Számításelmélet

7. előadás

előadó: Kolonits Gábor kolomax@inf.elte.hu

Felismerhetőség

Univerzális nyelv: $L_u = \{ \langle M, w \rangle \mid w \in L(M) \}.$

Felismerhetőség

Univerzális nyelv: $L_u = \{ \langle M, w \rangle \mid w \in L(M) \}.$

Tétel

 $L_u \in RE$

Felismerhetőség

Univerzális nyelv: $L_u = \{ \langle M, w \rangle \mid w \in L(M) \}.$

Tétel

 $L_u \in RE$

Bizonyítás: Konstruálunk egy 4 szalagos U "univerzális" TG-et, ami minden M TG minden bementére szimulálja annak működését.

Felismerhetőség

Univerzális nyelv: $L_u = \{ \langle M, w \rangle \mid w \in L(M) \}.$

Tétel

 $L_u \in RE$

Bizonyítás: Konstruálunk egy 4 szalagos U "univerzális" TG-et, ami minden M TG minden bementére szimulálja annak működését.

Feltehető, hogy *M* egyszalagos.

- 1. szalag: U ezt csak olvassa, itt olvasható végig $\langle M, w \rangle$.
- 2. szalag: M aktuális szalagtartalma és a fej helyzete (elkódolva a fentiek szerint)
- 3. szalag: M aktuális állapota (elkódolva a fentiek szerint)
- 4. szalag: segédszalag

Felismerhetőség

Felismerhetőség

U működése vázlatosan:

 Megnézi, hogy a bemenetén szereplő szó első része kódol-e TG-t; ha nem ⇒ elutasítja a bemenetet

Felismerhetőség

- Megnézi, hogy a bemenetén szereplő szó első része kódol-e TG-t; ha nem ⇒ elutasítja a bemenetet
- 2. ha igen \Rightarrow felmásolja w-t a 2., q_0 kódját a 3. szalagra
- 3. Szimulálja *M* egy lépését:

Felismerhetőség

- Megnézi, hogy a bemenetén szereplő szó első része kódol-e TG-t; ha nem ⇒ elutasítja a bemenetet
- 2. ha igen \Rightarrow felmásolja w-t a 2., q_0 kódját a 3. szalagra
- 3. Szimulálja *M* egy lépését:
 - Leolvassa a második szalagról M aktuálisan olvasott szalagszimbólumát.

Felismerhetőség

- Megnézi, hogy a bemenetén szereplő szó első része kódol-e TG-t; ha nem ⇒ elutasítja a bemenetet
- 2. ha igen \Rightarrow felmásolja w-t a 2., q_0 kódját a 3. szalagra
- 3. Szimulálja *M* egy lépését:
 - Leolvassa a második szalagról ${\it M}$ aktuálisan olvasott szalagszimbólumát.
 - Leolvassa a harmadik szalagról M aktuális állapotát.

Felismerhetőség

- Megnézi, hogy a bemenetén szereplő szó első része kódol-e TG-t; ha nem ⇒ elutasítja a bemenetet
- 2. ha igen \Rightarrow felmásolja w-t a 2., q_0 kódját a 3. szalagra
- 3. Szimulálja *M* egy lépését:
 - Leolvassa a második szalagról M aktuálisan olvasott szalagszimbólumát.
 - Leolvassa a harmadik szalagról M aktuális állapotát.
 - Szimulálja M egy lépését M első szalagon található leírása alapján. Ehhez U számára ehhez minden információ rendelkezésre áll. A 2. szalagon elő kell állítania az új szalagtartalmat a fej helyzetével és a 3. szalagon az új állapotot. Ehhez, ha szükséges használja a 4. szalagot. A megvalósítás átmenetszintű részletezésétől eltekintünk.

Felismerhetőség

- Megnézi, hogy a bemenetén szereplő szó első része kódol-e TG-t; ha nem ⇒ elutasítja a bemenetet
- 2. ha igen \Rightarrow felmásolja w-t a 2., q_0 kódját a 3. szalagra
- 3. Szimulálja *M* egy lépését:
 - Leolvassa a második szalagról M aktuálisan olvasott szalagszimbólumát.
 - Leolvassa a harmadik szalagról M aktuális állapotát.
 - Szimulálja M egy lépését M első szalagon található leírása alapján. Ehhez U számára ehhez minden információ rendelkezésre áll. A 2. szalagon elő kell állítania az új szalagtartalmat a fej helyzetével és a 3. szalagon az új állapotot. Ehhez, ha szükséges használja a 4. szalagot. A megvalósítás átmenetszintű részletezésétől eltekintünk.
- 4. Ha M aktuális állapota elfogadó/elutasító, akkor U is belép a saját elfogadó/elutasító állapotába. Különben goto 3.

Eldönthetetlenség

Megjegyzés: Ha M nem áll meg w-n, akkor U se áll meg $\langle M, w \rangle$ -n, így U nem dönti el L_u -t, csak felismeri.

Eldönthetetlenség

Megjegyzés: Ha M nem áll meg w-n, akkor U se áll meg $\langle M, w \rangle$ -n, így U nem dönti el L_u -t, csak felismeri.

Tétel

 $L_u \notin R$.

Eldönthetetlenség

*M*egjegyzés: Ha M nem áll meg w-n, akkor U se áll meg $\langle M, w \rangle$ -n, így U nem dönti el L_u -t, csak felismeri.

Tétel

 $L_u \notin R$.

Eldönthetetlenség

Megjegyzés: Ha M nem áll meg w-n, akkor U se áll meg $\langle M, w \rangle$ -n, így U nem dönti el L_u -t, csak felismeri.

Tétel

 $L_u \notin R$.

Eldönthetetlenség

*M*egjegyzés: Ha *M* nem áll meg *w*-n, akkor *U* se áll meg $\langle M, w \rangle$ -n, így *U* nem dönti el L_u -t, csak felismeri.

Tétel

 $L_u \notin R$.

$$w \in L(M')$$

Eldönthetetlenség

*M*egjegyzés: Ha *M* nem áll meg *w*-n, akkor *U* se áll meg $\langle M, w \rangle$ -n, így *U* nem dönti el L_u -t, csak felismeri.

Tétel

 $L_u \notin R$.

$$w \in L(M') \Leftrightarrow w111w \notin L(M)$$

Eldönthetetlenség

*M*egjegyzés: Ha *M* nem áll meg *w*-n, akkor *U* se áll meg $\langle M, w \rangle$ -n, így *U* nem dönti el L_u -t, csak felismeri.

Tétel

 $L_u \notin R$.

Bizonyítás: Indirekt, tegyük fel, hogy létezik L_u -t eldöntő M TG. M-et felhasználva készítünk egy $L_{\text{átló}}$ -t felismerő M' TG-et.

 $w \in L(M') \Leftrightarrow w111w \notin L(M) \Leftrightarrow$ a w által kódolt TG nem fogadja el w-t

Eldönthetetlenség

*M*egjegyzés: Ha *M* nem áll meg *w*-n, akkor *U* se áll meg $\langle M, w \rangle$ -n, így *U* nem dönti el L_u -t, csak felismeri.

Tétel

 $L_u \notin R$.

Bizonyítás: Indirekt, tegyük fel, hogy létezik L_u -t eldöntő M TG. M-et felhasználva készítünk egy $L_{\text{átló}}$ -t felismerő M' TG-et.

 $w \in L(M') \Leftrightarrow w111w \notin L(M) \Leftrightarrow a \ w \text{ által kódolt TG nem fogadja}$ el w-t $\Leftrightarrow w \in L_{\text{átló}}$.

Eldönthetetlenség

Megjegyzés: Ha M nem áll meg w-n, akkor U se áll meg $\langle M, w \rangle$ -n, így U nem dönti el L_u -t, csak felismeri.

Tétel

 $L_u \notin R$.

Bizonyítás: Indirekt, tegyük fel, hogy létezik L_u -t eldöntő M TG. M-et felhasználva készítünk egy $L_{\text{átló}}$ -t felismerő M' TG-et.

 $w \in L(M') \Leftrightarrow w111w \notin L(M) \Leftrightarrow$ a w által kódolt TG nem fogadja el w-t $\Leftrightarrow w \in L_{\text{átló}}$.

Tehát $L(M') = L_{\text{átló}}$, ami lehetetlen egy előző tétel miatt.

Jelölés: Ha $L \subseteq \Sigma^*$, akkor jelölje $\overline{L} = \{u \in \Sigma^* \mid u \notin L\}$.

Tétel

Ha L és $\bar{L} \in RE$, akkor $L \in R$.

Bizonyítás: Legyen M_1 és M_2 rendre az L-t és \bar{L} -t felismerő TG.

Jelölés: Ha $L \subseteq \Sigma^*$, akkor jelölje $\overline{L} = \{u \in \Sigma^* \mid u \notin L\}$.

Tétel

Ha L és $\bar{L} \in RE$, akkor $L \in R$.

Bizonyítás: Legyen M_1 és M_2 rendre az L-t és \bar{L} -t felismerő TG. Konstruáljuk meg az M' kétszalagos TG-t:

Jelölés: Ha $L \subseteq \Sigma^*$, akkor jelölje $\overline{L} = \{u \in \Sigma^* \mid u \notin L\}$.

Tétel

Ha L és $\bar{L} \in RE$, akkor $L \in R$.

Bizonyítás: Legyen M_1 és M_2 rendre az L-t és \bar{L} -t felismerő TG. Konstruáljuk meg az M' kétszalagos TG-t:

M' lemásolja w-t a második szalagjára, majd felváltva szimulálja M_1 és M_2 egy-egy lépését addig, amíg valamelyik elfogadó állapotba lép.

Jelölés: Ha $L \subseteq \Sigma^*$, akkor jelölje $\overline{L} = \{u \in \Sigma^* \mid u \notin L\}$.

Tétel

Ha L és $\overline{L} \in RE$, akkor $L \in R$.

Bizonyítás: Legyen M_1 és M_2 rendre az L-t és \bar{L} -t felismerő TG. Konstruáljuk meg az M' kétszalagos TG-t:

M' lemásolja w-t a második szalagjára, majd felváltva szimulálja M_1 és M_2 egy-egy lépését addig, amíg valamelyik elfogadó állapotba lép.

Így M' az L-et ismeri fel, és minden bemeneten meg is áll, azaz $L \in R$.

Következmény

RE nem zárt a komplementer-képzésre.

Következmény

RE nem zárt a komplementer-képzésre.

Bizonyítás:

Legyen $L \in RE \setminus R$ (L_u pl. egy ilyen nyelv) Ekkor $\bar{L} \notin RE$, hiszen ha $\bar{L} \in RE$ lenne, akkor ebből az előző tétel miatt $L \in R$ következne, ami ellentmondás.

Következmény

RE nem zárt a komplementer-képzésre.

Bizonyítás:

Legyen $L \in RE \setminus R$ (L_u pl. egy ilyen nyelv) Ekkor $\bar{L} \notin RE$, hiszen ha $\bar{L} \in RE$ lenne, akkor ebből az előző tétel miatt $L \in R$ következne, ami ellentmondás.

