

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

■ Bookmarks

- Unit 0: Overview
- ▶ Entrance Survey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- ▶ Exam 1
- Unit 5: Continuous random variables

Unit 8: Limit theorems and classical statistics > Lec. 20: An introduction to classical statistics > Lec 20 An introduction to classical statistics vertical1

■ Bookmark

Exercise: Bias and MSE

(2/2 points)

We estimate the unknown mean heta of a random variable X with unit variance by forming the sample mean $M_n=(X_1+\cdots+X_n)/n$ of n i.i.d. samples X_i and then forming the estimator

$$\widehat{\Theta}_n = rac{1}{3} \cdot M_n.$$

Your answers below can be functions of heta and n. Follow standard notation and use 'theta' to indicate heta.

The bias $\mathbf{E}[\widehat{\Theta}_n] - \theta$ of this estimator is:

-2*theta/3

~

Answer: -2*(theta)/3

- Unit 6: Further topics on random variables
- Unit 7: Bayesian inference
- ▶ Exam 2
- ▼ Unit 8: Limit theorems and classical statistics

Unit overview

Lec. 18: Inequalities, convergence, and the Weak Law of Large Numbers

Exercises 18 due Apr 27, 2016 at 23:59 UTC

Lec. 19: The Central Limit Theorem (CLT)

Exercises 19 due Apr 27, 2016 at 23:59 UTC

Lec. 20: An introduction to classical statistics

Exercises 20 due Apr 27, 2016 at 23:59 UTC

The mean squared error of this estimator is:

1/(9*n)+4*theta^2/9

Answer: 1/(9*n)+4*(theta)^2/9

Answer:

Since $\mathbf{E}[M_n] = heta$, we have $\mathbf{E}[\widehat{\Theta}_n] = heta/3$, and the bias is -2 heta/3.

The variance of $\widehat{\Theta}_n$ is 1/9 times the variance of M_n , which is 1/n. The mean squared error is the sum of the variance and the square of the bias: $1/(9n) + (4\theta^2/9)$.

You have used 1 of 2 submissions

Solved problems

Additional theoretical material

Problem Set 8

Problem Set 8 due Apr 27, 2016 at 23:59 UTC

Unit summary

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

