Module 3 Deployment Optimizations

Improving model size and speed

Learning Objectives

By the end of this module you will:

- Be able to make the design choices for your LLM development
- Create and design your own pseudo Mixture-of-Experts LLM system
- Develop an understanding of the utility of quantization in LLMs for both training and inferencing

Extra-Large Language Models What if our models are too big?

The issue with high performance LLMs

Paying the price for quality

As models grow in size, they get "better" and "worse".

- Better accuracy, alignment, abilities
- Worse speed, memory footprint, updatability

What if we could improve the speed and footprint while preserving quality?

Improving Learning Efficiency How can we train and fine-tune better?

How we interact with LLMs

The importance of context length

LLMs, like us, do better at tasks with more context.

This means longer input/context length.

- Computing input embeddings
- Calculating attention scores quadratically

linearly

Even worse:

Attention cannot perform as well on longer context than it was trained on.

Training short but inference long

You'll need a good Alibi for this one

Attention is all you need... to fix! And just with a linear bias.

$$\operatorname{softmax}(\mathbf{q}_i \mathbf{K}^{\top}) \longrightarrow \operatorname{softmax}(\mathbf{q}_i \mathbf{K}^{\top} + m \cdot [-(i-1), ..., -2, -1, 0])$$

Faster calculations

Calculating attention in a flash.

Observation:

- Fastest memory in the GPU is SRAM
- Longer context = larger attention matrices

Problem:

- SRAM is small relative to the attention matrix needed in calculations
- Solution: <u>Flash Attention!</u>
- Attention compute operations are redone, no matrix created!
- More time spent in SRAM, massive performance boost

Source: Flash Attention

Many queries, fewer keys

Multi-query and Grouped-query Attention

Multi-Headed Attention

#Queries = #Keys = #Values Each head can focus on different parts of language.

Inference - slow, accurate.

Multi-Query Attention

Many Queries, 1 Key, 1 Value Forcing the model to use different queries

Inference - fast, inaccurate.

Grouped-Query Attention

#Queries = #/n Keys = #/n Values

Inference - fast, accurate.

Source: Grouped Query Attention

Improving Model Footprint Doing more with less

Storing numbers

Billions of parameters. Each a floating point number.

FP16 FP32 - IEEE standards.

Google Brain saw this and created the BF16

- Same range as FP32
- Same size as FP16

Source: Google bfloat16

Quantization

Do we need so much precision?

Approximate the values in quantized forms

Create quantized functions

QLoRA

Applying quantization to fine tuning

- LoRA was already great!
- QLoRA adds even more:
 - 4-bit quantization
 - Paged optimization

Source: QLoRA

Multi-LLM Inferencing Hybrid and Ensemble-based systems

Mixture-of-Experts

A trillion parameters, for a fraction of the training

Mixture-of-Experts (MoE):

- Input is sent to a router
- Multiple NNs are trained

Switch Transformer:

- Application of MoE
- Position-wise FFNN are multiplied
- Single attention network

LLM Cascades and FrugalGPT

Improving our resource allocation in LLM inferencing

LLM cascade:

 Send prompts to smallest models

 Gather confidence of response

 If too small, move to a larger model

Source: FrugalGPT

Current Best Practices If you want to build now, do it right

Best Practices

Training from scratch:

- ALiBi
- Flash Attention
- Grouped–Query Attention
- Mixture-of-Experts

Fine-tuning/Inferencing:

- LoRA/QLoRA
- FrugalGPT

Module Summary

Deployment Optimizations - What have we learned?

- LLMs are currently outpacing modern compute capacity, necessitating the development of work around solutions and approaches
- Modifying the original approach to attention has allowed for longer contexts, better use of hardware, more efficient calculations
- Quantization helps to store and use massive LLMs on smaller hardware
- Combing LLM inferences of different models allows an effective scale up of parameters with minimal cost changes

Time for some code!