Tétel

Ha $L \in R$, akkor $\bar{L} \in R$. (Azaz R zárt a komplementer-képzésre.)

Következmény

RE nem zárt a komplementer-képzésre.

Bizonyítás:

Legyen $L \in RE \setminus R$ (L_u pl. egy ilyen nyelv) Ekkor $\bar{L} \notin RE$, hiszen ha $\bar{L} \in RE$ lenne, akkor ebből az előző tétel miatt $L \in R$ következne, ami ellentmondás.

Tétel

Ha $L \in R$, akkor $\bar{L} \in R$. (Azaz R zárt a komplementer-képzésre.)

Bizonyítás: Legyen $L \in R$ és M egy TG, ami az L-t dönti el.

Következmény

RE nem zárt a komplementer-képzésre.

Bizonyítás:

Legyen $L \in RE \setminus R$ (L_u pl. egy ilyen nyelv) Ekkor $\bar{L} \notin RE$, hiszen ha $\bar{L} \in RE$ lenne, akkor ebből az előző tétel miatt $L \in R$ következne, ami ellentmondás.

Tétel

Ha $L \in R$, akkor $\bar{L} \in R$. (Azaz R zárt a komplementer-képzésre.)

Bizonyítás: Legyen $L \in R$ és M egy TG, ami az L-t dönti el. Akkor az alábbi M' \bar{L} -t dönti el:

Az eldöntési (igen/nem kimenetű) problémák általánosításai a (ki)számítási problémák. Ilyenkor a kimenet bármi lehet. A kiszámítási problémákra is algoritmikus megoldást keresünk.

Az eldöntési (igen/nem kimenetű) problémák általánosításai a (ki)számítási problémák. Ilyenkor a kimenet bármi lehet. A kiszámítási problémákra is algoritmikus megoldást keresünk.

Feltehetjük (megfelelő kódolás alkalmazásával), hogy f értelmezési tartománya Σ^* , értékkészlete Δ^* valamely Σ, Δ ábécékre.

Az eldöntési (igen/nem kimenetű) problémák általánosításai a (ki)számítási problémák. Ilyenkor a kimenet bármi lehet. A kiszámítási problémákra is algoritmikus megoldást keresünk.

Feltehetjük (megfelelő kódolás alkalmazásával), hogy f értelmezési tartománya Σ^* , értékkészlete Δ^* valamely Σ, Δ ábécékre.

Definíció

Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Delta, \delta, q_0, q_i, (q_n) \rangle$ TG **kiszámítja** az $f: \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Az eldöntési (igen/nem kimenetű) problémák általánosításai a (ki)számítási problémák. Ilyenkor a kimenet bármi lehet. A kiszámítási problémákra is algoritmikus megoldást keresünk.

Feltehetjük (megfelelő kódolás alkalmazásával), hogy f értelmezési tartománya Σ^* , értékkészlete Δ^* valamely Σ, Δ ábécékre.

Definíció

Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Delta, \delta, q_0, q_i, (q_n) \rangle$ TG **kiszámítja** az $f: \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Megjegyzés: A definíció értelmében nincs szükség q_i és q_n megkülönböztetésére, elég lenne egyetlen megállási állapot. [Ezért van q_n ()-ben.]

Az eldöntési (igen/nem kimenetű) problémák általánosításai a (ki)számítási problémák. Ilyenkor a kimenet bármi lehet. A kiszámítási problémákra is algoritmikus megoldást keresünk.

Feltehetjük (megfelelő kódolás alkalmazásával), hogy f értelmezési tartománya Σ^* , értékkészlete Δ^* valamely Σ, Δ ábécékre.

Definíció

Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Delta, \delta, q_0, q_i, (q_n) \rangle$ TG **kiszámítja** az $f: \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Megjegyzés: A definíció értelmében nincs szükség q_i és q_n megkülönböztetésére, elég lenne egyetlen megállási állapot. [Ezért van q_n ()-ben.]

Példa:

$$f(u) = uc \ (u \in \{a, b\}^*).$$

 $(\Sigma = \{a, b\}, \ \Delta = \{a, b, c\}.)$

Az eldöntési (igen/nem kimenetű) problémák általánosításai a (ki)számítási problémák. Ilyenkor a kimenet bármi lehet. A kiszámítási problémákra is algoritmikus megoldást keresünk.

Feltehetjük (megfelelő kódolás alkalmazásával), hogy f értelmezési tartománya Σ^* , értékkészlete Δ^* valamely Σ, Δ ábécékre.

Definíció

Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Delta, \delta, q_0, q_i, (q_n) \rangle$ TG **kiszámítja** az $f: \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Megjegyzés: A definíció értelmében nincs szükség q_i és q_n megkülönböztetésére, elég lenne egyetlen megállási állapot. [Ezért van q_n ()-ben.]

Példa:

$$f(u) = uc \ (u \in \{a, b\}^*).$$

 $(\Sigma = \{a, b\}, \ \Delta = \{a, b, c\}.)$

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **kiszámítható**, ha van olyan Turing-gép, ami kiszámítja. [lásd szófüggvényt kiszámító TG]

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **kiszámítható**, ha van olyan Turing-gép, ami kiszámítja. [lásd szófüggvényt kiszámító TG]

Definíció

 $L_1\subseteq \Sigma^*$ visszavezethető $L_2\subseteq \Delta^*$ -ra, ha van olyan $f:\Sigma^*\to \Delta^*$ kiszámítható szófüggvény, hogy $w\in L_1\Leftrightarrow f(w)\in L_2$. Jelölés: $L_1\leqslant L_2$

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **kiszámítható**, ha van olyan Turing-gép, ami kiszámítja. [lásd szófüggvényt kiszámító TG]

Definíció

 $L_1\subseteq \Sigma^*$ visszavezethető $L_2\subseteq \Delta^*$ -ra, ha van olyan $f:\Sigma^*\to \Delta^*$ kiszámítható szófüggvény, hogy $w\in L_1\Leftrightarrow f(w)\in L_2$. Jelölés: $L_1\leqslant L_2$

Megjegyzés: A fogalom Emil Posttól származik, angol nyelvű szakirodalomban: many-one reducibility

$$L_1 \leqslant L_2$$

f kiszámítható, az egész Σ^* -on értelmezett, $f(L_1)\subseteq L_2$ valamint $f(\overline{L}_1)\subseteq \overline{L}_2$.

f kiszámítható, az egész Σ^* -on értelmezett, $f(L_1) \subseteq L_2$ valamint $f(\overline{L}_1) \subseteq \overline{L}_2$. f nem kell hogy injektív legyen és az se kell, hogy szürjektív.

f kiszámítható, az egész Σ^* -on értelmezett, $f(L_1)\subseteq L_2$ valamint $f(\overline{L}_1)\subseteq \overline{L}_2$. f nem kell hogy injektív legyen és az se kell, hogy szürjektív.

Tétel

- ▶ Ha $L_1 \leq L_2$ és $L_2 \in RE$, akkor $L_1 \in RE$.
- ▶ Ha $L_1 \leq L_2$ és $L_2 \in R$, akkor $L_1 \in R$.

Bizonyítás:

Legyen $L_2 \in RE$ ($\in R$) és tegyük fel, hogy $L_1 \leqslant L_2$. Legyen M_2 az L_2 -t felismerő (eldöntő), M pedig a visszavezetést kiszámító TG.

Bizonyítás:

Legyen $L_2 \in RE$ ($\in R$) és tegyük fel, hogy $L_1 \leq L_2$. Legyen M_2 az L_2 -t felismerő (eldöntő), M pedig a visszavezetést kiszámító TG. Konstruáljuk meg M_1 -et:

Bizonyítás:

Legyen $L_2 \in RE$ ($\in R$) és tegyük fel, hogy $L_1 \leq L_2$. Legyen M_2 az L_2 -t felismerő (eldöntő), M pedig a visszavezetést kiszámító TG. Konstruáljuk meg M_1 -et:

Bizonyítás:

Legyen $L_2 \in RE$ ($\in R$) és tegyük fel, hogy $L_1 \leqslant L_2$. Legyen M_2 az L_2 -t felismerő (eldöntő), M pedig a visszavezetést kiszámító TG. Konstruáljuk meg M_1 -et:

Ha M_2 felismeri L_2 -t M_1 is fel fogja ismerni L_1 -t, ha el is dönti, akkor M_1 is el fogja dönteni.

Bizonyítás:

Legyen $L_2 \in RE$ ($\in R$) és tegyük fel, hogy $L_1 \leqslant L_2$. Legyen M_2 az L_2 -t felismerő (eldöntő), M pedig a visszavezetést kiszámító TG. Konstruáljuk meg M_1 -et:

Ha M_2 felismeri L_2 -t M_1 is fel fogja ismerni L_1 -t, ha el is dönti, akkor M_1 is el fogja dönteni.

Következmény

- ▶ Ha $L_1 \leq L_2$ és $L_1 \notin RE$, akkor $L_2 \notin RE$.
- ▶ Ha $L_1 \leq L_2$ és $L_1 \notin R$, akkor $L_2 \notin R$.

Bizonyítás:

Legyen $L_2 \in RE$ ($\in R$) és tegyük fel, hogy $L_1 \leqslant L_2$. Legyen M_2 az L_2 -t felismerő (eldöntő), M pedig a visszavezetést kiszámító TG. Konstruáljuk meg M_1 -et:

Ha M_2 felismeri L_2 -t M_1 is fel fogja ismerni L_1 -t, ha el is dönti, akkor M_1 is el fogja dönteni.

Következmény

- ▶ Ha $L_1 \leq L_2$ és $L_1 \notin RE$, akkor $L_2 \notin RE$.
- ▶ Ha $L_1 \leq L_2$ és $L_1 \notin R$, akkor $L_2 \notin R$.

Bizonyítás: Indirekt bizonyítással azonnal adódik a fenti tételből.

Megállási probléma: megáll-e M w-n?

 $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \}.$

Megjegyzés: más jegyzetekben L_{halt} néven is előfordulhat.

Megállási probléma: megáll-e M w-n?

 $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \}.$

 $\textit{Megjegyz\'es:}\ \text{m\'as jegyzetekben}\ \textit{L}_{\text{halt}}\ \text{n\'even is el\"ofordulhat}.$

Észrevétel: $L_u \subseteq L_h$

Megállási probléma: megáll-e *M w*-n?

 $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \}.$

 $\textit{Megjegyz\'es:}\ \text{m\'as jegyzetekben}\ \textit{L}_{\text{halt}}\ \text{n\'even is előfordulhat}.$

Észrevétel: $L_u \subseteq L_h$

Kérdés: Igaz-e ha $A \subseteq B$, és A eldönthetetlen akkor B is az?

Megállási probléma: megáll-e *M w*-n?

 $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \}.$

 $\textit{Megjegyz\'es:}\ \text{m\'as jegyzetekben}\ \textit{L}_{\text{halt}}\ \text{n\'even}\ \text{is előfordulhat}.$

Észrevétel: $L_u \subseteq L_h$

Kérdés: Igaz-e ha $A \subseteq B$, és A eldönthetetlen akkor B is az? Nem.

Megállási probléma: megáll-e M w-n?

