Lecture 6: Cutting Plane Method and Strong Valid Inequalities

(3 units)

Outline

- Valid inequality
- Gomory's cutting plane method
- Polyhedra, faces and facets
- ▶ Cover inequalities for 0-1 knapsack set
- Lifting and separation of cover inequalities
- Branch-and-cut algorithm

Valid Inequality

Let $X = \{x \mid Ax \leq b, x \in \mathbb{Z}_+^n\}$. Consider the following linear program:

(CIP) min
$$c^T x$$

s.t. $x \in conv(X)$.

Then (IP) is equivalent to (CIP).

- ▶ Question: How to describe or approximate $conv(X) = \{x \mid \bar{A}x \leq \bar{b}, x \geq 0\}$?
- ▶ An inequality $\pi^T x \le \pi_0$ is said to be a valid inequality for X if $\pi^T x \le \pi_0$ for all $x \in X$.

Question:

- (1) How to find good or useful valid inequality?
- (2) How to use valid inequality to solve an integer program?
- ▶ Chvátal-Gomory procedure for VI. $X = \{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$, $A = (a_1, \dots, a_n)$.
 - (i) (surrogate) $\sum_{j=1}^{n} \mu^{T} a_{j} x_{j} \leq \mu^{T} b$, $\mu \geq 0$.
 - (ii) (round off) $\sum_{j=1}^{n} \lfloor \mu^T a_j \rfloor x_j \leq \mu^T b$.
 - (iii) $\sum_{j=1}^{n} \lfloor \mu^T a_j \rfloor x_j \leq \lfloor \mu^T b \rfloor$.
- ► Theorem: every valid inequality of X can be obtained by applying Chvátal-Gomory procedure for a finite number of times.

Gomory's Cutting Plane Procedure for IP

► Integer programming:

$$\min\{c^T x \mid x \in \mathbb{Z}_+^n, Ax = b\}.$$

- Create the valid inequalities (cutting planes) directly from the simplex tableau
- ▶ Given an (optimal) LP basis B, write the (pure) IP as

$$\min c_{B}^{T} B^{-1} b + \sum_{j \in NB} \bar{c}_{j} x_{j}$$
s.t. $(x_{B})_{i} + \sum_{j \in NB} \bar{a}_{ij} x_{j} = \bar{b}_{i}, \quad i = 1, 2, ...m,$

$$x_{j} \in \mathbb{Z}_{+}^{1}, \ j = 1, 2, ...n,$$

NB is the set of nonbasic variables.

▶ $\bar{c}_j \ge 0$, $j \in NB$, $\bar{b}_i \ge 0$, i = 1, ..., m.

- ▶ If the LP solution is **not** integral, then there exists some row i with $\bar{b}_i \notin \mathbb{Z}$.
- ▶ The C-G cut for row *i* is

$$(x_B)_i + \sum_{j \in NB} \lfloor \bar{a}_{ij} \rfloor x_j \leq \lfloor \bar{b}_i \rfloor.$$

▶ Substitute for $(x_B)_i$ to get

$$\sum_{j \in NB} (\bar{a}_{ij} - \lfloor \bar{a}_{ij} \rfloor) x_j \ge \bar{b}_i - \lfloor \bar{b}_i \rfloor.$$

▶ Let $f_{ij} = \bar{a}_{ij} - \lfloor \bar{a}_{ij} \rfloor$, $f_j = \bar{b}_i - \lfloor \bar{b}_i \rfloor$.

$$\sum_{i \in NB} f_{ij} x_j \ge f_i.$$

Since the LP optimal solution $x_j^* = 0$ for $j \in NB$, and $0 \le f_{ij} < 1$, $0 < f_i < 1$, this inequality cut off x^* !

► Example 1

min
$$-5x_1 - 8x_2$$

s.t. $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \in \mathbb{Z}_+$

► The feasible region is

Optimal Simplex Tableau:

x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	Ь
1	0	2.25	-0.25	2.25
0	1	-1.25	0.25	3.75
0	0	1.25	0.75	41.25

▶ The Gomory cut from the second row of the tableau is:

$$0.75x_3 + 0.25x_4 \geq 0.75$$

▶ The modified feasible set is

▶ The fractional optimal solution x = (2.35, 3.75) violates the cutting plane and is removed from the new feasible set.

