

Q: Ιακώβου Πολυλά 24 - Πεζόδρομος : 26610 20144 : **Q**: 6932327283 - 6955058444

26 Maiou 2025

Μαθηματικά Γ΄ Λυκείου

ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΒΑΣΙΚΩΝ ΑΣΚΗΣΕΩΝ

Τυπολόγιο

1ο Κεφάλαιο ΄Ορια - Συνέχεια

Βασικές ασκήσεις

1ο Κεφάλαιο ΄Ορια - Συνέχεια

1.1 Σύνθεση συναρτήσεων

🔼 ΄Ασκηση 1.1 : Εύρεση σύνθεσης

Για να οριστεί η συνάρτηση $f \circ g$ πρέπει να βρούμε το πεδίο ορισμού της και τον τύπο της. **Βήματα**

1° : Ο τύπος της $f \circ g$ θα ισούται με

$$(f \circ g)(x) = f(g(x))$$

που σημαίνει ότι στον τύπο της f αντικαθιστούμε το x με g(x).

2°: Για το πεδίο ορισμού ισχύουν οι σχέσεις

$$x \in D_g$$
 kai $g(x) \in D_f$

Οι περιορισμοί αυτοί μας οδηγούν σε εξισώσεις και ανισώσεις. Οι κοινές λύσεις σχηματίζουν το πεδίο ορισμού.

Εντελώς ανάλογα εργαζόμαστε για τις συναρτήσεις $g \circ f, f \circ f \dots$

Παράδειγμα 1 : Σύνθεση συναρτήσεων

Δίνονται οι συναρτήσεις $f(x) = \frac{1}{x-1}$ και $g(x) = \sqrt{x-2}$. Να ορίσετε τις συναρτήσεις

$$\alpha$$
. $f \circ g$

$$\beta$$
. $g \circ f$

$$\gamma$$
. $f \circ f$

✓ ΛΥΣΗ

H συνάρτηση f ορίζεται όταν $x-1 \neq 0 \Rightarrow x \neq 1$ άρα $D_f = \mathbb{R} - \{1\}$, ενώ η g ορίζεται όταν $x-2 \geq 0 \Rightarrow x \geq 2$ οπότε $D_g = [2, +\infty)$.

α. Η συνάρτηση $f \circ g$ έχει τύπο

$$(f \circ g)(x) = f(g(x)) = \frac{1}{g(x) - 1} = \frac{1}{\sqrt{x - 2} - 1}$$

και πεδίο ορισμού

$$D_{f \circ g} = \{ x \in D_g \text{ kal } g(x) \in D_f \}$$

- $x \in D_{g} \Rightarrow x \in [2, +\infty)$
- $g(x) \in D_f \Rightarrow \sqrt{x-2} \in \mathbb{R} \{1\} \Rightarrow \sqrt{x-2} \neq 1 \Rightarrow x-2 \neq 1 \Rightarrow x \neq 3$

Επομένως $D_{f \circ g} = [2, 3) \cup (3, +\infty)$.

β. Η συνάρτηση $g \circ f$ έχει τύπο

$$(g \circ f)(x) = g(f(x)) = \sqrt{f(x) - 2} = \sqrt{\frac{1}{x - 1} - 2}$$

και πεδίο ορισμού

$$D_{g \circ f} = \{ x \in D_f \text{ kai } f(x) \in D_g \}$$

- $x \in D_f \Rightarrow x \in \mathbb{R} \{1\}$
- $f(x) \in D_g \Rightarrow \frac{1}{x-2} \in [2, +\infty) \Rightarrow \frac{1}{x-1} \ge 2 \Rightarrow$ $\Rightarrow \frac{1}{x-1} - 2 \ge 0 \Rightarrow \frac{3-x}{x-1} \ge 0 \Rightarrow$ $\Rightarrow (3-x)(x-1) \ge 0 \text{ kai } x - 1 \ne 0 \Rightarrow$ $\Rightarrow x \in (1,3]$

x	$-\infty$]	[3	$+\infty$
3-x	+	+	0	_
x-1	- (+	1 1	+
Γινόμενο	_	+	0	_

Επομένως $D_{g \circ f} = (1, 3]$.

1.2 Συνάρτηση 1 – 1 - Αντίστροφη

΄Ασκηση 1.2 : Συνάρτηση 1 – 1

Τρόποι

 $\mathbf{l^{oq}}$ Τρόπος : Αποδεικνύουμε ότι η f είναι γνησίως μονότονη στο D_f . (Ο τρόπος αυτός ενδείκνυται όταν το πεδίο ορισμού της f είναι ένα διάστημα.)

2^{ος} Τρόπος : Με τη βοήθεια του ορισμού της 1-1 συνάρτησης

Για κάθε
$$x_1, x_2 \in D_f$$
: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

(Ο τρόπος αυτός ενδείκνυται για συναρτήσεις με πεδίο ορισμού ένωση διαστημάτων, αρκεί ο τύπος να επιτρέπει την επίλυση της εξίσωσης.)

 ${f 3}^{\sf oc}$ Τρόπος : Με τη βοήθεια της γραφικής παράστασης της f . Κάθε οριζόντια ευθεία πρέπει να τέμνει τη C_f σε ένα το πολύ σημείο.

 $\mathbf{4}^{\mathsf{oc}}$ Τρόπος : Αν η εξίσωση y=f(x) έχει μοναδική λύση ως προς x για κάθε $y\in f(D_f)$ και η λύση ανήκει στο D_f τότε η f είναι 1-1.

