# Лабораторная работа №1

Основы администрирования операционных систем

Иванов Сергей Владимирович, НПИбд-01-23 7 сентября 2024

Российский университет дружбы народов, Москва, Россия

# Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

# Задание

- 1. Создать виртуальную машину
- 2. Установить ОС на виртуальную машину
- 3. Настроить систему

# Выполнение работы

# Скачиваем дистрибутив

Необходимо скачать дистрибутив Rocky https://rockylinux.org/download

| Default Images ⊚                                             |
|--------------------------------------------------------------|
| Select a version: Rocky Linux 9 Rocky Linux 8                |
| v9.4 <sup>(1)</sup>                                          |
| DVD ISO Boot ISO Minimal ISO                                 |
| Torrent (DVD ISQ) CHECKSUM BaseOS Packages Archived Releases |

Рис. 1: Скачивание дистрибутива

# Создание виртуальной машины

Укажем имя машины и подключим наш скачанный образ Rocky.



Рис. 2: Создание виртуальной машины

# Создание виртуальной машины

Укажем объём памяти и количество виртуальных процессоров. Я указал 4096 мб оперативной памяти и 4 ЦП. Далее укажем объем диска 40гб.



Рис. 3: Указываем характеристики

# Виртуальный жесткий диск

Далее укажем объем диска 40гб.



Рис. 4: Виртуальный жесткий диск

# Запуск виртуальной машины

Запускаем виртуальную машину.



# Выбор языка интерфейса

#### Выбираем английский язык интерфейса.



# Выбор программ

#### Выбираем необходимые программы.



Рис. 7: Выбор программ

#### Отключение KDUMP

#### Далее нам необходимо отключить KDUMP



Рис. 8: Отключение КDUMP

#### Место установки

#### Выбираем место установки



#### Сеть и имя узла

#### Включим сетевое соединение и укажем имя узла



# Установка пароля для root

#### Установим пароль для root



Рис. 11: Установка пароля для root

#### Задаем пользователя

#### Задаем локального пользователя



Рис. 12: Задаем пользователя

# Окно настройки установки образа

Нажмимаю на Begin Installation для начала установки.



# Завершение установки ОС

#### После завершения установки перезапускаю систему



# Дополнения гостевой ОС

Подключаю образ диска дополнений гостевой ОС.



Рис. 15: Подключение Диска дополнений гостевой ОС

# Дополнения гостевой ОС

Запускаю образ диска дополнений гостевой ОС.



Рис. 16: Запуск образа диска

# Домашнее задание

# Версия ядра Linux (Linux version).

Чтобы посмотреть версию ядра, можно воспользоваться командой dmesg grep -i 'linux version'. Версия ядра: 5.14.0-427.



Рис. 17: Версия ядра

# Частота процессора (Detected Mhz processor).

Частоту процессора можно узнать командой dmesg | grep -I "MHz". Частота процессора: 2688.004 MHz.

```
[svivanovl@svivanovl ~]$ dmesg | grep -i "Mhz"
[ 0.000013] tsc: Detected 2688.004 MHz processor
[ 2.685814] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:9c:4e:c3
[svivanovl@svivanovl ~]$ [
```

Рис. 18: Частота процессора

# Модель процессора (CPU0).

Модель процессора можно посмотреть командой cat /proc/cpuinfo | grep "model name".

```
[ 0.210608] smpboot: CPU0: lith Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz (fa
mily: 0x6, model: 0x8d, stepping: 0x1)
[svivanov1@svivanov1 ~]$
```

Рис. 19: Модель процессора

# Объем доступной оперативной памяти (Memory available).

Объём доступной оперативной памяти можно посмотреть командой free -m. В моём случае: Всего – 3915 Мб. Используется – 1450 Мб. Свободно – 830 Мб.

```
[svivanov1@svivanov1 ~]$ free -m
total used free shared buff/cache available
Mem: 3915 1450 840 21 1878 2464
Swap: 4043 0 4043
[svivanov1@svivanov1 ~]$ |
```

Рис. 20: Объем оперативной памяти

# Тип обнаруженного гипервизора (Hypervisor detected).

Тип обнаруженного гипервизора можно посмотреть командой dmesg | grep -I "hypervisor detected". В моём случае: KVM.

```
[svivanovl@svivanovl ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[svivanovl@svivanovl ~]$ S
```

