

Servo Integrated Nonlinear Model Predictive Control For Overactuated Tiltable-Quadrotors

Jinjie LI, Junichiro SUGIHARA, Moju ZHAO*, RA-L, 2024

LI, Jinjie 李谨杰

Doctoral Student
DRAGON Lab
Department of Mechanical Engineering
The University of Tokyo

Table of Contents

Introduction

- 2 Methodology
- 3 Experiments
- 4 Conclusion

Introduction – Why Tiltable-Quadrotors?

Aerial Manipulation

Quadrotors: Underactuated

Independent Position & Attitude X

Reason: 4 (actuators) < 6 (DoF)

Full/Overactuation? Add Servos/Rotors

Pros: Efficient

- 1. Nonlinearity 个
- 2. Servo delay

* Model
Predictive

50 100 150 200 250 300

Control
(MPC)

Actuators

Source: Wikipedia -- MPC

Time (samples)

Introduction --- Full-Model NMPC

The feasibility of NMPC depends on the model complexity.

Sun et al., T-RO, 2022

Model nonlinearity and complexity

Robin Deits, RSS Workshop, 2024

Methodology

Rotor Model

$$\begin{split} f_i &= k_t \; \Omega_i^2, \quad \tau_i = k_q \; \Omega_i^2, \\ ^{R_i} &f_i = [0, 0, f_i]^T, \quad f_i \in [f_{i, \min}, f_{i, \max}], \\ ^{R_i} &\tau_i = \left[0, 0, -d_i \; f_i \; \frac{k_q}{k_t}\right]^T. \end{split}$$

Servo Model

$$\dot{oldsymbol{lpha}} = rac{1}{t_{
m servo}} \left(oldsymbol{lpha}_c - oldsymbol{lpha}
ight),$$

Tiltable-Quadrotor Model

$$oldsymbol{x} = egin{bmatrix} W oldsymbol{p}, W oldsymbol{v}, W oldsymbol{q}, G oldsymbol{\omega}, oldsymbol{lpha} \end{bmatrix}^T oldsymbol{u} = egin{bmatrix} oldsymbol{f}_c, oldsymbol{lpha}_c \end{bmatrix}^T$$

Resultant Wrench

$$egin{aligned} {}^{G}m{f}_{u} &= \sum_{i=1}^{N_{p}} {}^{G}_{E_{i}}m{R}^{E_{i}}m{R}^{R_{i}}m{f}_{i}, \ & {}^{G}m{ au}_{u} &= \sum_{i=1}^{N_{p}} \left({}^{G}_{E_{i}}m{R}^{E_{i}}_{R_{i}}m{R}^{R_{i}}m{ au}_{i}
ight. \ & + {}^{G}m{p}_{r,i} imes {}^{G}_{E_{i}}m{R}^{E_{i}}_{R_{i}}m{R}^{R_{i}}m{f}_{i}
ight), \end{aligned}$$

$$W_{\dot{p}} = W_{v}$$
, Rigid-Body Model

$${}^{W}\dot{oldsymbol{v}}=\left({}_{G}^{W}oldsymbol{R}(oldsymbol{q})\,{}^{G}oldsymbol{f}_{u}+{}^{W}oldsymbol{f}_{d}
ight)/m+{}^{W}oldsymbol{g},$$

$$_{G}^{W}\dot{q}=rac{1}{2}\mathop{}_{G}^{W}q\circ\mathcal{H}\left(^{G}\omega\right) ,$$

$${}^{G}\dot{oldsymbol{\omega}}=oldsymbol{I}^{-1}\left(-{}^{G}oldsymbol{\omega} imes\left(oldsymbol{I}^{\ G}oldsymbol{\omega}
ight)+{}^{G}oldsymbol{ au}_{u}+{}^{G}oldsymbol{ au}_{d}
ight),$$

Nonlinear Optimization Problem

$$\sum_{k=0}^{N-1} \left(\overline{\boldsymbol{x}}_k^T \boldsymbol{Q} \overline{\boldsymbol{x}}_k + \overline{\boldsymbol{u}}_k^T \boldsymbol{R} \overline{\boldsymbol{u}}_k \right) + \overline{\boldsymbol{x}}_N^T \boldsymbol{Q}_N \overline{\boldsymbol{x}}_N, \quad \longrightarrow \text{Nonlinear Least Square Cost; SQP}$$

subject to
$$|oldsymbol{x}_k|$$

subject to
$$\boldsymbol{x}_{k+1} = \boldsymbol{f}(\boldsymbol{x}_k, \boldsymbol{u}_k), \quad k = 0: N-1,$$

$$x_0 = \hat{x},$$

$$||v_{x,y,z}|| \le v_{\text{limit}}, \quad ||\omega_{x,y,z}|| \le \omega_{\text{limit}},$$

$$u_{\min} \leq u_k \leq u_{\max}$$

- → Dynamics Constraint
- → Initial Value Constraint
- → State Constraint
- → Input Constraint

