

SUPERVISED LEARNING IN R: REGRESSION

Logistic regression to predict probabilities

Nina Zumel and John Mount Win-Vector LLC

Predicting Probabilities

- Predicting whether an event occurs (yes/no): classification
- Predicting the probability that an event occurs: regression
- Linear regression: predicts values in $[-\infty, \infty]$
- Probabilities: limited to [0,1] interval
 - So we'll call it non-linear

Example: Predicting Duchenne Muscular Dystrophy (DMD)

• outcome: has_dmd

• inputs: CK, H

A Linear Regression Model

• outcome: has_dmd $\in \{0,1\}$

• 0: FALSE

■ 1: TRUE

Model predicts values outside the range [0:1]

Logistic Regression

$$log(rac{p}{1-p})=eta_0+eta_1x_1+eta_2x_2+...$$

glm(formula, data, family = binomial)

- Generalized linear model
- ullet Assumes inputs additive, linear in $\emph{log-odds}$: $\emph{log}(p/(1-p))$
- family: describes error distribution of the model
 - logistic regression: family = binomial

DMD model

```
model <- glm(has_dmd ~ CK + H, data = train, family = binomial)
```

- outcome: two classes, e.g. a and b
- model returns Prob(b)
 - Recommend: 0/1 or FALSE/TRUE

Interpreting Logistic Regression Models

Predicting with a glm() model

predict(model, newdata, type = "response")

- newdata: by default, training data
- To get probabilities: use type = "response"
 - By default: returns log-odds

DMD Model

model <- glm(has_dmd ~ CK + H, data = train, family = binomial) test\$pred <- predict(model, newdata = test, type = "response")

Evaluating a logistic regression model: pseudo- R^2

$$R^2 = 1 - rac{RSS}{SS_{Tot}}$$
 $pseudoR^2 = 1 - rac{deviance}{null.deviance}$

- Deviance: analogous to variance (RSS)
- Null deviance: Similar to SS_{Tot}
- pseudo R^2: Deviance explained

Pseudo- R^2 on Training data

Using broom::glance()

```
glance(model) %>%
summarize(pR2 = 1 - deviance/null.deviance)

## pseudoR2
## 1 0.5922402
```

Using sigr::wrapChiSqTest()

```
wrapChiSqTest(model)
## "... pseudo-R2=0.59 ..."
```


Pseudo- R^2 on Test data

```
# Test data
test %>%
mutate(pred = predict(model, newdata = test, type = "response")) %>%
wrapChiSqTest("pred", "has_dmd", TRUE)
```

Arguments:

- data frame
- prediction column name
- outcome column name
- target value (target event)

The Gain Curve Plot

GainCurvePlot(test, "pred", "has_dmd", "DMD model on test")

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Poisson and quasipoisson regression to predict Nina Zumel and John Mount Win-Vector, LLC counts

Predicting Counts

- Linear regression: predicts values in $[-\infty, \infty]$
- Counts: integers in range $[0, \infty]$

Poisson/Quasipoisson Regression

glm(formula, data, family)

- family: either poisson or quasipoisson
- inputs additive and linear in log(count)

Poisson/Quasipoisson Regression

glm(formula, data, family)

- family: either poisson or quasipoisson
- inputs additive and linear in log(count)
- outcome: *integer*
 - counts: e.g. number of traffic tickets a driver gets
 - rates: e.g. number of website hits/day
- prediction: expected *rate* or *intensity* (not integral)
 - expected # traffic tickets; expected hits/day

Poisson vs. Quasipoisson

- Poisson assumes that mean(y) = var(y)
- If var(y) much different from mean(y) quasipoisson
- Generally requires a large sample size
- If rates/counts >> 0 regular regression is fine

Example: Predicting Bike Rentals

10

Fit the model

```
summarize(bikesJan, mean = mean(cnt), var = var(cnt))
## mean var
## 1 130.5587 14351.25
```

Since var(cnt) >> mean(cnt) → use quasipoisson

```
fmla <- cnt ~ hr + holiday + workingday +
  weathersit + temp + atemp + hum + windspeed

model <- glm(fmla, data = bikesJan, family = quasipoisson)</pre>
```


Check model fit

$$pseudoR^2 = 1 - rac{deviance}{null.deviance}$$

```
glance(model) %>%
summarize(pseudoR2 = 1 - deviance/null.deviance)

## pseudoR2
## 1 0.7654358
```


Predicting from the model

predict(model, newdata = bikesFeb, type = "response")

Evaluate the model

You can evaluate count models by RMSE

```
bikesFeb %>%
mutate(residual = pred - cnt) %>%
summarize(rmse = sqrt(mean(residual^2)))

## rmse
## 1 69.32869

sd(bikesFeb$cnt)

## [1] 134.2865
```


Compare Predictions and Actual Outcomes

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

GAM to learn non- linear transformations

Nina Zumel and John Mount Win-Vector, LLC

Generalized Additive Models (GAMs)

$$y \sim b0 + s1(x1) + s2(x2) +$$

Learning Non-linear Relationships

gam() in the mgcv package

gam(formula, family, data)

family:

- gaussian (default): "regular" regression
- binomial: probabilities
- poisson/quasipoisson: counts

Best for larger data sets

The s() function

```
anx \sim s(hassles)
```

- s() designates that variable should be non-linear
- Use s() with continuous variables
 - More than about 10 unique values

Revisit the hassles data

Model	RMSE	R^2
	(cross-val)	(training)
Linear (7.69	0.53
hassles)		
Quadratic	6.89	0.63
$(hassles^2)$		
Cubic (6.70	0.65
$hassles^3$)		

GAM of the hassles data

```
model <- gam(anx \sim s(hassles), data = hassleframe, family = gaussian) summary(model) ## ## ... ## ... ## R-sq.(adj) = 0.619 Deviance explained = 64.1% ## GCV = 49.132 Scale est. = 45.153 n = 40
```


Examining the Transformations

plot(model)

y values: predict(model, type = "terms")

Predicting with the Model

predict(model, newdata = hassleframe, type = "response")

Comparing out-of-sample performance

Knowing the correct transformation is best, but GAM is useful when transformation isn't known

Model	RMSE (cross-val)	R^2 (training)
Linear (hassles)	7.69	0.53
Quadratic ($hassles^2$)	6.89	0.63
Cubic ($hassles^3$)	6.70	0.65
GAM	7.06	0.64

Small data set → noisier GAM

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!