Instituto Tecnológico de Costa Rica Escuela de Matemática Álgebra Lineal para Computación

 \mathcal{T} iempo: 2 horas 40 minutos \mathcal{P} untaje \mathcal{T} otal: 37 puntos \mathcal{J} unio de 2010

III Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No se aceptan reclamos de exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

1. Sea
$$\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^4$$
 tal que $\mathcal{T}(a + bx + cx^2) = (a - b, a - c, 0, a - b), \forall p(x) \in \mathcal{P}_2(\mathbb{R})$

(a) Verifique que
$$\mathcal{T}$$
 es una transformación lineal. (3 pts)

(b) Determine una base para
$$Nucl(\mathcal{T})$$
 (3 pts)

(c) Determine una base para
$$Im(\mathcal{T})$$
 (3 pts)

(d) ¿Es
$$\mathcal{T}$$
 inyectiva? ¿Es \mathcal{T} sobreyectiva? Justifique. (2 pts)

2. Sea
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 6 & -4 & 6 \\ 3 & -3 & 5 \end{pmatrix}$$

(a) Determine todos los valores propios de
$$A$$
 (3 pts)

(b) Halle una base para
$$E_2$$
 (4 pts)

3. Si
$$A = \begin{pmatrix} 1 & 0 & 1 & 4 & -5 \\ 0 & 1 & -1 & -2 & 3 \\ 2 & 0 & 2 & -1 & 8 \\ 0 & -2 & 2 & -2 & 6 \end{pmatrix}$$
, encuentre una base para el espacio de las soluciones del sistema homogéneo $Ax = 0$ (4 pts)

- 4. Si se sabe que $B = \{1 + 2x, x x^2, 1 + 3x^2\}$ es una base de $\mathcal{P}_2(\mathbb{R}), C_1$ es la base estándar (canónica) de $\mathcal{P}_2(\mathbb{R}), C_2$ es la base estándar (canónica) de \mathbb{R}^2 y $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^2$ es una transformación lineal, tal que $\mathcal{T}(1+2x) = (2,-4), \mathcal{T}(x-x^2) = (-1,2)$ y $\mathcal{T}(1+3x^2) = (1,-2)$, determine $[\mathcal{T}]_{C_1}^{C_2}$ (5 pts)
- 5. Sea $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ una transformación lineal, tal que $Nucl(\mathcal{T}) = \{0\}$. Demuestre que si $\{v_1, v_2, \dots, v_n\}$ es un conjunto linealmente independiente en \mathcal{V} , entonces $\{\mathcal{T}(v_1), \mathcal{T}(v_2), \dots, \mathcal{T}(v_n)\}$ es un conjunto linealmente independiente en \mathcal{W} . (3 pts)
- 6. Sean $B = \{v_1, v_2\}$ y $D = \{w_1, w_2\}$ bases de \mathbb{R}^2 , tales que $w_1 = v_1 v_2$ y $w_2 = 3v_1$. Si se sabe que $[T]_B^D = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$, para alguna transformación lineal $T : \mathbb{R}^2 \to \mathbb{R}^2$

(a) Calcule
$$[T(2v_1 - v_2)]_D$$
 (2 pts)

(b) Encuentre
$$[T]_B$$
 (2 pts)

(c) Calcule $[I]_B^D$, donde $I: \mathbb{R}^2 \to \mathbb{R}^2$ es la transformación identidad. (3 pts)