

Machine Learning

### Multiple features

### Multiple features (variables).

| Size (feet²)    | Price (\$1000) |
|-----------------|----------------|
| $\rightarrow x$ | y <b>~</b>     |
| 2104            | 460            |
| 1416            | 232            |
| 1534            | 315            |
| 852             | 178            |
|                 |                |

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

### Multiple features (variables).

| Size (feet²) | Number of bedrooms | Number of floors | Age of home<br>(years) | Price (\$1000) |
|--------------|--------------------|------------------|------------------------|----------------|
| 2104         | 5                  | 1                | 45                     | 460            |
| 1416         | 3                  | 2                | 40                     | 232            |
| 1534         | 3                  | 2                | 30                     | 315            |
| 852          | 2                  | 1                | 36                     | 178            |
| •••          | •••                | •••              | •••                    | •••            |

### Multiple features (variables).

| Siz                                                                        | e (feet²)                                                                                             | Number of bedrooms | Number of floors | Age of home<br>(years) | Price (\$1000)                                         |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------|------------------|------------------------|--------------------------------------------------------|
|                                                                            | <b>×</b> 1                                                                                            | Xz                 | *3               | *4                     | 9                                                      |
|                                                                            | 2104                                                                                                  | 5                  | 1                | 45                     | 460                                                    |
| <b>→</b> [                                                                 | 1416                                                                                                  | 3                  | 2                | 40                     | 232 / M= 47                                            |
|                                                                            | 1534                                                                                                  | 3                  | 2                | 30                     | 315                                                    |
|                                                                            | 852                                                                                                   | 2                  | 1                | 36                     | 178                                                    |
|                                                                            |                                                                                                       |                    | •••              |                        |                                                        |
| Notat                                                                      | tion:                                                                                                 | <b>*</b>           | 4                | 1                      | $\chi^{(2)} = \begin{bmatrix} 1416 \\ 2 \end{bmatrix}$ |
| $\rightarrow n$ = number of features $n = 4$                               |                                                                                                       |                    |                  | <u> </u>               |                                                        |
| $\longrightarrow x^{(i)}$ = input (features) of $i^{th}$ training example. |                                                                                                       |                    |                  | i. (3) [40]            |                                                        |
| _> a                                                                       | $\rightarrow x_j^{(i)}$ = value of feature $j$ in $i^{th}$ training example. $\checkmark$ $=$ $=$ $=$ |                    |                  |                        |                                                        |

#### Hypothesis:

Previously: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

For convenience of notation, define 
$$x_0 = 1$$
  $(x_0) = 1$   $(x_0)$ 

Multivariate linear regression.



**Machine Learning** 

Gradient descent for multiple variables

Hypothesis: 
$$h_{ heta}(x)= heta^Tx= heta_0x_0+ heta_1x_1+ heta_2x_2+\cdots+ heta_nx_n$$

Parameters:  $\theta_0, \theta_1, \dots, \theta_n$   $\Diamond$  n+1 - director

Cost function:

Tunction: 
$$\frac{J(\theta_0,\theta_1,\ldots,\theta_n)}{J(\Theta_0,\theta_1,\ldots,\theta_n)} = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

**Gradient descent:** 

Repeat 
$$\{$$
  $o hildeta_j := heta_j - lpha_{rac{\partial}{\partial heta_j}} J( heta_0, \ldots, heta_n)$   $rac{\partial}{\partial heta_j} J( heta_0, \ldots, heta_n)$   $\{$  (simultaneously update for every  $j=0,\ldots,n$ )

#### **Gradient Descent**

Previously (n=1):

$$\theta_0 := \theta_0 - o \left[ \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right]$$

$$\left[rac{\partial}{\partial heta_0}J( heta)
ight]$$

$$oldsymbol{ heta} oldsymbol{ heta} = heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

(simultaneously update  $\hat{ heta}_0, heta_1$ )

**7** New algorithm  $(n \ge 1)$ : Repeat { (simultaneously update  $\, heta_i\,$  for  $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1} (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$ 

Andrew Ng



Machine Learning

Gradient descent in practice I: Feature Scaling

#### **Feature Scaling**

Idea: Make sure features are on a similar scale.

