№	Test topshirig'i	Test topshirig'i Muqobil Javob Muqobil Javob Muqobil Javob		Muqobil Javob	
1.	$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix} \text{va} B = \begin{pmatrix} -2 & 3 & 0 \\ 2 & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} -4 & 13 & 6 \\ 6 & 5 & 1 \end{pmatrix}$	$\begin{pmatrix} 4 & 13 & 6 \\ 6 & -6 & 1 \end{pmatrix}$	$\begin{pmatrix} -4 & 13 & 6 \\ 6 & -5 & 1 \end{pmatrix}$	$\begin{pmatrix} 4 & 13 & 6 \\ 6 & 5 & 1 \end{pmatrix}$
	matritsalar berilgan $C = 2A + 3B$				
	matritsani toping.				
2.	Quyidagilarning qaysi biri simmetrik	$\begin{pmatrix} 1 & 0 & 3 \end{pmatrix}$	(13 5)	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$
	matritsa emas?	4 0 4	$\begin{pmatrix} 5 & -16 \end{pmatrix}$	0 2 0	0 2 0
		$\begin{pmatrix} 3 & 0 & 3 \end{pmatrix}$		$\begin{pmatrix} 0 & 0 & 3 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 2 \end{pmatrix}$
3.	Agar $A = \begin{pmatrix} 1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ bo'lsa, BA	$\begin{pmatrix} 3 & -6 \\ 4 & -8 \end{pmatrix}$	(-5)	BA ko'paytma mavjud emas	$\begin{pmatrix} 3 & 4 \\ -6 & -8 \end{pmatrix}$
	ko'paytmani toping.				
4.	$B = \begin{pmatrix} 3 & 1 \\ 6 & 2 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 2 & 1 & 6 & 2 \end{pmatrix},$	24	-39	10	15
	B matritsaning uchinchi ustun				
	elementlari yig'indisini toping.				
5.	$A = \begin{pmatrix} 0 & 2 \\ -3 & 1 \end{pmatrix}$ matritsani transponirlang.	$A^T = \begin{pmatrix} 0 & -3 \\ 2 & 1 \end{pmatrix}$	$A^T = \begin{pmatrix} 0 & 1 \\ 2 & -3 \end{pmatrix}$	$A^T = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$	$A^T = \begin{pmatrix} -3 & 0 \\ 2 & 1 \end{pmatrix}$
6.	$B = \begin{pmatrix} 3 & 1 \\ 6 & 2 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 2 & 1 & 6 & 2 \end{pmatrix},$	4	3	2	1
	B matritsaning ustunlari soni nechta?				
7.	Agar $E = \begin{pmatrix} 1 & -2 \\ 3 & 12 \\ 5 & 9 \end{pmatrix}$ va $L = \begin{pmatrix} 0 & 3 \\ 6 & 7 \\ -8 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 9 & 19 \\ -3 & 11 \end{pmatrix};$	$\begin{pmatrix} 1 & 1 \\ 9 & 19 \\ 3 & 11 \end{pmatrix};$	$\begin{pmatrix} 1 & 1 \\ 9 & 19 \\ -3 & -11 \end{pmatrix};$	$ \begin{pmatrix} 1 & 1 \\ 9 & 19 \\ 3 & -11 \end{pmatrix} $
	bo'lsa $E + L$ ni hisoblang:				

8.	Agar $L = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{pmatrix}$ boʻlsa, $k \cdot L$ ni	$\begin{pmatrix} ka_1 & ka_2 & ka_3 \\ ka_4 & ka_5 & ka_6 \end{pmatrix}$	$\begin{pmatrix} ka_1 & ka_2 & ka_3 \\ a_4 & a_5 & a_6 \end{pmatrix}$	$ \begin{pmatrix} ka_1 & a_2 & a_3 \\ ka_4 & a_5 & a_6 \end{pmatrix} $	$ \begin{pmatrix} a_1 & ka_2 & a_3 \\ a_4 & ka_5 & a_6 \end{pmatrix} $
	hisoblang				
9.	Agar $L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 3 \end{pmatrix}$ va $M = \begin{pmatrix} 4 & 5 \\ 0 & 1 \\ -3 & 0 \end{pmatrix}$	$\begin{pmatrix} 4 & 5 \\ -17 & -9 \end{pmatrix}$	$\begin{pmatrix} 4 & 5 \\ 17 & -9 \end{pmatrix};$	$\begin{pmatrix} 4 & 5 \\ -17 & 9 \end{pmatrix};$	$\begin{pmatrix} 4 & 5 \\ 17 & 9 \end{pmatrix};$
10.	bo'lsa, $L \cdot M$ ni toping:				
10.	Agar $L = \begin{pmatrix} -1 & 2 \\ 8 & 9 \end{pmatrix}$ va $M = \begin{pmatrix} 4 & 0 \\ -1 & 3 \end{pmatrix}$	$\begin{pmatrix} -6 & 6 \\ 23 & 27 \end{pmatrix}$	$\begin{pmatrix} 6 & 6 \\ 23 & 27 \end{pmatrix}$	$\begin{pmatrix} -6 & -6 \\ 23 & 27 \end{pmatrix}$	$\begin{pmatrix} -6 & 6 \\ -23 & 27 \end{pmatrix}.$
11.	boʻlsa, <i>L·M</i> ni toping Noto'g'ri tenglikni aniqlang.	$(AB)^T$ A^TB^T	$(AP)^T$ P^TA^T	$(A D)^T A^T D^T$	$(1.4)^T$ 1.4^T
		$(AB)^T = A^T B^T$	$(AB)^T = B^T A^T$	$(A+B)^T = A^T + B^T$	$(kA)^T = kA^T$
12.	Microsoft Excelda matritsalarni	МУМНОЖ	ПРОИЗВЕД	УМНОЖ	МОПРЕД
	ko'paytirish uchun qaysi buyruqdan foydalaniladi.				
13.	Agar $M = \begin{pmatrix} 4 & 0 \\ -1 & 3 \end{pmatrix}$ va $f(x) = x + x^2$	$\begin{pmatrix} 20 & 0 \\ -8 & 12 \end{pmatrix}$	$\begin{pmatrix} 16 & 0 \\ -8 & 9 \end{pmatrix}$	$\begin{pmatrix} 20 & 5 \\ -10 & 12 \end{pmatrix}$	$ \left(\begin{array}{cc} 20 & 0 \\ 0 & 9 \end{array}\right) $
	bo'lsa, $f(M)$ ni toping				
14.	017	$\begin{pmatrix} 1 & 2 & 4 & 7 \end{pmatrix}$	(0 -1 -1 -3)	$ \begin{pmatrix} 1 & 2 & 4 & 7 \\ 0 & -1 & -1 & -3 \\ 0 & 4 & 1 & 5 \end{pmatrix} $	$\begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$
	pogʻonasimon matritsa?	0 -1 -1 -3	$ \begin{bmatrix} 0 & 1 & 1 & 3 \\ 1 & 2 & 4 & 7 \\ 5 & 0 & 10 & 5 \end{bmatrix} $	0 -1 -1 -3	0 -1 -1 -3
		$\left[\begin{array}{cccc} \left(0 & 0 & 0 & 0\end{array}\right)\right]$	$\begin{pmatrix} 5 & 0 & 10 & 5 \end{pmatrix}$	$ \left(\begin{array}{cccc} 0 & 4 & 1 & 5 \end{array} \right) $	$\left[\begin{array}{cccc} 1 & 4 & 1 & 5 \end{array} \right]$
15.	C = BA matritsa o'lchamini aniqlang.	5x5	1x1	Ko'paytma mavjud emas	1x5
	$B = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 5 \\ 2 \end{pmatrix}, A = \begin{pmatrix} 4 & 0 & -2 & 3 & 1 \end{pmatrix}$				

16.	M_{21} ning algebraik to'ldiruvchisi	$A_{21} = -M_{21}$	$A_{21} = M_{21}$	$A_{21} = M_{12}$	$A_{21} = -M_{12}$
	nimaga teng?				
17.	Microsoft Excelda determinantni	МОПРЕД	МУМНОЖ	ОПРЕД	МОБР
	hisoblash uchun qaysi matematik				
1.0	funksiyadan foydalaniladi?			20	
18.	1 5	15	1	30	0
	15 30 60				
	$\begin{vmatrix} -2 & 0 & 2 \end{vmatrix}$.				
	-0.5				
19.	Determinantni hisoblang:	$-\cos(\alpha+\beta)$	$-\sin(\alpha+\beta)$	$\sin(\alpha-\beta)$	$-\cos(\alpha-\beta)$
	$ \sin \alpha - \cos \beta $, ,	, ,		
	$ \cos \alpha - \sin \beta $				
20.	Tenglamaning eng kichik musbat	$\frac{\pi}{6}$	π	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	ildizini toping.	6	$\frac{\pi}{12}$	3	$\overline{2}$
	$\begin{vmatrix} \sin 2x & \cos 2x \\ \vdots & \vdots \end{vmatrix} = 0.$				
	$ \cos x - \sin x $				
21.	Uchinchi tartibli determinantni qulay	1	-1	0	2
	1 1 1				
	usulda hisoblang: -1 0 1.				
	$\begin{vmatrix} -1 & -1 & 0 \end{vmatrix}$				
22.	3 0 2	-3	27	0	9
	-5 3 -1 determinant berilgan. A_{22}				
	6 0 3				
	ni toping?				
23.	2r+1-3	13	17	11	10
	Tenglamani yeching: $\begin{vmatrix} 2x+1 & 3 \\ x+5 & 2 \end{vmatrix} = 0.$				
	1 1				

24.	Tengsizlikni yeching:	$x \ge -\frac{41}{21}$	$x \ge -\frac{21}{41}$	$x < -\frac{41}{21}$	$x \le -\frac{41}{21}$
	$\begin{vmatrix} -1 & 3 & -2 \\ 2 - 3x & 0 & 5 \\ 3 & 2 & 1 \end{vmatrix} \ge 0$	21	41	21	21
25.	Berilgan determinantlarni taqqoslang:	$\Delta_2 + 5 = \Delta_1.$	$\Delta_1 = \Delta_2$	$\Delta_1 \leq \Delta_2$	$\Delta_1 < \Delta_2$
	$\Delta_1 = \begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix}, \Delta_2 = \begin{vmatrix} 6 & 1 \\ 1 & 1 \end{vmatrix}$				
26.	-4 3 12	-84	144	-144	84
	$\Delta = \begin{vmatrix} -5 & 6 & 0 \end{vmatrix}$ determinant qiymati				
	2 -1 0				
	nimaga teng				
27.	Determinantni hisoblang	0	1	-1	-7
	12 23 34 45				
	0 21 32 43				
	7 7 7 7 .				
	29 29 29 29				
28.	To'g'ri tasdiqni aniqlang.	Agar determinantning	Agar determinantning	Determinantning qiymati	Agar
		biror satri (yoki	biror satri (yoki	nol bo'lishi uchun uning	determinantning
		ustuni) elementlariga	ustuni) elementlari	biror satri (yoki ustuni)	biror satri (yoki
		boshqa satr	biror songa	nollardan iborat bo'lishi	ustuni) elementlari
		(ustun)ning mos	koʻpaytirilsa,	shart.	biror noldan farqli
		elementlarini biror songa koʻpaytirib	determinantning qiymati oʻzgarmaydi.		songa koʻpaytirilsa, determinantning
		qoʻshilsa,	qıyınatı o zgarmaydı.		qiymati oʻzgarmaydi.
		determinantning			qıyınatı o zgarmayar.
		qiymati oʻzgarmaydi.			
29.	n-tartibli determinant uchun quyidagi	$\det(kA) = k^n \cdot \det(A)$	$\det(kA) = k \det(A)$	$\det(kA) = kn \det(A)$	$\det(kA) = n \det(A)$
	tengliklarning qaysi biri oʻrinli:				

