Лабораторная работа № 4

Программирование алгоритмов ветвления. Вложенные условия

Цель работы: овладение практическими навыками программирования алгоритмов разветвляющейся структуры.

Оборудование: ПЭВМ.

Общие положения

Алгоритм называется *разветвляющимся*, если последовательность выполнения шагов алгоритма изменяется в зависимости от выполнения некоторых условий. Условие - это логическое выражение, которое может принимать одно из двух значений: True - если условие верно (истинно), и False - если условие неверно (ложно).

В условиях используют знаки отношений: < (меньше), > (больше), <= (меньше или равно), >= (больше или равно), == (равно) и != (не равно).

В качестве условия в условном операторе можно указать любое логическое выражение, в том числе сложное условие, составленное из простых отношений с помощью логических операций (связок) «И», «ИЛИ» и «НЕ» (and, or и not).

Операторы сравнения в Python можно объединять в цепочки (в отличие от большинства других языков программирования, где для этого нужно использовать логические связки), например, a == b == c или 1 <= x <= 10.

Внутри условного оператора могут находиться любые операторы, в том числе и другие условные операторы. Получаем *вложенное ветвление* — после одной развилки в ходе исполнения программы появляется другая развилка. При этом вложенные блоки имеют больший размер отступа (например, 8 пробелов).

```
if Условие 1:
    Блок инструкций 1
else:
    if Условие 2:
        Блок инструкций 2
else:
        Блок инструкций 3
```

Если нужно последовательно проверить несколько условий, используется форма с дополнительным оператором **elif** (сокращение от **else if**) - *оператор выбора*:

```
if условие 1:

Блок инструкций 1

elif условие 2:

Блок инструкций 2

else:

Блок инструкций 3
```

Дополнительных условий и связанных с ними блоков **elif** может быть сколько угодно, но важно отметить, что в такой сложной конструкции будет выполнен всегда только один блок кода. Другими словами, как только некоторое условие оказалось истинным, соответствующий блок кода выполняется, и дальнейшие условия не проверяются.

Порядок выполнения работы

Задание 1. Напишите программу, которая считывает с клавиатуры одно дробное число, после чего выводит «+», «-» или «0», если это число — положительное, отрицательное или ноль, соответственно.

Задание 2. Создать программу, используя оператор условия, согласно заданию, указанному в таблице. Ввод исходных данных сопровождать соответствующими

запросами, а вывод - наименованиями выводимых переменных.

•	вывод - наименованиями		Исходные
Вариант	Функция	Условие	данные
	$at^2 \ln t$	1 ≤ <i>t</i> ≤ 2	a = -0.5
1	$y = \{$ 1	$t \prec 1$	b=2
	$e^{at}\cos bt$	$t \succ 2$	
	$\pi x^2 - 7/x^2$	<i>x</i> ≺ 1,3	a = 1,5
2	$y = \{ ax^3 + 7\sqrt{x} $	x = 1,3	
	$ln(x+7\sqrt{x})$	x > 1,3	
	$ax^2 + bx + c$	<i>x</i> ≺ 1,2	a = 2.8
3	$y = \{ a/x + \sqrt{x^2 + 1} $	x = 1,2	b = -0.3
	$(a+bx)/\sqrt{x^2+1}$	x > 1,2	c=4
	$\pi x^2 - 7/x^2$	<i>x</i> ≺ 1,4	a = 1,65
4	$y = \{ ax^3 + 7\sqrt{x} $	x = 1,4	
	$\ln(x) + 7\sqrt{ x+a }$	$x \succ 1,4$	
5	$x\sqrt[3]{x-a}$	$x \succ a$	a = 2,5
	$y = \{ x \sin ax \}$	x = a	
	$e^{-at}\cos ax$	$x \prec a$	
6	a+b	<i>x</i> ≺ 2,8	a = 2.6
	$e^x + \cos x$	$2.8 \le x < 6$	b = -0.39
	$y = \{(a+b)/(x+1) $ $e^x + \sin x$	$x \succ 6$	
7		$i \prec 4$	a = 2,1
,	$\frac{a}{i} + bi^2 + c$	$4 \le i < 6$	b = 1.8
	$y = \{$ i	$i \succ 6$	c = -20,5
	$ai + bi^3$	17 0	20,5
8	$\sqrt{at^2 + b\sin t + 1}$	t < 0,1	a = 2.5
	$y = \{$ $at + b$	t = 0,1	b = 0.4
	$\sqrt{at^2 + b\cos t + 1}$	$t \succ 0,1$	
9	$bx - \ln bx$	$bx \prec 1$	b = 1,5
	$y = \{$ 1	bx = 1	
	$bx + \ln bx$	$bx \succ 1$	
10	$(\ln x + x^2)/\sqrt{x+t}$	x < 0.5	t = 2,2
	$y = \{ \sqrt{x+t} + 1/x$	x = 0.5	
	$\cos x + \sin^2 x$	$x \succ 0,5$	

Содержание отчета

- 1. Постановка задачи.
- 2.
- Текст программы. Результаты выполнения программы. 3.