Introducción a la Matemática

Iker M. Canut

February 10, 2020

Contents

1	Con	njuntos	
	1.1	Definiciones Básicas	
	1.2	Representación de conjuntos	
	1.3	Subconjuntos	
	1.4	Operaciones	:

1 Conjuntos

1.1 Definiciones Básicas

Un Conjunto es una colección de objetos. Los conjuntos se denominan con letras mayúsculas. Y los elementos que lo forman con letras minúsculas. El conjunto vacio se denomina \emptyset .

1.2 Representación de conjuntos

• Por Extensión: Se lista todo entre llaves. $\{a, b, c, d, ...\}$

• Por Comprension: Se dicen las propiedades. $\{x/x...\}$

1.3 Subconjuntos

El conjunto B es subconjunto de A si y sólo si todo elemento de B, es también de A.

$$B \subset A \iff (x \in B \Rightarrow x \in A)$$

Dos conjuntos serán iguales cuando posean los mismos elementos.

$$B = A \iff (A \subset B \land B \subset A)$$

Al conjunto que contiene a todos los datos en un contexto específico lo denominaremos **Conjunto Universal** y se denota con la letra **U**.

1.4 Operaciones

• Intersección de Conjuntos: $A \cap B = \{x/x \in A \land x \in B\}$

• Unión de Conjuntos: $A \cup B = \{x/x \in A \lor x \in B\}$

Si dos conjuntos no tienen elementos en comun, entonces son disjuntos. A y B disjuntos $\iff A \cap B = \emptyset$

Propiedades	UNIÓN	INTERSECCIÓN
Conmutativa	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Asociativa	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Idempotencia	$A \cup A = A$	$A \cap A = A$

• Diferencia: $A - B = \{x/x \in A \land x \notin B\}$

• Complemento: $C_A = \overline{A} = U - A$. Se cumple que $A - B = A \cap \overline{B}$

Propiedades		
Complemento	$\overline{\overline{A}} = A$ $A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$ $\overline{\emptyset} = U \wedge \overline{U} = \emptyset$	
Leyes de Morgan	$\overline{\frac{A \cap B}{A \cup B}} = \overline{A} \cup \overline{B}$	

3

• Cardinal de un conjunto: Es el número de elementos. |A| = card(A)