Cours MP2I

Alexandre

Table des matières

1	Not	tes	1
2	Ens	semble quotient	1
3	Pro	opriétés des anneaux	2
	3.1	Définitions	2
	3.2	Idéaux et anneau quotient	2
		3.2.1 Définitions	2
		3.2.2 Propositions	2
	3.3	Propriétés remaquables	3
		3.3.1 Théoreme d'isomorphisme	3
		3.3.2 Opérations sur les idéaux	3
		3.3.3 Algèbres	3
	3.4	Types d'anneaux	3
		3.4.1 Anneaux noethériens	3
		3.4.2 Anneaux factoriels	4
		3.4.3 Anneaux intégralement clos	4

1 Notes

Nullstellensatz : (démo?)

- Idéaux
- Algébriquement clos
- Bézout?

Topologie de Zariski:????

— Lemme de Zorn (AC)

Dimension:?
Projectif/Affine:?

2 Ensemble quotient

Définition 1 (classe d'équivalence)

Soit R une relation d'équivalence sur un ensemble E. Soit $x \in E,$ on considère la partie \tilde{x} de E définie par :

$$y \in \tilde{x} \Leftrightarrow xRy$$

C'est la classe d'équivalence de x

C'est l'ensemble des y équivalent à x. Cette partie est non vide car $x \in \tilde{x}$.

Définition 2 (partition)

Une partition d'un ensemble E est définie par :

- (a) l'union des classes d'équivalences donne $\biguplus_{x \in F} \tilde{x} = E$
- (b) $\forall x \in E, \tilde{x} \neq \emptyset$
- (c) $\forall x, y \in E, x \neq y \Rightarrow \tilde{x} \cap \tilde{y} \neq \emptyset$

Lemme 3

Soient $x, y \in E$. On a:

$$x \sim y \iff \tilde{x} = \tilde{y}$$

On déduit que deux classes distinctes sont disjointes.

Théorème 4 (parition formée par les classes d'équivalence)

L'ensemble des classes d'équivalences sous \sim forme une parition de E.

Les différentes classes d'équivalence des éléments de E sont des parties E, non vides, disjointes, dont la réunion donne E (d'après la définition d'une partition).

Définition 5 (ensemble quotient)

L'ensemble des parties de E dont les éléments sont des classes d'équivalence s'appelle l'ensemble quotient de E par R, noté E/R

Proposition 6 (application canonique)

Si R est une relation d'équivalence, l'application $\pi: E \longrightarrow E/R$ associe un élément x de E à sa classe d'équivalence.

Elle est surjective car chaque classe d'équivalence F est non vide, tout élément de F est envoyé par π sur F (donc on a : $\forall x \in F, \pi(x) = F$)

3 Propriétés des anneaux

3.1 Définitions

Définition 7 (éléments associés)

Soit A un anneau <u>intègre</u>. Deux éléments a et b de A sont dits associés si a divise b et si b divise a.

Par exemple, si on se place dans $\mathbb{K}[X]$, deux polynomes associés sont égaux s'ils sont unitaire. <anneaux principaux>

3.2 Idéaux et anneau quotient

3.2.1 Définitions

Définition 8 (idéal d'un anneau)

Soit A un anneau. Un sous-ensemble $I\subseteq A$ est un idéal de A si :

- (a) (I, +) est un sous groupe de (A, +)
- (b) $\forall a \in A, \forall b \in I, ab = ba \in I$

Définition 9 (idéal premier)

Soit A un anneau, I un idéal de A, I est premier si et seulement si l'anneau A/I est intègre. Cela revient au même d'imposer :

- $-A \neq I$
- $\forall a, b \in A, ab \in I \Longrightarrow a \in I \text{ ou } b \in I$

Définition 10 (idéal maximal)

Un idéal I de A est dit maximal si $I \neq A$ et si pour tout idéal J de A tel que $I \subseteq J$ et $J \neq A$, on a J = I. (I est l'élément maximal pour l'inclusion)

3.2.2 Propositions

Proposition 11

Soit I un idéal de A. On a donc :

I maximal $\iff A/I$ est un corps $\implies A/I$ intègre $\iff I$ premier

Théorème 12 (lien idéaux et morphisme d'anneaux)

Une partie I d'un anneau A est un idéal bilatère si et seulement si I est le noyau d'un morphisme d'anneaux.

