Applied Statistical Methods II

Single Factor Studies

Looking forward:

- Look at single-factor ANOVA.
 - Also known as one-way ANOVA.
 - Look at its formulations and uses.
 - Derive the properties of sums-of-squares.

One-Way ANOVA Setting

- Consider an example where we have r different treatment groups.
 - One factor with r levels.
- n_i subjects are given the i^{th} treatment i = 1, ..., r.
 - $n_T = \sum n_i$
- We observe Y_{ij} for i = 1, ..., r and $j = 1, ..., n_i$.
 - The observation for the jth replicate for the ith treatment.
- The one-way ANOVA model are used to assess the effect of different treatments.

Types of Data

- The data can come from either a designed experiment or an observational study.
- For a designed experiment:
 - Should be well designed so that potential confounders have equal distributions across factor levels.
- For an observational study:
 - We will only draw inference on the factor of interest.
 - Will not control for possible confounders.
 - No real type of causal relationship can be speculated.

Example of a Designed Experiment

- You are working for a food company.
- You have 4 different package designs for a box of cereal. Which design leads to the most sales?
 - Factor = package designs, levels = 4.
- You have 20 stores with equal sales volumes that want to participate. Each store gets a different package design.
 What are exp. units?
- You create a balanced design and randomly assign a package design to each store. One store has a fire.
 - n=19 total experimental units, $n_i = 5, 5, 4, 5$.
- Measure the number of boxes sold in a week.
- Design of the study helps eliminate confounders:
 - Selected stores with equal sales volumes.
 - Randomly assigned packages to stores.
 - Would also want to control other variables such as display location.

Example of a Designed Experiment

- You are working for a food company.
- You have 4 different package designs for a box of cereal. Which design leads to the most sales?
 - Factor = package designs, levels = 4.
- You have 20 stores with equal sales volumes that want to participate. Each store gets a different package design.
 What are exp. units?
- You create a balanced design and randomly assign a package design to each store. One store has a fire.
 - n=19 total experimental units, $n_i = 5, 5, 4, 5$.
- Measure the number of boxes sold in a week.
- Design of the study helps eliminate confounders:
 - Selected stores with equal sales volumes.
 - Randomly assigned packages to stores.
 - Would also want to control other variables such as display location.

Observational Example

- You want to know if four ball bearing machines in a plant generate a product with the same diameter.
- You take a sample of 10 ball bearings produced by each machine.
- You have no control over some factors.
 - Who operated the machine.
 - What was the temperature near the machine when these were made.
- Any possible confounding effects can not be determined.

The one-way ANOVA model

• The one-way ANOVA model:

$$Y_{ij} = \mu_i + \epsilon_{ij}$$
.

- $E(\epsilon_{ij}) = 0$, $Var(\epsilon_{ij}) = \sigma^2$.
- $E(Y_{ij}) = \mu_i$.
- Can put it in a linear model framework $Y = X\beta + \epsilon$.

$$Y = [Y_{11}, \dots, Y_{1n_1}, \dots, Y_{r1}, \dots, Y_{rn_r}]'$$

$$\epsilon = [\epsilon_{11}, \dots, \epsilon_{1n_1}, \dots, \epsilon_{r1}, \dots, \epsilon_{rn_r}]'$$

$$\beta = [\mu_1, \dots, \mu_r]'$$

X is a $n_T \times r$ matrix. What does it look like?

Computing

You learned all of the theory for ANOVA last semester (F-test)

- R: Can use aov. Example with a factor variable: aov (y \sim factor, data=Data). This is valid for balanced and unbalanced designs.
- SAS: PROC GLM or PROC ANOVA

ANOVA: more intuition and insights

As a special but very popular design in the general linear models framework, we will look at some details of

- Estimation and Inference
- Power calculation
- Permutation test

Some Notation

$$Y_{i.} = \sum_{j=1}^{n_{i}} Y_{ij}$$

$$\overline{Y}_{i.} = Y_{i.}/n_{i}$$

$$Y_{..} = \sum_{i=1}^{r} Y_{i.}$$

$$\overline{Y}_{..} = Y_{..}/n_{T} = \sum_{i=1}^{r} \frac{n_{i}}{n_{T}} \overline{Y}_{i.}$$

Estimating μ_i

• We will estimate μ_i by minimizing the sums-of-squares:

$$Q = \sum_{i} \sum_{j} (Y_{ij} - \mu_{i})^{2}$$

$$= \sum_{j} (Y_{1j} - \mu_{1})^{2} + \dots + \sum_{j} (Y_{rj} - \mu_{r})^{2}$$

- Easy to see that $\hat{\mu}_i = \overline{Y}_i$.
 - The within-group sample mean.
- Note that if we assume normality, then this is also the maximum likelihood estimator.
- The residuals are $\hat{\epsilon}_{ij} = Y_{ij} \overline{Y}_{i}$.
 - Note that $\sum_{i} \hat{\epsilon}_{ij} = 0$
 - This is just OLS with a specific design matrix.

