حل معادلتين من الدرجة الأولى

إذا كان المعادلتين على الصورة: أرس + برص = جر ، أرس + برص = جر فإن المعادلتين:

لهما حل وحيد

أو: المستقيمان متقاطعان

عدد الحلول = ١

لا پوجد حل

 $\frac{1}{1}$ إذا كان $\frac{1}{1}$ = $\frac{\frac{1}{1}}{\frac{1}{1}}$ $\neq \frac{\frac{1}{1}}{\frac{1}{1}}$

أو: المستقيمان متوازيان

عدد الحلول _ صفر

 $\Phi = \mathbf{\zeta} \cdot \mathbf{\dot{\gamma}}$

- ♦ لإيجاد مجموعة الحل بيانيا نحل كل معادلة لوحدها كدالة خطية وكل معادلة هيمثلها مستقيم
 - ♦ مجموعة حل معادلتين من الدرجة الأولى بيانيا هي: نقطة تقاطع المستقيمين
 - ♦ إذا توازى المستقيمان فإن م . ح = Ф

الحل الجبرئ بطريقة الحذف

- ١) اجعل المعادلتين على الصورة أس + ب ص = ج (الحد المطلق لوحده بعد =)
- ٢) خلى معاملات السينات متشابهم أو معاملات الصادات متشابهم (المتشابهين هيطيروا في الخطوة التالتم)
- ٣) حط المعادلتين في صورة أفقية تحت بعض (اتأكد ان السينات تحت بعض والصادات تحت بعض وهكذا)
 - ٤) لو المتشابهين ليهم نفس الإشارة اطرح المعادلتين ولو إشاراتهم مختلفة اجمع المعادلتين.
 - ٥) هات قيمة المجهول وعوّض عنها في أي معادلة هتجيلك قيمة المجهول التاني.

مثاله ا أوجد مجموعة حل المعادلتين :

الحل

بضرب المعادلة الأولى × ٢

$$7 = \sqrt{4} - \sqrt{4}$$
 بالجمع $4 = \sqrt{4} + \sqrt{4}$

بالتعويض في المعادلة الثانية:

$$1 = \omega$$
 \Leftrightarrow $Y = \omega Y + Y$
 $above A = 0$ \Rightarrow $Y = 0$

رصا عدد لا نهائی

$$\frac{1}{1} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}}$$

$$\frac{1}{1} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}} = \frac{\frac{1}{1}}{\frac{1}{1}}$$

أو: المستقيمان منطبقان

عدد الحلول = عدد لا نهائى

معادلت من الاتنين } دلت هيمثلها مستقيم

مثاله ٢ أوجد مجموعة حل المعادلتين:

٣ - ٢ - ٢ ، س - ٢٠ - ٣

الحل

نظبط شكل المعادلة الثانية: س - ٢ص = -٢

بضرب المعادلة الثانية × ٣

بالطرح

٣سل ـ ٢ص = ـ٢

٣ = ١٤ = ٢٤

-۱۰ ص = -۰۳ ∴ ص = ۳

بالتعويض في المعادلة الثانية

س - ۲×۲ + ۲ = ۰ 🗢 س - ٤ = ۰ 🗢 س = ٤

م. ح = { (۴، ۴) }

حل معادلة من الدرجة الثانية

إذا كانت المعادلة على الصورة: أس + بس + ج = • هنستخدم القانون العام:

اً: معامل سی ب: معامل سی ب: معامل سی ج: الحد المطلق

خطوات الحل

- (وديهم كلهم قبل يساوى) خلى المعادلة على الصورة أس 7 + بس + ج = صفر
 - (2) خد من المعادلة قيم أ، ب، جه بإشارتهم الموجودة في المعادلة
- (3) عوض في القانون العام عن قيم أ ، ب ، ج واحسب اللى تحت الجذر لحد ما يبقى رقم واحد بس
 - (4) افصل الناتج مرة بالـ (+) ومرة بالـ (-) واحسب القيمتين بالآلم الحاسبـ ت
 - (5) اكتب الناتجين في مجموعة الحل

مللحظات 1 شايف ـ ب اللي فوق في القانون؟ دى معناها انك تعوض عن ب بس بإشارة مختلفة

- إذا كان المميز -1 + 1 + 2 = 0 حصفر (موجب) فإن المعادلة لها جذران وإذا كان -1 + 2 + 2 = 0 فإن المعادلة ليس لها حلول ، أي م -1 + 2 = 0 وإذا كان -1 + 2 = 0 حصفر فإن المعادلة لها جذر واحد (أو جذران متساويان)
- (3) مجموعة حل معادلة من الدرجة الثانية بيانيا هي :قيم س التي يقطعها المنحني من محور السينات
 - 4 إذا لم يقطع المنحنى محور السينات فإن م . ح = Φ

مثال ١ باستخدام القانون العام أوجد مجموعة حل

المعادلة الآتية في ح : ٣س - ٥ س + ١ = ٠

مقربا الناتج لأقرب رقمين عشريين

तमा

الأول لازم نضرب السس في القوس

$$\frac{\xi - \times 1 \times \xi - 1 \sqrt{\pm 1}}{1 \times 1} = 0$$

$$\frac{1 + \sqrt{V} - 1}{1} = 0$$

$$\text{if } m = \frac{1 + \sqrt{V} + 1}{V}$$

$$\frac{17\sqrt{-0}}{1} = \frac{0 + \sqrt{17}}{1}$$

$$|a| \quad m = \frac{0 + \sqrt{17}}{7}$$

حل معادلتين إحداهما من الدرجة الأولى والأخرى من الثانية

- 1 ابدأ بمعادلة الدرجة الأولى وهات قيمة ص بدلالة س أو قيمة س بدلالة ص
 - (2) عوض في معادلة الدرجة الثانية عن القيمة اللي انت جبتها
 - (3) فك الأقواس اللي هتظهر
 - (4) اجمع الحدود المتشابهة (وخلى المعادلة = ٠)
 - (5) حل المعادلة (غالبا هتستخدم التحليل) وهات قيمة المجهول
- (6) عوّض في معادلة الدرجة الأولى عن قيم المجهول وهات قيم المجهول الثانى

طريقة فك الأقواس

مثال ۱

 $(u + 7)^{2} = \alpha$ مربع الأول \pm الأول \times الثانى \times ۲ + مربع الثانى = $(u + 7)^{2}$

$$w^{2} + v^{2} = (w^{2} - w^{2}) = 3$$

العورة العوادة العواد

مثاله ۲ مس

مستطیل محیطه ۱ ۱سم ومساحته ۱ ۲ سم^۲ أوجد کلا من بعدیه

المل

نفرض أن بعدا المستطيل هما س ، ص

· محيط المستطيل = ٢(الطول + العرض)

٠٠ ١٤ = ٢ (س + ص) بالقسمة ÷ ٢

س + ص = ٧ ومنها ص = ٧ ـ س

∵ مساحة المستطيل = الطول×العرض ∴ س ص = ١٢

بالتعويض عن ص = ٧ ـ س في المعادلة س ص = ١٢

ن س (٧ ـ س) = ١٢ ٧س ـ س^٢ = ١٢ :

 $ν_{m}$ - $ν_{m}$ - $ν_{m}$ - $ν_{m}$ الكل

 $\bullet = (\Psi_{-} w) (\xi_{-} w) \Leftrightarrow \bullet = 1Y + wY_{-} v$

7 = 1 - 2 = 0 \Rightarrow 0 = 1 = 1

 $\ell = \Psi - V = \omega = \Psi - \Psi = 1$

ن بعدا المستطيل هما ٣سم ، ٤سم

أوجد في ح×ح مجموعة حل المعادلتين ،

س ـ ص = ۱ ، س ۲ + ص - س

वरा

`` (1 + ص)' + ص' = ۲۵ نظ ک الأقواس :

 $• = 10^{7} + 0^{7} + 1$ نجمع المتشابه

٢ص + ٢ص - ٢٤ = ٠ بالقسمة على ٢

- 17 = 0 بالتحليل

(ص + ٤) (ص - ٣) = ٠

اما ص + ٤ = ٠

∴ ص = _ ÷ ص = ۳

بالتعويض في المعادلة س = ١ + ص

· س = ۱ + ۳

∴ س = ۱ + -٤

∴ س = ٤

∴ س = _۲

 $\{ (\mathcal{T} \cdot \mathcal{E}) \cdot (\mathcal{E} - \mathcal{T} - \mathcal{E}) \cdot (\mathcal{E} - \mathcal{T}) \} = \mathcal{E} \cdot \mathcal{E}$

أصفار الدالة

الأصفار والمجال

الدالة نساوى الدالة نساوى الدالة بالصفر ونحل المعادلة

مثال: إذا كانت د (س) = س = π فإن س = π $= \pi$ س = π $= \pi$. π

$$\Phi = (2)$$
 : Φ لو الدالة مجموع مربعين زى $\Phi' + 3$ أو $\Phi' + 9$: $\Phi(c) = \Phi$

$$\Phi = (ع)$$
 د (س) = أي عدد (ما عدا الصفر) زى د (س) = π د ص(د) = Φ

المقار الكسر الجبرى = أصفار البسط _ أصفار المقام

$\{ T \} - \sigma = \frac{m - 1}{m - \pi}$ فإن مجال ن = $\sigma - \{ T \}$

◊ المجال المشترك لعدة كسور جبرية = ح - مجموعة أصفار المقامات

♦ مجال الكسر الجبرى = ح – أصفار المقام

$$\frac{7}{2}$$
 مثال: إذا كان ن (س) = $\frac{7}{2}$ ، ن (س) = $\frac{7}{2}$ فأوجد المجال المشترك لكل من ن ، ن مثال: إذا كان ن (س) = $\frac{7}{2}$

$$\{Y-,Y\}_{-}=-\{Y,Y\}_{$$

مثال ۱

न्। । ।

إذا كانت { ٣، ٣ } هي مجموعة أصفار الدالة د

حيث د(س) = س ۲ + أ فأوجد قيمة أ

الحل

: { ـ ٣ ، ٣ } هي مجموعة أصفار الدالة

ن أي قيمة من هذه القيم تجعل د (س) = ٠

مثاله ۲ س – ۱ س – ۱ الدالة ن س – ۱ س – ۱ الدالة ن س $= \frac{1}{4}$ الدالة ن س $= \frac{1}{4}$ س $= \frac{1}{4}$ منال الدالة ن س منال الدالة

विता

: أصفار المقام = ٣

بالتعويض عن س = ٣ ونساوى المقام بالصفر

لسادة المعلمين الراغبين في كتابت بياناتهم على الملازم عليهم بالتواصل على واتساب رقم ٢٣٩٠١٥٢٠١٠

تساوی کسرین جبریین

أتحليل

تحليل البسط والمقام

إخراج المجال = ح _ أصفار المقام

حذف العوامل المتشابهة بين البسط والمقام

الآتى:
الاتا:
الآتى:
الآتى:
الآتى:
الآتى:
الآتى:
الآتى:
الآتى:
الآتى:
الآت

♦ اختزل (اختصر) كل كسر لوحده بالخطوات الثلاثة (تحليل – مجال – حذف)

$$\forall i \neq i$$
 فإن ن $\forall i \neq (m)$ فإن ن $\forall i \neq i$ فإن ن $\forall i \neq i$

$$\psi \neq \psi$$
 فإن: ن $\psi = \psi_{0}$ فإن: ن $\psi \neq \psi_{0}$ فإن: ن $\psi \neq \psi_{0}$

$$\frac{m^{7}}{1} = (m)_{1}$$
 اذا کان ن $_{1}$ ان ن $_{2}$ اس $_{3}$ ا

$$w^{7} + w^{7} + w$$
 اثبت أن: ن، = ن،

$$\frac{v_{m}}{(1 - w)^{2}} = \frac{v_{m}}{v_{m}} = (w), i$$
 $(w)^{2} = v_{m} = (w)$
 $v_{m} = v_{m}$
 $v_{m} = v_{m}$
 $v_{m} = v_{m}$

$$\frac{1}{1-\omega}=(\omega)$$
ن،

$$\frac{(1+w^{1}+w^{2}$$

$$\frac{(m^{4}+m+1)}{(m^{4}+m+1)} = \frac{(m^{4}+m+1)}{(m^{4}+m+1)}$$

$$\frac{(m^{4}+m+1)}{(m^{4}+m+1)}$$

$$\frac{1}{1-w}=(w), v$$

ولكن في حالة اختلاف المجالين يكون ن = ن، في المجال المشترك فقط

مثاله ٢ أوجد المجال المشترك الذي تتساوى فيه ن, ، ن, حيث:

المل

$$\frac{(w-w)(\xi+w)}{(1+w)(\xi+w)} = \frac{17-w+7w}{\xi+w+7w} = (w), i$$

$$\frac{(1+w)(\xi+w)}{(1-\xi+w)} = \frac{17-w+7w}{\xi+w+7w} = (w), i$$

$$\frac{(1+w)(w-w)}{(1+w)(w+w)} = \frac{w-w+w}{1+w+w} = (w), i$$

$$\frac{(1+w)(w-w)}{(w-w)(w-w)} = (w-w)$$

$$\frac{w-w}{1+w}=(w)$$
ن

جمع و طرح الكسور الجبرية

- (یعنی ۱۵ ۱۳ س + ۲س۲ رتبه بإشاراته وخلیه کده ۲س۲ ۱۳ س + ۱۰)
 - 2) تحلیل بسط ومقام کل کسر إن أمکن
 - (3) إخراج المجال المشترك (ح أصفار المقامات)
- (إوعى تحذف العوامل المتشابهة في كل كسر لوحده (إوعى تحذف قوس من الكسر الأول مع قوس من الكسر التاني)
 - 5 لو لقيت المقامات موحدة: خد مقام منهم وإجمع البسطين أو اطرحهم (حسب العملية).

$$\frac{w+w}{Y+w}=\frac{w}{Y+w}+\frac{w}{Y+w}=\frac{w+w}{W+Y+w}$$

لو المقامات غير موحدة: وحد المقامات كالتالى:

شوف إيه اللى موجود في مقام الأول ومش موجود في مقام التانى واضربه × الكسر التانى كله (بسط ومقام) وشوف إيه اللى موجود في مقام التانى ومش موجود في مقام الأول واضربه × الكسر التانى كله (بسط ومقام)

زى كده :
$$\frac{w-w}{w-v} + \frac{w+w}{(w-w)(w-v)}$$
 هنضرب بسط ومقام الأول × $(w-w)$

$$\frac{w+w}{(w-w)} + \frac{(w-w)}{(w-w)} + \frac{w+w}{(w-w)}$$
 + $\frac{w+w}{(w-w)}$

أو كده :
$$\frac{w}{w+1} + \frac{1}{w-1}$$
 هنضرب بسط ومقام الأول \times $(w-1)$ وهنضرب بسط ومقام الثانى \times $(w+1)$

$$\frac{1+w}{(1+w)(1-w)} + \frac{(1-w)w}{(1+w)(1-w)} + \frac{(1-w)(1-w)}{(1+w)}$$

(6) اجمع المتشابه في البسط ولو نفع يتحلل حلله وضع المقدار في أبسط صورة

$$\frac{1+w}{Y-w} = \frac{(1+w)(W-w)}{(W-w)(Y-w)} = \frac{W-wY-Yw}{(W-w)(Y-w)} = \frac{W-w+wY-Yw}{(W-w)(Y-w)} = \frac{W-w+wY-Yw}{(W-w)(Y-w)} = \frac{W-w+wY-Yw}{(W-w)(Y-w)}$$

مثال ٢ أوجد الدالة ن في أبسط صورة مبينا مجالها حيث:

$$\frac{\xi}{\omega^2 - 1} - \frac{w - w}{17 + w^2 - 1} = (w)$$
ن

तमा

$$\frac{\xi}{(\xi - w) w} - \frac{w - w}{(w - w) (\xi - w)} = (w)\dot{v}$$

المجال =
$$\sigma - \{3, 7, 7, 7\}$$
 ، ن(س) = $\frac{1}{m-3} - \frac{1}{m(m-3)}$ المجال = $\sigma - \{3, 7, 7, 7, 7\}$ ، ن(س) = $\frac{1}{m-3} - \frac{1}{m(m-3)}$ نوحد المقامات : نضرب الكسر الأول × س

$$\frac{\xi}{(\xi - m) - \frac{m}{(\xi - m) - m}} = (m)$$
ن

خد منهم مقام واطرح البسطين

$$\frac{1}{m} = \frac{\xi - m}{(\xi - m)} = (m)$$
ن

مثال 1 أوجد الدالة ن في أبسط صورة مبينا مجالها حيث:

$$\frac{0-m^2-1m}{1+m^2-1m} + \frac{17+m^2-1m}{1+m^2-1m} = (س)^2$$

नम

$$\frac{(1+w)(o-w)}{(Y-w)} + \frac{(Y-w)(Y-w)}{(Y-w)} = (w)\dot{v}$$

$$(w-v)(w-v) + \frac{(Y-w)(Y-w)}{(Y-w)} = (w)\dot{v}$$

$$\frac{1+w}{Y-w} + \frac{Y-w}{Y-w} = (w)\dot{v}$$

$$\frac{1+w+Y-w}{Y-w} = (w)\dot{v}$$

اجمع الحدود المتشابهة اللي في البسط

ضرب الكسور الجبرية

- (عايزنى أفكرك تانى بالعامل المشترك؟)
 - 2) إخراج المجال المشترك (ح-أصفار المقامات)
 - (3) حذف العوامل المشتركة بين أي بسط وأى مقام

يعنى تقدر تحذف قوس من بسط الأول مع اللي شبهه في مقام التاني وهكذا.. و ده بينفع في الضرب ومش بينفع في الجمع

(4) ضرب البسط × البسط والمقام × المقام

قسمة الكسور الجبرية

كل اللي هتعمله انك تحوّل القسمة إلى ضرب : الـ ÷ خليها × وشقلب الكسر التاني وحل بخطوات الضرب عادي

ملحوظة ؛ فيه اختلاف بسيط هنا لما تكتب المجال وهو ؛ المجال = ح – أصفار المقامين وأصفار بسط الثاني

مثاله العدالة ن في أبسط صورة مبينا مجالها حيث:

$$\frac{w^{2}+v_{0}}{w^{2}-w^{2}}=\frac{v_{0}}{w_{0}}=\frac{v_{0}}{w_{0}}=\frac{v_{0}}{w_{0}}$$

वर्गा

$$\frac{w + w}{w^{2}} \times \frac{w^{2} + w}{q^{2} - w} = (w)$$
ن

$$\frac{w + w}{w^{2}} \times \frac{(v + w)w}{(w - w)(w - w)} = (w)$$
ن

$$\frac{Y + w}{(W - w)Y} = (w) = (w) + (w - w) + (w - w) = (w) = (w) = (w - w)$$

مثاله ا أوجد الدالة ن في أبسط صورة مبينا مجالها حيث: $\frac{m^{2}-1}{(m)} = \frac{m^{2}-1}{m^{2}+1} \times \frac{m^{2}+1}{m^{2}+1}$

तमा

$$\frac{W + W}{\xi + W^{2}} \times \frac{(\xi + W^{2} + W)(Y - W)}{(W - W)(Y - W)} = (w)$$

المعكوس الضربى للكسر الجبرى

$$\frac{W^{-1}}{W^{-1}} = \frac{W^{-1}}{W^{-1}}$$
 فإن $G^{-1}(W) = \frac{W^{-1}}{W^{-1}}$ (شقلب الكسر)

$$\dot{v}^{-1}(m) = \frac{m^{2} + m - 7}{m^{2} - m} = \frac{m \bar{u} \bar{u} \bar{u} \bar{u} \bar{u}}{m^{2} - m}$$

$$\frac{(Y-w)(Y+w)}{(Y-w)(Y+w)} =$$

$$\frac{V - w}{W - w} = \frac{V - w}{W - w}$$
 اختصرنا

विरा

$$\frac{q - r_{m}}{q} = \frac{r_{m}}{q}$$
 اذا کان ن (س) = $\frac{r_{m}}{m} + r_{m}$

أوجد ن- (س) في أبسط صورة مبينًا مجال ن- (س)

U1)J

Ui)J

الفرق

%ह्नी :

ل (أ ∩ ب) = ل (أ) + ل (ب) - ل (أ ∪

(i∩ب)=t(i) -t(i-ب)

(1-1) = (1) - (1) + (1)

ل (ب-أ) = ل (ب) ل (أ ∩ ب)

(i) = (i)

1=(i)J+(i)J

(i)J-1=(i)J

عدد عناصر الحدث ١) احتمال وقوع أي حدث = العدد الكلي

) إذا كان أ، $\Psi = \Phi$ فإن أ $\Psi = \Phi$ ، ل (أ $\Psi = \Phi$

(أ \cap الفرق والتقاطع فإن: $(i) = (i - \mu) + (i \cap \mu)$

٤) أكبر قيمة للاحتمال = ١ ، وأصغر قيمة للاحتمال = صفر أي أن ٤٠ الاحتمال ≤١

٥) إذا كانت : ب

المد محمود عوض جو معلم أول رياضيات

شڪل فن

المقصود منها الجملة احتمال وقوع الحدثين أ و ب معاً ل(أ∩ب) احتمال وقوع أحد الحدثين على الأكثر احتمال وقع الحدث أ أو ب ل (أ∪ب) احتمال وقوع أحد الحدثين على الأقل (1)) احتمال عدم وقوع الحدث أ احتمال وقوع الحدث أ وعدم وقوع الحدث ب ل (أ-ب) احتمال وقوع الحدث أفقط

أمثلة محلولة على منهج الجبر

أوجد باستخدام القانون العام مجموعة

$$- + 1 = -1$$
 حل المعادلة $- - 1$ سن $- + 1 = -1$

مقربا الناتج لرقمين عشريين

$$\frac{1 \times 1 \times \xi - 1 \xi}{1 \times 1} = \omega$$

$$\frac{17\sqrt{2}}{1} = \frac{1}{2}$$

निरा

 $\frac{11}{100} = \frac{11}{100} = \frac{11}{100}$

أوجد في ح مجموعة حل المعادلتين:

∴ م. ح = { ۳۷,۳ ، ۲۲,۰}

من معادلة الدرجة الأولى: س = ص

بالتعويض عن س = ص في معادلة الدرجة الثانية

∴ $ص^{\prime} + ص^{\prime} = \gamma$ نجمع المتشابه ∴

٣ص٢ = ٢٧ م ٣ص٢ - ٢٧ = ، بالقسمة على ٣

$$ص^{Y} = 9 = 0$$
 بالتحلیل $\bullet = (- 0))$ ($- 0)$

بالتعويض في المعادلة س = ص

$$\{ (7, 7), (7, 7) \} = \{ (7, 7) \}$$

اوجد ن(س) في أبسط صورة مبينا مجالها حيث:

$$\frac{w + w}{1 + w} + \frac{w + w}{w^{2} - w} = (w)$$
ن

वस। $\frac{W+W}{(Y-W)(W-W)} + \frac{(Y+W)(W-W)}{(Y+W)(Y-W)} = \frac{W-W}{(W-W)}$

$$\frac{w+w}{(Y-w)(Y-w)} + \frac{w}{Y-w} = (w)$$

نوحد المقامات: نضرب الكسر الأول × (س ـ٣)

$$\frac{w+w}{(Y-w)(w-w)} + \frac{(w-w)(w-w)}{(w-w)(Y-w)} = (w)$$
ن

اضرب س × القوس واجمع البسطين

$$\frac{W + WY - YW}{(W - W)(Y - W)} = \frac{W + WW - YW}{(W - W)(Y - W)} = (W)$$

ك أوجد ن (س) في أبسط صورة مبينا مجالها حيث:

$$\frac{\xi \circ_{-} \omega^{7} + ^{7}\omega^{7}}{9 - ^{7}\omega^{5}} \div \frac{9 - ^{7}\omega}{\omega^{7} + ^{7}\omega^{7}} = (\omega)$$
ن

नम

$$\frac{9 - 7 m^{2}}{20 - 200} \times \frac{9 - 7 m}{200} = (m)^{2}$$

$$\frac{(W + WY) (W - WY)}{(Y - WY) (W - WY)} \times \frac{(W + W) (W - W)}{(W + WY) (W - WY)} = (W)$$

$$\frac{(W+WY)(W-WY)}{(W-W)(W+W)} \times \frac{(W+W)(W-W)}{(W+WY)} =$$

$$\frac{(w-w^{2})(w+w)}{(w)} = \frac{(w-w^{2})(w-w^{2})}{(w-w^{2})}$$

ب = -۱۱

٥

क्रा

أوجد مجموعة حل المعادلتين :

الحل معادلت الدرجة الأولى: س= ١ + ٢ص

بالتعويض عن س = (١+ ٢ص) في معادلة الدرجة الثانية

$$0 = 1 + 0 = 1$$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 = 1$
 $0 = 1 + 0 =$

بالتعويض في المعادلة س = ١ + ٢ص

$$v = \frac{1-v}{v} \times v + 1 = \omega$$
 : $v = \frac{1-v}{v} \times v + 1 = \omega$: $v =$

$$\{\left(\frac{1}{Y}, \cdot\right), \left(1-, 1-\right)\} = z \cdot A :$$

V

वमा

أوجد مجموعة حل المعادلة (س - ٣) - ٥س = ٠ مقربًا الناتج لرقمين عشريين

الأول لازم نفك القوس

$$\frac{1 + \sqrt{11^2 - 3 \times 1 \times 4}}{1 \times 1} =$$

$$\frac{\sqrt{\sqrt{11-11}}}{\sqrt{111-11}} = \frac{\sqrt{111}\sqrt{111}}{\sqrt{111}} = \frac{\sqrt{111}\sqrt{111}}{\sqrt{1111}} = \frac{\sqrt{111}\sqrt{111}}{\sqrt{1111}} = \frac{\sqrt{111}\sqrt{111}}{\sqrt{1111}} = \frac{\sqrt{111}\sqrt{111}}{\sqrt{1111}} = \frac{\sqrt{111}\sqrt{111}}{\sqrt{1111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{1111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{1111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{1111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{1111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{1111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{1111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{11111}} = \frac{\sqrt{11111}\sqrt{1111}}{\sqrt{11111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{11111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{11111}} = \frac{\sqrt{1111}\sqrt{1111}}{\sqrt{11111}} = \frac{\sqrt{1111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{11111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{111111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{111111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{11111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{11111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{111111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{111111}}{\sqrt{11111}} = \frac{\sqrt{11111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{11111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{11111}\sqrt{11111}}{\sqrt{11111}} = \frac{\sqrt{11111}\sqrt{11111}}{\sqrt{111111}} = \frac{\sqrt{111111}}{\sqrt{111111}} = \frac{\sqrt{111111}}{\sqrt{111111}} = \frac{\sqrt{111111}}{\sqrt{111111}} = \frac{\sqrt{$$

$$|a| \quad w = \frac{11 + \sqrt{6} \sqrt{11}}{\sqrt{11}}$$

$$|a| \quad w = \frac{\sqrt{11} + \sqrt{6} \sqrt{11}}{\sqrt{11}}$$

$$|a| \quad w = \sqrt{11} + \sqrt{6} \sqrt{11}$$

آ اوجد ن(س) في أبسط صورة مبينا مجالها حيث:

$$\frac{w}{w} = \frac{w}{1 - w} = (w)$$
ن

١ - س هنخليه - (س - ١)

$$\frac{w}{(1-w)} + \frac{w}{1-w} = (w)$$
: ن(س) = (س-۱)

هنضرب السالب اللي قدام القوس × الـ + بتاعت الجمع

$$\frac{w}{1-w} = \frac{w^{2}}{w} = (w)$$

خد بالك ان العملية اتحولت طرح

$$\omega = \frac{(1 - \omega)(\omega - \omega)}{1 - \omega} = \frac{\omega(\omega - 1)}{\omega - 1} = (\omega)$$

اذا کان ا ، ب حدثین من فضاء عینت لتجربت عشوائیت Λ اذا کان ا ، ب حدثین من فضاء عینت لتجربت عشوائیت 0, Y = (0, 1) 0, Y = (0, 1)

वमा

 $(i \cup i) = (i) + (i) + (i) - (ii)$

$$(i-ب)=t(i)-t(i)$$

 $\frac{\xi_{-}^{7}}{\eta_{-}} = \frac{\psi_{-}^{7}}{\psi_{-}^{7}} = \frac{\psi_{-}^{7}}{\psi_{-}^{$

$$(w)_{\gamma}i = (w)_{\gamma}i = (w)_{\gamma}i = (w)_{\gamma}i = (w)_{\gamma}i$$

لجميع قيم س التي تنتمي إلى المجال المشترك ، وأوجد هذا المجال

विमा

$$\frac{(Y-w)(Y+w)}{(Y-w)(Y+w)} = \frac{(w+Y)(w-Y)}{Y-w-Y-w} = (w)$$

$$\frac{Y+w}{Y+w} = (w)$$

$$\frac{Y+w}{Y+w} = (w)$$

$$\frac{Y+w}{Y+w} = (w)$$

$$\frac{(7 - w^{2} - w) - w}{(9 - w)} = \frac{w(w^{2} - w)}{w(w^{2} - w)} = (w)^{2}$$

$$\frac{(w)^{2} - w}{(w^{2} - w)} = \frac{(w^{2} - w)}{(w^{2} - w)} = \frac{(w^{2} - w)^{2}}{(w^{2} - w)^{2}} = \frac{(w^{2} - w)^{2}}{(w^{2} -$$

$$\frac{\gamma + \omega}{\gamma + \omega} = (\omega)$$
 ن رس = ح = { ۳ ، ۰ ، ۳ } - ح = بن الج

اذا كان أ، ب حدثين من فضاء عينة لتجربة عشوائية $\frac{1}{4} = (-1)$ و کان ل (أ) $= \frac{1}{4}$ ، ل (ب) $= \frac{1}{4}$ ، ل (ألب) $= \frac{1}{4}$ أوجد: ل (أ ∩ ب) ، ل (ب – أ) या

$$(\cdot \cdot) \cdot) \cdot (\cdot) \cdot (\cdot \cdot) \cdot (\cdot) \cdot ($$

$$(- - i) = (- - i) - (- i) -$$

مستطيل طوله يزيد عن عرضه بمقدار ٤ سم ،

فإذا كان محيط المستطيل ٢٨ سم فأوجد مساحته.

ना نفرض أن الطول = س والعرض = ص

ت الطول يزيد عن العرض ن الطول ـ العرض = الزيادة

ن س ـ ص = ٤

٢١ المحيط = ٢٨،

 \sim asymptotic representation of the repres

· ٢ (س + ص) = ٢٨ بالقسمة على ٢

٠٠ س + ص = ١٤

س ـ ص = ٤ بالجمع

س + ص = ١٤

ن س = ۹ 14 =

بالتعويض في سـص = ٤

ن و _ ص = ٤ ن ص = ٥ .

مساحة المستطيل = الطول × العرض = ٩ × ٥ = ٤٥ سم

 $\frac{w' - v_w}{(w)} = \frac{1}{(w' - v_w)}$ اذا کان ن (س) = $\frac{v_w}{w' - v_w}$ فأوجد: ن (س) مبينا مجالها قیمت س إذا کان ن'(س) = ۳

नमा $\frac{Y + wY - Yw}{wY - (w)} = \frac{1}{w}$ $\frac{(w - Y)(w - 1)}{(Y - w)(w - Y)} =$ مجال ن-۱ = ح - { ۱،۲،۱} $\frac{1-m}{m}=(m)^{1-1}$ $": \dot{U}^{-1}(m) = "$: $"=(m)^{1-}\dot{U}$:

المعادلتين؛ المعادلتين؛ المعادلتين؛

أس + ب ص ـ ٥ = ٠ ، ١٣ س + ب ص = ١٧

वरा

· = ٥ _ س + ب ص _ ٥ = ٠ · · · ص _ ٥ = ٠ ·

نعوض عن س = ٣ ، ص = ١-

· (٣، - ١) حل للمعادلة ١٧ س + ب ص = ١٧

نعوض عن س = ٣ ، ص = ١-

: ۳۱×۳ + ب× - ۱ = ۱ .. ۱۱ = ۱ → ۲ :

١٧ = ١٩ بالطرح 0 = 4-17 17 = 17

ن أ = ٢ بالتعويض في ١

0= - 1×7 :

٠= ٢ - ١ :

.: ب = ١

من معادلت الدرجة الأولى: س = ص+١٠

वया

بالتعويض عن س = (ص+١٠) في معادلة الدرجة الثانية

أوجد مجموعة حل المعادلتين:

س ـ ص = ١٠ ، س ٢ ـ ٤س ص + ص = ٢٥

ن (ص+۱۰+) مع عص (ص+۱۰+) + ص = ۲۵ ... ثالث الله على الله

ص + ۲۰ س + ۱۰۰۰ _ عص - ۱۰۰۰ - ۲۰ ص + ص + ص - ۱۰۰۰

-٢ص' - ٢٠ ص + ٤٨ = ٠ بالقسمة على -٢

ص + ١٠١ص - ٢٤ = ٠

 $\bullet = (Y - \omega) (1Y + \omega)$

اما ص + ۱۲ = ۰

.: ص = ۱۲_

بالتعويض في المعادلة س = ص + ١٠

.. س = ۲ + ۱۰

أو ص - ٢ = ٠

∴ ص = ۲

.. س = _۲۱+۱۱ ..

