```
# Vector de mascotas
mascotas <- c('loro', 'perro', 'gato', 'gallina', 'hamster', 'cerdo', 'ternero', 'caballo', 'cabra')
# Shuffle the mascotas vector
mascotas <- sample(mascotas)</pre>
# Seleccionar una muestra aleatoria de 3 elementos sin repetición
selmascota <- sample(mascotas, 3)</pre>
selmascota[3]
[1] "cabra"
nombremascota1 <- selmascota[1]</pre>
nombremascota2 <- selmascota[2]
nombremascota3 <- selmascota[3]
# Crear secuencia del 60 al 300 de 10 en 10
numeros \leftarrow seq(60, 600, 10)
# Eliminamos el número 100 del vector
numeros_sin_100 <- setdiff(numeros, 100)</pre>
numeros_sin_100
[1] \ 60 \ 70 \ 80 \ 90 \ 110 \ 120 \ 130 \ 140 \ 150 \ 160 \ 170 \ 180 \ 190 \ 200 \ 210 \ 220 \ 230 \ 240 \ 250 \ [20] \ 260 \ 270 \ 280 \ 290 \ 300 \ 310
320\ 330\ 340\ 350\ 360\ 370\ 380\ 390\ 400\ 410\ 420\ 430\ 440\ [39]\ 450\ 460\ 470\ 480\ 490\ 500\ 510\ 520\ 530\ 540\ 550\ 560
570 580 590 600
# Ahora hacemos el muestreo de este nuevo vector
enkuestados <- sample(numeros_sin_100, 1)</pre>
# Generar tres números para los porcentajes. Su suma siempre debe ser igual a 100
generar_vector_unico <- function() {</pre>
  # Generate two random numbers between 1 and 99
 num1 <- sample(1:99, 1)
 num2 <- sample(1:99, 1)
  # Ensure that the sum of the two numbers is less than 100
  while (num1 + num2 >= 100) {
   num1 <- sample(1:99, 1)
    num2 <- sample(1:99, 1)</pre>
  # Calculate the third number
  num3 <- 100 - num1 - num2
```

Return the vector of numbers
return(c(num1, num2, num3))

Generar y mostrar el vector de porcentajes
vector_resultado <- generar_vector_unico()</pre>

}

vector resultado

```
[1] 54 11 35
mashor <- max(vector_resultado)</pre>
mashor
[1] 54
porxentaje1 <- vector_resultado[1]</pre>
porxentaje2 <- vector_resultado[2]</pre>
porxentaje3 <- vector_resultado[3]</pre>
maskota1 <- (enkuestados*vector_resultado[1])/100 # Número de personas que adoptan maskota1
maskota1
[1] 270
maskota2 <- (enkuestados*vector_resultado[2])/100</pre>
[1] 55
maskota3 <- (enkuestados*vector_resultado[3])/100</pre>
maskota3
[1] 175
mashiormaskota <- max(maskota1, maskota2, maskota3)</pre>
mashiormaskota
[1] 270
image01 <- '
\\begin{tikzpicture}
  \\node{
\\begin{tabular}{|1|c|}
\\hline
\\textbf{Animal} & \\textbf{Cantidad de personas } \\\\
     & \\textbf{interesadas en adoptar} \\\\ \\hline
     %s & %s \\\\ \\hline
     %s & %s \\\\ \\hline
     %s & %s \\\\ \\hline
\\end{tabular}
};
\\end{tikzpicture}
demas <- sample
maskota1_format <- sprintf("%.1f", maskota1)</pre>
maskota2_format <- sprintf("%.1f", maskota2)</pre>
maskota3_format <- sprintf("%.1f", maskota3)</pre>
image01 <-sprintf(image01, selmascota[1], maskota1_format, selmascota[2], maskota2_format, selmascota[3]
```

Question

El líder de un programa de adopción de mascotas encuestó a 500 personas para conocer qué animal les interesaría adoptar. Del total de encuestados, el 54% adoptaría un cerdo, el 11% adoptaría un(a) perro y el 35% adoptaría un(a) cabra.

¿Cuál de las siguientes representaciones NO muestra correctamente la información recolectada en la encuesta?

Answerlist

Animal		Cantidad de personas interesadas en adoptar
cerdo		270.0
perro		55.0
cabra		175.0

Solution

La gráfica que representa la opción correcta es

Animal	Cantidad de personas interesadas en adoptar
cerdo	270.0
perro	55.0
cabra	175.0

Meta-information

exname: $I_1796473/2023$ -Cuadernillo-Matematicas-11-2(single-choice) extype: schoice exsolution: 1000

exshuffle: TRUE