Лабораторная работа №6

Мандатное разграничение прав в Linux

Парфенова Елизавета Евгеньевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	21
Список литературы		22

Список иллюстраций

4.1	Подготовка лабораторного стенда	9
4.2	Просмотр режима и политики SELinux	10
4.3	Запуск и проверка работы сервера Apache	10
4.4	Контекст безопасности сервера Apache	11
4.5	Текущее состояние переключателей SELinux для Apache	12
4.6	Статистика по политике	13
4.7	Множество пользователей, ролей, типов	14
4.8	Файлы и поддиректори в /var/www	15
4.9	Создание файла test.html и его контекст	15
4.10	Отображение файла через веб-сервер	15
	Изменение контекста файла	16
	Сообщение об ошибке после изменения контекста файла	16
4.13	Файл /var/log/messages*	17
	Файл /var/log/audit/audit.log	17
4.15	Замена порта в config файле	18
	Сбой сервера при запуске с 81 порта	18
4.17	Файл /var/log/messages	19
4.18	Добавление 81 порта	19
4.19	Изменение контекста обратно	20
4.20	Содержимое файла по новому адресу	20
	Возврашение всех изменений	20

Список таблиц

1 Цель работы

Развить навыки администрирования ОС Linux. Получить первое практическое знакомство с технологией SELinux

2 Задание

Проверить работу SELinx на практике совместно с веб-сервером Apache.

3 Теоретическое введение

SELinux — это система принудительного контроля доступа, реализованная на уровне ядра. Впервые эта система появилась в четвертой версии CentOS, а в 5 и 6 версии реализация была существенно дополнена и улучшена. Эти улучшения позволили SELinux стать универсальной системой, способной эффективно решать массу актуальных задач. Стоит помнить, что классическая система прав Unix применяется первой, и управление перейдет к SELinux только в том случае, если эта первичная проверка будет успешно пройдена.

Основные термины, использующиеся в SELinux:

- Домен список действий, которые может выполнять процесс. Обычно в качестве домена определяется минимально-возможный набор действий, при помощи которых процесс способен функционировать. Таким образом, если процесс дискредитирован, злоумышленнику не удастся нанести большого вреда.
- Роль список доменов, которые могут быть применены. Если какого-то домена нет в списке доменов какой-то роли, то действия из этого домена не могут быть применены.
- Tun набор действий, которые допустимы по отношения к объекту. Тип отличается от домена тем, что он может применяться к пайпам, каталогам и файлам, в то время как домен применяется к процессам.
- *Контекст безопасности* все атрибуты SELinux роли, типы и домены.

SELinux имеет три основных режим работы, при этом по умолчанию установлен режим Enforcing.

Режимы работы SELinux:

- 1. Enforcing: Режим по-умолчанию. При выборе этого режима все действия, которые каким-то образом нарушают текущую политику безопасности, будут блокироваться, а попытка нарушения будет зафиксирована в журнале.
- 2. Permissive: В случае использования этого режима, информация о всех действиях, которые нарушают текущую политику безопасности, будут зафиксированы в журнале, но сами действия не будут заблокированы.
- 3. Disabled: Полное отключение системы принудительного контроля доступа [1].

Для просмотра контекста безопасности используется команда ls -Z с указанием адреса. Например: *ls -Z /var/www/html/index.html*

4 Выполнение лабораторной работы

Подготовим лабораторный стенд. Для этого проверим утсановку сервера Арасће. У меня он установлен не был, поэтому я заранее провела его установку. Затем в конфигурационном файле /etc/httpd/conf/httpd.conf необходимо зададим параметр ServerName: ServerName test.ru. Также было необходимо проследить, чтобы пакетный фильтр был либо отключён, либо в своей рабочей конфигурации позволял подключаться к 80-у и 81-у портам протокола tcp. Мной было решено отключить фильтр следующими командами

```
iptables -F
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
(рис. 4.1).
```

```
[root@eeparfenova ~]# nano /etc/httpd/httpd.conf
[root@eeparfenova ~]# nano /etc/httpd/conf/httpd.conf
[root@eeparfenova ~]# iptables -F
[root@eeparfenova ~]# iptables -P INPUT ACCEPT iptables -P OUTPUT ACCEPT
Bad argument `iptables'
Try `iptables -h' or 'iptables --help' for more information.
[root@eeparfenova ~]# iptables -P INPUT ACCEPT
[root@eeparfenova ~]# iptables -P OUTPUT ACCEPT
[root@eeparfenova ~]#
```

