CS/MATH 111, Discrete Structures - Winter 2019. Discussion 4 - Number Theory and Cryptography

Andres, Sara, Elena

University of California, Riverside

January 29, 2019

Euler's Totient

Problem 2

Primes, congruent to 3 (mod 4)

Conditions for parameters for RSA

Euler's Totient ¹

The totient $\varphi(n)$ of a positive integer n > 1 is defined to be the number of positive integers less than n that are coprime to n.

- $\triangleright \varphi(1)$ is defined to be 1.
- If the prime factorization of n is given by: $n = p_1^{e_1} * \cdots * p_n^{e_n}$, then $\varphi(n) = n * (1 \frac{1}{p_1}) * \cdots * (1 \frac{1}{p_n})$.
- For example:
 - $9 = 3^2$, so $\varphi(9) = 9 * (1 \frac{1}{3}) = 6$
 - $4 = 2^2$, so $\varphi(4) = 4 * (1 \frac{1}{2}) = 2$
 - ▶ 15 = 3 * 5, so $\varphi(15) = 15 * (1 \frac{1}{3}) * (1 \frac{1}{5}) = 15 * \frac{2}{3} * \frac{4}{5} = 8$

Euler's Totient²

The totient $\varphi(n)$ of a positive integer n > 1 is defined to be the number of positive integers less than n that are coprime to n.

- ▶ When *n* is a prime number, then $\varphi(n) = n 1$.
- ▶ When *m* and *n* are coprime, then $\varphi(m*n) = \varphi(m)*\varphi(n)$.
- If *n* is the product of two prime number, *p* and *q*, then $\varphi(n) = (p-1) * (q-1)$.
- For example: $\varphi(15) = \varphi(3) * \varphi(5) = 2 * 4 = 8$.

Euler's Totient

Problem 2

Primes, congruent to 3 (mod 4)

Conditions for parameters for RSA

Problem 2

- 1. "Break" RSA by guessing the factorization of n.
- 2. Compute Eulers Totient Function $\varphi(n)$.
- 3. Compute the decryption exponent d by computing

$$e^{-1} \pmod{\varphi(n)}$$

solve this by enumerating.

4. Using private key pair (d, n), decrypt the messages by

$$M = C^d \pmod{n}$$

C stands for the encrypted messages.

Problem 2

- Show computation for 3 letters in LATEX: step-by-step, explaining everything;
- ► For the remaining message: Need to write a program (any language) — Attach the program or compute by hand. All the computations attach (It is ok if written in pen).
- Decode the message

Euler's Totient

Problem 2

Primes, congruent to 3 (mod 4)

Conditions for parameters for RSA

Infinitely many primes, congruent to 3 (mod 4)

Assume that $p_i = \{p_1, p_2, \dots, p_k\}$, where $p_1 = 3$, are primes of the form:

$$p_i \equiv 3 \pmod{4}$$

▶ We will construct a new one³ by looking at

$$N = 4 \cdot (p_1 \cdot p_2 \cdot \ldots \cdot p_k) - 1$$

9/20

Infinitely many primes, congruent to 3 (mod 4)

- $N = 4 \cdot (p_1 \cdot p_2 \cdot \ldots \cdot p_k) 1 \equiv 3 \pmod{4}$
- Let q be a prime factor of N, s.t. $q \mid N$, then:
 - $ightharpoonup q \not\equiv 0 \pmod{4}$ [q should not be prime]

 - $prim q \not\equiv 3 \pmod{4}$ [q should be part of $\{p_1, p_2, \dots, p_k\}$]
- ▶ Then, the prime factorization of *N* is

$$N = q_1^{e_1} \cdot q_2^{e_2} \cdot \ldots \cdot q_t^{e_t}$$

- and $\forall i \in \{1, 2, \cdots, t\} : q_i \equiv 1 \pmod{4}$.
- ▶ So, $N \equiv 1 \pmod{4}$, [N is prime!!!], which is a contradiction of our initial assumption.

Euler's Totient

Problem 2

Primes, congruent to 3 (mod 4)

Conditions for parameters for RSA

Conditions for parameters for RSA

```
What if ??? gcd(e, \varphi(n)) > 1 d \equiv e^{-1} \pmod{\varphi(n)} e \cdot d \equiv 1 \pmod{\varphi(n)}
```

- p and q are small...
- $\triangleright p = q$

$$\varphi(n) = (p-1)(q-1)$$
?

- $\varphi(n) = (p-1)(p-1)$???
- Is double encription correct?
- Is double encription more secure?

p	q	e	d	correct?	Encrypt $M = 7$ if correct. Justify if not correct.
6	11	5	29		
19	7	5	37		
17	17	9	89		
29	11	7	37		
3	7	5	5		

р	q	e	d	correct?	Encrypt $M = 7$. Justify.
6	11	5	29	No	6 is not prime
19	7	5	37	No	$n = 133$ and $C = 7^5 \pmod{108}$
17	17	9	89	No	p = q
29	11	7	37	No	$e \cdot d \not\equiv 1 \pmod{arphi(n)}$
3	7	5	5	Yes	$n = 21 \text{ and } C = 7^5 \pmod{12}$

Euler's Totient

Problem 2

Primes, congruent to 3 (mod 4)

Conditions for parameters for RSA

Miller-Rabin Primality Test

Primality is easy! 4

- ▶ A primality test is a test or algorithm for determining whether an input number is prime.
- ▶ *N* is prime if it has no divisors less or equal to \sqrt{N} .
- ► Most popular algorithms for primality testing are **probabilistic**; may output a composite number as a prime.

Miller-Rabin Primality Test⁶

- ▶ Let n be a prime number⁵. Then n-1 is even and, therefore, not a prime.
- It can be written as:

$$n-1=2^s\cdot d$$

where s and d are positive integers, and d is odd.

- ightharpoonup For each a (a random positive integer), we test two cases...
 - 1. $a^d \equiv 1 \pmod{n}$ or
 - 2. $a^{2^r \cdot d} \equiv -1 \pmod{n}$, For all $0 \le r \le s 1$.
- If we can find an a, s.t. (1) and (2) are not true for all r, then n is not prime, it is a composite number.
- If either (1) or (2) are true, n can be prime. Testing again will increase that probability...

 $^{^{5}}n > 2$

Is n = 221 prime?

- ▶ We write $n 1 = 220 = 2^2 \cdot 55$, so s = 2 and d = 55.
- ▶ We randomly select a number a s.t. 1 < a < n-1. Let a = 174.
- We proceed to compute:
 - $ightharpoonup a^d \pmod{n} = 174^{55} \pmod{221} = 47 \neq 1$
 - $a^{2^{1} \cdot d} \pmod{n} = 174^{110} \pmod{221} = 220 \pmod{221} = -1$
- ▶ Either 221 is prime, or 174 is a **strong liar** for 221.
- Keep trying...

Is n = 221 prime?

- ▶ We write $n 1 = 220 = 2^2 \cdot 55$, so s = 2 and d = 55.
- We try another random a, this time let a = 137:
 - $ightharpoonup a^d \mod n = 137^{55} \mod 221 = 188 \neq 1$
 - $a^{2^1 \cdot d} \mod n = 137^{110} \mod 221 = 205 \neq -1$
- ▶ Hence 137 is a witness for the compositeness of 221, and 174 was in fact a strong liar.
- Factors of 221 are 13 and 17.

Reference

▶ Discrete Mathematics and Its Applications. Rosen, K.H. 2012. McGraw-Hill.

Chapter 4: Number Theory and Cryptography.

