1

Assignment 14

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment14

1 Problem

Let T be the linear operator on a n- dimensional vector space V and suppose that T has an n distinct characteristic values. Prove that T is diagonalizable.

2 RESULTS USED

Diagonalizable	A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an basis of V , consisting of eigen vectors of T
Theorem	If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator \mathbf{T} with distinct eigen values $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent. Let \mathbf{v}_1 and \mathbf{v}_2 be the eigen vectors corresponding to eigen values λ_1 and λ_2 $\implies \mathbf{T}(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1, \mathbf{T}(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2$
	Let the linear combination of two eigen vectors be $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 = 0 \qquad \dots (1)$ Applying T on both sides , we get $\mathbf{T}(a_1\mathbf{v}_1 + a_2\mathbf{v}_2) = 0$ $\Rightarrow a_1\mathbf{T}(\mathbf{v}_1) + a_2\mathbf{T}(\mathbf{v}_2) = 0$ $\Rightarrow a_1\lambda_1\mathbf{v}_1 + a_2\lambda_2\mathbf{v}_2 = 0 \qquad \dots (2)$ Multiplying (1) by λ_1 , we get $a_1\lambda_1\mathbf{v}_1 + a_2\lambda_1\mathbf{v}_2 = 0 \qquad \dots (3)$
	Subtracting (2) and (3),we get $a_2(\lambda_2 - \lambda_1)\mathbf{v}_2 = 0$ As λ_1, λ_2 are distinct $\Rightarrow \lambda_2 - \lambda_1 \neq 0$ So,We can say that $a_2 = 0$ Substituting this in (1), we get $a_1 = 0$ Therefore $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent By induction ,for n distinct eigen values $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent.

3 Solution

Given	T has an n distinct characteristic values and $dim(V) = n$
T is diagonalizable	Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct eigen values of T and let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be the eigen vectors of T From above results we can state that $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ is linearly independent. And also given that $\dim(\mathbf{V}) = \mathbf{n}$.So, this set forms a basis of V . $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ is a basis for V consisting of eigen vectors of T . So, T is diagonalizable.