UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA MECÁNICA

INFORME DE LABORATORIO LABORATORIO DE CIRCUITOS ELÉCTRICOS

CIRCUITOS TRIFÁSICOS

LIMA - PERÚ NOVIEMBRE 2019

CIRCUITOS TRIFÁSICOS

ENTREGADO: 27 NOVIEMBRE

ALUMNO:	
	Huaroto Villavicencio Josué, 20174070I
PROFESOR:	
	ING. SINCHI YUPANQUI, FRANCISCO

Capítulo 1

Circuitos Trifásicos

Hoy en día la mayoría de las redes eléctricas son trifásicas dadas las ventajas que este tipo de redes presenta frente a las monofásicas. También existen aparatos, como algunos motores eléctricos, que solo pueden funcionar en este tipo de redes.

1.1. Circuito trifásico balanceado

Un circuito trifásico es balanceado si cumple las siguientes condiciones:

- 1. Los generadores producen un sistema equilibrado de tensiones. Esto significa que las tres tensiones son de igual valor eficaz y existe un desfase de 120°. entre cada par de ellas.
- 2. Las tres corrientes, I_R, I_S, I_T ; también forman un sistema equilibrado de corrientes. Es decir, tienen el mismo valor eficaz y están desfasadas 120° entre sí.
- 3. Las impedancias forman un sistema equilibrado de impedancias. Esto significa que las tres impedancias tienen el mismo valor eficaz y el mismo factor de potencia.

1.2. Circuito trifásico desbalanceado

Similar al balanceado; pero una de las medidas no está desfasada 120° o su valor eficaz no es el mismo. Para resolver este tipo de redes es necesario resolver los 3 circuitos monofásicos.

Capítulo 2

Potencia en circuitos trifásicos

La potencia suministrada por un generador trifásico o la consumida por un receptor trifásico, es la suma de las potencias suministradas o consumidas por cada fase. Por lo tanto, la potencia aparente será $S=3U_fI_f$; la potencia activa $P=3U_fi_f\cos\theta$; y la potencia reactiva $Q=3U_fI_f\sin\theta$.

Relacionando los valores de fase con los de línea: $3U_fI_f=\sqrt{3}U_LI_f.$

Bibliografía

- [1] Boylestad, Robert M. "Introducción al análisis de circuitos". Pearson
- $[2]\,$ Sadiku, Matthew N. "Fundamemtos de circuitos eléctricos". M
c $Graw\ Hill$