

Aprendizaje de Máquina y Minería de Datos Clase I

Curso Exploratorio de Computación – IIC 1005 2018-2

PLAN SEMESTRAL

Week	Fecha semana	Clase Martes	Clase Jueves	Ayudantía	Control	Enunciados
I	7 - 9 Ago	Introduccion	Github+terminal+Jupyter			
II	14 - 16 Ago	Leng. Prog + Jupyter 2	Visualización			TC1 Git + Shell
Ш	21 - 23 Ago	Tecn Web HTML + CSS	Tecn Web JS	Git + Shell		TG1 Jupyter + Web
IV	28 - 30 Ago	Arquitectura	SO	Jupyter Plots - Jupyter Pandas		
V	4 - 6 Sep	BD	BD	Web		TC2 BD
VI	11 - 13 Sep	Algoritmos	Ingenieria de Sotware	SQL		
VII	18 - 20 Sep	FERIADO	Feriado			
VIII	25 - 27 Sep	ML	ML	No hay	I1: 28 Sept Web/Arq/SO/BD	TG2 ML
IX	2 - 4 Oct	ML Sala de Ayuda / Prac	Guest: DL	ML		
X	9 - 11 Oct	Computabilidad	Complejidad	ML		TC3 Turing
XI	16 - 18 Oct	Prog Logica	Prog Logica	Turing		
XII	23 - 25 Oct	ВРМ	BPM II		12: 24 Oct ML / Comp	TC4 BPM
XIII	30 - 1 Nov	Innovación Tecnológica	FERIADO	ВРМ		
XIV	6 - 8 Nov	Guest: CSCW-HCI	MOOC			
XV	13 -15 Nov	Criptografía y aplicacione	Guest: Mobile & Cloud		I3: 14 Jun BPM / Prog Log	
XVI	20 - 22 Nov	Resumen Final	Guest: Miguel Nussb.			

Inteligencia Artificial

Inteligencia Artificial

• **Objetivo**: Construir máquinas/software que exhiban comportamiento inteligente.

 Algunas aplicaciones comunes: percepción visual, reconocimiento del habla, toma de decisiones, traducción entre lenguajes.

Inteligencia Artificial

- El dominio de problemas en el área de Inteligencia Artificial incluye:
 - Representar conocimiento
 - Razonamiento
 - Planning
- En esta clase me enfocaré en métodos estadísticos usados para aprendizaje, lo que se conoce como Machine Learning, y en el procedimiento de uso de estos algoritmos para encontrar patrones en colecciones de datos (Data Mining)

Aprendizaje de Máquina (Machine Learning)

- Estudio de algoritmos computacionales que aprenden y mejoran automáticamente a través de la experiencia.
- Algunos investigadores lo llaman también Aprendizaje Estadístico
- Tareas típicas de Machine Learning
 - Descubrimiento de Patrones
 - Clasificación
 - Clustering
 - Regresión
 - Detección de Anomalías/Outliers
 - Reducción de Dimensionalidad

Logros de Machine Learning

- IBM Watson vence a los campeones de Jeopardy.
 << ... With all of its processing CPU power, Watson can scan two million pages of data in three seconds.>> E. Nyberg, CMU professor
- Implicancias: Aplicaciones en medicina

http://www.aaai.org/Magazine/Watson/watson.php

Vehículos Autónomos

Generación de música con estilo

- Deep learning driven jazz generation
- https://github.com/jisungk/deepjazz
- https://soundcloud.com/deepjazz-ai

Mastering Go

Google Al algorithm masters ancient game of Go

Deep-learning software defeats human professional for first time.

Elizabeth Gibney

27 January 2016

Imágenes: incluir elementos y estilo

https://github.com/luanfujun/de ep-painterly-harmonization

Una imagen vale más que mil palabras

Trabajo conjunto con Denis Parra y Pablo Messina

... no les cuento mucho más

• ... para dejar algunos ejemplos interesantes al profesor Hans Lobel.

