# Chapter 4: Hypothesis Testing

Mathematical Statistics

UIC

April 28, 2024

THC Chanter 4: Hypothesis Testing April 28 2024 1 /

### Section 1

The Decision Rule

### Table of Contents

- The Decision Rule
- 2 Testing Binomial Data
- 3 Type I and Type II errors
- 4 Best Critical Regions and the Neyman-Pearson Lemma

# Concept of Hypothesis Testing

GIVEN: an unknown parameter  $\theta$ , and two mutually exclusive statements  $H_0$  and  $H_1$  about  $\theta$ .

• The Statistician must decide either to accept  $H_0$  or to accept  $H_1$ .

This kind of problem is a problem of **Hypothesis Testing**. A procedure for making a decision is called a **test procedure** or simply a **test**.

- $H_0 = \text{Null Hypothesis}$
- $H_1$  = Alternative Hypothesis.

Chapter 4: Hypothesis Testing April 28, 2024 3 / 74

Chapter 4: Hypothesis Testing

April 28, 2024 4 / 7

### Example 4.1.1

To study effectiveness of a gasoline additive on fuel efficiency, 30 cars are sent on a road trip from Boston to LA.

• Without the additive, the fuel efficiency average is  $\mu = 25.0 \mathrm{mpg}$  with a standard deviation  $\sigma = 2.4$ .

The test cars averaged  $\bar{y}=26.3 \mathrm{mpg}$  with the additive. What should the company conclude? One can assume that the fuel efficiency with the additive is normally distributed.

 $\underline{\mathsf{ANSWER}} : \mathsf{Let}\ \mu$  be the efficiency average with the additive. Consider the hypotheses

- $H_0$ :  $\mu = 25.0$  Additive is not effective.
- $H_1: \mu > 25.0$  Additive is effective.

It is reasonable to consider a value  $\bar{y}^*$  to compare with the sample mean  $\bar{y}$ , so that  $H_0$  is accepted or not depending on whether  $\bar{y} < \bar{y}^*$  or not.

UIC Chapter 4: Hypothesis Testing April 28, 2024 5 / 3



## Example cont'd

For sake of discussion, suppose  $\bar{y}^* = 25.25$  is s.t.  $H_0$  is rejected if  $\bar{y} > \bar{y}^*$ 

#### Question:

$$\mathbb{P}(\text{ reject } H_0 \mid H_0 \text{ is true })=?$$

Suppose that with the additive, the standard deviation of fuel efficiency remains unchanged, i.e.,  $\sigma=2.4$ . We have,

$$\begin{split} &\mathbb{P} \big( \text{ reject } H_0 \mid H_0 \text{ is true } \big) \\ &= \mathbb{P} \big( \bar{Y} \geq 25.25 \mid \mu = 25.0 \big) \\ &= \mathbb{P} \left( \frac{\bar{Y} - 25.0}{2.4 / \sqrt{30}} \geq \frac{25.25 - 25.0}{2.4 / \sqrt{30}} \right) \\ &= \mathbb{P} \big( Z \geq 0.57 \big) \\ &= 0.2843, \end{split}$$

where  $Z \sim N(0, 1)$ .

C Chapter 4: Hypothesis Testing

April 28 2024 6 / 74

Let us make  $\bar{y}^*$  larger, say  $\bar{y}^* = 26.25$ 

#### Question:

$$\mathbb{P}$$
 ( reject  $H_0 \mid H_0$  is true ) =?

We have.

$$\begin{split} &\mathbb{P} \left( \text{ reject } H_0 \mid H_0 \text{ is true } \right) \\ &= \mathbb{P} \left( \bar{Y} \geq 26.25 \mid \mu = 25.0 \right) \\ &= \mathbb{P} \left( \frac{\bar{Y} - 25.0}{2.4 / \sqrt{30}} \geq \frac{26.25 - 25.0}{2.4 / \sqrt{30}} \right) \\ &= \mathbb{P} (Z \geq 2.85) \\ &= 0.0022 \end{split}$$

Chapter 4: Hypothesis Testing April 28, 2024 7 / 74

Chapter 4: Hypothesis Testing



<u>Simulation</u> A total of seventy-five random samples, each of size 30, have been drawn from a normal distribution having  $\mu=25.0$  and  $\sigma=2.4$ . The corresponding  $\bar{y}$  for each sample is then compared with  $\bar{y}^*=25.718$ . It turns out that five of the samples lead to the erroneous conclusion that  $H_0: \mu=25.0$  should be rejected.

| $\overline{y}$ | ≥ 25.718? | $\overline{y}$ | ≥ 25.718? | $\overline{y}$ | ≥ 25.718? |
|----------------|-----------|----------------|-----------|----------------|-----------|
| 25.133         | no        | 25.259         | no        | 25.200         | no        |
| 24.602         | no        | 25.866         | yes       | 25.653         | no        |
| 24.587         | no        | 25.623         | no        | 25.198         | no        |
| 24.945         | no        | 24.550         | no        | 24.758         | no        |
| 24.761         | no        | 24.919         | no        | 24.842         | no        |
| 24.177         | no        | 24.770         | no        | 25.383         | no        |
| 25.306         | no        | 25.080         | no        | 24.793         | no        |
| 25.601         | no        | 25.307         | no        | 24.874         | no        |
| 24.121         | no        | 24.004         | no        | 25.513         | no        |
| 25.516         | no        | 24.772         | no        | 24.862         | no        |
| 24.547         | no        | 24.843         | no        | 25.034         | no        |
| 24.235         | no        | 25.771         | yes       | 25.150         | no        |
| 25.809         | yes       | 24.233         | no        | 24.639         | no        |
| 25.719         | yes       | 24.853         | no        | 24.314         | no        |
| 25.307         | no        | 25.018         | no        | 25.045         | no        |
| 25.011         | no        | 25.176         | no        | 24.803         | no        |
| 24.783         | no        | 24.750         | no        | 24.780         | no        |
| 25.196         | no        | 25.578         | no        | 25.691         | no        |
| 24.577         | no        | 24.807         | no        | 24.207         | no        |
| 24.762         | no        | 24.298         | no        | 24.743         | no        |
| 25.805         | yes       | 24.807         | no        | 24.618         | no        |
| 24.380         | no        | 24.346         | no        | 25.401         | no        |
| 25.224         | no        | 25.261         | no        | 24.958         | no        |
| 24.371         | no        | 25.062         | no        | 25.678         | no        |
| 25.033         | no        | 25.391         | no        | 24.795         | no        |

