Phần VII: TÍCH PHÂN BỘI

A-Tích phân kép

Câu 427: Xác định cận của tích phân : $I = \int_{\Sigma} \int f(x,y) \, dx dy$ trong đó D là miền giới hạn bởi các đường:

$$y = x + x^2, \quad y = 2x.$$

a)
$$I = \int_{-1}^{0} dx \int_{2x}^{x^2 + x} f(x, y) dy$$

b)
$$I = \int_{-2}^{0} dx \int_{x^2+x}^{2x} f(x,y) \ dy$$

b)
$$I = \int_{-2}^{0} dx \int_{x^2+x}^{2x} f(x,y) dy$$

c) $I = \int_{0}^{1} dx \int_{2x}^{x^2+x} f(x,y) dy$

d)
$$I = \int_0^1 dx \int_{x^2+x}^{2x} f(x,y) dy$$

Câu 428: Xác định cận của tích phân : $I = \int_{\mathcal{D}} \int f(x,y) \, dx dy$ trong đó D là miền giới hạn bởi các đường:

$$y=3x, \ y=x^2$$

a)
$$I = \int_0^3 dx \int_{3x}^{x^2} f(x, y) dy$$

b)
$$I = \int_0^9 dx \int_{x^2}^{3x} f(x, y) dy$$

c)
$$I = \int_0^9 dy \int_{y/3}^{\sqrt{y}} f(x, y) \ dx$$

d)
$$I = \int_0^3 dy \int_{y/3}^{\sqrt{y}} f(x, y) dx$$

Câu 429: Xác định cận của tích phân $I = \int \int_{\mathcal{D}} f(x,y) dx dy$ trong đó D là miền giới hạn bởi các đường

$$y = 2x^2 - x$$
 và $y = x^2 + 2x + 4$

a)
$$I = \int_{-1}^{4} dx \int_{x^2+2x+4}^{2x^2-x} f(x,y) dy$$

b)
$$I = \int_{-4}^{-1} dx \int_{2x^2 - x}^{x^2 + 2x + 4} f(x, y) dy$$

a)
$$I = \int_{-1}^{4} dx \int_{x^2 + 2x + 4}^{2x^2 - x} f(x, y) dy$$

b) $I = \int_{-4}^{-1} dx \int_{2x^2 - x}^{x^2 + 2x + 4} f(x, y) dy$
c) $I = \int_{-4}^{-1} dx \int_{x^2 + 2x + 4}^{2x^2 - x} f(x, y) dy$

$$d) \ I = \int_{-1}^{4} dx \int_{2x^2 - x}^{x^2 + 2x + 4} f(x, y) dy$$

Câu 430: Xác định cận của tích phân : $I = \int_{\mathcal{D}} \int f(x,y) \, dx dy$ trong đó D là miền giới hạn bởi các đường:

$$y = 2\sqrt{x}, \quad y = x$$

a)
$$I = \int_0^4 dx \int_{2\sqrt{x}}^x f(x, y) \ dy$$

b)
$$I = \int_0^2 dx \int_x^{2\sqrt{x}} f(x, y) \ dy$$

c)
$$I = \int_0^4 dx \int_x^{2\sqrt{x}} f(x, y) \ dy$$

d)
$$I = \int_0^4 dy \int_{-\sqrt{y}}^y f(x, y) \ dx$$

Câu 431: Xác định cân của tích phân : $I = \int \int_{\mathcal{D}} f(x,y) \, dx dy$ trong đó D là miền giới hạn bởi các đường

$$y=x^2, \quad y=x^3.$$

a)
$$I = \int_0^1 dx \int_{x^2}^{x^3} f(x, y) dy$$

b)
$$I = \int_0^1 dx \int_{x^3}^{x^2} f(x, y) \ dy$$

c)
$$I = \int_{-1}^{1} dx \int_{x^3}^{x^2} f(x, y) dy$$

d)
$$I = \int_{-1}^{1} dx \int_{x^2}^{x^3} f(x, y) dy$$

Câu 432: Xác định cân của tích phân : $I = \int \int_{\mathcal{D}} f(x,y) \, dx dy$

trong đó D là miền giới hạn bởi các đường

$$y = x^2 + 2$$
, $y = 3x$.

a)
$$I = \int_{1}^{2} dx \int_{x^{2}+2}^{3x} f(x,y) dy$$

b)
$$I = \int_{1}^{2} dx \int_{3\frac{\pi}{3}x}^{x^{2}+2} f(x,y) dy$$

c) $I = \int_{2}^{1} dx \int_{x^{2}+2}^{3\frac{\pi}{3}x} f(x,y) dy$
d) $I = \int_{2}^{1} dx \int_{3x}^{x^{2}+2} f(x,y) dy$

c)
$$I = \int_{2}^{1} dx \int_{x^{2}+2}^{3x} f(x,y) dy$$

d)
$$I = \int_{2}^{1} dx \int_{3\pi}^{x^{2}+2} f(x,y) dy$$

Câu 433: Xác định cận của tích phân : $I = \int \int_{\mathcal{D}} f(x,y) dx dy$, trong đó D là miền giới hạn bởi các đường thẳng

$$x = 3$$
, $x = 5$, $3x - 2y + 4 = 0$, $3x - 2y + 1 = 0$.

a)
$$I = \int_3^5 dx \int_{\frac{3z+4}{2}}^{\frac{3z+1}{2}} f(x,y) dy$$
.

b)
$$I = \int_3^5 dx \int_{\frac{3x+1}{2}}^{\frac{3x+4}{2}} f(x,y) dy$$
.

c)
$$I = \int_3^5 dx \int_{\frac{2y-4}{3}}^{\frac{2y-1}{3}} f(x,y) dy$$
.

d)
$$I = \int_3^5 dx \int_{\frac{2y-1}{3}}^{\frac{2y-4}{3}} f(x,y) dy$$
.

Câu 434: Xác định cận của tích phân : $I = \int \int_{\mathcal{D}} f(x,y) \, dx dy$, trong đó D là miền định bởi

$$D: x^2 + y^2 \le 1, \quad x \ge 0, \quad y \ge 0.$$

a)
$$I = \int_{0}^{1} dx \int_{0}^{\sqrt{1-y^2}} f(x,y) \ dy$$
.

b)
$$I = \int_0^1 dx \int_0^1 f(x, y) dy$$
.

c)
$$I = \int_0^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy$$
.

d) Các kết quả trên đều sai.

Câu 435: Xác định cận của tích phân : $I = \int \int_D f(x,y) dx dy$, trong đó D là miền định bởi

$$D: x + y \le 1, \quad x - y \le 1, \quad x \ge 0.$$

a)
$$I = \int_0^1 dx \int_{x-1}^{1-x} f(x,y) dy$$
.

b)
$$I = \int_0^1 dx \int_{1-x}^{x-1} f(x,y) dy$$
.

c)
$$I = \int_0^1 dx \int_0^1 f(x, y) dy$$
.

d)
$$I = \int_0^1 dx \int_{-1}^1 f(x, y) dy$$
.

Câu 436: Xác định cận của tích phân : $I = \int \int_{\hat{D}} f(x,y) dx dy$, trong đó D là miền định bởi

$$D: y \ge x^2, \quad y \le 4 - x^2.$$

a)
$$I = \int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{4-x^2}^{x^2} f(x,y) dy$$
.

b)
$$I = \int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{x^2}^{4-x^2} f(x, y) dy$$
.

c)
$$I = \int_{-2}^{2} dx \int_{x^2}^{4-x^2} f(x,y) \ dy$$
.

d)
$$I = \int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{0}^{4} f(x, y) dy$$
.

Câu 437: Xác định cận của tích phân : $I = \int \int_D f(x,y) dx dy$, trong đó D là hình tròn

$$D: (x-2)^2 + (y-3)^2 \le 4.$$

a)
$$I = \int_0^2 dx \int_0^3 f(x, y) dy$$
.

b)
$$I = \int_0^4 dx \int_1^5 f(x, y) \ dy$$
.

c)
$$I = \int_0^4 dx \int_{3-\sqrt{4x-x^2}}^{3+\sqrt{4x-x^2}} f(x,y) \ dy$$
.

d)
$$I = \int_0^4 dx \int_{3-\sqrt{x^2-4x}}^{3+\sqrt{x^2-4x}} f(x,y) \ dy$$
.

Câu 438: Xác định cận của tích phân : $I = \int \int_D f(x,y) dx dy$, trong đó D là miền giới hạn bởi các đường

$$y=x^2, y=\sqrt{x}.$$

a)
$$I = \int_0^1 dx \int_{\sqrt{x}}^{x^2} f(x, y) \ dy$$
.

b)
$$I = \int_0^1 dx \int_{x^2}^{\sqrt{x}} f(x, y) dy$$
.

c)
$$I = \int_0^1 dx \int_0^1 f(x, y) dy$$
.

d) Các kết quả trên đều sai.

Câu 439: Xác định cận của tích phân : $I = \int \int_D f(x,y) \, dx dy$, trong đó D là ellip

$$\frac{x^2}{4} + \frac{y^2}{9} \le 1.$$

a)
$$I = \int_{-2}^{2} dx \int_{-\frac{3}{2}\sqrt{4-x^2}}^{\frac{3}{2}\sqrt{4-x^2}} f(x,y) \ dy.$$

b)
$$I = \int_{-2}^{2} dx \int_{-3}^{3} f(x, y) \ dy$$
.

c)
$$I = \int_0^2 dx \int_0^{\frac{3}{2}\sqrt{4-x^2}} f(x,y) \ dy$$
.

d) Các kết quả trên đều sai.

Câu 440: Trên miền lấy tích phân $D:a\leq x\leq b,\ c\leq$

 $y \leq d$, viết tích phân kép thành tích phân lặp, khẳng định nào sau đây đúng?

a)
$$\iint_{\mathcal{D}} f(x,y) \ dxdy = \int_{a}^{b} f(x)dx \int_{a}^{d} f(x,y) \ dy.$$

b)
$$\int \int_D f(x+y) \ dxdy = \int_a^b f(x)dx + \int_c^d f(y) \ dy$$
.

c)
$$\int \int_{D} [f(x) + g(y)] dxdy = \int_{a}^{b} f(x)dx + \int_{c}^{d} g(y) dy.$$

d)
$$\iint_{D} [f(x)g(y)] \ dxdy = \int_{a}^{b} f(x)dx \int_{c}^{d} g(y) \ dy.$$

Câu 441: Đổi thứ tự tính tích phân $I = \int_0^{1/4} dx \int_x^{\sqrt{x}} f(x,y) dy$.

Kết quả nào sau đây đúng?

$$a)I = \int_0^{1/4} dy \int_{r^2}^y f(x,y) dx$$

$$f(x) = \int_0^{1/2} dy \int_y^{y^2} f(x, y) dx$$

$$c)I = \int_0^{1/4} dy \int_{y^2}^{y} f(x, y) dx + \int_{1/4}^{1/2} dy \int_{y^2}^{1/4} f(x, y) dx$$

$$d)I = \int_0^{1/4} dy \int_y^{y^2} f(x,y) dx$$

Câu 442: Đổi thứ tự tính tích phân $I = \int_1^2 dx \int_1^{x^2} f(x,y) dy$.

$$a)I = \int_1^4 dy \int_1^2 f(x,y)dx$$

$$b)I = \int_{1}^{2} dy \int_{1/\overline{y}}^{2} f(x, y) dx$$

$$c)I = \int_1^4 dy \int_{\sqrt{y}}^{\sqrt{2}} f(x, y) dx$$

$$d)I = \int_1^4 dy \int_1^{\sqrt{y}} f(x,y) dx$$

Câu 443: Đổi thứ tự tính tích phân $I = \int_1^2 dx \int_2^{4-x} f(x,y) dy$.

$$a)I = \int_{1}^{2} dy \int_{1}^{4-y} f(x,y) dx$$
 $b)I = \int_{2}^{3} dy \int_{1}^{4-y} f(x,y) dx$
 $c)I = \int_{2}^{3} dy \int_{4-y}^{1} f(x,y) dx$
 $d)I = \int_{1}^{3} dy \int_{4-y}^{1} f(x,y) dx$

Câu 444: Đổi thứ tự tính tích phân $I = \int_0^1 dx \int_0^{x^3} f(x,y) dy$.

$$a)I = \int_0^1 dy \int_1^{\sqrt[3]{y}} f(x,y) dx$$

$$b)I = \int_0^1 dy \int_{\sqrt[3]{y}}^{\sqrt[3]{y}} f(x,y) dx$$

$$c)I = \int_0^1 dy \int_0^{\sqrt[3]{y}} f(x,y) dx$$

$$c)I = \int_{0.1}^{1} dy \int_{0.0}^{\sqrt[3]{y}} f(x, y) dx$$

$$d)I = \int_0^1 dy \int_{3/2}^0 f(x,y) dx$$

Câu 445: Đổi thứ tự tính tích phân $I = \int_0^1 dx \int_1^{e^x} f(x,y) dy$.

$$a)I = \int_0^e dy \int_{1 \text{liny}}^{\text{liny}} f(x, y) dx$$

$$b)I = \int_{1}^{e} dy \int_{1}^{lny} f(x,y) dx$$

$$c)I = \int_{0}^{e} dy \int_{lny}^{1} f(x,y) dx$$

$$d)I = \int_{1}^{e} dy \int_{lxy}^{1} f(x,y) dx$$

Câu 446: Đổi thứ tự tính tích phân $I = \int_0^1 dx \int_1^{e^x} f(x,y) dy$.

$$a)I = \int_{0}^{1} dy \int_{e^{y}}^{1} f(x, y) dx$$

$$b)I = \int_{1}^{e} dy \int_{lny}^{1} f(x, y) dx$$

$$c)I = \int_{0}^{e} dy \int_{1}^{lny} f(x, y) dx$$

$$d)I = \int_{0}^{e} dy \int_{lny}^{1} f(x, y) dx$$

Câu 447: Đổi thứ tự tính tích phân $I = \int_0^{ln2} dx \int_x^2 f(x,y) dy$.

$$a)I = \int_0^2 dy \int_{lny}^0 f(x,y) dx$$

$$b)I = \int_{1}^{e} dy \int_{0}^{lny} f(x,y)dx$$

$$c)I = \int_{0}^{2} dy \int_{0}^{lny} f(x,y)dx$$

$$d)I = \int_{1}^{2} dy \int_{0}^{lny} f(x,y)dx$$

$$c)I = \int_0^z dy \int_0^{my} f(x,y) dx$$

$$dI = \int_{1}^{2} dy \int_{0}^{iny} f(x,y) dx$$

Câu 448: Cho tích phân : $I = \int_1^2 dx \int_2^{\sqrt{2x-x^2}} f(x,y) \ dy$

Thay đổi thứ tự tính tích phân ta được

a)
$$I = \int_0^1 dy \int_0^1 f(x, y) \ dx$$
.

b)
$$I = \int_0^1 dy \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y) \ dx.$$

c)
$$I = \int_0^1 dy \int_{1+\sqrt{1-v^2}}^{2-y} f(x,y) \ dx$$
.

d)
$$I = \int_{2-x}^{\sqrt{2x-x^2}} dy \int_{1}^{2} f(x,y) dx$$
.

Câu 449: Cho tích phân : $I = \int_1^e dx \int_0^{lnx} f(x,y) dy$. Thay đổi thứ tư tính tích phân ta được

a)
$$I = \int_0^1 dy \int_0^{e^y} f(x, y) \ dx$$
.

b)
$$I = \int_{0}^{\ln x} dy \int_{1}^{e} f(x, y) \ dx.$$

c)
$$I = \int_{0}^{1} dy \int_{1}^{e} f(x, y) dx$$
.

d)
$$I = \int_{0}^{1} dy \int_{x}^{e} f(x, y) dx$$
.

Câu 450: Cho tích phân : $I = \int_0^1 dx \int_x^{\sqrt{x}} f(x,y) dy$. Thay đổi thứ tự tính tích phân ta được

a)
$$I = \int_0^1 dy \int_{x^2}^y f(x, y) \ dx$$
.

b)
$$I = \int_0^1 dy \int_0^1 f(x, y) \ dx$$
.

c)
$$I = \int_{x}^{\sqrt{x}} dy \int_{0}^{1} f(x, y) \ dx.$$

d)
$$I = \int_0^1 dy \int_{x}^{y^2} f(x, y) \ dx$$
.

Câu 451: : Thay đổi thứ tự tính tích phân:

$$I = \int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) \ dy.$$

a)
$$I = \int_{-1}^{1} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) \ dx.$$

b)
$$I = \int_0^1 dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) \ dx.$$

c)
$$I = \int_0^1 dy \int_{-1}^1 f(x, y) dx$$
.

d)
$$I = \int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$$
.

Câu 452: Thay đổi thứ tự tính tích phân :

$$I = \int_0^1 dy \int_{\sqrt{y}}^{\sqrt{y}} f(x, y) \ dx.$$

a)
$$I = \int_{0}^{1} dx \int_{-2}^{x^{4}} f(x, y) dy$$
.

b)
$$I = \int_0^1 dx \int_{x^4}^{x^2} f(x, y) dy$$
.

c)
$$I = \int_{-1}^{1} dx \int_{x^2}^{x^4} f(x, y) dy$$
.

d)
$$I = \int_{-1}^{1} dx \int_{-2}^{x^4} f(x, y) dy$$
.

Câu 453: Thay đổi thứ tự tính tích phân:

$$I = \int_1^4 dy \int_y^{y^2} f(x, y) \ dx.$$

a)
$$I = \int_{1}^{16} dx \int_{x}^{\sqrt{x}} f(x, y) \ dy$$
.

b)
$$I = \int_1^8 dx \int_{\sqrt{x}}^x f(x,y) \ dy + \int_8^{16} dx \int_{2\sqrt{2}}^4 f(x,y) \ dy.$$

c)
$$I = \int_{1}^{4} dx \int_{\sqrt{x}}^{x} f(x, y) \ dy + \int_{4}^{16} dx \int_{\sqrt{x}}^{4} f(x, y) \ dy$$
.

d)
$$I = \int_1^4 dx \int_1^x f(x,y) \ dy + \int_4^{16} dx \int_{\sqrt{x}}^4 f(x,y) \ dy$$
.

Câu 454: Thay đổi thứ tự tính tích phân:

$$I = \int_1^2 dx \int_x^{2x} f(x, y) \ dy.$$

a)
$$I = \int_1^2 dy \int_y^1 f(x,y) \ dx + \int_2^4 dy \int_2^{y/2} f(x,y) \ dx.$$

b)
$$I = \int_1^2 dy \int_1^y f(x,y) \ dx + \int_2^4 dy \int_{y/2}^2 f(x,y) \ dx.$$

c)
$$I = \int_{1}^{4} dy \int_{1}^{2} f(x, y) \ dx$$
.

d)
$$I = \int_0^4 dy \int_1^2 f(x, y) \ dx$$
.

