Due Date: February 16th, 2019

Name: Aditya Joshi

Matricule:

Instructions

• For all questions, show your work!

• Use a document preparation system such as LaTeX.

• Submit your answers electronically via the course studium page, and via Gradescope.

Question 1. Using the following definition of the derivative and the definition of the Heaviside step function :

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.

The ReLU is defined as:

$$g(x) = \text{ReLU}(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$

The derivative is given by:

$$g(x) = \text{ReLU}'(x) = \begin{cases} 0 & \text{if } x < 0\\ \text{undefined} & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

This is equivalent to the Heaviside step function.

- 2. Give two alternative definitions of g(x) using H(x).
 - $\bullet \ g(x) = x \cdot H(x)$
 - $\bullet \ g(x) = x \cdot (1 H(-x))$
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1+e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.
 - (a) For a **fixed value of** x **where** x > 0, as $k \to \infty$, $\sigma(x)$ approaches the value of 1. In other words, $\lim_{k\to\infty}\frac{1}{1+e^{-kx}}=1$
 - (b) When x < 0, as $k \to \infty$, $\sigma(x)$ approaches the value of 0, because $\lim_{k \to \infty} \frac{1}{1 + e^{kx}} = 0$.
 - (c) When x = 0, we get $\sigma(x) = \frac{1}{1 + e^0} = \frac{1}{2}$.

Therefore we see that we can approximate H(x) by the sgimoid function $\sigma(x)$ asymptotically.

Multilayer Perceptrons and Convolutional Neural networks

Thus we can approximate the Heaviside step function asymptotically with the sigmoid function.

*4. Although the Heaviside step function is not differentiable, we can define its **distributional derivative**. For a function F, consider the functional $F[\phi] = \int_{\mathbb{R}} H(x)\phi(x)dx$, where ϕ is a smooth function (infinitely differentiable) with compact support $(\phi(x) = 0$ whenever $|x| \ge A$, for some A > 0).

Show that whenever F is differentiable, $F'[\phi] = -\int_{\mathbb{R}} F(x)\phi'(x)dx$. Using this formula as a definition in the case of non-differentiable functions, show that $H'[\phi] = \phi(0)$. $(\delta[\phi] \doteq \phi(0))$ is known as the Dirac delta function.)

Answer 1. Write your answer here.

Question 2. Let x be an n-dimentional vector. Recall the softmax function : $S: \mathbf{x} \in \mathbb{R}^n \mapsto S(\mathbf{x}) \in \mathbb{R}^n$ such that $S(\mathbf{x})_i = \frac{e^{\mathbf{x}_i}}{\sum_j e^{\mathbf{x}_j}}$; the diagonal function : $\operatorname{diag}(\mathbf{x})_{ij} = \mathbf{x}_i$ if i = j and $\operatorname{diag}(\mathbf{x})_{ij} = 0$ if $i \neq j$; and the Kronecker delta function : $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

- 1. Show that the derivative of the softmax function is $\frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j} = S(\boldsymbol{x})_i (\delta_{ij} S(\boldsymbol{x})_j)$. There are two cases to be considered.
 - (a) i = j: Using the quotient rule of derivatives, we have that:

$$\frac{dS(\mathbf{x})_{i}}{dx_{j}} = \frac{e^{x_{i}} \cdot \sum_{j} e^{x_{j}} - e^{x_{i}} \cdot e^{x_{j}}}{(\sum_{j} e^{x_{j}})^{2}}$$

(b) $i \neq j$: Notice that in the expression below the $e^{x_i} \cdot \sum_j e^{x_j}$ part is equal to 0 as the derivative of e^{x_i} with respect to e^{x_j} is equal to 0 since $i \neq j$.

$$\frac{dS(\boldsymbol{x})_i}{dx_j} = \frac{-e^{x_i} \cdot e^{x_j}}{(\sum_j e^{x_j})^2}$$

