CS 229: Machine Learning

Christian Shelton

UC Riverside

Lecture 14

Slides from Lecture 14

- From UC Riverside
 - CS 229: Machine Learning
 - ► Professor Christian Shelton
- DO NOT REDISTRIBUTE
 - ► These slides contain copyrighted material (used with permission) from
 - ► Elements of Statistical Learning (Hastie, et al.)
 - ► Pattern Recognition and Machine Learning (Bishop)
 - ▶ For use only by enrolled students in the course

Combining to Reduce Variance

If we had B different data sets, $\{D_b\}_b$:

$$D_1 \rightarrow f_1(\cdot)$$

$$D_1 \to f_1(\cdot) \hspace{1cm} D_2 \to f_2(\cdot)$$

$$\cdots \hspace{1cm} \mathsf{D}_\mathsf{B} \to \mathsf{f}_{\mathfrak{m}}(\cdot)$$

And

$$f(x) = \frac{1}{B} \sum_{b=1}^{B} f_b(x)$$

Combining to Reduce Variance

If we had B different data sets, $\{D_b\}_b$:

$$D_1 \rightarrow f_1(\cdot)$$
 $D_2 \rightarrow f_2(\cdot)$

$$D_2 \to f_2(\cdot)$$

$$\cdots$$
 $\mathsf{D}_\mathsf{B} \to \mathsf{f}_{\mathfrak{m}}(\cdot)$

And

$$f(x) = \frac{1}{B} \sum_{b=1}^{B} f_b(x)$$

If data sets are independent, then fs are independent.

Variance of f is $O(\frac{1}{B})$.

Bootstrap: Draw multiple data sets with replacement from original data set. (all the same size as the original data set)

Bootstrap: Draw multiple data sets with replacement from original data set.

(all the same size as the original data set)

Bootstrap: Draw multiple data sets with replacement from original data set. (all the same size as the original data set)

Bootstrap: Draw multiple data sets with replacement from original data set.

(all the same size as the original data set)

Bootstrap: Draw multiple data sets with replacement from original data set.

(all the same size as the original data set)

Bootstrap: Draw multiple data sets with replacement from original data set.

(all the same size as the original data set)

Bootstrap Aggregation / Bagging

Bagging:

- for B times
 - Draw D_b with replacement from D
 - $\textbf{2} \ f_b \leftarrow \mathsf{learn}(D_b)$
- 2 Let $f(x) = \frac{1}{B} \sum_b f_b(x)$

Bootstrap Aggregation / Bagging

Bagging:

- for B times
 - Draw D_b with replacement from D
 - $\textbf{0} \quad f_b \leftarrow \mathsf{learn}(D_b)$
- 2 Let $f(x) = \frac{1}{B} \sum_b f_b(x)$

If f_b is linear, this will not change the hypothesis space. If f_b is non-linear, this will change the hypothesis space.

Bootstrap Aggregation / Bagging

Bagging:

- for B times
 - Draw D_b with replacement from D
 - $\textbf{0} \ f_b \leftarrow \mathsf{learn}(D_b)$
- 2 Let $f(x) = \frac{1}{B} \sum_b f_b(x)$

If f_b is linear, this will not change the hypothesis space. If f_b is non-linear, this will change the hypothesis space.

This does not affect the bias.

This does reduce the variance (in general).

Bagged Classifier

For classification, train as before, but let

$$f(x) = \arg \max_{k} \sum_{b} \mathbf{1}(f_{b}(x) = k)$$

or, if $f_{b,k}(x)$ is $p(y = k \mid x)$ from f_b

$$f(x) = \arg \max_{k} \sum_{b} f_{b,k}(x)$$

Bagged Classifier

For classification, train as before, but let

$$f(x) = \arg \max_{k} \sum_{b} \mathbf{1}(f_{b}(x) = k)$$

or, if $f_{b,k}(x)$ is $p(y = k \mid x)$ from f_b

$$f(x) = \arg \max_{k} \sum_{b} f_{b,k}(x)$$

Note, f_b and $f_{b,k}$ are (almost) always non-linear.

