Lecture19: Common-source amplifier (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Review of the last lecture

- Why do we consider an active load?
 - A sufficiently large voltage headroom for the DC bias
 - A sufficiently high impedance for the AC current
- When we have R_S ,
 - The voltage gain is reduced.

Current-source load

- When $R_D \to \infty$,
 - The gain can be maximized in its absolute value. $(A_v \rightarrow -g_m r_0)$

Biasing of PMOS devices

- Use a PMOS as a current source
 - The absolute value of the "gate overdrive" is 1.2 V.
 - Of course, when the drain voltage is higher than 0.6 V, it is operated in the triode mode.

Real current-source load

- Use a PMOS as a current source.
 - It is not an ideal current source.

$$v_{out} = -g_{m1}(r_{01}||r_{02})v_{in}$$

$$A_v = -g_{m1}(r_{O1}||r_{O2})$$

Self-biasing

- Already covered in Razavi Example 6.13.
 - Always in the saturation region.

Gate and drain are tied.

Diode-connected load

- Use a diode-connected load.
 - It is not an ideal current source.

$$v_{out} = -g_{m1} \left(r_{O1} || \frac{1}{g_{m2}} || r_{O2} \right) v_{in}$$

$$A_v = -g_{m1} \left(r_{01} || \frac{1}{g_{m2}} || r_{02} \right)$$

Input/output impedances

- When calculating the impedance, the voltage sources at other terminals are neglected.
- Input and output impedances

Source degeneration

- Consider a case with a source resistor, R_S .
 - Caculate the gain and the output impedance.

Razavi, example 17.8

Biasing

- What is the gate voltage?
- Condition for saturation mode?

$$\mu_n C_{ox} = 100 \,\mu\text{A/V}^2$$

 $W/L = 5/0.18$

Razavi, example 17.13

Calculate the drain current. (BTW, where is the drain?)