.: س = ۱۲ ·.. س = ۲۰۰

 $\{(Y(1Y)(1Y_{-1}, Y_{-1}))\} = Z_{-1}$

17 أوجد ن(س) وعين مجالها حيث:

س + ۱ س ۲ + ۳س - ۱ ا ن(س) = سالے سے × کس + ۱۱س +ه

ثم أوجد ن (٠) ، ن (١-) إن أمكن

वित

 $\frac{(Y-w)(0+w)}{(1+wY)(0+w)} \times \frac{(w+v)(w-Y)}{(1+w)(Y-w)} = (w)i$

 $\{\frac{1}{m}, 0, 1, 1, 1\} = 5 = 0$ ن (س) = سر با

 $1 = \frac{1}{1 + \cdot \times \pi} = (\cdot)$ ن

ن (- ١) غير ممكنة لأن - ١ ﴿ للمجال

 $\frac{W + W}{1} = \frac{W^{2} + W}{W^{2} + W} \div \frac{W^{2} + W}{W^{2} + W} \div \frac{W^{2} + W}{W^{2} + W} \div \frac{W^{2} + W}{W^{2} + W}$

ثم أوجد ن(٢) ، ن (٣-) إن أمكن

नमा

 $\frac{9+ w^{4}+ w}{w-w} \times \frac{(1+w)(w+w)}{(9+w^{4}+w)(w^{2}+w)} = (w)$ ن

 $\{ \Upsilon_-, \Upsilon_- \} - \sigma = 0$

 $\frac{1+m}{m-m}=(m)$

ن (-٣) غير ممكنة لأن -٣﴿ للمجال

$$\frac{1}{1-w} = (w)_{7}$$
ن، $\frac{w^{7} + w^{7}}{(w^{7} + w^{7})} = (w)_{7}$ ن، $\frac{1}{(w^{7} + w^{7})}$

بيِّن إذا كان ن، = ن، أم لا؟ مع ذكر السبب

नमा

$$\frac{(m + 1)(m^{2} + m)}{(m + 1)(m^{2} + m)} = \frac{(m^{2} + m)}{(m^{2} + m)}$$

$$\frac{v_1}{v_2} = (w_1)_1$$
 ، ن ، $(w_1) = v_2$

$$\frac{w^{4}}{1-w} = (w)^{3}$$
ن $\frac{w^{4}}{1-w} = (w)^{3}$ مجال ن $\frac{w^{4}}{1-w} = (w)^{3}$ ن $\frac{w^{4}}{1-w} = (w)^{3}$

$$(\omega)_{\gamma} \dot{\omega} = \dot{\omega}_{\gamma} (\omega)$$
 $\dot{\omega}_{\gamma} \dot{\omega} = \dot{\omega}_{\gamma} (\omega)$
 $\dot{\omega}_{\gamma} \dot{\omega} = \dot{\omega}_{\gamma} \dot{\omega}$
 $\dot{\omega}_{\gamma} \dot{\omega} = \dot{\omega}_{\gamma} \dot{\omega}$

ا أوجد في ح×ح مجموعة حل المعادلتين المعادلت

पना

نظبط المعادلة الثانية: ٢س + ص = ٤ بضرب المعادلة الثانية × ٤

$$17 = 0$$
 بالطرح بالطرح $+ 30 = 11$ بالطرح $+ 30 = 0$ $= 0$

إذا كانت مجموعة أصفار الدالة

प्रा

5.

$$*: (*) = *: * (*) =$$

بحل المعادلتين ١، ٢ بطريقة الحذف

$$0 - = 4 + 1$$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 - = 4 + 1$
 $0 -$

٠. ب = - ٨

اذا كان أ، ب حدثين من فضاء عينة لتجربة عشوائية

$$\frac{1}{7} = (1 \cup 1) \cup 1$$
 وکان $(1 \cup 1) = \frac{1}{7}$ ، $(1 \cup 1) = \frac{1}{7}$ فأوجد $(1 \cup 1)$ إذا کان: $(1 \cup 1)$ ب متنافیان $(1 \cup 1)$ ب $(1 \cup 1)$

أولًا: إذا كان أ، ب متنافيان:

$$(i \cup \psi) = U(i) + U(\psi)$$

$$\frac{1}{4} + U(i) + U(\psi)$$

$$\frac{1}{\xi} = \frac{1}{17} - \frac{1}{7} = \frac{1}{3}$$

$$\frac{1}{\pi} = (i) J :$$

 $\frac{1}{1}$ إذا كانت مجموعة أصفار الدالة ن(س) = $\frac{1}{1}$ س + ب

هی { ٥ } ، و مجالها هو ح - { ٣ } فأوجد قیمتی کل من أ ، ب

नमा

ن أصفار الكسر الجبرى = { ٥ }

أصفار البسط = { ٥ }

$$0 = i : \cdot \cdot = i - 0 : \cdot$$

أوجد مجموعة حل المعادلة س - س = ٤

باستخدام القانون العام مقربا الناتج لرقم عشري واحد

नम

س ۲ ـ س ـ ٤ = ٠

ξ_× 1× ξ _ ^γ(1_) / ± 1 =

$$\frac{1}{4} = \frac{1}{4} = \frac{1}$$

$$\frac{1}{1} = \frac{1 + \sqrt{1}}{1}$$

$$\frac{1}{1} = \frac{1 + \sqrt{1}}{1}$$

$$\frac{1}{1} = \frac{1}{1}$$

.: س ≃ ۲,۲

. س ≃ ـ ۱,٦ ـ .

{1,7 - , 7,7 } = **{ 7,7 }** ∴

اذا کان أ، ب حدثین من فضاء عینة لتجربة عشوائیة وکان ل (أ) = ٥,٠، ل (الب) = ٨,٠، ل (ب) = س فأوجد قیمة س إذا کان : أ، ب متنافیان ل (أ \cap ب) = ١,٠

वरा

أولًا: إذا كان أ ، ب حدثان متنافيان:

ثانیا: إذا كان ل (أ ∩ ب) = ١٠٠

∴ ٹ (أ ∪ ب) = ٹ (أ) + ٹ (ب) – ٹ (أ ∩ ب)

العام أوجد ن (س) في أبسط صورة مبينا مجالها حيث ،

$$\frac{10 - m^{4}}{0 + m^{3} - 1} \div \frac{7 + m^{4} - 1}{1 - m^{4}} = (m)$$

त्रा

١- س' هنخليه _ (س'١) ونحول الضرب لقسمت

$$\frac{0+\omega^{2}-10\omega^{2}}{(\omega)} \times \frac{1+\omega^{2}-10\omega^{2}}{(\omega)} = \frac{1+\omega^{2}-10\omega^{2}}{(\omega)} = \frac{1+\omega^{2}-10\omega^{2}}{(\omega)}$$

$$\frac{(N-m)(N-m)(m-1)}{(m-1)(m-1)} \times \frac{(N-m)(N-m)}{(N-m)(N-m)} = \frac{(N-m)(N-m)(N-m)}{(N-m)(N-m)(N-m)}$$

$$\frac{(1-w)(Y-w)}{(w)} = (w);$$

وم المعادلتين: اوجد في ح×ح مجموعة حل المعادلتين:

नमा

न्मा

من معادلت الدرجة الأولى: ص = ٥ - س

بالتعويض عن ص = (٥ ـ س) في معادلة الدرجة الثانية

$$10 = (\omega - 0)\omega + \omega$$

بالتعويض في المعادلة ص = ٥ ـ س

أوجد المجال المشترك الذي تتساوى فيه الدالتان: $m^{Y} + 9m + Y$

$$\frac{w^{2} + v_{m}}{w^{2} - v_{m}} = (w)_{7}$$
 ، $\frac{4 + v_{m} + v_{m}}{17 - v_{m}} = (w)_{1}$

 $\frac{(0+w)(\xi+w)}{(\psi-\psi)}=(w), \dot{\psi}$

$$\frac{0+m}{\xi-m}=(m)$$
ن،

$$\frac{(o + w)}{(t - w)} = (w)$$
ن (س - ک)

$$\frac{o + w}{\xi - w} = (w)$$
ن

ن، (m) = iن، (m) بینما مجال ن، \neq مجال ن،

ن، = ن، في المجال المشترك وهو:

أوجد ن(س) في أبسط صورة مبينا المجال:

$$\frac{1}{1-m^{2}-1} = \frac{1}{m^{2}-1} = \frac{1}{m^{2}$$

तमा

ना

$$\frac{9 - 7m}{7 - m + 7m} + \frac{2 + m7 + 7m}{N - 7m} = (m)$$

$$\frac{(W - W)(W + W)}{(W + W)(W - W)} + \frac{\xi + WY + YW}{(\xi + WY + YW)(Y - W)} = (W)$$

$$\frac{w - w}{r - w} + \frac{1}{r - w} = (w)$$
 ن

$$1 = \frac{Y - w - Y - w + 1}{Y - w} = \frac{W - w + 1}{Y - w} = \frac{Y - w$$

 $\frac{9}{|\epsilon|} + \frac{\psi}{|\epsilon|} = \frac{\psi}{|\epsilon|} + \frac{\psi$

(٤ ، ٠) ح = ح (٠ ، ٤)

ن أصفار المقام الثاني = ٤

 $\xi_{-}=i$ \therefore $\bullet=i+\xi$

$$\frac{9}{2} + \frac{\psi}{\omega} = (\omega)$$

$$\therefore \dot{\omega}(\omega) = \frac{\psi}{\omega} + \frac{1}{\omega} = 0$$

$$Y = \frac{9}{\frac{5}{4} - 0} + \frac{9}{0} :$$

$$V_{-} = \frac{\dot{}}{\delta} \Leftrightarrow Y = A + \frac{\dot{}}{\delta}$$

المعلمين الراغبين في كتابة بياناتهم على الملازم ليهم بالتواصل على واتساب رقم ٢٣٣٠ ٢٥٣٠ ١٠٠

زاويتان حادتان في مثلث قائم الزاويت

الضرق بين قياسيهما ٥٠ ، أوجد قياسهما

निरा

نفرض أن قياس الزاويتان الحادتان هما س، ص

بحل المعادلتين ١ ، ٢ بطريقة الحذف (أو التعويض):

بالتعويض في المعادلة س + ص = ٩٠

اذا کان آ، بحدثین من فضاء عینت لتجربت عشوائیت \mathbf{v} عشوائیت وکان ل $(1) = \mathbf{v}$ ، \mathbf{v} ، \mathbf{v} \mathbf{v} ، \mathbf{v} \mathbf{v}

فأوجد: ١) احتمال عدم وقوع الحدث أ

٢) احتمال وقوع أحد الحدثين على الأقل

नुमा

احتمال عدم وقوع الحدث أ معناه ل (أ)

$$(i) J - 1 = (i) J$$

احتمال وقوع أحد الحدثين على الأقل معناه ل (أ∪ب)

$$(i \cup (i)) = (i) + (i) + (i) - (i) + (i)$$

 $\frac{W' - W''}{(Y + Y'')} = (W'' + Y'')$ اذا کان ن (س) = (س س'' + Y)

فأوجد: ن (س) مبينا مجالها

قیمة س إذا كان ن الس) = ٣

प्रा

$$\frac{(\Upsilon + \Upsilon m) (\Psi - m)}{m} = \frac{(\Psi + \Upsilon) (\Psi + \Upsilon)}{m}$$

$$\frac{(Y + Y) (W - W)}{(W - W)} =$$

$$\frac{Y + Y_{m}}{w} = (w)^{1-v}$$

$$(سفص) = \frac{4 + 4 m}{m} : \pi = (m)^{1-}$$
 (مقص)

$$\cdot = Y + V = Y$$
 $\Rightarrow w' - Y = Y + Y = \cdot$

$$\cdot = (1 - \omega) (Y - \omega)$$

$$\cdot \cdot = Y \qquad \text{ie} \qquad w = 1$$

أوجد ن(س) في أبسط صورة مبينا مجالها حيث:

$$\frac{1 - m^{2}}{q + m^{2}} \div \frac{10 - m^{2} - m}{m^{2} - m} = (m)$$
ن

तमा

متنساش: الـ + هنخليها × وهنشقلب الكسر التاني

$$\frac{9+ \, m^2 - 7m}{3} \times \frac{10 - m^2 - 7m}{3} = (m)$$
ن (س) = $\frac{10 - m^2 - 7m}{m^2 - 9}$

$$\frac{(- w - w) (- w) }{(- w) (- w) } \times \frac{(- w) (- w) }{(- w) } = (w)$$
ن (- w) (- w) (- w) (- w) (- w)

$$\frac{\Psi - \omega}{v} = (\omega)$$

مثلث قائم الزاوية طول وتره ١٣ سم، محيطه يساوى ٣٠ سم أوجد طولى ضلعي القائمة

الحله نفرض أن طولا ضلعي القائمة س، ص بتطبيق فيثاغورث:

من معادلة الدرجة الأولى : ص = ١٧ _ س

بالتعويض في المعادلة: س ا + ص ا = ١٦٩

٢س - ٢٤ س + ١٢٠ = ٠ بالقسمة ÷ ٢

$$\bullet = (0 - \omega) (17 - \omega)$$

بالتعويض في المعادلة س + ص = ١٧

.: ص = ۱۷ _ ۱۲

$$\{(17.0).(0.17)\} = 7.a$$

العلام أوجد ن(س) في أبسط صورة مبينا مجالها حيث:

$$\frac{W + w}{1 + w} \times \frac{1 - w}{w^{2} - w} = (w)$$
ن

$$\frac{7 + w + 7w}{1 + w + 7w} \times \frac{(1 + w + 7w)(1 - w)}{(1 - w)(1 - w)} = (w)$$

$$\frac{w+w}{w}=(w)$$
ن

٢٥ باستخدام شكل فن المقابل أوجد:

() し() し() (ーー) し (1

٣) احتمال عدم وقوع الحدث أ

त्रा العدد الكلي ف = ٦

$$\Upsilon = \{\Upsilon, \Upsilon\}$$
 عدد العناصر = Υ

$$\frac{1}{\pi} = \frac{7}{7} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$

$$1 = \psi = \{ \circ \} = \psi = \emptyset$$

$$\frac{1}{7} = \frac{\text{عدد عناصر أ - ب}}{\text{العدد الكلى}} = \frac{1}{7}$$

$$7 = 3$$
 $= 3$ $=$

$$\frac{V}{V} = (\psi \cup \dot{V})$$
 ، $\frac{1}{W} = (\dot{V} \cup \dot{V}) = \frac{V}{V} = (\dot{V} \cup \dot{V}) = (\dot{V}$

فأوجد ل (ب)

الله ب أ ، ب حدثان متنافیان د ل (أ ∩ ب) = صفر

$$(\dot{-})\dot{3} + \frac{7}{7} = \frac{7}{7} \div$$

$$\frac{1}{\xi} = \frac{\pi}{17} = \frac{\xi}{17} - \frac{1}{17} = \frac{1}{17} - \frac{1}{17} = (ن)$$
 :: $\frac{1}{\xi} = \frac{\pi}{17} = \frac{1}{17} = \frac{1}{17}$

أوجد المجال المشترك لكل من :

$$\frac{m^{7}}{m} = (m)$$
 ن ، $\frac{\xi_{-}^{7}m}{1 + m} = (m)$ ن ، ن س $\frac{\xi_{-}^{7}m}{1 + m} = (m)$ ن ، ن ا

$$\frac{Y + w}{W - w} = \frac{(Y + w)(Y - w)}{(W - w)(Y - w)} = (w)_{10}$$

$$\frac{7}{1-m} = \frac{m}{(1-m)} = (m)$$
ن

$$\{1,0,0,0,0\} = 5 - \{1,0,0,0\}$$

ارسم الشكل البياني للدالة: د(س) = س م ا

في الفترة [٣، ٣]

ومن الرسم أوجد مجموعة حل المعادلة س" ـ ١ = ٠

7-1-1-1

{ 1 6 1 - } = z - s

ارسم الشكل البياني للدالة: ٦س ـ س - ٩ ـ ١

في الفترة [١،٥]

ومن الرسم أوجد مجموعة حل المعادلة ٦سـ س - ٩ - ٠

वरा

2)

वना

m

س

ص

أوجد بيانيا في ح × ح مجموعة حل المعادلتين: ص = س + ٤ ، س + ص = ٤

निरा

$$\omega = \xi = \omega$$

•		
-	•	

۲	١	•	س
۲	٣	٤	ص

ص = س + ٤

{(* . .)} = z . A

سم المعادلتين: أوجد بيانيا في ح × ح مجموعة حل المعادلتين: ٣س + ص = ٣ ، ٣س + ٢ص = ١٢

A - 5 - A

वरा

۲	1	•	س
٣_	•	٣	ص

۲-	1- 1 7	1 20	
	Y- /		+
	3-/		
	X-//		
	14		

ه . ح = { ۳ }

أسئلة اختر

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

مجموعة أصفار الدالة د: د (w) = -7w هي5

ح (ع (۰، ٣_) (ج (۴-) (ن

7 إذا كان للمعادلتين m + 7m + 1 + 2m = 7 حل وحيد فإن $2 \neq 2m + 2m + 2m = 7$ (1) ا

9 إذا ألقيت قطعة نقود مرة واحدة فإن احتمال ظهور صورة أو كتابة يساوى

أ) صفر ١٠ (٤ ٪ ٢٥ (ب

(10) إذا كانت ص(د) = $\{x \in \{y \in Y\} \mid x \in Y\}$ د (س) = $\{y \in Y\}$ فإن م =

مجال المعكوس الضربى للدالة $c(m) = \frac{m+7}{m-7}$ هو

و) ح (ع ﴿ ٣ ﴿ ٢ ﴾ ح ﴿ ٣ ﴿ ٢ ﴾ أَ أَ أَ أَنَّ أَنَّ أَنَّ أَنَّ أَنَّ أَنَّ أَنَّ أَنَّ أَ أَنَّ أَنَّ

مجموعۃ حل المعادلتین س ـ ص = \bullet ، س ص = \bullet هي

 $\{(r, r), (r_r, r_r)\}\ (2)$ $\{(r, r)\}\ (2)$

(15) إذا كان أ، بحدثين متنافيين من فضاء العينة لتجربة عشوائية فإن أ ∩ ب =

اً) Φ (أ

16 إذا كان أ، بحدثين متنافيين من فضاء العينة لتجربة عشوائية فإن ل (أ ∩ ب) =

i) Ф (أ ب صفر ب مفر ب د) ۱ (a

 $\frac{w}{17}$ إذا كان ن $(w) = \frac{w}{w - 2}$ ، ن $(w) = \frac{w}{w - 2}$ وكان المجال المشترك هو ح - (v + 1) فإن ك =

Y_ () Y_ (<u>~</u> Y_ (i

اذا كان المستقيمان س + ٢ص = ٤ ، س + أ ص = ٧ متوازيين فإن أ =

١) ٢ (ن ٢ (ن / ح) ٤ (ج

 $\frac{1}{2} (2 + \frac{1}{2}) = \frac{1}{2} (2 + \frac{1}{2}) = \frac{1}$

(20) مجموعة أصفار الدالة د: د (m) = m $(m^{1}-1m+1)$ هي

{1} (a) {··1-} (-) {1-··} (i)

اذا كانت أ \subset ف لتجربة عشوائية ما وكان (i) + ال (i) فإن (i) =

1.(s) - (i) - (i)

(22) إذا كانت أ ⊂ ف لتجربت عشوائيت ما وكان ل (أ) = ٣ ل (أ) فإن ل (أ) =

 $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right)$

اذا كانت أ \subset ف لتجربت عشوائيت ما وكان (i) و (i) فإن ل (i) = فإن ال (i)

 $\frac{1}{2}$ (a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$

 $=\frac{1}{1+1}$ اذا کانت س \neq صفر فإن $=\frac{1}{1+1}$ $=\frac{1}{1+1}$ $=\frac{1}{1+1}$

اً) ٥- (١ (ب) ٥- (ا

مجموعة أصفار الدالة د: د $(m) = m^{7} - 70$ هي

المستقیمان ۳س + ۵ص = صفر ، ۵س - ۳ص = صفر یتقاطعان فی .

..... = $\frac{\xi}{Y - W} = (W) = \frac{\xi}{Y - W} = (W) = \frac{1 + 1}{Y - W} = (W)$ فإن أ = $\frac{27}{Y - W}$ إذا كانت ن ($\frac{1}{Y - W} = \frac{1}{Y - W} = \frac{1}$

(28) إذا كان احتمال وقوع الحدث أ هو ٧٥٪ فإن احتمال عدم وقوعه هو

$$\frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{1}{2}$$

(29) إذا كان احتمال وقوع الحدث أ هو ٦٥% فإن احتمال عدم وقوعه يساوى

۱ (۵
$$\frac{1}{\pi}$$
 (ب $\frac{1}{\pi}$ (ب $\frac{1}{\pi}$ (ب) ۱ (۱)

$$\frac{0+m}{1}=\frac{m+m}{m^2-1}=0$$
 هو $\frac{31}{1}$ مجال الدائن د: د (س) $=\frac{m+m}{m^2-1}=0$ هو $\frac{31}{1}=0$ مجال الدائن د: د (س) $=\frac{m+m}{m^2-1}=0$ مجال الدائن د: د (س) $=\frac{m+m}{m^2-1}=0$ مجال الدائن د: د (س) $=\frac{m+m}{m^2-1}=0$ من $=\frac{m+m$

(32) إذا ألقى حجر نرد مرة واحدة فإن احتمال ظهور عدد زوجى وظهور عدد فردى يساوى

(ع)
$$\frac{\pi}{\xi}$$
 (ج) $\frac{\pi}{\eta}$ (د) ا

(33) هذه الملزمة خاصة بالأستاذ محمود عوض ولا يسمح لأى شخص انه يشيل الاسم من عليها

$$\frac{8-m}{m-8}$$
 أبسط صورة للدالة ن: ن (س) = $\frac{8-m}{m-8}$ حيث س \neq صفر هى

{ T (T _ } (_ ~

$$\frac{w' - 9}{w - w} = \frac{w' - 9}{w - w}$$
 هو35

(پ) {۳-}

{ \mathbf{r} \} (i

د) الرابعة

مجموعة حل المعادلتين س ـ ص = صفر ، س + ۲ ص = ۳ في ح × ح هي . { (T, T_) } (A $\{(r_{-}, r_{-})\}\ (\Rightarrow \{(1, 1)\}\ (\downarrow)$

(37) إذا كان منحنى الدالة التربيعية د يمر بالنقاط (٠،٢) ، (٠،٣-) ، (٢٠٠) فإن مجموعة حل المعادلة د(س) = في ح هي

{ \ \ \ \ _ } (i {\mathbb{T_\cdot \mathbb{T}\} (\sigma\) \\ \(\sigma\) {7,4_}(3

 $\frac{1}{38}$ إذا كان أ هو الحدث المكمل للحدث أ وكان ل (أ) = $\frac{1}{5}$ فإن ل (أ) =

ج) ہ

 $\frac{1}{m} = \frac{1}{m}$ فإن مجال ن' هو ح ... { 1 . . } () { \ _ \ \ - \ \ \ - \ \ (۱)

المعادلة س ص= من الدرجة 40) ب) الثانية أ) الأولى

(41) مجموعة قيم س التي تجعل الدالة تساوى صفر تسمى ..

أ) المدي د) أصفار الدالة ج) أصفار المقام ب) المجال

> س - ۲ معکوس ضربی في المجال .. س - ۵ س ب) ح۔ (۲ ، ۵)

⟨٥}-ح (٥} {O (Y) ()

ج) الثالثة

د) متقاطعين وغير متعامدين ج) منطبقین أ) متوازيين ب) متعامدین

 $\frac{6}{44}$ إذا كان مجال الدالة د حيث د $(m) = \frac{1}{m} + \frac{8}{m}$ هو ح $\{7, 7\}$ فإن $\{44\}$

2 (2 ٣_ (ب ج) ٥

(45) إذا كان أ ⊂ ب فإن ل (أ ∩ ب) تساوى أ) ل (أ ـ ب) ب) ل(أ∪ب) (i) U (= د) ل (ب)

(46) إذا كان أ ⊂ ب فإن ل (أ ∪ ب) تساوى ب) ل(أ ∩ ب) (i) t (= د) ل (ب)

 $\frac{w-w}{w} = (w)$ مجال الدالة د: د (w)

{11..} ج) ح_{-۱،۰} ب) ح_(٠) ا) ح

معلم رياضيات

(2

تراكمي

إذا كانت النسبة بين محيطى مربعين ١: ٢ فإن النسبة بين مساحتيهما =

$$= -\frac{1}{2}$$
 إذا كان أ' ـ ب' = ۲۱ ، أ + ب = ۷ فإن أ ـ ب = $\frac{1}{2}$

إذا كان عمر رجل الآن س سنة فإن عمره بعد ٥ سنوات هو وعمره منذ ٣ سنوات هو

$$=\frac{w}{|w|}$$
 إذا كانت $w' = 1 - 1$ فإن $\frac{w}{|w|} = 1$

$$= [\Upsilon, \Upsilon - [U \circ, \Upsilon]]$$

السادة المعلمين الراغبين في كتابت بياناتهم على الملازر

السؤال الأول : اختر الإجابة الصحيحة مما بين القوسين:

- - 2مجموعت أصفار الدالت د : د (س) = س۲ + ۲هی Φ (ب Φ) (أ Φ) Φ (ب Φ) Φ (ب Φ) Φ

 - - (3) اذا کان (۵) س -3 = (4) فإن س + ص = أ(3) أ(3) أ(4) م (4) فإن س + ص = ...
 - 6 النقطة (-٣ ،٤) تقع في الربع
 - أ) الأول ب) الثاني
 - ج) الثالث
 - د) الرابع

7 (2

{ \ } (2

السؤال الثاني

- أوجد باستخدام القانون العام مجموعة حل المعادلة المجال حيث المجال المجال حيث المجال المجال المجال حيث المجال ال
 - س (س ۱) = مقربا الناتج لرقم عشرى واحد.

$\frac{1 - 100}{000} \div \frac{1 - 100}{000} \div \frac{1 - 100}{000} = (000)$

السؤال الثالث

أ) أوجد في ح × ح مجموعة حل المعادلتين (ب) أوجد ن (س) في أبسط صورة مبينا المجال:

السؤال الرابع

(ب

- أوجد في ح×ح مجموعة حل المعادلتين:
- w = w w , v = w + w
- $\frac{\lambda_{1}}{\lambda_{1}} = (\omega)_{1}$ اذا کانت ن (س) = ان

السؤال الخامس

- $\frac{m^{7} + 7m}{1}$ إذا كانت ن (س) = $\frac{m^{7} + 7m}{m^{7} + 7}$
- أوجد ن ا (س) في أبسط صورة مبينًا مجال ن ا (س)
- ب) إذا كان أ ، ب حدثين من فضاء عينة لتجربة عشوائية وكان ل (أ) = 0, 0 , 0 (ألاب) = 0, 0
 - فأوجد ل (ب) إذا كان: ١) أ، ب متنافيان
 - ٢) ل (أ ∩ ب) = ١٠٠

السؤال الأول : اختر الإجابة الصحيحة مما بين القوسين:

$$\frac{1}{\xi} = \frac{1}{2}$$
 اذا کان $\frac{1}{\xi} = \frac{1}{\xi}$ فإن س

$$\Phi$$
 (۵) $\{0, -0\}$ (۵) $\{0, -0\}$ (۵) $\{0, -0\}$ (۵) $\{0, -0\}$ (۵) $\{0, -0\}$

السؤال الثاني

أوجد المجال المشترك للكسرين الجبريين :

ب) أوجد في ح × ح مجموعة حل المعادلتين :

1 (2

السؤال الثالث

$$\frac{w_{-w}}{v_{-w}} = \frac{w_{-w}}{v_{-w}} = \frac{w_{-w}}{v_{-w}} = (w)i$$

(ب) إذا كان أ ، ب حدثين متنافيين من تجربة عشوانية وكان ل (أ) = + ، ل (أ ل ب) = ح فأوجد ل (ب)

السؤال الرابع

(ب

$$\frac{w}{1 - 1} = \frac{w}{1 - 1}$$
 $\frac{1}{1 - 1} = \frac{w}{1 - 1}$
 $\frac{1}{1 - 1} = \frac{w}{1 - 1}$

السؤال الخامس

$$\frac{17 + 01}{70 - 00} \times \frac{10 - 00}{70 - 00} = (0)$$

ب) أوجد بيانيا في ح × ح مجموعة حل المعادلتين:

$$9 = \omega + \omega + \omega + \omega = 9$$

معاجلة الدرجة الأولى مى منتيرين

 $\mathcal{E} \times \mathcal{E}$ معادلة الدرجة الأولى في متغيرين : $\mathcal{F} - \mathcal{O} + \mathcal{O} = \mathcal{E}$ تمثل بخط مستقيم ، و لها عدد لا نهائي من الحلول في

التوضيح يوجد عدد لا نهائي من الأزواج المرتبة التي تحقق المعادلة: - ب + ص = ٥ مثل: (١ ، ٤) ، (٦ ، - ١) ، ، إلخ.

حل معادلتين من الدرجة النولى من متعيرين بيانيا

مجموعة حل معادلتين من الدرجة الأولى في متغيرين هي مجموعة نقاط تقاطع المستقيمين الممثلين للمعادلتين معا

* لحل معادلتين من الدرجة الأولى في متغيرين بيانيًا ، نرسم المستقيمين الممثلين للمعادلتين بيانيًا ، و هناك ثلاث حالات للمستقيمين :

* يمكن معرفة عدد حلول معادلتين أو العلاقة بين مستقيمين دون تمثيل المعادلتين و ذلك عن طريق مقارنة المعاملات كالتالي :

الحالة الأولى " المستقيمان متقاطعان "

معامل حب في المعادلة الأولى خص في المعادلة الأولى عدد الحلول حل وحيد معامل ص في المعادلة الثانية معامل حب في المعادلة الثانية معامل حب في المعادلة الثانية معامل عبد عبد معامل عبد معامل معامل 🗝 في المعادلة الثانية

الحالة النولى " المستقيمان منطبقان

عندما : $\frac{}{}$ معامل $\frac{}{}$ في المعادلة الأولى $\frac{}{}$ عندما : $\frac{}{}$ معامل $\frac{}{}$ معامل $\frac{}{}$ معامل $\frac{}{}$ معامل $\frac{}{}$ في المعادلة الثانية $\frac{}{}$ معامل $\frac{}{}$ في المعادلة الثانية $\frac{}{}$ ، عدد الحلول عدد لا نهائى

الحالة الأولى " المستقيمان متوازيان "

عندما : معامل حب في المعادلة الأولى = معامل حب في المعادلة الأولى خ الحد المطلق في المعادلة الأولى عدد الحلول صفر معامل حب في المعادلة الثانية المعادلة الثانية عدد الحلول صفر معامل حب في المعادلة الثانية المعادلة الثانية المعادلة الثانية عدد الحلول صفر المعادلة الثانية المعادلة المعادلة الثانية المعادلة المعاد

فمثلًا: عدد حلول المعادلتين: -v + Y = 0 = 0 + Y + v = 7 يساوى

حل معادلتين من الدرجة الأولى في متغيرين جبريًا باستخدام طريقة التعويض

نحصل على قيمة أحد المتغيرين من إحدى المعادلتين و من ثم نقوم بالتعويض بها في المعادلة الأخرى و نعين قيمة المتغير الأخر.

 2×2 فمثلًا: لايجاد مجموعة حل المعادلتين $-0 + \infty = 0$ و $\infty - 1 - 0 = 1$ جبريًا في 2×2 .

$$Y = \omega - Y - \omega = \omega + \omega - \omega$$

(7)

(Y)

(1)
$$\omega = 0 = \omega$$

$$1 = r \div r = \sigma$$
 : $r = r - 0 = \sigma r$: $r = r - 0 = \sigma$

$$\{(\xi, 1)\} = \xi \cdot \hat{\Gamma} : 0 = 0 = 0 = 0$$
 بالتعویض فی (۳) عن $\psi = 0 = 0 = 0$.: $1 = 0$

حل معادلتين من الدرجة النولي في متغيرين جبريًا باستخدام طريقة الحذف

بضرب المعادلة (۱)
$$x - \omega = -0$$

$$\{(\Upsilon, \Upsilon)\}=\mathcal{E} \cdot \hat{\Gamma}$$
 : $\Upsilon=\omega$ ومنها $\Upsilon=\omega$ عن $\Upsilon=\omega$ عن $\Upsilon=\omega$ عن $\Upsilon=\omega$

جل معادلة الدرجة التانية عن مبعير واحد باستخدام القانون العام جبريا

نوجد قیمة
$$-$$
 باستخدام القانون العام حیث $-$ = $\frac{-\nu \pm \sqrt{-\nu} - 39 < \sqrt{-\nu}}{97}$

$$\{\cdot, 7\% - (7,7\%) = 2 \cdot \beta : \frac{\overline{97} \sqrt{-7}}{2\%} = (7,7\%)$$

حل معادلة الدرجة الثانية في متغير واحد باستخدام القانون العام بيانيًا

نمثل منحنى الدالة التربيعية بيانيا ثم نوجد الاحداثيات السينية لنقط تقاطع منحنى الدالة مع محور السينات فتكون هي مجموعة الحل.

