1 Топологические пространства

- 1. Множество всех непрерывно дифференцируемых на отрезке [a,b] функций обозначается $C^1[a,b]$. Задайте на этом множестве при помощи предбазы наислабейшую топологию, относительно которой $\forall x \in [a,b]$ отображение $\Phi_x : C^1[a,b] \to \mathbb{R}$, заданное по формуле $\Phi_x(f) = f'(x)$, является (топологически) непрерывным.
- 2. Множество всех бесконечно дифференцируемых на отрезке [a,b] функций обозначается $C^{\infty}[a,b]$. Задайте на этом множестве при помощи предбазы наислабейшую топологию, относительно которой $\forall x \in [a,b]$ отображение $\Phi_x : C^{\infty}[a,b] \to \mathbb{R}$, заданное по формуле $\Phi_x(f) = f'''(x)$, является (топологически) непрерывным.
- 3. Задайте при помощи базы слабейшую топологию в \mathbb{R}^2 , относительно которой отображения проекций π_1, π_2 (возвращающие абсциссу и ординату соответственно) являются (топологически) непрерывными.
- 4. Покажите, что метрическая топология (т. е. топология в метрическом пространстве, базой которой являются шары всевозможных радиусов и с всевозможными центрами) удовлетворяет аксиоме отделимости Хаусдорфа: у любых двух различных точек есть непересекающиеся окрестности.
- 5. Первая аксиома счётности требует от топологического пространства следующее. У любой точки x можно задать счётную систему $\{U_i\}_{i=1}^{\infty}$ окрестностей, удовлетворяющую свойству: для любой окрестности V точки x существует окрестность из семейства $U_i \subseteq V$.
 - Покажите, что метрическая топология (т. е. топология в метрическом пространстве, базой которой являются шары всевозможных радиусов и с всевозможными центрами) удовлетворяет первой аксиоме счётности.
- 6. Первая аксиома счётности требует от топологического пространства следующее. У любой точки x можно задать счётную систему $\{U_i\}_{i=1}^\infty$ окрестностей, удовлетворяющую свойству: для любой окрестности V точки x существует окрестность из семейства $U_i \subset V$.
 - Докажите, что в пространстве с первой аксиомой счётности понятия топологической точки прикосновения и секвенциальной точки прикосновения эквивалентны.
- 7. Докажите, что в метрическом пространстве понятия топологической точки прикосновения и секвенциальной точки прикосновения эквивалентны.
- 8. Докажите, что в топологическом пространстве [[M]] = [M].
- 9. Докажите, что в топологическом пространстве $[M_1 \cup M_2] = [M_1] \cup [M_2].$
- 10. На натуральных числах рассматривается семейство всех подмножеств вида $\{2n-1,2n\}$. Докажите, что оно образует базу некоторой топологии. Приведите пример последовательности, которая имеет не единственный предел по этой топологии.
- 11. На натуральных числах рассматривается все подмножества $\{2n-1,2n\}$ и все подмножества вида $\{2n\}$. Докажите, что эти подмножества образует базу некоторой топологии. Приведите пример одноточечного множества, которое не замкнуто в этой топологии.
- 12. На натуральных числах рассматриваются все двусторонние арифметические прогрессии, т.е. подмножества вида $\{a+dz,z\in\mathbb{Z}\}$ по всем $a,d\in\mathbb{Z}$. Докажите, что эти подмножества образует базу некоторой топологии. Какое замыкание у множества всех простых чисел в этой топологии?