Example:

$$d=5$$

$$n=30$$

$$p(y=1|x)=\begin{cases} 0.2 & \text{if } x_1\leqslant 0.5\\ 0.8 & \text{otherwise} \end{cases}$$

Classification trees with no pruning as base classifier

Bagging builds a function

$$f(x) = \sum_{j=1}^{m} \frac{1}{m} f_j(x)$$

where f_j is draw from a base hypothesis space (a base classifier).

Bagging builds a function

$$f(x) = \sum_{j=1}^{m} \frac{1}{m} f_j(x)$$

where f_j is draw from a base hypothesis space (a base classifier).

Let's be more general:

$$f(x) = \sum_{j=1}^{m} w_j f_j(x)$$

where f_j is draw from a base hypothesis space (a base classifier).

Exponential Loss

We will train with exponential loss:

$$\mathfrak{l}(\mathfrak{y},\mathfrak{\hat{y}})=e^{-\mathfrak{y}\mathfrak{\hat{y}}}$$

Exponential Loss

We will train with exponential loss:

$$l(y, \hat{y}) = e^{-y\hat{y}}$$

For binary classification: Goal to minimize

$$\begin{split} L &= \sum_{i} l_{\text{exp}}(y_i, f(x_i)) \\ &= \sum_{i} e^{-y_i \sum_{j=1}^{m} w_j f_j(x_i)} \end{split}$$

For binary classification:

Goal to minimize

$$\begin{split} L &= \sum_{i} l_{\mathsf{exp}}(y_i, f(x_i)) \\ &= \sum_{i} e^{-y_i \sum_{j=1}^{m} w_j f_j(x_i)} \end{split}$$

Do greedy optimization: Add each $\{w_j,f_j\}$ one at a time.

On round m, let $\tilde{f}(x) = \sum_{j=1}^{m-1} w_j f_j(x)$

Then we need to optimize over $w_{\mathfrak{m}}$ and $f_{\mathfrak{m}}$:

$$L = \sum_{i} e^{-y_{i}(\tilde{f}(x_{i}) + w_{m}f_{m}(x_{i}))}$$
$$= \sum_{i} \alpha_{i}e^{-y_{i}w_{m}f_{m}(x_{i})}$$

$$(\alpha_i = e^{-y_i \tilde{f}(x_i)})$$

On round m, let $\tilde{f}(x) = \sum_{j=1}^{m-1} w_j f_j(x)$

Then we need to optimize over $w_{\mathfrak{m}}$ and $f_{\mathfrak{m}}$:

$$\begin{split} L &= \sum_{i} e^{-y_{i}(\tilde{f}(x_{i}) + w_{m}f_{m}(x_{i}))} \\ &= \sum_{i} \alpha_{i}e^{-y_{i}w_{m}f_{m}(x_{i})} \end{split}$$

 $(\alpha_i = e^{-y_i \tilde{f}(x_i)})$

Let $C_{\mathfrak{m}}$ be the points correctly classified by $f_{\mathfrak{m}}$ Let $M_{\mathfrak{m}}$ be the points misclassified by $f_{\mathfrak{m}}$

On round m, let $\tilde{f}(x) = \sum_{j=1}^{m-1} w_j f_j(x)$

Then we need to optimize over $w_{\mathfrak{m}}$ and $f_{\mathfrak{m}}$:

$$\begin{split} L &= \sum_{i} e^{-y_{i}(\tilde{f}(x_{i}) + w_{m}f_{m}(x_{i}))} \\ &= \sum_{i} \alpha_{i}e^{-y_{i}w_{m}f_{m}(x_{i})} \end{split}$$

