Modelos e Aplicações - Aula 10

Caio Lopes, Henrique Lecco

ICMC - USP

4 de agosto de 2020

Do que vamos precisar

Na primeira semana, definimos várias coisas importantes sobre modelos, que nos permitem tratar deles com formalidade o suficiente para provar os resultados que desejamos.

Ontem, começamos a introduzir a noção de ultraprodutos, e vimos que essa técnica pode ser usada para construir novos modelos.

Do que vamos precisar

Na primeira semana, definimos várias coisas importantes sobre modelos, que nos permitem tratar deles com formalidade o suficiente para provar os resultados que desejamos.

Ontem, começamos a introduzir a noção de ultraprodutos, e vimos que essa técnica pode ser usada para construir novos modelos.

Vale a pena, então, recordarmos essas definições principais sobre modelos a fim de compreender que ultraprodutos estão bem definidos.

Do que vamos precisar

Na primeira semana, definimos várias coisas importantes sobre modelos, que nos permitem tratar deles com formalidade o suficiente para provar os resultados que desejamos.

Ontem, começamos a introduzir a noção de ultraprodutos, e vimos que essa técnica pode ser usada para construir novos modelos.

Vale a pena, então, recordarmos essas definições principais sobre modelos a fim de compreender que ultraprodutos estão bem definidos.

- Fórmulas e indução sobre fórmulas;
- Interpretação e valoração;
- Satisfação.

Termos e fórmulas

Seja L um vocabulário possivelmente com símbolos de relações, funções e constantes.

Termos

Termos do vocabulário L são tudo o que podemos construir a partir de variáveis e constantes usando os símbolos de funções:

- Variáveis são termos;
- Constantes são termos;
- Se f é um símbolo de função n-ária e $t_1, ..., t_n$ são termos, então $f(t_1, ..., t_n)$ são termos.

Fórmulas atômicas

São as fórmulas mais simples:

- t = s;
- $R(t_1,...,t_n)$.

Definimos fórmulas indutivamente:

- Fórmulas atômicas são fórmulas;
- Se φ é uma fórmula, então $\neg \varphi$ é uma fórmula;
- Se φ e ψ são fórmulas, então $\varphi \wedge \psi$ e $\varphi \vee \psi$ são fórmulas.
- Se φ é uma fórmula, então $\forall x \ \varphi$ e $\exists x \ \varphi$ são fórmulas.

Definimos fórmulas indutivamente:

- Fórmulas atômicas são fórmulas;
- Se φ é uma fórmula, então $\neg \varphi$ é uma fórmula;
- Se φ e ψ são fórmulas, então $\varphi \wedge \psi$ e $\varphi \vee \psi$ são fórmulas.
- Se φ é uma fórmula, então $\forall x \ \varphi$ e $\exists x \ \varphi$ são fórmulas.

Indução sobre fórmulas

Se X é um conjunto que contém todas as fórmulas atômicas e é fechado por \land , \lor , \neg , \forall e \exists , então X contém todas as fórmulas.

Interpretação

Um modelo (estrutura) para um vocabulário L é um conjunto M munido de uma interpretação $\cdot^{\mathcal{M}}$ de modo que:

- $\mathbf{c}^{\mathcal{M}} \in M$;
- $\mathbf{f}^{\mathcal{M}}: M^n \to M$;
- $\mathbf{R}^{\mathcal{M}} \subset M^n$.

Interpretação

Um modelo (estrutura) para um vocabulário L é um conjunto M munido de uma interpretação $\cdot^{\mathcal{M}}$ de modo que:

- $\mathbf{c}^{\mathcal{M}} \in M$;
- $\mathbf{f}^{\mathcal{M}}: M^n \to M$;
- $\mathbf{R}^{\mathcal{M}} \subset M^n$.

Dizemos que \mathcal{M} é um modelo para a teoria T quando, para toda sentença $\varphi \in \mathcal{T}$, $\mathcal{M} \models \varphi$.

Valoração

Dado um modelo \mathcal{M} , uma valoração α é uma função que leva os termos do vocabulário em elementos de M, da seguinte maneira:

- $\alpha(\mathbf{c}) = \mathbf{c}^{\mathcal{M}};$
- $\alpha(\mathbf{f}(t)) = \mathbf{f}^{\mathcal{M}}(\alpha(t)).$

Valoração

Dado um modelo \mathcal{M} , uma valoração α é uma função que leva os termos do vocabulário em elementos de M, da seguinte maneira:

- $\alpha(\mathbf{c}) = \mathbf{c}^{\mathcal{M}};$
- $\alpha(\mathbf{f}(t)) = \mathbf{f}^{\mathcal{M}}(\alpha(t)).$

Veja que uma valoração é completamente definida se apontarmos o valor de cada variável.

