

### A. OVERVIEW

# 1. Learning objective

The **learning objective** of this lab is to understand how to dynamically exchange routing information between routers, and how to restrict user or system access to a particular object or system resource. Firstly, students will configure, observe, and troubleshoot the Routing Information Protocol<sup>1</sup> (RIP) and the Open Shortest Path First<sup>2</sup> (OSPF). Then, students build the policy lists that use the Access-Control-List (ACL) to grant or deny access to certain networks or resources.

#### 2. Practice Environment

- Practicing with physical networking devices
- Cisco Packet Tracer

<sup>&</sup>lt;sup>1</sup> Distance Vector Routing algorithm

<sup>&</sup>lt;sup>2</sup> Link State Routing algorithm

### **B. LAB TASKS**

### 1. Dynamic Routing theory

Before practicing, let's find the answer to the following questions:

- a. What is different between Classful and Classless?
- b. We usually use the command **no auto-summary** when configuring RIP. Please explain why we need to use this command. What will happen if we configure RIPv2 without that command?
- c. What is the C, L, and R (shown in Figure 1) stand for?
- d. Propose an ACL that prevents all hosts in network 192.168.10.0/24 access the internet via HTTP/HTTPS protocol.

```
R1# show ip route | begin Gateway
Gateway of last resort is not set

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, GigabitEthernet0/0
L 192.168.1.1/32 is directly connected, GigabitEthernet0/0
192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.2.0/24 is directly connected, Serial0/0/0
L 192.168.2.1/32 is directly connected, Serial0/0/0
R 192.168.3.0/24 [120/1] via 192.168.2.2, 00:00:24, Serial0/0/0
R 192.168.4.0/24 [120/1] via 192.168.2.2, 00:00:24, Serial0/0/0
R 192.168.5.0/24 [120/2] via 192.168.2.2, 00:00:24, Serial0/0/0
R1#
```

Figure 1: Example of the routing table

# 2. Dynamic routing protocol and Access Control List on physical networking devices



Figure 2: The network topology for Task 2



Giving the network topology as shown in the figure above and network address 172.(16+X%16).0.0/16 (with X standing for your group's ID).

### Requirements:

- **1.** Plan suitable subnets for LAN and WAN networks in detail and fill out to *Subnetting table* (refer to Table 1). VLSM method is recommended.
- **2.** Set the hostname for all devices.
- **3.** Set Banner Motd as "Warning: Authorized Access Only on Router Rx" (Rx is the name of Routers) for all Routes.
- **4.** Assign the IP address for all necessary interfaces of devices. You need to fill out this information in the *IP Assignment table* (refer to Table 2).
- **5.** Configure RIPv2 routing to all routers so that all hosts among networks can communicate with each other.
- **6.** Enable Tenet Remote Access on all routers.
- **7.** Deny access to PC1 from only LAN3.
- **8.** Allow access to LAN2 by default except for accessing from LAN3.
- **9.** Allow remote access to R2 through telnet protocol from only LAN1.

Please note that you should frequently save the Running-configuration to the Startup-configuration in case of unexpected device rebooting.

Table 1: Example of Subnetting Table

| Subnet | Network Address/CIDR | First IP Address | Broadcast Address |
|--------|----------------------|------------------|-------------------|
| LAN1   | 172.19.0.0           | 172.19.0.1       | 172.19.1.255      |
| LAN2   | 172.19.2.0           | 172.19.2.1       | 172.19.2.127      |
| LAN3   | 172.19.2.128         | 172.19.2.129     | 172.19.2.191      |
| WAN1   | 172.19.2.192         | 172.19.2.193     | 172.19.2.199      |
| WAN2   | 172.19.2.200         | 172.19.2.201     | 172.19.2.203      |

