

PALM INTRANET

Day: Monday Date: 8/28/2006

Time: 08:09:46

Inventor Name Search Result

Your Search was:

Last Name = CHAYEN First Name = NAOMI

Application#	Patent#	Status	Date Filed	Title	Inventor Name
10534088	Not Issued			Mesoporous glass as nucleant for macromolecule crystallisation	CHAYEN, NAOMI
10680390	Not Issued	71	10/02/2003	Methods of crystal optimisation	CHAYEN, NAOMI E.

Inventor Search Completed: No Records to Display.

Search Another: Inventor	Last Name	First Name	
Scarch Another. Inventor	Chayen	Naomi Search	

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

PALM INTRANET

Day : Monday Date: 8/28/2006

Time: 08:10:05

Inventor Name Search Result

Your Search was:

Last Name = HENCH First Name = LARRY

Application#	Patent#	Status	Date Filed	Title	Inventor Name				
10520913	Not Issued	30	11/18/2005	Method of studying living cells	HENCH, LARRY				
10534088	Not Issued	30 1981 ca		Mesoporous glass as nucleant for macromolecule crystallisation	HENCH, LARRY				
10332731	Not Issued	40	07/03/2003	Use of bioactive glass compositions to stimulate osteoblast production	HENCH, LARRY L				
10473410	7040960	150	03/11/2004	USE OF BIOACTIVE GLASS FOR CUTTING BIOACTIVE GLASSES	HENCH, LARRY L				
10479014	Not Issued	30	07/07/2004	Foamed sol-gel and method of manufacturing the same	HENCH, LARRY L				
09593868	6482444	150	06/14/2000	SILVER-CONTAINING, SOL/GEL DERIVED BIOGLASS COMPOSITIONS	HENCH, LARRY L.				
10109011	Not Issued	41	03/29/2002	Use of bioactive glass	HENCH, LARRY L.				
60217460	Not Issued	159	07/11/2000	Use of Bioactive glass compositions to stimulate osteoblast production	HENCH, LARRY L.				
60281809	Not Issued	159	04/06/2001	Use of bioactive glasses	HENCH, LARRY L.				
60293774	Not Issued	159		Foamed sol-gel and method of manufacturing the same	HENCH, LARRY L.				
06252220	4478904	150	04/08/1981	METAL FIBÈR REINFORCED BIOGLASS COMPOSITES	HENCH, LARRY L.				
06486421	Not Issued	161		BIO-GLASS MIDDLE EAR PROSTHESES	HENCH, LARRY L.				
06486996	Not Issued	161	04/21/1983	FBRONECTIN COATED BIO- ACTIVE GLASS	HENCH, LARRY L.				
06556405	Not Issued	163	11/30/1983	CELL CULTURING TECHNIQUE AND SYSTEM	HENCH, LARRY L.				

06583741	4851150	150	02/27/1984	DRYING CONTROL CHEMICAL ADDITIVES FOR RAPID PRODUCTION OF LARGE SOLGEL DERIVED SILICON, BORON AND SODIUM CONTAINING MONOLITHS	HENCH, LARRY L.
06583742	Not Issued	166	02/27/1984	DRYING CONTROL CHEMICAL ADDITIVES FOR RAPID PRODUCTION OF LARGE SOL- GEL DERIVED SILICON AND LITHIUM CONTAINING MONOLITHS	HENCH, LARRY L.
06583744	Not Issued	166	02/27/1984	DRYING CONTROL CHEMICAL ADDITIVES FOR RAPID PRODUCTION OF LARGE SOL- GEL DERIVED SILICON- CONTAINING MONOLITHS	HENCH, LARRY L.
06604704	Not Issued	166	04/27/1984	FLUORIDE-CONTAINING BIOGLASS TIM COMPOSITIONS	HENCH, LARRY L.
06704917	4851373	150	02/25/1985	LARGE SOL-GEL SIO2 MONOLITHS CONTAINING TRANSITION METAL AND THEIR PRODUCTION	HENCH, LARRY L.
06704918	Not Issued	161	02/25/1985	PROCESS FOR RAPID PRODUCTION OF LARGE SOL- GEL DERIVED ALUMINUM CONTAINING MONOLITHS	HENCH, LARRY L.
06704935	Not Issued	166		METHOD FOR MAKING SILICA OPTICAL DEVICES AND DEVICES PRODUCED THEREBY	HENCH, LARRY L.
06704937	4859525	150	02/25/1985	METHOD FOR LOW TEMPERATURE PROCESSING OF LIGHTWEIGHT SIC/SIO2 COMPOSITES AND PRODUCTS	HENCH, LARRY L.
06704938	Not Issued	166	02/25/1985	METHOD FOR RAPID PRODUCTION OF LARGE SOL- GEL SIO2 CONTAINING MONOLITHS OF SILICA WITH AND WITHOUT TRANSITION METALS AND PRODUCTS	HENCH, LARRY L.
06704939	4804731	150	02/25/1985	METHOD FOR CROSSLINKING OF POLYSILASTYRENE	HENCH, LARRY L.
06704940	Not Issued	166	1	PROCESS FOR RAPID PRODUCTION OF LARGE SOL-	HENCH, LARRY L.

