BAIR DAM

MANUAL FOR OPERATION AND MAINTENANCE

STATE DOCUMENTS COLLECTION

JUL 3 1 2001

MONTANA STATE LIBRARY 1515 E. 6th AVE. HELENA, MONTANA 59620

State Water Projects Bureau
Water Resources Division
Department of Natural Resources and Conservation
48 North Last Chance Gulch
P.O. Box 201601
Helena, MT 59620-1601

Initial Publication May 1995 Revised July 2001

BAIR DAM

MANUAL FOR OPERATION AND MAINTENANCE

State Water Projects Bureau
Water Resources Division
Department of Natural Resources and Conservation
48 North Last Chance Gulch
P.O. Box 201601
Helena, MT 59620-1601

Initial Publication May 1995 Revised July 2001

TABLE OF CONTENTS

PAGE
OVERVIEW1
General Location Map (Figure 1)3
Project Area Map (Figure 2)4
General Layout Map (Figure 3)5
Monitoring Wells Map (Figure 4)6
STATISTICAL INFORMATION7
OPERATING PROCEDURES
Method and Schedule of Operation11
Safe Drawdown
Limits of Appurtenances
Dam Operator13
Storage Determination14
Weather Monitoring14
Interaction with Other Dams15
Emergency15
INSPECTION AND MONITORING
Structural Features Inspection
Riprap Inspection18
Drains
Monitoring Wells19
Seepage Monitoring19
MAINTENANCE
Routine Maintenance21
Annual Maintenance22
Record Keeping22
REFERENCES
APPENDICES
A. RATING CURVES AND TABLES
Table 1. SLOPE STORAGE TABLE -SOUTH SHORE
Table 2. SLOPE STORAGE TABLE -DAMA6
Table 3. TOTAL STORAGE TABLE
Table 4. SPILLWAY RATING CURVE AND TABLE A11
Table 5. V-NOTCH WEIR RATING TABLE
B. INSPECTION REPORT FORM

i

TABLE OF CONTENTS (continued)

		PAGE
C.	DISTRIBUTION LIST	C1
D.	MONITORING WELL LOGS	D1
E.	TEST PIT LOGS	E1
F.	PROJECT DRAWINGS	F1

ii 2001

OVERVIEW

Bair Dam is located in Meagher County approximately threequarters of a mile northwest of the town of Checkerboard (Figure 1). The reservoir (and dam) is located on and fed by the North Fork Musselshell River (Figure 2). Figure 3 provides a general layout of the dam, spillway and outlet works. Figure 4 shows the location of the monitoring wells and weir.

The dam is owned by the Montana Department of Natural Resources and Conservation (DNRC) and is managed by the State Water Projects Bureau (SWPB) of the DNRC. The Upper Musselshell Water Users Association (herein called the "association") operates and maintains the dam.

The earthfill dam was completed in 1939. Bair Dam is 102 feet high and 580 feet long. The dam's outlet works consists of: a concrete intake structure; a 54-inch reinforced concrete arch conduit; a 48-inch diameter butterfly (operating gate) valve; a 48-inch diameter slide (emergency gate) gate; a control tower; and an outlet structure. The control tower contains the gate operators for the outlet gates. The maximum capacity of the outlet works is 650 cubic feet per second (cfs). The spillway located in the left abutment, is an uncontrolled, rectangular, concrete chute. The spillway has an ogee-shaped crest section at elevation 5,325. The crest is 60 feet wide and tapers to a 20 feet wide chute at the bottom. The maximum capacity of the spillway is 7,880 cfs.

In October, 2000, a feasibility study to rehabilitate the dam was completed by HKM Engineering, Inc. The preferred alternative for rehabilitation is to replace the existing spillway and excavate the adjacent slope to eliminate the talus which creeps into the spillway. The new spillway would have a capacity of 14, 000 cfs with the reservoir pool at the dam crest. HKM is currently working

on the final design and construction is anticipated to begin in the fall of 2001.

Water from the reservoir is primarily used for irrigation water supply. The reservoir is also used for water-based recreation.

Figure 2. Bair Dam Project Map

STATISTICAL INFORMATION

1. General

a. Owner Montana Department of

Natural Resources and

Conservation

b. Operator Upper Musselshell Water

Users Association

c. Location Sections 27, 34 and 35

Township 10 North, Range 9

East MPM

d. Latitude 46.58° Longitude 110.56°

e. County-State Meagher-Montana

f. Watershed Location North Fork Musselshell River.

Missouri River Basin

g. Drainage Area 51.1 square miles

2. Principal elevations (feet above mean sea level)

a. Minimum Dam Crest 5.335.78 feet

b. Normal Full Pool 5.324.63 feet

c. Spillway Crest 5,324.63 feet

d. Top of Intake 5,258.36 feet

e. Intake Invert (surveyed) 5,247.36 feet

f. Conduit Invert 5.236.21 feet

(inside intake structure)

3. Reservoir

a. Length of Pool 1.9 miles

(approximate)

b. Maximum Reservoir 5,325.5 feet (May 16, 1979)

Level of Record

c. Surface Area 272 acres

(at normal full pool)

4. Storage

a. Maximum Storage 10,816 acre-feet (at dam crest)

b. Active Storage 7,197 acre feet (at spillway crest)

c. Maximum Surcharge 3,619 acre-feet (from spillway to dam crest)

5. Hydrology

a. Inflow Design Flood 22,608 cfs peak inflow (Probable Maximum Flood)

b. Dam Safety Rules Flood 8,207 cfs peak inflow

c. 100-Year Flood 495 cfs

d. 500-Year Flood 1,322 cfs

6. Embankment (Dam)

a. Type Zoned Earthfill and Rockfill

b. Hydraulic Height 102 feet

c. Crest Length 580 feet

d. Crest Width 27 feet

e. Downstream Slope 1v on 3.0h (above elevation 5,270 feet)

f. Downstream Slope 1v on 5.0h (from elevation 5,250 to 5,270 feet)

g. Downstream Slope 1v on 1.0h (below elevation 5,250 feet)

h. Upstream Slope 1v on 2.0h (above elevation 5,325 feet)

i. Upstream Slope 1v on 3.0h (below elevation 5,325 feet)

7. Spillway

a. Location Left abutment

b. Type Uncontrolled Ogee

c. Width 60 feet tapering to 20 feet

d. Length 345 feet

e. Maximum Capacity 7,880 cfs (pool at dam crest)

8. Outlet Works

a. Size 54-inch reinforced concrete

arch pipe

b. Length 530 feet

c. Control 48-inch diameter butterfly

valve (operating gate) and a 48-inch diameter slidegate (emergency gate) with manual

operators

d. Capacity 650 cfs

(pool at dam crest)

e. Trashrack Yes

OPERATING PROCEDURES

The association operates Bair Reservoir to provide an adequate supply of irrigation water to meet contracts with water users without exceeding safe storage or flow levels.

METHOD AND SCHEDULE OF OPERATION

The association's goal is to have the reservoir full before contract holders start putting in calls for water. The date irrigation releases begin varies from year to year, with May 1 typically the earliest. Irrigation releases usually end by September 30 as specified in the water purchase contracts. The actual irrigation season depends on each year's climatological and hydrological conditions.

Reservoir Level Restriction. Because of the poor condition of the spillway at Bair Dam, a reservoir level restriction was implemented in the spring of 1997. This restriction is permanent until the spillway can be repaired. The maximum water surface in the reservoir is to be no more than elevation 5,322.0 feet, which is 2.63 feet below the spillway crest elevation of 5,324.63 feet. The storage at this restricted elevation is 6,500 acre-feet or 697 acre-feet less storage than full pool storage. The restricted storage allows for the routing of the 100-year flood event without putting water through the spillway. Following spillway repairs and determination that the repaired spillway can safely route the spillway design flood as determined by the Dam Safety program, the restriction will be removed.

Maximum Winter Storage: The maximum reservoir elevation for winter storage is 5,315 feet with 4,913 acre-feet of storage. This winter maximum helps prevent damage to the riprap and embankment from wind-driven waves and ice.

Minimum Winter Storage: The minimum reservoir elevation for winter storage is 5,275 feet with 687 acre-feet of storage. This winter minimum helps prevent ice damage to the inlet structure for the outlet works.

Minimum Outlet Discharge: Fish, Wildlife and Parks (FW&P) recommends a minimum flow of 10 to 16 cfs be maintained at the dam outlet to help maintain the fishery in the Musselshell River.

SAFE DRAWDOWN

A geotechnical investigation and analysis of the Bair Dam were completed by HKM Engineering Inc. and the results were published in an October 1, 2000 geotechnical investigation report. The stability of Bair Dam has been thoroughly investigated showing that the rapid drawdown of the upstream face of the dam embankment will not cause a stability problem during rapid drawdown conditions. The drawdown factors indicate that the dam embankment face will remain stable by a considerable amount.

LIMITATION OF APPURTENANCES

Appurtenances at Bair Reservoir include the spillway and outlet works. With the reservoir pool at the dam crest, the maximum capacity of the outlet works is 650 cfs and the maximum spillway capacity is about 7,880 cfs. Flows greater than 7,000 cfs could overtop the spillway sidewalls. Outlet and spillway rating tables are shown in Appendix A.

The maximum gate opening for the low level outlet gate is 2 feet. Openings in excess of this amount may damage the gate, gate frame, gate stem or the gate pedestal. The 2 feet of operation is measured on the exposed portion of the gate stem between the top of the pedestal and the bottom of the stop nut.

DAM OPERATOR

The responsibility for the daily operation of the dam and reservoir rests with the association and its dam operator. The dam operator is generally authorized to operate the reservoir to meet the association's goal of providing an adequate supply of contracted irrigation water without exceeding safe storage or flow levels. The dam operator's specific responsibilities are to:

- 1. Operate the mechanical features of the outlet works.
- 2. Coordinate filling of the reservoir and the release of water.
- 3. Notify the SWPB of unusual occurrences, such as impending floods or excessive seepage.
- 4. Perform various maintenance tasks.
- 5. Monitor weather conditions.
- 6. Monitor seepage.

Typically, the out-going dam operator, water users association, and the SWPB train a new dam operator. The dam operator's training focuses on the mechanical operation of the gates, measurement of the storage level, measurement of the rate of water release, and record keeping. The outlet gates are manually operated with a hand crank. The outlet works are intended to be used for controlling the release of irrigation water and not for providing emergency relief.

The dam operator normally is available to observe the dam and perform operating functions daily during the irrigation season. During the non-irrigation season, one of the officers or directors observe and regulate the dam on a monthly basis. Communication

among the dam operator, the association, and the SWPB usually takes place by telephone. Although not routinely available, radio communication may be established during emergencies or unusual occurrences, so the dam operator can speak directly with county authorities and communicate indirectly with the SWPB (see Bair Dam Emergency Plan).

STORAGE DETERMINATION

Storage volume of the reservoir and elevation of the reservoir surface are determined by taking a slope measurement. There are two locations where slope distance can be measured. The first location is on the upstream side of the dam crest approximately 100 feet north of the gatehouse. The second location is on the south side of the reservoir approximately 900 feet east of the picnic shelter by the boat ramp.

For either location, measure in feet from the 0+00 pin to the water surface. The elevation of the reservoir surface and the storage can then be found using the Slope Distance-Elevation-Storage Tables in Appendix A.

WEATHER MONITORING

The dam operator monitors weather conditions through local weather forecasts and the National Weather Service.

If severe flooding is anticipated, the NWS Great Falls Office (406-453-2081 or 406-453-4561) should be contacted for information about the storm, such as the estimated storm intensity and duration, runoff duration (above base flow), and total flood volume of the storm in the Musselshell River drainage.

INTERACTION WITH OTHER DAMS

With the exception of the Fort Peck Dam, the only dams located downstream from Bair Dam are irrigation diversion dams. The safety of these dams are not affected by the operation of Bair Reservoir during either normal or emergency operations. There are no reservoirs of a large size upstream of Bair Dam. Therefore, interaction with other dams is not a concern during the normal operation of Bair Dam.

EMERGENCY

If it appears that the Bair Dam is about to breach, or during emergency operations, the dam operator will initiate the **Bair Dam Emergency Action Plan**.

INSPECTION AND MONITORING

The SWPB will inspect the dam annually. Appendix B includes an example of a SWPB inspection report form. In addition to annual inspections, SWPB personnel will inspect the dam and reservoir during and after heavy runoff and severe rainstorms and windstorms, during high storage periods, and after an earthquake. The water surface through the embankment is monitored by using monitoring wells.

STRUCTURAL FEATURES INSPECTION

Structural features include the control tower, spillway, and outlet works. (Figure 3) The SWPB will inspect these structures annually as part of its inspection program. Items to be checked or noted include, but are not limited to:

- 1. Outlet Works
 - a. Any differential settlement or movement resulting in cracking of the conduit
 - b. Erosion of the seals or concrete by cavitation immediately downstream of the gates
 - c. Major seepage of water into the conduit
 - d. Major deterioration of exposed concrete due to freeze/thaw cycles or sulfate reactions
 - e. Operation of all gates through a full cycle
 - f. Jet pump, for obstructions and operation
 - g. Free, unobstructed operation of the air vent
 - h. Corrosion of any metal
 - i. Proper lubrication of the gate pedestals
- 2. Gatehouse—Any damage or vandalism
- 3. Spillway
 - a. Deterioration of concrete
 - b. Separation or movement of joints

- c. Erosion of the spillway chute, backfill behind the walls, or stilling basin
- d. Blockage of the approach or exit channel

4. Embankment

- a. Erosion gullies in the dam
- b. Damage from burrowing animals or vegetation
- c. Displacement or loss of rip-rap protection
- d. Displacement of fill, sink holes, slumps etc.
- e. Any seepage

RIPRAP INSPECTION

The riprap on the upstream face of the dam should be at least 30 inches thick. Immediately after the occurrence of high water, the riprap will be inspected and additional riprap added if needed.

DRAINS

The drawings for the dam (circa 1938) show a toe drain that begins in each abutment and is joined at the toe and exits to the left of the outlet. The drain outlet cannot be observed since the area where the drain exit is supposed to be located is covered with several feet of loose rock. A backhoe was used in an attempt to locate the toe drainpipe in 1995, but the pipe was not found. However, water does exit from this area into the outlet channel. A V-notch weir was installed in 1997 so the discharge can be measured. See V-notch weir discharge table in Appendix A.

There is also a drainage system beneath the concrete spillway, with two outlet locations in the lower portion of the spillway chute. There are also weep holes in the spillway floor and along the walls of the spillway, but there is no record of the weep holes flowing any water.

MONITORING WELLS

Five drill holes in the dam embankment and one slope inclinometer in the left abutment above the spillway were installed in 1999 (see Figure 4). Generally, two piezometers were installed in each drill hole. Soil profiles of the drill holes and details as to how the wells were constructed are shown in Appendix D.

SEEPAGE MONITORING

Seepage has been observed exiting from around the right outlet tunnel wing wall at irregular intervals. This seepage is not measurable.

The monitoring wells, seepage areas, and drains at the dam are observed and monitored by the dam operator, DNRC Lewistown Regional Office, and SWPB during regular visits; and may be measured by the SWPB during annual inspections. The instruments are generally measured twice per month from May 1 to August 31, and once per month in March, April, September, and October. Measurements may be taken during the winter months (November, December, January, February) depending on weather conditions. The monitoring data is maintained by the SWPB in Helena.

The drill hole for the slope inclinometer is measured with the slope inclinometer four times per year (every three months). Over time the frequency of measurement for the slope inclinometer drill hole may decrease.

MAINTENANCE

The association is responsible for routine maintenance of the project. In addition, the SWPB may identify items that need maintenance or repair during the annual inspection.

ROUTINE MAINTENANCE

To protect the dam and keep it in good working order, the dam operator during regular visits to the dam will watch for and identify any potential maintenance requirements. As soon as a need is identified, the dam operator needs to schedule and perform the routine maintenance.

Items that may occasionally need attention include, but are not limited to:

- 1. Lubrication and cleaning of the gate-operating mechanisms.
- 2. Debris or silt restricting the spillway inlet or the outlet works. Accumulated debris that could affect the operation of these appurtenances will be removed at once, with all debris removed at least annually before the runoff season.
- 3. Erosion gullies on embankment. Development of erosion gullies will be checked immediately. Gullies will be filled, compacted, and seeded. Particular attention will be paid to the abutment contact areas and the downstream face.
- 4. Rodent damage. The rodents will be removed or destroyed, and any burrow holes should be filled immediately.
- 5. *Upstream slope riprap*. The upstream face riprap normally will be observed annually, but may occasionally need repairs because of high water or wave action.
- 6. Vegetative cover on downstream slopes. Good vegetative cover will be maintained, but large brush and any trees will be removed.
- 7. *Noxious weeds*. Noxious weeds on and around the dam embankment and around the reservoir shall be sprayed at least on an annual basis.

- 8. Cleaning spillway and outlet wall tops. Spillway and outlet wall tops should be clear of any dirt, rocks, grass, brush, and any overhanging vegetation or trees.
- 9. Repair of the spillway joints and sealing of cracks in the spillway.
- 10. Weir. This device will be maintained clean of sediment and algae, kept upright, free flowing and free of debris.

ANNUAL MAINTENANCE

The SWPB conducts annual inspections of the Bair Dam and Reservoir. During these inspections, any items requiring annual maintenance will be identified and recorded. Items that may need annual maintenance include the spillway, outlet works, gates, riprap, roads and gatehouse. Other routine items needing immediate attention, such as the need to remove trees or brush, will also be noted.

After the inspection, the SWPB sends the association a Dam Safety Inspection Report and a Maintenance Report. The reports identify items that need maintenance and provide a schedule of when the maintenance tasks need to be completed. The association is responsible for performing the maintenance items within the times specified.

The dam operator or association members may perform the maintenance tasks. However, major repairs will likely to be handled by a contractor. The SWPB may assist in contracting for repairs and may supervise the repair work.

RECORD KEEPING

The SWPB will maintain records, including photographs, of all inspections and maintenance requirements. These records will also include flow measurements and storage volumes. Anyone who

wants to review these records may do so in the SWPB's office at the Department of Natural Resources and Conservation in Helena.

The dam operator will keep records of the reservoir elevation, seepage observation or measurements, and any unusual conditions. These records may be reviewed at the dam operator's house.

REFERENCES

- U.S. Army Corps of Engineers. March 1981. <u>Phase I Inspection</u>
 <u>Report; National Dam Safety Program; Missouri-Musselshell</u>
 <u>Basin, Bair Dam and Reservoir, Meagher County, (MT 6)</u>.

