Laboratorium Podstaw Elektroniki								
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	Symbol grupy lab.				
Informatyka	_	I	i	II.				
Temat Laboratorium								
Rezonans w obwodach RLC								
Skład grupy ćwiczeniowej oraz numery indeksów								
Ewa Fengler(132219), Sebastian Maciejewski(132275), Jan Techner(132332)								
Uwagi			Ocena					

Cel

1 Zadanie 1.

Rozpatrywany obwód wraz z wybranymi wartościami elementów.

Wyznaczona przez prowadzącego wartość pojemności kondensatora użytego w doświadczeniu to 13.3nF.

Rysunek 1: Badany obwód

Wartości elementów obwodu : $V_{pp}=8V,\,R_1=1$ k $\Omega,\,C_1=13.3$ nF, $L_1=66$ mH

2 Zadanie 2.

Wartości elementów użytych do zbudowania obwodu przedstawionego na rysunku 1.

Element	Wartość zadana	Oznaczenie	Wartość odczytana	Wartość zmierzona	
Rezystor	zystor $1k\Omega$ brązowy, czarny, czerwony, złoty		$1000\Omega \pm 5\%$	$976,6\Omega \pm 5\%$	
Cewka	66mH	_	_	69,78 <i>mH</i> (Opór: 123,3Ω)	
Kondensator	13,3 <i>nF</i>	332 (4 szt.)	3,3nF x 4	13,25nF	

3 Zadanie 5.

Wyniki pomiarów napięć na rezystancji, pojemności i indukcyjności oraz napięcia na źródle w zależności od częstotliwości pobudzenia przedstawione w tabeli.

Lp.	Częstotliwość	$V_{rms}(1)$ źródło	$V_{rms}(2)$ rezystor	Napięcie na kondensatorze	Napięcie na cewce
1.	2,26kHz	1,33V	0,31V	1,6V	0,34V
2.	2,83kHz	1,34V	0,43V	1,81V	0,59V
3.	3,34 <i>kHz</i>	1,33V	0,59V	2,07V	0,95V
4.	3,83 <i>kHz</i>	1,31V	0,77V	2,37V	1,44V
5.	4,36kHz	1,30V	1,00V	2,65V	2,17V
6.	4,85kHz	1,39V	1,21V	2,82V	2,85V
7.	5,00kHz	1,37V	1,18V	2,68V	2,87V
8.	5,15 <i>kHz</i>	1,35V	1,17V	2,59V	3,00V
9.	5,23kHz	1,35V	1,11V	2,59V	2,98V
10.	5,34 <i>kHz</i>	1,35V	1,08V	2,38V	2,96V
11.	5,39kHz	1,35V	1,10V	2,33V	2,99V
12.	5,42 <i>kHz</i>	1,35V	1,11V	2,33V	2,99V
13.	5,56kHz	1,37V	1,06V	2,17V	2,93V
14.	5,96kHz	1,37V	0,91V	1,80V	2,80V
15.	6,99kHz	1,39V	0,67V	1,12V	2,38V
16.	7,82kHz	1,40V	0,55V	0,80V	2,14V
17.	8,63 <i>kHz</i>	1,41V	0,46V	0,60V	2,00V
18.	9,61 <i>kHz</i>	1,43V	0,40V	0,45V	1,86V
19.	10,88kHz	1,38V	0,33V	0,31V	1,70V
20.	11,60kHz	1,39V	0,30V	0,26V	1,65V
21.	12,67kHz	1,38V	0,26V	0,21V	1,60V
22.	15,00kHz	1,39V	0,22V	0,13V	1,54V

4 Zadanie 6.

Wyniki pomiarów przedstawione na wspólnym wykresie w funkcji częstotliwości pobudzenia.

Rysunek 2: Zależność napięć na elementach obwodu względem częstotliwości

- 5 Zadanie 7.
- 6 Zadanie 8.
- 7 Zadanie 9.
- 8 Zadanie 10.

9 Wnioski

Literatura

[1] W trakcie przeprowadzania doświadczeń i pisania sprawozdania zespół korzystał głównie z materiałów ze strony http://mariusznaumowicz.ddns.net/materialy.html oraz z wiedzy własnej.