Trigonométrie - Exercices - Corrigé

Exercice 1.

1. x réel,

a.
$$A(x) = \cos(-x) - \sin(x + \pi) + \sin(-x) + \cos(\pi - x)$$

 $A(x) = \cos(x) - (-\sin(x)) - \sin(x) - \cos(x) = 0$
b. $B(x) = \cos\left(\frac{\pi}{2} - x\right) + 2\cos(-x - \pi) - 3\sin\left(x + \frac{\pi}{2}\right) - \sin(x + 8\pi)$
 $B(x) = \sin(x) + 2\cos(-(x + \pi)) - 3\cos(x) - \sin(x)$
 $B(x) = 2\cos(x + \pi) - 3\cos(x) = -2\cos(x) - 3\cos(x) = -5\cos x$

2.

a. On donne
$$\cos \frac{\pi}{5} = \frac{\sqrt{5}+1}{4}$$
.
$$\cos^2 \frac{\pi}{5} + \sin^2 \frac{\pi}{5} = 1 \Leftrightarrow \left(\frac{\sqrt{5}+1}{4}\right)^2 + \sin^2 \frac{\pi}{5} = 1$$

$$\Leftrightarrow \sin^2 \frac{\pi}{5} = 1 - \left(\frac{\sqrt{5}+1}{4}\right)^2$$

$$\Leftrightarrow \sin^2 \frac{\pi}{5} = \frac{16}{16} - \frac{5+2\sqrt{5}+1}{16}$$

$$\Leftrightarrow \sin^2 \frac{\pi}{5} = \frac{16-6-2\sqrt{5}}{16}$$

$$\Leftrightarrow \sin^2 \frac{\pi}{5} = \frac{10-2\sqrt{5}}{16}$$

$$\Leftrightarrow \sin \frac{\pi}{5} = \frac{\sqrt{10-2\sqrt{5}}}{4} \text{ ou } \sin \frac{\pi}{5} = -\frac{\sqrt{10-2\sqrt{5}}}{4}$$

 $\frac{\pi}{5} \in [0; \pi]$, donc $\sin \frac{\pi}{5} \ge 0$ et $\sin \frac{\pi}{5} = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$

b.

•
$$\cos\left(-\frac{\pi}{5}\right) = \cos\frac{\pi}{5} = \frac{\sqrt{5}+1}{4}$$

 $\sin\left(-\frac{\pi}{5}\right) = -\sin\frac{\pi}{5} = -\frac{\sqrt{10-2\sqrt{5}}}{4}$
• $\frac{4\pi}{5} + \frac{\pi}{5} = \pi \operatorname{donc} \frac{4\pi}{5} = \pi - \frac{\pi}{5}$
 $\cos\frac{4\pi}{5} = \cos\left(\pi - \frac{\pi}{5}\right) = -\cos\frac{\pi}{5} = -\frac{\sqrt{5}+1}{4}$
 $\sin\frac{4\pi}{5} = \sin\left(\pi - \frac{\pi}{5}\right) = \sin\frac{\pi}{5} = \frac{\sqrt{10-2\sqrt{5}}}{4}$
• $\frac{7\pi}{10} - \frac{\pi}{5} = \frac{\pi}{2}\operatorname{donc} \frac{7\pi}{10} = \frac{\pi}{2} + \frac{\pi}{5}$
 $\cos\frac{7\pi}{10} = \cos\left(\frac{\pi}{2} + \frac{\pi}{5}\right) = -\sin\frac{\pi}{5} = -\frac{\sqrt{10-2\sqrt{5}}}{4}$
 $\sin\frac{7\pi}{10} = \sin\left(\frac{\pi}{2} + \frac{\pi}{5}\right) = \cos\frac{\pi}{5} = \frac{\sqrt{5}+1}{4}$