 Prepared for the State of Montana (DNRC) by Hoskins-Western-Sonderegger, Inc. under the U.S. Army Corps of Engineers'
 National Dam Safety Program.
- Berg, Donald, Upper Musselshell Water Users Association President; July 13, 1994.
- Telephone communications with Sterling Sundheim, Regional Office Civil Engineering Specialist, Water Resources Division, DNRC, Lewistown.
- Parish, Lovell, Regional Geologist. 1998. <u>Geotechnical Inspection of Bair Dam Meagher County , Montana</u>. Prepared for the State of Montana (DNRC) by the Bureau of Reclamation, Great Plains Office, Billings Regional Office, Montana.
- HKM Engineering Inc. October 1, 2000. <u>Bair Dam Rehabilitation</u>
 <u>Feasibility Study Report.</u> Prepared for the Montana Department of Natural Resources and Conservation, State Water Projects Bureau, Helena, Montana by HKM Engineering Inc. Billings, Montana.
- HKM Engineering Inc. October 1, 2000. <u>Bair Dam Rehabilitation</u> Feasibility Study Report -- Appendices B-E.
- HKM Engineering Inc. October 1, 2000. <u>Bair Dam Rehabilitation</u> <u>Feasibility Study Report -- Appendices G -- Geotechnical Investigation and Analysis.</u>
- HKM Engineering Inc. October 1, 2000. <u>Bair Dam Rehabilitation</u> <u>Feasibility Study Report -- Appendices H -- Hydrologic</u> <u>Investigation and Analysis.</u>

APPENDICES

APPENDIX A RATING CURVES AND TABLES

A1 2001

TABLE 1. SLOPE-ELEVATION-STORAGE TABLE BAIR RESERVOIR SOUTH SHORE SLOPE

Pins installed September 6, 2000.

Elevations established with a level on September 14, 2000.

The 0+00 pin located 911 feet east of the HKM CP 2, which is near the picnic shelter by the the boat ramp. The line begins just east of a road gap in the shoreline willows and 55 feet downslope of a steel guard post at a boundary pin and 50 feet from an aluminum cap (CP Z) on the same line.

A white fiberglass post marks the 0+00 pin.

There is no 0+50 pin.

Volume from HKM total storage table of 2000.

DISTANCE	ELEVATION	STORAGE
0+00 CAP	5325.55	7,455
1	5325.32	7,390
2	5325.09	7,325
3	5324.86	7,261
4	5324.63	7,197
SPILLWAY	5324.63	7,197
5	5324.41	7,137
6	5324.22	7,085
7	5324.04	7,036
8	5323.86	6,987
9	5323.68	6,939
10	5323.50	6,890
11	5323.32	6,842
12	5323.14	6,795
13	5322.96	6,746
14	5322.77	6,698
15	5322.59	6,651
16	5322.41	6,605
17	5322.29	6,576
18	5322.18	6,546
19	5322.06	6,515
20	5321.94	6,484
21	5321.82	6,454
22	5321.70	6,424
23	5321.58	6,393
24	5321.47	6,366
25	5321.35	6,336
26	5321.23	6,306
27	5321.17	6,292
28	5321.10	6,274
29	5321.04	6,259
30	5320.98	6,244
31	5320.92	6,230
32	5320.85	6,212
33	5320.79	6,198
34	5320.73	6,183
35	5320.67	6,168
DISTANCE	ELEVATION	STORAGE

DIOTANIOS	ELEVATION.	0700405
DISTANCE	ELEVATION	STORAGE
36	5320.60	6,151
37	5320.54	6,137
38	5320.48	6,122
39	5320.42	6,108
40	5320.35	6,091
41	5320.29	6,077
42	5320.23	6,062
43	5320.16	6,045
44	5320.10	6,031
45	5320.02	6,012
46	5319.93	5,990
47	5319.84	5,969
48	5319.76	5,950
49	5319.67	5,929
50	5319.59	5,910
51	5319.50	5,889
52	5319.42	5,870
53	5319.33	5,849
54	5319.24	5,828
55	5319.16	5,810
56	5319.07	5,789
57	5318.99	5,771
58	5318.90	5,750
59	5318.82	5,732
60	5318.73	5,711
61	5318.64	5,690
62	5318.56	5,672
63	5318.48	5,654
64	5318.41	5,638
65	5318.33	5,620
66	5318.26	5,604
67	5318.18	5,587
68	5318.11	5,571
69	5318.03	5,553
70	5317.96	5,537
71	5317.88	5,520
72	5317.81	5,504
DISTANCE	ELEVATION	STORAGE

A2

TABLE 1. SLOPE-ELEVATION-STORAGE TABLE (continued)
BAIR RESERVOIR SOUTH SHORE SLOPE

DISTANCE	ELEVATION	STORAGE		DISTAN
73	5317.73	5,487		120
74	5317.66	5,471		121
75	5317.58	5,454		122
76	5317.51	5,438		123
77	5317.43	5,421		124
78	5317.36	5,405		125
79	5317.28	5,388		126
80	5317.21	5,373		127
81	5317.13	5,356		128
82	5317.01	5,330		129
83	5316.88	5,302		130
84	5316.75	5,274		131
85	5316.63	5,248		132
86	5316.50	5,221	11	133
87	5316.37	5,194		134
88	5316.25	5,168	11	135
89	5316.12	5,139	11	136
90	5315.99	5,114		137
91	5315.87	5,090	11	138
92	5315.74	5,062		139
93	5315.61	5,036		140
94	5315.49	5,012		141
95	5315.36	4,985		142
96	5315.23	4,959		143
97	5315.11	4,935		144
98	5314.98	4,909	11	145
99	5314.85	4,883		146
100	5314.73	4,859		147
1+00 CAP	5314.68	4,849		148
101	5314.61	4,835		149
102	5314.50	4,813		150
103	5314.38	4,790		1+50 C/
104	5314.26	4,766		151
105	5314.15	4,745		152
106	5314.03	4,722		153
107	5313.91	4,698		154
108	5313.80	4,670		155
109	5313.68	4,654	1 1	156
110	5313.57	4,632	ш	157
111	5313.45	4,610		158
112	5313.33	4,587	11	159
113	5313.22	4,566		160
114	5313.10	4,543		161
115	5312.98	4,520		162
116	5312.87	4,500		163
117	5312.75	4,478		164
118	5312.64	4,457		165
119	5312.52	4,433		166
DISTANCE	ELEVATION	STORAGE		DISTAN
		AO		DIOTAIN

DISTANCE	ELEVATION	STORAGE
120	5312.40	4,412
121	5312.27	4,388
122	5312.15	4,366
123	5312.02	4,343
124	5311.90	4,321
125	5311.77	4,297
126	5311.65	4,275
127	5311.53	4,253
128	5311.40	4,230
129	5311.28	4,208
130	5311.15	4,186
131	5311.03	4,164
132	5310.90	4,141
133	5310.78	4,120
134	5310.66	4,099
135	5310.53	4,076
136	5310.41	4,056
137	5310.31	4,038
138	5310.21	4,021
139	5310.11	4,004
140	5310.02	3,988
141	5309.92	3,971
142	5309.82	3,953
143	5309.72	3,936
144	5309.63	3,921
145	5309.53	3,904
146	5309.43	3,888
147	5309.33	3,871
148	5309.24	3,856
149	5309.14	3,839
150	5309.04	3,822
1+50 CAP	5308.99	3,814
151	5308.99	3,814
152	5308.93	3,804
153	5308.87	3,794
154	5308.82	3,786
155	5308.76	3,776
156	5308.71	3,768
157	5308.65	3,758
158	5308.59	3,748
159	5308.54	3,740
160	5308.48	3,730
161	5308.42	3,720
162	5308.37	3,712
163	5308.31	3,703
164	5308.25	3,693
165	5308.20	3,685
166	5308.14	3,675
DISTANCE	ELEVATION	STORAGE

A3 2001

TABLE 1. SLOPE-ELEVATION-STORAGE TABLE (continued)
BAIR RESERVOIR SOUTH SHORE SLOPE

DISTANCE	ELEVATION	STORAGE		DISTANCE	ELEVATION	STORAGE
167	5308.08	3,665		214	5307.52	3,576
168	5308.03	3,657		215	5307.52	3,576
169	5307.97	3,647		216	5307.52	3,576
170	5307.91	3,638		217	5307.50	3,570
171	5307.85	3,628		218	5307.47	3,568
172	5307.82	3,623		219	5307.44	3,563
173	5307.79	3,618		220	5307.42	3,560
174	5307.76	3,614		221	5307.39	3,555
175	5307.73	3,609		222	5307.36	3,551
176	5307.70	3,604		223	5307.34	3,547
177	5307.67	3,601		224	5307.31	3,543
178	5307.64	3,594		225	5307.28	3,538
179	5307.61	3,590		226	5307.26	3,545
180	5307.58	3,585	}	227	5307.23	3,538
181	5307.57	3,583		228	5307.16	3,519
182	5307.55	3,581		229	5307.08	3,507
183	5307.54	3,579		230	5307.01	3,496
184	5307.53	3,578		231	5306.94	3,485
185	5307.51	3,575		232	5306.87	3,474
186	5307.50	3,573		233	5306.79	3,462
187	5307.48	3,570		234	5306.72	3,451
188	5307.47	3,568		235	5306.65	3,440
189	5307.46	3,567		236	5306.58	3,429
190	5307.44	3,563		237	5306.50	3,417
191	5307.43	3,562		238	5306.44	3,408
192	5307.43	3,562		239	5306.37	3,398
193	5307.42	3,560		240	5306.30	3,387
194	5307.41	3,559		241	5306.24	3,377
195	5307.40	3,557		242	5306.17	3,367
196	5307.39	3,555		243	5306.10	3,356
197	5307.38	3,554		244	5306.04	3,347
198	5307.37	3,552		245	5305.94	3,332
199	5307.36	3,551		246	5305.83	3,315
200	5307.35	3,549		247	5305.73	3,301
2+00 CAP	5307.35	3,549		248	5305.63	3,286
201	5307.37	3,552		249	5305.53	3,272
202	5307.39	3,555		250	5305.43	3,256
203	5307.41	3,559		2+50 CAP	5305.39	3,251
204	5307.44	3,563		251	5305.34	3,243
205	5307.46	3,567		252	5305.25	3,230
206	5307.48	3,570		253	5305.17	3,219
207	5307.50	3,570		254	5305.08	3,205
208	5307.52	3,576		255	5305.00	3,193
209	5307.52	3,576		256	5304.91	3,180
210	5307.52	3,576		257	5304.80	3,165
211	5307.52	3,576		258	5304.69	3,149
212	5307.52	3,576		259	5304.58	3,133
213	5307.52	3,576		260	5304.47	3,118
DISTANCE	ELEVATION	STORAGE		DISTANCE	ELEVATION	STORAGE

A4

2001

TABLE 1. SLOPE-ELEVATION-STORAGE TABLE (continued)
BAIR RESERVOIR SOUTH SHORE SLOPE

261 5304.36 3,101 262 5304.25 3,086 263 5304.14 3,071 264 5304.03 3,055 265 5303.92 3,040 266 5303.92 3,040 267 5303.72 3,013 268 5303.63 3,000 269 5303.53 2,986 270 5303.44 2,974 271 5303.35 2,986 272 5303.35 2,982 271 5303.35 2,982 272 5303.35 2,982 272 5303.35 2,982 272 5303.25 2,948 274 5303.97 2,948 273 5303.16 2,936 274 5303.97 2,924 275 5302.86 2,896 277 5302.74 2,880 278 5302.63 2,860 279 5302.16 2,856 <td< th=""><th>DISTANCE</th><th>ELEVATION</th><th>STORAGE</th><th>П</th><th>DISTANCE</th><th>ELEVATION</th><th>STORAGE</th></td<>	DISTANCE	ELEVATION	STORAGE	П	DISTANCE	ELEVATION	STORAGE
262 5304.25 3,086 263 5304.14 3,071 264 5304.03 3,055 265 5303.92 3,040 266 5303.81 3,024 267 5303.72 3,013 268 5303.63 3,000 269 5303.53 2,986 270 5303.44 2,974 271 5303.35 2,986 272 5303.25 2,948 273 5303.16 2,936 274 5303.07 2,924 275 5302.97 2,911 276 5302.86 2,886 277 5302.74 2,880 278 5302.61 2,856 279 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5303.05 2,775 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.62 2,686 290 5301.06 2,686 290 5301.06 2,686 290 5300.16 2,686 290 5300.16 2,686 290 5301.06 2,686 290 5301.07 2,764 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,886 295 5299.10 2,435 340 5282.45 340 5282.45 340 5282.41 340 5282.41 340 5282.45 340 5282.41 340 5282.45 341 5282.41 344 5283.41 345 345 5283.61 345 5283.81 347 5283.81 348 5283.91 349 5282.91 340 5283.91 341 5284.81 340 5284.82 340 5285.87 341 5284.81 340 5284.81 340 5284.81 340 5284.81 340 5284.81 340 5284.81 340 5284.81 340 5282.91 341 5282.81 341 5282.81 342 5282.91 343 5282.91 344 5283.81 345 5283							
263 5304.14 3.071 264 5304.03 3.055 265 5303.92 3,040 266 5303.81 3.024 267 5303.72 3,013 268 5303.63 3,000 269 5303.53 2,986 270 5303.44 2,974 271 5303.35 2,962 272 5303.25 2,948 273 3503.16 2,936 274 5303.07 2,948 275 5302.97 2,911 276 5302.97 2,911 277 5302.97 2,911 278 5302.93 2,962 274 5303.07 2,924 275 5302.97 2,911 276 5302.93 2,866 277 5302.74 2,880 279 5302.51 2,850 280 5302.28 2,820 281 5302.28 2,820 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
264					310	5295.54	
266							
266					312		
267 5303.72 3.013 268 5303.63 3.000 269 5303.53 2.986 270 5303.44 2.974 271 5303.35 2.962 272 5303.25 2.948 319 5292.97 1.823 273 5303.16 2.936 274 5303.07 2.924 275 5302.97 2.911 275 5302.97 2.911 276 5302.86 2.896 277 5302.74 2.880 278 5302.63 2.866 280 5302.03 2.866 281 5302.28 2.820 281 5302.28 2.820 282 5302.16 2.836 281 5302.28 2.820 282 5302.16 2.805 281 5302.28 2.820 282 5302.16 2.805 283 5302.05 2.790 284 5301.93 2.775 331 5288.94 1.501 284 5301.93 2.775 331 5288.94 1.501 284 5301.93 2.775 331 5288.94 1.501 284 5301.93 2.775 331 5288.94 1.501 284 5301.93 2.761 285 5301.82 2.761 286 5301.67 2.742 287 5301.52 2.723 334 5287.51 1.392 288 5301.37 2.704 288 5301.37 2.704 289 5301.22 2.886 290 5301.06 2.866 337 5286.02 1.393 288 5285.75 1.474 291 5300.91 2.647 292 5300.75 2.629 293 5300.55 2.604 294 5300.35 2.580 390 5289.10 2.435 300 5299.10 2.435 300 5299.10 2.435 301 5298.75 2.396 302 5298.40 2.357 303 5298.05 2.138 304 5282.37 1.151 305 5297.35 2.244 306 529.98 2.205 307 5296.62 2.188 DISTANCE ELEVATION STORAGE					313	5294.57	
268 5303.63 3,000 269 5303.53 2,986 270 5303.44 2,974 271 5303.35 2,962 272 5303.25 2,948 273 5303.16 2,938 274 5303.07 2,924 275 5302.97 2,911 276 5302.86 2,896 277 5302.74 2,880 277 5302.74 2,880 278 5302.63 2,866 279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 282 5302.16 2,805 282 5302.16 2,805 284 5301.82 2,761 285 5301.82 2,761 286 5301.52 2,723 287 5301.52 2,723 288 5301.52 2,723 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
269	268	· · · · · · · · · · · · · · · · · · ·		ш	315	5294.07	
270				H	316	5293.83	1,900
271 5303.35 2,962 272 5303.25 2,948 273 5303.07 2,924 274 5303.07 2,924 275 5302.97 2,911 276 5302.86 2,866 277 5302.74 2,880 278 5302.63 2,866 279 5302.51 2,850 280 5302.28 2,820 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 283 5302.16 2,805 284 5301.93 2,775 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,722 287 5301.52 2,723 334 5285.70 1,436 289 5301.22 2,686 290 5301.06 2,666 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1,870</td></td<>							1,870
272 5303.25 2,948 273 5303.16 2,936 274 5303.07 2,924 275 5302.97 2,911 276 5302.86 2,896 277 5302.74 2,880 278 5302.63 2,866 279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.67 2,742 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.66 2,666 291 5300.91 2,666 299 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 <td< td=""><td></td><td></td><td></td><td></td><td>318</td><td></td><td></td></td<>					318		
273 5303.16 2,936 274 5303.07 2,924 275 5302.97 2,911 276 5302.86 2,896 277 5302.74 2,880 278 5302.63 2,866 279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 <td< td=""><td></td><td></td><td></td><td></td><td>319</td><td>5292.97</td><td>1,823</td></td<>					319	5292.97	1,823
274 5303.07 2,924 275 5302.97 2,911 276 5302.86 2,896 277 5302.74 2,880 278 5302.63 2,866 279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.06 2,686 290 5300.14 2,636 291 5300.01 2,647 292 5300.16 2,686 290 5301.06 2,666 291 5300.55 2,604 294 5300.35 2,580 294 5300.35 2,580 <td< td=""><td></td><td></td><td></td><td>ш</td><td>320</td><td>5292.67</td><td>1,797</td></td<>				ш	320	5292.67	1,797
275 5302.97 2,911 276 5302.86 2,896 277 5302.74 2,880 278 5302.63 2,866 279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.06 2,686 290 5301.07 2,742 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,686 291 5300.76 2,629 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 <td< td=""><td>274</td><td>5303.07</td><td></td><td></td><td>321</td><td>5292.37</td><td>1,771</td></td<>	274	5303.07			321	5292.37	1,771
276 5302.86 2,896 277 5302.74 2,880 278 5302.63 2,866 279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,686 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 299 5300.05 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 299 5299.92 2,526 <td< td=""><td>275</td><td>5302.97</td><td></td><td>11</td><td>322</td><td>5292.06</td><td>1,745</td></td<>	275	5302.97		11	322	5292.06	1,745
277 5302.74 2,880 278 5302.63 2,866 279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.52 2,723 289 5301.06 2,666 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.35 2,580 294 5300.35 2,580 299 5299.93 2,531 299 5299.97 2,506 301 5298.59 344 299 5299.51 2,482 2	276	5302.86			323	5291.76	1,720
278 5302.63 2,866 279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.02 2,686 290 5301.06 2,686 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,580 294 5300.35 2,580 299 5299.31 2,551 299 5299.32 2,531 299 5299.31 2,482 299 5299.32 2,531 299 5299.31 2,459 300 5299.55 2,344 <td< td=""><td>277</td><td>5302.74</td><td></td><td></td><td>324</td><td>5291.49</td><td></td></td<>	277	5302.74			324	5291.49	
279 5302.51 2,850 280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.22 2,686 290 5300.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 300 5299.10 2,482 299 5299.31 2,459 300 5299.10 2,435 300 5298.75 2,396 <td< td=""><td>278</td><td>5302.63</td><td></td><td></td><td>325</td><td>5291.22</td><td>1,676</td></td<>	278	5302.63			325	5291.22	1,676
280 5302.40 2,836 281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.06 2,686 290 5301.06 2,686 290 5301.07 2,704 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,580 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.31 2,459 300 5299.10 2,435 340 5282.45 1,034 390 5299.51 2,482 <td< td=""><td>279</td><td>5302.51</td><td></td><td></td><td>326</td><td>5290.96</td><td>1,655</td></td<>	279	5302.51			326	5290.96	1,655
281 5302.28 2,820 282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.10 2,432 300 5299.10 2,435 340 5282.45 1,074 344 5283.45 1,118 297 5299.05 2,430 300 5299.10 2,435 300 5298.40 2,357 <td< td=""><td>280</td><td>5302.40</td><td></td><td></td><td>327</td><td>5290.34</td><td>1,606</td></td<>	280	5302.40			327	5290.34	1,606
282 5302.16 2,805 283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.35 2,580 294 5300.35 2,580 299 5299.93 2,531 299 5299.10 2,435 300 5299.10 2,435 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.35 2,244 305 5296.62 2,168 DISTANCE ELEVATION STORAGE	281	5302.28			328	5289.73	1,560
283 5302.05 2,790 284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 301 5298.75 2,396 301 5298.75 2,396 302 5298.40 2,357 304 5297.70 2,281 305 5297.35 2,244 <td< td=""><td>282</td><td>5302.16</td><td></td><td></td><td>329</td><td>5289.12</td><td>1,514</td></td<>	282	5302.16			329	5289.12	1,514
284 5301.93 2,775 285 5301.82 2,761 286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 305 5296.62 2,168 DISTANCE ELEVATION STORAGE	283	5302.05			330	5288.94	the state of the s
286 5301.67 2,742 287 5301.52 2,723 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 305 5296.62 2,168 DISTANCE ELEVATION STORAGE	284	5301.93	2,775		331	5288.75	1,488
287 5301.52 2,723 288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	285	5301.82	2,761		332	5288.57	1,474
288 5301.37 2,704 289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 300 5299.10 2,435 300 5299.10 2,435 301 5298.75 2,396 302 5298.40 2,357 303 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	286	5301.67	2,742		333	5288.04	1,436
289 5301.22 2,686 290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	287	5301.52	2,723		334	5287.51	1,399
290 5301.06 2,666 291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 305 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	288	5301.37	2,704	П	335	5287.02	1,364
291 5300.91 2,647 292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	289	5301.22	2,686		336	5286.52	1,330
292 5300.76 2,629 293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	290	5301.06	2,666		337	5286.02	1,297
293 5300.55 2,604 294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 344 5283.45 1,134 5282.81 1,095 346 5282.81 1,095 347 5282.45 1,074 348 5282.09 1,054 349 5281.72 1,031 349 5281.72 1,031 349 5281.71 1,030 349 5281.71 1,030 349 5281.71 1,030 350 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	291	5300.91	2,647		338	5285.67	1,274
294 5300.35 2,580 295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	292	5300.76	2,629	ш	339	5285.31	1,251
295 5300.14 2,555 296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	293	5300.55	2,604	ш	340	5284.95	1,228
296 5299.93 2,531 297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	294	5300.35	2,580		341	5284.48	1,198
297 5299.72 2,506 298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 305 5297.35 2,244 306 5296.62 2,168 DISTANCE ELEVATION STORAGE							1,169
298 5299.51 2,482 299 5299.31 2,459 300 5299.10 2,435 3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE	<u></u>	5299.93	2,531			5283.73	1,151
299 5299.31 2,459 300 5299.10 2,435 3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE		5299.72	2,506	ш	344		1,134
300 5299.10 2,435 3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 305 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE				ш			1,118
3+00 CAP 5299.05 2,430 301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 305 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE							1,095
301 5298.75 2,396 302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 305 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE							
302 5298.40 2,357 303 5298.05 2,318 304 5297.70 2,281 305 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE							
303 5298.05 2,318 304 5297.70 2,281 305 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE JISTANCE ELEVATION STORAGE							
304 5297.70 2,281 305 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE DISTANCE ELEVATION STORAGE							1,030
305 5297.35 2,244 306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE DISTANCE ELEVATION STORAGE					350	5281.36	1,011
306 5296.98 2,205 307 5296.62 2,168 DISTANCE ELEVATION STORAGE DISTANCE ELEVATION STORAGE							
3075296.622,168DISTANCEELEVATIONSTORAGEDISTANCEELEVATIONSTORAGE							
DISTANCE ELEVATION STORAGE DISTANCE ELEVATION STORAGE							
						ELEVIATION:	0700405
	DISTANCE	ELEVATION	STORAGE		DISTANCE	ELEVATION	

