SEQUENCE LISTING

		SECOENCE TISTING	
	<110>	Higeta Shoyu Co., Ltd.	
	<120>	Novel Brevibacillus chosinensis and Producing Method of I	Protein
	by Using Th	nereof as Host	
	<130>	6826	
	<141>	2004-11-08	
	<160>	37	
	<210>	1	
	<211>	756	
	<212>	DNA	
	<213>	Brevibacillus choshinensis	
	<400>	$1\cdot$	
	atgggtgccg a	atatcaaaaa tgcgagtcaa ccatttctga ccaatgacca agtgaaagat	60
	ttgatagcca a	agagccaagc tggcgatacg gatgcacgtg agcttctcgt gaatagcaat	120
	atcagactgg 1	tctggtccgt cgtccagcgc tttatcaacc gcgggtatga agcggatgat	180
	ttgtttcaga to	eggttgeat tggettgete aaggeegttg acaagttega tetttegtae 24	O
	gatgtgagat	tttcgaccta tgcggtgcca atgatcatcg gagaaattca acgctttttg	300
٠	cgcgatgacg	gtacggttaa ggtcagtcga tcgttaaaag aaacagcgaa taaggtgcgg	360
	cgatcaaagg	atgaattgta caagcaattc ggccgtgccc ccacgatcgc agaagtggca	420
	gaagcagtgg	gaatcacgcc ggaggaagta gtctttgcgc aagaggcaag cagagcgcct	480
	tectecatee a	tgagaccgt ttttgaaaat gacggcgatc ccatcacact gatcgatcag	540
	atagcggatg	aaggtgtgaa caagtggttt gagaaaattg cettgaagga cgccatcage	600
	aggctgagcg	gagegtgagea geteategte tacetgeget attacaagga teagacaeag	660
	tctgaggtag	cagagegtet agggattteg caggteeagg tetegegtet ggaaaagegt	720
	atcctgctaa o	cgatcaagga gcaaattgaa cattag	756
	<210>	2	
	<211>	251	
	<212>	PRT	
	<213>	Brevibacillus choshinensis	
	<400>	2	
	Met Gly Al	la Asp Ile Lys Asn Ala Ser Gln Pro Phe Leu Thr Asn Asp	
		5 10 15	
	Gln Val Lys	s Asp Leu Ile Ala Lys Ser Gln Ala Gly Asp Thr Asp Ala	
		20 25 30	
	Arg Glu Le	eu Leu Val Asn Ser Asn Ile Arg Leu Val Trp Ser Val Val	
	35		
	Gln Arg Ph	he Ile Asn Arg Gly Tyr Glu Ala Asp Asp Leu Phe Gln Ile	
	50	55 6O	
	Gly Cys Ile	e Gly Leu Leu Lys Ala Val Asp Lys Phe Asp Leu Ser Tyr	
	65	70 75 80	•
	Asp Val Ar	rg Phe Ser Thr Tyr Ala Val Pro Met Ile Ile Gly Glu Ile	

		85	:	90	95	
	Gln Arg Phe	e Leu Arg Asp	Asp Gly Th	. Val Lys V	al Ser Arg Ser Leu	
		100	105		110	
	Lys Glu Thr	Ala Asn Lys	Val Arg Arg	Ser Lys As	p Glu Leu Tyr Lys	
	115		120		125	
	Gln Phe Gly	Arg Ala Pro'	Thr Ile Ala C	lu Val Ala	Glu Ala Val Gly	
	130		.35	140		
	Пе Thr Pro	Glu Glu Val V	al Phe Ala G	ln Glu Ala	Ser Arg Ala Pro	
	145	150		155	160	
	Ser Ser Ile I	His Glu Thr V	al Phe Glu A	asn Asp Gly	y Asp Pro Ile Thr	
		165		.70	175	
	Leu Ile Asp	Gln Ile Ala As	sp Glu Gly V	al Asn Lys	Trp Phe Glu Lys	
		180	185		190	
	Ile Ala Leu	Lys Asp Ala Il	e Ser Arg Le	eu Ser Glu	Arg Glu Gln Leu	
	195	_	200		205	
	Ile Val Tyr I	Leu Arg Tyr T	yr Lys Asp C	ln Thr Glr	n Ser Glu Va l Ala	
	210	5	215	25	20	
	Glu Arg Lev	u Gly Ile Ser (iln Val Gln	Val Ser Arg	g Leu Glu Lys Arg	
	225	230		235	240	
