Untersuchungen von FDS-Drucklösern auf unstrukturierten Gittern

Dr. Susanne Kilian hhpberlin - Ingenieure für Brandschutz 10245 Berlin

Agenda

1 2 3 4

Diskretisierung Poisson-Löser Testreihen Fazit

Diskretisierung der Poisson-Gleichung Strukturierte versus unstrukturierte kartesische Gitter

Elliptische partielle Differentialgleichung Typ "Poisson"

$$abla^2 \mathcal{H} = -rac{\partial (
abla \cdot \mathbf{u})}{\partial t} -
abla \cdot \mathbf{F}$$
 + Randwerte

Quellterme aus dem vorangehenden Zeitschritt (Strahlungstransport, Verbrennung, etc.)

- eng gekoppelt mit dem Strömungsfeld
- mindestens 2x pro Zeitschritt zu lösen

<u>Diskretisierungsstern in 2D:</u>

$$\frac{1}{h^2}(-\mathcal{H}_{i,k-1}-\mathcal{H}_{i-1,k}+4\,\mathcal{H}_{i,k}-\mathcal{H}_{i,k+1}-\mathcal{H}_{i+1,k})=R_{i,k}$$

- zell-zentriert
- spezifiziert die physikalischen Relationen zwischen den Zellen
- führt auf dünn-besetzte Matrix (nur wenige Nicht-Null-Einträge)

Single-Mesh:

1 globales Gleichungssystem

$$Ax = b$$

Multi-Mesh:

M lokale Gleichungssysteme

$$A_m x_m = b_m$$

Behandlung interner Objekte

1

Diskretisierung Poisson-Gleichung

Zugehöriges Geschwindigkeitsfeld

"Gasphase" und "Solid"-Zellen:

- gleichförmige Matrixsterne unabhängig von inneren Objekten
- Zellen innerhalb der Objekte werden ins Gleichungssystem übernommen

Diskretisierung
Poisson-Gleichung

Diskretisierung Poisson-Gleichung

Vorteil:

- sehr reguläre Matrixstruktur (einheitliche Nachbarschaftsverhältnisse zwischen Zellen)
- kann im Lösungsprozess effizient ausgenutzt werden (Beispiel FFT)

Einsatz hoch-optimierter Löser möglich

Diskretisierung Poisson-Gleichung

Nachteil:

- inkorrekte Behandlung innerer Randwerte
- mögliche Verletzung der Erhaltungs-Eigenschaften (Penetration in innere ,Solids')
- iterative Korrektur an inneren Rändern nötig

Effizienz-/Genauigkeitsverluste

FFT(tol): "Direct Forcing Method"

"Eindringen" in innere Objekte soll verhindert werden

FFT(tol): "Direct Forcing Method"

- "Eindringen" in innere Objekte soll verhindert werden
- Normalableitung der Geschwindigkeit muss gegen Null gehen

FFT(tol): "Direct Forcing Method"

- "Eindringen" in innere Objekte soll verhindert werden
- Normalableitung der Geschwindigkeit muss gegen Null gehen
- es wird so lange iteriert bis vorgegebene
 Toleranz tol unterschritten ist

Eingabe in FDS-Geometrie, z.B.:

&PRES VELOCITY_TOLERANCE = 0.001

Nur "Gasphase"-Zellen:

- unterschiedliche Matrixsterne unter Aussparung innerer Objekten
- Zellen innerhalb der Objekte werden nicht ins Gleichungssystem übernommen

Diskretisierung Poisson-Gleichung

Vorteil:

- Korrekte Setzung der Randwerte (homogene Neumann-Bedingung)
- geringere Anzahl an Unbekannten

Höhere Genauigkeit, keine zusätzliche Korrektur Diskretisierung Poisson-Gleichung

Nachteil:

- Verlust der regulären Matrixstruktur
- keine spezialisierten Löser mehr anwendbar (Beispiel: FFT)

