Mathematics Journal

Michael C.R. Byrd Jr.

August 25, 2018

Contents

Ι	Cal	culus		3
1	Der 1.1	ivative Rates	es of Change	4 4
II	Al	ostract	t Algebra	5
1	Gro 1.1		uction - Groups	6
II	I C	ombir	natorics	7
1	Gra	phs		8
_	1.1		uction - Graphs	8
Iλ	7 Q	uantu	m Computation	9
1	Qua	ntum	Computation - Intro	10
	1.1	Quant	um Bits	10
		1.1.1	Multiple Qubits	12
	1.2	Quant	um Computation	12
	1.3	Quant	um Algorithms	12
		1.3.1		12
		1.3.2	Quantum Parallelism	12
		1.3.3	Deutsch's Algorithm	12
		1.3.4	The Deutsch-Jozsa Algorithm	12

CONTENTS	2
V Real Analysis	13
	14 14
VI Differential Geometry	15
1 Vectors and Curves	16
1.1 Tangent Vectors	16

Part I Calculus

Derivatives

This is a chapter on Derivatives.

1.1 Rates of Change

This is the section on Rates of Change.

Part II Abstract Algebra

Groups

This is the chapter on Groups.

${\bf 1.1} \quad {\bf Introduction \, - \, Groups}$

Part III Combinatorics

Graphs

This is the chapter on Graphs.

${\bf 1.1} \quad {\bf Introduction \, - \, Graphs}$

Part IV Quantum Computation

Quantum Computation - Intro

This chapter will consist of quantum bits and gates.

1.1 Quantum Bits

Classical computation is built upon *bits*. In the world of Quantum computation and quantum information, we have an analogous concept known as a *quantum bit*, or *qubit*.

Definition 1 (Classical Bit). A classical bit is a unit of information that takes on one of two states, commonly denoted 0 or 1. The term bit is a portmanteau of the term binary digit.

Definition 2 (Quantum Bit). A quantum bit, also known as a qubit has a state. Two possible states for a qubit are $|0\rangle$ and $|1\rangle$. The notation " $|\rangle$ " is known as *Dirac notation* named after Paul Dirac.

The main difference between bits and qubits is that a qubit can take on a state other than $|0\rangle$ or $|1\rangle$. A qubit can take the form that is a linear combination of these two states, this is referred to as a superposition.

An example of a superposition is the following

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle,$$
 (1.1)

where $\alpha, \beta \in \mathbb{C}$.

We can consider the state of a qubit as a vector in \mathbb{C}^2 . The states $|0\rangle$ and $|1\rangle$ are known as computation basis states and form an orthogonal basis for this vector space.

While a bit's state can be determined by examination, the same is not true for a qubit. That is, one cannot determine the values α and β . When we measure a qubit we either get the result 0, with probability $|\alpha|^2$, or the result 1, with probability $|\beta|^2$. Since the total probability must sum to 1, we have that $|\alpha|^2 + |\beta|^2 = 1$. Returning to the vector space interpretation, we have that the qubit's state is a unit vector in \mathbb{C}^2 .

Example 1. A qubit can have the following state,

$$\frac{1}{\sqrt{2}}\ket{0} + \frac{1}{\sqrt{2}}\ket{1}$$
,

when measured the state gives the result 0 fifty percent of the time, as well as the result 1 fifty percent of the time. This state is commonly denoted $|+\rangle$.

We can think about qubits using a different geometric interpretation by rewriting Equation (1.1) as

$$|\psi\rangle = e^{i\gamma} \left[\cos\left(\frac{\theta}{2}\right) |0\rangle + e^{i\phi} \sin\left(\frac{\theta}{2}\right) |1\rangle \right],$$
 (1.2)

where $\theta, \phi, \gamma \in \mathbb{R}$. We will later see that we can ignore the factor of $e^{i\gamma}$, because it has no observable effects. We can now write

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle,$$
 (1.3)

where the numbers θ and ϕ define a point on the three-dimensional unit sphere. We will refer to this as the *Bloch sphere*.

Figure 1.1: Bloch Sphere REFERENCE

1.1.1 Multiple Qubits

With two classical bits, there are four possible states: 00, 01, 10, and 11. Similarly, qubits have the four corresponding computation basis states: $|00\rangle$, $|01\rangle$, $|10\rangle$, and $|11\rangle$.

A pair of qubits can also exist in superposition. This can be represented as the following

$$|\phi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle.$$

Where each α_{ij} is a complex coefficient, known as the *amplitude*. The measurement result for each of the four states occurs with probability $|\alpha_{ij}|^2$

1.2 Quantum Computation

1.3 Quantum Algorithms

- 1.3.1 Classical Computer on Quantum
- 1.3.2 Quantum Parallelism
- 1.3.3 Deutsch's Algorithm

1.3.4 The Deutsch-Jozsa Algorithm

The quantum circuit for Deutsch-Jozsa algorithm.

$$|0\rangle$$
 $H^{\otimes n}$ U_f $H^{\otimes n}$ U_f

First start with $n \mid 0\rangle$ states and one $\mid 1\rangle$ state which can be written as

$$|\psi_0\rangle = |0\rangle^{\otimes n} |1\rangle. \tag{1.4}$$

We then pass each qubit through a Hadamard gate which leaves us with the following,

$$|\psi_1\rangle = \sum_{x \in \{0,1\}^n} \frac{|x\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right].$$
 (1.5)

We next evaluate the function f using the $U_f:|x,y\rangle\to|x,y\oplus f(x)\rangle$ which yields

$$|\psi_2\rangle = \sum_x \frac{(-1)^{f(x)}|x\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right]. \tag{1.6}$$

Part V Real Analysis

Real Number System

Real Number System Chapter.

1.1 Real Numbers

This is the section of real numbers.

Part VI Differential Geometry

Vectors and Curves

This chapter will consist of material relevant to Vectors and Curves in Differential Geometry

1.1 Tangent Vectors

We will define a calculus vector as the following, $\vec{v} = \langle v_1, v_2, v_3 \rangle$. We then define a point in \mathbb{R}^3 as $P(p_1, p_2, p_3)$ where \mathbb{R}^3 is a three-dimensional vector space.

Definition 3 (Tangent Vector). A tangent vector X_p in \mathbb{R}^n is an ordered pair $X_p = \{\vec{x}, \vec{p}\}$ where \vec{x} is a regular calculus vector and \vec{p} is a position vector that points to the foot of \vec{x} . $X_p \in \mathbb{R}^n \times \mathbb{R}^n$.