- 13. Является ли множество $\{f \in C[a,b] : 0 < f(x) < 1 \ \forall x\}$ открытым в C[a,b]?
- 14. Является ли множество $\{x \in \ell_{\infty} : 0 < x(k) < 1 \ \forall k\}$ открытым в ℓ_{∞} ?
- 15. Докажите, что композиция $g(f(\cdot))$ (топологически) непрерывных отображений $f: X \to Y$ и $g: Y \to Z$ является (топологически) непрерывным отображением из X в Z.
- 16. Докажите, что в метрическом пространстве функция расстояния до фиксированного непустого множества A 1-липшицева и непрерывна. Подробнее, пусть $f(x) = \rho(x, A) = \inf_{y \in A} \rho(x, y)$. Докажите, что $|f(x_1) f(x_2)| \le \rho(x_1, x_2)$. Выведите из этого непрерывность $f(\cdot)$.
- 17. Докажите, что пространство основных функций $D(\mathbb{R})$ неметризуемо.
- 18. Доказать, что семейство лучей $(-\infty, \mathfrak{a}]$: $\mathfrak{a} \in \mathbb{R}$ образует базу некоторой топологии на \mathbb{R} . Опишите все замкнутые и открытые множества в этой топологии.
- 19. Доказать, что семейство лучей $(-\infty, \mathfrak{a}]$: $\mathfrak{a} \in \mathbb{R}$ образует базу некоторой топологии на \mathbb{R} . Опишите, как устроено замыкание произвольного множества S.
- 20. Пусть $F = \{f : [0,1] \to \mathbb{R}\}$. Доказать, что семейство множеств $V(x,\alpha) = \{f \in F : f(x) < \alpha\}$ образует базу некоторой топологии в F. Как устроена сходимость функций в этой топологии?
- 21. Пусть $F = \{f : [0,1] \to \mathbb{R}\}$. Доказать, что семейство множеств $V(x,\alpha) = \{f \in F : f(x) > \alpha\}$ образует базу некоторой топологии в F. Как устроена сходимость функций в этой топологии?
- 22. Пусть $F=\{f:[0,1]\to\mathbb{R}\}$. Опишите, как задать топологию на F, чтобы соответствующая сходимость была устроена так: $f_n\to f \iff \overline{\lim_{n\to\infty}}f_n(x)\leqslant f(x) \ \forall x\in[0,1].$
- 23. Докажите, что сходимость по тихоновской топологии в $[0,1]^{[0,1]}$ эквивалентна поточечной сходимости функций $f:[0,1] \to [0,1]$.
- 24. Докажите, что сходимость по тихоновской топологии в $\mathbb R$ эквивалентна поточечной сходимости функций $f:\mathbb R \to \mathbb R.$
- 25. Найдите все линейные функционалы над $\mathbb{R}^{\mathbb{R}}$, непрерывные относительно топологии произведения.
- 26. В С[0, 1] рассматривается семейство множеств

$$\beta = \left\{ V_{\epsilon}(f) = \left\{ g \in C[0,1] : \left| \int_0^1 (f(x) - g(x)) dx \right| < \epsilon \right\} \middle| f \in C[0,1], \epsilon > 0 \right\}.$$

Докажите, что они образуют базу некоторой топологии.

2 Метрические пространства

- 27. Докажите, что пространство ℓ_2 сепарабельно.
- 28. Докажите, что пространство ℓ_∞ несепарабельно.
- 29. Докажите, что пространство $\mathbb{L}_{\infty}[0,1]$ несепарабельно.

