

9小时精通

课程讲义

干货福利,互助答疑

蜂考独家编辑,版权所有

苏博事达律师事务所 JIANGSU BOOMSTAR LAW OFFICE

中国 南京 奥体大街 68 号国际研发总部园 4A 栋 17 楼 邮编: 210019 17F 4ABuilding NO. 68 Aoti Street, Nanjing, China

P. C: 210000

电话(Tel): (86)-25-82226685

传真(Fax): (86)-25-82226696

律师声明

江苏博事达律师事务所接受蜂考品牌公司的委托,发表以下律师 声明:

"蜂考系列课程"(含视频、讲义、音频等)内容均为蜂考原创, 蜂考品牌公司对此依法享有著作权,任何单位或个人不得侵犯。

蜂考品牌公司为维护创作作品的合法权益,已与江苏博事达律师 事务所开展长期法律顾问合作,凡侵犯课程版权等知识产权的,蜂考 品牌公司将授权江苏博事达律师事务所依据国家法律法规提起民事 诉讼。对严重的侵权盗版分子将报送公安部门采取刑事手段予以严厉 打击。

感谢大家对蜂考品牌的长期支持, 愿与各位携手共同维护知识产 权保护。遵守国家法律法规,从自身做起,抵制盗版!

特此声明!

课时一 函数

考点	重要程度	占分	题型
1. 定义域	****		
2. 函数的性质	***	0~3	选择、填空
3. 函数的分类	**		

1. 定义域

函数定义:设D是一个实数集合,对每一个 $x \in D$,存在一个对应法则 f,都能 对应唯一的一个实数y,则这个对应法则f称为定义在D上的一个函数,记为: y = f(x)

函数的两个重要因素: (1) 定义域; (2) 对应法则。

题 1. 设函数 $f(x) = \ln(3x+1) + \sqrt{5-2x} + \arcsin x$ 的定义域是 ()。

$$A.(-\frac{1}{3},\frac{5}{2})$$
 $B.(-1,\frac{5}{2})$ $C.(-\frac{1}{3},1]$

$$B.(-1,\frac{5}{2})$$

$$C.(-\frac{1}{3},1]$$

$$D.(-1,1)$$

答案:
$$C$$
, 由
$$\begin{cases} 3x+1>0\\ 5-2x\geq 0\\ -1\leq x\leq 1 \end{cases} \Rightarrow -\frac{1}{3} < x\leq 1$$

题 2. 下列 f(x) 和 g(x) 为相同函数的一组是 ()。

$$A. f(x) = \ln x^2$$
, $g(x) = 2 \ln x$

$$B. f(x) = x$$
, $g(x) = \sqrt{x^2}$

C.
$$f(x) = \sqrt[3]{x^4 - x^3}$$
, $g(x) = x \cdot \sqrt[3]{x - 1}$ D. $f(x) = \sqrt{1 - \cos^2 x}$, $g(x) = \sin x$

$$D. f(x) = \sqrt{1 - \cos^2 x}, g(x) = \sin x$$

答案: C, A.定义域不同; B.和D.对应法则不同, 值域不同。

题 3. 已知 $f(x+1) = x^2 - x$,求 f(x)。

解:
$$\diamondsuit x + 1 = t$$
, $x = t - 1$

$$f(t) = (t-1)^2 - (t-1) = t^2 - 3t + 2$$

$$\mathbb{P} f(x) = x^2 - 3x + 2$$

题 4. 已知 $f(\sin \frac{x}{2}) = 1 + \cos x$, 求 f(x)。

解:
$$f(\sin\frac{x}{2}) = 1 + 1 - 2\sin^2\frac{x}{2} = 2 - 2\sin^2\frac{x}{2}$$
即 $f(x) = 2 - 2x^2$

倍角公式:

$$\sin 2\alpha = 2\sin a\cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$=1-2\sin^2\alpha$$

$$=2\cos^2\alpha-1$$

2. 函数的性质

(1)有界性:

 $\forall x \in D$, 若存在正数 M, 都有 $|f(x)| \le M$ 成立, 则称 f(x) 在区间 D 上有界。

(2) 奇偶性:

设f(x)的定义域D关于原点对称

若 f(-x) = -f(x), 则称 f(x)为奇函数;

若f(-x) = f(x),则称f(x)为偶函数。

(3) 周期性:

存在常数T > 0,使得 $\forall x \in D$, $x \pm T \in D$,都有f(x + T) = f(x),则称 f(x)是周期函数。

(4) 单调性:

若 $\forall x_1, x_2 \in D$, $x_1 < x_2$, 都有 $f(x_1) < f(x_2)$, 则称 f(x) 在 D 上单调递增。

若 $\forall x_1, x_2 \in D$, $x_1 < x_2$, 都有 $f(x_1) > f(x_2)$, 则称在f(x)在D上单调递减。

题 1. 判断 $f(x) = \ln(x + \sqrt{x^2 + 1})$ 的奇偶性。

解:
$$f(-x) = \ln(-x + \sqrt{x^2 + 1})$$

$$= \ln \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}$$

$$= \ln \frac{1}{\sqrt{x^2 + 1} + x} = -\ln(x + \sqrt{x^2 + 1}) = -f(x)$$
故 $f(x) = \ln(x + \sqrt{x^2 + 1})$ 为奇函数

题 2. y = f(x)是可导的奇函数,则 f'(x)是 ()。

A. 奇函数

B.偶函数

C.非奇非偶函数 D.无法确定

答案: B。

证: f(x)为奇函数: f(-x) = -f(x)

两边同时求导: $f'(-x)\cdot(-1) = -f'(x)$, $\Rightarrow f'(-x) = f'(x)$

结论: 若f(x)可导,若f(x)为奇,f'(x)为偶;若f(x)为偶,f'(x)为奇。

- 函数的分类
- (1)基本初等函数

①幂函数: $y = x^a$ (a 为常数)。

②指数函数: $y = a^x (a > 0, a \neq 1, a)$ 为常数),

$y = e^x$ ($e = 2.7182 \cdots$ 为无理数)。

$$a^{\alpha} \cdot a^{\beta} = a^{\alpha+\beta}$$

$$\frac{a^{\alpha}}{a^{\beta}} = a^{\alpha-\beta}$$

$$(a^{\alpha})^{\beta} = a^{\alpha\beta}$$

③对数函数: $y = \log_a x$ $(a > 0, a \neq 1)$, 自然对数: $y = \ln x$ 。

$$\log_a(MN) = \log_a M + \log_a N$$

$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

$$\log_a M^n = n \log_a M$$

④三角函数

(i) 正弦函数: $y = \sin x$, 余弦函数: $y = \cos x$ 。

(ii) 正切函数: $y = \tan x$, 余切函数: $y = \cot x$ 。

 $y = \cot x$

(iii) 正割函数: $y = \sec x$, 余割函数: $y = \csc x$ 。

⑤反三角函数

(i) 反正弦函数: $y = \arcsin x$, 反余弦函数: $y = \arccos x$ 。

 $y = \arcsin x$

 $y = \arccos x$

(ii) 反正切函数: $y = \arctan x$, 反余切函数: $y = \operatorname{arccot} x$ 。

 $y = \operatorname{arccot} x$

三角函数公式

①倍角公式

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

$$\sin^2 \alpha = \frac{1}{2}(1-\cos 2\alpha)$$
, $\cos^2 \alpha = \frac{1}{2}(1+\cos 2\alpha)$ (降幂公式)

$$\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}$$
, $\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha}$

②和差公式

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
, $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} , \qquad \cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha}$$

③积化和差与和差化积公式

(i) 积化和差公式

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right], \cos \alpha \sin \beta = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right], \sin \alpha \sin \beta = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right]$$

(ii) 和差化积公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}, \qquad \sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$
, $\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$

④万能公式

若
$$u = \tan \frac{x}{2} (-\pi < x < \pi)$$
,则 $\sin x = \frac{2u}{1+u^2}$, $\cos x = \frac{1-u^2}{1+u^2}$

(2) 初等函数

由基本初等函数和常数经过有限次四则运算和复合运算得到的可以用一个式子来表达的函数称为初等函数。

注:初等函数在定义域内处处连续。

(3) 复合函数

设函数 y = f(u) 的定义域为 D_f ,函数 u = g(x) 的定义域为 D_g ,且值域 $R_g \subset D_f$,则由下式确定的函数: y = f[g(x)] , $x \in D_g$ 称为由函数 u = g(x) 与函数 y = f(u) 构成的复合函数。

题 1: 写出函数 $y = \sin^2 \frac{1}{\sqrt{x^2 + 1}}$ 由基本初等函数或多项式复合而成的过程。

解:
$$y = u^2$$
 , $u = \sin v$, $v = w^{-\frac{1}{2}}$, $w = x^2 + 1$

题 2. 设
$$g(x) = \begin{cases} 2-x & x \le 0 \\ x+2 & x > 0 \end{cases}$$
, $f(x) = \begin{cases} x^2 & x < 0 \\ -x & x \ge 0 \end{cases}$, 求 $f[g(x)]$ 。

解: 先看内层函数 g(x) 的范围, 并将 g(x) 代入到 f(x) 中

当x≤0时,有

当x > 0时,有

(4) 分段函数:
$$f(x) = \begin{cases} \varphi_1(x) & x > x_0 \\ a & x = x_0 \\ \varphi_2(x) & x < x_0 \end{cases}$$
, $y = |f(x)|$ $y = \max\{f(x), g(x)\}$, $y = \min\{f(x), g(x)\}$

(5) 符号函数:
$$y = \operatorname{sgn} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

(6) 取整函数:
$$y = [x]$$
 不超过 x 的最大整数。例: $[\sqrt{2}] = 1$ $[-3.5] = -4$

课时一练习题

- 1. 函数 $y = \frac{1}{\ln(1-x)} + \sqrt{x+2}$ 的定义域为_____。
- 2. 函数 $f(x) = \frac{\sqrt{4-x^2}}{\ln(x+2)} + \arccos\frac{x-1}{3}$ 的定义域为______。
- 3. 下列函数 f(x)和 g(x)是相同函数的是 ()。

$$A. f(x) = \ln x^4, g(x) = 4 \ln x$$

$$B. f(x) = 1, g(x) = \sin^2 x + \cos^2 x$$

$$C. f(x) = \frac{x^2}{x}, g(x) = x$$

$$D. f(x) = x, g(x) = \sqrt{x^2}$$

4. 下列各组函数中,是相同的函数的是()。

A.
$$f(x) = |x|, g(x) = \sqrt{x^2}$$

B.
$$f(x) = x, g(x) = (\sqrt{x})^2$$

$$C \cdot f(x) = \ln x^2, g(x) = 2 \ln x$$
 $D \cdot f(x) = \frac{|x|}{x}, g(x) = 1$

$$D. f(x) = \frac{|x|}{x}, g(x) = 1$$

- 5. 已知函数 $f(\frac{1}{x}) = x + \frac{1}{x^2}$,则 f(x) =_______。
- 6. 设函数 $f(x+1) = x^2 + 2x + 5$,则 $f'(x) = _____$ 。
- 7. 设 f(x) 为 奇 函 数 , g(x) 为 偶 函 数 , 且 f'(a) = 2, g'(a) = 3 , f'(-a) + g'(-a) =_______
- 8. 函数 $y = \arccos x$ 是()。
- *A*.偶函数
- B. 周期函数 C. 单调函数 D. 无界函数

- 9. 函数 $y = \ln \frac{1 + \sin x}{1 \sin x}$ 是______(奇、偶、非奇非偶)函数,最小正周期是_____。
- 10. (判断)基本初等函数在其定义域内都是连续的()。
- 11. (判断)分段函数是初等函数()。
- 12. 函数 $y = \frac{x-1}{x+2}$ 的反函数是_____。
- 13. 写出函数 $y = \ln \csc \sqrt{\frac{1}{x}}$ 由基本初等函数复合而成的过程_____。

课时二极限

考点	重要程度	占分	题型
1. 极限	必考	3~6	选择、填空
2. 极限的性质	**	0 ~ 3	选择、填空
3. 极限的运算法则	必考	基础运算	选择、填空、大题

1. 极限

1) 极限的定义:

数列极限: $\lim_{n \to \infty} x_n = A$

 $\forall \varepsilon > 0$,存在正整数 N, 当 n > N 时, 就有 $|x_n - A| < \varepsilon$ 。

函数极限: $\lim_{x \to x_0} f(x) = A$

 $\forall \varepsilon > 0$,存在正数 δ ,当 $0 < |x - x_0| < \delta$ 时,就有 $|f(x) - A| < \varepsilon$ 。

注解:

①左极限:
$$\lim_{x \to x_0^-} f(x) \to f(x_0 - 0)$$
 , 右极限: $\lim_{x \to x_0^+} f(x) \to f(x_0 + 0)$

②
$$x \to x_0 \Leftrightarrow x \neq x_0$$
 例: $f(x) = \frac{x^2 - 1}{x - 1}$, 定义域 $x \neq 1$, 故无函数值。

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2, \quad \text{WRf}$$

③
$$x \to x_0$$
代表 $x \to x_0^-$ 且 $x \to x_0^+$ 例: 设 $f(x) = e^{\frac{1}{x-2}}$ 研究 $\lim_{x \to 2} f(x)$

当
$$x \to 2^-$$
时, $\frac{1}{x \to 2} \to -\infty$,则 $\lim_{x \to 2^-} e^{\frac{1}{x-2}} = e^{-\infty} = 0$

2) 极限存在的充要条件

数列: 若数列 x_n 收敛于a,那么它的任一子数列也收敛于a。

函数: 左右极限存在且相等

①
$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A$$

$$2 \lim_{x \to \infty} f(x) = A \iff \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = A$$

题 1. 求函数 $f(x) = \frac{|x|}{x}$, 当 $x \to 0$ 时极限是否存在。

解:
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \frac{-x}{x} = -1$$
, $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x}{x} = 1$

左极限≠右极限, 故极限不存在。

题 2. 求函数 $f(x) = \arctan \frac{1}{x+1}$,当 $x \to -1$ 时极限是否存在。

$$\text{\mathbb{H}: } \lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \arctan \frac{1}{x+1} = -\frac{\pi}{2}, \qquad \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \arctan \frac{1}{x+1} = \frac{\pi}{2}$$

左极限≠右极限, 故极限不存在。

题 3. 求函数 $f(x) = e^{\frac{x}{x-2}}$,当 $x \to 2$ 时极限是否存在。

解:
$$\lim_{x\to 2^{-}} f(x) = \lim_{x\to 2^{-}} e^{\frac{2}{x-2}} = 0$$
, $\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} e^{\frac{2}{x-2}} = +\infty$

左极限存在, 右极限不存在, 故极限不存在。

题 4. 求函数 $f(x) = \frac{x^2 - 4}{x - 2}$, 当 $x \to 2$ 时极限是否存在。

解:
$$\lim_{x\to 2^{-}} f(x) = \lim_{x\to 2^{-}} \frac{x^2 - 4}{x - 2} = \lim_{x\to 2^{-}} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x\to 2^{-}} (x + 2) = 4$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2^{+}} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2^{+}} (x + 2) = 4$$

左极限=右极限,故 $\lim_{x\to 2} f(x) = 4$ 。

需要从左右极限考虑的情形:

①分段函数在分界点处:

例如:
$$\lim_{x\to 0} \frac{|x|}{x}$$
, $f(x) = \begin{cases} \cos x & x \ge 0 \\ e^x - 1 & x < 0 \end{cases}$, 求 $\lim_{x\to 0} f(x)$ 。

②三角函数或反三角函数:

例如:
$$\lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty$$
, $\lim_{x \to \frac{\pi}{2}^+} \tan x = -\infty$,

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}, \quad \lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$$

③幂、指函数在特殊点,例如f(x)中含 $a^{\frac{\varphi(x)}{x-b}}$ 或 $a^{\frac{\varphi(x)}{b-x}}$,求 $\lim_{x\to b} f(x)$ 。

2. 极限的性质

- (1) 唯一性: 设 $\lim f(x) = A$, $\lim f(x) = B$, 则 A = B.
- (2) **局部保号性:** 设 $\lim f(x) = A > 0$,则在极限管辖范围内 f(x) > 0,反之, f(x) > 0, $\lim f(x) = A \ge 0$ 。
- (3) **有界性:**设 $\lim f(x) = A$,则在极限管辖范围内 f(x) 有界。

题 1. 设 $\{x_n\}$ 是数列,下列题中不正确的是()。

$$A$$
. 若 $\lim_{n\to\infty} x_n = a$,则 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a$

$$B$$
. 若 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a$,则 $\lim_{n\to\infty} x_n = a$

$$C$$
. 若 $\lim_{n\to\infty} x_n = a$,则 $\lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n+1} = a$

$$D$$
. 若 $\lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n+1} = a$,则 $\lim_{n\to\infty} x_n = a$

解: D, 选项缺少 x_{3n+2} 项。

题 2. 数列有界是其存在极限的()条件。

B.必要非充分 C.充要 A.充分非必要 D.既不充分也不必要

答案: B

有界性: 设 $\lim f(x) = A$,则在极限管辖范围内 f(x) 有界。

所以极限存在可以得到数列有界;

例: $x_n = \cos n\pi$, $-1 \le \cos n\pi \le 1$ 有界。

$$n=2k$$
 时, $x_{2k}=\cos 2k\pi=1$

$$n = 2k + 1$$
 H, $x_{2k+1} = \cos(2k + 1)\pi = -1$

子列极限不唯一, 故极限不存在。

极限的运算法则

(1) 四则运算法则:设 $\lim f(x)=A$, $\lim g(x)=B$,则

1)
$$\lim [f(x) + g(x)] = A + B$$

1)
$$\lim [f(x) + g(x)] = A + B$$
 2) $\lim [f(x) - g(x)] = A - B$

3)
$$\lim [f(x) \cdot g(x)] = A \cdot B$$

3)
$$\lim [f(x) \cdot g(x)] = A \cdot B$$
 4) $\lim \frac{f(x)}{g(x)} = \frac{A}{B} (B \neq 0)$

(2) 复合运算法则

设函数 y = f[g(x)] 是由函数 u = g(x) 与函数 y = f(u) 复合而成, f[g(x)] 在 点 x_0 的某去心邻域内有定义,若 $\lim_{x\to x_0}g(x)=u_0$, $\lim_{u\to u_0}f(u)=A$,且存在 $\delta_0>0$, 当 $0 < |x - x_0| < \delta_0$ 时有 $g(x) \neq u_0$,则 $\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = A$ 。

题 1. 如果极限 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} [f(x) - g(x)]$ 都存在,则极限 $\lim_{x \to x_0} g(x)$ ()。

A.不一定存在 B.一定不存在 C.一定存在 D.不一定不存在

答案: C

题 2. 设数列 $\{x_n\}$ 收敛, $\{y_n\}$ 发散,则下列结论正确的是 ($\{y_n\}$

 $A.\{x_n+y_n\}$ 收敛 $B.\{x_n+y_n\}$ 发散 $C.\{x_ny_n\}$ 收敛 $D.\{x_ny_n\}$ 发散

答案: B

题 3. (判断)若
$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} g(x) = \infty$, 则 $\lim_{x \to x_0} f(x) \cdot g(x) = \infty$ ()。

答案: ×, 若 $A \neq 0$, $\lim_{x \to x_0} f(x) \cdot g(x) = \infty$; 若 A = 0, 则 $0 \cdot \infty$ 为未定式,不确定。

注解: $\lim f(x)$ $\lim g(x)$ $\lim [f(x) \pm g(x)]$

- ①三者中任意两者极限存在,则第三个极限一定存在。
- $23 + \pi 3 = \pi 3$
- ③不ョ+不ョ=不确定
- ④以下七个未定式内一定无法确定有无极限存在:

$$\frac{0}{0} \quad \frac{\infty}{\infty} \quad \infty - \infty \quad 0 \cdot \infty \quad 1^{\infty} \quad \infty^{0} \quad 0^{0}$$

课时二 练习题

- 1. 当 $x \to \infty$ 时, $\frac{1}{1-r^2}$ 的极限为()。
- A. 0

 $B. \infty$

C.不存在

D. 1

- 2. 函数 $f(x) = \frac{x^2 4}{x 2}$ 在点 x = 2 处 ()。
- A.有定义 B.有极限
- C.没有极限 D.既无定义又无极限
- 3. 条件 $\lim_{x\to a-0} f(x)$, $\lim_{x\to a+0} f(x)$ 都存在,是结论 $\lim_{x\to a} f(x)$ 存在的()。
- A.充分但非必要条件

B.必要但非充分条件

C. 充分必要条件

- D. 既非充分又非必要条件
- 4. 从 $\lim_{x \to x_0} f(x) = 1$ 不能推测()。

- A. $\lim_{x \to x_0^-} f(x) = 1$ B. $\lim_{x \to x_0^+} f(x) = 1$ C. $f(x_0) = 1$ D. $\lim_{x \to x_0} [f(x) 1] = 0$
- 6. $f(x) = \begin{cases} x+2, & x \le 0 \\ e^{-x}+1, & 0 < x \le 1 \end{cases}, \quad \iiint_{x \to 0} f(x) = () .$
- A.0

B.不存在

C. 2

D.1

- 7. 下列各式正确的是()。

- A. $\lim_{x \to +\infty} e^{\frac{1}{x}} = 1$ B. $\lim_{x \to 0^{+}} e^{\frac{1}{x}} = 0$ C. $\lim_{x \to 0} e^{\frac{1}{x}} = +\infty$ D. $\lim_{x \to -\infty} e^{\frac{1}{x}} = -1$

课时三 求极限(一)

考点	重要程度	占分	题型
1. 基础型	必考	3 ~ 6	选择、填空、大题
2. 两个重要极限公式	少气	3~0	处拜、央工、八赵

1. 基础型

题 1.
$$\lim_{x\to 0} \frac{2x^2 - 3x + 1}{3x^2 + 2} = ()$$
 。 ①直接代入型

- *A*.1
- *B*. 2
- $C.\frac{1}{2}$
- D.0

答案: C。

题 2. 计算 $\lim_{x\to 1} \frac{x-1}{\sqrt{x+3}-2}$ ②分子或分母有理化

解: 原式=
$$\lim_{x\to 1} \frac{(x-1)(\sqrt{x+3}+2)}{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}$$

$$=\lim_{x\to 1} \frac{(x-1)(\sqrt{x+3}+2)}{x-1}$$

$$=\lim_{x\to 1} (\sqrt{x+3}+2) = 4$$

题 3. 求极限
$$\lim_{x\to 3} \frac{x^2-9}{x^2-5x+6}$$
 ③无穷小分离法

解: 原式=
$$\lim_{x\to 3} \frac{(x-3)(x+3)}{(x-3)(x-2)} = \lim_{x\to 3} \frac{x+3}{x-2} = 6$$

题 4. 计算
$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{2x^2 + 5}$$

④抓大头

解: 原式=
$$\lim_{x\to\infty}\frac{1+\frac{2}{x}+\frac{1}{x^2}}{2+\frac{5}{x^2}}=\frac{1}{2}$$

题 5. 计算
$$\lim_{x\to\infty} \frac{(4x^2-3)^3(3x-2)^4}{(6x^2+7)^5}$$

解: 原式=
$$\lim_{x\to\infty} \frac{(4x^2)^3 \cdot (3x)^4}{(6x^2)^5} = \lim_{x\to\infty} \frac{4^3x^6 \cdot 3^4x^4}{6^5x^{10}} = \frac{2}{3}$$

2. 两个重要极限公式

①
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
,一般式: $\lim_{\Delta\to 0} \frac{\sin \Delta}{\Delta} = 1$

②
$$\lim_{x\to\infty} (1+\frac{1}{x})^x = \lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$
, $-$ 般式: $\lim_{\Delta\to 0} (1+\Delta)^{\frac{1}{\Delta}} = e$

1°型未定式

若
$$\lim [f(x)]^{g(x)}$$
满足 1^{∞} 型

$$\lim [f(x)]^{g(x)} = \lim [1 + f(x) - 1]^{g(x)} = \lim [1 + f(x) - 1]^{\frac{1}{f(x) - 1} \cdot [f(x) - 1] \cdot g(x)}$$
$$= e^{\lim [f(x) - 1] \cdot g(x)}$$

解: 原式=
$$\lim_{x\to 0} \frac{\sin 2x}{2x} \cdot 2 = 2$$

题 2. 下列极限正确的是 ()。

$$A. \lim_{x \to \infty} \frac{\sin x}{x} = 1 \qquad B. \lim_{x \to 0} \frac{\sin x}{2x} = 1 \qquad C. \lim_{x \to \infty} x \sin \frac{1}{x} = 1 \qquad D. \lim_{x \to 0} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = 1$$