* عند تمثيل منحنى الدالة التربيعية ، فإن منحنى الدالة التربيعية :

يقطع محور السينات في نقطتين

لا يقطع محور السينات

 $\Phi = \mathcal{E} \cdot \hat{\Gamma}$

يمس محور السينات في نقطة

{e} = E.F

المنظ أن: يمكن معرفة عدد حلول المعادلة التربيعية باستخدام المقدار - ٢ - ١٤ ح كالتالي:

إذا كان : المقدار - ٢ - ٤ أ ح > • أي موجب ، فإن عدد حلول المعادلة الحقيقية = ٢

إذا كان: المقدار - ٢ - ٤ أ حـ = • ، فإن عدد حلول المعادلة الحقيقية = ١

إذا كان : المقدار — ٢ – ٢٤ ح < • أي سالب ، فإن عدد حلول المعادلة الحقيقية = صفر

حل معادلتين في متغيرين إحداهما من الدرجة الأولى و الأخرى من الدرجة الثانية

نحصل على قيمة أحد المتغيرين من معادلة الدرجة الأولى بدلالة المتغير الأخرو من ثم نقوم بالتعويض بها في معادلة الدرجة الثانية.

$$\mathcal{E} \times \mathcal{E}$$
فوثلًا: لايجاد مجموعة حل المعادلتين $\mathcal{E} \times \mathcal{E}$ $\mathcal{E} \times \mathcal{E}$ هوثلًا: لايجاد مجموعة حل المعادلتين $\mathcal{E} \times \mathcal{E}$

(۳)
$$(1) = (+ - \omega)$$

$$TV = \omega \left(\omega + T \right) - V + \omega^{T} + \omega^{T} + \omega^{T} + \omega^{T} = 0$$
 (۲) بالتعویض فی المعادلة (۲) بالتعویض فی المعادلة (۲)

$$V = E + T = 0$$
 $V = V + T = 0$
 $V = V + V = 0$
 $V = V + V = 0$

$$\{(\vee - \iota \, \mathcal{E} -) \, \iota \, (\mathcal{E} \, \iota \, \vee)\} = \mathcal{E} \cdot \hat{\Gamma} ::$$

نفرض العدد الأصغر حس ، و العدد الأكبر ص

تطبيقات على حل المعادلات

يقصد بها المسائل اللفظية التي تؤول في محتواها إلى معادلة رياضية يتم استنتاجها من سياق الجملة و ترجمتها بالرموز و الأعداد.

مثال: عددان مجموعهما ٧ و خمسة أمثال أصغرهما يزيد عن ثلاثة أمثال أكبرهما بمقدار ٣ ، أوجد العددان.

س + ص = V مجموعهما ٧ (1)

خمسة أمثال أصغرهما يزيد عن ثلاثة أمثال أكبرهما بمقدّار
$$\eta$$
 η η η η η η η

$$V = 0$$
 : $V = 0$ التعویض فی (۱) عن $V = 0$: $V = 0$: $V = 0$

تذكر أن:

و مثال: مستطیل محیطه پساوی ۱۸ سم ، و مساحته تساوی ۲۰ سم ، أوجد بعدیه.

محیطه یساوی ۱۸ سم
$$9 = -0 + -0 = 9$$
 (۱) $Y = 0 = 0$ $Y = 0$

$$1-x$$
 بالتعویض في المعادلة (۲) بالتعویض في المعادلة (۲) بالضرب $1-x$ بالضرب $1-x$

$$\xi = 0 - 9 = 0$$
: $0 = 0 - 3$ is $\theta = 0 - 3 = 0$: $0 = 0 = 0$: $0 = 0 - 3 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$: $0 = 0 = 0$

٣

		من بين الإجابات المعطاة	ولت اختر الإجابة الصحيحة
	ي ع × ع هي	س - ۲ = ۰ ، ص - ۳ = ۰ فر	مجموعة حل المعادلتين:
{((-, "-)}	{(~~,~)} 🕘	{(r,r)} ({(٣.٢)}
	ني 2 × 2 هو	1= 0 + 0 1 - 0	عدد حلول المعادلتين: ص
عدد لا نهائي	r 🕒	1 0	🛈 صفر
= ك	ص = ٢١ صفر من الحلول ، فإن:	٥+٥-٥ ، ٥=٥ ٤+٥	إذا كان للمعادلتين: حر
71 3	11 (2)	y	٤١
	-ں = ٦ ، فإن: ك =	أحد حلول المعادلة: ص + ك -	إذا كانت النقطة (١ ، ٢)
ه ی	£ (a)	۳ 😔	۲ 🕕
	ص = ٥ يتقاطعان في الربع	. ئتين : ص + ۲ = · ، · ص +	الستقيمان المثلان للمعاد
🗿 الرابع	الثائث	الثاني	1 الأول
	+ ص = ۳ يكونان	. لتين : س + ص = ٥ ، س	المستقيمان الممثلان للمعاد
عير ذلك	عنطبقين	ب متقاطعین 🔑	🛈 متوازيين
		+ ص = ٣ في طب × ط يساوي	عدد حلول المعادلة: -
عدد لا نهائي	٤ (ع)	Y (9)	🛈 صفر
ن ، فإن : ك =	۷ ، - س + ك ص = ٤ متوازيع	إن للمعادلتين: -س + ٥ ص =	إذا كان المستقيمان الممثلا
r ± (2)	0 ± (a)	o - (9)	ه ۱
فإن: ك = سوهاج	ص = ٢١ عدد لا نهائي من الحلول ،	٠+٤ ص = ٧ ، ٣ - س + ك	إذا كان للمعادلتين: حر
71 ③	17 🕒	v	٤١
	في الربع ا مطروج 2019)	: - س = ۱ ، ص + ۲ = ۰ تقع	نقطة تقاطع المستقيمين
(2) الرابع	الثائث 🕒	الثاني 😌	1 الأول
((الشرقية 2019)»	ه -س + ۹ ص = ۱ يتقاطعان في	لتين: ٣ - س + ٧ ص = ، ، (الستقيمان المثلان للمعاه
نقطة الأصل	الربع الأول 🕒	😐 الربع الرابع	1 الربع الثالث
	= 'w 'u-	= ۵ ، ص - س = ۳ ، فإن :	ا إذا كانت: س + ص =
V – ③	∧ (⊇)	10 - 😛	10 ①
	= [*] (~~)	' = ١٣ ، -س ص = ٤ ، فإن:	إذا كانت: س + ص
Y1 (3	17 🕒	a	171 ①
		ادلة	النقطة (٢، ٣) تحقق المع
۱+ س = ۳ ص + ۱	ک د د د د د د د د د د د د د د د د د د د	9 - س = ص - ۵	(<u>ا</u>) س – ص = ه
« 2019 à <u>.</u>	-را - ص ۲ + ۲ = « اسماعیل	= ٥ ، س - ص = ٣ ، فإن:	إذا كانت: س + ص =
14 3	17 (2)	17 (+)	10 1

		لضرق بينهما - ٣ ، هما	🔟 العددان اللذان مجموعهما ٥ و ا
£ - 6 1 - 3	£ 6 1 - (3)	٤ - ١ ا	٤،١٠٠٠
		b 5 ~ 2 00 0 00 0 00 0 0 0 0	🚾 ضعف مربع العدد — يساوي
ی ۶ س	۵ ۶ س۲	۲ <u>۰</u> -۲ 😟	ن ۲ س
	ن: مساحته =سم۲	محيطه يساوي ٢٤ سم ، فإر	🔼 مستطيل طوله ضعف عرضه و
17 ③	***	٦٤ 😛	۱۲۸ ①
) = ٥٠°، فإن: ق (٤٦) =	~ ン) ひ - (P Z) ひ、 L	🔟 ۴ ب ح مثلث قائم الزاوية في
° 4. ③	° v. 🗿	° ۲. 😟	°a. (1)
	إنه ص ، فإن العدد هو	ان رقم أحاد <i>ه — و</i> رقم عشر	🔟 عدد مكون من رقمين ، فإذا ك
ن ا با س ق ص + ۱۰ س	ے س	9 س + ۱۰ ص	٠
	. بعد سبعة سنوات من الأن يساوي	سنوات هو ۹ س <mark>نوات فی</mark> ان عمره	🔟 إذا كان عمر أحمد منذ خمس
۲۱ کسنة	ا ۱۵ عنة	2 in 18 (+)	۹ آ و سنوات
ن أن تساوي« كالشيخ 2019 »	، = ١٥ ، حل وحيد ، فإن : ك لا يمك	ص = ۵ ، ۳ س + ك صر	🚾 إذا كان للمعادلتين: -س + ٤
17 – ③	17 🕘	٤ – 🥹	٤١
	و.جديد 2019))	ي ع × ع يساوي «	🔟 عدد حلول المعادلة: - س = ٣ ف
عدد لا نهائي	Y (a)	1 @	① صفر
	لي ك × ك هي «قنا 2018»	ـ ص = ، ، - <i>ن</i> ص = ۹ ،	🔟 مجموعة حل المعادلتين: 🗝 -
{(·•·)}	{(٣-,٣-),(٣,٣)}	_	س مجموعة حل المعادلتين:
	{(٣-,٣-),(٣,٣)}	_	{(٣,٣)} ①
	{(٣-,٣-),(٣,٣)}	(- ۳ ، ۳ - ۳)} ۹ = ۰ في ع هي (۳ }	(۳,۳)} (۳,۳)} مجموعة حل المعادلة: - ^۲ +
фэ	{(٣-,٣), (-٣,٣)} ⓐ (٣-,٣)}	(- ۳ ، ۳ - ۱)} ۹ = ۰ في ع هي (۳)	 (۳, ۳)} مجموعة حل المعادلة: ¬¬¬ + (۳, ۳) ↑
фэ	{(m-, m-), (m, m)} (a) {m-}	(-۳،-۳)} ۹= • في ح هي (۳) (۳) -س في ح هي (۱)	 (۳, ۳)} → ۲ مجموعة حل المعادلة: → ۲ + (۳, ۳) ↑
Φ 3	{(٣-,٣-), (٣,٣)} (a) {} {}	(-۳،-۳)} ۹= • في ح هي (۳) (۳) -س في ح هي (۱)	(۳،۳)} (۲،۳)} مجموعة حل المعادلة: -س + + (۳،۳) (۳،۳) (۳،-۳) (۳،-۳) (۳،-۳) (۳،-۱) (۱،-۱)
Φ 3	{(٣-,٣-), (٣,٣)} (a) {} {}	(-۳، -۳)} الحال ا	(۳,۳)} (۳,۳)} مجموعة حل المعادلة: -س +
ф (3) {···} (3) ф (3)	{(٣-,٣-), (٣,٣)} (a) {} {}	(-۳، -۳)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)	(۳،۳)} (۲،۳)} (۲،۳)} (۲،۳)} (۲،۳) (۳،۳) (۳،۳) (۳،-۳) (۳،-۳) (۳،-۱) (۱،-۱) (۱،-۱) (۱، العادلة التربيعيا (۱، العادلة دالله التربيعيا (۱۰ (۳،۳) (۳،۰۲) (۳،۰۲) (۳،۰۲) (۳،۰۲)
ф (3) {···} (3) ф (3)	{("-")} (("")} ((""))} ((""))} ((""))} ((""))	(-۳، -۳)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)} (-۳ - ۱)	(۳, ۳)} (۲ مر ۳)} مجموعة حل المعادلة: -س + + (۳ مر ۳) (۳
Ф 3	{("-")} (("")} ((""))} ((""))} ((""))} ((""))	(-۳-۰۳)} (-۹ - ۹)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)} (-۳-۰۳)	(۳ ، ۳)} (۱ مجموعة حل المعادلة: - ۲ + ۲ (۱ م - ۳ + ۲) (۱) (۳ ، - ۳ } مجموعة حل المعادلة: - ۲ = ۱ (۱ م - ۱) (۱) (۱ ، - ۱ } (۱) (۱) منحنى الدالة التربيعيا أذا كان منحنى الدالة التربيعيا أذا كان مجموعة حل المعادلة (۱) (۳ ، - ۲ } (۱) صفر
Ф 3	{(¬¬¬¬), (¬¬¬¬)} {¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	(-۳، - ۳)} (-۳ - ۳)} (-۳ - ۳)} (-۳ - ۳)} (-۳ - ۳)} (-۳ - ۳)} (-۳ - ۳)} (-۳ - ۳)} (-۳ - ۳)} (-۳ - ۳) (-۳ - ۳) (-۳ - ۳) (-۳ - ۳)} (-۳ - ۳) (-۳ - ۳) (-۳ - ۳)} (-۳ - ۳) (-۳ - ۳) (-۳ - ۳) (-۳ - ۳) (-۳ - ۳) (-۳ - ۳)	(۳ ، ۳)} (۱ مجموعة حل المعادلة: - ۲ + ۲ (۱ م - ۳ + ۲) (۱) (۳ ، - ۳ } مجموعة حل المعادلة: - ۲ = ۱ (۱ م - ۱) (۱) (۱ ، - ۱ } (۱) (۱) منحنى الدالة التربيعيا أذا كان منحنى الدالة التربيعيا أذا كان مجموعة حل المعادلة (۱) (۳ ، - ۲ } (۱) صفر
Ф 3	{(¬¬¬¬), (¬¬¬¬)} {¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	$\{(-7, -7)\}$ Θ $P = 0$ Θ	(۳،۳)} (۱ مجموعة حل المعادلة: - ۲ + ۲ (۳،۳) (۱ مجموعة حل المعادلة: - ۲ = ۱ (۱ مجموعة حل المعادلة: - ۲ (۱ مجموعة حل المعادلة (۱ مجموعة حلول المعادلة (۱ مجموعة (۱ مجموعة حلول المعادلة (۱ مجموعة حلول المعادلة (۱ مجموعة (۱ مجموعة حلول المعادلة (۱ مجموعة
ф э (···) (···) (···) (···)	{(¬¬¬¬), (¬¬¬¬)} {¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	(-7, -7) $(-7, -7)$	(۲, ۳)} (۲, ۳)} (۲, ۳)} (۲, ۳)} (۲, ۳) (1, ۳) (1,
ф э (···) (···) (···) (···)	(۳-۳)، (-۳، -۳)} (-7)، (۲۰۰) (-7)، (۲۰۰) (-7) (-7) (-7) (-7) (-7) (-7) (-7) (-7) (-7) (-7) (-7)	- (۳- ۱ - ۱) - ۱ - ۱ - ۱ - ۱ - ۱ - ۱ - ۱ - ۱	(۲, ۳)} (۲, ۳)} (۲, ۳)} (۲, ۳)} (۲, ۳) (1, ۳) (1,

	قطة (۱،۱) ، فإن : ۴ =	(-0) = q - q - 1 يمر بالذ	🔟 إذا كان منحنى الدالة 🕻 : 🔾
Y (3)	1-0	1 😟	ن صفر
« الرقهلية 2019 »	محور الصادات في النقطة	۲-۰-۲ + ۲ - ب قطع	🔟 منحنى الدالة د: د (س) =
(•••)	(> (·) 🕒	(· · · ·) ()	(···) ①
	هي	دالة د : د (ر) = ۲	📆 معادلة محورتماثل منحنى ال
<u>ا</u> صفر عضر	۷-= - ۲	1= - 0	Y = 0- 1
	= ۲۰ في 2 × 2 هو	ص=۲ ، س۲+ ص۲:	🌃 أحد حلول المعادلتين: -س -
(٢,٤) ③	(1, 4)	(E - 6 T) (H)	(Y 6 E -) (I)
		۷ و حاصل ضربهما ۱۲ هما	🚾 العددان اللذان مجموعهما – 🛚
7.10	7.7 🕒	٤-،٣- 😕	٤،٣ (1)
		- ، فإن مربع عمره منذ ه	4
(۵ + ۵-) (۵	*(o - v-) (a)	10+10- (P)	To - T - 1
	: ص =	کان - س ص ۲ = ۱۲ ، فان :	🔟 إذا كان: س ص = ٣ ، و
Y ± ③	4 🕒	٤ (9)	Y - ①
		س ص = ١١ من الدرجة	المعادلة: ٢ - س - ٣ ص + ٥ المعادلة:
الثالثة (ع)	الثانية	الأولى	① الصفرية
N	Y 9 ()		
، -ر، + حر هي -ر، = ۲	داله د: د (- د) = ۱ - د + ب	معادلة محورتماثل منحنى الا	۱۵ « مهارات وقدرات » إذا كانت
، -ن+ حد هي -ن = ۲	-+ 10-1=(0-)3:3 all		ه مهارات وقدرات » إذا كانت ، فبإن : د (ه) – د (- ۱) =
۱ = ٠- د هي -٠٠ = ٢ عد عي -٠٠ = ٢			
3		٦ 😛	
3		ع الله عن الدرجة الثانية في المنافية في ا	، فإن: د(ه) - د(-۱) = أ صفر
3		ع الله عن الدرجة الثانية في المنافية في ا	، ف بان : د (ه) – د (– ۱) = ن صفر « مهارات وقدرات » إذا كانت
ک د (۲) = صفر (۵ {۲،۳،۰}	 نت : د (۳) = د متغیر واحد و کانت : د (۳) = د ۲٬۲} 	ر دالة من الدرجة الثانية في الأرجة الثانية في الدرجة الثانية في الأرجة الثانية في الأرجة الثانية في الأرجة الثانية في الأرجة الثانية في الأربية في الأربي	، ف بان : د (ه) – د (– ۱) = ن صفر « مهارات وقدرات » إذا كانت
ک د (۲) = صفر (۵ {۲،۳،۰}	 نت : د (۳) = د متغیر واحد و کانت : د (۳) = د ۲٬۲} 	ر دالة من الدرجة الثانية في الدرجة الثانية في الدرجة ال	، فإن: د(ه) - د(-۱) = . أ صفر (معارات وقدرات) إذا كانت ا فإن مجموعة حل المعادلة ا
ک د (۲) = صفر (۵ {۲،۳،۰}	 نت : د (۳) = د متغیر واحد و کانت : د (۳) = د ۲٬۲} 	ر دالة من الدرجة الثانية في الدرجة الثانية في الدرجة ال	، فإن: د(ه) - د(-۱) = . ا صفر (مهارات وقدرات) إذا كانت ، فإن مجموعة حل المعادلة ، فإن مجموعة حل المعادلة ، فإن محموعة بالمعادلة ، فإن معادلة ، فإن مع
(۲) = صفر (۲) =	ح به الحدو كانت: د (۳) = د الله د: د (س) = س ^۲ + سهدالله د : د (س) = سهدالله د : د (س) = س ^۲ + سهدالله د : د (س) = س ^۲ + سهدالله د : د (س) = س ^۲ + سهدالله د : د (س) = س ^۲ + سهدالله د : د (س) = سهدالله :	ر دالة من الدرجة الثانية في الدرجة الثانية في الدرجة الدرجة الثانية في الدرجة الدرج	، فإن: د(ه) - د(-۱) = . ا صفر (مهارات وقدرات) إذا كانت ، فإن مجموعة حل المعادلة ، فإن مجموعة حل المعادلة ، فإن محموعة بالمعادلة ، فإن معادلة ، فإن مع
(۲) = صفر (۲) =	ح به الحدو كانت: د (۳) = د الله د: د (س) = س ^۲ + سهدالله د : د (س) = سهدالله د : د (س) = س ^۲ + سهدالله د : د (س) = س ^۲ + سهدالله د : د (س) = س ^۲ + سهدالله د : د (س) = س ^۲ + سهدالله د : د (س) = سهدالله :	ر دالة من الدرجة الثانية في الدرجة الثانية في الدرجة الدرجة الثانية في الدرجة الدرج	، فإن: (٥) - (-١) = . أ صفر (مهارات وقدرات) إذا كانت ، فإن مجموعة حل المعادلة ، فإن محموعة حل المعادلة ، فإن معادلة ، فإن معادلة ، في
(۲) = صفر (۲) =		ر دالة من الدرجة الثانية في الدرجة الدرجة الدرجة الدرجة في الدرجة ف	 فإن: د(ه) - د(-۱) = . صفر (مهارات وقدرات)» إذا كانت ، فإن مجموعة حل المعادلة ، (مهارات وقدرات)» إذا كانت ، فإن مجموعة حل المعادلة ، (مهارات وقدرات)» إذا كانت ، فإن مجموعة حل المعادلة ، (مهارات وقدرات)» إذا كانت ، فإن محموعة حل المعادلة . (مهارات وقدرات)» إذا كانت ، فإن عدد حلول المعادلة د (مفر نصفر نصفر
د (۲) = صفر (۲) = صفر (۵) = صفر (۵) + ۲۶ هي - س = ۵ (۵) { - ۶ - ۲ } د حيث ۲ > ۱۰ هي (۲ ، ۳).	واحد و کانت: د (۳) = د (۳،۲} دالة د: د (ر دالة من الدرجة الثانية في الدرجة الدرجة الدرجة الدرجة في الدرجة الدرجة في الدرجة الدرجة في ال	 فإن: د(ه) - د(-۱) = . صفر (مهارات وقدرات)» إذا كانت ، فإن مجموعة حل المعادلة ، (مهارات وقدرات)» إذا كانت ، فإن مجموعة حل المعادلة ، (مهارات وقدرات)» إذا كانت ، فإن مجموعة حل المعادلة ، (مهارات وقدرات)» إذا كانت ، فإن محموعة حل المعادلة . (مهارات وقدرات)» إذا كانت ، فإن عدد حلول المعادلة د (مفر نصفر نصفر
د (۲) = صفر (۲) = صفر (۱، ۳،۲ عند ۲۵ عی - س = ۵ (۱ - ۱ عند ۲۵ هی - ۱ عند ۲۵ هی (۱ تا ۳). (۵) ۳	متغیر واحد و کانت: $c(7) = c$	الله من الدرجة الثانية في الدرجة المعدلة محورتماثل منحنى الدرجة المعادلة : ١ -٠٠٠ + -٠٠٠ + -٠٠ -	، فإن: د(ه) – د(–۱) = . الصفر (مهارات وقدرات) إذا كانت افإن مجموعة حل المعادلة و المعادلة د (المعادلة
(۲) = صفر (۲) = صفر (۲) = صفر (۲) - ۲۲ هي - 0 = 0 (۲) - ۲۲ هي - 1 } (۲) - ۲۲ هي (۲، ۳). (۲) ۳ (۲) ۳ (۲) شي (۲، ۳). (۲) ۳ (۲)	متغیر واحد و کانت: $c(7) = c$	ر دالة من الدرجة الثانية في الدرجة معادلة محورتماثل منحنى الدرجة معادلة محورتماثل منحنى الدرجة العادلة : ١ -٠٠٠ + -٠٠٠ -٠٠٠ -٠٠٠ -٠٠٠ -٠٠٠ -٠٠٠	، فإن: ۵(۵) – ۵(–۱) = . ا صفر (مهارات وقدرات) إذا كانت ا فإن مجموعة حل المعادلة و ال
(۲) = صفر (۲) = صفر (۲) = صفر (۲) - ۲۲ هي - 0 = 0 (۲) - ۲۲ هي - 1 } (۲) - ۲۲ هي (۲، ۳). (۲) ۳ (۲) ۳ (۲) شي (۲، ۳). (۲) ۳ (۲)	متغیر واحد و کانت: $c(7) = c$	ر دالة من الدرجة الثانية في الدرجة الشراط منحنى الدرجة معادلة محورتماثل منحنى الدرجة الدرجة الدرجة الدرجة الدرجة الدرجة الدرجة الدرجة العادلة : المحرجة الدرجة العادلة : المحرجة الدالة درجة العادلة : المحرجة الدالة درجة العادلة الدرجة العادلة الدرجة العادلة الدرجة العادلة الدرجة الدالة درجة المحرجة الدالة درجة المحرجة الدالة درجة الدرجة الدالة درجة الدرجة	، فإن: ۵(۵) – ۵(–۱) = . ا صفر (مهارات وقدرات) إذا كانت ا فإن مجموعة حل المعادلة و ال

ثانيًا الله أوجد في ع × ع مجموعة حل كل زوج من المعادلات الأتية :

باستخدام القانون العام أوجد في 2 مجموعة حل المعادلات الأتية مقرباً الناتج لأقرب رقمين عشريين

$$1 = \frac{1}{\sqrt{1 + \frac{1}{1 + \frac{1}$$

أجب عن النسئلة النتية أجب عن النسئلة النتية

ارسم: الشكل البياني للدالة
$$C : C (-1) = -0^7 + 7 - 0 + 1$$
 في $[-3, 7]$ $[-3, 7]$ و من الرسم أوجد: مجموعة حل المعادلة $C (-1) = -0$

اذا كانت: د (س) =
1
 س 2 ب ، و كانت د (۱) = ه ، د (۲) = ۱۱ . أوجد : قيمتي 1 ، ب .

مجموعة لصفار الدالة

.: - (٤ - س) (٣ - س) .:

$${ {ac} }$$
 مجال الدوال الكسرية $\mathcal{E} = { {ac} }$

مثال: مجال الدالة
$$c:c(-1)=-1$$
 - ۲ - ۷ يساوي

مثال أخر: مجال الدالة د: د (س) =
$$\frac{r-v-r}{q-1}$$
 يساوي

مجال الدوال كثيرات الحدود $\mathcal{E}=$ ما لم يذكر خلاف ذلك

·= (17 + 0- 7 - 70-) 0-:

أصمار الكسر الجبري

مجموعة أصفار الكسر الجبري = { أصفار البسط } – { أصفار المقام }

اخترل الكسر الجبرى

المقصود باختزال الكسر الجبري أي وضعه في أبسط صورة و ذلك عن طريق تحليل البسط و المقام و حذف العوامل المشتركة

$$\frac{(1-\upsilon^{-})(1-\upsilon^{-})}{(1+\upsilon^{-})(1-\upsilon^{-})} = \frac{1+\upsilon^{-}V-^{V}-^{V}\upsilon^{-}}{1V-\upsilon^{-}V-^{V}-^{V}\upsilon^{-}} = (\upsilon^{-})\dot{\upsilon}$$

$$\frac{1-\upsilon^{-}}{1+\upsilon^{-}}=(\upsilon^{-})\dot{\upsilon} : .$$

للحظ أن: يتم إيجاد المجال قبل اختزال الكسر الجبري من أصفار المقام.

المجال المشترك اعدة كسور جبرية

ليكن لدينا عدة كسور جبرية ن ، ، ن ، ، ، ، ، ، ، ، . . . إلخ ، فإن المجال المشتكر لهذه الكسور معًا هو \mathcal{Z} – { أصفار مقامات هذه الكسور }

$$\frac{7}{\sqrt{7}} \cdot \frac{7 - \sqrt{7}}{(7 + \sqrt{7})(7 - \sqrt{7})}$$
: بتحلیل الکسرین

ساول کسریں جبرس

يقال أن الكسر الجبري ن ، = الكسرالجبري ن ، إذا كان :

* أبسط صورة للكسر الجبري ت ، = أبسط صورة للكسر الجبري ت ، ﴿ مجال الكسر الجبري ت ، = مجال الكسر الجبري ت ، ملاحظة : إذا كان الكسران الجبريان لهما نفس الصورة بعد الاختزال و لكن المجال غير متساوي :

 $\{$ فيقال بأن الكسر الجبري $\dot{v}_1 = 1$ الكسرالجبري $\dot{v}_2 + 1$ لكل $\dot{v}_2 = 0$ أصفار مقامات الكسرين

بالنسبة للكسر الجبري ن ا

بالنسبة للكسر الجبري ن ا

بالنسبة للكسر الجبري ن ا

بالنسبة للكسر الجبري ن ا

$$\frac{U - Y - Y - V}{A - Y - V} = (U - Y)$$
 $\frac{V - Y - V}{5 + U - 1} = (U - Y)$
 $\frac{(5 + U - Y - Y) - U}{(5 + U - Y - Y)} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - Y) - U} = \frac{(5 + U - Y) - U}{(5 + U - U) - U} = \frac{(5 + U - U) - U}{(5 + U - U) - U} = \frac{(5 + U - U) - U}{(5 + U - U) - U} = \frac{(5 + U - U) - U}{(5 + U - U) - U} = \frac{(5 + U - U) - U}{(5 + U - U) - U} = \frac{(5 + U - U) - U}{(5 + U - U) - U} = \frac{(5 + U - U) - U}{(5 + U - U) - U} = \frac{(5 + U - U) - U}{(5 + U - U) - U} = \frac{(5 + U - U) - U}{(5 + U - U) - U} = \frac{(5 + U) - U}{(5 + U) - U} = \frac{(5 + U) - U}{(5 + U) - U} = \frac{(5 + U) - U}{(5 + U) - U} =$

$$\frac{\sigma}{1-\sigma} = (\sigma)_{1} \dot{\sigma} \quad \text{if } \{1\} - 2 = 0 + 1 \text{ if } \{1\} - 2 = 0 + 1 \text{$$

العمليات على الكسور الجبرية

$$\{$$
 مجال $($ ن $_1+$ ن $_7)=\mathcal{S}=\{$ أصفار مقامات الكسرين $\}$ $*$ مجال $($ ن $_1-$ ن $_7)=\mathcal{S}=\{$ أصفار مقامات الكسرين $\}$

$$\{\dot{v}_{1} \times \dot{v}_{2}\} = \mathcal{E} - \{\dot{v}_{1} \times \dot{v}_{2}\}$$
 هجال ($\dot{v}_{1} \times \dot{v}_{2} \times \dot{v}_{3}\}$

$$*$$
 مجال $(\dot{\upsilon}_1 \div \dot{\upsilon}_2) = \mathcal{E} - \{$ أصفار مقامات الكسرين $\dot{\upsilon}$ أصفار بسط الكسر $\dot{\upsilon}_2$

حجال الكسر الجبري يساوي مجال معكوسه الجمعي ، بينما مجال الكسر الجبري لا يساوي مجال معكوسه الضربي.

$$\{\dot{\upsilon}$$
 ن $\mathcal{E} = (1 - \upsilon)$ = مقلوب الکسر الجبری ن $(-\upsilon)$ $*$ مجال $(\dot{\upsilon} - \dot{\upsilon})$ = $(-\upsilon)$ أصفار مقام و بسط الکسر الجبری ن $*$

مثال: إذا كان: ن $(-0) = \frac{70 + 20 - 3}{70 + 20 + 3} - \frac{10 + 20 - 3}{70 + 20 + 3}$ هورة مبينًا مجاله.

$$\frac{(V + U - 0)}{(V + U - V)} = \frac{(V - U - V)}{(V - U - V)} = \frac{(V - U - V)}{(V - U - V)} = \frac{(V - U - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - V - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - V - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - V - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - U - V)} = \frac{(V - V - V)}{(V - V - V)} = \frac{(V$$

مثال: إذا كان: $\dot{U}(-\omega) = \frac{-\omega^{7} - 4^{7} + 7^{7} + 7^{7} + 9^{7}}{-2^{7} - 2^{7} - 2^{7} + 9^{7}}$ $\dot{U}(-\omega) = \frac{2\omega^{7} - 2\omega^{7} - 2\omega^{7} + 9^{7}}{-2\omega^{7} - 2\omega^{7} - 2\omega^{7}}$ $\dot{U}(-\omega) = \frac{2\omega^{7} - 2\omega^{7} - 2\omega^{7}}{-2\omega^{7} - 2\omega^{7}}$

مثال: إذا كان: $\dot{v}(-v) = \frac{4 - 7v}{4 - 4 - 4}$ ، أوجد: $\dot{v}(-v)$ في أبسط صورة مبينًا مجاله.

$$\frac{(\Upsilon+\upsilon-)(\Upsilon-\upsilon-)}{(\Upsilon-\upsilon-)(\Upsilon-\upsilon-)} = \frac{9-{}^{7}\upsilon-}{1\wedge+\upsilon-9-{}^{7}\upsilon-} = (\upsilon-)\dot{\upsilon}$$

$$\frac{1-\upsilon^{-}}{r+\upsilon^{-}}=(\upsilon^{-})^{1-}\upsilon: \qquad \frac{r+\upsilon^{-}}{1-\upsilon^{-}}=(\upsilon^{-})\upsilon \quad \text{i} \quad \left\{7\cdot r-\iota r\right\}-\mathcal{E}=\mathsf{dist}:$$