Sums-of-Squares

- The formulation of ANOVA tables through sums-of-squares is similar to what you did last semester.
- Look at $Y_{ij} \overline{Y}_{\cdot \cdot} = (\overline{Y}_{i \cdot} \overline{Y}_{\cdot \cdot}) + (Y_{ij} \overline{Y}_{i \cdot})$.
 - Total variability about the mean, between group variability, within group variability.
- If we square each side and sum over both i and j
 - SSTO = SSTR + SSE
 - SSTO = $\sum_{i} \sum_{j} (Y_{ij} \overline{Y}_{..})^2$
 - SSTR = $\sum_{i} n_{i} (\overline{Y}_{i}. \overline{Y}..)^{2}$
 - SSE = $\sum_{i} \sum_{j} (Y_{ij} \overline{Y}_{i.})^2 = \sum_{i} \sum_{j} \hat{\epsilon}_{ij}^2$

Degrees of Freedom: Intuition

- Recall that sums-of-squares have degrees of freedom.
 Since we are working with linear regression, dof is just the trace of the corresponding orthogonal projection matrix.
 - Rank of the matrix of the quadratic form.
- SSTO has $n_T 1$ df.
 - Constraint of $\sum_{i} \sum_{j} (Y_{ij} \overline{Y}_{..}) = 0$.
- SSTR has r-1 df.
 - Constraint of $\sum_{i} n_i (\overline{Y}_{i\cdot} \overline{Y}_{\cdot\cdot}) = 0$.
- SSE has $n_T r$ df.
 - r constraints of $\sum_{j} (Y_{ij} \overline{Y}_{i.}) = 0$.

Some Notation: Back to Regression

- Let $Y_i = (Y_{i1}, ..., Y_{in_i})^T$ and $Y = (Y_1^T, ..., Y_r^T)^T$.
- Let $\epsilon_i = (\epsilon_{i1}, \dots, \epsilon_{in_i})^T$ and $\epsilon = (\epsilon_1^T, \dots, \epsilon_r^T)^T$.
- Let 1_n , 0_n be the n-vectors of all ones and zeros, respectively.
- Let X_i be the $n_i \times r$ matrix of zeros except for the i^{th} column 1_{n_i} and $X = (X_1^T, \dots, X_r^T)^T$.
- $\hat{\mu} = (X^T X)^{-1} X^T Y = (\overline{Y}_1, \overline{Y}_2, \dots, \overline{Y}_r)^T$
- Let $H = X(X^TX)^{-1}X^T$.
- Homework: compute H and show that $HY = (\overline{Y}_1, 1_{n_1}^T, \dots, \overline{Y}_r, 1_{n_r}^T)^T$

Sums of Squares as Quadratic Forms

• SSTO =
$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^2 = Y^T (I - \frac{1}{n_T} \mathbf{1}_{n_T} \mathbf{1}_{n_T}^T) Y$$
.

• SSTR =
$$\sum_{i} n_i \left(\overline{Y}_{i \cdot} - \overline{Y}_{\cdot \cdot} \right)^2 = Y^T \left(H - \frac{1}{n_T} \mathbf{1}_{n_T} \mathbf{1}_{n_T}^T \right) Y$$

• SSE =
$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{i.})^2 = Y^T (I - H) Y$$

- The matrix of each quadratic form is idempotent.
- The matrix rank is the degrees of freedom of the sums of squares. For idempotent matrix, rank = trace.

•
$$\operatorname{rk}(I - \frac{1}{n_T} \mathbf{1}_{n_T} \mathbf{1}_{n_T}^T) = n_T - 1$$

•
$$\operatorname{rk}(H - \frac{1}{n_T} \mathbf{1}_{n_T} \mathbf{1}_{n_T}^T) = r - 1$$

•
$$\operatorname{rk}(I-H) = n_T - r$$

Testing of Mean

- $H_0: \mu_1 = \cdots = \mu_r$, vs H_a : not all equal.
- Intuitively: look at SSTR (between group variability) and SSE (within group variability).
- F-test: under normality assumption, $F = MSTR/MSE \sim F(r-1, n-r)$ under H_0 .