- 30. Докажите, что ℓ_1 полно.
- 31. Докажите, что ℓ_5 полно.
- 32. Докажите, что ℓ_1 с метрикой, взятой из ℓ_3 , неполно.
- 33. Докажите, что ℓ_2 с метрикой, взятой из ℓ_{∞} , неполно.
- 34. Объясните, почему на множестве ℓ_3 функция $\|\cdot\|_2$ не является нормой.
- 35. Докажите, что пространство C[a, b] сепарабельно.
- 36. Докажите, что пространство $(C[a,b], \|\cdot\|_1)$ неполно.
- 37. Множество всех непрерывно дифференцируемых на отрезке [0,1] функций обозначается $C^1[0,1]$. Докажите, что функция $d(f,g)=|f(0)-g(0)|+\int\limits_0^1|f'(x)-g'(x)|dx$ является метрикой. Является ли пространство с этой метрикой полным?
- 38. Множество всех непрерывно дифференцируемых на отрезке [0,1] функций обозначается $C^1[0,1]$. Докажите, что функция $d(f,g)=|f(0)-g(0)|+\sup_{x\in[0,1]}|f'(x)-g'(x)|$ является метрикой. Является ли пространство с этой метрикой полным?
- 39. Пусть ρ_1, ρ_2 две метрики на множестве X, порождающие одну и ту же топологию. Верно ли, что (X, ρ_1) полно тогда и только тогда, когда полно (X, ρ_2) ?
- 40. Пусть $\|\cdot\|_1, \|\cdot\|_2$ две нормы на векторном пространстве X, порождающие одну и ту же топологию. Верно ли, что $(X, \|\cdot\|_1)$ полно тогда и только тогда, когда полно $(X, \|\cdot\|_2)$?
- 41. Приведите пример системы вложенных шаров в полном метрическом пространстве (с радиусами, не убывающими к нулю), в пересечении которой нет ничего.
- 42. Приведите пример метрического пространства, в котором может быть такое, что шар большего радиуса вложен в шар меньшего радиуса.
- 43. Рассматриваются финитные непрерывные функции $f: \mathbb{R} \to \mathbb{R}$ (финитность функции есть равенство нулю за пределами какого-то отрезка [-m,m]). На них вводится равномерная метрика $\rho(f_1,f_2)=\sup_{x\in\mathbb{R}}|f_1(x)-f_2(x)|$. Докажите неполноту этого метрического пространства и предъявите его пополнение, состоящее из вещественнозначных функций.
- 44. Предъявите явно достаточное условие на λ , обеспечивающее существование единственного решения в C[a,b] у интегрального уравнения $\phi(x) = \lambda \int\limits_a^b K(x,y) \phi(y) dy + f(x)$. Уравнение относительно ϕ , функции f, K заданы и непрерывны.
- 45. Рассматривается пространство многочленов по метрике $d(p,q) = \sum_i |c_i|$, где $p-q = \sum_i c_i x^i$. Докажите, что оно неполно.
- 46. Рассматривается пространство всех отрезков [a,b], a < b, на вещественной оси \mathbb{R} . Вводится следующая функция: d([a,b],[c,d]) = |a-c| + |b-d|. Докажите, что эта функция является метрикой. Докажите, что пространство с этой метрикой неполно. Придумайте, как можно конструктивно (не в виде конструкции Хаусдорфа) описать пополнение этого пространства.

- 47. Докажите, что в пространстве $C(\mathfrak{a},\mathfrak{b})$ непрерывных функций на интервале функция $d(f,g)=\sup_{x\in(\mathfrak{a},\mathfrak{b})}\frac{|f(x)-g(x)|}{1+|f(x)-g(x)|}$ является метрикой.
- 48. На рациональных числах $\mathbb Q$ вводится функция $\|r\|_p$ (p- простое), которая определяется так: $\|r\|_p = p^{-k}$, если $r = p^k \frac{m}{n}$, где m и n взаимно просты c p (при этом $\|0\|_p = 0$ по определению). Докажите, что функция $d(r_1, r_2) = \|r_1 r_2\|_p$ задаёт метрику на $\mathbb Q$.
- 49. Опишите все множества в метрическом пространстве, которые могут являться множеством нулей некоторой непрерывной функции.
- 50. Разместите в единичном шаре в ℓ_2 счётное число шаров радиуса 1/10.
- 51. Рассматривается пространство \mathbb{R} с метрикой $d(x,y) = |\arctan x \operatorname{arctg} y|$. Докажите неполноту и явно постройте пополнение, не используя конструкцию Хаусдорфа.
- 52. Рассматривается пространство \mathbb{R} с метрикой $d(x,y) = |e^x e^y|$. Докажите неполноту и явно постройте пополнение, не используя конструкцию Хаусдорфа.
- 53. Докажите что подмножество полного метрического пространства само по себе является полным пространством в том и только том случае, когда оно замкнуто.
- 54. Используя теорему Бэра, покажите, что полное метрическое пространство без изолированных точек обязательно несчётно. (Изолированной называется такая точка, что шар некоторого положительного радиуса с центром в этой точке не содержит ничего кроме центра.)
- 55. Исследуйте на сепарабельность пространство непрерывных ограниченных функций $BC(\mathbb{R})$ с равномерной метрикой $\rho(f_1,f_2)=\sup_{x\in\mathbb{R}}|f_1(x)-f_2(x)|.$
- 56. Какой должна быть непрерывная функция $f: \mathbb{R}_+ \to \mathbb{R}_+$, чтобы метрику на \mathbb{R} можно было определить равенством $\rho(x,y) = f(|x-y|)$? Подходит ли функция $f(x) = \operatorname{arctg} x$?
- 57. Векторное пространство $L = \ell_1 \times \ell_1$ оснащено нормой $\|(x,y)\| = \|x\|_2 + \|y\|_\infty$. Исследовать на сепарабельность, полноту. Если неполно, построить пополнение в виде декартова произведения двух множеств числовых последовательностей, не используя конструкцию Хаусдорфа.
- 58. Векторное пространство $L = \ell_1 \times \ell_\infty$ оснащено нормой $\|(x,y)\| = \|x\|_\infty + \|y\|_\infty$. Исследовать на сепарабельность, полноту. Если неполно, построить пополнение в виде декартова произведения двух множеств числовых последовательностей, не используя конструкцию Хаусдорфа.
- 59. Пусть F векторное пространство непрерывных и ограниченных на $\mathbb R$ функций, норма в котором имеет вид $\|f\|=\int\limits_{\mathbb T} \frac{|f(x)|}{1+x^4} \, dx.$

