```
import pandas as pd
import seaborn as sns
import os
import numpy as np
import matplotlib.pyplot as plt
```

housing_df = pd.read_csv('/content/housing.csv')

Use .info() to show the features (i.e. columns) in your dataset along with a count and datatype housing_df.info()

Ducu	COTAMILE (COCAT TO CO	J_umii 5 / •	
#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	median_house_value	20640 non-null	float64
9	ocean_proximity	20640 non-null	object
4+,,,,,	oc. float(1/0) obio	c+/1\	

dtypes: float64(9), object(1)
memory usage: 1.6+ MB

housing_df.shape

(20640, 10)

housing_df.head()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	hoı
(-122.23	37.88	41.0	880.0	129.0	322.0	
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	
2	-122.24	37.85	52.0	1467.0	190.0	496.0	
3	-122.25	37.85	52.0	1274.0	235.0	558.0	
4	-122.25	37.85	52.0	1627.0	280.0	565.0	

housing_df.tail()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
20635	-121.09	39.48	25.0	1665.0	374.0	845.0
20636	-121.21	39.49	18.0	697.0	150.0	356.0
20637	-121.22	39.43	17.0	2254.0	485.0	1007.0
20638	-121.32	39.43	18.0	1860.0	409.0	741.0
20639	-121.24	39.37	16.0	2785.0	616.0	1387.0

housing_df.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	рс
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	2064
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	14:
std	2.003532	2.135952	12.585558	2181.615252	421.385070	11;
min	-124.350000	32.540000	1.000000	2.000000	1.000000	
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	78
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	110
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	17:
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	3568

housing_df.isnull().sum()

0 longitude latitude 0 housing_median_age 0 ${\tt total_rooms}$ 0 total_bedrooms 207 population 0 households 0 median_income 0 median_house_value 0 ocean_proximity dtype: int64

Calculate the % of missing data
housing_df['total_bedrooms'].isnull().sum()/housing_df.shape[0] * 100

1.002906976744186

```
from sklearn.impute import KNNImputer
# create a temporary copy of the dataset
housing_df_temp = housing_df.copy()
# retrieve columns with numerical data; will exclude the ocean_proximity column since the datatype is object; other columns are float64
columns_list = [col for col in housing_df_temp.columns if housing_df_temp[col].dtype != 'object']
# extract columns that contain at least one missing value
new_column_list = [col for col in housing_df_temp.loc[:, housing_df_temp.isnull().any()]]
# update temp dataframe with numeric columns that have empty values
housing_df_temp = housing_df_temp[new_column_list]
# initialize KNNImputer to impute missing data using machine learning
knn = KNNImputer(n_neighbors = 3)
# fit function trains the model
knn.fit(housing_df_temp)
# transform the data using the model
# applies the transformation model (ie knn) to data
array_Values = knn.transform(housing_df_temp)
# convert the array values to a dataframe with the appropriate column names
housing_df_temp = pd.DataFrame(array_Values, columns = new_column_list)
# confirm there are no columns with missing values
housing_df_temp.isnull().sum()
     total_bedrooms
     dtype: int64
# overlay the imputed column over the old column with missing values
# loop through the list of columns and overlay each one
for column_name in new_column_list:
    housing\_df[column\_name] = housing\_df\_temp.replace(housing\_df[column\_name]), housing\_df[column\_name])
# confirm columns no longer contain null data
housing_df.isnull().sum()
     longitude
                           0
     latitude
     housing median age
                           0
     total rooms
                           0
     total_bedrooms
                           0
                           0
     population
     households
                           0
     median_income
                           0
     median_house_value
                           0
     ocean_proximity
                           0
     dtype: int64
# Plot the distribution of the target variable (median_house_value) using a histogram
# bins->amount of columns
plt.hist(housing_df['median_house_value'], bins=80)
plt.xlabel("House Values")
# We can see from the plot that the values of Median House Value are distributed normally with few outliers.
# Most of the house are around 100,000-200,000 range
```


