Issue IV: Higher Inductive Types

Maksym Sokhatsky
i $^{\rm 1}$

National Technical University of Ukraine Igor Sikorsky Kyiv Polytechnic Institute May 4, 2019

Анотація

CW-complexes are central to both homotopy theory and homotopy type theory (HoTT) and are encoded in cubical theorem-proving systems as higher inductive types (HIT), similar to recursive trees for (co)inductive types. We explore the basic primitives of homotopy theory, which are considered as a foundational basis in theorem-proving systems.

Keywords: Homotopy Theory, Type Theory

Зміст

$\mathbf{C}\mathbf{W}$	-Complexes	1
1.1	Introduction: Countable Constructors	3
1.2	Motivation: Higher Inductive Types	3
1.3		3
	1.3.1 Geometric Proofs	3
	1.3.2 Flat Proofs	3
	1.3.3 Sharp Proofs	3
	1.3.4 Bose Proofs	3
	1.3.5 Fermi Proofs	3
	1.3.6 Linear Proofs	3
Higl	ner Inductive Types	4
2.1	V 2	5
2.2		6
2.3		7
2.4	-	8
2.5		9
2.6		10
2.7	· ·	11
2.8	•	12
2.9		14
2.10		15
		16
	1.1 1.2 1.3 High 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	1.2 Motivation: Higher Inductive Types 1.3 Metatheory: Cohesive Topoi 1.3.1 Geometric Proofs 1.3.2 Flat Proofs 1.3.3 Sharp Proofs 1.3.4 Bose Proofs 1.3.5 Fermi Proofs 1.3.6 Linear Proofs 1.3.6 Linear Proofs 2.1 Suspension 2.2 Pushout 2.3 Spheres 2.4 Hub and Spokes 2.5 Truncation 2.6 Quotients 2.7 Wedge 2.8 Smash Product 2.9 Join

2.12	(G,n)	18
2.13	ocalization	19

1 CW-Complexes

CW-complexes are spaces constructed by attaching cells of various dimensions. In HoTT, they are encoded as higher inductive types (HIT), where cells are constructors for points and paths.

Definition 1. (Cell Attachment). The attachment of an *n*-cell to a space X along $f: S^{n-1} \to X$ is a pushout:

$$S^{n-1} \xrightarrow{f} X$$

$$\downarrow^{\iota} \qquad \qquad \downarrow^{j}$$

$$D^{n} \xrightarrow{g} X \cup_{f} D^{n}$$

Here, $\iota: S^{n-1} \hookrightarrow D^n$ is the boundary inclusion, and $X \cup_f D^n$ is the pushout that attaches an n-cell to X via f. The result depends on the homotopy class of f.

Definition 2. (CW-Complex). A CW-complex is a space X, constructed inductively by attaching cells, with a skeletal filtration:

- (-1)-skeleton: $X_{-1} = \emptyset$.
- For $n \geq 0$, the *n*-skeleton X_n is obtained by attaching *n*-cells to X_{n-1} . For indices J_n and maps $\{f_j: S^{n-1} \to X_{n-1}\}_{j \in J_n}, X_n$ is the pushout:

$$\coprod_{j \in J_n} S^{n-1} \xrightarrow{\coprod f_j} X_{n-1}
\downarrow \coprod_{\iota_j} \qquad \downarrow_{\iota_n}
\coprod_{j \in J_n} D^n \xrightarrow{\coprod g_j} X_n$$

where $\coprod_{j\in J_n} S^{n-1}$, $\coprod_{j\in J_n} D^n$ are disjoint unions, and $i_n: X_{n-1}\hookrightarrow X_n$ is the inclusion.

• *X* is the colimit:

$$\emptyset = X_{-1} \hookrightarrow X_0 \hookrightarrow X_1 \hookrightarrow \ldots \hookrightarrow X,$$

where X_n is the *n*-skeleton, and $X = \operatorname{colim}_{n \to \infty} X_n$. The sequence is the skeletal filtration.

In HoTT, CW-complexes are higher inductive types (HIT) with constructors for cells and paths for attachment.

1.1 Introduction: Countable Constructors

Some HITs require an infinite number of constructors for spaces, such as Eilenberg-MacLane spaces or the infinite sphere S^{∞} .

```
\begin{array}{lll} def \ S^{\infty} \ : \ U \\ := \ inductive \ \left\{ \begin{array}{ll} base \\ & | \ loop \ (n \colon \, \mathbb{N}) \ : \ base \, \equiv \, base \\ & | \end{array} \right. \end{array}
```

Challenges include type checking, computation, and expressiveness.

Agda Cubical uses cubical primitives to handle HITs, supporting infinite constructors via HITs indexed by natural numbers, as colimits.

1.2 Motivation: Higher Inductive Types

HITs in HoTT enable direct encoding of topological spaces, such as CW-complexes. In homotopy theory, spaces are constructed by attaching cells via attaching maps. HoTT views types as spaces, elements as points, and equalities as paths, making HITs a natural choice. Standard inductive types cannot capture higher homotopies, but HITs allow constructors for points and paths. For example, the circle S^1 (Definition 2) has a base point and a loop, encoding its fundamental group $\mathbb Z$. HITs avoid the use of multiple quotient spaces, preserving the synthetic nature of HoTT. In cubical type theory, paths are intervals (e.g., $\langle i \rangle$) with computational content, unlike propositional equalities, enabling efficient type checking in tools such as Agda Cubical.

