Universidad de Buenos Aires FACULTAD DE INGENIERÍA

Departamento de Computación

75.10 - Técnicas de diseño

TRABAJO PRÁCTICO 2.1

ANÁLISIS DEL REQUERIMIENTO – DISEÑO DE UNA FRAMEWORK

Curso: 2013 – 2do Cuatrimestre

Turno: Jueves

GRUPO № 13					
Número de Padrón	e-mail				
86225	ignacio@tictaps.com				
90541	hechavar@gmail.com				
90135	erikschmoll@gmail.com				
	Número de Padrón 86225 90541				

Observaciones:		

Schmoll - Chavar - Barrea Página 2 de 13

Objetivo

Producir código basados en los principios de la programación orientada a objetos, que éste sea descriptivo sin necesidad de comentar cada linea, haciendo un desarrollo basándonos en las buenas prácticas con la ayuda de herramientas como GIT, GITHUB, MAVEN, entre otras.

Schmoll - Chavar - Barrea Página 3 de 13

Diagrama de Clases

Schmoll - Chavar - Barrea Página 4 de 13

Casos de Prueba

Contamos con tres casos:

- 1. Prueba Unitaria
 - a. Usando FrameWork JUNIT
- 2. Prueba Productiva
 - a. Un proyecto "Calculator" esta dispuesto a utilizar nuestra FrameWork TestCase

2.a.

1. Creación de los casos de prueba

CP 1

PRERREQUSITOS

Crear un Calculator y hacer la suma de 2 con 2

RESULTADO ESPERADO

La prueba debe finalizar correctamente

CP 2

PRERREQUSITOS

Crear un Calculator y hacer la multiplicación de 2 con 10

RESULTADO ESPERADO

La prueba debe finalizar correctamente

CP 3

PRERREQUSITOS

Crear un Calculator y hacer la resta entre 5 y el resultado de hacer la multiplicación de 4 con 2

RESULTADO ESPERADO

La prueba debe finalizar correctamente

CP 4

PRERREQUSITOS

Crear un Calculator y hacer la división de 10 con 5 esperando como resultado un 0

RESULTADO ESPERADO

La prueba debe finalizar con una falla

Schmoll - Chavar - Barrea Página 5 de 13

3. Implementación de los casos de prueba

CP 1

```
PRERREQUSITOS
Crear un Calculator y hacer la suma de 2 con 2
                                        RESULTADO ESPERADO
...
       @Override
       public void run() {
               testAdd();
       }
       public void testAdd() {
               Calculator calculator = new Calculator();
               assertEquals(4.0, calculator.addAwithB(2, 2));
       }
Test Case
      Passed all Test/s
      1. Status: OK
                         Method: testAdd Messenger: Expected: <4.0> but was: <4.0>
Según lo especificado: La prueba debe finalizar correctamente
Prueba superada
```

CP 2

Schmoll - Chavar - Barrea Página 6 de 13


```
Passed all Test/s

1. Status: OK Method: testMult Messenger: Expected: <20.0> but was: <20.0>

Según lo especificado: La prueba debe finalizar correctamente

Prueba sueprada
```

CP 3

PRERREQUSITOS Crear un Calculator y hacer la resta entre 5 y el resultado de hacer la multiplicación de 4 con 2 **RESULTADO ESPERADO** @Override public void run() { testIntegral(); public void testIntegral() { Calculator calculator = new Calculator(); calculator.rememberResul(calculator.mulAwithB(4, 2)); assertEquals(-3.0, calculator.minusAwithAccumulator(5)); } - X Yest Case Passed all Test/s 1. Status: OK Method: testIntegral Messenger: Expected: <-3.0> but was: <-3.0> Según lo especificado: La prueba debe finalizar correctamente

Schmoll - Chavar - Barrea Página 7 de 13

Prueba sueprada

CP 4

Schmoll - Chavar - Barrea Página 8 de 13

Manual de usuario

Para utilizar el servicio que brinda este Framekork usted debe crear una clase dode escribirá todos los métodos que desea probar y heredar de TestCase, la misma le obligará a usted a crear el método run, en este tiene que hacer los llamados de todos sus métodos que desea probar en la misma ejecución.

Usted va a poder aprovechar los siguientes métodos que le proporciona este FrameWork para validar los métodos de su clases a probar.

