Agenda

2. Lineare Optimierung

- 2.1 Modellbildung
- 2.2 Graphische Losun
- 2.3 Primaler Simplex
- 2.4 Dualer Simplex

2.5 Sonderfälle

- 2.6 Dualität
- 2.7 Sensitivitätsanalvse
- 2.8 Multikriterielle Optimierun

LP-Sonderfälle – Keine zulässige Lösung

► Es gibt keinen Bereich, in dem sich alle Halbebenen überlappen

LP-Sonderfälle – Keine zulässige Lösung

 Es gibt keinen Bereich, in dem sich alle Halbebenen überlappen

- Pivotzeile des dualen Simplex enthält nur positive Einträge (null und positive Werte)
- ► Es existiert keine zulässige Basislösung

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	b _i
<i>X</i> ₁	1	1	0	-1	0	0	2
<i>X</i> ₅	0	0	1	1	- 1	0	-1
<i>x</i> ₆	0	3	2	1 0	0	1	5
Z_j		2	9	-5	0		10

LP-Sonderfälle - Unbeschränktheit

- ▶ Pivotspalte des primalen Simplex enthält nur nicht positive Einträge (null und negative Werte)
- ► Es existieren mehrere zulässige Basislösungen
- ► Es lässt sich keine optimale Lösung angeben

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	bi
<i>X</i> 3	2	0	1	-1	0	70
<i>X</i> ₂	1	1	0	0	0	50
<i>X</i> 5	3	0	0	-1	1	10
Zj	0	0	0	-1	0	-50

-171 -

LP-Sonderfälle - Redundanz

LP-Sonderfälle – Redundanz

Das Problem besitzt eine redundante Nebenbedingung. Eine $\leq (\geq)$ -Nebenbedingung ist redundant, wenn eine Linearkombination anderer $\leq (\geq)$ -Nebenbedingungen die selbe linke Seite und eine kleinere (größere) rechte Seite besitzt.

- ➤ Sind in einer Zeile im zulässigen Simplextableau alle Koeffizienten a_{ij} ≤ 0 (ausgenommen der Einheitsvektoren), so beschreibt diese Zeile eine redundante Nebenbedingung.
- Die Schlupfvariable der redundanten Nebenbedingung bleibt bei Anwendung des primalen Simplex stets mit nicht-negativem Wert in der Basis und kann nicht eliminiert werden, ohne dass die Basis unzulässig wird.

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	b _i
<i>X</i> ₁	1	0	1	0	1	1
X ₄	0	0	-1	1	0	1
<i>X</i> ₂	0	1	0	0	1	1
Zi	0	0	1	0	1	2

LP-Sonderfälle – Primale Degeneration

LP-Sonderfälle – Primale Degeneration

Spezieller Fall der Redundanz: $\operatorname{Im} \mathbb{R}^n$ schneiden sich mindestens n+1 Nebenbedingungen in einem Punkt (mathematisch exakt: die von ihnen erzeugten Hyperebenen)

ightharpoonup Ein $b_i = 0$, d. h. eine BV ist gleich null

Ein Simplexschritt mit dieser Zeile als Pivotzeile bewirkt:

- ▶ eine andere Basis aber
- Werte der Strukturvariablen und somit der Zielfunktionswert bleiben unverändert
- ► Es existiert weiterhin eine rechte Seite mit dem Wert null.

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	b_i
<i>X</i> ₂	0	1	2/3	0	-1/3	2
X_4	0	0	-1/3	1	-4/3	0
<i>X</i> ₁	1	0	-1/3	0	-1/3 -4/3 2/3	2
Z_j	0	0	1/3	0	1/3	4

LP-Sonderfälle – Duale Degeneration

LP-Sonderfälle – Duale Degeneration

Es gibt in der Optimallösung mindestens eine NBV mit $z_j = 0$ Ein Simplexschritt mit dieser Spalte als Pivotspalte bewirkt:

- ▶ eine andere optimale Lösung als zuvor
- ► aber mit gleichem Zielfunktionswert
- ► Es existieren also mehrere optimale Basislösungen.

		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>x</i> ₆	b_i
	<i>X</i> ₆	0	1	0	4	2	1	4
	<i>X</i> ₃	0	-1	1	-2	-1	0	3
	<i>X</i> ₁	1	3	0	3	1	0	10
_	z_j	0	7	0	X ₄ 4 -2 3 4	0	0	52