This print-out should have 15 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

For which value(s) of λ will the vectors

$$\mathbf{v_1} = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} -2 \\ 3 \\ 2 \end{bmatrix}, \quad \mathbf{v_3} = \begin{bmatrix} 6 \\ 6 \\ \lambda + 2 \end{bmatrix},$$

be linearly dependent?

- 1. $\lambda \neq -2$
- 2. $\lambda = -3$ correct
- **3.** $\lambda \neq -3$
- **4.** $\lambda = -2$
- 5. $\lambda \neq 1$
- **6.** $\lambda = 1$

Explanation:

The vectors $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ will be linearly dependent if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$$

has a non-trivial solution, *i.e.*, when the homogeneous system

$$4x_1 - 2x_2 + 6x_3 = 0,$$

$$9x_1 + 3x_2 + 6x_3 = 0,$$

$$x_1 + 2x_2 + (\lambda + 2)x_3 = 0,$$

has a non-trivial solution. This occurs when the augmented matrix

$$A = \begin{bmatrix} 4 & -2 & 6 & 0 \\ 9 & 3 & 6 & 0 \\ 1 & 2 & \lambda + 2 & 0 \end{bmatrix}$$

associated with this system has a free variable. Now

$$\operatorname{rref}(A) \ = \ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{3}{5}(\lambda+3) & 0 \end{bmatrix},$$

so A will have a free variable only when $\lambda+3=0$

Consequently, $\{v_1, v_2, v_3\}$ will be linearly dependent only when

$$\lambda = -3$$

002 5.0 points

If \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 and \mathbf{u}_4 are vectors in \mathbb{R}^7 and $\mathbf{u}_2 = 0$, then the set $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4}$ is linearly dependent.

True or False?

- 1. TRUE correct
- 2. FALSE

Explanation:

Any set containing the zero vector is linearly dependent.

Consequently, the statement is

003 5.0 points

The columns of a 5x6 matrix A are linearly dependent.

True or False?

- 1. FALSE
- 2. TRUE correct

Explanation:

The columns of a 5x6 matrix A are linearly dependent because the set whose vectors are the columns of A, contains more vectors than there are entries in each vector.

Consequently, the statement is

TRUE

004 5.0 points

If a set of vectors contains fewer vectors than there are entries in the vectors, then the set must be linearly independent.

True or False?

1. FALSE correct

2. TRUE

Explanation:

This is not true because, for instance, the set of two parallel vectors in \mathbb{R}^5 is linearly dependent in spite there are only two vectors with 5 entries.

Consequently, the statement is

005 10.0 points

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation such that

$$T\left(\left[\begin{matrix} x_1\\ x_2 \end{matrix}\right]\right) = x_1 \left[\begin{matrix} -1\\ -2 \end{matrix}\right] + x_2 \left[\begin{matrix} 2\\ 1 \end{matrix}\right],$$

determine $T(\mathbf{x})$ when $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

1.
$$T(\mathbf{x}) = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$$

2.
$$T(\mathbf{x}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

3.
$$T(\mathbf{x}) = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
 correct

4.
$$T(\mathbf{x}) = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

5.
$$T(\mathbf{x}) = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

Explanation:

When

$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

then

$$T(\mathbf{x}) = T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) + 3T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$
$$= \begin{bmatrix} -1\\-2 \end{bmatrix} + 3\begin{bmatrix} 2\\1 \end{bmatrix}.$$

Thus

$$T(\mathbf{x}) = \begin{bmatrix} -1 \\ -2 \end{bmatrix} + \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

006 10.0 points

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation such that

$$T\left(\left[\begin{matrix} 1\\0 \end{matrix}\right]\right) = \left[\begin{matrix} 1\\-1 \end{matrix}\right], \quad T\left(\left[\begin{matrix} 0\\1 \end{matrix}\right]\right) = \left[\begin{matrix} -2\\2 \end{matrix}\right],$$

determine $T(\mathbf{x})$ when $\mathbf{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

1.
$$T(\mathbf{x}) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$2. T(\mathbf{x}) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

3.
$$T(\mathbf{x}) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

4.
$$T(\mathbf{x}) = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

5.
$$T(\mathbf{x}) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 correct

Explanation:

Since

$$\mathbf{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

and T is a linear transformation,

$$T(\mathbf{x}) = T\left(3\begin{bmatrix}1\\0\end{bmatrix} + \begin{bmatrix}0\\1\end{bmatrix}\right)$$
$$= 3T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$
$$= 3\begin{bmatrix}1\\-1\end{bmatrix} + \begin{bmatrix}-2\\2\end{bmatrix}.$$

Consequently

$$T(\mathbf{x}) = \begin{bmatrix} 3 \\ -3 \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

007 10.0 points

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that

$$T(x_1, x_2) = (4x_1 + x_2, -2x_1 - 2x_2).$$

Determine A so that T can be written as the matrix transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$.