				GEL MONOLITHS CONTAINING RARE EARTHS AND PRODUCTS	
06704968	4849378	150	02/25/1985	ULTRAPOROUS GEL MONOLITHS HAVING PREDETERMINED PORE SIZES AND THEIR PRODUCTION	HENCH, LARRY L.
<u>06704969</u>	Not Issued	166	02/25/1985	METHOD FOR PRODUCING SOL-GEL DERIVED STO2/OXIDE ROWDER COMPOSITES AND NOVEL COMPOSITES	HENCH, LARRY L.
06737426	4676796	150	05/24/1985	MIDDLE EAR PROSTHESIS	HENCH, LARRY L.
06739616	Not Issued	163	05/31/1985	FACIAL BONE AUGMENTATION WITH BIOACTIVE GLASS IMPLANTS	HENCH, LARRY L.
06746342	4851046	150	06/19/1985	PERIODONTAL OSSEOUS DEFECT REPAIR	HENCH, LARRY L.
06775219	Not Issued	161	09/12/1985	BIO-GLASS MIDDLE EAR PROSTHESES	HENCH, LARRY L.
06906619	4775646	150	09/10/1986	FLUORIDE-CONTAINING BIOGLASS TM COMPOSITIONS	HENCH, LARRY L.
06924178	Not Issued	161		DRYING CONTROL CHEMICAL ADDITIVES FOR RAPID PRODUCTION OF LARGE SOL- GEL DERIVED SILICON AND LITHIUM MONOLITHS	HENCH, LARRY L.
<u>06924179</u>	Not Issued	161	10/27/1986	DRYING CONTROL CHEMICAL ADDITIVES FOR RAPID PRODUCTION OF LARGE SOL- GEL DERIVED SILICON CONTAINING MONOLITHS	HENCH, LARRY L.
07130427	Not Issued	161		BIO-GLASS MIDDLE EAR PROSTHESES	HENCH, LARRY L.
07333742	5080962	150		METHOD FOR MAKING SILICA OPTICAL DEVICES AND DEVICES PRODUCED THEREBY	HENCH, LARRY L.
07342697	5147829	150		SOL-GEL DERIVED SIO2/OXIDE POWDER COMPOSITES AND THEIR PRODUCTION	HENCH, LARRY L.
07346212	Not	161	05/02/1989	BIO-GLASS MIDDLE EAR	HENCH, LARRY

