Person Reidentification

Table of Contents:

- 1. Methodology Overview
- 2. Algorithms Selection
- 3. Results
- 4. Findings
- 5. Suggested Improvements

Methodology Overview

Methodology

YOLOv5 Object Detection

Centroid Triple Loss-based ReID

Algorithms Selection

YOLOv5 is selected as object detection algorithm

- YOLO family has seen consistent improvement since its debut in year 2016.
- It achieves good speed-accuracy tradeoff.
 One of its smallest models (YOLOv5s)
 achieves
 - mAP 56.8%
 - #Parameters: 7.2M
 - 16.5 GFLOPs
- 3. Primarily, opting for YOLOv5 is an **experience-based decision** where it gives exemplary performance, either in engineering-related problems (corrosion & leakage detection) or application that is close to our life (crowd detection)

YOLOv5 Architecture

Source: The network architecture of Yolov5. It consists of three parts: (1)... Download Scientific Diagram (researchgate.net)

YOLOv5 is selected as object detection algorithm (Cont'd)

1. YOLOv5 consists of the following:

- Backbone: Cross-Stage Partial Network
- Neck: Path Aggregation Network which features additional bottom-up for path augmentation as compared to Feature Pyramid Network for multi-scale features extraction
- Object Detection Head

2. Loss function

- Bounding box regression loss for prediction of bounding box coordinates
- Binary cross entropy for prediction of objects
- Classification loss for prediction of class

YOLOv5 Architecture

Source: The network architecture of Yolov5. It consists of three parts: (1)... Download Scientific Diagram (researchgate.net)

Centroid Triplet Loss-based ResNet50 is opted as person reidentification algorithm

- 1. <u>Market1501</u> is the one of the most **popular** public dataset in person reidentification domain with **3490 citations** as recorded by Google Scholar
- 2. Centroid Triplet Loss (CTL)-based ResNet50 produces most astounding results based on the leaderboard in paperswithcode
 - mAP 98.3%
 - Top1 Accuracy: 98%
- 3. Thus, it serves as good **baseline** to kickstart the development and more work can be done to further improvise its performance

Snapshot of CTL Technical Paper

Research Problem

- Although some works adopt centroid to learn feature representation, they are used for training alone and discarded during retrieval stage.
- Without employing centroid, the retrieval time is large when one query image has to be compared against multiple images of the same object for reidentification task

Research Objective

 To aggregate the representation of an item as single embedding, thus reducing search space, saving memory and reducing retrieval times significantly

Methodology of CTL

Source: On the Unreasonable Effectiveness of Centroids in Image Retrieval (arxiv.org)

Methodology

- Training: Adoption of Centroid Triplet Loss (CTL) as additional loss by considering distance between embeddings of anchor, centroid of positive class and centroid of negative class
- CTL eliminates shortcoming of triplet loss where it produces 0 loss if a sample appears closer to a randomly sampled data point from positive class as compared to that of negative class by coincidence

Results

A sample of output video can be found at Google Drive

Findings

People further away from camera is not detected

Tracking based on person reid is not impeccable. 1 ID swapping is seen.

Solution has 3.61 FPS

Machine Specification

- Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz
- 32GB RAM
- Nvidia Quadro T1000 4GB

Comparison with Existing Trackers

Algorithm	Description	Weakness	Experience
Centroid Tracker	 Motion-based tracker Tracks based on Euclidean distance between two consecutive frame 	Fast object motion will fail the tracking	 People Counter solution (#people entering & leaving) for a building
Deep Simple Online Realtime Tracking (Deep SORT)	 Motion- and deep features embeddings-based tracker An improvement over SORT Deep Part: Adopt CNN to extract feature embeddings SORT Part contains Kalman filter and Hungarian algorithm The purpose of Kalman filter to remove sensor noise. Adapting Kalman filter in person reid eliminates detection noise e.g. unstable detection Hungarian algorithm associates each bounding box with an identity 	Assume linear motion i.e. consistent velocity direction	 People Counter Hardhat Detection

Comparison with Existing Trackers (Cont'd)

Algorithm	Description	Weakness	Experience
CTL	 Deep features embeddings-based tracker Kindly refer slide #8 for more info 	 Depends solely on feature embeddings 	-
FairMOT	 Eliminate the factor of poor detection on reidentification task by training both tasks together Backbone: DLA or HRNet Detection branch: CenterNet optimized through heatmap loss and box offset loss Reid Branch: Optimized using cross entropy loss Perform better than Deep SORT on MOT16 challenge 		-

Comparison with Existing Trackers (Cont'd)

Algorithm	Description	Weakness	Experience
Observati on Centric Simple Online Realtime Tracking (OCSORT)	 Motion-based tracker Robust to occlusion and non-linear motion Observation-centric Online Smoothing (OOS) eliminates error in position prediction by Kalman filter when an object is untracked Observation-Centric Momentum (OCM) reduces noise to allow the assumption of linear motion (consistent velocity direction) holds Observation-Centric Recovery (OCR) associates last seen observation with new detection instead of using predicted position 		• Piping Integrity Inspection

Suggested Improvements

Suggested Improvements

Increasing Detection Accuracy

- Adopt pretrained model trained on huge dataset specifically for people detection
- <u>PeopleNet</u> by NVIDIA are trained on 71 millions objects for person class

Increasing Tracking Accuracy

- Based on self-experience, OCSORT delivers good performance
- Exploration of other state-of-the-arts algorithms

Suggested Improvements (Cont'd)

Enhancing Inference Speed

- Converting native pytorch model to TensorRT
- Quantization: Inference on fp16 and even int8 but with slight drop in accuracy
- Model pruning by removing less important layers using Nvidia TAO Toolkit
- Use <u>NVIDIA Trition Server</u> or <u>NVIDIA Deepstream</u> as inference pipeline for speed optimization

shihao28/person_reid (github.com)