Examen Extraordinario de Matemática Discreta Segundo Semestre. Curso 2005-2006

Nombre y apellidos: Grupo:	
1.	Demuestre que si G es un grafo conexo y su complemento no tiene ciclos de longitud tres entonces G tiene un camino de Hamilton.
2.	Clasifique los siguientes enunciados en verdadero (V) o falso (F) justificando adecuadamente en cada caso.
	Todo grafo regular de grado 8 tiene un ciclo de longitud al menos 9.
	Si en un grafo conexo cada arista participa en un número impar de ciclos entonces el grafo es euleriano.
	Para todo grafo G se cumple que $\chi(G) \cdot \chi(G^c) \geq n$.
3.	Sea G un grafo en el que todo ciclo tiene longitud mayor o igual que 5. Demuestre que si $\delta(G) \geq k$ entonces G tiene al menos $k^2 + 1$ vértices.
4.	Diseñe una máquina de Turing capaz de computar el reverso de una cadena sobre el alfabeto $\{a, b\}$. Por ejemplo, el reverso de la cadena ab es la cadena ba y el reverso de la cadena $abbbaab$ es la cadena $baabbba$.
5.	Sean $a, b \in \mathbb{N}$ dos valores constantes y sea la función primitiva recursiva $h : \mathbb{N}^2 \to \mathbb{N}$ Demuestre que la función $f : \mathbb{N} \to \mathbb{N}$ definida como:
	f(0) = a
	f(1) = b
	f(n+2) = h(n, f(n))

es también primitiva recursiva.