COVID VACCINE ANALYSIS

Laura Yuan Yue Ma Yining Ou

OBJECTIVES

0

PEOPLE'S PERCEPTION OF **VACCINE**

Sentiment Analysis. Assuming the same percentage of different vaccine recipients post their feelings on twitter.

PEOPLES REACTION ABOUT VACCINATION

World Cloud

COVID ANALYSIS

Sentiment Analysis. Evaluating COVID perception, cases, and deaths in California by county.

VACCINE BRANDS

Johnson Johnson

moderna

DATASETS

- Vaccine Tweets (Kaggle)
- Vaccines Administered by County (CA.gov)
- Deaths from COVID-19 by County (CA.gov)
- US Cities Database (SimpleMaps.com)

```
vacc admin.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9534 entries, 0 to 9533
Data columns (total 17 columns):
# Column
                                  Non-Null Count Dtype
                                  -----
    county
                                  9534 non-null
                                                 object
     administered date
                                  9534 non-null
                                                  object
     total doses
                                  9534 non-null
     cumulative total doses
                                  9534 non-null
                                                  int64
     pfizer doses
                                  9534 non-null
                                                  int64
     cumulative pfizer doses
                                  9534 non-null
                                                  int64
     moderna doses
                                  9534 non-null
                                                  int 64
    cumulative moderna doses
                                  9534 non-null
                                                  int64
                                  9534 non-null
    jj doses
     cumulative jj doses
                                                  int64
                                  9534 non-null
 10 partially_vaccinated
                                  9534 non-null
                                                  int64
                                  9534 non-null
    total partially vaccinated
                                                  int64
 12 fully vaccinated
                                  9534 non-null
                                                  int64
 13 cumulative_fully_vaccinated
                                  9534 non-null
                                                  int64
 14 at least one dose
                                  9534 non-null
                                                  int.64
 15 cumulative at least one dose
                                  9534 non-null
 16 california flag
                                  9216 non-null
dtypes: int64(14), object(3)
memory usage: 1.2+ MB
                                  0
```

0

0

```
deaths.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7605 entries, 0 to 7604
Data columns (total 8 columns):
                                Non-Null Count Dtype
     Column
     demographic category
                                7605 non-null
                                                object
     demographic value
                                7605 non-null
                                                object
     total cases
                                7605 non-null
                                                int64
                                7605 non-null
                                                float64
     percent cases
     deaths
                                7605 non-null
                                                int64
     percent deaths
                                7605 non-null
                                                float.64
     percent of ca population 7585 non-null
                                                float64
     report date
                                7605 non-null
                                                object
dtypes: float64(3), int64(2), object(3)
memory usage: 475.4+ KB
```

0

tweets.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 218894 entries, 0 to 218893 Data columns (total 13 columns):

#	Column		ll Count	Dtype
0	user name	218887	non-null	object
1	user_location	171795	non-null	object
2	user description	206847	non-null	object
3	user_created	218888	non-null	object
4	user followers	218887	non-null	float6
5	user friends	218887	non-null	object
6	user favourites	218887	non-null	object
7	user_verified	218887	non-null	object
8	date	218885	non-null	object
9	text	218887	non-null	object
10	hashtags	157270	non-null	object
11	source	216489	non-null	object
12	is_retweet	218880	non-null	object
	es: float64(1), ob ry usage: 21.7+ MB	ject(12)	

uscities.info()

<class 'pandas.core.frame.DataFrame'>

Range	eIndex: 28338 e	entries	s, 0 to 28	337
Data	columns (total	17 cc	olumns):	
#	Column	Non-Nu	ull Count	Dtype
0	city	28338	non-null	object
1	city_ascii	28338	non-null	object
2	state_id	28338	non-null	object
3	state_name			
4	county_fips	28338	non-null	int64
5	county_name	28338	non-null	object
6	lat	28338	non-null	float64
7	lng	28338	non-null	float64
8	population	28338	non-null	int64
9	density	28338	non-null	int64
10	source	28338	non-null	object
11	military	28338	non-null	bool
12	incorporated	28338	non-null	bool
13	timezone	28338	non-null	object
14	ranking	28338	non-null	int64
15	zips	28337	non-null	object
16	id	28338	non-null	int64
dtype	es: bool(2), fl	Loat64	(2), int64	(5), object(8)
memor	ry usage: 3.3+	MB		