	Issued		JL	PROSTHESES	L.
07372192	Not Issued	166	06/26/1989	METHOD FOR RAPID PRODUCTION OF LARGE SOL- GEL SIO2 CONTAINING MONOLITHS OF SILICA WITH AND WITHOUT TRANSITION METALS AND PRODUCTS	HENCH, LARRY L.
07377818	Not Issued	166	07/06/1989	PROCESS FOR RAPID PRODUCTION OF LARGE SOL- GEL MONOLITHS CONTAINING RARE EARTHS AND PRODUCTS	HENCH, LARRY L.
07443158	Not Issued	166	11/30/1989	METHOD FOR PRODUCING LARGE SILICA SOL-GELS DOPED WITH INORGANIC AND ORGANIC COMPOUNDS	HENCH, LARRY L.
07511094	Not Issued	166	04/19/1990	TRANSPIRATION COOLED OR HEATED OPTICAL COMPONENTS AND METHODS OF USE	HENCH, LARRY L.
07525539	5074916	150		ALKALI-FREE BIOACTIVE SOL-GEL COMPOSITIONS	HENCH, LARRY L.
07526638	Not Issued	166		INJECTABLE BIO-ACTIVE GLASS COMPOSITIONS AND METHODS FOR TISSUE RECONSTRUCTION	HENCH, LARRY L.
07550871	5222092	150	07/11/1990	LASER DYEUMPREGNATED SILICA SOL-GEL MONOLITHS	HENCH, LARRY L.
07568619	5196382	150		RAPID PRODUCTION OF LARGE SOIL-GEL SI02 CONTAINING MON-LITHS OF SILICA WITH AND WITHOUT TRANSITION METALS	HENCH, LARRY L.
07568627	Not Issued	166		PROCESS FOR RAPID PRODUCTION OF LARGE SOL- GEL MONOLITHS CONTAINING RARE EARTHS AND PRODUCTS	HENCH, LARRY L.
<u>07611490</u>	5071674	150		METHOD FOR PRODUCING LARGE SILICA SOL-GELS DOPED WITH INORGANIC AND ORGANIC COMPOUNDS	HENCH, LARRY L.
07789433	Not Issued	161	11/06/1991	PROCESS FOR RAPID PRODUCTION OF LARGE SOL- GEL MONOLITHS CONTAINING RARE EARTHS	HENCH, LARRY L.

				AND PROD	UCTS	
<u>07832686</u>	Not Issued	161		GLASS COM METHODS I	E BIO-ACTIVE POSITIONS AND FOR TISSUE	HENCH, LARRY L.
			1 2	RECONSTR		

Search and Display More Records.

Search Another: Inventor	Last Name	First Name	
Scarcii Another. Inventor		Larry	Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

