Project 3 - Report

Project Title: Deep Learning and Support Vector Machine Project

Objective:

To build two separate models:

1. **Classification Model**: A Convolutional Neural Network trained to classify mushroom images into one of 9 classes using a softmax output layer.

2. **Feature Extraction + SVM Model**: A CNN-based feature extractor that feeds its output into an SVM classifier for classification.

Dataset:

- The dataset consists of labeled mushroom images with 9 classes:
 - Agaricus
 - Amanita
 - Boletus
 - Cortinarius
 - Entoloma
 - Hygrocybe
 - Lactarius
 - Russula
 - Suillus
- The training data is in the folder structure as below.

Mushrooms
— Agaricus
— Amanita
Boletus
Cortinarius
— Entoloma
— Lactarius
Russula
L—Suillus

- The test data consists of images and a CSV file with image paths and labels as below.

image path, label → mushrooms test/test1.jpg, Amanita

Saved Model:

- Classification Model → classifier.keras
- Feature Extraction + SVM Model → svm classifier.pkl

Model Explanation:

1) Model 1: CNN Classification Model (with Softmax)

Purpose:

This model is used for end-to-end classification of mushroom images into one of 9 species.

Architecture Overview:

- Input: Images resized to 128×128×3
- Layers:
 - O Data Augmentation (flip, rotate, zoom, brightness, etc.)
 - Convolutional Layers: 4 layers with increasing filters $(32 \rightarrow 64 \rightarrow 128 \rightarrow 128)$, using ReLU activation.
 - Pooling Layers: MaxPooling2D after each conv layer to reduce spatial dimensions.
 - o GlobalAveragePooling2D to flatten before dense layers.
 - Dense Layer with 256 units + Dropout (0.5) for regularization.
 - Output Layer: Softmax activation with 9 units (for 9 classes).

Output: A probability distribution across 9 classes — the class with the highest probability is the predicted label.

Loss Function: categorical_crossentropy

Metric: accuracy

2) Model 2: Feature Extractor + SVM Classifier

Purpose:

To extract high-level features from images using the CNN model and classify them using an SVM (Support Vector Machine) instead of softmax.

Architecture Overview:

- Uses the same CNN layers as Model 1 up to the last dropout layer, but removes the softmax classification layer.
- Output of the model is a 256-dimensional feature vector (from the last dense layer).

Pipeline:

- 1. Pass images through the CNN feature extractor.
- 2. Collect the feature vectors (X train) and corresponding labels (y train).
- 3. Train a Support Vector Machine (SVM) classifier (SVC(kernel='linear')) on these features.
- 4. Evaluate SVM on extracted validation features

Approach:

1. Load and preprocess image data

- Used tf.keras.utils.image_dataset_from_directory to load images from the dataset folder.
- Applied resizing to 128x128 resolution and used categorical labels for multi-class classification.
- Split the dataset into 80% training and 20% validation using the validation_split argument.

2. Apply data augmentation

- Created a custom Sequential pipeline using tf.keras.layers for transformations such as:
 - Horizontal flipping
 - Rotation
 - Zoom
 - Brightness and contrast adjustment
 - Translation
- This helps the model generalize better and prevent overfitting.

3. Build a custom CNN model with softmax output

 Constructed a CNN from scratch using Conv2D, MaxPooling2D, GlobalAveragePooling2D, and Dense layers.

- Final layer is a Dense layer with softmax activation for 9-class classification.
- Included Dropout (0.5) before the output layer to reduce overfitting.

Layer (type)	Output Shape	Param #
input_layer_16 (InputLayer)	(None, 128, 128, 3)	0
sequential_7 (Sequential)	(None, 128, 128, 3)	0
conv2d_32 (Conv2D)	(None, 128, 128, 32)	896
max_pooling2d_24 (MaxPooling2D)	(None, 64, 64, 32)	0
conv2d_33 (Conv2D)	(None, 64, 64, 64)	18,496
max_pooling2d_25 (MaxPooling2D)	(None, 32, 32, 64)	0
conv2d_34 (Conv2D)	(None, 32, 32, 128)	73,856
max_pooling2d_26 (MaxPooling2D)	(None, 16, 16, 128)	0
conv2d_35 (Conv2D)	(None, 16, 16, 128)	147,584
global_average_pooling2d_8 (GlobalAveragePooling2D)	(None, 128)	0
dense_16 (Dense)	(None, 256)	33,024
dropout_8 (Dropout)	(None, 256)	0
dense_17 (Dense)	(None, 9)	2,313

4. Train the CNN model

- Compiled with **ADAM** optimizer and **categorical crossentropy** loss function.
- Trained the model for 30 epochs using model.fit() with augmented training and validation datasets.
- o Saved the model in .keras format for reuse: model.save("trial_model.keras").