Рис. 4.1: Подготовка лабораторного стенда

Убедимся, что SELinux работает в режиме enforcing политики targeted с помощью команд *getenforce* и *sestatus*. Видим, что этой действительно так (рис. 4.2)

```
[eeparfenova@eeparfenova ~]$ getenforce
Enforcing
[eeparfenova@eeparfenova ~]$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 33
```

Рис. 4.2: Просмотр режима и политики SELinux

Запустим сервер Apache командой *sudo systemctl start httpd* и с помощью браузера обратимся к нему, убедившись, что сервер работает командой *sydo systemctl status httpd* (рис. 4.3).

```
[eeparfenova@eeparfenova ~]$ su -
Password:
[root@eeparfenova ~]# service httpd status
Redirecting to /bin/systemctl status httpd.service
0 httpd.service - The Apache HTTP Server
Loaded: loaded (Jusr/lib/systemd/system/httpd.service; enabled; preset: disabled)
Active: inactive (dead)
Docs: man:httpd.service(8)
[root@eeparfenova ~]# sudo systemctl restart httpd
[root@eeparfenova ~]# sudo systemctl start httpd
[root@eeparfenova ~]# sudo systemctl status httpd
• httpd.service - The Apache HTTP Server
Loaded: loaded (Jusr/lib/systemd/system/httpd.service; enabled; preset: disabled)
Active: active (running) since Wed 2024-10-09 17:56:00 MSK; 24s ago
Docs: man:httpd.service(8)
Main PTD: 42967 (httpd)
Status: "Total requests: 0; Idle/Busy workers 100/0;Requests/sec: 0; Bytes served/sec: 0 B/sec"
Tasks: 177 (limit: 12207)
Memory: 24.0M
CPU: 125ms
CGroup: /system.slice/httpd.service
-42969 /usr/sbin/httpd -DFOREGROUND
-42960 eparfenova.localdomain systemd[1]: Starting The Apache HTTP Server...
Oct 09 17:56:00 eeparfenova.localdomain systemd[1]: Started The Apache HTTP Server...
Oct 09 17:56:00 eeparfenova.localdomain httpd[42967]: Server configured, listening on: port 80
[root@eeparfenova ~]#
```

Рис. 4.3: Запуск и проверка работы сервера Арасһе

С помощью команд *ps auxZ | grep httpd* и *ps -eZ | grep httpd* найдем веб-сервер Арасhе в списке процессов, определив его контекст безопасности. Его контекст безопасности: system_u:system_r:httpd_t:s0. (рис. 4.4)

Рис. 4.4: Контекст безопасности сервера Apache

Посмотрим текущее состояние переключателей SELinux для Apache с помощью команды *sestatus -b | grep httpd*. Обратим внимание, что многие из них находятся в положении «off». (рис. 4.5)

```
root@eeparfenova ~]# sestatus -b | grep httpd
   d_anon_write
   _builtin_scripting
                                            on
   _can_check_spam
                                            off
    _can_connect_ftp
                                            off
    _can_connect_ldap
                                            off
    _can_connect_mythtv
                                            off
                                            off
    _can_connect_zabbix
    _can_manage_courier_spool
                                            off
    _can_network_connect
                                            off
    _can_network_connect_cobbler
                                            off
   d_can_network_connect_db
                                            off
   _can_network_memcache
                                            off
                                            off
   _can_network_relay
                                            off
   _can_sendmail
   _dbus_avahi
                                            off
    _dbus_sssd
                                            off
    _dontaudit_search_dirs
                                            off
    _enable_cgi
                                            on
    _enable_ftp_server
                                            off
    _enable_homedirs
                                            off
                                            off
    execmem
                                            off
    _graceful_shutdown
                                            off
    _manage_ipa
    _mod_auth_ntlm_winbind
                                            off
    _mod_auth_pam
                                            off
   d_read_user_content
                                            off
                                            off
   d_run_ipa
   _run_preupgrade
                                            off
   _run_stickshift
                                            off
   _serve_cobbler_files
                                            off
   _setrlimit
                                            off
    _ssi_exec
                                            off
    _sys_script_anon_write
                                            off
                                            off
   _tmp_exec
    _tty_comm
                                            off
    _unified
                                            off
    _use_cifs
                                            off
    _use_fusefs
                                            off
                                            off
    _use_gpg
    _use_nfs
                                            off
    _use_opencryptoki
                                            off
    _use_openstack
                                            off
    _use_sasl
                                            off
    _verify_dns
                                            off
root@eeparfenova ~]#
```

