

Polynômes

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 ***I

Calculer $a_n = \prod_{k=1}^n \sin \frac{k\pi}{n}$, $b_n = \prod_{k=1}^n \cos(a + \frac{k\pi}{n})$ et $c_n = \prod_{k=1}^n \tan(a + \frac{k\pi}{n})$ en éliminant tous les cas particuliers concernant a.

Correction ▼ [005313]

Exercice 2 ***

On pose $\omega_k = e^{2ik\pi/n}$ et $Q = 1 + 2X + ... + nX^{n-1}$. Calculer $\prod_{k=0}^{n-1} Q(\omega_k)$.

Correction ▼ [005314]

Exercice 3 ***

Montrer que $\sum_{k=0}^{n-1} \cot^2(\frac{\pi}{2n} + \frac{k\pi}{n}) = n(n-1)$. (Indication. Poser $x_k = \cot^2(\frac{\pi}{2n} + \frac{k\pi}{n})$ puis trouver un polynôme dont les x_k sont les racines.)

Correction ▼ [005315]

Exercice 4 ****I

- 1. Soient p un entier naturel et a un réel. Donner le développement de $(\cos a + i \sin a)^{2p+1}$ puis en choisissant astucieusement a, déterminer $\sum_{k=1}^{p} \cot a^2 \frac{k\pi}{2p+1}$. En déduire alors $\sum_{k=1}^{p} \frac{1}{\sin^2 \frac{k\pi}{2p+1}}$.
- 2. Pour n entier naturel non nul, on pose $u_n = \sum_{k=1}^n \frac{1}{k^2}$. Montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ converge (pour majorer u_n , on remarquera que $\frac{1}{k^2} \leqslant \frac{1}{k(k-1)}$).
- 3. Montrer que pour tout réel x de $]0, \frac{\pi}{2}[$, on a $\cot x < \frac{1}{x} < \frac{1}{\sin x}$.
- 4. En déduire un encadrement de u_n puis la limite de (u_n) .

Correction ▼ [005316]

Exercice 5 **IT

Déterminer le PGCD de $X^6 - 7X^4 + 8X^3 - 7X + 7$ et $3X^5 - 7X^3 + 3X^2 - 7$.

Correction ▼ [005317]

Exercice 6 **T

Pour quelles valeurs de l'entier naturel n le polynôme $(X+1)^n - X^n - 1$ est-il divisible par $X^2 + X + 1$?

[005318]

Exercice 7 ***

Soit P un polynôme à coefficients réels tel que $\forall x \in \mathbb{R}$, $P(x) \ge 0$. Montrer qu'il existe deux polynômes R et S à coefficients réels tels que $P = R^2 + S^2$.

Correction ▼ [005319]

Exercice 8 **

Soit *P* un polynôme différent de *X*. Montrer que P(X) - X divise P(P(X)) - X.

Correction ▼ [005320]

Exercice 9 ***

Soit P un polynôme à coefficients entiers relatifs de degré supérieur ou égal à 1. Soit n un entier relatif et m = P(n).

- 1. Montrer que $\forall k \in \mathbb{Z}$, P(n+km) est un entier divisible par m.
- 2. Montrer qu'il n'existe pas de polynômes non constants à coefficients entiers tels que P(n) soit premier pour tout entier n.

Correction ▼ [005321]

Exercice 10 *** Polynômes *P* vérifiant $P(\mathbb{Z}) \subset \mathbb{Z}$

Soit *E* la partie de $\mathbb{C}[X]$ formée des polynômes *P* vérifiant $\forall a \in \mathbb{Z}, P(a) \in \mathbb{Z}$.

- 1. On pose $P_0 = 1$ et pour n entier naturel non nul, $P_n = \frac{1}{n!} \prod_{k=1}^n (X+k)$ (on peut définir la notation $P_n = C_{X+n}n$). Montrer que $\forall n \in \mathbb{N}, P_n \in E$.
- 2. Montrer que toute combinaison linéaire à coefficients entiers relatifs des P_n est encore un élément de E.
- 3. Montrer que E est l'ensemble des combinaisons linéaires à coefficients entiers relatifs des P_n .

Correction ▼ [005322]

Exercice 11 ***

Division euclidienne de $P = \sin aX^n - \sin(na)X + \sin((n-1)a)$ par $Q = X^2 - 2X\cos a + 1$, a réel donné.

Correction ▼ [005323]

Exercice 12 ****I Théorème de LUCAS

Soit $P \in \mathbb{C}[X]$ de degré supérieur ou égal à 1. Montrer que les racines de P' sont barycentres à coefficients positifs des racines de P (on dit que les racines de P' sont dans l'enveloppe convexe des racines de P). Indication : calculer $\frac{P'}{P}$.

Correction ▼ [005324]

Exercice 13 ***

Trouver tous les polynômes divisibles par leur dérivée.

Correction ▼ [005325]

Exercice 14 ***T

Trouver un polynôme de degré 5 tel que P(X) + 10 soit divisible par $(X + 2)^3$ et P(X) - 10 soit divisible par $(X - 2)^3$.

Correction ▼ [005326]

Exercice 15 ***I

Trouver les polynômes P de $\mathbb{R}[X]$ vérifiant $P(X^2) = P(X)P(X+1)$ (penser aux racines de P).

Correction ▼ [005327]

Exercice 16 **T

Déterminer $a \in \mathbb{C}$ tel que $P = X^5 - 209X + a$ admette deux zéros dont le produit vaut 1.

Correction ▼ [005328]

Exercice 17 ***T

Correction ▼ [005329]

Exercice 18 **

Résoudre dans \mathbb{C}^3 (resp. \mathbb{C}^4) le système :

1)
$$\begin{cases} x+y+z=1\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\ xyz=-4 \end{cases}$$
 2)
$$\begin{cases} x+y+z+t=0\\ x^2+y^2+z^2+t^2=10\\ x^3+y^3+z^3+t^3=0\\ x^4+y^4+z^4+t^4=26 \end{cases}$$

Correction ▼ [005330]

Exercice 19 **T

Trouver tous les polynômes P vérifiant P(2X) = P'(X)P''(X).

Correction ▼ [005331]

Exercice 20 **

Factoriser dans $\mathbb{C}[X]$ le polynôme $12X^4 + X^3 + 15X^2 - 20X + 4$.

Correction ▼ [005332]

Exercice 21 ***

Soit $n \in \mathbb{N}^*$. Montrer que $(X-1)^{2n} - X^{2n} + 2X - 1$ est divisible par $2X^3 - 3X^2 + X$ puis déterminer le quotient.

Exercice 22 **I

Déterminer deux polynômes U et V vérifiant $UX^n + V(1-X)^m = 1$ et $\deg(U) < m$ et $\gcd(V) < n$.

Correction ▼ [005334]

1. Soit $n \ge 2$. On a

$$a_n = \prod_{k=1}^{n-1} \frac{1}{2i} (e^{ik\pi/n} - e^{-ik\pi/n}) = \frac{1}{(2i)^{n-1}} \prod_{k=1}^{n-1} e^{ik\pi/n} \prod_{k=1}^{n-1} (1 - e^{-2ik\pi/n}).$$

Maintenant,

$$\prod_{k=1}^{n-1} e^{ik\pi/n} = e^{\frac{i\pi}{n}(1+2+\ldots+(n-1))} = e^{i\pi(n-1)/2} (e^{i\pi/2})^{n-1} = i^{n-1},$$

et donc $\frac{1}{(2i)^{n-1}} \prod_{k=1}^{n-1} e^{ik\pi/n} = \frac{1}{2^{n-1}}$.

