

#### LE00AB/C SERIES

## VERY LOW DROP VOLTAGE REGULATORS WITH INHIBIT

- VERY LOW DROPOUT VOLTAGE (0.2V TYP)
- VERY LOW QUIESCENT CURRENT (TYP. 50 µA IN OFF MODE, 0.5 mA IN ON MODE, NO LOAD)
- OUTPUT CURRENT UP TO 100 mA
- OUTPUT VOLTAGES OF 1.25; 1.5; 2.5; 3; 3.3; 3.5; 4; 4.5; 4.7; 5; 5.2; 5.5; 6; 8V
- INTERNAL CURRENT AND THERMAL LIMIT
- ONLY 2.2 µF FOR STABILITY
- AVAILABLE IN ± 1% (A) OR ± 2% (C) SELECTION AT 25 °C
- SUPPLY VOLTAGE REJECTION: 80db (TYP.)
- TEMPERATURE RANGE: -40 TO 125 °C



The LE00 regulator series are very Low Drop regulators available in SO-8 and TO-92 packages and in a wide range of output voltages.

The very Low Drop voltage (0.2V) and the very low quiescent current make them particularly suitable for Low Noise Low Power applications and specially in battery powered systems.

They are pin to pin compatible with the older L78L00 series. Furthermore in the 8 pin configuration (SO-8) they employ a Shutdown Logic Control (pin 5, TTL compatible). This means that when the device is used as a local regulator.



it's possible to put in stand by a part of the board even more decreasing the total power consumption. In the three terminal configuration (TO-92) the device is even in ON STATE, maintaining the same electrical performances. It needs only  $2.2\mu F$  capacitor for stability allowing room and cost saving effect.

#### **SCHEMATIC DIAGRAM**



August 2003 1/26

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                            | Value                  | Unit |
|------------------|--------------------------------------|------------------------|------|
| V <sub>I</sub>   | DC Input Voltage                     | 20                     | V    |
| Io               | Output Current                       | Internally Limited (*) |      |
| P <sub>tot</sub> | Power Dissipation                    | Internally Limited (*) |      |
| T <sub>stg</sub> | Storage Temperature Range            | -40 to 150             | °C   |
| T <sub>op</sub>  | Operating Junction Temperature Range | -40 to 125             | °C   |

<sup>(\*)</sup> Our SO-8 package used for Voltage Regulators is modified internally to have pins 2, 3, 6 and 7 electrically communed to the die attach flag. This particular frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heatsinking. The external dimensions are the same as for the standard SO-8.

#### THERMAL DATA

| Symbol                | Parameter                           | SO-8 | TO-92 | Unit |
|-----------------------|-------------------------------------|------|-------|------|
| R <sub>thj-case</sub> | Thermal Resistance Junction-case    | 20   |       | °C/W |
| R <sub>thj-amb</sub>  | Thermal Resistance Junction-ambient | 55   | 200   | °C/W |

#### **TEST CIRCUITS**



Note: If the Inhibit pin is left floating, the regulator is in ON mode. However, to avoid any noise picking-up, it is suggested to ground it when the Inhibit function is not used.

#### **CONNECTION DIAGRAM** (top view)



#### **ORDERING CODES**

| TYPE    | SO-8 (*) | TO-92 (#) | OUTPUT VOLTAGE |
|---------|----------|-----------|----------------|
| LE12AB  | LE12ABD  | LE12ABZ   | 1.25 V         |
| LE12C   | LE12CD   | LE12CZ    | 1.25 V         |
| LE15AB  | LE15ABD  | LE15ABZ   | 1.5 V          |
| LE15C   | LE15CD   | LE15CZ    | 1.5 V          |
| LE25AB  | LE25ABD  | LE25ABZ   | 2.5 V          |
| LE25C   | LE25CD   | LE25CZ    | 2.5 V          |
| LE27AB  | LE27ABD  | LE27ABZ   | 2.7 V          |
| LE27C   | LE27CD   | LE27CZ    | 2.7 V          |
| LE30AB  | LE30ABD  | LE30ABZ   | 3 V            |
| LE30C   | LE30CD   | LE30CZ    | 3 V            |
| LE33AB  | LE33ABD  | LE33ABZ   | 3.3 V          |
| LE33C   | LE33CD   | LE33CZ    | 3.3 V          |
| LE35AB  | LE35ABD  | LE35ABZ   | 3.5 V          |
| LE35C   | LE35CD   | LE35CZ    | 3.5 V          |
| LE40AB  | LE40ABD  | LE40ABZ   | 4 V            |
| LE40C   | LE40CD   | LE40CZ    | 4 V            |
| LE45AB  | LE45ABD  | LE45ABZ   | 4.5 V          |
| LE45C   | LE45CD   | LE45CZ    | 4.5 V          |
| LE47AB  | LE47ABD  | LE47ABZ   | 4.7 V          |
| LE47C   | LE47CD   | LE47CZ    | 4.7 V          |
| LE50AB  | LE50ABD  | LE50ABZ   | 5 V            |
| LE50C   | LE50CD   | LE50CZ    | 5 V            |
| LE52AB  | LE52ABD  | LE52ABZ   | 5.2 V          |
| LE52C   | LE52CD   | LE52CZ    | 5.2 V          |
| LE55AB  | LE55ABD  | LE55ABZ   | 5.5 V          |
| LE55C   | LE55CD   | LE55CZ    | 5.5 V          |
| LE60AB  | LE60ABD  | LE60ABZ   | 6 V            |
| LE60C   | LE60CD   | LE60CZ    | 6 V            |
| LE80AB  | LE80ABD  | LE80ABZ   | 8 V            |
| LE80C   | LE80CD   | LE80CZ    | 8 V            |
| LE120AB | LE120ABD | LE120ABZ  | 12 V           |
| LE120C  | LE120CD  | LE120CZ   | 12 V           |

<sup>(\*)</sup> Available in Tape & Reel with the suffix "-TR".

(#) Available in Tape & Reel with the suffix "-TR" and in Ammopak with the suffix "-AP".

## **ELECTRICAL CHARACTERISTICS FOR LE12AB** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                   | s                                                                 | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 3.3 \text{ V}$                       |                                                                   | 1.225 | 1.25 | 1.275 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 3.3 \text{ V}, T_a = 0.00 \text{ M}$ | -25 to 85°C                                                       | 1.2   |      | 1.3   |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                          |                                                                   | 2.5   |      | 18    | V    |
| Io              | Output Current Limit      |                                                                  |                                                                   | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 2.5 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$           | $I_1 = 2.5 \text{ to } 18 \text{ V}, \qquad I_0 = 0.5 \text{ mA}$ |       | 3    | 15    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 2.8 \text{ V}$ $I_0 = 0.5$                                | $I_{\rm I} = 2.8  \rm V$ $I_{\rm O} = 0.5  \rm to  100  mA$       |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 2.5 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE                                                           |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 2.5 \text{ to } 18V, I_O = 100\text{mA}$                  |                                                                   |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                             | OFF MODE                                                          |       | 50   | 100   | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                            | f = 120 Hz                                                        |       | 82   |       | dB   |
|                 |                           | $V_1 = 3.5 \pm 1 \text{ V}$                                      | f = 1 KHz                                                         |       | 77   |       |      |
|                 |                           |                                                                  | f = 10 KHz                                                        |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                             |                                                                   |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | $I_0 = 100 \text{ mA}$ $T_a = -40$                               | to 125°C                                                          |       | 1.25 |       | V    |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                                    |                                                                   |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                                                   | 2     |      |       | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                    |                                                                   |       | 10   |       | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                        | 0 to 100 mA                                                       | 2     | 10   |       | μF   |

