អថេរថៃជន្យូខាម់

(Continuous Random Variable)

ក្នុងជំពូកនេះយើងចង់សិក្សាពីអថេរដូចជា៖ កំពស់របស់សិស្ស ទំងន់ ប្រវែង...។ អថេរទាំងនេះត្រូវ បានគេហៅថាអថេរចៃដន្យជាប់។ អថេរចៃដន្យជាប់ជាអថេរដែលត្រូវបានគេអោយ និយមន័យលើ លំបាសំណាក់ជាសំនុំរាប់មិនបាននិងរាប់មិនអស់(Infinitely Uncountable Set)។

1. អថេរចៃដន្យជាប់(Continuous Random Variable)

អថេរចៃដន្យជាប់ X ត្រូវបានពិពណ៌នាដោយអនុគមន៍ដង់ស៊ីតេ f (Probability Density Function)។

និយមន័យ៖ f ជាអនុគមន៍ដង់ស៊ីតេបើ

- $\int_{-\infty}^{\infty} f(x) dx = 1$
- $f(x) \ge 0$, $\forall x \in \mathbb{R}$

យក $A\subset\mathbb{R}$, នោះ យើងបាន $P(X\in A)=\int_A f(x)dx$ សំគាល់៖ ចំពោះអថេរ ចៃដន្យជាប់ $X,\quad P(X=a)=0, \forall a\in\mathbb{R}$ ឧទាហរណ៍១៖ យើងមាន $f(x)=3x^2,\ 0< x<1$ ។

- ១. តើ f(x)ជាអនុគមន៍ដង់ស៊ីតេឬទេ?
- ២. បើf(x)ជាអនុគមន៍ដង់ស៊ីតេ ចូរគណនា $P(\frac{1}{2} < X < 1)$
- ៣. សិក្សាពីភាពខុសគ្នារវាង P(X = 0.5) និង f(0.5)

ឧទាហរណ៍២៖ X ជាអថេរចៃដន្យដែលមានអនុគមន៍ដង់ស៊ីតេ $f(x) = \frac{x^3}{4}, \ 0 < x < c$ ។ កំណត់ តំលៃ c ដើម្បីអោយ f ពិតជា អនុគមន៍ដង់ស៊ីតេ។

តំលៃសង្ឃឹម(Expected Value)

តំលៃសង្ឃឹមរបស់អថេរចៃដន្យ X (អថេរចៃដន្យជាប់) ត្រូវបានគេអោយនិយមន័យដោយ៖

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

ក្រោមលក្ខខណ្ឌអាំងតេក្រាល់នេះរួម។

វ៉ាំរ៉្រីង់(Variance)

វ៉ារ្យង់របស់អថេរចៃដន្យ X (អថេរចៃដន្យដាច់) ត្រូវបានគេអោយនិយមន័យដោយ៖

$$V(X) = E\left[\left(X - E(X)\right)^{2}\right]$$

សំគាល់៖

- តំលៃសង្ឃឹមនិយាយពីតំលៃមធ្យមរបស់អថេរចៃដន្យ
- វ៉ារ្យង់និយាយពីភាពពង្រាយរបស់អថេរចៃដន្យ
- លក្ខណៈរបស់ តំលៃសង្ឃឹមនិងវ៉ារ្យង់នៃអថេរជាប់ដូចគ្នានឹងលក្ខណៈរបស់ តំលៃសង្ឃឹម និងវ៉ារ្បង់នៃអថេរដាច់

2. អនុគមន៍ដង់ស៊ីតេកំណើន (Cumulative Distribution Function) ៖

X ជាអថេរចៃដន្យជាប់ដែលមានអនុគមន៍ដង់ស៊ីតេ f(x)

<u>និយមន័យ</u>៖ អនុគមន៍ដង់ស៊ីតេកំណើន F ត្រូវបានគេអោយនិយមន័យដោយ

F:
$$\mathbb{R} \rightarrow [0,1]$$

$$t \mapsto F(t) = P(X \le t) = \int_{-\infty}^{t} f(x) dx$$

តាមនេះយើងបាន
$$f(t) = F'(t) = \frac{dF(t)}{dt}$$

<u>ទ្រឹស្តីបទ</u>៖ ឧបមាថាមានអនុគមន៍ដង់ស៊ីតេកំណើន F នោះយើងបាន

- $\lim_{t\to -\infty}F(t)=0$, $\lim_{t\to +\infty}F(t)=1$ ត្រង់ចំនុច t ណាមួយ Fជាប់ស្ដាំ និង មានលីមីតឆ្វេង(ចំពោះអថេរដាច់) និង Fជាប់(ចំពោះអថេរជាប់)
- $\mathring{\mathfrak{o}}$ im: s < t, $F(s) \le F(t)$ (nondecreasing function)

