1

GATE-ES.47

EE23BTECH11046 - Poluri Hemanth*

Question:Second order ordinary differential equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$ has values y = 2 and $\frac{dy}{dx} = 1$ at x = 0. The value of y at x = 1 is?(round of f to three decimal places)

Solution:

We convert given second order differential equation to s domain using Laplace transform and solve for Y(s) and take inversion to get y(x).

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y \stackrel{\mathcal{L}}{\longleftrightarrow} s^2Y(s) - sy(0) - y'(0) - sY(s) + y(0) - 2Y(s)$$
(1)

y(0) = 2, y'(0) = 1. (2)

$$Y(s)(s^2 - s - 2) = 2s - 1$$
 (3)

$$Y(s) = \frac{2s - 1}{s^2 - s - 2} \tag{4}$$

$$Y(s) = \frac{1}{s-2} + \frac{1}{s+1} \tag{5}$$

For inversion of Y(s) in partial fractions-

$$\frac{b}{s+a} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} be^{ax} \tag{6}$$

Where b, a are real numbers, we invert Y(s) to get y(x):-

From (6)

\mathcal{L}^{-1}	
$Y(s) \longleftrightarrow y(x)$	(7)

$$y(x) = e^{-2x} + e^x (8)$$

$$y(1) = e^{-2} + e (9)$$

$$y(1) = 10.107 \tag{10}$$

Symbol
 Values
 Description

$$Y(s)$$
 $\frac{2s-1}{x^2-x-2}$
 y in s domain

 $y(x)$
 $e^{-2x} + e^x$
 y in x domain

 $y(0)$
 2
 y at $x = 0$
 $y'(0)$
 1
 $y'(x)$ at $x = 0$

 TABLE I

TABLE I PARAMETERS