Sapienza Università di Roma

Facoltà di Ingegneria – Corso di Laurea Magistrale in Ingegneria Informatica

Metodi Formali per il Software e i Servizi

AA 2009/10 – *Appello del* **25/02/2010**

Tempo per completare la prova: 2 ore

Parte 1. Sia dato il seguente diagramma delle classi UML.

- i. Esprimere tale diagramma in logica del prim'ordine.
- ii. Esprimere tale diagramma come una TBox nella logica descrittiva ALCQI o SHIQ.
- iii. Esprimere tale diagramma come una TBox nella logica descrittiva DL-lite_A, mettendo in evidenza eventuali aspetti del diagramma non esprimibili.
- iv. Verificare che il diagramma sia consistente o meno con ciascuna delle seguenti ABox:

$$ABox1 = \{A(a)\} \qquad ABox2 = \{O(o)\}$$

Si ricorda che per verificare la consistenza di detto diagramma con una ABox basta verificare (attraverso l'applicazione dell'algoritmo di riscrittura delle query congiuntive di DL-lite_A) che la seguente query booleana

$$q() :- A(x), B(x).$$

restituisca false nella ABox.

Parte 2. Sia dato il transition system T in figura. Verificare, applicando l'algoritmo di model checking di CTL, se le formule AG(AFa) e $EG(a \rightarrow EF a)$ sono vere nello stato s1 di T.

Parte 3. Verificare la validità di ciascuna delle seguenti sussunzioni in ALC attraverso il metodo dei tableaux e qualora una di esse non sia valida esibire il controesempio che falsifica la sussunzione utilizzando ancora i tableaux:

$$\exists R.(A \sqcup B) \sqsubseteq \exists R.A$$
 $\exists R.(A \sqcap B) \sqsubseteq \exists R.A$