Let C_m be the points correctly classified by f_m

Let $M_{\mathfrak{m}}$ be the points misclassified by $f_{\mathfrak{m}}$

$$= \sum_{i \in C_m} \alpha_i e^{-w_m} + \sum_{i \in M_m} \alpha_i e^{w_m}$$

 $(\alpha_{i} = e^{-y_{i}\tilde{f}(x_{i})})$

On round m, let $\tilde{f}(x) = \sum_{j=1}^{m-1} w_j f_j(x)$

Then we need to optimize over $w_{\mathfrak{m}}$ and $f_{\mathfrak{m}}$:

$$L = \sum_{i} e^{-y_{i}(\tilde{f}(x_{i}) + w_{m}f_{m}(x_{i}))}$$
$$= \sum_{i} \alpha_{i}e^{-y_{i}w_{m}f_{m}(x_{i})}$$

 $(\alpha_i = e^{-y_i \tilde{f}(x_i)})$

Let C_m be the points correctly classified by f_m

Let $M_{\mathfrak{m}}$ be the points misclassified by $f_{\mathfrak{m}}$

$$= \sum_{i \in C_m} \alpha_i e^{-w_m} + \sum_{i \in M_m} \alpha_i e^{w_m}$$

$$= e^{-w_m} \sum_i \alpha_i + \left(e^{w_m} - e^{-w_m}\right) \sum_{i \in M_m} \alpha_i$$

On round m, let $\tilde{f}(x) = \sum_{j=1}^{m-1} w_j f_j(x)$

Then we need to optimize over $w_{\mathfrak{m}}$ and $f_{\mathfrak{m}}$:

$$\begin{split} L &= \sum_{i} e^{-y_{i}(\tilde{f}(x_{i}) + w_{\mathfrak{m}}f_{\mathfrak{m}}(x_{i}))} \\ &= \sum_{i} \alpha_{i} e^{-y_{i}w_{\mathfrak{m}}f_{\mathfrak{m}}(x_{i})} \end{split} \qquad \qquad (\alpha_{i} = e^{-y_{i}\tilde{f}(x_{i})}) \end{split}$$

Let C_m be the points correctly classified by f_m

Let $M_{\mathfrak{m}}$ be the points misclassified by $f_{\mathfrak{m}}$

$$= \sum_{i \in C_m} \alpha_i e^{-w_m} + \sum_{i \in M_m} \alpha_i e^{w_m}$$

$$= e^{-w_m} \sum_i \alpha_i + \left(e^{w_m} - e^{-w_m}\right) \sum_{i \in M_m} \alpha_i$$

If $w_{\rm m}>$ 0, $e^{w_{\rm m}}-e^{-w_{\rm m}}>$ 0 and we need to pick f m to minimize

On round m, let $\tilde{f}(x) = \sum_{j=1}^{m-1} w_j f_j(x)$

Then we need to optimize over $w_{\mathfrak{m}}$ and $f_{\mathfrak{m}}$:

$$\begin{split} L &= \sum_{i} e^{-y_{i}(\tilde{f}(x_{i}) + w_{m}f_{m}(x_{i}))} \\ &= \sum_{i} \alpha_{i}e^{-y_{i}w_{m}f_{m}(x_{i})} \end{split} \qquad (\alpha_{i} = e^{-y_{i}\tilde{f}(x_{i})}) \end{split}$$

Let C_m be the points correctly classified by f_m

Let $M_{\mathfrak{m}}$ be the points misclassified by $f_{\mathfrak{m}}$

$$\begin{split} &= \sum_{i \in C_m} \alpha_i e^{-w_m} + \sum_{i \in M_m} \alpha_i e^{w_m} \\ &= e^{-w_m} \sum_i \alpha_i + \left(e^{w_m} - e^{-w_m} \right) \sum_{i \in M_m} \alpha_i \end{split}$$

