INPUT FORMAT FOR HUNDB

This guide created: June 10, 2002

Line no.	Input	Format	Comments
1	TITEL	A5	Name of molecule e.g. 'GeH'
2	NISO,IFLD,ISPEC,INTEN	*	NISO=number of isotopomers.
			IFLD=0 for zero field calculations.
			IFLD=1 for magnetic field calculations.
			ISPEC=0 for a least-squares fit.
			ISPEC=1 for spectrum prediction mode.
			ISPEC=2 for plot of Zeeman splitting.
			INTEN=0 no intensity calculation.
			INTEN=1 for intensity calculation.
3	IMOD,IBOC	*	IMOD=0 for zero-point parameters $(B_0, \text{ etc.})$
			IMOD=1 for equilibrium parameters $(B_e, \text{ etc.})$
			IBOC : should always be set to 0
			(= 1 for Born-Oppenheimer adiabatic corrections)
4	IDECOP,LABEL	*	IDECOP=0 for an I-decoupled basis set(LMR; M_J, M_I)
			IDECOP=1 for a coupled basis set(zero-field; M_F, F)
			LABEL=0 uses J to indentify spin components
			LABLE=1 uses F_1F_2 , etc. in increasing energy for given J
5	XL	14X,F5.1	Λ
6	XS	14X,F5.1	S
7	XI	14X,F5.1	I
8	UNIT	A3	GHZ or CM-1

Line no.	Input	Format	Parameters	Comments
9	P(1),P(2),P(41),P(42)	*	$\nu_0 \text{ (or } \nu_e), \omega_e x_e, \text{B-O corr.}$	vibration
10	P(3),P(4)	*	$\omega_e y_e, \omega_e z_e$	
11	P(5),P(6),P(45),P(46),P(57)	*	$B_0, \alpha_{\rm B}, B$ -O corrections, $\beta_{\rm B}$	rotation
12	P(7),P(8),P(58)	*	$D_0, \alpha_{ m D}, eta_{ m D}$	centrifugal distortion
13	P(9),P(10),P(59)	*	$\gamma_0, \alpha_{\gamma}, \beta_{\gamma}$	spin-rotation
14	P(11),P(12)	*	$\lambda_0, \alpha_{\lambda}$	spin-spin
15	P(13),P(14),P(60)	*	$A_0, \alpha_{ m A}, eta_{ m A}$	spin-orbit
16	P(15),P(16),	*	$\gamma_{ m S}, lpha_{\gamma_{ m S}}$	
17	P(75),P(76)	*	$\gamma_{\mathrm{D}}, \alpha_{\gamma_{\mathrm{D}}}$	rot. correction to s-r
18	P(77),P(78)	*	$\lambda_{ m D},lpha_{\lambda_{ m D}}$	rot. correction to s-s
19	P(79),P(80)	*	$H_0,lpha_{ m H}$	3 rd order centrifugal distortion
20	P(17),P(18)	*	p, α_p	lambda doubling
21	P(19),P(20)	*	q, α_q	
22	P(63),P(64)	*	$p_{\mathrm{D}}, \alpha_{p_{\mathrm{D}}}$	
23	P(65),P(66)	*	$q_{\mathrm{D}}, \alpha_{q_{\mathrm{D}}}$	
24	P(21),P(22)	*	$q_{\Delta}, \alpha_{q_{\Delta}}$	
25	P(23),P(24)	*	$p + 4q, \alpha_{p+4q}$	
26	P(25),P(26)	*	a, α_a	hyperfine
27	P(27),P(28)	*	$b_{ m F}, lpha_{b_{ m F}}$	
28	P(29),P(30)	*	c, α_c	
29	P(31),P(32)	*	$d(C_{\rm I}), \alpha_d$	
30	P(71),P(72)	*	$eq_0Q,lpha_{\mathrm{eq_0Q}}$	quadrupole
31	P(73),P(74)	*	$eq_2Q, \alpha_{\mathrm{eq}_2\mathrm{Q}}$	
32	P(33),P(34)	*	$oxed{g_{ m s},g_{ m s}^v}$	Zeeman
33	P(35),P(36)	*	$oxed{g_{ m L},g_{ m L}^v}$	
34	P(37),P(38)	*	$oxed{g_{ m r},g_{ m r}^v}$	
35	P(39),P(40)	*	$oxed{g_{ m l},g_{ m l}^{v}}$	

Line no.	Input	Format	Comments
36	IDN	*	ΔN for basis set
37	FLXC	*	Zeeman interpolation range (in Gauss)
38	DUMMY	A3	ISO (lines in input file ignored until line beginning ISO)
39	A,B,XIIA	*	atomic mass of atoms A,B; nuclear spin of A, in isotopomer I
+I=1,NISO			