Исследовать на сепарабельность, полноту. Если неполно, построить пополнение, не используя конструкцию Хаусдорфа.

- 60. Пусть F векторное пространство финитных и непрерывных на $\mathbb R$ функций, норма в котором имеет вид $\|f\| = \sqrt{\int\limits_{\mathbb R} \frac{|f(x)|^2}{1+x^4} \; dx}.$
 - Исследовать на сепарабельность, полноту. Если неполно, построить пополнение, не используя конструкцию Хаусдорфа.
- 61. Пусть F векторное пространство (классов эквивалентности) интегрируемых и ограниченных на [0,1] функций, норма в котором имеет вид $\|f\| = \sqrt{\int\limits_{[0,1]} \frac{|f(x)|^2}{5+\cos x} \; dx}.$
 - Исследовать на сепарабельность, полноту. Если неполно, построить пополнение, не используя конструкцию Хаусдорфа.
- 62. Докажите, что линейный оператор из линейного нормированного пространства X в линейное нормированное пространство Y непрерывен тогда и только тогда, когда его норма конечна.
- 63. Докажите, что норма линейного оператора из линейного нормированного пространства X в линейное нормированное пространство Y конечна тогда и только тогда, когда всякое ограниченное множество в X он переводит в ограниченное множество в Y.
- 64. Докажите, что нормированное пространство полно тогда и только тогда, когда в нём всякий абсолютно сходящийся ряд сходится.

3 Частично упорядоченные множества, базис Гамеля

- 65. Пусть X линейное пространство, L \subset X подпространство. Докажите, что существует подпространство M \subset X такое, что L + M = X, L \cap M = $\{0\}$.
- 66. Множество Γ векторов линейного пространства X называется базисом Γ амеля, если любой нетривиальный вектор $x \in X$ единственным образом представляется конечной линейной комбинацией из Γ . Докажите, что в X существует базис Γ амеля.
- 67. Множество Γ векторов линейного пространства X называется базисом Гамеля, если любой нетривиальный вектор $x \in X$ единственным образом представляется конечной линейной комбинацией из Γ . Докажите, что базис Гамеля подпространства $L \subset X$ можно дополнить до базиса Гамеля во всём X.
- 68. Пусть (A, \leq) вполне упорядоченное множество (частично упорядоченное множество, всякая непустая часть которого имеет минимальный элемент), а P(a) некоторое утверждение, формулируемое для всякого $a \in A$. Пусть P верно для первого элемента A, а из справедливости P для всех $b \leq a$ следует справедливость и для a. Докажите, что тогда P верно для всякого $a \in A$.
- 69. Привести пример бесконечномерного линейного пространства со счетным базисом Гамеля. Будет ли это пространство полным?
- 70. Доказать, что бесконечномерное банахово пространство не может иметь счетного базиса Гамеля. Для этого показать, что в противном случае оно бы оказалось представимо в виде счетного объединения нигде не плотных множеств.

