4M x 4-Bit Dynamic RAM

HYB5117400BJ -50/-60/-70 HYB5117400BT -50/-60/-70

Advanced Information

- 4 194 304 words by 4-bit organization
- 0 to 70 °C operating temperature
- Performance:

		-50	-60	-70	
tRAC	RAS access time	50	60	70	ns
tCAC	CAS access time	13	15	20	ns
t _{AA}	Access time from address	25	30	35	ns
t _{RC}	Read/Write cycle time	90	110	130	ns
t _{PC}	Fast page mode cycle time	35	40	45	ns

- Single + 5 V (± 10 %) supply
- · Low power dissipation

max. 660 active mW (-50 version)

max. 605 active mW (-60 version)

max. 550 active mW (-70 version)

11 mW standby (TTL)

5.5. mW standby (MOS)

- · Output unlatched at cycle end allows two-dimensional chip selection
- Read, write, read-modify-write, CAS-before-RAS refresh, RAS-only refresh, hidden refresh, self refresh and test mode
- · Fast page mode capability
- · All inputs, outputs and clocks fully TTL-compatible
- 2048 refresh cycles / 32 ms
- Plastic Package: P-SOJ-26/24 300 mil

P TSOPII-26/24 300 mil

The HYB 5117400BJ/BT is a 16MBit dynamic RAM organized as 4194304 words by 4-bits. The HYB 5117400BJ/BT utilizes a submicron CMOS silicon gate process technology, as well as advanced circuit techniques to provide wide operating margins, both internally and for the system user. Multiplexed address inputs permit the HYB 5117400BJ/BT to be packaged in a standard SOJ 26/24 or TSOPII-26/24 plastic package, both with 300 mil width. These packages provide high system bit densities and are compatible with commonly used automatic testing and insertion equipment. System-oriented features include single + 5 V (\pm 10 %) power supply, direct interfacing with high-performance logic device families such as Schottky TTL.

Ordering Information

Туре	Ordering Code	Package	Descriptions
HYB 5117400BJ-50	Q67100-Q1086	P-SOJ-26/24 300 mil	DRAM (access time 50 ns)
HYB 5117400BJ-60	Q67100-Q1087	P-SOJ-26/24 300 mil	DRAM (access time 60 ns)
HYB 5117400BJ-70	Q67100-Q1088	P-SOJ-26/24 300 mil	DRAM (access time 70 ns)
HYB 5117400BT-50	on request	P-TSOPII-26/24 300mil	DRAM (access time 50 ns)
HYB 5117400BT-60	on request	P-TSOPII-26/24 300mil	DRAM (access time 60 ns)
HYB 5117400BT-70	on request	P-TSOPII-26/24 300mil	DRAM (access time 70 ns)

Pin Names

A0 to A10	Row Address Inputs
A0 to A10	Column Address Inputs
RAS	Row Address Strobe
OE	Output Enable
I/O1-I/O4	Data Input/Output
CAS	Column Address Strobe
WE	Read/Write Input
$\overline{V_{\mathtt{CC}}}$	Power Supply (+ 5 V)
$\overline{V_{\mathtt{SS}}}$	Ground (0 V)
N.C.	not connected

Pin Configuration

Block Diagram

Absolute Maximum Ratings

Operating temperature range	0 to 70 °C
Storage temperature range	55 to 150 ℃
Input/output voltage	0.5 to min (Vcc+0.5,7.0) V
Power supply voltage	1.0V to 7.0 V
Power dissipation	1.0 W
Data out current (short circuit)	50 mA

Note:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm SS}$ = 0 V, $V_{\rm CC}$ = 5 V \pm 10 %; $t_{\rm T}$ = 5 ns

