计算机网络概论

东南大学 计算机科学与工程学院

曹争

zcao@njnet.edu.cn

课程目的

- 理解网络体系结构,学习掌握计算机网络互联的基本概念和方法,了解互联网及其发展趋势;
- 通过对网络技术的学习,培养计算机网络系统的规划设计能力;
- 从宏观的角度理解网络技术。

为什么以互联网为背景

- 互联是网络技术的一般体现
- 互联是网络技术发展的基本动力
- 互联是网络体系结构的主要需求来源
- 互联考虑是网络设计的核心

主要内容

- 引言
- Internet基本工作原理
- 物理基础设施
- 数据链路访问和控制
- 网络互连技术
- 网络传输服务
- Internet的应用
- 未来互联网探索

参考书:

- 计算机网络(第2版),吴国新 吉逸,高等教育出版社
- 计算机网络(第6版),谢希仁,电子工业出版社
- 用TCP/IP进行网际互连(第一卷): 原理、协议与结构 (第五版),Douglas E. Comer, 电子工业出版社
- 计算机网络(第5版)
 - Andrew S. Tanenbaum, 清华大学出版社
- 一些RFC: www.ietf.org

课程要求

- 授课以教材为主,辅以部分新内容; 建议:预习一学习一复习, 及时答疑、发现和解决问题。
- 充分利用上课的时间;
- 勤于思考,以现实社会和人际交往对比网络世界和计算机通信,可能有助于理解课程;
- 成绩 = 期终考试(80%) + 平时作业(20%)。

第1章 计算机网络概述

- 计算机网络的发展
- 基本概念
- 网络的分类

60年代-70年代: 基本理论的形成

- 出于冷战的需要
 - 高爆氢弹引起数小时的短波通信中断
 - 交换中心是PSTN的单一故障点
 - 网络拓扑要从集中走向分布(容错需要冗余)
 - Paul Baran (Rand), Donald W. Davies (NPL),
 Bob Metcalfe (Harvard)
- 核心概念是存储转发和分组交换
 - 改变了传统的线路交换和固定速率的概念
 - 出现了动态路由的概念
 - 数字化传输技术的伴生物
- 原型系统是ARPANET

47th Anniversary of ARPANET

- Sept 2, 1969, the first node of the ARPANET was installed at UCLA
- The success of this first wide-area packet switching network inspired the creation of the ground mobile Packet Radio Net and the Packet Satellite Net
- These became the core of the Internet

互联网创始人 Jon Postel, Robert Kahn, and Vinton Cerf

desarrollo de ARPANET

(a) Dec. 1969.(b) July 1970.

HARVARD

NBS

BBN

UCLA

RAND

TINKER

(d)

(c) March 1971. (d) April 1972. (e) Sept. 1972

UCLA

QUCSB QUCSD

SDC

USC

SAAC Q

GWC

NOAA

(e)

BELVOIR &

CMU

CASE

80年代: 开放型体系结构的形成

- 工业化的需要
 - 从研究对象转向应用工具
 - 产品的兼容性
- 网络互联的需要
 - 自身的分布式特性
- 传统电信发展模式的衰退
 - 官方标准到事实标准
 - 垄断市场到开放市场
- 原型系统是Internet
 - V.Cerf, J.Postel(http://www.postel.org/postel.html)

90年代: 信息网络概念的出现

- 网络带宽和规模的变化
 - 网络吞吐量: 10Mb/s→Terabit/s→Petabit/s
 - 网络用户规模以亿计
- 网络应用的扩大
 - IP技术向电信网的渗透
 - 多种业务的融合
- 网络的建设和管理方式的变化
 - 电信业的开放、重组与相互渗透
- 原型系统是新一代Internet
 - <u>Tim Berners-Lee</u> (CERN), Philip Zimmerman