E.g.  $x_1$  = size (0-2000 feet²)  $\leftarrow$   $x_2$  = number of bedrooms (1-5)  $\leftarrow$   $J(\theta)$ 



 $rianglerightarrow x_2 = rac{ ext{number of bedrooms}}{5}$ 



Andrew Ng

#### **Feature Scaling**

$$6 \le 4, \le 3$$
 $-2 \le 42 \le 0.5$ 
 $-100 \le 43 100$ 
 $\times$ 
 $-0.0001 \le 84 \le 0.0001$ 

Get every feature into approximately a 
$$-1 \le x_i \le 1$$
 range.

 $0 \le x_i \le 3$ 
 $-2 \le x_2 \le 0.5$ 
 $-100 \le x_3 = 100$ 
 $-100 \le x_3 = 100$ 

#### Mean normalization

Replace  $\underline{x_i}$  with  $\underline{x_i - \mu_i}$  to make features have approximately zero mean (Do not apply to  $\underline{x_0 = 1}$ ).

E.g. 
$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

$$x_1 = \frac{x_1 - y_1}{5}$$

$$y_2 = \frac{y_1 - y_2}{5}$$

$$y_3 = \frac{y_3 - y_4}{5}$$

$$y_4 = \frac{y_4 - y_4}{5}$$

$$y_5 = \frac{y_5 - y_5}{5}$$

$$y_6 = \frac{y_6 - y_6}{5}$$

$$y$$

Andrew Ng



Machine Learning

Gradient descent in practice II: Learning rate

#### **Gradient descent**

$$\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate  $\alpha$ .

### Making sure gradient descent is working correctly.



### Making sure gradient descent is working correctly.



- For sufficiently small lpha, J( heta) should decrease on every iteration.  $\leq$
- But if lpha is too small, gradient descent can be slow to converge.

### **Summary:**

- ttiters
- If  $\alpha$  is too small: slow convergence.
- If  $\alpha$  is too large:  $J(\theta)$  may not decrease on every iteration; may not converge. (Slow converge also possible)

To choose  $\alpha$ , try

$$..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.03, 1, ...$$

Andrew Ng



Machine Learning

Features and polynomial regression

### **Housing prices prediction**

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Area

 $\times = frontage \times depth$ 

Tland crea

### **Polynomial regression**



### **Choice of features**





Machine Learning

Normal equation

### **Gradient Descent**



Normal equation: Method to solve for  $\theta$  analytically.

Intuition: If 1D  $(\theta \in \mathbb{R})$ 

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\text{Set}}{\partial \phi} O$$
Solve for  $\phi$ 



$$\frac{\theta \in \mathbb{R}^{n+1}}{\frac{\partial}{\partial \theta_j} J(\theta)} = \frac{J(\theta_0, \theta_1, \dots, \theta_m)}{\frac{\partial}{\partial \theta_j} J(\theta)} = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Solve for  $\theta_0, \theta_1, \dots, \theta_n$ 

Examples: m = 4.

| J                 | Size (feet²)                                       | Number of bedrooms                                                                    | Number of floors | Age of home (years) | Price (\$1000) |
|-------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|------------------|---------------------|----------------|
| $\rightarrow x_0$ | $x_1$                                              | $x_2$                                                                                 | $x_3$            | $x_4$               | y              |
| 1                 | 2104                                               | 5                                                                                     | 1                | 45                  | 460            |
| 1                 | 1416                                               | 3                                                                                     | 2                | 40                  | 232            |
| 1                 | 1534                                               | 3                                                                                     | 2                | 30                  | 315            |
| 1                 | 852                                                | 2                                                                                     | _1               | _36                 | 178            |
|                   | $X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ | $2104 	 5 	 1$ $1416 	 3 	 2$ $1534 	 3 	 2$ $852 	 2 	 1$ $M 	 \times (n+1)$ $(n+1)$ | 2 30<br>L 36     | $\frac{y}{-}$       | 315<br>178     |

