

IN SLIDE EXERCISE FOR CHAPTER 1

GROUP 5
SECTION 03 - SEM 1, 2024/2025
SECI1013 (DISCRETE STRUCTURE)

LECTURER : DR. MUHAMMAD ALIIF BIN AHMAD

DATE : 5th NOVEMBER 2024

GROUP MEMBERS: (GROUP 5)

NAME	MATRICS NO.
1. MUHAMMAD ADAM ASHRAFF BIN ZAMRI	A24CS0119
2. MIKAEL HAQIMI BIN NAHAR JUNAIDI	A24CS0111
3. HENG ZHI QIANG	A24CS0081
4. SITI NUR IMAN NADHIRAH BINTI MOHD FAIZAL	A24CS0192

[&]quot;Discrete elements, cohesive structure."

ANSWER:

Yes. They are equal because both sets contain the same elements, even if some element is duplicating.

$$\begin{aligned} M &= \{1,2,3,4\} & M &= \{4,4,4\} & M &= \{\} & M &= \{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\} \\ |M| &= 4 & |M| &= 1 & |M| &= 0 & |M| &= 3 \\ \\ |X| &= 4 & & \\ Power set of X &= 2^{|X|} &= 2^4 \\ & & |P(X)| &= 16 & & \end{aligned}$$

TIM ORDER TO THE ORDER OF THE O

Exercise

- Let,
 U = { a, b, c, d, e, f, g, h, i, j, k, l, m }
 A = { a, c, f, m}
 B = { b, c, g, h, m }
- Find:
 | A ∪ B | , A − B dan A'.

innovative • entrepreneurial • global

www.utm.m

$$|A \cup B| = |A| + |B| - |A \cap B|$$

= 4 + 5 - 2
= 7

$$A - B = \{a, f\}$$

$$A' = \{b, d, e, g, h, i, j, k, l\}$$

O UTM INCREST TOOOLOO MAAFIM

Exercise

- Let A, B and C be sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$
- Prove that B = C

entrepreneurial • global

ANSWER:

 $B = B \cup \emptyset$

 $= B \cup (A \cap \emptyset)$

 $= (A \cup B) \cap (B \cup \emptyset)$

 $= (A \cup C) \cap B$

 $= (A \cap B) \cup (B \cap C)$

 $= (A \cap C) \cup (B \cap C)$

 $= C \cap (A \cup B)$

 $= C \cap (A \cup C)$

= C

: properties of empty set

: properties of empty set

: distributive law

: properties of empty set

: distributive law

: by given conditions

: distributive law

: by given conditions

: absorption law

 \therefore Proven, B = C.

OUTMWHYSISH TEXOLOG MALVISA

Exercise

- $A = \{a, b\}, B = \{1, 2\}, C = \{x, y\}$
- Determine the following set nad their cardinality,
 - a) $B \times C$
 - b) $A \times B \times C$,

innovative • entrepreneurial • globa

www.utm.my

(a)
$$B \times C = \{(1, x), (1, y), (2, x), (2, y)\}$$

$$|B \times C| = |B| \times |C|$$
$$= 2 \times 2$$
$$= 4$$

(b)
$$A \times B \times C = \{(a, 1, x), (a, 1, y), (a, 2, x), (a, 2, y), (b, 1, x), (b, 1, y), (b, 2, x), (b, 2, y)\}$$

$$|A \times B \times C| = |A| \times |B| \times |C|$$
$$= 2 \times 2 \times 2$$
$$= 8$$

UTM ANTEST TOOLOG MAJOR

Exercise

Suppose x is a particular real number. Let p, q and r symbolize "0 < x", "x < 3" and "x = 3", respectively. Write the following inequalities symbolically:

- a) $x \le 3$
- b) 0 < x < 3
- c) $0 < x \le 3$

innovative • entrepreneurial • glob

www.utm.my

- (a) q \wedge r
- (b) p V q
- (c) $p \lor (q \land r)$

UTM MACHINET TEXACLOG MALATIMA

Exercise

Propositional functions p, q and r are defined as follows:

p is "n = 7"

q is "a > 5"

r is "x = 0"

Write the following expressions in terms of p, q and r, and show that each pair of expressions is **logically equivalent**. State carefully which of the above laws are used at each stage.

- (a) ((n = 7) or (a > 5)) and (x = 0)
 - ((n = 7) and (x = 0)) or ((a > 5) and (x = 0))
- (b) $\neg ((n = 7) \text{ and } (a \le 5))$ $(n \ne 7) \text{ or } (a > 5)$
- (c) (n = 7) or $(\neg((a \le 5) \text{ and } (x = 0)))$ ((n = 7) or (a > 5)) or $(x \ne 0)$

innovative • entrepreneurial • glob

62

ANSWER:

(pv q)1 (a) r PVQ par F T F T F \top F F Т Т Т T F T T Т T F F F Т T T F Τ F Т F F F F F F Т F F

 $\therefore (pvq) \land r \equiv (p \land r) \lor (q \land r)$

Distributive Law.

