Team notebook

BINUS - Among

October 16, 2021

Contents

1	Data Structures 1.1 Heavy-Light Decomposition 1.2 Li Chao Tree 1.3 Persistent Segment Tree 1.4 STL PBDS 1.5 Treap 1.6 Unordered Map Custom Hash	1 1 2 2 2 3 3
2	Dynamic Programming 2.1 DP Convex Hull 2.2 DP DNC 2.3 Knuth-Yao	3 4 4
3	Geometry 3.1 Closest Pair of Points 3.2 Convex Hull 3.3 Geometry Template 3.4 Smallest Enclosing Circle 3.5 Sutherland-Hodgman Algorithm	4 5 6 9
4	4.1 Articulation Point and Bridge 4.2 Centroid Decomposition 4.3 Dinic's Maximum Flow 4.4 Edmonds' Blossom 4.5 Eulerian Path or Cycle 4.6 Hierholzer's Algorithm 4.7 Hungarian 4.8 Minimum Cost Maximum Flow	11 11 11 12 13 14 14 14 15
5	5.1 Berlekamp-Massey 5.2 Catalan 5.3 Extended Euclidean GCD 5.4 Fast Fourier Transform 5.5 Fibonacci Check	15 16 16 16 16 17

5.7	Generalized CRT
5.8	Generalized Lucas Theorem
5.9	Linear Diophantine
5.10	Miller-Rabin and Pollard's Rho
5.11	Modular Linear Equation
5.12	Number Theoretic Transform
Mis	cellaneous
6.1	Dates
	6.1.1 Day of Date
	6.1.2 Number of Days since 1-1-1
6.2	Enumerate Subsets of a Bitmask
6.3	Fast IO
6.4	Int to Roman
6.5	Josephus Problem
6.6	Template
Stri	ings
7.1	Aho-Corasick
7.2	Eertree
7.0	Managhania Alianiahan
7.3	Manacher's Algorithm
	5.8 5.9 5.10 5.11 5.12 Mis 6.1 6.2 6.3 6.4 6.5 6.6 Stri 7.1

1 Data Structures

1.1 Heavy-Light Decomposition

```
#define N 300020
vector<int> adj[N];
int memo[25][N], lvl[N], subsize[N], col[N]; //col=array input
int chainHead[N], chainInd[N], baseArray[N], posInBase[N];
int chainNo, p, n;//chainHead=nodeHead,baseArray=array tree, int st[N*4]; //posInBase=convert input
    to tree indelax
void buildtree(int v, int l, int r){
    if (l == r){
        st[v] = baseArray[l];
        return;
    }
    int m = (1+r)>>1;
    buildtree(v<<1,1,m);</pre>
```

```
buildtree(v<<1|1,m+1,r);
   st[v] = st[v << 1] + st[v << 1|1];
void updatetree(int v, int 1, int r, int x){
   if(1 == r){
       st[v] = baseArray[x]; return;
   int m = (1+r) >> 1;
   if(x <= m) updatetree(v<<1,1,m,x);</pre>
   else updatetree(v<<1|1,m+1,r,x);</pre>
   st[v] = st[v << 1] + st[v << 1|1];
int querytree(int v, int 1, int r, int ss, int se){
   if(ss > se) return 0;
   if (1 == ss && r == se) return st[v];
   int m = (1+r) >> 1;
   int ans = querytree(v << 1, 1, m, ss, min(se,m)) + querytree(v << 1|1, m+1, r, max(m+1,ss), se);
   return ans:
void dfs(int cur, int par){
   lvl[cur] = lvl[par]+1;
   memo[0][cur] = par;
   subsize[cur] = 1;
   for(int to : adj[cur]){
       if (to == par) continue;
       dfs(to,cur);
       subsize[cur] += subsize[to];
}
void HLD(int cur, int par){
   if(chainHead[chainNo] == -1) chainHead[chainNo] = cur;
   chainInd[cur] = chainNo;
   baseArray[p] = col[cur];
   posInBase[cur] = p++;
   int maksto = -1;
   for(int to : adj[cur]){
       if (to == par) continue;
       if (maksto == -1 || subsize[maksto] < subsize[to]){</pre>
          maksto = to;
   if (maksto != -1) HLD(maksto,cur);
   for(int to : adj[cur]){
       if (to == par || to == maksto) continue;
       chainNo++;
       HLD(to,cur);
   }
int queryup(int u, int v){
   int ans = 0;
   while(u != v){
       if (chainInd[u] == chainInd[v]){
           ans += querytree(1,0,n-1,posInBase[v]+1,posInBase[u]);
           break;
           ans += querytree(1,0,n-1, posInBase[chainHead[chainInd[u]]] ,posInBase[u]);
           u = chainHead[chainInd[u]];
           u = memo[0][u];
```

```
}
return ans;
}
int main()
{
    rep(i,0,n-1){ //init
        col[i] = s[i]-'0';
        chainHead[i] = -1;
        adj[i].clear();
    }
    chainNo = p = 0;
    // add edge here
    dfs(0,0);    // 0-based
    sparsing();
    HLD(0,0);
    buildtree(1,0,n-1);
    return 0;
}
```

1.2 Li Chao Tree

```
typedef long long int TD;
namespace LICHAO {
   struct Node {
      TD m, c;
      Node *1, *r;
   Node *newNode(Node *x = NULL) {
      Node *ret = (Node*)malloc(sizeof(Node)):
      if (x) ret->m = x->m, ret->c = x->c;
      ret->1 = ret->r = NULL;
      return ret:
   void update(Node *k, TD 1, TD r, TD m, TD c) {
      TD mid = l + r >> 1;
      bool le = m*l + c < k->m*l + k->c;
      bool ri = m*mid + c < k->m*mid + k->c;
      if (ri) swap(k->m, m), swap(k->c, c);
      if (r - 1 <= 1) return;</pre>
      else if (le != ri) update((k->1)?(k->1):(k->1=newNode(k)), 1, mid, m, c);
      else update((k->r)?(k->r):(k->r=newNode(k)), mid, r, m, c);
   TD query(Node *k, TD 1, TD r, TD p) {
      if (!k) return INF;
       if (r - 1 <= 1) return p*k->m + k->c;
       if (p < (1+r >> 1)) return min(p*k->m + k->c, query(k->1, 1, 1+r>>1, p));
       else return min(p*k->m + k->c, query(k->r, l+r>>1, r, p));
```

1.3 Persistent Segment Tree

```
class PersistentSegtree {
   private:
       int n, ptr, sz;
       struct P {
          int val = 0, 1, r;
       };
       vector<P> node;
       vector<int> root;
       int newNode() { return ptr++; }
       int copyNode(int idx) {
          node[ptr] = node[idx];
          return ptr++;
       int build(int 1, int r) {
          int idx = newNode();
          if(1 == r) return idx:
          node[idx].1 = build(1, (1+r)/2);
          node[idx].r = build((1+r)/2+1, r);
          return idx:
       int update(int idx, int 1, int r, int x, int val) {
          idx = copyNode(idx);
          if(1 == r) {
              node[idx].val += val;
              return idx:
          int mid = (1+r)/2:
          if(x <= mid) node[idx].1 = update(node[idx].1, 1, mid, x, val);</pre>
          else node[idx].r = update(node[idx].r, mid+1, r, x, val);
          node[idx].val = node[node[idx].1].val + node[node[idx].r].val;
          return idx;
       int query(int idxl, int idxr, int l, int r, int x, int y) {
          if(y < 1 || r < x) return 0;</pre>
          if(x <= 1 && r <= y) return node[idxr].val - node[idxl].val;</pre>
          int mid = (1+r)/2;
          return query(node[idxl].1, node[idxr].1, 1, mid, x, y)
              + query(node[idx1].r, node[idxr].r, mid+1, r, x, y);
   public:
       PersistentSegtree(int _n) : n(_n), ptr(0) {
          sz = 30 * n;
          node.resize(sz);
          root.push_back(build(1, n));
       void update(int x, int val) {
          root.push_back(update(root.back(), 1, n, x, val));
       int query(int 1, int r, int x, int y) {
          return query(root[1-1], root[r], 1, n, x, y);
};
```

1.4 STL PBDS

3

1.5 Treap

```
// Complexity: O(log N) for split and merge
// empty treap: Treap* tr = nullptr;
// insert v at x: [1, r] = split(tr, x), m = Treap(v), merge lmr
// delete at x: [1, r] = split(tr, x), [m, r] = split(r, 1), merge lr
// lazy prop: propagate every time a node is accessed
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
using Key = int;
struct Treap
   Key val;
   Treap* left;
   Treap* right;
   int prio, sz;
   Treap() {}
   Treap(int _val);
}:
int size(Treap* tr)
   return tr ? tr->sz : 0;
void update(Treap* tr)
   tr->sz = 1 + size(tr->left) + size(tr->right);
Treap::Treap(Key _val) :
   val(_val), left(nullptr), right(nullptr), prio(rng())
   update(this);
pair<Treap*, Treap*> split(Treap* tr, int sz)
   if(!tr) return {nullptr, nullptr};
```

```
int left_sz = size(tr->left);
   if(sz <= left_sz)</pre>
       auto [left, mid] = split(tr->left, sz);
       tr->left = mid;
       update(tr);
       return {left, tr};
   else
       auto [mid, right] = split(tr->right, sz - left_sz - 1);
       tr->right = mid;
       update(tr);
       return {tr, right};
Treap* merge(Treap* 1, Treap* r)
   if(!1) return r;
   if(!r) return 1;
   if(l->prio < r->prio)
       1->right = merge(1->right, r);
       update(1);
       return 1;
   else
       r->left = merge(1, r->left);
       update(r);
       return r;
   }
}
```

1.6 Unordered Map Custom Hash

```
struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }
    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};
unordered_map<int, int, custom_hash> umap;
```

