Math E-23C Term Project

An analysis of the Lakers 2019 Championship season

Maria Cristina An, Daniel Lebedinsky, Julio Solis Arce

04 May, 2022

Abstract

The current documents offer a comprehensive analysis of the Lakers 2019 season, in which they successfully defended the NBA championship

Contents

1	Dat	caset description	2
	1.1	Codebook	2
	1.2	Importing and cleaning data	;
	1.3	Summary of variables	;
	1.4	Number of columns and rows in dataset	8
2	Gra	aphical analysis	ę
	2.1	Barplot of wins vs losses for our team	Ć
	2.2	Barplot of 3 point shots from our team	
	2.3	Barplot of Opponent blocks	
	2.4	Histogram of 3 point shots	
	2.5	Histogram of Opponent blocks	
	2.6	Histogram of our team's number of Free Throws	
3	Pro	bability analysis	15
	3.1	Probability density graph overlay on the our team's total number of rebounds in a game	15
	3.2	Probability density graph on the our team's scores in a game	16
	3.3	Contingency tables	18
4	Infe	erential and statistical analysis	20
	4.1	Permutation test	20
	4.2	Total number of games played and differences of mean scores	

1 Dataset description

1.1 Codebook

1.1.1 Game level variables

- Rk Rank
- G Season Game
- $\bullet~$ W_E opponent is from East or West
- Opp Opponent
- W L Lakers team won or lost
- Tm Lakers team Points
- Opp_pts Opponent Points

1.1.2 Lakers relevant variables

- FG LA Field Goals
- FGA_LA Field Goal Attempts
- FGpc_LA Field Goal Percentage
- X3P LA 3-Point Field Goals
- $X3PA_LA 3$ -Point Field Goal Attempts
- $X3Ppc_LA 3$ -Point Field Goal Percentage
- FT LA Free Throws
- FTA_LA Free Throw Attempts
- FTpc_LA Free Throw Percentage
- ORB LA Offensive Rebounds
- TRB_LA Total Rebounds
- AST_LA Assists
- STL_LA Steals
- BLK_LA Blocks
- \bullet TOV_LA Turnovers
- PF_LA Personal Fouls

1.1.3 Opponent relevant variables

- FG Opponent Field Goals
- FGA Opponent Field Goal Attempts
- FGpc Opponent Field Goal Percentage
- X3P Opponent 3-Point Field Goals
- X3PA Opponent 3-Point Field Goal Attempts
- X3Ppc Opponent 3-Point Field Goal Percentage
- FT Opponent Free Throws

- FTA Opponent Free Throw Attempts
- FTpc Opponent Free Throw Percentage
- ORB Opponent Offensive Rebounds
- TRB Opponent Total Rebounds
- AST Opponent Assists
- STL Opponent Steals
- BLK Opponent Blocks
- TOV Opponent Turnovers
- PF Opponent Personal Fouls

1.2 Importing and cleaning data

Reference: https://www.basketball-reference.com/teams/LAL/2020/gamelog/

```
#Import dataset
Lakers <- read.csv("Lakers\ 2019-20\ Game\ log.csv"); head(Lakers, n = c(6, 8)) %>% knitr::kable()
```

Rk	G	Date	W_E	Opp	W_L	Tm	Opp_pts
1	1	2019-10-22	W	LAC	L	102	112
2	2	2019 - 10 - 25	W	UTA	W	95	86
3	3	2019 - 10 - 27	\mathbf{E}	CHO	W	120	101
4	4	2019-10-29	W	MEM	W	120	91
5	5	2019-11-01	W	DAL	W	119	110
6	6	2019-11-03	W	SAS	W	103	96

```
# Convert to proper date format
Lakers$Dates <- as.Date(Lakers$Date)
attach(Lakers)</pre>
```

1.3 Summary of variables

```
summary(Lakers) %>%
  t() %>%
  as.data.frame() %>%
  select(-Var2) %>%
  rename(Variable=Var1, Description=Freq) %>%
  filter(!is.na(Description)) %>%
  arrange(Variable) %>%
  knitr::kable()
```

