Class 08: Machine Learning Mini Project

Eric Jordahl

10-21-2022

Table of contents

Exploratory Data Analysis	2
Q1	3
Q2 Principal Component Analysis	4
Q4	6
Q5	7
Q6	7
Q7	8
Q8	8
Plotting with ggplot2	9
Variance Explained	10
Q9 Hierarchical Clustering	13
Q10	14
Selecting Numbers of Clusters	15
Q12 Combining Methods	15

Q13	21
Q14	22
Prediction	22
Q16	22

Exploratory Data Analysis

```
# Save your input data file into your Project directory
fna.data <- "https://bioboot.github.io/bimm143_S20/class-material/WisconsinCancer.csv"
# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis	radius_mean	texture_mean	perimeter_mean	$area_mean$	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothnes	s_mean compa	tness_mean co	ncavity_mean co	oncave.poir	nts_mean
842302	0	.11840	0.27760	0.3001		0.14710
842517	0	.08474	0.07864	0.0869		0.07017
84300903	0	.10960	0.15990	0.1974		0.12790
84348301	0	.14250	0.28390	0.2414		0.10520
84358402	0	.10030	0.13280	0.1980		0.10430
843786	0	.12780	0.17000	0.1578		0.08089
	symmetry_	mean fractal	_dimension_mea	n radius_se tex	kture_se pe	erimeter_se
842302	0.	2419	0.0787	1 1.0950	0.9053	8.589
842517	0.	1812	0.0566	7 0.5435	0.7339	3.398
84300903	0.	2069	0.0599	9 0.7456	0.7869	4.585
84348301	0.	2597	0.0974	4 0.4956	1.1560	3.445
84358402	0.	1809	0.0588	3 0.7572	0.7813	5.438
843786	0.	2087	0.0761	3 0.3345	0.8902	2.217
	area_se s	moothness_se	compactness_s	e concavity_se	concave.po	oints_se
842302	153.40	0.006399	0.0490	4 0.05373		0.01587
842517	74.08	0.005225	0.0130	8 0.01860		0.01340

```
84300903
           94.03
                       0.006150
                                        0.04006
                                                      0.03832
                                                                         0.02058
84348301
           27.23
                       0.009110
                                        0.07458
                                                      0.05661
                                                                         0.01867
           94.44
84358402
                       0.011490
                                        0.02461
                                                      0.05688
                                                                         0.01885
843786
           27.19
                       0.007510
                                        0.03345
                                                      0.03672
                                                                         0.01137
         symmetry_se fractal_dimension_se radius_worst texture_worst
                                                                   17.33
842302
             0.03003
                                   0.006193
                                                    25.38
842517
             0.01389
                                   0.003532
                                                    24.99
                                                                   23.41
84300903
             0.02250
                                   0.004571
                                                    23.57
                                                                   25.53
84348301
             0.05963
                                   0.009208
                                                    14.91
                                                                   26.50
84358402
                                                    22.54
             0.01756
                                   0.005115
                                                                   16.67
843786
                                                    15.47
                                                                   23.75
             0.02165
                                   0.005082
         perimeter_worst area_worst smoothness_worst compactness_worst
842302
                                                 0.1622
                   184.60
                              2019.0
                                                                    0.6656
842517
                   158.80
                              1956.0
                                                 0.1238
                                                                    0.1866
84300903
                   152.50
                              1709.0
                                                 0.1444
                                                                    0.4245
84348301
                   98.87
                               567.7
                                                 0.2098
                                                                    0.8663
84358402
                   152.20
                              1575.0
                                                 0.1374
                                                                    0.2050
843786
                   103.40
                               741.6
                                                 0.1791
                                                                    0.5249
         concavity_worst concave.points_worst symmetry_worst
842302
                   0.7119
                                         0.2654
                                                         0.4601
842517
                   0.2416
                                         0.1860
                                                         0.2750
84300903
                   0.4504
                                         0.2430
                                                         0.3613
84348301
                   0.6869
                                         0.2575
                                                         0.6638
84358402
                   0.4000
                                         0.1625
                                                         0.2364
843786
                   0.5355
                                         0.1741
                                                         0.3985
         fractal_dimension_worst
842302
                          0.11890
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
  wisc.data <- wisc.df[,-1]</pre>
  diagnosis <- as.factor(wisc.df[,1])</pre>
```

How many observations are in this data set?

