# Caractérisation des singularités de type ${\mathfrak J}$

# Félix Larose-Gervais

# Été 2023

## Contents

| 1 | Intr | roduction                          |
|---|------|------------------------------------|
|   | 1.1  | Notations                          |
|   | 1.2  | Définitions                        |
|   | 1.3  | Rappels d'arithmétique             |
|   |      | 1.3.1 Algorithme d'Euclide et PGCD |
|   |      | 1.3.2 Théorème des restes chinois  |
|   | 1.4  | Résultats connus                   |
| 2 | Pro  | ppositions                         |
|   | 2.1  | Existence d'un éclatement          |
|   | 2.2  | Propriétés                         |
|   |      | 2.2.1 Symmétrie                    |
|   |      | 2.2.2 Ajout de poids               |
|   |      | 2.2.3 Retrait de poids             |
|   | 2.3  | Caractérisation stricte            |
|   |      | 2.3.1 Frontière                    |
|   |      | 2.3.2 Combinaison linéaire         |
|   |      | 2.3.3 Anti-symmétrie               |
|   |      | 2.3.4 Échange racine-poids         |
|   |      | 2.3.5 Restriction au bord          |

### 1 Introduction

#### 1.1 Notations

Soit  $a, b \in \mathbb{Z}$  on note la relation de coprimalité  $\perp$ 

$$a \perp b \iff \gcd(a, b) = 1$$

Soit  $m, n \in \mathbb{N}$ , X un ensemble, notons

- $S_m$  le groupe symmétrique à m lettres
- $\mathbb{Z}_n$  l'anneau des entiers modulo n  $(\mathbb{Z}/n\mathbb{Z})$
- $\mathbb{Z}_n^{\times}$  son groupe d'inversibles  $(\{a \in \mathbb{Z}_n \mid a \perp n\})$
- $X^m$  l'ensemble des m-uplets de X  $(\underbrace{X \times \cdots \times X}_{mfois})$

On notera aussi  $S_n^m$  l'ensemble des m-uplets d'inversibles modulo n $\left(\left(\mathbb{Z}_n^\times\right)^m\right)$ 

#### 1.2 Définitions

**Définition 1.** Une singularité est un  $[a] = ([a_1], \ldots, [a_m]) \in S_n^m$ , on appelle

- n la **racine** de la singularité
- $[a_1], \ldots, [a_m]$  les **poids** de la singularité

**Définition 2.** Un **éclatement**  $a \in \mathbb{Z}^m$  d'une singularité  $[a] \in S_n^m$  (noté  $a \in [a]$ ) est un choix de représentant  $a = (a_1, \ldots, a_m)$  tel que

$$\forall i \neq j : a_i \perp a_j$$

On note  $E_a$  l'ensemble des singularités associées à l'éclatement a comme suit:

$$E_{a} = \{ [a^{i}] \in S_{a_{i}}^{m} \mid \forall i = 1..m, \ a_{i} > 1 \}$$

$$[a^{i}] = ([a_{1}^{i}], \dots, [a_{m}^{i}])$$

$$[a_{j}^{i}] \equiv \begin{cases} -n & \text{si } i = j \\ a_{j} & \text{sinon} \end{cases} \pmod{a_{i}} \quad \forall j = 1..m$$

On appelle  $a = (a_1, ..., a_m)$  l'éclatement naturel de [a] si les  $a_1, ..., a_m$  sont les plus petits représentant positifs de leurs classes

**Définition 3.** Un éclatement  $a \in [a]$  est dit **lisse** si a = (1, ..., 1)

**Définition 4.** La singularité [a] est dite de **type**  $\mathfrak{J}$  (noté [a]  $\in \mathfrak{J}$ ) ssi

$$\exists a \in [a] : E_a \subset \mathfrak{J}$$

On parlera de type  $\mathfrak J$  strict (noté  $[a] \in \overline{\mathfrak J}$ ) lorsque pour  $a \in [a]$  l'éclatement naturel de [a] on a

$$E_a \subset \overline{\mathfrak{J}}$$

#### 1.3 Rappels d'arithmétique

#### 1.3.1 Algorithme d'Euclide et PGCD

Soit  $a, b \in \mathbb{Z}$ , on calcule le PGCD comme suit

$$\gcd(a,b) := \begin{cases} a & \text{si } b = 0\\ \gcd(b, a \mod b) & \text{sinon} \end{cases}$$

