

Classic finite differences

Yuji Nakatsukasa

Many slides by Ricardo Ruiz Baier Mathematical Institute, Oxford

Computational Techniques InFoMM Centre for Doctoral Training Michaelmas Term 2019, Week 6

Plan

Monday: Finite differences

Tuesday: Finite differences + intro to Finite elements

Wednesday: Finite elements

• Thurs: Finite elements, Demo on FEniCS by Federico Danieli

Plan for FD

- 1. Approximating derivatives from samples
- 2. Global error: u from u_{tt}
- 3. ODEs: Euler, Runge-Kutta, time-step stability
- 4. PDEs: time-space discretisation stability

- Generalities
 - Often a closed-form solution for an ODE or a PDE cannot be derived explicitly and one has to resort to other techniques
 - Numerically computed solutions could be obtained
 - We proceed to discretize the problem, e.g. via finite differences
 - 1. represent the continuous space-time domain with a finite set of points
 - 2. replace differential operators with difference quotients
 - 3. determine the value of functions and coefficients on the points
 - 4. provide an approximation of the solution to the original problem
 - want more accuracy? no (easy) way around: use more points/computing

$$\begin{array}{l} \text{original PDE} \xrightarrow{\text{Finite differences}} \xrightarrow{\text{Discrete difference}} \xrightarrow{\text{Solution method}} \{u_{i,j,k}^n\} \approx u(x,t) \end{array}$$

OXFORD Mathematica Institute

Philosophy

- Rather simple to understand
- Easy to implement for regular domains
- Discretization is point-wise fundamental tool: Taylor expansion
- Many fast solvers and packages (Fishpack, ClawPack, etc)
- Strong regularity requirements

Further reading (highly recommended)

LeVeque, Finite Difference Methods for ODEs and PDEs. SIAM 2007. Particularly Chapters 1, 2, and 9.

Others: Hairer(-Norsett)-Wanner (Classic), Iserles, Suli and Mayers

Properly define continuous functions and variables on the grid, e.g.

 $u(x_{ijk},t^n)$, to be approximated by u_{ijk}^n

UXTOTA Mathematics CDT InFoMM MT W6 2019 Finite differences MT-2019

The finite difference (FD) method Philosophy

Let's slow down: 1D first...

Philosophy

• For v regular enough, Taylor's Theorem gives

$$v(x + \Delta x) = v(x) + \Delta x v'(x) + \frac{\Delta x^2}{2!} v''(x) + \frac{\Delta x^3}{3!} v^{(3)}(x) + \frac{\Delta x^4}{4!} v^{(4)}(x) + \cdots$$
$$v(x - \Delta x) = v(x) - \Delta x v'(x) + \frac{\Delta x^2}{2!} v''(x) - \frac{\Delta x^3}{3!} v^{(3)}(x) + \frac{\Delta x^4}{4!} v^{(4)}(x) + \cdots$$

• Then, for sufficiently small Δx , one has

$$\frac{v(x+\Delta x)-v(x)}{\Delta x}=v'(x)+\mathscr{O}(\Delta x),\ \frac{v(x+\Delta x)-v(x-\Delta x)}{2\Delta x}=v'(x)+\mathscr{O}(\Delta x^2),$$
$$\frac{v(x+\Delta x)-2v(x)+v(x-\Delta x)}{\Delta x^2}=v''(x)+\mathscr{O}(\Delta x^2)$$

Definition

A term $E(\Delta x)$ is $\mathscr{O}(\Delta x^p)$ if $\frac{E(\Delta x)}{\Delta x^p} \to \text{const.}$ when $\Delta x \to 0$

