(1) Publication number:

0 373 596 B1

(12)

EUROPEAN PATENT SPECIFICATION

- Date of publication of patent specification: 08.11.95 ⑤ Int. Cl.⁶ A61B 6/00
- (1) Application number: 89122931.2
- ② Date of filing: 12.12.89
- X-Ray tube support apparatus.
- Priority: 13.12.88 JP 314295/88
- 43 Date of publication of application: 20.06.90 Bulletin 90/25
- Publication of the grant of the patent: 08.11.95 Bulletin 95/45
- Designated Contracting States:
 DE FR GB NL
- (56) References cited: WO-A-88/10095 DE-A- 3 423 001
 - GB-A- 2 026 206
 - US-A- 3 121 793
 - US-A- 4 435 830

- 73 Proprietor: KABUSHIKI KAISHA TOSHIBA
 - 72, Horikawa-cho,
 - Saiwai-ku
 - Kawasaki-shi,
 - Kanagawa-ken 210,
 - Tokyo (JP)
- Inventor: Maehama, Tomio Intellectual Prop
 - erty Division
 - Kabushiki Kaisha Toshiba
 - 1-1 Shibaura 1-chome
 - Minato-ku
 - Tokyo 105 (JP)
 - inventor: Inoue, Kiyoaki Intellectual Property
 - Division
 - Kabushiki Kaisha Toshiba
 - 1-1 Shibaura 1-chome
 - Minato-ku
 - Tokyo 105 (JP)
- Representative: Blumbach, Kramer & Partner
 - Patentanwälte
 - Radeckestrasse 43
 - D-81245 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

The present invention relates to a ceiling-suspended X-ray tube support apparatus.

In a conventional ceiling-suspended X-ray tube support apparatus, in order to position an X-ray tube with respect to the center of, e.g., a lying or standing position photographing table, and to set a distance (to be referred to as an SID hereinafter) from a focal point of the X-ray tube to an X-ray film surface set at a predetermined position of the photographing table, a support mechanism for movably supporting the X-ray tube has been used.

This support mechanism includes a longitudinal rail mounted on a ceiling surface, and a lateral rail, disposed to be perpendicular to the longitudinal rail, and to be longitudinally movable. A proximal end portion of a vertically extendible/movable support column is supported by the lateral rail to be laterally movable. The X-ray tube is mounted at a distal end portion of the support column.

In this support mechanism, positioning of the X-ray tube with respect to the center of, e.g., the lying position photographing table is performed visually by moving the lateral rail and the support column to a central position of the photographing table. In addition, an SID is visually set at a position measured by, e.g., a measure by extending, contracting, or moving the support column. The support column and the X-ray tube are manually fixed at the central position of the photographing table and the SID set position, respectively.

Examiners, therefore must visually position each photographing table such as a lying or standing position photographing table, thereby requiring much time and labor. In addition, a manipulation depending on vision imposes a considerable load on examiners.

From DE 34 23 001 A1 there is known a ceiling-suspended X-ray tube support apparatus comprising the features of the preamble of the main claim. This known support apparatus is part of an X-ray tomography apparatus including a control means, by which it is possible to control the movement of the X-ray tube in the horizontal plane so that this movement corresponds to a figure, stored in a memory. Two electrical motors are controlled by a controller, which continuously compares actual values, delivered by position detecting means, with stored values.

It is an object of the present invention to provide an X-ray tube support apparatus for simply and easily positioning an X-ray tube with respect to the predetermined position of the X-ray film of a photographing table chosen from a plurality of available photographing tables (lying and standing) and setting an SID without depending on a vision of an Examiner.

According to the present invention there is provided an X-ray tube support apparatus, comprising X-ray tube supporting means for supporting an X-ray tube to be vertically extendible; guiding means, having moving paths which allow movement in two-dimensional directions parallel to a ceiling surface, for supporting X-ray tube supporting means; a plurality of position detecting means for detecting a position of said X-ray tube supporting means in accordance with its two dimensional movements and determining means for storing position data, comparing the position data stored with a position detecting signal output from said position detecting means, which X-ray tube support mechanism is characterized in that said guiding means guides said X-ray tube to a predetermined position of an X-ray film on a photographing table; said photographing table is selected among a plurality of different photographing tables including lying and standing position photographing tables; said plurality of position detecting means detects a current position of said X-ray tube supporting means in accordance with vertical and two-dimensional movements thereof; a plurality of fixing means being provided, arranged in the two-dimensional moving paths of said guiding means and the vertical moving path of said X-ray tube supporting means for fixing the position of said X-ray tube supporting means; and said determining means being adapted for storing position data corresponding to the predetermined position of an X-ray film on said photographing table and a set distance from a focal point of said X-ray tube to an X-ray photographing system and for outputting a lock instruction to the corresponding one of said fixing means when it is determined that the position data coincides with the position detection signal, thus locking said X-ray tube supporting means.

When the X-ray tube support mechanism is two-dimensionally moved along moving paths of the guide unit, a position detection signal is output from the position sensor during the moving process of the X-ray tube support mechanism. This position detection signal is compared with data corresponding to the predetermined position of the X-ray film on the photographing table (central position data) or SID set position data which is stored in the determination unit. When the position detection signal coincides with the central position data or the SID set position data, a lock instruction is output to the fixing unit at that position, an the X-ray support mechanism is fixed at a predetermined position in two-dimensional directions.

