Groundwater Quality and Economic Growth: An Analysis

Anoushka Kumar (2021133) Dhruv Prakash (2022168) Lakshay Trehan (2022267) Nishant Singh (2022595)

Introduction

Background

- India's economic growth has placed immense pressure on its natural resources such as groundwater
- Groundwater is highly susceptible to contamination
- Understanding the impact of economic growth on groundwater quality is essential for sustainable growth

Our project:

- Explores the relationship between the concentration of groundwater indicator sulfate and economic growth
- Carried out using regression analysis on varying subsets of data

Data and Economic tests

	Year	Ginivalue	SDP_NORM	${\bf Sulfate}$	State
Count	9713	9531	9681	5496	9713
Unique	_	_	_	_	30
Top	_	_	_	_	Uttar Pradesh
Frequency	_	_	_	_	1397
Mean	2008.96	0.2693	362246.6	98.16	_
Std	5.47	0.0571	302153.8	125.94	_
Min	2000	0.16	1247.87	0	_
25%	2004	0.23	148760	24.21	_
50%	2009	0.26	282371	52.96	_
75%	2014	0.31	488554.2	122.16	_
95%	2018	0.37	949184	346.65	_
Max	2018	0.48	1728578	1815	_

Data:

- Mismatch in some names
- Null values (4217 in sulfate)
- Outliers (120)
- Preprocessed the data and ran regression both with and without outliers

Economic tests:

- F test and p-value
- R-square
- Regression coefficients

Simple Regression Results

Table 1: OLS Regression Results

Variable	Coefficient	Std Error	t	$\mathbf{P}> t $
const	$9.572e{+01}$	$2.693e{+00}$	35.539	< 2e-16
SDP_NORM	6.182e-06	5.236e-06	1.181	0.238

1. **MSE**: 15876.3553237917

2. **R-squared**: 0.0002541

3. **Adj. R-squared**: 7.18e-05

4. **F-statistic**: 1.394

5. No. Observations: 5485

6. Df Residuals: 5483

7. **P-Value**: 0.2378

- p-value of 0.238>0.05 indicates that the model with outliers does not have significance at the 95% significance level
- Small R-square (0.0002) indicates that only 0.2% of variation is explained by the model
- Better results are obtained by preprocessing the data

Simple Regression Results

Table 2: OLS Regression Results				
Coefficient	Std Error	t	$\mathbf{P}> t $	
			< 2e - 16 2.38e-12	
	Coefficient $7.377e + 01$	Coefficient Std Error	Coefficient Std Error t $7.377e + 01$ $2.180e + 00$ 33.844	

1. **MSE**: 8421.66829947241

2. **R-squared**: 0.009586

3. **Adj. R-squared**: 0.009392

4. **F-statistic**: 49.39

5. No. Observations: 5105

6. Df Residuals: 5103

7. **P-Value**: 2.375e-12

- Positive coefficients indicate a positive association with the groundwater quality indicator
- Small p-value associated with the F- test post-processing of data indicates a high significance of the model
- R- square of 0.009 indicates that only 0.9% of the variance can be explained using this model

Residuals

- Red line: regression line
- Points are distributed about the regression line
- A clear linear relationship is not observable, which indicates that a linear model might not be the best fit

- Red line: line at y=0
- Points are randomly distributed about the line
- No clear trend, which indicates that the model is adequate at capturing the relationship between X and Y

Residuals

- sum of residuals:-9.75548530846027e-11
- the sum is an extremely small value, approaching 0, thus verifying the key assumption that ∑ûi = 0.

Kuznet Curve and Outliers

GWQ =
$$\beta$$
0 + β 1(SDP) + β 2(SDP2) + β 3(SDP3) + β 4(GINI) + u

Table 4: Kuznets Curve Regression Results

Variable	Estimate	Std. Error	t value	$\mathbf{P}> t $
(Intercept)	1.741e + 00	7.464e + 00	0.233	0.81558
SDP_NORM	4.217e - 04	3.136e - 05	13.448	2e - 16
ginivalue	7.288e + 01	2.283e + 01	3.193	0.00142
SDP_sq	-6.510e - 10	6.170e - 11	-10.550	2e - 16
SDP_cube	2.862e - 16	3.406e - 17	8.403	2e - 16

1. **MSE**: 8091.5022825187

2. **R-squared**: 0.04841

3. **Adj. R-squared**: 0.04767

4. **F-statistic**: 64.87

5. No. Observations: 5105

6. Df Residuals: 5100

7. **P-Value**: < 2.2e-16

- Outliers= 121
- Influential Observations = 126
- p-value: < 2.2e-16 shows the significance of the model
- Positive coeff. of SDP, SDP_cube and Gini show positive association with the sulfate conc. in GW
- Negative coeff of SDP_sq shows its inversely related to sulfate conc. in GW
- P-values of coefficients show their significance

Kuznets Curve

N shaped EKC curve due to trends in coefficients

Year-wise and Region-wise Results

Region	R-squared	F-statistic	p-value
North	0.09104	32.78	2.2e-16
South	0.05609	13.41	1.264e-10
Northeast	0.1133	12.17	2.558e-09
Central	0.03136	11.26	5.431e-09
West	0.02061	4.297	0.001905
East	0.0581	6.399	5.274e-05

- Small p values for all regions indicate that the model is significant for all regions
- Significance varies from region to region, lowest for West and highest for North

- Relation between economic growth and sulfate conc. in GW varies with year
- Magnitude of coefficient indicates the amount of change
- Sign indicates the direction and nature of the relationship

Year	SDP_NORM	Gini	SDP_sq	SDP_cube
2000	1.099e-03	-7.231e+01	-5.398e-09	6.517e-15
2003	-7.890e-02	-2.533e+02	6.515e-07	-1.371e-12
2007	8.656e-04	1.020e+02	-1.741e-09	9.744e-16
2010	3.810e-04	-2.958e+01	2.245e-10	-9.317e-16
2014	4.191e-04	3.999e+01	-3.744e-10	8.914e-17
2017	2.799e-04	1.942e+01	-1.481e-10	2.194e-18

Limitations

- **Data Limitations:** the analysis relies on the data sources, which may have limitations in terms of accuracy, completeness and consistency.
- Factors like **regulations**, **government policies**, **institutions** also have an affect on the GWQ which we have not considered.
- GWQ is measured by the presence of various minerals in water but we are just analyzing the trend of the presence of a single salt (i.e. Sulfate) in ground water of different districts in India.

References

- [1] Wang, H., & Zhang, Q. (2019). Research Advances in Identifying Sulfate Contamination Sources of Water Environment by Using Stable Isotopes. International journal of environmental research and public health, 16(11), 1914. https://doi.org/10.3390/ijerph16111914
- [2] Frost, J. (n.d.). Interpreting the F-test of overall significance in regression analysis. Statistics by Jim. Retrieved from https://statisticsbyjim.com/regression/interpret-f-test-overall-significance-regression/
- [3] Wooldridge, J. M. (2012). Introductory econometrics: A modern approach (7th ed.). Cengage Learning.
- [4] Patrícia Hipólito Leal and António Cardoso Marques (2022) The evolution of the environmental Kuznets curve hypothesis assessment. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668524/
- [5] Alexandra Allard, Johanna Takman (2018) The N-shaped environmental Kuznets curve Retrieved from: https://link.springer.com/article/10.1007/s11356-017-0907-0
- [6] Sharma, M. K., & Kumar, M. (2020). Sulphate contamination in groundwater and its remediation: an overview. Environmental monitoring and assessment, 192(2), 74. https://doi.org/10.1007/s10661-019-8051-6