CS 446/ECE 449: Machine Learning

Lecture 9: PAC Learning Theory (I)

Han Zhao 02/13/2024

Recap: Supervised Learning Algorithms

Models we have learned so far:

Model	Linear?	Parametric?	Loss	Generative/ Discriminative
K-nearest neighbor	N	N	N/A	Discriminative
Naive Bayes	Υ	Υ	NLL	Generative
Logistic regression	Y	Y	Logistic/NLL	Discriminative
Linear SVM	Y	Υ	Hinge	Discriminative
Kernelized SVM	N	N	Hinge	Discriminative
Decision Tree	N	N	N/A	Discriminative
AdaBoost	N	N	Exp	Discriminative

Note:

- NLL = negative log-likelihood
- Generative = modeling Pr(X, Y)
- Discriminative = modeling Pr(Y|X)

Lecture Today

- Bayes Error, Bayes Predictor
- Error Decomposition

So far we have learned many different classification algorithms. Beyond their different design choices, how should we compare their performance theoretically?

- For a given prediction problem, what is the optimal error that we can hope to achieve? Which predictor will achieve the optimal error?
- Given a problem and a model, how far is our model from the optimal predictor?

The learning process:

- We can choose a predictor f from some pre-defined class of functions \mathcal{F} , e.g., the class of linear predictors, decision trees, kernel machines, neural networks, etc.

We also have our training data $\mathcal{D} := \{(x^{(i)}, y^{(i)})\}_{i=1}^n \sim \mu$ sampled independently and identically (iid) from the underlying distribution μ over $\mathcal{X} \times \mathcal{Y}$

We can then talk about two error measures (classification):

Training error:
$$\hat{\varepsilon}_{\mathscr{D}}(f) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(f(x^{(i)}) \neq y^{(i)})$$

Test error:
$$\varepsilon_{\mu}(f) := \mathbb{E}_{\mu} \left[\mathbb{I}(f(X) \neq Y) \right] = \Pr_{\mu}(f(X) \neq Y)$$

We are interested in finding f that minimizes the test error but we can only observe the training error

Bayes error rate: the theoretically minimum test error that can be achieved:

Bayes error:
$$\varepsilon_{\mu}^* := \inf_{f: \mathcal{X} \to \mathcal{Y}} \varepsilon_{\mu}(f)$$

Assuming X is a continuous RV and let p(x) be the probability density of X. Then for any classifier $f: \mathcal{X} \to \{0,1\}$, we have:

$$\begin{split} \varepsilon_{\mu}(f) &= \Pr(f(X) \neq Y) \\ &= \int_{\mathcal{X}} \left(\Pr(Y = 1 \, | \, X = x) \cdot \mathbb{I}(f(x) = 0) + \Pr(Y = 0 \, | \, X = x) \cdot \mathbb{I}(f(x) = 1) \right) p(x) \, dx \\ &\geq \int_{\mathcal{X}} \min \left\{ \Pr(Y = 1 \, | \, X = x), \Pr(Y = 0 \, | \, X = x) \right\} p(x) \, dx \\ &= \mathbb{E}_{\mu} \left[\min \left\{ \Pr(Y = 1 \, | \, X), \Pr(Y = 0 \, | \, X) \right\} \right] \\ &= \frac{1}{2} - \frac{1}{2} \mathbb{E}_{\mu} \left[\left| \, 2\eta(X) - 1 \, \right| \right] \end{split}$$

where $\eta(X) := \Pr(Y = 1 \mid X)$ is the conditional probability

Bayes error depends on the distribution μ :

$$\varepsilon_{\mu}(f) = \Pr(f(X) \neq Y)$$

$$= \int_{\mathcal{X}} \left(\Pr(Y = 1 \mid X = x) \cdot \mathbb{I}(f(x) = 0) + \Pr(Y = 0 \mid X = x) \cdot \mathbb{I}(f(x) = 1) \right) p(x) dx$$

$$\geq \int_{\mathcal{X}} \min \left\{ \Pr(Y = 1 \mid X = x), \Pr(Y = 0 \mid X = x) \right\} p(x) dx$$

$$= \mathbb{E}_{\mu} \left[\min \left\{ \Pr(Y = 1 \mid X), \Pr(Y = 0 \mid X) \right\} \right]$$

$$= \frac{1}{2} - \frac{1}{2} \mathbb{E}_{\mu} \left[|2\eta(X) - 1| \right]$$
Bayes error rate: \mathcal{E}_{μ}^{*}

