(7) Norm squared: $f(x) = \frac{1}{2} \|x\|^2$ for any norm $\| \|$ on \mathbb{R}^n , with $dom(f) = \mathbb{R}^n$. Since $\|y^\top x\| \leq \|x\| \|y\|^D$, we have

$$y^{\top}x - (1/2) \|x\|^2 \le \|y\|^D \|x\| - (1/2) \|x\|^2$$
.

The right-hand side is a quadratic function of ||x|| which achieves its maximum at $||x|| = ||y||^D$, with maximum value $(1/2)(||y||^D)^2$. Therefore

$$y^{\top}x - (1/2) \|x\|^2 \le (1/2) (\|y\|^D)^2$$

for all x, which shows that

$$f^*(y) \le (1/2) (\|y\|^D)^2$$
.

By definition of the dual norm and because the unit sphere is compact, for any $y \in \mathbb{R}^n$, there is some $x \in \mathbb{R}^n$ such that ||x|| = 1 and $y^\top x = ||y||^D$, so multiplying both sides by $||y||^D$ we obtain

$$y^{\top} \|y\|^D x = (\|y\|^D)^2$$

and for $z = \|y\|^D x$, since $\|x\| = 1$ we have $\|z\| = \|y\|^D \|x\| = \|y\|^D$, so we get

$$y^{\mathsf{T}}z - (1/2)(\|z\|)^2 = (\|y\|^D)^2 - (1/2)(\|y\|^D)^2 = (1/2)(\|y\|^D)^2,$$

which shows that the upper bound $(1/2)(\|y\|^D)^2$ is achieved. Therefore,

$$f^*(y) = \frac{1}{2} (\|y\|^D)^2,$$

and dom $(f^*) = \mathbb{R}^n$.

(8) Log-sum-exp function: $f(x) = \log \left(\sum_{i=1}^n e^{x_i} \right)$, where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. To determine the values of $y \in \mathbb{R}^n$ for which the maximum of $g(x) = y^{\top}x - f(x)$ over $x \in \mathbb{R}^n$ is attained, we compute its gradient and we find

$$\nabla f_x = \begin{pmatrix} y_1 - \frac{e^{x_1}}{\sum_{i=1}^n e^{x_i}} \\ \vdots \\ y_n - \frac{e^{x_n}}{\sum_{i=1}^n e^{x_i}} \end{pmatrix}.$$

Therefore, (y_1, \ldots, y_n) must satisfy the system of equations

$$y_j = \frac{e^{x_j}}{\sum_{i=1}^n e^{x_i}}, \quad j = 1, \dots, n.$$
 (*)