- 71. Пусть X бесконечномерное банахово пространство относительно нормы $\|\cdot\|$. Доказать, что существует неограниченный сюръективный и инъективный линейный оператор $A:X\to X$ с неограниченным обратным A^{-1} .
- 72. Пусть X бесконечномерное банахово пространство относительно нормы $\|\cdot\|$. Известно, что существует неограниченный сюръективный и инъективный линейный оператор $A:X\to X$ с неограниченным обратным A^{-1} . Докажите, что функция $\|x\|_A=\|Ax\|$ задаёт норму на X, относительно которой X снова оказывается банаховым.
- 73. Пусть X бесконечномерное банахово пространство относительно нормы $\|\cdot\|$. Известно, что существует неограниченный сюръективный и инъективный линейный оператор $A:X\to X$ с неограниченным обратным A^{-1} , а также что функция $\|x\|_A=\|Ax\|$ задаёт норму на X, относительно которой X снова оказывается банаховым. Можно ли показать, что одна из двух рассматриваемых нормированных топологий в X слабее другой?
- 74. Пусть X и Y банаховы, A : X \to Y ограниченный линейный оператор. Верно ли, что равенство $||x||_2 = ||x||_X + ||Ax||_Y$ задаёт в X норму? Будет ли X с этой нормой банаховым?

4 Компактность

- 75. Доказать, что метрический компакт (X, ρ) имеет конечный диаметр $\mathrm{diam}(X) = \sup_{x,y \in X} \rho(x,y).$
- 76. Докажите, что образ (топологически) компактного множества при (топологически) непрерывном отображении является (топологически) компактным.
- 77. Доказать, что топологическое пространство (X, τ) является компактным если и только если любое его топологически замкнутое собственное подмножество является компактным.
- $78. \,$ Компактен ли единичный шар в пространстве многочленов степени не выше ${
 m d}$ с метрикой

$$\rho\left(\sum_{i=0}^d a_i x^i, \sum_{i=0}^d b_i x^i\right) = \sum_{i=0}^d |a_i - b_i|?$$

- 79. Доказать, что компактное метрическое пространство сепарабельно.
- 80. Пусть (X, ρ) компактное метрическое пространство; отображение $f: X \to X$ таково, что

$$\rho(f(x), f(y)) < \rho(x, y).$$

Докажите, что у такого отображения есть неподвижная точка.

- 81. Доказать, что компакт нельзя изометрично отобразить на собственное подмножество.
- 82. Исследовать множество $S = \{f \in C^1[0,1]: \|f\|_c + \|f'\|_c = 1\}$ на вполне ограниченность и замкнутость в пространстве $(C[0,1],\|\cdot\|_c)$.
- 83. Исследовать замыкание множества $S = \{f \in C^1[0,1] : ||f||_c + ||f'||_c = 1\}$ на вполне ограниченность и полноту в пространстве $(C^1[0,1], ||\cdot||_c)$.

- 84. Исследовать множество $S = \{f \in C^1[0,1] : \|f\|_c + \|f'\|_c = 1\}$ на вполне ограниченность и полноту в пространстве $(C^1[0,1], \|\cdot\|_{c^1})$.
- 85. Исследовать ограниченность, вполне ограниченность и замкнутость множества в $\mathbb{L}_1[0,1]$:

$$S=\left\{f\in\mathbb{L}_1[0,1]:0\leq f(x)\leq \frac{1}{\sqrt{x}}\text{ m. B. }x\in(0,1)\right\}.$$

86. Исследовать ограниченность, вполне ограниченность и замкнутость множества в $\mathbb{L}_1[0,1]$:

$$S = \left\{ f \in C^1[0,1] : f(0) = 0, |f'(x)| \le \frac{1}{\sqrt{x}} \forall x \in (0,1) \right\}.$$

87. Исследовать ограниченность, вполне ограниченность и замкнутость множества в c_0 :

$$S = \left\{ x \in c_0 : \exists f \in \mathbb{L}_1[0, 1], \|f\|_1 \leq 1, \forall k \in \mathbb{N} x(k) = \int_{2^{-k}}^{2^{1-k}} f(t) dt \right\}.$$

88. Исследовать ограниченность, вполне ограниченность и замкнутость множества в с₀:

$$S = \left\{ x \in c_0 : \exists f \in \mathbb{L}_2[0,1], ||f||_2 \leq 1, \forall k \in \mathbb{N} x(k) = \int_{2^{-k}}^{2^{1-k}} f(t) dt \right\}.$$

