Elektronika Cyfrowa

Sprawozdanie z Laboratorium 6

Tomasz Dziób Grupa 15

29.05.2024

Spis treści

1	Vstęp teoretyczny	2
	.1 Komparator napięcia	2
	.2 Przetwornik C/A	
	.3 Przetwornik A/C typu FLASH	
	.4 Transkoder RPP-S (Ręcznie Programowana Pamięć Stała)	
	.5 Transkoder PP-SRAN (Ręcznie Programowana Pamięć SRAM)	
2	Świczenia	4
	.1 Ćwiczenie 6.1	4
	2.1.1 Komparator napięcia	4
	2.1.2 Wzmacniacz operacyjny	
	.2 Ćwiczenie 6.2	
	.3 Ćwiczenie 6.3	7
3		-
3	Omówienie wyników	7
	.1 Ćwiczenie 6.1	
	.2 Ćwiczenie 6.2	
	.3 Čwiczenie 6.3	8
4	Podsumowanie	8
5	Votatki z zajęć	8

1 Wstęp teoretyczny

1.1 Komparator napięcia

Jest to układ kombinacyjny służący do porównywania dwóch poziomów napięć. Na wyjściu podaje sygnał zależny od tego, który z sygnałów wejściowych jest większy. Komparator posiada dwa analogowe wejścia V_+ i V_- oraz V_0 . Sygnał wyjściowy idealnego komparatora wynosi:

$$V_{\rm o} = \begin{cases} 1, & \text{gdy } V_{+} > V_{-} \\ 0, & \text{gdy } V_{+} < V_{-} \end{cases}$$
 (1)

Rysunek 1: Symbol używany do oznaczania komparatora w schematach,

Źródło: Wikipedia

1.2 Przetwornik C/A

Przetwornik C/A (Cyfrowo-Analogowy), znany także jako DAC (Digital-to-Analog Converter), to urządzenie lub układ elektroniczny, który przekształca dane cyfrowe (ciąg bitów) na sygnał analogowy. Umożliwiają wymianę informacji między urządzeniami pomiarowymi różnych typów i systemami komputerowymi przetworniki te stanowią łącznik między światem urządzeń analogowych a nowoczesnymi rozwiązaniami cyfrowymi. Znajdują szerokie zastosowania począwszy od domowych multimediów aż po ośrodki naukowe.

Rysunek 2: Przetwornik CA wykorzystany podczas zajęć, Źródło: Opracowanie własne

1.3 Przetwornik A/C typu FLASH

jest jednym z najszybszych dostępnych przetworników A/C (Analogowo-Cyfrowy). Jest używany tam, gdzie wymagane są bardzo wysokie prędkości konwersji sygnału analogowego na cyfrowy, na przykład w aplikacjach takich jak cyfrowa obróbka sygnałów, radary, oscyloskopy cyfrowe oraz szybkie transmisje danych.

Przetworniki A/C stosuje się do przetwarzania napięć stałych, jak również napięć zmieniających się w czasie. Pobieranie i przetwarzanie próbek napięcia odbywa się w zadanych chwilach czasu, na ogół okresowo z pewną częstotliwością, zwaną częstotliwością próbkowania.

Rysunek 3: Moduł komparatorów wykorzystany w przetworniku A/C typu FLASH zbudowanym podczas zajęć, Źródło: Opracowanie własne

1.4 Transkoder RPP-S (Ręcznie Programowana Pamięć Stała)

To urządzenie lub układ elektroniczny wykorzystywany do konwersji danych lub sygnałów między różnymi formatami, przy użyciu ręcznie programowanej pamięci stałej. RPP-S jest specjalnym typem pamięci stałej, która jest zaprogramowana ręcznie, zwykle za pomocą zewnętrznego programatora.

Rysunek 4: Transkoder RPP-S wykorzystany podczas zajęć, Źródło: Opracowanie własne

1.5 Transkoder PP-SRAN (Ręcznie Programowana Pamięć SRAM)

Jest to układ elektroniczny, który wykorzystuje pamięć SRAM (Static Random-Access Memory) do przechowywania danych lub konwersji sygnałów. W przeciwieństwie do pamięci stałej, SRAM jest pamięcią ulotną, co oznacza, że przechowywane w niej dane są tracone po wyłączeniu zasilania. W kontekście transkodera PP-SRAN, ręczne programowanie oznacza, że użytkownik wprowadza dane bezpośrednio do pamięci SRAM.

Rysunek 5: Transkoder PP-SRAN wykorzystany podczas zajęć, Źródło: Opracowanie własne

2 Ćwiczenia

2.1 Ćwiczenie 6.1

2.1.1 Komparator napięcia

Pierwsze zadanie dotyczyło stworzenia najprostrzej wersji "układu zmieniającego sygnał analogowy na cyfrowy". Należało użyć płytki UA-1 z komparatorem LM311. Do kontrolowania efektu używany był potencjometr (regulowany dzielnik napięcia).