Oxford Adhematics CDT InFoMM MT W6 2019 Finite differences MT-2019

Philosophy

• Replace a continuous partial differential operator (in this case, only ∂_x) with a **finite difference** operator:

$$\begin{split} \partial_x \, u|_{(x_i,t^n)} &\approx \frac{u_{i+1}^n - u_i^n}{x_{i+1} - x_i} &= \frac{u_{i+1}^n - u_i^n}{\Delta x} & \text{(forward difference)} \\ \partial_x \, u|_{(x_i,t^n)} &\approx \frac{u_i^n - u_{i-1}^n}{x_i - x_{i-1}} &= \frac{u_i^n - u_{i-1}^n}{\Delta x} & \text{(backward difference)} \\ \partial_x \, u|_{(x_i,t^n)} &\approx \frac{u_{i+1}^n - u_{i-1}^n}{x_{i+1} - x_{i-1}} &= \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} & \text{(central difference)} \end{split}$$

- Leading error term in the first two formulae is proportional to Δx while in the third formula is proportional to $(\Delta x)^2$
- Useful derivation: interpolate sample points with lowest-degree polynomial $p(x_i) = u(x_i)$, and take p'(x) (check all above in this form)

Oxford CDT InFoMM MT W6 2019

Philosophy

- Philosophy
- From now on, $\Delta x = h$
- Central differences not only on one point:
- For each $x_2, ..., x_m$ can approximate $u'(x_i)$ in the same way, so that

$$u'\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_m \\ x_{m+1} \end{pmatrix} \approx \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_m \\ v_{m+1} \end{pmatrix} = \frac{1}{h}\begin{pmatrix} \frac{1}{2} & 0 & \frac{-1}{2} & & & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{-1}{2} & & & \\ & \frac{1}{2} & 0 & \frac{-1}{2} & & \\ & -1 & \ddots & \ddots & \ddots & -1 \\ \frac{-1}{2} & & & \frac{1}{2} & 0 & \frac{-1}{2} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \\ u_{m+1} \end{pmatrix}$$

- But what about v_1 and v_{m+1} ?
 - Use one-sided difference (backwards / forwards).
 - For periodic problems, $u_0 = u_{m+1}$ and $u_{m+2} = u_1$.
 - Often boundary conditions remove this problem anyway.

OXFORD Mathematica

- Philosophy
- From now on, $\Delta x = h$
- Central differences not only on one point:
- For each $x_2, ..., x_m$ can approximate $u'(x_i)$ in the same way, so that

$$u'\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_m \\ x_{m+1} \end{pmatrix} \approx \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_m \\ v_{m+1} \end{pmatrix} = \frac{1}{h}\begin{pmatrix} \frac{1}{2} & -1 & & & \frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} & & & \\ & \frac{1}{2} & 0 & -\frac{1}{2} & & \\ & & \ddots & \ddots & \ddots & \\ & & & \frac{1}{2} & 0 & -\frac{1}{2} \\ & & & & 1 & -1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \\ u_{m+1} \end{pmatrix}$$

- But what about v_1 and v_{m+1} ?
 - Use one-sided difference (backwards / forwards).
 - For periodic problems, $u_0 = u_{m+1}$ and $u_{m+2} = u_1$.
 - Often boundary conditions remove this problem anyway.

OXFORD Mathematical

Philosophy

- From now on, $\Delta x = h$
- Central differences not only on one point:
- For each $x_2, ..., x_m$ can approximate $u'(x_i)$ in the same way, so that

- But what about v_1 and v_{m+1} ?
 - Use one-sided difference (backwards / forwards).
 - For periodic problems, $u_0 = u_{m+1}$ and $u_{m+2} = u_1$.
 - Often boundary conditions remove this problem anyway.

