2. Considere que o amp-op da figura seguinte é ideal. (1.5 valores)

Determine a relação da tensão de saída (Vout) com a tensão de entrada (Vin).

- \bigcirc a. Vout = Vin . Rs/Rf
- \bigcirc b. Vout = + Vin . Rf/Rs
- \bigcirc c. Vout = + Vin . Rs/Rf
- \bigcirc d. Vout = Vin . (1 Rf/Rs)
- e. Vout = Vin . Rf/Rs
- f. Nenhuma das soluções apresentadas está correta

Selecione os comandos Scilab para obter a solução X com o formato [IA; IB; IC]

```
Selecione uma opção:

>>A=[0 -R4 R4; -R1 (R1+R2+R4) -R4; (R1+R3) -R1 0]

>>b=[V1 V2 (V1-V3)]

>>X=A^-1*b

>>A=[R3 -R4 R4; -R1 (R1+R2+R3) -R4; 0 -R1 (R1+R3)]

>>b=[-V1 -V2 (V1+V3)]

>>X=A^-1*b

>>A=[R3 -R4 R4; -R1 (R1+R2+R3) -R4; 0 -R1 (R1+R3)]

>>b=[V3 V2 (V1+V2)]

>>X=A^-1*b

>>A=[0 -R4 R4; -R1 (R1+R2+R4) -R4; (R1+R3) -R1 0]

>>b=[-V1 -V2 (V1-V3)]

>>X=A^-1*b
```

7. Uma lâmpada que utiliza 15 Volts, uma resistência de 5 Ohms que consome 2 Amperes e um motor de 25 V encontram-se ligados em série. A resistência total do circuito é igual a: (1 valor)

Selecione uma opção:

- 45 Ohms
- 15 Ohms
- 20 Ohms
- A resposta correta não se encontra representada
 - 42.5 Ohms
 - 25 Ohms
- 10. Considere o circuito da figura seguinte. (1.25 valores)

Calcule a resistência equivalente aos terminais de V1.

- a. (((R3 + R9 + R6 + R8) + R2 + R5) // R7) // R1 + R4
- \bullet b. ((((R3 + R6 + R9) + R5) + R2 + R8) // R4) + R1 + R7
- \circ c. ((((R3 + R9 + R6) // R8) // R2 + R5) // R7) + R1 + R4
- d. Nenhuma das soluções apresentadas está correta
- e. (((R3 + R9 + R6) // R8) + R2 + R5) // R7) // R1 + R4

11. Calcule a corrente na resistência R4 (IR4). (1.25 valores)

Selecione uma opção:

$$11.4 - 11.4 \text{ Req} / (\text{Req} + \text{R1}) & \text{Req} - \text{R3} / (\text{R2} + \text{R3})$$

$$IR4 = I1 \times R4 / (Req + R4 + R1) \& Req = R5 / / (R2 + R3)$$

d.

$$IR4 = I1 \times Req / (Req + R4 + R1) \& Req = R5 // (R2 + R3)$$

e. Nenhuma das soluções apresentadas está correta

 \bigcirc f.

Imposta pela fonte de corrente I1 (1mA)

Selecione os comandos Scilab para obter a solução X com o formato [VA; IA; IB].

```
>>A=[-1 -R1 R1; 1 0 R2; R1 0 (R1+R3)]

>>b=[V3 V2 (V1+V2)]

>>X=A^-1*b

>>A=[-1 -R1 R1; 1 0 R2; R1 0 (R1+R3)]

>>b=[-V1 -V2 (V1+V3)]

>>X=A^-1*b

>>A=[-1 -R1 R1; 1 0 R2; 0 (R1+R3) -R1]

>>b=[-V1 -V2 (V1-V3)]

>>X=A^-1*b

>>A=[-1 R1 -R1; 1 0 R2; 0 (R1+R3) -R1]

>>b=[V1 V2 (V1-V3)]

>>X=A^-1*b

>>A=[-1 R1 -R1; 1 0 R2; 0 (R1+R3) -R1]

>>b=[V1 V2 (V1-V3)]

>>X=A^-1*b
```