	Ile Leu Leu	Thr Ile Lys G	lu Gln Ile G	lu His		
		245	\$	250		
	<210>	3				
	<211>	2265				
	<212>	DNA				
	<213>	Brevibacillu	s choshinens	sis		
	<400>	3				
					ttttcttc ctcactggtc	60
	-				tcaaagga caagccgccg	120
					agcett gategaceaa	180
			•		agctgtgga gaagtttttg	
					tcgggaa aaaagcaagc	300
					atccaagct caaagatgac	360
					gtgattgc cctggtcgag	420
	-				tccttgtg gacggcagac	480
					ggctatac gactcctgaa	540
					tcgggtga gacatggacc	600
					agaaatt ctacggtgga	660
	=				gtcgagac actggaatct	720
					acgcgaccc gtatgacttg	780
					caacctgat gctggttcac	840
•	tccggtattg g	rtgaagagac tg	gggaagat gcg	gatgcga tc	tggtctca ccgctggact	900

				000
ctgaaaaagc c	gacagaaat tcc	aggcacc agcctgaaag	g cttacgacta catgattcag	960
cctgaagatg g	egeaccegg egta	attcgca catgaatacg	gacacaacct gggactgcca	1020
gatctgtatg ac	acgacaag act	gggacat gattcgccgg	ttggcgcatg gtcgctgatg	1080
tcttccggaa go	catacagg taas	gatette caaacecaae (caaccggatt tgatccttgg	1140
tccaaaatga t	gctgcagga aat	gtatggg ggcaagtgga	a ttgagccgca agtcatcaat	1200
tacgaagacc ta	gaaaaaacg ga	aaaagcag gcttcgctc	t acgatggcag cagcctcgat	1260
gaagatggca a	aetcatcaa gc	tgaatatg ccgcaagta	g agaagacace geeggtteaa	1320
			acaatctgaa cacgaagatg	1380
oottoggaagacg t	rategaeet gae	aggreece ageteegeat	cgatgagett cgaeteetgg	1440
acticggaag o	salegacer gae	actaccte taceteaace	tgattgatgt cgactcaggt	1500
agagegateg a	igatiogggta cg	tacractus raugugaansa	ag gctgggataa ggaagaaa	tc
	Jagtaaaaga gi	iacgaigae gaaaceaa	m2 200222 more 20 miles	
1560			teaactacot garggatggc	1620
agcctgaacg a	itttegetgg caa	aaagatt caagtegagt	tcaactacgt gacggatggc	1680
ggcttggcga t	gtccggctt ctat	ctggat aannigtag n	cacagcaga cggcgaagta	1740
gtcttctcgg at	gatgcaga agg	cgaccag aagiiigaic	tggatggatt catccatttc	1800
gacggcgaag	gcaaaatgta cg	gacgegtae tacetggta	g agetgegete ceatgaagge	1860
gtggacgagg	gtctgaaata cti	teegeege aatgacacat	tcttcacgta tgatccaggt	1920
			aagacaacaa Caccagcaac	1980
catccagget a	.cggcatgct ggg	cegtagte gatgegeate	aggaagttcg ttactggaat	
aacgatgagg	gcaacgagga g	gccattgcc gactcccgt	t accaagtgaa cgatgcggca	
ttcagcccga a	caaaacctc cgg	gcatggat ctcgactaca	ttctcggcac gatggattac	2100
			g attacacgat gccggaagtt	2160
ccggaaatcg	gaaaaatcct gc	cgaagatc ggtctgcaa	a tcaaattaat tcgtgtgtcc	2220
aagaaattca	cgaacgcaca gg	stegagtte tecateaaa	a aataa	2265
<210>	4			
<211>	754			
<212>	PRT			
<213>	Brevibacillu	s choshinensis		
<400>	4			
Val Asn Ala	Val Lys Lys	Gly Lys Lys Leu Le	ú Ser Ile Leu Phe Ser	
	5	10	15	
Ser Ser Lev	ı Val Leu Ser	Gly Ile Ala Ala Val	Pro Ala Thr Gly Met	
	20	25	30	
