Claim: All odd numbers greater than 1 are prime.

Proof by:

A primary school student:

- 3 is a prime.
- 5 is a prime.
- 7 is a prime.
- So all odd numbers greater than 1 are prime.

An experimental scientist:

- 3, 5, 7 are primes.
- 9 is an experimental error.
- 11, 13 are primes.
- 15 is an experimental error.
- 17, 19 are primes.
- So all odd numbers greater than 1 are prime.

Semester 1, 2019/20

1 / 19

Lecture 6 Part I

MATHEMATICAL INDUCTION

2 / 19

The principle of mathematical induction is used to prove countably infinitely many statements.

Usually these statements are indexed by \mathbb{Z}^+ , but sometimes $\mathbb{Z}_{\geq k}$ for $k \in \mathbb{Z}$ can also be used to index the statements.

Tan Kai Meng (NUS) Semester 1, 2019/20 3 / 19

This principle relies on the following:

Theorem (Well-ordering Principle of \mathbb{Z}^+)

Every non-empty subset of \mathbb{Z}^+ has a minimal element.

Proof.

- 2 Since $S \neq \emptyset$, there exists $s \in S$.
- 3 Run the following algorithm:
 - n := 1:
 - stop := false;
 - 3 while not stop do

 - ② Else n := n + 1;
 - enddo;
 - \bullet return n;
- **4** The algorithm will stop, after at most s cycles, since $s \in S$.
- \odot The value returned is the minimal element of S.

Theorem (Principle of Mathematical Induction)

For each $n \in \mathbb{Z}^+$, let P(n) be a statement. Suppose that P(1) is true and that $(P(n) \to P(n+1))$ is true for all $n \in \mathbb{Z}^+$. Then P(n) is true for all $n \in \mathbb{Z}^+$.

Proof.

- **1** Let $S = \{ n \in \mathbb{Z}^+ \mid \sim P(n) \}.$
- 2 $1 \notin S$ since P(1) is true.
- - $oldsymbol{0}$ S has a minimal element m by well-ordering principle.
 - $2 m \geq 2$ by (2), and so $m-1 \in \mathbb{Z}^+$.

 - **4** By (1), (3.2) and (3.3), P(m-1) is true.
 - **5** Since $P(m-1) \rightarrow P(m)$ is assumed true, we have P(m) (modus ponens).
 - **6** By (1) and (3.5), $m \notin S$, contradicting (3.1).
- **1** Thus $S = \emptyset$, and P(n) is true for all $n \in \mathbb{Z}^+$.

Tan Kai Meng (NUS) Semester 1, 2019/20 5 / 19

The set \mathbb{Z}^+ may be replaced by $\mathbb{Z}_{\geq k}$ $(k \in \mathbb{Z})$ in the well-ordering principle and mathematical induction, in which case the base case P(1) should be replaced by P(k).

Tan Kai Meng (NUS) Semester 1, 2019/20 6 / 19

How to Prove by Induction

To prove that P(n) is true for all $n \in \mathbb{Z}^+$:

- Check that the base case P(1) is true.
- ② Prove the inductive step: Assume P(n), and use this information to prove that P(n+1) is true.

7 / 19

Tan Kai Meng (NUS) Semester 1, 2019/20

Example

Prove that $1^3 + 2^3 + \dots + n^3 = \frac{n^2}{4}(n+1)^2$.

Solution:

- **1** Let $P(n) = (1^3 + 2^3 + \dots + n^3 = \frac{n^2}{4}(n+1)^2)$.
- ② $P(1) = (1^3 = \frac{1^2}{4}(1+1)^2)$, which is true.
- **3** Assume P(n), i.e. $1^3 + 2^3 + \dots + n^3 = \frac{n^2}{4}(n+1)^2$.

$$[P(n+1) = (1^3 + 2^3 + \dots + (n+1)^3 = \frac{(n+1)^2}{4}((n+1) + 1)^2).]$$

Mow,

$$\begin{split} 1^3 + 2^3 + \dots + (n+1)^3 &= (1^3 + 2^3 + \dots + n^3) + (n+1)^3 \\ &= \frac{n^2}{4}(n+1)^2 + (n+1)^3 \qquad \text{(applying } P(n)\text{)} \\ &= \frac{n^2 + 4(n+1)}{4}(n+1)^2 = \frac{(n+2)^2}{4}(n+1)^2. \end{split}$$

- **5** Thus P(n+1) is true.
- **6** By MI, P(n) is true for all $n \in \mathbb{Z}^+$.

