GVWL 2 – Übung 4: Der Gütermarkt

Hofmann, Leffler, Mamrak, Meyer

Sommersemester 2023

Übersicht über die heutige Übung

Aufgabe 1: Keynesianische Konsumfunktion

- Definition und Eigenschaften
- Graphische Darstellung

Aufgabe 2: Diskussion und Alternativen

- Empirischer Erklärungsgehalt und Validität der Annahmen
- Alternativer Ansatz: "Permanente-Einkommens-Hypothese" von Milton Friedman]

Übersicht über die heutige Übung

Aufgabe 3: Investitions- und Gesamtnachfrage

- Bestimmungsfaktoren der Investitionsnachfrage
- Weitere Komponenten der gesamtwirtschaftlichen Nachfrage

Aufgabe 4: Gütermarktgleichgewicht

- Gleichgewichtseinkommen formal und graphisch
- Gütermarktmultiplikator
- Gleichgewichtsbedingungen

Aufgabe 1: Keynesianische Konsumfunktion

Aufgabe 1: Keynesianische Konsumfunktion

Teilaufgabe a): Was versteht man unter einer keynesianischen Konsumfunktion?

$$C = c_0 + c_1 Y^v$$

Keynesianische Konsumfunktion:

$$C = c_0 + c_1 Y^{v}$$

• C: Konsum (abhängig vom Einkommen, d.h. "endogen")

$$C = c_0 + c_1 Y^{\nu}$$

- C: Konsum (abhängig vom Einkommen, d.h. "endogen")
- c₀: autonomer Konsum (unabhängig vom Einkommen, d.h. "exogen")

$$C = c_0 + c_1 Y^{\nu}$$

- C: Konsum (abhängig vom Einkommen, d.h. "endogen")
- c₀: autonomer Konsum (unabhängig vom Einkommen, d.h. "exogen")
- c₁: marginale Konsumneigung ("exogen")

$$C = c_0 + c_1 Y^{\nu}$$

- C: Konsum (abhängig vom Einkommen, d.h. "endogen")
- c₀: autonomer Konsum (unabhängig vom Einkommen, d.h. "exogen")
- c₁: marginale Konsumneigung ("exogen")
- Y': verfügbares Einkommen ("endogen")

Aufgabe 1: Keynesianische Konsumfunktion

Teilaufgabe b): Stellen Sie die keynesianische Konsumfunktion graphisch dar und gehen Sie hierbei auf folgende Komponenten und deren ökonomische Bedeutung gesondert ein:

- autonomer Konsum
- marginale Konsumneigung
- durchschnittliche Konsumquote

1. Positiver autonomer Konsum: $c_0 > 0$

- 1. Positiver autonomer Konsum: $c_0 > 0$
 - Graphisch: $c_0 \rightarrow y$ -Achsenabschnitt

1. Positiver autonomer Konsum: $c_0 > 0$

- Graphisch: $c_0 \rightarrow y$ -Achsenabschnitt
- Konsum, der auch bei einem Einkommen von Null zur notwendigen Befriedigung der Grundbedürfnisse (Nahrung, Wohnung, etc.) getätigt wird → bspw. durch Kreditaufnahme, Aufbrauchen von Ersparnissen (oder staatliche Hilfe)

2. Marginale Konsumneigung: $0 < c_1 < 1$

2. Marginale Konsumneigung: $0 < c_1 < 1$

• Graphisch: $c_1 \rightarrow \text{Steigung}$

2. Marginale Konsumneigung: $0 < c_1 < 1$

- Graphisch: $c_1 \rightarrow \text{Steigung}$
- Beschreibt den Anteil einer zusätzlichen Einheit Einkommen, der tatsächlich für Konsum ausgegeben wird:

$$\frac{\partial C}{\partial Y^{v}} = c_1 \text{ mit } 0 < c_1 < 1$$

2. Marginale Konsumneigung: $0 < c_1 < 1$

- Graphisch: $c_1 \rightarrow \text{Steigung}$
- Beschreibt den Anteil einer zusätzlichen Einheit Einkommen, der tatsächlich für Konsum ausgegeben wird:

$$\frac{\partial C}{\partial Y^{v}} = c_1 \text{ mit } 0 < c_1 < 1$$

• Wenn EK steigt, gibt Konsument immer denselben Teil des zusätzlichen neuen EKs für Konsum aus $(c_1 > 0)$

