Towards Jumpy Planning

Akilesh B, **Suriya Singh**, Anirudh Goyal, Alexander

Neitz and Aaron Courville.

Overview

- Model-free RL: high sample inefficiency and ignorance of the environment dynamics.
- Model-based RL at the scale of time-steps: compounding errors and high computational requirements.
- Hierarchical Reinforcement Learning framework [1,2] address limitations in classic RL through sub-tasks and abstract actions.

This work

Use a model-based planner together with a goal-conditioned policy trained with model-free learning. We use a model-based planner that operates at higher levels of abstraction i.e., *decision states* and use model-free RL between the decision states.

Jumpy Planning

Decision States [3] (*aka* subgoal) states where the agent's policy has high entropy.

$$-\sum_{a\in\mathcal{A}} \pi(a|s) \ln \pi(a|s) > \tau$$

We fix τ such that a tiny fraction of states are chosen as decision states.

Dynamical Models

$$M: (s, a) \to s'$$

-> argmax or sample, successively query M in BFS fashion until goal state is encountered or maximum search depth is reached.

Jumpy dataset

$$\sum_{a \in \mathcal{A}} \pi(a|s') \ln \pi(a|s') > \tau$$
 or $\Delta_{min} T \leq dist(s,s') \leq \Delta_{max} T$

Funnel all intermediate states leading to the same s'

Jumpy Planning with Dynamical Model

The result of query is further passed to the agent to take action at current decision state

Results

Jumpy dataset

Performance Comparison

Coverage

#unique states visited
#reachable states

Generalisation Performance