Parameter	Symbol	Limit	Values	Unit	Test
		min.	max.		Condition
Input high voltage	V_{IH}	2.4	Vcc+0.5	V	1)
Input low voltage	V_{IL}	- 0.5	0.8	V	1)
Output high voltage ($I_{OUT} = -5 \text{ mA}$)	V_{OH}	2.4	_	V	1)
Output low voltage ($I_{OUT} = 4.2 \text{ mA}$)	V_{OL}	_	0.4	V	1)
Input leakage current (0 V \leq $V_{\rm IH} \leq$ Vcc + 0.3V, all other pins = 0 V)	$I_{I(L)}$	– 10	10	μΑ	1)
Output leakage current (DO is disabled, $0 \text{ V} \le V_{\text{OUT}} \le \text{Vcc} + 0.3 \text{V}$)	$I_{O(L)}$	– 10	10	μΑ	1)
Average $V_{\rm CC}$ supply current: -50 ns version -60 ns version -70 ns version (RAS, CAS, address cycling: $t_{\rm RC} = t_{\rm RC}$ min.)	I_{CC1}	- - -	120 110 100	mA mA mA	2) 3) 4) 2) 3) 4) 2) 3) 4)
Standby V_{CC} supply current (RAS = CAS = V_{IH})	$I_{\rm CC2}$	_	2	mA	_
Average $V_{\rm CC}$ supply current, during $\overline{\rm RAS}$ -only refresh cycles: -50 ns version -60 ns version -70 ns version $\overline{\rm (RAS\ cycling,\ \overline{CAS}=V_{\rm l,H,}\ \it t_{\rm RC}=\it t_{\rm RC}\ min.)}$	I_{CC3}	- - -	120 110 100	mA mA mA	2) 4) 2) 4) 2) 4)

DC Characteristics (cont'd)

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm SS}$ = 0 V, $V_{\rm CC}$ = 5 V \pm 10 %; $t_{\rm T}$ = 5 ns

Parameter		Symbol	Lim	it Values	Unit	Test
			min.	max.		Condition
Average $V_{\rm CC}$ supply current during fast page mode: $(\overline{\rm RAS} = V_{\rm IL}, \overline{\rm CAS}, {\rm address})$	-50 ns version -60 ns version -70 ns version	I_{CC4}	- - -	40 35 30	mA mA mA	2) 3) 4) 2) 3) 4) 2) 3) 4)
Standby V_{CC} supply currer (RAS = CAS = V_{CC} – 0.2 V		$I_{\rm CC5}$	_	1	mA	1)
Average V_{CC} supply currer before-RAS refresh mode: $(\overline{RAS}, \overline{CAS} \text{ cycling: } t_{RC} = t)$: -50 ns version -60 ns version -70 ns version	$I_{\rm CC6}$	- - -	120 110 100	mA mA mA	2) 4) 2) 4) 2) 4)
Average Self Refresh Cur (CBR cycle with tRAS>TRASS WE=Vcc-0.2V, Address and D	Smin., CAS held low,	I _{CC7}	_	1	mA	

Capacitance

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 5 V \pm 10 %, f = 1 MHz

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Input capacitance (A0 to A10)	C_{11}	_	5	pF
Input capacitance (RAS, CAS, WE, OE)	C_{12}	_	7	pF
I/O capacitance (I/O1-I/O4)	C_{IO}	_	7	pF

16F

SIEMENS

AC Characteristics 5)6)

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 5 V \pm 10 %, $t_{\rm T}$ = 5 ns

Parameter	Symbol	Limit Values							Note
		-4	50	-(60	-70		=	
		min.	max.	min.	max.	min.	max.		
common parameters		•	1	•	•		•	•	
Random read or write cycle time	t_{RC}	90	_	110	_	130	_	ns	
RAS precharge time	t_{RP}	30	_	40	_	50	_	ns	
RAS pulse width	t _{RAS}	50	10k	60	10k	70	10k	ns	
CAS pulse width	t_{CAS}	13	10k	15	10k	20	10k	ns	
Row address setup time	t _{ASR}	0	_	0	_	0	_	ns	
Row address hold time	t _{RAH}	8	_	10	_	10	_	ns	
Column address setup time	t _{ASC}	0	_	0	_	0	_	ns	
Column address hold time	t _{CAH}	10	_	15	_	15	_	ns	
RAS to CAS delay time	t_{RCD}	18	37	20	45	20	50		
RAS to column address delay time	t_{RAD}	13	25	15	30	15	35	ns	
RAS hold time	t_{RSH}	13		15	_	20	_	ns	
CAS hold time	t_{CSH}	50		60	_	70	_	ns	
CAS to RAS precharge time	t_{CRP}	5	_	5	_	5	_	ns	
Transition time (rise and fall)	t_{T}	3	50	3	50	3	50	ns	7
Refresh period	t_{REF}	_	32	_	32	_	32	ms	

