

Dilemma in IoT Access Control: Revealing Novel Attacks and Design Challenges in Mobile-as-a-Gateway IoT

Luyi Xing*, Xin'an Zhou‡, Jiale Guan*, Zhiyun Qian‡ ‡UC Riverside and *Indiana University Bloomington

What is Mobile-as-a-Gateway (MaaG) IoT?

- 1. MaaG IoT devices leverage users' mobile phones to act as "Internet gateways" to communicate with the modern IoT cloud infrastructure.
- 2. MaaG IoT devices lack persistent Internet connectivity.

Different Architectures of IoT

- 1. Always connected to the cloud. ("always-connected")
- 2. No connection to the cloud. ("no-cloud")
- 3. Mobile-as-a-Gateway IoT.

Different Architectures of IoT

- 1. Always connected to the cloud. ("always-connected")
- 2. No connection to the cloud. ("no-cloud")
- 3. Mobile-as-a-Gateway IoT.

Mobile-as-a-Gateway IoT

Dilemma: Remote access control management vs. offline availability

- 1. Remotely share/revoke access to/from an invitee. (Good for Airbnb business)
- 2. Offline availability: Access the IoT device even without Internet connections.
- 3. Contradicting with each other?

Research targets and results

- 1. We pick 10 popular real-world MaaG IoT devices (smart locks and item trackers).
- 2. We can identify critical flaws in their access control management.

Table 2: Summary of Measurement Results

MaaG IoT device	Weakness	Consequence	Google Play App Installs
Level [9]	3	(a)	10k+
August [1]	4	(a)	1,000k+
Yale [12]	4	(a)	100k+
Ultraloq [11]	1,4	(a)	100k+
Kwikset Aura [2]	1,2	(a),(c)	100k+
Honeywell [7]	1	(a),(b)	1,000k+
Schlage [10]	1	(a)	100k+
Geonfino [6]	1	(a),(b)	100k+
Tile [4]	1	(a),(b)	5M+
Chipolo [3]	1	(a),(b)	500k+

(a) allowing a temporary user retaining permanent access to the MaaG IoT device;

⁽b) allowing a temporary user to share the access to other unauthorized users;

⁽c) allowing a temporary user to escalate her privilege.

Threat Model

- 1. The attacker (temporary user) has full access to their own mobile device. E.g., through jailbreaking/rooting.
- 2. The cloud service, the owner's mobile phone, and the loT device are benign.

Threat Model

- 1. The attacker (temporary user) has full access to their own mobile device. E.g., through jailbreaking/rooting.
- 2. The cloud service, the owner's mobile phone, and the loT device are benign.

Threat Model

- 1. The attacker (temporary user) has full access to their own mobile device. E.g., through jailbreaking/rooting.
- 2. The cloud service, the owner's mobile phone, and the loT device are benign.

Attack scenario

- 1. After the access is shared to the attacker, can the attacker:
 - I. retain access permanently,
 - II. distribute such access further,
 - III. escalate their privilege?

Security Flaws

- 1. Flaws in MaaG Access Model Translation
- 2. Flaws in MaaG Policy Synchronization

Flaws in MaaG Access Model Translation

- 1. Access models are different for the cloud and for the loT device.
 - Why? Because IoT devices lack I/O interfaces, need to reduce cost...
 - II. Thus, it needs Access Model Translation.

Flaws in MaaG Access Model Translation

- 2. Is the AMT process semantically sufficient?
 - E.g., Does the translated attributes maintain user IDs/privileges?
- 3. Unfortunately, NO.
 - More generally, loss of semantics in the AMT process.

Flaws in MaaG Policy Synchronization

- 1. Policy sync messages must route through the untrusted mobile phone using two kinds of protocols.
 - No direct connection between the cloud and the IoT device.
 - II. Subject to reorder/drop/replay.

Result: User is still on the lock!

Mitigating Vulnerabilities in MaaG Access Control

Figure 5: Secure Access Policy Synchronization (SAPS) Protocol

Key Takeaway

- 1. We find design level problems in the Mobile-as-a-Gateway IoT architecture.
- 2. Access Model Translation and Access Policy Synchronization are vulnerable for existing Mobile-as-a-Gateway IoT devices.
- 3. We design a novel protocol to mitigate these flaws.

Demo Time: August/Yale Smart Lock Attack

Video Link: https://youtu.be/LjpVVLhUrtk

Q&A Time

