Chapter 1: Introduction to Deep Learning in Go

Chapter 2: What Is a Neural Network and How Do I Train One?

0	w :: Matrix float64
Shape	(3, 1)
Overwrites Input -1	Data On: CPU
Value	Vector (3, 1) [1 1] C[-0.168 0.441 -1]

0	w :: Matrix float64
Shape	(3, 1)
Overwrites Input -1	Data On: CPU
Value	Vector (3, 1) [1 1] C[-0.168 0.441 -1]

1	X :: Matrix float64
Shape	(4, 3)
Overwrites Input -1	Data On: CPU
	Matrix (4, 3) [3 1]
	「0 0 1]
Value	0 1 1
	1 0 1
	[1 1 1]

2	y :: Matrix float64
Shape	(4, 1)
Overwrites Input -1	Data On: CPU
Value	Vector (4, 1) [1 1] C[0 0 1 1]

0	w :: Matrix float64
Shape	(3, 1)
Overwrites Input -1	Data On: CPU
Value	Grad
Vector (3, 1) [1 1] C[-0.168 0.441 -1]	%!s(NIL)
Ptr: 0x842351307104x	Ptr:

		gradients	R		
	7	SizeOf=4(%5) :: float64	d	÷ false(%a, %9) :: float64	
	Op	SizeOf=4 :: Matrix a → a	Op	÷ false :: a → a → a	
	Shape	()	Shape	()	
	Overwrites Input -1	Data On: CPU	Overwrites Input -1	Data On: CPU	
	Value	%!s(NIL)	Value	%!s(NIL)	
_	₹	1	1	0	

0	w :: Matrix float64
Shape	(3, 1)
Overwrites Input -1	Data On: CPU
Value	Grad
Vector (3, 1) [1 1] C[-0.168 0.441 -0.999]	Vector (3, 1) [1 1] C[0 0 0]
Ptr: 0x842350578400x	Ptr: 0xc42025b0c0

Chapter 3: Beyond Basic Neural Networks - Autoencoders and RBMs

- 2 Label: 7, Guess: 7
- Label: 1, Guess: 1
- Z Label: 2, Guess: 3
- € Label:5, Guess 6
- 3 Label:3, Guess 3
- H Label:4, Guess 4
- Z Label: 2, Guess: 3
- 7 Label: 7, Guess: 7

Loading Movielens data
Building movie index

Loading and converting per-user ratings

Processing rating 100000 of 1000209

Processing rating 200000 of 1000209

Processing rating 300000 of 1000209

Processing rating 400000 of 1000209

Processing rating 500000 of 1000209

Processing rating 600000 of 1000209

Processing rating 700000 of 1000209

Processing rating 800000 of 1000209

Processing rating 900000 of 1000209

Number of unique users: 6040

Number of unique movies: 3706

3883 movies pruned to index of 3706 unique titles

Testing movie lookup: Erin Brockovich (2000)

```
Training RBM...
Training iteration: 1
Training iteration: 101
Training iteration: 201
Training iteration: 301
Training iteration: 401
Training iteration: 501
Training iteration: 601
Training iteration: 701
Training iteration: 801
Training iteration: 901
Generating sample recomendation...
3408 Grumpier Old Men (1995)
594 Tom and Huck (1995)
2398 Dracula: Dead and Loving It (1995)
2321 Money Train (1995)
745 City of Lost Children The (1995)
1022 Across the Sea of Time (1995)
1357 Lamerica (1994)
3108 Big Bully (1996)
292 Juror The (1996)
3256 Journey of August King The (1995)
```

Chapter 4: CUDA - GPU-Accelerated Training


```
> nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
```

```
Jul 9 21:34 elembinop.ptx
Jul 9 21:34 elemunaryop.ptx
Jul 9 21:34 sigmoid32.ptx
Jul 9 21:34 sigmoid64.ptx
```

```
> go run main.go
CUDA version: 9010
CUDA devices: 1
Device 0
=======
Name : "GeForce GTX 1060 6GB"
Clock Rate: 1784500 kHz
Memory : 6370295808 bytes
Compute : 6.1
```

