EP	Ilość mat. Izol.
вишупек	[-	-]	[kWh/rok]					[kWh/(ı	m ² *K)]	[m³]
pkt 3	0,79	0,58	10306,85	9220,11	12985,97	5180,12	51,35	51,35 128,35 114,55		69,92
pkt 4	0,79	0,58	4683,21	9220,11	6799,97	5180,12	23,33	92,89	75,55	69,92