Rysunek 6: Poprawnie zmontowany układ z komparatorem, Źródło: Opracowanie własne

Rysunek 7: Schemat według którego miało zostać wykonane zadanie pierwsze, Źródło: Strona wykładów

Został zbadany przebieg napięcia wyjściowego komparatora dla różnych kształtów napięć i częstotliwości generatora. Przykładowe dwa znajdują się poniżej, reszta w sekcji *Notatki z zajęć*. Kanał pierwszy ukazuje sygnał stworzony przez generator a kanał drugi, reakcję układu.

Rysunek 8: Reakcja zbudowanego układu na sygnał trójkątny (2, 5kHz i 15V), Źródło: Opracowanie własne

Rysunek 9: Reakcja zbudowanego układu na sygnał sinusoidalny (5kHz i 10V), Źródło: Strona wykładów

Zmiana pokrętła potencjometru wiąże się ze zmniejszeniem amplitudy. Dla oporu wynoszącego 0Ohm uzyskujemy linię prostą.

Rysunek 10: Reakcja zbudowanego układu na sygnał sinusoidalny (5kHz i 10V) przy potencjometrze ustawionym na 0Ohm, Źródło: Opracowanie własne

2.1.2 Wzmacniacz operacyjny

W ten sam sposób został przetestowany układ zawierający wzmacniacz operacyjny zamiast komparatora.

Rysunek 11: Reakcja układu ze wzmacniaczem na sygnał Rysunek 12: Reakcja układu ze wzmacniaczem na sygnał trójkątny (1kHz i 10V), źródło: Opracowanie własne źródło: Opracowanie własne

Dla wyższych częstotliwości można było zauważyć odstępstwa od wcześniejszych przebiegów (patrz Rysunek 13).

Rysunek 13: Reakcja układu ze wzmacniaczem na sygnał trójkątny (10kHz i 10V) różniąca się przebiegiem od reszty,

Źródło: Opracowanie własne

Rysunek 14: Poprawnie zmontowany układ ze wzmacniaczem, Źródło: Opracowanie własne

Poniżej zamieszczam film prezentujący działanie układu (z podłączonym komparatorem) [LINK].

2.2 Ćwiczenie 6.2

Zadanie drugie dotyczyło zmontowania przetwornika C/A. Został on zbudowany z sumatora napięć oraz licznika modulo 8 których implementacje budowaliśmy na poprzednich zajęciach. W celu uzyskania działającego układu należało wejścia z licznika podłączyć według poniższego schematu.

Rysunek 15: Schemat przetwornika C/A wykorzystany w tym zadaniu, Źródło: Strona wykładów

 U_1 , U_2 , U_3 oznaczają wejścia licznika z podpiętymi dopowiednio opornikami. Wykorzystując podstawowe prawa łączenia oporników można ten zapis uprościć do $R=R_2, R_1=\frac{R_2}{2}, R_3=2\cdot R_2$. Dzięki temu można zdefiniować jakie wartości oporników zostały użyte podczas budowy układu:

 $R_1 = 1,489k\Omega$

 $R_2 = 2,969k\Omega$

 $R_3 = 6,09k\Omega$

Na licznik została wpuszczona fala prostokątna z generatora.

Rysunek 16: Poprawnie zbudowany Przetwornik C/A przy pomocy licznika modulo 8 oraz sumatora napięć, Źródło: Opracowanie własne

MSO3012 - 14:37:14 29.05.2024

Rysunek 17: Odczyt z oscyloskopu prezentowanego obok układu — zdigitalizowany sygnał analogowy do postaci widocznych rozróżnialnych stanów, Źródło: Opracowanie własne

2.3 Ćwiczenie 6.3

Jest to zadanie praktycznie dopiero rozpoczynające ćwiczenia jednak nie w tym przypadku. Z powodu braku czaso zostało ono jedynie napoczęte. Polegało na zapoznaniu się z budową i działaniem modułów przetwornika A/C typu FLASH takimi jak modułem komparatorów, transkoderem RPP-S (Ręcznie Programowana Pamięć Stała) oraz transkoderem RPP-SRAN (Ręcznie Programowana Pamięć SRAM).