Ala Iws Ser		Pro Pro Leu Glu Va	al Asp Leu Ser Thr Val	
35		40	45	
			sp Gln Gly Glu Ile Asp	
50	The world was and the	55	60	
	a Asn Gln Glu		la Val Glu Lys Phe Leu	
	70	7	0.0	
65			p Ser Ser Ser Phe Gly	
Arg Asp Ly		90	95	
	85	30	00	

Lys Lys Ala Se	r Lys Thr Glr		a Val Ser Lys		
10		105		110	
Lys Val Ser Ly	s Leu Lys Asp	Asp Lys Gl		a Ser Lys Arg	
115		120	12		
Val His Thr As	sp Asn Leu Va	ıl Ile Ala Lev	ı Val Glu Ph	e Asn Asp Leu	
130	138		140		
Glu His Asn G	ln Val Pro Ly	s Gln Ser As	sp Ser Leu T	rp Thr Ala Asp	
145	150		155	160	
Phe Asp Gln I	ys His Tyr Gl	u Glu Met I	eu Phe Asp	Arg Lys Gly Ty	\mathbf{r}
	165	170		175	
Thr Thr Pro G	llu Gly Ile Se	Met Thr Ti	nr Met Ala L	ys Tyr Tyr Tyr	
18		185		190	
Glu Gln Ser G	lly Glu Thr T	p Thr Val A		al Thr Pro Trp	
195		200	20		
Leu Thr Ala C	llu Lys Asp L	ys Lys Phe T		Asn Asp Glu As	n
210	21		220	G1 G	
Gly Asn Asp A	Ala Asn Pro A	rg Asp Leu ^v		Thr Leu Glu Se	r
225	230		235	240	
Val Gly Asp A	la Ile Lys Gly			p Gln Arg Asp	
	245	25		255	. ,
Pro Tyr Asp I	eu Asp Gly A		eu Met Glu	Pro Asp Gly M	.et
	60	265		270	
Leu Asp Asn	Leu Met Leu			Glu Glu Thr Gl	У
275		280		85	
				eu Lys Lys Pro	
290	29		300	. Mad Tla Cla	
		r Leu Lys A		yr Met Ile Gln 320	
305	310		315		
Pro Glu Asp (lyr Gly His Asn	L
	325	38		335	!
			Thr Arg Let	a Gly His Asp S	· 61
	40	345	Ol - C - T	350	
	da Trp Ser Le			His Thr Gly Lys 165	1
355	. a. b. m	360			۵ŧ
•			380 380	Ser Lys Met Me	- 6
370		75 31. t /\doc		Tin Vol Tie Aen	
		dly Lys 1rp .		Gln Val Ile Asn 400	1
385	390	. r r. 4	395		
'l'yr Glu Asp				Leu Tyr Asp Gl 415	y
G G 7	405		10 lo Tyo Ton A	Asn Met Pro Gli	n
Saw Sar Lan	uen (vill den f	71V 1.VS VXI 1	エニ アムシ アにかっこ	いつに エソエしい エエひ ひい	

420	425		430
Val Glu Lys Thr Pro Pro	o Val Gln Pro	Lys Asp Gly A	sp Tyr Ser Tyr
435	440		45
Phe Ser Asp Glu Gly As	sp Asn Leu As	n Thr Lys Me	t Thr Ser Glu Val
450	455	460	
lle Asp Leu Thr Gly Ala	a Ser Ser Ala S	Ser Met Ser P	he Asp Ser Trp
465 47		475	480
Arg Ala Ile Glu Thr Gly	Tyr Asp Tyr	Leu Tyr Val A	sn Val Ile Asp
485		490	495
Val Asp Ser Gly Glu Se	r Thr Thr Val	Lys Glu Tyr A	Asp Asp Glu Thr
500	505		510
Lys Gly Trp Asp Lys Gl	u Glu Ile Ser	Leu Asn Asp I	Phe Ala Gly Lys
515	520		525
Lys Ile Gln Val Glu Pho	e Asn Tyr Val	Thr Asp Gly (Gly Leu Ala Met
530	535	540	
Ser Gly Phe Tyr Leu A	sp Asn Phe Al		
545 55		555	560
Val Phe Ser Asp Asp A	la Glu Gly Ası		
565		570	575
Phe Ile His Phe Asp G			
580	585		590
Val Glu Leu Arg Ser H			
595	600		605
Arg Arg Asn Asp Thr I			y Leu vai He Irp
610	615	620	. Am The Cor Asr