Table 2: Example of IP assignment table

| Device | Interface | IP Address   | Subnet Mask | Default<br>Gateway |
|--------|-----------|--------------|-------------|--------------------|
| R1     | Fa0/0     | 172.19.2.193 |             |                    |
| KI     | Fa0/1     | 172.19.0.1   |             |                    |
| R2     | Fa0/0     | 172.19.2.195 |             |                    |
| IV2    | Fa0/1     | 172.19.2.201 |             |                    |
| R3     | Fa0/0     | 172.19.2.1   |             |                    |
|        | Fa0/1     | 172.19.2.202 |             |                    |
| PC1    | NIC       |              |             |                    |
| PC2    | NIC       |              |             |                    |
| PC3    | NIC       |              |             |                    |

### 3. RIPv2 and Access Control List



Figure 3: The network topology for Task 3

**Requirements:** You are given the network topology as shown in the figure above and network address 172.(16+X%16).0.0/16 (with X standing for your group's ID).

- **1.** Plan suitable subnets for LAN and WAN networks in detail and fill out to *Subnetting table* (refer to Table 1). VLSM is recommended.
- 2. Set the hostname for all devices.
- **3.** Set Banner Motd as "Warning: Authorized Access Only on Router Rx" (Rx is the name of Routers) for all Routes.
- **4.** Assign the IP address for all necessary interfaces of devices. You need to fill out this information in the *IP Assignment table* (refer to Table 2).
- **5.** Configure RIPv2 routing to all routers so that all hosts among networks can communicate with each other.
- 6. Deny accessing LAN4 from PC0 using Standard Access List.
- **7.** All hosts in the LAN2 allow access to the LAN4 via HTTP/HTTPS protocol only.

Please note that you should frequently save the Running-configuration to the Startup-configuration in case of unexpected device rebooting.

### 4. OSPF and Access Control List



Figure 4: The network topology for Task 4

**Requirements:** You are given the network topology as shown in the figure above and network address 172.(16+X%16).0.0/16 (with X standing for your group's ID).

- **1.** Plan suitable subnets for LAN and WAN networks in detail and fill out to *Subnetting table* (refer to Table 1). VLSM is recommended.
- 2. Set the hostname for all devices.
- **3.** Set Banner Motd as "Warning: Authorized Access Only on Router Rx" (Rx is the name of Routers) for all Routes.
- **4.** Assign the IP address for all necessary interfaces of devices. You need to fill out this information in the *IP Assignment table* (refer to Table 2).
- **5.** Configure OSPF routing to all routers so that all hosts among networks can communicate with each other. Using ProcessID = 1 and Area = 0.
- **6.** Prevent access to the LAN3 from VLAN1.
- **7.** The FTP server is accessible from PC0 if and only if using FTP, SSH protocol.

Please note that you should frequently save the Running-configuration to the Startup-configuration in case of unexpected device rebooting.

## C. REQUIREMENTS

You are expected to complete all tasks in section B (Lab tasks). Advanced tasks are optional, and you could get bonus points for completing those tasks. We prefer you work in a team of four to get the highest efficiency.

Your submission must meet the following requirements:

- You need to submit a detailed lab report in .docx (Word Document) format, using the report template provided on the UIT Courses website.
- Either Vietnamese or English report is accepted, that's up to you. The report written in the mixing of multiple languages is not allowed (except for the untranslatable keywords).
- When it comes to programming tasks (require you to write an application or script), please attach all source-code and executable files (if any) in your submission. Please also list the important code snippets followed by explanations and screenshots when running your application in your

7

report. Simply attaching code without any explanation will not receive points.

Submit work you are proud of – don't be sloppy and lazy!

Your submissions must be your own. You are free to discuss with other classmates to find the solution. However, copying reports is prohibited, even if only a part of your report. Both reports of the owner and the copier will be rejected. Please remember to cite any source of the material (website, book,...) that influences your solution.

**Notice:** Combine your lab report and all related files into a single **ZIP file (.zip)**, name it as follow:

StudentID1\_StudentID2\_ReportLabX.zip