Team ID: PNT2022TMID32310

Customer Segmentation Analysis

Clustering the data and performing classification algorithms

▼ Import Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from google.colab import drive
drive.mount('/content/drive')

Prive already mounted at /content/drive; to attempt to forcibly remount, call drive.m
```


2. Load the dataset into the tool.

```
ig=pd.read_csv("/content/drive/MyDrive/Mall_Customers.csv")
ig
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39

ig.shape

(200, 5)

ig = ig.drop(columns=["CustomerID"],axis=1)
ig.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40

3. Perform Below Visualizations.

→ Univariate Analysis

sns.histplot(x=ig.Age,color='Green')

<matplotlib.axes._subplots.AxesSubplot at 0x7f949067f8d0>

→ Bi-Variate Analysis

sns.barplot(x=ig.Age,y=ig['Annual Income (k\$)'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f948eddb250>

Multi-Variate Analysis

sns.pairplot(ig)

▼ 4. Perform descriptive statistics on the dataset.

ig.describe()

	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000
mean	38.850000	60.560000	50.200000
std	13.969007	26.264721	25.823522
min	18.000000	15.000000	1.000000
25%	28.750000	41.500000	34.750000
50%	36.000000	61.500000	50.000000
75%	49.000000	78.000000	73.000000
max	70.000000	137.000000	99.000000

▼ 5. Check for Missing values and deal with them.

```
ig.isnull().any()
    Gender
                              False
    Age
                               False
                               False
    Annual Income (k$)
    Spending Score (1-100)
                              False
    dtype: bool
ig.isnull().sum()
    Gender
    Age
    Annual Income (k$)
    Spending Score (1-100)
    dtype: int64
```

There is no missing values so we go for next step.....

→ 6. Find the outliers and replace them outliers

sns.boxplot(ig.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f948ec23990>

sns.boxplot(ig['Annual Income (k\$)'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f948bf18550>

ig['Annual Income (k\$)'].median()

61.5

```
q1=ig['Annual Income (k$)'].quantile(0.25)
q3=ig['Annual Income (k$)'].quantile(0.75)
```

IQR=q3-q1

```
upper_limit= q3 + 1.5*IQR
lower_limit= q1 - 1.5*IQR
```

ig['Annual Income (k\$)']= np.where(ig['Annual Income (k\$)']>upper_limit,61,ig['Annual Inco
sns.boxplot(x=ig.Age,showfliers=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f948a607a50>

sns.boxplot(ig['Spending Score (1-100)'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f948a5cee90>

7. Check for Categorical columns and perform encoding

Label encoding

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

ig.Gender=le.fit_transform(ig.Gender)

ig.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	19	15	39
1	1	21	15	81
2	0	20	16	6
2	^	၁၁	16	77

▼ 8. Scaling the data

→ 9. Perform any of the clustering algorithms

```
target = ig[['Annual Income (k$)' , 'Spending Score (1-100)']].iloc[: , :].values
from sklearn.cluster import KMeans

error = []
for i in range(1, 11):
    km = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_st
    km.fit(target)
    error.append(km.inertia_)

plt.plot(range(1, 11), error)
plt.title('Elbow Method')
plt.xlabel('No. of Clusters')
plt.ylabel('error')
plt.show()
```

```
Elbow Method
k_means = KMeans(n_clusters = 5, init = 'k-means++', max_iter = 300, n_init = 10, random_s
y_means = k_means.fit_predict(target)
                                                                                                                                                                                      150000
k_means
                KMeans(n_clusters=5, random_state=0)
                            50000 -
y_means
                array([3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
                                      3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 1,
                                      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2,
                                      0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
                                      0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
                                      0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
                                      0, 2], dtype=int32)
```

▼ 10. Add the cluster data with the primary dataset

```
ig['Outcome'] = pd.Series(y_means)
ig.head()
```

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Outcome
0	1	19	15	39	3
1	1	21	15	81	4
2	0	20	16	6	3
3	0	23	16	77	4
4	0	31	17	40	3

11. Split the data into dependent and independent variables.

▼ (i) Independent variable

```
x=ig.drop(columns=['Outcome'],axis = 1)
x.head()
```

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	19	15	39
1	1	21	15	81
2	0	20	16	6
3	0	23	16	77
4	0	31	17	40

→ (ii) Dependent variable

```
y = ig.Outcome
y.head()

0     3
     1     4
     2     3
     3     4
     4     3
Name: Outcome, dtype: int32
```

12. Split the data into training and testing

→ 13. Build the Model

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10,criterion='entropy')
model.fit(x_train,y_train)
    RandomForestClassifier(criterion='entropy', n_estimators=10)

y_predict = model.predict(x_test)

y_predict_train = model.predict(x_train)
```

→ 14. Train the Model

```
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
print('Training accuracy: ',accuracy_score(y_train,y_predict_train))
    Training accuracy: 0.99375
```

→ 15. Test the Model

```
print('Testing accuracy: ',accuracy_score(y_test,y_predict))
    Testing accuracy: 1.0
```

▼ 16. Measure the performance using Metrics

pd.crosstab(y_test,y_predict)

col_0	0	1	2	3	4
Outcome					
0	12	0	0	0	0
1	0	17	0	0	0
2	0	0	5	0	0
3	0	0	0	3	0
4	0	0	0	0	3

	precision	recall	f1-score	support
0	1.00	1.00	1.00	12
0	1.00	1.00	1.00	12
1	1.00	1.00	1.00	17
2	1.00	1.00	1.00	5
3	1.00	1.00	1.00	3
4	1.00	1.00	1.00	3
accuracy			1.00	40
macro avg	1.00	1.00	1.00	40
weighted avg	1.00	1.00	1.00	40

Colab paid products - Cancel contracts here