If $w_{\rm m}>$ 0, $e^{w_{\rm m}}-e^{-w_{\rm m}}>$ 0 and we need to pick $f_{\rm m}$ to minimize

$$\sum_{i \in M_m} \alpha_i$$

weighted 0-1 loss

Given $f_{\mathfrak{m}}$ (and therefore $C_{\mathfrak{m}}$ and $M_{\mathfrak{m}}),$ we select $w_{\mathfrak{m}}$ as minimium of

$$L = \sum_{\mathfrak{i} \in C_{\mathfrak{m}}} \alpha_{\mathfrak{i}} e^{-w_{\mathfrak{m}}} + \sum_{\mathfrak{i} \in M_{\mathfrak{m}}} \alpha_{\mathfrak{i}} e^{w_{\mathfrak{m}}}$$

Given f_m (and therefore C_m and M_m), we select w_m as minimium of

$$\begin{split} L &= \sum_{i \in C_m} \alpha_i e^{-w_m} + \sum_{i \in M_m} \alpha_i e^{w_m} \\ &= e^{-w_m} \alpha_C + e^{w_m} \alpha_M \end{split}$$

$$(\alpha_C = \sum_{i \in C_m} \alpha_i \text{ and } \alpha_M = \sum_{i \in M_m} \alpha_i)$$

Given f_m (and therefore C_m and M_m), we select w_m as minimium of

$$\begin{split} L &= \sum_{i \in C_m} \alpha_i e^{-w_m} + \sum_{i \in M_m} \alpha_i e^{w_m} \\ &= e^{-w_m} \alpha_C + e^{w_m} \alpha_M \\ 0 &= \frac{dL}{dw_m} \\ &= -e^{-w_m} \alpha_C + e^{w_m} \alpha_M \end{split} \qquad (\alpha_C = \sum_{i \in C_m} \alpha_i \text{ and } \alpha_M = \sum_{i \in M_m} \alpha_i) \end{split}$$

Given f_m (and therefore C_m and M_m), we select w_m as minimium of

$$\begin{split} L &= \sum_{i \in C_m} \alpha_i e^{-w_m} + \sum_{i \in M_m} \alpha_i e^{w_m} \\ &= e^{-w_m} \alpha_C + e^{w_m} \alpha_M \qquad \qquad (\alpha_C = \sum_{i \in C_m} \alpha_i \text{ and } \alpha_M = \sum_{i \in M_m} \alpha_i) \\ 0 &= \frac{dL}{dw_m} \\ &= -e^{-w_m} \alpha_C + e^{w_m} \alpha_M \\ \frac{\alpha_C}{2} &= e^{2w_m} \end{split}$$

$$\frac{\alpha_{\rm M}}{w_{\rm m}} = \frac{1}{2} \ln \frac{\alpha_{\rm C}}{\alpha_{\rm M}} = \frac{1}{2} \ln \frac{n(1-{\rm wt'd~err.~rate~of~f_m})}{n({\rm wt'd~err.~rate~of~f_m})}$$

Boosting Algorithm

- ① Let $\alpha_i = 1$ for all i = 1, 2, ..., n
- For m in 1, 2, ..., M
 - Fit f_m to D with weights $\alpha_1, \alpha_2, \ldots, \alpha_n$
 - $\text{Pind err}_{m} = \frac{\sum_{i} \alpha_{i} \mathbf{1}(f_{m}(x_{i}) \neq y_{i})}{\sum_{i} \alpha_{i}}$
- 3 Return $f(x) = \sum_{m=1}^{M} w_m f_m(x)$

Boosting Algorithm

- ① Let $\alpha_i = 1$ for all i = 1, 2, ..., n
- ② For m in 1, 2, ..., M
 - Fit f_m to D with weights $\alpha_1, \alpha_2, \ldots, \alpha_n$
 - 2 Find $err_m = \frac{\sum_i \alpha_i \mathbf{1}(f_m(x_i) \neq y_i)}{\sum_i \alpha_i}$
- 3 Return $f(x) = \sum_{m=1}^{M} w_m f_m(x)$

If base learner returns f with weighted error < 0.5 every time, will converge to zero training error.