答案: C。

题 3. 计算
$$\lim_{x \to \infty} (1 + \frac{2}{x})^x = \underline{\qquad}$$

法 1. 原式=
$$\lim_{x\to\infty} (1+\frac{2}{x})^{\frac{x-2}{2x}x} = e^2$$

法 2. 原式=
$$e^{\lim_{x\to\infty}[(1+\frac{2}{x})-1]\cdot x}=e^{\lim_{x\to\infty}\frac{2}{x}\cdot x}=e^2$$

题 4. 计算
$$\lim_{x\to 0} (1-3x)^{\frac{2}{x}}$$

法 1. 原式=
$$\lim_{x\to 0} [1+(-3x)]^{-\frac{1}{3x}\cdot(-3x)\cdot\frac{2}{x}} = e^{\lim_{x\to 0} \frac{6x}{x}} = e^{-6}$$

法 2. 原式=
$$e^{\lim_{x\to 0}[(1-3x)-1]\cdot\frac{2}{x}}=e^{\lim_{x\to 0}-\frac{6x}{x}}=e^{-6}$$

题 5. 计算
$$\lim_{x\to\infty} (\frac{2x+3}{2x+1})^{x+1}$$

法 1. 原式 =
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} + 1 - 1 \right)^{x+1} = \lim_{x \to \infty} \left(1 + \frac{2x+3}{2x+1} - 1 \right)^{x+1} = \lim_{x \to \infty} \left(1 + \frac{2}{2x+1} \right)^{x+1}$$

$$= \lim_{x \to \infty} \left(1 + \frac{2}{2x+1} \right)^{\frac{2x+1}{2} \cdot \frac{2}{2x+1} \cdot x+1} = e^{\lim_{x \to \infty} \frac{2(x+1)}{2x+1}} = e$$

法 2. 原式=
$$e^{\lim_{x\to\infty}(\frac{2x+3}{2x+1}-1)\cdot(x+1)}=e^{\lim_{x\to\infty}\frac{2}{2x+1}\cdot(x+1)}=e$$

题 6. 计算 $\lim_{x\to 0} (\cos x + x \sin x)^{\frac{1}{x^2}}$

法 1. 原式 =
$$\lim_{x \to 0} (1 + \cos x + x \sin x - 1)^{\frac{1}{x^2}}$$

$$= \lim_{x \to 0} (1 + \cos x + x \sin x - 1)^{\frac{1}{(\cos x + x \sin x - 1)} \cdot \frac{1}{(\cos x + x \sin x - 1)} \cdot \frac{1}{x^2}}$$

$$= e^{\lim_{x \to 0} \frac{\cos x + x \sin x - 1}{x^2}} = e^{\lim_{x \to 0} \frac{\cos x - 1}{x^2} + \frac{\sin x}{x}} = e^{\lim_{x \to 0} \frac{-\frac{1}{2}x^2}{x^2} + \frac{\sin x}{x}} = e^{\frac{1}{2}}$$

法 2. 原式 =
$$e^{\lim_{x\to 0} (\cos x + x \sin x - 1)\frac{1}{x^2}} = e^{\lim_{x\to 0} \frac{\cos x - 1 + x \sin x}{x^2}} = e^{\lim_{x\to 0} (\frac{\cos x - 1}{x^2} + \frac{x \sin x}{x^2})} = e^{\lim_{x\to 0} (\frac{-1}{2}x^2 + \frac{\sin x}{x})} = e^{\frac{1}{2}x^2}$$

课时三 练习题

1.
$$\lim_{x \to 1} \frac{x^2 + 3x + 2}{x^2 + 5} = ()_{\circ}$$

A = 2

B. 1

C. 0

D. 6

2. 求极限
$$\lim_{n\to\infty} \left[\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} \right]$$

3. 计算
$$\lim_{x \to 1} \frac{\sqrt{3x+1}-2}{x-1}$$

4. 计算
$$\lim_{n\to\infty}\cos(\sqrt{n+1}-\sqrt{n})$$

5.
$$x \lim_{x \to 1} \frac{x-1}{x^3-1}$$

6.
$$\lim_{n\to\infty} \frac{3n^2 - n + 1}{18n^3 + n^2 + n} = ()$$

 $A.\frac{1}{6}$

B. 0

 $C.\frac{1}{2}$

D. 1

7.
$$\lim_{x \to \infty} \frac{x^3 + 3x - \sin x}{4x^3 + \sin x} = ()_{\circ}$$

 $A.\frac{1}{4}$

B. 2

C.0

D. 不存在

8.
$$\lim_{x \to \infty} \frac{(x-1)^{15}(2x+1)^{10}}{(3x+2)^{25}} = \underline{\hspace{1cm}}$$

9. 若
$$\lim_{x\to\infty} \frac{ax^4 + bx^2 + 3}{2x^2 + 1} = 3$$
,则常数 a,b 应满足_____。

10. 下列极限的计算正确的是()

$$A. \lim_{x \to 0} \frac{\sin x}{x} = 0$$

$$B. \lim_{x \to \infty} \frac{\sin x}{x} = 1$$

$$C. \lim_{x\to 0} \frac{\sin x}{2x} = 2$$

A.
$$\lim_{x \to 0} \frac{\sin x}{x} = 0$$
 B. $\lim_{x \to \infty} \frac{\sin x}{x} = 1$ C. $\lim_{x \to 0} \frac{\sin x}{2x} = 2$ D. $\lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}$

$$11. \quad \lim_{x\to 0} \frac{\sin 3x}{\sin 2x} = \underline{\hspace{1cm}}^{\circ}$$

12.
$$\lim_{x\to 0} \left(\frac{\sin 2x}{x} - x \sin \frac{1}{5x}\right) = \underline{\qquad}$$

13. 下列各式正确的是()。

$$A. \lim_{x \to \infty} (1+x)^{\frac{1}{x}} = e$$

$$B. \lim_{x \to 0} (1 + \frac{1}{x})^x = e$$

$$C.\lim_{x\to\infty}(1+\frac{1}{x})^x=e$$

$$D. \lim_{x \to \infty} (1 - \frac{1}{x})^x = e$$

14.
$$\lim_{x \to \infty} (1 - \frac{2}{x})^x = \underline{\hspace{1cm}}^{\circ}$$

15. 若
$$\lim_{x \to \infty} (\frac{x+a}{x-a})^x = 8$$
,则 $a =$ ______。

17.
$$\lim_{x \to 0} \left(\frac{2^x + 3^x}{2} \right)^{\frac{1}{\sin x}} = \underline{\hspace{1cm}}$$

课时四 求极限(二)

考点	重要程度	占分	题型
1. 无穷小、无穷大	**	0~3	选择、填空
2. 无穷小的比较	必考	5~10	选择、填空、大题

1. 无穷小量、无穷大量

①无穷小量

若 $x \to x_0(x \to \infty)$ 时 $f(x) \to 0$,则称f(x)为 $x \to x_0(x \to \infty)$ 时的无穷小。

简单的说:以0为极限的量就是无穷小量。

【注: 0 是唯一一个无穷小常数。】

题 1. 当 $x \to 0$ 时,下列变量为无穷小的是()。

 $A.\frac{\sin x}{x}$

 $B.\frac{\cos x}{x}$

 $C. x \sin x$ $D. 1 - \sin x$

答案: C

题 2. 【判断】

- 1)零是无穷小量()。
- 2) sin x 是无穷小量 ()。

②无穷小的性质

- 1) 有界量乘以无穷小仍是无穷小。
- 2) 有限个无穷小的和、差、积均为无穷小。

题 1. 求
$$\lim_{x \to \infty} \frac{\sin x}{x}$$

解:
$$\lim_{x \to \infty} \frac{\sin x}{x} = \lim_{x \to \infty} \frac{1}{x} \cdot \sin x = 0$$

题 2. 求
$$\lim_{n\to\infty} (\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}) = \underline{\hspace{1cm}}$$
。

解: 原式=
$$\lim_{n\to\infty}\frac{1+2+\cdots+n}{n^2}=\lim_{n\to\infty}\frac{\frac{1}{2}n(n+1)}{n^2}=\frac{1}{2}$$

③无穷大量

若 $x \to x_0(x \to \infty)$, $|f(x)| \to +\infty$, 则称 f(x) 为 $x \to x_0(x \to \infty)$ 时的无穷大量。

- 1) 无穷大是一个变量,它与很大的数不同。
- 2) 无穷大一定无界, 无界不一定是无穷大。

若f(x)为无穷小且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 为无穷大。

题 1. 下列结论正确的是()

A.在同一变化过程中,有限多个无穷小的和、差、积、商仍是无穷小。

B.在同一变化过程中,有限多个无穷大的和、差、积、商仍是无穷大。

C.在同一变化过程中, 无穷大的倒数是无穷小。

D.在同一变化过程中, 无穷小的倒数是无穷大。

答案: C

蜂考系统课

题 2. 设数列的通项为
$$\begin{cases} \frac{n^2 + \sqrt{n}}{n}, & n \text{ 为奇} \\ \frac{1}{n}, & n \text{ 为偶} \end{cases}, \quad \text{则当} n \to \infty \text{ 时}, \quad x_n \text{ 是} \quad () \text{ .}$$

A.无穷大量 B.无穷小量 C.有界变量 D.无界变量

答案: D

2. 无穷小的比较

①无穷小的比较

若 f(x), g(x) 为同一变化过程下的无穷小

$$\lim \frac{f(x)}{g(x)} = \begin{cases} 0 & f(x) \neq 0 \\ k & f(x) \leq g(x) \end{cases}$$

$$\lim \frac{f(x)}{g(x)} = \begin{cases} 0 & f(x) \neq 0 \\ k & f(x) \leq g(x) \end{cases}$$

$$\lim \frac{f(x)}{g(x)} = \begin{cases} 0 & f(x) \neq 0 \\ 0 & f(x) \leq g(x) \end{cases}$$

$$\lim \frac{f(x)}{g(x)} = \begin{cases} 0 & f(x) \neq 0 \\ 0 & f(x) \leq g(x) \end{cases}$$

若
$$\lim \frac{f(x)}{g^k(x)} = l \neq 0$$
 则称 $f(x)$ 为 $g(x)$ 的 k 阶无穷小

②常见的等价无穷小 $x \to 0$ 时

1) $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln(1+x) \sim e^x - 1$

2)
$$1 - \cos x \sim \frac{1}{2}x^2$$
 $1 - \cos^a x \sim \frac{a}{2}x^2$

3)
$$(1+x)^a - 1 \sim ax$$
 $\sqrt{1+x} - 1 \sim \frac{1}{2}x$

注: ①等价无穷小使用前提: $x \to 0$

- ② x 可用整体替换
- ③做题时要遵循"乘积可换,加减慎用"的原则

题 1. 求 $\lim_{x\to 0} \frac{1-\cos x}{x\sin x}$

解: 原式=
$$\lim_{x\to 0} \frac{\frac{1}{2}x^2}{x\cdot x} = \frac{1}{2}$$

题 2. 求 $\lim_{x\to 0} \frac{e^{x^2}-1}{x\sin x}$

解: 原式=
$$\lim_{x\to 0}\frac{x^2}{x\cdot x}=1$$

题 3. 求
$$\lim_{x\to 0} \frac{(1-\frac{1}{2}x^2)^{\frac{2}{3}}-1}{x\ln(1+x)}$$

解: 原式=
$$\lim_{x\to 0} \frac{\frac{2}{3} \cdot (-\frac{1}{2}x^2)}{x \cdot x} = \lim_{x\to 0} \frac{-\frac{1}{3}x^2}{x^2} = -\frac{1}{3}$$

题 4. 求
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x \arcsin x^2}$$

解: 原式=
$$\lim_{x\to 0} \frac{\tan x(1-\cos x)}{x\cdot x^2} = \lim_{x\to 0} \frac{x\cdot \frac{1}{2}x^2}{x^3} = \frac{1}{2}$$

题 5. 求
$$\lim_{x\to 0} \frac{e^{x^2} - \cos x}{x \cdot \ln(1+2x)}$$

解: 原式=
$$\lim_{x\to 0} \frac{e^{x^2}-1+1-\cos x}{x\cdot 2x} = \lim_{x\to 0} \frac{e^{x^2}-1}{2x^2} + \lim_{x\to 0} \frac{1-\cos x}{2x^2} = \lim_{x\to 0} \frac{x^2}{2x^2} + \lim_{x\to 0} \frac{\frac{1}{2}x^2}{2x^2} = \frac{3}{4}$$

题 6. 求
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x \ln(1+x^2)}$$

解: 原式 =
$$\lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 + \sin x}}{x \cdot x^2}$$

$$= \lim_{x \to 0} \frac{(\sqrt{1 + \tan x} - \sqrt{1 + \sin x})(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})}{x^3(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})}$$

$$= \lim_{x \to 0} \frac{\tan x - \sin x}{x^3(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})}$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \frac{1}{2} \lim_{x \to 0} \frac{\tan x(1 - \cos x)}{x^3}$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{x \cdot \frac{1}{2} x^2}{x^3} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

题 7. 设 $x \to 0$ 时,无穷小 $1 - \cos x = kx \sin x$ 等价,则 k =

解: 依题
$$\lim_{x\to 0} \frac{1-\cos x}{kx\sin x} = 1 \Rightarrow \lim_{x\to 0} \frac{\frac{1}{2}x^2}{k\cdot x\cdot x} = 1$$
, 可得 $\frac{1}{2k} = 1 \Rightarrow k = \frac{1}{2}$

题 8. 当 $x \to 0$ 时,下列哪个函数与其它三个函数不是同阶无穷小()。

$$A.\sqrt{1+x^2}-1 \qquad B.\ln^3(1+x) \qquad C.\tan x - \sin x \qquad D.x - x\cos x$$

$$B. \ln^3(1+x)$$

C.
$$\tan x - \sin x$$

$$D. x - x \cos x$$

答案: A

$$\text{#F:} \quad \sqrt{1+x^2} - 1 \sim \frac{1}{2}x^2 \qquad \ln^3(1+x) \sim x^3 \qquad x - x\cos x = x(1-\cos x) \sim \frac{1}{2}x^3$$

$$\tan x - \sin x = \tan x (1 - \cos x) \sim \frac{1}{2} x^3$$

课时四 练习题

- 1. 无穷小量是()。
- A.零 B.以零为极限的量 C.比零稍大的数 D.一个很小的数
- 2. 下列变量在自变量给定的变化过程中是无穷小量的是()。

$$A.\frac{x^2}{x^3+1}(x\to 1) \qquad B.\ln x(x\to +\infty) \qquad C.\,2^{-x}(x\to +\infty) \qquad D.\ln x(x\to 2)$$

$$B. \ln x(x \to +\infty)$$

$$C. 2^{-x} (x \rightarrow +\infty)$$

- 3. $[判断]e^x$ 是无穷大量()。
- 5. $x \lim_{x\to 0} \frac{\ln(1+x^2)}{\sin^2 x} = \underline{\qquad}$
- 6. $\Re \lim_{x\to 0} \frac{(e^x 1)\tan 3x^2}{\arctan 2x(1-\cos x)} = \underline{\hspace{1cm}}$
- $7. \quad \Re \lim_{r \to 0} \frac{\tan x \sin x}{r^3} = \underline{\qquad} \circ$
- 8. $\Re \lim_{x \to 0} \frac{e^x e^{-x}}{\sin x} = \underline{\hspace{1cm}}$
- 10. $\Re \lim_{x\to 0} \frac{\sqrt{1+\sin x} \sqrt{1+\tan x}}{\sin x^3} = \underline{\hspace{1cm}}_{\circ}$

- 12. 当 $x \to 0$ 时, $\cos x 1$ 是 $\sin^k x$ 的同阶无穷小量,则k =______。
- 13. 把 $x \to 0$ 时的无穷小量 $\alpha = 1 \cos 2x$, $\beta = \tan x \sin x$, $\gamma = \sqrt{1 \sin^4 x} 1$, 接 "前一个是后一个的高阶无穷小"的要求排列起来,则正确的排列顺序是()。

 $A. \alpha, \beta, \gamma$ $B. \beta, \alpha, \gamma$ $C. \gamma, \beta, \alpha$ $D. \gamma, \alpha, \beta$

求极限(三) 课时五

考点	重要程度	占分	题型
1. 夹逼准则	****	0~3	选择、填空
2. 单调有界原理	***	6~10	大题

1. 夹逼准则

数列:
$$\exists N, \exists n > N$$
, 有 $y_n \le x_n \le z_n$, 若 $\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = a$, 则 $\lim_{n \to \infty} x_n = a$.

若
$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = A$$
 , 则 $\lim_{x \to x_0} f(x) = A$

题 1. 求
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n} \right)$$
.

解: 由
$$n^2 + 1 < n^2 + 2 < \cdots < n^2 + n$$

$$\frac{1}{n^2+n} + \frac{2}{n^2+n} + \dots + \frac{n}{n^2+n} \le \frac{2}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{n}{n^2+n} \le \frac{1}{n^2+1} + \frac{2}{n^2+1} + \dots + \frac{n}{n^2+1}$$

左侧:
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n} + \frac{2}{n^2+n} + \dots + \frac{n}{n^2+n} \right) = \frac{1}{2}$$

右侧:
$$\lim_{n\to\infty}\frac{1}{n^2+1}+\frac{2}{n^2+1}+\cdots+\frac{n}{n^2+1}=\frac{1}{2}$$

故
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n} \right) = \frac{1}{2}$$

题 2. 求.
$$\lim_{n\to\infty} \sqrt[n]{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}$$

$$\widehat{\mathbf{R}}: \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} \le 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \le 1 + 1 + \dots + 1$$

左侧:
$$\lim_{n\to\infty} \sqrt[n]{\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{n} \cdot n} = 1$$

右侧:
$$\lim_{n\to\infty} \sqrt[n]{1+1+\cdots+1} = \sqrt[n]{n} = 1$$

故:
$$\lim_{n\to\infty} \sqrt[n]{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}=1$$

2. 单调有界原理: 单调有界数列必有极限

注:单调有界原理是证明数列极限存在的一种常用方法,它不能用于求极限,对于递推数列(即数列通项存在递推关系如 $x_{n+1} = f(x_n)$),证明极限存在常用此法则。

题 1. 设 $x_1 = 10, x_{n+1} = \sqrt{6 + x_n} (n = 1, 2, \cdots)$, 证明数列 $\{x_n\}$ 的极限存在,并求其极限。

解:
$$x_1 = 10 > 3$$
,

假设
$$x_k > 3$$
, $x_{k+1} = \sqrt{6 + x_k} > \sqrt{6 + 3} = 3$,

由数学归纳法得: $x_n > 3$, 即 $\{x_n\}$ 有下界。

$$x_{n+1} = \sqrt{6 + x_n}$$
, $f(x) = \sqrt{6 + x}$

$$f'(x) = \frac{1}{2\sqrt{6+x}} > 0$$
,数列 $\{x_n\}$ 单调。

又
$$x_1 = 10$$
, $x_2 = \sqrt{6 + x_1} = 4$, $x_1 > x_2$, 故 $\{x_n\}$ 单调递减。

 $\{x_n\}$ 单调递减且有下界,所以极限存在,

假设
$$\lim_{n\to\infty} x_n = A$$
,则 $A = \sqrt{6+A}$,

解得:
$$A_1 = 3$$
, $A_2 = -2$ (舍去) , 故 $\lim_{n \to \infty} x_n = 3$

题 2. 设 $0 < x_1 < 3, x_{n+1} = \sqrt{(3-x_n)x_n}$,证明数列 $\{x_n\}$ 的极限存在,并求其极限。

解:
$$x_{n+1} = \sqrt{(3-x_n)x_n} \le \frac{3-x_n+x_n}{2} = \frac{3}{2}$$
, $\{x_n\}$ 有上界 $\frac{3}{2}$,

$$\frac{x_{n+1}}{x_n} = \frac{\sqrt{(3-x_n)x_n}}{x_n} = \sqrt{\frac{3x_n - x_n^2}{x_n^2}} = \sqrt{\frac{3}{x_n} - 1} \ge \sqrt{\frac{\frac{3}{3}}{\frac{3}{2}} - 1} = 1$$

 $\{x_n\}$ 单调递增。

$$0 < x_n \le \frac{3}{2}$$
有界,且单调递增,故 $\lim_{n \to \infty} x_n$ 存在。

假设
$$\lim_{n\to\infty} x_n = A$$
,则 $A = \sqrt{(3-A)A}$,

解得
$$A_1 = 0$$
 (舍去), $A_2 = \frac{3}{2}$, 故 $\lim_{n \to \infty} x_n = \frac{3}{2}$ 。

课时五 练习题

1.
$$\lim_{n\to\infty} \left(\frac{1}{n^2 + \pi} + \frac{2}{n^2 + 2\pi} + \dots + \frac{n}{n^2 + n\pi} \right) = \underline{\hspace{1cm}}$$

2.
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{5}{n^2+2} + \dots + \frac{4n-3}{n^2+n} \right) = \underline{\hspace{1cm}}$$

3. 设
$$\varphi(x) \le f(x) \le \Psi(x)$$
,且 $\lim_{x \to \infty} [\Psi(x) - \varphi(x)] = 0$, $\lim_{x \to \infty} f(x)$ ()。

- A.存在且为0 B.存在且不一定等于0 C.一定不存在 D.不一定存在
- 4. 设 $x_1 = \sqrt{2}, x_n = \sqrt{2 + x_{n-1}} (n \ge 2)$, 求 $\lim_{n \to \infty} x_n$ 。
- 5. 设 $0 < x_0 < 1, \{x_n\}$ 满足条件: $x_{n+1} = x_n(2 x_n)(n = 0, 1, 2, \dots)$, 求 $\lim_{n \to \infty} x_n$.

课时六 函数的连续与间断点

考点	重要程度	占分	题型	
1. 连续	必考	6~10	选择、填空	
2. 间断点	业 与 	0~10		
3. 闭区间上连续的函数性质	***	0 ~ 5	大题	

1. 函数的连续

当自变量的改变量 $\Delta x \to 0$ 时,函数的改变量 $\Delta y \to 0$,则称f(x)在x处连续。

①
$$\lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$$
, ② $\lim_{x \to x_0} f(x) = f(x_0)$

题 1. 已知
$$f(x) = \begin{cases} e^x, & x < 0 \\ 1 + 2x, & x \ge 0 \end{cases}$$
 在点 $x = 0$ 处是否连续。

解: 左极限:
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} e^x = 1$$
,

右极限:
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} 1 + 2x = 1$$

函数值
$$f(0) = 1 + 2 \cdot 0 = 1$$
,

故
$$f(x)$$
 在 $x = 0$ 处连续

题 2. 设
$$f(x) = \begin{cases} (1+ax)^{\frac{1}{x}}, & x > 0 \\ e, & x = 0 \quad (a \neq 0, b \neq 0), \ \text{问} \ a \, \text{和} \ b \, \text{各取何值时}, f(x) \\ \frac{\sin ax}{bx}, & x < 0 \end{cases}$$

在x=0连续。

题 3. 若 f(x) 在 x_0 的邻域内有定义,且 $f(x_0 - 0) = f(x_0 + 0)$,则 ()。

A.f(x) 在 x_0 处有极限,但不连续 B.f(x) 在 x_0 处有极限,但不一定连续

C. f(x) 在 x_0 处有极限,且连续 D. f(x) 在 x_0 处极限不存在,且不连续

答案B。

间断点 2.