1.3 Metatheory: Cohesive Topoi

1.3.1 Geometric Proofs

$$\Re \dashv \Im \dashv \&$$

For differential geometry, type theory incorporates primitive axioms of categorical meta-theoretical models of three Schreiber-Shulman functors: infinitesimal neighborhood (\Im), reduced modality (\Re), and infinitesimal discrete neighborhood (&).

- 1.3.2 Flat Proofs
- 1.3.3 Sharp Proofs
- 1.3.4 Bose Proofs
- 1.3.5 Fermi Proofs
- 1.3.6 Linear Proofs

For engineering applications (e.g., Milner's π -calculus, quantum computing) and linear type theory, type theory embeds linear proofs based on the adjunction of the tensor and linear function spaces: $(A \otimes B) \multimap A \simeq A \multimap (B \multimap C)$, represented in a symmetric monoidal category **D** for a functor [A, B] as: $\mathbf{D}(A \otimes B, C) \simeq \mathbf{D}(A, [B, C])$.

2 Higher Inductive Types

CW-complexes are central to HoTT and appear in cubical type checkers as HITs. Unlike inductive types (recursive trees), HITs encode CW-complexes, capturing points (0-cells) and higher paths (n-cells). The definition of an HIT specifies a CW-complex through cubical composition, an initial algebra in the cubical model.

2.1 Suspension

The suspension ΣA of a type A is a higher inductive type that constructs a new type by adding two points, called poles, and paths connecting each point of A to these poles. It is a fundamental construction in homotopy theory, often used to shift homotopy groups, e.g., obtaining S^{n+1} from S^n .

Definition 3. (Formation). For any type $A : \mathcal{U}$, there exists a suspension type $\Sigma A : \mathcal{U}$.

Definition 4. (Constructors). For a type $A: \mathcal{U}$, the suspension $\Sigma A: \mathcal{U}$ is generated by the following higher inductive compositional structure:

$$\Sigma := \begin{cases} \text{north} \\ \text{south} \\ \text{merid} : (a:A) \to \text{north} \equiv \text{south} \end{cases}$$

```
\begin{array}{lll} \text{def } \Sigma \ (A \colon U) \ : \ U \\ := \ inductive \ \left\{ \begin{array}{ll} \text{north} \\ \mid \ \text{south} \\ \mid \ \text{merid} \ (a \colon A) \ : \ north \ \equiv \ south \end{array} \right. \end{array}
```

Theorem 1. (Elimination). For a family of types $B: \Sigma A \to \mathcal{U}$, points n: B(north), s: B(south), and a family of dependent paths

```
m: \Pi(a:A), \text{PathOver}(B, \text{merid}(a), n, s),
```

there exists a dependent map $\operatorname{Ind}_{\Sigma A}: (x:\Sigma A) \to B(x)$, such that:

$$\begin{cases} \operatorname{Ind}_{\Sigma A}(\operatorname{north}) = n \\ \operatorname{Ind}_{\Sigma A}(\operatorname{south}) = s \\ \operatorname{Ind}_{\Sigma A}(\operatorname{merid}(a, i)) = m(a, i) \end{cases}$$

def PathOver (B: Σ A \rightarrow U) (a: A) (n: B north) (s: B south) : U := PathP (λ i , B (merid a @ i)) n s

Theorem 2. (Computation).

```
\operatorname{Ind}_{\Sigma} A(\operatorname{north}) = n \operatorname{Ind}_{\Sigma} A(\operatorname{south}) = s \operatorname{Ind}_{\Sigma} A(\operatorname{merid}(a, i)) = m(a, i)
```

Theorem 3. (Uniqueness). Any two maps $h_1, h_2 : (x : \Sigma A) \to B(x)$ are homotopic if they agree on north, south, and merid, i.e., if $h_1(\text{north}) = h_2(\text{north})$, $h_1(\text{south}) = h_2(\text{south})$, and $h_1(\text{merid } a) = h_2(\text{merid } a)$ for all a : A.

2.2 Pushout

The pushout (amalgamation) is a higher inductive type that constructs a type by gluing two types A and B along a common type C via maps $f:C\to A$ and $g:C\to B$. It is a fundamental construction in homotopy theory, used to model cell attachment and cofibrant objects, generalizing the topological notion of a pushout.

Definition 5. (Formation). For types $A, B, C : \mathcal{U}$ and maps $f : C \to A$, $g : C \to B$, there exists a pushout $\sqcup (A, B, C, f, g) : \mathcal{U}$.