3.
$$\sin \frac{7\pi}{12} = \sin \left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin \frac{\pi}{3} \cos \frac{\pi}{4} - \cos \frac{\pi}{3} \sin \frac{\pi}{4} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}(\sqrt{3} - 1)}{4}$$
$$\cos \frac{7\pi}{12} = \cos \left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \cos \frac{\pi}{3} \cos \frac{\pi}{4} + \sin \frac{\pi}{3} \sin \frac{\pi}{4} = \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}(1 + \sqrt{3})}{4}$$

4. x est un réel tel que $\frac{\pi}{2} \le x \le \pi$ et $\sin x = \frac{1}{3}$.

a. On a:

$$\cos^{2}x + \sin^{2}x = 1 \Leftrightarrow \cos^{2}x + \left(\frac{1}{3}\right)^{2} = 1$$

$$\Leftrightarrow \cos^{2}x + \frac{1}{9} = 1$$

$$\Leftrightarrow \cos^{2}x = \frac{8}{9}$$

$$\Leftrightarrow \cos x = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3}ou \cos x = -\frac{\sqrt{8}}{3} = -\frac{2\sqrt{2}}{3}$$

$$\operatorname{Or} \frac{\pi}{2} \le x \le \pi, \operatorname{donc} \cos x \le 0 \operatorname{et} \cos x = -\frac{2\sqrt{2}}{3}.$$

Trigonométrie - Exercices - Corrigé

b.

$$\cos(2x) = \cos^2 x - \sin^2 x = \left(-\frac{2\sqrt{2}}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = \frac{8}{9} - \frac{1}{9} = -\frac{7}{9}$$

$$\sin(2x) = 2\cos x \sin x = 2 \times \left(-\frac{2\sqrt{2}}{3}\right) \times \frac{1}{3} = \frac{-4\sqrt{2}}{9}$$

$$\cos(3x) = \cos(2x + x) = \cos(2x)\cos x - \sin(2x)\sin x = -\frac{7}{9} \times \left(-\frac{2\sqrt{2}}{3}\right) - \frac{-4\sqrt{2}}{9} \times \frac{1}{3} = \frac{11\sqrt{2}}{27}$$

$$\sin(3x) = \sin(2x + x) = \sin(2x)\cos x + \cos(2x)\sin x = \frac{-4\sqrt{2}}{9} \times \left(-\frac{2\sqrt{2}}{3}\right) + -\frac{7}{9} \times \frac{1}{3} = \frac{\sqrt{2}}{27}$$

Exercice 2.

1. Pour tout réel x,

$$(\cos x + \sin x)^2 - (\cos x - \sin x)^2 = \cos^2 x + 2\cos x \sin x + \sin^2 x - (\cos^2 x - 2\cos x \sin x + \sin^2 x)$$
$$= 1 + \sin 2x - (1 - \sin 2x) = 1 + \sin 2x - 1 + \sin 2x = 2\sin 2x.$$

2. Pour tout réel x,

D'une part :

$$(1 + \cos x + \sin x)^2 = (1^2 + 2 \times 1 \times (\cos x + \sin x) + (\cos x + \sin x)^2)$$

= 1 + 2 \cos x + 2 \sin x + 1 + \sin 2x = 2 + 2 \cos x + 2 \sin x + 2 \cos x \sin x
= 1 + 2 \cos x + 2 \sin x + 1 + \sin 2x = 2(1 + \cos x + \sin x + \cos x \sin x)

D'autre part:

$$2(1 + \cos x)(1 + \sin x) = 2(1 + \sin x + \cos x + \cos x \sin x)$$

Ainsi pour tout réel x on a :

$$(\cos x + \sin x)^2 - (\cos x - \sin x)^2 = 2(1 + \cos x)(1 + \sin x)$$

Exercice 3. Résoudre des équations et inéquations trigonométriques en s'aidant du cercle trigonométrique (noté C).

