20S-MATH61-2 Final exam

CHARLES ZHANG

TOTAL POINTS

48 / 50

QUESTION 1

1 Question 15/5

√ - 0 pts Invalidated.

QUESTION 2

2 Question 2 5/5

√ - 0 pts Invalidated.

QUESTION 3

3 Question 3 (all three parts) 3.5 / 5

- 0 pts Correct
- 1 pts One incorrect answer.
- √ 2 pts Two incorrect answers.
 - 3 pts Three incorrect answers.
- + 0.5 Point adjustment
 - **201 140 = 61.**

1) 8, 2) 93, 3) 61.

QUESTION 4

Question 45 pts

4.1 Part 12/2

- √ 0 pts Correct
 - 1.5 pts Bad probability argument
 - 0.5 pts Minor error
 - 1 pts Counting error

4.2 Part 2 2.5/3

- 0 pts Correct
- √ 1 pts Minor error
 - 2 pts Major error
 - 3 pts Blank
- + 0.5 Point adjustment
 - You should say that it is possible to split up the

set of available numbers into sets of three consecutive in each.

QUESTION 5

5 Question 5 5/5

- √ 0 pts Correct
 - 1 pts Incorrect computation.
- 0.5 pts Solved a different problem.

QUESTION 6

6 Question 6 (all parts) 5/5

- √ 0 pts Correct
 - 1 pts One incorrect graph
 - 2 pts Two incorrect graphs

QUESTION 7

7 Question 7 (all parts) 5 / 5

- √ 0 pts Correct
 - 3 pts Only one correct answer.
 - 2 pts Two incorrect answers.
 - 1 pts One incorrect answer.
 - 4 pts No correct answers.

QUESTION 8

8 Question 8 5 / 5

- √ 0 pts Correct
 - 1 pts Almost there.

QUESTION 9

9 Question 9 5/5

√ - 0 pts Invalidated.

QUESTION 10

10 Question 10 5 / 5

- √ 0 pts Correct
 - 1 pts Minor error

- 2.5 pts Major error
- **5 pts** No answer

QIB: (112x) = 1+2nx, x 2-1/2, N 21 Base Case: x=-1/2, n=1

Inductive Step (taking x for granted):

020/

(1+2(-2)) = 1+2(1)(-2)

Assume: (1+Zx) = 1+20x

Prove: (1+2x)^+1 = 1+2(x+1) x] =

(1+2x)^+1 = (1+2x)(1+2x)^

(1+2x)n+1 = (1+2x)(1+2nx)

(1+2x)n+1 Z 1+2nx+2x+4nx2 -> For any given parameter willing the Constiguists, 1+Znx+Zx+4nx2> 1+Znx+Zx

(1+2x)^+1 > 1+21x+2x +41x2 > 1+21x+2x since 4m2 con't be negative if nzl

:. (1+2x) n+1 = 1+2nx+2x V

By induction, (1+2x)^ = 1+ 2nx for x = -1/2, n=1

1 Question 15/5

✓ - **0** pts Invalidated.

13 dwarves, hobbit, Lizerd = 15 total people - Trelevent)
20 drinks total -> lof each of the Bales, exactly 1 stout

There are 4 16 ways to order their beer

2 Question 2 **5**/**5**

✓ - **0** pts Invalidated.

201 students Q3:

i) Musict Duslness, not French

(i) Not musle or French

121-1AND1-1BNC1+1ANDAC1

blut, find # botal in classes

Ly Now subtract from total

3 Question 3 (all three parts) 3.5/5

- 0 pts Correct
- 1 pts One incorrect answer.
- √ 2 pts Two incorrect answers.
 - 3 pts Three incorrect answers.
- + 0.5 Point adjustment
 - **201 140 = 61.**

1) 8, 2) 93, 3) 61.

i) I Questions, 5 answers each

L7 57 possible answer sheets = # of pigeanholes

Each student is a pigeon

Since there are 125 pigeonholes, and 130 pigeons, it's actually impossible Greach student to have a unique set of answers; some pigeonhales cill contain multiple pigeons, so some ansur sheets will be submitted by multiple pigeons.

Assume the best-case scenario: Every set of I house has 2 consecutive Hs, and then stips a #. In this case, there are 66/3 = 22 groupings of houses/pigranholes, (ii)Each grouping holds 2 houses/1 pigeon. If this were the case, only 44 houses would be accounted for, the 45th would have to fit in a pigeonhole, and there would be 3 consecutive house numbers.