2 Dynamic Programming

2.1 DP Convex Hull

```
/* dp[i] = min k<i {dp[k] + x[i]*m[k]}
   Make sure gradient (m[i]) is either non-increasing if min,
   or non-decreasing if max. x[i] must be non-decreasing. just sort */
int y[N], m[N];
// while this is true, pop back from dq. a=new line, b=last, c=2nd last
bool cekx(int a, int b, int c){
    // if not enough, change to cross mul
    // if cross mul, beware of negative denominator, and overflow
    return (double)(y[b]-y[a])/(m[a]-m[b])<=(double)(y[c]-y[b])/(m[b]-m[c]);
}</pre>
```

4

2.2 DP DNC

```
void f(int rem,int l,int r,int optl,int optr){
    if(l>r)return;
    int mid = l+r>>1;
    int opt = MOD, optid = mid;
    for(int i = optl; i<=mid && i<=optr; ++i){
        if(dp[rem-1][i] + c[i][mid] < opt){
            opt = dp[rem-1][i] + c[i][mid];
            optid = i;
        }
    }
    dp[rem][mid] = opt;
    f(rem, l, mid-1, optl, optid);
    f(rem, mid+1, r, optid, optr); return;
}
rep(i,1,n)dp[1][i] = c[0][i];
rep(i,2,k)f(i,i,n,i,n);</pre>
```

2.3 Knuth-Yao

ŀ

3 Geometry

3.1 Closest Pair of Points

```
#define fi first
#define se second
typedef pair<int, int> pii;
struct Point{
   int x, y, id;
int compareX(const void* a, const void* b){
   Point *p1 = (Point *)a, *p2 = (Point *)b;
   return (p1->x - p2->x);
int compareY(const void* a, const void* b){
   Point *p1 = (Point *)a, *p2 = (Point *)b;
   return (p1->y - p2->y);
double dist(Point p1, Point p2) {
   return sqrt( (double)(p1.x - p2.x)*(p1.x - p2.x) +
               (double)(p1.y - p2.y)*(p1.y - p2.y)
pair<pii, double> bruteForce(Point P[], int n){
   double min = 1e8:
   pii ret=pii(-1, -1);
   for (int i = 0; i < n; ++i)
       for (int j = i+1; j < n; ++j)
           if (dist(P[i], P[j]) < min){</pre>
              ret=pii(P[i].id, P[j].id);
              min = dist(P[i], P[j]);
   return pair<pii, double> (ret, min);
pair<pii, double> getmin(pair<pii, double> x, pair<pii, double> y){
   if(x.fi.fi==-1 && x.fi.se==-1) return y;
   if(v.fi.fi==-1 && v.fi.se==-1) return x;
   return (x.se < y.se)? x : y;
pair<pii, double> stripClosest(Point strip[], int size, double d){
   double min = d:
   pii ret=pii(-1, -1);
   gsort(strip, size, sizeof(Point), compareY);
   for (int i = 0; i < size; ++i)</pre>
       for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
           if (dist(strip[i],strip[j]) < min){</pre>
              ret=pii(strip[i].id, strip[j].id);
              min = dist(strip[i], strip[j]);
   return pair<pii, double>(ret, min);
pair<pii, double> closestUtil(Point P[], int n){
   if (n <= 3) return bruteForce(P, n);</pre>
   int mid = n/2;
```

```
Point midPoint = P[mid];
   pair<pii, double> dl = closestUtil(P, mid);
   pair<pii, double> dr = closestUtil(P + mid, n-mid);
   pair<pii, double> d = getmin(dl, dr);
   Point strip[n];
   int j = 0;
   for (int i = 0; i < n; i++)</pre>
       if (abs(P[i].x - midPoint.x) < d.second)</pre>
          strip[j] = P[i], j++;
   return getmin(d, stripClosest(strip, j, d.second));
pair<pii, double> closest(Point P[], int n){
   qsort(P, n, sizeof(Point), compareX);
   return closestUtil(P, n);
Point P[50005];
int main(){
   int n;
   scanf("%d", &n);
   for(int a=0;a<n;a++){</pre>
       scanf("%d%d", &P[a].x, &P[a].y);
       P[a].id=a;
   pair<pii, double> hasil=closest(P, n);
   if(hasil.fi.fi > hasil.fi.se) swap(hasil.fi.fi, hasil.fi.se);
   printf("%d %d %.6lf\n", hasil.fi.fi, hasil.fi.se, hasil.se);
   return 0;
```

3.2 Convex Hull

```
typedef double TD;
                              // for precision shits
namespace GEOM {
   typedef pair<TD,TD> Pt;
                                // vector and points
   const TD EPS = 1e-9;
   const TD maxD = 1e9:
   TD cross(Pt a, Pt b, Pt c) { // right hand rule
      TD v1 = a.first - c.first; // (a-c) X (b-c)
      TD v2 = a.second - c.second;
      TD u1 = b.first - c.first;
      TD u2 = b.second - c.second:
      return v1 * u2 - v2 * u1;
   TD cross(Pt a, Pt b) {
                              // a X b
      return a.first*b.second - a.second*b.first;
   TD dot(Pt a, Pt b, Pt c) { // (a-c) . (b-c)
      TD v1 = a.first - c.first:
      TD v2 = a.second - c.second:
      TD u1 = b.first - c.first;
      TD u2 = b.second - c.second:
      return v1 * u1 + v2 * u2:
   TD dot(Pt a, Pt b) {
       return a.first*b.first + a.second*b.second;
```

```
TD dist(Pt a, Pt b) {
    return sqrt((a.first-b.first)*(a.first-b.first) + (a.second-b.second)*(a.second-b.second));
TD shoelaceX2(vector<Pt> &convHull) {
    TD ret = 0:
   for (int i = 0, n = convHull.size(); i < n; i++)</pre>
       ret += cross(convHull[i], convHull[(i+1)%n]);
vector<Pt> createConvexHull(vector<Pt> &points) {
    sort(points.begin(), points.end());
    vector<Pt> ret;
   for (int i = 0; i < points.size(); i++) {</pre>
       while (ret.size() > 1 &&
              cross(points[i], ret[ret.size()-1], ret[ret.size()-2]) < -EPS)</pre>
           ret.pop_back();
       ret.push_back(points[i]);
   for (int i = points.size() - 2, sz = ret.size(); i >= 0; i--) {
       while (ret.size() > sz &&
              cross(points[i], ret[ret.size()-1], ret[ret.size()-2]) < -EPS)</pre>
           ret.pop_back();
       if (i == 0) break;
       ret.push_back(points[i]);
   return ret:
    bool isInside(Pt pv, vector<Pt> &x){//using winding number
       int n = x.size(), wn = 0;
       x.push_back(x[0]);
       for(int i = 0; i<n; ++i){</pre>
           if(((x[i+1].first<=pv.first&&x[i].first>=pv.first)||
                      (x[i+1].first>=pv.first&&x[i].first<=pv.first)) &&</pre>
                   ((x[i+1].second<=pv.second&&x[i].second>=pv.second)||
                    (x[i+1].second>=pv.second&&x[i].second<=pv.second)) ){</pre>
               if(cross(x[i],x[i+1],pv) == 0){
                  x.pop_back();
                  return true;
              }
          }
       for(int i = 0; i<n; ++i){</pre>
           if(x[i].second <= pv.second) {</pre>
              if(x[i+1].second>pv.second && cross(x[i],x[i+1],pv)>0)++wn;
           else if(x[i+1].second<=pv.second && cross(x[i],x[i+1],pv)<0)--wn;</pre>
       x.pop_back();
       return wn!=0:
bool isInside(Pt pv, vector<Pt> &x){//using winding number
   int n = x.size(), wn = 0;
   x.push_back(x[0]);
    for(int i = 0; i<n; ++i){</pre>
       if(((x[i+1].first<=pv.first&&x[i].first>=pv.first)||
                   (x[i+1].first>=pv.first&&x[i].first<=pv.first)) &&
               ((x[i+1].second<=pv.second&&x[i].second>=pv.second)||
                (x[i+1].second>=pv.second&&x[i].second<=pv.second)) ){
```