ច្រាសមកវិញ អនុគមន៍ណាក៍ដោយដែលផ្ទៀងផ្ទាត់ចំណុចទាំង ៣ ខាងលើ គឺជាអនុគមន៍ ដង់ស៊ីតេកំណើន។

<u>សម្រាយបញ្ជាក់៖</u>

ឧទាហរណ៍៣៖ ចូរគណនាអនុគមន៍ដង់ស៊ីតេកំណើននៃអថេរក្នុង ឧទាហរណ៍១។

ស្សារប្រ

- 9. X ជាអថេរចៃដន្យដែលមានអនុគមន៍ដង់ស៊ីតេ $f(x) = c(4x 2x^2), 0 < x < 2$ ក.កំណត់តំលៃ c
 - 2.គណនា P(x > 1)
- ២. X ជាអថេរចៃដន្យដែលមានអនុគមន៍ដង់ស៊ីតេ $f(x)=1,\ 0\leq x\leq 1$ ។ តាង $Y=e^X$ ។
 - ក. គណនាអនុគមន៍ដង់ស៊ីតេកំណើននៃអថេរ X តាងដោយ F_X
 - ខ. គណនាអនុគមន៍ដង់ស៊ីតេកំណើននៃអថេរ Y តាងដោយ F_Y រួចទាញរក $\mathbf{f}(\mathbf{y})$
 - គ. ចូរគណនា E(Y) ដោយប្រើ f(y)
 - ឃ.ចូរគណនា E(Y) ដោយប្រើ f(x)
- ៣. X ជាអថេរចៃដន្យដែលយកតំលៃវិជ្ជមានឬស្ងន្យ ចូរបង្ហាញថា $E(X)=\int_0^\infty P(X>x)dx$
- ៤. X ជាអថេរចៃដន្យដែលមានអនុគមន៍ដង់ស៊ីតេ $f(x) = \frac{1}{b-a}, \ a \le x \le b$
 - ក.ចូរបង្ហាញថា f ពិតជាអនុគមន៍ដង់ស៊ីតេ រួចគូររូបនៃ f
 - ខ.ចូរគណនា E(X), V(X)
 - គិ.គណនាអនុគមន៍ដង់ស៊ីតេកំណើននៃអថេរ X រួចគូររូបនៃ F

៥. ឧបមាថា មនុស្សស្រីម្នាក់សំរាលកូន 3 ដង។ ឪកាសនៃការសម្រាលបានកូនប្រសគឺ 0.5។ តាង X ជាចំនួនកូនប្រុសដែលគាត់និងទទួលបាន។ គណនាអនុគមន៍ដង់ស៊ីតេកំណើននៃអថេរ X រួចគូររូបនៃ F ។

៦. X ជាអថេរថៃជន្យដែលមានអនុគមន៍ដង់ស៊ីតេ $\mathbf{f}(\mathbf{x}) = \begin{cases} x+1, & -1 < x < 0 \\ 1-x, & 0 \leq x < 1 \end{cases}$

ក.ចូរបង្ហាញថា f ពិតជាអនុគមន៍ដង់ស៊ីតេ រួចគូររូបនៃ f

ខ.ចូរគណនា E(X), V(X)

គិ.គណនាអនុគមន៍ដង់ស៊ីតេកំណើននៃអថេរ X រួចគូររូបនៃ F

៧. X ជាអថេរចៃដន្យដែលមានអនុគមន៍ដង់ស៊ីតេ $f(x) = e^{-x}$, $0 \le x \le \infty$

ក.ចូរបង្ហាញថា f ពិតជាអនុគមន៍ដង់ស៊ីតេ រួចគូររូបនៃ f

ខ.ចូរគណនា E(X), V(X)

គិ.គណនាអនុគមន៍ដង់ស៊ីតេកំណើននៃអថេរ X រួចគូររូបនៃ F

3. បំណែងចែកឯកសណ្ឋាន (Uniform Distribution)

ឧបមាថាយើងចង់រើសមួយចំណុចចេញពីចន្លោះ [a,b],a < b។ តាង X ជាតំលៃដែលយើង រើសបាន គេថា X ជាអថេរចៃដន្យដែលមានបំណែងចែកឯកសណ្ឋាន ហើយគេកំណត់សរសេរ ដោយ X ~ U[a, b] ។

- អនុគមន៍ដង់ស៊ីតេ $f(x) = \frac{1}{b-a}$, $a \le x \le b$ តំលែសង្ឃឹម $E(X) = \frac{a+b}{2}$
- វ៉ាំរ្យូង៉ $V(X) = \frac{(b-a)^2}{12}$

