Économétrie des Séries Temporelles

Fiche TD #2

Processus ARMA stationnaires

Exercice 1

Trouvez la fonction d'autocorrélation du processus stationnaire définit par

$$Y_t = 5 - \frac{1}{2}e_{t-1} + \frac{1}{4}e_{t-2} + e_t$$

Exercice 2

Soit $\{Y_t\}$ un processus stationnaire AR(1) avec $-1 < \phi < +1$

- (a) Trouvez la fonction d'autovariance de $W_t = \Delta Y_t = Y_t Y_{t-1}$ en fonction de ϕ et σ_e^2 . (b) En particulier, montrez que $\mathsf{var}(W_t) = 2\sigma_e^2/(1+\phi)$.

Exercice 3

Pour un modèle ARMA(1,2) $Y_t = 0.8Y_{t-1} + 0.7\varepsilon_{t-1} + 0.6\varepsilon_{t-2} + \varepsilon_t$ montrez que

- (a) $\rho_k = 0.8 \rho_{k-1}$ (b) $\rho_2 = 0.8 \rho_1 + 0.6 \sigma_{\varepsilon_t}^2 / \gamma_0$

Exercice 4

Considérez deux processus MA(2), un avec $\theta_1=\theta_2=1/6$ et un autre avec $\theta_1=-1$ et $\theta_2=6$

- (a) Montrez que ces processus ont la même fonction d'autocorrelation
- (b) Comment les racines des polynômes caractéristiques correspondants se comparent-elles ?