Biophysique des solutions

N.CHERIET

Université de Batna, Faculté de Médecine, Département de Médecine

13 Novembre 2018

Chapitre 1

Généralités sur les solutions

Plan

- Les solutions
 - Définition
 - Classification des solutions
 - Exemples
- 2 Caractéristiques quantitatives des solutions
 - Fraction molaire
 - Concentration molaire
 - Concentration massique
 - Concentration molale
 - Concentration osmolaire
 - Concentration équivalente

Les solutions

Définition

Une solution définit tout <u>mélange homogène en une seule phase</u> de deux ou plusieurs constituants.

- Le constituant majoritaire est appelé solvant.
- Les autres constituants de la solution sont appelés solutés

Remarques

- Le soluté peut être solide, liquide ou gazeux, moléculaires ou ioniques.
- Il existe une limite à la quantité de soluté que le solvant peut dissoudre. Lorsque cette limite est atteinte on dit que la solution est saturée.
- 3 Si le solvant est l'eau la solution, est appelée solution aqueuse.

Classification des solutions

- Selon que les particules du corps dissous sont électriquement neutres ou chargées.
 - Les solutions neutres (molécules).
 - Les solutions électrolytiques(ions).
- Selon la taille des particules
 - Les cristalloïdes ou Les solutions micromoléculaires
 - les solution macromoléculaires ou **colloïdes** (entre 10^3 et 10^9 atomes).

Exemples

Solution Composition en so		
	pour 100 ml d'eau	
Sérum physiologique 0,9%	0,9 g de Nacl	
Sérum salé hypertonique à 7,5%	7,5 g de Nacl	
Sérum glucosé hypotonique à 2,5%	2,5 g de glucose	
Sérum glucosé isotonique à 5%	5 g de glucose	
Sérum glucosé hypertonique à 10%	10 g de glucose	
Bicarbonate de sodium (NaHCO ₃) à 1,4%	1,4 g de (<i>NaHCO</i> ₃)	

Fraction molaire

Définition

La fraction molaire F_i d'un constituant i est égale au rapport du nombre de mole N_i de ce constituant, sur le nombre total N_{tot} de moles de la solution.

$$F_i = \frac{N_i}{N_{tot}}$$

Remarque

la somme des fractions molaires de tous les constituants d'une solution est égale à l'unité.

Exemple

Déterminer la fraction molaire du soluté puis celle du solvant dans le sérum glucosé à 5%

la composition de la solution est :

- 5 gramme de glucose (soluté) et 100 ml d'eau (solvant).
- Le solvant représente une quantité de matière de : $n_{eau} = \frac{100}{18} = 5,555 mol$
- ② La quantité de matière dissoute en soluté est : $n_{glucose} = \frac{5}{180} = 0,027 mol$

Les fractions molaires sont donc :

$$F_{glucose} = \frac{n_{glucose}}{n_{eau} + n_{glucose}} = 0,0048 = 0,48\%$$

$$F_{eau} = \frac{n_{eau}}{n_{eau} + n_{glucose}} = 0,9952 = 99,52\%$$

Fraction molaire
Concentration molaire
Concentration massique
Concentration molale
Concentration osmolaire
Concentration équivalente

Concentration molaire

Définition

La Concentration molaire C_M (ou molarité) pour un soluté donné : est le nombre de moles du soluté par litre de solution.

$$C_M = \frac{N_1}{V}$$

- N₁ désigne le nombre de moles du soluté exprimé en Mol.
- et, V désigne le volume de la solution en litre.
- Unité: Mol/I, mMol/I,

Remarques

- Une solution est dite **molaire** lorsque $C_M = 1 Mol/I$
- Elle est dite **décimolaire** lorsque $C_M = 10^{-1} Mol/I$

Fraction molaire
Concentration molaire
Concentration massique
Concentration molale
Concentration osmolaire
Concentration équivalent

Concentration molaire

Exemple

Deux litres d'une solution aqueuse contenant une masse m=17,55~g de NaCl de masse molaire M=58.5~g/Mol. Calculer la molarité de la solution.

- le nombre total de moles de NaCl est $n = \frac{m}{M} = \frac{17,55}{58,5} = 0,30$ Mol
- le volume de la solution est $V = 2L = 2.10^{-3} m^3$
- la molarité de la solution est $C_M = \frac{n}{v} = \frac{0.30}{2} = 0,15 \ \textit{Mol/I} = 0,15.10^3 \ \textit{Mol/m}^3$

Concentration molaire
Concentration massique
Concentration molale
Concentration osmolaire
Concentration équivalente

Concentration massique

Définition

La Concentration massique C_p ou concentration pondérale : est la masse du soluté dans 1 litre de solution.

$$C_p = \frac{m_1}{V}$$

- m_1 désigne la masse du soluté en gramme.
- et, V désigne le volume de la solution en litre.
- Unité : g/l

Relation entre C_p et C_m

$$C_p = \frac{m_1}{v} \tag{1}$$

$$C_m = \frac{n_1}{v} \tag{2}$$

$$C_m = \frac{n_1}{v} \tag{2}$$

Divisons membre à membre les deux équations on obtient :

$$\frac{C_p}{C_m} = \frac{m_1}{n_1} = \mathbf{M}$$

M est la masse molaire du soluté.

$$C_p = M.C_m$$

Fraction molaire
Concentration molaire
Concentration massique
Concentration molale
Concentration osmolaire
Concentration équivalent

Concentration molale

Définition

La Concentration molale C_L ou molalité : est le nombre de moles du soluté par unité de masse du solvant.

$$C_L = \frac{n_1}{m_0}$$

- n₁ désigne le nombre de moles du soluté exprimé en Mol.
- \bullet et, m_0 désigne la masse du solvant en kilo-gramme.
- Unité : Mol/kg

Concentration osmolaire

Considérons une solution électrolytique contenant un seul soluté à la concentration molaire C_M

Soit ν le nombre d'ions fournis par la dissociation d'une seule molécule de soluté.

