Theoretical Computerscience - Summary

WS 24/25

Contents

1	Wor	rds	3			
2	Regular Languages					
3	3 Regular Expressions					
4	Con	nmon Proof Techniques	6			
	4.1	Pumping Lemma	6			
		4.1.1 Example	6			
	4.2	Myhill Nerode	6			
		4.2.1 Example	6			
5	Useful Proofs					
	5.1	Regular Languages	7			
		5.1.1 Finite Set	7			
		5.1.2 Finite Automaton	7			
		5.1.3 Regular Expression	7			
	5.2	Non-Regular Languages	8			
Index						

1 Words

A word w (also called String) has length l and consists of symbols $\sigma \in \Sigma$. The empty word ε has length 0.

Tim	Sch	lachter	(7039326)

2 Regular Languages

3 Regular Expressions

A regular expression always describes a regular language. If we can build a regular expression E, then $L(E) \in \mathsf{REG}$.

4 Common Proof Techniques

- 4.1 Pumping Lemma
- 4.1.1 Example
- 4.2 Myhill Nerode
- 4.2.1 Example

5 Useful Proofs

5.1 Regular Languages

5.1.1 Finite Set

Exercise:

Show that the following language is regular over the alphabet $\{0,1\}$.

 $L = \{x \mid x \text{ is prime and } x < 1'000'000'000\}$

Solution:

Since there are only finitely many prime numbers between 0 and 1'000'000'000, the set of the words that are accepted by L is finite and thus the language is regular.

5.1.2 Finite Automaton

Exercise:

Show that the following language is regular over the alphabet $\{0,1\}$.

$$L = \{0^n 10^m \mid n, m \in \mathbb{N}\}$$

Solution:

Since we can describe the language L by the finite automaton given above, the language is regular.

5.1.3 Regular Expression

Theoretical Computerscience - Summary	Tim Schlachter (7039326)
ra N. D. I. I	
5.2 Non-Regular Languages	

Index

Words, 3

```
Common Proof Techniques, 6
Myhill Nerode, 6
Example, 6
Pumping Lemma, 6
Example, 6

Regular Expressions, 5
Regular Languages, 4

Useful Proofs, 7
Non-Regular Languages, 8
Regular Languages, 7
Finite Automaton, 7
Finite Set, 7
Regular Expression, 7
```