Здесь будет титульник, листай ниже

# СОДЕРЖАНИЕ

| 1 ПОСТАНОВКА ЗАДАЧИ                      | 5  |
|------------------------------------------|----|
| 1.1 Описание входных данных              |    |
| 1.2 Описание выходных данных             | 7  |
| 2 МЕТОД РЕШЕНИЯ                          | 9  |
| 3 ОПИСАНИЕ АЛГОРИТМОВ                    | 10 |
| 3.1 Алгоритм конструктора класса Bus     | 10 |
| 3.2 Алгоритм метода GetNumber класса Bus | 10 |
| 3.3 Алгоритм функции main                | 10 |
| 4 БЛОК-СХЕМЫ АЛГОРИТМОВ                  | 13 |
| 5 КОД ПРОГРАММЫ                          | 17 |
| 5.1 Файл Bus.cpp                         | 17 |
| 5.2 Файл Bus.h                           | 17 |
| 5.3 Файл main.cpp                        | 18 |
| 6 ТЕСТИРОВАНИЕ                           | 20 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ         | 21 |

# 1 ПОСТАНОВКА ЗАДАЧИ

Разработать систему, которая моделирует движение автобусов по круговому маршруту с односторонним движением. Время движения между остановками одинаковая (одинаковый временной интервал). Остановки пронумерованы от 1 до n.

Сопоставить автобусу объект, у которого одно свойство строкового типа в закрытом доступе, для хранения номера автобуса.

Объект имеет конструктор с одним параметром строкового типа. Параметр содержит номер автобуса и его значение присваиваться свойству с закрытым доступом.

Объект имеет метод в открытом доступе, который возвращает значение номера автобуса.

Расположение автобусов на маршруте моделировать (отобразить) ассоциативным контейнером, в котором значение ключа соответствует номеру остановки, которому ставиться в соответствии указатель на объект автобуса, который находится на остановке. Допускаем, что на остановке может находится только один автобус. Предполагается, количество автобусов меньше количества остановок.

Алгоритм конструирования и отработки системы:

- 1. Объявляется целочисленная переменная, для хранения количества остановок.
  - 2. Объявляется целочисленная переменная, для хранения номера остановки.
  - 3. Объявляется ассоциативный контейнер.
- 4. Объявляется целочисленная переменная, для хранения количества автобусов.

- 5. Объявляется строковая переменная, для хранения номера автобуса.
- 6. Вводиться значение количества остановок.
- 7. В ассоциативном контейнере формируются элементы, которые соответствуют остановкам.
  - 8. Вводиться значение количества автобусов.
  - 9. Цикл от единицы до количества автобусов.
- 9.1. Вводиться значение номере автобуса и значение номера остановки исходного расположения автобуса.
- 9.2. Создание объекта автобус и размещение значение указателя на этот объект в контейнере согласно номеру остановки.
  - 10. Конец цикла.
  - 11. Начало цикла.
- 11.1. Вводиться целочисленное значение, которое равно количеству интервалов.
  - 11.2. Если значение интервала равно нулю, то выход из цикла.
  - 11.3. Реализуется перемещение автобусов по маршруту.
  - 12. Коней цикла
- 13. Выводится в информация итогового расположения автобусов на маршруте построчно. Строка содержит: номер остановки и номер автобуса.
  - 14. Очищается контейнер и удаляются объекты автобусов.
  - 15. Завершается работа системы.

При сдаче предложите более оптимальное решение задачи. Обоснуйте решение.

### 1.1 Описание входных данных

# Первая строка: «целое число, количество остановок» Вторая строка: «целое число, количество автобусов» Начиная с третьей строки, построчно, согласно количеству автобусов: «строка, номер автобуса» «целое число, номер исходного расположения автобуса» Начиная со следующей строки «целое число, количество интервалов» Последняя строка:

### Пример ввода

```
10
3
77AP345 3
77AP115 9
77AP678 5
1
2
```

### 1.2 Описание выходных данных

```
Первая строка
```

stop bus

Начиная со второй строки, построчно

# Пример вывода

| stop | bus     |
|------|---------|
| 2    | 77AP115 |
| 6    | 77AP345 |
| 8    | 77AP678 |

# 2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- функция main для определения входной точки программы;
- заголовочный файл;
- класс;
- указатель;
- словарь;
- библиотека ввода-вывода.

### Класс Bus:

- свойства/поля:
  - о поле хранит номер автобуса:
    - наименование m\_number;
    - тип std::string;
    - модификатор доступа private;
- функционал:
  - о метод Bus инициализирует приватное поле m\_number;
  - о метод GetNumber возвращает значение номера автобуса.

# 3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

### 3.1 Алгоритм конструктора класса Bus

Функционал: Инициализирует приватное поле m\_number.

Параметры: std::string number.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Bus

| N₂ | Предикат | Действия                        | No       |
|----|----------|---------------------------------|----------|
|    |          |                                 | перехода |
| 1  |          | Инициализация m_number = number | Ø        |

### 3.2 Алгоритм метода GetNumber класса Bus

Функционал: Возвращает значение номера автобуса.

Параметры: нет.

