Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 2, zadanie nr 10

Karol Borowski, Szymon Kozłowski, Bartosz Kurpiewski

Spis treści

Wst	ęp		2
Proj	jekt		3
2.1.	Zadani	ie 1	3
2.2.	Zadani	ie 2	3
	2.2.1.	Odpowiedź skokowa toru wejście - wyjście	3
	2.2.3.	Charakerystyka statyczna	4
		v v	
Labo	oratori	um	8
3.1.	Zadani	ie 1	8
3.2.	Zadani	ie 2	8
3.3.	Zadani	ie 3	
	Proj 2.1. 2.2. Labe 3.1. 3.2. 3.3.	Projekt 2.1. Zadan 2.2. Zadan 2.2.1. 2.2.2. 2.2.3. 2.2.4. Laboratori 3.1. Zadan 3.2. Zadan 3.3. Zadan	Wstęp Projekt 2.1. Zadanie 1 2.2. Zadanie 2 2.2.1. Odpowiedź skokowa toru wejście - wyjście 2.2.2. Odpowiedź skokowa toru zakłócenie - wyjście 2.2.3. Charakerystyka statyczna 2.2.4. Wzmocnienie statyczne Laboratorium 3.1. Zadanie 1 3.2. Zadanie 2 3.3. Zadanie 3 3.4. Zadanie 4

1. Wstęp

Tematem projektu i laboratorium drugiego była implementacja, weryfikacja poprawności działania i dobór parametrów algorytmu regulacji procesu z mierzonym zakłóceniem. W ramach projektu należało zasymulować i zbadać podany obiekt. Na podstawie uzyskanych wyników trzeba było zaimplementować i dostroić regulator DMC. Następnie należało zbadać zachowanie regulatora pod wpływem zakłóceń.

W laboratorium pracowaliśmy na stanowisku grzejąco-chłodzącym. Celem pracy było wykorzystanie nabytych, podczas realizacji projektu, umiejętności do implementacji regulata na obiekcie rzeczywistym. Podczas ćwiczeń laboratoryjnych korzystaliśmy tylko z części elementów wykonawczych stanowiska: grzałki G1, wentylatora W1 i czujnika temperatury T1. Jako sygnał zakłócający Z zostanie wykorzystana także grzałka G1. Jest to sygnał o nieznanym wzmocnieniu.

2. Projekt

2.1. Zadanie 1

W celu sprawdzenia poprawności wartości sygnałów w punkcie pracy pobudziliśmy obiekt sygnałem o stałej wartości równej $U_{\rm pp}=0$, przy stałym zakłóceniu $Z_{\rm pp}=0$. Spodziewana wartość wyjścia to $Y_{\rm pp}=0$.

Zadanie wykonaliśmy przy użyciu skryptu $\mathtt{zad1.m}$, który symuluje badaną sytuację. Przy opisanym wyżej pobudzeniu obiekt, zgodnie z oczekiwaniami, stabilizuje się w $Y_{\mathrm{pp}}=0$ (Rys.2.1).

Rys. 2.1. Odpowiedź w punkcie pracy

2.2. Zadanie 2

2.2.1. Odpowiedź skokowa toru wejście - wyjście

Wyznaczanie odpowiedzi rozpoczęliśmy z ustalonego w zadaniu punktu pracy przy zakłóceniu $Z_{\rm pp}=0$. Widoczne na rysunku Rys.2.2 odpowiedzi pokazują, że wartość wyjściowa rośnie wraz ze wzrostem wartości skoku.

 $2. \ Projekt$

Rys. 2.2. Odpowiedź procesu na skokową zmianę sygnału sterowania.

2.2.2. Odpowiedź skokowa toru zakłócenie - wyjście

Odpowiedź skokową otrzymaliśmy pobudzając obiekt skokiem zakłócenia przy zerowych warunkach początkowych (Rys.2.3). Podobnie jak przy pobudzeniu sterowaniem, wartość sygnału wyjściowego rośnie wraz z wartością skoku co potwierdza przypuszczenia o liniowości obiektu.

Rys. 2.3. Odpowiedź procesu na skokową zmianę sygnału zakłócenia.

2.2.3. Charakerystyka statyczna

W celu otrzymania charakterystyki statycznej zależnej od dwóch argumentów należy przeprowadzić ekperyment dla każdego argumentu oddzielnie i zapamiętać wartość, w której wyjście stabilizuje się. Do wykonania tego zadania wykorzystaliśmy skrypt zad2_static.m. Wykres (Rys.2.4) przedstawia płaszczyznę co świadczy o tym, że obiekt jest liniowy.

2.2.4. Wzmocnienie statyczne

Eksperymenty przeprowadzone w poprzednim podpunkcie pozwalają określić wzmocnienie statyczne $K_{\rm stat}$.

$$K_{\text{stat}} = \lim_{t \to \infty} \frac{y(t) - Y_{\text{pp}}}{u_0 - U_{\text{pp}}}$$
(2.1)

2. Projekt 5

Rys. 2.4. Charakterystyka statyczna $y(u,z). \label{eq:charakterystyka}$

Jest ono również równe tangensowi kąta nachylenia prostej do osi OX. Charakterystyki statyczne torów wejście-wyjście i zakłócenie-wyjście widoczne są na rysunkach Rys.2.5 i Rys.2.6 i wynoszą odpowiednio $K_{\rm statU}=2,49$ oraz $K_{\rm statZ}=1,79$.

Rys. 2.5. Charakterystyka statyczna toru wejście-wyjście.

2. Projekt 6

Rys. 2.6. Charakterystyka statyczna tory zakłócenie-wyjście.