let's do histograms for the all the features to understand the data distributions
using housing_df as to not plot the encoded values for OCEAN_PROXIMITY
housing_df.hist(bins=50, figsize=(20,15))


```
# Plot a graphical correlation matrix for each pair of columns in the dataframe
corr = housing_df.corr() # data frame correlation function
print(corr)
```

```
longitude latitude housing_median_age
                                                             total_rooms \
                                                                 0.044568
longitude
                     1.000000 -0.924664
                                                   -0.108197
                    -0.924664 1.000000
                                                   0.011173
                                                                -0.036100
latitude
housing_median_age
                    -0.108197
                               0.011173
                                                   1.000000
                                                                -0.361262
total_rooms
                     0.044568 -0.036100
                                                   -0.361262
                                                                1.000000
                     0.069260 -0.066658
                                                  -0.318998
                                                                 0.927253
total_bedrooms
population
                     0.099773 -0.108785
                                                  -0.296244
                                                                 0.857126
                     0.055310 -0.071035
                                                   -0.302916
                                                                 0.918484
households
median income
                    -0.015176 -0.079809
                                                   -0.119034
                                                                 0.198050
                   -0.045967 -0.144160
median_house_value
                                                   0.105623
                                                                 0.134153
                    total_bedrooms
                                    population
                                                households median_income
longitude
                                      0.099773
                                                  0.055310
                                                                 -0.015176
                          0.069260
latitude
                         -0.066658
                                     -0.108785
                                                 -0.071035
                                                                 -0.079809
housing_median_age
                         -0.318998
                                      -0.296244
                                                 -0.302916
                                                                 -0.119034
                                      0.857126
                                                  0.918484
                                                                  0.198050
total rooms
                          0.927253
total_bedrooms
                                                  0.974725
                                                                 -0.007682
                          1.000000
                                      0.873910
population
                          0.873910
                                      1.000000
                                                  0.907222
                                                                  0.004834
households
                          0.974725
                                      0.907222
                                                  1.000000
                                                                  0.013033
median_income
                         -0.007682
                                      0.004834
                                                  0.013033
                                                                  1.000000
```

median_house_value 0.049454 -0.024650 0.065843 0.688075

median_house_value longitude -0.045967 latitude -0.144160 0.105623 housing_median_age total_rooms 0.134153 total bedrooms 0.049454 population -0.024650 households 0.065843 median_income 0.688075 1.000000 median_house_value

<ipython-input-69-3abd71ce2464>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versio
corr = housing_df.corr() # data frame correlation function

```
# make the heatmap larger in size
plt.figure(figsize = (8,8))
sns.heatmap(corr, annot=True)
plt.show()
```



```
# Additionally we noted that several features (total_rooms,total_bedrooms,population,households) have very high correlation to one another,
# so it's interesting to find out if a removal of a few of them would have any affect on the model performance
# a new feature that is a ratio of the total rooms to households
housing_df['rooms_per_household'] = housing_df['total_rooms']/housing_df['households']
# a new feature that is a ratio of the total bedrooms to the total rooms
housing\_df['bedrooms\_per\_room'] = housing\_df['total\_bedrooms']/housing\_df['total\_rooms']
# a new feature that is a ratio of the population to the households
housing_df['population_per_household']= housing_df['population']/housing_df['households']
# let's combine the latitude and longitude into 1
housing_df['coords'] = housing_df['longitude']/housing_df['latitude']
housing_df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 20640 entries, 0 to 20639
     Data columns (total 14 columns):
                                   Non-Null Count Dtype
     # Column
     ---
                                   -----
     0
         longitude
                                   20640 non-null float64
     1 latitude
                                   20640 non-null float64
         housing_median_age
      2
                                   20640 non-null float64
                                   20640 non-null float64
         total rooms
      4 total_bedrooms
                                   20640 non-null float64
         population
                                   20640 non-null float64
                                   20640 non-null float64
         households
                                   20640 non-null float64
         median_income
      8 median_house_value
                                   20640 non-null float64
                                   20640 non-null object
      9 ocean proximity
     10 rooms_per_household
                                   20640 non-null float64
                                   20640 non-null float64
     11 bedrooms_per_room
     12 population_per_household 20640 non-null float64
                                   20640 non-null float64
     13 coords
     dtypes: float64(13), object(1)
     memory usage: 2.2+ MB
# remove total_rooms, households, total bedrooms, popluation, longitude, latitude
housing_df = housing_df.drop('total_rooms', axis=1)
housing_df = housing_df.drop('households', axis=1)
housing_df = housing_df.drop('total_bedrooms', axis=1)
housing_df = housing_df.drop('population', axis=1)
housing_df = housing_df.drop('longitude', axis=1)
housing_df = housing_df.drop('latitude', axis=1)
housing_df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 20640 entries, 0 to 20639
     Data columns (total 8 columns):
     # Column
                                   Non-Null Count Dtype
     0 housing_median_age
                                   20640 non-null float64
         median_income
                                   20640 non-null float64
      2 median_house_value
                                   20640 non-null float64
                                   20640 non-null object
     3
         ocean_proximity
                                   20640 non-null float64
     4 rooms_per_household
         bedrooms_per_room
                                   20640 non-null float64
         population_per_household 20640 non-null float64
                                   20640 non-null float64
         coords
     dtypes: float64(7), object(1)
     memory usage: 1.3+ MB
#Heatmap after removing correlation
corr = housing_df.corr()
#make the heatmap larger in size
plt.figure(figsize = (7,7))
sns.heatmap(corr, annot=True)
plt.show()
```

