Heuristic Two-level Logic Optimization

Virendra Singh Computer Design and Test Lab. Indian Institute of Science Bangalore

Courtesy: Giovanni De Micheli

Objective

- **◆** Data structures for logic optimization
- ◆ Data representation and encoding

Some more background

- **◆**Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- Cofactor of f with respect to variable x_i

•
$$f_{xi} = f(x_1, x_2, ..., 1, ..., x_n)$$

Cofactor of f with respect to variable x_i

•
$$f_{xi'} = f(x_1, x_2, ..., 0, ..., x_n)$$

◆Boole's expansion theorem:

• f (
$$x_1, x_2, ..., x_i, ..., x_n$$
) = $x_i f x_i + x_{i'} f x_i'$

Also credited to Claude Shannon

Example

- ◆Function: f = ab + bc + ac
- **Cofactors:**
 - $f_a = b + c$
 - f_a, = bc
- **◆**Expansion:
 - $f = a f_a + a' f_{a'} = a(b + c) + a' bc$

Unateness

- **♦** Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- **◆** Positive unate in x_i when:
 - $f_{xi} \ge f_{xi}$
- **♦** Negative unate in x_i when:
 - $f_{xi} \leq f_{xi'}$
- ◆A function is positive/negative unate when positive/negative unate in all its variables

Operators

- **♦** Function f ($x_1, x_2, ..., x_i, ..., x_n$)
- **♦** Boolean difference of f w.r.t. variable x_i:
 - $\partial f/\partial x_i \equiv f_{xi} \oplus f_{xi'}$
- **◆** Consensus of f w.r.t. variable x_i:
 - $C_{xi} \equiv f_{xi} \cdot f_{xi'}$
- **◆** Smoothing of f w.r.t. variable x_i:
 - $S_{xi} \equiv f_{xi} + f_{xi'}$

Example f = ab + bc + ac

- ◆The Boolean difference $\partial f/\partial a = f_a \oplus f_{a'} = b'c + bc'$
- ♦ The consensus $C_a = f_a \cdot f_{a'} = bc$
- **♦** The smoothing $S_a \equiv f_a + f_{a'} = b + c$

Generalized expansion

♦Given:

- A Boolean function f.
- Orthonormal set of functions:

$$\phi_i$$
, i = 1, 2, ..., k

- **◆**Then:
 - $f = \sum_{i}^{k} \phi_{i} \cdot f_{\phi_{i}}$
 - Where f_{ϕ_i} is a generalized cofactor.
- **◆**The generalized cofactor is not unique, but satisfies:
 - $f \cdot \phi_i \subseteq f \phi_i \subseteq f + \phi_i$

Example

- ◆Function: f = ab + bc + ac
- ◆Basis: ϕ_1 = ab and ϕ_2 = a' + b'.
- **◆**Bounds:
 - ab \subseteq f $_{\phi_1} \subseteq 1$
 - a'bc + ab'c \subseteq f $_{\phi_2}$ \subseteq ab + bc + ac
- ◆ Cofactors: $f_{\phi_1} = 1$ and $f_{\phi_2} = a$ 'bc + ab'c.

$$f = \phi_1 f_{\phi_1} + \phi_2 f_{\phi_2}$$

= ab1 + (a' + b')(a'bc + ab'c)
= ab + bc + ac

Generalized expansion theorem

◆Given:

- Two function f and g.
- Orthonormal set of functions: ϕ_i , i=1,2,...,k
- Boolean operator ⊙

♦Then:

• $\mathbf{f} \odot \mathbf{g} = \sum_{i}^{k} \phi_{i} \cdot (\mathbf{f} \phi_{i} \odot \mathbf{g} \phi_{i})$

◆Corollary:

• $f \odot g = x_i \cdot (fx_i \odot gx_i) + x_i' \cdot (fx_i' \odot gx_i')$

Matrix representation of logic covers

- Representations used by logic minimizers
- Different formats
 - Usually one row per implicant
- **◆**Symbols:
 - 0, 1, * , ...
- **◆**Encoding:

Ø	00
0	10
1	01
*	11

Advantages of positional cube notation

- Use binary values:
 - Two bits per symbols
 - More efficient than a byte (char)
- Binary operations are applicable
 - Intersection bitwise AND
 - Supercube bitwise OR
- Binary operations are very fast and can be parallelized

Example

```
    10
    11
    11
    10

    10
    01
    11
    11

    01
    10
    11
    11

    01
    11
    10
    01
```

