

Проверить, идет ли запись!

Правила вебинара

Активно участвуем

Задаем вопрос в чат или голосом

Off-topic обсуждаем в Slack #канал группы или #general

Вопросы вижу в чате, могу ответить не сразу

Маршрут вебинара

Цели вебинара После занятия вы сможете

использовать automl фреймворки для решения data science задач

2 улучшить текущие решения с помощью подбора гиперпараметров

Смысл Зачем вам это уметь

использовать в соревнованиях и хакатонах

у использовать на работе

Определение AutoML

Let:

$$\{A^{(1)},A^{(2)},\ldots,A^{(n)}\}$$
 be a set of algorithms (operators)

$$\Lambda^{(i)} = \lambda_1 \times \lambda_2 \times \ldots \times \lambda_m$$
 be the hyperparameter space for $A^{(i)}$

 $\mathcal A$ be the space of possible *architectures* of one or more algorithms

$$\Lambda_{\mathcal{A}} = \Lambda^{(1)} \times \Lambda^{(2)} \times \ldots \times \Lambda^{(m)}$$
 its combined configuration space

$$\lambda \in \Lambda_{\mathscr{A}}$$
 a specific *configuration* (of architecture and hyperparameters)

$$\mathscr{L}(\pmb{\lambda}, D_{train}, D_{valid})$$
 the loss of the model created by $\pmb{\lambda}$, trained on data D_{train} , and validated on data D_{valid}

Find the configuration that minimizes the expected loss on a dataset ${\mathscr D}$:

$$\lambda^* = \underset{\lambda \in \Lambda_{\mathcal{A}}}{\operatorname{argmin}} \mathbb{E}_{(D_{train}, D_{valid}) \sim \mathcal{D}} \mathcal{L}(\lambda, D_{train}, D_{test})$$

1

Типы гиперпараметров

- Непрерывные (e.g. learning rate, SVM_C,...)
- Целочисленные (e.g. number of hidden units, number of boosting iterations,...)
- Категориальные
 - o e.g. choice of algorithm (SVM, RandomForest, Neural Net,...) •
 - e.g. choose of operator (Convolution, MaxPooling, DropOut,...)
 - o e.g. activation function (ReLU, Leaky ReLU, tanh,...)
- Conditional
 - o e.g. SVM kernel if SVM is selected, kernel width if RBF kernel is selected
 - e.g. Convolution kernel size if Convolution layer is selected

Архитектура vs гиперпараметры

- Поиск архитектуры: поиска в пространстве всех возможных архитектур
 - Pipelines: Fixed predefined pipeline, grammars, genetic programming, planning, Monte-Carlo Tree Search
 - Neural architectures
- Оптимизация гиперпараметров:
 - Optimization: grid/random search, Bayesian optimization, evolution, multi-armed bandits, gradient descent (only NNs)
 - Meta-learning
- Могут решаться последовательно, одновременно или чередоваться

Pipeline search: генетическое программирование

Crossover

(TPOT)

Tree-based pipeline optimization

 Инициализируем рандомные пайплайны, оцениваем, лучшие в каждом поколении будут совершать cross-over или мутировать

 GP примитивы включают копирование данных и объединение фичей

 Multi-objective optimization: accurate but short

• Легко распараллелить

Mutation

change

insert

Pipeline search: генетическое программирование

- Asynchronous evolution (GAMA)
 - Не обязательно дожидаться оценивая каждого пайплайна в поколении
 - GAMA позволяет менять стратегию поиска, добавлять ассамблирование пайплайнов в качестве пост-процессинга и визуализировать процесс оптимизации

Pipeline search: Monte Carlo Tree Search

- Use MCTS to search for optimal pipelines
 - Optimize the structure and hyperparameters simultaneously by building a surrogate model to predict configuration performance
 - o Bayesian surrogate model: MOSAIC
 - Neural network: <u>AlphaD3M</u>

Оптимизация гиперпараметров (НРО)

7

HPO: grid and random search

Random Layout

Important parameter

HPO: Bayesian Optimization

- Начинаем с нескольких случайных наборов гиперпараметров
- Строим суррогатную модель, предсказывающую качество на остальных конфигурациях: mean and standard deviation (синяя полоса)
 - о Любая вероятностная регрессионная модель: e.g. Gaussian processes
- Выбор следующей точки осуществляем с помощью функции предпочтения, e.g. Expected Improvement (EI)

HPO: Bayesian Optimization

HPO: Tree of Parzen Estimators

- 1. Начинаем с нескольких случайных наборов гиперпараметров
- 2. Отделяем хорошие and плохие hyperparameters
- 3. Делаем непараметрическую оценку плотности распределений $p(\lambda = good)$ и $p(\lambda = bad)$
- 4. Сэмплируем с наибольшим отношением $p(\lambda = good) / p(\lambda = bad)$

