Mosaics

Jack Hanke

May 15, 2024

1 Introduction

Consider [oeis] [Hong'2018] [10.5555/1717824] [Bna2006AWT] the following 6 unit squares with markings on them.

Call these squares tiles.

Definition 1.1. An (n, m)-mosaic is a rectangular grid made up of tiles.

Example 1.1. An example of a (7,5)-mosaic:

Clearly there are 6^{nm} possible mosaics. Which of these mosaics contain self-avoiding polygons?

Example 1.2. An example of a (7,5)-mosaic with a self-avoiding polygon:

Let $t_{n,m}$ be the number of mosaics that have at least one self avoiding polygon or SAP. From the fact that the smallest SAP is

we have that $t_{n,1} = t_{1,m} = 0$, and $t_{2,2} = 1$. What else can be said?

Theorem 1. Setting m = 2 gives

$$\sum_{n\geq 2} t_{n,2} x^n = \frac{x^2}{(1-36x)(1-37x+37x^2)}. (1)$$

This can be solved for $n \geq 2$ to give

$$t_{n,2} = 6^{2n} - \frac{1}{\beta - \alpha} ((36\beta - 35)\beta^{-n+1} - (36\alpha - 35)\alpha^{-n+1})$$
 (2)

where
$$\alpha = \frac{1}{2} + \frac{1}{2}\sqrt{\frac{33}{37}}$$
 and $\beta = \frac{1}{2} - \frac{1}{2}\sqrt{\frac{33}{37}}$.

Proof. We prove that $t_{n,2}$ has

$$t_{n,2} = 36t_{n-1,2} + \sum_{i=2}^{n} (6^{2(n-i)} - t_{n-i,2}).$$

Split $t_{n,2}$ into S and S^c . S contains the mosaics that have 1 SAP only, and the SAP contains the left-most two cells. This means S^c contains all mosaics that contain multiple SAPs and mosaics that contain only 1 SAP, but that does not contain the two left-most cells.

The subset S can be split further by the length of each SAP i.

Figure 1: Members of S of lengths i = 2 and i = 3

As S counts the number of mosaics that only contain 1 SAP, the blank space in Figure ?? must have no SAPs. The number of mosaics that have no SAPs is $6^{2(n-i)} - t_{n-i,2}$. As a SAP's width can range from 2 to n, we have $|S| = \sum_{i=2}^{n} (6^{2(n-i)} - t_{n-i,2}) = \sum_{i=0}^{n-2} (6^{2(n-i)} - t_{n-i,2})$

Now consider S^c . The mosaics that belong to this set can be represented by the following diagram,

Figure 2: Representation of S^c

where the red dot in the left most cells indicate any marking. For this paper, we will refer to a cell that can have any marking as an *open*. We can conclude that $|S^c| = 6^2 t_{n-1,2}$. Combining S and S^c gives the recurrence relation. Standard techniques then give the generating function and formula.

Theorem 2. Setting m = 3 gives

$$\sum_{n\geq 2} t_{n,3} x^n = \frac{(73 - 414x)x^2}{(1 - 216x)(1 - 228x + 2699x^2 - 7758x^3)}$$
(3)

Proof. Similarly to $t_{n,2}$, we prove a recurrence relation. This time, we prove

$$t_{3,n} = 6^3 t_{n-1,3} + \sum_{i=0}^{n} (6^{3(n-i)} - t_{n-i,3}) f_{i,3}$$

where $f_{n,m}$ is the number of mosaics in an $n \times m$ grid that contain just one SAP that is n wide and m tall.

EXAMPLE FIGURE

Notice that $f_{n,2} = 1$ for $n \ge 2$, which is why this 'weight' factor does not appear in the proof of Theorem ??. It can be shown that

$$F_3(x) = \sum_{n \ge 2} f_{n,3} x^n = \frac{73 - 414x}{1 - 12x + 43x^2},$$

and similar techniques prove the generating function.

PROOF OF F RECURRENCE RELATION

Theorem 3. Setting m = 4 gives

$$\sum_{n\geq 2} t_{n,4} x^n = ? \tag{4}$$

3