OXFORD Mathematica

- Philosophy
- From now on, $\Delta x = h$
- Central differences not only on one point:
- For each $x_2, ..., x_m$ can approximate $u'(x_i)$ in the same way, so that

$$u'\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_m \\ x_{m+1} \end{pmatrix} \approx \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_m \\ v_{m+1} \end{pmatrix} = \frac{1}{h}\begin{pmatrix} \frac{h}{\frac{1}{2}} & 0 & \frac{-1}{2} & & & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{-1}{2} & & & \\ & \frac{1}{2} & 0 & \frac{-1}{2} & & & \\ & -1 & \ddots & \ddots & \ddots & -1 \\ & & & \frac{1}{2} & 0 & \frac{-1}{2} \\ & & & & h \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \\ u_{m+1} \end{pmatrix}$$

- But what about v_1 and v_{m+1} ?
 - Use one-sided difference (backwards / forwards).
 - For periodic problems, $u_0 = u_{m+1}$ and $u_{m+2} = u_1$.
 - Often boundary conditions remove this problem anyway.

 The derivative of the derivative: use e.g. backward difference of the forward difference

$$u_{xx}(x_i, t^n) \approx \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2}$$

• Using the previous " $O(\cdot)$ "-stuff

Second derivatives

$$u_{xx}(x_i,t^n) = \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2} + O(h^2)$$

- The approximation is second-order accurate: as we go down with h, the error goes down quadratically
- Replace h with h/2, error should divide by four (for smooth enough u)
- As before, interpolate $p(x_i) = f(x_k)$ and take p''(x)

The finite difference (FD) method Second derivatives

Drop the time-dependence for a sec

- If $x \in \Omega = [a,b]$ and $u(a) = u_1 = \alpha$ and $u(b) = u_{m+1} = \beta$
- The classic "1 -2 1" rule at each point can be implemented as

```
>> h=(b-a)/m; x=(a:h:b)';
>> u=sin(x); u(1)=alpha; u(m+1)=beta;
>> for i=2:m
>> uxx(i)=(u(i+1)-2*u(i)+u(i-1))/h^2;
>> end
```

OXFORD Mathematica

Second derivatives

- In matrix form:
- matrix-vector multiplication ↔ evaluation of differential operator (1D Laplace)

implemented as

```
>> e=ones(m-1,1);
>> A=spdiags([e,-2*e,e],(-1:1),m-1,m-1);
>> bc=[ ... ]
>> uxx(2:m)=1.0/h^2*A*u(2:m)+bc;
```

A finite difference discretization

One-D steady problem: find u such that

$$-\kappa \partial_{xx} u = f$$

- with boundary conditions as appropriate
- f is a forcing term
- again the matrix structure

i.e., $A\vec{u} = \vec{f}$, with **unknown** \vec{u} and datum \vec{f}

 \rightarrow Tridiagonal linear system \rightarrow O(n) time solution

OXFORD Mathematica

Steady case - Experimental error

- The "1 -2 1" rule was $O(h^2)$ for evaluating the 2nd derivative. Will it still be so after solving $A\vec{u} = \vec{f}$?
- Example: $-\partial_{xx}u = f$ in [a,b]

```
>> h=(b-a)/m; x=(a:h:b)';
```

• with BC (matrix is now $m+1 \times m+1$ and has a "-" in front)

```
>> e=ones(m+1,1);
>> A=spdiags([-e,2*e,-e],(-1:1),m+1,m+1);
>> A(1,:)=zeros(1,m+1); A(1,1)=1; A(m+1,:)=zeros(1,m+1); A(m+1,m+1)=1;
>> f=@(x)[...]; b=h^2*f(x); b(1)=alpha; b(m+1)=beta;
>> u=A\b; plot(x,u);
```

• checking the error (if you know the exact solution)

```
>> uex=@(x)[...]; UEX=uex(x);
>> err=max(abs(UEX-u));
```

Steady case - Experimental error

- Let's try!! $\Omega = [0,10]$, $f(x) = 2\cos(x)/\exp(x)$. BC: $u = g(x) = \sin(x)/\exp(x)$ on $\partial\Omega$, exact sol: $u_{\text{ex}}(x) = \sin(x)/\exp(x)$
- with m = 40 we should get err=0.0089 (or so)

take m = 10, 20, 40, 80, 160, solve the Poisson problem and plot errors vs h, to check that they decay as h^2