Clasificación Tradicional de algoritmos de ML

 Aprendizaje Supervisado: Los algoritmos reciben ejemplos (datos etiquetados) a partir de los cuales aprenden

 Aprendizaje No Supervisado: Los algoritmos no reciben ejemplos etiquetados.

Aprendizaje Supervisado

- KNN
- Árboles de Decisión
- Naive Bayes
- Regresión Logística
- Support Vector Machines
- Redes Neuronales

Genéricamente

- Inteligencia de Máquina: Aprender de los Datos
- Revisemos de modo conceptual un ejemplo: Construir para un banco un sistema que automáticamente apruebe o niegue crédito

Applicant information:

Rechazar o Aprobar credito??

age	23 years
gender	male
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
• • • •	• • •

Formalización del Problema de Aprendizaje

• Encontrar la fórmula de aprobación *g()* que se aproxime lo más posible a la fórmula ideal *f()*

```
• Input: \mathbf{x} (customer application)

• Output: \mathbf{y} (good/bad customer?)

• Target function: f: \mathcal{X} \to \mathcal{Y} (ideal credit approval formula)

• Data: (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N) (historical records)

• Hypothesis: g: \mathcal{X} \to \mathcal{Y} (formula to be used)
```

Formalización del Problema de Aprendizaje

• El conjunto de hipótesis H

Pasos para realizar Minería de Datos (supervisado)

Modelo de Aprendizaje Supervisado (detalle)

K-NN

- Significa K-nearest neighbors (K-vecinos más cercanos)
- La intuición de este modelo es clasificar a una instancia en base a la clasificación ya conocida de las instancias más cercanas.

Clasificador KNN - K vecinos mas cercanos

¿Qué parámetros considerar con KNN?

- Una métrica de distancia
 - Euclidiana, Manhattan, Correlación, etc.
- ¿Cuántos vecinos considerar?
 - En 1-NN: solo un vecino => el más cercaño
- Una función de peso (opcional)
 - 1/d; 1-d; exp(-d^2), etc.
- ¿Cómo usar los vecinos cercanos para hacer la predicción?
 - El más cercano, votación, el promedio, etc.

Ejemplo: Clasificar el caso siguiente

Usemos 1NN

Age	Loan	Default	Distance
25	\$40,000	N	
35	\$60,000	N	
45	\$80,000	N	
20	\$20,000	N	
35	\$120,000	N	
52	\$18,000	N	
23	\$95,000	Υ	
40	\$62,000	Υ	
60	\$100,000	Υ	
48	\$220,000	Υ	
33	\$150,000	Υ	
		1	
48	\$142,000	ž	

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Usemos 1NN / 2NN / ... KNN

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ <table-cell-columns></table-cell-columns>	8000
		1	
48	\$142,000	Ž	

Euclidean Distance
$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

¿Cómo lo hacemos en python?

- Biblioteca scikit-learn (Preferible instalar Anaconda)
- Probemos con un jupyter notebook

Recapitulando

- Una métrica de distancia
 - Euclidiana, Manhattan, Correlación, etc.
- ¿Cuantos vecinos considerar?
 - En 1-NN: solo un vecino => el más cercano
- Una función de peso (opcional)
 - 1/d; 1-d; exp(-d^2), etc.
- ¿Cómo usar los vecinos cercanos para hacer la predicción?
 - El más cercano, votación, el promedio, etc.

