

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2010

WPISUJE ZDAJĄCY

KOD			Pl	ESE	\mathbf{L}		

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 1-3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Ш	Ш	Ш	Ш	II	Н	П	Ш	Ш	Ш	ı	Ш	Н		Ш	Ш	Ш	П	Ш	П	Ш	Ш	Ш	Ш	ı
Ш	Ш	Ш	Ш	II	Н	П	Ш	Ш	Ш	ı				Ш	Ш	Ш		Ш	Ш	Ш	Н	Ш	Ш	ı
Ш	Ш	Ш	Ш	II	Н	П	Ш	Ш	Ш	ı	Ш	Н		Ш	Ш	Ш	П	Ш	П	Ш	Ш	Ш	Ш	ı
Ш	Ш	Ш	Ш	II	Н	П	Ш	Ш	Ш	ı	Ш	Н		Ш	Ш	Ш	П	Ш	П	Ш	Ш	Ш	Ш	ı
11 1	- 11		11				- 11		ш		ш			11								- 11	ш	ı

MAJ 2011

XXXXDD A NID.

WIDKANE:
(środowisko)
(kompilator)
(program użytkowy)

Czas pracy:

90 minut

Liczba punktów do uzyskania: 20

MIN-R1_1P-112

Zadanie 1. Długość napisów binarnych (7 pkt)

Opisana poniżej funkcja rekurencyjna wyznacza, dla liczby naturalnej n > 0, długość napisu uzyskanego przez sklejenie binarnych reprezentacji liczb naturalnych od 1 do n-1.

Funkcja sklej(n)

krok 1. jeśli n = 1, to podaj 0 jako wynik i zakończ działanie

krok 2. jeśli n parzysta, to wynikiem jest $n-1+2 \cdot sklej(n/2)$

krok 3. jeśli n nieparzysta, to wynikiem jest n-1+sklej((n-1)/2)+sklej((n+1)/2)

Wykonaj polecenia a)-c):

a) Wykonanie funkcji *sklej* można przedstawić w postaci drzewa wywołań rekurencyjnych ilustrującego wszystkie wywołania funkcji po jej uruchomieniu dla zadanego argumentu. Poniższy rysunek przedstawia takie drzewo dla wywołania *sklej*(5).

Narysuj analogiczne drzewo dla wywołania sklej(7).

b) Uzupełnij poniższą tabelę, podając wartości funkcji sklej dla wskazanych argumentów.

n	sklej(n)
1	0
2	1
3	
4	
5	
6	

c) Chcemy wypełnić tablicę s[1..n] w taki sposób, że s[i] = sklej(i) dla każdego $1 \le i \le n$. Podaj algorytm wypełniający tablicę s odpowiednimi wartościami **bez wywoływania** funkcji sklej, tzn. **bez** użycia **rekurencji**. Zauważ, że jeśli poprawnie wyliczone są już wartości s[1], ..., s[i-1], to można z nich skorzystać przy wyznaczaniu s[i].

Zapisz swój algorytm w postaci listy kroków, schematu blokowego lub w wybranym języku programowania, który wybrałeś/aś na egzamin.

Specyfikacja:

Algorytm:

Dane: liczba naturalna n > 0

Wynik: tablica s[1..n] o wartościach s[i] = sklej(i), dla $1 \le i \le n$

Zadanie 2. Potęgowanie (5 pkt)

Dana jest następująca specyfikacja oraz algorytm obliczania potęgi o wykładniku naturalnym:

Specyfikacja:

Dane: liczba rzeczywista a oraz liczba naturalna $n, n \neq 0$

Wynik: liczba rzeczywista
$$p = a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ razy}}$$

Algorytm:

krok 1.
$$p := 1, b := a$$

krok 2. dopóki n > 0 wykonuj:

a) jeśli
$$n \mod 2 \neq 0$$
, to $p := p * b$

b)
$$b := b * b$$

c)
$$n := n \operatorname{div} 2$$

<u>Uwaga:</u> $n \operatorname{div} 2 \operatorname{oznacza}$ wynik dzielenia całkowitego n przez 2, a $n \operatorname{mod} 2$ oznacza resztę z dzielenia całkowitego n przez 2.

a) Przeanalizuj podany algorytm i uzupełnij tabelę wartościami zmiennych *p*, *b* oraz *n* po kolejnych wykonaniach kroku 2 dla dowolnej początkowej wartości *a* oraz dla początkowej wartości zmiennej *n* równej 12.

