Sampling & Surrogate Modeling

Assignment Project Exam Help

Goal of Week 4: To learn different strategies to sample your design space and build metamodels, and to explore some MATLAB tools that can help

Introduction

- Brian Chell
 - bchell@stevens.edu
- Ph.D. Student of Prof. Hoffenson
 Assignment Project Exam Help
 Research based on Multidisciplinary Analysis and
- Optimization (MIDSA Opowcoder.com)
- Sampling & surrogate modeling animportant part of MDAO

Recap: How to optimize

1. Formulate the problem

(Weeks 1-2, 4, 9-12)

Define system boundaries

- Develop analytical models
- c) Explorestiente Project Exam Helpect to
- Formalize optimization problem nttps://powcoder.com

 $\mathbf{g}(\mathbf{x},\mathbf{p}) \leq 0$

$\mathbf{h}(\mathbf{x}, \mathbf{p}) = 0$

 $f(\mathbf{x}, \mathbf{p})$

2. Solve the problem

Choose the right approach algorithm

(Weeks 3, 5-8, 13)

- Solve (by hand, code, or software)
- Interpret the results
- Iterate if needed

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_0)$$

minimize

Recap: Optimization formulation

"negative null" form

What is surrogate modeling?

Fitting a function to some data

The *data points* represent the model

The *function* we fit is a meta- or "surrogate" model—
a model of a model!

Why do we do it?

 When we have only physical experiments or observations to collect data (no computational models exist);

models exist ignment Project Exam Help

• When computational models are expensive to evaporate owcoder.com (usually time-intensive) Add WeChat powcoder

Surrogate models are generally much faster than simulations, and many optimization algorithms require really large numbers of simulations (However, we often trade accuracy for speed)

Example: Quadcopter Motor Mass

Example: Gather data

4X Racerstar Racing Edition...

\$29.99 Banggood.com Free shipping

JJRC H31 RC Quadcopter Spa...

\$2.87 Banggood.com Free shipping

BAYANGTOYS X16 RC...

\$12.99 Banggood.com

2018 Upgrade 4pcs/lot MX221...

\$35.40 Walmart

\$23.09 B&H Photo-Vid...

4X Motors KH8C-005 for Eachine H8 Mini RC Quadcopter

Brand: Eachine ** * 5.0 (298 Reviews) | O 6 answered questions https://powcoder.comut: 2-4s Lipo Price:

Buy more & Save more VeChat powcoden: 4g bare board Warehouse

In stock. Processing time: Ships in 24 hours Free shipping via Standard Shipping Shipping time: 7-20 but

Quantity:

Shipping:

- 1 + Add 1 and get them for US\$7.39 each

AX-28100-750KV Brushless **Quadcopter Motor** * * * * * * 57 REVIEWS

\$20.93

CTATUC: In Ctook

Specification:

Constant: 15 Amps

Burst: 25 Amps

Dimensions: 23x12.5x3mm

Motor wire: 70mm Signal wire: 120mm

PCB - 4 Layer Blind hole PCB - 3oz Pour

Mosfet: N-Channel

OneShot and BLHeli 16.2 Pre Installed

Example: Gather data

			Volume	Volume	Mass (g) No
Motor Name	Diameter (mm)	Length (mm)		(m^3)	wires
KDE1806XF-2350	23	16.7	6938.44299	6.9384E-0	18
KDE2304XF-2350	28.3	16	10064.2806	1.0064E-0	24
KDE2306XF-2550	28.3	18	11322.3156	1.1322E-0	29
KDE2306XF-2050	28.3	18	11322.3156	1.1322E-0	29
KDE2315XF-2050	28.3	28.5	17926.9997	1.7927E-0	64
KDE2315XF-965	cci arigh	ent ²	17926.9997	_1_7927E-0	Haln 64
KDE2814XF-775	Assign	1C11t _{31.7}	31376.5977	3.13//E-0:	11CIP ₉₅
BE2212	28	30	18472.5648	1.8473E-05	66
2400Kv 10A	1,225	C. //1165	-6560-52903	6.5605F-0	58
MN1804 KV2400	тщ	S.// P16.5	6855.34787	6.8553E-0	16
MN1806 KV1400	23	18.5	7686.29913	7.6863E-0	18
F30 KV2800	Λ d ³	Wer	1,11217,842	_1.1218E-0	20
F40Ⅲ KV2400	28.4	IVVC	10769.0026	1.0769E-0	30.8
F1000-Short Shaft KV545	53.6	36	81231.0303	8.1231E-0	265
Racerstar 8520	8.5	20	1134.90035	1.1349E-0	5.1
Racerstar 615	6	15	424.115008	4.2412E-0	1.8
Chaoli CL-1020	10	20	1570.79633	1.5708E-0	7.5
Chaoli CL 720	7	20	769.6902	7.6969E-01	5
EMAX RS2306	23	17	7063.08568	7.0631E-0	33.84
EMAX RS1306	18	15.5	3944.26958	3.9443E-0	12.7
MN3110-17	37.7	28.5	31813.9388	3.1814E-0	80
BE0905	12	11	1244.07069	1.2441E-0	4.2
BE1104	14	12.5	1924.2255	1.9242E-0	6