OXFORD Mathematica

Error splitting

- OK! The "1 -2 1" rule was $O(h^2)$ also for solving $A\vec{u} = \vec{f}$
- But, what kind of "error" are we measuring?
- See diagram!
- How do we ensure that these decrease when $h \rightarrow 0$ (convergence)?
- First we need consistency and stability
- Waving hands:
 - Substitute the true solution in the discrete problem. The remainder is called (local) truncation error. The method is consistent if the truncation error goes to zero as $h \to 0$
 - Stability: small perturbation of the data implies perturbed solutions independently of h (e.g. $A_h \vec{u}_h = \vec{f}$ is stable if $||A_h^{-1}|| \le C$)
 - e.g. in previous diffusion eqn, stability holds
- Consistency + Stability ⇒ Convergence (more to come)

A few basic examples for $\partial_t u = f(t, u)$, $u(0) = y_0$ • Grid in time $t_n = n\Delta t$, with a (fixed) time step Δt

Forward Euler

$$\begin{cases}
 u_{n+1} = u_n + \Delta t f(t_n, u_n) & n \ge 0, \\
 u_0 = y_0.
\end{cases}$$
(1)

Backward Fuler

$$\begin{cases} u_{n+1} = u_n + \Delta t f(t_{n+1}, u_{n+1}) & n \ge 0, \\ u_0 = y_0. \end{cases}$$
 (2)

 \rightarrow Implicit method as updating of u_{n+1} involves itself, requires linear system

Midpoint rule

$$\begin{cases} u_{n+1} = u_{n-1} + 2\Delta t f(t_n, u_n), & n \ge 1, \\ u_0 = y_0, u_1 = y_1, & \text{(data or approx.)}. \end{cases}$$
 (3)

• $\partial_t u \approx$ by forward (1), backward (2), and centred (3) FDs

OXFORD Mathematica

A few more

• Crank-Nicolson (coming from trapezoid rule applied to the integral form)

$$\begin{cases} u_{n+1} = u_n + \frac{\Delta t}{2} [f(t_n, u_n) + f(t_{n+1}, u_{n+1})], & n \ge 0, \\ u_0 = y_0. \end{cases}$$

• Heun (obtained through forward Euler of u_{n+1} in the arg of f)

$$\begin{cases} u_{n+1} = u_n + \frac{\Delta t}{2} \left[f(t_n, u_n) + f(t_{n+1}, u_n + \Delta t f(t_n, u_n)) \right], & n \geq 0, \\ u_0 = y_0. \end{cases}$$

- These can be **explicit** (if u_{n+1} can be computed directly from u_k , $k \le n$) or **implicit**. The way we treat f is key (semi-implicit or IMEX methods also available)
- These can be one or multi-step

• Neat! But how do we choose Δt ?

 Δt and the choice of method do matter!

- Not arbitrarily!
- Consider

$$\begin{cases} u'(t) = -2u(t) & \text{for } t \in \mathbb{R}_+ \\ u(0) = 1, \end{cases}$$

exact solution

$$u(t) = e^{-2t}$$

• How do the first two methods behave?

Time-stepping methods for ODEs: Forward Euler

 Δt and the choice of method do matter!

Time-stepping methods for ODEs: Back Euler

 Δt and the choice of method do matter!

Definition

A method for the Dahlquist problem $\partial_t u = \lambda u(t), \ u(0) = 1$, with $\lambda \in \mathbb{C}$, is absolutely stable if $\exists \ (\Delta t)_0 > 0$ s.t. for all $\Delta t \leq (\Delta t)_0$

$$|u_n| \longrightarrow 0$$
 whenever $t_n \longrightarrow +\infty$.

