Chapter 15. Generalized Linear Models (GLM)

15.1. Motivation: Why GLM?

Example: "If you live long enough, you will need a surgery."

X = Age

Y = Ever had a major surgery (1 = Yes, 0 = No)

Simple linear regression: Little predictive value for the response (either 0 or 1)

Modeling the probability of Y: Restricted to the finite interval / Violation of assumptions

Transform the probability π :

$$g(\pi) = \log\left(\frac{\pi}{1-\pi}\right) \in (-\infty, +\infty)$$

15.2. Generalized Linear Model (GLM)

- Framework to *generalize* the methods in linear models to the wide class of distributions
- Model functions of the mean
- Components

Component	Description
Random	Response variable Y with independent observations $(Y_1, Y_2,, Y_n)$ forms a distribution in a natural exponential family.
	$f(y; \theta) = h(y) \exp[T(y) b(\theta) - A(\theta)]$
	e.g. Poisson, binomial, normal
Systematic	Systematic component involves the explanatory variables x_1, x_2, \dots, x_p as linear predictors.
	$g(\mu) = \eta = \sum_{j=1}^{p} \beta_j x_j = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$
	where $E(Y_i) = \mu_i, i = 1, 2,, n$.
Link	Link function $g(\cdot)$ describes the relationship between the random and
	systematic components.
	$g(\mu) = \eta$
	e.g. $g(\mu) = \mu$: Identity link

• Types of GLM

Random	Support		Link	Model
Normal	$(-\infty, +\infty)$	Identity	$g(\mu) = \mu = X\beta$	Linear-response regression
Exponential	$(0,+\infty)$	Inverse	$g(\mu) = \frac{1}{\mu} = X\beta$	Exponential-response
Gamma			$g(\mu) = \frac{1}{\mu} = \lambda \rho$	regression
Poisson	{0, 1, 2,}	Log	$g(\mu) = \log(\mu) = X\beta$	Log-linear regression
Bernoulli	{0, 1}	Logit	$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right) = X\beta$	Logistic regression
Binomial	{0, 1, 2, N}		$g(\mu) = \log\left(\frac{1}{1-\mu}\right) = \lambda \rho$	
Multinomial	K outcomes	Logit	$\log\left(\frac{\Pr(Y=k)}{\Pr(Y=K)}\right) = \beta_k X$	Multinomial logistic
			$(\Pr(Y=K))$	regression
			k = 1, 2,, K - 1	

- In case of over-dispersion, consider negative binomial distribution instead of Poisson.
- Multinomial distribution with orders: Ordinal logistic regression
- Predictors (X) can take on any form: Binary, categorical, and/or continuous
- Log: Natural log (i.e. *ln*)

15.3. PROC GENMOD

General Syntax

```
proc genmod data=dataset;
    class categorical-variable(ref="Reference");
    model dependent-variable = list-of-independent-variables
        / dist = distribution link = link-function;
    lsmeans categorical-variable / <options>;
run;
```

- More flexible than PROC GLM with a choice of link functions
- CLASS: Specify categorical variables and their reference category.
- (Distribution) DIST = normal (default), poisson, bin, negbin
- (Link function) LINK = identity (default), log, logit, probit, cloglog
- LSMEANS: Compute least squares means corresponding to the specified effects.

Option	Description
ALPHA = n	Specify the level for the confidence limits. Between 0 (100% confidence)
	and 1 (0% confidence). Default is 0.05 (95% confidence limits).
CL	Request the confidence limits for each of the LS-means.
CORR [COV]	Request the estimated correlation [covariance] matrix of the LS-means.

PROC HPGENSELECT: Conduct model selection

15.4. Log-linear Regression

Random component

$$Y_i \mid X \sim Poisson(\lambda_i), \ E(Y_i \mid X) = \lambda_i, \ i = 1, 2, ..., n$$

• Systematic component: Linear predictor $(x_1, x_2, ..., x_p)$

$$\eta_i = \sum_{j=1}^p \beta_j x_{ij} = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

Link function (log)

$$g(\lambda_i) = \log(\lambda_i) \in (-\infty, +\infty)$$

• Log-linear regression

$$g(\lambda_i) = \log(\lambda_i) = \sum_{j=1}^p \beta_j x_{ij} = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

SAS: PROC GENMOD

General Syntax

```
proc genmod data=dataset;
    class categorical-variable(ref="Reference");
    model dependent-variable = list-of-independent-variables
    / dist = poisson link = log;
run;
```

Example: Log-linear regression

Raw Data

Obs	id	pregnant	glucose	blood	triceps	insulin	bmi	pedigree	age	test
1	1	1	89	66	23	94	28.1	0.167	21	Negative
2	2	0	137	40	35	168	43.1	2.288	33	Positive
3	3	3	78	50	32	88	31	0.248	26	Positive
4	4	2	197	70	45	543	30.5	0.158	53	Positive
5	5	1	189	60	23	846	30.1	0.398	59	Positive