When the X-ray tube support mechanism is vertically moved, a position detection signal is output from the position sensor arranged along the vertical moving path of the X-ray tube support mechanism. This position detection signal is com-

30

35

40

pared with SID set position data or central position data of the photographing table which is stored in the determination unit. When the position detection signal coincides with the SID set position data or the central position data, a lock instruction is output to the fixing unit, and the X-ray tube support mechanism is fixed at a predetermined position in the vertical direction.

Thus one single ceiling suspended X-ray tube support apparatus can be used very conveniently for several different tables, each having different predetermined positions for their X-ray film.

Further advantageous embodiments of the invention are characterized by the subclaims.

This invention can be more fully understood from the following detailed description when taken in conjunction with the accompanying drawing, in which:

- Fig. 1 is a plan view of an X-ray tube support apparatus according to the first embodiment of the present invention;
- Fig. 2 is a side view of the support apparatus in the first embodiment;
- Fig. 3 is an enlarged perspective view of a part of a guide unit in the first embodiment:
- Fig. 4 is a block diagram of a position determination unit in the first embodiment;
- Fig. 5 is a perspective view of an X-ray tube support apparatus according to the second embodiment of the present invention;
- Fig. 6 is a block diagram of a position determination unit in the second embodiment; and
- Fig. 7 is a flow chart for explaining an operation of the second embodiment.

An embodiment of the present invention will be described hereinafter with reference to the accompanying drawings.

As shown in Figs. 1 and 2, a guide unit 1 is constituted by a rectangular longitudinal rail 2 mounted on a ceiling surface, and a rectangular lateral rail 3 disposed to be perpendicular to the longitudinal rail 2. As shown in Fig. 3, the longitudinal and lateral rails 2 and 3 are formed to have channel-like cross sections. The lateral rail 3 is supported by the longitudinal rail 2 to be longitudinally movable. More specifically, support legs 4 are mounted on the upper surface of the lateral rail 3 to support the lateral rail 3 on the longitudinal rail 2. Rollers 5 are axially supported by the support legs 4. respectively. The rollers 5 roll inside the channel of the longitudinal rail 2. An X-ray tube support mechanism 6 includes a support member 7, a vertically extendible/movable support column 8 held by the support member 7, and an X-ray tube 9 swingably mounted at a distal end portion of the

support column 8. A stop 10 is attached to the X-ray tube 9. The X-ray tube support mechanism 6 is supported to be movable in the lateral direction of the lateral rail 3. More specifically, rollers 11 for rolling on the inner surface of the channel of the lateral rail 3 are axially supported by both side surfaces of the support member 7.

A positional relationship between the guide unit 1, the X-ray tube support mechanism 6, and a lying position photographing table 15 is as follows. The X-ray tube support mechanism 6 is set to move parallel to the lying position photographing table 15 when the lateral rail 3 is moved in the longitudinal direction of the longitudinal rail 2. The X-ray tube support mechanism 6 is also set to move parallel to the lateral direction of the lying position photographing table 15. In addition, when the support column 8 is vertically extended, contracted, or moved, the X-ray tube 9 is moved to set the SID with respect to the lying position photographing table 15.

A positional relationship between the guide unit 1, the X-ray tube support mechanism 6, and a standing position photographing table 16 is as follows. The X-ray tube support mechanism 6 is set to move in the forward/backward direction with respect to the standing position photographing table 16 when the lateral rail 3 is moved in the longitudinal direction of the longitudinal rail 2. In other words, the SID of the X-ray tube 9 with respect to the standing position photographing table 16 can be set. The X-ray tube support mechanism 6 is also set to move parallel to the standing position photographing table 16 when the X-ray tube support mechanism 6 is moved in the lateral direction of the lateral rail 3. In addition, the X-ray tube 9 is set to move vertically with respect to the standing position photographing table 16 when the support column 8 is vertically extended, contracted, or moved.

As shown in Figs. 1 and 2, in the ceilingsuspended X-ray tube support apparatus according to this embodiment, position identification sensors 17 are arranged at a plurality of specific longitudinal positions of the longitudinal rail 2, a plurality of specific lateral positions of the lateral rail 3, and a plurality of specific vertical positions along the moving path of the vertically extended/contracted support column 8, respectively. The position identification sensors 17 arranged at the plurality of specific longitudinal positions of the longitudinal rail 2 detect positions P1, P2, P3, and P4. The positions P1, P2, and P3 respectively correspond to distances SID-1, SID-2, and SID-3 of the X-ray tube 9 with respect to the standing photographing table 16, respectively. The position P4 corresponds to the center of the lying position photographing table 15 in the longitudinal direction. The position identification sensors 17 arranged at the plurality of specific lateral positions of the lateral rail 3 detect a position P5 corresponding to the center of the standing position photographing table 16, and a position P6 corresponding to the center of the lying position photographing table 15 in the lateral direction, respectively. The position identification sensors 17 arranged at the plurality of specific vertical positions along the moving path of the support column 8 detect positions P7 and P8 respectively corresponding to the distances SID-1 and SID-2 of the X-ray tube 9 with respect to the lying position photographing table 15.