 $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \}.$

 $\textit{Megjegyz\'es:}\ \text{m\'as jegyzetekben}\ \textit{L}_{\text{halt}}\ \text{n\'even is előfordulhat.}$

Észrevétel: $L_u \subseteq L_h$

Kérdés: Igaz-e ha $A \subseteq B$, és A eldönthetetlen akkor B is az? Nem.

Tétel

 $L_h \notin R$.

Megállási probléma: megáll-e M w-n?

 $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten}\}.$

 $\textit{Megjegyz\'es:}\ \text{m\'as jegyzetekben}\ \textit{L}_{\text{halt}}\ \text{n\'even is előfordulhat.}$

Észrevétel: $L_u \subseteq L_h$

Kérdés: Igaz-e ha $A \subseteq B$, és A eldönthetetlen akkor B is az? Nem.

Tétel

 $L_h \notin R$.

Bizonyítás: Az előző tétel alapján elég megmutatni, hogy $L_u \leqslant L_h$, hiszen tudjuk, hogy $L_u \notin R$.

Megállási probléma: megáll-e M w-n?

 $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \}.$

 $\textit{Megjegyz\'es:}\ \text{m\'as jegyzetekben}\ \textit{L}_{\text{halt}}\ \text{n\'even is előfordulhat.}$

Észrevétel: $L_u \subseteq L_h$

Kérdés: Igaz-e ha $A \subseteq B$, és A eldönthetetlen akkor B is az? Nem.

Tétel

 $L_h \notin R$.

Bizonyítás: Az előző tétel alapján elég megmutatni, hogy $L_u \leqslant L_h$, hiszen tudjuk, hogy $L_u \notin R$.

Tetszőleges M TG-re, legyen M' az alábbi TG:

Megállási probléma: megáll-e M w-n?

 $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \}.$

 $\textit{Megjegyz\'es:}\ \text{m\'as jegyzetekben}\ \textit{L}_{\text{halt}}\ \text{n\'even is előfordulhat.}$

Észrevétel: $L_u \subseteq L_h$

Kérdés: Igaz-e ha $A \subseteq B$, és A eldönthetetlen akkor B is az? Nem.

Tétel

 $L_h \notin R$.

Bizonyítás: Az előző tétel alapján elég megmutatni, hogy $L_u \leqslant L_h$, hiszen tudjuk, hogy $L_u \notin R$.

Tetszőleges M TG-re, legyen M' az alábbi TG:

M' tetszőleges u bemeneten a következőket teszi:

Megállási probléma: megáll-e M w-n?

$$L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \}.$$

Megjegyzés: más jegyzetekben L_{halt} néven is előfordulhat.

Eszrevétel: $L_{ii} \subseteq L_{h}$

Kérdés: Igaz-e ha $A \subseteq B$, és A eldönthetetlen akkor B is az? Nem.

Tétel

 $L_h \notin R$.

Bizonyítás: Az előző tétel alapján elég megmutatni, hogy $L_{ii} \leq L_{h}$, hiszen tudjuk, hogy $L_{ii} \notin R$.

Tetszőleges M TG-re, legyen M' az alábbi TG:

M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja *M*-et *u*-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' végtelen ciklusba kerül

Belátható, hogy

• $f:\langle M,w\rangle \to \langle M',w\rangle$ kiszámítható függvény

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (*M*, *w*) (TG,input)-párra

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ▶ Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_u \Leftrightarrow$

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_u \Leftrightarrow M$ elfogadja w-t \Leftrightarrow

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_u \Leftrightarrow M$ elfogadja w-t $\Leftrightarrow M'$ megáll w-n \Leftrightarrow

Belátható, hogy

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_u \Leftrightarrow M$ elfogadja w-t $\Leftrightarrow M'$ megáll w-n $\Leftrightarrow \langle M', w \rangle \in L_h$

Tehát f által L_u visszavezethető L_h -ra.

Belátható, hogy

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_u \Leftrightarrow M$ elfogadja w-t $\Leftrightarrow M'$ megáll w-n $\Leftrightarrow \langle M', w \rangle \in L_h$

Tehát f által L_u visszavezethető L_h -ra. Így $L_h \notin R$.

Belátható, hogy

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ▶ Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_u \Leftrightarrow M$ elfogadja w-t $\Leftrightarrow M'$ megáll w-n $\Leftrightarrow \langle M', w \rangle \in L_h$

Tehát f által L_u visszavezethető L_h -ra. Így $L_h \notin R$.

Megjegyzés: Visszavezetések megadásakor jellemzően csak azon szavakra térünk ki, amelyek ténylegesen kódolnak valamilyen nyelvbeli objektumot (TG-t, (TG,szó) párt, stb.)

Belátható, hogy

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ▶ Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_u \Leftrightarrow M$ elfogadja w-t $\Leftrightarrow M'$ megáll w-n $\Leftrightarrow \langle M', w \rangle \in L_h$

Tehát f által L_u visszavezethető L_h -ra. Így $L_h \notin R$.

Megjegyzés: Visszavezetések megadásakor jellemzően csak azon szavakra térünk ki, amelyek ténylegesen kódolnak valamilyen nyelvbeli objektumot (TG-t, (TG,szó) párt, stb.)

Pl. a fenti esetben nem foglalkoztunk azzal, hogy f mit rendeljen olyan szavakhoz, melyek nem kódolnak (TG, szó) párt. Ez általában egy könnyen kezelhető eset,

Belátható, hogy

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ▶ Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_u \Leftrightarrow M$ elfogadja w-t $\Leftrightarrow M'$ megáll w-n $\Leftrightarrow \langle M', w \rangle \in L_h$

Tehát f által L_u visszavezethető L_h -ra. Így $L_h \notin R$.

Megjegyzés: Visszavezetések megadásakor jellemzően csak azon szavakra térünk ki, amelyek ténylegesen kódolnak valamilyen nyelvbeli objektumot (TG-t, (TG,szó) párt, stb.)

Pl. a fenti esetben nem foglalkoztunk azzal, hogy f mit rendeljen olyan szavakhoz, melyek nem kódolnak (TG, szó) párt. Ez általában egy könnyen kezelhető eset, most:

$$f(x) = \begin{cases} \langle M', w \rangle & \text{ha } \exists M \text{ TG, hogy } x = \langle M, w \rangle \\ \varepsilon & \text{egy\'ebk\'ent,} \end{cases} \quad (x \in \{0, 1\}^*)$$

hiszen ε nem kódol (TG,szó) párt (L_h elemei (TG,szó) párok).

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$.

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG:

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja M-et u-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja M-et u-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja M-et u-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

Belátható, hogy

• $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja M-et u-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja M-et u-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ▶ Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_h \Leftrightarrow$

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja *M*-et *u*-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_h \Leftrightarrow M$ megáll w-n \Leftrightarrow

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja M-et u-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_h \Leftrightarrow M$ megáll w-n $\Leftrightarrow M'$ elfogadja w-t \Leftrightarrow

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja M-et u-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_h \Leftrightarrow M$ megáll w-n $\Leftrightarrow M'$ elfogadja w-t $\Leftrightarrow \langle M', w \rangle \in L_u$

Tétel

 $L_h \in RE$.

Bizonyítás: Az előző tétel következménye alapján elég megmutatni, hogy $L_h \leqslant L_u$, hiszen tudjuk, hogy $L_u \in RE$. Tetszőleges M Turing-gépre, legyen M' az alábbi TG: M' tetszőleges u bemeneten a következőket teszi:

- 1. Futtatja M-et u-n
- 2. Ha M q_i -be lép, akkor M' is q_i -be lép
- 3. Ha M q_n -be lép, akkor M' q_i -be lép

Belátható, hogy

- $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ kiszámítható függvény
- ► Tetszőleges (M, w) (TG,input)-párra $\langle M, w \rangle \in L_h \Leftrightarrow M$ megáll w-n $\Leftrightarrow M'$ elfogadja w-t $\Leftrightarrow \langle M', w \rangle \in L_u$

Tehát f által L_h visszavezethető L_{II} -ra.

Definíció

Tetszőleges $\mathcal{P}\subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük.

Definíció

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. \mathcal{P} triviális, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$.

Definíció

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy **tulajdonságának** nevezzük. \mathcal{P} **triviális**, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$.

$$L_{\mathcal{P}} = \{\langle M \rangle \mid L(M) \in \mathcal{P}\}.$$

Definíció

Tetszőleges $\mathcal{P}\subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. \mathcal{P} triviális, ha $\mathcal{P}=\varnothing$ vagy $\mathcal{P}=RE$.

$$L_{\mathcal{P}} = \{\langle M \rangle \mid L(M) \in \mathcal{P}\}.$$

Rice tétele

Ha $\mathcal{P} \subseteq RE$ egy nem triviális tulajdonság, akkor $L_{\mathcal{P}} \notin R$.

Bizonyítás:

1. eset $\varnothing \notin \mathcal{P}$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

 $\mbox{Mivel \mathcal{P} nem triviális, ezért létezik $L\in\mathcal{P}$. } (L\neq\varnothing).$

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

Egy tetszőleges $\langle M, w \rangle$ TG – bemenet pároshoz elkészítünk egy M' kétszalagos TG-t, mely egy x bemenetén a következőképpen működik:

1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.

Bizonyítás:

1. eset $\varnothing \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et).

Bizonyítás:

1. eset $\varnothing \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et). Ez esetben is $L(M') = \emptyset$.

Bizonyítás:

1. eset $\varnothing \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et). Ez esetben is $L(M') = \emptyset$.
- 4. Ha M elfogadja w-t, akkor M' szimulálja M_L -et x-en.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leqslant L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et). Ez esetben is $L(M') = \emptyset$.
- 4. Ha M elfogadja w-t, akkor M' szimulálja M_L -et x-en. Ekkor M_L definíciója miatt L(M') = L.

•
$$\langle M, w \rangle \in L_u$$

$$\land \langle M, w \rangle \in L_u \Rightarrow L(M') = L$$

$$\blacktriangleright \ \langle M,w\rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P}$$

Összefoglalva

 $\blacktriangleright \ \big\langle M,w \big\rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \big\langle M' \big\rangle \in L_{\mathcal{P}}.$

- $\blacktriangleright \ \big\langle M,w \big\rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \big\langle M' \big\rangle \in L_{\mathcal{P}}.$
- $\langle M, w \rangle \notin L_u$

- $\blacktriangleright \ \big\langle M,w \big\rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \big\langle M' \big\rangle \in L_{\mathcal{P}}.$
- $\langle M, w \rangle \notin L_u \Rightarrow L(M') = \emptyset \Rightarrow L(M') \notin \mathcal{P}$

- $\blacktriangleright \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \langle M' \rangle \in L_{\mathcal{P}}.$
- $\blacktriangleright \ \big\langle M,w \big\rangle \notin L_u \Rightarrow L(M') = \varnothing \Rightarrow L(M') \notin \mathcal{P} \Rightarrow \big\langle M' \big\rangle \notin L_{\mathcal{P}}.$

Összefoglalva

- $\blacktriangleright \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \langle M' \rangle \in L_{\mathcal{P}}.$
- $\blacktriangleright \ \big\langle M,w \big\rangle \notin L_u \Rightarrow L(M') = \varnothing \Rightarrow L(M') \notin \mathcal{P} \Rightarrow \big\langle M' \big\rangle \notin L_{\mathcal{P}}.$

Azaz:

 $\left\langle M,w\right\rangle \in L_u\Leftrightarrow \left\langle M'\right\rangle \in L_{\mathcal{P}}\text{, tehát }L_u\leqslant L_{\mathcal{P}}\text{ \'es \'igy }L_{\mathcal{P}}\notin R.$

2. eset $\emptyset \in \mathcal{P}$.