5°ς Τρόπος : Με απαγωγή σε άτοπο. Υποθέτουμε δηλαδή ότι η f δεν είναι 1-1.

🔼 Άσκηση 1.3 : Εύρεση αντίστροφης συνάρτησης

Βήματα

1°: Δείχνουμε ότι η f είναι 1 - 1.

2° : Εύρεση συνόλου τιμών της f με τη βοήθεια μονοτονίας.

3°: Επίλυση της εξίσωσης y = f(x) ως προς x με $x \in D_f$.

Παράδειγμα 2 : Εύρεση αντίστροφης

Δίνεται η συνάρτηση $f(x) = \ln(x-2) - \ln(5-x)$. Να δείξετε ότι η f είναι αντιστρέψιμη και να ορίσετε τη συνάρτηση f^{-1} .

✓ ΛΥΣΗ

Η f ορίζεται όταν

$$x-2>0 \Rightarrow x>2$$
 kai $5-x>0 \Rightarrow x<5$

άρα $D_f = (2, 5)$. Για κάθε $x \in (2, 5)$ είναι:

$$f'(x) = \left[\ln(x-2) - \ln(5-x)\right]' = \frac{(x-2)'}{x-2} - \frac{(5-x)'}{5-x} = \frac{1}{x-2} + \frac{1}{5-x} > 0$$

επομένως η f είναι γνησίως αύξουσα στο (2,5), άρα και 1-1 οπότε αντιστρέφεται. Η f^{-1} έχει πεδίο ορισμού

$$D_{f^{-1}} = f(D_f) = f((2,5)) \stackrel{f \nearrow}{=} \left(\lim_{x \to 2^+} f(x), \lim_{x \to 5^-} f(x) \right)$$

- $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (\ln(x-2) \ln(5-x)) = -\infty \ln 3 = -\infty.$
- $\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (\ln(x-2) \ln(5-x)) = \ln 3 (-\infty) = +\infty.$

οπότε $D_{f^{-1}}=\mathbb{R}$. Για την εύρεση του τύπου έχουμε $y=f(x)\Leftrightarrow x=f^{-1}(y)$. Είναι λοιπόν

$$y = f(x) \Leftrightarrow y = \ln(x - 2) - \ln(5 - x) \Leftrightarrow y = \ln\frac{x - 2}{5 - x} \Leftrightarrow$$

$$\Leftrightarrow e^{y} = \frac{x - 2}{5 - x} \Leftrightarrow e^{y}(5 - x) = x - 2 \Leftrightarrow$$

$$\Leftrightarrow 5e^{y} - xe^{y} = x - 2 \Leftrightarrow x + xe^{y} = 5e^{y} + 2 \Leftrightarrow$$

$$\Leftrightarrow x (e^{y} + 1) = 5e^{y} + 2 \Leftrightarrow x = \frac{5e^{y} + 2}{e^{y} + 1} \Leftrightarrow f^{-1}(y) = \frac{5e^{y} + 2}{e^{y} + 1}$$

άρα η αντίστροφη της f είναι $f^{-1}(x) = \frac{5e^x + 2}{e^x + 1}$, $D_{f^{-1}} = \mathbb{R}$.

1.3 'Ορια μορφής $\frac{0}{0}$

ightharpoonup 'Ασκηση 1.4 : Όριο $\frac{0}{0}$ ρητής

Αν ένα όριο $\lim_{x\to x_0}\frac{P(x)}{Q(x)}$, όπου P(x), Q(x) πολυώνυμα, έχει μορφή $\frac{0}{0}$ τότε εργαζόμαστε ως εξής:

1^{ος} Τρόπος : Παραγοντοποίηση

1°: Παραγοντοποιούμε αριθμητή και παρονομαστή.

2° : Απλοποιούμε τις παραστάσεις $x - x_0$ και αντικαθιστούμε όπου x το x_0 .

2^{ος} Τρόπος: Kavóvaς De L'Hospital

Εφαρμόζουμε τον κανόνα De L'Hospital όσες φορές χρειαστεί έως ότου φύγει η απροσδιοριστία.

ightharpoonup Παράδειγμα 3: Όριο $\frac{0}{0}$ ρητής - Παραγοντοποίηση

Υπολογίστε τα παρακάτω όρια

$$\alpha. \lim_{x \to 2} \frac{x^2 - 4}{x^2 - 2x}$$

$$\beta. \lim_{x \to -1} \frac{x^2 - x - 2}{x^3 + 1}$$

$$y. \lim_{x \to 1} \frac{x^3 - 7x + 6}{x - x^2}$$

$$\alpha. \lim_{x \to 2} \frac{x^2 - 4}{x^2 - 2x} \qquad \beta. \lim_{x \to -1} \frac{x^2 - x - 2}{x^3 + 1} \qquad \gamma. \lim_{x \to 1} \frac{x^3 - 7x + 6}{x - x^2} \qquad \delta. \lim_{x \to \frac{1}{2}} \frac{4x^2 - 4x + 1}{4x^2 - 1}$$

ightharpoonup Παράδειγμα m 4: ΄Οριο $rac{0}{0}$ ρητής - Κανόνας De L'Hospital

Υπολογίστε τα παρακάτω όρια

$$\alpha. \lim_{x \to 2} \frac{x^2 + 3x - 10}{x^3 - 8}$$

$$\beta. \lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 - x}$$

✓ ΛΥΣΗ

ightharpoonup 'Ασκηση 1.5 : Όριο $\frac{0}{0}$ άρρητης

Πολλαπλασιασμός με συζυγείς παραστάσεις.

ightharpoonup Παράδειγμα 5 : ΄Οριο $\frac{0}{0}$ άρρητης

Υπολογίστε τα παρακάτω όρια

$$\alpha. \lim_{x \to 2} \frac{\sqrt{3x - 2} - 2}{x^2 - 4}$$

$$\beta. \lim_{x \to 2} \frac{\sqrt{x+1} - \sqrt{2x-1}}{\sqrt{x+2} - 2}$$

ightharpoonup 'Ασκηση 1.6 : 'Οριο $\frac{0}{0}$ ρητής με απόλυτες τιμές

Βήματα

1°: Υπολογίζω τα όρια των παραστάσεων μέσα στις απόλυτες τιμές.