DISTANCE	LLEVATION	STORAGE
308	5296.26	2,132
309	5295.90	2,096
310	5295.54	2,066
311	5295.17	2,024
312	5294.81	1,990
313	5294.57	1,968
314	5294.32	1,943
315	5294.07	1,921
316	5293.83	1,900
317	5293.58	1,870
318	5293.28	1,850
319	5292.97	1,823
320	5292.67	1,797
321	5292.37	1,771
322	5292.06	1,745
323	5291.76	1,720
324	5291.49	1,698
325	5291.22	1,676
326	5290.96	1,655
327	5290.34	1,606
328	5289.73	1,560
329	5289.12	1,514
330	5288.94	1,501
331	5288.75	1,488
332	5288.57	1,474
333	5288.04	1,436
334	5287.51	1,399
335	5287.02	1,364
336	5286.52	1,330
337	5286.02	1,297
338	5285.67	1,274
339	5285.31	1,251
340	5284.95	1,228
341	5284.48	1,198
342	5284.01	1,169
343	5283.73	1,151
344	5283.45	1,134
345	5283.18	1,118
346	5282.81	1,095
347	5282.45	1,074
348	5282.09	1,054
349	5281.72	1,031
3+50 CAP	5281.71	1,030
350	5281.36	1,011
000	0201.00	1,011
DISTANCE	ELEVATION	STORAGE
DIGITAROL	LLLV/\TIOI\	CTOTIVICE

2001 **A5**

TABLE 2. SLOPE-ELEVATION-STORAGE TABLE BAIR RESERVOIR DAM SLOPE

The 0+00 is on the upstream side of the dam crest about 100 feet north of the gatehouse.

The 0+50 is a block and ring which is recessed into the gravel about 4 inches.

The 1+00 pin with cap, chain and ropes was installed on November 16, 2000. Its elevation was determined by static GPS methods, controlled to the published elevation for HKM control point #3, and also tied to the published spillway elevation.

Volume based on surveys by HKM in 1999.

DISTANCE	ELEVATION	STORAGE		DISTANCE	ELEVATION	STORAGE
0+00 TOP	5332.38	9,597		36	5319.12	5,801
0+00 BASE	5331.00	9,131		37	5318.92	5,755
1	5330.60	9,000		38	5318.72	5,709
2	5330.20	8,869		39	5318.53	5,665
3	5329.81	8,743		40	5318.33	5,620
4	5329.41	8,615		41	5318.14	5,578
5	5329.02	8,492		42	5317.96	5,537
6	5328.45	8,315		43	5317.77	5,496
7	5327.89	8,143	Ш	44	5317.59	5,456
8	5327.33	7,974	Ш	45	5317.40	5,414
9	5326.76	7,805		46	5317.19	5,369
10	5326.20	7,642		47	5316.97	5,321
11	5325.79	7,553		48	5316.75	5,274
12	5325.37	7,404		49	5316.53	5,227
13	5324.96	7,289		50	5316.32	5,183
SPILLWAY	5324.63	7,197		51	5316.10	5,135
14	5324.55	7,175		0+50 BLK	5315.98	5,112
15	5324.14	7,060		54	5315.45	5,004
16	5323.84	6,982		55	5315.23	4,959
17	5323.54	6,901		56	5314.99	4,911
18	5323.25	6,825		57	5314.75	4,863
19	5322.95	6,744		58	5314.51	4,815
20	5322.65	6,668		59	5314.27	4,768
21	5322.42	6,608		60	5314.02	4,720
22	5322.18	6,546		61	5313.76	4,665
23	5321.95	6,487		62	5313.49	4,617
24	5321.71	6,427		63	5313.23	4,568
25	5321.48	6,368		64	5312.96	4,516
26	5321.26	6,314		65	5312.70	4,468
27	5321.04	6,259		66	5312.54	4,437
28	5320.82	6,205		67	5312.38	4,408
29	5320.61	6,153		68	5312.22	4,379
30	5320.39	6,101		69	5312.07	4,352
31	5320.17	6,047		70	5311.91	4,323
32	5319.96	5,997				
33	5319.74	5,945				
34	5319.53	5,896				
35	5319.32	5,847				
DISTANCE	ELEVATION	STORAGE		DISTANCE	ELEVATION	STORAGE

A6 2001

TABLE 2. SLOPE-ELEVATION-STORAGE TABLE (continued)
BAIR RESERVOIR DAM SLOPE

DISTANCE	ELEVATION	STORAGE		DISTANCE	ELEVATION	STORAGE
71	5311.65	4,275		116	5297.14	2,222
72	5311.39	4,228		117	5296.78	2,184
73	5311.13	4,182		118	5296.43	2,149
74	5310.87	4,136		119	5296.07	2,113
75	5310.61	4,090		120	5295.71	2,080
76	5310.10	4,002		121	5295.51	2,063
77	5309.59	3,914		122	5295.30	2,039
78	5309.07	3,827	1 11	123	5295.09	2,016
79	5308.56	3,743	Ш	124	5294.89	1,998
80	5308.05	3,660	1 11	125	5294.68	1,978
81	5307.87	3,631	1 11	126	5294.36	1,947
82	5307.69	3,603		127	5294.05	1,919
83	5307.51	3,573		128	5293.73	1,888
84	5307.33	3,546	$\parallel \parallel \parallel$	129	5293.41	1,859
85	5307.15	3,518		130	5293.09	1,833
86	5306.96	3,488		131	5292.56	1,787
87	5306.77	3,459		132	5292.03	1,743
88	5306.59	3,431		133	5291.50	1,699
89	5306.40	3,402		134	5290.97	1,656
90	5306.21	3,373		135	5290.44	1,613
91	5305.95	3,334		136	5289.99	1,579
92	5305.68	3,294		137	5289.55	1,547
93	5305.41	3,254		138	5289.10	1,513
94	5305.14	3,214		139	5288.66	1,481
95	5304.87	3,175	Н	140	5288.21	1,448
96	5304.49	3,121	Ш	141	5287.78	1,418
97	5304.11	3,067		142	5287.35	1,388
98	5303.74	3,015		143	5286.92	1,357
99	5303.36	2,963		144	5286.49	1,328
1+00 CAP	5302.98	2,912	ш	145	5286.06	1,300
101	5302.58	2,859		146	5285.75	1,279
102	5302.18	2,808	1 11	147	5285.45	1,260
103	5301.78	2,756		148	5285.15	1,241
104	5301.38	2,705	Ш	149	5284.85	1,222
105	5300.99	2,657		150	5284.54	1,202
106	5300.57	2,606	1 11	151	5284.27	1,185
107	5300.15	2,556	Ш	146	5285.75	1,279
108	5299.73	2,507		147	5285.45	1,260
109	5299.32	2,460		148	5285.15	1,241
110	5298.90	2,413		149	5284.85	1,222
111	5298.62	2,382		150	5284.54	1,202
112	5298.34	2,350		151	5284.27	1,185
113	5298.06	2,319				
114	5297.78	2,289				
115	5297.50	2,260				
DISTANCE	ELEVATION	CTODAGE		DIOTANOE		CTODAGE
DISTANCE	ELEVATION	STORAGE		DISTANCE	ELEVATION	STORAGE

A7 2001

TABLE 3. TOTAL STORAGE IN ACRE-FEET

BAIR RESERVOIR

Elevation	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5241	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.03	0.04
5242	0.06	0.08	0.10	0.13	0.16	0.20	0.25	0.30	0.35	0.41
5243	0.5	0.6	0.6	0.7	0.8	0.9	1.1	1.2	1.3	1.5
5244	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.3	3.6
5245	3.8	4.1	4.4	4.8	5.1	5.5	5.8	6.2	6.6	7.1
5246	7.5	8.0	8.4	8.9	9.5	10	11	11	12	12
5247	13	14	14	15	16	16	17	18	19	20
5248	20	21	22	23	23	24	25	26	27	28
5249	28	29	30	31	32	33	33	34	35	36
5250	37	38	39	40	41	42	43	44	45	46
5251	47	48	49	50	51	52	53	54	55	56
5252	57	58	59	60	61	63	64	65	66	67
5253	68	69	71	72	73	74	76	77	78	79
5254	81	82	83	85	86	87	89	90	91	93
5255	94	95	97	98	100	101	103	104	106	107
5256	109	110	112	113	115	117	118	120	122	123
5257	125	127	129	130	132	134	136	138	139	141
5258	143	145	147	149	151	153	155	157	159	161
5259	163	165	167	170	172	174	176	178	181	183
5260	185	187	190	192	194	197	199	202	204	206
5261	209	211	214	216	218	221	223	226	228	231
5262	233	236	239	241	244	246	249	252	254	257
5263	259	262	265	267	270	273	276	278	281	284
5264	287	289	292	295	298	301	304	307	309	312
5265	315	318	321	324	327	330	333	336	339	342
5266	345	348	351	355	358	361	364	367	370	374
5267	377	380	383	387	390	393	397	400	403	407
5268	410	414	417	420	424	427	431	434	438	441
5269	445	449	452	456	459	463	467	470	474	478
5270	482	485	489	493	497	501	504	508	512	516
5271	520	524	528	532	535	539	543	547	551	555
5272	559	563	568	572	576	580	584	588	592	596
5273	600	605	609	613	617	622	626	630	634	639
5274	643	647	652	656	661	665	669	674	678	683
5275	687	692	696	701	705	710	714	719	724	728

A8 2001

TABLE 3. TOTAL STORAGE IN ACRE-FEET (continued)

BAIR RESERVOIR

Elevation	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
5276	733	738	742	747	752	757	761	766	771	776
5277	781	785	790	795	800	805	810	815	820	825
5278	830	835	840	845	851	856	861	866	871	876
5279	882	887	892	897	903	908	914	919	924	930
5280	935	941	946	952	957	963	968	974	979	985
5281	991	996	1,002	1,008	1,013	1,019	1,025	1,030	1,036	1,042
5282	1,048	1,054	1,059	1,065	1,071	1,077	1,083	1,089	1,095	1,101
5283	1,107	1,113	1,119	1,125	1,131	1,137	1,143	1,149	1,155	1,162
5284	1,168	1,174	1,180	1,187	1,193	1,199	1,205	1,212	1,218	1,224
5285	1,231	1,237	1,244	1,250	1,256	1,263	1,269	1,276	1,283	1,289
5286	1,296	1,302	1,309	1,316	1,322	1,329	1,336	1,343	1,350	1,356
5287	1,363	1,370	1,377	1,384	1,391	1,398	1,405	1,412	1,419	1,426
5288	1,433	1,440	1,447	1,455	1,462	1,469	1,476	1,484	1,491	1,498
5289	1,506	1,513	1,520	1,528	1,535	1,543	1,550	1,558	1,565	1,573
5290	1,580	1,588	1,596	1,603	1,611	1,619	1,627	1,635	1,643	1,650
5291	1,658	1,666	1,674	1,683	1,691	1,699	1,707	1,715	1,724	1,732
5292	1,740	1,749	1,757	1,765	1,774	1,782	1,791	1,800	1,808	1,817
5293	1,826	1,834	1,843	1,852	1,861	1,870	1,879	1,888	1,897	1,906
5294	1,915	1,924	1,933	1,943	1,952	1,961	1,971	1,980	1,989	1,999
5295	2,008	2,018	2,027	2,037	2,047	2,057	2,066	2,076	2,086	2,096
5296	2,106	2,116	2,126	2,136	2,146	2,156	2,166	2,176	2,187	2,197
5297	2,207	2,218	2,228	2,239	2,249	2,260	2,270	2,281	2,292	2,303
5298	2,313	2,324	2,335	2,346	2,357	2,368	2,379	2,390	2,401	2,413
5299	2,424	2,435	2,446	2,458	2,469	2,481	2,492	2,504	2,515	2,527
5300	2,539	2,550	2,562	2,574	2,586	2,598	2,610	2,622	2,634	2,646
5301	2,659	2,671	2,683	2,696	2,708	2,721	2,733	2,746	2,758	2,771
5302	2,784	2,797	2,810	2,823	2,836	2,849	2,862	2,875	2,888	2,901
5303	2,915	2,928	2,942	2,955	2,969	2,982	2,996	3,010	3,023	3,037
5304	3,051	3,065	3,079	3,093	3,107	3,122	3,136	3,150	3,165	3,179
5305	3,193	3,208	3,223	3,237	3,252	3,267	3,282	3,296	3,311	3,326
5306	3,341	3,356	3,371	3,387	3,402	3,417	3,432	3,448	3,463	3,479
5307	3,494	3,510	3,525	3,541	3,557	3,573	3,588	3,604	3,620	3,636
5308	3,652	3,668	3,685	3,701	3,717	3,733	3,750	3,766	3,783	3,799
5309	3,816	3,832	3,849	3,866	3,883	3,899	3,916	3,933	3,950	3,967
5310	3,985	4,002	4,019	4,036	4,054	4,071	4,088	4,106	4,124	4,141

A9 2001

TABLE 3. TOTAL STORAGE IN ACRE-FEET (continued)

