Definition of Candidate Keys Based on FDs

- Definition by means of FDs
- \square A set $A \subseteq R$ is a candidate key of a relation schema R if
 - [Uniqueness] A → R A
 A functionally determines all the other attributes in R
 Since A functionally determines itself, we obtain: A → R
 - ❖ [Minimality] There is no proper subset $C \subset A$ so that $C \to R$ holds

Checking the Validity of a Functional Dependency

- $lue{\Box}$ Alternative characterization of an FD $A \rightarrow B$ by a Relational Algebra expression
 - \Leftrightarrow Let $A = \{A_1, ..., A_n\}$, and let $dom(A) = dom(A_1) \times ... \times dom(A_n)$
 - \Leftrightarrow Let A = v stand for $A_1 = v_1 \wedge ... \wedge A_n = v_n$
 - ❖ The FD $A \to B$ holds on R if $\forall v \in dom(A) : |\pi_B(\sigma_{A=v}(R))| \le 1$
- ☐ This leads to a simple algorithm which computes whether a given relation R satisfies a given FD $A \rightarrow B$:

```
bool FDIsValidOnRelation(R, A → B)
// Input: Relation R and FD A → B
// Output: true, if A → B holds on R; false otherwise
Sort R with respect to A-values
if all groups consisting of tuples with equal A-values also have equal B-values
then return true
```

else return false

Closure of a Set of Functional Dependencies (I)

- ☐ Goal: Compute all logically implied or inferred FDs for a given set F of FDs
- \square An FD f on a relation schema R is logically implied by a set F of FDs on R if every relation r_R that satisfies F also satisfies f
- □ Example
 - ❖ We introduce the notation *ABC* (i.e., juxtaposition) for the set {*A*, *B*, *C*} of attributes; then *A* represents {*A*}
 - ❖ The context decides whether, e.g., A is the name of an attribute or the name of an attribute set
 - ❖ If A, B, and C are attributes, then $AC \to BC$ means $\{A, C\} \to \{B, C\}$, and $A \to B$ means $\{A\} \to \{B\}$
 - Let R(A, B, C, G, H, I) be a relation schema, and let $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$ be a set of FDs defined on R

 - We show: Whenever a relation satisfies F, $A \rightarrow H$ must also be satisfied by that relation
 - Suppose that t_1 and t_2 are tuples such that $t_1[A] = t_2[A]$ holds

Closure of a Set of Functional Dependencies (II)

- ☐ Example (*continued*)
 - Since we know that $A \to B$ holds, it follows from the definition of FDs that $t_1[B] = t_2[B]$ holds
 - Since we know that $B \to H$ holds, it follows from the definition of FDs that $t_1[H] = t_2[H]$ holds
 - We have shown that whenever t_1 and t_2 are tuples such that $t_1[A] = t_2[A]$ holds, it must be that $t_1[H] = t_2[H]$ holds
 - \bullet But this is exactly the definition of $A \to H$
 - We see that $A \rightarrow H$ is a transitive FD
- \Box Given a set F of FDs, the closure of F, denoted by F^+ , is the set of all FDs that can be logically implied by the FDs in F
- Armstrong's axioms are inference rules that provide a simpler and higherlevel technique for reasoning about FDs than deploying the formal definition of FDs

Closure of a Set of Functional Dependencies (III)

- Given a relation schema R, a set F of FDs on R, and A, B, $C \subseteq R$, the following inference rules are used to compute F^+ (Armstrong's axioms):
 - **Reflexivity rule**: Let $B \subseteq A$. Then $A \to B$ (special case: $A \to A$) holds.
 - **Augmentation rule**: If $A \rightarrow B$ holds, then $A \cup C \rightarrow B \cup C$ holds.
 - **Transitivity rule**: If $A \to B$ and $B \to C$ holds, then $A \to C$ holds.
- ☐ It can be formally shown that these rules are sound and complete
 - Soundness: No incorrect FDs are generated, and the inferred FDs hold for all relations of this schema
 - **❖** Completeness: All valid FDs in *F*⁺ can be logically implied by these rules
- ☐ Although Armstrong's axioms are complete, it is convenient to add three further derived inference rules:
 - ❖ Union rule: If $A \rightarrow B$ and $A \rightarrow C$ holds, then $A \rightarrow B \cup C$ holds.
 - **Decomposition rule**: If $A \to B \cup C$ holds, then $A \to B$ and $A \to C$ holds.
 - **Pseudotransitivity rule**: If $A \to B$ and $B \cup C \to D$ holds, then $A \cup C \to D$ holds.

