JUTE/POLYESTER HYBRID COMPOSITE

A PROJECT REPORT

Submitted by

S.V RAGUL	(211420114084)
S.MUNISHWARAN	(211420114070)
E.RAGHUL	(211420114082)
V.MOTHEESH	(211420114068)

In partial fulfilment for the award of the Degree

Of

BACHELOR OF ENGINEERING

IN

MECHANICAL ENGINEERING

PANIMALR ENGINEERING COLLEGE

(Autonomous Institution, Affiliated to Anna University, Chennai)

MARCH 2024

JUTE/POLYESTER HYBRID COMPOSITE

A PROJECT REPORT

Submitted by

S.V RAGUL	(211420114084)
S.MUNISHWARAN	(211420114070)
E.RAGHUL	(211420114082)
V.MOTHEESH	(211420114068)

In partial fulfilment for the award of the Degree

Of

BACHELOR OF ENGINEERING

IN

MECHANICAL ENGINEERING

PANIMALR ENGINEERING COLLEGE

(Autonomous Institution, Affiliated to Anna University, Chennai)

MARCH 2024

PANIMALR ENGINEERING COLLEGE

(Autonomous Institution, Affiliated to Anna University, Chennai)

BONAFIDE CERTIFICATE

Certified	that	this	project	report	"JUTE/POLYSTER	HYBRID
COMPOS	SITE"	is the b	onafide w	ork of,		

S.V RAGUL	(211420114084)
S.MUNISHWARAN	(211420114070)
E.RAGHUL	(211420114082)
V.MOTHEESH	(211420114068)

Who carried out the Project work under my supervision

Signature Signature Dr. L. KARTHIKEYAN, M.E, M.B.A, Ph.D., Mr.J.MURUGESAN, M.E.,(Ph.D.), PROFESSOR/HEAD ASSISTANT PROFESSOR Dept. of Mechanical Engineering Dept. of Mechanical Engineering Panimalar Engineering College Panimalar Engineering College Bangalore trunk road, Bangalore trunk road, Varadharajapuram, Nasarathpettai Varadharajapuram, Nasarathpettai Poonamalle, Chennai-600123 Poonamalle.Chennai-600123 Submitted for Anna university project viva-voce held on during The year

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We would like to convey our sincere thanks to our respected Chairman, late **Dr.Jeppiaar**, **M.A.**, **B.L.**, **Ph.D**., Our beloved correspondent and Secretary **Mr.P.Chinnadurai**, **M.A.**, **M.Phil.**, **Ph.D.**, for giving us the opportunity to display our professional skills through this project.

We express our sincere thanks to our director Mrs. C. VIJAYARAJESWARI and Dr. C. SAKTHI KUMAR, M.E., Ph.D., for providing us with the necessary facilities for completing this project.

We would like to thank our Principal **Dr. K. Mani, M.E., Ph.D.,** and our respected Head of the Department **Dr. L. Karthikeyan, M.E., Ph.D.,** Professor, and Department of Mechanical Engineering for motivating us to reveal our innovative skill.

We express our thanks to the project guide Mr. J. MURUGESAN, M.E., (Ph.D.)., Assistant Professor in the Department of Mechanical Engineering for the persistent motivation and support for this project,

We express our thanks to the project coordinators **Mr. J. Gunasekaran**, **M.E.**, (**Ph.D.**), Assistant professor in Department of Mechanical Engineering for the Valuable suggestions from time to time at every stage of our project.

Finally, we would like to take this opportunity to thank our family members, friends, and well-wishers who have helped us for the successful completion of our project. Also thank all faculty and non-teaching staff members in our department for their timely guidance in completing the project.

ABSTRACT

Experimental investigation of hybrid composites are performed to study the mechanical property using flexural testing and to study the damage. Initiation and development in stitched jute/polyester composites subjected to flexural loading. The natural composite jute is stitched with polyester thread on the areas where stress concentration is more.

The sample is drilled at the centre and the stitch diameter around the hole is varied, Viz. 7 mm around the hole, 8 mm around the hole, 9 mm around the hole, 10 mm around the hole, 11 mm around the hole, 12 mm around the hole, 13 mm around the hole. Flexural test is conducted to obtain the flexural strength of the combination. Effect of variation of stitch diameter is assessed and it is found that the 13 mm diameter stitch increases the flexural strength when compared to the natural fibre composite flexural strength.

These results are compared with the unstitched fully hybridized composite and unstitched natural fibre and it is found that the flexural strength of the stitched composite is increased. Also the flexural strength of laminate plies with various stacking sequences (combination of jute and polyester layers) is taken.

While comparing the strength of specimen having maximum number of stitches around the hole with the strength obtained in specimens with varying stacking sequence, it is observed that its strength is approximately equal to specimen with one layer of polyester at each extreme end (S2).

CONTENT

CHAPTER	TITLE	PAGE
1	Introduction to composite	NO 1
1.1	Need of composite	2
1.2	Classification of composite	3
2	Raw materials	5
2.1	Fabrics	6
2.2	Matrix	9
3	Literature review	13
4	Methodology	17
5	Specimen designing	18
5.1	Stitches	18
5.2	Sample preparation	19
5.3	Resins used	20
5.4	Composite panel making	20
6	Experiment	27
7	Stress concentration	28
7.1	Before stitching	28
7.2	After stitching	29
8	Observations	30
8.1	Stacking sequences	30
8.2	Localized hybridization	31
8.3	Flexural testing	32
9	Results and discussion	34

9.1	Observations of specimens with various stacking sequence	34
9.2	Graph: load vs displacement for stacking sequences	36
9.3	Observations of specimen with varying number of stitches	37
9.4	Weight fraction vs strength of stacking sequence	39
9.5	Weight fraction vs strength of stitched specimens	41
9.6	Comparison	42
10	Conclusion	44
11	Reference	45