<ipython-input-73-1264607259b1>:3: FutureWarning: The default value of numeric_only in
 corr = housing_df.corr()


```
#Encoding categorical data
# Most ML algorithms can only learn from numeric data (it's all Math) so categorical data must be encoded (i.e. converted) to numeric data
# Let's review our data types again; showing that ocean_proximity is the only categorical data
housing_df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 20640 entries, 0 to 20639
     Data columns (total 8 columns):
                                    Non-Null Count Dtype
     #
         Column
     ---
     0
          \verb|housing_median_age|
                                    20640 non-null float64
                                    20640 non-null float64
      1
          median\_income
      2
          median_house_value
                                    20640 non-null float64
                                    20640 non-null object
          ocean_proximity
      4
          rooms_per_household
                                    20640 non-null float64
      5
          bedrooms_per_room
                                    20640 non-null float64
          population_per_household
                                    20640 non-null float64
          coords
                                    20640 non-null float64
     dtypes: float64(7), object(1)
     memory usage: 1.3+ MB
# let's see the unique categories for OCEAN_PROXIMITY
housing_df.ocean_proximity.unique()
     array(['NEAR BAY', '<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'ISLAND'],
           dtype=object)
# let's count
housing_df["ocean_proximity"].value_counts()
     <1H OCEAN
     INLAND
```

NEAR OCEAN 2658 NEAR BAY 2290 ISLAND 5

Name: ocean_proximity, dtype: int64

Let's see how the Panda's get_dummies() function works (generates new columns based on the possible options)
print(pd.get_dummies(housing_df['ocean_proximity']))

	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN
0	0	0	0	1	0
1	0	0	0	1	0
2	0	0	0	1	0
3	0	0	0	1	0
4	0	0	0	1	0
20635	0	1	0	0	0
20636	0	1	0	0	0
20637	0	1	0	0	0
20638	0	1	0	0	0
20639	0	1	0	0	0

[20640 rows x 5 columns]

rooms_per_household

let's replace the OCEAN_PROXIMITY column using get_dummies()
housing_df_encoded = pd.get_dummies(data=housing_df, columns=['ocean_proximity'])

print the first few observations; notice the old OCEAN_PROXIMITY column is gone housing_df_encoded.head()

	housing_median_age	median_income	median_house_value	rooms_per_household	bedrooms
0	41.0	8.3252	452600.0	6.984127	
1	21.0	8.3014	358500.0	6.238137	
2	52.0	7.2574	352100.0	8.288136	
3	52.0	5.6431	341300.0	5.817352	
4	52.0	3.8462	342200.0	6.281853	