Câu 455: Thay đổi thứ tự tính tích phân :

$$I = \int_0^1 dx \int_x^{\sqrt{2-x^2}} f(x, y) \ dy.$$

a)
$$I = \int_0^1 dy \int_0^{\sqrt{2-y^2}} f(x,y) \ dx$$
.

b)
$$I = \int_0^1 dy \int_0^1 f(x,y) \ dx + \int_1^{\sqrt{2}} dy \int_0^{\sqrt{2}} f(x,y) \ dx.$$

c)
$$I = \int_0^1 dy \int_0^{\sqrt{2-y^2}} f(x,y) \ dx + \int_1^{\sqrt{2}} dy \int_0^y f(x,y) \ dx$$
.

d)
$$I = \int_0^1 dy \int_0^y f(x,y) \ dx + \int_1^{\sqrt{2}} dy \int_0^{\sqrt{2-y^2}} f(x,y) \ dx.$$

Câu 456: Đặt $I = \int \int_D f(x,y) \, dx dy$, trong đó D là tam giác có các đỉnh là O(0,0); A(1,0) và B(1,1). Khẳng định nào sau đây đúng?

a)
$$I = \int_0^1 dx \int_0^x f(x,y) \ dy = \int_0^1 dy \int_y^1 f(x,y) \ dx.$$

b)
$$I = \int_0^1 dx \int_0^x f(x,y) \ dy = \int_0^1 dy \int_1^y f(x,y) \ dx.$$

c)
$$I = \int_0^1 dy \int_y^1 f(x,y) \ dx = \int_0^1 dx \int_0^1 f(x,y) \ dy$$
.

d)
$$I = \int_0^1 dy \int_y^1 f(x,y) \ dx = \int_0^1 dx \int_x^1 f(x,y) \ dy$$
.

Câu 457: Đặt $I = \int \int_D f(x,y) \, dx dy$, trong đó D là tam giác có các đỉnh là O(0,0); A(0,1) và B(1,1). Khẳng định nào sau đây đúng?

a)
$$I = \int_0^1 dx \int_x^1 f(x,y) \ dy = \int_0^1 dy \int_y^1 f(x,y) \ dx.$$

b)
$$I = \int_0^1 dx \int_0^1 f(x,y) \ dy = \int_0^1 dy \int_0^y f(x,y) \ dx$$
.

c)
$$I = \int_0^1 dy \int_0^1 f(x,y) \ dx = \int_0^1 dx \int_0^x f(x,y) \ dy$$
.

d)
$$I = \int_0^1 dy \int_y^1 f(x,y) dx = \int_0^1 dx \int_x^1 f(x,y) dy$$
.

Câu 458: Đặt $I = \int \int_D f(x,y) dx dy$, trong đó D là tam giác có các đinh là O(0,0); A(0,1) và B(1,0). Khẳng định

nào sau đây đúng?

a)
$$I = \int_0^1 dy \int_0^{1-y} f(x,y) \ dx = \int_0^1 dx \int_1^x f(x,y) \ dy$$
.

b)
$$I = \int_0^1 dy \int_0^{1-x} f(x,y) \ dx = \int_0^1 dx \int_0^{1-y} f(x,y) \ dy$$

b)
$$I = \int_0^1 dy \int_0^{1-x} f(x,y) \ dx = \int_0^1 dx \int_0^{1-y} f(x,y) \ dy.$$

c) $I = \int_0^1 dx \int_0^{1-x} f(x,y) \ dy = \int_0^1 dy \int_0^{y-1} f(x,y) \ dx.$

d)
$$I = \int_0^1 dx \int_0^{1-x} f(x,y) \ dy = \int_0^1 dy \int_0^{1-y} f(x,y) \ dx.$$

Câu 459: Đặt $I = \int \int_{\Omega} f(x,y) \ dx dy$, trong đó D là tam giác có các định là A(0,1); B(1,0) và C(1,1). Khẳng định nào sau đây đúng?

a)
$$I = \int_0^1 dy \int_0^{1-y} f(x,y) \ dx = \int_0^1 dx \int_1^x f(x,y) \ dy$$
.

b)
$$I = \int_0^1 dy \int_{1-x}^1 f(x,y) \ dx = \int_0^1 dx \int_0^{1-y} f(x,y) \ dy$$
.

c)
$$I = \int_0^1 dx \int_{1-x}^1 f(x,y) \ dy = \int_0^1 dy \int_{1-y}^1 f(x,y) \ dx.$$

d)
$$I = \int_0^1 dx \int_0^{1-x} f(x,y) \ dy = \int_0^1 dy \int_0^{1-y} f(x,y) \ dx.$$

Câu 460: Chuyển tích phân sau sang tọa độ cực: I = $\int_{\mathcal{D}} f(x,y) dx dy$, trong đó D là hình tròn $x^2 + y^2 \leq 4y$.

Đảng thức nào sau đây đúng?

a)
$$I = \int_0^{2\pi} d\varphi \int_0^4 f(r\cos\varphi, r\sin\varphi) dr$$

$$b) \ I = \int_{0}^{\pi/2} d\varphi \int_{0}^{4\cos\varphi} f(r\cos\varphi, r\sin\varphi) dr$$

$$c) \ I = \int_{0}^{\pi} d\varphi \int_{0}^{4\sin\varphi} rf(r\cos\varphi, r\sin\varphi) dr$$

$$rf(r\cos\varphi, r\sin\varphi) dr$$

c)
$$I = \int_0^{\pi} d\varphi \int_0^{4sin\varphi} rf(r\cos\varphi, r\sin\varphi) dr$$

d)
$$I = \int_0^{\pi} d\varphi \int_0^2 rf(r\cos\varphi, r\sin\varphi)dr$$

Câu 461: Cho tích phân $I = \int \int_{\mathcal{D}} f(x,y) dx dy$. Đẳng thức nào sau đây đúng?

a) Với D là hình tròn $x^2 + y^2 \le R^2$ (R > 0) ta có:

$$I = \int_0^{2\pi} d\varphi \int_0^R f(r cos\varphi, r sin\varphi) r dr.$$

b) Với D là hình tròn $x^2 + y^2 \le ax$ (a > 0) ta có:

$$I = \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{acos\varphi} f(rcos\varphi, rsin\varphi)rdr.$$

c) Với D là hình tròn $x^2 + y^2 \le by$ (b > 0) ta có:

$$I = \int_0^{\pi} d\varphi \int_0^{bsin\varphi} f(rcos\varphi, rsin\varphi) r dr.$$

d) Các khẳng định trên đều đúng.

Câu 462: Chuyển tích phân sang hệ toạ độ cực

$$I = \int \int_D f(\sqrt{x^2 + y^2}) dx dy,$$

trong đó D là nửa hình tròn $x^2 + y^2 \le 1$, $y \ge 0$ ta có a) $I = \int_0^{2\pi} d\varphi \int_0^1 rf(r)dr$.

$$\mathrm{a)}\,\,I=\int_0^{2\pi}\,\,d\varphi\int_0^1\,\,rf(r)dr.$$

b)
$$I = \int_{0}^{\pi/2} d\varphi \int_{0}^{1} rf(r)dr$$
.

c)
$$I = \pi \int_0^1 r f(r) dr$$
.

d)
$$I = \int_0^{\pi/2} d\varphi \int_0^1 f(r) dr$$
.

Câu 463: Tính tích phân $I = \int_0^1 dy \int_0^{y^2} 3y^3 \cdot e^{xy} dx$

a)
$$I = 2-e$$
 b) $I = 0$ c) $I = e-2$ d) $I = e+2$

Câu 464: Tính tích phân
$$I = \int_0^1 dx \int_0^{2x} 3(x+y) dy$$

a)
$$I = 3$$
 b) $I = -3$ c) $I = -4$ d) $I = 4$ Câu 465: Tính tích phân $I = \int_0^{\pi} dx \int_0^{x} 2x.siny.dy$

a)
$$I = \pi^2 - 4$$
 b) $I = \pi^2 - 2$ c) $I = \pi^2 + 4$ d) $I = \pi^2 + 2$ Câu 466: Tính tích phân $I = 2\int_0^1 dy \int_0^y e^{x+y} dx$ a) $I = e^2 + e$ b) $I = e^2 + e - 2$ c) $I = e^2 - e$ d) $I = e^2 - 2e + 1$ Câu 467: Tính tích phân $I = \int_0^{\pi/2} dy \int_0^y \sin(x+y) dx$ a) $I = 0$ b) $I = 2$ c) $I = 1$ d) $I = 1/2$ Câu 468: Tính tích phân $I = \int_1^2 dx \int_0^{\ln x} 6xe^y dy$ a) $I = 0$ b) $I = 1$ c) $I = 3$ d) $I = 5$. Câu 469: Tính tích phân kép: $I = \int_D (\sin x + 2\cos y) dx dy$, trong đó D là hình chữ nhật $0 \le x \le \pi/2$; $0 \le y \le \pi$. a) $I = \pi$. b) $I = -\pi$. c) $I = 2\pi$. d) $I = -2\pi$. Câu 470: Tính tích phân $I = \int_D xy^3 dx dy$ trong đó D là hình chữ nhật $0 \le x \le 1$; $0 \le y \le 2$ a) $I = 0$ b) $I = 2$ c) $I = 4$ d) $I = 8$ Câu 471: Tính tích phân $I = \int_D x^3 (y^2 + 1) dx dy$, trong đó D là hình chữ nhật $-m \le x \le m$; $0 \le y \le 1$, m là hàng số thực dương. a) $I = 0$ b) $I = 2m$ c) $I = 2m^2$ d) $I = 3m^2$.

Câu 472: Tính tích phân $I = \int \int_{\mathcal{D}} xy dx dy$, trong đó D là

hình chữ nhật $0 \le x \le 1$, $0 \le y \le 2$.

a) I = 1 b) I = 2 c) I = 1/2 d) I = 1/4Câu 473: Tính tích phân $I = \int \int_{\mathcal{D}} \frac{x}{u} lny dx dy$, trong đó D là hình chữ nhật $0 \le x \le 2$, $1 \le y \le e$.

a)
$$I = 1/2$$
 b) $I = 1$ c) $I = 1/4$ d) $I = 2$

Câu 474: Tính tích phân $I = \int \int_{\mathcal{D}} sin^5 x cos^{10} y dx dy$, trong

đó
$$D$$
 là hình chữ nhật $\underline{0} \le x \le 2\pi$, $\underline{0} \le y \le \pi/4$.

a) I = 1/2 b) $I = \sqrt{2}$ c) $I = \sqrt{2}/2$ d) I = 0

Câu 475: Tính tích phân $I = \int \int_{\mathcal{D}} e^{x+y} dx dy$, trong đó Dlà hình vuông $0 \le x \le 1$, $0 \le y \le \overline{1}$.

a)
$$I = e^2$$
 b) $I = e^2 - 1$ c) $I = (e-1)^2$ d) $I = 2(e-1)$

Câu 476: Tính tích phân $I=\int\int_{D}\frac{x^{2}}{y^{2}+1}dxdy$, trọng đó

D là hình vuông $0 \le x \le 1$, $0 \le y \le 1$.

a)
$$I = \pi/12$$
 b) $I = \pi/4$ c) $I = \pi$ d) $I = \pi^2/4$

Câu 477: Tính tích phân $I = \int \int_D \frac{dx dy}{(x+y+1)^2}$, trong đó

D là hình vuông $0 \le x \le 1$, $0 \le y \le 1$.

a)
$$I = ln3 - ln4$$

b)
$$I = ln4 - ln3$$

c)
$$I = ln4$$

d)
$$I = -ln3$$

Câu 478: Tính tích phân $I=\int\int_{D}\frac{dxdy}{(x+y)^{2}},$ trong đó D

là hình vuông $1 \le x \le 2$, $0 \le y \le 1$.

a)
$$I = ln3 - ln4$$

b)
$$I = ln4 + ln3$$

c)
$$I = ln4 - ln3$$

d)
$$I = 0$$

Câu 479: Tính tích phân $I=\int\int_{\mathcal{D}}(e^x+e^y)dxdy$, trong đó

D là hình vuông
$$0 \le x \le 1$$
, $0 \le y \le 1$.
a) $I = e^2$ b) $I = e^2 - 1$ c) $I = (e - 1)^2$ d
 $I = 2(e - 1)$

Câu 480: Tính tích phân $I = \int \int_{\mathcal{D}} (\sin x + \cos y) dx dy$,

trong đó miền D định bởi $D:0\leq x\leq 2\pi,\ 0\leq y\leq \pi.$ a) I=0 b) I=-1 c) $I=2\pi$ d) $I=4\pi$ Câu 481: Tính tích phân $I=\int\int_{D}\frac{\cos y}{x}dxdy$, trong đó D là miền được giới hạn bởi các đường

$$x = 1, x = 2, y = 0, y = \pi/2.$$

a)
$$I=-ln2$$
 b) $I=\frac{\pi}{2}ln2$ c) $I=\pi$ d) $I=ln2$ Câu 482: Tính tích phân $I=\int\int_{D}xlnydxdy$, trong đó D

x = 0, x = 2, y = 1, y = e.

là miền được giới hạn bởi các đường

a)
$$I=2$$
 b) $I=2e$ c) $I=2(e-1)$ d) $I=2(e+1)$ Câu 483: Tính tích phân $I=\int \int_D (x+y)dxdy$, trong đó D là miền được giới hạn bởi các đường

$$x = -1$$
, $x = 0$, $y = 0$, $y = 2$.

a)
$$I=3$$
 b) $I=1$ c) $I=-1$ d) $I=-3$ Câu 484: Tính tích phân $I=\int\int_D dxdy$, trong đó D là miền định bởi

$$D: 0 \le x \le a, \ 0 \le y \le \sqrt{x}.$$

a)
$$I = \sqrt[3]{a^2}$$
 b) $I = \frac{3}{2}\sqrt{a^3}$ c) $I = \frac{2}{3}\sqrt{a^3}$ d) $I = \sqrt{a^3}$ Câu 485: Tính tích phân $I = \int \int_D \frac{y}{x} dx dy$, trong đó D là miền định bởi $D: 2 \le x \le 4, \ x \le y \le 2x$.
a) $I = 1/9$ b) $I = 3$ c) $I = 12$ d) $I = 9$ Câu 486: Tính tích phân $I = \int \int_D e^x dx dy$, trong đó D là

```
mien định bởi D: 1 \le y \le 2, \ 0 \le x \le lny.
a) I = 1/2 b) I = 1 c) I = e - 1 d) I = e^2
Câu 487: Tính tích phân I = \int \int_{\mathcal{D}} siny dx dy, trong đó D
là miền đinh bởi D:\pi\leq x\leq 3\pi,\ \pi\leq y\leq x.
a) I = 2\pi b) I = -2\pi c) I = 0 d) I = 1
Câu 488: Tính tích phân I = \int \int_{\mathcal{D}} (x+y) dx dy, trong đó
D là miền định bởi D: 0 \le y \le 1, \ 0 \le x \le y.
                        c) I = 3/2
a) I = 1 b) I = 2
Câu 489: Tính tích phân I = \int \int_{-\infty}^{\infty} 2x^2y dx dy, trong đó D
là tam giác với các đỉnh O(0,0); A(1,0); B(1,1).
a) I = 1 b) I = 2 c) I = 1/5 d) I = 1/4
Câu 490: Tính tích phân I = \int \int_{-1}^{1} (3x+2) dx dy trong đó
D là tam giác OAB với O(0,0); A(1,0); B(1,1).
a) I = 0
              b) I = 1
                              c) I = 2
Câu 491: Tính tích phân I = \int_{D} 2(x+y)dxdy trong
đó D là tam giác OAB với O(0,0); A(1,0); B(0,1).
a) I = 0 b) I = 1
                              c) I = 1/3 d) I = 2/3
Câu 492: Tính tích phân I = \int \int_{\mathcal{D}} cos(x+y) dx dy, trong
đó D là miền giới hạn bởi các đường x=0,\ y=\pi,\ y=x.
a) I = 2 b) I = 1 c) I = -1 d) I = -2
Câu 493: Tính tích phân I = \int \int_{D} e^{y/x} dx dy, trong đó D
là tam giác giới hạn bởi các đường x = 1, y = 0, y = x.
a) I = \frac{e-1}{2} b) I = \frac{e+1}{2} c) I = 0 d) I không tòn
tai.
Câu 494: Tính tích phân I = \int \int_{D} x dx dy, trong đó D là
tam giác với các đinh O(0,0); A(0,1); B(1,0).
a) I = 1/2 b) I = 0 c) I = 1 d) I = 1/6
```

Câu 495: Tính tích phân $I = \int \int_{\mathcal{D}} 2xy dx dy$, trong đó Dlà miền giới hạn bởi đường thẳng y = x và parabol $y = \sqrt{x}$. a) $I = \frac{1}{12}$ b) $I = \frac{1}{6}$ c) $I = \frac{7}{12}$ d) I = 0. Câu 496: Tính tích phân $I = \int \int_D y dx dy$, trong đó D là miền giới hạn bởi đường thẳng y = x và parabol $y = x^2$. a) I = 1 b) $I = \frac{1}{2}$ c) $I = \frac{8}{15}$ d) $I = \frac{1}{15}$ **Câu 497:** Tính tích phân $I = \int \int_{\mathcal{D}} (-\frac{1}{2}) dx dy$, trong đó Dlà miền giới hạn bởi các đường $y = x^2$ và $y = -x^2 - 2x$. a) $I = -\frac{1}{6}$ b) $I = \frac{1}{6}$ c) $I = \frac{5}{6}$ d) $I = -\frac{5}{6}$ Câu 498: Tính tích phân $I = \int \int_{\mathbb{R}} \pi dx dy$, trong đó D là miền giới hạn bởi các đường $y = x^2 - 2x$ và $y = 2x^2 - 4x$. a) $I = 2\pi$ b) $I = -\frac{4}{3}\pi$ c) $I = \frac{4}{3}\pi$ d) $I = -\frac{4}{3}\pi$ Câu 499: Tính tích phân : $I = \int \int_{\mathbb{R}} (x^2 + y^2) dx dy$ trong đó D là hình tròn $x^2 + y^2 \le 1$. a) $I = \pi/2$ b) $I = 2\pi/3$ c) $I = \pi/4$ d) $I = \pi/8$ Câu 500: Tính tích phân $I = \int \int_{\mathbb{R}} (x^2 + y^2)^2 dx dy$ trong đó D là hình tròn $x^2 + y^2 \le 1$ a) $I = -\pi/3$ b) $I = 2\pi/3$ c) $I = 2\pi/5$ d) $I = \pi/3$ Câu 501: Tính tích phân $I = \int \int_{D} \frac{dxdy}{\sqrt{x^2 + y^2}}$, trong đó D là hình tròn $x^2 + y^2 \le 9$ a) $I = 3\pi$ b) $I = 6\pi$ c) $I = 9\pi$ d) $I = 18\pi$ Câu 502: Tính tích phân kép : $I = \int \int_{\mathcal{D}} \sqrt{x^2 + y^2} dx dy$, trong đó D là hình vành khăn $1 \le x^2 + y^2 \le 4$. a) $I = \pi/2$. b) $I = \pi$. c) $I = 2\pi$. d) $I = 14\pi/3$.