Definition 6. (Constructors). The pushout is generated by the following higher inductive compositional structure:

$$\sqcup := \begin{cases} \operatorname{po}_1 : A \to \sqcup (A, B, C, f, g) \\ \operatorname{po}_2 : B \to \sqcup (A, B, C, f, g) \\ \operatorname{po}_3 : (c : C) \to \operatorname{po}_1(f(c)) \equiv \operatorname{po}_2(g(c)) \end{cases}$$

Theorem 4. (Elimination). For a type $D: \mathcal{U}$, maps $u: A \to D$, $v: B \to D$, and a family of paths $p: (c: C) \to u(f(c)) \equiv v(g(c))$, there exists a map $\operatorname{Ind}_{\sqcup} : \sqcup (A, B, C, f, g) \to D$, such that:

$$\begin{cases} \operatorname{Ind}_{\square}(\operatorname{po}_{1}(a)) = u(a) \\ \operatorname{Ind}_{\square}(\operatorname{po}_{2}(b)) = v(b) \\ \operatorname{Ind}_{\square}(\operatorname{po}_{3}(c,i)) = p(c,i) \end{cases}$$

Theorem 5. (Computation). For $x: \sqcup (A, B, C, f, g)$,

$$\begin{cases} \operatorname{Ind}_{\square}(\operatorname{po}_{1}(a)) \equiv u(a) \\ \operatorname{Ind}_{\square}(\operatorname{po}_{2}(b)) \equiv v(b) \\ \operatorname{Ind}_{\square}(\operatorname{po}_{3}(c,i)) \equiv p(c,i) \end{cases}$$

Theorem 6. (Uniqueness). Any two maps $u, v : \sqcup (A, B, C, f, g) \to D$ are homotopic if they agree on po_1 , po_2 , and po_3 , i.e., if $u(\operatorname{po}_1(a)) = v(\operatorname{po}_1(a))$ for all a : A, $u(\operatorname{po}_2(b)) = v(\operatorname{po}_2(b))$ for all b : B, and $u(\operatorname{po}_3(c)) = v(\operatorname{po}_3(c))$ for all c : C.

Example 1. (Cell Attachment) The pushout models the attachment of an n-cell to a space X. Given $f: S^{n-1} \to X$ and inclusion $g: S^{n-1} \to D^n$, the pushout $\sqcup (X, D^n, S^{n-1}, f, g)$ is the space $X \cup_f D^n$, attaching an n-disk to X along f.

$$S^{n-1} \xrightarrow{f} X$$

$$\downarrow^g \qquad \qquad \downarrow$$

$$D^n \xrightarrow{} X \cup_f D^n$$

2.3 Spheres

Spheres are higher inductive types with higher-dimensional paths, representing fundamental topological spaces.

Definition 7. (Pointed n-Spheres) The *n*-sphere S^n is defined recursively as a type in the universe \mathcal{U} using general recursion over dimensions:

$$\mathbb{S}^n := \begin{cases} \text{point} : \mathbb{S}^n, \\ \text{surface} : < i_1, \dots i_n > [\ (i_1 = 0) \to \text{point}, (i_1 = 1) \to \text{point}, \ \dots \\ (i_n = 0) \to \text{point}, (i_n = 1) \to \text{point} \] \end{cases}$$

Definition 8. (n-Spheres via Suspension) The n-sphere S^n is defined recursively as a type in the universe \mathcal{U} using general recursion over natural numbers \mathbb{N} . For each $n \in \mathbb{N}$, the type $S^n : \mathcal{U}$ is defined as:

$$\mathbb{S}^n := \begin{cases} S^0 = \mathbf{2}, \\ S^{n+1} = \Sigma(S^n). \end{cases}$$

 $\mathsf{def} \;\; \mathsf{sphere} \;\; \colon \; \mathbb{N} \; \to \; \mathsf{U} \; := \; \mathbb{N}\text{-iter} \;\; \mathsf{U} \;\; \mathbf{2} \;\; \Sigma$

This iterative definition applies the suspension functor Σ to the base type **2** (0-sphere) n times to obtain S^n .

Example 2. (Sphere as CW-Complex) The n-sphere S^n can be constructed as a CW-complex with one 0-cell and one n-cell:

$$\begin{cases} X_0 = \{\text{base}\}, \text{ one point} \\ X_k = X_0 \text{ for } 0 < k < n, \text{ no additional cells} \\ X_n : \text{Attachment of an } n\text{-cell to } X_{n-1} = \{\text{base}\} \text{ along } f : S^{n-1} \to \{\text{base}\} \end{cases}$$

The constructor cell attaches the boundary of the n-cell to the base point, yielding the type S^n .

2.4 Hub and Spokes

The hub and spokes construction \odot defines an n-truncation, ensuring that the type has no non-trivial homotopy groups above dimension n. It models the type as a CW-complex with a hub (central point) and spokes (paths to points).

Definition 9. (Formation). For types $S, A : \mathcal{U}$, there exists a hub and spokes type $\odot (S, A) : \mathcal{U}$.

Definition 10. (Constructors). The hub and spokes type is freely generated by the following higher inductive compositional structure:

$$\odot := \begin{cases} \text{base} : A \to \odot (S, A) \\ \text{hub} : (S \to \odot (S, A)) \to \odot (S, A) \\ \text{spoke} : (f : S \to \odot (S, A)) \to (s : S) \to \text{hub}(f) \equiv f(s) \end{cases}$$

Theorem 7. (Elimination). For a family of types $P: \operatorname{HubSpokes} SA \to \mathcal{U}$, maps phase : $(x:A) \to P(\operatorname{base} x)$, phub : $(f:S \to \operatorname{HubSpokes} SA) \to P(\operatorname{hub} f)$, and a family of paths pspoke : $(f:S \to \operatorname{HubSpokes} SA) \to (s:S) \to \operatorname{PathP}(< i > P(\operatorname{spoke} fs@i))$ (phub f) (P(fs)), there exists a map hubSpokesInd : $(z:\operatorname{HubSpokes} SA) \to P(z)$, such that:

$$\begin{cases} \operatorname{Ind}_{\odot}\left(\operatorname{base}x\right) = \operatorname{pbase}x\\ \operatorname{Ind}_{\odot}\left(\operatorname{hub}f\right) = \operatorname{phub}f\\ \operatorname{Ind}_{\odot}\left(\operatorname{spoke}fs@i\right) = \operatorname{pspoke}fs@i\end{cases}$$

2.5 Truncation

Set Truncation

Definition 11. (Formation). Set truncation (0-truncation), denoted $||A||_0$, ensures that the type is a set, with homotopy groups vanishing above dimension 0.