print(y_train.shape)
print(y_test.shape)

```
#Train the model
import sklearn
from sklearn.model_selection import train_test_split
# remove spaces from column names and convert all to lowercase and remove special characters as it could cause issues in the future
housing\_df\_encoded.columns = [c.lower().replace(' ', '\_').replace(' ', '\_') for c in housing\_df\_encoded.columns]
# Split target variable and feature variables
X = housing_df_encoded[['housing_median_age', 'median_income','bedrooms_per_room','population_per_household','coords','ocean_proximity__1h_c
                         'ocean_proximity_inland','ocean_proximity_island','ocean_proximity_near_bay','ocean_proximity_near_ocean']]
y = housing_df_encoded['median_house_value']
print(X)
            housing_median_age median_income bedrooms_per_room \
     0
                          41.0
                                        8.3252
                                                         0.146591
                                        8.3014
                                                         0.155797
     1
     2
                          52.0
                                        7.2574
                                                         0.129516
                                        5.6431
                                                         0.184458
     3
                          52.0
     4
                          52.0
                                        3.8462
                                                         0.172096
                                        1,5603
                                                         0.224625
     20635
                          25.0
     20636
                          18.0
                                        2.5568
                                                         0.215208
     20637
                          17.0
                                        1.7000
                                                         0.215173
     20638
                          18.0
                                        1.8672
                                                         0.219892
     20639
                                                         0.221185
                          16.0
                                        2.3886
            population_per_household
                                         coords ocean proximity 1h ocean
     0
                            2,555556 -3,226769
     1
                            2.109842 -3.228209
                                                                          0
     2
                            2.802260 -3.229590
                                                                          0
     3
                            2.547945 -3.229855
                                                                          0
     4
                            2.181467 -3.229855
                                                                          0
                            2.560606 -3.067123
     20635
                            3.122807 -3.069385
     20636
                                                                          0
     20637
                            2.325635 -3.074309
                                                                          a
     20638
                                                                          0
                            2.123209 -3.076845
     20639
                            2.616981 -3.079502
            ocean_proximity_inland ocean_proximity_island
     0
                                 0
                                 0
                                                          0
     1
     2
                                 0
                                                          0
                                                          0
     3
                                  0
     4
                                 0
                                                          0
     20635
                                                          0
                                                          0
     20636
                                 1
                                                          0
     20637
                                 1
     20638
                                 1
                                                          0
     20639
                                                          0
            ocean_proximity_near_bay
                                      ocean_proximity_near_ocean
     0
     1
     2
                                                                0
                                    1
     3
                                    1
                                                                0
                                   1
                                                                 0
     20635
                                   0
                                                                0
                                    0
     20637
                                                                0
     20638
                                    0
                                                                0
     20639
                                                                0
     [20640 rows x 10 columns]
# Split training & test data¶
# Splitting the data into training and testing sets in numpy arrays
# We train the model with 70% of the samples and test with the remaining 30%
\# X -> array with the inputs; y -> array of the outputs
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, shuffle=True, test_size=0.3)
# Confirm how the data was split
print(X_train.shape)
print(X_test.shape)
```

```
(14448, 10)
(6192, 10)
(14448,)
(6192,)
```

```
#Linear Regression - Model Training¶
# Use scikit-learn's LinearRegression to train the model on both the training and evaluate it on the test sets
from sklearn.linear_model import LinearRegression

# Create a Linear regressor using all the feature variables
reg_model = LinearRegression()

# Train the model using the training sets
reg_model.fit(X_train, y_train)
```

v LinearRegression
LinearRegression()

#run the predictions on the training and testing data $y_pred_test = reg_model.predict(X_test)$

#compare the actual values (ie, target) with the values predicted by the model
pred_test_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred_test})

pred_test_df

	Actual	Predicted	
20046	47700.0	103743.050896	11.
3024	45800.0	92451.250932	
15663	500001.0	219490.963844	
20484	218600.0	283292.425471	
9814	278000.0	244228.861575	
17505	237500.0	210121.340663	
13512	67300.0	74907.098235	
10842	218400.0	216609.962950	
16559	119400.0	127975.072923	
5786	209800.0	202803.254310	
6192 rov	vs × 2 colun	nns	

