THE ISOMETRY GROUP OF $L^p(\mu, X)$ IS SOT-CONTRACTIBLE

JARNO TALPONEN

ABSTRACT. We will show that if (Ω, Σ, μ) is an atomless positive measure space, X is a Banach space and $1 \leq p < \infty$, then the group of isometric automorphisms on the Bochner space $L^p(\mu, X)$ is contractible in the strong operator topology. We do not require Σ or X above to be separable.

1. Introduction

This article deals with the topological structure of isometry groups of Banach spaces. Recall that an isometry group \mathcal{G}_X of a Banach space X consists of linear isometric isomorphisms $T \colon X \to X$.

The connectedness of groups of linear automorphisms with respect to the norm topology is a classical topic by now, see e.g. [4, 13]. For example, Kuiper proved already in 1965 that the linear automorphism group GL_{ℓ^2} and the isometry group G_{ℓ^2} of ℓ^2 are operator norm contractible. On the other hand, spaces G_{ℓ^p} and $G_{L^p(\mu)}$ are discrete in the operator norm topology for $1 \leq p \leq \infty$, $p \neq 2$, ([8, p.112], [1, p.57]) and a fortiori not contractible. Our main result result shows that the situation is surprisingly different when observing $G_{L^p(\mu)}$ in the strong operator topology:

Theorem 1.1. Let X be a Banach space, μ an atomless positive measure and $1 \leq p < \infty$. Then the isometry group $\mathcal{G}_{L^p(\mu,X)}$ of the Bochner space $L^p(\mu,X)$ endowed with the strong operator topology is contractible. Here X and $L^p(\mu,X)$ can be regarded as real or complex spaces.

This result involves the isometric structure and more precisely the L^p -structure of Bochner spaces. For a fascinating treatment of the latter topic see [2, 9] which are implicitly applied in this work. Our study is also closely related to [10], [11] and [12].

Recall that for Banach spaces X and Y a projection $P: X \oplus Y \to Y$ is called an L^p -projection for a given $p \in [1, \infty)$ if

$$||(x,y)||_{X \cap Y}^p = ||x||_X^p + ||y||_Y^p$$
 for each $x \in X, y \in Y$.

Such projections commute and in fact the L^p -structure $\mathbb{P}_p(X)$ of X, i.e. the set of all L^p -projections on X can be regarded as a complete Boolean algebra (see [2]).

In order to put our result in the right context, let us mention that our route to Theorem 1.1 is via analyzing the L^p -structure of $L^p(\mu, X)$. This structure depends on μ and the L^p -structure of X, as one might expect. If X is separable, then one can write $\mathbb{P}_p(L^p(\mu, X)) = \Sigma/\mu \otimes \mathbb{P}_p(X)$ in a suitable sense, see [12]. It might first seem, bearing the L^p -structures in mind, that an effective means to

Date: April 28, 2008.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B04; Secondary 46B25, 46E40.

analyze the connectedness properties of $\mathcal{G}_{L^p(\mu,X)}$ would be applying suitably normalized L^p -decompositions of Bochner spaces. For example the p-integral module representation (see [2]) appears to be a natural tool for such an approach.

In fact, the L^p -structure of $L^p(\mu, X)$ is simple to represent if X is a separable Banach space having only trivial L^p -structure and $1 \leq p < \infty$, $p \neq 2$. Then the isometries $T \in \mathcal{G}_{L^p(\mu, X)}$ can be represented, in a suitable sense, as

(1.1)
$$Tf(t) = \sigma_t \left(\frac{d(\mu \circ \phi^{-1})}{d\mu}(t) \right)^{\frac{1}{p}} f\phi^{-1}(t) \text{ for } f \in L^p(\Omega, \Sigma, \mu, X),$$

where $\sigma \colon \Omega \to \mathcal{G}_X$; $t \mapsto \sigma_t$ is strongly measurable and $\phi \colon \Sigma/\mu \leftrightarrow \Sigma/\mu$ is a Boolean isomorphism (see [9] and also [10]). Moreover, there is in general a close connection between the L^p -structure of a given Lebesgue-Bochner space and the corresponding representations of type (1.1).

