Корнеев Анна Павловна, ИУ5-23М

```
In [1]:
```

```
import numpy as np
import pandas as pd
from sklearn import datasets
from scipy import stats
import seaborn as sns
```

In [2]:

```
iris = datasets.load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
df['name'] = df['target'].apply(lambda x : iris.target_names[x])
```

In [3]:

```
df.head()
```

Out[3]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa

In [4]:

```
df['sepal length (cm)'].hist()
```

Out[4]:

<AxesSubplot:>

Задача №8.

Для набора данных проведите устранение пропусков для одного (произвольного) числового признака с использованием метода заполнения модой.

Проверим, содержат ли исходные данные пропуски.

In [5]:

```
df.isnull().values.any()
```

Out[5]:

False

Сгенерируем в случайных элементах первой колонки таблицы пропуски.

```
In [6]:
```

```
def add_nan(df, col_name):
    df[col_name] = np.where(np.random.randint(2, size=len(df)), np.nan, df[col_name])
    return df
```

In [7]:

```
df1 = df.copy()

df1 = add_nan(df1, 'sepal length (cm)')
df1.head(10)
```

Out[7]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	name
0	5.1	3.5	1.4	0.2	0	setosa
1	NaN	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa
5	NaN	3.9	1.7	0.4	0	setosa
6	4.6	3.4	1.4	0.3	0	setosa
7	NaN	3.4	1.5	0.2	0	setosa
8	NaN	2.9	1.4	0.2	0	setosa
9	NaN	3.1	1.5	0.1	0	setosa

In [8]:

```
df1['sepal length (cm)'].hist()
```

Out[8]:

<AxesSubplot:>

In [9]:

```
mode = float(stats.mode(df1['sepal length (cm)']).mode)
print(mode)
```

In [10]:

```
df1['sepal length (cm)'] = np.where(np.isnan(df1['sepal length (cm)']), mode, df1['sepal
length (cm)'])
df1.head(10)
```

Out[10]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	name
0	5.1	3.5	1.4	0.2	0	setosa
1	5.7	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa
5	5.7	3.9	1.7	0.4	0	setosa
6	4.6	3.4	1.4	0.3	0	setosa
7	5.7	3.4	1.5	0.2	0	setosa
8	5.7	2.9	1.4	0.2	0	setosa
9	5.7	3.1	1.5	0.1	0	setosa

In [11]:

```
df1['sepal length (cm)'].hist()
```

Out[11]:

<AxesSubplot:>

Задача №28.

Для набора данных для одного (произвольного) числового признака проведите обнаружение и замену (найденными верхними и нижними границами) выбросов на основе межквартильного размаха.

```
In [12]:
```

```
df2 = df.copy()

quantile_1 = np.percentile(df2['sepal length (cm)'], 25, interpolation='midpoint')
quantile_3 = np.percentile(df2['sepal length (cm)'], 75, interpolation='midpoint')
iqr = quantile_3 - quantile_1 # интерквантильный размах
print(quantile_1, quantile_3)
print(f'{iqr:.{1}f}')
```

```
5.1 6.4
1.3
```

```
In [131:
```

```
df2['sepal length (cm)'] = np.where((df2['sepal length (cm)'] < quantile_1), quantile_1,
df2['sepal length (cm)'])
df2['sepal length (cm)'] = np.where((df2['sepal length (cm)'] > quantile_3), quantile_3,
df2['sepal length (cm)'])
df2.head(10)
```

Out[13]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	name
0	5.1	3.5	1.4	0.2	0	setosa
1	5.1	3.0	1.4	0.2	0	setosa
2	5.1	3.2	1.3	0.2	0	setosa
3	5.1	3.1	1.5	0.2	0	setosa
4	5.1	3.6	1.4	0.2	0	setosa
5	5.4	3.9	1.7	0.4	0	setosa
6	5.1	3.4	1.4	0.3	0	setosa
7	5.1	3.4	1.5	0.2	0	setosa
8	5.1	2.9	1.4	0.2	0	setosa
9	5.1	3.1	1.5	0.1	0	setosa

In [14]:

```
print(df2['sepal length (cm)'].min(), df2['sepal length (cm)'].max())
```

5.1 6.4

Дополнительные требования по группам:

• Для студентов групп ИУ**5-23**М, ИУ**5**И**-23**М - для произвольной колонки данных построить график "Ящик с усами (boxplot)".

In [15]:

```
bplt = sns.boxplot(x=df['sepal length (cm)'])
bplt.axes.set_title('sepal length (cm)')
bplt.axes.set_xlabel('Значения');
```


In [16]:

```
df_min = df['sepal length (cm)'].min()
df_max = df['sepal length (cm)'].max()
df_median = np.median(df['sepal length (cm)'])

print(f'Минимальное значение: {df_min}')
print(f'Первый квантиль: {quantile_1}')
```

```
print(f'Meдuaha: {df_median}')
print(f'Tpeтuй квантиль: {quantile_3}')
print(f'Maксимальное значение: {df_max}')
```

Минимальное значение: 4.3 Первый квантиль: 5.1

Медиана: 5.8

Третий квантиль: 6.4

Максимальное значение: 7.9