Risk-Aware Security-Constrained Unit Commitment: Taming the Curse of Real-Time Volatility and Consumer Exposure

Cheng Guo

School of Mathematical and Statistical Sciences Clemson University

Joint work with Daniel Bienstock, Yury Dvorkin, Robert Mieth, and Jiayi Wang

ICS 2025

Two-Stage Wholesale Electricity Market

- Day-ahead market: security-constrained unit commitment (SCUC)
 - Currently uses a deterministic model
- Real-time market: DC optimal power flow
- Volatility in real-time market
 - Demand
 - Renewable (wind) production

Prior Work: SCUC and Demand/Renewable Uncertainty

- Two-stage stochastic programming
 - ▶ Demand uncertainty: Carpentier et al. [1996], Takriti et al. [1996]
 - ▶ Renewable generation: Dvorkin et al. [2014], Morales et al. [2009], Sundar et al. [2016], Wang and Hobbs [2015], Wu et al. [2007]
 - ▶ Bottleneck: large number of scenarios. Struggling with 10 scenarios for our data.
- Adaptive robust optimization models for SCUC
 - ▶ Polyhedral uncertainty sets: Bertsimas et al. [2012], Jiang et al. [2011]
 - ▶ Data-driven uncertainty sets: Velloso et al. [2019], Ning and You [2019]

Our Goal: Protect Consumers from Price Spikes in Real-Time Market

- Consumer payment at bus *i*:
 - ▶ Day-ahead (DA) payment: (DA price at i) × (DA load at i)
 - ▶ Real-time (RT) consumer exposure: (RT price at i) × max{(RT load at i - DA load at i), 0}

RT Load - DA Load

• Challenge: Very high RT price if there is shortfall in wind

Contributions

- A SCUC model that reduces worst-case consumer exposure
 - Minimal modification; preserves two-stage market structure
 - Real-time uncertainty added as a penalty term in the SCUC ("Mean-variance portfolio optimization")
 - Uncertainty set via principal component analysis (PCA), capturing locational correlation
- Solve the nonconvex model for NYISO case study (1819 buses, 362 generators)
 - ► Problem-specific logic-based Benders decomposition (LBBD) cuts
 - Grid search
 - ► Branch-and-cut

- Introduction
- 2 Model
- Algorithm
- A NYISO Case Study
- **5** Summary

Risk-Aware Security-Constrained Unit Commitment

• A better representation of the impact of RT volatility on system cost

The Model

 $\begin{array}{lll} h_{gt} \colon & \text{Piecewise linear operating cost} \\ v_{gt} \colon & \text{Binary start-up decision} \\ w_{gt} \colon & \text{Binary shut-down decision} \\ p_{lt}^{\text{Unmet}} \colon & \text{Unmet load} \\ V(y) \colon & \text{Worst-case RT consumer exposure} \\ \lambda_{lt}(y, \pmb{\omega}) \colon & \text{RT LMP} \\ d_{lt}^{\text{RT}} \colon & \text{RT load} \end{array}$

$$\min \sum_{t \in \mathcal{T}^{\mathrm{DA}}} \left(\sum_{g \in \mathcal{G}} \left(h_{gt} + C_g^{\mathrm{Start}} v_{gt} + C_g^{\mathrm{Down}} w_{gt} \right) + \sum_{i \in \mathcal{N}} C^{\mathrm{VOLL}} p_{it}^{\mathrm{Unmet}} \right) + \rho \hat{V}(\mathbf{y}) \rightarrow \mathsf{DA} \ \mathsf{cost} + \mathsf{penalty} \ \mathsf{on} \ \mathsf{worst-case} \ \mathsf{consumer} \ \mathsf{exposure}$$

s.t. DA constraints: load, capacity, transmission, ramping \rightarrow SCUC constraints

$$\hat{V}(\mathbf{y}) = \max_{oldsymbol{\omega} \in \Omega} rac{1}{oldsymbol{\mathcal{N}}^{ ext{tp}}} \sum_{t \in \mathcal{T}^{ ext{RT}}} \sum_{i \in \mathcal{N}} \lambda_{it}(\mathbf{y}, oldsymbol{\omega}) (d_{it}^{ ext{RT}} - ar{D}_{it})^+$$

Adversarial Real-time Problem

$$\begin{array}{ll} \mathsf{DCOPF-A}(\mathbf{y}^*) := \max_{\boldsymbol{\omega} \in \Omega} & \frac{1}{N^{\mathrm{tp}}} \sum_{t \in \mathcal{T}^{\mathrm{RT}}} \sum_{i \in \mathcal{N}} \lambda_{it}(\mathbf{y}^*, \boldsymbol{\omega}) (d_{it}^{\mathrm{RT}} - \bar{D}_{it})^+ \\ & \mathrm{s.t.} & \lambda_{it}(\mathbf{y}^*, \boldsymbol{\omega}) \text{ is an optimal solution of DCOPF-D}(\mathbf{y}^*, \boldsymbol{\omega}). \end{array}$$

- $\lambda_{it}(\mathbf{y}^*, \boldsymbol{\omega})$: RT market equilibrium price
- Uncertainty set Ω : using PCA to capture covariance of loads and renewable outputs

