Importância do Vetor Gradiente

Priscila Bemm

UEM

Objetivo

• Responder as perguntas: em qual direção uma função de duas ou três variáveis varia mais rapidamente? Qual a taxa máxima de variação?

Objetivo

• Responder as perguntas: em qual direção uma função de duas ou três variáveis varia mais rapidamente? Qual a taxa máxima de variação?

Bibliografia

- Cálculo III e IV, Marcos Henrique Santos Martins, Rosimary Pereira. Florianópolis: UFSC/EAD/CED/CFM, 2010.
- Cálculo Volume 2, **James Stewart**; tradução EZ2 Translate, 7^a edição. São Paulo: Cengage Learning, 2013.

Definição

Se f é uma função de duas variáveis x e y, então o gradiente de f é a função vetorial ∇f definida por

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j}.$$

Definição

Se f é uma função de duas variáveis x e y, então o gradiente de f é a função vetorial ∇f definida por

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j}.$$

Observação

ullet Com a notação de vetor gradiente, podemos reescrever a derivada direcional de uma função diferenciável f na direção de um vetor unitário $ec{u}$ como

$$D_{\vec{u}}f(x,y) = \nabla f(x,y) \cdot \vec{u}.$$

Definição

Se f é uma função de duas variáveis x e y, então o gradiente de f é a função vetorial ∇f definida por

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j}.$$

Observação

ullet Com a notação de vetor gradiente, podemos reescrever a derivada direcional de uma função diferenciável f na direção de um vetor unitário $ec{u}$ como

$$D_{\vec{u}}f(x,y) = \nabla f(x,y) \cdot \vec{u}.$$

• Analogamente para funções de três variáveis, temos

$$D_{\vec{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \vec{u}.$$

Considere uma função f de duas ou três variáveis e um ponto P no domínio de f. Considere todas as derivadas direcionais possíveis de f em P. Isso nos dará as taxas de variações de f em todas as direções possíveis.

Considere uma função f de duas ou três variáveis e um ponto P no domínio de f. Considere todas as derivadas direcionais possíveis de f em P. Isso nos dará as taxas de variações de f em todas as direções possíveis. Podemos então perguntar:

 $oldsymbol{0}$ em qual dessas direções f varia mais rapidamente?

Considere uma função f de duas ou três variáveis e um ponto P no domínio de f. Considere todas as derivadas direcionais possíveis de f em P. Isso nos dará as taxas de variações de f em todas as direções possíveis. Podemos então perguntar:

- \bullet em qual dessas direções f varia mais rapidamente?
- qual a taxa máxima de variação?

Considere uma função f de duas ou três variáveis e um ponto P no domínio de f. Considere todas as derivadas direcionais possíveis de f em P. Isso nos dará as taxas de variações de f em todas as direções possíveis. Podemos então perguntar:

- \bullet em qual dessas direções f varia mais rapidamente?
- qual a taxa máxima de variação?

Vamos analisar.

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

= $|\nabla f| \cdot |\vec{u}| \cdot \cos\theta$ (ver G.A.)

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

$$= |\nabla f| \cdot |\vec{u}| \cdot \cos\theta \quad (ver \ G.A.)$$

$$= |\nabla f| \cdot \cos\theta,$$

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

$$= |\nabla f| \cdot |\vec{u}| \cdot \cos\theta \quad (ver \ G.A.)$$

$$= |\nabla f| \cdot \cos\theta,$$

em que θ é o ângulo entre ∇f e \vec{u} .

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

$$= |\nabla f| \cdot |\vec{u}| \cdot \cos\theta \quad (ver \ G.A.)$$

$$= |\nabla f| \cdot \cos\theta,$$

em que θ é o ângulo entre ∇f e \vec{u} .

