Lista 4: Otimização II

A. Ramos *

November 14, 2017

Abstract

Lista em constante atualização.

- 1. Lagrangiano aumentado, dualidade e SQP
- 2. Para os exercícios que forem convenientes pode ser usado alguma linguagem de programação.
- 1. Prove que a função dual é concava e o domínio dela é convexo.
- 2. Seja B uma matriz simétrica definida positiva. Encontre o problema dual do problema de minimização:

minimizar
$$\frac{1}{2}x^TBx$$
 sujeito a $Ax = b, x \ge 0$.

3. Seja um vetor $b \neq 0$ e um escalar $\alpha > 0$. Seja B uma matriz simétrica não singular e definida positiva sobre o subespaço $\{x \in \mathbb{R}^n : b^T x = 0\}$. Considere o problema de minimização quadrática:

minimizar
$$\frac{1}{2}x^TBx + \alpha b^Tx$$
 sujeito a $b^Tx = 0$.

- (a) Encontre a solução ótima desse problema. Essa solução é um ponto KKT? Em caso afirmativo, encontre o multiplicador de Lagrange associado.
- (b) Escreve a função Lagrangeano aumentado associado ao problema com penalidade quadrática.
- (c) Mostre que as sequências gerada pelo método de Lagrangeano aumentado com penalidade quadrática satisfaz

$$x^{k+1} = \frac{(\lambda^k - \alpha)B^{-1}b}{1 + \rho_k bTB^{-1}b} \quad \text{e} \quad \lambda^{k+1} = \lambda^k - \frac{\rho_k(\lambda^k - \alpha)B^{-1}b}{1 + \rho_k bTB^{-1}b}.$$

- 4. Verifique no caso de programação linear que o dual do problema dual é o problema original.
- 5. Seja (P) o problema de programação linear e (D) o problema dual associado. Mostre que (i) se (P) é ilimitado inferiormente, então (D) é inviável; (ii) se (P) é viável e limitada inferiormente, então (D) tem uma solução ótima e o gap de dualidade é zero; (iii) se (P) é inviável dê exemplos onde (D) é ilimitado ou inviável.
- 6. Considere o problema de minimização: minimizar $\frac{1}{2}x^2 + \frac{1}{2}(y-3)^2$ sujeito a $x^2 y \le 0$, $-x + y \le 2$.
 - (a) O problema anterior é um problema de otimização convexa?
 - (b) Solucione o problema geometricamente
 - (c) Dê um motivo teórico que justifique a existência de pontos KKT. Dê também um motivo para a unicidade de ponto KKT.
 - (d) Escreva as condições KKT e determine o ponto KKT.
 - (e) Determine explicitamente o problema dual
 - (f) Encontre uma solução ótima do problema dual.
- 7. Considere o problema de minimização: minimizar x-4y+z sujeito a $x+2y+2z+2=0, x^2+y^2+z^2\leq 1.$
 - (a) Dado um ponto KKT, esse ponto deve ser ótimo?
 - (b) Encontre a solução ótima do problema usando as condições KKT.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

8. Problema de otimização minimax. Seja $\{a_1, a_2, \dots, a_m\} \in \mathbb{R}^n$ um conjunto de vetores e dado $k \in \mathbb{N}$, defina o conjunto $\Delta(k) := \{x \in \mathbb{R}^k : \sum_{i=1}^k x_i = 1, x_i \geq 0, i = 1, \dots, k\}$. Considere o problema de otimização:

$$\underset{x \in \Delta(n)}{\text{minimizar}} \quad \max\{\langle a_i, x \rangle : i = 1, \dots, m\}.$$

Mostre que o problema dual é

onde A é uma matriz onde as linhas são os vetores a_1, \ldots, a_m .

 $\label{eq:discrete} \textit{Dica:} \ \ \text{Re-escreva o problema minimizar} \ \ \max\{\langle a_i, x \rangle : i = 1, \dots, m\} \ \text{como minimizar} \ \ v \quad \text{s.a.} \ \ \langle a_i, x \rangle \leq v, \ \ \forall i, \ \text{e aplique dualidade neste último problema.}$

9. Seja $b \in \mathbb{R}^n.$ Solucione o seguinte problema de otimização

minimizar
$$\sum_{j=1}^n x_j^2$$
 sujeito a
$$\sum_{j=1}^n x_j = 1, \quad 0 \le x_j \le b_j, \quad j=1,\dots,n.$$

- 10. Considere o problema de otimização minimizar $x^4 2y^2 y$ sujeito a $x^2 + y^2 + y \le 0$. Responda
 - (a) O problema é convexo?
 - (b) Mostre que existe solução ótima.
 - (c) Encontre todos os pontos KKT. Para cada ponto, quais satisfazem a condição necessária de segunda ordem?
 - (d) Encontre a solução global.
- 11. Seja $\alpha \in (0,1)$. Define $x^0 := 1$, $\lambda^0 := 1$. Para $k \in \mathbb{N}$, $x^k := x^{k-1}$ (se k é par) ou α^{2^k} (se k é impar) e $\lambda^k := \alpha^{2^{k-1}}$. Mostre que a sequência (x^k, λ^k) converge quadraticamente a (0,0), mas a convergência de x^k ao 0 nem sequer é linear.
- 12. Considere o problema de minimização maximizar $f(\lambda) := x^T B x$ sujeiro a $||x||^2 \le 1$, onde B é uma matriz diagonal 2×2 , com $B_{11} := 2$ e $B_{22} := 1$. Suponha que $x^0 := (1,1)^T$ e seja λ^0 (não especificado). Encontre x^1 e λ^1 usando o método de programação sequencial quadrática. Sobre quais condições $\lambda^1 = \lambda^0$?
- 13. Efeito Maratos para SQP. Considere o problema de minimização

maximizar
$$f(\lambda) := 2(x^2 + y^2 - 1) - x$$
 sujeiro a $x^2 + y^2 = 1$.

- (a) Mostre que $x^* := (1,0)^T$ é minimizador global e um ponto KKT com multiplicador $\lambda^* := 3/2$.
- (b) Considere o ponto $x^k := (\cos \theta_k, \sin \theta_k) \cos \theta_k \approx 0$. Verifique que x^k é viável e próximo de x^*
- (c) Considere $\lambda^k := \lambda^*$. Resolve o subproblema do método de programação quadrática sequêncial e mostre que a solução é $d^k := (\sin^2 \theta_k, -\sin \theta_k \cos \theta_k)^T$. Qual é o multiplicador associado?
- (d) Prove que se $x^{k+1} := x^k + d^k$, então $f(x^{k+1}) > f(x^k)$ e x^{k+1} é inviável