

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Code : P18CS35 | Semester : 3 | L :T:P:H : 4:0:0:4 | Credits: 3 |

Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs | Weightage : CIE:50%, SEE:50%

Course Content

Unit-1

Fundamentals of Logic: Truth Tables, Logic Equivalence – The Laws of Logic, Logical Implication – Rules of Inference. The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems.

Self Study Component : Basic Connectives, proofs of theorems

10 Hours

Unit-2

Properties of the Integers: Mathematical Induction, The Well Ordering Principle – Mathematical Induction, Recursive Definitions. The Division Algorithm:Prime numbers. Fundamental Permutations, Combinations – The Binomial Theorem, Combinations with Repetition.

Self Study Component : Principles of Counting: The Rules of Sum and Product

10 Hours

Unit-3

Relations and Functions: Relations, Functions – Plain and One-to-One, Onto Functions. The Pigeon-hole Principle, Function Composition and Inverse Functions. Properties of Relations. Computer Recognition – Zero-One Matrices and Directed Graphs, Partial Orders – Hasse Diagrams, Equivalence Relations and Partitions.

Self Study Component : Cartesian Product and Relations

11 Hours

Unit-4

The Principle of Inclusion and Exclusion: The Principle of Inclusion and Exclusion, Generalizations of the Principle, Derangements – Nothing is in its Right Place, Rook Polynomials.Arrangement with forbidden position.

Recurrence Relations: First Order Linear Recurrence Relation, The Second Order Linear Homogeneous Recurrence Relation with Constant Coefficients.

Self Study Component: Addition Principle

10 Hours

Unit-5

Introduction to Graph Theory: Definitions and Examples, Sub graphs, Complements, and Graph Isomorphism, Vertex Degree, Euler Trails and Circuits ,Planar graphs. Trees: Definitions, Properties, and Examples, Routed Trees, Trees and Sorting, Weighted Trees and Prefix Codes

Self Study Component : Graph colouring and chromatic polynomials

11 Hours

Text Book:

1. Ralph P. Grimaldi: Discrete and Combinatorial Mathematics, 5th Ed, Pearson Ed. 2004

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Reference Books:

- 1. Basavaraj S Anami and Venakanna S Madalli: Discrete Mathematics A Concept based approach, Universities Press, 2016 2.
- 2. Kenneth H. Rosen: Discrete Mathematics and its Applications, 6th Edition, McGraw Hill, 2007.
- 3. Jayant Ganguly: A Treatise on Discrete Mathematical Structures, Sanguine-Pearson, 2010.
- 4. D.S. Malik and M.K. Sen: Discrete Mathematical Structures: Theory and Applications, Thomson, 2004. 5. Thomas Koshy: Discrete Mathematics with Applications, Elsevier, 2005, Reprint 2008.

Course outcomes:

After studying this course, students will be able to:

- 1. Verify the correctness of an argument using propositional and predicate logic
- 2. **Demonstrate** the ability to solve problems using counting techniques and combinatorics in the context of discrete probability.
- 3. **Solve** problems involving recurrence relations.
- 4. **Construct** proofs using direct proof, proof by contraposition, proof by contradiction, and proof by cases, and mathematical induction.
- 5. **Ability** to Explain and distinguish graphs and their properties.

CO-PO Mapping

Semest	ter: 3	3 Course code: P18CS35								Title: Discrete Mathematical								
									Structures									
CO		Statement	PO	PO		PO	PO	PO	PO		PO		PO	l	PO			
			1	2	3	4	5	6	7	8	9	10	11	12	S1	S2		
CO	Verify the correctness of an		3	3	1							3				2		
305.1	argument using propositional and predicate logic.																	
CO	Demonstrate the ability to		3	2	2							2			2	2		
305.2	solve problems using counting																	
	techniques and combinatorics																	
	in the context of discrete																	
	probability.																	
CO	Solve problems involving		3	2	2							2				2		
305.3	recurrence relations																	
CO	Construct proofs using direct 3 proof, proof by contraposition,		2							2				2				
305.4																		
	proof b	y contradiction, proof																
		es, and mathematical																
	-	induction																
CO	Ability	to Explain and	3	2	2							2			2	2		
305.5	distinguish graphs and their																	
	propert	properties.																