

Técnicas de Programação I

Curso Superior de Tecnologia em Desenvolvimento de

Software Multiplataforma

Aula 04

Prof. Claudio Benossi

Estrutura de Decisão

Estrutura de Decisão

if ⇒ seleciona um única ação ou um grupo de ações.

```
if (condição) {
    instruções;
}
```

if/else ⇒ seleciona entre duas ações ou grupo de ações diferentes.

```
if (condição) {
    instruções 1;
}
else {
    instruções 2;
}
```


Conta

numero: string

saldo: double

Conta(n: String, s: double)

imprimeDados(): void

sacarValor(valor: double): void/
maiorSaldo(c: Conta): double

O valor só poderá ser retirado da conta caso exista saldo disponível, caso contrário mostre a mensagem "Saldo insuficiente"

Compara o saldo de duas contas e retorna o maior valor, se forem iguais, retornará o valor do objeto c


```
□ import javax.swing.JOptionPane;
     public class Conta {
        String numero;
        double saldo;
        //Construtor
 6
        Conta(String n, double saldo) {
 8
            numero=n;
            this.saldo=saldo;
10
```



```
🚳 Conta.java 🛛 🗡
Source History
               | 🧸 🗗 루 🖶 📭 | 🔗 😓 | 설 설 | 🧶 💷 🏨 🚅
         //métodos
11
12
          void imprimeDados() {
               JOptionPane.showMessageDialog(null, "Dados da Conta: " +
13
                        "\nNúmero: "+numero+
14
                        "\nSaldo: "+ saldo);
15
16
          void sacarValor(double valor) {
               if (valor>saldo) {
18
                   JOptionPane.showMessageDialog(null, "Saldo insuficiente");
19
20
               else{
                   saldo=saldo-valor;
23
24
25
            public double maiorSaldo(Conta c) {
                if(this.saldo > c.saldo)
26
                    return this.saldo;
                else
29
                    return c.saldo;
30
```

Fatec Zona Leste

```
History | 🚱 🖫 - 🔊 - | 🔾 🐶 🖶 🖫 | 🖓 😓 🕒 🖭 💇 🧉 |
     import javax.swing.JOptionPane;
     public class TesteConta {
         public static void main(String[] args) {
            Conta c = new Conta("1234", 1000.50);
            Conta c1 = new Conta("1222", 2050.45);
            c.imprimeDados();
            c.sacarValor(500.50);
            c.imprimeDados();
10
            c.sacarValor(700);
             JOptionPane.showMessageDialog(null, "Maior saldo: " + c.maiorSaldo(c1));
12
13
14
15
```

Fatec Zona Leste

```
□ import javax.swing.JOptionPane;
     public class TesteConta {
         public static void main(String[] args) {
            Conta c = new Conta("1234", 1000.50);
            Conta c1 = new Conta("1222", 2050.45);
            c.imprimeDados();
            c.sacarValor(500.50);
10
            c.imprimeDados();
                                     Mensagem
                                                     X
            c.sacarValor(700);
11
                                         Dados da Conta:
                                         Número: 1234
            JOptionPane.showMessageDi
                                                       ldo: " + c.maiorSaldo(c1));
                                         Saldo: 1000.5
13
                                             OK
14
15
```

Fatec Zona Leste

```
Conta.java X TesteConta.java X
              □ import javax.swing.JOptionPane;
     public class TesteConta {
 4
 5
          public static void main(String[] args) {
   Conta c = new Conta("1234", 1000.50);
             Conta c1 = new Conta("1222", 2050.45);
             c.imprimeDados();
             c.sacarValor(500.50);
10
             c.imprimeDados();
                                                           \times
                                         Mensagem
             c.sacarValor(700);
                                             Dados da Conta:
                                             Número: 1234
             JOptionPane.showMessageDi
                                                             ldo: " + c.maiorSaldo(c1));
                                             Saldo: 500.0
13
                                                  OK
14
15
```



```
Conta.java X TesteConta.java X
              import javax.swing.JOptionPane;
      public class TesteConta {
          public static void main(String[] args) {
             Conta c = new Conta("1234", 1000.50);
             Conta c1 = new Conta("1222", 2050.45);
             c.imprimeDados();
             c.sacarValor(500.50);
             c.imprimeDados();
10
                                                         X
                                        Mensagem
11
             c.sacarValor(700);
                                            Saldo insuficiente
12
             JOptionPane.showMessageDi
                                                           ldo: " + c.maiorSaldo(c1));
                                                OK
13
14
15
```



```
☐ import javax.swing.JOptionPane;
     public class TesteConta {
 4
         public static void main(String[] args) {
            Conta c = new Conta("1234", 1000.50);
            Conta c1 = new Conta("1222", 2050.45);
            c.imprimeDados();
 9
            c.sacarValor(500.50);
            c.imprimeDados();
10
                                                    \times
                                    Mensagem
11
            c.sacarValor(700);
                                        Major saldo: 2050,45
            JOptionPane.showMessageDi
                                                      ldo: " + c.maiorSaldo(c1));
                                            OK
13
14
```

