Lecture Notes for Comp 480 - Winter 2023

Arthur Ayestas Hilgert

December 28, 2022

Here are lecture summaries for the sections of Probability on Trees and Networks that I will present.

Contents

Course Introduction 1

Introduction to graphs... mainly notation 1

Branching Number 2

Electric Current 2

Random Walks 2

Percolation 2

Branching Processes 2

Course Introduction

If you lose my notes please consult my web page: http://arthurayestas.xyz/comp480.html

Introduction to graphs... mainly notation

Definition 1 (Graph). A **graph** G = (V, E) is an ordered pair containing a set of vertices V and a set of edges $E \subseteq V \times V$.

Remark 2. We may also write the vertex and edge set of G as V(G) and E(G) respectively.

Definition 3 (Edge). An **edge** is a member of *E*. We write such an edge as: $\langle x, y \rangle$ with $x, y \in V$.

Definition 4 (Oriented Edge). An **(oriented) edge** is an edge that is direction agnostic. We write such an edge as: [x, y].

Theorem 5.

$$[x,y] \iff \langle x,y \rangle \land \langle y,x \rangle \iff (x,y),(y,x) \in E$$

Remark 6. In these notes I will add the notation E_s to denote a symmetric edge set.

Definition 7 (Vertex Adjacency). Vertices x and y are adjacent if $(x,y) \in E \lor (y,x) \in E$. We write this as $x \sim y$. Vertex adjacency is symmetric.

Definition 8 (Edge Adjacency). Edges $e_1 = (x, y)$ and $e_2 = (w, z)$ are **adjacent** if y = z. We write this as $e_1 \sim e_2$. Edge adjacency is symmetric.

Definition 9 (Incident). Vertex x and edge e = (y, z) are **incident** if x = z.

Definition 10 (Degree). The **degree** of x is the number vertecies that are adjacent to x. We write this quantity as: deg(x).

Definition 11 (Locally Finite). The graph G = (V, E) is locally finite if $deg(x) < \infty$ for all $x \in V$.

Definition 12 (Regularity). The graph G = (V, E) is d-regular if deg(x) = d for all $x \in V$.

Definition 13 (Graph Product). The **Cartesian product** of graphs G_1 G_2 is written as: $G_1 \square G_2$, with the following vertex and edge sets:

$$V(G_1 \square G_2) := V(G_1) \times V(G_2)$$

$$E(G_1 \square G_2) := \{ ((x_1, x_2), (y_1, y_2)) : (x_1 = y_1 \land (x_2, y_2) \in E(G_2)) \lor (x_2 = y_2 \land (x_1, y_1) \in E(G_2)) \} \subseteq V(G_1 \square G_2)$$

Branching Number

Electric Current

Random Walks

Percolation

Branching Processes