Rysunek 18: Układ który udało się zbudować podczas wykonywania tego zadania (z racji niepełnego przebadania jego działania nie jestem wstanie stwierdzić czy jest on poprawny), Źródło: Opracowanie własne

Rysunek 19: Odczyt z oscyloskopu który udało się zapisać po złączeniu wszystkich segementów. Widać w małym stopniu dygitalizację sygnału, Źródło: Opracowanie własne

Układ został zbudowany oraz podłączony do generatora. Pozwoliło to na powieszchowne zbadanie układu. Udało się uzyskać prosta rekację układu na sygnał sinusoidalny z generatora. Była to wizualizacja napięcia na diodach układu (3) [LINK DO NAGRANIA]. Wraz ze zmniejszeniem napięcia zaobserwować można było mniej diod świecących się w rytm przebiegu funkcji sinus do modułu.

3 Omówienie wyników

3.1 Ćwiczenie 6.1

Zadanie przebiegło po myśli, udało się zbudować dwie, poprawnie działające, wersje układu. Zmiana oporu na potencjometrze powodowała spadek amplitudy aż do uzyskania przebiegu liniowego (dla całkowtego braku oporu).

3.2 Ćwiczenie 6.2

Było to zadanie które pochłonęło zdecydowanie za dużą część tych ćwiczeń. Polegało na zbudowaniu dwóch osobnych układów, licznika modulo 8 i sumatora napięć. Licznik został podłączony na początku, oraz przebadany na wskaźnikach LED na płytce. Z sukcesem przechodził on przez wszystkie stany tego układu nie wskazując na błędną budowę, więc rozpoczęto prace nad drugim układem. Z racji, że wymagał on dobrania odpowiednich oporników, ich wybór cały czas był podważany. Spowodowane to było nieregularnym przebiegiem układu odczytywanym z oscyloskopu. Łącznie zestawy różnych oporników były wymieniane 3-krotnie. Następnie podejrzenie padło na użyte kable oraz wadliwą płytkę. Żadna zmiana jednak nie zmieniła nic w przebiegu.

Koniem trojańskim układu okazał się licznik który mimo poprawnego działania powodował błędne odczyty. Opierając jego budowę na implementacji z poprzednich zajęć (licznik modulo 10) z rozpędu podłączyłem dodatkowy moduł licznika tworząc najpierw wersję modulo 16 aby później "ograniczyć" ją do modulo 8. Dało się to jednak stworzyć prościej korzystając tylko z podstawowych 3 modułów. Było to przyczyną wadliwych przebiegów układu. Na papierze ta sama funkcja — w rzeczywistości powodowała błędy.

Rysunek 20: Wewnętrzna sieć logiczna licznika 7493 wykorzystanego w tym zadaniu – widać poszczególne moduły A, B, C i D,

Źródło: 7493 – 4-bitowy licznik dwójkowy (moduły 2 i 8)

3.3 Ćwiczenie 6.3

Budowa układu z tego ćwiczenia przebiegła według oczekiwań. Całość po podłączeniu zadziałała oraz wstępnie wizualizowała zmieniane napięcie amplitudy funkcji. Niestety nic więcej nie udało się zaobserwować ze względu na czas zakończenia zajęć.

4 Podsumowanie

Laboratorium numer 6 polegało na zbudowaniu układów elektronicznych, które miały na celu przetwarzanie sygnałów analogowych na cyfrowe oraz odwrotnie. Stworzone zostały: układ z komparatorem napięcia oraz wzmacniaczem operacyjnym, które pozwoliły na przekształcenie różnych sygnałów wejściowych, przetwornik cyfrowo-analogowy (C/A). Zbudowanie układu z sumatorem napięć oraz licznikiem modulo 8 czy moduł przetwornika A/C typu FLASH.

Podsumowując, laboratorium było czasochłonne i pozwoliło na zdobycie praktycznej wiedzy z zakresu elektroniki cyfrowej, przetwarzania sygnałów oraz budowy układów cyfrowo-analogowych. Napotkane problemy były cennymi lekcjami, które przyczynią się do lepszego zrozumienia zasady działania omawianych komponentów i układów.

5 Notatki z zajęć

Rysunek 21: Notatki wykonane w czasie zajęć, Źródło: Opracowanie własne

Rysunek 22: Notatki wykonane w czasie zajęć, Źródło: Opracowanie własne

Rysunek 23: Reakcja układu na pozycję potencjometru, Rysunek 24: Reakcja układu na pozycję potencjometru, Źródło: Opracowanie własne

Źródło: Opracowanie własne

Rysunek 25: Odczyt z układu z komparatorem dla $100kHz\ 10V$ fali sinusoidalnej, Źródło: Opracowanie własne

Rysunek 26: Odczyt z układu ze wzmacniaczem dla 1kHz 10V fali sinusoidalnej oraz oporu 0Ohm, Źródło: Opracowanie własne

Rysunek 27: Odczyt z układu ze wzmacniaczem dla 30kHz 10V fali trójkątnej oraz oporu 10kOhm, Źródło: Opracowanie własne