Einsatz optimierter Löser schwieriger

Lösung der Poisson-Gleichung Präsentation verschiedener Lösungsansätze

Poisson-Löser

$$x_m \stackrel{\text{FFT}}{=} A_m^{-1} b_m, \quad x = \tilde{\Sigma}_{m=1}^M x_m$$

Bedingung 1? Bedingung 2? Bedingung 1: Innere Objekte

Geschwindigkeits-Normalkomponenten < tol

Bedingung 2: Innere Meshgrenzen

Differenz Geschwindigkeits-Normalkomponenten < tol

- ein einzelner FFT-Durchlauf ist hoch-effizient und robust
- aber nur f
 ür strukturierte Gitter anwendbar !

Poisson-Löser

Parallele LU-Zerlegung: MKL Interface Intel MKL Pardiso

MKL - Initialisierung

$$LU = \sum_{m=1}^{M} A_m$$

MKL - Poisson Lösung

$$Ly = b$$
, $Ux = y$

Initialisierung

- zunächst "Reordering" der Matrixstruktur
- verteilte Berechnung der globalen LU-Zerlegung

Poisson-Lösung pro Zeitschritt:

• Einfache Lösung des Poisson-Problems durch lokales Vorwärts-/Rückwärts-Finsetzen

- ebenfalls als sehr effizient und robust angepriesen
- für strukturierte und unstrukturierte Gitter anwendbar

Poisson-Löser

ScaRC-Varianten: Block-CG und -GMG Verfahren

ScaRC-CG / ScaRC-GMG

Vorkonditionierung/Glättung:

Block-SSOR, Block-MKL

Grobgitter-Lösung:

CG, MKL

Blockweise Durchführung mit 1 Zelle Überlapp

Konjugierte Gradientenverfahren (CG):

 Lösung eines äquivalenten Minimierungs-Problems

Geometrisches Mehrgitterverfahren (GMG):

 Verwendung einer kompletten Gitterhierarchie mit exakter Lösung auf gröbstem Gitter

- meist gute Konvergenz, aber abhängig von Verfahrensparametern
- für strukturierte und inzwischen auch für unstrukturierte Gitter anwendbar

Numerische Testreihen Vergleich für verschiedene Geometrien

- zyklische Einströmung von links via Ramp, offene Ausströmung rechts
- Vergleich FFT(tol) auf strukturiertem Gitter versus MKL und ScaRC auf unstrukturiertem Gitter

- Notationen: Cube⁻(M) und Cube⁺(M) für jeweilige M-Mesh-Zerlegung
- Anzahl an Zellen pro Mesh wird weniger mit wachsender Anzahl an Meshes

- Messung des Volumenstrom-Differenzen "Einströmung versus Ausströmung"
- Messung der Druckverläufe an gekennzeichnet Messstellen

& BNDF QUANTITY='VELOCITY ERROR' /

 Geschwindigkeits-Korrektur reduziert den Fehler entlang des Hindernisses (beiden Fällen liegt gleiche Skala zugrunde)

Anzahl Poisson-Lösungen pro Zeitschritt

Geschwindigkeits-Fehler entlang Hindernis

- mehr Poisson-Lösungen pro Zeitschritt erforderlich (~ 4 für tol=10⁻⁴, ~ 10 für tol=10⁻⁶)
- zum Vergleich: nur 1 Poisson-Lösung pro Zeitschritt für Cube (1), unabhängig von tol

Anzahl Poisson-Lösungen pro Zeitschritt

Druckverlauf rechte Messstelle

- Geschwindigkeits-Korrektur an Mesh-Grenzen deutlich aufwändiger als entlang Hindernis
- Anzahl der Poisson-Lösungen pro Zeitschritt: ~ 25 für tol=10⁻⁴, ~ 200 für tol=10⁻⁶

