Тема 3. Диференціальне числення функції однієї змінної

Лекція 3.1. План

- 1. Похідна та диференціал функції. Фізичний та механічний зміст похідної.
- 2. Табличні похідні.
- 3. Основні правила диференціювання.

1. Похідна та диференціал функції. Фізичний та механічний зміст похідної

Нехай функція y=f(x) визначена на деякому проміжку X=(a,b) (скінченому чи нескінченному). Виберемо довільну точку $x_0 \in X$ і надамо

аргументові приросту Δx , таким чином, що точка $x_1 = x_0 + \Delta x$ також належить проміжку X (рис.1).

Величину $\Delta x = x_1 - x_0$ називають **приростом аргументу.** Тоді відповідним **приростом функції** є величина

$$\Delta y = \Delta f(x_0) =$$

$$= f(x_0 + \Delta x) - f(x_0).$$

Означення. Похідною

функції f(x) в точці $x=x_0$ називається границя відношення приросту функції у цій точці до приросту аргументу, якщо він існує.

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Похідну позначають:

$$f'(x_0), y'(x_0), y', f'_x, \frac{df(x_0)}{dx}, \frac{dy}{dx}.$$

Задача про дотичну.

Нехай задано неперервну функцію y=f(x), що має похідну на даному проміжку. Записати рівняння дотичної до графіка функції у точці $x=x_0$.

<u>Означення.</u> Дотичною до графіка функції y=f(x) у точці $B(x_0; f(x_0))$ називають граничне положення січної AB, коли точка A прямує до точки B по графіку функції y=f(x).

Запишемо рівняння дотичної до графіка функції в точці $B(x_0; f(x_0))$. Надамо аргументові приросту Δx і перейдемо по кривій y=f(x) із точки $B(x_0; f(x_0))$ у точку $A(x_0 + \Delta x; f(x_0 + \Delta x))$. Проведемо січну AB (рис.1.).

Рівняння прямої, що проходить через точку B, має вигляд $y - f(x_0) = k(x - x_0)$.

Кутовий коефіцієнт $k=tg\beta$, де β - кут нахилу січної AB. Розглянемо трикутник ACB, у якому $BC=\Delta x$, $AC=\Delta f=\Delta y$ і $tg\beta=\frac{AC}{BC}=\frac{\Delta y}{\Delta x}$.

Нехай $\Delta x \to 0$. Тоді $A \to B$, січна AB прямує до дотичної, проведеної до графіка функції в точці B, і $\beta \to \alpha$. Тоді кутовий коефіцієнт дотичної

$$k = tg\alpha = \lim_{\beta \to \alpha} tg\beta = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0).$$

Отже, геометричний зміст похідної: похідна $f'(x_0)$ функції y = f(x) у точці x_0 чисельно дорівнює кутовому коефіцієнту дотичної, проведеної до графіка функції y = f(x) в точці $(x_0; f(x_0))$.

Рівняння дотичної має вигляд

$$y - f(x_0) = f'(x_0)(x - x_0).$$

<u>Означення.</u> **Нормаллю до графіка функції** y = f(x) у точці називають пряму, яка перпендикулярна до дотичної і проходить через точку дотику.

Рівняння нормалі до графіка функції у точці має вигляд

$$y-f(x_0) = -\frac{1}{f'(x_0)}(x-x_0).$$

Фізичний зміст похідної функції f(t), де t – час, а f(t) – закон руху (зміна координат) – миттєва швидкість руху.

Механічний зміст похідної: похідна функції y = f(x) це швидкість зміни змінної y при даному значенні змінної x.

Односторонні похідні

<u>Означення.</u> Правою (лівою) похідною функції f(x) у точці $x=x_0$ називається праве (ліве) значення границі відношення $\frac{\Delta f}{\Delta x}$ при умові, що це відношення існує.

$$f'_{+}(x_{0}) = \lim_{\Delta x \to 0+} \frac{\Delta f}{\Delta x}; \qquad f'_{-}(x_{0}) = \lim_{\Delta x \to 0-} \frac{\Delta f}{\Delta x}.$$

Якщо функція f(x) має похідну в деякій точці $x=x_0$, то вона має в цій точці односторонні похідні. Зворотнє твердження невірне.

<u>Теорема.</u> (Необхідна умова існування похідної) Якщо функція f(x) має похідну в точці x_0 , то вона неперервна в цій точці.

Диференціал функції

Нехай функція y = f(x) має похідну у точці x: $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x)$.

Тоді можна записати: $\frac{\Delta y}{\Delta x} = f'(x) + \alpha$, де $\alpha \rightarrow 0$, при $\Delta x \rightarrow 0$.

Отже: $\Delta y = f'(x) \cdot \Delta x + \alpha \cdot \Delta x$.

Величина $\alpha \Delta x$ – величина нескінченно мала вищого порядку, ніж $f'(x)\Delta x$, тобто $f'(x)\Delta x$ – головна частина приросту Δy .

Означення. Диференціалом функції f(x) в точці x називається головна лінійна частина приросту функції.

Позначається диференціал dy або df(x).

3 означення випливає, що $dy = f'(x)\Delta x$ або dy = f'(x)dx.

Можливий також запис: $f'(x) = \frac{dy}{dx}$.

Геометричний зміст диференціалу.

3 трикутника ΔMKL : $KL = dy = tg \alpha \cdot \Delta x = y' \cdot \Delta x$.

Отже, диференціал функції f(x) в точці x дорівнює приросту ординати дотичної до графіка цієї функції у даній точці.

Властивості диференціала.

Якщо u = f(x) і v = g(x) - функції, диференційовані в точці x, то з означення диференціала випливають наступні властивості:

1)
$$d(u \pm v) = (u \pm v)'dx = u'dx \pm v'dx = du \pm dv$$
.

2)
$$d(uv) = (uv)'dx = (u'v + v'u)dx = vdu + udv$$
.

3)
$$d(Cu) = Cdu$$
.

4)
$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$
.

2. Табличні похідні

Похідні основних елементарних функцій.

1)
$$C' = 0;$$
 9) $(\sin x)' = \cos x;$
2) $(x^m)' = mx^{m-1};$ 10) $(\cos x)' = -\sin x;$
3) $(\sqrt{x})' = \frac{1}{2\sqrt{x}};$ 11) $(tgx)' = \frac{1}{\cos^2 x};$

$$4) \left(\frac{1}{x}\right)' = -\frac{1}{x^{2}};$$

$$12) \left(ctgx\right)' = -\frac{1}{\sin^{2}x};$$

$$5) \left(e^{x}\right)' = e^{x};$$

$$13) \left(\arcsin x\right)' = \frac{1}{\sqrt{1-x^{2}}};$$

$$6) \left(a^{x}\right)' = a^{x} \ln a;$$

$$14) \left(\arccos x\right)' = -\frac{1}{\sqrt{1-x^{2}}};$$

$$7) \left(\ln x\right)' = \frac{1}{x};$$

$$15) \left(arctgx\right)' = \frac{1}{1+x^{2}};$$

$$8) \left(\log_a x\right)' = \frac{1}{x \ln a};$$

8)
$$(\log_a x)' = \frac{1}{x \ln a}$$
; 16) $(arcctgx)' = -\frac{1}{1+x^2}$.

3. Основні правила диференціювання

Позначимо f(x)=u, g(x)=v — функції, диференційовані в точці x.

1)
$$(u \pm v)' = u' \pm v'$$
;

2)
$$(u \cdot v)' = u \cdot v' + u' \cdot v;$$

$$(3)\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$
, якщо $v \neq 0$.

Ці правила доводять на основі теорем про границі.