Enumeración de resultados: Autómatas con anotaciones

Clase 26

IIC 2223

Prof. Cristian Riveros

Extracción de información (recordatorio)

18:30 ERROR 06

19:10 OK 00

20:00 ERROR 19

"Obtener todas las horas HH:MM"

 $R := (\backslash d \backslash d : \backslash d \backslash d)$

¿cómo podemos automatizar esta tarea de extraer datos?

18:30 ERROR 06 (19:10 OK 00 (20:00 ERROR 19

Extracción de información

La tarea de automatizar la extracción de datos desde documentos no estructurados o semi-estructurados.

Representación de intervalos: spans (recordatorio)

Definición

Para un documento $d = a_0 a_1 \dots a_{n-1}$ se define un span s de d como:

$$s = [i,j\rangle$$

tal que $0 \le i \le j \le n$.

Si s = [i, j] es un span de d se define:

$$d[s] = d[[i,j\rangle] = a_i a_{i+1} \dots a_{j-1}$$

como el **contenido del span** s en d. Si i = j, entonces $d[[i, i)] = \epsilon$.

Ejemplo

$$s_1 = [15, 20)$$
 $w[s_1] = 19:10$ $s_2 = [32, 32)$ $w[s_2] = \epsilon$

$$w[s_2] =$$

Mappings como outputs de regex (recordatorio)

Definiciones

- Un mapping de R sobre d es una función $\mu : Var(R) \rightarrow Spans(d)$.
- Se define el mapping $\mu = \bot$ como el mapping vacío donde dom $(\bot) = \varnothing$.
- Para una variable x y span s se define el mapping de una variable:

$$\mu = [\mathbf{x} \mapsto \mathbf{s}]$$
 tal que $dom(\mu) = \{\mathbf{x}\}$ y $\mu(\mathbf{x}) = \mathbf{s}$

■ Para $k \in \mathbb{N}$ se define el mapping $\mu + k$ tal que dom $(\mu + k) = \text{dom}(\mu)$ y:

si
$$\mu(\mathbf{x}) = [i,j)$$
 entonces $[\mu + k](\mathbf{x}) = [i+k,j+k)$.

■ Para mappings μ_1, μ_2 con dom $(\mu_1) \cap$ dom $(\mu_2) = \emptyset$ se define la únion:

$$\mu = \mu_1 \cup \mu_2$$
 tal que $\mu(\mathbf{x}) = \begin{cases} \mu_1(\mathbf{x}) & \text{si } \mathbf{x} \in \text{dom}(\mu_1) \\ \mu_2(\mathbf{x}) & \text{si } \mathbf{x} \in \text{dom}(\mu_2) \end{cases}$

Cada regex define un conjunto de mappings (recordatorio)

Semántica regex (completa)

Para una regex válida R cualquiera, se define la función $[\![R]\!]$ inductivamente sobre documentos $d \in \Sigma^*$:

- 1. $[a](d) = \{\bot\}$ si d = a, y \emptyset en otro caso
- 2. $[\epsilon](d) = \{\bot\}$ si $d = \epsilon$, y \emptyset en otro caso
- $\exists. \ \, [\![\mathbf{x}\{R_1\}]\!](d) = \big\{\mu \cup [\![\mathbf{x} \mapsto s]\!] \mid \mu \in [\![R_1]\!](d) \text{ y } s = [\![0,|d|\rangle\!] \big\}$
- 4. $[R_1 \cdot R_2](d) = \begin{cases} \mu_1 \cup (\mu_2 + |d_1|) & \text{existe } d_1, d_2 \text{ tal que } d = d_1 \cdot d_2, \\ \mu_1 \in [R_1](d_1) \text{ y } \mu_2 \in [R_2](d_2) \end{cases}$
- 5. $[R_1 + R_2](d) = [R_1](d) \cup [R_2](d)$
- 6. $[R_1^*](d) = \bigcup_{k=0}^{\infty} [(R_1)^k](d)$

Autómata con variables (recordatorio)

Definición

Un vset automata (VA) es una tupla:

$$\mathcal{A} = (Q, \Sigma, \mathcal{X}, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- X es un conjunto finito de variables.
- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\} \cup \{\langle \mathbf{x}, \mathbf{x} \rangle \mid \mathbf{x} \in \mathcal{X}\}) \times Q$ es la relación de transición.
- $I \subseteq Q$ es un conjunto de estados iniciales.
- F ⊆ Q es el conjunto de estados finales (o aceptación).

