

CE-477: Machine Learning - CS-828: Theory of Machine Learning Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

Two views on clustering

We have a set of unlabeled data points $\{x^{(i)}\}_{i=1}^N$

Clusters:

- Similarity or distance based definition
 - high intra-cluster similarity
 - low inter-cluster similarity

- Density-based definition:
 - Clusters are regions of high density that are separated from one another by regions of low density

Clustering Purpose

Automatically organizing data. Ex. Compression, quantization, visualization

- Knowledge discovery from data: As a tool to understand the hidden structure in data or to group them
 - To gain insight into the structure of the data (prior to classifier design)
 - Provides information about the internal structure of the data

Clustering Applications

Facebook

network

Cluster news articles or web pages or search results by topic.

Google news

Cluster users of social networks by interest (community

detection).

Clustering Applications

Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

Cluster protein sequences by function or genes according to expression profile.

- Market segmentation
 - Clustering customers based on the their purchase history and their characteristics

Clustering methods we will discuss

- Objective based clustering
 - Construct various partitions and then evaluate them by some criterion
 - K-means
 - ▶ EM-style algorithm for clustering for mixture of Gaussians (in the next lecture)
- Hierarchical clustering
 - Create a hierarchical decomposition of the set of objects using some criterion

Partitioning Algorithms: Basic Concept

- Construct a partition of a set of N objects into a set of K clusters
 - \blacktriangleright The number of clusters K is given in advance
 - Each object belongs to exactly one cluster in hard clustering methods
- K-means is the most popular partitioning algorithm
 - K-means was proposed near 60 years ago
 - Thousands of clustering algorithms have been published since then
 - However, K-means is still widely used.

K-means Clustering

- Input: a set $x^{(1)}, ..., x^{(N)}$ of data points (in a d-dim feature space) and an integer K
- ▶ Output: a set of K representatives $c_1, c_2, ..., c_K \in \mathbb{R}^d$ as the cluster representatives
 - b data points are assigned to the clusters according to their distances to $c_1, c_2, ..., c_K$
 - ▶ Each data is assigned to the cluster whose representative is nearest to it
- ▶ **Objective**: choose $c_1, c_2, ..., c_K$ to minimize:

$$\sum_{i=1}^{N} \min_{j \in 1, \dots, K} d(\boldsymbol{x}^{(i)}, \boldsymbol{c}_j)$$

Euclidean k-means Clustering

- Input: a set $x^{(1)}, ..., x^{(N)}$ of data points (in a d-dim feature space) and an integer K
- ▶ Output: a set of K representatives $c_1, c_2, ..., c_K \in \mathbb{R}^d$ as the cluster representatives
 - b data points are assigned to the clusters according to their distances to $\boldsymbol{c}_1, \boldsymbol{c}_2, ..., \boldsymbol{c}_K$
 - ▶ Each data is assigned to the cluster whose representative is nearest to it
- ▶ **Objective**: choose $c_1, c_2, ..., c_K$ to minimize:

$$\sum_{i=1}^{N} \min_{j \in 1, ..., K} ||x^{(i)} - c_j||^2$$

each point assigned to its closest cluster representative

Euclidean k-means Clustering: Computational Complexity

NP hard: even for k=2 or d=2

- For k=1: $\min_{c} \sum_{i=1}^{N} ||x^{(i)} c||^2$ $c = \mu = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$

For d = 1, dynamic programming in time $O(N^2K)$.

Common Heuristic in Practice: The Lloyd's method

Input: A set \mathcal{X} of N data points $\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(N)}$ in \mathbb{R}^d

- Initialize centers $c_1, c_2, ..., c_K \in \mathbb{R}^d$ in any way.
- Repeat until there is no further change in the cost.
 - For each $j: \mathcal{C}_j \leftarrow \{x \in \mathcal{X} | \text{where } \mathbf{c}_j \text{ is the closest center to } \mathbf{x}\}$ For each $j: \mathbf{c}_j \leftarrow \text{mean of members of } \mathcal{C}_j$

Holding centers $c_1, c_2, ..., c_K$ fixed Find optimal assignments $\mathcal{C}_1, \dots, \mathcal{C}_K$ of data points to clusters

> Holding cluster assignments $C_1, ..., C_K$ fixed Find optimal centers $c_1, c_2, ..., c_K$

$$\mathbf{c}_{j} = \frac{1}{|\mathcal{C}_{j}|} \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_{j}} \mathbf{x}^{(i)}$$