- The Bayes error only depends on the distribution μ
- It's unknown since we don't know μ in practice
- It's always ≤ 0.5

The classifier that achieves the Bayes error is called the Bayes classifier, and it has the following form:

$$\eta(X) := \Pr(Y = 1 \mid X)$$

$$f_{\text{Bayes}}(X) := \begin{cases} 1 & \text{if } \eta(X) \geq \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

- Again, this is unknown since we don't know μ
- Recall the proof:

$$\begin{split} \varepsilon_{\mu}(f) &= \int_{\mathcal{X}} \left(\Pr(Y = 1 \mid X = x) \cdot \mathbb{I}(f(x) = 0) + \Pr(Y = 0 \mid X = x) \cdot \mathbb{I}(f(x) = 1) \right) p(x) \, \mathrm{d}x \\ &\geq \int_{\mathcal{X}} \min \left\{ \Pr(Y = 1 \mid X = x), \Pr(Y = 0 \mid X = x) \right\} p(x) \, \mathrm{d}x \\ &= \frac{1}{2} - \frac{1}{2} \mathbb{E}_{\mu} \left[\left| 2\eta(X) - 1 \right| \right] \end{split}$$

Think: when will $\varepsilon_{\mu}^* = 0$? when will $\varepsilon_{\mu}^* = 0.5$?

Intuitively, the Bayes error is a measure of the "noise" in the underlying distribution:

Bayes error rate:
$$\varepsilon_{\mu}^* = \frac{1}{2} - \frac{1}{2} \mathbb{E} \left[|2\eta(X) - 1| \right]$$

$$\eta(X) := \Pr(Y = 1 \mid X)$$

- If
$$\forall x, \eta(x) = 1$$
, or $\eta(x) = 0$, then $\varepsilon_{\mu}^* = 0$

If
$$\forall x, \eta(x) = \frac{1}{2}$$
, then $\varepsilon_{\mu}^* = \frac{1}{2}$

Intuitively, the Bayes error is a measure of the "noise" in the underlying distribution:

Bayes error rate:
$$\varepsilon_{\mu}^* = \frac{1}{2} - \frac{1}{2} \mathbb{E} \left[|2\eta(X) - 1| \right]$$

$$\eta(X) := \Pr(Y = 1 \mid X)$$

Example: Suppose we have the following data generative process. There exists a vector w^* , such that for each x, the labels are generated in the following process:

- First, compute the label $y = sgn(w^{*T}x)$
- Then, with probability 0 , flip the label y

Question: What's the Bayes error rate for this example?

The concept is not unique to classification problems. For regression problems, under the squared loss:

$$\begin{aligned} \forall f, \ \varepsilon_{\mu}(f) &= \mathbb{E}_{\mu} \left[(f(X) - Y)^{2} \right] \\ &= \mathbb{E}_{X} \mathbb{E}_{Y} \left[(f(X) - Y)^{2} | X \right] \\ &= \mathbb{E}_{X} \mathbb{E}_{Y} \left[(f(X) - \mathbb{E}[Y|X] + \mathbb{E}[Y|X] - Y)^{2} | X \right] \\ &= \mathbb{E}_{X} \mathbb{E}_{Y} \left[(f(X) - \mathbb{E}[Y|X])^{2} + (\mathbb{E}[Y|X] - Y)^{2} \right] \\ &+ 2(f(X) - \mathbb{E}[Y|X])(\mathbb{E}[Y|X] - Y) | X \right] \\ &\geq \mathbb{E}_{X} \mathbb{E}_{Y} \left[(\mathbb{E}[Y|X] - Y)^{2} | X \right] \end{aligned}$$

Bayes error rate: = $\mathbb{E}_X \text{Var}[Y|X]$

Bayes optimal regressor: $f_{\text{Bayes}}(X) = \mathbb{E}[Y|X]$

Again, the Bayes error in regression can also be understood as a measure of the "noise" in the underlying distribution:

Bayes error rate:
$$\varepsilon_{\mu}^* = \mathbb{E} Var[Y|X]$$

Example: Suppose we have the following data generative process. There exists a vector w^* , such that for each x, the labels are generated in the following process:

- First, compute the label $y = w^{*T}x$
- Then, inject a white noise $\epsilon \sim \mathcal{N}(0,\delta^2)$ into the label so that $y \leftarrow y + \epsilon$

Question: What's the Bayes error under the squared loss for this example?

