

Context Free Grammar

A Context-free Grammar (CFG) is a 4-tuple:

 $G = (N, \Sigma, P, S)$ where:

- N is a finite set of non-terminal symbols.
- \bullet Σ is a finite set of terminal symbols (tokens).
- P is a finite set of productions (rules).
 Production: (α, β) ∈ P will be written α → β
 where α is in N and β is in (NUΣ)*
- S is the start symbol in N.

Chomsky Normal Form

A context-free grammar where the right side of each production rule is restricted to be either two non terminals or one terminal.

Production can be one of following formats:

- \circ A \rightarrow α
- \circ A \rightarrow BC

Any CFG can be converted to a weakly equivalent grammar in CNF

Parsing Algorithms

- CFGs are basis for describing (syntactic) structure of NL sentences
- Thus Parsing Algorithms are core of NL analysis systems
- Recognition vs. Parsing:
 - Recognition deciding the membership in the language
 - Parsing Recognition+ producing a parse tree for it
- Parsing is more "difficult" than recognition (time complexity)
- Ambiguity an input may have exponentially many parses.

Parsing Algorithms

Top-down vs. bottom-up:

- <u>Top-down:</u> (goal-driven): from the start symbol down.
- Bottom-up: (data-driven): from the symbols up.

Naive vs. dynamic programming:

- Naive: enumerate everything.
- Backtracking: try something, discard partial solutions.
- Dynamic programming: save partial solutions in a table.

Examples:

- CKY: bottom-up dynamic programming.
- Earley parsing: top-down dynamic programming.

CKY (Cocke-Kasami-Younger)

- One of the earliest recognition and parsing algorithms
- The standard version of CKY can only recognize languages defined by context-free grammars in Chomsky Normal Form (CNF).
- It is also possible to extend the CKY algorithm to handle some grammars which are not in CNF
 - Harder to understand
- Based on a "dynamic programming" approach:
 - Build solutions compositionally from sub-solutions
- Uses the grammar directly.

CKY Algorithm

- Considers every possible consecutive subsequence of letters and sets K ∈ T[i,j] if the sequence of letters starting from i to j can be generated from the non-terminal K.
- Once it has considered sequences of length 1, it goes on to sequences of length 2, and so on.
- For subsequences of length 2 and greater, it considers every possible partition of the subsequence into two halves, and checks to see if there is some production
 A -> BC such that B matches the first half and C matches the second half. If so, it records A as matching the whole subsequence.
- Once this process is completed, the sentence is recognized by the grammar if the entire string is matched by the start symbol.

CKY Algorithm

 Observation: any portion of the input string spanning i to j can be split at k, and structure can then be built using sub-solutions spanning i to k and sub-solutions spanning k to j.

Meaning:

Solution to problem [i, j] can constructed from solution to sub problem [i, k] and solution to sub problem [k, j].

Consider the grammar *G* given by:

$$S \rightarrow \varepsilon \mid AB \mid XB$$

$$T \rightarrow AB \mid XB$$

$$X \rightarrow AT$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Consider the grammar *G* given by:

$$S \rightarrow \varepsilon \mid AB \mid XB$$

$$T \rightarrow AB \mid XB$$

$$X \rightarrow AT$$

$$A \rightarrow a$$

$$B \rightarrow b$$

- 1. Is w = aaabb in L(G)?
- 2. Is w = aaabbb in L(G)?

The algorithm is "bottom-up" in that we start with bottom of derivation tree.

$$S \rightarrow \varepsilon \mid AB \mid XB$$

$$T \rightarrow AB \mid XB$$

$$X \rightarrow AT$$

$$A \rightarrow a$$

$$B \rightarrow b$$

1) Write variables for all length 1 substrings

$$S \rightarrow \varepsilon \mid AB \mid XB$$

 $T \rightarrow AB \mid XB$

$$A \rightarrow a$$

$$B \rightarrow b$$

2) Write variables for all length 2 substrings

 $B \rightarrow b$

3) Write variables for all length 3 substrings

4) Write variables for all length 4 substrings

$$S \rightarrow \varepsilon \mid AB \mid XB$$

$$T \rightarrow AB \mid XB$$

$$X \rightarrow AT$$

$$A \rightarrow a$$

$$B \rightarrow b$$

5) Write variables for all length 5 substrings.

Now look at agabbb:

$$S \rightarrow \varepsilon \mid AB \mid XB$$

 $T \rightarrow AB \mid XB$

 $X \rightarrow AT$

 $A \rightarrow a$

 $B \rightarrow b$

1) Write variables for all length 1 substrings.

$$S \rightarrow \varepsilon \mid AB \mid XB$$
 $T \rightarrow AB \mid XB$
 $X \rightarrow AT$
 $A \rightarrow a$
 $B \rightarrow b$

2) Write variables for all length 2 substrings.

3) Write variables for all length 3 substrings.

4) Write variables for all length 4 substrings.

5) Write variables for all length 5 substrings.

$$S \rightarrow \varepsilon \mid AB \mid XB$$
 $T \rightarrow AB \mid XB$
 $X \rightarrow AT$
 $A \rightarrow a$
 $B \rightarrow b$

6) Write variables for all length 6 substrings.

The CKY Algorithm

function CKY (word w, grammar P) returns table

```
for i \leftarrow from 1 to LENGTH(w) do
  table[i-1, i] \leftarrow {A | A \rightarrow w<sub>i</sub> \in P }
for i \leftarrow from 2 to LENGTH(w) do
  for i \leftarrow from j-2 down to 0 do
        for k \leftarrow i + 1 to j - 1 do
           table[i,j] \leftarrow table[i,j] \cup {A | A \rightarrow BC \in P,
                   B \in table[i,k], C \in table[k,j]
```

If the start symbol $S \in \text{table}[0,n]$ then $w \in L(G)$

The table chart used by the algorithm:

j	1	2	3	4	5	6
i	©	a	<u>a</u>	b	b	b
0						
1						
2						
3						
4						
5						

1. Variables for length 1 substrings.

j	1	2	3	4	5	6
i	<u>a</u>	a	a	b	b	b
0	\boldsymbol{A}					
1		A				
2			A			
3				В		
4					В	
5						В

2. Variables for length 2 substrings.

j	1	2	3	4	5	6
i	©	a	a	٥	٥	b
0	\boldsymbol{A}	_				
1		A	-			
2			A -	-S,T		
3				$\overset{ ilde{}}{B}$	1	
4					B	-
5						B

3. Variables for length 3 substrings.

j	1	2	3	4	5	6
i	™	a	a	b	b	b
0	\boldsymbol{A}	_	_			
1		$A^{}$	_	-X		
2			A $-$	-S,T	-	
3				$\stackrel{\ }{B}$	ı	-
4					В	-
5						В

4. Variables for length 4 substrings.

j	1	2	3	4	5	6
i	©	a	<u>a</u>	b	b	b
0	\boldsymbol{A}	-	-	-		
1		A	_	$-\chi$	-S,T	
2			A -	-S,T	_	-
3				B	-	-
4					$\stackrel{ ightharpoonup}{B}$	-
5						В

5. Variables for length 5 substrings.

j	1	2	3	4	5	6
i	a	<u>a</u>	<u>о</u>	b	b	b
0	A	-	-	-	X_	
1		A^{-}	-	$-\chi$ $-$	-S,T	ı
2			A $-$	-S,T	-	-
3				$\stackrel{ ightharpoonup}{B}$	-	I
4					$B^{'}$	-
5						В

6. Variables for aaabbb. ACCEPTED!

j	1	2	3	4	5	6
i	©	a	a	b	b	b
0	A	-	-	ı	X	-S,T
1		$A^{}$	-	$-\chi$ $-$	-S,T	-
2			A $-$	-S, T	-	-
3				$\overset{\ }{B}$	-	_
4					B	_
5						B

Parsing results

- We keep the results for every w_{ij} in a table.
- Note that we only need to fill in entries up to the diagonal.
- Every entry in the table T[i,j] can contains up to r=|N| symbols (the size of the non-terminal set).
- We can use lists or a Boolean n*n*r table.
- We then want to find T[0,n,S] = true.

CKY recognition vs. parsing

- Returning the full parse requires storing more in a cell than just a node label.
- We also require back-pointers to constituents of that node.
- We could also store whole trees, but less space efficient.
- For parsing, we must add an extra step to the algorithm: follow pointers and return the parse.

Ambiguity

Efficient Representation of Ambiguities

- Local Ambiguity Packing :
 - a Local Ambiguity multiple ways to derive the same substring from a non-terminal
 - All possible ways to derive each non-terminal are stored together
 - When creating back-pointers, create a single back-pointer to the "packed" representation
- Allows to efficiently represent a very large number of ambiguities (even exponentially many)
- Unpacking producing one or more of the packed parse trees by following the back-pointers.

CKY Space and Time Complexity

Time complexity:

- Three nested "for" loop each one of O(n) size.
- Lookup for r = |N| pair rules at each step.

Time complexity –
$$O(r^2n^3) = O(n^3)$$

Space complexity:

- A three dimensions table at size n*n*r
- A n*n table with lists up to size of r

Space complexity
$$- O(rn^2) = O(n^2)$$

Another Parsing Algorithm

- Parsing General CFLs vs. Limited Forms
- Efficiency:
 - Deterministic (LR) languages can be parsed in *linear* time.
 - A number of parsing algorithms for general CFLs require $O(n^3)$ time.
 - Asymptotically best parsing algorithm for general CFLs requires O(n^{2.37}), but is not practical.
- Utility why parse general grammars and not just CNF?
 - Grammar intended to reflect actual structure of language.
 - Conversion to CNF completely destroys the parse structure.

The Earley Algorithm (1970)

- Doesn't require the grammar to be in CNF.
- Usually moves left-to-right.
- Makes it faster than O(n³) for many grammars.
- Earley's algorithm resembles recursive descent, but solves the left-recursion problem.
- No recursive function calls.
- Use a parse table as we did in CKY, so we can look up anything we've discovered so far.

The Earley Algorithm

- The algorithm is a bottom-up chart parser with top-down prediction: the algorithm builds up parse trees bottom-up, but the incomplete edges (the predictions) are generated top-down, starting with the start symbol.
- We need a new data structure: A dotted rule stands for a partially constructed constituent, with the dot indicating how much has already been found and how much is still predicted.
- Dotted rules are generated from ordinary grammar rules.
- The algorithm maintains sets of "states", one set for each position in the input string (starting from 0).

The Dotted Rules

With dotted rules, an entry in the chart records:

- Which rule has been used in the analysis
- Which part of the rule has already been found (left of the dot).
- Which part is still predicted to be found and will combine into a complete parse (right of the dot).
- the start and end position of the material left of the dot.

Example:
$$A \rightarrow X_1 X_2 \dots \bullet C \dots X_m$$

Operation of the Algorithm

- Process all hypotheses one at a time in order.
- This may add new hypotheses to the end of the to-do list, or try to add old hypotheses again.
- Process a hypothesis according to what follows the dot:
 - If a symbol, scan input and see if it matches.
 - If a non-terminal, predict ways to match it.
 (we'll predict blindly, but could reduce # of predictions by looking ahead k symbols in the input and only making predictions that are compatible)
 - If nothing, then we have a complete constituent, so attach it to all its customers.

Parsing Operations

The Earley algorithm has three main operations:

<u>Predictor:</u> an incomplete entry looks for a symbol to the right of its dot. if there is no matching symbol in the chart, one is predicted by adding all matching rules with an initial dot.

Scanner: an incomplete entry looks for a symbol to the right of the dot. this prediction is compared to the input, and a complete entry is added to the chart if it matches.

<u>Completer:</u> a complete edge is combined with an incomplete entry that is looking for it to form another complete entry.

Parsing Operations

- Predictor: If state [A → X₁... C...X_m, j] ∈ S_i then for every rule of the form C → Y₁...Y_k, add to S_i the state
 [C → •Y₁...Y_k, i]
- Scanner: If state $[A \to X_1... \bullet a...X_m, j] \in S_i$ and the next input word is $x_{i+1} = a$, then add to S_{i+1} the state $[A \to X_1...a \bullet ...X_m, j]$
- Completer: If state [A → X₁...X_m•, j] ∈ S_i then for every state in S_j of form [B → X₁... A...X_k, l], add to S_i the state [B → X₁...A ...X_k, l]

The Earley Recognition Algorithm

The Main Algorithm: parsing input $w=w_1w_2...w_n$

- 1. $S_0 = \{ [S \rightarrow \bullet P(0)] \}$
- 2. For $0 \le i \le n$ do:

Process each item $s \in S_i$ in order by applying to it a *single* applicable operation among:

- (a) Predictor (adds new items to S_i)
- (b) Completer (adds new items to S_i)
- (c) Scanner (adds new items to S_{i+1})
- 3. If $S_{i+1} = \emptyset$ Reject the input.
- 4. If i = n and $[S \rightarrow P \bullet (0)] \in S_n$ then Accept the input.

Consider the following grammar for arithmetic expressions:

$$S \rightarrow P$$
 (the start rule)

$$P \rightarrow P + M$$

$$P \rightarrow M$$

$$M \rightarrow M * T$$

$$M \rightarrow T$$

 $T \rightarrow number$

With the input: 2 + 3 * 4

Sequence(0) \bullet 2 + 3 * 4

(1) $S \rightarrow P(0)$

start rule

Sequence(0) \bullet 2 + 3 * 4

- $(1) S \rightarrow \bullet P (0)$
- $(2) P \rightarrow \bullet P + M (0)$
- (3) $P \rightarrow M$ (0)

- # start rule
- # predict from (1)
- # predict from (1)

Sequence(0) \bullet 2 + 3 * 4

(1)
$$S \rightarrow P(0)$$

(2)
$$P \rightarrow \bullet P + M(0)$$

(3)
$$P \rightarrow M$$
 (0)

(4)
$$M \rightarrow M * T (0)$$

(5)
$$M \rightarrow \bullet T (0)$$

start rule

predict from (1)

predict from (1)

predict from (3)

predict from (3)

Sequence(0) \bullet 2 + 3 * 4

(1)
$$S \rightarrow P(0)$$

$$(2) P \rightarrow \bullet P + M (0)$$

(3)
$$P \rightarrow M$$
 (0)

(4)
$$M \rightarrow M * T (0)$$

(5)
$$M \rightarrow T (0)$$

(6)
$$T \rightarrow \bullet$$
 number (0)

Sequence(1) $2 \bullet + 3 * 4$

(1) $T \rightarrow \text{number} \bullet (0)$ # scan from S(0)(6)

Sequence(1) $2 \bullet + 3 * 4$

- (1) $T \rightarrow \text{number} \bullet (0)$ # scan from S(0)(6)
- (2) $M \rightarrow T \bullet (0)$ # complete from S(0)(5)

Sequence(1) $2 \bullet + 3 * 4$

- (1) $T \rightarrow \text{number} \bullet (0)$
- (2) $M \rightarrow T \bullet (0)$
- (3) $M \rightarrow M \bullet * T (0)$
- (4) $P \rightarrow M \bullet (0)$

- # scan from S(0)(6)
- # complete from S(0)(5)
- # complete from S(0)(4)
- # complete from S(0)(3)

Sequence(1) $2 \bullet + 3 * 4$

- (1) $T \rightarrow \text{number} \bullet (0)$
- (2) $M \rightarrow T \bullet (0)$
- $(3) M \rightarrow M \bullet * T (0)$
- (4) $P \rightarrow M \bullet (0)$
- $(5) P \rightarrow P \bullet + M (0)$
- (6) $S \rightarrow P \cdot (0)$

- # scan from S(0)(6)
- # complete from S(0)(5)
- # complete from S(0)(4)
- # complete from S(0)(3)
- # complete from S(0)(2)
- # complete from S(0)(1)

Sequence(2) $2 + \bullet 3 * 4$

(1) $P \rightarrow P + \bullet M$ (0) # scan from S(1)(5)

Sequence(2) $2 + \bullet 3 * 4$

```
(1) P \rightarrow P + \bullet M (0)
```

- $(2) M \rightarrow \bullet M * T (2)$
- (3) $M \rightarrow \bullet T(2)$

- # scan from S(1)(5)
- # predict from (1)
- # predict from (1)

Sequence(2) 2 + • 3 * 4

```
(1) P \rightarrow P + \bullet M (0)
```

- (2) $M \rightarrow M * T (2)$
- (3) $M \rightarrow \bullet T(2)$
- (4) $T \rightarrow \bullet$ number (2)

scan from S(1)(5)

predict from (1)

predict from (1)

predict from (3)

Sequence(3) $2 + 3 \bullet * 4$

(1) $T \rightarrow \text{number} \bullet (2)$ # scan from S(2)(4)

Sequence(3) $2 + 3 \bullet * 4$

- (1) $T \rightarrow \text{number} \bullet (2)$ # scan from S(2)(4)
- (2) $M \rightarrow T \bullet (2)$ # complete from S(2)(3)

Sequence(3) $2 + 3 \bullet * 4$

- (1) $T \rightarrow \text{number} \bullet (2)$
- (2) $M \rightarrow T \bullet (2)$
- (3) $M \rightarrow M \bullet * T (2)$
- (4) $P \rightarrow P + M \bullet (0)$

- # scan from S(2)(4)
- # complete from S(2)(3)
- # complete from S(2)(2)
- # complete from S(2)(1)

Sequence(3) $2 + 3 \bullet * 4$

- (1) $T \rightarrow \text{number} \bullet (2)$
- (2) $M \rightarrow T \bullet (2)$
- (3) $M \rightarrow M \cdot *T(2)$
- $(4) P \rightarrow P + M \bullet (0)$
- (5) $P \rightarrow P \cdot + M(0)$
- (6) $S \rightarrow P \bullet (0)$

- # scan from S(2)(4)
- # complete from S(2)(3)
- # complete from S(2)(2)
- # complete from S(2)(1)
- # complete from S(0)(2)
- # complete from S(0)(1)

Sequence(4) $2 + 3 * \bullet 4$

(1) $M \to M^* \bullet T(2)$ # scan from S(3)(3)

Sequence(4) $2 + 3 * \bullet 4$

- (1) $M \rightarrow M^* \bullet T(2)$ # scan from S(3)(3)
- (2) $T \rightarrow \bullet$ number (4) # predict from (1)

<u>Sequence(5)</u> 2 + 3 * 4 •

(1) $T \rightarrow \text{number} \bullet (4)$ # scan from S(4)(2)

<u>Sequence(5)</u> 2 + 3 * 4 •

- (1) $T \rightarrow \text{number} \bullet (4)$ # scan from S(4)(2)
- (2) $M \rightarrow M * T \bullet (2)$ # complete from S(4)(1)

Sequence(5) 2 + 3 * 4 •

```
(1) T \rightarrow \text{number} \bullet (4)
```

- (2) $M \rightarrow M * T \bullet (2)$
- (3) $M \rightarrow M \bullet * T (2)$
- (4) $P \rightarrow P + M \bullet (0)$

```
\# scan from S(4)(2)
```

- # complete from S(4)(1)
- # complete from S(2)(2)
- # complete from S(2)(1)

<u>Sequence(5)</u> 2 + 3 * 4 •

(1)
$$T \rightarrow \text{number} \bullet (4)$$

(2)
$$M \rightarrow M * T \bullet (2)$$

(3)
$$M \rightarrow M \bullet * T (2)$$

$$(4) P \rightarrow P + M \bullet (0)$$

(5)
$$P \rightarrow P \cdot + M(0)$$

(6)
$$S \rightarrow P \bullet (0)$$

```
\# scan from S(4)(2)
```

```
# complete from S(4)(1)
```

complete from
$$S(2)(2)$$

complete from
$$S(2)(1)$$

complete from
$$S(0)(2)$$

complete from
$$S(0)(1)$$

<u>Sequence(5)</u> 2 + 3 * 4 •

(1)
$$T \rightarrow \text{number} \bullet (4)$$

(2)
$$M \rightarrow M * T \bullet (2)$$

(3)
$$M \rightarrow M \cdot *T(2)$$

$$(4) P \rightarrow P + M \bullet (0)$$

(5)
$$P \rightarrow P \cdot + M(0)$$

(6)
$$S \rightarrow P \bullet (0)$$

$$\#$$
 scan from $S(4)(2)$

complete from
$$S(4)(1)$$

complete from
$$S(2)(2)$$

complete from
$$S(0)(2)$$

complete from
$$S(0)(1)$$

The state $S \rightarrow P \bullet$ (0) represents a completed parse.

<u>Seq 0</u>	<u>Seq 1</u>	<u>Seq 2</u>	<u>Seq 3</u>	<u>Seq 4</u>	<u>Seq 5</u>
• 2 + 3 * 4	2 • + 3 * 4	2+•3*4	2+3•*4	2+3*•4	2+3*4•
$S \rightarrow \bullet P (0)$	T → '2' • (0)	$P \rightarrow P + \bullet M$ (0)	$T \rightarrow '3' \bullet (2)$	$M \rightarrow M * \bullet T$ (2)	$T \rightarrow '4' \bullet (4)$
$P \rightarrow \bullet P + M$ (0)	$M \rightarrow T \bullet (0)$	$M \rightarrow \bullet M * T$ (2)	$M \rightarrow T \bullet (2)$	T → • num (4)	$M \rightarrow M * T \bullet$ (2)
$P \rightarrow \bullet M (0)$	$M \rightarrow M \bullet * T$ (0)	$M \rightarrow \bullet T(2)$	$M \rightarrow M \bullet * T$ (2)		$M \rightarrow M \bullet * T$ (2)
$M \rightarrow \bullet M * T$ (0)	$P \rightarrow M \bullet (0)$	$T \rightarrow \bullet \text{ num}$ (2)	$P \rightarrow P + M \bullet$ (0)		$P \rightarrow P + M \bullet$ (0)
$M \rightarrow \bullet T (0)$	$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)
T → • num (0)	$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$

<u>Seq 0</u>	<u>Seq 1</u>	<u>Seq 2</u>	<u>Seq 3</u>	<u>Seq 4</u>	<u>Seq 5</u>
• 2 + 3 * 4	2 • + 3 * 4	2+•3*4	2+3•*4	2+3*•4	2+3*4•
$S \rightarrow \bullet P (0)$	T → '2' • (0)	$P \rightarrow P + \bullet M$ (0)	T → '3' • (2)	$M \rightarrow M * \bullet T$ (2)	T → '4' • (4)
$P \rightarrow \bullet P + M$ (0)	$M \rightarrow T \bullet (0)$	$M \rightarrow \bullet M * T$ (2)	$M \rightarrow T \bullet (2)$	T → • num (4)	M → M * T • (2)
$P \rightarrow \bullet M (0)$	$M \rightarrow M \bullet * T$ (0)	$M \rightarrow \bullet T(2)$	$M \rightarrow M \bullet * T$ (2)		$M \rightarrow M \bullet * T$ (2)
$M \rightarrow \bullet M * T$ (0)	$P \rightarrow M \cdot (0)$	$T \rightarrow \bullet \text{ num}$ (2)	$P \rightarrow P + M \bullet$ (0)		$P \rightarrow P + M \bullet$ (0)
$M \rightarrow \bullet T (0)$	$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)
$T \rightarrow \bullet \text{ num}$ (0)	$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$

<u>Seq 0</u>	<u>Seq 1</u>	<u>Seq 2</u>	<u>Seq 3</u>	<u>Seq 4</u>	<u>Seq 5</u>
• 2 + 3 * 4	2 • + 3 * 4	2+•3*4	2+3•*4	2+3*•4	2+3*4•
$S \rightarrow \bullet P (0)$	T → '2' • (0)	$P \rightarrow P + \bullet M$ (0)	T → '3' • (2)	$M \rightarrow M * \bullet T$ (2)	T → '4' • (4)
$P \rightarrow \bullet P + M$ (0)	$M \rightarrow T \bullet (0)$	$M \rightarrow \bullet M * T$ (2)	M → T • (2)	T → • num (4)	M → M * T • (2)
P → • M (0)	$M \rightarrow M \bullet * T$ (0)	$M \rightarrow \bullet T (2)$	$M \rightarrow M \bullet * T$ (2)		$M \rightarrow M \bullet * T$ (2)
$M \rightarrow \bullet M * T$ (0)	$P \rightarrow M \bullet (0)$	$T \rightarrow \bullet \text{ num}$ (2)	$P \rightarrow P + M \bullet$ (0)		$P \rightarrow P + M \bullet$ (0)
$M \rightarrow \bullet T (0)$	$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)		$P \to P \bullet + M$ (0)
T → • num (0)	$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$

<u>Seq 0</u>	<u>Seq 1</u>	<u>Seq 2</u>	<u>Seq 3</u>	<u>Seq 4</u>	<u>Seq 5</u>
• 2 + 3 * 4	2 • + 3 * 4	2+•3*4	2+3•*4	2+3*•4	2+3*4•
$S \rightarrow \bullet P (0)$	T → '2' • (0)	$P \rightarrow P + \bullet M$ (0)	T → '3' • (2)	$M \rightarrow M * \bullet T$ (2)	T → '4' • (4)
$P \rightarrow \bullet P + M$ (0)	$M \rightarrow T \bullet (0)$	$M \rightarrow \bullet M * T$ (2)	M → T • (2)	T → • num (4)	M → M * T • (2)
$P \rightarrow \bullet M (0)$	$M \rightarrow M \bullet * T$ (0)	$M \rightarrow \bullet T (2)$	$M \rightarrow M \bullet * T$ (2)		$M \rightarrow M \bullet * T$ (2)
$M \rightarrow \bullet M * T$ (0)	P → M • (0)	$T \rightarrow \bullet \text{ num}$ (2)	$P \rightarrow P + M \bullet$ (0)		$P \rightarrow P + M \bullet$ (0)
$M \rightarrow \bullet T (0)$	$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)		$P \rightarrow P \bullet + M$ (0)
T → • num (0)	$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$		$S \rightarrow P \bullet (0)$

- Algorithm iterates for each symbol of input (n iterations)
- How many items can be created and processed in S_i ?

- Algorithm iterates for each symbol of input (n iterations)
- How many items can be created and processed in S_i?
 - Each item in S_i has the form $[A \rightarrow X_1 X_2 ... \bullet C ... X_m, j] (0 \le j \le i)$
 - Thus O(r*n) = O(n) items.

- Algorithm iterates for each symbol of input (n iterations)
- How many items can be created and processed in S_i ?
 - Each item in S_i has the form $[A \rightarrow X_1 X_2 ... \bullet C ... X_m, j] (0 \le j \le i)$
 - Thus O(r*n) = O(n) items.
- The *Scanner* and *Predicator* operations on an item each require a constant time.

- Algorithm iterates for each symbol of input (n iterations)
- How many items can be created and processed in S_i?
 - Each item in S_i has the form $[A \rightarrow X_1 X_2 ... \bullet C ... X_m, j] (0 \le j \le i)$
 - Thus *O(r*n)* = *O(n)* items.
- The *Scanner* and *Predicator* operations on an item each require a constant time.
- The *Completer* operation on an item adds items of the form $[B \rightarrow X_1 X_2 ... A \bullet ... X_m, k]$ to S_i with $0 \le k \le i$, so it may require up to $O(r^*n) = O(n)$ time for each processed item.

- Algorithm iterates for each symbol of input (n iterations)
- How many items can be created and processed in S_i?
 - Each item in S_i has the form $[A \rightarrow X_1 X_2 ... \bullet C ... X_m, j] (0 \le j \le i)$
 - Thus *O(r*n)* = *O(n)* items.
- The *Scanner* and *Predicator* operations on an item each require a constant time.
- The *Completer* operation on an item adds items of the form $[B \rightarrow X_1 X_2 ... A \bullet ... X_m, k]$ to S_i with $0 \le k \le i$, so it may require up to $O(r^*n) = O(n)$ time for each processed item.
- Time require for each iteration is thus $O(r^2n^2) = O(n^2)$
- Time bound on the entire algorithm is therefore $O(n^3)$

Earley algorithm provide **better time complexity** in special cases:

Earley algorithm provide **better time complexity** in special cases:

 Completer is the operation that may require O(i²) time in iteration i

Earley algorithm provide **better time complexity** in special cases:

- *Completer* is the operation that may require $O(i^2)$ time in iteration *i*
- For unambiguous grammars, Earley shows that the Completer operation will require at most *O(i)* time.
- Thus time complexity for unambiguous grammar is $O(n^2)$

Earley algorithm provide **better time complexity** in special cases:

- Completer is the operation that may require O(i²) time in iteration i
- For unambiguous grammars, Earley shows that the Completer operation will require at most *O(i)* time.
- Thus time complexity for unambiguous grammar is $O(n^2)$
- For some grammars, the number of items in each S_i is bounded by a constant (bounded-state grammars)
- For bounded-state grammars, the time complexity of the algorithm is <u>linear</u> – *O(n)*

CKY vs. Earley

- CKY is a bottom-up parser.
- Earley is a bottom-up parser with a top-down prediction.
- CKY algorithm requires the grammar to be in CNF.
- Earley algorithm works for any grammar.
- CKY require $O(n^3)$ time for any grammar.
- Earley algorithm can work in O(n²) or O(n) time for some grammars.

The End.