# WHAT TO USE FOR $\bar{y}^*$ ?

In practice, people often use

$$\mathbb{P}$$
 ( reject  $H_0 \mid H_0$  is true ) = 0.05

In our case, we may write

$$\begin{split} &\mathbb{P}\left(\bar{Y} \geq \bar{y}^* \mid \textit{H}_0 \text{ is true }\right) = 0.05\\ \Longrightarrow &\mathbb{P}\left(\frac{\bar{Y} - 25.0}{2.4/\sqrt{30}} \geq \frac{\bar{y}^* - 25.0}{2.4/\sqrt{30}}\right) = 0.05\\ \Longrightarrow &\mathbb{P}\left(Z \geq \frac{\bar{y}^* - 25.0}{2.4/\sqrt{30}}\right) = 0.05 \end{split}$$

From the Std. Normal table:  $\mathbb{P}(Z \ge 1.64) = 0.05$ . Then,

$$\frac{\bar{y}^* - 25.0}{2.4/\sqrt{30}} = 1.64 \Longrightarrow \bar{y}^* = 25.718$$

## Some Definitions

The random variable

$$\frac{\bar{Y} - 25.0}{2.4/\sqrt{30}}$$

has a standard normal distribution.

• The observed z-value is what you get when a particular  $\bar{y}$  is substituted for  $\bar{Y}$ :

$$\frac{\bar{y} - 25.0}{2.4/\sqrt{30}}$$
 = observed z-value

- A Test Statistic is any function of the observed data that dictates whether  $H_0$  is accepted or rejected.
- The Critical Region is the set of values for the test statistic that result in  $H_0$  being rejected.
- The Critical Value is a number that separates the rejection region from the acceptance region.

Chapter 4: Hypothesis Testing April 28, 2024 11 / 74 UIC Chapter 4: Hypothesis Testing April 28, 2024 12 / 1

### Example

In our fuel efficiency example, both

$$ar{Y}$$
 and  $\dfrac{ar{Y}-25.0}{2.4/\sqrt{30}}$ 

are test statistics, with corresponding critical regions (respectively)

$$C = \{\bar{y} : \bar{y} \ge 25.718\}$$

and

$$C = \{z : z \ge 1.64\}$$

and critical values 25.718 and 1.64.

#### Definition 4.1.2

The Level of Significance is the probability that the test statistic lies in the critical region when  $H_0$  is true.

In previous slide we used 0.05 as level of significance.

IC

Chapter 4: Hypothesis Testing

April 28, 2024 13 /

## Testing $\mu_0$ with known $\sigma$ : *Z*-Test

Let  $Y_1, Y_2, \dots, Y_n$  be a random sample of size n taken from a normal distribution where  $\sigma$  is known, and let

$$Z = \frac{\bar{Y} - \mu_0}{\sigma / \sqrt{n}}.$$

| Test                                                                  | Signif. level | Action                                                       |  |
|-----------------------------------------------------------------------|---------------|--------------------------------------------------------------|--|
| $ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} $    | $\alpha$      | Reject $H_0$ if $z \geq z_{\alpha}$                          |  |
| $ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} $    | α             | Reject $H_0$ if $z \leq -z_{\alpha}$                         |  |
| $ \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases} $ | α             | Reject $H_0$ if $z \ge z_{\alpha/2}$ or $z \le z_{\alpha/2}$ |  |

### One Sided vs. Two Sided Alternatives

In our fuel efficiency example, we had a one sided alternative, specifically, one sided to the right  $(H_1 : \mu > \mu_0)$ .

In some situations the alternative hypothesis could be taken as one-sided to the left  $(H_1: \mu < \mu_0)$  or as two sided  $(H_1: \mu \neq \mu_0)$ .

Note that, in two sided alternative hypothesis, the level of significance  $\alpha$  must be split into two parts corresponding to each one of the two pieces of the critical region.

In our fuel example, if we had used a two sided  $H_1$ , then each half of the critical region has 0.025 associated probability, with  $\mathbb{P}(Z \le -1.96) = 0.025$ . This leads to  $H_0: \mu = \mu_0$  to be rejected if the observed z satisfies  $z \ge 1.96$  or  $z \le 1.96$ .

 UIC
 Chapter 4: Hypothesis Testing
 April 28, 2024
 14 / 74



Chapter 4: Hypothesis Testing April 28, 2024 15 / 74 UIC Chapter 4: Hypothesis Testing April 28, 2024 16 / 74

### Example 4.1.3

Bayview HS has a new Algebra curriculum. In the past, Bayview students would be considered "typical", earning SAT scores consistent with past and current national averages (national averages are mean = 494 and standard deviation 124).

Two years ago a cohort of 86 student were assigned to classes with the new curriculum. Those students averaged 502 points on the SAT. Can it be claimed that at the  $\alpha = 0.05$  level of significance that the new curriculum had an effect?

#### **ANSWER**: we have the hypotheses

$$\begin{cases}
H_0: \mu = 494 \\
H_1: \mu \neq 494
\end{cases}$$

Since  $z_{\alpha/2} = z_{0.025} = 1.96$ , and

$$z = \frac{502 - 494}{124/\sqrt{86}} = 0.60,$$

the conclusion is "FAIL TO REJECT  $H_0$ ".