If true for all $\Delta t > 0$, the method is unconditionally stable (or \mathscr{A} -stable)

- Exact sol $u(t) = e^{\lambda t} \to 0$. Take $\lambda < 0$.
- Forward Euler:

$$u_0 = 1, \quad u_{n+1} = u_n(1 + \lambda \Delta t) = (1 + \lambda \Delta t)^{n+1}, \quad n \ge 0.$$
 (4)

$$\Rightarrow \lim_{n\to\infty} u_n = 0$$
 iff

$$-1 < 1 + \Delta t \lambda < 1$$
, i.e. $\underbrace{\Delta t < 2/|\lambda|}_{\text{Stab. condition}}$ (5)

For fixed Δt , u_n behaves like $u(t_n)$ when $t_n \to \infty$.

OXFORD Mathematical

Absolute stability

	Explicit/Implicit	Steps	Stability	Order
FE	Е	1	Conditionally	1
BE	I	1	Unconditionally	1
MP	Е	2	Unstable	2
CN	I	1	Unconditionally	2
Н	Е	1	Conditionally	2

Roughly, for linear problems

- (good) implicit methods: stable but requires Ax = b
- explicit methods: only needs matrix-vector multiply Ax, but limited stability

OXFORD Mathematical

- If $\lambda = \lambda(t) < 0$ then $|\lambda| \leftarrow \max_{t \in [0,\infty)} |\lambda(t)|$ in the stability condition
- Generalization I

$$\begin{cases}
 u'(t) = \lambda(t)u(t) + r(t), & t \in (0, +\infty), \\
 u(0) = 1,
\end{cases}$$
(6)

with λ, r continuous and $-\lambda_{max} \leq \lambda(t) \leq -\lambda_{min}$, $0 < \lambda_{min} \leq \lambda_{max} < +\infty$

• Generalization II: u' = f(t, u) if

$$-\lambda_{max} < \partial f/\partial u(t,u) < -\lambda_{min}, \forall t \geq 0, \ \forall u \in (-\infty,\infty),$$

with λ_{min} , $\lambda_{max} \in (0, +\infty)$.

• For generalizations I,II: a similar stability condition holds!!

OXFORD Mathematical

Stability regions

- The solution of the Dahlquist problem is $u(t) = \exp(\lambda t)$. If $\operatorname{Re}(\lambda) < 0$ then $\lim_{t \to +\infty} |u(t)| = 0$.
- The absolute stability region \mathscr{A} is then $\Delta t \lambda$ s.t. the method produces solutions that tend to zero when $t_n \to \infty$
- The method is A-stable (or unconditionally stable) if
 A∩C⁻ = C⁻

Figure: Stability regions.

Runge-Kutta methods

- Use 'intermediate' steps to obtain higher order
- Most famous is 4th stage, 4th order

$$u_{n+1} = u_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4),$$

where

$$\begin{aligned} k_1 &= f(t_n, u_n) \\ k_2 &= f(t_n + \frac{1}{2}h, u_n + \frac{1}{2}hk_1), \\ k_3 &= f(t_n + \frac{1}{2}h, u_n + \frac{1}{2}hk_2), \\ k_4 &= f(t_n + h, u_n + hk_3) \end{aligned}$$

- Accuracy $O(h^4)$ (local accuracy $O(h^5)$)
- Above is explicit; implicit version available (J. Butcher's book)

Other time-stepping methods for ODEs

Not covered, but important

- Stability properties of ODE systems
- Multistep methods (Adams-Bashforth, Adams-Moulton etc): another higher-order method, uses mulliple time-step soln.
 - 2-step Adams-Bashforth

$$u_{n+2} = u_{n+1} + \frac{3}{2}hf(t_{n+1}, u_{n+1}) - \frac{3}{2}hf(t_n, u_n)$$

- To get started, requires multiple inivial values u_0, u_1 (computed using other methods)
- Stability analysis: Dahlquist's theorem (consistency+stability=convergence)
- Check LeVeque and/or other sources for more

Now to PDEs

The method of lines

The 1-D heat equation

$$\partial_t u - \kappa \partial_{xx} u = 0$$

Idea: **semi-discretize** this problem using our friend "1 -2 1"

which is an ODE system we can discretize in time (somewhat) independently!!

