$\begin{array}{c} {\rm R\acute{e}seaux\ de\ neurones} \\ {\rm IFT\ 780} \end{array}$

Réseaux à convolution avancés et architectures convolutives modernes

Par Pierre-Marc Jodoin

1

Autres types de couches convolutives

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e5821

10

Convolution séparée

1.1

Convolution séparée

Les filtres 2D et 3D peuvent être séparés en filtres plus élémentaires

Bien que tous les filtres 2D (et 3D) ne soient pas tous mathématiquement séparables, on peut tout de même les **approximer** par des filtres 1D

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \approx \begin{pmatrix} k & l & m \end{pmatrix} * \begin{pmatrix} n \\ o \\ p \end{pmatrix}$$

16

17

Convolution séparée en profondeur (Depthwise Separable Convolution)

Convolution 3D Souvent en imagerie médicale on utilise plusieurs « modalités » et des acquisitions en 3D (ici un cerveau au complet)

Convolution à trous

Autres pratiques courantes

Prétraitement des données en entrée

Pour des images RGB (ex. CIFAR10, CIFAR100, ImageNet, etc)

- Soustraire l'image moyenne des données d'entraînement (e.g AlexNet)
 - Soustraite une image 32x32x3 pour CIFAR10

$$x_{MOY} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

40

40

Prétraitement des données en entrée

Pour des images RGB (ex. CIFAR10, CIFAR100, ImageNet, etc)

- Soustraire l'image moyenne des N images d'entraînement (e.g AlexNet)
 - Soustraite une image moyenne 32x32x3 pour CIFAR10

$$x_{MOY} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Soustraire une moyenne par canal (e.g. VGGNet)
 - Soustraite trois valeurs : R, G, B

$$R = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_{k}[i, j].R$$

$$G = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_{k}[i,j].G$$

$$B = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_{k}[i, j].B$$

41

41

Hoffe and Szepedy 20

Normalisation par lot (Batch norm)

Observation : Normaliser les données en entrée est une bonne chose.

Question : pourquoi ne pas normaliser les données à l'entrée de chaque couche?

[Ioffe and Szegedy, 2015]

Normalisation par lot (Batch norm)

def batchnorm_forward_pass(x, eps):

#step 1 : calculer la moyenne et la variance
mu = np.mean(x, axis=0)
var = np.var(x, axis=0)

#step 2 : normaliser les données
x_norm = (x - mu)/np.sqrt(var + eps)
return x_norm

Question: est-ce pertinent de normaliser tous les neurones de toutes les couches? Pas toujours!

47

47

[Ioffe and Szegedy, 2015]

Normalisation par lot (Batch norm)

Solution: permettre au réseau d'apprendre à défaire la normalisation par lot

$$x_{MOY} = \frac{1}{3} \sum_{i=1}^{3} x_i$$

$$x_{VAR} = \frac{1}{3} \sum_{i=1}^{3} (x_i - x_{MOY})^2$$

$$\hat{x}_i = \frac{x_i - x_{MOY}}{\sqrt{x_{VAR} + \varepsilon}}$$

$$\tilde{x}_i = \gamma \circ \hat{x}_i + \beta$$

Paramètres appris par le système. Ainsi, le réseau peut apprendre que $\gamma = \sqrt{x_{y_{AR}}}$ et $\beta = x_{MOY}$ et ainsi annuler la normalisation au besoin.

Normalisation par lot (Batch norm)

NOTE: produit de Hadamar

$$\widetilde{x}_i = \gamma \circ \hat{x}_i + \beta$$

$$\begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \\ \gamma_5 & \gamma_6 & \gamma_7 & \gamma_8 \\ \gamma_9 & \gamma_{10} & \gamma_{11} & \gamma_{12} \\ \gamma_{13} & \gamma_{14} & \gamma_{15} & \gamma_{16} \end{bmatrix} \circ \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5 & x_6 & x_7 & x_8 \\ x_9 & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} = \begin{bmatrix} \gamma_1 x_1 & \gamma_2 x_2 & \gamma_3 x_3 & \gamma_4 x_4 \\ \gamma_2 x_5 & \gamma_6 x_6 & \gamma_7 x_7 & \gamma_8 x_8 \\ \gamma_9 x_9 & \gamma_{10} x_{10} & \gamma_{11} x_{11} & \gamma_{12} x_{12} \\ \gamma_{12} x_{13} & \gamma_{14} x_4 & \gamma_{15} x_{15} & \gamma_{16} x_{16} \end{bmatrix}$$

