1 Définition

Définition 1

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $f \in \mathbb{R}^I$. On dit que (f_n) converge uniformément vers f sur I si

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n \geqslant N \Longrightarrow \forall x \in I \ |f_n(x) - f(x)| < \varepsilon)$$

2 Caractérisation de la convergence uniforme

Proposition 1

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $f \in \mathbb{R}^I$. Alors (f_n) converge uniformément vers f sur I ssi

- il existe $N \in \mathbb{N}$ tel que dès que $n \ge N$, $\sup_{x \in I} |f_n(x) f(x)|$ existe
- $\sup_{x \in I} |f_n(x) f(x)| \xrightarrow[n \to +\infty]{} 0$

Exemple

Soit (f_n) la suite de fonctions définie pour tout $n \in \mathbb{N}$ et tout $x \in [0,1[$ par $f_n(x)=x^n$.

Alors (f_n) converge simplement vers la fonction nulle sur [0,1[.

Or
$$\sup_{x \in [0,1[} |f_n(x) - 0| = \sup_{x \in [0,1[} |f_n(x)| = 1 \xrightarrow[n \to +\infty]{} 0.$$

Ainsi (f_n) ne converge pas uniformément vers la fonction nulle sur [0,1[.

Proposition 2

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ convergeant uniformément vers $f \in \mathbb{R}^I$ sur I.

Alors (f_n) converge simplement vers f sur I.