Tan Kai Meng (NUS)

Example

Prove that $1 + 3n < n^2$ for all positive integers $n \ge 4$.

Solution:

- **1** Let $P(n) = (1 + 3n < n^2)$.
- ② $P(4) = (1 + 3(4) < 4^2)$, which is true.
- **3** Assume P(n), i.e. $1 + 3n < n^2$.

$$[P(n+1) = (1+3(n+1) < (n+1)^2).]$$

O Now,

$$\begin{aligned} 1 + 3(n+1) &= 1 + 3n + 3 \\ &< n^2 + 3 & \text{(applying } P(n) \text{)} \\ &= n^2 + 2 + 1 \\ &< n^2 + 2n + 1 & \text{($1 < n$)} \\ &= (n+1)^2. \end{aligned}$$

- **5** Thus P(n+1) is true.
- **6** By MI, P(n) is true for all $n \in \mathbb{Z}_{>4}$.

A 'Proof' that All Horses Have the Same Colour

- **1** Let P(n) = 'in any collection of n horses, the horses have the same colour'.
- P(1) is clearly true.
- **3** Assume P(n), i.e. any collection of n horses have the same colour.
- Let $H = \{h_1, h_2, \dots, h_{n+1}\}$ be a collection of n+1 horses (where each h_i denote a horse).
- **3** Then $H \{h_{n+1}\}$ is a collection of n horses, so by P(n), they have the same colour, say brown.
- **1** Also, $H \{h_1\}$ is another collection of n horses, so by P(n), they have the same colour.
- $0 h_2 \in H \{h_{n+1}\}$, so h_2 is brown.
- **3** $h_2, h_{n+1} \in H \{h_1\}$, so h_{n+1} is also brown by (6).
- **1** Thus all the horses in H are brown by (5) and (9); in particular, all horses in H have the same colour.
- **10** Since H is an arbitrary collection of n+1 horses, P(n+1) is true.
- **1** By MI, P(n) is true for all $n \in \mathbb{Z}^+$.
- igoplus 2 Let N be the total number of horses in the world at this present moment. Then P(N) is true, and so all horses have the same colour.

What went wrong?

Strong Mathematical Induction

Theorem

For each $n \in \mathbb{Z}^+$, let P(n) be a statement. Suppose that P(1) is true, and that $(P(1) \wedge P(2) \wedge \cdots \wedge P(n) \to P(n+1))$ is true for all $n \in \mathbb{Z}^+$. Then P(n) is true for all $n \in \mathbb{Z}^+$.

Proof.

Exercise.

How to Prove by Strong Induction

To prove that P(n) is true for all $n \in \mathbb{Z}^+$:

- Check that the base case P(1) is true.
- Prove the inductive step: Assume that $P(1), \ldots, P(n)$ is true, and use this information to prove that P(n+1) is true.

Note

- Difference between proving by normal induction and by strong induction:
 - **1** For normal induction, only P(n) is assumed when proving P(n+1).
 - ② For strong induction, we may assume $P(1), \ldots, P(n)$ when proving P(n+1).

Usually proving by strong induction is easier, since we can assume more information when trying to prove P(n+1) in the inductive step.

• Statements that can be proved by normal induction can also be proved by strong induction, but not necessarily vice versa.

 ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □
 ½
 ✓ ○ ○

 Tan Kai Meng (NUS)
 Semester 1, 2019/20
 12 / 19

For the next theorem/example, we recall:

Let $n \in \mathbb{Z}^+$. Then n is **composite** if there exist $a, b \in \mathbb{Z}^+$ with 1 < a, b < n and n = ab.

Furthermore, n is **prime** if and only if $n \ge 2$ and n is not composite.

Tan Kai Meng (NUS) Semester 1, 2019/20 13 / 19

Existence of Prime Factorisation

Theorem

Every $n \in \mathbb{Z}_{\geq 2}$ can factorised into primes (i.e. $n = p_1 p_2 \cdots p_k$ where $p_1, p_2 \dots, p_k$ are primes, and $k \in \mathbb{Z}^+$).

Proof.