Estrutura de Decisão Aninhada


```
if (condição1) {
    instruções 1
}
else{
    if (condição2) {
        instruções 2
    }
    else{
        instruções 3
    }
}
```

```
if (condição1) {
    if (condição2) {
        instruções1
     }
    else{
        instruções2
     }
}
else{
    instruções3
}
```


Boletim

n1: doublen2: double

media: double

Boletim(n1: double, n2: double)

imprimeBoletim(): void

calculaMedia(): void

verificaConceito(): string

Calcula a média: media=(n1+n2)/2

Retorna o conceito, conforme o valor da media, de acordo com a tabela ao lado


```
Boletim.java X
             □ import javax.swing.JOptionPane;
     public class Boletim {
         double n1;
         double n2;
         double media;
         //Construtor
        public Boletim(double n1, double n2) {
            this.n1 = n1;
            this.n2 = n2;
10
11
```



```
Boletim.java X
                                                                                                                                                                                                                                        - | <sup>1</sup> 및 <sup>1</sup> 등 <sup>1</sup> 등 | <sup>2</sup> 등 | <sup>2</sup> 일 일 | <sup>3</sup> | <sup>3</sup> | <sup>4</sup> 를 <mark>1</mark> | <sup>4</sup> |
  12
                                                                                                                                                                               //métodos
13
                                                                                                                                                                           void imprimeBoletim() {
  14
                                                                                                                                                                                                                                                      calculaMedia();
15
                                                                                                                                                                                                                                                      JOptionPane.showMessageDialog(null, "Dados do Boletim: " +
                                                                                                                                                                                                                                                                                                                                                                                                          "\nNota 1: "+n1+
16
                                                                                                                                                                                                                                                                                                                                                                                                         "\nNota 2: "+ n2 +
  17
                                                                                                                                                                                                                                                                                                                                                                                                         "\nMedia: " + media +
18
  19
                                                                                                                                                                                                                                                                                                                                                                                                         "\nConceito: " + verificaConceito());
  20
  21
                                                                                                                                                                            void calculaMedia() {
  22
                                                                                                                                                                                                                                                     media=(n1+n2)/2;
  23
```

```
Fatec
Zona Leste
```

```
Boletim.java X
                Q ₹ ₹ 🖶 📭 | ↑ 😓 % | ½ ½ | ◎ 🗆 | 😃 🚅
          void calculaMedia() {
21
22
               media=(n1+n2)/2;
23
           String verificaConceito() {
24
               String conceito="";
               if (media>=8 && media <= 10)
26
                    conceito="A";
27
               else if(media>=6)
28
                    conceito="B";
29
               else if(media>=4)
30
                    conceito="C";
31
32
               else
                    conceito="D";
33
               return conceito;
34
35
36
```


- É uma forma simples para se definir diversos desvios no código a partir de uma única variável.
- Usada quando se tem várias seleções com muitas alternativas.
- A partir da versão 7 permite teste com strings.
- O comando switch testa somente condições simples.


```
escolha (variável)
```

caso valor1:

Instruções1

caso valor2:

Instruções2

caso valorn:

InstruçõesN

senão

Instruções4

fim_escolha


```
switch (variável){
    case <valor1>:
       instruções 1;
                       break;
    case <valor2>:
       instruções 2;
                       break;
    case <valorn>:
       instruções n;
                       break;
    default: instruções
                       default;
```


Observações:

- Todas as declarações case devem conter valores de um mesmo tipo;
- O tipo da variável deve ser compatível com os valores das declarações case.
- A declaração default é opcional.
- O break finalize o caso, retornando a execução após o comando switch. Case o comando break não seja inserido, todos os outros cases serão testados e executados.

