10/28/24, 10:30 PM OneNote

Homework 3

Thursday, October 17, 2024 4:24 PM

ECE 2040 Homework 3

Due Date: October $31^{\rm st}, 2024$

Topic Covered: Operational Amplifiers

Problem 1. Assume that the op amp in the circuit shown in Fig. 1 is ideal.

1) Calculate V_o for the following values of V_s : 0.4, 2.0, 3.5, -0.6, -1.6, and -2.4 V. 2) Specify the range of V_s required to avoid amplifier saturation.

90 kJ

1/5

- 15 4 No 4 10

2) Since the max an idal of and concomplify is Defermined by the supply voltifies the Bound's on
$$V_s$$
 are
$$-1s \leq V_0 \leq 10$$

$$-15 \leq s \cdot 625 \quad V_s \leq 10$$

$$2.67 \geq V_s \geq 1.77 \quad V$$

Problem 2. With a source voltage of -640 mV, what range of R_x allows the inverting amplifier (see Fig. 2) to operate in its linear region?

Problem 3.

- 1) Find V_o in the circuit shown below if $V_a=0.1$ V and $V_b=0.25$ V. 2) If $V_b=0.25$ V, how large can V_a be before the op amp saturates? 3) If $V_a=0.10$ V, how large can V_b be before the op amp saturates?

- 4) Repeat (a), (b), and (c) with the polarity of V_b reversed.

Fig. 3.
$$\frac{-10}{-250k} = \left(\frac{V_{a}}{5k} + \frac{.25}{25k} \right) \Rightarrow V_{a} = \left(\frac{10}{250k} - \frac{.25}{25k} \right) 5 k$$

$$\frac{1}{250k} = \left(\frac{.1}{5k} + \frac{V_{b}}{25k} \right) \left(-250 \frac{k}{250} \right)$$

$$\frac{3}{\sqrt{0}} = \frac{1}{\sqrt{15k}} + \frac{\sqrt{15k}}{\sqrt{25k}} = \frac{10}{\sqrt{15k}} = \frac{10}{\sqrt{15k$$

Reserving the Polarity of
$$V_{L}$$
 results in the original equation to Be (1) $V_{0} = \left(\frac{V_{0}}{5k} - \frac{V_{0}}{25k}\right)\left(z\,SO\,k\right) \Rightarrow \left(\frac{.1}{5k} - \frac{.2S}{25k}\right)\left(z\,SO\,k\right) = \left[\frac{2.5\,V}{2.5\,V}\right]$
(2) $V_{0} = \left(\frac{.0}{.00} + \frac{.25}{.25}\right)\left(S\,k\right) = \left[\frac{.25\,V}{.25\,V}\right]$

(3)
$$V_5 = \left(\frac{10}{250k} - \frac{1}{5k}\right) \left(-25k\right) = \frac{-2 V \text{ MeV}}{250k}$$

(3)
$$V_0 = \left(\frac{1}{5k} + \frac{V_b}{25k}\right) \left(-250^{\frac{1}{k}}\right)$$

$$\frac{-10}{-250k} = \left(\frac{1}{5k} + \frac{V_b}{25k}\right) \Rightarrow V_b = \left(\frac{10}{250k} - \frac{1}{5k}\right) \left(25^{\frac{1}{k}}\right)$$

$$\frac{V_b}{-250k} = \frac{1}{5k} + \frac{V_b}{25k} = \frac{1}{5k} \left(25^{\frac{1}{k}}\right)$$

$$\frac{V_b}{100} = \frac{V_b}{100} + \frac{V_b}{100} +$$

3/5

Problem 4. A realistic (non-ideal) non-inverting operational amplifier model has been provided in the

(a) Express the output voltage V_0 as a function of the source voltage $V_{\rm g}$.

(b) Define conditions upon which the relationship between the output voltage and source voltage in this realistic op amp model will be similar to that of the ideal op amp model studied in class.

Hint: Note that the input-output voltage relationship for an ideal non-inverting amplifier (as studied in

$$V_{0} = \frac{R_{s} + R_{t}}{R_{s}} V_{g}$$

$$(1)$$

$$V_{0} = \frac{R_{s} + R_{t}}{R_{s}} V_{g}$$

$$\frac{\left[RCI \bigcirc B\right]}{i_{\alpha}-i_{f}-i_{\theta}=0}$$

$$\frac{A(v_{p}-v_{n})-v_{0}}{R_{0}} - \left(\frac{v_{0}-v_{0}}{R_{f}}\right) - \frac{v_{0}}{R_{L}} = 0$$

$$\frac{A(v_{p}-v_{n})}{R_{0}} + \frac{v_{n}}{R_{f}} = \frac{v_{0}}{R_{0}} + \frac{v_{0}}{R_{1}} + \frac{v_{0}}{R_{f}} \quad \text{(ii)}$$

$$V_{p}-v_{q} = (V_{n}-v_{q})\left(\frac{R_{2}}{R_{1}+R_{1}}\right) \quad \text{(iii)}$$

$$VP = \frac{(v_{1} - v_{2}) R_{y}}{R_{y} + R_{i}} + V_{y}$$

$$R_{y} + R_{i}$$

$$R_{y}$$

b) The Positive and Newtone territals Will have no correct Flowing through Them and Their Noltges will be equal. In other words, R; must be > 2 MJ and Ro must be very smill for This OP and to be considered ideal.

10/28/24, 10:30 PM OneNote