Lecture 14: Observability I

Baboo J. Cui, Yangang Cao July 30, 2019

Contents

1	Motivation: State Estimation of D-T LTI Systems	2
2	Characterizing Observability	2
3	Observability Matrix	2
4	Unobservable Subspace	3
5	Observability-Controllability Duality	3
6	Observability Conditions	3
7	Example	4
8	Quantitative Observability	4
9	State Observer with Perfect Measurements	4
10	State Observer with Noisy Measurements	5
11	Observer Error	5
12	Infinite Horizon Error Covariance	5

1 Motivation: State Estimation of D-T LTI Systems

A discrete-time n-state m-input p-output LTI system

$$x[k+1] = Ax[k] + Bu[k], \quad x[0] = x_0$$

 $y[k] = Cx[k] + Du[k]$

- Matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$ are known
- Input and output are observed over times $0, 1, \ldots, k-1$:

$$u[0], \ldots, u[k-1], y[0], \ldots, y[k-1]$$

• Objective: Estimate unknown initial condition x[0]

Definition (Observability):

The D-T LTI system is **observable at time** k if the initial condition x[0] can be uniquely determined from any given u[0], ..., u[k-1] and y[0], ..., y[k-1]. It is **observable** if observable at a large enough time k.

2 Characterizing Observability

From system dynamics, we have

$$\begin{bmatrix} y[0] \\ \vdots \\ y[k-1] \end{bmatrix} = \underbrace{\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{k-1} \end{bmatrix}}_{\mathcal{O}_k} x[0] + \underbrace{\begin{bmatrix} D & 0 & \cdots & 0 \\ CB & D & \ddots & \vdots \\ & \ddots & \ddots & 0 \\ CA^{k-2}B & CB & D \end{bmatrix}}_{\mathcal{T}} \begin{bmatrix} u[0] \\ \vdots \\ u[k-1] \end{bmatrix}$$

Therefore, system is observable at time k if \mathcal{O}_k is injective

- Null space $\mathcal{N}(\mathcal{O}_k)$ gives ambiguity in determining x[0]
- If $x[0] \in \mathcal{N}(\mathcal{O}_k)$ and $u \equiv 0$, output is zero over times $0, \ldots, k-1$
- \bullet Input u does not affect observability: it can be subtracted out

Hence, we can assume $u \equiv 0$, and consider simplified system (C, A):

$$x[k+1] = Ax[k]$$
$$y[k] = Cx[k]$$

3 Observability Matrix

Proposition:

The null space $\mathcal{N}\left(\mathcal{O}_{k}\right)$ of matrices \mathcal{O}_{k} satisfy:

$$\mathcal{N}\left(\mathcal{O}_{1}\right)\supset\mathcal{N}\left(\mathcal{O}_{2}\right)\supset\cdots\supset\mathcal{N}\left(\mathcal{O}_{n}\right)=\mathcal{N}\left(\mathcal{O}_{n+1}\right)=\cdots$$

The **observability matrix** is defined as
$$\mathcal{O} := \mathcal{O}_n = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

Theorem:

The D-T LTI system (A, B, C, D), or simply (C, A), is observable if the observability matrix \mathcal{O} is injective, or equivalently, full (column) rank n.

4 Unobservable Subspace

Unobservable subspace is the null space $\mathcal{N}(\mathcal{O})$ of observability matrix

- Describes the ambiguity in determining state from input and output
- System is observable if the unobsevable subspace is trivial {0}

Fact:

Unobservable subspace $\mathcal{N}(\mathcal{O})$ is A-invariant: $A\mathcal{V}(\mathcal{O}) \subseteq \mathcal{N}(\mathcal{O})$

Example:

•
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

$$\bullet \ \ A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right], C = \left[\begin{array}{cc} 1 & 1 \end{array} \right]$$

5 Observability-Controllability Duality

Definition (Dual System):

The system $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ with $\tilde{A} = A^T, \tilde{B} = C^T, \tilde{C} = B^T$, and $\tilde{D} = D^T$ is called the **dual** of system (A, B, C, D)

- Controllability matrix $\tilde{\mathcal{C}} = \mathcal{O}^T$
- Observability matrix $\tilde{\mathcal{O}} = \mathcal{C}^T$

Theorem:

System (A, B, C, D) is observable (resp. controllable) if and only if its dual system $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ is controllable (resp. observable).

