ORACLE Academy

Students should understand that the use and expansion of Internet technology is at different stages throughout the world. Students should read and explore advances in technology in other countries, to help them think globally.

Oracle has a commitment to education as the company feels that educating young adults is an important goal for society.

Objectives

- This lesson covers the following objectives:
 - Describe the evolution of the database and give an example of its role in the business world
 - Name important historical contributions in database development and design
 - List and explain the three major steps in the database development process

DDS1L3 History of the Database

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

3

Database technology and its uses are not static. Today's databases are very different from those of 20 years ago. Future databases will be different again.

Manne Dina

Purpose

- History provides perspective for where we are today in information technology
- The next time you use your computer, your video gaming system, or your smart phone, you will realize how far we've come to get to this point and what events brought us here
- Data Modeling is the first step in database development
- This lesson includes an overview of the content that is covered in the remainder of the course

DDS1L3 History of the Database

History of the Database Timeline

- 1960s: Computers become cost effective for private companies, and storage capacity increases
- 1970-72: E. F. Codd proposes the relational model for databases, disconnecting the logical organization from the physical storage
- 1976: P. Chen proposes the entity relationship model (ERM) for database design

DDS1L3 History of the Database

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

5

Non-relational databases, including hierarchical databases such as IBM's IMS, preceded relational databases. And some of them are still in use today. This history focuses only on relational databases, which are easily the most widely used today because of their flexibility and relative ease of use.

Marin Silva

History of the Database Timeline

- Early 1980s: The first commercially-available relational database systems start to appear at the beginning of the 1980s with Oracle Version 2
- Mid-1980s: SQL (structured query language) becomes "intergalactic standard"
- Early 1990s: An industry shakeout begins with fewer surviving companies. Oracle survives

DDS1L3 History of the Database

Marin Sillian

History of the Database Timeline

- Mid-1990s: Kaboom! The usable Internet/World Wide Web (WWW) appears
 - A mad scramble ensues to allow remote access to computer systems with legacy data
- Late 1990s: The large investment in Internet companies helps create a tools-market boom for Web/Internet/DB connectors
- Early 21st century: Solid growth of DB applications continues. Examples: commercial websites (yahoo.com, amazon.com, google.com), government systems (Bureau of Citizenship and Immigration Services, Bureau of the Census), art museums, hospitals, schools, etc

DDS1L3 History of the Database

Question: What Does Data Modeling Have to do with a Database?

- Data modeling is the first step in the database development process
- It involves collecting and analyzing the data that a business needs to track, and then diagramming the organization of that data in an Entity Relationship Diagram

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

DDS1L3 History of the Database

Marin Dilla

Database Development Process

- Data modeling begins by researching the information requirements of a business
- Example: Here is a set of information requirements
 - I manage the Human Resources Department for a large company
 - We need to store data about each of our company's employees
 - We need to track each employee's first name, last name, job or position, hire date and salary
 - For each employee on commission, we also need to track his/her potential commission
 - -Each employee is assigned a unique employee number

Academy

DDS1L3 History of the Database

- Example: Here is a set of information requirements
 - -Our company is divided into departments
 - Each employee is assigned to a department -- for example, accounting, sales, or development
 - We need to know the department responsible for each employee and the department location
 - -Each department has a unique number
 - -Some of the employees are managers
 - We need to know each employee's manager and all of the employees that are managed by each manager

DDS1L3 History of the Database

This is exactly what students will learn in the Data Modeling course. They will be able to transform business requirements into data models called Entity Relationship Diagrams (ERDs).

 Step two, the database design phase of the development process, translates the information modeled on the entity relationship diagram to a table instance chart

12

- The table instance chart lists the design specifications of the information and has the following components:
 - -Table name
 - -Column names
 - Keys: a primary key (PK) is the unique identifier for each row of data; a foreign key (FK) links data in one table to the data in a second table by referring to the PK column in the second table
 - -Nulls: indicates if a column must contain a value (mandatory)

DDS1L3 History of the Database

- Unique:
 - indicates if the value contained in a column is unique within the table
- Data type:
 - identifies the definition and format of the data stored in each column

DDS1L3 History of the Database

• Structured Query Language (SQL) commands are used to build the physical structure of the database

DATABASE BUILD—Step Three

```
CREATE TABLE departments
                     CONSTRAINT depts deptno PK PRIMARY KEY,
(deptno NUMBER(5)
        VARCHAR2 (25) CONSTRAINT depts name NN NOT NULL,
name
loc
       VARCHAR2 (30) CONSTRAINT depts loc NN NOT NULL);
CREATE TABLE employees
                          CONSTRAINT emps empno PK PRIMARY KEY,
(empno
            NUMBER (9)
            VARCHAR2 (15) CONSTRAINT emps fname NN NOT NULL,
 fname
            VARCHAR2 (20) CONSTRAINT emps lname NN NOT NULL,
 lname
            DATE
                          CONSTRAINT emps hiredt NN NOT NULL,
 hiredate
 salary
            NUMBER(9,2),
 commission NUMBER (9,2),
 mgr NUMBER(9) CONSTRAINT emps mgr FK REFERENCES employees(empno),
 deptno NUMBER(5) CONSTRAINT emps deptno FK REFERENCES
                   departments (deptno));
```

ORACLE

Academy

DDS1L3 History of the Database

• SQL is also used to populate, access, and manipulate the data within the relational database

DATABASE BUILD—Step Three

```
INSERT INTO departments(deptno, name, loc)
VALUES (123, 'Accounts', 'US');
SELECT fname, lname, deptno
FROM employees
WHERE deptno = 123;
UPDATE departments
SET name = 'marketing'
WHERE deptno=123
ORACLE
Academy
                        DDS1L3
                                                 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.
                                                                                 16
                        History of the Database
```

In SQL, you will learn how to make the actual database. Right now, it's all about understanding what is needed using smart planning and careful design.

Terminology

- Key terms used in this lesson included:
 - -Data type
 - -Foreign key (FK)
 - -Nulls
 - -Primary key (PK)
 - -Table instance chart
 - -Unique

DDS1L3 History of the Database

Summary

- In this lesson, you should have learned how to:
 - Describe the evolution of the database and give an example of its role in the business world
 - Name important historical contributions in database development and design
 - List and explain the three major steps in the database development process

DDS1L3 History of the Database

ORACLE Academy