Satisfação

$$\mathcal{M} \models t = s[\alpha] \iff \alpha(t) = \alpha(s)$$

$$\mathcal{M} \models \mathbf{R}(t_1, ..., t_n)[\alpha] \iff \mathbf{R}^{\mathcal{M}}(\alpha(t_1), ..., \alpha(t_n))$$

$$\mathcal{M} \models \varphi \land \psi[\alpha] \iff \mathcal{M} \models \varphi[\alpha] \text{ e } \mathcal{M} \models \psi[\alpha]$$

$$\mathcal{M} \models \varphi \lor \psi[\alpha] \iff \mathcal{M} \models \varphi[\alpha] \text{ ou } \mathcal{M} \models \psi[\alpha]$$

$$\mathcal{M} \models \neg \varphi[\alpha] \iff \mathcal{M} \not\models \varphi[\alpha]$$

Satisfação

$$\mathcal{M} \models t = s[\alpha] \Leftrightarrow \alpha(t) = \alpha(s)$$

$$\mathcal{M} \models \mathbf{R}(t_1, ..., t_n)[\alpha] \Leftrightarrow \mathbf{R}^{\mathcal{M}}(\alpha(t_1), ..., \alpha(t_n))$$

$$\mathcal{M} \models \varphi \land \psi[\alpha] \Leftrightarrow \mathcal{M} \models \varphi[\alpha] \text{ e } \mathcal{M} \models \psi[\alpha]$$

$$\mathcal{M} \models \varphi \lor \psi[\alpha] \Leftrightarrow \mathcal{M} \models \varphi[\alpha] \text{ ou } \mathcal{M} \models \psi[\alpha]$$

$$\mathcal{M} \models \neg \varphi[\alpha] \Leftrightarrow \mathcal{M} \not\models \varphi[\alpha]$$

Dado um elemento $m \in M$, uma variável x e uma valoração α , dizemos que α_x^m é a valoração α substituindo-se $\alpha(x)$ por m.

 $\mathcal{M} \models \exists x \varphi(x) \Leftrightarrow \text{ existe um elemento } m \text{ em } M \text{ tal que } \mathcal{M} \models \varphi(x)[\alpha_x^m]$ $\mathcal{M} \models \forall x \varphi(x) \Leftrightarrow \text{ para todo elemento } m \text{ em } M, \ \mathcal{M} \models \varphi(x)[\alpha_x^m]$

Ultrafiltros

Dado um conjunto X, dizemos que um conjunto $\mathfrak{U} \subset \wp(X)$ é um ultrafiltro sobre X quando:

- Ø ∉ IJ;
- Se $A \in \mathfrak{U}$ e $A \subset B$, então $B \in \mathfrak{U}$;
- Se $A \in \mathfrak{U}$ e $B \in \mathfrak{U}$, então $A \cap B \in \mathfrak{U}$;
- $A \in \mathfrak{U} \Leftrightarrow X \setminus A \notin \mathfrak{U}$.

Ultrafiltros

Dado um conjunto X, dizemos que um conjunto $\mathfrak{U} \subset \wp(X)$ é um ultrafiltro sobre X quando:

- $\varnothing \notin \mathfrak{U}$;
- Se $A \in \mathfrak{U}$ e $A \subset B$, então $B \in \mathfrak{U}$;
- Se $A \in \mathfrak{U}$ e $B \in \mathfrak{U}$, então $A \cap B \in \mathfrak{U}$;
- $A \in \mathfrak{U} \Leftrightarrow X \setminus A \notin \mathfrak{U}$.

Lema do ultrafiltro

Dado um conjunto X, toda coleção de subconjuntos de X que é fechada por interseções finitas pode ser estendida a um ultrafiltro.

Lema do ultrafiltro

Esse lema não é dependente do Lema de Zorn, mas vamos usá-lo assim mesmo (até porque já usamos o axioma da escolha um monte de vezes).

Lema de Zorn

Dizemos que uma cadeia é um conjunto totalmente ordenado. Seja $\langle P, \leq \rangle$ um conjunto parcialmente ordenado. Se, para toda cadeia $C \subset P$, existe um elemento máximo $m_C \in P$, então existe um elemento $m \in P$ tal que não existe $x \in P$ de modo que m < x.

Lema do ultrafiltro

Esse lema não é dependente do Lema de Zorn, mas vamos usá-lo assim mesmo (até porque já usamos o axioma da escolha um monte de vezes).

Lema de Zorn

Dizemos que uma cadeia é um conjunto totalmente ordenado. Seja $\langle P, \leq \rangle$ um conjunto parcialmente ordenado. Se, para toda cadeia $C \subset P$, existe um elemento máximo $m_C \in P$, então existe um elemento $m \in P$ tal que não existe $x \in P$ de modo que m < x.