# **ELECTRICAL CHARACTERISTICS FOR LE12C** (refer to the test circuits, $T_j$ = 25°C, $C_I$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                   | s                                                            | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|------------------------------------------------------------------|--------------------------------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 3.3 \text{ V}$                       |                                                              | 1.225 | 1.25 | 1.275 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 3.3 \text{ V}, T_a = 0.00 \text{ M}$ | -25 to 85°C                                                  | 1.2   |      | 1.3   |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                          |                                                              | 2.5   |      | 18    | V    |
| I <sub>O</sub>  | Output Current Limit      |                                                                  |                                                              | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 2.5 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$           | mA                                                           |       | 3    | 20    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 2.8 \text{ V}$ $I_0 = 0.5$                                | $I_0 = 2.8 \text{ V}$ $I_0 = 0.5 \text{ to } 100 \text{ mA}$ |       | 3    | 25    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 2.5 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE                                                      |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 2.5 \text{ to } 18V, I_O = 100\text{mA}$                  |                                                              |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                             | OFF MODE                                                     |       | 50   | 100   | μA   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                             | f = 120 Hz                                                   |       | 82   |       | dB   |
|                 |                           | $V_1 = 3.5 \pm 1 \text{ V}$                                      | f = 1 KHz                                                    |       | 77   |       |      |
|                 |                           |                                                                  | f = 10 KHz                                                   |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                             |                                                              |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | $I_0 = 100 \text{ mA}$ $T_a = -40$                               | to 125°C                                                     |       | 1.25 |       | V    |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                                              |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                                              | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                    |                                                              |       | 10   |       | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                                 | 0 to 100 mA                                                  | 2     | 10   |       | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE15AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | s           | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------|------|------|------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 3.5 \text{ V}$             |             | 1.47 | 1.5  | 1.53 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 3.5 \text{ V}, T_a = 0.00$ | -25 to 85°C | 1.44 |      | 1.56 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |             | 2.5  |      | 18   | V    |
| Io              | Output Current Limit      |                                                        |             | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 2.5 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA          |      | 3    | 15   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 2.8 \text{ V}$ $I_0 = 0.5$                      | to 100 mA   |      | 3    | 15   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 2.5 \text{ to } 18V, I_0 = 0\text{mA}$          | ON MODE     |      | 0.5  | 1    | mA   |
|                 |                           | $V_I = 2.5 \text{ to } 18V, I_O = 100\text{mA}$        |             |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE    |      | 50   | 100  | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz  |      | 82   |      | dB   |
|                 |                           | $V_1 = 3.5 \pm 1 \text{ V}$                            | f = 1 KHz   |      | 77   |      |      |
|                 |                           |                                                        | f = 10 KHz  |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |             |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C    |      | 1    |      | V    |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                          |             |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             | 2    |      |      | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |             |      | 10   |      | μΑ   |
| СО              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                       | 0 to 100 mA | 2    | 10   |      | μF   |

# **ELECTRICAL CHARACTERISTICS FOR LE15C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Conditions                                                  |             | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|------------------------------------------------------------------|-------------|------|------|------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 3.5 \text{ V}$                       |             | 1.47 | 1.5  | 1.53 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 3.5 \text{ V}, T_a = -10 \text{ mA}$ | -25 to 85°C | 1.44 |      | 1.56 |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                          |             | 2.5  |      | 18   | V    |
| Io              | Output Current Limit      |                                                                  |             | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 2.5 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$           | mA          |      | 3    | 20   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 2.8 \text{ V}$ $I_0 = 0.5$                                | to 100 mA   |      | 3    | 25   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 2.5 \text{ to } 18V, I_O = 0\text{mA}$                    | ON MODE     |      | 0.5  | 1    | mA   |
|                 |                           | $V_I = 2.5 \text{ to } 18V, I_O = 100\text{mA}$                  | ]           |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                             | OFF MODE    |      | 50   | 100  | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                            | f = 120 Hz  |      | 82   |      | dB   |
|                 |                           | $V_1 = 3.5 \pm 1 \text{ V}$                                      | f = 1 KHz   |      | 77   |      |      |
|                 |                           |                                                                  | f = 10 KHz  |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                             |             |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | $I_O = 100 \text{ mA}$ $T_a = -40$                               | to 125°C    |      | 1    |      | V    |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                                    |             |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |             | 2    |      |      | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                    |             |      | 10   |      | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O$ =                                 | 0 to 100 mA | 2    | 10   |      | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE25AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                                | s           | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|-------------------------------------------------------------------------------|-------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 4.5 \text{ V}$                                    |             | 2.475 | 2.5  | 2.525 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 4.5 \text{ V}, T_a = -$                           | -25 to 85°C | 2.45  |      | 2.55  |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                                       |             |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                                               |             | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $I_{\rm I} = 3.2 \text{ to } 18 \text{ V}, \qquad I_{\rm O} = 0.5 \text{ mA}$ |             |       | 3    | 15    | mV   |
| $\Delta V_{O}$  | Load Regulation           | = 3.5 V I <sub>O</sub> = 0.5 to 100 mA                                        |             |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 3.5 \text{ to } 18V, I_0 = 0\text{mA}$                                 | ON MODE     |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 3.5 \text{ to } 18V, I_O = 100\text{mA}$                               |             |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                                          | OFF MODE    |       | 50   | 100   | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                                         | f = 120 Hz  |       | 82   |       | dB   |
|                 |                           | $V_1 = 4.5 \pm 1 \text{ V}$                                                   | f = 1 KHz   |       | 77   |       |      |
|                 |                           |                                                                               | f = 10 KHz  |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                                          |             |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                                       |             |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                                            | to 125°C    |       |      | 0.5   |      |
| $V_{IL}$        | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                                   |             |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                                   |             | 2     |      |       | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                                 |             |       | 10   |       | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                                     | 0 to 100 mA | 2     | 10   |       | μF   |

## **ELECTRICAL CHARACTERISTICS FOR LE25C** (refer to the test circuits, T $_j$ = 25°C, C $_l$ = 0.1 $\mu\text{F},$ C $_O$ = 2.2 $\mu\text{F}$ unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                  | s           | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|-----------------------------------------------------------------|-------------|------|------|------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 4.5 \text{ V}$                      |             | 2.45 | 2.5  | 2.55 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 4.5 \text{ V}, T_a = 4.5 \text{ V}$ | -25 to 85°C | 2.4  |      | 2.6  |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                         |             |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                                 |             | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 3.2 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$          | mA          |      | 3    | 20   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 3.5 \text{ V}$ $I_0 = 0.5$                               | to 100 mA   |      | 3    | 25   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 3.5 \text{ to } 18V, I_O = 0\text{mA}$                   | ON MODE     |      | 0.5  | 1    | mA   |
|                 |                           | $V_I = 3.5 \text{ to } 18V, I_O = 100\text{mA}$                 |             |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                            | OFF MODE    |      | 50   | 100  | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                           | f = 120 Hz  |      | 82   |      | dB   |
|                 |                           | $V_1 = 4.5 \pm 1 \text{ V}$                                     | f = 1 KHz   |      | 77   |      |      |
|                 |                           |                                                                 | f = 10 KHz  |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                            |             |      | 50   |      | μV   |
| $V_d$           | Dropout Voltage           | I <sub>O</sub> = 100 mA                                         |             |      | 0.2  | 0.4  | V    |
|                 |                           | $I_O = 100 \text{ mA}$ $T_a = -40$                              | to 125°C    |      |      | 0.5  |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                     |             |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                     |             | 2    |      |      | V    |
| I <sub>I</sub>  | Control Input Current     | $V_{I} = 6 \text{ V}, \qquad V_{C} = 6 \text{ V}$               |             |      | 10   |      | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                       | 0 to 100 mA | 2    | 10   |      | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE27AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                                | s           | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|-------------------------------------------------------------------------------|-------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 4.7 \text{ V}$                                    |             | 2.673 | 2.7  | 2.727 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 4.7 \text{ V}, T_a = 0.00$                        | -25 to 85°C | 2.646 |      | 2.754 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                                       |             |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                                               |             | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $I_{\rm I} = 3.4 \text{ to } 18 \text{ V}, \qquad I_{\rm O} = 0.5 \text{ mA}$ |             |       | 3    | 15    | mV   |
| $\Delta V_{O}$  | Load Regulation           | = 3.7 V $I_O = 0.5 \text{ to } 100 \text{ mA}$                                |             |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 3.7 \text{ to } 18V, I_0 = 0\text{mA}$                                 | ON MODE     |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 3.7 \text{ to } 18V, I_O = 100\text{mA}$                               |             |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                                          | OFF MODE    |       | 50   | 100   | μΑ   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                                          | f = 120 Hz  |       | 82   |       | dB   |
|                 |                           | $V_1 = 4.7 \pm 1 \text{ V}$                                                   | f = 1 KHz   |       | 77   |       |      |
|                 |                           |                                                                               | f = 10 KHz  |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                                          |             |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                                       |             |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                                            | to 125°C    |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                                   |             |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                                   |             | 2     |      |       | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                                 |             |       | 10   |       | μA   |
| Со              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                                     | 0 to 100 mA | 2     | 10   |       | μF   |