BAIR RESERVOIR

Elevation	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5311	4,159	4,177	4,194	4,212	4,230	4,248	4,266	4,284	4,302	4,321
5312	4,339	4,357	4,375	4,394	4,412	4,431	4,449	4,468	4,487	4,505
5313	4,524	4,543	4,562	4,581	4,600	4,619	4,638	4,658	4,677	4,696
5314	4,716	4,735	4,755	4,774	4,794	4,813	4,833	4,853	4,873	4,893
5315	4,913	4,933	4,953	4,973	4,993	5,014	5,034	5,054	5,075	5,096
5316	5,116	5,137	5,158	5,179	5,200	5,221	5,242	5,263	5,285	5,306
5317	5,328	5,349	5,371	5,392	5,414	5,436	5,458	5,480	5,502	5,524
5318	5,546	5,569	5,591	5,613	5,636	5,658	5,681	5,704	5,727	5,750
5319	5,773	5,796	5,819	5,842	5,865	5,889	5,912	5,936	5,959	5,983
5320	6,007	6,031	6,055	6,079	6,103	6,127	6,151	6,176	6,200	6,225
5321	6,249	6,274	6,299	6,323	6,348	6,373	6,398	6,424	6,449	6,474
5322	6,500	6,525	6,551	6,576	6,602	6,628	6,654	6,680	6,706	6,732
5323	6,758	6,784	6,811	6,837	6,864	6,890	6,917	6,944	6,971	6,998
5324	7,025	7,052	7,079	7,107	7,134	7,161	7,189	7,217	7,244	7,272
5325	7,300	7,328	7,356	7,384	7,413	7,441	7,469	7,498	7,526	7,555
5326	7,584	7,613	7,642	7,671	7,700	7,729	7,758	7,787	7,817	7,846
5327	7,876	7,906	7,935	7,965	7,995	8,025	8,055	8,086	8,116	8,146
5328	8,177	8,207	8,238	8,269	8,299	8,330	8,361	8,392	8,424	8,455
5329	8,486	8,518	8,549	8,581	8,612	8,644	8,676	8,708	8,740	8,772
5330	8,804	8,837	8,869	8,902	8,934	8,967	9,000	9,032	9,065	9,098
5331	9,131	9,165	9,198	9,231	9,265	9,298	9,332	9,365	9,399	9,433
5332	9,467	9,501	9,535	9,569	9,604	9,638	9,673	9,707	9,742	9,777
5333	9,811	9,846	9,881	9,917	9,952	9,987	10,022	10,058	10,093	10,129
5334	10,165	10,201	10,236	10,272	10,309	10,345	10,381	10,417	10,454	10,490
5335	10,527	10,564	10,600	10,637	10,674	10,711	10,749	10,786	10,823	10,861
5336	10,898	10,936	10,974	11,011	11,049	11,087	11,125	11,164	11,202	11,240
5337	11,279	11,317	11,356	11,394	11,433	11,472	11,511	11,550	11,589	11,629
5338	11,668	11,708	11,747	11,787	11,827	11,866	11,906	11,946	11,986	12,027
5339	12,067	12,107	12,148	12,188	12,229	12,270	12,311	12,352	12,393	12,434
5340	12,475	12,517	12,558	12,600	12,641	12,683	12,725	12,767	12,809	12,851
5341	12,893	12,935	12,977	13,020	13,062	13,105	13,148	13,190	13,233	13,276
5342	13,319	13,362	13,406	13,449	13,492	13,536	13,579	13,623	13,667	13,711
5343	13,755	13,799	13,843	13,887	13,931	13,976	14,020	14,065	14,110	14,154
5344	14,199	14,244	14,289	14,335	14,380	14,425	14,471	14,516	14,562	14,607
5345	14,653									

Note: Active storage table based upon surveys by HKM in 1999.

Spillway Crest Elevation 5,324.63 feet Storage 7,197 acre-feet

Dam Crest Elevation 5,335.78 feet Storage 10,816 acre-feet

A10 2001

TABLE 4. SPILLWAY DISCHARGE
BAIR RESERVOIR

Depth Over		
Crest	Elevation	Discharge
(feet)	(feet)	(cfs)
0	5324.6	0
1.0	5325.6	275
2.0	5326.6	625
3.0	5327.6	1080
4.0	5328.6	1600
5.0	5329.6	2240
6.0	5330.6	3000
8.0	5332.6	4500
10.0	5334.6	6000
12.0	5336.6	8200

Note: Data from the Corps of Engineers Phase 1 Inspection Report (1981).

TABLE 5. V-NOTCH WEIR RATING TABLE

HEAD	DISCH	HARGE		HEAD	DISCH	ARGE
(IN)	(GPM)	(CFS)		(IN)	(GPM)	(CFS)
				4.1	77.8	0.173
				4.2	82.6	0.184
				4.3	87.5	0.195
				4.4	92.6	0.206
0.5	0.4	0.001		4.5	98.0	0.218
0.6	0.7	0.001		4.6	103.4	0.230
0.7	1.0	0.002		4.7	109.1	0.243
0.8	1.4	0.003		4.8	115.0	0.256
0.9	1.8	0.004		4.9	121.0	0.270
1.0	2.4	0.005		5.0	127.2	0.283
1.1	3.0	0.007		5.1	133.6	0.298
1.2	3.7	0.008		5.2	140.2	0.312
1.3	4.5	0.010		5.3	147.0	0.328
1.4	5.4	0.012		5.4	154.0	0.343
1.5	6.4	0.014		5.5	161.2	0.359
1.6	7.5	0.017		5.6	168.5	0.375
1.7	8.8	0.020		5.7	176.1	0.392
1.8	10.1	0.022		5.8	183.8	0.410
1.9	11.5	0.026		5.9	191.8	0.427
2.0	13.1	0.029		6.0	199.9	0.445
2.1	14.8	0.033		6.1	208.3	0.464
2.2	16.6	0.037		6.2	216.9	0.483
2.3	18.5	0.041		6.3	225.6	0.503
2.4	20.6	0.046		6.4	234.6	0.523
2.5	22.8	0.051		6.5	243.8	0.543
2.6	25.1	0.056		6.6	253.2	0.564
2.7	27.6	0.061		6.7	262.9	0.586
2.8	30.2	0.067		6.8	272.7	0.608
2.9	32.9	0.073		6.9	282.8	0.630
3.0	35.8	0.080	-	7.0	293.0	0.653
3.1	38.9	0.087		7.1	303.5	0.676
3.2	42.1	0.094		7.2	314.2	0.700
3.3	45.4	0.101		7.3	325.2	0.725
3.4	48.9	0.109		7.4	336.3	0.749
3.5	52.5	0.117		7.5	347.7	0.775
3.6	56.3	0.126		7.6	359.3	0.801
3.7	60.3	0.134		7.7	371.2	0.827
3.8	64.4	0.144		7.8	383.2	0.854
3.9	68.7	0.153		7.9	395.5	0.881
4.0	73.1	0.163		8.0	408.1	0.909

Q = $(2.49 (H/12)^{2.48})(448.83)$ Q in gpm H in inches

APPENDIX B INSPECTION REPORT FORM

B1 2001

DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION DAM SAFETY INSPECTION REPORT

EINSPECTED	
	REA
Water Surface Elevation (feet)	Storage (acre-feet)
n	
	OWNER OPERATOR _ STREAM DRAINAGE AF

	ITEM	YES	NO	REMARKS
--	------	-----	----	---------

1. EMBANKMENT

A. Crest Height= Length=	Width=
(1) Any visual settlements?	
(2) Any misalignments?	
(3) Any cracking?	
(4) Any traffic damage?	
(5) Other?	

B2 2001

IIEM	YES	NO	REMARKS
1. EMBANKMENT (continued)			
B. Upstream Face Slope=			
(1) Any erosion?			
(2) Any longitudinal cracks?			
(3) Any transverse cracks?			
(4) Is riprap protection adequate?			
(5) Any stone deterioration?			
(6) Any visual settlement, slumps, sloughing, depressions or bulges?			
(7) Adequate grass cover?			
(8) Debris on the dam face?			
(9) Other?			
C. Downstream FaceSlope=			
(1) Any erosion?			
(2) Any longitudinal cracks?			
(3) Any transverse cracks?			
(4) Any visual settlement, slumps, sloughing, depressions or bulges?			
(5) Is the toe drain dry?			
(6) Are the relief wells flowing?			
(7) Any boils at the toe?			
(8) Any seepage areas?			
(9) Any traffic or animal damage?			
(10) Any burrowing animals?			
(11) Adequate grass cover?			
(12) Other?			
D. Amount and Type of Vegetation on	the Dam		

B3 2001

			·
ITEM	YES	NO	REMARKS

2. ABUTMENT CONTACTS

A) Any erosion?	
B) Any visual differential movement?	
C) Any cracks?	
D) Any seepage present?	
E) Other?	

3. OUTLET WORKS

A. Intake Structure -- Size=

A. Intake Structure Size=	
(1) Any settlement?	
(2) Any tilting?	
(3) Do concrete surfaces show:	
a. Spalling?	
b. Cracking?	
c. Erosion?	
d. Exposed reinforcement?	
(4) Do joints show:	
a. Displacement or offset?	
b. Loss of joint material?	
c. Leakage?	
(5) Metal appurtenances:	
a. Any corrosion present?	
b. Any breakage present?	
(6) Trash rack?	
a. Condition?	
b. Anchor system secure?	
(7) Other?	

B4 2001

	YES	NO	REMARKS
ITEM			

3. OUTLET WORKS (continued)

B. Conduit Type =	Size =
(1) Do concrete surfaces show:	
a. Spalling?	
b. Cracking?	
c. Erosion?	
d. Exposed reinforcement?	
(2) Do joints show:	
a. Displacement or offset?	
b. Loss of joint material?	
c. Leakage?	
(3) Is the conduit metal?	
a. Any corrosion present?	
b. Protective coatings adequate?	
(4) Is the conduit misaligned?	
(5) Any calcium deposits?	
(6) Other?	

C. Gates and Tower

(1) Gates:			····
a. Size: Operating:b. Type: Operating:	Emergency: Emergency:		
(2) Controls operational?			
(3) Controls lubricated?			
(4) Operational problems?			
(5) Leakage around gates?			
(6) Condition of gate seals?			
(7) Any cavitation damage? If so, describe?			

B5 2001

ITEM	YES	NO	REMARKS
B. OUTLET WORKS (continued)			
C. Gates and Tower (continued)			
(9) Is there a jet pump?			
a. Is it operational?			
b. Leakage?			
(10) Is the tower dry? wet?			
(11) Any seepage in the tower?			
(12) Condition of the tower?			•
(13) Any safety problems?			
(14) Ladder in good condition?			
(15) Condition of the gatehouse?			·
(16) Emergency plan completed for the dam?			
a. Posted in the gatehouse?			
(17) Other?			
D. Stilling Basin			
(1) Do concrete surfaces show:			
a. Spalling?			
b. Cracking?			
c. Erosion?			
d. Exposed reinforcement?			
(2) Do joints show:	1		
a. Displacement or offset?			
b. Loss of joint material?			
c. Leakage?			
(3) Do energy dissipaters show:			
a. Signs of deterioration?			
b. Are they covered with debris?			

(4) Other?

B6 2001

ITEM	YES	NO	REMARKS
3. OUTLET WORKS (continued)			
E. Downstream Channel			
(1) Is the channel:			
a. Eroding or backcutting?			
b. Sloughing?			
c. Obstructed?			
(2) Is released water:			
a. Undercutting the outlet?			
b. Eroding the embankment?			
(3) Other?			
A. Description			
(1) Location?			
(2) Type of Spillway?			
(3) Size of Spillway?			
(4) Spillway lining?			
(5) Is there a weir?			
(6) Is the spillway in good condition?			
(7) Any drains?			
a. Describe the condition of drains.			
B. Does spillway show:			
(1) Any cracking concrete?			
(2) Any spalling concrete?			
(3) Any exposed reinforcement in the concrete?			
(4) Any erosion?		1	

B7 2001

ITEM	YES	NO	REMARKS
4. SPILLWAY (continued)			
4. B. Does spillway show: (continued)			
(5) Any slope sloughing?			
(6) Any obstructions?			
(7) Displacement or offset joints?			
(8) Loss of joint material?			
(9) Leakage at the joints?			
(10) Other?			
C. Do the energy dissipaters show:			
(1) Signs of deterioration?			
(2) Any cracking?			
(3) Any spalling?			
(4) Any exposed reinforcement?			•
(5) Are they covered with debris?			
(6) Other?			
D. Has release water:			
(1) Eroded the embankment?			
(2) Undercut the outlet?			
(3) Eroded the downstream channel?			
(4) Other?			
E. Emergency Spillway			
(1) Is there an emergency spillway?			(If YES, describe)

B8 2001

ITEM	YES	NO	REMARKS
5. RESERVOIR CONTROL			
A) Recent upstream development?			
B) Recent downstream development?			
C) Slides in reservoir area?			
D) Change in reservoir operation?			
E) Large impoundment upstream?			
F) Any debris in the reservoir?			
G) Other?			
6. INSTRUMENTATION			
A) List type(s) of instrumentation:			
B) In good condition?			
C) Read periodically?			
D) Is data available?			
E) Include all data gathered since last	report.		
7. DOWNSTREAM CONDITION A. Downstream Land Use.			
This dam was inspected by:		-	

Additional comments and recommendations.

B9 2001

B10 2001

APPENDIX C DISTRIBUTION LIST

C1 2001

BAIR O&M DISTRIBUTION LIST

		Number Of Copies
1. St	ate Water Projects Bureau Glen McDonald Greg Ames (vacant) Art Taylor (2) Bob Arrington Bob Clark Delores Eustice	7
2. Di	NRC Information Services Section	1
3. DI	NRC Lewistown Regional Office Scott Irwin Sterling Sundheim	2
4. DI	NRC Dam Safety	1
5. Wa	ater Users Eugene Taber President Kenneth Yerger Vice President Susan Moore Secretary/Treasurer	3
6. D	am Operator Dam Operator (Keith Hill) Gate House	2
7. St	ate Library Attn: Roberta Gebhardt	4
8. Ex	xtra ====================================	2
ТОТА		22

C2 2001

APPENDIX D MONITORING WELL LOGS

D1 2001

GEOTECHNICAL DRILLING PROGRAM RATIONALE

	PURPOSE(S)	Determine embankment and foundation material properties, nature of foundation contact and phreatic surface location at	maximum section for slope stability analysis.		(see above)		(see above)	Determine seepage and geologic conditions in the left abutment, determine the nature of the foundation contact and cutoff for the spillway and bedrock for excavation potential.		conditions in the right abutment.	Obtain data from upstream impervious zone; identify cut-off trench material and nature of contact with bedrock.	Evaluate materials in slope above spillway and install inclinometer casing.
	PIEZOMETER COMPLETION	(1) Embankment observation well	(1) Foundation open-system piezometer	(1) Embankment observation well	(1) Foundation open-system piezometer	(1) Embankment observation well	(1) Foundation open-system piezometer	(1) Abutment open-system piezometer	(1) Observation well	(1)Abutment open-system piezometer	None	1.9" diameter inclinometer casing
ANTICIPATED	(ACTUAL) DEPTH (ft)	120	(128.4)		90 (67.0)		60 (52.5)	40 (51.0)	40	(92.6)	85 (62.8)	0 (98.6)
	LOCATION	Dam crest @ maximum section			Downstream face at two-thirds the dam height above the toe		Downstream toe near 2:1/5:1 slope break	Left dam crest near spillway inlet		Right dam abutment	Upstream face	Slope above spillway
	DRILL HOLE NO.	1-66			99-2		99-3	99-4		99-5	9-66	2-66

ROCK CLASSIFICATION DESCRIPTIONS

	ROCK STRENGTH					
Class	Strength	Fleid Test	Approximate Range of Unlaxist Compressive Strength kg/cm² (tons/ft²)			
ı	Extremely Strong	Many blows with geologic hammer required to break intact specimen.	>2000			
И	Very Strong	Hand held specimen breaks with hammer end of pick under more than one blow.	2000-1000			
III	Strong	Cannot be scraped or peeled with knife, hand held specimen can be broken with single moderate blow with pick.	1000-500			
IV	Moderately Strong	Can just be scraped or peeled with knife. Indentations 1 mm to 3 mm show in specimen with moderate blow with pick.	500-125			
٧	Moderately Weak to Weak	Material crumbles under moderate blow with sharp end of pick and can be peeled with a knife, but is too hard to hand trim for triaxial test specimen.	125-12			

		WEATHERING
Grade	Symbol	Diagnostic Features
Fresh	F	No visible sign of decomposition or discoloration. Rings when struck by hammer.
Slightly Weathered	WS	Slight discoloration inwards from open fractures, otherwise similar to F.
Moderately Weathered	WM	Discoloration throughout. Weaker minerals such as feldspar decomposed. Strength somewhat less than fresh rock but cores cannot be broken by hand or scraped by knife. Texture preserved.
Highly Weathered	WH	Most minerals somewhat decomposed. Specimens can be broken by hand with effort or shaved with knife. Core stones present in rock mass. Texture becoming indistinct but fabric preserved.
Completely Weathered	WC	Minerals decomposed to soil but fabric and structure preserved (Saprolite). Specimens easily crumbled or penetrated.
Residual Soil	RS	Advanced state of decomposition resulting in plastic soils. Rock fabric and structure completely destroyed. Large volume change.

