ЛАБОРАТОРНАЯ РАБОТА №6

Разложение чисел на множители

Задача разложения на множители — одна из первых задач, использованных для построения криптосистем с открытым ключом.

Задача разложения составного числа на множители формулируется следующим образом: для данного положительного целого числа n найти его каноническое разложение $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_s^{\alpha_s}$, где p_i – попарно различные простые числа, $\alpha_i\geq 1$.

На практике не обязательно находить каноническое разложение числа n. Достаточно найти его разложение на два нетривиальных сомножителя: $n=pq, 1 \le p \le q < n$. Далее будем понимать задачу разложения именно в этом смысле.

p–Метод Полларда. Пусть n – нечетное составное число, $S=\{0,1,...,n-1\}$ и $f\colon S\to S$ – случайное отображение, обладающее сжимающими свойствами, например $f(x)\equiv x^2+1\ (mod\ n)$. Основная идея метода состоит в следующем. Выбираем случайный элемент $x_0\in S$ и строим последовательность $x_0,x_1,x_{2,...}$, определяемую рекуррентным соотношением

$$x_{i+1} = f(x_i),$$

где $i \geq 0$, до тех пор, пока не найдем такие числа i,j, что i < j и $x_i = x_j$. Поскольку множество S конечно, такие индексы i,j существуют (последовательность «зацикливается»). Последовательность $\{x_i\}$ будет состоять из «хвоста» x_0, x_1, \dots, x_{i-1} длины $O\left(\sqrt{\frac{\pi n}{8}}\right)$ и цикла $x_i = x_j, x_{i+1}, \dots, x_{j-1}$ той же длины.

Алгоритм, реализующий р-метод Полларда.

Bxod. Число n, начальное значение c, функция f, обладающая сжимающими свойствами.

Выход. Нетривиальный делитель числа n.

- 1. Положить $a \leftarrow c$, $b \leftarrow c$.
- 2. Вычислить $a \leftarrow f(a) \pmod{n}, b \leftarrow f(b) \pmod{n}$
- 3. Найти $d \leftarrow \text{HOД}(a b, n)$.
- 4. Если 1 < d < n, то положить $p \leftarrow d$ и результат: p. При d = n результат: «Делитель не найден»; при d = 1 вернуться на шаг 2.

<u>Пример</u>. Найти р-методом Полларда нетривиальный делитель числа n = 1359331. Положим c = 1 и $f(x) = x^2 + 5 \pmod{n}$. Работа алгоритма иллюстрируется следующей таблицей:

i	а	b	d
			= HOД(a-b,n)
	1	1	HW
2	6	41	INCHW 1
2	41	123939	1
3	1686	391594	1
4	123939	438157	1
5	435426	582738	1
6	391594	1144026	1
7	1090062	885749	1181

Таким образом, 1181 является нетривиальным делителем числа 1359331.

Метод квадратов. (*Теорема Ферма о разложении*) Для любого положительного нечетного числа n существует взаимно однозначное соответствие между множеством делителей числа n, не меньших, чем \sqrt{n} , и множеством пар $\{s,t\}$ таких неотрицательных целых чисел, что $n=s^2-t^2$.

<u>Пример</u>. У числа 15 два делителя, не меньших, чем $\sqrt{15}$, — это числа 5 и 15. Тогда получаем два представления:

1.
$$15 = pq = 3 \cdot 5$$
, откуда $s = 4$, $t = 1$ и $15 = 4^2 - 1^2$;

2.
$$15 = pq = 1 \cdot 15$$
, откуда $s = 8$, $t = 7$ и $15 = 8^2 - 7^2$.

Задания к лабораторной работе

- 1. Реализовать рассмотренный алгоритм программно.
- 2. Разложить на множители данное преподавателем число.

Caparoscurin rocytagocisarrhain ynnesocine i mnain H. Leophhinesaciono