Aplikace neuronových sítí

Konvoluční sítě

Dvourozměrná konvoluce

obrázek: https://community.arm.com/graphics/b/blog/posts/when-parallelism-gets-tricky-accelerating-floyd-steinberg-on-the-mali-gpu

Demo

Odkaz: http://setosa.io/ev/image-kernels/

Padding

Jak se vypořádat s okraji?

Obrázek např. "nastavíme" nulami

→ tzv. zero padding

6.0	14.0	17.0
14.0	12.0	12.0
8.0	10.0	17.0

(výsledek je 3x3, protože v příkladu stride=2)

Existují další způsoby: const, wrap, symm, ...

obrázky: https://github.com/vdumoulin/conv arithmetic

Velikost výstupu v závislosti na paddingu

scipy.signal.convolve2d(x, w, mode, ...)
$$\Longrightarrow$$
 výstup $Q \times Q$

$$Q = M - (K - 1)$$

= 4 - 3 + 1
= 2

$$Q = M - (K - 1) + 2P$$

$$= M$$

$$= 5$$

mode='full'

$$Q = M - (K - 1) + 2P$$

$$= M + (K - 1)$$

$$= 5 + 3 - 1$$

$$= 7$$

obrázky: https://github.com/vdumoulin/conv_arithmetic

Velikost kroku

V anglické literatuře <u>stride</u>

$$S = 1$$

S=2 je to samé, jako když S=1, ale ponecháme pouze každý S-tý výstup:

Vidíme tedy, že velikost výstupu se krokem *S* dělí

(mezery jsou ve výstupu)

obrázky: https://github.com/vdumoulin/conv_arithmetic

Velikost výstupu konvoluce

$$Q = \left\lfloor \frac{M + 2P - K}{S} \right\rfloor + 1$$

"Když to nevyjde hezky":

$$Q = \left| \frac{5 + 2 \cdot 0 - 3}{2} \right| + 1 = 2 \qquad Q = \left| \frac{5 + 2 \cdot 1 - 3}{2} \right| + 1 = 3 \qquad Q = \left| \frac{6 + 2 \cdot 1 - 3}{2} \right| + 1 = 3$$

$$Q = \left[\frac{6 + 2 \cdot 1 - 3}{2} \right] + 1 = 3$$

obrázky: https://github.com/vdumoulin/conv arithmetic

Vícekanálový vstup

Více konvolučních filtrů

Obrázek: https://brilliant.org/wiki/convolutional-neural-network/

Konvoluce jako vrstva v neurosíti

Váhy W jsou tensor tvaru

$$K \times K' \times C \times F$$

Bias b je vector délky

F

Výstup má rozměr

$$Q = \left\lfloor \frac{M + 2P - K}{S} \right\rfloor + 1$$

Hyperparametry:

- velikost filtru K
- počet filtrů F
- padding (okraj) P
- stride (krok) S

Vstup:

$$M \times M' \times C$$

Výstup:

$$Q \times Q' \times F$$

obrázek: http://john-cd.com/blog/2017/03/08/Deep-Learning

Příklad: RGB 32x32x3, 10 5x5 filtrů, bez paddingu, stride=1

Váhy W jsou tensor tvaru

$$5 \times 5 \times 3 \times 10$$

Bias b je vector délky

10 (počet filtrů)

Počet parametrů vrstvy

$$5 \cdot 5 \cdot 3 \cdot 10 + 10 = 760$$
váhy biasy

Vstup tvaru

$$32 \times 32 \times 3$$

Pro porovnání lineární vrstva $(32 \cdot 32 \cdot 3) \times (28 \cdot 28 \cdot 10)$ by měla $32 \cdot 32 \cdot 3 \cdot 28 \cdot 28 \cdot 10 \approx 24 \cdot 10^6$ parametrů!

obrázek: http://john-cd.com/blog/2017/03/08/Deep-Learning

Výstup má rozměr

$$Q \times Q \text{ kde } Q = \left[\frac{32 + 2 \cdot 0 - 5}{1}\right] + 1 = 28$$

a hloubku

10 (počet filtrů)

Zpětný průchod konvoluce: gradient na váhy

Dopředný průchod

$$z_{uv} = \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{c=1}^{C} w_{ijc} x_{Su+i,Sv+j,c} + b$$

Lokální gradient

$$\frac{\partial z_{uv}}{\partial w_{ijc}} = x_{i+Su,j+Sv,c}$$

Celkový gradient na váhy

$$\frac{\partial L}{\partial w_{ijc}} = \sum_{u=1}^{Q} \sum_{v=1}^{Q} \frac{\partial L}{\partial z_{uv}} \cdot \frac{\partial z_{uv}}{\partial w_{ijc}} \quad \text{pokud } S > 1:$$

$$= \sum_{u=1}^{Q} \sum_{v=1}^{Q} \overline{z_{uv}} \cdot x_{i+Su,j+Sv,c}$$
mezery" ve vstupu

Zpětný průchod na váhy je tedy rovněž konvoluce!

