

1 1. (Currently Amended and Previously Presented and Twice Amended)
2 A method for communicating a data stream, the method comprising the
3 steps of,
4 generating a sequence of data symbols from the data stream,
5 precoding the sequence of data symbols into a sequence of
6 precoded data symbols,
7 modulating the sequence of precoded data symbols into a
8 continuous phase modulated signal,
9 transmitting the continuous phase modulated signal,
10 receiving the continuous phase modulated signal, and
11 filtering the continuous phase modulated signal into a
12 sequence of filtered signals having absolute phase for indicating
13 the sequence of data symbols, wherein,
14 the generating step comprises the steps of receiving the data
15 stream of data bits, formatting the data stream into the sequence
16 of formatted data pulses as a sequence of data symbols within an M-
17 ary symbol set,
18 the modulating step comprises the steps of Gaussian filtering
19 and frequency modulating for generating the continuous phase
20 modulated signal, the Gaussian filter step filters the precoded
21 sequence of data symbols into pulse responses continuously
22 accumulated over a finite memory time as a filter response, the
23 Gaussian filtering step is defined by a bandwidth time product
24 inversely defining the finite memory time, the frequency modulating
25 step frequency modulates a carrier reference by the filter response
26 by a modulation index for converting the filter response into the
27 continuous phase modulated signal,

1 the continuous phase modulated signal is up converted from
2 baseband during the transmitting step and is down converted to
3 baseband during the receiving step using a local carrier, and
4 the filtering step is a matched filtering step for matched
5 filtering of the received continuous phase modulated signal into
6 the filtered signal, the matched filtering is matched by pulse
7 amplitude modulation representation to the Gaussian filtering step,
8 the filtered signal has an absolute phase at a periodic sampling
9 time for indicating the sequence of data symbols.

10
11 2. (Previously Presented and Once Amended) The method of claim 1
12 further comprising the steps of,

13 sampling the sequence of filtered signals into a sequence of
14 sampled symbols, and

15 demodulating the sequence of sampled symbols into an estimated
16 data stream.

17
18
19 3. (Currently Canceled)

20
21
22 4.(Currently Amended, Previously Presented and Thrice Amended) The
23 method of claim 3 1 wherein,

24 the modulation index is equal to a fraction selected from a
25 group consisting of $1/M$ and $(1-1/M)$ fractions for the M-ary symbol
26 set where $M=2^k$ and k is an integer.

27
28 ///

1 5. (Previously Presented and Twice Amended) A method for
2 communicating a data stream, the method comprising the steps of,
3 generating a sequence of data symbols from the data stream by
4 formatting the data stream into the sequence of formatted data
5 pulses as a sequence of data symbols within a 2-ary symbol set,
6 precoding the sequence of data symbols into a sequence of
7 precoded data symbols,

8 Gaussian filtering the precoded sequence of data symbols into
9 pulse responses continuously accumulated over a finite memory time
10 as a filter response, the Gaussian filtering is defined by a
11 bandwidth time product inversely defining the finite memory time,
12 frequency modulating a carrier reference by the filter
13 response by a modulation index for converting the filter response
14 into a continuous phase modulated signal, and
15 matched filtering the received continuos phase modulation
16 signal into a filtered signal, the matched filtering is matched by
17 pulse amplitude modulation representation to the Gaussian
18 filtering, the filtered signal has an absolute phase at a periodic
19 sampling time for indicating the sequence of data symbols.

20
21 6. (Previously Presented and Amended) The method of claim 5,
22 wherein,

23 the sequence of data symbols has a data symbol d_n at a current
24 symbol time n where n is an integer and has a data symbol d_{n-1} at an
25 immediate previous symbol time n-1 for precoding the data sequence
26 into the sequence precoded data symbols having a precoded data
27 symbol α_n at the current symbol time, the precoding step is defined
28 by $\alpha_n = [d_n - d_{n-1} + 1]_{\text{mod}4}$.

