LAB 02: Types and Objects

CS211 – Data Structures and Algorithms
Usman Institute of Technology
Fall 2020

- How to submit:
 - Online: Submit on your respective MS Team.
- 1. Create a parent class <u>Array</u> which takes two parameters to initialize: <u>rows and cols</u> and write functions in Python whose parameters and return value are given below.
- a) Add a constructor of the class that initializes a list containing rows * cols elements. All elements must be declared 0 by default.

```
class Array:
    def __init__ (self, rows, cols):
        // your code goes here

Example:
A = Array(3,3) # for a 3 x 3 array
```

b) Add a function **SetValues** which takes three parameters i, j, and v, for row, column, and value respectively. The function set the value at ith row and jth column.

The function is supposed to convert these two dimensions value into a linear dimension. The following equation can be used for conversion:

```
Location = i * R + j (R = number of elements in a ROW)
```

c) Add a function **GetValue** which takes two parameters i and j and <u>returns</u> the value for ith row and jth column. You have to convert two dimensional values into a single dimension value.

```
def GetValue(self,i,j):
    // your code goes here

Example:
```

```
A = Array(3,3)
A.SetValue(0,0,5)
A.SetValue(0,1,15)
print(A.GetValue(0,0))
print(A.GetValue(0,1))
```

d) Add a function **PrintValues**() that print the values of the array in Row and Column format.

```
def PrintValues(self):
    // your code goes here
Example:
A = Array(3,3)
A.SetValue(0,0,5)
A.SetValue(0,1,15)
A.PrintValues()
```

e) Add a function **SubValues()** that takes two parameters array1 and array2 and <u>returns</u> a array object containing difference of two given matrices.

f) Add a function **MultValues**() that takes two parameters Matrix A and Matrix B and returns a matrix containing multiplication of two given matrices.

g) Add a function Transpose() that returns a matrix containing the transpose of the matrix.

Example: Matrix A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$Transpose = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

2. Create a Python script by using the following functions by importing NumPy Library of Python.

1. Create a Numpy Array.

```
import numpy as np
array1 = np.array([[1,2,3,4],[5,6,7,8]], dtype=np.int64)
print(array1)
```

2. Create an array of ones

```
x = np.ones((3,4),dtype=np.int64)
print(x)
```

3. Create an array of zeros

```
y = np.zeros((2,3,4),dtype=np.int16)
print(y)
```

4. Create an array with random values

```
array2 = np.random.random((2,2))
print(array2)
```

5. Create a full array

```
array3 = np.full((3,3),7)
print(array3)
```

6. Create an identity matrix

```
array4 = np.identity(3,dtype=np.int64)
print(array4)
```

7. Find sum of two matrices

```
add = np.add(x,y)
```

print(add)

8. Find difference of two matrices

```
diff = np.subtract(x,y)
print(diff)
```

9. Find product of two matrices

```
mult = np.multiply(x,y)
print(mult)
```

10. Find division of two matrices

```
div = np.divide(y,x)
print(div)
```

11. Find remainder of two matrices

```
rem = np.remainder(y,x)
print(rem)
```

12. Check if two arrays are equal

```
result = np.array_equal(x,y)
print(result)
```