EXPLODING TROUSERS AND COMPUTING THE INTRACTABLE An introduction to scattering symplectic geometry

MELINDA LANIUS

University of Illinois at Urbana Champaign

BACKGROUND. My research is situated in an area of differential geometry called Poisson geometry. The simplest example of a Poisson manifold is called a symplectic manifold.

SYMPLECTIC GEOMETRY

Definition. A *symplectic manifold* is a manifold M with a closed, non-degenerate 2-form ω .

Example. Consider the torus $\mathbb{T}^2 \simeq \mathbb{S}^1 \times \mathbb{S}^1$ with coordinates θ and ρ . The 2-form

$$\omega = \mathbf{d} \theta \wedge \mathbf{d}
ho$$

is a symplectic structure.

Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics. In particular, the phase space of certain systems is a symplectic manifold.

Riemannian gradient versus symplectic gradient.

Given a Riemannian manifold (M, g), the gradient of f is the vector field

$$df = g(\cdot, \nabla f).$$

At each point, the gradient of f will show the direction in which the function changes most quickly. The symplectic gradient is the analog in symplectic geometry of the gradient in Riemannian geometry. Given a symplectic manifold (M, ω) , the symplectic gradient $\nabla_{\omega} f$ is the vector field satisfying

$$extit{d} f = \omega (\ \cdot\ ,
abla_\omega f).$$

At each point, the symplectic gradient of *f* will show the direction in which the function changes least quickly. If you are interested in conserving quantities, symplectic geometry can be a powerful setting for studying a physical system.

Example. Consider the torus embedded into \mathbb{R}^3 . Define a function

$$f:\mathbb{T}^2 o\mathbb{R}$$

by f(p) = z. In other words, f is the height function.

Limitations. Unfortunately, many manifolds simply do not admit a symplectic form. For instance, no spheres \mathbb{S}^{2n} for $n \geq 2$ and no odd dimensional manifolds can be symplectic. The next best type of structure is called a Poisson bi-vector.

POISSON GEOMETRY

There are many equivalent ways to define a Poisson structure.

Definition one. A *Poisson structure* on a manifold M is a symplectic (singular) foliation of M, i.e. a partition of M into symplectic manifolds (of possibly varying dimension) that fit together 'nicely'.

Example. Real three space \mathbb{R}^3 has many different Poisson structures.

Definition two. A *Poisson structure* on a manifold M is a bivector $\pi \in C^{\infty}(M; \wedge^2 TM)$ satisfying the non-linear partial differential equation

$$[\pi,\pi]=0.$$

(The bracket $[\cdot, \cdot]$ is a graded Lie bracket defined on multi-vector fields that extends the standard Lie bracket on vector fields.)

Returning to the symplectic case. By contracting in vector fields, a symplectic form ω provides an isomorphism of the tangent and cotangent bundles. The inverse to this map defines a Poisson bi-vector.

$$TM \xrightarrow{\omega^{\flat}} T^*M$$

Consequently, symplectic structures are equivalent to non-degenerate Poisson structures. In general, π can be very degenerate. Note $[\pi, \pi] = 0$ is equivalent to $d\omega = 0$.

Symplectic versus Poisson. Symplectic structures are quite well understood. For instance, ALL symplectic forms on an n-dimensional manifold locally look the same. Poisson structures on the other hand can be much more gnarly to work with. In general we cannot even state a local normal form for a Poisson bi-vector π .

RESEARCH PROGRAM. I study 'minimally degenerate' Poisson structures, bi-vectors that have some degeneracy but that are very close to being symplectic.

Set up. Take (M, π) Poisson and a hypersurface $Z \subset M$. A hypersurface is a subspace of M that locally looks like the set $\{x_1 = 0\}$ in \mathbb{R}^n for standard coordinate x_1 . Demand that

- lacksquare π is symplectic on $M \setminus Z$
- \blacktriangleright π is degenerate in a particular way at Z.

Goal. Think of π as non-degenerate on a new vector bundle \mathcal{A} .