Sin embargo, estamos usando los datos, no un MODELO

Pasos para realizar minería de Datos

Caso uno: clasificación de 2 clases

	Predicción clase A	Predicción clase B	Total de cada Clase
Clase A	104	22	126
Clase B	8	217	225

Supongamos para la tarea que Clase A = vendedor / Clase B = no vendedor

TP: Verdaderos Positivos: 321 - Revisamos cada valor CLASE POR CLASE

TP Rate = TP / (TP + FN)

Clase A: 104 de 126 ; TP rate = 104/126 = 0.825 Clase B: 217 de 225 ; TP rate = 217/225 = 0.964

FP: Falso Positivos: 30

FP Rate = FP / (FP + TN)

Clase A: 8 (que eran de clase B); FP rate = 8/225 = 0.035

Clase B: 22 (que eran de la clase A); FP rate = 22 / 126 = 0.174

Caso uno: clasificación de 2 clases

	Predicción clase A	Predicción clase B	Total de cada Clase
Clase A	104	22	126
Clase B	8	217	225

PRECISION

CLASE A: 104/112 = 0.928 CLASE B: 217/239 = 0.907

RECALL

CLASE A: 104/126 = 0.825 CLASE B: 217/225 = 0.964

ROC Area = 0.892 (revisaremos este en unas slides mas adelante)

F-Measure (Harmonic mean)

2*PRECISION*RECALL/(PRECISION+RECALL)

F-clase A = 0.874F-clase B = 0.935

Accuracy (set completo) (104 + 217) / 351 = 0.914

Cross-Validation

- Partir el dataset en K particiones
- Por cada partición X
 - Usar las otras x-1 particiones para entrenar modelo
 - Example: 4-fold cross-validation

ROC y AUC – Clasificación Binaria

Area under the curve

Construcción de la ROC Curve

Figure 3: The ROC "curve" created by thresholding a test set. The table at right shows twenty data and the score assigned to each by a scoring classifier. The graph at left shows the corresponding ROC curve with each point labeled by the threshold that produces it.

Revisar: http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf

Veamos otro modelo de clasificación

Árboles de Decisión

Pasos para realizar Minería de Datos

Árboles de Decisión

 Objetivo: Obtener de manera automática una serie de reglas que permita clasificar los casos. La representación final del modelo es a través de un árbal

árbol

Day	Outlook	Temperature	Humidity	Wind	PlayTenn
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	·Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Imagen tomada desde http://www.doc.ic.ac.uk/~sgc/teaching/pre2012/v231/lecture11.html

Ejemplo de construcción de un árbol de decisión

- Los nodos del árbol representan variables, las ramas representan valores de las variables que permiten clasificar
- Las hojas del árbol corresponden a la clasificación
- En la construcción del árbol, se testea una variable a la vez, usando el concepto de Entropía (número de bits necesarios para transmitir un mensaje - o nivel de incerteza respecto a un evento)

$$H = -\sum_{i=1}^{M} P_i \log_2 P_i$$

¿Cuál de los siguientes escenarios es más incierto?

- Predicción del tiempo
 - Llueve: 50%, Sol: 50%
 - Llueve: 90%, Sol: 10%
- Calcular la entropía de cada uno:

$$H = -\sum_{i=1}^{M} P_i \log_2 P_i$$

¿Qué variable es la mejor como nodo raíz?

• La que reduce en mayor grado la entropía inicial

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Ejemplo: ¿Jugar o no jugar tenis?

Day	Outlook	Temperature	Humidity	Wind	PlayTenn
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	·Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

¿Cuál variable reduce mas la entropía?

El mismo ejemplo anterior...

Ahora con árboles de decisión

```
# What kind of iris has 3cm x 5cm sepal and 4cm x 2cm petal?
X \text{ pred} = [3, 5, 4, 2]
result = knn.predict([X pred, ])
print(iris.target names[result])
print(iris.target names)
print(knn.predict proba([X pred, ]))
from fig_code import plot_iris_knn
plot iris knn()
['versicolor']
['setosa' 'versicolor' 'virginica']
      0.8 0.211
  2.0
                            sepal length (cm)
```

Resumen

- Cuáles son las "escuelas de aprendizaje" en Inteligencia Artificial:
 - Aprendizaje deductivo (lógica)
 - Aprendizaje inductivo (learning from data)
- En el modelo inductivo, qué tipos de tareas típicas con encontramos:
 - Predicción
 - Clasificación
 - Clustering
- En cuanto a clasificación, aprendiste: K-NN y D.T.