Câu 503: Tính tích phân :
$$I = \int_0^1 dy \int_0^{\sqrt{1-y^2}} (x^2+y^2).dx$$
 a) $I = \pi/6$ b) $I = 2\pi$ c) $I = \pi/4$ d) $I = \pi/8$ Câu 504: Tính tích phân bội hai: $I = \int_D \sqrt{x^2 + y^2} dx dy$, trong đó D là phần hình tròn $x^2 + y^2 \le 4$ thuộc góc phần tư thứ nhất.
a) $I = 4\pi/3$ b) $I = 2\pi/3$ c) $I = 8\pi/3$ d) $I = 3\pi/4$ Câu 505: Tính tích phân: $I = \int_0^2 dx \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} .dy$ a) $I = \pi/8$ b) $I = 2\pi$ c) $I = \pi/4$ d) $I = \pi$ Câu 506: Tính tích phân $I = \int_D x^2 y^3 dx dy$, trong đó: D là nửa hình tròn $x \ge 0$; $x^2 + y^2 \le 1$ a) $I = 0$ b) $I = \pi$ c) $I = \pi/2$ d) $I = \pi/4$ Câu 507: Tính tích phân $I = \int_D \sqrt{x^2 + y^2} dx dy$, trong đó D là hình tròn $D : x^2 + y^2 \le a^2$. a) $I = 2\pi a^3$ b) $I = 2\pi a^2$ c) $I = 2\pi a^3/3$ d) $I = 2\pi a^2/3$ Câu 508: Tính tích phân $I = \int_D (x^2 + y^2) dx dy$, trong đó D là nửa hình tròn $D : x^2 + y^2 \le 4$, $y \ge 0$. a) $I = 2\pi$ b) $I = 4\pi$ c) $I = 8\pi$ d) $I = \pi$ Câu 509: Tính tích phân $I = \int_D xy dx dy$, trong đó D là nửa hình tròn $D : x^2 + y^2 \le A$, $x \ge 0$, $y \ge 0$. a) $I = 0$ b) $I = R^4/4$ c) $I = R^4/16$ d) $I = R^4/8$ Câu 510: Tính tích phân $I = \int_D xy dx dy$, trong đó D là 1/4 hình vành khản giữa hai đường tròn tâm O (gốc toạ độ) có bán kính lần lượt là 1 và 2, thuộc góc phần tư thứ nhất của mặt phảng Oxy . a) $I = \frac{\pi(e^4 - e^2)}{2}$

b)
$$I = \frac{\pi(e^4 - e^2)}{4}$$

c) $I = \frac{\pi e(e^3 - 1)}{4}$
d) $I = \frac{\pi e(e^3 - 1)}{2}$

c)
$$I = \frac{\pi e(e^3 - 1)}{4}$$

d)
$$I = \frac{\pi e(e^3 - 1)}{2}$$

Câu 511: Tìm giá trị trung bình cuả hàm số f(x,y) =sinx + cosy trên hình chữ nhật $0 \le x \le 2\pi$, $0 \le y \le \pi$.

a)
$$\overline{f} = 0$$
. b) $\overline{f} = \frac{\pi}{2}$. c) $\overline{f} = \frac{\pi}{4}$. d) $\overline{f} = \frac{4}{\pi}$.

Câu 512: Goi S là diện tích miền giới hạn bởi các đường y = x và $y = \sqrt{x}$. Khẳng định nào sau đây đúng?

a)
$$S = \int_0^1 dx \int_x^{\sqrt{x}} dy = \int_0^1 dx \int_{\sqrt{x}}^x dy$$
.

b)
$$S = \int_0^1 dy \int_{y^2}^y dx = \int_0^1 dy \int_{y}^{y^2} dx$$
.

c)
$$S = \int_0^1 dx \int_0^1 dy = \int_0^1 dy \int_0^1 dx$$
.

d) Các khẳng định trên đều sai.

Câu 513: Tính diện tích S của miền giới hạn bởi các đường:

$$y = 3x^2 + x + 1;$$
 $7x - y + 1 = 0$

a)
$$S = 1$$
 b) $S = 8$ c) $S = 4$ d) $S = 1/2$

Câu 514: Tính diện tích S của miền giới hạn bởi các đường:

$$y = x^2 + 2x + 1;$$
 $x - y + 1 = 0$

a)
$$S = 1/3$$
 b) $S = 3$ c) $S = 1/6$ d) $S = 6$ Câu 515: Tính diện tích S cuả hình phẳng giới hạn bởi

các đường $y = \sqrt{x} + x$, y = 2x

a)
$$S = 1/6$$
 b) $S = 1/2$ c) $S = 1$ d) $S = 1/3$

Câu 516: Tính diện tích S cuả hình phẳng giới hạn bởi

các đường $y = e^x + x$, $y = e^{-x} + x$ và x = 1

a)
$$S = e - 2 + 1/e$$

b)
$$S = e - 2 - 1/e$$

c)
$$S = e + 2 + 1/e$$

d)
$$S = e - 1/e$$

Câu 517: Gọi S là diện tích của miền giới hạn bởi các đường:

$$x=2y$$
; $x=y^2/3$. Ta có

a)
$$S = 3$$
 b) $S = 6$ c) $S = 12$ d) $S = 24$

Câu 518: Tính diện tích S cuả hình phẳng giới hạn bởi các đường $y=\sqrt{x},\ y=x^3$

a)
$$S = 1/3$$
 b) $S = 2/3$ c) $S = 5/6$ d) $S = 5/12$

Câu 519: Gọi S là diện tích của miền giới hạn bởi các đường:

$$y = sinx$$
, $y = cosx$, $x = 0$; $x = \pi/4$. Ta có

a)
$$S = \sqrt{2} - 1$$

b)
$$S = \sqrt{2} + 1$$

c)
$$S = 2 - \sqrt{2}$$

d)
$$S = \sqrt{3} - 1$$

Câu 520: Tính diện tích miền giới hạn bởi các đường $y^2 = 4 - x$ và $2y^2 = x + 8$.

a)
$$S = -16$$
 b) $S = 16$ c) $S = 32$ d) $S = 64$

Câu 521: Tính khối lượng M của hình vuông

$$D: 0 \le x \le 1, \ 0 \le y \le 1$$

có khối lượng riêng là $\delta(x,y) = x + y$.

a)
$$M = 2$$
 b) $M = 1$ c) $M = 1/2$ d) $M = -1$

Câu 522: Trong mặt phẳng Oxy, mành phẳng đồng chất D là hình tròn $(x-a)^2 + (y-b)^2 \le R^2$ có khối lượng riêng là hằng số δ_0 . Gọi M là khối lượng của mảnh D, khẳng định nào sau đây đúng?

a)
$$M = \int \int_{\mathcal{D}} \delta_0 dx dy = \delta_0 \pi R^2$$
.

b)
$$M = \int \int_{D} \delta_{0}^{2} dx dy = \delta_{0}^{2} \pi R^{2}$$
.

c)
$$M = \int \int_{\mathcal{D}} \delta_0 dx dy = \delta_0 \pi R(a+b)$$
.

d)
$$M = \int \int_{\mathcal{D}} \delta_0^2 dx dy = \delta_0^2 \pi Rab.$$

B-Tích phân bội ba

Câu 523: Xét tích phân bội ba trên hình hộp chữ nhật $\Omega: a_1 \leq x \leq a_2, \ b_1 \leq y \leq b_2, \ c_1 \leq z \leq c_2$. Công thức nào

sau đây đúng?
a)
$$\int \int \int_{\Omega} f(x,y,z) dx dy dz$$

$$= \int_{a_2}^{a_2} f(x) dx \int_{a_1}^{b_2} f(y) dy \int_{a_2}^{c_2} f(z) dz.$$

b)
$$\iint \iint_{\Omega} f(x)g(y)h(z)dxdydz$$

$$= \int_{a}^{a_2} f(x) dx \int_{b}^{b_2} g(y) dy \int_{a}^{c_2} h(z) dz.$$

c)
$$\iint \int \int_{\Omega} (x+y+z) dx dy dz$$

$$= \int_{a}^{a_2} x dx + \int_{b}^{b_2} y dy + \int_{c}^{c_2} z dz.$$

d)
$$\iint \int \int_{\Omega} xy dx dy dz = \int_{a_1}^{a_2} x dx \int_{b_1}^{b_2} y dy.$$

Câu 524: Xác định cận của tích phân $I = \int \int \int_{\Omega} f(x,y,z) dx dy dx$ trong đó Ω là miền giới hạn bởi các mặt

$$x = 1, y = 2, z = 1, z = 2, x = 0, y = 0.$$

a)
$$I = \int_0^1 dx \int_1^2 dy \int_1^2 f(x, y, z) dz$$

b)
$$I = \int_0^1 dx \int_0^2 dy \int_1^2 f(x, y, z) dz$$

c)
$$I = \int_0^2 dx \int_0^{2-x} dy \int_1^2 f(x, y, z) dz$$

$$(c) \ I = \int_0^2 dx \int_0^{2-x} dy \int_1^2 f(x,y,z) dz$$
 $(d) \ I = \int_1^2 dx \int_0^2 dy \int_1^{1-x-2y} f(x,y,z) dz$

Câu 525: Xét tích phân bội ba $I = \int \int \int_{\Omega} f(x,y,z) dx dy dz$ trong đó Ω là miền trong không gian được giới hạn bởi các mặt: x = 0, y = 0, x + y = 2, z = 0 và z = 2. Đẳng thức nào sau đây đúng?

a)
$$I = \int_0^2 dx \int_0^2 dy \int_0^2 f(x, y, z) dz$$
.

b)
$$I = \int_0^2 dx \int_0^{2-x} dy \int_0^2 f(x, y, z) dz$$

b)
$$I = \int_{0}^{2} dx \int_{0}^{2-x} dy \int_{0}^{2} f(x, y, z) dz$$
.
c) $I = \int_{0}^{2} dx \int_{0}^{2-x} dy \int_{0}^{2-x-y} f(x, y, z) dz$.
d) $I = \int_{0}^{2} dx \int_{0}^{2-x} dy \int_{0}^{x+y} f(x, y, z) dz$.

d)
$$I = \int_0^z dx \int_0^{z-x} dy \int_0^{x+y} f(x, y, z) dz$$
.

Câu 526: Xét tích phân bội ba $I = \int \int \int_{\Omega} f(x,y,z) dx dy dz$ trong đó Ω là miền trong không gian được giới hạn bởi các mặt: x = 0, x = 1, y = 0, y = 1, z = 0 và $z = x^2 + y^2$. Đẳng thức nào sau đây đúng?

a)
$$I = \int_{0.1}^{1} dx \int_{0.1}^{1} dy \int_{0.2}^{x^2+y^2} f(x,y,z) dz.$$

b)
$$I = \int_0^1 dx \int_0^1 dy \int_0^2 f(x, y, z) dz$$
.

c)
$$I = \int_0^1 dx \int_0^1 dy \int_0^1 f(x, y, z) dz$$
.

d) Các đẳng thức trên đều sai.

Câu 527: Xét tích phân bội ba I = $\int \int \int_{\Omega} f(x,y,z) dx dy dz$ trong đó Ω là miền trong không gian được giới hạn bởi các mặt phẳng : x = 0 , y = 0, z = 0, z = 2 và y + x = 1. Đẳng

thức nào sau đây đúng?.

a)
$$I = \int_{0}^{2} dz \int_{0}^{1} dy \int_{0}^{1-y} f(x, y, z) dx$$
.

$$\widetilde{\mathbf{b}}) \ I = \int_0^1 dx \int_0^2 dz \int_0^{1-x} f(x, y, z) dy.$$

c)
$$I = \int_0^1 dy \int_0^{1-y} dx \int_0^2 f(x, y, z) dz$$
.

d) Các đẳng thức trên đều đúng.

Câu 528: Xét tích phân bội ba $I = \int \int \int_{C} f(x,y,z) dx dy dz$ trong đó Ω là miền trong không gian được giới hạn bởi các mặt phẳng: x = 0, x = 2, y = 0, z = 0 và y + z = 1. Đẳng thức nào sau đây đúng?.

a)
$$I = \int_0^2 dz \int_0^1 dy \int_0^{1-y} f(x, y, z) dx$$
.

b)
$$I = \int_0^1 dy \int_0^2 dx \int_0^{1-z} f(x, y, z) dz$$
.

c)
$$I = \int_0^1 dy \int_0^{1-y} dz \int_0^2 f(x, y, z) dx$$
.

d) Các đẳng thức trên đều sai.

Câu 529: Xác định cận của tích phân $I = \int \int \int_{C} f(x,y,z) dx dy dy$ trong đó Ω là miền giới hạn bởi các mặt

$$x + y + z - 5 = 0$$
, $x = 0, y = 0, z = 0$.

a)
$$I = \int_0^5 dy \int_0^5 dz \int_0^5 f(x, y, z) dx$$

a)
$$I = \int_0^5 dy \int_0^5 dz \int_0^5 f(x, y, z) dx$$

b) $I = \int_0^5 dy \int_0^{5-y} dz \int_0^{5-y-z} f(x, y, z) dx$
c) $I = \int_0^1 dy \int_0^{5-y} dz \int_0^{5-x-z} f(x, y, z) dx$
d) $I = \int_1^5 dy \int_0^{5-z} dz \int_0^{5-x-y} f(x, y, z) dx$

c)
$$I = \int_0^1 dy \int_0^{3-y} dz \int_0^{3-x-z} f(x,y,z) dx$$

d)
$$I = \int_{1}^{3} dy \int_{0}^{3-z} dz \int_{0}^{3-x-y} f(x,y,z) dx$$

Câu 530: Xét tích phân $I = \int \int \int_{\Omega} f(x,y,z) dx dy dz$, trong đó Ω là tứ diễn được giới hạn bởi các mặt phẳng

$$x = 0$$
, $y = 0$, $z = 0$, $x + y + z = 1$.

Đẳng thức nào sau đây đúng?

a)
$$I = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} f(x,y,z) dz$$
.

b)
$$I = \int_0^1 dy \int_0^{1-y} dz \int_0^{1-y-z} f(x, y, z) dx$$
.

Dang thuc hao sau day dung!
a)
$$I = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} f(x,y,z) dz$$
.
b) $I = \int_0^1 dy \int_0^{1-y} dz \int_0^{1-y-z} f(x,y,z) dx$.
c) $I = \int_0^1 dz \int_0^{1-z} dx \int_0^{1-z-x} f(x,y,z) dy$.

d) Các đẳng thức trên đều đúng. Câu 531: Tính tích phân $I = \int \int \int 2xy dx dy dz$, trong đó Ω là miền định bởi $\Omega: 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 2.$

a)
$$I = 1/2$$
 b) $I = 1$ c) $I = 1/4$ d) $I = 2$

Câu 532: Tính tích phân $I = \int \int \int_{\Omega} 3z^2 dx dy dz$, trong đó \varOmega là hình lập phương $\varOmega: 0 \leq x \leq 1, \ 0 \leq y \leq 1, \ 0 \leq z \leq 1.$

a)
$$I = 3$$
 b) $I = 1$ c) $I = 9$ d) $I = 6$

Câu 533: Tính tích phân bội ba : $I = \int \int \int_{\Omega} xye^z dx dy dz$, trong đó Ω là miền :

$$0\leq x\leq 2,\ -2\leq y\leq 2,\ ln2\leq z\leq ln4.$$

a)
$$I = 2$$
 b) $I = 4$ c) $I = 8$ d) $I = 0$

Câu 534: Tính tích phân bội bà : $I = \int \int \int_{\Omega} x sin 2y dx dy dz$, trong đó Ω là miền $0 \le x \le 1$, $0 \le y \le \pi/2$, $0 \le z \le 2$.

a)
$$I = 1/2$$
 b) $I = 1$ c) $I = 1/4$ d) $I = 2$

Câu 535: Tính tích phân bội ba : $I = \int \int \int_{\Omega} xye^z dxdydz$, trong đó Ω là miền $0 \le x \le 1$, $0 \le y \le 2$, $0 \le z \le ln3$.

a)
$$I = 1/2$$
 b) $I = 1$ c) $I = 3$ d) $I = 2$

Câu 536: Tính tích phân $I = \int \int \int_{\mathcal{C}} (10x^3)(11y^2)z dx dy dz$, trong đó Ω là miền định bởi

$$\Omega: 0 \le x \le 1, \ 0 \le y \le x, \ 0 \le z \le xy.$$

a)
$$I=110$$
 b) $I=11$ c) $I=1$ d) $I=121000$ Câu 537: Tính tích phân bội ba của hàm số

$$f(x,y,z) = x^{15}(y+z)$$

trên miền Ω định bởi $\Omega: 0 \le x \le 1, \ 0 \le y \le 2, \ 0 \le z \le 2.$

a) I = 0b) I = 1 c) I = 2 d) I = 1/2

Câu 538: Tính tích phân bôi ba của hàm số

$$f(x,y,z) = sin^{101}xln(y+z)$$

trên miền $\Omega: 0 \le x \le 2\pi, \ 1 \le y \le e, \ 1 \le z \le e.$

a)
$$I=0$$

b)
$$I = \frac{1}{e+1}$$

c)
$$I = 2ln(e+1) + ln2$$

d) Các kết quả trên đều sai.

Câu 539: Cho Ω là miền $x^2 + y^2 \le 4$; $0 \le z \le 2$. Tính

$$I = \int \int \int_{\Omega} \frac{dx dy dz}{\sqrt{x^2 + y^2}}.$$

$$a)I=4.\pi$$

$$b)I = 8.\pi$$

$$c)I=\pi$$

$$d)I=2.\pi$$

Câu 540: Cho
$$\Omega$$
 là miền $x^2 + y^2 \le \pi^2$; $0 \le z \le 3$. Tính
$$I = \int \int \int_{\Omega} \frac{\cos\sqrt{x^2 + y^2} dx dy dz}{\sqrt{x^2 + y^2}}.$$

$$a)I=0$$

$$b)I = 4.\pi$$

$$c)I = 4.\pi^2$$

$$d)I = 9.\pi$$

Câu 541: Tính tích phân $I = \int \int \int_{\Omega} 2x dx dy dz$, trong đó Ω là phần $z \geq 0$ của miền được giới hạn bởi các mặt

z = xy (mat paraboloid hyperbolic), x + y = 1, z = 0.

- a) I = 1/60
- b) I = 1/30
- c) I = 47/60
- d) Các kết quả trên đều sai.

Câu 542: Tính tích phân $I = \int \int \int_{\Omega} y^3 dx dy dz$, trong đó Ω là hình hộp

$$-1 \le x \le 0, -1 \le y \le 0, -1 \le z \le 0.$$

a) I = -1 b) I = -1/4 c) I = 0 d) I = 1/4Câu 543: Tính tích phân $I = \iiint_{\Omega} x \cos y \ dx dy dz$, trong đó Ω là hình hộp $0 \le x \le 2; \ 0 \le y \le \pi/2; \ 0 \le z \le 3$ a) I = 2 b) I = 3 c) I = 6 d) I = 12. Câu 544: Tính tích phân $I = \iiint_{\Omega} ze^{2x} dxdydz$, trong đó Ω là hình hộp

$$0 \le x \le ln2; \ 0 \le y \le 2; \ 0 \le z \le 2$$

a) I = 4 b) I = 6 c) I = 8 d) I = 16.

