Логика и алгоритмы весна 2019. Задачи для семинара N 1.

исчисление высказываний

Шпаргалка (аксиомы и правило вывода):

$$A_{1}: A \to (B \to A);$$

$$A_{2}: (A \to (B \to C)) \to ((A \to B) \to (A \to C));$$

$$A_{3}: A \land B \to A;$$

$$A_{4}: A \land B \to B;$$

$$A_{5}: A \to (B \to (A \land B));$$

$$A_{6}: A \to (A \lor B);$$

$$A_{7}: B \to (A \lor B);$$

$$A_{8}: (A \to C) \to ((B \to C) \to ((A \lor B) \to C));$$

$$A_{9}: (A \to B) \to ((A \to \neg B) \to \neg A);$$

$$A_{10}: \neg \neg A \to A.$$

Modus Ponens : $\frac{A, A \to B}{B}$.

Теорема о дедукции: $\Gamma, A \vdash B \iff \Gamma \vdash A \to B$.

- 1. Докажите что:
 - (a) если $\Gamma \vdash A$ и $\Gamma \vdash B$, то $\Gamma \vdash A \land B$;
 - (b) если $\Gamma, A \vdash C$ $\Gamma, B \vdash C$, то $\Gamma, A \lor B \vdash C$ (правило разбора случаев).
- 2. Докажите что:
 - (a) если $\Gamma, A \vdash B$ $\Gamma, A \vdash \neg B$, то $\Gamma \vdash \neg A$ (рассуждение от противного),
 - (b) $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$,
 - (c) $\vdash \neg \neg (A \lor \neg A)$,
 - (d) $\vdash A \lor \neg A$.
 - (e) если $\Gamma, A \vdash C$ $\Gamma, \neg A \vdash C$, то $\Gamma \vdash C$.
- 3. Докажите выводимость следующих формул:
 - (a) $A \wedge B \rightarrow B \wedge A$:
 - (b) $A \vee B \rightarrow B \vee A$;
 - (c) $A \wedge (B \wedge C) \rightarrow (A \wedge B) \wedge C$;
 - (d) $A \vee (B \vee C) \rightarrow (A \vee B) \vee C$;
 - (e) $(A \lor B \to C) \to ((A \to C) \land (B \to C));$

- (f) $(A \wedge C) \vee (B \wedge C) \rightarrow (A \vee B) \wedge C$;
- (g) $(A \vee B) \wedge C \rightarrow (A \wedge C) \vee (B \wedge C)$;
- (h) $(A \lor C) \land (B \lor C) \rightarrow (A \land B) \lor C$:
- (i) $(A \wedge B) \vee C \rightarrow (A \vee C) \wedge (B \vee C)$.
- 4. Докажите выводимость следующих формул:
 - (a) $A \rightarrow \neg \neg A$:

(d) $A \vee B \rightarrow (\neg A \rightarrow B)$;

- (b) $A \wedge \neg A \rightarrow B$:
- (c) $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$.
- (e) $(\neg A \to B) \to A \lor B$.
- 5. Докажите выводимость формул, соответствующих законам де Моргана.
 - (a) $\neg (A \lor B) \to \neg A \land \neg B$:
- (c) $\neg (A \land B) \rightarrow \neg A \lor \neg B$:
- (b) $\neg A \land \neg B \rightarrow \neg (A \lor B)$;
- (d) $\neg A \lor \neg B \to \neg (A \land B)$.

Множество формул Γ называется *непротиворечивым*, если нет такой формулы A, для которой одновременно $\Gamma \vdash A$ и $\Gamma \vdash \neg A$. Максимальное по включению непротиворечивое множество формул называется максимально непротиворечивым.

Множество формул Γ называется *полным*, если для любой формулы A из гипотез Γ выводима ровно одна из формул A, $\neg A$.

- 6. Пусть дана функция $f: Var \longrightarrow \{0,1\}$ (оценка пропозициональных переменных). Докажите, что множество формул $\Gamma_f = \{A \mid f(A) = 1\}$ максимально непротиворечиво.
- 7. Докажите, что Γ полно тогда и только тогда, когда множество всех формул, выводимых из Г, максимально непротиворечиво.
- 8. В этой задаче будем считать, что формулы содержат только три переменные p,qи г. Для следующих множеств формул определите, являются ли они непротиворечивыми и являются ли они полными.
 - (a) $\{p \to q, q \to p\}$,
- (c) $\{p \land q \land r\},$ (e) $\{p \land q \rightarrow q \lor r, r, \neg (p \lor q)\},$
- (b) \varnothing ,

- (d) $\{p \lor q \to r, \neg r, p \lor q\},$ (f) $\{\neg (p \to \neg q), \neg p\}.$

Логика предикатов.

9. Рассмотрим сигнатуру $\{\cdot, +, =\}$, где $\cdot, + -2$ -местные функциональные символы, = — 2-местный предикатный символ. Рассмотрим нормальную модель этой сигнатуры $(P(A), \cap, \cup)$, где A — некоторое множество, P(A) — множество всех его подмножеств (т.е. \cdot интерпретируется как операция пересечения, а + — как операция объединения на P(A)).

Рассмотрим модель $(P(A),=,\cap,\cup)$, где «=» — предикат равенства, \cap и \cup — соответственно, пересечение и объединение множеств. Запишите формулу, говорящую, что в этой модели

- (a) $a \subset b$;
- (b) a одноэлементное множество;
- (c) a двухэлементное множество.
- 10. Для каждой из следующих формул определите, являются ли они выполнимыми или опровержимыми:
 - (a) $\exists x \forall y (Q(x,x) \land \neg Q(x,y));$
 - (b) $\exists x \exists y (P(x) \land \neg P(y));$
 - (c) $\forall x \exists y (P(x) \leftrightarrow \neg P(y));$
 - (d) $\exists y \forall x (P(x) \leftrightarrow \neg P(y));$
 - (e) $\forall x \neg \forall y \neg P(x, y) \land \neg \exists z \forall y P(y, z)$;
 - (f) $\forall x (\neg P(x, x) \land \exists z P(z, x) \land \forall y \exists z (P(x, z) \land P(z, y) \lor \neg P(x, y))).$
- 11. общезначимы ли следующие формулы?
 - (a) $\exists x \forall y Q(x,y) \rightarrow \forall y \exists x Q(x,y);$
 - (b) $\forall y \exists x Q(x,y) \rightarrow \exists x \forall y Q(x,y);$
 - (c) $\forall x (P(x) \to \neg Q(x)) \to \neg (\exists x P(x) \land \forall x Q(x)).$