Project 2: Towards an Optimisation Tool

GOOGLE HASH CODE 2017

Problem Description

Problem Description (2)

Solutions

Constraints

 Sum of all videos stored in a cache server ≤ capacity of the cache server

Scoring Solutions

Scoring function
 ="cost function"
 ="utility function"
 ="fitness function"

```
score = 0
for each request q for a file f at an endpoint e
    score += number of videos in the request *
        (latency from data centre – best latency
        from a cache server serving e and hosting f)
```


endfor

score = score/number of requests
score *= 1000

Scoring Solutions

1500 x video 3 from cache 1=

1500 x (1000 - 300)

500 x video 4 from data centre=

500 x (1000 - 0)

 $1000 \times \text{video} 1 \text{ from cache } 2 =$

 $1000 \times (1000 - 200)$

1000 x video 0 from data centre =

1000 x (500 - 0)

%(1500 + 500 + 1000 + 1000)

462.5 ms on average

462500 points

TOWARDS AN OPTIMISATION TOOL

Search Algorithm

Representation

Search Operators

Fitness Function

Hill Climbing

Hill Climbing 0.2 0.15 0.1 0.05 03

Explore neighbourhood

Hill Climbing

Search Algorithm

Hill climbing

Representation

Search Operators

Fitness Function

Representation

A Solution

Search Algorithm

Hill climbing

Representation

2D list

Search Operators

Fitness Function

Search

Search

Search Algorithm

Hill climbing

Representation

2D list

Search Operators

Neighbourhood of 2D list

Fitness Function

Search Algorithm

Hill climbing

Representation

2D list

Search Operators

Neighbourhood of 2D list

Fitness Function

as given by Google

Problem with Hill-climbing

Problem with Hill-climbing

Evolutionary (Genetic) Algorithms

- Two basic operations:
 - Mutation

$$((0,0,1,0,0),(0,1,0,1,0),(1,1,0,0,0))$$
 $((0,0,1,0,0),(0,1,1,1,0),(1,1,0,0,0))$ before mutation \longrightarrow after mutation

Crossover

$$((0,0,1,0,0),(0,1,0,1,0),(1,1,0,0,0))$$
 $((0,1,1,0,0),(0,1,0,1,0),(1,1,0,0,0))$ $((0,1,1,0,0),(0,1,1,1,0),(1,0,0,0,0))$

before CO after CO

Selection

- keep only the fittest individuals?
- or keep some "diversity"?
- how many individual solutions do we keep in a population?
- how often do we do crossover?
- how often do we mutate?