Câu 545: Xác định cận của tích phân $I = \int \int \int_{Q} f(x,y,z) dx dy dz$ trong đó Ω là miền giới hạn bởi các mặt

$$x + 2y = 2, z = 1, z = 2, x = 0, y = 0.$$

a)
$$I = \int_0^2 dx \int_0^1 dy \int_1^2 f(x, y, z) dz$$

b)
$$I = \int_0^2 dx \int_0^{1/2} dy \int_1^2 f(x, y, z) dz$$

c)
$$I = \int_0^z dx \int_0^{1-x/2} dy \int_1^z f(x, y, z) dz$$

c)
$$I = \int_0^2 dx \int_0^{1-x/2} dy \int_1^2 f(x, y, z) dz$$

d) $I = \int_0^2 dx \int_0^{1-x/2} dy \int_1^{1-y-x/2} f(x, y, z) dz$

Câu 546: Tính tích phân $I = \int \int \int_{\Omega} xy \cos z \ dx dy dz$,

trong đó Ω là hình hộp

$$0 \le x \le 1; \ 0 \le y \le 2; \ 0 \le z \le \pi/2$$

a) I = 0 b) I = 1 c) I = 1/2 d) I = 2. Câu 547: Tính tích phân $I = \int \int \int_{\Omega} x(y^2+1)tgz \, dx dy dz$, trong đó Ω là miền

$$-1 \le x \le 1$$
; $0 \le y \le 2$; $0 \le z \le \pi/4$

a) I = 0 b) I = ln2 c) I = 2ln2 d) I = 4ln2 Câu 548: Tính tích phân $I = \int \int \int_{\Omega} (xyz)^2 dx dy dz$, trong đó Ω là miền được giới hạn bởi các mặt

$$x = -1$$
, $x = 1$, $y = -1$, $y = 1$, $z = -1$, $z = 1$.

a) I=-8/27 b) I=8/27 c) I=8 d) I=0. Câu 549: Tính tích phân $I=\int\int\int_{\Omega}(x-y+z)dxdydz$, trong đó Ω là miền định bởi

$$\Omega: 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1.$$

a) I = 1 b) I = 1/2 c) I = 1/4 d) I = 2 Câu 550: Tính tích phân

$$I = \int \int \int_{\Omega} sinx siny sinz cos x cos y cos z dx dy dz$$

với Ω là miền $0 \le x \le \pi/4$, $0 \le y \le \pi/4$, $0 \le z \le \pi/4$. a) I = 0 b) I = 1/2 c) I = 1/16 d) I = 1/64 Câu 551: Cho Ω miền giới hạn bởi các mặt:

$$z = 4 - x^2 - y^2$$
, $z = 0$.

Đặt:

$$I = \int \int \int_{\Omega} f(x, y, z) \ dx dy dz.$$

Chuyển sang tọa độ trụ và xác định cận tích phân, ta có:

$$a)I = \int_0^{2\pi} d\varphi \int_0^{4-r^2} dr \int_0^4 f(r.\cos\varphi, r.\sin\varphi, z) dz$$

$$b)I = \int_0^{2\pi} d\varphi \int_0^2 r dr \int_0^{4-r^2} f(r.\cos\varphi, r.\sin\varphi, z) dz$$

$$c)I = \int_0^{2\pi} \sin\varphi d\varphi \int_0^4 r^2 dr \int_0^{4-r^2} f(r\cos\varphi, r\sin\varphi, z) dz$$

$$d)I = \int_0^{\pi} d\varphi \int_0^4 r dr \int_0^{4-r^2} f(r\cos\varphi, r\sin\varphi, z) dz$$

Câu 552: Chuyển tích phân sau sang tọa độ trụ:

$$I = \int \int \int_{\Omega} \cos \sqrt{x^2 + y^2} \ dx dy dz,$$

trong đó Ω là miền giới hạn bởi các mặt

$$z = 1 - x^2 - y^2$$
 và $z = -8$.

a)
$$I = \int_0^{2\pi} d\varphi \int_0^3 dr \int_{-8}^{1-r^2} r.cosr.dz$$

b)
$$I = \int_0^{2\pi} d\varphi \int_0^3 dr \int_{1-r^2}^{-8} r.cosr.dz$$

b)
$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{3} dr \int_{1-r^{2}}^{-8} r.cosr.dz$$

c) $I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} dr \int_{1}^{-8} r.cosr.dz$

d)
$$I = \int_0^{2\pi} d\varphi \int_0^3 dr \int_{-8}^1 r.cosr.dz$$

Câu 553: Chuyển tích phân sau sang tọa độ trụ:

$$I = \int \int \int_{\Omega} \ln(\sqrt{x^2 + y^2} + 1) \, dx dy dz,$$

trong đó Ω là miền giới hạn bởi các mặt

$$x^2 + y^2 < 4$$
, $z = 0$ và $z = 3$.

a)
$$I = \int_0^{2\pi} d\varphi \int_0^2 dr \int_{r^2}^3 ln(r+1).dz$$

b)
$$I = \int_0^{2\pi} d\varphi \int_0^2 dr \int_0^3 r . ln(r+1) . dz$$

c)
$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{2} dr \int_{r^{2}-4}^{3} r.ln(r+1).dz$$

d) $I = \int_{0}^{2\pi} d\varphi \int_{0}^{4} dr \int_{r^{2}-4}^{3} r.ln(r+1).dz$

d)
$$I = \int_0^{2\pi} d\varphi \int_0^4 dr \int_{r^2-A}^3 r . ln(r+1) . dz$$

Câu 554: Chuyển tích phân sau sang tọa độ trụ và xác định cận tích phân $I = \int \int \int_{\Omega} \sqrt{x^2 + y^2} dx dy dz$, trong đó Ω là miền giới hạn bởi các mặt $x^2 + y^2 = 9$, z = 1 và z =2.

a)
$$I = \int_0^{2\pi} d\varphi \int_0^3 r^2 dr \int_1^2 dz$$

b)
$$I = \int_0^{2\pi} d\varphi \int_0^3 r dr \int_1^2 dz$$

$$b) \ I = \int_0^{2\pi} d\varphi \int_0^3 r dr \int_1^2 dz$$

$$c) \ I = \int_0^{\pi/2} d\varphi \int_0^9 r^2 dr \int_1^2 dz$$

$$d) \ I = \int_0^{\pi/2} d\varphi \int_0^9 r dr \int_1^1 dz$$

d)
$$I = \int_0^{\pi/2} d\varphi \int_0^9 r dr \int_2^1 dz$$

Câu 555: Chuyển tích phân sau sang tọa độ trụ và xác định cận tích phân $I = \int \int \int_{O} f(x,y,z) dx dy dz$, trong đó Ω là miền giới hạn bởi các mặt $z = x^2 + y^2 v$ à z = 4.

a)
$$I = \int_0^{\pi} d\varphi \int_0^2 dr \int_A^{r^2} f(r\cos\varphi, r\sin\varphi, z) dz$$

$$b) \,\, I = \int_0^\pi \,\, d\varphi \int_0^2 r dr \int_4^{r^2} f(r cos\varphi, r sin\varphi, z) dz$$

c)
$$I = \int_0^{2\pi} d\varphi \int_0^2 dr \int_{r^2}^4 f(r cos\varphi, r sin\varphi, z) dz$$

d)
$$I = \int_0^{2\pi} d\varphi \int_0^2 r dr \int_{r^2}^4 f(r \cos\varphi, r \sin\varphi, z) dz$$

Câu 556: Cho Ω là phần hình trụ: $x^2+y^2 \le 1$, $1 \le z \le 4$. Đặt : $I = \int \int \int_{\Omega} f(x,y,z) \ dx dy dz$. Chuyển sang tọa độ

trụ và xác định cận tích phân, ta có:

$$a)I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} dr \int_{1}^{4} f(rcos\varphi, rsin\varphi, z)dz$$

$$b)I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} rdr \int_{1}^{4} f(rcos\varphi, rsin\varphi, z)dz$$

$$c)I = \int_{0}^{2\pi} sin\varphi d\varphi \int_{0}^{1} rdr \int_{1}^{4} f(rcos\varphi, rsin\varphi, z)dz$$

$$d)I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} rdr \int_{1}^{2} f(rcos\varphi, rsin\varphi, z)dz$$

$$\mathbf{Cau 557: Chuyển tích phân sau sang tọa độ trụ và xác định cận tích phân: $I = \int \int \int_{\Omega} f(x, y, z) dx dy dz$, trong đó Ω là miền giới hạn bởi các mặt$$

$$x^2 + y^2 = 2x$$
, $z = x^2 + y^2$ và $z = 0$.

a)
$$I = \int_0^{2\pi} d\varphi \int_0^{2\cos\varphi} r dr \int_0^{r^2} f(r\cos\varphi, r\sin\varphi, z) dz$$

b)
$$I = \int_0^{2\pi} d\varphi \int_0^1 r dr \int_0^{r^2} f(r \cos\varphi, r \sin\varphi, z) dz$$

c)
$$I = \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{2\cos\varphi} r dr \int_{0}^{r^2} f(r\cos\varphi, r\sin\varphi, z) dz$$

d)
$$I=\int_0^{\pi/2}d\varphi\int_0^{2sin\varphi}rdr\int_0^{r^2}f(rcos\varphi,rsin\varphi,z)dz$$

Câu 558: Chuyển tích phân sau sang tọa độ trụ và xác định cận tích phân: $I=\int\int\int_{\Omega}f(x^2+y^2,z)dxdydz$, trong đó Ω là phần chung của hai hình cầu

$$x^2 + y^2 + z^2 \le R^2$$
 và $x^2 + y^2 + (z - R)^2 \le R^2$.

a)
$$I = \int_0^{2\pi} d\varphi \int_0^{R/2} r dr \int_0^R f(r^2, z) dz$$

b) $I = \int_0^{2\pi} d\varphi \int_0^{R/2} r dr \int_{\sqrt{R^2 - r^2}}^R f(r^2, z) dz$

c)
$$I = \int_0^{2\pi} d\varphi \int_0^{R\sqrt{3}/2} r dr \int_{R-\sqrt{R^2-r^2}}^{\sqrt{R^2-r^2}} f(r^2, z) dz$$

d)
$$I = \int_0^{2\pi} d\varphi \int_0^{R\sqrt{3}/2} r dr \int_{-\sqrt{R^2 - r^2}}^R f(r^2, z) dz$$

Câu 559: Tính tích phân $I = \int \int \int_{\Omega} xy^4 z^5 dx dy dz$, trong đó Ω là phần chung của hai hình cầu

$$x^2 + y^2 + z^2 \le R^2$$
 và $x^2 + y^2 + (z - R)^2 \le R^2$.

a)
$$I=0$$
 b) $I=\pi R\sqrt{3}$ c) $I=\pi R\sqrt{3}/2$ d) $I=2\pi R\sqrt{3}$

Câu 560: Cho Ω là phần hình nón: $z^2 \ge x^2 + y^2$ $(z \ge 0)$ nằm trong hình cầu $x^2 + y^2 + z^2 \le 4$. Đặt

$$I = \int \int \int_{\Omega} f(x^2 + y^2 + z^2) dx dy dz.$$

Chuyển sang tọa độ cầu và xác định cận tích phân,ta có:

$$a)I = \int_0^{2\pi} d\varphi \int_0^{\pi/4} \sin\theta d\theta \int_0^2 \rho^2 f(\rho^2) d\rho$$

$$b)I = \int_0^{\pi} d\varphi \int_0^{\pi/2} \sin\theta d\theta \int_0^2 \rho^2 f(\rho^2) d\rho$$

$$c)I = \int_0^{\pi} d\varphi \int_0^{\pi/4} \sin\theta d\theta \int_0^2 \rho^2 f(\rho^2) d\rho$$

$$d)I = \int_0^{2\pi} d\varphi \int_0^{\pi/4} d\theta \int_0^2 \rho^2 f(\rho^2) d\rho$$

Câu 561: Chuyển tích phân sau sang tọa độ cầu và xác định cân tích phân

$$I = \int \int \int_{\Omega} (x^2 + y^2 + z^2) dx dy dz,$$

trong đó Ω là miền $1 \le x^2 + y^2 + z^2 \le 4$.

a)
$$I = \int_{0.2\pi}^{2\pi} d\varphi \int_{0.2\pi}^{2\pi} r^4 dr \int_{0.2\pi}^{\pi} \sin\theta d\theta$$

b)
$$I = \int_0^{2\pi} d\varphi \int_1^2 r^2 dr \int_0^{\pi} \sin\theta d\theta$$

c)
$$I = \int_0^{2\pi} d\varphi \int_1^2 r^3 dr \int_0^{\pi/2} d\theta$$

d)
$$I = \int_{0}^{2\pi} d\varphi \int_{1}^{4} r^{4} dr \int_{0}^{\pi/2} \sin\theta d\theta$$

Câu 562: Chuyển tích phân sau sang tọa độ cầu và xác định cận tích phân

$$I = \int \int \int_{C} \sqrt{x^2 + y^2 + z^2} dx dy dz,$$

trong đó Ω là miền $x^2 + y^2 + z^2 \le 4, z \ge 0$

a)
$$I = \int_0^{2\pi} d\varphi \int_0^2 r^3 dr \int_0^{\pi} \sin\theta d\theta$$

b)
$$I = \int_0^{\pi} d\varphi \int_0^2 r^2 dr \int_0^{\pi} \sin\theta d\theta$$

c)
$$I = \int_0^{\pi} d\varphi \int_0^2 r^2 dr \int_0^{\pi/2} \sin\theta d\theta$$

d)
$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{2} r^{3} dr \int_{0}^{\pi/2} \sin\theta d\theta$$

Câu 563: Chuyển tích phân sau sang tọa độ cầu và xác định cận tích phân: $I = \int \int \int_{\Omega} f(x,z) dx dy dz$, trong đó Ω là 1/8 hình cầu $x^2 + y^2 + z^2 \le R^2$ thuộc tam diện toạ độ thứ nhất.

a)
$$I = \int_0^{\pi/2} d\varphi \int_0^{\pi/2} sin\theta d\theta \int_0^R \rho^2 f(\rho sin\theta cos\varphi, \rho cos\theta) d\rho$$

b)
$$I = \int_0^{\pi/2} d\varphi \int_0^{\pi/2} sin\theta d\theta \int_0^R f(\rho sin\theta cos\varphi, \rho cos\theta) d\rho$$

c)
$$I = \int_0^{\pi/2} d\varphi \int_0^{\pi} sin\theta d\theta \int_0^R \rho^2 f(\rho sin\theta sin\varphi, \rho cos\theta) d\rho$$

d)
$$I = \int_0^{\pi/2} d\varphi \int_0^{\pi/2} sin\theta d\theta \int_{-R}^R \rho^2 f(\rho sin\theta sin\varphi, \rho cos\theta) d\rho$$

Câu 564: Chuyển tích phân sau sang tọa độ cầu và xác định cận tích phân: $I=\int\int\int_{\Omega}f(x^2+y^2,z)dxdydz$, trong đó Ω là 1/2 hình cầu $x^2+y^2+z^2\leq R^2$, $x\geq 0$.

a)
$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} sin\theta d\theta \int_{0}^{R} \rho^{2} f(\rho^{2} sin^{2}\theta, \rho cos\theta) d\rho$$

b)
$$I = \int_{-\pi/2}^{\pi/2} d\varphi \int_0^{\pi} sin\theta d\theta \int_0^R \rho^2 f(\rho^2 sin^2\theta, \rho cos\theta) d\rho$$

c)
$$I = \int_0^{\pi} d\varphi \int_0^{\pi} sin\theta d\theta \int_0^R \rho^2 f(\rho^2 sin^2\theta, \rho cos\theta) d\rho$$

d)
$$I = \int_{-\pi/2}^{\pi/2} d\varphi \int_0^{\pi} \sin\theta d\theta \int_{-R}^{R} \rho^2 f(\rho^2, \rho \cos\theta) d\rho$$

Câu 565: Gọi V là thể tích hình cầu bán kính R, khẳng định nào sau đây đúng?

a)
$$V = \int_0^{2\pi} d\varphi \int_0^{\pi} sin\theta d\theta \int_0^R \rho^2 d\rho = \frac{4}{3}\pi R^3$$

b)
$$V = 2 \int_0^{2\pi} d\varphi \int_0^{\pi/2} \sin\theta d\theta \int_0^R \rho^2 d\rho = \frac{4}{3}\pi R^3$$

c)
$$V = 8 \int_0^{\pi/2} d\varphi \int_0^{\pi/2} \sin\theta d\theta \int_0^R \rho^2 d\rho = \frac{4}{3}\pi R^3$$

d) Các khẳng định trên đều đúng.

Câu 566: Gọi V là thể tích miền Ω phần nằm trong mặt nón $z = \sqrt{x^2 + y^2}$ được giới hạn bởi mặt cầu $x^2 + y^2 + z^2 = a^2$, khẳng định nào sau đây đúng?

a)
$$V = \int_0^{2\pi} d\varphi \int_0^{\pi/2} sin\theta d\theta \int_0^a \rho^2 d\rho$$
.

b)
$$V = \int_0^{2\pi} d\varphi \int_0^{\pi/4} \sin\theta d\theta \int_0^a \rho^2 d\rho.$$

c)
$$V = \int_0^{2\pi} d\varphi \int_{-\pi/4}^{\pi/4} \sin\theta d\theta \int_0^a \rho^2 d\rho.$$

d)
$$V = \int_0^{\pi} d\varphi \int_{\pi/4}^{\pi/2} \sin\theta d\theta \int_0^a \rho^2 d\rho$$
.

Câu 567: Gọi V là thể tích miền Ω được giới hạn bởi các mặt

$$x^{2} + y^{2} + z^{2} = a^{2},$$

 $x^{2} + y^{2} + z^{2} = b^{2} (0 < a < b),$
 $z = \sqrt{x^{2} + y^{2}},$

khẳng định nào sau đây đúng?

a)
$$V = \int_0^{2\pi} d\varphi \int_0^{\pi/4} \sin\theta d\theta \int_a^b \rho^2 d\rho$$
.

b)
$$V = \int_0^{2\pi} d\varphi \int_{\pi/4}^{\pi/2} \sin\theta d\theta \int_a^b \rho^2 d\rho$$
.

c)
$$V = \int_0^{2\pi} d\varphi \int_0^{\pi/2} sin\theta d\theta \int_a^b \rho^2 d\rho$$
.
d) $V = \int_0^{\pi} d\varphi \int_0^{\pi/4} sin\theta d\theta \int_{b-a}^b \rho^2 d\rho$.
Câu 568: Tính thể tích V cuả vật thể

$$\Omega:\ 0\leq x\leq 1,\ 0\leq y\leq 2x,\ 0\leq z\leq y.$$

a) V = 2/3 b) V = 1 c) V = 1/2 d) V = 1/6 Câu 569: Tính thể tích V cuả vật thể

$$\Omega: 0 \le x \le 1, \ 0 \le y \le 1 - x, \ 0 \le z \le 1 - 2y.$$

a) V = 1 b) V = 1/2 c) V = 1/3 d) V = 1/6 Câu 570: Tính thể tích V cuả vật thể

$$\Omega: \ 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1 - x^2.$$

a) V = 2/3 b) V = 3/2 c) V = 2 d) V = 1/2 Câu 571: Tìm giá trị trung bình cuả hàm số $f(x,y,z) = (xyz)^2$ trên hình hộp

$$\Omega: 0 \le x \le 1, \ 0 \le y \le 3, \ -1 \le z \le 2.$$

a) $\overline{f} = 0$. b) $\overline{f} = 1$. c) $\overline{f} = 3$. d) $\overline{f} = 9$. Câu 572: Tìm giá trị trung bình cuả hàm số $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ trên miền

$$\Omega: x^2 + y^2 + z^2 \le 4, \ z \ge 0.$$

a) $\overline{f}=-3/2$. b) $\overline{f}=1$. c) $\overline{f}=3/2$. d) $\overline{f}=2/3$. Câu 573: Tính khối lượng M của khối lập phương

$$\Omega: -1 \le x \le 0, \ -1 \le y \le 0, \ 0 \le z \le 1.$$

có khối lượng riêng là $\delta(x, y, z) = xyz$.

a)
$$M = 1/4$$
 b) $M = 1$ c) $M = 1/6$ d) $M = 1/8$

Câu 574: Tính khối lượng M của khối lập phương

$$\Omega: -1 \le x \le 0, \ 0 \le y \le 2, \ -1 \le z \le 1.$$

biết khối lượng riêng là $\delta(x, y, z) = x + y + z$.

a)
$$M = 2$$
 b) $M = 3/2$ c) $M = 0$ d) $M = -1$

Câu 575: Tính khối lượng M của vật thể Ω , trong đó Ω là phần hình cầu $x^2 + y^2 + z^2 \le 2$ thuộc tam diện toạ độ thứ nhất có khối lượng riêng là $\delta(x, y, z) = \sqrt{2}$.