Magnet-type fixing mechanisms 18 are mounted at the lateral rail 3, the X-ray tube support mechanism 6, and the support column 8, respectively. When a magnet of each fixing mechanism is excited, the lateral rail 3, the X-ray tube support mechanism 6, and the X-ray tube 9 are fixed to the specific longitudinal positions P1 to P4 of the longitudinal rail 2, the specific lateral position P6 of the lateral rail 3, and the specific vertical positions P7 and P8 along the moving path of the support column 8, respectively.

On the other hand, as shown in Fig. 4, a positioning determination unit includes a memory 21, first and second data read units 22 and 23, a lateral position determination unit 24, a longitudinal position determination unit 25, and a vertical position determination unit 26. The memory 21 stores position data corresponding to the central positions of the lying and standing position photographing tables 15 and 16, and the SID positions. The position data consists of position data of the longitudinal, lateral, and vertical directions. When an instruction to select a photographing table is input to the first data read unit 22, the position data in the longitudinal and lateral directions and corresponding to the selected photographing table are read out from the memory 21 by the first data read unit 22. When an instruction to select the SID is input to the second data read unit 23, the position data in the longitudinal direction and the SID position data are read out from the memory 21 by the second data read unit 23. When the lying or standing position photographing table is selected, position data in the lateral direction is input from the first data read unit 22 to the lateral position determination unit 24. In addition, the position data in the lateral direction is compared with a position detection signal output from the position identification sensor arranged at the specific lateral position by the lateral position determination unit 24, and it is determined whether the position data in the lateral direction coincides with the position detection signal. If it is determined that the position detection signal coincides with the position data in the lateral direction, a lateral magnet lock instruction is supplied to the fixing mechanism in the lateral direction. When the lying position photographing table 15 is selected, longitudinal position data is input from the first data read unit 22 to the longitudinal position determination unit 25. When the standing position photographing table 16 is selected, longitudinal position data is input from the second data read unit 23 to the longitudinal position determination unit 25. The position data in the longitudinal direction is compared with the position detection signal output from the position identification sensor arranged at the specific longitudinal position by the longitudinal position determination unit 25, and it is determined whether the position data and the position detection signal in the longitudinal direction coincide with each other. If it is determined that the position detection signal and the position data in the longitudinal direction coincide with each other by the longitudinal position determination unit 25, a longitudinal magnet lock instruction is supplied to the fixing mechanism in the longitudinal direction. When the lying position photographing table is selected, SID position data is input from the second data read unit 23 to the vertical position determination unit 26. In addition, the SID position data is compared with the position detection signal output from the position identification sensor arranged at the specific vertical position along the moving path of the support column by the vertical position determination unit 26, and it is determined whether the position data and the position detection signal in the vertical direction coincide with each other. If it is determined that the position detection signal coincides with the position data in the vertical direction, a vertical magnet lock instruction is supplied to the fixing mechanism in the vertical direction.

Note that in the above embodiment, the position identification sensors 17 respectively arranged at the specific longitudinal, lateral, and vertical positions can identify the positions by assigning an identification code to each position.

When an encoder is used in place of each position identification sensor, a position can be detected as a digital value. In addition, when a potentiometer is used in place of each position identification sensor, the position can be detected as a voltage value.

An operation of this embodiment will be described hereinafter. For example, when an instruction to select the standing position photographing table 16 is supplied to the first data read unit 22, lateral position data corresponding to the central position P5 of the standing position photographing table 16 is read out from the memory 21 by the first data read unit 22. The lateral position data read out by the first data read unit 22 is supplied to the lateral position determination unit 24. In Fig. 1,

first, the X-ray tube support mechanism 6 is moved along the lateral rail 3 in a direction indicated by a solid arrow. A lateral position detection signal is input to the lateral position determination unit 24 every time the X-ray support mechanism 6 reaches a position identification sensor 17 at each specific lateral position. The position detection signal in the lateral direction is compared with the lateral position data corresponding to the central position P5 by the lateral position determination unit 24, and it is determined whether the position detection signal coincides with the lateral position data. When the X-ray tube support mechanism 6 reaches the central position P5, a coincidence of the position detection signal of the position detected by the position identification sensor 17 and the lateral position data corresponding to the central position P5 is determined by the lateral position determination unit 24. A lateral magnet lock instruction is output from the lateral position determination unit 24 to the fixing mechanism in the lateral direction. As a result, the X-ray tube support mechanism 6 is fixed at the central position P5 of the standing position photographing table 16.

An instruction to select the position P1 as the SID position of the standing position photographing table 16 is supplied to the second data read unit 23. Then, the position data of the standing position photographing table 16 in the longitudinal direction and corresponding to the SID position P1 is read out from the memory 21 to the second data read unit 23. The position data read out by the second data read unit 23 is supplied to the longitudinal position determination unit 25. In Fig. 1, the lateral rail 3 is moved along the longitudinal rail 2 in a direction indicated by a solid arrow. At this time, a position detection signal in the longitudinal direction is input to the longitudinal position determination unit 25 every time the lateral rail 3 reaches a position identification sensor 17 at each specific longitudinal position. The position detection signal in the longitudinal direction is compared with the SID position data corresponding to the SID position P1 by the longitudinal position determination unit 25, and it is determined whether the position detection signal coincides with the SID position data. When the lateral rail 3 reaches the SID position P1 of the standing position photographing table 16, a coincidence of the position detection signal of the position detected by the position identification sensor 17 in the longitudinal direction and the SID position data corresponding to the SID position P1 is determined by the longitudinal position determination unit 25. A longitudinal magnet lock instruction is output from the longitudinal position determination unit 25 to the fixing mechanism in the longitudinal direction. As a result, the lateral rail 3 is fixed at the SID position P1 of the standing

position photographing table 16.