Cube⁺(8): Alle Verfahren im Überblick

Anzahl Poisson-Lösungen pro Zeitschritt

Druckverlauf rechte Messstelle

Testreihen

- Konsistenter Verlauf für alle Verfahren (für FFT(tol) ab tol=10-4)
- FFT(10⁻⁴) benötigt ~ 25 Poisson-Lösungen pro Zeitschritt, MKL/ScaRC genau je 1

MKL

ScaRC

Cube versus Cube Dauer 1 Poisson-Lösung

- jeweils deutlicher Anstieg der FFT-Laufzeiten für feiner werdende Toleranz
- Laufzeiten für MKL und ScaRC für beide Geometrien gleich, ScaRC für 8-Mesh konkurrenzfähig

- zyklische Einströmung links, offener Rand rechts, Messung der Volumenströme
- Gitterweiten 24³, 48³, 72³, 96³ pro Mesh (Zell-Anzahl wächst proportional zu Mesh-Anzahl)

Pipe+ (M), M=1, 4, 8: Zeitvergleich Löser

Zeit für 1 Poisson-Lösung pro Zeitschritt

- FFT(tol) ist für 1-Mesh nicht zu schlagen (trotz ~10 Poisson-Lösungen pro Zeitschritt), jedoch erheblich schlechter ab 4 Meshes
- MKL und ScaRC skalieren deutlich besser
- MKL ist mehr als doppelt so schnell wie ScaRC z.B.: Pipe+(8): MKL~13.7 s versus ScaRC~30.2 s

MAX_PRESSURE_ITERARTIONS = 1000 erreicht

• grundsätzlich schlechte Skalierung auf Rechner (Intel(R) Xeon, 2.67GHz, 8 CPUs zu je 8 Kernen)

Speicherbedarf:

sehr hoher Speicherbedarf durch "Fill-in":
 LU hat viel mehr Nicht-Null-Einträge als A

Laufzeit: Beispiel 8 Meshes mit je 96³ Zellen

• Initialisierung: 2192.7 s

• eine Poisson-Lösung: 13.7 s

FFT und ScaRC können auf gleichen Ressourcen feinere Probleme rechnen (Bsp: 288³ pro Mesh für FFT und ScaRC noch rechenbar, für MKL bereits 240³ nicht mehr)

aus FDS-Verification-Guide:

8 Meshes, 128³ Zellen

Methode	Zeit pro Poisson-Lösung		
FFT(10 ⁻⁴)	41.3 s		
MKL	4.4 s		
ScaRC	7.5 s		

Testreihen

Vergleich FFT(tol) auf strukturiertem Gitter versus MKL und ScaRC auf unstrukturiertem Gitter

- FFT konvergiert ausgesprochen langsam: in 1000 Schritten nur tol=10⁻⁴
- MKL und ScaRC liefern Null-Fehler an Kanalwänden unabhängig von Mesh-Anzahl in je 1 Schritt

Fazit

Methode	Diskretisierung		zusätzliche Geschwindigkeits-	zusätzlicher Speicherbedarf	Laufzeit-Effizienz
	strukturiert	unstrukturiert	Korrektur		
FFT(tol)	ja	nein	ja	gering	für Single-Mesh sehr hoch, aber schlechte Skalierbarkeit
MKL	ja	ja	nein	hoch	teure Initialisierung, gute bis moderate Skalierbarkeit
ScaRC	ja	ja	nein	gering	moderate Skalierbarkeit, noch Optimierungspotential

MKL: Einfluss OpenMP-Threads

Vergleich der Zeiten für 1, 2 und 4 OpenMP-Threads

NUM_OMP_THREADS	MKL	MKL-Solve	
	Permutation	Faktorisierung	
1	19.38 s	454.25 s	4.56
2	19.32 s	453.02 s	4.44
4	19.29 s	452.36 s	4.41

- Weniger Effekt als erwartet, keine großen Unterschied
- Unterschiedliche Ergebnisse auf verschiedenen Rechnersystemen?