Closure of a Set of Functional Dependencies (IV)

Example

- Schema supplier(sname, saddr, product, price)
- ❖ Valid FDs, e.g.: $\{\text{sname}\} \rightarrow \{\text{saddr}\}, \{\text{sname}, \text{product}\} \rightarrow \{\text{price}\}, \{\text{sname}\} \rightarrow \{\text{sname}\}, \{\text{sname}, \text{product}\} \rightarrow \{\text{product}\}$
- \bullet It is to be shown: {sname, product} \rightarrow {saddr} is also satisfied.
 - We have: {sname} → {saddr}
 - Applying the augmentation rule: {sname, product} → {saddr, product}.
 - Applying the decomposition rule: {sname, product} → {saddr}

Example

- ❖ Given the schema R(A, B, C, D) and $F = \{A \rightarrow B, C \rightarrow D\}$ on R, show that $AC \rightarrow BD$ holds
- Applying the augmentation rule: $A \rightarrow B \Rightarrow AC \rightarrow BC$
- Applying the augmentation rule: $C \rightarrow D \Rightarrow BC \rightarrow BD$
- ❖ Applying the transitivity rule: $AC \rightarrow BC \land BC \rightarrow BD \Rightarrow AC \rightarrow BD$

Closure of a Set of Functional Dependencies (V)

```
\square Algorithm to compute the closure F^+, given F
    F<sup>+</sup> CalculateFDClosure(F)
    // Input: Set F of FDs
    // Output: Closure F<sup>+</sup> of F
    F^+ = F
    repeat
        for each functional dependency f in F<sup>+</sup> do
             Apply reflexivity and augmentation rules to F<sup>+</sup>
             Add the resulting functional dependencies to F<sup>+</sup>
        for each pair of functional dependencies f_1 and f_2 in F^+ do
             if f_1 and f_2 can be combined using transitivity then
                 Add the resulting functional dependency to F<sup>+</sup>
    until F<sup>+</sup> does not change any further
    return F<sup>+</sup>
```

Closure of a Set of Functional Dependencies (VI)

- By applying Armstrong's axioms repeatedly (see algorithm above), we can find all FDs of F⁺, given F
- □ Problems of the algorithm
 - ❖ An FD to be added to the current F⁺ may already be present so that F⁺ remains unchanged
 - ❖ Algorithm has exponential run time complexity and is hence very slow
- Example
 - ❖ Given the schema R(A, B, C) and the set $F = \{A \rightarrow B, B \rightarrow C\}$ on R, determine the closure F⁺
 - \Leftrightarrow Start: $A \rightarrow B$, $B \rightarrow C$
 - ❖ Reflexivity rule (Round 1)
 - $A \rightarrow A, B \rightarrow B, C \rightarrow C$

Closure of a Set of Functional Dependencies (VII)

- ☐ Example (*continued*)
 - Augmentation rule (Round 1)
 - Augmentation with A: $A \rightarrow AB$, $AB \rightarrow AC$
 - Augmentation with $B: AB \rightarrow B, B \rightarrow BC$
 - Augmentation with $C: AC \rightarrow BC, BC \rightarrow C$
 - Augmentation with $AB: AB \rightarrow AB, AB \rightarrow ABC$
 - Augmentation with $AC: AC \rightarrow ABC, ABC \rightarrow AC$
 - Augmentation with $BC: ABC \rightarrow BC, BC \rightarrow BC$
 - Augmentation with ABC: ABC → ABC
 - Transitivity rule (Round 1)
 - $A \to B \land B \to C \Rightarrow A \to C$
 - $A \rightarrow B \land B \rightarrow BC \Rightarrow A \rightarrow BC$
 - $A \rightarrow AB \land AB \rightarrow AC \Rightarrow A \rightarrow AC$
 - $A \rightarrow AB \land AB \rightarrow ABC \Rightarrow A \rightarrow ABC$
 - $AB \rightarrow AC \land AC \rightarrow BC \Rightarrow AB \rightarrow BC$