0

DATA CLEANING

Data Cleaning

- Dropping Null/NaN values
- Dropping columns with irregular/inconsistent values
- Extracting user locations from tweets using **Regex** & **FlashGeoText**
- Merging datasets

	user_location	location	city	state	country
0	Assam	{'cities': {}, 'countries': {}}	None	NaN	None
1	Adelaide, South Australia	{'cities': {'Adelaide': {'count': 1}}, 'countr	Adelaide	NaN	Australia
2	Hyderabad, India	{'cities': {'Hyderabad': {'count': 1}, 'Indija	Hyderabad	NaN	India
3	The Great Pacific Northwest	{'cities': {}, 'countries': {}}	None	NaN	None
4	Washington, D.C., DC, United States	$\label{eq:cities:count:1} \ensuremath{\text{('cities': {'Washington, D.C.': {'count': 1}},}}$	Washington, D.C.	DC	United States
5	Nashville, TN, United States	{'cities': {'Nashville': {'count': 1}}, 'count	Nashville	TN	United States

01.

PEOPLE'S PERCEPTIONS OF VACCINES

00

Steps:

0

- Tokenize each tweet
- 2. Remove punctuations, stop words
- 3. Access Harvard Inquirer Dictionary for positive and negative words
- 4. Calculate statistics/counts of positive and negative words


```
from tqdm.auto import tqdm
from tqdm import tqdm
tqdm.pandas()
```

```
tweets['sentiment'] = tweets.text.progress_apply(lambda x: scoreSentiment(x))
```

```
100%| 171782/171782 [4:14:18<00:00, 11.26it/s]
```

```
tweets['sentiment_label'] = tweets.sentiment.apply(lambda x: x[0]['label'])
tweets.head(2)
```

state	country	tokens	pos_words	neg_words	total_count	pos_count	neg_count	sentiment	sentiment_label	
NaN	None	[australia, to, manufactur, covid-19, vaccin, 	[give, free, prime, minist]	[cost]	20	4	1	[{'label': 'POSITIVE', 'score': 0.563022434711	POSITIVE	/
NaN	Australia	[michellegrattan, conversationedu, thi, is, wh	[pass, our]	[pass]	19	2	1	[{'label': 'POSITIVE', 'score': 0.814165651798	POSITIVE	

C

```
tweets.groupby('sentiment_label')['sentiment_label'].count()
sentiment_label
```

NEGATIVE 132883 POSITIVE 38899

Name: sentiment_label, dtype: int64

```
total_pos = {}
def count_total_pos(lst):
    for pos in lst:
        if pos not in total_pos:
            total_pos[pos] = 1
        else:
            total_pos[pos] += 1
```

```
tweets.pos_words.progress_apply(lambda x: count_total_pos(x))
```

```
df_pos = pd.DataFrame(total_pos,index=[0]).T
df_pos.rename(columns = {0:'counts'}, inplace = True)
df_pos.sort_values(by = 'counts', ascending = False).head(10)
```

```
tweets_sentiment_by_date = tweets[['date','sentiment_label']]
```

```
tweets_sentiment_by_date.set_index('date',inplace = True)
```

```
tweets_sentiment_by_date.head()
```

sentiment_label

2020-08-18	POSITIVE
2020-08-18	POSITIVE

date

2020-08-18	NEGATIVE
2020-00-10	INCOATIVE

2020-08-18 NEG	SATIVE
-----------------------	---------------

NEGATIVE
NEGATI

	negative	positive	total	neg_rate	pos_rate
date					
2020-01-09	66.0	17.0	83.0	0.795181	0.204819
2020-02-09	97.0	15.0	112.0	0.866071	0.133929
2020-03-09	143.0	12.0	155.0	0.922581	0.077419
2020-04-09	116.0	24.0	140.0	0.828571	0.171429
2020-05-09	59.0	9.0	68.0	0.867647	0.132353

```
plt.plot(tweets_sentiment_count_by_date.negative, 'b')
plt.plot(tweets_sentiment_count_by_date.positive, 'y')
plt.legend(['negative', 'positive'])
```

[<matplotlib.lines.Line2D at 0x7face0a08b70>]

[<matplotlib.lines.Line2D at 0x7face0a55c88>]

