ÁLGEBRA LINEAL

Primera Práctica Dirigida Semestre Académico 2025 - 1

Horario: 14:00-16:00 Duración: 120 minutos

Ejercicio 1 Sea V un espacio vectorial. Demuestre que

- a) v + v + v = 3v.
- *b*) -(-v) = v.

Ejercicio 2 $_{\dot{c}}El\ conjunto\ X = \{(x,y,z): x^3 = y^3\}\ es\ un\ subespacio\ vectorial\ de\ R^3$? En caso afirmativo, halle una base para el subespacio vectorial X.

Ejercicio 3 Sea V un espacio vectorial de dimensión finita. Demuestre que para todo subespacio vectorial $W \subset V$, existe un subespacio $U \subset V$ tal que $V = W \oplus U$

Ejercicio 4 Determine la verdad o falsedad de la siguiente proposición Sean X,Y dos subconjuntos de V, entonces

$$S(X \cap Y) = S(X) \cap S(Y)$$

Ejercicio 5 Sean $U = \{f : R \to R/f \text{ es par}\}\ y\ W = \{f : R \to R : f \text{ es impar}\}\$. Si V representa el espacio vectorial de todas las funciones de R en R, demuestre que $V = U \oplus W$.

Ejercicio 6 Encuentre un valor para a, de tal manera que el conjunto $\{(3,1,4),(2,-3,5),(5,9,a)\}$ no sea linealmente independiente en \mathbb{R}^3 .

Ejercicio 7 Sea W el subespacio de R⁵ definida por

$$W = \{(x_1, x_2, x_3, x_4, x_5) : x_1 = 3x_2, x_3 = 7x_4\}$$

- a) Halle una base para W
- b) Extienda la base de la parte a), a una base de \mathbb{R}^5
- c) Encuentre un subespacio de R^5 tal que $R^5 = U \oplus W$.

Ejercicio 8 Sea X un subconjunto de \mathcal{P}_4 de 6 elementos. Demuestre que X es linealmente dependiente.

Ejercicio 9 Sean U y W dos subespacios vectoriales del espacio vectorial V tal que V = U + W. Demustre que

- a) $\dim(U+W) = \dim(U) + \dim(V) \dim(U \cap W)$
- b) Suponga que U y W son subespacios de R^8 tales que $\dim U = 3$, $\dim W = 5$ y $U + W = R^8$. Demuestre que

$$R^8 = U \oplus W$$

Ejercicio 10 Sea $T: \mathbb{R}^2 \to \mathbb{R}$ una transformación lineal tal que T(1,1) = 3 y T(2,3) = 1, calcule T(10) y T(0,1).

Ejercicio 11 Sea $T: V \to W$ una transformación lineal tal que el conjunto $\{Tv_1, ..., Tv_k\}$ es linealmente independiente, demuestre que el conjunto $\{v_1, ..., v_k\}$ es linealmente independiente.

Ejercicio 12 Sea $v \neq 0$ en el espacio vectorial V. Si W es un espacio vectorial cualquiera diferente del $\{0\}$ demuestre que existe una transformación lineal $T: V \to W$ tal que $Tv \neq 0$.

Ejercicio 13 Sea $X \subset V$ un conjunto de generadores del espacio vectorial V. Si las transformaciones $T,S:V \to W$ son tales que Tv=Sv para todo $v \in X$, demuestre que T=S.

Ejercicio 14 *Sea* $W = \{p \in \mathcal{P}_4 : p(2) = p(5)\}.$

- a) Demuestre que W es un subespacio vectorial
- b) Halle una base para W

Ejercicio 15 Demuestre que el espacio vectorial $R^{\infty} = \{(x_1, x_2, ...) : x_i \in \mathbb{R}\}$ es de dimensión infinita.

Ejercicio 16 Sean V un espacio vectorial y $X \subset V$ un subconjunto finito tal que S(X) = V. Demuestre que V es de dimensión finita.

Ejercicio 17 Sean W_1 y W_2 dos subespacios vectoriales del espacio vectorial V. Demuestre que $W_1 \cup W_2$ es subespacio vectorial de V si y solamente si $W_1 \subset W_2$ o $W_2 \subset W_1$.

Ejercicio 18 Sea $V = \{f : \mathbb{R} \to \mathbb{R}\}$ el espacio vectorial de las funciones reales. Cuál de los siguientes subconjuntos de V forman un subespacio vectorial.

- a) Todas las f tales que f(-1) = 0
- b) Todas las f tales que f(0) = f(1)
- c) Todas las f tales que f(3) = 1 + f(-5)

Ejercicio 19 Demuestre que todos los subespacios vectoriales de \mathbb{R}^3 son $\{\overline{0}\}$, las rectas y planos que pasan por el origen y \mathbb{R}^3 .

Ejercicio 20 Sean $p_0(x), p_1(x), p_2(x), p_3(x), p_4(x)$ cinco polinomios en el espacio vectorial de los polinomios de grado menor o igual a 4 tales que $p_j(2) = 0$ para j = 0, 1, 2, 3, 4. Demuestre que el conjunto de polinomios $p_0(x), p_1(x), p_2(x), p_3(x), p_4(x)$ es linealmente dependiente.

