HAUSAUFGABE 2 - BLATT 6 & 7

SARAH KÖHLER UND MATTHIAS LOIBL

Aufgabe 1: Verbände

a).

b). Gegeben zwei Elemente $(x_1, y_1) \in \mathbb{N}^+ \times \mathbb{N}^+$ und $(x_2, y_2) \in \mathbb{N}^+ \times \mathbb{N}^+$ kann das Infimum mit folgender Funktion berechnet werden:

$$inf: (\mathbb{N}^+ \times \mathbb{N}^+) \times (\mathbb{N}^+ \times \mathbb{N}^+) \to \mathbb{N}^+ \times \mathbb{N}^+$$
$$((x_1, y_1), (x_2, y_2)) \mapsto (min(x_1, x_2), min(y_1, y_2))$$

Das Supremum berechnet diese Funktion:

$$sup: (\mathbb{N}^+ \times \mathbb{N}^+) \times (\mathbb{N}^+ \times \mathbb{N}^+) \to \mathbb{N}^+ \times \mathbb{N}^+$$
$$((x_1, y_1), (x_2, y_2)) \mapsto (max(x_1, x_2), max(y_1, y_2))$$

c). Sei $X \subseteq \mathbb{N}^+ \times \mathbb{N}^+$ und $x \in X$. Dann lässt sich das Infimum mit folgender Funktion berechnen:

Das Supremum berechnet diese Funktion:

Für unendliche Teilmengen X ist die Funktion undefiniert, da dann \max kein größtes Element finden kann.

d).

$$\perp = (0,0)$$

 \top existiert nicht, da die Trägermenge $\mathbb{N}^+ \times \mathbb{N}^+$ das Kreuzprodukt der natürlichen Zahlen ist. Da \mathbb{N} unendlich ist und kein größtes Element besitzt, gibt es auch in $\mathbb{N}^+ \times \mathbb{N}^+$ kein größtes Element.

- e). V ist ein Verband, da die Funktionen aus Aufgabenteil b) für jede zweielementige Teilmenge von V das Infimum und das Supremum berechnen können. Allerdings ist V kein vollständiger Verband, da die Funktion \sqcup aus Aufgabenteil c) für unendliche Teilmengen der Trägermenge undefiniert ist. Das heißt es existiert nicht für alle Teilmengen der Trägermenge von V ein Supremum und somit kann V kein vollständiger Verband sein.
- **f).** Zu zeigen: Für alle $(x_1, y_1), (x_2, y_2) \in \mathbb{N}^+ \times \mathbb{N}^+$ gilt: $(x_1, y_1) \leq_2 (x_2, y_2) \Rightarrow f((x_1, y_1)) \leq_2 f((x_2, y_2))$ Seien g und h Funktionen:

$$g: \mathbb{N}^+ \to \mathbb{N}^+$$

$$g(x) = x!$$

$$h: \mathbb{N}^+ \to \mathbb{N}^+$$

$$h(y) = 2y^2 + 2y - 1$$

Es gilt offensichtlich:

$$f((x,y)) = (h(y), g(x))$$

Seien $(x_1, y_1), (x_2, y_2) \in \mathbb{N}^+ \times \mathbb{N}^+$ mit $(x_1, y_1) \leq_2 (x_2, y_2)$. Dann gilt:

(1)
$$f((x_1, y_1)) = (h(y_1), q(x_1))$$

Es gilt außerdem:

(2)
$$f((x_2, y_2)) = (h(y_2), g(x_2))$$

Um die Prämisse zu erfüllen muss gelten:

$$f((x_1, y_1)) \le_2 f((x_2, y_2))$$

Aus (1) und (2) folgt, das folgendes ebenso gelten muss

$$\Leftrightarrow (h(y_1), g(x_1)) \leq_2 (h(y_2), g(x_2))$$

Aus der Definition von \leq_2 folgt, dass dazu gelten muss:

$$\Leftrightarrow h(y_1) \le h(y_2) \land g(x_1) \le g(x_2)$$

Betrachte beide Voraussetzungen getrennt:

1. Zu zeigen: $h(y_1) \leq h(y_2)$

Das gilt mit $y_1 \leq y_2$ immer, wenn h monoton ist.

