Algebra I: Subgroups

Arjun Vardhan

†

Created: 4th February 2022 Last updated: 14th June 2022

1 Definition

- Let G be a group. $H \subseteq G$ is a subgroup of G if $H \neq \emptyset$ and if $x, y \in H \implies x^{-1}, xy \in H$. We denote this relation by $H \leq G$, or H < G if the containment is proper.
- Subgroups are just subsets of a group that are also groups themselves with the same operations.
- Subgroup Criterion: $H \subseteq G$ is a subgroup if and only if $H \neq \emptyset$ and for all $x, y \in H$, $xy^{-1} \in H$. Proof: If $H \leq G$, then $H \neq \emptyset$ and $x, y \in H \implies xy^{-1} \in H$. Conversely, suppose that H satisfies the two conditions. Then $x \in H \implies xx^{-1} = e \in H$. And thus $e, x \in H \implies ex^{-1} = x^{-1} \in H$. Suppose $x, y \in H$. Then, $y^{-1} \in H \implies xy \in H$.

2 Centralizers, Normalizers, Stabilizers and Kernels

- Let $A \subseteq G$, $A \neq \emptyset$. Let $C_G(A) = \{g \in G : gag^{-1} = a, \forall a \in A\}$. $C_G(A)$ is called the centralizer of A in G. Since $gag^{-1} = a$ if and only if ga = ag, $C_G(A)$ is the set of all elements in G that commute with all elements in A.
- $C_G(A) \leq G$. Proof: Let $a \in A$. ea = ae so $e \in C_G(A)$ and thus $C_G(A) \neq \emptyset$. Suppose $x, y \in C_G(A)$. Then $xax^{-1} = y^{-1}ay = a$ for all $a \in C_G(A) \implies xy^{-1}ayx^{-1} = a \implies xy^{-1} \in C_G(A)$.
- The center of G, denoted Z(G) is the set of all elements that commute with all elements of G. So $Z(G) = C_G(G)$. Z(G) = G if and only if G is abelian.
- Let $A \subseteq G$, $A \neq \emptyset$. Let $gAg^{-1} = \{gag^{-1} : a \in A\}$. The normalizer of A in G, is the set $N_G(A) = \{g \in G : gAg^{-1} = A\}$. If $g \in C_G(A)$, then $gag^{-1} = a$ for all $a \in A$, so $C_G(A) \leq N_G(A)$.
- $N_G(A) \leq G$. Proof: Clearly, $e \in N_G(A)$ so $N_G(A) \neq \emptyset$. Suppose $x, y \in N_G(A)$. Then $xAx^{-1} = yAy^{-1} = A$.
- If G is a group acting on a set S, and $s \in S$, then the stabilizer of s in G is the set $G_s = \{g \in G : g \cdot s = s\}.$
- $G_s \leq G$. Proof: Since $e \in G_s$, $G_s \neq \emptyset$. Suppose $x, y \in G_s$. Then, $s = e \cdot s = y^{-1}y \cdot s = y^{-1}(y \cdot s) = y^{-1} \cdot s$, so $y^{-1} \in G_s$. Also, $(xy) \cdot s = x(y \cdot s) = x \cdot s = s$, so $xy \in G_s$.
- It can similarly be shown that the kernel of a group action is also a subgroup.

3 Cyclic Groups

- A group H is cyclic if it can be generated by a single element, i.e, $H = \{x^n : n \in \mathbb{Z}\}$ for some $x \in H$. In this case we say H is generated by x and $H = \langle x \rangle$.
- All cyclic groups are abelian. Proof: Let $H = \langle x \rangle$. Let $a, b \in H$. Then $a = x^k$ and $b = x^m$ for some $k, m \in \mathbb{Z}$. Thus, $ab = x^k x^m = x^{k+m} = x^{m+k} = x^m x^k = ba$.

