X, Y insiemi, una Relazione tra X e Y è un sottoinsieme R=XxY del prodotto cartesiano

**es**:

1) 
$$R = X \times Y$$
  
2)  $R = \emptyset$   
 $X = \{1, 2, 3\}$   $Y = \{0, b, c, d, e, f\}$   
 $Y = \{1, a\}, (1, a), (2, e), (3, a)\}$  non è una funzione  
 $Y = \{1, a\}, (2, c), (3, a)\}$  è una funzione  
 $Y = \{1, a\}, (2, d)\}$  non è una funzione

def: X, Y insiemi, una Amzione (applicazione o mappa) da X a Y

è una relatione PEXXY tale che ∀XEX ∃! YEY tale che (X,y)∈ g

X do minio di ?

 $(x,y) \in f$  si scrive y = f(x)  $f : x \rightarrow y$ 

PS: 
$$R \times = \{1\}$$
  $Y = \{2\}$   
 $f \in X_{\times} Y$   $f = \{1, 2\}$   
functions  $f(1) = 2$   $f \times \rightarrow Y$ 

def: 
$$f \times \Rightarrow y$$
 functione  
 $A \subseteq X$   $f(A) = \{ y \in y | \exists x \in A, y = f(x) \}$  immagine of  $A$   
 $= \{ g(x) | x \in A \} \subseteq y$  mediante  $g(A) \in B$   
 $g(A) = \{ g(x) | x \in A \} \subseteq y$  controlling of  $g(A) \in B$   
 $g(A) = \{ g(A) | x \in A \} \subseteq y$  mediante  $g(A) \in B$ 

 $x = \{1,2,3\}, y = \{a,b,c,d,e,f\}$   $y: x \to y$  y(1) = c y(2) = c y(3) = 0 $A = \{ \lambda \} \quad Y(A) = \{ c \}$   $B = \{ \lambda, 2 \} \quad Y(B) = \{ c \} \quad Y(X) = \{ c, \alpha \}$   $C = \{ \alpha, e \} \quad Y^{-1}(C) = \{ s \}$   $D = \{ c \} \quad Y^{-1}(D) = \{ \lambda, 2 \}$   $E = \{ d, e, f \} \quad Y^{-1}(E) = \emptyset$ 

{X→Y X, Y insiemi





def: { X -> y functione,

- 1) P è iniettiva se soddisfa la seguente condizione:  $\forall x_1, x_2 \in X$  se  $f(x_1) = f(x_2)$  allora  $x_1 = x_2$ (equivalence mente  $\times_{\Lambda} + \times_{2} \rightarrow f(\times_{\Lambda}) = f(\times_{2})$ )
- 2) fe' surgettiva (suriettiva) se f(x)=y (equivalentemente tyey = x=x f(x)=y)
- 3) { è bigettiva (corrispondenta biunivoca, bigezione) se è iniettiva e suriettiva

es: X={1,2,3} Y={a,b,c,d}

λ × →λ trusione

 $A \mapsto \alpha$ 

2 → b

(x) = 0 (x) = 0  $(x) = \{a, b, d\} \in Y$ 

 $3 \mapsto d$ 

Miettiva

2) n y→x funtione

 $a \mapsto 1$ 

a → 1
b → 1
ma n(a) = n(b)

C → 2
Surietiva? si n(y)=x

 $d \rightarrow 3$ 

3) & N > N funtione

 $\times \mapsto \times^2$ 

iniettiva? si numeri naturali diversi hanno quadrati diversi Surjettive, no 3EN, 3 & S(N)

4) 9 Z -> N Funzione

iniettiva no 1,-1EZ, g(-1)=g(1)

surjettiva?no 3€g(Z)

5) h R > R Punzione? no

XINIX

· h. R70→R70 Funzione?si

XINX

iniettiva? si sariettiva? si bigettiva

def: X insieme, Idx: X >> X

def: X insieme, Idx X >X funzione identità

· f: X → y si dice costante se fW=y0 per un qualche y0 € y fissato

(x) = 2 (x) = 2 (x) = 2 (x) = 2 (x) = 2

2) A⊆X {: X → Y funtione  $g|_A: A \rightarrow y g|_A(x) = f(x) \forall x \in A$ of ristretta ad A

3)  $g: \mathbb{Z} \to \mathbb{N}$   $g(x) = x^2$   $f: \mathbb{N} \to \mathbb{N}$   $f(x) = X^2$ 91N = P

