RC4

Аметов Имиль, гр. М07-903

22 апреля 2020 г.

Задача: Приведите пример работы потокового шифра RC4 для массива размером 16 ячеек и чисел $\{0...15\}$.

Решение: Заполняем значения для ячеек состояния $S_0, S_1, ..., S_{15}$:

S	0	S_1	S_2	S_3	S_4	S_5	S_6	S_7
0		1	2	3	4	5	6	7
\overline{S}	8	S_9	S_{10}	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}
8		9	10	11	12	13	14	15

Предоставленный по условию ключ выглядит так:

K_0	K_1	K_2	K_3	K_4	K_5	K_6	K_7
0	1	2	3	4	5	6	7
$\overline{K_8}$	K_9	K_{10}	K_{11}	K_{12}	K_{13}	K_{14}	K_{15}
8	9	10	11	12	13	14	15

 $\overline{\text{Задаю } j=0}$.

Теперь вычисляется цикл от i = 0 до i = 15.

Для i=0: $j=(0+S_0+K_0)\mod 16=(0+0+0)\mod 16=0\mod 16=0$. Меняем местами значения для S_0 и S_0 .

Для i=1: $j=(0+1+1) \mod 16=2$. Меняем местами S_1 и S_2 . В результате $S_1=2$ и $S_2=1$.

Для i=2: $j=(2+1+2) \mod 16=5$. Меняем местами S_2 и S_5 . В результате $S_2=5$ и $S_5=1$.

Для i=3: $j=(5+3+3) \mod 16=11$. Меняем местами S_3 и S_{11} . В результате $S_3=5$ и $S_{11}=1$.

Для i=4: $j=(11+4+4) \mod 16=3$. Меняем местами S_4 и S_3 . В результате $S_4=11$ и $S_3=4$.

Для i=5: $j=(3+1+5) \mod 16=9$. Меняем местами S_5 и S_9 . В результате $S_5=9$ и $S_9=1$.

Для i=6: $j=(9+6+6) \mod 16=5$. Меняем местами S_6 и S_5 . В результате $S_6=9$ и $S_5=6$.

Для i=7: $j=(5+7+7) \mod 16=3$. Меняем местами S_7 и S_3 . В результате $S_7=4$ и $S_3=7$.

Для i=8: $j=(3+8+8) \mod 16=3$. Меняем местами S_8 и S_3 . В результате $S_8=7$ и $S_3=8$.

Для i=9: $j=(3+1+9) \mod 16=13$. Меняем местами S_9 и S_{13} . В результате $S_9=13$ и $S_{13}=1$.

Для i=10: $j=(13+10+10)\mod 16=1$. Меняем местами S_{10} и S_1 . В результате $S_{10}=2$ и $S_1=10$.

Для i=11: $j=(1+3+11) \mod 16=15$. Меняем местами S_{11} и S_{15} . В результате $S_{11}=15$ и $S_{15}=3$.

Для i=12: $j=(15+12+12)\mod 16=7$. Меняем местами S_{12} и S_{7} . В результате $S_{12}=4$ и $S_{7}=12$.

Для i=13: $j=(7+1+13) \mod 16=5$. Меняем местами S_{13} и S_5 . В результате $S_{13}=6$ и $S_5=1$.

Для i=14: $j=(5+14+14) \mod 16=1$. Меняем местами S_{14} и S_1 . В результате $S_{14}=10$ и $S_1=14$.

Для i=15: $j=(1+3+15) \mod 16=3$. Меняем местами S_{15} и S_3 . В результате $S_{15}=8$ и $S_3=3$.

В итоге таблица состояния имеет вид

S_0	S_1	S_2		S_4	S_5	S_6	S_7
0	14	5	3	11	1	9	12
S_8	S_9	S_{10}	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}
7	13	2	15	4	6	10	8

Поскольку у меня урезанная версия таблицы состояний, то будет видоизменён алгоритм вычисления следующего байта result (гамма):

- 1. $i := (i+1) \mod 16$,
- 2. $j := (j + S_i) \mod 16$,
- 3. замена местами S_i и S_j ,
- 4. $t := (S_i + S_j) \mod 16$,
- 5. result := S_t

Найдём очередную гамму. Вычисляем i: $i=(15+1) \mod 16=16 \mod 16=0$. Вычисляем j: $j=(3+S_0) \mod 16=(3+0) \mod 16=3 \mod 16=3$. Меняем местами S_0 и S_3 . Получаем, что $S_0=3$ и $S_3=0$. Вычисляем t: $t=(S_0+S_3) \mod 16=(0+3) \mod 16=3$. И result $=S_3=0$.

Шифровка выполняется с помощью операции исключающее-или. В данном случае применение операции исключающего-или не приведёт к шифровке и байт будет передан без преобразования.

Найдём очередную гамму. Вычисляем i: $i=(0+1)\mod 16=1$. Вычисляем j: $j=(3+S_1)\mod 16=(3+14)\mod 16=1$. Меняем местами S_1 и S_1 . Получаем, что $S_1=14$ и $S_1=14$. Вычисляем t: $t=(S_1+S_1)\mod 16=(14+14)\mod 16=12$. И result $=S_{12}=4$.

Пусть нужно зашифровать байт со значением 153, в двоичном виде 153 выглядит как 10011001 и гамма 00000100. После применения исключающего-или получим 10011101 в двоичном виде или 157 в десятичном.

Принимающая сторона, в свою очередь применит эту же операцию и получит из 157 исходный байт со значением 153.