1.
$$A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 4 & 1 \\ -2 & -2 \end{bmatrix}$$
 correct

$$\mathbf{4.} \ A = \begin{bmatrix} 4 & -2 \\ 1 & -2 \end{bmatrix}$$

Explanation:

We can write \mathbb{R}^2 both as rows and column vectors

(i)
$$(x_1, x_2)$$
, (ii) $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

In row form

$$T(x_1, x_2) = (4x_1 + x_2, -2x_1 - 2x_2),$$

while in column vector form

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

where A is the 2×2 matrix standard matrix

$$[T(\mathbf{e}_1) \ T(\mathbf{e}_2)]$$

of T. Now

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (1, 0), \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (0, 1),$$

so that

$$T(1, 0) = (4, -2) = \begin{bmatrix} 4 \\ -2 \end{bmatrix} = T(\mathbf{e}_1),$$

and

$$T(0, 1) = (1, -2) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} = T(\mathbf{e}_2).$$

Consequently,

$$A = \begin{bmatrix} 4 & 1 \\ -2 & -2 \end{bmatrix}.$$

008 10.0 points

Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$

If a transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ is defined as $T(\mathbf{x}) = A\mathbf{x}$, is this transformation one-to-one or onto?

- 1. one-to-one
- 2. neither one-to-one nor onto
- 3. onto correct
- 4. both one-to-one and onto

Explanation:

This transformation is onto but not one-to-one since it has a pivot in every row but does not have a pivot in every column.

009 10.0 points

Consider the matrix

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

If a transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ is defined as $T(\mathbf{x}) = A\mathbf{x}$, is this transformation one-to-one or onto?

- 1. onto
- 2. one-to-one correct
- 3. both one-to-one and onto
- 4. neither one-to-one nor onto

Explanation:

This transformation is one-to-one but not onto since it has a pivot in every column but does not have a pivot in every row.

010 10.0 points

Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 2 & -1 & -3 \\ -3 & 3 & 3 \end{bmatrix}$$

If a transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined as $T(\mathbf{x}) = A\mathbf{x}$, is this transformation one-to-one or onto?

- 1. onto
- 2. neither one-to-one nor onto
- **3.** both one-to-one and onto **correct**

4. one-to-one

Explanation:

This transformation is both one-to-one and onto since it has three pivots.

011 10.0 points

Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 3 & -3 & -3 \\ -1 & 1 & 1 \end{bmatrix}$$

If a transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined as $T(\mathbf{x}) = A\mathbf{x}$, is this transformation one-to-one or onto?

- 1. both one-to-one and onto
- 2. neither one-to-one nor onto correct
- 3. onto
- 4. one-to-one

Explanation:

This transformation is neither one-to-one nor onto since the matrix has only two pivots.

012 10.0 points

Compute the expression AB - BA when

$$A = \begin{bmatrix} 1 & 3 \\ 5 & 4 \end{bmatrix}, B = \begin{bmatrix} -2 & 2 \\ 2 & -4 \end{bmatrix}.$$

1.
$$AB - BA = \begin{bmatrix} -16 & 4 \\ 16 & 4 \end{bmatrix}$$

2.
$$AB - BA = \begin{bmatrix} -4 & 0 \\ 16 & 16 \end{bmatrix}$$

3.
$$AB - BA = \begin{bmatrix} -4 & -12 \\ 0 & 4 \end{bmatrix}$$

4.
$$AB - BA = \begin{bmatrix} -4 & -12 \\ 16 & 4 \end{bmatrix}$$
 correct

5.
$$AB - BA = \begin{bmatrix} 16 & 0 \\ 16 & 4 \end{bmatrix}$$

Explanation:

Each of the products AB, BA is defined because A, B are 2×2 -matrices, so each of AB, BA is a 2×2 matrix and the difference AB - BA also is defined.

Now by the row-column rule for the product of matrices, the (i, j)th entry in AB is given by

$$(AB)_{ij} = a_{i1}b_{1j} + a_{2i}b_{2j}$$
.