Dazu muss gelten: $h(n) \leq h(n+1), n \in \mathbb{N}^+$

$$h(n) = 2n^{2} + 2n - 1$$

$$\leq 2n^{2} + 6n + 3 = 2n^{2} + 4n + 2 + 2n + 2 - 1 \qquad n > 0$$

$$= 2(n+1)^{2} + 2(n+1) - 1 = h(n+1)$$

Also ist h monoton und die erste Voraussetzung gilt.

2. Zu zeigen: $g(x_1) \leq g(x_2)$

Das gilt unter der gegebenen Voraussetzung $x_1 \leq x_2$ immer, wenn g monoton ist. Dazu muss gelten: $g(n) \leq g(n+1), n \in \mathbb{N}^+$

$$g(n) = n!$$

 $\leq (n+1) * n!$ $n > 0$
 $= (n+1)! = q(n+1)$

Also ist auch g monoton und die zweite Voraussetzung gilt ebenso.

Aus der Gültigkeit beider Voraussetzungen folgt, dass auch f monoton ist.

Aufgabe 2: Vollständige Verbände

Gegeben sind (X, R), wobei X eine endliche Menge ist und R eine Relation. Zu zeigen:

(X,R) ist ein Verband $\Rightarrow (X,R)$ ist ein vollständiger Verband

Da (X, R) ein Verband ist, folgt aus der Definition eines Verbandes:

$$\forall x, y \in X. \exists | |(\{x, y\}) \land \exists \sqcap (\{x, y\})|$$

Um die Existenz des Infimums und Supremums für beliebige Teilmengen zu beweisen, benötigen wir zunächst folgende Äquivalenz:

Seien $x, y, z \in X$ beliebig. Dann folgt aus der Definition eines Verbandes, dass (X, R) auch eine partiell geordnete Menge ist. Aus den Eigenschaften einer partiell geordneten Menge lässt sich ableiten, dass die Relation R transitiv ist. Deswegen muss gelten:

Sei nun $Y \subseteq X$ beliebig mit $Y = \{y_1, y_2, ... y_k\}$. Aus der Endlichkeit von X folgt, dass auch Y endlich sein muss.

Für zwei beliebige Elemente y_i und y_j mit $i, j \in [1, k]$ gilt wegen der Definition der Teilmengenbeziehung:

$$\begin{aligned} y_i, y_j &\in Y \\ \Rightarrow y_i, y_j &\in X \\ \Rightarrow \exists z_i &= \bigsqcup(\{y_i, y_j\}) \land \exists z_s = \sqcap(\{y_i, y_j\}) \\ \Rightarrow z_i, z_s &\in X \end{aligned} \qquad \begin{aligned} &Definition \ von \subseteq \\ &X \ ist \ Verband \\ &X \ Tr \ddot{a} germenge \ von \ (X, R) \end{aligned}$$

Für eine beliebige Teilmenge $Y\subseteq X$ lässt sich damit die Existenz des Supremums beweisen:

Somit lässt sich das Supremum von Y rekursiv bestimmen als:

Da dies eine zweielementige Teilmenge von X sein muss, existiert auch ein Supremum. Somit ist auch die Existent eines Supremums der Menge Y bewiesen. Für die Vollständigkeit des Verbandes muss auch das Infimum von Y existieren. Analog zum Supremum gilt:

$$\Pi(Y) = \Pi(\{y_1, y_2, ..., y_k\})
= \Pi(\{\Pi(\{y_1, y_2\}), y_3, ..., y_k\})$$
wegen (**)

Somit lässt sich das Supremum von Y rekursiv bestimmen als:

Dies ist wiederum eine zweielementige Teilmenge von X, für die laut Definition ein Infimum existieren muss. Damit ist auch die Existent des Infimums von Y bewiesen.

Da also für eine beliebige Teilmenge von X Infimum und Supremum existieren, ist (X,R) ein vollständiger Verband.