Рис. 4.5: Текущее состояние переключателей SELinux для Apache

Посмотрим статистику по политике с помощью команды *seinfo* (рис. 4.6), также определим множество пользователей, ролей, типов с помощью команд *seinfo* -*u*,

seinfo-r, seinfo-t соответственно (рис. 4.7). Оно соотвсевтенно равно 8, 15, 5145.

R A									
[root@eeparfenova ~]# seinfo									
	cy file:	/sys/fs/selinux/pol	icy						
Policy Version:		33 (MLS enabled)							
Target Policy:		selinux							
Handle unknown class	ses:	allow							
Classes:	135	Permissions:	457						
Sensitivities:	1	Categories:	1024						
Types:	5145	Attributes:	259						
Users:	8	Roles:	15						
Booleans:	356	Cond. Expr.:	388						
Allow:	65500	Neverallow:	0						
Auditallow:	176	Dontaudit:	8682						
Type_trans:	271770	Type_change:	94						
Type_member:	37	Range_trans:	5931						
Role allow:	40	Role_trans:	417						
Constraints:	70	Validatetrans:	0						
MLS Constrain:	72	MLS Val. Tran:	0						
Permissives:	4	Polcap:	6						
Defaults:	7	Typebounds:	0						
Allowxperm:	0	Neverallowxperm:	0						
Auditallowxperm:	0	Dontauditxperm:	0						
Ibendportcon:	0	Ibpkeycon:	0						
Initial SIDs:	27	Fs_use:	35						
Genfscon:	109	Portcon:	665						
Netifcon:	0	Nodecon:	0						

Рис. 4.6: Статистика по политике

```
root@eeparfenova ~]# seinfo -u
Jsers: 8
  guest_u
  root
  staff_u
  sysadm_u
  system_u
  unconfined_u
  user_u
  xguest_u
root@eeparfenova ~]# seinfo -r
Roles: 15
  auditadm_r
  container_user_r
  dbadm_r
  guest_r
  logadm_r
  nx_server_r
  object_r
  secadm_r
  staff_r
  sysadm_r
  system_r
  unconfined_r
  user_r
  webadm_r
  xguest_r
 root@eeparfenova ~]# seinfo -t
ypes: 5145
  NetworkManager_dispatcher_chronyc_script_t
  NetworkManager_dispatcher_chronyc_t
  NetworkManager_dispatcher_cloud_script_t
  NetworkManager_dispatcher_cloud_t
  NetworkManager_dispatcher_console_script_t
  NetworkManager_dispatcher_console_t
  NetworkManager_dispatcher_console_var_run_t
  NetworkManager_dispatcher_custom_t
NetworkManager_dispatcher_ddclient_script_t
  NetworkManager_dispatcher_ddclient_t
  NetworkManager_dispatcher_dhclient_script_t
  NetworkManager_dispatcher_dhclient_t
  NetworkManager_dispatcher_dnssec_script_t
```

Рис. 4.7: Множество пользователей, ролей, типов

Определим тип файлов и поддиректорий, находящихся в директории /var/www, с помощью команды *ls -lZ /var/www*. Видим, что все файлы и поддиректории принадлежат пользователю root, а также имеют некоторый контекст безопасностиОпределим тип файлов, находящихся в директории /var/www/html *ls -lZ /var/www/html*. Она оказалась пуста. (рис. 4.8)

```
[root@eeparfenova ~]# ls -lZ /var/www
total 0
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_script_exec_t:s0 6 Aug 8 19:30 cgi-bin
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_content_t:s0 6 Aug 8 19:30 html
[root@eeparfenova ~]# ls -lZ /var/www/html
total 0
[root@eeparfenova ~]# | s -lZ /var/www/html
```

Рис. 4.8: Файлы и поддиректори в /var/www

Как уже было указано, создание файлов в директории /var/www/html доступно только владельцу, то есть пользователю root.

