

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	xxxxxx
Project Title	Forecasting Economic Prosperity: Leveraging Machine Learning For GDP Per Capita Prediction
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	Structure: 55x15
Univariate Analysis	# Calculate mean, median, and mode for each numerical variable numerical_columns = data.select_dtypes(include=['number']).columns mean, values = data[numerical_columns].median() median_values = data[numerical_columns].median() mode_values = data[numerical_columns].mode().iloc[0] # mode() returns a DataFrame; use .iloc[0] to get the first mode # Print the results print("Mean values:\n", mean_values) print("Mean values:\n", median_values) print("\nMedian_values:\n", mode_values)

Mean values:	0.454470
Population	8.464170e+06
Area (sq. mi.)	1.538324e+05
Pop. Density (per sq. mi.)	1.098327e+02
Net migration	-6.529091e-01
Coastline (coast/area ratio)	
Phones (per 1000)	NaN
Arable (%)	2.500000e+01
Crops (%)	0.000000e+00
Climate	2.009091e+00
Birthrate	2.634509e+01
Deathrate	8.560727e+00
Agriculture	1.983636e-01
Industry	2.448182e-01
Service	5.480000e-01
GDP (\$ per capita)	4.883636e+03
dtype: float64	
Median values:	
Population	5548702.000
Area (sq. mi.)	65610.000
Pop. Density (per sq. mi.)	70.800
Net migration	-0.060
Coastline (coast/area ratio)	0.710
Phones (per 1000)	NaN
Arable (%)	25.000
Crops (%)	0.000
Climate	2.000
Birthrate	24.510
Deathrate	7.820
Agriculture	0.172
Industry	0.210
Service	0.555
GDP (\$ per capita)	2500.000
dtype: float64	

	Mode values: Population Area (sq. mi.) Pop. Density (per sq. mi.) Net migration Coastline (coast/area ratio) Phones (per 1000) Arable (%) Crops (%) Climate Birthrate Deathrate Agriculture Industry Service GDP (\$ per capita) Name: 0, dtype: float64	7502.000 413.000 3.600 0.000 0.000 NaN 25.000 0.000 2.000 18.790 10.310 0.010 0.110 0.684 1400.000
Bivariate Analysis	# Now you can plot the heatmap plt.figure(figsize=(12, 8)) sns.heatmap(data.corr(), annot=true, fmt=".2f") plt.title('Correlation Matrix') plt.show() Bivariate Analysis Bivariate Analysis	Tops Dal 20 Core Pol Do


```
# Convert all numeric columns that might have commas as decimal separators
                                         for col in data.columns:
Data Transformation
                                             if data[col].dtype == 'object':
                                               data[col] = pd.to_numeric(data[col], errors='coerce')
                                         # Fill any new NaN values that resulted from the conversion
                                         data = data.fillna(data.mean(numeric_only=True))
                                         categorical_columns = ['Country', 'Region'] # Example columns
                                         for col in categorical_columns:
                                            if col in data.columns:
                                                data[col] = LabelEncoder().fit_transform(data[col])
                                         if 'Region' in data.columns:
                                            data = pd.get_dummies(data, columns=['Region'], drop_first=True)
                                         scaler = StandardScaler()
                                         X_train_scaled = scaler.fit_transform(X_train)
                                         X test scaled = scaler.transform(X test)
                                         print("Scaled Training Data:")
                                         print(X train scaled)
                                         print("Scaled Test Data:")
                                         print(X_test_scaled)
                                         Scaled Training Data:
                                         [[-6.47219291e-01 -5.16195636e-01 -5.39040510e-01 4.69112293e-01
                                                                    nan 0.00000000e+00 0.00000000e+00
                                           -5.84388360e-01
                                            0.00000000e+00 6.86037311e-01 1.25574014e+00 4.02588627e-01
                                            1.13967408e+00 -1.27081909e+00]
Feature Engineering
                                          [ 2.68692521e+00 1.29694268e+00 -2.86256441e-01 -2.65921213e-01
                                            -5.24934457e-01
                                                                        nan 0.000000000e+00 0.000000000e+00
                                            0.00000000e+00 -5.13249239e-01 -8.80204430e-01 9.79452196e-02
                                            9.54727805e-01 -8.22694104e-01]
                                          [ 2.15343342e+00 -6.15791697e-02 8.63471870e-01 4.69112293e-01
                                            -5.84388360e-01
                                                                nan 0.00000000e+00 0.00000000e+00
                                            0.00000000e+00 4.11650414e-01 2.38766531e-01 1.30908852e+00
-2.81049550e-01 -9.36503624e-01]
                                          [-8.18309170e-01 -7.19631979e-01 2.09518420e+00 4.69112293e-01
                                                                        nan 0.000000000e+00 0.000000000e+00
                                            1.68791080e+00
                                            0.00000000e+00 1.02311185e+00 -9.42248275e-02 1.45769506e+00
                                          -1.71017982e+00 1.30460629e-01]
[-7.15940504e-01 -6.78200486e-01 4.05727746e-01 1.64666597e+00
                                                                       nan 0.000000000e+00 0.000000000e+00
                                           -4.81431602e-01
```