Konvoluce jako lineární vrstva

konvoluci na obrázku lze zapsat maticově:

$$4 \times 4 \rightarrow 16 \times 1$$

... podobné lineární vrstvě

Zpětný průchod konvoluce: gradient na vstup

• Připomeňme, že pro lineární vrstvu z = Wx z = Wxje gradient na vstup $16 \times 1 \rightarrow 4 \times 4 \qquad 2 \times 2 \rightarrow 4 \times 1$ $\overline{x} = W^T \overline{z}$

- Zpětná propagace gradientu na vstup konvoluce je tedy opět konvoluce, jejíž lineární forma má transponovanou matici W
- Odtud anligcký název transposed convolution
- "Obrácená" konvoluce: z tvaru výstupu ${m z}$ na tvar vstupu ${m x}$
 - Nalezneme dokonce i název dekonvoluce: špatně, ve skutečnosti něco jiného

Ilustrace transponované konvoluce, stride=1

bez paddingu, stride=1

poloviční padding, stride=1

full padding, stride=1

Ilustrace transponované konvoluce, stride > 1

mezery -> anglický název fractionally strided convolution

Pooling

cílem zmenšit objem dat -> méně paměti, tlak na kompresi příznakového prostoru

obrázek: http://cs231n.github.io/

Max pooling

- Nejčastější forma poolingu
- Robustní vůči malému posunu vstupu

např. 2x2 max pooling, stride=2:

Υ

Počet parametrů: 0

výstup:

maximum přes každé okénko

vždy pouze pro jeden kanál vstupu \rightarrow redukuje pouze v x a y prostoru

příklad:

vstup: 32x32x3

výstup: 16x16x3

obrázek: https://en.wikipedia.org/wiki/Convolutional neural network

Max pooling: zpětný průchod

funkce max zapsána jinak:
$$z = \begin{cases} x_1 & \text{pokud } x_1 \ge x_i \ \forall x_i \in \mathbf{x} \\ \vdots & \mathbf{výběr prvku z pole} \end{cases}$$

$$\begin{cases} x_1 & \text{pokud } x_1 \ge x_i \ \forall x_i \in \mathbf{x} \end{cases}$$

gradient pak je:

$$\overline{x_d} = \begin{cases} 1 & \text{pokud } x_d \ge x_i \ \forall x_i \in \mathbf{x} \\ 0 & \text{jinak} \end{cases}$$

dopředný průchod

Single depth slice

zpětný průchod

Konvoluční síť (Convolutional Neural Network, CNN)

zadefinováním konvoluce jako bloku v neurosíti nyní můžeme libovolně kombinovat s
ostatními vrstvami

obrázek: https://ch.mathworks.com/fr/discovery/convolutional-neural-network.html

Rozpoznávání MNIST číslovek: LeNet-5 (1998)

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

sigmoid-like nelinearity

- první známá a úspěšná konvoluční síť
- architektura: CONV-POOL-CONV-POOL-FC-FC-FC

FC ... Fully Connected

Lecun et al. (1998): GradientBased Learning Applied to Document Recognition

Rozpoznávání MNIST číslovek: LeNet-5 (1998)

Fig. 4. Size-normalized examples from the MNIST database.

MNIST ... 60000 obrázků číslovek

LeNet-5: dobové výsledky (error rate) na MNIST

Fig. 9. Error rate on the test set (%) for various classification methods. [deslant] indicates that the classifier was trained and tested on the deslanted version of the database. [dist] indicates that the training set was augmented with artificially distorted examples. [16x16] indicates that the system used the 16x16 pixel images. The uncertainty in the quoted error rates is about 0.1%.

Rozpoznávání ImageNet: Alexnet (2012)

- architektura: CONV-POOL-NORM-CONV-POOL-NORM-CONV-CONV-CONV-FC-FC-FC
- "naškálovaná" LeNet-5

obrázek: http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

- architektura: CONV-POOL-NORM-CONV-POOL-NORM-CONV-CONV-CONV-FC-FC-FC
- "naškálovaná" LeNet-5

obrázek: http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

kolik parametrů má vrstva FC7?