(x' simboliza abrir y (x)' simboliza cerrar la variable x)

Autómata con variables (recordatorio)

Ejemplos de vset autómata a, b, _

Ejecución de un vset autómata (recordatorio)

Sea $\mathcal{A} = (Q, \Sigma, \mathcal{X}, \Delta, I, F)$ un VA y $d = a_0 \dots a_{n-1} \in \Sigma^*$ un documento.

Definiciones

Una ejecución (o run) ρ de \mathcal{A} sobre d es una secuencia:

$$\rho: (p_0, i_0) \stackrel{o_1}{\rightarrow} (p_1, i_1) \stackrel{o_2}{\rightarrow} \dots \stackrel{o_m}{\rightarrow} (p_m, i_m)$$

tal que cumple todas las siguientes condiciones:

- $o_k \in \Sigma \cup \{\epsilon\} \cup \{\langle \mathbf{x}, \mathbf{x} \rangle \mid \mathbf{x} \in \mathcal{X}\} \text{ con } k \leq m$
- (p_0, i_0) es una configuración inicial
- para todo k < m, $(p_k, o_{k+1}, p_{k+1}) \in \Delta$
- para todo $k \le m$, si $o_k \in \Sigma$, entonces $o_k = a_{i_{k-1}}$ y $i_k = i_{k-1} + 1$
- para todo $k \le m$, si $o_k \in \{\epsilon\} \cup \{\langle \mathbf{x}, \mathbf{x} \rangle \mid \mathbf{x} \in \mathcal{X}\}$, entonces $i_k = i_{k-1}$.

Una ejecución ρ es de aceptación si (p_m, i_m) es de aceptación.

Ejecución válida y el mapping que define (recordatorio)

Sea $\mathcal{A} = (Q, \Sigma, \mathcal{X}, \Delta, I, F)$ un VA y $d = a_0 \dots a_{n-1} \in \Sigma^*$ un documento.

Definiciones

Para una ejecución ρ de \mathcal{A} sobre d:

$$\rho: (p_0, i_0) \stackrel{o_1}{\rightarrow} (p_1, i_1) \stackrel{o_2}{\rightarrow} \dots \stackrel{o_m}{\rightarrow} (p_m, i_m)$$

decimos que ρ es **válida** si, y solo si, para todo $\mathbf{x} \in \mathcal{X}$:

- existe un único $k_1 \le m$ tal que $o_{k_1} = \langle \mathbf{x} \rangle$
- existe un único $k_2 \le m$ tal que $o_{k_2} = \mathbf{x}$ y
- $k_1 < k_2$.

Si ρ es **válido** se define el **mapping de** ρ map $(\rho): \mathcal{X} \to \operatorname{Spans}(d)$ tal que:

$$[\mathsf{map}(\rho)](\mathbf{x}) = [i_{k_1}, i_{k_2})$$

para todo $\mathbf{x} \in \mathcal{X}$ y $k_1, k_2 \leq m$ con $o_{k_1} = \langle \mathbf{x} \text{ y } o_{k_2} = \mathbf{x} \rangle$.

Función de extracción de un vset autómata (recordatorio)

Sea $\mathcal{A} = (Q, \Sigma, \mathcal{X}, \Delta, I, F)$ un vset autómata.

Definición

Se define la función $\llbracket \mathcal{A} \rrbracket$ tal que para todo documento $d \in \Sigma^*$:

$$[\![\mathcal{A}]\!](d) = \left\{ \text{map}(\rho) \middle| \begin{array}{l} \rho \text{ es una ejecución} \\ \textbf{válida} \text{ y de aceptación de } \mathcal{A} \text{ sobre } d \end{array} \right\}$$

VA nos entrega otra forma de extraer información de un documento.

