Lösung

Wir untersuchen die gegebenen Reihen auf Konvergenz.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

Wir verwenden das Quotientenkriterium. Sei $a_n = \frac{2^n n!}{n^n}$. Dann gilt:

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{2^n n!}$$
 (1)

$$= \frac{2 \cdot (n+1) \cdot n^n}{(n+1)^{n+1}} \tag{2}$$

$$= \frac{2 \cdot (n+1) \cdot n^n}{(n+1) \cdot (n+1)^n}$$

$$= \frac{2 \cdot n^n}{(n+1)^n}$$
(4)

$$=\frac{2\cdot n^n}{(n+1)^n}\tag{4}$$

$$=2\cdot\left(\frac{n}{n+1}\right)^n\tag{5}$$

$$=2\cdot\left(1-\frac{1}{n+1}\right)^n\tag{6}$$

Für den Grenzwert $n \to \infty$ verwenden wir, dass $\lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^n =$ $\lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right)^{(n+1) \cdot \frac{n}{n+1}} = e^{-1}.$

Somit gilt:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{2}{e} \approx 0.736 < 1$$

Nach dem Quotientenkriterium konvergiert die Reihe.

(b)
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$

Analog zu Teil (a) erhalten wir mit $a_n = \frac{3^n n!}{n^n}$:

$$\frac{a_{n+1}}{a_n} = 3 \cdot \left(\frac{n}{n+1}\right)^n$$

Für den Grenzwert gilt:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{3}{e} \approx 1.104 > 1$$

Nach dem Quotientenkriterium divergiert die Reihe.

(c)
$$\sum_{n=1}^{\infty} \frac{1 + (-1)^n n}{n^2}$$

Wir zerlegen die Reihe:

$$\sum_{n=1}^{\infty} \frac{1 + (-1)^n n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Die erste Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ist eine konvergente p-Reihe mit p=2>1.

Die zweite Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ ist die alternierende harmonische Reihe, welche nach dem Leibniz-Kriterium konvergiert, da:

- $\frac{1}{n}$ ist monoton fallend
- $\lim_{n\to\infty}\frac{1}{n}=0$

Da beide Teilreihen konvergieren, konvergiert auch die ursprüngliche Reihe.

(d)
$$\sum_{n=0}^{\infty} \frac{x^n}{1+x^{2n}} \text{ für } x \in \mathbb{R}$$

Wir unterscheiden verschiedene Fälle:

Fall 1: |x| < 1

Für |x|<1 gilt $x^{2n}\to 0$ für $n\to \infty$. Daher gilt für große n:

$$\frac{x^n}{1+x^{2n}} \approx x^n$$

Die Reihe verhält sich asymptotisch wie die geometrische Reihe $\sum_{n=0}^{\infty} x^n$, welche für |x| < 1 konvergiert.

Fall 2: |x| > 1

Für |x| > 1 können wir schreiben:

$$\frac{x^n}{1+x^{2n}} = \frac{1}{x^{-n}+x^n} = \frac{1}{x^n(x^{-2n}+1)} = \frac{1}{x^n} \cdot \frac{1}{1+x^{-2n}}$$

Für große n gilt $x^{-2n} \to 0$, also:

$$\frac{x^n}{1+x^{2n}} \approx \frac{1}{x^n} = \left(\frac{1}{|x|}\right)^n$$

Da|x|>1ist $\frac{1}{|x|}<1,$ und die Reihe konvergiert wie eine geometrische Reihe.

Fall 3: x = 1

Für x = 1 erhalten wir:

$$\sum_{n=0}^{\infty} \frac{1}{1+1} = \sum_{n=0}^{\infty} \frac{1}{2}$$

Diese Reihe divergiert, da der allgemeine Term nicht gegen 0 konvergiert.

Fall 4: x = -1

Für x = -1 erhalten wir:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{1 + (-1)^{2n}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{1+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2}$$

Diese alternierende Reihe divergiert, da der allgemeine Term $\frac{(-1)^n}{2}$ nicht gegen 0 konvergiert.

Zusammenfassung: Die Reihe konvergiert für $x \in \mathbb{R} \setminus \{-1, 1\}$ und divergiert für $x \in \{-1, 1\}$.