3. Metode Transportasi

Yaitu untuk menentukan alokasi distribusi produk yang optimal dari sumber (pabrik) ke tujuan (pasar)

Model ini dapat dilakukan dengan 3 (tiga) cara yaitu :

- 1. Metode North West Corner (metode sudut kiri atas)
- 2. Metode least cost
- 3. Metode VAM (Vogels Approximation Method)

Dalam penyelesaian model trasportasi ini, dimana demand harus sama dengan supplai (D = S). Apabila terjadi perbedaan antara demand dengan supplai (D \neq S) maka terlebih dahulu kita harus menyamakan.

Misalnya

[
Ke Dari	A	В	С	D	SUPPLAI	
P1	10	22	10	20	90	
P2	15	20	12	8	130	
Р3	20	12	10	15	130	
DEMAND	70	100	60	90	350	

Penyelesaian PASAR SUPPLAI A В \mathbf{c} D Esemu Dari 20 10 22 10 0 P1 90 15 20 12 8 0 P2 130 20 12 10 15 0 P3 350 DEMAND 70 100 350

Ke		CLIDDLAI				
Dari	A	В	C	D	SUPPLAI	
P1	10		10	20	90	
P2	15	20	12	8	130	
Р3	20	12	10	15	110	
Psemu	0	0	0	0	20	
DEMAND	70	100	60	120	350 350	

Ke		CLIDDY AT				
Dari	A	В	C	D	SUPPLAI	
P1	10	22	10	20	80	
P2	15	20	12	8		
P2					130	
Р3	20	12	10	15	110	
DEMAND	70	100	60	90	320	

Penyelesaian

- 1. Metode North West Corner (NWC)
 - Cara penyelesaian
 - a. Distribusi dimulai dari sudut kiri atas
 - b. Memberikan jalur penutup pada demand maupun supplai yang sudah terpenuhi (habis)

		PASA	AR .		
Dari Ke	A	В	С	D	SUPPLA
P1	10	22	10	20	- 80
	70				80
P2	15	20	12	8	130
					100
Р3	20	12	10	15	110
DEMAND	70	100	60	90	320 32

\ [PAS	SAR		
Ke Dari	A	В	С	D	SUPPLAI
P1	10	22	10	20	
	70	10			80
P2	15	20	12	8	130
P2					130
Р3	20	12	10	15	110
					110
DEMAND	70	100	60	90	320 32

P1	\		P/	ASAR		CLIDDE AT			
70 10 80 P2 15 20 12 8 130 90 40	Dari Ke	A	В	C	D	SUPPLAI			
P2 15 20 12 8 130 90 40	P1	10	22	10	20	80			
90 40	P2	70	10			80			
90 40	P2	15	20	12	8	130			
20 12 10 15	P2		90	40		130			
P3 110 110	Р3	20	12	10	15	110			
DEMAND 70 100 60 90 320		70	100			320 320			

\ L		P	ASAR			
Dari Ke	A	В	С	D	SUPPLAI	
P1	10	22	10	20	80	
	70	10			80	
P2	15	20	12	8	130	
		90	40		100	
Р3	20	12	10	15	110	
			20			
DEMAND	DEMAND 70 100 60		60	90	320 320	

\ , ,		P/	ASAR		SUPPLAI	
Ke Dari	A	В	C	D	SCITEAL	
P1	10	22	10	20	80	
	70	10			80	
P2	15	20	12	8	130	
		90	90 40		130	
Р3	20	12	10	15	110	
			20	90		
DEMAND	DEMAND 70 100 60		90	320		

Total cost $70 \times 10 = 700$ $10 \times 22 = 220$ $90 \times 20 = 1.800$ $40 \times 12 = 480$ $20 \times 10 = 200$ $90 \times 15 = 1.350$ = 4.750

2. Metode least cost

Cara penyelesaian

- a. Mencari biaya terkecil baik pada kolom maupun baris
- b. Mengalokasikan produk semaksimal mungkin
- c. Apabila terdapat biaya terkecil yang sama, maka dipilih biaya terkecil yang dapat dialokasikan yang lebih maksimal
- d. Memberikan jalur penutup pada Demand maupun Supplai yang sudah terpenuhi (habis)

Ke		PA	ASAR			
Dari	A	В	С	D	SUPPLAI	
P1	10	22	10	20		
	70				80	
P2	15	20	12	8	130	
				90	130	
Р3	20	12	10	15	110	
		50	60		110	
DEMAND	70	100 60		90	320 320	

\ <u>,</u>		P	ASAR			
Ke Dari	A	В	С	D	SUPPLAI	
P1	10	22	10	20		
P2	70		80			
P2	15	20	12	8	130	
F2		40		90	130	
Р3	20	12	10	15	110	
		50	60		110	
DEMAND	70	100	60	90	320	

\ <u>.</u> .		P	ASAR		
Ke Dari	A	В	С	D	SUPPLAI
P1	10	22	10	20	
	70	10			80
P2	15	20	12	8	130
		40	90		130
Р3	20	12	10	15	110
		50	60		110
DEMAND	70	100	60	90	32 320