However, there exists an obstruction, that has to be dealt with. Namely, in the setting of Theorem 1.1 the space X may have a rich L^p -structure and be non-separable, so that typically the L^p -structure of $L^p(\mu, X)$ is very complicated and (1.1) fails. Another substantial difficulty is that if X has a trivial L^p -structure but is non-separable, then the L^p -structure of $L^p(\mu, X)$ is not known explicitly, nor is it known whether representation (1.1) holds. Thus we note that even though the group $\mathcal{G}_{L^p(\mu,X)}$ has not been classified in the sense of L^p -structures, we are unexpectedly able to extract enough information of $\mathbb{P}_p(L^p(\mu,X))$ in order to establish a very strong connectedness condition in Theorem 1.1.

The way around the described problems is to employ a suitable isometric representation for $L^p(\mu, X)$, which rises from measure-theoretic observations.

To introduce the notations applied in this paper, X, Y and Y stand for *real* Banach spaces. The closed unit ball and the unit sphere of X are denoted by \mathbf{B}_X and \mathbf{S}_X , respectively. We refer to [5] and [6] for necessary background information in measure theory and isometric theory of classical Banach spaces. It is also useful to get acquainted with the machinery appearing in [9] regarding Bochner spaces.

If $\mathcal{F} \subset \mathcal{P}(\Omega)$ and $\Sigma_0 \subset \Sigma$ is a σ -subring such that $\mathcal{F} \subset \Sigma_0$ and for all $A \in \Sigma_0$ there is a set $\{B_n | n \in \mathbb{N}\}$, where each B_n is a countable intersection of suitable elements of \mathcal{F} , and $\bigcup_n B_n = A$, then we say that $\mathcal{F} \sigma$ -generates Σ_0 . Recall that the strong operator topology (SOT) on L(X) is the topology inherited from X^X endowed with the product topology. Recall that each $T \in L(X)$ has a SOT-neighbourhood basis consisting of sets of the following type:

$$(1.2) \qquad \{S \in L(\mathbf{X}) : ||(S-T)x_1||, ||(S-T)x_2||, \dots, ||(S-T)x_n|| < \epsilon\},$$
 where $x_1, \dots, x_n \in \mathbf{X}, \ n \in \mathbb{N} \ \text{and} \ \epsilon > 0.$

Let us make some preparations towards the proof of Theorem 1.1 by introducing some auxiliary notions. In what follows (Ω, Σ, μ) is a positive measure space, where Σ is a σ -ring. An arbitrary measure space may be unconveniently rich for our purposes, that is, for studying the bands of $L^p(\Omega, \Sigma, \mu)$ for $p \in [1, \infty)$. Therefore we wish to extract exactly the information which is 'recognized' by the L^p -structure. If Σ is as above, then we will define

$$\Sigma^{L} = \{ f^{-1}(\mathbb{R} \setminus \{0\}) | f \in L^{p}(\Omega, \Sigma, \mu) \} / \mu.$$

Above $\{f^{-1}(\mathbb{R}\setminus\{0\})|f\in L^p(\Omega,\Sigma,\mu)\}$ is a σ -subring of Σ and Σ^L is the quotient σ -ring formed by identifying μ -null sets with \emptyset . By slight abuse of notation we denote the corresponding measure ring by (Σ^L,μ) and we consider the elements $A\in\Sigma^L$ as

contained in Ω in the μ -a.e. sense. Hence, for $A, B \in \Sigma^L$, we will write $A \bigcup B \in \Sigma^L$ instead of $A \bigvee B \in \Sigma^L$, and so on. Note that Σ^L does not depend on the value of p, as long as $p < \infty$, since $\{f^{-1}(\mathbb{R} \setminus \{0\}) | f \in L^p(\Omega, \Sigma, \mu)\} \subset \Sigma$ is just the σ -subring of σ -finite sets. The motivation of this concept becomes clear in the subsequent results. Given $p \in [1, \infty)$, a set I and Banach spaces X_i for $i \in I$, we denote by $\bigoplus_{i \in I}^p X_i$ the L^p -sum of the spaces X_i . That is, $(x_i)_{i \in I} \in \prod_{i \in I} X_i$ satisfies $(x_i)_{i \in I} \in \bigoplus_{i \in I}^p X_i$ if and only if $||(x_i)_{i \in I}||^p = \sum_{i \in I} ||x_i||^p_{X_i} < \infty$. The space $\bigoplus_{i \in I}^p X_i$ is endowed with the complete norm $||\cdot||$. We will denote by $P_j : \bigoplus_{i \in I}^p X_i \to X_j$ the L^p -projection onto X_j for each $j \in I$, where X_i is regarded as a subspace of $\bigoplus_{i \in I}^p X_i$ in the natural way. Hence each $x \in X_j$ is thought of as an element of $\bigoplus_{i \in I}^p X_i$ as $P_j x = x$.

