Lecture #16: (Mostly) Interfaces and Generic Functions

Using Base Types

- Sometimes, we want an overriding method in a subtype to augment rather than totally replace an existing method.
- That means that we have to call the original version of the method within the overriding method somehow.
- Can't just do an ordinary method call on self, since that would cause infinite recursion.
- Fortunately, we can explicitly ask for the original version of the method by selecting from the class.

Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 1

Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 2

Example: "Memoization"

• Suppose we have

```
class Evaluator:
    def value(self, x):
        some expensive computation that depends only on x

class FastEvaluator(Evaluator):
    def __init__(self):
        self.__memo_table = {} # Maps arguments to results

def value(self, x):
    """A memoized value computation"""
    if x not in self.__memo_table:
        self.__memo_table[x] = Evaluator.value(self, x)
    return self.__memo_table[x]
```

• FastEvaluator.value must call the .value method of its base (super) class, but we can't just say self.value(x), since that gives an infinite recursion.

Generic Programming

• Consider the function find:

- This same function works on lists, tuples, strings, and (if the keys are consecutive integers) dicts.
- In fact, it works for any list L for which len and indexing work as they do for lists and tuples.
- That is, find is generic in the type of L.

The Idea of an Interface

• In Python, this means any type that fits the following interface:

```
class SequenceLike:
    def __len__(self):
        """My length, as a non-negative integer."""

    def __getitem__(self, k):
        """My kth element, where 0 <= k < self.__len__()"""

(for which len(L) and L[...] are "syntactic sugar.")</pre>
```

- This is one way to describe an interface, which in a programming language consists of
 - A syntactic specification (operation names, numbers of parameters), and
 - A semantic specification—its meaning or behavior (given here by English-language comments.)
- Generic functions are written assuming only that their inputs honor particular interfaces.
- The fewer the assumptions in those interfaces, therefore, the more general (and reusable) the function.

Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 5

Supertypes as Interfaces

- We call the types that a Python class inherits from its *supertypes* or *base types* (and the defined class, therefore, is a *subtype*).
- Good programming practice requires that we treat our supertypes as interfaces, and adhere to them in the subtypes.
- For example, were we to write

```
class MyQueue(SequenceLike):
   def __len__(self): ...
  def __getattr__(self, k): ...
```

then good practice says that MyQueue._len_ should take a single parameter and return a non-negative integer, and that MyQueue._getitem_ should accept an integer between 0 and the value of self._len_()

- Python doesn't actually enforce either of these provisions; it's up to programmers to do so.
- Other languages (like C++, Java, or Ada) enforce the syntactic part of the specification.

Duck Typing

- A statically typed language (such as Java) requires that you specify
 a type for each variable or parameter, one that specifies all the
 operations you intend to use on that variable or parameter.
- To create a generic function, therefore, your parameters' types must be subtypes of some particular interface.
- You can do this in Python, too, but it is not a requirement.
- In fact, our find function will work on any object that responds appropriately to _len_ and _getitem_, regardless of the object's type.
- This property is sometimes called duck typing: "This parameter must be a duck, and if it walks like a duck and quacks like a duck, we'll say it is a duck."

Consequences of Good Practice

- If we obey the supertype-as-interface guideline, then we can pass any object that has a subtype of SequenceLike to find and expect it to work.
- This fact is an example of what is called the Liskov Substitution Principle, after Prof. Barbara Liskov of MIT, who is generally credited with enunciating it.

Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 7

Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 8

Interface as Documentation

- The interface (especially its documentation comments) provides a contract between clients of the interface and its subtypes—implementations of the interface:
 - "I, the implementor, agree that all the subclasses I define will conform to the signature and comments in this interface, as long as you, the client, obey any restrictions specified in the interface."
- Since Python does not check or enforce the consistency of supertypes and subtypes, use of the guideline is a matter of individual discipline.
- Enforced or not, the interface type provides a convenient place to document the contract.
- But even when using duck typing, good practice requires that we document the assumptions made by the implementor about parameters to methods (what methods they have, in particular).

Example: The _repr_ Method

- When the interpreter prints the value of an expression, it must first convert that value to a (printable) string.
- To do so, it calls the <u>repr</u>() method of the value, which is supposed to return a string that suggests how you'd create the value in Python.

```
>>> "Hello"
'Hello'
>>> print(repr("Hello"))
'Hello'
>>> repr("Hello") # What does the interpreter print?
```

- (As a convenience, the built-in function repr(x) calls x._repr_.)
- User-defined classes can define their own <u>_repr_</u> method to control how the interpreter prints them (see HW#6).

Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 10

Example: The _str_ Method

- When the print function prints a value, it calls the <u>_str_()</u> method to find out what string to print.
- The constructor for the string type, str, does the same thing.
- Again, you can define your own _str_ on a class to control this behavior. (The default is just to call _repr_)

Iterators

- In the homework, we introduce the notion of *iterators*, another use of duck typing.
- The for statement is actually a generic control construct with the following meaning:

- Types that implement _iter_ are called iterable, and those that implement _next_ are iterators.
- As usual, the builtin functions iter(x) and next(x) are defined to call x.__iter_() and x.__next_().

Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 11

Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 12

Problem: Reconstruct the range class	
Want Range(1, 10) to give us something that behaves like a Python range, so that	
<pre>for x in Range(1, 10): print(x)</pre>	
prints 1-9.	
class Range: ???	
Last modified: Fri Mar 2 00:37:39 2012 CS61A: Lecture #16 13	