一、问题说明

如下图所示的 25 杆桁架结构,其中杆(1)-(4)有相同的横截面积 A_1 = 400mm²,杆(16)-(25)、杆(11)-(15) 和 杆(5)-(10) 的 横 截 面 积 分 别 为 A_2 = 500mm²、 A_3 = 600mm² 和 A_4 = 800mm²。横向和纵向杆的长度 L = 15.24m,杆的弹性模量为 20000MPa。连接点 12 为铰接支座,6,8 和 10 为滚动支座。连接点 1 施加横向力 F1=5KN,连接点 9 施加纵向力 F2=5KN。

如图所示,总共有 25 个单元, 12 个节点,每个单元上有两个节点,每个节点的自由度 是 2。

- 二、代码流程
- 1.、定义单元数、节点数、每个单元的节点数、每个节点的自由度
- 2、设定节点坐标(以节点12为坐标原点建立)
- 3、设定每个单元对应的两个节点
- 4、设定材料参数
- 5、设定约束
- 6、设定受力
- 7、计算刚度矩阵
- 8、计算节点位移
- 9、计算杆内应力

三、结果分析

运行 matlab 代码(hangjia25gan.m)后得到以下结果

1、各节点位移

表 1 各节点 x, y 方向上的位移(单位: m)

X1	0.0011	X5	5.18e-4	X9	5.62e-4		
Y1	-4.92e-5	Y5	2.15e-5	Y9	-9.65e-4		

X2	8.61e-4	X6	6.03e-4	X10	4.31e-4
Y2	-2.27e-4	Y6	0	Y10	0
X3	6.11e-4	X7	6.27e-4	X11	2.52e-4
Y3	6.48e-4	Y7	2.05e-5	Y11	4.88e-5
X4	4.23e-4	X8	6.50e-4	X12	0
Y4	-1.87e-4	Y8	0	Y12	0

2、各杆的内应力

表 2 各杆的内应力 (单位: Pa)

1	-2.66e6	10	-3.09e5	19	2.88e6
2	-3.28e6	11	-1.29e6	20	-3.07e6
3	-2.47e6	12	-2.98e6	21	-4e6
4	1.26e6	13	4.17e6	22	4.19e6
5	3.31e6	14	-2.45e6	23	-2.2e4
6	2.34e6	15	1.29e4	24	-7.21e5
7	1.72e6	16	6.56e6	25	6.99e5
8	1.15e6	17	-4.47e6		
9	-2.99e5	18	2.18e6		