25

Exemplo:

```
🕅 Teste Switch Case.java 💢
                   Código-Fonte
           Histórico
     import java.util.Scanner;
     public class Teste Switch Case {
         public static void main(String[] args) {
             Scanner entrada = new Scanner(System.in);
             System.out.println("Entre com um número entre 1 e 4:");
             int num = entrada.nextInt();
              switch (num) {
                 case 1:
                     System.out.println("Você escolheu 1");
                    break:
12
                 case 2:
13
                     System.out.println("Você escolheu 2");
14
                     break:
15
                 case 3:
16
                     System.out.println("Você escolheu 3");
                     break:
18
                 case 4:
19
                     System.out.println("Você escolheu 4");
20
                     break:
                 default:
                     System.out.println("Número inválido");
23
```

Exercícios

01-) Crie um programa que solicite ao usuário informar o número referente ao mês e exibir o nome do mês de acordo com o número informado pelo usuário e caso o número seja < 0 ou > 12 exibir a mensagem de ERRO.

Exercícios

02-) Ler 3 números fracionários do teclado e informar se o primeiro é maior do que a soma dos dois últimos;

- 03-) Calcular a multa: Leia a velocidade de um carro e a velocidade máxima para a rua:
- 1. Informe 50 reais se estiver até 10km/h acima;
- 2. Informe 100 reais se estiver entre 11km/h e 30km/h acima;
- 3. Informe 300 reais se estiver acima de 31km/h acima;

Exercícios

04-) Ler 3 valores em qualquer ordem e escrever eles em ordem crescente;

05-) Escrever se um ano informado pelo usuário é bissexto ou não.

Um ano é bissexto quando é (divisível por 400) ou é (divisível por 4 e não por 100);

Encapsulamento de Dados

O encapsulamento é as vezes referido como ocultamento de informações. Os usuários dos objetos não conhecem sua constituição e os utilizam através dos métodos públicos.

O encapsulamento elimina dependências diretas na implementação, possibilitando a mudanças sem afetar outros sistemas que utilizem o objeto, desde que as assinaturas dos métodos não sejam alteradas.

Encapsulamento de Dados

CLASSE

métodos privados

dados privados

dados públicos (não recomendável)

Encapsulamento de Dados

- Podemos bloquear o acesso aos atributos da classe.
- Criamos métodos (set e get) para acessar os atributos, já que eles não são mais acessíveis diretamente.
- Nesses métodos, podemos "validar" o que estão tentando armazenar nos atributos.

- Há três modificadores de acesso: public, protected e private;
- Atributos e Métodos podem ter os três níveis de acesso.
- Elementos públicos podem ser acessados diretamente por qualquer outra classe, utilizando um ponto (.) após o nome da variável.
- Elementos privados e protegidos não podem ser acessados diretamente utilizando o ponto.

Private

O modificador de acesso private é o mais restritivo de todos, variáveis e métodos com esse modificador são visíveis somente dentro da definição da própria classe, acessando-o diretamente ou através de uma instância da mesma classe.

Protected

O modificador de acesso protected define que variáveis e métodos com esse modificador podem somente ser acessados por subclasses.

Public

O mais abrangente de todos os tipos de acesso, o modificador public declara que elementos com esse modificador são acessíveis de qualquer classe Java.

Default

Define que variáveis ou métodos podem somente ser acessados por classes do mesmo pacote.

Visibilidade de variáveis e métodos com o modificador public.

Visibilidade de variáveis e métodos com o modificador protected.

Visibilidade de variáveis e métodos com o modificador default.

Visibilidade de variáveis e métodos com o modificador **private**.

Exemplo

Pessoa

- nome: String

+ idade: int

renda: double

imprimeDados(): void

Legenda:

(-) indica private(#) indica protected(+) indica public

```
import javax.swing.JOptionPane;
public class Pessoa {
  //Atributos
  private String nome;
  public int idade;
  protected double renda;
  //métodos
  public void imprimeDados() {
     JOptionPane.showMessageDialog(null,"Nome:" +nome
          +"\nIdade: "+idade
          +"\nRenda: "+renda);
```

Obs: a ausência de sinal na frente do atributo indica que ele é **default**


```
public class TestePessoa {
  public static void main(String[] args) {
     Pessoa p1 = new Pessoa();
     p1.nome = "Camila"; //erro de acesso
     p1.idade = 30; //acesso bem sucedido
     p1.renda = 1700.55; // acesso bem sucedido
     p1.imprimeDados(); // acesso bem sucedido
```

Métodos de Acesso

- Servem como métodos de leitura/escrita aos atributos de classes
- Um método de leitura para um atributo deve ser chamado de getXxx (onde Xxx é o nome do atributo). Este método não recebe nada como parâmetro, e retorna o mesmo tipo do atributo.
- Já um método de gravação deve ser chamado setXxx, não retorna nada (geralmente), e recebe como parâmetro o valor que deve ser armazenado no atributo.

