Table of Contents

▶

- 1. Introduction
 - o 1.1 Overview
- 2. Command Layer Communication
 - o 2.1 CRA Frame
 - 2.2 Command Format
 - 2.2.1 Unique Identifier
 - 2.2.2 Reserved
 - 2.2.3 Acknowledge Flag (AF)
 - 2.2.4 Device or Network (DEV/NWK)
 - 2.2.5 Priority
 - 2.2.6 Command
 - 2.2.7 Payload
- 2.3 Response Format
 - o 2.3.1 Unique Identifier
 - o 2.3.2 Status
 - o 2.3.3 Response
 - 2.4 Diagrams
 - 2.4.1 Layered diagram
 - 2.4.2 Multiple Requests All Success Case
 - 2.4.3 Multiple Requests Timeout Case
 - 2.4.4 Single Command Duplicate ACK
 - 2.4.5 Single Command ACK MISS
 - 2.4.6 Single Corrupted Command
 - 2.4.7 Single Command Corrupted Response
 - 2.4.8 Client State Diagram
 - 2.4.9 Server State Diagram
 - o 2.5 Entities
- 3. Data Transfer Layer (DTL)
 - 3.1 DTL Packet Format
 - 3.1.1 CRC Enable (CRC EN)
 - 3.1.2 Reserved
 - 3.1.3 Payload
 - **3.1.4 CRC 16**
 - 3.1.5 SLIP Wrapper
 - o 3.2 Entities
- 4. Physical Layer
- 5. Services

- 5.1 Network Services
 - 5.1.1 Network Capture
 - 5.1.2 Node Discovery
 - 5.1.3 Link Query
- 6. Appendix
 - ACK FRAME
 - STATUS Byte

1. Introduction

1.1 Overview

This protocol depends on Command-Response-Acknowledgment (CRA) messages and is designed to handle multiple requests at same time.

CRA messages are binary encoded to reduce the overhead of using strings.

There are two types of messages: error-checked messages and non error checked messages introduced in DTL section.

2. Command Layer Communication

2.1 CRA Frame

In this protocol standard there is three types of messages.

- Command Message: always sent from the client to request some action.
- Response Message: always sent from server after processing a request from client. Response is considered acknowledgment.

Acknowledge Message: always sent from the client after processing to tell the server that response
has arrived and processed correctly, so it can close the CRA call and discard response if needed.

2.2 Command Format

The following figure outlines the command format which is used for communication purposes.

Unique ID	Reserved	AF	DEV/NWK	Priority	Command	Payload
8 bits	4 bits	1 bit	1 bit	2 bits	8 bits	8 * n bits

2.2.1 Unique Identifier

This field contains a unique 8-bit integer used to identify each CRA session in order to allow handling multiple requests at same time and this allows handling up to 256 request at same time.

2.2.2 Reserved

This field contains 4-bits that are reserved for future uses and can be used as flags if needed.

2.2.3 Acknowledge Flag (AF)

This flag is used to distinguish between commands and acknowledge frames. It's set to zero if command and one otherwise.

2.2.4 Device or Network (DEV/NWK)

This flag is used to distinguish between device and network commands.

Zero for device commands and one otherwise.

2.2.5 Priority

Contains two bits to support four levels of priority. Server should handle higher priority commands before lower ones.

2.2.6 Command

This field contains 8 bits to support up to 256 commands for network and same for device.

2.2.7 Payload

This field contains any parameters sent by application layer and has maximum size of 300 bytes.

2.3 Response Format

The following figure outlines the response format which is used for communication purposes.

Unique ID STATUS		RESPONSE
8 bits	8 bits	8 * n bits

2.3.1 Unique Identifier

This field contains a unique 8-bit integer used to identify each CRA session in order to allow handling multiple requests at same time and this allows handling up to 256 request at same time.

It's generated by client.

2.3.2 Status

This field contains the status of response to support easy debugging and error handling.

2.3.3 Response

This field contains the response to the command sent.

