

4. Komponenten: 4.2 Sensoren / Aufteilungsbeispiel 1

(bereits bekannt aus Vorlesung "Physikalische Grundlagen der Sensorik", SS 2014)

- 1. Sensorprinzipien der Mechanik
- 2. Sensorprinzipien der Wärmelehre
- 3. Sensorprinzipien der Elektrostatik und -dynamik
- 4. Sensorprinzipien der Ausbreitung elektromagnetischer Wellen und Optik

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

217

4. Komponenten: 4.2 Sensoren / Aufteilungsbeispiel 2

(aus Branchenverzeichnis "Sensor- und Messtechnik" der AMA 2011/12)

Sensoren für ...

- 1. Geometrische Messgrößen
- 2. Mechanische Messgrößen
- 3. Dynamische Messgrößen
- 4. Thermische und kalorische Messgrößen
- 5. Klimatische und meteorologische Messgrößen
- 6. Optische und akustische Messgrößen
- 7. Elektrische Messgrößen
- 8. Chemische, biologische und medizinische Messgrößen
- 9. Bildverarbeitung und sonstige Messgrößen

Fachverband für Sensorik e.V.

4. Komponenten: 4.2 Sensoren / Aufteilungsbeispiel 3

(aus Messekatalog der SPS/IPC/DRIVES 2011):

- 1. Binäre Sensorik
- 2. Drehgeber
- 3. Identifikationssensorik und -systeme
- 4. Industrielle Bildverarbeitung
- 5. Messende Sensorik
- 6. Sichere Sensorik
- 7. Sensorik für explosionsgefährdete Bereiche
- 8. Messwertaufnehmer
- 9. Messtechnik für elektrische Größen

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

219

4. Komponenten: 4.3 Messleitungen

Schirm Isolierung Innen-leiter

Geschirmte Doppelleitung

(G. Heyne: Elektronische Messtechnik)

Lichtwellenleiter

(Rensselaer Polytechnic Institute)

Koaxialleitung

(G. Heyne: Elektronische Messtechnik)

Triaxialleitung

(G. Heyne: Elektronische Messtechnik)

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall

4.3.1.0 Zweileiterschaltung und Vierleiterschaltung

- Prinzip der Strommessung mit einem Stromfühlwiderstand (Shunt) R_s
- Shunt in Vierleitertechnik mit getrennt nach Außen geführten Stromspeise- und Spannungsmessklemmen,
- Kontaktierter Shunt in Vierleitertechnik: die Widerstände R_{ki} repräsentieren die Kontakt- und Übergangswiderstände.

(aus: T. Mühl: Einführung in die elektrische Messtechnik)

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

221

4. Komponenten:

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall 4.3.1.0 Zweileiterschaltung und Vierleiterschaltung

2-Draht-Widerstandsmessung des Widerstands R_x . R_k stellen die Zuleitungs- und Kontaktwiderstände dar.

4-Draht-Widerstandsmessung mit getrennten Stromspeiseund Spannungsmessklemmen

(aus: T. Mühl: Einführung in die elektrische Messtechnik)

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall

4.3.1.1 Zweileiterschaltung in Gleichspannungsbrücke mit Spannungsquelle

 $R_{L} \rightarrow Leitungswiderstand$ $R_{K} \rightarrow Kontaktwiderstand$

$$U_{D} = U_{2} - U_{4}$$

$$= U_{0} \cdot \left(\frac{R_{2}}{R_{1} + R_{2}} - \frac{R_{4}}{R_{3} + R_{4}} \right)$$

$$R_2 = R_T + 2 \cdot (R_L + R_K)$$

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

223

4. Komponenten:

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall

4.3.1.2 Dreileiterschaltung in Gleichspannungsbrücke mit Spannungsquelle

$$U_{D} = U_{2} - U_{4}$$

$$= U_{0} \cdot \left(\frac{R_{2}^{*}}{R_{1}^{*} + R_{2}^{*}} - \frac{R_{4}}{R_{3} + R_{4}} \right)$$