Variable	Description
Rk	Min.: 1.00
Rk	1st Qu.:12.00
Rk	Median: 25.50
Rk	Mean $:30.29$
Rk	3rd Qu.:48.25
Rk	Max. :71.00
G	Min.: 1.00

Variable	Description
G	1st Qu.:12.00
G	Median $:25.50$
G	Mean $:30.29$
G	3rd Qu.:48.25
G	Max. $:71.00$
Date	Length:92
Date	Class :character
Date	Mode :character
$W_{-}E$	Length:92
$\overline{\mathrm{W}}_{-}^{\mathrm{E}}$	Class:character
$\overline{\mathrm{W}}_{-}^{\mathrm{E}}$	Mode :character
Opp	Length:92
Opp	Class :character
Opp	Mode :character
W_{L}	Length:92
W_L	Class :character
W_L	Mode :character
Tm	Min. : 86.0
Tm	1st Qu.:104.0
Tm	Median :114.0
Tm	Mean :113.3
Tm	3rd Qu.:122.0
Tm	Max. :142.0
Opp_pts	Min. : 80.0
Opp_pts	1st Qu.:100.0
Opp_pts	Median $:108.0$
Opp_pts	Mean : 107.3
Opp_pts	3rd Qu.:114.0
$\operatorname{Opp_pts}$	Max. :139.0
FG_LA	Min. :29.00
FG_LA	1st Qu.:38.00
FG_LA	Median $:43.00$
FG_LA	Mean $:42.04$
FG_LA	3rd Qu.:46.00
FG_LA	Max. $:55.00$
FGA_LA	Min.: 74.00
FGA_LA	1st Qu.: 83.00
FGA_LA	Median: 87.00
FGA_LA	Mean: 87.32
FGA_LA	3rd Qu.: 91.00
FGA_LA	Max. $:102.00$
$FGpc_LA$	Min. $:0.3510$
$FGpc_LA$	1st Qu.:0.4512
$FGpc_LA$	Median $:0.4855$
$FGpc_LA$	Mean $:0.4815$
$FGpc_LA$	3rd Qu.:0.5160
$FGpc_LA$	Max. $:0.5880$
$X3P_LA$	Min. : 2.00
$X3P_LA$	1st Qu.: 9.00
$X3P_LA$	Median :11.00
X3P_LA	Mean : 11.26
X3P_LA	3rd Qu.:14.00

Variable	Description
X3P_LA	Max. :19.00
$X3PA_LA$	Min. :19.00
X3PA_LA	1st Qu.:29.00
X3PA_LA	Median :32.00
X3PA_LA	Mean :32.17
X3PA_LA	3rd Qu.:36.00
X3PA_LA	Max. :47.00
X3Ppc_LA	Min. :0.1050
X3Ppc_LA	1st Qu.:0.2965
X3Ppc_LA	Median :0.3435
X3Ppc_LA	Mean :0.3487
X3Ppc_LA	3rd Qu.:0.4042
X3Ppc_LA	Max. :0.5480
FT_LA	Min. : 7.00
FT_LA	1st Qu.:14.00
FT_LA	Median :18.00
FT_LA	Mean :17.95
FT_LA	3rd Qu.:23.00
$\mathrm{FT}_{\mathrm{LA}}$	Max. :33.00
FTA_LA	Min. : 8.00
FTA_LA	1st Qu.:19.00
FTA_LA	Median :24.00
FTA LA	Mean :24.39
FTA_LA FTA_LA	3rd Qu.:29.00
FTA_LA	Max. :43.00
FTpc_LA	Min. :0.4710
FTpc_LA	1st Qu.:0.6670
$FTpc_LA$	Median :0.7340
$FTpc_LA$	Mean :0.7371
FTpc_LA	3rd Qu.:0.8135
FTpc_LA	Max. :0.9470
ORB LA	Min.: 3.00
ORB_LA ORB_LA	1st Qu.: 9.00
ORB LA	Median :11.00
ORB LA	Mean : 10.64
ORB_LA	3rd Qu.:12.00
ORB LA	Max. :19.00
TRB LA	Min. :25.00
TRB_LA	1st Qu.:41.00
TRB LA	Median :45.00
TRB LA	Mean $:45.36$
TRB LA	3rd Qu.:49.00
$\overline{\text{TRB}}_{\text{LA}}$	Max. :62.00
AST LA	Min. :17.00
AST_LA	1st Qu.:22.75
AST LA	Median :25.00
AST LA	Mean $:25.45$
AST LA	3rd Qu.:28.25
AST_LA	Max. $:39.00$
STL_LA	Min. : 2.000
STL_LA	1st Qu.: 6.750
STL_LA	Median: 9.000