1.

a.
$$\cos x = -\frac{\sqrt{3}}{2} \Leftrightarrow \cos x = \cos\left(\frac{5\pi}{6}\right) \Leftrightarrow x = \frac{5\pi}{6} + 2k\pi, k \in \mathbb{Z} \text{ ou } x = -\frac{5\pi}{6} + 2l\pi, l \in \mathbb{Z}$$

L'ensemble des solutions sur \mathbb{R} de l'équation $\cos x = \cos\left(\frac{5\pi}{6}\right)$ est $S = \left\{\frac{5\pi}{6} + 2k\pi, k \in \mathbb{Z}; -\frac{5\pi}{6} + 2l\pi, l \in \mathbb{Z}\right\}$.

b.
$$\cos\left(2x - \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2} \iff \cos\left(2x - \frac{\pi}{3}\right) = \cos\frac{\pi}{4} \iff 2x - \frac{\pi}{3} = \frac{\pi}{4} + 2k\pi, k \in \mathbb{Z} \ OU \ 2x - \frac{\pi}{3} = -\frac{\pi}{4} + 2l\pi, l \in \mathbb{Z}$$

$$\cos\left(2x - \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2} \iff 2x = \frac{7\pi}{12} + 2k\pi, k \in \mathbb{Z} \ OU \ 2x = \frac{\pi}{12} + 2l\pi, l \in \mathbb{Z}$$

$$\cos\left(2x - \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2} \iff x = \frac{7\pi}{24} + k\pi, k \in \mathbb{Z} \ OU \ x = \frac{\pi}{24} + l\pi, l \in \mathbb{Z}$$

L'ensemble des solutions sur \mathbb{R} de l'équation $\cos\left(2x-\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}$ est $S=\left\{\frac{7\pi}{24}+k\pi,k\in\mathbb{Z};\frac{\pi}{24}+l\pi,l\in\mathbb{Z}\right\}$.

c.
$$\sin x + 1 = 0 \Leftrightarrow \sin x = -1 \Leftrightarrow \sin x = \sin -\frac{\pi}{2} \Leftrightarrow x = -\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \ OU \ x = -\frac{\pi}{2} - \pi + 2l\pi, l \in \mathbb{Z}$$

$$\Leftrightarrow x = -\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \ OU \ x = -\frac{3\pi}{2} + 2l\pi, l \in \mathbb{Z}$$

Or $-\frac{3\pi}{2} = -\frac{\pi}{2}(2\pi)$. L'ensemble des solutions sur \mathbb{R} de l'équation $\sin x = -1$ est $S = \left\{-\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\right\}$.

d.
$$2 \sin x + 1 = 0 \Leftrightarrow \sin x = -\frac{1}{2} \Leftrightarrow \sin x = \sin -\frac{\pi}{3}$$

 $\Leftrightarrow x = -\frac{\pi}{3} + 2k\pi, k \in \mathbb{Z} \ OU \ x = \pi - \left(-\frac{\pi}{3}\right) + 2l\pi, l \in \mathbb{Z}$
 $\Leftrightarrow x = \frac{\pi}{3} + 2k\pi, k \in \mathbb{Z} \ OU \ x = \frac{4\pi}{3} + 2l\pi, l \in \mathbb{Z}$

L'ensemble des solutions sur \mathbb{R} de l'équation $2\sin x + 1 = 0$ est $S = \left\{\frac{\pi}{3} + 2k\pi, k \in \mathbb{Z}; \frac{4\pi}{3} + 2l\pi, l \in \mathbb{Z}\right\}$.

2.

a.
$$\cos x < -\frac{\sqrt{3}}{2}$$

Pour résoudre l'inéquation $\cos x < -\frac{\sqrt{3}}{2}$, on trace le cercle C et on trace la droite d'équation $d: x = -\frac{\sqrt{3}}{2}$. Les réels x solutions de l'inéquation sont les réels x dont les abscisses des points images sur C sont inférieures strict à $-\frac{\sqrt{3}}{2}$ (partie verte).