2°: Διώχνω τις απόλυτες τιμές με τον παρακάτω κανόνα

$$\lim_{x\to x_0} f(x) > 0 \Rightarrow f(x) > 0$$
 κοντά στο x_0

$$\lim_{x \to r_0} f(x) < 0 \Rightarrow f(x) < 0$$
 κοντά στο x_0

Αν κάποια απόλυτη τιμή μηδενίζεται στο x_0 τότε υπολογίζω πλευρικά όρια.

3° : Υπολογίζω όριο ρητής $\frac{0}{0}$

ightharpoonup 'Ασκηση 1.7 : 'Οριο $\frac{0}{0}$ με τριγωνομετρικές παραστάσεις

1^{ος} Τρόπος: Κατασκευάζω και χρησιμοποιώ τριγωνομετρικές ταυτότητες.

2^{ος} Τρόπος : Κατασκευάζω με πράξεις κάποιο βασικό τριγωνομετρικό όριο, αρκεί όταν $x \to x_0$ να μηδενίζεται η γωνία του τριγωνομετρικού αριθμού.

3^{ος} Τρόπος : Κανόνας De L' Hospital. (Χρειάζεται προσοχή εδώ γιατί μπορεί η εφαρμογή του κανόνα να με οδηγήσει σε δυσκολότερο όριο.)

Δ 'Ασκηση 1.8 : 'Οριο $\frac{0}{0}$ με εκθετικές, λογαριθμικές και συνδυασμό αυτών

Εφαρμογή του κανόνα De L' Hospital.

- 1.4 'Opia με απροσδιοριστία $\frac{\pm \infty}{+\infty}$
- ightharpoonup 'Ασκηση 1.9 : 'Ορια $\frac{\pm \infty}{\pm \infty}$ ρητής

Με ρητή συνάρτηση όταν $x \to \pm \infty$ υπολογίζουμε το όριο του κλάσματος μόνο με τους μεγιστοβάθμιους όρους.

ightharpoonup 'Ασκηση 1.10 : 'Ορια $\frac{\pm \infty}{\pm \infty}$ με ρίζες

Μέθοδος κοινού παράγοντα ή συζυγείς παραστάσεις.

ightharpoonup 'Ασκηση 1.11 : 'Ορια $\frac{\pm \infty}{\pm \infty}$ Διάφορες συναρτήσεις

Κανόνας De L' Hospital

lacksquare 'Ασκηση 1.12 : 'Ορια $0\cdot (\pm \infty)$ - Γενική μέθοδος

Βήματα

1°: Γράφουμε το γινόμενο με μορφή σύνθετου κλάσματος ως εξής

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} \frac{f(x)}{\frac{1}{g(x)}} \ \ \dot{\eta} \ \ \lim_{x \to x_0} \frac{g(x)}{\frac{1}{f(x)}}$$

 ${f 2^o}$: Το όριο παίρνει τη μορφή ${0\over 0}$ ή ${\pm\infty\over\pm\infty}$ οπότε εφαρμόζουμε κανόνα De L' Hospital

$lacksymbol{lack}$ 'Ασκηση 1.13 : 'Ορια με απροσδιοριστία $0^0,1^{\pm\infty},(\pm\infty)^0$

Βήματα

1°: Χρησιμοποιούμε τον παρακάτω κανόνα

$$\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} e^{\ln f(x)^{g(x)}} = \lim_{x \to x_0} e^{g(x) \cdot \ln f(x)}$$

2° : Υπολογίζουμε το όριο του εκθέτη το οποίο έχει απροσδιοριστία $0 \cdot (\pm \infty)$. Στη συνέχεια με αντικατάσταση υπολογίζουμε το αρχικό όριο.

1.6 Όρια με απροσδιοριστία $+\infty - \infty$

$$ightharpoonup$$
 'Ασκηση 1.14 : 'Ορια $+\infty-\infty$ - Γενική μέθοδος

Βήματα

1°: Βγάζουμε κοινό παράγοντα μια από τις δύο συναρτήσεις.

$$\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} \left[f(x) \left(1 - \frac{g(x)}{f(x)} \right) \right]$$

 $\mathbf{2}^{\mathbf{0}}$: Στη συνέχεια υπολογίζουμε το όριο του κλάσματος $\frac{g(x)}{f(x)}$ με μορφή $\frac{\pm\infty}{\pm\infty}$.

3°: Επιστρέφουμε στο αρχικό όριο αντικαθιστώντας.

