Uniwersytet Jagielloński w Krakowie

Wydział Fizyki, Astronomii i Informatyki Stosowanej

Wojciech Lepich

Nr albumu: 1146600

Rozpoznawanie cyfr przez sieć neuronową zaimplementowaną na układzie FPGA

Praca licencjacka na kierunku Informatyka

> Praca wykonana pod kierunkiem dr. Grzegorza Korcyla z Zakładu Technologii Informatycznych

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została na-
pisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obo-
wiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur z	wią-
zanych z uzyskaniem tytułu zawodowego w wyższej uczelni.	

Kraków, dnia	Podpis autora pracy

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Kraków, dnia	Podpis kierującego pracą

Spis treści

1	Teo	ria :
	1.1	Architektura FPGA
	1.2	Przetwarzanie obrazu
	1.3	Sieci neuronowe
2	Opi	s projektu (?)
	2.1	Zarys projektu
	2.2	Sieć neuronowa
	2.3	hls4ml
	2.4	Gstreamer
	2.5	Używanie sieci
	2.6	Część neuralnet
	2.7	Część gstsdxnet
	2.8	Małe podsumowanie
3	$\mathbf{W}\mathbf{y}_{1}$	niki i dyskusja
	3.1	Ewaulacja modelu
	3.2	Symulacja
	3.3	Dane rzeczywiste
4	Pod	sumowanie

1 Teoria

1.1 Architektura FPGA

Tutaj jakieś rzeczy o architekturze FPGA — pokrótce co to w ogóle jest.

1.2 Przetwarzanie obrazu

Formaty pikseli, jak są zbudowane, lorem ipsum.

1.3 Sieci neuronowe

Z czym się to je, jak działają, jak wygląda trenowanie

2 Opis projektu (?)

2.1 Zarys projektu

Jakich narzędzi korzystałem, co chcę osiągnąć, elo 420.

2.2 Sieć neuronowa

Jak jest zbudowana, jak uczona, dlaczego taka a nie inna; problemy z LeNet-5

2.3 hls4ml

A co to za framework i dlaczego taki fajny, dostosowanie precyzji z profiling Tutaj też dopisz o dostosowaniu sieci, tzn. o progu

2.4 Gstreamer

Do czego służy, jaki zbudowałem pipeline

2.5 Używanie sieci

Czyli synteza sieci i zrobienie z niej biblioteki statycznej "a"

2.6 Część neuralnet

Czytanie obrazu, podział na część luma i chroma, wywołanie funkcji sieci, zapis z powrotem, synteza do biblioteki dzielonej "so"

2.7 Część gstsdxnet

De facto plugin gstreamera, w którym są wywoływane funkcje z biblioteki dzielonej neuralnet.so,

2.8 Małe podsumowanie

3 Wyniki i dyskusja

3.1 Ewaulacja modelu

Wyniki z samego pythona z danymi testowymi z mnista

3.2 Symulacja

Tutaj wyniki z symulacji z danymi testowymi z mnista

3.3 Dane rzeczywiste

No i tutaj wyniki z kamerki. Myślę, że nie trzeba robić jakichś spisów wielkich, wystarczy opisać co dobrze odczytało, co źle, dlaczego, jakie sieć ma problemy, przygotowanie danych (zdjęcia!), jak poprawić skuteczność działania (LeNet xD)

4 Podsumowanie

W projekcie zostało zrobione to i to. Wyszło to tak i tak. Problem sprawiło tamto i owamto. Można to poprawić w ten sposób. Można część funkcjonalności z pipeline przenieść na fpga (sam pisałem, że przetwarzanie obrazu na fpga jest gicior).