4) Funtione parte intera

[]:R>Z

[X] è il più grande intero ≤ X

[2]=2[2,3]=2[2,9]=2[1/2]=0[-1/2]=-1

[] non è iniettiva

[] è suviettiva

YXEZ 3XER tale che [x]=y

S(e)  $0 \times = y \quad [x] = x$ 

[]|2 Z=Z=X è la funtione identità Idz

def:  $g \times \rightarrow y$ ,  $g \cdot y \rightarrow z$  functions

la composizione o funcione composta di  $f \in g$  è  $g \cdot f : X \rightarrow z$ tale che  $(g \circ f)(x) = g(f(x)) \forall x \in X$ 



OSS: la composizione è associativa

f: X→y g: y→Z h→Z→W

- la funzione identità è neutra vispetto alla composizione  $f:X\to X$   $f\circ Id_X = f$ Idy  $\circ f = f$ Ia composizione di funzioni non è commutativa  $f\cdot X\to Y$   $g:Y\to Z$   $g\circ f\cdot X\to Z$ 

la composizione di funtioni non è commutativa  $f: X \rightarrow Y$   $g: Y \rightarrow Z$   $g \circ f: X \rightarrow Z$   $f \circ g$  non ha senso  $y \in Y$   $g(y) \in Z$ ma f si applica solo agli elementi di Xanche se Z=X in generale gof + p.g

$$\begin{cases} f, g : \mathbb{R} \to \mathbb{R} & X = y = z = \mathbb{R} \\ f(x) = x^2 & g(x) = -x \\ (g \circ f) \mathbb{R} \to \mathbb{R} & (g \circ f)(x) = g(f(x)) = g(x^2) = -x^2 \\ (f \circ g) \mathbb{R} \to \mathbb{R} & (f \circ g)(x) = f(g(x)) = f(-x) = x^2 \\ (f \circ g)(2) = 2^2 = 4 \\ (g \circ f)(2) = -2^2 = -4 \end{cases}$$

 $X = \{1,2,3\}$   $Y = \{a_1b,c,d\}$ Y X → Y (1)=a Y(2)=b Y(3)=d η y > x η(a)=1 η(b)=1 η(c)=2 η(d)=3



 $\eta \circ \gamma : X \to X$   $(\eta \circ \gamma)(1) = (\eta \cdot \gamma)(2) = 1$ (n.y)(3)=3

iniettiva? no

Suriettiva > NO

4.1 Y->Y



(4.7)(a)=(p.n)(b)= a (P.n)(c)=b (Poy)(d)=d

>prop: 8: X -> Y, 9: Y -> Z functioni allora

- 1) f, g injettive -> g of injettiva
- 2) f, g surjettive > g · g surjettiva
- 3) f,9 bigettive -> gof bigettiva

dim:

1) ipotesi:

f iniethiva ×1,×2∈X f(x1)=f(x2)→X1=X2

ipotesi: f iniettiva ×1,×1∈× f(x1)=f(x1)→x1=x2 g iniettiva  $y_1, y_2 \in \mathcal{Y}$   $g(y_1) = g(x_2) \rightarrow y_1 = y_2$ gof iniethiva  $X_1, X_2 \in X$  (gof)( $X_1$ )=(gof)( $X_2$ )  $\rightarrow X_1 = X_2$ per dimostrare in test prendo  $X_1, X_2 \in X$  tall the (gof)( $X_1$ )=(gof)( $X_2$ ) 9(f(x1))=9(f(x2)) q injettiva &(x1) q injettiva X1=X2 2) ipotesi: of surjettive tyey =xex g(x)=y g surrettiva tzEZ 3xEY g(y)=Z 5=(x)(f-e) X = x = 5354 avittairuz 9.p per dimostrare la tesi prendo ZEZ, cerco XEX tale che g(g(x))=z

$$\Rightarrow g \text{ Surjettiva } \exists y \in Y \text{ tale che } g(y) = 2$$

$$\Rightarrow g \text{ Surjettiva } \exists x \in X \text{ tale che } g(x) = y$$

$$(g \cdot f)(x) = g(f(x)) = g(y) = 2$$

f, g bigettive  $\longrightarrow g, f$  injettive  $\stackrel{4}{\longrightarrow} g \circ f$  injettiva f, g bigettive  $\longrightarrow g, f$  surgettive  $\stackrel{4}{\longrightarrow} g \circ f$  surgettiva gof bigettiva

prop: g: x > y, g: y > Z funtioni

- 1) g-f injettiva → f injettiva
- 2) g · p suriettiva → g suriettiva
- 3) g.g bigettiva -> g iniettiva, g suviettiva

dim: ipotesi:  $(g \circ f)(x_1) = (g \circ f)(x_2) \rightarrow x_1 = x_2$   $x_1, x_2 \in X$ 