50

50

[Ioffe and Szegedy, 2015]

Normalisation par lot (Batch norm)

def batchnorm_forward_pass(x, gamma, beta, eps):

#step 1 : calculer la moyenne et la variance
mu = np.mean(x, axis=0)
var = np.var(x, axis=0)

#step 2 : normaliser les données
x_norm = (x - mu)/np.sqrt(var + eps)

#step 3 : "dénormaliser" les données
x_norm = x_norm*gamma + beta

return x_norm

Normalisation par lot (*Batch norm*) En généralisation, lorsqu'on souhaite traiter une seule donnée (donc une taille de lot de 1), on remplace et par des constantes précalculées $\hat{x}_i = \frac{x_i - x_{MOY}}{\sqrt{x_{YAR}} + \mathcal{E}}$ c'est-à-dire $x_{MOY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - x_{MOY})^2$ Image: loffe et al. 'Batch normalization: Accelerating deep network training by reducing internal covariate shift.' arxiv. 2015.

Normalisation par lot (Batch norm)

Pour plus d'information:

- https://medium.com/@ilango100/batch-normalization-speed-up-neural-network-training-245e39a62f85
- · https://deepnotes.io/batchnorm
- Image: Ioffe et al. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv, 2015.

55

55

Autre pratique courante : Dropout

Forcer à zéro certains neurones de façon aléatoire à chaque itération

Srivastava et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

56

Autre bonne pratique : Dropout

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
 """ X contains the data """

forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(W1, X) + b1)

U1 = np.random.rand(*H1.shape)

Crédit http://cs231n.stanford.edu/

Ensemble de modèles

- 1- Entraîner indépendamment différents modèles
- 2- En généralisation, faire voter ces modèles

Permet d'améliorer les performances de 2-3%

NOTE Même entraîner N-fois le même modèle fonctionne!

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob Fergus Regularization of Neural Networks using DropConnect, ICML 2013

64

Transfert d'apprentissage (Transfer learning) Question: il faut un très grand nombre de données annotées pour entraîner un réseaux de neurones profonds? Réponse: Faux, si on dispose d'un modèle pré-entraîné sur une base de données similaire.

Transfert d'a	pprentiss	age	
FC-980 FC-490 FC-490 FC-490 Wan-fou com-452 Com-452 Wan-fou Com-552 Wan-fou Com-554 Wan-fou Co		very similar dataset	very different dataset
	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
	quite a lot of data	Finetune a few layers	Finetune a larger number of layers
		Créd	it: http://es231n.stanford.edu

74

À retenir pour vos projets:

Vous avez une BD qui a un nombre limité de données annotées?

- 1. Trouvez une grosse BD contenant des données similaires
- 2. Entraînez un réseau de neurones
- 3. Transférez le modèle à votre projet
- 4. Réentraînez votre modèle (ou une partie de votre modèle)

Plusieurs bibliothèques ont un "Model Zoo" avec des modèles pré-entraînés

TensorFlow: https://github.com/tensorflow/models PyTorch: https://github.com/pytorch/vision

L'augmentation de données n'est pas une exception

c'est la norme

Il n'y a *a priori* aucune raison pour ne pas l'utiliser dans vos projets.

82

CLASSIFICATION D'IMAGE

83

AlexNet ENTRÉE: 227x227x3 CONV1: 96 x 55 x 55 Couche 2 MaxPool: 3x3 stride stride 2

Quelle est la taille des cartes d'activation?