اختر النجابة الصحيحة من بين النجابات المعطاة

		فصر 2016 ۽ الأقصر 2018 »	ه:د:د(-س) = ه هي«ا	محموعة أصفار الدال
	ФЭ	(صفر }	{o - , o } ⊕	{o} (i)
0.11.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		« الغربية 2016 ، بورسعيد 2018)»	ة:د:د(<i>-س</i>) = − ۳ <i>-س هي</i>	🛚 مجموعة أصفار الدالـ
	e (3)	Lm 1 (a)	J., w 1 (1)	1.10

$$\Phi$$
 Θ $\{\cdot\}-\mathcal{E}$ Θ Θ $\{\cdot\}$ \mathbb{G} \mathbb

$$\Phi \bigcirc \qquad \{\epsilon - \epsilon r -\} \bigcirc \qquad \{\epsilon \epsilon r\} \bigcirc \qquad \{\epsilon \epsilon r\} \bigcirc$$

اذا کانت: مجموعة أصفار الدالة د: د
$$(--)$$
 = $(7-7)$ $- +$ $- - --$ هي 3 ، فإن: $7+--=$

$$\frac{4 + 3}{4}$$
 يساوي $\frac{1}{4}$ الجيزة 2015 $\frac{1}{4}$ يساوي $\frac{1}{4}$ يساوي $\frac{1}{4}$ يساوي $\frac{1}{4}$

$$q = \frac{4 - 4 - 4}{\pi - 4}$$
 يساوي $\frac{4 - 4 - 4}{\pi - 4} = \frac{4 - 4 -$

الدالة ن: ن
$$(-0) = \frac{-0}{-0}$$
 تكون غير معرفة عندما $-0 \in$

ن مجال الكسر الجبري ن: ن
$$(-0) = \frac{4}{-0^7 + b}$$
 هو $\mathcal{S} = \{0, -0\}$ فإن : $b = 1$

القاهرة 2015 »
$$\frac{-u-1}{-u+1}$$
 هي « القاهرة 2015 »

المجال المشترك للكسرين الجبريين :
$$\frac{-u}{-v} = \frac{7}{7}$$
 هو « القليوبية 2015 » المجال المشترك للكسرين الجبريين : $\frac{v}{v} = \frac{v}{7}$

```
المجال المشترك للكسرين الجبريين: عرب على المجال المشترك للكسرين الجبريين: عرب على المجال المشترك الفيوم 2018 »
{1-1}- € ③ {1-11- € ⊕
             أبسط صورة للكسر الجبري \dot{\upsilon}: \dot{\upsilon} (س) = \frac{1}{2} ، حيث س \neq - هي
                           ^{1-0-} إذا كان: \dot{U}(-0) = \frac{1-0-}{-0+0} وفيان مجال \dot{U}^{-1} يساوي ...... « المنوفية 2015 »
    {r-(1} ○ {r-(1}- € ○
                                                 {r-}- 2 ⊕ {1}-2 1
                          صورة للدالة c:c(-v) = \frac{v'+1+v'-1}{v'+1+v'+1+1} هي .....« الفيوم 2015 »
                  وا كان مجال الدالة ن: ن (س) = \frac{7-00}{7-0} هو ع ، فإن: أ سسس صفر « الدقهلية 2016 » وأن مجال الدالة ن
                           إذا كانت: 3 دالة من المجموعة س- إلى المجموعة ص- ، فأن مجال الدالة 3 هو
         « بني سويف 2016 »
   (s) صرح x سرح
                      « بورسعید 2016 »
                                            ابسط صورة للكسر الجبري ن: ن (-0) = \frac{4-7-3}{7-1} هي ا
                                                     (ب) س - ۲
                                                                             Y + 0- (1)
                                    السط صورة للكسر الجبري \dot{U}: \dot{U} = (-0) = \frac{1-00}{1+00} هي المسط صورة للكسر الجبري \dot{U}: \dot{U}
      3
                  اذا كان: ن ا (س) = \frac{0}{1} ، ن ا (س) = \frac{0}{1} ، ف المجال اذا كان: ن ا = ن ا في المجال
{\(\xi - \xi T - \xi T\\) \(\xi \) \(\xi - \xi T\\) \(\xi \) \(\xi \) \(\xi \) \(\xi \)
                                     😌 تساوی ٦٣
    😉 غير معرفة
                             🕒 تساوی ۵
```

... إذا كان:
$$\dot{\mathbf{U}}_1$$
 إذا كان: $\dot{\mathbf{U}}_1$ \mathbf{U}_2 المجال الذي يتساوي فيه الكسرين الجبريين هو ... \mathbf{U}_3

{·}- 2 3

$$(1)^{1} - 0 = \frac{5 + 0 - 6 - 70}{17 - 70} = (0 - 1) = \frac{1}{17 - 70}$$

اذا کان: ن
$$(-0) = \frac{\pi}{\pi} + \frac{\pi}{\pi}$$
 ، فإن مجال ن هو « الشرقية 2018 » اذا کان

النيطة أوجد ن (س) في أبسط صورة مبينا المجال :

$$\frac{7+0-}{12-5-} + \frac{5+70-}{12-5-} = (3018)$$
 (السوان 2018) (السيوط 2018) $\frac{1+0-}{12-5-} \times \frac{1-70-}{1-7-} = (3018)$ (السيوط 2018) $\frac{1+0-}{12-5-} \times \frac{1-70-}{1-7-} = (3018)$

$$\frac{0 - \sqrt{2018}}{1 + \sqrt{100}} = \frac{17 + \sqrt{100}}{1 + \sqrt{100}} = \frac{17 + \sqrt{100}}{100} = \frac{17$$

$$(2018 غیبیة 8102) = $\frac{1. - 0.7}{4 - 0.7} \div \frac{10 - 0.7 - 70.}{4 - 70.} = (0.7) ن (0.7)$$$

$$\frac{U - 9 + ^{7}U - 7 + ^{7}U - 7}{7 + U - 1 - 7 - 7} \div \frac{77 - ^{7}U - 7}{7 + U - 1 - 7} = (U - 1)U$$

$$(2015)$$
 ($-\sqrt{100}$) $= \frac{\sqrt{100} - 2}{1 + \sqrt{100}} = \frac{\sqrt{100} - 2}{1 + \sqrt{100}} = (100)$

$$(2016) = \frac{7 - 7 - 7 - 7}{-3 - 2 - 2} + \frac{7 + 0 - 7 - 7}{-1 - 2 - 0}$$
 (الوادي الجديد 2015 ، الدقهلية 2016 »

$$(2016)$$
 (1000) = $\frac{7 - 7 - 7}{4 - 7 - 7} + \frac{7 - 7 - 7}{7 - 7 - 7} = (1000)$

$$(2017 \text{ ālaipālai }) = \frac{r + v - v}{r - v - v - v} + \frac{1 + v - v + r - v}{v - v - v} = (v - v)$$

ثَالثًا أَ أُجِبِ عَنِ النَّسِئِلَةِ النَّتِيةِ

- رب ۲ ۲ من القاهرة 2015 ، قنا 2017 ، الاقصر 2018 ، البحيرة 2019 ، الدقهلية 2019 » المقلية 2019 » المقلية 2019 » المقاهرة 2015 ، الاقصر 2018 » المقاهرة 2015 » المقاهرة 201
 - $T = (-1)^{1}$ ن $^{-1}(-1)$ في أبسط صورة مبينًا مجاله.
 - 1 = (9) اذا کان مجال الدالة د: د $(-0) = \frac{2}{-0 1} + \frac{2}{1 0 + 9}$ هو $2 \{1\}$ ، د (9) = 1
 - ، فأوجد: قيمتى ؟ ، ب « الشرقية 2015 »
- (2015 سوموعة أصفار الدالة د: د (س) = $\{ P V + P V + A = \{ E + Y \} \}$ وذا كانت مجموعة أصفار الدالة د: د (س) = $\{ P V + P V + A = \{ E + Y \} \}$
- اذا كان: ن (س) = $\frac{7-w-7}{-3-w+7} ، فأوجد: ن (س) في أبسط صورة مبينًا مجاله، ثم أوجد: ن (٠). « الاقصر 2015 »$
 - بن دا (سن = $\frac{P w}{w + w}$ ، و مجموعة اصفار د وهي $\{0\}$ ، و مجال د وهو $\{7\}$ فاوجد : قيمتي $\{7\}$ ه.

 - اذا كانت مجموعة أصفار الدالة $c:c(-v) = \frac{7-v^7-7-v+1}{v-v-3}$ هي $\{3\}$ و مجالها هو $\{3\}$.
 - ، فأوجد: قيمتي ؟ ، به « الشرقية 2017 ·

 - $\Gamma = (--)^{1}$ في أبسط صورة مبينًا مجاله. $\Gamma = (--)^{1}$ جذري المعادلة: $\Gamma = (--)^{1}$
 - أوجد: المجال المشترك الذي يتساوي فيه الكسران الجبريان:
 - $\frac{V^{2}-U-Y-V^{2}}{1+U-Y+V^{2}}=(U-)_{Y}$ ن $\frac{1Y-U-Y^{2}-V^{2}}{1+U-Y+V^{2}}=(U-)_{Y}$ ن $\frac{1Y-U-Y^{2}-V^{2}}{1+U-Y+V^{2}}=(U-)_{Y}$ ن المعادي 2016 من المعادي 2016 من المعادي المعاد
 - $\frac{U-Y+V-V}{\{\xi+U-\xi+V-V\}} = (U-)_{Y}U \cdot \frac{U-Y}{\{\xi+U-Y\}} = (U-)_{1}U : U \in \mathbb{R}$
 - ، فَأَثْبِتُ أَنْ : نْ ، = نْ ، « الاسكندرية 2015 ، القليوبية 2017 ، الغربية 2018 ، البحيرة 2019 »
 - $\frac{U_{+} + V_{-} + V_{-}}{U_{-} + U_{-}} = (U_{-})_{+} U_{+} + (U$
 - ، فَأَثْبِتُ أَنْ : نْ ، = نْ ، ﴿ القليوبية 2015 ، الاسكندرية 2016 ، البحيرة 2017 ، اسوار 2018 ﴾

البسيط في الرياضيات، متطلق جديد

الدجابات

إجابات الوحدة الأولى

14 4

٤ V

14 10

° V. 14

1 71

ال نقطة الأصل

۲۳ عدد لا نهائي

{Y: W}

£ - 6 4 - 10

٣٩ صفر

٣٤ ب

Jugi اختر البجابة الصحيحة من بين البجابات المعطاة

- {(r, r)} **N**
 - 0 الرابع
 - 17 9
 - 0 14
 - Y Y W
 - ۲۱ ۲۱ سنة
- ФМ
- ۳۳ س = صفر
 - E TW
- Ф

 - {7, 2} [

- 1
 - 🗖 متوازيين
 - الرابع الرابع
- 14 ٥ س = ٣ ص + ١
 - TT 1A
 - 14 44
 - { • 1}
 - 1 %
 - (Y . E) TE
 - ٣٨ الثانية
 - ٤٢ صفر
- النيال أوجد في ع × ع مجموعة حل كل زوج من المعادلات الأتية :

(٢)

(٢)

(1) £ + 00 = 00 W

بالتعويض من (١) في (٢)

.: ٢ (ص + ٤) + ٤ ص = ٥

۵ = ٥ = ١٢ + ٥٠ ٢ ...

بالتعويض في المعادلة (١)

T= E+1-= - :.

٧ = س - س 🕦

بالتعويض في المعادلة (٢)

(Y) = 8 - 00 0 + 10-

من المعادلة (١) ص = -٠٠ + ٢

1=8-(++-) -+ + ...

·= 8 - - + + - + + - ..

 $\{(1-iT)\} = \mathcal{E} \cdot f :$

(Y) 0 = 0 1+ 0- T

- (۱) ۵ = ص = ۵
- بضرب المعادلة (١) X X
- (で) 1.= ローナーレーフ: بجمع المعادلتين (٢) ، (٣)
- .: ٧ س = ١٤ ومنها س = ٢ .: بالتعويض في المعادلة (٢)
- ١= ٧٥ = ٤ و منها ص = ١
 - {(1, Y)} = E.↑ ∴
- $1 = \frac{\sigma}{v} + \frac{\sigma}{v}$ (1)
- $\frac{1}{V} = \frac{\infty}{W} + \frac{\infty}{V}$ (Y) بضرب المعادلة (١) x - ٦
 - 7-= -9- - : بضرب المعادلة (٢) × ١٢
- (٤) 7= 0= 8+0-8:
 - بجمع المعادلتين (٢) ، (٤)
 - .: ۵ ص = ۰ و منها ص = ۰

بالتعويض في المعادلة (٤)

- :. ٣ س = ٦ و منها س = ٢ :.
 - {(··٢)} = E· f:

4 - س + ص = ٤

من المعادلة (١) = 2 - - 0

1="+" = 1-"

.: - س = ۲ او - س = ۱

عند - - - - - عند

 $\{(\Upsilon, 1), (1, \Upsilon)\} = \mathcal{Z}, \hat{\Upsilon} :$

 $17 = {}^{4}(\omega - 1) + (\omega - 1)\omega + {}^{4}\omega .$

·= 17 - 70- + 0- 1 - 17 + 70- - 0- 2+ 70- :.

- (1) 1 - س + ص = ١
- (Y) Y = w v Y بجمع المعادلتين (١) ، (٢)

 - :. ٣ س = ١ ومنها حل = ٢ بالتعويض في المعادلة (١)
- .: ٢ + ص = ٤ ومنها ص = ٢
 - {(Y,Y)} = E.A ::
- ١٠ = ٥ ٤ + ٥ ١٠ ١١ (1)
 - 11 = 4 + 5 بضرب المعادلة (١) x - ٤
- بضرب المعادلة (٢) ٣ x
- (٤) : ١٢-٠ + ٩ ص = ٣٣
- بجمع المعادلتين (٢) ، (٤) 1 = 0 = - 0 = - 0 = 1 = 0
 - بالتعويض في المعادلة (٤)
 - TT = 9 + 0- 17 :.

و بالتعويض في المعادلة (٢)

.: (١-٠٠) (٣-٠٠) :

 $17 = {}^{7}\omega + \omega \omega + {}^{7}\omega + \omega \omega + {}^{1}\omega + \omega \omega + {}^{1}\omega + \omega \omega + {}^{1}\omega + \omega \omega + \omega + \omega + \omega + \omega + \omega \omega +$

و عن*د -ن* = ۱

.: ۱۲ س = ۲۶ و منها س = ۲ $\{(1:Y)\}=\mathcal{E}\cdot\hat{\Gamma}:$

:. ص = ۲

- (+) ·= E U- Y + Y -- Y :. ·= Y - - - + Y - : ·=(1-0-)(Y+0-): 1= - 1 ie -- :. عند -- = - ۲ .. ص=صفر
- {(1,1)} = Z. f :: 🛕 🗝 – 🗠 = صفر (Y) YY = Y 00 + 00 0- + 10-سن المعادلة (١) ص = س بالتعويض في المعادلة (٢) TY = " -+ (--) -- + " -- :. TY = " -+ " -- + " -- :.

٤ ٤

a ± A

10 - 17

861 17

AY !

(0) (1)

{ T . T } E

{ 4 . 1 } [22

Y (a - 0-)

س + ۱۰ ص

{("-,"-),(",")}

(1) T = 00 - 0- T 6

£ = 00 Y + 0+

بضرب المعادلة (١) X X

٤ - ١ - ٢ ص = ٦

بجمع المعادلتين (٢) ، (٣)

بالتعويض في المعادلة (٢)

.: ۵ - س = ۱۰ ومنها - س = ۲

۱ = ۲ + ۲ ص = ٤ و منها ص = ۱

(7)

(1)

- .: -- ۳ أو -- ۳ : عند -- = ب ∴ ۳ -= ب عند عند -*∪* = :. ص = نا $\{(\mathbf{r}_{-},\mathbf{r}_{-}),(\mathbf{r}_{+},\mathbf{r}_{-})\}=\mathcal{E}_{-},\hat{\mathbf{r}}_{-}.$
- (1) \(\xi = \omega \omega \tau \) من المعادلة (١) ص = ٢ س - ٤

عند س= ۱= سعند

 $\{(\cdot, \Upsilon_{-}), (\Upsilon_{+})\} = \mathcal{E} \cdot \hat{\Gamma} :$

- 7 = (2 v- Y) v- :.
- عند ت ت ت عند
- $\{(\mathbf{1} \epsilon \mathbf{1} -) \epsilon (\mathbf{1} \epsilon \mathbf{1})\} = \mathbf{\mathcal{E}} \cdot \hat{\mathbf{r}} ::$
- ·= " - - - .. 1-= - ji T = - :.
- و بالتعويض في المعادلة (٢) (Y+) = 7-0-8-70-Y: ·=(1+~)(r-~):

-س ص = ٦

- .: ص=-۲ و عند -- - 1
 - الحبياض لرباهيات

باستخدام القانون العام أوجد في ح مجموعة حل المعادلات الأتية مقرباً الناتج لأقرب رقمين عشريين

س- ۵ = 1 + ۲ س- ۳ **۱**

·=1+0-0-10-1:

1= > (0-= - (= ? :

1, 28 = 17 1 + 0 = 0 - ...

.. حن = الالا - ۵ = ۲۳.

 $\{\cdot,\Upsilon\Upsilon$, $1,\xi\Upsilon\}=\mathcal{E}\cdot\mathring{\Gamma}$::

= - = - = - = - :.

 $\frac{177 \pm 0}{7} = \frac{1 \times 7 \times 2 - 70 \times 10}{7 \times 7} =$

$$\frac{\Upsilon\xi / \pm 7}{7} = \frac{1 \times \Upsilon \times \xi - \Upsilon7 / 1 \pm 7}{\Upsilon \times \Upsilon} = \frac{1 \times \Upsilon \times \xi - \Upsilon7 / 1 \pm 7}{\Upsilon \times \Upsilon} = \frac{1 \times \Upsilon \times \Upsilon}{7} = 0 - 0 = 0$$

$$1, \Lambda 1 = \frac{\Upsilon\xi / 1 - 7}{7} = 0 - 0 = 0$$

$$\frac{1 \times 1 \times 1 \times 1}{1 \times 7} = \frac{1 \times 1 \times 1 \times 1}{1 \times 7} = 0 \times 0$$

$$1 \times 7$$

🚺 نفرض العددان 🗝 ۽ ص

الفرق بينهما يساوي
$$\Upsilon \implies \neg \neg - = \Upsilon$$
 (۲) من المعادلة (۲) $\neg \neg = \Upsilon + \sigma$

$$a-$$
 و منها $a-$ او $a-$ او $a-$ او $a-$...

$$Y - = (0 -) + Y = 0 - \therefore$$
 $0 - = 0$

ق نفرض الطول = س ، العرض = ص

محيطه يساوي ۲۸ سم

بجمع المعادلتين (١) ، (٢)

$$A = -$$
 $= 1A = -$

$$\frac{1 \pm 7}{7} = \frac{1 \times 7 \times 8 - 77}{7 \times 7} = \frac{1 \times 7 \times 8 - 77}{7 \times 7} = \frac{78}{7} = 3 \Rightarrow \therefore$$

$$\cdot,1 \wedge = \frac{11}{1} = 11 \cdot \cdot \cdot$$

$$\{\cdot, 1 \land \cdot \cdot \cdot, \wedge 1\} = \mathcal{E} \cdot \hat{\Gamma} \therefore$$

$$\cdot, \Lambda 9 = \frac{\Lambda \circ V - 11}{Y} = 0 \therefore$$

$$\{\cdot, \Lambda 9 \in 1\cdot, 11\} = \mathcal{E} \cdot \hat{\Gamma} \therefore$$

-x بالضرب + + - والضرب +

$$\frac{0 + \pi}{Y} = \frac{1 \times 1 \times \xi - 9 + \pi - 1}{1 \times Y}$$

$$\frac{0 + \pi}{Y} = \frac{0 + \pi - 1}{Y} = 0$$

$$\frac{0 + \pi}{Y} = 0$$

$$\frac{0 + \pi}{Y} = 0$$

 $\{\cdot, \mathsf{T} \land - \mathsf{c} \mathsf{T}, \mathsf{T} \mathsf{T} - \} = \mathcal{E} \cdot \hat{\mathsf{T}} :$

$$Y_{o-} \times + \frac{1}{m} + \frac{1}{Y_{o-}} = 1$$
 بالضرب

$$A = A - \omega - A - \omega + A :$$

٤= (١- ١-) - 1

·= 8 - 0- - 10-:

: ١=١، ١=١، ح=-٤

= - + + + - = - :.

 $\Upsilon, \circ 7 = \frac{1 \vee 1 + 1}{2} = 0 - \therefore$

 $1,07-=\frac{17\sqrt{1-1}}{7}=\cdots$

 $\{1,07-67,07\}=\mathcal{E}\cdot\hat{\Gamma}$:

 $\frac{1 \vee 1 + 1}{2 \vee 1} = \frac{2 \times 1 \times 2 - 1}{2 \vee 1} = \frac{1 + 1}{2}$

$$\frac{\overline{rr} + 1}{r} = \frac{\lambda - x \cdot 1 \times \xi - 1}{1 \times r} = 0 - \therefore$$

$$r, rv = \frac{\overline{rr} + 1}{r} = 0 - \therefore$$

$$Y, TV - = \frac{TT / - 1}{T} = 0 - \therefore$$

$$\{Y, TV - \epsilon, T, TV\} = \mathcal{E} \cdot \hat{\Gamma} \therefore$$

نفرض قياسي الزاويتين س، ص زاويتان حادتان في مثلث قائم

🔟 نفرض الآحاد = 🇝 ۽ العشرات = 🗢

۲

$$\xi = V - 11 = 0$$
 ومنها $Q = 11 - V = 3$

💯 نفرض العددان 🗝 ۽ ص عددان حقيقيان مجموعهما ٩

من المعادلة (٢)
$$-0 = 9 - \infty$$

و بالتعويض في (٢) : (9 - ∞) $^{7} - \infty^{7} = 83$

$$V = V - 9 = \cdots$$

نفرض الطول = -0 و العرض = -0

مساحته تساوي ۱۸ سم
$$\Rightarrow \neg \neg ص = ۱۸$$
 (۲) مساحته تساوي ۱۸ من المعادلة (۱) $\neg \neg = 1$

و بالتعویض في
$$(\Upsilon)$$
 .: (Υ) ص = Λ

$$1 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$10 + 10 = 0$$

$$1$$

... المساحة = الطول × العرض = ٩ × ٥ = ٤٥ سم ٢

من الرسم منحنى الدالة يمس محور السينات عند (- 1 -) ،

(1)

(Y)

(1-x)

(1)

(Y)

$$(1) \qquad 0 = - + 1 : 0 = (1) 2 : 1$$

$$(Y) \qquad 11 = \omega + \uparrow \xi :: \quad 11 = (Y) \Rightarrow ::$$

$$(r) \qquad \qquad 0 - = - - \ell - \dots$$

$$T = T - 0 = 0$$
 ومنها $T = 0 - T = T$

$$0 = - + 1 : 0 = (1) \Rightarrow \cdots$$

$$11 = - + \uparrow \xi :: 11 = (Y) \Rightarrow ::$$

$$T = T$$
 eath $T = T$

1 = 0 - 7 - 0 V

٢= 0 <=</p>

بالتعويض من (٢) في (١)

1 = (Y - -) Y - - - 1 :.

1=1-Yu-8-0-0:

1=1+ - 0- 1- 1- E:

٠= (١-٠٠) (١-٠٠٤) :.

1=0- i 1=0-:

0=-- - 7 7 :

14=-- 196

بضرب المعادلة (١) x - 1

0-=-+97-:

بجمع المعادلتين (٢) ، (٣)

.: ۲۱ = ۱۲ ومنها ۲ = ۲

احداثيها الصادي ضعف مربع احداثيها السيني

 $Y = 1 \times Y = 0$ عند $-0 = 1 \times Y = 1$ من المعادلة

 $\frac{1}{\lambda} = \frac{1}{17} \times Y = 0$ (Y) at the $\frac{1}{\xi} = 0$ since

■ بالتعويض بالنقطة (٣ ، - ١) في المعادلتين:

 $(\frac{1}{3}, \frac{1}{4})$ أو $(\frac{1}{3}, \frac{1}{4})$

- m = 0 + 0 11 (1) (1) (7) 1-= - 1- - 4
- ٥ = ٥ ٥ + ٥ (٣)
 - بضرب المعادلة (١) ٢ x
- (٤) 7= - + + - + : بجمع المعادلتين (٢) ، (٤)
 - .: ٥ · · ومنها · = ١ .:
 - بالتعويض في المعادلة (١)
 - T = 1 T = 0 ومنها 0 = T 1 = T
 - .: نقطة تقاطع الستقيمات هي (٢ ، ١)
 - بالتعويض في المعادلة (٣)
 - ∴ ۲ + ك = ٤ و منها ك = ٤ ٢ = ٢

إجابات الوحدة الثانية

2 1

1 1

1 11

ugi اختر الإجابة الصحيحة من بين الإجابات المعطاة

4- 44

{•} ₩

٣ 🔽

{r-} T

{7, r} - E 18

{r-1}-2 IA

Y - U- TT

{+61-61} 11

{1-111-8

: أوجد في
$$\mathcal{Z} \times \mathcal{Z}$$
 مجموعة حل كل زوج من المعادلات الأتية

$$\frac{1+\sqrt{1-1}}{1+\sqrt{1-1}} \times \frac{1-\frac{1-1}{1-1}}{1-\frac{1}{1-1}} = (0-1)0$$

$$\frac{Y + u - \frac{Y + v - v}{1 + u - v} + \frac{u - v + v - v}{1 + v - v} = (u - v) 0}{1 + v - v} = (u - v) 0$$

$$\frac{\Upsilon + U^{-}}{9 + U^{-} \Upsilon + \Upsilon U^{-}} \div \frac{(\Upsilon + U^{-})U^{-}}{(9 + U^{-} \Upsilon + \Upsilon U^{-})(\Upsilon - U^{-})} =$$

17-0--70-+ 17-70-=(0-)さ $\frac{2+3-1}{(1-3-1)(1-3-1)} + \frac{(1+3-1)(1-3-1)}{(1-3-1)(1-3-1)} = \frac{1+3-1}{(1+3-1)(1-3-1)} \times \frac{(1+3-1)(1-3-1)}{(1-3-1)(1-3-1)} = \frac{1+3-1}{(1-3-1)(1-3-1)} = \frac$.. المجال = ع - { - ع ، ع ، - ٣ }

$$\frac{1+v^{-}}{5-v^{-}} = \frac{1}{5-v^{-}} + \frac{v^{-}}{5-v^{-}} = (v^{-}) \circ \therefore$$

$$\frac{(v-v)(v-v-v)}{(v-v-v)(v-v-v)} = (v-v)v$$

$$\frac{(v-v)(v-v-v)}{(v-v-v)(v-v-v)} = (v-v)v$$

$$\frac{(v-v-v)(v-v-v)}{(v-v-v)(v-v-v)} = (v-v)v$$

$$v-v-v$$

۷ ، ۸ ، ۹ ، ۱۰ أجب بنفسك

الأللة الأتية الأسئلة الأتية الأتية

$$\omega = \Upsilon + \Upsilon \omega = \therefore \qquad \Upsilon = \frac{\Upsilon + \Upsilon \omega}{1 - 1} : \Upsilon$$

$$\frac{Y + {}^{4} - {}^{$$

$$\cdot = (Y - \omega -) (1 - \omega -)$$

 $\frac{c}{r-c} + \frac{c}{1-c} = (c-c) \Rightarrow c$

.: ۲+ ب = - ٤ و منها ب = - T

{ * 6 8 6 7 } 8

a 🔥

V 17

< 4

7-1-

🚻 غير معرفة

V + 0-

 $\frac{a - \omega - \xi - \sqrt{2}}{1 + \omega - \chi - \sqrt{2}} + \frac{17 + \omega - \chi - \sqrt{2}}{\xi + \omega - \xi - \sqrt{2}} = (\omega -) a$

 $\frac{3-\omega-7}{7-\omega-} = \frac{1+\omega-}{7-\omega-} + \frac{7-\omega-}{7-\omega-} = (\omega-) \dot{\omega} \dot{\omega}$

.. للجال = ع - { ۲ ، ۵ }

ن المجال = ع - { ۲،۲ ، ٣ ، ٠ } . · المجال

TO - 17

💟 😁 🗝 🕒 صفرًا للدالة

بجمع المعادلتين (١) ۽ (٢)

∵ د(۹) = ۱

$$Y - = \uparrow \therefore$$
 $\cdot = \uparrow + Y \therefore$ $1 = 0 - \text{sign} \cdot = \uparrow + 0 - Y \therefore$

$$7 = -1 = \frac{\xi}{\Lambda} + \frac{\zeta}{\Lambda} : \qquad 1 = \frac{\xi}{\Lambda} : \qquad 1 = \frac{\xi}{\Lambda} + \frac{\zeta}{\Lambda} : \qquad 1 = \frac{\xi}{\Lambda} : \qquad 1 = \frac{\xi}{$$

(1)
$$\xi = - + \uparrow \uparrow \uparrow \therefore$$
 $(\uparrow \div)$ $\lambda = - + \uparrow \uparrow \xi \therefore$

(Y)
$$Y = \omega - P\xi - \therefore$$
 $(\xi - \div)$ $A = \omega \xi + P17 \therefore$

$$\frac{(\tau - \tau) + \gamma}{(\tau - \tau) + \gamma} = \frac{1 - \tau}{1 + \tau} = (\tau - \tau)$$

 $1 - = (\cdot) \circ \frac{\gamma}{\gamma - \sigma} = (\sigma -) \circ$

'.' - = ٤ صفرًا ثلدائة .'. د(٤) = ٠

(د)={ه} ∵ ص

· · · = · · ·

 $\bullet = \uparrow - \circ \therefore$ $\circ = \circ - \circ = \uparrow - \circ - \therefore$

 $\frac{1-\sqrt{2}}{2}=(\sqrt{2})_{1}$

a = P ...

T-=-:

 $Y = \frac{(\Psi - \omega -)Y}{\Psi - \omega -} = \frac{7 - \omega - Y}{\Psi - \omega -} = \frac{1 - \omega -}{\Psi - \omega -} = \frac{1 - \omega -}{\Psi - \omega -} = (\omega -)_{Y} + (\omega -)_{1} + (\omega -)_{1} = \frac{1}{2} + \frac$

 $\cdot = - + \pi$. $\pi = - \text{ aic } - - + - \therefore$ $\{\pi\} - \mathcal{E} = \text{ ibeli}$

 $\bullet = \Lambda + \Upsilon \xi - \uparrow 17$. $\xi = 0 - \text{siz} \bullet = \Lambda + 0 - 7 - \Upsilon - \uparrow ...$ 1 = Pرد) = {٤} = (٤) ا

Y = 0 عند -2 = 0 عند -3 = 0 المجال = 3 - 3Y = -

آكمل بنفسك

> $\frac{(1+\omega_{-})(\gamma_{-}-\omega_{-})}{(1+\omega_{-})(1+\omega_{-})} = \frac{\gamma_{-}-\omega_{-}-\gamma_{-}-\omega_{-}}{(1+\omega_{-})(\gamma_{-}-\omega_{-})} = \frac{(\xi_{+}-\omega_{-})(\gamma_{-}-\omega_{-})}{(1+\omega_{-})(\xi_{+}-\omega_{-})} = \frac{(\xi_{+}-\omega_{-})(\gamma_{-}-\omega_{-})}{(\xi_{+}-\omega_{-})(\xi_{+}-\omega_{-})} = \frac{(\xi_{+}-\omega_{-})(\gamma_{-}-\omega_{-})}{(\xi_{+}-\omega_{-})(\zeta_{+}-\omega_{-})} = \frac{(\xi_{+}-\omega_{-})(\zeta_{+}-\omega_{-})}{(\xi_{+}-\omega_{-})(\zeta_{+}-\omega_{-})} = \frac{(\xi_{+}-\omega_{-})(\zeta_{+}-\omega_{-}$

 $\{Y-\}-Z=\frac{Y-U}{(Y+U-)Y}=\frac{Y}{(Y+U-)Y}=\frac{Y}{(Y$ T+1= (0-), 0 6 $\frac{\partial}{\partial x_{+}} = (\partial -)_{Y} \dot{\partial} \dot{\partial} \dot{\partial}$ · · · = · · · .