STRUC	CTURAL PARAMETERS	
Description for Structural Features: Bedding, Foliation, or Flow Banding	Spacing	Description for Joints, Faults or Other Fractures
Very Thickly (bedded, foliated, or banded)	More than 6 feet	Very Widely (fractured or jointed)
Thickly	2 - 6 feet	Widely
Medium	8 - 24 inches	Medium
Thinly	2½ - 8 inches	Closely
Very Thinly	3/4 - 21/2 inches	Very Closely
Description for Microstructural Features: Lamination, Foliation, or Cleavage		Description for Joints, Faults or Other Fractures
Intensely (laminated, foliated or cleaved)	1/4 - 3/4 inch	Extremely Close
Very Intensely	Less than 1/4 inch	

RQ	D
RQD (Rock Quality Designation)	Description of Rock Quality
0 - 25%	Very Poor
25 - 50%	Poor
50 - 75%	Fair
75 - 90%	Good
90 - 100%	Very Good

SOIL CLASSIFICATION/LEGEND

Criteria for Assig	ning Group Symbols			Soil Classification Generalized Group Descriptions
COARSE-GRAINED SOILS	GRAVELS	CLEAN GRAVELS	GW	Well-graded gravels
More than 50% retained on No. 200 sieve	More than 50% of coarse fraction retained on No. 4	Less than 5% fines GRAVELS w/ FINES More than 12% fines	GP GM	Poorty-graded gravels Gravel and silt mixtures
140. 200 51040	sieve		GC	Gravel & clay mixtures
	SANDS	CLEAN SANDS	sw	Well-graded sands
	50% or more of	Less than 5% fines	SP	Poorty-graded sands
	coarse faction	SANDS with FINES	SM	Sand and silt mixtures
	passes No. 4 sieve	More than 12% fines	SC	Sand and clay mixtures
FINE-GRAINED SOILS	SILTS & CLAYS		CL	Low-plasticity clays
50% or more passes the No. 200 sieve	Liquid limit less than 50	INORGANIC	ML	Non-plastic and low- plasticity sits
		ORGANIC .	OL	Non-plastic and low plasticity organic clays Non-plastic and low- plasticity organic silts
	SILTS & CLAYS		СН	High-plasticity clays
	Liquid limit Greater than 50	INORGANIC	МН	High-plasticity silts
		ORGANIC	он	High-plasticity organic clays High-plasticity organic soils
HIGHLY ORGANIC SOILS	Primarily organic ma	tter, dark in color, and	PT	peat

Componen	t Definitions By Gradation
Component	Size Range
Boulders	Greater than 12 in.
Cobbles	3 in. to 12 in.
Gravel	3 in. to No. 4 (4.75 mm)
Coarse gravel	3 in. to ¾ in.
Fine gravel	¾ in. to No. 4 (4.75 mm)
Sand	No. 4 (4.75 mm) to No. 200 (.075 mm)
Coarse sand	No. 4 (4.75 mm) to No. 10 (2.0 mm)
Medium sand	No. 10 (2.0 mm) to No. 40 (0.425 mm)
Fine sand	No. 40 (0.425 mm) to No. 200 (0.074 mm)
Silt and Clay	Smaller than No. 200 (0.075 mm)

Silt and Cl	ay Descriptions
Description	Typical Unified Designation
Silt	ML (non-plastic)
Clayey Silt	CL-ML (low plasticity)
Silty Clay, Lean Clay	CL
Clay, Fat Clay	CH
Plastic Silt	MH
Organic Soils	OL, OH, Pt

			enetration Te		silve of
Cohesioniesa Soils ⁴⁴ Cohesive Soils ⁴⁴					
Denaity ⁽ⁿ⁾	N blows/ft ^{tc)}	Relative Density {%}	Consistency	N blows/ft ^(c)	Undrained Shear Strength (psf)
/ery loose	0 to 4	0 - 15	Very soft	0 to 2	<250
.oose	4 to 10	15 35	Soft	2 to 4	250 - 500
Med. Dense	10 to 30	35 - 65	Med. Stiff	4 to 8	500 - 1000
Dense	30 to 50	65 - 85	Stiff	8 to 15	1000 - 2000
/ery Dense	Over 50	>85	Very Stiff	15 to 30	2000 - 4000
			Mord	Our. 20	>4000

- (a) Soils consisting of gravel, sand and silt, either separately or in combination, possessing no characteristics of plasticity and exhibiting drained behavior.
- (b) Soils possessing the characteristics of plasticity, and exhibiting undrained behavior.
- (c) Refer to text of ASTM D 1586 for a definition of N; in normally consolidated cohesionless soils relative density terms are based on N values corrected for overburden pressures.
- (d) Undrained shear strength = 1/2 unconfined compressive strength.

	Groundwater Elevation
$\bar{\Delta}$	Water Elevation Noted During Drilling
Ī	Water Elevation Recorded After Drilling Complete
Ā	Water Elevation Recorded After Auger Removal

Soi	l Moisture
Dry	Dry of the optimum moisture content.
Moist	Approximately at optimum moisture.
Very Moist To Wet	Wet of optimum to saturated.

Descriptive Terminology Denoting Components Proportions

Descriptive Terms	Range of Proportion
Trace	0 - 5%
Little	5 - 12%
Some or Adjective (a)	12 - 30%
And	30 - 50%

(a)Use gravelly, sandy or silty as appropriate.

	Samples
M	Split Spoon Sampler (2.0" OD)
X	Ring Sampler (3.0" OD) * Indicates increased blow counts due to sampler size.
	Shelby Tube Sampler (3.0" OD)

Unless otherwise noted, drive samples advanced with 140 lb. Hammer with 30 in. drop.

Project No. 8M087.155 LOG OF BOREHOLE NO. DH99-1 Sheet 1 c						Sheet 1 of 8					
CLIENT Montana Dont of Natural P	Natural Resources and Conservation ARCHITECT/ENGIN										
SITE	esources and conservation	PRO	JECT			NW E	ngmeering i				
Bair Reserv	oir, Montana		٥	AMPLE			Bair Dam	TESTS			
	GRAPHIC LOG	ЭЕРТН (FT.)	TYPE		IN. RECOVERED IN. DRIVEN	POCKET PENE- TROMETER, TSF		JE FOOT	ADDITIONAL DATA/ REMARKS		
Surface Elev.: 5336.9 ft. Silty Gravel with Sand (GM)	Datuili. MOL	_		-	ZZ	9 F	10 20 3	0 40			
light brown, dry, grading to s (GC-GM) at 5.0'	; moderately dense, silty dayey gravel	111111	M 7 12 ∆ 10	SS-1	11/18 61%						
6.5 Sandy to Gravelly Clay (CL) Gravel (GC); firm/compact, is brown to yellow brown, slight (impervious fill)	ight brown to red	5 —	8 6 6	\$S-2	7/18 39%						
		10-	P U S H	SH-1	18/18 100%		01		Sample: SH-1 M.C.=14.1% USCS=CL Gravel=8% Sand=41% Fines=51% LL=37 PI=20 Phi=31.2 degees Cohesion=550ps		
Continued Ne		15	6 14 16		6/18				Dry Density=116.9pc		
Continued Ne	ext Page	20-									
	HKM Engineering			J	STA	RTED	10/22/99	FINISHE	10/24/99		
HKM	222 North 32nd				DRIL	L CO.	RB&G Eng.	DRILL RI	G CME-55		
Engineering	Billings, MT 59° Telephone: (406) 65		399		<u> </u>	DRILLER BH			RILLER		
Liigiileeiiiig	6398			LOG	GED E	BY JM	APPROVED BY JTS				

LOG OF BOREHOLE NO. DH99-1 Project No. 8M087,155 Sheet 2 of 8 CLIENT ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE Bair Reservoir, Montana Bair Dam SAMPLES **TESTS** RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF 9 GRAPHIC LOG BLOWS/FOOT **BLOWS PER** DEPTH (FT.) ADDITIONAL DATA/ NUMBER REMARKS WC LL TYPE zż (continued) 10 20 30 40 47 Sample: 16/18 1.5 SS-4 89% M.C.=20.5% 3.0 Sample: 18/18 SH-2 SH-2 100% M.C.=13.0% S USCS=SC H Gravel=20% Sand=42% 10 14/18 SS-5 >4.5 78% Fines=38% 27.8 12 LL=38 PI=21 Clayey Gravel with Sand (GC); compact to 16 Phi=29.7 degee dense, yellow brown to brown, slightly moist, Cohesion=89ps more gravel and rocks (dia < 1") at about 27.8' Dry (semi impervious fill) hard drilling starting at Density=120.4pc 27.8', Scattered Limestone and shale 1 1/2" with depth (Semi-pervious Embankment) Sample: SS-5 17/18 >4.5 94% >4.5 15 SS-6 M.C.=6.9% Sample: 12 SS-6 M.C.=9.6% Sample: 18/18 SS-7 M.C.=10% 8 SS-7 3.5 100% 10 Continued Next Page HKM Engineering Inc. 10/24/99 STARTED 10/22/99 FINISHED 222 North 32nd St. CME-5 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 BH DRILLER ASST DRILLER Telephone: (406) 656-6399 Engineering **JTS** Fax: (406) 656-6398 LOGGED BY JM APPROVED BY

BOREHOLE BORELOGS GPJ MSE HKM GDT

OF.

LOG OF BOREHOLE NO. DH99-1 Sheet 3 of 8 **Project No. 8M087.155** ARCHITECT/ENGINEER HKM Engineering Inc. Montana Dept. of Natural Resources and Conservation **PROJECT Bair Dam** Bair Reservoir, Montana SAMPLES TESTS RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF GRAPHIC LOG တံ **BLOWS/FOOT BLOWS PER ADDITIONAL** DEPTH (FT.) DATA NUMBER REMARKS WC PI LL zż 10 20 30 40 (continued) Sample: 9 11/18 **SS-8** 12 **SS-8** 61% M.C.=9.8% 13 USCS=GC Gravel=35% Sand=34% Fines=31% LL=50 PI=32 2.5 2.5 11/18 24 **SS-9** 61% 11 5288.9 18.0 Sandy Lean to Fat Clay with Gravel (CL-CH); stiff to hard, yellow brown to brown 50 10/18 1.75 SS-10 13 56% 1.75 11 55 Poor Recovery due to Gravel Piece 10 0/18 BORELOGS GPJ MSE HKM GDT 9/28/00 13 SS-11 0% 16 60-**Continued Next Page** HKM Engineering Inc. 10/24/99 10/22/99 STARTED FINISHED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng. **DRILL RIG** BOR Billings, MT 59101 BH ASST DRILLER DRILLER გ Telephone: (406) 656-6399 Engineering **JTS** Fax: (406) 656-6398 LOGGED BY JM APPROVED BY

LOG OF BOREHOLE NO. DH99-1 **Project No. 8M087.155** Sheet 4 of 8 ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE Bair Reservoir, Montana Bair Dam SAMPLES **TESTS** RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF 9 **BLOWS/FOOT GRAPHIC LOG BLOWS PER** DEPTH (FT.) **ADDITIONAL** DATA/ NUMBER REMARKS WC LL TYPE ヹヹ (continued) 10 20 30 40 Sample:SS-12 7d SS-12 18/18 2.75 100% 3.75 M.C.=24.7% 8 0 USCS=CH 12 Gravel=12% Sand=34% Fines=64% LL=70 PI=48 Dispersion=6.3% 12 0/18 15 SS-13 0% 18 Sample:SS-14 18/18 2.75 100% 3.75 M.C.=27.8% 7 SS-14 15 Ā Water Level During Drilling Sample:SS-15 15 SS-15 17/18 3.25 >M.C.=23.2% BOREHOLE BORELOGS GPJ MSE HKM GDT 7/18/00 94% 4.25 36 79.0 5257.9 Clayey Gravel with Sand (GC) to Sandy or Gravelly Lean Clay (CL); slightly moist, dense **Continued Next Page** HKM Engineering Inc. 10/24/99 10/22/99 FINISHED STARTED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 ASST DRILLER DRILLER OF Telephone: (406) 656-6399 Engineering JM APPROVED BY **JTS** Fax: (406) 656-6398 LOGGED BY

LOG OF BOREHOLE NO. DH99-1 Project No. 8M087.155 Sheet 5 of 8 ARCHITECT/ENGINEER dontana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Reservoir, Montana **Bair Dam** SAMPLES **TESTS** PENE-ER, TSF RECOVERED DRIVEN N VALUE **BLOWS/FOOT** GRAPHIC LOG **BLOWS PER** ADDITIONAL DEPTH (FT.) POCKET F TROMETE DATA/ NUMBER REMARKS WC LL $\vec{z} \vec{z}$ 10 20 30 40 (continued) to compact, brown to brownish red 8 Sample:SS-16 62 M.C.=12.4% 16/18 13 SS-16 >4.3 USCS=GC 89% 19 Gravel=49% Sand=29% Fines=22% LL=62 PI=45 Sample:SS-17 10 SS-17 18/18 2.25 100% 3.0 M.C.=17.8% 13 Sample:SS-18 15 SS-18 18/18 2.5 100% 3.25 M.C.=17.7% Ф 15 Sample:SS-19 10 15 SS-19 18/18 2.5 100% 3.25 M.C.=18% 16 **Continued Next Page**

BORELOGS GPJ MSE HKM.GDT 7/18/00

OG OF BOF

HKM Engineering Inc. 222 North 32nd St. Billings, MT 59101 Telephone: (406) 656-6399 Fax: (406) 656-6398

STARTED 10/22/99 FINISHED 10/24/99

DRILL CO. RB&G Eng. DRILL RIG CME-55

DRILLER BH ASST DRILLER

LOGGED BY JM APPROVED BY JTS

LOG OF BOREHOLE NO. DH99-1 **Project No. 8M087.155** Sheet 6 of 8 ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. SITE **PROJECT** Bair Reservoir, Montana **Bair Dam** SAMPLES TESTS RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF ਹੰ **BLOWS/FOOT** GRAPHIC LOG **BLOWS PER ADDITIONAL** DEPTH (FT.) DATA NUMBER REMARKS WC ΖŻ (continued) 10 20 30 40 5 Sample: SS-20 18/18 SS-20 20 100% M.C.=18.4% 20 101.5 USCS=SC Silty Clayey Gravel with Sand (GC-GM); dense, Gravel=27% Sand=34% slightly moist Fines=39% 103.0 LL=60 PI=42 Limestone 105.0 5231.9 SS-21 60/2 0% See Sheet 7 for Continuation of Core Drilled Portion of Log BOREHOLE BORELOGS GPJ MSE HKM GDT 9/28/00 Bottom of Hole at 128.42 ft. Groundwater Encountered at 73.5 ft. (10/24/1999)120 **Continued Next Page** HKM Engineering Inc. 10/24/99 10/22/99 FINISHED **STARTED** 222 North 32nd St. CME-55 DRILL CO. RB&G Eng. **DRILL RIG** Billings, MT 59101 DRILLER BH ASST DRILLER P Telephone: (406) 656-6399 Engineering **JTS** JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

LOG OF DRILLHOLE NO. DH99-1 Sheet 7 of 8 **Project No. 8M087.155** ARCHITECT/ENGINEER Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE **Bair Dam** Bair Reservior, Montana Weathering Index Permeability (ft/yr) Unit Weight (pcf) **SRAPHIC LOG** Point Load Index Strength Index DEPTH (FT.) ADDITIONAL Core Run (#) DATA Recovery REMARKS R.Q.D. (continued) 5231.9 105.0 0.17 1 105.2 Metamorphosed Shale; olive, massive, fresh, very strong, laminated Lithographic Limestone/Quartzite; gray, massive except for fractures, slightly weathered, strong, 3/3.2 F.WS 10 11 17.1 closely fractured, fracture staining/infiltering of white/olive calcite, some fractures healed with calcite, limestone fragments 1/8 to 1/16" adjacent to healed fractures of white calcite, white to olive carbonate laminations/bands 1/8 to 2" at 15 to 20 degrees from horizontal Run Number:3 observed from 108.42 to 111.42', very slight M.C.=0.3% HCL reaction on some fresh fractured surfaces from hammer breaks 5/5 F.WS 17.1 94.10 170.2 1.11 Run Number:4 M.C.=0.4% F,WS 17.2 56.78 159.8 5/5 50 1,1 5219.9 117.0 Metamorphosed Shale; gray to dark gray, siliceous, extremely strong to very strong, HKM.GDT massive, highly fractured olive to light olive CO3 cement on structures and healed fractures, CO3 (white) **Continued Next Page** HKM Engineering Inc. 10/23/99 10/24/99 STARTED **FINISHED** 222 North 32nd St. Cî €-55 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 BH ASS'T DRILLER DRILLER Telephone: (406) 656-6399 Engineering **JTS** JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

Project No. 8M087.155	LOG OF DRILL	LH(OLE	NC). D	H99	-1					Sheet 8 of 8
CLIENT Montana Dept of Natural Re	of Natural Resources and Conservation ARCHITECT/ENGINEER HKM Engin					ngin	neering Inc.					
SITE Bair Reservior, Montana			PROJECT Bair Dam									
(continued)		GRAPHIC LOG	DEPTH (FT.)	Core Run (#)	Recovery	R.Q.D. %	Weathering Index	Strength Index	Permeability (ft/yr)	Point Load Index	Unit Weight (pcf)	ADDITIONAL DATA/ REMARKS
23.4	5213.5		-	5	5/5	16		1,11	9.8			
Metamorphosed/Siliceous S gray, massive, fresh, very str fractured, carbonate (calcite iron staining (red brown) sho planes as above	hale; gray to dark rong, dry, highly) olive green plus		125—	6	5/5	9	F,WS	1,11	9.8			
28.4	5208.5											
Bottom of Hole a	at 128.42 ft.											
HKM	HKM Enginee 222 North 32						RTED		0/23/9		NISHED	
Engineering	Billings, MT Telephone: (406	59 ² 5) 65	101 56-63	99		DRI	LL CO.		В	H AS	ST DRI	LLER
	Fax: (406) 656-6398					LOC	SGED 6) Y	JM APPROVED BY			טפר טוע

WELL COMPLETION LOG NO. DH99-01 **Project No. 8M087.155** Sheet 1 of 1 **ENGINEER** Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT Bair Dam** Bair Reservoir, Montana WELL CONSTRUCTION Stand Pipe Cover DEPTH (FT.) Open System Piezometer **Observation Well** (99-1a) (99-1b)Surface Elev.: 5336.9 ft. Datum: MSL 0.5 Steel Protective Cover (0' - .5') Bentonite Hole Plug (.5' - 48.67') 5336.4 20 1" PVC Pipe 1" PVC Pipe Typical Typical 35Ξ 45 5288.3 CSSI 10x20 Silica Sand Filter Pack (48.67' -77.0') 55 60 1" Slotted (0.020") PVC (50.0'-75.0') 5259.9 77.0 Bentonite Hole Plug (77' - 109.5') 80 85 90= 105 109.5 5227.4 CSSI 10x20 Silica Sand Filter Pack (109.5' -1" Slotted <u>115.0</u> 115') 5221.9 (0.020") PVC Bentonite Hole Plug (115' - 128.4') (111.6'-113.5') 120= 125 128.4 5208.5 WELLOGS GPJ

HKM Engineering Inc. 222 North 32nd St. Billings, MT 59101 Telephone: (406) 656-6399 Fax: (406) 656-6398

STARTED	10/23/99	FINISHED	10/24/99
DRILL CO	RB&G Eng	DRILL RIG	CME-55
DRILLER	вн	ASS'T DRILL	ER
LOGGED B	y JM	APPROVED	JTS

