Construção de Tabelas Verdade.

Vimos que, dada uma expressão proposicional, e dados os valores lógicos das proposições simples que a compõe, podemos, com a ordem de precedência, calcular o valor lógico da expressão dada; no entanto, estaremos interessados, muitas vezes, no conjunto de valores lógicos que a expressão pode assumir, para quaisquer valores lógicos das proposições componentes.

Vejamos um exemplo. Considere a expressão proposicional

$p \lor q \rightarrow p \land q$

Anteriormente, construímos uma pequena tabela para determinar o valor lógico da expressão, a partir dos valores lógicos dos componentes; agora, vamos ampliar aquela tabela, para incluir cada combinação dos valores lógicos dos componentes.

Na expressão, existem apenas duas proposições componentes, p e q; como cada uma pode ser verdadeira ou falsa, temos quatro possibilidades: p e q ambas verdadeiras, p verdadeira e q falsa, p falsa e q verdadeira, ou, finalmente, p e q ambas falsas.

Tendo obtido também a ordem de precedência das operações, nossa tabela assume a forma:

р	q	p∨q	p∧q	$p \lor q \rightarrow p \land q$
V	V	V	V	V
V	F	V	F	F
F	V	V	F	F
F	F	F	F	V

Uma tabela como essa, na qual são apresentados todos os valores verdade possíveis de uma proposição composta, para cada combinação dos valores verdade das proposições componentes, é chamada Tabela Verdade da proposição composta.

Cada linha da Tabela corresponde a uma possível combinação dos valores lógicos das proposições componentes; como são dois os valores lógicos, existem, para n componentes, 2ⁿ combinações possíveis. Portanto, a Tabela Verdade de uma expressão proposicional tem 2ⁿ linhas, alem do cabeçalho.

Observe que a Tabela Verdade possui dois tipos de colunas: colunas para as proposições componentes (onde são distribuídos os valores V e F de forma a incluir cada possível combinação) e colunas para as operações (onde os valores V e F são obtidos pela definição das operações); assim, se a expressão possui n componentes e m operações, a Tabela terá m + n colunas.

Para determinar unicamente a Tabela Verdade, podemos estabelecer certas convenções para sua construção:

A. Para as colunas:

- 1. Dispor as proposições componentes em ordem alfabética.
- 2. Dispor as operações na ordem de precedência determinada pelo Algoritmo Ordem de Precedência (Com Parênteses, se for o caso).

B. Para as linhas

- 1. Alternar V e F para a coluna do último componente.
- 2. Alternar V V e F F para a coluna do penúltimo componente.
- 3. Alternar V V V V e F F F F para a coluna do antepenúltimo componente.
- 4. Prosseguir dessa forma, se houver mais componentes, sempre dobrando o numero de V's e F's para cada coluna à esquerda.

Para exemplificar, considere a expressão proposicional,

$$(p \rightarrow q) \vee \neg ((p \leftrightarrow r) \rightarrow \neg r)$$

A precedência das operações é dada por:

$$(p \rightarrow q) \lor \neg ((p \leftrightarrow r) \rightarrow \neg r)$$
1 6 5 2 4 3

A Tabela Verdade assume o aspecto:

р	q	r	p→q	p↔r	⊸r	$(p\leftrightarrow r) \rightarrow \neg r$	$\neg ((p \leftrightarrow r) \rightarrow \neg r)$	$(p \rightarrow q) \lor \neg ((p \leftrightarrow r) \rightarrow \neg r)$
V	V	V	V	V	F	F	V	V
V	V	F	V	F	V	V	F	V
V	F	V	F	V	F	F	V	V
V	F	F	F	F	V	V	F	F
F	V	V	V	F	F	V	F	V
F	V	F	V	V	V	V	F	V
F	F	V	V	F	F	V	F	V
F	F	F	V	V	V	V	F	V

A atribuição de valores lógicos aos componentes simples de uma proposição composta é chamada uma interpretação dessa proposição. Assim, uma proposição com n componentes simples distintos admitirá 2ⁿ interpretações.

