THERMODYNAMIQUE DE LA TRANSFORMATION PHYSICO-CHIMIQUE

Chapitre 3 : Equilibre chimique

Exercice 1 : Equilibre de Boudouard

On considère la réaction suivante :

$$C_{graphite} + CO_{2(g)} \rightleftharpoons 2CO_{(g)}$$

pour laquelle l'enthalpie libre standard de réaction vaut à $1000\,K$:

$$\Delta_r G^0(1000K) = -4.2 \text{ kJ. mol}^{-1}$$

La température et la pression totale sont maintenues constantes et égales respectivement à $1000\,K$ et $1\,bar$. On prépare un mélange contenant $0.8\,mol$ de monoxyde de carbone CO, $0.2\,mol$ de dioxyde de carbone CO_2 et du carbone graphite.

- 1) Calculer la grandeur $\Delta_r G$ pour le système considéré. Le système évolue-t-il ? Du graphite va-t-il se former ?
- 2) Déterminer l'état d'équilibre final en calculant les pressions partielles de CO et CO_2 .

Donnée: $R = 8,314 J. mol^{-1}. K^{-1}$.

Exercice 2 : Formation de HCl

Le système réactionnel est initialement constitué d'un mélange homogène : $1 \ mol \ H_{2(g)} + 1 \ mol \ Cl_{2(g)}$ sous $T_0 = 298 \ K, P_0 = 1 \ bar$.

Il se produit la réaction suivante :

$$H_{2(g)} + Cl_{2(g)} \rightleftharpoons 2 HCl_{(g)}$$

Donnés à 298 K:

$$\Delta_r H^0 = -185 \text{ kJ. mol}^{-1}$$

 $\Delta_r S^0 = 20 \text{ J. K}^{-1} \text{. mol}^{-1}$

$$R = 8.314 I. mol^{-1}. K^{-1}$$

- 1) Calculer la constante d'équilibre K^0 à 298 K. Conclure sur le caractère total ou non de la réaction.
- 2) Calculer la variation d'enthalpie ΔH du système. Commenter son signe.
- 3) Calculer la variation d'enthalpie libre ΔG du système en fonction de $\Delta_r G^0, R, T_0$. En déduire l'entropie créée S_c , puis la variation d'entropie ΔS du système.

Exercice 3 : Préparation du dihydrogène

Un mode de préparation industrielle du dihydrogène met en jeu la réaction en phase gazeuse, d'équation suivante :

$$CH_4 + H_2O = CO + 3H_2$$

La réaction se déroule sous une pression totale constante, $P=10\ bar$ et à une température constante, $T=800^{\circ}C=1073\ K$.

L'enthalpie standard de réaction et l'entropie standard de réaction sont supposées indépendantes de la température.

Données:

$$\Delta_r H^0 = 206.1 \text{ kJ. } mol^{-1}$$

 $\Delta_r S^0 = 214.6 \text{ J. } K^{-1}.mol^{-1}$
 $R = 8.314 \text{ J. } mol^{-1}.K^{-1}$

- 2) Initialement, le système contient $10 \, moles$ de méthane, $30 \, moles$ d'eau, $5 \, moles$ de monoxyde de carbone et $15 \, moles$ de dihydrogène. Exprimer le quotient de réaction Q_r en fonction de la quantité de matière de chacun des constituants, de la pression totale P et de P^0 . Calculer la valeur de Q_r à l'instant initial.
- 3) Si le système n'est pas en équilibre, dans quel sens se produira l'évolution? Justifier.
- 4) Dans un nouvel état initial, le système ne contient que 10 moles de méthane et 10 moles d'eau. Il évolue toujours à $800^{\circ}C$ et 10 bar. Déterminer la composition du système à l'équilibre.

Exercice 4: Variations d'enthalpie libre

On considère le système chimique gazeux suivant : $1 \ mol \ SO_2 + 1 \ mol \ O_2 + 4 \ mol \ N_2$ à T et P fixées (850 K, $1 \ bar$).

Il se produit la réaction suivante :

1 bar. La calculer à 800°C.

$$SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$$
 $\Delta_r H^0 = -94.5 \text{ kJ. mol}^{-1}$

A l'état final, l'avancement est $\xi_e = 0.82 \ mol$.

- 1) Calculer $K^0(850 K)$ et $\Delta_r G^0(850 K)$.
- 2) Calculer $\Delta G_{syst} = G_{eq} G_{EI}$.
- 3) Préciser à un instant quelconque de l'évolution $\Delta_r G$. Que vaut $\Delta_r G$ à l'équilibre ?

Exercice 5:

On rappelle que l'air contient 20% (en moles) de dioxygène.

1) Dans l'approximation d'Ellingham, exprimer l'enthalpie libre standard en fonction de la température pour les réactions chimiques :

$$4Cu_{(s)} + O_{2(g)} = 2Cu_2O_{(s)}$$
 (1)

$$2Cu_{(s)} + O_{2(g)} = 2CuO_{(s)}$$
 (2)

On donne l'extrait de tables thermodynamiques à 298 K :

	$CuO_{(s)}$	$Cu_2O_{(s)}$	$O_{2(g)}$	$Cu_{(s)}$
$\Delta_f H^0 (kJ.mol^{-1})$	-161,9	-173,0		
S^0 $(J.K^{-1}.mol^{-1})$	42,59	92,84	204,8	33,2

21

- a) Ecrire l'équation de la réaction (3) de dismutation de l'oxyde de cuivre $Cu_2O_{(s)}$ en oxyde de cuivre $CuO_{(s)}$ et en cuivre métal.
- b) Exprimer la loi de variation de l'enthalpie libre standard de la réaction (3) en fonction de la température T.
- c) Exprimer la loi de variation de l'enthalpie libre de la réaction (3) en fonction de T et conclure sur la réaction de dismutation
- 3) Soit la réaction (4) d'oxydation de $Cu_2O_{(s)}$ en $CuO_{(s)}$ par $O_{2(g)}$.
 - a) Ecrire l'équation de cette réaction et calculer l'expression de son enthalpie libre standard de réaction en fonction de la température.
 - b) Que va-t-il se passer si du cuivre métal est soumis à un courant d'air porté à 800 K?
 - c) Calculer la valeur de la température à partir de laquelle un courant d'air à pression atmosphérique ne peut plus oxyder le cuivre jusqu'à l'état de $CuO_{(s)}$.