EB-Net for landmarking on pronotum images

Le Van Linh - Beurton-Aimar Marie, Zemmari Akka, Parisey Nicolas I&S Team - Univ. Bordeaux, LaBRI, France

Context

- ▶ Deep learning[1]: methods to learn the representations of data.
- ▶ Landmarks (key points): the points on the image that are invariant when the image changes.
- ▶ Key points detection: to find the key points through images.
- Landmarks in biology: most often provided manually by biologists.

Beetle's pronotum and landmarks

- ▶ Pronotum: an external morphology part of beetle
- Eight-manual landmarks: provided by biologists and used as ground truth.

How to locate the landmarks automatically?

Dataset augmentation

The augmentation includes two procedures:

- 1. Changing the value of one color channel in the original image
- Separating the channels of original image

In total: $293 \times 7 = 2051$ images

Elementary block

An elementary block (EB) is consists of:

- A Convolutional layer
- A Max-Pooling layer
- A Dropout layer

New model: EB-Net

The proposed network includes:

- ▶ Three elementary blocks
- Three fully connected layers
- A Dropout layer

Predicted landmarks on images

- > Yellow points are manual landmarks
- Red points are predicted landmarks

Evaluation

On quality metrics for regression problems.

Metric	r ²	EV	Pearson
Cintas et al.[2]	0.884	0.951	0.976
Our model	0.9952	0.9951	0.9974

On average distances between landmarks (manual & predicted)

Landmark	Distance (in pixels)
1	4.002
2	4.483
3	4.296
4	4.387
5	4.293
6	5.363
7	4.636
8	4.936

The proportion of acceptable predicted landmarks:

Conclusion

- A CNN model has been proposed to predict the landmarks on pronotum images.
- 2. An original method has been applied to augment dataset.
- 3. The quality of predicted landmarks have been evaluated by average distances with an accuracy greater than 80%.
- The predicted landmarks can be used to replace manual landmarks.

Bibliography

- [1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
- [2] Celia Cintas et al. Automatic ear detection and feature extraction using geometric morphometrics and convolutional neural networks. *IET Biometrics*, 6(3):211–223, 2016.

École doctorale

Mathématiques
et informatique