Arr 'Ασκηση 1.15 : 'Ορια $+\infty-\infty$ - Κλάσματα

Αν στο όριο $\lim_{x\to x_0} (f(x)-g(x))$ οι συναρτήσεις f(x),g(x) είναι κλάσματα τότε τα κάνουμε ομώνυμα και οδηγούμαστε σε μία από τις μορφές $\frac{0}{0},\frac{\pm\infty}{\pm\infty}$ ή $\frac{a}{0}$.

ightharpoonup 'Ασκηση 1.16 : 'Ορια $+\infty-\infty$ - Διαφορά λογαρίθμων

Σχηματίζουμε διαφορά λογαρίθμων και χρησιμοποιούμε την ιδιότητα

$$\ln a - \ln \beta = \ln \frac{a}{\beta}$$

Στη συνέχεια υπολογίζουμε το όριο του κλάσματος το οποίο έχει απροσδιοριστία $\frac{\pm \infty}{\pm \infty}$.

Arr 'Ασκηση 1.17 : 'Ορια της μορφής $\frac{a}{0}$

Βήματα

1°: Παραγοντοποιούμε τον παρονομαστή.

2°: Γράφουμε σε ξεχωριστό κλάσμα τον παράγοντα που μηδενίζεται.

3°: Αν αυτός ο παράγοντας έχει σταθερό πρόσημο τότε προχωράμε στον υπολογισμό. Αν όχι υπολογίζουμε πλευρικά όρια.

Δ 'Ασκηση 1.18 : 'Ορια με τριγωνομετρικές συναρτήσεις ημf(x), συν f(x) - Μηδενική επί φραγμένη

Αν το όριο περιέχει σύνθετες τριγωνομετρικές συναρτήσεις με γωνία f(x) και $\lim_{x\to x_0} f(x)=\pm\infty$ τότε

Βήματα

1°: Γράφουμε τη συνάρτηση μέσα στο όριο ως γινόμενο συναρτήσεων.

2°: Κλείνουμε τη συνάρτηση του ορίου σε απόλυτη τιμή και σχηματίζουμε διπλή ανισότητα ώστε να εφαρμοστεί κριτήριο παρεμβολής.

Δ 'Ασκηση 1.19 : Γνωστό όριο που περιέχει την f(x) - Βοηθητική συνάρτηση

Βήματα

1°: Θέτουμε g(x) τη συνάρτηση του ορίου και λύνουμε ως προς f(x).

2°: Υπολογίζουμε το όριο της f στο x_0 .

🔼 ΄Ασκηση 1.20 : Κριτήριο παρεμβολής

Το κριτήριο παρεμβολής για τον υπολογισμό ορίων εφαρμόζεται σε ανισότητες της μορφής

$$g(x) \le f(x) \le h(x)$$
 $\eta |f(x)| \le g(x) \Rightarrow -g(x) \le f(x) \le g(x)$

2ο Κεφάλαιο Διαφορικός λογισμός

2.1 Εφαπτομένη

🗹 ΄Ασκηση 2.1 : Εύρεση εφαπτομένης με γνωστό σημείο επαφής

Βήματα

1°: Πεδίο ορισμού, παράγωγος f' και θέτουμε όπου $x=x_0$ ώστε να βρεθούν οι αριθμοί $f(x_0)$ και $f'(x_0)$.

2°: Γράφουμε την εξίσωση της ευθείας

$$y - f(x_0) = f'(x_0)(x - x_0)$$

και αντικαθιστώντας λύνουμε ως προς y.

Παράδειγμα 1 : Εφαπτομένη - Γνωστό σημείο επαφής

Δίνεται η συνάρτηση $f(x) = \frac{e^x}{x-1}$. Να βρεθεί η εξίσωση της εφαπτόμενης ευθείας της C_f στο σημείο

 $\alpha. \ M(0, f(0))$

β. με τεταγμένη e^2 .

΄Ασκηση 2.2 : Εύρεση εφαπτομένης με γνωστή κλίση λ

Βήματα

1°: Πεδίο ορισμού και f'.

2° : Θεωρούμε σημείο επαφής $M(x_0, f(x_0))$ και θέτουμε το σ.δ. της εφαπτομένης να ισούται με τη δοσμένη κλίση λ .

$$f(x_0) = \lambda$$

Αν δεν μας δίνεται ο συντελεστής λ της εφαπτομένης ε τότε τον βρίσκουμε έχοντας τις εξής περιπτώσεις.

Συνθήκη	Εξίσωση
Ευθείες παράλληλες $\varepsilon \parallel \zeta$	$\lambda_{\varepsilon} = \lambda_{\zeta} \Rightarrow f'(x_0) = \lambda$
Ευθείες κάθετες $\varepsilon \perp \zeta$	$\lambda_{\varepsilon} \cdot \lambda_{\zeta} = -1 \Rightarrow \ldots \Rightarrow f'(x_0) = \lambda$
Οριζόντια ευθεία $\varepsilon \parallel x'x$	$\lambda_{\varepsilon} = 0 \Rightarrow f'(x_0) = 0$
Η ε σχηματίζει γωνία ω	$\lambda_{\varepsilon} = \varepsilon \varphi \omega \Rightarrow f'(x_0) = \varepsilon \varphi \omega.$

3°: Λύνουμε την εξίσωση, βρίσκουμε το x_0 και στη συνέχεια το $f(x_0)$.

4°: Εξίσωση ευθείας $y - f(x_0) = f'(x_0)(x - x_0)$.

$lue{Z}$ 'Ασκηση 2.3 : Εφαπτομένη που διέρχεται από εξωτερικό σημείο P(a,eta)

Βήματα

1°: Πεδίο ορισμού και f'.

2°: Θεωρούμε σημείο επαφής $M(x_0, f(x_0))$ και γράφουμε τον τύπο της ευθείας.

3°: Αντικαθιστούμε $f(x_0)$ και $f'(x_0)$ στην εξίσωση.