Chapter 5: Next Word Prediction with Recurrent Neural Networks

Chapter 6: Object Recognition with Convolutional Neural Networks

Image										Filter W	/eights		Dot Prod
0.11	0.22	0.59	1.00	0.14	0.45	0.58	0.42	0.55	0.11	0.86	0.37	0.32	1.19
0.95	0.30	0.83	0.22	0.64	0.15	0.33	0.11	0.58	0.75	0.14	0.22	0.32	
0.22	0.23	0.21	0.72	0.30	0.18	0.31	0.34	0.45	0.43	0.58	0.57	0.49	
0.44	0.65	0.96	0.69	0.89	0.39	0.25	0.81	0.78	0.79				•
0.13	0.75	0.25	0.68	0.74	0.36	0.85	0.34	0.58	0.91				
0.78	0.74	0.37	0.77	0.86	0.87	0.83	0.17	0.74	0.64				
0.46	0.96	0.78	0.33	0.26	0.53	0.53	0.12	0.13	0.72				
0.51	0.48	0.20	0.46	0.19	0.78	0.60	0.98	0.27	0.65				
0.94	0.42	0.10	0.30	0.97	0.44	0.88	0.22	0.57	0.95				
0.48	0.28	0.96	0.78	0.38	0.49	0.25	0.56	0.51	0.24				

mage										Filter W	eights/		Dot Pro
0.11	0.22	0.59	1.00	0.14	0.45	0.58	0.42	0.55	0.11	0.86	0.37	0.32	1.19
0.95	0.30	0.83	0.22	0.64	0.15	0.33	0.11	0.58	0.75	0.14	0.22	0.32	
0.22	0.23	0.21	0.72	0.30	0.18	0.31	0.34	0.45	0.43	0.58	0.57	0.49	
0.44	0.65	0.96	0.69	0.89	0.39	0.25	0.81	0.78	0.79				
0.13	0.75	0.25	0.68	0.74	0.36	0.85	0.34	0.58	0.91				
0.78	0.74	0.37	0.77	0.86	0.87	0.83	0.17	0.74	0.64				
0.46	0.96	0.78	0.33	0.26	0.53	0.53	0.12	0.13	0.72				
0.51	0.48	0.20	0.46	0.19	0.78	0.60	0.98	0.27	0.65				
0.94	0.42	0.10	0.30	0.97	0.44	0.88	0.22	0.57	0.95				
0.48	0.28	0.96	0.78	0.38	0.49	0.25	0.56	0.51	0.24				

Input											MaxPool
0.96	0.28	0.80	0.14	0.10	0.86	0.64	0.11	0.73	0.28		0.96
0.92	0.20	0.29	0.53	0.45	0.33	0.54	0.11	0.34	0.59		
0.97	0.64	0.34	0.53	0.74	0.20	0.47	0.52	0.42	0.53		
0.50	0.52	0.65	0.72	0.98	0.11	0.44	0.44	0.10	0.43		
0.69	0.96	0.40	0.56	0.91	0.95	0.98	0.34	0.82	0.82		
0.22	0.95	0.35	0.13	0.43	0.93	0.16	0.37	0.62	0.14		
0.81	0.74	0.46	0.86	0.56	0.57	0.29	0.20	0.45	0.65		
0.68	0.90	0.97	0.94	0.61	0.96	0.52	0.61	0.73	0.23		
0.97	0.91	0.88	0.22	0.46	0.56	0.40	0.12	0.75	0.87		
0.52	0.64	0.96	0.35	0.63	0.35	0.22	0.42	0.93	0.43		

nput											MaxPool
0.96	0.28	0.80	0.14	0.10	0.86	0.64	0.11	0.73	0.28		0.96
0.92	0.20	0.29	0.53	0.45	0.33	0.54	0.11	0.34	0.59		
0.97	0.64	0.34	0.53	0.74	0.20	0.47	0.52	0.42	0.53		
0.50	0.52	0.65	0.72	0.98	0.11	0.44	0.44	0.10	0.43		
0.69	0.96	0.40	0.56	0.91	0.95	0.98	0.34	0.82	0.82		
0.22	0.95	0.35	0.13	0.43	0.93	0.16	0.37	0.62	0.14		
0.81	0.74	0.46	0.86	0.56	0.57	0.29	0.20	0.45	0.65		
0.68	0.90	0.97	0.94	0.61	0.96	0.52	0.61	0.73	0.23		
0.97	0.91	0.88	0.22	0.46	0.56	0.40	0.12	0.75	0.87		
0.52	0.64	0.96	0.35	0.63	0.35	0.22	0.42	0.93	0.43		

