

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of:

Toshihisa YOKOYAMA, Ken-ichi NODA, Katsuhiro IMAI

and Minom IMAEDA

Ser. No.: 09/854,924

Group Art Unit: 1765

Filed: May 14, 2001

Examiner:

Song, M.

Confirmation No.: 7936

PROCESS AND APPARATUS FOR PRODUCING AN OXIDE SINGLE

CRYSTAL

RIILE 132 DECLARATION OF KATSUHIRO IMAI

I, Katsuhiro IMAI, hereby declare and state that:

- I received a Doctor of Science degree in Mineralogy in March, 1993 from the University of Tokyo.
- 2. I have been employed by NGK Insulators, Ltd., the assignee of the above identified application, since April, 1993. During my employment with NGK, I have been involved with research and development of: single crystal materials at the Research Laboratory of NGK Insulators, Ltd., from April, 1993.
- I have reviewed the prosecution history of the above-identified application, 3. particularly the Final Office Action mailed January 15, 2003 and the Advisory Action mailed March 28, 2003. I have also reviewed Imaeda et al. and Ciszck et al., the applied prior art of record.

- 4. In the Advisory Action, the Examiner is taking the position that Applicants have not provided evidentiary support for the arguments that: 1) silicon crystals typically have a higher coefficient of thermal conductivity compared to that of oxide single crystals; and 2) silicon crystals typically have a lower coefficient of thermal expansion compared to that of oxide single crystals.
- Kisohen II (Handbook of Chemistry, Fundamental Chemistry Volume II), 4th edition,
 Maruzen, Tokyo (in Japanese), a data sheet obtained from the INRAD, Inc., website
 http://www.inrad.com/pdf/Inrad_datasheet_LNB.pdf (a printout of which is attached hereto).
 oxide single crystals typically have a coefficient of thermal conductivity of 4W/m·K and
 coefficients of thermal expansion of 14.1x10⁻⁶/K(//a) and 4.1x10⁻⁶/K(//c), whereas silicon
 crystals typically have a coefficient of thermal conductivity of 148W/mK and a coefficient of
 thermal expansion of 4.15X10⁻⁶/K. Therefore, those of ordinary skill in the art understand
 that silicon crystals have a higher coefficient of thermal conductivity and a lower coefficient
 of thermal expansion in comparison to oxide single crystals.
- 6. The Imacda et al. reference relates to oxide single crystals and that reference correctly recognizes that it is undesirable to have too high of a cooling rate after growing the oxide single crystals. Although Imacda et al. do not specifically address cooling oxide single crystals at the liquid-solid crystal interface, based on the disclosure in Imacda et al., I would also conclude that one should not use a cooling gas to directly cool the oxide single crystal liquid-solid crystal interface. This is because the temperature at the liquid-solid crystal interface is necessarily higher than the temperature of the grown crystal body, and thus, blowing a cooling gas directly on the oxide single crystal solid-liquid crystal interface

would necessarily produce a greater rate of temperature change at the hotter liquid-solid crystal interface than would be realized if the same cooling medium were blown on the cooler crystal body. Therefore, for the same reasons that it is undesirable to have too high of a temperature gradient in the grown crystal body after crystal growth, as specifically disclosed by Imaeda et al., it is also undesirable to have too high of a temperature gradient at the liquid-solid crystal interface.

- step of directing a cooling medium onto the liquid-solid crystal interface portion. Ciszek's method is successful because of the relatively higher coefficient of thermal conductivity and the relatively lower coefficient of thermal expansion compared to those of oxide single crystals (see paragraph 5 above). On the other hand, blowing a cooling medium onto the liquid-solid crystal interface of Imaeda's oxide single crystal would not necessarily produce the benefits disclosed in Ciszek, because of the relatively lower coefficient of thermal conductivity and the relatively higher coefficient of thermal expansion of oxide single crystals. Therefore, skilled artisans would not conclude that oxide single crystals could withstand Ciszek's liquid-solid crystal interface cooling treatment, which, again, is designed for silicon crystals, because oxide single crystals have a lower coefficient of thermal conductivity and a higher coefficient of thermal expansion in comparison to silicon crystals.
- 8. Based on my academic credentials and work experience, I consider myself to be one of ordinary skill in the art. The claimed invention was not obvious to me at the time it was made. Nor do I believe that the claimed invention would have been obvious to others of ordinary skill in the art absent our discovery.

9. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

April 9, 2003
Date

Katsuhiro Imai

Lithium Niobate (LINbO₂)

PHYSICAL PROPERTIES

Chemical Formula

LiNbO₃ congruently melting¹

Crystal Symmetry and Class

trigonal, R3c

Point Group

3ті

Lattice Constants² a = 5.15052(6) Åc = 13.86496(3) A

Density²

4.648(5) g/cm³

Moh's Hardness

Fracture Toughness³

0.67 MPam^{1/2}

1.07 MPam^{1/2} x-face :

1.17 MPam^{1/2} y-face

Elastic Compliance⁴ at Constant Polarization (Sp) and at Constant Field (SE) and Temperature Dependence⁵

(⊤Pa) ⁻⁷	(TPa)-1	(10 ⁻⁴ /°K)
Se11= 4.75	S _{E11} = 5.78	$(1/S_{E11})dS_{E11}/dT=1.66$
S _{P12} = -0.50	S _{E12} = - 1.01	$(1/S_{E12})dS_{E12}/d1=0.28$
Sp12= -1.20	S ₅₁₃ = -1.47	$(1/S_{E13})dS_{E13}/dT=1.94$
S _{P14} = 1.02	S _{E14} = -1.02	$(1/S_{E14})dS_{E14}/dT=1.33$
S _{P33} = 4.19	S ₁₃₃ = 5.02	$(1/S_{EZZ})dS_{EZZ}/dT=1.60$
Sp44- 9.3	S _{E44} - 17.0	$(1/S_{E44})dS_{E44}/dT-2.05$
Spec= 10.5	Srcc= 13.6	$(1/S_{ccc})dS_{ccc}/dT=1.43$

Stiffness⁴ at Constant Polarization (C_P) and at Constant Field (C_E) and Temperature Dependence⁵

(CPa)	(CPa)	(10 ⁻⁴ /°K)
$C_{P11} = 219$	$C_{E11} = 203$	(1/C _{E11})dC _{E11} /dT=-1.74
Cris= 37	C ₅₁₂ = 53	$(1/C_{012})dC_{013}/d1 = -2.52$
$C_{P13} = 76$	C _{E13} = 75	(1/C _{E13})dC _{E13} /dT=-1.59
CP14= -15	C _{€14} = 9	(1/C _{F14})dC _{F14} /dT=-2.14
C _{P22} - 252	C _{E22} - 245	(1/C _{E22})dC _{E22} /dT1.53
Cy44 - 95	C _{E44} - 60	$(1/C_{E49})dC_{E49}/dT - 2.04$
C _{P66} - 91	C _{E88} - 75	(1/C _{E00})dC _{E00} /dT=-1.43