Internet - Some Major Milestones

- 1969 1985 Basic Packet Net Research
- 1974 Internet design first published
- 1983 first major deployment
- 1986 first router companies
- 1988 ARPANET retired; NSFNet 1.5M backbone
- 1991 CIX created
- 1994 commercial WWW (Netscape)
- 1995 NSFNet retired, competitive 45M 155M backbone
- 1998 New IANA/ICANN
- 2001 Telephone traffic and Internet traffic are roughly the same in US
- Now *Is the Internet revolution over?*
- http://www.internetsociety.org/

Conclusion

- The Internet (and World Wide Web) was have today was created by some very bright, talented people who either had vision, or were inspired by other talented people's visions.
- Though their ideas were not always popular, they pressed ahead.
- Their perseverance and hard work brought us to where we are today.
- There is a lot to be learned by studying these people, their early work and keeping in mind what they had to work with.
- Today, we owe a great deal for the wired world we enjoy, to the hard work of these people.

From: http://www.internetsociety.org/internet/what-internet/history-internet

BGP Routing Table Analysis Reports

619170

BGP data obtained from *AS6447*Report last updated at Thu, 18 Feb 2016 14:16:09 GMT

Internet users by country world map

Internet Users in the World by Geographic Regions - 2015

Source: Internet World Stats - www.internetworldstats.com/stats.htm 3,366,261,156 Internet users estimated for November 30, 2015 Copyright © 2016, Miniwatts Marketing Group

Internet Users in the World by Regions November 2015

Source: Internet World Stats - www.internetworldstats.com/stats.htm

Basis: 3,366,261,156 Internet users on November 30, 2015

Copyright © 2015, Miniwatts Marketing Group

Internet World Penetration Rates by Geographic Regions - November 2015

Source: Internet World Stats - www.internetworldststs.com/stats.htm Penetration Rates are based on a world population of 7,259,902,243 and 3,366,261,156 estimated Internet users on November 30, 2015. Copyright © 2016, Miniwatts Marketing Group

中国普及率: 49.5%

Future Challenges: Technical

- Local loop
- Management
- 高速网络技术
- 光网络技术
- 高速计算机技术
- 网络安全
- 服务质量保证

home and personal networking

面向大规模复杂网络

高速路由器技术、高速交换技术

全光交换技术、光传输技术

内存访问速度、CPU、总线带宽

基础设施的鲁棒性

TCP的改进、QoS技术、SLA

Future Challenges: Economic

- •新型网络应用的出现 增值业务?
- 电子商务的普及
- 对传统电信业和电信企业的影响
- Google vs Facebook
 - 网页搜索
 - 图谱搜索(Graph Search)
 - Links vs. Likes

Future Challenges: Societal

- 个人主义 vs 集体主义
 - How much privacy can we still have
 - Functions in network and on network
- 立法问题
 - 需要新的法律

信息的分类与传输控制

- 法律的兼容性
- 主导权
 - Cyber-Political?

第1章 计算机网络概述

1.1 网络的发展

计算机网络: 计算机的网络(组成)

计算机网络:用于计算机之间通信的网络(应用)

计算机网络 = 计算机技术和通信技术相互渗透和发展的结晶,并在用户需求刺激下发展起来的技术。

计算机网络发展过程:

1946年, ENICA在宾夕法尼亚大学(美)诞生, 占地170平米, 重30吨, 18000个电子管, 5000次加法/秒。

硬件发展:电子管-晶体管-中小规模集成电路-大规模集成电路-(智能机)

体积减小,性能/价格提升;

软件发展:单用户OS-分时多用户OS-网络OS-分布式OS-云计算

单机: 单个用户独占系统资源(主机)(46年)

分时系统: 分时多用户系统(大型机)(50年代末期) 多个用户利用多台终端共享单台计算机的资源, 主机轮询终端,获取指令,提供服务,返回结果

远程访问系统:__利用通信线路将远程终端连至主机,

不受地域限制地使用计算机的资源 (60年代中后期)