D14 2001

Project No. 8M087.155	LOG OF BOREH	OLE	NO.	. DI	H99	-2			Sheet 1 of 5				
CLIENT		ARCI	HITECT	/ENGI									
Montana Dept. of Natural F	Resources and Conservation	PRO.	HKM Engineering Inc. PROJECT										
Bair Reserv	Bair Dam SAMPLES TESTS												
	POO	Т.)	o.		IN. RECOVERED IN. DRIVEN	PENE- ER, TSF	N VAL		ADDITIONAL				
	Datum: MSI	БЕРТН (FT.)	TYPE BLOWS PER	NUMBER	RECO	POCKET F TROMETE	PL WC	LL	DATA/ REMARKS				
Surface Elev.: 5301.3 ft.	Dataili. MOL	DEF	TYPE	N	ZZ	POC	10 20 3	0 40					
Gravel with Sand and Silt (damp, very coarse gravel to boulder at 10' (Rock Shell)	cobbles, large	=	5 6 4	SS-1	5/18 28%		•						
		=											
	600	1											
		_											
		5											
		_	5 13	SS-2	7/18 39%								
	00		24										
	900												
Gravelly Clay with Sand (Cl with Sand (GC); medium st) to Clayey Gravel	10-	2 9		10/18								
to very dense, damp, brown gravel (Semi-pervious Emb	n, coarse to fine		9 10	SS-3	56%								
gravar (Gami parvidus Emis													
		$ $ \bar{A}											
Converting State		15	7										
Gravel is fine			8 9	SS-4	10/18 56%								
HKM GDT 9/28/00		+	10										
HKM													
Continued N													
0000						Ì							
Continued N	ext Page	20—											
HKM	HKM Engineering 222 North 32nd				<u> </u>	RTED	11/2/99		11/3/99				
Engineering	Billings, MT 59	101				L CO.	RB&G Eng.	DRILL RIG	CME-55				
Engineering	Telephone: (406) 6 Fax: (406) 656-		399		_	GED E		APPROVED					

LOG OF BOREHOLE NO. DH99-2 **Project No. 8M087.155** Sheet 2 of 5 CLIENT ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. SITE **PROJECT** Bair Reservoir, Montana **Bair Dam** SAMPLES **TESTS** . RECOVERED . DRIVEN POCKET PENE-TROMETER, TSF N VALUE GRAPHIC LOG **BLOWS/FOOT BLOWS PER** DEPTH (FT.) ADDITIONAL **DATA** NUMBER REMARKS WC TYPE ΖŻ (continued) 10 20 30 40 22 13/18 72% 41 SS-5 >む 40 21 8/18 32 SS-6 >₹ 44% 52 Permeability: 21.5'-30.0', k=591 ft/yr 29.0'-35.0', k=453 ft/yr 36 10/18 42 **SS-7** 56% 45 13 8/18 BORELOGS GPJ MSE HKM.GDT 9/28/00 27 SS-8 >& >4.5 44% 36 Water level during drilling 40.0 ∇5261.3 **Continued Next Page** HKM Engineering Inc. 11/3/99 BOREHOLE STARTED 11/2/99 **FINISHED** 222 North 32nd St. DRILL CO. RB&G Eng. **CME-55** DRILL RIG Billings, MT 59101 BH DRILLER ASST DRILLER Telephone: (406) 656-6399 6 Engineering SS APPROVED BY **JTS** Fax: (406) 656-6398 LOGGED BY

LOG OF BOREHOLE NO. DH99-2 **Project No. 8M087.155** Sheet 3 of 5 ARCHITECT/ENGINEER CLIENT Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT Bair Dam** Bair Reservoir, Montana SAMPLES **TESTS** N VALUE IN. RECOVERED IN. DRIVEN POCKET PENE-TROMETER, TSF o **BLOWS/FOOT** GRAPHIC LOG **BLOWS PER ADDITIONAL** DEPTH (FT.) **DATA**/ NUMBER **REMARKS** PL WC 10 20 30 40 (continued) Silty Clayey Fine Gravel (GM); dense, dry to 27 .75 11/18 damp, light brown 22 **\$**\$-8 2.5 61% 14 45.0 Meta Quartzite Shale 60/4 4/18 22% SS-10 >81 See Sheet 4 for Continuation of Core Drilled Portion of Log. Bottom of Hole at 67.0 ft. Groundwater Encountered at 40.0 ft. (11/2/1999)BORELOGS GPJ MSE HKM GDT 9/28/00 **Continued Next Page** HKM Engineering Inc. 11/3/99 STARTED 11/2/99 FINISHED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 DRILLER ASST DRILLER გ Telephone: (406) 656-6399 Engineering **JTS** APPROVED BY Fax: (406) 656-6398 LOGGED BY SS

LOG OF DRILLHOLE NO. DH99-2 **Project No. 8M087.155** Sheet 4 of 5 ARCHITECT/ENGINEER CLIENT Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE Bair Reservior, Montana **Bair Dam** Weathering Index Permeability (ft/yr) Unit Welght (pcf) GRAPHIC LOG Point Load Index Strength Index **ADDITIONAL** DEPTH (FT.) Core Run (#) DATA/ R.Q.D. % Recovery **REMARKS** (continued) 5255.8 45.5 Meta Quartzite (Siliceous) Shale; dark maroon, 0.9/.9 0 F,WS III,IV strong, highly fractured, calcite, olive to dark 46.4 5254.9 brown carbonate cement on fracture planes 2 b.8/1.2 III,IV 0 F,WS 47.6 5253.7 Very highly fractured blue green calcareous cement on open fractures, intermittent bands of 3 1.9/1.g F.WS III,IV 0 crystalline olive to blue green limestone 49.6 5251.7 Less open fractures, numerous healed fractures 50 with blue green to olive calcareous cement, banding of olive green crystalline appearing limestone as above throughout, light gray to 3.8/3.8 F.WS III,IV 3.4 light greeny gray 49.5-50.2', maroon to lavender 50.2-51.5', gray to light maroon/lavender 51.5-53.25', less fractured/broken rock 53.3 5248 1 Light gray to dark gray at 53.75', cement on fractures as above 5 F,WS III,IV 5/17 CORELOGS GPJ MSE HKM.GDT 7/18/00 58.3 Meta Quartzite Shale (as above) 0.6/1 F.WS 8.0 59.3 5242.1 Meta Quartzite Shale (as above); mottled **Continued Next Page** HKM Engineering Inc. 11/3/99 11/2/99 FINISHED STARTED 222 North 32nd St. DRILL CO. RB&G Eng. CME-5 **DRILL RIG** Billings, MT 59101 DRILLER ASST DRILLER Telephone: (406) 656-6399 CORING Engineering JTS Fax: (406) 656-6398 JM APPROVED BY LOGGED BY

LOG OF DRILLHOLE NO. DH99-2 **Project No. 8M087.155** Sheet 5 of 5 CLIENT ARCHITECT/ENGINEER Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE Bair Reservior, Montana **Bair Dam** Weathering Index Permeability (ft/yr) Unit Weight (pcf) GRAPHIC LOG Point Load Index Strength Index DEPTH (FT.) **ADDITIONAL** Core Run (#) DATA % Recovery REMARKS R.Q.D. (continued) gray, olive, red brown to dark red brown, very strong HCL reaction 59.25-63.25 7 4/4 10 F.WS III,IV 63.3 5238.1 Meta Quartzite Shale; strong, fractured, healed Run Number:8 fractures as above, cement not as apparent as M.C.=0.4% uphole, cement on fractures dark red calcite 65 8 1.5/3.8 40 F,WS III,IV 8.0 55.47 166.3 67.C OGS GPJ MSE HKM GDT 7/18/00 Bottom of Hole at 67 ft. HKM Engineering Inc. 11/2/99 11/3/99 FINISHED STARTED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng. **DRILL RIG** CORING 5/17 Billings, MT 59101 BHI ASST DRILLER DRILLER Telephone: (406) 656-6399 Engineering **JTS** JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

D20 2001

WELL COMPLETION LOG NO. DH99-02 **Project No. 8M087.155** Sheet 1 of 1 **ENGINEER** CLIENT Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Reservoir, Montana **Bair Dam** WELL CONSTRUCTION Stand Pipe Cover DEPTH (FT.) Open System Piezometer Observation Well (99-2a) (99-2b)Surface Elev.: 5301.3 ft. Datum: MSL Steel Protective Cover (0' - .5') 5298.3 Bentonite Hole Plug (.5' - 48.67') 10-15 1" PVC Pipe 1" PVC Pipe **Typical** Typical 20.0 5281.3 20 CSSI 10x20 Silica Sand Filter Pack (48.67' -77.0') 25 30-1" Slotted (0.020") PVC (25.0'-40.0') 5261.3 Bentonite Hole Plug (77' - 109.5') 45 50 55.0 5246.3 CSSI 10x20 Silica Sand Filter Pack (109.5' -1" Slotted 60.0 5241.3 (0.020") PVC Bentonite Hole Plug (115' - 128.4') (56.5'-58 5') 65 — 67.0 5234.3 HKM Engineering Inc. 11/3/99 11/2/99 FINISHED STARTED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng DRILL RIG Billings, MT 59101 BH ASST DRILLER DRILLER Telephone: (406) 656-6399 **JTS** JM **APPROVED** Fax: (406) 656-6398 LOGGED BY

D22 2001

Project No. 8M087.155	LOG OF BOREHOLE NO. DH99-3											Sheet 1 of 4					
CLIENT	LIENT ARCHITECT/ENGINEER HKM E									1							
SITE Montana Dept. of Natural Ro		PRO.															
	Bair Reservoir, Montana						Bair Dam										
	g	3		.0		MPLE	IN. RECOVERED IN. DRIVEN	POCKET PENE- TROMETER, TSF		N VALU		ADDITION					
	S	5	T (FT		BLOWS PER NUMBER	8	COVE	ET PE	-			ADDITIONAL DATA/ REMARKS					
	Datum: MSI		DEPTH (FT.)	TYPE	NO.	NUMBER	RE.	OCKE	PL I	WC	LL	REMARKS					
Surface Elev.: 5267.4 ft. Poorly Graded Gravel with S	Sand (GP): compact		۵	-	-	Z	<u> </u>	۵.۲	10	20 30	40						
to very dense, interlayered we rock (boulder to cobble size) saturated saturated gravel/si and 26-27.5', auger refusal a (rock shell)	vith large limestone), pockets of and sporadic at 6' at 28.5' on boulder	202000000000000000000000000000000000000	5	\ 1 1	1	SS-1	12/18 67% 12/18 67%										
	0.0	10000000000000000000000000000000000000	10	(9	0 5	SS-3	6/18 33%										
Continued Ne		1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15	3:	5 0 5	SS-4	7/18 39%				>8						
_	HKM Engineeri						671		100	20/00	FINISHEE	10/21/00					
HKM	222 North 32r						STAF		RB&G		FINISHED DRILL RIG	10/21/99 CME-55					
0	Billings, MT 5	910)1	00			DRIL		NDGG		ASST DRI						
Engineering	Telephone: (406) Fax: (406) 656			99				GED B	Υ		APPROVE						

Project No. 8M087.155	LOG OF BOREH	IOLE	E NC	٥.	DH	199	-3				Sheet 2 of 4					
CLIENT	ENT ARCHITECT/ENGINEER										0110002014					
	esources and Conservation					H	KM En	ginee	ring	Inc.						
SITE	• 884====	PRO	JECT				Р	· D -								
Bair Keservi	oir, Montana			SAL	MPLES	<u> </u>	В	air Dai		TESTS						
				37.			Щ		VAL							
	90			9 >		IN. RECOVERED IN. DRIVEN	POCKET PENE- TROMETER, TSF		DWS/F							
	GRAPHIC LOG	(FT.)		BLOWS PER	~	OVE EN	PE				ADDITIONAL DATA/					
	H	DEPTH (FT.)	ш	WS	NUMBER	ECC NRIV	ME	PĻL	WC	L.L	REMARKS					
(continued)	GRA	DEP	TYPE	BLO'	NON	ZZ	POC	10		30 40	-					
(conunted)			1	11	_		,		7							
		3	1 1	19	SS-5	6/18 33%										
	000	d -	1	14												
		4 -		1												
		d -														
	000															
		1														
	0.00															
	600	25—	1/ >	60												
	000				SS-6	0/18										
			1	-		0 %										
		4 _														
		<u>d</u> -	-													
28.5	5238.9	', ←	1						-		(
Clayey Gravel with Sand (GC	C); gray, medium	3 _														
dense to dense (weathered	O/X	9 -														
30.0 Metamorphosed Shale; fresh	h, strong, light gray ∇	30—	√≯60	14	<i>c.</i> 11											
clay showing in cuttings at 3	34', cuttings return		1200		SS-7	0/18				3<						
100% black shale at 35', no	HCL reaction		Λ	-		0%										
Water level during drilling		-														
		= -								}						
		<u> </u>														
		= _					İ									
35.0	5232.4	35 —					-									
		_														
See Sheet 3 for Continuation	n of Core Drilled	_					1									
Portion of Log.		_					1									
Bottom of Hole at 52.5 ft.		_														
Groundwater Encountered a (10/21/1999)	at 30.3 ft.						-									
,																
		_														
Continued Ne	ext Page	40-					-									
	HKM Engineerin	na Inc		j		STA	RTED	10/2	0/99	FINISHED	10/21/99					
HKM	222 North 32n									DRILL RIC						
111 (111	Billings, MT 59							TDaG								
Engineering	Telephone: (406) 6						LER			ASST DR						
	Fay: (406) 656-	-6398				LOG	GED BY	Y	10/4	APPROVE	ED BY JUS					

LOG OF DRILLHOLE NO. DH99-3 **Project No. 8M087.155** Sheet 3 of 4 ARCHITECT/ENGINEER CLIENT Montana Dept of Natural Resources and Conservation HKM Engineering Inc. SITE **PROJECT Bair Dam** Bair Reservior, Montana Weathering Index Permeability (ft/yr) Unit Weight (pcf) GRAPHIC LOG Point Load Index Strength Index DEPTH (FT.) ADDITIONAL Core Run (#) DATA R.Q.D. % Recovery REMARKS (continued) 5232.4 35.0 Metamorphosed Shale; dark gray (black-wet, maroon-dry), laminated, iron/illmonite staining on fracture planes, slight HCL reaction on 2.5/2.5 0 1 WM 11,111 staining to moderate HCL reaction on white LOGS GPJ MSE HKM GDT 7/18/00 calcite 2 1/1 0 512 WM 11,111 5228.9 38.5 Same as above, yellow staining showing on 3 1/1 0 WM 11,111 512 fracture planes 40 **Continued Next Page** HKM Engineering Inc. 10/21/99 10/20/99 FINISHED STARTED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng. **DRILL RIG** Billings, MT 59101 ASS'T DRILLER DRILLER Telephone: (406) 656-6399 Engineering JTS Fax: (406) 656-6398 LOGGED BY JM APPROVED BY

Pr	oject No. 8M087.155	LOG OF DE	G OF DRILLHOLE NO. DH99-3									(Sheet 4 of 4
1	IENT Iontana Dept of Natural Re	esources and Conser	vation	ARC	HITEC	T/ENGI			ngin	eering	a Inc	•	
SIT				PRO	JECT				Bair [
			SRAPHIC LOG	(FT.)	(#) ur	,	%	Weathering Index	ı İndex	Permeability (fl/yr)	Point Load Index	Unit Weight (pcf)	ADDITIONAL DATA/
(5)	ontinued)		GRAPH	ОЕРТН (FT.)	Core Run (#)	Recovery	R.Q.D. %	Veathe	Strength Index	ermea	Point Lo	Jnit We	REMARKS
				-		D.7/1.5		WM	11,111	512			
41.	Strong HCL reaction 41.2-4 intergranular with green to y	1.5', calcite	26.2			1.3/1.3	0	WM	11,111	512 512			
43.	5	52	22.0		7	p.8/o.8	0	WM	11,111	512			
43.	As above, layered green lime with dark green to black/may 46.7-47.5 strong HCL reaction 43.3-47.5	ey shale interlayered roon when dry, on, highly fractured	19.9		8	4.2/4.2	0	WM	11,111	492			
47.3	Dark gray to black Metamor strong		19.9		9	1.4/1.4	0	wм	11,111	492			
				50—	10	1.2/1.4	0	WM	111	492			
					11	D.6/1.8	0	WM	111	492			
52.	5	521	14.9			1.2							
8/00													
CORING 5/17 CORELOGS GPJ MSE HKM GDT 7/18/00	Bottom of Hole	at 52.5 ft.											
CORELO	HKM	HKM Eng 222 Nor				<u>i</u>		ARTED		0/20/9	_	NISHED	
IG 5/17		Billings,	MT 59	9101	300		1	LL CO	. KB&	G Eng	-	SST DRI	
SORIN	Engineering	Telephone: (406) 656-6399 Fax: (406) 656-6398 LOGGED BY							BY	JM APPROVED B			D BY JTS

WELL COMPLETION LOG NO. DH99-03 **Project No. 8M087.155** Sheet 1 of 1 CLIENT **ENGINEER** Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE Bair Reservoir, Montana **Bair Dam** WELL CONSTRUCTION Stand Pipe Cover DEPTH (FT.) Open System Piezometer **Observation Well** (99-3a) (99-3b)Surface Elev.: 5267.4 ft. Datum: MSL 2.5 Protective Steel Box and Cement Seal (0' -2.5') 5264.9 Bentonite Hole Plug (2.5' - 18') 1" PVC Pipe 15 1" PVC Pipe 18.0 **Typical** Typical CSSI 10x20 Silica Sand Filter Pack (18' - 27.8') 20-1" Slotted 25 (0.020") PVC (18'-28.8')5238.6 Slough (27.8'-28.8') Bentonite Hole Plug (28.8' - 47.5') 47.5 5219.9 CSSI 10x20 Silica Sand Filter Pack (47.5' -52.5 52.5') 1" Slotted 5214.9 (0.020") PVC (47.5'-52.5') WELLOGS GPJ MSE HKM GDT 8/9/00 HKM Engineering Inc. 10/21/99 10/20/99 STARTED **FINISHED** 222 North 32nd St. CME-55 DRILL CO. RB&G Eng DRILL RIG Billings, MT 59101 DRILLER BH ASST DRILLER Telephone: (406) 656-6399 Engineering **JTS** JM Fax: (406) 656-6398 LOGGED BY **APPROVED**