函数 f(x) 在 x_0 不连续(但 y = f(x) 在 x_0 的某空心邻域内有定义),则称 x_0 为 f(x)的间断点。

第一类间断点(左,右极限都存在)

①可去间断点: $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0)$

②跳跃间断点: $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$

第二类间断点(左,右极限至少有一个不存在)

①无穷间断点: $\lim_{x \to x_0^-} f(x)$, $\lim_{x \to x_0^+} f(x)$ 至少有一个是无穷

②振荡间断点: $\lim f(x)$ 振荡不存在,如 $\lim \sin x$

题 1.
$$x = 1$$
 为函数 $f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$ 的 () 。

A.可去间断点 B.无穷间断点

C. 跳跃间断点 D. 振荡间断点

答案: A

解:
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)} = \lim_{x \to 1} \frac{x + 1}{x - 2} = -2$$

又f(x)在x=1无定义,极限值 \neq 函数值,故x=1为可去间断点。

若补充定义 f(1) = -2 , 则 f(x) 在 $(-\infty, 2)$ 上连续

题 2. 设
$$f(x) = \begin{cases} e^{\frac{1}{x-1}} & x > 0 \\ \ln(1+x) & -1 < x \le 0 \end{cases}$$
 , 求 $f(x)$ 的间断点,并判断其类型。

解: x = 0处,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \ln(1+x) = 0 , \qquad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{\frac{1}{x-1}} = \frac{1}{e}$$

左极限 \neq 右极限,故x=0为跳跃间断点

$$x=1$$
处

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} e^{\frac{1}{x-1}} = 0 , \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} e^{\frac{1}{x-1}} = +\infty$$

右极限不存在,故x=1为第二类间断点。

3. 闭区间上连续函数性质

在闭区间[a,b]上连续的函数f(x),有以下几个基本性质:

定理 1(最值定理): 如果函数 f(x) 在闭区间[a,b] 上连续,则在这个区间上一定存在最大值 M 和最小值 m 。

推论: 如果函数 f(x)在闭区间[a,b]上连续,则 f(x)在[a,b]上必有界。

定理 2(介值定理): 如果函数 f(x) 在闭区间 [a,b] 上连续,且其最大值和最小值分别为M 和m,则对于介于m 和M 之间的任何实数c,在 [a,b] 上至少存在一个 ξ ,使得 $f(\xi)=c$ 。

即:闭区间上的连续函数必取得介于最大值和最小值之间的一切值。

定理 3 (零点定理): 如果函数 f(x) 在闭区间[a,b]上连续,且 f(a)与 f(b) 异号,则在 (a,b) 内至少存在一个点 ξ ,使得 $f(\xi)=0$ 。

题 1. 设函数 f(x) 在[0,1]上可导,且 0 < f(x) < 1, f'(x) > 1,证明 (1) 在(0,1)内

存在一点 ξ ,使得 $f(\xi) = \xi$; (2) ξ 是唯一的。

证: (1) \Leftrightarrow F(x) = f(x) - x

$$F(0) = f(0) - 0 > 0$$
, $F(1) = f(1) - 1 < 0$ $\Rightarrow F(0) \cdot F(1) < 0$

由连续函数的零点定理知 $\exists \xi \in (0,1)$, 使 $F(\xi) = 0$

即
$$F(\xi) = f(\xi) - \xi = 0$$
, 得证 $f(\xi) = \xi$ 。

(2) F'(x) = f'(x) - 1, $\nabla f'(x) > 1$,

在(0,1)上始终有F'(x) > 0,即F(x)单调递增

故F(x)有且仅有一个零点,即有且仅有一点 ξ ,使得 $f(\xi) = \xi$ 。

题 2. 证明方程 $x^5 - 5x + 1 = 0$ 有且仅有一个小于1的正实根。

F(x)在 $(-\infty,+\infty)$ 上连续,又 $[0,1] \in (-\infty,+\infty)$,则F(x)在[0,1]也连续。

$$F(0) = 1 > 0$$
, $F(1) = 1 - 5 + 1 < 0$ $\Rightarrow F(0) \cdot F(1) < 0$

由连续函数的零点定理知 $\exists \xi \in (0,1)$,使 $F(\xi) = 0$ 。

又 $F'(x) = 5x^4 - 5$,在(0,1)上始终有F'(x) < 0,即F(x)单调递减,

即方程 $x^5-5x+1=0$ 有且仅有一个小于1的正实根。

课时六 练习题

1. 已知函数
$$f(x) = \begin{cases} e^{\frac{1}{2}}, & x \le 0 \\ (1 + \frac{x}{a})^{\frac{1}{x}}, & x > 0 \end{cases}$$
 在 $x = 0$ 处连续,求 a 值为多少?

2. 设
$$f(x) = \begin{cases} \frac{\sin x}{\sqrt{1+4x-1}}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ ______。

3.
$$f(x) = \begin{cases} \frac{\sin x + e^{2ax} - 1}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ ______。

4.
$$y = \frac{x^2 - x - 6}{x^2 - 9}$$
, 的可去间断点是 ()。

$$A \cdot x = 3$$

$$B \cdot x = -2$$

$$C \cdot x = -3$$

D.无

5. 设
$$f(x) = \frac{x^2 + 1}{x - 1}$$
, 则 $x = 1$ 是 $f(x)$ 的 () 。

- A.连续点 B.无穷间断点 C.跳跃间断点 D.可去间断点

6. 函数
$$f(x) = \arctan \frac{1}{x}$$
 的间断点是 ()。

- A.可去间断点 B.无穷间断点 C.跳跃间断点 D.振荡间断点

7.
$$x = 0$$
是 $f(x) = \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}}$ 的第一类_____间断点。

8. 函数
$$y = \frac{x}{(x-1)\sin(x-\pi)} |x-1|$$
的可去间断点是()。

$$A.x = 1$$

$$B \cdot x = \pi$$

$$C \cdot x = 0$$

$$B. x = \pi$$
 $C. x = 0$ $D. x = 1,0$

- 9. 证明方程 $x^5 + x 1 = 0$ 只有一个正根。
- 10. 证明方程 $e^x + 1 x^2 = 0$ 在(-2, -1)上至少存在一个实根。

课时七 导数(一)

考点	重要程度	占分	题型
1. 导数定义	****	3~5	选择、填空
2. 复合函数求导	必考	5~15	选择、填空、大题
3. 导数几何/物理应用	***	0 ~ 6	大题

1. 导数定义

设 y = f(x) 在 x_0 的某领域内有定义,自变量增量为 Δx ,因变量增量为 $\Delta y = f(x_0 + \Delta x) - f(x_0)$,若 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 极限存在,则说明 y = f(x) 在 x_0 处可导,记作 f'(x) , $y'|_{x=x_0}$, $\frac{dy}{dx}|_{x=x_0}$, $\frac{df(x)}{dx}|_{x=x_0}$ 。

①定义公式:
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 或 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

②左导数:
$$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

右导数:
$$f'_{+}(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

③导数存在的充要条件: $f'_{-}(x_0) = f'_{+}(x_0)$

题 1. $y = |x| \pm x = 0$ 处是否可导?

解:
$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$$

$$f'(0) = \lim_{\Delta x \to 0^{-}} \frac{-\Delta x}{\Delta x} = -1, \quad f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{\Delta x}{\Delta x} = 1$$
左导数 \neq 右导数, 故在 $x = 0$ 处不可导。

①可导必连续, 连续不一定可导 ②所有尖点,均不可导

题 2. 确定常数
$$a,b$$
 , 使函数 $f(x) = \begin{cases} \frac{1}{x}(e^{2x}-1), & x < 0 \\ a+\sin bx, & x \ge 0 \end{cases}$

解:
$$f'(0) = \lim_{\Delta x \to 0^{-}} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$f'(0) = \lim_{\Delta x \to 0^{+}} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{-}} \frac{\frac{1}{\Delta x} (e^{2\Delta x} - 1) - a}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{-}} \frac{e^{2\Delta x} - 1 - a\Delta x}{\Delta x^{2}}$$

$$= \lim_{\Delta x \to 0^{-}} \frac{2e^{2\Delta x} - a}{2\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} \frac{3\sin b\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} \frac{2e^{2\Delta x} - a}{2\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} \frac{b\Delta x}{\Delta x} = b$$

$$= \lim_{\Delta x \to 0^{+}} \frac{4e^{2\Delta x}}{2} = 2$$

$$\text{依题可知} \begin{cases} \lim_{\Delta x \to 0^{-}} 2e^{2\Delta x} - a = 0 \\ b = 2 \end{cases} \Rightarrow \begin{cases} a = 2 \\ b = 2 \end{cases}$$

题 3. 函数
$$f(x) = \begin{cases} x \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 , 则在 $x = 0$ 处 $f(x)$ () 。

A.连续且可导 B.连续但不可导 C.不连续

D.都不是

答案: B

解:
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} x \sin \frac{1}{x} = 0 = f(0) \Rightarrow$$
 函数连续

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x \sin \frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x}$$
 振荡无极限

故导数不存在。

题 4. 函数 $y = |x^2 - 3x + 2|(x-1)$ 的不可导点有 ()。

答案: A

解: 由
$$|x^2-3x+2|=0$$
得到点 $x=1$, $x=2$

$$x = 1$$
 Hy, $y = |x-1||x-2|(x-1)$

$$\Leftrightarrow g(x) = |x-2|(x-1)$$
 $g(1) = 0$ 故 $x = 1$ 可导

$$x = 2$$
 By $y = |x-2||x-1|(x-1)$

题 5. 已知
$$f'(x_0) = 2$$
,则 $\lim_{h \to 0} \frac{f(x_0 - 2h) - f(x_0)}{h} = \underline{\qquad}$ 。

解:
$$\lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{h} = \lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{-2h} \cdot (-2) = -2f'(x_0) = -4$$

题 6. 设
$$f'(x_0) = 1$$
,则 $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{h} = \underline{\qquad}$ 。

解:
$$\frac{x_0 + h - (x_0 - h)}{h} = 2$$
,则原式 = $2f'(x_0) = 2$

题 7. 设 $\lim_{h\to 0} \frac{f(h)-f(-h)}{h} = 2$,则下列结论正确的是()。

$$A. f'(0) = 1$$

$$B. f'(0) = 1$$
或 $f(x)$ 在 $x = 0$ 点不可导

$$C. f'(0) = 2$$

$$D. f'(0) = 2 或 f(x) 在 x = 0 点不可导$$

答案: B

题 8. f(x)在 $U(x_0,\delta)$ 有定义, $\lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{h}=1$,则 $f'(x_0)=($)。

$$A. -\frac{1}{2}$$

$$C. -1$$

$$D.\frac{1}{2}$$

答案:
$$A$$
,解: 原式= $\frac{x_0-2h-x_0}{h}$ $f'(x_0)=-2f'(x_0)=1$ \Rightarrow $f'(x_0)=-\frac{1}{2}$

2. 复合函数求导

①求导公式

$$(x^{\mu})' = \mu x^{u-1}$$

$$(\sin x)' = \cos x$$

$$(\csc x)' = -\csc x \cot x$$

$$(e^x)'=e^x$$

$$(\cos x)' = -\sin x$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\ln x)' = \frac{1}{x}$$

$$(\tan x)' = \sec^2 x$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(a^x)' = a^x \ln a$$

$$(\cot x)' = -\csc^2 x$$

$$(\arctan x)' = \frac{1}{1+x^2}$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\sec x)' = \sec x \tan x$$

$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

②求导法则

$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

$$[f(x) \cdot g(x)]' = f'(x)g(x) + f(x) \cdot g'(x)$$

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x) \cdot g'(x)}{g^{2}(x)}$$

③复合函数求导

若
$$y = f(u)$$
, $u = \varphi(x)$, 则 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

题 1. $y = \ln \sin \sqrt{x}$, 求y'。

解:
$$y' = \frac{1}{\sin\sqrt{x}} \cdot \cos\sqrt{x} \cdot \frac{1}{2\sqrt{x}} = \frac{\cos\sqrt{x}}{2\sqrt{x}\sin\sqrt{x}}$$

题 2.
$$y = \ln(x + \sqrt{a^2 + x^2})$$
,求 y' 。

$$\text{AP: } y' = \frac{1}{x + \sqrt{a^2 + x^2}} \cdot (1 + \frac{2x}{2\sqrt{a^2 + x^2}}) = \frac{1}{x + \sqrt{a^2 + x^2}} \cdot \frac{\sqrt{a^2 + x^2} + x}{\sqrt{a^2 + x^2}} = \frac{1}{\sqrt{a^2 + x^2}}$$

题 3. $y = \ln \arcsin(1-2x)$, 求 y'。

解:
$$y' = \frac{1}{\arcsin(1-2x)} \cdot \frac{1}{\sqrt{1-(1-2x)^2}} \cdot (-2) = \frac{-2}{\sqrt{4x-4x^2}\arcsin(1-2x)}$$

题 4. 设 $f(x) = x \arctan \sqrt{x^2 + 2x}$, 求 f'(x)。

$$\text{#}: f'(x) = \arctan \sqrt{x^2 + 2x} + x \cdot \frac{1}{1 + (\sqrt{x^2 + 2x})^2} \cdot \frac{2x + 2}{2\sqrt{x^2 + 2x}}$$
$$= \arctan \sqrt{x^2 + 2x} + \frac{x}{(x+1)\sqrt{x^2 + 2x}}$$

题 5. $f(x) = x(x+1)(x+2)\cdots(x+n)$,则 f'(0) =_______, f'(-1) =______

$$f'(x) = x \cdot g(x), \quad g(x) = (x+1)(x+2) \cdots (x+n)$$

$$f'(x) = g(x) + x \cdot g'(x) = (x+1)(x+2) \cdots (x+n) + x [(x+1)(x+2) \cdots (x+n)]'$$

$$f'(0) = 1 \times 2 \times \cdots \times n = n!$$

$$f(x) = (x+1) \cdot g(x), \quad g(x) = x(x+2) \cdots (x+n)$$

$$f'(x) = g(x) + (x+1) \cdot g'(x) = x(x+2) \cdots (x+n) + (x+1)[x(x+2) \cdots (x+n)]'$$

$$f'(-1) = -1 \times 1 \times 2 \times \cdots \times (n-1) = -(n-1)!$$

题 6. 设函数 f(x) 可导,且 $y = f(\arctan x)$,则 $y' = \underline{\hspace{1cm}}$ 。

解:
$$y' = f'(\arctan x) \cdot \frac{1}{1+x^2} = \frac{f'(\arctan x)}{1+x^2}$$

3. 导数的几何/物理应用

题 1. 过(e,1)作 $y = \ln x$ 的切线, 求切线方程和法线方程。

解:
$$y' = \frac{1}{x}\Big|_{x=e} = \frac{1}{e}$$
 ⇒ 切线方程: $y-1=\frac{1}{e}(x-e)$, 化简得: $y=\frac{1}{e}x$ 法线斜率: $k' = -\frac{1}{k} = -e$, 故法线方程为: $y-1=-e(x-e)$ 化简得: $y=-ex+e^2+1$

题 2. 过(0,1)作 $y = \ln x$ 的切线, 求切线方程。

解:设切点
$$(x_0, \ln x_0)$$
,得 $y' = \frac{1}{x}\Big|_{x=x_0} = \frac{1}{x_0}$,则 $y - \ln x_0 = \frac{1}{x_0}(x-x_0)$
将 $(0,1)$ 点代入得: $1 - \ln x_0 = \frac{1}{x_0}(0-x_0)$, 化简得: $\ln x_0 = 2 \Rightarrow x_0 = e^2$
将 $x_0 = e^2$ 代入 $y = \ln x$,得 $y_0 = 2$
即切线为: $y - 2 = \frac{1}{e^2}(x-e^2)$, 化简得: $y = \frac{1}{e^2}x + 1$

题 3. 一质点沿着直线运动,设其运动规律 $S = \frac{1}{4}t^4 - 4t^3 + 5$ (m) , 则 t = 1 时,

其加速度为_____

解:
$$v = S' = t^3 - 12t^2$$
, $a = v' = 3t^2 - 24t \Big|_{t=1} = 3 - 24 = -21m / s^2$

课时七 练习题

- 1. 若函数 f(x) 在点 x_0 点存在左、右导数,则 f(x) 在点 x_0 处 ()。
- A. 可导
- *B*. 连续
- *C*. 不可导
 - D. 不连续
- 2. 函数 f(x) = 2|x-1| 在点 x = 1 处 ()。
- *A*. 无定义

- B. 可导 C. 不连续 D. 连续但不可导
- 3. 若 $f(x) = \begin{cases} e^{ax}, & x < 0 \\ b + \sin 2x, x \ge 0 \end{cases}$ 在 x = 0 处可导,则 a, b 的值为()。

- A. a = 1, b = 2 B. a = 2, b = 1 C. a = -2, b = 1 D. a = 2, b = 2
- 4. 设 $f(x) = \begin{cases} x \cos \frac{1}{x^2}, x \neq 0 \\ 0, x = 0 \end{cases}$ 则f(x)在点x = 0处 ()。
- A. 极限不存在 B. 极限存在但不连续 C. 连续但不可导 D. 可导

- 5. 在点x = 0处,不可导的函数是()。

- A. y = |x| $B. y = 2x^3$ $C. y = \sin x$ $D. y = \arctan x$
- 6. 函数 $f(x) = |x^2 5x + 6|(x-2)$ 有几个不可导点 ()。
- $A.0 \uparrow$
- *B*.1♠
- C. 2↑
- D.3个
- 7. 设 $f'(x_0)$ 存在,则 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x} =$ ______。
- 8. 若 $f'(x_0) = 1$,则 $\lim_{t \to 0} \frac{f(x_0 + t) f(x_0 t)}{\sin 2t} = \underline{\qquad}$ 。

9. 设
$$\lim_{h\to 0} \frac{f(3h)-f(0)}{h} = 3$$
,则下列结论正确的是()。

$$A. f'(0) = 1$$

$$B. f'(0) = 1$$
或 $f(x)$ 在 $x = 0$ 点不可导

$$C. f'(0) = 3$$

$$D. f'(0) = 3 或 f(x) 在 x = 0 点不可导$$

10. 设 f(0) = 0,则 f(x) 在 x = 0 点可导的充要条件是()。

$$A.\lim_{x\to 0} \frac{f(x)}{x}$$
存在

$$B.\lim_{x\to 0} \frac{f(2x)-f(x)}{x}$$
存在

$$C. \lim_{x\to 0} \frac{f(x)-f(-x)}{2x}$$
存在
$$D. \lim_{x\to 0} \frac{f(1-e^x)}{x}$$
存在

$$D.\lim_{x\to 0}\frac{f(1-e^x)}{x}$$
存在

12. 计算下题

1) 设
$$y = \sin^2 \frac{1}{\sqrt{x^2 + 1}}$$
, 求 y'

3) 读
$$y = \ln(x + \sqrt{x^2 + 1})$$
,菜 $\frac{d^2y}{dx^2}\Big|_{x=1}$

6) 设
$$y = \cos^2 x \ln x$$
, 求 y'

7)设
$$y = \frac{x}{\sqrt{1-x^2}}, \bar{x}y'$$

8) 设
$$y = \arctan 3x + 3^x$$
,求 $\frac{dy}{dx}$

9)设
$$y = \arcsin(\sqrt{3}x)$$
,求 $\frac{dy}{dx}$

10) 设
$$y = f(\ln x)e^{f(x)}$$
, 求 y'

课时八 导数(二)

考点	重要程度	占分	题型
1. 高阶导数	**	0~3	选择、填空
2. 隐函数求导	必考	6 ~ 10	十ा
3. 参数方程求导	少 有	0~10	大题

1. 高阶导数

二阶及二阶以上的导数统称为高阶导数,常用的两种求n阶导数的方法:

(1) 数学归纳法

第一步: 先求出一阶, 二阶, 三阶等导数

第二步: 从中归纳出n阶导数的表达式

第三步: 用数学归纳法证明

(2) 公式法

1)
$$[u \pm v]^{(n)} = u^{(n)} \pm v^{(n)}$$

2) 莱布尼茨公式:
$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}$$

题 1. 设 $y = \sin x$,则 $y = \sin x$ 的 2017 阶导数 $y^{(2017)} =$ ______。

解:
$$y' = \cos x$$

$$y'' = -\sin x$$

$$y''' = -\cos x$$
 $\frac{2017}{4} \cdots 1$, $x = \cos x$

$$y^{(4)} = \sin x$$

$$y^{(5)} = \cos x$$

题 2. 设 $y = x \ln x$, 求 $y^{(10)}$ 。

解:
$$y' = \ln x + 1$$
, $y'' = \frac{1}{x}$, $y''' = -\frac{1}{x^2}$, $y^{(4)} = 2\frac{1}{x^3}$, $y^{(5)} = -2 \times 3\frac{1}{x^4}$

一般地: $n > 2$ 时, $y^{(n)} = (-1)^n (n-2)! \frac{1}{x^{n-1}}$, $\Rightarrow y^{(10)} = 8! \cdot \frac{1}{x^9} = \frac{8!}{x^9}$

题 3. $f(x) = x^2 e^x \, \text{则} \, f^{(4)}(0) = \underline{\hspace{1cm}}$ 。

解:
$$(x^2e^x)^4 = C_4^0(x^2)^{(4)}e^x + C_4^1(x^2)^{(3)}e^x + C_4^2(x^2)''e^x + C_4^3(x^2)'e^x + C_4^4x^2e^x$$

$$= \frac{4\times 3}{2} \times 2e^x + 4\times 2x \cdot e^x + x^2e^x = 12e^x + 8xe^x + x^2e^x$$
故 $f^{(4)}(0) = 12$

2. 隐函数求导

题 1. 求由方程 $xy = e^{x+y} + x^2$ 确定 $y \in x$ 的函数,求 $\frac{dy}{dx}$ 。

解:
$$y + xy' = e^{x+y}(1+y') + 2x$$

 $(x - e^{x+y})y' = e^{x+y} + 2x - y$
 $\frac{dy}{dx} = y' = \frac{e^{x+y} + 2x - y}{x - e^{x+y}}$

题 2. 设 y = f(x) 由方程 $y - xe^y = 1$ 所确定,求 $y'|_{x=0}$ 的值。

解:
$$y' - e^y - xe^y \cdot y' = 0$$
 $\Rightarrow (1 - xe^y)y' = e^y$ $\Rightarrow y' = \frac{e^y}{1 - xe^y}$
 $x = 0$ 时,代入 $y - xe^y = 1$,得 $y = 1$,故 $y'|_{x=0} = \frac{e^1}{1 - 0 \times e^1} = e$

题 3. 设 $y = x^{\sin x}$,求 y'

解:
$$y = e^{\ln x^{\sin x}} = e^{\sin x \ln x}$$

 $y' = e^{\sin x \ln x} (\sin x \ln x)'$
 $= e^{\sin x \ln x} (\cos x \ln x + \frac{\sin x}{x})$
 $= x^{\sin x} (\cos x \ln x + \frac{\sin x}{x})$

题 4. 设
$$y = \frac{\sqrt{x+2}(3-x)^4}{(2x+1)^3}$$
, 求 y'

解:
$$\ln y = \ln \frac{\sqrt{x+2(3-x)^4}}{(2x+1)^3}$$

$$= \ln \sqrt{x+2} + \ln(3-x)^4 - \ln(2x+1)^3$$

$$= \frac{1}{2}\ln(x+2) + 4\ln(3-x) - 3\ln(2x+1)$$

两边同时求导:

$$\frac{y'}{y} = \frac{1}{2(x+2)} - \frac{4}{3-x} - \frac{6}{2x+1}$$

$$y' = \frac{\sqrt{x+2}(3-x)^4}{(2x+1)^3} \left[\frac{1}{2(x+2)} - \frac{4}{3-x} - \frac{6}{2x+1} \right]$$

3. 参数方程求导

$$\text{ \widehat{H}: } \frac{dx}{dt} == \frac{2t}{1+t^2}, \quad \frac{dy}{dt} = 1 - \frac{1}{1+t^2} = \frac{t^2}{1+t^2}$$

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{\frac{t^2}{1+t^2}}{\frac{2t}{1+t^2}} = \frac{t}{2}, \qquad \frac{d(\frac{dy}{dx})}{dt} = \frac{1}{2}$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d\left(\frac{dy}{dx}\right)}{dt} \cdot \frac{dt}{dx} = \frac{d\left(\frac{dy}{dx}\right)}{dt} / \frac{dx}{dt} = \frac{\frac{1}{2}}{\frac{2t}{1+t^2}} = \frac{1+t^2}{4t}$$

题 2. 求曲线 $\begin{cases} x = \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 在 t = 1 处的切线方程。

解:
$$t = 1$$
时, $x = \ln 2, y = 2$

$$\frac{dx}{dt} = \frac{1}{1+t}\Big|_{t=1} = \frac{1}{2}, \quad \frac{dy}{dt} = (3t^2 + 2t)\Big|_{t=1} = 5,$$

$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = 10$$

故切线方程为:
$$y-2=10(x-\ln 2)$$

化简可得:
$$y = 10x - 10 \ln 2 + 2$$

课时八 练习题

1. 己知
$$f(x) = \frac{1}{x - 2014}$$
,则 $y^{(n)} = \underline{\hspace{1cm}}$ 。

2. 己知
$$y = x^{2018} + e^x$$
,则 $y^{(2018)} =$ ______

3. 己知
$$f(x) = xe^x$$
,则 $f^{(2017)}(0) = _____$ 。

4.
$$\exists \exists y = (2x-1)^5 (3x+7)^7, \quad \mathbb{N} | y^{(12)} = \underline{\qquad}, \quad y^{(13)} = \underline{\qquad},$$