The above description is made with reference to a case wherein the SID position P1 of the standing position photographing table 16 is selected. When the SID position P2 or P3 is selected, the lateral rail 3 is fixed to the SID position P2 or P3, following the same operation as in the above description.

A case wherein positioning with respect to the lying position photographing table 15 and the SID positioning are performed will be described below. An instruction to select the lying position photographing table 15 is supplied to the first data read unit 22. Then, longitudinal and lateral position data respectively corresponding to the central positions P4 and P6 of the lying position photographing table 15 in the longitudinal and lateral directions are read out from the memory 21 by the first data read unit 22. The lateral position data read out by the first data read unit 22 is input to the lateral position determination unit 24, and the longitudinal position data is input to the longitudinal position determination unit 25. In Fig. 1, first, the lateral rail 3 is moved along the longitudinal rail 2 in a direction indicated by a solid arrow. A position detection signal in the longitudinal direction is input to the longitudinal position determination unit 25 every time the lateral rail 3 reaches a position identification sensor 17 at each specific longitudinal position. The position detection signal of the position detected by the position identification sensor 17 in the longitudinal direction is compared with the longitudinal position data corresponding to the central position P4 by the longitudinal position determination unit 25, and it is determined whether the position detection signal coincides with the longitudinal position data. When the lateral rail 3 reaches the central position P4 of the lying position photographing table 15, a coincidence of the position detection signal of the position detected by the position identification sensor 17 at the specific longitudinal position and the longitudinal position data is determined by the longitudinal position determination unit 25. A longitudinal magnet lock instruction is output from the longitudinal position determination unit 25 to the fixing mechanism in the longitudinal direction. Therefore, the lateral rail 3 is fixed at the central position P4 of the lying position photographing table 15 in the longitudinal direction. Then, the X-ray tube support mechanism 6 is moved along the lateral rail 3 in a direction indicated by a solid arrow in Fig. 1. A lateral position detection signal is input to the lateral position determination unit 24 every time the X-ray tube support mechanism 6 reaches a position identification sensor 17 at each specific lateral position. The position detection signal of the position detected by the position identification sensor 17 in

the lateral direction is compared with the lateral position data corresponding to the central position P6 of the lying position photographing table 15 in the lateral direction, and it is determined whether the position detection signal coincides with the lateral position data. When the X-ray tube support mechanism 6 reaches the central position P6 in the lateral direction, a coincidence of the position detection signal of the position detected by the position identification sensor 17 at the specific lateral position and the lateral position data is determined by the lateral position determination unit 24, and a lateral magnet lock instruction is output from the lateral position determination unit 24 to the fixing mechanism in the lateral direction. As a result, the X-ray tube support mechanism 6 is fixed at the central position P5 of the lying position photographing table 15 in the lateral direction.

On the other hand, an instruction to select the position P7 as the SID position with respect to the support column 8 in the vertical direction is supplied to the second data read unit 23. Then, position data corresponding to the SID position P7 of the support column 8 is read out from the memory 21 by the second data read unit 23. The position data read out by the second data read unit 23 is supplied to the vertical position determination unit 26. In Fig. 1, the support column 8 of the support mechanism 6 is vertically moved, as indicated by a solid arrow. A vertical position detection signal is input to the vertical position determination unit 26 every time the X-ray tube 9 reaches a position identification sensor 17 at each specific vertical position along the moving path of the support column 8. The position detection signal of the position detected by the vertical position identification sensor 17 is compared with SID position data corresponding to the SID position P7 by the vertical position determination unit 26, and it is determined whether the position detection signal coincides with the SID position data. When the support column 8 reaches the SID position P7 of the lying position photographing table 15, a coincidence of the position detection signal of the position detected by the vertical position identification sensor 17 and the SID position data corresponding to the SID position P7 is determined by the vertical position determination unit 26. A vertical magnet lock instruction is output from the vertical position determination unit 26 to the fixing mechanism in the vertical direction. As a result, the support column 8 is fixed at the SID position P7 of the lying position photographing table 15.

The above description is made with reference to a case wherein the SID position P7 of the lying position photographing table 15 is selected. When the SID position P8 is selected, the support column 8 can be fixed at the SID position P8 following the

same operation as in the above description.

Another embodiment of the present invention will be described hereinafter with reference to Figs. 5 to 7.

