

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

Segundo examen parcial

⇒ Hora de entrega: 12h25.

Apellido y nombre:

Legajo: DNI: Comisión: Carrera:

- 1. Determine la veracidad de las siguientes afirmaciones, justificando adecuadamente.
 - (a) Si la función f es impar, con $Dom(f) = \mathbb{R}$ y $\lim_{x \to +\infty} f(x) = 3$, entonces $\lim_{x \to +\infty} f(x) = -3$.
 - (b) La función $g(x) = \frac{x^2 4x + 4}{x^2 2x}$ tiene una raíz en el intervalo [1,3].
 - (c) La ecuación $y=\frac{\pi+\sqrt{3}}{2}-\frac{x}{2}$ corresponde a la recta tangente a la gráfica de la función $\cos(x)$ en el punto de abscisa $a=\frac{\pi}{6}.$
 - (d) La función $h(x) = \frac{x^2 + x 6}{x^2 4}$ tiene una discontinuidad inevitable de salto infinito en a = 2.
- 2. Sea

$$f(x) = \begin{cases} \frac{\operatorname{sen}(a^2 \operatorname{sen}(x))}{x}, & \text{si } x \neq 0, \\ a+1, & \text{si } x = 0. \end{cases}$$

- (a) Encuentre todos los valores de $a \in \mathbb{R}$ para los cuales f es una función continua en x = 0.
- (b) Para los valores hallados en el ítem anterior, obtener todas las asíntotas de f.
- 3. Determine todos los puntos de continuidad, justificando adecuadamente, y, de existir, clasifique las discontinuidades de la función

$$g(x) = \left\{ \begin{array}{ll} \displaystyle \frac{\sqrt{x}-2}{x-4}, & \text{si } x \in [0,4) \cup (4,+\infty), \\[0.2cm] \displaystyle \frac{x \cos(x) - x}{x^2}, & \text{si } x \in (-\infty,0). \end{array} \right.$$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

Segundo examen parcial

⇒ Hora de entrega: 12h25.

Apellido y nombre:

Legajo: DNI: Comisión: Carrera:

- 1. Determine la veracidad de las siguientes afirmaciones, justificando adecuadamente.
 - (a) Si la función f es par, con $\mathrm{Dom}(f)=\mathbb{R}$ y $\lim_{x\to -\infty}f(x)=3$, entonces $\lim_{x\to +\infty}f(x)=3$.
 - (b) La función $g(x) = \frac{x^2 + 4x + 4}{x^2 + 2x}$ tiene una raíz en el intervalo [-3, -1].
 - (c) La ecuación $y=\frac{\sqrt{2}-\pi}{4}-\frac{\sqrt{2}}{2}x$ corresponde a la recta tangente a la gráfica de la función $\cos(x)$ en el punto de abscisa $a=\frac{\pi}{4}.$
 - (d) La función $h(x)=\frac{x^2-x-6}{x^2-9}$ tiene una discontinuidad inevitable de salto infinito en a=3.
- 2. Sea

$$f(x) = \begin{cases} \frac{2 \operatorname{sen} (a \operatorname{sen} (x))}{x}, & \text{si } x \neq 0, \\ 2 - a^2, & \text{si } x = 0. \end{cases}$$

- (a) Encuentre todos los valores de $a \in \mathbb{R}$ para los cuales f es una función continua en x = 0.
- (b) Para los valores hallados en el ítem anterior, obtener todas las asíntotas de f.
- 3. Determine todos los puntos de continuidad, justificando adecuadamente, y, de existir, clasifique las discontinuidades de la función

$$g(x) = \left\{ \begin{array}{ll} \frac{\sqrt{x}-1}{x-1}, & \text{si } x \in [0,1) \cup (1,+\infty), \\ \\ \frac{x\cos(x)-x}{2x^2}, & \text{si } x \in (-\infty,0). \end{array} \right.$$

Av. Pellegrini 250. Rosario +54 0341 - 480 2649 internos 216 - 119

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

Segundo examen parcial

⇒ Hora de entrega: 12h25.

Apellido y nombre:

Legajo: DNI: Comisión: Carrera:

- 1. Determine la veracidad de las siguientes afirmaciones, justificando adecuadamente.
 - (a) Si la función f es impar, con $\mathrm{Dom}(f)=\mathbb{R}$ y $\lim_{x\to -\infty}f(x)=+\infty$, entonces $\lim_{x\to +\infty}f(x)=-\infty$.
 - (b) La función $g(x)=\frac{x^2-2x+1}{x^2-1}$ tiene una raíz en el intervalo [0,2].
 - (c) La ecuación $y=\frac{\sqrt{3}-\pi}{2}+\frac{x}{2}$ corresponde a la recta tangente a la gráfica de la función $\mathrm{sen}(x)$ en el punto de abscisa $a=\frac{\pi}{3}$.
 - (d) La función $h(x) = \frac{x^2 7x + 12}{x^2 16}$ tiene una discontinuidad inevitable de salto infinito en a = 4.
- 2. Sea

$$f(x) = \begin{cases} \frac{\operatorname{sen}(a \operatorname{sen}(x))}{x}, & \text{si } x \neq 0, \\ a^2 - 2, & \text{si } x = 0. \end{cases}$$

- (a) Encuentre todos los valores de $a \in \mathbb{R}$ para los cuales f es una función continua en x = 0.
- (b) Para los valores hallados en el ítem anterior, obtener todas las asíntotas de f.
- 3. Determine todos los puntos de continuidad, justificando adecuadamente, y, de existir, clasifique las discontinuidades de la función

$$g(x) = \left\{ \begin{array}{ll} \displaystyle \frac{\sqrt{x} - 3}{x - 9}, & \text{si } x \in [0, 9) \cup (9, +\infty), \\[0.2em] \displaystyle \frac{2x \cos(x) - 2x}{r^2}, & \text{si } x \in (-\infty, 0). \end{array} \right.$$

Av. Pellegrini 250. Rosario +54 0341 - 480 2649 internos 216 - 119