- **2.** eset $\varnothing \in \mathcal{P}$.
 - Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}}=RE\backslash\mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\varnothing\notin\overline{\mathcal{P}}$.

- **2.** eset $\varnothing \in \mathcal{P}$.
 - Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}}=RE\backslash\mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\varnothing\notin\overline{\mathcal{P}}$.
 - ▶ Azt kapjuk, hogy $L_{\overline{P}} \notin R$.

- **2.** eset $\varnothing \in \mathcal{P}$.
 - Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}}=RE\backslash\mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\varnothing\notin\overline{\mathcal{P}}$.
 - ▶ Azt kapjuk, hogy $L_{\overline{P}} \notin R$.
 - $\overline{L_{\mathcal{P}}}$: azon $\{0,1\}$ feletti szavak, amelyek nem kódjai egy olyan M TG-nek, amelyre L(M) \mathcal{P} tulajdonságú.
 - $L_{\overline{\mathcal{P}}}$: olyan M TG-ek kódjai, melyre L(M) nem \mathcal{P} tulajdonságú.

- **2.** eset $\varnothing \in \mathcal{P}$.
 - Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}}=RE\backslash\mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\varnothing\notin\overline{\mathcal{P}}$.
 - ▶ Azt kapjuk, hogy $L_{\overline{P}} \notin R$.
 - $\overline{L_{\mathcal{P}}}$: azon $\{0,1\}$ feletti szavak, amelyek nem kódjai egy olyan M TG-nek, amelyre L(M) \mathcal{P} tulajdonságú.
 - $L_{\overline{\mathcal{P}}}$: olyan M TG-ek kódjai, melyre L(M) nem \mathcal{P} tulajdonságú.

- **2.** eset $\emptyset \in \mathcal{P}$.
 - Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}}=RE\backslash\mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\varnothing\notin\overline{\mathcal{P}}$.
 - ▶ Azt kapjuk, hogy $L_{\overline{P}} \notin R$.
 - $\overline{L_{\mathcal{P}}}$: azon $\{0,1\}$ feletti szavak, amelyek nem kódjai egy olyan M TG-nek, amelyre L(M) \mathcal{P} tulajdonságú.

 $L_{\overline{\mathcal{P}}}$: olyan M TG-ek kódjai, melyre L(M) nem \mathcal{P} tulajdonságú.

Megállapodásunk szerint azonban minden $\{0,1\}$ feletti szó TG kód, a nem kellő alakú szavak egy rögzített, egyetlen szót sem elfogadó TG-et kódolnak, így $\overline{L_{\mathcal{P}}} = L_{\overline{\mathcal{P}}}$.

- **2.** eset $\emptyset \in \mathcal{P}$.
 - Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}}=RE\backslash\mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\varnothing\notin\overline{\mathcal{P}}$.
 - ▶ Azt kapjuk, hogy $L_{\overline{P}} \notin R$.
 - $\overline{L_{\mathcal{P}}}$: azon $\{0,1\}$ feletti szavak, amelyek nem kódjai egy olyan M TG-nek, amelyre L(M) \mathcal{P} tulajdonságú.

 $L_{\overline{\mathcal{P}}}$: olyan M TG-ek kódjai, melyre L(M) nem \mathcal{P} tulajdonságú.

Megállapodásunk szerint azonban minden $\{0,1\}$ feletti szó TG kód, a nem kellő alakú szavak egy rögzített, egyetlen szót sem elfogadó TG-et kódolnak, így $\overline{L_{\mathcal{P}}} = L_{\overline{\mathcal{P}}}$.

 $\overline{L_{\mathcal{P}}} \notin R \Rightarrow L_{\mathcal{P}} \notin R$ (tétel volt).

Alkalmazások

Következmények:

Alkalmazások

Következmények:

Eldönthetetlen, hogy egy M TG

- az üres nyelvet ismeri-e fel. $(\mathcal{P} = \{\emptyset\})$

Alkalmazások

Következmények:

- lacktriangle az üres nyelvet ismeri-e fel. $(\mathcal{P}=\{\varnothing\})$
- véges nyelvet ismer-e fel $(P = \{L \mid L \text{ véges }\})$

Alkalmazások

Következmények:

- az üres nyelvet ismeri-e fel. $(\mathcal{P} = \{\emptyset\})$
- véges nyelvet ismer-e fel $(P = \{L \mid L \text{ véges }\})$
- környezetfüggetlen nyelvet ismer-e fel $(\mathcal{P} = \{L \mid L \text{ környezetfüggetlen }\})$

Alkalmazások

Következmények:

- az üres nyelvet ismeri-e fel. $(\mathcal{P} = \{\emptyset\})$
- véges nyelvet ismer-e fel $(P = \{L \mid L \text{ véges }\})$
- környezetfüggetlen nyelvet ismer-e fel $(P = \{L \mid L \text{ környezetfüggetlen }\})$
- elfogadja-e az üres szót ($\mathcal{P} = \{L \in RE \mid \varepsilon \in L\}$)

Definíció

Legyen Σ egy ábécé és legyenek $u_1, \ldots, u_n, v_1, \ldots, v_n \in \Sigma^+ \ (n \geqslant 1)$.

Definíció

Legyen Σ egy ábécé és legyenek $u_1,\ldots,u_n,v_1\ldots,v_n\in\Sigma^+\ (n\geqslant1).$ A $D=\left\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\right\}$ halmazt dominókészletnek nevezzük.

Definíció

Legyen Σ egy ábécé és legyenek $u_1,\ldots,u_n,v_1\ldots,v_n\in\Sigma^+\ (n\geqslant1)$. A $D=\left\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\right\}$ halmazt dominókészletnek nevezzük.

(Valójában az i. dominó egy az u_i és v_i szavakból álló rendezett pár. u_i -t a dominó felső, míg v_i -t a dominó alsó szavának nevezzük.)

Definíció

Legyen Σ egy ábécé és legyenek $u_1,\ldots,u_n,v_1\ldots,v_n\in\Sigma^+\ (n\geqslant1).$ A $D=\left\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\right\}$ halmazt **dominókészletnek** nevezzük.

(Valójában az i. dominó egy az u_i és v_i szavakból álló rendezett pár. u_i -t a dominó felső, míg v_i -t a dominó alsó szavának nevezzük.)

Definíció

Az
$$\frac{u_{i_1}}{v_{i_1}}\cdots \frac{u_{i_m}}{v_{i_m}}$$
 dominósorozat $(m\geqslant 1,1\leqslant i_1,\ldots,i_m\leqslant n)$ a $D=\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\}$ dominókészlet egy **megoldása**, ha $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}.$

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása

$$\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$$
.

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása

$$\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$$
.

Egy másik megoldás: $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c} \frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása

$$\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$$
.

Egy másik megoldás: $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c} \frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Megjegyzés: Tehát egy megoldáshoz a dominók többször felhasználhatók és nem kell minden dominót felhasználni. Egy dominókészletnek több megoldása is lehet.

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása

$$\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$$
.

Egy másik megoldás: $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c} \frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Megjegyzés: Tehát egy megoldáshoz a dominók többször felhasználhatók és nem kell minden dominót felhasználni. Egy dominókészletnek több megoldása is lehet.

Megoldás alatt véges (de akármekkora) hosszúságú kirakást értünk.

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Egy másik megoldás: $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c} \frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Megjegyzés: Tehát egy megoldáshoz a dominók többször felhasználhatók és nem kell minden dominót felhasználni. Egy dominókészletnek több megoldása is lehet.

Megoldás alatt véges (de akármekkora) hosszúságú kirakást értünk.

Vegyük észre, hogy hiába véges maga a készlet, végtelen sok féleképpen lehet a készlet dominóit véges sorozatba egymás után rakni, így megoldás keresésekor egy végtelen keresési térrel van dolgunk.

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Egy másik megoldás: $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c} \frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Megjegyzés: Tehát egy megoldáshoz a dominók többször felhasználhatók és nem kell minden dominót felhasználni. Egy dominókészletnek több megoldása is lehet.

Megoldás alatt véges (de akármekkora) hosszúságú kirakást értünk.

Vegyük észre, hogy hiába véges maga a készlet, végtelen sok féleképpen lehet a készlet dominóit véges sorozatba egymás után rakni, így megoldás keresésekor egy végtelen keresési térrel van dolgunk.

Post Megfelelkezési Probléma (PMP):

 $L_{PMP} = \{\langle D \rangle | D$ -nek van megoldása $\}$.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Egy olyan TG, mely a D feletti szavakat hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen $L_{\rm PMP}$ -t ismeri fel.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Egy olyan TG, mely a D feletti szavakat hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen $L_{\rm PMP}$ -t ismeri fel.

Tétel

 $L_{\mathsf{PMP}} \notin R$.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Egy olyan TG, mely a D feletti szavakat hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen $L_{\rm PMP}$ -t ismeri fel.

Tétel

 $L_{\mathsf{PMP}} \notin R$.

Bizonyítás:

Definiáljuk a PMP egy módosított változatát, MPMP-t.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Egy olyan TG, mely a D feletti szavakat hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen $L_{\rm PMP}$ -t ismeri fel.

Tétel

 $L_{\mathsf{PMP}} \notin R$.

Bizonyítás:

Definiáljuk a PMP egy módosított változatát, MPMP-t. Az MPMP probléma igen-példányai olyan (D,d) (dominókészlet,dominó) párok, melyre D-nek van d-vel kezdődő megoldása.

 $L_{\mathsf{MPMP}} = \{\langle D, d \rangle \mid d \in D \land D\text{-nek van } d\text{-vel kezdődő megoldása}\}.$


```
L_{\mathsf{PMP}} = \{\langle D \rangle \, | \, D\text{-nek van megoldása} \}, L_{\mathsf{MPMP}} = \{\langle D, d \rangle \, | \, d \in D \ \land \ D\text{-nek van } d\text{-vel kezdődő megoldása} \}.
```

```
 \begin{array}{l} L_{\mathsf{PMP}} = \{ \left< D \right> | \ D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} = \{ \left< D, d \right> | \ d \in D \ \land \ D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \end{array}
```

Először megmutatjuk, hogy $L_{\text{MPMP}} \leqslant L_{\text{PMP}}$.

```
L_{\mathsf{PMP}} = \{\langle D \rangle \, | \, D\text{-nek van megoldása} \}, L_{\mathsf{MPMP}} = \{\langle D, d \rangle \, | \, d \in D \ \land \ D\text{-nek van } d\text{-vel kezdődő megoldása} \}.
```

Először megmutatjuk, hogy $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

Jelölés: ha $u=a_1\cdots a_n\in \Sigma^+$ és $*\notin \Sigma$ akkor legyen

balcsillag(u) := * $a_1 * a_2 \cdots * a_n$ jobbcsillag(u) := $a_1 * a_2 * \cdots * a_n *$.