Variable	Description
STL_LA	Mean: 8.489
STL_LA	3rd Qu.:10.000
STL_LA	Max. :14.000
BLK_LA	Min.: 1.000
BLK_LA	1st Qu.: 4.000
BLK_LA	Median: 6.000
BLK_LA	Mean: 6.304
BLK_LA	3rd Qu.: 8.000
BLK_LA	Max. :20.000
TOV_LA	Min. : 7.00
TOV_LA	1st Qu.:12.75
TOV_LA	Median :15.00
TOV_LA	Mean :14.61
TOV_LA	3rd Qu.:16.25
TOV_LA	Max. :24.00
PF_LA	Min. :13.00
PF LA	1st Qu.:18.00
PF_LA PF_LA	Median :21.50
PF_LA PF_LA	Mean :21.16
PF_LA	3rd Qu.:24.00
PF_LA	Max. :30.00
FG	Min. :28.00
FG	1st Qu.:35.00
FG	Median :38.50
FG	Mean :38.55
FG	3rd Qu.:42.00
FG	Max. :54.00
FGA	Min. : 65.00
FGA	1st Qu.: 81.00
FGA	Median : 86.00
FGA	Mean: 85.83
FGA	3rd Qu.: 91.00
FGA	Max. :102.00
FGpc	Min. :0.3260
FGpc	1st Qu.:0.4155
FGpc	Median :0.4470
FGpc	Mean $:0.4497$
FGpc	3rd Qu.:0.4813
FGpc	Max. $:0.5840$
X3P	Min. : 4.00
X3P	1st Qu.: 9.00
X3P	Median :11.00
X3P	Mean : 11.68
X3P	3rd Qu.:14.00
X3P	Max. :22.00
X3PA	Min. :15.00
X3PA	1st Qu.:28.00
X3PA	Median: 33.00
X3PA	Mean $:33.22$
X3PA	3rd Qu.:37.00
X3PA	Max. $:57.00$
X3Ppc	Min. :0.1710

Variable	Description
X3Ppc	1st Qu.:0.2930
X3Ppc	Median :0.3520
ХЗРрс	Mean :0.3506
ХЗРрс	3rd Qu.:0.4100
ХЗРрс	Max. :0.5650
FT	Min. : 6.00
FT	1st Qu.:14.00
FT	Median :18.00
FT	Mean :18.47
FT	3rd Qu.:23.00
$\overline{\mathrm{FT}}$	Max. :32.00
FTA	Min. : 7.00
FTA	1st Qu.:19.00
FTA	Median :23.00
FTA	Mean : 23.46
FTA	3rd Qu.:29.00
FTA	Max. :39.00
FTpc	Min. :0.5160
FTpc	1st Qu.:0.7390
FTpc	Median :0.7860
FTpc	Mean $:0.7886$
FTpc	3rd Qu.:0.8800
FTpc	Max. $:1.0000$
ORB	Min. : 1.000
ORB	1st Qu.: 6.000
ORB	Median: 8.000
ORB	Mean: 8.957
ORB	3rd Qu.:12.000
ORB	Max. :18.000 Min. :26.00
TRB	
TRB TRB	1st Qu.:37.00 Median :41.00
TRB	Mean :41.13
TRB	3rd Qu.:45.00
TRB	Max. :61.00
AST	Min. :12.00
AST	1st Qu.:20.00
AST	Median :23.00
AST	Mean $:23.03$
AST	3rd Qu.:25.25
AST	Max. :37.00
STL	Min. : 2.000
STL	1st Qu.: 6.000
STL	Median: 8.000
STL	Mean: 7.946
STL	3rd Qu.:10.000
STL	Max. :15.000
BLK	Min.: 0.000
BLK	1st Qu.: 2.000
BLK	Median : 3.000
BLK	Mean: 3.565
BLK	3rd Qu.: 5.000