Vset automata funcionales

Sea $\mathcal{A} = (Q, \Sigma, \mathcal{X}, \Delta, I, F)$ un vset autómata.

$$\llbracket \mathcal{A} \rrbracket (d) \ = \ \left\{ \ \mathsf{map}(\rho) \ \middle| \ \begin{array}{l} \rho \ \mathsf{es} \ \mathsf{una} \ \mathsf{ejecuci\'{o}} \mathsf{n} \\ \mathbf{v\'{a}lida} \ \mathsf{y} \ \mathsf{de} \ \mathbf{aceptaci\'{o}} \mathsf{n} \ \mathsf{de} \ \mathcal{A} \ \mathsf{sobre} \ d \end{array} \right\}$$

Definición

Decimos que un vset autómata A es funcional si, y solo si, para todo documento d y para toda ejecución ρ de A sobre d:

si ρ es de aceptación, entonces ρ es válida.

Para funcional solo necesitamos verificar que la ejecución es de aceptación.

Vset automata funcionales

Desde regex a vset autómata

Teorema

Para toda regex R válida, existe un vset autómata funcional \mathcal{A}_R de tamaño lineal en |R| tal que para todo documento d:

$$[\![R]\!](d) = [\![\mathcal{A}_R]\!](d)$$

Demostración: ejercicio

¿és verdad la otra dirección?

¿cómo evaluamos una regex?

PROBLEMA: Evaluación de regex

INPUT: una regex R y

un documento d

OUTPUT: Enumerar todos los mappings en [R](d)

- 1. Transformamos R a un vset autómata A_R .
- 2. Enumeramos los resultados $[A_R](d)$.

¿cómo computamos todos los mappings en $[A_R](d)$?

...y ¿cómo los encontramos si son demasiados?

Outline

Representación de mappings

Autómata con anotaciones

Desde Vset a AnnA

Determinismo

Outline

Representación de mappings

Autómata con anotaciones

Desde Vset a AnnA

Determinismo

Sea $d = a_0 \dots a_{n-1}$, un conj. de variables \mathcal{X} y un mapping $\mu : \mathcal{X} \to \mathsf{Spans}(d)$.

Definiciones

1. Se define el conjunto de marcas de \mathcal{X} como:

$$\mathsf{Markers}(\mathcal{X}) = \left\{ \left\langle \mathbf{x} \mid \mathbf{x} \in \mathcal{X} \right. \right\} \cup \left\{ \left. \mathbf{x} \right\rangle \mid \mathbf{x} \in \mathcal{X} \right. \right\}$$

2. Se define el mapping inverso de μ como $\mu^{\text{inv}}:[0,n] \to 2^{\text{Markers}(\mathcal{X})}$:

$$\boldsymbol{\mu}^{\mathsf{inv}}(i) \ = \ \left\{ \left\langle \mathbf{x} \mid \exists j. \ \boldsymbol{\mu}(\mathbf{x}) = \left[i,j\right\rangle \in \mathcal{X} \right. \right\} \ \cup \ \left\{ \left. \mathbf{x}\right\rangle \ | \ \exists j. \ \boldsymbol{\mu}(\mathbf{x}) = \left[j,i\right\rangle \in \mathcal{X} \right. \right\}$$

Sea $d = a_0 \dots a_{n-1}$, un conj. de variables \mathcal{X} y un mapping $\mu : \mathcal{X} \to \mathsf{Spans}(d)$.

