Introduction to Geometric Algorithms

Applications of geometric algorithms

robotics, computer graphics, CAD/CAM, geographic information systems, ...

Geometric algorithms – scope

Geometric algorithms (practice):

Study of geometric problems that arise in various applications and how algorithms can help to solve well-defined versions of such problems

Geometric algorithms (theory):

Study of geometric problems on geometric data, and how efficient algorithms that solve them can be

Geometric networks

Geometric networks

Are there relatively short routes between any two cities?

Geometric spanner graphs (July 3)

Geometric networks

- Are there relatively short routes between any two cities?
 Geometric spanner graphs (July 3)
- Where do streets cross rivers?
 Line segment intersections (April 17)

Planar Subdivisions

Which region did I click in?
 Point location queries (May 3)

Planar Subdivisions

- Which region did I click in?
 Point location queries (May 3)
- Zoom in a certain region?
 Range queries (June 12)

intro + plane sweep technique

- Convex hulls
- Line segment intersections,
 Plane sweep
- Art gallery problem,
 Polygon triangulation

intro + plane sweep technique

- Convex hulls
- Line segment intersections,
 Plane sweep
- Art gallery problem,
 Polygon triangulation

randomized incremental construction + Voronoi diagrams

- point location problem, vertical decomposition
- Delaunay triangulations
- Voronoi diagrams

intro + plane sweep technique

- Convex hulls
- Line segment intersections,
 Plane sweep
- Art gallery problem,
 Polygon triangulation

randomized incremental construction + Voronoi diagrams

- point location problem, vertical decomposition
- Delaunay triangulations
- Voronoi diagrams

arrangements + motion planning

- Line arrangements, Geometric duality
- Robot motion planning, Visibility graphs

intro + plane sweep technique

- Convex hulls
- Line segment intersections,
 Plane sweep
- Art gallery problem,
 Polygon triangulation

randomized incremental construction + Voronoi diagrams

- point location problem, vertical decomposition
- Delaunay triangulations
- Voronoi diagrams

arrangements + motion planning

- Line arrangements, Geometric duality
- Robot motion planning, Visibility graphs

Geometric Data Structures

- Range queries
- Windowing queries
- Quadtrees

intro + plane sweep technique

- Convex hulls
- Line segment intersections,
 Plane sweep
- Art gallery problem,
 Polygon triangulation

randomized incremental construction + Voronoi diagrams

- point location problem, vertical decomposition
- Delaunay triangulations
- Voronoi diagrams

arrangements + motion planning

- Line arrangements, Geometric duality
- Robot motion planning, Visibility graphs

Geometric Data Structures

- Range queries
- Windowing queries
- Quadtrees

Additional topics (may vary)

- Geometric spanners
- Well-separated pair decomposition
- Algorithm engineering

Before we begin

Geometry: points, lines, ...

Plane (two-dimensional), \mathbb{R}^2

Space (three-dimensional), \mathbb{R}^3

Space (higher-dimensional), \mathbb{R}^d

A point in the plane, 3-dimensional space, d-dimensional space:

$$p = (p_x, p_y), \quad p = (p_x, p_y, p_z), \quad p = (p_{x_1}, p_{x_2}, \dots, p_{x_d})$$

A line in the plane: $y=m\cdot x+c$; represented by m and c

A half-plane in the plane: $y \le m \cdot x + c$ or $y \ge m \cdot x + c$

How to represent vertical lines? Not by m and $c \dots$

Geometry: line segments

A line segment \overline{pq} is defined by its two endpoints p and q: $(\lambda \cdot p_x + (1-\lambda) \cdot q_x, \lambda \cdot p_y + (1-\lambda) \cdot q_y)$, where $0 \le \lambda \le 1$.

Two line segments intersect if they have some point in common. It is a proper intersection if it is exactly one interior point of each line segment.

Polygons: simple or not

A polygon is a connected region of the plane bounded by a sequence of line segments

- simple polygon
- polygon with holes
- convex polygon
- non-simple polygon

The line segments of a polygon are called its edges, the endpoints of those edges are the vertices.

Other shapes: rectangles, circles, disks

A circle is only the boundary, a disk is the boundary plus the interior

Rectangles, squares, quadrants, slabs, half-lines, ...

Relations: distance, intersection, angle

The distance between two points is generally the Euclidean distance:

$$\sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

Another option, the Manhattan distance:

$$|p_x - q_x| + |p_y - q_y|$$

The distance between two geometric objects other than points usually refers to the minimum distance between two points that are part of these objects

Relations: distance, intersection, angle

Definition: The intersection of two geometric objects is the set of points (part of the plane, space) they have in common

Question 1: What is the maximum number of intersection points of a line and a simple polygon with 10 vertices (trick question)?

Relations: distance, intersection, angle

Definition: The intersection of two geometric objects is the set of points (part of the plane, space) they have in common

Question 2: What is the maximum number of intersection points of a line and a simple polygon boundary with 10 vertices (still a trick question)?

A point in the plane can be represented using 2 reals

A point in the plane can be represented using 2 reals

A line in the plane can be represented using 2 reals and a Boolean (for example)

A point in the plane can be represented using 2 reals

A line in the plane can be represented using 2 reals and a Boolean (for example)

A line segment can be represented by 2 points, so 4 reals

A point in the plane can be represented using 2 reals

A line in the plane can be represented using 2 reals and a Boolean (for example)

A line segment can be represented by 2 points, so 4 reals

A circle (or disk) requires 3 reals to store it (center point and radius)

A point in the plane can be represented using 2 reals

A line in the plane can be represented using 2 reals and a Boolean (for example)

A line segment can be represented by 2 points, so 4 reals

A circle (or disk) requires 3 reals to store it (center point and radius)

An axis-aligned rectangle requires 4 reals to store it

Description size and computation time

A simple polygon in the plane can be represented using 2n reals if it has n vertices (and necessarily, n edges)

A set of n points requires 2n reals

A set of n line segments requires 4n reals

Description size and computation time

A simple polygon in the plane can be represented using 2n reals if it has n vertices (and necessarily, n edges)

A set of n points requires 2n reals

A set of n line segments requires 4n reals

A point, line, circle, ... requires O(1), or constant, storage

A simple polygon with n vertices requires O(n), or linear, storage

We assume: any computation (distance, intersection) on two objects of ${\cal O}(1)$ description size takes ${\cal O}(1)$ time!

Algorithms, efficiency

Recall from your undergraduate algorithms and data structures course:

- a set of n real numbers can be sorted in $O(n \log n)$ time
- a set of n real numbers can be stored in a data structure that uses O(n) storage and that allows searching, insertion, and deletion in $O(\log n)$ time per operation

Algorithms, efficiency

Recall from your undergraduate algorithms and data structures course:

- a set of n real numbers can be sorted in $O(n \log n)$ time
- a set of n real numbers can be stored in a data structure that uses O(n) storage and that allows searching, insertion, and deletion in $O(\log n)$ time per operation

These are fundamental results in 1-dimensional computational geometry!