Generator Performance Analysis Report

MISO Market

Analysis Date: 2025-08-12

This report provides a comprehensive analysis of generator forecast performance, including performance classifications, anomaly detection, chronic error patterns, and bid validation results. The analysis identifies generators requiring attention and provides actionable recommendations for improvement.

FILTERING APPLIED: Small generators are excluded from all tables if they meet ALL three criteria: Pmax < 700 MW, max actual generation < 700 MW, and max predicted generation < 700 MW.

Executive Summary

Key Statistics

600

700

110, 010, 110							
Metric	Value						
Total Generators (Raw)	54						
Generators Analyzed	54						
Small Generators Excluded	0						
Anomalies Detected	54						
Total Alerts	1980						
Poor/Critical Performers	53						
Average RMSE (MW)	218.97						
Average R ²	0.018						

Performance Classification System

PERFORMANCE CLASSIFICATION SYSTEM

The system classifies each generator into one of 5 performance categories based on:

- RMSE as percentage of generator capacity (Pmax)
- R-squared correlation coefficient

Classification Criteria:

- EXCELLENT: RMSE \leq 10.0% of Pmax, $R^2 \geq$ 0.7 (Highly accurate forecasts)
- GOOD: RMSE \leq 20.0% of Pmax, $R^2 \geq$ 0.6 (Good forecast accuracy)
- FAIR: RMSE \leq 30.0% of Pmax, $R^2 \geq$ 0.5 (Acceptable performance)
- POOR: RMSE \leq 40.0% of Pmax, $R^2 \geq$ 0.2 (Needs attention)
- CRITICAL: RMSE > 40.0% of Pmax or $R^2 < 0.0$ (Immediate action required)

PERFORMANCE SCORE EXPLANATION:

The "Score" column represents a composite performance score (0-100) calculated as:

- 70% weight: Inverted RMSE percentage (lower RMSE = higher score)
- 20% weight: R-squared × 100 (higher correlation = higher score)
- 5% weight: Consistency score × 100 (more consistent = higher score)
- 5% weight: Inverted volatility score (lower volatility = higher score)

Higher scores (closer to 100) indicate better overall forecast performance. Lower scores (closer to 0) indicate generators requiring immediate attention.

(Generator Name	Plant ID	Unit ID	Pmax (MW)	Classification	Score	RMSE
ANDRUS		8054	1	740.0	critical	27.5	482.6
AMOS		3935	2	800.0	critical	27.8	525.5
MONROE4		1733	3	785.0	critical	31.8	458.2
POWERTO1	1	879	6	832.0	critical	34.4	463.6
ROCKPORT	-	6166	2	1300.0	critical	35.9	679.3
IATAN		6065	1	727.0	critical	36.2	372.9
KAMMER		3948	1	770.0	critical	37.8	380.1
MONROE4		1733	1	770.0	critical	40.1	347.2
IATAN		6065	2	936.0	critical	40.6	419.4
INDEP2		6641	2	900.0	critical	40.9	393.4
AMOS		3935	3	1330.0	critical	42.5	568.0
GREENWO	0	6035	1	795.0	critical	42.7	328.4
TH_HILIG(enerators Rec	witting.	Attenti	on (Poor a	nd Critical Or	ŀ ₩²)	306.9
ROCKPORT	ocherators regaining	6166	11. 33 01 34 1	1320.0	critical	45.8	497.0
LOUISA		6664	1	710.0	critical	47.7	248.8
AMOS		3935	1	800.0	critical	49.7	264.3
MOUNTAI2		6264	1	1500.0	critical	50.0	454.9
NINEMI		1403	6(4)	750.0	critical	51.3	224.7
GENTLMN		6077	2	705.0	critical	51.4	206.9
CAMPBEL4		1710	3	810.0	critical	51.8	237.3
WH_BLF		6009	1	828.0	critical	52.0	244.5
INDEP2		6641	1	900.0	critical	52.3	247.5
KAMMER		3948	2	790.0	critical	52.7	219.3
POWERTO1	L	879	5	832.0	critical	52.7	241.6
MONROE4		1733	4	810.0	critical	53.1	220.0
MONROE4		1733	2	800.0	critical	53.8	212.6
WH_BLF		6009	2	831.0	critical	54.7	215.2
GAVINAEP		8102	1	2001.0	critical	54.7	511.8
LACYGNE		1241	1	750.0	critical	56.8	157.6
GAVINAEP		8102	2	2000.0	critical	57.6	413.6
NINEMI		1403	5	750.0	poor	60.2	177.8
DOWMTR		55419	G500	900.0	critical	69.6	69.6
PERRY_FE		6020	1	1330.0	critical	72.1	56.0
WATERF		4270	3	1214.0	critical	73.8	73.6
20_BRAID		6022	2	1238.0	critical	73.9	62.4
1_LASALL		6026	1	1255.0	critical	74.7	22.8
соок		6000	2	1220.0	critical	74.7	68.1
12_DRESD		869	2	982.0	critical	74.7	41.7
CLINTON0		204	1	1095.0	critical	74.8	26.8
20_BRAID		6022	1	1273.0	critical	74.9	68.7
QUADCITY		880	1	985.0	critical	75.7	11.9
BYRON000		6023	1	1265.0	critical	76.1	52.9
BYRON000		6023	2	1265.0	critical	76.1	53.6
12_DRESD		869	3	975.0	critical	76.1	41.6
QUADCITY		880	2	980.0	critical	76.3	6.0
RVB		6462	1	1080.0	critical	76.3	17.7
DAVISBES		6149	1	970.0	critical	76.4	41.1
COOPER		8036	1	1025.0	critical	76.4	22.8
соок		6000	1	1220.0	critical	76.5	30.6
FERMI		1729	2	1195.0	critical	77.4	22.1
1_LASALL		6026	2	1354.0	critical	77.7	15.1
ARK_NU		8055	1	899.0	critical	78.0	15.9
ARK_NU		8055	2	1031.0	critical	78.0	9.1