p	b	n
1	а	12
1	a^2	

b) Uzupełnij poniższą tabelę, wpisując liczby wszystkich mnożeń, wykonywanych przez powyższy algorytm dla podanych wartości n, tzn. liczby wykonanych instrukcji p := p*b i b := b*b.

n	liczba mnożeń
2	
3	
4	
5	
6	
7	

- c) Podkreśl funkcję, której wartość jest równa liczbie mnożeń wykonywanych przez powyższy algorytm dla wartości *n* będącej potęgą dwójki:
 - $f(n) = 2 + \log_2 n$
 - f(n) = 1 + n

 - $f(n) = 2^n$

W	Nr zadania	1a)	1b)	1c)	2a)	2b)	2c)
Wypełnia	Maks. liczba pkt	1	2	4	2	2	1
egzaminator	Uzvskana liczba pkt						

Zadanie 3. Test (8 pkt)

Podpunkty a) – h) zawierają po cztery odpowiedzi, z których każda jest albo prawdziwa, albo fałszywa. Zdecyduj, które z podanych odpowiedzi są prawdziwe (\mathbf{P}), a które fałszywe (\mathbf{F}). Zaznacz znakiem \mathbf{X} odpowiednią rubrykę w tabeli.

a) Liczba 212023 jest równa

	P	F
D1 ₁₆		
3218		
10110001_2		
211 ₁₀		

b) Rozważ algorytm, który dla zadanego naturalnego n > 0 oblicza następującą sumę:

$$suma = 1^1 + 2^2 + 3^3 + 4^4 + \dots + n^n$$

Algorytm:

krok 1. suma := 1, i := 2

krok 2. dopóki $i \le n$, wykonuj

a.
$$j := i, p := 1$$

b. dopóki $j \ge 1$, wykonuj:

(i)
$$p := p*i$$

(ii)
$$j := j - 1$$

c. suma := suma + p, i := i+1

Oceń prawdziwość stwierdzeń:

	P	F
Liczba instrukcji wykonana przez ten algorytm nie zależy od wielkości n.		
Liczba instrukcji wykonana przez ten algorytm jest funkcją kwadratową		
ze względu na <i>n</i> .		
Instrukcja w kroku 2. jest instrukcją iteracji.		
Wartość zmiennej j w kroku 2.b. zmienia się kolejno od 1 do i , przy $n > 1$.		

c) Algorytmy kryptograficzne dotyczą

	P	F
kompresji danych.		
szyfrowania danych.		
zapewnienia bezpieczeństwa przesyłanych informacji.		
przekształcania obrazów.		

d) Strategia przeszukiwania liniowego

	P	F
może być wykorzystana do znalezienia najmniejszego elementu w ciągu		
liczb.		
może być wykorzystana do sprawdzenia, czy dany znak występuje w tekście.		
jest wykorzystywana do obliczania wartości silni.		
jest najbardziej efektywną metodą znajdowania elementu w uporządkowanym		
ciągu.		

e) Aby program napisany w języku programowania wysokiego poziomu mógł być wykonany przez komputer,

	P	F
musi być przetłumaczony na język wewnętrzny komputera.		
musi być wydrukowany.		
niezbędny jest dostęp do kompilatora lub interpretera tego języka.		
wystarczy zmienić rozszerzenie głównego pliku tego programu na exe.		

f) Grafika wektorowa jest wykorzystywana do reprezentowania

	P	F
schematów i kompozycji figur geometrycznych.		
czcionek.		
zdjęć wysokiej jakości.		
obrazów pochodzących bezpośrednio ze skanera.		

g) Pamięć operacyjna komputera

	P	F
jest wykorzystywana wyłącznie przez aplikacje służące do administrowania		
systemem operacyjnym.		
służy głównie jako nośnik do archiwizacji dokumentów.		
jest wykorzystywana do przechowywania programu komputerowego podczas		
jego uruchamiania i wykonywania.		
jest niezbędna do poprawnej pracy komputera.		

h) Protokół sieciowy

	P	F
SSL umożliwia bezpieczne przesyłanie danych w sieci.		
IP używany jest tylko w sieci lokalnej.		
POP3 to protokół odbioru poczty elektronicznej.		
HTTP dotyczy przesyłania dokumentów zapisanych w języku HTML.		

Wypełnia egzaminator	Nr zadania	3a)	3b)	3c)	3d)	3e)	3f)	3g)	3h)
	Maks. liczba pkt	1	1	1	1	1	1	1	1
	Uzyskana liczba pkt								

BRUDNOPIS