4°: Αφού $P \in \varepsilon$ τότε θέτουμε x = a και $y = \beta$ και λύνουμε την εξίσωση ως προς x_0 .

5° : Για κάθε x_0 υπολογίζουμε $f(x_0)$ και $f'(x_0)$ και βρίσκουμε την ευθεία.

ightharpoonup 'Ασκηση 2.4 : Ευθεία εφάπτεται στη C_f στο $M(x_0f(x_0))$

Η ευθεία
$$y=ax+\beta$$
 εφάπτεται στη $C_f\Leftrightarrow \begin{cases} f(x_0)=ax_0+\beta\\ f'(x_0)=a \end{cases}$

m extstyle extstyle

Οι
$$C_f$$
 και C_g έχουν κοινή εφαπτομένη στο $M\Leftrightarrow \begin{cases} f(x_0)=g(x_0)\\ f'(x_0)=g'(x_0) \end{cases}$

Μονοτονία - Ακρότατα

🔼 ΄Ασκηση 2.6 : Μονοτονία - Ακρότατα - Σύνολο τιμών - Πλήθος ριζών

Βήματα

1°: Πεδίο ορισμού της f και έλεγχος συνέχειας.

2°: Παράγωγος f'.

3° : Υπολογίζουμε τις ρίζες και τα πρόσημα της f' με έναν από τους παρακάτω τρόπους :

- Λύνοντας την εξίσωση f(x) = 0 και τις ανισώσεις f(x) > 0 και f(x) < 0.
- Με επιλογή τιμής σε κάθε διάστημα που χωρίζουν οι ρίζες το πεδίο ορισμού.
- Παραγωγίζοντας δεύτερη ή ακόμα και τρίτη φορά. Με τη μονοτονία κάθε παραγώγου βρίσκουμε τα πρόσημά της ώσπου να φτάσουμε στη μονοτονία της f. Οι ρίζες βρίσκονται με δοκιμές.

4° : Πίνακας μονοτονίας και ακροτάτων.

5°: Μονοτονία - Ακρότατα - Σύνολο τιμών - Πλήθος ριζών

- Για εύρεση μονοτονίας αναφέρουμε το είδος της μονοτονίας σε κάθε διάστημα ξεχωριστά.
- Για εύρεση ακροτάτων ελέγχουμε για ακρότατα στα κρίσιμα σημεία και στα κλειστά άκρα του πεδίου ορισμού
- Για εύρεση συνόλου τιμών βρίσκουμε τις εικόνες των διαστημάτων μονοτονίας και τις ενώνουμε.
- Για την εύρεση του πλήθους ριζών της συνάρτησης ελέγχουμε αν το 0 ανήκει στην εικόνα κάθε διαστήματος. Αναλυτικά

$$0 \in f(\Delta_1) \Rightarrow Y$$
πάρχει $x_0 : f(x_0) = 0$

Η ρίζα αυτή είναι μοναδική μέσα στο κάθε διάστημα γιατί η f είναι γνησίως μονότονη.

Παράδειγμα 2: Μονοτονία - Ακρότατα - Σύνολο τιμών - Πλήθος ριζών

Δίνεται η συνάρτηση $f: \mathbb{R}^* \to \mathbb{R}$ με τύπο $f(x) = x + \frac{1}{x}$. Να βρείτε

α. τα διαστήματα μονοτονίας της f.

 γ . το σύνολο τιμών της f.

β. τα τοπικά ακρότατα.

δ. το πλήθος ριζών της εξίσωσης f(x) = 3.

✓ ΛΥΣΗ

Για κάθε $x \neq 0$ έχουμε:

$$f'(x) = \left(x + \frac{1}{x}\right)' = 1 - \frac{1}{x^2} - \frac{x^2 - 1}{x^2}$$

•
$$f'(x) = 0 \Rightarrow \frac{x^2 - 1}{x^2} = 0 \Rightarrow x^2 - 1 = 0 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1$$

•
$$f'(x) > 0 \Rightarrow \frac{x^2 - 1}{x^2} > 0 \xrightarrow{x^2 > 0} x^2 - 1 > 0 \Rightarrow x^2 > 1 \Rightarrow |x| > 1 \Rightarrow x \in (-\infty, -1) \cup (1, \infty).$$

•
$$f'(x) < 0 \Rightarrow \frac{x^2 - 1}{x^2} < 0 \xrightarrow{x^2 > 0} x^2 - 1 < 0 \Rightarrow x^2 < 1 \Rightarrow |x| < 1 \Rightarrow x \in (-1, 1).$$

Στον παρακάτω πίνακα βλέπουμε τα πρόσημα της f' και τη μονοτονίας της f.

X	$-\infty$ -1 () 1 + \infty
f'(x)	+ 0 -	- 6 +
f(x)	7 \	1

- α. Η f είναι γνησίως αύξουσα στ διαστήματα $(-\infty, -1]$ και $[1, +\infty)$ και γνησίως φθίνουσα στο [-1, 1].

 β. Η f παρουσιάζει τοπικό μέγιστο στη θέση x = -1, το f(-1) = -2 και τοπικό ελάχιστο στη θέση x = 1, το f(1) = 2.