Next steps:

View recommended plots


```
# Determine accuracy uisng R^2 # R^2 : R squared is another way to evaluate the performance of a regression model. # 1, means that the model is perfect and 0 means the the model will perform poorly. r2\_reg\_model\_test = round(reg\_model.score(X\_test, y\_test), 2) print("R^2 Test: {}".format(r2\_reg\_model\_test))
```

R^2 Test: 0.56

```
# try another machine learning algorithm : Randorm Forest
# Use scikit-learn's Randorm Forest to train the model on both the training and evaluate it on the test sets
from sklearn.ensemble import RandomForestRegressor

# Create a regressor using all the feature variables
rf_model = RandomForestRegressor(n_estimators=10,random_state=10)

# Train the model using the training sets
rf_model.fit(X_train, y_train)
```

RandomForestRegressor
RandomForestRegressor(n_estimators=10, random_state=10)

#run the predictions on the training and testing data $y_rf_pred_test = rf_model.predict(X_test)$

#compare the actual values (ie, target) with the values predicted by the model
rf_pred_test_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_rf_pred_test})

rf_pred_test_df

	Actual	Predicted	=
20046	47700.0	47840.0	ıl.
3024	45800.0	92680.0	
15663	500001.0	446000.5	
20484	218600.0	265320.0	
9814	278000.0	240800.0	
17505	237500.0	231680.1	
13512	67300.0	69680.0	
10842	218400.0	203930.0	
16559	119400.0	126170.0	
5786	209800.0	198160.0	

R^2 - 75.0%

6192 rows × 2 columns


```
# Determine accuracy uisng R^2
from sklearn.metrics import r2_score, mean_squared_error

score = r2_score(y_test, y_rf_pred_test)

print("R^2 - {}%".format(round(score, 2) *100))
```

```
# Determine RMSE - Root Mean Squared Error on the test data
print('RMSE on test data: ', mean_squared_error(y_test, y_rf_pred_test)**(0.5))
```

RMSE on test data: 57289.11495447338

```
# Determine feature importance - random forest algorithm is that it gives you the 'feature importance' for all the variables in the data
# plot the 6 most important features
plt.figure(figsize=(10,6))
feat_importances = pd.Series(rf_model.feature_importances_, index = X_train.columns)
feat_importances.nlargest(6).plot(kind='barh');
```



```
# training data with 5 most important features
train_x_if = X_train[['bedrooms_per_room', 'housing_median_age', 'coords', 'ocean_proximity_inland','population_per_household','median_inco
\texttt{test\_x\_if} = \texttt{X\_test[['bedrooms\_per\_room', 'housing\_median\_age', 'coords', 'ocean\_proximity\_inland', 'population\_per\_household', 'median\_income', 'bedrooms\_per\_room', 'housing\_median\_age', 'coords', 'ocean\_proximity\_inland', 'population\_per\_household', 'median\_income', 'housing\_median\_age', 'coords', 'ocean\_proximity\_inland', 'population\_per\_household', 'median\_income', 'coords', 'coords'
# create an object of the RandfomForestRegressor Model
rf_model_if = RandomForestRegressor(n_estimators=10,random_state=10)
# fit the model with the training data
rf_model_if.fit(train_x_if, y_train)
# predict the target on the test data
predict_test_with_if = rf_model_if.predict(test_x_if)
# Root Mean Squared Error on the train and test data
print('RMSE \ on \ test \ data: \ ', \quad mean\_squared\_error(y\_test, \ predict\_test\_with\_if)**(0.5))
            RMSE on test data: 57366.910692045196
pip install xgboost
            Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-packages (2.0.3)
            Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.25.2)
            Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.11.4)
# Extreme Gradient Boosting (XGBoost) is an open-source library that provides an efficient and effective implementation of the gradient boo
# Use the scikit-learn wrapper classes: XGBRegressor and XGBClassifier.
# try another machine learning algorithm : XGBoost
from xgboost import XGBRegressor
xgb_model = XGBRegressor()
# Train the model using the training sets
xgb_model.fit(X_train, y_train)
```

```
XGBRegressor

XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, random_state=None, ...)
```

```
#run the predictions on the training and testing data y_xgb_pred_test = xgb_model.predict(X_test)
```

```
#compare the actual values (ie, target) with the values predicted by the model
xgb_pred_test_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_xgb_pred_test})
xgb_pred_test_df
```

