Endomorphismes cycliques et matrices de Frobenius (ou compagnon)

Pour ce problème :

- K est un corps commutatif;
- $-\mathbb{K}[X]$ est l'algèbre des polynômes à coefficients dans \mathbb{K} ;
- pour tout entier $n \geq 0$, $\mathbb{K}_n[X]$ est le sous-espace vectoriel de $\mathbb{K}[X]$ formé des polynômes de degré au plus égal à n (avec la convention $\deg(0) = -\infty$);
- E est un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$;
- $-\mathcal{L}(E)$ est l'algèbre des endomorphismes de E;
- -GL(E) est le groupe des automorphismes de E;
- $-E^* = \mathcal{L}(E, \mathbb{K})$ l'espace dual de E;
- si $\mathcal{B} = (e_i)_{1 \leq i \leq n}$ est une base de E, $\mathcal{B}^* = (e_i^*)_{1 \leq i \leq n}$ est sa base duale; on rappelle qu'elle est caractérisée par :

$$e_i^*(e_j) = \delta_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases} \quad (1 \le i, j \le n)$$

- la transposée de $u \in \mathcal{L}(E)$ est l'application $u \in \mathcal{L}(E^*)$ définie par :

$$\forall \varphi \in E^*, \ ^t u(\varphi) = \varphi \circ u$$

– l'orthogonal dans E^* d'une partie non vide X de E est l'ensemble :

$$X^{\perp} = \{ \varphi \in E^* \mid \forall x \in X, \ \varphi(x) = 0 \}$$

-l'orthogonal dans E d'une partie non vide Y de E^{\ast} est l'ensemble :

$$Y^{\circ} = \{ x \in E \mid \forall \varphi \in Y, \ \varphi(x) = 0 \}$$

- $-\mathcal{M}_n(\mathbb{K})$ est l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} ;
- $GL_n(\mathbb{K})$ est le groupe des matrices inversibles dans $\mathcal{M}_n(\mathbb{K})$;
- -Id [resp. I_n] est l'endomorphisme [resp. la matrice] identité.

Pour tout endomorphisme u de E, la sous algèbre de $\mathcal{L}(E)$ engendrée par u est constituée des endomorphismes v = P(u) où P est dans $\mathbb{K}[X]$.

Si
$$P(X) = \sum_{k=0}^{p} a_k X^k \in \mathbb{K}[X]$$
, on a $P(u) = \sum_{k=0}^{p} a_k u^k$ avec la convention $u^0 = Id$.

On note naturellement $\mathbb{K}[u]$ cette algèbre et il est facile de vérifier qu'elle est commutative. Précisément on a :

$$\forall (P,Q) \in \mathbb{K} [X]^2, (PQ)(u) = P(u) \circ Q(u) = Q(u) \circ P(u) = (QP)(u).$$

On définit de manière analogue la sous algèbre $\mathbb{K}[A]$ de $\mathcal{M}_n(\mathbb{K})$ engendrée par une matrice $A \in \mathcal{M}_n(\mathbb{K})$.

Le polynôme caractéristique d'un endomorphisme $u \in \mathcal{L}(E)$ [resp. d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$] est défini par $P_u(X) = \det(XId - u)$ [resp. $P_A(X) = \det(XI_n - A)$] (noter que le polynôme caractéristique est ici unitaire).

Dans ce qui suit, u est un endomorphisme de E.

À tout polynôme unitaire $P(X) = X^p - \sum_{k=0}^{p-1} a_k X^k$ de degré $p \ge 1$, on associe sa matrice compagnon définie par :

$$C_{P} = \begin{pmatrix} 0 & \cdots & 0 & a_{0} \\ 1 & \ddots & \vdots & a_{1} \\ \vdots & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & a_{p-1} \end{pmatrix} \in \mathcal{M}_{p}(\mathbb{K})$$

Une telle matrice est dite de Frobenius.

Pour
$$p = 1$$
, $P(X) = X - a_0$ et $C_P = (a_0)$.

Étude de $\mathbb{K}\left[u\right]$. Polynôme minimal

1. Montrer que l'ensemble :

$$I_u = \{ P \in \mathbb{K} [X] \mid P(u) = 0 \}$$

est un idéal de $\mathbb{K}[X]$ non réduit au polynôme nul et qu'il existe un unique polynôme unitaire π_u tel que $I_u = \mathbb{K}[X] \pi_u$ (idéal engendré par π_u).

On dit que I_u est l'idéal annulateur de u et π_u est le polynôme minimal de u.

On définit de manière analogue l'idéal annulateur et le polynôme minimal d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$.

