Applying Data Science Methodology to Discover Business Opportunities in Toronto, Ontario, Canada

Introduction

- Toronto is the provincial capital of Ontario and the most populous city in Canada.
- Some people outside Toronto have plans to invest in the city but they don't know how and where.
 Therefore, this project can be helpful for those who have dreams of having a successful business into the city of Toronto.
- This project analyses the data of Toronto's various neighborhoods in order to discover the best businesses that can be done in each of the respective neighborhoods by doing a cluster analysis.

Data Collecting

Three initial datasets:

- **Neighborhoods**: Data about Toronto's postcodes, boroughs, and neighborhoods.
- Coordinates: Data about the coordinates (latitude and longitude) of various Toronto's neighborhoods.
- Venues: Data about the various types of venues located in each of the neighborhoods represented in the data collected in the above steps.

	Not assigned				ot assigned	N		M2A		1		
	oods	arkwo	Pa				North York			МЗА		2
gitude	Long	ude	titu	La	ode	C	Postal			M4A		3
194353	-79.	686	.806	43	11B	١		0	D	M5A		4
160497	-79.	535	.784	43	11C	١		1				
188711	-79.	573	.763	43	11E	1		2				
216917	-79.	992	.7709	43	I1G	٨		3				
e Category	ude Venu	Longitud	Venue	itude	nue Lati	Ve	Venue	gitude	d Lon	Neighborhood	d Latitude	ighborhood
Park	140	-79.33214		51976	43.7	(Brookbanks Park	.329656	-79		43.753259	
Bus Stop	351	-79.32635		52672	43.7)	TTC stop #8380	.329656	-79		43.753259	
& Drink Shop	114 Food	-79.33311		51974	43.7)	Variety Store	.329656	-79		43.753259	
Hockey Arena	635 H	-79.31563		23481	43.7	ì	Victoria Village Arena	.315572	-79		43.725882	
Coffee Shop	103	-79.31310		25517	43.7	3	Tim Hortons	.315572	-79		43.725882	

Borough

Not assigned

Neighbourhood

Not assigned

Postcode

0

Parkwoods
 Parkwoods
 Parkwoods
 Victoria Village
 Victoria Village

M1A

Data Pre-processing

- For convenience, any row containing Not assigned Borough was dropped. Also, any Not assigned Neighborhood is replaced by the corresponding Borough.
- we prepare Neighborhoods data set to contain latitude and longitude information by using Coordinates data set.
- In order to do the clustering process on the neighborhoods of Toronto, we must first make a dataset that can be fit into a clustering algorithm like KMeans. One approach is to use one-hot encoding to represent each of the returned avenues with the corresponding neighborhoods.

	F	ostcode	Вог	rough		Neighb	orhood	lati	tude '	longitu	de
0		МЗА	Nort		Parkwoods 43.75325		43.753259		3259 -79.3296		
1		M4A	Nort		Victori	a Village	43.72	5882	-79.3155	72	
2		M5A	Downtown T		Hark	oourfront	43.65	4260	-79.3606	36	
3		M6A	North York		L	awrence	Heights	43.71	8518	-79.4647	63
4	4 M6A		Nort	h Vark			e Manor	12 71	Q51Q	-70 /6/7	63
e :0		Neighborhood	Accessories Store	Afghan Restaurant	Airport	Airport Food Court	Airport Gate	Airport Lounge	Airport Service		
	0	Parkwoods	0	0	0	0	0	0	0	0	
	1	Parkwoods	0	0	0	0	0	0	0	0	
	2	Parkwoods	0	0	0	0	0	0	0	0	
	3	Victoria Village	0	0	0	0	0	0	0	0	
	4	Victoria Village	0	0	0	0	0	0	0	0	

Data Pre-processing

We notice that the number of avenues is 4379 of 270 type. For each neighborhood, in order to fit the K-Means algorithm, it's important to know what avenues located in each neighborhood. For this reason we group the one-hot encoded dataset of the avenues by the neighborhood by applying the mean function to represent the importance of each avenue in describing the neighborhood. So the final dataset looks like the following, we will call it toronto_grouped dataset (because of sparsity nature of data, most entries are zero), and it will be the input of our clustering algorithm.

	Neighborhood	Accessories Store	Afghan Restaurant	Airport	Airport Food Court	Airport Gate	Airport Lounge	Airport Service	Airport Terminal	American Restaurant	Ant
0	Adelaide	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.030000	
1	Agincourt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	
2	Agincourt North	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	
3	Albion Gardens	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	
4	Alderwood	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	
	***		***						***	***	
201	Woodbine Heights	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	
202	York Mills	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	
203	York Mills West	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	
204	York University	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	
205	Yorkville	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.047619	
206 rc	ws × 271 columns										

Data Analysis

The 210 neighborhoods of Toronto belong to 11 boroughs and there are 103 distinct postcodes for them.

Data Analysis

There are 4379 venues of 270 types. Different types of restaurants, playgrounds, bars, shops, transportation stations, .. etc. We also notice that venues belong to 206 neighborhoods - 4 neighborhoods less than we have in neighborhoods dataset. This is due to the fact that FourSquare API didn't retrieve any venues for some neighborhoods. However, the number is very small and will not affect the final result that much and we can continue with the dataset we obtained.

Coffee Shop	340
Café	192
Restaurant	119
Pizza Place	112
Bakery	109
Bar	102
Italian Restaurant	91
Park	90
Sandwich Place	79
Hotel	77
Fast Food Restaurant	71
Clothing Store	64
Japanese Restaurant	61
American Restaurant	59
Gym	57
Sushi Restaurant	53
Burger Joint	53
Pharmacy	50
Grocery Store	46
Pub	45

Data Analysis

The various kinds of restaurants dominates the venue list. This is a sign that one of our clusters (the cluster which have the neighborhoods with a large number of restaurants like avenues) will dominate other clusters in number of avenues.

Coffee Shop	340
Café	192
Restaurant	119
Pizza Place	112
Bakery	109
Bar	102
Italian Restaurant	91
Park	90
Sandwich Place	79
Hotel	77
Fast Food Restaurant	71
Clothing Store	64
Japanese Restaurant	61
American Restaurant	59
Gym	57
Sushi Restaurant	53
Burger Joint	53
Pharmacy	50
Grocery Store	46
Pub	45

K-Means Clustering

In order to give people good information about the characteristics of each neighborhood, it's good to cluster the neighborhoods into groups and find the characteristics of each group and try to generalize those characteristics to each neighborhood in the cluster.

We will consider the data frame we built (toronto_grouped) as the input of the K-Means algorithm.

```
# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering)
# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

Result Analysis

Cluster 0 has the biggest number of neighborhoods and venues. This is an indication that Toronto city is very homogeneous in nature of venues (most are some kind of restaurants). However, there are some neighborhoods that belong to other clusters.

Result Analysis

The geographical distribution of different clusters:

Conclusion

Basic clustering process clearly finds that most of Toronto's neighborhoods are homogeneous and don't have that much diversity in the nature of venues.

Perhaps, in the future, more data will result in more diversity, especially if it took into consideration the demographics of those neighborhoods.