Mean Sums-of-Squares

- Define MSTR = SSTR/(r-1), $MSE = SSE/(n_T r)$.
- Can find that
 - $EMSE = \sigma^2$
 - $EMSTR = \sigma^2 + \frac{\sum n_i(\mu_i \mu_.)^2}{r 1}$ where $\mu_. = \sum n_i \mu_i / n_T$
- MSE is an unbiased estimate of σ^2
- - zero when there is no difference between treatments.
 - overall measure of how different the groups are.
 - relates to the non-central parameter and power calculation.

Power and Sample Size Calculations

- We found the distribution of F^* under $H_0: \mu_1 = \cdots = \mu_r$.
- Its distribution under an alternative $H_a: \mu_1 = \mu_1^a, \dots, \mu_r = \mu_r^a$ will be needed to compute power and sample size.
- Recall power 1β : the probability of rejecting the null given that a certain alternative is true.
- Last semester, we give the general alternative distribution of F* under the general linear models framework:
 - SSE and SSTR are independent.
 - SSE is a χ^2 .
 - SSTR is now a non-central χ^2 .
 - F* is subsequently a non-central F.
- Here we look at details for the single factor ANOVA case.

Distribution of F^* Under H_a

•
$$F^* = \frac{\textit{MSTR}}{\textit{MSE}} \sim F_{r-1,n_T-r,\lambda}, \, \lambda = \sum_i n_i (\mu_i - \mu_{\cdot})^2 / \sigma^2$$

• When there are an equal number of subjects per group:

•
$$n_i = \frac{n_T}{r} \Rightarrow \lambda = \frac{n_T}{r} \frac{\sum_i (\mu_i - \mu_{\cdot})^2}{\sigma^2}$$

Text uses a different notation:

• Uses
$$\phi = \sqrt{\frac{\lambda}{r}}$$
.

Power Calculations

- Under $H_0: \mu_1 = \cdots = \mu_r, F^* = MSTR/MSE \sim F_{r-1,n_T-r}$.
- At an α , we have a decision rule where we reject H_0 iff $F^* > F_{r-1,n_T-r}(1-\alpha)$.
- Recall that power is the probability of rejecting H₀ given some alternative.
- Under the alternative H_a : $\lambda = \sum_i n_i (\mu_i \mu_i)^2 / \sigma^2 \neq 0$ $F^* \sim F_{r-1,n_T-r,\lambda}$.
- Power = 1 $-\beta = \Pr \{F^* > F_{r-1,n_T-r}(1-\alpha)\}$, where $F^* \sim F_{r-1,n_T-r,\lambda}$.
 - Computed with pf (q = F^* , df1 = r 1, df2 = n T, ncp = λ , lower.tail = F)
- Note that power depends on
 - Knowing μ_i for i = 1, ..., r.
 - Knowing n_i for i = 1, ..., r.
 - Knowing σ^2 .

Power

- You use past experiences to gather σ^2
 - Or MSE
- You are interested in a specific difference among the means.
 - the μ_i 's come from your desired question.
 - their difference is known as an effect size.
- For a given n_1, \ldots, n_r you can compute the power.
- Conversely, for a given power, you can computed the necessary sample size.
- Book uses tables.

Changes in λ

- Notice that as λ increases our power increases.
- What will make $\lambda = \frac{\sum n_i(\mu_i \overline{\mu}_{\cdot})^2}{\sigma^2}$ increase?
 - If σ^2 decreases. There is less noise in the data.
 - If n_i increase. We have more subjects.
 - If $|\mu_i \overline{\mu}_i|$ increases. We are interested in rejecting the null if there is a bigger discrepancy between the factor means.

Computing Sample Sizes in a balanced design

- Fix α , assume values of μ_i and σ^2 , and a balanced design $n_i = n$. For a desired level of power, we can find the minimum required sample size.
- We want to find the smallest n_T such that:

$$\Pr(F^* > F_{r-1,n_T-r}(1-\alpha)|F^* \sim F_{r-1,n_T-r,\lambda(n_T)}) \ge 1-\beta.$$

• $\lambda(n_T) = \frac{n_T}{r} \frac{\sum (\mu_i - \overline{\mu}_.)^2}{\sigma^2}$.

Cereal Example

- Recall the cereal example from last class.
- We have 4 different box designs and want to know what design sells better.
- We can do this in R. What would be a simple routine to do this?

