Course: Machine Learning

Assignment: Week 2 \_ Programming Assignment

Student:韓韻宸(112652010)

## Method

- Data
  - 。 在區間 [−1,1][-1,1][−1,1] 上均勻取 256 個訓練點、128 個驗證 點。
  - 目標包含 f(x) 與 f'(x)
- Model

。 架構:前饋式 MLP, 1-64-64-1

Activation: Tanh框架: PyTorch

- Derivative computation
  - 使用  $ext{torch.autograd.grad}$  自動對網路輸出  $\hat{f}(x)$  對輸入 x 求導,得到  $\widehat{f'}(x)$  。

#### Loss function

$$L = w_f \cdot \mathrm{MSE}(\hat{f}(x), f(x)) \ + \ w_d \cdot \mathrm{MSE}(\widehat{f'}(x), f'(x))$$

預設 
$$w_f=w_d=1$$
。

### **Training**

Optimizer: Adam (lr = 1e-3)

Epochs: 1200Seed: 112652010

# Results

# **Function approximation**

網路對 f(x) 的預測與真實值幾乎重合。



# **Derivative approximation**

網路對 f'(x) 的預測能捕捉整體形狀,特別是接近原點的斜率變化。



## **Loss curves**

• Total loss:訓練與驗證 loss 隨 epoch 穩定下降,沒有過度擬合跡象。



## • Component losses:

- 。 Function loss 收斂到 1e-8 等級
- 。 Derivative loss 收斂到 1e-5 等級





## **Final errors**

在密集網格上的評估結果:

MSE(f): 2.31 × 10^-8
MSE(f'): 9.18 × 10^-6
MaxErr(f): 2.87 × 10^-4

• MaxErr(f'): 8.66 × 10^-3

## **Discussion**

#### Joint learning works

加入 derivative loss 之後,網路能同時學會函數值與局部斜率,使曲線 更平滑、形狀更準確。

#### • Derivative is harder

相較於 f,f'的誤差大得多。這是因為導數對小的函數偏差更敏感。 改進方向:

- 。 調大  $w_d$  , 讓導數 loss 權重更高
- 。 在 |x| 接近 1 的區域增加訓練點
- 。 使用更深或更寬的網路

#### Overall

模型在函數與導數的近似上都達到很高準確度,顯示出 tanh 神經網路 配合自動微分能同時處理這兩種任務。

# **Appendix**

- Hyperparameters
  - o Epochs: 1200
  - Optimizer: Adam (Ir=1e-3)
  - o Architecture: 1–64–64–1, Tanh
  - o Weights: w\_f=1, w\_d=1
- Files generated
  - o runge\_fit\_f.png
  - o runge\_fit\_df.png
  - loss\_total.png
  - o loss\_f.png
  - loss\_df.png
  - o metrics.json

## **References**

- Course lecture notes and assignment instructions.
- OpenAI. (2025)。ChatGPT (GPT-5) 取自https://chat.openai.com/