ឧទាហរណ៍៤៖ ឧបមាថា X ~ U[0,10]។ ចូរគណនា $P(X=3), P(X>3), P(X\geq3), P(X<6),$ P(3 < x < 6) 1

ឧទាហរណ៍៥៖ ឧបមាថា X ~ U[0,1]។ ចូរគណនាអនុគមន៍ដង់ស៊ីតេកំណើន។

4. បំណែងចែកន័រម៉ាល់ (Normal Distribution)

ឧបមាថាយើងចង់សិក្សាពីកំពស់របស់សិស្សប្រស។ ជាធម្មតាសិស្សដែលមានកំពស់ទាប និង កំពស់ខ្ពស់មិនសូវសំបូរទេ តែសិស្សដែលមានកំពស់់មធ្យមសំបូរ។ តាង X ជាកំពស់របស់សិស្ស ប្រុស។ នោះគេថា X ជាអថេរចៃដន្យមានបំណែងចែកន័រម៉ាល់(Normal Distribution)។ យក $\sigma \in$ \mathbb{R}^+ , $\mu \in \mathbb{R}$ ។ X ជាអថេរចៃដន្យមានបំណែងចែកន័រម៉ាល់មានប៉ារ៉ាមែត្រ μ និង σ^2 ត្រូវបានគេ កំណត់សរសេរដោយ $X \sim N(\mu, \sigma^2)$ ៗ

ដើម្បីសម្រលក្នុងការសិក្សា យើងសិក្សាដំបូងក្នុងករណីដែល $\mu=0$ និង $\sigma^2=1$ ។ ក្នុងករណី នេះយើងប្តូរនិម្មិត្តសញ្ញានៃអថេរចៃដន្យពីX ទៅ Z ហើយគេថា Z មានចំណែងចែកន័រម៉ាល់ស្តង់ដារ (Standard Normal Distribution) រូចត្រូវបានយើងកំណត់សរសេរដោយ Z \sim N(0,1)។

- អនុគមន៍ដង់ស៊ីតេ
$$f_Z(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}x^2}$$
 ដែល $x\in\mathbb{R}$

- តំលែសង្ឃឹម E(Z) = 0
- វ៉ាំរុ ្រង់ V(Z) = 1

ចំពោះ a < b, $P(a < Z < b) = \int_a^b f_Z(x) dx$ (1) ។ ដោយ $f_Z(x)$ មិនមានព្រីមីទីវជាទំរង់ងាយ ដូចនេះ ដើម្បីគណនា (1) យើងត្រូវប្រើតារាង ឬ ប្រើកម្មវិធីក្នុងកុំព្យុទ័រ។ ឧទាហរណ៍៦៖ ដោយប្រើតារាងចូរគណនា៖

- 1. P(Z < 0), P(Z < 1.2), P(Z < 2.35)
- 2. P(Z > 0), P(Z > 1.45)
- 3. P(Z < -1.06), P(Z > -0.25)
- 4. P(0.12 < Z < 2.16), P(-1.12 < Z < -0.34), P(-1.23 < Z < 2.12)

ឧទាហរណ៍៧៖ ដោយប្រើតារាង់ចូរគណនា λ ដែល

- 1. $P(Z < \lambda) = 0.975, P(Z > \lambda) = 0.025, P(Z < \lambda) = 0.9505$
- 2. $P(Z < \lambda) = 0.025, P(Z > \lambda) = 0.9505$
- 3. $P(Z < \lambda) = 0.6754, P(Z < \lambda) = 0.1345$
- 4. $P(Z > \lambda) = 0.2356, P(Z < \lambda) = 0.7634$

ជាបន្ទាប់យើងនឹងសិក្សាក្នុងករណីដែល $\mu \neq 0$ និង $\sigma^2 \neq 1$ ។ គេថា X ជាអថេរចៃដន្យដែលមាន បំណែងចែកន័រម៉ាល់មានប៉ារ៉ាមែត្រ μ និង σ^2 ត្រូវបានគេ កំណត់សរសេរដោយ $X \sim N(\mu, \sigma^2)$ ។

- អនុគមន៍ដង់ស៊ីតេ $f_X(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
 ight)^2}$ ដែល $\mathbf{x}\in\mathbb{R}$
- តំលែសង្ឃឹម E(X) = μ
- ក់ំរ្យង់ $V(X) = \sigma^2$

