

Física Geral I

Estudo do Movimento Retilíneo Uniformemente Acelerado

Professor Doutor Miguel Araújo Departamento de Física da Universidade de Évora

Criado por: Rui Casa Branca, Nº 51337; Rodrigo Marques, Nº 52183; André Banha, Nº 52792; Gonçalo Prazeres, Nº 52049

1. Resumo

Esta experiência tem como objetivo medir o valor da aceleração gravítica (g) através do declive da reta da regressão linear adquirida pelos valores obtidos na experiência de queda livre. O valor adquirido foi g \approx 10,3648 $\mp~0.2235\,\text{m/s}^2.$ As principais fontes de erro foram a falta de precisão no alinhamento das células fotoelétricas e medições das distâncias entre as duas células fotoelétricas.

2.Introdução

Nesta experiência foi analisado o tempo de queda da esfera que seguia com Movimento Retilíneo Uniformemente Acelerado. O Movimento Retilíneo Uniformemente Acelerado ocorre quando um corpo cuja velocidade aumenta sempre, na mesma proporção, ao longo do tempo.

3. Fórmulas utilizadas

$$y = v_0 t + \frac{1}{2}gt^2$$

$$\frac{y}{t} = v_0 + \frac{1}{2}gt$$

$$g * \frac{1}{2} = a$$

$$g = 2 * a$$

y = Distância dos dois interruptores;

v0 = velocidade inicial;

g = aceleração da gravidade;

t = tempo de queda livre;

a = declive da reta linear.

4. Material utilizado para a experiência e o seu procedimento

Material:

- Suporte com o eletroíman;
- 2 Interruptores de lazer;
- Cronometró digital;
- Craveira;
- Fita métrica;
- Esfera de metal.

Procedimento:

- 1. Começamos por medir o diâmetro da esfera de metal utilizando a craveira;
- 2. Após isso afastamos um interruptor lazer do outro e medimos essa distância com a fita métrica registando esse valor;
- 3. Depois ligamos o eletroímã e colocamos a bola de metal junto eletroímã.
- 4. Reiniciamos o cronômetro digital para iniciar uma nova medição;
- 5. De seguida desligamos o eletroímã e registamos o tempo que a bola demorou a chegar do primeiro interruptor ao segundo, apontando esse valor;
- 6. Por fim repetimos os procedimentos mais 5 vezes, sempre afastando mais e mais o segundo interruptor do primeiro.

y (m)	t (s)	$\frac{y}{t}$ (m/s)
0,1	0.0827	1,2092
0,2	0,1319	1,5163
0,3	0,1710	1,7544
0,4	0,2094	1,9102
0,5	0,2416	2,0695

0,6	0,2725	2,2018

5. Cálculos e Resultados

Figura 2: Regressão linear do movimento retilineo uniformemente acelerado da esfera.

$$y = v_0 t + \frac{1}{2}gt^2$$

$$\frac{y}{t} = v_0 + \frac{1}{2}gt$$

$$b = v_0 = 0.818946 \mp 0.04376$$

$$a = 5,1824 \mp 0.2235$$

$$g = 2 * a = 2 * (5,1824) = 10,3648 \mp 0.2235 \text{ m/s}^2$$

6. Conclusão

Concluímos na experiência, que obtivemos um valor e a sua incerteza fora do intervalo da aceleração gravítica esperado (g = 9,8 m/s²). Os possíveis erros nesta experiência foram: falta de precisão no alinhamento nas duas células fotoelétricas, medição do diâmetro da esfera e a medição das distâncias entre as células fotoelétricas.