ELEC Convex Optimization - Homework #1

Professor Daniel P. Palomar TAs: Vinícius and Rui

Department of Electronic & Computer Engineering (ECE)
Department of Industrial Engineering & Decision Analytics (IEDA)
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong, SAR China

September 14, 2020

All your answers must be appropriately justified.

Due date: Sept. 21st 2020. Please, submit a pdf file through canvas.

In case you do not have access to canvas, submit your solutions, as a pdf file, to jvdmc@connect.ust.hk.

Late submissions, or submissions that are not pdf files won't be considered. Total marks: 100 + 20 (bonus).

Problem #1 (20 marks)

Assume $x \in \mathbb{R}^n$, unless otherwise noted. Show whether the following functions are convex.

- (a) $f(\boldsymbol{x}) = \log \left(\sum_{i=1}^{n} e^{x_i} \right)$.
- (b) $f(x) = ||x||^p, p \ge 1$.
- (c) $f(x) = \frac{1}{g(x)}$, where g is concave and $g(x) > 0 \ \forall \ x \in \mathbb{R}^n$.
- (d) $f(x) = \alpha g(x) + \beta$, where $g : \mathbb{R}^n \mapsto \mathbb{R}$ is a convex function, and α and β are scalars such that $\alpha \ge 0$.
- (e) $f(x) = \exp(\beta x^{\top} A x)$ where A is a positive semidefinite symmetric $n \times n$ matrix and β is a positive scalar.
- (f) f(x) = g(Ax + b), where $g : \mathbb{R}^m \to \mathbb{R}$ is a convex function, A is an $m \times n$ matrix, and b is a vector in \mathbb{R}^m .
- (g) $f(x) = \sum_{i=1}^{n-1} |x_{i+1} x_i|$. Is this function a norm?

Problem #2 (20) marks

Explain on your own words what are: (i) vector spaces, (ii) linear subspaces of a vector space, (iii) convex sets, (iv) null space, (v) column space, and (vi) row space. Next, prove whether linear subspaces of a vector space are convex sets.

Problem #3 (20) marks

Let *C* be a nonempty convex subset of \mathbb{R}^n .

(a) Let $f: C \mapsto \mathbb{R}$ be a convex function and $g: \mathbb{R} \mapsto \mathbb{R}$ be a function that is convex and monotonically nondecreasing over a convex set that contains the set of values that f can take, i.e., $\{f(x): x \in C\}$. Show that the function h defined by h(x) = g(f(x)) is convex over C. In addition, show that if g is monotonically increasing and f is strictly convex, then h is strictly convex.

(b) Let $f = (f_1, ..., f_m)$, where each $f_i : C \mapsto \mathbb{R}$ is a convex function, and let $g : \mathbb{R}^m \mapsto \mathbb{R}$ be a function that is convex and monotonically nondecreasing over a convex set that contains the set $\{f(x) : x \in C\}$, in the sense that for all u, v in this set such that $u \le v$, we have $g(u) \le g(v)$. Show that the function h defined by h(x) = g(f(x)) is convex over $C \times \cdots \times C$.

Hint: use the definition of convex function.

Problem #4 (20) marks

Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function. Use the definition of convexity to show that f is "turning upwards" in the sense that if x_1 , x_2 , and x_3 are three scalars such that $x_1 < x_2 < x_3$, then

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2} \tag{1}$$

Problem #5 (20) marks

Suppose we are given a $p \times p$ symmetric, positive-definite matrix Σ , and a vector $b \in \mathbb{R}^p_{++}$, such that $\mathbf{1}^\top b = 1$, where $\mathbf{1} = (1, 1, ..., 1)^\top$.

Consider the risk parity feasibility problem

find
$$\boldsymbol{w}$$
 subject to $\boldsymbol{w} > 0$, $w_i(\Sigma \boldsymbol{w})_i = b_i(\boldsymbol{w}^{\top} \Sigma \boldsymbol{w}), i = 1, 2, ..., p.$ (2)

Is the above problem, as given, convex?

Now, define the function $h: \mathbb{R}^p_{++} \to \mathbb{R}$ given by $h(w) = -\sum_{i=1}^p b_i \log(w_i)$ and consider the problem

Is the above problem convex?

Bonus Problem (20) marks

The convex hull of a finite set S is defined as the smallest convex set that contains S. Argue that the convex hull of a finite set S is the intersection of all convex sets that contain S.