The heat equation $\partial_t u = \kappa \partial_{xx} u$ A finite difference discretization – Wait, but...

- ullet Previously we realized that the choice of Δt is important
- Now, how do we choose *h*?
- Are they "compatible"?
- How do we assess whether $u_i^n \to u_{ex}(x_i, t^n)$ when $h, \Delta t \to 0$?

The heat equation $\partial_t u = \kappa \partial_{xx} u$

A finite difference discretization – Some properties

Definition

A numerical scheme $\mathcal{L}(u_i^n) = 0$ for a given PDE $\mathcal{P}(u(x,t)) = 0$ is said *consistent* if the truncation error satisfies

$$\tau(h, \Delta t) \equiv \mathscr{P}(u(x, t)) - \mathscr{L}((u_i^n)_{i \le m+1}) \to 0, \text{ when } h, \Delta t \to 0.$$

The scheme is consistent of order (p,q) if $\tau(h,\Delta t) = \mathcal{O}(h^p) + \mathcal{O}(\Delta t^q)$.

Example

The explicit forward Euler method (for the heat eqn.) is consistent of order (2,1) (next slide):

$$\partial_t u - \kappa \partial_{xx} u - \left(\frac{u_i^{n+1} - u_i^n}{\Delta t} - \kappa \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2} \right) = \mathcal{O}(h^2) + \mathcal{O}(\Delta t)$$

Explicit forward Euler for heat equation $\partial_t u = \partial_{xx} u$

$$u_i^{n+1} = u_i^n + \Delta t \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2}$$

•
$$\frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2} = \partial_{xx}u + \frac{h^2}{12}\partial_{xxxx}u + O(h^3) = \partial_t u + \frac{h^2}{12}\partial_{tt}u + O(h^3)$$

- Hence $u_i^{n+1} = u_i^n + \Delta t \partial_t u + \frac{h^2 \Delta t}{12} \partial_{tt} u + O(h^3)$
- Local error:

$$u_i^{n+1} - (u_i^n + \Delta t \partial_t u + \frac{(\Delta t)^2}{2} \partial_{tt} u) = \frac{h^2 \Delta t}{12} \partial_{tt} u - \frac{(\Delta t)^2}{2} \partial_{tt} u$$
$$= O(h^2 \Delta t + (\Delta t)^2)$$

• Since $O(1/\Delta t)$ timesteps taken, global error $O(h^2 + \Delta t)$

OXFORD Mathematical

A finite difference discretization – Some properties

- Solution for difference eqn. of the form: $u_i^n = \rho^n \exp(2\pi i \ell x_i)$
- ℓ : discrete Fourier harmonics, ρ : amplification factor

von Neumann criterion

A numerical scheme for an evolution eqn. is stable if and only if its largest amplification factor satisfies

$$|\rho| \leq 1 + \mathscr{O}(\Delta t).$$

Remark

- The explicit forward Euler method is stable if $\Delta t \leqslant rac{h^2}{2\kappa}$
- The implicit backward Euler scheme is unconditionally stable!

Lax principle

Definition (Convergence)

A scheme is convergent if $u_i^n \to u(x_i, t^n)$ when $h, \Delta t \to 0$

Theorem (Lax principle)

 $Consistency + Stability \Rightarrow Convergence$

valid only in the nice linear case... (but appilcable to PDEs, not just ODEs)

Crank-Nicolson method

March in time using two points

$$(1 - \frac{r}{2}\delta_x^2)U_m^{n+1} = (1 + \frac{r}{2}\delta_x^2)U_m^n$$

where U_m^n is approximation to u(nk, mh) and $r = k/h^2$.

