Risposta impulsiva di un circuito RLC

Analisi della risposta impulsiva di un circuito RLC serie nel dominio del tempo e della frequenza

Nicolò Montalti - 933833

14/06/2021

Scopo

Determinare, attraverso un'analisi nel dominio del tempo e della frequenza, le grandezza caratteristiche ω_0 e γ di un circuito RLC serie.

Scopo

Determinare, attraverso un'analisi nel dominio del tempo e della frequenza, le grandezza caratteristiche ω_0 e γ di un circuito RLC serie.

Metodo

1 Stimolo del circuito con un impulso;

Scopo

Determinare, attraverso un'analisi nel dominio del tempo e della frequenza, le grandezza caratteristiche ω_0 e γ di un circuito RLC serie.

Metodo

- Stimolo del circuito con un impulso;
- 2 analisi nel dominio del tempo di V_C ;

Scopo

Determinare, attraverso un'analisi nel dominio del tempo e della frequenza, le grandezza caratteristiche ω_0 e γ di un circuito RLC serie.

Metodo

- Stimolo del circuito con un impulso;
- 2 analisi nel dominio del tempo di V_C ;
- 3 trasformata di Fourier (FFT) dei dati;

Scopo

Determinare, attraverso un'analisi nel dominio del tempo e della frequenza, le grandezza caratteristiche ω_0 e γ di un circuito RLC serie.

Metodo

- Stimolo del circuito con un impulso;
- 2 analisi nel dominio del tempo di V_C ;
- trasformata di Fourier (FFT) dei dati;
- 4 analisi nel dominio della frequenza.

Schema del circuito

Leggi del circuito RLC

• Il comportamento di un circuito RLC è descritto dall'equazione

$$\frac{\mathrm{d}^2 V_C}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}V_C}{\mathrm{d}t} + \omega_0^2 V_C = \omega_0^2 V_G(t)$$

Leggi del circuito RLC

Il comportamento di un circuito RLC è descritto dall'equazione

$$\frac{\mathrm{d}^2 V_C}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}V_C}{\mathrm{d}t} + \omega_0^2 V_C = \omega_0^2 V_G(t)$$

 Applicando l'operatore trasformata di Fourier si può definire la funzione di trasferimento

$$H(\omega) = rac{\mathcal{F}\left\{V_{C}
ight\}}{\mathcal{F}\left\{V_{G}
ight\}} = rac{1}{1 - \left(rac{\omega}{\omega_{0}}
ight)^{2} + jrac{\gamma\omega}{\omega_{0}^{2}}}$$

Stimolo impulsivo

• Il circuito è stato stimolato con un segnale impulsivo $V_G(t) = V_0 \delta(t)$

Stimolo impulsivo

- ullet II circuito è stato stimolato con un segnale impulsivo $V_G(t)=V_0\delta(t)$
- La risposta attesa nel dominio del tempo era

$$V_C(t) = Ae^{-\gamma t/2}\sin{(\omega_p t)}$$
 $\omega_p = \sqrt{\omega_0^2 - \gamma^2/4}$

Stimolo impulsivo

- Il circuito è stato stimolato con un segnale impulsivo $V_G(t) = V_0 \delta(t)$
- La risposta attesa nel dominio del tempo era

$$V_C(t) = Ae^{-\gamma t/2}\sin(\omega_p t)$$
 $\omega_p = \sqrt{\omega_0^2 - \gamma^2/4}$

mentre nel dominio della frequenza si verifica che

$$H(\omega) = \frac{\mathcal{F}\left\{V_{C}\right\}}{\mathcal{F}\left\{V_{G}\right\}} = \frac{\mathcal{F}\left\{V_{C}\right\}}{V_{0}} = \frac{1}{1 - \left(\frac{\omega}{\omega_{0}}\right)^{2} + j\frac{\gamma\omega}{\omega_{0}^{2}}}$$

Parametri dell'apparato sperimentale

- Parametri del circuito
 - $R = 35.31(5)\,\Omega$, $C = 32.0(3)\,\mathrm{nF}$, $L = 10.17(10)\,\mathrm{mH}$, $R_L = 41.41(5)\,\Omega$, $R_G = 50\,\Omega$
 - ullet $\gamma^{
 m exp} = 12.46(12)\,{
 m kHz},~\omega_0^{
 m exp} = 55.4(4)\,{
 m kHz}$

Parametri dell'apparato sperimentale

- Parametri del circuito
 - $R=35.31(5)\,\Omega$, $C=32.0(3)\,\mathrm{nF}$, $L=10.17(10)\,\mathrm{mH}$, $R_L=41.41(5)\,\Omega$, $R_G=50\,\Omega$
 - $\bullet \ \ \gamma^{
 m exp} = 12.46(12)\,{
 m kHz}, \ \omega_0^{
 m exp} = 55.4(4)\,{
 m kHz}$
- Parametri del generatore
 - $V_0 = 5 \text{ V}$
 - durata impulso: 0.5 μs
 - intervallo tra impulsi successivi: 2 ms

