

Percona XtraDB Cluster Installation and setup (basics)

Peter Boros Consultant

Agenda

- Installing the first node of the cluster
- Connecting subsequent nodes to the cluster
- Installing HaProxy on the application server
- Testing with a real-world application: sysbench
- Breaking and fixing the cluster

Agenda

- Installing the first node of the cluster
- Connecting subsequent nodes to the cluster
- Installing HaProxy on the application server
- Testing with a real-world application: sysbench
- Breaking and fixing the cluster

Overview

- The goal of this talk to show Percona XtraDB Cluster basics with a hands-on approach.
- We will use freshly installed CentOS 6 machines. Those are vanilla installations.
- We will cover load balancing using HaProxy.

Percona XtraDB cluster at a glance

- All nodes are equal
- All nodes have all the data
- Replication is (virtually) synchronous
 - Completely different from asynchronous mysql replication
- At least 3 nodes (or 2 + arbitrator)

Packages on all database nodes

- Add Percona's yum repository
 # rpm -Uhv http://www.percona.com/downloads/percona-release/percona-release-0.0-1.x86_64.rpm
- Install PXC packages
 # yum -y install Percona-XtraDB-Cluster-server \
 Percona-XtraDB-Cluster-client \
 Percona-Server-shared-compat \
 percona-xtrabackup

Packages installed

```
Installing:
Percona-Server-shared-compat
  replacing mysql-libs.x86 64 5.1.61-4.el6
Percona-XtraDB-Cluster-client
Percona-XtraDB-Cluster-server
percona-xtrabackup
Installing for dependencies:
Percona-XtraDB-Cluster-galera
libaio
nc
perl
perl-Module-Pluggable
perl-Pod-Escapes
perl-Pod-Simple
perl-libs
perl-version
rsync
```

Configuring the nodes

- wsrep_cluster_address=gcomm://
 - Initializes a new cluster, new nodes can connect to this one
- wsrep_cluster_address=gcomm://<IP addr>:4567
 - Starts a new node, which will try to connect to the node specificed
- wsrep_urls
 - Option for [mysqld_safe] section, not for [mysqld], will set wsrep_cluster_address to a usable item on this list.
 - Example: wsrep_urls=gcomm://node1:4567,gcomm://node2:4567, gcomm://node3:4567

Configuring the first node

```
[mysqld]
server id=1
binlog_format=ROW
log bin=mysql-bin
wsrep cluster address=gcomm:// -
wsrep_provider=/usr/lib64/libgalera_smm
.SO
datadir=/var/lib/mysql
wsrep_slave_threads=4
wsrep_cluster_name=pxctest
wsrep_sst_method=xtrabackup
wsrep node name=pxc1
log slave updates
innodb_locks_unsafe_for_binlog=1
innodb_autoinc_lock_mode=2
```

We are starting a new cluster with node 'pxc1' as primary

Configuring subsequent nodes

```
[mysqld]
server id=1
binlog_format=ROW
log bin=mysql-bin
wsrep cluster address=gcomm://192.168.56.41 -
wsrep provider=/usr/lib64/libgalera smm.so
datadir=/var/lib/mysql
wsrep_slave_threads=4
wsrep_cluster_name=pxctest
wsrep_sst_method=xtrabackup
wsrep node name=pxc2
log slave updates
innodb_locks_unsafe_for_binlog=1
innodb autoinc lock mode=2
```

The other nodes are joining to 'pxc1'

Additional configuration for demo

- iptables disabled
 - service iptables stop
 - chkconfig –del iptables
- SELinux disabled in /etc/selinux/config

Demo: building the cluster and destroying it and building it again

What we saw...

State transfer

- SST (Snapshot State Transfer)
 - Copies the whole data set
 - Different methods: xtrabackup, rsync, etc...
- IST (Incremental State Transfer)
 - Transactions incrementally replayed from gcache
 - You can use a manual backup created with xtrabackup using --galera-info option of innobackupex

http://www.mysqlperformanceblog.com/2012/08/02/avoiding-sst-when-adding-new-percona-xtradb-cluster-node/

Split Brain

- When only 1 node was up, the data was not usable
- Using 3 nodes guarantees that you can lose 1 node
- A node has to be able to access the majority of cluster node to serve the data

What pxc1 saw

This does not necessarily mean pxc2 and pxc3 are dead...

Possibilities

Continuing operation in split brain mode

- The users (application servers) who can access pxc1 will write pxc1
- The users (application server) who can access pxc2 and pxc3 will write to that cluster
- This can be prevented by shutting down the node if it's not part of the group in majority
- garbd: galera arbitrator daemon, used in voting, but doesn't store data

Load balancing

- Some application can use driver level load balancing by connecting to all nodes (JDBC)
- For the rest, external solution necessary
 - LVS
 - HaProxy
 - We will cover this
 - Any kind of load balancing software is usable, if it can balance TCP connections at least

HaProxy configuration

backend pxc-back mode tcp balance leastconn option httpchk server pxc1 192.168.56.41:3306 check port 9200 inter 12000 rise 3 fall 3 server pxc2 192.168.56.42:3306 check port 9200 inter 12000 rise 3 fall 3 server pxc3 192.168.56.43:3306 check port 9200 inter 12000 rise 3 fall 3

backend pxc-onenode-back mode tcp balance leastconn option httpchk server pxc1 192.168.56.41:3306 check port 9200 inter 12000 rise 3 fall 3 server pxc2 192.168.56.42:3306 check port 9200 inter 12000 rise 3 fall 3 backup server pxc3 192.168.56.43:3306 check port 9200 inter 12000 rise 3 fall 3 backup

Application server node prepared for demo

- CentOS 6 base installation
- EPEL repo added
- HaProxy installed from EPEL repo
- Sysbench 0.5 package made by Frederic Descamps

Load balancing demo

Q&A

www.percona.com/live