Apellidos,	Nombre:	DNI:
------------	---------	------

COMPUTABILIDAD

1. **(2 puntos)** Sea P1 un programa while que utiliza k_1 variables y cuya función semántica binaria es $\varphi_{P1}^{(2)}(x,y) = g(x,y)$; constrúyase un programa while P, que utilice P1 para calcular la siguiente función:

$$\varphi_P^{(2)}(x,y) = x + \sum_{i=1}^y g(i,y)$$

Nota: Se permite utilizar la macro de la suma y de la asignación.

2. (1,5 puntos) Dado el siguiente programa while P

```
begin
   X1=pred(X1);
   while X1 > X4 do
   begin
        X4 := succ(X4);
        X2 := X2 + X1;
   end
   X1 := X2;
   X4 := 0;
   while X4 ≠ X3 do
   begin
        X4 := succ(X4);
        X1 := pred(X1);
   end
end
```

Indica sus funciones semánticas de aridad 1, 2 y 3.

3. **(1,5 puntos)** Construye una máquina de Turing Mf=(X,Q,T,i,F) que compute la función f usando una máquina de Turing Mg=(X_g , Q_g , T_g ,p0, F_g) cuya función semántica binaria es g(x,y) y de la que solo sabemos que su estado inicial es p0 y su conjunto de estados es Q_g ={p0,p1,...,p5}. Debes especificar X, Q, T, i y F.

$$f(x) = \begin{cases} g(x+1,0) & \text{si } x \text{ es par} \\ x-1 & \text{en otro caso} \end{cases}$$

Computabilidad

Apellidos	Nombre:	DNI:
------------------	---------	------

4. **(1,5 puntos)** Determina las funciones semánticas **unaria y binaria** que computa la siguiente máquina de Turing (q0 estado inicial y qf único estado final).

(q0, 1, 0, D, q1)	(q2, 0, 0, I, q3)	(q5, 1, 1, I, q5)
(q1, 1, 1, D, q1)	(q3, 1, 0, I, q4)	(q5, 0, 1, D, q0)
(q1, 0, 0, D, q2)	(q4, 1, 1, I, q4)	(q0, 0, 0, H, qf)
(q2, 1, 1, D, q2)	(q4, 0, 0, I, q5)	

- 5. Consideramos 'e' tal que $\varphi_e(X,Y,Z) = X+(Y*Z)$ (es decir, 'e' es el número que codifica un programa while cuya función semántica es f(X,Y,Z) = X+(Y*Z).
 - a) **(0,5 puntos)** Pon un ejemplo de una función unaria g para la que pueda demostrarse que es computable aplicando el teorema de parametrización a la función $\varphi_e(X,Y,Z)$.
 - b) **(0,5 puntos)** ¿Cuál sería, aplicando el teorema de parametrización, un número 'a' que codifica un programa while cuya función semántica unaria sea la función g definida en el apartado anterior?
- 6. **(1,5 puntos)** Dado un programa While P, determinar si la función semántica unaria asociada a P es la función f(x,y)=2*(x+y). Demuestra, la irresolubilidad de este problema utilizando el método de reducción. Se permite el uso de todas las macros vistas en clase.
- 7. **(1 punto)** Describe brevemente qué resultado devuelve la función universal $\Phi(x,y,z)$.