STN_ (HOARLU, INSARU, JAPONO, WARRALL, SINPAROL) 2008/28/8

=> d 19 1-2 abs,bib

```
L9
       ANSWER 1 OF 2 USPATFULL on STN
 AΒ
         A method of facilitating the crystallisation of a
         macromolecule comprising the step of adding a mesoporous
         glass to a crystallisation sample wherein the mesoporous
         glass comprises pores having diameters
         between 4 nm and 100 nm and has a surface area of at least 50 m.sup.2/g.
         A method of facilitating the crystallisation of a
         macromolecule comprising the step of adding to a
         crystallisation sample a mesoporous glass of
         the composition Si0.sub.2; CaO--P.sub.20.sub.5-Si0.sub.2 or
         Na.sub.20-CaO--P.sub.20.sub.5-SiO.sub.2, wherein each of the Ca, P, Si
         or Na atoms within the compositions may be substituted with a suitable atom chosen from B, Al, Ti, Mg, or K, and, optionally, the composition may also include heavy elements to enhance X-ray diffraction contrast
         such as Ag, Au, Cr, Co, Sr, Ba, Pt, Ta or other atom with an atomic
         number over 20.
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.
 AΝ
         2006:181647 USRATFULK
 ΤI
         Mesoporous glass's
         macromolecule crystally
                                    sation
         Chayen, Naomi, Kondon, UNITED KINGDOM,
Hench, Larry, London, UNITED KINGDOM
Imperial College Innovations Limited, London, UNITED KINGDOM, SW7 2AZ
 TN
 PΑ
         (non-U.S. corporation)
 PΙ
         US 2006154042
         US 2003-534088
 AI
                                      20031107
                                                (10)
         WO 2003-GB4875
                                     20031107
                                     20051017
                                                PCT 371 date
 PRAI
         GB 2002-25980
                                 20021107
 DT
         Utility
 FS
         APPLICATION
 LREP
         NIKOLAI & MERSEREAU, P.A., 900 SECOND AVENUE SOUTH, SUITE 820,
         MINNEAPOLIS, MN, 55402, US
 CLMN
         Number of Claims: 28
 ECL
         Exemplary Claim: 1-24
 DRWN
         5 Drawing Page(s)
 LN.CNT 737
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.
 L9
        ANSWER 2 OF 2
                         INPADOC
                                    COPYRIGHT 2006 EPO on STN
 LEVEL 1
 AN
        305583239 INPADOC ED, 2006Q72
                                             EW 200630
                                                          UP 20060727 UW 200630
ΤI
       Mesoporous glass as nucleant for macromolecule crystal isation.
        macromolecule covet
 ΙN
        CHAYEN NAOMI; H
                               LARRY
 INS
        CHAYEN NAOMI; HENCH
 INA
        GB; GB
 PA
        IMPERIAL COLLEGE INNOVATI
 PAS
        IMP COLLEGE INNOVATIONS LT
 PAA
        GB
 TL
       English
 LA
       English
 DT
        Patent
 PIT
       USAA PATENT APPLICATION PUBLICATION (PRE-GRANT)
 PΙ
       US 2006154042
                                AA 20060713
ĆΆĨ
       US 2005-534088
                                    <u> 2005101</u>7
 PRAI
       GB 2002-25980
                                    20021107
                                                  (EDPR 20030121)
                                W
      WO_2003-GB4875
                                    20031107
                                                   (EDPR 20050407)
```

(FILE 'HOME' ENTERED AT 10:57:03 ON 28 AUG 2006)

FILE 'ABI-INFORM, INSPEC, JAPIO, USPATFULL, USPAT2, INPADOC' ENTERED AT 10:59:51 ON 28 AUG 2006

FILE 'HCAPLUS, INSPEC, JAPIO, USPATFULL, USPAT2, INPADOC' ENTERED AT 11:00:31 ON 28 AUG 2006

684 S (CRYSTALLIZ? OR CRYSTALLIS?) (8A) (MACROMOLECULE#) L1

525 S (MESOPOROUS (8A) GLASS?) L2

L3 193 S (NUCLEA?) (8A) (CRYSTALLIZ?(6A) SAMPLE# OR CRYSTALLIS?(6A) SAMPLE

49291 S (PORE#) (8A) (DIAMETER#)

940957 S (SURFACE#) (10A) (AREA#)

L679583 S (BIOACTIV?)

L73339 S (SOL(W)GEL#(10A)GLASS?)(10A)(COAT? OR LAYER# OR DEPOSIT?) $\Gamma8$

7023952 S (CHAMBER# OR FIBER# OR FIBRE# OR FILM# OR MESH)

L9 2 S L1 AND L2 AND L4

L10 8 S L1 AND L2

=>

L4

L5

L8 ANSWER 1 OF 7023952 HCAPLUS COPYRIGHT 2006 ACS on STN

AΒ To provide a rainwater filter apparatus for filtering and collecting rainwater directly flowing to a rively during rainy season or downpouring whin a short time so that the filthered rainwater is used as various uses that do not require high cleanlines \S at housing, in-service education institutes, city and rural buildings and \uparrow apartments. The rainwater filter apparatus(2) comprises a storage tank(4) for storing the primarily filtered rain water while primarily filtering for $\dot{\mathbf{q}}$ ign materials of a certain size or more from rainwater poured on within a short time; a filter mesh holding structure(6) which is connected to the storage tank so that the filter mesh holding structure is $commu\hbar icated$ with the storage tank, and to which pipe lines are connecte $oldsymbol{\psi}$ so that valley water of mountains is supplied into or discharged from ightharpoonupthe filter mesh holding structure in such a way that wash $m{1}$ ng water is discharged from the filter mesh holding structure after washing the filter mesh holding structure; a filter mesh hdlder(8) which is installed at a catching projection formed in the filter mesh holding structure, and at the edge of which \an elastic member is installed; a filter mesh member(10) removably formed in a box shape consisted of a primary filter mesh sieve and $s \not \in$ condary filter mesh sieve at the filter mesh holder to eliminate miscellaneous materials; and a vibrator(12) connected to a frame of the filter mesh member by a vibration bar and installe $\mbox{\em d}$ on the filter mesh holding structure.

