9장 언어 모델링

2022-11-24

목차

- 9.1 들어가며
- 9.2 n-gram
- 9.3 언어 모델의 평가 방법
- 9.4 SRILM을 활용하여 n-gram 실습하기
- **9.5 NNLM**
- 9.6 언어 모델의 활용
- 9.7 마치며

2022-11-24

9.1.1 언어 모델의 소개

- 문장의 확률을 나타내는 모델이다. 언어 모델을 통해 문장 자체의 출현 확률을 예측하거나, 이전 단어들이 주어졌을 때, 다음 단어를 예측할 수 있다. 궁극적인 목표는 일상 생활에서 사용하는 실제 언어의 분포를 정확하게 근사하는 것이다.

변호	버스 정류장에서 방금 버스를
1	사랑해
2	고양이
3	놓쳤다
4	사고남

[▶] 우리는 정답을 쉽게 맞출 수 있습니다.

변호	문장
1	저는 어제 점심을 먹었습니다.
2	저는 2015년 3월 18일 점심을 먹었습니다.

▶ 어떤 문장을 접하기 쉬울까요?

9.1.1 언어 모델 소개

• 언어 모델

- 사람은 살아오면서 수많은 문장을 접했고, 머릿속에 단어와 단어 사이의 확률이 학습
- 대화도중 일부 단어를 못 알아들어도 대화 자체에는 큰 문제가 없음
- 음성인식 (speech recognition), 광학문자인식 (optical character recognition: OCR)
 에서도 활용

• 언어 모델 학습

- 인터넷이나 책에서 많은 문장을 수집
- 단어와 단어 사이의 출현 빈도를 카운트하여 확률 계산
- 일상 생활에서 사용하는 실제 언어의 분포를 근사
- 특정 분야의 언어 모델을 만들기 위해서는 해당 분야의 코퍼스가 필요

9.1.2 다시, 지옥불 난도의 한국어

- 한국어는 교착어이다. 교착어는 단어의 의미가 어순보다는 단어에 부착되는 어미와 같은 접사 또는 조사에 의해 결정된다. 따라서 같은 의미의 단어라도 붙는 접사나 조사에 따라서 단어의 형태가 달라지거나 단어의 수가 늘어난다.
- 어순이 중요하지 않기 때문에 단어와 단어 사이의 확률 계산에 불리 (이에 반해 영어나 기타 라틴어 기반 언어들은 어순이 더 규칙적이므로 유리하다.)

Ex) '버스+가', '버스+를', '버스+에', '버스+로' / '과학+도', '과학+자', '과학+관', '과학+실'

'학교+에', '학교+로', '학교+를', '학교+가'

어미와 조사 분리를 안해주면, 희소성 문제 해결의 어려움이 생김.

번호	문장
1	나는 학교에 갑니다 버스를 타고 .
2	나는 버스를 타고 학교에 갑니다 .
3	버스를 타고 나는 학교에 갑니다 .
4	(나는) 버스를 타고 학교에 갑니다 .

▶ 어순이 다르지만 모두 같은 의미의 문장

9.1.3 문장의 확률 표현 $P(w_1, w_2)$

- \checkmark 조건부 확률(베이즈 정리) $P(w_1, w_2) = P(w_1)P(w_2 \mid w_1),$ because $P(w_2 \mid w_1) = \frac{P(w_1, w_2)}{P(w_1)}$
- ✓ 연쇄법칙(chain rule)을 $P(w_1, w_2, \dots, w_n) = P(w_1)P(w_2 | w_1)P(w_3 | w_1, w_2) \dots P(w_n | w_1, w_2, \dots, w_{n-1})$
- ✓ 조건부 확률을 사용하여 결합 확률을 계산하는 방법으로 다음과 같이 유도할 수 있다.

$$\begin{split} P\big(A,B,C,D\big) &= P(D \mid A,B,C) P\big(A,B,C\big) \\ &= P(D \mid A,B,C) P(C \mid A,B) P\big(A,B\big) \\ &= P(D \mid A,B,C) P(C \mid A,B) P(B \mid A) P\big(A\big) \end{split}$$