 $\frac{\partial u}{\partial u} = \frac{\partial u}{\partial u} = \frac{\partial u}{\partial u} = (u -)_1 \dot{u}$ = (J-), U 6 ∴ مجال ن ر = 2 - {۱،۰}

 $\frac{(1+\cdots+\frac{y^{2}}{2}-\cdots)}{(1+\cdots+\frac{y^{2}}{2}-\cdots)} = \frac{\cdots+\frac{y^{2}}{2}-\cdots}{\cdots+\frac{y^{2}}{2}-\cdots} = (\cdots)_{y}$ ر ن ا ا ن ا ر ن ا ا $\{1 \in \mathcal{S} - \mathcal{S} = \emptyset \}$

 $\frac{1+\upsilon^{2}}{1+\upsilon^{2}} = \frac{(1+\upsilon^{2})(\pi-\upsilon^{2})}{(1+\upsilon^{2})(\pi-\upsilon^{2})} = \frac{(1+\upsilon^{2})(\pi-\upsilon^{2})}{(\pi-\upsilon^{2})(\pi-\upsilon^{2})} = \frac{(1+\upsilon^{2})(\pi-\upsilon^{2})}{(\pi-\upsilon^{2})(\pi-\upsilon^{2})} = \frac{(1+\upsilon^{2})(\pi-\upsilon^{2})}{(\pi-\upsilon^{2})(\pi-\upsilon^{2})} = \frac{\pi-\upsilon^{2}-\tau^{2}-\tau^{2}}{(\pi-\upsilon^{2})(\pi-\upsilon^{2})} = \frac{(1+\upsilon^{2})(\pi-\upsilon^{2})}{(\pi-\upsilon^{2})(\pi-\upsilon^{2})} = \frac{\pi-\upsilon^{2}-\tau^{2}-\tau^{2}-\tau^{2}}{(\pi-\upsilon^{2})(\pi-\upsilon^{2})(\pi-\upsilon^{2})} = \frac{(1+\upsilon^{2})(\pi-\upsilon^{2})}{(\pi-\upsilon^{2})(\pi-\upsilon^{2})(\pi-\upsilon^{2})} = \frac{\pi-\upsilon^{2}-\tau^$ $\frac{Y+Y_{U-}}{1+U-}=(U-)^{1-}U.$

البسيط في الرياضيات، مُنطلق جديد

أسئلة تراكمية

		سه برادمته فرينصه ناجعداد	m and at credit from
		ن منأرقام.	1 المليار هو أصغر عدد مكو
1. 3	9 🕒	∧ ⊕	7 (1)
		***************************************	🔽 أكبر الأعداد الأتية هو
٤١٠×٢,٣ ③	°1.×1, T 🕘	٤١٠×٣,٢ 💬	*1·× ٣,٢ (1)
		[الدسكندرية 16]	= TV - V - TV V
7-3	r - ②	ب صفر	7 ①
	16 ۽ المنوفية 19)	(١ – ٢٧٠) هو [الاسماعيلية	المعكوس الجمعي للعدد
TV 3	1-71 (3)	TV-1- (9)	71+11
		في صّ مو = (ا لفيوم 16)	0 العنصر المحايد الضربي
Y ③	1- (3)	1 💬	① صفر
		(المنيا 16)	= 75+74
۵ ± ③	4 😑	V (-)	۵ (1)
		/FN1	
) سیناء 17) 	(س) هو (المنيا 16 ، شمار 	المعكوس الضربي للعدد
T/ 3	- THT (3)	T 1 -	rh - 1
٤ ③	TN 3	1.1 (-)	11
		= ٨ + ، فإن: =	
15 3	1. (2)	7 😛	7
	***************************************		$(\overline{Y} + Y)(\overline{Y} - Y)$
A (3)	٤ (٩)	۲ ((أ) صفر
· · · · · · · · · · · · · · · · · · ·			(7/47)(7/47)
A (3)	٤ 🖎	۲ 🔑	1 صفر
•		ان مجموعهما ١٧ ، فإن أصغر العد	
YY (3)	17 🕒	9 💬	A (1)
************************************	***************************************		العدد الأولى الزوجي هو
1-3	1 (2)	Y (+)	اً صفر

	سئلة تراكمية مرتبطة بالقوم	المجموعة التانية
	(الاقصر 16)	اً ثُلث العدد (۲۷) =
7 4 (2)	٤٣ (* r (1)
		ن ربع العدد (٤) ٢٠ =
1. 8 (3)	ه ٤ (19 7 (1)
		۳ شدس العدد (۲) ^{۱۲} × ا
"7 🕒	Y7 (+)	17 7 (i)
7 (2)	۳ 😔	a (i)
⊖ صفر	ه 💬	1 (1)
	ط ا	7 اذا کان: ۲ ^۷ × ۳ * =
7 3	v e	18 (1)
	ـــــــــــــــــــــــــــــــــــــ	·¹(1-) + ¹···(1-) 💟
1 (3)	Y - (-)	ن صفر
		··· (1-) + ⁹⁹ (1-) 🔼
1 (3)	۲ - ك	(آ) صفر
		•
{1}-E ⊕	{o}-€ ⊕	2 1
		= ^ε (ᠯ ¼ ϒ) 1
TT (2)	17 😔	A (i)
Y (3)	1 (-)	ن صفر
٤ (ع	Y (-)	1 (1)
9 (3)	کاِن: ۸ =	
		٦
Y (<u>a</u>)	۳ ۲ (<u>ب</u>)	* Y (1)
	ابديرة ، الفربية 16 البديرة ، الفربية 16 الفربية 16 الفربية 17 ال	الدقصر 16] الدوس

	ية 18)	: ۵ = القليوب	10 إذا كان: ٥ = ٤ ، فإن
٠,٠٨ ③	.,170 (3)	٠,٨ 🤛	1,70 (1)
	= (المنوفية 18)		🗖 إذا كان: ٢ - ٢ ، ٢ ص
٠,٠٨ (٥)	1,170	٠,٨ 😓	1,70
•••••••••••••••••••••••••••••••••••••••		٢٢٥ ، فإن: ص =	
Y. 3	ے صفر	10 😛	7
	**************************************		٠ + ٢ - ٥
		درية 19)	۱+ سکنا ۱+ سکنا
Y. (3)	10 😑	1. 😛	ه (۱)
			19 إذا كان: ٣ - ٤ ، ٤ -
" (3)	1 (2)	1 0	Y (j)
•	T		٠
	وبية 19)	نَـإِن: ٢ -٠٠ =االقلم	
r 3	۹ 🕒	1X (Q)	۳٦ ①
		وفية 19)	المنر ع 1° ٤ + ١° ٤ المنر
W1 Y (3)	10 A (a)	ب ع صفر	۳۰ ٤ (۱)
•			= " (1.) + " (1.) + (1.) 17
1.1. 3	111.	٣ 💬	1
	شيخ 19)	ن: ٦ - ^{+ ۱} = [كفر ا	🌃 إذا كان: ٦ - ١٢ ، فإر
VY 3	TV (3)	18 (-)	77 (1)
•	······································		+ 19 Y = Y.Y YE
49 x 3	19 7 🕥	۲. ۲ (ن	Y (1)
· · · · · · · · · · · · · · · · · · ·	X - 1 * 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	، فإن: س =	
1 3	*	ب صفر	Y (1)
		۲ ، فإن : س =	
			* (1)
a (3)	······································	۲ (ن)	······································
+ (٣) حن = (اسماعيلية 19)	ر المحايد الضربي ، فإن: (٢)	لحايد الجمعي ، ص هو العنص	🚺 إذا كانت: 🗝 هو العنصر ال
a 3	٤ (ع)	۳	7 (1)
		Y 9	الله المن المن المنالى الأقرب الى المقدا
٨٠ + ١٢٠ (3)	Y. + 1Y. (3)	79 + T11 (!)	11 + 17

	ىدرية 16)	، فإن: ص =(الاسك	$\Lambda = ^{7} - \omega$: ص الم
1 3	r (3)	<u>'</u>	1 1
	= (ش.سيناء 19)	، = 1 منان: ۲ ° × ب ۵۰ =	ا إذا كان: ٢ = ٢ ، ب
Th 3	1 (a)	1 (÷)	r (i)
	ا العدّدية	ئلة تراكمية مرتبطة بالأنماط	المجموعة الثالثة الأس
) هو	6 17 6 11 6 Y 6 E 6 Y)	العدد التالي في النمط: (
YT ③	77 (a)	71	۲. ①
) هو	6 70 6 17 6 9 6 2 6 1)	🚹 العدد التالي في النمط: (
٤. ③	۳٦ 😑	۳٥ 😛	۳. (i)
(الفيوم 19)	لالة له حيث له ∃ ص~ هي	$\frac{1}{2}\left(\dots,\frac{2}{5},\frac{4}{5},\frac{4}{5},\frac{7}{5},\dots\right)$	القاعدة التي تصف النمط
1-27 3	1+20	1+2	1+0
(المنوفية 19)	على الترتيب هي $\left(\frac{\nu}{\delta}\right)$ على الترتيب هي	النمط: $(\frac{1}{6}, 3, 1, 1, \frac{7}{6})$	الأعداد اللازمة لاكمال
1,8 6 1 6 ., 1 3	۱،۰,۸،۰,٦ 🖻	1,7 6 1 6 3, 1 1 1	1,7 6 7 6 . , 1
E -	الشالب المراه		
	الرياطية	ئلة تراكمية مرتبطة بالتعبير	ar sulful sustinging
		سه تراحمیه فرتبطه بالتعبیر ۳ یساوی (القلیوبیة ۱۲)	
T+ J	۳- س - ۳	10"	العدد - مطروحًا منه العدد
P+ 0- (3)	۳- س - ۳	۳ يساوي (القليوبية 17) ب ۲ س + ۳	العدد - مطروحًا منه العدد - مطروحًا منه العدد - العد
P+ 0- (3)	ه ۲ س – ۳ اوي (الاسماعيلية 18) • يساوي	۳ يساوي (القليوبية 17) ب ۲ س + ۳	العدد س مطروحًا منه العدد س - ۳ - ۳ - ۳ - ۲ العدد الع
r+ 5- (3)	۳ - س - ۳	٣ يساوي (القليوبية 17) ٣ + س + ٣ ديًا ، فإن العدد الفردي التالي له ٢ + س + ٢	العدد س مطروحًا منه العدد س مطروحًا منه العدد س - ٣ - ٣ - ٣ عددًا فر العدد ال
r+ 5- (3)	۳ - س - ۳	٣ يساوي (القليوبية 17) ٣ + س + ٣ ديًا ، فإن العدد الفردي التالي له ٢ + س + ٢	العدد - مطروحًا منه العدد - مطروحًا منه العدد - س - ۳ - ۳ - العدد
V+V-(3)	۳ - س - ۳	القليوبية 17 سس (القليوبية 17) القليوبية 17 س + ۳ بس + ۳ بن التالي له بن العدد الفردي التالي له بن بن بن بن بن بن بن بن محيد	العدد - مطروحًا منه الله العدد - مطروحًا منه الله الله الله الله الله الله الله ال
V+V-(3)	۳ - س - ۳	القليوبية 17 سس (القليوبية 17) القليوبية 17 س + ۳ بس + ۳ بن التالي له بن العدد الفردي التالي له بن بن بن بن بن بن بن بن محيد	العدد - مطروحًا منه السلط العدد - مطروحًا منه السلط الله الله الله الله الله الله الله ال
۲+ س (ع) س-۳ (ع) س۳ (ع)		القليوبية 17) عساوي	العدد - مطروحًا منه السلط العدد - مطروحًا منه السلط الله الله الله الله الله الله الله ال
サー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	۳-υ-۲ (الاسماعيلية 18) ۳-υ+۲ Φ	القليوبية 17) الساوي (القليوبية 17) الميا ، فإن العدد الفردي التالي له الميا ، فإن العدد الفردي التالي له الميا ، فإن العدد الفردي التالي له الميا منه ٣ يُكتب	العدد - ب مطروحًا منه الله العدد - ب مطروحًا منه الله الله الله الله الله الله الله ال
マード ③ マード ③	۳-υ-۲ (الاسماعيلية 18) ۳-υ+۲ Φ	القليوبية 17) الساوي (القليوبية 17) الميا ، فإن العدد الفردي التالي له الميا ، فإن العدد الفردي التالي له الميا ، فإن العدد الفردي التالي له الميا منه ٣ يُكتب	العدد - ب مطروحًا منه الله العدد - ب مطروحًا منه الله الله الله الله الله الله الله ال
サー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ر الاسماعيلية 18) السماعيلية 18) السماعيلي	القليوبية 17) المناوي (القليوبية 17) الميا ، فإن العدد الفردي التالي له الميا ، فإن العدد الفردي التالي له المول ضلعه حل سم ، فإن محيد الميا منه ٣ يُكتب	العدد حل مطروحًا منه الله العدد حل مطروحًا منه الله الله الله الله الله الله الله ال
マード ③ マード ③ ア+ マード ③	ر الاسماعيلية 18) السماعيلية 18) السماعيلي	القليوبية 17) العدد الفردي التالي له العدد الفردي التالي له العدد الفردي التالي له العدل ضلعه حل سم ، فإن محيد الفردي التالي له الله الله الله الله الله الله الل	العدد حل مطروحًا منه الله العدد حل مطروحًا منه الله الله الله الله الله الله الله ال

		تراكمية مرتبطة بالتحليل	المجموعة الخامسة أسألة
ك =ا (القليونية 19)	۱) ، فان:	ر + ر + ر + ر + ر + ر + ر + ر + ر + ر +	اذا كان المقدار: س ٢ + ك س
Y. 3	٨٩		Y - (1)
(القليوبية 18)	بان: ك =	ں + ٣٦ يكون مربعًا كاملًا ، ف	🛂 إذا كان المقدار: س۲+ ك سر
1A ± 3	r ± 🖎	∧ ± (+)	7± (i)
(الغربية 18) =	إن : ب -	، حیث (۲ + ب) ≠ صفر ، ف	۲۰ ا کان: ۲۰ - ۲۰ = ۲ + ۲
1 - ③	1 🕒	۲ - 🧓	7 (1)
[الدقهلية 18 ، أسوان 19)	= ^۲ (- ب = ۳ ، فإن : (۲ + ب)	ع إذا كان: ٢٩ - ب٢= ٦ ، ٩ إذا كان: ٩١ - ب٢= ٦ ، ٩
17 ③	T (2)	Thr 😣	Thr
(شمال سيناء 17)	=	ون مربعًا كَامِلًا إذا كانت: ك	المقدار: → ۲ + ك → 0 + ٩ يك
7 ± ③	r± 😑	r-'@	r (1)
		عوامله = (دمیاط 17)	تحلیل المقدار (س۳ – ۱) إلى a
(1+ v- Y+ Yv-) (1- v	⊢) ⊕		(1+ v-) (1- Yv-) (1)
(1+ - Y - Y - Y) (1 - U	⊢) ②	(1-	+ ~ + * ~) (1 - ~) (2
(17	[أسوان]	فإن: ٣ - س + ٣ ص =	إذا كانت: -س + ص = ۵ ،
16 ③	۲ 🕒	1	ه (1)
ب ص = (سوهاج 16)	نان: س	س ۲ ص + س ص۲ = ۲ ، ف	١ إذا كانت: ٢ س ص = ٦ ، ٢
v (3)	r 🕒	Y1 (9)	*** ***
(الحاهرة 16 ء السويس 17)	ر + ص =	، س - ص = ٣ ، فإن: بر	10 = ٢٠٠٠ : - ١٥]
o – ③	r 🗇	r_ @	o — (i)
(السرقية ١٥)	_ ص = .	س - ص = ۲ ، فان: س	1 إذا كانت: س + ص = ٤ ،
17-0	A - (a)	11 😟	* ①
: - ص = (القليوبية 15 ، ب.أحمر 16)	مضر، فان	س+ ص)، س+ ص≠ ص	الاً إذا كان: س ⁷ - ص ⁷ = ٢ (-
A (3)	1 🕒	٤Θ	Y ①
		40	= 7 + 0-0- Y - 1Y
(1-) (1+) (1-) (1-) (1-)			
		ے (ص+س) = ۱۵ ، س	
Yo ③	4 🖎	6 (9)	r ①
		٤٠ - ن فان: س =	
1. 3	1 🖎	٤٠٠ (٠٠)	£ (i)

	رِّ و الحدود الجبرية	سئلة تراكمية مرتبطة بالمقاديا	المجموعة السادسة
يرة 18)	ه) = [جنوب سيناء 16 ۽ البد	، = ۷ ، فإن: س + ۳ (ص +	🚺 إذا كانت: -س + ٣ صر
Y (3)	r (2)	Y1 😣	77
	ے = [القليوبية 19)	ه لو	au au
		ا بر ص بر ص المارات . س س	ی د کا
(ع) جن + ص	1+00+0-(3)		_
(۵ – ۱۵ – ص	<u> </u>	(جنوب سيناء 17) ب ۸ س ص	= س × - ۵ ص = ۳ می می می ص
(► 1 - (3)	(T (A)	-رن من = آب 1 جن ص	۵ ÷ ۲۰۰۰ ۳۰۰ ق
1 (3)	فان : ته = د ا	۴ ۳ من الدرجة الرابعة ،	إدا كان الحد الجبري
		The second secon	
J- 1 (3)	ار	زيد عن الحد الجبري – ٤ – ٠ بم ن بمناحد الجبري – ٤ بمناطقة بمناطقة بمناطقة بمناطقة بمناطقة بمناطقة بمناطقة بمناطقة بمناطقة بالمناطقة با	الحدالجبري المحل يا الحدالجبري المحل يا الحدالجبري المحل
		سُئلة تراكمية مرتبطة بالدوال	aextanti acamami
	(16 mag)	ع فإن: ٣ د (<i>س</i>) =	
YV 3	17 - 3	1 😌	r - (i)
(a)	(البخيرة 17)	١ - ٠ ، فإن : د (١) - د (-١) =	
Y (3)	Y - (3)	٤	1 صفر
وفية 17)		- ۳+ ^۲ - س (۱ - ۲ - س) ڪثي	۳ الدالة د : د (س) = T
الثالثة	الثانية	الأولى	الصفرية
	، من الدرجةا (المتيا ١٦)	س ^۲ +۳ س ^۲ − ۵ کثیرة حدوه	۲=(س)ع: د
الخامسة	الرابعة	الثالثة 😛	الصفرية
ح = (كفر الشيخ 18)	= ٤ ، د (-١) = ٤ ، فإن: ١ + ٠	(1) 2 · 2 + + + V · ·	اذا كانت: د (س) =
ا صفر	r (2)	٤ 😛	A ①
		، فإن: د(۲) + د(- ۳) =	انا کانت د (س) = ۳
٦ ③	7-0	1 😌	ا صفر
	فإن: ب =	س + ب و كانت د (٣) = ١٥ ،	اذا كانت د (س) = ٤٠
r - ③	٤ (٩)	۳ 😛	107 ①
		س ۲ ، فإن: د (۳) =	اذا كانت: د (س) =
("-) > ()	(r-)2 r (=)	(r−) > ⊕	(r-) = 0

	ىل الضرب الديكارتي	ا أسئلة تراكمية مرتبطة بحاد	المجموعة الثامنة
	فإن: - + 1 =	<i>ى ،</i> ۷) تقع على محور الصادات ،	اذا كانت النقطة (-
1-3	۲ 🕒	1 😟	1 صفر
		٤) = (- + ۲ ، ۳) ، فإن : ٢ -	
1. ③	۵ 🕒	۳ (Y (1)
	+ 🍑 = (الشرقية 17)	، ٣) = (١ ، ب + ٥) ، فإن : ٩	۳ إذا كان: (۷ ۲-۲
۲ ③	1 (2)	ب صفر	1- (1)
		نع في الربع (جنوب سيناء	
الرابع	الثائث 🕒	الثاني	
	(البحيرة 17)	. = (س) = ٩ . فإن : به (س) = .	ا إذا كانت: له (س
r - 3	۳ ± 🕒	r Q	M (1)
		نع في الربع بالسبا	🗖 النقطة (٢، –٤) تق
الرابع	الثائث (ع	الثاني 💮	الأول
	(س × مر) = (سر × مر)	٣]، ص- = { ٤ } ، فإن: له	≥ اذا كانت: س~ =
{(٤,٣)}	{11}	1 😛	17 (1)
	عادلات	أسئلة تراكمية مرتبطة بالم	esmith redustral
	سماعيلية 19)	٢ ، فيان: ٢ - ٠٠ = (اد	<u>ا</u> إذا كان: الس
Y (3)	٤ 🖎	٦ (A (i)
		= ٧ ، فان: ﴿ وَ = (الفَ	
18 3	∨ ± 🖎	v – (+)	v (i)
		١ ، فإن : أ حل =(ده	ا إذا كانت: ٢ -س =
1/3	1 (2)	1 (-)	Y (i)
	(ب.أحمر 16)	1 0	ع اذا ڪان: - س -
۸ ۳ (<u>3</u>	7 4 3	٤٣ (ب) ٢٣	" " T
🏎 = (دمياط ١٦ ، الغربية ١٤)			0 إذا كان: ٢ ب = ١٢
77 3	7. (2)	٣٦ 😔	۳٦. (1)
			Y
4 (3)	اعیلیه 18)	: ص =[الاسم ب ع فان : ص	

		، فإن: ٣ - س =	إذا كانت: ٢ → ٠ + ٣ = ٩ ;
17 ③	۹ 🕥	7 😐	r (i)
		ي ٦ ، فـإن ثُلث هذا العدد يساوي	🔼 إذا كان خمس عدد ما يساوي
10 ③	1. (a)	7 😔	a (1)
	ماعيلية 20)	بعه يسا <i>وي ٥٠ هو</i> [الاس	1 العدد الموجب الذي ضعف مر
1 ③	70 (3)	1. (-)	a (i)
	(الاسماعيلية 20)	- ٢٥ = صفر ف <i>ي ع هي</i>	10 مجموعة حل المعادلة: سY
(0-60) 3	{ o } (a)	[060-] 😓	{ 0 - 6 0 } (1)
	والمتباينات	ة تراكمية مرتبطة بالفترات	المجموعة العاشرة أأأأأ
		تباينة (الاسكندرية 16)	🚺 [۲،۵] هي مجموعة حل الا
٤>١-٠-≥١٤	٤≥1- س≥1 ⓐ	٤≥١-٠->١ ﴿	٤>١-٠->١ (١)
	(الاسماعيلية 16)	-س < ۳ في ع هي	🔽 مجموعة حل المتباينة: ٢ <
ф ③	{r,r} @]r.r[@	[٣,٢] ①
	لاقصر 18)	< ١ في طر تساوي	🖺 مجموعة حل المتباينة: -س
ф ③	{⋅} ④	{···} (•)	{1} ①
	ِا [الجيزة 18 ، ش.سيناء 19)	- ۲ > ۲ حيث س ∈ ص~ هو	احد حلول المتباينة: ٢ - س
V - = U- (3)	(- الله الله الله الله الله الله الله ال	V = → (÷)	r = 0- (1)
		[اسوان 20]	= { 0 6 7 } - [0 6 7]
[064[3]0,4]]067[😐	[0.7] ①
		10004004000	= {0 · T} \ [0 · T[]
{ o } ③	{٣} ④]0.7[😔	{0, r}
		(اسيوط 20)	= { Y } - [o , Y [V
]0.7[3] ∞ . ∞ - [🕒]0.7] 😐	[0.7] 1
	(اسيوط 20) ڪ (اسيوط		<u>۸</u> إذا كان: ۱ < س < ۳ حي
] / ()] * * * [(-)	[/ 4]	{ * · * } (i)
	تندسة	أسئلة تراكمية مرتبطة بالد	المجموعة الحادية عشر
باهرة 17 ، قيا 18)	بين مساحتيهما تساوي (الق	ى مربعين = ١: ٢ ، فإن النسبة	1 إذا كانت النسبة بين محيط
1: ٤ ③	£:1	1:7 😟	7:1 ①
	سبم (الجيزة 18)	، ضلعه ٦ سم ، فإن محيطه =	🚺 مثلث متساوي الأضلاع طول
£ × 9 (3)	* × 9 (=)	Y × 9 (+)	1 × 9 (1)

	سـم (الجيزة 19)	، ١٦ سم ، فـان مساحته =	🏗 مربع محيطه يساوي
78 ③	17 🕒	A (4)	٤ (1)
	ن عرضه = سم، (القليوبية 19)	، ع طول قطره يساوي ٥ سم ، فا	۱۵ مستطیل طوله ۳ سم
° (3)	* (a)	٤ (ا	Y (1)
	ة بالاحصاء	السيادة تراكمية مرتبطة	المجمعة الثانية
	(الفيوم 16)	م ((۲، ۳، ۲، ۵، ۷) هو	1 الوسط الحسابي للقي
A (3)	7 (3)	ه ا	٤١
		، ۸ ، ۱۱ ، ۶ ، ۹ » هو	_
4 ③	^ (a)	ه پ	٤١
		(V . 7 . 11 . V . 7 . 9 . /	_
9 3	A (a)	v @	7 ①
			عن مقاييس التشتت
المنوال	الوسط الحسابي	الوسيط 🕞	المدي
		ء ۵ ء ٤ ء ٩) هو	المدي للقيم «٦، ٣
Y (3)	٦	a (-)	£ (j)

'ملخص الوحدة الأولى"

لحل معادلتين من الدرجة الأولى :

أولاً : جبرياً : نستخدم (الحنف أو التعويض)

- نجعل المعادلتين على الصورة : إس + ب• = ح
- 🕝 نضع المعادلتين بالطريقة الأفقية أسفل بعضهما مع مراعاة السينات اسفل منها السينات وكذلك الصادات
- 😙 نحذف معاملي أحد المتغيرين إذا كان كلاً منهما معكوس جمعي للآخر وبإجراء عملية جمع المعادلتين نحذف هذا المتغير ونوجد قيمة المتغير الآخر ثم بالتعويض في إحدى المعادلتين نحصل على قيمة المتغير المحذوف ثانياً : بيانياً : نكون جدولين ونمثلهم بيانياً وهناك ٣ احتمالات :
 - $\varnothing = \emptyset$. مغر وتكون : م . $\emptyset = \emptyset$ إذا كان المستقيمان متوازيان غإن عدد الحلول $\emptyset = \emptyset$
 - - (٣) إذا كان المستقيمان منطبقان فإن عدد الحلول لا نهائي $\{ (- \sqrt{2}) : (- \sqrt{2}) \}$ وتكون : م. $= (- \sqrt{2})$ واحدة منهما
 - علاحظات هامة :

اذا كان : $\frac{1}{1}
eq \frac{1}{1}$ فإن المستقيمان متقاطعان المستقيمان المستقيمان المستقيم المست

اِذَا كَانَ $\frac{\eta}{\eta} = \frac{\eta}{\eta} \neq \frac{\eta}{\eta}$ فإن المستقيمان متوازّيان η

إذا كان: $\frac{1}{1} = \frac{2}{100} = \frac{2}{100}$ فإن العستقيمان منطبقان

- ⊙ خطوات الحل باستخدام القانون العام هم :
- ① ثرتب المعادلة : تعنى النصب أولاً وبعدها النص وبعدها الحد المطلق وبعدها (=) وفي الآذر الصفر
 - 👚 نوجد قیمة کلاً من : ﴿ وهو معامل س ۖ ، 🕒 معامل س ، 🗷 الحد الخالی من س
 - (أي مَا تحت الجَدْر) -1 = -1 نوجد المميز -1 = -1

(القانون العام $): w = \frac{-w \pm \sqrt{w^2 - 39c}}{2})$

🗈 نعوض في القانون ونوجد م 🏿 ع اذا كان المميز $= -^7 - 3$ ح †

موجب أي > صفر يوجد للمعادلة جنران مختلفان أي عدد الحلول حلان سالب أي < صفر اليس لها جذور حقيقية أي عدد الحلول صفر يساوي صفر لها جذران متساويان أي عدد الحلول حل وحيد

- ⊙ لحل معادلتين إحداهما من الدرجة الأولى والأخرى من الدرجة الثانية :
 - (١) من معادلة الدرجة الأولى نوجد س بدلالة ص أو ص بدلالة س
- 🕆 نعوض في معادلة الدرجة الثانية بالمعادلة التي تم إيجادها في الخطوة الأولى
- (*) نفك الأقواس مع تجميع الحدود المتشابهة ثم التحليل لنحصل على قيمة المتغير الأول
 - ﴿) نعوض في معادلة الخطوة الأولى لنحصل على قيمة المتغير الأخر

الأسئلة المقالىة

أوجد في 2 × 2 مجموعة حل المعادلات الأتية :

بالتعويض عن س في س +
$$\omega = 3$$

 $\sim 7 + \omega = 3 \implies \omega = 4 = 7 = 7$

$$\{(\nabla \cdot \nabla)\} = \mathcal{L} \cdot \nabla \cdot \mathcal{L}$$

$$3 - 2 + 3 - 2 = 7$$
 $- 2 - 2 - 2 = 7$
 $- 2 - 2 - 2 = 7$
 $- 2 - 2 - 2 = 7$
 $- 2 - 2 - 2 = 7$
 $- 2 - 2 - 2 = 7$
 $- 2 - 2 - 2 = 7$
 $- 2 - 2 - 2 = 7$

$$V = \sqrt{1 - \sqrt{1 - 1}}$$
 بالتعویض عن ص فی : س $V = \sqrt{1 - 1}$ $V = \sqrt{1 - 1}$

$$r_1 - r_2 = r_1 \quad \therefore \quad r_2 = r_1 = 1$$

بالتعويض عن س في س + ٣ص = ٧ 1-V= $\stackrel{\sim}{=}V=$ V= 1-V=

$$\Gamma = \frac{7}{4} = 0 \therefore \Leftarrow 7 = 0^{4} \therefore$$

$$\{(\Gamma, 1)\} = \{(\Gamma, 1)\}$$

$$\Gamma = \frac{1}{V} = 0$$

$$V = \frac{1}{V} = 0$$

$$1-=-1+7+3$$
 بالتعویض عن $1+3-1+3$

$$1-1-=\omega\Gamma$$
 نیکون: $1+7\omega=-1-1$

$$7\dagger - \mathbf{w} = \Lambda \implies (1)$$

$$3/4 + 2 = 3 \qquad (7)$$

$$7! = 7! \quad \div 7! = 7!$$

$$\xi = - + \Lambda + \omega = \xi$$
فیکون

"الصف الثالث الإعدادى"

من المعادلة الأولى: ص ــــ ٢ ـــ

بالتعويض في المعادلة الثانية :

عندما
$$\omega = -\Upsilon$$
 فإن: $\omega = 7 \times (-\infty) = -\infty$ عندما $\omega = -\Upsilon$ فإن: $\omega = 7 \times (-\infty) \times (-\infty)$

من المعادلة الأولى :﴿ عَلَيْ اللَّهُ ال

بالتعويض في المعادلة الثانية :

 $7 - \frac{1}{2} = (0 - \sqrt{2} + \sqrt{2} - \sqrt{2}) = \frac{1}{2} - \sqrt{2}$ عندما $0 = 0 - \sqrt{2} = \frac{1}{2}$

عندما $\omega = 7 + 7 = 0$ فإن: س = $7 + 7 \neq 0$

$$\{(\Upsilon : \xi) : (\xi - : \Upsilon -)\} = \xi \cdot \Gamma : :$$

من المعادلة الأولى: س = ٧ + ص

بالتعويض في المعادلة الثانية :

$$7 \cdot = 0$$
 ($0 + 0$) \therefore

عندما
$$ص = - ۱۲$$
 فإن: $س = ۷ + (-17) = -0$

$$17 = 0 + 0 = 0$$
 غندما $0 = 0$ غزن: $0 = 0 + 0 = 1$

من المعادلة الأولى: س = ١ + ص

بالتعويض في المعادلة الثانية :

$$10 = 700^{7} - 00^{7} = 07$$

بالتعويض في : س = ١ + ص

من المعابلة الأولى: أص $\pm 7 + \overline{\mathbb{R}}$

بالتعويض في المعادلةِ الثانية :

عندما س $=-\frac{1}{2}$ فإن =-1+(-1)= صفر

$$7 = 1 + 7 = 3$$
عندما س $1 = 1 + 1 = 3$

$$\mathbf{M} = \mathbf{M} = \mathbf{M} + \mathbf{M} - \mathbf{M} = \mathbf{M} = \mathbf{M}$$

من المعادلة الأولى : ص = ٣ + س

بالتعويض في المعادلة الثانية :

$$17 = (m + 7)^{1} - m (7 + m) = 17$$

$$1 - = (2 -) + 7 = 0$$
عندما س = - 2 فإن : ص

$$\{(\xi,\zeta)\} \subseteq \{(-\zeta,\xi-)\} = \mathcal{Z} \cap \mathcal{Z}$$

من المعادلة الأولى : س 😑 ص

بالتعويض في المعادلة الثانية :

$$\mathcal{L} = \{(7, 7), (-7, -7)\}$$

1=1+1 1 1=0+0 1

من المعادلة الاولى : س 🕳 ٢ – س

بالتعويض في المعادلة الثانية :

$$\Gamma = \frac{\omega + \omega}{\omega} : \Gamma = \frac{1}{\omega} + \frac{1}{\omega} :$$

$$\therefore \frac{2m_0 + 7 - 2m_0}{(7 - \omega)} = 7$$

$$\frac{7}{1-\omega} = \frac{7}{1-\omega} \Rightarrow (7-\omega) \Rightarrow -1$$