Methodology

Rotor Model

$$\begin{split} f_i &= k_t \; \Omega_i^2, \quad \tau_i = k_q \; \Omega_i^2, \\ ^{R_i} & \boldsymbol{f}_i = \left[0, 0, f_i\right]^T, \quad f_i \in \left[f_{i, \min}, f_{i, \max}\right], \\ ^{R_i} & \boldsymbol{\tau}_i = \left[0, 0, -d_i \; f_i \; \frac{k_q}{k_t}\right]^T. \end{split}$$

Servo Model

$$\dot{\boldsymbol{\alpha}} = \frac{1}{t_{\mathrm{servo}}} \left(\boldsymbol{\alpha}_c - \boldsymbol{\alpha} \right),$$

Tiltable-Quadrotor Model

$$oldsymbol{x} = egin{bmatrix} W oldsymbol{p}, W oldsymbol{v}, W oldsymbol{q}, G oldsymbol{q}, G oldsymbol{\omega}, oldsymbol{lpha} \end{bmatrix}^T oldsymbol{u} = egin{bmatrix} oldsymbol{f}_c, oldsymbol{lpha}_c \end{bmatrix}^T$$

Resultant Wrench

$$egin{aligned} ^Goldsymbol{f}_u &= \sum_{i=1}^{N_p} ^G_{E_i} oldsymbol{R}^{E_i}_{R_i} oldsymbol{R}^{R_i} oldsymbol{f}_i, \ ^Goldsymbol{ au}_u &= \sum_{i=1}^{N_p} \left(^G_{E_i} oldsymbol{R}^{E_i}_{R_i} oldsymbol{R}^{R_i} oldsymbol{ au}_i
ight. \ &+ ^Goldsymbol{p}_{r,i} imes ^G_{E_i} oldsymbol{R}^{E_i}_{R_i} oldsymbol{R}^{R_i} oldsymbol{f}_i
ight), \end{aligned}$$

$$egin{align} ^{W}\dot{p} &= {}^{W}v, \end{array} ext{ Rigid-Body Model} \ ^{W}\dot{v} &= \left({}^{W}_{G}R(q) \; {}^{G}f_{u} + {}^{W}f_{d}
ight)/m + {}^{W}g, \ & {}^{W}_{G}\dot{q} &= rac{1}{2} \, {}^{W}_{G}q \circ \mathcal{H}\left({}^{G}\omega
ight), \ & {}^{G}\dot{\omega} &= I^{-1}\left(-{}^{G}\omega imes \left(I \; {}^{G}\omega
ight) + {}^{G} au_{u} + {}^{G} au_{d}
ight), \end{aligned}$$

Does it really matter?

Simulation – The Effect of Servo Dynamics

- Ideal Simulation: No disturbance, no model error
- Rigid-Body Dynamics + Servo Dynamics + Rotor Dynamics
- All parameters = real robot

t=0s, Position \rightarrow [0.3, 0.6, 1.0]^Tm t=2s, Attitude \rightarrow [30°, 60°, 90°]^T

Reason: servo model ≈ continuity constraint

Robot

Beetle-Art

Basic Parameters

Mass: 2.773 kg

Wheelbase: 0.4 m

T (servo): 0.0859 s (*Identified*)

Freq. (control): 100 Hz

Param.	Value	Param.	Value	Param.	Value
Wheelbase	0.4 m	m	2.773 kg	$\alpha_{ m limit}$	$\pm \pi/2$
I_{xx}	0.0417	I_{yy}	0.0395	I_{zz}	0.0707 kg m^2
N_p	4	k_q/k_t	0.0153	$t_{ m servo}$	0.0859 s
\overline{N}	20	$t_{ m integ}$	0.1 s	t_s	0.01 s
$Q_{p,xy}$	300	$Q_{p,z}$	400	$Q_{v,xy}$	10
$Q_{v,z}$	10	$Q_{q,xy}$	300	$Q_{\mathrm{q,z}}$	600
$Q_{\omega, { m xy}}$	5	$Q_{\omega,z}$	5	Q_{α}	2
R_f	2	R_{α}	250		
$v_{ m limit}$	± 1 m/s	$\omega_{ m limit}$	± 6 rad/s	$\alpha_{i, \text{limit}}$	$\pm \pi/2$
$f_{i,\min}$	0 N	$f_{i,\max}$	30 N	$\alpha_{ci, \text{limit}}$	$\pm \pi/2$
$k_{I,z}$	5	$f_{d, \text{limit}}$	5 N		

System Overview

Omnidirectional Traj. Tracking

Conclusion

Key Takeaways

- Full-Model NMPC → Tiltable-quadrotors
- Servo matters; Impact: Servo > Rotor
- First time, Real experiment, 100Hz

Other papers from our lab

