SVKM's

D. J. Sanghvi College of Engineering

Program: B.Tech in Comp. Sci. and Academic Year: 2022 Duration: 3 hours

Eng.(Data Science)
Date: 12.01.2023

Time: 10:30 am to 01:30 pm

Subject: Probabilistic Graph Models (Semester V)

Marks: 75

REGULAR EXAMINATION

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains 03 pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.
- (8) Mention correct question number in the answer sheet.

Question No.		Max. Marks
Q1 (a)	 Difference between Bayesian and Markovian representations. Assume that A and B are independent random variables. Which of the following options are always true? Give reason. a) P(A,B) = P(A) * P(B) b) P(B/A) = P(B) c) P(A) + P(B) = 1 d) P(A,B) = P(A) + P(B) 	[05] [02]
Q1 (b)	Coherence Difficult Intelligent Grade GRE Happy Graph 1	[08]

******* 1 *******

	What are the conditions of an Active Trail in Bayesian Network? Give reasons which of the following are active trail if Grade is observed in graph 1?	
	 Intelligent → GRE→ Job→ Happy Coherence → Difficult → Grade ← Intelligent → GRE → Job ← Letter Intelligent → Grade → Letter → Job → Happy Coherence → Difficult → Grade ← Intelligent → GRE 	
Q2 (a)	1. If P factorizes over G and d-sepG (XY X) then P satisfies (X LY Z)	[07]
	OR	
Q2 (a)	2. What is the advantage of Conditional Random Field in representing high dimensional data? Take any two real world examples and explain.	[07]
Q2 (b)	What is a Markov assumption? Discuss a situation where this assumption is not true. So how to modify it in order to make the assumption true.	[08]
	OR	
Q 2 (b)	Discuss a speech recognition system using Hidden Markov Model (HMM).	[08]
Q3 (a)	Derive the complexity of variable elimination.	[05]
Q3 (b)	Can we guarantee regularity in Gibbs Sampling on XOR for all conditions? Justify your answer.	[05]
Q3 (c)	In the shown message passing process (graph 2), what would be the right definition for messages: (1) δ 1,2, (2) δ 4,3, (3) δ 2,3, (4) δ 2,1 and (5) δ 4,1	[05]
Q4 (a)	What is a Clique Tree? Define Max-Sum in Clique Tree. What are the convergence criteria of message passing in a clique tree? Shown below is a message passing for a given clique tree. Fill in the blanks (?) considering max marginalization.	[10]

******* 2 *******

******* 3 *******