2. Marginale Konsumneigung: $0 < c_1 < 1$

- Graphisch: $c_1 \rightarrow \text{Steigung}$
- Beschreibt den Anteil einer zusätzlichen Einheit Einkommen, der tatsächlich für Konsum ausgegeben wird:

$$\frac{\partial C}{\partial Y^{v}} = c_1 \text{ mit } 0 < c_1 < 1$$

- Wenn EK steigt, gibt Konsument immer denselben Teil des zusätzlichen neuen EKs für Konsum aus $(c_1 > 0)$
- Konsum kann nie mehr als die ursprüngliche EK-Steigerung wachsen, da $c_1 < 1$ gilt

3. Durchschnittliche Konsumquote $\left(\frac{C}{Y^{\nu}}\right)$

3. Durchschnittliche Konsumquote $\left(\frac{C}{V^{\nu}}\right)$

• Graphisch: Durchschnittliche Konsumquote $(\frac{C}{Y^{v}})$ entspricht der Steigung des Fahrstrahls vom Ursprung an den Graphen

3. Durchschnittliche Konsumquote $\left(\frac{C}{V^{\nu}}\right)$

- Graphisch: Durchschnittliche Konsumquote $(\frac{C}{Y^{v}})$ entspricht der Steigung des Fahrstrahls vom Ursprung an den Graphen
- Mathematische Herleitung:

$$C = c_0 + c_1 Y^v$$

3. Durchschnittliche Konsumquote $\left(\frac{C}{V^{\nu}}\right)$

- Graphisch: Durchschnittliche Konsumquote $(\frac{C}{Y^{v}})$ entspricht der Steigung des Fahrstrahls vom Ursprung an den Graphen
- Mathematische Herleitung:

$$C = c_0 + c_1 Y^{\nu}$$
$$\frac{C}{Y^{\nu}} = \frac{c_0}{Y^{\nu}} + c_1$$

3. Durchschnittliche Konsumquote $\left(\frac{C}{V^{\nu}}\right)$

- Graphisch: Durchschnittliche Konsumquote $(\frac{C}{Y^{v}})$ entspricht der Steigung des Fahrstrahls vom Ursprung an den Graphen
- Mathematische Herleitung:

$$C = c_0 + c_1 Y^{\nu}$$
$$\frac{C}{Y^{\nu}} = \frac{c_0}{Y^{\nu}} + c_1$$

3. Durchschnittliche Konsumquote $\left(\frac{C}{V^{\nu}}\right)$

- Graphisch: Durchschnittliche Konsumquote $(\frac{C}{Y^v})$ entspricht der Steigung des Fahrstrahls vom Ursprung an den Graphen
- Mathematische Herleitung:

$$C = c_0 + c_1 Y^{\nu}$$
$$\frac{C}{Y^{\nu}} = \frac{c_0}{Y^{\nu}} + c_1$$

Fallend im Einkommen:

$$\frac{\partial (C/Y^v)}{\partial Y^v} = -\frac{c_0}{(Y^v)^2} < 0$$

3. Durchschnittliche Konsumquote $\left(\frac{C}{Y^{\nu}}\right)$

- Intuition: Sättigungseffekt
 - Geringes $\mathsf{EK} \to \mathsf{fast}$ das gesamtes EK zur Befriedigung zentraler Grundbedürfnisse aufgewendet
 - Steigt das EK → Grundbedürfnisse bereits befriedigt

3. Durchschnittliche Konsumquote $\left(\frac{C}{Y^{\nu}}\right)$

- Intuition: Sättigungseffekt
 - Geringes $\mathsf{EK} \to \mathsf{fast}$ das gesamtes EK zur Befriedigung zentraler Grundbedürfnisse aufgewendet
 - Steigt das EK → Grundbedürfnisse bereits befriedigt

Die Investitionsnachfrage einer Volkswirtschaft sei durch folgende Gleichung beschrieben:

$$I = I(Y, i) = b_0 + b_1 Y - b_2 i$$

Die Investitionsnachfrage einer Volkswirtschaft sei durch folgende Gleichung beschrieben:

$$I = I(Y, i) = b_0 + b_1 Y - b_2 i$$

Teilaufgabe a): Diskutieren Sie die einzelnen Bestimmungsfaktoren der Investitionsnachfrage und interpretieren Sie die Parameter b_0 , b_1 und b_2 .

