

CMT311 Principles of Machine Learning

Graphical Models

Angelika Kimmig KimmigA@cardiff.ac.uk

22.11.2019

Last week:

 Bayesian Networks: general, graphical representation of conditional independence assumptions

Today:

- Graphical Models: a wider class of such representations
- Reasoning with Graphical Models

Graphical Models

- A Graphical model (GM) is a graph based representation of a factorised probability distribution
- Many different types of GMs exist, broadly falling into two categories
 - GMs mainly used for modelling (e.g., Bayesian networks, Markov networks, ...)
 - GMs mainly used for **developing inference algorithms** (e.g., factor graphs, junction trees, ...)

Background: undirected graphs

- A graph consists of nodes (vertices) and directed or undirected edges
- undirected graph: all edges are undirected
- clique: fully connected subset of nodes
- maximal clique: clique that is not a subset of another clique

Markov Networks

- A potential is a function from a set of random variables to the nonnegative numbers.
- A **Markov network** (MN) is an undirected graph in which each node corresponds to a random variable, and a potential ψ is defined on each (maximal) clique.
- The joint probability distribution represented by an MN is the normalised product of all clique potentials in the MN:

$$P(X_1, ..., X_n) = \frac{1}{Z} \prod_{i=1}^m \psi_i(\mathcal{X}_i), \text{ where } \mathcal{X}_i \text{ denotes the set of variables in }$$

the i-th clique, and the normalisation constant is $Z = \sum_{X_1,...,X_n} \prod_{i=1} \psi_i(\mathcal{X}_i)$

MN: example

$$Z = \sum_{(a,b,c,d)\in\{0,1\}^4} f_1(A=a,B=b) \cdot f_2(B=b,C=c) \cdot f_3(B=b,D=d)$$

The Ising model

- well-known in physics of magnetic systems
- all variables take values +1 or -1
- for each pair of nodes Xi and Xj connected by an edge $\phi_{ii}(X_i, X_i) = e^{-\frac{1}{2T}(X_i - X_j)^2}$
- the temperature T is a parameter controlling how much neighbouring nodes are encouraged to take the same value

$$M = |\sum_{i=1}^{N} x_i|/N \ge 0.5$$

$$0$$

$$0$$

$$0$$

$$0.5$$

$$1$$

$$1.5$$

$$T/Tc$$

MN for image cleaning

Task: recover a binary picture from a corrupted version

- clean pixels $X_i \in \{-1, +1\}$ (unobserved)
- corrupted pixels $Y_i \in \{-1, +1\}$ (observed)
- $\phi(Y_i, X_i) = e^{\gamma X_i Y_i}$ encourage X_i and Y_i to be similar
- $\psi(X_i,X_j)=e^{\beta X_iX_j}$ for neighbouring X_i and X_j encourage the image to be smooth
- $P(X_1, ..., X_n, Y_1, ..., Y_n) \propto \prod_i \phi(Y_i, X_i) \prod_{i \sim j} \psi(X_i, X_j)$

Global Markov property

- Let \mathcal{X} , \mathcal{Y} and \mathcal{Z} be disjoint sets of random variables
- $\mathscr Z$ separates $\mathscr X$ and $\mathscr Y$ if every path from any variable in $\mathscr X$ to any variable in $\mathscr Y$ passes through $\mathscr Z$

Markov Properties

- write $X_{\setminus i}$ for the set of all variables except X_i , and $ne(X_i)$ for the set of all variables connected to X_i by an edge
- Local Markov property: $P(X_i | X_{\setminus i}) = P(X_i | ne(X_i))$
- Pairwise Markov property (follows from local one): if there is no edge between X and Y, then $X \perp\!\!\!\perp Y \mid \mathcal{X} \setminus \{X,Y\}$
- If all potentials are positive,
 - the local, pairwise and global properties are all equivalent
 - these properties hold if and only if the distribution has the factorised form

Alternative Independence Check for BNs

- to check whether $\mathcal{X} \perp \mathcal{Y} \mid \mathcal{Z}$ in a BN
 - remove any nodes that are neither in $\mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z}$ nor an ancestor of a node in $\mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z}$ as well as all edges involving removed nodes
 - add an edge between any two parents of the same child
 - turn the graph into its skeleton

 $A \perp H | \{F,I\}$? no!