 $+esi: X_1, X_2 \in X \quad f(x_1) = f(x_2) \rightarrow X_1 = X_2$ Siano X1, X2 EX tali che g(x1) = g(x2) g(x1), f(x2) € y  $g(f(x_1)) = g(f(x_2)) \rightarrow g \cdot f \rightarrow x_1 = x_2$ iniettiva



2) ipotesi: Yzez Jxex (g-f/x)=z tesi 42EZ JyEY g(y)=Z

test test g(y)=2

90 Suriettiva → 9 suriettiva



Sia  $t \in \mathcal{T} \longrightarrow \exists x \in X (g \circ f)(x) = \mathcal{T}$  g(g(x))  $y \in Y$ Scelgo come y = f(x) vale  $g(y) = \mathcal{T}$ 

## -> FUNTIONE INVERSA

def:

|  $f \times \rightarrow f$  functione |
| invertibile a sinistra se  $\exists g / \rightarrow f$  tale the  $g \circ f = I d_{f}$ 

2) finvertibile a destra se = Ih >> X tale the f.g=Idy h inversa destra di g

3) & invertibile se It y > x tale the fot = Idy
t l'inversa di f e si denota f - 1

055: se l'inversa esiste è l'unica Siano t, t2 Y -> X inverse di 8 t<sub>1</sub> = t<sub>1</sub> • Idy = (g • t<sub>2</sub>) = (t<sub>1</sub> • g) • t<sub>2</sub> = Idx • t<sub>2</sub> = t<sub>2</sub> t<sub>2</sub> è inversa dx di f t<sub>1</sub> è inversa sx di g

 $X = \{1,2,3\}, Y = \{a,b,c,d\}$   $Y: X \to Y \quad Y(1) = a \quad Y(2) = b \quad Y(3) = d$ 



$$Y_1(a) = Y_2(a) = 1$$
  
 $Y_1(b) = Y_2(b) = 2$   
 $Y_1(d) = Y_2(d) = 3$ 

Y, 1/2 sono inverse sx di &



## c non torna in y

P non ha inverse dx

 $\eta: X \to Y \quad \eta(a) = 1 \quad \eta(b) = 1 \quad \eta(c) = 2 \quad \eta(a) = 3$ 



MaIM2:X>Y  $M_1(1)=0$   $M_2(1)=0$   $M_1(2)=M_2(2)=c$   $M_1(3)=M_2(3)=d$   $M_1, M_2$  sono inverse dx di  $\eta$ noM,=noMe=Idx



y non ha inverse SX

è iniettiva ↔ p è invertibile a sx

dim: ">" ipotesi f iniettiva  $\xi(x_1) = \xi(x_2) \rightarrow x_1 = x_2$ 

INVERSO SX

costruiano un'inversa SX 9: Y->X tale che 9.1 = Idx



Se  $y \in P(x) \rightarrow \exists ! x \in X$  tale the P(x) = y olefinisco Q(y) = x scel $Q \circ x_0 \in X$  se  $y \in Y \mid P(x)$  olefinisco  $Q(y) = x_0$  dim:  $y \in Y = X$  tale the  $y \in Y = X$  propertive Y = X injective Y = X injective Y = X allows Y = X = X invertibile Y = X tale the Y = X invertibile Y = X tale the Y = X surjective Y = X s

## -> ASSIOMA DELLA SCELTA

Sia { A; } i ∈ I famiglia di insiemi non vuoti, I ≠ Ø. Allora ∃y I → UA; tale che Y(i) ∈ A; ∀i ∈ I

-funzione di Scelta

f surgettive ipotesi  $f: X \rightarrow Y$   $\rightarrow \forall y \in Y \exists x \in X \text{ tale che } f(x) = y \text{ cioe } f^{-1}(y) \neq \emptyset \text{ (perche } x \in f^{-1}(y))$  $\begin{cases} x \in X \mid f(x) = y \end{cases} \subseteq X$ 

prendo  $I = Y \neq \emptyset$  assioma  $Ay = f^{-1}(y) \neq \emptyset$   $\Rightarrow \exists y : Y \Rightarrow V$   $\Rightarrow \forall Ay \text{ tale the } Y(y) \in Ay$ 

 $y \in \text{inversa dx dif}$   $y \in \text{Y dy} = y \in \text{Y}^{-1}(y) = X$   $y(y) \in \text{Ay} = \int_{-1}^{-1} (y) f(y) = y f(y) = y$  f(y(y)) = y f(y) = y f(y(y)) = y f(y) = y

teorema:

 $f: \times \rightarrow \times$  $f \in \text{bigettiva} \longleftrightarrow f \in \text{invertibile}$