► Example 2

$$\begin{aligned} \min -4x_1 + x_2 \\ \text{s.t.} \ 7x_1 - 2x_2 &\leq 14 \\ x_2 &\leq 3 \\ 2x_1 - 2x_2 &\leq 3 \\ x_1, x_2 &\in \mathbb{Z}_+ \end{aligned}$$

▶ Optimal Simplex Tableau:

x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Ь
1	0	$\frac{1}{7}$	<u>2</u> 7	0	<u>20</u> 7
0	1	Ö	1	0	3
0	0	$-\frac{2}{7}$	$\frac{10}{7}$	1	2 <u>3</u>
0	0	<u>4</u> 7	$\frac{1}{7}$	0	$-\frac{59}{7}$

Cut from the first row of the tableau is:

$$\frac{1}{7}x_3 + \frac{2}{7}x_4 \ge \frac{6}{7}.$$

► Reoptimization:

x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	Ь
1	0	0	0	0	1	2
0	1	0	0	$-\frac{1}{2}$	1	$\frac{1}{2}$
0	0	1	0	$-\bar{1}$	-5	$\bar{1}$
0	0	0	1	$\frac{1}{2}$	6	<u>5</u>
0	0	0	0	$\frac{1}{2}$	3	$-\frac{15}{2}$

Cut from the second row of the tableau is:

$$\frac{1}{2}x_5\geq \frac{1}{2}.$$

► Reoptimization:

x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	Ь
1	0	0	0	0	1	0	2
0	1	0	0	0	1	-1	1
0	0	1	0	0	-5	-2	2
0	0	0	1	0	6	1	2
0	0	0	0	1	0	-1	1
0	0	0	0	0	3	1	-7

Done! Optimal solution $x^* = (2,1)^T$.

Linear algebra and convex analysis review

▶ Affine independence: A finite collection of vectors x^1 , . . . , $x^k \in \mathbb{R}^n$ is affinely independent if the unique solution to

$$\sum_{i=1}^k \alpha_i x^i = 0, \quad \sum_{i=1}^k \alpha_i = 0,$$

is
$$\alpha_i = 0$$
, $i = 1, 2, ..., k$.

- Linear independence implies affine independence, but not vice versa.
- ▶ The following statements are equivalent:
 - 1. $x^1, \ldots, x^k \in \mathbb{R}^n$ are affinely independent.
 - 2. $x^2 x^1$, . . . , $x^k x^1$ are linearly independent.
 - 3. $(x^1, 1), \ldots, (x^k, 1) \in \mathbb{R}^{n+1}$ are linearly independent.

- ▶ A polyhedron is a set of the form $\{x \in R^n \mid Ax \leq b\} = \{x \in \mathbb{R}^n \mid a_i x \leq b_i, i \in M\}$, where $A \in \mathbb{R}^{m@n}$ and $b \in \mathbb{R}^m$.
- Dimension of Polyhedra: A polyhedron P is of dimension k, denoted dim(P) = k, if the maximum number of affinely independent points in P is k+1. A polyhedron $P \in \mathbb{R}^n$ is full-dimensional if dim(P) = n. Let $M = \{1, ..., m\}$, $M^{=} = \{i \in M \mid a_i x = b_i, \forall x \in P\}$, (the equality set), $M^{\leq} = M \setminus M^{=}$ (the inequality set). Let $(A^{=}, b^{=})$, (A^{\leq}, b^{\leq}) be the corresponding rows of (A, b). If $P \in \mathbb{R}^n$, then $dim(P) + rank(A^{=}, b^{=}) = n$.

