

Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise

Akshay Aravind Nathan Palamuttam Abhi Vetukuri Ram Peddu

Introduction

Problem: injecting noise in diffusion is suboptimal for certain deterministic tasks such as unblurring

Investigate if **noise** for diffusion restoration is unnecessary → can we use deterministic degradation

Example task: recovering a given image

Cold Diffusion (Bansal, A. et al., 2022) shows that diffusion models can operate purely by undoing degradations without stochastic noise

Methodology

Algorithm 1 Naive Sampling

Input: A degraded sample x_t for $s=t, t-1, \ldots, 1$ do $\hat{x}_0 \leftarrow R(x_s, s)$ $x_{s-1} = D(\hat{x}_0, s-1)$ end for Return: x_0

Algorithm 2 Improved Sampling for Cold Diffusion

Input: A degraded sample x_t for $s=t, t-1, \ldots, 1$ do $\hat{x}_0 \leftarrow R(x_s, s)$ $x_{s-1} = x_s - D(\hat{x}_0, s) + D(\hat{x}_0, s-1)$ end for

Implemented different sampling algorithm

Used a GMM to model the distribution of severely blurred images,
ensuring they remain within the natural image manifold

Algorithm 1

Algorithm 2

Results

Algorithm 1

Direct Reconstruction

Algorithm 2

Conclusion

- Cold generation with fixed kernels shows significant ability to generate hyper-realistic images.
- Algorithm 2 makes a notable impact in this processes as converging to the exact "noised" version at a specific time step prevents prediction drift over time
- Our model generated realistic images using only ⅓ of the sampling steps in the original paper. This shows potential faster convergence when noise is not used.

Paper results correspond with our results

Future Work

Generalize to more degradation transformations (e.g. pixelation, swirling)

Apply to new domains e.g. audio and video

Study potential mode collapse compared to traditional noising

References

[1] Bansal, A., Borgnia, E., Chu, H.-M., Li, J. S., Kazemi, H., Huang, F., Goldblum, M., Geiping, J., & Goldstein, T. (2023). *Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise*.