Definition 12. (Constructors). For $A : \mathcal{U}$, $||A||_0 : \mathcal{U}$ is defined by the following higher inductive compositional structure:

$$\|_{-}\|_{0} := \begin{cases} \text{inc} : A \to \|A\|_{0} \\ \text{squash} : (a, b : \|A\|_{0}) \to (p, q : a \equiv b) \to p \equiv q \end{cases}$$

Theorem 8. (Elimination $||A||_0$) For a set $B: \mathcal{U}$ (i.e., isSet(B)), and a map $f: A \to B$, there exists setTruncRec: $||A||_0 \to B$, such that $\operatorname{Ind}_{||A||_0}(\operatorname{inc}(a)) = f(a)$.

Groupoid Truncation

Definition 13. (Formation). Groupoid truncation (1-truncation), denoted $||A||_1$, ensures that the type is a 1-groupoid, with homotopy groups vanishing above dimension 1.

Definition 14. (Constructors). For $A : \mathcal{U}$, $||A||_1 : \mathcal{U}$ is defined by the following higher inductive compositional structure:

$$\|_{-}\|_{1} := \begin{cases} \text{inc} : A \to \|A\|_{1} \\ \text{squash} : (a, b : \|A\|_{1}) \to (p, q : a \equiv b) \to (r, s : p \equiv q) \to r \equiv s \end{cases}$$

Theorem 9. (Elimination $||A||_1$) For a 1-groupoid $B : \mathcal{U}$ (i.e., isGroupoid(B)), and a map $f : A \to B$, there exists $\operatorname{Ind}_{||A||_1} : ||A||_1 \to B$, such that $\operatorname{Ind}_{||A||_1}(\operatorname{inc}(a)) = f(a)$.

2.6 Quotients

Set Quotient Spaces

Quotient spaces are a powerful computational tool in type theory, embedded in the core of Lean.

Definition 15. (Formation). Set quotient spaces construct a type A, quotiented by a relation $R: A \to A \to \mathcal{U}$, ensuring that the result is a set.

Definition 16. (Constructors). For a type $A:\mathcal{U}$ and a relation $R:A\to A\to \mathcal{U}$, the set quotient space $A/R:\mathcal{U}$ is freely generated by the following higher inductive compositional structure:

$$A/R := \begin{cases} \operatorname{quot} : A \to A/R \\ \operatorname{ident} : (a, b : A) \to R(a, b) \to \operatorname{quot}(a) \equiv \operatorname{quot}(b) \\ \operatorname{trunc} : (a, b : A/R) \to (p, q : a \equiv b) \to p \equiv q \end{cases}$$

Theorem 10. (Elimination). For a family of types $B: A/R \to \mathcal{U}$ with isSet(Bx), and maps $f: (x:A) \to B(\operatorname{quot}(x)), \ g: (a,b:A) \to (r:R(a,b)) \to \operatorname{PathP}(< i > B(\operatorname{ident}(a,b,r) @ i))(f(a))(f(b)), \text{ there exists } \operatorname{Ind}_{A/R}: \Pi(x:A/R), B(x), \text{ such that } \operatorname{Ind}_{A/R}(\operatorname{quot}(a)) = f(a).$

Groupoid Quotient Spaces

Definition 17. (Formation). Groupoid quotient spaces extend set quotient spaces to produce a 1-groupoid, including constructors for higher paths. Groupoid quotient spaces construct a type A, quotiented by a relation $R: A \to A \to \mathcal{U}$, ensuring that the result is a groupoid.

Definition 18. (Constructors). For a type $A:\mathcal{U}$ and a relation $R:A\to A\to \mathcal{U}$, the groupoid quotient space $A//R:\mathcal{U}$ includes constructors for points, paths, and higher paths, ensuring a 1-groupoid structure.

2.7 Wedge

The wedge of two pointed types A and B, denoted $A \vee B$, is a higher inductive type representing the union of A and B with identified base points. Topologically, it corresponds to $A \times \{y_0\} \cup \{x_0\} \times B$, where x_0 and y_0 are the base points of A and B, respectively.

Definition 19. (Formation). For pointed types A, B: pointed, the wedge $A \lor B$: \mathcal{U} .