Ш

Aufgabe 3: Bisimulation

$$\begin{split} \mathcal{F}^{1}(Proc \times Proc) &= r(s(\{(P_{1}, P_{2}), (P_{1}, P_{5}), (P_{1}, Q_{1}), (P_{1}, Q_{2}), (P_{2}, P_{5}), (P_{2}, Q_{1}), \\ & (P_{2}, Q_{2}), (P_{3}, Q_{3}), (P_{4}, Q_{4}), (P_{5}, Q_{2}), (P_{5}, Q_{1}), (Q_{1}, Q_{2})\})) \\ \mathcal{F}^{2}(Proc \times Proc) &= r(s(\{(P_{1}, P_{5}), (P_{1}, Q_{1}), (P_{2}, Q_{2}), (P_{3}, Q_{3}), (P_{5}, Q_{1})\})) \\ \mathcal{F}^{3}(Proc \times Proc) &= r(s(\{(P_{2}, Q_{2}), (P_{5}, Q_{1})\})) \\ \mathcal{F}^{4}(Proc \times Proc) &= r(s(\{(P_{5}, Q_{1})\})) \\ \mathcal{F}^{5}(Proc \times Proc) &= r(s(\{(P_{5}, Q_{1})\})) \end{split}$$

Da $\mathcal{F}^4 = \mathcal{F}^5$ sind beide ein Fixpunkt.

Somit erhalten wir, dass P_5 und Q_1 das einzige nicht trivial bisimilare Paar ist. Es gilt $P_5 \sim Q_1$

AUFGABE 4: BISIMULATION (2)

$$\begin{split} \mathcal{F}^1(Proc \times Proc) &= r(s(\{(R_1, R_7), (R_2, R_4), (R_2, R_6), (R_3, R_5), (R_4, R_6), (R_8, R_9)\})) \\ \mathcal{F}^2(Proc \times Proc) &= r(s(\{(R_2, R_6), (R_3, R_5)\})) \\ \mathcal{F}^3(Proc \times Proc) &= r(s(\{(R_2, R_6), (R_3, R_5)\})) = \mathcal{F}^2 \end{split}$$

Da $\mathcal{F}^2 = \mathcal{F}^3$ sind beide ein Fixpunkt.

Somit erhalten wir, dass R_2 und R_6 sowie R_3 und R_5 die einzigen nicht trivialen bisimilaren Paare sind. Es gilt $R_2 \sim R_6$ und $R_3 \sim R_5$.

Aufgabe 5 - Fixpunktbeweise

a). Gegeben sind der vollständige Verband (D, \sqsubseteq) sowie die monotone Funktion $f: D \to D$. Nach Tarskis Theorem ist z_{min} wie folgt definiert:

$$z_{min} = \bigcap \{ x \in D \mid f(x) \sqsubseteq x \}$$

Zu zeigen: z_{min} ist der kleinste Fixpunkt.

Sei im Folgenden die Menge F definiert als

$$F = \{ x \in D \mid f(x) \sqsubseteq x \}$$

1. z_{min} ist ein Fixpunkt. Dazu ist zuerst zu zeigen, dass z_{min} ein Fixpunkt von f ist, das also folgendes gilt:

$$z_{min} = f(z_{min})$$

Da \sqsubseteq antisymmetrisch ist, muss gezeigt werden, dass die folgenden Aussagen gelten:

$$f(z_{min}) \sqsubseteq z_{min} \tag{I}$$

$$z_{min} \sqsubseteq f(z_{min}) \tag{II}$$

Aufgrund der Definition von F können wir auch schreiben:

$$z_{min} = \prod \{x \in D \mid f(x) \sqsubseteq x\} = \prod F$$

Für jedes x aus F gilt also, dass $z_{min} \sqsubseteq x$. Zusammen mit der Monotonie von f impliziert dies, dass $f(z_{min}) \sqsubseteq f(x)$ gelten muss. Daraus lässt sich für jedes $x \in F$ folgern:

$$f(z_{max}) \sqsubseteq f(x) \sqsubseteq x$$

Somit ist $f(z_{min})$ eine untere Schranke der Menge F. Nach der Definition ist z_{min} größte untere Schranke von f. Somit muss $f(z_{min}) \sqsubseteq z_{min}$ gelten und wir haben (I) bewiesen.

Da f monoton ist und (I) gilt, wissen wir, dass gelten muss.