Variable	Description
BLK	Max. :10.000
TOV	Min. : 5.00
TOV	1st Qu.:12.00
TOV	Median:15.00
TOV	Mean : 14.83
TOV	3rd Qu.:17.25
TOV	Max. $:26.00$
PF	Min. :11.0
PF	1st Qu.:19.0
PF	Median: 22.0
PF	Mean $:21.9$
PF	3rd Qu.:25.0
PF	Max. :32.0
Dates	Min. :2019-10-22
Dates	1st Qu.:2019-12-07
Dates	Median :2020-01-28
Dates	Mean :2020-03-16
Dates	3rd Qu.:2020-08-08
Dates	Max. :2020-10-11

1.4 Number of columns and rows in dataset

```
length(Lakers)

## [1] 41

nrow(Lakers)

## [1] 92

# Creating categorical columns
WonLost <- W_L == "W"; head(WonLost)

## [1] FALSE TRUE TRUE TRUE TRUE
sum(WonLost) # total wins

## [1] 68</pre>
```

2 Graphical analysis

2.1 Barplot of wins vs losses for our team

This plot shows the number of losses compared to the number wins by our team. The y-axis gives the count of wins and losses. The x-label answers the question "did the team win?", FALSE means losing and TRUE means winning.

barplot(table(WonLost), main = "Bar Plot of Lakers' 2019 Wins vs Losses", col = "orange", ylab="Count")

Bar Plot of Lakers' 2019 Wins vs Losses

2.2 Barplot of 3 point shots from our team

This plot shows the number of times the team scores a 3-point shot in a game. How often a 3-pointer occurs ranges from the minimum of 2 to a maximum of 19 in a single game.

barplot(table(X3P_LA), main = "Bar Plot of Lakers' Number of 3-Pointers per Game", xlab="Number of 3-po

Bar Plot of Lakers' Number of 3-Pointers per Game

2.3 Barplot of Opponent blocks

This plot shows how often an opponent successfully blocks our team in a game. Most often (the median), an opponent is able to block 3 times and, of course, depending on the opponent's abilities, blocks can range from 0 to 9 in a game.

barplot(table(BLK), main = "Bar Plot of Lakers' Number of Opponent Blocks per Game", xlab="Number of Bl

Bar Plot of Lakers' Number of Opponent Blocks per Game

2.4 Histogram of 3 point shots

This is a histogram version of the barplot which shows the number of times the team scores a 3-point shot in a game. The data is the same, and so is the result, a 3-pointer event ranges from the minimum of 2 to a maximum of 19.

hist(X3P_LA, xlab = "3 point shots", main = "Histogram of Lakers' 3 Pointers", col = "cyan", breaks=(0:

Histogram of Lakers' 3 Pointers

2.5 Histogram of Opponent blocks

This is a histogram version that shows how often an opponent successfully blocks our team in a game. Same results, an opponent is able to block 3 times and ranges from 0 to 9 in a game.

hist(BLK, main = "Histogram of Lakers' Opponent Blocks", xlab="Number of Blocks", col = "magenta", break

Histogram of Lakers' Opponent Blocks

2.6 Histogram of our team's number of Free Throws

This histogram shows the probability of the number of free throws done by our team in a game. The range is from a minimum of 7 to a maximum of 33 with a maximum density at 14 and 17.

hist(FT_LA, probability=TRUE, main="Histogram of Lakers' Number of Free Throws per Game", xlab="Number of Free Throws per Game", xlab="