γ. Η
$$f$$
 είναι γνησίως αύξουσα στο $\Delta_1=(-\infty,-1]$ άρα $f(\Delta_1)=\left(\lim_{x\to-\infty}f(x),f(-1)\right]=(-\infty,-2]$ αφού

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x + \frac{1}{x} \right) = -\infty + 0 = -\infty$$

Επίσης η f είναι γνησίως φθίνουσα στο $\Delta_2 = [-1,0)$ άρα $f(\Delta_2) = \left(\lim_{x\to 0^-} f(x), f(-1)\right] = (-\infty, -2]$ αφού

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(x + \frac{1}{x} \right) = 0 - \infty = -\infty$$

Ομοίως, για $\Delta_3=(0,1]$ και $\Delta_4=[1,+\infty)$, προκύπτουν $f(\Delta_3)=f(\Delta_4)=[2,+\infty)$. Επομένως η f έχει σύνολο τιμών

$$f(D_f) = f(\Delta_1) \cup f(\Delta_2) \cup f(\Delta_3) \cup f(\Delta_4) = (-\infty, -2] \cup [2, +\infty).$$

- δ. Για την εξίσωση f(x) = 3 παρατηρούμε ότι
 - $3 \notin f(\Delta_1)$ άρα η εξίσωση δεν έχει ρίζα στο Δ_1 .

- $3 \notin f(\Delta_2)$ άρα η εξίσωση δεν έχει ρίζα στο Δ_1 .
- $3 \in f(\Delta_3)$ άρα η εξίσωση έχει τουλάχιστον 1 ρίζα στο Δ_3 η οποία είναι μοναδική αφού $f \searrow \Delta_3$.
- $3 \in f(\Delta_4)$ άρα η εξίσωση έχει τουλάχιστον 1 ρίζα στο Δ_4 η οποία είναι μοναδική αφού $f \nearrow \Delta_4$.

Οπότε η εξίσωση έχει ακριβώς 2 ρίζες.

2.3 Κυρτότητα και σημεία καμπής

🔼 'Ασκηση 2.7 : Εύρεση κυρτότητας - σημείων καμπής

Βήματα

1°: Πεδίο ορισμού και έλεγχος συνέχειας.

2° : Υπολογίζουμε την δεύτερη παράγωγο f''.

3° : Βρίσκουμε ρίζες και πρόσημα της f'' με τους τρόπους που περιγράψαμε στη μονοτονία.

4° : Σχηματίζουμε πίνακα με τα πρόσημα της f'' και την κυρτότητα της f .

5°: Κυρτότητα - Σημεία καμπής

• Για εύρεση κυρτότητας αναφέρουμε το είδος της κυρτότητας σε κάθε διάστημα ξεχωριστά.

• Για εύρεση σημείων καμπής ελέγχουμε για σημεία καμπής στα σημεία που αλλάζει η κυρτότητα αρκεί η f να είναι μια φορά παραγωγίσιμη στα σημεία αυτά.

Παράδειγμα 3 : Δίνεται η συνάρτηση $f(x) = \frac{2x}{x^2+1}$. Μελετήστε την συνάρτηση f ως προς την κυρτότητα και τα σημεία καμπής.

✓ ΛΥΣΗ

Η συνάρτηση f ορίζεται στο $D_f=\mathbb{R}$ καθώς $x^2+1\neq 0$ για κάθε $x\in\mathbb{R}$ και είναι συνεχής ως ρητή. Για κάθε $x\in\mathbb{R}$ είναι

$$f'(x) = \left(\frac{2x}{x^2 + 1}\right)' = \frac{(2x)'(x^2 + 1) - 2x(x^2 + 1)'}{(x^2 + 1)^2} =$$

$$= \frac{2(x^2 + 1) - 2x \cdot 2x}{(x^2 + 1)^2} = \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2}$$

$$f''(x) = \left[\frac{2 - 2x^2}{(x^2 + 1)^2}\right]' = \frac{(2 - 2x^2)'(x^2 + 1)^2 - (2 - 2x^2)\left[(x^2 + 1)^2\right]'}{(x^2 + 1)^4} =$$

$$= \frac{-4x(x^2 + 1)^2 - (2 - 2x^2)2(x^2 + 1)(x^2 + 1)'}{(x^2 + 1)^4} = \frac{(x^2 + 1)\left[-4x(x^2 + 1) - 4x(2 - 2x^2)\right]}{(x^2 + 1)^4} =$$

$$= \frac{-4x^3 - 4x - 8x + 8x^3}{(x^2 + 1)^3} = \frac{4x^3 - 12x}{(x^2 + 1)^3}$$

Έχουμε λοιπόν

•
$$f''(x) = 0 \Rightarrow \frac{4x^3 - 12x}{(x^2 + 1)^3} = 0 \Rightarrow 4x^3 - 12x = 0 \Rightarrow x = 0 \ \text{if} \ x = \pm \sqrt{3}.$$

•
$$f''(x) > 0 \Rightarrow \frac{4x^3 - 12x}{(x^2 + 1)^3} > 0 \Rightarrow 4x^3 - 12x > 0 \Rightarrow x \in (-\sqrt{3}, 0) \cup (\sqrt{3}, +\infty).$$

•
$$f''(x) < 0 \Rightarrow \frac{4x^3 - 12x}{(x^2 + 1)^3} < 0 \Rightarrow 4x^3 - 12x < 0 \Rightarrow x \in (-\infty, -\sqrt{3}) \cup (0, \sqrt{3}).$$

Στον παρακάτω πίνακα βλέπουμε τα πρόσημα της f'' καθώς και την κυρτότητα και τα σημεία καμπής της f.