Avec  $k \in \mathbb{Z}$ , on a les propriétés suivantes:

$$\gcd(a, 1) = 1$$
$$\gcd(a, b) = \gcd(b, a)$$
$$\gcd(a, b) = \gcd(a, -b)$$
$$\gcd(a, b) = \gcd(a, b + ka)$$

De la dernière on déduit directement, pour  $n \in \mathbb{N}$ 

$$a \equiv b \pmod{n} \implies \gcd(a, n) = \gcd(b, n)$$

#### 1.3.2 Théorème des restes chinois

Soit  $m, n_1, \ldots, n_m \in \mathbb{N}$  et  $a_1, \ldots, a_m \in \mathbb{Z}$ , notons le produit  $n = n_1 \cdots n_m$ Si  $\forall i \neq j : n_i \perp n_j$ , alors  $\exists ! x \in \mathbb{Z}_n$  tel que

$$x \equiv a_1 \pmod{n_1}$$
  

$$\vdots$$
  

$$x \equiv a_m \pmod{n_m}$$

Cette solution, pour m=2 est obtenue comme suit

$$x \equiv a_1 \pmod{n_1}$$
  
 $x \equiv a_2 \pmod{n_2}$ 

Puisque  $n_1 \perp n_2$ , on a  $s,t \in \mathbb{Z}$  tels que  $1 = sn_1 + tn_2$ Et donc  $x = a_1tn_2 + a_2sn_1$  est l'unique solution (mod  $n_1n_2$ ) Cette méthode nous laisse m-1 équations dans le système Il suffit d'itérer le processus jusqu'à ce qu'il n'est reste qu'une pour m>2

### 1.4 Résultats connus

Résultats utiles, dûs à Habib Jaber.

**Proposition 1.** Soit  $a, b \in \mathbb{Z}$ 

$$a \perp b \implies (a,b)_{a+b} \in \overline{\mathfrak{J}}$$

Exemple 1.  $8 \perp 5 \implies (8,5)_{13} \in \overline{\mathfrak{J}}$ 

Figure 1: Illustration avec la suite de Fibonacci



**Proposition 2.** Soit  $a, b \in \mathbb{Z}$ 

$$(a,b)_n \in \overline{\mathfrak{J}} \implies \forall k \in \mathbb{Z}^\times : (a,b)_{n+kab} \in \overline{\mathfrak{J}}$$

Exemple 2.  $[(3,2)]_5 \in \overline{\mathfrak{J}} \implies (3,2)_{11} \in \overline{\mathfrak{J}}$ 



## 2 Propositions

Soit  $m, n \in \mathbb{N}$  tels que  $m, n \geq 2$  et une singularité  $[a] = ([a_1], \dots, [a_m])_n \in S_n^m$ 

#### 2.1 Existence d'un éclatement

Proposition 3. Toute singularité isolée admet un éclatement

Preuve. Prenons  $(a_1, \ldots, a_m) \in [a]$  le représentant naturel de [a]On cherche  $(b_1, \ldots, b_m) \in [a]$  tels que  $\forall i \neq j : b_i \perp b_j$  et  $\forall i : b_i \perp n$ Il suffit de prendre  $b_1 = a_1$  et  $\forall i = 2..m$ , un  $b_i$  vérifiant

$$b_i \equiv a_i \pmod{n}$$

$$b_i \equiv 1 \pmod{b_1}$$

$$\vdots$$

$$b_i \equiv 1 \pmod{b_{i-1}}$$

De tels  $b_i$  existent par le théorème des restes chinois On vérifie les coprimalités nécéssaires grâce aux propriétés de gcd On a par la première congruence  $\forall i:b_i\perp n$  (puisque  $\forall i:a_i\perp n$ ) Et par les suivantes  $\forall i\neq j:b_i\perp b_j$ On a donc  $b=(b_1,\ldots,b_m)$  un éclatement de [a]

