Examen final de Ecuaciones Diferenciales II Lunes, 31 de enero de 2022

1. Probar que el problema

$$(P) \begin{cases} x' = xe^{t-x} \\ x(0) = 1 \end{cases}$$

tiene solución maximal única, definida en todo R.

Considérese la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(t,x) = xe^{t-x}$. Al ser $f \in \mathcal{C}^1(\mathbb{R}^2,\mathbb{R})$, entonces $f \in \mathcal{C}(D,\mathbb{R}) \cap \operatorname{Lip}_{\operatorname{loc}}(x,\mathbb{R}^2,\mathbb{R})$, así que, por el TEUL, el problema (P) tiene solución local única, que puede extenderse (de manera única gracias al TUG) a una solución maximal $\varphi: I \to \mathbb{R}$. Hay que demostrar que $I = \mathbb{R}$.

En primer lugar, obsérvese que la función nula es solución de la ecuación (E) $x' = xe^{t-x}$ pero no del problema (P). Como (E) verifica la PUG (pues $f \in \mathcal{C}(D,\mathbb{R}) \cap \operatorname{Lip}_{\operatorname{loc}}(x,\mathbb{R}^2,\mathbb{R})$), entonces $\varphi(t) \neq 0$ para todo $t \in I$, y como $\varphi(0) = 1 > 0$, por continuidad, debe ser $\varphi(t) > 0$ para cada $t \in I$. Además, $\varphi'(t) = \varphi(t)e^{t-\varphi(t)} > 0$ para todo $t \in I$, luego φ es estrictamente creciente en I.

Por otra parte, como \mathbb{R}^2 es abierto, el resultado sobre soluciones maximales con gráficas en abiertos permite afirmar que I=(a,b), donde $-\infty \le a < 0 < b \le \infty$. Por el mismo resultado, si t^* es un extremo finito de I, entonces debe verificarse una de las siguientes condiciones:

- (i) $\lim_{t \to t^*} |\varphi(t)| = \lim_{t \to t^*} \varphi(t) = \infty$.
- (ii) La gráfica de φ posee un punto límite para $t \to t^*$, y este y todos los puntos límite de la gráfica de φ para $t \to t^*$ están en $\partial \mathbb{R}^2$.

Nótese que (ii) es imposible por ser la frontera de \mathbb{R}^2 vacía. Se demostrará entonces que (i) es también imposible. Es claro que no puede ser $t^*=a$, pues el crecimiento estricto de φ impide que sea $\lim_{t\to a}\varphi(t)=\infty$. Supóngase que $t^*=b$. Entonces $\varphi'(t)=\varphi(t)e^{t-\varphi(t)}$ es continua y acotada en $I_0^+=[0,b)$ (pues $\lim_{t\to b^-}\varphi(t)=\infty$ y $\lim_{x\to\infty}xe^{-x}=0$, luego $\lim_{t\to b^-}\varphi'(t)=0$). Como además $b<\infty$, el resultado sobre soluciones con derivada acotada dice que $\lim_{t\to b^-}\varphi(t)$ es un número real, lo que contradice (i).

Se concluye que ni a ni b pueden ser extremos finitos, o, en otras palabras, que $I = \mathbb{R}$, luego (P) tiene una única solución maximal y está definida en \mathbb{R} .

2.

(a) Considérese la ecuación diferencial autónoma

(E)
$$x' = g(x)$$
,

siendo $g \in C^1(\mathbb{R}, \mathbb{R})$. Supóngase que $\varphi \colon I \to \mathbb{R}$, con I un intervalo de \mathbb{R} , es una solución maximal no constante de (E). Sabemos entonces, por teoría, que φ es estrictamente monótona, luego $\varphi(I)$ es también un intervalo de \mathbb{R} . Probar que, para cada $(t_0, x_0) \in \mathbb{R} \times \varphi(I)$, el problema

$$(P_{(t_0,x_0)}) \begin{cases} x' = g(x) \\ x(t_0) = x_0 \end{cases}$$

tiene solución maximal única, que además resulta ser una trasladada de φ.

(b) Realizar un estudio lo más exhaustivo posible de las soluciones maximales de la ecuación

(E)
$$x' = x(e^{x-2} - 1)$$
,

y esbozar el aspecto de las gráficas de estas posibles soluciones.

En primer lugar, por ser $g \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$, se tiene $g \in \mathcal{C}(\mathbb{R}, \mathbb{R}) \cap \operatorname{Lip}_{\operatorname{loc}}(x, \mathbb{R}, \mathbb{R})$, así que el TEUL proporciona una solución local única del problema $(P_{(t_0, x_0)})$ que puede extenderse (de manera única por verificarse la PUG) a una solución maximal $\psi \colon J \to \mathbb{R}$.