### Percentiles of the *t*-distribution

We use the symbol  $t_{\alpha,n}$  to denote the  $100(1-\alpha)$ -th percentile of a random variable  $T_n$  that has a t-distribution with n degrees of freedom. That is,

$$\mathbb{P}\left(T_{n}\geq t_{\alpha,n}\right)=\alpha.$$





### Testing $\mu_0$ with unknown $\sigma$ : t-Test

#### Theorem 4.1.4

Let  $Y_1, Y_2, \ldots, Y_n$  be a random sample of size n taken from a normal distribution where  $\sigma$  is unknown, and let

$$T = rac{ar{Y} - \mu_0}{S/\sqrt{n}}, \quad ext{where } S^2 := rac{1}{n-1} \sum_{i=1}^n (Y_i - ar{Y})^2.$$

Then T follows a t-distribution with n-1 degrees of freedom. Let  $t=\frac{\overline{y}-\mu_0}{s/\sqrt{n}}$  be the observed value of T.

- To test  $H_0: \mu = \mu_0$  versus  $H_1: \mu > \mu_0$  at the  $\alpha$  level of significance, reject  $H_0$  if  $t \geq t_{\alpha,n-1}$ .
- **2** To test  $H_0: \mu = \mu_0$  versus  $H_1: \mu < \mu_0$  at the  $\alpha$  level of significance, reject  $H_0$  if  $t \leq -t_{\alpha,n-1}$ .
- **3** To test  $H_0: \mu = \mu_0$  versus  $H_1: \mu \neq \mu_0$  at the  $\alpha$  level of significance, reject  $H_0$  if t is either  $(1) \le -t_{\alpha/2, n-1}$  or  $(2) \ge t_{\alpha/2, n-1}$ .

## The p-Value

Two methods to quantify evidence against  $H_0$ :

- The statistician selects a value for  $\alpha$  before any data is collected, and a critical region is identified. If the test statistic falls in the critical region,  $H_0$  is rejected at the  $\alpha$  level of significance.
- **3** The statistician reports a p-value, which is the probability of getting a value of that test statistic as extreme or more extreme than what was actually observed (relative to  $H_1$ ), given that  $H_0$  is true.

UIC Chapter 4: Hypothesis Testing April 28, 2024 21



## Evaluating *p*-value

#### Example

Recall Example 4.1.3. Given that  $H_0$ :  $\mu = 494$  is being tested against  $H_1$ :  $\mu \neq 494$ , what p-Value is associated with the calculated test statistic, z = 0.60, and how should it be interpreted?

**ANSWER**: If  $H_0$ :  $\mu=494$  is true, then Z= has a standard normal pdf. Relative to the two sided  $H_1$ , any value of  $Z\geq 0.60$  or  $\leq -0.60$  is as extreme or more extreme than the observed z, Then,

$$p$$
-value 
$$= \mathbb{P}(Z \ge 0.60) + \mathbb{P}(Z \le -0.60)$$
$$= 0.2743 + 0.2743$$
$$= 0.5486$$

### Section 2

Testing Binomial Data

UIC Chapter 4: Hypothesis Testing April 28, 2024 23 / 74 UIC Chapter 4: Hypothesis Testing April 28, 2024 24 /

# Binomial Hypothesis Test

Suppose  $X_1, ... X_n$  are outcomes in independent trials, with  $\mathbb{P}(X_\ell = 1) = p$  and  $\mathbb{P}(X_\ell = 0) = 1 - p$ , with p unknown.

A test with null hypothesis  $H_0$ :  $p = p_0$  is called binomial hypothesis test.

We consider two cases: large n and small n.

To decide if n is considered "small" or "large", we use the relation

$$0 < np_0 - 3\sqrt{np_0(1-p_0)} < np_0 + 3\sqrt{np_0(1-p_0)} < n$$

UIC

Chapter 4: Hypothesis Testing

April 28 2024 25

## Case Study I: Point Spread between two NFL Teams

A <u>point spread</u> is a hypothetical increment added to the score of the weaker of two teams to make them even.

A study examined records of 124 NFL games; it was found that in 67 of them (or 54%) the favored team beat the spread. Is 54% due to chance, or was the spread set incorrectly?

**ANSWER**: Set  $p = \mathbb{P}(\text{favored team beats the spread})$ . We have the hypotheses

$$H_0: p = 0.50 \text{ versus } H_1: p \neq 0.50$$

We shall use the 0.05 level of significance.

### Theorem 4.2.1 (A large sample test for binomial parameter)

Let  $X_1, X_2, \ldots, X_n$  be a random sample of n Bernoulli RVs for which  $0 < np_0 - 3\sqrt{np_0\left(1-p_0\right)} < np_0 + 3\sqrt{np_0\left(1-p_0\right)} < n$ . Let  $X = X_1 + \cdots + X_n$ , and set  $z := \frac{x-np_0}{\sqrt{np_0(1-p_0)}}$ . Then we should do the following:

| Test                                                          | Signif. level | Action                                                        |  |
|---------------------------------------------------------------|---------------|---------------------------------------------------------------|--|
| $\begin{cases} H_0 : p = p_0 \\ H_1 : p > p_0 \end{cases}$    | α             | Reject $H_0$ if $z \ge z_{\alpha}$                            |  |
| $\begin{cases} H_0 : p = p_0 \\ H_1 : p < p_0 \end{cases}$    | α             | Reject $H_0$ if $z \le -z_\alpha$                             |  |
| $\begin{cases} H_0 : p = p_0 \\ H_1 : p \neq p_0 \end{cases}$ | α             | Reject $H_0$ if $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ |  |

UK

Chapter 4: Hypothesis Testir

1 00 0004 00

### Case Study I cont'd

We have

$$n = 124, \quad p_0 = 0.50$$

and

 $X_\ell=1$  if favored team beats spread in  $\ell$ -th game.

Thus the number of times the favored team beats the spread is  $X=X_1+\cdots+X_n$ . We compute z as follows:

$$z := \frac{x - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{67 - 1240.50}{\sqrt{124 \cdot 0.50 \cdot 0.50}} = 0.90$$

With  $\alpha=0.05$ , we have  $z_{\alpha/2}=1.96$ . So z does not fall in the critical region.

The null hypothesis is not rejected, that is, 54% is consistent with the statement that the spread was chosen correctly.

