Летний коллоквиум по математическому анализу

hse-ami-open-exams

Содержание

1	Бил	лет 1.	2
	1.1	Пространство кусочно непрерывных функций на отрезке как пример евклидова пространства.	2
	1.2	Неравенство Коши-Буняковского в этом пространстве (б.д.)	2
	1.3	Ортогональные и ортонормированные системы в евклидовом пространстве	2
	1.4	Главный пример: тригонометрическая система функций в $\hat{C}([-\pi,\pi])$.	2

1 Билет 1.

1.1 Пространство кусочно непрерывных функций на отрезке как пример евклидова пространства.

Определение 1. Функция $f: \mathbb{R} \to \mathbb{R}$ называется **кусочно непрерывной** на отрезке, если она непрерывна во всех точках этого отрезка, за исключением конечного числа точек, где она имеет разрывы 1-го рода.

Определение 2. Множество $V = \hat{C}([a,b])$ называется пространством кусочно непрерыных функций на [a,b], если $\forall f \in V : f$ является кусочно непрерывной функцией и для операции скалярного произведения $(f,g) = \int\limits_a^b f(x)g(x)dx$ выполняются следующие свойства:

- 1. (f,g) = (g,f).
- 2. $(f,f) \geqslant 0$ и $(f,f) \Rightarrow f(x) = 0$ на [a,b], исключая, быть может, конечное число точек x.
- 3. $(\alpha f + \beta g, \psi) = \alpha(f, \psi) + \beta(g, \psi)$, $i \partial e \alpha, \beta \in \mathbb{R}$.

1.2 Неравенство Коши-Буняковского в этом пространстве (б.д.).

$$(f,g)^2 \leqslant (x,x) \cdot (y,y)$$

1.3 Ортогональные и ортонормированные системы в евклидовом пространстве.

Определение 3. Множество $x_i \subset L$ называется ортогональной системой, если элементы этого множества попарно ортогональны, то есть $\forall i, j \ (x_i, x_j) = 0$.

Определение 4. Ортогональная система $x_i \subset L$ называется ортонормированной системой, если норма каждого элемента равна 1, то есть $\forall i \ (x_i, x_i) = 1$.

1.4 Главный пример: тригонометрическая система функций в $\hat{C}([-\pi,\pi])$.

Определение 5. Множеество $L=\{\frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{\pi}}\cos x,\frac{1}{\sqrt{\pi}}\sin x,\frac{1}{\sqrt{\pi}}\cos 2x,\frac{1}{\sqrt{\pi}}\sin 2x,...,\frac{1}{\sqrt{\pi}}\cos nx,\frac{1}{\sqrt{\pi}}\sin nx\}\subset \hat{C}([-\pi,\pi])$ называется основной тригонометрической системой функций.

Утверждение 1. L – ортогональная система.

Доказательство. Пусть k, l – произвольные натуральные числа. Тогда

$$\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \sin kx \frac{1}{\sqrt{\pi}} \cos lx dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\sin(x(k-l)) + \sin(x(k+l))) dx = 0$$

$$\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \sin kx \frac{1}{\sqrt{\pi}} \sin lx dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\cos(x(k-l)) - \cos(x(k+l))) dx = 0$$

$$\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \cos kx \frac{1}{\sqrt{\pi}} \cos lx dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\cos(x(k-l)) + \cos(x(k+l))) dx = 0$$

$$\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \cos kx \frac{1}{\sqrt{2\pi}} dx = 0$$

$$\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \sin kx \frac{1}{\sqrt{2\pi}} dx = 0$$

Утверждение 2. *L* – *ортогональная система*.

$$(\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{2\pi}}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} dx = 1$$

$$(\frac{1}{\sqrt{\pi}} \sin kx, \frac{1}{\sqrt{\pi}} \sin kx) = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^2 kx dx = 1$$

$$(\frac{1}{\sqrt{\pi}} \cos kx, \frac{1}{\sqrt{\pi}} \cos kx) = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2 kx dx = 1$$