30.	n – tartibli determinantni hisoblashning Laplas qoidasini ko'rsating	$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = $ $= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$	$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = $ $= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} A_{ij}$ $r(A) = 2$	$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = $ $= \sum_{j=1}^{n} (-1)^{i+j} M_{ij}$ $r(A) = 1$	$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = $ $= \sum_{j=1}^{n} (-1)^{i+j} A_{ij}$ $r(A) = 4$
31.	Matritsa rangini toping: $A = \begin{pmatrix} 2 & -1 & 5 & 6 \\ 1 & 1 & 3 & 5 \\ 1 & -5 & 1 & -3 \end{pmatrix}.$	r(A)=3	r(A) = 2	r(A)=1	r(A) = 4
32.	Matritsa rangini toping: $A = \begin{pmatrix} 1 & 3 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 2 & 6 & 1 & -2 \end{pmatrix}.$	r(A) = 2	r(A)=1	r(A) = 4	r(A)=3
33.	a parametrning qanday qiymatida $A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & -1 & 0 \\ 4 & -1 & a \end{pmatrix}$ matritsaning rangi 3 ga teng bo'ladi.	a ≠ 2	<i>a</i> = 0	a = 2	<i>a</i> ≠ −2
34.	$A = \begin{pmatrix} 5 & 8 \\ 3 & 5 \end{pmatrix}$ matritsaga teskari matritsani toping.	$\begin{pmatrix} 5 & -8 \\ -3 & 5 \end{pmatrix}$	A ⁻¹ mavjud emas	$\begin{pmatrix} 5 & 3 \\ 8 & 5 \end{pmatrix}$	$\frac{1}{49} \begin{pmatrix} 5 & -8 \\ -3 & 5 \end{pmatrix}$
35.	A^{-1} teskari matritsani toping: $A = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}.$	$ \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} $	$\frac{1}{\cos 2\phi} \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$	A^{-1} mavjud emas.	$\begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}.$

36. 37.	Teskari matrisani toping: $A = \begin{pmatrix} 3 & -1 & 2 \\ 4 & -3 & 3 \\ 1 & 3 & 0 \end{pmatrix}.$ Matritsali tenglamani yeching:	A ⁻¹ mavjud emas	$\begin{pmatrix} 9 & 3 & 15 \\ 6 & -2 & 10 \\ 3 & 2 & -5 \end{pmatrix}$ X mavjud emas	$\begin{pmatrix} 9 & -3 & 15 \\ -6 & -2 & -10 \\ 3 & -2 & -5 \end{pmatrix}$,
	$\begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix} \cdot X = \begin{pmatrix} -2 & 3 \\ 1 & -4 \end{pmatrix}$	$X = \begin{pmatrix} -4 & 1 \\ -3 & 2 \end{pmatrix}$	A mavjuu emas	$X = \begin{pmatrix} 2 & -\frac{3}{2} \\ -\frac{1}{2} & \frac{4}{3} \end{pmatrix}$	$X = \begin{pmatrix} 8 & 1 \\ 9 & 2 \end{pmatrix}$
38.	Matritsali tenglamani yeching: $X \cdot \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}.$	$X = \begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix}$	$X = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$	$X = \begin{pmatrix} -2 & 1 \\ 2 & 2 \end{pmatrix}$	X мavjud emas.
39.	Aynigan matritsani aniqlang	$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $	$ \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & -1 \\ 5 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} -2 & 1 \\ 2 & 2 \end{pmatrix}$
40.	Aynimagan matritsani aniqlang	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$	$ \begin{pmatrix} 10 & 11 & 12 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $	$ \begin{pmatrix} 2 & 3 & 4 \\ -4 & -5 & -6 \\ 7 & 8 & 9 \end{pmatrix} $
41.	Microsoft Excelda matritsa teskarisini hisoblash uchun qaysi matematik funksiyadan foydalaniladi?	МОБР	МУМНОЖ	ОПРЕД	МОПРЕД
42.	(25 31 17 43 75 94 53 132 75 94 54 134 25 32 20 48 teskarisini toping	Mavjud emas	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \frac{1}{214} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 4 & -1 & -5 & -6 \\ 1 & -3 & -4 & -7 \\ 2 & 1 & -1 & 0 \end{pmatrix} $	$ \begin{array}{c ccccc} & 1 & 2 & 1 & 0 \\ & 1 & 1 & 3 & 1 \\ & 1 & 2 & 1 & 1 \\ & 1 & 1 & 3 & 0 \end{array} $

43.	(1 7 5 8 9 2) 3 21 15 24 27 6) 2 14 10 16 18 4) teskarisini toping	Teskarisi mavjud emas	$ \frac{1}{25} \begin{pmatrix} 0 & -2 & 1 & 3 \\ 4 & -1 & -5 & -6 \\ 1 & -3 & -4 & -7 \\ 2 & 1 & -1 & 0 \end{pmatrix} $	$\frac{1}{25} \begin{pmatrix} 0 & 2 & 1 & 3 & 4 \\ 3 & -4 & 2 & 6 & -8 \\ 1 & 2 & 1 & 8 & 4 \end{pmatrix}$	$ \frac{1}{25} \begin{pmatrix} 0 & 2 & -4 \\ -1 & -4 & 5 \\ 3 & 1 & 7 \\ 0 & 5 & -12 \\ 5 & 3 & 0 \end{pmatrix} $
44.	$\begin{pmatrix} tg\alpha & 1 \\ 2 & ctg\alpha \end{pmatrix}$ matritsaning teskarisi mavjudmi? Agar mavjud bo'lsa toping	$\begin{pmatrix} -ctg\alpha & 1\\ 2 & -tg\alpha \end{pmatrix}$	$\begin{pmatrix} -tg\alpha & 2\\ 1 & -ctg\alpha \end{pmatrix}$	$\begin{pmatrix} -ctg\alpha & 2 \\ 1 & -tg\alpha \end{pmatrix}$	Mavjud emas
45.	(1 7 5 8 9 2) 3 21 15 24 27 6) 2 14 10 16 18 4) rangini toping	2	1	3	0
46.	$\overline{b} = (7;3;\alpha)$ Ba $\overline{c} = (3;\alpha;-6)$ vektorlar ortogonal vektorlar. α ni toping.	7	-1	5	9
47.	m ning qanday qiymatlarida $\vec{a} = m \vec{i} - 3 \vec{j} + 2 \vec{k} \text{ va } \vec{b} = \vec{i} + 2 \vec{j} - m \vec{k}$ vektorlar perpendikulyar.	m = -6	<i>m</i> = 6	$m \in R$	m = 3
48.	$\vec{a} = -2 \vec{j} + \vec{k}$, $\vec{b} = 2 \vec{i} + \vec{j}$ vektorlarga qurilgan parallelogramm diagonallari orasidagi burchakni toping.	90°	60°	45°	30°
49.	$\vec{a} = 2\vec{i} + 3\vec{j} - 6\vec{k}$ vektor uzunligi va uning yo'naltiruvchi kosinuslarini toping.	$\begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} = 7; \cos \alpha = \frac{2}{7},$ $\cos \beta = \frac{3}{7},$ $\cos \gamma = -\frac{6}{7}$	$\begin{vmatrix} \overrightarrow{a} \end{vmatrix} = 7; \cos \alpha = -\frac{2}{7},$ $\cos \beta = \frac{6}{7},$ $\cos \gamma = -\frac{3}{7}$	$\begin{vmatrix} \overrightarrow{a} \end{vmatrix} = 7; \cos \alpha = \frac{6}{7},$ $\cos \beta = \frac{3}{7}, \cos \gamma = -\frac{2}{7}$	$\begin{vmatrix} \overrightarrow{a} \\ = 7; \cos \alpha = \frac{2}{7}, \\ \cos \beta = \frac{3}{7}, \cos \gamma = \frac{6}{7} \end{vmatrix}$

50.	Qanday vektorlar kolleniar deyiladi?	parallel vektorlar	perpendikulyar vektorlar	bir xil yoʻnalishli vektorlar	uzunliklari bir xil boʻlgan vektorlar.
51.	$\vec{a} = (2;1;0) \text{ va } \vec{b} = (1;-2;-1)$	0	1	-1	2
	vektorlarning skalyar koʻpaytmasini hisoblang.				
52.	$\overline{a} = (1;6)$ vektorning $\overline{b} = (3;-4)$,	(-3;-2)	(3;2)	(-2;3)	(2;-3)
	$\overline{c} = (-5;3)$ bazisdagi koordinatlarini				
	toping.				
53.	$a_1(1;1;1), a_2(0;1;1), a_3(0;0;1)$ vektorlar	$b_1 = (1;1;1)$	$b_1 = (1;1;1)$	$b_1 = (1;1;1)$	$b_1 = (1;1;1)$
	sistemasi ustida ortogonal sistema	$b_2 = \left(-\frac{2}{3}; \frac{1}{3}; \frac{1}{3}\right)$	$b_2 = (-2;1;1)$	$b_2 = \left(-2; \frac{1}{3}; \frac{1}{3}\right)$	$b_2 = (-2;1;1)$ $b_3 = (2;-1;1)$
	quring.	()	$b_3 = \left(1; -\frac{1}{2}; \frac{1}{2}\right)$	$b_3 = (0; -1; 1)$	$b_3 = (2; -1; 1)$
		$b_3 = \left(0; -\frac{1}{2}; \frac{1}{2}\right)$	$\begin{bmatrix} b_3 - (1, 2, 2) \end{bmatrix}$	$b_3 = (0; -1; 1)$	
54.	Quyidagi vektorlar sistemasining	$a_1; a_2$	$a_1; a_3$	$a_1; a_2; a_3$	$a_1; a_3; a_2$
	bazislarini toping: $a_1 = (1; 2; 0; 0);$				
	$a_2 = (1; 2; 3; 4); a_3 = (3; 6; 0; 0);$				
55.	$a_1(x;1;1;1), a_2(1;1;1;0), a_3(1;0;1;1)$	Cheksiz ko'p	1 ta	2 ta	0 ta
	vektorlar x ning nechta haqiqiy qiymatida				
	o'zaro komplanar vektorlar bo'ladi?				
56.		3	4	2	1
	rangini aniqlang:				
	$a_1(1;-1; 2; 3), a_2(-2;-3; 0; 1),$				
	$a_3(-2;-9;4;6), a_4(-1;2;-2;-1).$				
57.	Quyida berilgan vektorlar sistemasining	$a_1; a_2; a_3.$	$a_1; a_2.$	$a_2; a_3.$	$a_1; a_3.$
	bazislaridan birini quring va ranglarini	r = 3	r=2	r=2	r=2
	aniqlang: $a_1 = (1; -2; -5),$				

	$a_2 = (3;4;-1), a_3 = (2;-3;0)$				
58.	n o'lchovli fazoda n ta vektor bazis tashkil	Berilgan vektorlardan	Berilgan vektorlardan	Berilgan vektorlar	Berilgan vektorlar
	qilishi uchun qanaqa shart bajarilishi	tuzilgan matritsa	tuzilgan matritsa	komplanar bo'lishi kerak	kollinear bo'lishi
	kerak?	determinanti noldan	determinanti		kerak
		farqli boʻlishi kerak	nolgateng bo'lishi		
			kerak		
59.	Ortogonal sistemani ortonormallash uchun	Har bir vektorni	Har bir vektorni	Shmild formulasidan	Har bir vektorni
	nima qilish kerak?	birlikka keltirish kerak	o'zining uzunligiga	foydalanish kerak	o'zining uzunligidan
			ko'paytirish kerak		kvadrat ildiz
					chiqarish kerak
60.	Ortogonal vektorlar sistemasi deb	n o'lchovli	n o'lchovli	n o'lchovli vektorlardan	Berilgan
	qanday sistemaga aytiladi?	vektorlardan tarkib	vektorlardan tarkib	tarkib topgan vektorlar	vektorlardan tuzilgan
		topgan vektorlar	topgan vektorlar	sistemasi berilgan bo'lib,	matritsa determinanti
		sistemasi berilgan	sistemasi berilgan	sistema vektorlarining har	noldan farqli boʻlsa
		bo'lib, sistema	bo'lib, sistema	qanday ikkitasining	
		vektorlarining har	vektorlarining har	skalyar ko'patmasi	
		qanday ikkitasining	qanday ikki jufti	noldan farqli boʻlsa	
		skalyar ko'patmasi	o'zaro parallel bo'lsa		
		nolga teng boʻlsa			

"IQTISODCHILAR UCHUN MATEMATIKA" FANIDANTEST TOPSHIRIQLARI (Chiziqliprogrammalashtirishbo'limi)