Aufgabe 3: Investitions- und Gesamtnachfrage – Lösungsvorschlag a)

Aufgabe 3: Investitions- und Gesamtnachfrage – Lösungsvorschlag a)

- b₀: autonome Investitionen (exogen)
 - Werden auf jeden Fall durchgeführt
 - z.B. Investitionen, die zur Aufrechterhaltung der Produktion dringend notwendig sind

- b₀: autonome Investitionen (exogen)
 - Werden auf jeden Fall durchgeführt
 - z.B. Investitionen, die zur Aufrechterhaltung der Produktion dringend notwendig sind
- b₁: Einkommensreagibilität der Investitionsnachfrage
 - Abhängigkeit der Investitionen vom gesamtwirtschaftlichen EK
 - I = I(Y): positive Abhängigkeit

- b₀: autonome Investitionen (exogen)
 - Werden auf jeden Fall durchgeführt
 - z.B. Investitionen, die zur Aufrechterhaltung der Produktion dringend notwendig sind
- b₁: Einkommensreagibilität der Investitionsnachfrage
 - Abhängigkeit der Investitionen vom gesamtwirtschaftlichen EK
 - I = I(Y): positive Abhängigkeit
- b₂: Zinsreagibilität der Investitionsnachfrage
 - Erfasst Abhängigkeit der Investitionen vom Zins
 - I = I(i): negative Abhängigkeit

Teilaufgabe b): Welche weiteren Komponenten der gesamtwirtschaftlichen Nachfrage lassen sich neben privatem Konsum und Investitionen anführen? Geben Sie Faktoren an, welche die Ausprägung dieser Komponenten mitbestimmen könnten.

Weitere Komponenten:

• Staatsausgaben (G) und Steuern (T):

- Staatsausgaben (G) und Steuern (T):
 - durch den Staat festgelegt
 - Beispiele: öffentliche Leistungen, Konjunkturpolitik etc. (G) bzw.
 Einkommenssteuer, Mehrwertsteuer, Erbschaftssteuer (T)

- Staatsausgaben (G) und Steuern (T):
 - durch den Staat festgelegt
 - Beispiele: öffentliche Leistungen, Konjunkturpolitik etc. (G) bzw.
 Einkommenssteuer, Mehrwertsteuer, Erbschaftssteuer (T)
 - Bspw. durch Konjunktur oder Präferenzen der Wähler beeinflusst

- Staatsausgaben (G) und Steuern (T):
 - durch den Staat festgelegt
 - Beispiele: öffentliche Leistungen, Konjunkturpolitik etc. (G) bzw.
 Einkommenssteuer, Mehrwertsteuer, Erbschaftssteuer (T)
 - Bspw. durch Konjunktur oder Präferenzen der Wähler beeinflusst
- Außenbeitrag (X Im):

- Staatsausgaben (G) und Steuern (T):
 - durch den Staat festgelegt
 - Beispiele: öffentliche Leistungen, Konjunkturpolitik etc. (G) bzw.
 Einkommenssteuer, Mehrwertsteuer, Erbschaftssteuer (T)
 - Bspw. durch Konjunktur oder Präferenzen der Wähler beeinflusst
- Außenbeitrag (X − Im):
 - Exporte abzüglich der Importe

- Staatsausgaben (G) und Steuern (T):
 - durch den Staat festgelegt
 - Beispiele: öffentliche Leistungen, Konjunkturpolitik etc. (G) bzw.
 Einkommenssteuer, Mehrwertsteuer, Erbschaftssteuer (T)
 - Bspw. durch Konjunktur oder Präferenzen der Wähler beeinflusst
- Außenbeitrag (X Im):
 - Exporte abzüglich der Importe
 - Beispiele: Automobilexporte, Erdgasimporte etc.
 - Bspw. durch Wechselkurse, Handelsabkommen oder Zölle beeinflusst

Die Nachfrage einer geschlossenen Volkswirtschaft sei

$$Z = C + I + G$$
.

Die Konsumfunktion nimmt die Form

$$C(Y^{v}) = c_0 + c_1 Y^{v}$$

an. Die Investitionsnachfrage ist durch

$$I(i) = b_0 - b_2 i$$

gegeben. In diesem Fall ist die Investitionsnachfrage folglich vom Einkommen unabhängig. Die Steuern $\mathcal T$ seien gleich null.

