Informe Tarea 11 - Métodos Numéricos

Bruno Quezada

15 de Diciembre

Asignatura: Métodos Numéricos - FI 3104-1 Profesor Cátedra: Valentino González Auxiliares: José Vines, Jou-Hui Ho

1. Pregunta 1

1.1. Introducción

En esta tarea se busca comparar el ajuste de dos modelos distintos para un conjunto de datos de radiación F_{ν} versus longitud de onda λ (figura 1).

Figura 1: Curva de radiación F_{ν} en función de la longitud de onda λ

los modelos propuestos son:

$$F_{\nu}(\lambda, \vec{a}) = A * N(\mu, \sigma)(\lambda) + m\lambda + n \tag{Modelo 1}$$

$$F_{\nu}(\lambda, \vec{a}) = A * L(\mu, \sigma)(\lambda) + m\lambda + n$$
 (Modelo 2)

En donde $N(\mu, \sigma)(\lambda)$ representa el valor de una curva gaussiana centrada en μ con desviación σ evaluada en λ y $L(\mu, \sigma)(\lambda)$ representa el valor de una curva de laplace centrada en μ con desviación σ evaluada en λ . Para comparar ambos ajustes se calcula χ^2 y se realiza un test de Kolmogorov-Smirnov.

1.2. Procedimiento

En primer lugar, se construyen las funciones que representan el modelo 1 y el modelo 2 en función de los parámetros que se estudian.

Luego, se encuentran los mejores parámetros que ajusten a los datos para ambos modelos. El criterio para los parámetros es la minimización de χ^2 . Estos se estiman utilizando la función minimize() del paquete lmfit. El error de ajuste se estima como:

$$\chi^2 = \sum (y_i - f(x_i, \vec{a})) \tag{1}$$

Donde χ^2 es el error de ajuste, y_i los valores de radiación F_{ν} en la longitud de onda x_i y $f(x_i, \vec{a})$ los valores de F_{ν} para un ser de datos.

Para encontrar los mejores parámetros es necesario entregar parámetros iniciales $\vec{a_o}$, ya que el algoritmo es de naturaleza iterativa. Los parámetros iniciales se estiman a través de una inspección visual del espectro entregado.

Por último se estima el valor D de Kolmogorov-Smirnov, construyendo las funciones acumuladas y encontrando su máximo.

1.3. Resultados

En la figura 2 y 3 se presentan los modelos 1 y 2 con los parámetros iniciales entregados y los parámetros óptimos encontrados.

En el cuadro 1 se presentan los parámetros óptimos de cada modelo, junto con su χ^2 y su D_n de K-S. En la figura 4 se presentan ambos modelos óptimos sobre los datos entregados.

Figura 2: Modelo 1, gaussiano, Comparación entre el modelo de parámetros óptimos con el inicial

Figura 3: Modelo 2, lorenz, Comparación entre el modelo de parámetros óptimos con el inicial

Parámetros	Modelo 1	Modelo 2
χ^2_{red}	$9,77 \cdot 10^{-36}$	$1,01 \cdot 10^{-35}$
A	$9,38 \cdot 10^{-18}$	$1{,}13 \cdot 10^{-16}$
μ	$6,56 \cdot 10^{3}$	$6,56 \cdot 10^3$
σ	3,61	3,50
m	$7,95 \cdot 10^{-21}$	$7,85 \cot 10^{-21}$
n	$8,79 \cdot 10^{-17}$	$8,85 \cdot 10^{-17}$
D_n	0,16	0,14
Nivel de confianza	0.0046	0.0191

Cuadro 1: Parámetros óptimos encontrados, error de ajuste y nivel de confianza según el test de K-S, para cada modelo

Figura 4: Comparación entre ambos modelos, con sus parámetros óptimos

1.4. Análisis y Conclusiones

Se observa que ambos modelos encontrados tienen un buen ajuste a los datos, con un menor error de ajuste para el modelo 2. En este caso, el valor de chi^2 no tiene mucho significado, ya que se desconocen los errores asociados a los datos, ni cómo estos distribuyen. Por ello, a pesar de que el modelo 1 tenga un menor error de ajuste, esto no implica que corresponda al modelo verdadero. Esto motiva la realización del test de Komodorov-Smirnov, el cual indica a través de los D_n y los niveles de confianza de cada método que estos modelo no se consideran aceptables, ya que sus valores son muy bajos. Sin embargo, el modelo 2 presenta un nivelo de confianza menos malo, por lo que se considera que este modelo es mejor.