📆 باستخدام القانون العام أوجد مجموعة حل المعادلة

$$\frac{r,7 \pm r}{r} = \frac{1r\sqrt{\pm r}}{r} = \frac{1r\sqrt{\pm (r-1)}}{1 \times r} =$$

$$r,r = \frac{r,7 + r}{r} = \dots \quad \therefore$$

$$i_{0} \quad r_{0} = \frac{r,7 - r}{r} = \dots \quad 2i_{0}$$

$$i_{0} \quad r_{0} = \frac{r,7 - r}{r} = \dots \quad 2i_{0}$$

$$|| \frac{1}{1} || \frac{1}{1$$

$$7 \times 7 = 7 \times 7$$

$$\therefore \omega = \frac{7}{\sqrt{7}} + \frac{\pi}{2} = 7.4.1$$

أوجد في 2×2 مجموعة حل المعادلات الآتية بيانياً : (أجب نفسك)

✓ باستخدام القانون العام أوجد مجموعة حل المعادلة
 ✓ "مقرباً لأقرب رقم عشرى واحد"

نفك الأقواس أولاً و نضع المعادلة على صورتها فتكون:

نفك الأقواس أولاً و نضع المعادلة على صورتها فتكون: ﴿ نَضِعِ المعادلة عَلَى صُورتها فتكون:

باستخدام القانون العام أوجد مجموعة حل المعادلة
$$M$$
 باستخدام القانون العام أوجد مجموعة حل المعادلة $0=\sqrt{1}$

يجب أولاً وضع المعادلة على الصورة الخاصة بها فتكون:

$$| - \frac{1}{2} - 0 | + \frac{1}{2} \times | - 0 | + \frac{1}{2} \times | - 0 | + \frac{1}{2} \times | - 0$$

باستخدام القانون العام أوجد مجموعة حل المعادلة $\frac{1}{100} = \frac{1}{1000} = \frac{1}{1000}$ "مقرباً لأقرب رقمين عشريين"

نضع المعادلة على صورتها فتكون: - المعادلة على صورتها فتكون:

> . هس-س"ك "= • × -١ ن سيا ماس + ٣= •

 $|\nabla u = \nabla u + \nabla u = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{$

مسائل لفظية

﴿) عددان مجموعها ٥٥ والفرق بينهما ١٥ أوجد العددين؟

نفرض أن العدد الأول س والعدد الثاني س

$$(1)$$
 \Leftarrow $00 = 00 + 00$ فيكون مجموعهما

$$70.7$$
 س $= 00$ ن ص $= 00$ بن ص $= 17$ بن ص $= 17$ بن ص $= 00$

🕤 مستطيل طوله يزيد عن عرضه بمقدار هـ، محيطه ١٨-، أوجد كلاً من بُعدي المستطيل.

$$(7) \Leftarrow 9 \Rightarrow 0 + 0 \Rightarrow 7$$
 س + $(7) \Rightarrow 9 \Rightarrow (7) \Rightarrow 9 \Rightarrow (7)$ محیطه $(7) \Rightarrow 9 \Rightarrow (7) \Rightarrow ($

😙 عدد مكون من رقمين مجموعهما ١١ وإذا عكس وضع الرقمين فإن العدد الناتج يزيد على العدد الأصلى بمقدار ٢٧ ما هو العدد الأصلى؟

$$\begin{array}{l}
\Gamma \vee = (\omega + \cdot | -(\omega + \cdot | \omega)) = \Gamma \vee = \Gamma \vee \cdots \\
\omega + \cdot | -(\omega - \omega) - (\omega + \cdot | \omega)
\end{array}$$

$$\frac{1\xi}{k} = \dots \quad \Rightarrow \qquad 1\xi = \qquad 0$$

$$V-V=0$$
 \Leftrightarrow $V=V=0$ \Rightarrow 0 $=$ 0

العدد الأصني

العدد الناتج

(7) ←

قيمة العدد

-بس+• ∤ص

ص 📲 ہ ایس

عشرات

∴ س = ۷

∴ ص = ٤

أحاد

主 عددان حقيقيان الفرق بينهما ١ والفرق بين مربعيهما ٧ أوجد العددين ؟

تفرض أن العدد الأكبر س ي العدد الأصغر س

$$(7) \iff V = \sqrt{1 - m^2 + m^2}$$
 الفرق بين مربعيهما V

من المعادلة (۱)
$$\qquad \qquad -1+\infty \qquad \qquad = (4)$$

$$\forall -1$$
 $\forall -1$ $\forall -1$ $\forall -1$ $\forall -1$ $\forall -1$ $\forall -1$ $\forall -1$

$$\Upsilon = \omega$$
 \Rightarrow $\Upsilon = \omega = \Upsilon$ \Rightarrow $\Upsilon = \omega = \Upsilon \Rightarrow \omega = \Xi \Rightarrow \omega =$

$$\Upsilon$$
 د العددان هما Υ د العددان هما Υ د العددان هما Υ د العددان هما Υ د العددان هما

۵) مستطیل محیطه ۱۶سم ، ومساحته ۱۲سم ٔ أوجد کلاً من بُعدیه.

تقرض أن بُعدى المستطيل ڀڻسم ُ ﷺ

(۲) الطول
$$= 7 \times (الطول + العرض) ۲ = ۱٤ ش + ص بالقسمة على (۲) بالقسمة على (۲)$$

(1)
$$V = m + m = V \quad \therefore \quad V = m + m = V \quad \therefore$$

٠٠ مساحة المستطيل 🖆 الطول 🛪 العرض

بالتعويض من المعادلة (١) في المعادلة (١).

$$*$$
 س $= \%$ بالتعويض في (1) س $= \%$ بالتعويض في (1)

$$\Upsilon= \cdots : = \xi = \cdots : = \xi = \cdots : \cdots = \xi$$
 بالتعویض فی (۱) ص $= \xi = \cdots : \cdots = \xi$ ب بعد المستطیل هما Υ سم یا ξ سم

🕤 مثلث قائم الزاوية طول وتره ١٣سم ، ومحيطه ٣٠سم أوجد طولي ضلعي القائمة؟

نفرض أن طولي ضلعي القائمة هما سرعام ず سَ سَمِ

ومن فیثاغورث :
$$ش س + س = (۱۳) ش س + س = ۱۹۹ \Longrightarrow (۱۹)$$
 بالتعویض من المعادلة (۱) فی المعادلة (۲) عن قیمة س

∴
$$(YI - w)^{7} + w^{7} = PII$$
 ∴ $PA7 - 37w + w^{7} + w^{7} - PII = •$

1
 القسمة على (۲) 2 بالقسمة على (۲) 3

"ملخص الوحدة الثانية"

⊙ أصفار الدالة كثيرة الحدود ص (د) = مجموعة القيم التي تجعل الدالة تساوى صمر

ملاحظات هامة :

$$\emptyset = (-\infty) = 1$$
 فإن : $\emptyset = (-\infty) = 0$ فمثلاً : إذا كانت : $\emptyset = (-\infty) = 0$ فإن : $\emptyset = (-\infty) = 0$

$$= (--)$$
 اِذَا کَانُ : د $= (--)$ فَإِنْ : ص $= (--)$

$$\emptyset = (--)$$
 فإن : د $(--)$ فإن : ص $(--)$ فإن : ص $(--)$ فإن : ص $(--)$

⊙ أصفار الدالة الكسرية = { أصفار البسط } _ {أصفار المقام }

⊚ أي ما يوجد في مجموعة أصفار البسط ولا يوجد في مجموعة أصفار المقام

⊙ مجال الكسر الجبرى = ع – {أَصِفَار المقام} ويتم تعيينة قبل الأختصار

🖸 مجال الكسر الجبري 🛎 مجال معكوسة الجمعي

 \bigcirc المجال المشترك لكسرين جبريين $\mathcal{L} = \mathcal{L}$ أصفار مقام الكسر الأول \mathcal{L} أصفار مقام الكسر الثانى \mathcal{L}

⊙ تساوی کسریین جبریین :

يتساوى الكسرين الجبريين إذا تتحقق الشرطان في

$$(1)$$
 مجال $v_{\ell} =$ مجال $v_{\ell} =$ (7) $v_{\ell}($

خطوات جمع أو طرح كسرين جبريين :

① نرتب حدود البسط والمقام لكل كسر حسب الأس تصَّاعديًّا أو تنازليًّا (ويفضل تنازلياً)

🕆 نحلل بسط ومقام كل كسر إن أمكن 🐡 يُوجد المجال المشترك وهو المجال المطلوب

€ نختزل (نختصر) كل كسر على حدة ونوحد المقامات ونجرى عملية الجمع أو الطرح

💿 خطوات ضرب کسریین جبریین :

عند ضرب كسرين جبريين لا نوحد المقامات ولكن

① نرتب الحدود. ﴿ نحلل البسط والمقام. ﴿ نوجد المجال المشترك.

€ نحدُف العوامل المشتركة (الأقواس المتشابهة) من أي بسط مع أي مقام.

وأخيراً نجرى عملية الضرب (البسط × البسط)، (والعقام × المقام).

⊙ المعكوس الضربي هو مقلوب الكسر الجبري

⊙ مجال المعكوس الضربي = ع – { مجموعة أصفار البسط ∪ مجموعة أصفار المقام }

خطوات قسعة كسرين جبريين :

لإجراء عملية قسمة الكسور الجبرية تتبع الخطوات التالية :

نرتب حدود البسط، والمقام.

🕆 نحلل بسط ومقام كل كسر.

🏵 نوجد المجال وهو : 🗷 — { أصفار مقام الكسر الأول 🕖 اصفار بسط ومقام الكسر الثاني }

نحول القسمة إلى ضرب وذلك بتبديل علامة \div إلى imes ونقلب ما بعدها $oldsymbol{\mathfrak{E}}$

@ نحذف العوامل المشتركة بين البسط والمقام.

نضرب البسط × البسط ، المقام × المقام ، ونبسط الناتج.

الأسئلة المقالية

🚹 أوجد مجموعة أصفار ص(د) لكل من دوال كثيرات الحدود الآتية :

(1)
$$\text{peds} \ c(\neg) = \cdot$$

(2) $\text{peds} \ c(\neg) = \cdot$

(3) $\text{peds} \ c(\neg) = \cdot$

(4) $\text{peds} \ c(\neg) = \cdot$

(5) $\text{peds} \ c(\neg) = \cdot$

(6) $\text{peds} \ c(\neg) = \cdot$

(7) $\text{peds} \ c(\neg) = \cdot$

(8) $\text{peds} \ c(\neg) = \cdot$

(9) $\text{peds} \ c(\neg) = \cdot$

(10) $\text{peds} \ c(\neg) = \cdot$

(11) $\text{peds} \ c(\neg) = \cdot$

(12) $\text{peds} \ c(\neg) = \cdot$

(13) $\text{peds} \ c(\neg) = \cdot$

(14) $\text{peds} \ c(\neg) = \cdot$

(15) $\text{peds} \ c(\neg) = \cdot$

(16) $\text{peds} \ c(\neg) = \cdot$

(17) $\text{peds} \ c(\neg) = \cdot$

(18) $\text{peds} \ c(\neg) = \cdot$

(19) $\text{peds} \ c(\neg) = \cdot$

(20) $\text{peds} \ c(\neg) = \cdot$

(3) $\text{peds} \ c(\neg) = \cdot$

(4) $\text{peds} \ c(\neg) = \cdot$

(5) $\text{peds} \ c(\neg) = \cdot$

(6) $\text{peds} \ c(\neg) = \cdot$

(7) $\text{peds} \ c(\neg) = \cdot$

(8) $\text{peds} \ c(\neg) = \cdot$

(9) $\text{peds} \ c(\neg) = \cdot$

(10) $\text{peds} \ c(\neg) = \cdot$

(11) $\text{peds} \ c(\neg) = \cdot$

(12) $\text{peds} \ c(\neg) = \cdot$

(3) $\text{peds} \ c(\neg) = \cdot$

(4) $\text{peds} \ c(\neg) = \cdot$

(5) $\text{peds} \ c(\neg) = \cdot$

(6) $\text{peds} \ c(\neg) = \cdot$

(7) $\text{peds} \ c(\neg) = \cdot$

(8) $\text{peds} \ c(\neg) = \cdot$

(9) $\text{peds} \ c(\neg) = \cdot$

(10) $\text{peds} \ c(\neg) = \cdot$

(11) $\text{peds} \ c(\neg) = \cdot$

(12) $\text{peds} \ c(\neg) = \cdot$

(3) $\text{peds} \ c(\neg) = \cdot$

(4) $\text{peds} \ c(\neg) = \cdot$

(5) $\text{peds} \ c(\neg) = \cdot$

(6) $\text{peds} \ c(\neg) = \cdot$

(7) $\text{peds} \ c(\neg) = \cdot$

(8) $\text{peds} \ c(\neg) = \cdot$

(9) $\text{peds} \ c(\neg) = \cdot$

(11) $\text{peds} \ c(\neg) = \cdot$

(12) $\text{peds} \ c(\neg) = \cdot$

(3) $\text{peds} \ c(\neg) = \cdot$

(4) $\text{peds} \ c(\neg) = \cdot$

(5) $\text{peds} \ c(\neg) = \cdot$

(6) $\text{peds} \ c(\neg) = \cdot$

(7) $\text{peds} \ c(\neg) = \cdot$

(8) $\text{peds} \ c(\neg) = \cdot$

(9) $\text{peds} \ c(\neg) = \cdot$

(10) $\text{peds} \ c(\neg) = \cdot$

(11) $\text{peds} \ c(\neg) = \cdot$

(12) $\text{peds} \ c(\neg) = \cdot$

(23) $\text{peds} \ c(\neg) = \cdot$

(44) $\text{peds} \ c(\neg) = \cdot$

(54) $\text{peds} \ c(\neg) = \cdot$

(65) $\text{peds} \ c(\neg) = \cdot$

(7) $\text{peds} \ c(\neg) = \cdot$

(8) $\text{peds} \ c(\neg) = \cdot$

(9) $\text{peds} \ c(\neg) = \cdot$

(10) $\text{peds} \ c(\neg) = \cdot$

(11) $\text{peds} \ c(\neg) = \cdot$

(12) $\text{peds} \ c(\neg) = \cdot$

(23) $\text{peds} \ c(\neg) = \cdot$

(44) peds

$$\frac{1-\frac{1}{1}}{1+\frac{1}{1}} = \frac{1}{\frac{1}{1}} + \frac{1}{1} + \frac{1}{1} = \frac{1}{\frac{1}{1}} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1$$

 $\{ \Gamma_i, \Gamma_i, \Gamma_j \} = \emptyset = \emptyset$ المجال العشترك للكسرين الجبريين $\{ \Gamma_i, \Gamma_j, \Gamma_j \} = \emptyset$

🝸 أوجد مجموعة أصفار كلاً منّ الدوال الكسرية الاتية :-

اس + ٥ اس + ٥ اس - س	آ د(س) − سا − ۹ سا − ۹ سا − ۹ سا − ۱ سا −
۱- سراس = (س) ا سراس –۱)	$\frac{(\Upsilon+\omega-)(\Upsilon-\omega-)}{(\Upsilon-\omega-)(\Upsilon-\omega-)} = (\omega-)\omega$
أصفار البسط = {ه}	أصفار البسط = { ٣٠ ، ٣ }
أصفار المقام = {١٤٠}	أصفار المقام $\{7,7\}$
$\{ \circ \} = \{ \circ \} - \{ \circ \} = (\circ)$ ن ص	$\{ \Upsilon - \} = \{ \Upsilon : \Gamma \} - \{ \Upsilon : \Upsilon - \} = (\vee)$ ن ص ن \cdot

$$\gamma_{1} = \gamma_{2} = \frac{\gamma_{1}}{\gamma_{1} + \gamma_{2}}$$
 فاثبت أن : $\gamma_{1} = \gamma_{2} = \frac{\gamma_{1}}{\gamma_{2} + \gamma_{3}}$ فاثبت أن : $\gamma_{2} = \gamma_{3} = \gamma_{4}$

$$\{r-\}-\mathcal{Z}=\sqrt{2}$$
 مجال نہ،

$$\frac{\partial}{\partial r} = \frac{\partial}{\partial r} = \frac{\partial}{\partial r} = \frac{\partial}{\partial r} = \frac{\partial}{\partial r} + \frac{\partial}{\partial r} = \frac{\partial}$$

$$\Rightarrow \text{ action } \psi_1 \equiv \text{action } \psi_2 = (1) \qquad \psi_1 (1) = \psi_2 (1)$$

$$\Rightarrow \psi_1 (1) = \psi_2 (1)$$

$$\Rightarrow \psi_2 = \psi_3 (1) = \psi_4 (1)$$

ن ا خان:
$$\nu_{1}(-\omega) = \frac{-\omega' - \rho}{-\omega' + 2\omega + \gamma}$$
 مع ذکر السبب. $\frac{\pi}{2} = \nu_{1}$ مل $\nu_{2} = \nu_{3}$ مع ذکر السبب.

$$\frac{r-\sigma}{1+\sigma} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-\sigma)}{(1+\sigma)_{1}(r+\sigma)} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-\sigma)}{(1+\sigma)_{1}(r+\sigma)} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)}{(1+\sigma)_{1}(r-\sigma)} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)}{(1+\sigma)_{1}(r-\sigma)} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)}{(1+\sigma)_{1}(r-\sigma)} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)}{(1+\sigma)_{1}(r-\sigma)} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)}{(1+\sigma)_{1}(r-\sigma)_{1}(r-\sigma)} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)_{1}(r-\sigma)}{(1+\sigma)_{1}(r-\sigma)_{1}(r-\sigma)} = (\sigma)_{1} \circ \sigma : \frac{(r-\sigma)_{1}(r-$$

$$\frac{\varphi - \varphi}{1 + \varphi} = \frac{\varphi}{1 + \varphi$$

$$\frac{w^{2}+w^{2}-1}{1!} [i! \ 2iv : w_{1}(w)] = \frac{w^{2}+w^{2}-1}{w^{2}+1w^{2}+1} \quad v_{1}(w) = \frac{w^{2}-1w^{2}-1}{w^{2}+1w^{2}+1}$$

فاثبت أن : $\sqrt{(-)} = \sqrt{(-)}$ لجميع قيم - التي تنتفي إلى المجال المشترك وأوجد هذا المجال

$$\{1-\zeta\xi-\}$$
 و جا المجال له عبد المجال له المجال الم

$$\frac{m-m}{1+m}=(m)_1 \wedge \cdots$$

$$\frac{(m-1)}{(m-1)} = \frac{(m-1)}{(m-1)}$$

$$\frac{(m-1)}{(m-1)} = \frac{(m-1)}{(m-1)}$$

$$\frac{m-1}{m-1}$$

$$\frac{m-1}{m-1}$$

 $\{1-\epsilon|\xi-\}=\emptyset$ وهو ج \sim وهو المشترك للدالتين ب

 $\sim \sqrt{(-\infty)} = \sqrt{(-\infty)}$ لجميع قيم $\sim \sim 1$ التى تنتمى إلى المجال المشترك $\sim \sqrt{(-\infty)}$

$$\frac{7+m^{7}}{1+m^{7}}$$
 اوجد $\sqrt{(-1)}$ فی ابسط صورة مبیناً مجال $\sqrt{-2}$ حیث $\sqrt{(-1)}$ $\sqrt{-2}$ اس $\sqrt{-3}$ $\sqrt{-3}$

$$\frac{(m+\omega)^{r}}{(r+\omega)(m+\omega)} + \frac{(r-\omega)\omega}{(r+\omega)(r-\omega)} = (\omega)^{r}$$

$$\{\Upsilon - \iota \Gamma - \iota \Gamma\} - \mathcal{E} = \emptyset$$
 ... and Γ

$$1 = \frac{\Gamma}{\Gamma + \omega} = \frac{\Gamma}{\Gamma + \omega} + \frac{\omega}{\Gamma + \omega} = \frac{\Gamma}{\Gamma + \omega} + \frac{\Gamma}{\Gamma + \omega} = \Gamma + \frac{\Gamma}{\Gamma + \omega} + \frac{\Gamma}{\Gamma + \omega} = \Gamma + \frac{\Gamma}{\Gamma + \omega} + \frac{$$

ان : $v(-v) = \frac{v^2 + v}{v^2 + v} - \frac{v^3 - v - v - v}{v^2 - v - v + v}$ فأوجد v(-v) في أبسط صورة مبيناً مجال v

ثم أوجد : ١٠(٦) ۽ ١٠(١١) إِن أمكن ذلك

$$\frac{\Gamma+\omega-\frac{(\nu+1)(\nu-1)(\nu-1)(\nu-1)}{(\nu-1)(\nu-1)(\nu-1)}-\frac{(\nu+1)(\nu-1)(\nu-1)}{(\nu-1)(\nu-1)(\nu-1)}$$

$$\frac{(\nu-1)(\nu-1)(\nu-1)(\nu-1)}{(\nu-1)(\nu-1)(\nu-1)}-\frac{(\nu-1)(\nu-1)(\nu-1)}{(\nu-1)(\nu-1)(\nu-1)}$$

 $\frac{7}{10}$ اوجد (v_1) فی أبسط صورة مبيناً مجال v_2 حيث $v_1(v_2) = \frac{7}{100} \frac{100}{100} + \frac{7}{100} \frac{100}{100} + \frac{7}{100}$ $\sqrt{(-1)^{(1+\omega^{-1})}} + \frac{(0+\omega^{-1})^{\pi}}{(-1)^{\pi}} + \frac{(0+\omega^{-1})^{\pi}}{(-1)^{\pi}} = (-1)^{\pi}$

$$\Gamma = \frac{\Gamma + \sigma \Gamma}{\Gamma + \sigma} = \frac{1 + \sigma \Gamma}{\Gamma + \sigma} = \frac{1 + \sigma \Gamma}{\Gamma + \sigma} = \frac{1 + \sigma \Gamma}{\Gamma + \sigma} = \frac{\pi}{\Gamma} = 0$$

$$\therefore \quad V(-\sigma) = \frac{1}{1 + \sigma} = \frac{$$

$$\mathbb{W}$$
 إذا كان : $v(-0) = \frac{7-0-07}{-7-0+0} - \frac{1-1}{-0}$ أوجد $v(-0)$ في أبسط صورة مبيناً مجال $v(-1)$

$$\frac{1-\omega}{(1+\omega^2)(1-\omega^2)} - \frac{(0-\omega^2)^{m}}{(1-\omega^2)(1-\omega^2)} = (\omega^2)^{n/2} :$$

$$\therefore \text{ apply } 0 = 3 - \{000 - 100\}$$

$$\frac{(1-\omega)\times 1-(1+\omega)^{2}}{(1+\omega)(1-\omega)} = \frac{1}{1+\omega} - \frac{\pi}{1-\omega} = (\omega) \times 1.$$

$$\frac{(1+\omega)(1-\omega)}{(1+\omega)(1-\omega)} = \frac{1+\omega-\pi+\omega\pi}{(1+\omega)(1-\omega)} = \frac{1+\omega-\pi+\omega\pi}{(1+\omega)(1-\omega)} = \frac{\pi}{1+\omega} = \frac{\pi}{1+\omega}$$

$$\begin{aligned} & \begin{bmatrix} \begin{bmatrix} V_1 & \text{ign} & \text{ig$$

د د
$$(\cdot) = \frac{7 \times \cdot - 1}{m} = \frac{1 - \cdot \times 7}{m}$$
 ، د (-1) غير معرفة لأن -1 \rightleftharpoons مجال د

$$\begin{array}{c} \text{(w) is in the long of a nuil act by } & \text{(w)} = \frac{w^{1} - 1^{1} - v + \frac{17}{w^{1}}}{w^{1} - w^{1}} \times \frac{8w + \frac{17}{w^{1}}}{w^{1} - w^{1}} \times \frac{1}{w^{1} - w^{1}} \times \frac{1}{w$$

$$\mathbf{W}$$
 إذا كان: $\mathbf{W}(-1) = \frac{-1}{1-1}$

- ① أوجد : الله المجال عني أبسط صُورة مبيناً المجال ﴿
 - (1) lece: 4-1 (-1)
 - \P إذا كان $v^{-1}(\omega) \stackrel{!}{=} \frac{1}{2}$ فما قيمة سي \P

$$(u) = \frac{u(u - 1)}{u - 1}$$

$$(u) = \frac{v - 1}{v - 1}$$

$$\frac{m^2 - m_0}{m^2 - m_0} = \frac{m^2 - m_0}{m^2 - m_0}$$
 إذا كان : له (س) = $\frac{m^2 - m_0}{m^2 - m_0}$

آوجد : (س) فی ابسط صورة وعین مجاله
$$\sqrt{}$$
 قیمة بر اذا کان: $\sqrt{}$ اوجد : (س) $\sqrt{}$ (س) $\sqrt{}$ قیمة بر اذا کان: $\sqrt{}$ (س) $\sqrt{}$ $\sqrt{\phantom{a$

$$\frac{\Gamma - \omega}{\omega} = (\omega)^{1-\sqrt{2}} : \frac{\omega}{(\Gamma - \omega)} = \frac{(\Gamma - \omega)^{1-\sqrt{2}}}{(\Gamma - \omega)^{1-\sqrt{2}}} = (\omega)^{1-\sqrt{2}}$$

$$\Gamma = 0$$
 : $\Gamma = 0$: $\Gamma =$

اذا كان المعكوس الضربى للكسر $\frac{m^7+7س}{m^7-7-m+b}$ هو $\frac{m}{m}$ غما هي قيمة $\frac{1}{m}$

$$\frac{\xi - \omega_{-}}{\omega_{-}} = \frac{\omega + \omega_{-} - \gamma_{-}\omega_{-}}{\gamma_{-}\omega_{-}} \Rightarrow \frac{\xi - \omega_{-}}{\gamma_{-}\omega_{-}} = \frac{\omega + \omega_{-} - \gamma_{-}\omega_{-}}{\gamma_{-}\omega_{-}} \Rightarrow \frac{\xi - \omega_{-}}{\gamma_{-}\omega_{-}} \Rightarrow \frac{\xi - \omega_{-}}{\gamma_{-}\omega_{-}}$$

 $\Upsilon = (--)^{1}$ وجد : $(--)^{1}$ في أبسط صورة وعين مجاله $(--)^{1}$ قيمة $(--)^{1}$ في أبسط صورة وعين مجاله $(--)^{1}$

$$v(-v) = \frac{v(v-7)}{(v-7)(v-7)}$$
 apply $v^{-1} = 3 - \{7, 0\}$

$$v(-\omega) = \frac{\omega^{2} + \frac{1}{2}}{(-\omega^{2})^{2}} = \frac{(-\omega^{2})^{2}}{(-\omega^{2})^{2}} = \frac{(-\omega^{2})^{2}}{$$

$$2 = 1 + \frac{1}{2} = 1$$
 $\Rightarrow \frac{1}{2} = 1 = 1$ $\Rightarrow \frac{1}{2} = 1 = 1$

رس) فی أبسط صورة مبیناً مجال $\sqrt{-1}$ حیث $\sqrt{-1}$ $= \frac{-\sqrt{1+7}-7-1}{1+\sqrt{1+7}}$ خوجد $\sqrt{-1}$ أوجد $\sqrt{-1}$

$$1 = \frac{(1+\sigma^{2})}{(1+\sigma^{2})(1-\sigma^{2})} \times \frac{(1-\sigma^{2})(1+\sigma^{2})}{(1+\sigma^{2})} = (\sigma^{2}) \vee \therefore$$

 $\frac{-\omega^{1}-6\omega}{1-6\omega}$ أوجد $\omega(-\omega)$ في أبسط صورة مبيناً مجال الدالة $\omega_{i}:\omega_{i}(\omega)=\frac{\omega-1}{1-2\omega}$ $\Rightarrow \frac{\omega^{1}-6\omega}{1-2\omega}$

 $\frac{V+w}{V-w}$: $\frac{\xi q-V-w}{\Delta-V-w}=(w)$ اوجد $v(w)=\frac{\xi q-V-w}{\Delta-V-w}$: $\frac{\xi q-V-w}{\Delta-V-w}=0$

$$\{V-\zeta \} - \mathcal{E} = \sqrt{\frac{V+\omega}{1-\omega}} \div \frac{(V+\omega)(V-\omega)}{(\xi+\sqrt{\omega}+2\omega+1)} = 2 - \{7, -\sqrt{2}\}$$

$$\frac{V-\omega}{\xi+\omega^{-1}+1}=\frac{\sqrt{V+\omega^{-1}}(V-\omega)}{\sqrt{(\xi+\omega^{-1}+1-\omega)(1-\omega)}}\times\frac{\sqrt{V+\omega^{-1}}(V-\omega)}{\sqrt{(\xi+\omega^{-1}+1-\omega)(1-\omega)}}=(\omega^{-1})^{-1}\omega^{-1}$$

$$\langle v(t) \rangle = \frac{t - V}{(t)^7 + 7 \times t + 3} = \frac{-T}{V}$$

$$\frac{\lambda + 1 \times 1 + 2}{\omega^2 + 1}$$
 : $\omega = \frac{\lambda - 2}{\omega^2 + 1}$: $\omega = \frac{\lambda - 2$

أوجد $\psi(-\omega)$ في ابسط صورة مبيناً المجال. ثم أوجد : $\psi(-1)$ ، $\psi(0)$ إن أمكن ذلك

$$\{\cdot \cdot \cdot \frac{1}{1} - \cdot \circ \cdot 1\} - 2 = \sim \text{disp} : \frac{(2 + \omega + 1)\omega}{(2 - \omega)(1 + \omega + 1)} : \frac{(2 + \omega + 1)(\omega - \omega)}{(2 - \omega)(1 - \omega)} = (2 - \omega)\omega : \omega$$

$$\frac{(1+\omega \Gamma)(\Gamma-\omega)}{(1-\omega)(1-\omega)} = \frac{(2-\omega \Gamma)(1+\omega \Gamma)}{(2-\omega \Gamma)(1-\omega)} \times \frac{(2+\omega \Gamma \Gamma)(\Gamma-\omega)}{(2-\omega \Gamma)(1-\omega)} = (2-\omega \Gamma)(1-\omega)$$

$$\frac{\Psi}{\Gamma} = \frac{(1-)\times(7-)}{(1-)\times(1-)} = \frac{(1+7-)\times(7-1)}{(1-1)\times(1-)} = \frac{(1-)\times(7-1)}{(1-1)\times(7-1)} = \frac{(1-)\times(7-1)}{(1-)\times(7-1)} = \frac{(1-)\times(7-1)}{(1-)\times(7-1$$

ا وجد $\sim (-1)$ فی أبسط صورة مبیناً مجال $\sim حیث \sim (-1) = -1$ ~ -1 ~ -1 ~ -1 ~ -1 $\{\frac{r}{r}: r \in \frac{r}{r}: r\} - \zeta = \sqrt{\frac{r}{r}} \quad \text{aclib} \quad \frac{(r-r)(r-r)}{(r-r)(r-r)} \div \frac{(r-r)(r-r)}{(r-r)(r-r)} = \sqrt{\frac{r}{r}}: r \in \mathbb{Z}$

$$\frac{V - v - v}{V - v} = \frac{(V - v - v)(V + v - v)}{(V - v - v)(V - v - v)} \times \frac{(V - v - v)(V - v - v)}{(V - v - v)(V - v - v)} \times \frac{(V - v - v)(V - v - v)}{(V - v - v)(V - v - v)}$$

$$(a) = \{a\}$$
 وکانت د (س) $= \gamma$ س $= 0$ فإن: $\gamma = \dots$
 $(a) = \{a\}$ وکانت د (س) $= \gamma$ س $(c) = \{a\}$ وکانت د (س) $= \gamma$ س $(c) = \{a\}$ وکانت د $\gamma = \gamma$ ب $\gamma = \gamma$ ب $\gamma = \gamma$ ب $\gamma = \gamma$ ب $\gamma = \gamma$

ا اذا کان مجموعة أصفار الدالة د $(-v) = \{-v^2 + w + v + a$ أوجد قيمتى $\{v, v\}$

$$1 + = 0 \quad \therefore \quad * = * + 1 + (1) \times 0 \quad \therefore \quad 0 = 0$$

بنا کانت مجموعة أصفار الدالة ؛ $(-0) = \{-0^7 + - - - + 10\}$ هي $\{7, 7\}$ فأوجد $\{3, -10\}$

بضرب المعادلة الأولى
$$imes -1$$
 $imes -1$ $imes -1$ $imes -1$ $imes -1$ بضرب المعادلة الأولى $imes -1$ المعادلة الأولى $imes -1$