Thus

$$AB = \begin{bmatrix} 1 & 3 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} -2 & 2 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} 4 & -10 \\ -2 & -6 \end{bmatrix}.$$

On the other hand, the (i, j)th entry in BA is given by

$$(BA)_{ij} = b_{i1}a_{1j} + b_{2i}a_{2j}$$
.

Thus

$$BA = \begin{bmatrix} -2 & 2 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} 8 & 2 \\ -18 & -10 \end{bmatrix}.$$

Consequently,

$$AB - BA = \begin{bmatrix} -4 & -12 \\ 16 & 4 \end{bmatrix}$$

Note that $AB \neq BA$ for these choices of matrices A, B. So the multiplication of matrices does not have all of the properties of multiplication of numbers.

013 10.0 points

Compute the product of the matrices

$$A = \begin{bmatrix} 3 & -4 & 2 \\ 3 & 4 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 & -2 \\ -5 & 3 \\ 3 & -4 \end{bmatrix}.$$

1.
$$\begin{bmatrix} -32 & -26 \\ -23 & -18 \end{bmatrix}$$

3.
$$\begin{bmatrix} 32 & 26 \\ 23 & 18 \end{bmatrix}$$

4.
$$\begin{bmatrix} 32 & -26 \\ -23 & 18 \end{bmatrix}$$
 correct

5.
$$\begin{bmatrix} 32 & -26 & -23 \\ -23 & 18 & 2 \end{bmatrix}$$

Explanation:

Since A is 2×3 and B is 3×2 , the product AB is defined and is a 2×2 -matrix. But by the row-column rule for computing products of matrices, the (i, j)th-entry in the product of A and B is

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j}$$
.

Thus

$$AB = \begin{bmatrix} 3 & -4 & 2 \\ 3 & 4 & -3 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -5 & 3 \\ 3 & -4 \end{bmatrix}$$
$$= \begin{bmatrix} 32 & -26 \\ -23 & 18 \end{bmatrix}.$$

014 10.0 points

Determine the matrix product

$$\begin{bmatrix} 3 & 2 & -1 \\ 4 & 10 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

1.
$$\begin{bmatrix} 6 & 1 & 3 & -1 \\ 8 & 10 & 4 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix}$$
 correct

2. It is undetermined.

$$\mathbf{3.} \begin{bmatrix} 1 & 3 & -1 \\ 8 & 10 & 4 \\ 3 & 0 & 2 \end{bmatrix}$$

$$\mathbf{4.} \begin{bmatrix} 6 & 8 & 0 \\ 1 & 10 & 3 \\ 3 & 4 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

Explanation:

By the row-column definition of the product of matrices,

$$\begin{bmatrix} 3 & 2 & -1 \\ 4 & 10 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 6+0+0 & 0+2-1 & 3+0+0 & 0+0-1 \\ 8+0+0 & 0+10+0 & 4+0+0 & 0+0+0 \\ 0+0+0 & 0+1+2 & 0+0+0 & 0+0+2 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 1 & 3 & -1 \\ 8 & 10 & 4 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix}$$

015 10.0 points

Compute the product AB of the matrices

$$A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & 4 & 1 \\ 3 & -2 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 & 2 \\ 5 & 2 & -2 \\ 3 & -4 & 2 \end{bmatrix}.$$

1.
$$AB = \begin{bmatrix} 3 & 25 & -7 \\ -8 & 5 & 9 \\ -4 & -4 & 5 \end{bmatrix}$$

$$\mathbf{2.} \ AB = \begin{bmatrix} 4 & 25 & -7 \\ -8 & 7 & 9 \\ -4 & -4 & 8 \end{bmatrix}$$

3.
$$AB = \begin{bmatrix} 4 & -8 & -4 \\ 25 & 7 & -4 \\ -7 & 9 & 8 \end{bmatrix}$$
 correct

4.
$$AB = \begin{bmatrix} 3 & -8 & -4 \\ 25 & 5 & -4 \\ -7 & 9 & 5 \end{bmatrix}$$

Explanation:

By definition of the product of matrices,

$$AB = \begin{bmatrix} -2 & 1 & 1 \\ 1 & 4 & 1 \\ 3 & -2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 \\ 5 & 2 & -2 \\ 3 & -4 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -8 & -4 \\ 25 & 7 & -4 \\ -7 & 9 & 8 \end{bmatrix}.$$