Computing Sample Sizes in a balanced design

- We do not know each μ_i , but we can assume that the maximum difference among μ_i s is $\Delta = 5.5$ boxes.
- For any μ_1, \ldots, μ_r such that $\Delta = \max(\mu_i) \min(\mu_i)$: $\sum (\mu_i \mu_i)^2 \ge \Delta^2/2$
- We do power calculation based on the situation with smallest λ (be conservative).
 - Set one group mean at 0.
 - Set a second group mean at Δ.
 - Set all others at $\Delta/2$.
- $\lambda = \frac{n_T}{4} \frac{\sum_i (\mu_i \overline{\mu}.)^2}{\sigma^2} = \frac{n_T}{4} \frac{5.5^2}{2} \frac{1}{3.5^2}$
- We want to find the smallest n_T such that: $\Pr(F^* > F_{r-1,n_T-r}(1-0.05)|F^* \sim F_{r-1,n_T-r,\lambda(n_T)}) \ge 90\%.$

Assumptions of one-way ANOVA

- The one-way ANOVA model makes several assumptions which we must check.
- The assumptions are similar to those made in regression (in order of importance):
 - No outliers (i.e. mean model is correct, all data have a second moment).
 - 2 Equal variance among factor levels.
 - Observations are independent conditional on factor level.
 - Mormality (when using F-tests).
- How to check these assumptions:
 - Residual plots,
 - QQ-Plots
 - Some formal tests: Levene Test, and Brown-Forsythe Test.

What if something is wrong?

- How to fix our assumptions if something is wrong.
- Outliers at least check the fitting without the outliers.
- Correlation over other variables put them in your model.
- Unequal variances:
 - Box-Cox transformation.
 - Weighted regression.
 - Also could do a randomization test.
- Equal variances but no normality:
 - Use non-parametric Kruskal-Wallis test or randomization test.
- Lack of normality and unequal variances:
 - Box-Cox transformation.

Formal Test for Heterogeneity of Variances

- Consider the model $Y_{ii} = \mu_i + \sigma_i \epsilon_{ii}$
- ϵ_{ii} are independent, zero mean, $Var(\epsilon_{ii}) = 1$.
- If there are r=2 groups, what's one test?
- Levene's tests $H_0: \sigma_1^2 = \cdots = \sigma_r^2$
 - $d_{ij} = \left| Y_{ij} \frac{\sum Y_{ij}}{n_i} \right|$ absolute deviations.
 - Do the F test on the absolute deviations.
 - $F_i^* = \frac{MSTR}{MSE}$
 - $MSTR = \frac{\sum_{i} n_{i} (\overline{d}_{i} \overline{d}_{..})^{2}}{r 1}$ $MSE = \frac{\sum_{j} \sum_{i} (d_{ij} \overline{d}_{i})^{2}}{r 1}$

 - Asymptotically, $F_i^* \sim F_{r-1,n\tau-r}$ under H_0 .
- Brown-Forsythe's test is similarly except:
 - $d_{ii} = |Y_{ii} \text{median}(Y_{i1}, \dots, Y_{in_i})|$
- Levene's test has better performance for normal data

Formal Test for Heterogeneity of Variances

- Consider the model $Y_{ij} = \mu_i + \sigma_i \epsilon_{ij}$
- ϵ_{ij} are independent, zero mean, $Var(\epsilon_{ij}) = 1$.
- If there are r = 2 groups, what's one test?
- Levene's tests $H_0: \sigma_1^2 = \cdots = \sigma_r^2$
 - $d_{ij} = \left| Y_{ij} \frac{\sum Y_{ij}}{n_i} \right|$ absolute deviations.
 - Do the F test on the absolute deviations.
 - $F_L^* = \frac{MSTR}{MSF}$
 - $MSTR = \frac{\sum_{i} n_i (\overline{d}_{i.} \overline{d}..)^2}{r-1}$
 - $MSE = \frac{\sum_{j} \sum_{i} (d_{ij} \overline{d}_{i.})^2}{n_T r}$
 - Asymptotically, $F_L^* \sim F_{r-1,n_T-r}$ under H_0 .
- Brown-Forsythe's test is similarly except:
 - $d_{ij} = |Y_{ij} \text{median}(Y_{i1}, \dots, Y_{in_i})|$
- Levene's test has better performance for normal data (since it uses the mean).
- Brown-Forsythe is more robust to departures from normality (since it uses the median).

