Assignment 4 (EE 238)

- 1. A single phase full bridge inverter has a switching sequence that produces a square wave voltage across a series RL load. The switching frequency is 60 Hz, V_{dc} =100 V, R=10 Ω and L=25 mH. Determine (a) an expression for load current at steady state, (b) the power absorbed by the load, and (c) the average current in the dc source. (Ans: (b) 441 W (c) 4.41 A)
- 2. Find the relation between modulation signal m(t) and the duty ratio d(t). Assume |m(t)|<1 and c(t) is a triangular wave swinging from -1 to +1. The frequency f_c of the c(t) is assumed to be very large such that m(t) is assumed to be constant over one period of c(t). d(t) is the ratio of on time period and $1/f_c$, corresponding to the switching function s(t). The switching function s(t) is defined as

$$s(t)=1$$
, when $m(t)>c(t)$
0 otherwise . (Ans: $m(t)=2.d(t)-1$)

3. Consider the following single phase full bridge inverter. The switching is defined by the switching functions defined below. Prove that the average value of v_0 over one time period of c(t) is $m.V_{dc}.sin(\omega t)$ where |m|<1.

- 4. A three-phase full bridge inverter delivers power to a resistive load from a 450 V dc source. For a star connected load of 10 Ω per phase, determine for 180° conduction mode, (a) rms value of load current, (b) rms value of switch current and (c) load power. (Ans: (a) 21.213 A (b) 15 A (c) 13.5 kW)
- 5. A 3-ph inverter is controlled in the 180 deg conduction mode for each switch, without PWM. The fundamental inverter output frequency is ω =100 π radians per second. A balanced three phase star connected load is connected to the output. The load in each phase is made up of a series connection of resistor(R) and inductor(L), such that ω L>>R. If the amplitude of the 50 Hz component of the load current in each phase is 100 A, what is the amplitude of the 250 Hz current component?

(Ans: 4 A)

ASSIGNMENT-4 (EE 238).

Q1: a) T = 1/3 = 1/60 = 0.0167s.

Z = L/R = 0.025/10 = 0.00.255

T/27 ± 3.33

 $= \frac{100}{10} \left(\frac{1 - e^{-3.33}}{1 + e^{-3.33}} \right) = 9.31A.$

 $i_0(t) = \frac{100}{10} + \left(-9.31 - \frac{100}{10}\right) e^{-t/0.0025}$

 $\frac{1}{6}(t) = \frac{10 - 19.31e^{-\frac{t}{0.0025}} \circ \cot \frac{1}{20}}{0.0025} = \frac{10 + 19.31e^{-\frac{t}{0.0025}} \circ \cot \frac{1}{20}}{0.0025} = \frac{10 + 19.31e^{-\frac{t}{0.0025}} \circ \cot \frac{1}{20}}{0.0025} = \frac{1}{R} + \frac{1}{R}$

1/20 < t < 1/60

b) Irms = \[\langle \

P = 12ms R = (6.64) x 10 = 441W.

= 6.64 A.

C) Average source current can be computed by equating source and load power.

Ts = Pac = 441 = 4.41 A.

Vac 100

	Date :
Q2:-	man I was tractice water in the case of the
	$m_{\alpha}(t) = \frac{V_{r}(t)}{\Lambda}$
	C(t)
5	$m = \frac{1}{\sqrt{\lambda}}$
	1 1
	m_{j} is large. $\rightarrow \alpha \leftarrow \beta \rightarrow$
10	ma < 1.
10	desira Visionalation V
	of briangles, in triangle DABC and and
	ADE SABE and LATER
15	$\frac{\sqrt{2}}{\sqrt{2}} = \frac{C_t - V_v(t)}{\sqrt{2}} = \frac{C_t - m_0 t}{\sqrt{2}}$
	7/(2m) Ct (ct.)
	× - (1-mg x
	m, to
20	not x it a it is
	and $\beta = 2\Lambda - \alpha = (1 + max) \pi$
	The duty ratio d(t) is
25	det) - B - (1+m/A) x m
	$d(t) = \frac{\beta}{2\pi/m_{f}} = (1+m_{f}) \frac{\pi}{\pi} \times \frac{\pi}{2\pi}.$
	,
	$d(t) = \frac{1}{2} \left(1 + m_a(t) \right).$
્યા	
	$m_{\alpha}(t) = 2 d(t) - 1$

	Date :
Q8:-	Vo = - Vdc S3 - S4 ON 14:
	$V_0 = -V_{dc}$ $S_3 - S_4 = 0N$
J*,	
5	The allers was the second and and the
	The average value of us over one corrier cycle to is
	To = / To Ct) att.
	/Te
10	Since ou = 1 + Variatifox of To solver
	= - Vac fox (1-D) Tc.
	Since $V_0 = V_0$ the for $D T_0$. $= -V_0 \int_{T_0}^{T_0} V_0 dt + \int_{T_0}^{T_0} (-V_0) dt dt$ On $Simplifying V_0$.
	Tu dout + 1 (-Vac) dt.
	On Simplifying 1/2) + 3h 1/
15	
	In Sinuspidal PWM the out of the
	La Significat Purm de la
	1 - (2) Outy cycle D is vorice sin usoidally.
20	In Sinusoidal PWM, the duty uple D is vorice sinusoidally. i D = 1/2 (1 + m sin(wt)).
	Substituting this into Up, Name = 1
	ù vo = (2 x 1/2 (1+m sinux) -1) Vec.
-	
-,	=) Ūo = m Vac sinut
30	

Date	•	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t and
10 CT	
15 3R	
Jorons = $ \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{3} \right)^{2} \times \frac{\sqrt{3}}{\sqrt{3}} + \left(\frac{\sqrt{3}}{3} \right)^{2} \times \frac{\sqrt{3}}{3$	
(3K) 3 (3K) 3	2
$= \left[\left(\frac{450}{3\times10} \right)^2 \times \frac{2}{3} + \left(\frac{3\times450}{3\times10} \right)^2 \times 1 \right]$	
= 450 = 21.213 A.	
$ \frac{1}{2\pi} \left\{ \frac{450}{3\times10} \right\} \times \frac{2\pi}{3} + \left(\frac{2\times450}{3\times10} \right)^{2} \times \frac{7}{3} \right\} = \frac{1}{2} \cdot \frac{2\times450}{3\times10} \times \frac{7}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} = 1$	

Power delivered to load

= 3 Lormis R.

= 3x21.213 x 10.

= 13.5kw.

Date:

Qs: For a 3-ph inverter without PMM. $f_n = \frac{V_n}{Z_n}$ $\int_{\Omega} = \frac{1}{n} \frac{V_1}{\int R^2 + (n\omega_1)^2}$: WL >> R $\frac{1}{n} = \frac{1}{n} \frac{V_1}{(n\omega L)^{\frac{1}{2}}} \frac{1}{(n\omega L)^{\frac{1}{2}}}$ $=\frac{1}{n^2}\times \frac{1}{n}$ $\frac{\int_{\Omega}}{n^2} = \frac{1}{\sqrt{n^2}} \times 100 \qquad \qquad \frac{7}{\sqrt{n^2}} = \frac{1}{\sqrt{n^2}}$ $\therefore \quad f_s = 1 \times 100$ I_{s. -} 4A in a lar year one and the transfer of the second The state of the s