The Lebesgue measure on [0,1] is denoted by m and if κ is a non-zero cardinal, then we denote the product measure on $[0,1]^{\kappa}$ by $m^{\kappa} \colon \Sigma_{[0,1]^{\kappa}} \to \mathbb{R}$, where $\Sigma_{[0,1]^{\kappa}}$ is the corresponding product σ -algebra.

The orbit of $x \in \mathbf{S}_X$ is $\mathcal{G}_X(x) \stackrel{\cdot}{=} \{T(x) | T \in \mathcal{G}_X\}.$

2. Results

We will require the following auxiliary results.

Lemma 2.1. For given $f \in L^p(m, X)$ and $t_0 \in [0, 1)$ it holds that

$$\lim_{\substack{t \to t_0 \\ t \in [0,1]}} \int_{t_0}^1 ||f(h_t(s)) - f(h_{t_0}(s))||^p ds = 0,$$

where
$$h_t : [t_0, 1] \to [t, 1]; \ h_t(s) = \left(\frac{t - t_0}{1 - t_0} + \frac{1 - t}{1 - t_0} s\right) \text{ for } t, s \in [0, 1].$$

Proof. The claim reduces to the analogous scalar-valued statement by approximating f with simple functions. This in turn can be obtained by a straightforward modification of the proof of the classical fact that $\lim_{h\to 0}\int_{\mathbb{R}}|g(s+h)-g(s)|\;\mathrm{d}s=0$ for $g\in L^p(\mathbb{R}),\;p<\infty$, which exploits Lusin's theorem.

Lemma 2.2. Let X be a Banach space, (Ω, Σ, μ) be an atomless positive measure space and $p \in [1, \infty)$. Then there exists a set I such that $L^p(\mu, X)$ is isometrically isomorphic to $\bigoplus_{i \in I}^p L^p(m, L^p(m^{\lambda_i}, X))$, where λ_i are non-zero cardinals for $i \in I$.

Proof. The argument is closely related to classical matters discussed in [6] and [12]. Recall Lamperti's classical result [7] that the supports of $f,g\in L^1(\mu)$ are essentially disjoint if and only if ||f+g||+||f-g||=2(||f||+||g||). The crucial conclusion of this result is that the disjointness of two vectors $f,g\in L^p(\nu)$ can be detected by studying the above norms and hence each linear isometry $\psi\colon L^1(\nu)\to L^1(\nu)$, where ν and ν are positive measures, preserves disjointness and bands. This also leads to the fact that a projection P on $L^1(\mu)$ is L^1 -projection with a separable range if and only if there is $A\in \Sigma^L$ such that the image of P is $\{f\in L^1(\mu)|\sup p(f)\subset A\mu-\text{a.e.}\}$.

Since each $f \in L^1(\mu)$ is σ -finitely supported, it follows that the measure ring (Σ^L, μ) is σ -generated by μ -finite sets. Recall that the Boolean algebra of L^1 -projections on $L^1(\mu)$ is complete (see [2, Prop.1.6]). Thus, by recalling Lamperti's result we obtain that $\{A \setminus \bigcup \mathcal{F} | A \in \Sigma^L\}$ defines an ideal of Σ^L for any $\mathcal{F} \subset \Sigma^L$. Hence Hausdorff's maximum principle yields a maximal family $\{V_j\}_{j\in J} \subset \Sigma^L$ of pairwise μ -essentially disjoint μ -finite sets. Note that $\bigoplus_{j\in J}^1 L^1(\mu|_{V_j})$ is isometric to $L^1(\mu)$.

