CS 344 Homework #1

Austin Bennett, Mark Barkalow, Jeremy Barkalow September 29, 2019

1 Question #1

$$\exists (c, N) \text{ s.t. } \forall n > N, f(n) \leq c \times g(n)$$

(a)
$$7n + \log(n) = O(n)$$

Where $c = 42$ and $N = 1$
 $\forall n > 1$:
 $7n + \log(n) \le 42n$
 $n + \log(n) \le n$
 $n \le n$

(b)
$$n^2 + 4n + 7 = O(n^2)$$

Where $c = 42$ and $N = 1$
 $\forall n > 1$:
 $n^2 + 4n + 7 \le 42n^2$
 $n^2 + n \le n^2$
 $n^2 < n^2$

(c) n! =
$$O(n^n)$$

Where c = 42 and N = 1
 \forall n > 1:
n × n-1 × n-2 × · · · × 1 \leq 42 n^n
n × n × n × · · · × 1 \leq n^n
 $\approx n^n \leq n^n \checkmark$

(d)
$$2^{n} = O(2^{2n})$$

Where $c = 42$ and $N = 1$
 $\forall n > 1$:
 $2^{n} \le 42 \times 2^{2n}$
 $2^{n} \le 2^{2n}$
 $2^{n} \le 2^{n} \times 2^{n}$
 $0 \le 2^{n} \checkmark$

$$\exists$$
 (c, n) s.t. \forall n > N, f(n) \leq c \times g(n)

(a)
$$f(n) = n^2$$
, $g(n) = n^3$
Where $c = 42$ and $N = 1$
 $\forall n > 1$:
 $n^2 = O(n^3)$
 $n^2 \le 42n^3$
 $0 \le 42n$

$$\begin{array}{l} n^3 = O(n^2) \\ n^3 \leq 42n^2 \\ \text{n} \leq 42 \ \mbox{\emph{X}} \qquad \text{Not true } \forall \ \text{n} > 1 \end{array}$$

$$\therefore f(n) = O(g(n))$$

(b)
$$f(n) = \log_2 n$$
, $g(n) = \log_3 n$
Where $c = 42$ and $N = 1$
 $\forall n > 1$:
 $log_2 n \le 42 log_3 n$
 $\frac{\log_2 n}{\log_3 n} \le 42$
 $\frac{\log 3}{\log 2} \le 42$

$$\begin{array}{l} \log_3 n \leq 42 \log_2 n \\ \frac{\log_3 n}{\log_2 n} \leq 42 \\ \frac{\log 2}{\log 3} \leq 42 \checkmark \end{array}$$

$$\therefore f(n) = \Theta(g(n))$$

(c)
$$f(n) = 2^n$$
, $g(n) = 3^n$
Where $c = 42$ and $N = 1$
 $\forall n > 1$:
 $\frac{2^n \le 42 \times 3^n}{\sqrt[n]{2^n} \le 42 \times 3^n}$
 $2 \le \sqrt[n]{42} \times 3$
 $2 \le \approx 1 \times 3$

$$\begin{array}{l} 3^n \leq 42 \times 2^n \\ \sqrt[n]{3^n} \leq 42 \times 2^n \\ 3 \leq \sqrt[n]{42} \times 2 \\ 3 \leq \approx 1 \times 2 \ \text{\emph{X}} \end{array}$$

$$\therefore f(n) = O(g(n))$$

(d)
$$f(n) = 2^n$$
, $g(n) = 2^{n+1}$
Where $c = 42$ and $N = 1$
 $\forall n > 1$:
 $2^n \le 42 \times 2^{n+1}$
 $2^n \le 42 \times 2 \times 2^n$
 $2^n \le 2^n$ \checkmark

$$2^{n+1} \le 42 \times 2^n$$

 $2^n \times 2 \le 42 \times 2^n$
 $2^n \le 2^n$ \checkmark
 $\therefore f(n) = \Theta(g(n))$

$$T(n) = \begin{cases} 2 & \text{if } n = 2\\ 2T(\frac{n}{2}) + n) & \text{if } n = 2^k, \text{ for } k > 1 \end{cases}$$
 (1)

Base step: let k = 1 so $n = 2^1 = 2$ Thus we have, T(2) = 2

Hypothesis step: Assume $T(n) = n(\log n)$ is true when k > 1 and where $n = 2^k$ So we assume that: $T(2^k) = 2^k \times log(2^k)$

Inductive step: Given the previous assumption we get that $T(2^{k+1}) = 2^{k+1} \times log(2^{k+1})$

From the recurrence relation we have $T(n) = 2T(\frac{n}{2}) + n$ Letting $n = 2^{k+1}$ we get that $T(2^{k+1}) = 2T(\frac{2^{k+1}}{2}) + 2^{k+1}$ $T(2^{k+1}) = 2T(2^k) + 2 \times 2^k$ $T(2^{k+1}) = 2(2^k \times \log(2^k)) + 2 \times 2^k$ $T(2^{k+1}) = 2(2^k \times \log(2^k) + 2^k)$ $T(2^{k+1}) = 2^{k+1}(\log(2^k) + 1)$ $T(2^{k+1}) = 2^{k+1}(\log(2^{k+1}))$

$$T(n) = n \lg n$$

(a)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ T(n-1) + \Theta(n) & \text{if } n > 1 \end{cases}$$
 (2)

Each level has an amount of work, c, = n The height of the tree = n-1

$$T(n) = \sum_{k=0}^{n-1} ck = c(n-1)$$
$$= n(n-1)$$
$$= n^2 - n$$

Let us assume that, $T(n) = O(n^2)$

$$T(n+1) = T(n) + Θ(n+1)$$
, from our equation in (a) $T(n+1) = n^2 + n + 1$, remove constants (1) and dominated terms (n) $T(n+1) = O(n^2)$
∴ Since $T(n+1) = O(n^2)$, ⇒ $T(n) = O(n^2)$

(a) and (b)

The original merge sort recurrence relation:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(\frac{n}{2}) + n & \text{if } n > 1 \end{cases}$$
 (3)

Updated recurrence relation with 4 array merge sorting:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 4T(\frac{n}{4}) + n & \text{if } n > 1 \end{cases}$$

$$\tag{4}$$

(a) From the updated recurrence relation we can extrapolate two pieces of information (1): $4T(\frac{n}{4}) + n$, and

(2): n

Expression (1): is the recursive call to quad merge sort each array and expression (2): the running time of actually merging the (already recursively called and sorted) arrays.

 \therefore The running time of merging the 4 arrays is O(n)

Now to solve for the running time of 4 array merge sort, we have:

 $T(n) = 4^k T(\frac{n}{4^k}) + kn$

Letting $n = 4^k$:

$$T(n) = nT(\frac{n}{n}) + kn$$

$$= nT(1) + kn$$

$$= n + kn$$

From $n = 4^k$, we can infer that $k = \log n$

Thus, we have $T(n) = n + n(\log n)$

 $T(n) = O(n \log n)$ and the running time of merge sort has not improved upon the traditional algorithm.