Lecture # 7 10/13/2021

Last time

- Finished Ch2 and Cux converter exemple S.S. analysis of ideal converters

Read over next 1. week T. day - Start Ch 3
s.s. analysis w/ non-idealities

Logistics

- HW I colution posted

- It W 2 posted today, due Wed 10/20 11:59 pm PT.

- Closing Thoughts on Cuk conventer example:

Take stock:

Unknowns:
$$I_1, I_2, V_1, V_2$$
 (and do a brack of algebra to solve for # of equations = 4

After solving, we get:

$$V_{1} = \frac{\sqrt{3}}{D}$$

$$V_{2} = -\frac{D}{D'} V_{3}$$

$$I_{1} = -\frac{D}{D'} \left(-\frac{1}{2} - \frac{1}{2} \right)$$

$$I_{2} = \left(\frac{D}{D'} \right)^{2} \frac{\sqrt{3}}{R}$$

Conversion Rotio?

$$\mathcal{M}(D) = \frac{V_2}{V_2} = -\frac{D}{1-D}$$
Similar/identical
by the boost

- Recap of some basic converters

* Ided converter minics an adjustable xfmr.

Rules For 'reflecting' ckt elements through a xfmr

Mant equiv elements on other, side

Result after reflecting elements

- Including hoss Mechanisms

Repeat ch2 w/ lossy elements above.

Look C balance equs

Goal is to compute V & I. 2 unknowns

$$\frac{\mathbb{I}^{-\sqrt{R}}}{|\mathcal{I}|} = \delta = \left(\frac{\sqrt{1-\sqrt{R}}}{2} + \frac{\sqrt{1-\sqrt{R}}}{2} \right)$$

Clean up (1)

$$0 = V_{1}D - IR_{L}D - IR_{on}D$$

$$+ V_{2} - V_{3}B - I(R_{L} + R_{D}) + I(R_{L} + R_{D})D - V_{5} + V_{5}D - V_{7} + V_{7}D$$

$$= (1')$$

$$= V_{2} - IR_{L} - IR_{on}D - IR_{D}D' - V_{D}D' - V_{7}D' = 0$$

and (2)

Kninics a KUL loop

$$0 = \frac{\sqrt{V}}{R} + \sqrt{D} + \sqrt{D} + \sqrt{R} + \sqrt{R}$$

$$= \sqrt{D} + \sqrt{D} + \sqrt{R} = 0$$

Draw (1') KVL loop

Draw (2') KCL

- Combine into 2 coupled akts