- a) $M = 4\sqrt{2}/3$
- b) $M = 2\pi/3$
- c) $M = 2\pi\sqrt{2}/3$
- d) $M = 8\pi\sqrt{2}/3$

Phần VIII: TÍCH PHÂN ĐƯỜNG TÍCH PHÂN MẶT

A-Tích phân đường loại 1

Câu 576: Tính tích phân đường $I = \int_C (x+y) dl$, trong đó C có phương trình x + y = 1, $0 \le x \le 1$. a) $I = \sqrt{2}$ b) I = 1 c) I = 1/2 d) I = 2Câu 577: Tính tích phân đường $I = \int_{C} (x+y)^2 dl$, trong đó C có phương trình x + y = a, $0 \le x \le a$. a) $I = a^2$ b) $I = 2a^2$ c) $I = a^2 \sqrt{2}$ d) $I = a^3 \sqrt{2}$ Câu 578: Tính tích phân đường $I = \int_{\mathcal{C}} (x-y) dl$, trong đó C có phương trình x + y = 1, $0 \le x \le 1$. a) I = 1 b) $I = -\sqrt{2}$ c) I = 0 d) $I = \sqrt{2}$ Câu 579: Tính tích phân đường $I = \int_{C} (x-y) dl$, trong đó C là đoạn thẳng nối các điểm O(0,0) và A(2,2). a) $I = -\sqrt{2}$ b) $I = \sqrt{2}$ c) I = 2 d) I = 0Câu 580: Tính tích phân đường $I=\int_{\mathcal{C}}x^5y^2dl,\;\;\mathrm{trong}\;$ đó C có phương trình y = x, $0 \le x \le a$. a) I = 0 b) $I = 2\sqrt{2}$ c) $I = a^{8} \sqrt{2}/4$ d) $I = a^{8} \sqrt{2}/8$ Câu 581: Tính tích phân đường $I = \int_{\mathcal{C}} sin^5 y dl$, trong đó C có phương trình y = x, $0 \le x \le 2\pi$. a) $I = \sqrt{2}$ b) I = 0 c) $I = -\sqrt{2}$ d) $I = \sqrt{2}/6$ Câu 582: Tính tích phân đường $I = \int_{\mathbb{R}} (x-y) dl$, trong đó K là đoạn thẳng nối các điểm O(0,0) và M(1,2). a) $I = \sqrt{5}$ b) $I = -\sqrt{5}$ c) $I = \sqrt{5}/2$ d) $I = -\sqrt{5}/2$ Câu 583: Tính tích phân đường $I = \int_{\kappa} \frac{dl}{x+u}$, trong đó K là đoan thắng nối các điểm A(3,0) và B(0,3). a) $I = 2\sqrt{2}$ b) $I = -\sqrt{2}$ c) $I = \sqrt{2}$ d) $I = \sqrt{2}/3$ Câu 584: Tính tích phân đường $I = \int_{\kappa} \frac{dl}{x+u}$, trong đó K là đoạn thắng có phương trình x + y = a, $0 \le x \le a$. a) $I = \sqrt{2}$ b) $I = \sqrt{a}$ c) $I = -\sqrt{a}$ d) $I = -\sqrt{2}$ Câu 585: Tính tích phân đường $I=\int_{\mathcal{K}} \frac{dl}{x-y}$, trong đó K là đoan thắng nối các điểm A(2,0) và B(0,-2). a) $I = \sqrt{2}/2$ b) $I = -\sqrt{2}/2$ c) $I = \sqrt{2}$ d) $I = -\sqrt{2}$ Câu 586: Tính tích phân đường $I = \int_{\mathcal{C}} xy dl$, trong đó C là phần đường thẳng x + y - 1 = 0 bị chắn giữa hai trục toạ đô. a) $I = \sqrt{2}/6$ b) $I = 5\sqrt{2}/6$ c) $I = \sqrt{2}$ d) $I = -\sqrt{2}/6$ Câu 587: Tính tích phân đường $I=\int_C y dl$, trong đó C có phương trình x + y = 1, $0 \le x \le 1$. a) $I = \sqrt{2}$ b) $I = \sqrt{2}/2$ c) $I = 3\sqrt{2}/2$ d) I = 1/2Câu 588: Tính tích phân đường $I = \int_{\mathcal{C}} (6x + 6y + 2) dl$, trong đó C có phương trình 3y + 4x = 0, $0 \le x \le 1$ b) I = 15 c) I = 5/3 d) I = 1a) I = 5Câu 589: Tính tích phân đường $I = \int_C (2x+3y^2) dl$, trong đó C là đoạn thắng nối hai điểm A(0,0) và B(1,1)a) I = 2 b) $I = 4.\sqrt{2}$ c) $I = \sqrt{2}$ d) $I = 2\sqrt{2}$ Câu 590: Tính tích phân đường $I = \int_{C} (6x - 6y + 3) dl$, trong đó C có phương trình 3y - 4x = 0, $0 \le x \le 1$ a) I = 15 b) I = 10/3 c) I = 5 d) I = 5/3Câu 591: Tính tích phân $I = \int_{C} (26x + 8y) dl$, trong đó C là đoạn thẳng có phương trình 3x + 4y + 1 = 0 nối A(0,-1/4) và B(1,-1). b) I = 8 c) I = 10 d) I = -8a) I = -10

```
Câu 592: Tính tích phân đường I = \int_C (x+y) dl, trong
đó C là đoạn thẳng nối A(0,1) và B(1,2)
a) I = 2 b) I = -2 c) I = -2\sqrt{2} d) I = 2\sqrt{2}
Câu 593: Tính tích phân đường I = \int_{C} (x+y)^2 dl, trong
đó C là đoạn thẳng nối A(2,0) và B(0,2)
a) I = 4 b) I = 8 c) I = 4\sqrt{2} d) I = 8\sqrt{2}
Câu 594: Tính tích phân đường I = \int_C (x+2y)^2 dl, trong
đó C là đoạn thẳng nối O(0,0) và B(2,2).
a) I = 24 b) I = 48 c) I = 24\sqrt{2} d) I = 48\sqrt{2}
Câu 595: Tính tích phân đường I = \int_C \frac{8x}{\sqrt{1+4x^2}} dl,
trong đó C_:y = x^2 nối điểm A(0,0) và điểm B(1,1)
a) I = 2.\sqrt{2} b) I = -2.\sqrt{2} c) I = 4
                                           d) I = 0
Câu 596: Tính tích phân đường I = \int_C xy dl, trong đó C
là đường biên của hình vuông 0 \le x \le 2, 0 \le y \le 2.
                         c) I = 24 d) I = 36
a) I = 8 b) I = 16
Câu 597: Tính tích phân đường I = \int_{\mathcal{C}} (x+y) dl, trong
đó C là đường biên của hình vuông 0 \leq x \leq 2, 0 \leq y \leq 2.
a) I = 8
             b) I = 16
                           c) I = 24 d) I = 36
Câu 598: Tính tích phân đường I = \int_{C} (x+y) dl, trong đó
C là đường biên của tam giác với các đỉnh O(0,0); A(1,0)
va B(0,1).
a) I = 3\sqrt{2} b) I = \sqrt{2} c) I = 1 + \sqrt{2} d) I = 2
Câu 599: Tính tích phân đường I = \int_{r} xy dl, trong đó
L là đường biên của hình chữ nhật với các đinh O(0,0);
A(2,0); B(2,1) và C(0,1).
           b) I = 6 c) I = \sqrt{2} d) I = 6\sqrt{2}
a) I = 3
```

Câu 600: Tính tích phân đường $I=\int_L xy dl,\; {
m trong}\; {
m d}\circ {
m L}$

là đường biên của tam giác với các định A(-1,0); B(0,1) và C(1,0).

a)
$$I = \sqrt{2}/3$$
 b) $I = 1 + \sqrt{2}/3$ c) $I = -\sqrt{2}/3$ d) $I = 0$

Câu 601: Tính tích phân đường $I = \int_{C} (x^2 + y^2) dl$, trong đó C là đường tròn $x^2 + y^2 = R^2$.

a)
$$I = 2\pi R^3$$

a)
$$I = 2\pi R^3$$
 b) $I = 2\pi R^3/3$ c) $I = \pi R^4/3$ d) $I = 2\pi R^2$

c)
$$I = \pi R^4/3$$

d)
$$I = 2\pi R^2$$

Câu 602: Tính tích phân đường $I = \int_{\mathcal{C}} \sqrt{x^2 + y^2} dl$ trong đó C là 1/2 đường tròn $x^2 + y^2 = 4, x \ge 0$.

a)
$$I = 4\pi$$
 b) $I = 8\pi$ c) $I = 16\pi$ d) $I = 32\pi$

Câu 603: Hãy tính tích phân đường $I = \int_{\mathcal{A}} (x^2 + y^2) dl$ trong đó C là 1/4 đường tròn $x^2 + y^2 = 16, x \ge 0; y \ge 0$.

a)
$$I=\pi$$
 b) $I=8\pi$ c) $I=16\pi$ d) $I=32\pi$

Câu 604: Tính tích phân đường $I = \int_{C} xy dl$, trong đó C là cung tròn $x^2 + y^2 = R^2$ nằm ở góc phần tư thứ nhất.

a)
$$I = 0$$
 b) $I = R^3$ c) $I = R^3/2$ d) $I = \pi R^4/2$

Câu 605: Tính tích phân đường $I = \int_{\mathbb{C}} x^2 dl$, trong đó C là đường tròn $x^2 + y^2 = 4$.

a)
$$I = 2\pi$$
 b) $I = 4\pi$ c) $I = 6\pi$ d) $I = 8\pi$

Câu 606: Tính tích phân đường $I = \int_{\mathcal{C}} \sqrt{x^2 + y^2} dl$, trong đó C là cung tròn $x^2 + y^2 = R^2$ nằm ở góc phần tư thứ nhất.

a)
$$I = \pi R^2/2$$
 b) $I = 2\pi R^2$ c) $I = \pi R^2$ d) $I = \pi R^3/4$ Câu 607: Tìm độ dài cung tròn $x = acost$; $y = asint$ với $\pi/6 \le t \le \pi/3$.

a)
$$l=2a\pi/3$$
 b) $l=a\pi/3$ c) $l=a\pi/6$ d) $l=\pi a^2/12$ Câu 608: Tìm giá trị trung bình cuả hàm số

$$f(x,y) = \sqrt{x^2 + y^2}$$
 trên đường tròn $x^2 + y^2 = R^2$.

a)
$$\overline{f} = R$$
. b) $\overline{f} = \pi R$. c) $\overline{f} = 2R$. d) $\overline{f} = R/2$.

Câu 609: Tìm giá trị trung bình cuả hàm số f(x,y) = xy trên đường biên của hình chữ nhật với các đỉnh O(0,0); A(2,0); B(2,1) và C(0,1).

a) $\overline{f} = 1$. b) $\overline{f} = 1/2$. c) $\overline{f} = 2$. d) $\overline{f} = 2/3$.

Câu 610: Tính khối lượng M của đoạn thẳng AB với A(-2,0); B(0,-2) và tỉ khối tuyến tính là $\delta(x,y)=(x+y)^2$. a) $M=8\sqrt{2}$ b) $M=4\sqrt{2}$ c) $M=-8\sqrt{2}$ d) $M=-4\sqrt{2}$ Câu 611: Tính khối lượng M của đoạn thẳng AB trong đó AB là phần đường thẳng x+y=a (a>0) được giới hạn bởi các trục toạ độ và có tỉ khối tuyến tính là

$$\delta(x,y) = rac{1}{x+y}.$$

a)
$$M = \sqrt{2}/a$$
 b) $M = a\sqrt{2}$ c) $M = \sqrt{2}$ d) $M = 2\sqrt{2}$

B-Tích phân đường loại 2

Câu 612: Cho điểm A(0,1) và B(1,1), tính tích phân đường

$$I = \int_{AB} (2xy + 4x^3 + 1)dx - (2xy + 4y^3 - 1)dy$$

lấy theo đường y = 1 đi từ điểm A đến B.

a)
$$I = 0$$
 b) $I = -4$ c) $I = 3$ d) $I = -3$

Câu 613: Tính tích phân đường

$$I = \int_{AB} (2xy + 4x^3 + 1)dx - (2xy + 4y^3 - 1)dy$$

lấy theo đường x = 2 đi từ điểm A(2,1) đến B(2,0).

a)
$$I = 2$$
 b) $I = -2$ c) $I = 3$ d) $I = -3$

Câu 614: Cho điểm A(0,1) và B(1,0), tính tích phân đường $I=\int_{AB}(y+2x+1)dx+(y-1)dy$ lấy theo đường

$$y = -x + 1$$
 đi từ điểm A đến B.

a)
$$I = 4$$
 b) $I = 3$ c) $I = 1$

c)
$$I = 1$$

Câu 615: Cho điểm A(-1,1), tính tích phân đường

$$I = \int_{OA} 2xy dx + x^2 dy$$

lấy theo đường x + y = 0 từ gốc tọa độ O đến A.

$$a) I = 0$$

b)
$$I = 1$$

a)
$$I = 0$$
 b) $I = 1$ c) $I = 2$ d) $I = 3$

$$\mathbf{d}$$
) $\mathbf{I} = \mathbf{I}$

Câu 616: Tính tích phân đường

$$I = \int_{QA} (xy^2 - 1)dx + (yx^2 + 3)dy$$

lấy theo đường $y = 2x^2$ từ gốc tọa độ O đến A(1,2).

a)
$$I = 7$$

b)
$$I = 9$$

b)
$$I = 9$$
 c) $I = 6$ d) $I = 0$

$$d) I = 0$$

Câu 617: Tính $I = \int_{0.4} 3xy dx - (3x^2 - 2y) dy$ lấy theo đoạn thẳng nối từ O(0,0) đến A(-1,-1).

a)
$$I = -1$$

b)
$$I = 1$$
 c) $I = -2$ d) $I = 2$.

c)
$$I = -2$$

d)
$$I = 2$$

Câu 618: Tính $I = \int_{C_A} (x-y)^2 dx + (x+y)^2 dy$ lấy theo đường thẳng từ O(0,0) đến A(3,0).

a)
$$I = 9$$

$$8 = I (d$$

a)
$$I = 9$$
 b) $I = 8$ c) $I = 27$ d) $I = 18$.

d)
$$I = 18$$

Câu 619: Tính tích phân đường loại 2:

$$I = \int_{AB} 2xy dx + x^2 dy$$

ở đây AB là cung parabol $y=x^2$ từ A(-1,1) đến B(1,1). a) I=0 b) I=2 c) I=3/4 d) I=-3/4

Câu 620: Tính tích phân đường loại 2:

$$I = \int_{OA} x(4y+1)dx - 2(x^2+1)dy$$

ở đây OA là cung parabol $y = x^2/4$ từ O(0,0) đến A(2,1). b) I = 1 c) I = -2 d) I = 2

a)
$$I = 0$$

$$d) I =$$

Câu 621: Tính $I = \int_{OA} (y^2 - 2xy) dx + (2xy - x^2) dy$ lấy theo đoạn thẳng nối từ O(0,0) đến A(1,2).

a)
$$I = 0$$
 b) $I = 1$ c) $I = 2$ d) $I = 3$.

Câu 622: Tính $I = \int_{OA} 4x(x^2 - y)dx - 2(x^2 - y)dy$ lấy theo đoạn thẳng nối từ O(0,0) đến A(2,1).

a)
$$I = 0$$
 b) $I = 3$ c) $I = 6$ d) $I = 9$.

Câu 623: Tính tích phân đường loại 2:

$$I = \int_{OA} x(4y+1)dx + 2(x^2+1)dy$$

ở đây OA là cung parabol $y = x^2/4$ từ O(0,0) đến A(2,1).

a)
$$I = 0$$
 b) $I = 4$

c)
$$I = 8$$
 d) $I = 12$

Câu 624: Tính tích phân đường loại 2:

$$I = \int_{\Omega A} (y+2x)dx + (4y+x)dy$$

ở đây OA là cung $y^3 = x$ từ O(0,0) đến A(1,1).

a)
$$I = -4$$

b)
$$I = 4$$

c)
$$I = 8$$

$$d) I = 0$$

Câu 625: Tính tích phân đường loại 2:

$$I = \int_{QA} (2x + y)dx + (3y^2 + x)dy$$

ở đây OA là cung của $y^2 = x$ nối từ O(0,0) đến A(1,1).

a)
$$I = -3$$

b)
$$I = 2$$

c)
$$I=3$$

d)
$$I=0$$

Câu 626: Tính tích phân đường loại 2:

$$I = \int_{\Omega A} y dx + (y^3 + x) dy$$

ở đây OA là cung
$$y^2 = 2x$$
 từ $O(0,0)$ đến $A(2,2)$.

a)
$$I = -4$$

b)
$$I = 4$$

c)
$$I = 8$$

$$d) I = 0$$

Câu 627: Tính tích phân đường loại 2:

$$I = \int_{AB} 6x^2 y dx + 2x^3 dy$$

$$\dot{\sigma}$$
 đây AB là $cung$ $y=x^4$ từ $A(-1,1)$ đến $B(1,1).$

a)
$$I = 2$$

b)
$$I = -2$$
 c) $I = 4$ d) $I = -4$

c)
$$I=4$$

d)
$$I = -4$$

Câu 628: Tính tích phân đường $I = \int_{AB} 2xy dx + (x^2 + x^2)^2 dx$ (2y)dy lấy theo đường $y = 2.sin\frac{\pi x}{4} + 1$ từ A(0,1) đến

B(2,3).

a)
$$I = 10$$

b)
$$I = 20$$
 c) $I = 5$ d) $I = 1$.

c)
$$I = 5$$

d)
$$I = 1$$
.

Câu 629: Tính $I = \int_{AB} (12y-1)dx + (12x+2)dy$ lấy theo đường $y = 4x^2 - 3x + 1$ từ A(0,1) đến B(1,2).

- a) I = 0
- b) I = 25
- c) I = 17
- d) Các kết qủa trên đều sai

Câu 630: Tính tích phân đường $I = \int_{AB} y dx + x dy$ lấy theo đường $y = 2x^2 + 1$ từ A(0,1) đến B(1,3).

b)
$$I = 4$$

c)
$$I = 1$$

a)
$$I = 3$$
 b) $I = 4$ c) $I = 1$ d) $I = 2$.

