

CONTENTS

- (1) RNN 개요
- **2** RNN 구조
- (3) RNN 동작 원리

목적: RNN의 구조와 RNN개념 이해

목표 : RNN에 구조와 사용하는 이유 이해

내용 : RNN 구조, 동작 원리

CONTENTS

- 1) RNN 개요
- **2** RNN 구조
- (3) RNN 동작 원리

RNN 개요

❷ 시계열 데이터??

- NCSoft의 2년 주가 흐름을 기반으로 내일 주가를 예측하려고 한다. 어떻게 하면 될까?
 - (1) 2년치 데이터 전부를 입력으로 FCN에 넣으면 될까? --> 너무 많음..
 - (2) 그러면 월~금 5일 데이터를 FCN에 넣자 --> 월->화->수 연속된 시간 순서관계 모델링 못함
 - (3) 시간에 따라 이전 가격을 고려해서 모델링 하는 방법은 없을까?

Α	В	С
date	num search	stock price
2021.3.21	38	932000
2021.3.21	39	834000
2021.3.28		
	36	885000
2021.4.11	31	906000
2021.4.18	32	894000
2021.4.25	27	861000
2021.5.2	27	820000
2021.5.9	26	850000
2021.5.16	29	823000
2021.5.23	26	856000
2021.5.30	29	854000
2021.6.6	30	858000
2021.6.13	31	848000
2021.6.20	37	825000
2021.6.27	34	820000
2021.7.4	40	834000
2021.7.11	29	778000
2021.7.18	27	809000
2021.7.25	25	809000
2021.8.1	24	812000
2021.8.8	31	790000
2021.8.15	35	853000
2021.8.22	38	709000

RNN 개요

What is RNN(Recurrent Neural Network)?

• 연속적이며 순서가 있는 데이터(시계열 데이터, 자연어, 음성 등)에 적합한 딥러닝 모델

Α	В	С
date	num_search	stock_price
2021.3.21	38	932000
2021.3.28	39	834000
2021.4.4	36	885000
2021.4.11	31	906000
2021.4.18	32	894000
2021.4.25	27	861000
2021.5.2	27	820000
2021.5.9	26	850000
2021.5.16	29	823000
2021.5.23	26	856000
2021.5.30	29	854000
2021.6.6	30	858000
2021.6.13	31	848000
2021.6.20	37	825000
2021.6.27	34	820000
2021.7.4	40	834000
2021.7.11	29	778000
2021.7.18	27	809000
2021.7.25	25	809000
2021.8.1	24	812000
2021.8.8	31	790000
2021.8.15	35	853000
2021.8.22	38	709000

RNN 개요

intuition of RNN

```
(input + empty_hidden) -> hidden -> output
(input + prev_hidden) -> hidden -> output
(input + prev_hidden) -> hidden -> output
(input + prev_hidden ) -> hidden -> output
                              사용하는 것을 색으로 표시
                                           4일전기억 3일전기억
                                              3일전 2 3일전
가격 2 키워드 수
```

그림 출처: https://medium.com/@serbanliviu/the-intuition-behind-recurrent-neural-networks-6fce753fe9f0

CONTENTS

- **1**) RNN 개요
- (2) RNN 구조
- (3) RNN 동작 원리

☞ FCN vs RNN의 구조 비교

아래의 RNN은 기본적으로 입, 출력이 벡터로 가정되고 있다.

RNN 표현

❷ RNN 상세 표현

RNN 상세 표현

 x_t : 모든 샘플의 입력값 (input) y_t : 타임 스텝 t에서 각 샘플에 대한 순환 층의 출력값

 h_t : hidden state, $h_t = f(h_{t-1}, x_t)$ 즉, 이전 hidden state와 입력값에 의해 현재 hidden state 결정

Hidden state : 다음 시점으로 넘겨줄 정보

❷ RNN 상세 표현

$$h_t = \tanh(X_t \cdot W_{xh} + h_{t-1} \cdot W_{hh} + b)$$

$$y_t = W_{hy} \cdot h_t$$

Why Hyperbolic Tangent?

- Sigmoid 함수는 음수의 경우 0에 가깝게 표현되며, 이를 미분하면 최대값이 0.25으로 Vanishing Gradient발생
 - Backpropagation 할때 sigmoid의 미분값을 곱하는 과정이 포함됨 따라서, 은닉층의 깊이가 깊어 sigmoid를 많이 사용할 경우 곱해지는 미분값이 0에 가까워 지기 때문에 weight parameter (w) 값들을 업데이트 할 때 매우 작은 범위로 업데이트됨

$$\frac{d}{dx}sigmoid(x) = sigmoid(x)(1 - sigmoid(x))$$

Why Hyperbolic Tangent?

- RNN에서 Vanishing Gradient를 그나마 줄여주기 위해 Tanh Function 사용
- Tanh 함수의 경우 미분값이 최대 1임. (여전히 1이하의 값이 계산되기 때문에 Vanishing gradient는 발생함)

$$h_t = \tanh(X_t \cdot W_{xh} + h_{t-1} \cdot W_{hh} + b)$$

$$y_t = W_{hy} \cdot h_t$$

$$tanh(x) = 2\sigma(2x) - 1$$

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$tanh'(x) = 1 - tanh^2(x)$$

Why Hyperbolic Tangent?

