

Acknowledgements

IBSS

- Brian Beitler (Program Manager)
- Kevin Sanchez (Scientific Programmer)
- Cody Polera (Software Engineer)
- Jennifer Lake, Ryan Clare, Alana Shuvalau, Danielle White, David Tedesco, Jacquelyn Crowell, Sydney Lybrand, Victoria Clear (Hydrometeorologists)

LAGO Consulting & Services LLC

- Idoliris Bacallao, Nestor Hernandez (Physical Scientists)
- Marcelo Lago, Maria Bravo (Statisticians)

RTI International, Center for Water Resources

- Debbie Martin (Deputy Program Manager, CIROH PI)
- Sanja Perica (Chief Scientist)
- Lynne Trabachino, Janel Hanrahan, Bowen Pan, Joshua Eston (Hydrometeorologists)

Overview

Following on to Assessment Report: Analysis of impact of nonstationary climate on NOAA Atlas 14 estimates (2022) → nonstationary regional maximum

likelihood approach

Volume 1

- Accounts for temporal trends in historical observations
- 5-minute to 60-day durations
- 1/2 to 1/1000 Exceedance Probabilities
- CONUS and OCONUS

Volume 2

- Future estimates for all years until year 2100 based on future climate model data up to 5°C of warming
 - Scenarios options: SSP2-4.5, SSP5-8.5

- Peer Review of Pilot -2024
- ➤ Peer Review of CONUS
 - mid-2025

Pilot Study over Montana

Study area is Atlas 14 Volume 12 region

Volume 1 - Historical

- PF estimates/maps for 1-hr to 10-day durations and probabilities of 1/2 to 1/100
- Comparison with Atlas 14 estimates

Pilot Study over Montana

Volume 2 - Future

 Future climate model data used to generate estimates until year 2100

Scenarios options: SSP2-4.5,
 SSP5-8.5 for Global Warming
 Precipitation (inches) for 2-day duration and 1/100 AEP

Web Delivery Mock Up

Montana Pilot Public Peer Review in 2024

> In collaboration with OWP/Service Innovation and Partnership Division (SIPD) and Orion

subject to change

National Water Prediction Service Home NWC Operations Procipitation Frequency More Water Information About Explore NWS Weather

Data Repository

Collect and QC observed historical precipitation gauge data

- Data discovery 300+ datasets for CONUS and OCONUS
 - Need to identify priority datasets
- Collect, format and pre-screen precipitation observations
- Develop and implement QA/QC protocols
 - Metadata QC ensure correct locations of stations
 - Annual maximum series (AMS) QC verify, correct or remove high outliers
 - Station cleanup removal of duplicates, merging to create longer records

Maintain code repository for OWP

→ Automated and reproducible to the extent possible

Data Repository - Station Metadata QC

- Automated flagging of potentially erroneous metadata
 - Compare metadata elevation to DEM
 - Expanded applicability of elevation checks to include flat terrain regions
 - Gross checks for correct state/county

Data Repository - AMS QC Example

GHCN-Daily Station: Higgins Lake, MI

AMS High Outlier: 5.8 in **Date of Outlier:** 11-18-1928

Nonstationary Framework Methodology

- Development of improved methodology
 - Regionalization
 - Model performance measures
 - Confidence intervals
- Ensure adaptability for different climate regions

Nonstationary Framework Methodology - Enhancements

- Impacts of station data
 - Resampled storm events within region
 - Inclusion of stations with differing record periods and length
 - Station weighting based on distance and/or other characteristics
- Identification of optimum covariates across CONUS/OCONUS
 - Spatial covariates (MAM, PRISM MAP, elevation, etc.)
 - Temporal covariates (time, CO2, radiative forcing, global temperature, etc.)
- Model performance measures and applications

Nonstationary Framework Methodology - Enhancements

- Automating regional delineation
 - Adaptable search radius
 - Geographic attributes
 - Meteorologic attributes
 - Homogeneity/statistical testing

- Climate Model Datasets-Considerations
 - Availability and limitations of model data (e.g., daily/subdaily; statistically/dynamically downscaled)
 - Best practices approach analysis of multiple model datasets
- Vol 2 research will develop quantile adjustment factors to be applied to Vol 1 values

In Summary

- Public involvement Peer Reviews
 - Pilot Study in 2024
 - CONUS in 2025
- On-going Research and Development
 - Quality Controlled Data Repository
 - Improved Nonstationary Framework Methodology
 - Automated and reproducible to the extent possible