AN 2006:865670 HCAPLUS

Rainwater filter apparatus comprising filter mesh member simply fabricated and semipermanently rested on holding structure to filter rainwater by fabric filter member and metal mesh

IN Lee, In Nam

PA S. Korea

SO Repub. Korean Kongkae Taeho Kongbo, No pp. given

CODEN: KRXXA7

DT Patent

LA Korean

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI KR 2005013368 PRAI KR 2003-51991	A	20050204	KR 2003-51991	20030728

L8 ANSWER 2 OF 7023952 HCAPLUS COPYRIGHT 2006 ACS on STN

AΒ A bonding apparatus for bonding $a_{\!\!\!\!1}$ n anisotropic conductive film and a circuit board in a flat panel display is provided to improve bonding quality and efficiency in work processes by making the film and the circuit board easily bonded on $exttt{d}$ o glass by using one equipment. A film bonding part (4) installed on a work stand (2) bonds an anisotropic conductive film(F) onto $\{g\}$ dass(G). A circuit board bonding part(6) sets and bonds a cirtuit board(B) on the glass at the work The film bonding part includes a turn table (T1) rotatably installed at the work stand, a loading state(12) which is installed at the turn table and loads t he glass and a film bonding unit(14) for bonding the film $\phi_{\rm p}$ to the glass. The circuit board bonding part includes a $t \psi$ rn table(T2), a loading unit(24) for loading the glass, a setting unit(26) for setting the circuit board on the loaded glass and a board bonding unit (28) for bonding the set circuit board onto the glass.

AN 2006:865669 HCAPLUS

Bonding apparatus for bonding an anisotropic conductive film and a circuit board in a flat panel display to improve bonding quality and efficiency in work processes

IN Han, Dong Hee

```
PA
     S. Korea
     Repub. Korean Kongkae Taeho Kongbo, No pp. given
SO
DT
     Patent
LA
     Korean
FAN.CNT 1
     PATENT NO.
                         KIND
                                 DATE
                                           APPLICATION NO. DATE
                                          KR 2003-51990
     -----
                                ----
                                                                    _____
     KR 2005013367 A
                                 20050204
                                                                    20030728
PRAI KR 2003-51990
                                20030 128
\Gamma8
     ANSWER 3 OF 7023952 HCAPLUS COPYRIGHT 2006 ACS on STN
     A plasma display panel is provided to achieve improved screen quality and
AB
     contrast ratio by forming an upper anti-reflection film on a
     front filter and a panel anti-reflection film on an upper
     substrate of the panel. A 
aturallasma display panel comprises a display
     panel(130) formed by coupling an upper substrate and a lower substrate; a
     front filter(144) arranged on a front surface of the display panel so as
     to prevent a reflection of an external light(148); a panel anti-reflection film(146) formed on the upper substrate of the display panel such that the panel anti-reflection film prevents the external light
     from being re-reflected toward the front filter; and an upper
     anti-reflection film(142) for \phied on a front surface of the front
     filter such that the upper anti-reflection film prevents the
     external light from being re-reflected to outside.
     2006:865668 HCAPLUS
AN
TΙ
     Plasma display panel including upper anti-reflection film on
     front filter and panel anti-reflection film on upper substrate
     so as to improve screen quality and contrast ratio
ΙN
     Ahn, Sung Yong; Park, Yu
PA
     Lg Electronics Inc., S. Korea
     Repub. Korean Kongkae Taeho Kongbo, No pp. given
     CODEN: KRXXA7
DT
     Patent
LA
     Korean
FAN.CNT 1
     PATENT NO. KIND DATE
                                          APPLICATION NO. DATE
                        ----
                                ------
                                           -----
     KR 2005013359
                         A
PΙ
                                20050204
                                           KR 2003-51981
                                                                  20030728
PRAI KR 2003-51981
                                20430728
     ANSWER 4 OF 7023952 HCAPLUS COPYRIGHT 2006 ACS on STN
rs
AΒ
     The title backlight unit includes a frame body base having a frame with at
     least one groove; at least one optical film having at least one
     protruding edge for engaging with the groove and arranged inside the frame
     body base; a shading component atranged on the frame and not contacting
     the optical film; and an adhesive layer arranged between the shading component and the frame. In the invention, because no adhesive
     element is arranged between the optical film and the shading
     component, the surface of the optical film will not be damaged
     when the shading component is taken off for LCD reworking.
AN
     2006:865666 HCAPLUS
TΙ
     Backlight unit for lcd without adherive element between optical
     film and shading component
ΙN
     Ke, Junmin
PΑ
     Au Optronics Corporation, Taiwan
SQ
     Faming Zhuanli Shenqing Gongkai Shuomingshu
     CODEN: CNXXEV
DT
     Patent
LA
    Chinese
FAN.CNT 1
                  KIND DATE
                                          APPLICATION NO. DATE
     PATENT NO.
                        ----
     -----
                                _____
                                             ------
                                                                  -----
PΙ
    CN 1818756
                        A
                                           CN 2006-10054723 20060302
                                20060816
```

