14. Generátorrendszerből homogén lin.egyenletrendszer előállítása. Altér dimenziójának jóldefináltsága, Rⁿ standard bázisa, bázishoz tartozó koordinátavektor kiszámítása.

1. Generátorrendszerből homogén lin, egyenletrendszer előállítása

A két eredmény összevetéséből $|B_1| = |B_2|$ adódik.

2. Altér dimenziójának jóldefináltsága

Tétel: Ha B_1 és B_2 a $V \leq \mathbb{R}^n$ bázisai, akkor $|B_1| = |B_2|$. Biz: Mivel B_1 lin.ftn és B_2 generátorrendszer V-ben, ezért az FG-egyenlőtlenség miatt $|B_1| \leq |B_2|$. Az is igaz, hogy B_2 lin.ftn és B_1 generátorrendszer V-ben, ezért az FG-egyenlőtlenség miatt $|B_2| \leq |B_1|$ is teljesül.

Def: A $V \leq \mathbb{R}^n$ altér dimenziója dim V = k, ha V-nek van k vektorból álló bázisa.

Megj: A fenti tétel szerint az altér dimenziója egyértelmű.

Példa: Az \mathbb{R}^n tér dimenziója n.

Állítás: Ha $U \le V \le \mathbb{R}^n$, akkor dim $U \le$ dim V.

Biz: Legyen B az U bázisa. Ekkor $B \subseteq V$ lin.ftn, ezért a korábban látott 2. módszerrel B-t ki lehet egészíteni V egy B' bázisává, így dim $U = |B| \le |B'| = \dim V$.

Állítás: Ha $V \leq \mathbb{R}^n$ és V_1, V_2 a V alterei, akkor $\dim(V_1 \cap V_2) + \dim V \geq \dim V_1 + \dim V_2$. Biz: Egészítsük ki az $U \cap V$ egy B bázisát a V_1 egy $B \cup B_1$ ill. a V_2 egy $B \cup B_2$ bázisává. Igazoljuk, hogy $B \cup B_1 \cup B_2$ lin.ftn. Tfh $\sum_{\underline{b} \in B} \lambda_{\underline{b}} \underline{b} + \sum_{\underline{b}_1 \in B_1} \lambda_{\underline{b}_1} \underline{b}_1 + \sum_{\underline{b}_2 \in B_2} \lambda_{\underline{b}_2} \underline{b}_2 = \underline{0}$. Ezt átrendezve: $V_1 \ni \underline{x} = \sum_{\underline{b} \in B} \lambda_{\underline{b}} \underline{b} + \sum_{\underline{b}_1 \in B_1} \lambda_{\underline{b}_1} \underline{b}_1 = -\sum_{\underline{b}_2 \in B_2} \lambda_{\underline{b}_2} \underline{b}_2 \in V_2$ adódik, ezért $\underline{x} \in V_1 \cap V_2$. Ekkor $\underline{x} = \sum_{\underline{b} \in B} \mu_{\underline{b}} \underline{b}$, hisz B a $V_1 \cap V_2$ bázisa. Innen $\sum_{\underline{b} \in B} \mu_{\underline{b}} \underline{b} + \sum_{\underline{b}_2 \in B_2} \lambda_{\underline{b}_2} \underline{b}_2 = \underline{x} - \underline{x} = \underline{0}$. A $B \cup B_2$ lin.ftn-sége miatt $\lambda_{\underline{b}_2} = 0 \ \forall \underline{b}_2 \in B_2$. Hasonlóan $\lambda_{\underline{b}_1} = 0 \ \forall \underline{b}_1 \in B_1$, és $\lambda_{\underline{b}} = 0 \ \forall \underline{b} \in B$, azaz $B \cup B_1 \cup B_2$ lin.ftn. Ebből adódik, hogy $\dim(V_1 \cap V_2) + \dim V \ge |B| + |B_1| + |B_2| + |B| = \dim V_1 + \dim V_2$. \square

Köv: \mathbb{R}^3 -ban bármely két origón áthaladó sík (más szóval: kétdimenziós altér) tartalmaz közös egyenest.

Megj: \mathbb{R}^4 -ben már található két olyan origón áthaladó sík, amik csak az origóban metszik egymást. Ilyenek pl. $\langle \underline{e}_1, \underline{e}_2 \rangle$ ill. $\langle \underline{e}_3, \underline{e}_4 \rangle$.

A továbbiakban azt szeretnénk indokolni, hogy \mathbb{R}^n tetszőleges k dimenziós altere "lényegében" úgy viselkedik, mint \mathbb{R}^k .

3. Rⁿ standard bázisa

Def: A $V \leq \mathbb{R}^n$ altér bázisa a V egy lin.ftn generátorrendszere. **Példa:** Az $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ vektorok az \mathbb{R}^n standard bázisát alkotják. **Kínzó kérdés:** Minden altérnek van bázisa? Ha \mathbb{R}^n egy V altérének van, akkor hogyan lehet előállítani V egy bázisát?