Teilaufgabe a): Leiten Sie das Gleichgewichtseinkommen auf dem Gütermarkt formal her.

Ansatz:

Gesamtwirtschaftl. Nachfrage $Z \stackrel{!}{=}$ gesamtwirtschaftl. Angebot Y

$$Y = Z$$

$$Y = Z$$

$$Y=C+I+G$$

$$Y = Z$$

 $Y = C + I + G$
 $Y = c_0 + c_1 Y + b_0 - b_2 i + G$

$$Y = Z$$

$$Y = C + I + G$$

$$Y = c_0 + c_1 Y + b_0 - b_2 i + G$$

$$Y(1 - c_1) = c_0 + b_0 - b_2 i + G$$

$$Y = Z$$

$$Y = C + I + G$$

$$Y = c_0 + c_1 Y + b_0 - b_2 i + G$$

$$Y(1 - c_1) = c_0 + b_0 - b_2 i + G$$

Einsetzen aller Komponenten von Z:

$$Y = Z$$

$$Y = C + I + G$$

$$Y = c_0 + c_1 Y + b_0 - b_2 i + G$$

$$Y(1 - c_1) = c_0 + b_0 - b_2 i + G$$

⇒ Gütermarktgleichgewicht:

$$Y = \underbrace{\left(\frac{1}{1 - c_1}\right) \left(c_0 + b_0 - b_2 i + G\right)}_{Multiplikator} \tag{1}$$

Multiplikator:

• Steigt c_0 , b_0 oder G um eine Einheit, dann steigt Y um ein Vielfaches (Multiplikator)

- Steigt c_0 , b_0 oder G um eine Einheit, dann steigt Y um ein Vielfaches (Multiplikator)
- Multiplikator > 1, da $0 < c_1 < 1$

- Steigt c_0 , b_0 oder G um eine Einheit, dann steigt Y um ein Vielfaches (Multiplikator)
- Multiplikator > 1, da $0 < c_1 < 1$
- Je höher c₁, desto größer ist der Multiplikator

- Steigt c₀, b₀ oder G um eine Einheit, dann steigt Y um ein Vielfaches (Multiplikator)
- Multiplikator > 1, da $0 < c_1 < 1$
- Je höher c₁, desto größer ist der Multiplikator
 - \rightarrow Veränderung von c_0 , b_0 oder G bewirkt auch größere Veränderung von Y

Teilaufgabe b): Leiten Sie das Gleichgewichtseinkommen auf dem Gütermarkt graphisch her.

Aufgabe 4: Gütermarktgleichgewicht

Teilaufgabe c): Untersuchen Sie formal und graphisch, wie sich das Gleichgewichtseinkommen in Reaktion auf eine Erhöhung der autonomen Investitionen b_0 verändert. Welche zwei Methoden zur formalen Ermittlung des Multiplikators lassen sich unterscheiden?

Multiplikator:

- Y steigt insgesamt um mehr als ursprüngliche Veränderung von b_0 $\rightarrow \Delta Y > \Delta b_0$
- 2 Methoden: Gesamteffekt aller "Runden" (Vorlesung!) oder partielle Ableitung

Gesamteffekt aller Runden:

• 1. Runde: *b*₀ ↑

Gesamteffekt aller Runden:

• 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$

- 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$
 - es gilt: Z = C + I + G

Gesamteffekt aller Runden:

• 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$ • es gilt: Z = C + I + G $\rightarrow Z \uparrow \text{um } \Delta b_0$

- 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$
 - es gilt: Z = C + I + G
 - \rightarrow Z \uparrow um Δb_0
 - es gilt: Y = Z

- 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$
 - es gilt: Z = C + I + G
 - $\rightarrow Z \uparrow \text{um } \Delta b_0$
 - es gilt: Y = Z
 - $\rightarrow Y \uparrow \text{um } \Delta b_0$

- 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$
 - es gilt: Z = C + I + G $\rightarrow Z \uparrow \text{ um } \Delta b_0$
 - es gilt: Y = Z
 - $\rightarrow Y \uparrow \text{um } \Delta b_0$
- 2. Runde: $Z = Y = c_0 + c_1 Y + b_0 b_2 i + G$