Seja $\mathcal{A}\subset\wp(X)$ uma coleção com a propriedade de interseção finita. Começamos estendendo $\mathcal A$ a um filtro

 $\mathcal{F} = \{F \subset X \,:\, \mathsf{existem}\,\, A_1, ..., A_n \in \mathcal{A} \,\, \mathsf{tais} \,\, \mathsf{que}\,\, F \supset A_1 \cap ... \cap A_n\}$

 \mathcal{F} é um filtro:

É fechado por interseção: sejam F, F' ∈ F. Então,
F ⊃ A₁ ∩ ... ∩ A_n e F' ⊃ A'₁, ..., A'_m.
Pela propriedade de interseção finita,
A₁ ∩ ... ∩ A_n ∩ A'₁ ∩ ... ∩ A'_m = B ∈ A. Portanto, F ∩ F' ⊃ B e assim F ∩ F' ∈ F.

\mathcal{F} é um filtro:

- É fechado por interseção: sejam F, F' ∈ F. Então,
 F ⊃ A₁ ∩ ... ∩ A_n e F' ⊃ A'₁, ..., A'_m.
 Pela propriedade de interseção finita,
 A₁ ∩ ... ∩ A_n ∩ A'₁ ∩ ... ∩ A'_m = B ∈ A. Portanto, F ∩ F' ⊃ B e assim F ∩ F' ∈ F.
- É fechado por *superconjuntos*: seja $F \in \mathcal{F}$ e $F' \supset F$. Então, $F' \supset F \supset A_1, ..., A_n$ e portanto $F' \in \mathcal{F}$.

\mathcal{F} é um filtro:

- É fechado por interseção: sejam F, F' ∈ F. Então,
 F ⊃ A₁ ∩ ... ∩ A_n e F' ⊃ A'₁, ..., A'_m.
 Pela propriedade de interseção finita,
 A₁ ∩ ... ∩ A_n ∩ A'₁ ∩ ... ∩ A'_m = B ∈ A. Portanto, F ∩ F' ⊃ B e assim F ∩ F' ∈ F.
- É fechado por *superconjuntos*: seja $F \in \mathcal{F}$ e $F' \supset F$. Então, $F' \supset F \supset A_1, ..., A_n$ e portanto $F' \in \mathcal{F}$.

Agora, vamos estender $\mathcal F$ a um ultrafiltro usando o Lema de Zorn.

Seja $\mathbb{J}\subset\mathbb{F}$ uma cadeia.

Então, $\bigcup \mathbb{J}$ é um filtro e, para todo $J \in \mathbb{J}$, temos que $J \subset \bigcup \mathbb{J}$.

Seja $\mathbb{J}\subset\mathbb{F}$ uma cadeia.

Então, $\bigcup \mathbb{J}$ é um filtro e, para todo $J \in \mathbb{J}$, temos que $J \subset \bigcup \mathbb{J}$.

Ou seja, toda cadeia admite um elemento máximo.

Portanto, pelo Lema de Zorn, deve existir um filtro maximal contendo \mathcal{F} .

Um filtro maximal nada mais é que um ultrafiltro.

Seja $\mathbb{J}\subset\mathbb{F}$ uma cadeia.

Então, $\bigcup \mathbb{J}$ é um filtro e, para todo $J \in \mathbb{J}$, temos que $J \subset \bigcup \mathbb{J}$.

Ou seja, toda cadeia admite um elemento máximo.

Portanto, pelo Lema de Zorn, deve existir um filtro maximal contendo \mathcal{F} .

Um filtro maximal nada mais é que um ultrafiltro.

Conseguimos, então, um ultrafiltro $\mathfrak{U}\supset\mathcal{A}$.

Ultraprodutos

Vamos usar os ultrafiltros para definir ultraprodutos.

Seja *L* um vocabulário e *l* um conjunto qualquer.

Para cada $i \in I$, seja \mathcal{M}_i um L-modelo, cujo universo é M_i .

Seja $\mathfrak U$ um ultrafiltro sobre I.

Definimos a seguinte relação de equivalência sobre $\prod_{i \in I} M_i$:

$$\langle x_i \rangle_{i \in I} =_{\mathfrak{U}} \langle y_i \rangle_{i \in I} \Leftrightarrow \{i \in I : x_i = y_i\} \in \mathfrak{U}$$

Veja que, de fato, $=\mathfrak{U}$ é uma relação de equivalência.

É reflexiva: $\langle x_i \rangle_{i \in I} =_{\mathfrak{U}} \langle x_i \rangle_{i \in I}$, pois $\{i \in I : x_i = x_i\} = I \in \mathfrak{U}$.

Veja que, de fato, $=\mathfrak{U}$ é uma relação de equivalência.

É reflexiva: $\langle x_i \rangle_{i \in I} =_{\mathfrak{U}} \langle x_i \rangle_{i \in I}$, pois $\{i \in I : x_i = x_i\} = I \in \mathfrak{U}$.

É também simétrica, pois $\{i \in I : x_i = y_i\} = \{i \in I : y_i = x_i\}.$

Veja que, de fato, $=\mathfrak{U}$ é uma relação de equivalência.

