1. Introducción

En esta actividad se utilizaron datos meteorológicos para estimar la evapotranspiración en un viñedo ubicado en el kilometro 41 de la carretera de Hermosillo a Bah a Kino.

La evapotranspiración es un parámetro muy importante para determinar el manejo de agua en la agricultura, por lo cual se han desarrollado una variedad de ecuaciones para su cálculo bajo distintas condiciones climáticas.

La presente actividad se dividirá en tres partes, y en cada una se desarrollaran procedimientos encaminados a calcular la evapotranspiración del viñedo en cuestión.

En la primera parte se trabajar sobre una serie de datos meteorológicos del año 2018, donde se reproducirá la tabla presente en el art culo de Ko Djaman titulado Evaluation of the Penman-Monteith and other 34 reference evapotranspiration equations under limited data in a semiarid dry climate.

En la segunda parte se utilizaran los datos de dicha tabla para calcular la evapotranspiración mediante tres ecuaciones distintas.

Finalmente, en la tercera parte se realizar una grafica para observar el balance de energía a para un mes en el viñedo.

2. Desarrollo

Para el desarrollo de esta actividad se seguiran una serie de pasos para los cuales se dividira en tres partes.

Se necesita crear una tabla de datos que contenga los siguientes parametros.

- 1. Latitud (° N)
- 2. Longitud (° O)
- 3. Elevación (m)
- 4. Velocidad del Viento (WSmsSWVT en m/s)
- 5. Tmax (Max de AirTCAvg en °C)
- 6. Tmin (Min de AirTCAvg en °C)
- 7. RHmax (Max de RH)
- 8. RHmin (Min de RH)
- 9. RHmean (Promedio de RH)

10. Rs (Radiación neta RnAvg en MJ/m2/día)

Para este proceso tenemos que sacar los diferentes promedios mensuales de cada uno de lo que nos pide.

Despues tendremos que tener las siguientes ecuaciones

y por ultimo hacer un análisis de energia la cual graficaremos del mes de Julio.

La tabla de datos y las demas graficas es la siguiente:

	MESES	LATITUD	Longitud	Altitud	Velocidad_del_Viento	T_MAX	T_MIN	Albedo	RH_MAX	RH_MIN	T_MEAN	RH_MEAN	RS
0	Enero	28.9301	111.3106	101	1.943827	26.221111	7.414444	-0.423822	66.464444	16.905185	16.963975	38.471432	34.734815
1	Febrero	28.9301	111.3106	101	1.984189	25.729286	9.371786	-0.479545	71.871071	25.134286	17.230275	48.168006	56.250350
2	Marzo	28.9301	111.3106	101	1.926196	29.016774	8.894194	-0.409137	68.393548	15.673871	19.282359	36.968353	92.894913
3	Abril	28.9301	111.3106	101	2.101812	32.885333	10.739333	-0.386088	75.936333	15.176333	21.880618	40.785667	134.012965
4	Mayo	28.9301	111.3106	101	2.113918	33.824839	12.665161	-0.387835	80.264516	17.644839	23.650034	44.233468	162.405343
5	Junio	28.9301	111.3106	101	2.154988	38.999000	19.408000	-0.381934	81.303333	25.474333	28.416187	50.810507	163.926069
6	Julio	28.9301	111.3106	101	2.022204	38.370000	24.272581	-0.189610	85.229677	32.464839	31.065726	57.639805	157.534402
7	Agosto	28.9301	111.3106	101	1.910853	36.980000	24.718387	-0.381667	92.190000	42.103871	30.120894	68.868454	151.273589
8	Septiembre	28.9301	111.3106	101	1.790326	37.689667	23.631333	-0.486379	93.101333	36.543000	29.661271	66.619750	138.749910
9	Octubre	28.9301	111.3106	101	1.664435	31.540645	17.023548	-0.614787	94.716774	37.823871	23.254207	68.696082	95.513468
10	Noviembre	28.9301	111.3106	101	1.498097	28.176667	8.331667	-0.659308	90.192000	22.038887	16.966396	58.085458	60.384285
11	Diciembre	28.9301	111.3106	101	1.628730	24.502258	6.243548	-0.518549	88.937419	25.340645	14.332823	58.333938	44.962366

Figura 1: Tabla

De lo cual ahora tenemos que graficar la temperatura, La radiación y la humedad relativa promedio mensuales.

Figura 2: Temperatura Mensual del 2018

Figura 3: Radiacion Solar

Figura 4: Humedad relativa

Ecuación 7, Jansen Haise (1963):

$$ET_0 = (0.0252Tmean + 0.078)Rs$$

- Tmean es la temperatura promedio.
- Rs es la radiación solar.
- Ecuación 31, Valiantzas 1 (2012):

$$ET_0 = 0.0393Rs(Tmean + 9.5)^{0.5} - 0.19(Rs^{0.6})(\varphi^{0.15}) + 0.0061(Tmean + 20)(1.11Tmean - Tmin - 2)^{0.7}$$

- φ es la latitud en radianes.

