

separator "tree"

G has a star partition of width $O(n^{2/3})$

G has a vertex partition ${\mathcal P}$ into sets of size $O(n^{2/3})$ s.t. $G/{\mathcal P}$ is a star

 $G \subseteq S \boxtimes K_{O(n^{2/3})}$ where S is a star

 $G \subseteq S \boxtimes K_{O(n^{2/3})}$ where S is a star

 $G \subseteq S \boxtimes K_{\mathcal{O}(n^{2/3})}$ where S is a star

What can we do with parts of size $\tilde{O}(\sqrt{n})$?

Bad News (Linial-Matousek-Sheffet-Tardos 2008): There exists planar G such that every 2-coloring of G has a monochromatic component of size $\Omega(n^{2/3})$

Bad News (Linial-Matousek-Sheffet-Tardos 2008): There exists planar G such that every 2-coloring of G has a monochromatic component of size $\Omega(n^{2/3})$

Bad News (Linial-Matousek-Sheffet-Tardos 2008): There exists planar G such that every 2-coloring of G has a monochromatic component of size $\Omega(n^{2/3})$

 $G \subseteq H \boxtimes K_{o(n^{2/3})} \Rightarrow H$ is not 2-colorable.

Bad News (Linial-Matousek-Sheffet-Tardos 2008): There exists planar G such that every 2-coloring of G has a monochromatic component of size $\Omega(n^{2/3})$

 $G \subseteq H \boxtimes K_{o(n^{2/3})} \Rightarrow H$ is not 2-colorable $\Rightarrow H$ is not a tree.

