Group Outlying Aspects Mining

Dong Zhu

(None)

Overview

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Problem Definition

Outlying Aspects Mining
Group Outlying Aspects Mining

Related Work and Challenges

Related Work - Outlying Aspects Mining Challenges (1)

GOAM Algorithm

Step One - Group Feature ExtractionStep Two - Outlying Degree ScoringStep Three - Outlying Aspects Identification

Evaluation Results

Synthetic Dataset NBA Dataset

Problem Definition

Outlying Aspects Mining Group Outlying Aspects Mining

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Problem Definition

Outlying Aspects Mining

Problem Definition

Outlying Aspects Mining

Group Outlying Aspects
Mining

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Outlying Aspects Mining aims to identify the outstanding features of the query object.

- A teacher may be interested in the characteristics that make one student distinctive from others.
- NBA coaches would prefer to find out the strengths and weaknesses of the player (a query object).

Outlying Aspects Mining vs Outlier Detection

Problem Definition

Outlying Aspects Mining

Group Outlying Aspects
Mining

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Outlying Aspects Mining

- Explain the distinctive aspects of the query object.
- The query object may (or may not) be an outlier.

Outlier Detection

- Find out all unusual objects in the whole dataset.
- No explanation on how they are different.

Group Outlying Aspects Mining

Problem Definition

Outlying Aspects Mining
Group Outlying Aspects
Mining

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Group outlying aspects mining aims to identify the outstanding features of the group of query object.

- Doctors desire to identify the merits & demerits between a group of cancer patients and normal people.
- NBA coaches are passionate about exploring the obvious advantages & disadvantages of the team.

Figure 1: Medical

Figure 2: NBA-Team

Problem Formalization

Problem Definition

Outlying Aspects Mining
Group Outlying Aspects
Mining

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Group outlying aspects mining aims to identify the top-k group outlying subspace in which the query group is distinctive with other groups.

- - a set of groups.
 - the query group.
 - Other groups comparison groups.
 - Each object in the group has features

Term Definition

Problem Definition

Outlying Aspects Mining Group Outlying Aspects Mining

Related Work and Challenges

GOAM Algorithm

Evaluation Results

- Top-k group outlying subspaces
 - outlying scoring function.
 - quantifies the outlying degree of the query group in the subspace.
 - Order by DESC using scoring function to identify top K group outlying subspaces.

Term Definition

Problem Definition

Outlying Aspects Mining
Group Outlying Aspects
Mining

Related Work and Challenges

GOAM Algorithm

Evaluation Results

- Trivial Outlying Features
 - One-dimension subspaces.
 - 's outlying degree

Table 1:

Feature	Outlying Degree
{}	
{ }	
{ }	
{}	
{}	

Term Definition

Problem Definition

Outlying Aspects Mining
Group Outlying Aspects
Mining

Related Work and Challenges

GOAM Algorithm

Evaluation Results

- Non-Trivial Outlying Subspaces
 - Multi-dimension subspaces.
 - 's outlying degree .

Table 2:

Feature	Outlying Degree
{}	
{ }	
{ }	
{}	
{}	

Problem Definition

Related Work and Challenges

Related Work - Outlying Aspects Mining Challenges (1)

GOAM Algorithm

Evaluation Results

Conclusion

Related Work and Challenges

Related Work - Outlying Aspects Mining

Problem Definition

Related Work and Challenges
Related Work - Outlying
Aspects Mining

Challenges (1)

GOAM Algorithm

Evaluation Results

Conclusion

- Existing Methods Feature selection
 - ◆ To distinguish two classes: the query point (positive) & rest of data (negative)

Disadvantages

- Positive and negative classes are
 Not balanced.
- Not quantify the outlying degree accurately.
- Not identify group outlying aspects.

Advantages

- Easy to operate.
- Resolve dimensionality bias.

Related Work - Outlying Aspects Mining

Problem Definition

Related Work and Challenges
Related Work - Outlying
Aspects Mining

Challenges (1)

GOAM Algorithm

Evaluation Results

Conclusion

- Existing Methods Score-and-search
 - ◆ Define an outlying score function.
 - Search subspaces.

Disadvantages

- Dimensionality bias.
- Search efficiency is Not high (dataset is large).
- Not identify group outlying aspects.

Advantages

- Quantify the outlying degree correctly.
- ◆ High Comprehensibility.