Chronic Forecast Error Detection

CHRONIC FORECAST ERROR DETECTION

Identifies generators with persistent forecasting problems over extended periods:

- CHRONIC OVER-FORECASTING: Forecast consistently > 2x actual generation for 3+ days in any 5-day window
- CHRONIC UNDER-FORECASTING: Forecast consistently < 0.5x actual generation for 3+ days in any 5-day window

Detection Criteria:

- Minimum 3 problematic days in any 5-day sliding window
- Minimum 2 hours of data per day to qualify (adjusted for 3x daily sampling)
- Only considers periods with generation ≥ 5 MW to avoid noise
- High severity if 6+ problematic days occur in any 8-day window

Impact: Chronic errors indicate systematic model issues requiring immediate attention. This approach detects sustained chronic patterns while reducing sensitivity to short-term market volatility. Regular 5-day window monitoring provides balanced detection of forecast degradation.

METHODOLOGY:

The sliding window approach analyzes forecast accuracy over time:

- 1. Daily Statistics: Calculate daily average forecast-to-actual ratios for each generator
- 2. Sliding Windows: Apply 5-day and 8-day sliding windows across the analysis period
- 3. Pattern Detection: Identify periods where forecast ratios exceed thresholds:
 - Over-forecasting: Forecast/Actual ≥ 2.0 (forecast is at least 200% of actual)
 - Under-forecasting: Forecast/Actual ≤ 0.5 (forecast is 50% or less of actual)
- 4. Severity Classification:
 - Medium Severity: 3+ problematic days in any 5-day window
 - High Severity: 6+ problematic days in any 8-day window

This methodology ensures robust detection of persistent forecasting issues while minimizing false positives from temporary market disruptions or operational anomalies.

