Modal Logic Exercise Set 01

To be completed by Thursday 2 May

We will work through these exercises (and possibly some others as well) during the problem class. Exercises marked with a (\triangle) are a little more challenging.

- 1. Show that $(\Box(A \to \Diamond B) \land \Diamond(\Box C \lor D))$ is a well-formed modal formula.
- 2. Use the definition of a modal model to verify the correctness of the possible worlds semantics for the interdefinability of \square and \lozenge : show that for any modal model $M = (W, R, \Vdash)$ and any world $w \in W$,
 - (a) $w \Vdash \Box A$ if, and only if, $w \Vdash \neg \Diamond \neg A$;
 - (b) $w \Vdash \Diamond B$ if, and only if, $w \Vdash \neg \Box \neg B$.
- 3. Let $M = (W, R, \Vdash)$ be a model in which every world is accessible to every other, i.e. for all $w, u \in W$, wRu. Show that for all $w \in W$, $w \Vdash (\Diamond P \to \Box \Diamond P)$.
- 4. Let $M = (W, R, \Vdash)$ be a model and $w \in W$ a world with no other worlds accessible to it, i.e. for no $u \in W$, wRu. Show that at w every formula is necessary, but none are possible, i.e. $w \Vdash \Box A$ for all A, but $w \not\models \Diamond A$ for any A.
- 5. (\triangle) A formula A is valid in a model (W, R, \Vdash) if $u \Vdash A$ for all $u \in W$. Construct a (finite) model $M = (W, R, \Vdash)$ with the following properties.
 - (a) There are worlds $u, v \in W$ such that $u \neq v$ and uRv;
 - (b) There are worlds $w, x \in W$ such that $w \Vdash P$ and $x \not\Vdash P$;
 - (c) $(\lozenge P \to \square P)$ is valid in M;
 - (d) $(\lozenge \neg P \to \Box \neg P)$ is valid in M;
 - (e) $(\lozenge P \to \square P)$ is valid in M^{-1} ; and
 - (f) $(\lozenge \neg P \to \Box \neg P)$ is valid in M^{-1} ,

where $M^{-1} = (X, R^{-1}, \Vdash)$ is the model with the same worlds and forcing relation as M, but with the converse accessibility relation $R^{-1} = \{(y, x) | xRy\}$.