```
nrow(wisc.data)
```

[1] 569

The amount of observations in this data set is 569

Q2

How many of these observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)

B M
357 212
```

The amount of observations in this data set that have a malignant diagnosis is 212 #Q3 How many variables/features in the data are suffixed with _mean?

• The grep() function will be useful here

```
length(grep("_mean", colnames(wisc.data), wisc.data))
```

[1] 10

The amount of variables in that data sset suffixed with _mean is 10

Principal Component Analysis

```
# Check column means and standard deviations
colMeans(wisc.data)
```

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
${\tt compactness_mean}$	${\tt smoothness_mean}$	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
${ t symmetry_mean}$	concave.points_mean	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02
texture_se	radius_se	<pre>fractal_dimension_mean</pre>
1.216853e+00	4.051721e-01	6.279761e-02
smoothness_se	area_se	perimeter_se
7.040979e-03	4.033708e+01	2.866059e+00
concave.points_se	concavity_se	compactness_se
1.179614e-02	3.189372e-02	2.547814e-02
radius_worst	${\tt fractal_dimension_se}$	symmetry_se
1.626919e+01	3.794904e-03	2.054230e-02
area_worst	perimeter_worst	texture_worst
8.805831e+02	1.072612e+02	2.567722e+01
concavity_worst	compactness_worst	${\tt smoothness_worst}$
2.721885e-01	2.542650e-01	1.323686e-01
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
8.394582e-02	2.900756e-01	1.146062e-01

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	<pre>fractal_dimension_mean</pre>
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	fractal_dimension_se	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
concavity_worst	${\tt compactness_worst}$	smoothness_worst
2.086243e-01	1.573365e-01	2.283243e-02

concave.points_worst symmetry_worst fractal_dimension_worst 6.573234e-02 6.186747e-02 1.806127e-02

```
# Perform PCA on wisc.data
wisc.pr <- prcomp(wisc.data, scale=TRUE)
# Perform a summary on the PC data
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                  PC6
                                                                          PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                                                   PC20
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4

From your results, what proportion of the original variance is captured by the first principal components (PC1)?

The proportion of the original variance captured by PC1 is .4427.

How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 PCs are required to describe at least 70% of the data

Q6

How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 PCs are required to describe at least 90% of the data #Plotting the PCA Data

biplot(wisc.pr)

What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is incredibly difficult to read as the data points are all represented by their ID numbers and are heavily overlapping and the column names are also very heavily overlapping the data making it almost impossible to read.

```
plot(wisc.pr$x[,c("PC1","PC2")], col = diagnosis ,
    xlab = "PC1", ylab = "PC2")
```


Q8

Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
plot(wisc.pr$x[,c("PC1","PC3")], col = diagnosis ,
    xlab = "PC1", ylab = "PC3")
```


The plots look similar, but the spread for PC3 is much smaller in comparison to the previous plot.

Plotting with ggplot2

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Variance Explained

```
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357


```
## ggplot based graph
#install.packages("factoextra")
library(factoextra)
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


For the first principal component, what is the component of the loading vector? This tells us how much this original feature contributes to the first PC.

wisc.pr\$rotation[,1]