Exemplo

Pessoa

- nome: String

- idade: int

- renda: double

Pessoa()

Pessoa(n: String, i: int, r: double)

getNome(): String

getIdade(): int

getRenda(): double

setNome(String n): void

setIdade(int i): void

setRenda(double r): void

imprimeDados(): void

```
//Métodos de acesso
public String getNome() {
    return nome;
public int getIdade() {
    return idade;
public double getRenda(){
    return renda:
public void setNome(String n) {
     nome = n;
public void setIdade(int i) {
     idade = i:
public void setRenda(double r) {
     renda = r;
```

De acordo com a classe Funcionário abaixo, crie um construtor sem parâmetros (vazio) que deverá atribuir ao cargo o valor "assistente" e um outro construtor que recebe parâmetros correspondentes aos atributos.

Funcionario

- cracha: int

- salario: float

- cargo: String

Funcionario()

Funcionario(c: int, s: float, car: String)

//Métodos de acesso

calculaAumento(porcentagem: float)

calculaAumento(tempo: int)

Este método aplica a porcentagem de aumento no salário.

Este método soma R\$150,00 no salário para cada ano trabalhado (recebido por parâmetro).

Considere o diagrama UML abaixo e altere a classe para acrescentar os modificadores de acesso e os demais métodos necessários.

Em uma classe Java principal (com método main) crie 2 objetos, cada um deve ser instanciado por um construtor diferente. Para o objeto que utiliza o construtor com parâmetros, defina os valores dos atributos. Para o objeto que utiliza o construtor padrão, após a instanciação do mesmo, solicite ao usuário os valores da base e da altura e altere os valores dos atributos utilizando os métodos de acesso. Para ambos, imprima os dados e sua área.

Triangulo
- base: double - altura: double
Triangulo() Triangulo(base: double, altura: double) getBase(): double setBase(base: double): void getAltura(): double setAltura(altura: double): void calculaArea(): double imprimeDados(): void

area = base*altura/2

Torneio

- nome: string

- idade: int

Torneio(nome: string, idade:

int)

getNome(): string

getIdade (): int

setNome(n: string): void

setIdade(i: int): void

verificaCategoria(): string

imprimeDados(): void

- a) Crie os sets e gets para cada um dos atributos;
- b) Crie um método imprimirDados que imprime o estado do objeto inclusive sua categoria;
 - O método verificarCategoria que deverá retornar qual a categoria do atleta baseado na tabela abaixo:

Categoria	Idade
Infantil	5 a 7
Juvenil	8 a 10
Adolescente	11 a 15
Adulto	16 a 30
Sênior	Acima de 30

Crie uma classe de nome Vendedor conforme diagrama e criar classe com void main para instanciar objetos:

Vendedor

vendas: floatsalario: floatnome: String

- falta: int

Vendedor (v:float, s:float, n:String, f: int)

setVendas(v: float): void

getVendas(): float

setSalario(s:float):void

getSalario(): float

setNome(n:string): void

getNome() : string
setFalta(f: int): void

getFalta(): int

imprimirDados(): void
calcularSalario(): void
calcularComissao(): float
descontoFalta(): float

- a) Crie os sets e gets para cada um dos atributos;
- b) Crie um método imprimirDados que imprime o estado do objeto;
- c) O método calcularComissao deverá retornar o valor da comissão, conforme as regras a seguir:
- i) venda igual ou acima de 1.000 e menor que 2.000 bônus de 10% sobre o valor das vendas.
- ii) venda maior ou igual a 2.000 bônus de 15% sobre o valor das vendas.
- d) O método desconto Falta deverá calcular o desconto das faltas conforme o critério: desconto=(salario/30)*falta
- e) O método calcularSalario deverá atender ao critério:

salario=(salario+comissao-descontoFalta)