 $\mathsf{baljobbcsillag}(u) := * a_1 * a_2 * \cdots a_n *.$

```
\begin{split} L_{\mathsf{PMP}} &= \{ \left< D \right> | \ D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} &= \{ \left< D, d \right> | \ d \in D \ \land \ D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \end{split}
```

Először megmutatjuk, hogy $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

Jelölés: ha $u=a_1\cdots a_n\in \Sigma^+$ és $*\notin \Sigma$ akkor legyen

balcsillag $(u) := *a_1 * a_2 \cdots * a_n$ jobbcsillag $(u) := a_1 * a_2 * \cdots * a_n *$. baljobbcsillag $(u) := *a_1 * a_2 * \cdots * a_n *$.

Legyen $D=\{d_1,\ldots,d_n\}$ egy tetszőleges dominókészlet, ahol $d_i=\frac{u_i}{v_i} \ (1\leqslant i\leqslant n).$

```
\begin{split} L_{\mathsf{PMP}} &= \{ \left< D \right> | \, D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} &= \{ \left< D, d \right> | \, d \in D \, \, \wedge \, \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \end{split}
```

Először megmutatjuk, hogy $L_{\text{MPMP}} \leqslant L_{\text{PMP}}$.

Jelölés: ha $u=a_1\cdots a_n\in \Sigma^+$ és $*\notin \Sigma$ akkor legyen

balcsillag(u) := * $a_1 * a_2 \cdots * a_n$ jobbcsillag(u) := $a_1 * a_2 * \cdots * a_n *$. baljobbcsillag(u) := * $a_1 * a_2 * \cdots * a_n *$.

Legyen $D=\{d_1,\ldots,d_n\}$ egy tetszőleges dominókészlet, ahol $d_i=\frac{u_i}{v_i}$ $(1\leqslant i\leqslant n).$

D' legyen a következő |D|+2 méretű készlet $(\# \notin \Sigma)$:

$$\begin{split} L_{\mathsf{PMP}} &= \{ \langle D \rangle \, | \, D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} &= \{ \langle D, d \rangle \, | \, d \in D \, \wedge \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \end{split}$$

Először megmutatjuk, hogy $L_{\text{MPMP}} \leqslant L_{\text{PMP}}$.

Jelölés: ha $u=a_1\cdots a_n\in \Sigma^+$ és $*\notin \Sigma$ akkor legyen

balcsillag(u) := * $a_1 * a_2 \cdots * a_n$ iobbcsillag(u) := $a_1 * a_2 * \cdots * a_n *$.

baljobbcsillag(u) := * a_1 * a_2 * · · · · a_n *.

Legyen $D = \{d_1, \ldots, d_n\}$ egy tetszőleges dominókészlet, ahol $d_i = \frac{u_i}{v_i}$ $(1 \le i \le n)$.

D' legyen a következő |D|+2 méretű készlet $(\# \notin \Sigma)$:

$$d_i' = \frac{\mathsf{balcsillag}(u_i)}{\mathsf{jobbcsillag}(v_i)} \qquad (1 \leqslant i \leqslant n)$$

$$d_0' = \frac{\mathsf{balcsillag}(u_1)}{\mathsf{baljobbcsillag}(v_1)}, \qquad d_{n+1}' = \frac{*\#}{\#}$$

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{*a*b}{*a*}, \quad \frac{*a*b}{a*}, \quad \frac{*c}{b*c*}, \quad \frac{*\#}{\#} \right\}$$

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{*a*b}{*a*}, \quad \frac{*a*b}{a*}, \quad \frac{*c}{b*c*}, \quad \frac{*\#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{MPMP} \iff \langle D' \rangle \in L_{PMP}$.

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{*a*b}{*a*}, \quad \frac{*a*b}{a*}, \quad \frac{*c}{b*c*}, \quad \frac{*\#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{MPMP} \iff \langle D' \rangle \in L_{PMP}$.

Az állítás bizonyítása:

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{*a*b}{*a*}, \quad \frac{*a*b}{a*}, \quad \frac{*c}{b*c*}, \quad \frac{*\#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{MPMP} \iff \langle D' \rangle \in L_{PMP}$.

Az állítás bizonyítása:

ha $d_{i_1}\cdots d_{i_m}$ MPMP egy (D,d_1) bemenetének egy megoldása, akkor $d_0'd_{i_2}'\cdots d_{i_m}'d_{n+1}'$ megoldása a D' PMP inputnak.

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{* \, a * \, b}{* \, a *}, \quad \frac{* \, a * \, b}{a *}, \quad \frac{* \, c}{b * \, c *}, \quad \frac{* \, \#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{MPMP} \iff \langle D' \rangle \in L_{PMP}$.

Az állítás bizonyítása:

- ha $d_{i_1}\cdots d_{i_m}$ MPMP egy (D,d_1) bemenetének egy megoldása, akkor $d_0'd_{i_2}'\cdots d_{i_m}'d_{n+1}'$ megoldása a D' PMP inputnak.
- ha $d'_{i_1} \cdots d'_{i_m}$ D'-nek, mint PMP inputnak egy megoldása, akkor az első illetve az utolsó betű egyezése miatt ez csak úgy lehetséges, hogy $d'_{i_1} = d'_0$ és $d'_{i_m} = d'_{n+1}$. Ekkor viszont $d_{i_1} \cdots d_{i_{m-1}}$ megoldása a (D, d_1) MPMP bemenetnek.

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{*\,a *\,b}{*\,a *}, \quad \frac{*\,a *\,b}{a *}, \quad \frac{*\,c}{b *\,c *}, \quad \frac{*\,\#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{MPMP} \iff \langle D' \rangle \in L_{PMP}$.

Az állítás bizonyítása:

- ha $d_{i_1}\cdots d_{i_m}$ MPMP egy (D,d_1) bemenetének egy megoldása, akkor $d_0'd_{i_2}'\cdots d_{i_m}'d_{n+1}'$ megoldása a D' PMP inputnak.
- ha $d'_{i_1} \cdots d'_{i_m}$ D'-nek, mint PMP inputnak egy megoldása, akkor az első illetve az utolsó betű egyezése miatt ez csak úgy lehetséges, hogy $d'_{i_1} = d'_0$ és $d'_{i_m} = d'_{n+1}$. Ekkor viszont $d_{i_1} \cdots d_{i_{m-1}}$ megoldása a (D, d_1) MPMP bemenetnek.

Ezzel az állítást bizonyítottuk. Mivel ez a megfeleltetés nyilván TG-pel kiszámítható, ezért $L_{\text{MPMP}} \leqslant L_{\text{PMP}}$.

Most megmutatjuk, hogy $L_u \leqslant L_{MPMP}$.

Most megmutatjuk, hogy $L_u \leqslant L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

Most megmutatjuk, hogy $L_u \leqslant L_{\text{MPMP}}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

Most megmutatjuk, hogy $L_u \leqslant L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

Legyen $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ és $w = a_1 \cdots a_n \in \Sigma^*$. (D, d) konstrukciója:

• $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\notin\Sigma$) $d:\in D$

Most megmutatjuk, hogy $L_u \leqslant L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

- $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\notin\Sigma$) $d:\in D$
- - ha $\delta(p, a) = (q, b, R)$, akkor $\frac{pa}{bq} :\in D$
 - ha $\delta(p, a) = (q, b, L)$, akkor ($\forall c \in \Gamma$:) $\frac{cpa}{acb}$:∈ D
 - ha $\delta(p,a)=(q,b,S)$, akkor $\frac{pa}{qb}:\in D$

Most megmutatjuk, hogy $L_u \leqslant L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

- $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\notin\Sigma$) $d:\in D$
- - ha $\delta(p, a) = (q, b, R)$, akkor $\frac{pa}{bq} :\in D$
 - ha $\delta(p,a)=(q,b,L)$, akkor $(\forall c \in \Gamma:) \frac{cpa}{qcb}:\in D$
 - ha $\delta(p,a)=(q,b,S)$, akkor $\frac{pa}{qb}:\in D$
- $(\forall a \in \Gamma :) \frac{a}{a} :\in D$

Most megmutatjuk, hogy $L_u \leqslant L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

•
$$d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$$
 (ahol $\#\notin\Sigma$) $d:\in D$

• - ha
$$\delta(p,a) = (q,b,R)$$
, akkor $\frac{pa}{bq} :\in D$

- ha
$$\delta(p, a) = (q, b, L)$$
, akkor (∀c ∈ Γ:) $\frac{cpa}{qcb}$:∈ D

– ha
$$\delta(p,a)=(q,b,S)$$
, akkor $\frac{pa}{qb}:\in D$

•
$$(\forall a \in \Gamma :) \frac{a}{a} :\in D$$

•
$$\frac{\#}{\#}$$
, $\frac{\#}{\sqcup \#}$, $\frac{\#}{\# \sqcup}$:∈ D

Most megmutatjuk, hogy $L_u \leqslant L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

•
$$d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$$
 (ahol $\#\notin\Sigma$) $d:\in D$

• – ha
$$\delta(p,a)=(q,b,R)$$
, akkor $\frac{pa}{bq}:\in D$

– ha
$$\delta(p,a)=(q,b,L)$$
, akkor $(\forall c\in\Gamma:)$ $\frac{cpa}{qcb}:\in D$

– ha
$$\delta(p,a)=(q,b,S)$$
, akkor $\frac{pa}{qb}:\in D$

•
$$(\forall a \in \Gamma :) \frac{a}{a} :\in D$$

•
$$\frac{\#}{\#}$$
, $\frac{\#}{\sqcup \#}$, $\frac{\#}{\# \sqcup}$:∈ D

•
$$(\forall a \in \Gamma :) \frac{aq_i}{q_i}, \frac{q_i a}{q_i} :\in D$$

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

- $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\notin\Sigma$) $d:\in D$
- – ha $\delta(p,a)=(q,b,R)$, akkor $\frac{pa}{bq}:\in D$
 - ha $\delta(p, a) = (q, b, L)$, akkor $(∀c ∈ Γ :) \frac{cpa}{qcb} :∈ D$
 - ha $\delta(p,a)=(q,b,S)$, akkor $\frac{pa}{qb}:\in D$
- $(\forall a \in \Gamma :) \frac{a}{a} :\in D$
- $\frac{\#}{\#}$, $\frac{\#}{\sqcup \#}$, $\frac{\#}{\# \sqcup}$:∈ D
- $(\forall a \in \Gamma :) \frac{aq_i}{q_i}, \frac{q_i a}{q_i} :\in D$
- $\frac{q_i \# \#}{\#} :\in D$.