Создадим от имени суперпользователя html-файл /var/www/html/test.html следующего содержания:

```
<html>
<body>test</body>
</html>
```

Проверим его контекст, присовенный по умолчанию созданным файлам в директории /var/www/html: unconfined_u:object_r:httpd_sys_content_r:s0 (рис. 4.9).

```
[root@eeparfenova ~]# nano /var/www/html/test.html
[root@eeparfenova ~]# ls -lZ /var/www/html
total 4
-rw-r--r--. 1 root root unconfined_u:object_r:httpd_sys_content_t:s0 33 Oct 9 18:07 test.html
[root@eeparfenova ~]# ls -Z /var/www/html
unconfined_u:object_r:httpd_sys_content_t:s0 test.html
[root@eeparfenova ~]# |
```

Рис. 4.9: Создание файла test.html и его контекст

Обратимся к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1/test.html убедимся, что файл был успешно отображён (рис. 4.10).

Рис. 4.10: Отображение файла через веб-сервер

Изучив справку man httpd_selinux, увидим, что для файла test.html был определен один из контекстов безопасности httpd. Проверить контекст файла можно командой. *ls -Z /var/www/html/test.html* (мы уже делали это ранее, на рис. 9)

Рассмотрим полученный контекст детально. - Обратим внимание, что так как по умолчанию пользователи являются свободными от типа, созданному нами файлу test.html был сопоставлен SELinux, пользователь unconfined_u. Это первая часть контекста. - Далее политика ролевого разделения доступа RBAC используется процессами, но не файлами, поэтому роли не имеют никакого значения для файлов. Роль object_r используется по умолчанию для файлов на «постоянных» носителях и на сетевых файловых системах. - Тип httpd_sys_content_t позволяет процессу httpd получить доступ к файлу. Благодаря наличию последнего типа мы получили доступ к файлу при обращении к нему через браузер.

Изменим контекст файла /var/www/html/test.html c httpd_sys_content_t на любой другой, к которому процесс httpd не должен иметь доступа, например, на samba_share_t. Сдлаем это с помощью команды chcon -t samba_share_t /var/www/html/test.html. Затем проверим успешность действия командой ls -Z /var/www/html/test.html (рис. 4.11).

```
[root@eeparfenova ~]# chcon -t samba_share_t /var/www/html/test.html
[root@eeparfenova ~]# ls -Z /var/www/html/test.html
unconfined_u:object_r:samba_share_t:s0 /var/www/html/test.html
[root@eeparfenova ~]# ██
```

Рис. 4.11: Изменение контекста файла

Попробуем ещё раз получить доступ к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1/test.html. Но получаем следующее сообщение об ошибке (рис. 4.12):

Forbidden

You don't have permission to access /test.html on this server.

Рис. 4.12: Сообщение об ошибке после изменения контекста файла

Данная ситуация произошла, так как конекст безопасности был изменен на то, к которому httpd не имеет доуступа, то есть читать файл по прежнему могут все, но отображать его через браузер запрещено.

Просмотрим log-файлы веб-сервера Apache. Просмотрим системный лог-файл командой *tail /var/log/messages* (рис. 4.13) и файл /var/log/audit/audit.log с помощью команды *tail /var/log/audit/audit.log* (рис. 4.14). Видим в системе запущены процессы setroubleshootd и audtd, которые свидетельствуют об ошибке доступа - пишется, что SELinux препятствует серверу в получении полного доступа к вызываемому файлу (это и является причиной, почему мы не можем прочесть его через браузер).

Рис. 4.13: Файл /var/log/messages*

Рис. 4.14: Файл /var/log/audit/audit.log

Попробуем запустить веб-сервер Apache на прослушивание ТСР-порта 81 (а не

80). Для этого в файле /etc/httpd/httpd.conf найдем строчку *Listen 80* и заменим её на Listen 81 (рис. 4.15).

```
# Listen: Allows you to bind Apache to specific IP addresses and/or # ports, instead of the default. See also the <VirtualHost> # directive.
# Change this to Listen on a specific IP address, but note that if # httpd.service is enabled to run at boot time, the address may not be # available when the service starts. See the httpd.service(8) man # page for more information.
# #Listen 12.34.56.78:80
Listen 81
```

Рис. 4.15: Замена порта в config файле

Выполним перезапуск веб-сервера Apache. У нас произошел сбой, так как порт настроен на 80 порт, а мы пытаемся запустить его с 81 (рис. 4.16).