Intra-cluster similarity view

k-means optimizes intra-cluster similarity:

$$J(\mathcal{C}) = \sum_{j=1}^{K} \sum_{\boldsymbol{x}^{(i)} \in \mathcal{C}_j} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_j\|^2$$
$$\boldsymbol{c}_j = \frac{1}{|\mathcal{C}_j|} \sum_{\boldsymbol{x}^{(i)} \in \mathcal{C}_j} \boldsymbol{x}^{(i)}$$

$$\sum_{\boldsymbol{x}^{(i)} \in \mathcal{C}_j} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{c}_j \right\|^2 = \frac{1}{2|\mathcal{C}_j|} \sum_{\boldsymbol{x}^{(i)} \in \mathcal{C}_j} \sum_{\boldsymbol{x}^{(i')} \in \mathcal{C}_j} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{x}^{(i')} \right\|^2$$

the average distance to members of the same cluster

K-means: Convergence

- It always converges.
 - The cost always drop
 - There is only a finite number of partitioning
- ▶ *K*-means algorithm reaches a state in which clustering doesn't change.
 - ▶ Reassignment stage monotonically decreases *J* since each vector is assigned to the closest centroid.
 - Centroid update stage also for each cluster minimizes the sum of squared distances of the assigned points to the cluster from its center.

Local optimum problem

- It always converges
 - But it may converge at a local optimum
 - Colored points show initial centroids, two resulted partitioning for two different initial centroids

Local optimum problem

- It always converges
 - But it may converge at a local optimum
 - ▶ This bad performance, can happen even with well separated Gaussian clusters.

Local optimum problem

- It always converges
 - But it may converge at a local optimum
 - This bad performance, can happen even with well separated Gaussian clusters.

The Lloyd's method: Initialization

- Initialization is crucial (how fast it converges, quality of clustering)
 - Random centers from the data points
 - Multiple runs and select the best ones
 - Initialize with the results of another method
 - Select good initial centers using a heuristic
 - Furthest traversal
 - K-means ++ (works well and has provable gaurantees)

Initialization Idea: Furthest Point Heuristic

- ightharpoonup Choose c_1 arbitrarily (or at random).
- ▶ For j = 2, ..., K
 - Select c_j among datapoints $x^{(1)}, ..., x^{(N)}$ that is farthest from previously chosen $c_1, ..., c_{j-1}$
- Good for our previous example

Initialization Idea: Furthest Point Heuristic

▶ However, it is sensitive to outliers

20

K-means++ Initialization: D2 sampling

[D. Arthur and S. Vassilvitskii, 2007]

- Combine random initialization and furthest point initialization ideas
- Let the probability of selection of the point be proportional to the distance between this point and its nearest center.
 - probability of selecting of x is proportional to $D^2(x) = \min_{k < j} ||x| c_k||^2$.
- ightharpoonup Choose c_1 arbitrarily (or at random).
- For j = 2, ..., K
 - Select c_j among data points $x^{(1)}, ..., x^{(N)}$ according to the distribution:

$$\Pr(\boldsymbol{c}_j = \boldsymbol{x}^{(i)}) \propto \min_{k < j} \|\boldsymbol{x}^{(i)} - \boldsymbol{c}_k\|^2$$

How Many Clusters?

- lacktriangleright Number of clusters k is given in advance in the k-means algorithm
 - However, finding the "right" number of clusters is a part of the problem
- Tradeoff between having better focus within each cluster and having too many clusters

How Many Clusters?

- Heuristic:
 - Find large gap between k-1-means cost and k-means cost.
 - "knee finding" or "elbow finding".

- Hold-out validation/cross-validation on auxiliary task (e.g., supervised learning task).
- Optimization problem: penalize having lots of clusters
 - some criteria can be used to automatically estimate k
 - Penalize the number of bits you need to describe the extra parameter $J'(\mathcal{C}) = J(\mathcal{C}) + |\mathcal{C}| \times \log N$
- Hierarchical clustering

K-means summary

- Relatively efficient: O(tKNd), where t is the number of iterations.
 - K-means typically converges quickly
 - ightharpoonup Usually $t \ll n$.
 - Exponential # of rounds in the worst case [Andrea Vattani 2009].