Példa:

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

$$\frac{\#}{\#q_0bab\#}$$
 kezdő-,

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

$$\frac{\#}{\#q_0bab\#}$$
 kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- ,

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

 $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- , $\frac{a}{a}$, $\frac{b}{b}$, $\stackrel{\sqcup}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

 $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- , $\frac{a}{a}$, $\frac{b}{b}$, $\stackrel{\square}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat valamint a befejezéshez szükséges $\frac{aq_i}{q_i}$, $\frac{q_ib}{q_i}$ és $\frac{q_i\#\#}{\#}$ dominókat.

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

 $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- , $\frac{a}{a}$, $\frac{b}{b}$, $\stackrel{\square}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat valamint a befejezéshez szükséges $\frac{aq_i}{q_i}$, $\frac{q_ib}{q_i}$ és $\frac{q_i\#\#}{\#}$ dominókat.

Ekkor egy kirakás (|-al blokkokra osztva):

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

 $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- , $\frac{a}{a}$, $\frac{b}{b}$, $\stackrel{\square}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat valamint a befejezéshez szükséges $\frac{aq_i}{q_i}$, $\frac{q_ib}{q_i}$ és $\frac{q_i\#\#}{\#}$ dominókat.

Ekkor egy kirakás (|-al blokkokra osztva):

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} q_0b \ a \ b \ \# \\ aq_2 \ a \ b \ \# \end{array} \right| \left| \begin{array}{c} a \ q_2a \ b \ \# \\ a \ q_ib \ b \ \# \end{array} \right| \left| \begin{array}{c} aq_i \ b \ b \ \# \\ q_i \ b \ \# \end{array} \right| \left| \begin{array}{c} q_ib \ \# \\ q_i \ b \ \# \end{array} \right| \left| \begin{array}{c} q_ib \ \# \\ q_i \ \# \end{array} \right| \left| \begin{array}{c} q_i\#\# \\ \# \end{array} \right|$$

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} \underline{q_0b} \\ aq_2 \end{array} \right| \frac{a}{b} \frac{b}{\#} \left| \begin{array}{c} \underline{a} \\ \underline{q_2a} \\ \underline{b} \\ \underline{b} \end{array} \right| \frac{b}{\#} \left| \begin{array}{c} \underline{q_ib} \\ \underline{b} \\ \underline{b} \end{array} \right| \frac{q_ib}{q_i} \frac{b}{b} \frac{\#}{\#} \left| \begin{array}{c} \underline{q_ib} \\ \underline{q_i} \\ \underline{d} \end{array} \right| \frac{q_ib}{\#} \frac{\#}{\#} \left| \begin{array}{c} \underline{q_i\#\#} \\ \underline{d} \\ \underline{d}$$

A példán szemléltetjük, hogy $w \in L(M) \Rightarrow \exists \langle D, d \rangle$ -nek megoldása.

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} \underline{q_0b} \\ aq_2 \end{array} \right| \frac{a}{b} \frac{b}{\#} \left| \begin{array}{c} \underline{a} \\ \underline{q_2a} \\ \underline{b} \\ \underline{b} \end{array} \right| \frac{b}{\#} \left| \begin{array}{c} \underline{q_ib} \\ \underline{b} \\ \underline{b} \end{array} \right| \frac{q_ib}{q_i} \frac{b}{b} \frac{\#}{\#} \left| \begin{array}{c} \underline{q_ib} \\ \underline{q_i} \end{array} \right| \frac{q_ib}{\#} \frac{\#}{\#}$$

A példán szemléltetjük, hogy $w \in L(M) \Rightarrow \exists \langle D, d \rangle$ -nek megoldása. Az első blokk csak a $d = \frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} \frac{q_0b}{aq_2} \frac{a}{a} \frac{b}{b} \# \\ aq_2 \end{array} \right| \left| \begin{array}{c} \frac{a}{a} \frac{q_2a}{q_ib} \frac{b}{b} \# \\ a q_ib \end{array} \right| \left| \begin{array}{c} \frac{aq_i}{b} \frac{b}{b} \# \\ q_i \end{array} \right| \left| \begin{array}{c} \frac{q_ib}{b} \# \\ q_i \end{array} \right| \left| \begin{array}{c} \frac{q_ib}{q_i} \# \\ \end{array} \right| \left| \begin{array}{c} \frac{q_i\#\#}{\#} \# \\ \end{array} \right|$$

A példán szemléltetjük, hogy $w \in L(M) \Rightarrow \exists \langle D, d \rangle$ -nek megoldása. Az első blokk csak a $d = \frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

A következő két blokkban alul és felül is konfigurációk következnek, felül mindig eggyel "lemaradva".

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} \frac{q_0b}{aq_2} \frac{a}{a} \frac{b}{b} \# \\ aq_2 \end{array} \right| \left| \begin{array}{c} \frac{a}{a} \frac{q_2a}{q_ib} \frac{b}{b} \# \\ a q_ib \end{array} \right| \left| \begin{array}{c} \frac{aq_i}{b} \frac{b}{b} \# \\ q_i \end{array} \right| \left| \begin{array}{c} \frac{q_ib}{b} \# \\ q_i \end{array} \right| \left| \begin{array}{c} \frac{q_ib}{q_i} \# \\ \end{array} \right| \left| \begin{array}{c} \frac{q_i\#\#}{\#} \# \\ \end{array} \right|$$

A példán szemléltetjük, hogy $w \in L(M) \Rightarrow \exists \langle D, d \rangle$ -nek megoldása.

Az első blokk csak a $d=\frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

A következő két blokkban alul és felül is konfigurációk következnek, felül mindig eggyel "lemaradva".

A 4.-6. blokkokban a $\frac{aq_i}{q_i}$ (és $\frac{q_ia}{q_i}$) típusú dominókkal egyesével "behozható" a felső szó lemaradása, egészen addig, amíg az alsó rész már csak $q_i\#$ -al hosszabb.

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} \frac{q_0b}{aq_2} \frac{a}{a} \frac{b}{b} \# \\ aq_2 \end{array} \right| \left| \begin{array}{c} \frac{a}{a} \frac{q_2a}{q_ib} \frac{b}{b} \# \\ a q_ib \end{array} \right| \left| \begin{array}{c} \frac{aq_i}{b} \frac{b}{b} \# \\ q_i \end{array} \right| \left| \begin{array}{c} \frac{q_ib}{b} \# \\ q_i \end{array} \right| \left| \begin{array}{c} \frac{q_ib}{q_i} \# \\ \end{array} \right| \left| \begin{array}{c} \frac{q_i\#\#}{\#} \# \\ \end{array} \right|$$

A példán szemléltetjük, hogy $w \in L(M) \Rightarrow \exists \langle D, d \rangle$ -nek megoldása.

Az első blokk csak a $d=\frac{\#}{\#g_0bab\#}$ kezdődominóból áll.

A következő két blokkban alul és felül is konfigurációk következnek, felül mindig eggyel "lemaradva".

A 4.-6. blokkokban a $\frac{aq_i}{q_i}$ (és $\frac{q_i a}{q_i}$) típusú dominókkal egyesével "behozható" a felső szó lemaradása, egészen addig, amíg az alsó rész már csak $q_i\#$ -al hosszabb.

Végül a 7. blokkban csak egy (záró)dominó szerepel, melynek az a szerepe, hogy "behozza" a még megmaradt lemaradást.

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} \frac{q_0b}{aq_2} \frac{a}{a} \frac{b}{b} \# \\ aq_2 \end{array} \right| \frac{a}{a} \frac{q_2a}{q_ib} \frac{b}{b} \# \left| \begin{array}{c} \frac{aq_i}{q_i} \frac{b}{b} \frac{b}{b} \# \\ \hline q_i \end{array} \right| \frac{q_ib}{q_i} \frac{b}{b} \# \left| \begin{array}{c} \frac{q_ib}{q_i} \# \\ \hline q_i \end{array} \right| \frac{q_i\#\#}{\#}$$

A példán szemléltetjük, hogy $w \in L(M) \Rightarrow \exists \langle D, d \rangle$ -nek megoldása.

Az első blokk csak a $d=\frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

A következő két blokkban alul és felül is konfigurációk következnek, felül mindig eggyel "lemaradva".

A 4.-6. blokkokban a $\frac{aq_i}{q_i}$ (és $\frac{q_ia}{q_i}$) típusú dominókkal egyesével "behozható" a felső szó lemaradása, egészen addig, amíg az alsó rész már csak $q_i\#$ -al hosszabb.

Végül a 7. blokkban csak egy (záró)dominó szerepel, melynek az a szerepe, hogy "behozza" a még megmaradt lemaradást.

Ugyanilyen módon megkonstruálható egy megoldás minden olyan esetben, ha $w \in L(M)$. Azaz, $w \in L(M) \Rightarrow \exists \langle D, d \rangle$ -nek megoldása.

Másrészt, ha van $\langle D, d \rangle$ -nek megoldása, akkor ebben a megoldás alsó és a felső szava egyenlő hosszú (sőt ugyanaz a szó!), így tartalmaznia kell q_i -t tartalmazó dominót, hiszen csak ezekben hosszabb a felső szó, d-ben viszont az alsó az.

Másrészt, ha van $\langle D, d \rangle$ -nek megoldása, akkor ebben a megoldás alsó és a felső szava egyenlő hosszú (sőt ugyanaz a szó!), így tartalmaznia kell q_i -t tartalmazó dominót, hiszen csak ezekben hosszabb a felső szó, d-ben viszont az alsó az.

Meggondolható, hogy minden kirakás alsó szava az első q_i -t követő #-ig egy #-ekkel elválasztott elfogadó konfigurációban végződő konfigurációsorozat kell legyen a w-hez tartozó kezdőkonfigurációból. Tehát a w szóhoz tartozó kezdőkonfigurációból M el tud jutni elfogadó konfigurációba, azaz $w \in L(M)$.

Másrészt, ha van $\langle D, d \rangle$ -nek megoldása, akkor ebben a megoldás alsó és a felső szava egyenlő hosszú (sőt ugyanaz a szó!), így tartalmaznia kell q_i -t tartalmazó dominót, hiszen csak ezekben hosszabb a felső szó, d-ben viszont az alsó az.

Meggondolható, hogy minden kirakás alsó szava az első q_i -t követő #-ig egy #-ekkel elválasztott elfogadó konfigurációban végződő konfigurációsorozat kell legyen a w-hez tartozó kezdőkonfigurációból. Tehát a w szóhoz tartozó kezdőkonfigurációból M el tud jutni elfogadó konfigurációba, azaz $w \in L(M)$.

Nyilván $\langle D,d\rangle\langle M,w\rangle$ -ből TG-pel kiszámítható, így a visszavezetéshez használt függvény kiszámítható. Tehát beláttuk, hogy $L_u\leqslant L_{\text{MPMP}}$.

Állítás: A visszavezetés tranzitív.

Állítás: A visszavezetés tranzitív.

Az állítás bizonyítása: Legyen $L_i \subseteq \Sigma_i^*$ (i=1,2,3), $L_1 \leqslant L_2$ és $L_2 \leqslant L_3$.

Állítás: A visszavezetés tranzitív.