Рис. 4.16: Сбой сервера при запуске с 81 порта

Проанализируйте лог-файлы с помощью команд tail -l/var/log/messages (рис. 4.17), tail -l/var/log/http/error_log и tail -l/var/log/http/access_log..

```
[root@eeparfenova ~]# tail -l /var/log/messages

Dot 9 18:32:48 eeparfenova systemd[1]: Stopped The Apache HTTP Server.

Dot 9 18:32:48 eeparfenova systemd[1]: httpd.service: Consumed 1.581s CPU time.

Dot 9 18:32:48 eeparfenova systemd[1]: Starting The Apache HTTP Server...

Dot 9 18:32:48 eeparfenova systemd[1]: Started The Apache HTTP Server...

Dot 9 18:32:48 eeparfenova httpd[d5113]: Server configured, listening on: port 81.

Dot 9 18:34:34 eeparfenova systemd[1646]: Started dbus-11.2-org.gnome.Screenshot@18.service.

Dot 9 18:34:41 eeparfenova systemd[1]: Started Hostname Service.

Dot 9 18:34:41 eeparfenova systemd[1]: Started Hostname Service.

Dot 9 18:35:01 eeparfenova systemd[1]: packagekit.service: Consumed 1.208s CPU time.
```

Рис. 4.17: Файл /var/log/messages

Видим, что есть сообщение, что файл сконфигурирован и прослушивается с 81 порта. Также у нас появилась новая запись в лог-файла ошибок о невозможности загрузки, и не появилось новой записи в лог-файле доступа.

Выполним команду semanage port -a -t http_port_t -p tcp 81, добавив 81 порт в список подключенных портов. После этого проверим список портов командой semanage port -l / grep http_port_t Убедимся, что порт 81 появился в списке (он у нас еще и повторяется дважды) (рис. 4.18).

```
[root@eeparfenova ~] # semanage port -l | grep http_port_t
http_port_t
tcp 80, 81, 443, 488, 8008, 8009, 8443, 9000
pegasus_http_port_t
tcp 5988
[root@eeparfenova ~] # semanage port -d -t http_port_t -p tcp 81
ValueError: Port tcp/81 is defined in policy, cannot be deleted
[root@eeparfenova ~] # semanage port -a -t http_port_t -p tcp 81
Port tcp/81 already defined, modifying instead
[root@eeparfenova ~] # semanage port -l | grep http_port_t
http_port_t
tcp 81, 80, 81, 443, 488, 8008, 8009, 8443, 9000
pegasus_http_port_t
[root@eeparfenova ~] # [root@eeparfenova ~] #
```

Рис. 4.18: Добавление 81 порта

Попробуем запустить веб-сервер Арасhе ещё раз, но и в этот раз у меня произошел сбой, так как указан не тот контекст. Вернем контекст httpd_sys_content_t к файлу /var/www/html/ test.html командой *chcon -t httpd_sys_content_t /var/www/html/test.html* (рис. 4.19). После этого попробуем получить доступ к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1:81/test.html, и на этот раз мы действительно смогли прочитать файл через браузер, увидев содержимое файла — слово «test». (рис. 4.20)

```
[root@eeparfenova ~]# chcon -t httpd_sys_content_t /var/www/html/test.html
[root@eeparfenova ~]# ls -Z /var/www/html/test.html
unconfined_u:object_r:httpd_sys_content_t:s0 /var/www/html/test.html
[root@eeparfenova ~]# |
```

Рис. 4.19: Изменение контекста обратно

Рис. 4.20: Содержимое файла по новому адресу

В конце вернем все, что изменили на место: исправим обратно конфигурационный файл apache, вернув Listen 80; удалим привязку http_port_t к 81 порту командой semanage port -d -t http_port_t -p tcp 81; проверим, что порт 81 удалён; удалим файл /var/www/html/test.html (рис. 4.21)

Рис. 4.21: Возвращение всех изменений

5 Выводы

Мы развили навыки администрирования ОС Linux и получили первое практическое знакомство с технологией SELinux. Для этого мы проверили работу SELinx на практике совместно с веб-сервером Apache.

Список литературы

1. SELinux – описание и особенности работы с системой. Часть 1 [Электронный ресурс]. © 2006–2024, Habr, 2014. URL: https://habr.com/ru/companies/kingservers/articles/209644/.