Минобрнауки России

Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технолоий

Раздаточный материал на тему: "Реализация и визуализация методов оптимизации по полезности"

Руководители: доцент, к.т.н. А. В. Щукин ассистент В. А. Пархоменко

Выполнил студенты группы 3540203/10101: Разуваев Данил

СОДЕРЖАНИЕ

1. Оптимизация по полезности	3
1.1. Пример решения задачи	3
Список использованных источников	8

1. ОПТИМИЗАЦИЯ ПО ПОЛЕЗНОСТИ

1.1. Пример решения задачи

Были реализованы типовые функции полезности для их параметризации как описано в [1]. Исходный код реализации доступен в [2].

Рассмотрим работу модуля параметризации на примере 7.7 из [1].

Необходимо изменить порядок пяти квартир, оцениваемых по трем показателям: общая площадь, цена и площадь кухни (табл.1.1).

Для этих показателей экспертом назначены следующие функции полезности: колоколообразная, логистическая нисходящая и логистическая восходящая.

Модуль работает с файлами .csv. При этом все не участвующие в работе признаки должны быть удалены (в данном случае это столбец «Квартира»).

Характеристика квартир[1]

Таблина 1.1

Квартира	Общая площадь	Цена	Площадь кухни
№ 1	50	2,0	6
№ 2	55	2,2	8
№ 3	60	2,4	10
№ 4	65	2,6	12
№ 5	70	2,8	15

За загрузку данных отвечает функция ReadCsv модуля UI. Пример вызова функции и отображения исходных данных для нашей задачи в Jupyter Notebook приведен на рис.1.1. В данном случае данные находятся в файле Appartments.csv.

<pre>ui = UI() ui.ReadCsv('Appartments.csv')</pre>				
	Общая площадь	Цена	Площадь кухни	
0	50	2.0	6	
1	55	2.2	8	
2	60	2.4	10	
3	65	2.6	12	
4	70	2.8	15	

Рис.1.1. Чтение данных

Далее, нам следует установить соответствия между показателями и типовыми функциями полезностями, а также установить веса. Это делается при помощи

функции SelectFunctions. Функция может быть колоколообразной, логистической и степенной, возрастание или убывание функции определяется установкой параметра maximize. Остальные параметры определяются в соответствующих полях, в случае выбора степенной функции значение параметра c игнорируется. Установка функций и параметров для нашей задачи приведены на рис.1.2. В том же интерфейсе устанавливаются веса (не поместились на рисунке). Для нашей задачи веса установлены — $0,4,\,0,25$ и 0,35 для общей площади, цены и площади кухни соответственно.

Рис.1.2. Назначение функций признакам и весов для них

После назначения функций полезности признакам, определения их параметров и весов, необходимо просмотреть значения функций полезности для показателей, общую оценку аддитивной функцией и рассчитанные ранги объектов. Это делается функцией ShowEstimates, вывод которой приведен на рис.1.3.

ui.S	howEstimates()			
0	бщая площадь	Цена	Площадь кухни	Оценки	Ранги
9	0.367879	0.731059	0.768525	0.578868	4
1	0.778801	0.645656	0.880797	0.776114	2
2	1.000000	0.549834	0.942676	0.870261	1
3	0.778801	0.450166	0.973403	0.755023	3
4	0.367879	0.354344	0.991837	0.551683	5

Рис.1.3. Получение предварительных рангов по назначенным функциям

Из рис.1.3 можно заключить, что наибольшая разность по полезности между объектами 0 и 4 наблюдается по цене: разница составляет 0,377. Условием обмена квартир местами является уменьшение разности по цене. Выбираем этот признак с помощью функции SelectFutureToChange (рис.1.4).

Рис.1.4. Выбор признака, функцию полезности которого будем редактировать

Функция ChangeParameters позволяет изменить параметры функции полезности выбранного показателя. На рис.1.5 приведены графики функций полезности и итоговые ранги до и после изменения параметров.

Рис.1.5. Примеры функции полезности цены до изменения кривизны

Синие точки показывают положение объектов на функции полезности, оранжевая пунктирная линия — представлена для наглядности и отражает равномерное убывание полезности. Заметим, что объект 0 (самая первая точка слева) находится левее точки c, а объект 4 (самая последняя точка слева) находится правее точки c. Значит, объект 0 выигрывает, а объект 4 проигрывает от большей крутизны данной функции полезности. Следовательно, чтобы уменьшить различие полезности по цене, необходимо уменьшить крутизну логистической функции (снизить параметр

 β). И действительно, при значении параметра $\beta = 1,3$ объекты 0 и 4 меняются местами (см. рис.1.6).

Рис.1.6. Примеры функции полезности цены после изменения кривизны

Функция ShowContributionDiagram позволяет просмотреть диаграммы вкладов. На рис.1.7 приведены вклады признака «Цена» в оценку объекта 0 до и после изменения параметров. На внешней круговой диаграме изображен вклад соответствующего признака, а на внутренней – норма вклада. Норма вклада – среднеарифметическая величина вклада признака в оценку всех объектов. Видно, что вклад признака «Цена» в оценку объекта 0 значительно превышает норму вклада, однако несколько снижается после изменения параметров (более чем на 2 процентных пункта).

Рис.1.7. Вклад признака «Цена» в оценку объекта 0: а – до изменения параметра; b – после изменения параметра

Рис.1.8. Вклад признака «Цена» в оценку объекта 4: а – до изменения параметра; b – после изменения параметра

Для объекта 4, напротив, вклад цены значительно ниже нормы (см. рис.1.8). В результате изменения кривизны функции полезности, вклад цены для объекта 4 возрастает.

В дальнейшем можно усовершенствовать разработанный модуль, добавив возможность автоматического подбора параметров типовых функций полезности. В этом случае ранги объектов, веса и виды типовых функций будут задаваться экспертом, а задачей программы будет подобрать такие параметры типовых функций, что обобщенная оценка даст ранги, которые совпадут с экспертными.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *Микони С. В.* Теория принятия управленческих решений. Спб: Издательство «Лань», 2015. 448 с.
- 2. *Разуваев Д*. Реализация и визуализация методов оптимизации по полезности. URL: https://github.com/razuvayev-d/UtilityOptimization (дата обращения: 16.12.2022).