# **ELECTRICAL CHARACTERISTICS FOR LE27C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol         | Parameter                 | Test Condition                                                  | s                                                           | Min.  | Тур. | Max.  | Unit |
|----------------|---------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-------|------|-------|------|
| Vo             | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 4.7 \text{ V}$                      |                                                             | 2.646 | 2.7  | 2.754 | V    |
|                |                           | $I_0 = 10 \text{ mA}, V_1 = 4.7 \text{ V}, T_a = 4.7 \text{ V}$ | -25 to 85°C                                                 | 2.592 |      | 2.808 |      |
| VI             | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                         |                                                             |       |      | 18    | V    |
| Io             | Output Current Limit      |                                                                 |                                                             |       |      |       | mA   |
| $\Delta V_{O}$ | Line Regulation           | $V_I = 3.4 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$          | mA                                                          |       | 3    | 20    | mV   |
| $\Delta V_{O}$ | Load Regulation           | $V_1 = 3.7 \text{ V}$ $I_0 = 0.5$                               | $I_{\rm I} = 3.7  \rm V$ $I_{\rm O} = 0.5  \rm to  100  mA$ |       | 3    | 25    | mV   |
| I <sub>d</sub> | Quiescent Current         | $V_1 = 3.7 \text{ to } 18V, I_0 = 0\text{mA}$                   | ON MODE                                                     |       | 0.5  | 1     | mA   |
|                |                           | $V_1 = 3.7 \text{ to } 18V, I_0 = 100\text{mA}$                 |                                                             |       | 1.5  | 3     |      |
|                |                           | V <sub>I</sub> = 6 V                                            | OFF MODE                                                    |       | 50   | 100   | μΑ   |
| SVR            | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                           | f = 120 Hz                                                  |       | 82   |       | dB   |
|                |                           | $V_1 = 4.7 \pm 1 \text{ V}$                                     | f = 1 KHz                                                   |       | 77   |       |      |
|                |                           |                                                                 | f = 10 KHz                                                  |       | 60   |       |      |
| eN             | Output Noise Voltage      | B = 10 Hz to 100 KHz                                            |                                                             |       | 50   |       | μV   |
| V <sub>d</sub> | Dropout Voltage           | I <sub>O</sub> = 100 mA                                         |                                                             |       | 0.2  | 0.4   | V    |
|                |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                              | to 125°C                                                    |       |      | 0.5   |      |
| $V_{IL}$       | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                     |                                                             |       |      | 0.8   | V    |
| $V_{IH}$       | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                     |                                                             | 2     |      |       | V    |
| l <sub>l</sub> | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                   |                                                             |       | 10   |       | μΑ   |
| Co             | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O$ =                                | 0 to 100 mA                                                 | 2     | 10   |       | μF   |

## **ELECTRICAL CHARACTERISTICS FOR LE30AB** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | ıs          | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------|-------|------|-------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 5 V           |             | 2.970 | 3    | 3.030 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 5 \text{ V}, T_a = -2$     | 5 to 85°C   | 2.940 |      | 3.060 |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |             |       |      | 18    | V    |
| I <sub>O</sub>  | Output Current Limit      |                                                        |             | 150   |      |       | mA   |
| ΔV <sub>O</sub> | Line Regulation           | $V_I = 3.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA          |       | 3    | 15    | mV   |
| ΔV <sub>O</sub> | Load Regulation           | $V_1 = 4 V$ $I_0 = 0.5$                                | to 100 mA   |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 4 \text{ to } 18V, I_0 = 0\text{mA}$            | ON MODE     |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 4 \text{ to } 18V, I_O = 100\text{mA}$          |             |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE    |       | 50   | 100   | μΑ   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                   | f = 120 Hz  |       | 81   |       | dB   |
|                 |                           | $V_1 = 5 \pm 1 \text{ V}$                              | f = 1 KHz   |       | 76   |       |      |
|                 |                           |                                                        | f = 10 KHz  |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |             |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |             |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C    |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                          |             |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             | 2     |      |       | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |             |       | 10   |       | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =              | 0 to 100 mA | 2     | 10   |       | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE30C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | s                                                                 | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------------------------------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 5 \text{ V}$               |                                                                   | 2.940 | 3    | 3.060 |      |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 5 \text{ V}, T_a = -2$     | 5 to 85°C                                                         | 2.880 |      | 3.120 |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |                                                                   |       |      | 18    | V    |
| I <sub>O</sub>  | Output Current Limit      |                                                        |                                                                   |       |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 3.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | $I_1 = 3.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5 \text{ mA}$ |       | 3    | 20    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 4 V$ $I_0 = 0.5$                                | I <sub>O</sub> = 0.5 to 100 mA                                    |       | 3    | 25    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 4 \text{ to } 18V, I_0 = 0\text{mA}$            | ON MODE                                                           |       | 0.5  | 1     | mA   |
|                 |                           | $V_1 = 4 \text{ to } 18V, I_0 = 100\text{mA}$          |                                                                   |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE                                                          |       | 50   | 100   | μΑ   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                   | f = 120 Hz                                                        |       | 81   |       | dB   |
|                 |                           | $V_1 = 5 \pm 1 \text{ V}$                              | f = 1 KHz                                                         |       | 76   |       |      |
|                 |                           |                                                        | f = 10 KHz                                                        |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |                                                                   |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |                                                                   |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C                                                          |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                                                   |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                                                   | 2     |      |       | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |                                                                   |       | 10   |       | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                       | 0 to 100 mA                                                       | 2     | 10   |       | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE33AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                  | s                                      | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|-----------------------------------------------------------------|----------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 5.3 \text{ V}$                      |                                        | 3.267 | 3.3  | 3.333 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 5.3 \text{ V}, T_a = 0.0 \text{ M}$ | -25 to 85°C                            | 3.234 |      | 3.366 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                         |                                        |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                                 |                                        | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 4 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$            | = 4 to 18 V, I <sub>O</sub> = 0.5 mA   |       | 3    | 15    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 4.3 \text{ V}$ $I_0 = 0.5$                               | = 4.3 V I <sub>O</sub> = 0.5 to 100 mA |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 4.3 \text{ to } 18V, I_0 = 0\text{mA}$                   | ON MODE                                |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 4.3 \text{ to } 18V, I_O = 100\text{mA}$                 |                                        |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                            | OFF MODE                               |       | 50   | 100   | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                           | f = 120 Hz                             |       | 80   |       | dB   |
|                 |                           | $V_1 = 5.3 \pm 1 \text{ V}$                                     | f = 1 KHz                              |       | 75   |       |      |
|                 |                           |                                                                 | f = 10 KHz                             |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                            |                                        |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                         |                                        |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                              | to 125°C                               |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                     |                                        |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                     |                                        | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                   |                                        |       | 10   |       | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                       | 0 to 100 mA                            | 2     | 10   |       | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE33C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | s                                                 | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|--------------------------------------------------------|---------------------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 5.3 \text{ V}$             |                                                   | 3.234 | 3.3  | 3.366 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 5.3 \text{ V}, T_a = 0.00$ | -25 to 85°C                                       | 3.168 |      | 3.432 |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |                                                   |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                        |                                                   |       |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 4 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$   | <sub>I</sub> = 4 to 18 V, I <sub>O</sub> = 0.5 mA |       | 3    | 20    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 4.3 \text{ V}$ $I_0 = 0.5$                      | = 4.3 V I <sub>O</sub> = 0.5 to 100 mA            |       | 3    | 25    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 4.3 \text{ to } 18V, I_O = 0\text{mA}$          | ON MODE                                           |       | 0.5  | 1     | mA   |
|                 |                           | $V_1 = 4.3 \text{ to } 18V, I_0 = 100\text{mA}$        |                                                   |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE                                          |       | 50   | 100   | μΑ   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                   | f = 120 Hz                                        |       | 80   |       | dB   |
|                 |                           | $V_1 = 5.3 \pm 1 \text{ V}$                            | f = 1 KHz                                         |       | 75   |       |      |
|                 |                           |                                                        | f = 10 KHz                                        |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |                                                   |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |                                                   |       | 0.2  | 0.4   | V    |
|                 |                           | $I_O = 100 \text{ mA}$ $T_a = -40$                     | to 125°C                                          |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                                   |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                                   | 2     |      |       | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |                                                   |       | 10   |       | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =              | 0 to 100 mA                                       | 2     | 10   |       | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE35AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                   | s                                      | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|------------------------------------------------------------------|----------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 5.5 \text{ V}$                       |                                        | 3.465 | 3.5  | 3.535 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 5.5 \text{ V}, T_a = 0.0 \text{ mA}$ | -25 to 85°C                            | 3.43  |      | 3.57  |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                          |                                        |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                                  |                                        | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 4.2 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$           | = 4.2 to 18 V, I <sub>O</sub> = 0.5 mA |       | 3    | 15    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 4.5 \text{ V}$ $I_0 = 0.5$                                | = 4.5 V I <sub>O</sub> = 0.5 to 100 mA |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 4.5 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE                                |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 4.5 \text{ to } 18V, I_O = 100\text{mA}$                  |                                        |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                             | OFF MODE                               |       | 50   | 100   | μA   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                             | f = 120 Hz                             |       | 79   |       | dB   |
|                 |                           | $V_1 = 5.5 \pm 1 \text{ V}$                                      | f = 1 KHz                              |       | 74   |       |      |
|                 |                           |                                                                  | f = 10 KHz                             |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                             |                                        |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                          |                                        |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                               | to 125°C                               |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                        |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                        | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                    |                                        |       | 10   |       | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                        | 0 to 100 mA                            | 2     | 10   |       | μF   |