Chapter 4: Hypothesis Testing

Chapter 4: Hypothesis Testing

April 28, 2024 28 / 7-

## Case Study II: Do people postpone death until birthday?

Among 747 obituaries in the newspaper, 60 (or 8%) corresponded to people that died in the three months preceding their birthday.

If people die randomly with respect to their b-days, we would expect 25% of them to die in the three months preceding their b-day.

Is the postponement theory valid?

UIC

Chapter 4: Hypothesis Testing

April 28 2024 20 /

### What to do for binomial p with small n?

Suppose that for  $\ell=1,\ldots,19$ ,

$$x_\ell = egin{cases} 1 & ext{with probability } p \ 0 & ext{with probability } 1-p \end{cases}$$

Let  $X = X_1 + \cdots + X_n$  with independent  $X_{\ell}$ 's.

Find the Critical Region for the Test

$$H_0: p = 0.85 \text{ versus } H_1: p \neq 0.85$$

with  $\alpha \approx 0.10$ .

### Case Study II cont'd

**ANSWER**: Let  $X_\ell=1$  if  $\ell$ -th person died during 3 months before b-day, and  $X_\ell=0$  if not. Then  $X=X_1+\cdots+X_n=\#$  of people that died during 3 months before b-day. Let  $p=\mathbb{P}(X=1), p_0=1/4=0.25$ , and n=747. A one sided test is

$$H_0: p = 0.25 \text{ versus } H_1: p < 0.25$$

We have,

$$z = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{60 - 747(0.25)}{\sqrt{747(0.25)(1 - (0.25))}} = -10.7$$

With  $\alpha = 0.05$ ,  $H_0$  should be rejected if

$$z \le -z_{\alpha} = -1.64$$

Since the last inequality holds, we must reject  $H_0$ . The evidence is overwhelming that the reduction from 25% to 8% is due to something other than chance.

OIC Chapter 4: Typothesis results

### **ANSWER**

first we must check the inequality

$$0 < np_0 - 3\sqrt{np_0(1-p_0)} < np_0 + 3\sqrt{np_0(1-p_0)} < n$$

With  $n = 19, p_0 = 0.85$  we get

$$19(0.85) + 3\sqrt{19(0.85)(0.15)} = 20.8 \angle 19$$

that is. Theorem 4.2.1 DOES NOT APPLY.

We will use the binomial distribution to define the critical region.

If the null hypothesis is true, the expected value for x is 19(0.85) = 16.2. Thus values to the extreme left or right of 16.2 constitute the critical region.

Here is a plot of  $p_X(k) = \binom{19}{k} (0.85)^k (0.15)^{19-k}$ :



JIC Chapter 4: Hypothesis Testing April 28, 2024 33 / 7

Section 3

Type I and Type II errors

| k  | $p_X(k)$                | total probability      |
|----|-------------------------|------------------------|
| 0  | $2.2168410^{-16}$       |                        |
| 1  | $2.386810^{-14}$        |                        |
| 2  | $1.2172710^{-12}$       |                        |
| 3  | $3.9087810^{-11}$       |                        |
| 4  | $8.8598910^{-10}$       |                        |
| 5  | 1.5061810 <sup>-8</sup> |                        |
| 6  | 1.9915110 <sup>-7</sup> | $P(X \le 13) = 0.0536$ |
| 7  | $2.0958210^{-6}$        | $F(X \le 13) = 0.0330$ |
| 8  | 0.0000178145            |                        |
| 9  | 0.000123382             |                        |
| 10 | 0.000699164             |                        |
| 11 | 0.00324158              |                        |
| 12 | 0.012246                |                        |
| 13 | 0.0373659               |                        |
| 14 | 0.0907457               |                        |
| 15 | 0.171409                |                        |
| 16 | 0.242829                |                        |
| 17 | 0.242829                |                        |
| 18 | 0.152892                |                        |
| 19 | 0.0455994               | P(X = 19) = 0.0455994  |
|    |                         |                        |

From the left table we get the critical region C:  $C = \{x : x \le 13 \text{ or } x = 19\}$ 

UIC Chapter 4: Hypothesis Testing April 28, 2024 34 / 74

# Two Types of Errors

ullet Type I error: Reject  $H_0$  when  $H_0$  is true

 $\bullet$  Type II error: Accept  ${\it H}_{0}$  when  ${\it H}_{0}$  is false

|                       | $H_0$ is True    | $H_0$ is False   |
|-----------------------|------------------|------------------|
| Accept H <sub>0</sub> | Correct Decision | Type II Error    |
| Reject H <sub>0</sub> | Type I error     | Correct decision |

UIC Chapter 4: Hypothesis Testing April 28, 2024 35 / 74 UIC Chapter 4: Hypothesis Testing April 28, 2024 36 / 3

### Main Definitions

#### Definition 4.3.1

• The probability of a type I error is called the significance level of the test and is denoted by  $\alpha$ 

$$\alpha = \mathbb{P}(\text{ type I error }) = \mathbb{P}(\text{ Reject } H_0 \mid H_0)$$

• The probability of a type II error is denoted by  $\beta$ 

$$\beta = \mathbb{P}(\mathsf{type}\;\mathsf{II}\;\mathsf{error}\;) = \mathbb{P}(\mathsf{Accept}\; H_0 \mid H_1)$$

•  $(1 - \beta)$  is called the power of the test

power 
$$= 1 - \beta = 1 - \mathbb{P}$$
 (Accept  $H_0 \mid H_1$ )  $= \mathbb{P}$  (Reject  $H_0 \mid H_1$ )

Thus, the power of the test is the probability of rejecting  $H_0$  when it is false.

## Fuel Efficiency Example cont'd

If  $H_0$  is false, we may investigate the probability of accepting  $H_0$ , given any fixed value of the true  $\mu$  (with the additive).

$$\begin{split} &\mathbb{P} \big( \text{ Type II Error } \mid \mu = 25.750 \big) \\ &= \mathbb{P} \big( \bar{Y} < 25.718 \mid \mu = 25.750 \big) \\ &= \mathbb{P} \left( \frac{\bar{Y} - 25.750}{2.4/\sqrt{30}} < \frac{25.718 - 25.750}{2.4/\sqrt{30}} \right) \\ &= \mathbb{P} \left( \frac{\bar{Y} - 25.750}{2.4/\sqrt{30}} < \frac{25.718 - 25.750}{2.4/\sqrt{30}} \right) \\ &= \mathbb{P} \big( Z < -0.07 \big) \\ &= 0.4721 \end{split}$$

# Recall: Fuel Efficiency Example

•  $H_0$ :  $\mu = 25.0$  Additive is not effective.