Daraus folgt, dass $f(z_{min}) \in F$. Da z_{min} eine untere Schranke von F ist, erhalten wir $z_{min} \sqsubseteq f(z_{min})$.

Aus (I) und (II) erhalten wir

$$z_{min} \sqsubseteq f(z_{min}) \sqsubseteq z_{min}$$
 f antisymmetrisch
 $\Rightarrow z_{min} = f(z_{min})$

Also ist z_{min} ein Fixpunkt von f.

2. z_{min} ist der kleinste Fixpunkt von f. Es bleibt zu zeigen, dass z_{min} der kleinste Fixpunkt der Funktion f ist. Dazu muss gelten:

$$\forall d \in D, mit d = f(d) : z_{min} \sqsubseteq d$$

d ist also ein beliebiger Fixpunkt von f. Es muss also folgendes gelten:

$$f(d) \sqsubseteq d$$

$$\Rightarrow d \in F$$

$$\Rightarrow \prod F \sqsubseteq d$$

$$\Rightarrow \prod F = z_{min} \sqsubseteq d$$

Somit muss z_{min} der kleinste Fixpunkt der Funktion f sein.

b). Gegeben sind der vollständige, endliche Verband (D, \sqsubseteq) sowie die monotone Funktion $f: D \to D$. Nach Theorem 4.2 ist z_{max} , der größte Fixpunkt von f, wie folgt definiert:

$$z_{max} = f^M(\top), M \in \mathbb{N}$$

Zu zeigen: z_{max} ist der größte Fixpunkt.

Dazu muss zunächst gezeigt werden, dass z_{max} nach obiger Definition ein Fixpunkt ist und dann, dass es keinen größeren Fixpunkt gibt.

1. z_{max} ist ein Fixpunkt. Da f laut Definition eine monotone Funktion ist und nichts größer sein kann, als das größte Element, muss gelten:

$$f(\top) \sqsubset \top$$

Da f total ist, kann die Funktion auch mehrfach angewendet werden. Aus der Monotonie von f und der Transitivität der Relation \sqsubseteq folgt dann folgender Zusammenhang:

$$f^k(\top) \sqsubseteq f^{k-1}(\top), k \in \mathbb{N}, k > 0$$

Da in den Voraussetzungen D als endlich gegeben ist, muss irgendwann ein Wert k erreicht werden, wo der Zusammenhang konstant ist, wo also gilt:

$$f^k(\top) = f^{k-1}(\top)$$

Es muss also auch einen Wert M geben, wobei für alle $k \leq M$ gilt:

$$f^k(\top) = f^M(\top)$$

Daraus lässt sich ableiten, dass ebenso gelten muss:

$$f^M(\top) = f^{M-1}(\top) = f(f^{M-1}(\top))$$

Daraus lässt sich direkt ablesen, dass $f^M(\top)$, also z_{max} nach der Definition von Theorem 4.2, ein Fixpunkt von f sein muss.

2. z_{max} ist der größte Fixpunkt. Sei $d \in D$ ein beliebiger Fixpunkt von f mit $d \neq f^M(\top)$. Das bedeutet, dass d = f(d) gelten muss. Es gilt außerdem, dass $d \sqsubseteq \top$, da \top das maximale Element in D ist. Mit Hilfe der Monotonie von f kann man folgendes folgern:

$$d = f(d) \sqsubseteq f(\top)$$

Das bleibt auch nach mehrmaliger Anwendung von f gültig, so lange wie f nicht mehr als M mal hintereinander ausgeführt wurde. Nach M Schritten sind nach Definition die Fixpunkte erreicht und wir können keine Aussage mehr über die Relation zu unserem beliebigen Fixpunkt d treffen.

Als letzten gültigen Schritt erhält man also:

$$d \sqsubseteq f^M(\top)$$

Da somit alle anderen Fixpunkte d kleiner sein müssen, können wir schließen, dass $f^M(\top)$ der größte Fixpunkt von f sein muss. Somit ist bewiesen, dass $z_{max}=f^M(\top)$ der größte Fixpunkt von f ist und diese Aussage von Theorem 4.2 gilt. \Box