• Furthermore, $\mathcal{N}(\mathcal{O}) = \mathcal{R}(\tilde{\mathcal{C}})^{\perp}$, and $\mathcal{R}(\mathcal{C}) = \mathcal{N}(\tilde{\mathcal{O}})^{\perp}$

6 Observability Conditions

Theorem:

For the system (A, B, C, D), the following are equivalent:

- The system is observable
- The observability matrix \mathcal{O} is full rank

• **PBH Rank Test**: For any $\lambda \in \mathbb{C}$,

$$\operatorname{rank}\left[\begin{array}{c}\lambda I-A\\C\end{array}\right]=n$$

• **PBH Eigenvector Test**: for any right eigenvector $v \in \mathbb{C}^n$ of A,

$$Cv \neq 0$$

• The matrix $\sum_{i=0}^{n-1} (A^T)^i C^T C A^i$ is nonsingular

7 Example

8 Quantitative Observability

Suppose system (A, B, C, D) observable, and $u \equiv 0$. Starting from initial condition x[0], the output energy over time [0, k-1] is

$$\sum_{i=0}^{k-1} ||y[i]||^2 = x[0]^T \underbrace{\left(\sum_{i=0}^{k-1} (A^T)^i C^T C A^i\right)}_{W_o(k)} x[0]$$

If further A is stable, the following limit exists:

$$\sum_{i=0}^{\infty} ||y[i]||^2 = x[0]^T \underbrace{\left(\sum_{i=0}^{\infty} \left(A^T\right)^i C^T C A^i\right)}_{\text{Observability Gramian } W_0} x[0] \quad (as \quad k \to \infty)$$

• The larger the output energy, the "easier" it is to estimate x[0]

9 State Observer with Perfect Measurements

Suppose system (A, B, C, D) is observable at time $k : \text{rank}(\mathcal{O}_k) = n$ Under zero input $u \equiv 0$, we can deduce x[0] from $y[0], \dots, y[k-1]$:

$$\begin{bmatrix} y[0] \\ \vdots \\ y[k-1] \end{bmatrix} = \mathcal{O}_k x[0] \Rightarrow x[0] = \mathcal{O}_k^{\dagger} \begin{bmatrix} y[0] \\ \vdots \\ y[k-1] \end{bmatrix}$$

 \bullet Since \mathcal{O}_k is one-to-one, $\mathcal{O}_k^\dagger = \left(\mathcal{O}_k^T\mathcal{O}_k\right)^{-1}\mathcal{O}_k^T$

10 State Observer with Noisy Measurements

Suppose now output measurements are corrupted by noises w[k]:

$$\begin{aligned} x[k+1] &= Ax[k] \\ \hat{y}[k] &= Cx[k] + w[k] \end{aligned}$$

We have:
$$\mathcal{O}_k x[0] = \begin{bmatrix} y[0] \\ \vdots \\ y[k-1] \end{bmatrix} = \begin{bmatrix} \hat{y}[0] \\ \vdots \\ \hat{y}[k-1] \end{bmatrix} - \begin{bmatrix} w[0] \\ \vdots \\ w[k-1] \end{bmatrix}$$

11 Observer Error

Suppose sensor noises w[k] are Gaussian white noises:

- w[k] and $w[\ell]$ are independent for different k and ℓ
- $\mathrm{E}\left(w[k]w[k]^T\right) = I_p$, i.e., $w[k] \sim \mathcal{N}(0, l)$

Then, covariance of estimation error e is

12 Infinite Horizon Error Covariance

Let the time horizon $k \to \infty$. Then matrix

$$P = \left(\sum_{i=0}^{\infty} (A^T)^i C^T C A^i\right)^{-1} = W_o^{-1}$$

gives error covariance in estimating x[0] from u, y over ∞ time horizon

- $\mathbb{E} \|\hat{x}_{ls}[0] x[0]\|^2 = \operatorname{tr} P$
- If A is stable, $P \succ 0$, i.e., can't estimate x[0] perfectly even with infinite number of measurements u[k], y[k] (memory of x[0] fades)
- If A is not stable. P has nonzero null space: Pv = 0 for $v \neq 0$. Hence projection of x[0] along v can be exactly determined eventually:

$$E\left[\left(\hat{x}_{1s}[0] - x[0]\right)^T v\right]^2 \to 0 \quad \text{ as } k \to \infty$$

ullet Eigenvectors of P divide state-space into directions with varying degrees of "ease" of observability