Zadanie 15. (1 pkt)

Kąt α jest ostry i $\sin \alpha = \frac{8}{9}$. Wtedy $\cos \alpha$ jest równy

A.
$$\frac{1}{9}$$

B.
$$\frac{8}{9}$$

C.
$$\frac{\sqrt{17}}{9}$$

D.
$$\frac{\sqrt{65}}{9}$$

Zadanie 16. (1 pkt)

Dany jest trójkąt prostokątny (patrz rysunek). Wtedy $tg\alpha$ jest równy

$$\mathbf{A.} \quad \sqrt{2}$$

B.
$$\frac{\sqrt{2}}{\sqrt{3}}$$

$$\mathbf{C.} \quad \frac{\sqrt{3}}{\sqrt{2}}$$

D.
$$\frac{1}{\sqrt{2}}$$

Zadanie 17. (1 pkt)

W trójkącie równoramiennym ABC dane są |AC| = |BC| = 7 oraz |AB| = 12. Wysokość opuszczona z wierzchołka C jest równa

A.
$$\sqrt{13}$$

B.
$$\sqrt{5}$$

Zadanie 18. (1 pkt)

Oblicz długość odcinka AE wiedząc, że $AB \parallel CD$ i |AB| = 6, |AC| = 4, |CD| = 8.

$$\mathbf{A.} \quad |AE| = 2$$

B.
$$|AE| = 4$$

$$\mathbf{C.} \quad |AE| = 6$$

D.
$$|AE| = 12$$

Zadanie 19. (*1 pkt*)

Dane są punkty A = (-2,3) oraz B = (4,6). Długość odcinka AB jest równa

A.
$$\sqrt{208}$$

B.
$$\sqrt{52}$$

C.
$$\sqrt{45}$$

D.
$$\sqrt{40}$$

Zadanie 20. (1 pkt)

Promień okręgu o równaniu $(x-1)^2 + y^2 = 16$ jest równy

$$\mathbf{C}$$
. 3