

Master Thesis

2D Tracking in Climbing

Using Temporal Smoothing

André Oskar Andersen (wpr684)

wpr684@alumni.ku.dk

2023

Supervisor

Kim Steenstrup Pedersen kimstp@di.ku.dk

Abstract

Preface

Acknowledgement

Contents

Introduction	7
1.1 Related Work	7
1.2 Problem Definition	7
1.3 Reading Guide	7
Deep Learning Theory	8
2.1 Feedforward Neural Networks	8
2.3.2 Gated Recurrent Unit	8
2.4 Transformer	8
Models	9
Dataset	10
Experiments	11
Discussion	12
Conclusion	13
References	14
	1.1 Related Work 1.2 Problem Definition 1.3 Reading Guide Deep Learning Theory 2.1 Feedforward Neural Networks 2.2 Convolutional Neural Networks 2.3 Recurrent Neural Networks 2.3.1 Long Short-Term Memory Unit 2.3.2 Gated Recurrent Unit 2.4 Transformer Models Dataset Experiments Discussion Conclusion

Notation

1 Introduction

- Imaged-based:
 - Geometry between joints in the target image:
 - * Poselet conditioned pictorial structures
 - * Exploring the spatial hierarchy of mixture models for human pose estimation
 - * Articulated human detection with flexible mixtures of parts
 - Convolutional Pose Machine
 - Stacked Hourglass
 - OpenPose
 - HRNet

1.1 Related Work

2-dimensional pose estimation can be divided into either being image-based or video-based, where the methods in the latter case use the tempoeral information of the video to perform the pose estimation. Image-based methods [MANGLER]... . Video-based methods commonly use the correlating information among the frames of the video to perform the pose estimation. Early video-based methods used 3-dimensional convolutions to capture the correlating information between neighboring frames [5, 2]. Other methods use LSTM's [3] to capture the correlating information among the frames [4, 1]. Recently, transformers [6] have started to being used as a way of capturing the correlating information among the frames [7].

1.2 Problem Definition

1.3 Reading Guide

2 Deep Learning Theory

- 2.1 Feedforward Neural Networks
- 2.2 Convolutional Neural Networks
- 2.3 Recurrent Neural Networks
- 2.3.1 Long Short-Term Memory Unit
- 2.3.2 Gated Recurrent Unit
- 2.4 Transformer

3 Models

4 Dataset

5 Experiments

6 Discussion

7 Conclusion

8 References

- [1] Bruno Artacho and Andreas Savakis. *UniPose: Unified Human Pose Estimation in Single Images and Videos*. 2020. DOI: 10.48550/ARXIV.2001.08095. URL: https://arxiv.org/abs/2001.08095.
- [2] Rohit Girdhar, Georgia Gkioxari, Lorenzo Torresani, Manohar Paluri, and Du Tran. Detect-and-Track: Efficient Pose Estimation in Videos. 2017. DOI: 10.48550/ARXIV.1712.09184. URL: https://arxiv.org/abs/1712.09184.
- [3] Sepp Hochreiter and Jürgen Schmidhuber. "Long Short-Term Memory". In: *Neural Computation* 9.8 (1997), pp. 1735–1780.
- [4] Yue Luo, Jimmy Ren, Zhouxia Wang, Wenxiu Sun, Jinshan Pan, Jianbo Liu, Jiahao Pang, and Liang Lin. LSTM Pose Machines. 2017. DOI: 10.48550/ARXIV.1712.06316. URL: https://arxiv.org/abs/1712.06316.
- [5] Tomas Pfister, James Charles, and Andrew Zisserman. Flowing ConvNets for Human Pose Estimation in Videos. 2015. DOI: 10.48550/ARXIV.1506.02897. URL: https://arxiv.org/abs/1506.02897.
- [6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. *Attention Is All You Need*. 2017. DOI: 10. 48550/ARXIV.1706.03762. URL: https://arxiv.org/abs/1706.03762.
- [7] Ailing Zeng, Xuan Ju, Lei Yang, Ruiyuan Gao, Xizhou Zhu, Bo Dai, and Qiang Xu. *Deci-Watch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation*. 2022. DOI: 10.48550/ARXIV.2203.08713. URL: https://arxiv.org/abs/2203.08713.