Histogram of Lakers' Number of Free Throws per Game

3 Probability analysis

3.1 Probability density graph overlay on the our team's total number of rebounds in a game

Here we have our team's probability of the total number of rebounds in a game. Ranging from a minimum of 25 to a maximum of 62, the graph seems like it came from a normal distribution. Overlaying a normal distribution shows like it does.

```
mu<-mean(TRB_LA); stdv<- sd(TRB_LA)
hist(TRB_LA, probability=TRUE, main = "Histogram of Lakers' Total Number of Rebounds per Game", ylim=c(
# total rebounds per game
curve(dnorm(x, mu, stdv), col="purple", add=TRUE, lwd=2)</pre>
```

Histogram of Lakers' Total Number of Rebounds per Game

Number of Rebounds

```
#Appears to be a normal distribution. We will compare it with Deciles and a Q-Q plot
Normal10<- qnorm(seq(0.01, 0.99, by=0.1), mean=mu, sd=stdv);
Data10<- quantile(TRB_LA, seq(0.01, 0.99, by=0.1), type=2);
plot(Normal10, Data10)
f<-function(x) x
curve(f, col="red", add=TRUE)</pre>
```


#Our data does not differ much from the Normal Distribution, except in the first decile.

3.2 Probability density graph on the our team's scores in a game

We go back to our histogram of our team's score and its probability in a game. It also seems as if it fits a normal distribution like it shows with a normal distribution overlay. We can provide more proof later with a chi-square goodness of fit test.

```
mu<-mean(Tm); stdv<-sd(Tm)
hist(Tm,breaks=seq(from=80, to = 150, by =5), probability=TRUE, main = "Histogram of Lakers' Scores per
curve(dnorm(x, mu, stdv), col="dark blue", add=TRUE, lwd=2)</pre>
```

Histogram of Lakers' Scores per Game


```
## [1] 4.956522
```

#Test for uniformity using chi square.
Chi2 <- sum((binscores - Exp)^2/Exp); Chi2</pre>

```
#There were 10 bins. We estimated 2 parameters (mu and stdv), which costs two degrees of freedom #Also we "made the totals match", costing another 1. So there are 10-2-1=7 df. curve(dchisq(x, df = 7), from = 0, to = 120) abline(v=Chi2, col = "red")
```


#The probability of this chi-square value is relatively large #The normal distribution was a good model

3.3 Contingency tables

This table answers the question "how many times the opponents scored greater than 100 points in a game with our team". This does not say that the opponent won or not. But in the times that they did not, it only shows that our team scored more and that such a high scoring game would have been a truly awesome event to watch.

```
Opp100 <- Opp_pts > 100; Opp100
                      TRUE FALSE
                                                TRUE FALSE
##
    [1]
         TRUE FALSE
                                   TRUE FALSE
                                                            TRUE
                                                                   TRUE FALSE FALSE
                                   TRUE
                                                      TRUE FALSE FALSE
                                                                               TRUE
   [13]
         TRUE
               TRUE
                      TRUE
                            TRUE
                                         TRUE
                                                TRUE
                                                                         TRUE
   [25]
       FALSE
               TRUE FALSE
                            TRUE
                                   TRUE
                                         TRUE
                                                TRUE
                                                      TRUE FALSE
                                                                   TRUE
                                                                         TRUE FALSE
                                                                   TRUE
                                                                         TRUE
   [37]
        FALSE
               TRUE
                      TRUE FALSE
                                   TRUE
                                         TRUE
                                                TRUE FALSE
                                                            TRUE
                                                                                TRUE
##
   [49]
         TRUE
               TRUE
                      TRUE FALSE
                                   TRUE
                                         TRUE
                                                TRUE
                                                      TRUE FALSE
                                                                   TRUE
                                                                         TRUE
                                                                                TRUE
##
   [61]
         TRUE
               TRUE
                      TRUE
                            TRUE
                                   TRUE
                                         TRUE
                                                TRUE
                                                      TRUE
                                                            TRUE
                                                                   TRUE
                                                                         TRUE FALSE
## [73] FALSE
               TRUE
                      TRUE
                            TRUE
                                   TRUE
                                         TRUE
                                                TRUE FALSE FALSE
                                                                   TRUE
                                                                         TRUE
                                                                                TRUE
## [85]
         TRUE
               TRUE FALSE
                            TRUE
                                   TRUE FALSE
                                                TRUE FALSE
table(Opp100)
## Opp100
## FALSE
          TRUE
      24
            68
##
```

