다중 분류의 평가지표

- 1.1.1 이진 분류의 평가지표
- 1.1.2 임계값과 평가지표
- 1.1.3 평가지표 ROC 커브, AUC

1.1.4 다중 분류의 평가지표

학습 내용

• 다중 분류에서의 평가는 어떻게 할 수 있을까? 알아본다.

목차

```
01. 데이터 준비 및 라이브러리 임포트
02. 모델 구축하기 - 로지스틱 회귀
```

03. 정밀도-재현율의 커브(랜덤 포레스트 모델)

04. 평균 정밀도 확인

05. ROC 곡선과 AUC 알아보기

01. 데이터 준비 및 라이브러리 임포트

목차로 이동하기

In [23]:

```
import matplotlib
from matplotlib import font_manager, rc
import platform
import warnings
import numpy as np
warnings.filterwarnings(action='ignore')
```

In [24]:

```
### 한글
path = "C:/Windows/Fonts/malgun.ttf"
if platform.system() == "Windows":
    font_name = font_manager.FontProperties(fname=path).get_name()
    rc('font', family=font_name)
elif platform.system()=="Darwin":
    rc('font', family='AppleGothic')
else:
    print("Unknown System")
matplotlib.rcParams['axes.unicode_minus'] = False
```

데이터 준비

- 데이터 셋 : 손글씨 데이터 셋 • 입력은 이미지의 픽셀 정보
- 출력은 target의 결과: 0~9

In [25]:

```
from sklearn.metrics import accuracy score
from sklearn.datasets import load digits
from sklearn.model selection import train test split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion matrix
```

In [26]:

```
digits = load digits()
```

In [27]:

```
X = digits.data
y = digits.target
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                     random_state=0)
```

In [28]:

```
unique, counts = np.unique(y_test, return_counts=True)
print( np.asarray((unique, counts)).T )
```

```
[ 1 43]
[ 2 44]
[ 3 45]
[ 4 38]
[548]
[ 6 52]
```

[[0 37]

[748]

[8 48]

[9 47]]

02 모델 구축하기 - 로지스틱 회귀

목차로 이동하기

- Parameter solver
 - 'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga', default='lbfgs'
 - liblinear : 작은 데이터셋의 경우 좋은 선택
 - 'sag', 'saga' : 큰 데이터셋의 경우 더 빠름.
- Parameter multi_class
 - 'auto', 'ovr', 'multinomial', default = 'auto'
 - 'ovr': 각 레이블에 이항 문제가 적합, 다항의 경우 전체 확률 분포에 걸쳐 다항 손실이 최소화

- 'auto': solver='liblinear' 때는 'ovr' 선택됨. 그렇지않으면 multinomial을 선택
- 0.22버전에서 기본값이 0.22에서 'ovr'에서 'auto'로 변경

In [29]:

```
정확도 : 0.953
오차 행렬:
[[37 0 0 0 0 0 0 0 0]
[ 0 39 0 0 0 0 2 0 2 0]
    0 41 3 0 0
                 0
                   0
                        01
  0
    0
       1 43 0 0
                 0
                   0 0
                        1]
         0 38 0
  0
    0
      0
                0
                   0 0
                        01
[ 0
    1 0 0 0 47
                0 0 0
                       0]
[ 0
    0 0 0 0 0 52 0 0
                       0 ]
                0 45 0 0]
[ 0
    1
       0 1 1
              0
0 ]
    3
      1 0 0
              0
                 0
                   0 43 1]
[ 0
       0 1 0
             1
                 0
                   0 1 44]]
```

모델의 정확도는 95.3%로 꽤 좋은 성능 좋다.

각 행은 실제 정답 레이블에 해당하며, 열은 예측 레이블에 해당

오차 행렬 그래프로 표시

In [30]:

```
import mglearn
import matplotlib.pyplot as plt
```

In [31]:

- 첫번째 클래스는 숫자 0인 샘플이 총 37개, 모두 클래스를 0으로 분류. 클래스 0에는 거짓 음성(FN)이 없음.
- 첫번째 열의 다른 항목들이 모두 0이므로 거짓 양성(FP)가 없음.

03. 정밀도, 재현율, f1-score 확인

목차로 이동하기

• classification_report함수를 사용한 정밀도, 재현율, f1-score점수 확인

In [32]:

from sklearn.metrics import classification_report

In [33]:

print(classification_report(y_test, pred))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	37
1	0.89	0.91	0.90	43
2	0.95	0.93	0.94	44
3	0.90	0.96	0.92	45
4	0.97	1.00	0.99	38
5	0.98	0.98	0.98	48
6	0.96	1.00	0.98	52
7	1.00	0.94	0.97	48
8	0.93	0.90	0.91	48
9	0.96	0.94	0.95	47
accuracy			0.95	450
macro avg	0.95	0.95	0.95	450
weighted avg	0.95	0.95	0.95	450

In [37]:

혼동 행렬

from IPython.display import display, Image
#display(Image(filename='img/model_validation01.png'))
mglearn.plots.plot_binary_confusion_matrix()

민감도(recall, 재현율) =
$$\frac{$$
 잘 예측(TP)} 실제 값이 양성인것 전체(TP+FN)

- 0에는 오차가 없으므로 정밀도와 재현율은 모두 1로 완벽
- 정밀도
 - 클래스 7은 다른 클래스가 7로 잘못 분류한 것이 없어서 정밀도가 1이다. 45개 중에 45개 맞혔음.
 (45)/45
 - 클래스 8 => 43/(43+3) = 0.934(반올림:0.93)

- 클래스 3 => 43/(43+5) = 0.895(반올림:0.90)
- 재현율
 - 클래스 2 => 41/(41+3) = 0.931(반올림:0.93)
 - 클래스 6은 거짓 음성(FN)이 없어서 재현율이 1이다. => 52/52
 - 클래스 8은 => 43/(43+5) = 0.895
- 이 모델은 1,3,8을 분류하는데 어려움을 겪고 있다. (F1-score: 0.90, 0.92, 0.91)

다중 클래스용 f1-score점수는 한 클래스를 양성 클래스로 두고, 나머지 클래스를 음성 클래스로 간주하여 클래스마다 f1-score를 계산

다중 분류에서 불균형 데이터셋을 위해 가장 널리 사용하는 평가 지표는 f1-score점수의 다중 분류 버전.

In [38]:

```
from sklearn.metrics import f1_score
```

In [39]:

```
print("micro 평균 f1점수 : {:.3f}".format(f1_score(y_test, pred, average='micro')))
print("macro 평균 f1점수 : {:.3f}".format(f1_score(y_test, pred, average='macro')))
```

micro 평균 f1점수 : 0.953 macro 평균 f1점수 : 0.954

- 각 샘플을 똑같이 간주한다면 "micro"평균 f1-score점수를 권장
- 각 클래스를 동일한 비중을 고려한다면 "macro" 평균 f1-score점수 권장

교육용으로 작성된 것으로 배포 및 복제시에 사전 허가가 필요합니다.

Copyright 2022 LIM Co. all rights reserved.

In []: