МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 1.3.3 Измерение вязкости воздуха по течению в тонких трубках

Салтыкова Дарья Б04-105

1 Введение

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Оборудование: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

2 Теоретические сведения

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, и слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{ua\rho}{\eta}$$
 (1)

где u - скорость потока, a - характерный размер системы (размер, на котором существенно меняется скорость течения), ρ - плотность движущейся среды, η - вязкость. Это число имеет смысл отношения кинетической энергии движения элемента объёма жидкости к потерям энергии из-за трения в нём. $Re \sim K/A_{\rm тp}$ В гладких трубах круглого сечения переход от ламинарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Q = \frac{\pi R^4}{8l\eta} (P_1 - P_2) \quad (2)$$

В этой формуле P_1-P_2 - разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно l. Велечину Q обычно называют расходом. Формула (2) позволяет определять вязкость газа по его расходу.

Отметим условия, при которых справедлива формула (2). Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объема газа (при выводе формулы удельный объем считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа - лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., то есть менее 1% от атмосферного. Формула (2) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при движении вдоль потока.

При втекании газа в трубку из большого резервуара скорости слоев вначале постоянны по всему сечению (рис. 1). По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней слои. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии $l_{\rm уст}$ от входа в трубку, которое зависит от радиуса трубки R и числа Рейнольдса по формуле

Рис. 1: Формирование установившегося течения (в ламинарном режиме)

Градиент давления на участке формирования потока оказывается большим, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (3) дает возможность оценить длину участка формирования.

3 Экспериментальная установка

Рис. 2: Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 2. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной

(рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

4 Ход работы

- 1. Проведем предварительные расчеты:
- 1.1 Рассчитаем значение расхода $Q_{\rm kp}$, при котором число Рейнольдса станет равным критическому $Re_{\rm kp}\approx 10^3$. Для предварительной оценки примем вязкость воздуха равной $\eta_{\rm возд}\sim 2\cdot 10^{-5}\Pi {\rm a\cdot c}$, плотность воздуха определим по уравнению идеального газа. В качестве характерной скорости потока используем её среднее значение $\langle u \rangle = \frac{Q}{\pi R^2}$.

$$Q_{\rm kp} = \langle u \rangle \pi R^2 = \frac{Re_{\rm kp} \eta_{\rm возд} \pi R^2}{\rho l}$$

Для $d = 3.90 \pm 0.05$ мм

$$Q_{\text{kp}} = 4 \cdot 10^{-7} \text{ m}3/\text{c}.$$

Для $d = 5.25 \pm 0.05$ мм

$$Q_{\rm kp} = 7 \cdot 10^{-7} \,\, {\rm m}3/{\rm c}.$$

Для $d = 3.00 \pm 0.1$ мм

$$Q_{\mathrm{kp}} = 2 \cdot 10^{-7} \, \, \mathrm{m}3/\mathrm{c}.$$

 $1.2~\Pi$ о формуле Пуазейля рассчитаем соответствующий перепад давления на выбранном участке $\Delta P_{\kappa p}$.

$$\Delta P_{\rm kp} = \frac{8\eta lQ}{\pi R^4}$$

Для $d = 3.90 \pm 0.05$ мм

$$\Delta P_{\rm kp} = 260 \; \Pi a.$$

Для $d = 5.25 \pm 0.05$ мм

$$\Delta P_{\rm \kappa p} = 310 \; \Pi a.$$

Для $d = 3.00 \pm 0.1$ мм

$$\Delta P_{\text{\tiny KP}} = 200 \; \Pi \text{a.}$$

1.3 Оценим длину $l_{\rm ycr}$, на которой течение можно считать установившимся при $Re \approx Re_{\rm kp}$.