3.3 Geometry Template

```
TABLE OF CONTENT
O. Basic Rule
   0.1. Everything is in double
   0.2. Every comparison use EPS
   0.3. Every degree in rad
1. General Double Operation
   1.1. const double EPS=1E-9
   1.2. const double PI=acos(-1.0)
   1.3. const double INFD=1E9
   1.3. between_d(double x,double 1,double r)
       check whether x is between 1 and r inclusive with EPS
   1.4. same_d(double x,double y)
       check whether x=y with EPS
   1.5. dabs(double x)
       absolute value of x
2. Point
   2.1. struct point
       2.1.1. double x, y
           cartesian coordinate of the point
       2.1.2. point()
           default constructor
       2.1.3. point(double x.double v)
           constructor, set the point to (_x,_y)
       2.1.4. bool operator< (point other)
           regular pair < double, double > operator < with EPS
       2.1.5. bool operator == (point other)
           regular pair < double, double > operator == with EPS
   2.2. hypot(point P)
       length of hypotenuse of point P to (0,0)
   2.3. e_dist(point P1,point P2)
       euclidean distance from P1 to P2
   2.4. m_dist(point P1,point P2)
       manhattan distance from P1 to P2
   2.5. point rotate(point P,point O,double angle)
       rotate point P from the origin O by angle ccw
3. Vector
   3.1. struct vec
```

```
3.1.1. double x,y
           x and y magnitude of the vector
       3.1.2. vec()
           default constructor
       3.1.3. vec(double _x,double _y)
           constructor, set the vector to (_x,_y)
       3.1.4. vec(point A, point B)
           constructor, set the vector to vector AB (A->B)
/*General Double Operation*/
const double PI=acos(-1.0);
const double INFD=1E9:
double between_d(double x,double 1,double r) {
   return (min(1,r) \le x + EPS \&\& x \le max(1,r) + EPS);
double same_d(double x,double y) {
   return between_d(x,y,y);
double dabs(double x) {
   if (x<EPS) return -x; return x;</pre>
/*Point*/
struct point {
   double x,y;
   point() {
       x=y=0.0;
   point(double _x,double _y) {
       x=_x; y=_y;
   bool operator< (point other) {</pre>
       if (x<other.x+EPS) return true;</pre>
       if (x+EPS>other.x) return false;
       return y<other.y+EPS;</pre>
   bool operator== (point other) {
       return same_d(x,other.x)&&same_d(y,other.y);
};
double e_dist(point P1,point P2) {
   return hypot(P1.x-P2.x,P1.y-P2.y);
double m_dist(point P1,point P2) {
   return dabs(P1.x-P2.x)+dabs(P1.y-P2.y);
double pointBetween(point P,point L,point R) {
   return (e_dist(L,P)+e_dist(P,R)==e_dist(L,R));
bool collinear(point P, point L, point R) { //newly added(luis), cek 3 poin segaris
   return P.x*(L.y-R.y)+L.x*(R.y-P.y)+R.x*(P.y-L.y)==0; // bole gnti dabs(x)<EPS
}
/*Vector*/
struct vec {
   double x, y;
   vec() {
       x=y=0.0;
   vec(double _x,double _y) {
```

```
x=_x; y=_y;
   vec(point A) {
       x=A.x; y=A.y;
   vec(point A,point B) {
       x=B.x-A.x; y=B.y-A.y;
};
vec scale(vec v,double s) {
   return vec(v.x*s,v.y*s);
vec flip(vec v) {
   return vec(-v.x,-v.y);
double dot(vec u,vec v) {
   return (u.x*v.x+u.y*v.y);
double cross(vec u.vec v) {
   return (u.x*v.y-u.y*v.x);
double norm_sq(vec v) {
   return (v.x*v.x+v.y*v.y);
point translate(point P,vec v) {
   return point(P.x+v.x,P.y+v.y);
point rotate(point P,point O,double angle) {
   vec v(0); P=translate(P,flip(v));
   return translate(point(P.x*cos(angle)-P.y*sin(angle),P.x*sin(angle)+P.y*cos(angle)),v);
point mid(point P,point Q) {
   return point((P.x+Q.x)/2,(P.y+Q.y)/2);
double angle(point A,point O,point B) {
   vec OA(O,A), OB(O,B);
   return acos(dot(OA,OB)/sqrt(norm_sq(OA)*norm_sq(OB)));
int orientation(point P,point Q,point R) {
   vec PQ(P,Q), PR(P,R);
   double c=cross(PQ,PR);
   if (c<-EPS) return -1;</pre>
   if (c>EPS) return 1;
   return 0;
/*Line*/
struct line {
   double a,b,c;
   line() {
       a=b=c=0.0;
   line(double _a,double _b,double _c) {
       a=_a; b=_b; c=_c;
   line(point P1, point P2) {
       if (P1<P2) swap(P1,P2);</pre>
       if (same_d(P1.x,P2.x)) a=1.0, b=0.0, c=-P1.x;
       else a=-(P1.y-P2.y)/(P1.x-P2.x), b=1.0, c=-(a*P1.x)-P1.y;
   line (point P,double slope) {
```

```
if (same_d(slope,INFD)) a=1.0, b=0.0, c=-P.x;
       else a=-slope, b=1.0, c=-(a*P.x)-P.y;
   bool operator== (line other) {
       return same_d(a,other.a)&&same_d(b,other.b)&&same_d(c,other.c);
   double slope() {
       if (same d(b,0.0)) return INFD:
       return -(a/b);
};
bool paralel(line L1,line L2) {
   return same_d(L1.a,L2.a)&&same_d(L1.b,L2.b);
bool intersection(line L1,line L2,point &P) {
   if (paralel(L1,L2)) return false;
   P.x=(L2.b*L1.c-L1.b*L2.c)/(L2.a*L1.b-L1.a*L2.b);
   if (same_d(L1.b,0.0)) P.y=-(L2.a*P.x+L2.c);
   else P.y=-(L1.a*P.x+L1.c);
   return true;
double pointToLine(point P,point A,point B,point &C) {
   vec AP(A,P), AB(A,B);
   double u=dot(AP,AB)/norm_sq(AB);
   C=translate(A,scale(AB,u));
   return e_dist(P,C);
double lineToLine(line L1,line L2) {
   if (!paralel(L1,L2)) return 0.0;
   return dabs(L2.c-L1.c)/sqrt(L1.a*L1.a+L1.b*L1.b);
/*Line Segment*/
struct segment {
   point P,Q;
   line L:
   segment() {
       point T1; P=Q=T1;
       line T2; L=T2;
    segment(point _P,point _Q) {
       P=_P; Q=_Q;
       if (Q<P) swap(P,Q);</pre>
       line T(P,Q); L=T;
   bool operator== (segment other) {
       return P==other.P&&Q==other.Q;
};
bool onSegment(point P,segment S) {
   if (orientation(S.P,S.Q,P)!=0) return false;
   return between_d(P.x,S.P.x,S.Q.x) && between_d(P.y,S.P.y,S.Q.y);
bool s_intersection(segment S1, segment S2) {
   double o1=orientation(S1.P,S1.Q,S2.P);
   double o2=orientation(S1.P,S1.Q,S2.Q);
   double o3=orientation(S2.P,S2.Q,S1.P);
   double o4=orientation(S2.P,S2.Q,S1.Q);
   if (o1!=o2 && o3!=o4) return true;
   if (o1==0 && onSegment(S2.P,S1)) return true;
   if (o2==0 && onSegment(S2.Q.S1)) return true:
```

```
if (o3==0 && onSegment(S1.P,S2)) return true;
   if (o4==0 && onSegment(S1.Q,S2)) return true;
   return false:
double pointToSegment(point P,point A,point B,point &C) {
   vec AP(A,P), AB(A,B);
   double u=dot(AP,AB)/norm_sq(AB);
   if (u<EPS) {
      C=A; return e_dist(P,A);
   if (u+EPS>1.0) {
      C=B; return e_dist(P,B);
   return pointToLine(P.A.B.C):
double segmentToSegment(segment S1,segment S2) {
   if (s_intersection(S1,S2)) return 0.0;
   double ret=INFD; point dummy;
   ret=min(ret,pointToSegment(S1.P,S2.P,S2.Q,dummy));
   ret=min(ret,pointToSegment(S1.Q,S2.P,S2.Q,dummy));
   ret=min(ret,pointToSegment(S2.P,S1.P,S1.Q,dummy));
   ret=min(ret,pointToSegment(S2.Q,S1.P,S1.Q,dummy));
   return ret;
/*Circle*/
struct circle {
   point P;
   double r;
   circle() {
       point P1; P=P1;
       r=0.0:
   circle(point _P,double _r) {
      P=_P; r=_r;
   circle(point P1,point P2) {
      P=mid(P1,P2); r=e_dist(P,P1);
   circle(point P1,point P2,point P3) {
      vector<point> T; T.clear(); T.pb(P1); T.pb(P2); T.pb(P3);
       sort(T.begin(),T.end());
      P1=T[0]; P2=T[1]; P3=T[2];
      point M1,M2; M1=mid(P1,P2); M2=mid(P2,P3);
      point Q2,Q3; Q2=rotate(P2,P1,PI/2); Q3=rotate(P3,P2,PI/2);
       vec P1Q2(P1,Q2), P2Q3(P2,Q3);
      point M3,M4; M3=translate(M1,P1Q2); M4=translate(M2,P2Q3);
      line L1(M1,M3), L2(M2,M4);
       intersection(L1,L2,P); r=e_dist(P,P1);
   bool operator==(circle other) {
       return (P==other.P && same d(r.other.r)):
bool insideCircle(point P,circle C) {
   return e_dist(P,C.P) <= C.r + EPS;</pre>
bool c_intersection(circle C1, circle C2, point &P1, point &P2) {
   double d=e_dist(C1.P,C2.P);
   if (d>C1.r+C2.r) return false;//d+EPS kalo butuh
   if (d<dabs(C1.r-C2.r)+EPS) return false:
```

```
9
```

```
double a=(r1*r1-r2*r2+d*d)/(2*d), h=sqrt(r1*r1-a*a);
   point T(x1+a*(x2-x1)/d.v1+a*(v2-v1)/d):
   P1=point(T.x-h*(y2-y1)/d,T.y+h*(x2-x1)/d);
   P2=point(T.x+h*(y2-y1)/d,T.y-h*(x2-x1)/d);
   return true;
bool lc intersection(line L.circle O.point &P1.point &P2) {
   double a=L.a, b=L.b, c=L.c, x=0.P.x, y=0.P.y, r=0.r;
   double A=a*a+b*b, B=2*a*b*y-2*a*c-2*b*b*x, C=b*b*x*x+b*b*y*y-2*b*c*y+c*c-b*b*r*r;
   double D=B*B-4*A*C; point T1,T2;
   if (same_d(b,0.0)) {
       T1.x=c/a:
       if (dabs(x-T1.x)+EPS>r) return false:
       if (same_d(T1.x-r-x,0.0) | | same_d(T1.x+r-x,0.0)) {
          P1=P2=point(T1.x,y); return true;
       double dx=dabs(T1.x-x), dy=sqrt(r*r-dx*dx);
       P1=point(T1.x,y-dy); P2=point(T1.x,y+dy); return true;
   if (same d(D,0.0)) {
       T1.x=-B/(2*A); T1.y=(c-a*T1.x)/b; P1=P2=T1; return true;
   if (D<EPS) return false:
   D=sqrt(D);
   T1.x=(-B-D)/(2*A); T1.y=(c-a*T1.x)/b; P1=T1;
   T2.x=(-B+D)/(2*A); T2.y=(c-a*T2.x)/b; P2=T2; return true;
bool sc_intersection(segment S,circle C,point &P1,point &P2) {
   bool cek=lc intersection(S.L.C.P1.P2):
   if (!cek) return false;
   double x1=S.P.x, y1=S.P.y, x2=S.Q.x, y2=S.Q.y;
   bool b1=between_d(P1.x,x1,x2)&&between_d(P1.y,y1,y2);
   bool b2=between_d(P2.x,x1,x2)&&between_d(P2.y,y1,y2);
   if (P1==P2) return b1:
   if (b1||b2) {
       if (!b1) P1=P2; if (!b2) P2=P1; return true;
   return false;
/*Triangle*/
double t_perimeter(point A,point B,point C) {
   return e_dist(A,B)+e_dist(B,C)+e_dist(C,A);
double t_area(point A,point B,point C) {
   double s=t_perimeter(A,B,C)/2;
   double ab=e_dist(A,B), bc=e_dist(B,C), ac=e_dist(C,A);
   return sqrt(s*(s-ab)*(s-bc)*(s-ac));
circle t_inCircle(point A,point B,point C) {
   vector<point> T; T.clear(); T.pb(A); T.pb(B); T.pb(C); sort(T.begin(),T.end());
   A=T[0]; B=T[1]; C=T[2];
   double r=t_area(A,B,C)/(t_perimeter(A,B,C)/2);
   double ratio=e_dist(A,B)/e_dist(A,C);
   vec BC(B,C); BC=scale(BC,ratio/(1+ratio));
   point P; P=translate(B,BC); line AP1(A,P);
   ratio=e_dist(B,A)/e_dist(B,C);
   vec AC(A,C); AC=scale(AC,ratio/(1+ratio));
   P=translate(A,AC); line BP2(B,P);
   intersection(AP1.BP2.P): return circle(P.r):
```