D28 2001

LOG OF BOREHOLE NO. DH99-4 **Project No. 8M087.155** Sheet 1 of 4 ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Reservoir, Montana Bair Dam SAMPLES **TESTS** RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF o. **BLOWS/FOOT** GRAPHIC LOG **BLOWS PER** DEPTH (FT.) **ADDITIONAL DATA**/ NUMBER **REMARKS** WC PL LL ΖZ Surface Elev.: 5323.5 ft. 10 20 30 40 Datum: MSL Silty Gravel with Sand (GM); loose, dry, light 3 10/18 gray, coarser and denser with depth 3 **SS-1** 56% Medium dense at 5-6' 6/18 9 SS-2 33% 12 Meta Quartzite Shale; weathered at contact 60/3 3/18 SS-3 17% 11.5 See Sheet 2 for Continuation of Core Drilled Portion of Log. BORELOGS GPJ MSE HKM GDT 7/18/00 Bottom of Hole at 51.0 ft. Groundwater Encountered at 30.7 ft. (10/30/1999)**Continued Next Page** HKM Engineering Inc. 10/29/99 11/2/99 STARTED FINISHED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 DRILLER ASST DRILLER Telephone: (406) 656-6399 Engineering **JTS** Fax: (406) 656-6398 LOGGED BY JM APPROVED BY

LOG OF DRILLHOLE NO. DH99-4 **Project No. 8M087.155** Sheet 2 of 4 ARCHITECT/ENGINEER CLIENT Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE Bair Reservior, Montana **Bair Dam** Weathering Index Permeability (ft/yr) Unit Weight (pcf) GRAPHIC LOG Point Load Index Strength Index DEPTH (FT.) Core Run (#) **ADDITIONAL** DATA R.Q.D. % Recovery REMARKS Datum: MSL Surface Elev.: 5323.5 ft. 5312.0 11.5 Meta Quartzite Shale; maroon to deep lavender, moderately strong to strong, highly fractured, calcite and calcareous olive cement on open 2.7/2.7 WS III,IV fractures, fractures healed with calcite cement, some fractures show red brown iron staining 5309.3 14.2 Meta Quartzite (Siliceous) Shale; as above, less infilling of fractures with cement, most fractures 15 appear to be induced by drilling, high density of 2 2.5/2.5 37 F,WS III,IV healed fractures (calcite cement) 5306.8 16.7 Meta Quartzite Shale; as above, highly fractured olive calcite showing on fracture planes 3 1.5/1.5 F,WS 111,11 1876 HKM GDT 5305.3 as above 4 1/1 F,WS III,IV 1876 CORING 5/17 CORELOGS GPJ MSE 5304.3 Meta Quartzite Shale; maroon to dark gray, **Continued Next Page** HKM Engineering Inc. 11/2/99 10/29/99 **FINISHED** STARTED 222 North 32nd St. CME-5 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 BH DRILLER ASS'T DRILLER Telephone: (406) 656-6399 Engineering **JTS** JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

LOG OF DRILLHOLE NO. DH99-4 Sheet 3 of 4 **Project No. 8M087.155** ARCHITECT/ENGINEER Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE **Bair Dam** Bair Reservior, Montana Weathering Index Permeability (ft/yr) Unit Weight (pcf) Point Load Index GRAPHIC LOG Strength Index **ADDITIONAL** DEPTH (FT.) Core Run (#) DATA % Recovery **REMARKS** R.a.D. (continued) moderately strong to strong, highly fractured, numerous healed fractures, all fractures have calcite carbonate deposits, core breaks along two planes with single moderate blow of 5 1876 5/5 33 F,WS III,IV hammer 5299.3 24.2 Meta Quartzite Shale; olive gray to dark gray 25 6 1006 4/4 9 WS 111 5295.3 28.2 as above, highly fractured 7 1/1 0 WS 111 1006 29.2 5294.3 as above, x-bedding WS 1006 8 .4/1. 0 111 30 9 1/1 0 WS Ш 1006 30.6 as above Water level during drilling 1006 10 2.3/2.5 14 WS 11,111 WS Ш 134 11 1.3/1.3 45 Run Number:12 35 163.9 M.C.=0.5% 48.87 12 1.8/1.8 67 WS 111 134 10/02 0 134 OGS GPJ MSE HKM GDT 7/18/00 b 2/0 4 14 15 1.2/1.4 0 WS 134 Ш 37.8 5285.7 Meta Quartzite Shale; as above, highy fractured, calcite on fractures, olive gray 39.2 5284.3 16 WS,WIN III 134 1.6/1.8 as above, higher fracture density **Continued Next Page** HKM Engineering Inc. 11/2/99 10/29/99 FINISHED STARTED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng DRILL RIG Billings, MT 59101 BH ASST DRILLER DRILLER Telephone: (406) 656-6399 Engineering JTS JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

LOG OF DRILLHOLE NO. DH99-4 Project No. 8M087.155 Sheet 4 of 4 ARCHITECT/ENGINEER CLIENT Montana Dept of Natural Resources and Conservation HKM Engineering Inc. SITE **PROJECT** Bair Reservior, Montana Bair Dam Weathering Index Permeability (ft/yr) Unit Weight (pcf) GRAPHIC LOG Point Load Index Strength Index DEPTH (FT.) **ADDITIONAL** Core Run (#) DATA 8 Recovery REMARKS R.a.D. (continued) 17 D.7/1.3 0 WM Ш 134 40.9 5282.6 as above, olive to dark gray 18 1.5/2 0 WM 134 as above, dark gray, abundant rust-colored calcite on fractures 19 D.8/0.8 WM 10.2 44.2 20 0.5/0.5 0 WM IV 10.2 45.0 0 WM b 4/0 4 ΙV 102 46.1 Meta Quartzite Shale; abundant planar fractures 23 2.7/3.2 0 WM III,IV 10.2 filled with rust colored calcite, dark gray to olive gray with bands of light gray to green alteration, some chlorite 1.1/1.1 WM 10.2 49.3 Shale as above with thicker, lighter bands 25 0.7/0.7 WM 111 10.2 0 50-Meta Quartizite Shale; as above, brownish-gray, 51.0 highly fractured 5272.5 CORING 5/17 CORELOGS GPJ MSE HKM GDT 7/18/00 Bottom of Hole at 51 ft. HKM Engineering Inc. 11/2/99 10/29/99 FINISHED STARTED HKM 222 North 32nd St. CME-5 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 DRILLER ASST DRILLER Telephone: (406) 656-6399 Engineering JTS Fax: (406) 656-6398 JM APPROVED BY LOGGED BY

D34 2001

LOG OF BOREHOLE NO. DH99-5 Sheet 1 of 6 Project No. 8M087.155 ARCHITECT/ENGINEER CLIENT Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT Bair Dam** Bair Reservoir, Montana SAMPLES **TESTS** RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF <u>ئ</u> **BLOWS/FOOT** GRAPHIC LOG **BLOWS PER** ADDITIONAL DATA NUMBER REMARKS WC PL LL zż 10 20 30 Surface Elev.: 5335.8 ft. Datum: MSL Silty Gravelly Sand (GM); medium dense, dry, 8 10/18 gray to gray brown 13 **SS-1** 56% 13 Clayey Sand with Gravel (SC) to Sandy Lean Clay (CL); compact/stiff to very stiff, slightly moist, yellow brown to brown, scattered limestone and shale 2" plus in size, drilling denser and tighter at 9', drilling very hard at 19' (impervious fill) Sample:SS-2 14/18 M.C.=10.1% 7 SS-2 3.5 78% 10 Sample:SS-3 16/18 4.0 M.C.=12.3% 12 SS-3 89% 4.25 USCS=SC Gravel=19% Sand=38% Fines=43% LL=36 PI=21 Sample:SS-4 M.C.=13.6% 16/18 3.25 9 BORELOGS GPJ MSE HKM GDT 7/18/00 SS-4 \Box 89% >4.5 12 20.0 5315.8 **Continued Next Page** HKM Engineering Inc. 10/26/99 10/25/99 FINISHED STARTED 222 North 32nd St. CME-55 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 BH ASS'T DRILLER DRILLER Telephone: (406) 656-6399 Engineering JTS JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

LOG OF BOREHOLE NO. DH99-5 Project No. 8M087.155 Sheet 2 of 6 ARCHITECT/ENGINEER CLIENT Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE Bair Reservoir, Montana **Bair Dam** SAMPLES **TESTS** RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF GRAPHIC LOG ō BLOWS/FOOT **BLOWS PER** ADDITIONAL DATA/ NUMBER REMARKS WC LL TYPE zż 10 30 20 40 (continued) Silty Clayey Gravel with Sand (GC-GM) to Silty Clayey Sand with Gravel (SC-SM); moderately 10/18 11 **SS-5** 4.5 56% dense, slightly moist, yellow brown 11 (semi-pervious fill) Sample: 5 7 8 2.5 3.5 SS-6 18/18 SS-6 100% M.C.=27.4% Sample: 55 SS-7 18/18 8 **SS-7** B 100% M.C.=21.9% 10 USCS=SC Gravel=16% Sand=37% Fines=47% LL=55 PI=38 5 7/18 OF BOREHOLE BORELOGS GPJ MSE HKM.GDT 9/28/00 11 **SS-8** 39% 10 **Continued Next Page** HKM Engineering Inc. 10/26/99 10/25/99 STARTED FINISHED 222 North 32nd St. DRILL CO. RB&G Eng. CME-S DRILL RIG Billings, MT 59101 DRILLER BH ASST DRILLER Telephone: (406) 656-6399 Engineering JM JTS LOGGED BY Fax: (406) 656-6398 APPROVED BY

LOG OF BOREHOLE NO. DH99-5 **Project No. 8M087.155** Sheet 3 of 6 ARCHITECT/ENGINEER HKM Engineering Inc. Montana Dept. of Natural Resources and Conservation **PROJECT Bair Dam** Bair Reservoir, Montana SAMPLES **TESTS** . RECOVERED .. DRIVEN N VALUE POCKET PENE-TROMETER, TSF မှ **BLOWS/FOOT GRAPHIC LOG BLOWS PER ADDITIONAL** DEPTH (FT.) DATA/ NUMBER **REMARKS** WC LL ヹヹ 10 20 (continued) 30 40 Sample: 18/18 **SS-9** 8 **SS-9** 2.0 M.C.=27.1% 100% 11 Sample: 6 SS-10 16/18 1.5 SS-10 8 3.5 89% M.C.=26.1% 50.0 Sandy Fat Clay with Gravel (CH); firm to stiff, slightly moist, red brown, little to no HCL 11/18 1.5 8 SS-11 61% 2.75 reaction (Clay core?) 10 Sample: SS-12 18/18 1.5 **SS-12** 7 100% 2.5 M.C.=35%

HKM Engineering

Continued Next Page

BORELOGS GPJ MSE HKM GDT 9/28/00

OG OF BO

HKM Engineering Inc. 222 North 32nd St. Billings, MT 59101 Telephone: (406) 656-6399 Fax: (406) 656-6398 STARTED 10/25/99 FINISHED 10/26/99

DRILL CO. RB&G Eng. DRILL RIG CME-55

DRILLER BH ASS'T DRILLER

LOGGED BY JM APPROVED BY JTS

LOG OF BOREHOLE NO. DH99-5 **Project No. 8M087.155** Sheet 4 of 6 ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. SITE **PROJECT** Bair Reservoir, Montana **Bair Dam** SAMPLES **TESTS** RECOVERED DRIVEN **N VALUE** POCKET PENE-TROMETER, TSF **BLOWS PER 6"** BLOWS/FOOT **GRAPHIC LOG** DEPTH (FT.) ADDITIONAL DATA/ NUMBER REMARKS WC PL LL żż (continued) 10 20 30 3 Sample: 18/18 1.5 100% 2.75 SS-13 M.C.=31.9% 5 SS-13 USCS=CH ∇ Gravel=10% Sand=32% Fines=58% LL=73 PI=54 Sample: 18/18 SS-14 7 SS-14 M.C.=28.9% 100% 9 5266.8 69.0 50/2 \$5-15 0/2 0% 70 See Sheet 5 for Continuation of Core Drilled Portion of Log. Bottom of Hole at 92.6 ft. BOREHOLE BORELOGS GPJ MSE HKM.GDT Groundwater Encountered at 61.7 ft. (10/26/1999)**Continued Next Page** HKM Engineering Inc. 10/26/99 10/25/99 FINISHED STARTED 222 North 32nd St. CME-DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 BH ASST DRILLER DRILLER P Telephone: (406) 656-6399 Engineering **JTS** Fax: (406) 656-6398 LOGGED BY JM APPROVED BY

Project No. 8M087.155

LOG OF DRILLHOLE NO. DH99-5

Sheet 5 of 6

CLIENT ARCHITECT/ENGINEER Montana Dont of Natural Resources and Conservation HKM Engineering Inc.																
Montana Dept of Natural Resources and Conservation SITE PROJECT							PROJECT HKM Engineering Inc.									
	servior, Montana Bair Dam															
(continued)			GRAPHIC LOG	ОЕРТН (FT.)	Core Run (#)	Recovery	R.Q.D. %	Weathering Index	Strength Index	Permeability (fl/yr)	Point Load Index	Unit Welght (pcf)	ADDITIONAL DATA/ REMARKS			
(contained)				_												
Water level during drilling		Σ		-												
				65 — — — —												
68.9 Shale; dark maroon to gray		5266.9		- - -												
highly fractured, calcite, oliv CO3 deposits on fracture p				70— — —	1	2.7/2.7		F,WS	II							
				_	_2 3	0.3/.3	0	WS WS								
		5000.0		-	4	0.6/.6	0	F,WS	<u>"</u> 			-				
Quartzite Calcareous Shale highly fractured, moderately white dolomitic shale/limest appearance of marble, lave green banding at approximfrom vertical throughout, all "marble" at 74.8-78.17, we hammer broken core and s	v strong, grading to one at 74.3', has nder and bluish ately 45 degrees of RQD is in white ak HCL reaction on	5262.6		75—	5	3.9/4.9	27		III,IV	441						
77.1 Metamorphosed Quartzitic		5258.7														
(marble?); very light gray, v strong to moderately strong layered quartzite, dark lave appearing metamorphosed	thin laminations of the third			80					1							
Continued N		·					_						1010010			
LILIA		Engine North (~	•			STARTED 10/25/99 DRILL CO. RB&G Eng				INISHED				
HKM		igs, M					-					PRILL RIC				
Engineering	Telephor	•			399		\vdash	ILLER				SST DR				
Engineering Fax: (406) 656-6							LO	GGED	BY	J	MA	PPROVE	DBY JTS			

LOG OF DRILLHOLE NO. DH99-5 **Project No. 8M087.155** Sheet 6 of 6 ARCHITECT/ENGINEER Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Reservior, Montana **Bair Dam** Weathering Index Permeability (ft/yr) **GRAPHIC LOG** Point Load Index Unit Weight (pcf.) Strength Index ADDITIONAL DEPTH (FT.) Core Run (#) DATA ፠ REMARKS R.a.D. (continued) 4/4.7 28 III.IV 441 81.7 As above, dark maroon/gray shale, cementing of fractures, calcite and light olive green calcareous, change in core color to olive at 87.3' Run Number:7 M.C.=0.1% 7 F 4.7/4.7 47 III,IV 125 122.15 181.8 86.4 Metamorphosed Quartzitic Limestone (marble?); white to light gray with intermittent banding of light olive and lavender/maroon Run Number:8 M.C.=0.1% 4.9/5.1 F 41 III,IV 125 149.40 171.6 91.5 5244.3 Appearing Shale, lavender to dark maroon, dark gray with laminations of blue green to light olive 5243.2 dolomitic limestone, fresh, fractured, fracture planes calcareous olive green, white and red brown deposited cementing Bottom of Hole at 92.6 ft. HKM Engineering Inc. 10/26/99 STARTED 10/25/99 FINISHED 222 North 32nd St. CME-5 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 DRILLER BH ASST DRILLER Telephone: (406) 656-6399 Engineering Fax: (406) 656-6398 JTS LOGGED BY JM APPROVED BY

CORELOGS GPJ

D42 2001

P	roject No. 8M087.155	LOG OF BOREH	IOLE	NC).	DH	99.	-6			Sheet 1 of 5					
								ARCHITECT/ENGINEER								
)	Montana Dept. of Natural Resources and Conservation SITE					HKM Engineering Inc. PROJECT										
3"	Bair Reservoir, Montana					Bair Dam										
				SAME	PLES				TESTS							
		HC LOG	DЕРТН (FT.)		BLOWS PER 6"	X (RECOVERED DRIVEN	OCKET PENE- ROMETER, TSF	N VAL BLOWS/I	FOOT	ADDITIONAL DATA/ REMARKS					
		Datum: MSI	PT	TYPE		NUMBER	RE DR	CKE	PL WC		NEWARKS					
SI		Dataili. IIIOE	DE C	 		z :	z z	POTR	10 20 3	30 40						
	Silty Gravel with Sand (GM) moist, gray, tabular and ang cobble size riprap (rock she	ular, boulder and	-]} 8	7 3 SS 1		8/18 44%									
5.	Gravelly Lean to Fat Clay (C moist, gray to red brown, su rounded cobbles at 2-6', var clay with gravel (CL); sof to s brown, scattered rocks 2" pl metashale throughout) (imperentation)	brounded to ies to sandy lean stiff with depth, red us (limestone and	5]) 3	\$ SS		2/18 67%				Sample:SS-2 M.C.=19.5%					
	Permeability: 13.5'-18.5', k=0 ft/yr 13.5'-23.5', k=15 ft/yr Extra Samples Taken in DH	-6.3	10-		l ss		3/18 72%			63	Sample:SS-3 M.C.=24.8% USCS=CH Gravel=17% Sand=32% Fines=51%					
	SH-1 10'-12', 24"/24"=100% M.C.=31.3% Cohesion=640 psf Phi=18.7 degrees Dry Unit Wt=85.1 pcf		- - - - 15-								LL=63 PI=45					
BORELOGS.GPJ MSE HKM.GDT 7/18/00	SH-2 18.5'-20.2', 20"/24"=83%			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5-4 8	6/18 39%	1.75 2.5			Sample:SS-4 M.C.=28.3%					
BORELOGS.GPJ	Continued Ne		20—													
	LILAN	HKM Engineerin	-	•			STAF	RTED	10/27/99	FINISHE	10/29/99					
BOI	HKM	222 North 32nd Billings, MT 59					DRIL	L CO.	RB&G Eng.	DRILL RI	G CME-55					
OF B	Engineering	Telephone: (406) 6		399			DRIL	LER	ВН	ASS'T DE	RILLER					
8	Engineering	Fax: (406) 656-6398						GED E	BY JM	APPROVED BY JTS						