Câu 631: Cho $I = \oint_C (x^2 + y^2) dx + (x + y)^2 dy$, trong đó C là biên của hình tròn D. Đẳng thức nào sau đây đúng?

a) $I = \int \int_{D} 2(x+2y)dxdy$ b) $I = \int \int_{D} 2xydxdy$

b)
$$I = \int \int_{\Gamma}$$

c) $I = \int \int_{\mathcal{D}} 2y dx dy$

$$d) \,\, I = \int \int_D \,\, 2x dx dy$$

Câu 632: Gọi S là diện tích của miền giới hạn bởi đường cong kín C. Khẳng định nào sau đây đúng?

a)
$$S = \oint_C x dy$$

b)
$$S = -\oint_C y dx$$

c)
$$S = \frac{1}{2} \oint_C x dy - y dx$$

d) Các khẳng định trên đều đúng

Câu 633: Cho C là biên của hình vuông D = [-1;1]x[0,2]. Tính tích phân đường:

$$I = \oint_{C} y sinx dx - cosx dy$$

a) I = 0 b) I = 2 c) I = 4 d) I = 1 Câu 634: Cho C là biên của chữ nhật D = [0;1]x[0,2]. Tính tích phân đường:

$$I = \oint_C xy^2 dx + 3x^2y dy$$

a) I=0 b) I=2 c) I=4 d) I=1 Câu 635: Cho C là đường tròn tâm O bán kính 1. Tính tích phân:

$$I = \oint_C (x + y^2 - 3)dx + (2xy + 3x + 2)dy$$

a) $I=2\pi$ b) $I=3\pi$ c) I=2 d) I=3 Câu 636: Cho C là đường tròn tâm O bán kính R. Đặt

$$I = \oint_C (x + y + 3)dx + (x - 3y + 5)dy$$

Khẳng định nào sau đây đúng?

a)
$$I=0$$

b)
$$I = 4$$

c)
$$I = \int \int_{\mathcal{D}} (2x - 2y + 5) dx dy$$

d)
$$I = \int \int_{D} (-4y+2)dxdy$$

Câu 637: Cho C là đường tròn tâm O bán kính R. Tính tích phân:

$$I = \oint_C (3x + y^2)dx + 2x(y+1)dy$$

a) $I=\pi R^2$ b) $I=2\pi R^2$ c) I=0 d) $I=2\pi R$ Câu 638: Cho C là đường tròn $x^2+y^2=16$. Tính tích phân đường loại 2:

$$I = \oint_C (y + 3sinx)dx + (2x + cosy)dy$$

 $a)I = -\pi$ $b)I = \pi$ $c)I = -16\pi$ $d)I = 16\pi$ Câu 639: Cho C là hình tròn $x^2 + y^2 = 9$. Tính tích phân đường loại 2:

$$I = \oint_C y dx + x dy$$

a) $I=6.\pi$ b) $I=3.\pi$ c) $I=9.\pi$ d)I=0 Câu 640: Cho C là ellip $x^2/16+y^2=1$. Tính tích phân đường loại 2:

$$I = \oint_C (3y - 4\cos x)dx + (4x + 5\cos y)dy$$

a)I=0 $b)I=\pi$ $c)I=4\pi$ $d)I=-4\pi$ Câu 641: Cho C là hình tròn $(x-1)^2+(y-2)^2=4$. Tính tích phân đường loại 2:

$$I = \oint_C e^y dx + x(2 + e^y) dy$$

 $a)I=4\pi$ $b)I=8\pi$ $c)I=-4\pi$ d)I=0 Câu 642: Cho C là hình tròn $x^2+y^2=4$. Tính tích phân đường loại 2:

$$I = \oint_C (5y - 4\cos x)dx + (4y + 5\cos y)dy$$

a)I=0 $b)I=-4\pi$ $c)I=10\pi$ $d)I=-20\pi$ Câu 643: Cho C là biên của hình chữ nhật $1 \le x \le 3$; $0 \le y \le 3$. Tính tích phân đường loại 2

$$I = \oint_C (x+2y)dx + (x-2y)dy$$
$$b)I = -6 \qquad c)I = 6 \qquad d)I = 5$$

a)I=-5 b)I=-6 c)I=6 d)I=5 Câu 644: Cho C là ellip $\frac{x^2}{4}+\frac{y^2}{9}=1$. Tính tích phân đường loại 2

$$I = \oint_C (2x + y)dx + (3x - 2y)dy$$

a) $I=-24\pi$ b) $I=-12\pi$ c) $I=12\pi$ d) $I=24\pi$ Câu 645: Cho C là ellip $x^2/a^2+y^2/b^2=1$ (a,b>0). Tính tích phân đường loại 2:

$$I = \oint_C (2x + y)dx + (2x - y)dy$$

$$a)I = \pi ab$$
 $b)I = 2\pi ab$ $c)I = ab$ $d)I = 0$

Câu 646: Cho C là đường ellip $\frac{x^2}{4} + \frac{y^2}{9} = 1$ Tính tích phân đường:

$$I = \oint_C y(sinx + 1)dx + (x - cosx)dy$$

a) $I=6\pi$ b) $I=36\pi$ c) I=0 d) $I=\pi$

Câu 647: Cho C là nửa đường tròn tâm O bán kính 2 nằm phía trên trục hoành Ox từ A(-2,0) đến B(2,0). Tính tích phân đường $I = \int_C x^2 dx + y^2 dy$

a) I = 13/3 b) I = 16/3 c) I = -4π d) I = 0. Câu 648: Cho điểm A(2,2), tính tích phân đường

$$I = \int_{OA} (2xy^2 + 3x + 2)dx + (2yx^2 + y - 2)dy$$

lấy theo đường $y=x^2/2$ từ gốc tọa độ O đến A. a) I=0 b) I=8 c) I=16 d) I=24

Câu 649: Tính tích phân đường loại 2:

$$I = \int_{OA} (y - 2x)dx + (4y + x)dy$$

 $\dot{\sigma}$ đây OA là cung $y=2x^4-x$ từ O(0,0) đến A(1,1).

a)
$$I = -1$$
 b) $I = 1$

c)
$$I = 1/8$$
 d) $I = 0$

Câu 650: Tính tích phân đường loại 2:

$$I = \int_{\mathcal{O}_A} 3y^2 dy - 4x dx$$

ở đây OA là $cungy = 2x^3 + 2x^2 - 2x$ từ O(0,0) đến A(1,2).

$$(a) I = 0$$

b)
$$I = 2$$

(c)
$$I = 4$$

d)
$$I=6$$

Câu 651: Tính tích phân đường loại 2:

$$I = \int_{OA} (2x + y)dx + (3y^2 + x)dy$$

ở đây OA là cung $2y^2 = x$ nối từ O(0,0) đến A(2,1).

a)
$$I = -7$$

b)
$$I = 2$$

c)
$$I = 7$$

$$\vec{d}$$
) $I=0$

Câu 652: Tính tích phân đường $I = \int_{(-1,2)}^{(2,3)} y dx + x dy$.

a)
$$I = 2$$

(b)
$$I = 4$$

c)
$$I = 6$$

d)
$$I = 8$$

Câu 653: Tính tích phân đường $I=\int_{(0,1)}^{(3,-4)}xdx+ydy$.

a)
$$I = 12$$

b)
$$I = -12$$

c)
$$I = -8$$

d)
$$I = 8$$

Câu 654: Tính tích phân $I = \int_{(1,-1)}^{(1,1)} (x-y)(dx-dy)$.

a)
$$I = 2$$

b) $I = -2$
c) $I = -4$
d) $I = 4$

Câu 655: Tính tích phân
$$I = \int_{(2,1)}^{(1,2)} \frac{2ydx - 2xdy}{x^2}$$
 theo

. đương không cắt trục Oy

a)
$$I = -3$$
 b) $I = 3$ c) $I = -4$ d) $I = 4$

Câu 656: Tính tích phân
$$I = \int_{(0,1)}^{(2,3)} (y+x)dx + (x-y)dy$$

a)
$$I = -3$$
 b) $I = 3$

c)
$$I = -4$$
 d) $I = 4$

Câu 657: Cho biết hàm $U = x^3 + y^3 + 2xy + 4x + 1$ có vi phân toàn phần là

$$dU = (3x^2 + 2y + 4)dx + (3y^2 + 2x)dy$$

Tính
$$I = \int_{(0,1)}^{(1,0)} (3x^2 + 2y + 4) dx + (3y^2 + 2x) dy$$
.

a)
$$I = -3$$

b) $I = 3$
c) $I = -4$
d) $I = 4$

Câu 658: Cho biết hàm $U = xe^y - ye^x + 2x + 1$ có vi phân toàn phần là

$$dU = (e^y - ye^x + 2)dx + (xe^y - e^x)dy$$

Tính
$$I = \int_{(1,1)}^{(1,0)} (e^y - ye^x + 2)dx + (xe^y - e^x)dy.$$

a)
$$I = -1$$
 b) $I = 1$

c)
$$I=-2$$
 d) $I=2$ Câu 659: Tích phân đường nào sau đây không phụ thuộc

vào các đường tron từng khúc nối hai điểm A và B?

a)
$$I = \int_{AB} (4xy^3 + 2x)dx + (y^4 + 2y - x)dy$$

b)
$$I = \int_{AB} (4xy^3 + 2x)dx - (y^4 + 2y - x)dy$$

c)
$$I = \int_{AB}^{AB} (4xy^3 + 2x - 1)dx + (y^4 + 6x^2y^2 - 1)dy$$

d)
$$I = \int_{AB} (4xy^3 + 2x - 1)dx - (y^4 + 6x^2y^2 - 1)dy$$

Câu 660: Tích phân đường nào sau đây không phụ thuộc vào các đường tron từng khúc nối hai điểm A và B?

$$a)I = \int_{AB} x(x^2dx - y^2)dy$$

$$b)I = \int_{AB} x^2dx + y^2dy$$

$$c)I = \int_{AB} x^2dy - y^2dx$$

 $d)I = \int_{AB} x^2 dy + y^2 dx$

Cấu 661: Tích phân đường nào sau đây không phụ thuộc vào các đường tron từng khúc nối hai điểm A và B?

a)
$$I = \int_{AB} (tgy - y^2tg^2x - y^2)dx + (x - xtg^2y - 2ytgx)dy$$

b)
$$I = \int_{AB}^{\infty} (tgy - y^2tg^2x + y^2)dx + (x + xtg^2y - 2ytgx)dy$$

c)
$$I = \int_{AB}^{AB} (tgy - y^2tg^2x - y^2)dx + (x + xtg^2y + 2ytgx)dy$$

d)
$$I = \int_{AB} (tgy - y^2tg^2x - y^2)dx + (x + xtg^2y - 2ytgx)dy$$

Câu 662: Tích phân đường nào sau đây không phụ thuộc vào các đường tron từng khúc nối hai điểm A và B?

a)
$$I = \int_{AB} (e^y - 2ye^{2x})dx - (xe^y - e^{2x})dy$$

b)
$$I = \int_{AB}^{B} (e^y + 2ye^{2x})dx + (xe^y - e^{2x})dy$$

c)
$$I = \int_{AB}^{B} (e^y - 2ye^{2x})dx + (xe^y - e^{2x})dy$$

d)
$$I = \int_{AB} (e^y + 2ye^{2x}) dx - (xe^y + e^{2x}) dy$$

Câu 663: Tích phân đường nào sau đây không phụ thuộc vào các đường tron từng khúc nổi hai điểm A và B?

a)
$$I = \int_{AB} (2x^3 + 2y^2) dx + (4xy + y - 1) dy$$

b)
$$I = \int_{AB} (2x^3 - 2y^2) dx + (4xy + y - 1) dy$$

c)
$$I = \int_{AB} (\cos x + \cos y) dx + x \sin y dy$$

d)
$$I = \int_{-\infty}^{\infty} (\cos y + y \cos x) dx - y \sin y dy$$

Câu 664: Tích phân đường nào sau đây không phụ thuộc vào các đường tron từng khúc nối hai điểm A và B?

a)
$$I = \int_{AB} (e^y + 2y \sin 2x) dx + (xe^y + \cos 2x) dy$$

b)
$$I = \int_{AB} (e^y - y sin2x) dx + (xe^y + cos2x) dy$$

c)
$$I = \int_{AB} (e^y - 2y\sin 2x) dx + (xe^y + \cos 2x) dy$$

d)
$$I = \int_{AB} (e^y - 2y\sin 2x)dx + (xe^y - \cos 2x)dy$$

Câu 665: Tích phân đường nào sau đây không phụ thuộc vào các đường trơn từng khúc nối hai điểm A và B?

a)
$$I = \int_{AB} (2x^3 - 3y) dx + (3x + y - 1) dy$$

b)
$$I = \int_{AB} (2x^3 - 3y) dx - (3x + y - 1) dy$$

c)
$$I = \int_{AB} (\cos y + \cos x) dx + x \sin y dy$$

d)
$$I = \int_{AB} (\cos y + \cos x) dx + \sin y dy$$

Câu 666: Tích phân đường nào sau đây không phụ thuộc vào các đường tron từng khúc nối hai điểm A và B?

a)
$$I = \int_{AB} (\cos y + x \sin y) dx - (x \sin y - \sin x) dy$$

b)
$$I = \int_{AB} (tgy + 1 + cosx)dx + (x(1 + tg^2y) + siny)dy$$

c)
$$I = \int_{AB} (\cos y + \sin x) dx - x \cos y dy$$

d)
$$I = \int_{AB} (\sin y + \cos y) dx + \cos y dy$$

Câu 667: Tích phân đường nào sau đây không phụ thuộc vào các đường trơn từng khúc nối hai điểm A và B?

a)
$$I = \int_{AB} (x^2 - 2xy^2 - 3)dx + (y^2 - 2x^2y - 5)dy$$

b)
$$I = \int_{AB} (x^2 + 2xy^2 - 3)dx + (y^2 - 2x^2y - 3)dy$$

c) $I = \int_{AB} (e^{x+y} + \cos(x-y))dx + (e^{x+y} + \cos(x-y))dy$
d) $I = \int_{AB} (e^{x-y} + \cos(x-y))dx + (e^{x-y} - \cos(x-y))dy$

C-Tích phân mặt loại 1

Câu 668: Tính tích phân mặt loại một: $I=\int\int_S ds$, trong đó S là mặt z=3, $0\leq x\leq 1, 0\leq y\leq 2$.

a) I=2 b) I=4 c) I=6 d) I=12Câu 669: Tính $I=\int\int_S (2x-2y+z)ds$, trong đó S là mặt

$$2x - 2y + z - 2 = 0$$
, $1 \le x \le 2$, $0 \le y \le 2$.

a) I=0 b) I=4 c) I=12 d) $I=4\sqrt{3}$ Câu 670: Tính tích phân mặt loại một: $I=\int\int_S ds$, trong đó S là mặt z=2x, $0 \le x \le 1, 0 \le y \le 2$.
a) $I=\sqrt{5}$ b) $I=2\sqrt{5}$ c) $I=\sqrt{2}$ d) $I=2\sqrt{2}$ Câu 671: Tính tích phân mặt loại một: $I=\int\int_S xyds$, trong đó S là mặt z=2x, $0 \le x \le 1, 0 \le y \le 2$. a) $I=\sqrt{5}$ b) $I=2\sqrt{5}$ c) $I=\sqrt{5}/2$ d) $I=\sqrt{5}/4$ Câu 672: Tính tích phân mặt loại một

$$I = \int \int_{S} (xy + y^2 + yz) ds,$$

trong đó S là mặt $x+y+z=1,\ 0\leq y\leq 1,\ 0\leq z\leq 2.$ a) $I=2\sqrt{3}$ b) $I=\sqrt{3}$ c) $I=2\sqrt{2}$ d) $I=\sqrt{2}/4$ Câu 673: Tính tích phần mặt loại một: $I=\int\int_S ds,$

trong đó S là mặt $z=2,\ x^2+y^2\leq 4.$ $a)\ I=\pi$ $b)\ I=4\pi$ $c)\ I=6\pi$ $d)\ I=8\pi$ Câu 674: Tính tích phân mặt loại một: $I=\int\int_S ds,$ trong đó S là mặt $x=4,\ y^2+z^2\leq 6.$ $a)\ I=\pi$ $b)\ I=4\pi$ $c)\ I=6\pi$ $d)\ I=24\pi$ Câu 675: Tính tích phân mặt loại một:

$$I = \int \int_S (x^2 - xz + 1) ds$$

trong đó S là mặt $z=x,~x^2+y^2\leq 1.$ a) $I=2\pi$ b) $I=\pi$ c) $I=\pi\sqrt{2}$ d) $I=2\pi\sqrt{2}$ Câu 676: Tính tích phân mặt loại một: $I=\int\int_S xds,$ trong đó S là mặt

$$x + y + z = 0, \ x^2 + y^2 \le 1.$$

a) I=0 b) $I=\pi\sqrt{3}$ c) $I=4\pi\sqrt{3}$ d) $I=6\pi\sqrt{3}$ Câu 677: Tính $I=\int \int_S (x+y+z)ds$, trong đó S là mặt 2x+2y+2z-1=0, $x+y\leq 4$, $x\geq 0$, $y\geq 0$. a) $I=3\sqrt{3}$ b) I=3 c) $I=4\sqrt{3}$ d) I=4 Câu 678: Tính $I=\int \int_S (x+4y+2z)ds$, trong đó S là mặt x+4y+2z-2=0, $1\leq x^2+y^2\leq 2$. a) $I=\pi\sqrt{21}\,b$) $I=\pi\sqrt{21}/2\,c$) $I=-\pi\sqrt{21}/2\,d$) $I=2\pi$ Câu 679: Tính $I=\int \int_S (x+2y+z)ds$, trong đó S là mặt x+2y+z-2=0, $x+y\leq 1$, $x\geq 0$, $y\geq 0$. a) $I=\sqrt{6}$ b) $I=\sqrt{6}/2$ c) $I=2\sqrt{6}$ d) $I=\sqrt{6}/4$ Câu 680: Tính $I=\int \int_S (3x-4y+z)ds$, trong đó S là mặt 3x-4y+z-3=0, $x^2+y^2\leq 1$. a) $I=3\pi\sqrt{26}$ b) $I=15\pi\sqrt{26}$ c) $I=2\pi\sqrt{26}$ d) $I=\pi\sqrt{26}$

