Credit Card Default Prediction

LOGAN LIU

MATTHEW PENG

NEHA ANNA JOHN

QINPEI ZOU

VIKRANT VAIDYA

Outline

- ■Introduction
- **■** Exploratory Data Analysis
- Modeling & Insights
- Conclusion

Introduction

Problem Statement

We are helping a Taiwanese bank to reduce loss caused by credit card payment defaults

Imagine you have

USD 33,000 of credit card bills

that dues next month

Exploratory Data Analysis

Key Variables

Predictor variables

- □ID of each credit card client
- □ Demographic information: Sex, Education, Marriage, Age
- □ Repayment status on credit card bill for 6 months (Apr2005-Sep2005)
- □ Credit card bill statement for 6 months (Apr2005-Sep2005)
- □ Credit card repayment for 6 months (Apr2005-Sep2005)

Output variables

Default payment flag for Oct 2005

Exploratory Data Analysis

Key findings:

Default Rate by Education

Default Rate by Marital Status/Gender

Modeling & Insights

Methodology

Implemented multiple models on training data:

- Logistic Regression
- KNN Classifier
- Decision Tree, Random Forest and Gradient Boosting

Evaluated key metrics for model performance on test data:

- Precision-Recall
- Misclassification rate
- Confusion Matrix

Logistic Regression And Naive Bayes

Used Lasso cross validation for variable selection - LIMIT BAL, SEX, MARRIAGE, PAYMENT_FLAGS, BILL AMT for last month and PAYMENT AMTS for last two months came out to be as the significant variables

Decision Tree: Analysis & Insights

Gradient Boosting: Analysis & Insights

or...

eta: 0.3(default) ->0.05

other parameters remain the same

Misclassification
Rate:
0.180

0.162

maybe next time we can start with eta?

things to consider:

- 1. computing time
- 2. too larger -> miss the optimization
- 3. too small -> stuck in local optimization

Random Forest: Analysis & Insights

One Predictor
provides a lot of information

Pred Actual	Non default(0)	Default(1)
Non- default(0)	6301	1066
Default(1)	319	680

Random Forest: Analysis & Insights

- Most of variables contribute similar weights to prediction of default
 - Error rate doesn't change much with number of variable trying
 - many predictors share similar mean decrease Gini
- One predictor strong influent prediction of default (Pay 1)
 - Pay $oldsymbol{1}=oldsymbol{5}$ means the person $oldsymbol{1}$ month ago delay the payment for $oldsymbol{5}$ months
- Many variables are redundant information (Pay 3 Pay6)
 - o $(Pay 2 = 4) \in (Pay 1 = 5)$
- Confliction from EDA: Education doesn't contribute much information

Pay.1 <int></int>	Default <dbl></dbl>
-2	0.08627608
-1	0.16751453
0	0.12902997
1	0.28649802
2	0.69765625
3	0.76470588
4	0.70270270
5	0.54166667
6	0.60000000
7	0.7777778

	Default <dbl></dbl>	Education <int></int>
Grad School	0.1749217	1
College	0.2288528	2
Hign School	0.2428918	3

KNN Classifier: Analysis & Insights

KNN without normalization

Precision-Recall - P: 1726, N: 6634

KNN with normalization

Precision-Recall - P: 1726, N: 6634

KNN with normalization and SMOTE

Precision-Recall - P: 1726, N: 6634

KNN Classifier: Analysis & Insights

Normalization of continuous variables highly effective for KNN Classifier:

- Reduced misclassification rate by about 15%
- More than doubled precision and improved recall significantly

SMOTE technique:

- Reduced precision marginally
- Produced highest recall across all techniques

More important to correctly identify defaulters vs others-Recall:

SMOTE delivers best on Recall

Conclusion

Output Summary

Model Name	Precision	Recall	Misclassification Rate
Logistic Regression	0.71	0.29	0.17
Naive Bayes	0.50	0.58	0.21
KNN Classifier with Normalization	<mark>0.95</mark>	0.82	0.043
KNN Classifier with SMOTE	0.77	0.97	0.066
Decision Tree	0.35	0.67	0.17
Random Forests	0.39	0.64	0.17
Gradient Boosting without tuning	0.594	0.407	0.180
Gradient Boosting with tuning	0.695	0.406	0.159

Recommendations

- Leverage Recall as the primary metric for evaluating model performance
- KNN Classifier with SMOTE provides best performance and can help predict the maximum number of probable credit defaulters
- Next Steps:
 - Build a stronger model leveraging data from last quarter/shorter period rather than half year

Appendix

KNN Classifier

Findings: K=20,K=50

Metric	Without normalization	With normalization	With SMOTE
Precision	0.47	0.96	0.84
Recall	0.09	0.79	<mark>0.98</mark>
Misclassification rate	21.4	3.09	4.24

Metric	Without normalization	With normalization	With SMOTE
Precision	0.46	0.95	0.77
Recall	0.06	0.82	<mark>0.97</mark>
Misclassification rate	20.86	4.35	6.58

Findings: Best K value

Finding the best K value for KNN with and without normalization

Findings: KCV=10

K fold Cross Validation=10 for data with and without normalization

Gradient Boosting

Gradient Boosting: Importance

Feature <chr></chr>	Gain <db></db>	Cover <dbl></dbl>	Frequency
PAY_1	0.7634134859	0.3333333306	0.14285714
PAY_2	0.1660897340	0.2980205198	0.14285714
PAY_4	0.0181468821	0.1097148970	0.05714286
LIMIT_BAL.	0.0163464585	0.1074236377	0.05714286
PAY_3	0.0136124543	0.0522952944	0.14285714
PAY_6	0.0095069087	0.0372762791	0.18571429
PAY_5	0.0050551374	0.0374183922	0.05714286
BILL_AMT1.	0.0025109365	0.0104823072	0.04285714
PAY_AMT4.	0.0020528418	0.0008665749	0.05714286
BILL_AMT5.	0.0015292959	0.0006500527	0.04285714