Réponse: (55-3)/2+1 = 27

97

AlexNet

ENTRÉE: 227x227x3 **CONV1**: 96 x 55 x 55

Couche 2 MaxPool : 3x3 stride stride 2

27 x 27 x 96

Combien y a-t-il de paramètres?

Réponse: 0!

98

AlexNet

ENTRÉE: 227x227x3 **CONV1**: 55 x 55 x 96 **MAX POOL1**: 27 x 27 x 96

• • •

100

AlexNet **ENTRÉE** 227 x 227 x 3 Notes additionnelles: CONV1 55 x 55 x 96 MAX POOL1 27 x 27 x 96 Fonction d'activation ReLU NORM1 27 x 27 x 96 Augmentation de données CONV2 27 x 27 x 256 LayerNorm: peu utilisé aujourd'hui MAX POOL2 13 x 13 x 256 Dropout 0.5 NORM2 13 x 13 x 256 Batch_size 128 CONV3 13 x 13 x 384 SGD + momentum CONV4 13 x 13 x 384 Taux d'apprentissage 0.01 avec CONV5 13 x 13 x 256 réduction par plateau d'un facteur 10 MAX POOL3 6 x 6 x 256 ~68 millions de paramètres FC6 4096 FC7 4096 FC8 1000

VGG16 ENTRÉE CONV-3x3-64 CONV-3x3-64 POOL-2x2 CONV-3x3-128 POOL-2x2 CONV-3x3-128 POOL-2x2 CONV-3x3-256 CONV-3x3-256 CONV-3x3-256 POOL-2x2 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 CONV-3x3-512 POOL-2x2 CONV-3x3-512 POOL-2x2 CONV-3x3-512 POOL-2x2 CONV-3x3-512 POOL-2x2 CONV-3x3-512 POOL-2x2 FC-4096	Combien de paramètres? Combien de neurones?	input 3.5 com, 64 3.5 com, 64 Pool 3.5 com, 128 3.5 com, 25 3.5 com, 52

