6.7 Classwork: Tangent triangle applications

CCSS.HSG.SRT.C.8

1. Graph and label $\triangle ABC$ with A(0,0), B(4,7), and C(4,0). Calculate each length:

(a)
$$AC =$$

(b)
$$BC =$$

(c)
$$AB =$$

(d) Write down the equation of the line \overrightarrow{BC} .

(e) Write down the equation of the line \overleftrightarrow{AB} .

(f) The tangent of an angle is the ratio of the side lengths opposite over adjacent to the angle. Write down the value as a fraction.

$$\tan m \angle BAC =$$

(g) Find $m \angle BAC = \theta$ with a calculator's inverse tangent function, $\theta = \tan^{-1}(\frac{opp}{adj})$

2. Express the result to the nearest thousandth.

(a)
$$\tan 34^{\circ} =$$

(b)
$$\tan 60^{\circ} =$$

3. Round each value to the nearest degree.

(a)
$$\tan^{-1}(1) =$$

(b)
$$\tan^{-1}(\sqrt{3}) =$$

- 4. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JK = 8, $m \angle J = 22^{\circ}$. (mark the diagram)
 - (a) Let x be the length of the side opposite $\angle J$, x = KL. Write an equation expressing $\tan \angle J$ as a ratio of *opposite* over *adjacent*.

(b) Solve the equation for x = KL.

(c) Use the Pythagorean formula to find the length JL