TOSHIBA

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA75458P, TA75458S, TA75458F, TA75458FB

DUAL OPERATIONAL AMPLIFIER

FEATURES

- Pair of Internally Compensated High Performance Amplifier
- No Frequency Compensation Required
- No Latch-up
- Short Circuit Protection
- Side Common Mode and Differential Voltage Range
- Low Power Consumption

Weight

DIP8-P-300-2.54A : 0.5g (Typ.) SIP9-P-2.54A : 0.9g (Typ.) SOP8-P-225-1.27 : 0.1g (Typ.)

SOP8-P-225-1.27 : 0.1g (Typ.)

961001EBA1

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specifical sheet4U.com operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

www.DataSheet4U.com 1997-10-17 1/1

TOSHIBA

PIN CONNECTION (TOP VIEW)

TA75458P

TA75458S

TA75458F

TA75458FB

EQUIVALENT CIRCUIT

961001EBA1'

- The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

MAXIMUM RATINGS (Ta = 25° C)

CHARACTERISTIC	SYMBOL	TA75458P	TA75458S	TA75458F TA75458FB	UNIT
Supply Voltage	V _{CC} , V _{EE}	+ 18, - 18	+ 18, - 18	+ 18, - 18	V
Differential Input Voltage	DVIN	± 30	± 30	± 30	V
Input Voltage	VIN	V _{CC} ~V _{EE}	$V_{CC} \sim V_{EE}$	V _{CC} ~V _{EE}	٧
Power Dissipation	PD	500	400	240	mW
Operating Temperature	T _{opr}	- 40∼85	- 40∼85	- 30~75	°C
Ambient Temperature	T _{stg}	- 55∼125	- 55∼125	- 55∼125	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15V$, $V_{EE} = -15V$, Ta = 25°C)

			TEST						
CHARACTERISTIC		SYMBOL	CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Input Offset Voltage		V _{IO}	1	$R_g \le 10k\Omega$	_	1	5	mV	
Input Offset Current		lo	2		_	20	200	nA	
Input Bias Current		Ц	2		_	80	500	nA	
Common Mode Input		CMVIN	3		± 12	± 13		V	
Voltage					- 12			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Maximum Output Voltage		Vом	4	$R_L = 10k\Omega$	± 12	± 14	_	V	
		VOMR	4	$R_L = 2k\Omega$	± 10	± 13	<u> </u>		
Source Current		I _{source}	4		_	20	_	mA	
Sink Current		l _{sink}	4		_	20	_	mA	
Differential Input Impedance	Parallel Input Resistance	z _{Di}	_	f=20Hz Open Loop	0.3	1.0	_	МΩ	
	Parallel Input Capacitance	Ci	_	T = 20112 Open Loop	_	6.0	_	pF	
Output Impedance		Zo	_	f = 20Hz	_	75	_	Ω	
Voltage Gain (Open Loop)		GV	7	$V_{OUT} = \pm 10V$, $R_L = 2k\Omega$	86	100	_	dB	
Common Mo Rejection Ra	de Input Signal tio	CMRR	3	f = 100Hz	70	90	_	dB	
Supply Voltage Rejection Ratio		SVRR	1	$R_g \le 10 k\Omega$	_	30	150	μ V / V	
Power Bandwidth		fW	_	$G_V = 1$, $R_L = 2k\Omega$ $V_{OUT} = 20V_{p-p}$	_	14	_	kHz	
Slew Rate		SR	6	$G_V = 1$, $R_L = 2k\Omega$	_	0.8	_	V/μs	
Unity Gain Cross Frequency		f _T	7	Open Loop	_	1.1	_	MHz	
Power Dissipation		P_{D}	5	V _O = 0V	_	70	170	mW	
Input Offset Voltage Drift		$\Delta V_{IO}/\Delta T$	1	$R_g \le 10 k\Omega$, $Ta = -30 \sim 75$ °C	_	_	50	μ V / °C	
Supply Current		ICC, IEE	5	-	_	2.3	5.6	mA	

TEST CIRCUIT

(1) V_{IO} , ΔV_{IO} / ΔT , SVRR

$$V_{IO} = V_{OUT} / 100 (V)$$

$$\Delta V_{IO} / \Delta T = \{V_{IO} (25^{\circ}C) - V_{IO} (-30^{\circ}C)\} / 55 (V / {^{\circ}C})$$

$$\Delta V_{|O} / \Delta T = \{V_{|O} (75^{\circ}C) - V_{|O} (25^{\circ}C)\} / 50 (V / {^{\circ}C})$$

$$SVRR = (V_{IO1} - V_{IO2}) / 5 (\mu V / V)$$

 V_{IO1} : V_{CC} , AT $V_{EE} = \pm 17.5V$

 V_{IO2} : V_{CC} , At $V_{EE} = \pm 12.5V$

(2) ||, ||0

$$|IO = |II(+) - II(-)|$$

(3) CMV_{IN}, CMRR

 CMV_{IN} : $V_{OUT} = \pm 1V (DC)$

V_{IN} = MEASURE

CMRR: RATIO OF Gdiff vs GCM

 $CMRR = 20 \ell og \frac{G_{diff}}{G_{CM}} (dB)$

(4) VOM, VOMR, Isink, Isource

V_{OM}(+) : SW1 IS SIDE B, SW2 OFF, SW3 OFF

 $V_{\mbox{OM}}\,(\,\text{-}\,)$: SW1 IS SIDE A, SW2 OFF, SW3 OFF

 $\mbox{V}_{\mbox{OMR}}\,\mbox{(+)}$: SW1 IS SIDE B, SW2 ON, SW3 OFF

 $V_{\mbox{OMR}}$ (–) : SW1 IS SIDE A, SW2 ON, SW3 OFF

 I_{sink} : SW1 IS SIDE A, SW2 OFF, SW3 ON

I_{source}: SW1 IS SIDE B, SW2 OFF, SW3 ON

(5) I_{CC}, I_{EE}, P_D

$$P_D = V_{CC} \cdot I_{CC} + V_{EE} \cdot I_{EE}$$
 (W)

(6) SR

(7) G_V, f_T

 G_V

 $R \gg 1 / WC_1$

C₁: COUPLING CONDENSER

 ${
m C_2}: {
m HIGH} {
m FREQUENCY} {
m BYPASS} {
m CONDENSER} \ {
m 0.1} \mu {
m F}$

 $G_V = 20 \ell og e_O / e_i (dB)$

 f_T INPUT FREQUENCY AT $e_i = e_o$

CHARACTERISTICS

OUTLINE DRAWING DIP8-P-300-2.54A Unit : mm 10.1MAX 9.6±0.2 0.99TYP 2.54 1.2±0.1

Weight: 0.5g (Typ.)

OUTLINE DRAWING

SIP9-P-2.54A Unit: mm

Weight: 0.9g (Typ.)

Weight: 0.1g (Typ.)

OUTLINE DRAWING

SOP8-P-225-1.27B Unit: mm

Weight: 0.1g (Typ.)