Rilevamento quantistico dei bordi

Manuel Di Agostino *Università degli studi di Parma*Parma, Italia
manuel.diagostino@studenti.unipr.it
Leonardo Ongari *Università degli studi di Parma*Cremona, Italia
leonardo.ongari@studenti.unipr.it

Sommario—Il rilevamento dei bordi è un processo fondamentale nell'estrazione delle caratteristiche di un'immagine ed è ampiamente utilizzato per analizzare la struttura degli oggetti rappresentati. Tuttavia, con l'aumento della risoluzione delle immagini, i metodi classici affrontano significative sfide computazionali a causa delle operazioni pixel-per-pixel necessarie. Il Quantum Image Processing (QIP), offre il potenziale per accelerazioni esponenziali in determinati scenari, sfruttando algoritmi e rappresentazioni in forma quantistica. Questo articolo esplora l'applicazione dell'algoritmo Quantum Hadamard Edge Detection (QHED), implementato utilizzando la rappresentazione Quantum Probability Image Encoding (QPIE). Utilizzando i principi quantistici e il framework Qiskit, si analizzano i vantaggi e le prospettive di questo nuovo approccio per il rilevamento dei bordi.

Keywords—Rilevamento dei bordi, Quantum computing, Sobel.

I. INTRODUZIONE

L'identificazione dei bordi è una tecnica fondamentale nell'elaborazione delle immagini, utilizzata per individuare i contorni degli oggetti e le variazioni di intensità in una scena. Questa metodologia rappresenta una componente cruciale in numerosi ambiti, dalla computer vision alla robotica, fino all'analisi medica delle immagini. Nonostante i progressi significativi nell'elaborazione classica delle immagini, l'aumento della risoluzione e della complessità dei dati visivi ha portato a sfide computazionali sempre maggiori, rendendo spesso i metodi tradizionali onerosi in termini di tempo e risorse.

Nei primi anni '60, i filtri di Sobel [1] e Prewitt furono introdotti come i primi metodi strutturati per il rilevamento dei bordi. Entrambi basati su operatori convolutivi, questi algoritmi utilizzano maschere i discrete per approssimare il gradiente di intensità in un'immagine, rilevando così variazioni significative nei livelli di grigio. Sebbene semplici ed efficienti, essi risultano sensibili al rumore e con conseguente difficoltà nel gestire bordi sfumati. Negli anni '80, l'algoritmo di Canny [2] rappresentò una svolta significativa grazie all'introduzione di un approccio più sofisticato al rilevamento dei bordi; ancora oggi, rimane uno tra i metodi più utilizzati. Con l'avanzare della tecnologia e l'aumento della potenza computazionale, il rilevamento dei bordi ha beneficiato dell'utilizzo di tecniche basate sull'intelligenza artificiale, come le *reti neurali convoluzionali* (CNN). Soltanto recentemente l'elaborazione

quantistica delle immagini ha iniziato a emergere come un campo innovativo e promettente, aprendo la strada a potenziali accelerazioni esponenziali.

In questo progetto sarà presentata un'applicazione del *Quantum Hadamard Edge Detection* (QHED) [3]. La Sez. II offre una panoramica sulle attuali tecniche di rappresentazione quantistica delle immagini e una disamina delle tecniche utilizzate nell'esperimento. La Sez. III è invece dedicata all'implementazione della soluzione proposta, utilizzando la libreria Qiskit [4]. In ultimo, sono analizzati i risultati (Sez. IV).

II. BACKGROUND

A. Soluzioni classiche

Le tecniche classiche per la rilevazione dei contorni prevedono l'utilizzo di kernel specifici, che permettono di calcolare nuovi valori di intensità per i pixel dell'immagine. Tra i metodi più famosi vi è sicuramente l'operatore di Sobel, che si può descrivere tramite l'applicazione di 2 kernel all'immagine originale:

$$\mathbf{G_x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix}, \ \mathbf{G_y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Un'altra opzione, forse tra le più utilizzate al giorno d'oggi, è l'operatore di Canny. Questo metodo ha un funzionamento del tutto analogo al precedente, ma aggiunge meccanismi per la riduzione del rumore nell'immagine [5]. La complessità di queste tecniche è lineare rispetto al numero di pixel totali dell'immagine, dato che è necessaria una visita completa.

Per un'immagine $M \times L = N$, si utilizzano n bit per enumerare i pixel dell'immagine in formato binario, dove $N = 2^n$, ottenendo una complessità rispetto ai bit esponenziale $O\left(2^n\right)$. In questo progetto verrà mostrato come, dopo una prima fase di preparazione, è possibile risolvere il problema in tempo costante $O\left(1\right)$.

B. Sistemi quantistici

Analogamente a quanto accade nei computer classici, i computer quantistici utilizzano i **quantum bit**, chiamati *qubit*. I qubit rappresentano la più piccola unità di informazione e sono implementati attraverso sistemi quantistici bidimensionali. Le quantità fisiche comunemente usate per questo scopo

1

¹Con il termine *maschera* o *kernel* di convoluzione si fa riferimento ad una piccola griglia sovrapposta in maniera iterativa a tutti i pixel dell'immagine, aggiornando i valori in base ai primi vicini.

includono lo spin di una particella o gli stati eccitati degli atomi.