By using the μ -finiteness of the sets V_j we obtain that for each $j \in J$ there is a countable set A_j and cardinals λ_k for $k \in A_j$ such that the subspace $\{f \in L^1(\mu)| \operatorname{supp}(f) \subset V_j \ \mu-\text{a.e.}\}$ is isometric to $\bigoplus_{k \in A_j}^1 L^1(m^{\lambda_k})$ (see [6, p.127]). Since V_j are essentially disjoint, the sets A_j can be chosen to be pairwise disjoint.

Put $I = \bigcup_{j \in J} A_j$. Observe that there exists an isometric isomorphims $\phi \colon \bigoplus_{i \in I}^1 L^1(m^{\lambda_i}) \to L^1(\mu)$. According to Lamperti's result the map ϕ preserves bands. Recall that if $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ are positive σ -finite measure spaces such that $L^1(\mu_1)$ and $L^1(\mu_2)$ are isometric, then there is a Boolean isomorphism $\tau \colon \Sigma_1/\mu_1 \leftrightarrow \Sigma_2/\mu_2$ see e.g. [12, p.477]. It follows from the selection of $\{V_j\}_{j \in J}$ that there exist ideals $B_i \subset \Sigma^L$ for $i \in I$ such that

- (a) Σ^L is σ -generated by $\bigcup_{i \in I} B_i$,
- (b) B_i is Boolean isomorphic to $\Sigma_{[0,1]^{\lambda_i}}/m^{\lambda_i}$ for $i \in I$
- (c) the ideals B_i are pairwise essentially disjoint.

Indeed, each ideal B_i is determined by the isometric embedding

$$\phi|_{L^1(m^{\lambda_i})} : L^1(m^{\lambda_i}) \hookrightarrow L^1(\mu) \quad \text{for } i \in A_j,$$

namely, B_i is the essential support of the functions in the image of $\phi|_{L^1(m^{\lambda_i})}$.

Let $p \in [1, \infty)$. For each $i \in I$ there is a Boolean isomorphism from $\Sigma_{[0,1]^{\lambda_i}}/m^{\lambda_i}$ onto the corresponding ideal B_i of Σ^L . Clearly

$$\{f \in L^p(\mu, X) | \operatorname{supp}(f) \subset B_i \ \mu - \text{a.e.} \} \subset L^p(\mu, X)$$

is a closed subspace isometric to $L^p(\mu|_{B_i}, X)$. Thus there exists an isometric isomorphism $U_i : L^p(m^{\lambda_i}, X) \to \{f \in L^p(\mu, X) | \operatorname{supp}(f) \subset B_i \ \mu - \text{a.e.} \}$ for $i \in I$, see e.g. [12, p.476].

Define an isometric isomorphism $U : \bigoplus_{i \in I}^p L^p(m^{\lambda_i}, X) \to L^p(\mu, X)$ by $(f_i)_{i \in I} \mapsto \sum_{i \in I} U_i(f_i)$. Indeed, this mapping is an isometry since the ideals B_i are disjoint. Moreover, as Σ^L is σ -generated by the ideals B_i it is easy to see by analyzing simple functions of $L^p(\mu, X)$ that U is onto.

The following final step finishes the proof. We claim that if κ is a non-zero cardinal, then $L^p(m^{\kappa}, \mathbf{X})$ is isometrically isomorphic to $L^p(m, L^p(m^{\kappa}, \mathbf{X}))$. Indeed, recall that each $m \otimes m^{\kappa}$ -measurable set $A \subset [0,1] \times [0,1]^{\kappa}$ can be approximated in measure by countable unions of measurable rectangles (see e.g. [5, p.145]). For the scalar-valued case, see [6, p.127] and [12, p.478-479]. Hence the obvious identification of the spaces $L^p(m \otimes m^{\kappa}, \mathbf{X})$ and $L^p(m, L^p(m^{\kappa}, \mathbf{X}))$ can be obtained, since each simple function in $L^p(m \otimes m^{\kappa}, \mathbf{X})$ can be approximated by a sequence of simple functions of $L^p(m, L^p(m^{\kappa}, \mathbf{X}))$ and vice versa.

Now we are ready to prove our main result.

