Indian Institute of Technology Delhi

Minor 1: Second Semester: 2014-15

Course: Mech. of Solids and Fluids, APL105 Date: 17 Feb 2015 Dur.: 1 Hr (1.00-2.00 PM)

Note: Answer all the questions. Marks are indicated against each question.

Q. 1: At a point in a body of elastic isotropic material (E = 200 GPa, v = 0.3), state of stress is given by: $\sigma_{xx} = 100$ MPa, $\sigma_{yy} = 80$ MPa, $\sigma_{zz} = -40$ MPa, $\tau_{xy} = \tau_{yz} = \tau_{zx} = 0$. Determine the shear strain on an octahedral plane passing through the point.

Q. 2: For a beam of rectangular cross-section under plane state of stress ($\sigma_{zz} = \tau_{yz} = \tau_{zx} = 0$), σ_{xx} and τ_{zy}

are given by: $\sigma_{xx} = -\frac{12M_z y}{bh^3}$; $\tau_{xy} = \frac{3}{2bh} \frac{dM_z}{dx} \left(\frac{4y^2}{h^2} - 1\right)$. Using the equations of equilibrium, derive the expression for σ_{yy} .

Young's modulli: $\alpha_1 = \alpha$, $\alpha_2 = 2$ α , $E_1 = E$ and $E_2 = 2$ E. Material 1 is elastic-perfectly plastic (yield stress = σ_Y) and Material 2 is elastic for the range of loading considered. The system is assembled at temperature T = 0 with no stress in the bars, then the assembly is heated to T = $3\sigma_Y/E\alpha$ and finally cooled to T = 0. Find the residual stresses developed in the bars due to heating-cooling process. [10]

Q. 4: For the beam shown, calculate maximum (i) bending stress (σ_{xx}), (ii) shear stress (τ_{xx}). [20]

Q. 5: A thin cylindrical tube with open ends (mean radius = R, thickness = h, length = L. Young's modulus = E. Poisson's ratio = ν , coefficient of thermal expansion = α) just fits between two smooth rigid walls at room temperature. If the tube is heated by ΔT above room temperature and subjected to internal pressure p, derive an expression for the contact pressure between rigid walls and tube. [10]

One A component is subjected to leads which produce the following stress field in a region where an oil hate most be drilled: $\sigma_{eq} = 10 \text{ MPa}$, $\sigma_{eq} = 10 \text{ MPa}$ and $\sigma_{eq} = 10 \text{ MPa}$ and $\sigma_{eq} = 10 \text{ MPa}$.