Definiciones

1. Se define el conjunto de marcas de \mathcal{X} como:

$$\mathsf{Markers}(\mathcal{X}) = \left\{ \left\langle \mathbf{x} \mid \mathbf{x} \in \mathcal{X} \right. \right\} \cup \left\{ \left. \mathbf{x} \right\rangle \mid \mathbf{x} \in \mathcal{X} \right. \right\}$$

2. Se define el mapping inverso de μ como $\mu^{\text{inv}}:[0,n] \to 2^{\text{Markers}(\mathcal{X})}$:

$$\mu^{\mathsf{inv}}(i) = \left\{ \langle \mathbf{x} \mid \exists j. \ \mu(\mathbf{x}) = [i,j\rangle \in \mathcal{X} \right\} \cup \left\{ \mathbf{x} \rangle \mid \exists j. \ \mu(\mathbf{x}) = [j,i\rangle \in \mathcal{X} \right\}$$

3. Se define la secuenciación de μ como $seq(\mu) = seq_0(\mu) \cdot ... \cdot seq_n(\mu)$:

$$\operatorname{seq}_{i}(\mu) = \begin{cases} (i, \mu^{\operatorname{inv}}(i)) & \mu^{\operatorname{inv}}(i) \neq \emptyset \\ \epsilon & \mu^{\operatorname{inv}}(i) = \emptyset \end{cases}$$

Sea $d = a_0 \dots a_{n-1}$, un conj. de variables \mathcal{X} y un mapping $\mu : \mathcal{X} \to \mathsf{Spans}(d)$.

Definiciones

3. Se define la secuenciación de μ como seq (μ) = seq $_0(\mu) \cdot \ldots \cdot \text{seq}_n(\mu)$:

$$\mathsf{seq}_i(\mu) = \left\{ \begin{array}{ll} (i, \mu^{\mathsf{inv}}(i)) & \mu^{\mathsf{inv}}(i) \neq \varnothing \\ \epsilon & \mu^{\mathsf{inv}}(i) = \varnothing \end{array} \right.$$

Sea $d = a_0 \dots a_{n-1}$, un conj. de variables \mathcal{X} y un mapping $\mu : \mathcal{X} \to \mathsf{Spans}(d)$.

Definiciones

3. Se define la secuenciación de μ como $seq(\mu) = seq_0(\mu) \cdot ... \cdot seq_n(\mu)$:

$$\mathsf{seq}_i(\mu) = \left\{ \begin{array}{ll} (i, \mu^{\mathsf{inv}}(i)) & \mu^{\mathsf{inv}}(i) \neq \varnothing \\ \epsilon & \mu^{\mathsf{inv}}(i) = \varnothing \end{array} \right.$$

$seq(\mu)$ es una **representación equivalente** de un mapping μ

... y nos será más conveniente para nuestros algoritmos de enumeración de resultados.

Outline

Representación de mappings

Autómata con anotaciones

Desde Vset a AnnA

Determinismo

Autómata con anotaciones (AnnA)

Definición

Un autómata con anotaciones (AnnA) es una tupla:

$$\mathcal{N} = (Q, \Sigma, \Lambda, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- Λ es un conjunto finito de etiquetas (Labels).
- $\Delta \subseteq Q \times (\Sigma \cup \Sigma \times \mathcal{N}) \times Q$ es la relación de transición.
- $I \subseteq Q$ es un conjunto de estados iniciales.
- $F \subseteq Q$ es el conjunto de estados finales (o aceptación).

Las transiciones (p, a, ℓ, q) simbolizan que al leer la letra a, está letra **será anotada** con ℓ

Autómata con anotaciones (AnnA)

Ejecución de un AnnA

Sea un AnnA $\mathcal{N} = (Q, \Sigma, \Lambda, \Delta, I, F)$ y un documento $d = a_0 \dots a_{n-1} \in \Sigma^*$.

Definiciones

Una ejecución ρ de \mathcal{A} sobre d es una secuencia $\rho: p_0 \stackrel{t_0}{\to} p_1 \stackrel{t_1}{\to} \dots \stackrel{t_{n-1}}{\to} p_n$ tal que cumple todas las siguientes condiciones:

- $p_0 \in I$
- para todo i < n, t_i es de la forma $t_i = a_i$ o $t_i = (a_i, \ell)$ para algún $\ell \in \Lambda$
- para todo i < n, $(p_i, t_i, p_{i+1}) \in \Delta$.

