Appendix:

A. PROOF

10

Here we will present the proof of Theorem 1. The proof of Theorem 2 is similar to the proof presented here, but is omitted due to want of space.

In the sequel, $\mathcal E$ is used to denote either the empty string or the empty expression. Its intended usage should be clear from the context. The notation α^k , where α is a string and k an integer, is used to represent the string obtained by repeating k times the string α . In particular, $\alpha^0 = \mathcal E$.

Theorem 1 The consistent PAE problem is NP-complete. Proof. Let POS and NEG be two sets of strings.

- Deciding whether or not a string is accepted by a PAE can be done in polynomial time. The size of the shortest PAE that is consistent with respect to $\langle POS, NEG \rangle$ is bounded by the sum of the lengths of the strings in POS. Therefore, this problem is in NP.
- To prove that this problem is NP-hard, SAT is reduced to the problem. Assume the alphabet $\sum = \{\$, 0, 1\}$.

Let F be a propositional formula in conjunctive normal form with clauses C_1 , C_2 ,..., C_m and variables V_1 , V_2 ,..., V_n .

For $1 \le i \le m$ and $1 \le j \le n$, let us define:

$$F_{ij} \begin{cases} \$10, \text{ if } V_{j} \text{ appears positively in } C_{i}; \\ \$01, \text{ if } V_{j} \text{ appears negatively in } C_{i}; \\ \$00, \text{ if } V_{j} \text{ does not appear in } C_{i}. \end{cases}$$

In a string \$01 and \$10 can be used to represent the logical values true and false, respectively. Thus for all $1 \le i \le m$, the string $F_{i1}F_{i2}...F_{in}$ encodes the only assignment of truth values to the variables, $V_1, V_2, ..., V_n$, which makes the clause C_i false. Moreover, define:

$$POS = \{ (\$0)^{n}, (\$1)^{n} \}$$

$$NEG = N_{1} \cup N_{2} \cup N_{3}$$

$$10 \qquad N_{1} = \{ \$^{n+1}, 0\$^{n}, 1\$^{n} \}$$

$$N_{2} = \{ \$^{k}010\$^{n-k}, \$^{k}101\$^{n-k} | 1 \le k \le n \}$$

$$N_{3} = \{ F_{i1}F_{i2}...F_{in} | 1 \le i \le m \}$$

The formula F is satisfiable if there is a PAE that is a consistent with respect to $\langle POS, NEG \rangle$.

Two PAEs, $E_{\rm t}$ = \$0*1* and $E_{\rm f}$ = \$1*0*, can be used to represent the logical values true and false, respectively. Given an assignment of truth values to the variables, $V_1, V_2, ..., V_n$, in the formula F, a PAE can be constructed,

 E_j $\left\{E_i, \text{ if the truth value assinged to } V_j \text{ is true;} \right\}$ $\left\{E_j, \text{ if the truth value assinged to } V_j \text{ is false.} \right\}$

So if the formula F is satisfiable, then there needs to be an assignment of truth values to the variables, $V_1, V_2, ..., V_n$, which satisfies F. It can be shown that if a PAE, E, is constructed as defined above, then E is consistent with respect to $\langle POS, NEG \rangle$.

Now suppose that there is a PAE, E, which is consistent with respect to $\langle POS, NEG \rangle$. Then it follows that $L(E) \supseteq POS$ and $L(E) \cap NEG=\emptyset$. Assuming that E is in a compact form in which the consecutive occurrences of 0* or 1* are collapsed into one, since the resulted expression will 10 still be equivalent to the original one. For instance, \$0*1* is equivalent to \$0*0*1*. Since $L(E) \supseteq POS$, a * operator must be attached to every occurrence of 0 and 1 in E. Because $L(E) \cap N_1 = \emptyset$, E needs to have the form of $\$\alpha_1\$\alpha_2...\$\alpha_n$, where each α_i is a sequence of 0* and 1* 15 only. Moreover, both 0* and 1* must appear at least once in each α_i . Because $L(E) \cap N_2 = \emptyset$, it follows that each α_i is either 0*1* or 1*0*. Therefore, an assignment of truth values to the variables, $V_1, V_2, ..., V_n$, can be obtained as defined above. Because $L(E) \cap N_3 = \emptyset$, it can be shown that 20 this assignment needs to satisfy the formula F that is in conjunctive normal form.

Thus, |POS| + |NEG| = O(mn). Therefore the problem is NP-hard.