# Notater til tredjesemestersrapportering

## Fredrik Meyer

#### 4. november 2014

## 1 Begreper

Gitt et simplisialkompleks  $\mathcal{K}$  kan vi lage et ideal i polynomringen med like mange variabler som  $\mathcal{K}$  har hjørner. Idealet  $I_{\mathcal{K}}$  er da definert til å være generert av monomer med eksponenter som svarer til *ikke-fasetter* i  $\mathcal{K}$ .

La eksempelvis  $\mathcal{K}$  være en firkant med hjørner  $x_1, x_2, x_3, x_4$ . Da er  $\mathcal{K}$  generert av  $x_1x_3$  og  $x_2x_4$ .

Et monomideal er alltid gradert, så vi kan lage  $\mathbb{P}(\mathcal{K}) := \operatorname{Proj}(P/I_{\mathcal{K}})$ , som er et projektivt skjema utstyrt med en ampel linjebunt  $\mathscr{O}(1)$ . Det kan vises at  $H^i(\mathbb{P}(\mathcal{K}), \mathscr{O}_{\mathbb{P}(\mathcal{K})}) \simeq H^i(\mathcal{K}, k)$ , hvor venstresiden er knippekohomologi og høyresiden er simplisialkohomologi.

Dermed vil enhver deformasjon av  $\mathcal{K}$  ha samme kohomologi som den topologiske realisasjonen til  $\mathcal{K}$ . Hvis for eksempel  $\mathcal{K}$  er en sfære, og  $\mathbb{P}(\mathcal{K})$  er glattbar, så vil glattingen være Calabi-Yau, etc.

Deformasjonsteorien til Stanley-Reisner-skjemaer er godt beskrevet. Se for eksempel [1].

# 2 Hva jeg jobber med i dag

La D være en sekskant. La K være simplisialkomplekset D \* D, altså simplisialkomplekset som har maksimale fasetter  $(f_1, f_2)$  hvor  $f_1, f_2$  er kanter i sekskanten. Da er K en tredimensjonal sfære med f-vektor (1, 12, 48, 72, 36).

Dette gir oss et Stanley-Reisner-ideal  $I_{\mathcal{K}}$  med 18 generatorer. Vi har  $I_K = I_{D_1} + I_{D_2} \subseteq k[x_1, \cdots, x_{12}].$ 

La  $\mathcal{K}'$  betegne  $\mathcal{K} * \{v\}$ , suspensjonen av  $\mathcal{K}$ . Dette er et nytt simplisialkompleks med et ekstra hjørne, og svarer til kjegla over en 3-sfære. Man kan forestille seg dette som en 4-dimensjonal ball med v som eneste indre punkt, og  $\mathcal{K}$  som randa  $\approx S^3$ .



Figur 1: Et heksagon.

La dP være polytopet avbildet i Figur 1 og la  $P = dP \times dP$  være produktet. Da får vi et polytop med 36 hjørner og f-vektor som er omvendt av f-vektoren til  $\mathcal{K}$ . Det følger da at  $P^{\circ}$ , det polare polytopet, har samme f-vektor som  $\mathcal{K}$ , og faktisk viser det seg at  $\mathcal{K}$  er abstrakt isomorf med en triangulering av randa til  $P^{\circ}$ .

Det følger da fra standard teoremer at det finnes en flat deformasjon av  $\mathbb{P}(\mathcal{K}')$  til den toriske varieteten  $X_{P^{\circ}}$  (som beskrevet i [2]. Siden  $\mathbb{P}(\mathcal{K})$  er et komplett snitt (hyperflate!) i  $\mathbb{P}(\mathcal{K}')$ , følger det at vi får en flat deformasjon av  $\mathbb{P}(\mathcal{K})$  til en hyperflate i den toriske varieteten  $X_{P^{\circ}}$ .

Denne hyperflaten er dermed en 3-dimensjonal projektiv varietet Y med trivielt kanonisk knippe, og med en mild definisjon av Calabi-Yau er dette en Calabi-Yau-varietet. Vi kan så gjøre en såkalt "MPCP-resolusjon" ("maximal projective crepant partial resolution") av  $X_{P^{\circ}}$ , og få en glatt Calabi-Yau  $\widetilde{Y}$  hvis Hodge-tall kan beregnes på en datamaskin (oppskriften er å telle gitterpunkter i fasetter til  $P^{\circ}$ ).

**Proposition 2.1.** Stanley-Reisner-skjemaet  $\mathbb{P}(\mathcal{K})$  deformerer til en singulær Calabi-Yau Y som har en krepant resolusjon  $\widehat{Y}$  hvis Hodge-tall er  $h^{11} = 44$  og  $h^{12} = 8$ . Dermed er Euler-karakteristikken  $\chi = 72$ .

Det er også mulig å beskrive singularitetene til Y.

**Proposition 2.2.** Y har 48 isolerte singulariteter, hvorav 36 er 3-dimensjonale noder (lokalt xy - zw = 0), og 12 er kjegler over sekskanter.

Dette gir oss med en gang hva  $H^0(Y, \mathcal{T}_{Y/k}^1)$  er. Nodene har  $T^1=1$ , mens kjeglene over sekskantene har  $T^1=3$ . Dermed har vi at  $\dim_k H^0(Y, \mathcal{T}_{Y/k}^1)$  er 72. Dette er derimot ikke hele modulen av infinetesimale deformasjoner siden vi også kan ha bidrag fra  $H^1(Y,\Theta_Y)$ , men denne er vanskelig å beregne for singulære Y.

Så snart du har en Calabi-Yau-mangfoldighet er det interessant å gjøre speilsymmetri. Problemet er da å finne et "speil"  $Y^{\circ}$  med speilede Hodge-tall. For toriske varieteter finnes det en standard måte å gjøre dette på (Batyrev-konstruksjonen), men det finnes andre, mer hypotetiske konstruksjoner.

Én er såkalte "extremal transitions": start med en glatt Calabi-Yau-varietet, og degenerer denne til en singulær varietet med ikke altfor gærne singulariteter. Gjør så en resolusjon av singulariteter, og få en ny glatt Calabi-Yau-varietet. Det viser at denne konstruksjonen ofte gir opphav til speilede varieteter (altså at Hodge-tallene  $h^{ij}(Y) = h^{ji}(Y^{\circ})$ ).

Vi står igjen med flere spørsmål som jeg jobber med å svare på:

- 1. Finnes faktisk en glatting av Y? Hvis så, hva er Hodge-tallene?
- 2. Stemmer denne glattingen overens med speilet spådd av Batyrev-konstruksjonen?
- 3. Speilsymmetri er relatert til kurvetelling på Calabi-Yau-ene, og dette er relatert til å løse noen differensiallikninger definert ved potensrekker. Disse kan løses for å teste speilsymmetriforutsigelsene.

Det gjenstår mye arbeid, og veldig mye tid har blitt brukt på å lære meg ting som torisk geometri, begreper i speilsymmetri, og generelt lære meg algebraisk geometri-resultater.

### Referanser

- [1] Klaus Altmann and Jan Arthur Christophersen. Deforming Stanley-Reisner schemes. *Math. Ann.*, 348(3):513–537, 2010.
- [2] Bernd Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lecture Series. American Mathematical Society, Providence, RI, 1996.