Se define la anotación de ρ como ann $(\rho) = \text{ann}_0(t_0) \cdot \ldots \cdot \text{ann}_{n-1}(t_{n-1})$:

$$\operatorname{ann}_{i}(t) = \begin{cases} (i,\ell) & t = (a,\ell) \\ \epsilon & t = a \end{cases}$$

Decimos que ρ es de aceptación ssi $q_n \in F$.

Ejecución de un AnnA

Ejemplos de ejecuciones

$$d = \underbrace{\mathbf{a} \ \mathbf{a} \ \mathbf{b} \ \mathbf{b} \ \mathbf{a} \ \mathbf{b} \ \mathbf{a}}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10} \xrightarrow{\mathbf{a}, \mathbf{b}, \square} \xrightarrow{\mathbf{a}/\bullet} \underbrace{\mathbf{a}/\bullet}_{\mathbf{a}, \mathbf{b}, \square} \xrightarrow{\mathbf{a}/\bullet} \underbrace{\mathbf{a}, \mathbf{b}, \square}_{\mathbf{a}/\bullet} \xrightarrow{\mathbf{a}/\bullet}_{\mathbf{a}, \mathbf{b}, \square}$$

Algunas ejecuciones sobre *d*:

$$\rho_{1}: p_{0} \stackrel{a}{\rightarrow} p_{0} \stackrel{\neg/\langle}{\rightarrow} p_{1} \stackrel{a/\bullet}{\rightarrow} p_{1} \stackrel{b}{\rightarrow} p_{1} \stackrel{b}{\rightarrow} p_{1} \stackrel{a/\bullet}{\rightarrow} p_{1} \stackrel{\neg/\rangle}{\rightarrow} p_{2} \stackrel{b}{\rightarrow} p_{2} \stackrel{a}{\rightarrow} p_{2} \stackrel{\neg}{\rightarrow} p_{2} \stackrel{b}{\rightarrow} p_{2}$$

$$\rho_{2}: p_{0} \stackrel{a}{\rightarrow} p_{0} \stackrel{\neg}{\rightarrow} p_{0} \stackrel{a}{\rightarrow} p_{0} \stackrel{b}{\rightarrow} p_{0} \stackrel{b}{\rightarrow} p_{0} \stackrel{a}{\rightarrow} p_{0} \stackrel{\neg/\langle}{\rightarrow} p_{1} \stackrel{b}{\rightarrow} p_{1} \stackrel{a/\bullet}{\rightarrow} p_{1} \stackrel{\neg/\rangle}{\rightarrow} p_{2} \stackrel{b}{\rightarrow} p_{2}$$

$$ann(\rho_{1}) = (1, \langle) (2, \bullet) (5, \bullet) (6, \rangle) \qquad ann(\rho_{2}) = (6, \langle) (8, \bullet) (9, \rangle)$$

$$a \stackrel{\land}{\rightarrow} b \stackrel{a}{\rightarrow} b \stackrel$$

Output de un AnnA

Sea $\mathcal{N} = (Q, \Sigma, \Lambda, \Delta, I, F)$ un autómata con anotaciones (AnnA).

Definición

Se define la función $[\![\mathcal{N}]\!]$ tal que para todo documento $d \in \Sigma^*$:

 $[\![\mathcal{N}]\!](d) = \{ ann(\rho) \mid \rho \text{ es una ejecución aceptación de } \mathcal{N} \text{ sobre } d \}$

Output de un AnnA

Ejemplos de output de un AnnA

$$d = \underbrace{\frac{a \cdot abba}{0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10}}_{0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10} \xrightarrow{a, b, \dots} \underbrace{\frac{a}{0} \cdot \frac{a}{0} \cdot \frac{a}{0} \cdot \frac{a}{0}}_{b} \underbrace{\frac{a}{0} \cdot \frac{a}{0}}_{b} \underbrace{\frac{a}{0} \cdot \frac{a}{0} \cdot \frac{a}{0}}_{b} \underbrace{\frac{a}{0} \cdot \frac{a}{0}}$$

Para el documento d se tiene que:

$$\llbracket \mathcal{N} \rrbracket (d) = \left\{ (1, \langle) (2, \bullet) (5, \bullet) (6, \rangle), (6, \langle) (8, \bullet) (9, \rangle) \right\}$$

¿cuál es la diferencia entre AnnA, vset automata y un transductor?