សំគាល់៖ មាន X ~ N(μ , σ^2)។ ដើម្បីគណនាប្រហបនៃអថេរ X យើងត្រូវបំលែងពី X ~ N(μ , σ^2) ទៅ Z ~ N(0,1) តាមរូបមន្ត Z = $\frac{X-\mu}{\sigma}$ ឧទាហរណ៍៨៖ មាន X ~ N(3,4) ។ ចូរគណនា P(X<4), P(X>3.5), P(2<X<3.7) ឧទាហរណ៍៩៖ មាន X ~ N(-1,9) ។ ចូរគណនា P(X<1), P(X>-2), P(-1.5<X<0)

ឧទាហរណ៍១០៖ មាន $X \sim N(1,4)$ ។ ចូរគណនា λ ដែល $P(Z < \lambda) = 0.8175, P(Z > \lambda) = 0.4512$

លំហាត់

- 9. ឧបមាថាអនុគមន៍ដង់ស៊ីតេកំណើន $F(x) = x^2, 0 \le x \le 1$ ។ ចូរគណនា $F^{-1}(x)$ រួចគណនាមេដ្យាន កាទីលទី១ និង កាទីលទី៣។
- ២. ចូរបង្ហាញថា $\int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx = \sqrt{2\pi}$
- ៣. ឧបមាថាមាន Z~N(0,1)។ ចូរបង្ហាញថា ៖
 - $\tilde{n}. \int_{-\infty}^{\infty} f_Z(x) dx = 1$
 - 2. តំលៃសង្ឃឹម E(Z) = 0
 - គ. វ៉ាំរុស្រ់ V(Z)=1
- ៤. ឧបមាឋាមាន $Z \sim N(0,1)$ ។ ចូរគណនា $E(Z), E(Z^2), E(Z^3), E(Z^4)$ រូច $E(Z^n)$
- ៥. ឧបមាឋាមាន Z~N(0,1)។ ចូរគណនា
 - (a) P(Z < 1.23), P(Z = 1.23), $P(Z \le 1.34)$
 - (b) P(Z > 2.57), P(Z < -0.45), P(Z < 1.78), P(Z > -1.45)
 - (c) P(2.13 > Z > 1.47), P(-1.67 < Z < -0.45), P(0.21 < Z < 1.78), P(-1.23 < Z < 0.03)
- ៦. ដោយប្រើតារាងចូរគណនា λ ដែល

$$a/P(Z < \lambda) = 0.6753, P(Z < \lambda) = 0.3754$$

$$b/P(Z > \lambda) = 0.4539$$
, $P(Z > \lambda) = 0.6540$

- ៧. ឧបមាឋាមាន $X \sim N(\mu, \sigma^2)$ ។ ចូរបង្ហាញថា ៖
 - $\widehat{n}. \int_{-\infty}^{\infty} f_X(x) dx = 1$
 - 2. តំលែសង្ឃឹម $E(X) = \mu$
 - គ. វ៉ាំរ្យង់ $V(X) = \sigma^2$
- ៨. មាន X ~ N(1,4)។ ចូរគណនា៖
 - (a) $P(X < 1.24), P(X = 1.23), P(X \le 1.38)$
 - (b) P(X > 2.56), P(X < -0.46), P(X > 1.78)
 - (c) P(2.16 > X > 1.42), P(-1.67 < X < -0.45), P(0.21 < X < 1.78), P(-1.23 < X < 1.94)
- ៩. មាន X ~ N(3,9)។ ចូរគណនា៖

$$a/P(20), c/P(|X-3|>6)$$

១០. អនុគមន៍ម៉ូម៉ង់ត្រូវបានគេអោយនិយមន័យដោយ $M_X(t) = E(e^{tX}), \forall t \in \mathbb{R}$

a/ ចូរគណនា
$$M_Z(t) = E(e^{tZ})$$
 ប៊ើ $Z \sim N(0,1)$

b/ ចូរគណនា
$$M_X(t) = E(e^{tX})$$
 ប៉ើ $X \sim N(\mu, \sigma^2)$

```
99. អនុគមន៍ម៉ូម៉ង់ត្រូវបានគេអោយនិយមន័យដោយ \Phi_X(t) = E\left(e^{itX}\right), \forall t \in \mathbb{R} a/ ចូរគណនា \Phi_Z(t) = E\left(e^{itZ}\right) បើ Z \sim N(0,1) b/ ចូរគណនា \Phi_X(t) = E\left(e^{itX}\right) បើ X \sim N(\mu, \ \sigma^2) 9២. មាន X \sim U[0,1]។ ចូររកអនុគមន៍ដង់ស៊ីតេរបស់ Y = e^X។ 9៣. មាន X \sim U[-1,1]។ a/ P(|X| > 0.5) b/ ចូររកអនុគមន៍ដង់ស៊ីតេរបស់ Y = |X|។
```


	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010