Example

Expressiveness: BNs vs MNs

- any BN can be turned into an MN:
 - just use the CPTs as potentials

- however, independence information may be lost in the graph structure
- not all MNs can be turned into BNs with the same link structure

Factor Graphs

• The factor graph (FG) of a function $f(X_1,...,X_n) = \prod_{i=1}^m \psi_i(\mathcal{X}_i) \text{ consists of }$

- ullet a factor node (represented as square) for every ψ_i
- ullet a variable node (represented as circle) for every X_j
- an undirected edge between X_j and ψ_i for every $X_j \in \mathcal{X}_i$

Example

corresponds to the MN

Example

 $\psi(X_1, X_2, X_3)$

$$\psi_1(X_1, X_2)\psi_2(X_2, X_3)\psi_3(X_3, X_1)$$

this distinction of the form cannot be made by an MN:

Graphical Models

- A Graphical model (GM) is a graph based representation of a factorised probability distribution
- Many different types of GMs exist, broadly falling into two categories
 - GMs mainly used for modelling (e.g., Bayesian networks, Markov networks, ...)
 - GMs mainly used for **developing inference algorithms** (e.g., factor graphs, junction trees, ...)

Judea Pearl's Alarm network

You have a new burglary alarm that is fairly reliable at detecting a burglary, but also responds to earthquakes. Your neighbours, Mary and John, promise to call you if they hear the alarm sounding.

BN Inference

A Bayesian network defines a joint probability distribution

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$$

We'll focus on computing conditional probabilities

- Inference is the task of using the distribution to answer questions, such as
 - computing the conditional probability distribution of one variable given certain observations
 e.g., P(Earthquake | MaryCalls=t)

finding the most probable world where certain observations hold

e.g., if we know MaryCalls=t, what is the most likely combination of values for the other four variables?

finding the most likely value of one variable given certain observations

e.g., if we know MaryCalls=t, is it more likely that JohnCalls=t or JohnCalls=f?

Example

- What is the probability of a burglary given both John and Mary call?
- i.e., what is the conditional distribution P(B|J=t,M=t)?
- by definition,

$$P(B | J = t, M = t) = \frac{P(B, J = t, M = t)}{P(J = t, M = t)} = \frac{P(B, J = t, M = t)}{P(B = t, J = t, M = t) + P(B = f, J = t, M = t)}$$

we'll focus on computing P(B=t,J=t,M=t):

$$P(B = t, J = t, M = t) = \sum_{E} \sum_{A} P(E)P(B = t)P(A \mid E, B = t)P(J = t \mid A)P(M = t \mid A)$$

Evaluate the sum by looping over all combinations of values for E and A

$$P(B = t, J = t, M = t) = \sum_{E} \sum_{A} P(E)P(B = t)P(A \mid E, B = t)P(J = t \mid A)P(M = t \mid A)$$

$$= P(E = t)P(B = t)P(A = t \mid E = t, B = t)P(J = t \mid A = t)P(M = t \mid A = t)$$

$$+P(E = t)P(B = t)P(A = f \mid E = t, B = t)P(J = t \mid A = f)P(M = t \mid A = f)$$

$$+P(E = f)P(B = t)P(A = t \mid E = f, B = t)P(J = t \mid A = t)P(M = t \mid A = t)$$

$$+P(E = f)P(B = t)P(A = f \mid E = f, B = t)P(J = t \mid A = f)P(M = t \mid A = f)$$

Correct, but we can avoid some work: exploit distributivity

$$P(B = t, J = t, M = t) = P(B = t) \sum_{E} \sum_{A} P(E)P(A \mid E, B = t)P(J = t \mid A)P(M = t \mid A)$$

$$= P(B = t) \sum_{E} P(E) \sum_{A} P(A \mid E, B = t)P(J = t \mid A)P(M = t \mid A)$$

$$P(B = t, J = t, M = t) = P(B = t) \sum_{E} P(E) \sum_{A} P(A \mid E, B = t) P(J = t \mid A) P(M = t \mid A)$$

Left-to-right evaluation corresponds to depth-first traversal of tree:

[notation: for variable X, write x for X = t and $\neg x$ for X = f]