É reflexiva: $\langle x_i \rangle_{i \in I} =_{\mathfrak{U}} \langle x_i \rangle_{i \in I}$, pois $\{i \in I : x_i = x_i\} = I \in \mathfrak{U}$.

É também simétrica, pois $\{i \in I : x_i = y_i\} = \{i \in I : y_i = x_i\}.$

Por fim, é transitiva: segue da propriedade de interseção finita do ultrafiltro.

Queremos saber se $\langle x_i \rangle =_{\mathfrak{U}} \langle y_i \rangle$ e $\langle y_i \rangle =_{\mathfrak{U}} \langle z_i \rangle$ implicam que $\langle x_i \rangle =_{\mathfrak{U}} \langle z_i \rangle$

Basta ver que $\{i \in I : x_i = z_i\} \supset \{i \in I : x_i = y_i \land y_i = z_i\}$ Por sua vez.

 $\{i \in I : x_i = y_i \land y_i = z_i\} = \{i \in I : x_i = y_i\} \cap \{i \in I : y_i = z_i\} \in \mathfrak{U},$ pela propriedade de interseção finita.

Agora, $\{i \in I : x_i = z_i\}$ é maior que um conjunto que pertence ao ultrafiltro, logo, também pertence ao ultrafiltro.

Considere, então, $[\langle a_i \rangle]$ o classe de equivalência de $\langle a_i \rangle$, isto é, todos os $\langle x_i \rangle$ tais que $\langle x_i \rangle =_{\mathfrak{U}} \langle a_i \rangle$. Por simplicidade, denotamos $[\langle a_i \rangle]$ como a.

Escrevemos, então, $\frac{\prod\limits_{i\in I}M_i}{\mathfrak{U}}$ o conjunto das classes de equivalência.

Denotaremos esse conjunto por M^* .

Considere, então, $[\langle a_i \rangle]$ o classe de equivalência de $\langle a_i \rangle$, isto é, todos os $\langle x_i \rangle$ tais que $\langle x_i \rangle =_{\mathfrak{U}} \langle a_i \rangle$. Por simplicidade, denotamos $[\langle a_i \rangle]$ como a.

Escrevemos, então, $\frac{\prod\limits_{i\in I}M_i}{\mathfrak{U}}$ o conjunto das classes de equivalência. Denotaremos esse conjunto por M^* .

Queremos dar a M^* uma interpretação para os símbolos de L, a fim de construir um modelo \mathcal{M}^* .

Constantes

Seja \mathbf{c} uma constante de L. Definimos $\mathbf{c}^{\mathcal{M}^*} = a$, com $a_i = \mathbf{c}^{\mathcal{M}_i}$

Constantes

Seja **c** uma constante de *L*. Definimos $\mathbf{c}^{\mathcal{M}^*} = a$, com $a_i = \mathbf{c}^{\mathcal{M}_i}$

Ou seja,
$$\mathbf{c}^{\mathcal{M}^*} = [\langle \mathbf{c}^{\mathcal{M}_i}
angle]$$

Relações

Seja **R** um símbolo de relação *n*-ária.

Para facilitar a escrita, considere n=2. Definimos $\mathbf{R}^{\mathcal{M}^*}(a,b)$ se e somente se $\{i \in I : R_i(a_i,b_i)\} \in \mathfrak{U}$, com R_i uma maneira mais compacta de escrever $\mathbf{R}^{\mathcal{M}_i}$.

Relações

Seja **R** um símbolo de relação *n*-ária.

Para facilitar a escrita, considere n=2. Definimos $\mathbf{R}^{\mathcal{M}^*}(a,b)$ se e somente se $\{i \in I : R_i(a_i,b_i)\} \in \mathfrak{U}$, com R_i uma maneira mais compacta de escrever $\mathbf{R}^{\mathcal{M}_i}$.

Precisamos mostrar que isso está bem definido, ou seja, que não depende da escolha do representante de classe.

Pois bem. Sejam $\langle x_i \rangle$ e $\langle y_i \rangle$ dois representantes da classe a Queremos mostrar que

$$\{i \in I \,:\, R_i(x_i,b_i)\} \in \mathfrak{U} \Leftrightarrow \{i \in I \,:\, R(y_i,b_i)\} \in \mathfrak{U}.$$

Relações

Seja **R** um símbolo de relação *n*-ária.

Para facilitar a escrita, considere n=2. Definimos $\mathbf{R}^{\mathcal{M}^*}(a,b)$ se e somente se $\{i \in I : R_i(a_i,b_i)\} \in \mathfrak{U}$, com R_i uma maneira mais compacta de escrever $\mathbf{R}^{\mathcal{M}_i}$.

Precisamos mostrar que isso está bem definido, ou seja, que não depende da escolha do representante de classe.