89. Исследовать ограниченность, вполне ограниченность и замкнутость множества в C[0,1]:

$$S = \left\{ f \in C[0,1] : \exists g \in C[0,1], \|g\|_1 \le 1, \forall x \in [0,1] f(x) = \int_0^x g(t) dt \right\}.$$

90. Исследовать ограниченность, вполне ограниченность и замкнутость множества в C[0,1]:

$$S = \left\{ f \in C[0,1] : \exists g \in C[0,1], ||g||_2 \le 1, \forall x \in [0,1] f(x) = \int_0^x g(t) dt \right\}.$$

- 91. Доказать, что две нормы, определённые на одном векторном пространстве, эквивалентны тогда и только тогда, когда из сходимости последовательности по любой из норм следует её сходимость по другой к тому же пределу.
- 92. В пространстве C[a,b] рассматривается множество M, состоящее из многочленов p(x) степени $\leqslant 10$, удовлетворяющие условию $\int_a^b |p(x)| dx \leqslant 10$. Компактно ли множество M?
- 93. Доказать, что в нормированном пространстве шар большего радиуса не может быть вложен в шар меньшего радиуса.
- 94. Доказать, что норма пространства C[a,b] не порождается никаким скалярным произведением.
- 95. Пусть $\{x_n\}, \{y_n\}$ последовательности в гильбертовом пространстве, причём

$$\begin{cases} \|x_n\| \leqslant 1; \\ \|y_n\| \leqslant 1; \\ \langle x_n, y_n \rangle \to 1. \end{cases}$$

Доказать, что $\|\mathbf{x}_n - \mathbf{y}_n\| \to \mathbf{0}$.

- 96. Доказать, что замкнутый единичный шар гильбертова пространства строго выпуклый (т. е. что он выпуклый и что внутренние точки любого отрезка с концами в шаре лежат строго внутри шара).
- 97. Пусть X векторное пространство. Доказать, что две нормы на нём эквивалентны тогда и только тогда, когда совпадают топологии, порождаемые этими нормами.
- 98. Докажите, что в бесконечномерном нормированном пространстве единичная сфера не является компактом.
- 99. Докажите, что в бесконечномерном нормированном пространстве единичный шар не является компактом.
- 100. Пусть X метрический компакт. $\{U_{\alpha}\}_{\alpha\in\mathcal{A}}$ открытое покрытие. Докажите, что тогда $\exists r>0$: $\forall x\in X\ \exists \alpha\in\mathcal{A}: B_r(x)\in U_{\alpha}.$

5 Задачи повышенной сложности

Решение такой задачи в контрольной не обязательно, но приносит дополнительные баллы.

101. Пусть
$$X = \left\{f: \mathbb{R} \to \mathbb{R} \mid f$$
 непрерывна, $\int\limits_1^\infty \frac{x}{x^2 + |f(x)|} dx < +\infty \right\}$, $\rho(f,g) = \sup_{x \in \mathbb{R}} \frac{|f(x) - g(x)|}{1 + |x| + |f(x) - g(x)|}$.

Исследовать на сепарабельность, полноту. Если неполно, построить пополнение из вещественнозначных функций, не используя конструкцию Хаусдорфа.

102. Пусть
$$X = \left\{f: \mathbb{R} \to \mathbb{R} \mid f$$
 непрерывна,
$$\int\limits_{-\infty}^{+\infty} \frac{ch\, x}{1+|f(x)|} dx < +\infty \right\}, \; \rho(f,g) = \sup_{x \in \mathbb{R}} \frac{|f(x)-g(x)|}{3^x+|f(x)-g(x)|}.$$

Исследовать на сепарабельность, полноту. Если неполно, построить пополнение из вещественнозначных функций, не используя конструкцию Хаусдорфа.

103. Пусть
$$X = \left\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ непрерывна}, \int\limits_{-\infty}^{+\infty} \frac{|x|}{1+|f(x)|} \mathrm{d}x < +\infty \right\}, \ \rho(f,g) = \sup_{x \in \mathbb{R}} \frac{|f(x)-g(x)|}{2^{-|x|}+|f(x)-g(x)|}.$$

Исследовать на сепарабельность, полноту. Если неполно, построить пополнение из вещественнозначных функций, не используя конструкцию Хаусдорфа.