Outline

Representación de mappings

Autómata con anotaciones

Desde Vset a AnnA

Determinismo

Sea Σ un alfabeto finito.

Teorema

Para todo vset autómata funcional $\mathcal A$ sobre Σ , existe un AnnA $\mathcal N$ sobre $\Sigma \cup \{\#\}$ tal que para todo documento d sobre Σ :

$$[\![\mathcal{N}]\!](d \cdot \#) = \{ \operatorname{seq}(\mu) \mid \mu \in [\![\mathcal{A}]\!](d) \}$$

 $\mathcal N$ entrega la **secuenciación** de los mappings en $[\![\mathcal A]\!](d)$

Sea $\mathcal{A} = (Q, \Sigma, \mathcal{X}, \Delta, I, F)$ un vset autómata funcional y $p, q \in Q$.

Suposición

Sin perdida de generalidad, desde ahora supondremos que todos los estados de un vset autómata funcional .*A* son útiles.

En otras palabras, para todo estado $p \in Q$ de A:

- Existe una ejecución (camino de transiciones) desde I a p
- Existe una ejecución (camino de transiciones) desde p a F.

¿por qué podemos hacer esta suposición?

Sea $\mathcal{A} = (Q, \Sigma, \mathcal{X}, \Delta, I, F)$ un vset autómata funcional y $p, q \in Q$.

Definición

Una ejecución sin lectura (ejec-SL) de p a q en $\mathcal A$ es una secuencia:

$$\pi: p_0 \stackrel{s_0}{\to} p_1 \stackrel{s_1}{\to} \dots \stackrel{s_{k-1}}{\to} p_k$$

- $p_0 = p \ y \ p_k = q$
- para todo i < k, $(p_i, s_i, p_{i+1}) \in \Delta$ y $s_i \in \mathsf{Markers}(\mathcal{X}) \cup \{\epsilon\}$.

Un ejecución sin lectura es un camino de transiciones de p a q tal que $s_i \notin \Sigma$.

Sea $A = (Q, \Sigma, X, \Delta, I, F)$ un vset autómata funcional y $p, q \in Q$.

Definición

Una ejecución sin lectura (ejec-SL) de p a q en $\mathcal A$ es una secuencia:

$$\pi: p_0 \stackrel{s_0}{\rightarrow} p_1 \stackrel{s_1}{\rightarrow} \dots \stackrel{s_{k-1}}{\rightarrow} p_k$$

- $p_0 = p \ y \ p_k = q$
- para todo i < k, $(p_i, s_i, p_{i+1}) \in \Delta$ y $s_i \in \mathsf{Markers}(\mathcal{X}) \cup \{\epsilon\}$.

Propiedades de ejecuciones sin lectura

1. Para todo $i \neq j$, si $s_i = s_j$, entonces $s_i = s_j = \epsilon$.

Demostración: ejercicio

Sea $\mathcal{A} = (Q, \Sigma, \mathcal{X}, \Delta, I, F)$ un vset autómata funcional y $p, q \in Q$.

Definición

Una ejecución sin lectura (ejec-SL) de p a q en $\mathcal A$ es una secuencia:

$$\pi: p_0 \stackrel{s_0}{\rightarrow} p_1 \stackrel{s_1}{\rightarrow} \dots \stackrel{s_{k-1}}{\rightarrow} p_k$$

- $p_0 = p y p_k = q$
- para todo i < k, $(p_i, s_i, p_{i+1}) \in \Delta$ y $s_i \in \mathsf{Markers}(\mathcal{X}) \cup \{\epsilon\}$.

Defina el **conjunto de** π como set $(\pi) = \{s_i \mid s_i \in Markers(\mathcal{X})\}.$

Propiedades de ejecuciones sin lectura

- 1. Para todo $i \neq j$, si $s_i = s_j$, entonces $s_i = s_j = \epsilon$.
- 2. Para todo par de ejec-SL distintas π_1, π_2 de p a q en \mathcal{A} , se cumple que $set(\pi_1) = set(\pi_2)$.

