from sklearn.cluster import KMeans
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
%matplotlib inline

df=pd.read_csv("/content/drive/MyDrive/Datasets/income.csv")
df.head()

	Name	Age	<pre>Income(\$)</pre>
0	Rob	27	70000
1	Michael	29	90000
2	Mohan	29	61000
3	Ismail	28	60000
4	Kory	42	150000


```
km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(df[['Age','Income($)']])
y_predicted
```

df['cluster']=y_predicted
df.head()

	Name	Age	<pre>Income(\$)</pre>	cluster
0	Rob	27	70000	0
1	Michael	29	90000	0
2	Mohan	29	61000	2
3	Ismail	28	60000	2
1	Korv	12	150000	1

km.cluster_centers_

```
array([[3.40000000e+01, 8.05000000e+04], [3.82857143e+01, 1.50000000e+05], [3.29090909e+01, 5.61363636e+04]])
```

```
df1 = df[df.cluster==0]
df2 = df[df.cluster==1]
df3 = df[df.cluster==2]
plt.scatter(df1.Age,df1['Income($)'],color='green')
plt.scatter(df2.Age,df2['Income($)'],color='red')
plt.scatter(df3.Age,df3['Income($)'],color='black')
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',marker='*',la
plt.xlabel('Age')
plt.ylabel('Income ($)')
plt.legend()
```

<matplotlib.legend.Legend at 0x7f9aab4a2d50>

Preprocessing using min max scalar

```
scaler = MinMaxScaler()

scaler.fit(df[['Income($)']])
df['Income($)'] = scaler.transform(df[['Income($)']])

scaler.fit(df[['Age']])
df['Age'] = scaler.transform(df[['Age']])
df.head()
```

	Name	Age	<pre>Income(\$)</pre>	cluster
0	Rob	0.058824	0.213675	0
1	Michael	0.176471	0.384615	0
2	Mohan	0.176471	0.136752	2
3	Ismail	0.117647	0.128205	2
4	Kory	0.941176	0.897436	1

plt.scatter(df.Age,df['Income(\$)'])

km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(df[['Age','Income(\$)']])
y_predicted

array([2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1],
$$dtype=int32$$
)

df['cluster']=y_predicted
df.head()

	Name	Age	<pre>Income(\$)</pre>	cluster
0	Rob	0.058824	0.213675	2
1	Michael	0.176471	0.384615	2
2	Mohan	0.176471	0.136752	2
3	Ismail	0.117647	0.128205	2
4	Kory	0.941176	0.897436	0

km.cluster_centers_

array([[0.72268908, 0.8974359],

```
[0.85294118, 0.2022792],
[0.1372549, 0.11633428]])
```

```
df1 = df[df.cluster==0]
df2 = df[df.cluster==1]
df3 = df[df.cluster==2]
plt.scatter(df1.Age,df1['Income($)'],color='green')
plt.scatter(df2.Age,df2['Income($)'],color='red')
plt.scatter(df3.Age,df3['Income($)'],color='black')
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',marker='*',la
plt.xlabel('Age')
plt.ylabel('Income ($)')
plt.legend()
```

<matplotlib.legend.Legend at 0x7f9aab3f4690>

Elbow Plot

```
sse = []
k_rng = range(1,10)
for k in k_rng:
    km = KMeans(n_clusters=k)
    km.fit(df[['Age','Income($)']])
    sse.append(km.inertia_)

plt.xlabel('K')
plt.ylabel('Sum of squared error')
plt.plot(k_rng,sse)
```

[<matplotlib.lines.Line2D at 0x7f9aa0abcc10>]

×