Az állítás bizonyítása: Legyen $L_i \subseteq \Sigma_i^*$ (i=1,2,3), $L_1 \leqslant L_2$ és $L_2 \leqslant L_3$. Legyen továbbá $f: \Sigma_1^* \to \Sigma_2^*$ és $g: \Sigma_2^* \to \Sigma_3^*$ a visszavezetés definíciója alapján létező két kiszámítható szófüggvény, amelyekre $f(L_1) \subseteq L_2, f(\bar{L}_1) \subseteq \bar{L}_2, g(L_2) \subseteq L_3, g(\bar{L}_2) \subseteq \bar{L}_3$.

Állítás: A visszavezetés tranzitív.

Az állítás bizonyítása: Legyen $L_i \subseteq \Sigma_i^*$ (i=1,2,3), $L_1 \leqslant L_2$ és $L_2 \leqslant L_3$. Legyen továbbá $f: \Sigma_1^* \to \Sigma_2^*$ és $g: \Sigma_2^* \to \Sigma_3^*$ a visszavezetés definíciója alapján létező két kiszámítható szófüggvény, amelyekre $f(L_1) \subseteq L_2, f(\bar{L}_1) \subseteq \bar{L}_2, g(L_2) \subseteq L_3, g(\bar{L}_2) \subseteq \bar{L}_3,$.

Ekkor
$$g \circ f$$
 nyilván kiszámítható és visszavezeti L_1 -et L_3 -ra, hiszen $g \circ f(L_1) = g(f(L_1)) \subseteq g(L_2) \subseteq L_3$

Állítás: A visszavezetés tranzitív.

Az állítás bizonyítása: Legyen $L_i \subseteq \Sigma_i^*$ (i=1,2,3), $L_1 \leqslant L_2$ és $L_2 \leqslant L_3$. Legyen továbbá $f: \Sigma_1^* \to \Sigma_2^*$ és $g: \Sigma_2^* \to \Sigma_3^*$ a visszavezetés definíciója alapján létező két kiszámítható szófüggvény, amelyekre $f(L_1) \subseteq L_2$, $f(\bar{L}_1) \subseteq \bar{L}_2$, $g(L_2) \subseteq L_3$, $g(\bar{L}_2) \subseteq \bar{L}_3$,.

$$f(L_1) \subseteq L_2, f(L_1) \subseteq L_2, g(L_2) \subseteq L_3, g(L_2) \subseteq L_3,$$

Ekkor $g \circ f$ nyilván kiszámítható és visszavezeti L_1 -et L_3 -ra, hiszen $g \circ f(L_1) = g(f(L_1)) \subseteq g(L_2) \subseteq L_3$ és $g \circ f(\bar{L}_1) = g(f(\bar{L}_1)) \subseteq g(\bar{L}_2) \subseteq \bar{L}_3$.

Állítás: A visszavezetés tranzitív.

Az állítás bizonyítása: Legyen $L_i \subseteq \Sigma_i^*$ (i=1,2,3), $L_1 \leqslant L_2$ és $L_2 \leqslant L_3$. Legyen továbbá $f: \Sigma_1^* \to \Sigma_2^*$ és $g: \Sigma_2^* \to \Sigma_3^*$ a visszavezetés definíciója alapján létező két kiszámítható szófüggvény, amelyekre

$$f(L_1) \subseteq L_2, f(\bar{L}_1) \subseteq \bar{L}_2, g(L_2) \subseteq L_3, g(\bar{L}_2) \subseteq \bar{L}_3,$$

Ekkor $g \circ f$ nyilván kiszámítható és visszavezeti L_1 -et L_3 -ra, hiszen $g \circ f(L_1) = g(f(L_1)) \subseteq g(L_2) \subseteq L_3$ és $g \circ f(\bar{L}_1) = g(f(\bar{L}_1)) \subseteq g(\bar{L}_2) \subseteq \bar{L}_3$.

Innen a tétel bizonyítása: $L_u \leq L_{\text{MPMP}}$, $L_{\text{MPMP}} \leq L_{\text{PMP}}$ és tudjuk már, hogy $L_u \notin R$. Ebből a visszavezetés tranzitivitása és korábbi tételünk alapján $L_{\text{PMP}} \notin R$.

Környezetfüggetlen grammatikákkal kapcsolatos eldönthetetlen algoritmikus problémák

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát **egyértelműnek** neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (**Baloldali levezetés**: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

Környezetfüggetlen grammatikákkal kapcsolatos eldönthetetlen algoritmikus problémák

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát **egyértelműnek** neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\mathsf{ECF}} := \{ \langle G \rangle \mid G \text{ egyértelmű CF grammatika} \}.$

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát **egyértelműnek** neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\mathsf{ECF}} := \{\langle G \rangle | G \text{ egyértelmű CF grammatika} \}.$

Tétel

 $L_{\mathsf{ECF}} \notin R$

Bizonyítás: Megmutatjuk, hogy $L_{PMP} \leqslant \overline{L_{ECF}}$.

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát **egyértelműnek** neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\mathsf{ECF}} := \{ \langle G \rangle | G \text{ egyértelmű CF grammatika} \}.$

Tétel

 $L_{\mathsf{FCF}} \notin R$

Bizonyítás: Megmutatjuk, hogy $L_{PMP} \leq L_{ECF}$.

Legyen $D = \left\{ \frac{u_1}{v_1}, \dots, \frac{u_n}{v_n} \right\}$ egy tetszőleges dominókészlet a Σ ábécé felett.

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát egyértelműnek neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\mathsf{FCF}} := \{\langle G \rangle \mid G \text{ egyértelmű CF grammatika} \}.$

Tétel

 $L_{\mathsf{FCF}} \notin R$

Bizonyítás: Megmutatjuk, hogy $L_{PMP} \leq L_{FCF}$.

Legyen $D = \left\{ \frac{u_1}{v_1}, \dots, \frac{u_n}{v_n} \right\}$ egy tetszőleges dominókészlet a Σ ábécé felett.

$$\Delta := \{a_1, \dots, a_n\}$$
 úgy, hogy $\Sigma \cap \Delta = \emptyset$.

$$P_A := \{A \to u_1 A a_1, \dots, A \to u_n A a_n, A \to \varepsilon\}.$$

$$P_B:=\big\{B\to v_1Ba_1,\ldots,B\to v_nBa_n,\ B\to\varepsilon\big\}.$$

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_A \cup P_B \rangle.$$

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \rightarrow A, S \rightarrow B\} \cup P_A \cup P_B \rangle.$$

$$f : \langle D \rangle \rightarrow \langle G_D \rangle \text{ visszavezetés, mert:}$$

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_A \cup P_B \rangle.$$

 $f: \langle D \rangle \rightarrow \langle G_D \rangle$ visszavezetés, mert:

▶ ha $\frac{u_{i_1}}{v_{i_1}}\cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$.

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_A \cup P_B \rangle.$$

 $f: \langle D \rangle \rightarrow \langle G_D \rangle$ visszavezetés, mert:

ha $\frac{u_{i_1}}{v_{i_1}}\cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$. De ekkor $u_{i_1}\cdots u_{i_m}a_{i_m}\cdots a_{i_1}=v_{i_1}\cdots v_{i_m}a_{i_m}\cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.

$$G_{A} = \langle A, \{A\}, \Sigma \cup \Delta, P_{A} \rangle. \ G_{B} = \langle B, \{B\}, \Sigma \cup \Delta, P_{B} \rangle.$$

$$G_{D} = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_{A} \cup P_{B} \rangle.$$

 $f: \langle D \rangle \rightarrow \langle G_D \rangle$ visszavezetés, mert:

- ha $\frac{u_{i_1}}{v_{i_1}}\cdots u_{i_m}^{u_{i_m}}$ megoldása D-nek, akkor $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$. De ekkor $u_{i_1}\cdots u_{i_m}a_{i_m}\cdots a_{i_1}=v_{i_1}\cdots v_{i_m}a_{i_m}\cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.
- ha G_D nem egyértelmű, akkor van olyan szó, aminek két baloldali levezetése van. De ezek S → A-val illetve S → B-vel kell kezdődjenek, hiszen G_A és G_B egyértelmű.

$$G_{A} = \langle A, \{A\}, \Sigma \cup \Delta, P_{A} \rangle. \ G_{B} = \langle B, \{B\}, \Sigma \cup \Delta, P_{B} \rangle.$$

$$G_{D} = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_{A} \cup P_{B} \rangle.$$

 $f: \langle D \rangle \rightarrow \langle G_D \rangle$ visszavezetés, mert:

- ha $\frac{u_{i_1}}{v_{i_1}} \cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$. De ekkor $u_{i_1} \cdots u_{i_m} a_{i_m} \cdots a_{i_1} = v_{i_1} \cdots v_{i_m} a_{i_m} \cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.
- ▶ ha G_D nem egyértelmű, akkor van olyan szó, aminek két baloldali levezetése van. De ezek $S \to A$ -val illetve $S \to B$ -vel kell kezdődjenek, hiszen G_A és G_B egyértelmű. A generált szavak xy, $x \in \Sigma^*$, $y \in \Delta^*$ alakúak, így ugyanaz a generált Σ feletti prefix is. Így a két levezetés D egy megoldását adja.

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_A \cup P_B \rangle.$$

 $f: \langle D \rangle \rightarrow \langle G_D \rangle$ visszavezetés, mert:

- ha $\frac{u_{i_1}}{v_{i_1}} \cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$. De ekkor $u_{i_1} \cdots u_{i_m} a_{i_m} \cdots a_{i_1} = v_{i_1} \cdots v_{i_m} a_{i_m} \cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.
- ▶ ha G_D nem egyértelmű, akkor van olyan szó, aminek két baloldali levezetése van. De ezek $S \to A$ -val illetve $S \to B$ -vel kell kezdődjenek, hiszen G_A és G_B egyértelmű. A generált szavak xy, $x \in \Sigma^*$, $y \in \Delta^*$ alakúak, így ugyanaz a generált Σ feletti prefix is. Így a két levezetés D egy megoldását adja.

f nyilván TG-pel kiszámítható. Mivel $L_{\mathsf{PMP}} \notin R$, következik, hogy $L_{\mathsf{ECF}} \notin R$, amiből kapjuk, hogy $L_{\mathsf{ECF}} \notin R$. □

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre. Elég G_A -ra belátni az állítást, G_B -re ugyanígy bizonyítható.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre. Elég G_A -ra belátni az állítást, G_B -re ugyanígy bizonyítható.

Legyen $n_i := |u_i| \ (1 \le i \le |D|)$. $L(G_A)$ -hoz adható determinisztikus veremautomata.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre. Elég G_A -ra belátni az állítást, G_B -re ugyanígy bizonyítható.

Legyen $n_i := |u_i| \ (1 \le i \le |D|)$. $L(G_A)$ -hoz adható determinisztikus veremautomata.

Ötlet: Amíg Σ -beli betűk jönnek az inputon pakoljuk őket bele a verembe. Ha $a_i \in \Delta$ -beli betű jön, akkor próbáljuk meg kivenni u_i^{-1} -et a veremből.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre. Elég G_A -ra belátni az állítást, G_B -re ugyanígy bizonyítható.

Legyen $n_i := |u_i| \ (1 \le i \le |D|)$. $L(G_A)$ -hoz adható determinisztikus veremautomata.

