Static and Dynamic Spectral Features: Their Noise Robustness and Optimal Weights for ASR

Author: Chen Yang, Frank K. Soong and Tan Lee

Professor: 陳嘉平

Reporter: 吳國豪

Outline

Introduction

Noise Robustness Analysis For Cepstral Features

Weighting of Dynamic and Static Features

Discriminative Training of Feature Weights

Experiments

Introduction

- In this paper, we investigate the relative noise robustness of dynamic and static spectral features in speech recognition.
- The optimal weights are discriminatively trained with a small amount of development data.

Introduction

- The proposed approach is appealing to practical applications because
 - 1) noise estimation is not required.
 - 2) model adaptation is not required.
 - 3) only a minor modification of the decoding process is needed.
 - 4) only a few feature weights need to be trained.

Fig. 1. Performance comparison of "static-only," "dynamic-only," and "static + dynamic" systems (Aurora 2).

• To simplify the analysis, we assume that each HMM state is represented by a single Gaussian probability density function (pdf). At a particular state j, the acoustic probability of the noisy observation \mathcal{Y}_t is computed as

$$b_{j}(y_{t}) = \frac{1}{\sqrt{(2\pi)^{D} |\Sigma_{j}|}} e^{-\frac{1}{2}} (y_{t} - \mu_{j})^{'} \Sigma_{j}^{-1} (y_{t} - \mu_{j})$$
(1)

- x_t denote a clean speech feature vector at time t and y_t be the corresponding noise-corrupted version.
- D is the dimension of the feature vector, μ_j and Σ_j denote, respectively, the mean vector and the covariance matrix of the Gaussian pdf of that state.

• The mismatch between y_t and the clean model is reflected by the exponent term in (1), which can be rewritten as

$$(y_{t} - \mu_{j})' \sum_{j}^{-1} (y_{t} - \mu_{j})$$

$$= (y_{t} - x_{t} + x_{t} + \mu_{j})' \sum_{j}^{-1} (y_{t} - x_{t} + x_{t} - \mu_{j})$$

$$= (y_{t} - x_{t})' \sum_{j}^{-1} (y_{t} - x_{t}) + 2(y_{t} - x_{t})' \sum_{j}^{-1} (x_{t} - \mu_{j})$$

$$+ (x_{t} - \mu_{j})' \sum_{j}^{-1} (x_{t} - \mu_{j})$$
(2)

• The expected value of the second term in (2) is zero. Only the first term, i.e., $(y_t - x_t)^T \sum_{x}^{-1} (y_t - x_t)$, accounts for the likelihood difference between noisy and clean speech.

 Thus, for each utterance, we define the following cepstral distance to measure the mismatch caused by noise

$$CD = E[(y_t - x_t)^{'} \sum_{x=0}^{-1} (y_t - x_t)]$$

- $E[\cdot]$ denotes the time average over the utterance, and Σ_x is the diagonal covariance matrix computed from the utterance.
- Assuming that dynamic and static features are independent of each other, the distances contributed by them are separately evaluated as

$$CD(s) = E[(y_t^s - x_t^s)'(\sum_{s=1}^s)^{-1}(y_t^s - x_t^s)]$$

$$CD(d) = E[(y_t^d - x_t^d)'(\sum_{x}^d)^{-1}(y_t^d - x_t^d)]$$

Fig. 2. Scatter diagrams of dynamic cepstral distance versus static cepstral distance (Aurora 2, babble noise).

TABLE I
RECOGNITION ACCURACY AND ERROR PATTERNS OBTAINED WITH DIFFERENT FEATURES (AURORA 2, BABBLE NOISE, 5 DB SNR)

System	Corr	Acc	Del	Sub	Ins
Static+dynamic	61.70%	30.80%	347	920	1022
Dynamic-only	45.53%	45.41%	1600	202	4
Static-only	38.09%	24.67%	973	1075	444

TABLE II
RELATIVE PERFORMANCE DIFFERENCE FROM "STATIC -ONLY" TO
"DYNAMIC-ONLY" (AURORA 2, BABBLE NOISE, 5 DB SNR)

Deletion	Substitution	Insertion	Word error rate (WER)
64.44%	-81.21%	-99.10%	-27.53%

TABLE III
RECOGNITION ACCURACY AND ERROR PATTERNS OBTAINED WITH DIFFERENT FEATURES UNDER CLEAN CONDITION (AURORA 2)

System	Corr	Acc	Del	Sub	Ins
Static+dynamic	98.9%	98.9%	17	18	2
Dynamic-only	98.4%	98.1%	22	31	10
Static-only	96.7%	96.3%	40	70	12

Weighting of Dynamic and Static Features

 The output pdf at a particular HMM state is expressed as a Gaussian mixture, that is

$$b_{j}(o_{t}) = \sum_{k=1}^{K} c_{jk} N(o_{t}; \mu_{jk}, \sum_{jk})$$

- k indexes the Gaussian mixture component, and c_{jk} is the corresponding mixture weight.
- Assuming that the dynamic and the static features are conditionally independent of each other (as implied by the diagonal covariance assumption), $b_j(o_t)$ can be split into two separate corresponding terms

$$b_{j}(o_{t}) = \sum_{k=1}^{K} c_{jk} e^{\left[\log N(o_{t}^{d}; \mu_{jk}^{d}, \sum_{jk}^{d}) + \log N(o_{t}^{s}; \mu_{jk}^{s}, \sum_{jk}^{s})\right]}$$

Weighting of Dynamic and Static Features

 Different exponential weights can be applied to the acoustic likelihood components as

$$b_{j}(o_{t}) = \sum_{k=1}^{K} c_{jk} e^{\left[\alpha \log N(o_{t}^{d}; \mu_{jk}^{d}, \sum_{jk}^{d}) + \beta \log N(o_{t}^{s}; \mu_{jk}^{s}, \sum_{jk}^{s})\right]}$$

- α is the dynamic feature weight and β is the static feature weight, subject to the constraint of unity sum: $\alpha + \beta = 1$.
- The best performance is attained with $\alpha=0.9$ and $\beta=0.1$.