Novo Projeto

		Name and Loca	eps
	Aula04_Exerc_04	Project Name:	Choose Project Name and Location
Browse	_llas\UNICSUL\Sistemas Cliente Servidor\exemplos\WEnergiaEletrica	Project Location:	name and Education
	emas Cliente Servidor\exemplos\WEnergiaEletrica\Aula04_Exerc_04	Project Folder:	
	Aula04_Exerc_04	Artifact Id:	
	com.mycompany	Group Id:	
	1.0-SNAPSHOT	Version:	
(Optional)	com.mycompany.aula04_exerc_04	Package:	

New Java Class		×
Steps	Name and L	Location
Choose File Type Name and Location	Class Name:	Vendedor
	Project:	Aula04_Exerc_04
	Location:	Source Packages ∨
	Package:	com.mycompany.aula04_exerc_04 ~
	Created File:	$\label{lem:trica-Aula04_Exerc_04\src} trica \Aula04_exerc_04\src\main\java\com\mycompany\aula04_exerc_04\Vendedor.java$
		< Back Next > Finish Cancel Help

Vamos limpar o código

```
* To change this license header, choose License Headers in Project Properties.
      * To change this template file, choose Tools | Templates
      * and open the template in the editor.
     package com.mycompany.aula04 exerc 04;
10
      * @author claud
11
      * /
12
     public class Vendedor {
13
14
```



```
| [P] | [B] - [B] - [C] 
                                      package com.mycompany.aula04 exerc 04;
                                       // importando biblioteca que possibilita a criação de uma caixa de dialogo
                                       // padrão que ou solicita um valor ou retorna uma informação
                                     import javax.swing.JOptionPane;
          6
                                       public class Vendedor {
                                                                 private float vendas;
                                                                 private float salario;
                                                                 private String nome;
  10
   11
                                                                 private int falta;
  12
```

Fatec

Vamos criar os métodos de acesso

```
Vendedor.java ×
                  - [역 등 문 등 다 | 중 🕹 등 | 설 설 | 🙃 🖃 🏝 교
        package com.mycompany.aula04 exerc 04;
       // importando biblioteca que possibilit
       // padrão que ou solicita um valor ou re
    □ import javax.swing.JOptionPane;
       public class Vendedor {
             private float vendas;
             private float salario;
             private String nome;
             private int falta;
12
13
        Generate
        Constructor...
15
        Logger...
        Getter...
16
        equals() and hashCode()...
        toString()...
        Delegate Method...
        Override Method...
        Add Property...
        Call Web Service Operation...
        Generate REST Client...
```


Getter and Setter ...

```
package com.mycompany.aula04 exerc 04;
  // importando biblioteca que possibilit
  // padrão que ou solicita um valor ou re
import javax.swing.JOptionPane;
  public class Vendedor {
       private float vendas;
       private float salario;
       private String nome;
       private int falta;
   Generate
   Getter...
   Delegate Method...
   Override Method...
   Add Property...
   Call Web Service Operation.
   Generate REST Client...
```

Generate
Constructor
Logger
Getter
Setter
Getter and Setter
equals() and hashCode()
toString()
Delegate Method
Override Method
Add Property
Call Web Service Operation
Generate REST Client

Selecione os atributos e

0 encapsulamento

Pronto, métodos criados ...

```
public class Vendedor {
         private float vendas;
         private float salario;
         private String nome;
10
         private int falta;
11
12
         public float getVendas() {
13
             return vendas;
15
16
         public void setVendas(float vendas) {
             this.vendas = vendas;
18
19
20
         public float getSalario() {
             return salario;
23
24
         public void setSalario(float salario) {
25
              this.salario = salario;
```


Vamos criar o método construtor

Selecione os parâmetros necessários para construir um objeto


```
public class Vendedor {
         private float vendas;
 8
         private float salario;
10
         private String nome;
         private int falta;
11
12
         public Vendedor(float vendas, float salario, String nome, int falta) {
13
14
            this.vendas = vendas;
            this.salario = salario;
15
16
            this.nome = nome;
17
            this.falta = falta;
18
```


Vamos criar um método para exibir os dados

```
- | Q 주 문 급 [ | A & B | 설 설 | 0 💷 🚅
          public void setFalta(int falta) {
48
49
              this.falta = falta;
50
51
52
          void imprimirDados() {
53
              JOptionPane.showMessageDialog(null, "Dados do Vendedor: " +
                       "\nNome: " + nome +
54
                       "\nVendas: " + vendas +
55
                       "\nSalário: " + salario +
56
                       "\nFaltas: " + falta);
57
58
```