✓ n개의 단어가 주어졌을 때 문장의 확률
$$P(w_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_i \mid w_{< i})$$
 $\log P(w_1, w_2, \dots, w_n) = \sum_{i=1}^n \log P(w_i \mid w_{< i})$

✓ i번째 문장 si= { BOS, 나는, 학교에, 갑니다, EOS } 에 대한 확률 표현 (연쇄법칙) $P(w_2 | w_1) = \frac{P(w_1, w_2)}{P(w_1)}$

 $P(BOS, \downarrow \vdash, 학교에, 갑니다, EOS)$ = $P(BOS)P(\downarrow \vdash \mid BOS)P(학교에 \mid BOS, \downarrow \vdash \vdash)P(갑니다 \mid BOS, \downarrow \vdash \vdash, 학교에)$ $P(EOS \mid BOS, \dots,$ 갑니다)

$$P(\text{갑니다}|\text{BOS},\text{나는},\text{학교에}) \approx \frac{\text{Count}(\text{BOS},\text{나는},\text{학교에},\text{갑니다})}{\text{Count}(\text{BOS},\text{나는},\text{학교에})}$$

다음의 사후 확률은 각 단어 조합의 출현 빈도를 세어 추정

- n-gram
 - 확률 추정시, 전체 단어를 조합하는 대신 일부 단어 조합의 출현 빈도만을 계산

9.2.1 희소성 문제

- 언어 모델
 - 문장의 확률을 수식으로 표현
 - 수집한 코퍼스에서 각 단어 시퀀스의 출현 빈도를 계산
 - 출현 빈도에 기반하여 확률을 계산
- 희소성 문제
 - 애초에 출현 불가능한 단어의 조합의 경우의 수가 매우 큼
 - 단어들의 조합이 조금만 길어져도 출현 빈도를 구할 수 없음
 - 분자가 0 -> 확률이 0, 분모가 0 -> 정의 자체가 불가능

9.2.2 마르코프 가정 (Markov assumption)

특정 시점의 상태 확률은 단지 그 직전 상태에만 의존한다는 논리

앞의 k개의 단어만 보고 다음 단어의 출현 확률을 계산 (보통 k는 0 에서 3)

$$P(x_i \mid x_1, x_2, \dots, x_{i-1}) = P(x_i \mid x_{i-k}, \dots, x_{i-1}) \qquad P(x_i \mid x_{i-2}, x_{i-1}) \quad (if \ k = 2)$$

✓ 연쇄법칙을 적용하여 문장에 대한 확률도 다음과 같이 표현할 수 있다.

$$P(x_1, x_2, \dots, x_n) \approx \prod_{i=1}^n P(x_i \mid x_{i-k}, \dots, x_{i-1}) \qquad \log P(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \log P(x_i \mid x_{i-k}, \dots, x_{i-1})$$

- ✓ 바로 앞의 일부 조합만 출현 빈도를 계산하여 확률을 추정 하는 방법을 n-gram이라고 한다. (n = k + 1)
- ✓ 훈련 코퍼스의 양이 적을수록 n의 크기도 작아져야 한다.길고 복잡한 단어 시퀀스일수록 훈련 코퍼스에 등장하지 않을 가능성이 높기 때문이다.3-gram 이 가장 많이 사용됨

k	n-gram	명칭
0	1-gram	uni-gram
1	2-gram	bi-gram
2	3-gram	tri-gram

▶ n-gram별 명칭

3-gram:
$$P(x_i \mid x_{i-2}, x_{i-1}) = \frac{\text{Count}(x_{i-2}, x_{i-1}, x_i)}{\text{Count}(x_{i-2}, x_{i-1})}$$

9.2.3 일반화

- 훈련 데이터에서 보지 못한 샘플의 예측 능력 (일반화 능력) 이 중요

| **스무딩과 디스카운팅** | 모든 단어 시퀀스의 출현 빈도에 1을 더하는 것.

