Lecture 3

Simple Linear Regression II

Reading: Chapter 11

STAT 8020 Statistical Methods II August 26, 2019

Review of Last Class

nesidual Arialysis

Hypothesis Testing

Whitney Huang Clemson University

Agenda

Review of Last Class

Residual Analysis

Review of Last Class

Residual Analysis

4 Hypothesis Testing

Y: dependent (response) variable; *X*: independent (predictor) variable

 In SLR we assume there is a linear relationship between X and Y:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i,$$

where $\mathrm{E}(\varepsilon_i)=0$, and $\mathrm{Var}(\varepsilon_i)=\sigma^2, \forall i$. Furthermore, $\mathrm{Cov}(\varepsilon_i,\varepsilon_j)=0, \forall i\neq j$

Least Squares Estimation:

$$\operatorname{argmin}_{\beta_0,\beta_1} \sum_{i=1}^n (Y_i - (\beta_0 + \beta_1 X_i))^2 \Rightarrow$$

$$\hat{\beta}_{1,LS} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

$$\bullet \ \hat{\beta}_{0,\mathrm{LS}} = \bar{Y} - \hat{\beta}_{1,\mathrm{LS}} \bar{X}$$

$$\hat{\sigma}_{LS}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$

• Residuals: $e_i = Y_i - \hat{Y}_i$, where $\hat{Y}_i = \hat{\beta}_{0,LS} + \hat{\beta}_{1,LS} X_i$

Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

Age 18 23 25 35 65 54 34 56 72 19 23 42 18 39 3' MaxHeartRate 202 186 187 180 156 169 174 172 153 199 193 174 198 183 17

Link to this dataset: http:

//whitneyhuang83.github.io/maxHeartRate.csv

Review of Last Class
Residual Analysis

Review of Last Class

esidual Analysis

Hypothesis Testi

- Y_i and X_i are the Maximum Heart Rate and Age of the ith individual
 - To obtain $\hat{\beta}_{1,LS}$
 - Ompute $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}, \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
 - **②** Compute $Y_i \bar{Y}$, $X_i \bar{X}$, and $(X_i \bar{X})^2$ for each observation
 - **(a)** Compute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{X})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$
 - $\hat{\beta}_{0,LS}$: Compute $\bar{Y} \hat{\beta}_{1,LS}\bar{X}$
 - \bullet $\hat{\sigma}_{\mathsf{LS}}^2$
 - Compute the fitted values: $\hat{Y}_i = \hat{\beta}_{0.1S} + \hat{\beta}_{1.1S}X_i, \quad i = 1, \dots, n$
 - ② Compute the **residuals** $e_i = Y_i \hat{Y}_i, \quad i = 1, \dots, n$
 - Ocompute the **residual sum of squares (RSS)** $= \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 \text{ and divided by } n 2 \text{ (why?)}$

Let's Do the Calculations

CLEMS N

Review of Last Class

sidual Analysis

$$\bar{X} = \sum_{15}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

X	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
Y	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178
$X - \bar{X}$	-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67	-0.33
$Y - \bar{Y}$	21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73	-2.27
$(X - \bar{X})(Y - \bar{Y})$	-420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56	0.76
$(X - \bar{X})^2$	373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78	0.11
Ŷ	195.69	191.70	190.11	182.13	158.20	166.97	182.93	165.38	152.61	194.89	191.70	176.54	195.69	178.94	180.53

$$\hat{\beta}_{1,LS} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = 0.7977$$

$$\hat{eta}_{0, \mathsf{LS}} = \bar{Y} - \hat{eta}_{1, \mathsf{LS}} \bar{X} = 210.0485$$

•
$$\hat{\sigma}_{LS}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$

```
> fit <- lm(MaxHeartRate ~ Age)
> summarv(fit)
Call:
lm(formula = MaxHeartRate ~ Aae)
Residuals:
   Min
            10 Median
                           30
                                  Max
-8.9258 -2.5383 0.3879 3.1867 6.6242
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 210.04846  2.86694  73.27  < 2e-16 ***
Age
           -0.79773 0.06996 -11.40 3.85e-08 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 4.578 on 13 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
```

Output from Jmp

Simple Linear Regression II

D. 1. . . (1 . . . 0). . .

esidual Analysis

- Load the data
- ② Analyze \rightarrow Fit Model \rightarrow Run

Parameter Estimates									
Term	Estimate	Std Error	t Ratio	Prob> t					
Intercept	210.04846	2.866939	73.27	<.0001*					
Age	-0.797727	0.069963	-11.40	<.0001*					

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Review of Last Class

Residual Analysis

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where
$$\hat{Y}_i = \hat{\beta}_{0,LS} + \hat{\beta}_{1,LS} X_i$$

- ullet e_i is NOT the error term $arepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $\operatorname{Var}[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Review of Last Class

Joidda Firalysis

nypothesis resting

CLEMS#N

Review of Last Class

Residual Analysis

How (Un)certain We Are?

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

leview of Last Class

Hypothesis Testing

Normal Error Regression Model

Regression II

CLEMS N UNIVERSITY

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \sim N(0, \sigma^2) \Rightarrow Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$
- With normality assumption, we can derive the **sampling** distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\bullet \quad \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\beta_1}} \sim t_{n-2}, \quad \hat{\sigma}_{\beta_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

$$\bullet \ \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\beta_0}} \sim t_{n-2}, \quad \hat{\sigma}_{\beta_0} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Residual Analysis

Steps of Hypothesis Test for Slope

- Regression II

 CLEMS

 N
- UNIVERSIT
 - Review of Last Class Residual Analysis

- **1** $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq = 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\beta_1}} = \frac{-0.7977}{0.06996} = -11.40$
- **3** Compute **P-value**: $P(|t_{13}| \ge |t^*|) = 3.85 \times 10^{-8}$
- **Q** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between <code>MaxHeartRate</code> and <code>Age</code>

Steps of Hypothesis Test for Intercept

- **1** $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq = 0$
- Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- Compute **P-value**: $P(|t_{13}| \ge |t^*|) \simeq 0$
- Compare to α and draw conclusion:

Reject H_0 at $\alpha = .05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Summary

In this lecture, we learned

- Residual analysis to (graphically) check model assumptions
- Normal Error Regression Model and statistical inference for β_0 and β_1

Next time we will talk about

- Confidence/Prediction Intervals
- Analysis of Variance (ANOVA) Approach to Regression

Review of Last Class
Residual Analysis

pothesis Testing