1 7.(Previously Presented and Once Amended) The method of claim 5,
2 wherein,

3 the sequence of data symbols has a data symbol d_n at a current
4 symbol time n where n is an integer and has a data symbol d_{n-1} at an
5 immediate previous symbol time n-1 for precoding the data sequence
6 into the sequence of precoded data symbols having a precoded data
7 symbol α_n at the current symbol time for even symbol times and for
8 odd symbol times, the precoding step is defined by $\alpha_n = [d_n - d_{n-1}$
9 $+ 1]_{mod4}$ for even symbol times and $\alpha_n = -[d_n - d_{n-1} + 1]_{mod4}$ for
10 odd symbol times.

11

12

13 8. (Previously Presented and Original) The method of claim 5
14 wherein the modulation index is 1/2.

15

16

17

18 9. (Previously Presented and Original) The method of claim 5
19 wherein the bandwidth time product is 1/3.

20

21

22

23 10. (Previously Presented and Original) The method of claim 5
24 wherein the filtering step is a matched filtering step for applying
25 a principal Laurent function to the baseband signal so that the
26 filtered signal comprises a principal Laurent component.

27

28 ///

1 11. (Previously Presented and Twice Amended) A method for
2 communicating a data stream, the method comprising the steps of,
3 generating a sequence of data symbols from the data stream by
4 formatting the data stream into the sequence of formatted data
5 pulses as a sequence of data symbols within a 4-ary symbol set,
6 precoding the sequence of data symbols into a sequence of
7 precoded data symbols,
8 Gaussian filtering the precoded sequence of data symbols into
9 pulse responses continuously accumulated over a finite memory time
10 as a filter response, the Gaussian filtering is defined by a
11 bandwidth time product inversely defining the finite memory time,
12 frequency modulating a carrier reference by the filter
13 response by a modulation index for converting the filter response
14 into a continuous phase modulated signal,
15 matched filtering the continuous phase modulated signal into a
16 filtered signal, the matched filtering is matched by pulse
17 amplitude modulation representation to the Gaussian filtering, the
18 filtered signal has an absolute phase at a periodic sampling time
19 for indicating the sequence of data symbols, and
20 demodulating the sequence of data symbols into an estimate of
21 the data steam.

22

23

24

25

26

27

28 ///

1 12. (Previously Presented and Original) The method of claim 11,
2 wherein,

3 the sequence of data symbols has a data symbol d_n at a current
4 symbol time n and has a data symbol d_{n-1} at an immediate previous
5 symbol time n-1 for precoding the data sequence into the sequence
6 precoded data symbols having a precoded data symbol α_n at the
7 current symbol time, the precoding step is defined by $\alpha_n = [d_n -$
8 $d_{n-1} + 1]_{mod8}$.

9
10
11 13. (Previously Presented and Original) The method of claim 12
12 wherein the precoded data symbol α_n is defined by the 4-ary symbol
13 set of +1, -1, +3 and -3.

14
15
16 14. (Previously Presented and Original) The method of claim 12
17 wherein the modulation index is 1/4.

18
19
20 15. (Previously Presented and Original) The method of claim 11,
21 wherein,

22 the sequence of data symbols has a data symbol d_n at a current
23 symbol time n and has a data symbol d_{n-1} at an immediate previous
24 symbol time n-1 for precoding the data sequence into the sequence
25 precoded data symbols having a precoded data symbol α_n at the
26 current symbol time, the precoding step is defined by $\alpha_n = [d_n -$
27 $d_{n-1} + 3]_{mod8}$.

28

1 16. (Previously Presented and Original) The method of claim 15
2 wherein the precoded data symbol α_n is defined by the 4-ary symbol
3 set of +1, -1, +3 and -3.

4

5 17. (Previously Presented and Original) The method of claim 15
6 wherein the modulation index is 1/4.

7

8 18. (Previously Presented and Amended) The method of claim 11
9 wherein the filtering step is a matched filtering step for applying
10 a principal Laurent function, a third Laurent function and a
11 twelfth Laurent function to the baseband signal so that the
12 filtered signal comprises a principal Laurent component, a third
13 Laurent component and a twelfth Laurent component.

14

15 19. (Previously presented and original) The method of claim 11
16 wherein the modulation index is 3/4.

17

18 20. (Previously presented and original) The method of claim 11
19 wherein the bandwidth time product is 1/3.

20

21

22

23

24

25

26

27

28 ///

29