Problema 1 Fie $(\pi_k)_{k\in\mathbb{N}}$ polinoamele ortogonale Legendre monice.

(a) Arătați că polinoamele

$$\pi_k^+(t^2) = \pi_{2k}(t)$$

sunt ortogonale monice pe [0,1] în raport cu ponderea $w(t) = \frac{1}{\sqrt{t}}$. (1p)

(b) Stabiliți formula de cuadratură

$$\int_0^1 \frac{1}{\sqrt{x}} f(x) \, dx = 2 \sum_{k=1}^n A_k f(t_k^2) + R_n(f),$$

unde A_k și t_k , $k=1,\ldots 2n$ sunt coeficienții și respectiv nodurile formulei de cuadratură Gauss-Legendre cu 2n noduri. (2p)

- (c) Implementați o formulă de cuadratură de tip Gauss pentru integrala $\int_0^1 \frac{1}{\sqrt{x}} f(x) dx$ folosind ideea de la punctul (b). (2p)
- (d) Folosind formula de la punctul (c) calculați $\int_0^1 \frac{\sin(x)}{\sqrt{x}} dx$ cu 8 zecimale exacte. (1p)

Problema 2 Dorim să calculăm $\frac{1}{\sqrt{a}}$, pentru a > 0.

- (a) Pornind de la o ecuație convenabilă și folosind metoda lui Newton, deduceți o metodă pentru calculul lui $\frac{1}{\sqrt{a}}$.
- (b) Pentru ce valori ale lui x_0 metoda converge?
- (c) Dați un criteriu de oprire care exploateză aritmetica flotantă dacă dorim ca rezultatul să fie la precizia eps.