$$P(w_i \mid w_{< i}) \approx \frac{\text{Count}(w_{< i}, w_i) + k}{\text{Count}(w_{< i}) + kV}$$
$$\approx \frac{\text{Count}(w_{< i}, w_i) + (m/V)}{\text{Count}(w_{< i}) + m}$$

$$P(w_i \mid w_{< i}) \approx \frac{\text{Count}(w_{< i}, w_i) + 1}{\text{Count}(w_{< i}) + V}$$

$$P(w_i \mid w_{< i}) \approx \frac{\text{Count}(w_{< i}, w_i) + mP(w_i)}{\text{Count}(w_{< i}) + m}$$

9.2.3 일반화

| Kneser-Ney 디스카운팅 | 단어 w가 다른 단어 v의 뒤에 출현 할 때, 얼마나 다양한 단어 뒤에서 출현하는지(즉, v가 얼마나 다양한지)를 알아내는 것이다.

다양한 단어 뒤에 나타나는 단어일수록 훈련 코퍼스에서 보지 못한 단어 시퀀스로 나타날 가능성이 높음

- 'learning' 앞에 출현한 단어 : machine, deep, supervised, unsupervised, generative, ...
- 'laptop' 앞에 출현한 단어 : slim, favorite, fancy, expensive, cheap, ...

$$Score_{continuation}(w) \propto |\{v : Count(v, w) > 0\}|$$

(w와 함께 나타난 것이라고 가정) v들의 집합 {v : Count(v, w)>0}의 크기가 클수록 Score Continuation은 클 것이라고 가정

$$Score_{\text{continuation}}(w) = \frac{|\{v : \text{Count}(v, w) > 0\}|}{\sum_{w'} |\{v : \text{Count}(v, w') > 0\}|}$$

w와 함께 나타난 v들의 집합 {v : Count(v, w)>0} 의 크기를, 전체 단어 집합으로 부터 샘플링한 w' ∈ W 일때, V, w'가 함께 나타난 집합 {v : Count (v, w')>0}의 크기의 합으로 나눈다.

$$P(w_i \mid w_{< i}) \approx \frac{\operatorname{Count}(w_{< i}, w_i) + mP(w_i)}{\operatorname{Count}(w_{< i}) + m}$$

$$Score_{\text{continuation}}(w) = \frac{|\{v : \operatorname{Count}(v, w) > 0\}|}{\sum_{w'} |\{v : \operatorname{Count}(v, w') > 0\}|}$$

9.2.3 일반화

Kneser-Ney 디스카운팅 |

$$P_{\text{KN}}(w_{i} \mid w_{i-1}) = \frac{\max\left(\text{Count}(w_{i-1}, w_{i}) - d, 0\right)}{\text{Count}(w_{i-1})} + \lambda(w_{i-1}) \times Score_{\text{continuation}}(w_{i}),$$
where $\lambda(w_{i-1}) = \frac{d}{\sum_{v} \text{Count}(w_{i-1})} \times |\{w : c(w_{i-1}, v) > 0\}|$

$$|\{w_{i-1} : C(w_{i-1}, w_{i}) > 0\}| ??$$

9.2.3 일반화

| 인터폴레이션 | 다수의 언어 모델 사이의 선형결합으로, 언어 모델을 일반화 하는 방법, 두 개의 다른 언어 모델을 선형적으로 일정 비율(λ)로 섞어주는 것이다.

$$\tilde{P}(w_n \mid w_{n-k}, \dots, w_{n-1}) = \lambda P_1(w_n \mid w_{n-k}, \dots, w_{n-1}) + (1 - \lambda) P_2(w_n \mid w_{n-k}, \dots, w_{n-1})$$
where $0 < \lambda < 1$

✓ 특정 영역에 특화된 모델 구축에 유용함.

