Hands-on training session 3

Hui-Walter models with more than two diagnostic tests

Matt Denwood Giles Innocent Sonja Hartnack 2020-02-19

Introduction

Overview

Date/time:

- 20th February 2020
- **1**4.00 15.30

Teachers:

- Matt Denwood (presenter)
- Giles Innocent
- Sonja Hartnack

Recap

- JAGS / runjags is the wasy way to work with complex models
 - But we still have to check convergence and effective sample size!
- Estimating sensitivity and specificity is like pulling a rabbit out of a hat
 - Multiple populations helps a lot
 - Strong priors for one of the tests helps even more!

Recap

- JAGS / runjags is the wasy way to work with complex models
 - But we still have to check convergence and effective sample size!
- Estimating sensitivity and specificity is like pulling a rabbit out of a hat
 - Multiple populations helps a lot
 - Strong priors for one of the tests helps even more!
- But what if the tests are not independent of each other?

Session 3a: Hui-Walter models for multiple tests with conditional

indepdendence

What do we mean by "conditionally independent?"

- What do we mean by "conditionally independent?"
- Example: we have three antibody tests
 - The latent status is actually 'producing antibodies' not 'diseased'

- What do we mean by "conditionally independent?"
- Example: we have three antibody tests
 - The latent status is actually 'producing antibodies' not 'diseased'
- Example: antibody vs egg count tests for liver fluke
 - Does the latent state include migrating juvenile fluke?

- What do we mean by "conditionally independent?"
- Example: we have three antibody tests
 - The latent status is actually 'producing antibodies' not 'diseased'
- Example: antibody vs egg count tests for liver fluke
 - Does the latent state include migrating juvenile fluke?
- We're actually pulling something out of a hat, and deciding to call it a rabbit

Simulating data

Simulating data using an arbitrary number of independent tests is quite straightforward.

```
# Parameter values to simulate:
1
_{2} N <- 200
3 se1 <- 0.8
    sp1 < -0.95
se2 <- 0.9
    sp2 < -0.99
7 se3 <- 0.95
    sp3 < -0.95
8
9
    Populations <- 2
10
    prevalence \leftarrow c(0.25, 0.75)
11
    Group <- sample(1:Populations, N, replace=TRUE)</pre>
12
```

```
# Ensure replicable data:
1
    set.seed(2020-02-18)
2
3
    # Simulate the true latent state (which is unobserved in real
    \hookrightarrow life):
    true <- rbinom(N, 1, prevalence[Group])</pre>
    # Simulate test results for test 1:
6
    test1 <- rbinom(N, 1, se1*true + (1-sp1)*(1-true))
7
    # Simulate test results for test 2:
8
    test2 <- rbinom(N, 1, se2*true + (1-sp2)*(1-true))
9
    # Simulate test results for test 3:
10
    test3 <- rbinom(N, 1, se3*true + (1-sp3)*(1-true))
11
12
13
    simdata <- data.frame(Population=factor(Group), Test1=test1,</pre>

→ Test2=test2, Test3=test3)
```

Model specification

- Like for two tests, except it is now a 2x2x2 table
 - If calculating this manually, take extreme care with multinomial tabulation
- Or use autohuiwalter
 - This will also deal gracefully with missing data in one or more test results

```
source("autohuiwalter.R")
auto_huiwalter(simdata[,c('Population','Test1','Test2','Test3')],
outfile='auto3thw.bug')
```

```
for(p in 1:Populations){
1
             Tally_RRR[1:8,p] ~ dmulti(prob_RRR[1:8,p], N_RRR[p])
 2
             prob_RRR[1:8,p] <- se_prob[1:8,p] + sp_prob[1:8,p]</pre>
4
5
6
        for(p in 1:Populations){
8
             # Probability of observing Test1- Test2- Test3- from a
9
             \hookrightarrow true positive::
             se_{prob}[1,p] \leftarrow prev[p] * ((1-se[1])*(1-se[2])*(1-se[3])
10
             # Probability of observing Test1- Test2- Test3- from a
11
             \hookrightarrow true negative::
             sp_prob[1,p] <- (1-prev[p]) * (sp[1]*sp[2]*sp[3] +covsp12
12
             \rightarrow +covsp13 +covsp23)
13
14
15
             # Probability of observing Test1+ Test2+ Test3+ from a
16
             \hookrightarrow true positive::
             se_prob[8,p] <- prev[p] * (se[1]*se[2]*se[3] +covse12
17

→ +covse13 +covse23)
```

