

OUTLINE OF CHAPTER 3

The Map Method

Four – Variable K-Map

Product of Sums Simplification

Don't Care Conditions

NAND and NOR Implementations

Other Two Level Implementations

Exclusive-OR Function

Hardware Description Language

 Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.

- The complexity of the digital logic gates
 - The complexity of the algebraic expression
- Logic minimization
 - Algebraic approaches: lack of specific rules
 - The Karnaugh map
 - A simple straight forward procedure
 - A pictorial form of a truth table
 - Applicable if the # of variables < 7

- A diagram made up of squares
 - Each square represents one minterm
- The simplified expression produced by the map are always in one of the two standard forms:
 - Sum of products
 - Product of sums

- Boolean function
 - Sum of minterms
 - Sum of products (or product of sum) in the simplest form
 - A minimum number of terms
 - A minimum number of literals
 - The simplified expression may not be unique

- A two-variable map
 - Four minterms
 - x' = row 0; x = row 1
 - y' = column 0; y = column 1
 - A truth table in square diagram
 - xy

Figure 3.1 Two-variable Map

- Fig. 3.2(a):
 - $xy = m_3$
- Fig. 3.2(b):
 - $x+y = x'y+xy' +xy = m_1+m_2+m_3$

Figure 3.2 Two-variable Map

- Three-variable map:
 - For 3 binary variables.
 - $2^n = 8$ minterms.
 - Map consists of 8 squares.
 - Minterms are not arranged in a binary sequence.
 - Only one bit changes in value from one adjacent column to the next.

March, 2024 LOGIC DESIGN

- Any two adjacent squares in the map differ by only one variable
 - Primed in one square and unprimed in the other
 - e.g., m_5 and m_7 can be simplified
 - $m_5 + m_7 = xy'z + xyz = xz (y'+y) = xz$

Ζ

- $-m_0$ and m_2 (m_4 and m_6) are adjacent
- $m_0 + m_2 = x'y'z' + x'yz' = x'z'$ (y'+y) = x'z'
- $m_4 + m_6 = xy'z' + xyz' = xz' (y'+y)$ = xz'

Ζ

March, 2024

• Example 3.1: Simplify the Boolean function $F(x, y, z) = \Sigma(2, 3, 4, 5)$

$$F = x'y + xy'$$

• Example 3.2: Simplify the Boolean function $F(x, y, z) = \Sigma(3, 4, 6, 7)$

$$F = yz + xz'$$

- Consider four adjacent squares in the three-variable map.
- Any such combination represents the logical sum of four minterms and results in an expression of only one literal.
- The number of adjacent squares that may be combined
 - power of two
 - 1,2,4 and 8.
- Larger number of adjacent squares
 - Product term with fewer literal

- $m_0+m_2+m_4+m_6 = x' y' z' + x' y z' + x y' z' + x y z'$ = x'z'(y'+y) + xz'(y'+y) = x' z' + x z' = z'
- $m_1+m_3+m_5+m_7 = x' y' z + x' y z + x y' z + x y z$ =x' z (y' + y) + x z (y' + y) = x' z + x z = z

Ζ

- 1 square represents 1 minterm
 - A Term of 3 literals.
- **2** adjacent squares
 - A term of 2 literals.
- **4** adjacent squares
 - A term of 1 literal.
- 8 adjacent squares
 - Entire map
 - Function **F = 1**

• Example 3.2: Simplify the Boolean function $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$

$$F = z' + xy'$$

- If a funtion is not expressed in sum of minterms
 - Use the map to obtain the minterms
 - Simplify the function and find the minimum number of terms.
 - Make sure that the algebraic expression is in sum of products form.

- Example 3.2: Simplify the Boolean function F = A' C + A' B + A B' C + B C.
 - a. Express it in sum of minterms
 - b. And find the minimal sum of products expression.

$$F = C + A'B$$

- 16 minterms
- Combinations of 2, 4, 8, and 16 adjacent squares

				,	, ,
	уz			У	
WX		0 0	0 1	1 1	1 0
	00	m_o	<i>m</i> ₁	<i>m</i> ₃	<i>m</i> ₂
	01	m_4	<i>m</i> ₅	<i>m</i> ₇	<i>m</i> ₆
W	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
	10	<i>m</i> ₈	<i>m</i> ₉	m ₁₁	m ₁₀

Ζ

1	УZ	•		У	
WX	1	0 0	0 1	1 1	1 0
	00	m _o w'x'y'z'	m ₁ w'x'y'z	m ₃ w'x'yz	m ₂ w'x'yz'
	01	m ₄ w'xy'z'	m ₅ w'xy'z	m ₇ w'xyz	m ₆ w'xyz'
W	11	m ₁₂ wxy'z'	m ₁₃ wxy'z	m ₁₅	m ₁₄ wxyz'
	10	m ₈ wx'y'z'	m ₉ wx'y'z	m ₁₁ wx'yz	m ₁₀ wxyz'

Ζ

March, 2024

- Minimization of four-variable Boolean function is similar to three-variable functions.
- Adjacent squares are defined to be squares next to each other.
 - Ex: m_0 and m_2 , m_3 and m_{11} .
- 1 square represents 1 minterm
 - A Term of 4 literals.