In Fig. 5, a guide unit 1 and a support mechanism 6 are the same as those in the arrangement in Figs. 1 and 2. Therefore, the same reference numerals in Fig. 5 denote the same parts as in Figs. 1 and 2, and a description thereof will be omitted. A take-up drum 31 is rotatably mounted on a side surface at one end portion in the longitudinal direction of a longitudinal rail 2. A wire 32 taken up or rewound by the take-up drum 31 is coupled to a lateral rail 3. A longitudinal-direction encoder 33 is mounted on a rotating shaft of the take-up drum 31. The take-up drum 31 is set to rotate upon longitudinal movement of the lateral rail 3. A rotation of the take-up drum 31 is converted into a pulse signal in accordance with a moving amount of the lateral rail 3. A take-up drum 34 is rotatably mounted on a side surface of one end portion in the lateral direction of the lateral rail 3. A wire 35 taken up or rewound by the take-up drum 34 is coupled to a support member 7 of the X-ray tube support mechanism 6. A lateral-direction encoder 36 is mounted at a rotational shaft of the take-up drum 34. The take-up drum 34 is set to rotate upon lateral movement of the X-ray tube support mechanism 6. A rotation of the take-up drum 34 is converted into a pulse signal in accordance with a moving amount of the X-ray tube support mechanism 6. In addition, a take-up drum 37 is rotatably mounted on one side surface of the support member 7 of the X-ray tube support mechanism 6. A wire 38 taken up or rewound by the take-up drum 37 is coupled to a proper position of the X-ray tube. A vertical-direction encoder 39 is mounted on a rotating shaft of the take-up drum 37. The take-up drum 37 is set to rotate upon vertical movement of the X-ray tube support column 8. A rotation of the take-up drum 37 is converted into a pulse signal in accordance with a vertical moving amount of the X-ray tube support column 8.

As shown in Fig. 6, an arithmetic processing unit 41 is connected to a memory 43, and input/output (I/O) circuits 44, 45, and 46 through a data bus 42. The memory 43 stores longitudinal, lateral, and vertical position data corresponding to a plurality of different photographing tables, and a plurality of SIDs. When the type of the photographing table and the SID are designated by an operation table 47, these designation data are fetched in the arithmetic processing unit 41 through the I/O circuit 46 and the data bus 42. A pulse signal output from the longitudinal-direction encoder 33 is counted by a counter 48. A pulse signal output from the lateral-direction encoder 36

is counted by a counter 49. A pulse signal output from the vertical-direction encoder 39 is counted by a counter 50. The count values of the counters 48 to 50 are fetched in the arithmetic processing unit 41 through the I/O circuit 44 and the bus 42. This arithmetic processing unit 41 has a determination function for respectively comparing the longitudinal, lateral, and vertical position data read out from the memory 43 with the count values fetched from the counters 48 to 50 to determine whether they coincide with each other, and a function for outputting a magnet fixing instruction to magnet braking drivers 51 to 53 through the data bus 42 and the I/O circuit 45 when it is determined that each position data coincides with the corresponding count value by the determination function.

An operation of the position determination unit having the above arrangement will be described below with reference to a flow chart in Fig. 7. In step 61, data of a type of the photographing table and the SID which are designated by the operation table 47 are read by the arithmetic processing unit 41 through the I/O circuit 46. In step 62, longitudinal, lateral, and vertical data corresponding to the designated data are read out from the memory 43 to the arithmetic processing unit 41 as stopping coordinate data. When the lateral rail 3 is moved along the longitudinal rail 2, a pulse signal corresponding to a moving amount of the lateral rail 3 output from the longitudinal-direction encoder 33 is counted by the counter 48, as described above. In step 63, the count value of the counter 48 is read by the arithmetic processing unit 41 through the I/O circuit 44 as current position data. In step 64, the stopping coordinate data in the longitudinal direction is compared with the current value, and it is determined whether they coincide with each other. If the stopping coordinate data does not coincide with the current value, the flow returns to step 63, and a reading operation of the current position data in the longitudinal direction is continued. If it is determined that the stopping coordinate data coincides with the current value in step 64, a magnet fixing instruction is supplied to the magnet braking driver 51 in the longitudinal direction through the I/O circuit 45 in step 65.

The above description is made with reference to longitudinal movement. However, the same processing as in the above description is performed when the X-ray tube support mechanism 6 is moved along the lateral rail 3, or when the support column 8 of the X-ray tube support mechanism 6 is vertically moved, and hence a description thereof will be omitted.

If it is determined that positioning in all the longitudinal, lateral, and vertical directions is completed in step 66, a series of operations with respect to the designation data are completed. If the

positioning in all the directions is not completed, the flow returns to step 63.

As described above, according to the present invention, a position detection signal of the X-ray tube support mechanism which two-dimensionally moves along moving paths of the guide unit, and a position detection signal of the X-ray tube support mechanism which vertically moves are compared with position data corresponding to designation data of the photographing table and the SID. If each position detection signal coincides with the corresponding position data, a lock instruction is output to the fixing unit of the corresponding position to fix the X-ray tube support mechanism in position, and hence the X-ray tube support mechanism need only be moved to the position at which the mechanism is fixed. Therefore, positioning can be easily performed and a time period required for positioning can be shortened, thereby reducing a load imposed on examiners.