OPTICAL AND ELECTRO-OPTICAL PROPERTIES Optical Symmetry uniaxial negative Optical Transmission 0.400 μm - 5.0 μm Sellmeier Equation Constants¹³ $\Pi = (A + B/(\lambda^2 + C) + D\lambda^2)^{1/2}$; λ in microns n_o A=4.9048 B=0.11768 C= -0.0475 D= -0.027169 B-0.099169 C--0.044432 D- -0.02195 n_e A-4.582 Calculated Refractive Index Values¹² $n_o(1.064 \mu m) = 2.2322$; $n_c(1.064 \mu m) = 2.1560$ $n_n(2.050 \mu m) = 2.1949$; $n_n(2.060 \mu m) = 2.1243$ $n_{\rm h}(3.500~\mu{\rm m}) = 2.1405$; $n_{\rm e}(3.500^{\circ}\,\mu{\rm m}) = 2.0788$ Photoelastic Strain Coefficients at Constant Field! $p_{71} = -0.026$ $\rho_{31} = 0.17$ $\rho_{22} = 0.07$ $\rho_{12} = 0.08$ $\rho_{13} = 0.13$ $\rho_{41} = -0.151$ $p_{14} = -0.08$ $p_{44} = 0.146$ Temperature Variation of Refractive Index 13 for $\lambda = 1.0~\mu m = 4.0~\mu m$ dn/dT = 3.3 x 10^{-5} /°C dn_/dT - 37 x 10 5 /°C Nonlinear d Coefficients 12,20 $d_{22} = 2.4 \text{ pm/V}$ d₃₁ = .-4.52 pm/V $d_{33} = 31.5 \text{ pm/V}$ Effective Nonlinear Optical Coefficient $d_{\text{eff}} = d_{31} \sin \theta - d_{22} \cos \theta \sin 3\Phi$ Electro Optic Coefficients @ 0.633 µm²³ $r_{13}^{T} = 10 \text{ pm/V}$ $r_{22}^{T} = 6.8 \text{ pm/V}$ $r_{33}^{T} = 32.2 \text{ pm/V}$ $r_{51}^{T} = 32 \text{ pm/V}$ $r_{13}^{S} = 8.6 \text{ pm/V}$ $r_{22}^{S} = 3.4 \text{ pm/V}$ $r_{33}^{S} = 30.8 \text{ pm/V}$ $r_{51}^{S} = 28 \text{ pm/V}$ Variation of Electro Optic Coefficient rzz with Wavelength²² And Calculated Half-wave Voltage For 9mmx9mmx25mm Q-Switch $V_{1/4} = \lambda d / (4 n^3 | r_{22})$ 1.064 µm = 5.6 pm/V 1.55 kVolts $1.318 \, \mu m = 5.4 \, pm/V$ 2.02 kVolts $1.55 \ \mu m = 5.3 \ pm/V$ 2.44 kVolts $2.10 \ \mu m = 5.2 \ pm/V$ 3.45 kVolts $2.79 \mu m = 5.1 \rho m/V$

2.94 μ in = 5.1 pm/V

Damage Threshold²

4.78 kVolts

5.DB kVolts

3 J/cm² @ 10 nsec

THERMAL AND ELECTRICAL PROPERTIES

Melting Point7

1240° C

Curie Temperature⁸

1145° C

Thermal Conductivity9

4. W/m°K

Thermal diffusivity⁵

9 x 10⁻⁷ m²/sec

Specific Heat^a

0.633 J/q^K

Thermal Expansion 10

 $\alpha_{a} = 14.1 \times 10^{-6} / ^{\circ} \text{K}$ $\alpha_{c} = 4.1 \times 10^{-6} / ^{\circ} \text{K}$

Resistivity14

2 x 1010 Ω - cm @ 200° C

Dielectric Constants¹⁶

Loss tangent 19 @400 °C

1 an8 = 0.0006

Tanδ =0.001

Typical Polish Specifications

Wavefront Distortion: λ/8 @ 633 nm

Flatness:

λ/10 @ 633 nm

Parallellsm:

1 arcseconds

Scretch - Dig:

10 - 5

Description

Lithium niobate is a ferroelectric material suitable for a variety of applications. Its versatility is made possible by the excellent electro-optic, nonlinear, and piezoelectric properties of the intrinsic material. It is one of the most thoroughly characterized electro-optic materials, and crystal growing techniques consistently produce large crystals of high perfection.

Applications that utilize the large electro-optic coefficients of lithium niobate are optical modulation and Q-switching of infrared wavelengths. Because the crystal is nonhygroscopic and has a low half-wave voltage, it is often the material of choice for Q-switches in military applications. The crystal can be operated in a Q-switch configuration with zero residual birefringence and with an electric field that is transverse to the direction of light propagation. Because piezoelectric ringing can be severe, piezoelectrically damped designs can be very useful. The damage threshold of the intrinsic material at 1.06 microns with a 10 nsec pulse is approximately 3 J/cm². With appropriate AR coatings, a surface damage threshold of 300-500 MW/cm² can be achieved for the same conditions.

Applications that use the large nonlinear d coefficient of LiNbO3 include optical parametric oscillaton, difference frequency mixing to generate tunable infrared wavelengths, and second harmonic generation. With a broad spectral transmission, which ranges from 0.4 μm to 5.0 μm with an OH absorption at 2.87 μm , a large negative birefringence, and a large nonlinear coefficient, phasematching is an effective way to generate tunable wavelengths over a broad wavelength range.

Lithium niobate is particularly effective for second harmonic generation of low power laser diodes in the 1.3 to $1.55~\mu m$ range.

