Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

> Факультет інформатики та обчислювальної техніки Кафедра автоматизованих систем обробки інформації і управління

> > Звіт

з лабораторної роботи № 6
з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»
«Дослідження лінійних алгоритмів »
Варіант <u>8</u>

Виконав	III-15, Дацьо Іван Іванович
студент	(шифр, прізвище, ім'я, по батькові)

Перевірив Вєчерковська Анастасія Сергіївна

Київ 2021

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

Мета — дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Індивідуальне завдання:

Варіант 8

Задача:

8. Обчислити суму елементів геометричної прогресії, що убуває: початкове значення – 50, кінцеве значення – 1, крок – 2

1. Постановка задачі.

Обчислити суму геометричної прогресії використовуючи для рекурсивний алгоритм і обчислити даний алгоритм для заданих значеннь.

2.Побудова математичної моделі

З мінна	Тип	Ім'я	Призначення
Значення початкового елемента геомт. прогресії	Дійсний	b1	Початкові дані
Значення кінцевого елемента геомт. прогресії	Дійсний	b_n	Початкові дані
Знаменник	Дійсний	q	Проміжні дані
Обчислення прогресії	Функція	progression	Проміжні дані

Для позначення порівняння використовуємо знак " =="

- 1)Створюємо необхідні змінні.
- 2) За допомогою функції знаходимо суму геометричної прогресії рекурсивним алгоритмом.
- 3) Для цього створюємо базовий випадок, за якого реалізується вихід із рекурсії.
- 4)В цьому випадку перевіряємо на рівність першого та останнього елемента прогресії.
- 5) В разі рівності повертаємо значення першого елемента.
- 6) Повертаємо суму першого елемента та суму progression від першого елемента розділеного на чисельник, останнього елемента та значенника

3.Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блоксхеми.

Крок 1. Визначимо основні дії.

Крок 2.Введення змінних.

Крок 3. Деталізуємо дію знаходження геом. суми рекурсивним алгоритмом.

4. Псевдокод

Крок 1.

Початок

Введення змінних.

Знаходження суми геом. прогресії рекурсивним алгоритмом.

Кінепь

Крок 2.

Початок

Введення b1, b n, q

Знаходження геом. суми рекурсивним алгоритмом.

Кінепь

Початок

Введення b1, b_n, q progression(b1, b_n, q).

Кінець

Підпрограма

progression(b1, b_n, q)

якщо b1 == b_n

то повернути b1

все якщо

повернути b1 + progression (b1/q,b_n,q)

5. Блок-схема алгоритму

Крок 1.

Крок 2.

Крок 3.

Підпрограма

6. Код програми(с++)

```
#include <iostream>
      using namespace std;
      int main ()
      float b1, b_n , q;
      float progression (float b1, float b_n , float q);
      cout<<"b1=";
      cin >> b1;
 11
      cout<<"b(n)=";
 13
      cin >> b_n;
      cout<<"q=";
      cin >> q;
      cout<<"Результат "<< progression(b1, b_n , q);
      float progression (float b1, float b_n , float q)
          if (b1 == b_n){
              return b1;
          return b1 + progression ( b1 / q, b_n, q);
 25
b1=50
b(n) = 1
q=2
...Program finished with exit code 0
Press ENTER to exit console.
```

7. Випробування алгоритму

Блок	Дія	Дія(функція)
Початок		
1	b1 = 50	
2	b_n = 1	
3	q = 2	
4		50 == 1 false
5		return 50 +
		progression(25, 1,2)
6		25 == 1 false
7		return 50 + 25 +

	progression(12.5, 1, 2)
8	12.5 == 1 false
9	return 50 + 25 + 12.5
	+progression(6.25, 1, 2)
9	6.25 == 1 false
10	return 50 + 25 + 12.5 +
	6.25 + progression(3.125,
	1, 2)
11	3.125 == 1 false
12	return 50 + 25 + 12.5 +
	6.25 + 3.125
	progression(1.5625, 1, 2)
13	1.5625 == 1 false
14	return 50 + 25 + 12.5 +
	6.25 + 3.125 + 1.5625
	progression(0.78, 1, 2)
4-	
15	0.78 == 1 false
16	return 50 + 25 + 12.5 +
	6.25 + 3.125 +
	1.5625+0.78
	progression(0.36, 1, 2)
	Помилка

7.Висновок

Було досліджено особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм. В результаті виконання лабораторної роботи було складено програму ,яка вираховує суму елементів геометричної прогресії , розділивши задачу на 3 кроки: визначення основних дій, введення змінних, знаходження геом. суми рекурсивним алгоритмом. В процесі випробування було підставлено значення першого елемента

50 , останнього елемента 1 і знаменника 2 . В результаті отримано помилку , оскільки дані ε хибними .