

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA [HP]

An Institute of National Importance under MoE

Saloh, Una (HP) – 177 209

Website: www.iiitu.ac.in

AY 2021- 22 School of Computing CURRICULUM: IIITUGCSE20

Cycle Test – I 15, Feb.'22

Degree	B. Tech.	Branch	CSE	
Semester	Ι			
Subject Code & Name	EEC103 (Basic Electrical and Electronics Engineering)			
Time: 60 Minutes	Answer All	Questions	Maximum: 20 Marks	

Sl. No.	Question	Marks	
1.a	Apply the conditions for checking the linearity in an electrical circuit.		
1.b	Construct the variation of <i>XL</i> , <i>XC</i> and <i>R</i> with respect to frequency in parallel resonance.		
2.a	Find i(t) in the circuit of Figure 1 for $t > 0$. Assume that the switch has been closed for a long time. $ \frac{2\Omega}{3\Omega} $ $ \frac{1}{3}H $ Figure 1: Circuit diagram for Problem 2. (a)	(2)	
2.b	Make use of the balanced Wye Wye three phase balanced connection to		
3.a	Explain why is it necessary to use a voltage regulator circuit in a power supply.		
3.b	Illustrate the constructional features of a wire-wound resistor.		

3.c	Demonstrate a voltage regulator that will maintain an output voltage of 20 V across a 1-k Ω load with an input that will vary between 30 V and 50 V. That is, determine the proper value of <i>RS</i> and the maximum current <i>IZM</i> .		
4.a	Determine V_{01} and V_{02} for the network in Figure 2. Ge Si $1.2 \text{ k}\Omega$ V_{0_1} V_{0_2} V_{0_2} V_{0_1} Figure 2: Circuit Diagram 4. (a)	(1)	
4.b	Discuss the DC load line analysis of a PN junction diode.	(1)	
4.c	Determine v_0 for each network of Figure 3 for the input shown. $v_i = v_i = v_0$ $v_i = v_0$ v_0	(2)	
5.a	 Given P_{max} = 14 mW for each diode at Figure 4, i) Determine the maximum current rating of each diode (using the approximate equivalent model). ii) Determine I_{max} for the parallel diodes. V_i V_i Si V_i V_i Si V_i 	(2)	
5.b	Compare different types of rectifiers on the basis of various comparison parameters. Select the best rectifier for making a voltage regulater power supply with justification	(2)	