Pontificia Universidad Católica del Perú.

Escuela de Posgrado: Maestría en Matemáticas

Temas de Geometría (MAT 747)

Tarea 1: parte 1

Primer Semestre 2019

Indicaciones Generales:

Fecha de Entrega: 25 de mayo, 2019.

Problema 1.

- 1. Considere \mathbb{R}^{2n} con base $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$. Muestre que la 2-forma ω que satisface $\omega(e_i, e_j) = 0$, $\omega(f_i, f_j) = 0$ y $\omega(e_i, f_j) = \delta_{ij}$ define una estructura simpléctica en \mathbb{R}^{2n} .
- 2. Sea V un espacio vecrtorial real de dimensión finita y V^* se respectivo espacio dual. Considere el espacio $V \oplus V^*$ y el mapa $\omega : E \to \mathbb{R}$ definido vía $\omega((v,\alpha),(v',\alpha')) = \alpha'(v) \alpha(v')$. Muestre que (E,ω) es un espacio vectorial simpléctico.
- 3. Sea $E = \mathbb{C}^n$ y $h : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ un producto hermitiano *complejo* positivo. Muestre que E visto como espacio vectorial real \mathbb{R}^{2n} y con forma bilineal $\omega = Im(h)$ es un espacio vectorial simpléctico.
- 4. Muestre de manera explícita que estos tres espacios son simplectomórficos.

Problema 2. Sea (E,ω) un espacio vectorial simpléctico. Sea el subespacio $F\subseteq E$ y considere

$$F^{\omega}=\{v\in E: \omega(v,w)=0 \text{ para todo } w\in F\}.$$

Se dice que F es isotrópico si $F\subseteq F^\omega$ y co-isotrópico si $F^\omega\subseteq F$. Si $F^\omega=F$ se dice que F es un subespacio lagrangiano de E

- 1. Muestre que ω es no-degenerado si y solo si el mapa $\omega^b: E \to E^*$ definido por $\omega^b(v): E \to \mathbb{R}$ con $\omega^b(v)(w) = \omega(v, w)$ es un isomorfismo.
- 2. Muestre que dim $F^{\omega} = \dim E \dim F$.
- 3. Muestre que $(F^{\omega})^{\omega} = F$
- 4. Muestre que para cualquier espacio vectorial simpléctico (E, ω) , existe un subespacio lagrangiano $L \subset E$.

Problema 3. Considere (E, ω) un espacio vectorial simpléctico. Sea $F \subseteq E$ un subespacio vectorial de E.

- 1. Muestre que $\ker(\omega|_F) = F \cap F^{\omega}$.
- 2. Considere el siguiente espacio "simpléctico" $E_F = F/(F \cap F^{\omega})$. A partir de ω defina una 2-forma en E_F que haga de E_F una espacio cociente simpléctico.

Problema 4. Considere M una variedad diferencial con fibrado contangente T^*M Sea $\theta \in \Omega^1(TM^*)$ la 1-forma tautológica de T^*M . Muestre que θ es la única 1-forma en T^*M tal que para todo $\alpha \in \Omega^1(M)$ se tiene que $\alpha^*\theta = \alpha$.

Problema 5. Sean M una variedad diferencial y $\alpha \in \Omega^1(M)$. Considere la aplicación G_α : $T^*M \to T^*M$ definida por $G_\alpha(\beta) = \beta + \alpha$.

1. Considere $\theta \in \Omega^1(T^*M)$ la 1-forma tautológica y $\pi: T^*M \to M$ la proyección del fibrado a su espacio base. Muestre que para todo 1-forma $\alpha \in \Omega^1(M)$,

$$G_{\alpha}^*\theta - \theta = \pi^*\alpha.$$

2. Muestre que G_{α} es un simplectomorfismo si y solo si $d\alpha = 0$.

Problema 6. Sea (M, ω) una variedad simpléctica de dimensión 2n + 2. Sea X un campo vectorial de Liouville, *i.e.*, tal que $\mathcal{L}_X \omega = \omega$.

- 1. Muestre que la 1-forma $\alpha=\iota_X\omega$ define una forma de contacto en cualquier hipersuperficie N de M que sea transversa a X.
- 2. Considere $M = \mathbb{R}^{2n+2}$ y considere la forma simpléctica estándar sobre M. Considere el campo vectorial $X = \frac{1}{2} \left(\sum_j x_j \partial_{x_j} + y_j \partial_{y_j} \right)$. Exhiba la estructura de contacto sobre la correspondiente hipersuperficie transversa a X, ¿es esta la esfera S^{2n+1} con su estructura de contacto estándar?

Problema 6. Sea (M, η) una variedad de contacto y sea $\pi : M \times \mathbb{R} \to M$ la proyección sobre M. Entonces $M \times \mathbb{R}$, $d(e^t \pi^* \alpha)$. donde t denota la coordenada en \mathbb{R} , es una variedad simpléctica.

San Miguel, 4 de mayo, 2019.