Tyr Tyr Asp Gly Arg P		ir Gin Asp Asi 635	1 ASH THE SEL ASH 640
020	30 5-+ 7 (1)- - 7/ ₂		
His Pro Gly Tyr Gly M	let Leu Gly va		655
645 Arg Tyr Trp Asn Asn A	۸ مم Cla Clar ۸	650 cn Glu Glu Al	
	asp Giu Giy A 668		670
660 Arg Tyr Gln Val Asn A			
	680		685
675 Met Asp Leu Asp Tyr I			
690	695	700	r Grund to the same
Gly Ile Thr Val Phe Ly			Met Pro Glu Val
=	10	715	720
Pro Glu Ile Gly Lys Ile			
725	2204 2 20 2290	730	735
Ile Arg Val Ser Lys Ly	s Phe Thr Ası		
740	74!		750

Lys Lys		
754		
<210>	5	
<211>	1362	
<212>	DNA	
<213>	Brevibacillus choshinensis	
<400>	5	
atgaaccatc c	tgattttcg cgatctaccc gcctgcatgg aagacgtaac cctcgctgcc	60
	acactggtcc accagatccg accgaatacc aatcattgta tggacgcttg	120
	ccgaaactet ccctccgctc tatcgggage atgtgtatca cccttttett	180
	acaagttgtc tgagtcagga tttgcgcaga tgctccgtcg agatcctcaa	240
	aagccggtct gttttgcgat atcgcacagg ccattctgca aaacggcgaa	300
gcgtatgaac g	gcgatgccac ggatgccttt caggaagtag tcagcgattt gtacgacggt	360
	ggaagacag gagtggcatc aaaccgcctg atgaaagctt gattgctcct	420
	gggacgccc gcaattcgga cettatacgt ggacagctga agccgctgcc	480
	caagacggg cattgtcaat ttgcccccgg caaacgcccg cctgggtctg	540
ctcgcgtggt c	tgcattagg tcacgaaacg gctggacacg acattctcca cgccgacacc	600
ggtttgcttg g	agaactgca gcaaaccgtc tatgacgctt tgtttgatga gcttcacaat	660
	cggactactg gtcgctccga atcgacgaga ctgcctccga cgttttggga	720
	ceggecege tgeagggatt ggaetgattg gatattteeg eggeettaat	780
aaggcgtaca	ccggacaage aacactgcgg aatacagggc cacagaatga cccacatcca	a 840
	tgegeggtta tettgetget gagaetgete gtetgetgea ttttgaeaae	900
gcatccgact g	gggcacaggc acttetegag gaaaccagge gtgatettaa aggeateaca	960
ataggcagag	cctctttgga tgcagaaacc gctcaaaaat ctgctgccat tgtcgctcgc	1020
acaattatgg	aagcacgcct getcagtetg gaaggteatg eeetegggea aatteaaaac	1080
tggcacaacg	aggatgaacg aatcgttcag gaaattcgct cccattttac aggttccctg	1140
accgtgcaag	acggcattgt ttcgggtatg tatgctgcgc atgtcgtggc agcagccgtc	1200
caagcagccg	tttcaggaga gatggatacc tccgctgcct tcacagggat gaaaaccttg	1260
ctgaagagca	tgcacgacgc caatcettee tggggacete tetatgtacg atategeggt	1320
gatctcactc c	gcatcgcat ttactcccgt tctgcgagct ag	1362
<210>	6	
<211>	453	
<212>	PRT	
<213>	Brevibacillus choshinensis	
<400>	6	
Met Asn Hi	is Pro Asp Phe Arg Asp Leu Pro Ala Cys Met Glu Asp Va	L
	5 10 15	
Thr Leu Ala	a Ala Leu Asp Glu Tyr Thr Gly Pro Pro Asp Pro Thr Glu 20 25 30	
Tur Cla So	r Leu Tyr Gly Arg Leu Gln Glu Val Ala Glu Thr Leu Pro	
35		
00		

	Arg Glu His Va			Gln Ala Met	Asp
50	55		60 	A A D	Cla
Lys Leu Ser (Glu Ser Gly Ph	e Ala Gin iv	let Leu Arg	Arg Asp Pro	СШ
65	70		75		30
Lys Glu Arg (Glu Ala Gly Le			in Ala He Le	eu
	85	9		95	CI.