LOG OF BOREHOLE NO. DH99-6 **Project No. 8M087.155** Sheet 2 of 5 CLIENT ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. SITE **PROJECT** Bair Reservoir, Montana **Bair Dam** SAMPLES **TESTS** RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF **BLOWS/FOOT** GRAPHIC LOG **BLOWS PER** DEPTH (FT.) ADDITIONAL DATA/ NUMBER REMARKS WC LL TYPE $\vec{z} \vec{z}$ 10 (continued) 20 30 40 5 Sample:SS-5 17/18 2.75 M.C.=27.4% 8 SS-5 USCS=CH 94% 4.5 11 Gravel=7% Sand=32% Fines=61% LL=63 PI=42 Dispersion=10.7% 8/18 19 SS-6 2.5 44% 21 8 10/18 SS-7 10 2.5 Ф 56% 10 18/18 1.5 8 **SS-8** 100% 2.5 9 **Continued Next Page** HKM Engineering Inc. 10/29/99 10/27/99 FINISHED STARTED 222 North 32nd St. CME-5 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 DRILLER BH ASS'T DRILLER Telephone: (406) 656-6399 Engineering Fax: (406) 656-6398 LOGGED BY JM APPROVED BY JTS

OG OF BOREHOLE BORELOGS GPJ MSE HKM GDT 7/18/00

LOG OF BOREHOLE NO. DH99-6 **Project No. 8M087.155** Sheet 3 of 5 CLIENT ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Dam Bair Reservoir, Montana TESTS SAMPLES N VALUE IN. RECOVERED IN. DRIVEN POCKET PENE-TROMETER, TSF GRAPHIC LOG **BLOWS/FOOT BLOWS PER** ADDITIONAL DEPTH (FT.) **DATA**/ NUMBER REMARKS WC PL LL TYPE 10 20 30 40 (continued) 40.5 5261.1 Meta Limestone/Shale; dark gray, wet, strong, 10 6/18 fresh to medium weathered 50 **SS-9** 33% 5259.6 50 See Sheet 4 for Continuation of Core Drilled Portion of Log. Bottom of Hole at 62.75 ft. Groundwater Not Encountered. (10/29/1999)55 **Continued Next Page** HKM Engineering Inc. 10/29/99 10/27/99 **STARTED** FINISHED 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng. **DRILL RIG** Billings, MT 59101 **DRILLER** BH ASST DRILLER Telephone: (406) 656-6399 Engineering **JTS** JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

BORELOGS GPJ MSE HKM GDT 7/18/00

OG OF BOR

LOG OF DRILLHOLE NO. DH99-6 **Project No. 8M087.155** Sheet 4 of 5 CLIENT ARCHITECT/ENGINEER Montana Dept of Natural Resources and Conservation HKM Engineering Inc. SITE **PROJECT** Bair Reservior, Montana **Bair Dam** Weathering Index Permeability (ft/yr) Unit Weight (pcf) GRAPHIC LOG Point Load Index Strength Index DEPTH (FT.) ADDITIONAL Core Run (#) DATA Recovery REMARKS R.Q.D. (continued) 5259.6 42.0 Metamorphosed Shale; maroon, moderatelty 1 0.8/.8 0 F 111 42.8 strong, fractured Metamorphosed Shale; same as above, maroon to 42.25', grading to light maroon 2 1.9/1.9 F,WS 173 (44.25-45'), olive banding, highly fractured, olive calcareous cement on fracture planes 5256.9 Metamorphosed Shale; maroon to light 45 Run Number:3 lavender, strong to very strong, highly fractured, M.C.=0.2% iron staining on fracture planes, healed fractures 3 3/3 33 F,WS II 173 74.76 166.0 47.8 5253.9 Metamorphosed Shale; maroon to dark gray, Run Number:4 moderately strong to strong, (quartzitic shale) h.6/1.d 0 F,WS II 173 131.78 176.0 4 M.C.=0.2% 5252.3 49.3 Metamorphosed Shale; maroon, strong, highly fractured, blue green banding 0.2" thick, infilling 50 with cement on fracture planes, blue green and red brown calcareous and calcite (quartzitic 5 3.4/3.4 14 F.WS Ш 173 shale) 52.7 5248.9 Metamorphosed Shale; maroon, dark lavender, strong, fresh to slightly weathered, blue green laminations throughout, maroon grades to light gray to light maroon/lavender quartzite at 55.3-57.75 55 6 F,WS 5/5 III,IV 242 5/17 CORELOGS GPJ MSE HKM.GDT 7/18/00 57.7 5243.9 Metamorphosed Shale - Weak Quartzite; moderately strong to strong, fresh to slightly weathered, cement on open fractures, calcite 7 2.5/2.5 44 F,WS III,IV 242 and calcareous blue green and light olive deposits **Continued Next Page** 10/28/99 HKM Engineering Inc. 10/27/99 STARTED FINISHED 222 North 32nd St. CME-55 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 DRILLER ASS'T DRILLER Telephone: (406) 656-6399 CORING Engineering APPROVED BY JTS JM Fax: (406) 656-6398 LOGGED BY

LOG OF DRILLHOLE NO. DH99-6 Project No. 8M087.155 Sheet 5 of 5 ARCHITECT/ENGINEER CLIENT Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Reservior, Montana Bair Dam Weathering Index Permeability (ft/yr) Unit Weight (pcf) Point Load Index GRAPHIC LOG Strength Index ADDITIONAL DEPTH (FT.) Core Run (#) DATA/ % Recovery REMARKS R.a.D. (continued) 60.2 Quartzite Shale; maroon, dark lavender, moderately strong to strong, fresh cement on fracture planes, calcite, red brown iron staining, 2.5/2.5 32 111 242 blue green calcareous, noted small intergranular calcite (quartz appearance) in all meta shale 62.8 and quartzite shale 5238.9 JGS GPJ MSE HKM GDT 7/18/00 Bottom of Hole at 62.75 ft.

HKM Engineering Inc. 222 North 32nd St. Billings, MT 59101 Telephone: (406) 656-6399 Fax: (406) 656-6398 STARTED 10/27/99 FINISHED 10/28/99

DRILL CO. RB&G Eng. DRILL RIG CME-55

DRILLER BH ASST DRILLER

LOGGED BY JM APPROVED BY JTS

D48 2001

LOG OF BOREHOLE NO. DH99-7 Project No. 8M087.155 Sheet 1 of 6 ARCHITECT/ENGINEER Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Reservoir, Montana **Bair Dam** SAMPLES TESTS RECOVERED DRIVEN N VALUE POCKET PENE-TROMETER, TSF ö **BLOWS/FOOT** GRAPHIC LOG **BLOWS PER** ADDITIONAL DATA NUMBER REMARKS WC LL ΞZ Surface Elev.: 5320.4 ft. Datum: MSL 10 20 30 40 0.5 Topsoil 5319.9 11/18 Silty Gravel with Sand (GM) to Silty Clay with 11 **SS-1** 61% Sand (CL); moderately dense, dry to slightly 14 moist, brown to red brown, scattered tabular and angular rock of cobble and boulder size throughout 5.0 Silty Sand (SM) grading to Clayey Sand with 5 Gravel (SC) at 10'; compact, calcareous, slightly 11/18 10 SS-2 61% moist, yellowish brown 11/18 8 SS-3 61% 16 Sample:SS-4 12/18 M.C.=9% BORELOGS GPJ MSE HKM GDT 7/18/00 SS-4 USCS=GC 67% Gravel=40% Sand=25% Fines=35% LL=25 PI=8 **Continued Next Page** HKM Engineering Inc. STARTED 11/3/99 FINISHED 11/9/99 222 North 32nd St. **CME-55** DRILL CO. RB&G Eng. DRILL RIG OG OF BOR Billings, MT 59101 DRILLER ASST DRILLER Telephone: (406) 656-6399 Engineering Fax: (406) 656-6398 **JTS** LOGGED BY JM APPROVED BY

LOG OF BOREHOLE NO. DH99-7 Sheet 2 of 6 **Project No. 8M087.155** ARCHITECT/ENGINEER CLIENT Montana Dept. of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** SITE **Bair Dam** Bair Reservoir, Montana SAMPLES TESTS N VALUE . RECOVERED . DRIVEN POCKET PENE-TROMETER, TSF **BLOWS/FOOT** GRAPHIC LOG **BLOWS PER ADDITIONAL** DEPTH (FT.) DATA/ NUMBER REMARKS PL WC LL TYPE żż 10 20 30 40 (continued) Sample: P SH-1 U 19/24 M.C.=17.4% SH-1 S 79% Phi=35.5 degees Cohesion=360psf Density=108.3pcf 5297.4 23.0 Clayey Sand with Gravel (SC) to Clayey Gravel with Sand (GC); compact to dense, moist, yellowish brown, scattered angular/tabular dark gray shale 1/4" to 2" showing throughout, similar in character to semi-pervious material in dam Sample: embankment 13/18 SS-6 9 **SS-6** M.C.=12.1% 72% 10 Water measured in casing between 31.5' (11/8/99) and 28.42' (11/9/99); believed to be drilling water. Sample: 6 SS-7 12/18 9 SS-7 M.C.=11.2% 67% USCS=GC 11 Gravel=31% Sand=28% Fines=41% LL=26 PI=10 Sample: **SS-8** 0/18 SS-8 17 M.C.=16.2% 0% 31 5283.7 36.8 HKM GDT See Sheet 3 for Continuation of Core Drilled Portion of Log. MSE Bottom of Hole at 98.6 ft. Groundwater Not Encountered. BORELOGS.GPJ (11/9/1999)**Continued Next Page** 11/9/99 HKM Engineering Inc. 11/3/99 **FINISHED** STARTED 222 North 32nd St. CME-5 **DRILL RIG** DRILL CO. RB&G Eng. Billings, MT 59101 ASS'T DRILLER BH DRILLER Telephone: (406) 656-6399 6 Engineering **JTS** APPROVED BY Fax: (406) 656-6398 JM LOGGED BY

LOG OF DRILLHOLE NO. DH99-7 Project No. 8M087.155 Sheet 3 of 6 ARCHITECT/ENGINEER CLIENT Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Reservior, Montana Bair Dam Weathering Index Permeability (ft/yr) Unit Weight (pcf) GRAPHIC LOG Point Load Index Strength Index DEPTH (FT.) **ADDITIONAL** Core Run (#) DATA Recovery REMARKS R.Q.D. (continued) 30 5283.7 OGS GPJ MSE HKM GDT 7/18/00 36.8 Siliceous Shale; dark gray, laminated olive to 0.6/.8 NA III,IV 1 5282.9 olive brown, highly fractured, rust/red brown deposits on fracture planes, laminated olive to 2 0/.9 NA NA NA olive brown, strong HCL reaction (limey shale or 0/.3 NA NA shaley limestone), dry NA Gravelly Silty Clay with Sand (CL-ML); hard, slightly moist, yellow gray, highly weathered **Continued Next Page** HKM Engineering Inc. 11/9/99 11/3/99 STARTED **FINISHED** 222 North 32nd St. **CME-55** DRILL CO RB&G Eng. DRILL RIG Billings, MT 59101 ASS'T DRILLER DRILLER Telephone: (406) 656-6399 Engineering **JTS** JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

LOG OF DRILLHOLE NO. DH99-7 Project No. 8M087.155 Sheet 4 of 6 ARCHITECT/ENGINEER Montana Dept of Natural Resources and Conservation HKM Engineering Inc. SITE **PROJECT** Bair Reservior, Montana **Bair Dam** Weathering Index Permeability (ft/yr) Unit Welght (pcf) Point Load Index GRAPHIC LOG Strength Index DEPTH (FT.) **ADDITIONAL** Core Run (#) DATA/ Recovery REMARKS R.Q.D. (continued) shale 42.8 5277.6 0.8/.4 Siliceous Shale; dark gray, very fine grained, 0 ws III.IV strong, interlayered with olive fine grained calcareous cement deposits in healed fractures (43.9-45-4'), (chert chalcedony?), no HCL reaction, gray to light gray, strong, aphanitic interlayered with bands of olive calcareous as 5 3.8/3.8 F,WS 40 Ш above 45.4-47' 47.0 5273.4 Crystalline Limestone, light gray to light olive b.9/0.d Ws, Will III 0 gray, fine grained, moderately strong, dry <u>48.0</u> Limestone; light gray to light olive gray, fine Run Number:7 grained, strong, fresh, dry, cave of clay and M.C.=0.2% shale from 36.75 to 43', driller reported clay Slake squeezing in at 37-43', removal of core tools, Durability=99.2% reamed hole to 43' to set casing and continue 50 coring, light olive banding as above on 7 4.7/5 77 F 100.17 179.6 Ш approximate 0.2-0.5' centers throughout run Run Number:8 M.C.=0.1% F 5.3/5 92.80 180.7 8 57 111 Run Number:9 M.C.=0.2% Slake 60.0 5260.4 **Continued Next Page** HKM Engineering Inc. 11/3/99 11/9/99 STARTED **FINISHED** 222 North 32nd St. CME-5 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 DRILLER BH ASS'T DRILLER Telephone: (406) 656-6399 Engineering **JTS** JM APPROVED BY Fax: (406) 656-6398 LOGGED BY

5/17 CORELOGS GPJ MSE HKM GDT 7/18/00

LOG OF DRILLHOLE NO. DH99-7 Project No. 8M087.155 Sheet 5 of 6 ARCHITECT/ENGINEER Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Reservior, Montana **Bair Dam** Permeability (ft/yr) Weathering Index Unit Weight (pcf) **GRAPHIC LOG** Point Load Index Strength Index DEPTH (FT.) ADDITIONAL Core Run (#) DATA Recovery REMARKS Q.D. ď (continued) Siliceous Shale; very fine grained to aphanitic, Durability=99.5% 5/5 F 9 124.24 172.0 77 light gray to gray, strong fresh, calcite III cementation healed fractures to open fractures Run Number:10 M.C.=0.2% 4.8/5 79 F III.IV 126.50 167.9 10 Run Number:11 M.C.=0.1% Slake Durability=99.5% 70 127.99 172.0 11 5.3/5 83 F III,IV Run Number:12 M.C.=0.1% 12 5/5 63 F Ш 165.82 176.2 77.6 Dolomitic Marble; gray to light gray to light olive gray, strong to very strong, massive, medium to coarse grained with phenocrysts of calcite, Run Number:13 black to dark gray limestone, fresh, dry M.C.=0.2% **Continued Next Page** HKM Engineering Inc. 11/3/99 11/9/99 STARTED **FINISHED**

OGS'GPJ MSE HKM GDT

HKM Engineering Inc. 222 North 32nd St. Billings, MT 59101 Telephone: (406) 656-6399

Fax: (406) 656-6398

DRILL CO. RB&G Eng. DRILL RIG CME-55

DRILLER BH ASST DRILLER

LOGGED BY JM APPROVED BY JTS

LOG OF DRILLHOLE NO. DH99-7 Sheet 6 of 6 Project No. 8M087.155 ARCHITECT/ENGINEER CLIENT Montana Dept of Natural Resources and Conservation HKM Engineering Inc. **PROJECT** Bair Dam Bair Reservior, Montana Weathering index Permeability (ft/yr) Unit Weight (pcf) Point Load Index GRAPHIC LOG Strength index **ADDITIONAL** DEPTH (FT.) Core Run (#) DATA Recovery REMARKS R.Q.D. (continued) 159.4 Slake 92 11,111 185.81 4/4 13 Durability=99.2% F 15 b.7/o.d 0 П Run Number: 16 M.C.=0.3% 85 F 103.72 159.1 16 5.1/5 75 н 5233.6 86.8 Dolomitic Limestone/Marble; gray, strong to very strong, granular, fine grained grading to aphanitic, numerous healed fractures Run Number: 17 M.C.=0.1% Slake 5230.6 Durability=99.2% 89.8 90 Dolomitic Marble; phenocrysts 1-2mm of calcite (white) with dark gray to black limestone in F 126.21 181.2 17 5.1/5 88 II matrix, very fine grained to aphanitic texture 95 NOTE: Inclinometer installed in hole using standard Sinco 1.9" casing. Casing set with F 11.07 1,11 18 5.5/5.5 73 cement and bentonite. Bottom of Hole at 98.6 ft. 5221.8 CORING 5/17 CORELOGS GPJ MSE 11/9/99 HKM Engineering Inc. 11/3/99 FINISHED STARTED 222 North 32nd St. CME-5 DRILL CO. RB&G Eng. DRILL RIG Billings, MT 59101 BH ASST DRILLER DRILLER Telephone: (406) 656-6399 Engineering **JTS** LOGGED BY JM APPROVED BY Fax: (406) 656-6398

APPENDIX E

TEST PIT LOGS

(Note: Two of the test pits (TP99-1 and TP99-2) were excavated along the southwest shore of the lake and two (TP99-3 and TP99-4) were excavated in the original borrow area used during construction of the dam south of Highway 12. See Figure 6-2 in the Bair Dam Rehabilitation Feasibility Study Report, dated October 1, 2000, for location of the test pits.)

E1 2001

Test Pit Logs:

Bair Dam

Montana Department of Natural Resources and Conservation

Test Pit TP-1:

Approximate Surface Elevation 5309 (ft)

- 0.0 3.5 ft. Sandy Gravel (GP); loose to compact, brown, little silt, occasional cobbles, max size 12", gravels are sub-rounded.
- 3.5 10.0 ft. Sand and Gravel (GP); compact, grayish brown, little to some silt, gravel size particles are angular broken pieces of bedrock, material is shale like, no groundwater encountered.

Test Pit TP-2:

Approximate Surface Elevation 5306 (ft)

- 0.0 1.0 ft. Topsoil
- 1.0 4.5 ft. Gravelly Clay (CL-ML); firm, moderate brown, (fill?)
- 4.5 10.0 ft. Gravelly Clayey Silt (ML); firm, brown, water at 9.5 ft.

Test Pit TP-3:

Approximate Surface Elevation 5480 (ft)

- 0.0 5.0 ft. Silty Clay (CL); firm, weathered, brown-gray, (weathered bedrock?)
- 5.0 9.0 ft. Silty Clay (CL); firm/hard, reddish brown, vari-colored angular fragments (Shale) in silty clay matrix (Colluvium?)
- $9.0 10.0 \, \text{ft}$. Becomes brownish gray with cobbles, 8" max size, moist

Test Pit TP-4:

Approximate Surface Elevation 5490 (ft)

- 0.0 0.5 ft. Topsoil
- 0.5 5.0 ft. Silty Clay (CL); firm/hard, mottled red, brown/gray, occasional cobble size clast, dry to slightly moist
- 5.0 10.0 ft. Silty Clay (CL); firm, reddish brown, (weathered bedrock?), becoming damp

APPENDIX F PROJECT DRAWINGS

(NOTE: These reduced project drawings are design drawings and not "As Builts". These drawing should be used for reference only. The SWPB has the full size project drawings.)

F1 2001

F2 2001