Valid Inequalities and Faces

- ► The inequality denoted by (π, π_0) is called a valid inequality for P if $\pi x \leq \pi_0, \forall x \in P$.
- Note that (π, π_0) is a valid inequality if and only if P lies in the half-space $\{x \in \mathbb{R}^n \mid \pi x \leq \pi_0\}$.
- ▶ If (π, π_0) is a valid inequality for P and $F = \{x \in P \mid \pi x = \pi_0\}$, F is called a face of P and we say that (π, π_0) represents or defines F.
- A face is said to be proper if F ≠ Ø and F ≠ P. Note that a face has multiple representations.
- ► The face represented by (π, π_0) is nonempty if and only if $\max\{\pi x \mid x \in P\} = \pi_0$.
- ▶ If the face F is nonempty, we say it supports P. Note that the set of optimal solutions to an LP is always a face of the feasible region.

Facets

- Let P be a polyhedron with equality set M⁼. If F = {x ∈ P | πx = π₀} is nonempty, then F is a polyhedron. We can get the polyhedron F by taking some of the inequalities of P and making them equalities.
- ▶ The number of distinct faces of *P* is finite.
- A face F is said to be a facet of P if dim(F) = dim(P) − 1. The inequality corresponding to a facet is called a strong valid inequality.
- ▶ If *F* is a facet of *P*, then in any description of *P*, there exists some inequality representing *F*. (By setting the inequality to equality, we get *F*).
- ▶ Every inequality that represents a face that is not a facet is unnecessary in the description of *P*.

An example

P is defined by five inequalities:

$$2x_2 \le 5$$
, $6x_1 + 10x_2 \ge 15$
 $2x_1 - 2x_2 \le 5$, $2x_1 - 2x_2 \ge -3$
 $4x_1 + 2x_2 \le 15$

P_I has four facets: $x_1 \geq 1, \, x_2 \geq 1$ $x_2 \leq 2, \, x_1 + x_2 \leq 4$

A weak cutting plane: doesn't even touch P_I

A stronger cutting plane: touches P_I

0-1 Knapsack Inequalities

Valid Inequalities for the Knapsack Problem. We are interested in valid inequalities for the knapsack set

$$S = \{x \in \{0,1\}^n \mid \sum_{j=1}^N a_j x_j \le b\}.$$

 $N = \{1, 2, ..., .n\}$. Assume that $a_j > 0$, $j \in N$, $a_j < b$, $j \in N$. We are interested in finding facets of conv(S).

- ▶ Simple facets. What is dim(conv(S))? $0, e_j, j \in N$ are n + 1 affinely independent points in conv(S), so dim(conv(S)) = n.
- ▶ $x^k \ge 0$ is a facet of conv(S).
- ▶ Proof. $0, e_j, j \in N \setminus \{k\}$ are n affinely independent points that satisfy $x_k = 0$.

- ▶ $x_k \le 1$ is a facet of conv(S) if $a_j + a_k \le b$, $\forall j \in N \setminus \{k\}$.
- ▶ Proof. e_k , $e_j + e_k$, $j \in N \setminus \{k\}$ are n affinely independent points that satisfy $x_k = 1$.
- ▶ A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_j > b$. A cover C is a minimal cover if $C \setminus \{j\}$ is not a cover $\forall j \in C$.
- ▶ If $C \subseteq N$ is a cover, then the cover inequality

$$\sum_{i \in C} x_j \le |C| - 1$$

is a valid inequality for S.

Example:

$$S = \{x \in B^7 \mid 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19\}.$$

Minimal covers:

$$C = \{1, 2, 3\}, C = \{1, 2, 6\},\$$

 $C = \{1, 5, 6\}, C = \{3, 4, 5, 6\}.$

Can we do better?