104. Пусть
$$X = \left\{ x : \mathbb{N} \to \mathbb{R} \mid \sum_{k=1}^{+\infty} \frac{|x(k)|}{k + |x(k)|} < +\infty \right\}, \; \rho(x,y) = \sup_{k \in \mathbb{N}} \frac{|x(k) - y(k)|}{k + |x(k) - y(k)|}.$$

Исследовать на сепарабельность, полноту. Если неполно, построить пополнение из числовых последовательностей, не используя конструкцию Хаусдорфа.

105. Пусть
$$X = \left\{ x : \mathbb{N} \to \mathbb{R} \mid \sum_{k=1}^{+\infty} \frac{k!}{k + |x(k)|} < +\infty \right\}, \; \rho(x,y) = \sup_{k \in \mathbb{N}} \frac{|x(k) - y(k)|}{\operatorname{ch} k + |x(k) - y(k)|}.$$

Исследовать на сепарабельность, полноту. Если неполно, построить пополнение из числовых последовательностей, не используя конструкцию Хаусдорфа.

106. Пусть
$$X = \left\{ x : \mathbb{N} \to \mathbb{R} \mid \sum_{k=1}^{+\infty} \frac{\sqrt{|x(k)|}}{1 + |x(k)|} < +\infty \right\}$$
, $\rho(x,y) = \sup_{k \in \mathbb{N}} \frac{|x(k) - y(k)|}{k! + |x(k) - y(k)|}$.

Исследовать на сепарабельность, полноту. Если неполно, построить пополнение из числовых последовательностей, не используя конструкцию Хаусдорфа.

- 107. Пусть множество $E = \{x : \mathbb{N} \to \mathbb{R} \mid x(n) = O(\ln n) \text{ при } n \to \infty\}$. Метрика на E задана формулой $\rho(x,y) = \sup_{n \in \mathbb{N}} \frac{|x(n) y(n)|}{n}$. Доказать, что (E,ρ) неполное метрическое пространство, и построить его пополнение.
- 108. Пусть множество $E = \{x : \mathbb{N} \to \mathbb{R} \mid x(n) = O(1/n)$ при $n \to \infty\}$. Метрика на E задана формулой $\rho(x,y) = \sqrt{\sum_{n=1}^{\infty} \left(x(n) y(n)\right)^2}$. Доказать, что (E,ρ) неполное метрическое пространство, и построить его пополнение.
- 109. Докажите, что пространство ℓ_2 с метрикой, взятой из ℓ_∞ , можно представить в виде счётного объединения нигде не плотных множеств.
- 110. Исследовать множество $S=\{f\in C^2[0,1]:\|f\|_c+\|f''\|_c=1\}$ на вполне ограниченность в пространстве $(C[0,1],\|\cdot\|_c).$
- 111. Исследовать множество $S=\{f\in C^2[0,1]:\|f\|_c+\|f''\|_c=1\}$ на вполне ограниченность в пространстве $(C^1[0,1],\|\cdot\|_c).$
- 112. Исследовать множество $S=\{f\in C^2[0,1]:\|f\|_c+\|f''\|_c=1\}$ на вполне ограниченность в пространстве $(C^2[0,1],\|\cdot\|_c).$
- 113. Исследовать множество $S = \{f \in C^2[0,1] : \|f\|_c + \|f''\|_c \leqslant 1\}$ на вполне ограниченность в пространстве $(C^1[0,1],\|\cdot\|_{c^1})$. По определению считаем $\|f\|_{c^1} = \|f\|_c + \|f'\|_c$.
- 114. Исследовать множество $S=\{f\in C^2[0,1]:\|f\|_c+\|f''\|_c\leqslant 1\}$ на вполне ограниченность в пространстве $(C^2[0,1],\|\cdot\|_{c^1}).$ По определению считаем $\|f\|_{c^1}=\|f\|_c+\|f'\|_c.$
- 115. Исследовать множество $S = \{f \in C^2[0,1]: \|f\|_c + \|f''\|_c \leqslant 1\}$ на вполне ограниченность в пространстве $(C^2[0,1],\|\cdot\|_{c^2})$. По определению считаем $\|f\|_{c^2} = \|f\|_c + \|f'\|_c + \|f''\|_c$.
- 116. Направленным множеством называется такое частично упорядоченное множество (X,<), что $\forall \alpha, \beta \in X \ \exists \gamma \in X \$ такое, что $\gamma > \alpha$ и $\gamma > \beta$. Направленностью $\{x_\alpha\}_{\alpha \in X}$ в топологическом пространстве S называется произвольное отображение направленного множества в S. Направленность сходится к точке $x \in S$, если для любой окресности x найдется такой $\beta \in I$, что $\forall \alpha > \beta$ элемент x_α также лежит в этой окрестности.
 - Докажите, что x топологическая точка прикосновения подмножества A топологического пространства S тогда и только тогда, когда существует направленность $\{x_{\alpha}\}_{{\alpha}\in X}$ точек из A, сходящаяся к x.
- 117. Направленным множеством называется такое частично упорядоченное множество (X,<), что $\forall \alpha, \beta \in X \ \exists \gamma \in X \$ такое, что $\gamma > \alpha$ и $\gamma > \beta$. Направленностью $\{x_\alpha\}_{\alpha \in X}$ в топологическом пространстве S называется произвольное отображение направленного множества в S. Направленность сходится к точке $x \in S$, если для любой окресности x найдется такой $\beta \in I$, что $\forall \alpha > \beta$ элемент x_α также лежит в этой окрестности.