- 2. Quels sont les endomorphismes de E ayant un polynôme minimal de degré égal à 1?
- 3. Quels sont les valeurs possibles du polynôme minimal d'un projecteur?
- 4. Calculer le polynôme minimal d'un endomorphisme nilpotent d'ordre $p \ge 1$ (i. e. tel que $u^p = 0$ et $u^{p-1} \ne 0$).
- 5. Montrer que si F est un sous-espace vectoriel de E stable par u, alors le polynôme minimal de la restriction de u à F divise celui de u.
- 6. Montrer que les valeurs propres de u sont les racines de son polynôme minimal.
- 7. On note p_u le degré de π_u .
 - (a) Montrer que pour tout polynôme $P \in \mathbb{K}[X]$, il existe un unique $(\alpha_0, \dots, \alpha_{p_u-1}) \in \mathbb{K}^{p_u}$ tel que $P(u) = \sum_{k=0}^{p_u-1} \alpha_k u^k$.
 - (b) Donner une base de $\mathbb{K}[u]$ et préciser sa dimension.
 - (c) Montrer que $\mathbb{K}[u]$ est isomorphe à l'espace quotient $\frac{\mathbb{K}[X]}{(\pi_u)}$
- 8. Soient $P(X) = X^n \sum_{k=0}^{n-1} a_k X^k$ un polynôme unitaire de degré $n \ge 1$ et C_P sa matrice compagnon. On désigne ici par E l'espace vectoriel quotient $\frac{\mathbb{K}[X]}{(P)}$, où $(P) = \mathbb{K}[X] \cdot P$ est l'idéal engendré par P.
 - (a) Préciser la dimension de E en donnant une base.
 - (b) Montrer que C_P est la matrice de l'endomorphisme $u \in \mathcal{L}(E)$ défini par :

$$\forall \overline{R} \in E, \ u\left(\overline{R}\right) = \overline{XR}$$

- (c) Montrer que P est le polynôme minimal de u (et de C_P).
- (d) Montrer que P est aussi le polynôme caractéristique de u (et de C_P).
- (e) Montrer que u (ou C_P) est inversible si, et seulement si, $P(0) \neq 0$. Donner une expression de u^{-1} qui utilise les coefficients de P dans ce cas. En déduire C_P^{-1} .
- (f) On suppose que $P(0) \neq 0$. Montrer que le polynôme minimal de u^{-1} (et de C_P^{-1}).est $\frac{1}{P(0)}X^nP\left(\frac{1}{X}\right)$.

2

Sous-espaces cycliques

Pour tout vecteur non nul x dans E, on note :

$$I_{u,x} = \{ P \in \mathbb{K} [X] \mid P(u)(x) = 0 \}$$

et le sous-espace vectoriel $E_{u,x}$ de E défini par :

$$E_{u,x} = \text{Vect} \left\{ u^k(x) \mid k \in \mathbb{N} \right\}$$

est appelé sous espace cyclique engendré par x.

