<u>Common Source Amplifier – Schematic Design</u>

Common Source Amplifier schematic

Table of components for building the schematic:

Library Name	Cell Name	Properties
gpdk180	pmos	W = 8.85u, L = 180n
gpdk180	nmos	W = 6u, L = 180n

Common Source Amplifier symbol

Common Source Amplifier test schematic

Table of components for building the test schematic:

Library Name	Cell Name	Properties
analogLib	Vdc	DC Voltage = $3.3 \text{ V (V}_{dd})$
analogLib	Vsin	AC Magnitude = 1 V, Amplitude = 10u V, Frequency = 1K Hz
analogLib	Vdc	DC Voltage = 592m V
analogLib	res	Resistance = 10u Ohms
analogLib	idc	DC Current = 100u A
analogLib	cap	500f F

Analog Simulation with spectre for Common Source Amplifier:

Transient Response

DC Response

AC Response

AC Magnitude and Phase Response

Table of values to setup for different analysis:

Analysis Name	Settings	Properties
Transient	trans	Stop time = 5m, moderate
	DC Analysis	Save DC Operating point
DC	Sweep Variable Component Parameter	Component Name = Select input signal component (Vpulse) Parameter Name = dc
	Sweep Range Start – Stop	Sweep Type = Linear Start = -5, Stop = 5, Step size = 10m V
AC	Sweep Range Start – Stop	Sweep Type = Logarithm, Start = 10, Stop = 10G, Points Per Decade = 10

Common Source Amplifier Layout Design

Common Source Amplifier schematic

Common Source Amplifier Layout:

Common Source Amplifier Layout

Analog Simulation with spectre for Common Source Amplifier:

Transient Response

DC Response

AC Response

AC Magnitude and Phase Response

<u>Operational Amplifier – Schematic Design</u>

Operational Amplifier schematic

Table of components for building the schematic:

Library Name	Cell Name	Properties
gpdk180	pmos	W = 15u, L = 180n W = 50u, L = 180n
gpdk180	nmos	W = 3u, L = 180n W = 4.5u, L = 180n W = 7u, L = 180n

Operational Amplifier symbol

Operational Amplifier test schematic

Table of components for building the test schematic:

Library Name	Cell Name	Properties
analogLib	Vdc	DC Voltage = $2.5 \text{ V (V}_{dd})$ DC Voltage = $-2.5 \text{ V (V}_{ss})$
analogLib	Vsin	AC Magnitude = 1 V, DC Voltage = 0 V, Offset Voltage = 0 V Amplitude = 5u V, Frequency = 1K Hz
analogLib	idc	DC Current = 30u A

Analog Simulation with spectre for Operational Amplifier:

Transient Response

DC Response

AC Response

AC Magnitude and Phase Response

Table of values to setup for different analysis:

Analysis Name	Settings	Properties
Transient	trans	Stop time = 5m, moderate
	DC Analysis	Save DC Operating point
DC	Sweep Variable Component Parameter	Component Name = Select input signal component (Vpulse) Parameter Name = dc
	Sweep Range Start – Stop	Start = -5, Stop = 5
AC	Sweep Range Start – Stop	Sweep Type = Automatic, Start = 100, Stop = 10G,

Operational Amplifier Layout Design

Operational Amplifier schematic

Operational Amplifier Layout:

Operational Amplifier Layout

Analog Simulation with spectre for Operational Amplifier:

Transient Response

DC Response

AC Response

AC Magnitude and Phase Response