- **①** For each $n \in \mathbb{Z}_{\geq 2}$, let P(n) = (n can be factorised into primes).
- ② P(2) = (2 can be factorised into primes), which is true since 2 is a prime.
- **3** Assume $P(2), P(3), \dots, P(n)$.
- **①** Case 1: n+1 is prime. Then P(n+1) is clearly true.
 - ② Case 2: n+1 is composite. Then n+1=ab for some $a,b\in\mathbb{Z}^+$ with 1< a,b< n+1.
 - ① P(a) and P(b) are true by (3). So $a=p_1p_2\cdots p_k$ and $b=q_1q_2\cdots q_l$ for some primes p_1,p_2,\ldots,p_k and q_1,q_2,\ldots,q_l .
 - 2 Thus, $n+1 = ab = (p_1p_2 \cdots p_k)(q_1q_2 \cdots q_l)$.
 - **3** Hence P(n+1) is true.
- **5** In all cases, P(n+1) is true.
- **6** By SMI, P(n) is true for all $n \in \mathbb{Z}_{\geq 2}$.

Tan Kai Meng (NUS) Semester 1, 2019/20

Other Forms of Mathematical Induction

Theorem

Let $k \in \mathbb{Z}^+$. For each $n \in \mathbb{Z}^+$, let P(n) be a statement. Suppose that $P(1), P(2), \dots, P(k)$ are true, and that

 $(P(n) \wedge P(n+1) \wedge \cdots \wedge P(n+k-1) \rightarrow P(n+k))$ is true for all $n \in \mathbb{Z}^+$. Then P(n) is true for all $n \in \mathbb{Z}^+$.

Proof.

Exercise.

Note

This form of induction is particularly useful for proving results about recursively defined sequences.

Example

The Fibonacci sequence $a_0, a_1, \ldots, a_n, \ldots$ is defined by $a_0 = 0$, $a_1 = 1$, and $a_n = a_{n-1} + a_{n-2}$ for all $n \in \mathbb{Z}_{\geq 0}$. Prove that $a_n < 2^n$ for all $n \in \mathbb{Z}_{\geq 0}$.

Solution:

- **2** $P(0) = (a_0 < 2^0)$, which is true.
- **3** $P(1) = (a_1 < 2^1)$, which is also true.
- **5** Note that $n \geq 0$, so that $n + 2 \geq 2$. Thus

$$\begin{aligned} a_{n+2} &= a_{n+1} + a_n & \text{(given recurrence relation)} \\ &< 2^{n+1} + 2^n & \text{(applying } P(n+1) \text{ and } P(n)) \\ &< 2^{n+1} + 2^{n+1} & \\ &= 2(2^{n+1}) = 2^{n+2}. \end{aligned}$$

- **1** Thus P(n+2) is true.
- **9** By MI, P(n) is true for all $n \in \mathbb{Z}_{>0}$.

Consider the following proof of the last example using strong induction:

- **2** $P(0) = (a_0 < 2^0)$, which is true.
- **3** Assume $P(0), P(1), \dots, P(n)$.
- Then

$$a_{n+1} = a_n + a_{n-1} \qquad \qquad \text{(given recurrence relation)}$$

$$< 2^n + 2^{n-1} \qquad \qquad \text{(applying } P(n) \text{ and } P(n-1)\text{)}$$

$$< 2^n + 2^n$$

$$= 2(2^n) = 2^{n+1}.$$

- **5** Thus P(n+1) is true.
- **6** By SMI, P(n) is true for all $n \in \mathbb{Z}_{\geq 0}$.

Is this proof valid? Why/Why not?

Limitations of Mathematical Induction

While mathematical induction is a good method to employ in many proofs, its limitation include:

- it cannot be used to prove uncountably infinitely many statements;
- it can only be used to verify an asserted statement, but does not offer any insight on how the asserted statement comes about;
- it cannot be used to find reasonable assertions which it can then verify;
- sometimes, assuming all preceding statements does not necessarily provide enough information to prove the succeeding statement.

Summary

We have covered:

- Well-ordering principle of \mathbb{Z}^+ (or $\mathbb{Z}_{\geq k}$)
- Principle of mathematical induction:
 - Usual induction
 - Strong induction
 - ► A variant useful for proving results about recursively defined sequences
- \bullet Existence of prime factorisation for $\mathbb{Z}_{\geq 2}$ (proved by strong induction)