Assemblando più qubit, è possibile costruire sistemi quantistici la cui dinamica è descritta da spazi vettoriali complessi. Un sistema composto da un singolo qubit è completamente descritto da

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha|0\rangle + \beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}$$
 (1)

Mentre un bit classico può assumere soltanto uno tra due possibili valori (generalmente 0 e 1), un bit quantistico è denotato da una combinazione lineare dei suoi stati base, pesata dai coefficienti complessi α e β . Tali coefficienti sono detti *ampiezze di probabilità* e rispettano la seguente:

$$|\alpha|^2 + |\beta|^2 = 1 \tag{2}$$

Per descrivere lo stato di un sistema quantistico composto da più qubit, è necessario effettuare un'operazione chiamata *prodotto tensoriale* tra i singoli stati coinvolti. Ad esempio, considerati i vettori di stati

$$|\psi_1\rangle = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, \quad |\psi_2\rangle = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},$$

il loro prodotto tensore è definito come:

$$|\psi_1\rangle \otimes |\psi_2\rangle = \begin{bmatrix} a_1 \begin{bmatrix} b_1 \\ b_2 \\ a_2 \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a_1b_1 \\ a_1b_2 \\ a_2b_1 \\ a_2b_2 \end{bmatrix}. \tag{3}$$

Equivalentemente, può essere scritto come $|\psi_1\rangle|\psi_2\rangle$ o $|\psi_1\psi_2\rangle$.

C. Circuiti quantistici

Analogamente a quanto accade nei circuiti digitali classici, i circuiti quantistici eseguono calcoli manipolando le informazioni immagazzinate nei qubit. Questo viene realizzato attraverso dispositivi chiamati **quantum gate** (porte quantistiche), che sono l'equivalente quantistico delle porte logiche classiche ma operano secondo i principi della meccanica quantistica. L'applicazione di una matrice complessa unitaria ad uno stato quantistico modella matematicamente l'azione di un gate su di esso. Formalmente, data $U \in \mathcal{M}_{n \times n}(\mathbb{C})$ l'unitaria associata ad una porta logica e dato lo stato $|\psi\rangle \in \mathbb{C}^n$, lo stato risultante dall'applicazione è definito come:

$$|\psi'\rangle = U|\psi\rangle \tag{4}$$

Gate rilevanti: Di seguito sono descritti alcuni gate quantistici di rilevante importanza. Tra questi, figurano i gate di Pauli.

X (NOT quantistico): trasforma lo stato |0> in |1> e viceversa;

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 Y: combina una rotazione coniugata complessa con un'inversione, utile per applicazioni che coinvolgono trasformazioni nel piano complesso;

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

• **Z**: applica una fase negativa allo stato $|1\rangle$ senza influenzare $|0\rangle$.

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Altro gate fondamentale è quello di *Hadamard*, essenziale per creare stati di sovrapposizione. L'unitaria che lo rappresenta è:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

In particolare, si noti che:

$$H|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} =: |+\rangle \tag{5}$$

$$H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} =: |-\rangle \tag{6}$$

Il *Controlled-NOT* (CNOT) è un'operazione che coinvolge due qubit, dove uno funge da controllo sull'altro. Il gate inverte lo stato del qubit target se il qubit di controllo è $|1\rangle$. La sua matrice è:

$$\mathbf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

D. Quantum Image Processing

La **Quantum Image Processing** (*processamento quantistico dell'immagine*) si concentra sullo sviluppo di algoritmi in grado di codificare immagini all'interno di circuiti quantistici e di processarle utilizzando operazioni quantistiche.

Rappresentazione delle immagini: Tra le varie tecniche proposte negli ultimi anni, la Quantum Probability Image Encoding (QPIE) [6] utilizza le ampiezze di probabilità di uno stato quantistico per memorizzare i valori dei pixel di un'immagine classica. Dati n qubit, essa consente di rappresentare un'immagine in toni di grigio di 2^n pixel tramite una superposizione di stati. In generale, il numero di qubit necessari è calcolato tramite:

$$n = \lceil \log_2 N \rceil \tag{7}$$

Come mostrato in Fig. 1, ogni pixel può essere numerato utilizzando stringhe binarie (00,01,10,11); l'intera immagine è quindi rappresentabile come una matrice 2×2 delle intensità di colore. In questa notazione, il singolo termine I_i corrisponde all'intensità del pixel in posizione (x,y) (rispetto all'angolo in alto a sinistra), tale per cui $i=xy_{10}$.

Per rappresentare l'immagine come una superposizione di stati base, è necessario che venga rispettata l'Eq. 2; bisogna infatti normalizzare le singole intensità come segue:

$$c_i = \frac{I_i}{\sqrt{\sum_k I_k^2}} \tag{8}$$

In Fig. 2 viene mostrato il risultato della normalizzazione. L'immagine può quindi essere scritta come:

$$|\text{Img}\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle$$

che generalizzata a n qubit diventa:

$$|\text{Img}\rangle = \sum_{i=1}^{2^n} c_i |i\rangle \tag{9}$$

Figura 1. Rappresentazione di un'immagine B&W 4x4 pixel.

