机器学习期末项目报告

• 组员:梅祎航 房向南

• 选题:选题二半监督的聚类问题

具体问题

该选题提供如下数据:

训练数据集:包含5万张png图片。 测试数据集:包含1万张png图片。

关系文件:一个csv文件,每行分别是图片id、图片id、是否相关。

通过提供的数据信息,这个问题可以被归类为半监督的聚类问题。根据一篇对于半监督聚类的综述:

J. Cai, J. Hao, H. Yang et al.

Information Sciences 632 (2023) 164-200

Fig. 2. Organizational structure analysis of semi-supervised clustering methods.

这个问题属于Organized by the type of piror knowledge中的pairwise constraints。也就是成对约束的半监督聚类问题。成对约束包含以下两种约束:

- (1) 必须链接约束:它表明一对数据必须分配到一个簇中;
- (2) 不能链接约束:它表明成对数据不能分配到一个簇中。

在该论文对于成对约束的问题描述中,更多的是将描述为生成成对约束从而利好聚类结果。我们这个问题更像这个语境下的一个下游任务。

经过初步调查研究我们决定使用先编码后聚类的思路。

模型的构建及数据的整理

在本次实验中,我们采用了一种结合Vision Transformer (ViT)和高斯混合模型 (GMM)的半监督聚类方法。该方法的设计思路及数据整理过程如下:

设计思路

1. 特征提取:

- 我们使用了预训练的Vision Transformer (ViT)模型来提取图像特征。ViT模型能够捕捉图像中的复杂模式和高维特征,适合于处理高维度的图像数据。
- 选择ViT模型的原因是其在各种计算机视觉任务中的出色表现,尤其是在图像分类和特征提取方面。

2. 数据预处理:

- 对输入图像进行统一的预处理,包括调整图像尺寸、归一化处理等,以确保输入到ViT模型中的数据格式一致。
- 从训练集和测试集图像中提取特征,将其转换为特征向量,并保存到CSV文件中,以便后续处理

3. 约束处理:

- 半监督聚类需要利用一些已知的标签信息。在本实验中,我们通过CSV文件提供了训练集样本 之间的约束条件,包括must-link(同类)和cannot-link(异类)约束。
- 将must-link约束样本合并处理,通过取其特征均值来减少类内差异。
- 对于cannot-link约束样本,添加少量噪声以增加它们的特征差异,防止其在聚类过程中被错误地归为同一类。

4. 聚类方法选择:

- 选择高斯混合模型(GMM)作为聚类算法,原因在于GMM能够灵活地处理不同形状的分布, 并且可以根据样本的特征分布情况自动调整模型参数。
- 使用处理后的训练数据训练GMM模型,并对测试数据进行聚类预测。

数据整理

1. 图像预处理和特征提取:

- 图像通过预定义的预处理步骤(如尺寸调整、归一化)处理后,输入到ViT模型中进行特征提取。
- 提取的特征向量保存为CSV文件,用于后续的聚类分析。

2. 训练数据和测试数据的处理:

- 将训练数据和测试数据分别处理,提取特征后保存,以确保两者在同一特征空间中进行聚类。
- 通过读取训练集和测试集的图像,并按规定的顺序提取特征,确保数据的一致性和可复现性。

3. 约束条件的处理:

- 从CSV文件中加载约束条件,并分别处理must-link和cannot-link约束。
- 对于must-link约束,合并同类样本并计算均值特征;对于cannot-link约束,添加噪声以增加特征差异。

通过以上设计思路和数据整理过程,我们构建了一个结合ViT和GMM的半监督聚类模型,并利用约束条件对聚类过程进行了优化,最终实现了对测试集图像的有效分类。

具体算法应用

ViT提取特征

在我们的实验中, Vision Transformer (ViT) 用于从图像中提取特征。这一步骤非常关键, 因为特征的质量直接影响到后续的聚类效果。以下是ViT特征提取的详细过程和相应代码的逐步讲解。

设置设备和加载模型:

- 为了加速计算,我们使用了GPU进行训练。
- 加载一个预训练的ViT模型,这个模型已经在ImageNet数据集上进行训练,具有良好的特征提取能力。

```
import torch
from torchvision.models import vit_b_16

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载预训练的 ViT 模型
model = vit_b_16(pretrained=True).to(device)
model.eval()
```

图像预处理:

- 我们定义了一系列图像预处理步骤,包括调整图像尺寸、转换为张量和归一化处理。
- 需要强调的是,我们用于归一化的平均值和标准差是基于 ImageNet 数据集计算得出的,这可以将我们的数据在最大程度上契合预训练模型。

```
import torchvision.transforms as transforms

# 定义图像预处理

preprocess = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
```

特征提取函数:

- 定义一个函数 extract_features , 用于从单张图像中提取特征。
- 该函数读取图像并进行预处理,然后将图像传入ViT模型,提取特征并返回。

```
from PIL import Image

def extract_features(image_path):
    """提取图像特征"""
    image = Image.open(image_path).convert('RGB')
    image = preprocess(image).unsqueeze(0).to(device)
    with torch.no_grad():
        features = model(image)
    return features.cpu().numpy().flatten()
```

数据集处理和特征提取:

- 定义一个函数 process_dataset , 用于处理整个数据集并提取所有图像的特征。
- 该函数遍历图像目录中的所有图像,调用 extract_features 函数提取特征,并将特征保存到列表中。
- 最后将提取的特征保存到CSV文件中。

处理训练集和测试集:

• 分别处理训练和测试数据。

```
# 设置图片目录
train_dir = 'train'
test_dir = 'test'

# 提取训练集特征
train_data = process_dataset(train_dir, 'train')
train_df = pd.DataFrame(train_data)
train_df.to_csv('train_features1.csv', index=False, header=False)

# 提取测试集特征
test_data = process_dataset(test_dir, 'test')
test_df = pd.DataFrame(test_data)
test_df.to_csv('test_features1.csv', index=False, header=False)
```

高斯混合模型(GMM)半监督聚类

在完成了特征提取之后,我们使用高斯混合模型(GMM)进行半监督聚类。

加载特征数据和约束条件:

- 从CSV文件中加载训练集和测试集的特征数据。
- 提取每个样本的ID和特征向量。
- 从CSV文件中加载约束条件,包含两个样本ID及其关系(1表示同类,-1表示不同类)。

```
import pandas as pd
import numpy as np

# 加载特征数据

train_features = pd.read_csv('train_features1.csv', header=None)

test_features = pd.read_csv('test_features1.csv', header=None)

# 提取ID和特征

train_ids = train_features.iloc[:, 0].values

train_data = train_features.iloc[:, 1:].values

test_ids = test_features.iloc[:, 0].values

test_data = test_features.iloc[:, 1:].values

# 加载约束条件

constraints = pd.read_csv('constraints.csv')

constraints.columns = ['id1', 'id2', 'label']
```

创建约束矩阵:

• 根据约束条件创建must-link和cannot-link矩阵,用于约束聚类过程。

```
from scipy.sparse import csr_matrix

# 创建约束矩阵

n_samples = train_data.shape[0]

must_link = constraints[constraints['label'] == 1]

cannot_link = constraints[constraints['label'] == -1]

# must-link约束

must_link_matrix = csr_matrix((np.ones(must_link.shape[0]), (must_link['id1'], must_link['i

# cannot_link约束

cannot_link_matrix = csr_matrix((np.ones(cannot_link.shape[0]), (cannot_link['id1'], cannot_link_matrix = csr_matrix((np.ones(cannot_link.shape[0]), (cannot_link_matrix = csr_matrix((np.ones(cannot_link_matrix = csr_matrix((np.ones(cannot_link_m
```

处理must-link约束:

• 使用连接组件算法合并must-link约束的样本,并将它们的特征向量取平均值,重新生成新的特征矩阵。

```
from scipy.sparse.csgraph import connected_components

# 处理must-link约束,合并相连的组件
n_components, labels = connected_components(must_link_matrix, directed=False)
print(f"Number of connected components: {n_components}")

# 创建新的特征矩阵
print("Creating new train data with must-link constraints...")
new_train_data = train_data.copy()
for component in range(n_components):
    component_indices = np.where(labels == component)[0]
    if len(component_indices) > 1:
        mean_vector = np.mean(train_data[component_indices], axis=0)
        new_train_data[component_indices] = mean_vector
print("Must-link constraints processing complete.")
```

