Objectifs:

- Mesurer la distance focale de lentilles convergentes et divergentes par différentes méthodes.
- Estimer et comparer les précisions des méthodes.

Matériel:

- Lentilles et montures sur banc d'optique,
- source lumineuse éclairant un verre dépoli sur lequel figure une lettre
- source lumineuse éclairant un verre dépoli sur lequel figure une grille
- écran quadrillé, écran blanc
- logiciel SciDAVis (Scientific Data Analysis and Visualization) ou tout autre logiciel dont vous auriez l'habitude permettant de réaliser des ajustements numériques:
 - en donnant l'incertitude-type sur les paramètres,
 - en tenant compte des barres d'erreur.
 - On illustrera (quand le cours sur les relations de conjugaison aura été fait) chaque manipulation par un schéma représentant la source lumineuse (primaire ou secondaire), la construction de son image à l'aide d'au moins deux rayons hors de l'axe et l'enveloppe du faisceau pouvant traverser la lentille (en traits interrompus sur la figure ci-contre).
 - On énumérera, pour chaque mesure, les sources d'erreur dont on évaluera l'incertitude-type.

Capacités mises en œuvre :

- ☐ Éclairer un objet de manière adaptée.
- $\hfill \square$ Estimer une valeur approchée d'une distance focale.
- ☐ L'ensemble des capacités exigibles relatives à «Mesures et incertitudes », en particulier :
- □ Utiliser un logiciel de régression linéaire afin d'obtenir les valeurs des paramètres du modèle.

Détermination de la distance focale image d'une lentille convergente

- On appliquera chaque méthode à la mesure de deux lentilles, une lentille de vergence indiquée V = +3 et une de vergence V = +8 si disponibles. On pourra sinon utiliser deux lentilles accolées pour obtenir des vergences proches de celles-ci.
- Chaque groupe remplira un tableau comme celui ci-dessous.

• Chaque groupe saisira également sur l'ordinateur du bureau les résultats des mesures afin de comparer son estimation de l'incertitude-type à l'incertitude-type de type A des résultats de l'ensemble des groupes.

		Autocollimation	Points conjugués	Bessel	Silbermann
V = +3	f'				
	$\Delta f'$				
	$\Delta f'/f'$				
	f'				
V = +8	$\Delta f'$				
	$\Delta f'/f'$				

I.1 Méthode d'autocollimation

Manipulations:

Accoler un miroir plan immédiatement après la lentille convergente. Ajuster la position de l'ensemble pour former l'image de l'objet dans le même plan que celui-ci. L'objet se trouve alors au foyer objet de la lentille, à la distance f'.

Questions:

• Mesurer f' et estimer son incertitude-type.

Cette méthode permet de placer précisément un objet au foyer d'une lentille convergente bien qu'elle puisse être très imprécise pour déterminer sa distance focale.

I.2 Méthode des points conjugués

Quand un objet est placé en amont du foyer objet d'une lentille convergente de distance focale f', l'image qu'elle en donne est réelle. Les distances a entre l'objet et la lentille notée p, et entre la lentille et l'image, notée p' vérifient :

$$\frac{1}{p} + \frac{1}{p'} = \frac{1}{f'}$$

Manipulations:

Relever différents couples de valeurs (p, p') et estimer, pour chacun les incertitudestypes Δp et $\Delta p'$.

Questions:

Comment s'exprime l'incertitude-type sur 1/p en fonction de Δp ?

 ${}^{a}\Pi$ s'agit du cas particulier de la relation de conjugaison de Descartes $\frac{1}{\overline{OA'} - \frac{1}{\overline{OA}}} = \frac{1}{f'}$ dans le cas où $\overline{OA} < 0$ et $\overline{OA'} > 0$.

Exploitation:

• Tracer la courbe des valeurs de 1/p' en fonction de 1/p, en y faisant figurer les barres d'erreurs sur 1/p et 1/p'.

 Déterminer, au moyen d'un ajustement numérique par une fonction linéaire la valeur de la distance focale f ainsi que son incertitude-type.

I.3 Méthode de Bessel

On forme à l'aide d'une lentille converge de distance focale image l'image réelle d'un objet réel sur un écran situé à une distance B ainsi que son incertitude-type D. On montre que :

- la distance D doit être supérieure à 4f';
- il existe alors deux positions (d'abscisses x_1 et x_2) pour la lentille, séparées d'une distance d telle que :

$$f' = \frac{D^2 - d^2}{4D}.$$

Questions:

Ø

- Comment sont placés x1 et x2 par rapport au milieu du segment objet-écran? Justifier.
- Justifier sans calcul que les valeurs absolues des grandissements transversaux dans les deux configurations sont inverses l'un de l'autre.
- Calculer les dérivées partielles : $\left(\frac{\partial f'}{\partial d}\right)_D$ et $\left(\frac{\partial f'}{\partial D}\right)_d$. En déduire l'expression de l'incertitude-type $\Delta f'$ en fonction des ainsi que son incertitude-typeincertitudes-types estimées : Δd et ΔD , selon :

$$\Delta f' = \sqrt{\left| \left(\frac{\partial f'}{\partial d} \right)_D \right|^2 \Delta d^2 + \left| \left(\frac{\partial f'}{\partial D} \right)_d \right|^2 \Delta D^2}.$$

• On pourra à défaut utiliser le logiciel Gum

Manipulations:

Choisir une position de l'écran permettant de former une image avec un grandissement de l'ordre de mais significativement différent de -1 (on en précisera la valeur mesurée). Chercher les deux positions de la lentille permettant d'obtenir une image nette sur l'écran.