- unconditionally stable, just like backward Euler
- but often exhibit spurious oscillations

The heat equation in multi-D

Generalities

Let $\Omega \subset \mathbb{R}^3$ with smooth boundary $\partial \Omega = \Gamma_D \dot{\cup} \Gamma_N$. One seeks to solve

$$\begin{aligned} \partial_t u - \operatorname{div}(\kappa \nabla u) &= f & t > 0, \ \mathbf{x} \in \Omega, \\ (\kappa \nabla u) \cdot \mathbf{n} &= g & t > 0, \ \mathbf{x} \in \Gamma_N, \\ u &= u_D & t > 0, \ \mathbf{x} \in \Gamma_D, \\ u(\mathbf{x}, 0) &= u_0(\mathbf{x}) & \mathbf{x} \in \Omega. \end{aligned}$$

where

- u = u(x, t): temperature field (scalar) at given space-time
- $\kappa = \kappa(x, t)$: heat capacity (known)
- f = f(x, t): internal heat generation (known)
- g ds: prescribed heat flux through $ds \subset \Gamma_N$
- u_D : prescribed temperature on Γ_D

Properly define continuous functions and variables on the grid, e.g.

 $u(x_{ijk},t^n)$, to be approximated by u_{ijk}^n

Oxford Additional CDT InFoMM MT W6 2019 Finite differences MT-2019

The heat equation in multi-D

OXFORD Mathematica

A finite difference discretization

Many alternatives available, depending on how we approximate $\partial_t u$, $\operatorname{div}(\kappa \nabla u)$. We list two (and restrict ourselves to constant κ and $\partial \Omega = \Gamma_D$)

• Explicit forward Euler scheme (forward D in time, centered D in space):

$$\begin{split} \frac{u_{i,j,k}^{n+1} - u_{i,j,k}^n}{\Delta t} - \kappa \left(\frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{(\Delta x)^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{(\Delta y)^2} \right. \\ & + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{(\Delta z)^2} \right) = & f_{i,j,k}^n, \end{split}$$

for $n=1,\ldots$ and for all $2\leqslant i\leqslant m_{_{\!\it X}},\ 2\leqslant j\leqslant m_{_{\!\it Y}},\ 2\leqslant k\leqslant m_{_{\it Z}}$ (interior)

- $u_{i,j,k}^0 = u_0(x_{i,j,k})$
- $u_{1,j,k}^n = u_D(x_{1,j,k})$, n = 0,... Analogously for the remaining borders
- Only function evaluations are incurred at each time step

OXFORD Mathematical

A finite difference discretization

• Implicit backward Euler scheme (backward D in time, centered D in space):

$$\begin{split} \frac{u_{i,j,k}^{n+1} - u_{i,j,k}^n}{\Delta t} - \kappa \left(\frac{u_{i-1,j,k}^{n+1} - 2u_{i,j,k}^{n+1} + u_{i+1,j,k}^{n+1}}{(\Delta x)^2} + \frac{u_{i,j-1,k}^{n+1} - 2u_{i,j,k}^{n+1} + u_{i,j+1,k}^{n+1}}{(\Delta y)^2} \right. \\ & + \frac{u_{i,j,k-1}^{n+1} - 2u_{i,j,k}^{n+1} + u_{i,j,k+1}^{n+1}}{(\Delta z)^2} \right) = & f_{i,j,k}^{n+1}, \end{split}$$

for $n=1,\ldots$ and for all $2\leqslant i\leqslant m_x$, $2\leqslant j\leqslant m_y$, $2\leqslant k\leqslant m_z$ (interior)

- $u_{i,j,k}^0 = u_0(x_{i,j,k})$
- $u_{1,j,k}^n = u_D(x_{1,j,k})$, n = 0,... Analogously for the remaining borders
- The solution of a system is required at each time step