Alternative model specification

We might want to explicitly model the latent state:

```
model{

for(i in 1:N){
   truestatus[i] ~ dbern(prev[Population[i]])

Status[i] ~ dcat(prob[i, ])
prob[1:8,i] <- se_prob[1:8,i] + sp_prob[1:8,i]</pre>
```

```
se_prob[1,p] <- truestatus[i] *</pre>
2
          \rightarrow ((1-se[1])*(1-se[2])*(1-se[3]))
               sp_{prob}[1,p] \leftarrow (1-truestatus[i]) * (sp[1]*sp[2]*sp[3])
3
               se_prob[2,p] <- truestatus[i] *
5
               \rightarrow (se[1]*(1-se[2])*(1-se[3])
               sp_prob[2,p] <- (1-truestatus[i]) *</pre>
6
               \hookrightarrow ((1-sp[1])*sp[2]*sp[3])
7
               se_prob[3,p] <- truestatus[i] *
               \hookrightarrow ((1-se[1])*se[2]*(1-se[3]))
               sp_prob[3,p] <- (1-truestatus[i]) *</pre>
9
               \hookrightarrow (sp[1]*(1-sp[2])*sp[3])
10
               se_prob[4,p] <- truestatus[i] * (se[1]*se[2]*(1-se[3]))
11
               sp_prob[4,p] <- (1-truestatus[i]) *</pre>
12
               \rightarrow ((1-sp[1])*(1-sp[2])*sp[3])
               se_prob[5,p] <- truestatus[i] *
13
               \rightarrow ((1-se[1])*(1-se[2])*se[3])
               sp_prob[5,p] <- (1-truestatus[i]) *</pre>
14
               \hookrightarrow (sp[1]*sp[2]*(1-sp[3]))
                                                                                        10
15
```

1

But this is inefficient

There is also no way to distinguish individuals within the same boxes

We could also use the estimated se/sp/prev to post-calculate these status probabilities

This is useful for post-hoc ROC

Exercise

Simulate data from 3 tests and analyse using the autohuiwalter function

Do the estimates of Se/Sp correspond to the simulation parameters?

Make some data missing for one or more tests and re-generate the model

Can you see what has changed in the code?

Optional Exercise

Simulate data from 3 antibody tests with ab positive step [give code in solution]

Does the se/sp estimated by a model recover the parameters?

Why not?

```
library('tidyverse')
## - Attaching packages ----- tidyverse 1.3.0 -
## v ggplot2 3.2.1 v purrr 0.3.3
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## - Conflicts ----- tidyverse_conflicts() -
 ## x tidyr::extract() masks runjags::extract()
 ## x dplyr::filter() masks stats::filter()
 ## x dplyr::lag() masks stats::lag()
```

Session 3b: Hui-Walter models for multiple tests with conditional

depdendence

Branching of processes leading to test results

Example: two antibody tests and one antigen test

Or three antibody tests where one has a different target to the other two

Simulating data

It helps to consider the data simulation as a biological process.

```
# Parameter values to simulate:
2 N <- 200
    se1 <- 0.8
    se2 < -0.9
    se3 <- 0.95
    sp1 < -0.95
6
7
    sp2 < -0.99
8
    sp3 < -0.95
9
    Populations <- 2
10
    prevalence \leftarrow c(0.25, 0.75)
11
    Group <- rep(1:Populations, each=N)</pre>
12
13
    # Ensure replicable data:
14
    set.seed(2017-11-21)
15
16
    # We will assume test 1 is dependent of the others, but tests
17

→ 283
```

