Calibration Observation Model for Parallel Magnetic Resonance Imaging

Henry

2022年6月21日

1 Introduction

SENSE and GRAPPA are widely used in clinical application, but these two models have some shortcomings. For the SENSE method, the coil sensitivity can be estimated, but it is still not accuracy. For the another method, the interpolation kernel can be estimated by the auto calibraion signal(ACS) while it's not accuracy when the number of the ACS line is far from enough.

Therefore, we propose the calibration observation model incoporating the advantage of the SENSE and GRAPPA. We exploit the SENSE model to remove artifacts in image domain and use GRAPPA kernel to regularize the SENSE model in K-space domain.

2 SENSE model

The coil data from the jth coil can modeled as follows:

$$g_l = PFS_l u + \eta \tag{1}$$

where u denotes the desired reconstruced image, η is gaussian white noisy, F is dicrete Fourier transform matrix, and P denotes the sampling matrix.

Combining equations from p coils, we have

$$g = \mathcal{P}Mu + \eta \tag{2}$$

where,

$$g = \begin{bmatrix} g_1 \\ \vdots \\ g_p \end{bmatrix}, \mathcal{P} = \begin{bmatrix} P & & \\ & \ddots & \\ & & P \end{bmatrix}, M = \begin{bmatrix} FS_1 \\ \vdots \\ FS_p \end{bmatrix}, \eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_p \end{bmatrix}$$

3 GRAPPA model

GRAPPA utilizes the interpolation kernel to estimate the missing point, assuming we use G to represent the interpolation kernel, then we have

$$\mathcal{P}GMu \approx g$$
 (3)

4 Calibration Observation Model

According to the model (2) and (3), we propose the following optimization model as

$$\min_{u} \left\{ \frac{1}{2} \| \mathcal{P}Mu - g \|_{2}^{2} + \frac{\lambda}{2} \| \mathcal{P}GMu - g \|_{2}^{2} + \Phi_{1\Lambda}(B_{1h}u) + \Phi_{2\Theta}(B_{2h}B_{1l}u) \right\}$$
(4)

Model (4) can be solved by PD3O.Define

$$f(u) = \frac{1}{2} \| \mathcal{P}Mu - g \|_{2}^{2} + \frac{\lambda}{2} \| \mathcal{P}GMu - g \|_{2}^{2}, \quad h(s) = \Phi_{1\Lambda}(B_{1h}s_{1}) + \Phi_{2\Theta}(B_{2h}B_{1l}s_{2}), \quad A = \begin{bmatrix} B_{1h} \\ B_{2h}B_{1l} \end{bmatrix}$$

where $s = (s_1, s_2)$. Then, the model(4) can be rewriten as

$$\min_{u} \left\{ f(u) + h(Au) \right\} \tag{5}$$

The PD3O has the following iteration:

$$\begin{aligned} u^k &= real(v^k) \\ s^{k+1} &= prox_{\delta h^*}((I - \gamma \delta A A^T)s^k + \delta A(2u^k - v^k - \gamma \nabla f(u^k))) \\ v^{k+1} &= u^k - \gamma \nabla f(u^k) - \gamma A^T s^{k+1} \end{aligned}$$

where $\nabla f(u) = M^T \mathcal{P}^T (\mathcal{P} M u - g) + \lambda M^T G^T \mathcal{P}^T (\mathcal{P} G M u - g).$

According to the Moreau decomposition, we can get

$$s^{k+1} = x^k - \delta prox_{\delta^{-1}h}(\delta^{-1}x^k) \tag{6}$$

where $x^k = (I - \gamma \delta A A^T) s^k + \delta A (2u^k - v^k - \gamma \nabla f(u^k))$

References