Definition 20. (Constructors). The wedge is generated by the following higher inductive compositional structure:

$$\forall := \begin{cases} \text{winl} : A.1 \to A \lor B \\ \text{winr} : B.1 \to A \lor B \\ \text{wglue} : \text{winl}(A.2) \equiv \text{winr}(B.2) \end{cases}$$

```
\begin{array}{lll} def \ \lor \ (A : pointed) \ (B : pointed) \ : \ U \\ := inductive \ \{ \ winl \ (a : A.1) \\ & | \ winr \ (b : B.1) \\ & | \ wglue \ : \ winl(A.2) \ \equiv \ winr(B.2) \\ & \} \end{array}
```

Theorem 11. (Elimination). For a type $P: A \vee B\mathcal{U}$, maps $f: A.1 \to C$, $g: B.1 \to C$, and a path p: PathOverlue(P, f(A.2), g(B.2)), there exists a map $\mathrm{Ind}_{\vee}: A \vee B \to C$, such that:

$$\begin{cases} \operatorname{Ind}(\operatorname{winl}(a)) = f(a) \\ \operatorname{Ind}(\operatorname{winr}(b)) = g(b) \\ \operatorname{Ind}(\operatorname{wglue}(x)) = p(x) \end{cases}$$

Theorem 12. (Computation). For z: Wedge AB,

$$\begin{cases} \operatorname{Ind}_{\vee}(\operatorname{winl} a) \equiv f(a) \\ \operatorname{Ind}_{\vee}(\operatorname{winr} b) \equiv g(b) \\ \operatorname{Ind}_{\vee}(\operatorname{wglue} @ x) \equiv p @ x \end{cases}$$

Theorem 13. (Uniqueness). Any two maps h_1, h_2 : Wedge $AB \to C$ are homotopic if they agree on winl, winr, and wglue, i.e., if $h_1(\text{winl } a) = h_2(\text{winl } a)$ for all $a: A.1, h_1(\text{winr } b) = h_2(\text{winr } b)$ for all b: B.1, and $h_1(\text{wglue}) = h_2(\text{wglue})$.

2.8 Smash Product

The smash product of two pointed types A and B, denoted $A \wedge B$, is a higher inductive type that quotients the product $A \times B$ by the pushout $A \sqcup B$. It represents the space $A \times B/(A \times \{y_0\} \cup \{x_0\} \times B)$, collapsing the wedge to a single point.

Definition 21. (Formation). For pointed types A, B: pointed, the smash product $A \wedge B : \mathcal{U}$.

Definition 22. (Constructors). The smash product is generated by the following higher inductive compositional structure:

```
A \wedge B := \begin{cases} \text{basel} : A \wedge B \\ \text{baser} : A \wedge B \end{cases}\text{proj}(x : A.1)(y : B.1) : A \wedge B \\ \text{gluel}(a : A.2) : \text{proj}(a, B.2) \equiv \text{basel} \\ \text{gluer}(b : B.2) : \text{proj}(A.2, b) \equiv \text{baser} \end{cases}
```

Theorem 14. (Elimination). For a family of types $P: \text{Smash } AB \to \mathcal{U}$, points pbasel: P(basel), pbaser: P(baser), maps pproj: $(x:A.1) \to (y:B.1) \to P(\text{proj } xy)$, and a family of paths pgluel: $(a:A.1) \to \text{pproj}(a,B.2) \equiv \text{pbasel}$, pgluer: $(b:B.1) \to \text{pproj}(A.2,b) \equiv \text{pbaser}$, there exists a map $\text{Ind}_{\wedge}: (z:A \land B) \to P(z)$, such that:

```
\begin{cases} \operatorname{Ind}_{\wedge} (\operatorname{basel}) = \operatorname{pbasel} \\ \operatorname{Ind}_{\wedge} (\operatorname{baser}) = \operatorname{pbaser} \\ \operatorname{Ind}_{\wedge} (\operatorname{proj} x \, y) = \operatorname{pproj} x \, y \\ \operatorname{Ind}_{\wedge} (\operatorname{gluel} a @ i) = \operatorname{pgluel} a @ i \\ \operatorname{Ind}_{\wedge} (\operatorname{gluer} b @ i) = \operatorname{pgluer} b @ i \end{cases}
```

Theorem 15. (Computation). For a family of types $P: A \wedge B \to \mathcal{U}$, points pbasel: P(basel), pbaser: P(baser), map pproj: $(x:A.1) \to (y:B.1) \to P(\text{proj}\,x\,y)$, and families of paths pgluel: $(a:A.1) \to \text{PathP}\,(< i > P(\text{gluel}\,a\,@\,i))$ (pproj $\,a\,B.2$) pbasel, pgluer: $(b:B.1) \to \text{PathP}\,(< i > P(\text{gluer}\,b\,@\,i))$ (pproj $\,A.2\,b$) pbaser, the map $\text{Ind}_{\wedge}: (z:A \wedge B) \to P(z)$ satisfies all equations for all variants of the predicate P:

 $\begin{cases} \operatorname{Ind}_{\wedge} \left(\operatorname{basel} \right) \equiv \operatorname{pbasel} \\ \operatorname{Ind}_{\wedge} \left(\operatorname{baser} \right) \equiv \operatorname{pbaser} \\ \operatorname{Ind}_{\wedge} \left(\operatorname{proj} x \, y \right) \equiv \operatorname{pproj} x \, y \\ \operatorname{Ind}_{\wedge} \left(\operatorname{gluel} a @ i \right) \equiv \operatorname{pgluel} a @ i \\ \operatorname{Ind}_{\wedge} \left(\operatorname{gluer} b @ i \right) \equiv \operatorname{pgluer} b @ i \end{cases}$