Weighted Regression

- What if $Y_{ij} = \mu_i + \sigma_i \epsilon_{ij}$ where $Var(\epsilon_{ij}) = 1$?
- Can do a weighted regression by minimizing

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} \sigma_i^{-2} (Y_{ij} - \mu_i)^2.$$

• Don't know σ_i^2 but can estimate it from our data as long as n_i is sufficiently large.

Cereal and ABT Examples from Text

- The ABT Electronics Corporation wants to know the reliability of 5 types of fluxes.
- Designs a study where 8 circuit boards are produced per flux.
- After 4 weeks, each board was tested to see how much pressure was exerted before it broke.
- Is there any difference in amount of pressure per flux?
- If so, where are the differences?
 - Don't forget the multiple comparison problem.
 - Will talk about Tukey's procedure next class.

Cereal Example

- You are working for a food company.
- You have 4 different package designs for a box of cereal.
 - Factor = package designs, levels = 4.
- You have 20 stores with equal sales volumes that want to participate.
- You create a balanced design and randomly assign a package design to each store. The one store has a fire.
 - n=19 total experimental units, $n_i = 5, 5, 4, 5$.
- Measure the number of boxes sold in a week.

What if we can't trust normality?

- Suppose $i=1,\ldots,c$, and $Y_{ij}\sim F(y-\mu_i)$, i.e. distribution of trt levels forms a location family. Now, F is unknown (we usually assume $F=\Phi$).
- Want to test $H_0: \mu_1 = \cdots = \mu_c$.
- An option is a rank based test:
 - Called Kruskal-Wallis when there are more than two levels.
 - Called Mann-Whitney (Wilcoxon) when there are two levels.
- Idea, do your analysis on ranks rather than the data.
- Rank your observations (all n_T) from smallest to largest.
 - r_{ij} is the rank of Y_{ij} .
 - If there are ties, give them the average rank value.
 - $\overline{r}_{i.} = \sum_{j} r_{ij}/n_i$
 - $\bar{r} = (n_T + 1)/2$

What if we can't trust normality?

- Suppose $i=1,\ldots,c$, and $Y_{ij}\sim F(y-\mu_i)$, i.e. distribution of trt levels forms a location family. Now, F is unknown (we usually assume $F=\Phi$).
- Want to test $H_0: \mu_1 = \cdots = \mu_c$.
- An option is a rank based test:
 - Called Kruskal-Wallis when there are more than two levels.
 - Called Mann-Whitney (Wilcoxon) when there are two levels.
- Idea, do your analysis on ranks rather than the data.
- Rank your observations (all n_T) from smallest to largest.
 - r_{ij} is the rank of Y_{ij} .
 - If there are ties, give them the average rank value.
 - $\overline{r}_{i.} = \sum_{i} r_{ij}/n_{i}$
 - $\bar{r} = (n_T + 1)/2$

Tests based on the rank

Basic idea:

- Originally formulated as an approximation to the ANOVA F-test on the ranks.
- Consider $\tilde{K} = \frac{SSTR}{SSE} \times \frac{n-c}{c-1}$, we reject H_0 if it is large.
- \tilde{K} is a monotone function of *SSTR/SSTO*, and $SSTO = n_T(n_T + 1)(n_T 1)/12$.
- Therefore, we basically only look at a scaled version of SSTR, the scale is roughly the variance of r_{ij} .
- Consider χ^2 test rather than F test, since *SSTR* is the only source of uncertainty.

Kruskal-Wallis

- $K = \frac{12}{n_T(n_T+1)} \sum_i n_i (\overline{r}_{i\cdot} \frac{n_T+1}{2})^2$
- If n_i are large and $n_i/n_T \to \tau_i$, then under $H_0: \mu_1 = \cdots = \mu_c, K \sim \chi^2_{r-1}$.
- We will look at a sketch of the ideas behind K-W.
- On the Courseweb is Kruskal's original 1952 Annals paper: contains the original proof.

Idea behind K-W

- Note that under H_0 , r_{ij} is a uniform random variable over $[1, \ldots, n_T]$. Distribution is easy to work with!
- Let's look at behavior of $r_{i.} E(r_{i.})$.
- By a complicated CLT, asymptotically:
 - $T_i = \sqrt{12} \frac{r_i E(r_i)}{n_T^{3/2} \sqrt{n_i/n_T}}$
 - Are asymptotically zero mean normal with covariance $\delta_{ii'} \sqrt{\tau_i \tau_{i'}}$, where $\lim n_i/n_T = \tau_i$.
- Claim: for $T = (T_1, ..., T_c)^T$, asymptotic variance of T is symmetric and idempotent with rank c 1.
 - Why then $\sum_{i=1}^{c} T_i^2 \stackrel{\mathcal{D}}{\rightarrow} \chi_{c-1}^2$?
 - Intuition: We loose one degree of freedom since $\sum r_{i.} = n_T (n_T + 1)/2$.
- Some algebra can show that $K = \frac{n_T}{n_T + 1} \sum T_i^2$.

