EE30342 – Digital Design with HDL (II) Lecture 14

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Data Hazards and Forwarding
- Data Hazards and Stall

2

Data Hazards in ALU Instructions

• Consider this sequence:

sub \$2, \$1,\$3
and \$12,\$2,\$5
or \$13,\$6,\$2
add \$14,\$2,\$2
sw \$15,100(\$2)

- We can resolve hazards with forwarding
 - How do we detect when to forward?

Data Hazards: Forwarding vs. Stallii

Dependencies & Forwarding

3

Detecting the Need to Forward

- · Pass register numbers along pipeline
 - e.g., ID/EX.RegisterRs = register number for Rs sitting in ID/EX pipeline register
- ALU operand register numbers in EX stage are given by
 - ID/EX.RegisterRs, ID/EX.RegisterRt
- Data hazards when
 - 1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
 - 1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
 - 2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
 - 2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

5

Detecting the Need to Forward

- But only if forwarding instruction will write to a register!
 - EX/MEM.RegWrite, MEM/WB.RegWrite
- And only if Rd for that instruction is not \$zero
 - EX/MEM.RegisterRd ≠ 0, MEM/WB.RegisterRd ≠ 0

6

8

Forwarding Paths

Forwarding Conditions

- EX hazard
 - if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10
 - if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10
- MEM hazard
 - if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01
 - if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

(

Double Data Hazard

Consider the sequence:

add \$1,\$1,\$2 add \$1,\$1,\$3 add \$1,\$1,\$4

- Both hazards occur
 - Want to use the most recent
- Revise MEM hazard condition
 - Only fwd if EX hazard condition isn't true

9

Revised Forwarding Condition

- MEM hazard
 - if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01
 - if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Datapath with Forwarding

Load-Use Data Hazard

10

Load-Use Hazard Detection

- Check when using instruction is decoded in ID stage
- ALU operand register numbers in ID stage are given by
 - IF/ID.RegisterRs, IF/ID.RegisterRt
- Load-use hazard when
 - ID/EX.MemRead and ((ID/EX.RegisterRt = IF/ID.RegisterRs) or (ID/EX.RegisterRt = IF/ID.RegisterRt))
- If detected, stall and insert bubble

How to Stall the Pipeline

- Force control values in ID/EX register to 0
 - EX, MEM and WB do nop (no-operation)
- Prevent update of PC and IF/ID register
 - Using instruction is decoded again
 - Following instruction is fetched again

13

Stall/Bubble in the Pipeline

Datapath with Hazard Detection