A finite difference discretization – Doing the actual solving in 3-D

- A node located at (x_i, y_j, z_k) will be stored in the position s, in U s = (k 1)*mx*my + (j 1)*mx + i;
- Backward Euler on uniform grid: $(\mathbb{I} \kappa \frac{\Delta t}{h^2} \mathbb{A}) U^{n+1} = U^n + F^{n+1}$
- $D_{\ell} \in \mathbb{R}^{m-1 \times m-1}$, $E_{\ell} \in \mathbb{R}^{(m-1)^2 \times (m-1)^2}$, $G_{\ell} \in \mathbb{R}^{(m-1)^3 \times (m-1)^3}$, $I \in \mathbb{R}^{m-1 \times m-1}$, $J \in \mathbb{R}^{(m-1)^2 \times (m-1)^2}$

$$\bullet \ \ D_{\ell} = \begin{pmatrix} -\ell & 1 & 0 & 0 & \cdots & 0 \\ 1 & -\ell & 1 & 0 & \cdots & 0 \\ & & \ddots & & & \\ 0 & 0 & 0 & 1 & -\ell & 1 \end{pmatrix}, \ E_{\ell} = \begin{pmatrix} D_{\ell} & I & 0 & 0 & \cdots & 0 \\ I & D_{\ell} & I & 0 & \cdots & 0 \\ & & \ddots & & & \\ 0 & 0 & 0 & I & D_{\ell} & I \end{pmatrix}$$

$$G_{\ell} = \begin{pmatrix} E_{\ell} & J & 0 & 0 & \cdots & 0 \\ J & E_{\ell} & J & 0 & \cdots & 0 \\ & & \ddots & & & \\ 0 & 0 & 0 & J & E_{\ell} & J \end{pmatrix}. \text{ For 1-D: } \mathbb{A} = D_{2}, \text{ for 2-D: } \mathbb{A} = E_{4}, \text{ for 3-D: } \mathbb{A} = G_{6}$$

• Reshape the solution vector into a 3-D grid

OXFORD Mathematica

A finite difference discretization – Kronecker products

Using Kronecker products

$$kron(A,B) = A \otimes B = \begin{pmatrix} a_{2,2}B & \dots & a_{2,m}B \\ \vdots & & \vdots \\ a_{m,2}B & \dots & a_{m,m}B \end{pmatrix}$$

- $\bullet \ \ \mathsf{Therefore} \quad \ \mathsf{kron}(\mathsf{eye}(\mathsf{m}-1),D_\ell)\underline{u} = \left(\begin{array}{cc} D_\ell & & \\ & \ddots & \\ & & D_\ell \end{array} \right) \left(\begin{array}{c} u_{:,2} \\ \vdots \\ u_{:,m} \end{array} \right)$
- Good. Now we need something to put "I-blocks" on the sub-diagonals. kron(K, eye(m-1)), with K being the sub-diagonals does the trick
- Then, the kronecker sum

$$D_\ell \oplus K := \operatorname{kron}(K, \operatorname{eye}(m-1)) + \operatorname{kron}(\operatorname{eye}(m-1), D_\ell)$$

represents our discrete (plus) Laplace operator

OXFORD Mathematical

Numerical example

Let's try this:

- $\Omega = (0,1)^2$, $\kappa = 1$, $f = \pi^2(x^2 + y^2)\sin(\pi xy)$
- $u = \sin(\pi xy)$ on $\partial \Omega$
- m internal points on each direction
- available from http://people.maths.ox.ac.uk/nakatsukasa/InFoMM/lapl_df.m
- play with it! (change BCs, compute error history, add time-dependence, L-shaped domain, etc)

Numerical example

Another one:

•
$$\Omega = (0,1)^3$$
, $\kappa = 1e-3$, $f = 0$, $\partial \Omega = \Gamma_D$

• $u_D = \begin{cases} 1 & \text{on back, front and top} \\ 3 & \text{on left and down sides} \\ 0 & \text{on the right lid} \end{cases}$

- Equidistant grid points $h = \Delta x = \Delta y = \Delta z = \frac{1}{16}, \ \Delta t = \frac{h^2}{6\kappa}$
- Explicit forward Euler method
- $u_0 = 0$, run until t = 50

How far can you go with mesh refinement before burning your RAM?