double x1=C1.P.x, y1=C1.P.y, r1=C1.r, x2=C2.P.x, y2=C2.P.y, r2=C2.r;

```
circle t_outCircle(point A,point B,point C) {
   return circle(A.B.C);
/*Polygon*/
struct polygon {
   vector<point> P;
   polygon() {
      P.clear();
   polygon(vector<point> &_P) {
      P = P;
}:
bool rayCast(point P,polygon &A) {
   point Q(P.x,10000);
   line cast(P,Q);
   int cnt=0;
   FOR(i,(int)(A.P.size())-1){
      line temp(A.P[i],A.P[i+1]);
      point I;
       bool B=intersection(cast,temp,I);
       if (!B) continue;
       else if (I==A.P[i]||I==A.P[i+1]) continue;
       else if (pointBetween(I,A.P[i],A.P[i+1])&&pointBetween(I,P,Q)) cnt++;
   return cnt%2==1;
// line segment p-q intersect with line A-B.
point lineIntersectSeg(point p, point q, point A, point B) {
   double a = B.y - A.y;
   double b = A.x - B.x;
   double c = B.x * A.y - A.x * B.y;
   double u = fabs(a * p.x + b * p.y + c);
   double v = fabs(a * q.x + b * q.y + c);
   return point((p.x * v + q.x * u) / (u + v),(p.y * v + q.y * u) / (u + v));
// cuts polygon Q along the line formed by point a -> point b
// (note: the last point must be the same as the first point)
vector<point> cutPolygon(point a, point b, const vector<point> &Q) {
   vector<point> P;
   for (int i=0;i<(int)Q.size();i++) {</pre>
      double left1 = cross(toVec(a,b),toVec(a,Q[i]));
      double left2 = 0;
       if (i!=(int)Q.size()-1) left2 = cross(toVec(a,b),toVec(a,Q[i+1]));
       if (left1 > -EPS) P.push_back(Q[i]);
       if (left1*left2 < -EPS) {</pre>
          P.push_back(lineIntersectSeg(Q[i],Q[i+1],a,b));
      }
   if (!P.empty() && !(P.back()==P.front())) {
      P.push_back(P.front());
   }
   return P:
circle minCoverCircle(polygon &A) {
   vector<point> p=A.P;
   point c; circle ret;
   double cr = 0.0;
   int i. i. k:
```

```
c = p[0];
   for(i = 1; i < p.size(); i++) {</pre>
       if(e_dist(p[i], c) >= cr+EPS) {
           c = p[i], cr = 0;
          ret=circle(c,cr);
           for(j = 0; j < i; j++) {</pre>
              if(e_dist(p[j], c) >= cr+EPS) {
                  c=mid(p[i],p[j]);
                  cr = e_dist(p[i], c);
                  ret=circle(c,cr);
                  for(k = 0; k < j; k++) {
                      if(e_dist(p[k], c) >= cr+EPS) {
                         ret=circle(p[i],p[j],p[k]);
                          c=ret.P; cr=ret.r;
                 }
              }
          }
      }
   }
   return ret;
/*Geometry Algorithm*/
double DP[110][110];
double minCostPolygonTriangulation(polygon &A) {
   if (A.P.size()<3) return 0;</pre>
   FOR(i,A.P.size()) {
          for (int j=0,k=i;k<A.P.size();j++,k++) {</pre>
             if (k<j+2) DP[j][k]=0.0;</pre>
             else {
              DP[j][k]=INFD;
              REP(1, j+1, k-1) {
                  double cost=e_dist(A.P[j],A.P[k])+e_dist(A.P[k],A.P[1])+e_dist(A.P[1],A.P[j]);
                  DP[j][k]=min(DP[j][k],DP[j][1]+DP[1][k]+cost);
              }
          }
   return DP[0][A.P.size()-1];
```

3.4 Smallest Enclosing Circle

```
// Welzl's algorithm to find the smallest circle
// that encloses a group of poins in O(N * ITERS)
// returns {radius, x, y}
const int ITERS = 3e5;
const double INF = 1e12;

tuple<double, double, double> welzl(const vector<pair<int, int>>& points)
{
    double xt = 0, yt = 0;
    for(auto& [x, y] : points)
    {
        xt += x;
        yt += y;
    }
}
```

```
xt /= points.size();
yt /= points.size();
double p = 0.1;
double mx_d;
for(int i = 0; i < ITERS; ++i)</pre>
   mx d = -INF:
   int mx_idx = -1;
   for(int j = 0; j < (int) points.size(); ++j)</pre>
       double cx = xt - points[j].first;
       double cy = yt - points[j].second;
       double cur = cx * cx + cy * cy;
       if(cur > mx_d)
           mx_d = cur;
           mx_idx = j;
   xt += (points[mx_idx].first - xt) * p;
   yt += (points[mx_idx].second - yt) * p;
   p *= 0.999;
return {sqrt(mx_d), xt, yt};
```

3.5 Sutherland-Hodgman Algorithm

```
// Complexity: linear time
// Ada 2 poligon, cari poligon intersectionnya
// poly_point = hasilnya, clipper = pemotongnya
#include<bits/stdc++.h>
using namespace std;
const double EPS = 1e-9;
struct point{
   double x,y;
   point(double _x,double _y):x(_x),y(_y){}
struct vec {
   double x,y;
   vec(double _x, double _y):x(_x),y(_y){}
};
point pivot(0,0);
vec toVec(point a, point b){
   return vec(b.x-a.x,b.y-a.y);
double dist (point a, point b){
   return hypot(a.x-b.x,a.y-b.y);
double cross (vec a, vec b){
   return a.x*b.y-a.y*b.x;
bool ccw (point p, point q, point r){
```

```
11
```

```
return cross(toVec(p,q),toVec(p,r)) > 0;
bool collinear (point p, point q, point r){
   return fabs(cross(toVec(p,q),toVec(p,r))) < EPS;</pre>
bool lies(point a, point b, point c){
   if ((c.x >= min(a.x,b.x) \&\& c.x <= max(a.x,b.x)) \&\&
           (c.y \ge min(a.y,b.y) \&\& c.y \le max(a.y,b.y))){
       return true;
   } else return false;
bool anglecmp(point a, point b){
   if (collinear(pivot,a,b)) return dist(pivot,a) < dist(pivot,b);</pre>
   double d1x = a.x - pivot.x, d1y = a.y - pivot.y;
   double d2x = b.x - pivot.x, d2y = b.y - pivot.y;
   return (atan2(d1y,d1x) - atan2(d2y,d2x))<0;
}
point intersect (point s1, point e1,point s2, point e2){
   double x1,x2,x3,x4,y1,y2,y3,y4;
   x1 = s1.x; y1 = s1.y;
   x2 = e1.x; y2 = e1.y;
   x3 = s2.x; y3 = s2.y;
   x4 = e2.x; y4 = e2.y;
   double num1 = (x1*y2 - y1*x2) * (x3-x4) - (x1-x2) * (x3*y4 - y3*x4);
    double num2 = (x1*y2 - y1*x2) * (y3-y4) - (y1-y2) * (x3*y4 - y3*x4);
    double den = (x1-x2) * (y3-y4) - (y1-y2) * (x3-x4);
   double new_x = num1/den;
   double new_y = num2/den;
   return point(new_x,new_y);
}
void clip(vector <point> &poly_points, point point1, point point2){
   vector <point> new_points;
   new_points.clear();
   for (int i = 0; i < poly_points.size(); i++)</pre>
   {
       int k = (i+1) % poly_points.size();
       double i_pos = ccw(point1,point2,poly_points[i]);
       double k_pos = ccw(point1,point2,poly_points[k]);
       //in in
       if (i_pos <= 0 && k_pos <= 0)</pre>
           new_points.push_back(poly_points[k]);
       //out in
       else if (i_pos > 0 && k_pos <= 0)</pre>
                 new_points.push_back(intersect(point1,point2,poly_points[i],poly_points[k]));
           new_points.push_back(poly_points[k]);
       else if (i_pos <= 0 && k_pos > 0)
                 new_points.push_back(intersect(point1,point2,poly_points[i],poly_points[k]));
       //out out
       else
```

```
poly_points.clear();
   for (int i = 0; i < new_points.size(); i++)</pre>
       poly_points.push_back(new_points[i]);
double area (const vector <point> &P){
   double result =0.0:
   double x1, y1, x2, y2;
   for (int i =0; i<P.size()-1;i++){</pre>
       x1 = P[i].x;
       v1 = P[i].v;
       x2 = P[i+1].x;
       y2 = P[i+1].y;
       result += (x1*y2-x2*y1);
   return fabs(result)/2;
void suthHodgClip(vector <point> &poly_points, vector <point> clipper_points){
   for (int i=0; i<clipper_points.size(); i++)</pre>
       int k = (i+1) % clipper_points.size();
       clip(poly_points, clipper_points[i], clipper_points[k]);
vector<point> sortku (vector<point> P){
   int P0=0;
   int i;
   for (i = 1; i<3; i++){</pre>
       if (P[i].y<P[P0].y || (P[i].y == P[P0].y && P[i].x > P[P0].x)){
          P0 = i;
      }
   point temp = P[0];
   P[0] = P[P0];
   P[P0] = temp;
   pivot = P[0];
   sort(++P.begin(),P.end(),anglecmp);
   reverse(++P.begin(),P.end());
   return P;
   clipper_points = sortku(clipper_points);
   suthHodgClip(poly_points, clipper_points);
```

