MENG 25510 Final Report: Hartree-Fock on HeH⁺ with 6-311G

Noah Dohrmann and Sullivan Fitz

(Dated: 30 May 2022)

Please see the corresponding code at https://github.com/FitzSW/HF_HeH for this project.

I. INTRODUCTION

This is a reference document to go with our submission for the MENG 25510 final coding project, for which we chose to implement the Hartree-Fock (HF) Self-Consistent Field (SCF) method on a HeH⁺ molecular system using the 6-311G basis set on both atoms. The geometry at which we performed the calculation was optimized at the CCSD/aug-cc-pZTZ level of theory using Gaussian 16¹. The result of our code is then compared to an energy found with PySCF²⁻⁴ using the same geometry and basis set.

II. HARTREE-FOCK ALGORITHM AND CODE DETAILS

We closely follow the suggested implementation scheme given in Szabo and Ostlund⁵, in which explicit formulas and matrix algorithms are given.

A. Program Control Flow

First, the input geometry and basis set files are read into the main program (main.f90), which are then used to construct a 1D array of the "orbitals" derived type (written in orbitals.f90), which each include the name of its host atom, the orbital angular momentum type (e.g. "s"), the coordinates of the host atom, the length of the contraction, as well as arrays of coefficients and exponential factors for the contraction.

From here, we then calculate the stored integrals to populate the matrices S, T, $\{V^{nuc.}\}$, and TE, with the last representing the two-electron integrals. The eigenvalue problem that we are trying to solve is recommended to be handled via a transformation to a set of orthogonalized orbitals via a matrix X obtained from the *symmetric orthogonalization* scheme

$$\mathbf{X} = \mathbf{S}^{1/2} \tag{1}$$

The necessary matrix computations are done with assistance from the C++ numerics library Eigen⁶, which is also later used to find the eigenvalues and eigenvectors of matrices at each cycle of the SCF procedure.

III. USE AND INSTALLATION

In order to run our code, please clone the git repository that is linked in the abstract of this document. These instructions will assume that you are on a *nix system and have gfortran and a C++ compiler such as clang that has access to the Eigen header files. Then, inside the cloned directory, run the command:

test

to build and execute the project. The results of the SCF procedure will be written to file in hf_out.out.

IV. RESULTS AND DISCUSSION

V. CONCLUSION

¹M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, "Gaussian16 Revision C.01," (2016), gaussian Inc. Wallingford CT.

²Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui, *et al.*, "Recent developments in the pyscf program package," J. Chem. Phys. **153**, 024109 (2020).

³Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K.-L. Chan, "Pyscf: the python-based simulations of chemistry framework," WIREs Comput. Mol. Sci. 8, e1340 (2018), https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340.

⁴Q. Sun, "Libcint: An efficient general integral library for gaussian basis functions," J. Comp. Chem. **36**, 1664–1671 (2015), https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23981.

⁵A. Szabo and N. S. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Courier Corporation, 2012).

⁶G. Guennebaud, B. Jacob, *et al.*, "Eigen v3," http://eigen.tuxfamily.org (2010).