Application No.: 09/935,804 Docket No.: H0610.0038/P038

Amendment dated March 1, 2004 Response to Office Action dated October 30, 2003

AMENDMENTS TO THE CLAIMS

1. (Currently amended) Method for the removal of particulate matter from aqueous suspension comprising the steps of:

establishing measuring a value of pH of the suspension and determining a polarity of Zeta potential of particles in the suspension at the measured pH value;

providing selecting a porous ceramic filter having a membrane layer consisting of at least a metal-oxide with a Zeta potential at the pH value of the suspension having same polarity of the Zeta potential as the particles in the suspension; and

passing the suspension through the porous filter; and withdrawing a filtrate.

- 2. (Canceled)
- 3. (Original) Method according to claim 1, wherein the suspension is passed in cross-flow through the filter.
- 4. (Original) Method according to claim 1, wherein the particles comprise yeast cells.
- 5. (Original) Method according to claim 1, wherein the suspension is selected from beer and wine.
- 6. (Currently amended) <u>A system</u> for cross-flow microfiltration, <u>comprising:</u>

of an aqueous suspension of particles to be retained, said particles having a sign of polarity and said aqueous suspension having a pH value, said system comprising;

Application No.: 09/935,804 Docket No.: H0610.0038/P038
Amendment dated March 1, 2004 Response to Office Action dated October 30, 2003

a porous ceramic filter having a membrane layer consisting of a least one metaloxide, said membrane layer being selected to have having a Zeta potential with the same sign of polarity as the particles at the pH value of the aqueous suspension during filtration; and

a pump for pumping the aqueous suspension through the porous ceramic filter.

- 7. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 3-4, the Zeta potential of the particles in the suspension has a positive polarity, and the metal-oxide is TiO₂ (anatase).
- 8. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 4-5, the Zeta potential of the particles in the suspension has a positive polarity, and the metal-oxide is selected from the group consisting of TiO₂ (anatase), ZrO₂, and Al₂O₃.
- 9. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 5-7, the Zeta potential of the particles in the suspension has a positive polarity, and the metal-oxide is selected from the group consisting of ZrO₂, Al₂O₃, and MgAl₂O₄.
- 10. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 7-8, the Zeta potential of the particles in the suspension has a positive polarity, and the metal-oxide is selected from the group consisting of ZrO₂ and MgAl₂O₄.
- 11. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 8-9, the Zeta potential of the particles in the suspension has a positive polarity, and the metal-oxide is MgAl₂O₄.

Application No.: 09/935,804 Docket No.: H0610.0038/P038
Amendment dated March 1, 2004 Response to Office Action dated October 30, 2003

12. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 9-10, the Zeta potential of the particles in the suspension has a positive polarity, and the metal-oxide is $MgAl_2O_4$ (400°C).

- 13. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 3-4, the Zeta potential of the particles in the suspension has a negative polarity, and the metal-oxide is selected from the group consisting of TiO₂ (rutil) and WO₃.
- 14. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 4-5, the Zeta potential of the particles in the suspension has a negative polarity, and the metal-oxide is selected from the group consisting of TiO₂ (rutil), WO₃, and SiO₂.
- 15. (Previously presented) Method according to claim 1, wherein the pH of the suspension is about 5-6, the Zeta potential of the particles in the suspension has a negative polarity, and the metal-oxide is selected from the group consisting of TiO₂ (rutil) and WO₃.
- 16. (Currently amended) Method according to claim 1, wherein the pH of the suspension is about 6-8, the Zeta potential of the particles in the suspension has a negative polarity, and the metal-oxide is TiO₂ (anatase).