Table 4.1
A Short Table of Fourier Transforms

	f(t)	$F(\omega)$	
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	a > 0
5	$t^{n}e^{-at}u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	a > 0
6	$\delta(t)$	1	
7	1	$2\pi\delta(\omega)$	
	$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
12	$\operatorname{sgn} t$	$\frac{2}{j\omega}$	
13	$\cos\omega_0 tu(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
14	$\sin \omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$	
15	$e^{-at}\sin\omega_0 tu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	a > 0
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0
17	rect $\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$	
18	$\frac{W}{\pi}\operatorname{sinc}\left(Wt\right)$	$\operatorname{rect}\left(rac{\omega}{2W} ight)$	
	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}$ sinc ² $\left(\frac{\omega\tau}{4}\right)$	
20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(rac{\omega}{2W} ight)$	
21	∞	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
	VC 294NSV	ADMINISTRAÇÃO DE VERTOS DE LA VIDA DE VERTOS D	

 $\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$

22 $e^{-t^2/2\sigma^2}$

Transform	Signal	Transform	ROC
1	δ(t)	1	Alls
2	u(t) .	1 8	Re(s) > 0
3	U(-t)	1 8	Re(s) < 0
4	$\frac{t^{n-1}}{(n-1)!}u(t)$	1 sn	Re(s) < 0
5	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	1 sn	Re(s) < 0
6	e ^{-αt} u(t)	1 s+α	Re(s) > - c
7	-e ^{-αt} u(−t)	$\frac{1}{s+\alpha}$	Re(s) < - c
8	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	Re(s) > - c
9	$-\frac{t^{n-1}}{(n-1)!}e^{-ct}u(-t)$	$\frac{1}{(s+\alpha)^n}$	Re(s) < - c
10	δ(t-T)	e ^{-sT}	Alls
11	[cos ω ₀ t]u(t)	$\frac{s}{s^2 + \omega_0^2}$	Re(s) > 0
12	[sin ω_0 t]u(t)	$\frac{\omega_0}{s^2 + \omega_0^2}$	Re(s) > 0
13	$\left[e^{-\alpha t}\cos\omega_0 t\right]u(t)$	$\frac{s+\alpha}{(s+\alpha^2)+\omega_0^2}$	Re(s) > - c
14	$\left[e^{-\alpha t}\sin\omega_0 t\right]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	Re(s) > -c
15	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s ⁿ	Alls
16	$u_{-n}(t) = \underline{u(t) * \cdots * u(t)}$	1 sn	Re(s) > 0

S.No.	Form of the rational function	Form of the partial fraction	
	$\frac{px+q}{(x-a)(x-b)}, a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$	
2.	$\frac{px+q}{(x-a)^2}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$	
	$\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$	
4.	$\frac{px^2 + qx + r}{(x-a)^2 (x-b)}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$	
5.	$\frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)}$	$\frac{A}{x-a} + \frac{Bx + C}{x^2 + bx + c},$	
	where $x^2 + bx + c$ cannot be factorised further		

Signal x[n]	z-Transform X(z)	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z >1
n u[n]	$\frac{z^{-1}}{(1-z^{-1})^2}$	z >1
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$-na^n u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$(\cos \omega_o n)u[n]$	$\frac{1-z^{-1}\cos\omega_o}{1-2z^{-1}\cos\omega_o+z^{-2}}$	z >1
$(\sin \omega_o n)u[n]$	$\frac{z^{-1}\sin\omega_o}{1-2z^{-1}\cos\omega_o+z^{-2}}$	z >1
$(a^n\cos\omega_o n)u[n]$	$\frac{1 - az^{-1}\cos\omega_{o}}{1 - 2az^{-1}\cos\omega_{o} + a^{2}z^{-2}}$	z > a
$(a^n \sin \omega_o n)u[n]$	$\frac{az^{-1}\sin\omega_o}{1-2az^{-1}\cos\omega_o+a^2z^{-2}}$	z > a

	signals	signals
Total energy of the nonperiodic signal $g(t)$ or $g(n)$	$E=\int\limits_{-\infty}^{\infty} g(t) ^2dt$	$E = \sum_{n=-\infty}^{\infty} g(n) ^2$
Average power of the nonperiodic signal $g(t)$ or $g(n)$	$P = \lim_{S o \infty} \Bigl(rac{1}{2S}\Bigr) \int\limits_{-S}^{S} g(t) ^2 dt$	$P = \left. \lim_{N o \infty} \! \left(rac{1}{2N} ight) \! \sum_{n = -\infty}^{\infty} \left g(n) ight ^2$

Continuous-time

Discrete-time

 $P = \left(rac{1}{T_0}
ight)\int\limits_{-T_0/2}^{T_0/2} |g(t)|^2 dt \qquad P = \left(rac{1}{N}
ight)\sum\limits_{n=0}^{N-1} \left|g(n)
ight|^2$

$$g(t)$$
 or $g(n)$

Average power of the periodic signal $g(t)$

or q(n)