"JUST THE MATHS"

UNIT NUMBER

9.10

MATRICES 10 (Symmetric matrices & quadratic forms)

by

A.J.Hobson

- 9.10.1 Symmetric matrices
- 9.10.2 Quadratic forms
- 9.10.3 Exercises
- 9.10.4 Answers to exercises

UNIT 9.10 - MATRICES 10

SYMMETRIC MATRICES AND QUADRATIC FORMS

9.10.1 SYMMETRIC MATRICES

The definition of a symmetric matrix was introduced in Unit 9.1 and matrices of this type have certain special properties with regard to eigenvalues and eigenvectors. We list them as follows:

- (i) All of the eigenvalues of a symmetric matrix are real and, hence, so are the eigenvectors.
- (ii) A symmetric matrix of order $n \times n$ always has n linearly independent eigenvectors.
- (iii) For a symmetric matrix, suppose that X_i and X_j are linearly independent eigenvectors associated with <u>different</u> eigenvectors; then

$$X_i X_i^{\mathrm{T}} \equiv x_i x_j + y_i y_j + z_i z_j = 0.$$

We say that X_i and X_j are "mutually orthogonal".

If a symmetric matrix has any repeated eigenvalues, it is still possible to determine a full set of mutually orthogonal eigenvectors, but not every full set of eigenvectors will have the orthogonality property.

- (iv) A symmetric matrix always has a modal matrix whose columns are mutually orthogonal. When the eigenvalues are distinct, this is true for every modal matrix.
- (v) A modal matrix, N, of normalised eigenvectors is an orthogonal matrix.

ILLUSTRATIONS

1. If N is of order 3×3 , we have

$$\mathbf{N}^{\mathrm{T}}.N = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} . \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

2. It was shown in Unit 9.6 that the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

has eigenvalues $\lambda = 8$, and $\lambda = -1$ (repeated), with associated eigenvectors

$$\alpha \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$
, and $\beta \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} -\frac{1}{2}\beta - \gamma \\ \beta \\ \gamma \end{bmatrix}$.

A set of linearly independent eigenvectors may therefore be given by

$$X_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad X_2 = \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad X_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

Clearly, X_1 is orthogonal to X_2 and X_3 , but X_2 and X_3 are not orthogonal to each other. However, we may find β and γ such that

$$\beta \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \text{ is orthogonal to } \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

We simply require that

$$\frac{1}{2}\beta + 2\gamma = 0$$

or

$$\beta + 4\gamma = 0$$
;

and this will be so, for example, when $\beta = 4$ and $\gamma = -1$.

A new set of linearly independent mutually orthogonal eigenvectors can thus be given by

$$X_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad X_2 = \begin{bmatrix} -1 \\ 4 \\ -1 \end{bmatrix}, \quad \text{and} \quad X_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

9.10.2 QUADRATIC FORMS

An algebraic expression of the form

$$ax^2 + by^2 + cz^2 + 2fyz + 2yzx + 2hxy$$

is called a "quadratic form".

In matrix notation, it may be written as

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \equiv \mathbf{X}^{\mathrm{T}} \mathbf{A} \mathbf{X},$$

and we note that the matrix A is symmetric.

In the scientific applications of quadratic forms, it is desirable to know whether such a form is

- (a) always positive,
- (b) always negative,
- (c) both positive and negative.

It may be shown that, if we change to new variables, (u, v, w), using a linear transformation

$$X = PU$$
,

where P is some non-singular matrix, then the new quadratic form has the same properties as the original, concerning its sign.

We now show that a good choice for P is a modal matrix, N, of normalised, linearly independent, mutually orthogonal eigenvectors for A.

Putting X = NU, the expression X^TAX becomes U^TN^TANX .

But, since N is orthogonal when A is symmetric, $N^T = N^{-1}$ and, hence, N^TAN is the spectral matrix, S, for A.

The new quadratic form is therefore

$$\mathbf{U}^{\mathrm{T}}\mathbf{S}\mathbf{U} \equiv \begin{bmatrix} u & v & w \end{bmatrix} . \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix} . \begin{bmatrix} u \\ v \\ w \end{bmatrix} \equiv \lambda_{1}u^{2} + \lambda_{2}v^{2} + \lambda_{3}w^{2}.$$

Clearly, if all of the eigenvalues are positive, then the new quadratic form is always positive; and, if all of the eigenvalues are negative, then the new quadratic form is always negative.

The new quadratic form is called the "canonical form under similarity" of the original quadratic form.

9.10.3 EXERCISES

1. For the following symmetric matrices, determine a set of three linearly independent and mutually orthogonal eigenvectors:

(a)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 10 & 6 \\ 0 & 6 & 5 \end{bmatrix}$$
, (b) $\begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

2. Repeat the previous question for the following symmetric matrices:

(a)
$$\begin{bmatrix} 3 & 3 & 3\sqrt{2} \\ 3 & 3 & 3\sqrt{2} \\ 3\sqrt{2} & 3\sqrt{2} & 6 \end{bmatrix}$$
, (b)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & -2 \end{bmatrix}$$
.

3. Using the results of question 1, show that the following quadratic forms are always positive:

$$2x^2 + 10y^2 + 5z^2 + 12yz;$$

$$2x^2 + 5y^2 + 3z^2 + 4xy.$$

4. Using the results of question 2(b), obtain the matrix, P, of the orthogonal transformation, X = PU, which transforms the quadratic function

$$2x^2 + y^2 - 2z^2 + 4xz$$

into the quadratic function

$$2u^2 + 2v^2 - 3w^2.$$

State whether or the not the original quadratic form is always positive.

9.10.4 ANSWERS TO EXERCISES

1. (a) The eigenvalues are 14, 2 and 1 and a set of linearly independent mutually orthogonal eigenvectors is

$$\begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix}$.

(b) The eigenvalues are 6, 3 and 1 and a set of linearly independent mutually orthogonal eigenvectors is

$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$.

2. (a) The eigenvalues are 12 and 0 (repeated) and set of linearly independent mutually orthogonal eigenvectors is

$$\begin{bmatrix} 1\\1\\\sqrt{2} \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$
 and $\begin{bmatrix} 1\\1\\-\sqrt{2} \end{bmatrix}$.

(b) The eigenvalues are 2 and -3 (repeated) and a set of linearly independent mutually orthogonal eigenvectors is

$$\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$.

- 3. The eigenvalues are all positive and hence the quadratic forms are always positive.
- 4.

$$P = \begin{bmatrix} 0 & 1 & 0\\ \frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} & 0 & -\frac{2}{\sqrt{5}} \end{bmatrix}.$$

The original quadratic form may take both positive and negative values since the associated eigenvalues are not all positive.