Demostración: ejercicio

Demostración Teorema

Dado un vset autómata funcional $A = (Q, \Sigma, X, \Delta, I, F)$, construimos:

$$\mathcal{N} = (Q, \Sigma \cup \{\#\}, 2^{\mathsf{Markers}(\mathcal{X})}, \Delta', I, F)$$

$$(p,a,q)\in\Delta'$$
 ssi existe $p'\in Q$ y una ejec-SL π de p a p' tal que $(p',a,q)\in\Delta$ y $\operatorname{set}(\pi)=\varnothing$.

$$(p,a,S,q)\in\Delta'$$
 ssi existe $p'\in Q$ y ejec-SL π de p a p' tal que $(p',a,q)\in\Delta$ y $\operatorname{set}(\pi)=S\neq\varnothing$.

Demostración Teorema

Dado un vset autómata funcional $A = (Q, \Sigma, X, \Delta, I, F)$, construimos:

$$\mathcal{N} = (Q, \Sigma \cup \{\#\}, 2^{\mathsf{Markers}(\mathcal{X})}, \Delta', I, F)$$

 $(p, \#, q) \in \Delta'$ ssi existe una ejec-SL π de p a q tal que $set(\pi) = \emptyset$ y $q \in F$.

 $(p, \#, S, q) \in \Delta'$ ssi existe una ejec-SL π de p a q tal que $set(\pi) = S \neq \emptyset$ y $q \in F$.

Demostración Teorema

Dado un vset autómata funcional $A = (Q, \Sigma, X, \Delta, I, F)$, construimos:

$$\mathcal{N} \ = \ (Q, \Sigma \cup \{\#\}, 2^{\mathsf{Markers}(\mathcal{X})}, \Delta', I, F)$$

$$(p, a, q) \in \Delta' \quad \mathsf{ssi} \qquad \mathsf{existe} \ p' \in Q \ \mathsf{y} \ \mathsf{una} \ \mathsf{ejec\text{-}SL} \ \pi \ \mathsf{de} \ p \ \mathsf{a} \ p' \ \mathsf{tal} \ \mathsf{que}$$

$$(p', a, q) \in \Delta \ \mathsf{y} \ \mathsf{set}(\pi) = \varnothing.$$

$$(p, a, S, q) \in \Delta' \quad \mathsf{ssi} \qquad \mathsf{existe} \ p' \in Q \ \mathsf{y} \ \mathsf{ejec\text{-}SL} \ \pi \ \mathsf{de} \ p \ \mathsf{a} \ p' \ \mathsf{tal} \ \mathsf{que}$$

$$(p', a, q) \in \Delta \ \mathsf{y} \ \mathsf{set}(\pi) = S \neq \varnothing.$$

$$(p, \#, q) \in \Delta' \quad \mathsf{ssi} \qquad \mathsf{existe} \ \mathsf{una} \ \mathsf{ejec\text{-}SL} \ \pi \ \mathsf{de} \ p \ \mathsf{a} \ q \ \mathsf{tal} \ \mathsf{que}$$

$$\mathsf{set}(\pi) = \varnothing \ \mathsf{y} \ q \in F.$$

$$(p, \#, S, q) \in \Delta' \quad \mathsf{ssi} \qquad \mathsf{existe} \ \mathsf{una} \ \mathsf{ejec\text{-}SL} \ \pi \ \mathsf{de} \ p \ \mathsf{a} \ q \ \mathsf{tal} \ \mathsf{que}$$

$$\mathsf{set}(\pi) = S \neq \varnothing \ \mathsf{y} \ q \in F.$$

Por las propiedades 1. y 2. la construcción es correcta

Demostración Teorema

Dado un vset autómata funcional $A = (Q, \Sigma, X, \Delta, I, F)$, construimos:

$$\mathcal{N} \ = \ (Q, \Sigma \cup \{\#\}, 2^{\mathsf{Markers}(\mathcal{X})}, \Delta', I, F)$$