Closure of a Set of Functional Dependencies (VIII)

- ☐ Example (*continued*)
 - Transitivity rule (Round 1) (continued)

•
$$AB \rightarrow B \land B \rightarrow C \Rightarrow AB \rightarrow C$$

•
$$AC \rightarrow B \land B \rightarrow C \Rightarrow AC \rightarrow C$$

•
$$AC \rightarrow ABC \land ABC \rightarrow AC \Rightarrow AC \rightarrow AC$$

■
$$ABC \rightarrow BC \land BC \rightarrow C \Rightarrow ABC \rightarrow C$$

❖ Reflexivity rule (Round 2)

•
$$AB \rightarrow AC \Rightarrow AB \rightarrow A$$

•
$$AC \rightarrow BC \Rightarrow AC \rightarrow B$$

•
$$ABC \rightarrow AC \Rightarrow ABC \rightarrow A$$

•
$$ABC \rightarrow BC \Rightarrow ABC \rightarrow B$$

•
$$BC \rightarrow BC \Rightarrow BC \rightarrow B$$

•
$$ABC \rightarrow ABC \Rightarrow ABC \rightarrow AB$$

■
$$ABC \rightarrow ABC \Rightarrow ABC \rightarrow AC$$

•
$$AC \rightarrow AC \Rightarrow AC \rightarrow A$$

Closure of a Set of Functional Dependencies (IX)

- ☐ Example (*continued*)
 - Augmentation rule (Round 2)
 - No new FDs
 - Transitivity rule (Round 2)
 - No new FDs
 - ❖ Reflectivity rule (Round 3)
 - No new FDs
 - Augmentation rule (Round 3)
 - No new FDs
 - Transitivity rule (Round 3)
 - No new FDs
 - ❖ Algorithm terminates with 35 found FDs

Closure of a Set of Functional Dependencies (X)

☐ Example (*continued*)

```
❖ F^+ = {
A \to A, A \to B, A \to C, A \to BC, A \to AB, A \to AC, A \to ABC, \\ B \to B, B \to C, B \to BC, C \to C, AB \to A, AB \to B, AB \to C, \\ AB \to AB, AB \to BC, AB \to AC, AB \to ABC, BC \to B, BC \to C, \\ BC \to BC, AC \to A, AC \to B, AC \to C, AC \to AC, AC \to AB, \\ AC \to BC, AC \to ABC, ABC \to A, ABC \to B, ABC \to C, \\ ABC \to BC, ABC \to AB, ABC \to AC, ABC \to ABC
}
```

- We learn:
 - Manual computation of F⁺ is very error-prone
 - Many FDs are generated again and again (redundant work)
 - Many searches needed to check if a new FD has already been found before
 - We need an easier and more systematic way to compute F⁺

Closure of a Set of Attributes (I)

 \square So far, we have solved the question for $A, B \subseteq R$

Is $A \rightarrow B \notin F$ logically implied by F?

by a containment test checking whether $A \rightarrow B \in F^+$ holds

- □ Problem: Explicit calculation of *F*⁺ is too expensive
- □ Different, easier, and more efficient solution: Calculation of the closure A⁺ of the attribute set A under F
 - A^+ consists of all attributes that are functionally determined by A, i.e., $A \to A^+$
 - $riangledown V C \subseteq A^+ : A \to C \in F^+$ (due to decomposition rule)
 - ❖ To check if $A \to B$ is logically implied by F, we check if $B \subseteq A^+$ holds since then $A \to B \in F^+$ holds