Pois bem. Sejam $\langle x_i \rangle$ e $\langle y_i \rangle$ dois representantes da classe *a* Queremos mostrar que

$$\{i \in I : R_i(x_i, b_i)\} \in \mathfrak{U} \Leftrightarrow \{i \in I : R(y_i, b_i)\} \in \mathfrak{U}.$$

Suponha que $\{i \in I : R_i(x_i, b_i)\} \in \mathfrak{U}$. Veja que $\{i \in I : R_i(y_i, b_i)\} \supset \{i \in I : R_i(x_i, b_i) \land y_i = x_i\}$.

Sabemos que:

- $\{i \in I : R_i(x_i, b_i)\} \in \mathfrak{U};$
- $\bullet \ \{i \in I : x_i = y_i\} \in \mathfrak{U}.$

Sabemos que:

- $\{i \in I : R_i(x_i, b_i)\} \in \mathfrak{U};$
- $\bullet \ \{i \in I : x_i = y_i\} \in \mathfrak{U}.$

Portanto,
$$\{i \in I : R_i(y_i, b_i)\} \supset \{i \in I : R_i(x_i, b_i) \land y_i = x_i\} = \{i \in I : R_i(x_i, b_i)\} \cap \{i \in I : x_i = y_i\} \in \mathfrak{U}.$$

Desse modo, $\{i \in I : R_i(y_i, b_i)\} \in \mathfrak{U}$.

Sabemos que:

- $\{i \in I : R_i(x_i, b_i)\} \in \mathfrak{U};$
- $\bullet \ \{i \in I : x_i = y_i\} \in \mathfrak{U}.$

Portanto,
$$\{i \in I : R_i(y_i, b_i)\} \supset \{i \in I : R_i(x_i, b_i) \land y_i = x_i\} = \{i \in I : R_i(x_i, b_i)\} \cap \{i \in I : x_i = y_i\} \in \mathfrak{U}.$$
 Desse modo, $\{i \in I : R_i(y_i, b_i)\} \in \mathfrak{U}.$

Para completar a prova, deveríamos mostrar que isso também independe da escolha do representante de classe do b, mas é completamente análogo.

Fizemos para o caso n=2, mas também se estende facilmente para qualquer n.

Funções

Seja **f** um símbolo de função *n*-ária.

Por simplicidade, consideramos n = 1.

Funções

Seja f um símbolo de função n-ária. Por simplicidade, consideramos n = 1.

Definimos $\mathbf{f}^{\mathcal{M}^*}(a) = [\langle \mathbf{f}^{\mathcal{M}_i}(a_i) \rangle].$

Funções

Seja **f** um símbolo de função *n*-ária.

Por simplicidade, consideramos n = 1.

Definimos $\mathbf{f}^{\mathcal{M}^*}(a) = [\langle \mathbf{f}^{\mathcal{M}_i}(a_i) \rangle].$

Novamente, precisamos mostrar que isso está bem definido.

Isto é, independe da escolha do representante de classe de a.

Sejam $\langle x_i \rangle$ e $\langle y_i \rangle$ dois representantes da classe a. Isto é, $\langle x_i \rangle =_{\mathfrak{U}} \langle y_i \rangle$.

Sejam $\langle x_i \rangle$ e $\langle y_i \rangle$ dois representantes da classe a. Isto é, $\langle x_i \rangle =_{\mathfrak{U}} \langle y_i \rangle$.

Queremos mostrar que $[\langle \mathbf{f}^{\mathcal{M}_i}(x_i) \rangle] = [\langle \mathbf{f}^{\mathcal{M}_i}(y_i) \rangle].$ Isto é, mostrar que $\{i \in I : \mathbf{f}^{\mathcal{M}_i}(x_i) = \mathbf{f}^{\mathcal{M}_i}(y_i)\} \in \mathfrak{U}.$ Sejam $\langle x_i \rangle$ e $\langle y_i \rangle$ dois representantes da classe a. Isto é, $\langle x_i \rangle =_{\mathfrak{U}} \langle y_i \rangle$.

Queremos mostrar que $[\langle \mathbf{f}^{\mathcal{M}_i}(x_i) \rangle] = [\langle \mathbf{f}^{\mathcal{M}_i}(y_i) \rangle].$ Isto é, mostrar que $\{i \in I : \mathbf{f}^{\mathcal{M}_i}(x_i) = \mathbf{f}^{\mathcal{M}_i}(y_i)\} \in \mathfrak{U}.$

Basta ver que $\{i \in I : \mathbf{f}^{\mathcal{M}_i}(x_i) = \mathbf{f}^{\mathcal{M}_i}(y_i)\} \supset \{i \in I : x_i = y_i\} \in \mathfrak{U}$. Isto é, dada uma função g, qualquer, $a = b \Rightarrow g(a) = g(b)$.

Satisfação em ultraprodutos

Definida a interpretação, conseguimos, então, um modelo. Assim, a satisfação segue como normalmente.