Il reste à calculer $\prod_{k=1}^{n-1} (1 - e^{-2ik\pi/n})$.

1ère solution. Les $e^{-2ik\pi/n}$, $1 \le k \le n-1$, sont les n-1 racines n-ièmes de 1 distinctes de 1 et puisque $X^n-1=(X-1)(1+X+...+X^{n-1})$, ce sont donc les n-1 racines deux deux distinctes du polynôme $1+X+...+X^{n-1}$. Par suite, $1+X+...+X^{n-1}=\prod_{k=1}^{n-1}(X-e^{-2ik\pi/n})$, et en particulier $\prod_{k=1}^{n-1}(1-e^{-2ik\pi/n})=1+1...+1=n$.

2ème solution. Pour $1 \le k \le n-1$, posons $z_k = 1 - e^{-2ik\pi/n}$. Les z_k sont deux à deux distincts et racines du polynôme $P = (1-X)^n - 1 = -X + ... + (-1)^n X^n = X(-n+X-...+(-1)^n X^{n-1})$. Maintenant, $z_k = 0 \Leftrightarrow e^{-2ik\pi/n} = 1 \le k \in n\mathbb{Z}$ (ce qui n'est pas pour $1 \le k \le n-1$). Donc, les z_k , $1 \le k \le n-1$, sont n-1 racines deux à deux distinctes du polynôme de degré $n-1: -n+X-...+(-1)^n X^{n-1}$. Ce sont ainsi toutes les racines de ce polynôme ou encore

$$-n+X-...+(-1)^nX^{n-1}=(-1)^n\prod_{k=1}^{n-1}(X-z_k).$$

En particulier, en égalant les coefficients constants,

$$(-1)^n \cdot (-1)^{n-1} \prod_{k=1}^{n-1} z_k = -n,$$

et donc encore une fois $\prod_{k=1}^{n-1} (1 - e^{-2ik\pi/n}) = n$.

Finalement,

$$\forall n \geqslant 2, \prod_{k=1}^{n-1} \sin \frac{k\pi}{n} = \frac{n}{2^{n-1}}.$$

2. Soit *n* un entier naturel non nul.

$$b_n = \prod_{k=1}^n \frac{1}{2} \left(e^{i(a + \frac{k\pi}{n})} + e^{-i(a + \frac{k\pi}{n})} \right) = \frac{1}{2^n} \prod_{k=1}^n e^{-i(a + \frac{k\pi}{n})} \prod_{k=1}^n \left(e^{2i(a + \frac{k\pi}{n})} + 1 \right).$$

Ensuite,

$$\prod_{k=1}^{n} e^{-i(a + \frac{k\pi}{n})} = e^{-ina} e^{-\frac{i\pi}{n}(1 + 2 + \dots + n)} = e^{-ina} e^{-i(n+1)\pi/2}.$$

D'autre part, soit $P = \prod_{k=1}^n (X + e^{2i(a + \frac{k\pi}{n})}) = \prod_{k=1}^n (X - (-e^{2i(a + \frac{k\pi}{n})}))$. Pour tout k, on a $(-e^{2i(a + \frac{k\pi}{n})})^n = (-1)^n e^{2ina}$. Par suite, les n nombres deux à deux distincts $-e^{2i(a + \frac{k\pi}{n})}$, $1 \le k \le n$ sont racines du polynôme $X^n - (-1)^n e^{2ina}$, de degré n. On en déduit que, $P = X^n - (-1)^n e^{2ina}$.

Par suite, $\prod_{k=1}^{n} (e^{2i(a+\frac{k\pi}{n})}+1) = P(1) = 1 - (-1)^n e^{2ina} = 1 - e^{2ina+n\pi}$, puis

$$b_n = \frac{1}{2^n} e^{-ina} e^{-i(n+1)\pi/2} (1 - e^{2ina + n\pi}) = \frac{1}{2^n} (e^{-i(na + (n+1)\frac{\pi}{2})} - e^{i(na + (n-1)\frac{\pi}{2})})$$

$$= \frac{1}{2^n} (e^{-i(na + (n+1)\frac{\pi}{2})} + e^{i(na + (n+1)\frac{\pi}{2})}) = \frac{\cos(na + (n+1)\frac{\pi}{2})}{2^{n-1}}.$$

3.

$$c_n$$
 est défini $\Leftrightarrow \forall k \in \{1,...,n\}, \ a + \frac{k\pi}{n} \notin \frac{\pi}{2} + \pi \mathbb{Z} \Leftrightarrow \forall k \in \mathbb{N}, \ a - \frac{k\pi}{n} + \frac{\pi}{2} + \pi \mathbb{Z} \Leftrightarrow a \notin \frac{\pi}{2} + \frac{\pi}{n} \mathbb{Z}$

Pour les a tels que c_n est défini, on a $c_n = \prod_{k=1}^n \frac{1}{i} \frac{e^{2i(a+k\pi/n)}-1}{e^{2i(a+k\pi/n)}+1}$

Pour $1 \leqslant k \leqslant n$, posons $\omega_k = e^{2i(a+k\pi/n)}$ puis $z_k = \frac{\omega_k-1}{\omega_k+1}$. On a donc $c_n = \frac{1}{i^n} \prod_{k=1}^n z_k$.

Puisque $z_k = \frac{\omega_k - 1}{\omega_k + 1}$, on a $\omega_k (1 - z_k) = 1 + z_k$ et donc, pour $1 \le k \le n$, $\omega_k^n (1 - z_k)^n = (1 + z_k)^n$ ou encore, les z_k sont racines du polynôme $P = (1 + X)^n - e^{2ina}(1 - X)^n$. Maintenant, les $a + \frac{k\pi}{n}$ sont dans $[a, a + \pi]$ et donc deux à deux distincts puisque la fonction tangente est injective sur tout intervalle de cette forme. 1er cas. Si $e^{2ina} \neq (-1)^n$ alors P est de degré n et $P = (1 - (-1)^n e^{2ina}) \prod_{k=1}^n (X - z_k)$. En évaluant en 0, on obtient

$$(1-(-1)^n e^{2ina}) \prod_{k=1}^n (-z_k) = 1-e^{2ina}.$$

D'où,

$$\prod_{k=1}^{n} z_k = \frac{1 - e^{2ina}}{(-1)^n - e^{2ina}} = \frac{1 - e^{2ina}}{e^{in\pi} - e^{2ina}} = \frac{e^{ina}}{e^{in\pi/2}e^{ina}} - \frac{-2i\sin(na)}{-2i\sin n(a - \frac{\pi}{2})} = \frac{1}{i^n} \frac{\sin(na)}{\sin n(a - \frac{\pi}{2})}.$$

Finalement, $c_n = (-1)^n \frac{\sin(na)}{\sin(n(a-\frac{\pi}{2}))}$.

Si n est pair, posons n=2p, $p\in\mathbb{N}^*$. $c_n=c_{2p}=\frac{\sin(2pa)}{\sin(2pa-p\pi)}=(-1)^p$. Si n est impair, posons n=2p+1. $c_n=c_{2p+1}=(-1)^p\tan((2p+1)a)$. 2ème cas. Si $e^{2ina}=(-1)^n$, alors $2na\in n\pi+2\pi\mathbb{Z}$ ou encore $a\in\frac{\pi}{2}+\pi\mathbb{Z}$. Dans ce cas, c_n n'est pas défini.