$$R_1^* = R_1 + (R_L + R_K)$$

 $R_2^* = R_T + (R_L + R_K)$

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall

4.3.1.3 Zweileiterschaltung mit Konstantstromguelle und **Abaleichwiderstand**

$$U_{D} = I_{0} \cdot (R_{T} + R_{1}^{*} + R_{2}^{*})$$

$$R_{1}^{*} = R_{L} + R_{K}$$

$$R_{2}^{*} = R_{L}^{'} + R_{K}^{'}$$

$$U_{\rm D} = I_0 \cdot (R_{\rm T} + R_{\rm A})$$

f. $R_{\rm A} >> R_1^*, R_{\rm A} >> R_2^*$

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

225

4. Komponenten:

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall 4.3.1.5 Vierleiterschaltung mit Konstantstromquelle

$$U_{D} = I_{T} \cdot R_{T} - 2 \cdot (R_{LU} + R_{KU}) \cdot I_{m}$$

$$I_{T} = I_{0} - I_{m}$$

$$U_D = (I_0 - I_m) \cdot R_T - 2 \cdot (R_{LU} + R_{KU}) \cdot I_m =$$

$$/ = I_0 \cdot R_T - I_m \cdot (R_T + 2 \cdot (R_{LU} + R_{KU}))$$

$$\Rightarrow \overline{\text{für } I_m << I_0 \Rightarrow U_0 \approx I_0 \cdot R_T}$$

"Force"-Leitungen (Stimulationsleitungen)

"Sense"-Leitungen (Fühlerleitungen)

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall 4.3.1.5 Vierleiterschaltung mit Konstantstromquelle

Werkstoff	$R_{20}/I/\Omega/m$		m	R_{400}/R_{20}	∆ <i>T</i> / K		
Cu				2,75			
Ag		2		2,70		2	
NiCr		f		1,086		f	
CuNi				0,996			

ABB-Informationsmateria

 $R_{20}=$ ohmscher Widerstand bei 20 °C und Leitungsdicke 0,6 mm $R_{400}=$ ohmscher Widerstand bei 400 °C und Leitungsdicke 0,6 mm

 ΔT = Messfehler bei ges. Leitungslänge 1 m und –dicke 0,6 mm, Pt100-Sensor

Schaltung: **Zweileiterschaltung**, Gleichspannungsmessbrücke mit **Konstantstromquelle**

Widerstandswerte $R_T(\vartheta)$ des Pt100-Sensors (JUMOSENS-Daten)

- [С	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
	400.0	247.092	247.095	247.099	247.102	247.106	247.109	247.113	247.116	247.120	247.123
	400.1	247.126	247.130	247.133	247.137	247.140	247.144	247.147	247.151	247.154	247.157
	400.2	247.161	247.164	247.168	247.171	247.175	247.178	247.182	247.185	247.188	247.192
	400.3	247.195	247.199	247.202	247.206	247.209	247.213	247.216	247.220	247.223	247.226
	400.4	247.230	247.233	247.237	247.240	247.244	247.247	247.251	247.254	247.257	247.261
	400.5	247.264	247.268	247.271	247.275	247.278	247.282	247.285	247.288	247.292	247.295
	400.6	247.299	247.302	247.306	247.309	247.313	247.316	247.319	247.323	247.326	247.330
	400.7	247.333	247.337	247.340	247.344	247.347	247.350	247.354	247.357	247.361	247.364
	400.8	247.368	247.371	247.375	247.378	247.381	247.385	247.388	247.392	247.395	247.399
	400.9	247.402	247.406	247.409	247.412	247.416	247.419	247.423	247.426	247.430	247.433

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

227

4. Komponenten:

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall

4.3.1.6 Thermoelement

In einem Leiter haben die Elektronen am heißen Ende mehr Bewegungsenergie als am kalten Ende. Die \ll heißen \gg Elektronen verteilen sich mehr im Leiter, wahrend die \ll kalten \gg eher an Ort und Stelle bleiben. Dies fuhrt zu einem Ungleichgewicht der Ladungen, also zu einer elektrischen Spannung, welche von der Temperatur**differenz** und der Art des Materials abhängt.

