Научно-исследовательская работа - ТЕКСТ

(Модель мобильного робота с манипулятором)

XX век - прародитель бурых исследований внеземных пространств: человек выходил в открытый космос, устанавливал спутники и космические станции, высаживался на Луну

И в наши дни не прекращается постижение космоса: уже многие страны ведут программы по освоению поверхности Марса (США, Китай, ЕКА как группа стран)^{[1][2][3]}, строятся планы по изучению поверхности Венеры^[4]

Наша страна имеет большой опыт в области исследования космоса, однако на данный момент у нас нет собственной модели отвечающего современным требованиям планетохода (На основании чего данное заявление?)

Об уже существующих планетоходах

Существуют 2 основных класса планетоходов: транспортные - выполняют вспомогательные функции для космонавтов, и автономные - работают без непосредственного человеческого присутствия

"Луноход-1" – первый в мире планетоход (притом автономный) Независимая подвеска, нет манипулятора

"Opportunity", "Curiosity" и "Sojourner" – удачные марсоходы Шасси типа "Коромысло-тележка" (соединены с корпусом и между собой дифференциалами); имеется манипулятор (у первых двух)

Их общими чертами является наличие колёсного шасси (моторколёса), наличие солнечных батарей

ЦЕЛЬ РАБОТЫ

Учитывая опыт в работе с планетоходами, необходимо разработать модель мобильного робота, способного автономно (либо с

минимальным участием человека) выполнять поставленные задачи с минимальным риском провала

Робототехническая система состоит из подвижного шасси, на котором установлен 3-х степенной манипулятор.

Первым шагом предстоит выбор реализации системы шасси

Ходовая

Учитывая опыт как отечественной школы транспортного космического машиностроения, созданной профессором А.Л.Кемурджианом, так и зарубежной (в частности американской), где использовались только колёсные шасси в различных вариациях, шасси выбираем колёсное, так как гусеницы могут разорваться (что недопустимо), неудобны в транспортировке (ограничение габаритами перелётных модулей), много весят (больший расход энергии); Колёсные шасси с применением колёсно-шагающих движителей (КШД), балансирных (упругих /неупругих) и адаптивных подвесок, опорно-движительных модулей (ОДМ) способны адаптироваться к сложному рельефу; они имеют множество возможных направлений повышения подвижности при движении на неподготовленной местности

За основу взято 4-колёсное неадаптивное шасси с одной вращательной степенью свободы для каждого мотор-колеса в плоскости поверхности, так как в рамках работы нет необходимости в непосредственном преодолении препятствий на пути движения

Обратная задача кинематики

Какие существуют способы определения траектории движения манипулятора?

ПЗК - вычисление положения рабочего органа манипулятора по его *кинематической схеме* и заданной ориентации его звеньев

ОЗК — это вычисление углов по заданному положению рабочего органа и схеме его кинематики

Начальным рабочим положением (где величина углов считается равной 0) для манипулятора будет вертикальное, так как рабочая область расположена на положительных X (стрела направлена вверх). В связи с этим:

Угол 1 (α_0) — угол между вертикалью к корпусу и плечом 1 Угол 2 (β_0) — угол между продолжением плеча 1 и плечом 2 Плечо 1 = a, плечо 2 = b; (x; y) — координаты цели; согласно теореме косинусов:

$$x^{2} + y^{2} = a^{2} + b^{2} + 2ab * cos (\beta_{0})$$

$$cos(\beta_{0}) = \frac{x^{2} + y^{2} - a^{2} - b^{2}}{2ab}$$

$$\beta_{0} = \arccos\left(\frac{x^{2} + y^{2} - a^{2} - b^{2}}{2ab}\right)$$

Так как α – угол между вертикалью, то:

$$b^{2} = a^{2} + x^{2} + y^{2} + 2a\sqrt{x^{2} + y^{2}} * cos (a; (x; y))$$

$$(a; (x; y)) = arccos \left(\frac{b^{2} - a^{2} - x^{2} - y^{2}}{2a\sqrt{x^{2} + y^{2}}}\right)$$

$$\frac{\pi}{2} = arcsin \left(\frac{y}{\sqrt{x^{2} + y^{2}}}\right) + arccos \left(\frac{b^{2} - a^{2} - x^{2} - y^{2}}{2a\sqrt{x^{2} + y^{2}}}\right) + \alpha_{0}$$

$$\alpha_{0} = \frac{\pi}{2} - arcsin \left(\frac{y}{\sqrt{x^{2} + y^{2}}}\right) - arccos \left(\frac{b^{2} - a^{2} - x^{2} - y^{2}}{2a\sqrt{x^{2} + y^{2}}}\right)$$

Недостатком предложенного алгоритма является упрощенная физическая модель в качестве перехода, учет которого нужно добавить в модель

