Introduction of Computer

Homework 5 Report

Name: 徐子程

Student ID: B06602037

Your tensorflow version: 1.13.1 (With GPU support, GPU: NVIDIA GTX 1060 6G)

Keras version: 2.2.4

Environment (Windows 10 / MacOS / Linux): Ubuntu 18.04.2 LTS

Verify Installation (30%)

To verify your tensorflow installation, open the python shell and import the package "keras". There should be a message showing that keras is using the tensorflow backend. Please paste the screenshot here.

```
supermarket ~ python3
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import keras
Using TensorFlow backend.
>>>
```

Classification with Neural Network

The structure of your best model. (10%)
 3 flatten layers

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	1024)	803840
dropout_1 (Dropout)	(None,	1024)	0
dense_2 (Dense)	(None,	1024)	1049600
dropout_2 (Dropout)	(None,	1024)	0
dense_3 (Dense)	(None,	512)	524800
dropout_3 (Dropout)	(None,	512)	0
dense_4 (Dense) ==============	(None,	10)	5130

2. Training accuracy. (5%) Up to 0.94

```
Total params: 2,383,370
Trainable params: 2,383,370
Non-trainable params: 0

60000/60000 [============] - 2s 34us/step

Train Acc: 0.94595
```

- How do you determine the termination of training? (10%)
 By set the number of training epochs.
 Because we always save the best model (See 4.), we do not need to stop training earlier.
- 4. How do you determine which model structure is better? (10%)

By comparing the validation data accuracy, if the accuracy is better than previous training epoch, we save the model into a file.

After all training epochs were done, we load the best model for testing data.

• Bonus : Convolutional Neural Network

Model structure:

4 convolution layers, 2 pooling layers, 2 flatten layers

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	28, 28, 32)	320
<pre>batch_normalization_1 (Batch</pre>	(None,	28, 28, 32)	128
conv2d_2 (Conv2D)	(None,	28, 28, 64)	18496
batch_normalization_2 (Batch	(None,	28, 28, 64)	256
max_pooling2d_1 (MaxPooling2	(None,	14, 14, 64)	0
conv2d_3 (Conv2D)	(None,	14, 14, 64)	36928
batch_normalization_3 (Batch	(None,	14, 14, 64)	256
conv2d_4 (Conv2D)	(None,	14, 14, 128)	73856
batch_normalization_4 (Batch	(None,	14, 14, 128)	512
max_pooling2d_2 (MaxPooling2	(None,	7, 7, 128)	0
dropout_1 (Dropout)	(None,	7, 7, 128)	0
flatten_1 (Flatten)	(None,	6272)	0
dense_1 (Dense)	(None,	512)	3211776
dropout_2 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	512)	262656
dropout_3 (Dropout)	(None,	512)	0
dense_3 (Dense)	(None,	10)	5130

Observations:

If dropout value is not big enough, overfitting will occur. The better value is around 50%.

Best validation accuracy: Up to 0.94