Read Cycle

-									
Access time from RAS	t_{RAC}	_	50	_	60	_	70	ns	8, 9
Access time from CAS	t_{CAC}	-	13	_	15	_	20	ns	8, 9
Access time from column address	t_{AA}	_	25	_	30	_	35	ns	8,10
OE access time	t_{OEA}	-	13	_	15	_	20	ns	
Column address to RAS lead time	t_{RAL}	25	_	30	_	35	_	ns	
Read command setup time	t_{RCS}	0	_	0	_	0	_	ns	
Read command hold time	t_{RCH}	0	_	0	_	0	_	ns	11
Read command hold time referenced to RAS	t _{RRH}	0	_	0	_	0	_	ns	11
CAS to output in low-Z	t_{CLZ}	0	_	0	_	0	_	ns	8
Output buffer turn-off delay	t_{OFF}	0	13	0	15	0	20	ns	12

16F

SIEMENS

AC Characteristics (cont'd) 5)6)

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 5 V \pm 10 %, $t_{\rm T}$ = 5 ns

Parameter	Symbol	Limit Values							Note
		-50		-60		-70			
		min.	max.	min.	max.	min.	max.		
Output buffer turn-off delay from OE	t_{OEZ}	0	13	0	15	0	20	ns	12
Data to OE low delay	t_{DZO}	0	_	0	_	0	_	ns	13
CAS high to data delay	t_{CDD}	13	_	15	_	20	_	ns	14
OE high to data delay	t_{ODD}	13	_	15	_	20	_	ns	14

Write Cycle

-									
Write command hold time	t_{WCH}	8	_	10	_	10	_	ns	
Write command pulse width	t_{WP}	8	_	10	_	10	_	ns	
Write command setup time	t_{WCS}	0	_	0	_	0	_	ns	15
Write command to RAS lead time	t_{RWL}	13	_	15	_	20	_	ns	
Write command to CAS lead time	t_{CWL}	13	_	15	_	20	_	ns	
Data setup time	t_{DS}	0	_	0	_	0	_	ns	16
Data hold time	t_{DH}	10	_	10	_	15	_	ns	16
Data to CAS low delay	t_{DZC}	0	_	0	_	0	_	ns	13

Read-Modify-Write Cycle

Read-write cycle time	t_{RWC}	126	_	150	_	180	_	ns	
RAS to WE delay time	t_{RWD}	68	_	80	_	95	_	ns	15
CAS to WE delay time	$t_{\sf CWD}$	31	_	35	_	45	_	ns	15
Column address to WE delay time	t_{AWD}	43	_	50	_	60	_	ns	15
OE command hold time	t_{OEH}	13	_	15	_	20	_	ns	

Fast Page Mode Cycle

Fast page mode cycle time	t_{PC}	35	_	40	_	45	_	ns	
CAS precharge time	$t_{\sf CP}$	10	_	10	-	10	_	ns	
Access time from CAS precharge	t_{CPA}	_	30	_	35	_	40	ns	7
RAS pulse width	t_{RAS}	50	200k	60	200k	70	200k	ns	
CAS precharge to RAS Delay	t_{RHPC}	30	_	35	_	40	_	ns	

16F

SIEMENS

AC	Characteristics	(cont'd)	5)6)
AC	Characteristics	(cont d)	-,-

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 5 V \pm 10 %, $t_{\rm T}$ = 5 ns

Parameter	Symbol	Limit Values							Note		
		-4	-50 -60		-70						
		min.	max.	min.	max.	min.	max.				
Fast Page Mode Read-Modify-Write Cycle											
Fast page mode read-write cycle time	t_{PRWC}	71	_	80	_	95	_	ns			
CAS precharge to WE	$t_{\sf CPWD}$	48	_	55	_	65	_	ns			

CAS-before-RAS Refresh Cycle

CAS setup time	$t_{\rm CSR}$	10	_	10	_	10	_	ns	
CAS hold time	t_{CHR}	10	_	10	_	10	_	ns	
RAS to CAS precharge time	t_{RPC}	5	_	5	-	5	_	ns	
Write to RAS precharge time	t_{WRP}	10	_	10	_	10	_	ns	
Write hold time referenced to RAS	t_{WRH}	10	_	10	_	10	_	ns	

CAS-before-RAS Counter Test Cycle

CAS precharge time	t_{CPT}	35	1	40	_	40	_	ns	
--------------------	-----------	----	---	----	---	----	---	----	--

Test Mode

CAS hold time	t_{CHRT}	30	_	30	_	30	_	ns	
Write command setup time	t_{WTS}	10	_	10	_	10	_	ns	
Write command hold time	t_{WTH}	10	_	10	_	10	_	ns	