## **ELECTRICAL CHARACTERISTICS FOR LE35C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | าร          | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------|------|------|------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 5.5 \text{ V}$             |             | 3.43 | 3.5  | 3.57 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 5.5 \text{ V}, T_a =$      | -25 to 85°C | 3.36 |      | 3.64 |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |             |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                        |             | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 4.2 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA          |      | 3    | 20   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 4.5 \text{ V}$ $I_0 = 0.5$                      | to 100 mA   |      | 3    | 25   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 4.5 \text{ to } 18V, I_0 = 0\text{mA}$          | ON MODE     |      | 0.5  | 1    | mA   |
|                 |                           | $V_1 = 4.5 \text{ to } 18V, I_0 = 100\text{mA}$        |             |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE    |      | 50   | 100  | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz  |      | 79   |      | dB   |
|                 |                           | $V_1 = 5.5 \pm 1 \text{ V}$                            | f = 1 KHz   |      | 74   |      |      |
|                 |                           |                                                        | f = 10 KHz  |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |             |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |             |      | 0.2  | 0.4  | V    |
|                 |                           | $I_O = 100 \text{ mA}$ $T_a = -40$                     | ) to 125°C  |      |      | 0.5  |      |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                          |             |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             | 2    |      |      | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |             |      | 10   |      | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =              | 0 to 100 mA | 2    | 10   |      | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE40AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                    | าร                                   | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|-------------------------------------------------------------------|--------------------------------------|------|------|------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 6 V                      |                                      | 3.96 | 4    | 4.04 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 6 \text{ V}, T_a = -2$                | 25 to 85°C                           | 3.92 |      | 4.08 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                           |                                      |      |      | 18   | V    |
| Ιο              | Output Current Limit      |                                                                   |                                      |      |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $I_1 = 4.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5 \text{ mA}$ |                                      |      | 4    | 20   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 5 V$ $I_0 = 0.5$                                           | = 5 V I <sub>O</sub> = 0.5 to 100 mA |      | 3    | 15   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 5 \text{ to } 18V, I_0 = 0\text{mA}$                       | ON MODE                              |      | 0.5  | 1    | mA   |
|                 |                           | $V_1 = 5 \text{ to } 18V, I_O = 100\text{mA}$                     |                                      |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                              | OFF MODE                             |      | 50   | 100  | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                             | f = 120 Hz                           |      | 78   |      | dB   |
|                 |                           | $V_1 = 6 \pm 1 \text{ V}$                                         | f = 1 KHz                            |      | 73   |      |      |
|                 |                           |                                                                   | f = 10 KHz                           |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                              |                                      |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                           |                                      |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                                | ) to 125°C                           |      |      | 0.5  |      |
| $V_{IL}$        | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                       |                                      |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                       |                                      | 2    |      |      | V    |
| l <sub>I</sub>  | Control Input Current     | $V_1 = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                     |                                      |      | 10   |      | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                         | 0 to 100 mA                          | 2    | 10   |      | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE40C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | ıs                                     | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|--------------------------------------------------------|----------------------------------------|------|------|------|------|
| Vo              | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 6 \text{ V}$               |                                        | 3.92 | 4    | 4.08 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 6 \text{ V}, T_a = -2$     | 5 to 85°C                              | 3.84 |      | 4.16 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |                                        |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                        |                                        | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 4.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | = 4.7 to 18 V, I <sub>O</sub> = 0.5 mA |      | 4    | 30   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 5 V$ $I_0 = 0.5$                                | = 5 V I <sub>O</sub> = 0.5 to 100 mA   |      | 3    | 25   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 5 \text{ to } 18V, I_0 = 0\text{mA}$            | ON MODE                                |      | 0.5  | 1    | mA   |
|                 |                           | $V_1 = 5 \text{ to } 18V, I_0 = 100\text{mA}$          |                                        |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE                               |      | 50   | 100  | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz                             |      | 78   |      | dB   |
|                 |                           | $V_1 = 6 \pm 1 \text{ V}$                              | f = 1 KHz                              |      | 73   |      |      |
|                 |                           |                                                        | f = 10 KHz                             |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |                                        |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |                                        |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C                               |      |      | 0.5  |      |
| $V_{IL}$        | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                        |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                        | 2    |      |      | V    |
| l <sub>l</sub>  | Control Input Current     | $V_{I} = 6 \text{ V}, \qquad V_{C} = 6 \text{ V}$      |                                        |      | 10   |      | μΑ   |
| Со              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                       | 0 to 100 mA                            | 2    | 10   |      | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE45AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                   | s                                      | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|------------------------------------------------------------------|----------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 6.5 \text{ V}$                       |                                        | 4.445 | 4.5  | 4.545 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 6.5 \text{ V}, T_a = -6.5 \text{ V}$ | -25 to 85°C                            | 4.41  |      | 4.59  |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                          |                                        |       |      | 18    | V    |
| I <sub>O</sub>  | Output Current Limit      |                                                                  |                                        | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | = 5.2 to 18 V, I <sub>O</sub> = 0.5 mA                           |                                        |       | 4    | 20    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 5.5 \text{ V}$ $I_0 = 0.5$                                | = 5.5 V I <sub>O</sub> = 0.5 to 100 mA |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 5.5 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE                                |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 5.5 \text{ to } 18V, I_O = 100\text{mA}$                  |                                        |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                             | OFF MODE                               |       | 50   | 100   | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                            | f = 120 Hz                             |       | 77   |       | dB   |
|                 |                           | $V_1 = 6.5 \pm 1 \text{ V}$                                      | f = 1 KHz                              |       | 72   |       |      |
|                 |                           |                                                                  | f = 10 KHz                             |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                             |                                        |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                          |                                        |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                               | to 125°C                               |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                        |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | T <sub>a</sub> = -40 to 125°C                                    |                                        | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                    |                                        |       | 10   |       | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                        | 0 to 100 mA                            | 2     | 10   |       | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE45C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                   | s                                      | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|------------------------------------------------------------------|----------------------------------------|------|------|------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 6.5 \text{ V}$                       |                                        | 4.41 | 4.5  | 4.59 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 6.5 \text{ V}, T_a = 0.0 \text{ mA}$ | -25 to 85°C                            | 4.32 |      | 4.68 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                          |                                        |      |      | 18   | V    |
| Ιο              | Output Current Limit      |                                                                  |                                        |      |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 5.2 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$           | = 5.2 to 18 V, I <sub>O</sub> = 0.5 mA |      | 4    | 30   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 5.5 \text{ V}$ $I_0 = 0.5$                                | to 100 mA                              |      | 3    | 25   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 5.5 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE                                |      | 0.5  | 1    | mA   |
|                 |                           | $V_1 = 5.5 \text{ to } 18V, I_0 = 100\text{mA}$                  |                                        |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                             | OFF MODE                               |      | 50   | 100  | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                            | f = 120 Hz                             |      | 77   |      | dB   |
|                 |                           | $V_1 = 6.5 \pm 1 \text{ V}$                                      | f = 1 KHz                              |      | 72   |      |      |
|                 |                           |                                                                  | f = 10 KHz                             |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                             |                                        |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                          |                                        |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                               | to 125°C                               |      |      | 0.5  |      |
| $V_{IL}$        | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                        |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                        | 2    |      |      | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                    |                                        |      | 10   |      | μA   |
| Со              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                        | 0 to 100 mA                            | 2    | 10   |      | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE47AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | s                                      | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|--------------------------------------------------------|----------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 6.7 \text{ V}$             |                                        | 4.653 | 4.7  | 4.747 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 6.7 \text{ V}, T_a = -$    | 25 to 85°C                             | 4.606 |      | 4.794 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |                                        |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                        |                                        | 150   |      |       | mΑ   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 5.4 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | = 5.4 to 18 V, I <sub>O</sub> = 0.5 mA |       | 4    | 20    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 5.7 \text{ V}$ $I_0 = 0.5$                      | = 5.7 V I <sub>O</sub> = 0.5 to 100 mA |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 5.7 \text{ to } 18V, I_0 = 0\text{mA}$          | ON MODE                                |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 5.7 \text{ to } 18V, I_O = 100\text{mA}$        |                                        |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE                               |       | 50   | 100   | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz                             |       | 77   |       | dB   |
|                 |                           | $V_1 = 6.7 \pm 1 \text{ V}$                            | f = 1 KHz                              |       | 72   |       |      |
|                 |                           |                                                        | f = 10 KHz                             |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |                                        |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |                                        |       | 0.2  | 0.4   | V    |
|                 |                           | $I_O = 100 \text{ mA}$ $T_a = -40$                     | to 125°C                               |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                        |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                        | 2     |      |       | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |                                        |       | 10   |       | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =              | 0 to 100 mA                            | 2     | 10   |       | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE47C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                   | s                                      | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|------------------------------------------------------------------|----------------------------------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 6.7 \text{ V}$                       |                                        | 4.606 | 4.7  | 4.794 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 6.7 \text{ V}, T_a = -6.7 \text{ V}$ | -25 to 85°C                            | 4.512 |      | 4.888 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                          |                                        |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                                  |                                        | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 5.4 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$           | = 5.4 to 18 V, I <sub>O</sub> = 0.5 mA |       | 4    | 30    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 5.7 \text{ V}$ $I_0 = 0.5$                                | = 5.7 V I <sub>O</sub> = 0.5 to 100 mA |       | 3    | 25    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 5.7 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE                                |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 5.7 \text{ to } 18V, I_O = 100\text{mA}$                  |                                        |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                             | OFF MODE                               |       | 50   | 100   | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                            | f = 120 Hz                             |       | 77   |       | dB   |
|                 |                           | $V_1 = 6.7 \pm 1 \text{ V}$                                      | f = 1 KHz                              |       | 72   |       |      |
|                 |                           |                                                                  | f = 10 KHz                             |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                             |                                        |       | 50   |       | μV   |
| $V_d$           | Dropout Voltage           | I <sub>O</sub> = 100 mA                                          |                                        |       | 0.2  | 0.4   | V    |
|                 |                           | $I_O = 100 \text{ mA}$ $T_a = -40$                               | to 125°C                               |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                        |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |                                        | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                    |                                        |       | 10   |       | μA   |