Для $d = 3.90 \pm 0.05$ мм:

$$l_{\rm vcr} = 39 \, \, {\rm cm}.$$

Для $d = 5.25 \pm 0.05$ мм:

$$l_{\text{vct}} = 52.5 \text{ cm}.$$

Для $d = 5.25 \pm 0.05$ мм:

$$l_{\rm vct} = 30 \, \, {\rm cm}.$$

2. Меняя расход воздуха краном K и наблюдая за столбиком спирта в микроманометре, визуально определим границу перехода $\Delta P_{\rm кp}$ от ламинарного течения к турбулентному (турбулентный режим характеризуется заметными пульсациями давления во времени).

Для
$$d = 3.90 \pm 0.05$$
 мм: $\Delta P_{\rm \kappa p} \approx 224$ Па.

Для
$$d = 5.25 \pm 0.05$$
 мм: $\Delta P_{\text{\tiny KD}} \approx 250$ Па.

Для
$$d=3{,}00\pm0{,}1$$
 мм: $\Delta P_{\rm kp}\approx 187$ Па.

Экспериментальные значения близки к полученным теоретически.

3. Оценим погрешность измерения времени σ_t . Для этого проведем серию из 7–9 измерений времени прохождения через счётчик постоянного объёма газа при постоянном расходе и в качестве оценки для случайной погрешности измерения времени используем среднеквадратичное отклонение результатов.

$\mathcal{N}_{ar{0}}$	1	2	3	4	5	6	7	8
t, c	12,40	12,56	12,14	11,89	12,24	12,23	12,68	12,07
σ_t , c	0,092							

4. Измерим зависимости перепада давления ΔP на выбранных участках трубок от расхода газа Q.

Для
$$l = 50$$
 см, $d = 3.90 \pm 0.05$ мм.

<i>Q</i> , л/с	0,032	0,072	0,089	0,095	0,109	0,119	0,128	0,134
ΔP , Πa	49,033	121,6	168,7	200,1	276,5	339,3	396,2	429,5
σ_Q , л/с		0,0028						
σ_P , Π a	5,88							

Для l = 50 см, $d = 5.25 \pm 0.05$ мм.

Q, л/с	0,095	0,127	0,146	0,165	0,183	0,210	0,233	0,264
ΔP , Πa	45,111	62,76	113,8	149,1	180,4	227,5	282,4	362,8
σ_Q , л/с		0,0028						
$\sigma_P, \Pi a$	5,88							

Построим графики зависимости $Q(\Delta P)$ (см. Рис. 3 и 4).

Из графиков видно, что для $d=3.90\pm0.05$ мм: $\Delta P_{\rm kp}\approx 190\Pi a;$ для $d=5.25\pm0.05$ мм: $\Delta P_{\rm kp}\approx 230~\Pi a.$

Пользуясь формулой Пуазейля, по угловым коэффициентам линейных участков определим вязкость воздуха η .

$$\eta = (2.2 \pm 0.4) \cdot 10^{-5} \text{ Ha} \cdot \text{c}$$

$$\eta = (1.3 \pm 0.56) \cdot 10^{-5} \text{ Ha} \cdot \text{c}$$

Рассчитаем критическое число Рейнольдса $Re_{\rm kp}$: $Re_{\rm kp}\approx 1950~({\rm для}~d=3.90\pm0.05~{\rm мм})$

5. Измерим распределение давления газа вдоль трубки P(x).

Для
$$Q = 0.128$$
 л/с, $d = 5.25 \pm 0.05$ мм.

ΔP , Πa	86,29	133,4	200,1	276,5		
σ_P , Π a	5,88					
l, cm	10,5	40,5	80,5	130,5		
σ_l , cm	0,5					

Для Q = 0.067 л/с, $d = 3.90 \pm 0.05$ мм.

ΔP , Πa	94,1	158	247	359			
σ_P , Π a	5,88						
l, cm	11	11 41 81 131					
σ_l , cm		0,					

Для Q = 0.089 л/с, $d = 3.00 \pm 0.10$ мм.