Note que o valor máximo de $D_{\vec{u}}f$ ocorre quando $cos\theta=1$

$$D\vec{u}f = \nabla f \cdot \vec{u}$$

$$= |\nabla f| \cdot |\vec{u}| \cdot \cos\theta \quad (ver \ G.A.)$$

$$= |\nabla f| \cdot \cos\theta,$$

em que θ é o ângulo entre ∇f e \vec{u} . Note que o valor máximo de $D_{\vec{u}}f$ ocorre quando $cos\theta=1$ Mas isso ocorre quando $\theta=0$.

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

$$= |\nabla f| \cdot |\vec{u}| \cdot \cos\theta \quad (ver \ G.A.)$$

$$= |\nabla f| \cdot \cos\theta,$$

em que θ é o ângulo entre ∇f e \vec{u} .

Note que o valor máximo de $D_{\vec{u}}f$ ocorre quando $cos\theta=1$

Mas isso ocorre quando $\theta=0$, ou seja, quando ∇f e \vec{u} tem a mesma direção.

$$D\vec{u}f = \nabla f \cdot \vec{u}$$

$$= |\nabla f| \cdot |\vec{u}| \cdot \cos\theta \quad (ver \ G.A.)$$

$$= |\nabla f| \cdot \cos\theta,$$

em que θ é o ângulo entre ∇f e \vec{u} .

Note que o valor máximo de $D_{\vec{u}}f$ ocorre quando $cos\theta=1$

Mas isso ocorre quando $\theta=0$, ou seja, quando ∇f e \vec{u} tem a mesma direção.

Mais ainda, o valor máximo de $D_{\vec{u}}f$ é $|\nabla f| \cdot cos0$

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

$$= |\nabla f| \cdot |\vec{u}| \cdot \cos\theta \quad (ver \ G.A.)$$

$$= |\nabla f| \cdot \cos\theta,$$

em que θ é o ângulo entre ∇f e \vec{u} .

Note que o valor máximo de $D_{\vec{u}}f$ ocorre quando $cos\theta = 1$

Mas isso ocorre quando $\theta=0$, ou seja, quando ∇f e \vec{u} tem a mesma direção.

Mais ainda, o valor máximo de $D_{\vec{u}}f$ é $|\nabla f| \cdot cos0 = |\nabla f|$.

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

$$= |\nabla f| \cdot |\vec{u}| \cdot \cos\theta \quad (ver \ G.A.)$$

$$= |\nabla f| \cdot \cos\theta,$$

em que θ é o ângulo entre ∇f e \vec{u} .

Note que o valor máximo de $D_{\vec{u}}f$ ocorre quando $cos\theta = 1$

Mas isso ocorre quando $\theta = 0$, ou seja, quando ∇f e \vec{u} tem a mesma direção.

Mais ainda, o valor máximo de $D_{\vec{u}}f$ é $|\nabla f| \cdot cos0 = |\nabla f|$.

Com isso, temos o seguinte resultado.

Teorema

Considere uma função f de duas ou três variáveis. O valor máximo da derivada direcional $D_{\vec{u}}f(X)$ é $|\nabla f(X)|$ e isso ocorre quando \vec{u} e $\nabla f(X)$ tem a mesma direção.

Teorema

Considere uma função f de duas ou três variáveis. O valor máximo da derivada direcional $D_{\vec{u}}f(X)$ é $|\nabla f(X)|$ e isso ocorre quando \vec{u} e $\nabla f(X)$ tem a mesma direção.

Observação

Esse teorema mostra a primeira importância do vetor gradiente de uma função.

Se $f(x, y) = xe^y$, determine:

- **1** a taxa de variação de f no ponto P=(2,0) na direção de P para $Q=(\frac{1}{2},2)$.
- 2 a direção de maior variação em P.
- a taxa máxima de variação em P.

Se $f(x,y) = xe^y$, determine:

- **1** a taxa de variação de f no ponto P=(2,0) na direção de P para $Q=(\frac{1}{2},2)$.
- 2 a direção de maior variação em P.
- a taxa máxima de variação em P.

