Microorganism Classification Project

Kai Uechi

Summary

- Create model to classify microorganisms
- Use data from microscopic images
- Final model reached 98.9% accuracy

Outline

- Business Problem
- Data
- Methods
- Results
- Conclusions

Business Problem

- DNA sequencing accurate, but slow
- Machine learning could classify by type very quickly
- Speed is important for patients in critical condition

Data

- Continuous data extracted from microscopic images
- 10 total categories of microorganism
- Some harmful, some not

Methods

Data

- Scale data values
- SMOTE oversampling

Modeling

- Iterative modeling
 - Decision Tree
 - K-Nearest Neighbors
 - Random Forest
 - XGBoost

Results: Deploy Model For Use

- Model accuracy is 98.9%
- Would allow for quick results if deployed
- Less effective at identifying Spirogyra

Results: Deploy Model For Use

Results: Collect More Spirogyra Data

- Spirogyra inaccuracy could be improved
- Spirogyra worst performing and has least data
- More Spirogyra data should improve performance

Results: Collect More Spirogyra Data

Results: Collect Key Features With Increased Accuracy

- Model relies on some features more than others
- Most important are 'ConvexArea' and 'raddi'
- Better feature accuracy should improve performance

Results: Collect Key Features With Increased Accuracy

Conclusions

- Deploy model for use
- Collect additional Spirogyra data
- Collect Key Features With Increased Accuracy

Next Steps:

- Expand model categories
 - Additional categories
 - More detailed identification

Thank You!

Email: kaiuechi@gmail.com

GitHub: @kaiuechi
LinkedIn: kai-uechi