	Actual	Predicted				
20046	47700.0	66404.914062	ī			
3024	45800.0	86681.765625				
15663	500001.0	449666.093750				
20484	218600.0	262887.281250				
9814	278000.0	218322.796875				
17505	237500.0	227466.500000				
13512	67300.0	64712.433594				
10842	218400.0	218226.109375				
16559	119400.0	123181.968750				
5786	209800.0	227016.828125				
6192 rows × 2 columns						


```
fig= plt.figure(figsize=(8,8))
xgb_pred_test_df = xgb_pred_test_df.reset_index()
xgb_pred_test_df = xgb_pred_test_df.drop(['index'],axis=1)
plt.plot(xgb_pred_test_df[:50])
plt.legend(['Actual value','Predicted value'])
```

<matplotlib.legend.Legend at 0x7ebf5c5bece0>


```
from sklearn.metrics import r2_score
score = r2_score(y_test, y_xgb_pred_test)
print("R^2 - {}%".format(round(score, 2) *100))
     R^2 - 78.0%
\ensuremath{\text{\#}} Determine mean square error and root mean square error
from sklearn.metrics import mean_squared_error
import math
mse = mean_squared_error(y_test, y_xgb_pred_test)
rmse = math.sqrt(mean_squared_error(y_test, y_xgb_pred_test))
print(mse)
print(rmse)
     2939759040.9080276
     54219.5448238735
# Calculate mean absolute error(any large error)
from \ sklearn.metrics \ import \ mean\_absolute\_error
print(mean_absolute_error(y_test, y_xgb_pred_test))
     36285.050324826894
```

verbosity=1)

```
05/03/2024. 22:07
                                                                  ML Assignment-1(2203A51718) - Colaboratory
    from sklearn.model_selection import RepeatedKFold
    from sklearn.model_selection import cross_val_score
    # define model evaluation method
    cv = ReneatedKFold(n snlits=10 n reneats=3 random state=1)
    # determine hyperparameter available for tuning
    xgb_model.get_params()
         {'objective': 'reg:squarederror',
           'base_score': None,
           'booster': None,
           'callbacks': None,
           'colsample_bylevel': None,
           'colsample_bynode': None,
           'colsample_bytree': None,
           'device': None,
           'early_stopping_rounds': None,
           'enable_categorical': False,
           'eval_metric': None,
           'feature_types': None,
           'gamma': None,
           'grow_policy': None,
           'importance_type': None,
           'interaction_constraints': None,
           'learning_rate': None,
           'max_bin': None,
           'max_cat_threshold': None,
           'max_cat_to_onehot': None,
           'max_delta_step': None,
           'max_depth': None,
           'max_leaves': None,
           'min_child_weight': None,
           'missing': nan,
           'monotone_constraints': None,
           'multi_strategy': None,
           'n_estimators': None,
           'n_jobs': None,
           'num_parallel_tree': None,
'random_state': None,
           'reg_alpha': None,
           'reg_lambda': None,
           'sampling_method': None,
           'scale_pos_weight': None,
           'subsample': None,
           'tree_method': None,
           'validate_parameters': None,
           'verbosity': None}
    xgb_model_2 = XGBRegressor(
        gamma=0.05,
        learning_rate=0.01,
        max_depth=6,
        n_estimators=1000,
        n_jobs=16,
        objective='reg:squarederror',
        subsample=0.8,
        scale_pos_weight=0,
        reg_alpha=0,
        reg_lambda=1,
```