<u>网络:</u> 将多台计算机连在一起,相互共享资源 1969年,世界上第一个计算机网络 ARPANET 诞生

<u>网络:</u> 将多台计算机连在一起,相互共享资源 1969年,世界上第一个计算机网络 ARPANET 诞生

覆盖网:面向应用的网络(在支撑网络的基础上增添组件,使其满足各类应用需求)— 21世纪初期 典型系统:以信息资源共享为目的的网格;以闲散资源共享 为目标的对等网(P2P网)

网络的发展—研究角度

- 70年代,网络协议, (异构) 计算机之间通信和互联, 追求网络的(地域)覆盖面;
- 90年代,网络应用,满足各类应用需求, 追求网络的(行业)覆盖面,无所不在;
- 本世纪, 网络服务, 向用户提供满意的、高质量的服务, 以人为本, 享受网络。

网络发展示意图

计算机网络的定义:

计算机网络是以<u>共享资源</u>(硬件、软件和信息等) 为目的而连接起来的、<u>在协议控制下</u>,由一台或多 台计算机、终端设备、数据传输设备等组成的系统 之集合。

这些计算机系统应当具有<u>独立自治</u>的能力,是可以独立运行的系统。

- A computer network is a collection of autonomous computers, interconnected by communication channels
- **计算机网络**是*自主的*计算机通过通信信道互 *连*起来的*集合体*。
- Autonomous:
 - independent hardware and operating system
- Interconnected:
 - with communication module and interfaces
- Collection:
 - a harmonic system where multiple computers exchange data

网络的功能

计算机联网的主要目的—跨越时空:

- 资源共享

硬件共享:大型计算机(集群)处理能力,昂贵外设;

闲散资源的共享(P2P);

软件共享:应用软件、系统软件等;

信息共享: 用户数据(市场信息)等。

- 数据传输

支持用户之间的数据传输/信息交换 (如电子邮件, IP电话等);

计算机网络和信息社会

信息社会的特征:信息具有价值;

信息的特点: 时效性;

计算机: 信息处理的最佳工具;

<u>计算机网络</u>:具有高速的信息传输能力,充分发挥计算机处理的效率,是信息社会得以快速发展的支撑技术;

90年代,美国提出建立信息高速公路(国家信息基础设施—NII),构建贯通全美各大学、研究机构、企业及家庭的全国性网络。全球响应—GII,我国倡导的各项上网工程,网络渗透各行各业,生活中密不可分的一部分。

计算机网络和信息社会

网络对社会的影响:

- 人民生活丰富多彩
 - 工业化社会——物质享受,
 - 信息化社会——精神享受
- 经济生活日益变化
 - 产业结构的变革,新兴产业
- 社会功能不断充实
 - 网络世界需要新的法律、法规予以维护
- 国际间合作更加密切
 - "地球村"

★ 根据网络覆盖范围分类

广域网(Wide Area Network--WAN)

<u>局域网</u>(Local Area Network--LAN)

<u>城域网</u>(Metropolitan Area Network--MAN)

个人区域网(Personal Area Network—PAN)

<u> 园区网</u>(Campus Network/Enterprise Network)

网络的类型

★ 根据网络覆盖范围分类

<u>广域网(Wide Area Network--WAN)</u>

局域网(Loca

Network--LAN)

城域人

覆盖范围通常在几十到几千公里,有时也 称远程网,公用设施,长距离传输用户数 据,目前为光纤链路为主,具有较大的通 信容量。

网络的类型

★ 根据网络覆盖范围分类

广域网(Wide Area Network--WAN)

局域网(Local Area Network--LAN)

<u>城域网(Methan Area Network—MAN)</u>

★ 根据网络覆盖范围分类

广域网(Wide Area Network--WAN)

<u>局域网</u>(Local Area Network--LAN)

城域网(Metropolitan Area Network--MAN)