بنا کان مجال الدالة $v: v(m) = \frac{m-1}{m-1}$ هو g=g=g فأوجد قيمة g

$$\bullet = 9 + 1$$
مجال ~ 100 مجال ~ 100 مجال ~ 100 مجال ~ 100 مجال ~ 100

$$1 = 1 : \frac{1}{1 - 1} = 1 = 1 : \frac{1}{1 - 1} : : \frac{1}{1 - 1}$$


```
بنا کان مجال د(-0)=rac{-0}{2} هو 2-\{-1\} وکان : د(0)=7 أوجد قيمتى : \{0,1\}
                                                                                                                                                                       مجال د2 = 3 - \{7\} نفرن المقام 2 = 7 فإن المقام 3 = 6
                                                                                                       د (٠) = ۲ أي س = ١ ، د (س) = ۲
                                                                                                  7 = 2 \therefore \frac{2}{5} = 7 \therefore \frac{2}{5} = \frac{
```

 $\cdot = \wedge + \dots = 3$ فإن : س $+ \wedge = 0$ مجال $\vee = 3$ فإن : س $+ \wedge = 0$ مجال $\vee = 0$ في $\cdot = 0$ مجال $\cdot = 0$ مجال $\cdot = 0$ $(-1)^{-1} = \frac{4}{-1} + \frac{2}{-1} = (-1)^{-1}$ ٠ : ١ = (٥) ، ١ = (٥) . □ $A-F=\frac{\partial}{\partial} \Rightarrow F=9+\frac{\partial}{\partial} \Rightarrow F=\frac{9}{5-0}+\frac{\partial}{\partial} \Rightarrow$

> ن مجال له (س) ہے ۔ {ه﴿ ﴿ ﴿ ∴ عندما س _ ٥ فإن: العقام = صفر ن س ا _ اس + ٢٥ = ٠

 $0 \cdot = 10 \cdot \cdot \cdot = 10 - 0 \cdot \cdot \cdot \cdot = 10 + 07 - 01 + 07 = 0 \cdot \cdot \cdot = 10 + 07 + 07 = 0$ 1.=1:

🔞 إذا كان مجال الدالة : د(سُ) = 📆 س م موح ﴿ ٢ ، ك الوجد قيمتى : م ، ك

ن مجال د هو ع هم{ی له}

ن، عندما س = ۲ فإن: المقام _ صفى حرب المعام = ١

عندما س = ك فإن: المقام = صفر السياب عندما

·=(٣-d)(٢-d): ·= 1+d0-d: ·= 1+d×0-(d):

اذا کان مجموعة أصفار الدالة : $c(-1) = \frac{-1}{1+1+1}$ هو $\{T\}$ ومجالها هو $\{T\}$ أوجد : $\{T\}$ أوجد : $\{T\}$

 $-1 = 4 + m^7 - 7$ ن ص (د) $= \{7\}$ ن عندما -1 = 7 فإن: البسط -1 = 7 صفر

3 ن مجالها $3 - \{7\}$ ن عندما س = 7 فإن : المقام = - مفر

: بن <u>بن</u> = ۲

Sezza .			<u>: öl</u>	إجابات الوعط	حة من بين الا	اختر اللجابة الصحيد
	*******	ی ع × ع هی	س ≔\ معاً ف	+ص=۰، ه	ىادلتىن : س -	🕧 مجموعة حل المع
{(/- 6 /)}	③	(1-41)	②	{(\ \ \ \-)}	9	(1 · 1-) ①
			*******	- صفر هی .	دالة د(س)-	🕆 مجموعة أصفار ال
Ø	3	{صفر}	②	2	9	{·} - ≥ ①
ن: ۲ =	من الحلول فإ	۱ عدد لا نهائی ا	. + مص = ۲	ں = ٦ ، ٢سو	بن: س + ۳م	🐨 إذا كان للمعادلتي
7	③	٣	②	7	9	1 ①
				<u>س</u> مو	<u>-</u> =(- -)√	🕏 مجال الدالة 🖟 :
$\{1-i,1\}-\mathcal{E}$	(3)	{1-61}	②	{1}-2	9	{1−} ⊕
10101	9	عاً في ح 💉 ج ه	+ ص = ؟ م	س = ا	التين ن س 🖟	ه عدد حلول المعاد
$\{1-\epsilon 1\}-\mathcal{E}$	(3)	{1-41}	⊘	{1}-6	Θ	{/−} ⊕
	150	***************************************	فی ح ھی ۔	ر) =س+غ ذ	سالة د : بد(−	﴿ مجموعة أصفار ال
*		7 1				
					1	﴿ أحد حلول المعاد
(5.2.1)	①	(7 6 7)	. ⊘ ∧	(70-3)	9	(T 68-) (D
						انقطة تقاطع المد
(٣ ، ٥)		(0 () ()				
•••		فإن: ١٥ (٣) 🚐	[2,7,5]	(س) موع –	سر الجبری ۱۸	﴿ إِذَا كَانَ مَجَالَ الْكَ
ليس لها وجو د -		100- 2				
						· المستقيمان : ٣·
الربع الرابع	①	نقطة الأصل				
					_	() إذا كان: ١٠(س)
{• 6 1}						·(1)-2 ①
						🕪 مجموعة حل المع
Ø	({(٣٤٤)}	②	{(٤،٣)}	9	{2, T}
	****	ga	= 	، به : به(سن)=	الجمعى للدالة	👚 مجال المعكوس
2	③	3 - {-727}	②	3 - {-7}	9	{r} - 2 ①
		***********	ع هي	ر) = س ^۲ + ۹	دالة د : د(⊢	😥 مجموعة أصفار اا
Ø	③	{r-ir}	②	{ r }	9	2 1
لجبر والإحصاء" (١٧)	النهائية في ا	" "المراجعة	الإعدادى	الصف الثالث	ریاضیات	المحترث نى ال

		لة التربيعية د يمر بالنقاط (
	ع هو	معادلة: د $($	فإن مجموعة حل الـ
		{⋅, ξ-} ⊖	
**********	س ً=\$ معاً في ح × ح هي	لتين : س=٢ ، س ً+٥	مجموعة حل المعاد
{(••1)} ③	{(· 6 2)} •	{(・・)} ⊖	(1°1)}
		ین: ۲س−س≕۳، س	
		😡 صفر	
		:س+٤ص=٥١ ٣سر	
		ن تساوی م	
15- 3	17 🕣	10	₹- ①
71.49		تى تجعل: د(س)≃ضغر ن	
دالة	😡 مجموعة أصفار ال	ار المقام	🕥 مجموعة اصف
/	ً () المدى		🕝 المجال
•••••••••••		مفار الدالةً د حيث د(س) =	
۳ 🔞 '	1 - 1⊖^	⊖ صفر ,	7 ①
٣ - } فإن قيمة ك =			
)	
ري – ۱۱ ن عدد جذور المعادلة في ع –			
		100	
بع فإن : ﴿ يمكن ان تساوى	1	Υ	
		ی صفر کر ا	
8.4-	مجال ب~ مو	= سرا _ اس فإن = (س-۱)(سا+۱) فإن	إذا كان : به(س) =
{ri}-2 3	{·} - 2 ❷	{1} - ∠ ⊖	2 D
$\cdot = \omega$ نن الحلول في $g imes g$	+ ك ص = ٦ عدد لا نهائي ه	: س+ ٦ ص = ٣ ، ٢ س	إذا كان للمعادلتين
17	€ 71	۱ 😡	ž (D)
	هیه	لة: د : د(س) = س ً - ٣	مجموعة أصفار الدا
(= =) 0	{₹} ❷	{₹५-} ⊖	{ ₹ ₽}
{ \(\mathref{T}\rangle \cdot \mathref{T}\rangle -\rangle \)			
{ TV \ TV - } (g)	= 1+	<u>ەس ÷ س</u> ر سەر فان: سار + ۱ ÷ سار	إذا كانت: س 🗲 ء

7}فإن∶ ∮ =	عة أصفار الدالة هي { ١ ،	$oldsymbol{u}^{1}+oldsymbol{u}+oldsymbol{1}$ وكانت مجمو	€ إذا كانت: د(س) = س
7-3	1- 🕣	1 9	7 ①
	يكونان	س=۱ ، ۲س+عص=۲	🤊 المستقيمان : 🗝 + ٢
🕑 متقاطعين ومتعامدير	🔗 متعامدین	😡 متقاطعین	🕥 متوازیین
·	5-0-0-10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	د حیث د(س) = ٤ هی	﴾ مجموعة أصفار الدالة
ØØ	{ξ.⋅⋅} Θ	{ξ} Θ	🕥 صفر
ن: ك =عن	هوع – {۳٬۰} غا	حیث د(س)= <mark>۵</mark> + س	﴿ إِذَا كَانَ مَجَالَ الدَّالَةُ دِ
7 3	• @	~ T 😡	r – ①
		ر + ٤ص = ٧ ، س + (ك .	
18 3	11 0 1	VO	o (1)
	۵: في ع × ع هي	ن ﴿ سَ ۽ ۴ ۽ سِن ۽ ص=	🔫 مجموعة حل المعادلتي
(((, 0)))	(° (° (°))} ⊙	[(r c r)] 9	{(r, r)} (
	•••••	$-\frac{w}{4}$ فإن: ص $(c)=\frac{w}{4}$	€ إذا كانت : د(س) =
(₹ , -7)	(-7-{-7}	{r-} @ ≘	{\tau} \{\tau}
=	ص = ٧ متوازيين فإن: ١	بر + ۳ ص = ٤ ، س + إ	🗃 إذا كان المستقيمان
11 ③	v 📀	· 1 · 1	r (1)
	7	له الله (س) - ساء - ه سُو س ۳ س ۳	
		{{r-}} ⊖° _	
16.5		د : د (س) = ساً _ س _ `	
{1-67} 3		(A) O	
		٥ص =صفر ، ٥س ٥٣٥	
﴿ الربع الثالث		🕝 الربع الثاني	
	*********	د : د(س) = - ۳س هی	🔊 مجموعة أصفار الدالة
{r}-2 3	{٣-} ❷	{r} ⊖	((صفر)
	س ≠ ٤ هئ	:د(س) = س_ غ حيث	🥸 أبسط صورة الدالة د
	1 @	ŧ − ⊝	ŧ ①
************	<u> سرا – ۲ س – ك</u> غإن : ك	يد أصفار الدالة د: د(س) =	🕄 إذا كانت : س = ٢ أد
7- ③	* − ②		٣ 🕦

		************	_ هو	۲ ، <u>د س</u> ۱ <u>۱</u> ۰۰ ، سرا	<u>.</u> ن: بـر	🍘 المجال المشترك للكسرب
3- {1-1}-2	③ {\	- (\ c ·) - 2	€	$\{ \setminus \{ \cdot \} \} = \mathcal{E}$	9	{\}-2 ①
	**********	= ٦ فإن : ₹ = ـ	+ إص:	حلاً للمعادلة : س⊦	(86)	👚 إذا كانت الزوح المرتب (
7	3	٣	€	٢	9	۵ صفر
0-6.8.0-6	المجال	$v_I = v_I$ في :	۲ فإن	، ۱۹۰۱ – س+	1-3 1-0	﴾ إذا كان: ۱ _{۷۷} (س) = سر
{1-}-2	3					2 D
	8	1000				رس)= (س) الدالة : د(س)
س +۱	③	4-0-	@	W. S. C.	Θ	1-0-1
******	ن : ك =	$=\frac{m-\gamma}{m}$ فإر	(س):	🔬 یساوی مجال 🗸	- - س -	﴿ إِذَا كَانَ مَجَالَ ١٠٠ (-س) =
^	③	^	②	٥	9	r (1)
		ره و × و ر	= ۹ فر	- ص = ٠٠ س	۽ س	🐿 مجموعة حل المعادلتين
	E	{(٣- ، ٣-)}	9		N E	(· · ·) ①
_	{(٣,٣).	· (٣- · ٣-)}	(I)		i i	= {(٣·٣)} ②
		ر سسب	الجبرى	 يساوي مجال الكسر	ب_ه_ب ۳	🖈 مجال الكسر الجبرى : 🚣
س ه س ۳	(3) - `	<u> </u>	②	<u>~</u>	9	1+1 D
		1		- 6		﴿ إِذَا كَانَ مَجَالَ الدَالَةَ لَهُ عَ
				1+10-		
						= ①
دلة د(س) = صفر	دد حلول المعا	ای نقطة فإن ع	نات فی	لا يقطع محور السين	ربعية د	 إذا كان منحنى الدالة الته
		7	-3	(A)		فی ع هو
صفر	③	عدد لا نهائي	Θ	حلان	Θ	🕦 حل وحيد
		444	******	ى: س ا + ۱ هو	ر الجبرز	🔞 المعكوس الجمعي للكس
مه س ^۱ – ۱	(3)	1+ run r-	②	1+5-	9	T 0
		<u>٠+ ٥</u> فإن : ١.	مو سر	ہ معکوس ضربی ہ	<u>س</u> +	📦 إذا كان للكسر الجبرى :
٥	③	٣_	②	0 —	9	۳ ①

الإحصطاء الإحصطاء

قوانين مامة :

```
(\neg \cap \uparrow) J - (\neg) J + (\uparrow) J = (\neg \cup \uparrow) J \circlearrowleft
                                                                                                                                                                                                   (- \cup 1) \cup - (- \cup 1) \cup + (1) \cup = (- \cup 1) \cup (1) 
اذا کان : حدثین متنافیین افان : ال (\uparrow \cap \downarrow) = \phi
                                                                                                                                                                                                                                          (-1) = (-1) + (-1) + (-1) = (-1) ویکون : (-1) + (-1) + (-1)
```

 (\dagger) ویکون: $(\dagger - \psi) = U(\dagger)$

$$(\omega) = ((\psi))$$
 $(\psi) = ((\psi))$ $(\psi) = ((\psi))$ $(\psi) = ((\psi))$

(3)
$$|\mathcal{L}(\{U\})| = |\mathcal{L}(\{U\})| = |\mathcal{L}(\{U\})$$

(†)
$$+ U(f) = I - U(f) = I - U(f)$$

- ﴿ المقصود بها ل ﴿ المقصود بها ل ﴿ ﴿
- احتمال عدم وقوع الحدث ألمقصود بها النفر (١/١)
- (۱۱) احتمال وقوع الحدثين ﴿ إِنَّ معلَىٰ المقصود بِهَا ۚ ل ﴿ ﴿ ﴿ إِنَّا بِ ا
- (٣) احتمال عدم وقوع الحدثين ﴿ ١٠ معاً أو احتمال وقوع أحد الحدثين على الأكثر/ُ $(- \bigcap A)$ المقصود بها $(\bigcap \bigcap A)$ وتساوی $(- \bigcap A)$
- (m) احتمال حدث وقوع $\{1, 0, \dots, 1\}$ أو $\{1, 0, \dots, 1\}$ أو احتمال وقوع أحدهما على الأقل المقصود بها $\{1, 0, \dots, 1\}$
- (ﻫ) أحتمال وقوع الحدث ﴿ وعدم وقوع الحدث ب ﴿أو احتمال وقوع الْحدث ﴿ فقط المقصود بِها ل(﴿ − ب)
- ﴿ أحتمال وقوع الحدث ب وعدم وقوع الحدث ﴿ أو احتمال وقوع الحدث ب فقط المقصود بها ل (ب − +)
 - $(\psi + 1)$ أحتمال أحد الحدثين دون الأخر (احتمال وقوع أحد الحدثين فقط) ل $(\psi + 1) + (\psi 1)$
 - (۱) احتمال عدم وقوع أي من الحدثين (\cdot, \cdot, \cdot) المقصود بها ل $(\cdot, \cdot) = (- \cup (\cdot, \cdot))$

أولاً : اختر الإجابة الصحيحة من بين الإجابات المعطاة :

① إذا كان ﴿ ، ب حدثين من فضاء عينة لتجربة عشوائية ما فإن : ل (﴿ ∩ ب) =

$$\mathfrak{D}$$
 إذا كان: $\mathfrak{f} \cap \omega = \emptyset$ غإن: ل $\mathfrak{f}(\mathfrak{f} - \omega) = \dots$

$$\mathfrak{D}$$
 ل $\mathfrak{f}(\mathfrak{f})$ \mathfrak{D} ل $\mathfrak{f}(\mathfrak{f})$ \mathfrak{D}

ه إذا كان ﴿ ، ب حدثين من فضاء نواتج تجربة عشوائية ، ﴿
$$\neg$$
 ب فإن : ل (﴿ \cup ب \rightarrow

:03.	**	(۱) فإن : ل (۱) =	ما وکان : ل $(^{\uparrow})=$ ل	 ن لتجربة عشوائية 	﴿ إِنَّا كَانَ أَ
	1 ③	\rac{\rac{\rac{\rac{\rac{\rac{\rac{\	÷ +	Θ	+ D
,	****	فإن: ٰل (١ ك ب) =	عینة ف وکان 🗝 🦳	، ب حدثین من فصاء	﴿ إِذَا كَانَ أَ
	(4)15 3	(ب) ل (ب	L(1)	Θ	1 ①
	•,٦:	ع ل (۱) = ۲٫۰ ع ل (ب) = ع ل (۱) = ۲٫۰ ع	عينة ف وكان 🕴 🗆 س	، ب حدثین من فضاء	﴿ إِذَا كَانَ ﴿
				= (†	فإن : ل(،
	۰,۸ ④	.,1 6	• • • • •	9	7,•
		ما ، إ رب فإن: ل(اا رب			
		اسفر ا			
*******		عدد زوجی وظھور عدد فردی 			
	1 ③	- 1 0	المبقر	0	1 D
		ظهورعدد أقل من ۳ يساوى			_
	F 3	, ' e	9 1	Θ	+ 0
			*	حنث المستحيل يساوي	🕆 احتمال الـ
	ف				
•,0=(۰٫۱ ، ل(۹ – س	$raket$ را وکان $raket \subset oldsymbol{\omega}$ ا	4		
		128 - 1888 1		,22	
	٠,٢ ③		3,74		
			حيث † فإن: ۴ 🗸 أ =		_
	ن) the same of	11.00	,
		ىدد فردى يساوى			🔞 إذا القي د
	7 3	* 6	4	9	→ □
		**********	فيان إذا كان : 🕴 🦳 ب :	.ثین 🕴 ء 🔑 انهما متنا	🕦 يقال للحد
	ØØ	{∙} €			صفر
			••••••••••••••••••••••••••••••••••••••	$\frac{U(1)}{U(1)}$ = ۳ غان: $U(1)$	﴿ إِذَا كَانَ :
	\frac{1}{2} @	7 6)	Θ	T 0
	***	دم وقوع الحدث † هو	و ٥٧٪ فإن لحتمال عد	عتمال وقوع الحدث 🕴 ه	﴿ إِذَا كَانَ لَمْ
	1 3	£ 6	7	Θ	$\oplus \frac{1}{3}$
	=(-	$(\emptyset \cup \bullet) = rac{ rac{ V}{ }}{ rac{ V}{ }}$ فإن $: U(v)$	وکان ل $(rak{1})=rac{1}{6}$ ، ل	، ب حدثین متنافیین	آنا کان ا
	11/0	10	5	9	T D

كون الرقم	٢٠ فإن احتمال أن يك	متماثلة ومرقمة من ١ إلى	شوائياً من بين ٢٠ بطاقة	🏵 إذا سحبت بطاقة ع
			للعدد ٤ هو	المسحوب مضاعفاً
;	% o. (3)	% €• ②	% T • 🕞	% TO ①
*********	۷,۰ فإن : ل (۱) =	= (→ ∪ †) 」, .,0 = (ئين متنافيين وكان : ل (ب	🕥 إذا كان 🖒 ب حدثً
•	,17 ③	•,0 🕝	٠,٢ 🔾	7.,.
** **	ىن ۶ يساوى	إن احتمال ظهور عدد أكبر م	ر نرد منتظم مرة واحدة ف	🕅 في تجربة إلقاء حج
	1/3	₩ 3	+ 0	D 7
		し(f)) =	وکان : ل $(rak{k})=rac{1}{2}$ فإن :	@ إذا كان: ا ⊂ ف
	① "	40 C	9 7	+ O
= (′	ة قان : ل (١) + ل (١)	، فضاء عينة لتجربة عشوائية	عدث المكمل للحدث ﴿ في	🕫 إذا كان : 🏱 هو الد
	ال من	1800 + @	18h, NOV	7 ①
	W. 10. 10. 10.	نال عدم نجاحه هو	ح طالب هو 🗸 ۽ فإن احته	﴿ إِذَا كَانَ احتَمَالَ نَجَا
	·5 @ 7.	1., ₩ ②	0	٠,٧ ①
****	: ل(١- ت	: عشوائية ما ۽ 🕴 🗆 سفإن :	ثين من فضاء عينة لتجربة	🦳 إذا كان 🕴 🕳 حدثًا
	Ø, O	﴾ 😉 څغر	, (f)J ⊝=5	(L)
	10.00	د اش؟ ۸ ۱ ا	، أن يكون أحتمالاً لأحد الإِ	🔫 أى من الأتي يمكن
	\$ B	VA @	'1,rr 😡	٠,٧٣- ①
	06.30		كد يساوىبىسى	🕅 احتمال الحنث المؤ
	1-3	الم 🕝 🐧	10	۵ صفر
			يية :	ثانياً : الأسئلة المقاا
		بة عشوائية ما وكان ؛	دثين من فضاء عينة لتجرر	🚺 إذا كان ع ، ب حا
	-	40. Pr	ل(س) کورو ا	
	(१−५),	5 ((- 1) J () ()		
	. 4 . 7 3	$=7, \cdot + 0, \cdot - 7, \cdot = \lambda, \cdot$ $\textcircled{9} \ \cup (\uparrow) = (-\cup(f) =$		
	1,2=1,1-1=	1 / -	・パート(もしゃ) = パート (も) — ト(もしゃ) = パ・・-	, , _
			·, a = (-, (+) J - (-,)	
·, ٤= (- ()) J	٠٠,٦ = (ت) ل (٠٠,٠	$V = (rac{1}{2}$ عشوائية وكان $\mathcal{C}(rac{1}{2})$	ين من فضاء عينة لتجربة	🕥 إذا كان 🕯 ، ب حدثا
	ين على الأقل	🕜 احتمال وقوع أحد الحدث	ا وقوع الحيث ﴿	أوجد : 🕦 احتمال عده
		1	ع ب وعدم وقوع الحدث	🕆 احتمال وقو
		$Y = *, Y - 1 = (1) \cup J - 1 = Y$		
		$\mathcal{L}(1 \cup L) = \mathcal{L}(1) + \mathcal{L}(L)$		•
٠,٢=٠	$(1 \cap \mathbf{u}) = r, \cdot -3, \cdot$	= ل (ب-۱) = ل (ب) - ل ا	ب وعدم وقوع الحدث ١ :	🕝 احتمال وقوع

المحترف نى الرياضيات "المصف الثالث الإعدادى"

[47]

"المراجعة النهائية في الجبر والإحصاء"

(المنان المنان المنان عن عن المنان المنان

- ⊃ † (f)
- 🕦 🕴 ، ب حدثین متنافیان

$$\frac{\gamma}{1} = \frac{\gamma}{0} + \frac{\gamma}{0} = \frac{\gamma}{1} + \frac{\gamma}{0} = \frac{\gamma}{1} + \frac{\gamma}{0} = \frac{\gamma}{1} = \frac{\gamma}$$

$$\frac{7}{5} = (-1) \therefore \quad (-1) = (-1) \therefore \quad (-1) = \frac{7}{5}$$

👔 إذا كان 🕴 ب حدثين من فضاء عينة لتجربة عشوائية ما وكان :

ل (۱) =
$$\frac{1}{2}$$
 ، ل (س) = $\frac{1}{2}$ أوجد ل (۱ ل بي) في الحالات الآتية :

$$\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{5}} = (\sqrt{5}) \sqrt{5} - (\sqrt{5}) \sqrt{5} + (\sqrt{5}) \sqrt{5} = (\sqrt{5$$

﴿ كَيْسَ بِهِ ١٥ كَرَةُ مِتَمَاثُلَةٌ مَرَقَمَةً مِنَ ١ إِلَى ١٥ سَجِبَتَ مَنْهُ كَرَةُ عَشُوائِياً إِذَا كَانَ الْحَدِثُ ﴿ هُو حَدِثُ الْحَصُولُ عَلَى عَدِدُ أُولَى فَأُوجِدُ : ﴿ عَدْدُ فَرِدِي ﴾ ب هو حَدِثُ الْحَصُولُ عَلَى عَدِدُ أُولَى فَأُوجِدُ : ﴿ عَدْدُ فَرِدِي ﴾ ب هو حَدِثُ الْحَصُولُ عَلَى عَدِدُ أُولَى فَأُوجِدُ : ﴿ عَالَى الْحَدِثُ ﴾ وَالْحَدُثُ الْحَصُولُ عَلَى عَدِدُ أُولَى فَأُوجِدُ : ﴿ أَنَا أَنَا الْحَدُثُ ﴾ وَالْحَدُثُ الْحَصُولُ عَلَى عَدِدُ أُولِى فَأُوجِدُ : ﴿ أَنَا الْحَدِثُ الْحَدِيْ عَلَى الْحَدِثُ الْمُعِنْ الْحَدِثُ الْمُعُولُ عَلَى الْحَدِثُ الْحَدِثُ الْحَدِثُ الْعَدِلُ اللْحَدُلُ اللْحَدِثُ الْحَدِثُ الْحَدُلُ الْحَدِثُ الْحَدِثُ الْحَدِثُ الْحِدُ الْحَدِدُ الْحَدِثُ الْحَدِثُ الْحَدِثُ الْحَدُلُ الْحَدُلُ الْحَدُولُ عَلَى الْحَدِلُ الْحَدِلُ الْحَدِثُ الْحَدِثُ الْحَدِلُ الْحِدُ الْحَدِلُ الْحَدُلُ الْحَدِلُ الْحَدِلُ الْحَدِلُ الْحَدِلُ الْحَدِلُ الْحَدِلُ الْحَالِ الْحَدِلُ الْحَدِلُ الْحَدِلُ الْحَدِلُ الْحَدِلُ الْحَدِلُ

$$\frac{1}{0} = \frac{\pi}{10} = \frac{1}{\pi} \quad \frac{\Lambda}{10} = (-1)J : \quad \{1\pi, 11, 17, 19, 19, 19\} = -1$$

🗓 في تجربة القاء حجر نرد منتظم مرة وأحدة وملاحظة العدد الظاهر على الوجه العلوي إذا كان ﴿ حدث الحصول

$$\uparrow = \frac{\gamma}{r} =$$

$$\frac{1}{L} = \frac{\pi}{L} = (L) \cup \dots \cup \{0, 1, 1, 2, 1, 2, \dots, 2, 1, 2, \dots, 2, 1, 2, \dots, 2, \dots,$$

$$100 = \{7\} \qquad 100 = \frac{1}{7}$$

$$\because L(f \cup -) = L(f) + L(-) - L(f \cap -) = \frac{1}{7} + \frac{1}{7} - \frac{1}{7} - \frac{1}{7} = \frac{1}{7$$

 $^{\circ}_{\Lambda}=(-\bigcup \{)$ ا دا کان (-1) ، $\frac{1}{2}=(-1)$ ، $\frac{1}{2}=(-1)$ وذا کان $(-1)=\frac{1}{2}$ ، $(-1)=\frac{1}{2}$ ، $(-1)=\frac{1}{2}$

$$^{\prime}$$
أوجد كلاً من : $^{\circ}$ ل $^{(\uparrow \cap \downarrow)}$ $^{\circ}$ ل $^{(\downarrow \cap \uparrow)}$

$$(- \cap f) J - (- \cup f) + (f) J = (- \cup f) J : \bigcirc$$

$$(\Box \cap \dagger) \cup -\frac{\Psi}{5} = \frac{0}{\Lambda} :$$

$$\therefore \frac{0}{\Lambda} = \frac{1}{3} + \frac{1}{7} - \mathsf{L}(\{\cap\omega\})$$

$$\frac{1}{\Lambda} = \frac{0}{\Lambda} - \frac{\Upsilon}{2} = (\omega \cap \beta) \downarrow \quad \therefore$$

$$\frac{7}{4} = \frac{1}{4} - \frac{1}{4} = (-1)(1 - 1)(1 - 1) = \frac{1}{4} - \frac{1}{4} = \frac{7}{4} = \frac{7$$

$$\frac{V}{A} = \frac{1}{A} = 1 = (-1)^3 = 1 = \frac{1}{A} = \frac{1}{A}$$

(-) إذا كان (-) ، حدثين من فضاء عينة لتجربة عشوائية وكان : ل((-) (+) ، (-) ال(-)أوجد ل(∤لب) في كل من الحالتين الآتيتين:

🕥 📢 ب حدثان متنافعان

(- NE) J (1)

(-) التعویض (-) التعویض (-) التعویض (-) التعویض

 $\therefore \ \mathbb{L}(-) = \frac{1}{2}$ $1 = (-1) \cup (-1) (-1) \cup (-1) \cup (-1) = (-1) \cup (-1) \cup (-1) \cup (-1) \cup (-1) = (-1) \cup (-1$

 $\therefore \ \mathsf{L}(\mathsf{f} \cup \omega) = \mathsf{L}(\mathsf{f}) + \mathsf{L}(\omega) - \mathsf{L}(\mathsf{f} \cap \omega) = \frac{1}{7} + \frac{1}{7} - \frac{1}{7} = \frac{7}{7}$

مفر (\uparrow) بن و با حدثان متنافیان $(\uparrow \cap \downarrow) = \phi$

∴ $L(1 \cup U) = L(1) + L(U) = \frac{1}{2} + \frac{1}{4} = \frac{0}{4}$

 $\frac{1}{\sqrt{1}} = (-1)^{3}$ إذا كان $(1) = (1)^{3}$ ، $(1) = (1)^{3}$ ، $(1) = (1)^{3}$ ، $(1) = (1)^{3}$

(-U1)J (

(-) ل (-) ل $\frac{0}{\Lambda}$ ل (\dagger) أوجد: (١) ل (-)

🗨 احتمال عدم وقوع ًأي من الحدثين 🔹 🗨 احتمال عدم وقوع الحدثين 🕴 🕶 معاً

 $\frac{1}{100} = \mathcal{L}(f) = \mathcal{$

احتمال عدم وقوع الحدثين f ، ب معاً حل f المال عدم وقوع الحدثين f ، ب معاً حل f

🕥 باستخدام شكل فن المقابل :

احسب احتمال كل من :

(١) عدم وقوع الحدث ﴿

﴿ وقوع الحدث ﴿ أو با

﴿ وقوع أحد الحدثين دون وقوع الأخر

 $\frac{1}{2} = \frac{1}{2} - 1 = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} =$ $\frac{1}{r} = \frac{r}{r} = \frac{1}{r}$

 $\frac{1}{2} = \frac{1}{2} = (-1)i) \uparrow \therefore \bigcirc$

 $\frac{1}{\sqrt{1-\frac{1}{2}}} = \frac{1}{\sqrt{1-\frac{1}{2}}} = \frac{1}{\sqrt{$

ن احتمال وقوع أحد الحدثين مون وقوع الآخر _ ل $(\dag - u) + (u - \dag) + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$

اللَّهُمْ إِنِّي أَسَالُكَ عَلَمَا نَافِعًا، وَمَرِزْقًا طَيِّيا، وَعَمَلًا مُفَتَلًّا

(١) تمارين على حل معادلتين من الدرجة الأولى في متغيرين بيانيًا وجبريا

(١) أكمل ما يأتى:

١) المستقيمان الممثلان للمعادلتين س = ٤ ، ص - ٣ = ٠ يتقاطعان في النقطة
Y) نقطة تقاطع المستقيمين س = - ١ ، ص + ١ = ٠ تقع في الربع
٣) مجموعة حل المعادلتين س + ١ = ٠ ٠ ص + ٢ = ٠ هي
٤) مجموعة حل المعادلتين س + ص = ٠ ، ص - ٥ = ٠ هي
$^{\circ}$) مجموعة حل المعادلتين س + ٣ ص = ٤ ، ٣ ص + س = ١ هي
7) مجموعة حل المعادلتين 3 س + ص = 7 ، 4 س + 7 ص = 17 هي
۷) إذا كان المستقيمان الممثلان للمعادلتين س + ٣ ص = ٤ ، س + أ ص = ٧ متو ازيين فإن أ =
 أذا كان للمعادلتين س + ٢ ص = ١ ، ٢ س + ك ص = ٢ حل وحيد فإن ك لا يمكن أن
تساوي ۹) مجموعة أصفار الدالمة د حيث د (س) = س – ۵ هي
۱۰) مجموعة أصفار الدالة دحيث د(س) = س ۲ + ۹ هي
١١) مجموعة أصفار الدالة حيث د(س) = ٤ هي
۱۲) مجموعة أصفار الدالة حيث د(س) = ٤س ٚ – ٩ هي
المجموعة أصفار الدالة حيث د $(w)=(w-\circ)^{\Upsilon}$ هي
۱٤) مجموعة أصفار الدالة حيث د $(w)=w^{7}-7$ هي

		صحيحه :	(٢) احتر الإجابه ال
	ص = ٦ هي :	تيمين ص = ٢ ، س +	١) نقطة تقاطع المسن
(7 ; 7)	(Y , £) (>	(٤ · ٢) (÷	(۲ ، ۲)
	، ٢س + ص = ٥ تقع في الربع :	تقیمین ۲س – ص = ۳	٢) نقطة تقاطع المسن
د) الرابع	ج) الثالث	ب) الثاني	أ) الأول
أ يمكن أن	، ص = ٥ أ تقع في الربع الرابع فإن أ	اطع المستقيمين س = ١	٣) إذا كانت نقطة تق
			تساوي :
٥ (٦	ج) ﴿	٠ (ب	o = (1
	: ه ص - ۸ = ۰ ;	ەص = ١ ، س+	٤) المستقيمان س +
د) متعامدان	 ج) متقاطعان و غير متعامدين 	ب) منطبقان	أ) متوازيان
	س + ۸ ص = ۲ :	+ ٤ ص = ١ ، ٦	 المستقيمان ٣س٠
د) متعامدان	 ج) متقاطعان و غير متعامدين 	ب) منطبقان	أ) متوازيان
		: ٩ = ص ٢ ، ٧ =	٦) المستقيمان ٣س:
د) متعامدان	 ج) متقاطعان وغير متعامدين 	ب) منطبقان	أ) متوازيان
	: ==	٠ = ١ ، س + ص	٧) المستقيمان س -
د) متعامدان	 ج) متقاطعان وغير متعامدين 	ب) منطبقان	أ) متوازيان
	وص - ۱ معاً هي :	هادلتين س + ص = ٠ ·	٨) مجموعة حل الم
{(, , , -)} (2	{\ ' ' \ '-} (→	۱ ، ۱ – (ب	() ('-) (
	ص — ۲ = ۰ معاً هي :	مادلتين س + ١ = ٠ ، ه	٩) مجموعة حل المع
{(/-: /-)} (2	{(ヾ ゚¹-)} (·>	{('→, ')} (·→	{(' · ')}
	ص - ٣ = ٠ معًا هو	ادلتین س + ص = ۲ ،	١٠) عدد حلول المع
د) ثلاثة	ج) اثنان	ب) واحد	أ <mark>) ص</mark> فر
	س + ص - ٣ = ٠ معًا هو	``` + ص = ```ادلتین س	١١) عدد حلول المع
د) ثلاثة	ج) اثنان	ب) واحد	أ) صفر

- ۱۲) إذا كان للمعادلتين س + ٤ص = ۷، ٣ س + ك ص = ۲۱ عدد لانهائى من الحلول فإن ك تساوى:
 - ١١ (ع ٢١ (ج ٧ (ب ٤ (أ
 - ۱۳) مجموعة أصفار الدالة د حيث د(س) = $(m-1)^{1}$ (m+1) هي
 - ر) {۲ ، ۱-} (ع ﴿ ٢ ، ١-} (ج ﴿ ٢ ، ١-) (ب ﴿ ٢ ، ١٠) (أ
 - ۱٤) مجموعة أصفار الدالة د حيث د(س) = $(w-1)^{1}$ (w+1) هي
 - {\(\cdot \) \(\c
 - (٣) أوجد مجموعة الحل لكل زوج من المعادلات الآتية بياتيا :
 - $Y = \frac{1}{\gamma} \qquad \qquad Y = Y$
 - ٢} ص = س + ٥ ، ص = س
 - ٣) ٢ س + ص = ١ ، س + ٢ ص = ٥
 - ٤) ٢ س = ٣ ص + ٧ ، ٤ س ٣ ص ١٤
 - (٤) أوجد مجموعة الحل لكل زوج من المعادلات الآتية جبريا :
 - ١) ص = ٣ ، ص = ٢س ــ ٤
 - ٢ ص = س + ١ ، ص = ٢س ـ ١
 - ٣ س + ص = ٤ ، ٢ س ص = ٢
 - $\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2}} \qquad (2)$

(٥) أجب عن الأسئلة الآتية:

- العدد الأول الميف ثلاثة أمثال العدد الأول المي ضعف العدد الثاني كان الناتج ١٩ وإذا أضيف العدد الأول المي ثلاثة أمثال العدد الثاني كان الناتج ١٦ فما العددان ؟
- عددان نسبیان مجموعهما ۱۲ و ثلاثة أمثال أصغرهما یزید عن ضعف أكبرهما بمقدار واحد.
 أوجد العددین.

