Zafar Takhirov

cc.rafaz@zafar.cc • 1883 Agnew Rd., Apt. 244, Santa Clara, CA 95054 • 617.826.9666

Education

Boston UniversityBoston, MAPhD ComputerMay 2017EngineeringGPA 3.5/4.0Boston UniversityBoston, MAM.S. ComputerMay 2012EngineeringGPA 3.49/4.0

Russian-Tajik (Slavic) University

Dushanbe, Tajikistan May 2008 Specialist, Linguistics GPA 5.0/5.0

Skills

Programming Languages

C++, Python, (System)Verilog, MATLAB, Bash, Scala/Chisel, LATEX, GNU Make

Tools

Git, Emacs, Cadence RTL Compiler, Cadence SOC Encounter, Icarus Verilog, GTKWave, Inkscape

Foreign Languages

English, Russian, Tajik, Turkish, German

Relevant Coursework

- Computer Organization, Architecture
- Advanced Digital Design in Verilog
- VLSI, VLSI Project
- Microprocessors
- RF/Analog Design
- Photonics

Links

GitHub: zafartahirov **LinkedIn**: zafartakhirov

blog.zafar.cc **resume.**zafar.cc

Work Experience

Research Assistant

09/2011 - Now

Boston University, Boston, MA

Worked on tunable and adaptive systems; developed energyefficient mechanism to achieve 40% lower energy dissipation

CTO & Co-Founder

05/15 - 02/16

Avicennas Group, Inc., New York City, NY

Manage the team of 5 developers (remote) to develop a healthcare travel system

Mixed-Signal Verification Engineer

02/14 - 02/15

Analog Devices, Inc.

Initiated the implementation of UVM-based verification as well as functional safety discussion (ISO 26262)

Mixed-Signal Design Engineering Intern

05/13 - 12/13

Analog Devices, Inc.

Develop Real-Number Modeling approach to speed up analog simulations by 1000x

Teaching Fellow / Guest Lecturer

2011-2015

Boston University: Logic Design, Computer Architecture
Designed final projects, provided lab help, and delivered guest lectures on Verilog to undergraduate and graduate students.

Research

Designing Energy-Efficient Computing Systems 2012–Present using Equalization and Machine Learning

This research focuses on designing energy-efficient hardware for mobile applications by utilizing feedback equalization and machine learning algorithms to dynamically adapt to energy budgets.

- [2016] Takhirov, Z., Joshi, A. J. "On Feedback Equalization in Digital Logic for the Above-Threshold Voltage Range", TVLSI'16, in preparation
- [2016] Takhirov, Z., Wang, J., Saligrama, V., and Joshi, A. J. "Energy-Efficient Adaptive Classifier Design for Mobile Systems", ISLPED'16, under review
- [2013] Takhirov, Z., Nazer, B., and Joshi, A. J. "Energy-efficient pass-transistor-logic using decision feedback equalization", ISLPED'13
- [2012] Takhirov, Z., Nazer, B., and Joshi, A. J. "Error mitigation in digital logic using a feedback equalization with Schmitt trigger (FEST) circuit", ISQED'12
- [2011] Takhirov, Z., Nazer, B., and Joshi, A. J. "A preliminary look at error avoidance in digital logic via feedback equalization", Allerton'11

Projects

RISC-V & Accelerator System Design	in progress
"NSFW" Programming Language	in progress
Quadcopter with Machine Learning Navigation	Spring 2015
Background Subtraction on FPGA	Fall 2013
Handwriting Calculator using ANN on FPGA	Fall 2013