园区

覆盖范围通常在一个城市,几到几十公里, 公用设施,目前为光纤+同轴电缆链路为 主,部分城域网开始采用局域网技术。

不同者

致范围的淡心,山州小坝州双水水水川沿入工

及导

★ 根据网络覆盖范围分类

<u>广域网</u>(Wide Area Network--WAN)

<u>局域网</u>(Local Area Network──LAN)

<u>城域网</u>(Metropolitan Area Network--MAN)

个人区域网(Personal Area Network—PAN)

园区网(Camp rk/Enterprise Network)

覆盖范围通常在10米以内(房间),个人使 不同利用的电子设备联网,通常采用无线技术,有 致范围的认时也称无线个人区域网(WPAN)。

网络的类型

★ 根据网络覆盖范围分类

广域网(Wide Area Network--WAN)

局域 覆盖整个企业,通常为多个局域网的互联, 包括借助广域网的局域网互联,淡化覆盖 范围的概念。

1/ Down

MICA NOCHOIN IMI

<u>园区网</u>(Campus Network/Enterprise Network)

★根据网络拓扑结构分类

☆星形网络:

以一台中心处理机为主而构成的 网络,其它入网机器仅与该中心处理机之间有直接的物理链路, 所有网上传输的信息均需通过该处理机转发。

特点:

- >网络结构简单,便于管理(集中式)
- >入网机需物理线路与处理机互连, 线路利用率低
- >处理机负载重 (需处理所有的服务)
- ▶入网机故障,网络可正常工作;中心机故障,网络瘫痪; (备份/容错)

☆总线网络:

所有入网机器共用一条物理传输信道。

特点:

- 多台机器共用一条传输信道, 信道利用率较高;
- > 同一时刻只能由两台计算机通信;
- > 某个结点的故障不影响网络的工作;
- > 网络的延伸距离有限,结点数有限。

适用于局域网

☆环形网络:

入网设备通过转发器接入网络, 每个转发器仅与两个相邻的转 发器有直接的物理线路,所有 的转发器构成了环状的网络。

特点:

- 每个结点只与相邻两个结点有物理链路, 传输控制机制比较简单;
- > 实时性较好(可预测信息在网中传输的最大时间);
- > 某个结点(转发器)的故障可能导致网络瘫痪;
- 结点数有限

适用于局域网,实时性要求较高的环境

☆网状网络:

利用专门负责数据通信和传输功能的结点机构成; 结点机间形成网状的连接;

入网设备直接接入结点机进行通信。

特点:

结点间有多条路径,

完整性、可靠性高;

主要用于覆盖范围大、

入网主机多(机型多)的环境,

常用于构造广域网络

☆树状网络:

星型网络的扩展 或网状网络的简化

物理星型网络

逻辑星型网络

★根据管理性质分类

公用网:资源可供任何人使用

电话网、公共数据网、DDN等

专用网:资源仅供有限对象使用

国家安全网、军事网、气象网、电力网等

利用公用网组建专用网—虚拟专用网(VPN)

金融网, 税务网, 企业网, 政府网等

互联网 (Internet—因特网)

内联网 (Intranet, 如企业网)

外联网 (Extranet, 如企业之间网络)

接入网 (Access Network—AN)

★根据管理性质分类

公用网:资源可供任何人使用

电话网、公共数据网、DDN等

专用网:资源仅供有限对象使用

国家安全网、军事网、气象网、电力网等

利用公用网组建专用网—虚拟专用网(VPN)

金融网、税务网、企业网、政府网等

伴随宽带接入因特网而发展起来的网络技术,也称本地接入网,由网络服务提供商(ISP)提供,辅助用户进入因特网,例如电话网(ADSL)接入、局域网接入、电视网接入等。

(Extranet, 如企业之间网络)

接入网 (Access Network—AN)

★根据交换方式分类

信息在网络设备(交换机)中的转移方式

☆ 电路交换网

交换机采用程控跳线接续工作方式(类似电话), 无存储能力。具有建立链路、数据传输和释放链路三 个阶段;通信过程中,自始自终占用该条线路,且不 允许其他用户共享其信道容量。