Diese Spannung kann nicht allein gemessen werden, denn der Anschluss geht über Drahte, die wiederum Thermospannungen bewirken, und diese wurden mitgemessen werden. Ein technisches Thermoelement besteht aus zwei Leitern aus unterschiedlichem Material.

Wenn die Elektronendrift in Material 2 starker ist , dann driften dort mehr Elektronen zum kalten Ende, und es entsteht dort eine stärkere negative Ladung. Das obere kalte Ende mit Material 1 wird also positiv in Bezug auf Material 2.

Thermoelement und Messprinzip

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall 4.3.1.6 Thermoelement

In der Messtechnik ist das heiße Ende die Messstelle mit der Temperatur T_M , das kalte Ende ist die Vergleichsstelle mit der Temperatur T_V .

Für eine genaue Messung muss die Vergleichstemperatur möglichst präzise eingehalten werden. Früher benutzte man hierfür z.B. schmelzendes Eis. Da Thermoelemente vor allem zum Messen hoher Temperaturen eingesetzt werden, kann die Vergleichsstelle nicht gut nahe an der Messstelle liegen.

Man verlängert das Thermoelement mit einer sogenannten **Ausgleichsleitung** bis zur Vergleichsstelle. Die Ausgleichsleitung muss aus denselben Materialien 1 und 2 bestehen wie das Thermoelement selbst. Es wirken dann Thermoelement und Ausgleichsleitung wie ein einziges verlängertes Thermoelement, und es treten keine zusätzlichen Thermospannungen auf die das Messergebnis verfälschen wurden.

Messprinzip mit Thermoelement

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

229

4. Komponenten:

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall

4.3.1.6 Verkabelung von Thermoelementen / 2

Thermopaartyp	Material der Ausgleichsleitung	Toleranz / K	Temperatur- bereich /°C
Cu-CuNI (U)	Cu-CuNI	± 3,0	0 200
Fe-CuNi(L)	Fe-CuNi	± 3,0	0 200
NiCr-Ni (K)	NiCr-Ni	± 3,0	0 200
NiCr-Ni (K)	SoNiCr-SoNi1	± 3,0	0 200
NiCr-Ni (K)	SoNiCr-SoNi2	± 3,0	0 100
Pt10%Rh-Pt (S)	SoPtRh1-SoPt1	± 3,0	0 200
Pt10%Rh-Pt (S)	SoPtRh2-SoPt2	± 3,0	0 100
Pt13%Rh-P (R)	SoPtRh1-SoPt1	± 3,0	0 200
Pt13%Rh-P (R)	SoPtRh2-SoPt2	± 3,0	0 100

ABB-Informationsmaterial

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall
4.3.1.6 Verkabelung von Thermoelementen / 1

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

231

4. Komponenten:

4.3 Messleitungen:

4.3.1 Verhalten im Gleichspannungsfall 4.3.1.6 Verkabelung von Thermoelementen / 3

$$U_{\rm D} = U_2 - U_4 = U_0 \cdot \left(\frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4} \right)$$

4.3 Messleitungen:

4.3.2 Verhalten im Wechselspannungsfall

Elektrische und magnetische Felder in Zweidrahtleitungen und Koaxialleitungen

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

233

Ergänzender Literatur für Kap 4.3 (Messleitungen, Thermoelement)

Autor	Titel	Verlag
E. Schrüfer	Elektrische Messtechnik	
L. Reindl	Kapitel 2.5.1	Hanser Verlag
B. Zagar		
T. Mühl	Einführung in die elektrische Messtechnik Kapitel 5 und 6 (diesmal Fokus an 2- und 4- Leiteranschluss und Thematisierung der Widerstand von Zuleitung)	Hanser Verlag