Quadratic Geometries (V,Q; ..., ue) With defect The quadratic Geometries (V,Q; ..., ue) W:Q -> {0,1}

Lemma 2.5.7 In a hie coordinative of the quadratic geometres

can be assigned compatible orientations, in the sense that

in non-orthog, geometries the orientations are identified by

the canonical weak unoriented isomorphism between appropriate

localizations. This can be some O-definably.

Clarify: 'assigned'

- If Ja is a quad geom in M with Litt u; let

Ja be the same thing with with I is.

For every $b \equiv a$ replace J_b with J_b to obtain M.

This is interest. with M a still Lie coord. 2.5.7

says that by doing this repeatedly, obtain M satisfying the entra condition.

Def 2.5.6. 1. A standard system of geometries (for M)

is a O-def. function $J: A \rightarrow M^{eq}$ as where

A is a complete type over $\phi + (J(a): a \in A)$ is a family of canonical proj. geometries

7. Standard systems $J: A \rightarrow M^{eq} + J': A' \rightarrow M^{eq}$

one agrinatent of these exists a EA a a'EA' st. J(a) + J(a') are non-orthogonal. In this case there is a O-def. bijection $\alpha: A-7A'$ given by alga) = ga' (for ge Aut (M)). [essentially 2.5.4]. Proof of 2.5.7: Consider standard systems of projective quadratic geometries under equivalence. For each eq. class choose a representative. Use these to reorient the coordinatizing proj. quad. geoms of m M: there is a unique (chosen) canonical proj. quad. geom. To non-orthogonal to Po, By canonicity cedel (b) (2,5,3). There is a canonical weak def. iso between By and the localization of Je at A=acl(b) 1 Je. het (V,Q) be the linear q. geom. assoc. to Jc φ $B = acl(b) \cap (V,Q).$ Note: BAQ = \$, otherwise the loc. of To at B is an orthog. geometry, so not iso. to P (everything 'u felly embedded over b). So B = V.

Use the given w on Jc to define a way on the localization (VB, QB)

2) Transfer up to give a Witt defect on Pp.
3) Check the compatibility condition.
Localization & w
Localization β W $J = (V, Q) \text{ oriented quadratic}. B \leq V$
T = (1- 10)
VB = B ¹ /B ¹ nB form BB induced by B.
rad(B)
$Q_{\mathcal{B}} = \left\{ q \mid_{\mathcal{B}^{\perp}} : q \in Q q(\text{nd}(\mathcal{B})) = 0 \right\}$
VB acts by + on QB -
Def Let B = rad(B) 1 Bo. So Bo u a
non-deg. f.d. space. If JEQ then 9130
so it has a well defined With defeat wo (9180)
Define $w_{B}(q _{B^{\perp}}) = w(q) + w_{o}(q _{B_{o}})$.
induced W. Defect on Qz.

Check: i) Well-Defined. If
$$q,q' \in Q$$
 have some restr. In B^{\perp} (a $q(E \text{ rad } B) = q' \pmod{B} = 0$)

then write $q' = V + q$, then $V \in (B^{\perp})^{\perp} = B$

Write $V = V + V_0$ re rad $B + V_0 \in B_0$.

 $[q,q'] = q(V) = q(V + V_0) = q(V) + q(V_0) + B(V_0) = q(V_0)$

Let $q_0 = q \mid B_0 + q' = q' \mid B_0$

Waut on	B	show	, ;	X	pres	eðves	mo	المروه	s L) _	
<u>-</u>	thes	و (oca li	zatio	rus	•					