- RNN에서는 Relu를 왜 안쓰죠?
 - RNN의 내부가 계속 순환하는 구조 이므로 relu를 통과한 f(x)의값이 1보다 크게 값이 발산할 수 있기 때문에 적합하지 않음.
 - 결론적으로 tanh는 기울기가 0~1 이기 때문에 normalization 기능이 포함되어 값의 발산을 막을 수 있다고 판단할 수 있음.

ReLU		
f(x)	$\max(0,x)$	
$\frac{d}{dx}f(x)$	$\begin{cases} 1 (x \ge 0) \\ 0 (x < 0) \end{cases}$	

RNN 구조

다 대 일(many-to-one) 구조의 RNN

RNN 구조

다 대 다(many-to-many) 구조의 RNN

RNN 학습

$$h_t = \tanh(X_t \cdot W_{xh} + h_{t-1} \cdot W_{hh} + b)$$

$$y_t = W_{hy} \cdot h_t$$

RNN 학습

❷ RNN 학습구조

RNN을 벡터와 행렬 연산으로 표현하면?

d: t time-step의 단어의 차원

 D_h : hidden size의 크기

CONTENTS

- (1) RNN 개요
- (2) RNN 구조
- (3) RNN 동작 원리

RNN 동작원리

◎ 다음 charter 예측 모델

- h가 입력일때 → e를 예측
- e가 입력일때 → I을 예측

❷ RNN 구현의 기본 형태

rnn = torch.nn.RNN(input size, hidden size) outputs, _status = rnn(input_data)

⊘ RNN의 hidden state

❷ RNN의 출력의 크기 (output size)

 $x_0 = [1, 0, 0, 0]$ $x_1 = [0, 1, 0, 0]$ $x_2 = [0,0,1,0]$ h, e, I, I, o $x_3 = [0, 0, 1, 0]$ $x_4 = [0, 0, 0, 1]$

Automatically Calculated

shape=(-,5,4)

❷ RNN의 한번에 처리할 샘플의 수 (batch size)

outputs s

© Character Sequence Prediction 예제

```
import torch
import numpy as np
input_size = 4
hidden size = 2
# 1-hot encoding
h = [1, 0, 0, 0]
e = [0, 1, 0, 0]
1 = [0, 0, 1, 0]
0 = [0, 0, 0, 1]
      input_data_np = np.array([[h, e, 1, 1, o],
                                   [e, o, 1, 1, 1],
             [1, 1, e, e, 1]], dtype=np.float32)
# transform as torch tensor
input data = torch.Tensor(input data np)
rnn = torch.nn.RNN(input_size, hidden_size) out
puts, _status = rnn(input_data)
```

RNN 활용

- I work at google → 나는 구글에 근무한다.
- I google at work → 나는 일하면서 구글링한다.

RNN 활용

❷ 자연어처리: 감정분석기

• 영화 댓글이 긍정일까 부정일까?

RNN 활용

RNN을 마치며

RNN 특징

- RNN 학습 방법
 - ✔ RTRL(Real-time recurrent learning) : 확률적 경사하강법 사용 순환학습
 - ✓ BPTT(Backpropagation though time) : 시간 기반 오차역전파
- RNN 장점
 - ✓ 이전 정보를 현재의 문제해결에 사용 가능
- RNN 단점
 - ✓ Long-Term Dependency : 기울기 소실(Gradient vanishing)로 인해 거리가 먼과거 상태를 사용한 문맥 처리가 어려움
 - → LSTM(Long Short Term Memory), GRU(Gated Recurrent Units)로 해결

◎ 100개의 hidden layer를 활용한 과제 관련 정답

Assignment #1 Review

```
class MLPModel2(nn.Module):
class MyModel(nn.Module):
                                                                                                 def __init__(self, in_features, out_features, hid_list):
    def __init__(self, hidden_nodes):
                                                                                                     super(MLPModel2, self).__init__()
        super().__init__()
        nodes = (784,) + hidden_nodes + (10,)
                                                                                                     self.linear1 = nn.Linear(in_features, hid_list[0], bias = True)
        depth = len(nodes)
                                                                                                     self.hidden = nn.ModuleList()
        linears = [nn.Linear(nodes[i], nodes[i+1]) for i in range(depth-1)]
                                                                                                      for i in range(len(hid_list) - 1):
        self.linears = nn.ModuleList(linears)
                                                                                                     self_idden.append(nn.Linear(hid_list[i], hid_list[i+1], bias = True))
self_liear2 = nn.Linear(hid_list[-1], out_features, bias = True)
        self.relu = nn.ReLU()
        self.depth = depth
                                                                                                      sel/.relu = nn.ReLU()
    def forward(self, x):
                                                                                                     forward(self. x):
                                                                                                     x = self.relu(self.linearl(x))
        for linear in self.linears:
                                                                                                     for layer in self.hidden:
             x = linear(x)
                                                                                                          x = self.relu(layer(x))
             x = self.relu(x)
                                                                                                     x = self.linear2(x)
        return x
                                                                                                     return x
```

nn,ModuleList 를 아주 잘 찾아서 사용해주셨습니다 ☺