This table shows the opposite of the table above, that despite being the all-around champion during that year, our team scored less than 100 in some games and this table shows that.

```
Less100 <- Tm < 100; Less100

## [1] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

## [13] FALSE FALSE
```

```
## [37] FALSE FALS
```

[61] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE

[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[85] FALSE FALSE FALSE FALSE FALSE FALSE

table(Less100)

Less100

FALSE TRUE

81 11

4 Inferential and statistical analysis

4.1 Permutation test

Our permutation test will be comparing our team's scores in games played vs the opponents from the East and the opponents from the West

H_o: The mean score of the opponents coming from the Eastern Conference is equal to the mean score of the opponents coming from the Western Conference H_a: The mean score of the opponents coming from the Eastern Conference is not equal to the mean score of the opponents coming from the Western Conference

#Data for Eastern and Western Conference teams How many opponents were from each, and what were their mean scores?

```
Eastern <- W_E == "E"; head(Eastern)
## [1] FALSE FALSE TRUE FALSE FALSE
East <- sum(Eastern); East # count of Eastern opponents = 31
## [1] 31
ScorevsEast <- mean(Tm*Eastern); ScorevsEast # mean team score vs East = 37.03261
## [1] 37.03261
Western <- W_E == "W"; head(Western)
## [1] TRUE TRUE FALSE TRUE TRUE
West <- sum(Western); West # Western opponents = 61
## [1] 61
ScorevsWest <- mean(Tm*Western); ScorevsWest # mean team score vs West = 76.26087
## [1] 76.26087</pre>
```

It shows that there are more opponents coming from the West and that their mean score obviously would have a higher range.

4.2 Total number of games played and differences of mean scores

This will be our Observed value.

```
EW <- sum(Eastern) + sum(Western); EW # total number of games = 92

## [1] 92

Score_diff <- ScorevsEast - ScorevsWest; Score_diff # -39.22826

## [1] -39.22826

Dbserved <- Score_diff; Observed

## [1] -39.22826

# Let's see if this score difference is significant
# We repeat 10^6 times
N <- 10^6
Score_diffs <- numeric(N)
for (i in 1:N){
    # Permute West indices
    E <- sample(EW, East, replace = FALSE)</pre>
```

```
# Get the difference of the 2 opponent groups
  Score_diffs[i] <- mean(Tm[E]) - mean(Tm[-E])</pre>
head(Score_diffs)
## [1] 0.9682708 -3.4590164 1.8926494 2.7197250 -1.9021682 -2.2427287
summary(Score_diffs)
##
         Min.
                 1st Qu.
                             Median
                                           Mean
                                                   3rd Qu.
                                                                 Max.
## -11.827076 -1.756214
                          -0.004759
                                       0.005147
                                                  1.746695
                                                            11.963511
mean(Score_diffs) # 0.001794507 close to zero
## [1] 0.005147179
hist(Score_diffs, main="Mean Score difference between games against Eastern vs games against Western Op
     col="light gray", xlab="Mean difference", xlim=c(-55, 55))
#Now display the observed value on the histogram
abline(v = Observed, col = "purple")
```

re difference between games against Eastern vs games against Weste


```
#What is the probability (the P value) that a difference this large
#could have arisen with a random subset?
pvalue <- (sum(Score_diffs >= Observed)+1)/(N+1); pvalue # 1
```

[1] 1

This goes to show that the data observed has a significant likelihood to have come about by chance. Therefore, there is insufficient evidence to to reject the null hypothesis.