Satisfação em ultraprodutos

Definida a interpretação, conseguimos, então, um modelo. Assim, a satisfação segue como normalmente.

No entanto, há uma maneira mais fácil de trabalhar com satisfação em ultraprodutos, que é dada pelo Teorema de Łoś.

Teorema

Seja \mathcal{M}^* o ultraproduto dos \mathcal{M}_i , com $i \in I$, sobre o ultrafiltro \mathfrak{U} . Então, dada uma fórmula $\varphi(x)$:

$$\mathcal{M}^* \models \varphi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \varphi(a_i)\} \in \mathfrak{U}$$

Prova do Teorema

Faremos a prova por indução em fórmulas.

Para o caso das fórmulas atômicas, vem diretamente da definição de interpretação:

$$\mathcal{M}^* \models t = s \Leftrightarrow t =_{\mathfrak{U}} s$$

$$\mathcal{M}^* \models \mathbf{R}(t^1, t^2, ..., t^n) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \mathbf{R}(t_i^1, ..., t_i^n)\} \in \mathfrak{U}$$

Prova do Teorema

Faremos a prova por indução em fórmulas.

Para o caso das fórmulas atômicas, vem diretamente da definição de interpretação:

$$\mathcal{M}^* \models t = s \Leftrightarrow t =_{\mathfrak{U}} s$$
 $\mathcal{M}^* \models \mathbf{R}(t^1, t^2, ..., t^n) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \mathbf{R}(t^1_i, ..., t^n_i)\} \in \mathfrak{U}$

Vamos provar, então, para os casos em que adicionamos \neg , \land , \lor , \forall e \exists às fórmulas que já sabemos que o resultado é verdadeiro.

Suponha que $\mathcal{M}^* \models \psi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$.

Suponha que $\mathcal{M}^* \models \psi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$.

Então, $\mathcal{M}^* \models \neg \psi(a)$ se e somente se $\mathcal{M}^* \not\models \psi(a)$, pela definição de satisfação.

Pela hipótese de indução, $\mathcal{M}^* \not\models \psi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \not\in \mathfrak{U}$.

Suponha que $\mathcal{M}^* \models \psi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$.

Então, $\mathcal{M}^* \models \neg \psi(a)$ se e somente se $\mathcal{M}^* \not\models \psi(a)$, pela definição de satisfação.

Pela hipótese de indução, $\mathcal{M}^* \not\models \psi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \not\in \mathfrak{U}$. Como \mathfrak{U} é ultrafiltro, isso é equivalente a dizer que o complementar pertence ao ultrafiltro, isto é, $\{i \in I : \mathcal{M}_i \not\models \psi(a_i)\} \in \mathfrak{U}$.

Suponha que $\mathcal{M}^* \models \psi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$.

Então, $\mathcal{M}^* \models \neg \psi(a)$ se e somente se $\mathcal{M}^* \not\models \psi(a)$, pela definição de satisfação.

Pela hipótese de indução, $\mathcal{M}^* \not\models \psi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \not\in \mathfrak{U}$. Como \mathfrak{U} é ultrafiltro, isso é equivalente a dizer que o complementar pertence ao ultrafiltro, isto é, $\{i \in I : \mathcal{M}_i \not\models \psi(a_i)\} \in \mathfrak{U}$. Pela definição de satisfação, isso é o mesmo que dizer que $\{i \in I : \mathcal{M}_i \models \neg \psi(a_i)\} \in \mathfrak{U}$, que é o que queríamos.

Suponha o resultado válido para $\psi(x)$ e $\eta(x)$.

$$\mathcal{M}^* \models (\psi \land \eta)(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models (\psi \land \eta)(a_i)\} \in \mathfrak{U}$$

Suponha o resultado válido para $\psi(x)$ e $\eta(x)$.

$$\mathcal{M}^* \models (\psi \land \eta)(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models (\psi \land \eta)(a_i)\} \in \mathfrak{U}$$

$$\mathcal{M}^* \models \psi \land \eta(a)$$

$$\Leftrightarrow \mathcal{M}^* \models \psi(a) \in \mathcal{M}^* \models \eta(a)$$

$$\Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$$

$$\in \{i \in I : \mathcal{M}_i \models \eta(a_i)\} \in \mathfrak{U}$$

$$\Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \cap \{i \in I : \mathcal{M}_i \models \eta(a_i)\} \in \mathfrak{U}$$

$$\Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i) \in \mathcal{M}_i \models \eta(a_i)\} \in \mathfrak{U}$$

$$\Leftrightarrow \{i \in I : \mathcal{M}_i \models (\psi \land \eta)(a_i)\} \in \mathfrak{U}$$

Ou

Suponha o resultado válido para $\psi(x)$ e $\eta(x)$.

$$\mathcal{M}^* \models (\psi \lor \eta)(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models (\psi \lor \eta)(a_i)\} \in \mathfrak{U}$$

Ou

Suponha o resultado válido para $\psi(x)$ e $\eta(x)$.