4. Equivalência Lógica.

De acordo com os valores lógicos que as proposições compostas assumem, em suas possíveis interpretações, elas podem ser classificadas em vários tipos:

 se a expressão assume sempre o valor V, em qualquer interpretação, é chamada uma tautologia, ou uma expressão válida; são exemplos de tautologias:

$$p \lor \neg p$$

 $\neg (p \land \neg p)$

• se a expressão assume o valor V em alguma interpretação, é dita satisfatível, ou consistente; evidentemente, as tautologias são exemplos de expressões satisfatíveis; outros exemplos são:

$$\mathbf{p} \rightarrow \neg \mathbf{p}$$
 (assume V quando p é falso)
 $\mathbf{p} \vee \mathbf{q}$ (assume V quando p ou q for verdadeiro)

• se a expressão assume sempre o valor F, em qualquer interpretação, é chamada uma contradição, ou uma expressão insatisfatível, ou inconsistente. São exemplos de contradições:

$$p \land \neg p$$

 $\neg (p \lor \neg p)$

 se a expressão assume o valor F em alguma interpretação, é chamada uma expressão inválida; claramente, as contradições são, também, expressões inválidas; outras expressões inválidas são:

Alguns autores atribuem o nome genérico de contingências, ou expressões contingentes, às expressões satisfatíveis e inválidas.

Uma expressão proposicional da forma bicondicional $p \leftrightarrow q$ que é, também, uma tautologia, é chamada uma equivalência (ou equivalência lógica). As proposições p e q são ditas equivalentes, e escrevemos $p \Leftrightarrow q$.

Por exemplo, a expressão p \rightarrow q \leftrightarrow \neg q \rightarrow \neg p é uma equivalência. Veja sua Tabela Verdade:

р	q	p →q	¬ q	¬ p	$\neg q \rightarrow \neg p$	$(p \rightarrow q) \leftrightarrow \neg q \rightarrow \neg p$
V	V	V	F	F	V	V
V	F	F	V	F	F	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

Escrevemos, então, $\mathbf{p} \rightarrow \mathbf{q} \Leftrightarrow \neg \mathbf{q} \rightarrow \neg \mathbf{p}$

Decorre imediatamente da definição que, se duas proposições são equivalentes, então possuem a mesma Tabela Verdade, e, reciprocamente, se duas proposições têm a mesma Tabela Verdade, são equivalentes. De fato, uma bicondicional é V se e somente se seus componentes têm os mesmos valores lógicos; como a expressão também é uma tautologia, é V em todos os casos; isto é, seus componentes têm o mesmo valor lógico em todos os casos, ou seja, têm a mesma Tabela Verdade.

Decorre ainda da definição que todas as tautologias, bem como todas as contradições, são equivalentes entre si.

Podemos mostrar também que a relação de equivalência possui as propriedades:

Reflexiva: p⇔p

Simétrica: Se p⇔ q então q⇔ p

Transitiva: Se $p \Leftrightarrow q \in q \Leftrightarrow r$ então $p \Leftrightarrow r$

Listamos abaixo algumas das equivalência mais importantes (e úteis) da Lógica; cada uma delas pode ser provada, simplesmente mostrando que a bicondicional correspondente é uma tautologia, bastando, para isso, construir sua Tabela Verdade.

Em termos textuais, duas proposições são equivalentes quando traduzem a mesma idéia, diferindo apenas a forma de apresentar essa idéia. Apresentamos abaixo algumas das principais equivalências da Lógica, exemplificando textualmente algumas:

Leis da Comutatividade

$$p \land q \Leftrightarrow q \land p$$

 $p \lor q \Leftrightarrow q \lor p$

Exemplo: "Fui ao teatro ou ao cinema" equivale a "Fui ao cinema ou ao teatro"

Leis da Associatividade

$$(p \land q) \land r \Leftrightarrow p \land (q \land r)$$

$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$

Leis da Distributividade

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

Leis de De Morgan

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

Exemplo: "É falso que João tenha ido ao cinema e ao teatro" equivale a "Ou João não foi ao cinema ou não foi ao teatro"