Verifying simulation results

Model specification

12

```
# Probability of observing ELISA1- ELISA2- WesternBlot-
            se_{prob}[1,p] \leftarrow prev[p] * ((1-se[1])*(1-se[2])*(1-se[3])

→ +covse12 +covse13 +covse23)

            # Probability of observing ELISA1- ELISA2- WesternBlot-
3
            sp_prob[1,p] \leftarrow (1-prev[p]) * (sp[1]*sp[2]*sp[3] +covsp12
4

→ +covsp13 +covsp23)

5
            # Probability of observing ELISA1+ ELISA2- WesternBlot-
6
            → from a true positive::
            se_{prob}[2,p] \leftarrow prev[p] * (se[1]*(1-se[2])*(1-se[3])
7
    \rightarrow -covse12 -covse13 +covse23)
            # Probability of observing ELISA1+ ELISA2- WesternBlot-
8
            → from a true negative::
            sp_{prob}[2,p] \leftarrow (1-prev[p]) * ((1-sp[1])*sp[2]*sp[3]
9

→ -covsp12 -covsp13 +covsp23)

10
11
```

Generating the model

Extreme care needed

Use autohuiwalter with argument covon=TRUE

```
source('autohuiwalter.R')
   auto_huiwalter(ind3tests, 'auto3tihw.bug', covon=TRUE)
   ## The model and data have been written to auto3tihw.bug in the
   ## You should check and alter priors before running the model
   ## Auto-generated Hui-Walter model created by script version 0.1
   \rightarrow on 2020-02-19
   model{
3
4
       ## Observation layer:
5
6
       # Complete observations (N=400):
       for(p in 1:Populations){
                                                                     18
           Tally RRR[1.8 n] ~ dmulti(prob RRR[1.8 n] N RRR[n])
```

Exercise

Simulate data with a dependence between 2 tests

Model assuming conditional independence biases the estimates

Model with conditional depdendence has bigger CI but unbiased

Session 3c: Model selection

Motivation

[Planning for this session to be a general discussion between all instructors and students, as I am not entirely sure what to recommend in terms of model selection - except that I dislike DIC!!!]

Background to DIC

[Some theory slides stolen from ABME course: ABME_Model selection.pptx]

DIC works fine for hierarchical normal models but not others

Other methods

Bayes factors work well if you can count them

WAIC works better for a wide range of models

- * An approximation to LOO with general applicability
- - * Could be useful if using the GLM version (untested!)

Models tend to be sensitive to priors

Simulating data and testing that your model recovers the parameters is a good idea

Calculating DIC

Add dic and ped to the monitors in runjags

But don't trust the results

Also bear in mind you can't parallelise

Calculating WAIC

Currently a pain

```
## This is an example of extracting WAIC from runjags/jags
    → objects
    # Matt Denwood, 2019-11-11
2
    # Note that this will all get much easier with the release of
    → JAGS 5 and the next verison of runjags!!
4
5
    ## A function to return the WAIC
6
    # Also returns the effective number of parameters (p_waic), elpd
    → and lpd as described by:
    #
7
    → www.stat.columbia.edu/~qelman/research/unpublished/waic stan.pdf
    # Note: mean_lik is the log of the (exponentiated)
8
        l.i.kel.i.h.oods
                var log lik is the variance of the log likelihoods
9
                these need separate monitors in JAGS
10
    get_waic <- function(mean_lik, var_log_lik){</pre>
11
12
        stopifnot(length(mean_lik)==length(var_log_lik))
13
```

Future Updates

Model criticism will get better in JAGS 5, and the next update of runjags

Installing development version of runjags:

Put on drat server and supply code here

WAIC is also calculable from Stan models (easily?)

Discussion and free practical time

What would be useful to add to the autohuiwalter function?

- Modify so it allows Se/Sp priors to be defined as matrices?
- And correlations on/off as matrices?