ЛАБОРАТОРНАЯ РАБОТА №4 ИССЛЕДОВАНИЕ ИНСТРУМЕНТОВ ПРЕДСТАВЛЕНИЯ И СТАТИСТИЧЕСКОГО АНАЛИЗА ИНФОРМАЦИИ

4.1 Цель работы

Представить исходную информацию в виде функциональной (или корреляционной) таблицы y = f(x); изучить взаимосвязи эколого-экономических явлений, построить математическую модель эколого-экономической корреляции и исследовать приложения модели; привести статистическую оценку генеральной средней.

4.2 Пример решения

В качестве примера рассмотрим инструменты представления и анализа эколого-экономической информации. В регионе N=1000 предприятий общественного питания (столовые, рестораны, бары и т.п.). Санитарная эпидемиологическая станция (СЭС) в течение месяца выборочно проверила санитарное состояние 30 из этих предприятий (n=30) и подвергла их экологическому штрафу (штрафу Пигу) в размере y_i , тыс. руб. Ежемесячный экономический оборот этих предприятий – x_i , млн. руб. (таблица 4.1).

Таблица 4.1 – Исходная эколого-экономическая информация

x_i	8	4	3	12	13	10	12	18	21	7	8	9	15	16	17
y_i	240	100	90	430	500	400	400	640	720	200	250	350	620	600	640
x_i	3	7	13	12	15	19	21	20	13	18	8	9	13	12	23
y_i	100	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Необходимо: представить исходную эколого-экономическую информацию в виде функциональной (или корреляционной) таблицы y = f(x); сделать прогнозные оценки для предприятий с более большим месячным экономическим оборотом, сравнивая с исходными данными.

4.2.1 Решение. Представление исходной эколого-экономической информации в виде корреляционной таблицы y = f(x). Метод группировок

Примем случайные величины x_i в качестве *аргумента*, а случайные величины y_i – в качестве функции y_i . Проранжируем по аргументу x_i исходные данные таблицы 4.1, записав их в порядке возрастания от $x_{min} = 3$ до $x_{max} = 23$ млн. руб.

Таблица 4.2 – Исходные данные, проранжированные по аргументу х

Xi	3	3	4	7	7	8	8	8	9	9	10	12	12	12	12
Уi	90	100	100	200	240	250	250	270	350	380	400	430	400	470	490
Xi	13	13	13	13	15	15	16	17	18	18	19	20	21	21	23
yi	500	550	540	480	620	660	600	640	640	660	720	720	720	780	800

Количество интервалов m в настоящее время ориентировочно принято определять по эмпирической формуле Стерджесса:

$$m = l + 3,32lg(n).$$
 (4.1)

В рассматриваемом случае $n=30,\ lg(n)=1,477,\ m=5,9.$ Для удобства счета принимается m=5. Вычислим длину интервала l_x :

$$l_x = \frac{x_{max} - x_{min}}{m}. (4.2)$$

В данном случае размах выборки $R = x_{max} - x_{min} = 20$, $l_x = 4$. Поэтому границы интервалов будут такими:

- 1) первый интервал: 3...7; частота 5;
- 2) второй интервал: 7...11; частота -6;
- 3) третий интервал: 11...15; частота 10;
- 4) четвёртый интервал: 15...19; частота 5;
- 5) пятый интервал: 19...23; частота 4.

Здесь же записаны *абсолютные частоты* f_j – количество предприятий, попадающих в исследуемый интервал. Индекс j меняется в пределах 1...m. Очевидно, что итоговая сумма всех частот будет равна n=30.

В таблице 4.2 для удобства анализа последние элементы каждого интервала выделены жирным шрифтом.

Вычислим средние значения аргумента x и функции y для каждого из пяти

интервалов. Процедуру осреднения обозначим надстрочной чертой. Итак,

$$\bar{x}_1 = (3+3+4+7+7)/5 = 4,8$$
млн.руб.

$$\bar{y}_1 = (90 + 100 + 100 + 200 + 240)/5 = 730/5 = 146$$
mыс.pyб.

Аналогичные вычисления осуществляем для четырёх других интервалов

$$\bar{x}_2 = (8+8+8+9+9+10)/6 = 52/6 = 8.7$$

$$\bar{y}_2 = (240 + 250 + 270 + 350 + 380 + 400)/6 = 1180/6 = 197.$$

Учитывая приближённый характер исходных данных таблице 4.2, все вычисления будем осуществлять до одной значащей цифры после запятой:

$$\bar{x}_3 = (12 + 12 + 12 + 12 + 13 + 13 + 13 + 15 + 15)/10 = 117/10 = 11,7$$

$$\bar{y}_3 = (430 + 400 + 470 + 490 + 500 + 550 + 540 + 480 + 620 + 660)/10 = 6140/10 = 514$$

$$\bar{x}_4 = (16 + 17 + 18 + 18 + 19)/5 = 88/5 = 17,6$$

$$\bar{y}_4 = (600 + 640 + 640 + 660 + 720)/5 = 3260/5 = 652$$

$$\bar{x}_5 = (20 + 21 + 21 + 23)/4 = 85/4 = 21,3$$

$$\bar{y}_5 = (720 + 720 + 780 + 800)/4 = 755$$

Для расчета процентного «штрафа Пигу» (ШП), необходимо воспользоваться формулой 4.3:

$$\overline{III}\overline{\Pi}_{j} = \frac{\overline{y}_{j}}{\overline{x}_{j}} 100,\%. \tag{4.3}$$

Учитывая полученные результаты, строим итоговую таблицу 4.3 метода группировок.

