高雄中學 107 學年度第一學期二年級第一類組第一次月考數學科試題

一、多重選擇題:(20%)

說明:每題有5個選項,其中至少有一個是正確的選項。各題之選項獨立判定,所有選項均答對者,得5分;答錯1個選項者,得3分;答錯2個選項者,得1分;答錯多於2個選項或所有選項均未答者,該題以零分計算。

1. 設有 $A \cdot B \cdot C \cdot D$ 四筆資料如表:而 $\sigma_A \cdot \sigma_B \cdot \sigma_C \cdot \sigma_D$ 分別表 $A \cdot B \cdot C \cdot D$ 的標準差, $\mu_A \cdot \mu_B \cdot \mu_C \cdot \mu_D$ 分別表 $A \cdot B \cdot C \cdot D$ 的算術平均數, $r_{AB} \cdot r_{AC} \cdot r_{AD} \cdot r_{BD}$ 分別表示 $A \oplus B \cdot A \oplus C \cdot A \oplus D \cdot B \oplus D$ 的相關係數,則下列敘述何者正確?

(A)
$$\mu_A = 7$$

(B) $\mu_{B} > \mu_{C} > \mu_{D} > \mu_{A}$

(C)
$$\sigma_B > \sigma_A = \sigma_C > \sigma_D$$

$$\text{(D)} \ \ r_{\scriptscriptstyle AB} = r_{\scriptscriptstyle AC} > r_{\scriptscriptstyle AD}$$

(E)
$$-1 < r_{RD} < 0$$

A	1	6	8	9	9	9
В	2	12	16	18	18	18
C	7	12	14	15	15	15
D	16	11	9	8	8	8

- 2. 有 50 組數據 (x_i, y_i) , i=1 , 2 , … … , 50 , 其算術平均數 $\mu_X = 6$, $\mu_Y = 8$, X 與 Y 的相關係數 r=0.75 ,且 Y 對 X 的迴歸直線過點 (3,3) ,則下列敘述何者正確?
 - (A)Y對X的迴歸直線必過點(6,8)
 - (B) *Y* 對 *X* 的迴歸直線為 $y = \frac{2}{5}x 7$
 - (C) X 的標準差小於 Y 的標準差
 - (D)若將數據經調整所得之數據為 $(107x_i-10,15-2018y_i)$, $i=1,2,\dots,50$,則調整後的相關係數為0.75
 - (E)若將數據標準化所得之標準化數據為 (x'_i, y'_i) , $i=1, 2, \dots, 50$,則Y'對 X' 迴歸直線的斜率m'=0.75
- 3. 下列敘述何者正確?
 - $(A) \sin 30^{\circ} \csc 30^{\circ} + \tan 60^{\circ} \cot 60^{\circ} \sec 45^{\circ} \cos 45^{\circ} = 1$
 - (B)若 $\sin \theta \cos \theta > 0$,則點 $(\sin \theta, \cos \theta)$ 在第一象限
 - $(C) \sin 89^{\circ} < \tan 46^{\circ}$
 - (D)若 $a = \sin(\pi^2)$,則a > 0
 - (E)如右圖,半徑為 1 的圓O與y軸交於A,B兩點。角 θ 的頂點為原點,

始邊在x軸的正向上,終邊為OC,直線 \overline{AC} 垂直於y軸且與角 θ 的終邊交於C點,

則
$$\overline{AC} = \cot \theta$$

- **4.** 設 $a \cdot b \cdot c$ 分別表 $\triangle ABC$ 中三內角 $\angle A \cdot \angle B \cdot \angle C$ 的對邊長。關於下列的條件,判斷下列何者恰可決定一個三角形?
 - (A) a = 14, b = 10, $\angle A = 52^{\circ}$
 - (B) a = 4, b = 7, $\angle A = 30^{\circ}$
 - (C) a = 3, b = 4, $\angle B = 40^{\circ}$
 - (D) a = 5, b = 7, c = 13
 - (E) $a = \sin 30^{\circ}$, $b = \sin 150^{\circ}$, $\angle C = 60^{\circ}$

