Proposition: For all $n, m \in \mathbb{N}$, it follows that S_n : if 2|n and 2|m, then $2|\binom{n}{m}$.

Proof. (Strong Induction).

Note that $\binom{n}{m} = 0 \Longrightarrow 2 | \binom{n}{m}$ for m < 0 or m > n, thus we consider 0 < m < n.

Basis step. Suppose n=2 and m=1. Observe that $\binom{2}{1}=2$, thus S_2 . Now suppose n=4 and m=1 or m=3. Observe that $\binom{4}{3}=4$ and $\binom{4}{1}=4$, thus S_4 .

Inductive step. Suppose S_{n-2} for $n, m \in \mathbb{N}$ where 2|n and $6 \le n$ and $2 \nmid m$. Note that $\binom{n}{m} = n \Longrightarrow 2 \mid \binom{n}{m}$ for m = 1. Thus we consider 1 < m < n - 2. We now show S_{n-2} implies S_n . Observe that

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1} \tag{1}$$

$$= \binom{n-2}{m} + \binom{n-2}{m-1} + \binom{n-2}{m-1} + \binom{n-2}{m-2}$$
 (Def. of Pascal's triangle)

$$= \binom{n-2}{m} + 2\binom{n-2}{m-1} + \binom{n-2}{m-2} \tag{3}$$

Since $2|2\binom{n-2}{m-1}$, it follows that the second term is even. Note that 2|n-2 implies 2|n, and $2\nmid m$ implies $2\nmid m-2$, thus the first and third terms are even. Since the sum of three even terms is even, it follows that $\binom{n}{m}$ is even.

It follows by mathematical induction that S_n for all $n, m \in \mathbb{N}$ where m < n.