Step 1: Sign in to your AWS account

Before you can set up an EC2 instance with Amazon Linux, you need an AWS account.

First, go to the URL https://aws.amazon.com and click on the button that says "Sign in to the console.

Here you can select whether you want to log in as a Root user or an IAM user:

Your choice of user login should consider your account's configuration and the existing user permissions. However, it is recommended to log in as a user with the lowest level of access privileges for best security practices.

If you don't have an AWS account, you can create one as you are often entitled to free tier benefits that you can use.

Step 2: Launch an EC2 instance

Once you have logged into your AWS account, in the search bar you can type EC2 in order to access the main page for provisioning and management.

Next, under Instances, you can select the option "Launch Instances."

We will land on the new page where we can select additional options, such as the Name of our instance, Application, and OS Images for our instance and we will select the default option — Amazon Linux.

The "Free tier eligible" means that AWS offers a limited amount of its services at no cost for a specified period or up to certain usage limits. It's a valuable opportunity for users to get started with AWS, but it's crucial to be aware of the limitations and to monitor your usage to avoid unexpected charges once you exceed the free tier limits or duration.

When we scroll below we can choose the type of our instance. Amazon Linux has a minimum requirement of 512MB of RAM and 1 CPU core, so if we are testing things, we can select the t2.micro instance which fits into the free tier in AWS.

When you have a project and instance that should be production-ready, you can select instances with more RAM and CPU power, by choosing from the dropdown list.

Next, we will make sure to create a new security group for our instance.

Creating a new security group for your new EC2 instance is a fundamental security best practice in AWS. It allows you to define and enforce customized network access controls, adhere to the least privilege principle, and maintain better isolation and security for your EC2 instances.

You should add the Key pair name and also the Key pair type which can be RSA or ED25519.

In general, both RSA and ED25519 are strong choices for SSH key authentication. The decision between them should consider your security requirements, compatibility needs, and the level of trust you place in modern cryptographic algorithms. For most use cases, either option will provide secure authentication when used correctly. RSA is one of the oldest and most widely supported SSH key algorithms, making it compatible with a wide range of SSH servers and clients while ED25519 keys are a good choice when security is a top priority and compatibility with older systems is not a concern. We can select Private key file format which can be either in .pem format or .ppk in case you use a Windows SSH client such as PuTTy.

In our case, we will select the .pem format since we will be using the terminal.

Finally, click on the "Create key pair" option in order to generate the SSH key and this will prompt the download in your browser. Also, there is a warning from AWS that we should store our private keys in a secure and accessible location on our computers.

Further in our setup process, we would need to select our Network Settings.

For the first option, we need to access our EC2 instance through SSH but instead of allowing SSH traffic from "0.0.0.0/0" (which means from anywhere), restrict it to only allow connections from specific trusted IP addresses or ranges. This limits the exposure of your SSH port to the internet and reduces the risk of unauthorized access. You can also use CIDR notation to specify the IP ranges

Next, we will select our storage options from the menu:

In this case, we have selected a new volume with 8 GB of storage with the general purpose, gp3 type of volume. For production purposes, make sure to increase the size of the volume based on your needs. In general, gp3 EBS volumes offer more flexibility, burst performance, and often a lower cost per gigabyte compared to gp2 volumes. When selecting between them, consider your application's specific I/O and performance needs, as well as your budget constraints.

Our final step is confirming the selected options in the summary and we can proceed to launch the instance.

You will get the notification that the instance is successfully launched and you'll return to your Instances list.

After a short wait, typically with a fast provisioning time, you'll be able to locate your instance in the list.

Step 3: Connect to your Amazon Linux instance

Now the next step is to connect to the instance via SSH. We can do so by using our Instances menu and clicking **Connect**:

Here we will see a new menu where we will select the **SSH client** menu item:

After opening your terminal and finding where you have downloaded the .pem key, it is important to change permissions to it, for security reasons, so that the key is not publicly viewable, and in our case, we will run the following command:

```
chmod 400 jumpcloud_amazon_limux.pem
```

Next, we will use the SSH key to connect to our instance:

```
ssh -i "jumpcloud_amazon_linux.pem"
ec2-user@ec2-3-79-150-186.eu-central-1.compute.amazonaws.com
```

Here, the -i flag in SSH is used to specify the path to the private key file to be used for authentication when connecting to a remote server. It allows you to choose a specific key file when you have multiple key pairs or non-standard key file names and locations.

When we log into our Amazon Linux instance for the first time, we need to confirm the authenticity of the host. Here you can type yes and press Enter.

```
Roshini.Gubba@ATMECSINLT-706 MINGW64 ~/Downloads (master)
$ ssh -i "aws_ec2_linux.pem" ec2-user@ec2-13-211-237-16.ap-southeast-2.compute.a mazonaws.com
The authenticity of host 'ec2-13-211-237-16.ap-southeast-2.compute.amazonaws.com (13.211.237.16)' can't be established.
ED25519 key fingerprint is SHA256:bSf3lN4Kx5MYOeCnEW+UJRgtt5305gfptrpELvtmmZ0.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
```

After this action, we will be logged into our instance

```
oshini.Gubba@ATMECSINLT-706 MINGW64 ~/Downloads (master)
 ssh -i "aws_ec2_linux.pem" ec2-user@ec2-13-211-237-16.ap-southeast-2.compute.a
nazonaws.com
he authenticity of host 'ec2-13-211-237-16.ap-southeast-2.compute.amazonaws.com
(13.211.237.16)' can't be established.
:D25519 key fingerprint is SHA256:bSf31N4Kx5MYOeCnEW+UJRgtt53O5gfptrpELvtmmZO.
his key is not known by any other names.
re you sure you want to continue connecting (yes/no/[fingerprint])? yes
Varning: Permanently added 'ec2-13-211-237-16.ap-southeast-2.compute.amazonaws.c
om' (ED25519) to the list of known hosts.
        #_
       ####
                    Amazon Linux 2023
       #####/
        \###|
                    https://aws.amazon.com/linux/amazon-linux-2023
ec2-user@ip-172-31-47-91 ~]$ client_loop: send disconnect: Connection reset by peer
oshini.Gubba@ATMECSINLT-706 MINGW64 ~/Downloads (master)
```

You can always verify the version of your Amazon Linux by typing:

cat /etc/os-release

```
[ec2-user@ip-172-31-47-91 ~]$ cat /etc/os-release
NAME="Amazon Linux"
/ERSION="2023"
ID="amzn"
ID_LIKE="fedora"
/ERSION_ID="2023"
PLATFORM_ID="platform:al2023"
PRETTY_NAME="Amazon Linux 2023.5.20240819"
ANSI_COLOR="0;33"
IPE_NAME="cpe:2.3:o:amazon:amazon_linux:2023"
HOME_URL="https://aws.amazon.com/linux/amazon-linux-2023/"
DOCUMENTATION_URL="https://docs.aws.amazon.com/linux/"
SUPPORT_URL="https://aws.amazon.com/premiumsupport/"
BUG_REPORT_URL="https://github.com/amazonlinux/amazon-linux-2023"
/ENDOR_NAME="AWS"
/ENDOR_URL="https://aws.amazon.com/"
SUPPORT_END="2028-03-15"
[ec2-user@ip-172-31-47-91 ~]$
```