Self Refresh Cycle

RAS pulse width	t_{RASS}	100k	_	100k	_	100k	_	ns	17
RAS precharge time	t_{RPS}	95	_	110	_	130	_	ns	17
CAS hold time	t_{CHS}	-50	_	-50	_	-50	_	ns	17

Notes:

- 1) All voltages are referenced to VSS.
- 2) ICC1, ICC3, ICC4 and ICC6 depend on cycle rate.
- 3) ICC1 and ICC4 depend on output loading. Specified values are measured with the output open.
- 4) Address can be changed once or less while $\overline{RAS} = VIL$. In the case of ICC4 it can be changed once or less during a fast page mode cycle (tPC).
- 5) An initial pause of 200 μs is required after power-up followed by 8 RAS cycles of which at least one cycle has to be a refresh cycle, before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- 6) AC measurements assume tT = 5 ns.
- 7) VIH (min.) and VIL (max.) are reference levels for measuring timing of input signals. Transition times are also measured between VIH and VIL.
- 8) Measured with a load equivalent to 2 TTL loads and 100 pF.
- 9) Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point only: If tRCD is greater than the specified tRCD (max.) limit, then access time is controlled by tCAC.
- 10)Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point only: If tRAD is greater than the specified tRAD (max.) limit, then access time is controlled by tAA.
- 11) Either tRCH or tRRH must be satisfied for a read cycle.
- 12)tOFF (max.) and tOEZ (max.) define the time at which the outputs achieve the open-circuit condition and are not referenced to output voltage levels.
- 13) Either tDZC or tDZO must be satisfied.
- 14) Either tCDD or tODD must be satisfied.
- 15)tWCS, tRWD, tCWD, tAWD and tCPWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If tWCS > tWCS (min.), the cycle is an early write cycle and the I/O pin will remain open-circuit (high impedance) through the entire cycle; if tRWD > tRWD (min.), tCWD > tCWD (min.), tAWD > tAWD (min.) and tCPWD > tCPWD (min.), the cycle is a read-write cycle and I/O pins will contain data read from the selected cells. If neither of the above sets of conditions is satisfied, the condition of the I/O pins (at access time) is indeterminate.
- 16)These parameters are referenced to the \overline{CAS} leading edge in early write cycles and to the \overline{WE} leading edge in read-write cycles.
- 17)When using Self Refresh mode, the following refresh operations must be performed to ensure proper DRAM operation:

If row addresses are being refreshed on an evenly distributed manner over the refresh interval using CBR refresh cycles, then only one CBR cycle must be performed immediately after exit from Self Refresh.

If row addresses are being refreshed in any other manner (ROR - Distributed/Burst; or CBR-Burst) over the refresh interval, then a full set of row refreshes must be performed immediately before entry to and immediately after exit from Self Refresh.

Read Cycle

Write Cycle (Early Write)

Write Cycle (OE Controlled Write)

Read-Write (Read-Modify-Write) Cycle

Fast Page Mode Read Cycle

Fast Page Mode Early Write Cycle

Fast Page Mode Read-Modify-Write Cycle

RAS-Only Refresh Cycle

CAS-Before-RAS Refresh Cycle

Hidden Refresh Cycle (Read)

Hidden Refresh Cycle (Early Write)

CAS before **RAS** Self Refresh Cycle

CAS-Before-RAS Refresh Counter Test Cycle

Test Mode Entry

Test Mode

As the HYB 5117400BJ/BT is organized internally as 1M x 16-bits, a test mode cycle using 4:1 compression can be used to improve test time. Note that in the 4M x 4 version the test time is reduced by 1/4 for a N test pattern.

In a test mode "write" the data from each I/O pin is written into four 1M blocks simultaneously (all "1" s or all "0" s). In test mode "read" each I/O output is used for indicating the test mode result. If the internal four bits are equal, the I/O would indicate a "1". If they were not equal, the I/O would indicate a "0". The WCBR cycle ($\overline{\text{WE}}$, $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$) puts the device into test mode. To exit from test mode, a " $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh", " $\overline{\text{RAS}}$ only refresh" or "Hidden refresh" can be used.Refresh during test mode operation can be performed by normal read cycles or by WCBR refresh cycles.

Row addresses A0 through A9 have to kept high to perform a testmode entry cycle. All other addresses are don't care.

Block Diagram in Test Mode

Package Outlines

Plastic Package P-SOJ-26/24 (300 mil) (Small Outline J-leads, SMD)

1) Does not include plastic or metal protrusion of 0.15 max per side