- 5. 函数y = y(x)是由方程 $e^x e^y + 1 = \cos(xy)$ 所确定的函数,求dy。
- 6. 求曲线 $e^{y} xy^{2} = e$ 在点(0,1)处的切线方程。

7. 设
$$y = x^{\cos x}$$
, $(x > 0)$, 求 dy

8. 设
$$y = (\cos x)^{\sin x}$$
, 求 dy

10. 设
$$y = \sqrt[3]{\frac{1-\cos x}{e^{3x}}}$$
, 求 y'

11. 己知
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

12 求由参数方程
$$\begin{cases} x = e^t \sin t \\ y = e^t \cos t \end{cases}$$
 所确定的函数的导数 $\frac{dy}{dx} \Big|_{\frac{\pi}{3}}$ 。

课时九 函数的微分

考点	重要程度	占分	题型
1. 微分的定义	*	0~3	选择、填空
2. 微分的几何意义	*	0~3	处件、填工
3. 一阶微分不变性	****	0 ~ 6	选择、填空、大题

1. 微分的定义

设函数y = f(x)在 x_0 的某个邻域内有定义,若函数增量 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ 可表示为 $\Delta y = A \cdot \Delta x + o(\Delta x)$, 其中 A 为不依赖于 Δx 的常数,则称 y = f(x) 在 x_0 处可微,其中 $A \triangle x$ 叫做函数 y = f(x) 在点 x_0 相应于自变量 $\triangle x$ 的微分,记作 dy,

1)
$$A = f'(x)$$
 $\Delta x = dx$ $dy = f'(x)dx$

- 2) $f'(x) = \frac{dy}{dx}$, 导数也叫微分之商。
- 3) 可导和可微之间关系: 可导即可微。

题 1. 设函数 $y = x^3 - x$, 当 $x = 2, \Delta x = 0.01$ 时, 函数 y 的微分 dy 是 ()。

A.1.1

B.11

 $C.\,0.11$

D.0.01

解: $f'(x) = (3x^2 - 1)|_{x=2} = 11$ $dy = f'(x) \cdot \triangle x = 11 \times 0.01 = 0.11$

答案: C

题 2. 函数 f(x) 在点 x_0 处连续是函数 f(x) 在点 x_0 可微的 ()。

A. 充分条件 B. 必要条件 C. 充分必要条件 D. 既不充分也不必要条件 答案: B, 连续 $\stackrel{\times}{\longrightarrow}$ 可导 (可微)

题 3. 设函数y = f(x)在 x_0 处可微, 自变量在点 x_0 处有改变量 $\Delta x = 0.2$, 相应

的函数改变量 Δy 的线性主部等于0.8,则 $f'(x_0) = _______$ 。

解:
$$\triangle y = A \cdot \triangle x + o(\triangle x)$$
 线性主部为 $dy = A \cdot \triangle x = 0.8$ 即 $f'(x_0) \cdot \triangle x = 0.8$
$$f'(x_0) \cdot 0.2 = 0.8 \Rightarrow f'(x_0) = 4$$

2. 微分的几何意义

若 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ 是曲线 y = f(x) 在点 x_0 处相应于自变量增量 Δx 的 纵坐标 $f(x_0)$ 的增量,那么微分 $dy \Big|_{x=x_0}$ 是曲线 y = f(x) 在点 $M_0(x_0, f(x_0))$ 处 切线的纵坐标相应的增量。

3. 一阶微分形式不变性

若
$$y = f(u), u = g(x)$$
, 则 $dy = f'(u)du$ 或 $dy = f'(u) \cdot g'(x)dx$

题 1. $y = \cos \ln(1+2x)$, 求 dy。

解:
$$dy = -\sin \ln(1+2x) \cdot \frac{1}{1+2x} \cdot 2dx = -\frac{2\sin \ln(1+2x)}{1+2x} dx$$

题 2. 设 f(x) 可导, $y = f(\sin x) + e^{f(x)}$ 则 dy =______。

解:
$$dy = [f'(\sin x) \cdot \cos x + e^{f(x)} \cdot f'(x)]dx$$

题 3. 设 f(u) 可微, $y = f(\cos x)$, 则 dy = ()。

A. $f(\cos x)dx$

B. $f'(\cos x)\cos dx$

 $C.(f(\cos x))'\cos xdx$

 $D. -f'(\cos x)\sin x dx$

答案: D, $dy = f'(\cos x)d\cos x = f'(\cos x)(-\sin x)dx = -f'(\cos x)\sin xdx$

课时九 练习题

1. 函数 $y = \sqrt{1+x}$ 在点 x = 0 处当自变量改变量 $\Delta x = 0.04$ 时, dy $\Delta x = 0.04$ = _____

2. 设函数 y = f(x) 在点 x_0 处可导,且 $f'(x_0) \neq 0$,

则 $\lim_{\Delta x \to 0} \frac{\Delta y - dy}{\Delta x}$ 等于 ()。

A.0

B.-1

C.1

 $D.\infty$

- 3. 下列说法正确的是()
- A.若 f(x) 在 $x = x_0$ 处连续,则 f(x) 在 $x = x_0$ 处可导
- B. 若 f(x) 在 $x = x_0$ 处不可导,则 f(x) 在 $x = x_0$ 处不连续
- C. 若 f(x) 在 $x = x_0$ 处不可微,则 f(x) 在 $x = x_0$ 处极限不存在
- D.若 f(x) 在 $x = x_0$ 处不连续,则 f(x) 在 $x = x_0$ 处不可导
- 4. 计算下列各题

1) 设
$$y = e^{\arctan\sqrt{2}x}$$
,菜 dy

- 3) 设 $f(x) = x \ln x$, 则 $df(2x) = _____$ 。
- 4) 若f(u)可导,目 $y = f(2^x)$,则dy = () 。

- $A. f'(2^x)dx$ $B. f'(2^x)d(2^x)$ $C. [f(2^x)]'dx$ $D. f'(2^x)2^x \ln 2dx$

课时十 求极限(四)

考点	重要程度	占分	题型
1. 洛必达法则	必考	8~15	选择、填空、大题

1. 洛必达法则

若满足
$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$ 型, 则 $\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$

$$(1)$$
 $\frac{0}{0}$, $\frac{\infty}{\infty}$ 可直接使用洛必达, $\infty - \infty$, $0 \cdot \infty$, 1^{∞} , ∞^{0} , 0^{0} 则需转化成 $\frac{0}{0}$, $\frac{\infty}{\infty}$ 型才可使用

(2)若
$$\lim \frac{f'(x)}{g'(x)}$$
仍满足 $\frac{0}{0}$, $\frac{\infty}{\infty}$ 型,可连续使用 $\lim \frac{f'(x)}{g'(x)} = \lim \frac{f''(x)}{g''(x)}$

(3)洛必达不是万能的,求极限时首选无穷小替换,再用洛必达

① " $\frac{0}{0}$ "型未定式

题 1. 求
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$

解: 原式=
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} = \lim_{x\to 0} \frac{e^x + e^{-x} - 2}{\frac{1}{2}x^2} = \lim_{x\to 0} \frac{e^x - e^{-x}}{x} = \lim_{x\to 0} e^x + e^{-x} = 2$$

② "
$$\frac{\infty}{\infty}$$
" 型未定式

题 1. 求 $\lim_{x\to 0^+} \frac{\ln \sin 3x}{\ln \sin 5x}$

解: 原式=
$$\lim_{x\to 0^{+}} \frac{\frac{1}{\sin 3x} \cdot \cos 3x \cdot 3}{\frac{1}{\sin 5x} \cdot \cos 5x \cdot 5} = \lim_{x\to 0^{+}} \frac{3\cos 3x \sin 5x}{5\cos 5x \sin 3x}$$

$$= \lim_{x\to 0^{+}} \frac{3\cos 3x}{5\cos 5x} \cdot \lim_{x\to 0^{+}} \frac{\sin 5x}{\sin 3x} = \frac{3}{5} \lim_{x\to 0^{+}} \frac{5x}{3x} = \frac{3}{5} \times \frac{5}{3} = 1$$

③ "∞-∞"型未定式

题 1.
$$\lim_{x \to 1} (\frac{x}{x-1} - \frac{1}{\ln x})$$

解:原式=
$$\lim_{x\to 1} \frac{x \ln x - x + 1}{(x-1) \ln x} = \lim_{x\to 1} \frac{\ln x + 1 - 1}{\ln x + (x-1) \cdot \frac{1}{x}} = \lim_{x\to 1} \frac{\ln x}{\ln x + 1 - \frac{1}{x}} = \lim_{x\to 1} \frac{\frac{1}{x}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{2}$$

④ "0·∞"型未定式

题 1. 求
$$\lim_{x \to +\infty} (\frac{\pi}{2} - \arctan x)x$$

解: 原式
$$\lim_{x \to +\infty} \frac{\frac{\pi}{2} - \arctan x}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{-\frac{1}{1+x^2}}{-\frac{1}{x^2}} = \lim_{x \to +\infty} \frac{x^2}{1+x^2} = 1$$

⑤ "1" 型未定式

题 1. 求
$$\lim_{x\to 0} (x+e^x)^{\frac{1}{x}}$$

解: 原式=
$$e^{\lim_{x\to 0}\ln(x+e^x)^{\frac{1}{x}}}=e^{\lim_{x\to 0}\frac{\ln(x+e^x)}{x}}=e^{\lim_{x\to 0}\frac{1+e^x}{x+e^x}}=e^2$$

⑥ "0°"型未定式

题 1. 求 $\lim_{x\to 1^+} (\ln x)^{\tan(x-1)}$

解: 原式=
$$e^{\lim_{x\to 1^+}\ln(\ln x)^{\tan(x-1)}}=e^{\lim_{x\to 1^+}\tan(x-1)\cdot\ln(\ln x)}=e^{\lim_{x\to 1^+}(x-1)\cdot\ln(\ln x)}$$

$$= e^{\lim_{x \to 1^{+}} \frac{\ln(\ln x)}{\frac{1}{x-1}}} = e^{\lim_{x \to 1^{+}} \frac{\frac{1}{\ln x} \cdot \frac{1}{x}}{\frac{1}{(x-1)^{2}}}} = e^{\lim_{x \to 1^{+}} \frac{(x-1)^{2}}{x \ln x}}$$

$$=e^{\lim_{x\to 1^+}-\frac{2(x-1)}{\ln x+1}}=e^0=1$$

⑦ " ∞ ° " 型未定式

题 1. 求
$$\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\tan x}$$

解: 原式=
$$e^{\lim_{x\to 0^+}\ln(\frac{1}{x})^{\tan x}}=e^{\lim_{x\to 0^+}\tan x \cdot \ln\frac{1}{x}}=e^{\lim_{x\to 0^+}-x \ln x}=e^{\lim_{x\to 0^+}-\frac{\ln x}{\frac{1}{x}}}=e^{\lim_{x\to 0^+}-\frac{1}{x}}=e^{\lim_{x\to 0^+}-\frac{1}{x}}=1$$

题 2. 求 $\lim_{n\to+\infty} \sqrt[n]{n}$

解:
$$\lim_{x \to +\infty} \sqrt[x]{x} = \lim_{x \to +\infty} x^{\frac{1}{x}} = e^{\lim_{x \to +\infty} \ln x^{\frac{1}{x}}} = e^{\lim_{x \to +\infty} \frac{\ln x}{x}} = e^{\lim_{x \to +\infty} \frac{1}{x}} = e^{0} = 1$$
, 即 $\lim_{n \to +\infty} \sqrt[n]{n} = 1$

课时十 练习题

1. 求下列
$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$ 型未定式

$$1) \lim_{x\to 0} \frac{x-\sin x}{x^3}$$

2)
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{x \tan x}$$

3)
$$\lim_{x \to +\infty} \frac{xe^{\frac{x}{2}}}{x + e^x}$$

4)
$$\lim_{x\to 0^+} \frac{\ln \sin 3x}{\ln \sin 2x}$$

$$5) \lim_{x\to 0^+} \frac{\ln \cot x}{\ln x}$$

2. 求下列"∞-∞"型未定式

1)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x\sin x}\right)$$

1)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x\sin x}\right)$$
 2) $\lim_{x\to 0} \left[\frac{1}{x} - \frac{1}{\ln(1+x)}\right]$ 3) $\lim_{x\to \frac{\pi}{2}} (\sec x - \tan x)$

3)
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$$

$$1) \quad \lim_{x \to 0^+} x^2 \ln x$$

$$2) \lim_{x\to\pi} (\pi-x) \tan\frac{x}{2}$$

1)
$$\lim_{x\to 1} (2-x)^{\frac{1}{\ln x}}$$

2)
$$\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}, (a>0, b>0, c>0)$$

$$1) \lim_{x\to 0^+} x^x$$

$$2) \lim_{x\to 0^+} x^{\sin x}$$

$$1) \lim_{x \to +\infty} x^{\frac{1}{\ln(1+x^3)}}$$

$$2) \lim_{x\to 0} (\cot x)^x$$

课时十一 求极限(五)

考点	重要程度	占分	题型
1. 泰勒公式	***	0~5	选择、填空、大题

1. 泰勒公式

定理 1: (佩亚诺余项的 n 阶泰勒公式)

设f(x)在 x_0 处有n阶导数,则存在 x_0 的一个邻域,对于该邻域内的任一x,有:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中 $R_n(x) = o[(x-x_0)^n]$ 称为佩亚诺余项。

定理 2: (拉格朗日余项的 n 阶泰勒公式)

设f(x)在 x_0 的某个领域内有n+1阶的导数,对于该邻域内的任一x,有:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$ (ξ 在 x_0 与x 之间) 称为拉格朗日余项。

麦克劳林公式: 当 $x_0 = 0$ 时, n阶泰勒公式也称为n阶麦克劳林公式。

(1)
$$e^x = 1 + x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + o(x^n)$$

(2)
$$\sin x = x - \frac{1}{3!}x^3 + \dots + \frac{(-1)^n}{(2n+1)!}x^{2n+1} + o(x^{2n+1})$$

(3)
$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \dots + \frac{(-1)^n}{(2n)!}x^{2n} + o(x^{2n})$$

(4)
$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n-1}}{n} x^n + o(x^n)$$

(5)
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + o(x^n)$$

题 1.
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$$

解:
$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + o(x^4) = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)$$
.

$$e^x = 1 + x + \frac{x^2}{2!} + o(x^2)$$

$$e^{\frac{-x^2}{2}} = 1 + (-\frac{x^2}{2}) + \frac{1}{2!}(-\frac{x^2}{2})^2 + o(x^4) = 1 - \frac{1}{2}x^2 + \frac{1}{8}x^4 + o(x^4)$$

$$\cos x - e^{\frac{-x^2}{2}} = [1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)] - [1 - \frac{1}{2}x^2 + \frac{1}{8}x^4 + o(x^4)] = -\frac{1}{12}x^4 + o(x^4)$$

$$\lim_{x \to 0} \frac{\cos x - e^{\frac{-x^2}{2}}}{x^4} = \lim_{x \to 0} \frac{-\frac{1}{12}x^4 + o(x^4)}{x^4} = -\frac{1}{12}$$

题 2.
$$\lim_{x\to 0} \frac{e^x - \sin x - 1}{1 - \sqrt{1 - x^2}}$$

解: 原式=
$$\lim_{x\to 0} \frac{e^x - \sin x - 1}{\frac{1}{2}x^2}$$

$$e^x = 1 + x + \frac{x^2}{2!} + o(x^2) \qquad \sin x = x + o(x^2)$$
原式= $\lim_{x\to 0} \frac{[1 + x + \frac{x^2}{2!} + o(x^2)] - [x + o(x^2)] - 1}{\frac{1}{2}x^2} = \lim_{x\to 0} \frac{\frac{x^2}{2} + o(x^2)}{\frac{1}{2}x^2} = 1$

$$\mathbb{E} 3. \quad \lim_{x \to 0} \frac{2(\cos x - 1) + x^2}{x (x - \sin x)}$$

解:
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$
 $\sin x = x - \frac{1}{3!}x^3 + o(x^3)$

$$\boxed{\mathbb{R}} = \lim_{x \to 0} \frac{2\left[1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) - 1\right] + x^2}{x\left[x - x + \frac{x^3}{3!} - o(x^3)\right]} x$$

$$= \lim_{x \to 0} \frac{\frac{1}{12}x^4 + o(x^4)}{\frac{1}{6}x^4 - o(x^4)}$$

$$= \lim_{x \to 0} \frac{\frac{1}{12} + \frac{o(x^4)}{x^4}}{\frac{1}{6} - \frac{o(x^4)}{x^4}}$$

$$= \frac{1}{2}$$

课时十一 练习题

2.
$$\lim_{x \to \infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt[4]{x^4 - 2x^3}) = \underline{\hspace{1cm}}_{\circ}$$

3.
$$\lim_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x + \ln(1 - x)} = \underline{\hspace{1cm}}$$

4.
$$\lim_{x \to 0} \frac{1 + \frac{1}{2}x^2 - \sqrt{1 + x^2}}{(\cos x - e^{x^2})\sin x^2} = \underline{\hspace{1cm}}$$

课时十二 单调性与凹凸性

考点	重要程度	占分	题型
1. 单调性与极值			
2. 最大值与最小值	必考	6~10	选择、填空、大题
3. 凹凸性与拐点			

1. 单调性与极值

设f(x)在(a,b)内可导, 若f'(x) > 0(<0), 则f(x)在[a,b]内单调增加(减少)

【注】: 若 $f'(x) \ge 0 (\le 0)$,则 f(x) 在 [a,b] 内单调不减(单调不增)

极值: 设函数 f(x)在 (a,b) 内有意义, x_0 是 (a,b) 内的某一点,则如果存在一个点 x_0 的邻域,使得对此邻域内的任一点 $x(x \neq x_0)$,

若 $f(x) < f(x_0)$, 则称 $f(x_0)$ 为函数 f(x)的一个极大值;

若 $f(x) > f(x_0)$,则称 $f(x_0)$ 为函数f(x)的一个极小值;

称 x_0 为函数f(x)的一个极值点。

极值可能存在于: ①驻点 ②一阶导数不存在点

极值判定:

第一充分条件: $f'(x_0) = 0$ 且左右异号 $\begin{cases} 左增右减,极大值 \\ 左减右增,极小值 \end{cases}$

第二充分条件: $f'(x_0) = 0$, $f''(x_0) \neq 0$ $\begin{cases} f''(x_0) < 0$, 极大值 $f''(x_0) > 0$, 极小值

题 1. 求函数 $f(x) = 2x + 3\sqrt[3]{x^2}$ 的单调区间和极值。

解: 定义域为 $(-\infty, +\infty)$, $f'(x) = 2 + \frac{2}{\sqrt[3]{x}}$, 可能极值点: $x_1 = -1, x_2 = 0$

	$(-\infty, -1)$	-1	(-1,0)	0	$(0,+\infty)$
f'(x)	+	0	_		+
f(x)	7	极大	\	极小	7

单调递增区间为: $(-\infty,-1]\cup[0,+\infty)$, 单调递减区间为: [-1,0]

极大值为: f(-1)=1 , 极小值为f(0)=0

题 2. 判断

①极值点一定是驻点

() 。

答案: ×,对于可导函数才有该结论

②驻点一定是极值点

() 。

答案: \times , 若 $f'(x_0) = 0$, 则 x_0 为极值点

③可导函数的极值点一定是驻点

() 。

答案: $\sqrt{ }$,若 $f'(x_0)$ 存在且 x_0 为极值点,则有 $f'(x_0) = 0$

题 3. x = 0是函数 y = |x|的()。

A.驻点

B.拐点

C.极大点

D.极小点

答案: D

题 4.
$$\lim_{x\to 1} \frac{f(x)-f(1)}{(x-1)^2} = 2$$
 则在 $x=1$ 处()。

A. f(x)的导数存在,且 $f'(1) \neq 0$

B. f(x)取得极大值

C. f(x)取得极小值

D. f(x)的导数不存在

题 5. 证明: 当x > 0时,不等式 $\sqrt{1+x} < 1 + \frac{x}{2}$ 成立 ()。

$$f'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2} = \frac{1}{2} \left(\frac{1}{\sqrt{1+x}} - 1 \right)$$

当x > 0时, f'(x) < 0, 故f(x)在 $(0,+\infty)$ 上单调递减。

$$\mathbb{R} f(x) = \sqrt{1+x} - 1 - \frac{x}{2} < f(0) = 0$$

得证
$$\sqrt{1+x}$$
< $1+\frac{x}{2}$

题 6. 证明当 $0 < x < \frac{\pi}{2}$ 时, $\sin x + \cos x > 1 - x^2 + x$ 。

证明:
$$f(x) = \sin x + \cos x - 1 + x^2 - x$$
, $f'(x) = \cos x - \sin x + 2x - 1$

$$f''(x) = -\sin x - \cos x + 2 = (1 - \sin x) + (1 - \cos x)$$

当
$$x > 0$$
时, $f''(x) \ge 0 \Rightarrow f'(x) \uparrow$,故 $f'(x)$ 有最小值 $f'(0) = 0$

即恒有
$$f'(x) > 0 \Rightarrow f(x) \uparrow$$
, 即 $f(x)$ 有最小值 $f(0) = 0$

即
$$f(x) = \sin x + \cos x - 1 + x^2 - x > 0$$
,得证 $x > 0$ 时 $\sin x + \cos x > 1 - x^2 + x$

2. 最大值与最小值

求 f(x) 在[a,b]上最大值和最小值方法

- ①求出所有驻点和不可导点 x₁, x₂ ··· x_k
- ②计算 $f(x_1), f(x_2) \cdots f(x_k)$ 以及端点f(a), f(b)
- ③比较大小

题 1. 求 $f(x) = (x-5)\sqrt[3]{x^2}$ 在[-2,3]上的最值。

解:
$$f'(x) = \sqrt[3]{x^2} + \frac{2}{3}(x-5)\frac{1}{\sqrt[3]{x}} = \frac{5(x-2)}{3\sqrt[3]{x}}$$

可能极值点: $x_1 = 0, x_2 = 2$

$$f(0) = 0$$
, $f(2) = -3\sqrt[3]{4}$, $f(-2) = -7\sqrt[3]{4}$, $f(3) = -2\sqrt[3]{9}$

故最大值为0,最小值为-7∛4

题 2. 某种商品的需求量Q是单价P的函数: Q=12000-80p;商品的总成本c

是需求量Q的函数: c = 25000 + 50Q; 每单位商品需要纳税2元。试求使销售

利润最大的商品单价和最大利润额。

解: 利润
$$L(p) =$$
收益 $R(p) -$ 成本 $c(p)$

=
$$(12000 - 80p)(p-2) - [25000 + 50(12000 - 80p)]$$

$$= -80p^2 + 16160p - 649000$$

$$L'(p) = -160p + 16160$$
, $\Leftrightarrow L'(p) = 0$, $\Leftrightarrow p = 101$

依题意知: 当p=101时,取到最大利润额 $L(p)|_{p=101}=167080$ 元。

3. 凹凸性与拐点

凹凸区间: 在(a,b)内

若恒有f''(x) > 0,则曲线y = f(x)在(a,b)内是凹的;

若恒有f''(x) < 0,则曲线y = f(x)在(a,b)内是凸的。

拐点即曲线由凹变凸或由凸变凹的分界点。

拐点存在于: ① f''(x) = 0, ②二阶导数不存在的点

拐点判定:

第一充分条件: $f''(x_0) = 0$ 且两侧异号,则 $(x_0, f(x_0))$ 为拐点

第二充分条件: $f''(x_0) = 0$ 且 $f'''(x_0) \neq 0$,则 $(x_0, f(x_0))$ 为拐点

题 1. 求 $f(x) = (x-1)\sqrt[3]{x^5}$ 的凹凸区间和拐点。

解: 定义域为(-∞,+∞),
$$f(x) = (x-1)\sqrt[3]{x^5} = x^{\frac{8}{3}} - x^{\frac{5}{3}}$$
, $f'(x) = \frac{8}{3}x^{\frac{5}{3}} - \frac{5}{3}x^{\frac{2}{3}}$

$$f''(x) = \frac{40}{9}x^{\frac{2}{3}} - \frac{10}{9}x^{-\frac{1}{3}} = \frac{10}{9}x^{-\frac{1}{3}}(4x - 1) = \frac{10(4x - 1)}{9\sqrt[3]{x}}$$

