

394 WE CLAIM:

395 1. (canceled) rewritten/re-presented in claim 5

396 2. (canceled) rewritten/re-presented in claim 6

397 3. (canceled) rewritten/re-presented in claim 7

398 4. (canceled) rewritten/re-presented in claim 8

399 5. (canceled) rewritten/re-presented in claim 9

400 6. (canceled) rewritten/re-presented in claim 10

401 7. (canceled) rewritten/re-presented in claim 11

402 8. (canceled) rewritten/re-presented in claim 12

403 9. (re-presented - formerly independent claim 5) A method of recognizing an observed

404 subsequence as being generated by one of a set of Hidden Markov Models (HMM),

405 characterized by:

406 • the fact that it searches the subsequence, Q , that offer the minimization of an

407 inverse confidence measure, over all possible matchings,

408 • where the inverse confidence measure is one of

409 1) the accumulated posterior, normalized with the length of the matched sub-

410 sequence X_b^e (aka. 'simple normalization')

$$411 \quad \frac{-1}{e - b + 1} \log P(Q|X_b^e)$$

412 2) partitioning the states in a HMM into phonems, having a function
413 Phonemes(Q) that returns the segmentation of a path Q in the HMM into
414 phonems, and computing one of:

415 2a) the worst average match in a phoneme, called 'real fitting',

416
$$\operatorname{argmin}_Q \left(\max_{Q \in \text{Phonemes}(Q)} \frac{\sum_{q^k \in Q} - \log P(q^k | x_k)}{|\{k | q^k \in Q\}|} \right)$$

417 2b) double normalization of the accumulated posterior over the number of
418 phonemes, J , and over the number of acoustic samples, $e_j - b_j + 1$, where
419 e_j is the time frame where Q enters phoneme j , and b_j is the exit time
420 frame from each phoneme, j ,

421
$$\frac{-1}{J} \sum_{j=1}^J \left(\frac{1}{e_j - b_j + 1} \sum_{n=b_j}^{e_j} \log P(q_j^n | x_n) \right)$$

422 • and allows for the optional revaluation of the alternatives that offer the high-
423 est scores of a mentioned confidence measure on the basis of another confidence
424 measure,

425 • and when based on the confidence measure called 'simple normalization' uses a
426 method that applies Viterbi decoding for a HMM obtained by extending the initial
427 one with a filler state just after start and one just before the termination state,
428 and estimates the emission probability of the filler states in an iterative manner
429 as being equal to the inverse confidence measure in the previous iteration,

430 and where the emission probability in the filler states in the first iteration can be
431 initialized to any floating point number, but the iteration stops:

432 i at convergence yielding the estimation of a keyword's boundaries and score
433 as the obtained boundaries and score of non-filler states of the HMM,
434 ii when the confidence measure descends under a threshold value, T, estimating
435 only the keyword existence,
436 iii when the emission probability of filler states, ε_0 is initialized with T and is
437 reestimated, as value of ε_1 at the end of the first iteration, to be higher than
438 T deciding keyword inexistence,
439 • or for any of the three confidence measures: 'simple normalization', 'double nor-
440 malization' or 'real fitting', uses a beam-search-like algorithm that considers the
441 emission probability of the filler state as zero, computes progressively for each
442 pair of sample and state of HMM a set of possible alternatives paths to reach it,
443 the computation of this set is based on the sets of paths that lead to the states that
444 can be associated to the previous sample and extended with transitions allowed
445 by the analyzed HMM,
446 where this set can be reduced by using appropriate (safe) rules for the given
447 confidence measure, ensuring the correctness of the inference,
448 and where this set can be also reduced by using heuristics, for speeding up the
449 computation despite the risk of reducing the theoretical quality of the recognition,
450 heuristics of which a fast version stores only the best match,
451 and for all confidence measures one can prune the set of alternatives with safe rules
452 guaranteeing optimality, where:

- 453 • the 'simple normalization' confidence measure with beam-search is used with a
 454 safe pruning that discards a path Q_1 given the existence of a path Q_2 whenever
 455 $S_2 < S_1$ and $L_1 < L_2$, where S_1 and L_1 respectively S_2 and L_2 are the minus of
 456 the cumulated log of posteriors along the paths, and the lengths of the paths, for
 457 the paths Q_1 respectively Q_2 , and which can be optimized by sorting competing
 458 paths based on their cost
- 459 • the 'double normalization' confidence measure on HMMs where no path skips any
 460 phoneme is used with a safe pruning that discards a path Q_1 given the existence
 461 of a path Q_2 whenever one of the following tests succeed:
- 462 (a) $l_2 \geq l_1$, $A > 0$, $B \leq 0$ and $L_c^2 A + L_c B + C \geq 0$
- 463 (b) $l_2 \geq l_1$, $A \geq 0$, $B \geq 0$ and $C \geq 0$
- 464 (c) $l_2 \geq l_1$, $A \leq 0$, $C \geq 0$ and $L^2 A + LB + C \geq 0$
- 465 (d) $l_2 \geq l_1$, $A = 0$, $B < 0$ and $LB + C \geq 0$
- 466 where we denote by a_1 , p_1 , l_1 , respectively by a_2 , p_2 and l_2 the confidence measure
 467 for the previously visited phonemes, the posterior in the current phoneme and
 468 the length in the current phoneme for the path Q_1 , respectively the path Q_2 ,
 469 and we also use the notations $A = a_1 - a_2$, $B = (a_1 - a_2)(l_1 + l_2) + p_1 - p_2$,
 470 $C = (a_1 - a_2)l_1 l_2 + p_1 l_2 - p_2 l_1$, $L = L_{max} - \max\{l_1, l_2\}$, $L_c = -B/2A$ and L_{max} is
 471 the maximum acceptable length for a phoneme,
- 472 • the 'double normalization' confidence measure on HMMs where some paths skip
 473 phonemes is used with a safe pruning that discards a path Q_1 given the existence
 474 of a path Q_2 whenever $l_2 \geq l_1$, $A \geq 0$, $p_1 \geq p_2$ respectively $F_2 \geq F_1$,

475 where F_1 respectively F_2 are the number of visited phonemes for paths Q_1 and
476 Q_2 ,

477 • the 'real fitting' is used with the safe pruning: Q_2 is discarded in favor of another
478 path Q_1 if the confidence measure of the Real Fitting for the previous phonemes
479 is inferior (higher in value) for Q_2 compared with Q_1 , and if $p_1 \leq p_2$ and $l_2 \leq l_1$,
480 where p_1, l_1 , respectively p_2, l_2 represent the minus of the logarithm of the cumu-
481 lated posterior respectively the number of frames in the current phoneme for the
482 path Q_1 respectively Q_2 ,

483 • and besides the previously mentioned safe pruning, heuristic prunings are also
484 used for removing paths when $p > L_{max}P_{max}$ in any state or when $\frac{p}{l} > P_{max}$ at
485 the output from a phoneme,

486 where p and l are the values in the current phoneme for the minus of the logarithm
487 of cumulated posterior and for the length of the path that is discarded.

488 10. (re-presented - formerly dependent claim 6) The method of claim 9, where the method
489 is used to estimate the existence of keywords and their position in utterances, using
490 Hidden Markov Models that model keywords.

491 11. (re-presented - formerly dependent claim 7) The method of claim 9, where the method
492 is used to estimate the existence of biomolecular subsequences and their position in the
493 chains of DNA using hidden Markov models to model the searched subsequences, and
494 where these models can be obtained by trivial translation from generalized profiles.

495 12. (re-presented - formerly dependent claim 8) The method of claim 9, where it carries out

496 the estimation of the existence of objects and their position in images, characterized
497 by the fact that

- 498 • it uses models of objects as subsequences represented by Hidden Markov Models,
- 499 • namely sections through views of objects are modeled by Hidden Markov Models,
- 500 • it uses emission probabilities based on a distance computed between colors, sim-
- 501 ple distances being yield by a Gaussian with median at the target color, or a
- 502 normalized inverse of the Euclidean distance in the RGB space,
- 503 • wherein the Hidden Markov Models that model the objects can be structured of
- 504 distinct regions, that play in the frame of the method the role of the phonemes
- 505 in claim 9,
- 506 • and wherein the models of the objects can be modified in a dynamic manner during
- 507 decoding with respect to the transition properties (existence and probability) on
- 508 the basis of the so far accumulated information in the process.