- **2** adjacent squares
 - A term of **3** literals.
- **4** adjacent squares
 - A term of 2 literal.
- 8 adjacent squares
 - A term of 1 literal.
- **16** adjacent squares
 - Entire map
 - Function **F = 1**

• Example 3.5: simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

F = y' + w'z' + xz'

Χ

Example 3-6: simplify F = A' B' C' + B' C D' + A' B C D' + A B' C'

$$F = B'C' + A'CD' + B'D'$$

В

- The **1's** placed in the squares of the map represent the **minterms** of the function.
- The **minterms** not included in the function denote the complement of the function.
- Mark the empty squares by 0's
- Combine them into valid adjacent squares
- Obtain simplified expression of the complement function F'.

• Simplify the following function in (a) sum of product and (b) product of sums: F (A, B, C, D) = \sum (0,1, 2, 5, 8, 9, 10)

$$F = B'D' + B'C' + A'C'D$$

$$F' = AB + CD + BD'$$

Apply DeMorgan's theorem

$$(F' = (AB + CD + BD'))'$$

$$F = (A' + B') (C' + D') (B' + D)$$

D

$$F = B'D' + B'C' + A'C'D$$

Sum of Products

$$F = (A' + B') (C' + D') (B' + D)$$

Products of Sum

- Consider the function defined in Table 3.2.
- Sum of minterms:

-
$$F(x, y, z) = \sum (1, 3, 4, 6)$$

Product of maxterms:

-
$$F(x, y, z) = \prod (0,2,5,7)$$

x	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

C

- Sum of minterms:
 - $F(x, y, z) = \sum (1, 3, 4, 6)$
 - Sum of products: x'z + xz'
- Product of maxterms:
 - $F(x, y, z) = \prod (0, 2, 5, 7)$
 - Product of sums: (x'+z')(x+z)

- The value of a function is not specified for certain combinations of variables
 - BCD; 1010-1111: don't care
- These don't care conditions can be used on a map to provide further simplification of the Boolean expression.
- Don't care minterm is a combination of variables whole logical value is not specified.

- It cannot be marked with a 1 in the map
 - It would require that the function always be a 1 for such combination.
- It cannot be marked with a 0 in the map
 - It would require that the function always be a 0 for such combination.
- For don't care conditions an X is used.
- For adjacent squares in the map to simplify the function
 - The don't care minterms may be assumed to be either 0 or 1.

- Simplify the Boolean function F (w, x, y, z) = \sum (1, 3, 7, 11, 15)
 - Don't care conditions $d(w, x, y, z) = \sum (0, 2, 5)$.

	yz	У			
WX		0 0	0 1	11	1 0
		m _o	m ₁	m ₃	m ₂
	00	Х	1	1	Х
0	01	m ₄	<i>m</i> ₅	n ₁₇	<i>m</i> ₆
	Οī	0	X	1	0
W	11	m ₁₂	m ₁₃	n1 ₁₅	m ₁₄
		0	0	1	0
	10	m ₈	m ₉	n111	m ₁₀
		0	0	1	0

Ζ

F = yz + w'x'

Χ

F = yz + w'z

Χ

Ζ

March, 2024

- Don't care minterms in the map are initially marked with X's.
- The choice between 0 and 1 is made depending on the way the incompletely specified function is simplified.
- Once the choice is made,
 - the simplified function obtained will consist of a sum of minterms
 - including those minterms that were initially marked with X's and
 - have been chosen to be included with 1's.
- $F(w, x, y, z) = yz + w'x' = \sum (0, 1, 2, 3, 7, 11, 15)$
- $F(w, x, y, z) = yz + w'z = \sum (0, 1, 3, 5, 7, 11, 15)$

NAND Circuits:

- The NAND gate is a universal gate.
 - Can implement any digital system.
 - Complement operation is obtained from one-input NAND gate.
 - AND operation requires two NAND gates
 - OR operation is achieved through NAND gate with additional inverters in each input