- 1. Montrer que $I_{u,x}$ est un idéal de $\mathbb{K}[X]$ non réduit au polynôme nul et qu'il existe un unique polynôme unitaire $\pi_{u,x} \in \mathbb{K}_n[X]$ tel que $I_{u,x} = \mathbb{K}[X] \pi_{u,x}$. Justifier le fait que $\pi_{u,x}$ divise π_u . On dit que $\pi_{u,x}$ est le polynôme minimal de x relativement à u. On notera $p_{u,x}$ le degré de $\pi_{u,x}$.
- 2. Montrer que $E_{u,x}$ est le plus petit sous-espace vectoriel de E contenant x et stable par u. Préciser sa dimension.
- 3. À quelle condition sur dim $(E_{u,x})$ le vecteur x est-il vecteur propre de u?
- 4. Montrer que les conditions suivantes sont équivalentes :
 - (a) u est une homothétie;
 - (b) dim $(E_{u,x}) = 1$ pour tout $x \in E \setminus \{0\}$;
 - (c) $deg(\pi_{u,x}) = 1$ pour tout $x \in E \setminus \{0\}$.
- 5. On désigne par $v_{u,x}$ la restriction de u à $E_{u,x}$ ($E_{u,x}$ est stable par u).
 - (a) Montrer qu'il existe une base de $E_{u,x}$ telle que la matrice de $v_{u,x}$ soit la matrice compagnon de $\pi_{u,x}$.
 - (b) Montrer que $\pi_{u,x}$ est le polynôme minimal et le polynôme caractéristique de $v_{u,x}$.
- 6. Montrer que $P_u(u) = 0$, où P_u désigne le polynôme caractéristique de u (théorème de Cayley-Hamilton).
- 7. En déduire que le polynôme minimal π_u de u divise le polynôme caractéristique P_u et que deg $(\pi_u) \leq n$.
- 8. On suppose ici que le corps \mathbb{K} est infini et on se propose de montrer qu'il existe un vecteur $x \in E$ tel que $\pi_{u,x} = \pi_u$.
 - (a) Montrer que si $(F_k)_{1 \le k \le r}$ sont des sous-espaces vectoriels de E tels que $E = \bigcup_{k=1}^r F_k$, il existe alors un indice k tel que $E = F_k$.
 - (b) Montrer qu'il existe un vecteur $x \in E$ tel que $\pi_{u,x} = \pi_u$.
- 9. K est à nouveau un corps commutatif quelconque.
 - (a) Soient x, y dans $E \setminus \{0\}$. Montrer que si $E_{u,x} \cap E_{u,y} = \{0\}$, alors $\pi_{u,x+y} = \pi_{u,x} \vee \pi_{u,y}$ (ppcm de $\pi_{u,x}$ et $\pi_{u,y}$).
 - (b) Soient $p \in \mathbb{N} \setminus \{0, 1\}$, x_1, \dots, x_p dans $E \setminus \{0\}$ tels que les sous-espaces cycliques $E_{u, x_1}, \dots, E_{u, x_p}$ sont en somme directe. Montrer que $\pi_{u, x_1 + \dots + x_p} = \pi_{u, x_1} \vee \dots \vee \pi_{u, x_p}$.
 - (c) Soient $p \in \mathbb{N} \setminus \{0,1\}$, x_1, \dots, x_p dans $E \setminus \{0\}$ tels que $\pi_{u,x_1}, \dots, \pi_{u,x_p}$ sont premiers entre eux. Montrer que $E_{u,x_1+\dots+x_p} = E_{u,x_1} \oplus \dots \oplus E_{u,x_p}$.

- (d) On suppose que le polynôme minimal de u est de la forme $\pi_u = P^m$, où P est un polynôme irréductible (unitaire) dans $\mathbb{K}[X]$ et m un entier naturel non nul. Montrer qu'il existe un vecteur $x \in E \setminus \{0\}$ tel que $\pi_{u,x} = \pi_u$.
- (e) Montrer, dans le cas général, qu'il existe un vecteur $x \in E$ tel que $\pi_{u,x} = \pi_u$.

Endomorphismes cycliques

On dit que l'endomorphisme u est cyclique s'il existe un vecteur $x \in E \setminus \{0\}$ tel que $E = E_{u,x}$.

- 1. Montrer que u est cyclique si, et seulement si, il existe un vecteur $x \in E \setminus \{0\}$ tel que la famille $\mathcal{B}_{u,x} = (u^k(x))_{0 \le k \le n-1}$ soit une base de E.
- 2. Montrer que u est cyclique si, et seulement si, il existe un vecteur $x \in E \setminus \{0\}$ tel que deg $(\pi_{u,x}) = n$.
- 3. Montrer que u est cyclique si, et seulement si, il existe une base de E dans laquelle la matrice de u soit une matrice de Frobenius. Préciser le polynôme minimal et le polynôme caractéristique de u dans ce cas.
- 4. Montrer que u est cyclique si, et seulement si, son polynôme minimal est égal à son polynôme caractéristique.

5.