- 1. módszer: Ha $V = \langle G \rangle$, azaz ha ismert a V egy véges G generátorrendszere, akkor G-t addig ritkítjuk, amíg lin.ftn nem lesz. Konkrétan: ha egy $\underline{g} \in G$ generátorelem előáll a $G \setminus \{\underline{g}\}$ elemeinek alkalmas lin. kombinácójaként, akkor $G \setminus \{\underline{g}\}$ is generálja V-t. Ezért \underline{g} -t eldobhatjuk. Ha már nincs ilyen eldobható \underline{g} vektor, akkor G maradéka nem csak generátorrendszer, de lin.ftn is.
- 2. módszer: Felépíthetjük V bázisát a V egy tetsz. F lin.ftn rendszeréből (akár $F=\emptyset$ -ból) kiindulva. Ha $\langle F \rangle = V$, akkor kész vagyunk. Ha nem, akkor tetsz. $\underline{f} \in V \setminus \langle F \rangle$ esetén $F \cup \{\underline{f}\}$ lin.ftn marad. Az FG-egyenlőtlenség miatt F nem tartalmazhat n-nél több elemet, ezért legfeljebb n lépésben megkapjuk V bázisát.

Bázis előállítása generátorrendszerből

Példa:

Keressük meg az alábbi vektorok által generált V altér egy bázisát!

$$\underline{\underline{u}} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \ \underline{\underline{v}} = \begin{pmatrix} 2 \\ 3 \\ -1 \\ -1 \end{pmatrix}, \ \underline{\underline{w}} = \begin{pmatrix} -1 \\ 4 \\ -1 \\ -2 \end{pmatrix}, \ \underline{\underline{x}} = \begin{pmatrix} 5 \\ -9 \\ 2 \\ 5 \end{pmatrix}, \ \underline{\underline{y}} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 3 \end{pmatrix}$$

Megoldás: Az (<u>u|v|w|x|y</u>) mátrixot ESÁ-okkal RLA-vá alakítjuk. Ehhez szabad (de nem kötelező) Gauss-eliminációt használni.

4. Bázishoz tartozó koordinátavektor kiszámítása

Legyen B a $V \leq \mathbb{R}^n$ altér bázisa. Mivel B generátorrendszer, minden $\underline{v} \in V$ előáll a B elemeinek lin.komb-jaként, azaz $\underline{v} = \sum_{\underline{b} \in B} \lambda_{\underline{b}} \underline{b}$ alakban. A B bázis lin.ftn-ségéből pedig az következik, hogy tetszőleges $\underline{v} \in V$ lin.komb-ként történő előállítása egyértelmű: ha $\underline{v} = \sum_{\underline{b} \in B} \lambda_{\underline{b}} \underline{b} = \sum_{\underline{b} \in B} \mu_{\underline{b}} \underline{b}$, akkor $\lambda_{\underline{b}} = \mu_{\underline{b}} \ \forall \underline{b} \in B$. Ez a gondolatmenet indokolja az alábbi fogalom jóldefiniáltságát. Def: Ha $B = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_k\}$ a $V \leq \mathbb{R}^n$ altér bázisa és $\underline{v} = \sum_{i=1}^k \lambda_i \underline{b}_i$, akkor a \underline{v} vektor B bázis szerinti koordinátavektora $[\underline{v}]_B = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix}$

Az alábbi összefüggések azonnal adódnak a definícióból. Állítás: Ha $B = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_k\}$ a $V \leq \mathbb{R}^n$ altér bázisa és $\underline{u}, \underline{v} \in V$ ill. $\lambda \in \mathbb{R}$, akkor (1) $[\underline{u} + \underline{v}]_B = [\underline{u}]_B + [\underline{v}]_B$ ill. (2) $[\lambda \underline{u}]_B = \lambda [\underline{u}]_B$. Biz: (1) Tfh $[\underline{u}]_B = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix}$ és $[\underline{v}]_B = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_k \end{pmatrix}$. Ekkor $\underline{u} = \sum_{i=1}^k \lambda_i \underline{b}_i$ és $\underline{v} = \sum_{i=1}^k \lambda_i \underline{b}_i$ tehát $\underline{u} + \underline{v} = \sum_{i=1}^k \lambda_i \underline{b}_i + \sum_{i=1}^k \mu_i \underline{b}_i = \sum_{i=1}^k (\lambda_i + \mu_i) \underline{b}_i$, ezért $[\underline{u} + \underline{v}]_B = \begin{pmatrix} \lambda_1 + \mu_1 \\ \vdots \\ \lambda_k + \mu_k \end{pmatrix} = [\underline{u}]_B + [\underline{v}]_B$.

Biz: (2) Tfh
$$[\underline{u}]_B = \begin{pmatrix} \vdots \\ \lambda_k \end{pmatrix}$$
. Ekkor
$$\lambda \underline{u} = \lambda \cdot \sum_{i=1}^k \lambda_i \underline{b}_i = \sum_{i=1}^k \lambda \lambda_i \underline{b}_i \Rightarrow [\lambda \underline{u}]_B = \begin{pmatrix} \lambda \lambda_1 \\ \vdots \\ \lambda \lambda_k \end{pmatrix} = \lambda [\underline{u}]_B \quad \Box$$

Megj: A fenti állítás azt mutatja meg, hogy \mathbb{R}^n bármely V altere lényegében ugyanúgy viselkedik, mint az \mathbb{R}^k tér, ahol $k = \dim V$.