Model

Data-Driven Uncertainty Set

PCA

- ► Covariance matrix of data for recent past, one per time period
- K largest leading modes

$$d_{it}^{\mathrm{RT}} = \bar{D}_{it} + \sum_{k=1}^{K} Q_{kit}^{d} \alpha_{kt}^{d}$$

$$orall i \in \mathcal{N}, t \in \mathcal{T}^{ ext{RT}} {
ightarrow} \; \mathsf{RT} \; \mathsf{load}$$

$$ho_{gt}^{\mathsf{max},\mathrm{RT}} = ar{P}_{gt}^{\mathsf{max}} + \sum_{k=1}^K Q_{kgt}^w lpha_{kt}^w \hspace{0.5cm} orall g \in \mathcal{G}^{\mathrm{Wind}}, t \in \mathcal{T}^{\mathrm{RT}}
ightarrow \mathsf{RT} ext{ wind output}$$

$$orall g \in \mathcal{G}^{\mathrm{Wind}}, t \in \mathcal{T}^{\mathrm{RT}} {
ightarrow} \; \mathsf{RT} \; \mathsf{wind} \; \mathsf{output}$$

$$|\sum_{k=1}^K \alpha_{kt}^{\mathit{ind}}| \leq \Sigma^{\mathit{ind}}$$

$$orall t \in \mathcal{T}^{\mathrm{RT}}, \mathit{ind} \in \{\mathit{d}, \mathit{w}\} {
ightarrow}$$
 Bound on stressors

$$|\alpha_{kt}^{ind}| \leq R^{ind}$$

$$\forall k=1,\ldots,K; t\in\mathcal{T}^{\mathrm{RT}}, \mathit{ind}\in\{d,w\}{
ightarrow}$$
 Bound on stressors

$$d_{it}^{
m RT} \geq 0$$

$$\forall i \in \mathcal{N}, t \in \mathcal{T}^{\mathrm{RT}}$$

 $p_{\rm opt}^{\rm max,RT} > 0$

$$\forall g \in \mathcal{G}^{\mathrm{Wind}}, t \in \mathcal{T}^{\mathrm{RT}}.$$

CLEMS#N

- Introduction
- Model
- Algorithm
- 4 NYISO Case Study
- **5** Summary

The Decomposition Algorithm

- A mixed-integer nonconvex optimization model
 - •
 - KKT conditions

- $\mathcal{P}^{\mathrm{Master}}$: Relax the constraint $\hat{V}(\mathbf{y}) = \max_{\boldsymbol{\omega} \in \Omega} \frac{1}{N^{\mathrm{tp}}} \sum_{t \in \mathcal{T}^{\mathrm{RT}}} \sum_{i \in \mathcal{N}} \lambda_{it}(\mathbf{y}, \boldsymbol{\omega}) (d_{it}^{\mathrm{RT}} \bar{D}_{it})^+$
- Add under-estimators of $\hat{V}(\mathbf{y})$ via cutting planes
 - ▶ But DCOPF-A(**y***) is nonconvex...

Cutting Planes

- Idea: $\hat{V}^*(\mathbf{y}^*) o \text{under-estimator for } \mathbf{y}^* \text{ and neighboring } \mathbf{y}'$ s
- No-good cut: $\hat{V}(\mathbf{y}) \geq \hat{V}^*(\mathbf{y}^*) \left(1 \sum_{t \in \mathcal{T}^{\text{RT}|\text{Hour}}} \left(\sum_{g \in \mathcal{I}_{1t}} (1 y_{gt}) + \sum_{g \in \mathcal{I}_{0t}} y_{gt}\right)\right)$.
- Integer L-shaped cut: $\hat{V}(\mathbf{y}) \geq \hat{V}^*(\mathbf{y}^*) + a \sum_{t \in \mathcal{T}^{\text{RT}|\text{Hour}}} \left(\sum_{g \in \mathcal{I}_{1t}} y_{gt} \sum_{g \in \mathcal{I}_{0t}} y_{gt} |\mathcal{I}_{1t}| \right)$
 - ► Nontrivial lower bound for 1-neighbors of **y***
 - $a = \max(\hat{V}^* \hat{V}_1, (\hat{V}^* \hat{V}_0)/2)$
 - $ightharpoonup \hat{V}_1$: the minimum value of \hat{V} when exactly one generator changes its commitment decision
 - $ightharpoonup \hat{V}_0$: a lower bound on \hat{V} under a feasible commitment decision
- Logic-based Benders decomposition (LBBD) cut (problem specific):

$$\hat{V}(\mathbf{y}) \geq \sum_{t \in \mathcal{T}^{ ext{RT}| ext{Hour}}} \left(\hat{V}_t^*(\mathbf{y}^*) \left(1 - \sum_{g \in \mathcal{I}_{0t}} y_{gt}
ight)
ight)$$

▶ Nontrivial lower bound when all off-generators remains off

Validity of the LBBD Cut

Proposition

When there is no congestion in the network and the ramping constraints are not binding in the real-time market:

- The LBBD cut $\hat{V}(\mathbf{y}) \ge \sum_{t \in \mathcal{T}^{\text{RT}|\text{Hour}}} \left(\hat{V}_t^*(\mathbf{y}^*) \left(1 \sum_{g \in \mathcal{I}_{0t}} y_{gt} \right) \right)$ provides a correct lower bound for $\hat{V}(\mathbf{y})$.
- Also, it provides the exact value of $\hat{V}(y)$ at the current solution y^* .
- Consider \mathcal{I}'_{0t}
- Case 1: $\mathcal{I}'_{0t} \subset \mathcal{I}_{0t}$: open more generators o nonpositive RHS
- Case 2: $\mathcal{I}_{0t} \subseteq \mathcal{I}'_{0t}$: turn off generators \to Less capacity, LMP will not decrease $\to \hat{V}^*_t(\mathbf{y}^*)$ is a lower bound
- Congestion: Some LMPs may drop in Case 2
- Ramping: LMP depends on the production levels of the previous time period

Solving DCOPF-A(\mathbf{y}^*)

- Direct solve with Knitro or Gurobi: not scalable
- McCormick relaxation: not very tight, limited cost reduction
- Grid search
 - ▶ Iterate through a set of fixed stressors (i.e, "grids") $(\tilde{\alpha}_{kt}^d, \tilde{\alpha}_{kt}^w)$
 - Solve DCOPF($\mathbf{y}^*, \tilde{\boldsymbol{\omega}}$)

Implementation Details

Obtaining Risk-Aware Day-ahead Schedule with Our Method

- Introduction
- Model
- Algorithm
- 4 NYISO Case Study
- Summary

NYISO Case Study

- Realistic NYISO data set: 1819 buses, 2207 lines, 362 generators and 38 wind farms
- Linux workstation with Intel Xeon processor and 250 GB memory (Palmetto Clusters)
- Gurobi 10.0.1; time limit of 24 hours; all solved under 0.5% optimality gap

Risk-Aware vs. Deterministic Models

- Cost saving for most instances
- Larger savings under higher volatility
- Relatively small increase in DA cost
- ullet Lower ho o less cost savings when volatility is lower/higher ullet more conservative decisions

R^d	R^w	Save	Deter.	Cost	DA cost	Consr.
		(k\$)	cost (M\$)	red. (%)	diff (\$)	exp. (k\$)
0.1	0.2	0.00	5.37	0.00	0.00	8.53
0.1	0.4	0.12	5.37	0.00	116.16	8.53
0.1	0.6	0.00	5.37	0.00	0.00	8.89
0.1	8.0	42.29	5.41	0.78	116.16	8.89
0.1	1.0	42.28	5.41	0.78	123.50	8.89
0.2	0.2	114.71	5.50	2.09	116.16	17.78
0.2	0.4	114.14	5.50	2.08	688.03	17.78
0.2	0.6	115.74	5.50	2.11	1446.22	16.76
0.2	8.0	108.58	5.50	1.98	8130.20	17.78
0.2	1.0	115.64	5.50	2.10	1072.06	17.78

Risk-Aware vs. Stochastic Models

- Two-stage stochastic programming SCUC model
 - lacktriangle Objective: Minimize Expected cost $+ \rho$ CVaR
 - ▶ 10 scenarios, 48-hour time limit, with warm start
 - ► L-shaped via branch-and-cut not useful
- Stochastic model: higher DA cost & consumer exposure

R^d	R^w	Opt.	Save	Cost	DA cost	Sto consr.
		gap (%)	(k\$)	red. (%)	diff (k\$)	exp. (k\$)
0.1	0.2	3.69	243.93	4.34	-185.95	66.51
0.1	0.4	2.22	158.57	2.87	-114.88	52.22
0.1	0.6	3.30	234.16	4.18	-176.80	66.25
0.1	8.0	2.55	190.63	3.43	-133.17	66.36
0.1	1.0	2.32	178.97	3.22	-120.88	66.99
0.2	0.2	0.55	136.20	2.47	-20.62	133.36
0.2	0.4	1.00	151.53	2.74	-36.65	133.36
0.2	0.6	3.29	289.53	5.11	-173.80	132.49
0.2	8.0	0.40	121.72	2.21	-5.53	133.97
0.2	1.0	0.72	146.50	2.65	-31.19	134.16

Out-of-Sample Tests

- Perturbed adverse stressors: sample vector $\boldsymbol{\alpha}^{ind} = (\alpha_{1t}^{ind}, \alpha_{2t}^{ind}, \alpha_{3t}^{ind})$ with fixed norm
 - ▶ DA LMPs are similar
 - ▶ Our model: lowest RT LMPs, consumer exposure, and producer surplus
- Uniformly distributed stressors: sample α_{kt}^{ind} in $[-R^{ind}, R^{ind}]$

Summary

- Modify SCUC to reduce RT consumer exposure due to load and wind volatilty
- Data-driven PCA-based uncertainty set for correlation of uncertain data
- Algorithmic development for nonconvex optimization problem
- Large-scale NYISO case study
- Cost saving across various levels of variation, without substantial expenses for dispatch
- Published on IEEE Transactions on Energy Markets, Policy and Regulation (2024)