3. Metode V. A. M

Cara penyelesaiaan

- a. Mencari selisih 2 (dua) biaya terkecil baik pada kolom maupun baris
- b. Selisih biaya yang paling optimal dibuat menjadi patokan / dasar untuk mencari biaya yang terkecil
- c. Pada biaya yang terkecil tersebut dialokasikan distribusi produk semaksimal mungkin
- d. Apabila terdapat 2 atau lebih selisih biaya terkecil, maka kita harus memilih berdasarkan :
 - maka kita narus memilih berdasarkan :

 1. Selisih optimal yang mempunyai biaya terkecil, apabila biaya terkecil juga sama, maka
 - 2. Memilih selisih optimal yang dapat dibebankan alokasi distribusi yang lebih maksimal
- e. Memberikan jalur penutup pada demand maupun supplai yang telah terpenuhi (habis)

1	Ke		PAS	SAR					SEL	ISII	H	
D	ari	A	В	с	D	s	ı	п	ш	ıv	v	VI
]	P1	10	22	10	20	80	0					
]	P2	15	20	12	8	130	4					
1	P3	20	100 12	10	15	110	2					
DE	EMAND	70	100	60	90	320				•		
S	I	5	8	0	7		•					
E	II											
L I	III											
s	IV											
I	V											
H	VI											

Ke Dari				SELISIH								
		A B		с	D	S	I	II	ш	IV	v	VI
P1		10	22	10	20	80	0	0				
P2		15	20	12	90 8	130	4	4				
1	P3	20	100 12	10	15	110	2	5				
DEMAND		70	100	60	90	320						
S	I	5	8	0	7		•					
E L	II	5	X	0	7							
I	III		X									
s	IV		X									
I	V		X									
H	VI		X									

Ke Dari			PASAR					SELISIH						
		A	В	С	D	S	I	п	ш	īv	v	VI		
I	21	10	22	10	20	80	0	0	0					
I	22	15	20	12	90 8	130	4	4	3					
I	23	20	100	10 10	15	110	2	5	10					
DE	MAND	70	100	60	90	320								
S	I	5	8	0	7									
E L	II	5	X	0	7]								
I	III	5	X	0	X									
s	IV		X		X]								
I	V		X		X	[
Н	VI		X		X]								

Ke			P A S		SELISIH							
Dari		A	В	С	D	s	1	п	ш	IV	v	VI
I	21	70 10	22	10	20	80	0	0	0	0	10	10
I	22	15	20	40 12	90 8	130	4	4	3	3	12	х
Р3		20	100 12	10	15	110	2	5	10	x	x	х
DEMAND		70	100	60	90	320						
S	I	5	8	0	7							
E L	II	5	X	0	7							
ľ[Ш	5	X	0	X							
s	IV	5	X	2	X]						
I	V	X	X	2	X							
H	VI	X	X	10	X	1						

Total cost $70 x 10 = 700$ $10 x 10 = 100$ $40 x 12 = 480$
90 x8 = 720 100 x12 = 1.200 10 x <u>10 = 100</u> = 3.300
Berdasarkan alokasi distribusi dengan menggunakan ketiga metode tersebut, belum dapat kita katakan bahwa alokasi tersebut telah optimal. Untuk itu kita perlu melakukan pengujian lebih lanjut dengan menggunakan metode MODI (Modifled Method).
MODI Syarat-syarat dalam penyelesaian metode Modi adalah : 1. Sel isi harus berjumlah m + n - 1
m = Baris n = Kolom Sel isi = 3 + 4 – 1 = 6 (memenuhi syarat untuk diuji)

2. Mencari Nilai setiap sel isi (Segi Empat Batu) dengan rumus.

$$R + K = C$$

R = Nilai Baris

K = Nilai Kolom C= Biaya Transportasi (pengiriman)

Untuk dapat mencapai nilai sel isi tersebut, terlebih dahulu kita harus memberikan nilai pada salah satu baris ataupun kolom. Misal = K1 = 0 PIA = RI + K1 = CPIA RI + 0 = 10 RI = 10 RI = 10

R1 = 10 P1C = R1 + K3 = CP1C 10 + K3 = 10 K3 = 0 P2C = R2 + K3 = CP2C R2 + 0 = 12 R2 = 12

- Melihat hasil pengujian langkah yang ke-3 (ketiga) yaitu
 a. Apabila hasil langkah ke-3 (nilai sel kosong) telah ≤ 0, maka alokasi yang kita lakukan dapat dikatakan sudah optimal.
 - Apabila hasil langkah yang ke-3 (nilai sel kosong) belum ≤ 0 , maka alokasi yang kita lakukan dapat dikatakan belum optimal. Sehingga kita harus melakukan pengujian lebih lanjut dengan menggunakan metode Stepping Stone hingga diperoleh hasil sel kosong ≤ 0 .