Inverter

AND

OR

NAND Circuits:

Two graphic symbols for NAND gate

(b) Invert-OR

- The implementation of Boolean functions with NAND gates
 - Require that the function be in sum of products form.
 - F = A.B + C.D

(a)
$$F = A.B + C.D$$

(b)
$$F = ((A.B)')' + ((C.D)')'$$

= $(A+B)' + (C+D)'$
= $A.B + C.D$

(c)
$$F = ((A.B)' (C.D)')'$$

= $((A+B) (C + D))'$
= $A.B + C.D$

- Implement the following Boolean function F = (x, y, z) = (1, 2, 3, 4, 5, 7).
 - Simplify the function in sum of products using K-map.

March, 2024

- The procedure
 - Simplify in the form of sum of products;
 - Draw a NAND gate for each product term;
 - The inputs to each NAND gate are the literals of the term (the first level);
 - A single NAND gate for the second sum term (the second level);
 - A term with a single literal requires an inverter in the first level if the single literal is not complemented. Otherwise it can be connected directly.

- General procedure for converting multilevel AND-OR diagram into all NAND diagram:
 - Convert all AND gates to NAND gates with AND-invert graphic symbol.
 - Convert all OR gates to NAND gates with invert-OR graphic symbol.
 - Check all the bubbles in the diagram.
 - For every bubble that is not compensated by another small circle along the same line,
 - insert an inverter (one-input NAND gate) or
 - complement the input literal

• F = A (CD + B) + BC'

(b) NAND gates

• F = (AB' + A'B) (C + D')

- NOR function is the dual of NAND function.
- The NOR gate is also universal.

NAND Circuits:

Two graphic symbols for NAND gate

(a) OR-invert

(b) Invert-AND

• Example: Implementing F = (A + B) (C + D) E

• Example: Implementing F = (A B' + A' B) (C + D')

- NAND and NOR gates most often found in integrated circuits.
- NAND and NOR are the most important gates from a practical point of view.
- Some NAND or NOR gates allow the possibility of a wire connection between the outputs of two gates to provide a specific logic function.
- This type of logic is called wired logic.
- Example:
 - Open-collector TTL NAND gates when tied together performs wired-AND logic.

• Example:

- Open-collector TTL NAND gates when tied together performs wired-AND logic.
- The wired AND gate is not a physical gate, but only a symbol to designated the function obtained from the indicated wired connection.

$$-$$
 F = (AB)' · (CD)' = (AB + CD)'

AND-OR-INVERT

Nondegenerate Forms

- Consider four types of gate: AND, OR, NAND and NOR.
- Assign one type of gate for the first level and one type of gate for the second level.
- There are 16 possible combination of two-level forms.
 - Eight of them: degenerate forms = a single operation
 - AND-AND, AND-NAND, OR-OR, OR-NOR, NAND-OR, NAND-NOR, NOR-AND, NOR-NAND.

- The eight non-degenerate forms
 - AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND, OR-NAND, AND-NOR.
 - AND-OR and NAND-NAND = sum of products.
 - OR-AND and NOR-NOR = product of sums.
 - NOR-OR, NAND-AND, OR-NAND, AND-NOR = ?

AND – OR – INVERT Implementation

- The two forms NAND AND = AND NOR
- Both perform the AND OR INVERT function.
- F = (AB + CD + E)'
- F' = AB + CD + E (sum of product)

March, 2024 LOGIC DESIGN

OR – AND – INVERT Implementation

- The two forms OR NAND = NOR OR
- Both perform the **OR AND INVERT** function.
- F = [(A+B) (C+D) E]'
- F' = (A+B) (C+D) E (product of sum)

March, 2024 LOGIC DESIGN

Equivalent Nondegenerate Form		Implements the Function	Simplify F' in	To get an output of
(a)	(b)*			
AND- NOR	NAND-AND	AND-OR-INVERT	Sum of products by combining 0's in the map	F
OR- NAND	NOR-OR	OR-AND-INVERT	Product of sums by combining 1's in the map and then complementing	F

^{*}Form (b) requires and inverter for a single literal term.