2.4 Diagrams

2.4.1 Layered diagram

2.4.2 Multiple Requests All Success Case

Multiple Commands CLIENT_SERVER ALL SUCCESS

2.4.3 Multiple Requests Timeout Case

Multiple Commands CLIENT_SERVER TIMEOUT

2.4.4 Single Command Duplicate ACK

Single Command CLIENT_SERVER Dup Ack

2.4.5 Single Command ACK MISS

Single Command CLIENT_SERVER Miss Ack

2.4.6 Single Corrupted Command

Single Command CLIENT_SERVER Corrupted Command

2.4.7 Single Command Corrupted Response

Single Command CLIENT_SERVER Corrupted Response

2.4.8 Client State Diagram

2.4.9 Server State Diagram

2.5 Entities

3. Data Transfer Layer (DTL)

This layer provides two ways of sending messages: error-checked messages and non error checked messages.

In error-checked messages 16-bits FCS are added as footer.

On error found the error is reported to upper layer to be handled.

Slip encoding is performed as a last stage to wrap the packet and determine its length.

3.1 DTL Packet Format

The following figure outlines the dtl packet format.

CRC	CRC EN RESERVED Command Payload		CRC 16 (Optional)	
1 t	oit	7 bits	8 * (n + 3) bits	16 bits
IP END		Payload		SLIP END
8 bits		8 * (n + 4) or 8 * (n + 6) bits + 8 * k bits for Slip encoding		8 bits

3.1.1 CRC Enable (CRC EN)

On set to one then a 16-bit CRC is generated and attached to the packet footer, otherwise no CRC is generated.

3.1.2 Reserved

7 bits reserved for future use.

3.1.3 Payload

Contains the payload of the upper layer.

3.1.4 CRC 16

Optional 16-bits for CRC calculation.

3.1.5 SLIP Wrapper

This is used to wrap the packet before sending it to physical layer, this is important to determine the begin and end of the packet.

3.2 Entities

PROFESSEUR: M.DA ROS

4. Physical Layer

This layer is responsible for sending packets over the physical wire using UART communication protocol.

Specifications:

• Baud Rate: 115200 bps

- One Stop Bit
- No Parity
- Data Bits: 8 bits
- Flow Control: RTS/CTS (if board doesn't support then use XON/XOFF)

5. Services

5.1 Network Services

5.1.1 Network Capture

This command should force the server to hold a capture of nodes and links.

Command Message

Field	Content	Description
AF	COMMAND_FRAME	Set frame as command frame
Command	NWK CAPTURE	Network Capture Request

Response Message

PROFESSEUR: M.DA ROS

Field	Content	Description
Status	Status byte	see appendix
Response[0]	Capture Status	0x00: START Capture Else this indicates a problem

5.1.2 Node Discovery

This command is used to discover a new node in the captured network, if all nodes are discovered then it returns <code>END_OF_CAPTURED_NODES</code>.

Command Message

Field	Content	Description	
AF	COMMAND_FRAME	Set frame as command frame	
Command	NWK_DISCOVER	Network Discovery Request	

Response Message

Field	Content	Description
Status	Status byte	see appendix
Response[01]	Network Address of Node or END_OF_CAPTURED_NODES	16-bit integer
Response[211]	MAC Address of Node	64-bit integer
Response[12]	Logical Type of Node	0x00: Coordinator 0x01: Router 0x02: End Device
Response[1314]	Parent Network Address of Node	16-bit integer

5.1.3 Link Query

Command Message

	Field	Content	Description	
	AF	COMMAND_FRAME	Set frame as command frame	
Command		LINK_DISCOVER	Link Discovery Request	

Response Message

Field	Content	Description
Status Status byte		see appendix
Response[01] Network Address of First Node or END_OF_CAPTURED_LINK		16-bit integer
Response[23] Network Address of Second Node		16-bit integer
Response[4]	Income Cost of Link	Ranges from 0 to 7
Response[5]	Outcome Cost of Link	Ranges from 0 to 7

6. Appendix

PROFESSEUR: M.DA ROS

_ _

ACK FRAME

Field	Content	Description
AF	ACK_FLAG_ON	Set to 1
Command	ACK_FRAME_ACTION	The action that should be done after receiving the ACK frame

STATUS Byte

Name	Value	Description
STATUS_OK	0x00	Successful Operation
STATUS_ERROR	0x01	Operation Error
STATUS_CMD_NOT_SUPPORTED	0x02	Operation Not Supported
STATUS_WRONG_PARAMETER	0x03	Invalid Parameter
STATUS_TIMEOUT	0x04	Operation Timeout