Gln Asn Gly	Glu Ala Tyr Gl	lu Arg Asp A	la Thr Asp	Ala Phe Gin	Glu
1	00	105		110	~
Val Val Ser A	sp Leu Tyr Ás	p Gly Phe L	eu Ser Glu	Glu Asp Arg	Ser
115		120		.25	
Gly Ile Lys P	ro Pro Asp Glu	ı Ser Leu II	e Ala Pro Le	u Val Lys Tr	p
130	13	5	140		
Gly Arg Pro	Gln Phe Gly P	ro Tyr Thr '	Irp Thr Ala	Glu Ala Ala	Ala
145	150		155		160
His Phe Gly	lle Lys Thr Gl	y Ile Val As	n Leu Pro P	ro Ala Asn A	la
	165	1	70	175	
Arg Leu Gly	Leu Leu Ala T	rp Ser Ala	Leu Gly His	Glu Thr Ala	. Gly
• -	180	185		190	
His Asp Ile I	eu His Ala As	p Thr Gly L	eu Leu Gly	Glu Leu Gln	Gln
195		200		205	
Thr Val Tyr.	Asp Ala Leu P	he Asp Glu	Leu His Ası	ı Arg Thr Le	u Ala
210	2		220)	
Asp Tyr Trp	Ser Leu Arg I	le Asp Glu T	Γhr Ala Ser .	Asp Val Leu	Gly
225	230		235		240
	Thr Gly Pro A	la Ala Gly I	le Gly Leu I	le Gly Tyr P	he
	245		250	255	
Arg Gly Leu	Asn Lys Ala T	yr Thr Gly	Gln Ala Th	r Leu Arg As	n Thi
	260	265		270	
Gly Pro Gln	Asn Asp Pro I	His Pro Ala	Asp Ile Leu	Arg Gly Tyr	Leu
275		280		285	
Ala Ala Glu	Thr Ala Arg I	eu Leu His	Phe Asp As	n Ala Ser As	p Trp
290		95	300		
	Leu Leu Glu (Glu Thr Arg	g Arg Asp Le	eu Lys Gly II	e Thr
305	310		315		320
	Ala Ser Leu As	sp Ala Glu T	Thr Ala Gln	Lys Ser Ala	Ala
	325		330	335	
Tle Val Ala A	Arg Thr Ile Me	t Glu Ala A	rg Leu Leu	Ser Leu Glu	Gly
	340	345		350	
His Ala Leu	Gly Gln Ile G	ln Asn Trp	His Asn Glu	ı Asp Glu Ar	д Пе
355		360		365	
	Tle Arg Ser H		Gly Ser Leu	Thr Val Gln	Asp

370	375		380		
Gly Ile Va	al Ser Gly Met Tyr Ala	Ala His Val V	al Ala Ala A	la Val	
385	390	395		400	
	la Val Ser Gly Glu Met	t Asp Thr Ser	Ala Ala Phe	: Thr Gly	
	405	410		415	
Met Lys '	<u>Fhr</u> Leu Leu Lys Ser M 420	et His Asp Al 425	a Asn Pro Se 430		
Pro Leu '	Tyr Val Arg Tyr Arg Gly	y Asp Leu Th	r Pro His Ar	g 11e Tyr	
	35 440		445		
	Ser Ala Ser				
450	452				
<210>	7				
<211>	28				
<212>	•				
<213>	Artificial Sequence				
<400>	7				
gggggtac	ct cactetgtea geatgetg		-		28
<210>	8				
<211>	27				
<212>	DNA				
<213>	Artificial Sequence				
<400>	8				
gggggato	ccc ggcgtgattc ccactgc				27
<210>	9				
<211>	27				
<212>	DNA				
<213>	Artificial Sequence				
<400>	9				0.77
gggctgca	aga tagcggatga aggtgtg				27
<210>	10				
<211>	30				
<212>					
<213>					
<400>	10				20
gggtctag	gac ctgcttatac atctgtttcg	5			30
<210>	11				
<211>	39				
<212>					
<213>					
<400>	11				20
gagagac	cat ggaccatcct gattttcgo	g atctacccg			39

```
<210>
         12
         60
<211>
<212>
         DNA
         Artificial Sequence
<213>
<400>
          12
agaattcagt ggtggtggtg gtggtggtgg tggctcgcag aacgggagta aatgcgatgc
                                                                    60
<210>
          13
          44
<211>
<212>
          DNA
          Artificial Sequence
<213>
<400>
          13
                                                                   44
aaaagaattc tttctgcaga acaggatgcg ggggagccgc cgct
<210>
          14
          37
<211>
          DNA
<212>
<213>
          Artificial Sequence
<400>
          14
                                                                   37
aaaaaggatc cttatagcat ctaatcttca acaaact
<210>
          15
<211>
          39
 <212>
          DNA
          Artificial Sequence
 <213>
 <400>
                                                                    39
 aaaaaaagat cttgaacgat gacctctaat aattgttaa
 <210>
          16
 <211>
          43
          DNA