We can combine these two expressions by introducing the Kronecker delta function δ_{ij} as follows :

$$\frac{dS(\boldsymbol{x})_i}{dx_j} = \frac{e^{x_i} \cdot \sum_j e^{x_j} \cdot \delta_{ij} - e^{x_i} \cdot e^{x_j}}{(\sum_j e^{x_j})^2}
= \frac{e^{x_i} \cdot \sum_j e^{x_j} \cdot \delta_{ij}}{(\sum_j e^{x_j})^2} - \frac{e^{x_i} \cdot e^{x_j}}{(\sum_j e^{x_j})^2}
= \frac{e^{x_i}}{\sum_j e^{x_j}} \cdot \delta_{ij} - \left[\frac{e^{x_i}}{\sum_j e^{x_j}} \cdot \frac{e^{x_j}}{\sum_j e^{x_j}}\right]
= S(\boldsymbol{x})_i \cdot \delta_{ij} - S(\boldsymbol{x})_i \cdot S(\boldsymbol{x})_j
= S(\boldsymbol{x})_i (\delta_{ij} - S(\boldsymbol{x})_j)$$

2. Express the Jacobian matrix $\frac{\partial S(x)}{\partial x}$ using matrix-vector notation. Use diag(·).

$$\frac{\partial S(\boldsymbol{x})}{\partial \boldsymbol{x}} = \operatorname{diag}\bigg(S(\boldsymbol{x})\bigg) - S(\boldsymbol{x}) \cdot S(\boldsymbol{x})^{\top}$$

Multilayer Perceptrons and Convolutional Neural networks

3. Compute the Jacobian of the sigmoid function $\sigma(\mathbf{x}) = 1/(1 + e^{-\mathbf{x}})$. Let us first derive the derivative of the sigmoid with respect to a scalar parameter.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d\sigma(x)}{dx} = \frac{d}{dx} \cdot (1 + e^{-x})^{-1}$$

$$= -1 \cdot (1 + e^{-x})^{-2} \cdot (-e^{-x})$$

$$= (1 + e^{-x})^{-2} \cdot e^{-x}$$

$$= \frac{e^{-x}}{(1 + e^{-x})^2}$$

$$= \frac{1}{1 + e^{-x}} \cdot \frac{e^{-x}}{1 + e^{-x}}$$

$$= \sigma(x) \cdot (1 - \sigma(x))$$

For the sigmoid transformation of the vector, each element of the vector is given by :

$$\sigma(\boldsymbol{x})_i = \frac{1}{1 + e^{-(\boldsymbol{x})_i}}$$

There are two cases as before for the derivative $\frac{\partial \sigma(\boldsymbol{x})_i}{(\boldsymbol{x})_j}$

- $i = j : \sigma(x)_i \cdot (1 \sigma(x)_j)$
- $i \neq j : 0$

Thus, in vector notation, where $\mathbf{1}$ is a vector of the appropriate size,

$$\frac{\partial \sigma(\boldsymbol{x})}{\partial \boldsymbol{x}} = \mathrm{diag}\bigg(\sigma(\boldsymbol{x})(\boldsymbol{1} - \sigma(\boldsymbol{x}))^{\top}\bigg)$$

- 4. Let \mathbf{y} and \mathbf{x} be n-dimensional vectors related by $\mathbf{y} = f(\mathbf{x})$, L be an unspecified differentiable loss function. According to the chain rule of calculus, $\nabla_{\mathbf{x}} L = (\frac{\partial \mathbf{y}}{\partial \mathbf{x}})^{\top} \nabla_{\mathbf{y}} L$, which takes up $\mathcal{O}(n^2)$ computational time in general. Show that if $f(\mathbf{x}) = \sigma(\mathbf{x})$ or $f(\mathbf{x}) = S(\mathbf{x})$, the above matrix-vector multiplication can be simplified to a $\mathcal{O}(n)$ operation.
 - $f(\mathbf{x}) = \sigma(\mathbf{x})$:

$$\nabla_{\boldsymbol{x}} L = \left(\operatorname{diag}\left(\sigma(\boldsymbol{x}) \cdot (\mathbf{1} - \sigma(\boldsymbol{x}))\right)\right)^{\top} \nabla_{\boldsymbol{y}} L$$
$$= \operatorname{diag}\left(\sigma(\boldsymbol{x})(\mathbf{1} - \sigma(\boldsymbol{x}))\right) \nabla_{\boldsymbol{y}} L$$

The above product is of a diagonal matrix of size $n \times n$ and a column vector of size n. This is an element wise scaling operation that can be performed in $\mathcal{O}(n)$ time.

