# 경주시 화재발생 건수 및 예측

컴퓨터공학과 오아연

2022년 12월 14일

#### 1. 분석 배경 및 분석 목적

- 1) 데이터 출처:
  - A. 공공데이터포털 소방청 화재발생 주소정보 파일데이터
  - B. 기상청 기상자료개방포털 종관기상관측(ASOS) 파일셋
- 2) 화재발생 데이터와 종관기상관측 데이터를 이용하여 자료분석 및 시각화, 기계학습을 하고자 함
  - 화재유형 데이터 시각화
  - 발화요인 분류에 따른 시각화
  - 월별화재건수 시각화
  - 온습도와 화재발생과의 상관계수 시각화
  - 종관기상관측 데이터를 바탕으로 화재발생 예측

## 2. 데이터 소개 및 분석 방법

- 1) 데이터 소개
  - A. 화재발생 주소정보 데이터에는 2018-01-01일부터 2020-12-31일까지의 3년간의 화재발생 데이터로
    - 총 21개의 변수
    - 121,100행으로 구성

|           | 1                                 |
|-----------|-----------------------------------|
| 변수명(컬럼명)  | 자료설명                              |
| 연번        | 화재발생 데이터에 대한 일렬 번호                |
| 사망        | 사망자 수                             |
| 부상        | 부상자 수                             |
| 인명피해(명)소계 | 사망자 수와 부상자 수의 합                   |
| 재산피해소계    | 화재발생으로 인한 총 재산피해액                 |
| 화재발생년월일   | 화재가 발생한 날짜(YYYY-MM-DD)와 시간(HH:MM) |
| 시도        | 전국 행정 구역의 시, 도                    |
| 시군구       | 전국 기초자치단체의 시, 군, 구                |
| 읍면동       | 전국 기초자치단체의 읍, 면, 동                |
| 화재유형      | 화재유형                              |
| 발화열원      | 발화의 최초원인이 된 불꽃                    |
| 발화열원소분류   | 발화열원 소분류                          |
| 발화요인대분류   | 발화요인 대분류                          |
| 발화요인소분류   | 발화요인 소분류                          |
| 최초착화물대분류  | 발화열원에 의해 최초로 불이 붙은 가연물의 대분류       |
| 최초착화물소분류  | 발화열원에 의해 최초로 불이 붙은 가연물의 소분류       |
| 장소대분류     | 장소 대분류                            |
| 장소중분류     | 장소 중분류                            |
| 장소소분류     | 장소 소분류                            |

- B. 종관기상관측(ASOS) 파일셋에는 2018-01-01일부터 2021-12-31일까지의 4년간의 관측 데이터로
  - 총 27개의 변수
  - 35,064행으로 구성

| 변수명(컬럼명)      | 자료설명          |
|---------------|---------------|
| 지점            | 지점            |
| 일시            | 일시            |
| 기온(°C)        | 기온(°C)        |
| 강수량(mm)       | 강수량(mm)       |
| 풍속(m/s)       | 풍속(m/s)       |
| 풍향(16방위)      | 풍향(16방위)      |
| 습도(%)         | 습도(%)         |
| 증기압(hPa)      | 증기압(hPa)      |
| 이슬점온도(°C)     | 이슬점 온도(°C)    |
| 현지기압(hPa)     | 현지기압(hPa)     |
| 해면기압(hPa)     | 해면기압(hPa)     |
| 일조(hr)        | 일조(hr)        |
| 일사(MJ/m2)     | 일사(MJ/m2)     |
| 적설(cm)        | 적설(cm)        |
| 3시간신적설(cm)    | 3시간 신적설(cm)   |
| 전운량(10분위)     | 전운량(10분위)     |
| 중하층운량(10분위)   | 중하층 운량(10분위)  |
| 운형(운형약어)      | 운형(운형약어)      |
| 최저운고(100m)    | 최저운고(100m )   |
| 시정(10m)       | 시정(10m)       |
| 지면상태(지면상태코드)  | 지면상태(지면상태코드)  |
| 현상번호(국내식)     | 현상번호(국내식)     |
| 지면온도(°C)      | 지면온도(°C)      |
| 5cm 지중온도(°C)  | 5cm 지중온도(°C)  |
| 10cm 지중온도(°C) | 10cm 지중온도(°C) |
| 20cm 지중온도(°C) | 20cm 지중온도(°C) |
| 30cm 지중온도(°C) | 30cm 지중온도(°C) |

#### 2) 분석 방법

A. 종관기상관측 데이터를 바탕으로 화재발생 예측에 로지스틱 회귀분석을 사용<sup>1</sup>

#### 3. 분석 결과

- 3.1 화재유형 데이터 시각화
  - 1) 화재발생 당시 화재유형은 아래와 같으며 다음과 같이 분류됨
  - 화재유형 중 '건축,구조물'이 상당 부분을 차지하며 '위험물,가스제조소등'이 가장 적은 비율을 차지함



#### 3.2 발화요인 분류에 따른 시각화

- 2) 화재발생 당시 발화요인은 아래와 같으며, 특징은 다음과 같음
- 화재발생 당시 발화요인은 부주의가 제일 많았으며, 전기적 요인 및 원인 미상이 그 뒤를 이었음.
- 당초 목표였던 날씨에 의한 화재 여부에는 크게 영향을 미치지 못할 것으로 파악되었으나, 상관 계수 및 회귀 분석을 진행하며 결론을 이끌어내기로 하였음.