Correct, but we can avoid some work: start at bottom and cache intermediate results

$$P(B, J = t, M = t) = P(B) \sum_{E} P(E) \sum_{A} P(A \mid E, B) P(J = t \mid A) P(M = t \mid A)$$

$$f_{B}(B) \qquad f_{E}(E) \qquad f_{A}(A, B, E) \qquad f_{J}(A) \qquad f_{M}(A)$$

$$f_{\overline{A}JM}(B, E) \qquad \qquad f_{\overline{E}\overline{A}JM}(B)$$

$$P(B, J = t, M = t)$$

$$f_{\overline{A}JM}(B,E) = \sum_{a} f_A(A=a,B,E) \times f_J(A=a) \times f_M(A=a)$$

$$= f_A(A=t,B,E) \times f_J(A=t) \times f_M(A=t) + f_A(A=f,B,E) \times f_J(A=f) \times f_M(A=f)$$

$$f_{\overline{E}\overline{A}JM}(B) = f_E(E=t) \times f_{\overline{A}JM}(B,E=t) + f_E(E=f) \times f_{\overline{A}JM}(B,E=f)$$

$$P(B,J=t,M=t) = f_B(B) \times f_{\overline{E}\overline{A}JM}(B)$$

Multiplying Factors

$$f_1(X_1, ..., X_j, Y_1, ..., Y_k) \times f_2(Y_1, ..., Y_k, Z_1, ..., Z_l)$$

$$= f(X_1, ..., X_j, Y_1, ..., Y_k, Z_1, ..., Z_l)$$

Example

$$f_1(A, B) \times f_2(B, C)$$

A	В	f ₁ (A,B)	
0	0	0.1	
0	1	0.2	
1	0	0.3	
1	1	0.4	

В	С	f ₂ (B,C)	
0	0	0.5	
0	1	0.6	=
1	0	0.7	
1	1	8.0	

Α	В	С	f(A,B,C)
0	0	0	0.1*0.5
0	0	1	0.1*0.6
0	1	0	0.2*0.7
0	1	1	0.2*0.8
1	0	0	0.3*0.5
1	0	1	0.3*0.6
1	1	0	0.4*0.7
1	1	1	0.4*0.8

$$P(B, J = t, M = t) = P(B) \sum_{E} P(E) \sum_{A} P(A \mid E, B) P(J = t \mid A) P(M = t \mid A)$$

$$f_{B}(B) f_{E}(E) f_{A}(A, B, E) f_{J}(A) f_{M}(A)$$

В	f _B (B)
t	0.001
f	0.999

Ε	f _E (E)
t	0.002
f	0.998

Α	В	Е	f _A (A,B,E)
t	t	t	0.95
t	t	f	0.94
t	f	t	0.29
t	f	f	0.001
f	t	t	0.05
f	t	f	0.06
f	f	t	0.71
f	f	f	0.999

A	f _J (A)
t	0.9
f	0.05

Α	f _M (A)
t	0.7
f	0.01

[figure: Russell& Norvig]

$$P(B, J = t, M = t) = P(B) \sum_{E} P(E) \sum_{A} P(A \mid E, B) P(J = t \mid A) P(M = t \mid A)$$

$$f_{B}(B) f_{E}(E) f_{A}(A, B, E) f_{J}(A) f_{M}(A)$$

$$f_{\overline{A}JM}(B,E) = \sum_{a} f_A(A=a,B,E) \times f_J(A=a) \times f_M(A=a)$$

Α	В	Ε	f _A (A,B,E)	
t	t	t	0.95	
t	t	f	0.94	
t	f	t	0.29	
t	f	f	0.001	
f	t	t	0.05	
f	t	f	0.06	
f	f	t	0.71	
f	f	f	0.999	

	A	f _J (A)	
K	t	0.9	
	f	0.05	

	A	f _M (A)	
X	t	0.7	=
	f	0.01	

Α	В	Ε	
t	t	t	0.95*0.9*0.7
t	t	f	0.94*0.9*0.7
t	f	t	0.29*0.9*0.7
t	f	f	0.001*0.9*0.7
f	t	t	0.05*0.05*0.01
f	t	f	0.06*0.05*0.01
f	f	t	0.71*0.05*0.01
f	f	f	0.999*0.05*0.01

$$P(B, J = t, M = t) = P(B) \sum_{E} P(E) \sum_{A} P(A \mid E, B) P(J = t \mid A) P(M = t \mid A)$$

$$f_{B}(B) f_{E}(E) f_{A}(A, B, E) f_{J}(A) f_{M}(A)$$

$$f_{\overline{A}JM}(B,E) = \sum_{a} f_A(A=a,B,E) \times f_J(A=a) \times f_M(A=a)$$

