Protokoll:OH-Rotationsspektroskopie

Alexander Jankowski, Philipp Hacker

23. November 2015

Betreuer: Versuchsdatum: 11.11.2015 Note:

Inhaltsverzeichnis

1	Motivation	2
2	Physikalische Grundlagen	3
3	Durchführung	4
4	Auswertung4.1 Simulierte Spektren4.2 Reale Spektren4.3 Fehlerrechnung	5
5		9

1 Motivation

2 Physikalische Grundlagen

3 Durchführung

Abb. 1: Betrag der Differenz aus gemessenem Spektrum und Dunkelstrom-Intensität $|I - I_0|$. Gezeigt sind Verläufe vom 25.05. und 19.03.2015.

Peaknummer	$\lambda/10^3$ nm, aus [1]	$\lambda/10^3$ nm, A	$\lambda/10^3$ nm, B
$P_1(2)$	1,524	1,526	1,525
$P_1(3)$	1,533	1,535	1,534
$P_{1}(4)$	1,543	1,545	1,544

Tab. 1: Wellenlängen der Peaks $P_1(2-4)$ im Vergleich zum Literaturwert aus [1]. Außerdem Gegenüberstellung der Werte aus den Intensitäten zum Spektrum A und B.

4 Auswertung

4.1 Simulierte Spektren

4.2 Reale Spektren

$$y_{i}^{(s)} = \frac{y_{i-3} + y_{i-2} + y_{i-1} + y_{i} + y_{i+1} + y_{i+2} + y_{i+3}}{7}$$
(1)

wobei:
$$y_1^{(s)} = \frac{y_1 + y_2 + y_3 + y_4}{4}$$
 usw. (2)

$$y_{i}^{(s)} = \frac{y_{i-3} + y_{i-2} + y_{i-1} + y_{i} + y_{i+1} + y_{i+2} + y_{i+3}}{7}$$
wobei: $y_{1}^{(s)} = \frac{y_{1} + y_{2} + y_{3} + y_{4}}{4}$ usw. (2)
und $y_{N}^{(s)} = \frac{y_{N-3} + y_{N-2} + y_{N-1} + y_{N}}{4}$ (3)

$$y_{i} = \frac{||I_{i} - I_{0,i}||}{\sup\{||I_{i} - I_{0,i}||\}_{i=0}^{N}}$$
(4)

Abb. 2: Gleiche Daten wie in Abbildung 1 (Spektrum A, Spektrum B). Hier mit Hilfe einer polynomischen Glättung, maximal der Ordnung 7 verbessert. Der Zusammenhang kommt auf Gleichung 1

Peaknummer	$ I - I_0 /10^2$, zu A	$\mid I-I_0 /10^2$, zu B
$P_1(2)$	2,993	1,995
$P_1(3)$	2,873	1,945
$P_{1}(4)$	2,223	1,615

Tab. 2: Höhen der Peaks $P_1(2-4)$ an den Positionen aus Tabelle 1. Gegenüberstellung von Spektrum A und B. Diese Werte sind für die Auswertung mit der linearen Regression aus ?? wichtig.

Abb. 3: Lineare Regression über die Rotationsenergie und Daten aus Tabelle 2.

Einsteinkoeffizienten, aus [1]	$T_{\rm rot}/{ m K}$, zu A	$T_{ m rot}/{ m K}$, zu B
Mies (1947)	347,98	241,75
Turnbull u. Lowe (1989)	342,44	239,06
Langhoff (1986)	1120,1	463,93

Tab. 3: Rotationstemperaturen nach ??. Die Fehler nach Gauß sind in Gleichung 7 angegeben. Für die Intensität wurde das Dunkelstromkorrigierte Spektrum $|I-I_0|$ benutzt.

 $\textbf{Abb. 4:} \ \textbf{Differenz aus Spektrum A und B.} \ \textbf{Ebenso wie Abbildung 2} \ \ddot{\textbf{uber Polynome gegl\"{a}ttet}}.$

4.3 Fehlerrechnung

$$T_{\text{rot}}(I,\nu,i,J) \propto -\frac{hcF(J,\nu,i)}{k_{\text{B}}} \ln \left(\frac{I(\nu,i,J \leftarrow \nu\prime,i\prime,J\prime)}{2(2J+1)A(\nu,i,J \rightarrow \nu\prime,i\prime,J\prime)} \right)^{-1}$$
(5)
$$\Delta T_{\text{rot}} \approx \sqrt{\left(\frac{dT_{\text{rot}}}{dI_{\nu,i,J}}\right)^{2} \cdot (\Delta I_{\nu,i,J})^{2}}$$
(6)

$$\Delta T_{\rm rot} \approx \sqrt{\left(\frac{\mathrm{d}T_{\rm rot}}{\mathrm{d}I_{\nu,i,J}}\right)^2 \cdot (\Delta I_{\nu,i,J})^2}$$
 (6)

nach Mies:
$$T_{\text{rot,A}} = (347,98 \pm 0,0424(11)) \,\text{K}$$
 (7)

$$T_{\text{rot,B}} = (241.75 \pm 0.223(22)) \,\text{K}$$
 (8)

nach Mies:
$$T_{\text{rot,true}}^{(A)} \in [347,67(03)\text{K},348,29(02)\text{K}]$$
 (9)

$$T_{\text{rot,true}}^{(B)} \in [241,57(63)\text{K},241,92(90)\text{K}]$$
 (10)

5 Anhang

Literatur

[1] Praktikumsanleitung Praktikum für Fortgeschrittene. Versuch 05: Ohrotationsspektroskopie. Ernst-Moritz-Arndt-Universität Greifswald, Institut für Physik. 5, 7