Example: Choose and fit function

Motor Volume vs. Mass

mass = 0.0032*Vol + 0.2874

 $g_1(r, h)$: $n^*(0.0032^*(\pi r^2 h) + 0.2874) \le 150$

Surrogate modeling steps

1. Gather data

Sample the design space by efficiently choosing which "experiments" to run

2. Choose Assignment Project Exam Help

E.g., linear regression/terms-injarregression model, kriging, neural networks, etc.

- 3. Fit a function de Watchat powcoder
 Find best-fit parameters for function structure
- 4. Assess fitness

Measure how well the surrogate model fits the data

Surrogate modeling steps

1. Gather data

Sample the design space by efficiently choosing which "experiments" to run

2. Choose Assignment Project Exam Help

E.g., linear regression/terms-injarregression model, kriging, neural networks, etc.

- 3. Fit a function de Watchat powcoder
 Find best-fit parameters for function structure
- 4. Assess fitness

Measure how well the surrogate model fits the data

Monte Carlo approach

Choose random experiments/points to sample

Gathering data

Design of Experiments (DOE): Collect a *useful* set of data that *efficiently* spans the design/input space

RunOrder	isement	Pspieot	Exam He	Dutput
1	10	50	45	
2	https://p	owsode	r.com	
3	10	100	45	
4	Aga w	echal bo	wcqger	
5	10	50	65	
6	20	50	65	
7	10	100	65	
8	20	100	65	

DOE: Full factorial

DOE: Latin hypercube

DOE: Optimal Latin hypercube

Maximize the minimum distance between any two points

DOE: MATLAB codes

Design of Experiments (DOE): Collect a useful set of data that efficiently spans the design/input space

Full Factoria Assignment Projete Hypercube Projete Hypercube Patin Hypercube

Inttps://pow.coder.com

Add We Chat powcoder

design = fullfact([4,7])

for 2 variables: 4 levels on the first and 7 on the second

design =
Ihsdesign(n,p,'iterations',20,'criterion','maximin')
for n samples and p variables

Adaptive Sampling

Instead of deciding the sampling points at the beginning, you can choose them on the way.

Efficient Glabail@ptentiPatipect(EGOn Help

- Assume that young the first minimum of $y = f(\mathbf{x})$
- Start with an initial set of points $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ... \mathbf{x}^{(k)}\}$ Add WeChat powcoder Fit a a kriging model to those points
- Find the point that maximizes the expected improvement using a merit function.
- Sample at this point and continue ...

We will discuss this again in Week 12

Surrogate modeling steps

1. Gather data

Sample the design space by efficiently choosing which "experiments" to run

2. Choose Assignment Project Exam Help

E.g., linear regression/terms-injarregression model, kriging, neural networks, etc.

3. Fit a function de Watchat powcoder

Find best-fit parameters for function structure

4. Assess fitness

Measure how well the surrogate model fits the data

Some common surrogate model structures

- Interpolation
- Regression
- Artificial neuralmetworks (AND) am Help
- Kriging

https://powcoder.com

Add WeChat powcoder

Interpolation

Use data points, and estimate in between them

yi = interp1(x,y,xi,'spline') - supply input and output data (x,y)grapengementh pdsplike linear or spline, supply new inputs to be estimated (xi)

https://powcoder.com

Linear regression

Design Space data

V(1), x(2), ..., x(k)

Project Exam Help

Output Space

V(2), ..., y(k)