Cofactor computation

- Cofactor of α w.r. to β
 - Void when α does not intersect β
 - $a_1 + b_1' a_2 + b_2' \dots a_n + b_n'$
- \bullet Cofactor of a set $C = \{y_i\}$ w.r. to β:
 - Set of cofactors of γ_i w.r. to β

Example f = a'b' + ab

10

10

01 01

- ◆Cofactor w.r. to 01 11
 - First row void
 - Second row 11 01
- **♦** Cofactor $f_a = b$

-	-	
00	00	
01	11	
00	00	 void
10	00	
11	01	

Multiple-valued-input functions

- Input variables can take many values
- Representations:
 - Literals: set of valid values
 - Function = sum of products of literals
- Positional cube notation can be easily extended to mvi
- Key fact
 - Multiple-output binary-valued functions represented as mvi single-output functions

Example

◆2-input, 3-output function:

- $f_1 = a'b' + ab$
- $f_2 = ab$
- $f_3 = ab' + a'b$

◆Mvi representation:

10 10 100 10 01 001 01 10 001 01 01 110

Fundamental Operation

Objective

- Operations on logic covers
- Application of the recursive paradigm
- Fundamental mechanisms used inside minimizers

Operations on logic covers

Recursive paradigm

- Expand about a mv-variable
- Apply operation to co-factors
- Merge results

Unate heuristics

- Operations on unate functions are simpler
- Select variables so that cofactors become unate functions
- Recursive paradigm is general and applicable to different data structures
 - Matrices and binary decision diagrams

Tautology

- Check if a function is always TRUE
- **◆**Recursive paradigm:
 - Expend about a mvi variable
 - If all cofactors are TRUE, then the function is a tautology
- Unate heuristics
 - If cofactors are unate functions, additional criteria to determine tautology
 - Faster decision

Recursive tautology

◆TAUTOLOGY:

The cover matrix has a row of all 1s. (Tautology cube)

♦NO TAUTOLOGY:

The cover has a column of 0s. (A variable never takes a value)

◆TAUTOLOGY:

The cover depends on one variable, and there is no column of 0s in that field

◆Decomposition rule:

 When a cover is the union of two subcovers that depend on disjoint sets of variables, then check tautology in both subcovers

Example f = ab + ac + ab'c' + a'

- Select variable a
- ◆Cofactor w.r. to a' is
 - 11 11 11 Tautology.
- **◆**Cofactor w.r. to a is:

01	01	11	
01	11	01	
01	10	10	
10	11	11	
00 00 00 00	01 11 10 11 00	11 01 10 11 00	
11	01	11	
11	11	01	
11	10	10	

Example (2)

- **◆**Select variable b.
- ◆Cofactor w.r. to b' is

- ◆No column of 0 Tautology
- **◆**Cofactor w.r. to b is:

◆Function is a *TAUTOLOGY*.

Containment

◆Theorem:

• A cover F contains an implicant α if and only if F_{α} is a tautology

◆Consequence:

Containment can be verified by the tautology algorithm

Example f = ab + ac + a'

- **◆**Check covering of bc : 11 01 01.
- **◆**Take the cofactor:

◆Tautology – bc is contained by f.

Complementation

Recursive paradigm

$$\bullet f' = x f'_x + x' f'_{x'}$$

- **♦**Steps:
 - Select variable
 - Compute co-factors
 - Complement co-factors
- Recur until cofactors can be complemented in a straightforward way

Termination rules

- ◆The cover F is void
 - Hence its complement is the universal cube
- ◆The cover F has a row of 1s
 - Hence F' is a tautology and its complement is void
- **◆**The cover F consists of one implicant.
 - Hence the complement is computed by DeMorgan's law
- ◆All implicants of F depend on a single variable, and there is not a column of 0s.
 - The function is a tautology, and its complement is void

Unate functions

◆Theorem:

If f is positive unate in x, then

If f is negative unate in x, then

$$\phi f' = \chi f'_{\chi} + f'_{\chi'}$$

◆Consequence:

- **♦** Complement computation is simpler
- **♦** Follow only one branch in the recursion

◆Heuristics

Select variables to make the cofactor unate

◆Select binate variable a

Compute cofactors:

- F_a, is a tautology, hence F'_a, is void.
- F_a yields:

11 01 11 11 11 01

Example (2)

- Select unate variable b
- **◆**Compute cofactors:
 - F_{ab} is a tautology, hence F'_{ab} is void
 - F_{ab} = 11 11 01 and its complement is 11 11 10

◆Re-construct complement:

- 11 11 10 intersected with Cube(b') = 11 10 11 yields 11 10 10
- 11 10 10 intersected with Cube(a) = 01 11 11 yields 01 10 10
- **◆**Complement: F' = 01 10 10

