Ниценко Снежана Андреевна 25.Б82-мм

д/з 09-10-25

[1.1]

а) Для $A\subseteq B\cap C\Rightarrow A\subseteq B$ и $A\subseteq C$. Тогда \forall $\mathbf{x}\in A$ и $x\in B\cap C$, значит $x\in B$ и $x\in C$. Следовательно, $A\subseteq B$ и $A\subseteq C$.

Для $A\subseteq B$ и $A\subseteq C\Rightarrow A\subseteq B\cap C$. Тогда $\forall~x\in A$ имеем $x\in B$ и $x\in C$, значит $x\in B\cap C$. Следовательно, $A\subseteq B\cap C$.

б) Для $A\subseteq B\setminus C\Rightarrow A\subseteq B$ и $A\cap C=\varnothing$. Тогда $\forall~x\in A$ имеем $x\in B$ и $x\notin C$. Значит $A\subseteq B$ и $A\cap C=\varnothing$.

Для $A \subseteq B$ и $A \cap C = \emptyset \Rightarrow A \subseteq B \setminus C$. Тогда $\forall x \in A$ имеем $x \in B$ и $x \notin C$, значит $x \in B \setminus C$. Следовательно, $A \subseteq B \setminus C$.

[1.2]

а)] (пусть) $X \in \mathcal{P}(A \cap B)$. Тогда $X \subseteq A \cap B$, значит $X \subseteq A$ и $X \subseteq B$, следовательно $X \in \mathcal{P}(A)$ и $X \in \mathcal{P}(B)$, то есть $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

Обратно,] $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Тогда $X \in \mathcal{P}(A)$ и $X \in \mathcal{P}(B)$, значит $X \subseteq A$ и $X \subseteq B$, следовательно $X \subseteq A \cap B$, т.е. $X \in \mathcal{P}(A \cap B)$.

б)] $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Тогда $X \subseteq A$ или $X \subseteq B$, значит $X \subseteq A \cup B$, следовательно $X \in \mathcal{P}(A \cup B)$.

Пример строгого включения:] $A = \{a\}$, $B = \{b\}$. Тогда $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{a\}, \{b\}\}$, а $\mathcal{P}(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$.

в)] $X \in \mathcal{P}(A \setminus B)$. Тогда $X \subseteq A \setminus B$, значит $X \subseteq A$ и $X \cap B = \emptyset$.

Если $X = \emptyset$, то $X \in \{\emptyset\} \subset (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\emptyset\}$.

Если $X \neq \emptyset$, то $X \subseteq A$, но $X \not\subseteq B$ (так как $X \cap B = \emptyset$ и $X \neq \emptyset$), значит $X \in \mathcal{P}(A) \setminus \mathcal{P}(B)$.

Пример строгого включения:] $A = \{a,b\}$, $B = \{b\}$. Тогда $\mathcal{P}(A \setminus B) = \mathcal{P}(\{a\}) = \{\varnothing, \{a\}\}, a (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\varnothing\} = (\{\varnothing, \{a\}, \{b\}, \{a,b\}\} \setminus \{\varnothing, \{b\}\}) \cup \{\varnothing\} = \{\{a\}, \{a,b\},\varnothing\}.$

[1.4]

- (a) f(x) = 3x + 1: О.з. \mathbb{R} , инъективна (макс. 1 прообраз для каждого образа), сюръективна (f(x)=у разрешимо при любом x) \Rightarrow биективна.
- (б) $f(x) = x^2 + 1$: О.з. $[1, +\infty)$, не инъективна (f(x) = f(-x)), не сюръективна (не можем достичь отриц. значений).

- (в) $f(x) = x^3 1$: О.з. \mathbb{R} , инъективна (сущ. прообраз для каждого образа), сюръективна (f(x)=y) всегда разрешимо) \Rightarrow биективна.
- (г) $f(x) = e^x$: О.з. $(0, +\infty)$, инъективна (прообраз для каждого образа), не сюръективна (не можем достичь отриц. значений).
- (д) $f(x) = \sqrt{3x^2 + 1}$: О.з. $[1, +\infty)$, не инъективна (f(x) = f(-x)), не сюръективна (не можем получить отриц. значения).
- (e) $f(x) = \sin x$ на $[-\pi/2, \pi/2]$: О.з. [-1, 1], инъективна (строго возрастает на заданном промежутке), не сюръективна (не получаем значения меньше -1 и больше 1).
- (ж) $f(x) = \sin x$ на $[0, \pi]$: О.з. [0, 1], не инъективна $(f(\pi/3) = f(2\pi/3))$, не сюръективна.
- (3) $f(x) = \sin x$ на $\mathbb{R} \to [-1,1]$: О.з. [-1,1], не инъективна (sin периодичен), сюръективна (все зн. [-1,1] достигаются).
- (и) $f(x) = x^2 \sin x$: О.з. \mathbb{R} , не инъективна $(f(0) = f(\pi))$, сюръективна (для каждого у сущ. x).

$$[1.5] g \circ f = f(g(x))$$

- (a) Неверно. $f(x) = x, g(x) = x^2$. $g \circ f = x^2$ не инъективна.
- (б) Верно. $g(x) = x, f(x) = x. g \circ f = x$ сюръективна.
- (в) Верно. f(x) = x, g(x) = x + 1. $g \circ f = x + 1$ биективна.
- (г) Неверно. Если $A = \{x\}, B = \{y, z\}, C = \{u\}, g(x) = y \Rightarrow f(y) = u, f(z) = u.$
- (д) Верно.] $g(x_1)=g(x_2)$. $\Rightarrow f(g(x_1))=f(g(x_2))$, значит $(g\circ f)(x_1)=(g\circ f)(x_2)$. Так как $g\circ f$ инъективна, $x_1=x_2$.
- (е) Неверно. $A=\{x,y\},\ B=\{z,w\},\ C=\{u\},\ g(x)=z,\ g(y)=w,\ f(z)=u,\ f(w)=u.$ $\Rightarrow g\circ f$ сюръективна, но f не сюръективна.