9/9/2016 Desarrollo temático

ELEMENTO DE **COMPETENCIA 1**

Elemento competencia 1 Guía de evidencia

Bibliografía

Desarrollo temático

Tabla de contenido

De clic en los siguientes enlaces para acceder a un contenido específico.

TEMA 1: El concepto de polinomio.

TEMA 2: Operaciones con polinomios.

TEMA 3: Suma y resta de polinomios que tienen varias variables.

TEMA 4: Productos notables.

TEMA 5: Factorización.

Tema 5

Factorización.

Definición No 4

La factorización es un proceso que consiste en descomponer un polinomio en dos o más factores. La descomposición debe hacerse que el polinomio original es igual al polinomio factorizado, sin que se pierdan términos.

Los siguientes son los casos fundamentales de la factorización:

Factor común	Todos los términos del polinomio tienen un factor común. El término común es uno de los factores del nuevo polinomio factorizado, el otro se determina aplicando la multiplicación algebraica. $ab+ac=a(b+c)$
Diferencia de cuadrados	Esta diferencia también se considera un producto notable. $a^2 - b^2 = (a - b)(a + b)$

Trinomio ordenado $x^2 + bx + c$	de	la	forma	La variable es X y las constantes son a,b,c . $x^2 + bx + c = (x+p)(x+q) \text{ donde } p, q \text{ se logran de la siguiente forma:}$ $c = pq$ $b = c + q$ Es decir, se deben de encontrar dos números que multiplicados resulten igual a C y sumados resulten igual a b .
Trinomio ordenado $ax^2 + bx + c$	de	la	forma	La variable es X y las constantes son a , b , c . $ax^2 + bx + c = \frac{(ax+p)(ax+q)}{a}$ $q = ca$ $p = b$ En este caso se requiere multiplicar y dividir todo el polinomio por el coeficiente de x^2 .

Ejemplo 1.12

Factorizar: $10x^2 + 15x - 5x^2$

Este es un caso de factor común. Se sabe porque el $\bf 5$ es común a los tres términos y además, la variable $\bf x$ aparece en los tres.

El polinomio se puede escribir así:

$$10x^2 + 15x - 5x^3 = 5(2)x^2 + 5(3x) - 5x^3$$

Se saca aparte un factor formato por el $\bf 5$ que es común y por la $\bf x$ (la variable repetida al menor exponente).

$$=5x(2x+3-x^2)$$

El resultado final es: $10x^2 + 15x - 5x^2 = 5x(2x + 3 - x^2)$

Ejemplo 1.13

Factorizar: $25x^2 - 16y^2$

Este caso corresponde a una diferencia de cuadrados.

$$(\sqrt{25x^2} = 5x ; \sqrt{16y^2} = 4y)$$

Luego con esos dos raíces se forman los siguientes factores:

$$(5x+4y)(5x-4y)$$

El resultado final es: $25x^2 - 16y^2 = (5x + 4y)(5x - 4y)$.

Ejemplo 1.14

Factorizar: $4x^2 + 12x + 9$

Porque tiene:

Este es un polinomio de la forma

Tres términos Una potencia

 $ax^2 + bx + c$

Un coeficiente para lapotencia

Pasos para factorizar este polinomio:

On segundo término con la variable con potencia 1

Uno: Dividir y multiplicar por 4.

Un tercer término independiente (sin variable x).

$$4x^2 + 12x + 9 = \frac{4(4x^2 + 12x + 9)}{4}$$

Dos: En el numerador realizar los productos.

$$=\frac{16x^2+12(4x)+36}{4}$$

Obsérvese que en el segundo termino el producto se deja indicado idetalle crucial!

Tres: abrir dos factores. Cada uno tendrá la suma algebraica de dos términos.

$$=\frac{(4x+?)(4x+?)}{}$$

 $=\frac{(4x+?)(4x+?)}{4}$ El primer termino de cada factor es la raíz cuadrada del primer termino del polinomio, o sea: 4X. ($\sqrt{16x^2} = 4x$).

Cuatro: Buscar dos números que multiplicados den como resultado 36 y sumados 12. Obsérvese que es el 12 de idetalle crucial!.

Los dos números son : 6 y 6. (6 + 6 = 12 y 6 por 6 = 36).

$$\frac{(4x+?)(4x+?)}{4} = \frac{(4x+6)(4x+6)}{4}$$

Nota: cuando hay signos negativos se realiza la suma algebraica (considerando los signos negativos y positivos).

Nota: siempre el número mayor de los dos hallados se ubica en el primer factor.

Cinco: para poder simplificar se descompone el 4 así: 4 = 2 por 2.

9/9/2016 Desarrollo temátic

$$\frac{(4x+6)(4x+6)}{4} = \frac{(4x+6)(4x+6)}{(2)(2)} = \frac{(4x+6)}{2} \frac{(4x+6)}{2}$$

Luego se saca factor común en el numerador para obtener:

$$\frac{2(2x+3)}{2} \frac{2(2x+3)}{2} = (2x+3)(2x+3)$$

Luego el resultado final es: $4x^2+12x+9=(2x+3)(2x+3)$

Ejemplo 1.15

Factorizar: $x^2 + 5x + 6$

Este es un polinomio de la forma $x^2 + bx + c$.

Pasos para factorizar este polinomio:

Uno: abrir dos factores.

(x+?)(x+?) Cada uno tendrá la suma algebraica de dos términos.

El primer termino de cada factor es la raíz cuadrada del primer termino del polinomio, o sea: X. ($\sqrt{x^2} = x$).

