

Programming for Data Science (CSE3041)

Ramesh Ragala

VIT Chennai Campus

July 15, 2020

Course Objectives

- ► To provide necessary knowledge on how to manipulate data objects using python and R
- ► To provide knowledge on how to analyze the data graphically.
- Emphasize on different statistical methods and ways to analyze data using python and R
- Provide solid understanding of Scala programming

Course Outcomes:

- Students are able to solving analytical problems with the help of Python and R programming languages with appropriate libraries
- ► Import, export, visualize and manipulate the continuous and categorical data effectively using Python and R
- Solves the problems using Scala functional programming language

► Concepts in Python

- Expressions, Operators, and Matrices
- Decision Statements and Control flow
- ► Functions, Classes, and Objects
- Packages and Files
- Strings, List, Tuple, Dictionaries and Comprehensions
- Introduction to numpy library with operations
- Linear Algebra with numpy
- Computation of Eigenvalues and Eigen Vector using numpy
- Introduction and basic functionality of SciPy
- Introduction to Pandas, series object and data frame
- Pandas Objects: Data Aggregation and Joining
- Pandas Object: Concatenating and appending data frames and index objects
- Data Wrangling With Pandas
- ► Handling Time series data using pandas
- ► Handling missing values using pandas

► Concepts in Python

- Reading and writing the data including JSON data
- Web scraping using python
- Combining and merging datasets
- Data transformations
- Common plots for statistical analysis using matplotlib, seaborn, etc.
- common plots for statistical analysis using ggplot, ggvis, etc in python
- common plots for statistical analysis using Plotly, Altair etc in python

Concepts in R programming

- Data types, Sequence generation, Vector, Random number generation and Data frames.
- Functions, Data manipulation and Data Reshaping using plyr, dplyr and reshape2
- ▶ Parametric statistics and Non-parametric statistics,
- Continuous and Discrete Probability distribution using R,
- Correlation and covariance, contingency tables.
- Overview of Sampling, different sampling techniques
- R and data base connectivity
- Web application development with R using Shiny and Approaches to dealing with missing data in R
- Exploratory data analysis with simple visualizations using R
- ► Feature or Attribute selection using R
- Dimensionality Reduction with R
- Time series data analysis with R

► Concepts in Scala programming

- ► Variables, types, Literals and Operators
- Classes and objects
- ► Functional objects: choosing between val and var, class parameters, constructors, self references and method overloading
- Conditional and loop statements
- Functions in Scala
- Control abstraction in Scala
- Composition and Inheritance
- Traits and Mixins
- ► File IO in Scala
- Case Classes and Pattern Matching
- Packages and imports in Scala
- Working with Lists and Collections in Scala
- ► Working with XML, Implementing List
- Extractors and objects as modules

▶ James Payne, "Beginning Python: Using Python 2.6 and Python 3.1", Wrox, Ist Edition, 2010

▶ Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley and sons, 2013.

▶ William McKinney, "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Ipython", O'Reilly Media, IInd Edition, 2017

► Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.

▶ Michael J. Crawley, "The R Book", Wiley, 2nd Edition, 2012.

▶ Robert Kabacoff, "R in Action", Manning Publication, Ist Edition, 2011.

► Torsten Hothorn, Brian S. Everitt, "A Handbook of Statistical Analyses Using R", Chapman and Hall, CRC, 2nd Edition, 2009.

► Chris Beeley "Web Application Development with R Using Shiny", Third Edition, Pact Publishing, 2013.

► Martin Odersky, Lex Spoon, and Bill Venners, "Programming in Scala", Fourth Edition

▶ Alvin J. Alexander "Learning Functional Programming in Scala", 2017

Introduction to Data Science

- ▶ Data science is an inter-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from many structural and unstructured data
- ▶ Data science is a "concept to unify statistics, data analysis, machine learning, domain knowledge and their related methods" in order to "understand and analyze actual phenomena" with data Wikipedia
- ▶ It uses techniques and theories drawn from many fields within the context of mathematics, statistics, computer science, domain knowledge and information science Wikipedia
- Simply, the goal of the Data Science is to extract knowledge from large data sets
 Wikipedia
- ▶ It uses many steps such as analysis, prepossessing the data, and gives the description of the findings or inferences during the process.
- ► In this process, it uses the skill from various domains such as Mathematics, Statistics, Visualization, Domain knowledge, Data Mining, Machine Learning, Computer Vision, etc.