Câu 681: Tính $I = \int \int_{S} 3x ds$, trong đó S là mặt:

$$z-x=0; x+y \le 1, x \ge 0, y \ge 0.$$

a) $I=\sqrt{2}$ b) $I=2\sqrt{2}$ c) $I=\sqrt{2}/2$ d) I=4 Câu 682: Tính tích phân mặt loại một:

$$I = \int \int_{S} (2x^2 - xy + 3) ds$$

trong đó S là mặt y=2x, $x^2+z^2 \le 1$. a) $I=\pi\sqrt{2}$ b) $I=3\pi\sqrt{2}$ c) $I=\pi\sqrt{5}$ d) $I=3\pi\sqrt{5}$ Câu 683: Tính tích phân mặt loại một:

$$I = \int \int_{S} (x^{2} - y^{2} - xz + yz + 2) ds,$$

trong đó S là mặt $z=x+y, \ x^2+y^2\leq 9.$ a) $I=\pi\sqrt{3}$ b) $I=3\pi\sqrt{3}$ c) $I=9\pi\sqrt{3}$ d) $I=18\pi\sqrt{3}$ Câu 684: Tính tích phân mặt loại một: $I=\int\int_S ds,$ trong đó S là mặt $x+2y+z=0, y^2+z^2\leq 6.$ a) $I=\pi\sqrt{6}$ b) $I=3\pi\sqrt{6}$ c) $I=6\pi\sqrt{6}$ d) $I=9\pi\sqrt{6}$ Câu 685: Tính tích phân mặt loại một: $I=\int\int_S xds,$ trong đó S là mặt của hình lập phương [0,1] x [0,1] x [0,1]. a) I=3 b) I=6 c) I=9 d) I=12 Câu 686: Tính tích phân mặt loại một:

$$I = \int \int_{S} (x + y + z) ds,$$

trong đó S là mặt của hình lập phương [0,1] x [0,1] x [0,1]. a) I=6 b) I=9 c) I=3 c) I=giá trị khác Câu 687: Tính tích phân mặt loại một: $I=\int\int_S xyzds$, trong đó S là mặt của hình lập phương [0,1] x [0,1] x [0,1].

a) I=0 b) I=1/4 c) I=3/4 c) I=1 Câu 688: Tính tích phân mặt loại một: $\dot{I}=\int\int_S xyds$, trong đó S là mặt của hình lập phương $[0,1] \times [0,1] \times [0,1]$. a) I=0 b) I=1/2 c) I=3/4 d) I=3/2 Câu 689: Tính tích phân mặt loại một:

$$I = \int \int_{S} (x+y+z)ds,$$

trong đó S là mặt x + y + z = 2, $0 \le x \le 1$, $0 \le y \le 1$. a) I = 2 b) $I = 2\sqrt{3}$ c) $I = \sqrt{3}$ d) $I = -\sqrt{3}$ Cầu **690:** Tính tích phân mặt loại một:

$$I=\int\int_{S}(x+y+z)ds,$$

trong đó S là mặt $x+y+z=1,\ 0 \le x \le 1,\ 0 \le y \le 1.$ a) I=2 b) $I=2\sqrt{3}$ c) $I=\sqrt{3}$ d) $I=-\sqrt{3}$ Câu 691: Tính tích phân mặt loại một:

$$I = \int \int_{S} (x+y+z)ds,$$

trong đó S là mặt

$$x + y + z = 1$$
, $0 \le x \le 1$, $0 \le y \le 1$, $z \ge 0$.

a) I = 1/2 b) $I = 2\sqrt{3}$ c) $I = \sqrt{3}/2$ d) $I = -\sqrt{3}$ Câu 692: Tính tích phân mặt loại một:

$$I=\int\int_{S}(x+y+z)ds,$$

trong đó S là mặt $x+y+z=1, \ x\geq 0, \ y\geq 0, \ z\geq 0.$ a) I=1/2 b) $I=2\sqrt{3}$ c) $I=\sqrt{3}/2$ d) $I=-\sqrt{3}$ Câu 693: Tính tích phân mặt loại một:

$$I = \int \int_{S} xy(2x + 2y + z)ds,$$

trong đó S là mặt 2x + 2y + z = 2, $0 \le x \le 2$, $0 \le y \le 2$. a) $I = \sqrt{3}$ b) $I = 2\sqrt{3}$ c) I = 8 d) I = 24Câu 694: Tính tích phân mặt loại một:

$$I=\int\int_{S}y(2x+2y+z)ds,$$

trong đó S là mặt $2x + 2y + z = 2, 0 \le y \le 1, 0 \le z \le 2$. a) $I = \sqrt{3}$ b) $I = 2\sqrt{3}$ c) I = 3 d) I = 4Câu 695: Tính tích phân mặt loại một:

$$I = \int \int_S \frac{ds}{\sqrt{1 + 4x^2 + 4y^2}},$$

trong đó S là mặt $z = x^2 + y^2$, $0 \le x \le 2$, $0 \le y \le 3$. a) I = 1 b) I = 4 c) I = 6 d) I = 8Câu 696: Tính tích phân mặt loại một:

$$I = \int \int_S \frac{ds}{\sqrt{1+4y^2+16z^2}},$$

trong đó S là mặt $x=y^2+2z^2,\ y^2+z^2\leq 4.$ a) $I=\pi$ b) $I=4\pi$ c) $I=6\pi$ d) $I=8\pi$ Câu 697: Tính diện tích S của mặt

$$2x - 2y + z = 1, \ 0 \le x \le 1, \ 0 \le y \le 2.$$

a) S = 6 b) S = 3 c) $S = \sqrt{3}$ d) $S = \sqrt{3}/2$ Câu 698: Tính diện tích S của mặt

$$2x - 2y + z = 1$$
, $0 \le y \le 1$, $0 \le z \le 2$.

a) S = 6 b) S = 3 c) $S = \sqrt{3}$ d) $S = \sqrt{3}/2$ Câu 699: Tính diện tích S của mặt $x^2 + y^2 \le 2x$, z = 2.

a) $S = \pi$ b) $S = 2\pi$ c) $S = 3\pi$ d) $S = 4\pi$

Câu 700: Tính diện tích S của mặt

$$z = 2x + 2y, \ x^2 + y^2 \le 4x.$$

a) $S = \pi\sqrt{3}$ b) $S = 2\pi\sqrt{3}$ c) $S = 4\pi$ d) $S = 12\pi$ Câu 701: Tính diện tích S của mặt $x^2/4 + y^2/9 \le 1$, z = 2. a) $S = \pi\sqrt{3}$ b) $S = 3\pi\sqrt{3}$ c) $S = 6\pi$ d) $S = 12\pi$ Câu 702: Tính diện tích S của mặt

$$2x - 2y + z = 3$$
, $x^2/4 + y^2 \le 1$.

a) $S=\pi\sqrt{3}$ b) $S=3\pi\sqrt{3}$ c) $S=2\pi$ d) $S=6\pi$ Câu 703: Tính diện tích S của mặt

$$z = \sqrt{x^2 + y^2}, \ x^2 + y^2 \le 1.$$

a) $S=\pi\sqrt{2}$ b) $S=2\pi\sqrt{2}$ c) $S=4\pi\sqrt{2}$ d) $S=\pi$ Câu 704: Tính diện tích S của mặt

$$y = \sqrt{x^2 + z^2}, \ x^2 + z^2 \le 4x.$$

a) $S=\pi\sqrt{2}$ b) $S=2\pi\sqrt{2}$ c) $S=4\pi\sqrt{2}$ d) $S=4\pi$ Câu 705: Tính diện tích S của mặt

$$S: 2x+2y-z-1=0; 0 \le x \le 2; 1 \le y \le 3$$

a) S = 4 b) S = 12 c) S = 6 d) S = 18. Câu 706: Tính diễn tích S của mặt

$$x + 4y + z = 1$$
, $x^2/4 + y^2/9 \le 1$

a) $S = 2\pi\sqrt{2}$ b) $S = 18\pi\sqrt{2}$ c) $S = 6\pi$ d) $S = 6\pi.\sqrt{2}$ Câu 707: Tính diện tích S của mặt

$$z-y=0, x+y \le 1, x \ge 0, y \ge 0.$$

a) $S = \sqrt{2}/2$ b) $S = \sqrt{2}$ c) S = 2 d) $S = 2\sqrt{2}$. Câu 708: Tính diện tích S của mặt

$$2x + 2y + z = 1$$
, $x^2/16 + y^2/9 \le 1$

a) $S = 36\pi$ b) $S = 6\pi\sqrt{3}$ c) $S = 18\pi\sqrt{3}$ d) $S = 18\pi$. Câu 709: Tính diện tích S của mặt

$$2x + 2y - z = 1, x + y \le 1, x \ge 0, y \ge 0$$

a) $S = \pi \sqrt{3}$ b) S = 3/2 c) S = 3 d) S = 1/2 Câu 710: Tính diện tích S của mặt

$$2x + 2y + z = 1$$
, $0 \le x \le 2$; $0 \le y \le 4$

a) S = 24 b) S = 36 c) S = 72 d) $S = 8\sqrt{3}$. Câu 711: Tính diện tích S của mặt

$$S: x + y - z = 0; x^2 + y^2 < 4.$$

a)
$$S = 4\pi$$
 b) $S = 4\pi\sqrt{3}$ c) $S = 2\pi$ d) $S = 2\pi\sqrt{3}$.

D-Tích phân mặt loại 2

Câu 712: Tính tích phân mặt $I=\int\int_S z dx dy$ trong đó S là mặt trên của mặt $0\leq x\leq 2, 0\leq y\leq 2, \ z=2.$

a)
$$I = 0$$
 b) $I = 4$ c) $I = 6$ d) $I = 8$

Câu 713: Tính tích phân mặt $I = \int \int_S z dy dz$ trong đó S là mặt trên của mặt $0 \le x \le 2, 0 \le y \le 3, \ z = 1.$

a)
$$I = 0$$
 b) $I = 3$ c) $I = 6$ d) $I = 9$

Câu 714: Tính I = $\int \int_S dx dy$ trong đó S là mặt định hướng với pháp vector đơn vị dương (2/3, -2/3, 1/3) của mặt 2x - 2y + z = 1, $0 \le x \le 2$, $0 \le y \le 3$.

a)
$$I = 0$$
 b) $I = 4$ c) $I = 6$ d) $I = 8$

Câu 715: Tính tích phần mặt $I = \int \int_S z dx dy$ trong đó S

là mặt trên của mặt $x+y \le 1$, $x \ge 0$, $0 \le y \le 1$, z=2. a) I=1 b) I=2 c) I=4 d) I=0

Câu 716: Tính I = $\int \int_S dx dy$ trong đó S là mặt định hướng với pháp vector đơn vị dương (-2/3,2/3,-1/3) của mặt $-2x+2y-z=2,\ x+y\leq 1,\ x\geq 0,\ 0\leq y\leq 1.$

a) I = 1/2 b) I = -1/2 c) I = 1/6 d) I = 0

Câu 717: Tính I = $\int \int_S z dy dz$ trong đó S là mặt định hướng với pháp vector đơn vị dương (0,3/5,-4/5) của mặt $3y-4z=2, \ x+y\leq 1, \ x\geq 0, \ 0\leq y\leq 1.$

a) I=3/10 b) I=-3/10 c) I=-4/10 d) I=0 Câu 718: Tính tích phân mặt $I=\int_S dxdy$ trong đó S

là mặt trên của mặt $x^2 + y^2 \le 2$, z = 4.

a) I = 0 b) $I = 2\pi$ c) $I = -4\pi$ d) $I = 8\pi$

Câu 719: Tính tích phân mặt I $=\int\int_S dx dy$ trong đó S

là mặt 2x + 3y = 4, $x^2 + y^2 \le 2$.

a) I = 0 b) $I = 2\pi$ c) $I = -4\pi$ d) $I = 8\pi$

Câu 720: Tính tích phân mặt $I = \int \int_S dx dy$ trong đó S

là mặt dưới của mặt $x^2 + y^2 \le 2$, z = 4.

a) $I = -2\pi$ b) $I = 2\pi$ c) $I = -4\pi$ d) $I = 8\pi$

Câu 721: Tính I = $\int \int_S dx dy$ trong đó S là mặt định hướng với pháp vector đơn vị dương (1/3, 2/3, 2/3) của mặt x + 2y + 2z = 4, $x^2 + y^2 \le 4$.

a) $I = \pi/3$ b) $I = 2\pi$ c) $I = 4\pi/3$ d) $I = 4\pi$

Câu 722: Tính tích phân mặt $I = \int \int_S \frac{dxdy}{\sqrt{x^2 + y^2}}$ trong

đó S là mặt dưới của mặt $x^2 + y^2 \le 9$, z = 4.

a) $I = -9\pi$ b) $I = 9\pi$ c) $I = -6\pi$ d) $I = 6\pi$

```
Câu 723: Tính tích phân mặt I = \int \int_S \frac{dxdy}{\sqrt{x^2+y^2}} trong
đó S là mặt định hướng với pháp vector đơn vị dương
(3/5, 0, -4/5) của mặt 3x - 4z = 4, x^2 + y^2 < 9.
a) I = -6\pi b) I = 12\pi c) I = 24\pi/5 d) I = -24\pi/5
Câu 724: Tính tích phân mặt I = \int \int_{C} (x-y+z) dx dz
trong đó S là mặt x-y+z-2=0; x^2+z^2\leq 1 ứng với
pháp vecto đơn vị dương \vec{n} = (1/\sqrt{3}, -1/\sqrt{3}, 1/\sqrt{3}).
                 b) I = 2\pi c) I = -2\pi\sqrt{3} d) I = 2\pi\sqrt{3}
 a) I = -2\pi
Câu 725: Tính tích phân mặt I = \int \int_S (2x+2y-z) dx dy
trong đó S là mặt 2x + 2y - z = 1; 0 \le x \le 2; 1 \le y \le 3
ứng với pháp vecto đơn vị dương \vec{n} = (2/3, 2/3, -1/3).
 a) I = -12
                    b) I = 18
                                    c) I = -4
Câu 726: Tính tích phân mặt I = \int \int_{S} dx dy trong đó S
là mặt dưới của mặt x^2/4 + y^2/9 \le 1, z = 2.
a) I = 6\pi b) I = -6\pi c) I = 4\pi d) I = -12\pi
Câu 727: Tính I = \int \int_{S} dy dz trong đó S là mặt định
hướng với pháp vector đơn vị dương (0, 3/5, 4/5) của mặt
3y + 4z = 2, x^2/4 + y^2/9 \le 1.
a) I = 18\pi/5 b) I = -18\pi/5 c) I = 24\pi/5 d) I = 0
Câu 728: Tính tích phân mặt I = \int \int_{S} x^{2} dy dz trong đó
S là mặt trên của mặt x^2 + y^2 + z^2 = 1, z > 0.
a) I = 0
           b) I = 2\pi c) I = 4\pi d) I = 6\pi
Câu 729: Tính tích phân mặt I = \int \int_{C} dx dy trong đó S
là mặt trên của mặt x^2/9 + y^2/4 \le 1, z = -3
a) I = 36\pi b) I = -36\pi c) I = 6\pi d) I = -6\pi
Câu 730: Tính tích phân mặt I = \int_{S} dx dy trong đó S
là mặt dưới của mặt x^2/9 + y^2/25 \le 1, z=2
```

a)
$$I = 15\pi$$
 b) $I = -15\pi$ c) $I = 135\pi$ d) $I = -135\pi$

Câu 731: Tính tích phân mặt I $=\int\int_S dx dy$ trong đó S

là mặt dưới của mặt $x^2 + y^2/9 \le 1$, z = 2

a)
$$I = 9\pi$$
 b) $I = 3\pi$ c) $I = -3\pi$ d) $I = -9\pi$

Câu 732: Tính tích phân mặt $I = \int \int_S dx dy$ trong đó S

là mặt trên của mặt $x^2 + y^2 + z^2 = 4$, $z \ge 0$.

a)
$$I = 0$$
 b) $I = 2\pi$ c) $I = 4\pi$ d) $I = 6\pi$

Câu 733: Tính tích phân mặt ${
m I}=\int\int_S xydxdy$ trong đó

S là mặt ngoài của mặt $x^2 + y^2 = 1$, $0 \le z \le 2$.

a)
$$I = 0$$
 b) $I = \pi$ c) $I = 2\pi$ d) $I = 4\pi$

Câu 734: Tính tích phân mặt I $=\int\int_S xydxdz$ trong đó

S là mặt ngoài của mặt $x^2 + z^2 = 4$, $0 \le y \le 1$.

a)
$$I = 0$$
 b) $I = \pi$ c) $I = 2\pi$ d) $I = 4\pi$

Câu 735: Cho S là mặt trên của nửa mặt cầu $x^2+y^2+z^2=4$ ứng với $z \ge 0$; D là hình tròn $x^2+y^2 \le 4$ trong mặt phẳng

xOy. Đặt: $I = \int \int_S z^2 dx dy$. Ta có:

a)
$$I = \int_{\Omega} \int_{D} 2(4 - x^{2} - y^{2}) dx dy$$

b)
$$I = \int \int_{D} (4 - x^2 - y^2) dx dy$$

c)
$$I = -\int \int_{D} (4 - x^{2} - y^{2}) dx dy$$

d)
$$I = -\int \int_{D}^{\infty} 2(4-x^2-y^2)dxdy$$

Câu 736: Cho S là mặt biên ngoài của miền Ω trong R^3 , hãy dùng công thức Gauss-Ostrogradski biến đổi tích phân mặt sau đây sang tích phân bội 3

$$I = \int \int_{S} (y^{2}dzdy + z^{2}dxdz + x^{2}dydx)$$

a)
$$I = \int \int \int \Omega(x+y+z) dx dy dz$$

b)
$$I = 2 \int \int \int \Omega (x+y+z) dx dy dz$$

c)
$$I = \int \int \int Q dx dy dz$$

$$\vec{d}$$
) $I=0$

Câu 737: Cho S là mặt phía ngoài của hình cầu có thể tích V. Ta có:

$$a)V = \int \int_{S} dy dz + dx dz + dx dy$$

$$b)V = \int \int_{S} x dy dz + y dx dz + z dx dy$$

$$c)V = \frac{1}{3} \int \int_{S} dy dz + dx dz + dx dy$$

$$d)V = \frac{1}{3} \int \int_{S} x dy dz + y dx dz + z dx dy$$

Câu 738: Cho S là mặt phía ngoài của hình lập phương Ω . Đặt $I = \int \int_{\mathcal{C}} x^2 dy dz + y^2 dx dz + z^2 dx dy$. Ta có:

a)
$$I = \int \int \int_{C}^{J} (x+y+z) dx dy dz$$

b)
$$I = \int \int \int \int Q 2(x+y+z) dx dy dz$$

c)
$$I = \int \int \int_{\Omega} 3(x+y+z) dx dy dz$$

d)
$$I = \int \int \int_{\mathcal{O}} 6dxdydz$$

Câu 739: Cho S là mặt phía ngoài của hình cầu W: $x^2 + y^2 + z^2 \le 9$. Đặt $I = \int \int_S z^3 dy dz + y^3 dx dz + z^3 dx dy$. Ta có:

a)
$$I = \int \int \int_{W} 9 dx dy dz$$

b)
$$I = \int \int \int_{W}^{\infty} 3(x^2 + y^2 + z^2) dx dy dz$$

c)
$$I = \int \int \int_{IM}^{\infty} 3(y^2 + 2z^2) dx dy dz$$

$$d) \ I = \int \int \int_{W} 3(y^2 + z^2) dx dy dz$$

Câu 740: Cho S là mặt phía ngoài của hình lập phương

$$\varOmega$$
. Đặt $I=\int\int_S y^3 dy dz + 3(x+y+z)y dx dz + x^3 dx dy$. Ta có:

a)
$$I = \int \int \int_{\Omega} (3x + 3y + z) dx dy dz$$

b)
$$I = \int \int \int_{\Omega} 3(x+y+z) dx dy dz$$

c)
$$I = \int \int \int_{\Omega} 3(x+2y+z) dx dy dz$$

d)
$$I = \int \int \int_{\Omega} 6 dx dy dz$$

Câu 741: Tính tích phân mặt

$$I = \int \int_{S} (z dx dy + 2x dy dz + y dz dx)$$

trong đó S là mặt biên ngoài của hình hộp

$$\varOmega: 0 \leq x \leq 1, \ 0 \leq y \leq 2, \ 0 \leq z \leq 3.$$

a)
$$I = 4$$
 b) $I = 6$ c) $I = 12$ d) $I = 24$

Câu 742: Tính tích phân mặt

$$I = \int \int_{S} (z dx dy + 3x dy dz - 3y dz dx)$$

trong đó S là mặt biên ngoài của hình trụ

$$\Omega: x^2 + y^2 \le 4, \ 0 \le z \le 4.$$

a) $I=2\pi$ b) $I=8\pi$ c) $I=16\pi$ d) $I=32\pi$ Câu 743: Tính tích phân mặt

$$I = \int \int_{S} (z dx dy - x dy dz + y dz dx)$$

trong đó S là mặt biên ngoài của hình cầu

$$\Omega: x^2 + y^2 + z^2 \le 1.$$

a) $I=\pi$ b) $I=4\pi/3$ c) $I=8\pi/3$ d) $I=4\pi$ Câu 744: Tính tích phân mặt

$$I = \int \int_S (z dx dy - 2y dy dz + 2y dz dx)$$

trong đó S là mặt biên ngoài của hình cầu

$$\Omega: x^2 + y^2 + z^2 \le 4z.$$

a) I=0 b) $I=32\pi/3$ c) $I=32\pi$ d) $I=24\pi$ Câu 745: Tính tích phân mặt

$$I = \int \int_S (2xydxdy - 2xdydz + 2ydzdx)$$

trong đó S là mặt biên ngoài của hình cầu

$$\Omega: x^2 + y^2 + z^2 \le 4z.$$

a) I = 0 b) $I = 32\pi/3$ c) $I = 32\pi$ d) I = 32 Câu 746: Tính tích phân mặt

$$I = \int \int_S (2xydxdy + 2xdydz + 4ydzdx)$$

trong đó S là mặt biên ngoài của elipsoid

$$\Omega: x^2 + y^2/4 + z^2/9 < 1.$$

a) I=0 b) $I=32\pi/3$ c) $I=36\pi$ d) $I=48\pi$ Câu 747: Tính $I=\int\int_S (2y.dxdy+3x.dydz+y.dzdx)$ trong đó S là mặt biên ngoài của hình ellipsoid

$$\Omega: x^2/4 + y^2/9 + z^2 \le 1.$$

a) $I=192\pi$ b) $I=32\pi$ c) $I=12\pi$ d) I=0 Câu 748: Tính $I=\int\int_S (2xdxdy+xdydz+3ydzdx)$ trong đó S là mặt biên ngoài của hình trụ

$$\Omega: x^2 + y^2 \le 1, 0 \le z \le 1.$$

a) I=0 b) $I=4\pi$ c) $I=6\pi$ d) $I=3\pi$ Câu 749: Tính $I=\int\int_S (2z.dxdy+3y.dydz+6z.dzdx)$ trong đó S là mặt biên ngoài của hình trụ

$$\Omega: x^2/4 + y^2/9 \le 1; \quad 0 \le z \le 1.$$

a) $I=36\pi$ b) $I=132\pi$ c) $I=12\pi$ d) $I=6\pi$ Câu 750: Tính I = $\int\int_S (z.dxdy+x.dydz-y.dzdx)$ trong đó S là mặt biên ngoài của hình cầu

$$\Omega: x^2 + y^2 + z^2 \le 9.$$

a) $I=3\pi$ b) $I=12\pi$ c) $I=24\pi$ d) $I=36\pi$ Câu 751: Tính I = $\int \int_S (3x.dxdy+2x.dydz-y.dzdx)$ trong đó S là mặt biên ngoài của hình ellipsoid

$$\Omega: x^2 + y^2/4 + z^2/9 \le 1.$$

a) $I=32\pi$ b) $I=144\pi$ c) $I=36\pi$ d) $I=8\pi$ Câu 752: Tính I = $\int\int_S (4z.dxdy+3y.dydz-y.dzdx)$ trong đó S là mặt biên ngoài của ellipsoid

$$\Omega: x^2 + y^2/4 + z^2/9 \le 1.$$

a) $I=18\pi$ b) $I=36\pi$ c) $I=24\pi$ d) $I=48\pi$ Câu 753: Tính I = $\int\int_S (z.dxdy-3z.dydz+y.dzdx)$ trong đó S là mặt biên ngoài của hình cầu

$$\Omega: x^2 + y^2 + z^2 \le 9.$$

a)
$$I = 18\pi$$
 b) $I = 36\pi$ c) $I = 48\pi$ d) $I = 72\pi$

ĐÁP ÁN

TOÁN CAO CẤP A2

1b	26d	51a	76d	101d	126c	151b	176a
2d	27b	52b	77c	102b	127a	152d	177a
3b	28c	53d	78d	i .			
			i	103a	128a	153c	178b
4b	29c	54a	79c	104d	129b	154c	179c
5b	30b	55b	80a	105c	130a	155c	180d
6b	31c	56a	81b	106d	131b	156a	181a
7c	32c	57d	82Ъ	107c	132d	157b	182a
8b	33b	58c	83d	108b	133c	158c.	183a
9a	34d	59d	84c	109a	134d	159c	184b
10b	35d	60d	85d	110Ъ	135a	160d	185b
11b	36b	61c	86b	111d	136a	161c	186a
12c	37d	62b	87d	112d	137d	162c	187Ъ
13a	38c	63b	88b	113c	138d	163c	188b
14d	39d	64a	89a	114b	139a	164b	189a
15a	40b	65b	90d	115d	140d	165c	190Ъ
16d	41a	66d	91b	116d	141a	166Ъ	191c
17d	42d	67b	92a	117b	142d	167c	192c
18d	43a	68a	93d	118d	143d	168c	193a
19b	44b	69d	94c	119d	144d	169c	194c
20a	45a	70b	95Ъ	120d	145c	170b	195a
21d	46b	71a	96a	121a	146d	171c	196Ъ
22d	47a	72d	97c	122b	147d	172c	197c
23a	48c	73Ъ	98d	123Ъ	148b	173d	198c
24b	49Ъ	74a	99Ъ	124b	149c	174c	199d
25c	50c	75a	100b	125c	150d	175c	200b

201d	231b	261a	291b	321a	351c	381c	411c
202a	232Ъ	262c	292c	322d	352c	382a	412c
203d	233c	263d	293c	323c	353b	383Ъ	413a
204b	234Ъ	264b	294Ъ	324b	354c	384d	414c
205d	235c	265Ъ	295d	325c	355b	385c	415c
206a	236d	266b	296c	326c	356d	386a	416a
207b	237a	267d	297d	327d	357c	387c	417d
208d	238d	268a	-298a	328b	358Ъ	388a	418a
209a	239Ъ	269Ъ	299с	329c	359Ъ	389Ъ	419Ъ
210a	240a	270c	300Ъ	330d	360a	390a	420a
211d	241a	271c	301a	331b	361a	391Ъ	421c
212a	242c	272a	302d	332b	362b	392a	422b
213d	243d	273c	303a	333c	363c	393a	423d
214d	244a	274c	304Ъ	334c	364c	394Ъ	424a
215b	245d	275a	305d	335d	365c	395Ъ	425b
216b	246c	276d	306d	336d	366d	396c	426b
217d	247c	277c	307a	337c	367b	397d	427d
218c	248c	278c	308a	338d	368b	398a	428c
219c	249a	279d	309с.	339Ъ	369c	399c	429d
220b	250a	280с	310d	340c	370d	400b	430c
221b	251a	281a	311c	341d	371d	401c	431b
222d	252d	282Ъ	312a	342a	372d	402d	432a
223d	253b	283a	313d	343Ъ	373d	403d	433b
224c	254b	284d	314a	344d	374c	404b	434c
225d	255b	285c	315d	345c	375a	405b	435a
226c	256c	286d	316c	346a	376b	406a	436b
227a	257a	287d	317d	347a	377a	407c	437c
228b	258c	288Ъ	318c	348c	378d	408c	438b
229c	259d	289d	319b	349d	379c	409d	439a
230c	260c	290d	320c-	350a	380d	410b	440d

441c 471a 501b 531b 561a 591c 621c 651c 442c 472a 502d 532b 562d 592d 622d 652d 443b 473b 503d 533d 563a 593d 623d 653a 444b 474d 504a 534b 564b 594c 624b 654b 445d 476c 505b 535d 566b 596a 626c 656d 446b 476a 506a 536c 566b 596a 626c 656d 447d 477b 507c 537d 567a 597b 627c 657d 448b 478c 508b 538a 568a 598c 628b 658b 449d 479d 509d 539b 569d 599a 629b 659c 450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
443b 473b 503d 533d 563a 593d 623d 653a 444b 474d 504a 534b 564b 594c 624b 654b 445d 475c 505b 535d 565d 595c 625c 655a 446b 476a 506a 536c 566b 596a 626c 656d 447d 477b 507c 537d 567a 597b 627c 657d 448b 478c 508b 538a 568a 598c 628b 658b 449d 479d 509d 539b 569d 599a 629b 659c 450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c <th></th> <th>441c</th> <th>471a</th> <th>501b</th> <th>531b</th> <th>561a</th> <th>591c</th> <th>621c</th> <th>651c</th>		441c	471a	501b	531b	561a	591c	621c	651c
444b 474d 504a 534b 564b 594c 624b 654b 445d 475c 505b 535d 565d 595c 625c 655a 446b 476a 506a 536c 566b 596a 626c 656d 447d 477b 507c 537d 567a 597b 627c 657d 448b 478c 508b 538a 568a 598c 628b 658b 449d 479d 509d 539b 569d 599a 629b 659c 450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 63a 663a 454b 484c 514c 544b <th></th> <th>442c</th> <th>472a</th> <th>502d</th> <th>532b</th> <th>562d</th> <th>592d</th> <th>622d</th> <th>652d</th>		442c	472a	502d	532b	562d	592d	622d	652d
445d 475c 505b 535d 565d 595c 625c 655a 446b 476a 506a 536c 566b 596a 626c 656d 447d 477b 507c 537d 567a 597b 627c 657d 448b 478c 508b 538a 568a 598c 628b 658b 449d 479d 509d 539b 569d 599a 629b 659c 450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 633a 663a 454b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 545c <th></th> <th>443b</th> <th>473b</th> <th>503d</th> <th>533d</th> <th>563a</th> <th>593d</th> <th>623d</th> <th>653a</th>		443b	473b	503d	533d	563a	593d	623d	653a
446b 476a 506a 536c 566b 596a 626c 656d 447d 477b 507c 537d 567a 597b 627c 657d 448b 478c 508b 538a 568a 598c 628b 658b 449d 479d 509d 539b 569d 599a 629b 659c 450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 63aa 663a 454b 484c 514c 544b 574a 604c 634c 664c 455d 485d 515a 545c 575b 605d 635b 665b 457b 487b 517c 547a <th></th> <th>444b</th> <th>474d</th> <th>504a</th> <th>534b</th> <th>564b</th> <th>594c</th> <th>624b</th> <th>654b</th>		444b	474d	504a	534b	564b	594c	624b	654b
447d 477b 507c 537d 567a 597b 627c 657d 448b 478c 508b 538a 568a 598c 628b 658b 449d 479d 509d 539b 569d 599a 629b 659c 450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 633a 663a 454b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 633a 663a 454b 484c 514c 544b 574a 604c 634c 664c 457b 487b 517c 547a <th></th> <th>445d</th> <th>475c</th> <th>505b</th> <th>535d</th> <th>565d</th> <th>595c</th> <th>625c</th> <th>655a</th>		445d	475c	505b	535d	565d	595c	625c	655a
448b 478c 508b 538a 568a 598c 628b 658b 449d 479d 509d 539b 569d 599a 629b 659c 450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 633a 663a 454b 484c 514c 544b 574a 604c 634c 664c 455d 485d 515a 545c 575b 605d 635b 665b 456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b <th></th> <th>446b</th> <th>476a</th> <th>506a</th> <th>536c</th> <th>566b</th> <th>596a</th> <th>626c</th> <th>656d</th>		446b	476a	506a	536c	566b	596a	626c	656d
449d 479d 509d 539b 569d 599a 629b 659c 450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 633a 663a 454b 484c 514c 544b 574a 604c 634c 664c 455d 485d 515a 545c 575b 605d 635b 665b 456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b <th></th> <th>447d</th> <th>477b</th> <th>507c</th> <th>537d</th> <th>567a</th> <th>597b</th> <th>627c</th> <th>657d</th>		447d	477b	507c	537d	567a	597b	627c	657d
450a 480a 510c 540a 570a 600d 630a 660b 451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 633a 663a 454b 484c 514c 544b 574a 604c 634c 664c 455d 485d 515a 545c 575b 605d 635b 665b 456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b <th></th> <th>448b</th> <th>478c</th> <th>508Ъ</th> <th>538a</th> <th>568a</th> <th>598c</th> <th>628b</th> <th>658Ъ</th>		448b	478c	508Ъ	538a	568a	598c	628b	658Ъ
451b 481d 511a 541b 571b 601a 631d 661d 452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 633a 663a 454b 484c 514c 544b 574a 604c 634c 664c 455d 485d 515a 545c 575b 605d 635b 665b 456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b <th></th> <th>449d</th> <th>479d</th> <th>509d</th> <th>539Ъ</th> <th>569d</th> <th>599a</th> <th>629Ъ</th> <th>659c</th>		449d	479d	509d	539Ъ	569d	599a	629Ъ	659c
452b 482a 512d 542b 572c 602a 632d 662c 453c 483b 513c 543c 573d 603d 633a 663a 454b 484c 514c 544b 574a 604c 634c 664c 455d 485d 515a 545c 575b 605d 635b 665b 456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 463c 493a 523b 553b <th></th> <th>450a</th> <th>480a</th> <th>510c</th> <th>540a</th> <th>570a</th> <th>600d</th> <th>630a</th> <th>660b</th>		450a	480a	510c	540a	570a	600d	630a	660b
453c 483b 513c 543c 573d 603d 633a 663a 454b 484c 514c 544b 574a 604c 634c 664c 455d 485d 515a 545c 575b 605d 635b 665b 456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 554a <th></th> <th>451b</th> <th>481d</th> <th>511a</th> <th>541b</th> <th>571b</th> <th>601a</th> <th>631d</th> <th></th>		451b	481d	511a	541b	571b	601a	631d	
454b 484c 514c 544b 574a 604c 634c 664c 455d 485d 515a 545c 575b 605d 635b 665b 456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 554a 584a 614b 644c 674c 465c 495a 525b 555d <th></th> <th>452b</th> <th>482a</th> <th>512d</th> <th>542b</th> <th>572c</th> <th>602a</th> <th>632d</th> <th>662c</th>		452b	482a	512d	542b	572c	602a	632d	662c
455d 485d 515a 545c 575b 605d 635b 665b 456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 556b <th></th> <td>453c</td> <td>483b</td> <td>513c</td> <td>543c</td> <td>573d</td> <td>603d</td> <td>633a</td> <td>663a</td>		453c	483b	513c	543c	573d	603d	633a	663a
456a 486a 516a 546b 576a 606a 636a 666b 457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 557c <th>l</th> <td>454Ъ</td> <td>484c</td> <td>514c</td> <td>544b</td> <td>574a</td> <td>604c</td> <td>634c</td> <td>664c</td>	l	454Ъ	484c	514c	544b	574a	604c	634c	664c
457b 487b 517c 547a 577d 607c 637b 667a 458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 557c 587b 617b 647b 677c 468d 498c 528c 558c <th></th> <td>455d</td> <td>485d</td> <td>515a</td> <td>545c</td> <td>575b</td> <td>605d</td> <td>635b</td> <td>665b</td>		455d	485d	515a	545c	575b	605d	635b	665b
458d 488d 518d 548b 578c 608a 638d 668a 459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 678a 469a 499a 529b 559a <th></th> <th>456a</th> <th>486a</th> <th>516a</th> <th>546b</th> <th>576a</th> <th>606a</th> <th>636a</th> <th>666Ъ</th>		456a	486a	516a	546b	576a	606a	636a	666Ъ
459c 489c 519a 549b 579d 609b 639d 669c 460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a <th>I</th> <th>457Ъ</th> <th>487b</th> <th>517c</th> <th>547a</th> <th>577d</th> <th>607c</th> <th>637Ъ</th> <th>667a</th>	I	457Ъ	487b	517c	547a	577d	607c	637Ъ	667a
460c 490c 520c 550d 580d 610a 640c 670b 461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a	ľ	458d	488d	518d	548b	578c	608a	638d	668a
461d 491d 521b 551b 581b 611c 641b 671a 462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a		459c	489c	519a	549Ъ	579d	609Ъ	639d	669c
462c 492d 522a 552a 582d 612c 642d 672b 463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a		460c	490c	520c	550d	580d	610a	640c	670b
463c 493a 523b 553b 583c 613a 643b 673b 464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a	l	461d	491d	521b	551b	581Ъ	611c	641b	671a
464d 494d 524b 554a 584a 614b 644c 674c 465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a		462c	492d	522a	552a	582d	612c	642d	672b
465c 495a 525b 555d 585c 615b 645a 675c 466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a	-	463c	493a	523b	553b	583c	613a	643b	673b
466d 496d 526a 556b 586a 616a 646c 676a 467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a	١	464d	494d	524b	554a	584a	614b	644c	674c
467c 497a 527d 557c 587b 617b 647b 677c 468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a		465c	495a	525b	555d	585c	615b	645a	675c
468d 498c 528c 558c 588c 618a 648d 678a 469a 499a 529b 559a 589d 619a 649b 679a		466d	496d	526a	556b	586a	616a	646c	676a
469a 499a 529b 559a 589d 619a 649b 679a		467c	497a	527d	557c	587b	617b	647b	677c
		468d	498c	528c	558c	588c	618a	648d	678a
470b 500d 530d 560a 590b 620a 650d 680a		469a	499a	529Ъ	559a	589d	619a	649b	679a
	-	470b	500d	530d	560a	590b	620a	650d	680a

681c	711b	741d	771d	801d
682d	712d	742c	772Ъ	802c
683d	713a	743b	773b	803Ъ
684c	714c	744c	774c	804d
685a	715a	745a	775a	805c
686b	716b	746d	776d	806c
687c	717d	747b	777c	807a
688d	718b	748b	778d	808d
689Ъ	719a	749c	779c	809a
690c	720a	750d	780a	810d
691c	721d	751d	781d	811b
692c	722c	752c	782d	812a
693d	723a	753d	783Ъ	813a
694c	724a	754b	784a	814c
695c	725c	755c	785d	815d
696Ъ	726b	756d	786a	816c
697a	727d	757d	787b	817c
698Ъ	728a	758c	788a	818Ъ
699a	729c	759c	.789d	819c
700d	730b	760a	790a	820a
701c	731c	761c	791c	· 821b
702d	732c	762a	792Ъ	822d
703a	733a	763d	793c	-
704c	734a	764c	794c	
705Ъ	735Ъ	765a	795Ъ	
706b	736d	766b	796a	
707a	737d	767a	797c	
708a	738b	768c	798a	
709b	739d	769d	799a	
710a	740c	770a	800d	<u> </u>