UFSJ Universidade Federal de São João del-Rei

LE3 - Lista de Exercícios 3

Disciplina: Análise de Sistemas Elétricos de Potência II – 2024.1

Prof.: Fernando Assis **Curso:** Engenharia Elétrica

1. Determine a solução ótima dos seguintes problemas de otimização:

a)
$$Min f(x_A, x_B) = -x_A - x_B$$

 $s. a.: 2x_A + 4x_B \le 20$
 $180x_A + 20x_B \le 600$
 $x_A, x_B \ge 0$

b)
$$Max f(x_1, x_2) = 4x_1 + 3x_2$$

 $s. a.: x_1 + x_2 = 3,5$
 $x_1 + 3x_2 \le 7$
 $2x_1 + 2x_2 \le 8$
 $x_1 \le 2$
 $x_2 \le 5$
 $x_1, x_2 \ge 0$

c)
$$Min f(x_1, x_2) = 4x_1^2 + 5x_2^2$$

 $s. a.: 2x_1 + 4x_2 = 7$
 $2x_1 + x_2 \le 2.5$

- 2. Considere que estão à disposição para alimentação animal dois tipos de produto: X e Y. Sabe-se que 1 kg de X custa R\$1,20 e fornece 300 calorias e 28 unidades de gordura. Sabe-se também que 1 kg de Y custa R\$1,15 e fornece 200 calorias e 10 unidades de gordura. Pretende-se gastar o mínimo valor possível em um dia para alimentar um animal sabendo que a sua necessidade diária é de pelo menos 350 calorias e não mais que 32 unidades de gordura. Determine:
 - a) as variáveis de decisão para o problema de otimização.
 - b) o modelo de Programação Linear resultante.
 - c) a solução ótima para o problema?
 - d) o custo total da dieta, em R\$, para a solução ótima do problema.
- 3. Uma empresa do ramo de café produz misturas que são vendidas no mercado utilizando grãos provenientes de três diferentes estados do Brasil: Minas Gerais, São Paulo e Bahia. Considere que os grãos de cada região possuem aroma e intensidade diferentes, sendo estas características classificadas em porcentagem. Considere ainda que esta empresa produz misturas com aromas e intensidade de, pelo menos, 62% e 14%, respectivamente. Sabendo que os grãos de cada estado apresentam as características apresentadas na Tabela 1, que também indica o custo e as quantidades disponíveis de cada grão no estoque a ser utilizado, busca-se otimizar a composição ótima da mistura, considerando maximizar o lucro da empresa, para produzir 4000 kg.

Considerando este problema, pede-se:

- a) defina as variáveis de decisão para o problema de otimização.
- b) formule um modelo de Programação Linear resultante.
- c) determine a solução ótima para o problema?
- d) qual o nível de aroma e de intensidade da mistura obtida?
- e) após a produção, sobraram grãos de algum estado no estoque?

Tabela 1 – Informações para Questão 3.

Origem do	Características (%)		Custo	Quantidade
Grão	Aroma	Intensidade	(\$/kg) Dis	Disponível (kg)
Minas Gerais	55	15	6,0	1500
São Paulo	60	40	3,5	1600
Bahia	75	18	5,0	1800

4. Considere que um produtor independente possui quatros unidades geradoras (UG1, UG2, UG3 e UG4) localizadas em uma determinada barra de um sistema elétrico. Para UGs, são conhecidas as capacidades mínima e máxima de produção, em MW, e os custos de produção, em \$/MW, conforme Tabela 2.

Tabela 2 – Informações para Questão 4.

UG	Capacida	Custo de	
UG	Mínima	Máxima	produção (\$/MW)
1	140	300	50
2	200	450	60
3	250	600	30
4	60	250	45

Deseja-se definir neste sistema, ao menor custo de produção possível, o despacho dessas quatro UGs para o atendimento da carga em duas semanas diferentes. Sabe-se que as cargas a serem atendidas em cada semana são, respectivamente, iguais a 850 MW e 750 MW. Além disso, por questões de segurança operativa, uma reserva mínima de geração igual a 20% da carga deve ser despachada em cada semana (considere o custo da reserva igual ao custo de produção). Determine:

- a) as variáveis de decisão para o problema de otimização.
- b) o modelo de Programação Linear resultante.
- c) a solução ótima para o problema?
- d) o custo total de produção, em \$, para o atendimento da carga em cada semana.