Algèbre Linéaire 2 - Série 2

Matrices I

1. (a) Soient
$$A_1 = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 1 \\ -2 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 4 & -1 & 0 & 3 \\ 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, et $A_3 = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$.

Calculer tous les produits A_iA_j , $i, j \in \{1, 2, 3\}$, possibles.

(b) Soient
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 12 \\ -2 & -6 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 2 \\ -4 & -3 \end{pmatrix}$, $E = \begin{pmatrix} 4 & 2 \\ -8 & -4 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $G = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}$ et $H = \begin{pmatrix} 0 & 3 \\ 1 & 3 \end{pmatrix}$.

Effectuer les multiplications suivantes et expliquer à chaque fois en quoi la multiplication matricielle diffère de la multiplication de nombres réels:

(i)
$$A^2$$

(iii)
$$CD$$
 et DC

(v)
$$E^2$$

(ii) BC

(iv)
$$D^2$$

(vi)
$$FG$$
 et FH

- (c) Si deux matrices A et B sont telles que AB = BA, on dit qu'elles commutent
 - (i) Montrer que A et B commutent seulement si elles sont toutes deux carrées et de même taille. Est-ce que la réciproque est vraie?
 - (ii) Déterminer toutes les matrices A qui commutent avec $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, puis calculer A^n , $n \in \mathbb{N}^*$.
 - (iii) On suppose que A est diagonale de taille $n \times n$. A quelle condition est-ce que A commute avec chacune des matrices de $Mat(n \times n, \mathbb{R})$?

2. (a) Soient
$$A = \begin{pmatrix} -3 & 2 \\ 1 & 3 \\ 5 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & -4 \\ 3 & 2 & 0 \\ 6 & -2 & 5 \end{pmatrix}$, $D = \begin{pmatrix} -4 & 0 & 3 \\ -1 & 4 & 7 \end{pmatrix}$. Calculer les matrices suivantes, si elles existent:

(i)
$$A - 3D^T$$

(iii)
$$3A - 2A^T$$

(i)
$$A-3D^T$$
 (iii) $3A-2A^T$ (v) $2AA^T-4C$ (vii) CD^T-2A (iv) BD (vi) DB

(vii)
$$CD^T - 2A$$

(ii)
$$A + B$$

(vi)
$$DB$$

- (b) Soient A et B deux matrices symétriques de taille $n \times n$. Montrer que AB est symétrique si et seulement si A et B commutent.
- (c) Que peut-on dire d'une matrice A telle que $A^T = -A$?

3. Soient les matrices
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 4 & 3 \\ 1 & 5 & 7 \\ 6 & 8 & 9 \end{pmatrix}$. Calculer, à la main ou numériquement :

- (a) Le produit AB.
- (b) La multiplication composante par composante de A et B (ce n'est **pas** AB!).
- (c) B^3 et A^{17} (sans utiliser de boucle).
- (d) Une matrice C telle que $BC = I_3$. Calculer ensuite CB.