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
compactness_mean	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
symmetry_mean	concave.points_mean	concavity_mean
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	${\tt fractal_dimension_mean}$
-0.01742803	-0.20597878	-0.06436335
smoothness_se	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	compactness_se
-0.18341740	-0.15358979	-0.17039345
radius_worst	fractal_dimension_se	symmetry_se
-0.22799663	-0.10256832	-0.04249842

```
texture_worst
                             perimeter_worst
                                                          area_worst
         -0.10446933
                                 -0.23663968
                                                         -0.22487053
    smoothness_worst
                           compactness_worst
                                                     concavity_worst
         -0.12795256
                                 -0.21009588
                                                         -0.22876753
concave.points_worst
                              symmetry_worst fractal_dimension_worst
         -0.25088597
                                 -0.12290456
                                                         -0.13178394
```

The concave_points_mean is -.26085376

Hierarchical Clustering

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)

data.dist <- dist(data.scaled, method="euclidean")
wisc.hclust <- hclust(data.dist,)
wisc.hclust

Call:
hclust(d = data.dist)

Cluster method : complete
Distance : euclidean
Number of objects: 569</pre>
```

Q10

Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```


data.dist hclust (*, "complete")

Selecting Numbers of Clusters

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
\begin{array}{c|cccc} & \text{diagnosis} \\ \text{wisc.hclust.clusters} & \text{B} & \text{M} \\ & 1 & 12 & 165 \\ & 2 & 2 & 5 \\ & 3 & 343 & 40 \\ & 4 & 0 & 2 \\ \end{array}
```

Q12

Which method gives your favorite results for the same data.dist data set? Explain your reasoning.

```
wisc.hclust.s <- hclust(data.dist, method="single")
wisc.hclust.c <- hclust(data.dist, method="complete")
wisc.hclust.a <- hclust(data.dist, method="average")
wisc.hclust.w <- hclust(data.dist, method="ward.D2")
plot(wisc.hclust.s)</pre>
```


data.dist hclust (*, "single")

plot(wisc.hclust.c)

data.dist hclust (*, "complete")

plot(wisc.hclust.a)

Cluster Dendrogram

data.dist hclust (*, "average")

data.dist hclust (*, "ward.D2")

I like the ward.D2 method because it minimizes the variance within clusters, so it appeared to cluster the data best into 2 clusters, which appeared to match out Malignant and Benign data best.

Combining Methods

```
# Use the minimum number of principal components required to describe at least 90% of the
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method = "ward.D2")

grps <- cutree(wisc.pr.hclust, k=2)
table(grps)</pre>
```

grps 1 2 216 353

```
table(grps, diagnosis)

diagnosis
grps B M
    1 28 188
    2 329 24

plot(wisc.pr$x[,1:2], col=grps)
```


plot(wisc.pr\$x[,1:2], col=diagnosis)


```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

# Plot using our re-ordered factor
plot(wisc.pr$x[,1:2], col=g)</pre>
```


wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)</pre>

Q13

How well does the newly created model with four clusters separate out the two diagnoses?

```
table(wisc.pr.hclust.clusters, diagnosis)

diagnosis
wisc.pr.hclust.clusters B M
1 28 188
```

2 329

24

The model does not seem to cluster these as well as I expected, as they are mostly correct but there are quite a few that are not clustered into the correct groupings as we expected it.

How well do the hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses?

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

It seems to cluster relatively well, but it has its issues and has false positives and negatives on for both diagnoses, so it is not perfect.

Prediction

Q16

Which of these new patients should we prioritize for follow up based on your results?

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
                                                                            PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                     0.8193031
           PC8
                      PC9
                                PC10
                                          PC11
                                                    PC12
                                                              PC13
                                                                       PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                 PC17
                                             PC18
                                                         PC19
                                                                     PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
```

```
PC21
                     PC22
                                 PC23
                                            PC24
                                                        PC25
                                                                     PC26
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121
                                                             0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
            PC27
                         PC28
                                      PC29
                                                   PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(wisc.pr$x[,1:2], col=g)
  points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
  text(npc[,1], npc[,2], c(1,2), col="white")
```


Patient 2 should be prioritized because their data falls largely within the malignant cluster, so it is more likely that their tumor may be malignant.