Por otro lado, como $x_0 \in \varphi(I)$, existe $t_1 \in I$ tal que $x_0 = \varphi(t_1)$. Ahora se considera la función $\varphi_{t_0-t_1} \colon I + t_0 - t_1 \to \mathbb{R}$. dada por $\varphi_{t_0-t_1}(t) = \varphi(t-t_0+t_1)$. Entonces

- (i) $\varphi_{t_0-t_1}$ es derivable en $I+t_0-t_1$ por serlo φ .
- (ii) $\operatorname{gráf}(\varphi_{t_0-t_1}) \subset \mathbb{R}^2$.
- (iii) $\varphi'_{t_0-t_1}(t) = \varphi'(t-t_0+t_1) = g(\varphi(t-t_0+t_1)) = g(\varphi_{t_0-t_1}(t))$ para todo $t \in I + t_0 t_1$.
- (iv) $\varphi_{t_0-t_1}(t_0) = \varphi(t_1) = x_0$.

Además, $\varphi_{t_0-t_1}$ es una solución maximal de (E) por ser la traslación de una solución maximal de (E). Ahora bien, como $\varphi_{t_0-t_1}$ es solución de $(P_{(t_0,x_0)})$ y ψ es la única solución maximal de dicho problema, entonces $\psi=\varphi_{t_0-t_1}$, concluyéndose que $(P_{(t_0,x_0)})$ tiene solución maximal única, y resulta ser una trasladada de φ .

Para el apartado segundo, considérese la función $g: \mathbb{R} \to \mathbb{R}$ dada por $g(x) = x(e^{x-2} - 1)$. Se observa que $x(e^{x-2} - 1) = 0$ si y solo si x = 0 o x = 2, luego $\varphi_0 \equiv 0$ y $\varphi_2 \equiv 2$ son las únicas soluciones constantes de (E) $x' = x(e^{x-2} - 1)$, definidas en \mathbb{R} . Como además (E) verifica la PUG, cualquier solución maximal distinta de las anteriores es estrictamente monótona, y su gráfica está contenida en una de las siguientes regiones:

$$D_1 = \mathbb{R} \times (-\infty, 0),$$
 $D_2 = \mathbb{R} \times (0, 2)$ o $D_3 = \mathbb{R} \times (2, \infty)$

Sea $\varphi\colon I\to\mathbb{R}$ una solución maximal no constante de la ecuación (E). Como \mathbb{R}^2 es abierto, el resultado sobre soluciones maximales con gráficas en abiertos permite afirmar que I=(a,b), con $-\infty \le a < b \le \infty$. También por dicho resultado, teniendo en cuenta que la frontera de \mathbb{R}^2 es vacía, puede afirmarse que lím $_{t\to t^*}|\varphi(t)|=\infty$, siendo t^* un extremo finito de (a,b) (en caso de haberlo). Se distinguen tres casos:

(i) $\operatorname{gr\'{a}f}(\varphi) \subset D_1$. Entonces $\varphi(t) < 0$ y $e^{\varphi(t)-2} < 1$, así que $\varphi'(t) = \varphi(t)(e^{\varphi(t)-2}-1) > 0$ para todo $t \in (a,b)$ y, en consecuencia, φ es estrictamente creciente. Además, si t^* fuese un extremo finito de (a,b), entonces $\lim_{t\to t^*}|\varphi(t)|=\infty$, o, equivalentemente, $\lim_{t\to t^*}\varphi(t)=-\infty$. Por ser φ estrictamente creciente, esto no sería posible para $t^*=b$, luego $b=\infty$. Obsérvese también que $B=\lim_{t\to\infty}\varphi(t)=0$ (si fuese $B<0\in\mathbb{R}$ entonces tendríamos una solución constante de (E) diferente de las anteriores; tampoco es $B=-\infty$ por el crecimiento de φ). En el lado izquierdo, podría ser $a=-\infty$ o $a>-\infty$, pero, en cualquier caso, $A=\lim_{t\to a^+}\varphi(t)=-\infty$ (en efecto, A no podría ser un número real negativo porque obtendríamos otra solución constante de (E); tampoco puede ser cero por ser φ estrictamente creciente). En resumen, o bien se tiene

$$a=-\infty$$
, $A=-\infty$, $b=\infty$ y $B=0$,

o bien

$$a > -\infty$$
, $A = -\infty$, $b = \infty$ y $B = 0$,

(ii) gráf $(\varphi) \subset D_2$. Como la gráfica de φ está entre la gráfica de dos soluciones constantes, debe ser $I=\mathbb{R}$. Además, como $\varphi(t)>0$ y $e^{\varphi(t)-2}<1$, entonces $\varphi'(t)<0$ para todo $t\in(a,b)$, luego φ es estrictamente decreciente. En consecuencia, $A=\lim_{t\to\infty}\varphi(t)=2$ y $B=\lim_{t\to\infty}\varphi(t)=0$. La conclusión de este caso es