- 일반 영역
- P(진정제준비.된)=0.00001
- P(사나이)준비,된)=0.01
- 특화 영역
- P(진정제준비,된)=0.09
- P(약준비.된)=0.04
- 인터폴레이션 결과
- P(진정제준비.된)=0.5*0.09+(1 -0.5)*0.00001=0.045005

9.2.3 일반화

| 백오프 | 특정 n-gram의 확률을 n보다 더 작은 시퀀스에 대해 확률을 구하여 인터폴레이션한다.

$$\begin{split} \tilde{P}(w_n \mid w_{n-k}, \cdots, w_{n-1}) &= \lambda_1 P(w_n \mid w_{n-k}, \cdots, w_{n-1}) \\ &+ \lambda_2 P(w_n \mid w_{n-k+1}, \cdots, w_{n-1}) \\ &+ \cdots \\ &+ \lambda_k P(w_n), \end{split}$$
 where $\sum_i \lambda_i = 1$

9.2.4 결론

n-gram 방식은 출현 빈도를 통해 확률을 근사하므로 매우 쉽고 간편하지만, 대신 훈련 코퍼스에 등장하지 않은 단어 시퀀스는 확률을 정확하게 알 수 없는 단점도 명확하다. 따라서 마르코프 가정을 통해 단어 조합에 필요한 조건을 간소화하고, 나아가 스무딩과 백오프 방식을 통해서 남은 단점을 보완하고자 했다.

9.3 언어 모델의 평가 방법

- 언어 모델의 평가
 - 좋은 언어 모델 : 실제 우리가 쓰는 언어와 최대한 비슷하게 확률 분포를 근사
 - 많이 쓰이는 문장이나 표현은 높은 확률로 예측
 - 적게 쓰이는 문장이나 표현은 낮은 확률로 예측
 - 이미 사용되고 있는 문장에 대해 높은 확률값을 예측
 - 이미 사용되고 있는 문장의 앞부분이 주어졌을 때 그 다음 단어의 확률이 높을 때

9.3.1 퍼플렉서티

- 퍼블렉서티 (perplexity, PPL)
 - 언어 모델의 성능을 정량적으로 평가
 - 문장의 길이를 반영하여 확률값을 정규화
 - 언어 모델에서 테스트 문장들의 점수를 구하고, 언어 모델의 성능을 측정

$$\begin{split} \text{PPL} \Big(w_1, w_2, \cdots, w_n \Big) &= P(w_1, w_2, \cdots, w_n)^{-\frac{1}{n}} \\ &= \sqrt[n]{\frac{1}{P \Big(w_1, w_2, \cdots, w_n \Big)}} \end{split}$$

$$= \sqrt[n]{\frac{1}{\prod_{i=1}^{n} P(w_i \mid w_1, \dots, w_{i-1})}}$$

$$= \sqrt[n]{\frac{1}{\prod_{i=1}^{n} P(w_i \mid w_1, \dots, w_{i-1})}} \approx \sqrt[n]{\frac{1}{\prod_{i=1}^{n} P(w_i \mid w_{i-n+1}, \dots, w_{i-1})}}$$

- 문장 길이 n으로 제곱근
 - 문장이 길어질수록 확률이 매우 작아짐
- 문장의 확률값이 높을수록 PPL이 작아짐

9.5 NNLM

n-gram 기반 언어 모델의 약점을 보완하는 신경망 언어 모델인 NNLM (neural network language model)

9.5.1 희소성 해결하기

✓ n-gram 기반의 언어 모델은 단어 간의 유사도를 알지 못하기 때문에 훈련 데이터에서 보지 못한 단어의 조합에는 취약하다.

고양이는 좋은 반려동물입니다.

P(반려동물|강아지는,좋은)

P(반려동물|자동차는 좋은)

✓ 신경망 언어 모델, 즉 NNLM(neural network language model)은 단어 임베딩을 사용하여 단어를 차원 축소함 훈련 코퍼스에 서 보지 못했던 단어의 조합을 만나더라도, 비슷한 훈련 데이터로부터 배운 것과 유사하게 대처할 수 있다. 희소성 해소를 통해 더 좋은 일반화 성능을 얻어낼 수 있습니다.