$$(p, a, q) \in \Delta' \quad \mathsf{ssi} \qquad \mathsf{existe} \ p' \in Q \ \mathsf{y} \ \mathsf{una} \ \mathsf{ejec\text{-}SL} \ \pi \ \mathsf{de} \ p \ \mathsf{a} \ p' \ \mathsf{tal} \ \mathsf{que}$$

$$(p', a, q) \in \Delta \ \mathsf{y} \ \mathsf{set}(\pi) = \varnothing.$$

$$(p, a, S, q) \in \Delta' \quad \mathsf{ssi} \qquad \mathsf{existe} \ p' \in Q \ \mathsf{y} \ \mathsf{ejec\text{-}SL} \ \pi \ \mathsf{de} \ p \ \mathsf{a} \ p' \ \mathsf{tal} \ \mathsf{que}$$

$$(p', a, q) \in \Delta \ \mathsf{y} \ \mathsf{set}(\pi) = S \neq \varnothing.$$

$$(p, \#, q) \in \Delta' \quad \mathsf{ssi} \qquad \mathsf{existe} \ \mathsf{una} \ \mathsf{ejec\text{-}SL} \ \pi \ \mathsf{de} \ p \ \mathsf{a} \ q \ \mathsf{tal} \ \mathsf{que}$$

$$\mathsf{set}(\pi) = \varnothing \ \mathsf{y} \ q \in F$$

$$(p, \#, S, q) \in \Delta' \quad \mathsf{ssi} \qquad \mathsf{existe} \ \mathsf{una} \ \mathsf{ejec\text{-}SL} \ \pi \ \mathsf{de} \ p \ \mathsf{a} \ q \ \mathsf{tal} \ \mathsf{que}$$

$$\mathsf{set}(\pi) = S \neq \varnothing \ \mathsf{v} \ q \in F$$

Por último, podemos ver que: $[\![\mathcal{N}]\!](d \cdot \#) = \{ \operatorname{seq}(\mu) \mid \mu \in [\![\mathcal{A}]\!](d) \}.$

Termine la demostración (ejercicio)

Outline

Representación de mappings

Autómata con anotaciones

Desde Vset a AnnA

Determinismo

Determinismo para autómata con anotaciones

Determinismo para autómata con anotaciones

Sea $\mathcal{N} = (Q, \Sigma, \Lambda, \Delta, I, F)$ un autómata con anotaciones.

Definición

Decimos que \mathcal{N} es Input-Output determinista (I/O-determinista) ssi |I| = 1 y para todo $(p, t_1, q_1), (p, t_2, q_2) \in \Delta$, si $t_1 = t_2$, entonces $q_1 = q_2$.

 ${\cal N}$ funciona de manera determinista al recibir el documento y una anotación simultáneamente

¿qué ventaja tiene un autómata I/O-determinista?

Determinismo para autómata con anotaciones

Todo AnnA se puede I/O-determinizar

Teorema

Para todo AnnA $\mathcal{N} = (Q, \Sigma, \Lambda, \Delta, I, F)$, existe un AnnA I/O-determinista \mathcal{N}^{det} tal que $[\![\mathcal{N}]\!] = [\![\mathcal{N}^{\text{det}}]\!]$.

Demostración

Considere la determinización de ${\mathcal N}$ como:

$$\mathcal{A}^{\text{det}} = (2^{Q}, \Sigma, \Lambda, \Delta^{\text{det}}, q_0^{\text{det}}, F^{\text{det}})$$

- $\mathbf{Z}^Q = \{S \mid S \subseteq Q\}$ es el conjunto potencia de Q.
- $q_0^{\text{det}} = 1.$
- Δ^{det} : $2^Q \times (\Sigma \cup \Sigma \times \Lambda) \rightarrow 2^Q$ tal que para todo $t \in \Sigma \cup (\Sigma \times \Lambda)$:

$$\Delta^{\det}(S,t) = \{ q \in Q \mid \exists p \in S. (p,t,q) \in \Delta \}$$

 $F^{\text{det}} = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}.$