THE SPECIFICS OF TEMPERATURE RETRIEVALS IN THE POLAR SUMMER MESOSPHERE AND LOWER THERMOSPHERE: APPLICATION TO TIMED SABER

Artem G. Feofilov¹, Alexander A. Kutepov¹, Benjamin T. Marshall², Larry L. Gordley², W. Dean Pesnell³, Richard A. Goldberg³, and James M. Russell III⁴

1 - ORAU/Goddard Space Flight Center, Greenbelt, MD, USA
2 - GATS inc, Newport News, VA, USA
3 - Goddard Space Flight Center, Greenbelt, MD, USA
4 - Hampton University, Hampton, VA, USA

EGU General Assembly 2006, Vienna, Austria

The SABER Instrument Aboard the TIMED Satellite

TIMED: Thermosphere, Ionosphere, Mesophere Energetics & Dynamics

SABER: Sounding of the Atmosphere Using Broadband Emission Radiometry

SABER instrument:

- Designed for studying Mesosphere/Lower Thermosphere
- Limb scanning infrared radiometer
- 10 broadband channels (1.27-17 μm)
- Retrieved data:

kinetic temperature and CO₂, O₃, H₂O, NO, O₂, OH, NO, O, H

Motivation

Current SABER (v.1.06) polar summer mesopause is too low both in altitude and temperature compared to:

- falling spheres data [Goldberg et al., 2004]
- climatology [Luebken et al., 1999]
- lidar data [She et al., 2002]
- additionally, SABER temperatures produced NLCs below 80 km in CARMA model [Stevens, 2005]

Motivation

Simulated SABER signal in the 15 µm channel

Energy exchange processes for 15 µm levels

Populations of main contributors

Sensitivity study - collisions with oxygen atoms

Sensitivity study - collisions with oxygen molecules

Sensitivity study - collisions with nitrogen molecules

Sensitivity study - vibrational-vibrational exchange

Possible sources of mesopause altering

- VT (CO₂-O): the effect starts below the mesopause but dramatically increases with the altitude;
- VT (CO_2 - O_2) and VT (CO_2 - N_2): mesopause region, possible candidates
- VV (CO₂-CO₂): mesopause region, possible candidate

An examination of the SABER OM revealed that

- VT exchanges were described correctly;
- VV within the isotopes functioned properly;
- VV between the isotopes was neglected.

Correct accounting for V-V exchange with the isotopes

Modified SABER OM vs unmodified SABER OM

Modified SABER OM retrieval

Modified SABER OM retrieval

Conclusions

- Polar summer mesosphere demonstrates very strong non-LTE behavior;
- The temperature retrieval in this region is extremely sensitive to the comprehensiveness of the non-LTE model;
- Neglecting the V-V exchange between the CO_2 isotopes can lead to ~10 K error in the mesopause temperature and to ~4 km error in its position;
- Performed investigation has helped to eliminate the inconsistency of polar summer SABER retrievals with in situ measurements.