Image	Classification
	horse
	frog
	automobile
	airplane
v	truck
	cat
1	cat
	cat
4	cat
	cat

NVID	IA-SMI 417.3	35	Driver	Version: 417.35	(CUDA Versio	on: 10.0
GPU Fan		Pwr:Us	age/Cap	Bus-Id [Memory-	-Usage	GPU-Util	Compute M.
0 18%	GeForce GTX 49C P8	1080	WDDM		.0 On L92MiB	0%	N/A
Proc	esses: PID	Type	Process				GPU Memory Usage
 0	 1144	 C+G	Tocuff:	 icient Permission	:=====:		 N/A
0	5040	C+G		Google\Chrome\App		an\chnome e	
	2040	CTU		loogie (cili oille (whi			
	7832	C+G	C·\Wine	lows\explorer exe) (cm ome.e	
0	7832 8576	C+G C+G		dows\explorer.exe v5n1h2txvewv\Shel	2		N/A
0	8576	C+G	t_cv	v5n1h2txyewy\She]	e llExperi	ienceHost.e	N/A exe N/A
0	8576 9080	C+G C+G	t_cv dows	v5n1h2txyewy\She] s.Cortana_cw5n1h2	e llExperi 2txyewy\	ienceHost.e \SearchUI.e	N/A exe N/A exe N/A
0 0 0	8576 9080 14448	C+G	t_cv dows mmer	v5n1h2txyewy\Shel 5.Cortana_cw5n1h2 rsiveControlPanel	e llExperi 2txyewy\ l\System	ienceHost.e \SearchUI.e nSettings.e	N/A exe N/A exe N/A exe N/A
0 0 0	8576 9080 14448 14544	C+G C+G C+G	t_cv dows mmer 2.0_	v5n1h2txyewy\Shel s.Cortana_cw5n1h2 rsiveControlPanel _x648wekyb3d8bb	e llExperi 2txyewy\ l\System owe\WinS	ienceHost.e \SearchUI.e nSettings.e Store.App.e	N/A exe N/A exe N/A exe N/A exe N/A
9 9 9 9	8576 9080 14448 14544 16132	C+G C+G C+G C+G	t_cv dows mmer 2.0_ sktc	v5n1h2txyewy\Shel 5.Cortana_cw5n1h2 rsiveControlPanel	e llExperi 2txyewy\ l\System owe\WinS	ienceHost.e \SearchUI.e nSettings.e Store.App.e ebbrowser.e	N/A exe N/A exe N/A exe N/A exe N/A exe N/A

