FORMULAIRE DE DERIVATION

Dérivées de fonctions usuelles

Fonction f	Dérivable sur :	Fonction f'
$x \mapsto k \ (k \in \mathbb{R})$	\mathbb{R}	$x \mapsto 0$
$x \mapsto x^n \ (n \in \mathbb{Z})$	$\mathbb{R} \text{ si } n \ge 0, \ \mathbb{R}^* \text{ si } n < 0$	$x \mapsto n \ x^{n-1}$
$x \mapsto x^{\alpha}, \ \alpha \in \mathbb{R}$]0;+∞[$x \mapsto \alpha x^{\alpha-1}$
$x \mapsto a^x, \ a \in \mathbb{R}^*_+$	\mathbb{R}	$x \mapsto \ln(a)a^x$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto -\sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto \cos(x)$
$x \mapsto tan(x)$	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[, \ k \in \mathbb{Z}$	$x \mapsto 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
$x \mapsto \ln(\mathbb{I}x\mathbb{I})$	\mathbb{R}^*	$x \mapsto \frac{1}{x}$
$x \mapsto e^x$	\mathbb{R}	$x \mapsto e^x$
$x \mapsto Arccos(x)$]-1;1[$x \mapsto \frac{-1}{\sqrt{1-x^2}}$
$x \mapsto Arcsin(x)$]-1 ; 1[$x \mapsto \frac{-1}{\sqrt{1 - x^2}}$ $x \mapsto \frac{1}{\sqrt{1 - x^2}}$
$x \mapsto Arctan(x)$	\mathbb{R}	$x \mapsto \frac{1}{1+x^2}$

Dérivées de fonctions composées

Soit u une fonction dérivable sur I.

Fonction F	Intervalle	Fonction F'
u(ax +b)	où ax+b∈ I	a u'(ax+b)
$u^n \ (n \in \mathbb{Z})$	I si $n \ge 0$ où u ne s'annule pas si $n < 0$	n u ^{n - 1} ×u'
$u^{\alpha}(\alpha \in \mathbb{R})$	où u est strictement positive	$\alpha u^{\alpha-1} u'$
e ^u	I	e ^u ×u'
ln u	où u ne s'annule pas	u' u
Arcsin(u)	où u prend ses valeurs dans]- 1;1[$\frac{u'}{\sqrt{1-u^2}}$
Arccos (u)	où u prend ses valeurs dans]- 1;1[$\frac{-u'}{\sqrt{1-u^2}}$
Arctan(u)	I	$\frac{u'}{1+u^2}$