(b)

ρ	9,	⊐р	79,	7(7/79)	TPVq
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	T	Т
F	F	Т	Т	Т	T

: 7 (pr/g) = 7pvg

De Morgan's Law.

(c)

Р	9	r	79	٦r	7(79,15)	P V (7(79 Ar)	P V9,	(pvq)\7r
Т	T	Τ	#	F	Т	_	Т	T
Т	Т	F	F	T	Т	Τ	T	Т
Т	۲	Т	Т	F	F	Т	Т	T
Т	F	F	Т	Т	Т	Т	Т	T
F	T	T	F	F	T	Т	T	T
F	Т	F	F	T	Т	Т	Т	T
F	F	Т	Т	F	F	F	F	F
F	F	F	Т	丁	Т	T	F	Τ

∴ P V (¬ (¬q, ∧r)) = (pVq) V ¬r

De Morgan's Law & Distributive Law.

- (a) ¬p
- (b) $\neg s \land p$
- (c) $p \rightarrow r$
- (d) $r \leftrightarrow (q \land p)$
- (e) I shall work for forty hours this week or finish my Coursework Assignment.
- (f) If I don't finish my Coursework Assignment, then I will not pass Maths.

Exercise

For each pair of expressions, construct truth tables to see if the two compound propositions are logically equivalent:

(a)
$$p \lor (q \land \neg p)$$

 $p \lor q$

(b)
$$(\neg p \land q) \lor (p \land \neg q)$$

 $(\neg p \land \neg q) \lor (p \land q)$

innovative • entrepreneurial • global

70

ANSWER:

(a)

P	9,	¬р	917p	PV (9,17p)	PV9	
T	7	F	F	Τ	T	✓
T	F	F	F	T	T	
F	T	T	Τ	T	Τ	V
F	F	1	F	F	F	/

$$p \vee (q \wedge \neg p) \equiv p \vee q$$

(b)

P	9	٦ρ	79	7P19	P 179,	7P 1779	PAq	(ግፆ ላ ዓ _ን) ۷ (ፆ ላ ግ ዓ)	(የ ^ላ ዓ) (የ ^ላ ዓ)	
7	+	F	긔	Ŧ	Ŧ	F	T	Ħ	T	Х
T	F	F	T	F	T	F	F	T	F	X
F	T	Т	F	T	F	F	F	T	F	X
F	F	Τ	T	F	F	T	F	F	Т	\times

: (¬p, ¬q,) × (p, ¬q,) ≠ (¬p, ¬q,) v (p, q,)

ANSWER:

1. Let;

P(x) = x is even integer.

 $Q(x) = x^2 - 6x + 5$ is odd.

Symbolically, $\forall x (P(x) \rightarrow Q(x))$ with domain of discourse is the set of all integers. Let 2n be an even integer.

$$Q(2n) = (2n)^{2} - 6(2n) + 5$$

$$= 4n^{2} - 12n + 5$$

$$= 2(2n^{2} - 6n) + 5 : 2n^{2} - 6n = m, \text{ where } m \text{ is an integer}$$

$$= 2m + 5 : \text{ odd integer}$$

∴ Proven, $\forall x(P(x) \rightarrow Q(x))$.

2. Let;

P(n) = n is an integer and $n^3 + 5$ is odd.

Q(n) = n is even.

 $\forall n(P(n) \to Q(n)); \quad P(n) \to Q(n) \equiv \neg Q(n) \to \neg P(n)$ $\neg Q(n) = n$ is odd. Suppose $\neg Q(n)$ is true, we need to show that $\neg P(n)$ is true. Let 2k + 1 be an odd integer. $\neg P(n)$ is true if $n^3 + 5$ is even.

$$P(2k + 1) = (2k + 1)^{3} + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k) + 6 : 4k^{3} + 6k^{2} + 3k = t, \text{ where } t \text{ is an integer}$$

$$= 2t + 6 : \text{even integer}$$

 \therefore Proven, $\forall x(\neg Q(n) \rightarrow \neg P(n))$.

$$P(x) = x$$
 is odd.

$$Q(x) = x^2$$
 is odd.

Originally, $\forall x (P(x) \to Q(x))$ is true but it is also true if the contradiction, $\forall x (P(x) \to \neg Q(x))$ is false. Suppose x is odd and x^2 is not odd. Let 2n + 1 be an odd integer. $\neg Q(x)$ is false if x^2 is odd.

$$Q(2n + 1) = (2n + 1)^2$$

= $4n^2 + 4n + 1$
= $2(2n^2 + 2n) + 1$: $2n^2 + 2n = m$, where m is an integer
= $2m + 1$: odd integer

 $\neg Q(x)$ is false since x^2 is odd. Thus, the statement $\forall x (P(x) \rightarrow \neg Q(x))$ is false. \therefore Proven, $\forall x (P(x) \rightarrow Q(x))$.