4 Graphs

4.1 Articulation Point and Bridge

```
// gr -> adj list
// vector vis, low -> initialize to -1
// int timer -> initialize to 0
void dfs(int pos, int dad = -1)
{
```

int kids = 0;

for(auto& i : gr[pos])

if(vis[i] >= 0)

```
12
```

vis[pos] = low[pos] = timer++;

if(i == dad) continue;

dfs(i, pos);

low[pos] = min(low[pos], vis[i]);

low[pos] = min(low[pos], low[i]);

4.2 Centroid Decomposition

```
int build_cen(int nw){
   com_cen(nw,0); //fungsi untuk itung size subtree
   int siz = sz[nw]/2; bool found = false;
   while(!found){
      found = true;
      for(int i:v[nw]){
         if(!rem[i] && sz[i] < sz[nw]){
            if(sz[i] > siz) {found = false; nw = i; break;}
      }
    }
   }
}big
   rem[nw] = true;
   for(int i:v[nw])if(!rem[i])par_cen[build_cen(i)] = nw;
   return nw;
}
```

4.3 Dinic's Maximum Flow

```
// O(VE log(max_flow)) if scaling == 1
// O((V + E) sqrt(E)) if unit graph (turn scaling off)
// O((V + E) sqrt(V)) if bipartite matching (turn scaling off)
// indices are 0-based
const 11 INF = 1e18;

struct Dinic
{
    struct Edge
    {
        int v;
        ll cap, flow;
    }
}
```

```
Edge(int _v, ll _cap) : v(_v), cap(_cap), flow(0) {}
};
int n;
11 lim;
vector<vector<int>> gr;
vector<Edge> e;
vector<int> idx, lv;
bool has_path(int s, int t)
   queue<int> q;
   q.push(s);
   lv.assign(n, -1);
   lv[s] = 0;
   while(!q.empty())
       int c = q.front();
       q.pop();
       if(c == t) break;
       for(auto& i : gr[c])
          11 cur_flow = e[i].cap - e[i].flow;
          if(lv[e[i].v] == -1 && cur_flow >= lim)
              lv[e[i].v] = lv[c] + 1;
              q.push(e[i].v);
      }
   return lv[t] != -1;
ll get_flow(int s, int t, ll left)
   if(!left || s == t) return left;
   while(idx[s] < (int) gr[s].size())</pre>
       int i = gr[s][idx[s]];
       if(lv[e[i].v] == lv[s] + 1)
          11 add = get_flow(
              e[i].v,
              min(left, e[i].cap - e[i].flow)
           if (add)
              e[i].flow += add;
              e[i ^ 1].flow -= add;
              return add;
       }
       ++idx[s];
   return 0;
Dinic(int vertices, bool scaling = 1) // toggle scaling here
   : n(vertices), lim(scaling ? 1 << 30 : 1), gr(n) {}
```

```
void add_edge(int from, int to, ll cap, bool directed = 1)
{
    gr[from].push_back(e.size());
    e.emplace_back(to, cap);
    gr[to].push_back(e.size());
    e.emplace_back(from, directed ? 0 : cap);
}

ll get_max_flow(int s, int t) // call this
{
    ll res = 0;
    while(lim) // scaling
    {
        while(lim) // scaling
        {
             idx.assign(n, 0);
             while(ll add = get_flow(s, t, INF)) res += add;
        }
        lim >>= 1;
    }
    return res;
}
```

4.4 Edmonds' Blossom

```
// Maximum matching on general graphs in O(V^2 E)
// Indices are 1-based
// Stolen from ko_osaga's cheatsheet
struct Blossom
{
   vector<int> vis, dad, orig, match, aux;
   vector<vector<int>> conn;
   int t, N;
   queue<int> Q;
   void augment(int u, int v)
       int pv = v;
       do
          pv = dad[v];
          int nv = match[pv];
          match[v] = pv;
          match[pv] = v;
          v = nv;
       } while(u != pv);
   int lca(int v, int w)
       ++t;
       while(true)
          if(v)
          {
```

```
if(aux[v] == t) return v;
          aux[v] = t;
          v = orig[dad[match[v]]];
       swap(v, w);
void blossom(int v, int w, int a)
   while(orig[v] != a)
       dad[v] = w;
       w = match[v];
       if(vis[w] == 1)
          Q.push(w);
          vis[w] = 0;
       orig[v] = orig[w] = a;
       v = dad[w];
}
bool bfs(int u)
   fill(vis.begin(), vis.end(), -1);
   iota(orig.begin(), orig.end(), 0);
   Q = queue<int>();
   Q.push(u);
   vis[u] = 0;
   while(!Q.empty())
       int v = Q.front(); Q.pop();
       for(int x : conn[v])
          if(vis[x] == -1)
              dad[x] = v; vis[x] = 1;
              if(!match[x])
                  augment(u, x);
                  return 1;
              Q.push(match[x]);
              vis[match[x]] = 0;
          else if(vis[x] == 0 && orig[v] != orig[x])
              int a = lca(orig[v], orig[x]);
              blossom(x, v, a);
              blossom(v, x, a);
      }
   }
   return false;
Blossom(int n) : // n = vertices
   vis(n + 1), dad(n + 1), orig(n + 1), match(n + 1),
```

```
aux(n + 1), conn(n + 1), t(0), N(n)
       for(int i = 0; i <= n; ++i)</pre>
       {
          conn[i].clear();
          match[i] = aux[i] = dad[i] = 0;
   }
   void add_edge(int u, int v)
       conn[u].push_back(v);
       conn[v].push_back(u);
   int solve() // call this for answer
   {
       int ans = 0;
       vector<int> V(N - 1);
       iota(V.begin(), V.end(), 1);
       shuffle(V.begin(), V.end(), mt19937(0x94949));
       for(auto x : V)
       {
          if(!match[x])
              for(auto y : conn[x])
                  if(!match[y])
                     match[x] = y, match[y] = x;
                     ++ans;
                     break;
              }
          }
       for(int i = 1; i <= N; ++i)</pre>
          if(!match[i] && bfs(i)) ++ans;
       return ans;
   }
};
```

4.5 Eulerian Path or Cycle

```
// finds a eulerian path / cycle
// visits each edge only once
// properties:
// - cycle: degrees are even
// - path: degrees are even OR degrees are even except for 2 vertices
// how to use: g = adjacency list g[n] = connected to n, undirected
// if there is a vertex u with an odd degree, call dfs(u)
// else call on any vertex
// ans = path result
vector<set<int>> g;
```

```
vector<int> ans;
void dfs(int u)
{
    while(g[u].size())
    {
       int v = *g[u].begin();
       g[u].erase(v);
       g[v].erase(u);
       dfs(v);
    }
    ans.push_back(u);
}
```

4.6 Hierholzer's Algorithm

```
// Eulerian on Directed Graph
stack<int> path; vector<int> euler;
inline void hierholzer()
   path.push(0); int cur=0;
   while (!path.empty())
       if (!adj[cur].empty())
          path.push(cur);
          int next=adj[cur].back();
          adj[cur].pob();
          cur=next;
      }
      else
          euler.pb(cur);
          cur=path.top();
          path.pop();
   reverse(euler.begin(),euler.end());
```

4.7 Hungarian

```
template <typename TD> struct Hungarian {
   TD INF = 1e9; //max_inf
   int n; vector<vector<TD> > adj; // cost[left][right]
   vector<TD> hl,hr,slk;
   vector<int> fl,fr,vl,vr,pre;
   deque<int> q;
   Hungarian(int _n) {
        n=_n; adj = vector<vector<TD> >(n, vector<TD> (n, 0));
   }
   int check(int i) {
        if (vl[i]=1,fl[i]!=-1) return q.push_back(fl[i]), vr[fl[i]]=1;
        while (i!=-1) swap(i,fr[fl[i]=pre[i]]); return 0;
```

for (int i = 0; i < n; i++) if (adj[i][f1[i]]) ret+=adj[i][f1[i]];</pre>

4.8 Minimum Cost Maximum Flow

for (int i = 0; i < n; i++) bfs(i);</pre>

TD ret=0:

return ret:

}; //i wiLL be matched with fl[i]

BINUS - Among

```
// 1-based index
template<class T>
using rpq = priority_queue<T, vector<T>, greater<T>>;
const 11 INF = 1e18;
struct MCMF
   struct Edge
       int v;
       11 cap, cost;
       int rev:
       Edge(int _v, ll _cap, ll _cost, int _rev) :
          v(_v), cap(_cap), cost(_cost), rev(_rev) {}
   };
   11 flow. cost:
   int st, ed, n;
   vector<ll> dist, H;
   vector<int> pv, pe;
   vector<vector<Edge>> adj;
   bool dijkstra()
   {
       rpq<pair<ll, int>> pq;
       dist.assign(n + 1, INF);
       dist[st] = 0;
```

```
pq.emplace(0, st);
       while(!pq.empty())
           auto [cst, pos] = pq.top();
          pq.pop();
          if(dist[pos] < cst) continue;</pre>
          for(int i = 0; i < (int) adj[pos].size(); ++i)</pre>
              auto& e = adj[pos][i];
              int nxt = e.v;
              11 nxt_cst = dist[pos] + e.cost + H[pos] - H[nxt];
              if(e.cap > 0 && nxt_cst < dist[nxt])</pre>
                  dist[nxt] = nxt_cst;
                  pe[nxt] = i;
                  pv[nxt] = pos;
                  pq.emplace(nxt_cst, nxt);
          }
      }
       return dist[ed] != INF;
   MCMF(int _n) : n(_n), pv(n + 1), pe(n + 1), adj(n + 1) {}
   void add_edge(int u, int v, ll cap, ll cst)
       adj[u].emplace_back(v, cap, cst, adj[v].size());
       adj[v].emplace_back(u, 0, -cst, adj[u].size() - 1);
   pair<11, 11> solve(int _st, int _ed)
       st = _st, ed = _ed;
       flow = 0, cost = 0;
       H.assign(n + 1, 0);
       while(dijkstra())
          for(int i = 0; i <= n; ++i)</pre>
              H[i] += dist[i];
          11 f = INF;
          for(int i = ed; i != st; i = pv[i])
              f = min(f, adj[pv[i]][pe[i]].cap);
          flow += f;
          cost += f * H[ed];
          for(int i = ed; i != st; i = pv[i])
              auto& e = adj[pv[i]][pe[i]];
              e.cap -= f;
              adj[i][e.rev].cap += f;
          }
       return {flow, cost};
};
```