Ejercicio 21 Suponga que U y W son dos subespacios de \mathbb{R}^9 , ambos de dimensión 5. Demuestre que $U \cap W \neq \{0\}$

Ejercicio 22 Sea V un espacio vectorial de dimensión n y $X \subset V$ un subconjunto con n elementos. Demuestre que

- a) $Si\ X\ es\ l.i,\ entonces\ X\ es\ una\ base.$
- b) $Si\ X\ genera\ V\ entonces\ X\ es\ una\ base.$

Ejercicio 23 Sea $U \subset V$ un subespacio vectorial, halle U + U.

Ejercicio 24 Sea V un espacio vectorial real.

- a) Si $a \in \mathbb{R}$ y $v \in V$ tal que av = 0, demuestre que a = 0 o v = 0.
- b) Sean u,v dos vectores de V. Demuestre que existe un vector $w \in V$ tal que

$$v + 3w = u$$

Ejercicio 25 Sea V un conjunto en el cual se definen dos operaciones $\oplus : V \times V \to V \ y \cdot : \mathbb{R} \times V \to V \ tales$ que satisfacen los siguientes axionas.

- 1. $(u \oplus v) \oplus w = u \oplus (v \oplus w)$, para todos $u, v, w \in V$.
- 2. $\lambda \cdot (u \oplus v) = \lambda \cdot u + \lambda \cdot v$, para todo $u, v \in V$, $\lambda \in \mathbb{R}$
- 3. $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$, para todo $\lambda, \mu \in \mathbb{R}$ $y \ v \in V$
- 4. $(\lambda \mu) \cdot v = \lambda \cdot (\mu \cdot v)$, para todo $\lambda, \mu \in \mathbb{R}$ $\forall v \in V$
- 5. $0 \cdot u = 0 \cdot v$, para todo $u, v \in V$
- 6. $1 \cdot v = v$, para todo $v \in V$

Demuestre que (V, \oplus, \cdot) forma un espacio vectorial sobre $\mathbb R$

Ejercicio 26 Sea $A \in M_{n \times n}$. Considere

$$R_A = \{X \in M_{n \times n} : XA = 0\},$$
 $L_A = \{X \in M_{n \times n} : AX = 0\}$

- a) Pruebe que R_A y L_A son subespacios vectoriales de $M_{n \times n}$.
- b) Si $S = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, halle una base de R_S y L_S .
- c) $\dot{\epsilon}$ Es cierto que $R_A \cap L_A = \{0\}$?

Ejercicio 27 Sea \mathcal{P}_2 el espacio vectorial de polinomios de grado menor o igual a 2. Considere

$$W = \{a + bx - (a - b)x^2 : a, b \in \mathbb{R}\} \subset \mathcal{P}_2.$$

- a) Pruebe que W es un subespacio vectorial de \mathcal{P}_2 .
- b) Halle una base de W.
- c) Halle un subespacio vectorial W_1 de \mathcal{P}_2 tal que $W + W_1 = \mathcal{P}_2$, pero no es suma directa.
- d) Halle un subespacio vectorial W_2 de \mathcal{P}_2 tal que $W \oplus W_2 = \mathcal{P}_2$.

Ejercicio 28 Sea V un espacio vectorial y sean $V_0, V_1, V_2 \subset V$ subespacios vectoriales de V. Pruebe que si $V_1 \subset V_0$ o $V_2 \subset V_0$ entonces

$$V_1 \cap V_0 + V_2 \cap V_0 = (V_1 + V_2) \cap V_0.$$

Ejercicio 29 Responda verdadero o falso, justificando su respuesta

a) Sea V un espacio vectorial de dimensión finita. Si $U \subset V$ es un subespacio vectorial, entonces

$$\dim(U+U)=2\dim U$$

b) Sean U_1, U_2 y W tres subespacios vectoriales de V, tales que

$$U_1 \oplus W = U_2 \oplus W$$

entonces $U_1 = U_2$.

Ejercicio 30 Sea V un espacio vectorial. Demuestre que el inverso aditivo es único.

Ejercicio 31 Sea \mathcal{P}_4 el espacio vectorial de los polinomios de grado menor o igual a 4. Determine la dimensión y una base para el subespacio

$$W = \{p(x) \in \mathcal{P}_4 : p(3) = p(2) = p(0) = 0\}$$

Ejercicio 32 Sea V el espacio vectorial de las matrices cuadradas de tamaño 2. Sean W_1 el conjunto de las matrices de la forma

$$\begin{pmatrix} x & -x \\ y & x \end{pmatrix}$$

 $y W_2$ el conjunto de las matrices de la forma

$$\begin{pmatrix} a & b \\ -a & c \end{pmatrix}$$

- a) Demuestre que W_1 y W_2 son subespacios vectoriales de V.
- b) Hallar las dimensiones de W_1 , W_2 y $W_1 \cap W_2$.
- c) $\dot{c}V = W_1 + W_2$?

Ejercicio 33 ¿Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,0) = (1,0) y T(2,1,0) = (0,1)?

Ejercicio 34 Sea $\{v_1, v_2, v_3, v_4\}$ una base para el espacio vectorial V. Demuestre que el conjunto

$$\{v_1+v_2,v_2+v_3,v_3+v_4,v_4\}$$

también es una base para V

Ejercicio 35 Sean U un subespacio vectorial de V con $U \neq V$ y $S: U \rightarrow W$ una transformación lineal no nula. Se define la siguiente aplicación $T: V \rightarrow W$

$$Tv = \left\{ \begin{array}{ll} Sv, & si\ v \in U; \\ \\ 0, & si\ v \in V\ y\ v \notin U. \end{array} \right.$$

Demuestre que T no es una transformación lineal.