- Example 3-11: F' = x'y+xy'+z(F': sum of products)
 - Step1: x'y(z + z') = x'yz + x'yz'
 - Step2: xy'(z + z') = xy'z + xy'z'
 - Step3: z(x + x') = xz + x'z
 - Step4: xz+x'z (y+y') = xyz + x'yz+ xy'z + x'y'z
 - Step5: x'yz + x'yz' + xy'z + xy'z'+
 xyz + x'y'z

F' = z + xy' + x'y

• Example 3-11: F' = x'y+xy'+z

(F': sum of products)

AND-OR-INVERT

- AND-OR-INVERT form require a simplified expression of the complement of the function in product of sums.
 - Combine the 1's in the map
 - F = x'y'z' + xyz'
 - Take the complement
 - F' = (x+y+z)(x'+y'+z)
 - F = [(x+y+z)(x'+y'+z)]'

(a) OR-NAND

(c) NOR-OR

Summary

$$-$$
 F' = x'y+xy'+z

$$- F = (x'y+xy'+z)'$$

$$- F = x'y'z' + xyz'$$

$$- F' = (x+y+z)(x'+y'+z)$$

$$- F = ((x+y+z)(x'+y'+z))'$$

(F': sum of products)

(F: AOI implementation)

(F: sum of products)

(F': product of sums)

(F: OAI)

- Exclusive-OR (XOR)
 - $x \oplus y = x y' + x' y$
 - F = 1, if only x = 1 or y = 1, but not when x and y = 1.
- Exclusive-NOR (XNOR) (equivalence)
 - $(x \oplus y)' = x y + x' y'$
 - F = 1, if both x and y = 1 or both = 0.
 - $-(x \oplus y)' = (x y' + x' y)' = (x' + y)(x + y') = x'x + x'y' + xy = xy + x'y'$

Some identities

$$- \times \oplus 0 = x$$

$$- x \oplus 1 = x'$$

$$- \times \oplus \times = 0$$

$$- \times \oplus \times' = 1$$

$$- \times \oplus y' = (\times \oplus y)'$$

$$- x' \oplus y = x' \oplus y = (x \oplus y)'$$

Commutative and associative

$$-A \oplus B = B \oplus A$$

$$- (A \oplus B) \oplus C = A \oplus (B \oplus C)$$

$$= A \oplus B \oplus C$$

Implementations

$$- (x' + y') x + (x' + y') y$$
$$= x y' + x' y = x \oplus y$$

 The XOR operation with three or more variables can be converted into an ordinary Boolean function by replacing ⊕ symbol with its equivalent Boolean expression.

-
$$A \oplus B \oplus C = (AB'+A'B)C' + (AB+A'B')C$$

= $AB'C'+A'BC'+ABC+A'B'C$
= $\Sigma(1, 2, 4, 7)$

- XOR is a odd function \rightarrow an odd number of 1's, then F = 1.
- XNOR is a even function \rightarrow an even number of 1's, then F = 1.

Z
(a) Odd Function $F = A \oplus B \oplus C$ A
(a) 3-input odd function

Four-variable Exclusive-OR function

 $-A \oplus B \oplus C \oplus D = (AB'+A'B) \oplus (CD'+C'D) = (AB'+A'B)(CD+C'D') + (AB+A'B')(CD'+C'D)$

Χ

 $\begin{array}{c}
z\\F = A \oplus B \oplus C \oplus D
\end{array}$

 $F = (A \oplus B \oplus C \oplus D)'$

Χ

- Parity Generation and Checking
 - A parity bit: $P = x \oplus y \oplus z$
 - Parity check: $C = x \oplus y \oplus z \oplus P$
 - C=1: one bit error or an odd number of data bit error
 - C=0: correct or an even # of data bit error

(b) 3-input even function

	Three-Bit Message		Parity Bit
X	У	Z	Р
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

	Parity Error Check			
х	у	Z	Р	С
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

- Describe the design of digital systems in a textual form
 - Hardware structure
 - Function/behavior
 - Timing
- VHDL and Verilog HDL

Specification **RTL design and Simulation Logic Synthesis Gate Level Simulation FPGA ASIC Layout Implementation**

- Documentation language
- HDL is used to represent and document digital systems in a form that can be read by both humans and computers
- Examples of keywords:
 - module, end-module, input, output, wire, and, or, and not

March, 2024 LOGIC DESIGN

- Boolean expressions are specified in Verilog HDL with a
 - continuous assignment statement consisting of the keyword assign followed by a Boolean expression.
- To distinguish the arithmetic plus from logical OR, Verilog HDL uses the symbols
 - (&) for AND,
 - (|) for OR,
 - (~) for NOT

Boolean expression:

$$- x = A.B + C'$$

$$y = C'$$

```
//Description of Simple circuit
module smpl_circuit (A, B, C, x, y);
input A, B, C;
output x, y;
assign x = (A & B) | ~C
assing y = ~C
endmodule
```