Metodos	Parámetros	Valor de retorno	Descripción
start	N/A	void	Inicia el testeo
getCallerName	N/A	String	Obtiene el nombre del método que lo llamo
verifyTest	testName	boolean	Verifica si el método existe
assertTrue	Condition	Void	Valida si una expresión booleana es verdadera
assertFalse	Condition	Void	Valida si una expresión booleana es falsa
assertEquals	ObjA, ObjB	Void	Compara dos objetos del tipo OBJECT
assertEquals	EnteroA, EnteroB	Void	Compara dos enteros
assertEquals	DecimalA, DecimalB	Void	Compara dos decimales
fail	N/A	Void	Genera una excepción
setup	N/A	Void	Setea una única configuración para un set de test a probar. Opcional
tearDown	N/A	void	Se ejecuta al finalizar el TestCase para finalizar y Iimpiar las instancias necesarias. Opcional

Schmoll - Chavar - Barrea Página 9 de 13

Método RUN, en este método se van a llamar todos los metodosTest que querramos probar en el mismo conjunto de ejecución:

Por ejemplo

```
public class TestCalculator extends TestCase{
    @Override
    public void run() {
        testAdd();
    }

    public void testAdd() {
        Calculator calculator = new Calculator();
        assertEquals(4.0, calculator.addAwithB(2, 2));
    }
}
```

Métodos Setup y TearDown pueden ser utilizados para inicializar instancias antes de ejecutar los tests, y limpiar posteriormente en caso de ser necesario.

Por Ejemplo

Schmoll - Chavar - Barrea Página 10 de 13

Responsabilidades de Clases:

- TestSuite: Clase de la cual debe heredar el cliente para poder usar el framework de tests. Permite definir metodos setup() y tearDown(). Se debe redefinir el metodo run() con la lista de tests a correr.
 - Puede incluir TestCases u otros TestSuites, para esto se usa el patron Composite.
- TestComponent: Representa el componente generico del patron Composite, de esta clase heredan TestSuite y TestCase
- Assertion: Determina si una evaluación es verdadera, guarda el resultado, y, en caso de que haya fallado la evaluación almacena un mensaje explicativo.
- TestCase: Almacena información de los tests individuales que definió el cliente y que son ejecutados dentro del método run() de TestSuite. Almacena una lista de Assertion que son las ejecuciones dentro del test.
- ViewTestSuite: Es la vista encargada de recibir el array de resultados y los muestra en una interfaz grafica.

Export de resultados en archivo TXT:

El Cliente ademas de ver los resultados en la Interfaz Gráfica, tiene la opción de guardarlos en un archivo TXT. Para esto solo tiene q llamar al metodo saveTestReults() luego de llarmar al start().

El archivo de salida tiene el Log con todos los resultados, y además la cantidad de Tests ejecutados, la cantidad de Failures y de Errors.

Automaticamente creara una carpeta llamada "testLogs" donde se creara un archivo con los resultados de cada ejecución.

El nombre del archivo es testResult + un time stamp para que sea único. Además facilita la identificación del log correcto.

Ejemplo de uso de Regex:

Al utilizar la clase heredada de TestSuite, se puede settear un String conteniendo una Expresion Regular, que se usara para validar el nombre del test a ser ejecutado.

Si el nombre concuerda con la Expresion Regular el test será agregado al conjunto de pruebas, de lo contrario será ignorado.

Se puede settear la RegEx a usar mediante el metodo "setRegex(String)", y debe ser configurado previamente a llamar al start().

Por ejemplo se podría utilizar para correr solo los tests que incluyan la palabra "Null" de la siguiente manera

public static void main(String[] args) {

Schmoll - Chavar - Barrea Página 11 de 13


```
TestSuiteCliente someTest = new TestSuiteCliente ();
someTest.setRegex("(.*)Null(.*)");
someTest.start();
someTest.showTest();
```

Ejemplo de uso de TestSuites anidadas:

El cliente deberá generar las suites y anidarlas de la siguiente manera:

```
TestCalculator tc = new TestCalculator();
TestCalculator tc2 = new TestCalculator();
//Anidamiento de suites
tc.addTestComponent(tc2);
tc.start();
```

En la pantalla gráfica verá diferenciados ambas suites, con sus tests dentro:

Schmoll - Chavar - Barrea Página 12 de 13