

Video 11.1 Kostas Daniilidis

By object recognition we might mean...

Image classification:

Input is an image and output is a set of class labels with probabilities

https://cloud.google.com/vision/docs/drag-and-drop

.. Or here:

But object recognition usually means...

Object Detection and Localization:

Find where is a car in the image?

History (Grauman and Leibe, 2011)

Recognition ingredients

- Object features (for example, HOG) that is resistent to geometric and photometric nuisances.
- Learning (training) the class model (SVM) to represent intra-class variations.
- Testing on an input image and output all bounding boxes for a specific class (Sliding window)

Instance recognition by matching (Lowe, 2004)

Match SIFT Features and verify geometric consistency

Video 11.2 Kostas Daniilidis

Holistic approaches (Grauman and Leibe, 2011)

Class Recognition: Sliding windows

- Learn a HOG representative of a car over multiple scales
- What happens if we slide this window over an input image?

HOG filter

- Array of weights for features in subwindow of HOG pyramid
- Score is dot product of filter and feature vector

Dalal & Triggs: HOG + linear SVMs

Typical form of a model

There is much more background than objects Start with random negatives and repeat:

- 1) Train a model
- 2) Harvest false positives to define "hard negatives"

Holistic / Global Representation

- + Gestaltism: shape is perceived as a whole:
 - not merely sum of parts
 - global dependencies

Localization through Shape Verification

Holistic approaches need perceptual grouping

Chordiogram

Idea: capture all global dependences among edges.

Chord: pair of boundary edges (p,q).

Chord feature: $f_{pq} = (r_{pq}, \theta_{pq}, \omega_p, \overline{\omega_q})$

Chordiogram: histogram of chord features:

$$\operatorname{ch}_k = \#\{(p,q)|f_{pq} \in bin(k)\}$$

Chord Features

Chord normals capture local finer shape information:

Chordiogram over only two features:

Chord normals ω

Chord length and orientation r, θ

Chord Features

Chord length and orientation capture global coarse shape information:

Chordiogram over only two features:

Chord normals ω

Chord length and orientation r, θ

Gestalt Properties of the Chordiogram

Global:

short as well as long range chords.

ch(centaur torso)

Holistic:

the chords of an edge are affected by all object parts.

ch(horse torso)

Transformation Properties of the Chordiogram

Translation invariance: a chord captures only relative location.

chordiogram

shape context

Robustness to shape variation:
lengths are quantized uniformly in log space.

Chordiogram vs Shape Context

Translation invariance: Yes No

Global support: Yes No

Global configuration: No Yes

Notion of parts: No Yes

Figure/Ground Organization

Chord normals point towards the object interior.

Contour and interior descriptor:

More discriminative than pure contour descriptors.
Encode figure/ground organization.

Video 11.3 Kostas Daniilidis

- DPM consists a Root and several Parts
 - Root represents holistic object shape
 - Part captures detailed part appearance

A car DPM model

- DPM consists a Root and several Parts
 - Root represents holistic object shape
 - Part captures detailed part appearance

- Flexible part configuration
 - Parts are allowed to move around the anchor points (default position)

Object hypothesis

Multiscale model captures features at two-resolutions

Detector response at a given root location

$$x=(r,c,l)$$
 $F_0'\cdot\phi(H,x)+\sum_{k=1}^n\max_{x_k}\Bigl(F_k'\cdot\phi(H,x_k)-d_k\cdot\phi_d(\delta_k)\Bigr)+b$
Root
Parts bias

Score of a hypothesis

$$score(p_0, \dots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)$$

$$filters$$
"spatial prior"
$$\sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)$$

$$displacements$$
deformation parameters

$$score(z) = \beta \cdot \Psi(H, z)$$

concatenation filters and deformation parameters

concatenation of HOG features and part displacement features

Matching

- Define an overall score for each root location
 - Based on best placement of parts

$$score(p_0) = \max_{p_1,\dots,p_n} score(p_0,\dots,p_n).$$

- High scoring root locations define detections
 - "sliding window approach"
- Efficient computation: dynamic programming + generalized distance transforms (max-convolution)

Car model

Person model

Precision/Recall results on Bicycles 2008