Problem Definition

Related Work and Challenges

Related Work - Outlying Aspects Mining

Challenges (1)

GOAM Algorithm

Evaluation Results

Conclusion

Group Outlying Aspects Mining

- Focus on differences between groups.
- Multiple points.

Missing figure 14ptTesting a long text string.

Figure 3: Group Outlying Aspects Target

Outlying Aspects Mining

- Concentrates on differences between objects.
- One point.

Figure 4: Outlying Aspects Target

Challenges (1)

Problem Definition

Related Work and Challenges
Related Work - Outlying
Aspects Mining

Challenges (1)

GOAM Algorithm

Evaluation Results

- How to represent the group features.
 - Can be affected by outlier values.
 - ◆ Can Not reflect the overall distribution of group features.

Challenges (2)

Problem Definition

Related Work and Challenges
Related Work - Outlying
Aspects Mining

Challenges (1)

GOAM Algorithm

Evaluation Results

- How to evaluate the outlying degree in different aspects.
 - ◆ Need design a scoring function when necessary.
 - Adopting an appropriate scoring function (without dimension bias) remains a problem.

Challenges (3)

Problem Definition

Related Work and Challenges
Related Work - Outlying
Aspects Mining

Challenges (1)

GOAM Algorithm

Evaluation Results

- How to improve the efficiency.
 - ♦ When the dimension of the data is high, the candidate subspace grows exponentially.
 - It will easily go beyond the limits of the computation resources.

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature
Extraction
Step Two - Outlying Degree
Scoring
Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

GOAM Algorithm

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature
Extraction
Step Two - Outlying Degree
Scoring
Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

Framework of GOAM algorithm:

Figure 5: Framework of GOAM Algorithm

Step One - Group Feature Extraction

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

- Suppose , , are three features of .
 - : { }
 : { }
 . { }

Figure 6: Histogram of on three features

Step Two - Outlying Degree Scoring

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature

Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

- Calculate Earth Mover Distance
 - Represent one feature among different groups
 - Purpose: calculate the minimum mean distance

Figure 7: EMD of one feature

Step Two - Outlying Degree Scoring

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature

Extraction

Step Two - Outlying Degree
Scoring

Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

Calculate the outlying degree

- n the number of contrast groups.
- the histogram representation of in the subspace s.

Step Three - Outlying Aspects Identification

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature
Extraction
Step Two - Outlying Degree
Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

- Identify group outlying aspects mining based on the value of outlying degree.
- The greater the outlying degree is, the more likely it is group outlying aspect.

Pseudo code

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature
Extraction
Step Two - Outlying Degree
Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Pseudo code of GOAM algorithm

Illustration

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree

Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Table 3: Original Dataset

10	8	9	8	7	7	6	6
9	9	7	9	8	9	9	8
8	10	8	8	6	7	8	9
8	8	6	7	7	7	7	8
9	9	9	8	8	6	6	7
8	10	8	8	9	8	8	8
9	9	7	9	7	7	7	9
10	9	10	7	8	6	6	8
9	10	8	6	9	8	8	7
9	9	7	9	8	7	9	8

Illustration

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature

Extraction Step Two - Outlying Degree

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Scoring

Table 4: outlying degree of each possible subspaces

Feature	Outlying Degree	Feature	Outlying Degree
{}	4.351	{}	4.023
{}	2.012	{}	$\boxed{4.324}$
{}	1.392	{}	2.018
{}	2.207	{ }	2.012

■ Search process:

- , save to .

- , save to .
- , save to .
- , remove.
- , remove.

Strengths of GOAM Algorithm

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature
Extraction
Step Two - Outlying Degree
Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

- Reduction of Complexity
 - Bottom-up search strategy.
 - Reduce the size of candidate subspaces.
- Efficiency
 - Before:

Now:

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset NBA Dataset

Conclusion

Evaluation Results

Evaluation

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

P: Identified outlying aspects

T: Real outlying aspects

Synthetic Dataset

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Synthetic Dataset and Ground Truth

Table 5: Synthetic Dataset and Ground Truth

Query group	$\mathbf{F_1}$	$\mathbf{F_2}$		$\mathbf{F_4}$				
	10	8	9	7	7	6	6	8
	9	9	7	8	9	9	8	9
	8	10	8	9	6	8	7	8
	8	8	6	7	8	8	6	7
	9	9	9	7	7	7	8	8
	8	10	8	8	6	6	8	7
	9	9	7	9	8	8	8	7
	10	9	10	7	7	7	7	7
	9	10	8	8	7	6	7	7
	9	9	7	7	7	8	8	8