Claims

20

25

1. An X-ray tube support apparatus comprising:

X-ray tube supporting means (6, 7) for supporting an X-ray tube (9) to be vertically extendible;

guiding means (1, 2, 3), having moving paths which allow movement in two-dimensional directions parallel to a ceiling surface, for supporting X-ray tube supporting means (6, 7):

a plurality of position detecting means (17; 33, 36, 39) for detecting a position of said X-ray tube supporting means (6, 7) in accordance with its two dimensional movements and

determining means (21, 24, 25, 26, 43, 41) for storing position data, comparing the position data stored with a position detecting signal output from said position detecting means, characterized in that

said guiding means (1, 2, 3) guides said X-ray tube (9) to a predetermined position of an X-ray film on a photographing table (15, 16);

said photographing table (15, 16) is selected among a plurality of different photographing tables (15, 16) including lying and standing position photographing tables;

said plurality of position detecting means (17, 33, 36, 39) detects a current position of said X-ray tube supporting means (6, 7) in accordance with vertical and two-dimensional movements thereof;

a plurality of fixing means (18) being provided, arranged in the two-dimensional moving paths of said guiding means (1, 2, 3) and the vertical moving path of said X-ray tube supporting means (6, 7) for fixing the position of

15

20

25

35

said X-ray tube supporting means (6, 7); and said determining means (21, 24, 25, 26, 43, 41) being adapted for storing position data corresponding to the predetermined position of an X-ray film on said photographing table (15, 16) and a set distance from a focal point of said X-ray tube (9) to an X-ray photographing system and for outputting a lock instruction to the corresponding one of said fixing means (18) when it is determined that the position data coincides with the position detection signal, thus locking said X-ray tube supporting means (6, 7).

- 2. An X-ray tube support apparatus according to claim 1, characterized in that said plurality of position detecting means (17; 33, 36, 39) comprises position detection means (17), arranged in a vertical moving path of said X-ray tube supporting means (6, 7) and the two-dimensional moving paths of said guiding means (1, 2, 3), detecting vertical and two-dimensional moving positions of said X-ray tube supporting means (6, 7).
- 3. A X-ray tube support apparatus according to claim 1, characterized in that said plurality of position detecting means (17, 33, 36, 39) comprises three position detection means (33, 36, 39), connected to three rotating shafts for driving said X-ray tube supporting means (6, 7) in a vertical direction and said guiding means (1, 2, 3) in two-dimensional direction, for detecting vertical and two-dimensional moving positions of said X-ray tube supporting means (6, 7).
- 4. An X-ray tube support apparatus according to any of claims 1 to 3, characterized in that said X-ray tube supporting means (6, 7) comprises an X-ray tube support mechanism including a support member (7), a vertically extendible/movable support column (8) held by said support member and a X-ray tube (9) mounted at a distal end of said support column.
- 5. An X-ray tube support apparatus according to any of claims 1 to 4, characterized in that said guiding means includes a longitudinal rail(2), and a lateral rail (3), mounted to be movable in a longitudinal direction of said longitudinal rail, for supporting said X-ray tube supporting means (6, 7) to be movable in a lateral direction.
- An X-ray tube support apparatus according to claim 1, characterized in that each of said position detecting means (17, 33, 36, 39) includes an encoder (33, 36, 39).

- An X-ray tube support apparatus according to claim 1, characterized in that each of said position detection means includes a potentiometer.
- An apparatus according to claim 1, characterized in that each of said position detection means includes a position identification sensor (17).
- An apparatus according to any of claims 1 to 8, characterized in that each of said fixing means includes an electromagnet (18).
- 10. An X-ray tube support apparatus according to any of claims 1 to 9, characterized in that said determining means (21, 24, 25, 26, 43, 41) comprises a data read unit for reading the corresponding position data from said memory means (43) when instructions to select a type of said photographing tables and a distance from said X-ray tube to said X-ray photographing system are input, and a position determining unit (41, 42, 44) for comparing the position data read out by said data read unit with the position detection signal of the position detected by each of said position detection means (33, 36, 39) serving as a current position signal to determine whether the data and the signal coincide with each other.

Patentansprüche

 Einrichtung zum Halten einer Röntgenröhre, enthaltend:

eine Röntgenröhrenhaltevorrichtung (6,7) zur senkrecht ausziehbaren Halterung einer Röntgenröhre (9);

eine Führungsvorrichtung (1,2,3) mit Bewegungsbahnen, die eine Bewegung in zweidimensionalen Richtungen parallel zu einer Dekkenfläche ermöglichen, zum Halten der Röntgenröhrenhaltevorrichtung (6,7);

eine Mehrzahl von Positionserfassungsvorrichtungen (17;33,36,39) zum Erfassen der Position der Röntgenröhrenhaltevorrichtung (6,7) entsprechend ihrer zweidimensionalen Bewegungen und

eine Ermittlungsvorrichtung (21,24,25,26,43,41) zum Speichern von Positionsdaten und Vergleichen der gespeicherten Positionsdaten mit einem von der Positionserfassungsvorrichtung abgegebenen Positionserfassungssignal,

dadurch gekennzeichnet, daß

die Führungsvorrichtung (1,2,3) die Röntgenröhre (9) zu einer vorbestimmten Position eines Röntgenfilms an einem Photographier-