Example (3)

◆Recursive search:

Complement: a b'c'

Boolean cover manipulation summary

- Recursive methods are efficient operators for logic covers
 - Applicable to matrix-oriented representations
 - Applicable to recursive data structures like BDDs
- ◆Good implementations of matrix-oriented recursive algorithms are still very competitive
 - Heuristics tuned to the matrix representations

Heuristic 2-Level Minimization

Objectives

- Heuristic two-level minimization
- The algorithms of ESPRESSO

Heuristic logic minimization

- Provide irredundant covers with "reasonably small" sizes
- Fast and applicable to many functions
 - Much faster than exact minimization
- Avoid bottlenecks of exact minimization
 - Prime generation and storage
 - Covering
- Motivation
 - Use as internal engine within multi-level synthesis tools

Heuristic minimization -- principles

- Start from initial cover
 - Provided by designer or extracted from hardware language model
- Modify cover under consideration
 - Make it prime and irredundant
 - Perturb cover and re-iterate until a small irredundant cover is obtained
- ◆Typically the size of the cover decreases
 - Operations on limited-size covers are fast

Heuristic minimization - operators

Expand

- Make implicants prime
- Removed covered implicants

◆Reduce

Reduce size of each implicant while preserving cover

◆ Reshape

Modify implicant pairs: enlarge one and reduce the other

◆Irredundant

Make cover irredundant

Example

♦Initial cover

(without positional cube notation)

0000	1
0010	1
0100	1
0110	1
1000	1
1010	1
0101	1
0111	1
1001	1
1011	1
1101	1

Example

◆Set of primes

α	0 * * 0	1
β	* 0 * 0	1
γ	0 1 * *	1
δ	10**	1
3	1 * 0 1	1
ζ	* 1 0 1	1

Example of expansion

- ♦ Expand 0000 to α = 0**0.
 - Drop 0100, 0010, 0110 from the cover.
- Expand 1000 to β = *0*0.
 - Drop 1010 from the cover.
- **♦** Expand 0101 to y = 01**.
 - Drop 0111 from the cover.
- ♦ Expand 1001 to δ = 10**.
 - Drop 1011 from the cover.
- Expand 1101 to ε = 1*01.
- \bullet Cover is: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.

Example of reduction

- **◆**Reduce 0**0 to nothing.
- Reduce β = *0*0 to β' = 00*0.
- ightharpoonup Reduce $m \epsilon = 1*01$ to $m \epsilon' = 1101$.
- \bullet Cover is: { $\beta', \gamma, \delta, \epsilon'$ }.

Example of reshape

- igspace Reshape $\{\beta', \delta\}$ to: $\{\beta, \delta'\}$.
 - Where $\delta' = 10*1$.
- \bullet Cover is: $\{\beta, \gamma, \delta', \epsilon'\}$.

Example of second expansion

- Expand δ' = 10*1 to δ = 10**.
- •Expand ε' = 1101 to ε = 1*01.

Example Summary of the steps taken by MINI

♦ Expansion:

- Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
- Prime, redundant, minimal w.r. to scc.

Reduction:

- α eliminated.
- $\beta = *0*0$ reduced to $\beta' = 00*0$.
- $\varepsilon = 1*01$ reduced to $\varepsilon' = 1101$.
- Cover: {β',γ,δ,ε'}.

♦ Reshape:

• $\{\beta', \delta\}$ reshaped to: $\{\beta, \delta'\}$ where $\delta' = 10*1$.

Second expansion:

- Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
- Prime, irredundant.

Example Summary of the steps taken by ESPRESSO

◆Expansion:

- Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
- Prime, redundant, minimal w.r. to scc.

◆Irredundant:

- Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
- Prime, irredundant.

Rough comparison of minimizers

◆MINI

- Iterate EXPAND, REDUCE, RESHAPE
- **◆**Espresso
 - Iterate EXPAND, IRREDUNDANT, REDUCE
- Espresso guarantees an irredundant cover
 - Because of the irredundant operator
- ◆MINI may return irredundant covers, but can guarantee only minimality w.r.to single implicant containment

Expand Naïve implementation

◆For each implicant

- For each care literal
 - ◆ Raise it to don't care if possible
- Remove all implicants covered by expanded implicant

◆Issues

- Validity check of expansion
- Order of expansion

Validity check

◆Espresso, MINI

- Check intersection of expanded implicant with OFF-set
- Requires complementation

◆Presto

- Check inclusion of expanded implicant in the union of the ON-set and DC-set
- Reducible to recursive tautology check

Ordering heuristics

Expand the cubes that are unlikely to be covered by other cubes

◆Selection:

- Compute vector of column sums
- Weight: inner product of cube and vector
- Sort implicants in ascending order of weight

◆Rationale:

Low weight correlates to having few 1s in densely populated columns

Example

 10
 10
 10

 01
 10
 10

 10
 01
 10

 10
 10
 01

◆Ordering:

Vector: [3 1 3 1 3 1]^T

• Weights: (9, 7, 7, 7)

◆ Select second implicant.