X	$-\infty$ $-\sqrt{3}$ 0 $\sqrt{3}$ $+\infty$
f''(x)	- 0 + 0 - 0 +
f(x)	~ Ø • ~ •

Η συνάρτηση f είναι κυρτή στα διαστήματα $[-\sqrt{3},0]$ και $[\sqrt{3},+\infty)$ και κοίλη στα διαστήματα $(-\infty,-\sqrt{3}]$ και $[0,\sqrt{3}]$. Η C_f έχει σημεία καμπής τα $A(-\sqrt{3},f(-\sqrt{3}))=A\left(-\sqrt{3},-\frac{\sqrt{3}}{2}\right)$, B(0,f(0))=B(0,0) και $\Gamma(\sqrt{3},f(\sqrt{3}))=\Gamma\left(\sqrt{3},\frac{\sqrt{3}}{2}\right)$.

🔼 'Ασκηση 2.8 : Κυρτότητα και εφαπτομένες - Απόδειξη ανισότητας

Βήματα

- 1°: Μελετάμε τη συνάρτηση ως προς την κυρτότητα.
- **2° :** Βρίσκουμε την εξίσωση της εφαπτομένης στο σημείο που ζητάει ή σε κάποιο σημαντικό σημείο. Αυτή $\theta \alpha$ έχει τη μορφή $y = ax + \beta$
- 3°: Χρησιμοποιούμε μια από τις παρακάτω σχέσεις

$$f \circlearrowleft \Delta \Rightarrow f(x) \ge ax + \beta$$
, $f \circlearrowleft \Delta \Rightarrow f(x) \le ax + \beta$

και με πράξεις φέρνουμε την ανισότητα στη μορφή που τη ζητάει η άσκηση.

2.4 Ασύμπτωτες

🔼 ΄Ασκηση 2.9 : Κατακόρυφες ασύμπτωτες

Βήματα

- **1°**: Πεδίο ορισμού της f.
- **2°**: Υπολογισμός κάποιου πλευρικού ορίου στα σημεία x_0 που είναι ανοικτά άκρα του πεδίου ορισμού της f ή στα σημεία που δεν είναι συνεχής η συνάρτηση.
- ${f 3}^{f o}$: Αν κάποιο πλευρικό όριο ισούται με $\pm\infty$ τότε η ευθεία $x=x_0$ είναι κατακόρυφη ασύμπτωτη της C_f .

🔼 Άσκηση 2.10 : Οριζόντια ασύμπτωτη

Βήματα

- **1°**: Όριο της f στο $+\infty$ ή $-\infty$ εφόσον ορίζεται η f σε διάστημα που περιέχει $\pm\infty$.
- $\mathbf{2}^{\mathbf{o}}$: Αν $\lim_{x \to \pm \infty} f(x) = l$ τότε η ευθεία y = l είναι οριζόντια ασύμπτωτη της C_f στο $\pm \infty$.

🔼 ΄Ασκηση 2.11 : Πλάγια ασύμπτωτη

Βήματα

 1° : Εφόσον ορίζεται η f σε διάστημα που περιέχει $\pm \infty$ υπολογίζουμε τα παρακάτω όρια.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lambda \ , \ \lim_{x \to +\infty} (f(x) - \lambda x) = \beta$$

και αντίστοιχα στο $-\infty$.

2°: Αν $\lambda \in \mathbb{R}$ και $\beta \in \mathbb{R}$ τότε η ευθεία $y = \lambda x + \beta$ είναι πλάγια ασύμπτωτη της C_f στο $\pm \infty$.

🔼 ΄Ασκηση 2.12 : Ασύμπτωτες γενικά

Βήματα

1°: Αναζητούμε για κατακόρυφες ασύμπτωτες στα σημεία που αναφέραμε.

20: Ανάμεσα σε πλάγιες και οριζόντιες ασύμπτωτες, ξεκινάμε με τις πλάγιες και από το συντελεστή διεύθυνσης λ θα εξαρτηθεί αν η ευθεία είναι πλάγια ή οριζόντια. Ακολουθούμε το παρακάτω διάγραμμα:

Παράδειγμα 4 : Ασύμπτωτες

Να βρείτε τις ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων.

$$\alpha. \ f(x) = \ln\left(\frac{x-1}{4-x}\right)$$

$$\beta. \ f(x) = \frac{e^x}{e^x + 1}$$

$$\alpha. \ f(x) = \ln\left(\frac{x-1}{4-x}\right)$$
 $\beta. \ f(x) = \frac{e^x}{e^x + 1}$ $\gamma. \ f(x) = \frac{x^3 - 2x + 1}{x^2 + 4}$

2.5 Εύρεση παραμέτρων

Η γενική μέθοδος για την εύρεση μιας παραμέτρου είναι να κατασκευάσουμε μια εξίσωση ή ανίσωση που να την περιέχει, ώστε λύνοντάς την να την προσδιορίσουμε. Κάποια συνθήκη της υπόθεσης είναι αυτή που θα μας οδηγήσει σ΄ αυτή την εξίσωση-ανίσωση.