$$a = -\infty$$
, $A = 2$, $b = \infty$ y $B = 0$

(iii) $\operatorname{gr\'{a}f}(\varphi) \subset D_3$. Entonces $\varphi(t) > 0$ y $e^{\varphi(t)-2} > 1$, así que $\varphi'(t) = \varphi(t)(e^{\varphi(t)-2}-1) > 0$ para todo $t \in (a,b)$ y, en consecuencia, φ es estrictamente creciente. Además, si t^* fuese un extremo finito de (a,b), entonces $\lim_{t \to t^*} |\varphi(t)| = \infty$, o, equivalentemente, $\lim_{t \to t^*} \varphi(t) = \infty$. Por ser φ estrictamente creciente, esto no sería posible para $t^* = a$, luego $a = -\infty$. Obsérvese también que $A = \lim_{t \to -\infty} \varphi(t) = 2$ (si fuese $A > 2 \in \mathbb{R}$ entonces tendríamos una solución constante de (E) diferente de las anteriores; tampoco es $A = \infty$ por el crecimiento de φ). En el lado derecho, podría ser $b = \infty$ o $b < \infty$, pero, en cualquier caso, $B = \lim_{t \to b^-} \varphi(t) = \infty$ (en efecto, B no podría ser un número real positivo porque obtendríamos otra solución constante de (E); tampoco puede ser 2 por ser φ estrictamente creciente). En resumen, o bien se tiene

$$a = -\infty$$
, $A = 2$, $b = \infty$ y $B = \infty$,

o bien

$$a=-\infty$$
, $A=2$, $b<\infty$ y $B=\infty$,

3. Sean

$$A(t) = \begin{pmatrix} a(t) & 1 \\ -1 & 1 \end{pmatrix} \qquad \text{y} \qquad b(t) = \begin{pmatrix} e^{2t-2} \\ -e^{2t-2} \end{pmatrix}$$

funciones matriciales definidas en \mathbb{R} , con $a \in \mathcal{C}(\mathbb{R}, \mathbb{R})$. Consideremos el sistema

$$(S)$$
 $x' = Ax + b$

y el sistema homogéneo asociado,

$$(S_H)$$
 $x' = Ax$

(a) Probar que (S_H) tiene una única matriz fundamental Φ tal que

$$\Phi(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Para a constante, dar el aspecto de Φ (no calcularla).

- (b) Dar una condición necesaria y suficiente para que cualquier matriz fundamental de (S_H) tenga determinante constante.
- (c) En el caso en que a(t) = 3 para todo $t \in \mathbb{R}$, dar la solución del sistema (S) que satisface

$$x(1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Sea Ψ una matriz fundamental cualquiera de (S_H) (existe porque el conjunto de soluciones de (S_H) es un subespacio vectorial bidimensional de $\mathcal{C}^1(\mathbb{R},\mathbb{R})$, así que posee una base cuyos vectores constituyen una matriz fundamental). Considérese la matriz $\Phi(t) = \Psi(t)\Psi^{-1}(1)$. Como $\Psi^{-1}(1)$ es una matriz invertible, tenemos que Φ es también matriz fundamental de (S_H) , y además verifica $\Phi(1) = \Psi(1)\Psi^{-1}(1) = \mathrm{Id}$. Para probar la unicidad, supóngase que Θ es otra matriz fundamental

de (S_H) con $\Theta(1)=$ Id. Entonces existe $C\in\mathcal{M}_2(\mathbb{R})$ invertible y tal que $\Theta=\Phi C$. Evaluando en 1, se obtiene $\Theta(1)=\Phi(1)C=C=$ Id, deduciéndose que $\Theta=\Phi\cdot \mathrm{Id}=\Phi.$ Además, si a es constante, entonces A también lo es, así que la matriz fundamental canónica en 1 es $\Phi(t)=e^{(t-1)A}$.

En cuanto al apartado (b), una matriz fundamental de (S_H) tiene determinante constante si y solo si a(t)=-1 para todo $t\in\mathbb{R}$. En efecto, fijando $t_0\in\mathbb{R}$, por la fórmula de Abel-Liouville-Jacobi, para cada $t\in\mathbb{R}$ se tiene

$$(\det \Phi)'(t) = \operatorname{tr}(A(t))(\det \Phi)(t),$$

y como det $\Phi(t) \neq 0$ para todo $t \in \mathbb{R}$ por ser Φ matriz fundamental, entonces Φ tiene determinante constante si y solo si tr(A(t)) = 0 para todo $t \in \mathbb{R}$, es decir, si y solo si a(t) = -1 para todo $t \in \mathbb{R}$.