• $f(\mathbf{x}) = S(\mathbf{x})$:

$$\nabla_{\boldsymbol{x}} L = \left(\operatorname{diag}\left(S(\boldsymbol{x})\right) - S(\boldsymbol{x})S(\boldsymbol{x})^{\top}\right)^{\top} \nabla_{\boldsymbol{y}} L$$

$$= \left(\operatorname{diag}\left(S(\boldsymbol{x})\right)^{\top} - (S(\boldsymbol{x})S(\boldsymbol{x})^{\top})^{\top}\right) \nabla_{\boldsymbol{y}} L$$

$$= \left(\operatorname{diag}\left(S(\boldsymbol{x})\right) - S(\boldsymbol{x})S(\boldsymbol{x})^{\top}\right) \nabla_{\boldsymbol{y}} L$$

$$= \operatorname{diag}\left(S(\boldsymbol{x})\right) \nabla_{\boldsymbol{y}} L - S(\boldsymbol{x})S(\boldsymbol{x})^{\top} \nabla_{\boldsymbol{y}} L$$

Now the diag $(S(\boldsymbol{x}))\nabla_{\boldsymbol{y}}L$ term is an element wise scaling operation of complexity $\mathcal{O}(n)$ (product of a diagonal matrix of size $n \times n$ and a column vector of size n) as seen before for the sigmoid derivation. Secondly, $S(\boldsymbol{x})S(\boldsymbol{x})^{\top}\nabla_{\boldsymbol{y}}L$ can be simplified to an $\mathcal{O}(n)$ operation by using the property of matrix associativity.

$$= S(\boldsymbol{x}) \left(S(\boldsymbol{x})^{\top} \nabla_{\boldsymbol{y}} L \right)$$

$$= S(\boldsymbol{x}) \underbrace{\left(S(\boldsymbol{x})^{\top} \nabla_{\boldsymbol{y}} L \right)}_{\mathcal{O}(n)}$$

$$= \underbrace{S(\boldsymbol{x}) \cdot c}_{\mathcal{O}(n)}$$

Thus, finally, we have that

$$\nabla_{\boldsymbol{x}} L = \underbrace{\operatorname{diag}\left(S(\boldsymbol{x})\right) \nabla_{\boldsymbol{y}} L}_{\mathcal{O}(n)} - \underbrace{S(\boldsymbol{x})S(\boldsymbol{x})^{\top} \nabla_{\boldsymbol{y}} L}_{\mathcal{O}(n)}$$

And therefore it is an $\mathcal{O}(n)$ operation.

Question 3. Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_i e^{\mathbf{x}_j}$.

1. Show that softmax is translation-invariant, that is: S(x+c) = S(x), where c is a scalar constant. The softmax function is defined as follows:

$$S(\boldsymbol{x})_i = \frac{e^{\boldsymbol{x}_i}}{\sum_j e^{\boldsymbol{x}_j}}$$

If we scale the input vector \boldsymbol{x} by a scalar c, that is, $\boldsymbol{x} + c$, we have the following result:

$$S(\boldsymbol{x}+c)_{i} = \frac{e^{\boldsymbol{x}_{i}+c}}{\sum_{j} e^{\boldsymbol{x}_{j}+c}}$$

$$= \frac{e^{\boldsymbol{x}_{i}} \cdot e^{c}}{\sum_{j} e^{\boldsymbol{x}_{j}} \cdot e^{c}}$$

$$= \frac{e^{c} \cdot e^{\boldsymbol{x}_{i}}}{e^{c} \cdot \sum_{j} e^{\boldsymbol{x}_{j}}}$$

$$= \frac{e^{\boldsymbol{x}_{i}}}{\sum_{j} e^{\boldsymbol{x}_{j}}}$$

$$S(\boldsymbol{x}+c)_{i} = S(\boldsymbol{x})_{i}$$

This is the same for all input elements i in the vector, and thus we have shown that the softmax function is translation-invariant, that is, $S(\mathbf{x} + c) = S(\mathbf{x})$.

2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large? After scaling the softmax function we get:

$$S(c \cdot \boldsymbol{x})_i = \frac{e^{c \cdot \boldsymbol{x}_i}}{\sum_j e^{c \cdot \boldsymbol{x}_j}} \neq \frac{e^{\boldsymbol{x}_i}}{\sum_j e^{\boldsymbol{x}_j}}$$

- $c \to 0$: We will obtain the uniform distribution, that is, $S(x)_i = \frac{1}{|x|}$
- $c \to \infty$: The vector with the largest value will tend towards having a very large probability. We will shift probability mass from all other points to the ones that have a higher numeric value. That is, if $(\boldsymbol{x})_i$ has the largest value, $S(\boldsymbol{x})_i \to 1$.

Multilayer Perceptrons and Convolutional Neural networks

3. Let \boldsymbol{x} be a 2-dimentional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 - \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .

For a two dimensional vector \boldsymbol{x} , the softmax function is given by :

$$S(\mathbf{x})_{1} = \frac{e^{\mathbf{x}_{1}}}{e^{\mathbf{x}_{1}} + e^{\mathbf{x}_{2}}} \qquad S(\mathbf{x})_{2} = \frac{e^{\mathbf{x}_{2}}}{e^{\mathbf{x}_{1}} + e^{\mathbf{x}_{2}}}$$

$$S(\mathbf{x})_{1} = \frac{e^{\mathbf{x}_{1}}}{e^{\mathbf{x}_{1}} + e^{\mathbf{x}_{2}}} \qquad S(\mathbf{x})_{2} = 1 - \frac{e^{\mathbf{x}_{1}}}{e^{\mathbf{x}_{1}} + e^{\mathbf{x}_{2}}}$$

$$S(\mathbf{x})_{1} = \frac{e^{\mathbf{x}_{1}}}{e^{\mathbf{x}_{1}} + e^{\mathbf{x}_{2}}} \qquad S(\mathbf{x})_{2} = 1 - S(\mathbf{x}_{1})$$

$$S(\mathbf{x}_{1}) = \frac{1}{1 + e^{\mathbf{x}_{2}}}$$

$$= \frac{1}{1 + e^{\mathbf{x}_{2}} - \mathbf{x}_{1}}$$

$$= \frac{1}{1 + e^{\mathbf{x}_{2}} - \mathbf{x}_{1}}$$

$$= \frac{1}{1 + e^{-(\mathbf{x}_{1} - \mathbf{x}_{2})}}$$

$$S(\mathbf{x})_{1} = \sigma(\mathbf{x}_{1} - \mathbf{x}_{2}) \qquad S(\mathbf{x})_{2} = 1 - \sigma(\mathbf{x}_{1} - \mathbf{x}_{2})$$

Thus, we can define a scalar function of \boldsymbol{x} as the following $z = (\boldsymbol{x})_1 - (\boldsymbol{x})_2$ and reparameterize the softmax function as $[\sigma(z), 1 - \sigma(z)]^{\top}$.

4. Let \boldsymbol{x} be a K-dimentional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1 parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$.

For a K-dimensional vector \boldsymbol{x} , we have

$$S(\mathbf{x})_{1} = \frac{e^{\mathbf{x}_{1}}}{e^{\mathbf{x}_{1}} + e^{\mathbf{x}_{2}} + \cdots e^{\mathbf{x}_{k}}}$$

$$= \frac{1}{1 + e^{\mathbf{x}_{2} - \mathbf{x}_{1}} + \cdots e^{\mathbf{x}_{k} - \mathbf{x}_{1}}}$$

$$= \frac{e^{0}}{e^{0} + e^{\mathbf{x}_{2} - \mathbf{x}_{1}} + \cdots e^{\mathbf{x}_{k} - \mathbf{x}_{1}}}$$

$$= \frac{e^{0}}{e^{0} + \cdots e^{\mathbf{x}_{j} - \mathbf{x}_{1}} + \cdots + e^{\mathbf{x}_{k} - \mathbf{x}_{1}}}$$

$$= \frac{e^{0} + \cdots e^{\mathbf{x}_{j} - \mathbf{x}_{1}} + \cdots + e^{\mathbf{x}_{k} - \mathbf{x}_{1}}}{e^{0} + \cdots e^{\mathbf{x}_{j} - \mathbf{x}_{1}} + \cdots + e^{\mathbf{x}_{k} - \mathbf{x}_{1}}}$$

We can express this using K-1 parameters y_i , for all i where $1 \le i \le K-1$, such that $y_i = \boldsymbol{x}_i - \boldsymbol{x}_1$. Thus, we see that $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^\top)$. **Question 4.** Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{j=1}^M \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^D \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \leq k \leq K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

The tanh function is defined as follows:

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$= \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

$$= \frac{2 - (1 + e^{-2x})}{1 + e^{-2x}}$$

$$= \frac{2}{1 + e^{-2x}} - \frac{1 + e^{-2x}}{1 + e^{-2x}}$$

$$= 2 \cdot \frac{1}{1 + e^{-2x}} - 1$$

$$= 2 \cdot \sigma(2x) - 1$$

Therefore, the tanh function is a **re-scaled** version of the sigmoid function. We also have that $\sigma(x) = \frac{1}{2} \left(\tanh\left(\frac{x}{2}\right) + 1 \right)$

Consider the original equation,

$$y(x, \Theta, \sigma)_{k} = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \omega_{kj}^{(2)} \cdot \frac{1}{2} \cdot \left(\tanh \left(\frac{1}{2} \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) \right) + 1 \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} \left(\tanh \left(\frac{1}{2} \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) \right) + 1 \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \left(\frac{\omega_{kj}^{(2)}}{2} \cdot \tanh \left(\sum_{i=1}^{D} \frac{\omega_{ji}^{(1)} x_{i}}{2} + \frac{\omega_{j0}^{(1)}}{2} \right) \right) + \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \left(\tilde{\omega}_{kj}^{(2)} \cdot \tanh \left(\sum_{i=1}^{D} \tilde{\omega}_{ji}^{(1)} x_{i} + \tilde{\omega}_{j0}^{(1)} \right) \right) + \tilde{\omega}_{k0}^{(2)}$$

Prof : Aaron Courville

Thus we have defined an equivalent network with the following changes in Θ with Θ' defined as :

$$\begin{array}{ll} \textbf{Layer 2} & \qquad & \tilde{\omega}_{kj}^{(2)} = \frac{\omega_{kj}^{(2)}}{2} & \qquad & \tilde{\omega}_{k0}^{(2)} = \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} + \omega_{k0}^{(2)} \\ \\ \textbf{Layer 1} & \qquad & \tilde{\omega}_{ji}^{(1)} = \frac{\omega_{ji}^{(1)}}{2} & \qquad & \tilde{\omega}_{j0}^{(1)} = \frac{\omega_{j0}^{(1)}}{2} \\ \end{array}$$

Layer 1
$$\tilde{\omega}_{ji}^{(1)} = \frac{\omega_{ji}^{(1)}}{2}$$
 $\tilde{\omega}_{j0}^{(1)} = \frac{\omega_{j0}^{(1)}}{2}$

IFT6135-H2019 Prof : Aaron Courville

Question 5. Given $N \in \mathbb{Z}^+$, we want to show that for any $f : \mathbb{R}^n \to \mathbb{R}^m$ and any sample set $S \subset \mathbb{R}^n$ of size N, there is a set of parameters for a two-layer network such that the output y(x) matches f(x) for all $x \in S$. That is, we want to interpolate f with y on any finite set of samples S.

1. Write the generic form of the function $y: \mathbb{R}^n \to \mathbb{R}^m$ defined by a 2-layer network with N-1 hidden units, with linear output and activation function ϕ , in terms of its weights and biases $(\boldsymbol{W}^{(1)}, \boldsymbol{b}^{(1)})$ and $(\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)})$.

$$y(\boldsymbol{x}) = \boldsymbol{W}^{(2)} \phi \left(\boldsymbol{W}^{(1)} \boldsymbol{x} + \boldsymbol{b}^{(1)} \right) + \boldsymbol{b}^{(2)}$$

2. In what follows, we will restrict $\mathbf{W}^{(1)}$ to be $\mathbf{W}^{(1)} = [\mathbf{w}, \cdots, \mathbf{w}]^T$ for some $\mathbf{w} \in \mathbb{R}^n$ (so the rows of $\mathbf{W}^{(1)}$ are all the same). Show that the interpolation problem on the sample set $\mathcal{S} = \{\mathbf{x}^{(1)}, \cdots \mathbf{x}^{(N)}\} \subset \mathbb{R}^n$ can be reduced to solving a matrix equation : $\mathbf{M}\tilde{\mathbf{W}}^{(2)} = \mathbf{F}$, where $\tilde{\mathbf{W}}^{(2)}$ and \mathbf{F} are both $N \times m$, given by

$$\tilde{\boldsymbol{W}}^{(2)} = [\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)}]^{\top}$$
 $\boldsymbol{F} = [f(\boldsymbol{x}^{(1)}), \cdots, f(\boldsymbol{x}^{(N)})]^{\top}$

Express the $N \times N$ matrix \boldsymbol{M} in terms of \boldsymbol{w} , $\boldsymbol{b}^{(1)}$, ϕ and $\boldsymbol{x}^{(i)}$.

$$\begin{split} F &= [f(\boldsymbol{x}^{(1)}), \cdots, f(\boldsymbol{x}^{(N)})]^{\top} \\ &= [(\boldsymbol{W}^{(2)}\phi(\boldsymbol{W}^{(1)}\boldsymbol{x}^{(1)} + \boldsymbol{b}^{(1)}) + \boldsymbol{b}^{(2)}), \cdots, (\boldsymbol{W}^{(2)}\phi(\boldsymbol{W}^{(1)}\boldsymbol{x}^{(N)} + \boldsymbol{b}^{(1)}) + \boldsymbol{b}^{(2)})]^{\top} \\ &= \begin{bmatrix} (\boldsymbol{W}^{(2)}\phi(\boldsymbol{W}^{(1)}\boldsymbol{x}^{(1)} + \boldsymbol{b}^{(1)}) + \boldsymbol{b}^{(2)})^{\top} \\ \cdots \\ (\boldsymbol{W}^{(2)}\phi(\boldsymbol{W}^{(1)}\boldsymbol{x}^{(N)} + \boldsymbol{b}^{(1)}) + \boldsymbol{b}^{(2)})^{\top} \end{bmatrix} \\ &= \begin{bmatrix} (\phi(\boldsymbol{x}^{(1)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}})\boldsymbol{W}^{(2)^{\top}} + \boldsymbol{b}^{(2)^{\top}}) \\ \cdots \\ (\phi(\boldsymbol{x}^{(N)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}})\boldsymbol{W}^{(2)^{\top}} + \boldsymbol{b}^{(2)^{\top}}) \end{bmatrix} \\ &= \begin{bmatrix} (\phi(\boldsymbol{x}^{(1)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}}) \boldsymbol{W}^{(2)^{\top}} \\ \cdots \\ (\phi(\boldsymbol{x}^{(N)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}}) \end{bmatrix} \boldsymbol{W}^{(2)^{\top}} + \begin{bmatrix} 1 \\ \cdots \\ \boldsymbol{b}^{(2)^{\top}} \end{bmatrix} \\ &= \begin{bmatrix} (\phi(\boldsymbol{x}^{(1)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}}) \\ \cdots \\ (\phi(\boldsymbol{x}^{(N)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}}) \end{bmatrix} \begin{bmatrix} \boldsymbol{W}^{(2)^{\top}} \\ \boldsymbol{b}^{(2)^{\top}} \end{bmatrix} \\ &= \begin{bmatrix} (\phi(\boldsymbol{x}^{(1)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}}) & 1 \\ \cdots \\ (\phi(\boldsymbol{x}^{(N)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}}) & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{W}^{(2)^{\top}} \\ \boldsymbol{b}^{(2)^{\top}} \end{bmatrix} \\ &= \begin{bmatrix} (\phi(\boldsymbol{x}^{(1)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}}) & 1 \\ \cdots \\ (\phi(\boldsymbol{x}^{(N)^{\top}}\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)^{\top}}) & 1 \end{bmatrix} [\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)}]^{\top} = \tilde{\boldsymbol{W}}^{(2)} \end{split}$$

$$F = M\tilde{W}^{(2)}$$

IFT6135-H2019 Prof : Aaron Courville

*3. **Proof with Relu activation.** Assume $\boldsymbol{x}^{(i)}$ are all distinct. Choose \boldsymbol{w} such that $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$ are also all distinct (Try to prove the existence of such a \boldsymbol{w} , although this is not required for the assignment - See Assignment 0). Set $\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon$, where $\epsilon > 0$. Find a value of ϵ such that \boldsymbol{M} is triangular with non-zero diagonal elements. Conclude. (Hint: assume an ordering of $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$.)

$$\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top} \boldsymbol{x}^{(j)} + \epsilon$$
$$\epsilon = \boldsymbol{b}_{j}^{(1)} + \boldsymbol{w}^{\top} \boldsymbol{x}^{(j)}$$

- (a) The diagonal elements are $\phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \boldsymbol{b}_{j}^{(1)}) = \phi(\epsilon)$. $\epsilon > 0$, and thus $\phi(\epsilon) > 0$ and the diagonal elements are non-zero.
- (b) The non-diagonal elements below the diagonal will be $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} + \boldsymbol{b}_{j}^{(j)} < 0$. Assuming an ordering of $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$, i > j and substituting $\boldsymbol{b}_{i}^{(1)} = -\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon$, we have :

$$\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top} \boldsymbol{x}^{(j)} + \epsilon < 0$$
$$\boldsymbol{w}^{\top} \boldsymbol{x}^{(j)} - \boldsymbol{w}^{\top} \boldsymbol{x}^{(i)} > \epsilon$$
$$\boldsymbol{w}^{\top} (\boldsymbol{x}^{(j)} - \boldsymbol{x}^{(i)}) > \epsilon$$

Thus we can choose an epsilon such that $0 < \epsilon < \boldsymbol{w}^{\top}(\boldsymbol{x}^{(j)} - \boldsymbol{x}^{(i)})$. Since we have an upper triangular matrix \boldsymbol{M} , $F = \boldsymbol{M}\tilde{\boldsymbol{W}}^{(2)}$ can be solved efficiently for $\boldsymbol{W}^{(2)}$.

- *4. **Proof with sigmoid-like activations**. Assume ϕ is continuous, bounded, $\phi(-\infty) = 0$ and $\phi(0) > 0$. Decompose \boldsymbol{w} as $\boldsymbol{w} = \lambda \boldsymbol{u}$. Set $\boldsymbol{b}_j^{(1)} = -\lambda \boldsymbol{u}^{\top} \boldsymbol{x}^{(j)}$. Fixing \boldsymbol{u} , show that $\lim_{\lambda \to +\infty} \boldsymbol{M}$ is triangular with non-zero diagonal elements. Conclude. (Note that doing so preserves the distinctness of $\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}$.)
 - (a) The diagonal elements are $\phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \boldsymbol{b}_{j}^{(1)})$. When we substitute $\boldsymbol{b}_{j}^{(1)} = -\lambda \boldsymbol{u}^{\top}\boldsymbol{x}^{(j)}$ and $\boldsymbol{w} = \lambda \boldsymbol{u}$, we get $\phi(\lambda \boldsymbol{u}^{\top}\boldsymbol{x}^{(j)}) = \phi(\lambda \boldsymbol{u}^{\top}\boldsymbol{x}^{(j)} \lambda \boldsymbol{u}^{\top}\boldsymbol{x}^{(j)}) = \phi(0)$. We know that $\phi(0) > 0$. Thus diagonal elements are non-zero.
 - (b) The non-diagonal elements are $\phi(\lambda \boldsymbol{u}(\boldsymbol{x}^{(i)} \boldsymbol{x}^{(j)})$. Assuming an ordering of $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$, for elements under the diagonal we have that $\boldsymbol{w}^{\top}(\boldsymbol{x}^{(j)} \boldsymbol{x}^{(i)}) > 0$. Now substituting the value of \boldsymbol{w} , we have that $\lambda \boldsymbol{u}^{\top}(\boldsymbol{x}^{(j)} \boldsymbol{x}^{(i)}) < 0$. Thus as $\lambda \to \infty$, these elements will tend to 0. We will then get a triangular matrix with non-zero diagonal elements.

Since we have an upper triangular matrix M, $F = M\tilde{W}^{(2)}$ can be solved efficiently for $W^{(2)}$.

Prof: Aaron Courville Multilayer Perceptrons and Convolutional Neural networks

Question 6. Compute the full, valid, and same convolution (with kernel flipping) for the following 1D matrices: $|1 \ 2 \ 3 \ 4| * |1 \ 0 \ 2|$

- Full convolution: We pad the input with 20's on each side giving us: $\begin{bmatrix} 0 & 0 & 1 & 2 & 3 & 4 & 0 & 0 \end{bmatrix} *$ $\begin{bmatrix} 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 & 8 & 6 & 8 \end{bmatrix}$
- Valid convolution : $\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix} * \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 8 \end{bmatrix}$
- Same convolution: For this convolution, we pad the input with 0's on both sides giving us $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 0 \end{bmatrix} * \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 8 & 6 \end{bmatrix}$

Question 7. Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves $128 \ 4 \times 4$ kernels with a stride of 1 and a zero-padding of size 1 on each border.

The first layer transforms an $256 \times 256 \times 3$ image to an output of $125 \times 125 \times 64$ by using 64.8×8 kernels.

The next layer performs a 5×5 non-overlapping max pooling operation. This is effectively a stride equal to 5. This produces an output volume of dimensions $25 \times 25 \times 64$.

The final layer has a padding of 1, which effectively changes the dimensions to $27 \times 27 \times 64$. Then we convolve with 128 kernels of dimensions 4×4 giving us an output volume of $24 \times 24 \times 128$.

- 1. What is the dimensionality (scalar) of the output of the last layer? The dimensionality of the output from the last layer is 73728.
- 2. Not including the biases, how many parameters are needed for the last layer? Each kernel has $4 \times 4 \times 64 = 1024$ parameters, and there are 128 kernels, so we get a total of $1024 \times 128 = 131072$ parameters.

Question 8. Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide the correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d, with convention <math>d=1for no dilation). Use square windows only (e.g. same k for both width and height).

Answers are marked in **bold**.

IFT6135-H2019

- 1. The output shape of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.

Kernel Size (k)	Stride (s)	$\boxed{ \textbf{Padding} \; (\boldsymbol{p}) }$	Dilation (d)
8	2	3	1

(b) Assume d=7, and s=2.

Kernel Size (k)	Stride (s)	$\boxed{\textbf{Padding}\;(\boldsymbol{p})}$	Dilation (d)
2	2	3	7

- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.

Kernel Size (k)	Stride (s)	Padding (p)	Dilation (d)
4	4	0	1

(b) What is output shape if k = 8 and s = 4 instead?

The output dimension is $\frac{32-8}{4}+1=7$ and the output shape is **(64,7,7)**.

- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assume we are not using padding or dilation.

Kernel Size (k)	Stride (s)	Padding (p)	Dilation (d)
2	2	0	1

(b) Assume d = 2, p = 2.

Kernel Size (k)	Stride (s)	Padding (p)	Dilation (d)
3	2	2	2

(c) Assume p = 1, d = 1.

Kernel Size (k)	Stride (s)	Padding (p)	Dilation (d)
1	3	1	1