Возвращаемое значение: std::string.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода GetNumber класса Bus

| N₂ | Предикат | Действия         | N₂       |
|----|----------|------------------|----------|
|    |          |                  | перехода |
| 1  |          | Возврат m_number | Ø        |

### 3.3 Алгоритм функции main

Функционал: Входная точка программы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции таіп

| No | Предикат                       | Действия                                                                                                      | №<br>перехода |
|----|--------------------------------|---------------------------------------------------------------------------------------------------------------|---------------|
| 1  |                                | Объявление целочисленных переменных stopsCount, stopNumber, busesCount, intervals                             | 2             |
| 2  |                                | Объявление словаря route                                                                                      | 3             |
| 3  |                                | Объявление переменной строкового типа<br>busNumber                                                            | 4             |
| 4  |                                | Ввод stopsCount                                                                                               | 5             |
| 5  |                                | Ввод busesCount                                                                                               | 6             |
| 6  |                                | Инициализация int i = 0                                                                                       | 7             |
| 7  | i < busesCount                 | Ввод busNumber, stopNumber                                                                                    | 8             |
|    |                                |                                                                                                               | 10            |
| 8  |                                | Инициализация объекта bus класса Bus с помощью<br>оператора new с передачей busNumber в качестве<br>параметра |               |
| 9  |                                | Присвоение route[stopNumber] = bus                                                                            | 7             |
| 10 | true                           | Ввод intervals                                                                                                | 11            |
|    |                                |                                                                                                               | 19            |
| 11 | intervals = 0                  |                                                                                                               | 19            |
|    |                                |                                                                                                               | 12            |
| 12 |                                | Объявление std::map <int, bus*=""> newRoute</int,>                                                            | 13            |
| 13 | Есть следующий элемент в route | Перебор for (auto pair : route)                                                                               | 15            |
|    |                                |                                                                                                               | 18            |
| 14 |                                | Получение currentStop = pair.first, bus = pair.second                                                         | 15            |
| 15 |                                | Вычисление newStop = (currentStop + intervals) %                                                              | 16            |

| № Предикат |                          | Действия                                    | No       |
|------------|--------------------------|---------------------------------------------|----------|
|            |                          |                                             | перехода |
|            |                          | stopsCount                                  |          |
| 16         | newStop = 0              | Присвоение newStop = stopsCount             | 17       |
|            |                          |                                             | 17       |
| 17         |                          | Присвоение newRoute[newStop] = bus          | 13       |
| 18         |                          | Присвоение route = newRoute                 | 10       |
| 19         |                          | Вывод "stop bus"                            | 20       |
| 20         | Есть следующий элемент в | Перебор for (auto pair : route)             | 21       |
|            | route                    |                                             |          |
|            |                          |                                             | Ø        |
| 21         |                          | Вывод pair.first и pair.second->GetNumber() | 22       |
| 22         |                          | Освобождение памяти: delete pair.second     | 20       |

# 4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-4.





Рисунок 2 – Блок-схема алгоритма



Рисунок 3 – Блок-схема алгоритма



Рисунок 4 – Блок-схема алгоритма

# 5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

# 5.1 Файл Bus.cpp

Листинг 1 – Bus.cpp

```
#include "Bus.h"

Bus::Bus(std::string number)
{
    m_number = number;
}

std::string Bus::GetNumber()
{
    return m_number;
}
```

### **5.2** Файл Bus.h

Листинг 2 – Bus.h

```
#ifndef __BUS__H
#define __BUS__H

#include <string>

class Bus
{
    std::string m_number;
public:
    Bus(std::string number);
    std::string GetNumber();
};

#endif
```

### 5.3 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include "Bus.h"
#include <iostream>
#include <map>
int main()
  int stopsCount, stopNumber, busesCount, intervals;
  std::map<int, Bus*> route;
  std::string busNumber;
  std::cin >> stopsCount;
  std::cin >> busesCount;
  for (int i = 0; i < busesCount; i++)
     std::cin >> busNumber >> stopNumber;
     Bus* bus = new Bus(busNumber);
     route[stopNumber] = bus;
  }
  while (true)
     std::cin >> intervals;
     if (intervals == 0) break;
     std::map<int, Bus*> newRoute;
     for (auto pair : route)
        int currentStop = pair.first;
        Bus* bus = pair.second;
        int newStop = (currentStop + intervals) % stopsCount;
        if (newStop == 0) newStop = stopsCount;
        newRoute[newStop] = bus;
     }
     route = newRoute;
  }
  std::cout << "stop
                         bus" << std::endl;</pre>
  for (auto pair : route)
     std::cout << pair.first << "
                                           " << pair.second->GetNumber() <<</pre>
std::endl;
     delete pair.second;
  }
  return 0;
}
```

# 6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 4.

Таблица 4 – Результат тестирования программы

| Входные данные                                           | Ожидаемые выходные<br>данные                    |  | Фактические выходные<br>данные                  |  |
|----------------------------------------------------------|-------------------------------------------------|--|-------------------------------------------------|--|
| 10<br>3<br>77AP345 3<br>77AP115 9<br>77AP678 5<br>1<br>2 | ятор bus<br>2 77АР115<br>6 77АР345<br>8 77АР678 |  | stop bus<br>2 77AP115<br>6 77AP345<br>8 77AP678 |  |

### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe\_posobie\_dlya\_laboratornyh\_ra bot\_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye\_k\_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).