The optimal error a learner can hope to achieve also depends on the class of functions \mathcal{F} it can choose from, called hypothesis class

For binary classification problems:

_ If ${\mathscr F}$ contains all the binary functions, then $\inf_{f\in{\mathscr F}}\varepsilon_\mu(f)=\varepsilon_\mu^*$

- If \mathscr{F} is very restricted, e.g., only contains constant functions, then $\inf_{f\in\mathscr{F}}\varepsilon_{\mu}(f)=\min\{\Pr(Y=0),\Pr(Y=1)\}$

Clearly, in the second case, the error is larger than the Bayes error.

The optimal error a learner can hope to achieve also depends on the class of functions \mathcal{F} it can choose from, called hypothesis class

For regression problems under mean-squared error:

If \mathscr{F} contains all the real-valued functions, then $\inf_{f\in\mathscr{F}}\varepsilon_\mu(f)=\varepsilon_\mu^*$

- If \mathscr{F} is very restricted, e.g., only contains constant functions, then $\inf_{f\in\mathscr{F}}\varepsilon_{\mu}(f)= \overline{\mathrm{Var}[Y]}$

In the second case, the error is larger than the Bayes error by the law of total variance: $Var[Y] = \mathbb{E}Var[Y|X] + Var\mathbb{E}[Y|X] \ge \mathbb{E}Var[Y|X]$

Summary:

Binary classification:

Bayes error rate:
$$\varepsilon_{\mu}^* = \mathbb{E} \min \left\{ \Pr(Y = 1 | X), \Pr(Y = 0 | X) \right\}$$

Bayes optimal classifier:
$$f_{\text{Bayes}}(X) := \begin{cases} 1 & \text{if } \Pr(Y = 1 | X) \ge \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

Regression with squared loss:

Bayes error rate: $\varepsilon_{\mu}^* = \mathbb{E} \text{Var}[Y|X]$

Bayes optimal regressor: $f_{\text{Bayes}}(X) = \mathbb{E}[Y|X]$

For a given hypothesis class \mathscr{F} , we may have $f_{\mathrm{Bayes}} \notin \mathscr{F}$. In this case we cannot hope to achieve ε_{μ}^* , but instead $\inf_{f \in \mathscr{F}} \varepsilon_{\mu}(f)$.

Error decomposition: $\forall f \in \mathcal{F}$:

Approximation error

(depending on the expressiveness of \mathcal{F})

Error decomposition: $\forall f \in \mathcal{F}$:

(depending on the expressiveness of \mathcal{F})

- Often the case, there is a trade-off between the estimation error and the approximation error
- If \mathcal{F} is more expressive, then the approximation error gets smaller but the estimation error gets larger
- If \mathcal{F} is more restricted, then the approximation error gets larger but the estimation error gets smaller (assume the size of training data is fixed)

Example: fitting a trigonometric function with polynomials (degree = M)

Example: fitting a trigonometric function with polynomials (degree = M)

Example: fitting a trigonometric function with polynomials (degree = M)

Example: fitting a trigonometric function with polynomials (degree = M)

Reminder: the approximation error only depends on \mathscr{F} while the estimation error depends on both \mathscr{F} and data

- We should aim to minimize the estimation error
- How does the estimation error depend on the sample size, the expressiveness/richness of \mathcal{F} , or the distribution μ ?
- Ideally, for a fixed hypothesis class \mathcal{F} , could we ensure that the estimation error goes to 0 as the sample size n increases?

Next Time

- Probably Approximately Correct (PAC) framework
- High-probability generalization bound
- Vapnik-Chervonenkis dimension (VC dim)