4.9 SCC and Strong Orientation

```
#define N 10020
vector<int> adj[N];
bool vis[N], ins[N];
int disc[N], low[N], gr[N];
stack<int> st;
int id,grid;
void scc(int cur, int par)
{
   disc[cur]=low[cur]=++id;
   vis[cur]=ins[cur]=1;
   st.push(cur);
   for(int to : adj[cur])
       //if (to==par) continue; // ini untuk SO(scc undirected)
       if (!vis[to]) scc(to.cur):
       if (ins[to]) low[cur]=min(low[cur],low[to]);
   if(low[cur] == disc[cur])
       grid++; // group id
       while(ins[cur])
          gr[st.tp]=grid; ins[st.tp]=0; st.pop();
```

5 Math

5.1 Berlekamp-Massey

```
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
typedef long long 11;
#define SZ 233333
const int MOD=1e9+7; //or any prime
11 qp(11 a,11 b)
{
   ll x=1; a%=MOD;
   while(b)
       if(b&1) x=x*a%MOD:
       a=a*a%MOD: b>>=1:
   return x;
namespace linear_seq {
   vector<int> BM(vector<int> x)
       //ls: (shortest) relation sequence (after filling zeroes) so far
       //cur: current relation sequence
       vector<int> ls,cur;
       //lf: the position of ls (t')
       //ld: delta of ls (v')
       int 1f = -1, 1d = -1;
```

```
for(int i=0;i<int(x.size());++i)</pre>
       11 t=0:
       //evaluate at position i
       for(int j=0;j<int(cur.size());++j)</pre>
           t=(t+x[i-j-1]*(11)cur[j])%MOD;
       if((t-x[i])%MOD==0) continue; //good so far
       //first non-zero position
       if(!cur.size())
           cur.resize(i+1):
           lf=i; ld=(t-x[i])%MOD;
           continue:
       //cur=cur-c/ld*(x[i]-t)
       11 k=-(x[i]-t)*qp(1d,MOD-2)%MOD/*1/1d*/;
       vector<int> c(i-lf-1); //add zeroes in front
       c.pb(k);
       for(int j=0;j<int(ls.size());++j)</pre>
           c.pb(-ls[j]*k%MOD);
       if(c.size() < cur.size()) c.resize(cur.size());</pre>
       for(int j=0;j<int(cur.size());++j)</pre>
           c[j]=(c[j]+cur[j])%MOD;
       //if cur is better than ls, change ls to cur
       if(i-lf+(int)ls.size()>=(int)cur.size())
           ls=cur,lf=i,ld=(t-x[i])%MOD;
       cur=c;
   for(int i=0:i<int(cur.size()):++i)</pre>
       cur[i]=(cur[i]%MOD+MOD)%MOD;
   return cur;
int m; //length of recurrence
//a: first terms
//h: relation
ll a[SZ],h[SZ],t_[SZ],s[SZ],t[SZ];
//calculate p*q mod f
void mull(11*p,11*q)
   for(int i=0;i<m+m;++i) t_[i]=0;</pre>
   for(int i=0;i<m;++i) if(p[i])</pre>
       for(int j=0;j<m;++j)</pre>
           t_{[i+j]}=(t_{[i+j]}+p[i]*q[j])%MOD;
   for(int i=m+m-1;i>=m;--i) if(t_[i])
       //miuns t_[i]x^{i-m}(x^m-\sum_{j=0}^{m-1} x^{m-j-1}h_j)
       for(int j=m-1; ~j; --j)
           t_{[i-j-1]}=(t_{[i-j-1]}+t_{[i]}*h_{[j]})%MOD;
   for(int i=0;i<m;++i) p[i]=t_[i];</pre>
ll calc(ll K)
   for(int i=m;~i;--i)
       s[i]=t[i]=0;
   //init
   s[0]=1; if(m!=1) t[1]=1; else t[0]=h[0];
   //binary-exponentiation
   while(K)
       if(K&1) mull(s,t);
       mull(t,t); K>>=1;
```

16

```
11 su=0;
       for(int i=0;i<m;++i) su=(su+s[i]*a[i])%MOD;</pre>
       return (su%MOD+MOD)%MOD;
    int work(vector<int> x,ll n)
       if(n<int(x.size())) return x[n];</pre>
       vector<int> v=BM(x); m=v.size(); if(!m) return 0;
       for(int i=0;i<m;++i) h[i]=v[i],a[i]=x[i];</pre>
       return calc(n);
   }
using linear_seq::work;
const vector<int> sequence = {
   0, 2, 2, 28, 60, 836, 2766
};
int main()
{
    cout<<work(sequence, 7) << '\n';</pre>
```

5.2 Catalan

```
long long cat(long long n){
   long long ret = 1;
   for(long long i = 0; i < n; i++){
      ret = ret*(2*n-i);
      ret = ret/(i+1);
   }
   ret = ret/(n+1);
   return ret;
}

ll superCatalan(int n){
   if(n <= 2)return 1;
   return (3*(2*n-3)*sc(n-1)-(n-3)*sc(n-2)) / n;
} // 1,1,1,3,11,45, 197, 903, 4279, 20793, 103049</pre>
```

5.3 Extended Euclidean GCD

```
// computes x and y such that ax + by = gcd(a, b) in O(log (min(a, b)))
// returns {gcd(a, b), x, y}
tuple<int, int, int> gcd(int a, int b)
{
   if(b == 0) return {a, 1, 0};
   auto [d, x1, y1] = gcd(b, a % b);
   return {d, y1, x1 - y1 * (a / b)};
}
```

5.4 Fast Fourier Transform

```
using ld = double; // change to long double if reach 10^18
using cd = complex<ld>;
const ld PI = acos(-(ld)1);
void fft(vector<cd> &a, int sign = 1)
   int n = a.size();
   ld theta = sign * 2 * PI / n;
   for(int i = 0, j = 1; j < n-1; j++)
       for(int k = n >> 1; k > (i ^= k); k >>= 1);
       if(j < i) swap(a[i], a[j]);</pre>
   for(int m, mh = 1; (m = mh << 1) <= n; mh = m)</pre>
       int irev = 0;
       for(int i = 0; i < n; i += m)</pre>
          cd w = exp(cd(0, theta*irev));
          for(int k = n >> 2; k > (irev ^= k); k >>= 1);
          for(int j = i; j < mh + i; j++)</pre>
              int k = j+mh;
              cd x = a[j] - a[k];
              a[j] += a[k];
              a[k] = w * x;
          }
      }
   if(sign == -1) for(cd &i : a) i /= n;
vector<ll> multiply(vector<ll> const& a, vector<ll> const &b)
   vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b.end());
   int n = 1;
   while(n < a.size() + b.size()) n <<= 1;</pre>
   fa.resize(n); fb.resize(n);
   fft(fa); fft(fb);
   for(int i = 0: i < n: i++) fa[i] *= fb[i]:
   fft(fa, -1);
   vector<ll> res(n);
   for(int i = 0; i < n; i++) res[i] = round(fa[i].real());</pre>
   return res;
```

5.5 Fibonacci Check

5.6 Gauss-Jordan

```
// Gauss-Jordan elimination with full pivoting.
//
// Uses:
// (1) solving systems of linear equations (AX=B)
// (2) inverting matrices (AX=I)
// (3) computing determinants of square matrices
//
// Running time: O(n^3)
//
// INPUT: a[][] = an nxn matrix
//
            b[][] = an nxm matrix
11
// OUTPUT: X = an nxm matrix (stored in b[][])
//
            A^{-1} = an nxn matrix (stored in a[][])
            returns determinant of a[][]
//
const double EPS = 1e-10;
typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T GaussJordan(VVT &a, VVT &b) {
   const int n = a.size();
   const int m = b[0].size();
   VI irow(n), icol(n), ipiv(n);
   T det = 1:
   for (int i = 0; i < n; i++) {
       int pj = -1, pk = -1;
       for (int j = 0; j < n; j++) if (!ipiv[j])</pre>
           for (int k = 0; k < n; k++) if (!ipiv[k])
              if (p_j == -1 \mid | fabs(a[j][k]) > fabs(a[p_j][pk])) { p_j = j; pk = k; }
       if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl; exit(0); }</pre>
       ipiv[pk]++;
       swap(a[pj], a[pk]);
       swap(b[pj], b[pk]);
       if (pj != pk) det *= -1;
       irow[i] = pj;
       icol[i] = pk;
       T c = 1.0 / a[pk][pk];
       det *= a[pk][pk];
       a[pk][pk] = 1.0;
       for (int p = 0; p < n; p++) a[pk][p] *= c;</pre>
       for (int p = 0; p < m; p++) b[pk][p] *= c;</pre>
       for (int p = 0; p < n; p++) if (p != pk) {</pre>
           c = a[p][pk];
           a[p][pk] = 0;
           for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;</pre>
           for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
   for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) {
       for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);</pre>
   return det;
int main() {
   const int n = 4;
```

```
const int m = 2;
   double A[n][n] = { {1,2,3,4},{1,0,1,0},{5,3,2,4},{6,1,4,6} };
   double B[n][m] = \{ \{1,2\}, \{4,3\}, \{5,6\}, \{8,7\} \};
   VVT a(n), b(n);
   for (int i = 0; i < n; i++) {</pre>
       a[i] = VT(A[i], A[i] + n);
       b[i] = VT(B[i], B[i] + m);
   double det = GaussJordan(a, b);
   // expected: 60
   cout << "Determinant: " << det << endl;</pre>
   // expected: -0.233333 0.166667 0.133333 0.0666667
               0.166667 0.166667 0.333333 -0.333333
   11
   11
               0.233333 0.833333 -0.133333 -0.0666667
   11
               0.05 -0.75 -0.1 0.2
   cout << "Inverse: " << endl;</pre>
   for (int i = 0; i < n; i++) {</pre>
       for (int j = 0; j < n; j++)
           cout << a[i][j] << ' ';
       cout << endl;</pre>
   // expected: 1.63333 1.3
   11
               -0.166667 0.5
   11
               2.36667 1.7
   11
               -1.85 -1.35
   cout << "Solution: " << endl;</pre>
   for (int i = 0; i < n; i++) {</pre>
       for (int j = 0; j < m; j++)
           cout << b[i][j] << ' ';
       cout << endl;</pre>
   }
}
```

