Gravitační pole - Teoretický přehled

Fyzika - opakování a prohloubení

1 Newtonův gravitační zákon

1.1 Zákon univerzální gravitace

Rovnice:

$$F_g = \kappa \frac{m_1 m_2}{r^2}$$

Popis veličin:

Veličina	Popis	Jednotka
$\overline{F_g}$	Gravitační síla	N (newton)
κ	Gravitační konstanta	$N \cdot m^2 \cdot kg^2$
m_1, m_2	Hmotnosti těles	kg (kilogram)
r	Vzdálenost středů těles	m (metr)

Hodnota gravitační konstanty:

$$\kappa = 6.674 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$$

Důležité vlastnosti:

- Gravitační síla je vždy **přitažlivá**
- Síla klesá s druhou mocninou vzdálenosti
- Síla působí podél spojnice středů těles
- Gravitace je univerzální působí mezi všemi tělesy s hmotností

2 Gravitační pole

2.1 Intenzita gravitačního pole

Rovnice:

$$K = \frac{F_g}{m} = \kappa \frac{M}{r^2}$$

Popis veličin:

Veličina	Popis	Jednotka
\overline{K}	Intenzita gravitačního pole	N/kg nebo m/s^2
F_g	Gravitační síla	N
m	Hmotnost zkušebního tělesa	kg
M	Hmotnost tělesa vytvářejícího pole	kg
r	Vzdálenost od středu pole	m

Fyzikální význam:

- Intenzita pole udává sílu na jednotku hmotnosti
- Číselně rovna **gravitačnímu zrychlení** v daném místě
- Nezávisí na hmotnosti zkušebního tělesa

2.2 Gravitační zrychlení

Rovnice:

$$a_g = K = \kappa \frac{M}{r^2}$$

Na povrchu Země:

$$g = \kappa \frac{M_Z}{R_Z^2} \approx 9.81~\text{m/s}^2$$

Popis veličin:

Veličina	Popis	Jednotka
a_g	Gravitační zrychlení	m/s^2
g	Tíhové zrychlení na Zemi	$\mathrm{m/s^2}$
M_Z	Hmotnost Země	kg
R_Z	Poloměr Země	m

3 Gravitační potenciál

Rovnice:

$$\varphi = -\kappa \frac{M}{r}$$

Popis veličin:

Veličina	Popis	Jednotka
$egin{array}{c} arphi \ M \ r \end{array}$	Gravitační potenciál Hmotnost tělesa Vzdálenost od středu	J/kg kg m

Fyzikální význam:

- Potenciál je **záporný** (gravitace je přitažlivá síla)
- Udává **práci na jednotku hmotnosti** potřebnou k přenesení tělesa z daného místa do nekonečna
- Souvisí s potenciální energií: $E_p = m \varphi$

4 Kosmické rychlosti

4.1 Kruhová rychlost (1. kosmická rychlost)

Rovnice:

$$v_k = \sqrt{\kappa \frac{M}{r}}$$

Pro nízké oběžné dráhy kolem Země:

$$v_k \approx 7.9 \text{ km/s}$$

Popis veličin:

Veličina	Popis	Jednotka
$v_k \ M \ r$	Kruhová rychlost Hmotnost centrálního tělesa Poloměr oběžné dráhy	m/s kg m

Fyzikální význam:

- Rychlost potřebná pro **kruhovou oběžnou dráhu**
- Dostředivá síla se rovná gravitační síle
- Pro nízké dráhy kolem Země: $v_k \approx 7.9~\mathrm{km/s}$

4.2 Úniková rychlost (2. kosmická rychlost)

Rovnice:

$$v_u = \sqrt{2\kappa \frac{M}{r}} = v_k \sqrt{2}$$

Z povrchu Země:

$$v_u \approx 11.2 \text{ km/s}$$

Popis veličin:

Veličina	Popis	Jednotka
$v_u \ M \ r$	Úniková rychlost Hmotnost tělesa Vzdálenost od středu tělesa	m/s kg m

Fyzikální význam:

- Minimální rychlost k opuštění gravitačního pole
- Kinetická energie se rovná potenciální energii
- Úniková rychlost je $\sqrt{2}$ -krát větší než kruhová rychlost

4.3 Další kosmické rychlosti

3. kosmická rychlost (únik ze Sluneční soustavy):

$$v_3 \approx 16.7 \text{ km/s}$$

4

4.	kosmická	rychlost	únik z	Galaxie)):
----	----------	----------	--------	----------	----

 $v_4 \approx 525 \text{ km/s}$

5 Keplerovy zákony

5.1 1. Keplerův zákon (zákon elips)

Formulace:

Planety se pohybují po elipsách, v jejichž jednom ohnisku je Slunce.