#### 2.2 Propriétés

#### 2.2.1 Symmétrie

**Proposition 4.** Le réarrangement des poids préserve le type  $\mathfrak{J}$ . Soit  $\sigma \in S_m$ , on a

$$[a] \in \mathfrak{J} \implies \sigma([a]) \in \mathfrak{J}$$

Preuve. Prenons  $a \in [a]$  tel que  $E_a \subset \mathfrak{J}$ Il suffit d'observer que  $E_a \cong E_{\sigma(a)}$ 

Figure 3: Illustration avec  $a = (a_1, a_2), \sigma = (12)$ 



#### 2.2.2Ajout de poids

Proposition 5. L'ajout de poids de valeur 1 préserve le type  $\mathfrak J$ 

$$([a_1],\ldots,[a_m])_n \in \mathfrak{J} \implies ([a_1],\ldots,[a_m],[1])_n \in \mathfrak{J}$$

Preuve. Prenons  $a \in [a]$  tel que  $E_a \subset \mathfrak{J}, b = (a_1, \ldots, a_m, 1)$ Il suffit d'observer que  $E_a \cong E_b$ 

Figure 4: Illustration avec  $a = (a_1, a_2)$ 



#### 2.2.3Retrait de poids

Proposition 6. Le retrait de poids préserve le type  $\mathfrak J$ 

$$([a_1],\ldots,[a_m])_n \in \mathfrak{J} \implies ([a_1],\ldots,[a_{m-1}])_n \in \mathfrak{J}$$

Preuve. Prenons  $a \in [a]$  tel que  $E_a \subset \mathfrak{J}$ 

La preuve se fait par induction structurelle

D'abord, on observe  $([1], \ldots, [1])_n \in \mathfrak{J}$ 

Puis on suppose que  $\forall [b] \in E_a : [b] \in \mathfrak{J} \implies ([b_1], \dots, [b_{m-1}])_n \in \mathfrak{J}$ On en conclut  $([a_1], \dots, [a_{m-1}])_n \in \mathfrak{J}$ 

Figure 5: Illustration pour m=3



#### 2.3 Caractérisation stricte

#### 2.3.1 Frontière

**Proposition 7.** Soit  $[a] \in S_n^2$ , d'éclatement naturel  $a = (a_1, a_2) \in [a]$ 

$$[a] \in \overline{\mathfrak{J}} \implies n \ge a_1 + a_2$$

Preuve. Par contraposée, supposons  $n < a_1 + a_2$  (\*)

- Si  $a_1 = a_2 \ (\neq 1 \text{ par } (\star))$ Alors  $[a] \notin \overline{\mathfrak{J}}$
- Sinon,  $a_1 \neq a_2$ , supposons sans perdre de généralité que  $a_1 > a_2$ Considérons  $a^1$  l'éclatement naturel de  $[a^1] \in E_a$  la singularité associée à  $a_1$ On a  $a^1 = (-n \mod a_1, a_2 \mod a_1)$ 
  - Puisque  $a_1 > a_2$ , on a  $2a_1 > a_1 + a_2 > n$ , donc  $a_1 < n < 2a_1$ On en déduit  $(-n \mod a_1) = 2a_1 - n$
  - Aussi,  $(a_2 \mod a_1) = a_2 \operatorname{car} a_1 > a_2$

On a donc  $a^1 = (2a_1 - n, a_2)$ 

Puisque  $n < a_1 + a_2$ , on a  $a_1 < 2a_1 - n + a_2$ 

Donc  $[a^1] \in S^2_{a_1}$  vérifie la condition  $(\star)$ , on répète le raisonnement avec  $[a^1]$ 

Exemple 3.  $(4,3)_5 \not\in \overline{\mathfrak{J}} \ car \ 5 < 4+3$ 

Figure 6: Singularités  $s \in S^2_{32}$  telles que  $s \in \overline{\mathfrak{J}}$ 



#### 2.3.2 Combinaison linéaire

**Proposition 8.** Soit  $a, b, n \in \mathbb{N}_{>1}$ , avec  $a \perp b$ , alors  $\exists \alpha, \beta \in \mathbb{Z}_{ab}$  tels que

$$\alpha a + \beta b \equiv n \pmod{ab}$$

Preuve. Puisque  $a\perp b$ , prenons  $s,t\in\mathbb{Z}$  tels que 1=as+bt (par Bézout) Considérons les systèmes modulaires suivants

$$x \equiv 0 \pmod{a}$$
  $y \equiv n \pmod{a}$   
 $x \equiv n \pmod{b}$   $y \equiv 0 \pmod{b}$ 

