This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

-29-

WHAT IS CLAIMED IS:

- 1 1. A transmission control syst m for a hybrid vehicle,
- 2 comprising:
- 3 a hybrid transmission comprising a differential
- 4 mechanism which includes at least four rotating members,
- 5 rotating conditions of all of the rotating members being
- 6 determined when rotating conditions of two of the
- 7 rotating members are determined, four of the rotating
- 8 members being connected to one of two motor/generators.
- 9 an input connected to a prime mover, an output connected
- to a driveline, and the other of the motor/generators.
- 11 the one of the motor/generators being controlled by means
- 12 of a revolution speed control to execute a transmission
- 13 ratio control, the other of the motor/generators being
- 14 controlled by means of a torque control to execute an
- 15 output control; and
- a controller connected to the hybrid transmission
- including the motor/generators, the controller being
- 18 arranged to change the torque control of the
- 19 motor/generator under the torque control to the
- 20 revolution speed control and to change the revolution
- 21 speed control of the other motor/generator under the
- 22 revolution speed control to the torque control, when one
- of the torque of the motor/generator under the revolution
- 24 torque control and the revolution speed of the other
- 25 motor/generator under the torque control becomes
- 26 saturated.

. <u>L...</u>

- 1 2. The transmission control system as claimed in claim
- 2 1, wherein the motor/generators are connected to the
- 3 rotating members located at both outer sides on a lever
- 4 diagram indicative of the hybrid transmission, and the

-30-

- 5 input connected to a prime mover and the output connected
- 6 to a driveline are connected to the rotating members
- 7 located between the rotating members connected to the
- 8 motor/generators on the lever diagram.
- 1 3. The transmission control system as claimed in claim
- 2 1, wherein the controller is further arranged to change
- 3 the revolution speed control of the motor/generator under
- 4 the revolution speed control to the torque control and to
- 5 change the torque control of the other motor/generator
- 6 under the torque control to the revolution speed control,
- 7 only when the torque of the motor/generator under the
- 8 revolution speed control becomes saturated.
- 1 4. The transmission control system as claimed in claim
- 2 3, wherein the controller sets a torque command of the
- 3 motor/generator to be changed from the revolution speed
- 4 control to the torque control so that an actual torque of
- 5 the motor/generator to be changed from the revolution
- 6 speed control to the torque control is smoothly varied
- 7 from an actual torque at a moment just before a
- s changeover from the revolution speed control to the
- 9 torque control to a target torque, and sets a revolution
- 10 speed command of the motor/generator to be changed from
- 11 the torque control to the revolution speed control is
- smoothly varied from an actual revolution speed at a
- 13 moment just before a changeover from the torque control
- 14 to the revolution speed control to a target revolution
- 15 speed.
- 1 5. The transmission control system as claimed in claim
- 2 1, wherein the controller is further arranged to change

. .

-31-

- 3 the torque control of the motor/generator under the
- 4 torqu control to the revolution speed control and to
- 5 change the revolution speed control of the other
- 6 motor/generator under the revolution speed control to the
- 7 torque control, only when the revolution speed of the
- s motor/generator under the torque control becomes
- 9 saturated.
- 1 6. The transmission control system as claimed in claim
- 2 5, wherein the controller sets a revolution speed command
- 3 of the motor/generator to be changed from the torque
- 4 control to the revolution speed control so that an actual
- 5 revolution speed of the motor/generator to be changed
- 6 from the torque control to the revolution speed control
- 7 is smoothly varied from an actual revolution speed at a
- 8 moment just before a changeover from the torque control
- 9 to the revolution speed control to a target revolution
- speed, and sets a torque command of the motor/generator
- 11 to be changed from the revolution speed control to the
- 12 torque control is smoothly varied from an actual torque
- 13 at a moment just before a changeover from the revolution
- 14 speed control to the torque control to a target torque.
 - 1 7. The transmission control system as claimed in claim
- 2 1, wherein the controller is further arranged to
- 3 determine whether the torque of the motor/generator under
- 4 the revolution speed control becomes saturated.
- 1 8. The transmission control system as claimed in claim
- 2 1, wherein the controller is further arranged to
- 3 determine whether the revolution speed of the

-32-

- 4 motor/generator under the torque control becomes
- saturated.

03-11-20;16:33 ;株式会社 アイ・エス・ピー

- 1 9. The transmission control system as claimed in claim
- 2 1, wherein the controller determines that the torque of
- 3 the motor/generator under the revolution torque control
- 4 becomes saturated when the torque detected by a torque
- 5 detector becomes out of a range between upper and lower
- 6 torque limits of the motor/generator
- 1 10. The transmission control system as claimed in claim
- 2 1, wherein the controller determines that the revolution
- 3 speed of the motor/generator under the torque control
- 4 becomes saturated when the revolution speed detected by a
- 5 revolution speed detector becomes out of a range between
- 6 upper and lower revolution speed limits of the
- 7 motor/generator.
- 1 11. The transmission control system as claimed in claim
- 2 1, further comprising revolution speed detectors for
- 3 detecting the revolution speeds of the motor/generators
- 4 and torque detectors for detecting the torques of the
- 5 motor/generators.
- 1 12. The transmission control system as claimed in claim
- 2 1, wherein the controller is further arranged to
- 3 determine a prime mover operating point indicative of a
- 4 combination of a revolution speed and a torque of the
- 5 prime mover according to a driver's demand so as to
- 6 maintain an optimal fuel consumption of the hybrid
- 7 vehicle.

36/ 45

P03NM-098/02-00506

-33-

- A method of controlling a hybrid transmission which
- is for a hybrid vehicle and comprises a differential 2
- mechanism including at least four rotating members, 3
- rotating conditions of all of the rotating members being
- determined when rotating conditions of two of the 5
- rotating members are determined, four of the rotating 6
- members being connected to one of two motor/generators, 7
- an input connected to a prime mover, an output connected 8
- to a driveline, and the other of the motor/generators, 9
- the one of the motor/generators being controlled by means 10
- of a revolution speed control to execute a continuous 11
- variable transmission ratio control, the other of the 12
- motor/generators being controlled by means of a torque 13
- control to execute an output control, the method 14
- comprising: 15
- changing the torque control of the motor/generator under 16
- the torque control to the revolution speed control and 17
- changing the revolution speed control of the other 18
- motor/generator under the revolution speed control to the 19
- torque control, when one of the torque of the 20
- motor/generator under the revolution torque control and 21
- the revolution speed of the motor/generator under the 22
- torque control becomes saturated. 23
 - A control system for controlling a hybrid 1
- transmission applied to a hybrid vehicle, the hybrid 2
- transmission comprising a differential mechanism which
- includes at least four rotating members, rotating 4
- conditions of all of the rotating members being 5

- determined when rotating conditions of two of the 6
- rotating members are determined, four of the rotating
- members being connected to one of two motor/generators,

-34-

03-11-20;16:33 ;株式会社 アイ・エス・ピー

an input connected to a prime mover, an output connected to a driveline, and the other of the motor/generators, 10 the one of the motor/generators being controlled by means 11 of a revolution speed control to execute a transmission 12 13 ratio control, the other of the motor/generators being controlled by means of a torque control to execute an 14 output control, the control system comprising: 15 means for changing the torque control of the 16 motor/generator under the torque control to the 17 revolution speed control and the revolution speed control 18 19 of the other motor/generator under the revolution speed control to the torque control, when one of the torque of 20 21 the motor/generator under the revolution torque control and the revolution speed of the other motor/generator 22 under the torque control becomes saturated. 23