A	В	Е	
t	t	t	0.95*0.9*0.7
t	t	f	0.94*0.9*0.7
t	f	t	0.29*0.9*0.7
t	f	f	0.001*0.9*0.7
f	t	t	0.05*0.05*0.01
f	t	f	0.06*0.05*0.01
f	f	t	0.71*0.05*0.01
f	f	f	0.999*0.05*0.01

summing out A:

В	Е	$f_{\overline{A}JM}(B,E)$
t	t	0.95*0.9*0.7+0.05*0.05*0.01=0.598525
t	f	0.94*0.9*0.7+0.06*0.05*0.01=0.59223
f	t	0.29*0.9*0.7+0.71*0.05*0.01=0.183055
f	f	0.001*0.9*0.7+0.999*0.05*0.01=0.0011295

$$P(B, J = t, M = t) = P(B) \sum_{E} P(E) \sum_{A} P(A \mid E, B) P(J = t \mid A) P(M = t \mid A)$$

$$f_{B}(B) f_{E}(E) f_{E}(E)$$

 $f_{\overline{E}\overline{A}JM}(B)$

Е	f _E (E)		В	Е	$f_{\overline{A}JM}(B,E)$	
t	0.002	X	t	t	0.598525	=
f	0.998		t	f	0.59223	
			f	t	0.183055	
			f	f	0.0011295	

В	Ε	
t	t	0.598525*0.002
t	f	0.59223*0.998
f	t	0.183055*0.002
f	f	0.0011295*0.998

summing out E:

В	$f_{\overline{EA}JM}(B)$
t	0.598525*0.002+0.59223*0.998=0.59224259
f	0.183055*0.002+0.0011295*0.998=0.001493351

$$P(B, J = t, M = t) = P(B) \sum_{E} P(E) \sum_{A} P(A \mid E, B) P(J = t \mid A) P(M = t \mid A)$$

$$f_{\overline{B}(B)}$$

$$f_{\overline{E}\overline{A}JM}(B)$$

$$P(B, J = t, M = t)$$

В	f _B (B)		В	$f_{\overline{EA}JM}(B)$		В	P(B,J=t,M=t)
t	0.001	X	t	0.59224259	=	t	0.59224259*0.001=0.00059224259
f	0.999		f	0.001493351		f	0.001493351*0.999=0.001491857649

normalisation gives conditional probabilities:

$$P(B = t | J = t, M = t) = \frac{0.00059224259}{0.00059224259 + 0.001491857649} = 0.2842$$

$$P(B = f | J = t, M = t) = \frac{0.001491857649}{0.00059224259 + 0.001491857649} = 0.7158$$

Variable Elimination as Message Passing

$$P(B, J = t, M = t) = P(B) \sum_{E} P(E) \sum_{A} P(A \mid E, B) P(J = t \mid A) P(M = t \mid A)$$

$$f_{B}(B) \qquad f_{E}(E) \sum_{A} P(A \mid E, B) P(J = t \mid A) P(M = t \mid A)$$

$$f_{AJM}(B, E) \qquad f_{AJM}(B, E)$$

$$f_{EAJM}(B)$$

$$P(B, J = t, M = t)$$

- the sum-product algorithm uses message passing to compute marginals of all variables on factor graphs without loops
- as any BN or MN can be turned into a factor graph, same algorithm works for both types of models
- sometimes also called belief propagation
- two types of messages:
 - from variables to factors
 - from factors to variables
- node X can send message to neighbour Y only after having received messages from all other neighbours