Idea behind K-W

- Note that under H_0 , r_{ij} is a uniform random variable over $[1, \ldots, n_T]$. Distribution is easy to work with!
- Let's look at behavior of $r_{i.} E(r_{i.})$.
- By a complicated CLT, asymptotically:
 - $T_i = \sqrt{12} \frac{r_i E(r_i)}{n_T^{3/2} \sqrt{n_i/n_T}}$
 - Are asymptotically zero mean normal with covariance $\delta_{ii'} \sqrt{\tau_i \tau_{i'}}$, where $\lim n_i/n_T = \tau_i$.
- Claim: for $T = (T_1, ..., T_c)^T$, asymptotic variance of T is symmetric and idempotent with rank c 1.
 - Why then $\sum_{i=1}^{c} T_i^2 \stackrel{\mathcal{D}}{\rightarrow} \chi_{c-1}^2$?
 - Intuition: We loose one degree of freedom since $\sum r_{i} = n_T (n_T + 1)/2$.
- Some algebra can show that $K = \frac{n_T}{n_T+1} \sum T_i^2$.

Idea behind K-W

- Note that under H_0 , r_{ij} is a uniform random variable over $[1, \ldots, n_T]$. Distribution is easy to work with!
- Let's look at behavior of $r_{i.} E(r_{i.})$.
- By a complicated CLT, asymptotically:
 - $T_i = \sqrt{12} \frac{r_i E(r_i)}{n_T^{3/2} \sqrt{n_i/n_T}}$
 - Are asymptotically zero mean normal with covariance $\delta_{ii'} \sqrt{\tau_i \tau_{i'}}$, where $\lim n_i/n_T = \tau_i$.
- Claim: for $T = (T_1, ..., T_c)^T$, asymptotic variance of T is symmetric and idempotent with rank c 1.
 - Why then $\sum_{i=1}^{c} T_i^2 \stackrel{\mathcal{D}}{\rightarrow} \chi_{c-1}^2$?
 - Intuition: We loose one degree of freedom since $\sum r_{i.} = n_T(n_T + 1)/2$.
- Some algebra can show that $K = \frac{n_T}{n_T+1} \sum T_i^2$.

Um...doesn't this use CLT?

- K-W following the χ^2 distribution uses the CLT.
- It is based on the CLT on the ranks.
- Under the null, the ranks follow a uniform distribution over $1, \ldots, n_T$.
- As $n_T \to \infty$, the distribution of T_i looks rather normal.
- The CLT on the outcomes Y_{ij} will not work well if is distribution is very skewed.

Small Sample Sizes

- The asymptotic χ^2 distribution requires large sample sizes.
- If you do not have a lot of data, can do an exact test.
 - If the null is true, then the assignment of an outcome to a group can be seen as completely random.
 - Consider any division of the n_T observed values into r groups of size n₁,..., n_r.
 - Under H_0 , each of these is as likely as any other.

- There are $\frac{n_T!}{n_1!...n_r!}$ different assignments of the observed values into groups.
- For each one of these assignments, compute K and call it K_g .
- This will produce an empirical distribution for K under the null.
- Let K* be the K-W statistic from the data.
- Recall: p-value is the prob. that you observe a test statistic as or more extreme than what you did under the null.
- Under the empirical distribution, p-value = % of $K_g \ge K^*$

proc npar1way

- proc npar1way can be used to compute K-W.
- Exact test can take a long time.
- In the cereal example:
 - $\frac{19!}{5!5!5!4!} = 2.9 \times 10^9$
 - Takes a while in SAS.
- Can specify MC (Monte Carlo) so that not all combinations are computed.
 - Randomly choose M combinations.
 - Compute the K-W statistic for each combination and get the empirical distribution for the M values.
 - It is an approximate exact test.

Summary of Mean Test

- $H_0: \mu_1 = \mu_2 = \cdots = \mu_r$, vs H_a : not all are equal.
- If errors are normal or close to normal or having a large sample size, use F-test.
- If errors are not normal, and with reasonably large sample size, we can use rank based nonparametric tests, χ^2 tests.
- If errors are not normal and sample size is small, rank based exact tests.