Proof of Theorem. 1.1. Since μ is atomless we may apply Lemma 2.2 to $L^p(\mu, X)$ for $1 \leq p < \infty$. Thus we may write $L^p(\mu, X) = \bigoplus_{i \in I}^p L^p(m, L^p(m^{\kappa_i}, X))$ isometrically, where κ_i are non-zero cardinals for $i \in I$. In what follows we will denote $\mathcal{M} \stackrel{.}{=} \bigoplus_{i \in I}^p L^p(m, L^p(m^{\kappa_i}, X))$ for the sake of brevity. Hence it suffices to show that $\mathcal{G}_{\mathcal{M}}$ is SOT-contractible.

For each $i \in I$ we define mappings

$$\alpha_i, \beta_i, \gamma_i \colon [0, 1] \times L^p(m, L^p(m^{\kappa_i}, \mathbf{X})) \to L^p(m, L^p(m^{\kappa_i}, \mathbf{X}))$$

by $\alpha_i(t, f_i) = \chi_{[0,t]} f_i$,

$$\beta_i(t, f_i)(s) = (1-t)^{-\frac{1}{p}} f_i(t+(1-t)s)$$
 and $\gamma_i(t, f_i) \circ \beta_i(t, f_i) = \chi_{[t,1]} f_i$

where $f_i \in L^p(m, L^p(m^{\kappa_i}, \mathbf{X}))$ and $s \in [0, 1]$. Above we apply the convention $0^{-\frac{1}{p}} = 0$. Clearly $\alpha_i(t, \cdot), \beta_i(t, \cdot)$ and $\gamma_i(t, \cdot)$ are contractive linear operators for $i \in I$, $t \in [0, 1]$. Note that $\alpha_i(\cdot, f_i)$ are continuous on [0, 1] and according to Lemma 2.1 the same is true for $\beta_i(\cdot, f_i)$ and $\gamma_i(\cdot, f_i)$.

The required homotopy $h: [0,1] \times \mathcal{G}_{\mathcal{M}} \to \mathcal{G}_{\mathcal{M}}$ is given by

$$h(t,T)\left(\sum_{i\in I}f_i\right) = \sum_{i\in I}\alpha_i(t,f_i) + \sum_{i\in I}\gamma_i\left(t,P_iT\left(\sum_{i\in I}\beta_i(t,f_i)\right)\right)$$

for $t \in [0,1]$, $T \in \mathcal{G}_{\mathcal{M}}$ and $\sum_{i \in I} f_i \in \mathcal{M}$. Indeed, it is straightforward to check that $h(t,T) \in \mathcal{G}_{\mathcal{M}}$ for each $t \in [0,1]$ and $T \in \mathcal{G}_{\mathcal{M}}$. Moreover, h(0,T) = T and h(1,T) = id for each $T \in \mathcal{G}_{\mathcal{M}}$. Our next aim is to justify that h is indeed a suitable homotopy with respect to the strong operator topology.

Let $t_0 \in [0,1], T \in \mathcal{G}_{\mathcal{M}}$ and let $V \subset \mathcal{G}_{\mathcal{M}}$ be a SOT-open neighbourhood of $h(t_0,T)$. In order to justify the $|\cdot| \times \operatorname{SOT} - \operatorname{SOT}$ continuity of h at (t_0,T) , we must find an open set $W \subset ([0,1],|\cdot|) \times (\mathcal{G}_{\mathcal{M}},\operatorname{SOT})$ such that $(t_0,T) \in W$ and $h(W) \subset V$. Fix $\epsilon > 0$ and $f = \sum_{i \in I} f_i, g = \sum_{i \in I} g_i \in \mathbf{S}_{\mathcal{M}}$ such that $||g - h(t_0,T)(f)|| < \epsilon$. Recall that the point $h(t_0,T)$ has a SOT-neighbourhood basis of type (1.2), and

Recall that the point $h(t_0, T)$ has a SOT-neighbourhood basis of type (1.2), and the elementary topological fact that open sets are preserved in finite intersections. Since ϵ , f and g were arbitrary, it suffices to show that there are open sets $\Delta \subset ([0,1], |\cdot|)$ and $U \subset (\mathcal{G}_{\mathcal{M}}, \text{SOT})$ such that $t_0 \in \Delta$, $T \in U$ and

(2.1)
$$h(\Delta \times U) \subset \{R \in \mathcal{G}_{\mathcal{M}} : ||g - Rf|| < \epsilon\}.$$

