The Music of the Sphere: Topological Tests of Non-Gaussianity

Roger D. Blandford, 1* Philip J. Marshall, Laurence Perrault Levasseur 1

¹ Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA

to be submitted to arxiv

ABSTRACT

Abstract goes here.

Key words: cosmology

1 INTRODUCTION

Motivation.

Questions to be answered. This paper is organized as follows.

2 NESTING OF EQUIPOTENTIAL LINES ON THE SPHERE

Analyze the potential on the cosmic photosphere (x = 1) in a way that will generalize to the 3D potential in the sphere. The $\ell = 0$ term is just a constant and, although necessary for the expansion we have just described, can be ignored here. The $\ell = 1$ surface potential $\Phi(\ell, \theta, \phi)$ develops a single simple minimum (henceforth designated as L_0) and single simple maximum (henceforth designated by H_0). These are the global minimum and maximum; additional higher and lower minima and maxima will be designated L_i and H_i respectively in the order in which they appear.

2.1 Classification of saddles

Now gradually increase ℓ . One contour develops a simple $saddle^1$ and an extremum simultaneously, becoming a separatrix. This contour divides the sphere into an inside containing L_0 and outside containing H_0 . When the new extremum is a L lying outside the contour, the separatrix/saddle combination has the shape of an infinity symbol and called a lemniscate, denoted by X; when it is a H lying inside the contour, the separatrix/saddle combination has the shape of a pinched annulus and is called a limaçon, denoted by K (Fig. 3). As ℓ is further increased, the

* rdb3@stanford.edu

 1 We are interested in *non-degenerate* critical points and exclude degenerate extrema like *monkey saddles* which are structurally unstable and unfold into simple extrema under a small perturbation.

Figure 1. Two elementary types of saddle as characterized by the shape of the separatrix – the equipotential passing through the saddle. The lemniscate, or X-saddle, is accompanied by two maxima H, as here, or two minima, L. The X may be created or annihilated with an extremum by growing or shrinking either of the closed loops that passes through it. The limaçon, or K-saddle, is accompanied by a H as here (or a L) and a L as here (or a H). It can be create or annihilated only with one of the two accompanying extrema, in this case the H, so long as the contour does not expand and pass around the back of the sphere.

two stationary points separate and the smaller loop grows in size.² Further increasing ℓ will lead to the *creation* of new separatrices. These may be located between two existing separatrices or out of a contour encircling a L or a H. Occasionally, the inverse process - *annihilation* will occur. If we designate the total number of maxima, minima, saddles, lemniscates and limaçons by N_H, N_L, N_S, N_X, N_K , respectively, then clearly $N_S = N_X + N_K = N_H + N_L - 2$.

2.2 Tree representation

The nesting of all of the separatrices suffices to describe the nesting of all of the equipotentials. It is convenient to

 $^{^2}$ Note that had we associated the interior with H_0 , a given contour would have had the opposite identification.

Figure 2. (a) Nesting of separatrices exhibited within a circle created by puncturing the sphere at the global maximum and stretching the surface to lie on a plane so that the circumference is identified with a single point. b) Same separatrices displayed on a sphere. (c) Tree representation of this nesting. The designation of the saddles X, K and the extrema, H, L, is redundant and can be dropped. The numbers designate the order in which the extrema appear as ℓ is increased.

represent this nesting using a type of directed graph or tree representation. A simple example of a nesting is shown in Fig. 4a and the associated tree is presented in Fig. 4b. The tree comprises nodes or vertices, each with three branches or edges, each corresponding to a separatrix and leaves at the end of a branch corresponding to local extrema. There is only one path connecting any two leaves and no circuits, consistent with the usual definition of a tree. However, our tree has some novel features including growth. We start with $\ell = 1$ and a single branch from the L (the root) to the H (the apex). We let the vertical height of the branch be the potential difference between the two extrema. as we increase ℓ , new node-leaf (saddle-extremum) pairs appear and we locate them with ordinates corresponding to their respective potentials. The X- and K-saddles are easily distinguished. The pre-existing nodes and leaves will also move and occasionally they may disappear; they may also pass through each other on a branch when their heights coincide. The horizontal separation of the nodes and leaves is adjusted to ensure that there are no crossovers; it has no quantitative significance. This description of the equipotentials is essentially topological and pays no attention to the actual location of the contours.

2.3 Stationary points

Finding all the stationary points can be difficult. The simplest approach is to set $\nabla_2\Phi=\Phi_{ij}=\{\partial\Phi/\partial\hat{\theta},\partial\Phi/\partial\hat{\phi}\}$ to zero, using the identity $P'_\ell(\mu)=\ell[P_{\ell-1}(\mu)-\mu P_\ell(\mu)]/(1-\mu^2)$ and differentiating the sums in Eq. 2. This defines two families of curves and the stationary points are located where they intersect. New stationary points appear when these curves first touch. An alternative method, which works well, is to find local minima of $|\nabla_2\Phi|^2$.

Figure 3. Division of sphere into curvature zones. The L-zone is denoted in blue, the H-zone in red and the S-zone in purple. Also shown are the lines where the two components of $\nabla\Phi$ vanish. Their intersections correspond to stationary points.

2.4 Curvature maps

There is another way to discuss the critical points and this is to evaluate the Hessian matrix

$$H_{ij} = \Phi_{,\hat{i}\hat{j}} \tag{1}$$

where the derivatives are with respect to $\hat{\theta}$, $\hat{\phi}$. It is straightforward to compute the two real eigenvalues which represent the principle curvatures. We can then designate L-zones, where they are both negative, H-zones, where they are both positive and S-zones where they have opposite signs. (We can further subdivide these zones dependent upon which eigenvalue has the larger absolute value but will not do this here.) As can be seen in Fig. 5, H and L zones have common boundaries with S, where one eigenvalue changes sign and touch at points where both eigenvalues simultaneously pass through zero. New saddle-extremum pairs are created at saddle boundaries and then quickly separate into their respective zones. This provides an alternate means to locate new separatrices. Individual curvature zones can contain multiple or no stationary points.

2.5 Curve of growth

The number of extrema, measured by the number of saddles N_S increases with ℓ . The manner in which it does this is dictated by the slope of the power spectrum of potential fluctuations $P_{\mathbf{k}}$ though not it's amplitude. We have focused on the inverse cube case because this is close to the inferred initial spectrum and remains valid around recombination up to $\ell \sim 30$. (It is also the spectrum for the temperature perturbations because the gravitational redshift is the dominant effect in the Sachs-Wolfe regime.) General scaling arguments suggest that as long as $P(k) \propto k^{n-4}$ for fixed n then the expectation in the number of saddles counted when all $N_S(\ell)$ is given asymptotically by $K(n)\ell^2$ as $\ell \to \infty$ where K can be estimated using a large number of trials. The variance in the actual value of K for finite ℓ can also be computed. We can also apply this approach directly to the temperature fluctuations assuming the inferred fluctuation spectrum inferred by more conventional methods. This will be demonstrated in a subsequent publication but is no more than a consistency check.

2.6 Gaussianity

We have considered several ways to classify the extrema and the results can be used to check on the Gaussianity of the distribution of Fourier components. For example, if the distributions of the Fourier coefficients were systematically skewed, then we would expect differences in the numbers of L and H and the areas of the corresponding zones. More subtle tests are possible using the branching of the trees. These will be considered elsewhere and compared with the observations.

 $^{^{3}\,}$ In the language of catastrophe theory , this is a fold catastrophe.

- 3 NESTING OF EQUIPOTENTIAL SURFACES IN THE SPHERE
- 4 DISCUSSION