<matplotlib.legend.Legend at 0x7face09c39b0>


```
plt.plot(tweets_sentiment_count_by_date.neg_rate, 'b')
plt.plot(tweets_sentiment_count_by_date.pos_rate, 'y')
plt.legend(['neg_rate', 'pos_rate'])
```

[<matplotlib.lines.Line2D at 0x7face0599518>]

[<matplotlib.lines.Line2D at 0x7face0593470>]

<matplotlib.legend.Legend at 0x7face05494a8>

)

VACCINE SENTIMENT FOR ALL COUNTRIES

On average, the percent of positive words count for Pfizer is 0.09092627978338859
On average, the percent of positive words count for Moderna is 0.07181024949479338
On average, the percent of positive words count for J&J is 0.0673076923076923
On average, the percent of positive words count COVID vaccines is 0.10358571678180302

02.

PEOPLES REACTION ABOUT VACCINATION

00

WORDCLOUD

Creating the Word Cloud:

- Import tool library
- Read data
- Clean data
- Count the word frequency
- Draw a word cloud diagram

Findings

- Brand name
- Government officials
- Number of inoculations
- Side effects of the vaccine

```
far great Tonever
start side
    mask
```

03.

CALIFORNIA COVID ANALYSIS

cali data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4587 entries, 0 to 4586
Data columns (total 13 columns):

Data	columns (total 13 column	ns):	
#	Column	Non-Null Count	Dtype
0	user_name	4587 non-null	object
1	date	4587 non-null	datetime64[ns]
2	text	4587 non-null	object
3	city	4587 non-null	object
4	state	4587 non-null	object
5	country	4562 non-null	object
6	county	4587 non-null	object
7	cumulative_total_doses	4587 non-null	int64
8	deaths	4587 non-null	int64
9	pos_count	4587 non-null	int64
10	neg count	4587 non-null	int64
11	percent_pos	4038 non-null	float64
12	percent neg	4038 non-null	float64
dtype	es: datetime64[ns](1), fl	loat64(2), int64	(4), object(6)
nemo	ry usage: 501.7+ KB		

0 0 0

DATA VISUALIZATION

0

0

)

FINDINGS

NLP Applications:

- NLTK (Stop Words)
- Harvard Inquirer Dictionary (Sentiment Analysis)

Summary of Findings:

- Highest correlation is identified between number of doses administered and deaths due to COVID
- 2. Most optimistic residents are in **San Benito** county
- 3. Most pessimistic residents are in **Santa Cruz** county
- 4. Most deaths are reported in **Los Angeles** county

Top Correlations betwee	n Variables:	
cumulative_total_doses	deaths	0.603767
deaths	percent_pos	0.039459
cumulative_total_doses	percent_pos	0.012439

	cumulative_total_doses	deaths	percent_pos
county			
San Benito	3749	119888	1.000000
Imperial	2794	86377	1.000000
Merced	8902	105948	1.000000
Tulare	400534	561220	0.833333
Marin	613149	837798	0.760000

	cumulative_total_doses	deaths	percent_pos
county			
Santa Cruz	234354	251680	0.000000
Kings	32072	167347	0.000000
Humboldt	142591	659293	0.300000
Monterey	766014	1379553	0.408333
Kern	1640959	1452939	0.435185

	cumulative_total_doses	deaths	percent_pos
county			
Los Angeles	4059770460	253284083	0.569917
San Francisco	189902708	106149896	0.596262
San Diego	337688973	58223011	0.587036
Orange	203490112	45284675	0.522773
Alameda	96835749	32813881	0.598625

04.

CONCLUSION

0 0 0

FINDINGS/LIMITATIONS

Findings:

- People actually pay attention to the brand of vaccines
- In California, the number of people vaccinated is increasing day by day
- For some fixed collocations, such as side effect and Johnson & Johnson, NLP recognizes them as two words. This may be the reason why the recognition results are not accurate enough.

Limitations:

- 1. Lack of Tweets data
- 2. Lack of international data on COVID cases and deaths
- 3. Tweets are not always a good indicator of sentiment
- 4. There is a problem with the existing analysis tools, vaccine have side effects, but it doesn't mean people have a negative attitude towards it.
- 5. Omitted variables that are unaccounted for

Group 7

0

Laura Yuan

Yue Ma

Yining Ou