 $4096 \cdot 4096 = 16777216$ (!)

- architektura: CONV-POOL-NOI
- "naškálovaná" LeNet-5

Konvoluční vrstvy mají výrazně nižší počet parametrů oproti lineárním, což je jeden z důvodů, proč se snáze trénují a lépe fungují. Dokonce současný trend jsou tzv. Fully Convolutional Nets, kde je vše vyjádřeno jako konvoluce!

obrázek: http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

- Krizhevsky, Sutskever, Hinton: "ImageNet Classification with Deep Convolutional Neural Networks"
- Síť, která "nastartovala DNN/CNN revoluci"
- Autoři nevyvinuli žádný nový algoritmus, "pouze" ukázali, jak správně CNN používat
- Místo sigmoid aktivací přechod na ReLU
- Kromě klasické L2 regularizace navíc Dropout
- Výrazné umělé rozšiřování dat (data augmentation)
- Místo SGD → Momentum SGD
- Postupné snižování learning rate
- Trénováno na dvou GTX 580 celkem 5-6 dní

VGG (2014)

- Simonyan, Zisserman: "Very Deep Convolutional Networks for Large-Scale Image Recognition"
- Druhé místo ImageNet competition 2014
- Mnohem jednodušší architektura než vítěz (GoogLeNet)
- Velmi podobné AlexNet
- Místo 11x11 apod. konvolucí pouze 3x3
- Pouze 2x2 max-pooling
- Žádná lokální normalizace
- 16 a 19 vrstev
- VGG-16: 8.4 % top-5 error

	Sullinax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

AlexNet

VGG16 VGG19

Receptive field

výsledek konvoluce 3x3 nad druhou vrstvou závisí na 5x5 oblasti v první vrstvě

pro 3. vrstvu by to bylo 7x7, pro 4. vrstvu 9x9, atd.

jednotlivé neurony každé další vrstvy tedy popisují větší a větší část obrázku

obrázek: http://www.mdpi.com/2072-4292/9/5/480

VGG (2014)

- VGG tedy nahrazuje jedinou 7x7 konvoluci vrstvenými 3x3 konvolucemi
- Stejné "zorné pole" (receptive field)
- Méně parametrů:

$$3 \times (3 \times 3 \times C \times C) = 27C^2$$

VS

$$1 \times (7 \times 7 \times C \times C) = 49C^2$$

- Zároveň více nelinearit
- Výsledné "FC7" příznaky (4096D) lze použít i pro jiné úlohy (viz transfer learning)
- Poslední klasická CNN

Aktivace

Sigmoid

- Před Alexnet prakticky jediná používaná aktivace
- Převádí vstup na pravděpodobnost, tj. do intervalu $\langle 0,1 \rangle$
- Vstup x jsou typicky skóre s z předchozí lineární vrstvy
- Problémy:
 - 1. "umírající" gradient
 - 2. pouze kladné hodnoty
 - 3. exp funkce zbytečně náročná na výpočet

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid

- Před Alexnet prakticky jediná používaná aktivace
- Převádí vstup na pravděpodobnost, tj. do intervalu (0,1)
- Vstup x jsou typicky skóre s z předchozí lineární vrstvy
- Problémy:
 - "umírající" gradient
 - pouze kladné hodnoty
 - exp funkce zbytečně náročná na výpočet

vodorovná tečna = nulová derivace (gradient)

vanishing gradient

Hyperbolický tangens

Vlastně jen přeškálovaný sigmoid

$$\tanh(x) = 2 \cdot \sigma(2x) - 1$$

- Pouze tedy vycentruje sigmoid
- Ale stále "zabíjí" gradient

ReLU

- Rectified Linear Unit
- Saturuje pouze v záporu
- Výpočetně nenáročné (bez expů)
- Trénování je mnohem rychlejší než se sigmoid či tanh
- Defaultní volba pro **vnitřní** nelinearity

$$ReLU(x) = max(0, x)$$

Leaky/Parametric ReLU

- nemá saturaci -> neumírá gradient
- zachovává rychlost
- Parametr α buď jako
 - konst. (např. 0.01) → Leaky ReLU
 - učitelný parameter -> Parametric ReLU

$$PReLU(x) = \max(\alpha x, x)$$

Další nelinearity

Table 3: Non-linearities tested. Name Year **Formula** none y = x1986 sigmoid 1986 tanh y = max(x, 0)2010 ReLU (centered) SoftPlus $y = \ln(e^x + 1) - \ln 2$ 2011 $y = max(x, \alpha x), \alpha \approx 0.01$ 2011 LReLU $y = \max(W_1x + b_1, W_2x + b_2)$ 2013 maxout $y = \max(x,0) + \sum_{s=1}^{S} a_i^s \max(0, -x + b_i^s)$ APL 2014 $y = max(x, \alpha x), \alpha \in 0.1, 0.5$ VLReLU 2014 $y = max(x, \alpha x), \alpha = random(0.1, 0.5)$ 2015 RReLUPReLU $y = max(x, \alpha x), \alpha$ is learnable 2015 ELUy = x, if $x \ge 0$, else $\alpha(e^x - 1)$ 2015