#### 3.3 월별화재건수 시각화

- 3) 연월일에 따른 화재발생 건수는 아래와 같음
  - 화재발생 건수는 2018년 2월이 가장 많고 2019년 9월과 11월이 가장 적음을 보임
- 이에 비추어 보았을 때, 4계절 중 봄, 겨울이 화재 건수가 특히 높은 것을 확인하였으므로, 계절의 날씨 특성에 따른 화재발생 여부 분석을 이어가도록 하였음



#### 3.4 온습도와 화재발생과의 상관계수 시각화

- 4) 종관기상관측 데이터와 화재발생 데이터의 상관계수는 아래와 같음
  - 흰색은 범주형 데이터 및 텍스트가 포함된 데이터로 상관계수 분석이 불가능한 데이터임
- 색이 진해질수록 음의 상관계수를 지녔으며, 색이 연해질수록 양의 상관계수를 지닌 것으로 확인하였음
- 아래 그림에서 미루어 보았을 때, 종관기상관측 데이터와 화재발생 데이터의 상관관계는 유의미하지 않은 것으로 파악되었으나, 로지스틱 회귀분석을 통하여 분석을 이어 나가기로 하였음



### 3.5 종관기상관측 데이터를 바탕으로 화재발생 예측

- 3) 종관기상관측 데이터로 로지스틱 회귀분석을 시행한 결과는 아래와 같음
- 로지스틱 회귀분석은 scikit-learn의 train\_test\_split을 사용하여 학습데이터와 테스트데이터의 비율을 7:3으로 지정하였음
- 아래의 오분류표를 보았을 때, 위음성은 0건이 나와서 모델이 적합하게 동작하는 듯하였지만, 진음성 역시 0건으로 나와 모델이 정상적으로 작동하지 않는 것을 확인하였음
- ROC 곡선을 그려 분류모형의 예측정확도를 평가하면, 어느정도 정상적으로 판단하는 것을 확인하였음

```
confusion_matrix
[[10342 0]
[ 181 0]]
accuracy_score
0.9827995818682885
precision_score
0.0
recall_score
0.0
f1_score
0.9827995818682885
```



#### 4. 요약 및 결론

- 화재발생 데이터와 종관기상관측 데이터를 이용하여 자료분석 및 시각화와 기계학습을 하고자 했는데. 화재발생 당시 발화요인은 날씨에 의한 화재 여부에는 큰 영향을 미치지 못함
- 4계절 중 봄, 겨울이 화재 건수가 특히 높은 것을 확인하였으므로, 계절의 날씨 특성에 따른 화재발생 여부 분석을 이어가도록 하였음
- 종관기상관측 데이터와 화재발생 데이터의 상관관계는 유의미하지 않은 것으로 파악됨
- 로지스틱 회귀분석으로 기계학습을 진행하였을 때, 분류 모형의 예측 정확도를 평가하면 어느정도 정상적으로 판단하는 것을 확인함
- 따라서, 날씨와 화재발생 데이터를 사용하여 화재발생을 예측한 결과, 모델의 적합성이 일정부분 있는 것으로 보임
- 향후 날씨 데이터 이외의 데이터를 바탕으로 화재 데이터와 상관계수 분석을 하여 모델을 만들면 모델의 적합성이 높아질 것으로 보임

#### 참고문헌

- 1. 김진석 (2022) 인공지능 강의노트
- 2. 공공데이터포털 소방청 화재발생 주소정보 파일데이터, https://www.data.go.kr/data/15044005/fileData.do
- 3. 기상청 기상자료개방포털 종관기상관측(ASOS) 파일셋, https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36&tabNo=1
- 4. matplotlib 파이 차트 그리기, https://hleecaster.com/python-matplotlib-pie-chart/
- 5. python) treemap 알아보기, https://data-newbie.tistory.com/731

|   | 3 |   |  |
|---|---|---|--|
| = | = | = |  |
|   |   |   |  |

1

```
from sklearn.metrics import confusion matrix. #
    accuracy_score, f1_score, precision_score, recall_score, \#
    roc auc score, roc curve, auc
print("confusion_matrix\n", confusion_matrix(y_te, y_pred))
print("accuracy_score\n", accuracy_score(y_te, y_pred))
print("precision_score\n", precision_score(y_te, y_pred))
print("recall_score\n", recall_score(y_te, y_pred))
print("f1_score\n",accuracy_score(y_te, y_pred))
confusion_matrix
[[10342
           0]
[ 181
           0]]
accuracy_score
0.9827995818682885
precision_score
0.0
recall_score
0.0
f1_score
0.9827995818682885
y_pred2 = clf.predict_proba(X_te)
fpr, tpr, = roc curve(y te, y pred2[:, 1])
roc_auc = auc(fpr, tpr)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(fpr, tpr,
   color="darkorange",
   Tabel="ROC curve (area = %0.2f)" % roc_auc,
plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("화재발생 확률예측")
plt.legend(loc="lower right")
plt.show()
```