Implementación de una blockchain resistente a ataques criptográficos cuánticos

Trabajo Fin de Grado

Autor

María Victoria Granados Pozo

Directores

Gabriel Maciá Fernández

Francisco Javier Lobillo Borrero

Doble grado de Ingeniería Informática y Matemáticas Universidad de Granada

24 de Noviembre de 2020

Introducción

Motivación

@mvictoria1997/TFG
@mvictoria1997/core

Motivación

Figure: Pilares de la seguridad informática

Objetivos

Implementación del algoritmo UOV

Funciones propias del algoritmo y aritmética del cuerpo finito de 2^7 elementos.

Integración del algoritmo UOV

Modificación del algoritmo de firma de la blockchain de ARK por el algoritmo UOV.

Tecnologías utilizadas

Contenidos teóricos

Computación cuántica

Propiedades computación cuántica

- Superposición cuántica.
- Entrelazamiento cuántico.
- Teletransporte cuántico.

Comparativa computación cuántica y clásica

Figure: Comparativa de cómputo de de un ordenador cuántico y clásico

Blockchain

Descripción

Una cadena de bloques es un sistema de almacenamiento de información dividido en bloques de datos enlazados mediante el *hash*.

Figure: Estructura árbol de Merkle

Aplicaciones

- Area financera o criptomonedas.
- ♦ Cadenas de suministro.
- ♦ Centros de salud.
- ♦ Firma de documentos.

Algoritmo UOV (Unbalance Oil and Vinegar)

Ventajas del algoritmo UOV

- ▲ Problema NP-duro.
- ▲ No se conoce un algoritmo eficiente para la resolución de sistemas multivariados en un ordenador cuántico.
- ▲ Simplicidad de las operaciones.
- ▲ Requiere bajos recursos *hardware*.

Esquema UOV

$$\mathcal{P}: \mathbb{F}_{2^r}^n o \mathbb{F}_{2^r}^m$$

$$\mathcal{P}=\mathcal{F}\circ\mathcal{T}$$
, donde $\mathcal{T}:\mathbb{F}^n_{2^r} o\mathbb{F}^n_{2^r}$ y $\mathcal{F}:\mathbb{F}^n_{2^r} o\mathbb{F}^m_{2^r}$

$$f_k(x) = \sum_{i=1}^{v} \sum_{j=i}^{n} \alpha_{i,j,k} x_i x_j + \sum_{i=1}^{n} \beta_{i,k} x_i$$
 (1)

donde $\alpha_{i,j,k}$ y $\beta_{i,k}$ se toman aleatoriamente en \mathbb{F}_2 siendo $(\alpha_{i,j,k})_{\substack{1\leqslant i\leqslant v\\1\leqslant j\leqslant n}}$ un vector de matrices triangulares superiores.

Planificación y presupuesto

Diagrama de Gantt

Diagrama de Gantt

Diagrama de Gantt

Presupuesto desglosado

Tipo de costes	Cantidad
Recursos humanos tutores	4.830€
Recursos humanos alumna	10.720€
Indirectos	1.578,24€
Directos	210,40€
Viajes	22€
Gastos imprevistos	868,03€
TOTAL (€)	18.228,67€

Table: Presupuesto total desglosado

Diseño

Bloques del diseño

Deployer

Da la posibilidad de crear una cadena de bloques personalizada.

Core

Gestiona la creación de bloques y almacenamiento de transacciones (parte modificada).

Base de datos

Almacenar y servir datos de las transacciones y bloques.

ARK Desktop Wallet

Interfaz para la realización de transacciones.

Explorer ARK

Interfaz para la visualización de los bloques y transacciones.

Posibles configuraciones de los bloques

Figure: Diagrama de bloques prototipo

Figure: Diagrama de bloques ejemplo

Implementación

Estructura directorio core-bridgechain/packages/crypto/src/crypto

Figure: Árbol de directorios de core-bridgechain

Demostración práctica

Conclusiones e investigaciones futuras

Conclusiones

- ✓ Implementación algoritmo UOV y aritmética del cuerpo finito de 128 elementos.
- ✓ Comparación de los tiempos de ejecución en python y SageMath.
- ✓ Integración del algoritmo en la blockchain ARK.
- ✓ Ejecución de la *blockchain* ARK modificada.
- ✓ Ver los bloques firmados en el *explorer* de ARK.

Trabajos futuros

- Trabajar con la base de datos.
- Integrar la *blockchain* ARK modificada en otra cadena de bloques.