18

5.7 Generalized CRT

```
template<typename T>
T extended_euclid(T a, T b, T &x, T &y) {
   if (b == 0) {
       x = 1;
       y = 0;
       return a;
   T xx, yy, gcd;
   gcd = extended_euclid(b, a % b, xx, yy);
   x = yy;
   y = xx - (yy * (a / b));
   return gcd;
template<typename T>
T MOD(T a, T b) { return (a%b + b) % b; }
// return x, lcm. x = a % n && x = b % m
template<typename T>
pair<T,T> CRT(T a, T n, T b, T m) {
   T _n, _m;
   T gcd = extended_euclid(n, m, _n, _m);
   if (n == m) {
```

```
if (a == b) return pair<T,T>(a, n);
else return pair<T,T>(-1, -1);
} else if (abs(a-b) % gcd != 0) return pair<T,T>(-1, -1);
else {
   T lcm = m * n / gcd;
   T x = MOD(a + MOD(n*MOD(_n*((b-a)/gcd), m/gcd), lcm), lcm);
   return pair<T,T>(x, lcm);
}}
```

5.8 Generalized Lucas Theorem

```
/*Special Lucas : (n,k) % p^x
 fctp[n] = Product of the integers less than or equal
 to n that are not divisible by p
 Precompute fctp*/
LL p
LL E(LL n, int m) {
   LL tot = 0;
   while(n!=0){
       tot += n/m, n/=m;
   return tot;
LL funct(LL n,LL base){
   LL ans = fast(fctp[base],n/base,base) * fctp[n%base] %base;
   return ans:
LL F(LL n, LL base) {
   LL ans = 1:
   while(n!=0){
       ans = (ans * funct(n,base))%base;
       n/=p;
   return ans:
LL special_lucas(LL n,LL r,LL base){
   p = fprime(base);
   LL pow = E(n,p) - E(n-r,p) - E(r,p);
   LL TOP = fast(p,pow,base) * F(n,base)%base;
   LL BOT = F(r,base) * F(n-r,base)%base;
   return (TOP * fast(BOT, totien(base) - 1, base))%base;
//End of Special Lucas
```

5.9 Linear Diophantine

```
//FOR SOLVING MINIMUM ABS(X) + ABS(Y)

11 x,y,newX,newY,target=0;

11 extGcd(11 a,11 b){
    if(b==0){
        x=1,y=0;
        return a;
    }

11 ret = extGcd(b,a%b);
```

```
newX = y;
   newY = x - y * (a/b);
   x = newX:
   y = newY;
   return ret;
11 fix(ll sol,ll rt){
   11 ret = 0:
   //CASE SOLUTION(X/Y) < TARGET
   if(sol < target)ret = -floor(abs(sol+target)/(double)rt);</pre>
   //CASE SOLUTION(X/Y) > TARGET
   if(sol > target)ret = ceil(abs(sol-target)/(double)rt);
   return ret:
ll work(ll a, ll b, ll c){
   11 gcd = extGcd(a,b);
   11 \text{ solX} = x*(c/gcd);
   11 \text{ solY} = y*(c/gcd);
   a/=gcd;b/=gcd;
   11 fi = abs(fix(solX,b));
   11 se = abs(fix(solY,a));
   11 lo = min(fi.se):
   11 hi = max(fi,se);
   11 ans = abs(solX) + abs(solY);
   for(ll i = lo; i<=hi; i++){</pre>
       ans = min(ans, abs(solX+i*b) + abs(solY-i*a));
       ans = min(ans, abs(solX-i*b) + abs(solY+i*a));
   return ans;
```

5.10 Miller-Rabin and Pollard's Rho

```
namespace MillerRabin
   const vector<ll> primes = { // deterministic up to 2^64 - 1
      2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37
   11 gcd(11 a, 11 b)
   {
      return b ? gcd(b, a % b) : a;
   ll powa(ll x, ll y, ll p) // (x ^ y) % p
      if(!y) return 1;
       if(y & 1) return ((__int128) x * powa(x, y - 1, p)) % p;
      ll temp = powa(x, y >> 1, p);
      return ((__int128) temp * temp) % p;
   bool miller_rabin(ll n, ll a, ll d, int s)
      11 x = powa(a, d, n);
       if(x == 1 | | x == n - 1) return 0:
      for(int i = 0; i < s; ++i)</pre>
          x = ((_int128) x * x) % n;
          if(x == n - 1) return 0;
```

```
20
```

```
return 1;
   bool is_prime(ll x) // use this
       if(x < 2) return 0;
       int r = 0;
       11 d = x - 1:
       while((d \& 1) == 0)
          d >>= 1:
          ++r;
       for(auto& i : primes)
          if(x == i) return 1;
          if(miller_rabin(x, i, d, r)) return 0;
       return 1:
}
namespace PollardRho
   mt19937_64 generator(chrono::steady_clock::now()
                      .time_since_epoch().count());
   uniform_int_distribution<ll> rand_ll(0, LLONG_MAX);
   11 f(11 x, 11 b, 11 n) // (x^2 + b) % n
       return (((__int128) x * x) % n + b) % n;
   ll rho(ll n)
       if(n % 2 == 0) return 2;
       11 b = rand_ll(generator);
       11 x = rand_ll(generator);
       11 y = x;
       while(1)
       {
          x = f(x, b, n);
          y = f(f(y, b, n), b, n);
          11 d = MillerRabin::gcd(abs(x - y), n);
          if(d != 1) return d;
       }
   }
   void pollard_rho(ll n, vector<ll>& res)
       if(n == 1) return;
       if(MillerRabin::is_prime(n))
          res.push_back(n);
          return;
       11 d = rho(n);
       pollard_rho(d, res);
       pollard_rho(n / d, res);
    vector<ll> factorize(ll n, bool sorted = 1) // use this
       vector<ll> res:
```

```
pollard_rho(n, res);
  if(sorted) sort(res.begin(), res.end());
  return res;
}
```

5.11 Modular Linear Equation

```
// finds all solutions to ax = b (mod n)
vi modular_linear_equation_solver(int a, int b, int n) {
   int x, y; vi ret; int g = extended_euclid(a, n, x, y);
   if (!(b%g)) {
        x = mod(x*(b / g), n);
        for (int i = 0; i < g; i++)
            ret.push_back(mod(x + i*(n / g), n));
   }
   return ret;
}</pre>
```

5.12 Number Theoretic Transform

```
namespace FFT {
   /* ---- Adjust the constants here ---- */
   const int LN = 24; \frac{1}{23}
   const int N = 1 << LN;</pre>
   typedef long long LL; // 2**23 * 119 + 1. 998244353
   // 'MOD' must be of the form 2**'LN' * k + 1, where k odd.
   const LL MOD = 9223372036737335297; // 2**24 * 54975513881 + 1.
   const LL PRIMITIVE_ROOT = 3; // Primitive root modulo 'MOD'.
   /* ---- End of constants ---- */
   LL root[N];
   inline LL power(LL x, LL y) {
      LL ret = 1;
       for (; y; y >>= 1) {
          if (y & 1) ret = (__int128) ret * x % MOD;
          x = (_int128) x * x % MOD;
      return ret;
   inline void init_fft() {
       const LL UNITY = power(PRIMITIVE_ROOT, MOD-1 >> LN);
       root[0] = 1;
       for (int i=1; i<N; i++) {</pre>
          root[i] = (__int128) UNITY * root[i-1] % MOD;
       }return;
   // n = 2<sup>k</sup> is the length of polynom
   inline void fft(int n, vector<LL> &a, bool invert) {
       for (int i=1, j=0; i<n; ++i) {</pre>
          int bit = n \gg 1:
          for (; j>=bit; bit>>=1) j -= bit;
          j += bit;
          if (i < j) swap(a[i], a[j]);</pre>
```

```
for (int len=2; len<=n; len<<=1) {</pre>
       LL wlen = (invert ? root[N - N/len] : root[N/len]);
       for (int i=0: i<n: i+=len) {</pre>
          LL w = 1;
          for (int j=0; j<len>>1; j++) {
              LL u = a[i+j];
              LL v = (_int128) a[i+j + len/2] * w % MOD;
              a[i+j] = ((__int128) u + v) % MOD;
              a[i+j + len/2] = ((\_int128) u - v + MOD) % MOD;
              w = (__int128) w * wlen % MOD;
       }
   if (invert) {
       LL inv = power(n, MOD-2);
       for (int i=0; i<n; i++) a[i] = (__int128) a[i] * inv % MOD;
   }return;
inline vector<LL> multiply(vector<LL> a, vector<LL> b) {
   vector<LL> c;
   int len = 1 << 32 - __builtin_clz(a.size() + b.size() - 2);</pre>
   a.resize(len, 0); b.resize(len, 0);
   fft(len, a, false); fft(len, b, false);
   c.resize(len):
   for (int i = 0; i < len; ++i)c[i] = (__int128) a[i]*b[i]%MOD;</pre>
   fft(len, c, true);
   return c;
//FFT::init_fft(); wajib di panggil init di awal
```