•  $H_1: \mu > 25.0$  Additive is effective.

With  $\bar{v}^* = 25.718$  as critical value we have,

$$\begin{split} &\mathbb{P}(\mathsf{Type\ I\ Error}) \\ &= \mathbb{P}\,(\ \mathsf{reject}\ H_0 \mid H_0 \ \mathsf{is\ true}\ ) \\ &= \mathbb{P}\,(\bar{Y} \geq 25.718 \mid \mu = 25.0) \\ &= \mathbb{P}\,\left(\frac{\bar{Y} - 25.0}{2.4/\sqrt{30}} \geq \frac{25.718 - 25.0}{2.4/\sqrt{30}}\right) \\ &= \mathbb{P}(Z \geq 1.64) \\ &= 0.05 \end{split}$$



# $\beta$ is a function of presumed value of $\mu$

If in previous example, the gasoline additive is so effective to raise the fuel efficiency to  $26.8 \mathrm{mpg}$ , then

$$\begin{split} &\mathbb{P} \big( \text{ Type II Error } \mid \mu = 26.8 \big) \\ &= \mathbb{P} \big( \text{ accept } H_0 \mid \mu = 26.8 \big) \\ &= \mathbb{P} \big( \bar{Y} < 25.718 \mid \mu = 26.8 \big) \\ &= \mathbb{P} \left( \frac{\bar{Y} - 26.8}{2.4 / \sqrt{30}} < \frac{25.718 - 26.8}{2.4 / \sqrt{30}} \right) \\ &= \mathbb{P} \big( Z < -2.47 \big) = 0.0068 \end{split}$$

IC Chapter 4: Hypothesis Testing April 28, 2024 41

- $\bullet$  Power  $=1-\beta=\mathbf{P}$  ( Reject  $\mathit{H}_{0}\mid\mathit{H}_{1}$  is true)
- $\bullet$  Power Curve: Power vs.  $\mu$  values





# Comparing Power Curves: steep is good

- Power curves tell you about the performance of a test.
- Power curves are useful for comparing different tests.



• From the standpoint of power, Method B is clearly the better one of the two - it always has a higher probability of correctly rejecting  $H_0$  when the parameter  $\theta$  is not equal to  $\theta_0$ .

UIC Chapter 4: Hypothesis Testing April 28, 2024 43 / 74 UIC Chapter 4: Hypothesis Testing April 28, 2024 44 / 74

### The effect of $\alpha$ on $1-\beta$





UIC Chapter 4: Hypothesis Testing April 28, 2024 45 / 74





#### Increasing $\alpha$ decreases $\beta$ and increases the power

But this is not something we normally want to do (reason:  $\alpha = \text{Probability of Type I Error}$ )

The effect of  $\sigma$  and n on  $1-\beta$  is illustrated in the next figure.

C Chapter 4: Hypothesis Testing April 28, 2024 46 / 74

## Increasing the Sample Size

# Example 4.3.2

We wish to test

$$H_0: \mu = 100 \text{ vs. } H_1: \mu > 100$$

at the  $\alpha=0.05$  significance level and require  $1-\beta$  to equal 0.60 when  $\mu=103$ . What is the smallest sample size that achieves the objective? Assume normal distribution with  $\sigma=14$ .

**ANSWER**: Observe that both  $\alpha$  and  $\beta$  are given. To find n we follow the strategy of writing two equations for the critical value  $\bar{y}^*$ : one in terms of  $H_0$  distribution (where we use  $\alpha$ ), and one in terms of  $H_1$  distribution (where  $\beta$  is used). Solving simultaneously will give the needed n.

UIC Chapter 4: Hypothesis Testing April 28, 2024 47 / 74 UIC Chapter 4: Hypothesis Testing April 28, 2024 48 / 7

## Example cont'd

If  $\alpha = 0.05$ , we have,  $\alpha = \mathbb{P}$  (reject  $H_0 \mid H_0$  is true)  $=\mathbb{P}\left(ar{Y}>ar{y}^{*}\mid\mu=100
ight)$  $=\mathbb{P}\left(\frac{\bar{Y}-100}{14/\sqrt{n}}\geq \frac{\bar{y}^*-100}{14/\sqrt{n}}\right)$  $=\mathbb{P}\left(Z \geq \frac{\bar{y}^* - 100}{14/\sqrt{n}}\right) = 0.05$ 

Since  $\mathbb{P}(z > 1.64) = 0.05$ , we have

$$\frac{\bar{y}^* - 100}{14/\sqrt{n}} = 1.64$$

Solving for  $\bar{y}^*$  we get  $\bar{y}^* = 100 + 1.64 \cdot \frac{14}{\sqrt{n}}$ 

## Example cont'd

Finally, putting together the two eqns for  $\bar{y}^*$  we have

$$100 + 1.64 \cdot \frac{14}{\sqrt{n}} = 103 - 0.25 \cdot \frac{14}{\sqrt{n}}$$

which gives n = 78 as the minimum number of observations to be taken to guarantee the desired precision.

