

 	S'.	rui)EN	TI	D N	O	

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2016/2017

EME3236 – HEATING, VENTILATION AND AIR CONDITIONING SYSTEMS (ME)

01 JUNE 2017 9.00 a.m - 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 12 pages with 4 Questions only.
- 2. Attempt **ALL** questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

(a) Interpret the following terms as applied to HVAC System:

i.	One TR	[3 marks]
ii.	COP	[3 marks]
iii.	SHR	[3 marks]

- (b) Hot water at 70°C is to be produced by using Furness and supplied to the desire reservoir at distance of 150 m. Horizontal pipe with a diameter of 25 mm and a friction factor of 0.029 is used to carry the hot water. The hot water average velocity is 0.63 m/s. Determine:
 - i. The pressure drop through this pipe

[5 marks]

ii. The pumping power requirement to pump the hot water through this pipe.

3 marks

Take the density of hot water at 70 °C as 1000 kg/m³.

(c) On a certain day the weather prediction states that the dry bulb temperature is 37 °C, while the relative humidity is 50% and the barometric pressure is 101.325 kPa. Find the humidity ratio, dew point temperature and enthalpy of moist air on this day.

[8 marks]

Continued ...

(a) Write a brief note on the following terms:

[5 marks]
[4 marks]
[3 marks]

(b) Ducting configuration of an industrial system is shown in the Figure Q2(b). Determine the rectangular size for each section of the system which depth is maintained at 14 in throughout using equal friction method. Air is flowing at the rate indicated. (Can refer to some attached table at appendix).

Notes: Duct calculator can be used as well.

Figure Q2(b)

[13 marks]

Continued ...

(a) Define the following:

i.	Psychrometry	[2 marks]
ii.	By Bass Factor	[2 marks]
iii.	Cooling Tower	[2 marks]

- (b) A work place area of 100 m², is a part of huge insulated vacancy building, which is high insulated, thus the external heat gain is almost ignored. The work place is occupied by 10 individuals. from 8:00 a.m. to 5:00 p.m. The heat gain due to equipment's such as computers, photocopiers, fax machines, is 9.4 W/m² and due to lighting is 12.4 W/m² of recessed, unvented fluorescent fixtures on from 8:00 a.m. to 5:00 p.m. Assume the sensible heat from occupants composed of 60 % radiative and 40% convective. The sensible heat from equipment composed 20% radiative and 80% convective The sensible heat from lighting 30% enters the space directly, and the rest composed 77 % radiative and 23 % convective.
 - i. Estimate the radiative and convective portions, for the sensible heat gain to the space,

[14 marks]

ii. Compute the total sensible and, latent heat gains at 4:00 p.m. for the space,

[3 marks]

iii. Calculate the cooling load for this office due the internal heat gain

[2 marks]

Continued ...

(a) Define the following

i.Fan Performance	[2 marks]
ii.Thermal Comfort	[2 marks]
iii.Latent heat	[2 marks]

(b) A sport hall is designed to suit 300 audience and to be maintained at 25 °C and 55% RH. The ventilation requirement per person is 6 litre/s. The outside air-conditions are 35 °C and 70% RH. The infiltration rate through the exam hall windows and doors is approximated to 0.43 air change per hour (ACH). If the hall volume is 1000 m³, estimate:

	11 , 0501111000	
i.	The mass flow rate of the ventilated air in kg/min,	[5 marks]
ii.	The sensible and latent heat transfer rates due to ventilation,	[6 marks]
iii.	The mass flow rate of the infiltrated air in kg/min,	[2 marks]
iv.	The sensible and latent heat transfer rates due to infiltration,	[4 marks]
v.	The total cooling load on the air conditioning system due to	ventilation and
	infiltration in kW.	[2 marks]

End of pages

Appendix

Dracy equation:

$$H = hL = f * (L/D) * v2 / 2g$$

where f is the friction factor,

L is the length of the duct/pipe,

V is the average velocity of the fluid, and

D is the hydraulic diameter of the duct/pipe.

$$w = 0.622 \times Pv/(Pt-Pv)$$

$$h = 1.005t + w(2501 + 1.88t)$$

Sensible heat due to ventilation/investigation

$$\begin{split} Q_{h} &= m_{a} (h_{B} - h_{O}) = m_{a} c_{pm} (T_{B} - T_{O}) \\ Q_{l,inf} &= \dot{m}_{o} h_{fg} (W_{o} - W_{i}) = \dot{V}_{o} \rho_{o} h_{fg} (W_{o} - W_{i}) \end{split}$$

