An Example R Markdown Document

(A Subtitle Would Go Here if This Were a Class)

Maik Thalmann

Where, 22 April, 2020

Georg-August-University Göttingen

Outline

Pop Songs and Political Science

Pop Songs and Political Science

Sheena Easton and Game Theory

Sheena Easton describes the following scenario for her baby:

- 1. Takes the morning train
- 2. Works from nine 'til five
- 3. Takes another train home again
- 4. Finds Sheena Easton waiting for him

R Stuff

```
# A tibble: 10 x 10
  carat cut
                   color clarity depth table price
                                                     X
  <dbl> <ord>
               <ord> <ord>
                                 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 0.23
        Ideal
                         SI2
                                  61.5
                                           55
                                                326
                                                     3.95 3.98 2.43
2 0.21
         Premium
                         SI1
                                  59.8
                                           61
                                                326
                                                     3.89
                                                           3.84
                                                                 2.31
3 0.23
        Good
                         VS1
                                  56.9
                                           65
                                                327
                                                     4.05
                                                           4.07
                                                                 2.31
4 0.290 Premium
                         VS2
                                  62.4
                                           58
                                                334
                                                     4.2
                                                           4.23
                                                                 2.63
 5 0.31
        Good
                         SI2
                                  63.3
                                           58
                                                335
                                                     4.34
                                                           4.35
                                                                 2.75
6 0.24
         Very Good J
                         VVS2
                                  62.8
                                           57
                                                336
                                                     3.94
                                                           3.96
                                                                 2.48
7 0.24
         Verv Good I
                         VVS1
                                  62.3
                                                336
                                                     3.95
                                                           3.98
                                                                 2.47
                                           57
8 0.26
         Very Good H
                         SI1
                                  61.9
                                                     4.07
                                           55
                                                337
                                                           4.11
                                                                 2.53
9 0.22
         Fair
                         VS2
                                  65.1
                                                337
                                                     3.87
                                                           3.78 2.49
                                           61
10 0.23
         Very Good H
                                   59.4
                                                338
                                                           4.05 2.39
                         VS1
                                           61
```

R Stuff cont'd

Some text to compare font sizes on this slide.

```
library(psych)
desc <- as.data.frame(describeBy(d$price, d$color, mat = T, digits = 2))
kable(desc, booktabs = T) %>%
   kable_styling(latex_options = "scale_down")
```

	item	group1	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
X11	1	D	1	6775	3169.95	3356.59	1838.0	2457.57	1657.55	357	18693	18336	2.10	4.67	40.78
X12	2	E	1	9797	3076.75	3344.16	1739.0	2349.98	1537.46	326	18731	18405	2.17	4.89	33.79
X13	3	F	1	9542	3724.89	3784.99	2343.5	2974.69	2274.31	342	18791	18449	1.75	2.82	38.75
X14	4	G	1	11292	3999.14	4051.10	2242.0	3245.61	2277.27	354	18818	18464	1.50	1.72	38.12
X15	5	Н	1	8304	4486.67	4215.94	3460.0	3755.13	3683.52	337	18803	18466	1.38	1.45	46.26
X16	6	1	1	5422	5091.87	4722.39	3730.0	4332.86	4067.51	334	18823	18489	1.16	0.42	64.13
X17	7	J	1	2808	5323.82	4438.19	4234.0	4721.87	4088.27	335	18710	18375	1.03	0.28	83.75

Plot

Rick Astley's Re-election Platform

Rick Astley's campaign promises:

- Never gonna give you up.
- Never gonna let you down.
- Never gonna run around and desert you.
- · Never gonna make you cry.
- Never gonna say goodbye.
- Never gonna tell a lie and hurt you.

Are these promises (if credible) sufficient to secure re-election?

Rick Astley and Median Voter Theorem

Whereas these pledges conform to the preferences of the **median voter**, we expect Congressman Astley to secure re-election.