$$\mathcal{M}^* \models (\psi \lor \eta)(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models (\psi \lor \eta)(a_i)\} \in \mathfrak{U}$$

$$\mathcal{M}^* \models \psi \lor \eta(a)$$

 $\Leftrightarrow \mathcal{M}^* \models \psi(a) \text{ or } \mathcal{M}^* \models \eta(a)$
 $\Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$
ou $\{i \in I : \mathcal{M}_i \models \eta(a_i)\} \in \mathfrak{U}$
 $\Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \cup \{i \in I : \mathcal{M}_i \models \eta(a_i)\} \in \mathfrak{U}$
 $\Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i) \text{ ou } \mathcal{M}_i \models \eta(a_i)\} \in \mathfrak{U}$
 $\Leftrightarrow \{i \in I : \mathcal{M}_i \models (\psi \lor \eta)(a_i)\} \in \mathfrak{U}$

Existe

Suponha o resultado válido para $\psi(x)$. Queremos mostrar que $\mathcal{M}^* \models \exists x \psi(x) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \exists x \ \psi(x)\}$

Existe

Suponha o resultado válido para $\psi(x)$.

Queremos mostrar que $\mathcal{M}^* \models \exists x \psi(x) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \exists x \ \psi(x)\}$

Suponha, primeiro, que $\mathcal{M}^* \models \exists x \ \psi(x)$.

Então, pela definição de satisfação, existe um $a \in M^*$ tal que $\mathcal{M}^* \models \psi(a)$.

Existe

Suponha o resultado válido para $\psi(x)$.

Queremos mostrar que $\mathcal{M}^* \models \exists x \psi(x) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \exists x \ \psi(x)\}$

Suponha, primeiro, que $\mathcal{M}^* \models \exists x \ \psi(x)$.

Então, pela definição de satisfação, existe um $a \in M^*$ tal que $\mathcal{M}^* \models \psi(a)$.

Pela hipótese de indução, temos que

 $\mathcal{M}^* \models \psi(a) \Leftrightarrow \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}.$

Portanto, $\{i \in I : \mathcal{M}_i \models \exists x \ \psi(x)\} \subset \{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$ e temos o que queríamos.

Suponha que $\{i \in I : \mathcal{M}_i \models \exists x \ \psi(x)\} \in \mathfrak{U}$.

Suponha que $\{i \in I : \mathcal{M}_i \models \exists x \ \psi(x)\} \in \mathfrak{U}$.

Defina $\langle a_i \rangle_{i \in I}$ da seguinte maneira:

- Se $\mathcal{M}_i \models \exists x \ \psi(x)$, escolha a_i como algum elemento $a_i \in M_i$ tal que $\mathcal{M}_i \models \psi(a_i)$;
- Se $\mathcal{M}_i \not\models \exists x \ \psi(x)$, escolha a_i como sendo qualquer elemento de M_i .

Suponha que $\{i \in I : \mathcal{M}_i \models \exists x \ \psi(x)\} \in \mathfrak{U}$.

Defina $\langle a_i \rangle_{i \in I}$ da seguinte maneira:

- Se $\mathcal{M}_i \models \exists x \ \psi(x)$, escolha a_i como algum elemento $a_i \in M_i$ tal que $\mathcal{M}_i \models \psi(a_i)$;
- Se $\mathcal{M}_i \not\models \exists x \ \psi(x)$, escolha a_i como sendo qualquer elemento de M_i .

Então $a = [\langle a_i \rangle]$ é tal que $\mathcal{M}^* \models \psi(a)$, pois $\{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$ (pela maneira como escolhemos), e a hipótese de indução garante que essas duas afirmações são equivalentes.

Suponha que $\{i \in I : \mathcal{M}_i \models \exists x \ \psi(x)\} \in \mathfrak{U}$.

Defina $\langle a_i \rangle_{i \in I}$ da seguinte maneira:

- Se $\mathcal{M}_i \models \exists x \ \psi(x)$, escolha a_i como algum elemento $a_i \in M_i$ tal que $\mathcal{M}_i \models \psi(a_i)$;
- Se $\mathcal{M}_i \not\models \exists x \ \psi(x)$, escolha a_i como sendo qualquer elemento de M_i .

Então $a = [\langle a_i \rangle]$ é tal que $\mathcal{M}^* \models \psi(a)$, pois $\{i \in I : \mathcal{M}_i \models \psi(a_i)\} \in \mathfrak{U}$ (pela maneira como escolhemos), e a hipótese de indução garante que essas duas afirmações são equivalentes.

Enfim, pela definição de satisfação, temos que $\mathcal{M}^* \models \exists x \ \psi(x)$.

Para todo

Note que $\forall x \ \psi(x)$ é equivalente a $\neg(\exists x \ \neg \psi(x))$. Então, usamos os casos anteriores e obtemos o resultado.

O que provamos?