6/12

Where:

$$C_{pm} = 1.005 \text{ Kj/kg * K}$$

 $h_{fg} = 2501 \text{ kJ/kg}$

$$m^{\bullet}a \ v = \rho * V^{\bullet}$$

Ideal gas equation: Pv = RT

$$Q_H - Q_L = W$$

$$Q = m^{\bullet} \times Cp \times (To - T in)$$

$$1TR = 12.000 BTU/h = 3.5167 kW$$

$$EER = COP * 3.412$$

B.A.S

Table 8-2 Rates of Heat Gain from Occupants of Conditioned Spaces^a

		Total Heat Adults, Male		Total Heat Adjusted ^b		Sensible Heat		Latent Heat	
Degree of Activity	Typical Application	But/hr	W	Btu/hr	W	Btuliu	W	Btw/hr	W
Seated at theater	Theater—matinee	390	114	330	97	225	66	105	31
Scated at theater	Theater—evening	390	114	350	103	245	72	105	31
Scated, very light work	Offices, hotels, apartments	450	132	400	117	245	72	155	45
Moderately active office work	Offices, hotels, apartments	475	139	450	132	250	73	200	59
Standing, light work; walking	Department store, retail store	550	162	450	132	250	73	200	59
Walking; standing	Drugstore, bank	550	162	500	146	250	73	250	73
Sedentary work	Restaurant	490	144	550	162	275	81	275	81
Light bench work	Factory	800	235	750	220	275	81	475	139
Moderate dancing	Dance hall	900	264	850	249	305	89	545	160
Walking 3 mph; light machine work	Factory	1000	293	1000	293	375	110	625	183
Bowling ^d	Bowling alley	1500	440	1450	425	580	170	870	255
Heavy work	Factory	1500	440	1450	425	580	170	870	255
Heavy machine work; lifting	Factory	1600	469	1600	469	635	186	965	283
Athletics	Gymnasium	2000	586	1800	528	710	208	1090	320

B.A.S 7/12

TABLE 8.11 SUGGESTED VELOCITIES IN LOW VELOCITY AIR CONDITIONING SYSTEMS

	Recomm	ended Velocitie	s, FPM	Maximum Velocities, FPM				
Designation	Residences	Schools, Theaters, Public Buildings	Industrial Buildings	Residences	Schools, Theaters, Public Buildings	Industrial Buildings		
Outside air intakes ^a	500	500	.500	800	900	1200		
Filters ^a	250	300	350	300	350	350		
Heating coils ^a	450	500	600	500	600	700		
Air washers	500	500	500	500	500	500		
Suction connections	700	800	1(XX)	900	1000	1400		
Fan outlets	1000-1600	1300-2000	1600-2400	1700	1500-2200	1700-2800		
Main ducts	700-900	1000-1300	1200-1800	800-1200	1100-1600	1300-2200		
Branch ducts	600	600-900	800-1000	700-1000	800-1300	1000-1800		
Branch risers	500	600-700	. 800	650-800	800-1200	1000-1600		

Friction chart in SI system

Psychrometric chart

ASHRAE Psychrometric Charl No. 1 Normal Temperature Barometric Pressure; 101.325 kPa

Saturated water Temperature table

		•	volume /kg	int	ernol ene kJ/kg	rgų	-	Enthalpy kl/kg		(m)/mississessess/inc	Entropų kJ/kg-K	
Temp, T°C	Sot. Press. P _{se} kPo	Sat. Liquid V,	Sot. Vapor <i>V</i> g	Sot. Liquid U _r	Gvop. И _{гг}	Sat. Vapor <i>u</i>	Sot. Liquid h,	Evop.	Sot. Vopor h _a	Sat. Liquid <i>s</i> ,	Evop.	Sat. Vapor
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	100,0	2500.9	2500.9	0.0000	9.1556	0.1556
5	0.8725	0.001000	147.03	21.019	8.068	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249
10	1,2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999
15	1.7057	0.001001	77.885	62,980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8,0152	8.4520
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	140.64	2417.9	2564.6	0.5051	7.8465	8.3517
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	8.2556
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188,44	2394.0	2582.4	0.6386	7.5247	8,1633
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748
55	15.763	0.001015	9.5639	230.24	2219,1	2449.3	230.26	2369.8	2600.1	0.7680	7,2218	7.9898
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	8.8002	0.8313	7,0769	7.9082
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6.9360	7.8296
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540
75	38.597	0,001026	4,1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158	6.6655	7.6812
80	47.416	0.001029	3,4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756	6.5355	7,6111
85	57.868	0.001032	2.8251	355.96	2131.9	2467.8	356.02	2295,3	2651.4	1.1346	6.4089	7.5435
90	70.183	0.001036	2.3593	376.97	2117.0	2494,0	377.04	2282.5	2659.6	1,1929	6.2853	7,4782
95	84,609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.05	2087.0	2506.0	419.17	2256.4	2675.6	1,3072	6.0470	7.3542
105	120.90	0.001047	1.4186	440.15	2071.8	2511.0	440.28	2243.1	2683.4	1.3634	5.9319	7.2952
110	143.38	0.001052	1,2094	461.27	2056.4	2517.7	461.42	2229,7	2691.1	1.4188	5.8193	7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482,59	2216.0	2698.6	1.4737	5.7092	7.1829
120	198.67	0.001060	0,89133	503,60	2025.3	2528.9	503,81	2202.1	2705.0	1.5279	5.6013	7.1292

B.A.S 11 / 12

Friction chart

B.A.S 12 / 12