Ch 4.1 Divisibility and Modular Arithmetic

If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that b = ac (or equivalently, if $\frac{b}{a}$ is an integer). When a divides b we say that a is a factor or divisor of b, and that b is a multiple of a. The notation $a \mid b$ denotes that a divides b. We write $a \nmid b$ when a does not divide b.

▼ Example 1 Determine whether $3 \mid 7$ and whether $3 \mid 12$.

Solution:

- $3 \not \mid 7$, because $\frac{7}{3}$ is not an integer.
- $3 \mid 12$, because $\frac{12}{3} = 4$.

THEOREM 1

Let a,b, and c be integers, where $a\neq 0$. Then

- $(i) ext{ if } a \mid b ext{ and } a \mid c, ext{ then } a \mid (b + c);$
- (ii) if $a \mid b$, then $a \mid bc$ for all integers c;
- (iii) if $a \mid b$ and $b \mid c$, then $a \mid c$.

COLLARY 1

If a, b, and c are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ whenever m and n are integers.

THEOREM 2 The Division Algorithm

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

In the equality given in the division algorithm, d is called the *divisor*, a is called the *dividend*, q is called the *quotient*, and r is called the *remainder*. This notation is used to express the equotient and remainder.

 $q = a \operatorname{\mathbf{div}} d, \quad r = a \operatorname{\mathbf{mod}} d.$

If a and b are integers and m is a positive integer, then a is *congruent to b modulo* m if m divides a-b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m. We say that $a \equiv b \pmod{m}$ is a **congruence** and that m is its **modulus** (plural **moduli**). If a and b are not congruent modulo m, we write $a \not\equiv b \pmod{m}$.

Remark: Although both notations $a \equiv b \pmod{m}$ and $a \mod m = b$ include "mod", then represent fundamentally different concepts. The first represents a relation on the set of integers, whereas the second represents a function.

THEOREM 3

Let a and b be integers, let m be a positive integer. Then $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$.

THEOREM 4

Let m be a positive integer. Then integers a and b are congruent modulo m iff there is an integer k such that a=b+km

*

THEOREM 5

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $a \equiv d \pmod{m}$, then $a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

You cannot always divide both sides of a congruence by the same number.

If $ac \equiv bc \pmod{m}$, the congruence $a \equiv b \pmod{m}$ may be false.

If $a \equiv b \pmod m$ and $c \equiv d \pmod m$, the congruence $a^c \equiv b^d \pmod m$ may be false.

COLLARY 2

Let m be a positive integer and let a and b be integers. Then $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$ and $ab \mod m = ((a \mod m)(b \mod m)) \mod m$.

▼ Example 7

Find the value of $(19^3 \text{ mod } 31)^4 \text{ mod } 23$. Solution: $19^3 \text{ mod } 31 = 6859 \text{ mod } 31 = 221 \cdot 31 + 8 \text{ mod } 31 = 8$ $(19^3 \text{ mod } 31)^4 \text{ mod } 23 = 8^4 \text{ mod } 23$

 $8^4 \mod 23 = 4096 \mod 23 = 178 \cdot 23 + 2 \mod 23 = 2.$

Arithmetic Modulo m

Arithmetic operations (Z_m) : the set $\{0, 1, \ldots, m-1\}$.

$$egin{aligned} a+_m b &= (a+b) mod m \ a\cdot_m b &= (a\cdot b) mod m \end{aligned}$$

▼ Example 8

Use the definition of addition and multiplication in Z_m to find $7 +_{11} 9$ and $7 \cdot_{11} 9$.

Solution:

Using the definition of addtion modulo 11, we find that

 $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5.$ $7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$

Properties $+_m$ and \cdot_m satisfy

- Closure: If a and b belong to Z_m , then $a +_m b$ and $a \cdot_m b$ belong to Z_m .
- Associativity: If a,b, and c belong to Z_m , then $(a+_mb)+_mc=a+_m(b+_mc)$ and $(a\cdot_mb)\cdot_mc=a\cdot_m(b\cdot_mc)$.
- Commutativity: If a and b belong to Z_m , then $a +_m b = b +_m a$ and $a \cdot_m b = b \cdot_m a$.
- **Identity elements**: The elements 0 and 1 are identity elements for addition and multiplication modulo m, respectively. That is, if a belongs to Z_m , then $a +_m 0 = 0 +_m a = a$ and $a \cdot_m 1 = 1 \cdot_m a = a$.
- Additive inverses: If $a \neq 0$ belongs to Z_m , then m-a is an additive inverse of a modulo m and 0 is its own additive inverse. That is, $a +_m (m-a) = 0$ and $0 +_m 0 = 0$.
- **Distributivity**: If a, b, and c belong to Z_m , then $a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c)$ and $(a +_m b) \cdot_m c = (a \cdot_m c) +_m (b \cdot_m c)$.