ΔP , \cdot Πa	100	224	308		
σ_P , Π a	5,88				
l, cm	6 26 46				
σ_l , cm	0,5				

По результатам измерений построим графики P(x) зависимостей давления P от координаты вдоль трубы x. (см. Рис. 5)

Из графика оценим длину участка, на котором происходит установление потока:

Для $d = 3.90 \pm 0.05$ мм : $l_{\rm ycr} \approx 39$ см

Для $d=5.25\pm0.05~{
m mm}:l_{
m ycr}\approx38{
m cm}$

Для $d = 3.00 \pm 0.1 \; \text{мм} : l_{\text{уст}} \approx 26 \text{см}$

6. Измерим зависимость расхода от радиуса трубы при заданном градиенте давления.

Сначала проведем измерения в ламинарном режиме. Установим $\frac{\Delta P}{l} = \frac{51}{50} \approx 1 \, \frac{_{\text{мм вод ст}}}{_{\text{см}}} = \text{const}$

Для $d=3.90\pm0.05$ мм, Q=0.060 л/с.

Для $d=5.25\pm0.05$ мм, Q=0.20 л/с.

Для $d=3{,}00\pm0{,}1$ мм, $Q=0{,}018$ л/с.

Теперь проведем измерения в турбулентном режиме. Установим $\frac{\Delta P}{l} = \frac{154}{50} \approx 3 \, \frac{_{\text{MM вод ст}}}{_{\text{см}}} = \text{const.}$

Для $d=3.90\pm0.05$ мм, Q=0.111 л/с.

Для $d=5.25\pm0.05$ мм, Q=0.271 л/с.

Для $d=3{,}00\pm0{,}1$ мм, $Q=0{,}052$ л/с.

Изобразим результаты на графике в двойном логарифмическом масштабе lnQ(lnR) (Рис. 6). Наклон полученной прямой соответствует показателю степени β зависимости $Q \sim R^{\beta}$.

Для ламинарного режима:

$$\beta=4{,}29\pm0{,}15$$

Для турбулентного режима:

$$\beta=2{,}94\pm0{,}03$$

5 Вывод

В ходе работы:

- Были исследованы условия перехода течения из ламинарного режима в турбулентный.
- Было определено значение вязкости воздуха с помощью трубок разного диаметра: $\eta = (2.2 \pm 0.4) \cdot 10^{-5} \; \Pi \text{a} \cdot \text{c}; \; \eta = (1.3 \pm 0.56) \cdot 10^{-5} \; \Pi \text{a} \cdot \text{c}, \; \text{табличное значение составляет} \; \eta_{\text{табл}} = 1.78 \cdot 10^{-5} \; \Pi \text{a} \cdot \text{c}.$ Полученные значения равны в пределах погрешности. Основной вклад в погрешность итогового значения вязкости внесла погрешность измерения давлений.
- Были получены достаточно близкие к теоретическим значения длин установления для трубок трех диаметров.

Для $d=3{,}90\pm0{,}05~{\rm mm}:l_{{
m ycr}}\approx39{\rm cm}$

Для $d=5{,}25\pm0{,}05~{
m mm}:l_{
m ycr}pprox38{
m cm}$

Для $d = 3.00 \pm 0.1 \; \text{мм} : l_{\text{уст}} \approx 26 \text{см}$

• Было установлено, что расход в ламинарном режиме пропорционален радиусу трубы в $\beta = 4.29 \pm 0.15$ степени, а в турбулентном режиме - в $\beta = 2.94 \pm 0.03$ степени.

Исследуемые зависимости представлены на графиках ниже.

Рис. 3: $d = 3.90 \pm 0.05$ мм.

Рис. 4: $d = 5.25 \pm 0.05$ мм.

Рис. 5: 1) $d = 5.25 \pm 0.05$ мм; 2) $d = 3.90 \pm 0.05$ мм; 3) $d = 3.00 \pm 0.10$ мм.

Рис. 6: Зависимость lnQ(lnR)