Leis da Idempotência

$$p \land p \Leftrightarrow p$$

$$p \lor p \Leftrightarrow p$$

Lei da Dupla Negação

$$\neg (\neg p) \Leftrightarrow p$$

Lei da Condicional

$$p \rightarrow q \Leftrightarrow \neg p \lor q$$

Exemplo: "Se continuar chovendo, o rio vai transbordar" equivale a "Ou pára de chover ou o rio vai transbordar"

Lei da Bicondicional

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$
$$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\neg p \land \neg q)$$

Exemplo: "Um numero é divisível por 10 se e somente se terminar por zero" equivale a "Se um numero terminar por zero, então é múltiplo de 10, e, se for múltiplo de 10, então termina por zero"; também equivale a "Ou o número é múltiplo de 10 e termina em zero, ou não é múltiplo de 10 e não termina em zero"

Lei da Contraposição

$$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

Exemplo: "Se João estudar, será aprovado" equivale a "Se João não estudar, não será aprovado"

Lei da Absorção

$$p \rightarrow p \land q \Leftrightarrow p \rightarrow q$$

Lei de Clavius

$$\neg p \rightarrow p \Leftrightarrow p$$

Lei da Refutação por Absurdo

$$(p \rightarrow q) \land (p \rightarrow \neg q) \Leftrightarrow \neg p$$

Lei do Dilema

$$(p \rightarrow q) \land (\neg p \rightarrow q) \Leftrightarrow q$$

Exemplo: "Se eu for aprovado, vou viajar, e, se não for, também vou" equivale a "vou viajar"

Lei da Demonstração por Absurdo (onde F é uma contradição)

$$p \land \neg q \rightarrow F \Leftrightarrow p \rightarrow q$$

Lei de Exportação - Importação

$$p \rightarrow (q \rightarrow r) \Leftrightarrow p \land q \rightarrow r$$

O conceito de equivalência nos permite mostrar ainda que são suficientes as operações de negação e uma das duas, conjunção ou disjunção, para representar qualquer expressão proposicional. Para isso, necessitamos das seguintes equivalências:

a) Eliminando o bicondicional: $p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\neg p \land \neg q)$

b) Eliminando o condicional: $\mathbf{p} \rightarrow \mathbf{q} \Leftrightarrow \neg \mathbf{p} \lor \mathbf{q}$

c) Escrevendo a disjunção em termos de conjunção: $\mathbf{p} \lor \mathbf{q} \Leftrightarrow \neg (\neg \mathbf{p} \land \neg \mathbf{q})$

d) Escrevendo a conjunção em termos de disjunção: $\mathbf{p} \wedge \mathbf{q} \Leftrightarrow \neg (\neg \mathbf{p} \vee \neg \mathbf{q})$

Veja o seguinte exemplo: escrever a proposição (p \leftrightarrow q) \rightarrow ¬ p em termos de negação e disjunção:

Eliminando o condicional:

 $\neg (p \leftrightarrow q) \lor \neg p$

Eliminando o bicondicional:

 $\neg [(p \land q) \lor (\neg p \land \neg q)] \lor \neg p$

Escrevendo a conjunção em termos de disjunção:

 $\neg [\neg (\neg p \lor \neg q) \lor \neg (p \lor q)] \lor \neg p$

5. Inferência Lógica.

Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma $p \to q$; a proposição p é chamada antecedente, e q, conseqüente da implicação. As inferências lógicas, ou regras de inferência, são representadas por $\mathbf{p} \Rightarrow \mathbf{q}$.

Da definição decorre imediatamente que $\mathbf{p} \Rightarrow \mathbf{q}$, se e somente se, o conseqüente q assumir o valor lógico V, sempre que o antecedente p assumir esse valor.

De fato, para que a condicional seja verdadeira, essa condição é necessária, pois, se o consequente for falso com o antecedente verdadeiro, a condicional não é verdadeira. Por outro lado, a condição também é suficiente, pois, quando o antecedente é falso, a condicional é verdadeira, não importando o valor lógico do consequente.

As regras de inferência são, na verdade, formas válidas de raciocínio, isto é, são formas que nos permitem concluir o conseqüente, uma vez que consideremos o antecedente verdadeiro; em termos textuais, costumamos utilizar o termo "logo" (ou seus sinônimos: portanto, em conseqüência, etc) para caracterizar as Regras de Inferência; a expressão $p \Rightarrow q$ pode então ser lida: p; logo, q.