Efficient, parallelizable, robust, but less sample efficient than GPs

HyperBand

- Create several buckets, each having n randomly generated hyperparameter configurations, each configuration using r resources (e.g., epoch number, batch number).
- After the n configurations are finished, it chooses the top n/eta configurations and runs them using increased r^*eta resources.
- At last, it chooses the best configuration it has found so far.

	s = 4		s =	3	s = 2		
i	n_i	r_i	n_i	r_i	n_i	r_i	
0	81	1	27	3	9	9	
1	27	3	9	9	3	27	
2	9	9	3	27	1	81	
3	3	27	1	81			
4	1	81					

Pipeline search: параметризированный пайплайн

- Вводим conditional гиперпараметры
- Combined Algorithm Selection and Hyperparameter optimization (CASH):

Auto-Sklearn

- Parameterized pipeline
 - o 15 classifiers, 16 feature preprocessing methods and numerous data preprocessing methods
- Bayesian Optimization (RF)
- Ensembling
- warm-start
 - from k nearest datasets, where the distance between datasets is defined as the L1 distance on meta-features

BO-HB и Hyperopt-Sklearn

- Hyperopt-Sklearn
 - o Parameterized pipeline
 - Tree of Parzen Estimators
- BO-HB
 - Parameterized pipeline
 - Tree of Parzen Estimators
 - Ensembling
 - Hyperband

AutoGluon (Tabular)

Data preparation:

- Для категориальных признаков создаются эмбеддинги
- N-gram features для текстовых признаков
- Date/time features приводятся в числовой вид
- Пропущенные значения заполняются средним (числовые) или отдельной категорией
- Числовые признаки нормализуются

AutoGluon (Tabular)

Model considered:

Models include

- neural networks
- LightGBM boosted trees
- CatBoost boosted trees
- Random Forests
- Extremely Randomized Trees

Model ensemble:

multiple base models, whose outputs are concatenated and then fed into the next layer, which itself consists of multiple stacker models

H20 AutoML

Model considered:

- three pre-specified XGBoost GBM models
- fixed grid of GLMs
- default Random Forest (DRF)
- five pre-specified H2O GBMs
- near-default Deep Neural Net
- Extremely Randomized Forest (XRT)
- random grid of XGBoost GBMs
- random grid of H2O GBMs
- random grid of Deep Neural Nets.

Model ensemble:

H2O AutoML trains two **Stacked** Ensemble models:

- один ансамбль содержит все модели
- второй содержит только лучшую модель из

класса/семейства

H20 AutoML

model_id	auc	loglos s	aucpr	mean_per_cla ss_error	rmse	mse	training_ti me_ms	predict_time_per _row_ms
StackedEnsemble_AllModels_AutoML_201 91213_174603	0.7898 44	0.5510 67	0.8046 72	0.314665	0.4320 45	0.1866 63	924	0.05695
StackedEnsemble_BestOfFamily_AutoML_ 20191213_174603	0.7897 68	0.5509 06	0.8056 96	0.313059	0.4319 77	0.1866 04	639	0.024567
XGBoost_grid1_AutoML_20191213_174 603_model_4	0.7846 98	0.5568 1	0.8031	0.323143	0.4347 43	0.1890 02	3092	0.002083
XGBoost_3_AutoML_20191213_174603	0.7842 32	0.5577 49	0.8023 41	0.317933	0.4349 76	0.1892 04	2878	0.002173
XGBoost_2_AutoML_20191213_174603	0.7835 33	0.5559 97	0.8031 89	0.32475	0.4346 78	0.1889 45	4635	0.003292
XGBoost_grid1_AutoML_20191213_174 603_model_3	0.7825 82	0.5602 18	0.8007 49	0.34334	0.4359 44	0.1900 47	2695	0.002269
GBM_5_AutoML_20191213_174603	0.7821 9	0.5583 53	0.8002 34	0.319658	0.4355 12	0.1896 7	768	0.004318

AutoML Alex

Features:

- Automated Data Clean (Auto Clean)
- Automated Feature Engineering (Auto FE)
- Smart Hyperparameter Optimization (HPO)
- Feature Generation
- Feature Selection
- Models Selection
- Cross Validation
- Timelimit and EarlyStoping

Основные мысли

- 1 Сделать фичи
- 2 Запустить automl
- 3 ...
- 4 ...
- 5 ...
- 6 PROFIT

Рефлексия

С какими основными мыслями и инсайтами уходите с вебинара?

Достигли ли вы цели вебинара?

RnD TeamLead

Пантелеев Максим Александрович

maxim.al.panteleev@gmail.com