Correction de l'exercice 2

Tout d'abord

$$Q = (1 + X + \dots + X^n)' = (\frac{X^{n+1} - 1}{X - 1})' = \frac{(n+1)X^n(X - 1) - X^{n+1}}{(X - 1)^2} = \frac{nX^{n+1} - (n+1)X^n + 1}{(X - 1)^2}.$$

Ensuite, $\omega_0 = 1$ et donc, $Q(\omega_0) = 1 + 2 + ... + n = \frac{n(n+1)}{2}$. Puis, pour $1 \le k \le n-1$, $\omega_k \ne 1$ et donc, puisque $\omega_k^n = 1$,

$$Q(\omega_k) = \frac{n\omega_k^{n+1} - (n+1)\omega_k^n + 1}{(\omega_k - 1)^2} = \frac{n\omega_k - (n+1) + 1}{(\omega_k - 1)^2} = \frac{n}{\omega_k - 1}.$$

Par suite,

$$\prod_{k=0}^{n-1} Q(\omega_k) = \frac{n(n+1)}{2} \prod_{k=1}^{n-1} \frac{n}{\omega_k - 1} = \frac{n^n(n+1)}{2 \prod_{k=1}^{n-1} (\omega_k - 1)}.$$

Mais, $X^n-1=(X-1)(1+X+\ldots+X^{n-1})$ et d'autre part $X^n-1=\prod_{k=0}^{n-1}(X-e^{2ik\pi/n})=(X-1)\prod_{k=1}^{n-1}(X-\omega_k)$. Par intégrité de $\mathbb{R}[X]$, $\prod_{k=1}^{n-1}(X-e^{2ik\pi/n})=1+X+\ldots+X^{n-1}$ (Une autre rédaction possible est : $\forall z\in\mathbb{C}$, $(z-1)\prod_{k=1}^{n-1}(z-\omega_k)=(z-1)(1+z+\ldots+z^{n-1})$ et donc $\forall z\in\mathbb{C}\setminus\{1\}$, $\prod_{k=1}^{n-1}(z-\omega_k)=1+z+\ldots+z^{n-1}$ et finalement $\forall z\in\mathbb{C}$, $\prod_{k=1}^{n-1}(z-\omega_k)=1+z+\ldots+z^{n-1}$ car les deux polynômes ci-contre coincident en une infinité de valeurs

En particulier, $\prod_{k=1}^{n-1} (1 - \omega_k) = 1 + 1^2 + ... + 1^{n-1} = n$ ou encore $\prod_{k=1}^{n-1} (\omega_k - 1) = (-1)^{n-1}n$. Donc,

$$\prod_{k=0}^{n-1} Q(\omega_k) = \frac{n^n(n+1)}{2} \frac{1}{(-1)^{n-1}n} = \frac{(-1)^{n-1}n^{n-1}(n+1)}{2}.$$

Correction de l'exercice 3

Il faut prendre garde au fait que les nombres $x_k = \cot^2(\frac{\pi}{2n} + \frac{k\pi}{n})$ ne sont pas nécessairement deux à deux distincts.

1er cas. Si *n* est pair, posons n = 2p, $p \in \mathbb{N}^*$.

$$S_n = \sum_{k=0}^{p-1} \cot^2(\frac{\pi}{4p} + \frac{k\pi}{2p}) + \sum_{k=p}^{2p-1} \cot^2(\frac{\pi}{4p} + \frac{k\pi}{2p})$$
$$= \sum_{k=0}^{p-1} \cot^2(\frac{\pi}{4p} + \frac{k\pi}{2p}) + \sum_{k=0}^{p-1} \cot^2(\frac{\pi}{4p} + \frac{(2p-1-k)\pi}{2p})$$

Or, $\cot^2(\frac{\pi}{4p} + \frac{(2p-1-k)\pi}{2p}) = \cot^2(\pi - \frac{\pi}{4p} - \frac{k\pi}{2p}) = \cot^2(\frac{\pi}{4p} + \frac{k\pi}{2p})$ et donc $S_n = 2\sum_{k=0}^{p-1}\cot^2(\frac{\pi}{4p} + \frac{k\pi}{2p})$ $\frac{k\pi}{2p}$). Mais cette fois ci,

$$0 \leqslant k \leqslant p-1 \Rightarrow 0 < \frac{\pi}{4p} + \frac{k\pi}{2p} \leqslant \frac{\pi}{4p} + \frac{(p-1)\pi}{2p} = \frac{(2p-1)\pi}{4p} < \frac{2p\pi}{4p} = \frac{\pi}{2}.$$

et comme, la fonction $x \mapsto \cot^2 x$ est strictement décroissante sur $]0, \frac{\pi}{2}[$, les $x_k, 0 \le k \le p-1$, sont deux à deux distincts.

Pour $0 \le k \le p-1$, posons $y_k = \cot(\frac{\pi}{4p} + \frac{k\pi}{2p})$.

$$\begin{split} y_k &= i \frac{e^{(2k+1)i\pi/4p} + 1}{e^{(2k+1)i\pi/4p} - 1} \Rightarrow e^{(2k+1)i\pi/4p} (y - k - i) = y_k + i \\ &\Rightarrow (y_k + i)^{2p} = e^{(2k+1)i\pi} (y_k - i)^{2p} = (-1)^{2k+1} (y_k - i)^{2p} = -(y_k - i)^{2p} \\ &\Rightarrow (y_k + i)^{2p} + (y_k - i)^{2p} = 0 \Rightarrow 2(y_k^{2p} - C_{2p}^2 y_k^{2p-2} + \dots + (-1)^p) = 0 \\ &\Rightarrow x_k^p - C_{2p}^2 x_k^{p-1} + \dots + (-1)^p = 0. \end{split}$$

Les p nombres deux à deux distincts x_k sont racines de l'équation de degré $p: z^p - C_{2p}^2 z^{p-1} + ... +$ $(-1)^p = 0$ qui est de degré p. On en déduit que

$$S_n = 2\sum_{k=0}^{p-1} x_k = 2C_{2p}^2 = n(n-1).$$

2ème cas. Si *n* est impair, posons n = 2p + 1, $p \in \mathbb{N}$.

$$\begin{split} S_n &= \sum_{k=0}^{p-1} \operatorname{cotan}^2(\frac{\pi}{2(2p+1)} + \frac{k\pi}{2p+1}) + \operatorname{cotan}^2\frac{\pi}{2} + \sum_{k=p+1}^{2p} \operatorname{cotan}^2(\frac{\pi}{2(2p+1)} + \frac{k\pi}{2p+1}) \\ &= 2\sum_{k=0}^{p-1} \operatorname{cotan}^2(\frac{\pi}{2(2p+1)} + \frac{k\pi}{2p+1}) \end{split}$$

La même démarche amène alors à $S_n = 2C_{2p+1}^2 = n(n-1)$. Dans tous les cas,

$$\sum_{k=0}^{n-1} \cot^2(\frac{\pi}{2n} + \frac{k\pi}{n}) = n(n-1).$$

Correction de l'exercice 4 A

1. Pour tout réel a,

$$e^{i(2p+1)a} = (\cos a + i\sin a)^{2p+1} = \sum_{j=0}^{2p+1} C_{2p+1}^j \cos^{2p+1-j} a(i\sin a)^j$$

puis

$$\sin((2p+1)a) = \operatorname{Im}(e^{i(2p+1)a}) = \sum_{j=0}^{p} C_{2p+1}^{2j+1} \cos^{2(p-j)} a(-1)^{j} \sin^{2j+1} a.$$

Pour $1 \le k \le p$, en posant $a = \frac{k\pi}{2p+1}$, on obtient :

$$\forall k \in \{1, ..., p\}, \ \sum_{j=0}^{p} C_{2p+1}^{2j+1} \cos^{2(p-j)} \frac{k\pi}{2p+1} (-1)^{j} \sin^{2j+1} \frac{k\pi}{2p+1} = 0.$$