Par lecture graphique,

sur $]-\pi; \pi]$ l'ensemble des solutions de l'inéquation est

$$S = \left[\frac{5\pi}{6}; \pi \right] \cup \left[-\pi; -\frac{5\pi}{6} \right[$$

sur $[0; 2\pi[$ l'ensemble des solutions de l'inéquation est

$$S = \left] \frac{5\pi}{6}; \frac{7\pi}{6} \right[$$

b.
$$\sqrt{2}\cos x - 1 \le 0 \Leftrightarrow \sqrt{2}\cos x \le 1 \Leftrightarrow \cos x \le \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \Leftrightarrow \cos x \le \cos \frac{\pi}{4}$$
.

Pour résoudre l'inéquation $\cos x \le \frac{1}{\sqrt{2}}$, on trace le cercle C et on trace la droite d'équation $d: x = \frac{1}{\sqrt{2}}$. Les réels xsolutions de l'inéquation sont les réels x dont les abscisses des points images sur $\mathcal C$ sont inférieures ou égales à $\frac{1}{\sqrt{2}}$ (partie verte).

Par lecture graphique,

sur] $-\pi$; π] l'ensemble des solutions de l'inéquation est $S = \left[\frac{\pi}{4}; \pi\right] \cup \left]-\pi; -\frac{\pi}{4}\right]$

$$S = \left[\frac{\pi}{4}; \ \pi\right] \cup \left] -\pi; \ -\frac{\pi}{4}\right]^{1}$$

sur $[0; 2\pi[$ l'ensemble des solutions de l'inéquation est

$$S = \left[\frac{\pi}{4}; \frac{7\pi}{4}\right]$$

c. $\sin x + 1 > 0 \Leftrightarrow \sin x > -1$

Or pour tout réel x, $-1 \le \sin x \le 1$, et les réels x tels que $\sin x = -1$ sont les réels qui s'écrivent sous la forme :

$$x=-\frac{\pi}{2}+2k\pi, k\in\mathbb{Z}$$

Ainsi l'ensemble des solutions de l'inéquation $\sin x + 1 > 0$ est $S = \mathbb{R} - \left\{ -\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \right\}$.

Sur] $-\pi$; π] l'ensemble des solutions de l'inéquation est $S = \left[-\pi; -\frac{\pi}{2}\right] \cup \left[-\frac{\pi}{2}; \pi\right]$.

Sur [0; 2π [l'ensemble des solutions de l'inéquation est $S = \left[0; \frac{3\pi}{2}\right] \cup \left[\frac{3\pi}{2}; 2\pi\right]$.

d.
$$2\sin x + 1 > 0 \Leftrightarrow \sin x > -\frac{1}{2}$$

Pour résoudre l'inéquation $2 \sin x + 1 > 0$, on trace le cercle C et on trace la droite d'équation $d: y = -\frac{1}{2}$. Les réels x solutions de l'inéquation sont les réels x dont les ordonnées des points images sur C sont supérieures strict à $-\frac{1}{2}$ (partie verte).

Par lecture graphique,

sur $]-\pi; \pi]$ l'ensemble des solutions de l'inéquation

$$S = \left[-\pi; -\frac{5\pi}{6} \right] \cup \left[-\frac{\pi}{6}; \pi \right]$$

sur $[0; 2\pi[$ l'ensemble des solutions de l'inéquation est

$$S = \left[0; \frac{7\pi}{6} \right] \cup \left[\frac{11\pi}{6}; 2\pi\right]$$

Trigonométrie – Exercices - Corrigé

3. Tableau de signes de l'expression $(2 \sin x + 1)(\sin x + 1)$.

x	$-\pi$		$-\frac{5\pi}{6}$		$-\frac{\pi}{2}$		$-\frac{\pi}{6}$		π
$2\sin x + 1$		+	0	-		-	0	+	
$\sin x + 1$		+		+	0	+		+	
$(2\sin x + 1)(\sin x + 1)$		+	0	-	0	-	0	+	