- Докажите, что функция $f: X \to Y$ из одного топологического пространства в другое непрерывна (топологически) тогда и только тогда, когда для всякой сходящейся направленности $\{x_{\alpha}\}_{\alpha \in X}$ точек в X направленность $\{f(x_{\alpha})\}_{\alpha \in A}$ сходится в Y.
- 118. Направленным множеством называется такое частично упорядоченное множество (X,<), что $\forall \alpha, \beta \in X \ \exists \gamma \in X \$ такое, что $\gamma > \alpha \$ и $\gamma > \beta$. Направленностью $\{x_\alpha\}_{\alpha \in X} \$ в топологическом пространстве S называется произвольное отображение направленного множества в S. Направленность сходится к точке $x \in S$, если для любой окресности x найдется такой $\beta \in I$, что $\forall \alpha > \beta$ элемент x_α также лежит в этой окрестности.
 - Докажите, что в топологическом пространстве множество A компактно тогда и только тогда, когда всякое бесконечное подмножество точек из A содержит направленность, сходящуюся к некоторому элементу из A.
- 119. Доказать, что уравнение $4x(t)-1+\int_0^t x^3(s)ds=0$ имеет единственное решение в классе непрерывных на [0,1] функций, ограниченных по модулю единицей сверху.
- 120. Докажите, что в C[0,1] уравнение $\sin x(t) \cos t + 2x(t) = 0$ имеет решение, причем единственное. Укажите способ построения последовательности, сходящейся к решению.
- 121. Доказать, что уравнение $3x(t)-t=\int_0^t \frac{x(s)}{1+x^2(s)} ds$ имеет единственное решение в классе непрерывных на [0,1] функций, ограниченных по модулю единицей сверху.
- 122. Доказать, что в топологическом векторном пространстве, где всякое одноточечное множество замкнуто, для любой окрестности нуля V найдется окрестность нуля W такая, что $W+W\subset V$ (под суммой понимается сумма по Минковскому). Доказать, что такое топологическое векторное пространство всегда Хаусдорфово.
- 123. Докажите, что подмножество A в топологическом пространстве X является компактным тогда и только тогда, когда всякое центрированное семейство замкнутых множеств в A имеет непустое пересечение. Замечание. Непустое семейство замкнутых множеств называется центрированным, если пересечение любого конечного подсемейства непусто.
- 124. Существует ли в пространстве $\mathbb{L}_2[0,1]$ компакт, имеющий вторую категорию Бэра?
- 125. Рассмотрим счетное декартово произведение метрических пространств $\prod_{k=1}^{\infty} X_k$. В нём рассмотрим две топологии: одна тихоновская топология, порождённая метрическими топологиями в X_k , а вторая порождённая метрикой $\rho(x,y) = \sum_{k=1}^{\infty} \frac{1}{m^2} \frac{\rho_k(x_k,y_k)}{1+\rho_k(x_k,y_k)}$. Верно ли, что заданная таким образом метрика порождает в точности тихоновскую топологию?