

Price/Yield Relationship

Inverse Relationship

Price/YTM Relationship

Credit Ratings

	S&P	Fitch	Moody's
Investment	AAA	AAA	Aaa
Grade	AA	AA	Aa
	Α	Α	A
	BBB	BBB	Baa

High Yield	BB	BB	Ba
	В	В	В
	CCC - Lower	CCC - Lower	Caa - Lower

Determining a Bond's Yield

- Use yields of bonds with same credit rating
- If we want to value a Baa-rated bond, we can get the data from Quandl package

```
> library(Quandl)
> baa <- Quandl("MOODY/DBAAYLD")
> head(baa)

DATE VALUE
1 2016-10-07  4.36
2 2016-10-06  4.36
3 2016-10-05  4.36
4 2016-10-04  4.35
5 2016-10-03  4.29
6 2016-09-30  4.29
```


Let's practice!

Components of Yield

Baseline Component of Yield

- Risk-free yield (baseline rate)
 - Yield on recently issued US Treasury with similar maturity
- Risk-free yield is not constant
 - Affected by economy, market interest rates, and inflation

Obtaining Treasury Data

Use quantmod package

Obtain 10-Year Treasuries ("DGS10")
 from FRED
 Identifies source of data

Spread Component of Yield

- Spread
 - Primarily the credit spread = risk that issuer will default
 - May contain premiums for other risks

Risks of Investing in Bonds

- Credit Risk: Risk of default by issuer
- Inflation Risk: Risk that inflation eats up value of cash flows received from bond
- Call Risk: Risk that issuer will buyback the bond at a time that is disadvantageous to the investor
- Liquidity Risk: Risk that you cannot sell the bond for a price that is at or near its value

Time-Varying Risk Premiums

- Depends on market's current appetite for risk
 - Nervous markets larger risk premium
- One measure is Investment Grade spread (i.e., difference in Baa and Aaa yields)
- We can obtain Moody's Aaa and Baa Index yields from the Quandl package

Let's practice!

Estimating the Yield of a Bond

Finding the Yield By Trial-and-Error

- For traded bonds, we can imply the yield
- If you know the price and the bond's cash flows, you can make "guesses" as to what the yield is
- The "correct" yield equates the price of the bond with the PV of the bond's cash flows

Iterating Through Different Guesses

- Consider bond with \$100 par value, 5% coupon rate,
 10 years to maturity, and a price of \$92.64
- 1st Guess: 5% Price is \$100 (too high)
- 2nd Guess: 7% Price is \$85.95 (too low)
- 3rd Guess: 6% Price is \$92.64 (correct)

Automating the Process

- Trial-and-error is inefficient
- Fortunately, we can use the uniroot() function in R to help us automate the process

Create Function Using uniroot()

```
> ytm <- function(cf) {
   uniroot(bval, c(0, 1), cf = cf)$root
}</pre>
```

- Create the ytm() function using uniroot()
- Function takes a modified cash flow vector (cf) and uses a modified bond valuation function (bval)
- c(0,1) limits the interval for the search to a yield between 0% and 100%

Modified Cash Flow Vector

```
> cf <- c(-92.64, 5, 5, 5, 5, 5, 5, 5, 5, 5, 105)
```

- First element is bond's price entered as a negative number
- Second element onwards are the bond's cash flows - coupons plus par value
- Same bond: Price is -\$92.64, par value is \$100,
 5% coupon rate, and 10 years to maturity

Modified Bond Valuation Function

```
> bval <- function(i, cf,

t = seq(along = cf))
sum(cf / (1 + i)^t)</pre>
```

- Need to create bond valuation function bval() that uses the modified cash flow vector (cf)
- Same logic as our bondprc() function
- Create time indicator (t)
- Discount cash flow using interest rate (i)

Let's practice!