Par le Théorème des restes chinois, les uniques solutions sont

$$x \equiv nas \pmod{ab}$$
  
 $y \equiv nbt \pmod{ab}$ 

On a donc (toujours modulo ab)

$$x + y \equiv nas + nbt$$
$$\equiv n(as + bt)$$
$$\equiv n$$

Et comme x|a et y|b, prenons  $\alpha = \frac{x}{a}$  et  $\beta = \frac{y}{b}$ , des entiers

$$n \equiv x + y$$

$$\equiv \frac{x}{a}a + \frac{y}{b}b$$

$$\equiv \alpha a + \beta b$$

#### 2.3.3 Anti-symmétrie

**Proposition 9.** Soit  $[s] \in S_n^2$  d'éclatement naturel  $(a,b) \in [s]$ , avec a,b > 1, alors

$$(a,b)_n \in \overline{\mathfrak{J}} \implies (-a,b)_n \notin \overline{\mathfrak{J}}$$

Preuve. Supposons  $(a,b)_n \in \overline{\mathfrak{J}}$ 

La chaine d'éclatements à gauche successifs de  $(-a,b)_n$  est, pour  $i>0,\,n-ia>0$ 

$$(n - ia, b)_{n - (i-1)a}$$

Puisque  $a \perp b$ , prenons  $\alpha, \beta \in \mathbb{Z}_{ab}$  tels que  $\alpha a + \beta b \equiv n \pmod{ab}$ 

On a que, lorsque  $i=\alpha,\,n-ia=n-\alpha a=\beta b$ 

Donc  $b|n-ia, b \not\perp n-ia, (n-ia,b)_n \not\in \overline{\mathfrak{J}}$  et  $(-a,b)_n \not\in \overline{\mathfrak{J}}$ 

#### 2.3.4 Échange racine-poids

**Proposition 10.** Soit  $[s] \in S_n^2$  d'éclatement naturel  $(a,b) \in [s]$ , avec a,b > 1, alors

$$(a,b)_n \in \overline{\mathfrak{J}} \implies (n,b)_a \notin \overline{\mathfrak{J}}$$

Preuve. Supposons  $(a,b)_n \in \overline{\mathfrak{J}}$ Donc son éclatement  $(-n,b)_a \in \overline{\mathfrak{J}}$ Par Anti-symmétrie,  $(n,b)_a \notin \overline{\mathfrak{J}}$ 

#### 2.3.5 Restriction au bord

**Proposition 11.** Soit  $[s] \in S_n^3$  d'éclatement naturel  $(a,b,c) \in [s]$ , avec a,b,c > 1, alors

$$(a,b,c)_n \not\in \overline{\mathfrak{J}}$$

Preuve. Si  $(a,b,c)_n \in \overline{\mathfrak{J}}$ , alors ses éclatements  $(-n,b,c)_a \in \overline{\mathfrak{J}}$  et  $(a,-n,c)_b \in \overline{\mathfrak{J}}$ Par retrait de poids,  $(b,c)_a \in \overline{\mathfrak{J}}$  et  $(a,c)_b \in \overline{\mathfrak{J}}$ Contradiction avec Échange racine-poids

Corollaire 1. Pour être de type  $\overline{\mathfrak{J}}$ , une singularité ne peut avoir plus de 2 poids supérieurs à 1.

Preuve. Si une singularité de type  $\overline{\mathfrak{J}}$  contient les poids a,b,c>1Alors, par retrait de poids  $(a,b,c)_n\in\overline{\mathfrak{J}}$ , contradiction

**Exemple 4.** On observe que les singularités de type  $\bar{\mathfrak{J}}$  de  $S_n^3$  sont sur le bord

Figure 7: Singularités  $s \in S^3_{13}$  telles que  $s \in \overline{\mathfrak{J}}$ 



# 3 Conjectures

Conjecture 1.  $Si [a] \in \overline{\mathfrak{J}}, \ alors [a] \in \mathfrak{J}, \ donc \ \mathfrak{J} = \overline{\mathfrak{J}}$