9.5 NNLM

9.5.2 RNNLM

RNN을 사용한 언어 모델인 RNNLM (RNN language model) 은 다음과 같은 구조를 지닙니다.

$$P(w_1, w_2, \dots, w_k) = \prod_{i=1}^k P(w_i \mid w_{< i})$$

$$\log P(w_1, w_2, \dots, w_k) = \sum_{i=1}^k \log P(w_i \mid w_{< i})$$

문장의 첫 단어부터 해당 단어 직전의 단어까지 모두 조건부에 넣어 확률을 근사함. (로그 합으로 표현)

9.5.3 구현

• 모델의 수식화

$$x_{1n} = \{x_0, x_1, \dots, x_n, x_{n+1}\}$$
 where $x_0 = \text{BOS}$ and $x_{n+1} = \text{EOS}$

$$\begin{split} \hat{x}_{i+1} &= \operatorname{softmax}(\operatorname{linear}_{\operatorname{hidden_size} \to |V|}(\operatorname{RNN}(\operatorname{emb}(x_i)))) \\ \hat{x}_{1n}[1:] &= \operatorname{softmax}(\operatorname{linear}_{\operatorname{hidden_size} \to |V|}(\operatorname{RNN}(\operatorname{emb}(x_{1n}[:-1])))), \end{split}$$

 $\operatorname{linear}_{d_1 \to d_2}(x) = Wx + b \text{ where } W \in \mathbb{R}^{d_1 \times d_2} \text{ and } b \in \mathbb{R}^{d_2},$ and hidden_size is dimension of hidden state and |V| is size of vocabulary.

9.5.3 구현

• 임베딩 과정

$$x_{1n}[:-1] = \{x_0, x_1, \dots, x_n\}$$

 $x_{emb} = emb(x_{1n}[:-1])$

where
$$|x_{1n}[:-1]| = (batch_size,n+1)$$

and $|x_{emb}| = (batch_size,n+1,word_vec_dim)$

• RNN 과정

$$h_{0n} = \text{RNN} \left(x_{\text{emb}} \right)$$
 where $\left| h_{0n} \right| = \left(\text{batch_size}, n+1, \text{hidden_size} \right)$

• 출력 과정

$$\hat{x}_{1n} = \operatorname{softmax} \left(\operatorname{linear}_{\operatorname{hidden_size} \to |V|} \left(h_{0n} \right) \right)$$

where
$$|\hat{x}_{1n}| = (\text{batch_size}, n+1, |V|)$$

and $x_{1n}[1:] = \{x_1, x_2, \dots, x_{n+1}\}$

손실 함수

$$\mathcal{L}(\hat{x}_{1n}, x_{1n}[1:]) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n+1} x_j^i \log \hat{x}_j^i$$

where x_j^i is one-hot vector

9.5 NNLM

9.5.5 결론

NNLM은 단어 임베딩 벡터를 사용하여 훈련 데이터셋에서 보지 못한 단어의 조합에 대처 가능해졌다. 하지만 테이블 검색 수준의 연산량이 있으면 되는 n-gram 방식에 비해 NNLM은 다수의 행렬 연산 등이 포함된 피드포워드 연산을 수행해야 하기 때문에 그만큼 연산량 도 많이 증가함.

GPU 및 향상된 하드웨어 환경에서 NNLM의 중요성은 매우 커지고 있음 현재는 RNN 이 아닌 Transformer 아키텍쳐에 기반한 모델이 다수를 차지하고 있음

- 자연어 생성
 - 기계번역에서 챗봇까지
 - 언어 모델이 자연어 생성의 기본 초석

NLP(Natural Language Processing) 자연어 처리

NLP

- 9.6.1 음성 인식 실제 사람의 경우에도 말을 들을 때 언어 모델이 매우 중요하게 작용한다.
- ✓ 음성 신호 X가 주어졌을 때 확률을 최대로 하는 문장 Ŷ를 구하는 것이 목표

$$\hat{Y} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(Y \mid X) = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{P(X \mid Y)P(Y)}{P(X)},$$

where X is an audio signal and Y is a word sequence, $Y = \{y_1, y_2, \dots, y_n\}$

