

COMPUTAÇÃO

DISCIPLINA: Cálculo I

Carga Horária Total:80h

Número de Créditos: 04

PROF:LUCAS CAMPOS

TEOREMA DE CÁLCULO

TEOREMA DO ANULAMENTO

Teorema (do anulamento ou de Bolzano). Se f for contínua no intervalo fechado [a, b] e se f(a) e f(b) tiverem sinais contrários, então existirá pelo menos um c em [a, b] tal que f(c) = 0.

TEOREMA DE CÁLCULO TEOREMA DO ANULAMENTO

. Mostre que a equação $x^3 - 4x + 8 = 0$ admite pelo menos uma raiz real.

TEOREMA DE CÁLCULO

TEOREMA DO VALOR INTERMEDIÁRIO

Teorema (do valor intermediário). Se f for contínua em [a, b] e se γ for um real compreendido entre f(a) e f(b), então existirá pelo menos um c em [a, b] tal que $f(c) = \gamma$.

TEOREMA DE CÁLCULO TEOREMA DO MÁXIMO/MÍNIMO

Teorema (de Weierstrass). Se f for contínua em [a, b], então existirão x_1 e x_2 em [a, b] tais que $f(x_1) \le f(x) \le f(x_2)$ para todo x em [a, b].

TEOREMA DE CÁLCULO MÁXIMOS E MÍNIMOS

TEOREMA DE CÁLCULO TEOREMA DE FERMAT

Se uma função tiver um máximo ou mínimo local em um ponto c e for derivável nesse ponto, então f'(c) = 0

TEOREMA DE CÁLCULO TEOREMA DE ROLLE

Considere uma função f satisfazendo as seguintes condições:

- f é contínua no intervalo fechado [a, b]
- (2) f é derivável no intervalo aberto (a, b)
- (3) f(a) = f(b)

Então, existe um número c em (a, b), tal que, f'(c) = 0.

TEOREMA DE CÁLCULO TEOREMA DO VALOR MÉDIO

Considere uma função f satisfazendo as condições:

- f é contínua no intervalo fechado [a, b]
- (2) f é derivável no intervalo aberto (a, b)

Então, existe um número c em (a,b), tal que $f'(c) = \frac{f(b) - f(a)}{b-a}$.