☆报文交换网

交换机采用具有"存储-转发"能力的计算机, 用户数据可以暂时保存于交换机内, 等待线路空闲时,再进行用户数据的一次性传输, 多个用户的数据可以经过一条链路传输。

☆分组交换网

类同报文交换技术,规定了交换机处理和传输的数据长度(称之为分组)

不同用户的数据分组可以交织地在网络中的物理链路上传输

目前的计算机网络(包括广域网和局域网)都采用了分组交换技术,只是分组的大小有所不同

☆ 通信子网:

网络中面向数据传输或者数据通信的部分资源集合, 主要支持用户数据的传输;该子网包括传输线路、交 换机和网络控制中心等硬软件设施。

☆ 资源子网:

网络中面向数据处理的资源集合、主要支持用户的应用;该子网由用户的主机资源组成,包括接入网络的用户主机,以及面向应用的外设(例如:终端)、软件和可共享的数据(例如:公共数据库)等。

计算机通信的基本原理

☆ 计算机通信的实质:进程(线程)或对等实体之间的通信

各进程间相互制约的等待或互通消息

<u>同一系统中</u>: 共享内存、缓冲区、文件等

不同系统之间:通过网络进行通信,利用线路和中继设备的传输/存储/处理能力

★网络控制程序(NCP):

负责控制和监视进程使用网络资源的情况,具有 建立通信链路、分配存储器、控制计算机与网络之 间信息流的功能。

★通信接口(网络接入模块):

用于不同系统的设备和部件之间的连接,由设备和说明组成。

物理方面: (接口有多少个插脚)

电气方面: (电路信号的电压大小、以及与时间的关系)

逻辑方面(语法):控制数据流如何通过接口"流"到线路上等。

过程方面: 数据流穿入接口时的命令、顺序、控制信息的内容等。

协议的三要素

- (1) 语义 确定通信双方通信的内容,
 - 包括各种控制信息对应完成的动作和响应。
- (2) 语法 确定通信双方通信时数据报文的格式
- (3) 时序规则 指出通信双方信息交互的顺序

(建链、数据传输、拆链、数据重传等)

★通信协议(一组约定和规则的集合):

通信的两个实体(进程)在<mark>通信内容、通信方式、</mark> 以及<mark>通信时序</mark>等方面,要遵从相互可以理解的协议(相 同或兼容的协议)。 例: 文件传输

发送方A 接收方B 建链请求 接收请求 发送请求 同意发送 第一个记录 确认 最后一个记录 确认 拆链请求 拆链确认

遵循协议是计算机之间得以正确通信的保障! 协议及其有效性/高效性一直是网络界研究的重点。

例: 文件传输

遵循协议是计算机之间得以正确通信的保障! 协议及其有效性/高效性一直是网络界研究的重点。

例: 文件传输

发送方A

建链请求

发送请求

第一个记录

最后一个记录

拆链请求

C host A host B S File A File B size type ... R length 0 data

data

host B

协议

R length 1

host A

D

遵循协议是计算机之间得以正确通信的保障! 协议及其有效性/高效性一直是网络界研究的重点。

本章小结: 定义和分类

网络定义:为<u>共享资源</u>(硬件、软件和信息等)而连接起来的、 <u>在协议控制下</u>由一台或多台具有<u>独立自治</u>能力的计算机和传输设 备等组成的系统。

网络分类:

覆盖范围:广域网、局域网、城域网、个人区域网、园区网;

拓扑结构: 星型网、总线网、环型网、网状网、树状网;

管理性质:公用网、专用网、虚拟专用网(VPN);

因特网、内联网、外联网、接入网;

交换方式: 电路交换网、报文交换网、分组交换网;

功能特性:通信(子)网、资源(子)网。

计算机通信: 协议控制下的进程之间的通信。

作业

- P.68, 12
- P.69, 34