Generator	Plant ID	Unit ID	Error Type	Pattern	Pmax	Severity
GAVINAEP GV1	8102	1	OVERFO, UNDE	5 days	2001.0 MW	high
GAVINAEP GV2	8102	2	OVERFO, UNDE	5 days	2000.0 MW	high
MOUNTAI2 MT1	6264	1	OVERFO, UNDE	5 days	1500.0 MW	high
ROCKPORT RP1	6166	1	OVERFO, UNDE	5 days	1320.0 MW	high
ROCKPORT RP2	6166	2	OVERFO, UNDE	5 days	1300.0 MW	high
RVB G1	6462	1	OVERFO, UNDE	5 days	1080.0 MW	high
KAMMER ML1	3948	1	OVERFO, UNDE	5 days	770.0 MW	high
KAMMER ML2	3948	2	OVERFO, UNDE	5 days	790.0 MW	high
CAMPBEL4 CA3_CONS	1710	3	OVERFO, UNDE	5 days	810.0 MW	high
INDEP2 G1	6641	1	OVERFO, UNDE	5 days	900.0 MW	high
INDEP2 G2	6641	2	OVERFO, UNDE	5 days	900.0 MW	high
TH_HILL THOMAS_HILL	2168	3	OVERFO, UNDE	5 days	750.0 MW	high
MONROE4 MON1 Chron	iᡛ³Ērro	r¹Genei	rattoirs ^{NDE} An	alysis Res	ul ts ^{MW}	high
MONROE4 MON2	1733	2	OVERFO, UNDE	5 days	800.0 MW	high
MONROE4 MON3	¹⁷³³ Chr	onic Erro	r Generators (ป <i>้</i> ทใช้นe)	785.0 MW	high
MONROE4 MON4	1733	4	OVERFO, UNDE	5 days	810.0 MW	high
LOUISA LOUISA_1_UN	6664	1	OVERFO, UNDE	5 days	710.0 MW	high
AMOS AM1	3935	1	OVERFO, UNDE	5 days	800.0 MW	high
AMOS AM2	3935	2	OVERFO, UNDE	5 days	800.0 MW	high
AMOS AM3	3935	3	OVERFO, UNDE	5 days	1330.0 MW	high
WH_BLF G1	6009	1	OVERFO, UNDE	5 days	828.0 MW	high
WH_BLF G2	6009	2	OVERFO, UNDE	5 days	831.0 MW	high
GREENWOO GW1	6035	1	OVERFO, UNDE	5 days	795.0 MW	high
IATAN IAT1	6065	1	OVERFO, UNDE	5 days	727.0 MW	high
IATAN IAT2	6065	2	OVERFO, UNDE	5 days	936.0 MW	high
WATERF G3	4270	3	OVERFO	5 days	1214.0 MW	high
LACYGNE LAC1	1241	1	OVERFO	5 days	750.0 MW	high
ANDRUS G1	8054	1	OVERFO, UNDE	5 days	740.0 MW	high
DOWMTR DOWCHEM	55419	G500	OVERFO, UNDE	5 days	900.0 MW	high
POWERTO1 PO-5	879	5	OVERFO	5 days	832.0 MW	high
POWERTO1 PO-6	879	6	OVERFO	5 days	832.0 MW	high
PERRY_FE PR10	6020	1	OVERFO	5 days	1330.0 MW	high
NINEMI G4	1403	6(4)	OVERFO	5 days	750.0 MW	high
NINEMI G5	1403	5	OVERFO	5 days	750.0 MW	high
QUADCITY 18UQC-1	880	1	OVERFO	5 days	985.0 MW	high
QUADCITY 18UQC-2	880	2	OVERFO	5 days	980.0 MW	high
FERMI FE2	1729	2	OVERFO	5 days	1195.0 MW	high
GENTLMN 2	6077	2	OVERFO	5 days	705.0 MW	high
CALLAWAY 1	6153	1	OVERFO	5 days	1270.0 MW	high
1_LASALL LA-1	6026	1	OVERFO	5 days	1255.0 MW	high
1_LASALL LA-2	6026	2	OVERFO	5 days	1354.0 MW	high
DAVISBES DB10	6149	1	OVERFO	5 days	970.0 MW	high
12_DRESD DR-2	869	2	OVERFO	5 days	982.0 MW	high
12_DRESD DR-3	869	3	OVERFO	5 days	975.0 MW	high
20_BRAID BR-1	6022	1	OVERFO	5 days	1273.0 MW	high
20_BRAID BR-2	6022	2	OVERFO	5 days	1238.0 MW	high
BYRON000 BY-1	6023	1	OVERFO	5 days	1265.0 MW	medium
BYRON000 BY-2	6023	2	OVERFO	5 days	1265.0 MW	medium
CLINTONO CLNTN_U1	204	1	OVERFO	5 days	1095.0 MW	medium
ARK_NU G1	8055	1	OVERFO	5 days	899.0 MW	medium
ARK_NU G2	8055	2	OVERFO	5 days	1031.0 MW	medium
COOK CK1	6000	1	OVERFO	5 days	1220.0 MW	medium
COOK CK2	6000	2	OVERFO	5 days	1220.0 MW	medium
COOK CKZ	0000		OVEINIO	Jaays	±∠∠∪.∪ I*IVV	medium

Advanced Forecast Metrics Analysis

Advanced Forecast Metrics

- CONSISTENCY SCORE (0-1): Measures how consistent forecast errors are over time (higher = better)
- VOLATILITY SCORE: Rolling standard deviation of forecast errors (lower = better)
- TREND ANALYSIS: Statistical trend in forecast performance (improving/stable/deteriorating)
- RMSE % OF CAPACITY: RMSE normalized by generator capacity for fair comparison