Solução:

Se $f(x,y)=xe^y$, em que direção f tem a máxima taxa de variação no ponto P=(2,0)? Qual é a máxima taxa de variação?

Se $f(x,y)=xe^y$, em que direção f tem a máxima taxa de variação no ponto P=(2,0)? Qual é a máxima taxa de variação?

Solução: Pelo teorema anterior, f aumenta mais depressa na direção do gradiente

$$\nabla f(2,0) = (1,2).$$

A taxa máxima de variação é

$$|\nabla f(2,0)| = |(1,2)| = \sqrt{5}.$$

Outra Importância do Vetor Gradiente

ullet Sejam f uma função de dua variáveis x e y e $P=(x_0,y_0)$ um ponto de seu domínio.

Outra Importância do Vetor Gradiente

- Sejam f uma função de dua variáveis x e y e $P=(x_0,y_0)$ um ponto de seu domínio.
- Pelo teorema anterior, o vetor gradiente $\nabla f(x_0, y_0)$ dá a direção do aumento mais rápido de f.

Outra Importância do Vetor Gradiente

- Sejam f uma função de dua variáveis x e y e $P=(x_0,y_0)$ um ponto de seu domínio.
- Pelo teorema anterior, o vetor gradiente $\nabla f(x_0, y_0)$ dá a direção do aumento mais rápido de f.
- Além disso, pode se mostrar que $\nabla f(x_0, y_0)$ é perpendicular à reta tangente da curva de nível f(x, y) = k que passa por P.

Se considerarmos um mapa topográfico de um morro e se f(x,y) representar a altura acima do nível do mar do ponto de coordenadas (x,y), então a curva de aclive máximo pode ser desenhada, fazendo-a perpendicular a todas as curvas de contorno.

• Os sistemas de computação algébrica têm comandos que traçam alguns vetores gradientes.

- Os sistemas de computação algébrica têm comandos que traçam alguns vetores gradientes.
- Cada vetor gradiente $\nabla f(a,b)$ é traçado partindo-se do ponto (a,b).

- Os sistemas de computação algébrica têm comandos que traçam alguns vetores gradientes.
- Cada vetor gradiente $\nabla f(a,b)$ é traçado partindo-se do ponto (a,b).
- A figura mostra gráfico da função $f(x,y) = y^2 x^2$, bem como o chamado campo de vetores gradientes sobreposto a um mapa de contornos de f.

- Os sistemas de computação algébrica têm comandos que traçam alguns vetores gradientes.
- Cada vetor gradiente $\nabla f(a,b)$ é traçado partindo-se do ponto (a,b).
- A figura mostra gráfico da função $f(x,y) = y^2 x^2$, bem como o chamado campo de vetores gradientes sobreposto a um mapa de contornos de f.
- Como esperado, os vetores gradientes apontam na direção "ladeira acima" e são perpendiculares às curvas de nível.

Exercícios

Considere as funções abaixo e determine:

- (a) Determine a taxa de variação de f em P na direção do vetor \mathbf{u} .
- (b) Determine a direção de maior variação de f no ponto P.
- (c) Determine a taxa máxima de variação de f no ponto P.

1
$$f(x,y) = (2x+3y), P(-6,4), \mathbf{u} = \frac{1}{2}(\sqrt{3}\mathbf{i} - \mathbf{j})$$

2
$$f(x,y) = y^2kx$$
, $P(1,2)$, $\mathbf{u} = \frac{1}{3}(2\mathbf{i} + \sqrt{5}\mathbf{j})$

6
$$f(x, y, z) = xe^{2yz}$$
, $P(3, 0, 2)$, $\mathbf{u} = (\frac{2}{3}, -\frac{2}{3}, \frac{1}{3})$

4
$$f(x,y,z) = \sqrt{x+yz}$$
, $P(1,3,1)$, $\mathbf{u} = (\frac{2}{7}, \frac{3}{7}, \frac{6}{7})$