Theorem 16. (Uniqueness). For a family of types $P: A \wedge B \to \mathcal{U}$, and maps $h_1, h_2: (z: A \wedge B) \to P(z)$, if there exist paths $e_{\text{basel}}: h_1(\text{basel}) \equiv h_2(\text{basel}), e_{\text{baser}}: h_1(\text{baser}) \equiv h_2(\text{baser}), e_{\text{proj}}: (x: A.1) \to (y: B.1) \to h_1(\text{proj} x y) \equiv h_2(\text{proj} x y), e_{\text{gluel}}: (a: A.1) \to \text{PathP}(\langle i > h_1(\text{gluel } a @ i)) \equiv h_2(\text{gluel } a @ i)) (e_{\text{proj}} a B.2) e_{\text{basel}}, e_{\text{gluer}}: (b: B.1) \to \text{PathP}(\langle i > h_1(\text{gluer } b @ i)) \equiv h_2(\text{gluer } b @ i)) (e_{\text{proj}} A.2 b) e_{\text{baser}}, \text{ then } h_1 \equiv h_2, \text{ i.e., there exists a path } (z: A \wedge B) \to h_1(z) \equiv h_2(z).$

2.9 Join

The join of two types A and B, denoted $A \vee B$, is a higher inductive type that constructs a type by joining each point of A to each point of B via a path. Topologically, it corresponds to the join of spaces, forming a space that interpolates between A and B.

Definition 23. (Formation). For types $A, B : \mathcal{U}$, the join $A * B : \mathcal{U}$.

Definition 24. (Constructors). The join is generated by the following higher inductive compositional structure:

$$A \vee B := \begin{cases} \text{joinl} : A \to A \vee B \\ \text{joinr} : B \to A \vee B \\ \text{join}(a : A)(b : B) : \text{joinl}(a) \equiv \text{joinr}(b) \end{cases}$$

Theorem 17. (Elimination). For a type $C: \mathcal{U}$, maps $f: A \to C$, $g: B \to C$, and a family of paths $h: (a:A) \to (b:B) \to f(a) \equiv g(b)$, there exists a map $\operatorname{Ind}_{\vee}: A \vee B \to C$, such that:

$$\begin{cases} \operatorname{Ind}_{\vee}(\operatorname{joinl}(a)) = f(a) \\ \operatorname{Ind}_{\vee}(\operatorname{joinr}(b)) = g(b) \\ \operatorname{Ind}_{\vee}(\operatorname{join}(a, b, i)) = h(a, b, i) \end{cases}$$

```
\begin{array}{l} \text{def Ind}_{\vee} \ (A \ B \ C \ : \ U) \ (f \ : A \ {\rightarrow} \ C) \ (g \ : B \ {\rightarrow} \ C) \\ \ (h \ : (a \ : A) \ {\rightarrow} \ (b \ : B) \ {\rightarrow} \ Path \ C \ (f \ a) \ (g \ b)) \\ \ : A \lor B \ {\rightarrow} \ C \\ \ := \ split \ \left\{ \begin{array}{l} \text{joinl} \ a \ {\rightarrow} \ f \ a \\ \ | \ \text{joinr} \ b \ {\rightarrow} \ g \ b \\ \ | \ \text{joinn} \ a \ b \ @ \ i \ {\rightarrow} \ h \ a \ b \ @ \ i \\ \end{array} \right.
```

Theorem 18. (Computation). For all $z : A \vee B$, and predicate P, the rules of Ind \vee hold for all parameters of the predicate P.

Theorem 19. (Uniqueness). Any two maps $h_1, h_2 : A \vee B \to C$ are homotopic if they agree on joinl, joinr, and join.

2.10 Colimit

Colimits construct the limit of a sequence of types, connected by maps, e.g., propositional truncations.

Definition 25. (Colimit) For a sequence of types A: nat $\to \mathcal{U}$ and maps $f:(n:\mathbb{N})\to An\to A(\operatorname{succ}(n))$, the colimit type $\operatorname{colimit}(A,f):\mathcal{U}$.

$$\operatorname{colim} := \begin{cases} \operatorname{ix} : (n : \operatorname{nat}) \to An \to \operatorname{colimit}(A, f) \\ \operatorname{gx} : (n : \operatorname{nat}) \to (a : A(n)) \to \operatorname{ix}(\operatorname{succ}(n), f(n, a)) \equiv \operatorname{ix}(n, a) \end{cases}$$

Theorem 20. (Elimination colimit) For a type P: colimit $Af \to \mathcal{U}$, with $p:(n:\mathrm{nat}) \to (x:An) \to P(\mathrm{ix}(n,x))$ and $q:(n:\mathrm{nat}) \to (a:An) \to P\mathrm{athP}(\langle i \rangle P(\mathrm{gx}(n,a)@i))(p(\mathrm{succ}\ n)(fna))(pna)$, there exists $i:\Pi_{x:\mathrm{colimit}\ Af}P(x)$, such that $i(\mathrm{ix}(n,x)) = pnx$.

2.11 Coequalizers

Coequalizer

The coequalizer of two maps $f, g: A \to B$ is a higher inductive type (HIT) that constructs a type consisting of elements in B, where f and g agree, along with paths ensuring this equality. It is a fundamental construction in homotopy theory, capturing the subspace of B where f(a) = g(a) for a: A.