Project Exam Help

Output Space

V(2), ..., y(k)

https://powcoder.com

- Finding parameters (β) to make a function of x best match the data points of y
- Linear model: $f(\mathbf{x}) = \boldsymbol{\beta}^T \mathbf{x}$
- Nonlinear model: $f(\mathbf{x}) = \boldsymbol{\beta}^T \varphi(\mathbf{x})$

A good model should closely match $f(\mathbf{x})$ to \mathbf{y}

Linear Regression

Linear Regression

Modeling becomes an optimization problem

$$E(\boldsymbol{\beta}) = \sum_{i=1}^{k} \frac{1}{2} (f(\mathbf{x}^{(i)}, \boldsymbol{\beta}) - y^{(i)})^{2}$$
Assignment Project Exam Help

$$E(\beta) = \sum_{i=1}^{k} \frac{1}{2} \left(\beta^{T} \mathbf{x}^{(i)} - \mathbf{y}^{(i)} \right)^{2}$$
Add WeChat powcoder we will discuthe first order

Design variable

We will discuss this in week 5. This is the first order necessary condition: the derivative equals zero

$$\frac{\partial E(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \begin{bmatrix} \mathbf{x}^{(1)} \boldsymbol{\beta} - y^{(1)} \\ \vdots \\ \mathbf{x}^{(k)} \boldsymbol{\beta} - y^{(k)} \end{bmatrix}^{T} = \mathbf{0}^{T}$$

Linear Regression

Modeling becomes an optimization problem with a closed-form solution

$$\frac{\partial E(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \begin{bmatrix} \mathbf{X}_{ss}^{(1)} \boldsymbol{\beta}_{s} \mathbf{\overline{n}} \mathbf{N}_{ent}^{(1)} \\ \vdots \\ \mathbf{x}^{(k)} \boldsymbol{\beta}_{n} \mathbf{n}_{t} \mathbf{n}_{ent}^{(k)} \mathbf{p}_{owcoder.com} \end{bmatrix}^{T} \mathbf{Project Exam Help}$$

$$X = \begin{bmatrix} 1 & x_1^{(1)} & \text{Add } \mathbf{W}_1 & \text{Chat powcoder} \\ \vdots & \ddots & \vdots \\ 1 & x_1^{(k)} & \dots & x_n^{(k)} \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_n \end{bmatrix} \qquad \boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(k)} \end{bmatrix}$$

$$\beta_* = (X^T X)^{-1} X^T y$$
 Linear coefficients for least square error

Example

Find a linear model to predict the exam grade given HW grade.

Student	HW Grade	Exam Grade
Assignment	t Project Ex	am Help
2	85	95
https://	pow&der.c	om 70
4	70	65
Add W	eChat power	coder ₇₀
	$\chi^{(i)}$	$y^{(i)}$

A linear model of 1 variable has 2 coefficients: β_0 , β_1

$$f(\mathbf{x}) = \beta_0 + \beta_1 \mathbf{x}$$

Recall:
$$\boldsymbol{\beta}_* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Example

HW Grade	Exam Grade
95	85 Assignmen 70 Metps:// 70 Add W
85	Assignmen
80	Assignment 70
70	% tps://
60	70
$x^{(i)}$	Add W y ⁽ⁱ⁾
eta_0 , eta_1	=?

 $Exam\ Grade = 26.78 + 0.64(HW\ Grade)$

Nonlinear models

You can do linear regression with more complex models: just reform your x matrix to have the appropriate columns:

Assignment Project Exam Help

$$\mathbf{x} = [x_1^2 \ x_1 \ x_1 x_2 \ x_2^2 \ x_2 \ \sin(x_1)]$$

https://powcoder.com

$$\hat{y} = \beta_1 x_1^2 + \beta_2 x_1 + \beta_3 x_1 x_2 + \beta_4 x_2^2 + \beta_5 x_2 + \beta_6 \sin(x_1)$$
Add We Chat powcoder

Regression in MATLAB

Use the backslash operator \ for linear regression:

With input data matrix x and output vector y, command:

command:
Assignment Project Exam Help
beta = x\y

will output a list of beta values such that:

Add WeChat powcoder

$$\hat{y} = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \cdots$$

You can also use **cftool** to open a graphical user interface for the curve-fitting toolbox

Artificial Neural Networks (ANNs)

When you don't know the structure of your function (e.g., which terms to include), ANNs offer an automated way

