

# Utilizzo di Soft-Brownian-Offset per la generazione di attacchi ai fini dell'addestramento di rilevatori di intrusioni



## INTRUSION DETECTION SYSTEMS (IDS)

Applicazione che monitora continuamente la rete per identificare attività malevole.





Nell'ultimo decennio si è iniziato ad utilizzare algoritmi di **Machine Learning** per gli IDS.



#### MACHINE LEARNING

La branca dell'**Intelligenza Artificiale** che sviluppa modelli per permettere alle macchine di imparare dai dati.



I modelli di Machine Learning sono sensibili ai dati di addestramento.







## POSSIBILE METODO MIGLIORAMENTO

**Generare** nuovi dati a partire da quelli già esistenti per migliorare i modelli di Machine Learning

• Soft-Brownian-Offset



#### SCOPO DELLA TESI

Cercare di migliorare un IDS utilizzando Soft-Brownian-Offset





#### SOFT BROWNIAN OFFSET

Algoritmo di generazione di dati creato inizialmente per la generazione di eventi anomali.



#### DATASET UTILIZZATI

- Adfanet
- CICIDS



#### **APPROCCI DI GENERAZIONE**

Generazione a partire dalla tipologia di dati:

- Solo pacchetti normali
- Solo pacchetti attacchi
  - Dataset completo



#### **GRAFICI**

Per una valutazione qualitativa degli approcci di generazione.



#### A PARTIRE DA PACCHETTI NORMALI





## A PARTIRE DA PACCHETTI DI ATTACCHI





### APPROCCI DI ADDESTRAMENTO DEL MODELLO

Addestramento usando:

- Dataset completo + Dati sintetici
- Solo pacchetti normali + Dati sintetici
  - Solo dataset (senza dati generati)



#### **ADFANET**

|                 | Pacchetti<br>normali + Gen | Dataset<br>Completo + Gen | Solo<br>Dataset |
|-----------------|----------------------------|---------------------------|-----------------|
| Gen<br>Normali  | 0.3337                     | 0.99839                   | 0.93596         |
| Gen<br>Attacchi | 0.4404                     | 0.99865                   | 0.93596         |
| Gen<br>Completo | 0.3452                     | 0.99854                   | 0.93596         |



#### **ADFANET**

|                 | Pacchetti<br>normali + Gen | Dataset<br>Completo + Gen | Solo<br>Dataset |
|-----------------|----------------------------|---------------------------|-----------------|
| Gen<br>Normali  | 0.3337                     | 0.99839                   | 0.93596         |
| Gen<br>Attacchi | 0.4404                     | 0.99865                   | 0.93596         |
| Gen<br>Completo | 0.3452                     | 0.99854                   | 0.93596         |



#### CICIDS

|                 | Pacchetti<br>normali + Gen | Dataset<br>Completo + Gen | Solo<br>Dataset |
|-----------------|----------------------------|---------------------------|-----------------|
| Gen<br>Normali  | -0.1153                    | 0.92772                   | 0.93596         |
| Gen<br>Attacchi | -0.1366                    | 0.93428                   | 0.93596         |
| Gen<br>Completo | -0.1206                    | 0.92493                   | 0.93596         |



#### CICIDS

|                 | Pacchetti<br>normali + Gen | Dataset<br>Completo + Gen | Solo<br>Dataset |
|-----------------|----------------------------|---------------------------|-----------------|
| Gen<br>Normali  | -0.1153                    | 0.92772                   | 0.93596         |
| Gen<br>Attacchi | -0.1366                    | 0.93428                   | 0.93596         |
| Gen<br>Completo | -0.1206                    | 0.92493                   | 0.93596         |



#### CONCLUSIONI

Soft Brownian Offset è efficace nel caso di dataset **semplici**.

In dataset **complessi** invece l'algoritmo non presenta miglioramenti.

In quest'ultimo caso è necessario rivolgersi ad algoritmi differenti.



#### GRAZIE PER L'ATTENZIONE