Compsci 166 Homework 3 Cael Howard (cthoward) February 12, 2025

Question 1.

1) Design a two quibit circuit that starts in the state $|00\rangle$ and ends with $|\Psi^{-}\rangle$.

2) Write down $|0\rangle$ and $|1\rangle$ as a weighted sum of $|\pi/6\rangle$ and $|4\pi/6\rangle$ in the above basis.

$$|0\rangle = \frac{\sqrt{3}}{2} |\pi/6\rangle - \frac{1}{2} |4\pi/6\rangle$$
$$|1\rangle = \frac{1}{2} |\pi/6\rangle + \frac{\sqrt{3}}{2} |4\pi/6\rangle$$

3) If Alice measures her quibit in the standard basis, what are the probabilities of each outcome, and the state of the two quibits after the measurement?

 $|0\rangle: 1/2$ Probability and state collapses to $|01\rangle$

 $|1\rangle:1/2$ Probability and state collapses to $|10\rangle$

4) If Alice instead chooses to measure in the $\{|\pi/6\rangle, |4\pi/6\rangle\}$ basis, what are the porbailities of each outcome, and the state of the two quibits after the measurement?

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}((\frac{\sqrt{3}}{2}|\pi/6\rangle - \frac{1}{2}|4\pi/6\rangle) \otimes |1\rangle - (\frac{1}{2}|\pi/6\rangle + \frac{\sqrt{3}}{2}|4\pi/6\rangle) \otimes |0\rangle)$$

Alice measures:

$$|\pi/6\rangle$$
 w/ probability 1/2, collapses to $\frac{\sqrt{3}}{2} |\pi/6\rangle |1\rangle - \frac{1}{2} |\pi/6\rangle |0\rangle |4\pi/6\rangle$ w/ probability 1/2, collapses to $\frac{-1}{2} |4\pi/6\rangle |1\rangle - \frac{\sqrt{3}}{2} |4\pi/6\rangle |0\rangle$

5) Verbally describe what happens to the second quibit when the first quibit of a $|\Psi\rangle$ state gets measures.

Answer:

The second quibit collapses into a state of $R_{-\theta}|0\rangle$ for θ = the state of the first quibit.

Question 2.

1) Determine whether a state $|\psi\rangle$ that we know to be one of the two states is clonable or not. Briefly justify your answer.

Answer:

Yes. Since $|i\rangle$ and $|-i\rangle$ form an orthonormal basis, there must exist a U that can clone a quibit that we know to be in one of the two above states.

2) Design a quantum circuit that clones a state if we know it is in the above basis.

3) Design a 4 quibit quantum circuit that clones 2 quibit standard basis states.

4) Design a 4 quibit quantum circuit that clones the Bell basis states.

Question 3.

1) What does the serial code 010 get mapped to using this function?

Answer:

$$f(010) = (2 \cdot 17 + 4) \pmod{64}$$

= 38

2) What does the serial code 110 get mapped to using this function?

Answer:

$$f(110) = (6 \cdot 17 + 4) \pmod{64}$$

= 42

3) If a client handed you a bill with the serial number 010, what basis would you measure each quibit in to verify that it is in the correct state.

Answer:

The function with serial number 010 outputs 38 which is 100110 in binary. This bitstring translates to $|+1+\rangle$ which means that the first and third bits should be measured in the hadamard basis and the second bit in the standard basis.

4) If a client handed you a bill with the serial number 110, what basis would you measure each quibit in to verify that it is in the correct state.

Answer:

The function with serial number 110 outputs 42 which is 101010 in binary. This bitstring translates to $|+++\rangle$ which means that the first and third bits should be measured in the hadamard basis and the second bit in the standard basis.

- 5) The probability the verification is successful is the probability that $|0\rangle$ measures correctly for any of the given quibits. The probabilities for $|0\rangle$, $|1\rangle$, $|+\rangle$, $|-\rangle$ being measured correctly given $|\psi_1\rangle$ is $|0\rangle$ are 1, 0, 1/2, 1/2 respectively, meaning that the probability that the verification succeeds is 1/2.
- 6) Let $|\psi\rangle$ be the state received after the bank runs their verification process. If the verification was successful, what is the state of $|\psi\rangle$?

Answer:

The state of $|\psi\rangle$ must be the same for all $|\psi_i\rangle$ except for i=0 in which case $|\psi_0\rangle = |\psi_0^{\perp}\rangle$ where $|\psi_0^{\perp}\rangle$ is the state orthogonal to the original first quibit's state.

7) Design a counterfeiting strategy to create a copy of $|\psi\rangle$ for all n quibits. How many times would we need to resubmit to the bank?

Answer:

In order to find a strategy to create a copy of $|\psi\rangle$ we will need to find out $|\psi_i\rangle$ for all i. We will generalize the strategy for finding each quibit. We first replace the quibit with $|0\rangle$ and try to verify it. If it passes, we know the correct bit cannot be a $|1\rangle$. We repeat this using $|0\rangle$ for the particular quibit until we are certain that $|\psi_i\rangle$ is $|0\rangle$ with a probability $>\epsilon$ for whatever value for ϵ we see fit. If we ever measure $|1\rangle$, we know that the correct quibit is either $|+\rangle$ or $|-\rangle$, so it takes one extra bill submission to determine which of the two it is. Therefore, to counterfit each $|\psi_i\rangle$, it will take O(n) submissions.

Question 4.

1) Diagram of the circuit for the protocol

2)

$$\begin{split} \frac{1}{\sqrt{2}}(\alpha \left| 001 \right\rangle + \alpha \left| 010 \right\rangle + \beta \left| 101 \right\rangle + \beta \left| 110 \right\rangle) \\ \mathbf{CNOT:} \ \frac{1}{\sqrt{2}}(\alpha \left| 001 \right\rangle + \alpha \left| 010 \right\rangle + \beta \left| 111 \right\rangle + \beta \left| 100 \right\rangle) \\ \mathbf{H:} \ \frac{1}{2}(\alpha \left| 001 \right\rangle + \alpha \left| 101 \right\rangle + \alpha \left| 010 \right\rangle \alpha \left| 110 \right\rangle + \beta \left| 011 \right\rangle - \beta \left| 111 \right\rangle + \beta \left| 000 \right\rangle - \beta \left| 100 \right\rangle) \end{split}$$

3) Alice measures:

 $|00\rangle$: $\alpha |1\rangle + \beta |0\rangle$ Apply X gate

 $|01\rangle$: $\alpha |0\rangle + \beta |1\rangle$ Apply I gate

 $|10\rangle$: $\alpha |1\rangle - \beta |0\rangle$: Apply X then Z gate

 $|11\rangle$: $\alpha |0\rangle - \beta 1$: Apply Z gate