

Java Grundlagen

Flußkontrolle

IF-Anweisungen

Verschachtelte If-Anweisungen

```
public class FlowControl {
         public static void main(String[] args) {
                   double weight = 83.0F;
                   double height = 181.0F;
                   double bmi = weight / (height * height);
                   if (bmi > 25) {
                            System.out.println("You should eat less");
                            System.out.println("Possibly less fat and sugar and salt.");
                   } else {
                            if (bmi < 20){
                                      System.out.println("You should eat more");
                                      System.out.println("Possibly more fat and sugar and salt.");
                            } else {
                                      System.out.println("Perfect. Go on this way!");
```


If Kaskaden

```
public class FlowControl {
         public static void main(String[] args) {
                   double weight = 83.0F;
                   double height = 181.0F;
                   double bmi = weight / (height * height);
                   if (bmi > 25) {
                            System.out.println("You should eat less");
                            System.out.println("Possibly less fat and sugar and salt.");
                   } else if (bmi < 20) {</pre>
                            System.out.println("You should eat more");
                            System.out.println("Possibly more fat and sugar and salt.");
                   } else {
                            System.out.println("Perfect. Go on this way!");
```

If ohne Klammern syntaktisch korrekt aber fehleranfällig

String Vergleich

```
package at.java;
import java.util.Scanner;
public class FlowControl {
         public static void main(String[] args) {
                   Scanner scanner = new Scanner(System.in);
                   System.out.println("Please enter your name");
                   String name = scanner.next();
                   if (name.equals("Christoph")) {
                            System.out.println("VIP customer");
                   } else {
                            System.out.println("ordinary customer");
```

- Strings nicht mit == vergleichen
- == prüft bei Referenzdatentypen, ob es sich um das selbe Objekt handelt
- Der Inhalt von Strings wird mit der equals() Methode verglichen (Gleichheit)

Schleifen (loops)

Es gibt in Java 3 verschiedene Arten von Schleifen

- 1. for
- 2. do/while
- 3. while

For-Schleife

Initialisierungsausdruck – wird for der ersten Iteration ausgeführt. Variablen Deklarationen sind erlaubt.

Abbruchbedingung – wird vor jedem Durchlauf ausgewertet

Aktualisierungsausdruck – wird nach jedem Durchlauf ausgewertet

Die Variable i ist nur innerhalb der Schleife zugreifbar. Merke: bei Java haben die Variablen "Block Scope"

While Schleife

Abbruchbedingung – wird vor jedem Durchlauf ausgewertet

Schleife unterbrechen

Die break Anweisung bricht die innerste Schleife ab.

Do-While Schleife

```
int i = 0;
do {
    System.out.println(i);
    i++;
} while (i < 10);</pre>
```

Abbruchbedingung – wird nach jedem Durchlauf ausgewertet. Die Do-While Schleife wird daher zumindest 1 mal durchlaufen.

Komplexe Boolsche Ausdrücke

- Es gibt folgende boolsche Operatoren in Java
 - &.. And
 - |... or
 - !... not
- Shortcut Operatoren:
 - &&
 - ||

Switch Statement

```
public class Switcher {
         public String getPerspectiveOfLife(int numberOfChildren) {
                   String result = "";
                   switch (numberOfChildren) {
                   case (0):
                            result = "What a wonderful life.";
                            break;
                   case (1):
                            result = "Do you remember? In your former life you had time for yourself.";
                            break:
                   case (2):
                            result = "With only one child life was so wonderful";
                            break;
                   case (3):
                            result = "Children are the most beautiful thing in the world!";
                            break;
                   default:
                            result = "The old ones take care of the young ones";
                            break;
                   return result;
19.09.22
```


Switch Pfeil Notation (seit 14)

```
String result = "";
switch (numberOfChildren) {
    case (0) ->
        result = "What a wonderful life.";
    case (1) ->
        result = "Do you remember? In your former life you had time for yourself.";
    case (2) ->
        result = "With only one child life was so wonderful";
    case (3) ->
        result = "Children are the most beautiful thing in the world!";
    default -> {
        result = "The old ones take care of the young ones";
        result += "!";
    }
}
```


Switch Expressions (seit 14)

```
int numberOfPurchases = 5;
double discount = switch (numberOfPurchases){
    case 0 -> 0.;
    case 1 -> 5.;
    case 2 -> 7.;
    case 3 -> 10.;
    default -> {
        System.out.println("Very important customer!");
        yield 15.;
    }
};
```


Übung 3

- Schreiben sie ein Programm, indem der User eine Zahl zwischen 1 und 100 erraten soll.
- Die Zufallszahl wird mit (int)((Math.random() * 100) + 1) berechnet.
- Der User erhält Feedback ob die geratene Zahl höher und niedriger ist als die eingegebene
- Ziel ist es, die Nummer zu erraten.

Übung 3.2

Schreiben sie ein Programm das die folgende Tabelle ausgibt:

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

Hinweis:

Um Zahlen formatiert ausgeben zu können verwendet:

System.out.printf("%4d", value)

Ergänzende Literatur

 Java Tutorial https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html

Java Language Specification
 https://docs.oracle.com/javase/specs/jls/se11/html/jls-14.html#jls-14.13

14.12