For infrared generation by difference frequency mixing, the peak power limit is considerably lower than for 1.064 μ m, being about 40 MW/cm². Efficiencies for difference frequency mixing generally are smaller than ship efficiencies with KDP or BBO, which is due to the lower peak powers that can be tolerated by the crystal and the fact that the longer wavelength photons that are generated in the process are less energetic. Typical powers for 10 nanosecond long pulses with 5 mm diameter beams are 30 mJ/pulse of 0.640 μ m minus 40 mJ/pulse of 1.064 μ m to produce 2.5 mJ/pulse at 1.54 μ m, and 32 mJ/pulse of 0.640 μ m to produce 0.25 mJ/pulse at 3.42 μ m.

INRAD offers lithium niobate in a variety of configurations. Standard cuts are available as OPO crystals, Q-switches, difference frequency mixing crystals, autocorrelation crystals, and optical waveguide wafers.

Please consult an INRAD sales engineer for assistance in crystal selection and packaging.

At INRAD, all crystal growth, orientation, fabrication, pollshing, and testing of LiNbO $_3$ is done at one site so that you are assured of complete traceability and satisfaction with every crystal that you purchase.

References

- 1. R.L.Byer, J.F.Young, and R.S.Feigelson, J.Appl.Phys. 41(6), 2320 (1970).
- 2. S.C.Abrahams and P.Marsh, Acta.Crystallog.Sec.B, 42, 61 (1986).
- 3. J.C.Lambropoulos and T.Fang, Dept. of Mech. Eng. & Center for Optics Manufacturing, Univ. of Rochester.
- 4. A.W.Warner, M.Onoe, and G.A.Coquin, J.Acoust.Suc.Am. 42(8), 1223 (1987).
- 5. R.1.Smith and F.S.Weish, J.Appl.Phys. 42(6), 2219 (1871).
- 6. T.H.Lin, D.Edwards, R.E.Reedy, K.Das, W.McGinnis, and S.H.Lee, Ferroelectrics 77, 153 (1988)
- 7. J.R.Carruthers, G.E.Peterson, M.Grasso, and P.M.Bridenbaugh, J.Appl.Phys. 42, 1846, (1971).
- J.C.Brice, The Properties of Lithium Niobate, EMIS Datareviews Series No.5, The Institute of Electrical Engineers (1989).
- V.V.7hdanova, V.P.Klyuev, V.V.Lemanov, I.A.Smirnov, and V.V.Tikhonov, Sov.Phys.-Solid State (USA) 10.(5) 1360 (1968).
- .10 D.Toylor, The Properties of Lithium Niabate, EMIS Datareviews Sories No.5, The Institute of Electrical Engineers (1989).
- 11. L.P. Avakyants, D.F. Kisclev, and N.N. Shichitov, Suv. Phys. Sufid State 18, 899 (1976).
- 12. R.C.Eckardt, H.Masuda, Y.X.Fan, and R.L.Byer (EEE J.Quent, Electron, 26(5), 922 (1990).
- 13. S.D.Smith, H.D.Riccius, and R.P.Edwin, Opt.Comm., 17, 332 (1976) and 20, 188 (1977).
- 14. A.V.Blistonov, Sov. Phys. Cryst., 6, 688 (1982).
- 15. K.Nassau, et al, J.Phys. Chem. Solids, 27, 989 (1966).
- 16. I.P.Kaminow and E.H.Tumer, Appl. Opt., 5, 1612 (1966).
- 17. E.H.Tumer, Appl.Phys.Lett. 8, 303 (1966).
- 18. J.D.Zook, D.Chen, and G.N.Otto, Appl. Phys. Lett., 11, 159 (1967).
- 19. P.V.Lenzo, C.G.Specer, and K.Nassau, Opt.Soc.Am., 56, 633 (1966).
- 20. R.C.Miller and A.Savage, Appl.Phys.Lett., 9, 187 (1986).
- 21. Miller, Norland, and Bridenbaugh, J.Appt.Phys., 42, 4145 (1871).
- 22 INRAD data.
- 23. I.P.Kaminow and E.H.Turner, "Handbook of Lasers" (R.J.Pressley, ed.), 447-459. Chemical Rubber Co., Cleveland, Ohio, 1971.

