Worksheet 8: Normalization

Submission Instructions: Submit a text file or a pdf file with your answers. Name your file as last- nameFirstnameW4.fileExtension (e.g., chaturvediRituW48.txt). Hand-written answers will not be accepted.

Question 1: Match the following. Statements on the left-hand side may match more than one statements on the right-hand side. (Hint: Nov 1st Monday's lecture has the solutions).

1	Anomaly			a	A is the dependent, B is the determinant
2	Functional Dependency			b	A is the determinant, B is the dependant
3	A -> B			с	is one that is part of any primary key
4	Prime attribute	+	/	d	does not have any repeating groups such as composite or multi- valued attributes
5	Non-loss decomposition {R1, R2,Rn} of a relation R		\bigvee	e	is an inconsistent, incompatible or contradictory state of the database
6	Full FD	$\backslash \backslash \times$		f	is a many-to-one relationship between attribute set A and attribute set B
7	Transitive			g	if 2 tuples in a relational instance agree on their X-value, then they must agree on their Y-value.
8	Relation in 2NF			h	each value of A has associated with it exactly one value of B
9	Relation in 3NF	\rightarrow		i	does not have any tranistive depencies
10	Relation in 1NF			j	is a FD of an attribute S on attribute R such that S does not depend on any proper subset of R
				k	does not have any non-full dependencies
				ı	if there exists a FD of X -> Y and Y -> Z, then it implies that X -> Z also exists
				m	natural join of R1, R2,Rn produces exactly the relation R
			\		Managed and a

Question 2: A relation called Emp must store the following attributes for every employee in this company: (Name, Address, Phone numbers, BeersLiked). Each employee has an address, may have 1 or more phone numbers and may like 1 or more beer.

a. Create an instance for Emp using the following information:

Name: Harry

Address: 50 Stone Wall

Phone numbers: {519 999 8888, 647 999 2233} BeersLiked: {Brahma, Heineken, Coors Light}

Name: Ansh

Address: 3550 Mississauga Road

Phone numbers: {647 000 1111, 416 321 4133}

BeersLiked: {Brahma}

Name	Address	Phone Number	BeersLiked
Harry	50 Stone Wall	519 999 8888	Brahma
Harry	50 Stone Wall	647 999 223	Brahma
Harry	50 Stone Wall	519 999 8888	Coors Light
Harry	50 Stone Wall	647 999 223	Coors Light
Harry	50 Stone Wall	519 999 8888	Heineken
Harry	50 รีเซิกe Wall	647 999 223	Heineken
Ansh	3550 Mississauga Road	647 000 1111	Brahma
Ansh	3551 Mississauga Road	416 321 4133	Brahma

b. What is the result of: SELECT COUNT(*) FROM Emp;

2d: Part 1 (3NF)

(name, PhoneNumbers, BeersLiked).

c. find all multivalued and functional dependencies of Emp, if any. Assume that the key is

(Name, PhoneNumb	ers, BeersLiked) -> Address
Name -> Address	
MVD	
Name ->-> PhoneNu	mbers BeersLiked

decomposition is non-loss. Ste鼠: Relation is not in 3NF because it is not in 2NF Relation is not in 2NF because it has a non-full FD on the key

d. Decompose Emp to smaller relations such that there are no more MVDs in any of the smaller relations and all smaller relations are now in 3Nf and 4NF. Prove that the

(Name, PhoneNumbers, BeersLiked) -> Ad	255	
Name -> Address		
Step 2: Decompose		
R1 (Name, PhoneNumbers, BeersLiked)		
R2 (Name, Address)		
Is R1 in 2NF - Yes		
Is R1 in 3NF - Yes		
Is R2 in 2NF - Yes		
Is R2 in 3NF - Yes		
Step3: Justify that the decomposition is no	~	decompositionis non loss
Common attribute of R1 and R2 = Name, I	me is the PK of KZ, therefore the	decompositio his non-loss.
2d: Part 2 (4NF)		
ls R2 in 4NF ls R1 in 4NF - no		
S KI IN 4NF - NO		
R1 is not in 4NF due to the MVD Name ->->	oneNumbers BeersLiked	
Decompose		
R11 (Name, PhoneNumbers)		
R12 (Name, BeersLiked)		
ls R11 in 4NF - yes		
s R12 in 4NF - Yes		
4		
Justify that the decomposition is non-loss		

Question 3: CAR_SALE(Car#, Date_sold, Salesman#, Commision%, Discount_amt)

primary key. Additional dependencies are:

Assume that a car may be sold by multiple salesmen and hence {CAR#, SALESMAN#} is the

Date_sold ->Discount_amt and

Salesman# ->commission%

Based on the given primary key, is this relation in BCNF? Why or why not? How would you successively normalize it completely?