Ensuite, pour $1 \le k \le p$, $0 < \frac{k\pi}{2p+1} < \frac{\pi}{2}$ et donc $\sin^{2p+1} \frac{k\pi}{2p+1} \ne 0$. En divisant les deux membres de (*) par $\sin^{2p+1} \frac{k\pi}{2p+1}$, on obtient :

$$\forall k \in \{1, ..., p\}, \ \sum_{i=0}^{p} (-1)^{j} C_{2p+1}^{2j+1} \cot^{2(p-j)} \frac{k\pi}{2p+1} = 0.$$

Maintenant, les p nombres $\cot a^2 \frac{k\pi}{2p+1}$ sont deux à deux distincts. En effet, pour $1 \le k \le p$, $0 < \frac{k\pi}{2p+1} < \frac{\pi}{2}$. Or, sur $]0, \frac{\pi}{2}[$, la fonction $x \mapsto \cot x$ est strictement décroissante et strictement positive, de sorte que la fonction $x \mapsto \cot^2 x$ est strictement décroissante et en particulier injective.

Ces p nombres deux à deux distintes sont racines du polynôme $P = \sum_{j=0}^{p} (-1)^{j} C_{2p+1}^{2j+1} X^{p-j}$, qui est de degré p. Ce sont donc toutes les racines de P (ces racines sont par suite simples et réelles). D'après les relations entre les coefficients et les racines d'un polynôme scindé, on a :

$$\sum_{k=1}^{p} \cot^2 \frac{k\pi}{2p+1} = -\frac{-C_{2p+1}^3}{C_{2p+1}^1} = \frac{p(2p-1)}{3}.$$

puis,

$$\sum_{k=1}^{p} \frac{1}{\sin^2 \frac{k\pi}{2p+1}} = \sum_{k=1}^{p} (1 + \cot^2 \frac{k\pi}{2p+1}) = p + \frac{p(2p-1)}{3} = \frac{2p(p+1)}{3}.$$

2. Pour *n* entier naturel non nul donné, on a

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{(n+1)^2} > 0,$$

et la suite (un) est strictement croissante. De plus, pour $n \ge 2$,

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \sum_{k=2}^n \frac{1}{k^2} < 1 + \sum_{k=2}^n \frac{1}{k(k-1)} = 1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 1 + 1 - \frac{1}{n} < 2.$$

La suite (u_n) est croissante et est majorée par 2. Par suite, la suite (u_n) converge vers un réel inférieur ou égal à 2.

3. Pour x élément de $[0, \frac{\pi}{2}]$, posons $f(x) = x - \sin x$ et $g(x) = \tan x - x$. f et g sont dérivables sur $[0, \frac{\pi}{2}]$ et pour x élément de $[0, \frac{\pi}{2}]$, $f'(x) = 1 - \cos x$ et $g'(x) = \tan^2 x$. f' et g' sont strictement positives sur $[0, \frac{\pi}{2}]$ et donc strictement croissantes sur $[0, \frac{\pi}{2}]$. Comme f(0) = g(0) = 0, on en déduit que f et g sont strictement positives sur $[0, \frac{\pi}{2}]$.

Donc, $\forall x \in]0, \frac{\pi}{2}[$, $0 < \sin x < x < \tan x$ et par passage à l'inverse $\forall x \in]0, \frac{\pi}{2}[$, $0 < \cot x < \frac{1}{x} < \frac{1}{\sin x}$.

4. Pour $1 \leqslant k \leqslant p$, $0 < \frac{k\pi}{2p+1} < \frac{\pi}{2}$ et donc $0 < \cot \frac{k\pi}{2p+1} < \frac{2p+1}{k\pi} < \frac{1}{\sin \frac{k\pi}{2p+1}}$. Puis, $\cot 2 \frac{k\pi}{2p+1} < (\frac{(2p+1)^2}{\pi^2}) \frac{1}{k^2} < (\frac{(2p+1)^2}{\pi^$ $\frac{1}{\sin \frac{k\pi}{2kT}}$. En sommant ces inégalités, on obtient

$$\frac{\pi^2 p (2p-1)}{3(2p+1)^2} = \frac{\pi^2}{(2p+1)^2} \sum_{k=1}^p \operatorname{cotan}^2 \frac{k\pi}{2p+1} < u_p = \sum_{k=1}^p \frac{1}{k^2} < \frac{\pi^2}{(2p+1)^2} \sum_{k=1}^p \frac{1}{\sin^2 \frac{k\pi}{2p+1}} = \frac{2p(p+1)\pi^2}{3(2p+1)^2}.$$

Les membres de gauche et de droite tendent vers $\frac{\pi^2}{6}$ quand p tend vers l'infini et donc la suite (u_p) tend vers $\frac{\pi^2}{6}$.

Correction de l'exercice 5 A

$$\overline{X^6 - 7X^4 + 8X^3 - 7X + 7} = (X^6 + 8X^3 + 7) - (7X^4 + 7X) = (X^3 + 1)(X^3 + 7) - 7X(X^3 + 1) = (X^3 + 1)(X^3 - 7X + 7)$$
 et $3X^5 - 7X^3 + 3X^2 - 7 = 3X^2(X^3 + 1) - 7(X^3 + 1) = (X^3 + 1)(3X^2 - 7)$. Donc,

$$(X^6 - 7X^4 + 8X^3 - 7X + 7) \wedge (3X^5 - 7X^3 + 3X^2 - 7) = (X^3 + 1)((X^3 - 7X + 7) \wedge (3X^2 - 7)).$$

$$\text{Maintenant, pour } \boldsymbol{\varepsilon} \in \{-1,1\}, \, (\boldsymbol{\varepsilon}\sqrt{\tfrac{7}{3}})^3 - 7(\boldsymbol{\varepsilon}\sqrt{\tfrac{7}{3}}) + 7 = -(\boldsymbol{\varepsilon}\tfrac{14}{3}\sqrt{\tfrac{7}{3}}) + 7 \neq 0.$$

Les polynômes $(X^3 - 7X + 7)$ et $(3X^2 - 7)$ n'ont pas de racines communes dans \mathbb{C} et sont donc premiers entre eux. Donc, $(X^6 - 7X^4 + 8X^3 - 7X + 7) \wedge (3X^5 - 7X^3 + 3X^2 - 7) = X^3 + 1$.

Correction de l'exercice 6 ▲

Soit $n \in \mathbb{N}$.

$$(X+1)^n - X^n - 1$$
 est divisible par $X^2 + X + 1 \Leftrightarrow j$ et j^2 sont racines de $(X+1)^n - X^n - 1$
 $\Leftrightarrow j$ est racine de $(X+1)^n - X^n - 1$
 $(\operatorname{car}(X+1)^n - X^{n-1} \text{ est dans } \mathbb{R}[X])$
 $\Leftrightarrow (j+1)^n - j^n - 1 = 0 \Leftrightarrow (-j^2)^n - j^n - 1 = 0.$

Si
$$n \in 6\mathbb{Z}$$
, $(-j^2)^n - j^n - 1 = -3 \neq 0$.

Si
$$n \in 1 + 6\mathbb{Z}$$
, $(-j^2)^n - j^n - 1 = -j^2 - j - 1 = 0$.

Si
$$n \in 2 + 6\mathbb{Z}$$
, $(-j^2)^n - j^n - 1 = j - j^2 - 1 = 2j \neq 0$.