- pick one node as the root node
- initialisation:
 - set messages from leaf factors to their factor
 - set messages from leaf variables to one
- step 1: propagate messages from leaves to root
- step 2: propagate messages from root to leaves

variable to factor messages

$$\mu_{v \to f}(v) = \prod_{f_i \in ne(v) \setminus \{f\}} \mu_{f_i \to v}(v)$$

f $\mu_{v \to f}(v)$ $\mu_{f_1 \to v}(v)$ r neighbours

product of incoming messages from all other neighbours

factor to variable messages

$$\mu_{f \to v}(v) = \sum_{\mathcal{X}_f \setminus v} f(\mathcal{X}_f) \prod_{x \in \mathcal{X}_f \setminus v} \mu_{x \to f}(x)$$

 $\mu_{f \to v}(v)$ $\mu_{x_1 \to f}(x_1)$ $\mu_{x_2 \to f}(x_2)$

sum over all values of all variables in f except v, of product of incoming messages from these variables times the factor

Marginal of a variable v

is proportional to the product of incoming messages from all neighbours

$$P(v) \propto \prod_{f_i \in ne(v)} \mu_{f_i \to v}(v)$$

to normalise, use fact that

$$\sum_{v \in dom(V)} P(V = v) \text{ equals 1}$$

Example

 $P(A, B, C, D) \propto f_1(A, B) \cdot f_2(B, C) \cdot f_3(B, D) \cdot f_4(C)$

В	С	f ₂ (B,C)
0	0	1
0	1	10
1	0	10
1	1	1

В	D	f ₃ (B,D)
0	0	10
0	1	1
1	0	1
1	1	10

С	f ₄ (C)
0	10
1	1

f₃

pick a root: f4

initialisation for leaves:

$$\mu_{A \to f_1} (0) = 1$$

$$\mu_{A \to f_1} (1) = 1$$

$$\mu_{f_4 \to C}(0) = f_4(C=0) = 10$$

 $\mu_{f_4 \to C}(1) = f_4(C=1) = 1$

$$\mu_{D \to f_3} (0) = 1$$

$$\mu_{D \to f_3} (1) = 1$$

now, propagate towards root f₄, starting from A and D

f₁ has all messages needed to propagate to B:

$$\mu_{f_{3}\to B}(0) = \sum_{D} f_{3}(B=0,D) \mu_{D\to f_{3}}(D)$$

$$= \underbrace{f_{3}(B=0,D=0)}_{10} \underbrace{\mu_{D\to f_{3}}(0)}_{1} + \underbrace{f_{3}(B=0,D=1)}_{1} \underbrace{\mu_{D\to f_{3}}(1)}_{1} = 11$$

$$\mu_{f_{3}\to B}(1) = \sum_{D} f_{3}(B=1,D) \mu_{D\to f_{3}}(D)$$

$$= \underbrace{f_{3}(B=1,D=0)}_{1} \underbrace{\mu_{D\to f_{3}}(0)}_{1} + \underbrace{f_{3}(B=1,D=1)}_{10} \underbrace{\mu_{D\to f_{3}}(1)}_{1} = 11$$

B has all messages needed to propagate to f2:

$$\mu_{B \to f_2}(0) = \underbrace{\mu_{f_1 \to B}(0)}_{11} \underbrace{\mu_{f_3 \to B}(0)}_{11} = 121$$

$$\mu_{B \to f_2}(1) = \underbrace{\mu_{f_1 \to B}(1)}_{11} \underbrace{\mu_{f_3 \to B}(1)}_{11} = 121$$

C has all messages needed to propagate to f₄:

$$\mu_{C \to f_4}(0) = \mu_{f_2 \to C}(0) = 1331$$

$$\mu_{C \to f_4} (1) = \mu_{f_2 \to C} (1) = 1331$$

this completes step 1; step 2 propagates from the root back to the leaves root f₄: propagate initialised message