Generator	Plant ID	U Percenti Unit ID	Pmax (MW)	Consistency Score	RMSE	Class	Fuel
CALLAWAY	6153	1	N/A	0.000	273.2	fair	Nuc
MOUNTAI2	6264	1	N/A	0.255	454.9	crit	Unk
INDEP2	6641	2	N/A	0.307	393.4	crit	Coa
LACYGNE	1241	1	N/A	0.310	157.6	crit	Unk
INDEP2	6641	1	N/A	0.317	247.5	crit	Coa

Generator	Plant ID	Unit ID	Pmax (MW)	Volatility Score	RMSE	Class	Fuel
MOUNTAI2	6264	1	N/A	439.420	454.9	crit	Unk
GAVINAEP	8102	1	N/A	388.233	511.8	crit	Unk
ROCKPORT	6166	1	N/A	378.453	497.0	crit	Unk
GAVINAEP	8102	2	N/A	350.567	413.6	crit	Unk
MONROE4	1733	1	N/A	320.266	347.2	crit	Coa

Statistical Anomaly Detection

Statistical Anomaly Detection

Uses population statistics to identify generators with anomalous performance:

- RMSE Z-SCORE: How many standard deviations above/below population mean (threshold: >2.0)
- MAE Z-SCORE: Mean Absolute Error compared to population (threshold: >2.0)
- POPULATION OUTLIERS: Generators performing significantly worse than peers

Generators with Z-scores > 2.0 are flagged for investigation. Z-scores > 3.0 are considered critical and require immediate attention.

Statistical Anomalies (Z-Score > 2.0)

Generator Name	Plant ID	Unit ID	Pmax (MW)	RMSE Z-Score	Severity	Class
ROCKPORT	6166	2	1300.0	2.52	High	crit
AMOS	3935	3	1330.0	1.91	High	crit
AMOS	3935	2	800.0	1.68	High	crit

Operational Characteristics Analysis

OPERATIONAL CHARACTERISTICS

Analysis of generator operational patterns and their impact on forecast accuracy:

- CAPACITY UTILIZATION: Percentage of time generator is running
- MUST-RUN STATUS: Whether generator runs consistently (baseload characteristics)
- GENERATION PATTERNS: Zero vs non-zero generation frequencies
- CAPACITY FACTORS: Relationship between Pmax and actual generation patterns

These characteristics help identify if poor forecasts are due to operational complexity.

Generator	L‱M∂Ut	ilization G	enerators w	ith Þófir P	erformance	Fuel	Pattern
ROCKPORT	6166	2	1.0%	679.3	critical	Unknow	Intermittent
AMOS	3935	3	1.0%	568.0	critical	Unknow	Intermittent
AMOS	3935	2	1.0%	525.5	critical	Unknow	Intermittent
GAVINAEP	8102	1	1.0%	511.8	critical	Unknow	Intermittent
ROCKPORT	6166	1	1.0%	497.0	critical	Unknow	Intermittent
ANDRUS	8054	1	1.0%	482.6	critical	Natura	Intermittent
POWERTO1	879	6	1.0%	463.6	critical	Unknow	Intermittent
MONROE4	1733	3	1.0%	458.2	critical	Coal,	Intermittent
MOUNTAI2	6264	1	1.0%	454.9	critical	Unknow	Intermittent
IATAN	6065	2	1.0%	419.4	critical	Unknow	Intermittent

Recommendations and Action Items

- ☐ CRITICAL: 52 generators with critical performance require immediate model review
- △ HIGH: 1 generators with poor performance need attention within 1-2 weeks
- ☐ CHRONIC ERRORS: 53 generators with chronic forecasting patterns
 - → Review dispatch model parameters and operational constraints
 - → Analyze market conditions during chronic error periods
- ☐ STATISTICAL: 1 generators are statistical outliers
 - → Compare with similar generators in same zone/fuel type
 - → Investigate if these generators have unique operational characteristics
- ☐ FUEL TYPE: Coal, Oil generators show higher error rates (4 poor/critical)
 - → Review Coal, Oil generator modeling parameters

□ GENERAL RECOMMENDATIONS:

- Prioritize generators with multiple performance issues
- Review forecast models for generators with $R^2 < 0.5$
- Monitor generators with increasing error trends
- Update capacity constraints for generators with Pmax issues
- Consider market condition correlation analysis