N	Savol	Javob 1	Javob 2	Javob 3	Javob 4
1.	Chiziqliprogramma lashtirishboʻlimini manioʻrgatadi?	Chiziqlifunksiyaninguningtarkibigakiruvchinoma'lum largachegaralovchishartlarqo'yilgandaengkattavaengk ichikqiymatiniizlashvatopishusulini.	Chiziqli tenglama yoki tengsizliklar bilan chegaralangan sohaning yuzasini topish usulini.	Murakkab funksiyaning hosilasini topish usulini.	Maqsadfunksiyaningen gkattavaengkichikqiym atinitopishusulini.
2.	Ishlab chiqarishni tashkil qilish va rejalashtirish masalasida maqsad funksiya qanday ma'noga ega?	Ishlab chiqarilgan mahsulotlarni sotishdan olinadigan daromadni maksimallashtirish.	Ishlab chiqariladigan mahsulotlarning miqdorini maksimallashtirish.	Ishlab chiqariladigan mahsulotlarning miqdorini chegaralash.	Ishlab chiqariladigan mahsulotlarni sifatinioshirish.
3.	Iqtisodiy jarayonning matematik modelini tuzish ketma-ketligini aniqlang.	Masalaning iqtisodiy ma'nosi bilan tanishib, undagi asosiy shartlar va maqsadni aniqlash, masaladagima'lum va noma'lum parametrlarni belgilash, masaladagi cheklamalarni chiziqli tenglamalar yoki tengsizliklar orqali ifodalash, masalaning maqsadini chiziqli funksiya orqali ifodalash.	Masaladagi cheklamalarni chiziqli tenglamalar yoki tengsizliklar orqali ifodalash, masalaning iqtisodiy ma'nosi bilan tanishish, masalaning maqsadini funksiya orqali ifodalash, masaladagi ma'lum parametrlarni belgilash, masalaning noma'lumlarini aniqlash.	Masalaning maqsadini funksiya orqali ifodalash, masalaning iqtisodiy ma'nosi bilan tanishish, masaladagi ma'lum parametrlarni belgilash, masalaning noma'lumlarini aniqlash, masaladagi cheklamalarni tenglama yoki tengsizliklar orqali ifodalash.	Masalaning iqtisodiy ma'nosi asosida chiziqli tenglamalar yoki tengsizliklar sistemasini tuzish, masalaning maqsadini funksiya orqali ifodalash.
4.	Chiziqliprogramma lashtirishatamasinin gmuallifini toping.	T.Kupmans	L.V.Kantorovich	Dansing	JonvonNyuman
	Iste'mol savati	Inson organizmi qabul qiladigan turli oziqa	Iste'mol savatiga qaysi tur	Iste'mol savatiga	Iste'mol savatiga qaysi
5.	masalasining	moddasining miqdori belgilangan minimal miqdordan	mahsulotdan qanchadan	qaysi tur ozuqa	tur mahsulotdan
	iqtisodiy ma'nosi	kam boʻlmasligini; iste'mol savatining umumiy	kiritganda inson organizmi	mahsulotdan	qanchadan kiritganda

	nimadan iborat?	bahosi minimal boʻlishini topishdan.	qabul qiladigan ozuqa moddasi belgilangan me'yordan oshmaydi va iste'mol savatining umumiy bahosi maksimal qilishdan.	qanchadan kiritganda inson organizmi me'yordan kam bo'lmagan mahsulot iste'mol qilishini aniqlashdan.	odam organizmi qabul qiladigan ozuqa moddalar miqdori belgilangan me'yordan kam boʻlmasligini topish va iste'mol savatining umumiy bahosi minimal qilishdan.
6.	Optimal bichish masalasining maqsadi nimadan iborat?	Xomaki materiallardan qanchasini qaysi usul bilan kesganda tayyorlangan detallar miqdori rejadagiga teng boʻladi va hosil boʻlgan chiqindilarning umumiy miqdori eng kam (minimal) boʻladi.	Eng koʻp miqdordayarim tayyor mahsulot tayyorlash.	Chiqindisizxomaki mahsulot tayyorlash.	Rejalashtirilgan miqdordankam boʻlmagan miqdordaxomakimahsul ot ishlabchiqarish.
7.	Quyidagi chiziqli programmalashtiris h masalasini kanonik shaklga keltiring. $\begin{cases} 2x_1 + 3x_2 \le 12 \\ 5x_1 - 2x_2 \le 10 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$ $F = x_1 + x_2 \rightarrow \max$	$\begin{cases} 2x_1 + 3x_2 + x_3 = 12\\ 5x_1 - 2x_2 + x_4 = 10 \end{cases}$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$ $F = -x_1 - x_2 + 0(x_3 + x_4) \to \min$	$\begin{cases} 2x_1 + 3x_2 - x_3 = 12 \\ 5x_1 - 2x_2 - x_4 = 10 \end{cases}$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$ $F = x_1 + x_2 + 0(x_3 + x_4) \to \max$	$\begin{cases} 2x_1 + 3x_2 = 12 \\ 5x_1 - 2x_2 = 10 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$ $F = x_1 + x_2 \to \min$	$\begin{cases} 2x_1 + 3x_2 = 12\\ 5x_1 - 2x_2 = 10\\ x_1 \ge 0, x_2 \ge 0\\ F = x_1 + x_2 \longrightarrow \max \end{cases}$
8.	Joiz reja (joiz yechim) deb nimaga aytiladi?	Chegaraviyshartlarni qanoatlantiruvchiyechimga aytiladi.	Maqsad funksiyaga eng kichik yoki eng katta qiymat beruvchi yechimga aytiladi.	Chegaraviy shartlarni qanoatlantirib,maq sadfunksiyaga engkichik qiymatberuvchi yechimga aytiladi.	Chegaraviy shartlarni qanoatlantirib,maqsadfu nksiyaga engkatta qiymatberuvchi yechimga aytiladi.
9.	Chiziqli programmalashtiris h masalasining qanday rejasi optimal reja	Maqsad funksiyasiga ekstremum qiymat beruvchi reja.	Berilgan chegaraviy shartlarni qanoatlantiruvchi va maqsad funksiyasiga ekstremum qiymat	Chegaraviy shartlarni qanoatlantiruvchi ixtiyoriy reja.	Berilgan chegaraviy shartlarni qanoatlantiruvchi va maqsad funksiyasini nolga aylantiruvchireja.

	boʻladi?		beruvchi reja.		
10	Chiziqli programmalashtiris h masalasida maqsad funksiya oʻzining ekstremum qiymatiga qanday nuqtada erishadi?	Berilgan masalaning rejalaridan tashkil topgan qavariq koʻpburchakning burchak nuqtasida.	Berilgan masalaning joiz rejalaridan tashkil topgan qavariq koʻpburchakning ichki nuqtasida.	Berilgan masalaning joiz rejalaridan tashkil topgan qavariq koʻpburchakning tashqi nuqtasida.	Berilgan masalaning joiz rejalaridan tashkil topgan qavariq koʻpburchakning ixtiyoriy nuqtasida.
11	Chiziqli programmalashtiris h masalasiningbazisy echimi deb qandayyechimgaayt iladi.	ChPMningjoiz rejalar to 'plamiga tegishlibo 'lgan X^0 vektorning $n-m$ ($m < n$) ta koordinatalari 0ga tengbo 'lib, m takoordinatalarigamoskelgan P_i ($i=1,,m$) vektorlar o 'zarochiziqli erklibo 'lsa, X^0 bazisyechimdeyiladi.	ChPMbarchashartlariniqan oatlantiruvchiyechimigaba zisyechimdeyiladi.	ChPMning chegaraviy shartlarini qanoatlantiruvchi yechimiga bazis yechim deyiladi.	Maqsad funksiyani qanoatlantiruvchi yechimiga bazis yechim deyiladi.
12	Agar ChPM uchun joiz rejalar to 'plamining burchak nuqtalari $A(0; 0), B(0; 5),$ $C(9; 2)$ va $D(12; 0)$ bo 'lsa, $Z = 2x_1 - 3x_2$ funksiya o 'zining maksimal qiymatiga qaysi nuqtada erishadi?	D nuqtada.	B nuqtada.	C nuqtada.	A nuqtada.
13	Ikkitadan ortiq noma'lumga ega bo'lgan ChPMni	Masaladagi noma'lumlar soni tenglamalar soniga teng boʻlishi kerak.	Masaladagi noma'lumlar soni bilan tenglamalar soni orasidagi farq 4 ga teng bo'lishi kerak.	Masaladagi noma'lumlar soni bilan tenglamalar soni orasidagi farq 3 ga teng bo'lishi kerak.	Masaladagi noma'lumlar soni bilan tenglamalar soni orasidagi farq 2 ga teng bo'lishi kerak.

14	Agar ChPMning maqsad funksiyasi yechimlar toʻplamining ikkita burchak nuqtalarida maksimal qiymatga erishsa, u holda	Funksiyaning optimal qiymati cheksiz boʻladi.	Funksiyaning optimal qiymati ikkita boʻladi.	Funksiyaning optimal qiymati yagona boʻladi.	Yuqoridagi barcha javoblar notoʻgʻri
15	$\begin{cases} x_1 + x_2 \le 6 \\ x_i \ge 0 \ (i = \overline{1, 2}) \end{cases}$ $F = 2x_1 + x_2 \rightarrow ms$	\varnothing	3 ta.	2 ta.	5 ta
10	Quyidagi ChPMning nomanfiy bazis yechimi qaysi javobda toʻgʻri koʻrsatilgan? $\begin{cases} 2x_1 + x_2 + x_3 = 0 \\ -x_1 - 2x_3 = 5 \end{cases}$ $\begin{cases} x_1 - 2x_2 = 2 \end{cases}$ $x_i \ge 0 (i = \overline{1,3})$	(0; 0; 0)	(1; 1; 1)	Nomanfiy bazisyechimiyoʻq	(2; 0; 0)
17	Quyidagi ChPMning nomanfiy bazis	X = (0; 0; 0; 0)	X = (0; 0; 2; -6)	X = (3; 0; 0; -6)	X = (2; 0; 3; 6)

	yechimi qaysi javobda toʻgʻri koʻrsatilgan? $\begin{cases} 2x_1 + x_2 + 3x_3 = 6 \\ 2x_1 + 3x_3 + 3x_3 + 3x_3 + 3x_3 + 3x_4 + 3x_5 + 3x_5$				
18	Koemsiyent nima?	Tenglamalar sistemasidagi har bir i -tenglamada x_k noma'lum bo'yicha hisoblangan $\frac{b_i}{\left a_{ik}\right }$ $(a_{ik} < 0)$ nisbat.	Tenglamalar sistemasidagi har bir i -tenglamada x_k noma'lum bo'yicha hisoblangan $\frac{b_i}{a_{ik}} \ (a_{ik} > 0) \text{ nisbat.}$	Tenglamalar sistemasidagi har bir i -tenglamada x_k noma'lum bo'yicha hisoblangan $\frac{a_{ik}}{b_i}$ nisbat.	Tenglamalar sistemasidagi har bir i - tenglamada x_k noma'lum bo'yicha hisoblangan $\frac{\left a_{ik}\right }{b_i} \ (a_{ik} < 0) \text{ nisbat.}$
19	quyidagi javoblarning qaysi birida toʻgʻri koʻrsatilgan?	$\Delta_{j} = \sum_{i=1}^{m} a_{ij} c_{i} - C_{j} (j = \overline{1, n})$	$\Delta_j = \sum_{j=1}^n b_j - C_i \ (i = \overline{1, m})$	$\Delta_j = \sum_{i=1}^m a_{ij} c_i (j = \overline{1, n})$	$\Delta_j = b_i - \sum_{i=1}^m a_{ij} c_i (j = \overline{1, n})$
20	Quyidagi chiziqli programmalashtiris h masalasining bazis yechimlar soni nechta? $\begin{cases} 2x_1 + 7x_2 \le 14\\ 5x_1 + 2x_2 = 0\\ x_i \ge 0 \ (i = \overline{1,2}) \end{cases}$ $F = x_1 + x_2 \rightarrow m$		Ota	2 ta	3 ta