Si
$$n \in 3 + 6\mathbb{Z}$$
, $(-j^2)^n - j^n - 1 = -3 \neq 0$.

Si
$$n \in 4 + 6\mathbb{Z}$$
, $(-j^2)^n - j^n - 1 = j^2 - j - 1 = 2j^2 \neq 0$.
Si $n \in 5 + 6\mathbb{Z}$, $(-j^2)^n - j^n - 1 = -j - j^2 - 1 = 0$.

Si
$$n \in 5 + 6\mathbb{Z}$$
, $(-j^2)^n - j^n - 1 = -j - j^2 - 1 = 0$.

En résumé, $(X+1)^n - X^n - 1$ est divisible par $X^2 + X + 1$ si et seulement si n est dans $(1+6\mathbb{Z}) \cup (5+6\mathbb{Z})$.

Correction de l'exercice 7 ▲

Soit P un polynôme non nul à coefficients réels.

Pour tout réel x, on peut écrire

$$P(x) = \lambda \prod_{i=1}^{k} (x - a_i)^{\alpha_i} \prod_{i=1}^{l} ((x - z_j)(x - \overline{z_j}))^{\beta_j},$$

où λ est un réel non nul, k et l sont des entiers naturels, les a_i sont des réels deux à deux distincts, les α_i et les β_i des entiers naturels et les $(x-z_i)(x-\overline{z_i})$ des polynômes deux à deux premiers entre eux à racines non réelles. Tout d'abord, pour tout réel x, $\prod_{j=1}^{l} ((x-z_j)(x-\overline{z_j}))^{\beta_j} > 0$ (tous les trinomes du second degré considérés étant unitaires sans racines réelles.)

Donc,
$$(\forall x \in \mathbb{R}, P(x) \ge 0) \Leftrightarrow (\forall x \in \mathbb{R}, \lambda \prod_{i=1}^{k} (x - a_i)^{\alpha_i} \ge 0)$$
.

Ensuite, si $\forall x \in \mathbb{R}$, $P(x) \ge 0$, alors $\lim_{x \to +\infty} P(x) \ge 0$ ce qui impose $\lambda > 0$. Puis, si un exposant α_i est impair, P change de signe en a_i , ce qui contredit l'hypothèse faite sur P. Donc, $\lambda > 0$ et tous les α_i sont pairs. Réciproquement, si $\lambda > 0$ et si tous les α_i sont pairs, alors bien sûr, $\forall x \in \mathbb{R}, P(x) \ge 0$.

Posons $A = \sqrt{\lambda} \prod_{i=1}^k (x-a_i)^{\alpha_i/2}$. A est un élément de $\mathbb{R}[X]$ car $\lambda > 0$ et car les α_i sont des entiers pairs. Posons ensuite $Q_1 = \prod_{j=1}^l (x-z_j)^{\beta_j}$ et $Q_2 = \prod_{j=1}^l (x-\overline{z_j})^{\beta_j}$. Q_1 admet après développement une écriture de la forme $Q_1 = B + iC$ où B et C sont des polynômes à coefficients réels. Mais alors, $Q_2 = B - iC$. Ainsi,

$$P = A^2 Q_1 Q_2 = A^2 (B + iC)(B - iC) = A^2 (B^2 + C^2) = (AB)^2 + (AC)^2 = R^2 + S^2$$

où R et S sont des polynômes à coefficients réels.

Correction de l'exercice 8 A

Si P est de degré inférieur ou égal à 0, c'est clair. Sinon, posons $P = \sum_{k=0}^{n} a_k X^k$ avec $n \in \mathbb{N}^*$.

$$\begin{split} P(P(X)) - X &= P(P(X)) - P(X) + P(X) - X = \sum_{k=0}^{n} a_k ((P(X))^k - X^k) + (P(X) - X) \\ &= \sum_{k=1}^{n} a_k ((P(X))^k - X^k) + (P(X) - X). \end{split}$$

Mais, pour $1 \le k \le n$, $(P(X))^k - X^k) = (P(X) - X)((P(X))^{k-1} + X(P(X))^{k-2} + ... + X^{k-1})$ est divisible par P(X) - X et il en est donc de même de P(P(X)) - X.

Correction de l'exercice 9 ▲

1. Posons $P = \sum_{i=0}^{l} a_i X_i$ où $l \ge 1$ et où les a_i sont des entiers relatifs avec $a_l \ne 0$.

$$P(n+km) = \sum_{i=0}^{l} a_i (n+km)^i = \sum_{i=0}^{l} a_i (n^i + K_i m) = \sum_{i=0}^{l} a_i n^i + Km = m + Km = m(K+1),$$

où K est un entier relatif. P(n+km) est donc un entier relatif multiple de m=P(n).

2. Soit $P \in \mathbb{Z}[X]$ tel que $\forall n \in \mathbb{N}$, P(n) est premier.

Soit n un entier naturel donné et m = P(n) (donc, $m \ge 2$ et en particulier $m \ne 0$). Pour tout entier relatif k, P(n+km) est divisible par m mais P(n+km) est un nombre premier ce qui impose P(n+km) = m. Par suite, le polynôme Q = P - m admet une infinité de racines deux à deux distinctes (puisque $m \ne 0$) et est donc le polynôme nul ou encore P est constant.

Correction de l'exercice 10 ▲

1. Déjà, P_0 est dans E.

Soit *n* un naturel non nul. $P_n = \frac{1}{n!}(X+1)...(X+n)$ et donc, si *k* est élément de $\{-1,...,-n\}$, $P_n(k) = 0 \in \mathbb{Z}$.

Si k est un entier positif, $P_n(k) = \frac{1}{n!}(k+1)...(k+n) = C_{n+k}^n \in \mathbb{Z}$.

Enfin, si k est un entier strictement plus petit que -n,

$$P_n(k) = \frac{1}{n!}(k+1)...(k+n) = (-1)^n \frac{1}{n!}(-k-1)...(-k-n) = (-1)^n C_{-k-1}^n \in \mathbb{Z}.$$

Ainsi, $\forall k \in \mathbb{Z}$, $P_(k) \in \mathbb{Z}$, ou encore $P(\mathbb{Z}) \subset \mathbb{Z}$.

- 2. Evident
- 3. Soit $P \in \mathbb{C}[X] \setminus \{0\}$ tel que $\forall k \in \mathbb{Z}$, $P(k) \in \mathbb{Z}$ (si P est nul, P est combinaison linéaire à coefficients entiers des P_k).

Puisque $\forall k \in \mathbb{N}$, $\deg(P_k) = k$, on sait que pour tout entier naturel n, $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{C}[X]$ et donc, $(P_k)_{k \in \mathbb{N}}$ est une base de $\mathbb{C}[X]$ (tout polynôme non nul ayant un degré n, s'écrit donc de manière unique comme combinaison linéaire des P_k).

Soit $n = \deg P$.

Il existe n+1 nombres complexes $a_0,...,a_n$ tels que $P=a_0P_0+...+a_nP_n$. Il reste à montrer que les a_i sont des entiers relatifs.

L'égalité P(-1) est dans \mathbb{Z} , fournit : a_0 est dans \mathbb{Z} .

L'égalité P(-2) est dans \mathbb{Z} , fournit : $a_0 - a_1$ est dans \mathbb{Z} et donc a_1 est dans \mathbb{Z} .

L'égalité P(-3) est dans \mathbb{Z} , fournit : $a_0 - 2a_1 + a_2$ est dans \mathbb{Z} et donc a_2 est dans \mathbb{Z} ...