É possível mostrar que as regras de inferência têm as seguintes propriedades:

Reflexiva: $\mathbf{p} \Rightarrow \mathbf{p}$

Transitiva: Se $p \Rightarrow q e q \Rightarrow r$, então $p \Rightarrow r$

Listamos abaixo algumas das regras de inferência mais importantes da Lógica; da mesma forma que no caso das eqüivalências, cada uma delas pode ser provada, bastando para isso construir a Tabela Verdade da condicional correspondente; se a condicional for tautológica, será uma inferência.

Vamos exemplificar com a regra de inferência conhecida por Modus Ponens:

$$(p \rightarrow q) \land p \Rightarrow q$$

р	q	$p \rightarrow q$	$(p \rightarrow q) \land p$	$(p \rightarrow q) \land p \rightarrow q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

São exemplos de regras de inferência:

Regra da Adição

$$p \Rightarrow p \lor q$$

Exemplo: "Vou ao cinema; logo vou ao cinema ou ao teatro"

Regra da Simplificação

$$p \land q \Rightarrow p$$

Exemplo: "Fui ao cinema e ao teatro; logo fui ao cinema"

Regra da Simplificação Disjuntiva

$$(p \lor q) \land (p \lor \neg q) \Rightarrow p$$

Exemplo: "Ou estudo ou trabalho; ou estudo ou não trabalho; logo, estudo"

Regra da Absorção

$$p \rightarrow q \Rightarrow p \rightarrow (p \land q)$$

Exemplo: "Se trabalho, ganho dinheiro; logo, se trabalho, trabalho e ganho dinheiro"

Regra do Silogismo Hipotético (ou Condicional)

$$(p \rightarrow q) \land (q \rightarrow r) \Rightarrow p \rightarrow r$$

Exemplo: "Se trabalho, ganho dinheiro, e, se ganho dinheiro, vou viajar; logo, se trabalho, vou viajar"

Regra do Silogismo Disjuntivo (ou Alternativo)

$$(p \lor q) \land \neg p \Rightarrow q$$

Exemplo: "Ou trabalho ou estudo; não trabalho; logo, estudo"

Regra do Silogismo Conjuntivo (ou Incompatibilidade)

$$\neg (p \land q) \land q \Rightarrow \neg p$$

Exemplo: "É falso que eu estudo e trabalho; eu trabalho; logo, não estudo"

Dilema Construtivo

$$(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r) \Rightarrow q \lor s$$

Exemplo: "Se vou à festa, fico cansado; se vejo televisão, durmo; ou vou à festa ou fico vendo televisão; logo, ou fico cansado ou durmo"

Dilema Destrutivo

$$(p \rightarrow q) \land (r \rightarrow s) \land (\neg q \lor \neg s) \Rightarrow \neg p \lor \neg r$$

Exemplo: "Se vou à festa, fico cansado; se vejo televisão, durmo; ou não fico cansado ou não vou dormir; logo, ou não vou à festa ou não vejo televisão"

Regra da Inconsistência (de uma contradição se conclui qualquer proposição)

$$(p \land \neg p) \Rightarrow q$$

Exemplo: "O avião está voando; o avião não está voando; logo, eu sou o Rei da Inglaterra"

Modus Ponens

$$(p \rightarrow q) \land p \Rightarrow q$$

Exemplo: "Se ganhar na Loteria, fico rico; ganhei na Loteria; logo, fiquei rico"

Modus Tollens

$$(p \rightarrow q) \land \neg q \Rightarrow \neg p$$

Exemplo: "Se ganhar na Loteria, fico rico; não fiquei rico; logo não ganhei na Loteria"

Regra da Atenuação

$$p \rightarrow q \Rightarrow p \rightarrow q \lor r$$

Exemplo: "Se eu ganhar na Loteria, fico rico; logo, se eu ganhar na Loteria, fico rico e vou viajar"

Regra da Retorsão

$$\neg p \rightarrow p \Rightarrow p$$

Exemplo: "Se eu não trabalhar, trabalho; logo, trabalho".