21	Y→min koʻrinishdagi ChPMni simpleks (Dansig) usuli bilan yechganda maqsad funksiya chekli minimumning mavjud boʻlmaslik sharti qanday?	Agar tayin bir j uchun $\Delta_j > 0$ boʻlib, buustundagi barcha elementlar $a_{ij} \leq 0$ boʻlsa.	Barcha j ustunlarda $\Delta_j \leq 0$ boʻlib, P_0 vektor elementlardan birortasi ma'nfiy boʻlsa.	Agar tayinbir j uchun $\Delta_j > 0$ boʻlib, bu ustundagi barcha elementlar $a_{ij} \ge 0$ boʻlsa.	Barcha j ustunlarda $\Delta_j > 0 \text{ bo'lib, } P_0$ vektor elementlardan birortasi musbat bo'lsa.
22	Simpleks usulda yangi yechimni topish uchun (keyingi qadamga oʻtish uchun) bazisga kiritiladigan vektor qanday shart asosida tanlanadi?	$\max_{Z_j - c_j > 0} (Z_j - c_j) =$ $= Z_k - c_k = \Delta_k$	$\min_{b_i < 0} b_i = b_k$	$\max_{Z_j - c_j < 0} (Z_j - c_j) =$ $= Z_k - c_k = \Delta_k$	$\max_{b_i < 0} b_i = b_k$
23	Shartlari "≤" koʻrinishdagi ChPM qanday qilib simpleks jadvalga joylashtiriladi?	Qoʻshimcha oʻzgaruvchilarga mos kelgan $P_{n+s}\left(s=\overline{1,m}\right)$ vektorlar bazis vektorlar deb qabul qilinadi.	Sun'iy bazis vektorlar kiritish yoʻli bilan.	Bunday masalalarni simpleks jadvalga joylashtirib boʻlmaydi.	Qoʻshimcha oʻzgaruvchilarga mos kelgan $P_{n-s}\left(s=\overline{1,m}\right)$ vektorlar bazis vektorlar deb qabul qilinadi.
24	F→max koʻrinishdagi ChPMni simpleks usuli bilan yechganda optimallik sharti qanday?	Simpleks jadvalining Δ_j qatoridagi barcha elementlar nomusbat boʻlib, bazis vektorga tegishli ozod hadlar $x_i \geq 0$ boʻlsa.	Ozod hadlar ustunidagi elementlar manfiy boʻlmasa.	Simpleks jadvalining Δ_j qatoridagi barcha elementlar nomanfiy boʻlsa.	Simpleks jadvalining Δ _j qatoridagi barcha elementlar 0 lardan iborat boʻlsa.
25	Agar simpleks jadvalining Δ_j qatorida kamida	Masalaning optimal yechimi topilmagan boʻladi. Yangibazisyechimgaoʻtishkerak.	Masala yechimga ega boʻlmaydi	Masala cheksiz koʻp optimal yechimga ega	Masalaningyechimianiq lanmagan.

	bitta noma'lum musbat koeffisiyent bilan qatnashsa, u holda			boʻladi.	
2	qachon qoʻllanadi?	ChPMning chegaraviy shartlarida oʻzaro erkli bazis vektorlar soni tenglamalar sonidan kam boʻlsa.	ChPMning chegaraviy shartlarida oʻzaro erkli $n-m$ ta bazis vektorlar qatnashmasa.	ChPMning chegaraviy shartlarida oʻzaro erkli bazis vektorlar soni tenglamalar sonidan kam boʻlsa.	Toʻgʻrijavobyoʻq.
2	Quyidagi ChPMga sun'iy oʻzgaruvchilar kiritib kengaytirilgan masala tuzing. $\begin{cases} x_1 + x_2 \ge 4 \\ x_1 + 2x_2 \le 6 \end{cases}$ $x_i \ge 0 (i = \overline{1,2})$ $F = 4x_1 - 2x_2 \rightarrow$	$\begin{cases} x_1 + x_2 - x_3 + x_4 = 4 \\ x_1 + 2x_2 + x_5 = 6 \end{cases}$ $x_i \ge 0 \ (i = \overline{1,5})$ $F = 4x_1 - 2x_2 + M(x_4) + 0(x_3 + x_5) \to \min$	$\begin{cases} x_1 + x_2 - x_3 + x_4 = 4 \\ x_1 + 2x_2 + x_5 = 6 \end{cases}$ $x_i \ge 0 (i = \overline{1,5})$ $F = 4x_1 - 2x_2 \to \max$	$\begin{cases} x_1 + x_2 - x_3 = 4 \\ x_1 + 2x_2 + x_4 = 6 \end{cases}$ $x_i \ge 0 (i = \overline{1, 4})$ $F = 4x_1 - 2x_2 \to \max$	$\begin{cases} x_1 + x_2 - x_3 + x_4 = 4 \\ x_1 + 2x_2 + x_5 = 6 \end{cases}$ $x_i \ge 0 \ (i = \overline{1,5})$ $F = 4x_1 - 2x_2 + M(x_4 + x_5) \to \min$
2	Quyidagi ChPMni qanday yoʻl bilan simpleks jadvalga joylashtirish mumkin? $\begin{cases} 6x_1 + 5x_2 + 3x_3\\ 12x_1 + 9x_2 + 3x_3\\ x_i \ge 0 (i = \overline{1,3}) \end{cases}$ $F = 3x_1 + 4x_2 + 3x_3$	Masalada x_4 va x_5 sun'iy oʻzgruvchilar kiritib, uni quyidagi koʻrinishga keltirish kerak: $ \begin{cases} 6x_1 + 5x_2 + 3x_3 + x_4 = 8 \\ 12x_1 + 9x_2 + 3x_3 + x_5 = 14 \end{cases} $ $ x_i \ge 0 \ (i = \overline{1,5}) $ $ F = -3x_1 - 4x_2 - x_3 + M(x_4 + x_5) \rightarrow \min $	Hech qanday oʻzgarishsiz simpleks jadvalga joylashtirish mumkin.	Masalada x_4 va x_5 sun'iy oʻzgaruvchilar kiritib, uni quyidagi koʻrinishga keltirish kerak: $\begin{cases} 6x_1 + 5x_2 + 3x_3 + x_4 = 8 \\ 12x_1 + 9x_2 + 3x_3 + x_5 = 14 \end{cases}$ $x_i \ge 0 \ (i = \overline{1,5})$ $F = 3x_1 + 4x_2 + x_3 + M(x_4 + x_5) \rightarrow n$	Masalani simpleks jadvalga joylashtirish mumkin emas.

29	Agar berilgan masalaning oʻlchovi $n \times m$ boʻlsa, u holda ikkilangan masalaning oʻlchovi qanday boʻladi?	$m \times n$	$n \times m$	$(n-m)\times n$	$(n-m)\times m$
30	Quyidagi masalaga mos ikkilangan masala qaysi javobda toʻgʻri koʻrsatilgan? $\begin{cases} x_1 - 2x_2 \ge -4 \\ 5x_1 + 2x_2 \le 20 \end{cases}$ $x_1 \ge 0; x_2 \ge 0$ $F = x_1 - 5x_2 \rightarrow ma$	$\begin{cases} -y_1 + 5y_2 \ge 1 \\ 2y_1 + 2y_2 \ge -5 \end{cases}$ $y_1 \ge 0; \ y_2 \ge 0$ $Z = 4y_1 + 20y_2 \to \min$	$\begin{cases} y_1 + 5y_2 \ge 1 \\ -2y_1 + 2y_2 \ge -5 \end{cases}$ $y_1 \ge 0; \ y_2 \ge 0$ $Z = -4y_1 + 20y_2 \rightarrow \min$	$\begin{cases} -y_1 + 5y_2 = 1 \\ 2y_1 + 2y_2 = -5 \end{cases}$ $Z = 4y_1 + 20y_2 \rightarrow \min$	$\begin{cases} y_1 + 5y_2 = 1 \\ 2y_1 + 2y_2 = -5 \end{cases}$ $Z = 4y_1 + 20y_2 \to \max$
3:	Quyidagi masalaga mos ikkilangan masala qanday koʻrinishda boʻladi? $AX = B$ $X \ge 0$ $Y = CX \longrightarrow \max$	$A^T Y \ge C^T$ $G = B^T Y \to \min$	$A^T Y \le C^T$ $G = B^T Y \to \max$	$A^T Y \ge C^T$ $G = B^T Y \to \max$	$A^{T}Y \le C^{T}$ $G = B^{T}Y \to \min$

32	Quyidagi masalaga mos ikkilangan masala qaysi javobda toʻgʻri koʻrsatilgan? $\begin{cases} 3x_1 + x_3 - 4x_4 \le 1\\ x_2 + 2x_3 + x_4 = 3\\ 2x_1 + x_2 - 4x_3 \le 6\\ x_j \ge 0, j = 1, 2, 3, \end{cases}$ $F = 8x_1 - 2x_2 + 4x_3 \le 6$	$\begin{cases} 3y_1 + 2y_3 \ge 8 \\ y_2 + y_3 \ge -2 \\ y_1 + 2y_2 - 4y_3 \ge 4 \\ -4y_1 + y_2 \ge -1 \\ y_1 \ge 0, \ y_3 \ge 0, \ y_3 \ge 0 \\ G = 12y_1 + 3y_2 + 6y_3 \rightarrow \min \end{cases}$	$\begin{cases} 3y_1 + 2y_3 \ge 8 \\ y_2 + y_3 \ge -2 \\ y_1 + 2y_2 - 4y_3 \ge 4 \\ -4y_1 \ge -1 \end{cases}$ $y_i \ge 0, \ i = \overline{1,3}$ $G = 12y_1 + 3y_2 + 6y_3 \rightarrow \min$	$\begin{cases} 3y_1 + 2y_3 = 8 \\ y_2 + y_3 = -2 \\ y_1 + 2y_2 - 4y_3 = 4 \\ -4y_1 + y_2 = -1 \\ y_i \ge 0, \ i = \overline{1,3} \end{cases}$ $G = 12y_1 + 3y_2 + 6y_3 \rightarrow \min$	$\begin{cases} 3y_1 + 2y_3 \ge 8 \\ y_2 + y_3 \ge -2 \\ y_1 + 2y_2 - 4y_3 \ge 4 \\ -4y_1 + y_2 \ge -1 \end{cases}$ $y_i \ge 0, \ i = \overline{1,3}$ $G = 12y_1 + 3y_2 + 6y_3 \rightarrow \max$
33	Berilgan masala cheklamalari bilan ikkilangan masala noma'lumlari orasida qanday bogʻlanish bor?	Ikkilangan masaladagi noma'lumlar soni berilgan masaladagi cheklamalar soniga teng boʻladi.	Ikkilangan masaladagi noma'lumlar soni berilgan masaladagi cheklamalar sonidan kam boʻladi.	Ikkilangan masaladagi noma'lumlar soni berilgan masaladagi cheklamalar sonidan koʻp boʻladi.	Hech qanday bogʻlanish yoʻq.
34	Agar berilgan masalaning optimal yechimi uchun quyidagi ma'lumotlar oʻrinli boʻlsa,ikkilangan masala yechimini toping. $X^0 = (4;0), B' = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$Y^0 = \left(0; \frac{1}{15}\right)$	$Y^0 = \left(\frac{1}{5}; \frac{1}{15}\right)$	$Y^0 = \left(\frac{2}{3}; \frac{1}{3}\right)$	$Y^0 = \left(\frac{3}{2}; \frac{1}{2}\right)$
35	Berilgan masalaga ikkilangan masalaning yechimi iqtisodiy jihatdan qanday	Xom ashyolarning ikkilangan bahosi.	Ishlab chiqarilgan mahsulotning pul qiymati.	Mahsulot ishlab chiqarish uchun sarf qilinadigan xarajat.	Ishlab chiqarilgan mahsulotni sotishdan keladigan daromad.