6 Miscellaneous

6.1 Dates

}

6.1.1 Day of Date

```
// O-based
const vector<int> T = {
    0, 3, 2, 5, 0, 3,
    5, 1, 4, 6, 2, 4
}
int day(int d, int m, int y)
{
    y -= (m < 3);
    return (y + y / 4 - y / 100 + y / 400 + T[m - 1] + d) % 7;
}</pre>
```

6.1.2 Number of Days since 1-1-1

```
int rdn(int d, int m, int y)
{
```

```
if(m < 3) --y, m += 12;
return 365 * y + y / 4 - y / 100 + y / 400
+ (153 * m - 457) / 5 + d - 306;</pre>
```

6.2 Enumerate Subsets of a Bitmask

```
int x = 0; do {
    // do stuff with the bitmask here
    x = (x + 1 + ~m) & m;
} while(x != 0);
```

6.3 Fast IO

```
int read()
   char c;
   do
       c = getchar_unlocked();
   } while(c < 33);</pre>
   int res = 0;
   int mul = 1;
   if(c == '-')
   {
      mul = -1;
       c = getchar_unlocked();
   while('0' <= c && c <= '9')
      res = res * 10 + c - '0';
      c = getchar_unlocked();
   return res * mul:
void write(int x)
   static char wbuf[10]:
   if(x < 0)
      putchar_unlocked('-');
      x = -x;
   int idx = 0;
   while(x)
       wbuf[idx++] = x % 10;
      x /= 10;
   if(idx == 0)
   {
      putchar_unlocked('0');
```

```
for(int i = idx - 1; i >= 0; --i)
{
     putchar_unlocked(wbuf[i] + '0');
}

void write(const char* s)
{
     while(*s)
     {
        putchar_unlocked(*s);
        ++s;
     }
}
```

6.4 Int to Roman

```
const string R[] = {
    "M", "CM", "D", "CD", "C", "XC", "L",
    "XL", "X", "IX", "V", "IV", "IV", "I"
};

const int N[] = {
    1000, 900, 500, 400, 100, 90,
    50, 40, 10, 9, 5, 4, 1
};

string to_roman(int x)
{
    if (x == 0) return "0"; // Not decimal 0!
        string res = "";
    for (int i = 0; i < 13; ++i)
        while (x >= N[i]) x -= N[i], res += R[i];
    return res;
}
```

6.5 Josephus Problem

```
11 josephus(11 n, 11 k) // O(k log n)
{
    if(n == 1) return 0;
    if(k == 1) return n - 1;
    if(k > n) return (josephus(n - 1, k) + k) % n;
    ll cnt = n / k;
    ll res = josephus(n - cnt, k);
    res -= n % k;
    if(res < 0) res += n;
    else res += res / (k - 1);
    return res;
}
int josephus(int n, int k) // O(n)
{
    int res = 0;</pre>
```

```
for(int i = 1; i <= n; ++i)
  res = (res + k) % i;
return res + 1;</pre>
```

22

6.6 Template

```
// RNG - rand_int(min, max), inclusive
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
template<class T>
T rand_int(T mn, T mx)
{
    return uniform_int_distribution<T>(mn, mx)(rng);
}
```

7 Strings

7.1 Aho-Corasick

```
const int K = 26;
struct Vertex {
   int next[K];
   bool leaf = 0;
   int p = -1, ans = 0;
   char pch;
    int link = -1, mlink = -1;
   //magic link, is the link to find the nearest leaf
   int go[K];
   Vertex(int p=-1, char ch='$') : p(p), pch(ch) {
       fill(begin(next), end(next), -1);
       fill(begin(go), end(go), -1);
};
vector<Vertex> t;
int add_string(string const& s) {
   int v = 0:
   for (char ch : s) {
       int c = ch - 'a':
       if (t[v].next[c] == -1) {
           t[v].next[c] = t.size();
           t.emplace_back(v, ch);
       } v = t[v].next[c];
   t[v].leaf = 1;
   return v;
int go(int v, char ch);
int get_link(int v) {
   if (t[v].link == -1) {
       if (v == 0 || t[v].p == 0) t[v].link = 0;
       else t[v].link = go(get_link(t[v].p), t[v].pch);
```

```
return t[v].link;
int get_mlink(int v) {
   if (t[v].mlink == -1) {
       if (v == 0 || t[v].p == 0) t[v].mlink = 0;
       else{
          t[v].mlink = go(get_link(t[v].p), t[v].pch);
          if(t[v].mlink && !t[t[v].mlink].leaf){
              if(t[t[v].mlink].mlink==-1)get_mlink(t[v].mlink);
              t[v].mlink = t[t[v].mlink].mlink;
   } return t[v].mlink:
int go(int v, char ch) {
   int c = ch - 'a';
   if (t[v].go[c] == -1) {
       if (t[v].next[c] != -1) t[v].go[c] = t[v].next[c];
       else t[v].go[c] = v == 0 ? 0 : go(get_link(v), ch);
   } return t[v].go[c];
//t.pb(Vertex());
```

7.2 Eertree

```
/*
  Eertree - keep track of all palindromes and its occurences
  This code refers to problem Longest Palindromic Substring
https://www.spoj.com/problems/LPS/
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
struct node {
   int next[26]:
   int sufflink;
   int len, cnt;
};
const int N = 1e5+69:
int n;
string s;
node tree[N]:
int idx, suff;
int ans = 0:
void init_eertree() {
   idx = suff = 2:
   tree[1].len = -1, tree[1].sufflink = 1;
   tree[2].len = 0, tree[2].sufflink = 1;
bool add_letter(int x) {
   int cur = suff, curlen = 0;
   int nw = s[x] - a;
```

```
while(1) {
       curlen = tree[cur].len:
       if(x-curlen-1) == 0 && s[x-curlen-1] == s[x])
       cur = tree[cur].sufflink;
   if(tree[cur].next[nw]) {
       suff = tree[cur].next[nw];
      return 0;
   tree[cur].next[nw] = suff = ++idx;
   tree[idx].len = tree[cur].len + 2;
   ans = max(ans, tree[idx].len);
   if(tree[idx].len == 1) {
       tree[idx].sufflink = 2;
      tree[idx].cnt = 1;
      return 1;
   while(1) {
       cur = tree[cur].sufflink;
       curlen = tree[cur].len;
      if(x-curlen-1) = 0 && s[x-curlen-1] == s[x]) {
          tree[idx].sufflink = tree[cur].next[nw];
          break;
      }
   tree[idx].cnt = tree[tree[idx].sufflink].cnt + 1;
   return 1;
int main() {
   ios::sync_with_stdio(0); cin.tie(0);
   cin >> n >> s;
   init_eertree();
   for(int i = 0; i < n; i++) {</pre>
      add_letter(i);
   }
   cout << ans << '\n';
   return 0;
}
```

7.3 Manacher's Algorithm

```
// Computes lps array. lps[i] means the longest palindromic substring centered at i (when i is even,
   it is between characters. when it is odd, it is on characters)lps[0] = 0; lps[1] = 1;
REP(i,2,2*str.size()){
   int l = i/2 - lps[i]/2;
   int r = (i-1)/2 + lps[i]/2;
   while(1){ // widen
       if(l == 0 || r+1 == str.size())break;
```

23

7.4 Suffix Array

```
// stores result in sa and lcp
// if lcp is needed, call SuffixArray(str, 1)
struct SuffixArray
   int n;
   vector<int> sa, lcp, rnk, cnt;
   vector<pair<int, int>> p;
   SuffixArray(const string& s, bool calc_lcp = 0) :
       n(s.length()), sa(n), lcp(calc_lcp ? n : 0), rnk(n),
       cnt(max(n, 256)), p(n)
       for(int i = 0; i < n; ++i) rnk[i] = s[i];</pre>
       iota(sa.begin(), sa.end(), 0);
       for(int i = 1; i < n; i <<= 1) update_sa(i);</pre>
       if(!calc_lcp) return;
       vector<int> phi(n), plcp(n);
       phi[sa[0]] = -1;
       for(int i = 1; i < n; ++i) phi[sa[i]] = sa[i - 1];</pre>
       int 1 = 0;
       for(int i = 0: i < n: ++i)
          if(phi[i] == -1) plcp[i] = 0;
          else
              while((i + 1 < n) && (phi[i] + 1 < n)</pre>
                    && (s[i + 1] == s[phi[i] + 1])) ++1;
```

```
plcp[i] = 1;
               1 = \max(1 - 1, 0);
       for(int i = 0; i < n; ++i) lcp[i] = plcp[sa[i]];</pre>
   void update_sa(int len)
       sort_sa(len); sort_sa(0);
       for(int i = 0; i < n; ++i) p[i] = {rnk[i], rnk[(i + len) % n]};</pre>
       auto lst = p[sa[0]];
       rnk[sa[0]] = 0;
       int cur = 0:
       for(int i = 1; i < n; ++i)</pre>
           if(lst != p[sa[i]])
               lst = p[sa[i]];
               ++cur;
           rnk[sa[i]] = cur;
   void sort_sa(int offset)
       fill(cnt.begin(), cnt.end(), 0);
       for(int i = 0; i < n; ++i) ++cnt[rnk[(i + offset) % n]];</pre>
       int sum = 0;
       for(int i = 0; i < (int) cnt.size(); ++i)</pre>
           int temp = cnt[i];
           cnt[i] = sum;
           sum += temp;
       vector<int> temp(n);
       for(int i = 0; i < n; ++i)</pre>
           int cur = cnt[rnk[(sa[i] + offset) % n]]++;
           temp[cur] = sa[i];
       sa = move(temp);
   }
};
```