Math239 Tutorial 6

Graham Cooper

May 4th, 2015

1)

Find an explicit formula for a_n where $\{a_n\}$) $n = 0^{\infty}$ defined by:

$$a_n - a_{n-1} - 8a_{n-2} + 12a_{n-3} = 0$$

$$a_0 = 1$$

$$a_1 = 13$$

$$a_2 = 23$$

Solution:

The characteristic polynomial is:

$$p(x) = 12 - 8x - x^2 + x^3$$

Observe that p(2) = 0

Hence:

$$(x-2)|p(x)$$

Once cna show

$$p(x) = (x-2)(x-2)(x+3)$$

 \therefore the roots of p(x) are x = 2 with multiplicity 2, x-3 with multiplicity 1

The general for of the solution is:

$$a_n = (\alpha + \beta n)2^n + 8(-3)^n$$

Substituting the given values of a_0, a_1 and a_2 we get

$$a_0 = 1 = \alpha + \gamma$$

$$a_1 = 13 = 2\alpha + 2\beta - 3\gamma$$

$$a_2 = 23 = 4\alpha + 8\beta + 9\gamma$$

$$\alpha = 2$$

$$\beta = 3$$

$$\gamma = -1$$

The explicit formula for a_n is

$$a_n = (2+3n)2^n - (-3)^n$$

2)

Let $\{b_n\}_{n=0}^{\infty}$ Define $b_n = \sqrt{5}(\frac{3+\sqrt{5}}{2})^n - \sqrt{5}(\frac{3-\sqrt{5}}{2})^n$ And let $B(x) = \sum_{n=0}^{\infty} b_n x^n$ find a rational expression for B(x)

Solution:

$$B(x) = \sum_{n=0}^{\infty} b_n x^n$$

$$= \sum_{n=0}^{\infty} (\sqrt{5} (\frac{3+\sqrt{5}}{2})^n - \sqrt{5} (\frac{3-\sqrt{5}}{2})^n) x^n$$

$$= \sqrt{5} \sum_{n=0}^{\infty} (\sqrt{5} (\frac{3+\sqrt{5}}{2})^n x^n - \sqrt{5} \sum_{n=0}^{\infty} (\frac{3-\sqrt{5}}{2})^n) x^n$$

$$= \sqrt{5} \cdot \frac{1}{1 - (\frac{3+\sqrt{5}}{2})x} - \sqrt{5} \cdot \frac{1}{1 - (\frac{3-\sqrt{5}}{2})x}$$

$$= \sqrt{5} (\frac{\sqrt{5}x}{1 - 3x + x^2})$$

$$= \frac{5x}{1 - 3x + x^2}$$

3

Let A_n be the nxn matrix which is tridiagonal with parameters 1,-2, 3 ie $A_1 = [1]$

$$A_2 = \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} A_3 = \begin{vmatrix} 1 & -2 & 0 \\ 3 & 1 & -2 \\ 0 & 3 & 1 \end{vmatrix}$$
 Define $a_n = det(A_n)$. Find a recursive for-

mula for a_n , along with enough initial conditions to full determine $\{a_n\}_{n=1}^{\infty}$

then find an explicit formula for a_n

Solution

$$a_n = det(A_n)$$

$$A_n = \begin{vmatrix} 1 & -2 & 0 & \dots & 0 \\ 3 & & & & \\ 0 & & & & \\ \dots & & A_{n-1} & & \\ 0 & & & & \end{vmatrix}$$

$$a_n = det(A_n)$$

$$= 1 \cdot det(A_{n-1}) - 3det(A_{n-2})$$

$$= 1 \cdot det(A_{n-1}) - 3 \cdot (-2)(det(A_{n-2}))$$

$$= a_{n-1} + 6a_{n-2}$$

The something I can't read are:

$$a_1 = det[1] = 1$$

 $a_2 = det \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} = 1^2 + 6 = 7$

The characteristic polynomial is:

$$p(x) = x^2 - x - 6$$

= $(x - 3)(x + 2)$

The roots of p(x) are

x = 3, mult 1

x = -2, mult 1

The general form of the stuff??? is

$$a_n = \alpha 3^n + \beta (-2)^n$$

$$a_1 = 1 = 3\alpha - 2\beta$$

$$a_2 = 7 = 9\alpha + 4\beta$$

The solution is

$$a_n = \frac{3}{5} \cdot 3^n + \frac{2}{5} (-2)^n$$

4)

For $k \in N$, a k-ary tree is a root tree in which any vertex has up to k outgoing edges.

Let t_n be the number of k-ary trees on n vertices. Let $T(x) = \sum_{n=0}^{\infty} t_n x^n$, and T be the set of all k-ary trees

a) Show that $T(x) = 1 + xT(x)^k$

Solution:

Note that any k-ary tree is either empty, or has a root.

If such tree τ on n vertices has a root r, consider the following construction

Let $\gamma_1, ... \gamma_k$ be the children of r. Remove r from τ and defin $r_1, ... r_k$ to be the roots of the connected components of the resulting graph. You are left with k k-ary trees with roots $r_1, ... r_k$

The same procedure works in reverse)

If we define ϕ in the following way:

 ϕ :

 $\epsilon \to \epsilon$

 $\tau \rightarrow as$ defined earlier

 ϕ is a bijection map between

T and $\{\epsilon\} \cup \{r\} \times T^k$

Define $w(\tau) = n$

This tells us that the generating function for $T(x) = 1 + xT(x)^k$