POOL-2x2 [112x112x64] CONV-3x3-128 [112x112x128] POOL-2x2 [56x56x128] POOL-2x2 [56x56x128] CONV-3x3-266 [56x56x256] CONV-3x3-256 [56x56x256] CONV-3x3-256 [56x56x256] CONV-3x3-256 [56x56x256] POOL-2x2 [28x28x256] POOL-2x2 [28x28x512] CONV-3x3-512 [28x28x512] CONV-3x3-512 [28x28x512] CONV-3x3-512 [28x28x512] CONV-3x3-512 [28x28x512] CONV-3x3-512 [14x14x512] CONV-3x3-512		
ENTRÉE [224x224x3] CONV-3x3-64 [224x224x64] ENTRÉE [224x224x64] CONV-3x3-46 POOL-2x2 [112x112x64] ENTRÉE [112x112x64] CONV-3x3-128 [112x112x128] POOL-2x2 [56x56x128] CONV-3x3-256 [56x56x256] CONV-3x3-12 [28x28x512] CONV-3x3-512 [28x28x512] CONV-3x3-512 [28x28x512] CONV-3x3-512 [28x28x512] CONV-3x3-512 [28x28x512] ENTRÉE [2xx28x512] ENTRÉE [2xx28x512	il6	
ENTREE [224x24x3] CONV-3x3-64 [224x224x64] POOL-2x [112x112x64] CONV-3x3-64 [224x224x64] POOL-2x [112x112x64] CONV-3x3-128 [112x112x128] POOL-2x [56x56x128] CONV-3x3-128 [112x112x128] Samm.32 CONV-3x3-256 [56x56x256] CONV-3x3-256 [56x56x256] POOL-2x [28x28x512] CONV-3x3-512 [4x14x512] CONV-3x3-		
CONV-3x3-46		
CONV-3x3-64 POOL-2z2 [12x112x64] POOL-2z1 [112x112x128] CONV-3x3-128 [112x112x128] POOL-2z2 [55x56x128] POOL-2x2 [55x56x128] POOL-3x3-256 [56x56x256] POOL-2x2 [56x56x256] POOL-2x2 [28x28x256] POOL-2x2 [28x28x256] POOL-2x2 [28x28x2512] POOL-2x2 [28x28x512] POOL-2x2 [28x28x512] POOL-2x3-512 [28x28x512] POOL-2x3-512 [28x28x512] POOL-2x4 [28x28x512] POOL-2x5 [28x28x512] POOL-2x5 [28x28x512] POOL-2x6 [28x28x512] POOL-3x3-512 [28x28x512] POOL-3x3-5	2248224804	
CONV-3x3-128 [112x112x128] Statum;3 CONV-3x3-128 [112x112x128] Statum;3 POOL-2x2 [5656x128] Statum;3 CONV-3x3-256 [56x56x256] Statum;3 CONV-3x3-256 [56x56x256] Statum;3 CONV-3x3-256 [56x56x256] Statum;3 CONV-3x3-512 [28x28x256] Statum;3 CONV-3x3-512 [28x28x512] Statum;3 CONV-3x3-512 [14x14x512] Statum;3 CONV-3x3-512 [14x14x512] Teaths CONV-		3x3 conv. 128
CONV-3x3-128 [112x112x128] Samuel CONV-3x3-128 [112x112x128] Samuel CONV-3x3-256 [56x56x128] Samuel CONV-3x3-256 [56x56x256] Samuel CONV-3x3-256 [56x56x256] Samuel CONV-3x3-256 [56x56x256] Samuel CONV-3x3-256 [56x56x256] Samuel CONV-3x3-512 [28x28x256] Samuel CONV-3x3-512 [28x28x512] Samuel CONV-3x3-512 [28x28x512] Samuel CONV-3x3-512 [28x28x512] Samuel CONV-3x3-512 [14x14x512] S	[112X112X04]	
First Firs	[112X112X120]	3x3 conv, 256
CONV-3x3-256 [56x56x256] Solution Solution	[112X112X128]	3x3 conv, 256
CONV-3x3-256 [50x56x256] 3x3 mm.51 CONV-3x3-256 [50x56x256] 3x3 mm.51 POOL-22 [28x28x256] 5x3 mm.53 CONV-3x3-512 [28x28x512] 5x3 mm.53 CONV-3x3-512 [28x28x512] 5x3 mm.53 CONV-3x3-512 [28x28x512] 5x3 mm.53 CONV-3x3-512 [28x28x512] 5x3 mm.53 CONV-3x3-512 [14x14x512] 5mm.53 CONV-3x3-512 [3x3 conv, 256
CONV-3x3-256 [56x56x256] 3x3-cm.5] POOL-2x2 [28x28x256] 5x3-cm.5] CONV-3x3-512 [28x28x512] 5x3-cm.5] CONV-3x3-512 [28x28x512] 5x3-cm.5] POOL-2x2 [4x14x512] 5x3-cm.5] CONV-3x3-512 [4x14x512] 7cot. CONV-3x3-512 [4x14x512] 7cot. CONV-3x3-512 [4x14x512] 7c-2x3-cm.5] CONV-3x3-512 [4x14x512] 7c-2x3-cm.5] POOL-2x2 [2x14x512] 7c-2x3-cm.5] POOL-2x2 [2x14x512] 7c-2x3-cm.5] POOL-2x2 [2x14x512] 7c-2x3-cm.5] POOL-2x2 [2x14x512] 5c-2x3-cm.5]	[30x30x230]	
		3x3 conv, 512
28x28x26 28x28x26 Poil CONV-3x3-512 28x28x512 3x36mx.5 28x28x512 3x36mx.5 28x28x512 3x36mx.5 28x28x512 3x36mx.5 28x28x512 3x36mx.5 28x28x512 28x28x512 28x28x512 28x36mx.5 28x28x512 28x36mx.5 2	[30x30x230]	
28x28x512 28x28x512 3x sm.5		
CONV-3x3-512 [28x28x512] 3x3 cm.31 POOL-2x2 [4x14x512] 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200200012	
CON-3x3-512 [28x28x512]		
POOL-2x2	200200012	
CONV-3x3-512 [14x14x512] F. C000 CONV-3x3-512 [14x14x512] F. C1000 POOL-2x2 [7x7x512] Softmax		
CONV-3x3-512 [14x14x512] FC1000 POOL-2x2 [7x7x512] Softmax	[148148312]	FC 4096
POOL-2x2 [7x7x512] Softmax		FC 4096
EC 4006		FC 1000
FC-4096 [1x1x4096] VGC14		Softmax
	[12124070]	VGG16
FC-4096 [1x1x4096]	12124070]	
FC-4096 [1x1x1000] 110	-4096 [1x1x1000]	110