- (a) On suppose que u est diagonalisable et on désigne par $\lambda_1, \dots, \lambda_p$ les valeurs propres deux à deux distinctes de u. Montrer que u est cyclique si, et seulement si, p = n.
- (b) On suppose que u est cyclique. Montrer que u est diagonalisable si, et seulement si, il a n valeurs propres distinctes.
- 6. On suppose ici que $E=\mathbb{K}_{n-1}[X]$ et on désigne par $(e_k)_{0\leq k\leq n-1}$ la base canonique de E $(e_k(X)=X^k \text{ pour } 0\leq k\leq n-1).$
 - (a) Montrer que l'endomorphisme u défini par u(P) = P' pour tout $P \in E$, où P' est le polynôme dérivé de P, est cyclique et nilpotent d'indice n.
 - (b) Montrer que l'endomorphisme u défini par u(P)(X) = P(X+1) P(X) pour tout $P \in E$ est cyclique et nilpotent d'indice n.
- 7. On suppose que u est nilpotent d'ordre $q \ge 1$. Montrer qu'il existe un vecteur $x \in E \setminus \{0\}$ tel que la famille $\mathcal{B}_{u,x} = (u^k(x))_{0 \le k \le q-1}$ soit libre (et donc $q \le n$).
- 8. On suppose que u est nilpotent. Montrer que u est cyclique si, et seulement si, son indice de nilpotence vaut n.
- 9. On suppose ici que $\mathbb{K} = \mathbb{R}$ et n = 2. On suppose de plus qu'il existe un entier $p \geq 3$ tel que $u^p = Id$ et $u^k \neq Id$ pour tout entier k compris entre 1 et p 1 (u est d'ordre p dans GL(E)). On se fixe une base \mathcal{B}_0 de E et on désigne par A_0 la matrice de u dans \mathcal{B}_0 .
 - (a) Montrer que A_0 est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$.
 - (b) Montrer que A_0 n'a pas de valeurs propres réelles. Précisément, vérifier que ses valeurs propres complexes sont $\lambda = e^{\frac{2ik\pi}{p}}$ et $\overline{\lambda} = e^{-\frac{2ik\pi}{p}}$, où k est un entier compris entre 1 et p-1 premier avec p.
 - (c) Montrer que, pour tout vecteur $x \in E \setminus \{0\}$, la famille (x, u(x)) est une base de E (et u est cyclique).
 - (d) Soit $x \in E \setminus \{0\}$. Montrer que la matrice de u dans la base (x, u(x)) est :

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 2\cos\left(\frac{2k\pi}{p}\right) \end{pmatrix}$$

10. Soient u un endomorphisme cyclique et $\lambda \in \mathbb{K}$ une valeur propre de u (s'il en existe) Montrer que l'espace propre associé est de dimension 1 et donner un générateur de cet espace propre en fonction des coefficients du polynôme caractéristique (ou minimal) de u.

Décomposition de Frobenius

- 1. Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ et son transposé ${}^tu \in \mathcal{L}(E^*)$ ont même idéal annulateur et même polynôme minimal.
- 2. Soient u un endomorphisme de E, $x \in E \setminus \{0\}$ tel que $\pi_{u,x} = \pi_u$ et $p = p_{u,x}$ le degré de $\pi_{u,x}$. On complète la base $\mathcal{B}_{u,x} = \left(u^k\left(x\right)\right)_{0 \le k \le p-1}$ de $E_{u,x}$ en une base $\mathcal{B} = (e_k)_{1 \le k \le n}$ de E, en notant $e_k = u^{k-1}(x)$ pour k compris entre 1 et p. On définit la famille $(\varphi_k)_{1 \le k \le p}$ de formes linéaires par :

$$\varphi_k = \left({}^t u \right)^{k-1} \left(e_p^* \right) \ (1 \le k \le p)$$

et G est le sous-espace de E^* engendré par $(\varphi_k)_{1 \le k \le p}$.

- (a) Montrer que dim (G) = p.
- (b) Montrer que $E = E_{u,x} \oplus G^{\circ}$.
- (c) Montrer que G est stable par u et que G° est stable par u.
- (d) On suppose que $n = \dim(E) \ge 2$. Montrer qu'il existe une base de E dans laquelle la matrice de u est diagonale par blocs de la forme :

$$F = \begin{pmatrix} F_1 & 0 & \cdots & 0 \\ 0 & F_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & F_r \end{pmatrix}$$

où les F_k sont des matrices de Frobenius.

Commutant d'un endomorphisme

Le commutant de $u \in \mathcal{L}(E)$ est le sous ensemble de $\mathcal{L}(E)$ défini par :

$$C(u) = \{ v \in \mathcal{L}(E) \mid u \circ v = v \circ u \}$$

- 1. Montrer que $\mathcal{C}(u)$ est une sous-algèbre de $\mathcal{L}(E)$ qui contient $\mathbb{K}[u]$.
- 2. On suppose que u est diagonalisable avec des valeurs propres deux à deux distinctes $\lambda_1, \dots, \lambda_r$ de multiplicités respectives m_1, \dots, m_r . Montrer que :

$$\dim \left(\mathcal{C}\left(u\right)\right) = \sum_{k=1}^{r} m_k^2.$$

- 3. Montrer que si u est cyclique, on a alors $\mathcal{C}(u) = \mathbb{K}[u]$ et $\dim(\mathcal{C}(u)) = n$.
- 4. Montrer que $n \leq \dim (\mathcal{C}(u)) \leq n^2$.
- 5. Montrer que u est cyclique si, et seulement si, $\mathcal{C}(u) = \mathbb{K}[u]$.