GEETHANJALI COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

Cheeryal (V), Keesara (M), Medchal Dist., Telangana - 501 301

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MINI PROJECT ABSTRACT IV B.Tech. I SEM CSE - C Section

BATCH NUMBER: C14	Mini Project Academic Yes	
		2024-2025

PROJECT TITLE:

Deep Learning-Based Plant Disease Detection for Agricultural Health Monitoring

TEAM MEMBERS:

S.No	Roll Number	Student Name	Mail Id	Contact Number
1.	21R11A05B1	BERELLI PREETHAM RAO	21r11a05b1@gcet.edu.in	8328175833
2.	21R11A05D0	MAMILLA RITHIKA	21r11a05d0@gcet.edu.in	8074391936
3.	21R11A05D1	MANDA ANJANI	21r11a05d1@gcet.edu.in	7842357756

GUIDE DETAILS:

Name of the Guide	G. Santhoshi	
Designation	Assistant Professor	
Department	Computer Science and Engineering	
Mail ID	gsanthoshi.cse@gcet.edu.in	
Contact Number	9000330783	

Signature of the Project In-charge

Signature of the Guide with Date

Signature of the Project Coordinator

ABSTRACT

Plant diseases present formidable challenges to global food security, necessitating effective

detection methods for prompt intervention. This project explores the utilization of deep learning

techniques for automated plant disease detection, addressing the urgent need for accurate

diagnostics. Drawing upon primary data sourced from field surveys and image repositories, the

study employs exploratory data analysis (EDA), data preprocessing, and model construction

leveraging convolutional neural networks (CNNs).

The primary aim of the model is to precisely predict the presence and categorization of

plant diseases using leaf images, thereby enabling early detection and mitigation measures. The

anticipated outcomes include valuable insights into disease distribution patterns, recommendations

for preventive strategies, and ultimately, the augmentation of agricultural productivity.

Keywords: Convolutional Neural Networks, Image Processing, Plant Pathology, Deep Learning,

Agricultural Health Monitoring.

Objective:

To develop a deep learning model for automated plant disease detection using leaf images. The

model aims to accurately predict the presence and classification of diseases, facilitating timely

intervention and management strategies. The objective is to utilize convolutional neural networks

(CNNs) to analyze image data and provide robust disease predictions, thereby contributing to

enhanced agricultural health monitoring and productivity.

Commercializable: Yes/No: Yes

REFERENCES:

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00863-9

• https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2016.01419

• https://apsjournals.apsnet.org/doi/10.1094/PDIS-03-15-0340-FE

Date of Submission: 27-04-2024

Signature of the **Guide with Date**

Signature of the **Project In-charge**