 <212>
          Artificial Sequence
 <213>
 <400>
                                                                    43
 aaaagaattc aaatctagaa agtgtgtgct ctgcgaggct gtc
 <210>
           17
           30
 <211>
           DNA
 <212>
           Artificial Sequence
 <213>
 <400>
           17
                                                                   30
 tccatggcac aatttggtat attatgtaaa
 <210>
           18
           32
 <211>
           DNA
 <212>
           Artificial Sequence
 <213>
 <400>
           18
```

actcgagtt	a tatgcgtcta tttatgtagg at	32
<210>	19	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<400>	19	
ttttttctag	g actttatgaa tataaagtat agtgtgt	37
<210>	20	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<400>	20	9.0
gggggctg	gca gttatatgcg tctatttatg taggatg	37
<210>	21	
<211>	23	
<212>		
<213>		
<400>	21	23
	tnc ayacngayaa yct	23
<210>	22	
<211>	23	
<212>		
<213>		
<400>	22	23
_	tng gytgngtytg gaa	20
<210>	23	
<211>		
<212>		
<213>	Artificial Sequence	
<400>	23	23
_	gtg cttttggtcg aag	20
<210>	24	
<211>		
<212>		
<213>		
<400>		. 23
	accg gagtgaacca gca	. 10
<210>	25	
<211>	19	
<212>		
<213>	Artificial Sequence	

```
<400>
         25
                                                                   19
actatagggc acgcgtggt
         26
<210>
         41
<211>
<212>
         DNA
         Artificial Sequence
<213>
<400>
                                                                 41
ctcccatgge tttcgctacc cccgtgcagt ccgtggactg c
          27
<210>
          34
<211>
          DNA
<212>
          Artificial Sequence
<213>
<400>
          27
                                                                   34
atataagett ttagggagag aggaetteea tggt
          28
<210>
<211>
          35
<212>
          DNA
          Artificial Sequence
 <213>
 <400>
                                                                    35
tttctgcagg taaaatcgaa gaaggtaaac tggta
 <210>
          29
 <211>
          34
 <212>
          DNA
          Artificial Sequence
 <213>
 <400>
                                                                    34
 aaaaagettt tacttggtga tacgagtetg egeg
 <210>
           30
 <211>
           37
 <212>
           DNA
           Artificial Sequence
 <213>
 <400>
           30
                                                                    37
 ttttggatcc gaggaggtgt cggagaactg tagccac
 <210>
           31
 <211>
           34
 <212>
           DNA
           Artificial Sequence
 <213>
 <400>
           31
                                                                   34
 aaaaagette tacaetggea geteeteetg tetg
           32
 <210>
 <211>
           23
 <212>
           DNA
```

~210~	Trancia pedaence			
<400>	32			
aaggateece gteatateeg gea 23				
<210>	33			
<211>	28			
<212>	DNA			
<213>	Artificial Sequence	•		
<400>	33			
aaaagctt	tta ggcgttatcc gctttagc	28		
<210>	34			
<211>	39			
<212>	DNA			
<213>	Artificial Sequence			
<400>	34			
tatatcca	tg gettettaet gecaggegee etttttaa	39		
<210>	35			
<211>	37			
<212>	DNA			
<213>	Artificial Sequence			
<400>	35			
atataag	ctt ttattttgat gctctctggc cttggaa	37		
<210>	36			
<211>	32			
<212>	DNA			
<213>	Artificial Sequence			
<400>	36			
atattcat	tga gcaacgactt gcttcgatcc ca	32		
<210>	37			
<211>	36			
<212>	DNA			
<213>	Artificial Sequence	•		
<400>	37			
atataaa	ott teoottetaa agataateta taagta	36		