Por último, supóngase que a(t)=3 para todo $t\in\mathbb{R}$. La ecuación (S) es una ecuación lineal de coeficientes constantes, así que el problema

$$(P) \begin{cases} x'(t) = Ax(t) + b(t) \\ x(t_0) = x^0 \end{cases}$$

tiene solución única en R, donde

$$A(t) = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \qquad b(t) = \begin{pmatrix} e^{2t-2} \\ -e^{2t-2} \end{pmatrix} \qquad t_0 = 1 \qquad x^0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Dicha solución viene dada por

$$\varphi(t) = e^{(t-1)A} x^0 + \int_1^t e^{(t-s)A} b(s) \, ds,$$

así que la resolución del problema se reduce al cálculo de la exponencial de la matriz A.

Se va a tratar de hallar la forma canónica de Jordan *J* asociada a la matriz *A*. Primero se calculan los autovalores:

$$\det(A - \lambda \operatorname{Id}) = 0 \iff (3 - \lambda)(1 - \lambda) + 1 = 0 \iff \lambda^2 - 4\lambda + 4 = 0 \iff (\lambda - 2)^2 = 0$$

Se observa que el único autovalor de A es $\lambda=2$, de multiplicidad 2. Para hallar dim ker $(A-2\mathrm{Id})$, se resuelve el sistema $(A-2\mathrm{Id})X=0$. Se tiene que

$$(A - 2Id)X = 0 \iff \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \iff \begin{cases} x_1 + x_2 = 0 \\ -x_1 - x_2 = 0 \end{cases} \iff x_1 = -x_2$$

En consecuencia, dim ker(A - 2Id) = 1, así que J posee una sola caja del tipo $D_r(2)$, y esta caja ha de ser de tamaño 2. Se tiene entonces

$$J = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

Ahora hay que hallar la matriz de paso, es decir, la matriz $P \in \mathcal{M}_2(\mathbb{R})$ inversible verificando AP = PJ. Se tiene que

$$AP = PJ \iff A \begin{pmatrix} P_1 & P_2 \end{pmatrix} = \begin{pmatrix} P_1 & P_2 \end{pmatrix} J \iff \begin{pmatrix} AP_1 & AP_2 \end{pmatrix} = \begin{pmatrix} 2P_1 & P_1 + P_2 \end{pmatrix} \iff \begin{cases} (A - 2\operatorname{Id})P_1 = 0 \\ (A - \operatorname{Id})P_2 = P_1 \end{cases}$$

Por tanto, P_1 es solución del sistema (A - 2Id)X = 0, que ya ha sido resuelto. Se puede tomar, por ejemplo,

$$P_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Por otro lado, P_2 es solución del sistema $(A - \operatorname{Id})X = P_1$, que se resuelve fácilmente por el método de Gauss para proporcionar, por ejemplo,

$$P_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Tenemos entonces AP = PJ, o, equivalentemente, $A = PJP^{-1}$, luego la exponencial de tA sería, para cada $t \in \mathbb{R}$,

$$e^{tA} = Pe^{tJ}P^{-1} = e^{2t}\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = e^{2t}\begin{pmatrix} 1 & t+1 \\ -1 & -t \end{pmatrix}\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = e^{2t}\begin{pmatrix} t+1 & t \\ -t & 1-t \end{pmatrix},$$

concluyéndose que la única solución de (P) en \mathbb{R} es

$$\begin{split} \varphi(t) &= e^{(t-1)A}x^0 + \int_1^t e^{(t-s)A}b(s)\,ds \\ &= e^{2t-2}\binom{t}{1-t} \frac{t-1}{2-t}\binom{1}{1} + \int_1^t e^{2t-2s}\binom{t-s+1}{s-t} \frac{t-s}{s-t}\binom{e^{2s-2}}{1+s-t}\,ds \\ &= e^{2t-2}\binom{2t-1}{3-2t} + \int_1^t \binom{t-s+1}{s-t} \frac{t-s}{1+s-t}\binom{e^{2t-2}}{-e^{2t-2}}\,ds \\ &= e^{2t-2}\binom{2t-1}{3-2t} + \int_1^t \binom{e^{2t-2}(t-s)+e^{2t-2}-e^{2t-2}(t-s)}{e^{2t-2}(s-t)-e^{2t-2}-e^{2t-2}(s-t)}\,ds \\ &= e^{2t-2}\binom{2t-1}{3-2t} + \int_1^t \binom{e^{2t-2}}{-e^{2t-2}}\,ds \\ &= e^{2t-2}\binom{2t-1}{3-2t} + \left[\binom{se^{2t-2}}{-se^{2t-2}}\right]_1^t \\ &= e^{2t-2}\binom{2t-1}{3-2t} + \binom{te^{2t-2}}{-te^{2t-2}} + \binom{-e^{2t-2}}{e^{2t-2}} \\ &= e^{2t-2}\binom{3t-2}{4-3t} \end{split}$$