VGG16	Cartes d'activation	Nb Neurones	input 3x3 conv. 64
ENTRÉE	[224x224x3]	150 K	3x3 conv, 64
CONV-3x3-64	[224x224x64]	3.2 M	Pool
CONV-3x3-64	[224x224x64]	3.2 M	3x3 conv, 128
POOL-2x2	[112x112x64]	800 k	3x3 conv, 128
CONV-3x3-128	[112x112x128]	1.6 M	Pool 3x3 conv. 256
CONV-3x3-128	[112x112x128]	1.6 M	3x3 conv, 256
POOL-2x2	[56x56x128]	400 K	3x3 conv, 256
CONV-3x3-256	[56x56x256]	800 K	Pool
CONV-3x3-256	[56x56x256]	800 K	3x3 conv, 512
CONV-3x3-256	[56x56x256]	800 K	3x3 conv, 512
POOL-2x2	[28x28x256]	200 K	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	Pool
CONV-3x3-512	[28x28x512]	400 K	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	3x3 conv, 512
POOL-2x2	[14x14x512]	100 K	3x3 conv, 512
CONV-3x3-512	[14x14x512]	100 K	FC 4096
CONV-3x3-512	[14x14x512]	100 K	FC 4096
CONV-3x3-512	[14x14x512]	100 K	FC 1000
POOL-2x2	[7x7x512]	25 K	Softmax
FC-4096	[1x1x4096]	4094	VGG16
FC-4096	[1x1x4096]	4096	-
FC-4096	[1x1x1000]	1000	111
	,		Image: http://cs231n.stanford.edu/slides/2

VGG16	Cartes d'activation	Nb Neurones	Nb Paramètres	input 3x3 conv, 64
ENTRÉE	[224x224x3]	150 K	0	3x3 conv, 64
CONV-3x3-64	[224x224x64]	3.2 M	(3*3*3)*64 = 1,728	Pool
CONV-3x3-64	[224x224x64]	3.2 M	(3*3*64)*64 = 36.864	3x3 conv, 128
POOL-2x2	[112x112x64]	800 k	0	3x3 conv, 128 Pool
CONV-3x3-128	[112x112x128]	1.6 M	(3*3*64)*128 = 73,728	3x3 conv. 256
CONV-3x3-128	[112x112x128]	1.6 M	(3*3*128)*128 = 147,456	3x3 conv, 256
POOL-2x2	[56x56x128]	400 K	Ò	3x3 conv, 256
CONV-3x3-256	[56x56x256]	800 K	(3*3*128)*256 = 294,912	Pool
CONV-3x3-256	[56x56x256]	800 K	(3*3*256)*256 = 589,824	3x3 conv, 512
CONV-3x3-256	[56x56x256]	800 K	(3*3*256)*256 = 589,824	3x3 conv, 512
POOL-2x2	[28x28x256]	200 K	0	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	(3*3*256)*512 = 1,179,648	Pool 3x3 conv. 512
CONV-3x3-512	[28x28x512]	400 K	(3*3*512)*512 = 2,359,296	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	(3*3*512)*512 = 2,359,296	3x3 conv, 512
POOL-2x2	[14x14x512]	100 K	0	Pool
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2,359,296	FC 4096
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2,359,296	FC 4096
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2,359,296	FC 1000
POOL-2x2	[7x7x512]	25 K	0	Softmax
FC-4096	[1x1x4096]	4094	7*7*512*4096 = 102,760,448	VGG16
FC-4096	[1x1x4096]	4096	4096*4096 = 16,777,216	112
FC-4096	[1x1x1000]	1000	4096*1000 = 4,096,000	112
)			Image: http://cs	231n.stanford.edu/slides/2