	ma'noni anglatadi?				
36	Ishlab chiqarishda toʻla ishlatiladigan	Noldan farqliboʻladi.	0 ga teng boʻladi.	Manfiy ishoraliboʻladi.	Musbat ishoraliboʻladi.
37	bahoning nolga bahoning nolga bahoning nolga bahoning nolga resurs akanligini bildiradi resurslarining kamyob bo imagan, resurslarining kamyob bo imagan,		Ishlab chiqarish resurslarining kamyob resurs ekanligini bildiradi.	Olinadigandaroma dning 0 ga tengligini.	Sariflanadigan xarajatning 0 ga tengligini bildiradi.
38	Ikkilanish nazariyasida ikkilangan bahoning noldan farqli boʻlishi iqtisodiy jihatdan nimani anglatadi?	Ishlab chiqarish resurslarining kamyob resurs ekanligini.	Ishlab chiqarish resurslarining kamyob boʻlmagan resurs ekanligini.	Olinadigan daromadni.	Sariflanadigan xarajatni.
39	Resurslarningikkila nganbahosinima?	Berilgan masalaga ikkilangan masalaning yechimi.	Berilganmasalaningyechi Sarfqilinganresur mi. armiqdori.		Olingandaromadlarmiq dori.
40	Masalaning chala joiz yechimi nima?	Optimallikshartiniqanoatlantiruvchinomusbatyechim.	Optimallikshartiniqanoatla ntiruvchinomanfiyyechim.	Optimallikshartini qanoatlantiruvchi manfiyyechim.	Optimallikshartiniqanoa tlantiruvchimusbatyechi m.
41	Transport masalasi yechimidagi noldan farqli noma'lumlar soni nechta?	n+m-1ta	n+m+1 ta	n+m ta	n+m-2 ta
42	Transport masalasining iqtisodiy ma'nosi nimadan iborat?	Transport masalasining iqtisodiy ma'nosi Yuk tashishning shunday rejasini tuzish kerakki, har bir ta'minotchidagi mahsulot to'la taqsimlansin va har iqtisodiy ma'nosi bir iste'molchining mahsulotga bo'lgan talabi to'la		Yuk tashishning shunday rejasini tuzish kerakki, faqat iste'molchining mahsulotga bo'lgan talabi to'la	Barcha javoblar notoʻgʻri.

				qondirilsa boʻldi.	
43	Transport masalasini boshlangʻich bazis yechimini qaysi usul bilan aniqlanganda u optimal yechimga yaqin boʻladi?	Minimal xarajatlar usuli.	Shimoliy-gʻarb burchak usuli.	Ustundagi minimal xarajatlar usuli.	Satrdagi minimal xarajatlar usuli.
44	Transport masalasining matematik modeli qanday?	$\sum_{i=1}^{m} x_{ij} = b_j, \sum_{j=1}^{n} x_{ij} = a_i$ $\sum_{i=1}^{m} x_{ij} = b_j$ $\sum_{j=1}^{m} x_{ij} = a_i,$ $x_{ij} \ge 0 (i = \overline{1, m}; \ j = \overline{1, n})$ $F = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min$ $\sum_{j=1}^{m} x_{ij} = a_i,$ $x_{ij} \ge 0 (j = \overline{1, n})$ $F = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min$ $F = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min$		$\sum_{i=1}^{m} x_{ij} = b_{j},$ $\sum_{j=1}^{n} x_{ij} = a_{i},$ $F = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min.$	
45	Transport masalasining yechimi mavjud boʻlishi uchun	$\sum_{i} a_{i} = \sum_{j} b_{j} \text{ bo'lishi kerak}$	$\sum_{i} a_{i} \leq \sum_{j} b_{j} \text{ bo `lishi}$ kerak	$\sum_{i} a_{i} \ge \sum_{j} b_{j}$ boʻlishi kerak	$\sum_{i} a_{i} \neq \sum_{j} b_{j} \text{ bo 'lishi}$ kerak
46	Transport masalasi cheklamalar sistemasining rangi	r = m + n - 1boʻladi	r < m + n - 2 boʻladi.	r > n + m + 1 boʻladi.	r = n + m + 2 boʻladi.
47	Ochiq modelli transport masalasini yopiq modelli transport masalasiga aylantirish uchun 	Agar $\sum a_i < \sum b_j$ shart bajarilsa, u holda mahsulot zahirasi $\sum b_j - \sum a_i = a_{m+1}$ ga teng boʻlgan soxta ta'minotchi kiritiladi.	Agar $\sum a_i < \sum b_j$ shart bajarilsa, u holda mahsulot zahirasi $\sum b_j - \sum a_i = a_{m+1}$ ga teng boʻlgan soxta iste'molchi kiritiladi.	Agar $\sum a_i > \sum b_j \text{ shart}$ bajarilsa, u holda talabhajmi $\sum b_j - \sum a_i = a_{m+1} \text{ ga}$ teng boʻlgan soxta ta'minotchi kiritiladi.	Agar $\sum a_i < \sum b_j$ shart bajarilsa, u holda talabhajmi $\sum b_j - \sum a_i = a_{m+1}$ ga teng boʻlgan soxta iste'molchi kiritiladi.
48	Transport masalasini potensiallar usuli bilan yechishning	Dastlab boshlangʻich bazis reja topiladi, soʻngra topilgan bazis rejani optimal rejaga ketma-ket yaqinlashtirib boriladi.	Dastlab bazis reja topiladi, soʻngra optimal reja aniqlanadi.	Dastlab topilgan bazis reja masalaning optimal rejasi ham	Toʻgʻri javob yoʻq

	asosiy gʻoyasi qanday?			boʻladi.		
4	Transport masalasining bazis yechimidan optimal yechimga oʻtish uchun quydagilardan qaysi biri oʻrinli boʻlishi kerak?	Transport jadvalidagi boʻsh kataklardan kamida bittasida $\Delta_{ij} = U_i + V_j - c_{ij} > 0$ shart bajarilishi kerak.	Transport jadvalidagi toʻliq kataklarda $m+n-1$ ta $\Delta_{ij}=U_i+V_j-c_{ij}\leq 0$ shartlar bajarilishi kerak.	Transport jadvalidagi toʻliq kataklar boʻyicha sikllanish roʻy berishi kerak.	Transport jadvalidagi boʻsh kataklardan kamida bittasida $\Delta_{ij} = U_i + V_j - c_{ij} < 0$ shart bajarilishi kerak.	
4	Transport masalasining bazis yechimi optimal boʻlishi uchun qanday shart oʻrinli boʻlishi kerak?	Toʻldirilgan katakchalarda $\Delta_{ij} = U_i + V_j - c_{ij} = 0$ Boʻsh kataklarda $\Delta_{ij} = U_i + V_j - c_{ij} \le 0$	Bo'shkatakchalarda $\Delta_{ij} = U_i + V_j - c_{ij} > 0$	Bo'shkatakchalard $a \Delta_{ij} = U_i + V_j - c_{ij} \le 0$	Toʻldirilgan katakchalarda $\Delta_{ij} = U_i + V_j - c_{ij} > 0$	
4	Transport masalasiga doir quyidagi tasdiqlardan qaysi biri toʻgʻri?	Ixtiyoriy yopiq modelli transport masalasi chekli yechimga ega.	Ixtiyoriy ochiq modelli transport masalasi cheksiz koʻp yechimga ega.	Ixtiyoriy transport masalasichekli yechimga ega.	Ixtiyoriy yopiq modelli transport masalasi chekli yechimga ega emas.	
4	Transport masalasida sikllanish holatidan qutilish uchun qanday usul qoʻllaniladi?	ε-usul.	Brudnousuli.	Potensiallarusuli.	Minimal harajatlarusuli.	
4	Transport masalasida sikllanish nima va u qanday bartaraf etiladi?	Sikllanish ma'lum bosqichdga etgandan soʻng oldingi bosqichlarga qaytishdan iborat. U ε-usulniqoʻllab bartaraf etiladi.	Transport masalasida sikllanish holi roʻy bermaydi.	Sikllanish holi har qanday masalada roʻy berishi mumkin. Unibartaraf etishshart emas.	Hechqachonbartarafetil maydi.	
4	Transport masalasi qachon yechimga ega boʻlmaydi?	Yopiq modelli transport masalasi doimo yechimga ega boʻladi.	Har doim yechimga ega boʻladi.	Ochiq modelli transport masalasiayrim	Ochiq modelli transport masalasi doimo yechimga ega boʻladi.	

				hollarda yechimga ega boʻlmaydi.	
5:	Transport masalasidaqachon sikllanish holati roʻy berishi mumkin?	Talab va takliflarning xususiy yegʻindilari teng boʻlganda.	Agar $\sum_{i=1}^{m_1} a_i \neq \sum_{j=1}^{n_1} b_j$ $(m_1 < m, n_1 < n)$ boʻlganda.	Agar $\sum_{i=1}^{m_1} a_i > \sum_{j=1}^{n_1} b_j$ $(m_1 < m, n_1 < n)$ boʻlganda.	Agar $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$ tenglikoʻrinli boʻlsa.

	Fannomi (uz, ru)	Savol	Javobtu ri: birjavo bli (0)/ ko`pjav obli (1)	Javob 1	Javob 2	Javob3	Javob4
1	Iqtisodchilaruchunm atematika	$\overline{b} = (7;3;\alpha)$ Ba $\overline{c} = (3;\alpha;-6)$ vektorlarortogonalvektorlar. α ni toping.	0	7	-1	5	9
2	Iqtisodchilar uchun matematika	m ningqandayqiymatlarida $\vec{a} = m \vec{i} - 3 \vec{j} + 2 \vec{k}$ va $\vec{b} = \vec{i} + 2 \vec{j} - m \vec{k}$ vektorlarperpendikulyar.	0	m = -6	m = 6	m=3	m = -3
3	Iqtisodchilar uchun matematika	$\overrightarrow{a} = -2 \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = 2 \overrightarrow{i} + \overrightarrow{j}$ vektorlargaqurilganparallelogramm diagonallari orasidagi burchakni toping.	0	900	60°	45°	30°
4	Iqtisodchilar uchun matematika	Qanday vektorlar kolleniar deyiladi?	0	parallel vektorlar	perpendikulyar vektorlar	bir xil yoʻnalishli vektorlar	uzunliklari bir xil boʻlgan vektorlar
5	Iqtisodchilar uchun matematika	$\vec{a} = (2;1;0)$ va $\vec{b} = (1;-2;-1)$ vektorlarning skalyar koʻpaytmasini hisoblang.	0	-1	1	2	-2
6	Iqtisodchilar uchun matematika	Ikki vektorning skalyar koʻpaytmasi deb nimaga aytiladi?	0	Ikkita a va b vektorning skalyar ko'paytmasi deb, bu vektorlar uzunliklarini ular orasidagi burchak kosinusiga ko'paytmasiga teng bo'lgan skalyarga (songa) aytiladi.	Ikkita $\stackrel{\rightarrow}{a}$ va $\stackrel{\rightarrow}{b}$ vektorning skalyar koʻpaytmasi deb, bu vektorlar uzunliklariga teng boʻlgan skalyarga (songa) aytiladi.	Ikkita $\stackrel{\rightarrow}{a}$ va $\stackrel{\rightarrow}{b}$ vektorning skalyar koʻpaytmasi deb, bu vektorlar uzunliklariga teng boʻlgan skalyarga (songa) aytiladi.	Ikkita $\stackrel{\rightarrow}{a}$ va $\stackrel{\rightarrow}{b}$ vektorning skalyar koʻpaytmasi deb, bu vektorlar uzunliklariga teng boʻlgan skalyarga (songa) aytiladi.

