WHAT IS CLAIMED IS:

1	1. A wireless human interface device configured to establish a link with a					
2	host, said device comprising:					
3	a transceiver for transmitting data to and receiving data from a host transceive					
4	unit, wherein said host transceiver unit is connected with said host;					
5	a processor connected with said transceiver and configured to process data					
6	from said host and said human interface device, and					
7	a power circuit connected with said processor and configured to regulate the					
8	power usage of said human interface device, wherein said power circuit comprises:					
9	a battery,					
10	a computer readable media having instructions thereon, wherein said					
<u>d</u> 1	instructions comprise					
<u> </u>	routines for monitoring the operational state of said human					
13	interface device, and					
¥.4	routines for controlling the operation of said human interface					
10 11 11 12 13 14 15	device using said operational state of said human interface					
4 6	device.					
다 지 다 다 다 다 다 다 다	2. The wireless human interface device of claim 1 wherein					
	said routines for controlling the operation of said human interface device					
3	comprise a routine for keeping the transceiver at a lowered power level during the periods					
4	where the transceiver is not exchanging data with said host transceiver unit.					
1	3. The wireless human interface device of claim 2 wherein					
2	said routines for controlling the operation of said human interface device					
3	comprise a routine for adjusting the rate of data exchange between said device and said host					
4	transceiver unit to a higher rate when said device is transmitting data to said host transceiver					
5	unit, from a lower rate used for maintaining a synchronized link with said host transceiver					
6	unit.					
•	A The animal and house an intention of a later 1 and a unit					
1	4. The wireless human interface device of claim 1 wherein					
2	said routines for controlling the operation of said human interface device					
3 [.]	comprise a routine for powering down the transceiver and said processor if the device					
4	remains in an idle state for more than a predetermined time period.					

	1		J.	The whereas number meetace device of claim 4 wherein			
	2		said ro	outines for controlling the operation of said human interface device			
	3	comprise:					
	4		a routi	ne for powering up said processor and said transceiver in response to an			
	5	input to said device, and					
10021876	6		a routi	ne for re-establishing a link with said device.			
	1		6.	The wireless human interface device of claim 1 wherein			
	2		said po	ower circuit comprises a voltage regulator to adjust the output voltage of			
	3	said battery to a level desired for the operation of said processor.					
	1		7.	The wireless human interface device of claim 6 wherein voltage			
	2	regulator lowers the output voltage.					
	1		8.	The wireless human interface device of claim 6 wherein voltage			
<u>a</u>	2	regulator boost	s the o	utput voltage.			
\] []							
#	1		9.	The wireless human interface device of claim 1 further comprising a			
L/	2	motor connected with same processor and said power circuit to provide vibration feedback to					
	3	an operator of s	said de	vice.			
	1		10.	The wireless human interface device of claim 9 wherein			
	2	;	said ro	utines for controlling the operation of said human interface device			
	3	further compris	se a roi	atine for:			
	4	:	monito	oring the battery voltage, and			
	5		scaling	g the drive to said motor as a function of said battery voltage to provide			
	6		a subst	antially constant motor output force regardless of the battery voltage.			
	1		11.	The wireless human interface device of claim 9 wherein			
	2	_ :	said ro	utines for controlling the operation of said human interface device			
	3	further compris	se a rou	itine for providing a maximum motor output force at a minimum battery			
	4	level		·			

1

12.

The wireless human interface device of claim 9 wherein

2	said fournes for controlling the operation of said number face device				
3	further comprise a routine for:				
4	reducing the power delivered to said motor when said battery's voltage level is				
5	below a first threshold, and				
6	indicating the battery level to an operator of said device.				
1	13. The wireless human interface device of claim 12 wherein				
2	said reducing the power delivered to said motor when said battery's voltage				
3	level is below a threshold, includes:				
4	reducing the power to said motor to zero, when said battery's voltage level is				
5	below a second threshold, which is lower than said first threshold, and				
+6 	indicating the battery level to an operator of said device.				
<u>=</u> ;	14. The wireless human interface device of claim 1 further comprising a				
<u>⊢</u> 12	plurality of visual indicators connected with said processor and said power circuit, configured				
	to display status information to an operator of said device.				
C)1 N/2 C)3 C)4	15. The wireless human interface device of claim 14 wherein				
M ₁ 2	said routines for controlling the operation of said human interface device				
<u></u>	further comprise a routine for:				
L/ ∏/4	activating one of a plurality of said visual indicators when there is a change in				
5	said status information, and				
6	deactivating said same one visual indicators after a predetermined delay				
7	period.				
1	16. A wireless human interface device configured to establish a link with a				
2	host, said device comprising:				
3	a transceiver for transmitting data to and receiving data from a host transceiver				
4	unit, wherein said host transceiver unit is connected with said host;				
5	a processor connected with said transceiver and configured to process data				
6	from said host and said human interface device;				
7	a power circuit connected with said processor and configured to regulate the				
8	power usage of said human interface device, wherein said power circuit comprises:				
9	a battery,				