Example (2)

α 10 10 10

β 01 10 10

γ 10 01 10

δ 10 10 01

Example (3)

◆OFF-set:

01 11 01 11 01 01

◆Expand 01 10 10:

- 11 10 10 valid.
- 11 11 10 valid.
- 11 11 11 invalid.

◆Update cover to:

11 11 10 10 10 01

Example (4)

◆Expand 10 10 01:

- 11 10 01 invalid.
- 10 11 01 invalid.
- 10 10 11 valid.

◆Expand cover:

11 11 10 10 10 11

Expand heuristics in ESPRESSO

- Special heuristic to choose the order of literals
- ◆Rationale:
 - Raise literals to that expanded implicant
 - ♦ Covers a maximal set of cubes
 - ♦ Overlaps with a maximal set of cubes
 - ♦ The implicant is as large as possible
- Intuitive argument
 - Pair implicant to be expanded with other implicants, to check the fruitful directions for expansion

Expand in Espresso

- **◆**Compare implicant with OFF-set.
 - Determine possible and impossible directions of expansion
- Detection of feasibly covered implicants
 - If there is an implicant β whose supercube with α is feasible, expand α to that supercube and remove β
- Raise those literals of α to overlap a maximum number of implicants
 - It is likely that the uncovered part of those implicant is covered by some other expanded cube
- **◆Find the largest prime implicant**
 - Formulate a covering problem and solve it heuristically

Reduce

◆Sort implicants

- Heuristics: sort by descending weight
- Opposite to the heurstic sorting for expand
- Maximal reduction can be determine exactly
- **◆**Theorem:
 - Let α be in F and Q = F U D { α }
 Then, the maximally reduced cube is:
 α = α ∩ supercube (Q'α)

Example

◆Expand cover:

- **◆**Select first implicant:
 - Cannot be reduced.
- **◆**Select second implicant:
 - Reduced to 10 10 01
- **◆**Reduced cover:

Irredundant cover

```
α 10 10 11
```

β 11 10 01

v 01 11 0'

δ 01 01 11

ε 11 01 10

Irredundant cover

- ◆Relatively essential set E^r
 - Implicants covering some minterms of the function not covered by other implicants
 - Important remark: we do not know all the primes!
- **◆**Totally redundant set R^t
 - Implicants covered by the relatively essentials
- **◆**Partially redundant set R^p
 - Remaining implicants

Irredundant cover

- ◆Find a subset of R^p that, together with E^r covers the function
- Modification of the tautology algorithm
 - Each cube in R^p is covered by other cubes
 - Find mutual covering relations
- Reduces to a covering problem
 - Apply a heuristic algorithm.
 - Note that even by applying an exact algorithm, a minimum solution may not be found, because we do not have all primes.

Example

Example (2)

Covering relations:

- β is covered by $\{\alpha, \gamma\}$.
- γ is covered by $\{\beta, \delta\}$.
- δ is covered by $\{\gamma, \varepsilon\}$.
- ◆Minimum cover: y U E^r

ESPRESSO algorithm in short

- Compute the complement
- Extract essentials
- **◆**Iterate
 - Expand, irredundant and reduce
- Cost functions:
 - Cover cardinality φ₁
 - Weighted sum of cube and literal count φ₂

ESPRESSO algorithm in detail

```
espresso(F,D) {
    R = complement(F U D);
    F = expand(F,R);
    F = irredundant(F,D);
    E = essentials(F,D);
    F = F - E; D = D \cup E;
    repeat {
           \phi_2 = cost(F);
           repeat {
                 \phi_1 = |F|;
                 F = reduce(F,D);
                 F = expand(F,R);
                 F = irredundant(F,D);
           } until (|F| \ge \phi_1);
           F = last\_gasp(F,D,R);
   } until (|F| \ge \phi_1);
    F = F \cup E; D = D - E;
    F = make_sparse(F,D,R);
```

Heuristic two-level minimization Summary

- Heuristic minimization is iterative
- Few operators are applied to covers
- Underlying mechanism
 - Cube operation
 - Unate recursive mechanism
- **◆**Efficient algorithms