| Со              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                        | 0 to 100 mA                            | 2     | 10   |       | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE50AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | าร                                                                            | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|------|------|------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 7 V           |                                                                               | 4.95 | 5    | 5.05 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 7 \text{ V}, T_a = -2$     | 25 to 85°C                                                                    | 4.9  |      | 5.1  |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |                                                                               |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                        |                                                                               | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 5.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | $I_{\rm I} = 5.7 \text{ to } 18 \text{ V}, \qquad I_{\rm O} = 0.5 \text{ mA}$ |      | 4    | 20   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 6 V$ $I_0 = 0.5$                                | / <sub>I</sub> = 6 V                                                          |      | 3    | 15   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 6 \text{ to } 18V, I_O = 0\text{mA}$            | ON MODE                                                                       |      | 0.5  | 1    | mA   |
|                 |                           | $V_I = 6 \text{ to } 18V, I_O = 100\text{mA}$          |                                                                               |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE                                                                      |      | 50   | 100  | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz                                                                    |      | 76   |      | dB   |
|                 |                           | $V_1 = 7 \pm 1 \text{ V}$                              | f = 1 KHz                                                                     |      | 71   |      |      |
|                 |                           |                                                        | f = 10 KHz                                                                    |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |                                                                               |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |                                                                               |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | ) to 125°C                                                                    |      |      | 0.5  |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                                                               |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                                                                               | 2    |      |      | V    |
| I <sub>I</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |                                                                               |      | 10   |      | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_0$ =                       | 0 to 100 mA                                                                   | 2    | 10   |      | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE50C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol         | Parameter                 | Test Condition                                         | s           | Min. | Тур. | Max. | Unit |
|----------------|---------------------------|--------------------------------------------------------|-------------|------|------|------|------|
| Vo             | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 7 V           |             | 4.9  | 5    | 5.1  | V    |
|                |                           | $I_0 = 10 \text{ mA}, V_1 = 7 \text{ V}, T_a = -2$     | 5 to 85°C   | 4.8  |      | 5.2  |      |
| VI             | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |             |      |      | 18   | V    |
| Io             | Output Current Limit      |                                                        |             | 150  |      |      | mA   |
| $\Delta V_{O}$ | Line Regulation           | $V_1 = 5.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA          |      | 4    | 30   | mV   |
| $\Delta V_{O}$ | Load Regulation           | $V_1 = 6 V$ $I_0 = 0.5$                                | to 100 mA   |      | 3    | 25   | mV   |
| I <sub>d</sub> | Quiescent Current         | $V_1 = 6 \text{ to } 18V, I_O = 0\text{mA}$            | ON MODE     |      | 0.5  | 1    | mA   |
|                |                           | $V_1 = 6 \text{ to } 18V, I_O = 100\text{mA}$          |             |      | 1.5  | 3    |      |
|                |                           | V <sub>I</sub> = 6 V                                   | OFF MODE    |      | 50   | 100  | μΑ   |
| SVR            | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                   | f = 120 Hz  |      | 76   |      | dB   |
|                |                           | $V_1 = 7 \pm 1 \text{ V}$                              | f = 1 KHz   |      | 71   |      |      |
|                |                           |                                                        | f = 10 KHz  |      | 60   |      |      |
| eN             | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |             |      | 50   |      | μV   |
| $V_d$          | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |             |      | 0.2  | 0.4  | V    |
|                |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C    |      |      | 0.5  |      |
| $V_{IL}$       | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             |      |      | 0.8  | V    |
| $V_{IH}$       | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             | 2    |      |      | V    |
| l <sub>l</sub> | Control Input Current     | $V_1 = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |             |      | 10   |      | μA   |
| Co             | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_0$ =                       | 0 to 100 mA | 2    | 10   |      | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE52AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | s           | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------|-------|------|-------|------|
| Vo              | Output Voltage            | $I_0 = 10 \text{ mA}, V_1 = 7.2 \text{ V}$             |             | 5.148 | 5.2  | 5.252 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 7.2 \text{ V}, T_a =$      | -25 to 85°C | 5.096 |      | 5.304 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |             |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                        |             | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 5.9 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA          |       | 4    | 20    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 6.2 \text{ V}$ $I_0 = 0.5$                      | to 100 mA   |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 6.2 \text{ to } 18V, I_0 = 0\text{mA}$          | ON MODE     |       | 0.5  | 1     | mA   |
|                 |                           | $V_I = 6.2 \text{ to } 18V, I_O = 100\text{mA}$        |             |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE    |       | 50   | 100   | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz  |       | 76   |       | dB   |
|                 |                           | $V_1 = 7.2 \pm 1 \text{ V}$                            | f = 1 KHz   |       | 71   |       |      |
|                 |                           |                                                        | f = 10 KHz  |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |             |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |             |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C    |       |      | 0.5   |      |
| $V_{IL}$        | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_{I} = 6 \text{ V}, \qquad V_{C} = 6 \text{ V}$      |             |       | 10   |       | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =              | 0 to 100 mA | 2     | 10   |       | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE52C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                   | s           | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|------------------------------------------------------------------|-------------|-------|------|-------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 7.2 V                   |             | 5.096 | 5.2  | 5.304 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 7.2 \text{ V}, T_a = -10 \text{ mA}$ | -25 to 85°C | 4.992 |      | 5.408 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                          |             |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                                  |             | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 5.9 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$           | mA          |       | 4    | 30    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 6.2 \text{ V}$ $I_0 = 0.5$                                | to 100 mA   |       | 3    | 25    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 6.2 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE     |       | 0.5  | 1     | mA   |
|                 |                           | $V_1 = 6.2 \text{ to } 18V, I_0 = 100\text{mA}$                  |             |       | 1.5  | 3     |      |
|                 |                           | V <sub>I</sub> = 6 V                                             | OFF MODE    |       | 50   | 100   | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                            | f = 120 Hz  |       | 76   |       | dB   |
|                 |                           | $V_1 = 7.2 \pm 1 \text{ V}$                                      | f = 1 KHz   |       | 71   |       |      |
|                 |                           |                                                                  | f = 10 KHz  |       | 60   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                             |             |       | 50   |       | μV   |
| $V_d$           | Dropout Voltage           | I <sub>O</sub> = 100 mA                                          |             |       | 0.2  | 0.4   | V    |
|                 |                           | $I_O = 100 \text{ mA}$ $T_a = -40$                               | to 125°C    |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |             |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                      |             | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$                    |             |       | 10   |       | μA   |
| Со              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                        | 0 to 100 mA | 2     | 10   |       | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE55AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | s           | Min.  | Тур. | Max. | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------|-------|------|------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 7.5 V         |             | 5.445 | 5.5  | 5.55 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 7.5 \text{ V}, T_a = 0.00$ | -25 to 85°C | 5.39  |      | 5.61 |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |             |       |      | 18   | V    |
| Io              | Output Current Limit      |                                                        |             | 150   |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 6.2 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA          |       | 4    | 20   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 6.5 \text{ V}$ $I_0 = 0.5$                      | to 100 mA   |       | 3    | 15   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 6.5 \text{ to } 18V, I_O = 0\text{mA}$          | ON MODE     |       | 0.5  | 1    | mA   |
|                 |                           | $V_I = 6.5 \text{ to } 18V, I_O = 100\text{mA}$        |             |       | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE    |       | 50   | 100  | μA   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                   | f = 120 Hz  |       | 76   |      | dB   |
|                 |                           | $V_1 = 7.5 \pm 1 \text{ V}$                            | f = 1 KHz   |       | 71   |      |      |
|                 |                           |                                                        | f = 10 KHz  |       | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |             |       | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |             |       | 0.2  | 0.4  | V    |
|                 |                           | $I_O = 100 \text{ mA}$ $T_a = -40$                     | to 125°C    |       |      | 0.5  |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             |       |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             | 2     |      |      | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |             |       | 10   |      | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                       | 0 to 100 mA | 2     | 10   |      | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE55C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | s                     | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-----------------------|------|------|------|------|
| Vo              | Output Voltage            | $I_O = 10 \text{ mA}, V_I = 7.5 \text{ V}$             |                       | 5.39 | 5.5  | 5.61 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 7.5 \text{ V}, T_a = 0.00$ | ·25 to 85°C           | 5.28 |      | 5.72 |      |
| V <sub>I</sub>  | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                | <sub>0</sub> = 100 mA |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                        |                       | 150  |      |      | mA   |
| ΔV <sub>O</sub> | Line Regulation           | $V_1 = 6.2 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA                    |      | 4    | 30   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 6.5 \text{ V}$ $I_0 = 0.5$                      | to 100 mA             |      | 3    | 25   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 6.5 \text{ to } 18V, I_0 = 0\text{mA}$          | ON MODE               |      | 0.5  | 1    | mA   |
|                 |                           | $V_1 = 6.5 \text{ to } 18V, I_O = 100\text{mA}$        |                       |      | 1.5  | 3    |      |
|                 |                           | V <sub>I</sub> = 6 V                                   | OFF MODE              |      | 50   | 100  | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz            |      | 76   |      | dB   |
|                 |                           | $V_1 = 7.5 \pm 1 \text{ V}$                            | f = 1 KHz             |      | 71   |      |      |
|                 |                           |                                                        | f = 10 KHz            |      | 60   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |                       |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |                       |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C              |      |      | 0.5  |      |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                          |                       |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |                       | 2    |      |      | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$          |                       |      | 10   |      | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                       | 0 to 100 mA           | 2    | 10   |      | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE60AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | s           | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------|------|------|------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 8 V           |             | 5.94 | 6    | 6.06 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 8 \text{ V}, T_a = -2$     | 5 to 85°C   | 5.88 |      | 6.12 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |             |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                        |             | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 6.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA          |      | 5    | 25   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 7 V$ $I_0 = 0.5$                                | to 100 mA   |      | 3    | 15   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 7 \text{ to } 18V, I_O = 0\text{mA}$            | ON MODE     |      | 0.7  | 1.6  | mA   |
|                 |                           | $V_1 = 7 \text{ to } 18V, I_0 = 100\text{mA}$          |             |      | 1.7  | 3.6  |      |
|                 |                           | V <sub>I</sub> = 9 V                                   | OFF MODE    |      | 70   | 140  | μA   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz  |      | 75   |      | dB   |
|                 |                           | $V_1 = 8 \pm 1 \text{ V}$                              | f = 1 KHz   |      | 69   |      |      |
|                 |                           |                                                        | f = 10 KHz  |      | 57   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |             |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |             |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C    |      |      | 0.5  |      |
| $V_{IL}$        | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             | 2    |      |      | V    |
| l <sub>l</sub>  | Control Input Current     | $V_I = 9 V$ , $V_C = 6 V$                              |             |      | 10   |      | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                       | 0 to 100 mA | 2    | 10   |      | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE60C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                         | ıs          | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|--------------------------------------------------------|-------------|------|------|------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 8 V           |             | 5.88 | 6    | 6.12 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 8 \text{ V}, T_a = -2$     | 5 to 85°C   | 5.76 |      | 6.24 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                |             |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                        |             | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 6.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$ | mA          |      | 5    | 35   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 7 V$ $I_0 = 0.5$                                | to 100 mA   |      | 3    | 25   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 7 \text{ to } 18V, I_0 = 0\text{mA}$            | ON MODE     |      | 0.7  | 1.6  | mA   |
|                 |                           | $V_1 = 7 \text{ to } 18V, I_O = 100\text{mA}$          |             |      | 1.7  | 3.6  |      |
|                 |                           | V <sub>I</sub> = 9 V                                   | OFF MODE    |      | 70   | 140  | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                  | f = 120 Hz  |      | 75   |      | dB   |
|                 |                           | $V_1 = 8 \pm 1 \text{ V}$                              | f = 1 KHz   |      | 69   |      |      |
|                 |                           |                                                        | f = 10 KHz  |      | 57   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                   |             |      | 50   |      | μV   |
| $V_d$           | Dropout Voltage           | I <sub>O</sub> = 100 mA                                |             |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                     | to 125°C    |      |      | 0.5  |      |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                          |             |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$            |             | 2    |      |      | V    |
| l <sub>l</sub>  | Control Input Current     | $V_{I} = 9 \text{ V}, \qquad V_{C} = 6 \text{ V}$      |             |      | 10   |      | μA   |
| Со              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                       | 0 to 100 mA | 2    | 10   |      | μF   |