그럼 베이즈 정리에 의해서 수식이 전개됩니다. 그리고 밑변 P(X)는 날려버릴 수 있습니다.

$$\underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{P(X \mid Y)P(Y)}{P(X)} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(X \mid Y)P(Y)$$

✔ 여기서 P(X|Y)가 음향 모델을 의미하고 P(Y)는 언어 모델을 의미한다. 즉, P(Y)는 문장의 확률을 의미하며, P(X|Y)는 문장(단어 시퀀스 또는 음소 시퀀스)이 주어졌을 때 해당 음향 시그널이 나타날 확률을 나타낸다.

9.6.2 기계번역

번역 시스템을 구성할 때도 언어 모델은 중요한 역할을 한다. 기존의 통계 기반 기계번역(SMT) 시스템에서는 음성 인식 시스템과 유사하게 언어 모델이 번역모델과 결합하여 자연스러운 문장을 만들어내도록 동작했습니다.

$$\hat{Y} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(Y \mid X) = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{P(X \mid Y)P(Y)}{P(X)},$$

where X is an audio signal and Y is a word sequence, $Y = \{y_1, y_2, \dots, y_n\}$

그럼 베이즈 정리에 의해서 수식이 전개됩니다. 그리고 밑변 P(X)는 날려버릴 수 있습니다.

$$\underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{P(X \mid Y)P(Y)}{P(X)} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(X \mid Y)P(Y)$$

9.6.3 광학 문자 인식

광학 문자 인식(OCR) 시스템을 만들 때도 언어 모델이 사용된다. 사진에서 추출하여 글자를 인식할 때 각 글자 (character) 간의 확률을 정의하면 훨씬 더 높은 성능을 얻어낼 수 있다.

$$\hat{Y} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(Y \mid X) = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{P(X \mid Y)P(Y)}{P(X)},$$

where X is an audio signal and Y is a word sequence, $Y = \{y_1, y_2, \dots, y_n\}$

그럼 베이즈 정리에 의해서 수식이 전개됩니다. 그리고 밑변 P(X)는 날려버릴 수 있습니다.

$$\underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{P(X \mid Y)P(Y)}{P(X)} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(X \mid Y)P(Y)$$

▶ 광학문자 인식 시스템의 구성 예

9.6.4 기타 자연어 생성 문제

앞서 나온 음성 인식이나 기계번역, 문자 인식 역시 주어진 정보를 바탕으로 문장을 생성해내는 자연어생성에 속한다고 볼 수 있다. 주어진 정보를 바탕으로 뉴스 기사를 작성하거나 주어진 뉴스 기사를 요약하여 제목을 생성하고, 사용자의 질문에 따라 대답을 생성하는 챗봇도 생성 문제의 범주에 속한다.

9.6.5 기타

검색엔진에서 검색어 입력 도중 드롭다운으로 제시되는 검색어 완성 기능

$$\hat{Y} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(Y \mid X) = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{P(X \mid Y)P(Y)}{P(X)},$$

where X is an audio signal and Y is a word sequence, $Y = \{y_1, y_2, \dots, y_n\}$

그럼 베이즈 정리에 의해서 수식이 전개됩니다. 그리고 밑변 P(X)는 날려버릴 수 있습니다.

$$\underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{P(X \mid Y)P(Y)}{P(X)} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(X \mid Y)P(Y)$$

9.7 마치며

- 언어 모델
 - 주어진 문장을 확률적으로 모델링
 - 문장 예측 능력의 필요성
 - N-gram
 - 단어를 불연속적이 존재로 취급
 - 희소성 문제
 - 마르코프 가정, 스무딩, 디스카운팅
- 신경망 기반 언어 모델
 - 일반화 문제 해결
 - 신경망은 희소한 단어들의 조합에 대해서도 효과적으로 차원을 축소
 - 유사도 비교 등을 수행
 - 처음 보는 시퀀스도 기존 지식에 기반하여 예측