 $D\acute{e}monstration.$ TODO

Proposition 13 (anneau quotient)

Soit I un idéal bilatère d'un anneau A. La relation d'équivalence R définie par :

$$\forall x, y \in A, \ x \mathcal{R} y \iff x - y \in I$$

est compatible avec la structure d'anneau de A et l'ensemble quotient A/R aussi noté A/I est muni d'une structure d'anneau.

On peut munir l'ensemble quotient A/I (càd l'ensemble des classes d'équivalence sur A) des lois induites par I :

$$+: t \longrightarrow a \text{ et } \cdot: t \longrightarrow a$$
 $e \longmapsto f \qquad e \longmapsto f$

- <idéaux d'un anneau gotient>
- <image d'un idéal est un idéal par un morphisme?>
- <noveau morphisme idéal?>

Lemme 14

Soit A un anneau, A est un corps si et seulement si on a :

- $(1) A \neq \{0\}$
- (2) les seuls idéaux de A sont $\{0\}$ et A

 $D\acute{e}monstration.$ TODO

Théorème 15 (Krull)

Soit I un idéal de A, $I \neq A$, il existe un idéal maximal de A contenant I.

Démonstration. Se montre à l'aide du théorème de Zorn, à voir.

3.3 Propriétés remaquables

3.3.1 Théoreme d'isomorphisme

Théorème 16 (théoreme d'isomorphisme)

Soient A et B deux anneaux et $f:A\longrightarrow B$ un morphisme d'anneau. On pose $I=\ker f$. Soit J un idéal de A contenu dans I et $\pi:A\longrightarrow A/J$ la projection canonique. Alors on a :

- (a) il existe une unique morphisme $\overline{f}: A/J \longrightarrow B$ tel que $f = \overline{f} \circ \pi$ (on dit que f se factorise par A/J)
- (b) \overline{f} est injectif si et seulement si J = I
- (c) \overline{f} est surjectif si et seulement f l'est aussi

En particulier on a Im $f \simeq A/\ker f$.

3.3.2 Opérations sur les idéaux

3.3.3 Algèbres

3.4 Types d'anneaux

3.4.1 Anneaux noethériens

On rappelle qu'on idéal I d'un anneau A est dit de type fini s'il est engendré par un nombre fini d'éléments.

Définition 17 (anneau noethérien)

Un anneau noethérien est un anneau qui vérifie l'une des trois propriété équivalentes suivantes :

- (1) tout idéal de A est de type fini
- (2) toute suite croissante $(I_n)_n$ d'idéaux de A est stationnaire
- (3) tout ensemble non vide d'idéaux de A a un élément maximal pour l'inclusion

Démonstration.

 $(1) \Rightarrow (2)$: On défini une suite $(I_n)_n$ croissante et on pose $I = \prod_{n \in \mathbb{N}} I_n$. Alors il existe $N \in \mathbb{N}$ tel

que $I\subseteq I_N.$ On a par définition de $I:I_N\subseteq I.$ Donc $I=I_n$

- $(2) \Rightarrow (3) : TODO$
- $(3) \Rightarrow (1)$: Pas compris

Théorème 18 (Hilbert)

Si A est noethérien, A[X] est noethérien.

Corollaire 19

Si A est noethérien, $A[X_1, \ldots, X_n]$ est noethérien.

3.4.2 Anneaux factoriels

La notion d'anneau factoriel généralsie la propriété de décomposition unique en facteurs premiers dans \mathbb{Z} . Il faut noter que toutes les propriétés de \mathbb{Z} ne s'y applique pas forcément.

Définition 20

Soit A un anneau. L'anneau A est factoriel s'il vérifie ces trois propriétés :

- (1) A est intégre (il n'a pas de diviseur de zéro)
- (2) tout élément a non nul de A s'écrit $a=up_1\dots p_r$ avec $u\in A^\times$ et p_1,\dots,p_r irréductible dans A
- (3) cette décomposition est unique, à permutation près et à des inversibles près : si $a = up_1 \dots p_r = vq_1 \dots q_s$, alors r = s et il existe $\sigma \in \mathscr{S}_r$ tel que p_i et $q_{\sigma(i)}$ soient associé

3.4.3 Anneaux intégralement clos