Exemples:

•
$$Nacl - --> Na^+ + cl^- \dots \nu = 2$$

•
$$Cacl_2 - --> Ca^{++} + 2cl^- \dots \nu = 3$$

Et α le degré de dissociation du soluté dans le solvant considéré.

$$\alpha = \frac{N_d}{N_1}$$

- N_d le nombre de molécule dissociées.
- N_1 le nombre total de molécules initiales.

Fraction molaire
Concentration molaire
Concentration massique
Concentration molale
Concentration osmolaire
Concentration équivalente

Concentration osmolaire

Remarques

- Si $\alpha \prec 1$ La dissociation est partielle et la solution contient des ions et des molécules non dissociées.
- ② Si $\alpha=1$ La dissociation est totale et la solution contient uniquement des ions.

Calculons le nombre de moles **particulaires** (molécules et ions) par litre de solution noté ω

- f Q Le nombre de moles par unité de volume du soluté **dissociées** : $lpha C_M$
- **2** Le nombre de moles par unité de volume **d'ions** dans la solution : $\nu\alpha\mathcal{C}_{M}$
- **3** Le nombre de moles du soluté **non dissociées** : $C_M \alpha C_M$

Concentration osmolaire

Définition

On définit la concentration molaire particulaire ou **osmolarité** ω comme étant Le nombre de moles particulaires (molécules et ions) dissoutes par litre solution.

$$\omega = c_M \{ 1 + \alpha (\nu - 1) \}$$

Unité osmol/L, mosmol/LOn pose $i = 1 + \alpha(\nu - 1)$

$$\omega = ic_M$$

i : est le coefficient d'ionisation de **Van't Hoof** : il est défini comme le rapport entre le nombre de particules (molécules et ions) et le nombre total initial de molécules introduites dans le solvant.

Concentration osmolaire

Remarque 1

Pour une solution contenant un soluté non électrolytique (neutre) de molarité c_M . L'osmolarité de la solution est :

$$\omega_{sol} = c_{M}$$
.

Remarque 2

Pour une solution contenant plusieurs solutés, l'osmolarité de la solution ω_{sol} est la somme des concentrations osmolaires de tous les solutés.

$$\begin{array}{c} \omega_{sol} = \sum_{j} \omega_{i} \\ \omega_{j} : \text{l'osmolarit\'e du solut\'e } j \end{array}$$

Concentration équivalente

• Le Faraday (F) : C'est la charge globale d'une mole de charges élémentaires.

$$1F = N_A.e = 6,02.10^{23}.1,6.10^{-19} = 96500 \text{ coulombs}$$

• L'équivalent(E_q) : Représente la quantité de matière transportant une charge d'un Faraday.

Définition

La concentration équivalente C_{eq} : C'est le nombre d'équivalents par litre de solution.

$$C_{eq} = \frac{N_{eq}}{V}$$

- Si N_{eq} désigne le nombre d'équivalents dans la solution.
- ullet et, V désigne le volume de la solution.

Fraction molaire
Concentration molaire
Concentration molale
Concentration osmolaire
Concentration équivalente

• L'unité : *Eq/I*, *mEq/I*

Relation entre concentration équivalente et molarité :

La concentration équivalente C_{eq} d'une espèce ionique de valence Z et de molarité C_M est donnée par $C_{eq}=|Z|.C_M$

Exemple

- Ions monovalents..... $C_{eq} = C_M$.
- Ions bivalents..... $C_{eq} = 2.C_{M}$.
- Molécule non ionisée..... $C_{eq} = 0$.

Remarque

Pour une solution contenant plusieurs espèces ioniques, la concentration équivalente totale est la somme des concentrations équivalentes de tous les espèces ioniques.

Concentration équivalente

Exemple 1

Considérons une solution de Na_2SO_4 obtenue après dissolution d'une masse m=14,2g de cristaux Na_2SO_4 dans 1 litre d'eau. Calculer la concentration équivalente de la solution ^a.

- a. La masse molaire de Na_2SO_4 est de 142 g/mol
 - la molarité de la solution est $C_M = rac{m}{M_{Na_2SO_4}} = rac{14,2}{142} = 100 mmol/I$
 - la dissolution de Na_2SO_4 en solution : $Na_2SO_4 --> 2Na^+ + SO_4^{2-}$

	Ion	C_{M}	Valence	C_{eq}
•	Na ⁺	200 mmol/I	$Z^{+} = +1$	200 <i>mEq/I</i>
	SO_4^{2-}	100 <i>mmol/l</i>	$Z^{-} = -2$	200 <i>mEq/I</i>

La concentration équivalente de la solution est donc : 400 mEq/l.