Examples.

bundle	vector fields	co-vectors
^b TM	$\mathbf{x}\partial_{\mathbf{x}},\partial_{\mathbf{y_1}},\partial_{\mathbf{x_2}},\partial_{\mathbf{y_2}}$	$\frac{dx}{x}$, dy_1 , dx_2 , dy_2
⁰ <i>TM</i>	$x\partial_x, x\partial_{y_1}, x\partial_{x_2}, x\partial_{y_2}$	$\frac{dx}{x}, \frac{dy_1}{x}, \frac{dx_2}{x}, \frac{dy_2}{x}$
^{sc} TM	$x^2\partial_x, x\partial_{y_1}, x\partial_{x_2}, x\partial_{y_2}$	$\frac{dx}{x^2}, \frac{dy_1}{x}, \frac{dx_2}{x}, \frac{dy_2}{x}$

Why do this? Viewing π as non-degenerate on $\mathcal A$ allows us to employ symplectic tools.

Note. A bi-vector that is non-degenerate on one of these \mathcal{A} 's corresponds to a 'singular' symplectic-type structure.

SCATTERING SYMPLECTIC GEOMETRY

Definition. Let M be a manifold with a hypersurface $Z = \{x = 0\}$. A scattering symplectic structure on M is a closed non-degenerate section of the second exterior power of ${}^{sc}T^*M$. Given a point $p \in Z$, any scattering symplectic structure ω locally has the form

$$\omega = \frac{dx}{x^3} \wedge \alpha - \frac{d\alpha}{2x^2}$$

where α is a contact form on Z.

RESULTS AND TECHNIQUES. While a scattering symplectic form ω is singular, this structure corresponds to an actual smooth Poisson structure. Formally allowing this singularity and doing symplectic geometry in this generalized setting gives us a LOT of traction.

COBORDISM

Cobordism is an equivalence relation between compact manifolds of the same dimension: two n-dimensional manifolds are cobordant if their disjoint union is the boundary of a compact manifold of dimension n + 1.

There are many different flavors of cobordism. Symplectic geometers study cobordisms between contact manifolds (Z, α) where the 'filling' is symplectic and satisfies a nice relationship with α . We showed:

Theorem [L]. Given (M_1, ω_1) , (M_2, ω_2) strong convex symplectic fillings of (Z, α) , then $M_1 \cup_Z M_2$ admits a sc-symplectic structure ω .

Application. (\mathbb{S}^{2n} , \mathbb{S}^{2n-1}), ($\mathbb{T}^2 \times \mathbb{S}^2$, \mathbb{T}^3), and ($\mathbb{S}^3 \times \mathbb{S}^1$, $\mathbb{S}^2 \times \mathbb{S}^1$).

Poisson cohomology

Poisson cohomology is an invariant of a Poisson manifold (M, π) . Each cohomology group $H_{\pi}^n(M)$ that we associate to (M, π) has an interpretation analogous to the way we say "the n^{th} singular cohomology group counts the number of n-dimensional holes in a manifold". We interpret $H_{\pi}^2(M)$ as the quotient of the space of all possible infinitesimal deformations of π by the space of trivial deformations.

In other words, $H_{\pi}^2(M)$ is supposed to count the number of Poisson structures nearby that are actually different from π . Accordingly, this invariant has the potential to tell us a lot about our Poisson structure, particularly about local normal forms.

Downside. Unfortunately, there are very few known explicit computations. When π is non-degenerate, i.e. symplectic, the Poisson cohomology is isomorphic to the de-Rham cohomology of M. This isomorphism is given by a map induced from ω .

Our method. Inspired by this isomorphism, we use scattering symplectic ω to establish an isomorphism with a de-Rham like complex. In essence, we take a really hard problem and use the scattering-symplectic structure to turn it into a much more easy computation. We have successfully used this approach to compute the Poisson cohomology of many types of 'minimally degenerate' Poisson structures.

Preprints. Symplectic, Poisson, and contact geometry on scattering manifolds. arXiv:1603.02994 Poisson cohomology of a class of log symplectic manifolds. arXiv:1605.03854

Acknowledgement. Travel support was provided through grants from the National Science Foundation (NSF) including the ADVANCE grant Career Advancement for Women Through Research-Focused Networks, and Graduate Student Participation in National Workshops to Encourage Women's Engagement in Mathematics Research.