Neural Network Model

Neural Network Model

Find the set of $b_{i,j}$ and $w_{i,j}$ to minimize the square error

$$Error(b_{i,j}, w_{i,j}) = \sum_{i=1}^{k} (y^{(i)} - y_{out}(\mathbf{x}^{(i)}))^{2}$$

Neural Networks with MATLAB

MATLAB has an easy-to-use neural network toolbox: nftool

Example: Linear regression vs. ANN

Least-squares linear regression w/ second-order terms

Artificial Neural Network w/ radial basis functions (exact fit)

Kriging

Typical surrogate models have a prediction error, ε , which is assumed to be independent:

$$y(x) = f(x) + \varepsilon$$
Assignment Project Exam Help

Non matter independent, (e.g., linear, polynomial)

Independent, Comically distributed (i.i.d.) random error

Add WeChat powcoder

In kriging, ε is correlated with x:

$$y(x) = f(x) + Z(x)$$

Exact-fit error element that is a function of x (e.g., linear, polynomial)

Kriging

There are available software packages (e.g., ModelCenter) or public MATLAB codes for kriging implementation

https://www.mathworks.com/matlabcentral/fileexchange/?term=kriging

- Kriging go Ashiguarent Project Exam Help
 - Good for data from deterministic simulation models https://powcoder.com
 Bad for data with measurement error or noise

Figure 2.8. Kriging metamodels with different polynomials.

Surrogate modeling steps

1. Gather data

Sample the design space by efficiently choosing which "experiments" to run

2. Choose Assignment Project Exam Help

E.g., linear regression/terms-injarregression model, kriging, neural networks, etc.

3. Fit a function de Watchat powcoder Find best-fit parameters for function structure

4. Assess fitness

Measure how well the surrogate model fits the data

Visualizing error

- With 3 or more variables visualization is difficult
 - Can project to two dimensions
 - Can use eigenvectors to reduce dimensionality
- Fitness can be mathematically calculated
 - Standard error
 - Mean square error
 - Cross-validation

Right image: Samad, A., Choi, J. H., & Kim, K. Y. (2008). Blade Optimization of a Transonic Compressor Using a Multiple Surrogate Model. Transactions of the Korean Society of Mechanical Engineers B, 32(4), 317-326.

Left image: https://www.datadvance.net/product/macros/manual/6.5sp1/ images/initial model approximation.png

Fitness: R^2

Coefficient of determination

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

 $R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$ This is a measure of how well the model y_i fits compared to simply: Waing the lawerage value \bar{y} .

Add WeChat powcoder

Adjusted R² accounts for model complexity

$$R^2_{adj} = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

where *n* is the number of data points and *p* is the number of parameters in the model

Fitness: Cross-validation

- Divide the data set into n subsets
- 2. Fit a model using all but the *i*th subset
- 3. Use the Aiss y have the optest fit mess m Help
- 4. Repeat *n* times, average the results https://powcoder.com

Fitness often measured in terms of *mean square* error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

This is a common evaluation metric with exact-fit models

Some metamodeling considerations

- Outliers
- Underfitting
- Overfittingssignment Project Exam Help
- Training vs validation data https://powcoder.com
- Regularization

Add WeChat powcoder

Output

O

Outliers

Underfitting

Sampling size should be sufficient to capture the function behavior

Overfitting

- Overfitting captures the noise instead of the underlying function
- Unnecessary model complexity might also cause overfitting

Training vs Validation Data

 To overcome overfitting entire data set is separated into training and validation data

 Model is developed for training data Assignment Project Exam Help

Regularization

Can we find an optimal complexity for our model?

Consider the following linear regression problem Assignment Project Exam Help

$$Error(\beta) = \sum_{i=1}^{R} \frac{|\beta|}{powiopderagon}$$
Add WeChat powcoder
where $\mathbf{x} = [1, x, x^2, x^3, x^4 ..., x^n]^T$ complexity

Increasing λ will force to find simpler models

Metamodeling Steps (for ANNs)

- 1) If you do not have data already, sample the space using any sampling method, e.g., Latin hypercube
- 2) Plot data to general from the property of t
- 3) Normalize your data https://powcoder.com
- 4) Separate your data into training and validation/test (90% training, 10% validation (90% training)
- 5) Train your model using a metamodeling method, e.g. neural networks
- 6) If error is not good enough, either add more data or increase model complexity