L'égalité P(-(k+1)) est dans \mathbb{Z} , fournit : $a_0 - a_1 + ... + (-1)^k a_k$ est dans \mathbb{Z} et si par hypothèse de récurrence, $a_0,...,a_{k-1}$ sont des entiers relatifs alors a_k l'est encore.

Tous les coefficients a_k sont des entiers relatifs et E est donc constitué des combinaisons linéaires à coefficients entiers relatifs des P_k .

Correction de l'exercice 11 A

On prend $n \ge 2$ (sinon tout est clair).

 $Q=(X-e^{ia})(X-e^{-ia})$ est à racines simples si et seulement si $e^{ia}\neq e^{-ia}$ ou encore $e^{2ia}\neq 1$ ou enfin, $a\notin\pi\mathbb{Z}$. 1er cas. Si $a\in\pi\mathbb{Z}$ alors, P=0=0.Q.

2ème cas. Si $a \notin \pi \mathbb{Z}$, alors

$$P(e^{ia}) = \sin a(\cos(na) + i\sin(na)) - \sin(na)(\cos a + i\sin a) + \sin((n-1)a)$$

= \sin((n-1)a) - (\sin(na)\cos a - \cos(na)\sin a) = 0.

Donc, e^{ia} est racine de P et de même, puisque P est dans $\mathbb{R}[X]$, e^{-ia} est racine de P. P est donc divisible par Q.

$$P = P - P(e^{ia}) = \sin a(X^n - e^{ina}) - \sin(na)(X - e^{ia}) = (X - e^{ia})(\sin a \sum_{k=0}^{n-1} X^{n-1-k} e^{ika} - \sin(na))$$
$$= (X - e^{ia})S.$$

Puis,

$$\begin{split} S &= S - S(e^{-ia}) = \sin a \sum_{k=0}^{n-1} e^{ika} (X^{n-1-k} - e^{-i(n-1-k)a}) = \sin a (X - e^{-ia}) \sum_{k=0}^{n-2} e^{ika} (\sum_{j=0}^{n-2-k} X^{n-2-k-j} e^{-ija}) \\ &= \sin a (X - e^{-ia}) \sum_{k=0}^{n-2} (\sum_{j=0}^{n-2-k} X^{n-2-k-j} e^{i(k-j)a}) = \sin a (X - e^{-ia}) \sum_{l=0}^{n-2} (\sum_{k+j=l} e^{i(k-j)a}) X^{n-2-l} \\ &= \sin a (X - e^{-ia}) \sum_{l=0}^{n-2} (\sum_{k=0}^{l} e^{i(2k-l)a}) X^{n-2-l} \end{split}$$

Maintenant,

$$\sum_{k=0}^{l} e^{i(2k-l)} a = e^{-ila} \frac{1 - e^{2i(l+1)a}}{1 - e^{2ia}} = \frac{\sin((l+1)a)}{\sin a}.$$

Donc

$$S = \sin a(X - e^{-ia}) \sum_{l=0}^{n-2} \frac{\sin((l+1)a)}{\sin a} X^{n-2-l} = (X - e^{-ia}) \sum_{l=0}^{n-2} \sin((l+1)a) X^{n-2-l},$$

et finalement

$$P = (X - e^{ia})(X - e^{-ia})\sum_{k=0}^{n-2}\sin((k+1)a)X^{n-2-k} = (X^2 - 2X\cos a + 1)\sum_{k=0}^{n-2}\sin((k+1)a).$$

Correction de l'exercice 12 A

Soit *P* un polynôme de degré *n* supèrieur ou égal à 2.

Posons $P = \lambda (X - z_1)(X - z_2)...(X - z_n)$ où λ est un complexe non nuls et les z_k des complexes pas nécessairement deux à deux distincts.

$$P' = \lambda \sum_{i=1}^{n} (\prod_{j \neq i} (X - z_j)) = \sum_{i=1}^{n} \frac{P}{X - z_i},$$

et donc

$$\frac{P'}{P} = \sum_{i=1}^n \frac{1}{X - z_i}.$$

Soit alors z une racine de P' dans \mathbb{C} . Si z est racine de P (et donc racine de P d'ordre au moins 2) le résultat est clair. Sinon,

$$0 = \frac{P'(z)}{P(z)} = \sum_{i=1}^{n} \frac{1}{z - z_i} = \sum_{i=1}^{n} \frac{\overline{z - z_i}}{|z - z_i|^2}.$$

En posant $\lambda_i = \frac{1}{|z-z_i|^2}$, (λ_i est un réel strictement positif) et en conjugant, on obtient $\sum_{i=1}^n \lambda_i(z-z_i) = 0$ et donc

$$z = \frac{\sum_{i=1}^{n} \lambda_i z_i}{\sum_{i=1}^{n} \lambda_i} = \operatorname{bar}(z_1(\lambda_1), ..., z_n(\lambda_n)).$$

Correction de l'exercice 13 ▲

On suppose que $n = \deg P \geqslant 1$.

On pose $P = \lambda(X - z_1)(X - z_2)...(X - z_n)$ où λ est un complexe non nul et les z_k sont des complexes pas nécessairement deux à deux distincts.

D'après l'exercice précédent, $\frac{P'}{P} = \sum_{k=1}^{n} \frac{1}{X - z_k}$.

Si P est divisible par P', $\exists (a,b) \in \mathbb{C}^2 \setminus \{(0,0)\}/P = (aX+b)P'$ et donc $\exists (a,b) \in \mathbb{C}^2 \setminus \{(0,0)\}/\frac{P'}{P} = \frac{1}{aX+b}$ ce qui montre que la fraction rationelle $\frac{P'}{P}$ a exactement un et un seul pôle complexe et donc que les z_k sont confondus.

En résumé, si P' divise P, $\exists (a,\lambda) \in \mathbb{C}^2/P = \lambda (X-a)^n$ et $\lambda \neq 0$.

Réciproquement, si $P = \lambda (X - a)^n$ avec $\lambda \neq 0$, alors $P' = n\lambda (X - a)^{n-1}$ divise P.

Les polynômes divisibles par leur dérivée sont les polynômes de la forme $\lambda(X-a)^n$, $\lambda \in \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}^*$, $a \in \mathbb{C}$.

Correction de l'exercice 14 A

Soit P un tel polynôme. -2 est racine de P+10 d'ordre au moins trois et donc racine de (P+10)'=P' d'ordre au moins deux.

De même, 2 est racine de P' d'ordre au moins deux et puisque P' est de degré 4, il existe un complexe λ tel que $P' = \lambda (X-2)^2 (X+2)^2 = \lambda (X^2-4)^2 = \lambda (X^4-8X^2+16)$ et enfin, nécessairement,

$$\exists (\lambda,\mu) \in \mathbb{C}^2/P = \lambda(\frac{1}{5}X^5 - \frac{8}{3}X^3 + 16X) + \mu \text{ avec } \lambda \neq 0.$$

Réciproquement, soit $P = \lambda(\frac{1}{5}X^5 - \frac{8}{3}X^3 + 16X) + \mu$ avec $\lambda \neq 0$.

