

About Data

Data Types and Data Structures

- What is Data?
- What is Science?
- What is Data Science?
- What is Big Data Science/Analytics?

 Can't do Big Data Science/Analytics without knowing what these terms mean

- What is Data?
 - "Measured" and "Collected" <u>quantities</u> and <u>symbols</u> intended to <u>represent</u> physical or <u>intangible</u> phenomena

- What is Science & Scientific Method?
 - Science: systematic study of the structure and behaviour of the physical and natural world through observation and experiment (OED)
 - Scientific Method: systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses (OED)
 - observations & measurements = data
- Assumption: The fundamental premise of science is that the cosmos is <u>understandable</u> through use of the <u>Scientific Method</u>

- What is Data Science?
 - the application of the Scientific Method to the definition, collection, representation, analysis, interpretation, and decision-making based on data
 - data = evidence

- What is <u>Big Data Science/Analytics</u>?
 - The concepts, methods, and tools used to study datasets that are <u>extreme</u> in their size ("Volume"), rate of generation/acquisition ("Velocity"), or complexity ("Variety")
 - the traditional "Three Vs"...
 - ...but there are more:
 - variability, veracity, validity, volatility, visualizability, value
 - "extreme" in the sense that current technologies are often *inadequate* for timely and efficient analysis

Data vs Information vs Knowledge

- Data: collection of symbols/measurements
 - {250, 300, 350, 400, ...}
- Information: collection of symbols with meaning
 - {250ppm CO₂, 300ppm CO₂, 350ppm CO₂, 400ppm CO₂, ...}
- Interpretation -> Knowledge/Understanding:
 - Atmospheric CO₂ is increasing...
 - ...how?, why? action required? validation? replication?

NOTE: "datum" (singular) is an element of a set of "data" (plural), but few authors refer to it that way in modern usage.

Basic Data Types

- Nominal (Categorical)
 - categories: qualitative, no implied order or size, discrete
 - color, gender, State, Country, words, ...
- Ordinal
 - rank order: no implied size metric, discrete
 - 1: dislike < 2: neutral < 3: like
 - but like != 3 x dislike
- Interval
 - distance/difference measures have meaning, continuous
 - ...but no "zero" or origin
 - degrees F or C, but 80° != 2 x 40°
- Ratio
 - Size comparisons have meaning, continuous
 - $80kg = 2 \times 40kg$
 - 0, differences, ratios have meaning
 - length, mass, time, distance, ...
- IMPORTANT:
 - Data type determines what computations and statistical tests are appropriate or inappropriate!
 - e.g., can't calculate mean State of residence
- Non-numeric data types
 - media (images, video, audio)...often have above types for metadata

Data Structures

- Organized collections of various data types
- Examples
 - Arrays, Lists, records, tuples, DB records, matrices, ...
 - Graphs, trees, hierarchies, ...
- "Unstructured data"
 - no formal metadata model or schema
 - but may <u>contain</u> well-defined data types
 - freeform text, for example
 - e.g., email contents, social media postings, documents, ...
 - IDC and EMC project that <u>unstructured data</u> will grow to 40 zettabytes by 2020, resulting in a 50-fold growth from the beginning of 2010. Computer World states that unstructured information might account for more than 70%–80% of all data in organizations.
 - See some <u>cited</u> <u>references</u> at:
 - https://en.wikipedia.org/wiki/Unstructured_data

Some Data References

- Babbie, Earl, The Practice of Social Research 14th Edition, 2015, Wadsworth Publishing
 - https://www.amazon.com/Practice-Social-Research-Earl-Babbie/dp/1305104943/
- Elliott, A., and Woodward, W., IBM SPSS by Example: A Practical Guide to Statistical Data Analysis 2nd Edition, 2015 SAGE Publications
 - https://www.amazon.com/IBM-SPSS-Example-Practical-Statistical/dp/1483319032/
- Andrews, F., et al., A Guide for Selecting Statistical Techniques for Analyzing Social Science Data 2nd Edition, 1981, Survey Research Center, University of Michigan

"Big Data" Human Perception Issues

- Humans can't internalize ("get") size and time parameters
 - Size
 - Flow / Throughput
 - Reaction time / Latency...

Some Sources of Big Data

2016 What happens in an INTERNET MINUTE?

Understanding size

Multiples of bytes VITIE							
Decimal			Binary				
Value		Metric	Value		IEC	,	JEDEC
1000	kΒ	kilobyte	1024	KiB	kibibyte	ΚB	kilobyte
1000 ²	MB	megabyte	1024 ²	MiB	mebibyte	MB	megabyte
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte
1000 ⁴	ТВ	terabyte	1024 ⁴	TiB	tebibyte		_
1000 ⁵	РΒ	petabyte	1024 ⁵	PiB	pebibyte		_
1000 ⁶	EΒ	exabyte	1024 ⁶	EiB	exbibyte		_
1000 ⁷	ZΒ	zettabyte	1024 ⁷	ZiB	zebibyte		_
1000 ⁸	YΒ	yottabyte	1024 ⁸	YiB	yobibyte		_
Orders of magnitude of data							

Understanding Size

Understanding flow (throughput): 1M gps

Understanding Latency

Level						
NH L3 Cache						
Local Memory 32 Core NUMA						
SSD						
Gb Ethernet						
Disk						

Latency	Seconds		
52 Clocks	1.62 x 10 ⁻⁸		
150 ns	1.5 X 10 ⁻⁷		
3 Hops	5.19 x 10 ⁻⁷		
125 us	1.25 x 10 ⁻⁴		
1 ms	1 x 10 ⁻³		
3.6 ms	3.6 x 10 ⁻³		

Time To Insight					
Seconds	Hours	Days			
1					
9.23					
31					
7,692	2.14				
61,538	17	.71			
221,538	62	2.56			

- In 30 seconds, you can block someone.
- In 2 hours, you can intercept someone
- In 2 days, actionable intelligence is forfeited

Big Data Analytics Technical Issues

- Ingest Rates (Velocity)
 - Simultaneous ingest and query cause conflicts and delays in the system
- Data Retention (Volume)
 - Insufficient periods of time for identification of trends in data
 - Requirement for multi-year storage and retention = multi-PB+
- Multiple Data Formats (Variety)
 - need to transform into queryable information
- Poor Query Performance
 - Hours-Days for results
 - reducing/limiting number of queries that can be executed
 - Challenge for the analyst to visualize the problem and refine query dynamically
 - Queries performed on separate computing platforms due to poor performance
 - Need networked *hierarchy* of systems to conduct queries
- We attempt to address these issues with fundamental concepts of distributed computing:
- Representation
- <u>Parallelism</u>
- <u>Caching / Locality</u>
- Service component speed

5/2/17