- L8 ANSWER 5 OF 7023952 HCAPL $\dot{f u}$ S COPYRIGHT 2006 ACS on STN
- AB A method for producing super-high tensile poly stressor comprises first applying plasma enhanced chemical vapor deposition (PECVD) on surface of substrate to deposit a transitional silicon nitride film that has a first hydrogen atom concentration, then applying UV irradiation on the transitional silicon nitride film to reduce the first hydrogen atom concentration to second hydrogen atom concentration of the transitional silicon nitride film.
- AN 2006:865656 HCAPLUS
- TI Method for producing super-high tensile poly stressor and strained-silicon transistor
- IN Chen, Neng-Kuo; Tsai, Teng-Chun; Huang, Chien-Chung; Chen, Tzai-Fu; Hung, Wen-Han
- PA UMC (United Microelectronics Comp.), Taiwan
- SO Faming Zhuanli Shenqing Gongkai Shuomingshu CODEN: CNXXEV
- DT Patent
- LA Chinese

FAN.CNT 1

PATENT NO.	KIND	DATE \	APPLICATION NO.	DATE
				
PI CN 1819121	А	2006081	CN 2005-10128854	20051207
PRAI US 2005-593781P	Р	200/50213		

L8 ANSWER 6 OF 7023952 HCAPLUS COPYRIGHT 2006 ACS on STN

AΒ The claimed equipment includes |micro-computer main controller, animal toxic exposure chamber with insulation door. An adjustable speed rotary dust blower connected with pressure controlled adjustable flow jet device is connected to the lower end opening, a motor controlled by micro-computer main controller drives rotary flexible axle connected the rotary dust blower, sample $l\phi$ ading opening preventing leakage of dust is disposed in the lower part of \animal toxic exposure chamber, animal fixation frame is disposed in the middle part of animal toxic exposure chamber, dust sampler and humidity temperature sampler are disposed respectively on the two sides of middle part of animal toxic exposure chamber near animal fixation frame, a horizontal blowing uniform blower is disposed in upper part of animal toxic exposure chamber, air filter of vibration separation dust sieve is connected on the top, waste gas abs \flat rption device is connected to the topmost of the animal toxic exposure chamber through waste gas pipes. The invention achieves any solid phase dust mobile inhalation toxic exposure experiment, accurately detecting toxic result of exposed samples.