Additional resources

Model fitting and regression in MATLAB (9-min video; includes importing Excel data, plotting 2-d, examining goodness of fit, using the "basic fitting" plot tool):

http://www.assity.hnennprojech Px AnT FRApfRNO

MATLAB Neural Network Toolbox: https://powcoder.com

http://www.mathdrlw.ee/hadproveettleg-started-with-neural-network-toolbox-68794.html

Kriging:

http://www2.imm.dtu.dk/~hbni/dace/

Summary

- Metamodeling is fitting a mathematical function to your data to speed up evaluations and optimization
- This involves four general steps:
 Assignment Project Exam Help
 Gather data (e.g., using a DOE)

 - Choose a furtipp: stputture degctine ar, polynomial, kriging, ANN)
 - Fit a function to the cathat powcoder
 - Assess fitness
- Watch out for outliers, underfitting, and overfitting

Workshop task

Use the DeJong function from the Yang 2010 paper: http://arxiv.org/pdf/1008.0549.pdf (if n-dimensional, choose n = 2)

- Sample the function

 - a. Using full factorial sampling (e.g., 4 x 4)
 b. Using an optimal Latin hypercube (e.g., 16 points)
- Fit regression materns de la transfer de la transfe structures and sample sizes) and measure the R² value and MSE
- Plot the surfaces Add W White the surfaces Add W White the surfaces Add W White the surface of t 3. metamodeling technique seems best
- If you have time, also fit metamodels using neural nets or kriging 4. and measure the cross-validated MSE
- 5. Summarize your findings – at the end we will meet as a class and hear from each of you: (1) which test functions you tried, (2) which sampling methods and (3) metamodels you used, and (4) what seemed to work

51

Example: Buried explosive tests

Example: Gather data

Test No.	Date	Charge DoB (in.)	Rod SoD (in.)	Peak Pressure (psi)	Pressure Integrated Impulse (lbs)	Rod Velocity Impulse (lbs)	Rod Peak Height Impulse (lbs)	Max Sand Vel. (in./s)	Min Sand Vel. (in./s)
1	02/17/07	0.39	1.58	-	-	1	-	33,643	29,381
2	02/23/07	0.39	1.58	-	-	ı	-	35,310	31,155
3	02/26/07	0.324	∮f ₽1	nment	Project	t Exam	Help	37,995	30,529
4	03/05/07	0.39	1.58	-		•		30,564	28,625
5	03/07/07	0.39	1.58	- , ,	-	ı	-	30,592	29,963
6	03/12/07	0.39	1.58			er.com	-	36,392	32,246
7	03/28/07	1.19	1.58	24,548.61	0.094182	0.077731	0.070941	-	-
8	03/30/07	1.19		30,075.39	2.079394	0.095737	0.087992	-	-
9	04/04/07	1.58	1.58	H 412.96	0.050029	Q.M84530	9.068442	-	-
10	04/06/07	1.58	1.58	28,879.74	0.059595	0.070374	0.06222	-	-
11	04/06/07	1.98	1.58	16,279.34	0.051739	0.08998	0.069285	-	-
12	04/09/07	1.98	1.58	15,819.47	0.049109	0.052141	0.074404	-	-
13	04/11/07	0	1.58	56,425.86	0.095317	0.132825	0.13815	-	-
14	04/13/07	0	1.58	53,399.48	0.151439	0.134871	0.137307	-	-
15	04/16/07	0.39	1.58	-	-	0.117417	0.135319	-	-
16	04/18/07	0.79	1.58	39,509.14	0.070097	0.067683	0.092077	-	-
17	04/19/07	0.39	1.58	36,232.06	0.095693	0.098512	0.124753	-	-
18	04/20/07	0.79	1.58	37,101.63	0.067398	0.089442	0.084167	-	-

Example: Choose and fit function

 Strain gauges output pressure plot

First spike is peak pressure
 Assignment Project Exam
 Plotted depth of burial (DoB)

vs. peak presshttps://powcoder.com

Acknowledgements

- These slides are modified from Steven Hoffenson's originally compiled slides for this course in 2017
- Much of this material came from Chapter 2 of the textbook, *Principles of Optimal Design*
- Some of the shape and ples came from Dr. Emrah Bayrak, Dr. Alex Burnap, and Dr. Namwoo Kang while they were at the University of Michigan
- Some of the slides and examples came from Dr.
 Michael Kokkolaras at McGill University