- 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$ • es gilt: Z = C + I + G $\rightarrow Z \uparrow \text{um } \Delta b_0$
 - es gilt: Y = Z $\rightarrow Y \uparrow \text{um } \Delta b_0$
- 2. Runde: $Z = Y = c_0 + c_1 Y + b_0 b_2 i + G$
 - $Z \uparrow$, $Y \uparrow$ um $c_1 \Delta b_0$

- 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$ • es gilt: Z = C + I + G $\rightarrow Z \uparrow \text{ um } \Delta b_0$
 - es gilt: Y = Z $\rightarrow Y \uparrow \text{ um } \Delta b_0$
- 2. Runde: $Z = Y = c_0 + c_1 Y + b_0 b_2 i + G$
 - $Z \uparrow$, $Y \uparrow$ um $c_1 \Delta b_0$
- 3. Runde:
 - $Z \uparrow, Y \uparrow \text{ um } c_1c_1\Delta b_0$

- 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$
 - es gilt: Z = C + I + G
 - \rightarrow Z \(\gamma\) um Δb_0
 - es gilt: Y = Z
 - $\rightarrow Y \uparrow \text{um } \Delta b_0$
- 2. Runde: $Z = Y = c_0 + c_1 Y + b_0 b_2 i + G$
 - $Z \uparrow$, $Y \uparrow$ um $c_1 \Delta b_0$
- 3. Runde:
 - $Z \uparrow, Y \uparrow \text{ um } c_1c_1\Delta b_0$
- ... Anstieg in jeder Runde um $c_1^n \Delta b_0$

- 1. Runde: $b_0 \uparrow \rightarrow I \uparrow$
 - es gilt: Z = C + I + G $\rightarrow Z \uparrow \text{ um } \Delta b_0$
 - es gilt: Y = Z $\rightarrow Y \uparrow \text{ um } \Delta b_0$
- 2. Runde: $Z = Y = c_0 + c_1 Y + b_0 b_2 i + G$
 - $Z \uparrow$, $Y \uparrow$ um $c_1 \Delta b_0$
- 3. Runde:
 - $Z \uparrow, Y \uparrow \text{ um } c_1c_1\Delta b_0$
- ... Anstieg in jeder Runde um $c_1^n \Delta b_0$
- ⇒ Anstieg insgesamt: (geometr. Reihe)

$$\Delta Y = \Delta b_0 + c_1 \Delta b_0 + c_1 c_1 \Delta b_0 + \dots + c_1^n \Delta b_0 = \Delta b_0 \frac{1}{1 - c_1}$$

Einfacher - partielle Ableitung:

Partielle Ableitung von Y nach b_0 :

$$Y = \left(\frac{1}{1 - c_1}\right) (c_0 + b_0 - b_2 i + G)$$
$$\frac{\partial Y}{\partial b_0} = \left(\frac{1}{1 - c_1}\right)$$

Aufgabe 4: Gütermarktgleichgewicht

Teilaufgabe d): Das vorliegende Modell des Gütermarkts einer geschlossenen Volkswirtschaft kennt zwei Gleichgewichtsbedingungen. Verdeutlichen Sie formal und verbal die Beziehung zwischen den beiden Konzepten.

1. Gleichgewichtsbedingung: Y = Z

- 1. Gleichgewichtsbedingung: Y = Z
- $\rightarrow \mbox{ Gesamtangebot gleich Gesamtnachfrage}.$

- 1. Gleichgewichtsbedingung: Y = Z
- → Gesamtangebot gleich Gesamtnachfrage.
- 2. Gleichgewichtsbedingung: I = S

- 1. Gleichgewichtsbedingung: Y = Z
- → Gesamtangebot gleich Gesamtnachfrage.
- 2. Gleichgewichtsbedingung: I = S

Ausgangssituation:

$$Y = Z$$
$$Y = C + I + G \tag{1}$$

- 1. Gleichgewichtsbedingung: Y = Z
- → Gesamtangebot gleich Gesamtnachfrage.
- 2. Gleichgewichtsbedingung: I = S

Ausgangssituation:

$$Y = Z$$
$$Y = C + I + G \tag{1}$$

T abziehen und C auf linke Seite:

$$Y - T = C + I + G - T$$

 $Y - T - C = I + G - T$ (2)

