Beispiel 5.1: Ungedämpfter 2-Massen-Schwinger

 $(M\lambda^2 + K)\vec{r}e^{\lambda t} = \vec{0}$

Im betrachteten System zur Berechnung von Eigenwerten und Eigenvektoren sei $m_1 = m$, $m_2 = 8m$, $c_1 = c$, $c_2 = 5c$, $d_1 = d_2 = 0$. Die Bewegungsgleichung lautet

$$\begin{bmatrix}
m & 0 \\
0 & 8m
\end{bmatrix}
\begin{bmatrix}
\ddot{x}_1 \\
\ddot{x}_2
\end{bmatrix} +
\begin{bmatrix}
c & -c \\
-c & 6c
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
F_1 \\
0
\end{bmatrix}
\cos(\Omega t)$$
(5.27)

$$\vec{x}$$
 Mit dem Expontialansatz für die homogene Lösung $\vec{x}_h = \vec{r}e^{\lambda t}$ folgt $\ddot{\vec{x}}_h = \lambda^2 \vec{r}e^{\lambda t}$ und

(5.28)