Lab. de Circuitos Eletrônicos Analógicos - Exp. 05

AMPLIFICADOR DE POTÊNCIA

Vídeo-aula de apoio:

https://www.youtube.com/watch?v=he26uhIrX_o

Figura 1

PRÉ-LAB:

Amplificador em malha aberta (sem realimentação)

1) Consultando o *datasheet* dos transistores utilizados e assumindo $R_L = 8\Omega$, determinar a eficiência do circuito da Figura 1(a) em regime senoidal para $Vo_{max} = 2V$, 5V e 8V.

Amplificador em malha fechada (com realimentação)

- **2**) Assumindo amplificador operacional não-ideal com ganho de malha aberta A_v finito, deduzir a função de transferência Vo x V_G do circuito da Figura 1(b).
- 3) Em forma de tabela comparativa, estebeleça vantagens e desvantages entre as diferentes montagens (malha aberta x malha fechada).

PARTE EXPERIMENTAL

Amplificador em malha aberta

- 1) Coloque capacitores de 100 μ F dos terminais +V_{CC} para o terra e -V_{CC} para o terra, de modo a reduzir o ruido de alta frequencia superposto às tensões de alimentação.
- 2) Coloque as sensibilidades dos amplificadores verticais do osciloscópio em 1V/div e ajuste a tensão AC do gerador em f = 400 Hz e $1V_{PICO}$. Deixe a tensão de *off-set* do gerador de sinais $V_{OS} = 0 \text{ V}$.

- 3) Monte o circuito (a). Somente ligue o alto-falante após ligar a fonte $+V_{CC}$ e $-V_{CC}$.
- **4**) Ligue o alto-falante e observe no osciloscópio a distorção de *crossover*. Documente as formas de onda. Como os transistores não são simétricos, é possível que o sinal apareça de forma não simétrica (diferença entre os ganhos de corrente β).
- 5) Analise o THD (até 3 harmônicos) através da função FFT disponível no osciloscópio.

Amplificador em malha fechada

- 6) Coloque as sensibilidades dos amplificadores verticais do osciloscópio em 1V/div e ajuste a tensão AC do gerador em f = 400 Hz e $1V_{PICO}$. Deixe a tensão de *off-set* $V_{OS} = 0 \text{ V}$.
- 7) Monte o circuito (b). Somente ligue o alto-falante após ligar as fontes $+V_{CC}$ e $-V_{CC}$.
- **8**) Ligue o alto-falante e observe que não existe mais a distorção de *crossover*. Por quê? Refaça a análise do THD, comparando com os valores obtidos no caso anterior.
- 9) Compare o som de uma senóide pura com os sons de sinais compostos por uma senóide pura e harmônicos ímpares (ex.: onda triangular e onda quadrada).
- **10**) Coloque de novo a senóide pura e aumente a freqüência acima de 10 kHz para testar até quando é possível escutar. Normalmente apenas poucas pessoas conseguem escutar freqüências acima de 15 kHz.
- 11) Com o alto-falante substituído por um resistor equivalente, observe que com o aumento da freqüência aparece uma distorção próxima aos cruzamentos pelo zero. Isso é devido ao limite de *slew-rate* dos amplificadores operacionais. Documente as formas de onda. Aumente agora a frequencia de um fator de 10 vezes e documente a forma de onda. Justifique o re-aparecimento da distorção de cruzamento.