Aktivace & Inicializace

- Nejjednodušší zkusit ReLU -> když funguje, vyzkoušet její variant nebo např. SELU
- U ReLU namísto Glorot inicializace vhodnější He:

```
Wi = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in / 2.)
```

- Odvození: http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization
- Co biasy?
 - většinou inicializujeme na nuly: b = np.zeros(fan_out)
 - U ReLU možné malé kladné hodnoty: b = 0.01 * np.ones (fan out)

Dropout regularizace

Dropout

- Náhodně nastavuje výstupy na nulu
- Např. s pravděpodobností 40 %:

```
1 scores = np.dot(x, w) + b
2 hidden = np.maximum(0., scores)
3 mask = np.random.rand(*hidden.shape) < 0.4
4 hidden[mask] = 0.</pre>
```

slouží jako regularizace > prevence overfitu

obrázek: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

(a) Standard Neural Net

(b) After applying dropout.

obrázek: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

- Nutí síť vytvářet robustní a redundantní příznaky
 - náhodně vypadávají -> tlak, aby <u>všechny</u> dobře reprezentovaly

- Model ensemble
 - de facto vytváří kombinaci více modelů, které sdílejí váhy
 - každá maska reprezentuje jednu síť
 - jedna síť = jeden trénovací vektor

Dropout v trénovací a testovací fázi

Rozdílné chování v trénovací a testovací fázi!

- Model ensemble
 - teoreticky v test. fázi forward např. 100x a zprůměrovat -> pomalé
 - chceme pouze jeden forward průchod v testu se dropout nedělá
- Problém
 - $s = w_1 x_1 + w_2 x_2 + w_3 x_3$
 - $p = 1/3 \rightarrow v$ průměru jedno w_i vypadne
 - průměrná hodnota s bude o 1/3 nižší \rightarrow tomu se přizpůsobí váhy a aktivace
 - bez dropoutu v testovací fázi je pak příliš velká "energie" výstupu do další vrstvy

obrázky: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout v trénovací a testovací fázi

- Režim 1: základní (direct) dropout
 - v testovací fázi vynásobíme výstup dropout pravděpodobností p

```
1 def train(x):
       hidden = relu(np.dot(x, w1) + b1)
       mask = np.random.rand(*hidden.shape) < 0.4</pre>
       hidden[mask] = 0.
       prob = np.dot(hidden, w2) + b2
       # Loss
       # update gradientu
   def predict(x):
11
       hidden = relu(np.dot(x, w1) + b1)
       hidden *= 0.4
       prob = np.dot(hidden, w2) + b2
15
       # argmax / klasifikace
```

- Režim 2: inverted dropout
 - vyřešíme už <u>v trénovací fázi</u>, kde výstup vydělíme p, aby měl stejnou "energii", jako kdyby žádný dropout nebyl

```
def train(x):
       hidden = relu(np.dot(x, w1) + b1)
       mask = np.random.rand(*hidden.shape) < 0.4</pre>
       hidden[mask] = 0.
       prob = np.dot(hidden / p, w2) + b2
       # Loss
       # update gradientu
10 def predict(x):
11
       hidden = relu(np.dot(x, w1) + b1)
       prob = np.dot(hidden, w2) + b2
13
14
       # argmax / klasifikace
```

testovací fáze pak nemusí být upravována škáluje \rightarrow vhodné použít ještě s další regularizací

Jak moc dropoutu?

- Optimální většinou 40-60 %, ale není pravidlem 🕾
- Nejlépe nahlížet jako na hyperparametr \rightarrow křížová validace
- Při správném nastavení obvykle přinese cca 2 % accuracy navíc, někdy ale nic či dokonce zhorší
- Diskuze např. zde:

https://www.reddit.com/r/MachineLearning/comments/3oztvk/why 50 when using dropout/https://pgaleone.eu/deep-learning/regularization/2017/01/10/anaysis-of-dropout/