Calculus I

Derivative of $ax^3 + bx^2 + cx + d$

Todor Milev

2019

Theorem (The Sum Rule)

If f and g are both differentiable, then

$$\frac{\mathsf{d}}{\mathsf{d}x}[f(x)+g(x)]=\frac{\mathsf{d}}{\mathsf{d}x}f(x)+\frac{\mathsf{d}}{\mathsf{d}x}g(x).$$

Proof.

Let
$$F(x) = f(x) + g(x)$$
.
Then $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$

$$= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$$

$$= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right]$$
Limit Law 1: $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$

$$= f'(x) + g'(x).$$

The Sum Rule can be extended to any number of summands. For instance, using the theorem twice, we get

$$(f+g+h)'=[(f+g)+h]'=(f+g)'+h'=f'+g'+h'.$$

By writing f - g as f + (-1)g and applying the Sum Rule and the Constant Multiple Rule, we get

Theorem (The Difference Rule)

If f and g are both differentiable, then

$$\frac{\mathsf{d}}{\mathsf{d}x}[f(x)-g(x)]=\frac{\mathsf{d}}{\mathsf{d}x}f(x)-\frac{\mathsf{d}}{\mathsf{d}x}g(x).$$

The Constant Multiple Rule, the Sum Rule, the Difference Rule, and the Power Rule can be combined to differentiate any polynomial.

Example (Derivative of a Polynomial)

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(3x^2 \right) + \frac{1}{8} (1) - (0)$
 $= 16x^{15} + 14\sqrt{3}x^6 - 12x^2 + \frac{1}{8}$.