

Dr. Konda Reddy Mopuri Deep Learning for Computer Vision (DL4CV) IIT Guwahati Aug-Dec 2022

- Label each pixel in the image with a category
- No differentiation among multiple instances of the same category

Figure credits CS231N, Stanford

Data labeling for semantic segmentation

Input

Output

Figure credits: AWS Amazon

Data labeling for semantic segmentation

Input

Segmentation mask

Figure credits: AWS Amazon

Data labeling for semantic segmentation

Inputs with Segmentation mask

Figure credits: AWS Amazon

Semantic Segmentation: A Simple Approach

Extract patches

Semantic Segmentation: A Simple Approach

Extract patches

Very inefficient since it does not reuse features among neighboring patches!

All conv layers; predictions per pixel simultaneously for all the pixels

Loss: Cross-entropy per pixel

Issue: receptive field grows slowly with depth → needs more conv layers → processing high-res images is very expensive!

Use downsampling and upsampling inside the network

Deconvolution for Semantic Segmentation

(Noh et al. ICCV 2015)

Use downsampling and upsampling inside the network

Upsampling, How ??

Naive Unpooling (Bed of nails)

Input

Output

3

0

4

0

0

0

0

0

• Nearest Neighbor unpooling

Input Output

1	1	3	3
1	1	3	3
2	2	4	4
2	2	4	4

Bilinear interpolation (use two closest neighbors and linear approx.)

Bicubic interpolation (use 3 nearest neighbors, cubic approx.)

dl4cv-15/Semantic Segmentation

Output

Max Unpooling (Remembers the position of max values)

- So far, these approaches have no learnable params
- Learnable upsampling → Transposed Convolution

- Convolution reduces the size (division by stride)
- Same Convolution can increase if the stride < 1

Input

Filter is 3 X 3 convolution transpose, stride 2

Filter is 3 X 3 convolution transpose, stride 2

Filter is 3 X 3 convolution transpose, stride 2

Dr. Konda Reddy Mopuri

dl4cv-15/Semantic Segmentation

Transposed Convolution - 1D Example

Different names

- Deconvolution
- Upconvolution
- Convolution with fractional stride
- Convolution with backward stride
- Transposed Convolution

- Gives per-pixel labels
- Merges different instances of the objects
- Stuff vs things
 - Things: Categories that can be separated into instances (cat, dog, cow, person, etc.)
 - Stuff: Categories that can't be separated into instances (sky, grass, trees, etc.)

Instance Segmentation

- Detect all the objects in the image
- Identify pixels that belong to each object (only for things!)

Instance Segmentation: Approach

- 1. Object detection
- 2. Semantic segmentation for each of the detected objects

Faster R-CNN

Next class

Video tasks