处理cannot-link约束:

对于距离过近的cannot-link约束样本,添加少量噪声以增加它们之间的距离,防止其在聚类过程中被错误地归为同一类。

```
from sklearn.metrics import pairwise_distances
import statistics

# 处理cannot-link约束(简单方法,通过添加噪声)
print("Processing cannot-link constraints...")
scale = 0.01 * np.std(new_train_data, axis=0)
distances = pairwise_distances(new_train_data)
discount = []
for i, row in cannot_link.iterrows():
    id1, id2 = int(row['id1']), int(row['id2'])
    discount.append(distances[id1, id2])
    if distances[id1, id2] < 27: # 距离太近,添加噪声
        new_train_data[id1] += np.random.normal(0, 0.01, size=new_train_data[id1].shape)
        new_train_data[id2] += np.random.normal(0, 0.01, size=new_train_data[id2].shape)
print("Cannot-link constraints processing complete.")
```

训练高斯混合模型 (GMM) :

• 使用处理后的训练数据训练GMM模型,并获取聚类标签。

```
from sklearn.mixture import GaussianMixture

# 定义聚类算法
n_clusters = 4
print("Training Gaussian Mixture Model (GMM)...")
gmm = GaussianMixture(n_components=n_clusters, random_state=42)

# 训练GMM模型
gmm.fit(new_train_data)
print("GMM training complete.")

# 获取训练数据的聚类标签
train_labels = gmm.predict(new_train_data)
print("Train labels predicted.")
```

预测测试数据的聚类标签:

使用训练好的GMM模型对测试数据进行聚类预测,并生成提交文件。

```
# 预测测试数据的聚类标签

test_labels = gmm.predict(test_data)

print("Test labels predicted.")

# 创建提交文件

submission = pd.DataFrame({'ID': test_ids, 'Class': test_labels})

# 确保按ID排序

submission = submission.sort_values(by='ID').reset_index(drop=True)

print("Submission file created and sorted by ID.")

# 保存为CSV文件

submission.to_csv('submission.csv', index=False)

print("Submission file saved as 'submission.csv'.")
```

算法的横向比较

这部分是顺着我们最初定下的思路,对我们曾经尝试过的算法和模型的横向比较。

卷积编码器+自组织映射:

我们在随堂汇报中对这部分做了较为详细的介绍,包括算法思路和优化过程。该模型的准确率低的原因有三:

- 1.自己定义的编码器结构过于简单,不能有效的提取图片特征。
- 2.设计的模型参数过多,在有限的时间内很难有较好的优化结果。
- 3. 因为约束数据的全局性,该模型不能很好的分批次训练。

其他预训练模型+机器学习分类:

我们还尝试了用其他预训练模型的特征提取,并接着进行降维或者聚类。该方法不如用VIt提取特征的原因有三:

- 1.transformer架构的优秀特征提取能力
- 2.其他模型没有像用VIt那样的较高准确率提升,导致在尝试过后就被放弃,没有针对模型进行优化。
- 3.使用了不当的降维方式, 丢失了图片特征。

深度聚类网络:

通过结合GAN或者VAE等深度学习的模型,深度聚类网络可以很好的进行无监督的图片聚类工作。但是对于该问题而言,深度聚类网络有两个问题:

- 1.难以实现:模型如GAN的代码较为复杂,难以在短时间内实现并优化。
- 2.不好结合约束数据:即使采用现成的代码,也不好在作者已经优化好的各项超参数之外添加一个成区

总结:通过我们最后采用的算法与其他算法的横向比较,可以清晰地看出ViT+GMM这个模型有如下优点:

- 1.代码量小,训练简单。
- 2.可以在GMM部分很好的结合约束条件进行训练。
- 3.可以充分利用图片特征进行训练。

所以这个模型在准确率上取得了最好的结果。

应用前景与可能的发展方向

ViT模型的实际应用

根据我们的调查,ViT模型自提出以来,已经在很多领域有了实际投入生产的应用。

1. Google 搜索和谷歌相册

Google 利用 ViT 在其搜索和照片管理应用中进行图像分类和对象识别。这些应用通过 ViT 模型自动对用户上传的照片进行分类和标记,从而提高了搜索和整理照片的效率和准确性。

2. NVIDIA Clara 医疗平台

NVIDIA的 Clara 医疗平台利用 ViT 模型来进行医学图像分析,包括放射影像的分类和分割。ViT 在该平台上帮助医生更快速地识别疾病,并提供更精确的诊断信息。

3. Facebook (Meta)

Meta在其计算机视觉应用中使用 ViT 模型进行内容理解和自动化内容管理。例如, ViT 可以用于图像审核、内容推荐等方面,提升平台的自动化处理能力和用户体验。

4. Adobe Photoshop

Adobe 在其 Photoshop 中应用了 ViT 模型,用于图像编辑和增强功能。ViT 能够帮助识别和处理图像中的复杂结构,使用户能够更轻松地进行图像修复、风格迁移等操作。

还有一些自动驾驶、图像识别、金融、安防领域的应用。

本模型的应用前景

我们认为我们使用的模型可以应用于以下方面:

1. 推荐系统

结合信息系统领域的知识,这个半监督的聚类模型可以在购物网站等的推荐系统方面起作用,其中约束数据可以从用户搜索完一个关键词后的点击动作中获取,或者可以通过衡量商品文本相似性来生成关系数据。

2. 异常检测

在工业生产中,可以将之前的生产结果当成先验数据,训练模型对机器生产的零部件进行异常检测。

3. 生物信息学

可以结合分子生物学领域的知识,在蛋白质、细胞的同类型图像识别上做出应用。

可能的发展方向

目前我们使用的模型的不足之处还有很多,比如准确率还是不高,模型的可解释性不强。我认为还能有以下的发展:

- 1. 可以研究ViT特征提取的特点,解决为何在cannot-link数据中添加噪声的界限会对结果造成较大的影响,探究其对每个指标(acc,nmi,ari)的影响。
- 2. 研究如何不通过预训练模型,即不引入额外信息的情况下,通过从头开始训练达到较好的结果。
- 3. 研究如何将模型与生产生活实际相结合,改进模型之后利用自己收集到的数据集进行实验。

参考文献

- 1 Cai, Jianghui, et al. A review on semi-supervised clustering. Information Sciences 632 (2023): 164-200.
- 2 Guérin, Joris, et al. *CNN features are also great at unsupervised classification.* arXiv preprint arXiv:1707.01700 (2017).
- 3 Dosovitskiy, Alexey, et al. *An image is worth 16x16 words: Transformers for image recognition at scale.* arXiv preprint arXiv:2010.11929 (2020).

难点与收获

难点:

- 1. 条件受限:在训练时间和训练资源有限的情况下,难以做到复杂模型的实现与训练。
- 2. 理想与现实:同时,我们也无法短时间内掌握使用深度学习框架如pytorch自如的实现一些想法,或者改造开源代码。
- 3. 模型选择与沉没成本:在某个方向上走了太久之后,想要轻易的更换模型已经是一件难事。
- 4. 问题本身:对于这个机器学习项目本身,难点主要在如何更好地提取到图片的特征,如何更好地利用约束数据进行半监督学习,如何在保证特征的情况下进行数据降维或者数据简化,从而保证结果有一定的准确率而不会有太高的错误率。

收获:

- 1. 了解到了很多半监督聚类的手段,通过阅读文献也了解到了这个机器学习问题的研究历程,应用前景与前沿的方法。
- 2. 巩固了从零到一编写机器学习模型的能力与灵活调用接口、化用别人的模型的能力。
- 3. 通过机器学习这个课程的期末项目,实际应用了上学习到的一些方法,比如数据降维可视化方法t-SNE。
- 4. 增进了对机器学习的了解与热爱。