Limitations

- ▶ Need to specify *K*, the *number* of clusters, in advance
- Often terminates at a local optimum.
 - ▶ Initialization is important.
- Not suitable to discover clusters with arbitrary shapes
- Works for numerical data. What about categorical data?
- ▶ Noise and outliers can be considerable trouble to K-means

k-means summary

- In general, k-means is unable to find clusters of arbitrary shapes, sizes, and densities
 - Except to very distant clusters

Hierarchical Clustering

- Hierarchical Clustering: Clusters contain sub-clusters and subclusters themselves can have sub-sub-clusters, and so on
 - Several levels of details in clustering
- ▶ A hierarchy might be more natural.
 - Different levels of granularity

Hierarchical Clustering

Agglomerative (bottom up):

- Starts with each data in a separate cluster
- Repeatedly joins the closest pair of clusters, until there is only one cluster (or other stopping criteria).
 - Different definition for distance between clusters

Divisive (top down):

- Starts with the whole data as a cluster
- Repeatedly divide data in one of the clusters until there is only one data in each cluster (or other stopping criteria).

Agglomerative (bottom up):

- 1. Initially, each instance forms a cluster
- While there are more than one cluster
 Pick the two closest one
 Merge them into a new cluster

Agglomerative (bottom up):

Having a distance measure $dist_{SL}(x,y)$ on a pair of objects, many variants exist to define distances between pair of clusters

Single-link

Minimum distance between different pairs of data

Complete-link

Maximum distance between different pairs of data

Centroid (Ward's)

Distance between centroids (centers of gravity)

Average-link

Average distance between pairs of elements

Distances between Cluster Pairs

Single-link
$$dist_{SL}(\mathcal{C}_i, \mathcal{C}_j) = \min_{\mathbf{x} \in \mathcal{C}_i, \mathbf{x}' \in \mathcal{C}_j} dist(\mathbf{x}, \mathbf{x}')$$

Complete-link
$$dist_{CL}(\mathcal{C}_i, \mathcal{C}_j) = \max_{\mathbf{x} \in \mathcal{C}_i, \mathbf{x}' \in \mathcal{C}_j} dist(\mathbf{x}, \mathbf{x}')$$

$$dist_{Ward}(\mathcal{C}_{i}, \mathcal{C}_{j}) = \frac{|\mathcal{C}_{i}||\mathcal{C}_{j}|}{|\mathcal{C}_{i}| + |\mathcal{C}_{j}|} dist(\boldsymbol{c}_{i}, \boldsymbol{c}_{j}) \qquad dist_{AL}(\mathcal{C}_{i}, \mathcal{C}_{j}) = \frac{1}{|\mathcal{C}_{i} \cup \mathcal{C}_{j}|} \sum_{\boldsymbol{x} \in \mathcal{C}_{i} \cup \mathcal{C}_{j}} \sum_{\boldsymbol{x}' \in \mathcal{C}_{i} \cup \mathcal{C}_{j}} dist(\boldsymbol{x}, \boldsymbol{x}')$$

Average-link
$$d = \frac{1}{|\mathcal{C}_i \cup \mathcal{C}_i|} \sum_{i \in \mathcal{C}_i \cup \mathcal{C}_i = 0} di$$

Single-Link

31

Single linkage can produce long stretched clusters.

Dendogram

Complete Link

One way to think of it: keep max diameter as small as possible at any level.

Complete linkage prefers compact clusters.

32

Ward's method

The distances between centers of the two clusters (weighted to consider sizes of clusters too):

$$dist_{Ward}(\mathcal{C}_i, \mathcal{C}_j) = \frac{|\mathcal{C}_i| |\mathcal{C}_j|}{|\mathcal{C}_i| + |\mathcal{C}_j|} dist(\boldsymbol{c}_i, \boldsymbol{c}_j)$$

- Merge the two clusters such that the increase in k-means cost is as small as possible.
- Works well in practice.

Computational Complexity

- In the first iteration, all HAC methods compute similarity of all pairs of N individual instances which is $O(N^2)$ similarity computation.
- ▶ In each N-1 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- If done naively $O(N^3)$ but if done more cleverly $O(N^2 \log N)$

Dendrogram: Hierarchical Clustering

- Clustering obtained by cutting the dendrogram at a desired level
 - Cut at a pre-specified level of similarity
 - where the gap between two successive combination similarities is largest
 - select the cutting point that produces K clusters

K-means vs. Hierarchical

Time cost:

K-means is usually fast while hierarchical methods do not scale well

Human intuition

Hierarchical structure provides more natural output compatible with human intuition in some domains

Local minimum problem

- It is very common for k-means
- Hierarchical methods like any heuristic search algorithms also suffer from local optima problem.
 - Since they can never undo what was done previously and greedily merge clusters

Choosing of the number of clusters

There is no need to specify the number of clusters in advance for hierarchical methods