膨張率と圧縮率 5 - 2

七ルシウス型度がりでおよび8における長さお上び休機、 と、それぞれにいいおよび」、ひとすれば、一般に放影禁事品

てきえられる。 里光温度 的 お上げ 色 における値をそれぞれ に 如 多下び h. m.とすれば、B.とB.との門の平均駅最高車 B.お上び平 心体態団ギャー はそれぞれ

$$\beta_{m} = \frac{1}{J_{v}} \frac{I_{2} - I_{1}}{\theta_{o} - \theta_{1}} \qquad (0-3)$$

$$a = \frac{1}{v_0} \frac{v_0 - v_1}{g_2 - g_1} \quad ... \quad (5 - 6)$$

で与えられる」とさらに特施を目的に対しては

$$v = v_0 \left(1 + \alpha (s + \alpha 2s^2 + \alpha_3 p^2)\right)$$

$$v=v_0\left(1+a_0^2+a_0^2+a_0^2\right)$$
 (5 - 6)
で走わされる。 なお写方性の物質では、 $x=3\beta$ である。

および体験医学」はそれぞれ

5-2-1 団件単体の独局泥率むよび体域張率

 $(5\cdot 1)$

	我 1 · 23 固体单件的影影技术 8"												
4	東	10	10-115-1	100	73	<u>#</u>	PAZIT B	420	<u> </u>		月本九江		
	1		 _	<u> </u>	3 15	105 X	1	·	<u>2</u>	JU K			
P-KE	•	-150-0	0.270	Pc `	:	0-B98	0.737,6	ra		D-J00	0.206		
A.I	·.	0~100	0.103		74	P16-022	0.150] Pi		0 -100	0.0899		
~		-120-0	5.380	Ca,		-72.3-18	0.53	1	"	9-900	0.0994		
		0~100	0.287	Ge		0~400	0.077	Rb.		70	0.963		
		20~300	0.258	Ħg	子の動	-158~-79	0.470	RI.		12-1-20	0.085		
ÅΒ	Ø C 🖎	1	0.45	1	工工工程	4	0.3/5		• 11	0-50	र्वाचे व		
_	, Lc 🖬	1 .	0.03	1	•	-80-25	2.20=1	Rin.	•	13~32	0.0075		
ÁЩ		-19u~0	JT-131	In		0-100	0.56	s	•	-223~-185			
		0-100	0,1424	Iτ		0-100	0.0658	Ĭ	**	-19579	1504		
56		20	0.25	K	. 1	si-50	0.83	1		-79-18	3.80*1		
Bi	P 5 24	20240	0.102	I.a		0~300	0.065	1 .	. 6	/* (mp) **	350-		
	1 1 26	20~240	- 0.120	2.5		36-0	0.56	Si	Ac. Id.	20-100	101717		
Dre .		-279194	Z00-1	Me	F C 33	16-35	0.271	-	10	, ,	0 000		
- 1	イヤモンド	0~70	2510.0		工工業	n	1243	Si	,,	10-50	0.047.5		
a.	na = ==	20~40	23,630.0	Mo	a #	-20-D	0,2163	5-2	R E ₩	0-20	D.SEDS		
	△ 李 章	1000-1500	0.003.5	Mo	~ ~	0-100	DOSE		-	0~20			
	c 🐸	1000~1880		Na	ì	8	0.686		を と と は な な な な に る に る に る に る に る に る に る に る		0,1583 Beed		
Þ	# C 10	20-100	0.526	P14	ı	_		TE		\$ 20~1007°			
	1 a 16	· · · #	0.23.0	•	1	.0—100 57.6	. Q.71 . 2.78°0 -	Te ·	強な生し	,	0.067		
`o`	: 1	20~100		Ni '	1	0-100	10125	15.	// C 13-	- ;			
	• 1	100-200	U.ZE	,		500~600	0.165	π .	'⊥c #	0 100	3720		
7		מסב-ס	0.081	•		000900	1	41 .	, "	0-100	0.294		
8	1	~20		0=	•	0~100	: 0.070	W	}	100-200	9.398		
		-185103	11	Þ	1		1			. 0~100	0.045 .		
B : -	I	-103+0	0.354	•	ĺ	-79-19	275	2 ₁₁	# E #	20~250	0.530		
	· · · · · · · · · · · · · · · · · · ·	0×101		לי		24-50	E'EDai		1 C FA	<u>.</u> .	- 0350 H		
J	. 1	. 300 -			• '	0~100	ii	Zr -		-20-0.	· 00583		
		ovy	0.175			20-300 (0.313#	•	}	0~100	034341		

