CURS #5

CONTINUTUL CURSULUI #5: II.1.9. Metoda Cholesky.

- II. Metode numerice de rezolvare a sistemelor liniare.
 - II.1. Metode directe de rezolvare a sistemelor de ecuații liniare.

Teorema (II.2.)

Dacă $A \in \mathcal{M}_n(\mathbb{R})$ este o matrice simetrică și pozitiv definită, atunci descompunerea Cholesky există.

Obs.:Pentru a arăta că A este pozitiv definită se va folosi criteriul lui Sylvester și anume: Matricea simetrică $A \in \mathcal{M}_n(\mathbb{R})$ este pozitiv definită dacă și numai dacă toți minorii principali, i.e. $det A_k > 0, A_k = (a_{ij})_{i,i=1,k}$

Propozitie (II.2.)

Fie $A \in \mathcal{M}_n(\mathbb{R})$ simetrică și pozitiv definită. Dacă componentele

 ℓ_{kk} , $k = \overline{1, n}$ de pe diagonala principală a matricei L din descompunerea Cholesky sunt strict pozitive, atunci descompunerea este unică.

Curs #5

II.1.9. Metoda Cholesky. Definitia (II.5.)

A. descompunerea de forma $A = II^T$ (1)

unde $L = (\ell_{ij})_{i,i=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R})$ este o matrice inferior triunghiulară.

Fie $A=(a_{ij})_{i,i=\overline{1,n}}\in\mathcal{M}_n(\mathbb{R}).$ Numim descompunerea Cholesky a matricei

Definitia (II.6.)

Fie $A \in \mathcal{M}_n(\mathbb{R})$.

a) A se numește simetrică dacă și numai dacă A^T = A;

- b) A se numeste semipozitiv definită dacă și numai dacă $\langle Av, v \rangle > 0, \forall v \in \mathbb{R}^n$:
- c) A se numește pozitiv definită dacă și numai dacă
- $\langle Av, v \rangle > 0, \forall v \in \mathbb{R}^n \setminus \{0\}.$ $<\cdot,\cdot>$ reprezintă produsul scalar pe \mathbb{R}^n definit astfel: $\langle u, v \rangle = \sum_{i=1}^{n} u_i v_i, \forall u, v \in \mathbb{R}^n.$

CALCULUL MATRICEI L : Relatia $A = LL^T$ se va scrie astfel:

$$\begin{pmatrix} a_{kk} \cdots a_{ki} \\ \vdots & \vdots \\ a_{lk} \cdots a_{ii} \end{pmatrix} = \begin{pmatrix} \ell_{kk} & 0 \\ \vdots & \vdots \\ \ell_{lk} \cdots \ell_{ii} \end{pmatrix} \begin{pmatrix} \ell_{kk} \cdots \ell_{ik} \\ \vdots & \vdots \\ 0 & \ell_{ii} \end{pmatrix}$$
(2)

Presupunem că printr-o anumită metodologie au fost calculate primele k-1 coloane din L, deci si primele linii k-1 din L^T . ETAPA 1: Calculăm elementul $\ell_{\nu\nu}$ de pe diagonala principală, scriind

expresia pentru
$$a_{kk}$$
:
$$a_{kk} = \sum_{n=0}^{n} \ell_{ks} \ell_{sk}^T = \sum_{n=0}^{k} \ell_{ks} \ell_{sk}^T = \sum_{n=0}^{k} \ell_{ks}^2 = \ell_{kk}^2 + \sum_{n=0}^{k-1} \ell_{ks}^2$$

Cum $\ell \iota \iota \iota > 0$ va rezulta

March 29, 2020 3 / 9

$$\ell_{kk} = \sqrt{a_{kk} - \sum_{i=1}^{k-1} \ell_{ks}^2}$$

March 29, 2020

ETAPA 2: Calculăm restul elementelor de pe coloana k, i.e. ℓ_{ik} , i > k, scriind expresia pentru aiv : $a_{ik} = \sum_{i=1}^{n} \ell_{is} \ell_{sk}^{T} = \sum_{i=1}^{k} \ell_{is} \ell_{sk}^{T} = \sum_{i=1}^{k} \ell_{is} \ell_{ks} = \ell_{ik} \ell_{kk} + \sum_{i=1}^{k-1} \ell_{is} \ell_{ks} \Rightarrow$ $\ell_{ik} = \frac{1}{\ell_{ik}} \left(a_{ik} - \sum_{k=1}^{k-1} \ell_{is} \ell_{ks} \right)$

ALGORITM (Metoda Cholesky) Date de intrare: $A = (a_{ij})_{i,j} = \overline{1,n}; \ \overline{b = (b_i)_{i=\overline{1,n}}};$

Date de instance:
$$A = (a_{ij})_{i,j} = 1, n$$
, $B = (B)_{i=1}$, $B = (B)_$

if $\alpha \le 0$ then OUTPUT('A nu este pozitiv definită');

end if

STOP.

for
$$i=k+1:n$$
 do
$$\ell_{ik}=\frac{1}{\ell_{i+1}}\left(a_{ik}-\sum_{k=1}^{k-1}\ell_{is}\ell_{ks}\right);$$

endfor

endfor STEP 3: y = SubsAsc(L, b);

STEP 4: $x = SubsDesc(L^T, y)$.