#### Examples: m = 5.

|           | Size (feet²) | Number of bedrooms | Number of floors | Age of home (years) | Price (\$1000) |
|-----------|--------------|--------------------|------------------|---------------------|----------------|
| $\_\_x_0$ | $x_1$        | $x_2$              | $x_3$            | $x_4$               | y              |
| 1         | 2104         | 5                  | 1                | 45                  | 460            |
| 1         | 1416         | 3                  | 2                | 40                  | 232            |
| 1         | 1534         | 3                  | 2                | 30                  | 315            |
| 1         | 852          | 2                  | 1                | 36                  | 178            |
| 1         | 3000         | 4                  | 1                | 38                  | 540            |

$$X = egin{bmatrix} 1 & 2104 & 5 & 1 & 45 \ 1 & 1416 & 3 & 2 & 40 \ 1 & 1534 & 3 & 2 & 30 \ 1 & 852 & 2 & 1 & 36 \ 1 & 3000 & 4 & 1 & 38 \end{bmatrix}$$

$$\Theta = (X^T X)^{-1} X^T y$$

$$y = egin{bmatrix} 460 \ 232 \ 315 \ 178 \ 540 \end{bmatrix}$$

### $\underline{m}$ examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$ ; $\underline{n}$ features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{Moxtax})$$

$$(\text{Mexign} \\ \text{Moxtax})$$

$$(\text{Mexign} \\ \text{Moxtax})$$

E.g. If 
$$\underline{x}^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix} \times z \begin{bmatrix} 1 \\ x_2^{(i)} \end{bmatrix} \begin{bmatrix} y_1^{(i)} \\ y_2^{(i)} \end{bmatrix} \begin{bmatrix} y_2^{(i)} \\ y_3^{(i)} \end{bmatrix} \begin{bmatrix} y_2^{(i)} \\ y_3^{(i)} \end{bmatrix}$$

$$0 = (x^T x)^{-1} x^T y$$

$$m \times z$$

Andrew Ng

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^T X)^{-1} \text{ is inverse of matrix } \underline{X^T X}.$$

$$Set \quad A = X^T X$$

$$(X^T X)^{-1} = A^{-1}$$
Octave:  $pinv(X'*X)*X'*y$ 

$$pinv(X^T XX) * X^T X Y$$

0=6 (XTX)-1XTy min J(6) 0 EX2 8 1000 0 EX2 8 1000

Andrew Ng

### m training examples, n features.

### **Gradient Descent**

- $\rightarrow$  Need to choose  $\alpha$ .
- → Needs many iterations.
  - Works well even when n is large.

N= 106

### **Normal Equation**

- $\rightarrow$  No need to choose  $\alpha$ .
- Don't need to iterate.
  - Need to compute

Slow if n is very large.



Machine Learning

Normal equation and non-invertibility (optional)

### Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if  $X^TX$  is non-invertible? (singular/degenerate)
- Octave: pinv(X'\*X)\*X'\*y



### What if $X^TX$ is non-invertible?

Redundant features (linearly dependent).

E.g. 
$$x_1 = \text{size in feet}^2$$

$$x_2 = \text{size in } m^2$$

$$x_1 = (3.28)^2 \times 2$$

$$x_2 = (3.28)^2 \times 2$$

$$x_3 = (3.28)^2 \times 2$$

$$x_4 = (3.28)^2 \times 2$$

$$x_5 = (3.28)^2 \times 2$$

$$x_6 = (3.28)^2 \times 2$$

$$x_7 = (3.28)^2 \times 2$$

$$x_8 = (3.28)^2 \times 2$$

$$x_1 = (3.28)^2 \times 2$$

$$x_1 = (3.28)^2 \times 2$$

$$x_1 = (3.28)^2 \times 2$$

$$x_2 = (3.28)^2 \times 2$$

$$x_3 = (3.28)^2 \times 2$$

$$x_4 = (3.28)^2 \times 2$$

$$x_5 = (3.28)^2 \times 2$$

$$x_6 = (3.28)^2 \times 2$$

$$x_7 = (3.28)^2 \times 2$$

- - Delete some features, or use regularization.