 $P \text{ solution} \Leftrightarrow P + 10 \text{ divisible par } (X+2)^3 \text{ et } P - 10 \text{ est divisible par } (X-2)^3 \\ \Leftrightarrow P(-2) + 10 = 0 = P'(-2) = P''(-2) \text{ et } P(2) + 10 = 0 = P'(2) = P''(2) \Leftrightarrow P(-2) = -10 \text{ et } P(2) = 10 \\ \begin{cases} \lambda(-\frac{32}{5} + \frac{64}{3} - 32) + \mu = -10 \\ \lambda(\frac{32}{5} - \frac{64}{3} + 32) + \mu = 10 \end{cases} \Leftrightarrow \mu = 0 \text{ et } \lambda(\frac{32}{5} - \frac{64}{3} + 32) + \mu = 10 \\ \Leftrightarrow \mu = 0 \text{ et } \lambda = \frac{75}{128} \end{cases}$

On trouve un et un seul polynôme solution à savoir $P = \frac{75}{128} (\frac{1}{5}X^5 - \frac{8}{3}X^3 + 16X) = \frac{15}{128}X^5 - \frac{25}{16}X^3 + \frac{75}{8}X$.

Correction de l'exercice 15 ▲

Les polynômes de degré inférieur ou égal à 0 solutions sont clairement 0 et 1.

Soit *P* un polynôme de degré supérieur ou égal à 1 tel que $P(X^2) = P(X)P(X+1)$.

Soit a une racine de P dans \mathbb{C} . Alors, a^2 , a^4 , a^8 ..., sont encore racines de P. Mais, P étant non nul, P ne doit admettre qu'un nombre fini de racines. La suite $(a^{2^n})_{n\in\mathbb{N}}$ ne doit donc prendre qu'un nombre fini de valeurs ce qui impose a=0 ou |a|=1 car si $|a|\in]0,1[\cap]1,+\infty[$, la suite $(|a^{2^n}|)$ est strictement monotone et en particulier les a^{2^n} sont deux à deux distincts.

De même, si a est racine de P alors $(a-1)^2$ l'est encore mais aussi $(a-1)^4$, $(a-1)^8$..., ce qui impose a=1 ou |a-1|=1.

En résumé,

$$(a \text{ racine de } P \text{ dans } \mathbb{C}) \Rightarrow ((a=0 \text{ ou } |a|=1) \text{ et } (a=1 \text{ ou } |a-1|=1)) \Rightarrow (a=0 \text{ ou } a=1 \text{ ou } |a|=|a-1|=1).$$

Maintenant, $|a| = |a-1| = 1 \Leftrightarrow |a| = 1$ et $|a| = |a-1| \Leftrightarrow a \in \mathcal{C}((0,0),1) \cap \text{med}[(0,0),(1,0)] = \{-j,-j^2\}$. Donc, si $P \in \mathbb{R}[X]$ est solution, il existe K, α , β , γ , K complexe non nul et α , β et γ entiers naturels tels que $P = KX^{\alpha}(X-1)^{\beta}(X+j)^{\gamma}(X+j^2)^{\gamma}$ (-j et $-j^2$ devant avoir même ordre de multiplicité). Réciproquement, si $P = KX^{\alpha}(X-1)^{\beta}(X+j)^{\gamma}(X+j^2)^{\gamma} = KX^{\alpha}(X-1)^{\beta}(X^2-X+1)^{\gamma}$.

$$P(X^{2}) = KX^{2\alpha}(X^{2} - 1)^{\beta}(X4 - X^{2} + 1)^{\gamma} = KX^{2\alpha}(X - 1)^{\beta}(X + 1)^{\beta}(X^{2} - \sqrt{3}X + 1)^{\gamma}(X^{2} + \sqrt{3}X + 1)^{\gamma},$$

et

$$P(X)P(X+1) = KX^{\alpha}(X-1)^{\beta}(X^2 - X + 1)\gamma K(X+1)^{\alpha}X^{\beta}(X^2 + X + 1)^{\gamma}$$

= $K^2X^{\alpha+\beta}(X-1)^{\beta}(X+1)^{\alpha}(X^2 - X + 1)^{\gamma}(X^2 + X + 1)^{\gamma}.$

Par unicité de la décompôsition en produit de facteurs irréductibles d'un polynôme non nul, P est solution si et seulement si P=0 ou K=1 et $\alpha=\beta$ et $\gamma=0$.

Les polynômes solutions sont 0 et les $(X^2 - X)^{\alpha}$ où α est un entier naturel quelconque.

Correction de l'exercice 16 ▲

a est solution du problème si et seulement si $X^5 - 209X + a$ est divisible par un polynôme de la forme $X^2 + \alpha X + 1$. Mais

$$X^{5} - 209X + a = (X^{2} + \alpha X + 1)(X^{3} - \alpha X^{2} + (\alpha^{2} - 1)X - (\alpha^{3} - 2\alpha)) + (\alpha^{4} - 3\alpha^{2} - 208)X + a + (\alpha^{3} - 2\alpha).$$

Donc a est solution
$$\Leftrightarrow \exists \alpha \in \mathbb{C} / \left\{ \begin{array}{l} \alpha^4 - 3\alpha^2 - 208 = 0 \\ a = -\alpha^3 + 2\alpha \end{array} \right.$$
 Mais, $\alpha^4 - 3\alpha^2 - 208 = 0 \Leftrightarrow \alpha^2 \in \{-13, 16\} \Leftrightarrow \alpha \in \{-4, 4, i\sqrt{13}, -i\sqrt{13}\}$ et la deuxième équation fournit $a \in \{56, -56, 15i\sqrt{13}, -15i\sqrt{13}\}$.

Correction de l'exercice 17

On note que $P(1) = 1 \neq 0$ et donc que l'expression proposée a bien un sens.

$$\sum_{k=1}^{5} \frac{a_k + 2}{a_k - 1} = \sum_{k=1}^{5} \left(1 + \frac{3}{a_k - 1}\right) = 5 - 3\sum_{k=1}^{5} \frac{1}{1 - a_k} = 5 - 3\frac{P'(1)}{P(1)} = 5 - 3\frac{12}{1} = -31.$$

Correction de l'exercice 18

1.

$$S \Leftrightarrow \begin{cases} x+y+z=1\\ \frac{xy+xz+yz}{xyz}=1\\ xyz=-4 \end{cases} \Leftrightarrow \sigma_1=1, \ \sigma_2=\sigma_3=-4$$

$$\Leftrightarrow x, \ y \text{ et } z \text{ sont les trois solutions de l'équation } X^3-X^2-4X+4=0$$

$$\Leftrightarrow x, \ y \text{ et } z \text{ sont les trois solutions de l'équation } (X-1)(X-2)(X+2)=0$$

$$\Leftrightarrow (x,y,z) \in \{(1,2,-2),(1,-2,2),(2,1,-2),(2,-2,1),(-2,1,2),(-2,2,1)\}$$

2. Pour $1 \le k \le 4$, posons $S_k = x^k + y^k + z^k + t^k$. On a $S_2 = \sigma_1^2 - 2\sigma_2$. Calculons S_3 en fonction des σ_k . On a $\sigma_1^3 = S_3 + 3\sum x^2y + 6\sum xyz = S_3 + 3\sum x^2y + 6\sigma_3$ (*). Mais on a aussi $S_1S_2 = S_3 + \sum x^2y$. Donc, $\sum x^2y = \sigma_1(\sigma_1^2 - 2\sigma_2) - S_3$. En reportant dans (*), on obtient $\sigma_1^3 = S_3 + 3(\sigma_1^3 - 2\sigma_1\sigma_2 - S_3) + 6\sigma_3$ et donc,

$$S_3 = \frac{1}{2}(-\sigma_1^3 + 3(\sigma_1^3 - 2\sigma_1\sigma_2 - S_3) + 6\sigma_3) = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3.$$

Calculons S_3 en fonction des σ_k . Soit $P = (X - x)(X - y)(X - z)(X - t) = X^4 - \sigma_1 X^3 + \sigma_2 X^2 - \sigma_3 X + \sigma_4$.

