

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría III Examen X

Los Del DGIIM, losdeldgiim.github.io

Jesús Muñoz Velasco

Granada, 2023-2024

Asignatura Geometría III.

Curso Académico 2019-2020.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Descripción Convocatoria ordinaria¹.

Fecha 10 de enero de 2020.

Duración 3 horas.

¹El examen lo pone el departamento.

Ejercicio 1. En coordenadas usuales del espacio euclídeo \mathbb{R}^3 calcula un movimiento helicoidal respecto de la recta

$$\mathcal{R} = \{(x, y, z) \in \mathbb{R}^3 : x = 1, y = 2\}$$

de ángulo $\theta = \frac{\pi}{4}$ y con vector de desplazamiento v = (0, 0, 2).

Ejercicio 2. Razona si las siguientes afirmaciones son verdaderas o falsas:

- 1. Sean \mathcal{R}_1 , \mathcal{S}_1 dos rectas que se cruzan en \mathbb{R}^3 e igualmente \mathcal{R}_2 , \mathcal{S}_2 otro par de rectas que se cruzan en \mathbb{R}^3 . Entonces existe una isometría $f; \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(\mathcal{R}_1) = \mathcal{R}_2$ y $f(\mathcal{S}_1) = \mathcal{S}_2$.
- 2. Sean \mathcal{R}_1 , \mathcal{S}_1 dos rectas de \mathbb{R}^2 que forman un ángulo $\theta \in]0, \pi/2[$ y \mathcal{R}_2 , \mathcal{S}_2 otro par de rectas formando el mismo ángulo. Entonces existen exactamente dos isometrías $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $f(\mathcal{R}_1) = \mathcal{R}_2$ y $f(\mathcal{S}_1) = \mathcal{S}_2$.

Ejercicio 3. Clasifica desde un punto de vista euclídeo la cónica de \mathbb{R}^2 de ecuación

$$3x^2 - 2xy + 3y^2 - 2x + 6y + 1 = 0$$

y determina un sistema de referencia euclídeo en el que esta cónica tenga una expresión reducida.

Ejercicio 4. En el plano proyectivo \mathbb{P}^4 consideremos las rectas

$$\mathcal{R} = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2 : x_0 + x_1 = 0\}, \quad \mathcal{S} = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2 : x_1 + x_2 = 0\}$$

y el punto $p_0 = (1 : 1 : 1)$.

Calcula la aplicación $f: \mathcal{R} \to \mathcal{S}$ tal que a cada punto $p \in \mathcal{R}$ le hace corresponder el único punto de corte entre las rectas $p_0 + p$ y \mathcal{S} . ¿Es f una proyectividad de \mathcal{R} en \mathcal{S} ?