- ▶ Are these inequalities the strongest ones we can come up with? What does strongest mean? We all know that facets are the "strongest", but can we say anything else?
- ▶ If $\pi x \leq \pi_0$ and $\mu x \leq \mu_0$ are two valid inequalities for $P \in \mathbb{R}^n_+$, we say that $\pi x \leq \pi_0$ dominates $\pi x \leq \mu_0$ if $\exists u \geq 0$ such that $\pi \geq u\mu$, $\pi_0 \leq u\mu_0$ and $(\pi, \pi_0) \neq u(\mu, \mu_0)$.
- ▶ If $\pi x \leq \pi_0$ dominates $\pi x \leq \mu_0$, then

$$\{x \in \mathbb{R}^n_+ \mid \pi x \le \pi_0\} \subseteq \{x \in \mathbb{R}^n_+ \mid \mu x \le \mu_0\}.$$

▶ Strengthening cover inequalities. If $C \subseteq N$ is a minimal cover, the extended cover E(C) is defined as $E(C) = C \cup \{j \in N \mid a_j \geq a_i, \forall i \in C\}$. If E(C) is an extended cover for S, then the extended cover inequality

$$\sum_{j \in E(C)} x_j \le |C| - 1$$

is a valid inequality for S.

▶ The cover inequality $x_3 + x_4 + x_5 + x_6 \le 3$ is dominated by the extended cover inequality $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 3$.

▶ Let C be a minimal cover. If C = N, then

$$\sum_{j\in C} x_j \le |C| - 1$$

is a facet of conv(S).

▶ Proof $R_k = C \setminus \{k\}$, $\forall k \in C$. x^{R_k} satisfies

$$\sum_{j\in C} x_j^{R_k} = |C| - 1.$$

Also, $x^{R_1},\ldots,x^{R_{|C|}}$ are affinely independent. Since C=N, there are n affinely independent vectors satisfy $\sum_{j\in C} x_j^{R_k} = |C|-1$ at equality.

- Let $C = \{j_1, \ldots, j_r\}$ be a minimal cover. Let $p = \min\{j \mid j \in N \setminus E(C)\}$. If C = E(C), and $\sum_{j \in C \setminus \{j_i\}} a_j + a_p \le b$, then $\sum_{j \in C} x_j \le |C| 1$ is a facet of conv(S).
- ▶ Proof. $T_k = C \setminus \{j_1\} \cup \{k\}, \forall k \in N \setminus E(C).$ $|T_k \cap E(C)| = |C| - 1$ and

$$\sum_{j \in T_k \cap E(C)} x_j^{T_k} = |C| - 1.$$

 $|R_k| + |T_k| = N$. x^{R_k} , $k \in C$, x^{T_k} , $k \in N \setminus C$, are n affinely independent vectors.

Example:

$$S = \sum \{x \in \{0,1\}^5 \mid 79x_1 + 53x_2 + 53x_3 + 45x_4 + 45x_5 \le 178\}.$$

▶ Consider minimal cover $C = \{1, 2, 3\}$. The valid inequality is:

$$x_1 + x_2 + x_3 \le 2$$
.

$$C = E(C)$$
. $p = 4$, $C \setminus \{1\} \cup \{4\} = \{2, 3, 4\}$. $53 + 53 + 45 = 151 < 178$. So $x_1 + x_2 + x_3 = 2$ gives a facet of $conv(S)$.

Lifting Cover Inequalities

- Question: Can we find the the a valid inequality as strong as possible?
- **Example:** $C = \{3, 4, 5, 6\}$, the valid inequality for C is:

$$x_3 + x_4 + x_5 + x_6 \le 3$$
.

- ▶ Setting $x_1 = x_2 = x_7 = 0$, the cover inequalities $x_3 + x_4 + x_5 + x_6 \le 3$ is valid for $\{x \in \{0,1\}^4 \mid 6x_3 + 5x_4 + 5x_5 + 4x_6 \le 19\}.$
- ▶ If x_1 is not fixed at 0, can we strengthen the inequality? For what values of α_1 is the inequality

$$\alpha_1 x_1 + x_3 + x_4 + x_5 + x_6 \le 3$$

valid for

$$P_{2,7} = \{x \in \{0,1\}^5 \mid 11x_1 + 6x_3 + 5x_4 + 5x_5 + 4x_6 \le 19\}.$$

▶ $\Leftrightarrow \alpha_1 + x_3 + x_4 + x_5 + x_6 \le 3$ is valid for all $x \in \{0, 1\}^4$ satisfying $6x_3 + 5x_4 + 5x_5 + 4x_6 \le 19 - 11$; $\Leftrightarrow \alpha_1 + \zeta \le 3$, where