15

20

25

30

35

45

50

55

tisch (15,16) führt;

der Photographiertisch (15,16) aus einer Mehrzahl verschiedener Photographiertische (15,16) ausgewählt ist, die Photographiertische mit liegender und stehender Position einschließt;

die Mehrzahl der Positionserfassungsvorrichtungen (16,33,36,39) eine augenblickliche Position der Röntgenröhrenhaltevorrichtung (6,7) entsprechend deren senkrechten und zweidimensionalen Bewegungen erfaßt;

eine Mehrzahl von Festlegungsvorrichtungen (18) vorgesehen ist, die in den zweidimensionalen Bewegungsbahnen der Führungsvorrichtung (1,2,3) und der senkrechten Bewegungsbahn der Röntgenröhrenhaltevorrichtung (6,7) zum Festlegen der Position der Röntgenröhrenhaltevorrichtung (6,7) angeordnet sind; und

die Ermittlungsvorrichtung (21,24,25,26,43,41) geeignet ist, um Positionsdaten zu speichern, die der vorbestimmten Position eines Röntgenfilms an dem Photographiertisch (15,16) und einer eingestellten Entfernung von dem Brennpunkt der Röntgenröhre (9) zu einem Röntgenphotographiersystem entsprechen, und eine Verriegelungsanweisung zu der entsprechenden der Festlegungsvorrichtung (18) auszugeben, wenn ermittelt ist, daß die Positionsdaten mit dem Positionserfassungssignal übereinstimmen, wodurch die Röntgenröhrenhaltevorrichtung (6,7) verriegelt wird.

 Einrichtung zum Halten einer Röntgenröhre nach Anspruch 1,

dadurch gekennzeichnet, daß

die Mehrzahl von Positionserfassungsvorrichtungen (17;33,36,39) eine Positionserfassungsvorrichtung (17) enthält, die in einer senkrechten Bewegungsbahn der Röntgenröhrenhaltevorrichtung (6,7) und den zweidimensionalen Bewegungsbahnen der Führungsvorrichtung (1,2,3) angeordnet ist, welche senkrechte und zweidimensionale Bewegungspositionen der Röntgenröhrenhaltevorrichtung (6,7) erfaßt.

 Einrichtung zum Halten einer Röntgenröhre nach Anspruch 1,

dadurch gekennzeichnet, daß

die Mehrzahl von Positionserfassungsvorrichtungen (17;33,36,39) drei Positionserfassungsvorrichtungen (33,36,39) enthält, die mit drei drehenden Wellen zum Antreiben der Röntgenröhrenhaltevorrichtung (6,7) in senkrechter Richtung und der Führungsvorrichtung (1,2,3) in zweidimensionalen Richtungen ver-

bunden sind, zum Erfassen der senkrechten und der zweidimensionalen Bewegungspositionen der Röntgenröhrenhaltevorrichtung (6,7).

 Einrichtung zum Halten einer Röntgenröhre nach einem der Ansprüche 1 bis 3, dadurch gekennzelchnet, daß

die Röntgenröhrenhaltevorrichtung (6,7) einen Röntgenröhrenhaltemechanismusenthält mit einem Haltebauteil (7), einer senkrecht ausziehbaren/beweglichen Haltesäule (8), die von dem Haltebauteil gehalten ist, und einer Röntgenröhre (9), die am distalen Ende der Haltesäule angebracht ist.

 Einrichtung zum Halten einer Röntgenröhre nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß

die Führungsvorrichtung eine Längsschiene (2) und eine Querschiene (3), die in Längsrichtung der Längsschiene beweglich angebracht ist, enthält zum Halten der Röntgenröhrenhaltevorrichtung (6,7) derart, daß sie in Querrichtung beweglich ist.

 Einrichtung zum Halten einer Röntgenröhre nach Anspruch 1,

dadurch gekennzeichnet, daß

jede der Positionserfassungsvorrichtungen (17;33,36,39) eine Kodiereinrichtung (33,36,39) enthält.

 Einrichtung zum Halten einer Röntgenröhre nach Anspruch 1,

dadurch gekennzeichnet, daß

jede der Positionserfassungsvorrichtungen ein Potentiometer enthält.

 Einrichtung zum Halten einer Röntgenröhre nach Anspruch 1,

dadurch gekennzeichnet, daß

jede der Positionserfassungsvorrichtungen einen Positionsidentifikationssensor (17) enthält

 Einrichtung zum Halten einer Röntgenröhre nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß

jede Festlegungsvorrichtung einen Elektromagneten (18) enthält.

 Einrichtung zum Halten einer Röntgenröhre nach Anspruch 1,

dadurch gekennzeichnet, daß

die Ermittlungsvorrichtung (21,24,25,26,43,41) eine Datenleseeinheit zum Lesen der entsprechenden Positionsdaten aus der Speichervorrichtung (43), wenn Befehle zur

15

20

25

30

35

45

50

55

Auswahl eines Typs der Photographiertische und der Entfernung von der Röntgenröhre zum Röntgenphotographiersystem eingegeben sind, und eine Positionsermittlungseinheit(41,42,43) enthält, zum Vergleichen der von der Datenleseeinheit ausgelesenen Positionsdaten mit dem Positionserfassungssignal der Position, die von der jeweiligen Positionserfassungsvorrichtung (33,36,39) erfaßt ist und das als augenblickliches Positionssignal dient, um zu ermitteln, ob die Daten und das Signal miteinander Übereinstimmen.

