Introdução a Computação - Atividade 05

Aluno: Yan Carlo Silveira Lepri

1° Período

- Represente os números decimais com sinal como números binários com sinal no sistema de complemento de 2, usando um total de 8 bits (bit de sinal + 7 bits de magnitude):
 - 0 +3
 - o **-2**
 - o **+8**
 - o -8
 - 0 +56
 - · -100
- Efetue a subtração dos seguintes pares de números binários positivos, usando complemento de 2. Converter o resultado para decimal, indicando se é positivo ou negativo:
 - o (00101101) (00010010) -> números de 8 bits: sinal + magnitude
 - o (00010010) (00101101) -> números de 8 bits: sinal + magnitude
 - (000010001011) (000000110101) -> números de 12 bits: sinal + magnitude
 - (000101011101) (000011100110) -> números de 12 bits: sinal + magnitude
- 3. Converta os números decimais em binário de 8 bits, com sinal, e realize as operações indicadas usando soma, usando complemento de 2 para representar os negativos. Converter o resultado para decimal, indicando se é positivo ou negativo:
 - 0 55 77
 - 0 43 61
 - 0 15 28

Resolução

01)

a. +3

```
3/2 = 2, resto 1

1/2 = 0, resto 1

R: (00000011)^2 = (+3)^{10}
```

$$2/2 = 1$$
, resto 0 $1/2 = 0$, resto 1

00000010, invertido, temos: 11111101

							1	
	1	1	1	1	1	1	0	1
+								1
-	-	-	-	-	-	-	-	-
	1	1	1	1	1	1	1	0

R: $(111111110)^2 = (-2)^{10}$

$$8/2 = 4$$
, resto 0

$$4/2 = 2$$
, resto 0

$$2/2 = 1$$
, resto 0

$$1/2 = 0$$
, resto 1

R:
$$(00001000)^2 = (+8)^{10}$$

d. -8

Usando a resposta de último exercício e invertendo-o, temos: 11110111

					1	1	1	
	1	1	1	1	0	1	1	1
+								1
-	-	-	-	-	-	-	-	-
	1	1	1	1	1	0	0	0

R: $(11111000)^2 = (-8)^{10}$

e. +56

$$56/2 = 28$$
, resto 0

$$28/2 = 14$$
, resto 0

$$14/2 = 7$$
, resto 0

$$7/2 = 3$$
, resto 1

$$3/2 = 1$$
, resto 1

$$1/2 = 0$$
, resto 1

R:
$$(00111000)^2 = (+56)^{10}$$

$$100/2 = 50$$
, resto 0

$$50/2 = 25$$
, resto 0

$$25/2 = 12$$
, resto 1

$$12/2 = 6$$
, resto 0

$$6/2 = 3$$
, resto 0

$$3/2 = 1$$
, resto 1

$$1/2 = 0$$
, resto 1

01100100, invertido, temos: 10011011

						1	1	
	1	0	0	1	1	0	1	1
+								1
-	-	-	-	-	-	-	-	-
	1	0	0	1	1	1	0	0

R: $(10011100)^2 = (-100)^{10}$

+/-	64	32	16	8	4	2	1	-
0	0	0	1	1	0	1	1	+27

a. (00101101) - (00010010) -> números de 8 bits: sinal + magnitude

				1			1	
	0	0	0	0	1	0	0	1
-	0	0	0	1	0	0	1	0
-	-	1	-	-	-	-	-	-
	0	0	0	1	1	0	1	1

R: Usando a tabela, temos o número +27

b. (00010010) - (00101101) -> números de 8 bits: sinal + magnitude

			1			1		1
	1	1	0	0	1	0	0	0
-	0	0	1	0	1	1	0	1
-	-	-	-	-	-	-	-	1
	1	1	1	0	0	1	0	1

Invertendo 11100101, temos 00011010

	0	0	0	1	1	0	1	0
+								1
-	-	-	-	-	-	-	-	-
	0	0	0	1	1	0	1	1

R: adicionando 1 ao bit de sinal, temos 10011011 = -27

+/-	1024	512	256	128	64	32	16	8	4	2	1	-
0	0	0	0	0	1	0	1	0	1	1	0	+86
0	0	0	0	0	1	1	1	0	1	1	1	+119

c. (000010001011) - (000000110101) -> números de 12 bits: sinal + magnitude

								1		1		
	0	0	0	0	0	1	1	0	0	0	1	1
-	0	0	0	0	0	0	1	1	0	1	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-
	0	0	0	0	0	1	0	1	0	1	1	0

R: Usando a tabela, temos +86

d. (000101011101) - (000011100110) -> números de 12 bits: sinal + magnitude

						1	1			1	1	
	0	0	0	0	1	0	0	1	0	0	0	1
-	0	0	0	0	1	1	1	0	0	1	1	0
-	-	-	-	-	-	-	-	-	-	-	-	-
	0	0	0	0	0	1	1	1	0	1	1	1

R: Usando a tabela, temos +119

3)

128	64	32	16	8	4	2	1	-
0	0	1	1	0	1	1	1	55
0	1	0	0	1	1	0	1	77
0	0	1	0	1	0	1	1	43
0	0	1	1	1	1	0	1	61
0	0	0	0	1	1	1	1	15
0	0	0	1	1	1	0	0	28

a. 55 - 77

 $(00110111)^2$ - $(01001101)^2$

		1			1			
	1	0	1	0	0	1	1	1
-	0	1	0	0	1	1	0	1
-	-	-	-	-	-	-	-	-
	1	1	1	0	1	0	1	0

Invertendo 11101010, temos 00010101

	0	0	0	1	0	1	0	1
-								1
-	-	-	-	-	-	-	-	-
	0	0	0	1	0	1	0	0

R: Adicionando 1 no bit de sinal, temos 10010100 = -22

00101011, invertido, temos: 11010100

	1	1	0	1	0	1	0	0
+								1
-	-	-	-	-	-	-	-	-
	1	1	0	1	0	1	0	1

 $(11010101)^2 - (00111101)^2$

				1	1			
	1	0	1	0	0	1	0	1
1	0	0	1	1	1	1	0	1
-	-	-	-	-	1	-	-	-
	1	0	0	0	1	0	0	0

R: $(10001000)^2 = (-8)^{10}$

0001111, invertido, temos 11110000, e somando 1, temos 11110001 $(11110001)^2 - (00011100)^2$

				1		1		
	1	1	0	0	1	0	0	1
-	0	0	0	1	1	1	0	0
-	-	-	-	-	-	-	-	-
	1	1	0	1	0	1	0	1

11010101, invertido, temos 00101010, somando 1, temos 00101011. Adicionando 1 ao bit de sinal, temos 10101011 = -43