Mesurer D, x_1 et x_2 ainsi que leurs imprécisions.

Exploitation:

Calculer la valeur de f' et estimer son incertitude-type.

I.4 Méthode de Silbermann

Questions:

Combien de positions de la lentille obtient-on dans le cas D = 4f'. Que vaut alors le grandissement?

Manipulations

Placer l'écran à environ 4f'. Ajuster les positions de la lentille et de l'écran pour obtenir le grandissement voulu.

Exploitation:

Calculer la valeur de f' et estimer son incertitude-type.

1.5 Analyse des résultats

Exploitation:

- Vérifier, pour chacune des deux lentilles, la compatibilité des valeurs mesurées par les différentes méthodes au moyen de ainsi que son incertitude-typel'écart normalisé.
- Vérifier de même que l'incertitude-type estimée est comparable à l'incertitude-type des mesures des différents groupes.
- Commenter les imprécisions des différentes mesures. Quelles sont les plus précises? Leur imprécision relative est-elle différente selon qu'on mesure une petite ou une grande distance focale?

Il Détermination de la distance focale image d'une lentille divergente

II.1 Réalisation d'une lentille mince convergente

On montre, en utilisant les relations de conjugaison de Descartes que deux lentilles minces accolées, de distances focales images f'_1 et f'_2 sont équivalentes à une unique lentille mince, de distance focale image f' vérifiant :

$$\frac{1}{f'} = \frac{1}{f_1'} + \frac{1}{f_2'}.$$

Questions:

- \not Exprimer l'imprécision $\Delta f'_1$ en fonction des imprécisions $\Delta f'$ et $\Delta f'_2$ si l'on déduit f'_1 des mesures de f' et f'_2 .
- On souhaite mesurer, par une des méthodes précédentes, la distance focale image f'₁ < 0 d'une lentille divergente en lui accolant une lentille convergente de distance focale f'₂ > 0. Quelle inégalité doivent vérifier f'₁ et f'₂?

Manipulations:

- Choisir une lentille divergente (f'₁) et former un doublet convergent (f') en lui accolant l'une des lentilles convergentes (f'₂) caractérisées précédemment (on placera les deux lentilles sur la même monture).
- Mesurer la distance focale image f' de ce doublet par l'une des méthodes précédentes. Estimer également l'imprécision Δf'.

Exploitation:

Calculer la valeur de f'_1 et estimer son imprécision $\Delta f'_1$. Commenter.

II.2 Méthode de Badal

On utilise deux lentilles minces convergentes (\mathcal{L}_1 et \mathcal{L}_2 , de centres optiques respectifs O_1 et O_2 et de distances focales images respectives $f_1' > 0$ et $f_2' > 0$) pour déterminer la distance focale image $f_d' < 0$ d'une lentille mince divergente (\mathcal{L}_d , de centre O).

- \mathcal{L}_1 et \mathcal{L}_2 scules. On utilise tout d'abord uniquement \mathcal{L}_1 et \mathcal{L}_2 , disposées de telle sorte que $\overline{O_1O_2} > f_2'$. On place un objet AB au foyer objet de \mathcal{L}_1 et on nomme $A_1'B_1'$ l'image obtenue après la traversée des deux lentilles.
- \mathcal{L}_1 , \mathcal{L} et \mathcal{L}_2 . On intercale ensuite \mathcal{L}_d placée au foyer objet de \mathcal{L}_2 . On note $A_2'B_2'$ l'image obtenue après la traversée des trois lentilles.

En notant d la distance entre A'_1 et A'_2 , on peut montrer qu'on a :

$$d\left|f_d'\right| = f_2'^2$$

On pourra utiliser les simulations proposées par

• uel.unisciel.fr

• www.sciences.univ-nantes.fr

Manipulations:

On utilise pour \mathcal{L}_1 et \mathcal{L}_2 des lentilles de vergence proches de V=3 et V=8.

- Placer \mathcal{L}_1 et \mathcal{L}_2 de telle sorte que : $\overline{O_1O_2} > f_2'$.
- Quelle méthode permet de déterminer précisément le plan focal objet d'une lentille. L'utiliser :
 - déterminer le plan focal objet de \mathcal{L}_2 ,
 - placer l'objet lumineux AB dans le plan focal objet de \mathcal{L}_1 .
- Repérer la position de l'image $A_1'B_1'$ de l'objet par l'ensemble des deux lentilles.
- Placer une lentille divergente (de vergence assez importante) dans le plan focal objet de L₂. Repérer la nouvelle position de l'image A'₂B'₂.

Exploitation:

Calculer la distance focale f_d^\prime de la lentille divergente et estimer son incertitude-type.