Рис. 21: Тип гипервизора

# Тип файловой системы корневого раздела.

Тип файловой системы корневого раздела можно посмотреть командой dmesg | grep -I "filesystem"

```
[svivanovl@svivanov1 ~]$ dmesg | grep -i "filesystem"
[     4.412265] XFS (dm-0): Mounting V5 Filesystem ef003f8a-a7fe-4ed0-a8c1-0540b0
505e9e
[     6.583726] XFS (sda1): Mounting V5 Filesystem 4075baae-2582-4dc3-84d6-f734ae
863fdf
[svivanovl@svivanov1 ~]$
```

Рис. 22: Тип файловой системы

# Последовательность монтирования файловых систем.

Последовательность монтирования файловых систем можно посмотреть командой dmesg | grep -i "mount"

```
svivanovl@svivanovl ~l$ dmesg | grep -i "filesvstem'
       4.412265] XFS (dm-0): Mounting V5 Filesystem ef003f8a-a7fe-4ed0-a8c1-0540b0505e9e 6.583726] XFS (sda1): Mounting V5 Filesystem 4075baae-2582-4dc3-84d6-f734ae863fdf
[svivanovl@svivanovl ~1$ dmesg | grep -i "mount"
       0.103628| Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
       0.1036361 Mountpoint-cache hash table entries: 8192 (order: 4. 65536 bytes, linear)
       4.412265| XFS (dm-0): Mounting V5 Filesystem ef003f8a-a7fe-4ed0-a8c1-0540b0505e9e
       4.4291161 XFS (dm-0): Ending clean
       5.154176] systemd[1]: Set up automount Arbitrary Executable File Formats File System Auto
       Point.
      5.177119] systemd[1]: Mounting Huge Pages File System...
5.178679] systemd[1]: Mounting POSIX Message Queue File System...
5.180184] systemd[1]: Mounting Kernel Debug File System...
       5.181648] systemd[1]: Mounting Kernel Trace File System...
5.202100] systemd[1]: Starting Remount Root and Kernel File Systems...
       5.210492] systemd[1]: Mounted Huge Pages File System.
      5.210492] systemd[1]: Nounted Huge Pages File System.
5.210850] systemd[1]: Nounted POSIX Message Queue File System.
5.211091] systemd[1]: Nounted Kernel Debug File System.
5.211320] systemd[1]: Nounted Kernel Trace File System.
5.226778] systemd[1]: Nounting FUSE Control File System.
5.226731] systemd[1]: Nounting FUSE Control File System..
5.2263434] systemd[1]: Hounting Kernel Configuration File System..
       5.2328791 systemd[1]: Mounted Kernel Configuration File System.
       5.233128] systemd[1]: OSTree Remount OS/ Bind Mounts was skipped because of an unmet cond
ition check (ConditionKernelCommandLine=ostree).
       6.583726] XFS (sda1): Mounting V5 Filesystem 4075baae-2582-4dc3-84d6-f734ae863fdf
       6.8768321 XFS (sda1): Ending clean m
 svivanovl@svivanovl ~1$
```

26/28

# Вывод

# Вывод

В ходе работы были приобретены практические навыки установки виртуальной машины и операционной системы на виртуальную машину, а также настройки минимально необходимых для дальнейшей работы сервисов.

# Список литературы

- 1. Dash, P. Getting Started with Oracle VM VirtualBox / P. Dash. Packt Publishing Ltd, 2013. 86 cc.
- 2. Colvin, H. VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox. VirtualBox / H. Colvin. CreateSpace Independent Publishing Platform. 2015. 70 cc.
- 3. Vugt, S. van. Red Hat RHCSA/RHCE 7 cert guide : Red Hat Enterprise Linux 7 (EX200 and EX300) : Certification Guide. Red Hat RHCSA/RHCE 7 cert guide / S. van Vugt. Pearson IT Certification, 2016. 1008 cc.
- 4. Робачевский, А. Операционная система UNIX / А. Робачевский, С. Немнюгин, О. Стесик. 2-е изд. Санкт-Петербург : БХВ-Петербург, 2010. 656 сс.
- 5. Немет, Э. Unix и Linux: руководство системного администратора. Unix и Linux / Э. Немет, Г. Снайдер, Т.Р. Хейн, Б. Уэйли. 4-е изд. Вильямс, 2014. 1312 сс.

( Variation III Constitution and I investigated and