7	Iqtisodchilar matematika	uchun	\overline{a} = (1;6) vektorning \overline{b} = (3;-4) , \overline{c} = (-5;3) bazisdagikoordinatlarinitoping.	0	(-3;-2)	(3;2)	(-2;3)	(2;-3)
8	Iqtisodchilar matematika	uchun	Qarama-qarshiuchlari $A(4;-2)$, $C(-1;3)$ nuqtalardabo'lgankvadratningyuzinianiqlang.	0	25	$2\sqrt{5}$	16	9
9	Iqtisodchilar matematika	uchun	Parallelogrammningqo'shniuchlari $A(5;2)$, $B(3;5)$ nuqtalarvadiagonallariningkesishishnuqtasi $M(4;3)$ berilgan. Qolgan C va D uchlarianiqlansin.	0	C(3;4), D(5;1)	C(3;2), D(5;1)	C(1;4), D(5;1)	C(5;4), D(5;1)
1 0	Iqtisodchilar matematika	uchun	M_1M_2 kesmaningo`rtasinitoping, agar $M_1(4,-7)$, $M_2(-4,7)$ bo`lsa	0	(0,0)	(0,7)	(4,0)	(4,7)
1 1	Iqtisodchilar matematika	uchun	Ikki vektorning skalyar ko`paytmasi nolga teng bo`ladi, agar ular orasidagi burchak bo`lsa.	0	90°	180°	45°	O _o
1 2	Iqtisodchilar matematika	uchun	Agar $\vec{a} = 5\vec{i} + 3\vec{j}$, $\vec{b} = -4\vec{i} + 6\vec{j}$, $\vec{c} = 3\vec{i} - 7\vec{j}$ berilgan bo'lsa, $\vec{a} + \vec{b} + \vec{c}$ vektornung koordinatasini toping.	0	(4;2)	(4;-2)	(-4;2)	(0;6)
1 3	Iqtisodchilar matematika	uchun	KoordinatlarboshidanA(-3;4) nuqtagachabo'lganmasofani toping.	0	5	$\sqrt{5}$	25	7
1 4	Iqtisodchilar matematika	uchun	$\vec{a}(2;1),$ $\vec{b}(3,-2)$ vektorlarningskalarko'paytmasinianiqlang	0	4	2	6	12
1 5	Iqtisodchilar matematika	uchun	\vec{a} (2;1), \vec{b} (2,-2) vektorlarningskalarko'paytmasinianiqlang	0	2	8	6	12
1 6	Iqtisodchilar matematika	uchun	$\overline{a} = (3; 2; 5), \ \overline{b} = (1; 3; 7)$ vektorlarustidachiziqliamallarnibajaring: $2\overline{a} + \overline{b} = ?$	0	(7;7;17)	(-7;7;17)	(7;-7;17)	(7;7;-17)
1 7	Iqtisodchilar matematika	uchun	$\overline{a} = (3;1;-4;5), \overline{b} = (0;3;-2;0)$ vektorlarustidachiziqliamallarnibajaring: $3\overline{a} - 2\overline{b} = ?$	0	(9;-3;-8;15)	(9; -3; -6; -15)	(9; -3; -5;15)	(9;3;-8;15)
1 8	Iqtisodchilar matematika	uchun	$\vec{a} = 2\vec{i} + 3\vec{j} - 6\vec{k}$ vektor uzunligi toping.	0	$\left \overrightarrow{a} \right = 7;$	$\left \overrightarrow{a} \right = 1;$	$\left \overrightarrow{a} \right = 9;$	$\left \overrightarrow{a} \right = 2;$

1 9	Iqtisodchilar matematika	uchun	$\vec{a} = (3; m; 2)$ va $\vec{b} = (6; 2; 4)$ vektorlar qachon kolleniar?	0	m=1	m = 8	m = 3	m = -1
2 0	Iqtisodchilar matematika	uchun	Vektorlarsistemasiningranginitoping: $\overline{a}(2;1;1); \overline{b}(-1;1;-5)$ $\overline{c}(5;3;1); \overline{d}(6;5;-3)$	0	r = 3	r = 2	r=1	r = 4
2	Iqtisodchilar matematika	uchun	(1;2;3) vektor $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix}$ chiziqli operator yordamidagiaksini toping.		(14;3;5);	(7;2;6);	(3;4;2);	(3;2;5).
2 2	Iqtisodchilar matematika	uchun	(3;2;0) vektor $A = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}$ chiziqli operator yordamidagiaksini toping.		(5;-3;4);	(7;2;6);	(3;4;2);	(3;2;5).
2 3	Iqtisodchilar matematika	uchun	$ \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix} $ matrisaning xosqiymatlarini toping.	0	-2 va 1	-2 va-1	2 va-1	3va -2
2 4	Iqtisodchilar matematika	uchun	$\begin{pmatrix} 5 & 4 \\ 8 & 9 \end{pmatrix}$ matrisaningxosqiymatlarinitoping.	0	1 va 13	1va4	-1va-13	-4va 13
2 5	Iqtisodchilar matematika	uchun	$ \begin{pmatrix} 6 & 7 \\ 4 & 9 \end{pmatrix} $ matrisaning xosqiymatlarini toping.	0	2 va 13	-2va13	2va-13	-2va -13
2 6	Iqtisodchilar matematika	uchun	$\begin{pmatrix} 7 & 5 \\ 3 & 5 \end{pmatrix}$ matrisaningxosqiymatlarinitoping.	0	2 va 10	1va5	3va5	-2va -10
2 7	Iqtisodchilar matematika	uchun	$\begin{pmatrix} 9 & 12 \\ 12 & 16 \end{pmatrix}$ matrisaningxosqiymatlarinitoping.	0	0 va 25	1va 29	0 va 20	5 va 25
2 8	Iqtisodchilar matematika	uchun	$\overrightarrow{e_1}, \overrightarrow{e_2}$ bazisda A operator $A = \begin{pmatrix} 10 & 6 \\ 6 & 1 \end{pmatrix}$	0	$\begin{pmatrix} -5 & 0 \\ 0 & 13 \end{pmatrix}$	$\begin{pmatrix} 5 & 0 \\ 0 & -13 \end{pmatrix}$	$\begin{pmatrix} 13 & 0 \\ 0 & 5 \end{pmatrix}$	$\begin{pmatrix} 0 & 13 \\ 5 & 0 \end{pmatrix}$

		matritsagaega. $\begin{cases} \overrightarrow{e_1'} = \overrightarrow{e_1} - 2\overrightarrow{e_2} \\ \overrightarrow{e_2'} = 2\overrightarrow{e_1} + \overrightarrow{e_2} \end{cases}$ bazisda A operatorningmatritsasini toping.					
	Iqtisodchilar uchun matematika	$\overrightarrow{e_1}, \overrightarrow{e_2}$ bazisda A operator $A = \begin{pmatrix} 14 & 6 \\ 6 & 5 \end{pmatrix}$, , ,			
9		matritsagaega. $\begin{cases} \overrightarrow{e_1'} = \overrightarrow{e_1} - 2\overrightarrow{e_2} \\ \overrightarrow{e_2'} = 2\overrightarrow{e_1} + \overrightarrow{e_2} \end{cases}$ bazisda A	0	$\begin{pmatrix} 2 & 0 \\ 0 & 17 \end{pmatrix}$	$\begin{pmatrix} 17 & 0 \\ 0 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 & 0 \\ 0 & 18 \end{pmatrix}$	$\begin{pmatrix} 18 & 0 \\ 0 & 3 \end{pmatrix}$
	Iqtisodchilar uchun matematika	e_1, e_2 bazisda A operator $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$					
3 0		matritsagaega. $\begin{cases} \overrightarrow{e_1'} = \overrightarrow{e_1} - 2\overrightarrow{e_2} \\ \overrightarrow{e_2'} = 2\overrightarrow{e_1} + \overrightarrow{e_2} \end{cases}$ bazisda A	0	$\begin{pmatrix} 1 & 0 \\ 0 & 16 \end{pmatrix}$	$\begin{pmatrix} 16 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 13 & 0 \\ 0 & 4 \end{pmatrix}$	$\begin{pmatrix} 4 & 0 \\ 0 & 13 \end{pmatrix}$
		operatorningmatritsasiii toping.					
	Iqtisodchilar uchun matematika	$f(x_1; x_2) = 2x_1^2 + 4x_1x_2 - 3x_2^2$ kvadratik forma					
3	Пасептастка	berilgan. $ \begin{cases} x_1 = 2y_1 - 3y_2 \\ x_2 = y_1 + y_2 \end{cases} $	0	$A' = \begin{pmatrix} 13 & -17 \\ -17 & 3 \end{pmatrix}$	$A' = \begin{pmatrix} 13 & -17 \\ -17 & -3 \end{pmatrix}$	$A' = \begin{pmatrix} 12 & -17 \\ -17 & 3 \end{pmatrix}$	$A' = \begin{pmatrix} 10 & -17 \\ -17 & 3 \end{pmatrix}$
		chiziqlialmashtirishorqalihosilboʻlgan $f(y_1; y_2)$ kvadratikformani toping.					
3 2	Iqtisodchilar uchun matematika	$3x_1^2 + 2x_2^2 + 4x_1x_2$ kvadratikshaklmatritsasini toping.	0	$\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 & 0 \\ 4 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 & -2 \\ -2 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 & 4 \\ 0 & 2 \end{pmatrix}$
3	Iqtisodchilar uchun matematika		0	$ \begin{pmatrix} -3 & -2 \\ -2 & 2 \end{pmatrix} $	$\begin{pmatrix} 3 & -2 \\ -2 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 & -4 \\ 0 & 2 \end{pmatrix}$	$ \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} $
3 4	Iqtisodchilar uchun matematika		0	$\begin{pmatrix} 2 & -3 \\ -3 & 3 \end{pmatrix}$	$ \begin{pmatrix} 3 & -3 \\ -3 & 2 \end{pmatrix} $	$\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$	$ \begin{pmatrix} -3 & -2 \\ -2 & 2 \end{pmatrix} $

3 5	Iqtisodchilar matematika	uchun	$2x_2^2 - 2x_1x_2 - 2x_2x_3 + 4x_1x_3$ kvadratikshaklmatritsasini toping.	0	$ \begin{pmatrix} 0 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & 0 \end{pmatrix} $	$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} $
3 6	Iqtisodchilar matematika	uchun	$2x_1^2 - 6x_1x_2 + 4x_2^2$ kvadratikshaklqandayaniqlangan?	0	yarimaniqlanga n;	Ishorasianiqlan gan;	Ishorasianiqlanm agan	aniqlabboʻlma ydi
3 7	matematika	uchun	$4x_1^2 + 2x_1x_2$ kvadratikshaklqandayaniqlangan?	0	Ishorasianiqlan gan;	Ishorasianiqlan magan	Ishorasiyarimani qlangan	aniqlabboʻlma ydi
3 8	Iqtisodchilar matematika	uchun	$2x_1^2 - 2x_1x_2 - 2x_2x_3 + 2x_1x_3$ kvadratikshaklmatritsasini toping.	0		$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} $
3 9	Iqtisodchilar matematika	uchun	$3x_1^2 + x_2^2 - x_3^2 + 6x_1x_2 - 6x_2x_3 + 2x_1x_3$ kvadratikshaklmatritsasini toping	0	$ \begin{pmatrix} 3 & 3 & 1 \\ 3 & 1 & -3 \\ 1 & -3 & -1 \end{pmatrix} $	4 1.5 1.5 6 1 -0.5	$ \begin{pmatrix} 3 & 2 & 1 \\ 2 & 6 & 2 \\ 1 & 2 & 4 \end{pmatrix} $	$ \begin{pmatrix} 3 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 2 & -1 \end{pmatrix} $
4 0	Iqtisodchilar matematika	uchun	$3x_1^2 + 2x_2^2 - x_3^2 + 4x_1x_2 + 6x_2x_3 + 2x_1x_3$ kvadratikshaklmatritsasini toping	0	$ \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 3 & -1 \end{pmatrix} $	4 1.5 1.5 6 1 -0.5	$ \begin{pmatrix} 3 & 2 & 1 \\ 2 & 6 & 2 \\ 1 & 2 & 4 \end{pmatrix} $	$ \begin{pmatrix} 3 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 2 & -1 \end{pmatrix} $
4	Iqtisodchilar matematika	uchun	Fokuslariorasidagimasofa $\rho(F_1, F_2) = 10$ vakichikyarimo`qi $b = 5$ bo`lsaellipstenglamasinituzing.		$\frac{x^2}{50} + \frac{y^2}{25} = 1$	$\frac{x^2}{50} + \frac{y^2}{10} = 1$	$\frac{x^2}{25} + \frac{y^2}{50} = 1$	$\frac{x^2}{10} + \frac{y^2}{5} = 1$
4 2	Iqtisodchilar matematika	uchun	Markazi $C(0,1)$ da radiusi $r=3$ gatengbo`lganaylanatenglamasinituzing.	0	$x^2 + (y - 1)^2 = 9$	$x^2 + (y+1)^2 = 9$	$(x-1)^2 + (y-1)^2 =$	$x^2 + y^2 = 9$
4 3	Iqtisodchilar matematika	uchun	$(x-2)^{2} + (y+4)^{2} = 16$ aylananingmarkazivaradiusinianiqlang.	0	S(2;-4), R=4	S(-2;-4), R=4	S(2;4), R=16	S(2;-4), R =8
4 4	Iqtisodchilar matematika	uchun	$16x^2 - 4y^2 = 400$ giperbolatenglamasiberilgan.	0	5; 10	5; 5	10; 10	16; 4