Synthetic Dataset Results

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Table 6: The experiment result on synthetic dataset

Method	Truth Outlying Aspects	Identified Aspects	Accuracy
GOAM	,	,	100%
Arithmetic Mean based OAM	,	,	0%
Median based OAM	,	,	0%

NBA Dataset

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Data Collection

Source

Yahoo Sports website (http://H.Bsports.H.Byahoo.H.Bcom.H.Bcn/H.B

nbaH.B)

Data

- Extract NBA teams' data until March 30, 2018;
- 6 divisions;
- 12 features (eg: *Point Scored*).

NBA Dataset

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

The detail features are as follows:

Table 7: Collected data of Brooklyn Nets Team

Pts	FGA	FG%	3FA	3PT%	%FTA	FT%	Reb	Ass	To	Stl	Blk
18	12	42	2.00	50	7.00	100	0	4	3	0	0
15.7	14.07	41	5.45	32	3.05	75	3.98	5.1	2.98	0.69	0.36
14.5	11.1	47	0.82	26	4.87	78	6.82	2.4	1.74	0.92	0.66
13.5	10.8	42	5.37	37	3.38	77	6.66	2	1.38	0.83	0.42
12.7	10.59	39	5.36	33	3.37	82	3.24	6.6	1.56	0.89	0.31
12.6	10.93	40	6.94	37	1.70	84	4.27	1.5	1.06	0.61	0.44
12.2	10.39	44	3.42	35	2.70	72	3.79	4.1	2.15	1.12	0.32
10.6	7.85	49	4.51	41	1.35	83	3.34	1.6	1.15	0.45	0.24

NBA Dataset

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Data Preprocess

Table 8: The bins that used to discrete data of each feature

Labels	Pts	FGA	FG%	3FA	3PT%	FTA
low	[0,5]	[0,4]	[0,0.35]	[0,1.0]	[0,0.2]	[0,1.0]
medium	(5,10]	(4,7]	(0.35, 0.45]	(1.0, 2.5]	(0.2, 0.3]	(1.0, 1.5]
high	(10,15]	(7,10]	(0.45, 0.5]	(2.5, 3.5]	(0.3, 0.35]	(1.5, 2.5]
very high	(15,]	(10,]	(0.5,1]	(3.5,]	(0.35,1]	(2.5,]
Labels	FT%	Reb	Ass	To	Stl	Blk
low	[0,0.6]	[0,2.0]	[0,1.0]	[0,0.6]	[0,0.2]	[0,0.25]
medium	(0.6, 0.65]	(2,5]	(1,2]	(0.6, 0.9]	(0.2, 0.5]	(0.25, 0.5]
high	(0.65, 0.75]	[(5,6]	(2,4]	(0.9, 1.7]	(0.6, 0.75]	(0.5, 0.7]
very high	(0.75,1]	(6,]	(4,]	(1.7,]	(0.75,]	(0.7,]

NBA Dataset Results

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Table 9: The identified outlying aspects of groups

Teams	Trivial Outlying Aspects	NonTrivial Outlying Aspects
Cleveland Cavaliers	{3FA}	{FGA, FT%}, {FGA, FG%}
Orlando Magic	{Stl}	None
Milwaukee Bucks	$\{To\}, \{FTA\}$	{FGA, FTA}, {3FA, FTA}
Golden State Warriors	$\{\mathrm{FG\%}\}$	{FT%, Blk}, {FGA, 3PT%, FTA}
Utah Jazz	$\{\mathrm{Blk}\}$	$\{3FA, 3PT\%\}$
New Orleans Pelicans	$\{FT\%\}, \{FTA\}$	{FTA, Stl}, {FTA, To}

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Conclusion

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

- Formalize the problem of *Group Outlying Aspects Mining* by extending outlying aspects mining;
- Propose a novel method GOAM algorithm to solve the Group Outlying Aspects
 Mining problem;
- Utilize the pruning strategies to reduce time complexity.

Questions?

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Contact Information

Associate Professor Gang Li School of Information Technology Deakin University, Australia

Team for Universal Learning and Intelligent Processing