

Figure 1. **Annotations in the Oxford-IIIT Pet data.** From left to right: pet image, head bounding box, and trimap segmentation (*blue*: background region; *red*: ambiguous region; *yellow*: foreground region).

The second contribution of the paper is a model for pet breed discrimination (Sect. 3). The model captures both shape (by a deformable part model [23, 42] of the pet face) and texture (by a bag-of-visual-words model [16, 30, 38, 44] of the pet fur). Unfortunately, current deformable part models are not sufficiently advanced to represent satisfactorily the highly deformable bodies of cats and dogs; nevertheless, they can be used to reliably extract stable and distinctive components of the body, such as the pet face. The method used in [34] followed from this observation: a cat's face was detected as the first stage in detecting the entire animal. Here we go further in using the detected head shape as a part of the feature descriptor. Two natural ways of combining the shape and appearance features are then considered and compared: a flat approach, in which both features are used to regress the pet's family and the breed simultaneously, and a hierarchical one, in which the family is determined first based on the shape features alone, and then appearance is used to predict the breed conditioned on the family. Inferring the model in an image involves segmenting the animal from the background. To this end, we improved on our previous method on of segmentation in [34] basing it on the extraction of superpixels.

The model is validated experimentally on the task of discriminating the 37 pet breeds (Sect. 4), obtaining very encouraging results, especially considering the toughness of the problem. Furthermore, we also use the model to break the ASIRRA test that uses the ability of discriminating between cats and dogs to tell humans from machines.

2. Datasets and evaluation measures

2.1. The Oxford-IIIT Pet dataset

The Oxford-IIIT Pet dataset is a collection of 7,349 images of cats and dogs of 37 different breeds, of which 25 are dogs and 12 are cats. Images are divided into training, validation, and test sets, in a similar manner to the PASCAL

VOC data. The dataset contains about 200 images for each breed (which have been split randomly into 50 for training, 50 for validation, and 100 for testing). A detailed list of breeds is given in Tab. 1, and example images are given in Fig. 2. The dataset is available at [35].

Dataset collection. The pet images were downloaded from Catster [4] and Dogster [5], two social web sites dedicated to the collection and discussion of images of pets, from Flickr [6] groups, and from Google images [7]. People uploading images to Catster and Dogster provide the breed information as well, and the Flickr groups are specific to each breed, which simplifies tagging. For each of the 37 breeds, about 2,000 - 2,500 images were downloaded from these data sources to form a pool of candidates for inclusion in the dataset. From this candidate list, images were dropped if any of the following conditions applied, as judged by the annotators: (i) the image was gray scale, (ii) another image portraying the same animal existed (which happens frequently in Flickr), (iii) the illumination was poor, (iv) the pet was not centered in the image, or (v) the pet was wearing clothes. The most common problem in all the data sources, however, was found to be errors in the breed labels. Thus labels were reviewed by the human annotators and fixed whenever possible. When fixing was not possible, for instance because the pet was a cross breed, the image was dropped. Overall, up to 200 images for each of the 37 breeds were obtained.

Annotations. Each image is annotated with a breed label, a pixel level segmentation marking the body, and a tight bounding box about the head. The segmentation is a trimap with regions corresponding to: foreground (the pet body), background, and ambiguous (the pet body boundary and any accessory such as collars). Fig. 1 shows examples of these annotations.

Evaluation protocol. Three tasks are defined: pet family classification (Cat vs Dog, a two class problem), breed classification given the family (a 12 class problem for cats and a 25 class problem for dogs), and breed and family classification (a 37 class problem). In all cases, the performance is measured as the average per-class classification accuracy. This is the proportion of correctly classified images for each of the classes and can be computed as the average of the diagonal of the (row normalized) confusion matrix. This means that, for example, a random classifier has average accuracy of 1/2 = 50% for the family classification task, and of $1/37 \approx 3\%$ for the breed and family classification task. Algorithms are trained on the training and validation subsets and tested on the test subset. The split between training and validation is provided only for convenience, but can be disregarded.