Συνθήκη	Εξίσωση - Ανίσωση	
Το σημείο $A(a, eta)$ ανήκει στη C_f	$f(a) = \beta$	
Γνωστό όριο που περιέχει παραμέτρους $a,\beta\dots$	Βοηθητική συνάρτηση	
Η f είναι συνεχής σε σημείο $x_0 \in D_f$	$\lim_{x \to x_0} f(x) = f(x_0)$	
Η f είναι παραγωγίσιμη σε σημείο $x_0 \in D_f$	$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$	
Η ευθεία $y=ax+\beta$ εφάπτεται στη C_f	$\begin{cases} f(x_0) = ax_0 + \beta \\ f'(x_0) = a \end{cases}$	
Οι C_f , C_g έχουν κοινή εφαπτομένη σε κοινό σημείο $M(x_0,y_0)$	$\begin{cases} f(x_0) = g(x_0) \\ f'(x_0) = g'(x_0) \end{cases}$	
Η f είναι γνησίως αύξουσα (ή φθίνουσα) στο Δ	$f'(x) \ge 0 \ (\acute{\eta} \ f'(x) \le 0)$	
Η f παρουσιάζει ακρότατο στο εσωτερικό σημείο $x_0 \in \Delta$ και είναι παραγωγίσιμη σ΄ αυτό. (Αν επιπλέον το ακρότατο είναι β)	$f'(x_0) = 0$ (τότε $f(x_0) = \beta$) Μόλις βρεθούν οι παράμετροι χρειάζεται επαλήθευση.	
Η f είναι κυρτή (ή κοίλη) στο Δ	$f''(x) \ge 0 \ (\acute{\eta} \ f''(x) \le 0)$	
Η C_f έχει σημείο καμπής $M(x_0,y_0)$ στο εσωτερικό σημείο $x_0\in \Delta$ στο οποίο είναι δύο φορές παραγωγίσιμη και ορίζεται εφαπτομένη στο σημείο αυτό.	$f''(x_0) = 0$ και $f(x_0) = y_0$ Μόλις βρεθούν οι παράμετροι χρειάζεται επαλήθευση.	
Η C_f έχει κατακόρυφη ασύμπτωτη την ευθεία $x=x_0$	$x_0 = ανοιχτό άκρο διαστήματος ή σημείο ασυνέχειας.$	
Η C_f έχει οριζόντια ασύμπτωτη την ευθεία $y=l$ στο $\pm\infty$	$\lim_{x \to \pm \infty} f(x) = l$	
Η C_f έχει πλάγια ασύμπτωτη την ευθεία $y = \lambda x + \beta \ \text{στο} \ \pm \infty$	$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lambda \text{ kai } \lim_{x \to \pm \infty} (f(x) - \lambda x) = \beta$	

2.6 Λύση εξισώσεων - ανισώσεων + Ύπαρξη λύσης

🔼 'Ασκηση 2.13 : 'Υπαρξη ρίζας εξίσωσης

Μπορούμε να δείξουμε ότι μια εξίσωση της μορφής f(x) = a έχει μια τουλάχιστον ρίζα με έναν από τους παρακάτω τρόπους:

Τρόποι

1^{ος} Τρόπος: Με θεώρημα Bolzano

2^{ος} Τρόπος: Με θεώρημα ενδιάμεσων τιμών.

 $\mathbf{3}^{\mathsf{oc}}$ Τρόπος : Με σύνολο τιμών : Αν $a \in f(D_f)$ τότε υπάρχει $x_0 \in D_f$ ώστε $f(x_0) = a$.

4°ς Τρόπος : Με θεώρημα Rolle : Βρίσκουμε την αρχική F της f οπότε η εξίσωση παίρνει τη μορφή F'(x)=a.

5^{ος} Τρόπος: Με Θεώρημα Μέσης Τιμής.

6^{ος} Τρόπος : Αλγεβρικά

7^{ος} Τρόπος : Βρίσκουμε μια προφανή ρίζα.

8°ς Τρόπος: Με απαγωγή σε άτοπο. Υποθέτουμε δηλαδή ότι η εξίσωση δεν έχει ρίζες.

΄Ασκηση 2.14 : Εξίσωση που έχει το πολύ μια ρίζα

Για να δείξουμε ότι μια εξίσωση έχει το πολύ μια ρίζα έχουμε τους τρόπους

Τρόποι

 $1^{\circ \varsigma}$ Τρόπος: Αποδεικνύουμε ότι η συνάρτηση είναι γνησίως μονότονη άρα και 1-1.

2°ς Τρόπος: Υποθέτουμε ότι υπάρχουν τουλάχιστον 2 ρίζες x_1, x_2 και εφαρμόζοντας θεώρημα Rolle στο διάστημα $[x_1, x_2]$ καταλήγουμε σε άτοπο.

🔼 'Ασκηση 2.15 : Μοναδική ρίζα εξίσωσης

Χρησιμοποιούμε έναν τρόπο για να δείξουμε ότι υπάρχει τουλάχιστον μια ρίζα και έναν τρόπος για να δείξουμε ότι υπάρχει το πολύ μια ρίζα. Άρα η ρίζα αυτή θα είναι μοναδική.

🗾 Άσκηση 2.16 : Επίλυση εξίσωσης

Για την επίλυση μιας εξίσωσης ακολουθούμε έναν από τους παρακάτω τρόπους:

10ς Περίπτωση: Συνάρτηση 1 – 1

Φέρνουμε με πράξεις την εξίσωση στη μορφή f(x) = f(a) και δείχνουμε ότι η συνάρτηση f είναι 1-1. Συνεπώς θα ισχύει

$$f(x) = f(a) \stackrel{f:1-1}{\Longleftrightarrow} x = a$$

Η μέθοδος αυτή ακολουθείται και για εξισώσεις της μορφής f(g(x)) = f(h(x)).

20ς Περίπτωση: Με ολικό ακρότατο

Φέρνουμε με πράξεις την εξίσωση στη μορφή f(x) = a και αποδεικνύουμε ότι ο αριθμός a είναι ολικό ακρότατο της f. Οι θέσεις των ακρότατων είναι οι λύσεις της εξίσωσης.

Πηγή: Μαθηματικά Γ΄ Αυκείου, Η επανάληψη. Ανδρέας Πάτσης - Παύλος Τρύφων, Εκδόσεις Ελληνοεκδοτική