Parametri dell'apparato sperimentale

- Parametri del circuito
 - $R = 35.31(5)\,\Omega$, $C = 32.0(3)\,\mathrm{nF}$, $L = 10.17(10)\,\mathrm{mH}$, $R_L = 41.41(5)\,\Omega$, $R_G = 50\,\Omega$
 - $\bullet \ \ \gamma^{
 m exp} = 12.46(12)\,{
 m kHz}, \ \omega_0^{
 m exp} = 55.4(4)\,{
 m kHz}$
- Parametri del generatore
 - $V_0 = 5 \text{ V}$
 - durata impulso: 0.5 μs
 - intervallo tra impulsi successivi: 2 ms
- Parametri di campionamento
 - segnali campionati: V_G (range $\pm 10\,\mathrm{V}$) e V_C (range $\pm 0.2\,\mathrm{V}$)
 - frequenza di campionamento: 500 kHz
 - 800 campioni (durata 1.6 ms)
 - trigger su V_G (slope: rising, level: 1 V)

Dominio del tempo

Dominio del tempo

Dominio della frequenza: ampiezza e fase

Dominio della frequenza: ampiezza e fase

Dominio della frequenza: parte reale e immaginaria

• Per tenere conto dello sfasamento dovuto al trigger si è aggiunto un parametro t_0 alle funzioni da fittare.

- Per tenere conto dello sfasamento dovuto al trigger si è aggiunto un parametro to alle funzioni da fittare.
 - Il fit nel dominio del tempo è stato eseguito sulla funzione $V_C(t + t_0)$.

- Per tenere conto dello sfasamento dovuto al trigger si è aggiunto un parametro t_0 alle funzioni da fittare.
 - Il fit nel dominio del tempo è stato eseguito sulla funzione $V_C(t+t_0)$.
 - Ricordando che $\mathcal{F}\{f(t+t_0)\} = \mathcal{F}\{f(t)\} e^{j\omega t_0}$, il fit nel dominio del tempo è stato eseguito sulla funzione $H(\omega)e^{j\omega t_0}$.

- Per tenere conto dello sfasamento dovuto al trigger si è aggiunto un parametro t_0 alle funzioni da fittare.
 - Il fit nel dominio del tempo è stato eseguito sulla funzione $V_C(t+t_0)$.
 - Ricordando che $\mathcal{F}\{f(t+t_0)\} = \mathcal{F}\{f(t)\}e^{j\omega t_0}$, il fit nel dominio del tempo è stato eseguito sulla funzione $H(\omega)e^{j\omega t_0}$.
- Dal fit nel dominio del tempo è stato stimato un errore sui dati raccolti $\sigma_{V_C}=30\,\mu\text{V}$, che è stato propagato nel dominio della frequenza.

- Per tenere conto dello sfasamento dovuto al trigger si è aggiunto un parametro t_0 alle funzioni da fittare.
 - Il fit nel dominio del tempo è stato eseguito sulla funzione $V_C(t+t_0)$.
 - Ricordando che $\mathcal{F}\{f(t+t_0)\}=\mathcal{F}\{f(t)\}\,e^{j\omega t_0}$, il fit nel dominio del tempo è stato eseguito sulla funzione $H(\omega)e^{j\omega t_0}$.
- Dal fit nel dominio del tempo è stato stimato un errore sui dati raccolti $\sigma_{V_C}=30\,\mu\text{V}$, che è stato propagato nel dominio della frequenza.
- Entrambi hanno restituito un $R^2=1.00$, il secondo inoltre un $\tilde{\chi}^2=1.06$.

Risultati

Misura	ω_0 (kHz)	γ (kHz)	t ₀ (μs)
Valori attesi Dominio del tempo	55.4(4) 56.9832(7)	12.46(12) 13.5017(14)	1.7992(12)
Dominio della frequenza	57.0549(10)	13.521(2)	1.7957(18)

Risultati

Misura	ω_0 (kHz)	γ (kHz)	t ₀ (μs)
Valori attesi Dominio del tempo Dominio della frequenza	55.4(4) 56.9832(7) 57.0549(10)	12.46(12) 13.5017(14) 13.521(2)	1.7992(12) 1.7957(18)

- I risultati risultano incompatibili con quelli attesi.
 - Comportamento del circuito non ideale?
 - Presenza di resistenze parassite?
 - Sottostima delle incertezze derivanti dai fit?