^{1) &}quot;Landolt-Bilmetaite Zablentjerte und Funktiumen aus Physik, Chemie, Astronomie, Geophysik und Technik", 5 Auft., II Band, 1 Tell. S. 378~64& Springer-Variety (1971).

1 朱野族甲 a 走后北海 (全方).

175

・2、2 化合物の組成後平および存販設率で

表 5-36 网络化疗是的性原原体 6 5 1 化单位原作点 (1)

化企业	<u>g'</u> .	10一下	ঢি १ % % % % % % % % % % % % % % % % % % %	. <u>0</u>	20-1K-1	化全物	8 7	10-K-
 な色形かり さい ない ない	20-250 20-800 20-150 20-150 50-75	1.03 0.000 0.60 0.67	KCO? KBC FPC FPC KCO? KCO? KCO?	-73 0 -78-0 -79-0 -76-25 -78-21	0.576* . 0.558* 2.20 1.10 1.01 2.20	KI EMMO. KONO. KONT " KISO!"	-79~0 -78~18 -76~16 30~120 -78~21 30~75	1.25 2.20 2.10 1.05 1.80 (0.133*

[&]quot;Lendolf-Borestein Zahlenismte und Kunktionen aus Moyalk. Chemies Astronomies Geophysik und Technik", a Auft. II Band. 1 Teil. 5. 409-778, Springer Verlag (1971).,