Chapter 7: Maze Solving with Deep Q-Networks

```
2019/06/17 22:29:33 width 21, height 11
Matrix (11, 21) [21 1]
   1
      1
         1
            1
               1
                  1
                       1
                          1
                                1
                                   1
                                      1
                                           1
                                                          17
12
      1
               0
                  1
                    0
                       0
                          0
                             0
                                0
                                   1
                                         0
                                           0
                                                 0
                                                    0
                                                       0
                                                          1 |
11
   0
      1
         1
            1
               0
                 1
                    0
                       1
                          1
                             1
                                0
                                   1
                                      0
                                         1
                                           1
                                              1
                                                 0
                                                    1
                                                          1 |
11
               0
                 1
                       0
                            1
                                   1
                                              1
                                                          1 |
   0
      0
         0
            0
                    0
                          0
                                0
                                      0
                                         1
                                           0
                                                 0
                                                    0
   0 1
1
         0
           1
              1
                 1
                       1
                          0
                                   1
                                      0
                                         1
                                           0
                                              1
                                                 1
                                                    1
                                                       0
                                                          1 |
                    1
                            1
                                1
11
      1
                                              1
   0
         0
            1
               0
                  0
                    0
                       1
                          0
                             0
                                0
                                   1
                                         1
                                           0
                                                 0
                                                    0
                                                       0
                                                          1 |
1
   1 1
         0
            1
               0
                 1
                    0
                       1
                          1
                            1
                                0
                                  1
                                      0
                                        1
                                           0
                                              1
                                                    1
                                                       1
                                                          1 |
                                                 0
1
      0
         0
            1
               0 1
                    0
                       1
                          0 0
                                0
                                  1
                                      0
                                        0
                                           0
                                              1
                                                 0
                                                    1
                                                       0
                                                          1 |
1
   0 1
                    0 1
         1
           1
               0 1
                          0 1
                               1 1 1
                                           0 1
                                                 0
                                                    1
                                                          1 |
                                        1
1 0
            0 0
      0
         0
                 1
                    0
                          0 0
                                   0 0
                                         0 0
                                              1
                                                 0
                                                          3 |
1 1 1
         1
           1
               1
                  1
                    1
                          1
                             1
                                1
                                   1
                                      1
                                         1
                                              1
                                                 1
                                                    1
                                                          1]
{1 0} {9 20}
true
false
false
false
2019/06/17 22:29:33 episode 0, 1st loop
2019/06/17 22:29:44 episode 100, 1st loop
2019/06/17 22:29:55 episode 200, 1st loop
2019/06/17 22:30:07 episode 300, 1st loop
```

```
2019/06/17 23:11:26 player at: {2 7} best: {1 0}
2019/06/17 23:11:26 reward -1, done false
2019/06/17 23:11:26
1
   0
      1 1 1
              1 1
                    1
                      1
                         1
                            1
                               1
                                 1 1
                                       1
                                          1
                                             1
                                                1
                                                  1
                                                        17
                                                     1
           0
   0
      1
         0
              0
                 1
                    0
                       0
                         0
                            0
                               0
                                  1
                                     0
                                       0
                                          0
                                             0
                                                0
                                                     0
0
                                                  0
                                                        1 |
1
   0
      1
        1
           1
              0
                1
                    0
                      1
                         1
                            1
                               0
                                 1
                                     0
                                       1
                                          1
                                             1
                                                0
                                                  1
                                                     1
                                                        1 |
1
   0
      0
        0
           0
              0
                 1
                    0
                       0
                         0
                            1
                               0
                                  1
                                     0
                                       1
                                          0
                                             1
                                                0
                                                  0
                                                        11
1
   0
      1
        0
           1
              1
                 1
                    1
                       1
                         0
                            1
                               1
                                  1
                                     0
                                       1
                                          0
                                             1
                                                1
                                                  1
                                                     0
                                                        1 |
1
      1
        0 1
              0
                    0
                            0
                                  1
                                    0
                                       1
                                             1
                                                0
                                                        1 |
   0
                 0
                      1
                         0
                               0
                                          0
                                                  0
                                                     0
1
   1 1
                                            1
                                                        1 |
        0 1
              0
                1
                    0
                      1
                         1 1
                               0
                                 1
                                    0
                                       1
                                                0
                                                  1 1
                                          0
1
           1
                    0
                            0
                                  1
                                    0
                                             1
                                                  1
                                                     0
      0
        4
              0
                 1
                         0
                               0
                                       0
                                          0
                                                0
   0
                       1
                                                        1 |
1
      1
           1
              0
                1
                    0
                       1
                            1
                               1
                                 1
                                    1
                                             1
                                                  1
                                                        11
   0
        1
                         0
                                       1
                                          0
                                                0
                                                     0
1
      0
        0
           0
              0
                1
                    0
                       0
                         0
                            0
                               0
                                  0
                                     0
                                       0
                                          0
                                             1
                                                        3 I
   0
                                                0
                                                  0
                                                     0
                      1
1
      1
              1
                 1
                    1
                         1
                            1
                               1
                                  1
                                     1
                                          1
                                             1
                                                     1
                                                        1]
   1
         1
           1
                                       1
                                                1
                                                  1
2019/06/17 23:11:26 player at: {3 7} best: {-1 0}
2019/06/17 23:11:26 reward 0, done false
```

Chapter 8: Generative Models with Variational Autoencoders

Epoch	Standard Autoencoder	Variational Autoencoder
10	0	0
20	0	0
30	0	0
40	0	0
50	0	0

Epoch	Standard Autoencoder	Variational Autoencoder	
10	9	9	
20	9	9	
30	9	7	
40	9	7	
50	9	9	

*20000*00533

Original	2 Dimensions	5 Dimensions	8 Dimensions	20 Dimensions
0	0	0	0	0
1	1	#	1	1
2	9	2	2	a
3	8	8	3	3
4	9	9	9	9
5	8	5	5	S
6	8	6	5	6
7	9	7	g	9
ъ	8	8	2	Z
9	9	9	9	9

Chapter 9: Building a Deep Learning Pipeline