Matematický popis:

- \bullet Dráha planety je elipsa s hlavní poloosou aa vedlejší poloosou b
- Slunce je v jednom z ohnisek elipsy
- Vzdálenost mezi ohnisky: 2c, kde $c = \sqrt{a^2 b^2}$

5.2 2. Keplerův zákon (zákon ploch)

Formulace:

Plocha opsaná **průvodičem** planety je za stejný čas **stejná**.

Fyzikální důsledek:

- Planeta se pohybuje **rychleji**, když je blíže Slunci (v **perihelu**)
- Planeta se pohybuje **pomaleji**, když je dále od Slunce (v **afelu**)
- Zachování momentu hybnosti

5.3 3. Keplerův zákon (harmonický zákon)

Rovnice:

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$$

nebo pro jednu planetu:

$$T^2 = \frac{4\pi^2}{GM}a^3$$

Popis veličin:

Veličina	Popis	Jednotka
\overline{T}	Oběžná doba planety	s (sekunda)
a	Hlavní poloosa dráhy	m
G	Gravitační konstanta (κ)	$N \cdot m^2 \cdot kg^2$
M	Hmotnost centrálního tělesa	kg

Fyzikální význam:

- Druhá mocnina oběžné doby je úměrná třetí mocnině hlavní poloosy
- Platí pro všechna tělesa obíhající kolem stejného centrálního tělesa

6 Fyzikální konstanty

Konstanta	Symbol	Hodnota	Jednotka
Gravitační konstanta	κ nebo G	$6,674 \times 10^{-11}$	N·m²·kg²
Hmotnost Země	M_Z	$5,\!972\times10^{24}$	kg
Poloměr Země	R_Z	$6,\!371 \times 10^6$	m
Hmotnost Slunce	M_S	$1,989 \times 10^{30}$	kg
Hmotnost Měsíce	M_{M}	$7,342 \times 10^{22}$	kg
Vzdálenost Země-Měsíc	r_{ZM}	$3,844 \times 10^{8}$	m
Tíhové zrychlení na Zemi	g	9,81	$\mathrm{m/s^2}$

7 Užitečné vztahy a vzorce

7.1 Energie v gravitačním poli

Potenciální energie:

$$E_p = -\kappa \frac{Mm}{r}$$

Kinetická energie kruhové oběžné dráhy:

$$E_k = \frac{1}{2}mv_k^2 = \kappa \frac{Mm}{2r}$$

Celková mechanická energie:

$$E = E_k + E_p = -\kappa \frac{Mm}{2r}$$

7.2 Vztah mezi zrychlením a výškou

Gravitační zrychlení ve výšce h nad povrchem:

$$g_h = g \frac{R^2}{(R+h)^2}$$

kde:

- $\bullet \;\; g$ je tíhové zrychlení na povrchu
- $\bullet \;\; R$ je poloměr tělesa
- $\bullet \ h$ je výška nad povrchem

7.3 Podmínky pro oběžné dráhy

Kruhová dráha:

$$F_g = F_{ds} \quad \Rightarrow \quad \kappa \frac{Mm}{r^2} = m \frac{v^2}{r}$$

Eliptická dráha:

$$v_k < v < v_u$$

Únik z gravitačního pole:

$$v \ge v_u$$

8 Souhrn jednotek v SI

Veličina	Jednotka SI	Další jednotky
Síla	N (newton)	$kg \cdot m/s^2$
Hmotnost	kg (kilogram)	-
Vzdálenost	m (metr)	$\mathrm{km}=10^3\;\mathrm{m}$
Rychlost	m/s	${ m km/s,\ km/h}$
Zrychlení	$\mathrm{m/s^2}$	-
Energie	J (joule)	$N \cdot m, kg \cdot m^2/s^2$
Potenciál	$\mathrm{J/kg}$	$\mathrm{m^2/s^2}$
Intenzita pole	N/kg	$\mathrm{m/s^2}$
Čas	s (sekunda)	h (hodina), den, rok

Poznámky

- Všechny vzorce předpokládají **bodové hmotnosti** nebo **kulově symetrická tělesa**
- \bullet Vzdálenostrse měří od středu těles
- \bullet V reálných situacích může být třeba zohlednit ${\bf atmosf\acute{e}ru}$ a ${\bf odpor}$ vzduchu
- Pro velmi přesné výpočty je nutné použít **relativistickou mechaniku**