^{* 2} 整线

在 6 - 65 图体学体内的配子生***** E/Wind K**

					E 64			1		24 117	Mr. V				•		
3	姓			四版				B	4	包 使 T/K							
_	50	700	+	 	3 . 40	20 70	0 10	os –		50	100	i au	U 30	0 40	0 70	1000	
As	700	(20)	- G0	127	420	397	374	Mo	\exists	300	128	147	238	134	122	112	
Au (47	(20	805	827	- 215	342	. 238	278	242	Į.	106	122	135	122	C855	1	1 -	
R	404	100	F2.6	27.1	112	1 24	1 E	30 MP.	- 1	76	55.2	E2.1		,	-		
رعظ	4000	290	301	200	<u>ੇ</u> 181	115	198.	7 178				16.	1		25%		
er (al.,		1	5 112	्र हा	5 .82	2 011	UE		j	336	158	105	20.5		10.1		
(Par	7) 2500	2010	1 430	900	. 632	}		23		 245	112	SOLE			65.5	1	
te II,	3300	10 000	4 040	2 910	2 550	1	- 1	Pire		22.7	32.	37.3	1	868	ł	R6.5	
ות עו	4	3 450	2 250	1 350	936	i	1 -	Pb	1	53.5	221.5	35.6	:		.		
(<u>1448</u> 1	- , - -	58	120	129	718	· 85	54	76	14	123	773	76.5	352	23.8	. (17.4		
(Kib)		42	88	23	90	65	9	Pr	1	<i>ه</i> د.	7.60		755	76.5	. 25.5	75.5	
Picto		4 988	3 250	7.600	1 440	790	. 520	E-b	ł	C2.7	1	211.6	125	13.5	15.9	22.6	
Phia	103	39	15	75	7.0	3.8	25	16		96.2	. 63.3	20.0	58.2	(33'1)	(59.5)	(25.7)	
A 2	120	103	99.3	98.8	94.7	(420)	-		- 1		58.9	51.0	(T.E	. 1451	160	44.5	
<u> </u>	3.79	B,O	1	114	123	- 100	1	Rh		270	186	154	150	145	131	121	
0	238	158	122	99.7	ELD.	1.55	,214	Ru		95	154	Ш	117	115		,	
L III	317	128	222	80.3	1	73.7	65.2	. 5	Ι.	0.577	. 0.22	- 3	-	(0.132	¥	}	
E	41.7	33.7	85,8	55.5.	رحمی ا۔	(202)	(17.5)	Sb		79.3	ALA	303	34.3	51'6	17.4	(27.0)	
y , .	. 13.5	10.5	9.50	107		128	1	T		135	169	15.3	, 15B	·		j	
r .	¥.25	113	148	143	139.	166	15.7 15.8	Sa(# c)	1	803	10.5	0.08	4,32	5.36		1.	
<u>;</u> ,	372	132	94	80.3	-694	457	5.	#	200		884	268	-748	BE.D	50.0	1 22.7	
1100	63.6	17.1	124	40.5	(=7.0)	40.7	32.5	. See	1	7.52	7.35	ļus.	. 12.1	. 133	1	1 -	
1	19,0	115	8.98	928	10.1	ĺ		30	. 11	- 1	. ca	73.2	-50.5	62.2	(34.2)	(40.5)	
2	815	232	96.8	- 202	423	22.1	l	Ta	1	2	32.2	57.5	57.5	57.8	54	60.2	
Ę.	25,3	2C.0 .	214	E3.0	- 623	1	17.4	Т.		5.7	ភា	9.98	107	}	1.	1	
E - 44	35.4	320	2A 0	(R.34)	(9.84)	(127)	20.7	Te(F c)	1	5A	259	¥.15	- 3.95	2.54	20.	1	
, ,	7.77	7.62	120	130	13.4	1227	CILM	7.		3.7	¢ εΒ.	40.5	491	10,3	59.4	51.5	
				0.449	10.1140	· casia	1	Ti		ai ,	37.6	54.6	21.5	30.4	19.4 .	20.7	
	104	97.g	89.7	IL7	74.5			TI.	. Z	2.5	'55.5	48,4	451	45.E	į .	{	
- 1	472	172	253	117	246	43.4	54	Tm.	10	1	13.5	16.2	10.5			1	
- 1	112	107	204	- 1		135	126	ับ	18		71.7	25,1	27.5	29.6	35.8	43.9	
j	0.47	9.78	11.8	202	(52.0)	(40.4)	(21.21)	V	40.	5	35.7	31.5	21.5	32.1	9,22	38.6	
.	235	114			34.0	.126	202	Y	16.	5	ra.r	15.5	16.2	16.5	20.3	ಷ್ಟ	
	20.9	18.9.	17.2	76E	72 <u>.1</u>	(50,9)	(60.00)	አዮ				3E. [365	34.1		•	
, 1	575	165	159	102.	ا			Zn	273	12		. 251	ובו	116	(42)	(67.2)	
.	1.05	5 79	7.17		128	147	(pr)	23	43.	.7	33Z	22	22.7	21.6	20.9	23,7	
			1,37	7.85		- 1				1	1	- 1			- 1	. 3.	

1 元中の()を付けた数値は発展変相の値である。

2 東文名に作けた 1c. クェケンけ、単位品配名の c 軸に単位・c 軸に平行などを示す。ただし、C(品給)については、A TJ 本質の加熱は形中の

日本 Eガラス	—		<u> </u>	1. 皮:	T/E		•	, m	造 度 T/K							
	100	200	300	400	300	· 700	1000	E S	100	200	300	400	500	700	1000	
(4) 3	0.64	11	1.81	s 1.51	1.63	1,92	2.57	MgU SiO ₄	270	.94	<u>so</u>	48.1.	32			
Tex 77(0)**	0.58	0.9	ner	120	1.16	Tes		(石英」に関)	29 202	16A 8.5	10.6	7.6	5.5 6.0	45 3.1		
26)	5_52	4.76	3.99	3.65	3.45	3.19	2.97	ThO. TiO.			122	10,2	81.	5.5	3,7	
ファイク)	450	ŭ2:	40	32.4	26.2	124	10.5	(ルチルタc性) (ルナル上(種)	235 169	13.7	104 7:4	8.5 6.0				
변화)	133	55 524	36 373	25.4 196	20,2. 146	32.6 Sv	2.9	(多數品)			8.8	7.0	5.9	4.1	2.E	
Comina 61.80	l	 -	019	100	440	3/	47	DO _z	ಮ	E.G	82	7.4	65	धा	3.8	

Coming # 50, p=2.226 5 g cm - Coming # 50, p=2.601 g cm -