(-1.60 +	Q PS = (-0.8873 \ -0.1111	
9 TP = D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 66SD)	
/ 0 \	0.33	
erp= (0.5) => enp = 0.7071	eps = (0.33) => eps = 0.5574	We'll have a tord won since
0.\$/	0.33/	the metrix is NOT full an

Exercise #5

Figure 2 shows a PR robot and its inertia matrix, already expressed in terms of three dynamic coefficients a, b and c. The robot moves in a vertical plane. A task trajectory $y_d(t) \in \mathbb{R}$ is assigned to the coordinate y of the end-effector position. With the robot being at rest in the configuration $\bar{q} = \begin{pmatrix} 1 & \pi/2 \end{pmatrix}^T$, provide the joint force/torque inputs $\tau_A \in \mathbb{R}^2$ and $\tau_B \in \mathbb{R}^2$ executing the desired task that instantaneously minimize, respectively,

$$H_A = \frac{1}{2} \| \boldsymbol{\tau} \|^2$$
 or $H_B = \frac{1}{2} \| \boldsymbol{\tau} \|_{\boldsymbol{M}^{-2}(\bar{\boldsymbol{q}})}^2.$

Which of the two solutions τ_A and τ_B has the largest first component in absolute value?

$$M(q) = \begin{pmatrix} a & b\cos q_2 \\ b\cos q_2 & c \end{pmatrix} > 0$$

We have a torsk tro-tectory only for the y-component of the e-e 2 The Robot: at rest at $\overline{q} = (1 \pi 12)^{T}$. Provide the roughe $y = q_1 + l^2 + l^2$

We have a problem countrained by two functions $Storting \quad \text{from the governol Dynamic Hodel}$ $M(q) + C(q, \dot{q}) + Q(q) = T$

This is a quadratic problem

 $M(q) \cdot \ddot{q} + m(q, \dot{q}) + q(q)$ Also we need to within see the two discretive functions the and H_2 .

These two functions one: $M(q) \cdot \ddot{q} + m(q, \dot{q}) + q(q) + n(q, \dot{q}) + n(q, \dot$

We first need to verify if the Jacobian is full name

our tank vector reflects only $C = Q_A + Q_Z = J = (1 - Q_Z)$, then evaluating it at the position along the Q direction

It would'be loan a 2-8 vector
if the took was to position the
e-e in the space

 $\overline{q} = (1 \pi 12) \Rightarrow (1 0)$, Tank Jacobian evaluated at \overline{q}

 $T_{\Lambda} = ((10) \text{ M}^{-1}(q))^{-1} (\dot{v} -) + J(q) \text{ M}(q) \text{ m}(q,q))$

 $M = \begin{pmatrix} Q & O \\ O & C \end{pmatrix}$ $Tz = MQ J^*(q) (\ddot{r} - JQ) + J(q) H(q) m(q, \dot{q})$

In this cause, after solving the problem, we have two equal torques for both function