Revendications

- Dispositif de support de tube à rayons X comprenant :
 - des moyens de support de tube à rayons
 X (6, 7) pour supporter un tube à rayons
 X (9) pour une extension à la verticale;
 - des moyens de guidage (1, 2, 3) possédant des trajets de déplacement permettant un déplacement dans des directions selon deux dimensions parallèles à une surface de plafond pour le support des moyens de support de tube à rayons X (6, 7);
 - une pluralité de moyens de détection de position (17; 33, 36, 39) pour détecter une position desdits moyens de support de tube à rayons X (6, 7) selon ses déplacements sur deux dimensions; et
 - des moyens de détermination (21, 24, 25, 26, 43, 41) pour stocker des données de position, pour comparer les données de position stockées avec un signal de détection de position généré par lesdits moyens de détection de position;

dispositif caractérisé en ce que :

- lesdits moyens de guidage (1, 2, 3) guident ledit tube à rayons X (9) sur une position prédéterminée d'un film à rayons X sur une table de photographie (15, 16);
- ladite table de photographie (15, 16) est choisie parmi une pluralité de différentes tables de photographie (15, 16) comprenant des tables de photographie en position étendue et verticale;
- ladite pluralité de moyens de détection de position (17, 33, 36, 39) détecte une position courante desdits moyens de support de tube à rayons X (6, 7) selon leur déplacement vertical et sur deux dimensions:

une pluralité de moyens de fixation (18) étant prévus, disposés sur les trajets de déplacement en deux dimensions desdits moyens

de guidage (1, 2, 3) et sur le trajet de déplacement vertical desdits moyens de support de tube à rayons X (6, 7), pour fixer la position dudit moyens de support de tube à rayons X (6, 7);

lesdits moyens de détermination (21, 24, 25, 26, 43, 41) étant prévus pour stocker les données de position correspondant à la position prédéterminée d'un film à rayons X sur ladite table de photographie (15, 16) et une distance établie d'un point de focalisation dudit tube à rayons X (9) sur un système de photographie à rayons X, et pour générer une instruction de blocage vers un moyen correspondant dudit moyen de fixation (18) lorsqu'on détermine que les données de position coïncident avec le signal de détection de position, bloquant alors ledit moyens de support de tube à rayons X (6, 7).

- 2. Dispositif de support de tube à rayons X selon la revendication 1, caractérisé en ce que ladite pluralité de moyens de détection de position (17; 33, 36, 39) comprend un moyen de détection de position (17), placé sur un trajet de déplacement vertical desdits moyens de support de tube à rayons X (6, 7) et sur les trajets de déplacement en deux dimensions desdits moyens de guidage (1, 2, 3), détectant des positions de déplacement vertical et selon deux dimensions desdits moyens de support de tube à rayons X (6, 7).
- 3. Dispositif de support de tube à rayons X selon la revendication 1, caractérisé en ce que ladite pluralité de moyens de détection de position (17; 33, 36, 39) comprend trois moyens de détection de position (33, 36, 39), raccordés à trois arbres tournants pour l'entraînement desdits moyens de support de tube à rayons X (6, 7) dans une direction verticale et desdits moyens de guidage (1, 2, 3) dans une direction à deux dimensions, pour la détection des positions de déplacement vertical et selon deux dimensions desdits moyens de support de tube à rayons X (6, 7).
- 4. Dispositif de support de tube à rayons X selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdits moyens de support de tube à rayons X (6, 7) comprennent un mécanisme de support de tube à rayons X comprenant une pièce de support (7), une colonne de support extensible/mobile à la verticale (8) maintenue par ladite pièce de support et un tube à rayons X (9) monté sur une extrémité distale de ladite colonne de support (8).

Dispositif de support de tube à rayons X selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdits moyens de guidage comprennent un rail longitudinal (2) et un rail latéral (3), monté mobile dans une direction longitudinale dudit rail longitudinal, pour le

19

support desdits moyens de support de tube à rayons X (6, 7) mobiles dans une direction latérale.

6. Dispositif de support de tube à rayons X selon la revendication 1, caractérisé en ce que chacun desdits moyens de détection de position (17; 33, 36, 39) comprend un codeur (33, 36, 39).

7. Dispositif de support de tube à rayons X selon la revendication 1, caractérisé en ce que chacun desdits moyens de détection de position comprend un potentiomètre.

- Dispositif de support de tube à rayons X selon la revendication 1, caractérisé en ce que chacun desdits moyens de détection de position comprend un capteur d'identification de position (17).
- Dispositif de support de tube à rayons X selon l'une quelconque des revendications 1 à 8, caractérisé en ce que chacun desdits moyens de fixation comprend un électro-aimant (18).
- 10. Dispositif de support de tube à rayons X selon l'une quelconque des revendications 1 à 9, caractérisé en ce que lesdits moyens de détermination (21, 24, 25, 26, 43, 41) comprennent une unité de lecture de données pour la lecture des données correspondantes de position à partir dudit moyen de mémoire (43) lorsque des instructions de sélection d'un type desdites tables de photographie et une distance dudit tube à rayons X audit système de photographie à rayons X sont entrées, et une unité de détermination de position (41, 42, 44) pour comparer les données de position extraites par ladite unité de lecture de données avec le signal de détection de position de la position détectée par chacun desdits moyens de détection de position (33, 36, 39) servant de signal de position courante pour déterminer si les données et le signal coïncident.

10

20

30

EP 0 373 596 B1

F I G. 2

F I G. 5

EP 0 373 596 B1

F I G. 6

EP 0 373 596 B1

F I G. 7