## Example cont'd

Similarly,  $1 - \beta = \mathbb{P}$  (reject  $H_0 \mid H_1$  is true)

$$= \mathbb{P}\left(\bar{Y} \ge \bar{y}^* \mid \mu = 103\right)$$

$$= \mathbb{P}\left(\frac{\bar{Y} - 103}{14/\sqrt{n}} \ge \frac{\bar{y}^* - 103}{14/\sqrt{n}}\right)$$

$$= \mathbb{P}\left(Z \ge \frac{\bar{y}^* - 103}{14/\sqrt{n}}\right)$$

$$= 0.60$$

Since  $\mathbb{P}(Z \ge -0.25) = 0.5987 \approx 0.60$ ,

$$\frac{\bar{y}^* - 103}{14/\sqrt{n}} = -0.25 \quad \Rightarrow \quad \bar{y}^* = 103 - 0.25 \cdot \frac{14}{\sqrt{n}}$$

### Decision for Non-Normal Data

We assume the following is GIVEN:

- a set of data
- a pdf  $f(y | \theta)$
- $\theta = \text{unknown parameter}$
- $\theta_0$  = given value (associated with  $H_0$ )
- $\hat{\theta} =$ a sufficient estimator for  $\theta$

A one (right) sided test is

$$H_0: \theta = \theta_0$$
 vs.  $H_1: \theta > \theta_0$ 

Similarly we may consider left-sided tests or two sided tests.

### Example 4.3.3

A random sample of size 8 is drawn from the uniform pdf

$$f(y \mid \theta) = \frac{1}{\theta}, \quad 0 \le y \le \theta$$

for the purpose of testing

$$H_0: \theta = 2.0 \text{ vs. } H_1: \theta < 2.0$$

at the  $\alpha=0.10$  level of significance. The decision rule is based on

$$\hat{\theta} = Y_{\text{max}} := \max\{Y_1, \dots, Y_8\}.$$

What is the probability of a Type II error when  $\theta = 1.7$ ?

**ANSWER**: Suppose  $Y_1, \ldots, Y_8$  are samples from  $U(0, \theta)$ . Then for  $0 \le y \le \theta$ ,

$$F_{Y_{\text{max}}}(y) = \mathbb{P}(Y_{\text{max}} \leq y) = \mathbb{P}(Y_1 \leq y, \dots, Y_8 \leq y) = \prod_{i=1}^8 \mathbb{P}(Y_i \leq y) = \left(\frac{y}{\theta}\right)^8$$

$$\implies f_{Y_{\text{max}}}(y) = \frac{8y^7}{\theta^8}, \quad 0 \leq y \leq \theta.$$

UIC

Chapter 4: Hypothesis Testing

pril 28, 2024 53

# Example cont'd

We also have that

$$\beta = \mathbb{P}\left(Y_{\text{max}} > 1.50 \mid \theta = 1.7\right)$$

$$= \int_{1.50}^{1.70} 8\left(\frac{y}{1.7}\right)^7 \frac{1}{1.7} dy$$

$$= 1 - \left(\frac{1.5}{1.7}\right)^8$$

$$= 0.63$$

## Example cont'd

We set

$$\mathbb{P}\left(Y_{\mathsf{max}} \le c \mid H_0 \text{ is true}\right) = 0.10,\tag{1}$$

and the decision rule is "Reject  $H_0$  if  $Y_{\max} \leq c$ ".

The pdf of  $Y_{\text{max}}$  given that  $H_0$  is true is

$$f_{Y_{\text{max}}}(y \mid \theta = 2) = 8\left(\frac{y}{2}\right)^7 \cdot \frac{1}{2}, \quad 0 \le y \le 2$$

We use the pdf and equation (1) to find c:

$$\mathbb{P}\left(Y_{\text{max}} \le c \mid H_0 \text{ is true }\right) = 0.10$$

$$\Rightarrow \int_0^c 8\left(\frac{y}{2}\right)^7 \cdot \frac{1}{2} dy = 0.10$$

$$\Rightarrow \left(\frac{c}{2}\right)^8 = 0.10$$

$$\Rightarrow c = 1.50$$

Chapter 4: Hypothesis Testing April 28, 2024 54 / 74



### Example 4.3.4

Four measurements are taken on a Poisson RV, where

$$p_X(k \mid \lambda) = e^{-\lambda} \lambda^k / k! \quad k = 0, 1, 2, \dots,$$

for testing

$$H_0: \lambda = 0.8 \text{ vs. } H_1: \lambda > 0.8$$

Let's use the test statistic

$$\hat{\lambda} = X_1 + X_2 + X_3 + X_4$$

and note that  $\hat{\lambda}$  is Poisson with parameter  $4\lambda$ .

#### Question:

- What decision rule should be used if the level of significance is to be 0.10, and
- ② What is the power when  $\lambda = 1.2$ ?

UIC Chapter 4: Hypothesis Testing April 28, 2024 57

If  $H_1$  is true and  $\lambda=1.2$ , then  $\sum_{\ell=1}^4 X_\ell$  will have a Poisson distribution with a parameter equal to 4.8. From the table shown below we get  $1-\beta=0.3489$ .

| k  | $p_X(k)$     | total probability      |
|----|--------------|------------------------|
| 0  | 0.00822975   |                        |
| 1  | 0.0395028    |                        |
| 2  | 0.0948067    | $m{eta} = 0.651018$    |
| 3  | 0.151691     |                        |
| 4  | 0.182029     |                        |
| 5  | 0.174748     |                        |
| 6  | 0.139798     |                        |
| 7  | 0.0958616    |                        |
| 8  | 0.057517     |                        |
| 9  | 0.0306757    |                        |
| 10 | 0.0147243    | $1 - \beta = 0.348982$ |
| 11 | 0.00642517   |                        |
| 12 | 0.00257007   |                        |
| 13 | 0.000948948  |                        |
| 14 | 0.000325353  |                        |
| 15 | 0.000104113  |                        |
| 16 | 0.0000312339 |                        |

**ANSWER**: We proceed to use a computer to produce a table of a Poisson probability function with parameter  $4\lambda=3.2$ . Then we inspect the table and locate the critical region corresponding to  $\alpha\approx0.10$ . This gives  $x\geq6$  as critical region.

| k  | $p_X(k)$     | total probability |
|----|--------------|-------------------|
| 0  | 0.0407622    |                   |
| 1  | 0.130439     |                   |
| 2  | 0.208702     |                   |
| 3  | 0.222616     |                   |
| 4  | 0.178093     |                   |
| 5  | 0.060789     |                   |
| 6  | 0.113979     |                   |
| 7  | 0.0277893    |                   |
| 8  | 0.0111157    |                   |
| 9  | 0.00395225   | $\alpha = 0.1054$ |
| 10 | 0.00126472   |                   |
| 11 | 0.000367919  |                   |
| 12 | 0.0000981116 |                   |
| 13 | 0.0000241506 |                   |

UIC Chapter 4: Hypothesis Testing April 28, 2024 58 / 74

### Example 4.3.5

A random sample of seven observations is taken from the pdf

$$f_Y(y \mid \theta) = (\theta + 1)y^{\theta}, \quad 0 \le y \le 1$$

to test

$$H_0: \theta = 2 \text{ vs. } H_1: \theta > 2$$

As a decision rule, the experimenter plans to record X, the number of  $y_{\ell}$ 's that exceed 0.9, and reject  $H_0$  if  $X \ge 4$ . What proportion of the time would such a decision lead to a Type I error?

