Course Code	Course Name	Credit
CSC304	Digital Logic & Computer Organization and Architecture	3

Pr	Pre-requisite: Knowledge on number systems		
Co	Course Objective:		
1	To have the rough understanding of the basic structure and operation of basic digital circuits		
	and digital computer.		
2	To discuss in detail arithmetic operations in digital system.		
3	To discuss generation of control signals and different ways of communication with I/O		
	devices.		
4	To study the hierarchical memory and principles of advanced computing.		
Co	ourse Outcome:		
1	To learn different number systems and basic structure of computer system.		
2	To demonstrate the arithmetic algorithms.		
3	To understand the basic concepts of digital components and processor organization.		
4	To understand the generation of control signals of computer.		
5	To demonstrate the memory organization.		
6	To describe the concepts of parallel processing and different Buses.		

Module		Detailed Content	Hours
1		Computer Fundamentals	5
	1.1	Introduction to Number System and Codes	
	1.2	Number Systems: Binary, Octal, Decimal, Hexadecimal,	
	1.3	Codes: Grey, BCD, Excess-3, ASCII, Boolean Algebra.	
		Logic Gates: AND, OR, NOT, NAND, NOR, EX-OR	
		Overview of computer organization and architecture.	
	1.6	Basic Organization of Computer and Block Level functional Units, Von- Neumann Model.	
2		Data Representation and Arithmetic algorithms	8
	2.1	Binary Arithmetic: Addition, Subtraction, Multiplication, Division using Sign Magnitude, 1's and 2's compliment, BCD and Hex Arithmetic Operation.	
	2.2	Booths Multiplication Algorithm, Restoring and Non-restoring Division Algorithm.	
	2.3	IEEE-754 Floating point Representation.	
3		Processor Organization and Architecture	6
	3.1	Introduction: Half adder, Full adder, MUX, DMUX, Encoder, Decoder(IC level).	
	3.2	Introduction to Flip Flop: SR, JK, D, T (Truth table).	
	3.3	Register Organization, Instruction Formats, Addressing modes, Instruction Cycle, Interpretation and sequencing.	
4		Control Unit Design	6
	4.1	Hardwired Control Unit: State Table Method, Delay Element Methods.	
		Microprogrammed Control Unit: Micro Instruction-Format, Sequencing and	
		execution, Micro operations, Examples of microprograms.	
5		Memory Organization	6
	5.1	Introduction and characteristics of memory, Types of RAM and ROM, Memory Hierarchy, 2-level Memory Characteristic,	
	5.2	Cache Memory: Concept, locality of reference, Design problems based on	

		mapping techniques, Cache coherence and write policies. Interleaved and Associative Memory.	
6		Principles of Advanced Processor and Buses	8
		Basic Pipelined Data path and control, data dependencies, data hazards, branch hazards, delayed branch, and branch prediction, Performance measures-CPI, Speedup, Efficiency, throughput, Amdhal's law.	
	6.2	Flynn's Classification, Introduction to multicore architecture.	
	6.3	Introduction to buses: ISA, PCI, USB. Bus Contention and Arbitration.	

Te	Textbooks:		
1	R. P. Jain, "Modern Digital Electronic", McGraw-Hill Publication, 4th Edition.		
2	William Stalling, "Computer Organization and Architecture: Designing and Performance", Pearson Publication 10 TH Edition.		
3	John P Hayes, "Computer Architecture and Organization", McGraw-Hill Publication, 3 RD Edition.		
4	Dr. M. Usha and T. S. Shrikanth, "Computer system Architecture and Organization", Wiley publication.		
Re	eferences:		
1	Andrew S. Tanenbaum, "Structured Computer Organization", Pearson Publication.		
2	B. Govindarajalu, "Computer Architecture and Organization", McGraw-Hill Publication.		
3	Malvino, "Digital computer Electronics", McGraw-Hill Publication, 3 rd Edition.		
4	Smruti Ranjan Sarangi, "Computer Organization and Architecture", McGraw-Hill Publication.		

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

1 Question paper will comprise of 6 questions, each carrying 20 marks.
2 The students need to solve total 4 questions.
3 Question No.1 will be compulsory and based on entire syllabus.
4 Remaining question (Q.2 to Q.6) will be selected from all the modules.

Use	Useful Links		
1	https://www.classcentral.com/course/swayam-computer-organization-and-architecture-a-pedagogical-		
2	aspect-9824 https://nptel.ac.in/courses/106/103/106103068/		
3	https://www.coursera.org/learn/comparch		
4	https://www.edx.org/learn/computer-architecture		

Lab Code	Lab Name	Credit
CSL302	Digital Logic & Computer Organization and Architecture Lab	1

Pr	Prerequisite: C Programming Language.		
La	Lab Objectives:		
1	To implement operations of the arithmetic unit using algorithms.		
2	Design and simulate different digital circuits.		
3	To design memory subsystem including cache memory.		
4	To demonstrate CPU and ALU design.		
La	b Outcomes:		
1	To understand the basics of digital components		
2	Design the basic building blocks of a computer: ALU, registers, CPU and memory		
3	To recognize the importance of digital systems in computer architecture		
4	To implement various algorithms for arithmetic operations.		

List of Ex	List of Experiments:		
Sr. No.	Name of the Experiment		
1	To verify the truth table of various logic gates using ICs.		
2	To realize the gates using universal gates		
3	Code conversion.		
4	To realize half adder and full adder.		
5	To implement logic operation using MUX IC.		
6	To implement logic operation decoder IC.		
7	Study of flip flop IC.		
8	To implement ripple carry adder.		
9	To implement carry look ahead adder.		
10	To implement Booth's algorithm.		
11	To implement restoring division algorithm.		
12	To implement non restoring division algorithm.		
13	To implement ALU design.		
14	To implement CPU design.		
15	To implement memory design.		
16	To implement cache memory design.		

N	Note:		
140			
1	Any Four experiments from Exp. No. 1 to Exp. No. 7 using hardware.		
2	Any Six experiments from Exp. No. 8 to Exp. No. 16 using Virtual Lab, expect Exp. No		
	10,11 and 12.		
3	Exp. No. 10 to Exp. No. 12 using Programming language.		
Di	Digital Material:		
1	Manual to use Virtual Lab simulator for Computer Organization and Architecture developed by the		
	Department of CSE, IIT Kharagpur.		
2	Link http://cse10-iitkgp.virtual-labs.ac.in/		

Te	Term Work:		
1	Term work should consist of 10 experiments.		
2	Journal must include at least 2 assignments on content of theory and practical of "Digital		
	Logic &Computer Organization and Architecture"		
3	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		

4 Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks, Assignments: 05-marks)