

2018-07-16

Nankai-Baidu Joint Laboratory

Parallel and Distributed Software Technology Lab

CONTENT

Somewhat Practical Fully Homomorphic Encryption
 A review of homomorphic encryption and software tools for encrypted statistical machine learning

Fan and Vercauteren

Message m must be converted to a polynomial representation m = m(x).

$$m = \sum_{n=0}^{b-1} a_n 2^n \implies m(x) = \sum_{n=0}^{b-1} a_n x^n$$

Key Generation:

The secret key k_s is simply a uniform random draw from $R_2 \in (-1,1]$. (sample a $b=2^{d-1}$ binary vector for the polynomial coefficients.)

Key Generation:

The public key k_p is a vector containing two polynomials:

$$k_p = (k_{p1}, k_{p2}) = ([-(a \cdot k_s + e)]_q, a)$$

i. e.
$$q = 2^{128} \ \sigma = 16$$

e is a draw from the discrete Gaussian distribution χ , $e \leftarrow \chi$

(defined to be the probability mass function proportional to $e^{-\frac{\lambda}{2\sigma^2}}$ over the integers from -B to B, where typically $B \approx 10\sigma$.) a is uniform random draw from $R_q \in (-q/2, q/2]$.

 $[a]_q$ denotes the unique integer in $Z_q=\left\{n:n\in Z,-\frac{q}{2}< n\leq \frac{q}{2}\right\}$, which is equal to a mod q.

Key Generation:

The public key k_p is a vector containing two polynomials:

$$k_p = (k_{p1}, k_{p2}) = ([-(a \cdot k_s + e)]_q, a)$$

i. e.
$$q = 2^{128} \ \sigma = 16$$

e is a draw from the discrete Gaussian distribution χ , $e \leftarrow \chi$

(defined to be the probability mass function proportional to $e^{-\frac{x}{2\sigma^2}}$ over the integers from -B to B, where typically $B \approx 10\sigma$.)

a is uniform random draw from $R_q \in (-q/2, q/2]$.

 $[a]_q$ denotes the unique integer in $Z_q=\left\{n:n\in Z,-\frac{q}{2}< n\leq \frac{q}{2}\right\}$, which is equal to a mod q.

Key Generation:

e is a draw from the bounded discrete Gaussian draw induced on R, χ .

 e_j is a scalar discrete random Gaussian draw.

... by a fresh random error term that is relatively concentrated around 0.

e is a draw from the discrete Gaussian distribution χ , $e \leftarrow \chi$

(defined to be the probability mass function proportional to $e^{-\frac{x}{2\sigma^2}}$ over the integers from -B to B, where typically $B \approx 10\sigma$.)

 e_i 是从满足离散高斯分布的整数区间[-B,B]中随机抽取的一个整数。

$$μ = 0$$
 $σ = 6$

$$[μ-3σ, μ+3σ]$$
 $3σ$

$$P{|x - μ| < 3σ} = 2Φ(3) - 1 ≈ 0.9974$$

* : 10 count : 10000

$$\mu = 0$$
 $\sigma = 6$

$$[\mu-3\sigma, \mu+3\sigma]$$
 3σ

$$P\{|x - \mu| < 3\sigma\} = 2\Phi(3) - 1 \approx 0.9974$$

count: 10000

* : 10

Nankai-Baidu Joint Laboratory

Parallel and Distributed Software Technology Lab

STOP Statistics ≫

previous | next | modules | index

Previous topic

Discrete Gaussian Samplers over the Integers

Next topic

Discrete Gaussian Samplers over Lattices

This Page

Show Source

Quick search

Enter search terms or a module, class or function name.

Discrete Gaussian Samplers for $\mathbf{Z}[x]$

This class realizes oracles which returns polynomials in $\mathbf{Z}[x]$ where each coefficient is sampled independently with a probability proportional to $\exp(-(x-c)^2/(2\sigma^2))$.

AUTHORS:

• Martin Albrecht, Robert Fitzpatrick, Daniel Cabracas, Florian Göpfert, Michael Schneider: initial version

EXAMPLES:

```
sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaus
sage: sigma = 3.0; n=1000
sage: 1 = [DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], 64, sigma)() for _ in rang
sage: l = [vector(f).norm().n() for f in l]
sage: mean(1), sqrt(64)*sigma
(23.83..., 24.0...)
```

http://www.sagemath.org/

Rejection Sampling for Discrete Gaussian on Z

Algorithm 1 Sample \mathbb{Z}_m : Rejection Sampling for Discrete Gaussian on \mathbb{Z}

input: A center $t : \mathbb{FP}_m$, and a parameter $\sigma : \mathbb{FP}_m$, and a tailcut parameter $\tau : \mathbb{FP}_m$

output: output $x : \mathbb{Z}$, with distribution statistically close to $D_{\mathbb{Z},t,\sigma}$

- 1: $h \leftarrow -\pi/\sigma^2 : \mathbb{FP}_m ; x_{\text{max}} \leftarrow \lceil t + \tau \sigma \rceil : \mathbb{Z} ; x_{\text{min}} \leftarrow \lfloor t \tau \sigma \rfloor : \mathbb{Z}$
- 2: $x \leftarrow \mathbf{RandInt}(x_{\min}, x_{\max}) : \mathbb{Z}; \quad p \leftarrow \exp(h \cdot (x t)^2) : \mathbb{FP}_m$
- 3: $r \leftarrow \text{RandFloat}_m() : \mathbb{FP}_m;$ if r < p then return x
- 4: **Goto** Step 2.

✓ Faster Gaussian Lattice Sampling using Lazy Floating-Point Arithmetic
Léo Ducas and Phong Q. Nguyen

• Estimating the value of π

Area of Square = $4r^2$

Area of Circle = πr^2

Ratio of area of Circle to area of Square = $\pi r^2/4r^2$

 $=\pi/4$

Total number of throws = N

No. hits inside circle = M

Ratio of no. hits inside circle to total no. throws = M/N

 $\pi/4 \approx M/N \implies \pi \approx 4 * M/N$

Estimating the value of "Pi" by Monte Carlo Methods

Nankai-Baidu Joint Laboratory

Rejection Sampling for Discrete Gaussian on Z

Step 1.
$$x \leftarrow [-3\sigma, 3\sigma]$$

Step 2.
$$p \leftarrow ke^{-.5\left(\frac{x-\mu}{\sigma}\right)^2}$$

Step 3.
$$r \leftarrow random(0,1)$$

✓ FV scheme : Encrypt, Decrypt, Add, Multiply

✓ Next : Turn somewhat HE to Fully HE