AN 2006:865653 HCAPLUS

- TI Solid phase mobile dust inhalation toxic exposure experiment equipment
- IN Fan, Weilin
- PA Peop. Rep. China
- SO Faming Zhuanli Shenqing Gongkai Shuomingshu CODEN: CNXXEV
- DT Patent
- LA Chinese
- FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	CN 1817324	A	20060816	CN 2006-10013171	20060217
PRAI	CN 2006-10013171		20060217		

L8 ANSWER 7 OF 7023952 HCAPLUS COPYRIGHT 2006 ACS on STN

AB The claimed fiber Bragg grating acoustic emission and temperature sensor consists of a laser connected with fiber, a fiber Bragg grating, a receiving unit and a control unit connected to said laser and said receiving unit. Laser light from said laser

irradiates said fiber Bragg grating, enters said receiving unit after passing said fiber Bragg grating. Said receiving unit consists of light detecting component to convert light signal to electrical signal and provide feedback to said control unit. Said laser has a control parameter. Working wavelength of said laser changes with said control parameter. Said control unit controls the magnitude of said control parameter, so working wavelength of said laser is maintained in designated position of formant slope of said fiber Bragg grating. The invention resists electromagnetic interference, has long signal transmission distance, and can simultaneously monitor the temperature and acoustic emission signals.

AN 2006:865647 HCAPLUS

TI Fiber Bragg grating acoustic emission and temperature sensor

IN Guan, Baiou

PA Peop. Rep. China

SO Faming Zhuanli Shenqing Gongkai Shuomingshu

CODEN: CNXXEV

DT Patent

LA Chinese

FAN.CNT 1

	PATENT NO.	KIND	DATE \	APPLICATION NO.	DATE
PΙ	CN 1818625	A	20060816	CN 2005-10074542	20050526
PRAI	CN 2004-10027411	A	20\040528	•	

L8 ANSWER 8 OF 7023952 HCAPLUS COPYRIGHT 2006 ACS on STN

The method comprises (1) raw materials are domestic zirconium oxide powder containing 3mol% of Y2O3, (2) spray pelleting to process zirconium oxide powder having secondary particles with mean particle size 1.0-3.0 µm containing Y2O3 to reach specific surface area 12-35 m2/g, (3) forming: using flexible mold vibration loading method, using isostatic pressing to form after loading, forming pressure is 60-200MPa, (4) sintering: using Si-Mo rod furnace, sintering temperature 1380-1480° sintering period 48-50 hours. The invention provides a zirconium oxide ceramic sleeve blank with wall thickness of 0.6mm that ensures the roundness, concentricity and high precision for making biscuit from powder. Using low cost domestic raw material to produce zirconium oxide ceramic sleeve that meets the technique requirement of optical fiber connectors.

AN 2006:865645 HCAPLUS

TI Method for producing zirconium oxide deramic sleeve for optical fiber connectors