3.1. Zadanie 1

Sprawdzając komunikację ze stanowiskiem skorzystaliśmy z dwóch funkcji zapewnionych przez prowadzącego MinimalWorkingExample.m raz sendControlsToG1AndDisturbance.m. Pierwsza z nich pozwala w prosty sposób, konfigurując port, na którym odbywa się komunikacja, zadawać wartości sterowania na poszczególne elementy wykonawcze stanowiska.

```
sendControls(1, 50);
```

Zadając wartość 0 i 50 na wentylator widzimy i słyszymy czy komunikacja zachodzi.

Sterowanie grzałką w tym zadaniu odbywało się z użyciem drugiej z wymienionych funkcji, aby zrealizować zadane w poleceniu zakłócenia. Funkcja sendControlsToG1AndDisturbance.m przyjmuje dwa argumenty: wartość sterowania grzałką G1 i zakłócenia Z.

```
sendControlsToG1AndDisturbance(35, Z);
```

Kolejnym krokiem było określenie wartości temperatury w punkcie pracy: $\mathtt{G1} = 35$, $\mathtt{W1} = 50$, $\mathtt{Z} = 0$. Dla takich nastaw temperatura wynosiła ok. $32^{\circ}\mathrm{C}$.

3.2. Zadanie 2

Rozpoczynając z punktu pracy - przy zerowym zakłóceniu - wyznaczyliśmy trzy odpowiedzi skokowe toru zakłócenie-wyjście, wykonując skoki sygnału zakłócającego w chwili k=0 odpowiednio do wartości 10, 20 i 30. Wszystkie odpowiedzi przedstawione są na rysunku Rys.2.1. Wyznaczono charakterystykę statyczną (Rys.2.2.). Właściwości statyczne obiektu możemy określić jako (w przybliżeniu) liniowe. Wzmocnienie statyczne dla tego toru wynosi w przybliżeniu 0,15 - wartość współczynnika kierunkowego funkcji liniowej będącej charakterystyką statyczną.

Rys. 3.1. Odpowiedzi skokowe toru zakłócenie-wyjście dla różnych zmian sygnału zakłócającego w chwili k=0

3.3. Zadanie 3

Przygotowujemy odpowiedź skokową toru wejście-wyjście tzn. zestaw liczb s_1, s_2, \ldots oraz odpowiedź skokową toru zakłócenie-wyjście tzn. zestaw liczb s_1^z, s_2^z, \ldots wykorzystywane w algorytmie DMC (odpowiedź na skok jednostkowy w chwili k=0). Dokonujemy poniższych operacji na wektorach pobranych odpowiedzi skokowych obiektu.

$$s_i = \frac{y_i - Y_{\rm pp}}{\Delta U}, dla \ i = 1, \dots$$
(3.1)

$$s_i^z = \frac{y_i - Y_{\rm pp}}{\Delta Z}, dla \ i = 1, \dots$$
 (3.2)

Wykorzystano odpowiedź skokową przy zmianie wartości G1 z 35 na 37 oraz odpowiedź skokową przy zmianie wartości Z z 0 na 30. Odpowiedzi skokowe zaproksymowano używając członu inercyjnego drugiego rzędu z opóźnieniem. Zastosowano optymalizację – wyznaczenie takich wartości parametrów T_1 , T_2 , K, T_d , aby wartość funkcji celu (wartość błędu dopasowania) była jak najmniejsza.

$$min E = \sum_{k=1}^{k_{\text{max}}} (s(k) - y_{aproks}(k))^2$$
 (3.3)

Przyjęto następujące ograniczenia parametrów:

$$0,001 \ll T_1 \ll 1000 \tag{3.4}$$

$$0,001 \ll T_2 \ll 1000 \tag{3.5}$$

$$-10 \ll K \ll 10 \tag{3.6}$$

$$0 \ll T_d \ll 500 \tag{3.7}$$

Optymalizacji dokonano wykorzystując funkcję fmincon, która znajduje minimum funkcji z uwzględnieniem ograniczeń. Jedynymi ograniczeniami są te, narzucone na argumenty wywołania funkcji celu, czyli na wyżej określone parametry. Kryteria zatrzymania algorytmu pozostawiono domyślne. Podsumowując, wynik algorytmu otrzymano przez zastosowanie polecenia:

$$[optim_params, E] = fmincon(fun, x0, [],[],[],[], lb, ub);$$

gdzie:

Rys. 3.2. Charakterystyka statyczna - tor zakłócenie-wyjście

```
optim_params – szukane parametry
E – błąd dopasowania
fun – funkcja zwracająca wartość błędu dopasowania
x0 – wektor parametrów początkowych
lb – wektor dolnych ograniczeń
ub – wektor górnych ograniczeń
```

Wyznaczone parametry - tor sterowanie-wyjście: $T_1=251,2387, T_2=0,072\,366, K=0,486\,71, T_{\rm d}=6, E=2,0984$. Wyznaczone parametry - tor zakłócenie-wyjście: $T_1=89,0529, T_2=2,1074, K=0,154\,35, T_{\rm d}=9, E=0,003\,077\,8$.

3.4. Zadanie 4

Zaimplementowany program znajduje się w pliku DMC_lab.m.

Rys. 3.3. Odpowiedź skokowa toru wejście-wyjście wykorzystywana w algorytmie DMC

Rys. 3.4. Odpowiedź skokowa toru zakłócenie-wyjście wykorzystywana w algorytmie DMC

Rys. 3.5. Porównanie oryginalnej odpowiedzi skokowej toru wejście-wyjście z aproksymowaną

Rys. 3.6. Porównanie oryginalnej odpowiedzi skokowej toru zakłócenie-wyjście z aproksymowaną