Definition 26. (Formation). For types $A, B : \mathcal{U}$ and maps $f, g : A \to B$, the coequalizer coeq $ABfg : \mathcal{U}$.

Definition 27. (Constructors). The coequalizer is generated by the following higher inductive compositional structure:

$$Coeq := \begin{cases} inC : B \to Coeq(A, B, f, g) \\ glueC : (a : A) \to inC(f(a)) \equiv inC(g(a)) \end{cases}$$

Theorem 21. (Elimination). For a type $C: \mathcal{U}$, map $h: B \to C$, and a family of paths $y: (x: A) \to \operatorname{Path}_C(h(fx), h(gx))$, there exists a map coequRec: coeq $ABfg \to C$, such that:

$$\begin{cases} \operatorname{coequRec}(\operatorname{inC}(x)) = h(x) \\ \operatorname{coequRec}(\operatorname{glueC}(x,i)) = y(x,i) \end{cases}$$

```
\begin{array}{l} \text{def coequRec } (A \ B \ C : \ U) \ (f \ g : A \longrightarrow B) \ (h: B \longrightarrow C) \\ (y: (x : A) \longrightarrow \text{Path } C \ (h \ (f \ x)) \ (h \ (g \ x))) \\ : (z : \text{coeq } A \ B \ f \ g) \longrightarrow C \\ := \text{split} \ \{ \ \text{inC} \ x \longrightarrow h \ x \ | \ \text{glueC} \ x \ @ \ i \ \longrightarrow y \ x \ @ \ i \ \} \end{array}
```

Theorem 22. (Computation). For z: coeq ABfg,

$$\begin{cases} \text{coequRec(inC } x) \equiv h(x) \\ \text{coequRec(glueC } x @ i) \equiv y(x) @ i \end{cases}$$

Theorem 23. (Uniqueness). Any two maps $h_1, h_2 : \text{coeq } ABfg \to C$ are homotopic if they agree on inC and glueC, i.e., if $h_1(\text{inC } x) = h_2(\text{inC } x)$ for all x : B and $h_1(\text{glueC } a) = h_2(\text{glueC } a)$ for all a : A.

Example 3. (Coequalizer as Subspace) The coequalizer coeq ABfg represents the subspace of B, where f(a) = g(a). For example, if $A = B = \mathbb{R}$ and $f(x) = x^2$, g(x) = x, the coequalizer captures the points where $x^2 = x$, i.e., $\{0, 1\}$.

Path Coequalizer

The path coequalizer is a higher inductive type that generalizes the coequalizer to handle pairs of paths in B. Given a map $p:A \to (b_1,b_2:B) \times (\operatorname{Path}_B(b_1,b_2)) \times (\operatorname{Path}_B(b_1,b_2))$, it constructs a type where elements of A generate pairs of paths between points in B, with paths connecting the endpoints of these paths.

Definition 28. (Formation). For types $A, B : \mathcal{U}$ and a map $p : A \to (b_1, b_2 : B) \times (b_1 \equiv b_2) \times (b_1 \equiv b_2)$, there exists a path coequalizer $\text{Coeq}_{\equiv}(A, B, p) : \mathcal{U}$.

Definition 29. (Constructors). The path coequalizer is generated by the following higher inductive compositional structure:

$$\operatorname{Coequ}_{\equiv} := \begin{cases} \operatorname{inP} : B \to \operatorname{Coeq}_{\equiv}(A, B, p) \\ \operatorname{glueP} : (a : A) \to \operatorname{inP}(p(a).2.2.1@0) \equiv \operatorname{inP}(p(a).2.2.2@1) \end{cases}$$

Theorem 24. (Elimination). For a type $C: \mathcal{U}$, map $h: B \to C$, and a family of paths $y: (a:A) \to h(p(a).2.2.1@0) \equiv h(p(a).2.2.2@1)$, there exists a map Ind-Coequ_{\equiv}: Coeq_{\equiv} $(A, B, p) \to C$, such that:

$$\begin{cases} \text{coequPRec}(\text{inP}(b)) = h(b) \\ \text{coequPRec}(\text{glueP}(a,i)) = y(a,i) \end{cases}$$

```
\begin{array}{l} \text{def Ind-Coequ}_{\equiv} \ (A \ B \ C \ : \ U) \\ (p : A \to \Sigma \ (b1 \ b2 : B) \ (x: \ Path \ B \ b1 \ b2), \ Path \ B \ b1 \ b2) \\ (h: B \to C) \ (y: \ (a : A) \to Path \ C \ (h \ (((p \ a).2.2.1) \ @ \ 0)) \ (h \ (((p \ a).2.2.2) \ @ \ 1))) \\ : \ (z : coeqP \ A \ B \ p) \to C \\ := \ split \ \{ \ inP \ b \to h \ b \ | \ glueP \ a \ @ \ i \ -> \ y \ a \ @ \ i \ \} \end{array}
```

Theorem 25. (Computation). For z : coeqP ABp,

$$\begin{cases} \text{coequPRec}(\text{inP }b) \equiv h(b) \\ \text{coequPRec}(\text{glueP }a @ i) \equiv y(a) @ i \end{cases}$$

Theorem 26. (Uniqueness). Any two maps $h_1, h_2 : \text{coeqP } ABp \to C$ are homotopic if they agree on inP and glueP, i.e., if $h_1(\text{inP } b) = h_2(\text{inP } b)$ for all b : B and $h_1(\text{glueP } a) = h_2(\text{glueP } a)$ for all a : A.

