Controlling the Spread of Disease With Network-Based Models of Influence

Matthew Jehrio

Department of Biostatistics State University of New York at Buffalo <u>Advisor:</u> Dr. Rachael Hageman Blair

April 2022

Overview

- 1 Background
- 2 Methods
- 3 Results
- 4 Discussion and Future Work

Background

Background

Motivation

- Public health resources are limited
- COVID mutations continue to appear
- Need to optimize response
- flatten the curve

SIR Model

- Predicts infection dynamics
- Commonly used public health model
- Susceptible, Infected, Removed/Recovered

SIR Model

Susceptible

Susceptible population decreases at a rate of $\frac{dS}{dt} = -bSI$

Infected

Infected population evolves at a rate of $\frac{dI}{dt} = bSI - kI$

Removed

Removed population increases at a rate of $rac{dR}{dt}=kI$

SIR II

- S, I, R refer to concentrations of susceptible, infected, removed respectively
- b, k are rate constants
- transmission rates proportional to concentrations at a given time point

Network

Connections represented as $n \times n$ adjacency matrix Nodes denote individuals, edges denote connections Weights denote relative strength of connections between nodes

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

Haslemere Data

- Haslemere: small town in England pop. approx 10000
- Collected for BBC documentary
- Real world social network interaction data via GPS

Covid-HM Model (Firth et al., 2020)

- Simulates outbreak across network
- Incorporates network's structure

COVID-HM II

- Network structure is input
- each node can be S,I,R
- Nodes can be quarantined, isolated
- Outside infection probability

COVID-HM III

- Simulates 70 days/steps of an outbreak
- 468 total nodes in Haslemere data
- Subset of nodes infected at outset
- Infected nodes fixed across all trials

COVID-HM parameters

- No preemptive isolation among contacts
- Primary contact tracing
- Testing rate
- False positive rate
- Infectiousness
- Low outside infection rate (.001)

Motivation

- Can PRINCE predict influential nodes?
- How much isolation to see effect?
- Can PRINCE outperform random isolation?

Methods

Methods

PRioritization and Complex Network Elucidation (PRINCE) algorithm (Vanunu et al., 2010)

- Identifies and ranks high priority nodes
- Iteratively computes

$$F' = \alpha W' F^{t-1} + (1 - \alpha) Y$$

F'	vector of updated weights		
α	$lpha \ \epsilon \ [0,1]$ that controls network/weight interaction term		
\overline{W}	n imes n adjacency matrix		
$\overline{F^{t-1}}$	Previous weights vector		
\overline{Y}	Vector of prior knowledge of i^{th} node		

Idea

- Use PRINCE to isolate nodes in simulation
- Arrange nodes by PRINCE score
- Isolate highest scoring nodes
- Compare with benchmarks

Experimental Setup

- 468 total nodes
- Model simulates 70 days of an outbreak
- Each trial was repeated for 100 iterations
- Isolate initially infected, Susceptible, mixed cases
- PRINCE vs. no isolation baseline and random isolation null models

Results

Results

Figure: 30 Initial Infections, 10 Nodes Isolated

Figure: 30 Initial Infections, 25 Nodes Isolated

Figure: 100 Initial Infections, 15 Nodes Isolated

Figure: 100 Initial Infections, 85 Nodes Isolated

Figure: 30 Initial Infections Controlling the Spread of Disease With Netwo

Figure: 70 Initial Infections

Figure: 100 Initial Infections

Figure: 30 Initial Infections, 10 Isolations

Figure: 30 Initial Infections, 25 Isolations

Figure: 100 Initial Infections, 15 Isolations

Figure: 100 Initial Infections, 15 Isolations

Figure: 100 Initial Infections, 110 Isolations

Figure: 30 Initial Infections

Figure: 70 Initial Infections

Figure: 100 Initial Infections

Mixed Case

Figure: 30 Susceptible Nodes Isolated, All Infected Nodes Isolated

Mixed Case

Figure: 190 Susceptible Nodes Isolated, All Infected Nodes Isolated

Discussion and Future Work

Discussion and Future Work

Discussion

- PRINCE effectively identifies high priority nodes
- Greater differential effect when isolating susceptible nodes
- Significantly lower disease transmission and disease burden
- Enhanced effectiveness of public health resources

Future Work

- Test different network structures
- Further investigate tuning parameters

The End