Fig. 4. Recognition performance using bracketed weights (test Set A of Aurora 2).

Discriminative Training of Feature Weights

- The goal of discriminative training for speech recognition is to minimize the recognition error rate.
- We use the log likelihood difference between **the recognized** and **the correct word sequences** as the optimization criterion. Given an utterance $o_u = \{o_{u1}, o_{u2}, ..., o_{uT}\}$

$$lld(o_u) = g^r(o_u) - g^c(o_u)$$

- $g^{r}(o_{u})$ is the log likelihood of the recognized word sequence for o_{u}
- $g^{c}(o_{u})$ is the log likelihood computed by forced alignment with the correct answer.

Discriminative Training of Feature Weights

- The empirical cost averaged over a set of U training utterances is given by $LLD = \frac{1}{U} \sum_{u=1}^{U} lld(o_u)$
- This empirical cost is minimized by iteratively adjusting the feature weights and , using the **gradient descent** method, that is $\frac{\partial LLD}{\partial t} = \frac{\partial LLD}{\partial t}$

is
$$\alpha(n+1) = \alpha(n) - \varepsilon \left(\frac{\partial LLD}{\partial \alpha}\right)$$
 $\beta(n+1) = \beta(n) - \varepsilon \left(\frac{\partial LLD}{\partial \beta}\right)$

- \mathcal{E} is the step size of parameter adjustment and n indexes the iteration of adjustment.

$$\frac{\partial lld(o_u)}{\partial \alpha} = \frac{\partial g^r(o_u)}{\partial \alpha} - \frac{\partial g^c(o_u)}{\partial \alpha}$$

Discriminative Training of Feature Weights

With the superscript symbols removed for clarity, we have

$$\frac{\partial g(o_u)}{\partial \alpha} = \sum_{t=1}^{T} \frac{\partial \{\log b_{q_t^*}(o_{ut})\}}{\partial \alpha}$$

 $-q_t^*$ denotes the HMM state associated with o_{ut} and $b_{q_t^*}(o_{ut})$ is the corresponding acoustic probability.

$$\frac{\partial \{\log b_{q_{t}^{*}}(o_{ut})\}}{\partial \alpha} = \frac{1}{b_{q_{t}^{*}}(o_{ut})} \cdot \frac{\partial \{b_{q_{t}^{*}}(o_{ut})\}}{\partial \alpha} = \frac{1}{b_{q_{t}^{*}}(o_{ut})} \times \frac{1}{2} \frac{\partial \{\log b_{q_{t}^{*}}(o_{ut})\}}{\partial \alpha} = \frac{1}{2} \frac{1}{2}$$

$$\sum_{k=1}^{K} \left\{ c_{jk} \exp \left[\alpha \log N(o_{ut}^{d}; u_{q_{t}^{*}k}^{d}, \sigma_{q_{t}^{*}k}^{d}) + \beta \log N(o_{ut}^{s}; u_{q_{t}^{*}k}^{s}, \sigma_{q_{t}^{*}k}^{s}) \right] \cdot \log N(o_{ut}^{d}; u_{q_{t}^{*}k}^{d}, \sigma_{q_{t}^{*}k}^{d}) \right\}$$

Experiments

Aurora 2 database:

- There are three different sets of test data in Aurora 2.
- Test Set A is used for matched-condition tests while Test Set B and C are for mismatched-condition tests.

The CUDIGIT Database:

- Cantonese is a major Chinese dialect with a speaker population of over 60 million.
- CUDIGIT contains connected digit strings spoken by 25 male and 25 female speakers. Each speaker has about 560 utterances of variable lengths from 1 to 16 digits.

Recognition Results With Condition-Specific Weights

Fig. 6. Recognition performance with condition-specific feature weights (Test Set A of Aurora 2).

Recognition Results With Condition-Specific Weights

Fig. 7. Optimal condition-specific weights for different noise conditions (Test Set A of Aurora 2).

Universal Weights on Matched Conditions

Fig. 8. Recognition performance with universal weights for matched conditions (Test Set A of Aurora 2).

Universal Weights on Mismatched Conditions

Fig. 9. Recognition performance with universal weights for mismatched noise types (Test Set B of Aurora 2).

Universal Weights on Mismatched Conditions

Fig. 10. Recognition performance with universal weights when there exists channel distortion (Test Set C of Aurora 2).

The CUDIGIT Database

BASELINE PERFORMANCE OF THE CUDIGIT TASK

Noise/SNR	0dB	5dB	10dB	15dB	20dB	clean
White	9.6%	14.9%	20.1%	40.3%	69.9%	97.9%
Babble	-22.1%	-6.8%	14.3%	46.3%	76.7%	97.2%
Car	16.1%	27.7%	56.3%	82.1%	92.0%	97.5%
Factory	3.8%	26.9%	60.5%	85.3%	94.1%	97.5%

The CUDIGIT Database

Fig. 11. Recognition performance with condition-specific weights (CUDIGIT).

Inclusion of The Acceleration Features

Fig. 14. Recognition performance with the inclusion of condition-specific weighted acceleration features (Test Set A of Aurora 2).

Inclusion of The Acceleration Features

Fig. 15. Comparison of optimal condition-specific weights for static, dynamic, and acceleration features (Test Set A of Aurora 2).