2.12 K(G,n)

Eilenberg-MacLane spaces K(G,n) have a single non-trivial homotopy group $\pi_n(K(G,n)) = G$. They are defined using truncations and suspensions.

Definition 30. (K(G,n)) For an abelian group G: abgroup, the type KGn(G): nat $\to \mathcal{U}$.

$$K(G,n) := \begin{cases} n = 0 \leadsto \text{discreteTopology}(G) \\ n \ge 1 \leadsto \|\Sigma^{n-1}(K1'(G.1, G.2.1))\|_n \end{cases}$$

$$\begin{array}{lll} def \ KGn \ (G: \ abgroup) \ : \ \mathbf{N} \ {\rightarrow} \ U \\ := \ split \ \{ \ zero \ {\rightarrow} \ discreteTopology \ G \\ & | \ succ \ n \ {\rightarrow} \ nTrunc \ (\Sigma \ (K1' \ (G.1\,,G.2.1)) \ n) \ (succ \ n) \\ & \} \end{array}$$

Theorem 27. (Elimination KGn) For $n \geq 1$, a type $B : \mathcal{U}$ with isNGroupoid(B, succ n), and a map f : suspension(K1'G) $\to B$, there exists $\operatorname{rec}_{KGn} : KGnG(\operatorname{succ} n) \to B$, defined via nTruncRec.

2.13 Localization

Localization constructs an F-local type from a type X, with respect to a family of maps $F_A: S(a) \to T(a)$.

Definition 31. (Localization Modality) For a family of maps $F_A: S(a) \to T(a)$, the F-localization $L_F^{AST}(X): \mathcal{U}$.

```
 \begin{aligned} & \text{center}: X \to L_{F_A}(X) \\ & \text{ext}(a:A) \to (S(a) \to L_{F_A}(X)) : T(a) \to L_{F_A}(X) \\ & \text{isExt}(a:A)(f:S(a) \to L_{F_A}(X)) \to (s:S(a)) : \text{ext}(a,f,F(a,s)) \equiv f(s) \\ & \text{extEq}(a:A)(g,h:T(a) \to L_{F_A}(X)) \\ & (p:(s:S(a)) \to g(F(a,s)) \equiv h(F(a,s))) \\ & (t:T(a)) : g(t) \equiv h(t) \\ & \text{isExtEq}:(a:A)(g,h:T(a) \to L_{F_A}(X)) \\ & (p:(s:S(a)) \to g(F(a,s)) \equiv h(F(a,s))) \\ & (s:S(a)) : \text{extEq}(a,g,h,p,F(a,s) \equiv p(s) \end{aligned}   \begin{aligned} & \text{data Localize (A X: U) (S T: A \to U) (F:(x:A) \to S x \to T x)} \\ & = \text{center (x: X)} \\ & | \text{ ext (a: A) (f: S a \to Localize A X S T F) (t: T a)} \\ & | \text{ isExt (a: A) (f: S a \to Localize A X S T F) (s: S a) < i>} \\ & | (i=0) \to \text{ext a f (F a s) , (i=1) \to f s} \\ & | \text{ extEq (a: A) (g h: T a \to Localize A X S T F) (g (F a s)) (h (F a s)))} \\ & (t: T a) < i > [(i=0) \to g t, (i=1) \to h t] \\ & | \text{ isExtEq (a: A) (g h: T a \to Localize A X S T F)} \\ & (p:(s:S a) \to \text{ Path (T a \to Localize A X S T F) (g (F a s)) (h (F a s)))} \\ & (s:S a) < i > [(i=0) \to \text{ extEq a g h p (F a s) , (i=1) \to p s ]} \end{aligned}
```

Theorem 28. (Localization Induction) For any $P: \Pi_{X:U}L_{F_A}(X) \to U$ with $\{n, r, s\}$, satisfying coherence conditions, there exists $i: \Pi_{x:L_{F_A}(X)}P(x)$, such that $i \cdot \operatorname{center}_X = n$.

Conclusion

HITs directly encode CW-complexes in HoTT, bridging topology and type theory. They enable the analysis and manipulation of homotopical types.

Література

- [1] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, IAS, 2013.
- [2] C. Cohen, T. Coquand, S. Huber, A. Mörtberg, *Cubical Type Theory*, Journal of Automated Reasoning, 2018.
- [3] A. Mörtberg et al., Agda Cubical Library, https://github.com/agda/cubical, 2023.
- [4] M. Shulman, *Higher Inductive Types in HoTT*, https://arxiv.org/abs/1705.07088, 2017.
- [5] J. D. Christensen, M. Opie, E. Rijke, L. Scoccola, *Localization in Homotopy Type Theory*, https://arxiv.org/pdf/1807.04155.pdf, 2018.
- [6] E. Rijke, M. Shulman, B. Spitters, *Modalities in Homotopy Type Theory*, https://arxiv.org/pdf/1706.07526v6.pdf, 2017.
- [7] M. Riley, E. Finster, D. R. Licata, Synthetic Spectra via a Monadic and Comonadic Modality, https://arxiv.org/pdf/2102.04099.pdf, 2021.