### NPN EPITAXIAL PLANAR TYPE

#### **DESCRIPTION**

2SC1969 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on HF band mobile radio applications.

#### **FEATURES**

- High power gain:  $G_{pe} \ge 12dB$  $@V_{CC} = 12V$ ,  $P_0 = 16W$ , f = 27MHz
- Emitter ballasted construction for high reliaiblity and good performances.
- TO-220 package similarly is combinient for mounting.
- Ability of withstanding infinite load VSWR when operated at V<sub>CC</sub> = 16V, P<sub>O</sub> = 20W, f = 27MHz.

### **APPLICATION**

10 to 14 watts output power class AB amplifiers applications in HF band.



### ABSOLUTE MAXIMUM RATINGS (T<sub>C</sub>=25°C unless otherwise specified)

| Symbol         | Parameter                    | Conditions            | Ratings    | Unit |  |
|----------------|------------------------------|-----------------------|------------|------|--|
| Vcво           | Collector to base voltage    |                       | 60         | V    |  |
| VEBO           | Emitter to base voltage      |                       | 5          | V    |  |
| VCEO           | Collector to emitter voltage | R <sub>BE</sub> = ∞   | 25         | V    |  |
| lo             | Collector current            |                       | 6          | А    |  |
|                | Collector dissipation        | Ta = 25°C             | 1.7        | w    |  |
| P <sub>C</sub> |                              | T <sub>C</sub> = 25°C | 20         | w    |  |
| Tj             | Junction temperature         |                       | 150        | °C   |  |
| Tstg           | Storage temperature          |                       | -55 to 150 | ·c   |  |
| Rth-a          |                              | Junction to ambient   | 73.5       | °C/W |  |
| Rth-c          | Thermal resistance           | Junction to case      | 6.25       | °C/W |  |

Note. Above parameters are guaranteed independently.

#### **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub> = 25°C unless otherwise specified)

| Symbol           | Parameter                              | Test conditions                                    | Limits |     |     | 11.4 |
|------------------|----------------------------------------|----------------------------------------------------|--------|-----|-----|------|
|                  |                                        | rest conditions                                    | Min    | Тур | Max | Unit |
| V(BR)EBO         | Emitter to base breakdown voltage      | $I_E = 5 \text{ mA}, I_C = 0$                      | 5      |     |     | ٧    |
| V(BR)CBO         | Collector to base breakdown voltage    | $I_C = 1 \text{mA}, I_E = 0$                       | 60     |     |     | ٧    |
| V(BR)CEO         | Collector to emitter breakdown voltage | $I_C = 10 \text{ mA}$ , $R_{BE} = \infty$          | 25     |     |     | >    |
| СВО              | Collector cutoff current               | $V_{CB} = 30V, I_{E} = 0$                          |        |     | 100 | μА   |
| 1 <sub>EBO</sub> | Emitter cutoff current                 | V <sub>EB</sub> = 4 V, I <sub>C</sub> = 0          |        |     | 100 | μА   |
| μŁΕ              | DC forward current gain *              | V <sub>CE</sub> = 12 V, I <sub>C</sub> = 10 mA     | 10     | 50  | 180 | _    |
| P <sub>0</sub>   | Output power                           | V12\/ D =1 4=27\4\\-                               | 16     | 18  |     | W    |
| $\eta_{C}$       | Collector efficiency                   | V <sub>CC</sub> =12V, P <sub>In</sub> =1w, f=27MHz | 60     | 70  |     | %    |

Note. \*Pulse test,  $P_{W}=150\mu s$ , duty=5%.

Above parameters, ratings, limits and conditions are subject to change.

| ſ | Item | X     | А     | В     | С      | D      |
|---|------|-------|-------|-------|--------|--------|
|   | μŁΕ  | 10-25 | 20-45 | 35-70 | 55-110 | 90-180 |



### NPN EPITAXIAL PLANAR TYPE

#### **TEST CIRCUIT**



D: Inner diameter of coil

- T: Turn number of coil
- P : Pitch of coil

### TYPICAL PERFORMANCE DATA

### COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE



AMBIENT TEMPERATURE Ta (°C)

### COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE



COLLECTOR TO EMITTER VOLTAGE VCE (V)

### DC CURRENT GAIN VS. COLLECTOR CURRENT



COLLECTOR CURRENT Ic (A)

# COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE



BASE TO EMITTER RESISTANCE  $R_{BE}$  ( $\Omega$ )

# COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS



1 2 3 5 7 10 20 30 50 70 11

COLLECTOR TO BASE VOLTAGE V<sub>CB</sub> (V)

### OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER



INPUT POWER Pin (W)

### OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE



COLLECTOR SUPPLY VOLTAGE  $V_{CC}$  (V)

## IN CASE AB OPERATING OUTPUT POWER COLLECTOR CURRENT VS. INPUT POWER



INPUT POWER Pin (W)

### THIRD ORDER INTERMODULATION DISTORTION VS. OUTPUT POWER



OUTPUT POWER LEVEL (PEP) (W)