10	a computer readable media having instructions thereon, wherein said
11	instructions comprise
12	routines for monitoring the operational state of said human
13	interface device, and
14	routines for controlling the operation of said human interface
15	device using said operational state of said human interface device, wherein
16	said routines for controlling the operation of said human interface device
17	comprise a routine for keeping the transceiver off during the periods where the
18	transceiver is not exchanging data with said host transceiver unit.
1	17. A wireless human interface device configured to establish a link with a
_ ⊧2	host, said device comprising:
2 3 4 5 6 7 8 9 0 1	a transceiver for transmitting data to and receiving data from a host transceiver
ជា4	unit, wherein said host transceiver unit is connected with said host;
# 5 W	a processor connected with said transceiver and configured to process data
% 16	from said host and said human interface device;
<u> </u>	a power circuit connected with said processor and configured to regulate the
C) 8	power usage of said human interface device, wherein said power circuit comprises:
N 9	a battery,
<u> </u>	routines for monitoring the operational state of said human interface
Ni 1	device, and
12	a computer readable media having instructions thereon, wherein said
13	instructions comprise
14	routines for controlling the operation of said human interface
15	device using said operational state of said human interface device, wherein
16	said routines for controlling the operation of said human interface device
17	comprise a routine for adjusting the rate of data exchange between said device
18	and said host transceiver unit to a higher rate when said device is transmitting
19	data to said host transceiver unit, from a lower rate used for maintaining a
20	synchronized link with said host transceiver unit.
1	18. A wireless human interface device configured to establish a link with a
2	host, said device comprising:

3	a transceiver for transmitting data to and receiving data from a nost transceiver
4	unit, wherein said host transceiver unit is connected with said host;
5	a processor connected with said transceiver and configured to process data
6	from said host and said human interface device;
7	a power circuit connected with said processor and configured to regulate the
8	power usage of said human interface device, wherein said power circuit comprises:
9	a battery,
10	a computer readable media having instructions thereon, wherein said
11	instructions comprise
12	routines for monitoring the operational state of said human
13	interface device, and
<u></u> 14	routines for controlling the operation of said human interface
뒬5	device using said operational state of said human interface device, wherein
16	said routines for controlling the operation of said human interface device
17	comprise a routine for powering down the transceiver and said processor if the
<u>]</u> [8	device remains in an idle state for more than a predetermined time period.
14 55 6 7 8 CT 2 3 4	19. A wireless human interface device configured to establish a link with a
NI = 12	host, said device comprising:
Cl ₃	a transceiver for transmitting data to and receiving data from a host transceiver
C) NJ4	unit, wherein said host transceiver unit is connected with said host;
5	a processor connected with said transceiver and configured to process data
6	from said host and said human interface device;
7	a power circuit connected with said processor and configured to regulate the
8	power usage of said human interface device, wherein said power circuit comprises:
9	a battery,
10	a computer readable media having instructions thereon, wherein said
11	instructions comprise
12	routines for monitoring the operational state of said human
13	interface device, and
14	routines for controlling the operation of said human interface
15	device using said operational state of said human interface device, wherein
16	said routines for controlling the operation of said human interface device
17	further comprise a routine for monitoring the battery voltage, and

18	scaling the drive to said motor as a function of said battery
19	voltage to provide a substantially constant motor output force regardless of the
20	battery voltage.
1	20. A wireless human interface device configured to establish a link with a
2	host, said device comprising:
3	a transceiver for transmitting data to and receiving data from a host transceive
4	unit, wherein said host transceiver unit is connected with said host;
5	a processor connected with said transceiver and configured to process data
6	from said host and said human interface device;
7	a power circuit connected with said processor and configured to regulate the
. 8	power usage of said human interface device, wherein said power circuit comprises:
8 19 0 11 13 13	a battery,
<u>[]</u> 0	a computer readable media having instructions thereon, wherein said
= 11	instructions comprise
12	routines for monitoring the operational state of said human
្វា ₌ 13	interface device, and
114 115 116	routines for controlling the operation of said human interface
<u>N</u> 15	device using said operational state of said human interface device, wherein
<u>□</u> 16	said routines for controlling the operation of said human interface device
آب ₁₇	further comprise a routine for reducing the power delivered to said motor
18	when said battery's voltage level is below a first threshold, and
19	indicating the battery level to an operator of said device.