Parametrizing surfaces

November 26, 2017

1. Ellipsoids: The ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

can be parametrized by setting

$$\vec{r}(u,v) = \langle a\sin(u)\cos(v), b\sin(u)\sin(v), c\cos(u) \rangle \text{ for } (u,v) \in [0,\pi] \times [0,2\pi].$$

As a special case, the **sphere** $x^2 + y^2 + z^2 = r^2$ can be parametrized as

$$\vec{r}(u,v) = \langle r\sin(u)\cos(v), r\sin(u)\sin(v), r\cos(u) \rangle \text{ for } (u,v) \in [0,\pi] \times [0,2\pi].$$

Figure 1: The ellipsoid $\frac{x^2}{4}$ + $\frac{y^2}{16}$ + $\frac{z^2}{16}$ = 1

Figure 2: The graph of $f(x,y) = x^2 - y^2$, for (x,y) in the unit disk.

2. **Graphs:** When our surface is the graph of a function f(x,y), where $(x,y) \in D$, we can let x = u, y = v and z = f(u,v), that is,

1

$$\vec{r}(u,v) = \langle u, v, f(u,v) \rangle$$
 for $(u,v) \in D$.

- 3. Cylinders: (in a broad sense, surfaces described by an equation that only involves 2 variables, e.g. $x^2 + \frac{z^2}{4} = 1$.) We look at the equation of the cylinder and parametrize as if it were a plane curve, with respect to u. Then set the third variable to be v. In this example, we would write $x = \cos(u)$, $z = 2\sin(u)$, $u \in [0, 2\pi]$ and y = v, $v \in \mathbb{R}$.
- 4. **Surfaces of Revolution:** Say that we'd like to parametrize the surface obtained by revolving the graph of z = f(y), $y \in [a, b]$ around the y axis. Then we can set y = v and therefore, since for each v we have a circle of radius f(v) on the plane y = v,

$$\vec{r}(u,v) = \langle f(v)\cos(u), v, f(v)\sin(u) \rangle, (u,v) \in [0,2\pi] \times [a,b].$$

We work similarly if we need to revolve about another axis.

Figure 3: The cylinder $x^2 + \frac{z^2}{4} = 1$, $z \ge 0$ parametrized as $x = \cos(u)$, $y = v, z = 2\sin(u)$, $u \in [0, \pi]$, $v \in \mathbb{R}$.

Figure 4: Revolving the curve $z=1+\sin(y+\frac{3\pi}{2})$ around the y axis, as $x=(\sin\left(v+\frac{3\pi}{2}\right)+1\right)\cos(u),$ y=v and $z=(\sin\left(v+\frac{3\pi}{2}\right)+1)\sin(u).$

5. Tori: A torus (bagel) about the z axis can be parametrized as

 $\vec{r}(u,v) = \langle (a+b\cos(v))\cos(u), (a+b\cos(v))\sin(u), b\sin(v) \rangle, \text{ for } (u,v) \in [0,2\pi] \times [0,2\pi],$ where 0 < b < a.

Figure 5: A torus with parametrization $x = (4 + 2\cos(v))\cos(u)$, $y = (4 + 2\cos(v))\sin(u)$, $z = 2\sin(v)$, for $(u, v) \in [0, 2\pi] \times [0, 2\pi]$.