Discrete Mathematics Peergrade assignment 3

- 1. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as f(n) = 2n 5 for all integers n.
 - (a) List three elements that are in the range of f
 - (b) Is f one-to-one? Justify your answer
 - (c) Is f onto? Justify your answer
 - (d) Write an explicit formula for the composition $f \circ f$

Note: to justify your answers in (b) and (c), if the answer is positive you need to provide a proof, and if it is negative, give a counterexample.

- 2. Let $a_k = 2k 5$ and $b_k = 2 k$. Simplify each expression to only use a single summation (Σ) or product (Π) using the properties of summations and products listed below. List intermediate steps.
 - (a) $\sum_{k=m}^{n} a_k 3 \cdot \sum_{k=m}^{n} b_k$
 - (b) $\prod_{k=m}^{n} a_k \cdot \prod_{k=m}^{n} b_k$

Theorem 5.1.1

If a_m , a_{m+1} , a_{m+2} , ... and b_m , b_{m+1} , b_{m+2} , ... are sequences of real numbers and c is any real number, then the following equations hold for any integer $n \ge m$:

1.
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

2.
$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k$$
 generalized distributive law

3.
$$\left(\prod_{k=m}^{n} a_{k}\right) \cdot \left(\prod_{k=m}^{n} b_{k}\right) = \prod_{k=m}^{n} (a_{k} \cdot b_{k}).$$

For instance, given sequences $a_k = k$ and $b_k = 2k + 1$, simplifying an

expression $\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k$ could be done in the following way:

$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} k + 2 \cdot \sum_{k=m}^{n} (2k+1)$$
 by substitution
$$= \sum_{k=m}^{n} k + \sum_{k=m}^{n} 2 \cdot (2k+1)$$
 by (2)
$$= \sum_{k=m}^{n} k + \sum_{k=m}^{n} (4k+2)$$
 by algebraic simplification
$$= \sum_{k=m}^{n} (k + (4k+2))$$
 by (1)
$$= \sum_{k=m}^{n} (5k+2)$$
 by algebraic simplification

3. Prove, using mathematical induction, that 3 divides $n^3 + 5n - 6$ for all integers $n \ge 0$.

Hint: You can use the fact that given $a \mid b$ and $a \mid c$, we can conclude $a \mid (b+c)$ for all integers a,b,c. Moreover, you can use the binomial theorem for exponent 3, which states that $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ for all real numbers a,b.