18. Considere o circuito da figura seguinte em que a forma de onda da tensão de entrada é sinusoidal (vin), a resistência do díodo é Rd e a tensão de arranque Va. **(1.5 valores)** (Pergunta Tipo 3)

Indique qual a função transferência que representa o comportamento do sistema reproduzido na figura seguinte:

Selecione uma opção:

Nenhuma das respostas está correta.

vout = vin + Va + Rd . id, quando o díodo conduz vout = R1/(R1+R2) . vin, quando o díodo não conduz vout = R2/(R1+R2) . vin, quando o díodo conduz vout = vin - Va - Rd . id, quando o díodo não conduz vout = vin - Va + Rd . id, quando o díodo conduz vout = R2/(R1+R2) . vin, quando o díodo não conduz vout = vin - Va - Rd . id, quando o díodo conduz vout = R2/(R1+R2) . vin, quando o díodo não conduz vout = R2/(R1+R2) . vin, quando o díodo não conduz vout = vin - Va + Rd . id, quando o díodo conduz vout = R1/(R1+R2) . vin, quando o díodo não conduz vout = vin - Va - Rd . id, quando o díodo conduz vout = R2/(R1+R2) . vin, quando o díodo conduz vout = R2/(R1+R2) . vin, quando o díodo não conduz vout = R2/(R1+R2) . vin, quando o díodo não conduz

22. Considere o circuito da figura seguinte em que a forma de onda da tensão de entrada é sinusoidal (vin), a resistência do díodo é Rd e a tensão de arranque Va. **(1.5 valores)** (Pergunta Tipo 3)

Indique para que valores da tensão de entrada o díodo D1 conduz:

- vin > Va x (R1+R2)/R2
- $vin > Va \times (R1+R2)/R1$
- Nenhuma das respostas está correta
- \circ vin < Va x R2/(R1+R2)
- \bigcirc vin > Va x R2/(R1+R2)
- \bigcirc vin < Va x (R1+R2)/R2
- \bigcirc vin > Va x (R1+R2)/R1

27. Considere que o amp-op da figura seguinte é ideal. (1.5 valores)

Determine a gama de valores da tensão de entrada para que o amp-op não sature.

- \circ a. Vin > -15 . R2 /(R1+R2) e Vin < 15 . R2/(R1+R2)
- \odot b. Vin > -15 . R1 /(R1+R2) e Vin < 15 . R1/(R1+R2)
- © c. Vin > -15 . R2 /R1 e Vin < 15 . R2 /R1
- \bigcirc d. Vin > -15 . R2 /(R1+R2) e Vin < 15 . R2 /(R1+R2)
- e. Vin > -15 . R1 /R2 e Vin < 15 . R1 /R2
- f. Nenhuma das soluções apresentadas está correta

30. Considere o circuito da figura seguinte em que (VBE) representa a tensão de arranque do díodo emissor e (B) o ganho de corrente do transístor. **(1.5 valores)** [Pergunta Tipo 4]

Suponha que a solução X produz a solução: [IC; IB; IE; VCE]. Para determinar o PFR, deveria introduzir os seguintes comandos no Scilab:

```
Selecione uma opção:
```

- >> A=[-1 B 0 0;1 1 -1 0; -R2 0 -R4 -1; 0 R1*R3/(R1+R3) R4 0]
- $>> b=[\ 0\ ;\ 0;\ -VCC;\ VCC*R3/(R1+R3)-VBE]$
- $>> sol=A^-1*b$
- \bigcirc >> A=[0 (1/R1+1/R5)^-1 (R3*R4)/(R3+R4) 0; R2 0 (1/R3+1/R4)^-1 1;1 1 -1 0;1 -B 0 0]
- >> b=[(VCC*R5/(R1+R5))-VBE; VCC; 0; 0]
- $>> sol=A^-1*b$

