義塾大学 OCR 対応用紙

BERN 0123456789

(ベージ数は必ずご記入ください)

科目名					担当者				
	制御	工学				森田 寿	郎		
年	月	日()	時限	学科(学門)			年	H
					学科出席番号				T

- 注1 学報番号は数字記入例を参照のと、丁寧に記すこと。 注2 年上におる別の「基準マーク」付近には何に記さないこと。 注3 第画を使用する場合には、欠回記》のの保証から商を始めること(天地を浸転させないこと) 注1 用紙が複数をに及ぶ場合、氏名は全ての用紙に記入すること。

2021年度制御工学 第7回講義の課題(11月17日)

問題:

図に示すフィードバック系について、以下の設問に答えなさい. 表計算ソフトを用いても良い.

- (1) 周波数伝達関数 $G(j\omega) = Y(j\omega)/X(j\omega)$ を求めなさい.
- (2) ベクトル軌跡の積の性質を用いて、振幅比Mと位相差 ϕ を求めなさい。
- (3) 表の空欄にあてはまる値を求めなさい.
- (4)ベクトル軌跡の概略を描きなさい。ただし $\hat{\mathrm{Re}}[G(j\omega)]ig|_{\omega=0}$ を用いて漸近線も描くこと.

$$\phi = -\alpha v \cot \left(\frac{\omega}{\sigma}\right) - \alpha v \cot \left(\frac{10\omega}{1}\right) = -\frac{\alpha v}{2} - \alpha v \cot \left(\frac{10\omega}{1}\right) = 0$$

ω rad/s	振幅比 <i>M</i>	位相差ø deg		
0.1	7.07	-135		
0.2	2.24	-153		
0.3	1.05	-162		
Î	a.10.	-174.		