Miscellaneous Notes

Ben Kallus

October 25, 2020

Warning:

These notes are on topics that I have not (yet) studied in class. It is likely that some of them are wrong. This file is for accumulating definitions that I would otherwise forget, but may be useful to me in the future.

Metric

A metric f is a function that defines a concept of distance between any two members of a set S. A metric satisfies the following properties for all $a, b \in S$:

$$f(a,b) = 0 \implies a = b,$$

$$f(a,b) = f(b,a),$$

$$|f(a,b)| = f(a,b),$$

$$f(a,b) \le f(a,c) + f(c,b).$$

Metric Space

A metric space is a set S together with a metric on S.

Compactness

A space is considered compact if every infinite subsequence of points sampled from the space has an infinite subsequence that converges to some point of the space. Bolzano-Weierstrass tells us that \mathbb{R} has this property, so \mathbb{R} is compact. There are other notions of compactness, but I think this is the one that I will care about for now.

Neighborhood (Topology)

Let $p \in S$, a set. A neighborhood N of p is a subset of S containing an open subset of S containing p. For example, [1, 5] is a neighborhood of $3 \in \mathbb{R}$.

Topological Space

Let S be (potentially empty) set. Let **N** be a function mapping each $p \in S$ to a set of subsets of S, which we'll call neighborhoods. S is a topological space if the following all hold:

- $p \in N$ for all $N \in \mathbf{N}(p)$.
- If $M \subseteq S$ and $N \subseteq M$ for some $N \in \mathbf{N}(p)$, then M is a neighborhood of p.
- For all $N_1, N_2 \in \mathbf{N}(p), N_1 \cap N_2 \in \mathbf{N}(p)$.
- For all $N \in \mathbf{N}(p)$, there exists $M \in \mathbf{N}(p)$ such that $M \subseteq N$ and $N \in \mathbf{N}(m)$ for all $m \in M$.

Discrete Space

A discrete space is a topological space in which all subsets are open.