- عدد نسبى فى أبسط صورة إذا طرح ٣ من كل من بسطه ومقامه أصبح العدد النسبى
 مساويا ب وإذا اضيف ٥ إلى كل من بسطه ومقاومة أصبح العدد مساويا ب أوجد العدد النسبى.
 - عدد مكون من رقمين مجموعهما ١١ وضعف رقم الأحاد يزيد عن ثلاثة أمثال رقم العشرات بمقدار ٢ , أوجد العدد ؟
 - عدد مكون من رقمين مجموعهما و وإذا تغير وضع الرقمين فإن العدد الناتج ينقص عن
 العدد الأصلى بمقدار ٩ فما هو العدد الأصلى ؟
 - ٦) منذ ٦ سنوات كان عمر رجل ستة أمثال عمر أبنه وبعد عشر سنوات يكون عمر الرجل ضعف عمر أبنه منهما عمر كل منهما الآن ؟
 - ٧) مستطيل طوله يزيد عن عرضه بمقدار ٣ سم فإذا كان ضعف طوله ينقص عن أربعة أمثال
 عرضه بمقدار ٢ سم . أوجد طول وعرض المستطيل.
- مستطیل محیطه ۳۲ سم و إذا نقص طوله ۱ سم و زاد عرضه ۳ سم صار مربعاً أوجد مساحة المربع.

(٢) تمارين على حل معادلة الدرجة الثانية جبرياً وبيانياً

(١) اختر الإجابة الصحيحة من بين الإجابات المعطاة:

في النقطتين :	+ ٢ يقطع محور السينات	يٹ د (س) = س ٚ ــ ٣س	۱) منحني الدالة د ح
(· · ·) · (· · · ·) (·	(* * , -) * (* * ,) (=	(* ' ') ' (* ' ' Y) (¬	(* * *)
		عادلة ٢ص ٚ + ٥ س = ٠	٢) مجموعة حل الم
Ø (2	[7:0]	{ °- (• } (¬	(0) ()

$$\Diamond (\tau) \qquad \{ \iota, \circ \} (\dot{\tau}) \qquad \dot{(\tau)} \qquad \dot{$$

 Y مجموعة حل المعادلة m^{Y} 3 س + 3 = • هي :

 2) مجموعة حل المعادلة $w^{7} + o = 0$ هي

(٢) أوجد مجموعة حل المعادلات الآتية باستخدام القانون العام

۱٫۷۳
$$\sim \frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7$$

$$(\cdot \neq \omega + \frac{\varepsilon}{\omega} + \cdots)$$
 $(\cdot \neq \omega + \frac{\varepsilon}{\omega} + \cdots)$ (۳

(٣) إذا كان $m^3 + 7 m^4 - 1 = 0$ فإثبت باستخدام القانون العام أن $m^4 = 7 - 1$ ثالثًا: أجب عن الأسئلة الآتية:

[۱ ، ۳-] \Rightarrow س + ۳ خذ س \in [-۳ ، ۱] أرسم الشكل البياتي للدالة د حيث د(س) = س + ۲ س + ۳ خذ س

ومن الرسم أوجد (أ) نقطة رأس المنحنى (ب) القيمة الصغرى للدالة د

(هـ) جذري المعادلة د(س) = ٠

(٣) تمارين على حل المعادلتين في متغيرين إحداهما من الدرجة الأولى والآخرى من الدرجة الثانية

,	من الدرجة .	س ص = ٣	١) المعانلة:
---	-------------	---------	--------------

 $^{\prime}$ مجموعة حل المعادلتين : m=1 ، $m^{\prime}+m^{\prime}=1$ هي

 * إذا كانت $w - w = \pi$ ، $w' - w' = \pi$ فإن $w + w = \dots$

ع) مجموعة حل المعادلتين : m = 1 ، m' + m' = 1 هي

 $^{\circ}$) مجموعة حل المعادلة : w = Y ، w = 0 هي

٦) عددان موجبان مجموعهما ٣ ، ومجموع مربيعهما ٥ فإن العددان هما ،

٧) عددان موجبان مجموعهما ٥ ، وحاصل ضربهما ٦ فإن العددان هما ،

٩) مساحة المستطيل الذي طوله ٣ سم ومحيطه ١٠ سم يساوي

١٠) مربع طول ضلعه ٤ سم ، إذا زاد طول ضلعه بمقدار ٣ سم فإن مساحته تزداد بمقدار... سم ا

(٢) اختر الإجابة الصحيحة من بين الإجابات المعطاة:

:	الدرجة	من	٥	=	ص	٠ س	+	٤ص	+	٣س	:	المعادلة	(1
---	--------	----	---	---	---	-----	---	----	---	----	---	----------	----

$$^{\prime}$$
 أحد حلول المعادلة: $m^{\prime}-m^{\prime}=7$ في ح هي:

٤) مجموعة حل المعادلتين: س = ص ، س ص = ١ هي:

$$\{(\ \ \)\ \ (\ \ \) \ \ (\ \ \) \ \ (\ \) \ \ (\ \) \ \)\} \ (\Rightarrow \qquad \{(\ \)\ \ \)\} \ (\ \)$$

٥) مجموعة حل المعادلتين: س - ص = ٠ ، س ص = ٩ هي:

 Υ) أحد حلول المعادلتين : س – ص = Υ ، س + ص = Υ ، هو :

 $^{\wedge}$ اذا کانت س = ۱ ، س $^{'}$ + ص $^{'}$ = ۱۰ فان ص تسای :

٩) اذا كان أ ب = ٣ ، أ ب ت = ١٢ فإن ب تساوى:

١٠) عددان موجبان الفرق بينهما ١ ، مربع مجموعهما ٢٥ فإن العددين هما :

(٣) أوجد مجموعة الحل لكل زوج من المعادلات الآتية:

$$1 \vee = {}^{\mathsf{T}} \omega + {}^{\mathsf{T}} \omega \qquad , \qquad + = 1 + \omega \quad ()$$

$$Y = {}^{\Upsilon}\omega + \omega \omega + {}^{\Upsilon}\omega$$
 , $\omega = Y - \omega \omega$ (Y

(٤) تطبيقات :

- ١) عددان أحدهما معكوس جمعي للآخر ، ومجموع مربعيهما هو ٢ ، أوجد العددين.
- عدد مكون من رقمين رقم أحاد ضعف رقم عشراته ، فإذا كان حاصل ضرب الرقمين يساوى
 نصف العدد الأصلى ، فما هو هذا العدد .
 - ٣) مستطيل يزيد طوله عن عرضه بمقدار ٣ سم ومساحته ٢٨ سم ، أوجد محيطه.
 - ٤) مستطيل محيطه ٢٤ سم ومساحته ٣٥ سم ، أوجد طول بعديه.
 - ٥) مستطيل طول قطره ٥ سم ومحيطه ١٤ سم . أوجد بعديه.
 - ٦) مثلث قائم الزاوية طول وتره ١٣ سم ، محيطه يساوى ٣٠ سم . أوجد طول ضلعي القانمة.
 - ٧) معين الفرق بين طولي قطريه ٤ سم ، ومحيطه يساوى ٤٠ سم . أوجد طول كل من قطريه.

الإجابات

(١) أكمل ما يأتى:

۲) اختر

$$\Upsilon = \omega = \Upsilon = \frac{1}{\omega}$$
 ، $\varepsilon = \omega = \Upsilon = \omega = \Upsilon$) $\frac{1}{2}$

م.ح. = {(۴ ، ۴) }

2.34	1 14

-			_		/ 4
-	-	A 1 44		7 Marie 1	• •
-		/ 544		/	
		_		_	
					•

۲	1	•	س
*	1		ص

1-	٥_	۲_	س
٤		*	ص

0

والعاداله مالها العالي التالي

الكثارالكحمه

 $m + 2m = 0 \implies m = 0 - 2m$

				_
3-	J	1	3	
•	3 -	*	9	

٣) ٢س + ص = ١ ⇒ص = ١ -٢س

N	1	de .	3
A =	3-	1	9

 $\alpha,\beta, \equiv \{(-f : \forall f)\}$

٤ = ١٤ = ١٠

 $\frac{\vee}{+}$ $\frac{\pi}{2}$ = m = $\sqrt{+}$ m = m (1)

(£ ÷)	1 \$	+	۲ص	=	≵س
		٧		۳	

+_0	۲	٥	ښ
۲_	1	3	ص

No. 1	
ں = , ص + ,	بر

رابعًا:

$$\Psi, \circ = \bigvee^{V} = \omega : \qquad V = \omega Y$$

$$\Lambda = m - r$$

$$\{(Y \circ Y)\} = C \cdot P$$

$$\Upsilon = \omega \quad \Leftrightarrow \quad \frac{\tau}{\tau} = \omega = \Upsilon$$

$$\frac{3}{y} \frac{v}{y} + \frac{v_{0}}{y} = f(x)$$

$$\frac{v}{y} + \frac{v_{0}}{y} = \frac{v}{y}$$

$$\frac{v}{y} = \frac{v}{y} = \frac{v}{y}$$

$$\frac{v}{y} = \frac{v}{y}$$

$$\frac{"}{"} = "$$

$$\frac{a}{7} = \frac{m - m}{m - m} \qquad (9)$$

$$\frac{1^{*}}{1!} = \frac{0 + \omega}{0 + \omega}$$

(° ×) (Y) ___

العدد هو ٧٤

$$0 = 0$$
 $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$

(0

العدد	عشرات	أحاد
س + ۱۰ (أصلی)	ص	س
ص + ۱۰ (ناتج)		

$$9 = (m) + + m - m + m$$

$$9 = m1 \cdot m + m + m$$

$$\frac{1}{1} = \omega + \frac{1}{1} = \omega = \frac{1}{1}$$

إبالجمع

(')_____

$$1 = 7 + \omega$$

منذ ٦ سنوات عمر الأبن
$$= m - 7$$

$$Y + W = Y + W$$

$$(Y) \qquad \qquad 1 + = \omega Y - \omega$$

$$\Upsilon = \psi - \Upsilon = \psi$$

مساحة المربع =
$$9 \times 9 = 1 \wedge ma^{7}$$
.

٢) أولاً: اختر:

$$\left\{\frac{\lambda}{a^{*}}, \cdot, \cdot\right\} \left(\lambda\right)$$

ثانيًا:

$$1 = 1 + 9 + 9 + 9 + 9 + 1 = 1$$

ء ج = ۱۹

أو

$$\frac{1}{1} = \frac{1}{1}$$

$$= \frac{1}{1} + \frac{1}{1}$$

$$\{ \, {}^{\intercal}, {}^{\intercal} {}^{\wedge}, {}^{\circ} \, {}^{\circ} \, {}^{\wedge}, {}^{\intercal} \, \} = {}^{\intercal}_{-}, {}^{\sigma}_{-} \, {}^{\dagger}_{-} \, {}^$$

$$(^{\vee}_{\omega} \times) \qquad \frac{^{\vee}_{\omega}}{^{\vee}_{\omega}} = \frac{^{\vee}_{\omega}}{^{\vee}_{\omega}} - 1 (^{\vee}_{\omega} \times)$$

أو

$$V, V = W = V, V$$

$$\{\cdot\,, \vee \forall - \cdot\, \forall\,, \vee \forall\} = \neg, \neg$$

$$1 = i$$
 $i = 1$

$$\Rightarrow \frac{1 \circ - \frac{1}{2} \pm 1 - \frac{1}{2}}{7} = \frac{1 \times 1 \times 1 \times 1 - \frac{1}{2}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1 - \frac{1}}{1 \times 1} = \frac{1 \times 1 \times 1$$

$$\cdot = 1 - 200 + 200 \pm 1 = 0$$

$$\begin{aligned}
\mathbf{Y} &= \mathbf{Y} &= \mathbf{Y} \\
&= \mathbf{Y} &= \mathbf{Y} \\
-\mathbf{Y} &= \mathbf{Y} \\
&= \mathbf{Y} \\
-\mathbf{Y} &= \mathbf{Y} \\
&= \mathbf{Y}$$

ثالثا:

1	+	1-	۲_	٣_	س
*	۳	۲	۳	7	د(س)

Ø (3

ه) ليس لها جذور.

٣) أولاً: أكمل

- ١) الثانية
- {(1:1):(1:1)} (*
 - ۲ (۳
 - {(· · · \)} (£
 - ({Y : Y)} (°
 - 7 (1)
 - T . T (V
 - £ : 1 (A
 - 7 (9
 - TT (1 .

ثانيًا: اختر:

- ÷(¹
- ۲) ب

- ٤ (٤
- ٥ (٥
- <u> (۱۰</u>
- ۸) ب (۸

۳) ب

- <u>→</u> (٧
- ۶ (٦

ثالثا:

بالتعويض من (١) في (٢)

$$\{(1, 1, 1), (1, 1, 1)\}$$

$$1 + = \omega = \psi \leftarrow 1 + = \omega$$

بالتعويض من (١) في (٢)

$$\frac{\pi}{\pi} = {}^{\forall} \bigcirc \frac{\pi}{\pi}$$

$$1 - \mathbf{x} \cdot \mathbf{Y} = \omega \cdot \mathbf{x}$$
 $1 \cdot \mathbf{x} \cdot \mathbf{Y} = \omega \cdot \mathbf{x}$

$$Y = \omega$$
 $Y = \omega$

$$A_{\gamma} : A_{\gamma} : A_{\gamma$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

ص = ٤

٦) تقرض أن طولى ضلعى الزاوية القائمة هما س سم ، ص سم.

$$\Upsilon = 1\Upsilon + \omega + \omega$$

بالتعويض من (١) في (٢)

$$\frac{1}{v} = \frac{1}{v} + \omega \frac{v_1}{v} - v_2 \omega \frac{v}{v}$$

(1)

الأكبر = ٢س سم .

الأصغر = ٢ص سم.

طول ضلعه = $\frac{1}{2}$ = ۱۰ سم

.. س' + ص' = ۱۰۰

٢س ــ ٢ص = ٤

س ــ ص = ۲

س = (۲ + ص)

بالتعويض من (٢) في (١)

 $1 + e^{-\tau} \omega + \tau (\omega + \tau)$

£ + £ ص + ص + ص + ع + £

 $\frac{1}{y} = \frac{77}{y} - \omega + \frac{1}{y} = \frac{77}{y} = \frac{7}{y}$

ص ۲ + ۲ص 🗕 ۴۸ = 🕟

(ص - ۱) (ص + ۸) = ۱

أما ص = 7 = 0 مرقوض

اما ص = ٦ = ٠ ⇒ ص = ٦

یس $\mathbf{A} = \mathbf{A} + \mathbf{A} = \mathbf{A}$ سم :

٠ القطران هما ١٦ سيم ، ١٢ سيم.

الجزء الثاني الجرية والعمليات عليها

أولاً: أكمل ما يأتى :

۱) مجال الدالة د حيث د(س) =
$$\frac{w + v}{w - v}$$
 هي

$$(w) = \frac{w^{2} - w}{w^{2} - w}$$
 هي د (س) $= \frac{w^{2} - w}{w^{2} - w}$ هي د (۲) مجال الدالة د حيث د (س)

$*$
 مجال الدالة د حيث د $(w) = \frac{w + v}{2}$ هي

$$(w) = \frac{w^{\frac{1}{2}} + \frac{y}{2}}{w^{\frac{1}{2}} + \frac{y}{2}}$$
 هي الدالة د حيث د(س)

$$(ω)_{i} = \frac{ω}{(ω)} = \frac{ω}{(ω)} + ω$$
 ، $(ω)_{i} = \frac{ω}{(ω)} + ω$ في المجال $(ω)_{i} = ω$ المحال $(ω)_{i} = ω$

$$(w + 0)$$
 إذا كان ن، $(w) = \frac{w + v}{w}$ ، ن، $(w) = \frac{(w + 0)}{(w + 0)(w - v)}$ فإن ن، $(w) = (w)$ أذا كان ن، $(w) = (w)$

۹) إذا كان ن (س) =
$$\frac{w' - P}{w}$$
 فان ص (ن) =

۱۰) مجموعة أصفار الدالة د حيث د(س) =
$$\frac{w - 7}{w}$$
 هي

(۱۱) إذا كانت الدالة د(س) =
$$\frac{w - o}{w}$$
 فإن د ليس لها وجود عندما $w = \frac{v - o}{v}$

۱۲) إذا كان ن (س) =
$$\frac{1}{m} - \frac{1}{m} = \frac{1}{m}$$
 و أبسط صورة هي ومجاله هو

المعكوس الجمعى للكسر ن (س) =
$$\frac{\gamma}{m-1}$$
 هو

تُاتيًا: احتر الإجابة الصحيحة من بين الإجابات المعطاة:

۱) إذا كانت د دالة حيث د(س) =
$$\frac{w - v}{w}$$
 فإن مجال المعكوس الضربي للدالة هو :

$$\{\chi: \chi_{-}\} - \subseteq (\dot{\gamma})$$

$$\{ \underline{\omega} : \underline{\omega}$$

۲) إذا كان الدالة د حيث د(س) =
$$\frac{v^{-1}-v^{-1}}{v}$$
 معكوس ضربي فإن مجالهما المشترك هو :

$$\{ , \cdot \} - \subseteq (\dot{})$$
 $\{ \cdot \} - \subseteq (\dot{})$

$*$
) إذا كان ن (س) = $\frac{w - 1}{w}$ فإن مجال ن * (س) هو :

$$\{i\} - \sum_{j} (-i)$$

$$\{\chi : \chi\} - \subseteq (\tau)$$

$$(w) = \frac{w - w}{w}$$
 عكون للدالة د حيث د $(w) = \frac{w - w}{w}$ معكوسًا ضريبًا في المجال:

$$\{\circ, \downarrow, \downarrow\} - \subseteq (7)$$

٥) يكون للدالة د حيث د(س) =
$$\frac{w-v}{w}$$
 معكوسًا جمعيًا في المجال:

$$\{\circ\}$$
 $\subset (\dot{\gamma})$ $\{\gamma\}$

$$\{ \lambda : \lambda \} - \subseteq (7)$$

٦) إذا كان ن(س) =
$$\frac{1}{100} - \frac{1}{100}$$
 فإن ن (س) هو :

(a)
$$\frac{\omega}{\gamma}$$
 (b) $\frac{\omega}{\gamma}$ (c) $\frac{\omega}{\gamma}$ (c) $\frac{\omega}{\gamma}$

$$\{Y^{-1}\} = \{Y^{-1}\} - \{Y^{-1}\}$$

$$^{(w)}$$
 مجال الدالة د حيث د $^{(w)}$ = $\frac{^{(w)}}{^{(w)}}$ هو :

$$\{ , \ \cdot \ \cdot \} - \subseteq (7) \qquad \{ \cdot \ \cdot \ , - \} - \subseteq (9) \qquad \qquad \subseteq (1)$$

۹) مجال الدالة د حيث د(س) =
$$\frac{w - v}{\gamma(w + 1)}$$
 هو :

$$\{j, i-1\} - C \ (7) \qquad \{k, k-1\} - C \ (9) \qquad \{j\} - C \ (7) \qquad C(j)$$

$$\frac{1}{1}$$
 هو : $\frac{1}{1}$ هو : $\frac{1}{1}$ مجال الدالمة ن حیث ن(س)= $\frac{1}{1}$ به مجال الدالمة ن حیث ن

$$\{Y-\}$$
 (ψ) $\{Y-\}$ (i)

$$(11)$$
 اِذَا کَانْتُ نَ (س) $= \frac{\gamma_{w}}{\gamma_{w} - \gamma_{w}} = \frac{1}{2}$ فإن نَ (-1) $= \frac{1}{2}$

$$(1)$$
 $\frac{7}{4}$ (2) $\frac{7}{4}$ (4) $\frac{7}{4}$ (7)

۱۲) إذا كانت د(س) =
$$\frac{v_0 + v_1}{v_1 - v_2}$$
 فإن مجال المعكوس الضربي هو :

$$\{ \lambda \ , \ \lambda - \} - \subseteq (7) \qquad \qquad \{ \lambda - \} - \subseteq (9) \qquad \qquad \{ \lambda \} - \subseteq (1) \qquad \qquad \subseteq (1)$$

$$\frac{w^{m}}{1-w^{m}} - \frac{v^{-w}}{w^{-w}} = \frac{w^{-w}}{w^{-w}} - \frac{w^{-w}}{w^{-w}} - \frac{w^{-w}}{w^{-w}}$$
 ۱۳

۱٤) الدالة ن في ابسط صورة حيث ن(س) =
$$\frac{w}{w} + \frac{w}{1 - w}$$
 هي:

$$\frac{\pi}{m-m}$$
 (2)

$$(i) \frac{\gamma}{\omega_{-\gamma}} (\exists) \frac{\gamma}{\omega_{+\gamma}} (\exists)$$

$$\frac{v+v}{v}$$
 مجال المعكوس الضربي للكسر الجبري $\frac{v+v}{v}$

المعكوس الجمعى للكسر الجبري:
$$\frac{\pi}{\sqrt{1+1}}$$
 هو:

$$\frac{\gamma}{\gamma} \left(\frac{\gamma}{\gamma} \right) = \frac{\gamma}{\gamma} \left(\frac{\gamma}{\gamma} \right)$$

۱۷) إذا كانت د(س) =
$$\frac{\sqrt{4} - 4}{100}$$
 ، د(٤) = ۱ فإن ب تساوى:

۳ (ح)

(ب) ۲

۱۸) إذا كان ن(س) =
$$\frac{w - Y}{w}$$
 فإن مجال ن $^{-1}$ (س) هو :

$$\{ \overset{\uparrow}{\pi} : \overset{\uparrow}{\tau} : \overset{\uparrow}{\tau} = (\overset{\downarrow}{\tau})$$

۱۹) الدالة د حيث د(س) =
$$\frac{m+1}{m-1} + \frac{1-m}{m-1}$$
 س $\neq 1$ في أبسط صورة هي :

ثالثًا: أسئلة متنوعة:-

١) أختصر الدالة ن في أبسط صورة مبينًا المجال:-

$$\frac{\gamma}{\psi} = \frac{\gamma}{\psi} - \frac{\gamma}{\psi} = \frac{\gamma}{\psi}$$
ن(س) = $\frac{\gamma}{\psi} = \frac{\gamma}{\psi}$

$$\frac{Y}{Y} + \frac{y}{w} + \frac{y}{2} + \frac{y$$

أوجد قميتي أ ، ب .

٤) أوجد الدالة ن في أبسط صورة مبينًا مجالها حيث أن:

$$\frac{1}{1}$$
ن (س) = $\frac{1}{1}$

٥) أوجد المجال المشترك الذي تتساوي فيه در(س) ، در(س) حيث:

تمارين عامة على وحدة الاحتمال

أولاً: أكمل ما يأتي :

- ١) يقال للحدثين أ ، ب أنهما متنافيان إذا كان أ ∩ ب =
- ٢) إذا كان احتمال وقوع الحدث أ هو ٧٥% فإن احتمال عدم حدوثه =.....
 - ٣) إذا كان أحدث ما وكان ل(أ) = ٠ فإن أ =
- ٤) إذا كان أ هو الحدث المكمل للحدث أ فإن أ ∪ أ = ، أ ∩ أ =
- ٥) إذا كان أ ، ب حدثين متنافين من فضاء عينة لتجربة عشوائية فإن ل (أ ∩ ب) =

 $\frac{a}{1}$ (U U U) اذا كان أ ، $\frac{1}{2}$ - $\frac{1}{2}$ ، $\frac{1}{2}$ ، $\frac{1}{2}$ ، $\frac{1}{2}$

فإن ل(ب) =

ثانيًا: اختر الإجابة الصحيحة:

عدد أقل من ٣ يساوي:	فإن احتمال ظهور	حجر نرد منتظم) في تجربة إلقاء
---------------------	-----------------	---------------	------------------

$$\frac{1}{r}(2)$$
 $\frac{1}{r}(3)$ $\frac{1}{r}(4)$ $\frac{1}{r}(4)$

 ٢) كيس يحتوي على ٤ كرات بيضاء ، ٦ كرات حمراء ، سحبت كرة واحدة عشوانيًا من الكيس فإن احتمال أن تكون الكرة المسحوبة حمراء تساوي:

$$\frac{r}{r}$$
 (2) $\frac{r}{r}$ (E) $\frac{r}{r}$ (i) $\frac{r}{r}$ (i)

٣) إذا كان احتمال نجاح تلميذ في امتحان الشهادة الإعدادية ٨٥% فإن احتمال رسوية يساوي.

$$(i) \circ (\lambda) \qquad \qquad \frac{1}{2} (\Xi) \qquad \qquad \frac{\pi}{2} (\Xi) \qquad \qquad (i)$$

إذا كان احتمال فوز المنتخب المصرى لكرة القدم في بطولة كأس الأمم الأفريقية ٣١٨,٠ فإن
 احتمال عدم فوزه:

) كيس يحتوي على عدد من الكرات المتماثلة بعضها خضراء والأخر زرقاء ، فإذا كان عدد الكرات الخضراء و كان احتمال سحب كرة زرقاء يساوي $\frac{7}{4}$ فإن عدد الكرات الزرقاء يساوي.

$$\frac{\lambda \xi}{\lambda k} \left(\neg \right) \qquad \frac{\lambda}{\lambda} \left(\neg \right) \qquad \frac{\lambda}{\lambda} \left(\downarrow \right)$$

٧) إذا كان ل(أ) = ٢,٠ ، ل(ب) = ٢,٠ ، ل(أ ∩ ب)= ٣,٠ فإن ل (أ ∪ ب) =

(أ) ٥,٠ (ب) ٢٢,٠ (ج) ٥ (١) ٢٠,٠

 $^{(+)}$ إذا كان أ ، ب حدثين متنافين وكان (1) = 0 ، ل $(1 \cup 1) = 0$ ، فإن ل $(1 \cup 1) = 0$

(أ) ۲۰٫۰ (ب) ۲٫۰۰ (ج) م.۰ (c) ۲٫۰۳ (۱)

٩) إذا سحبت بطاقة عشوائيًا من بين ٢٠ بطاقة متماثلة ومرقمة من ١ إلى ٢٠ فإن احتمال أن يكون الرقم المسحوب مضاعقًا للعدد ٧ هو:

(أ) ۱۰٪ (ج) ۱۰٪ (ج) ۲۰٪ (۱۰ (۲۰٪

١٠) إذا كان أ ، ب حدثين من فضاء عينة لتجربة عشوائية وكان أ ⊂ ب ، فإن ل (أ - ب) =...

(أ) صفر (ب) ل(أ) – ل(ب) (ج) ل (ب) – ل (أ) (د) ل(أ)

الإجابات

الدوال الكسرية الجبرية والعمليات عليها

أولاً: أكمل ما يأتى :

$$\{Y : Y-\} = C : \frac{c}{(W-Y)(W-Y)}$$

تُاتيًا: اختر الإجابة:

ثالثًا: اسئلة متنوعة:

$$\frac{17}{(1-\omega)^{2}} - \frac{\omega^{4}}{(1-\omega)^{2}} = (\omega - 1)(\omega + 1)$$

$$\{Y_{-}, Y_{+}, Y_{+}\} = \{Y_{-}, Y_{+}\}$$

$$\frac{YY - (Y + \omega)Y}{(Y + \omega)(Y - \omega)} =$$

$$\frac{1 \cdot Y - Y + \omega W}{(Y - \omega)(Y - \omega)} =$$

$$\frac{(Y-\omega)^{*}}{(Y+\omega)(Y-\omega)} = \frac{Y-\omega^{*}}{(Y+\omega)(Y-\omega)} =$$

$$\frac{\mathbf{1} \times (\mathbf{1} - \mathbf{1}) + (\mathbf{1} + \mathbf{1}) + (\mathbf{1} + \mathbf{1})}{\mathbf{1} + \mathbf{1} + \mathbf{1}} = \mathbf{1}$$

$$\frac{\Lambda - \omega \Upsilon + \Upsilon \omega}{(\Upsilon + \omega)^{\frac{1}{2}}} =$$

$$(\omega) = \frac{(\omega - 1)(\omega + 1)}{2(\omega + 1)}$$

$$\frac{1}{2} + \frac{1}{2} = (9) \circlearrowleft \therefore$$

$$9 + \frac{9}{4} = 7$$

$$\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{1+v} + \frac{1}{v_{0}(v^{2}-1)} \frac{1}{v_{0}(v^{2}-1)}$$

المجال المشترك الذي تتساوى فيه الدالتان:

$$= 2 - \{-3, 1-\ell\}$$

تمارين عامة على وحدة الاحتمال

أولاً: أكمل

تُانيًا: أختر الإجابة: