Analyse

Fonctions continues

ou dérivables sur un

intervalle

Question 1/14

Théorème de Rolle

Réponse 1/14

Si
$$f \in \mathcal{C}^0([a,b])$$
 et $f \in \mathcal{D}^1(]a,b[)$, et $f(a) = f(b)$, alors il existe $c \in]a,b[$ tel que $f(c) = 0$

Question 2/14

Théorème des acroissements finis

Réponse 2/14

Question 3/14

Théorème de compacité

Réponse 3/14

Soit $f \in \mathcal{C}^0([a,b])$ à valeurs dans \mathbb{R} , alors f est bornée et atteint ses bornes

Question 4/14

Théorème de Rolle sur \mathbb{R}

Réponse 4/14

Question 5/14

Théorème des valeurs intermédiaires Si $f \in \mathcal{C}^0(I)$, avec I un intervalle d'extrémités $(a,b) \in \overline{\mathbb{R}}$

Réponse 5/14

Si
$$f(a)f(b) < 0$$
, il existe $c \in]a,b[$ tel que
$$f(c) = 0$$

$$f(c) = 0$$
Pour tout $x \in \left[\inf_{x \in I} (f(x)), \sup_{x \in I} (f(x)) \right]$, il existe $c \in \left[a, b \right[$ tel que $f(c) = x$
L'image d'un intervalle par f est un intervalle

L'image d'un intervalle par f est un intervalle

Question 6/14

Théorème de Rolle itéré

Réponse 6/14

Question 7/14

Théorème de Rolle pour un intervalle infini d'un côté

Réponse 7/14

Question 8/14

Théorème de Heine dans $\mathbb C$

Réponse 8/14

Question 9/14

Homéomorphisme

Réponse 9/14

Si $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, alors $f:A \to B$ est un homéomorphisme si c'est une application continue, bijective et dont la réciproque est continues

Question 10/14

Théorème de Heine

Réponse 10/14

Si $f \in \mathcal{C}^0([a,b])$, alors f est uniformément continue sur [a,b]

Question 11/14

Inégalité des acroissements finis

Réponse 11/14

Question 12/14

Inégalité des acroissements finis dans $\mathbb C$

Réponse 12/14

Question 13/14

Continuité uniforme

Réponse 13/14

Si
$$X \subset \mathbb{R}$$

 $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x, y) \in X^2$
 $|x - y| < \eta \Rightarrow |f(x) - f(y)| < \varepsilon$

Question 14/14

Compact

Réponse 14/14

 $K \subset \mathbb{R}$ est un compact si de toute suite (k_n) de K, on peut extraire une suite convergente vers un élément de K