## **ELECTRICAL CHARACTERISTICS FOR LE80AB** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                 | ıs          | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|----------------------------------------------------------------|-------------|------|------|------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 10 V                  |             | 7.92 | 8    | 8.08 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 10 \text{ V}, T_a = -10 \text{ V}$ | 25 to 85°C  | 7.84 |      | 8.16 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                        |             |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                                |             | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 8.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$         | mA          |      | 5    | 25   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 9 V$ $I_0 = 0.5$                                        | to 100 mA   |      | 3    | 15   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 9 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE     |      | 0.7  | 1.6  | mA   |
|                 |                           | $V_1 = 9 \text{ to } 18V, I_O = 100\text{mA}$                  |             |      | 1.7  | 3.6  |      |
|                 |                           | V <sub>I</sub> = 9 V                                           | OFF MODE    |      | 70   | 140  | μΑ   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                           | f = 120 Hz  |      | 72   |      | dB   |
|                 |                           | $V_1 = 10 \pm 1 \text{ V}$                                     | f = 1 KHz   |      | 66   |      |      |
|                 |                           |                                                                | f = 10 KHz  |      | 57   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                           |             |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                        |             |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                             | to 125°C    |      |      | 0.5  |      |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                                  |             |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | T <sub>a</sub> = -40 to 125°C                                  |             | 2    |      |      | V    |
| l <sub>l</sub>  | Control Input Current     | $V_1 = 9 V$ , $V_C = 6 V$                                      |             |      | 10   |      | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                      | 0 to 100 mA | 2    | 10   |      | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE80C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                 | ıs          | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|----------------------------------------------------------------|-------------|------|------|------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 10 V                  |             | 7.84 | 8    | 8.16 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 10 \text{ V}, T_a = -10 \text{ V}$ | 25 to 85°C  | 7.68 |      | 8.32 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                        |             |      |      | 18   | V    |
| Io              | Output Current Limit      |                                                                |             | 150  |      |      | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_1 = 8.7 \text{ to } 18 \text{ V}, \qquad I_O = 0.5$         | mA          |      | 5    | 35   | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 9 V$ $I_0 = 0.5$                                        | to 100 mA   |      | 3    | 25   | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 9 \text{ to } 18V, I_O = 0\text{mA}$                    | ON MODE     |      | 0.7  | 1.6  | mA   |
|                 |                           | $V_1 = 9 \text{ to } 18V, I_0 = 100\text{mA}$                  |             |      | 1.7  | 3.6  |      |
|                 |                           | V <sub>I</sub> = 9 V                                           | OFF MODE    |      | 70   | 140  | μΑ   |
| SVR             | Supply Voltage Rejection  | $I_O = 5 \text{ mA}$                                           | f = 120 Hz  |      | 72   |      | dB   |
|                 |                           | $V_1 = 10 \pm 1 \text{ V}$                                     | f = 1 KHz   |      | 66   |      |      |
|                 |                           |                                                                | f = 10 KHz  |      | 57   |      |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                           |             |      | 50   |      | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                        |             |      | 0.2  | 0.4  | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                             | to 125°C    |      |      | 0.5  |      |
| V <sub>IL</sub> | Control Input Logic Low   | T <sub>a</sub> = -40 to 125°C                                  |             |      |      | 0.8  | V    |
| V <sub>IH</sub> | Control Input Logic High  | T <sub>a</sub> = -40 to 125°C                                  |             | 2    |      |      | V    |
| I <sub>I</sub>  | Control Input Current     | $V_{I} = 9 V, V_{C} = 6 V$                                     |             |      | 10   |      | μΑ   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ $I_O =$                               | 0 to 100 mA | 2    | 10   |      | μF   |