可能拐点:
$$x_1 = 0$$
, $x_2 = \frac{1}{4}$

	$(-\infty,0)$	0	$(0,\frac{1}{4})$	$\frac{1}{4}$	$(\frac{1}{4}, +\infty)$
f''(x)	+		_	0	+
f(x)	凹	拐点	凸	拐点	Ш

凸区间:
$$\left[0,\frac{1}{4}\right]$$
, 凹区间: $(-\infty,0]$, $\left[\frac{1}{4},+\infty\right)$, 拐点: $(0,0)$, $(\frac{1}{4},-\frac{3}{4}\sqrt[3]{(\frac{1}{4})^5})$

题 2. 研究曲线 $y = xe^{-x}$ 的单调性、极值、凹凸性及拐点。

解: 定义域为 $(-\infty, +\infty)$, $f'(x) = e^{-x} - xe^{-x} = e^{-x}(1-x)$, 可能极值点: x=1

	$(-\infty,1)$	1	$(1,+\infty)$
f'(x)	+		_
f(x)	7	极大	>

单调递增区间 $(-\infty,1]$; 单调递减区间 $[1,+\infty)$; 极大值 $f(1)=e^{-1}$

$$f''(x) = -e^{-x}(1-x) - e^{-x} = e^{-x}(x-2)$$
, 可能拐点处 $x = 2$

	$(-\infty,2)$	2	$(2,+\infty)$
f''(x)	_		+
f(x)	凸	拐点	Ш

凸区间 $(-\infty,2]$; 凹区间 $[2,+\infty)$; 拐点 $(2,2e^{-2})$ 。

题 3. 若函数f(x)在(a,b)二阶可导,且f'(x) < 0,f''(x) < 0,则函数f(x)在

(a,b)内 ()。

A.单调增加,向上凸

B.单调减少,向上凸

C.单调增加,向下凹

D.单调减少,向下凹

答案: B

题 4. 设函数 f(x) 二阶可导,若 $f'(x_0) = f''(x_0) - 1 = 0$,那么点 x_0 ()。

A.是极小值点 B.是极大值点 C.不是极值点 D.不是驻点

答案: A, $f'(x_0) = 0$ 且 $f''(x_0) = 1 > 0$, 故 x_0 为极小值

题 5. 判断

① $f''(x_0) = 0$ 的点一定是拐点

()。答案: X

②拐点处一定有 $f''(x_0) = 0$

()。答案: X

③二阶导存在的拐点处,必有 $f''(x_0) = 0$ ()。答案: \checkmark

课时十二 练习题

- 1. 求 $y = 2x \arctan x \ln(1 + x^2)$ 的单调区间。
- 2. 求函数 $y = \ln x + \frac{1}{x}$ 的极值。
- 3. 下列关于极值命题中正确的是()
- A.若 $f'(x_0) = 0$ 则 x_0 必定是 f(x)的极值点
- B.极大值一定大于极小值
- C.若 $f'(x_0)$ 存在且 x_0 是极限值,则必有 $f'(x_0) = 0$
- D.若f(x)在点 x_0 连续但不可导,则 x_0 必为f(x)的极值点
- 4. 已知 $f(x) = k \sin x + \frac{1}{3} \sin 3x$ 在 $x = \frac{\pi}{3}$ 处取得极值,则参数 $k = _____$ 。
- 5. 证明: 当x > 0时, $\frac{x}{1+x} < \ln(1+x) < x$
- 6. 证明: 当x > 0时, $\ln(1+x) > \frac{\arctan x}{x+1}$
- 7. 函数 $y = \frac{1}{3}x^3 2x^2 + 5$ 在 [-2,2] 上的最大值为_____。
- 8. 已知制作一个背包的成本价为40元,如果每一个背包的售价为x元,售出的背包数由 $n = \frac{a}{x-40} + b(80-x)$ 给出,其中a,b为正常数,问什么样的售价能带来最大的利润,最大利润是多少?
- 9. 把长为12*cm*,宽为8*cm* 的矩形纸板的四个角剪去相同的小正方形,折成一个 无盖的盒子,要使盒子的容积最大,剪去的正方形的边长应为多少?

- 10. 求 $y = xe^x e^x + 1$ 的单调性、极值、凹凸区间及拐点。
- 11. 求 $y = 1 + \frac{36x}{(x+3)^2}$ 的单调性、极值、凹凸区间及拐点。
- 12. 问a,b为何值时,点(1,3)为曲线 $y = ax^3 + bx^2$ 的拐点。
- 13. 曲线 $y = 2 \ln x + x^2 1$ 的拐点是_____。
- 14. 设 $f'(x_0) = f''(x_0) = 0, f'''(x_0) > 0$, 则 ()。
- $A.f'(x_0)$ 是 f'(x) 的极大值 $B.f(x_0)$ 是 f(x) 的极大值
- $C.f(x_0)$ 是 f(x) 的极小值 $D.(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点
- 15. 若在区间(a,b)内,f'(x) > 0,f''(x) > 0,则曲线y = f(x)在(a,b)内()。
- A.单调减少且为凹弧
- B.单调增加且为凹弧
- C.单调减少且为凸弧
- D.单调增加且为凸弧

课时十三 渐近线、曲率圆

考点	重要程度	占分	题型
1. 渐近线	***	0~3	选择、填空
2. 曲率圆	**	0~3	选择、填空

1. 渐近线

1) 铅直渐近线

若 $\lim_{x\to a^+} f(x) = \infty$ 或 $\lim_{x\to a^-} f(x) = \infty$,则 x = a为曲线 y = f(x)的一条铅直渐近线。

2) 水平渐近线

若 $\lim_{x \to +\infty} f(x) = b$ 或 $\lim_{x \to -\infty} f(x) = b$,则 y = b 是曲线 y = f(x) 的一条水平渐近线。

3) 斜渐近线

若
$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \neq 0$$
, $\lim_{x \to +\infty} [f(x) - kx] = b$,

$$\lim_{x \to -\infty} \frac{f(x)}{x} = k \neq 0, \quad \lim_{x \to -\infty} [f(x) - kx] = b,$$

则 y = kx + b 是曲线 y = f(x) 的一条斜渐近线。

题 1. 曲线 $y = \frac{e^x}{x-1}$ 的铅直渐近线方程为_____。

解: 无定义点
$$x=1$$
, $\lim_{x\to 1} f(x) = \lim_{x\to 1} \frac{e^x}{x-1} = \infty$, 故铅直渐近线为 $x=1$

题 2.
$$y = \frac{\sin x}{x(2x-1)}$$
的水平渐近线是_____。

解:
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{1}{x} \sin x \cdot \frac{1}{2x-1} = 0$$
, 故水平渐近线为 $y=0$ 。

题 3. 设曲线 $y = \arctan \frac{x^2}{x-1}$ 的渐近线有几条 ()。

A.0

B.1

C. 2

D. 3

解:无定义点x=1

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \arctan \frac{x^{2}}{x - 1} = \arctan(-\infty) = -\frac{\pi}{2}$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \arctan \frac{x^2}{x - 1} = \arctan(+\infty) = \frac{\pi}{2}$$

故无铅直渐近线

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \arctan \frac{x^2}{x-1} = \arctan(+\infty) = \frac{\pi}{2}$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \arctan \frac{x^2}{x - 1} = \arctan(-\infty) = -\frac{\pi}{2}$$

故水平渐近线
$$y = \frac{\pi}{2}, y = -\frac{\pi}{2}$$

无斜渐近线,答案: C

题 4. 求曲线 $y = xe^{\frac{2}{x}} + 1$ 的渐近线。

解:无定义点:x=0

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (xe^{\frac{2}{x}} + 1) = 1$$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (xe^{\frac{2}{x}} + 1) = +\infty$$
, 故有铅直渐近线: $x = 0$

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{xe^{\frac{2}{x}} + 1}{x} = \lim_{x \to \infty} (e^{\frac{2}{x}} + \frac{1}{x}) = 1$$

$$b = \lim_{x \to \infty} \left[f(x) - kx \right] = \lim_{x \to \infty} \left(xe^{\frac{2}{x}} + 1 - x \right) = \lim_{x \to \infty} x \left(e^{\frac{2}{x}} - 1 \right) + \lim_{x \to \infty} 1 = \lim_{x \to \infty} x \cdot \frac{2}{x} + 1 = 3$$

故斜渐近线为: y = x + 3

2. 曲率圆

曲率
$$k = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}$$
,曲率半径 $R = \frac{1}{k}$ $(k \neq 0)$

若曲线为参数方程
$$\begin{cases} x = g(t) \\ y = \varphi(t) \end{cases}$$
, 曲率 $k = \frac{\left| x'y'' - x''y' \right|}{\left(x'^2 + y'^2 \right)^{\frac{3}{2}}}$

题 1. 曲线 $y = x^2 + x$ (x < 0) 上曲率为 $\frac{\sqrt{2}}{2}$ 的点的坐标______。

解:
$$y' = 2x + 1$$
, $y'' = 2$

$$k = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}} = \frac{2}{\left[1+(2x+1)^2\right]^{\frac{3}{2}}} = \frac{\sqrt{2}}{2}$$

解得: x = -1, x = 0 (舍去) 故坐标为(-1,0)。

题 2. 求曲线 $y = \sin x$ $(0 < x < \pi)$ 上哪一点处的曲率半径最小,并求该点处的曲率半径。

解:
$$R = \frac{1}{k}$$
, 若 R 最小,则 k 最大

$$y' = \cos x$$
, $y'' = -\sin x$, $k = \frac{|y''|}{(1 + {y'}^2)^{\frac{3}{2}}} = \frac{\sin x}{(1 + \cos^2 x)^{\frac{3}{2}}}$

\$\delta t = \sin x , ∅ cos² x = 1 - \sin² x = 1 - t² , ∑ 0 < x < π, ѝ t ∈ (0,1]

$$k = \frac{t}{(1+1-t^2)^{\frac{3}{2}}} = \frac{t}{(2-t^2)^{\frac{3}{2}}}$$

$$k' = \frac{(2-t^2)^{\frac{3}{2}} - t \times \frac{3}{2}(2-t^2)^{\frac{1}{2}} \times (-2t)}{(2-t^2)^3}$$

$$=\frac{(2-t^2)^{\frac{3}{2}}+3t^2(2-t^2)^{\frac{1}{2}}}{(2-t^2)^3}=\frac{(2-t^2)^{\frac{1}{2}}(2+2t^2)}{(2-t^2)^3}>0$$

k 为单调递增,t=1时, $k_{\text{max}}=1$

即在
$$x = \frac{\pi}{2}$$
处取得最大值 $k_{\text{max}} = 1$, 曲率半径 $R_{\text{min}} = \frac{1}{k} = 1$

课时十三 练习题

- 1. 求函数 $y = \frac{(x-1)^2}{x+1}$ 的铅直渐近线_____。
- 2. $y = \frac{1}{x-1} + 2$ 的水平渐近线_____。
- 3. $y = \frac{x^2 1}{x^2 2x 3}$ 有 () 条渐近线
- *A*. 1
- *B*. 2
- *C*. 3
- D. 4
- 4. $y = x + \sin \frac{1}{x}$ 的渐近线条数是()
- *A*. 0
- *B*. 1
- *C*. 2
- *D*. 3
- 5. 计算曲线 xy = 1 在点(1,1)处的曲率。
- 6. 常数a>b>0,曲线 Γ 的参数方程为 $\begin{cases} x=a\cos t \\ y=b\sin t \end{cases}$, $(0< t< 2\pi)$,p为曲线 Γ 上 对应与参数 $t=\frac{\pi}{4}$ 的点。求曲线 Γ 在p点的曲率。
- 7. 曲线 $y = \ln x$ 上哪一点处的曲率半径最小? 求出这个最小曲率半径。

课时十四 微分中值定理

考点	重要程度	占分	题型
1. 罗尔中值定理	****		
2. 拉格朗日中值定理	***	0~8	大题
3. 柯西中值定理	**		

1、罗尔中值定理

设函数 f(x)满足:

- ①在闭区间[a,b]连续;
- ②在开区间(a,b)可导;
- ③ f(a) = f(b) 。

那么存在 $\xi \in (a,b)$, 使得 $f'(\xi) = 0$ 。

题 1. 在[-2,2]上满足罗尔定理条件的函数是()。

$$A. \ y = x^2$$

A.
$$y = x^2$$
 B. $y = (\frac{1}{2})^x$ C. $y = \arctan x$ D. $y = |x|$

$$C. y = \arctan x$$

$$D. y = |x|$$

答案: A

题 2. 设函数 f(x) = (x-1)(x-2)(x-3),则 f'(x) = 0的实根有() 个。

A. 1

B. 2

C. 3

D. 4

答案: B

题 3. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 $f(a)f(\frac{a+b}{2}) < 0$,

$$f(\frac{a+b}{2})f(b) < 0$$
,证明: $\exists \xi \in (a,b)$ 使得 $f'(\xi) = 0$ 。

$$i \mathbb{E} \colon \ f(a) f(\frac{a+b}{2}) < 0$$

由零点定理知 $\exists c_1 \in (a, \frac{a+b}{2})$,使得 $f(c_1) = 0$

$$f(\frac{a+b}{2})f(b) < 0$$

由零点定理知 $\exists c_2 \in (a, \frac{a+b}{2})$,使得 $f(c_2) = 0$

f(x)在[a,b]上连续,在(a,b)内可导, $f(c_1) = f(c_2)$

由罗尔定理得 $\exists \xi \in (c_1, c_2)$,即 $\exists \xi \in (a,b)$,使得 $f'(\xi) = 0$

题 4. 设函数在[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0,证明:存在

一点
$$\xi \in (0,1)$$
使得 $f'(\xi) = -\frac{f(\xi)}{\xi}$ 。

证:
$$\diamondsuit F(x) = xf(x)$$

$$F(0) = 0 \times f(0) = 0$$
, $F(1) = 1 \times f(1) = 0$

$$F(x)$$
在[0,1]上连续,在(0,1)内可导, $F(0) = F(1)$

由罗尔定理得 $\exists \xi \in (0,1)$, 使得 $F'(\xi) = 0$

即
$$f(\xi) + \xi f'(\xi) = 0$$
, 移项得 $f'(\xi) = -\frac{f(\xi)}{\xi}$

题 5. 设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(1) = 0,证明:存在 $\xi \in (0,1)$ 使得 $2f(\xi) + \xi f'(\xi) = 0$ 。

证: $\diamondsuit F(x) = x^2 f(x)$

$$F(0) = 0 \times f(0) = 0$$

$$F(1) = 1 \times f(1) = 0$$

F(x)在[0,1]上连续,在(0,1)内可导,且F(0) = F(1)

由罗尔定理得 $\exists \xi \in (0,1)$, 使得 $f'(\xi) = 0$

即
$$2\xi f(\xi) + \xi^2 f'(\xi) = 0$$

得证: $2f(\xi) + \xi f'(\xi) = 0$

2、拉格朗日中值定理

设函数f(x)满足:

- ①在闭区间[a,b]上连续;
- ②在开区间(a,b)内可导。

那么存在
$$\xi \in (a,b)$$
,使得 $\frac{f(b)-f(a)}{b-a} = f'(\xi)$ 或 $f(b)-f(a) = f'(\xi)(b-a)$ 。

推论 1: 若 f(x) 在 (a,b) 内可导, $f'(x) \equiv 0$, 则 f(x) 为常数。

推论 2: 若 f'(x) = g'(x),则 f(x) = g(x) + C。

题 1. 设f(x)在[a,b]上连续,在(a,b)内可导,求证:存在 $\xi \in (a,b)$,使得

$$\frac{bf(b) - af(a)}{b - a} = f'(\xi)\xi + f(\xi).$$

证: 令F(x) = xf(x), F(x)在[a,b]上连续, 在(a,b)内可导

由拉格朗日中值定理得,
$$\exists \xi \in (a,b)$$
 , 使得 $\frac{F(b)-F(a)}{b-a}=F'(\xi)$

$$\operatorname{Ell} \frac{bf(b) - af(a)}{b - a} = f'(\xi)\xi + f(\xi)$$

题 2. 利用拉格朗日中值定理证明:

$$ua^{u-1}(b-a) < b^{u} - a^{u} < ub^{u-1}(b-a)$$
 $(0 < a < b, u > 1)$

证: 令 $F(x) = x^u, x \in (-\infty, +\infty)$, F(x)在(a,b)内连续且可导

由拉格朗日中值定理可得, $\exists \xi \in (a,b)$, 使得

$$\frac{F(b)-F(a)}{b-a} = F'(\xi)$$
, $\exists \lim \frac{b^u - a^u}{b-a} = u\xi^{u-1}$

$$b^{u} - a^{u} = u\xi^{u-1}(b-a)$$

因为 $f(x) = x^{u-1}$ 在(a,b)内是单调递增函数

得证:
$$ua^{u-1}(b-a) < b^u - a^u < ub^{u-1}(b-a)$$

题 3. 证明: $\forall x \in [-1,1]$, 使得 $\arcsin x + \arccos x = \frac{\pi}{2}$ 成立。

$$\stackrel{\cdot}{\text{III}}: \Leftrightarrow f(x) = \arcsin x + \arccos x, \quad g(x) = \frac{\pi}{2}$$

$$f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0$$
, $g'(x) = 0$

故
$$f(x) = g(x) + C$$

代入
$$x = 0, f(0) = 0 + \arccos 0 = \frac{\pi}{2}, g(0) = \frac{\pi}{2}$$
, 故 $C = 0$

即
$$f(x) = g(x)$$
,得证 $\arcsin x + \arccos x = \frac{\pi}{2}$

3、柯西中值定理

设函数 f(x) 和 g(x) 满足:

①在闭区间[a,b]上连续; ②在开区间(a,b)内可导; ③ $g'(x) \neq 0$ 。

那么存在
$$\xi \in (a,b)$$
,使得 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$, $(a < \xi < b)$

题 1. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导 (0 < a < b),求证:存在 $\xi \in (a,b)$,

使得
$$f(b)-f(a)=\xi \ln \frac{b}{a}f'(\xi)$$
。

证: $\Diamond g(x) = \ln x$, f(x), g(x) 在[a,b] 上连续, 在(a,b) 内可导

由柯西中值定理得: $\exists \xi \in (a,b)$, 使得

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}, \quad \text{for } \frac{f(b) - f(a)}{\ln b - \ln a} = \frac{f'(\xi)}{\frac{1}{\xi}} = \xi f'(\xi)$$

得证
$$f(b) - f(a) = \xi f'(\xi)(\ln b - \ln a) = \xi \ln \frac{b}{a} f'(\xi)$$

课时十四 练习题

1. 在 \mathbb{Z} [-1,1]上满足罗尔定理条件的函数是()。

$$A. y = e^x$$

$$B. y = 1 + |x|$$

C.
$$y = 1 - x^2$$

A.
$$y = e^x$$
 B. $y = 1 + |x|$ C. $y = 1 - x^2$ D. $y = 1 - \frac{1}{x}$

2. 函数 f(x) = x(x-1)(x-2) 的导数方程 f'(x) = 0 有几个实根 () 。

A. 0

- B. 1
- C. 2
- D. 3
- 3. 设f(x)在R上二阶可导,且f(1)=0,令 $\varphi(x)=x^2f(x)$,求证:存在 $0<\xi<1$, 使得 $\varphi''(\xi) = 0$ 。
- 4. 设 f(x) 在[0,1]上连续,在(0,1)内可导,且 f(1) = 0,证明: 在(0,1)内至少 存

在一点
$$\xi$$
,使 $f'(\xi)$ arctan $\xi + \frac{f(\xi)}{1 + \xi^2} = 0$ 。

5. 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:在(0,1)内至少 存

在一点
$$\xi$$
, 使得 $3f(\xi)+\xi f'(\xi)=0$ 。

- 6. 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 f(a) = f(b) = 0, 证明: 至少有 一点 $\xi \in (a,b)$, 使得 $f(\xi) + f'(\xi) = 0$ 。
- 7. 下列函数在给定区间上不满足拉格朗日中值定理的是()。

A.
$$y = \frac{2x}{1+x^2}$$
, [-1,1]

$$B. y = |x|, [-1,1]$$

C.
$$y = 4x^3 - 5x^2 + x - 2$$
, [0,2] D. $y = \ln(1+x^2)$, [0,3]

$$D. y = \ln(1+x^2), [0,3]$$

- 8. 函数 $f(x) = x^2 2x$ 在[0,4]上满足拉格朗日中值定理的条件的 $\xi = ($)。
- *A*. 1
- *B*. 2
- *C*. 3
- D. 4

9. 设
$$a > b > 0$$
, 证明 $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$ 。

- 10. 证明:对于任何实数a,b,不等式 $\left|\arctan b \arctan a\right| \le \left|b a\right|$ 恒成立。
- 11. 设 $x_1x_2 > 0$, 试证: 在 x_1 与 x_2 之间存在一点 ξ , 使得:

$$x_1e^{x_2} - x_2e^{x_1} = (1 - \xi)e^{\xi}(x_1 - x_2)$$

课时十五 不定积分(一)

考点	重要程度	占分	题型	
1. 不定积分原理	***	0~3	选择、填空	
2. 直接积分	***	0 ~ 5	填空、大题	
3. 第一类换元	必考	基础知识	大题	

1. 不定积分原理

原函数: 在区间I上, F'(x) = f(x)或dF(x) = f(x)dx,

则称F(x)是f(x)的一个原函数。

不定积分: 在区间I上,f(x)的全体原函数称为不定积分。

记作:
$$\int f(x)dx = F(x) + C$$
。

原函数存在定理:

- ①设f(x)在区间I上连续,则原函数一定存在
- ②若函数f(x)在区间I上存在第一类间断点或者无穷间断点,则原函数不存在

积不出来:
$$\int \frac{1}{\ln x} dx$$
, $\int e^{\pm x^2} dx$, $\int \frac{\sin x}{x} dx$, $\int \frac{\cos x}{x} dx$, $\int \cos x^2 dx$

常用性质:

$$(1) \quad \int f'(x)dx = f(x) + C \overrightarrow{\boxtimes} \int d f(x) = f(x) + C$$

(2)
$$\left[\int f(x)dx\right]' = f(x)\vec{\boxtimes}d\left[\int f(x)dx\right] = f(x)dx$$

(3)
$$\int k f(x)dx = k \int f(x)dx$$

(4)
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

题 1. 若 f(x) 的导数是 $\sin x$,则 f(x) 有一个原函数为 ()。

 $A. 1 + \sin x$

$$B. 1 - \sin x$$

$$C. 1 + \cos x$$

$$D. 1 - \cos x$$

答案:
$$B ext{ } F'(x) = f(x), f'(x) = \sin x ext{ } \Rightarrow F''(x) = \sin x$$

$$\Rightarrow F''(x) = \sin x$$

题 2. 设F(x)是 $\frac{\sin x}{x}$ 的一个原函数,求 $F(x^2)$ 的导数。

解:
$$F'(x) = \frac{\sin x}{x} \Rightarrow F'(x^2) = \frac{\sin x^2}{x^2} \cdot 2x = \frac{2\sin x^2}{x}$$

题 3. 对于不定积分 $\int f(x)dx$,下列说法正确的是()。

$$A. d \int f(x) dx = f(x)$$

$$B. \int f'(x) dx = f(x)$$

$$C. \int df(x) = f(x)$$

$$D.\frac{d}{dx}\int f(x)dx = f(x)$$

答案: D

2. 直接积分法

$$1. \quad \int k dx = kx + C$$

2.
$$(1) \int x^a dx = \frac{x^{a+1}}{a+1} + C \quad (a \neq -1)$$

$$2\int \frac{dx}{x} = \ln|x| + C$$

$$3. \quad \text{(1)} \int a^x dx = \frac{a^x}{\ln a} + C$$

$$4. \quad \text{(1)} \int \sin x dx = -\cos x + C$$

$$5. \quad \text{(1)} \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$$

$$\boxed{5} \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

题 1. 计算 $\int \sqrt{x}(x^2-5)dx$

解: 原式=
$$\int x^{\frac{1}{2}}(x^2-5)dx = \int (x^{\frac{5}{2}}-5x^{\frac{1}{2}})dx = \frac{2}{7}x^{\frac{7}{2}}-\frac{10}{3}x^{\frac{3}{2}}+C$$

题 2. 计算
$$\int \frac{x^2}{1+x^2} dx$$

解: 原式=
$$\int \frac{x^2+1-1}{1+x^2} dx = \int (1-\frac{1}{1+x^2}) dx = x - \arctan x + C$$

题 3. 计算 $\int \frac{1}{x^2(1+x^2)} dx$

解: 原式=
$$\int (\frac{1}{x^2} - \frac{1}{1+x^2}) dx = -\frac{1}{x} - \arctan x + C$$

题 4. 计算 $\int \sin^2 \frac{x}{2} dx$

解: 原式=
$$\int \frac{1}{2}(1-\cos x)dx = \frac{x}{2} - \frac{1}{2}\sin x + C$$

题 5. 计算
$$\int \frac{dx}{\sin^2 \frac{x}{2} \cos^2 \frac{x}{2}}$$

解: 原式=
$$\int \frac{1}{(\frac{1}{2}\sin x)^2} dx = 4\int \csc^2 x dx = -4\cot x + C$$

题 6. 计算∫tan² xdx

解: 原式=
$$\int (\sec^2 x - 1)dx = \tan x - x + C$$

题 7. 计算 $\int e^x 3^x dx$

解: 原式=
$$\int (3e)^x dx = \frac{(3e)^x}{\ln 3e} + C$$

3. 第一类换元法(凑微分)

常见凑微分公式

1)
$$\int f(ax+b)dx = \frac{1}{a} \int f(ax+b)d(ax+b)$$

2)
$$\int f(ax^{n} + b)x^{n-1}dx = \frac{1}{na} \int f(ax^{n} + b)d(ax^{n} + b)$$

3)
$$\int f(\frac{1}{x}) \frac{1}{x^2} dx = -\int f(\frac{1}{x}) d(\frac{1}{x})$$

4)
$$\int f(\sqrt{x}) \frac{1}{\sqrt{x}} dx = 2 \int f(\sqrt{x}) d\sqrt{x}$$

5)
$$\int f(\ln x) \frac{1}{x} dx = \int f(\ln x) d\ln x$$

6)
$$\int f(e^x)e^x dx = \int f(e^x)de^x$$

7)
$$\int f(\sin x)\cos x dx = \int f(\sin x) d\sin x$$

8)
$$\int f(\cos x)\sin x dx = -\int f(\cos x)d\cos x$$

9)
$$\int f(\arcsin x) \frac{1}{\sqrt{1-x^2}} dx = \int f(\arcsin x) d \arcsin x$$

10)
$$\int f(\arctan x) \frac{1}{1+x^2} dx = \int f(\arctan x) d \arctan x$$

11)
$$\int f(\tan x) \sec^2 x dx = \int f(\tan x) d \tan x$$

12)
$$\int f(\cot x)\csc^2 x dx = -\int f(\cot x) d\cot x$$

13)
$$\int f(\sec x) \sec x \tan x dx = \int f(\sec x) d \sec x$$

题 1. 计算 $\int \frac{1}{\sqrt{2x+1}} dx$

解: 原式=
$$\int (2x+1)^{-\frac{1}{2}} dx = \frac{1}{2} \int (2x+1)^{-\frac{1}{2}} d(2x+1) = (2x+1)^{\frac{1}{2}} + C$$

题 2. 计算
$$\int \frac{x}{\sqrt{1+x^2}} dx$$

解: 原式=
$$\frac{1}{2}\int \frac{1}{\sqrt{1+x^2}}d(x^2+1)=\sqrt{1+x^2}+C$$

题 3. 计算 $\int x \cos(x^2 + 2) dx$

解: 原式=
$$\frac{1}{2}\int\cos(x^2+2)d(x^2+2)=\frac{1}{2}\sin(x^2+2)+C$$

题 4. 计算 $\int \frac{5^{\frac{1}{x}}}{x^2} dx$

解: 原式=
$$\int 5^{\frac{1}{x}} \cdot \frac{1}{x^2} dx = -\int 5^{\frac{1}{x}} d(\frac{1}{x}) = -\frac{1}{\ln 5} \cdot 5^{\frac{1}{x}} + C$$

题 5. 计算
$$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$$

解: 原式=
$$2\int \sin \sqrt{x} d\sqrt{x} = -2\cos \sqrt{x} + C$$

题 6. 计算
$$\int \frac{1}{x(1+\ln x)} dx$$

解: 原式=
$$\int \frac{1}{1+\ln x} d(\ln x + 1) = \ln |1+\ln x| + C$$

题 7. 计算 $\int \frac{1}{e^x + e^{-x}} dx$

解: 原式=
$$\int \frac{e^x}{1+(e^x)^2} dx = \int \frac{1}{1+(e^x)^2} de^x = \arctan e^x + C$$

题 8.计算∫tan *xdx*

解: 原式=
$$\int \frac{\sin x}{\cos x} dx = -\int \frac{1}{\cos x} d\cos x = -\ln|\cos x| + C$$

题 9. 计算 $\int \sin^4 x \cos^3 x dx$

解: 原式=
$$\int \sin^4 x \cos^2 x \cos x dx$$
$$= \int \sin^4 x \cos^2 x d \sin x$$
$$= \int \sin^4 x (1 - \sin^2 x) d \sin x$$
$$= \int (\sin^4 x - \sin^6 x) d \sin x$$
$$= \frac{1}{5} \sin^5 x - \frac{1}{7} \sin^7 x + C$$

题 10. 计算 $\int \frac{\arctan\sqrt{x}}{\sqrt{x}(1+x)} dx$

解: 原式= $2\int \arctan \sqrt{x} d \arctan \sqrt{x} = (\arctan \sqrt{x})^2 + C$

题 11. 计算 $\int \frac{1}{\sin^2 x + 2\cos^2 x} dx$

解: 原式 =
$$\int \frac{1}{\tan^2 x + 2} \cdot \frac{1}{\cos^2 x} dx$$

= $\frac{1}{2} \int \frac{1}{1 + (\frac{\tan x}{\sqrt{2}})^2} \cdot \sec^2 x dx$
= $\frac{1}{2} \int \frac{1}{1 + (\frac{\tan x}{\sqrt{2}})^2} d \tan x$
= $\frac{1}{\sqrt{2}} \int \frac{1}{1 + (\frac{\tan x}{\sqrt{2}})^2} d \frac{\tan x}{\sqrt{2}}$
= $\frac{1}{\sqrt{2}} \arctan \frac{\tan x}{\sqrt{2}} + C$

题 12. $\int \tan^5 x \sec^3 x dx$

解: 原式 =
$$\int \tan^4 x \sec^2 x \sec x \tan x dx$$

= $\int \tan^4 x \sec^2 x d \sec x$
= $\int (\sec^2 x - 1)^2 \sec^2 x d \sec x$
= $\int (\sec^6 x - 2\sec^4 x + \sec^2 x) d \sec x$
= $\frac{1}{7} \sec^7 x - \frac{2}{5} \sec^5 x + \frac{1}{3} \sec^3 x + C$

课时十五 练习题

- 1. 设 $e^x \sin x$ 是 f(x)的一个原函数,则 f'(x) =
- 2. 设a是非零常数,若 $\ln(x)$ 是f(x)的一个原函数,那么f(x)的另一个原函数 是()。

- A. $\ln |ax|$ B. $\frac{1}{a} \ln |ax|$ C. $\ln |a+x|$ D. $\frac{1}{2} (\ln x)^2$
- 3. 设 \sqrt{x} 是 f(x) 的一个原函数,则不定积分 $\int x f(x) dx = ($)

- $A. \frac{2}{3}\sqrt{x^3} + C$ $B. \frac{2}{5}\sqrt{x^5} + C$ $C. \frac{1}{3}\sqrt{x^3} + C$ $D. \frac{4}{21}\sqrt{x^7} + C$
- 4. 下面各式正确的是()
- $A. \left[\int f(x) dx \right]' = f'(x)$
- $B. d \left\lceil \int f(x) dx \right\rceil = f'(x)$
- $C. \int F'(x)dx = F(x)$
- $D. \int dF(x) = F(x) + C$
- 5. 计算下列不定积分
- 1) $\int (\sqrt{x} + 1)\sqrt{x^3} dx$

(2) $\int \frac{3x^2}{1+x^2} dx$

3) $\int \frac{1}{x^2 - 3} dx$

4) $\int \cos^2 \frac{x}{2} dx$

5) $\int \sec x (\sec x - \tan x) dx$

6) $\int \frac{\cos 2x}{\cos x - \sin x} dx$

7) $\int \frac{1}{1+\cos x} dx$

8) $\int 2^x e^x dx$

6. 填空, 使等式成立

1)
$$dx = \underline{} d(ax)$$

$$3) \quad xdx = \underline{\quad} d(x^2)$$

$$5) \quad xdx = \underline{} d(1-x^2)$$

7)
$$e^{2x}dx = \underline{\ }d(e^{2x})$$

$$9) \quad \sin\frac{3}{2}xdx = \underline{\quad} d(\cos\frac{3}{2}x)$$

$$11) \quad \frac{dx}{x} = \underline{\qquad} d(3 - 5\ln|x|)$$

13)
$$\frac{dx}{\sqrt{1-x^2}} = \underline{\qquad} d(1 - \arcsin x)$$

$$2) dx = d(7x-3)$$

4)
$$xdx = \underline{\quad} d(5x^2)$$

6)
$$x^3 dx = \underline{\quad} d(3x^4 - 2)$$

8)
$$e^{\frac{x}{2}}dx = d(1+e^{\frac{x}{2}})$$

10)
$$\frac{dx}{x} = \underline{\qquad} d(5\ln|x|)$$

12)
$$\frac{dx}{1+9x^2} = \underline{\quad} d(\arctan 3x)$$

14)
$$\frac{xdx}{\sqrt{1-x^2}} = d(\sqrt{1-x^2})$$

7. 计算下列不定积分

1)
$$\int (3-2x)^3 dx$$

3)
$$\int xe^{-x^2}dx$$

$$5) \quad \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$7) \quad \int \frac{1 + \ln x}{(x \ln x)^2} dx$$

$$9) \quad \int \frac{\cos^3 x}{\sqrt{\sin x}} dx$$

$$11) \quad \int \sin^2 x \cos^5 x dx$$

13)
$$\int \frac{\sqrt{\arctan x}}{1+x^2} dx$$

15)
$$\int \tan^4 x \sec^2 x dx$$

$$2) \int \frac{1}{\sqrt[3]{2x+1}} dx$$

4)
$$\int 3^{\frac{1}{x}} \cdot \frac{1}{x^2} dx$$

6)
$$\int \frac{dx}{x \ln x \ln(\ln x)}$$

8)
$$\int \frac{1}{1+e^{-x}} dx$$

10)
$$\int \cos^3 x dx$$

12)
$$\int \frac{xe^{\arctan x^2}}{1+x^4} dx$$

14)
$$\int \frac{1}{\cos^2 x + 4\sin^2 x} dx$$

16)
$$\int \tan^3 x \sec x dx$$

课时十六 不定积分(二)

考点	重要程度	占分	题型
1. 第二类换元法	***	0~5	大题
2. 分部积分法	必考	5~8	大题
3. 有理化	***	0~5	大题

1. 第二类换元法

①三角代换(被积函数含有二次根式的情况通常用三角换元)

根式形式	所作替换	三角形示意图
$\sqrt{a^2-x^2}$	$x = a \sin t$	$\frac{a}{\sqrt{a^2-x^2}}x$
$\sqrt{a^2+x^2}$	$x = a \tan t$	$\sqrt{a^2 + x^2}$ x
$\sqrt{x^2-a^2}$	$x = a \sec t$	\sqrt{x} $\sqrt{x^2 - a^2}$

题 1. $\int \sqrt{a^2 - x^2} dx$, (a > 0)

解:
$$\diamondsuit x = a \sin t$$
, $dx = a \cos t dt$

$$\mathbb{R} \vec{x} = \int a \cos t \cdot a \cos t dt = a^2 \int \cos^2 t dt$$

$$= a^2 \int \frac{1}{2} (1 + \cos 2t) dt = \frac{a^2}{2} \int (1 + \cos 2t) dt$$

$$= \frac{a^2}{2} (t + \frac{1}{2} \sin 2t) + C = \frac{a^2}{2} t + \frac{a^2}{2} \sin t \cos t + C$$

$$= \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{a^2}{2} \cdot \frac{x}{a} \cdot \frac{\sqrt{a^2 - x^2}}{a} + C = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{1}{2} x \sqrt{a^2 - x^2} + C$$

题 2.
$$\int \frac{1}{\sqrt{(x^2+1)^3}} dx$$

 $\Re : \ \diamondsuit x = \tan t, \ dx = \sec^2 t dt$

$$\sqrt{x^2+1}$$

原式=
$$\int \frac{1}{\sec^3 t} \cdot \sec^2 t dt = \int \cos t dt = \sin t + C = \frac{x}{\sqrt{x^2 + 1}} + C$$

题 3.
$$\int \frac{1}{x\sqrt{x^2-1}} dx$$

解: $\diamondsuit x = \sec t$, $dx = \sec t \tan t dt$

原式=
$$\int \frac{1}{\sec t \tan t} \cdot \sec t \tan t dt = \int dt = t + C = \arccos \frac{1}{x} + C$$

②幂代换(被积函数含有
$$\sqrt[4]{ax+b}$$
 或 $\sqrt[n]{\frac{ax+b}{cx+d}}$ 时,用 t 整体替换)

题 1.
$$\int \frac{1}{1+\sqrt{2x}} dx$$

解: 令
$$\sqrt{2x} = t$$
, $x = \frac{1}{2}t^2$, $dx = tdt$

$$原式 = \int \frac{1}{1+t} \cdot t dt = \int \frac{t}{1+t} dt = \int (1 - \frac{1}{1+t}) dt$$

$$= t - \ln|1+t| + C = \sqrt{2x} - \ln(1+\sqrt{2x}) + C$$

题 2.
$$\int \frac{1}{\sqrt{x} + \sqrt[3]{x}} dx$$

原式 =
$$\int \frac{1}{\sqrt{x} + \sqrt[3]{x}} dx = \int \frac{6t^5}{t^3 + t^2} dt = \int \frac{6t^3}{t+1} dt$$

= $6\int \frac{t^2(t+1) - t^2}{t+1} dt = 6\int (t^2 - \frac{t^2}{t+1}) dt$
= $6\int [t^2 - \frac{t(t+1) - t}{t+1}] dt = 6\int (t^2 - t + \frac{t}{t+1}) dt$
= $6\int (t^2 - t + 1 - \frac{1}{t+1}) dt = 6\left[\frac{1}{3}t^3 - \frac{1}{2}t^2 + t - \ln|t+1|\right] + C$
= $2t^3 - 3t^2 + 6t - 6\ln|t+1| + C = 2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln(\sqrt[6]{x} + 1) + C$

③倒代换(当分子和分母次幂相差大于等于 2 时,用 $x = \frac{1}{t}$ 替换)

题 1.
$$\int \frac{1}{x^4(x^2+1)} dx$$

原式 =
$$\int \frac{1}{t^4} \cdot (\frac{1}{t^2} + 1) \cdot (-\frac{1}{t^2}) dt$$

= $-\int \frac{t^4}{1 + t^2} dt = -\int (t^2 - 1 + \frac{1}{1 + t^2}) dt$
= $-\frac{1}{3}t^3 + t - \arctan t + C = -\frac{1}{3t^3} + \frac{1}{t^3} - \arctan \frac{1}{t^3} + C$

④指代换(由 e^x 或 e^{-x} 构成的代数式,用t替换.)

题 1.
$$\int \frac{1}{1+e^x} dx$$

$$\mathfrak{M}: \Leftrightarrow t = e^x, \quad x = \ln t, \quad dx = \frac{1}{t}dt$$

原式 =
$$\int \frac{1}{1+t} \cdot \frac{1}{t} dt = \int (\frac{1}{t} - \frac{1}{t+1}) dt = \ln|t| - \ln|t+1| + C = x - \ln(e^x + 1) + C$$

2. 分部积分法

公式:
$$\int u dv = uv - \int v du$$
, u 的优先级: 反、对、幂、指、三

题 1. $\int xe^x dx$

解: 原式=
$$\int x de^x = xe^x - \int e^x dx = xe^x - e^x + C$$

题 2. $\int x \ln x dx$

解: 原式 =
$$\frac{1}{2} \int \ln x dx^2 = \frac{1}{2} x^2 \ln x - \frac{1}{2} \int x^2 d \ln x$$

= $\frac{1}{2} x^2 \ln x - \frac{1}{2} \int x^2 \cdot \frac{1}{x} dx = \frac{1}{2} x^2 \ln x - \frac{1}{2} \int x dx$
= $\frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + C$

题 3. $\int \ln x dx$

解: 原式=
$$x \ln x - \int x d \ln x = x \ln x - \int x \cdot \frac{1}{x} dx = x \ln x - x + C$$

题 4. \int arc tan xdx

解: 原式 =
$$x \arctan x - \int xd \arctan x$$

= $x \arctan x - \int \frac{x}{1+x^2} dx$
= $x \arctan x - \frac{1}{2} \int \frac{1}{1+x^2} d(x^2+1)$
= $x \arctan x - \frac{1}{2} \ln(x^2+1) + C$

题 5. $\int e^{\sqrt{x}} dx$

解:
$$\Leftrightarrow t = \sqrt{x}$$
, $x = t^2$, $dx = 2tdt$

原式=
$$\int e^t \cdot 2t dt = 2\int t de^t = 2t e^t - 2\int e^t dt = 2t e^t - 2e^t + C = 2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}} + C$$

题 6. $\int e^x \cos x dx$

3. 有理化

题 1.
$$\int \frac{x+1}{x^2-5x+6} dx$$

题 2. 有理函数 $\frac{x^2+1}{(x+1)^2(x-1)}$,分解成部分分式的和的总式为 ()

$$A.\frac{a}{x+1} + \frac{b}{x-1}$$

$$B.\frac{a}{(x+1)^2} + \frac{b}{x-1}$$

$$C. \frac{ax+b}{(x+1)^2} + \frac{a}{x+1} + \frac{c}{x-1}$$

$$C. \frac{ax+b}{(x+1)^2} + \frac{a}{x+1} + \frac{c}{x-1}$$
 $D. \frac{a}{(x+1)^2} + \frac{b}{x+1} + \frac{c}{x-1}$

答案: D

课时十六 练习题

1. 计算下列不定积分

$$(1) \int \frac{1}{(a^2 - x^2)^{\frac{3}{2}}} dx$$

$$(3) \int \frac{dx}{\sqrt{x^2 - a^2}}$$

$$(5)\int \frac{1}{x(x^7+1)}dx$$

2. 计算下列不定积分

$$(1) \int x e^{2x} dx$$

$$(3) \int x^2 \ln x dx$$

(5)
$$\int x \arctan x dx$$

$$(7) \int x \cos x dx$$

3. 计算下列不定积分

$$(1)\int \frac{x}{x^2 - x - 6} dx$$

$$(2)\int \frac{1}{x^2\sqrt{1+x^2}}dx$$

$$(4) \int \frac{1}{\sqrt{x+2}+1} dx$$

$$(6) \int \frac{1}{\sqrt{1+e^x}} dx$$

$$(2) \int x 3^x dx$$

$$(4) \int \ln(1+x^2) dx$$

(6)
$$\int \arcsin x dx$$

(8)
$$\int e^x \sin x dx$$

(2)
$$\int \frac{x+2}{(2x+1)(x^2+x+1)} dx$$

课时十七 定积分(一)

	考点	重要程度	占分	题型
1. 定积分的计 算	①凑微分、分部积分	必考	6~10	大题
	②换元换限			
	③分段函数			
	④反常积分			
2. 定积分的定义		***	0~3	选择、填空

1. 定积分的计算

牛顿-莱布尼兹公式: $\int_a^b f(x)dx = F(b) - F(a)$

①凑微分、分部积分

题 1. 计算
$$\int_0^1 (3x+1)^2 dx$$

解: 原式=
$$\frac{1}{3}\int_0^1 (3x+1)^2 d(3x+1) = \frac{1}{9}(3x+1)^3 \Big|_0^1 = \frac{63}{9}$$

题 2. 计算
$$\int_{1}^{e^2} \frac{1}{x(1+\ln x)} dx$$

解: 原式=
$$\int_1^{e^2} \frac{1}{1+\ln x} d(1+\ln x) = \ln |1+\ln x||_1^{e^2} = \ln 3$$

解: 原式=
$$\frac{1}{2}\int_a^b f'(2x)d2x = \frac{1}{2}\int_a^b df(2x) = \frac{1}{2}f(2x)\Big|_a^b = \frac{1}{2}[f(2b) - f(2a)]$$

题 4. 计算 $\int_0^1 xe^x dx$

解: 原式=
$$\int_0^1 x de^x = xe^x \Big|_0^1 - \int_0^1 e^x dx = e - e^x \Big|_0^1 = e - (e - 1) = 1$$

题 5. 计算 $\int_0^1 x$ arctan x dx

解: 原式 =
$$\frac{1}{2} \int_0^1 \arctan x dx^2$$

= $\frac{1}{2} x^2 \arctan x \Big|_0^1 - \frac{1}{2} \int_0^1 x^2 d \arctan x$
= $\frac{\pi}{8} - \frac{1}{2} \int_0^1 \frac{x^2}{1+x^2} dx$
= $\frac{\pi}{8} - \frac{1}{2} \int_0^1 (1 - \frac{1}{1+x^2}) dx^2$
= $\frac{\pi}{8} - \frac{1}{2} (x - \arctan x) \Big|_0^1 = \frac{\pi}{4} - \frac{1}{2}$

解: 原式=
$$\int_0^1 x df(x) = x f(x) \Big|_0^1 - \int_0^1 f(x) dx = f(1) - \int_0^1 f(x) dx = 2 - 1 = 1$$

题 7. 求(1) $\int_0^{\pi} \sin^7 x dx$ (2) $\int_0^{2\pi} \cos^6 x dx$

解: (1)
$$\int_0^{\pi} \sin^7 x dx = 2 \int_0^{\frac{\pi}{2}} \sin^7 x dx = 2 \times \frac{6}{7} \times \frac{4}{5} \times \frac{2}{3} \times 1 = \frac{32}{35}$$

(2)
$$\int_0^{2\pi} \cos^6 x dx = 2 \int_0^{\pi} \cos^6 x dx = 4 \int_0^{\frac{\pi}{2}} \cos^6 x dx = 4 \times \frac{5}{6} \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} = \frac{5}{8} \pi$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx = \begin{cases} \frac{n-1}{n} \times \frac{n-3}{n-2} \times \dots \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} , & n \text{ 为偶数} \\ \frac{n-1}{n} \times \frac{n-3}{n-2} \times \dots \times \frac{4}{5} \times \frac{2}{3} \times 1 , & n \text{ 为大于1的奇数} \end{cases}$$

②换元换限

题 1. 计算
$$\int_0^4 \frac{1}{1+\sqrt{x}} dx$$

解: 令
$$1 + \sqrt{x} = t, x = (t-1)^2, dx = 2(t-1)dt$$

 $x = 0$ 时, $t = 1$; $x = 4$ 时, $t = 3$
原式 = $\int_1^3 \frac{1}{t} \cdot 2(t-1)dt$
 $= 2\int_1^3 (1 - \frac{1}{t})dt = 2(t - \ln t)\Big|_1^3$
 $= 2 \times (3 - \ln 3) - 2 \times (1 - \ln 1) = 4 - 2\ln 3$

题 2. 计算
$$\int_0^1 \frac{1}{(1+x^2)^{\frac{3}{2}}} dx$$

解:
$$\diamondsuit x = \tan t, t = \arctan x, dx = \sec^2 t dt$$

$$x = 0 \text{ 时}, \quad t = 0 \text{ ; } \quad x = 1 \text{ 时}, \quad t = \frac{\pi}{4}$$

原式=
$$\int_0^{\frac{\pi}{4}} \frac{1}{\sec^3 t} \cdot \sec^2 t dt = \int_0^{\frac{\pi}{4}} \cos t dt = \sin t \Big|_0^{\frac{\pi}{4}} = \frac{\sqrt{2}}{2}$$

题 3. 证明
$$\int_0^1 x^m (1-x)^n dx = \int_0^1 x^n (1-x)^m dx \ (m, n \in N)$$

证明: 令
$$t = 1 - x$$
, $x = 1 - t$, $dx = -dt$
$$x = 0$$
 时, $t = 1$, $x = 1$ 时, $t = 0$ 原式 = $\int_{1}^{0} (1 - t)^{m} \cdot t^{n} \cdot (-1) dt = \int_{0}^{1} t^{n} (1 - t)^{m} dt = \int_{0}^{1} x^{n} (1 - x)^{m} dx$

③分段函数

题 1. 计算 $\int_0^{2\pi} |\sin x| dx$

解: 原式=
$$\int_0^{\pi} \sin dx + \int_{\pi}^{2\pi} -\sin x dx = -\cos x \Big|_0^{\pi} + \cos x \Big|_{\pi}^{2\pi} = 4$$

题 2. 己知
$$f(x) = \begin{cases} \frac{1}{1+x^2} & x \ge 0 \\ xe^{x^2} & x < 0 \end{cases}$$
 计算 $\int_{-1}^{1} f(x) dx$

解: 原式 =
$$\int_{-1}^{0} f(x)dx + \int_{0}^{1} f(x)dx = \int_{-1}^{0} xe^{x^{2}}dx + \int_{0}^{1} \frac{1}{1+x^{2}}dx$$

= $\frac{1}{2}e^{x^{2}}\Big|_{-1}^{0} + \arctan x\Big|_{0}^{1} = \frac{1}{2}(1-e) + \frac{\pi}{4}$

法一:
$$f(x-2) = \begin{cases} 1 + (x-2)^2, & x-2 \le 0 \\ e^{-(x-2)}, & x-2 > 0 \end{cases} = \begin{cases} x^2 - 4x + 5, & x \le 2 \\ e^{2-x}, & x > 2 \end{cases}$$

原式 = $\int_1^2 (x^2 - 4x + 5) dx + \int_2^3 e^{2-x} dx = \left(\frac{1}{3}x^3 - 2x^2 + 5x\right) \Big|_1^2 - e^{2-x} \Big|_2^3 = \frac{7}{3} - \frac{1}{e}$

法二: 令
$$t = x - 2$$
, $x = t + 2$, $dx = dt$

$$x = 1$$
时, $t = -1$; $x = 3$ 时, $t = 1$

$$原式 = \int_{-1}^{1} f(t)dt = \int_{-1}^{0} f(t)dt + \int_{0}^{1} f(t)dt$$

$$= \int_{-1}^{0} (1 + t^{2})dt + \int_{0}^{1} e^{-t}dt = (\frac{1}{2}t^{3} + t)\Big|_{-1}^{0} - e^{-t}\Big|_{0}^{1} = \frac{7}{3} - \frac{1}{6}$$

④反常积分

1) 积分区间无界

题 1. 计算
$$\int_0^{+\infty} \frac{1}{1+x^2} dx$$

解: 原式=
$$\arctan x \Big|_0^{+\infty} = \lim_{x \to +\infty} \arctan(+\infty) - \arctan 0 = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

题 2. 计算
$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + 2x + 3} dx$$

解: 原式 =
$$\int_{-\infty}^{+\infty} \frac{1}{2 + (x+1)^2} dx = \int_{-\infty}^{+\infty} \frac{1}{2} \cdot \frac{1}{1 + (\frac{x+1}{\sqrt{2}})^2} dx$$

$$= \frac{1}{2} \cdot \sqrt{2} \int_{-\infty}^{+\infty} \frac{1}{1 + (\frac{x+1}{\sqrt{2}})^2} d(\frac{x+1}{\sqrt{2}}) = \frac{\sqrt{2}}{2} \arctan \frac{x+1}{\sqrt{2}} \Big|_{-\infty}^{+\infty}$$

$$= \frac{\sqrt{2}}{2} \left(\lim_{x \to +\infty} \arctan \frac{x+1}{\sqrt{2}} - \lim_{x \to -\infty} \arctan \frac{x+1}{\sqrt{2}} \right) = \frac{\sqrt{2}\pi}{2}$$

题 3. 对广义积分 $\int_1^{+\infty} \frac{1}{x^p} dx$ 有结论 ()。

B. p > 1 时收敛

C. p < 1 时收敛

D.对于任意p值均不收敛

答案: B

论证反常积分
$$\int_a^{+\infty} \frac{1}{r^p} dx (a>0)$$
, 当 $p>1$ 时收敛, $p\leq 1$ 时发散。

论证:
$$p = 1$$
时, $\int_{a}^{+\infty} \frac{1}{x} dx = \ln x \Big|_{a}^{+\infty} = +\infty$ 发散

$$p \neq 1 \text{ fr}, \quad \int_{a}^{+\infty} \frac{1}{x^{p}} dx = \frac{x^{1-p}}{1-p} \bigg|_{a}^{+\infty} = \begin{cases} +\infty & , \quad p < 1 \\ \frac{a^{1-p}}{p-1} & , \quad p > 1 \end{cases}$$

得证: 当p > 1时收敛, $p \le 1$ 时发散

题 4. 讨论 $\int_2^{+\infty} \frac{1}{x(\ln x)^k} dx$ 当 k 为何值时收敛, k 为何值时发散。

解: 原式=
$$\int_{2}^{+\infty} \frac{1}{(\ln x)^{k}} d\ln x \stackrel{u=\ln x}{=} \int_{\ln 2}^{+\infty} \frac{1}{u^{k}} du$$

故k > 1时收敛, $k \le 1$ 时发散

2) 被积函数无界

题 1. 讨论 $\int_{-1}^{1} \frac{1}{r^2} dx$ 的收敛性。

解:
$$x = 0$$
时, $\frac{1}{x^2}$ 无界, 故 $\int_{-1}^{1} \frac{1}{x^2} dx = \int_{-1}^{0} \frac{1}{x^2} dx + \int_{0}^{1} \frac{1}{x^2} dx$

$$\int_{-1}^{0} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{-1}^{0} = +\infty , \quad \text{故} \int_{-1}^{1} \frac{1}{x^2} dx \, \text{发} \, \text{散}$$

题 2. 计算 $\int_0^1 \ln x dx$

解: 原式=
$$x \ln x \Big|_0^1 - \int_0^1 x d \ln x = x \ln x \Big|_0^1 - x \Big|_0^1 = -1 - \lim_{x \to 0^+} x \ln x$$

$$= -1 - \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = -1 - \lim_{x \to 0^+} (-x) = -1$$

2. 定积分的定义

(1)
$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f(a + \frac{b-a}{n}i)$$

(2)
$$\int_0^1 f(x)dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{\infty} f(\frac{i}{n})$$

题 1.
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2^2}} + \dots + \frac{1}{\sqrt{n^2+n^2}}\right)$$

解: 原式 =
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^2 + i^2}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{1 + (\frac{i}{n})^2}} = \int_{0}^{1} \frac{1}{\sqrt{1 + x^2}} dx$$

$$\Rightarrow x = \tan t$$
, $dx = \sec^2 t dt$, $x = 0 \Rightarrow$, $t = 0$, $x = 1 \Rightarrow$, $t = \frac{\pi}{4}$

$$\int_0^1 \frac{1}{\sqrt{1+x^2}} dx = \int_0^{\frac{\pi}{4}} \frac{1}{\sec t} \cdot \sec^2 t dt = \int_0^{\frac{\pi}{4}} \sec t dt = \ln|\sec t + \tan t||_0^{\frac{\pi}{4}} = \ln(\sqrt{2} + 1)$$

题 2. 计算 $\int_0^2 \sqrt{4-x^2} dx$

解:
$$y = \sqrt{4 - x^2}$$
, $(y > 0)$ $\Rightarrow x^2 + y^2 = 4$ 原式 = $\frac{1}{4}\pi \cdot 2^2 = \pi$

题 3. 计算 $\int_0^2 \sqrt{2x-x^2} dx$

解:
$$y = \sqrt{2x - x^2}$$
 $(y > 0)$ $\Rightarrow (x - 1)^2 + y^2 = 1$ 原式 = $\frac{1}{2}\pi \cdot 1^2 = \frac{\pi}{2}$

课时十七 练习题

$$1. 计算 \int_1^e \frac{\ln x}{x(1+\ln x)} dx$$

2. 计算
$$\int_0^1 \frac{e^{\arctan x}}{1+x^2} dx$$

3. 计算
$$\int_{1}^{\pi} \frac{1+\cos x}{x+\sin x} dx$$

- 4. 设 $\ln(1+x^3)$ 是 f(x) 的一个原函数,则 $\int_0^{\frac{\pi}{2}} \cos x f(\sin x) dx =$ ______。
- 5. 计算 $\int_1^{e^2} \sqrt{x} \ln x dx$
- 6. 计算 $\int_0^\pi x \cos x dx$
- 7. 设 f''(x) 在 [0,1] 连续,且 f(0) = 1, f(2) = 3, f'(2) = 5 求定积分 $\int_0^1 x f''(2x) dx$ 。

8. 计算
$$\int_{8}^{27} \frac{\sqrt[3]{x}}{\sqrt[3]{x} - 1} dx$$

9. 计算
$$\int_{\frac{1}{2}}^{1} e^{\sqrt{2x-1}} dx$$

10. 计算
$$\int_0^2 x^2 \sqrt{4-x^2} dx$$

11. 设函数 f(x) 在区间 [a,b]上连续,证明 $\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$ 。

12. 计算
$$\int_{\frac{1}{e}}^{e} \left| \ln x \right| dx$$

13. 计算
$$\int_{-3}^{4} \max\{1, x^2\} dx$$

14.
$$f(x) = \begin{cases} \frac{1}{x+1} & x \ge 0 \\ \frac{1}{1+e^x} & x < 0 \end{cases}$$
, $\vec{x} \int_0^2 f(x-1) dx$.

15. 下列反常积分中发散的是()。

$$A. \int_0^{+\infty} e^{-x} dx$$

$$B. \int_{1}^{+\infty} \frac{1}{x^2} dx$$

$$C. \int_{e}^{+\infty} \frac{1}{r \ln r} dx$$

$$A. \int_0^{+\infty} e^{-x} dx \qquad B. \int_1^{+\infty} \frac{1}{x^2} dx \qquad C. \int_e^{+\infty} \frac{1}{x \ln x} dx \qquad D. \int_0^{+\infty} \frac{1}{1+x^2} dx$$

16. 反常积分 $\int_0^1 \frac{1}{r^p} dx$, (p > 0) 收敛,则 p 的取值范围是_____。

18. 下列反常积分中收敛的是()。

$$A. \int_1^\infty \frac{1}{x^2} dx$$

$$B. \int_{1}^{+\infty} \frac{1}{x} dx$$

$$C. \int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx$$

$$A. \int_{1}^{\infty} \frac{1}{x^{2}} dx \qquad B. \int_{1}^{+\infty} \frac{1}{x} dx \qquad C. \int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx \qquad D. \int_{0}^{2} \frac{1}{(x-1)^{2}} dx$$

19. 计算
$$\lim_{n\to\infty} \frac{1^{\frac{1}{3}} + 2^{\frac{1}{3}} + \dots + n^{\frac{1}{3}}}{n^{\frac{4}{3}}}$$

20. 计算
$$\int_0^1 \sqrt{1-x^2} dx$$

课时十八 定积分(二)

考点	重要程度	占分	题型
1. 定积分的性质	****	3 ~ 5	选择、填空
2. 变限积分的求导	****	0 ~ 5	大题

1. 定积分的性质

①
$$b = a$$
 时, $\int_a^b f(x) dx = 0$

②
$$a < b$$
 时, $\int_a^b f(x)dx = -\int_b^a f(x)dx$

$$\textcircled{4} \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

⑤奇偶性:

若
$$f(x)$$
为奇, $\int_{-a}^{a} f(x)dx = 0$
若 $f(x)$ 为偶, $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$

⑥比较定理:

设
$$f(x)$$
, $g(x)$ 在 $[a,b]$ 上连续且 $f(x) \le g(x)$, 则 $\int_a^b f(x)dx \le \int_a^b g(x)dx$

题 1. 如果
$$f(x)$$
在[0,6]上连续且 $\int_0^6 f(x)dx = 10$, $\int_0^4 f(x)dx = 7$,则 $\int_4^6 f(x)dx = 10$ 0。.

A.17

B. -3

C. 3

D.以上答案都不正确

答案: C

$$\text{ \mathbb{H}: } \int_{4}^{6} f(x)dx = \int_{4}^{0} f(x)dx + \int_{0}^{6} f(x)dx = -\int_{0}^{4} f(x)dx + \int_{0}^{6} f(x)dx = -7 + 10 = 3$$

题 2.
$$\int_{-2}^{2} \left(\frac{x \cos x}{1 + x^2} + \sqrt{4 - x^2} \right) dx = \underline{\hspace{1cm}}.$$

答案: 2π

解: 原式=
$$\int_{-2}^{2} \frac{x \cos x}{1+x^2} dx + \int_{-2}^{2} \sqrt{4-x^2} dx = 0 + 2 \int_{0}^{2} \sqrt{4-x^2} dx = 2\pi$$

题 3. 设 $I_1 = \int_1^2 \ln x dx$, $I_2 = \int_1^2 \ln^2 x dx$, $I_3 = \int_1^2 x \ln x dx$, 则下列不等式正确的是

$$A. \ I_1 > I_2 > I_3$$
 $B. \ I_1 < I_2 < I_3$ $C. \ I_2 < I_1 < I_3$ $D. \ I_1 > I_3 > I_2$

$$B. I_1 < I_2 < I_3$$

$$C. I_2 < I_1 < I_3$$

$$D. I_1 > I_3 > I_2$$

答案: C

题 4. 设
$$f(x)$$
 连续, $f(x) = x + 2 \int_0^1 f(t) dt$, 则 $f(x) =$ ______。

解: 令
$$\int_0^1 f(t)dt = A$$
, 则 $f(x) = x + 2A$.

$$\int_{0}^{1} f(x)dx = \int_{0}^{1} (x + 2A)dx$$

$$A = \left(\frac{1}{2}x^2 + 2Ax\right)\Big|_{0}^{1}$$

$$A = \frac{1}{2} + 2A \Longrightarrow A = -\frac{1}{2}$$

故
$$f(x) = x + 2 \cdot (-\frac{1}{2}) = x - 1$$

2. 变限积分的求导

$$F(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(t)dt, \quad F'(x) = f\left[\varphi_2(x)\right] \cdot \varphi_2'(x) - f\left[\varphi_1(x)\right] \cdot \varphi_1'(x)$$

题 1.
$$\frac{d}{dx}(\int_1^{x^2} \frac{\sin t}{t} dt) = \underline{\qquad}$$

解:
$$\left[\int_{1}^{x^{2}} \frac{\sin t}{t} dt \right]' = \frac{\sin x^{2}}{x^{2}} \cdot 2x = \frac{2\sin x^{2}}{x}$$

题 2. 设函数
$$y = y(x)$$
 由方程 $\int_0^y e^t dt + \int_0^x \cos t dt = 0$,则 $\frac{dy}{dx} =$ _______.

解: 两边同时求导:
$$\left[\int_0^y e^t dt\right]' + \left[\int_0^x \cos t dt\right]' = 0,$$

$$e^{y} \cdot y' + \cos x = 0 , \quad \text{if } y' = -\frac{\cos x}{e^{y}}$$

题 3. 求极限
$$\lim_{x\to 0} \frac{\int_0^{2x} \sin t^2 dt}{x^2 \ln(1+x)}$$
 。

$$\text{ \mathbb{H}: } \lim_{x\to 0}\frac{\int_0^{2x}\sin t^2dt}{x^2\ln(1+x)}=\lim_{x\to 0}\frac{\int_0^{2x}\sin t^2dt}{x^2\cdot x}=\lim_{x\to 0}\frac{(\sin 4x^2)\cdot 2}{3x^2}=\lim_{x\to 0}\frac{8x^2}{3x^2}=\frac{8}{3}$$

题 4. 己知
$$f(2)=1$$
,求 $g(x)=\int_2^x (x-t)f'(t)dt$ 的导数

解:
$$g(x) = \int_2^x [xf'(t) - tf'(t)] dt = \int_2^x xf'(t) dt - \int_2^x tf'(t) dt$$

$$g'(x) = \int_{2}^{x} f'(t)dt + xf'(x) - xf'(x)$$

$$= \int_{2}^{x} f'(t)dt = \int_{2}^{x} df(t)$$
$$= f(t)|_{2}^{x} = f(x) - f(2)$$
$$= f(x) - 1$$

题 5. 求 $\frac{d}{dx} \int_0^x xf(xt)dt$ 。

解:
$$\Rightarrow u = xt$$
, $t = \frac{u}{x}$, $dt = \frac{1}{x}du$
 $\Rightarrow t = 0$ 时, $u = 0$
 $\Rightarrow t = x$ 时, $u = x^2$

$$\frac{d}{dx} \int_0^x xf(xt)dt = \frac{d}{dx} \int_0^{x^2} xf(u) \cdot \frac{1}{x} du = \frac{d}{dx} \int_0^{x^2} f(u)du = f(x^2) \cdot 2x = 2xf(x^2)$$

课时十八 练习题

1.
$$\int_{-2}^{2} \left[\frac{\sin x^{3} \ln(1+x^{2})}{e^{x^{2}}-1} - \sqrt{4-x^{2}} \right] dx = \underline{\qquad} \circ$$

2.
$$\int_{-1}^{1} \frac{x + |x|}{1 + x^2} dx = \underline{\hspace{1cm}}$$

3. 若
$$I_1 = \int_0^1 x dx$$
, $I_2 = \int_0^1 \frac{x}{1+x} dx$, $I_3 = \int_0^1 \ln(1+x) dx$,则有()。

- A. $I_1 < I_2 < I_3$ B. $I_2 < I_1 < I_3$ C. $I_2 < I_3 < I_1$ D. $I_3 < I_2 < I_1$
- 4. 比较定积分的大小:

(1)
$$\int_0^1 e^x dx _{---} \int_0^1 e^{x^2} dx$$

(1)
$$\int_0^1 e^x dx = \int_0^1 e^{x^2} dx$$
 (2) $\int_0^1 \frac{1}{1+x^5} dx = \int_0^1 \frac{1}{1+x^{10}} dx$

5.
$$f(x) = \cos x + \int_0^2 f(x) dx$$
, $\Re f(x)$

$$6. \ \ \vec{x} \frac{d}{dx} \int_{x}^{4x} \sin x^2 dx \ .$$

7. 设函数
$$f(x)$$
 连续,且 $\varphi(x) = \int_{a}^{x^{3}+1} f(t)dt$,则 $\varphi'(x) = \underline{\hspace{1cm}}$ 。

8. 函数
$$\int_0^{x^2} e^t dt$$
 的微分是_____。

9. 己知
$$\int_0^y e^{t^2} dt + \int_0^{\sin x} \cos^2 t dt = 0, \quad 求 \frac{dy}{dx}.$$

10. 计算
$$\lim_{x\to 0} \frac{x - \int_0^x e^{t^2} dt}{x^3}$$

11. 计算
$$\lim_{x\to 0} \frac{\int_0^x \ln(1+2t)dt}{x\sin x}$$

12. 计算
$$\lim_{x\to 0} \frac{\int_0^x (a^t - b^t) dt}{\int_0^{2x} \ln(1+t) dt}$$

- 13. 若 $f(x) = x^2 \int_e^x \ln t dt$, 求 f'(e)。
- 14. 若 f(x) 连续,满足 $\int_0^1 f(xt)dt = f(x) + x \sin x$ 且 $f(\frac{\pi}{2}) = 0$,求当 $x \neq 0$ 时, f(x) 的值。

课时十九 定积分的应用

考点	重要程度	占分	题型
1. 利用定积分求面积	必考	5 ~ 10	→暗
2. 利用定积分求体积	少 考 	3~10	大题
3. 利用定积分求弧长	**	0 ~ 5	大题

1. 利用定积分求面积

①直角坐标

题 1. 计算 $y = \ln x$, x 轴, 以及 x = e 围成的图形面积。

$$\ln x$$

解:
$$dA = \ln x dx$$

$$A = \int_{1}^{e} dA = \int_{1}^{e} \ln x dx = (x \ln x - x)|_{1}^{e} = 1$$

题 2. 计算抛物线 $y^2 = 2x = 5y = x - 4$ 围成的图形面积。

$$A_1: \sqrt{2x} - (-\sqrt{2x})$$
 $\Re: dA_1 = \left[\sqrt{2x} - (-\sqrt{2x})\right] dx = 2\sqrt{2x} dx$

$$A_{1} = \int_{0}^{2} dA_{1} = \int_{0}^{2} 2\sqrt{2x} dx = \frac{16}{3}$$

$$A_2: \sqrt{2x} - (x - 4) \qquad dA_2 = \left[\sqrt{2x} - (x - 4)\right] dx = (\sqrt{2x} + 4 - x) dx$$

$$A_2 = \int_2^8 dA_2 = \int_2^8 (\sqrt{2x} + 4 - x) dx = \frac{38}{3}$$

$$A = A_1 + A_2 = \frac{16}{3} + \frac{38}{3} = 18$$

解法二:

$$(y+4)-\frac{1}{2}y^2$$

$$\text{AP:} \quad dA = (y + 4 - \frac{1}{2}y^2), A = \int_{-2}^{4} (y + 4 - \frac{1}{2}y^2) dy = \left[\frac{y^2}{2} + 4y - \frac{y^3}{6}\right]_{-2}^{4} = 18$$

配套课程 习题答案

②参数方程

题 1. 求椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围成的图形的面积。

解: 该椭圆关于两坐标轴都对称,所以椭圆所围图形的面积为: $A = 4A_1$

其中4为该椭圆在第一象限部分与两坐标轴所围成的图形的面积,

因此
$$A = 4A_1 = 4\int_0^a y dx$$

利用椭圆的参数方程
$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, (0 \le t \le \frac{\pi}{2})$$

当
$$x$$
由 0 变到 a 时, t 由 $\frac{\pi}{2}$ 变到 0,所以

$$A = 4\int_{\frac{\pi}{2}}^{0} b \sin t (-a \sin t) dt = -4ab \int_{\frac{\pi}{2}}^{0} \sin^{2} t dt$$
$$= 4ab \int_{0}^{\frac{\pi}{2}} \sin^{2} t dt = 4ab \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \pi ab$$

当a=b时,就得到大家所熟悉的圆面积公式 $A=\pi a^2$ 。

③极坐标

$$A = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\theta) d\theta$$

题 1. 计算心脏线 $\rho = 1 + \cos \theta$ 与圆 $\rho = 1$ 所围成的公共部分的面积。

$$A_{1} = \frac{1}{2}\pi \times 1^{2} = \frac{\pi}{2}$$

$$A_{2} = 2 \times \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} (1 + \cos \theta)^{2} d\theta$$

$$= \int_{\frac{\pi}{2}}^{\pi} (1 + 2\cos \theta + \cos^{2} \theta) d\theta = \frac{3\pi}{4} - 2$$

$$A = A_{1} + A_{2} = \frac{\pi}{2} + \frac{3\pi}{4} - 2 = \frac{5\pi}{4} - 2$$

2. 利用定积分求体积

题 1. 计算 $y = \ln x$, x 轴,以及 x = e 围成的图形绕 x 轴和 y 轴旋转一周的体积

分别是多少。

解: 绕
$$x$$
轴: $dV_x = \pi r^2 dx = \pi \cdot (\ln x)^2 dx$

$$V_x = \int_1^e dV_x = \int_1^e \pi (\ln x)^2 dx = \pi (e - 2)$$

绕
$$y$$
轴: $V_y = V_{h} - V_{h}$

$$V_{bl} = \pi \cdot e^2 \cdot 1 = \pi e^2$$

$$dV_{\not =} = \pi \cdot (e^y)^2 \cdot dy = \pi \cdot e^{2y} dy$$

$$V_{\bowtie} = \int_0^1 dV_{\bowtie} = \int_0^1 \pi e^{2y} dy = \frac{1}{2} \pi (e^2 - 1)$$

$$\text{III} V_y = V_{\text{ph}} - V_{\text{ph}} = \pi e^2 - \frac{\pi}{2} (e^2 - 1) = \frac{\pi}{2} (e^2 + 1)$$

题 2. 求曲线 $x^2 + (y-2)^2 = 1$ 所围图形绕x轴旋转一周所得旋转体的体积。

$$\Re \colon \quad y_{\beta} = 2 - \sqrt{1 - x^2} \,, \quad y_{\beta} = 2 + \sqrt{1 - x^2} \\
dV_{\beta} = \pi y_{\beta}^2 dx = \pi (2 - \sqrt{1 - x^2})^2 dx \\
= \pi (4 - 4\sqrt{1 - x^2} + 1 - x^2) dx \\
= \pi (5 - x^2 - 4\sqrt{1 - x^2}) dx \\
V_{\beta} = \int dV_{\beta} = \int_{-1}^{1} \pi (5 - x^2 - 4\sqrt{1 - x^2}) dx = \frac{28}{3} \pi - 2\pi^2 \\
dV_{\beta} = \pi y_{\beta}^2 dx = \pi (2 + \sqrt{1 - x^2})^2 dx = \pi (5 - x^2 + 4\sqrt{1 - x^2}) dx$$

$$V_{\beta} = \int dV_{\beta} = \int_{-1}^{1} \pi (5 - x^2 - 4\sqrt{1 - x^2}) dx = \pi (5 - x^2 + 4\sqrt{1 - x^2}) dx$$

$$V_{\beta} = \int dV_{\beta} = \int_{-1}^{1} \pi (5 - x^2 - 4\sqrt{1 - x^2}) dx = \pi (5 - x^2 + 4\sqrt{1 - x^2}) dx$$

$$V_{\beta} = \int dV_{\beta} = \int_{-1}^{1} \pi (5 - x^2 - 4\sqrt{1 - x^2}) dx = \pi (5 - x^2 + 4\sqrt{1 - x^2}) dx$$

$$V_{5} = \int dV_{5} = \int_{-1}^{1} \pi (5 - x^{2} + 4\sqrt{1 - x^{2}}) dx = \frac{28\pi}{3} + 2\pi^{2}$$

$$V = V_{\rm sh} - V_{\rm rh} = 4\pi^2$$

3. 利用定积分求弧长

直角坐标:
$$S = \int_a^b \sqrt{1 + {y'}^2} dx$$

参数方程:
$$S = \int_{t_1}^{t_2} \sqrt{x'^2(t) + y'^2(t)} dt$$

极坐标:
$$S = \int_{\theta_1}^{\theta_2} \sqrt{\rho^2(\theta) + \rho'^2(\theta)} d\theta$$

题 1. 计算 $y = \frac{2}{3}x^{\frac{3}{2}}$ 上对应于 $0 \le x \le 1$ 的一段弧的长度。

解:
$$y' = x^{\frac{1}{2}}$$

$$S = \int_0^1 \sqrt{1 + (x^{\frac{1}{2}})^2} dx = \int_0^1 \sqrt{1 + x} dx = \int_0^1 (1 + x)^{\frac{1}{2}} d(x + 1) = \frac{2}{3} (1 + x)^{\frac{3}{2}} \Big|_0^1 = \frac{2}{3} (2^{\frac{3}{2}} - 1)$$

题 2. 求摆线 $\begin{cases} x = a(\theta - \sin \theta) \\ y = a(1 - \cos \theta) \end{cases}$ 的一拱 $(0 \le \theta \le 2\pi)$ 的长度。

解:
$$x' = a(1 - \cos \theta)$$
, $y' = a \sin \theta$

$$S = \int_0^{2\pi} \sqrt{a^2 (1 - \cos \theta)^2 + a^2 \sin^2 \theta} d\theta$$
$$= \int_0^{2\pi} a \sqrt{2(1 - \cos \theta)} d\theta$$
$$= \int_0^{2\pi} a \sqrt{2(1 - \cos \theta)} d\theta$$
$$= \int_0^{2\pi} 2a \sin \frac{\theta}{2} d\theta = 8a$$

课时十九 练习题

- 1. 求由函数 $y = \sin 2x$, $y = e^{\frac{x}{2}}$ 与 y 轴及 $x = \frac{\pi}{2}$ 所围成的平面图形的面积。
- 2. 计算曲线 $y = \ln x$ 与直线 $y = \ln a$, $y = \ln b$ 以及y 处轴所围成图形的面积。
- 3. 求抛物线 $y^2 = 2x$ 与该曲线在点 $(\frac{1}{2},1)$ 处的法线所围图形的面积。
- 4. 计算下列平面图形的面积:
 - 1) 平面图形由摆线 $x = a(t \sin t)$, $y = a(1 \cos t)$ 的一拱与 x 轴围成 (a > 0);
 - 2) 平面图形是星形线 $x = a\cos^2 t$, $y = a\sin^2 t$ 围成的第一象限部分 (a > 0) 。
- 5. 计算阿基米德螺线 $\rho = a\theta(a > 0)$ 上相应于 θ 从 0 变到 2π 的一段弧与极轴所围成的图形面积。
- 6. 计算由心脏线 $\rho = 2(1 + \cos \theta)$ 与圆 $\rho = 3$ 所围公共部分的面积
- 7. 过坐标原点作曲线 $y = \ln x$ 的切线并交于点 (e,1),该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D。(1)求平面图形 D 的面积;(2)求 D 绕 y 轴旋转一周所得旋转体的体积。
- 8. 求摆线 $\begin{cases} x = a(t \sin t) \\ y = a(1 \cos t) \end{cases}$, (a > 0) 的一拱 $(0 \le t \le 2\pi)$ 和 x 轴所围成的平面区域 绕 x 轴旋转而成的旋转体的体积 V。
- 9. 求由曲线 $x^2 + (y-5)^2 = 16$ 所围成圆形绕x轴旋转一周所得立体体积。
- 10. 由椭圆 $\frac{x^2}{9} + \frac{y^2}{16} = 1$ 绕 y 轴旋转所生成的旋转体的体积为_____。
- 11. 计算曲线 $y = \ln(1-x^2)$ 上相对于 $0 \le x \le \frac{1}{2}$ 的一段弧的长度。

- 12. 求曲线 $\begin{cases} x = e^{-t} + e^{t} \\ y = \int_{0}^{t} \sqrt{1 e^{-2s}} ds \end{cases}$, $(0 \le t \le 1)$ 的弧长。
- 13. 曲线 $\rho = e^{\theta} (0 \le \theta \le \pi)$ 的弧长为______。

课时二十 微分方程(一)

考点	重要程度	占分	题型
1. 基本概念	**	0~3	选择、填空
2. 可分离变量	****	0~5	选择、填空
3. 齐次方程	***	0 ~ 5	大题
4. 一阶线性微分方程	必考	5~8	大题

1. 基本概念

定义: 含自变量、函数以及函数各阶导数的等式称为微分方程, 若未知函数是 一元函数则称为常微分方程。

微分方程的阶: 微分方程中未知函数的最高阶导数的阶数称为微分方程的阶。

微分方程的解:满足微分方程的函数即为解。

微分方程通解:任意常数的个数等于方程的阶数的解称为通解。

微分方程特解:满足初始条件的解称为特解。

题 1. 方程
$$xyy'' + x(y''')^3 - y^4y' = 0$$
 的阶是 ()。

A. 3

B. 4

C. 5

D. 2

答案: A

题 2.
$$\left(\frac{dy}{dx}\right)^2 + x\frac{d^2y}{dx^2} - 3y^2 = 0$$
 是 () 线性方程。

A. 一阶 B. 一阶非 C. 二阶

D. 二阶非

答案: D

2. 可分离变量

方程形式: g(y)dy = f(x)dx

解法: 两边同时积分

注意: ①可分离变量一般为x与y的乘积形式;

②若g(y)为分母,不要漏掉g(y)=0这种常数解。

题 1. 求微分方程 $\frac{dy}{dx} = 2xy$ 的通解。

解: 方程 $\frac{dy}{dx} = 2xy$ 是可分离变量的,分离变量后得 $\frac{dy}{y} = 2xdx$

两端积分:
$$\int \frac{dy}{y} = \int 2x dx$$

得:
$$\ln |y| = x^2 + C_1$$

从而
$$y = \pm e^{x^2 + C_1} = \pm e^{C_1} e^{x^2}$$

因 $\pm e^{C_i}$ 是任意非零常数,又y=0也是原方程的解,

故得方程 $\frac{dy}{dx} = 2xy$ 的通解为 $y = Ce^{x^2}$ 。

题 2. 求解方程 $dy - (y^2 \sin x - y^2 x) dx = 0$ 。

解: $y \neq 0$ 时,分离变量: $\frac{1}{y^2} dy = (\sin x - x) dx$

两边同时积分:
$$\int \frac{1}{y^2} dy = \int (\sin x - x) dx$$
 得: $y = \frac{1}{\cos x + \frac{x^2}{2} + C}$

y=0时,代入原方程,也是方程的解。

3. 齐次方程

方程形式:
$$\frac{dy}{dx} = f(\frac{y}{x})$$

解法:
$$\Rightarrow u = \frac{y}{x}$$
 $y = x \cdot u$ $\frac{dy}{dx} = u + x \frac{du}{dx}$

代入原式: $u + x \frac{dy}{dx} = f(u)$ ⇒ 分离变量 ⇒ 两边积分 ⇒ 回代

题 1. 求方程 $(x^2 + 2xy)dx + xydy = 0$ 的通解。

解:
$$\frac{dy}{dx} = -\frac{x^2 + 2xy}{xy} = -\frac{1 + 2\frac{y}{x}}{\frac{y}{x}}$$

令 $u = \frac{y}{x}$, $y = xu$, $\frac{dy}{dx} = u + x\frac{du}{dx}$
 $u + x\frac{du}{dx} = -\frac{1 + 2u}{u}$

化简整理: $x\frac{du}{dx} = -\frac{(u+1)^2}{u}$

分离变量: $\frac{udu}{(u+1)^2} = -\frac{dx}{x}$

两边同时积分: $\int \frac{udu}{(u+1)^2} = -\int \frac{dx}{x}$
 $\ln|u+1| + \frac{1}{u+1} = -\ln|x| + C$
 $\ln|u+1| + \ln|x| + \frac{1}{u+1} = C$
 $\ln|(u+1) \cdot x| + \frac{1}{u+1} = C$

将 $u = \frac{y}{x}$ 回代, 得: $\ln|x+y| + \frac{x}{x+y} = C$

4. 一阶线性微分方程

方程形式:
$$y' + P(x)y = Q(x)$$

解法:
$$y = e^{-\int P(x)dx} (\int Q(x)e^{\int P(x)dx} dx + C)$$

题 1. 求 $y' + y \cos x = e^{-\sin x}$ 的通解。

解:
$$P(x) = \cos x$$
 $Q(x) = e^{-\sin x}$
$$\int P(x)dx = \int \cos x dx = \sin x$$

$$\int Q(x)e^{\int P(x)dx} dx = \int e^{-\sin x} \cdot e^{\sin x} dx = x$$
 通解: $y = e^{-\sin x}(x+C)$

题 2. 设函数 f(x) 连续,且满足 $f(x) = x^2 - 2 \int_0^x t f(t) dt$,试求 f(x) 的表达式。

解:两边同时求导:

$$f'(x) = 2x - 2xf(x)$$
 , 即 $y' + 2xy = 2x$
 $P(x) = 2x$, $Q(x) = 2x$

$$\int P(x)dx = \int 2xdx = x^2$$

$$\int Q(x)e^{\int P(x)dx}dx = \int 2xe^{x^2}dx = e^{x^2}$$
通解: $y = e^{-x^2}(e^{x^2} + C) = 1 + Ce^{-x^2}$
又 $x = 0$ 时 , $f(0) = 0 - 2 \times 0 = 0$ 代入通解
 $1 + C = 0 \Rightarrow C = -1$,即 $f(x) = 1 - e^{-x^2}$

题 3. 求方程 $\frac{dy}{dx} = \frac{y}{2x + y^3}$ 的通解。

解:
$$\frac{dx}{dy} = \frac{2x + y^3}{y} = \frac{2}{y}x + y^2$$

$$\frac{dx}{dy} - \frac{2}{y}x = y^2$$

$$P(y) = -\frac{2}{y}, Q(y) = y^2,$$
假设 $y > 0$, $\int P(y)dy = \int -\frac{2}{y}dy = -2\ln y = \ln y^{-2}$

$$\int Q(y)e^{\int P(y)dy}dy = \int y^2 \cdot e^{\ln y^{-2}}dy = \int y^2 \cdot y^{-2}dy = y$$
通解: $x = e^{2\ln y}(y + C) = y^2(y + C)$
 $y < 0$ 时,用同样的方法可以得到同样的结果。

y=0时,代入原方程,也是方程的解。

课时二十 练习题

- 1. 下列微分方程的阶数为二阶的是()。
- A. $x(y')^2 2yy' + x = 0$
- $B. \ \ x^2y'' xy' + y = 0$
- C. $xy''' 2y'' + x^2y = 0$

- D. (7x-6y)dx + (x+y)dy = 0
- 2. 已知一个函数的导数为y'=2x,且x=1时y=2,这个函数是()。

- A. $y = x^2 + C$ B. $y = x^2 + 1$ C. $y = \frac{x^2}{2} + C$ D. y = x + 1
- 3. 求解微分方程 $xdy + 2ydx = 0, y|_{x=2} = 1$ 。
- 4. 求方程 $y' = e^{3x-2y}$ 满足初始条件 $y|_{x=0} = 0$ 的特解。
- 5. 微分方程初值问题 $\begin{cases} y' = 2xy \\ y(0) = 2 \end{cases}$ 的特解为 () 。
- 6. 求方程 $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$ 的通解。
- 7. 求微分方程 $(y^2 + 2xy x^2)dx + (x^2 + 2xy y^2)dy = 0$ 满足初始条件的特解。
- 8. 求方程 $y' + \frac{y}{x} = \frac{1}{y_2 \sqrt{1 y^2}}$ 的通解。
- 9. 求微分方程 $x\frac{dy}{dx} + y = xe^x$ 满足 $y|_{x=1} = 0$ 的特解。
- 10. 设可导函数 $\varphi(x)$ 满足 $\varphi(x)\cos x + 2\int_0^x \varphi(t)\sin tdt = x + 1$,求 $\varphi(x)$ 。

11. 求微分方程 $(\sin^2 x + y \cot x)dx = dy$ 的通解。

课时二十一 微分方程(二)

考点	重要程度	占分	题型
1. 可降阶高阶微分方	***	0~5	选择、填空
2. 二阶常系数齐次	必考	5 ~ 10	大题
3. 二阶常系数非齐次	少气	3~10	八咫

1. 可降阶的高阶微分方程

①直接积分型: $y^{(n)} = f(x)$, 积分n次即可得通解。

题 1. 求解微分方程y'' = x,初始条件 $y|_{x=0} = 1, y'|_{x=0} = \frac{1}{2}$ 。

解:
$$y' = \frac{1}{2}x^2 + C_1$$
, $y = \frac{1}{6}x^3 + C_1x + C_2$
代入 $y|_{x=0} = 1$, $y'|_{x=0} = \frac{1}{2}$, 得:
$$\begin{cases} C_1 = \frac{1}{2} \\ C_2 = 1 \end{cases}$$
 故: $y = \frac{1}{6}x^3 + \frac{1}{2}x + 1$

②不含 y 型: y'' = f(x, y'), 设 y' = p, 则 $y'' = \frac{dp}{dx}$

题 2. 求方程(1-2x)y''-y'=0的通解。

解: 令
$$y' = p$$
, $y'' = \frac{dp}{dx}$ \Rightarrow $(1-2x)\frac{dp}{dx} - p = 0$
分离变量: $\frac{dp}{p} = -\frac{dx}{2x-1}$
两边同时积分: $\ln|p| = -\frac{1}{2}\ln|2x-1| + C_1$
 $\ln|p| + \frac{1}{2}\ln|2x-1| = C_1$ $\Rightarrow \ln\left|p \cdot (2x-1)^{\frac{1}{2}}\right| = C_1$ $\Rightarrow p \cdot (2x-1)^{\frac{1}{2}} = \pm e^{C_1}$
 $y' = p = \pm e^{C_1}(2x-1)^{-\frac{1}{2}} = C_2(2x-1)^{-\frac{1}{2}}$, $y = 2C_2(2x-1)^{\frac{1}{2}} + C_3$

③不含
$$x$$
型: $y'' = f(y, y')$, 设 $p = y', y'' = p \frac{dp}{dy}, p \frac{dp}{dy} = f(y, p)$

题 3. 求方程 $y \cdot y'' + y'^2 = 0$ 的通解。

解: 令
$$y' = p$$
 , $y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p \cdot \frac{dp}{dy}$

$$y \cdot p \cdot \frac{dp}{dy} + p^2 = 0$$

$$p \neq 0$$
 时, $y \frac{dp}{dy} + p = 0$
分离变量: $\frac{dp}{p} = -\frac{1}{y} dy$

两边同时积分: $\ln |p| = -\ln |y| + C_1$

$$\ln |py| = C_1$$

$$py = \pm e^{C_1} \Rightarrow p = \frac{C_2}{y}$$

p=0时,也是上式的解,即 C_2 为任意常数

$$y' = \frac{C_2}{y}$$
, $\exists \lim \frac{dy}{dx} = \frac{C_2}{y} \implies ydy = C_2dx$

两边同时积分:
$$\frac{1}{2}y^2 = C_2x + C_3$$
, 即 $y^2 = 2C_2x + 2C_3$

2. 二阶常系数齐次微分方程

方程形式: y'' + py' + q = 0

特征方程 $r^2 + pr + q = 0$ 的两个根 r_1, r_2	微分方程 $y'' + py' + qy = 0$ 的通解
两个不相等的实根 r_1, r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
两个相等的实根 $r_1 = r_2$	$y = (C_1 + C_2 x)e^{\eta x}$
一对共轭复根 $r_{1,2} = \alpha \pm \beta i$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

题 1. 微分方程y'' - 3y' + 2y = 0的通解为____

解:特征方程: $r^2 - 3r + 2 = 0$

特征根: $r_1 = 1$ $r_2 = 2$

则 $y = C_1 e^x + C_2 e^{2x}$

题 2. 求微分方程 $4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 0$ 的通解。

解:特征方程 $4r^2 + 4r + 1 = 0$

特征根: $r_1 = r_2 = -\frac{1}{2}$

则 $y = (C_1 + C_2 x)e^{-\frac{1}{2}x}$

题 3. 求微分方程 y'' - 2y' + 5y = 0 的通解。

解: 特征方程: $r^2 - 2r + 5 = 0$

特征根: $r=1\pm 2i$ $\alpha=1, \beta=2$

则 $y = e^x(C_1\cos 2x + C_2\sin 2x)$

3. 二阶常系数非齐次微分方程

方程形式: y'' + py' + q = f(x)

解的结构: $y = Y + y^*$ (齐通+非特)

齐通Y: y'' + py' + q = 0的通解

特解 y^* : y'' + py' + q = f(x) 的一个解

①
$$y'' + py' + q = e^{\lambda x} p_m(x)$$
型

特征方程: $r^2 - 5r + 6 = 0$

特征根: $r_1 = 2, r_2 = 3$

通解: $Y = C_1 e^{2x} + C_2 e^{3x}$

从原方程可知: $\lambda = 2$, $P_m(x) = x$

设方程特解为: $y^* = xe^{2x}(ax+b)$

$$(y^*)' = e^{2x}(2ax^2 + 2bx + 2ax + b)$$

解的结构: $y = Y + y^*$ (齐通+非特)

$$y^* = x^k e^{\lambda x} Q_m(x) \qquad k = \begin{cases} 0 & \lambda \neq \lambda_1, \lambda_2 \\ 1 & \lambda = \lambda_1 \vec{\boxtimes} \lambda = \lambda_2 \\ 2 & \lambda = \lambda_1 = \lambda_2 \end{cases}$$

$P_m(x)$	$Q_m(x)$
X	ax + b
x^2+1	$ax^2 + bx + c$
$x^3 + x^2 + 1$	$ax^3 + bx^2 + cx + d$

$$(y^*)'' = e^{2x}(4ax^2 + 4bx + 8ax + 4b + 2a)$$

将 y^* , $(y^*)'$, $(y^*)''$ 代入原方程 化简后得: -2ax + 2a - b = x

对应系数相等
$$\begin{cases} -2a=1\\ 2a-b=0 \end{cases} \Rightarrow \begin{cases} a=-\frac{1}{2}\\ b=-1 \end{cases} \Rightarrow y^* = x(-\frac{1}{2}x-1)e^{2x}$$

则方程通解为 $y = C_1 e^{2x} + C_2 e^{3x} - x(\frac{1}{2}x+1)e^{2x}$

② $f(x) = e^{\lambda x} [P_l(x)\cos \omega x + Q_n(x)\sin \omega x]$ 型

题 2. 求微分方程 $y'' + 4y = x \cos x$ 的通解。

解:
$$\lambda = 0, \omega = 1, P_l(x) = x, Q_n(x) = 0$$

特征方程: $r^2 + 4 = 0$

特征根: $r = \pm 2i$ $\alpha = 0, \beta = 2$

 $Y = C_1 \cos 2x + C_2 \sin 2x$

由于 $\lambda \pm \omega i = \pm i$ 不是特征方程的根

故 $y^* = (ax + b)\cos x + (cx + d)\sin x$

$$(y^*)' = (cx + d + a)\cos x + (-ax + c - b)\sin x$$

$$(y^*)'' = (2c - ax - b)\cos x - (cx + d + 2a)\sin x$$

代入原方程:

$$(2c-ax-b)\cos x - (cx+d+2a)\sin x + 4(ax+b)\cos x + 4(cx+d)\sin x = x\cos x$$

化简整理: $(3ax+3b+2c)\cos x + (3cx+3d-2a)\sin x = x\cos x$

$$\begin{cases} 3a=1\\ 3b+2c=0\\ 3c=0\\ 3d-2a=0 \end{cases} \Rightarrow \begin{cases} a=\frac{1}{3}\\ b=0\\ c=0\\ d=\frac{2}{9} \end{cases} \Rightarrow y^* = \frac{1}{3}x\cos x + \frac{2}{9}\sin x$$

故
$$y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{3}x \cos x + \frac{2}{9} \sin x$$

$$k = \begin{cases} 0 & \lambda \pm \omega i \text{ 不是特征根} \\ 1 & \lambda \pm \omega i \text{ 是特征根} \end{cases}$$

 $m = \max\{l, n\}$

$$R_m^{(1)} = ax^m + bx^{m-1} + \dots + c$$

$$R_m^{(2)} = ex^m + fx^{m-1} + \dots + g$$

题 3. 求微分方程 $y'' + y = x + \cos x$ 的通解。

解: 特征方程
$$r^2 + 1 = 0$$
 $r = \pm i$

$$Y = C_1 \cos x + C_2 \sin x$$

特解:
$$y_1 = ax + b$$
, $y_1'' = 0$

$$ax + b = x \Rightarrow \begin{cases} a = 1 \\ b = 0 \end{cases} \Rightarrow y_1 = x$$

②
$$y'' + y = \cos x$$
, $\lambda = 0, \omega = 1, P_l(x) = 1$ $Q_n(x) = 0$

$$\lambda \pm \omega i = \pm i$$
 是特征方程根

$$y_2 = x(c\cos x + d\sin x)$$

$$y_2' = (c+dx)\cos x + (d-cx)\sin x$$

$$y_2'' = (2d - cx)\cos x - (2c + dx)\sin x$$

代入上式方程, 得:
$$2(-c\sin x + d\cos x) = \cos x$$

故
$$c=0$$
, $d=\frac{1}{2}$ $\Rightarrow y_2=\frac{1}{2}x\sin x$

故
$$y = C_1 \cos x + C_2 \sin x + x + \frac{1}{2} x \sin x$$

课时二十一 练习题

1. 求下列微分方程的通解:

$$y'' = x + \sin x$$

1)
$$y'' = x + \sin x$$
 2) $y'' = y' + x$

$$3) \quad y'' = \frac{1}{\sqrt{y}}$$

- 2. 计算下题
 - 1) 求微分方程y'' 2y' 3y = 0的通解。
 - 2) 求微分方程 $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$, $y|_{x=0} = 4$, $y'|_{x=0} = -2$ 的特解。
 - 3) 求微分方程y'' 4y' + 5y = 0的通解。
 - 4) 求微分方程 $y'' 2y' + y = 4xe^x$ 的通解。
 - 5) 求微分方程 $y'' + 2y' 3y = e^{3x}$ 的通解。
 - 6) 求微分方程y'' 5y' + 4y = 3 4x的通解。
 - 7) 求微分方程 $y'' y = e^x \cos 2x$ 的通解。
 - 8) 求微分方程 $y+y=e^x+\cos x$ 的通解。

恭喜你完成本课程学习!

领取练习题答案 &配套课程等资料 请关注公众号【蜂考】

一起学习,答疑解惑 请加入蜂考学习交流群