- If $H=\langle x \rangle$, then |H|=|x|. More specifically, if $|H|=n<\infty$, then $x^n=e$ and $e,x,x^2,...,x^{n-1}$ are all distinct and are precisely the elements of H. If $|H|=\infty$ then $x^n\neq e$ for all $n\in\mathbb{Z}$ and all elements of H are distinct. Proof: Suppose $|x|=n<\infty$. Then $e,x,x^2,...,x^{n-1}$ are distinct because if $x^a=x^b$ where $0\leq a< b< n$, then $x^{b-a}=e$ which contradicts |x|=n. So H has at least n elements. Let $x^k\in H$. By the division algorithm, there exist integers q,r such that k=qn+r with $0\leq r< n$. So $x^k=x^{qn+r}=x^{qn}x^r=ex^r=x^r$. Since $r< n, x^k=x^r\in\{e,x,x^2,...,x^{n-1}\}$. Thus $\langle x\rangle=\{e,x,x^2,...,x^{n-1}\}$. Now suppose $|x|=\infty$. Then there is no integer n such that $x^n=e$. Let a< b and $x^a=x^b$. Then $x^{b-a}=e$ which is a contradiction. So all powers of x are distinct, and $|H|=\infty$.
- Let $x \in G$, and $m, n \in \mathbb{Z}$. If $x^m = e$ and $x^n = e$, then $x^d = e$ where $d = \gcd(m, n)$. If $x^k = e$ for some $k \in \mathbb{Z}$, then |x| divides k. Proof: There exist integers r, s such that d = mr + ns. Thus $x^d = x^{mr+ns} = e$. If $x^k = e$, let |x| = n. If k = 0, then n obviously divides k, so let $k \neq 0$. Thus $n < \infty$. Let $\gcd(k, n) = d$. Since $0 < d \le n$, d = n and thus $n \mid k$.
- Any cyclic groups of the same order are isomorphic. In particular, if $G = \langle x \rangle$ and $H = \langle y \rangle$ and |G| = |H| = n, then the map $f: G \to H$, $f(x^k) = y^k$ is an isomorphism. If $|G| = \infty$, then the map $g: \mathbb{Z} \to G$, $g(k) = x^k$ is an isomorphism. Proof: First we must show that f is well-defined. Suppose $x^r = x^s$. Then $x^{r-s} = e \implies n \mid r-s \implies r = tn+s$. So $f(x^r) = f(x^{tn+s}) = y^{tn+s} = y^s = f(x^s)$. So $x^r = x^s \implies f(x^r) = f(x^s)$. It is easy to see that f is a homomorphism by the laws of exponents. Since each y^k has the pre-image x^k in G, f is surjective. And since G and H are finite groups of the same order, f is also injective. Thus $G \cong H$. Now suppose $|G| = \infty$. f is well-defined due to the representation of elements in \mathbb{Z} . Since $x^a \neq x^b$ when $a \neq b$, g is injective. By the definition of a cyclic group, g is also surjective. Thus $\mathbb{Z} \cong G$.
- Let $x \in G$, $a \in \mathbb{Z} \setminus \{0\}$. Then,
 - 1. If $|x| = \infty$, then $|x^a| = \infty$. Proof: Suppose $|x^a| = m < \infty$. Then $x^{am} = e$ or $x^{-am} = e$. Either am or -am is positive, which contradicts $|x| = \infty$. So $|x^a| = \infty$.
 - 2. If $|x|=n<\infty$, then $|x^a|=\frac{n}{\gcd(n,a)}$. Proof: Let $y=x^a, d=\gcd(n,a), n=db, a=dc, b,c\in\mathbb{Z}$ with b>0. So $\gcd(b,c)=1$. Now $y^b=x^{ab}=x^{dcb}=(x^{db})^c=(x^n)^c=e$. So |y| divides b. Let k=|y|. Then $x^{ak}=y^k=e$. So $n\mid ak$, i.e, $db\mid dck$. Thus $b\mid ck$. Since $\gcd(b,c)=1, b\mid k$. Thus b=k. So $|y|=b\Longrightarrow |x^a|=\frac{n}{d}=\frac{n}{\gcd(n,a)}$.
 - 3. Corollary: If $|x| = n < \infty$ and $a \in \mathbb{N}$, $a \mid n$, then $|x^a| = \frac{n}{a}$.
- Let $H = \langle x \rangle$. If $|x| = \infty$ then $H = \langle x^a \rangle$ if and only if $a = \pm 1$. If $|x| = n < \infty$ then $H = \langle x^a \rangle$ if and only if $\gcd(a, n) = 1$ (H has $\phi(n)$ generators). Proof: If $a = \pm 1$, then obviously $H = \langle x^a \rangle$. Conversely, let $H = \langle x^a \rangle$. If |a| > 1, then $x \notin H$ which is a contradiction. So $a = \pm 1$. Now let |x| = n. x^a generates a subgroup of order $|x^a|$, so if $\langle x^a \rangle = \langle x \rangle$, then $|x^a| = |x|$. Thus $|x^a| = n \implies \gcd(a, n) = 1$.
- Let $H = \langle x \rangle$. Then,
 - 1. Every subgroup of H is cyclic. More specifically, if $K \leq H$, then either $K = \{e\}$ or $K = \langle x^d \rangle$ where d is the smallest positive integer such that $x^d \in K$. Proof: Let $K \leq H$. If $K = \{e\}$, then it is of course cyclic, so let $K \neq \{e\}$. Then there exists some integer $a \neq 0$ such that $x^a \in K$. If a < 0, then $x^{-a} \in K$. So K always contains some positive power of x. Let $P = \{b \in \mathbb{Z}^+ : x^b \in K\}$. By the well ordering principle, P contains some least element, say d. Since $K \leq H$, any element in K is of the form x^m where $m \in \mathbb{Z}$. By the division algorithm, m = qd + r, $0 \leq r < d$. Then $x^r = x^{m-qd} = x^m(x^d)^{-q} \in K$ as x^m , $x^d \in K$. Since d is the minimal element of P, r = 0 and m = qd, so $x^m = (x^d)^q \in \langle x^d \rangle$. Thus $K = \langle x^d \rangle$.
 - 2. If $|H| = \infty$, then for any distinct nonnegative integers $a, b, \langle x^a \rangle \neq \langle x^b \rangle$. Also, for all integers $m, \langle x^m \rangle = \langle x^{|m|} \rangle$. Proof: Without loss of generality suppose |a| < |b|. If $a \mid b$ then $x^b \in \langle x^a \rangle$ and thus $\langle x^b \rangle \leq \langle x^a \rangle$. But $x^a \notin \langle x^b \rangle$ so $\langle x^a \rangle \neq \langle x^b \rangle$. If a does not divide b, then $x^b \notin \langle x^a \rangle$. If m > 0 then |m| = m so let m < 0. Then |m| = -m. Clearly $\langle x^{-m} \rangle = \langle x^m \rangle$.