Criar um método para calcular a comissão

```
59
         float calculaComissao() {
60
61
             if (vendas > 1000 && vendas < 2000) {</pre>
62
                 return vendas*0.10f;
63
64
65
             else{
                 if (vendas \geq 2000) {
66
                     return vendas*0.15f;
67
68
                 else return 0;
69
70
```


Criar um método para calcular o Salário

7 Fatec Zona Leste

Vamos criar uma classe para testar

Classe TesteVendedor

Vamos limpar o código

```
Source History 🔯 👼 - 👼 - 💆 🔁 🔁 📮 🖟 😓 🔁 🛂 💁 🔘 🕮 🚅
      * To change this license header, choose License Headers in Project Properties.
      * To change this template file, choose Tools | Templates
      * and open the template in the editor.
     package com.mycompany.aula04 exerc 04;
      * @author claud
10
11
     public class TesteVendedor {
13
14
```


Vamos fazer um teste com dados fixos...

```
package com.mycompany.aula04 exerc 04;
   public class TesteVendedor {
       public static void main(String[] args) {
          Vendedor v1 = new Vendedor(1500f, 500f, "Fulano", 0);
          v1.calcularSalario();
          v1.imprimirDados();
```


Resultado!

Vamos analisar o seguinte problema e implementar uma solução para o mesmo usando Java

- Uma empresa localizada na zona leste de São Paulo consome 100 KWh por mês;
- Após ter negociado um contrato com uma grande empresa, estima-se que nos próximos 12 meses terá um acréscimo mensal na sua conta de 100 KWh;
- Então o diretor da empresa solicitou para o analista que elaborasse um sistema que através dele fosse capaz de proporcionar uma estimativa financeira de quanto será o custo de energia elétrica por mês;

Para tanto será preciso entender as seguintes regras do negócios:

A. FORNECIMENTO = Consumo * tarifa, ou seja KWh x 0.28172;

B. ICMS = Se o consumo for até 200 KWh a alíquota é de 12% e o fator de multiplicação é = 0.136363. Caso o consumo seja superior a 200 KWh a alíquota é de 25% e o fator de multiplicação é = 0.3333333.

O valor do ICMS é o fator de multiplicação * o valor do fornecimento;

Imposto sobre Circulação de Mercadorias e Prestação de Serviços

c. COFINS = A alíquota é de 5,033%. Se o consumo dor até 200 KWh o fator de multiplicação é = 0.0614722 e caso o consumo seja superior a 200 KWh o fator de multiplicação é = 0.0730751.

O valor do COFINS é o fator de multiplicação * o valor do fornecimento;

Contribuição para o Financiamento da Seguridade Social é uma contribuição federal brasileira

PIS/PASESP = A alíquota é de 1,0927%. Se o consumo dor até 200 KWh o fator de multiplicação é = 0.013346 e caso o consumo seja superior a 200 KWh o fator de multiplicação é = 0.0158651.

O valor do PIS/PASESP é o fator de multiplicação * o valor do fornecimento;

O Programa de Integração Social e o Programa de Formação do Patrimônio do Servidor Público

- E. ICMS sobre COFINS = é a multiplicação dos fatores do COFINS, ICMS e do valor do fornecimento;
- F. ICMS sobre PIS/PASES = é a multiplicação dos fatores do PIS/PASESP, ICMS e do valor do fornecimento;
- G. FATURA = (Fornecimento + ICMS + COFINS + PIS/PASESP + ICMS_COFINS + ICMS_PIS_PASESO);

Fator de multiplicação é gerado pela cobrança ilegal de imposto sobre o imposto por parte da concessionária de energia elétrica.

$$1 \text{ CV} = 736 \text{ W}$$

$$P_{\text{mec}} = 736 \times 10 = 7360 \text{ W}$$

$$\eta(\%) = P_{\text{mec}} \times 100$$

$$P_{\text{elétrica}} = \frac{7360}{90} \times 100 = 8177,8 \text{ W}$$

Nossa tela:

Efetuar o Calculo da Energia Elétrica

Nossa tela com Resultado:

"Nada na vida deve ser temido, somente compreendido. Agora é hora de compreender mais para temer menos"

Marié Curié

Obrigado!

Se precisar ...

Prof. Claudio Benossi

Claudio.benossi@fatec.sp.gov.br

