Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

2020. 01. 23

JoonHyung Park

deepjoon@kaist.ac.kr

Table of Contents

- Background
- Introduction
- Contributions
- Details of the model (DeepEnsemble)
 - Problem setup and High-level summary
 - Proper scoring rules
 - Training criterion for regression
 - Adversarial training
 - Ensembles
- Experimental results
- TODO

Background

- Goal: Quantifying predictive uncertainty in NNs
 - Bayesian NNs are the SOTA for estimating predictive uncertainty
 - Learn a distribution over weights
- Drawbacks of Bayesian NNs
 - Modifications to the training procedure
 - Computationally expensive

Non-Bayesian approach

Contributions

- Training <u>probabilistic NNs</u> using a proper scoring rule as the training criterion Modeling predictive distributions
 - Simple to implement
 - Requires few modifications to standard NNs
- Investigate the effect of two modifications to the training pipeline
 - Ensembles & Adversarial training
 - Well suited for distributed computation
 - Attractive for large-scale deep learning

Details of the model

- Problem setup
 - Regression problem
 - Dataset: $\mathcal{D} = \{x_n, y_n\} \ (n = 1, ..., N)$
 - We use a NN to model the probabilistic predictive distribution $p_{\theta}(y|x)$, where θ are the parameters of the NN
- Simple recipe for predictive uncertainty estimation
 - 1. Use a proper scoring rule as the training criterion
 - 2. Use adversarial training to smooth the predictive distributions
 - 3. Train an ensemble

Proper scoring rules

Measure the quality of predictive uncertainty (Higher is better)

S:
$$p_{\theta}$$
, $(x, y) \Rightarrow \mathcal{R}$

• Evaluates the quality relative to an event $y|x \sim q(y|x)$

True distribution on (y, x)

Expected scoring rule

$$S(p_{\theta},q) = \int q(y,x)S(p_{\theta},(y,x))dydx$$
 $S(p_{\theta},q) \leq S(q,q)$, with equality if and only if $p_{\theta}(y|x) = q(y|x)$ Loss: $\mathcal{L}(\theta) = -S(p_{\theta},q)$

- It turns out many common NN loss functions are proper scoring rules!
 - Maximizing log-likelihood: $S(p_{\theta}, q) = \log p_{\theta}(y|x)$
 - NLL is used as the loss function for regression: $\mathcal{L}(\theta) = -\log p_{\theta}(y|x)$

Training criterion for regression

- NNs usually output a single value $\mu(x)$, and the parameters are optimized to minimize the MSE
 - MSE does not capture predictive uncertainty
- We use a network that outputs two values in the final layer

Training criterion for regression

- Treating the observed value as a sample from a Gaussian distribution with the predicted mean $\mu_{\theta}(x)$ and variance $\sigma_{\theta}(x)$
- Minimize the NLL criterion using gaussian approximation

Adversarial training

- Adversarial examples
 - 'Close' to the original training examples
 - But examples are misclassified by the NN
- Fast gradient sign method
 - Fast solution to generate adversarial examples
 - $x' = x + \epsilon sign(\nabla_x \mathcal{L}(\theta, x, y))$
- Adversarial examples can be used to augment the original training set
 - By treating (x', y)

Ensembles

- Bagging
 - For parallel computing
 - Ensemble members are trained on different samples of the original training set
 All of training set (In this paper)
- Treat the ensemble as a uniformly-weighted mixture model
 - Gaussian mixture model
 - $M^{-1}\sum_{m=1}^{M}\mathcal{N}(\mu_{\theta_m}(x), \sigma_{\theta_m}^2(x))$ (M: # of NNs in ensemble)
- Mean and variance of a mixture
 - $\mu_*(x) = M^{-1} \sum_{m=1}^M \mu_{\theta_m}(x)$
 - $\sigma_*^2(x) = M^{-1} \sum_{m=1}^M (\sigma_{\theta_m}^2(x) + \mu_{\theta_m}^2(x)) \mu_*^2(x)$

Experimental Results

- Uncertainty evaluation
 - Test examples from known vs unknown classes
 - Train data/ Test data(known class): MNSIT data
 - Test data(unknown class): Same size as MNIST, however the labels are alphabets

(a) MNIST-NotMNIST

TODO: Experiment 3.2

- Reproduce the graphs of experiment 3.2
- Dataset (Done)
 - Consists of 20 training examples drawn as $y = x^3 + \epsilon$, $\epsilon \sim \mathcal{N}(0.3^2)$

Drawing graph(Done)

```
# Training a Gaussian MLP(single network) with NLL score rule
# TODO:Draw Fig1.2
elif args.fig == 2:

# Have to calculte predicted mean and var
# 'mean' have to be a numpy array with shape [100,1]
# 'var' have to be a numpy array with shape [100,1]
mean = np.random.randn(100,1)
var = np.random.randn(100,1)
draw_graph(x,x_set,y_set,mean, np.sqrt(var))
```

Calculate predicted mean and variance for 4 cases

https://github.com/JoonHyung-Park/DeepEnsemble

TODO: Experiment 3.2

Reproduce the experiment 3.2

[code]

Training data: x_set, y,set

Test data: x

Gray lines correspond to the predicted mean along with three standard deviations

- Training an ensemble of 5 networks with MSE
- Variance?
 - Obtain multiple points predictions and use the empirical variance of the networks' predictions as an approximate measure of uncertainty

Prediction mean (Network 1)

8.4	5.5	65.6	125.3	1.4
-----	-----	------	-------	-----

Prediction mean (Network 2)

7.9	6.1	64.3	121.6	0.8
-----	-----	------	-------	-----

Prediction mean (Network 3)

8.8	6.3	66.9	131.9	1.9

Predicted mean (Ensemble)

8.36 5.96 65.6 126.2 1.	36
---------------------------------	----

Standard deviation (Ensemble)

0.45	0.41	1.3	5.21	0.55

Training a Gaussian MLP (single network) with NLL score rule

Training a Gaussian MLP (single network) with NLL score rule & Adversarial training

Fast gradient sign method

- Fast solution to generate adversarial examples
- $x' = x + \epsilon sign(\nabla_x \mathcal{L}(\theta, x, y))$

Training a Gaussian mixture MLP (Deep Ensemble) with NLL & Adversarial training

Mean and variance of a mixture

•
$$\mu_*(x) = M^{-1} \sum_{m=1}^{M} \mu_{\theta_m}(x)$$

•
$$\sigma_*^2(x) = M^{-1} \sum_{m=1}^M (\sigma_{\theta_m}^2(x) + \mu_{\theta_m}^2(x)) - \mu_*^2(x)$$

Thank you!

Any Questions?