Denote $\delta = \epsilon - ||g - h(t_0, T)f|| > 0$. There exists a finite set $J \subset I$ such that $||\sum_{i \in I \setminus J} f_i|| < \frac{\delta}{4}$. Put n = |J|. Fix $j \in J$. Similarly as above, let $f_j = P_j f$. Since $\beta_j(\cdot, f_j)$ is continuous we can find an open interval $\Delta_j \subset [0, 1]$ containing t_0 such that $||\beta_j(t, f_j) - \beta_j(t_0, f_j)|| < \frac{\delta}{4n}$ for $t \in \Delta_j$. Define an SOT-open neighbourhood U_j of T by

$$U_j = \{ S \in \mathcal{G}_{\mathcal{M}} : ||(S - T)\beta_j(t_0, f_j)|| < \frac{\delta}{4\eta} \}.$$

Finally, by recalling the definitions of h, Δ_i and U_i we obtain that

$$\begin{aligned} ||h(t,S)f_j - h(t_0,T)f_j|| & \leq ||h(t,S)f_j - h(t_0,S)f_j|| + ||h(t_0,S)f_j - h(t_0,T)f_j|| \\ & < \frac{\delta}{4n} + ||(S-T)\beta_j(t_0,f_j)|| < \frac{\delta}{2n} \end{aligned}$$

for $t \in \Delta_j$ and $S \in U_j$, where $j \in J$. Put $\Delta = \bigcap_{j \in J} \Delta_j$ and $U = \bigcap_{j \in J} U_j$. We get

$$\begin{split} &||h(t,S)f - h(t_0,T)f|| \\ &\leq \left|\left|\left(h(t,S) - h(t_0,T)\right)\sum_{i\in I\setminus J}f_i\right|\right| + \sum_{j\in J}||h(t,S)f_j - h(t_0,T)f_j|| \\ &< ||h(t,S) - h(t_0,T)|| \cdot \left|\left|\sum_{I\setminus J}f_i\right|\right| + n\frac{\delta}{2n} < \delta \end{split}$$

for $(t,S) \in \Delta \times U$. This means that $||g - h(t,S)f|| < ||g - h(t_0,T)f|| + \delta = \epsilon$ for $(t,S) \in \Delta \times U$. Consequently $h(\Delta \times U)$ satisfies (2.1) and the proof is complete. \square

Recall that $\mathbf{S}_{L^p(m)}$, $1 \leq p < \infty$, consists of (exactly) 2 orbits, namely $\mathcal{G}_{L^p}(\chi_{[0,1]})$ and $\mathcal{G}_{L^p}(2^{\frac{1}{p}}\chi_{[0,\frac{1}{2}]})$, both of which are dense in $\mathbf{S}_{L^p(m)}$ (see e.g. [14]).

Corollary 2.3. Both the orbits $\mathcal{G}_{L^p}(\chi_{[0,1]}), \mathcal{G}_{L^p}(2^{\frac{1}{p}}\chi_{[0,\frac{1}{2}]}), 1 \leq p < \infty$, are path-connected.

Proof. Fix 2 points $f, g \in \mathbf{S}_X$ both coming from one of the above orbits. Then there exists $T \in \mathcal{G}_{L^p}$ such that T(f) = g. According to Theorem 1.1 there is a homotopy $h \colon [0,1] \times \mathcal{G}_{L^p} \to \mathcal{G}_{L^p}$ such that h(0,T) = T and $h(1,T) = \mathrm{id}$. Clearly $h([0,1] \times \mathcal{G}_{L^p})(\cdot)$ preserves orbits. Note that $t \mapsto h(t,T)f$ defines a continuous path connecting g and f in $\mathcal{G}_{L^p}(f) \subset \mathbf{S}_{L^p}$.

The assumptions of μ being atomless or $p < \infty$ cannot be removed in Theorem 1.1 even in the scalar-valued case. If $p \in [1, \infty)$, $p \neq 2$, and μ has some atoms, then by applying the scalar-valued analogue of representatation (1.1) (see [6]) it can be verified that $\mathcal{G}_{L^p(\mu)}$ is not connected in the weak operator topology. However, if ν is the counting measure on \mathbb{N} , then $L^p(\nu, L^p(m)) = L^p(m)$ isometrically, whose isometry group is SOT-contractible according to Theorem 1.1.