4.1 Part 1 2 / 2

- √ 0 pts Correct
 - **1.5 pts** Bad probability argument
 - **0.5 pts** Minor error
 - 1 pts Counting error

i) I Questions, 5 answers each

L7 57 possible answer sheets = # of pigeanholes

Each student is a pigeon

Since there are 125 pigeonholes, and 130 pigeons, it's actually impossible Greach student to have a unique set of answers; some pigeonhales cill contain multiple pigeons, so some ansur sheets will be submitted by multiple pigeons.

Assume the best-case scenario: Every set of I house has 2 consecutive Hs, and then stips a #. In this case, there are 66/3 = 22 groupings of houses/pigranholes, (ii)Each grouping holds 2 houses/1 pigeon. If this were the case, only 44 houses would be accounted for, the 45th would have to fit in a pigeonhole, and there would be 3 consecutive house numbers.

4.2 Part 2 2.5 / 3

- 0 pts Correct
- √ 1 pts Minor error
 - 2 pts Major error
 - 3 pts Blank

+ 0.5 Point adjustment

You should say that it is possible to split up the set of available numbers into sets of three consecutive in each.

5 Question 5 5 / 5

- ✓ 0 pts Correct
 - 1 pts Incorrect computation.
 - **0.5 pts** Solved a different problem.

¿a,b,c,d,a} is a Hamiltonian cycle, a and chauc and degrees,

(111)

¿a,b,c,e,d,c,a} is an Euler cycle. Any cycle in this graph will intersect u/ c multiple times, so there is no Hamiltonian cycle.

Hamiltonian cycles require all vertices to hore >1 degree.

Ever cycles require all vertices to have an even degree.

The degree of both vertices here is I, so neither type of cycle can exist.

6 Question 6 (all parts) 5/5

- ✓ 0 pts Correct
 - 1 pts One incorrect graph
 - 2 pts Two incorrect graphs

B= [Oning Oning] A is ning

Connected: every verter has a path

to overso other vertex

(*) True -> The graph must be disconnected since some vertices will be adjacent to them

(i) False -> 3(8) -> 3 0 (iii) False -> 3(8) 17 -> 3 0, A=1(2) -> 06 -> dff. graphs

7 Question 7 (all parts) 5 / 5

√ - 0 pts Correct

- **3 pts** Only one correct answer.
- 2 pts Two incorrect answers.
- 1 pts One incorrect answer.
- 4 pts No correct answers.

V= ξ(ρ, Γ), (ρ, Σ), (ρ, χ), (ρ, χ), (α, χ), (

8 Question 8 **5** / **5**

- √ 0 pts Correct
 - 1 pts Almost there.

	×	ام کے	C	2	×	f.	7 9	25	1	i	× Z
a	Oa	4a	Sa	Ø,	la	009	009	69	000	1 0°a	M
e	04	40	On	Oa	la	7 _e	Og	6a	009	Oa	on a
6	Óa	40	56	DO _a	la	7e	Oa	6,	0,	000	50
C	09	44	56	119	la	7e	og	62	∞,	OQ4	RS
h	00	Ua.	27	lla	ls	7c	Ø4	64	144	OO _a	T9
f	Oa	. Ya	5b	Na	la	7e	12f	64	dt	00,	DA.
1	64	44	55	119	19	70	10;	601	9f	121	2000
2	04	41	56	lla	19	70	10;	69	96	12;	119
8	Da	49	55	119	19	7e	(0.	6-1	96	12,	110
2	64	Ua	16	119	19	70	10	60	76	(2;	110
i											

The path 2a, e, f, i, j3 has nin. length 12

9 Question 9 **5** / **5**

√ - 0 pts Invalidated.

GIOD:

e=34

v= 13

f= e-u+2

7 each edge belongs to at most

It's known that Ze Z # of edge that bound faces

At best: a cycle is 3 edges (graph is simple, no purallel

Therefore, each face is bounded by at least 3 edges

Therefore, Ze = 3f

Assuming planarity:

2e Z 3(e-u+2)

2e = 3e - 3v + 6

68 = 102 - 39+6

68 = 69 is false

Dy contradiction, a simple connected graph with 34 edges and 13 vertices cannot be planar

10 Question 10 5 / 5

- √ 0 pts Correct
 - 1 pts Minor error
 - 2.5 pts Major error
 - **5 pts** No answer