5. Build a CNN-based feature extractor model

• Removed the final softmax layer and used the CNN base up to the dense representation layer (256 units).

• This model outputs feature vectors instead of class predictions.

Layer (type)	Output Shape	Param #
input_layer_18 (InputLayer)	(None, 128, 128, 3)	0
sequential_7 (Sequential)	(None, 128, 128, 3)	0
conv2d_40 (Conv2D)	(None, 128, 128, 32)	896
max_pooling2d_30 (MaxPooling2D)	(None, 64, 64, 32)	0
conv2d_41 (Conv2D)	(None, 64, 64, 64)	18,496
max_pooling2d_31 (MaxPooling2D)	(None, 32, 32, 64)	0
conv2d_42 (Conv2D)	(None, 32, 32, 128)	73,856
max_pooling2d_32 (MaxPooling2D)	(None, 16, 16, 128)	0
conv2d_43 (Conv2D)	(None, 16, 16, 128)	147,584
global_average_pooling2d_10 (GlobalAveragePooling2D)	(None, 128)	Ø
dense_19 (Dense)	(None, 256)	33,024
dropout_10 (Dropout)	(None, 256)	0

6. Extract features and train an SVM

- Used the CNN feature extractor to generate fixed-size feature vectors for both training and validation datasets.
- Flattened labels from one-hot to class indices using np.argmax().

1/1	0s	127ms/step
1/1	0s	
1/1	0s	77ms/step
1/1	0s	72ms/step
1/1	0s	69ms/step
1/1	0s	75ms/step
1/1	0s	65ms/step
1/1	0s	70ms/step
1/1	0s	75ms/step
1/1	0s	70ms/step
1/1	0s	76ms/step
1/1	0s	80ms/step
1/1	0s	78ms/step
1/1	0s	78ms/step
1/1	0s	74ms/step
1/1	0s	62ms/step
1/1	0s	70ms/step
1/1	0s	75ms/step
1/1	0s	70ms/step
1/1	0s	68ms/step
1/1	0s	66ms/step
1/1	0s	99ms/step
1/1	0s	69ms/step
1/1	0s	72ms/step
1/1	0s	80ms/step
•••		
1/1	0s	92ms/step
1/1	0s	101ms/step
1/1	0s	100ms/step
1/1	0s	104ms/step

7. Train and evaluate an SVM classifier

• Used scikit-learn's SVC with a linear kernel.

- Trained it on the CNN-generated features.
- Evaluated the SVM model on validation features using accuracy score.

• Saved the trained model as svm_classifier.pkl using joblib.

8. Visualize training performance

• Plotted training and validation accuracy and loss over epochs using matplotlib.

```
Fitting 3 folds for each of 15 candidates, totalling 45 fits SVM classifier saved as svm_classifier.pkl
Best parameters: {'C': 1, 'max_iter': 1000}
```

```
SVM Classifier Accuracy: 0.4396
```

Testing:

The `proj3_classification_test.py` and proj3_extractSVM_test.py script loads the saved model and processes the test CSV and images.

Requirements:

```
python==3.11.0
pip==22.3
tensorflow==2.19.0
numpy==1.24.3
pandas==2.2.3
matplotlib==3.10.1
scikit-learn==1.6.1
joblib==1.5.0
```

Instructions to Run the Test Script:

- 1. Set up the Python environment. See requirements.txt for dependencies.
- 2. Run the test script for Model 1 using: python proj3 classification test.py --model <model path> --test csv <test data csv path>

```
eg. python proj3_classification_test.py --model classification.keras --test_csv mushrooms_test.csv
```

3. Run the test script for Model 2 using: python proj3_extractSVM_test.py --model <model_path> --test_csv <test_data_csv_path> --feature model <feature model path>

eg. $python\ proj3_extractSVM_test.py\ --model\ svm_classifier.pkl\ --feature_model$ $feature_extractor.keras$

3. Output - Model accuracy

Note: Ensure the model_path and test_data_csv_path are correct before running the script.