stage	output	ResNet-50		ResNeXt-50 (32×4	d)	
conv	112×112	7×7, 64, stride	2	7×7, 64, stride 2		
		3×3 max pool, str	ride 2	3×3 max pool, strid	e 2	
conv	2 56×56	1×1,64 3×3,64 1×1,256	×3	1×1, 128 3×3, 128, C=32 1×1, 256	×3	Bottleneck Residual layers
conv	3 28×28	1×1, 128 3×3, 128 1×1, 512	×4	1×1, 256 3×3, 256, C=32 1×1, 512	×4	
conv	4 14×14	1×1, 256 3×3, 256 1×1, 1024	×6	1×1, 512 3×3, 512, C=32 1×1, 1024	×6	
conv	7×7	1×1,512 3×3,512 1×1,2048	×3	1×1, 1024 3×3, 1024, C=32 1×1, 2048]×3	
	1×1	global average p 1000-d fc, softm		global average poo 1000-d fc, softmax		
#	params.	25.5×10 ⁶		25.0×10 ⁶		
I	LOPs	4.1×10 ⁹		4.2×10 ⁹		

MobileNet

[Howard et al.'17]

Tirés de l'article

Conv dw

3x3 Depthwise Conv
BN
ReLU
1x1 Conv
BN
ReLU

Table	 MobileNet Body Archi 	tecture
Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64$ dw	$112 \times 112 \times 64$
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
5× Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$
FC/sl	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

151

MobileNet

[Howard et al.'17] Tiré de l'article

Meilleurs résultats Moins de calculs Moins de paramètres.

Table 8. Mo	bileNet Compariso	on to Popula	r Models
Model	ImageNet	Million	Millio

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138
	GoogleNet	Accuracy 1.0 MobileNet-224 70.6% GoogleNet 69.8%	Accuracy Mult-Adds 1.0 MobileNet-224 70.6% 569 GoogleNet 69.8% 1550

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.50 MobileNet-160	60.2%	76	1.32
Squeezenet	57.5%	1700	1.25
AlexNet	57.2%	720	60

152

XceptionNet

[Chollet'17]

Amélioration de ResNet et GoogleNet, similaire à MobileNet. Ici aussi on utilise des

« Depth-wise separable convolutions »

Rappel

F.Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, CVPR 2017 153

155

XceptionNet

Image tirée de l'article

Table 1. Classification performance comparison on ImageNet (single crop, single model). VGG-16 and ResNet-152 numbers are only included as a reminder. The version of Inception V3 being benchmarked does not include the auxiliary tower.

	Top-1 accuracy	Top-5 accuracy
VGG-16	0.715	0.901
ResNet-152	0.770	0.933
Inception V3	0.782	0.941
Xception	0.790	0.945

F.Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, CVPR 2017

. . .

Inclure les bonnes pratiques permet d'améliorer la performance des réseaux, même les plus vieux (ResNet – 2015)

Iovan Bello, William Fedus, Xianzhi Du, Ekin Dogus Cubuk, Aravind Srinivas, Taung-Yi Lin, Jonathon Shlens, Barret Zoph Revisiting ResNets: Improved Training and Scaling Strategies, NeuRIPS 2021 https://arxiv.org/pdf/2103.07579.pdf

Segend Acturely Prote Curva

Segend Acturely Segend Acturely Protect Curva

Segend Acturely Segend Acturely Segend Acturely Segend Segend Segend Segend Segend Segend Segund Segend Seggend Segend Segend Segend Segend Segend Segend Segend Segend Seggend Segend Segend Segend Segend Segend Segend Segend Segend Seggend Segend Segend Segend Segend Segend Segend Segend Segend Seggend Segend Segend Segend Segend Segend Segend Segend Segend Seggend Segend Segend Segend Segend Segend Segend Segend Segend Seggend Segend Segend Segend Segend Segend Segend Seggend S