Em particular, dada uma sentença φ , temos que:

$$\mathcal{M}^* \models \varphi \Leftrightarrow \{i \in I : \mathcal{M}_i \models \varphi\} \in \mathfrak{U}$$

O que provamos?

Em particular, dada uma sentença φ , temos que:

$$\mathcal{M}^* \models \varphi \Leftrightarrow \{i \in I : \mathcal{M}_i \models \varphi\} \in \mathfrak{U}$$

Ou seja, o ultraproduto de um conjunto de modelos para uma dada teoria é, também, um modelo para essa teoria.

Compacidade

Vamos, então, provar o Teorema da Compacidade:

Teorema

Se todo subconjunto finito de uma teoria admite modelo, então a teoria admite modelo.

Compacidade

Vamos, então, provar o Teorema da Compacidade:

Teorema

Se todo subconjunto finito de uma teoria admite modelo, então a teoria admite modelo.

Seja T uma teoria. Considere I a coleção de todos os subconjuntos finitos dessa teoria.

Para cada $i \in I$, seja $\mathcal{M}_i \models i$. (i é uma coleção finita de sentenças).

Para cada $\varphi \in T$, considere $A_{\varphi} = \{i \in T : \mathcal{M}_i \models \varphi\}$. Veja que o conjunto $\mathcal{A} = \{A_{\varphi} : \varphi \in T\}$ tem a propriedade de interseção finita:

$$A_{\varphi} \cap A_{\psi} = A_{\varphi \wedge \psi}$$
, e $T \models \varphi \wedge \psi$.

Para cada $\varphi \in T$, considere $A_{\varphi} = \{i \in T : \mathcal{M}_i \models \varphi\}$. Veja que o conjunto $\mathcal{A} = \{A_{\varphi} : \varphi \in T\}$ tem a propriedade de interseção finita:

$$A_{\varphi} \cap A_{\psi} = A_{\varphi \wedge \psi}$$
, e $T \models \varphi \wedge \psi$.

Estendemos, então, $\mathcal A$ a um ultrafiltro $\mathfrak U$. Construa, então, o ultraproduto

$$\mathcal{M}^* = \frac{\prod\limits_{i \in I} \mathcal{M}_i}{\mathfrak{U}}$$

Para cada $\varphi \in T$, considere $A_{\varphi} = \{i \in T : \mathcal{M}_i \models \varphi\}$. Veja que o conjunto $\mathcal{A} = \{A_{\varphi} : \varphi \in T\}$ tem a propriedade de interseção finita:

$$A_{\varphi} \cap A_{\psi} = A_{\varphi \wedge \psi}$$
, e $T \models \varphi \wedge \psi$.

Estendemos, então, ${\mathcal A}$ a um ultrafiltro ${\mathfrak U}$. Construa, então, o ultraproduto

$$\mathcal{M}^* = \frac{\prod\limits_{i \in I} \mathcal{M}_i}{\mathfrak{U}}$$

Pelo Teorema de Łoś, teremos que:

$$\mathcal{M}^* \models \varphi \Leftrightarrow \{i \in I : \mathcal{M}_i \models \varphi\} \in \mathfrak{U} \Leftrightarrow A_\varphi \in \mathfrak{U}$$

Como $\mathfrak U$ é uma extensão de $\mathcal A$, o resultado segue.

Ultraprodutos, compacidade...

Em muitas ocasiões em que usamos compacidade, podemos usar ultraprodutos para obter uma prova mais construtiva.

Por exemplo, mostramos em uma aula anterior que a existência de corpos de característica p, para cada p, implica na existência de um corpo de característica 0.

Ultraprodutos, compacidade...

Em muitas ocasiões em que usamos compacidade, podemos usar ultraprodutos para obter uma prova mais construtiva.

Por exemplo, mostramos em uma aula anterior que a existência de corpos de característica p, para cada p, implica na existência de um corpo de característica 0.

Poderíamos usar ultraprodutos: O ultraproduto dos \mathbb{F}_p é um corpo de característica 0: basta notar que, para cada q primo, apenas finitos \mathbb{F}_p vão satisfazer a sentença $1+1+\ldots+1=0$.

Ultraprodutos, compacidade...

Em muitas ocasiões em que usamos compacidade, podemos usar ultraprodutos para obter uma prova mais construtiva.

Por exemplo, mostramos em uma aula anterior que a existência de corpos de característica p, para cada p, implica na existência de um corpo de característica 0.

Poderíamos usar ultraprodutos: O ultraproduto dos \mathbb{F}_p é um corpo de característica 0: basta notar que, para cada q primo, apenas finitos \mathbb{F}_p vão satisfazer a sentença $1+1+\ldots+1=0$.

Ou seja, a maioria dos \mathbb{F}_p satisfaz "a característica não é q". Portanto, a característica do ultraproduto não pode ser nenhum q finito e, assim, é 0.

Até amanhã!