UIC Chapter 4: Hypothesis Testing April 28, 2024 60 / 74

## Example cont'd

**ANSWER**: We need to evaluate  $\alpha = \mathbb{P}$  (Reject  $H_0 \mid H_0$  is true). Note that X is a binomial RV with n = 7 and the parameter p is given by

$$\begin{split} \rho &= \mathbb{P} \left( Y \geq 0.9 \mid H_0 \text{ is true } \right) \\ &= \mathbb{P} \left( Y \geq 0.9 \mid f_Y(y \mid 2) = 3y^2 \right) \\ &= \int_{0.9}^1 3y^2 dy = 0.271 \end{split}$$

Then,

$$\alpha = \mathbb{P}(X \ge 4 \mid \theta = 2)$$

$$= \sum_{k=4}^{7} {7 \choose k} (0.271)^{k} (0.729)^{7-k} = 0.092$$

UIC

Chapter 4: Hypothesis Testing

April 28, 2024 61 / 7

### A Nonstatistical Problem

#### Question

You are given  $\alpha$  dollars with which to buy books to fill up bookshelves as much as possible.

How to do this?

### A strategy:

First, take all available free books. Then choose the book with the lowest cost of filling an inch of bookshelf. Then proceed by choosing more books using the same criterion: those for which the ratio c/w is the smallest, where  $c=\cos t$  of book and w= width of book. Stop when the  $\alpha$  run out.

### Section 4

## Best Critical Regions and the Neyman-Pearson Lemma

Consider the test

$$H_0: \theta = \theta_0 \text{ and } \theta = \theta_1$$

Let  $X_1, \ldots, X_n$  be a random sample of size n from a pdf  $f(x | \theta)$ .

In this discussion we assume f is discrete. The joint pdf of  $X_1, \ldots, X_n$  is

$$\mathcal{L} = \mathcal{L}(x_1, x_2, \dots, x_n | \theta) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$$

A critical region C of size  $\alpha$  is a set of points  $(x_1, \ldots, x_n)$  with probability  $\alpha$  when  $\theta = \theta_0$ .

For a **good test**, C should have a large probability when  $\theta = \theta_1$  because under  $H_1: \theta = \theta_1$  we wish to reject  $H_0: \theta = \theta_0$ .

C Chapter 4: Hypothesis Testing April 28, 2024 63 / 74 UIC Chapter 4: Hypothesis Testing April 28, 2024 64 / Testi

# Construction of a set with the largest power

• We start forming our set C by choosing a point  $(x_1, \ldots, x_n)$  with the smallest ratio

 $\frac{\mathcal{L}(x_1, x_2, \dots, x_n \mid \theta_0)}{\mathcal{L}(x_1, x_2, \dots, x_n \mid \theta_1)}$ 

• The next point to add would be the one with the next smallest ratio. Continue in this manner to "fill C" until the probability of C under  $H_0: \theta = \theta_0$  equals  $\alpha$ .

We have just formed, for the level of significance  $\alpha$ , the set C with the largest probability when  $H_1: \theta = \theta_1$  is true.

## The Neyman-Pearson Lemma

#### Theorem 4.4.2

Let  $X_1, \ldots, X_n$  be a random sample of size n from a pdf  $f(x \mid \theta)$ , with  $\theta_0$  and  $\theta_1$ being two possible values of  $\theta$ . Let the joint pdf of  $X_1, \ldots, X_n$  be

$$\mathcal{L}(\theta) = \mathcal{L}(x_1, x_2, \dots, x_n | \theta) = f(x_1 | \theta) \cdots f(x_n | \theta)$$

IF there exist a positive constant k and a subset  $C \subset \mathbb{R}^n$  such that

THEN C is a best critical region of level  $\alpha$  for testing  $H_0: \theta = \theta_0$  versus  $H_1: \theta = \theta_1.$ 

## Best Critical Region

#### Definition 4.4.1

Consider the test

$$H_0: \theta = \theta_0$$
 and  $H_1: \theta = \theta_1$ 

Let C be a critical region of level  $\alpha$ . We say that C is a best critical region of level  $\alpha$  if for any other critical region D of level  $\alpha = \mathbb{P}(D \mid \theta_0)$  we have that

$$\mathbb{P}(C \mid \theta_1) \geq \mathbb{P}(D \mid \theta_1)$$

- That is, when  $H_1: \theta = \theta_1$  is true, the probability of rejecting  $H_0: \theta = \theta_0$ using C is at least as great as the corresponding probability using any other critical region D.
- $\bullet$  Another perspective: a best critical region of level  $\alpha$  has the greatest power among all critical regions of level  $\alpha$ .

### Example 4.4.3

Let  $X_1, \ldots, X_{16}$  be a random sampe from a normal distribution with  $\sigma^2 = 36$ . Find the best critical region with  $\alpha = 0.023$  for testing  $H_0$ :  $\mu = 50$  versus  $H_1$ :  $\mu = 55$ .