Private Ersparnis der Haushalte (S):

$$S = Y^{v} - C$$

Private Ersparnis der Haushalte (S):

$$S = Y^{v} - C$$

Mit verfügbarem Einkommen (Y^{v}):

$$Y^v = Y - T$$

Private Ersparnis der Haushalte (S):

$$S = Y^{v} - C$$

Mit verfügbarem Einkommen (Y^{v}):

$$Y^{v} = Y - T$$

$$\rightarrow \qquad S = Y - T - C \tag{3}$$

Setze (2) und (3) gleich:

$$S = I + G - T$$

Setze (2) und (3) gleich:

$$S = I + G - T$$

$$S + T - G = I$$
PrivateErsparnis + Staatl.Ersparnis = Investitionen (4)

Setze (2) und (3) gleich:

$$S = I + G - T$$

$$\frac{S}{Private Ersparnis} + \frac{T - G}{Staatl. Ersparnis} = \frac{I}{Investitionen}$$
 (4)

 \Rightarrow Bei ausgeglichenen Staatsbudgets: G = T

$$S = I$$
Private Ersparnis = Investitionen

Implikationen:

Implikationen:

• Gütermarkt kann nur im Gleichgewicht sein, wenn Ersparnisse (private + staatliche) gleich Investitionen sind

Implikationen:

- Gütermarkt kann nur im Gleichgewicht sein, wenn Ersparnisse (private + staatliche) gleich Investitionen sind
 - → Kapitalmarkt im Gleichgewicht

Implikationen:

- Gütermarkt kann nur im Gleichgewicht sein, wenn Ersparnisse (private + staatliche) gleich Investitionen sind
 - → Kapitalmarkt im Gleichgewicht
- Beachte: Kapitalmarkt ≠ Geldmarkt

Aufgabe 4: Gütermarktgleichgewicht

Teilaufgabe e): In einer geschlossenen Volkswirtschaft mit Staat gilt: $Y_t = C_t + \bar{I}_t + G_t$. Die exogenen Investitionen betragen $\bar{I}_t = 200$, die Staatsausgaben in t = 0 betragen $G_0 = 500$. Das Einkommen in t = 0 sei $Y_0 = 2000$. Der autonome Konsum beträgt 100, die Konsumneigung 0, 6. In t = 1 beschließt der Staat seine Ausgaben um 200 zu erhöhen. Wie stark steigt das Einkommen der Volkswirtschaft aufgrund der steigenden Staatsausgaben?

Manuelle Berechnung:

Periode	0	1	2	3	4	5	6	7	8	9	10	 15
Investitionen	200	200	200	200	200	200	200	200	200	200	200	 200
Staatsausgaben	500	700	700	700	700	700	700	700	700	700	700	 700
CKeynes	1300	1300	1420	1492	1535	1561	1577	1586	1592	1595	1597	 1600
YKeynes	2000	2200	2320	2392	2435	2461	2477	2486	2492	2495	2497	 2500

$$\Rightarrow \Delta Y = 2500 - 2000 = 500$$

Multiplikator:

$$\Delta Y = \frac{1}{1-c} * \Delta G = 2, 5 * 200 = 500$$

Zusammenfassung und Ausblick

Zusammenfassung

Aufgabe 1: Keynesianische Konsumfunktion

- Positiver Achsenabschnitt: autonomer Konsum ($c_0 > 0$)
- positive Steigung: marginale Konsumquote $(c_1 > 0)$
- \bullet Durchschnittliche Konsumquote ($\frac{\mathcal{C}}{Y^{\nu}})$ fällt im Einkommen
 - → nicht vollständig mit Daten konsistent

Zusammenfassung

Aufgabe 3: Investitions- und Gesamtnachfrage

- Autonome Investitionen (b₀), Einkommensreagibilität der I-Nachfrage (b₁) und Zinsreagibilität der I-Nachfrage (b₂)
- Staatsausgaben, Steuern und Außenbeitrag als weitere Bestimmungsfaktoren der gesamtwirtschaftlichen Nachfrage

Aufgabe 4: Gütermarktgleichgewicht

GGW: Y = Z

• GGW: I = S[+T - G]

• Multiplikator: $\frac{1}{1-c_1}$

Graphische Darstellung zeigt Multiplikatorprozess

Ausblick

Themen von Übungsblatt 5:

- Geldmarktgleichgewicht
- Zins- und Geldmengensteuerung
- Geldschöpfung