			Uningoʻqlariuzunligini toping.					
4 5	Iqtisodchilar matematika	uchun	$\frac{x^2}{25} + \frac{y^2}{9} = 1$ ellipsning fokuslarikoordinatalari topilsin.	0	(-4;0);(4;0)	(-5;0); (5;0)	(-3;0); (3;0)	(-4;1); (4;1)
4 6	Iqtisodchilar matematika	uchun	Parallel toʻgʻrichiziqlarningburchakkoeffitsientlariqanday munosabatdaboʻladi?	0	$k_1 = k_2;$	$k_1 \neq k_2$;	$k_1 \cdot k_2 = 1;$	$k_1 \cdot k_2 = -1$
4 7	Iqtisodchilar matematika	uchun	Quyidagi tekisliklarning qaysi birlari parallel? 1) $4x + 2y - 4z + 5 = 0$; 2) $2x + y - 2z - 1 = 0$; 3) $x - 3y + 5z - 7 = 0$; 4) $2x - 3y + 5z - 7 = 0$.	0	1va 2	1va 3	2 va 3	3 va 4
4 8	Iqtisodchilar matematika	uchun	Tekislikning umumiy tenglamasini koʻrsating	0	Ax + By + Cz + I	$x\cos\alpha + y\sin\alpha - p =$	$x = x_0 + tm;$ $y = y_0 + tn;$ $z = z_0 + tl;$	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1;$
4 9	Iqtisodchilar matematika	uchun	Berilgan $A(4;-2;3)$ $B(5;-4;2)$ nuqtalardano'tuvchito'g'ri chiziq tenglamasini tuzing.	0	$x - 4 = \frac{y + 2}{-2} = \frac{z}{-2}$	$\frac{x-5}{-4} = \frac{y+4}{2} = \frac{z}{2}$	$x - 4 = \frac{y + 2}{-5} = \frac{z - 2}{2}$	$\frac{x-4}{2} = \frac{y+2}{3} = \frac{1}{3}$
5	Iqtisodchilar matematika	uchun	M(5;2;0) nuqtadano'tuvchiva $3x + 2y - 4z + 7 = 0$ tekislikkapermendikulyarto'g'richiziqtenglamasin ituzing.	0	$\frac{x-5}{3} = \frac{y-2}{2} = \frac{x-5}{2}$	$\frac{x-3}{1} = \frac{y-2}{-2} = \frac{z}{1}$	$\frac{x-1}{4} = \frac{y-2}{-2} = \frac{z-3}{3}$	$\frac{x-3}{5} = \frac{y-2}{2} = \frac{1}{2}$
5 1	Iqtisodchilar matematika	uchun	A(1;0;1) , $B(-4;1;1)$, $C(1;5;2)$ nuqtalarorqali o'tuvchi tekislik tenglamasini tuzing.	0	x + 5y - 25z + 24	25x - y + 5z - 30	x - 5y + 25z - 26 =	5x - 25y + z - 6
5 2	Iqtisodchilar matematika	uchun	A ningqandayqiymatida $\frac{x+3}{2} = \frac{y}{A} = \frac{z-1}{7}$ to'g'richiziq $Ax + 5y + 3z - 6 = 0$ tekislikkaparallelbo'ladi.	0	-3	1	-7	2
5 3	Iqtisodchilar matematika	uchun	nuqtalardano'tgantekisliktenglamasini toping?	0			9x - 3y - 2z + 2 =	
5	Iqtisodchilar	uchun	$M_1(3,-2,-7)$ nuqtadano'tib, $2x-3z+5=0$	0	2x-3z-27=0	2x-3y+7z-4=	6y - 5z + 3 = 0	4x - y + 5z - 7 =

4	matematika	tekislikka parallel tekislik tenglamasini aniqlang.					
5 5	Iqtisodchilar uchun matematika	$M(-1,4,5)$ nuqtadano`tuvchi $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z-6}{-4}$ to'g'ri chiziqqaperpendikulyarrekisliktenglamasinituzing .	0	2x - 3y - 4z + 34 = 0	x - 4y - 5z - 34 = 0	2x + 3y + 5z - 17 = 0	x + 4y + 5z + 34 = 0
5 6	Iqtisodchilar uchun matematika	A(2; -3; 5) va $B(0; 4; -7)$ nuqtalardan o'tuvchi to'g'ri chiziq tenglamasini aniqlang	0	$\begin{cases} x = -2t + 2, \\ y = 7t - 3, \\ z = -12t + 5 \end{cases}$	$\begin{cases} x = t - 1, \\ y = 3t + 7, \\ z = 12t + 5 \end{cases}$	$\begin{cases} x = 2t - 2, \\ y = -7t + 1, \\ z = 6t - 1 \end{cases}$	$\begin{cases} x = 2t - 2, \\ y = -3t + 7, \\ z = 5t - 12 \end{cases}$
5 7	Iqtisodchilar uchun matematika	$M(2;4;-5)$ nuqtadano`tuvchi $\frac{x-1}{3} = \frac{y}{1} = \frac{z+2}{-4}$ to'g'ri chiziqqa parallelto'g'ri chiziqtenglamasinituzing.	0	$\begin{cases} x = 3t + 2, \\ y = t + 4, \\ z = -4t - 5 \end{cases}$	$\begin{cases} x = -3t + 2, \\ y = -t - 4, \\ z = 4t - 5 \end{cases}$	$\begin{cases} x = 2t + 3, \\ y = 4t + 1, \\ z = -5t - 4 \end{cases}$	$\begin{cases} x = -2t - 1, \\ y = 4t - 2, \\ z = -4t + 5 \end{cases}$
5 8	Iqtisodchilar uchun matematika	α ningqandayqiymatlarida $\frac{x}{\alpha} = \frac{y-1}{5} = \frac{z+5}{3}$, $\frac{x-1}{4} = \frac{y+2}{-2} = \frac{z-1}{2}$ to'g'ri chiziqlar perpendikulyar.	0	1	-1	2	3
5 9	Iqtisodchilar uchun matematika	$\frac{\alpha}{3}$ va $\frac{\beta}{-5}$ ningqandayqiymatlarida $\frac{x-2}{3} = \frac{y+4}{-5} = \frac{z+1}{\alpha}$ va $\frac{x+1}{6} = \frac{y-3}{\beta} = \frac{z+5}{2}$ to'g'richiziqlarperpendikulyar.	0	$\alpha = 1, \ \beta = 4$	$\alpha = 2, \ \beta = 4$	$\alpha = 1, \ \beta = 2$	$\alpha = 2, \ \beta = 3$
6	Iqtisodchilar uchun matematika	$M(2,0,-3)$ nuqtadano'tib $\frac{x-1}{5} = \frac{y+2}{2} = \frac{z+1}{-1}$ to'g'richiziqqaparallelbo'lganto'g'richiziqtenglam asinianiqlang.	0	$\frac{x-2}{5} = \frac{y}{2} = \frac{z+3}{-1}$	$\frac{x-3}{2} = \frac{y-1}{3} = \frac{z}{3}$	$\frac{x}{5} = \frac{y+3}{-2} = \frac{z-1}{4}$	$\frac{x-5}{2} = \frac{y+2}{-4} = \frac{3}{8}$

"Iqtisodchilar uchun ma	atematika" fanidan	test topshiriqlari	

№	Savol	Javob turi	1-javob	2-javob	3-javob	4-javob
1	Chiziqli algebraik tenglamalar sistemasiningildizini toping: $\begin{cases} 5x-4y-z=3\\ 5x+y+z=11\\ x-y+4z=-4 \end{cases}$	0	(2;2;-1)	(-1;2;2)	(1;1;–2)	(-2;-2;-5)
2	Chiziqli algebraik tenglamalar sistemasiningildizini toping: $\begin{cases} x-y+2z=3\\ 3x+2y-z=12\\ x+4y-3z=8 \end{cases}$	0	(3;2;1)	(0;-3;0)	(1;0;1)	(2;-2;1)
3	Chiziqli algebraik tenglamalar sistemasiningildizini toping: $\begin{cases} x+y-z=1\\ 2x-y+3z=3\\ x-2y+z=5 \end{cases}$	0	(2;-2;-1)	(-1;1;-1)	(3;-2;0)	(2;0;1)
4	Birjinslichiziqli tenglamalar sistemasining fundamental yechimlari tizimini	0	$\left(\frac{1}{7}, \frac{3}{7}, 1\right)$	$\left(-\frac{1}{7}, -\frac{3}{7}, 1\right)$	$\left(7,\frac{7}{3},1\right)$	$\left(\frac{1}{14}, \frac{3}{7}, 1\right)$

	toping:					
	$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 2x_1 - 3x_2 + x_3 = 0. \end{cases}$					
5	Birjinslichiziqli tenglamalar sistemasining fundamental yechimlari tizimini toping: $\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 0 \\ 2x_1 - 3x_2 + x_3 - 2x_4 = 0. \end{cases}$	0	$\left(\frac{1}{7}, \frac{3}{7}, 1, 0\right), \left(\frac{1}{7}, -\frac{4}{7}, 0, 1\right)$	$\left(-\frac{1}{7}, \frac{1}{7}, 1, 0\right),$ $\left(\frac{1}{14}, -\frac{4}{7}, 0, 1\right)$	$\left(-\frac{1}{7}, -\frac{1}{7}, -1, 0\right),$ $\left(\frac{1}{7}, \frac{4}{7}, 0, 1\right)$	$\left(\frac{3}{7}, \frac{3}{7}, 1, 0\right),$ $\left(-\frac{1}{7}, \frac{4}{7}, 0, 1\right).$
6	m ningqandayqiymatlari da $\begin{cases} 6x - 3y = 12 \\ 3x + my = 6 \end{cases}$ tenglamalarsistemasic heksizko'pyechimgae ga	0	$m = -\frac{3}{2}$	$m \neq -\frac{3}{2}$	$m = -\frac{2}{3}$	m = 1
7	$\begin{cases} x_1 - 3x_2 - x_3 = 2 \\ x_1 + 2x_2 + 4x_3 = 4 \end{cases}$ chiziqlitenglamalarsist emasibirgalikdayokibi rgalikdaemasliginiani qlang.	0	Birgalikda $r(A) = r(A/B) < 3$	Birgalikda $r(A) = r(A/B) = 3$	Birgalikda emas $r(A) < r(A/B)$	Birgalikda emas r(A) = r(A/B) = 2

8	$\begin{cases} x + y - z = -2 \\ 2x + 3z = 8 \\ 3x - 2y = 5 \end{cases}$ tenglamalar sistemasi berilgan Δ , Δ_z , z ni toping	0	(19,38,2)	(19,–38,–2)	(19,-19,-1)	(19,19,1)
9	Quyidagiformulalarni ngqaysibiri Kramer formulasiekanliginiani qlang	0	$x = \frac{\Delta_1}{\Delta}, y = \frac{\Delta_2}{\Delta}, z = \frac{\Delta_3}{\Delta}$	$x = \frac{\Delta}{\Delta_1}, y = \frac{\Delta}{\Delta_2}, z = \frac{\Delta}{\Delta_3}$	$x = \frac{\Delta}{\Delta_1}, y = \frac{\Delta_2}{\Delta}, z =$	$x = \frac{\Delta}{\Delta_3}, y = \frac{\Delta_1}{\Delta_3}, z = \frac{\Delta}{\Delta}$
10	$A \cdot X = B$ sistemaningmatritsako 'rinishidagiyechimi	0	$X=A^{-1}\cdot B;$	$X=B\cdot A^{-1};$	$X = B^{-1} \cdot A^{-1};$	$X = A \cdot B$.
11	$\begin{cases} x+2y=3\\ 4x-3y=1 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	x = 1; y = 1.	x = -1; y = 1.	x = 1; y = -1;	x = -1; y = -1.
12	$\begin{cases} x - y + 3z = 6 \\ 3x = 3 & \text{chiziqli} \\ x + y - z = 0 \end{cases}$ algebraik tenglamalar sistemasiningildizini toping.	0	x = 1, y = 1, z = 2	x = 1, y = -1, z = 2	x = 1, y = 1, z = -2	x = 1, y = -1, z = -2