Ötlet: Amíg Σ -beli betűk jönnek az inputon pakoljuk őket bele a verembe. Ha $a_i \in \Delta$ -beli betű jön, akkor próbáljuk meg kivenni u_i^{-1} -et a veremből. Megvalósítás:

$$A = \langle \Sigma \cup \{\#\}, Q, \Sigma \cup \Delta, \delta, q_0, \#, \{s\} \rangle$$
, ahol

$$Q = \{q_0, r, s\} \cup \bigcup_{i=1}^{|D|} \{q_{i1}, \dots, q_{i(n_i-1)}\}$$

```
és M_δ: \#q_0t → \#tq_0 (t ∈ Σ)
```

```
\begin{split} &\text{\'es } M_\delta\colon \\ &\#q_0t\to\#tq_0 \quad (t\in\Sigma) \\ &t_1q_0t_2\to t_1t_2q_0 \quad (t_1,t_2\in\Sigma) \end{split}
```

```
és M_δ:

\#q_0t → \#tq_0 (t ∈ Σ)

t_1q_0t_2 → t_1t_2q_0 (t_1, t_2 ∈ Σ)

t_{n_i}xa_i → q_{i(n_i-1)} (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)
```

```
és M_δ:

\#q_0t \to \#tq_0 (t ∈ Σ)

t_1q_0t_2 \to t_1t_2q_0 (t_1, t_2 ∈ Σ)

t_{n_i}xa_i \to q_{i(n_i-1)} (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_iq_{ij} \to q_{i(i-1)} (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)
```

```
és M_{\delta}:

\#q_{0}t \to \#tq_{0} \quad (t \in \Sigma)

t_{1}q_{0}t_{2} \to t_{1}t_{2}q_{0} \quad (t_{1}, t_{2} \in \Sigma)

t_{n_{i}}xa_{i} \to q_{i(n_{i}-1)} \quad (1 \leqslant i \leqslant |D|, x \in \{q_{0}, r\}, u_{i} = t_{1} \cdots t_{n_{i}}, n_{i} \geqslant 2)

t_{j}q_{ij} \to q_{i(j-1)} \quad (1 \leqslant i \leqslant |D|, 2 \leqslant j \leqslant n_{i}-1, u_{i} = t_{1} \cdots t_{n_{i}}, n_{i} \geqslant 2)

t_{1}q_{i1} \to r \quad (1 \leqslant i \leqslant |D|, u_{i} = t_{1} \cdots t_{n_{i}}, n_{i} \geqslant 2)
```

```
és M_δ:

\#q_0t \to \#tq_0  (t ∈ Σ)

t_1q_0t_2 \to t_1t_2q_0  (t_1, t_2 ∈ Σ)

t_{n_i}xa_i \to q_{i(n_i-1)}  (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_jq_{ij} \to q_{i(j-1)}  (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_1q_{i1} \to r  (1 ≤ i ≤ |D|, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

tra_i \to r  (1 ≤ i ≤ |D|, u_i = t, t ∈ Σ)
```

```
és M_δ:

\#q_0t \to \#tq_0  (t ∈ Σ)

t_1q_0t_2 \to t_1t_2q_0  (t_1, t_2 ∈ Σ)

t_{n_i}xa_i \to q_{i(n_i-1)}  (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_jq_{ij} \to q_{i(j-1)}  (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_1q_{i1} \to r  (1 ≤ i ≤ |D|, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

tra_i \to r  (1 ≤ i ≤ |D|, u_i = t, t ∈ Σ)

\#r \to \#s
```

```
és M_δ:

\#q_0t \to \#tq_0  (t ∈ Σ)

t_1q_0t_2 \to t_1t_2q_0  (t_1, t_2 ∈ Σ)

t_{n_i}xa_i \to q_{i(n_i-1)}  (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_jq_{ij} \to q_{i(j-1)}  (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_1q_{i1} \to r  (1 ≤ i ≤ |D|, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

tra_i \to r  (1 ≤ i ≤ |D|, u_i = t, t ∈ Σ)

\#r \to \#s
```

Az veremautomata $L(G_A)$ -t ismeri fel és determinisztikus (teljessé is tehető egy zsákutcaállapot és a hiányzó átmenetek hozzávételével.)

Állítás: A determisztikus veremautomatával felismerhető nyelvek osztálya zárt a komplementerképzésre.

Állítás: A determisztikus veremautomatával felismerhető nyelvek osztálya zárt a komplementerképzésre.

Az állítás bizonyítása: $Q \ F$ -re változtatva az elfogadó állapothalmazt a determisztikus veremautomata épp a komplementer nyelvet ismeri fel.

Állítás: A determisztikus veremautomatával felismerhető nyelvek osztálya zárt a komplementerképzésre.

Az állítás bizonyítása: $Q\F$ -re változtatva az elfogadó állapothalmazt a determisztikus veremautomata épp a komplementer nyelvet ismeri fel.

Megjegyzés: Hasonlóan, bármilyen determinisztikus géptípus által eldönthető nyelvek osztálya zárt a komplementerképzésre.

Állítás: A determisztikus veremautomatával felismerhető nyelvek osztálya zárt a komplementerképzésre.

Az állítás bizonyítása: $Q \ F$ -re változtatva az elfogadó állapothalmazt a determisztikus veremautomata épp a komplementer nyelvet ismeri fel.

Megjegyzés: Hasonlóan, bármilyen determinisztikus géptípus által eldönthető nyelvek osztálya zárt a komplementerképzésre.

Innen a tétel bizonyítása: Láttuk, hogy létezik $L(G_A)$ -t felismerő determinisztikus veremautomata. Az állítás szerint olyan determinisztikus veremautomata is van, amelyik $\overline{L(G_A)}$ -t ismeri fel. Minden veremautomata által felismert nyelv 2-típusú, így $\overline{L(G_A)}$ is.

Tétel

(1)
$$L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$$

Tétel

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$

Tétel

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$
- (3) $L(G_1) \stackrel{?}{=} \Gamma^*$ valamely Γ ábécére

Tétel

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$
- (3) $L(G_1) \stackrel{?}{=} \Gamma^*$ valamely Γ ábécére
- (4) $L(G_1) \stackrel{?}{\subseteq} L(G_2)$

Tétel

Eldönthetetlenek az alábbi, G_1 és G_2 környezetfüggetlen grammatikákkal kapcsolatos kérdések.

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$
- (3) $L(G_1) \stackrel{?}{=} \Gamma^*$ valamely Γ ábécére
- $(4) L(G_1) \stackrel{?}{\subseteq} L(G_2)$

Bizonyítás:

(1) L_{PMP} -t vezethetjük vissza rá. Legyen $D = \left\{ \frac{u_1}{v_1}, \ldots, \frac{u_n}{v_n} \right\}$ a dominókészlet. Készítsük el a fenti G_A és G_B grammatikákat. Könnyen látható, hogy D-nek akkor és csak akkor van megoldása, ha $L(G_A)$ -nak és $L(G_B)$ -nek a metszete nemüres.

(2) L_{PMP} -t vezethetjük vissza rá, ehhez tekintsük ismét G_A -t és G_B -t.

(2) L_{PMP} -t vezethetjük vissza rá, ehhez tekintsük ismét G_A -t és G_B -t.

 $L:=\overline{L(G_A)\cap L(G_B)}=\overline{L(G_A)}\cup \overline{L(G_B)}\in \mathcal{L}_2$, mivel az előző Lemma szerint $\overline{L(G_A)}\in \mathcal{L}_2$ és $\overline{L(G_B)}\in \mathcal{L}_2$ az, és \mathcal{L}_2 zárt az unióra.

(2) L_{PMP} -t vezethetjük vissza rá, ehhez tekintsük ismét G_A -t és G_B -t.

 $L:=\overline{L(G_A)\cap L(G_B)}=\overline{L(G_A)}\cup \overline{L(G_B)}\in \mathcal{L}_2$, mivel az előző Lemma szerint $\overline{L(G_A)}\in \mathcal{L}_2$ és $\overline{L(G_B)}\in \mathcal{L}_2$ az, és \mathcal{L}_2 zárt az unióra.

Legyenek G_1 és G_2 olyan környezetfüggetlen grammatikák, amelyekre $L(G_1)=L$ és $L(G_2)=(\Sigma\cup\Delta)^*$. $L(G_1)=L(G_2)\Leftrightarrow L(G_A)\cap L(G_B)=\varnothing$, így ha (2) eldönthető volna, akkor az (1)-beli érvelés alapján L_{PMP} is az lenne, de láttuk, hogy nem az.

(2) L_{PMP} -t vezethetjük vissza rá, ehhez tekintsük ismét G_A -t és G_B -t.

$$L:=\overline{L(G_A)\cap L(G_B)}=\overline{L(G_A)} \cup \overline{L(G_B)} \in \mathcal{L}_2$$
, mivel az előző Lemma szerint $\overline{L(G_A)} \in \mathcal{L}_2$ és $\overline{L(G_B)} \in \mathcal{L}_2$ az, és \mathcal{L}_2 zárt az unióra.

Legyenek G_1 és G_2 olyan környezetfüggetlen grammatikák, amelyekre $L(G_1) = L$ és $L(G_2) = (\Sigma \cup \Delta)^*$. $L(G_1) = L(G_2) \Leftrightarrow L(G_A) \cap L(G_B) = \emptyset$, így ha (2) eldönthető volna, akkor az (1)-beli érvelés alapján L_{PMP} is az lenne, de láttuk, hogy nem az.

(3) Legyen G_1 ugyanaz,mint (2)-ben és $\Gamma = \Sigma \cup \Delta$. Pontosan az előbbi érveléssel (3) eldönthetősége L_{PMP} eldönthetőségét implikálná.

(2) L_{PMP} -t vezethetjük vissza rá, ehhez tekintsük ismét G_A -t és G_B -t.

$$L:=\overline{L(G_A)\cap L(G_B)}=\overline{L(G_A)} \cup \overline{L(G_B)} \in \mathcal{L}_2$$
, mivel az előző Lemma szerint $\overline{L(G_A)} \in \mathcal{L}_2$ és $\overline{L(G_B)} \in \mathcal{L}_2$ az, és \mathcal{L}_2 zárt az unióra.

Legyenek G_1 és G_2 olyan környezetfüggetlen grammatikák, amelyekre $L(G_1) = L$ és $L(G_2) = (\Sigma \cup \Delta)^*$. $L(G_1) = L(G_2) \Leftrightarrow L(G_A) \cap L(G_B) = \emptyset$, így ha (2) eldönthető volna, akkor az (1)-beli érvelés alapján L_{PMP} is az lenne, de láttuk, hogy nem az.

- (3) Legyen G_1 ugyanaz,mint (2)-ben és $\Gamma = \Sigma \cup \Delta$. Pontosan az előbbi érveléssel (3) eldönthetősége L_{PMP} eldönthetőségét implikálná.
- (4) Mivel $L(G_1) = L(G_2) \Leftrightarrow L(G_1) \subseteq L(G_2) \land L(G_2) \subseteq L(G_1)$, ezért a tartalmazás eldönthetősége (2) eldönthetőségét implikálná.

