Retrieving Data Using the SQL SELECT Statement

Objectives

After completing this lesson, you should be able to do the following:

- List the capabilities of SQL SELECT statements
- Execute a basic SELECT statement

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Capabilities of SQL SELECT Statements

Basic SELECT Statement

```
SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;
```

- SELECT identifies the columns to be displayed.
- FROM identifies the table containing those columns.

Selecting All Columns

SELECT *
FROM departments;

	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	2 LOCATION_ID
1	10	Administration	200	1700
2	20	Marketing	201	1800
3	50	Shipping	124	1500
4	60	IT	103	1400
5	80	Sales	149	2500
6	90	Executive	100	1700
7	110	Accounting	205	1700
8	190	Contracting	(null)	1700

Selecting Specific Columns

```
SELECT department id, location id
       departments;
FROM
```

	A	DEPARTMENT_ID	2 LOCATION_ID
1		10	1700
2		20	1800
3		50	1500
4		60	1400
5		80	2500
6		90	1700
7		110	1700
8		190	1700

1 - 7

Writing SQL Statements

- SQL statements are not case sensitive.
- SQL statements can be entered on one or more lines.
- Keywords cannot be abbreviated or split across lines.
- Clauses are usually placed on separate lines.
- Indents are used to enhance readability.
- In SQL Developer, SQL statements can be optionally terminated by a semicolon (;). Semicolons are required when you execute multiple SQL statements.
- In SQL*Plus, you are required to end each SQL statement with a semicolon (;).

Column Heading Defaults

- SQL Developer:
 - Default heading alignment: Left-aligned
 - Default heading display: Uppercase
- SQL*Plus:
 - Character and Date column headings are left-aligned.
 - Number column headings are right-aligned.
 - Default heading display: Uppercase

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column Aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Arithmetic Expressions

Create expressions with number and date data by using arithmetic operators.

Operator	Description
+	Add
-	Subtract
*	Multiply
/	Divide

Using Arithmetic Operators

```
SELECT last_name, salary, salary + 300
FROM employees;
```

	LAST_NAME	SALARY	SALARY+300
1	Whalen	4400	4700
2	Hartstein	13000	13300
3	Fay	6000	6300
4	Higgins	12000	12300
5	Gietz	8300	8600
6	King	24000	24300
7	Kochhar	17000	17300
8	De Haan	17000	17300
9	Hunold	9000	9300
10	Ernst	6000	6300

- - -

Operator Precedence

SELECT last_name, salary, 12*salary+100 FROM employees;

LAST_NAME	SALARY	2 12*SALARY+100
1 Whalen	4400	52900
2 Hartstein	13000	156100
3 Fay	6000	72100

. . .

SELECT last_name, salary, 12*(salary+100) employees; FROM

	LAST_NAME	2 SALARY	12*(SALARY+100)
1	Whalen	4400	54000
2	Hartstein	13000	157200
3	Fay	6000	73200

Defining a Null Value

- Null is a value that is unavailable, unassigned, unknown, or inapplicable.
- Null is not the same as zero or a blank space.

7000

SELECT last_name, job_id, salary, commission_pct FROM employees;

	LAST_NAME	₿ JOB_ID	B SALARY B	COMMISSION_PCT
1	Whalen	AD_ASST	4400	(null)
2	Hartstein	MK_MAN	13000	(null)
••				
17	Zlotkey	SA_MAN	10500	0.2
18	Abel	SA_REP	11000	0.3
19	Taylor	SA_REP	8600	0.2

SA_REP

20 Grant

0.15

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

SELECT last_name, 12*salary*commission_pct FROM employees;

17 Zlotkey	25200
18 Abel	39600
19 Taylor	20640
20 Grant	12600

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Defining a Column Alias

A column alias:

- Renames a column heading
- Is useful with calculations
- Immediately follows the column name (There can also be the optional AS keyword between the column name and the alias.)
- Requires double quotation marks if it contains spaces or special characters, or if it is case-sensitive

Using Column Aliases

```
SELECT last_name AS name, commission_pct comm FROM employees;
```


. . .

SELECT last_name "Name" , salary*12 "Annual Salary"
FROM employees;

- - -

Lesson Agenda

- Basic SELECT Statement
- Arithmetic Expressions and NULL values in SELECT statement
- Column Aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Concatenation Operator

A concatenation operator:

- Links columns or character strings to other columns
- Is represented by two vertical bars (||)
- Creates a resultant column that is a character expression

```
SELECT last_name||job_id AS "Employees"
FROM employees;
```


ORACLE!

Literal Character Strings

- A literal is a character, a number, or a date that is included in the SELECT statement.
- Date and character literal values must be enclosed within single quotation marks.
- Each character string is output once for each row returned.

Using Literal Character Strings

```
SELECT last_name || is a '||job_id
AS "Employee Details"
FROM employees;
```


. . .

Alternative Quote (q) Operator

- Specify your own quotation mark delimiter.
- Select any delimiter.
- Increase readability and usability.

Duplicate Rows

The default display of queries is all rows, including duplicate rows.

SELECT department_id
FROM employees;

	A	DEPARTMENT_ID
1		(null)
2		20
3		90
4		110
5		50
6		80
7		10
8		60

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Displaying the Table Structure

- Use the DESCRIBE command to display the structure of a table.
- Or, select the table in the Connections tree and use the Columns tab to view the table structure.

Using the DESCRIBE Command

DESCRIBE employees

DESCRIBE employees Name	Null	Туре
EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID SALARY COMMISSION_PCT MANAGER_ID DEPARTMENT_ID	NOT NULL NOT NULL	NUMBER(6) VARCHAR2(20) VARCHAR2(25) VARCHAR2(25) VARCHAR2(20) DATE VARCHAR2(10) NUMBER(8,2) NUMBER(2,2) NUMBER(6) NUMBER(4)
11 rows selected		NONDEK(4)

Quiz

Identify the SELECT statements that execute successfully.

```
1. SELECT first_name, last_name, job_id, salary*12
   AS Yearly Sal
   FROM employees;
```

- 2. SELECT first_name, last_name, job_id, salary*12
 "yearly sal"
 FROM employees;
- 3. SELECT first_name, last_name, job_id, salary AS
 "yearly sal"
 FROM employees;
- 4. SELECT first_name+last_name AS name, job_Id, salary*12 yearly sal FROM employees;

Summary

In this lesson, you should have learned how to:

- Write a SELECT statement that:
 - Returns all rows and columns from a table
 - Returns specified columns from a table
 - Uses column aliases to display more descriptive column headings

```
SELECT *|{[DISTINCT] column/expression [alias],...}
FROM table;
```

Practice 1: Overview

This practice covers the following topics:

- Selecting all data from different tables
- Describing the structure of tables
- Performing arithmetic calculations and specifying column names