Exemplu 2: Fie
$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 10 & 4 \\ 2 & 4 & 6 \end{pmatrix}$$

a) Să se verifice dacă A este simetrică și pozitiv definită;

- b) În caz afirmativ, să se determine factorizarea Cholesky. c) Să se rezolve sistemul Ax = b, $b = (12 30 10)^T$ prin metoda
- Cholesky.

Curs #5

 $\ell_{11} = \sqrt{a_{11}}$: for i = 2: n do $\ell_{i1} = \frac{a_{i1}}{\ell_{i1}};$ endfor

STEP 2: for k = 2: n do $\alpha = a_{kk} - \sum_{ks}^{n-1} \ell_{ks}^2;$

(4)

if $\alpha < 0$ then OUTPUT('A nu este pozitiv definită'); STOP.

endif $\ell_{kk} = \sqrt{\alpha}$;

a)
$$4 > 0$$
, $\begin{vmatrix} 4 & 2 \\ 2 & 10 \end{vmatrix} = 36 > 0$, $det(A) = 144 > 0 \Rightarrow$ conform criteriului Sylvester rezultă că matricea A este pozitiv definită. Conform Th. (II.2.) matricea A admite descompunere Cholesky. Astfel $\exists L$ inferior triunghiulară

astfel încât $A = LL^T$. $\begin{pmatrix} 4 & 2 & 2 \\ 2 & 10 & 4 \\ 0 & 1 & 6 \end{pmatrix} = \begin{pmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell_{11} & \ell_{21} & \ell_{31} \\ 0 & \ell_{22} & \ell_{32} \\ 0 & 0 & 0 \end{pmatrix}$

$$= \begin{pmatrix} \ell_{11} & \ell_{11}\ell_{21} & \ell_{11}\ell_{31} \\ \ell_{21}\ell_{11} & \ell_{21}^{2} + \ell_{22}^{2} & \ell_{21}^{11}\ell_{31} \\ \ell_{21}\ell_{11} & \ell_{21}^{2} + \ell_{22}^{2} & \ell_{21}^{2}\ell_{32} \\ \ell_{21}\ell_{11} & \ell_{21}\ell_{21}\ell_{21}\ell_{22} & \ell_{22}^{2}\ell_{21}^{2} + \ell_{22}^{2} + \ell_{23}^{2} \end{pmatrix}$$

continuare elementele de pe prima coloană din L, (ℓ_{21}, ℓ_{31}) : $\ell_{21}\ell_{11} = 2$ și $\ell_{31}\ell_{11}=2$ de unde rezultă $\ell_{21}=1$ și $\ell_{31}=1$. Continuăm procesul calculând elementul ℓ_{22} : $\ell_{21}^2 + \ell_{22}^2 = 10 \Rightarrow \ell_{22} = 3 \ (\ell_{22} > 0)$. Aflăm elementul rămas pe coloana a II-a, i.e., ℓ_{32} : $\ell_{31}\ell_{21} + \ell_{32}\ell_{22} = 4 \Rightarrow \ell_{32} = 1$. În final calculăm elemntul ℓ_{33} : $\ell_{31}^2 + \ell_{32}^2 + \ell_{33}^2 = 6 \Rightarrow \ell_{33} = 2 \ (\ell_{33} > 0)$.

Aflăm mai întâi elementul $\ell_{11}:\ell_{11}^2=4\Rightarrow\ell_{11}=2$ ($\ell_{11}>0$). Calculăm în

Am obținut
$$L=\left(\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{array}\right)$$
 . Rezolvăm sistemul $Ly=b$:

$$\left\{ \begin{array}{l} 2y_1 = 12 \\ y_1 + 3y_2 = 30 \\ y_1 + y_2 + 2y_3 = 10 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} y_1 = 6 \\ y_2 = 8 \\ y_3 = -2 \end{array} \right.$$

În final se rezolvă sistemul $L^T x = y$:

$$\begin{cases} 2x_1 + x_2 + x_3 = 6 \\ 3x_2 + x_3 = 8 \\ x_1 + x_2 + 2x_3 = -2 \end{cases} \Rightarrow \begin{cases} x_1 = 2 \\ x_2 = 3 \\ x_3 = -1 \end{cases}$$

March 29, 2020 9 / 9