

Мал. 264

TEOPEMA 11

(Ознака перпендикулярності прямої і площини.) Якщо пряма, яка перетинає площину, перпендикулярна до двох різних прямих цієї площини, що проходять через точку перетину, то вона перпендикулярна до площини.

доведення.

Нехай пряма AO, яка перетинає площину α в точці O, перпендикулярна до прямих OB і OCцієї площини (мал. 265). Доведемо, що пряма AO перпендикулярна до будь-якої прямої OX, яка лежить у площині α. Для цього проведемо довільну пряму, яка перетинає прямі ОВ, ОС i OX у точках B, C i X. На прямій OA по різні боки від O відкладемо рівні відрізки OA і OM. Сполучивши відрізками точки А і М з точками B, C, X, дістанемо кілька пар трикутників. $\triangle ABM$ і $\triangle ACM$ рівнобедрені, оскільки їх медіани BO і CO є також висотами. Отже, AB = MBiAC = MC. За трьома сторонами $\triangle ABC = \triangle MBC$, тому $\angle ABC = \angle MBC$. Рівні також трикутники ABX і MBX — за двома сторонами і кутом між ними. Отже, AX = MX. Оскільки трикутник

Мал. 265

AXM рівнобедрений, то його медіана XO є і висотою, тобто $AO \perp OX$. Що й треба було довести. \square