$$\begin{split} P(x) + P(y) + P(z) + P(t) &= 0 \Leftrightarrow S_4 - \sigma_1 S_3 + \sigma_2 S_2 - \sigma_3 S_1 + 4\sigma_4 = 0 \\ &\Leftrightarrow S_4 = \sigma_1 (\sigma_1^3 - 3\sigma_1 \sigma_2 + 3\sigma_3) - \sigma_2 (\sigma_1^2 - 2\sigma_2) + \sigma_3 \sigma_1 - 4\sigma_4 \\ &\Leftrightarrow S_4 = \sigma_1^4 - 4\sigma_1^2 \sigma_2 + 4\sigma_1 \sigma_3 + 2\sigma_2^2 - 4\sigma_4. \end{split}$$

Par suite,

$$S \Leftrightarrow \begin{cases} \sigma_1 = 0 \\ -2\sigma_2 = 10 \\ 3\sigma_3 = 0 \\ 2\sigma_2^2 - 4\sigma_4 = 26 \end{cases} \Leftrightarrow \begin{cases} \sigma_1 = 0 \\ \sigma_2 = -5 \\ \sigma_3 = 0 \\ \sigma_4 = 6 \end{cases}$$
$$\Leftrightarrow x, y, z, \text{ et } t \text{ sont les 4 solutions de l'équation } X^4 - 5X^2 + 6 = 0$$
$$\Leftrightarrow (x, y, z, t) \text{ est l'une des 24 permutations du quadruplet } (\sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3})$$

Correction de l'exercice 19 A

Le polynôme nul est solution. Soit *P* un polynôme non nul de degré *n* solution alors n = n - 1 + n - 2 et donc n = 3. Posons donc $P = aX^3 + bX^2 + cX + d$ avec $a \ne 0$.

$$\begin{split} P(2X) &= P'(X)P''(X) \Leftrightarrow 8aX^3 + 4bX^2 + 2cX + d = (3aX^2 + 2bX + c)(6aX + 2b) \\ &\Leftrightarrow (18a^2 - 8a)X^3 + (18ab - 4b)X^2 + (4b^2 + 6ac - 2c)X + 2bc - d = 0 \\ &\Leftrightarrow 18a^2 - 8a = 18ab - 4b = 4b^2 + 6ac - 2c = 2bc - d = 0 \\ &\Leftrightarrow a = \frac{4}{9} \text{ et } b = c = d = 0. \end{split}$$

Correction de l'exercice 20 ▲

0 n'est pas racine de P.

On rappelle que si $r=\frac{p}{q}$, $(p\in\mathbb{Z}^*,q\in\mathbb{N}^*,p\wedge q=1)$ est racine de P, alors p divise le coefficient constant de P et q divise son coefficient dominant. Ici, p divise 4 et q divise 12 et donc, p est élément de $\{\pm 1,\pm 2,\pm 4\}$ et q est élément de $\{1,2,3,4,6,12\}$ ou encore p est élément de $\{\pm 1,\pm 2,\pm 4,\pm \frac{1}{2},\pm \frac{1}{3},\pm \frac{2}{3},\pm \frac{4}{3},\pm \frac{1}{4},\pm \frac{1}{6},\pm \frac{1}{12}\}$. Réciproquement, on trouve $P(\frac{2}{3})=P(\frac{1}{4})=0$. P est donc divisible par

$$12(X - \frac{2}{3})(X - \frac{1}{4}) = (3X - 2)(4X - 1) = 12X^{2} - 11X + 2.$$

Plus précisément, $P = (12X^2 - 11X + 2)(X^2 + X + 2) = (3X - 2)(4X - 1)(X - \frac{-1 + i\sqrt{7}}{2})(X - \frac{-1 - i\sqrt{7}}{2})$.

Correction de l'exercice 21

Pour $n \ge 0$, posons $P_n = (X - 1)^{2n} - X^{2n} + 2X - 1$. $P_n(0) = P_n(1) = P_n(\frac{1}{2}) = 0$. P_n admet 0, 1 et $\frac{1}{2}$ pour racines et est donc divisible par $X(X - 1)(2X - 1) = 2X^3 - 3X^2 + X$.

Si n = 0 ou n = 1, le quotient est nul. Si n = 2, le quotient vaut -2.

Soit $n \ge 3$. On met succesivement 2X - 1 puis X - 1 puis X en facteur :

$$\begin{split} P_n &= ((X-1)^2)^n - (X^2)^n + (2X-1) = ((X-1)^2 - X^2) \sum_{k=0}^{n-1} (X-1)^{2k} X^{2(n-1-k)} + (2X-1) \\ &= (2X-1)(-\sum_{k=0}^{n-1} (X-1)^{2k} X^{2(n-1-k)} + 1) = (2X-1)(-\sum_{k=1}^{n-1} (X-1)^{2k} X^{2(n-1-k)} + 1 - X^{2n-2}) \\ &= (2X-1)(-(X-1)\sum_{k=1}^{n-1} (X-1)^{2k-1} X^{2(n-1-k)} - (X-1)\sum_{k=0}^{2n-1} X^k) \\ &= (2X-1)(X-1)(-\sum_{k=1}^{n-1} (X-1)^{2k-1} X^{2(n-1-k)} - \sum_{k=0}^{2n-1} X^k) \\ &= (2X-1)(X-1)(-\sum_{k=1}^{n-2} (X-1)^{2k-1} X^{2(n-1-k)} - \sum_{k=1}^{2n-1} X^k - 1 - (X-1)^{2n-3}) \\ &= (2X-1)(X-1)(-\sum_{k=1}^{n-2} (X-1)^{2k-1} X^{2(n-1-k)} - \sum_{k=1}^{2n-3} X^k - \sum_{k=1}^{2n-3} (-1)^{2n-3-k} C_{2n-3}^k X^k) \\ &= X(2X-1)(X-1)(-\sum_{k=1}^{n-2} (X-1)^{2k-1} X^{2n-2k-3} - \sum_{k=1}^{2n-3} X^{k-1} - \sum_{k=1}^{2n-3} (-1)^{2n-3-k} C_{2n-3}^k X^{k-1}) \end{split}$$

Correction de l'exercice 22

$$1 = (X + (1 - X))^{n+m-1} = \sum_{k=0}^{n+m-1} C_{n+m-1}^k X^k (1 - X)^{n+m-1-k}$$

$$= \sum_{k=0}^{n-1} C_{n+m-1}^k X^k (1 - X)^{n+m-1-k} + \sum_{k=n}^{n+m-1} C_{n+m-1}^k X^k (1 - X)^{n+m-1-k}$$

$$= (1 - X)^m \sum_{k=0}^{n-1} C_{n+m-1}^k X^k (1 - X)^{n-1-k} + X^n \sum_{k=n}^{n+m-1} C_{n+m-1}^k X^{k-n} (1 - X)^{n+m-1-k}$$

Soient $U = \sum_{k=n}^{n+m-1} C_{n+m-1}^k X^{k-n} (1-X)^{n+m-1-k}$ et $V = \sum_{k=0}^{n-1} C_{n+m-1}^k X^k (1-X)^{n-1-k}$. U et V sont des polynômes tels que $UX^n + V(1-X)^m = 1$. De plus, pour $n \le k \le n+m-1$, $\deg(X^{k-n}(1-X)^{n+m-1-k}) = k-n+n+m-1-k = m-1 < m$ et donc $\deg(U) < m$ et de même pour $0 \le k \le n-1$, $\deg(X^k(1-X)^{n-1-k}) = k+n-1-k = n-1 < n$ et $\deg(V) < n$.