二、填充證明題:

2. 若
$$0^{\circ} < \theta < 90^{\circ}$$
,且 θ 的一個同界角的度數恰為其 10 倍,則 $\theta =$ ________。

4. 已知
$$0^{\circ} < \theta < 45^{\circ}$$
,且 $\sin \theta + \cos \theta = \frac{7}{5}$,則 $\sin \theta - \cos \theta = \underline{\hspace{1cm}}$ 。

5.
$$\sum_{k=180}^{269} \cos^2 k^\circ = \underline{\hspace{1cm}}$$

7. 如右圖所示, $\triangle ABC$ 中,若D點在 \overline{BC} 邊上,且 \overline{AB} = 9, \overline{AD} = 8, \overline{BD} = 6, \overline{CD} = 3,

試求 AC =_____。

8. 已知極坐標平面上點O為極點與兩點 $A[6,25^{\circ}]$, $B[10,145^{\circ}]$,點M 為 \overline{AB} 之中點,試求: \overline{OM} = ________。

9. $\triangle ABC$ 中,已知 \overline{AB} =9, \overline{BC} =8, \overline{CA} =7,若 $\triangle ABC$ 面積為K,外接圓半徑為R,試求序對(K,R)=________。

10. 如右圖所示, $\triangle ABC$ 中, $\angle A=90^\circ$, $\angle B=15^\circ$, $\overline{DE}\perp \overline{BC}$,且 $\overline{CE}=\overline{DE}=2$,则 $\overline{AE}=$ ______。

12. 設 $\angle XOY = 60^{\circ}$, $\angle XOY$ 之平分線為 \overrightarrow{OZ} , 今有任意一直線 L 截 \overrightarrow{OX} , \overrightarrow{OY} , \overrightarrow{OZ} 於 X , Y , Z ,試證 : $\frac{1}{\overrightarrow{OX}} + \frac{1}{\overrightarrow{OY}} = \frac{\sqrt{3}}{\overrightarrow{OZ}}$

高雄中學 107 學年度第一學期二年級第一類組第一次月考數學科答案卷

班級:_____ 座號:____ 姓名:_____

一、多重選擇題:(20%)

說明:每題有5個選項,其中至少有一個是正確的選項。各題之選項獨立判定,所有選項均答對者,得5分;答錯1個選項者,得3分;答錯2個選項者,得1分;答錯多於2個選項或所有選項均未答者,該題以零分計算。

1. ABD 2. ACE 3. AC 4. ACE	II ARD	2. ACE	3. AC	14. ACE
----------------------------	--------	--------	-------	---------

二、填充證明題:

格數	1	2	3	4	5	6	7	8	9	10	11	12
得分	10	20	30	40	45	50	55	60	65	70	75	80

1. $\frac{58}{13}$	2. 40° ∨ 80° 答對一個,得半格	$3. \frac{k}{\sqrt{1+k^2}}$	4. $-\frac{1}{5}$	5. $\frac{91}{2}$
6. 4:5:6	7. $\frac{\sqrt{330}}{2}$	8. √19	9. $(12\sqrt{5}, \frac{21\sqrt{5}}{10})$ 答對一個,得半格	10. $1+\sqrt{3}$

11. $(3,\frac{4}{5})$ 答對一個,得半格

12. 設 $\angle XOY = 60^\circ$, $\angle XOY$ 之平分線為 \overrightarrow{OZ} ,今有任意一直線L截 \overrightarrow{OX} , \overrightarrow{OY} , \overrightarrow{OZ} 於X,Y,Z,

試證: $\frac{1}{\overline{OX}} + \frac{1}{\overline{OY}} = \frac{\sqrt{3}}{\overline{OZ}}$