$$\zeta = \max\{x_3 + x_4 + x_5 + x_6 \mid 6x_3 + 5x_4 + 5x_5 + 4x_6 \le 8\}.$$

- $\zeta = 1 \Rightarrow \alpha_1 \leq 2$. Thus $\alpha_1 = 2$ gives the strongest inequality.
- ▶ How to find the best value α_i , $j \in N \setminus C$ such that

$$\sum_{j \in C} x_j + \sum_{j \in N \setminus C} \alpha_j x_j \le |C| - 1$$

is valid for *S*?

► Lifting Procedure

- ▶ Let $j_1, ..., j_r$ be an ordering of $N \setminus C$. Set t = 1.
- ► The valid inequality

$$\sum_{i=1}^{t-1} \alpha_{j_i} x_{j_i} + \sum_{j \in C} x_j \le |C| - 1$$

is given. Solve the following knapsack problem:

$$\zeta_t = \max \sum_{i=1}^{t-1} \alpha_{j_i} x_{j_i} + \sum_{j \in C} x_j$$

$$\text{s.t.} \sum_{i=1}^{t-1} a_{j_i} x_{j_i} + \sum_{j \in C} a_j x_j \le b - a_{j_t}$$

$$x \in \{0, 1\}^{|C| + t - 1}.$$

▶ Set $\alpha_{j_t} = |C| - 1 - \zeta_t$. Stop if t = r.

► Example: $C = \{3, 4, 5, 6\}$, $j_1 = 1$, $j_2 = 2$, $j_3 = 7$. $\alpha_1 = 2$. Consider x_2 , we have

$$\begin{split} \zeta_2 = & \quad \text{max} \, 2x_1 + x_3 + x_4 + x_5 + x_6 \\ & \quad \text{s.t.} \, \, 11x_1 + 6x_3 + 5x_4 + 5x_5 + 4x_6 \leq 19 - 6 = 13, \\ & \quad x \in \{0,1\}^5. \end{split}$$

So $\zeta_2 = 2$ and $\alpha_{j_2} = \alpha_2 = 3 - 2 = 1$. Consider x_7 now, we have

$$\zeta_3 = \max 2x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$
 s.t. $11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 \le 19 - 1 = 18,$ $x \in \{0, 1\}^6.$

So $\zeta_3=3$ and $\alpha_{j_3}=\alpha_7=3-3=0$. We obtain a valid inequality:

$$2x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \le 3.$$

Separation of Cover Inequalities

- ▶ We often try to solve problems that have knapsack rows with lots more variables than that... Obviously I do not want to add all of those facets at once. What to do?
- ▶ Given some P, find an inequality of the form $\sum_{j \in C} x_j \le |C| 1$ such that $\sum_{j \in C} x_j^* > |C| 1$. This is called a separation problem.
- ▶ Note that $\sum_{i \in C} x_i \le |C| 1$ can be rewritten as

$$\sum_{j\in C}(1-x_j)\geq 1.$$

▶ Separation Problem: Given a fractional LP solution x^* , does \exists cover $C \subseteq N$ such that $\sum_{i \in C} (1 - x_i^*) < 1$? or is

$$\gamma = \min_{C \subseteq N} \{ \sum_{j \in C} (1 - x_j) \mid \sum_{j \in C} aj > b \} < 1?$$

- ▶ If $\gamma \ge 1$, then x^* satisfies all the cover inequalities.
- ▶ If $\gamma < 1$ with optimal solution z^R , then $\sum_{j \in R} x_j \le |R| 1$ is a violated cover inequality.

Branch-and-Cut Method

- Branch and cut is an LP-based branch and bound scheme in which the linear programming relaxations combined with by cutting plane method.
- ➤ The valid inequalities are generated dynamically using separation procedures.
- ▶ At each node of the search tree, cuts are generated and used to improve the LP relaxation.
- Branch-and-cut method is very efficient for some hard integer programming problems.