	Improvements	Top-1	Δ	
	ResNet-200	79.0		•
	+ Cosine LR Decay	79.3	+0.3	17
	+ Increase training epochs	78.8 [†]	-0.5	- Méthodes d'entraînement
	+ EMA of weights	79.1	+0.3	1
	+ Label Smoothing	80.4	+1.3	
	+ Stochastic Depth	80.6	+0.2	
	+ RandAugment	81.0	+0.4	Méthodes de régularisation
	+ Dropout on FC	80.7 ‡	-0.3	
	+ Decrease weight decay	82.2	+1.5	
	+ Squeeze-and-Excitation	82.9	+0.7]
	+ ResNet-D	83.4	+0.5	- Améliorations de l'architecture de base
Table 1			ing roc	ing The
	Additive study of the ResNo fer to Training Methods,			
colors re	fer to Training Methods,	Regulariz	ation N	lethods
colors re		Regulariz	tation N	Iethods sNet-200
and Are	fer to Training Methods , chitecture Improvements ned for the standard 90 epoc	Regulariz	line Res	Iethods sNet-200 se learn-
and Are was train	fer to Training Methods, chitecture Improvements ned for the standard 90 epoc decay schedule. The image	The basel chs using a resolution i	line Res stepwi	Tethods Net-200 se learn- 256. All
and Are was train ing rate on numbers	fer to Training Methods, chitecture Improvements hed for the standard 90 epoc decay schedule. The image rare reported on the ImageNo	The basel chs using a resolution i et valida	line Resistepwi	Tethods «Net-200 se learn- 256. All set and
and Are was train ing rate on numbers averaged	fer to Training Methods, chitecture Improvements hed for the standard 90 epoc decay schedule. The image is are reported on the ImageNo over 2 runs. † Increasing trai	The basel chs using a resolution i et valida ning duration	line Resistepwi is 256× stion- on to 35	Tethods Net-200 se learn- 256. All set and 0 opochs
and Are was train ing rate on numbers averaged only bec	fer to Training Methods, chitecture Improvements and for the standard 90 epoc decay schedule. The image are reported on the ImageNover 2 runs. † Increasing traiomes useful once the regular	Regulariz The basel ths using a resolution i et valida ning duration urization me	line Resistepwi is 256× tion- on to 35 ethods a	Tethods Net-200 se learn- 256. All set and 0 epochs rer used,
and Are was training rate on numbers averaged only becotherwise	fer to Training Methods, chitecture Improvements ned for the standard 90 epoc decay schedule. The image are reported on the ImageNe over 2 runs. † Increasing trai omes useful once the regula te the accuracy drops due to o	Regulariz The basel ths using a resolution i et valida ning duration rization mover-fitting.	line Resistepwi is 256× tion- on to 35 ethods a	Tethods Net-200 se learn- 256. All set and 0 epochs are used, out hurts
and Are was training rate on numbers averaged only becotherwise as we ha	fer to Training Methods, chitecture Improvements. hed for the standard 90 epodecay schedule. The image is are reported on the ImageNo over 2 runs. † Increasing traiomes useful once the regula e the accuracy drops due to over he not yet decreased the we're	Regulariz The basel ths using a resolution i et valida ning duration rization mover-fitting.	line Resistepwi is 256× tion- on to 35 ethods a	Tethods Net-200 se learn- 256. All set and 0 epochs are used, out hurts
and Are was trair ing rate on numbers averaged only becotherwise	fer to Training Methods, chitecture Improvements . the for the standard 90 epoc decay schedule. The image is are reported on the ImageN over 2 runs. Increasing trait omes useful once the regula the accuracy drops due to o we not yet decreased the wei ails).	Regulariz The basel ths using a resolution i et valida ning duration rization mover-fitting.	line Resistepwi is 256× tion- on to 35 ethods a	Tethods Net-200 se learn- 256. All set and 0 epochs are used, out hurts