однако, не стоит забывать о том, что такое решение верно для двух отрезков; мы же создаём физическую модель манипулятора с определёнными габаритами, где плечи не проходят сквозь друг друга и корпус. Для физического манипулятора необходимы шарниры

h – толщина шарнира (одинакова для 1 и 2); тогда:

$$\begin{split} \alpha &= \alpha_0 - arctg\left(\frac{h}{2a}\right) = \\ &= \frac{\pi}{2} - arcsin\left(\frac{y}{\sqrt{x^2 + y^2}}\right) - arccos\left(\frac{b^2 - a^2 - x^2 - y^2}{2a\sqrt{x^2 + y^2}}\right) - arctg\left(\frac{h}{2a}\right) \end{split}$$

К углу β прибавляются два тангенса, так как один выправляет отклонение, вызванное выравниванием угла α ($-arctg\left(\frac{h}{2a}\right)$), а второй выравнивает отклонение из-за толщины второго плеча

$$\beta = \beta_0 + 2 \operatorname{arctg}\left(\frac{h}{2a}\right) =$$

$$= \operatorname{arccos}\left(\frac{x^2 + y^2 - a^2 - b^2}{2ab}\right) + 2 \operatorname{arctg}\left(\frac{h}{2a}\right)$$

Учитывая шарнирное соединение и равную длину плеч ($a_0 = b_0$), их фактическая длина:

$$a_0 = b_0$$

$$a = b = \sqrt{\left(a_0 + \frac{h}{\sqrt{2}}\right)^2 + \left(\frac{h}{2}\right)^2}$$

Алгоритмы навигации

(Какие существуют алгоритмы для нахождения кратчайшего расстояния (Наиболее известными являются Дейсктра, Белман, Волновой алгоритм Ли)? Дать кратко описание каждого алгоритма)

Граф видимости: (<u>Что такое граф видимости? Немного</u> раскрыть термин и в каком ключе он дальше будет использован)

Это граф взаимной видимости точек пространства; любая вершина в графе представляет точку пространства, а любое ребро представляет прямую видимость между точками; то есть, если отрезок прямой, соединяющий две точки пространства, не проходит через какую-либо преграду, в графе будет нарисовано ребро

Учитывая габариты робота, строится граф местности, где каждая вершина графа находится на минимальном допустимом расстоянии от вершины препятствия; в граф включаются начальная и конечная точки

После построения графа видимости к нему применяется алгоритм нахождения кратчайшего пути, «Такой как алгоритм Дейкстры» (данная формулировка мне не очень нравится)

Волновой алгоритм Ли:

Пространство разбивается на дискреты так, чтобы манипулятором можно было дотянуться до центра любой соседней клетки кроме предыдущей (нет необходимости)

Ячейки отмечаются в соответствии с местностью как проходимые (-1) и непроходимые (-2), помечается начальная (0), координаты конечной известны

Начальная ячейка становится источником волны — соседние непомеченные клетки помечаются номером, на 1 больше, чем у источника, после чего сами становятся источниками волны; волна распространятся до того момента, пока не будет отмечена конечная точка, или пока волне некуда будет распространяться (нет пути)

От помеченной конечной ячейки восстанавливается кратчайший путь: каждый раз выбирается ячейка с номером, на 1 меньше, и записывается; в случае, если путей оказалось несколько, выбирается тот, где наименьшее число поворотов (на поворот затрачивается дополнительная работа)

Так, строится список координат кратчайшего пути в дискретном поле

Y_6	<u>Начало</u> 0	1	2	3	4	5
Y ₅	1	-2	3	4	5	6
Y_4	2	3	4	-2	-2	7
Y ₃	3	4	5	-2	<u>Цель</u> 9	8
Y_2	4	5	6	-2	-1	9
Y_1	5	6	7	8	9	-1
Коор- динаты	X_1	X_2	X_3	X_4	X_5	X_6

В рамках работы волновой алгоритм больше подходит, так как он проще в реализации и создании наглядной картины работы

Реализован алгоритм на языке Python в виде функции, где в качестве аргументов вписываются данные карты и ключевые местоположения; функция возвращает двумерный список координат пути

Манипулятор (Simulink)

Имеет 3 степени свободы: 1 вращательную в плоскости земли, 2 на сгибание плеч; работа манипулятора осуществляется за счёт электродвигателей постоянного тока, регулируемых ПИД-контроллерами

Состоит из двух одинаковых по длине плеч, соединённых шарниром; закреплён посередине на передней части планетохода ***ФОТКА***

Мобильный робот (Simulink)

4-колёсное неадаптивное шасси с одной вращательной степенью свободы для каждого мотор-колеса в плоскости поверхности; робот вписывается в поворот на 90° в ячейке (радиус поворота = 0,5 стороны ячейки)

ЗАКЛЮЧЕНИЕ

Ссылки

- 1. "Марсианская научная лаборатория" https://www.nasa.gov/mission_pages/msl/index.html
- 2. "Китайская миссия на Mapc 2020" https://gbtimes.com/china-reveals-more-details-its-2020-mars-mission
- 3. "ЭкзоМарс" http://exploration.esa.int/mars/46048-programme-overview/
- 4. Проект "Венера-Д", https://www.roscosmos.ru/23875/