- 3. If $|H|=n<\infty$, then for each positive integer a that divides n, there exists a unique subgroup of order a. This subgroup is $\langle x^d \rangle$, where $d=\frac{n}{a}$. Also, for every integer m, $\langle x^m \rangle = \langle x^{\gcd(m,n)} \rangle$. Proof: Since $d\mid n, |x^d| = \frac{n}{d} = a$. Suppose $K \leq H$ and |K| = a. Then $K = \langle x^b \rangle$, where b is the smallest positive integer such that $x^b \in K$. Now $\frac{n}{d} = a = |K| = |x^b| = \frac{n}{\gcd(n,b)} \implies d = \gcd(n,b)$. Thus $d\mid b$ and $x^b \in \langle x^d \rangle \implies K = \langle x^b \rangle \leq \langle x^d \rangle$. But $|\langle x^d \rangle| = |K| = a$, so $K = \langle x^d \rangle$ and we are done. Now let $d = \gcd(n,m)$. Since $d\mid m$, $\langle x^m \rangle \leq \langle x^d \rangle$. As $|\langle x^m \rangle| = \frac{n}{d}$, and $|\langle x^d \rangle| = \frac{n}{\gcd(n,d)} = \frac{n}{d}$, we have $\langle x^m \rangle = \langle x^d \rangle$.
- 4 Subgroups Generated by Subsets
- 5 Lattice of Subgroups