Introduction to Data Science

Pictorial representation of Data Science

Case Study-1 in Data Science

- ► The Nisqually River Foundation is tasked with the successful implementation of a watershed stewardship plan.
- As a part of this plan, they assist the Nisqually Indian Tribe in Washington State to measure and monitor the fish species present in the Nisqually River.
- ➤ To do this, the Nisqually Indian Tribe installed a video camera and infrared sensors in a fish ladder at a dam on the river.
- ► The camera is triggered to capture 30 seconds of video when any fish swims past the infrared sensors.
- ▶ It is complex manual process
 - ▶ Throughout the year, more than 3,000 videos are generated by the counter camera.
 - As part of their original process, a trained biologist needed to view each video to manually identify and record the species of each fish.
 - ► This manual process of fish species identification in captured videos is resource intensive, from a time, human resources, and cost perspective.
 - This work is slow and repetitive and is much better suited to automation than manual analysis."

¹https://partner.microsoft.com/en-us/case-studies/gramener

Case Study-1 in Data Science

20/31

- ► Gramener, in conjunction with the Microsoft AI for Earth program, worked with the Nisqually River Foundation to attempt to automate the detection and identification of fish species from the video clips.
- ► The Nisqually salmon detection application was built as a web app to automate the process of video feed input, detection, and classification.
- ► The automated AI solution leverages the latest deep learning algorithms implemented using the Microsoft Azure and Cognitive Services platform stack.
- ▶ The first challenge was to process the videos and tag the fish.
- ► The heavy manual work involved in this was automated by leveraging the Microsoft VOTT tool.
- ► The tagged frames were then used to train a model using Microsoft Cognitive Toolkit (CNTK).
- This model was then tested against more frames extracted from the videos.
- While this solution was good, it lacked speed and real-time video detection capabilities.
- As an enhancement to the solution, Gramener moved to video object detection using YOLO V3, which provides a faster solution with real-time capabilities.

Case Studies of Data Science

- https://www.datacamp.com/projects/870
- https://www.kaggle.com/general/7615
- https://www.svds.com/case-studies/

Data Science Life Cycle

- Data Analytic Life cycle defines the analytics process and best practices from discovery to project completion.
- Data Analytics Lifecycle Phases
 - Discovery Phase
 - Data Preparation Phase
 - Model Planning Phase
 - Model Building Phase
 - Communicate Result
 - Operationalize
- ▶ With six phases the project work can occur in several phases simultaneously
- ► The cycle is iterative to portray a real project
- Work can return to earlier phases as new information is uncovered.

- ► Phase I: Discovery
 - Learning the Business Domain
 - Resources
 - Framing the Problem
 - Developing Initial Hypotheses
 - Identifying Potential Data Sources

- ► Phase 2: Data Preparation
 - ▶ It requires analytical sandbox in which you can perform analytics for the entire duration of the project
 - Includes steps:
 - Explore
 - Preprocess
 - Conditional Data
 - Data preparation tends to be the most labor-intensive step in the analytics lifecycle →Often at least 50% of the data science project's time.
 - ▶ The data preparation phase is a iterative process.
 - In ETL users perform extract, transform, load
 - lacktriangle Data Analytics lifecycle ightarrowELT or ETLT ightarrowExtract, Transform, Load and Transform.

- ► Phase 3: Model Planning
 - This determines the methods and techniques to extract relationships among variables.
 - ► These relationship patterns will set the base for algorithms which will be used in next phase.
 - It uses Exploratory Data Analysis (EDA) using various statistical formulae and visualization tools.
 - Simply, it identifies candidate models to apply to the data for clustering, classifying, or finding relationships in data.
- Activities to be consider in this phase are:
 - Assess the structure of the data.
 - Ensure the analytic techniques enable the team to meet the business objectives and accept or reject the working hypotheses.
 - Determine if the situation warrants a single model or a series of techniques as part of a larger analytic workflow.
 - Research and understand how other analysts have approached this kind or similar kind of problem.

- Phase 4: Model Building
 - Execute the models defined in Phase 3.
 - Develop datasets for training, testing, and production.
 - Develop analytic model on training data, test on test data.
 - It will consider whether your existing tools will suffice for running the models or it will need a more robust environment (like fast and parallel processing).
 - You will analyze various learning techniques like classification, association and clustering to build the model.

- ▶ Phase 5: Communicate Results
 - Determine if the team succeeded or failed in its objectives.
 - Assess if the results are statistically significant and valid. → If so, identify aspects of the results that present salient findings. → Identify surprising results and those in line with the hypotheses.
 - Communicate and document the key findings and major insights derived from the analysis.
 - This is the most visible portion of the process to the outside stakeholders and sponsors.

- ▶ Phase 6: Operationalize
 - In this last phase, the team communicates the benefits of the project more broadly and sets up a pilot project to deploy the work in a controlled way.
 - Risk is managed effectively by undertaking small scope, pilot deployment before a wide-scale rollout.
 - During the pilot project, the team may need to execute the algorithm more efficiently in the database.

► Contact Me: ramesh.ragala@vit.ac.in

► Ping Me : +91-9087277270

Course Webpage: https://github.com/rameshragala/