Proposition 2.4. Let (Ω, Σ, μ) be a positive measure space and we will regard $L^{\infty}(\mu)$ over the real field. Then $\mathcal{G}_{L^{\infty}(\mu)}$ is totally separated in the strong operator topology.

Proof. For given $T, S \in \mathcal{G}_{L^{\infty}(\mu)}$ and $A \in \Sigma$ it holds that $T(\chi_A) \neq S(\chi_A)$ if and only if $||T\chi_A - S\chi_A|| \geq 1$ (see e.g. [10, Thm. 2]). Pick $T, S \in \mathcal{G}_{L^{\infty}(\mu)}$, $T \neq S$, if such exist. It is easy to find a set $C \in \Sigma$ such that $T\chi_C \neq S\chi_C$. Now,

$$\{U \in \mathcal{G}_{L^{\infty}(\mu)}: ||U\chi_C - T\chi_C|| < \frac{1}{2}\} \cup \{V \in \mathcal{G}_{L^{\infty}(\mu)}: ||U\chi_C - T\chi_C|| > \frac{1}{2}\} = \mathcal{G}_{L^{\infty}(\mu)}$$
 is SOT-separation completing the claim.

To conclude, let us make a few remarks about the homotopy h appearing in the proof of Theorem 1.1. We note that a resembling transformation was applied in [3, p.251] in a different setting. The proof of Theorem 1.1 can easily be modified so that h becomes a homotopy on the set of linear isometric embeddings $L^p(\mu, X) \to L^p(\mu, X)$, and hence this set is SOT-contractible for atomless μ and $p < \infty$. With equally small modifications it can be verified that the conclusion of Theorem 1.1 remains valid, if one investigates the contractibility of $GL_{L^p(\mu,X)}$ in place of $\mathcal{G}_{L^p(\mu,X)}$.

References

- [1] F. Cabello, 10 Variaciones Sobre un Tema de Mazur, Tesis Doctoral, Universidad de Extremadura, 1996.
- [2] E. Behrends et al., L^p -structure in real Banach spaces. Lecture Notes in Mathematics, Vol. 613. Springer-Verlag, Berlin-New York, 1977.
- [3] J. Dixmier, A. Douady, Champs continus d'espace hilbertiens et de C^* -algèbres, Bull. Math. Soc. France, 91 (1963), 227-284.
- [4] N. Kuiper, The homotopy type of the unitary group of Hilbert space. Topology 3 (1965), p. 19-30.
- [5] P.R. Halmos, Measure Theory. D. Van Nostrand Company, Inc., New York, 1950.
- [6] H.E.Lacey, The isometric theory of classical Banach spaces. Die Grundlehren der mathematischen Wissenschaften, Band 208. Springer-Verlag, New York-Heidelberg, 1974.
- [7] J. Lamperti, On the isometries of certain function-spaces. Pacific J. Math. 8 (1958), 459-466.
- [8] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I and II, (reprint) Springer-Verlag 1996.
- [9] P. Greim, Isometries and L^p-structure of separably valued Bochner L^p-spaces. Measure theory and its applications (Sherbrooke, Que., 1982), 209–218, Lecture Notes in Math., 1033, Springer-Verlag, Berlin, 1983.
- [10] P. Greim, The centralizer of Bochner L^{∞} -spaces. Math. Ann. 260 (1982), 463-468.
- [11] P. Greim, J. Jamison, Hilbert spaces have the strong Banach-Stone property for Bochner spaces. Math. Z. 196 (1987), 511-515.
- [12] P. Greim, J. Jamison, A. Kamińska, Almost transitivity of some function spaces. Math. Proc. Cambridge Philos. Soc. 116 (1994), 475-488.

- [13] B. Mitjagin, I. Edelstein, The homotopy type of linear groups of two classes of Banach spaces. Funkcional. Anal. i Prilozen. 4 (1970), no. 3, 61-72.
- [14] S. Rolewicz, Metric Linear Spaces, Reidel, Dordrecht, 1985.

University of Helsinki, Department of Mathematics and Statistics, Box 68, (Gustaf Hällströminkatu 2b) FI-00014 University of Helsinki, Finland

 $E ext{-}mail\ address: talponen@cc.helsinki.fi}$