C has all messages needed to propagate to f₂:

$$\mu_{C \to f_2} (0) = \mu_{f_4 \to C=0} (C=0) = 10$$

$$\mu_{C \to f_2} (1) = \mu_{f_4 \to C=1} (C=1) = 1$$

$$\mu_{C \to f_2} (1) = \mu_{f_4 \to C=1} (C=1) = 1$$

f₂ has all messages needed to propagate to B:

$$\mu_{f_2 \to B}(0) = \sum_{C} f_2(B = 0, C) \,\mu_{C \to f_2}(C)$$

$$= \underbrace{f_2(B = 0, C = 0)}_{1} \underbrace{\mu_{C \to f_2}(0)}_{10} + \underbrace{f_2(B = 0, C = 1)}_{10} \underbrace{\mu_{C \to f_2}(1)}_{1} = 20$$

$$\mu_{f_2 \to B} (1) = \sum_{C} f_2 (B = 1, C) \mu_{C \to f_2} (C)$$

$$= \underbrace{f_2 (B = 1, C = 0)}_{10} \underbrace{\mu_{C \to f_2} (0)}_{10} + \underbrace{f_2 (B = 1, C = 1)}_{1} \underbrace{\mu_{C \to f_2} (1)}_{1} = 101$$

B has all messages needed to propagate to f₃ and to f₁:

f₁ has all messages needed to propagate to A:

computing marginals using $p(v) \propto \prod_{f_i \sim v} \mu_{f_i \rightarrow v} \left(v\right)$

computing marginals using $p(v) \propto \prod_{f_i \sim v} \mu_{f_i \rightarrow v} \left(v\right)$

Sum-product algorithm

- FGs can have loops, which cause a problem for message passing:
 eliminating a variable may introduce a factor that isn't in the graph yet
- what to do?
 - option 1: loopy belief propagation
 - use propagation rules anyways, hoping that messages will converge
 - no guarantees, but often works well enough in practice
 - option 2: bucket elimination
 - guaranteed to produce correct answers

Bucket Elimination

- A variable elimination / message passing approach that computes the marginal of a variable X on any FG (with or without loops)
- main steps:
 - 1. choose variable order starting with X
 - 2. distribute potentials over buckets
 - 3. iteratively eliminate buckets until only one bucket left
- we'll trace the algorithm using a table
 - rows correspond to buckets (ordered bottom-up)
 - columns are iterations

Bucket Elimination

- fix variable order X1,X2,...,Xn
- distributing potentials over buckets:
 - for i=1,...,n
 - add all potentials involving Xi that are not yet in any bucket to bucket i
- eliminating buckets:
 - for i=1,...,n-1
 - marginalise the product of the entries in bucket i over Xi
 - add the result to bucket j, where Xj is the first variable in the order present in the result

Example $P(F) = \sum_{a,b,c,d,e,g} P(F|d)P(g|d,e)P(c|a)P(d|a,b)P(a)P(b)P(e)$

variable order F,D,A,G,B,C,E

Ε	P(G D,E), P(E)							$f_E(D,G) = \sum_E P(G \mid D, E)P(E)$
С	P(C A)	P(C A)						$f_C(A) = \sum_C P(C A) = 1$
В	P(D A,B), P(B)	P(D A,B), P(B)	P(D A,B), P(B)					$f_B(D, A) = \sum_B P(D \mid B, D)P(B)$
G		f _E (D,G)	f _E (D,G)	f _E (D,G)				$f_G(D) = \sum_{G} f_E(D, G)$
Α	P(A)	P(A)	P(A)	P(A), f _B (D,A)	$P(A)$, $f_B(D,A)$			$f_A(D) = \sum_{A} P(A) f_B(D, A)$
D	P(F D)	P(F D)	P(F D)	P(F D)	P(F D), f _G (D)	$P(F D),$ $f_G(D),$ $f_A(D)$		$f_D(F) = \sum_D P(F \mid D) f_G(D) f_A(D)$
F							f _D (F)	

Bucket Elimination

- computes the marginal of one variable only
- multi-variable messages need storage exponential in number of their variables
- for graphs without loops, computational complexity depends on ordering: there is an order with linear complexity, but others are much worse

Today

- Graphical Models:
 - Markov networks as alternative representation of factored distributions
 - Factor graphs as basis for inference
- Reasoning with Graphical Models
 - Variable Elimination on Bayesian networks
 - Sum-product algorithm on factor graphs
 - Bucket elimination as alternative for loopy graphs

Reading Material

- Today:
 - Russell & Norvig: 14.4
 - Barber: chapters 4 & 5
- Next week:
 - Russell & Norvig: 14.5
 - Barber: 6 & 27 (yes, that's 27)

- Parts of slides based on
 - David Barber's slides for the BRML book
 - Tinne De Laet & Luc De Raedt's slides for the UAI course at KU Leuven