Line no.	Input	Format	Comments
	$\mathbf{ISPEC} = 1 (\mathbf{prediction})^{\dagger}$		
40+NISO	DUMMY	A3	CP+ (lines in input file ignored until line beginning CP+)
41 + NISO	INQUAD	*	?
42 + NISO	ITERA	*	?
43+NISO	EPSB	*	?
44+NISO	DUMMY	A3	DAT (lines in input file ignored until line beginning DAT)
45 + NISO	ISOT(I), XL2(I), VAU2(I),	*	isotope no., Λ , v'
	XN2(I),XJ2(I),		N', J' (LABEL=0) or spin-component label (LABEL=1)
	XHFS2(I),XM2(I)		M'_I, M'_J (IDECOP=0) or F', M'_F (IDECOP=1)
	IPAR2(I),FREQ(I)		parity of upper state, transition frequency
+I=1,NDATA			
46+NISO	XL1(I),VAU1(I),	*	Λ , v
	XN1(I),XJ1(I),		N, J (LABEL=0) or spin-component label (LABEL=1)
	XHFS1(I),XM1(I)		M_I, M_J (IDECOP=0) or F, M_F (IDECOP=1)
	IPAR1(I),FLUX(I),WT(I)		parity of lower state, magnetic field, weight
+I=1,NDATA			

[†] For zero-field (IFLD=0) omit lines 41-43, omit XMI(I), set FLUX(I) to 0

Line no.	Input	Format	Comments
	ISPEC = 2 (Zeeman plot)		
40+NISO	DUMMY	A3	CP+ or END (other lines ignored)
41 + NISO	INQUAD	*	=0,1 for linear,quadratic interpolation
42 + NISO	ITERA	*	No. iterations (up to 15)
43+NISO	EPSB	*	tolerance limit of error in field
44 + NISO	DUMMY	A3	CPL or end (other lines ignored)
45 + NISO	TTEXT	A80	title to print at top of plot
46+NISO	IKOINZ	*	=1 for pred. of laser line coincidences
47+NISO	IOUT	*	?
48+NISO	IPLOT	*	=1 for Zeeman plot
49 + NISO	IPRED	*	=1 calls SPCALC to refine coincidences
50+NISO	ISIM	*	=1 creates files for LMRSIM
51 + NISO	CPOL	A1	=S,P,3,4 for σ -pol., π -pol.
52 + NISO	IUD	*	=3,4 for plot on screen, creation of ps file
53+NISO	FPLOT	*	laser freq. for plot (=PLASER)
54 + NISO	DUMMY	A3	DAT or END (other lines ignored)
55 + NISO	ISO,XL2,VAU2,	*	isotope no., Λ , v'
	XN2,XJ2,		N', J' (LABEL=0) or spin-component label (LABEL=1)
	XHFS2		M_I' (IDECOP=0) or F' (IDECOP=1)
	IPAR2,NFREQ		parity of upper state, transition frequency
	NEUPIC,BMIN,PLTMIN		starts new Zeeman plot if =1, min field (G), min freq
+I=1,NDATA			
56+NISO	XL1,VAU1,	*	isotope no., Λ , v
	XN1,XJ1,		N, J (LABEL=0) or spin-component label (LABEL=1)
	XHFS1		M_I (IDECOP=0) or F (IDECOP=1)
	IPAR1,NOFLD,		parity of upper state, no. iterations to refine field (up to 15)
	IAUTO,BMAX,PLTMAX		automatic scaling of plots if =1, max field (G), max freq
57 + ISO	PLASER	*	frequency of laser line
I=1,NFREQ			

Line no.	Input	Format	Comments
	$\mathbf{ISPEC} = 0 \ (\mathbf{fit})^{\dagger}$		
40 + NISO	DUMMY	A3	CFI (lines in input file ignored until line beginning CFI)
41 + NISO	NDATA,NFLOAT,ITRN,	3I4	no. data points, floated parameters, fit iterations
	TST,	F10.3	if fractional change in std. dev. \leq TST, terminate fit
	IWU	I4	IWU=1 uses uncertainties, IWU=0 uses weights
42 + NISO	PP(I), I=1,NCONS(80)	80I1	PP(I)=1 to float P(I) in fit, NCONS set to 80
43+NISO	DUMMY	A3	DAT (lines in input file ignored until line beginning DAT)
44 + NISO	ISOT(I),XL2(I),VAU2(I),	*	isotope no., Λ , v'
	XN2(I),XJ2(I),		N', J' (LABEL=0) or spin-component label (LABEL=1)
	XHFS2(I),XM2(I)		M_I', M_J' (IDECOP=0) or F', M_F' (IDECOP=1)
	IPAR2(I),FREQ(I)		parity of upper state, transition frequency
+I=1,NDATA			
45 + NISO	XL1(I),VAU1(I),	*	Λ , v
	XN1(I),XJ1(I),		N, J (LABEL=0) or spin-component label (LABEL=1)
	XHFS1(I),XM1(I)		M_I, M_J (IDECOP=0) or F, M_F (IDECOP=1)
	IPAR1(I),FLUX(I),WT(I)		parity of lower state, magnetic field, weight
+I=1,NDATA			

 $^{^{\}dagger}$ For IFLD=0 omit XM1(I), XM2(I) and set FLUX(I) to 0