**ANSWER**: Skipping some details, we have,

$$\frac{\mathcal{L}(50)}{\mathcal{L}(55)} = \exp\left[-\frac{1}{72}\left(10\sum_{\ell=1}^{16} x_{\ell} - 8400\right)\right] \le k$$

Then

$$-10\sum_{\ell=1}^{16} x_{\ell} + 8400 \le 72 \cdot \ln k$$

This may be written in terms of  $\bar{X}$  as

$$\frac{1}{16} \sum_{\ell=1}^{16} x_{\ell} \ge \frac{1}{160} [8400 - 72 \cdot \ln k] =: c$$

That is.

$$\frac{\mathcal{L}(50)}{\mathcal{L}(55)} \leq k \quad \iff \quad \bar{x} \geq c$$

## Example cont'd

A best critical region, according to Neyman-Pearson Lemma, is

$$C = \{(x_1, \ldots, x_n) : \bar{x} \geq c\}$$

This set has probability  $\alpha = 0.023$  given  $H_0: \mu = 50$ . Then,

$$0.023 = \mathbb{P}(\bar{X} \ge c \mid \mu = 50) = \mathbb{P}\left(Z \ge \frac{c - 50}{6/4}\right)$$

Since, from the table,  $z_{\alpha} = 2.00$ , we have

$$\frac{c-50}{6/4}=2$$

That is, c = 53.0. The best critical region is:

$$C = \{(x_1, \ldots, x_n) : \bar{x} \geq 53.0\}$$

UIC

Chapter 4: Hypothesis Testing

April 28 2024 60 /

### Example 4.4.6

Let  $X_1, \ldots, X_{16}$  be a random sample from a normal distribution with  $\sigma^2 = 36$ . Find the best critical region with  $\alpha = 0.05$  for testing  $H_0: \mu = 50$  versus  $H_1: \mu > 50$ .

**ANSWER**: For each simple hypothesis in  $H_1$ , say  $\mu = \mu_1$ , we have,

$$\frac{\mathcal{L}(50)}{\mathcal{L}(\mu_1)} = \exp\left[-\frac{1}{72}\left(2(\mu_1 - 50)\sum_{\ell=1}^{16} x_{\ell} + 16(50^2 - \mu_1^2)\right)\right] \le k$$

Then

$$2(\mu_1 - 50) \sum_{\ell = 1}^{16} x_\ell + 16(50^2 - \mu_1^2) \le 72 \cdot \ln k$$

This may be written in terms of  $\bar{X}$  as

$$\frac{1}{16} \sum_{\ell=1}^{16} x_{\ell} \ge \frac{-72 \cdot \ln k}{32 \left(\mu_1 - 50\right)} + \frac{50 + \mu_1}{2} =: c$$

That is,

$$\frac{\mathcal{L}(50)}{\mathcal{L}(\mu_1)} \leq k \quad \Longleftrightarrow \quad \bar{x} \geq c$$

#### Definition 4.4.4

- ullet A hypothesis of the form  $heta= heta_0$  is called a simple hypothesis
- A hypothesis of the form  $\theta > \theta_0$  or  $\theta < \theta_0$  is called a composite hypothesis.

When  $H_1$  is a composite hypothesis, the power of a test depends on each simple alternative hypothesis.

#### Definition 4.4.5

A test, defined by a critical region C of level  $\alpha$  is a uniformly most powerful test if it is a most powerful test against each simple alternative in  $H_1$ . The critical region C is called a uniformly most powerful critical region of level  $\alpha$ .

Example cont'd

A best critical region, according to Neyman-Pearson Lemma, is

$$C = \{(x_1, \ldots, x_n) : \bar{x} \geq c\}$$

This set has probability  $\alpha = 0.05$  given  $H_0$ :  $\mu = 50$ . Then,

$$0.05 = \mathbb{P}(ar{X} \geq c \mid \mu = 50) = \mathbb{P}\left(Z \geq \frac{c - 50}{6/4}\right)$$

Since, from the table,  $z_{0.05} = 1.64$ , we have

$$\frac{c - 50}{6/4} = 1.64$$

That is, c = 52.46. A best uniformly most powerful critical region is:

$$C = \{(x_1, \ldots, x_n) : \bar{x} \geq 52.46\}$$

Note that c=52.46 is good for all values of  $\mu_1>50$  (what changes is the value of k).

UK

Chapter 4: Hypothesis Testing

April 28, 2024 71

UIC

Charter 4: North aris Tar

April 28, 2024 72 / 7

### Example 4.4.7

Let X have a binomial distribution resulting from n trials each with probability p of success. Given  $\alpha$ , find a uniformly most powerful test of the null hypothesis  $H_0: p = p_0$  against the one sided alternative  $H_1: p > p_0$ .

**ANSWER**: For  $p_1$  arbitrary except for the requirement  $p_1 > p_0$ , consider the ratio

$$\frac{\mathcal{L}(p_0)}{\mathcal{L}(p_1)} = \frac{\binom{n}{x} p_0^x (1 - p_0)^{n - x}}{\binom{n}{x} p_1^x (1 - p_1)^{n - x}} \le k$$

This is equivalent to

$$\left(\frac{\rho_0\left(1-\rho_1\right)}{\rho_1\left(1-\rho_0\right)}\right)^x \left(\frac{1-\rho_0}{1-\rho_1}\right)^n \le k$$

UIC

Chapter 4: Hypothesis Testing

April 28 2024 73 /

## Example cont'd

and

$$\times \ln \left( \frac{p_0 \left( 1 - p_1 \right)}{p_1 \left( 1 - p_0 \right)} \right) \le \ln k - n \ln \left( \frac{1 - p_0}{1 - p_1} \right)$$

Since  $p_0 < p_1$  and  $p_0 (1 - p_1) < p_1 (1 - p_0)$ , we have that for each  $p_1$  with  $p_0 < p_1$ ,

$$\frac{x}{n} \ge \frac{\ln k - n \ln \left(\frac{1-p_0}{1-p_1}\right)}{n \ln \left(\frac{1-p_0}{1-p_1}\right)} =: c$$

#### **CONCLUSION**:

A uniformly most powerful test of  $H_0: p=p_0$  against  $H_1: p>_0$  is of the form  $x/n \geq c$ 

IIIC Chapter 4: Hypothesis Testing April 28, 2024 74 / 74