Nenhuma das respostas está correta

- $>> A=[1 \ 1 \ -1 \ 0; -1 \ B \ 0 \ 0; \ 0 \ (1/R1+1/R2)^{-1} \ R4 \ 0; \ R3 \ 0 \ R4 \ 1]$
- >> b=[0; 0; VCC*R2/(R1+R2)-VBE; VCC]
- $>> sol=A^-1*b$
- >> A=[1 -B 0 0;1 1 -1 0; -R4 0 -R3 -1; 0 (R1*R2)/(R1+R2) R3 0]
- >> b=[0; 0; -VCC; VCC*R2/(R1+R2)-VBE]
- $>> sol=A^-1*b$

6. Considere o circuito da figura seguinte em que a forma de onda da tensão de entrada é sinusoidal (vin). A referida forma de onda (vin) possui o valor eficaz de 81 V e 90 Hz e o transformador detém uma razão de transformação de aproximadamente 10:1. **(0.75 valores)** [Pergunta Tipo 3]

Qual a amplitude da corrente na resistência de carga RLOAD.

Selecione uma opção:

- Aproximadamente 162 mA
- Aproximadamente 11.5 mA

Aproximadamente 115 mA (Valor eficaz * sqrt(2))/10 * RLOAD

- Nenhuma das respostas está correta
- Aproximadamente 16.2 mA

33. Considere o circuito da figura seguinte em que a forma de onda da tensão de entrada é sinusoidal (vin). **(0.75 valores)** [Pergunta Tipo 3]

Quais os díodos que podem conduzir no semi-ciclo negativo da tensão de entrada.

- Díodos D2 e D4
- Nenhuma das respostas está correta
- Díodos D1 e D4
- Díodos D2 e D3
- Oíodos D1 e D3

13. Calcule o ponto de máxima excursão simétrica PMES para o circuito da figura seguinte (FigP4_alinea_b_V3). **(0.5 valores)** [Pergunta Tipo 4c]

- Nenhuma das respostas está correta
- \bigcirc PMES = (VCC/2, VCC*(2^-1)*((R2+R4)^-1))
- \bigcirc PMES = (VCC/2, (R3+R4)*VCC/(2*(R2*R3+R2*R4+R3*R4)))
- \bigcirc PMES = (VCC/2, VCC/(2*R2+2*R3+2*R4))
- \bigcirc PMES = (VCC/2, VCC/(2*(R3+R4)))

14. Calcule o ponto de corte (PC) e o ponto de saturação (PS) para o circuito da figura seguinte (FigP4_alinea_b_V1). **(0.5 valores)** [Pergunta Tipo 4b]

- PC = (VCC, 0) e PS = (0, VCC/(R2+R4))
- Nenhuma das respostas está correta
- \bigcirc PC = (VCC, 0) e PS = (0, VCC/(R3+R4))
- \bigcirc PC = (VCC, 0) e PS = (0, (R3+R4)*VCC/(R2*R3+R2*R4+R3*R4))
- PC = (VCC, 0) e PS = (0, VCC/(R2+R3+R4))

8. Identifique quais as resistências que estão em série e em paralelo. (0.25 valores)

- a. Nenhuma das soluções apresentadas está correta
- b. As resistências R6 E R7 estão em paralelo e R2, R3 e R4 estão em série
- c. As resistências R4 e R5 e R6 estão em paralelo e a R1,R2 E R3 estão em série
- d. As resistências R1, R6 E R7 estão em paralelo e R2, R3, R4 e R5 estão em série
- e. As resistências R6 E R7 estão em paralelo e R2, R3, R4 e R5 estão em série

Identifique o número de nós essenciais e de malhas simples:

Selecione uma opção:

- a. 4 nós essenciais e 3 malhas simples
- b. 4 nós essenciais e 4 malhas simples
- c. 3 nós essenciais e 3 malhas simples
- d. nenhuma das restantes respostas é a correcta
- e. 3 nós essenciais e 4 malhas simples

15. A tensão numa torradeira de 1.61 kW, que produz uma corrente de 14 A, é igual a:

(0.2 valores)

- A resposta correta não se encontra representada
- 215 V
- 230 V
- 105 V
- 220 V
- 110 V

Perguntas de 0.10 valores:
1.
A realimentação positiva é utilizada na conceção de osciladores.
Selecione uma opção: Verdade Falso
3.
Qual a unidade do sistema internacional da condutância?
Selecione uma opção: Watt Siemens Volt Tesla A resposta correta não se encontra representada Ampere
4.
Uma fonte de corrente ideal tem:
Selecione uma opção: Uma resistência interna nula Uma resistência interna finita não nula Uma resistência interna infinita A resposta correta não se encontra representada
9.
A configuração em base comum é utilizada para
Selecione uma opção: Aumentar o ganho de tensão Melhorar o comportamento do circuito amplificador com a frequência Melhorar o comportamento do circuito amplificador com a temperatura Realizar o casamento de impedâncias Nenhuma das respostas indicadas está correta

Considere os seguintes esquemas elétricos:

Indique qual dos esquemas indicados traduz a operação do amp-op com realimentação positiva.

Selecione uma opção:

16.

Para formar um semicondutor do tipo P

Selecione uma opção:

- É necessário dopar um semicondutor extrínseco com átomos pentavalentes
- É necessário dopar um semicondutor intrínseco com átomos pentavalentes
- É necessário dopar um semicondutor extrínseco com átomos tetravalentes
- É necessário dopar um semicondutor intrínseco com átomos trivalentes
- Nenhuma das opções indicadas está correta
- É necessário dopar um semicondutor intrínseco com átomos tetravalentes
- É necessário dopar um semicondutor extrínseco com átomos trivalentes

19.

O núcleo de um átomo:

- Possui eletrões
- Nenhuma das opções indicadas está correta
- Ocupa o menor espaço do átomo
- Possui apenas protões

7		
	1	

Verdade

O prefixo micro significa:

A realimentação positiva reduz o valor da entrada diferencial do amp-op.
Selecione uma opção: Verdade Falso 26.
Uma resistência em paralelo com um curto-circuito:
oma resistencia em parareto com um curto circuito.
Selecione uma opção:
A tensão aos seus terminais é infinita
É atravessada por uma corrente infinita
A tensão aos seus terminais é finita e diferente de zero
A resposta correta não se encontra representada
A tensão aos seus terminais é nula
28.
O circuito de polarização fixa:
Selecione uma opção: Permite implementar um processo de realimentação positiva por forma a estabilizar o circuito Nenhuma das respostas indicadas está correta Permite a utilização de uma única fonte de tensão para polarizar o transistor Requer a utilização de duas fontes de tensão para que seja possível polarizar o transistor adequadamente Permite aumentar o ganho
29.
Quantos eletrões de valência há num átomo trivalente?
Selecione uma opção:
$\bigcirc 6$ $\bigcirc 2$
0 2 0 4
\bigcirc 1

25.

~	•	
٠.	1	
•	-	

O condensador de desvio utilizado no circuito amplificador em emissor comum tem como função:

Selectione uma opcão:
Implementar um processo de realimentação positiva por forma a estabilizar o circuito
Nenhuma das respostas indicadas está correta
Aumentar o ganho
Estabilizar o PFR num contexto de variação da temperatura
32.
Qual o sentido real das cargas elétricas?
Selecione uma opção:
Sentido do campo elétrico
Sentido oposto ao campo elétrico
34.
A tensão de saída de uma fonte de tensão ideal quando ligada a uma car
Selecione uma opção:
A resposta correta não se encontra representada
Depende do valor da resistência de carga
<u>É nula</u>
○É constante
Depende do valor da resistência interna