Caribbean Queen and Operation Urgent Fury

Billy Ocean released "Caribbean Queen" in 1984.

- · Emphasized sharing the same dream
- · Hearts beating as one

"Caribbean Queen" is about the poor execution of Operation Urgent Fury.

• Echoed JCS chairman David Jones' frustrations with military establishment.

Billy Ocean is advocating for what became the Goldwater-Nichols Act.

• Wanted to take advantage of **economies of scale**, resolve **coordination problems** in U.S. military.

We know the following about Ice Cube's day.

- 1. The Lakers beat the Supersonics.
- 2. No helicopter looked for a murder.
- 3. Consumed Fatburger at 2 a.m.
- 4. Goodyear blimp: "Ice Cube's a pimp." Heim & Kratzer (1998)
- 5. (Posner 1980, Hintikka 1969, Gries 2013, Grice 1989, Groenendijk & Stokhof 1984)

Colorless green ideas sleep furiously

(Noam Chomsky)

Functional Application (FA)

H&K:49

Wenn α ein verzweigender Knoten ist, $\{\beta, \gamma\}$ die Menge von α 's Töchtern ist und $[\![\boldsymbol{\beta}]\!]$ eine Funktion ist, dessen Domäne $[\![\boldsymbol{\gamma}]\!]$ enthält, dann $[\![\boldsymbol{\alpha}]\!] = [\![\boldsymbol{\beta}]\!]([\![\boldsymbol{\gamma}]\!])$.

Semantics

This leads to two different hypotheses:

- H_0 : Ice Cube's day is statistically indistinguishable from a typical day.
- ullet H_1 : Ice Cube is having a good (i.e. greater than average) day.

These hypotheses are tested using archival data of Ice Cube's life.

Stats

- 1. Color: F(6,53905)=103.61, $\mathit{MSE}=15,216,972.28$, p<.001, $\hat{\eta}_G^2=.011$
- 2. Cut: F(4,53905) = 144.40, MSE = 15,216,972.28, p < .001, $\hat{\eta}_G^2 = .011$
- 3. Color:Cut: F(24,53905)=4.53, $\mathit{MSE}=15,216,972.28$, p<.001, $\hat{\eta}_G^2=.002$

Table 1: Test Table

Effect	F	df_1	df_2	MSE	p	$\hat{\eta}_G^2$
Color	103.61	6	53905	15,216,972.28	< .001	.011
Cut	144.40	4	53905	15,216,972.28	< .001	.011
$\operatorname{Color} \times \operatorname{Cut}$	4.53	24	53905	15,216,972.28	< .001	.002

All Code

All The Code I Used

```
d <- diamonds
head(diamonds, 10)
library(psych)
desc <- as.data.frame(describeBy(d$price, d$color, mat = T, digits = 2))</pre>
kable(desc. booktabs = T) %>%
  kable_styling(latex_options = "scale_down")
ggplot(d, aes(x = carat, y = price)) +
  stat_summary(fun.y = mean, geom = "line", color = mygreen) +
  theme_maik()
diamonds$id <- 1:length(diamonds$carat)</pre>
fit <- aov_ez("id", "price", between = c("color", "cut"), data = diamonds)</pre>
```

Grice, H. Paul. 1989. Studies in the way of words. Cambridge, MA: Harvard University Press.

Gries, Stefan T. 2013. Statistics for linguistics with r a practical introduction. Berlin: de Gruyter Mouton.

Groenendijk, Jeroen & Martin Stokhof. 1984. *Studies on the semantics of questions and the pragmatics of answers*. University of Amsterdam dissertation.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Hintikka, Jaakko. 1969. Semantics for propositional attitudes. In *Models for modalities*, 87–111. Dordrecht: Springer.

Posner, Roland. 1980. Semantics and pragmatics of sentence connectives in natural language. In John R Searle, Ferenc Kiefer & Manfred Bierwisch (eds.), *Speech act theory and pragmatics*, 168–203. Dordrecht: Reider.