IN Zhou, Cailou; Ya, Jing

PA Tianjin Institute of Urban Construction Peop. Rep. China

SO Faming Zhuanli Shenging Gongkai Shuomingshu

CODEN: CNXXEV

DT Patent

LA Chinese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APALICATION NO.	DATE
			-		
PI	CN 1818731	А	20060816	CN 2006-10002683	20060127
PRAT	CN 2005-10013394	Δ	20050430	\	

```
=> d 112 abs,bib
L12 ANSWER 1 OF 1 USPATFULL on STN
       A method of facilitating the crystallisation of a
AB
       macromolecule comprising the step of adding a mesoporous
       glass to a crystallisation sample wherein the mesoporous
       glass comprises pores having diameters between 4 nm and 100 nm
       and has a surface area of at least 50 m.sup.2/q. A method of
       facilitating the crystallisation of a macromolecule
       comprising the step of adding to a crystallisation sample a
       mesoporous glass of the composition Si0.sub.2;
       CaO--P.sub.20.sub.5-SiO.sub.2 or Na.sub.20-CaO--P.sub.20.sub.5-
       SiO.sub.2, wherein each of the Ca, P, Si or Na atoms within the
       compositions may be substituted with a suitable atom chosen from B, Al,
       Ti, Mg, or K, and, optionally, the composition may also include heavy
       elements to enhance X-ray diffraction contrast such as Ag, Au, Cr, Co,
       Sr, Ba, Pt, Ta or other atom with an atomic number over 20.
CAS INDEXING IS AVAILABLE FOR THIS
                                   IJ
ΑN
       2006:181647 USPATFULL
ΤI
       Mesoporous glass as madle ant for
      macromolecule charallitation
Chayen, Naomi, Lindon UNITED KINDOM
Hench, Larry, London UNITED ALLEDOM
IN
       Imperial College Innovations/Limited, London, UNITED KINGDOM, SW7 2AZ
PΑ
       (non=U.S. corporation)
PΙ
       ŪS 2006154042
                                20060713
                           A1
ΑI
       US 2003-534088
                                20031107 (10)
                           A1
       WO 2003-GB4875
                                20031107
                                20051017
                                           PCT 371 date
PRAI
       GB 2002-25980
                            20021107
DT
       Utility
FS
       APPLICATION
LREP
       NIKOLAI & MERSEREAU, P.A., 900 SECOND AVENUE SOUTH, SUITE 820,
       MINNEAPOLIS, MN, 55402, US
CLMN
       Number of Claims: 28
ECL
       Exemplary Claim: 1-24
DRWN
       5 Drawing Page(s)
LN.CNT 737
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
=> d his
     (FILE 'HOME' ENTERED AT 10:57:03 ON 28 AUG 2006)
     FILE 'ABI-INFORM, INSPEC, JAPIO, USPATFULL, USPAT2, INPADOC' ENTERED AT
     10:59:51 ON 28 AUG 2006
     FILE 'HCAPLUS, INSPEC, JAPIO, USPATFULL, USPAT2, INPADOC' ENTERED AT
```

11:00:31 ON 28 AUG 2006

```
L1
            684 S (CRYSTALLIZ? OR CRYSTALLIS?) (8A) (MACROMOLECULE#)
L2
            525 S (MESOPOROUS (8A) GLASS?)
L3
            193 S (NUCLEA?) (8A) (CRYSTALLIZ?(6A) SAMPLE# OR CRYSTALLIS?(6A) SAMPLE
L4
          49291 S (PORE#) (8A) (DIAMETER#)
         940957 S (SURFACE#)(10A)(AREA#)
L5
          79583 S (BIOACTIV?)
L6
L7
           3339 S (SOL(W)GEL#(10A)GLASS?)(10A)(COAT? OR LAYER# OR DEPOSIT?)
```

L8 7023952 S (CHAMBER# OR FIBER# OR FIBRE# OR FILM# OR MESH)

L9 2 S L1 AND L2 AND L4 L10 8 S L1 AND L2

L110 S L1 AND L2 AND L7

L12 1 S L1 AND L2 AND L8

LOI 534,088 Examiner's Water - Abstract is improper. Please Correct 112A2 Ren -Claim 52, App claims cannot be depended upon what cls. (Cite case law) -Claim 50 cannot be dependent upon HSelf. Pheare correct S(crystalliz) or crystallis?) (100) (macronotecuted) (Stresoporous (sa) glass)
(Stresoporous (sa) S (Surface & (Ica) (areath) S (Surface) (Jan (glass) (Settle) pet #(100) g/100?) (100) (coat? or lager# or deposit?). IS Chamberth or fiberfor Abreth or Silut or Mes H) 27,3000,40 % 48 can 25, (Cook, etal) Allenable Subj Hatter Clairs 26,28,29,28 *as utd Î7 37,39,41,43,45,47,48.49 40 Objected to: Clarus 31,-36,38-40 44-46 Œ (PO) (30) 3 = (38 (48) P-B-P = 3

Cik for Allowable Subject Matter. as clorest prior art Cook, et al "Pore Characterization, and Interconnecting studies In Bioactive 58 Sol-Gel Glassi"

teaches bloadive glasses (i.e. Silos, Call, Pa Os, Naso)
Which has various micro-posity in the glass structure, and pore
diameters as low as 5A The data yielded pore volume and
size distribution data over the range of 30A-32m.