DLCV HW1 Report

Problem 1

1. Model of method B

Resnet-152

152 layers

2. Accuracy on validation set

Model A	Model B
56.44%	90.72%

3. Implementation details of model A

optimizer: **Adam** with Ir = 2e-3

Ir_decay: Exponential decay

loss function: CrossEntropyLoss()

cross validation: 1-fold

batch normalization: Add BatchNorm2d in CNN block

4. Method in B: Resnet152

Resnet 引進了**Residual Block**(x跳過layer直接輸入到下一層的activation function)的機制使得原本在深層CNN容易發生的gradient vanishment/gradient explosion的問題得到緩解

5. PCA result Epoch 15:

Epoch 50(last epoch):

PCA主要是要做到降維的目的同時希望留下最重要的特徵,可以看到在2-dim的圖中,模型在Epoch 15時還不能很好的分類不同class的feature但到epoch 50時已經可以把同class的feature拉近並把不同class的feature推遠

6. **t-SNE result**

Epoch 1:

Epoch 15:

Epoch 50(last epoch):

t-SNE是一種非線性的降維法,常用於模型的視覺化觀察,

可以看到Epoch數越大相同class的點分布越集中不同class的點分布則會散開

Problem 2

1. VGG16-FCN32

2. Segformer

Differs from VGG16-FCN32:

Segformer在encoder的部分是使用transformer encoder(self-attention)並且decoder方面使用輕量的MLP layer與VGG使用CNN當backbone十分不同

3. mIoU of two models on the validation set

Model A	Model B
70.20%	75.68%

4. segmentation masks

0013_sat.jpg

Epoch 1:

Epoch 10:

Epoch 20:

0062_sat.jpg

Epoch 1:

Epoch 10:

Epoch 20:

0104_sat.jpg

Epoch 1:

Epoch 10:

Epoch 20:

