Multi-Robot Allocation for logistic applications

Davide Zorzi - VR414572

March 21, 2019

University of Verona

Industrial Logistics

The industrial logistics is the process of planning, organization and control of all the activities of handling and storage of goods, which, starting from the suppliers and reaching up to the end user, guarantee an adequate level of service to the customer consistent with the costs to it associated

1

Multi-Robot Systems for logistic applications

Kiva warehouse-management system

Thesis contribution

The contribution of this thesis:

- extension of ROS package
- proposing three tequnique:
 - 1. Single robot : Single task (SR:ST)
 - Set Partition Strategy Single robot : Multiple task (SPS1:N)
 - 3. Greedy Set Partition Strategy Single robot : Multiple task (GSP1:N)
- real scenario: Computer Engineering for Industry 4.0 Laboratory (ICE Lab)

ICE Laboratory

ICE Laboratory for logistic application

- Loading bay
- Unloading bays
- Vertices

Set Partition Strategy - Single robot : Multiple task (SPS1:N)

iteration	partition size	partition
1	1	$\{\{a, b, c, d\}\}$
2	2	$\{\{a, b, c\}, \{d\}\}$
3	2	$\{\{a, b, d\}, \{c\}\}$
4	2	$\{\{a, b\}, \{c, d\}\}$
5	3	$\{\{a, b\}, \{c\}, \{d\}\}$
6	2	$\{\{a, c, d\}, \{b\}\}$
7	2	$\{\{a, c\}, \{b, d\}\}$
8	3	$\{\{a, c\}, \{b\}, \{d\}\}$
9	2	$\{\{a, d\}, \{b, c\}\}$
10	2	$\{\{a\}, \{b, c, d\}\}$
11	3	$\{\{a\}, \{b, c\}, \{d\}\}$
12	3	$\{\{a, d\}, \{b\}, \{c\}\}$
13	3	$\{\{a\}, \{b, d\}, \{c\}\}$
14	3	$\{\{a\}, \{b\}, \{c, d\}\}$
15	4	$\{\{a\}, \{b\}, \{c\}, \{d\}\}$

Greedy Set Partition Strategy - Single robot : Multiple task (GSP1:N)

ROS package Logistic_sim

Empirical Results

Video

Conclusions and Future Work