Dos: Buscar dos números que multiplicados den como resultado 6 y sumados 5.

Los dos números son: 3 y 2. (3+2=5 y 3 por 2 = 6).

Tres: Con estos números se forman los siguientes dos factores:

$$(x+?)(x+?) = (x+3)(x+2)$$

Nota: cuando hay signos negativos se realiza la suma algebraica (considerando los signos negativos y positivos).

Nota: siempre el número mayor de los dos hallados se ubica en el primer factor.

Ejemplo 1.16: Factorizar.

- a) 2ab+2ac+2ad
- b) 20ab + 2ac + 12ad
- c) 15mn-10n
- d) $a^6 10a^5 3a^4$
- e) $12ab^2 24a^2b^2 + 6ab^2$

Todos los anteriores son casos de factor común. La solución es la siguiente:

a)
$$2ab + 2ac + 2ad = 2a(b+c+d)$$

b)
$$20ab+2ac+12ad = 2a(10b+c+6d)$$

c)
$$15mn-10n = 5n(3m-2)$$

d)
$$a^6 - 10a^5 - 3a^4 = a^4(a^2 - 10a - 3)$$

e)
$$12ab^2 - 24a^2b^2 + 6a b^2 = 6ab(2b - 4ab + b)$$

Ejemplo 1.17: Factorizar

a)
$$100-a^2$$

b)
$$b^2 - 81$$

c)
$$a^2b^2-4$$

d)
$$16 - 25a^2$$

e)
$$49b^2 - 36a^2$$

Todos los anteriores son casos de diferencia de cuadrados. La solución es la siguiente:

a)
$$100-a^2=(10-a)(10+a)$$

b)
$$b^2 - 81 = (b+9)(b-9)$$

c)
$$a^2b^2-4=(ab-2)(ab+2)$$

d)
$$16-25a^2=(4-5a)(4+5a)$$

e)
$$49b^2 - 36a^2 = (7b + 6a)(7b - 6a)$$

Ejemplo 1.18: Factorizar

a)
$$a^2 - 6a + 9$$

b)
$$b^2 - 5b - 36$$

c)
$$a^2 - 5a + 6$$

d)
$$a^2 - 5a - 36$$

Todos los anteriores son casos de la forma x^2+bx+c . La solución es la siguiente:

a)
$$a^2 - 6a + 9 = (a - ?)(a - ?)$$

En el primer factor se coloca el signo del segundo término del polinomio (-).

En el segundo factor se coloca el producto entre los signos del segundo término del polinomio con el del tercero (-) por (+) = (-).

Luego se buscan dos números que multiplicados de cómo resultado 9 y sumados (Porque los signos de los factores son iguales) den como resultado 6. Esos números son el 3 y el 3.

Luego:
$$a^2 - 6a + 9 = (a - 3)(a - 3)$$

b)
$$b^2 - 5b - 36 = (b - ?)(b + ?)$$

En el primer factor se coloca el signo del segundo término del polinomio (-). En el segundo factor se coloca el producto entre los signos del segundo 9/9/2016 Desarrollo temático

término del polinomio con el del tercero (-) por (-) = (+).

Luego se buscan dos números que multiplicados de cómo resultado 36 y **restados (Porque los signos de los factores son igual** den como resultado 5. Esos números son el **9** y el **4**.

Luego:
$$b^2-5b-36=(b-9)(b+4)$$

Nota: Cuando los números son restados, en el primer factor va el mayor de los dos números.

c)

$$a^2 - 5a + 6 = a^2 - 5a + 6 = (a - ?)(a - ?)$$

El signo de -5a

El signo de -5a por +6 =-

Luego se buscan dos números que **sumados (Porque los signos de los dos factores son iguales (-).)** sean iguales a 5 y multiplicados den 6:

Los números son 3 y 2.

Luego:
$$a^2-5a+6=(a-3)(a-2)$$

d)
$$a^2 - 5a - 36 = (a - ?)(a + ?)$$

Se deben buscar dos números que multiplicados den como resultado 36 y que restados den como resultado 5. Esos números son : 9 y 4.

Luego:
$$a^2 - 5a - 36 = (a - 9)(a + 4)$$

Ejemplo 1.19: Factorizar.

a)
$$2x^2 - 5x - 3$$

b)
$$3x^2 - 7x + 2$$

c)
$$2x^2 + 3x - 2$$

Todos los anteriores son casos de la forma $ax^2 + bx + c$. La solución es la siguiente:

El signo de
$$3x$$
 es + (quedo en el primer factor).

El signo de 3x (+) multiplicado por el signo de 2 (-), da como resultado – (quedo en el segundo factor).

Dos números que multiplicados sea 4 y que restados sea 3: son 4 y 1.

Restados: porque los signos de los factores son distintos.

El mayor número queda en el primer factor.

b)
$$3x^2 - 7x + 2 = \frac{3(3x^2 - 7x + 2)}{3}$$

$$= \frac{9x^2 - 7(3x) + 6}{3}$$

$$= \frac{(3x - ?)(3x - ?)}{3}$$

$$= \frac{(3x - 6)(3x - 1)}{3}$$

$$= \frac{(3x - 6)}{3}(3x - 1)$$

$$= \frac{3(x - 2)}{3}(3x - 1)$$

$$= (x - 2)(2x - 1)$$

La raíz cuadrada de
$$9x^2$$
 es $3x$.

Ese valor es el primer término de cada factor.

Intuitivamente puede decirse que se reparte para cada factor el término que está elevado al cuadrado.