00	01
c_0	c_1
10	11
10 <i>c</i> ₂	11 <i>c</i> ₃

Figura 2. Rappresentazione della Fig. 1 tramite QPIE.

E. Quantum Hadamard Edge Detection

L'algoritmo di **Quantum Hadamard Edge Detection** (**QHED**) [6] rappresenta il fulcro di questo progetto. L'idea alla base è quella di utilizzare il gate di Hadamard. Come mostrato nella Sottosez. II-D, esso trasforma $|0\rangle$ in $|+\rangle$ e, in particolare, $|1\rangle$ in $|-\rangle$. Inoltre, in base alla Eq. 9, ogni pixel può essere identificato da una stringa binaria del tipo

$$|b_{n-1}b_{n-2}\dots b_1b_0\rangle, b_i \in 0,1$$

Per pixel orizzontalmente adiacenti presi a due a due, le stringhe sono:

$$|b_{n-1}b_{n-2}\dots b_10\rangle, |b_{n-1}b_{n-2}\dots b_11\rangle$$

ossia si differenziano soltanto per l'ultimo qubit più a destra, denotato con q_0 .

Applicando il gate H a q_0 , si ottiene una trasformazione la cui unitaria è rappresentata da:

$$I_{2^{n-1}} \otimes H_0 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & -1 \end{bmatrix}$$

Se a questo punto tale trasformazione è applicata allo stato che codifica l'immagine nella notazione QPIE (Eq. 9), si ottiene:

$$(I_{2^{n-1}} \otimes H_0) \cdot \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{N-2} \\ c_{N-1} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} c_0 + c_1 \\ c_0 - c_1 \\ c_2 + c_3 \\ c_2 - c_3 \\ \vdots \\ c_{N-2} + c_{N-1} \\ c_{N-2} - c_{N-1} \end{bmatrix}$$
(10)

Si noti che ciò permette di esplicitare il gradiente di coppie di pixel adiacenti, in corrispondenza dei coefficienti in posizione *dispari* nel vettore di stato risultante. Lo stato del'Eq. 10 può essere riscritto come:

$$\begin{split} &\frac{1}{\sqrt{2}} \begin{bmatrix} c_0 + c_1 \\ c_0 - c_1 \\ c_2 + c_3 \\ c_2 - c_3 \\ \vdots \\ c_{N-2} + c_{N-1} \\ c_{N-2} - c_{N-1} \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} c_0 + c_1 \\ 0 \\ c_2 + c_3 \\ 0 \\ \vdots \\ c_{N-2} + c_{N-1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ c_0 - c_1 \\ 0 \\ c_2 - c_3 \\ \vdots \\ 0 \\ c_{N-2} - c_{N-1} \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} (|\mathrm{sum}\rangle \otimes |0\rangle + |\mathrm{dif}\rangle \otimes |1\rangle) \end{split}$$

da cui si evince che misurando il circuito condizionato sul fatto che q_0 sia nello stato $|1\rangle$, è possibile ottenere i gradienti attraverso un'analisi statistica.

F. Modellazione del rumore

III. IMPLEMENTAZIONE

IV. RISULTATI

V. CONCLUSIONE

RIFERIMENTI BIBLIOGRAFICI

- [1] I. Sobel and G. Feldman, "An isotropic 3x3 image gradient operator," 1968, presented at the Stanford Artificial Intelligence Laboratory (SAIL). [Online]. Available: https://www.researchgate.net/publication/281104656_An_Isotropic_3x3_Image_Gradient_Operator
- [2] J. Canny, "A computational approach to edge detection," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. PAMI-8, no. 6, pp. 679–698, 1986.
- [3] X.-W. Yao, H. Wang, Z. Liao, M.-C. Chen, J. Pan, J. Li, K. Zhang, X. Lin, Z. Wang, Z. Luo, W. Zheng, J. Li, M. Zhao, X. Peng, and D. Suter, "Quantum image processing and its application to edge detection: Theory and experiment," *Physical Review X*, vol. 7, no. 3, Sep. 2017. [Online]. Available: http://dx.doi.org/10.1103/PhysRevX.7.031041
- [4] Qiskit Development Team, "Qiskit: An open-source framework for quantum computing," https://qiskit.org/, 2021, accessed: 2025-01-17. [Online]. Available: https://qiskit.org/
- [5] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). USA: Prentice-Hall, Inc., 2006.

[6] X.-W. Yao, H. Wang, Z. Liao, M.-C. Chen, J. Pan, J. Li, K. Zhang, X. Lin, Z. Wang, Z. Luo, W. Zheng, J. Li, M. Zhao, X. Peng, and D. Suter, "Quantum image processing and its application to edge detection: Theory and experiment," *Phys. Rev. X*, vol. 7, p. 031041, Sep 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.7.031041