INDIAN INSTITUTE OF TECHNOLOGY BOMBAY ELECTRICAL ENGINEERING DEPARTMENT

EE-Midsem

Monday Apr. 24, 2023 Time: 15:15-16:00	MS-101 Makerspace Spring Semester 2022-23	Marks: 40 (To be re-scaled)
Roll Number:	Name:	
Division: Batch: _	Signature:	

Answer the following in the space provided with the questions.

Q-1 Circuit diagram of the op amp I to V converter used in Expt. 3 is shown below.

The device under test (DUT) is connected between terminals B and C.

Assume that the op amp is ideal.

$$+V_{cc} = +12 \text{ V}, -V_{cc} = -12 \text{ V}; R_1 = 1 \text{ k}\Omega, R_F = 2 \text{ k}\Omega.$$

Also assume that the maximum and minimum V_{Out} levels are $+V_{cc}$ and $-V_{cc}$ respectively. Calculation steps must be shown with your answer.

No marks will be awarded without proper steps.

a) A 1 k Ω resistor is connected as the DUT.

b) a Zener diode is connected as the DUT with its anode at terminal B and cathode at terminal C. The Zener voltage is 3.2 V, and the Zener I-V characteristic is linear in the Zener region with a slope of 200 Ω .

| Steps: For applied voltage > Zerner voltage, |
$$I_{DUT} = -(8-3.2)/(1000+200) = -4.8/1200 = -4.0 \text{ mA}.$$
 | be the values of V_{DUT} and I_{DUT} ? | Answer: | $V_{DUT} = -(200*|I_{DUT}| + 3.2) = -(0.8 + 3.2) = -4.0 \text{ V}.$ | $V_{DUT} = -4.0 \text{ V}.$ | 0.5 mark penalty for wrong sign | $I_{DUT} = -4.0 \text{ mA}$ | $I_{DUT} = -4$

c) an LED is connected as the DUT with its anode at terminal B and cathode at terminal C. The LED cut-in voltage is 2.5 V (below this voltage the LED draws negligible current).

If
$$V_{IN}=+2$$
 V, what will be the values of V_{DUT} and V_{Out} ?

Steps: No current through the LED since the voltage is less than cut in voltage. So Op amp output is 0 V, and there is no drop across the current limiter resistor R_1 .

O.5 mark penalty for wrong sign

 $V_{DUT}=\underline{2.0 \text{ V}}$, $V_{Out}=\underline{0.0 \text{ V}}$

- [2]

-[Q1: 2+2+2=6 marks]

Q-2 Three blocks with their terminals, viz. Power supply, AFG and LM 741 op amp are shown below.

Show the wiring between these three blocks so as to obtain a **non-inverting** amplifier with a voltage gain of **16**. (Add the connections to the diagram above).

Connect also the required resistors out of the following resistor values:

 $1 \text{ k}\Omega$, $10 \text{ k}\Omega$, $15 \text{ k}\Omega$, $16 \text{ k}\Omega$, $17 \text{ k}\Omega$, $160 \text{ k}\Omega$ and $170 \text{ k}\Omega$.

Assume that both Ch1 and Ch2 of Power supply are set at 12 V. You must use the Power supply Ch1 as $+V_{CC}$ and Ch2 as $-V_{CC}$. - [Q2: 5 marks]

Marking Key for Q2:

Ch1 +	to Opamp $+V_{CC}$	0.5
Ch1 -	to $Ch2 + and Ground$	0.5 + 0.5 = 1.0
Ch2 -	to Opamp $-V_{CC}$	0.5
AFG top	to Opamp non-inv (3)	0.5
Opamp out(6)	to Inv input (2) through R_F	0.5
Opamp Inv (2)	to Ground through R_1	0.5
Opamp config	for non inverting amp	0.5
Choics of R	R_F and R_1 values	1.0

Q-3 A digital circuit receives a natural number in the range $0 \le n \le 15$ represented by 4 bits ABCD (with A as the most significant bit). We want to design the logic for outputting a 'Select' signal when n is any one of 0, 1, 2, 8, 9 or 10.

a)									
,	Fill entries in the truth	Answer:		1				;	
	table shown on the right for		Α	В	С	D	Select		
	'Select' as a function of A,		0	0	0	0	1		
	B, C and D. Be very care-		0	0	0	1	1		
	ful with these entries.		0	0	1	0	1		
	Errors in this part will		0	0	1	1	0		
	lead to wrong results in		0	1	0	0	0		
	the remaining parts!		0	1	0	1	0		
			0	1	1	0	0		
			0	1	1	1	0	0.5 mark penalty	for
			1	0	0	0	1	every wrong entry	
			1	0	0	1	1		
			1	0	1	0	1		
			1	0	1	1	0		
			1	1	0	0	0		
			1	1	0	1	0		
			1	1	1	0	0		
			1	1	1	1	0		
								- [2]	

- [4]

- Q3: 2+2+4 = 8 marks

plements.

Q4: 5 marks

Consider the circuit on the right using two positive edge triggered JK flipflops. You are given that at t=0, Q1=Q2=0.

Four positive clock edges arrive after this initial state. What will be values of Q1 and Q2 after the arrival of each of the clock edges?

At t=0 0 0 After Clock1 1 0 After Clock2 1 1 After Clock3 1 0 After Clock4 1 1		Q1	Q2
After Clock2 1 1 After Clock3 1 0	At t=0	0	0
After Clock3 1 0	After Clock1	1	0
	After Clock2	1	1
After Clock4 1 1	After Clock3	1	0
	After Clock4	1	1

No marks if 'After Clock 1' Q1 and Q2 are wrong.

1 mark penalty for every wrong entry from Clock2 onwards

Q5: 4 marks

Q-6 a) What is the least number of bits required to represent:

i) 128 (decimal) in unsigned binary format,

Answer: 8

ii) +128 (decimal) in two's complement signed format,

Answer: 9

iii) -128 (decimal) in two's complement signed format,

Answer: 8

iv) +15 (decimal) in two's complement signed format.

Answer: 5

- [2]

b) i) Represent the unsigned number 1123 (decimal) in base 16 format (Hex code) as a 12 bit wide quantity.

Answer: 463 in Hex

ii) Represent the same number (1123 decimal) in base 8 format (octal) as a 12 bit wide quantity.

Answer: 2143 in octal

- [2]

c) What decimal signed number is represented by the 12 bit Hex number D28 if we are using 2's complement convention for signed numbers?

Answer: -728

- [1]

-[Q6: 2 + 2 + 1 = 5 marks]

Q-7

Outputs of two **open collector** buffer gates are shorted as shown in the logic diagram on the right. Waveforms for the inputs applied to the two gates are shown below.

2 marks penalty for every wrong pulse.

Add the waveform at the terminal marked Out to the figure with the same time scale as In1 and In2. - [Q7: 5marks]

Q-8

Find the voltage at nodes A and B in the circuit shown on the left. The voltage source provides 4V.

Voltage at node A is: 2 V Voltage at node B is: 1 V

- [Q8: 2 marks]

Paper Ends _

Rough Work