SAS Code

* Poisson distribution / Log link;

proc genmod data=pima;

class test(ref="Negative");

model pregnant = insulin|test age / dist = poisson link = log;

run;

Output

	Analysis Of Maximum Likelihood Parameter Estimates										
Parameter		DF	Estimate	Standard Error	Wald 95% Con	fidence Limits	Wald Chi-Square	Pr > ChiSo			
Intercept		1	-0.4195	0.0964	-0.6084	-0.2306	18.95	<.0001			
insulin		1	-0.0002	0.0004	-0.0009	0.0006	0.20	0.6585			
test	Positive	1	0.3462	0.1005	0.1492	0.5431	11.87	0.0006			
test	Negative	0	0.0000	0.0000	0.0000	0.0000					
insulin*test	Positive	1	-0.0009	0.0005	-0.0019	0.0001	3.23	0.0723			
insulin*test	Negative	0	0.0000	0.0000	0.0000	0.0000	-				
age		1	0.0465	0.0021	0.0424	0.0507	476.97	<.0001			
Scale		0	1.0000	0.0000	1.0000	1.0000					

15.5. Logistic Regression

Random component

$$Y_i \mid X \sim Binomial(n_i, p_i), \ E(Y_i/n_i \mid X) = p_i, \ i = 1, 2, ..., n$$

• Systematic component: Linear predictor $(x_1, x_2, ..., x_p)$

$$\eta_i = \sum_{j=1}^p \beta_j x_{ij} = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

• Link function (Logit)

$$g(p_i) = logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) \in (-\infty, +\infty)$$

Logistic regression

$$g(p_i) = \text{logit}(p_i) = \sum_{j=1}^{p} \beta_j x_{ij} = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

SAS: PROC GENMOD

General Syntax

• SAS: PROC LOGISTIC

General Syntax

```
proc logistic data=dataset descending;
    class categorical-variable(ref="Reference") / param = ref;
    model dependent-variable = list-of-independent-variables / lackfit;
run;
```

- DESCENDING: Sort the response variable from highest to lowest.
- By default, SAS models the probability of the lower category.
- PARAM = REF: Use the specified reference values for modeling.
- LACKFIT: Provide the Hosmer-Lemeshow for goodness-of-fit test

H₀: The logistic regression fits well.

Interpretation

- The sign of β determines whether the log odds of Y is increasing or decreasing.
- If $\beta = 0$, then there is no linear relationship between the *log odds* of Y and X.
- Odds ratio (OR) = e^{β}
 - 1) Ratio of the probability of success (group 1) and that of failure (group 2)
 - 2) $OR \in [0, +\infty)$
 - 3) OR = 1: There is no difference between the groups compared.
 - 4) OR > 1: Group 1 has a greater probability than group 2.

- Receiver operating characteristic (ROC) curve
 - Sensitivity (True positive rate) / Specificity (True negative rate)
 - A model with high discrimination ability will have high sensitivity and specificity
 simultaneously, leading to the ROC curve getting close to the top left corner of the plot.
 - Area under the curve (AUC): Provide the probability that a randomly selected pair of subjects (one truly positive and one truly negative) will be correctly ordered by the test.
 - AUC ∈ [0.5 (No discrimination), 1 (Perfect discrimination)]

15.6. Comparison between Procedures

Procedure	Description
PROC REG	Perform a linear regression with diagnostic tests.
PROC GLM	Perform a simple/multiple/polynomial/weighted regression. Provide a wide range of options for analysis with limited model-checking capacity.
PROC LOGISTIC	Perform logistic regression with diagnostic tests.
PROC GENMOD	Fit a generalized linear model using MLE.

Example: Logistic regression

B											
Raw Data	Obs	id	pregnant	glucose	blood	triceps	insulin	bmi	pedigree	age	test
	1	1	1	89	66	23	94	28.1	0.167	21	Negative
	2	2	0	137	40	35	168	43.1	2.288	33	Positive
	3	3	3	78	50	32	88	31	0.248	26	Positive
	4	4	2	197	70	45	543	30.5	0.158	53	Positive
	5	5	1	189	60	23	846	30.1	0.398	59	Positive

class test (ref="Negative") / param=ref;
model test = glucose bmi pedigree age / lackfit outroc=roc;

run;

Output

Aı	Analysis of Maximum Likelihood Estimates										
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq						
Intercept	1	-10.0920	1.0802	87.2780	<.0001						
glucose	1	0.0362	0.00498	52.7658	<.0001						
bmi	1	0.0744	0.0203	13.4940	0.0002						
pedigree	1	1.0871	0.4194	6.7186	0.0095						
age	1	0.0530	0.0134	15.5590	<.0001						

Odds Ratio Estimates									
Effect	Point Estimate	Wald ce Limits							
glucose	1.037	1.027	1.047						
bmi	1.077	1.035	1.121						
pedigree	2.966	1.304	6.747						
age	1.054	1.027	1.083						