**ELECTRICAL CHARACTERISTICS FOR LE120AB** (refer to the test circuits,  $T_j$  = 25°C,  $C_l$  = 0.1  $\mu$ F,  $C_O$  = 2.2  $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                  | s           | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|-----------------------------------------------------------------|-------------|-------|------|-------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 14 V                   |             | 11.88 | 12   | 12.12 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 14 \text{ V}, T_a = -10 \text{ mA}$ | 25 to 85°C  | 11.76 |      | 12.24 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                         |             |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                                 |             | 150   |      |       | mΑ   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 12.7 \text{ to } 18 \text{ V},  I_O = 0.5$               | mA          |       | 5    | 25    | mV   |
| $\Delta V_{O}$  | Load Regulation           | $V_1 = 13 \text{ V}$ $I_0 = 0.5$                                | to 100 mA   |       | 3    | 15    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_1 = 13 \text{ to } 18V, I_0 = 0\text{mA}$                    | ON MODE     |       | 0.7  | 1.6   | mA   |
|                 |                           | $V_I = 13 \text{ to } 18V, I_O = 100\text{mA}$                  |             |       | 1.7  | 3.6   |      |
|                 |                           | V <sub>I</sub> = 13 V                                           | OFF MODE    |       | 90   | 180   | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                           | f = 120 Hz  |       | 69   |       | dB   |
|                 |                           | $V_1 = 14 \pm 1 \text{ V}$                                      | f = 1 KHz   |       | 63   |       |      |
|                 |                           |                                                                 | f = 10 KHz  |       | 55   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                            |             |       | 50   |       | μV   |
| V <sub>d</sub>  | Dropout Voltage           | I <sub>O</sub> = 100 mA                                         |             |       | 0.2  | 0.4   | V    |
|                 |                           | $I_0 = 100 \text{ mA}$ $T_a = -40$                              | to 125°C    |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                     |             |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | T <sub>a</sub> = -40 to 125°C                                   |             | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_{I} = 13 \text{ V}, \qquad V_{C} = 6 \text{ V}$              |             |       | 10   |       | μA   |
| Co              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                       | 0 to 100 mA | 2     | 10   |       | μF   |

### **ELECTRICAL CHARACTERISTICS FOR LE120C** (refer to the test circuits, $T_j$ = 25°C, $C_l$ = 0.1 $\mu$ F, $C_O$ = 2.2 $\mu$ F unless otherwise specified.)

| Symbol          | Parameter                 | Test Condition                                                 | s           | Min.  | Тур. | Max.  | Unit |
|-----------------|---------------------------|----------------------------------------------------------------|-------------|-------|------|-------|------|
| Vo              | Output Voltage            | I <sub>O</sub> = 10 mA, V <sub>I</sub> = 14 V                  |             | 11.76 | 12   | 12.24 | V    |
|                 |                           | $I_0 = 10 \text{ mA}, V_1 = 14 \text{ V}, T_a = -14 \text{ V}$ | 25 to 85°C  | 11.52 |      | 12.48 |      |
| VI              | Operating Input Voltage   | I <sub>O</sub> = 100 mA                                        |             |       |      | 18    | V    |
| Io              | Output Current Limit      |                                                                |             | 150   |      |       | mA   |
| $\Delta V_{O}$  | Line Regulation           | $V_I = 12.7 \text{ to } 18 \text{ V},  I_O = 0.5$              | mA          |       | 5    | 35    | mV   |
| $\Delta V_{O}$  | Load Regulation           | V <sub>I</sub> = 13 V I <sub>O</sub> = 0.5                     | to 100 mA   |       | 3    | 25    | mV   |
| I <sub>d</sub>  | Quiescent Current         | $V_{I} = 13 \text{ to } 18V, I_{O} = 0\text{mA}$               | ON MODE     |       | 0.7  | 1.6   | mΑ   |
|                 |                           | $V_1 = 13 \text{ to } 18V, I_0 = 100\text{mA}$                 |             |       | 1.7  | 3.6   |      |
|                 |                           | V <sub>I</sub> = 13 V                                          | OFF MODE    |       | 90   | 180   | μΑ   |
| SVR             | Supply Voltage Rejection  | I <sub>O</sub> = 5 mA                                          | f = 120 Hz  |       | 69   |       | dB   |
|                 |                           | $V_1 = 14 \pm 1 \text{ V}$                                     | f = 1 KHz   |       | 63   |       |      |
|                 |                           |                                                                | f = 10 KHz  |       | 55   |       |      |
| eN              | Output Noise Voltage      | B = 10 Hz to 100 KHz                                           |             |       | 50   |       | μV   |
| $V_d$           | Dropout Voltage           | I <sub>O</sub> = 100 mA                                        |             |       | 0.2  | 0.4   | V    |
|                 |                           | $I_O = 100 \text{ mA}$ $T_a = -40$                             | to 125°C    |       |      | 0.5   |      |
| V <sub>IL</sub> | Control Input Logic Low   | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                    |             |       |      | 0.8   | V    |
| V <sub>IH</sub> | Control Input Logic High  | $T_a = -40 \text{ to } 125^{\circ}\text{C}$                    |             | 2     |      |       | V    |
| l <sub>l</sub>  | Control Input Current     | $V_{I} = 13 \text{ V}, \qquad V_{C} = 6 \text{ V}$             |             |       | 10   |       | μA   |
| Со              | Output Bypass Capacitance | ESR = 0.1 to 10 $\Omega$ I <sub>O</sub> =                      | 0 to 100 mA | 2     | 10   |       | μF   |

#### TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified $V_{O(NOM)} = 3.3 \text{ V}$ )

Figure 1 : Dropout Voltage vs Output Current



Figure 2 : Dropout Voltage vs Temperature



Figure 3: Supply Current vs Temperature



Figure 4 : Supply Current vs Input Voltage



**Figure 5 :** Short Circuit Current vs Dropout Voltage



Figure 6: S.V.R. vs Frequency



#### Logic Controlled Precision 3.3/5.0V Selectable Output



#### Sequential Multi-Output Supply



#### Multiple Supply With ON/OFF Toggle Switch



#### **Basic Inhibit Functions**



#### **SO-8 MECHANICAL DATA**

| DIM  |      | mm.  |       |       | inch  | •     |
|------|------|------|-------|-------|-------|-------|
| DIM. | MIN. | TYP  | MAX.  | MIN.  | TYP.  | MAX.  |
| А    | 1.35 |      | 1.75  | 0.053 |       | 0.069 |
| A1   | 0.10 |      | 0.25  | 0.04  |       | 0.010 |
| A2   | 1.10 |      | 1.65  | 0.043 |       | 0.065 |
| В    | 0.33 |      | 0.51  | 0.013 |       | 0.020 |
| С    | 0.19 |      | 0.25  | 0.007 |       | 0.010 |
| D    | 4.80 |      | 5.00  | 0.189 |       | 0.197 |
| E    | 3.80 |      | 4.00  | 0.150 |       | 0.157 |
| е    |      | 1.27 |       |       | 0.050 |       |
| Н    | 5.80 |      | 6.20  | 0.228 |       | 0.244 |
| h    | 0.25 |      | 0.50  | 0.010 |       | 0.020 |
| L    | 0.40 |      | 1.27  | 0.016 |       | 0.050 |
| k    |      |      | 8° (r | nax.) |       |       |
| ddd  |      |      | 0.1   |       |       | 0.04  |



#### **TO-92 MECHANICA DATA**

| DIM. | mm.  |     |       | mils  |      |       |
|------|------|-----|-------|-------|------|-------|
|      | MIN. | TYP | MAX.  | MIN.  | TYP. | MAX.  |
| А    | 4.32 |     | 4.95  | 170.1 |      | 194.9 |
| b    | 0.36 |     | 0.51  | 14.2  |      | 20.1  |
| D    | 4.45 |     | 4.95  | 175.2 |      | 194.9 |
| E    | 3.30 |     | 3.94  | 129.9 |      | 155.1 |
| е    | 2.41 |     | 2.67  | 94.9  |      | 105.1 |
| e1   | 1.14 |     | 1.40  | 44.9  |      | 55.1  |
| L    | 12.7 |     | 15.49 | 500.0 |      | 609.8 |
| R    | 2.16 |     | 2.41  | 85.0  |      | 94.9  |
| S1   | 0.92 |     | 1.52  | 36.2  |      | 59.8  |
| W    | 0.41 |     | 0.56  | 16.1  |      | 22.0  |



#### Tape & Reel SO-8 MECHANICAL DATA

| DIM. | mm.  |     |      | inch  |      |        |
|------|------|-----|------|-------|------|--------|
|      | MIN. | TYP | MAX. | MIN.  | TYP. | MAX.   |
| А    |      |     | 330  |       |      | 12.992 |
| С    | 12.8 |     | 13.2 | 0.504 |      | 0.519  |
| D    | 20.2 |     |      | 0.795 |      |        |
| N    | 60   |     |      | 2.362 |      |        |
| Т    |      |     | 22.4 |       |      | 0.882  |
| Ao   | 8.1  |     | 8.5  | 0.319 |      | 0.335  |
| Во   | 5.5  |     | 5.9  | 0.216 |      | 0.232  |
| Ko   | 2.1  |     | 2.3  | 0.082 |      | 0.090  |
| Po   | 3.9  |     | 4.1  | 0.153 |      | 0.161  |
| Р    | 7.9  |     | 8.1  | 0.311 |      | 0.319  |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com