13	$\begin{cases} a_1x + a_2y + a_3z = a_4, \\ b_1x + b_2y + b_3z = b_4, \\ c_1x + c_2y + c_3z = c_4 \end{cases}$ chiziqli algebraik tenglamalar sistemasi qachon bitta yechimga ega boʻladi?	0	Δ≠0boʻlsa	Δ₁ ≠ 0 boʻlsa	$\Delta_2 \neq 0$ boʻlsa	$\Delta_3 \neq 0$ boʻlsa
14	$\begin{cases} x+2y=-1\\ 3x-2y=5 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	x = 1; y = -1;	x = -1; y = 1;	x = 1; y = 1;	x = -1; y = -1.
15	$\begin{cases} x+y+3z=6\\ 3x=3\\ x-y-z=0 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	x = 1, y = -1, z = 2	x = 1, y = 1, z = 2	x = 1, y = -1, z = -2	x = 1, y = 1, z = -2
16	$\begin{cases} x+y+3z=5\\ 2x-y+3z=4\\ 3x-2y+z=2 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	(1; 1; 1)	(-1; 1; -1)	(1; -1; -1)	(-1; -1; 1)

17	$\begin{cases} x_1 + 3x_2 - 5x_3 = -1 \\ 2x_1 - x_2 + 3x_3 = 4 \\ 3x_1 + 2x_2 - 5x_3 = 0 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (1,1,1).	Sistemabirgalikdaem as	(1; -1; -1)	(19,38,2)
18	$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ -2x_1 + 3x_2 - 3x_3 = -5 \\ 3x_1 - 4x_2 + 5x_3 = 10 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (1,2,3).	(1; -1; -1)	Sistemabirgalikd aemas	(-1; -1; 1)
19	$\begin{cases} 3x_1 + x_2 = 9 \\ x_1 - 2x_2 - x_3 = 5 \\ 3x_1 + 44x_2 - 2x_3 = 13 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (3,0,-2).	(19,38,2)	(-1; -1; 1)	Sistemabirgalik daemas
20	$\begin{cases} x_1 + 3x_2 + 2x_3 = 6, \\ x_1 - 5x_2 + 2x_3 = -2, \\ x_1 - 5x_2 + 3x_3 = -1. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (1,1,1)	Sistemabirgalikdaem as	(19,38,2)	(1; -1; -1)

21	$\begin{cases} 2x_1 + x_2 = 5, \\ x_1 + 3x_3 = 16, \\ 5x_2 - x_3 = 10. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (1,3,5)	(-1; -1; 1)	Sistemabirgalikd aemas	(19,38,2)
22	$\begin{cases} x_1 + x_2 - 2x_3 = 6 \\ 2x_1 + 3x_2 - 7x_3 = 16 \\ 5x_1 + 2x_2 + x_3 = 16 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (3,1,-1).	(19,38,2)	(-1; -1; 1)	Sistemabirgalik daemas
23	$\begin{cases} 5x_1 + 8x_2 + x_3 = 2\\ 3x_1 - 2x_2 + 6x_3 = -7\\ 2x_1 + x_2 - x_3 = -5 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	X = (-3, 2, 1).	Sistemabirgalikdaem as	(19,38,2)	X = (3,1,-1).
24	$\begin{cases} x_1 + 2x_2 + 3x_3 = 5 \\ 4x_1 + 5x_2 + 6x_3 = 8 \\ 7x_1 + 8x_2 = 2. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (-2, 2, 1).	X = (3,1,-1).	Sisemabirgalikda emas	(19,38,2)

25	$\begin{cases} 2 x_1 - 3x_2 + x_3 = -7 \\ x_1 + 2x_2 - 3x_3 = 14 \\ -x_1 - x_2 + 5x_3 = -18 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (1, 2, -3).	X = (-2, 2, 1).	X = (3,1,-1).	Sistemabirgalik daemas
26	$\begin{cases} 2x_1 + 3x_2 + 2x_3 = 7, \\ 3x_1 - 5x_2 + 2x_3 = 0, \\ x_1 - 5x_2 + 3x_3 = -1. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	X = (1;1,1)	Sistemabirgalikdaem as	X = (-2, 2, 1).	X = (3,1,-1).
27	$\begin{cases} x_1 + 2x_2 + 3x_3 = 3\\ 2x_1 + 6x_2 + 4x_3 = 12\\ 3x_1 + 10x_2 + 8x_3 = 21\\ \text{chiziqli algebraik}\\ \text{tenglamalar}\\ \text{sistemasiningildizini}\\ \text{toping.} \end{cases}$	0	X = (-3;3,0)	X = (3,1,-1).	Sistemabirgalikd aemas	X = (-2, 2, 1).
28	$\begin{cases} x_1 + 2x_2 + 3x_3 = 10 \\ 4x_1 + 5x_2 + 6x_3 = 19 \\ 7x_1 + 8x_2 = 1 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	X = (-1;1,3)	X = (-2, 2, 1).	X = (-3;3,0)	Sistemabirgalik daemas

29	$\begin{cases} x_1 + 2x_2 + 3x_3 = 2 \\ 2x_1 + 6x_2 + 4x_3 = -6 \\ 3x_1 + 10x_2 + 8x_3 = -8 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (2; -3, 2)	Sistemabirgalikdaem as	X = (-2, 2, 1).	X = (-3;3,0)
30	$\begin{cases} 3x_1 - 2x_2 + x_3 = -10, \\ 2x_1 + 3x_2 - 4x_3 = 16, \\ x_1 - 4x_2 + 3x_3 = -18. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (-1; 2, -3)	X = (-3;3,0)	Sistemabirgalikd aemas	X = (-2, 2, 1).
31	$\begin{cases} 3x_1 + 2x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + x_3 = -3 \\ 2x_1 + x_2 + 3x_3 = -1 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (-4;1,2)	X = (2; -3, 2)	X = (-3;3,0)	Sistemabirgalik daemas
32	$\begin{cases} 2x_1 - 3x_2 - x_3 = -6 \\ 3x_1 + 4x_2 + 3x_3 = -5 \\ x_1 + x_2 + x_3 = -2 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	$X = \left(-2; 1; -1\right)$	Sistemabirgalikdaem as	X = (-3;3,0)	X = (2; -3, 2)

33	$\begin{cases} 2x_1 + 2x_2 - x_3 = 4 \\ 3x_2 + 4x_3 = -5 \\ x_1 + x_3 = -2 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (0;1;-2)	X = (2; -3, 2)	Sistemabirgalikd aemas	X = (-3;3,0)
34	$\begin{cases} x_1 + 2x_2 + 3x_3 = 6, \\ 2x_1 + 3x_2 - x_3 = 4, \\ 3x_1 + x_2 - 4x_3 = 0. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	X = (1;1,1)	X = (-4;1,2)	X = (2; -3, 2)	Sistemabirgalik daemas
35	$\begin{cases} 2x_1 + 2x_2 - x_3 = 5, \\ 4x_1 + 3x_2 - x_3 = 8, \\ 8x_1 + 5x_2 - 3x_3 = 16. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping:	0	X = (1;1;-1).	Sistemabirgalikdaem as	X = (-4;1,2)	X = (2; -3, 2)
36	$\begin{cases} 2x_1 - x_2 + 3x_3 = 3, \\ 3x_1 + 3x_2 - x_3 = 8, \\ 8x_1 + 5x_2 + x_3 = 16. \end{cases}$ chiziqlitenglamalarsist emasibirgalikdayokibi rgalikdaemasliginiani qlang.	0	Sistemabirgalikdaemas	Sistemabirgalikdava aniqsistema	Sistemabirgalikd avaaniqmassiste ma	Sistemabirgalik daemasvaaniqsi stema

37	$\begin{cases} 2x_1 + x_2 + x_3 = 4, \\ x_1 - x_2 + x_3 = 0, \\ 3x_1 + x_2 + 2x_3 = 5. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	X = (2;1;-1).	X = (-4;1,2)	X = (0;1;-2)	X = (1;1,1)
38	$\begin{cases} 4x_1 - 3x_2 + 2x_3 = 9 \\ 2x_1 + 5x_2 - 3x_3 = 4 \\ 5x_1 + 6x_2 - 2x_3 = 18 \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	(2;3;5).	X = (1;1,1)	X = (1;1;-1).	X = (0;1;-2)
39	$\begin{cases} x_1 + 2x_2 + 3x_3 = 0, \\ 2x_1 + 4x_2 + 5x_3 = -1, \\ 3x_1 + 5x_2 + 6x_3 = 1. \end{cases}$ chiziqli algebraik tenglamalar sistemasiningildizini toping.	0	X = (5; -4; 1)	X = (0;1;-2)	X = (1;1,1)	Sistemabirgalik daemas
40	$\begin{cases} 3x_1 - x_2 + 2x_3 = 0 \\ 4x_1 - 3x_2 + 3x_3 = 0 \\ x_1 + 3x_2 = 0 \end{cases}$ birjinslichiziqlialgebra iktenglamalarsistemas iningumumiyvabittax ususiyyechiminitopin	0	Umumiy yechim $(-3t;t;5t)$; xususiy yechim $(0;0;0;)$.	Xususiy yechim $X = (5; -4; 1)$	Sistema birgalikda yemas	Xususiy yechim $X = (1;1,1)$

	g.					
41	$\begin{cases} x_1 + x_2 - x_3 = 0 \\ 8x_1 + 3x_2 - 6x_3 = 0 \\ 4x_1 - x_2 + 3x_3 = 0 \end{cases}$ bir jinsli chiziqli algebraik tenglamalar sistemasining umumiy va bitta xususiy yechimini toping.	0	Chiziqli tenglamalar sistemasi aniq va (0;0;0) yechimga ega.	Sistemabirgalikdaem as.	Xususiyyechim $X = (0;1;-2)$	Xususiyyechim $X = (5; -4; 1)$
42	$\begin{cases} x_1 + x_2 + x_3 = 3, \\ 2x_1 - x_2 + x_3 = 2, \\ x_1 + 4x_2 + 2x_3 = 5. \end{cases}$ chiziqli tenglamalar sistemasining birgalikda yoki birgalikda emasligini tekshiring.	0	Sistemabirgalikdaemas	Sistemabirgalikdava aniqsistema	Sistemabirgalikd aemasvaaniqmas sistema	Sistemabirgalik daemasvaaniqsi stema
43	$\begin{cases} x_1 + x_2 - x_3 = -4, \\ x_1 + 2x_2 - 3x_3 = 0, \\ -2x_1 - 2x_3 = 3. \end{cases}$ bir jinsli boʻlmaganchiziqli algebraik tenglamalar sistemasining birgalikda yoki birgalikda emasligini tekshiring.	0	Sistemabirgalikdaemas	Sistemabirgalikdava aniqsistema	Sistemabirgalikd avaaniqmassiste ma	Sistemabirgalik daemasvaaniqsi stema

44	$\begin{cases} x_1 + 2x_2 - 4x_3 = 1, \\ 2x_1 + x_2 - 5x_3 = -1, \\ x_1 - x_2 - x_3 = -2. \end{cases}$ bir jinsli boʻlmaganchiziqli algebraik tenglamalar sistemasining umumiy yechimini toping.	0	Umumiy yechim $X = (2t - 1; t + 1; t); t \in R$	Sistema birgalikda emas	Xususiy yechim (2;3;5).	Xususiy yechim (-1; 1; -1)
45	$\begin{cases} 2x_1 - x_2 - x_3 = 0 \\ 3x_1 + 4x_2 - 2x_3 = 0 \\ 3x_1 - 2x_2 + 4x_3 = 0 \end{cases}$ bir jinsli chiziqli algebraik tenglamalar sistemasining umumiy va bitta xususiy yechimini toping.	0	Chiziqlitenglamalarsist emasianiqva (0;0;0) yechimgaega.	Umumiy yechim $X = (2t-1; t+1; t); t \in R$	Sistema birgalikda emas	Xususiy yechim (2;3;5).