Таблица 4.3 – Корреляционная зависимость экологических штрафов у от ежемесячного экономического оборота х для 30 предприятий общественного питания

Интервалы по <i>х</i>	\overline{x}_{j} , млн. руб.	\overline{y}_j , тыс. руб.	ШП,%	f_j
37	4,8	146	3,0	5
711	8,7	197	2,3	6
1115	11,7	514	4,4	10
1519	17,6	652	3,7	5
1923	21,3	755	3,5	4

Анализируя таблицу, можно сделать следующие выводы:

1) с ростом экономического оборота х монотонно увеличивается экологический штраф у (рисунок 4.1).

2) в то же время налог Пигу изменяется немонотонно (рисунок 4.2).

Рисунок 4.1 – Связь между экологическим штрафом и ежемесячным оборотом 30 пищевых предприятий

Рисунок 4.2 – Связь между зелёным «штрафом» (или налогом Пигу) и ежемесячным оборотом 30 пищевых предприятий

В заключение, используя процедуру нахождения средней арифметической взвешенной величины, найдём средние значения аргумента и функции:

$$\bar{x} = \frac{\sum x_j f_j}{n} = \frac{4,8 \cdot 5 + 8,7 \cdot 6 + 11,7 \cdot 10 + 17,6 \cdot 5 + 21,3 \cdot 4}{30} = 366,4/30 = 12,2$$
млн. руб.
$$\bar{y} = \frac{\sum y_j f_j}{n} = \frac{146 \cdot 5 + 19 \cdot 6 + 614 \cdot 10 + 652 \cdot 5 + 755 \cdot 4}{30} = 13732/30 = 444,4$$
 тыс. руб.

Средний налог Пигу находим по формуле:

$$\overline{IIIII} = 100 \frac{\overline{y}}{\overline{x}} = 100 \frac{444400}{12200000} = 3,6\%$$

Таким образом, средний экономический налог для 30 предприятий общественного питания составил 3,6%.

4.2.2 Математическая модель эколого-экономической корреляции

Выясним взаимосвязь между аргументом x и функцией y (корреляционное поле на рисунке 4.1). Термин «корреляция» в переводе с латинского языка обозначает «якобы связь». Из рисунка 4.1 видно, что исследуемое «корреляционное поле» можно «выровнять» прямолинейной зависимостью (штриховая линия):

$$\widetilde{y} = a_0 + a_1 x. \tag{4.4}$$

Здесь a_0 и a_1 – коэффициенты прямой линии; \tilde{y} – теоретическое значение экологического штрафа.

Проще всего коэффициенты a_0 и a_1 находить по методу наименьших квадратов (МНК). Формулы Гаусса для прямой линии в виде 4.5:

$$a_1 = s_{xy} / \sigma_x^2; \quad a_0 = \bar{y} - a_1 \bar{x},$$
 (4.5)

где s_{xy} – ковариация, учитывающая взаимовлияние функции и аргумента.

$$s_{xy} = \frac{\sum (x_j - \bar{x})(y_j - \bar{y})f_j}{n} = \begin{bmatrix} (4.8 - 12.2)(146 - 457.7) \cdot 5 + (8.7 - 12.2)(197 - 457.7) \cdot 6 + \\ + (11.7 - 12.2)(614 - 457.7) \cdot 10 + (17.6 - 12.2) \cdot (652 - 457.7) \cdot 5 + \\ + (21.3 - 12.2)(755 - 457.7) \cdot 4 \end{bmatrix} / 30 = 1093$$

Величина D_x называется «дисперсией по х» — она характеризует рассеивание случайной величины x вокруг своего среднего значения \bar{x} . Итак,

$$D_{X} = \frac{\sum (x_{j} - x)^{2} f_{j}}{n} = \begin{bmatrix} (4.8 - 12.2)^{2} \cdot 5 + (8.7 - 12.2)^{2} \cdot 6 + (11.7 - 12.2)^{2} \cdot 10 + (17.6 - 12.2)^{2} \cdot 5 + \\ + (21.3 - 12.2)^{2} \cdot 4 \end{bmatrix} / (30 = 826.8 / 30 = 27.6)$$

Итого, искомые коэффициенты прямой линии таковы:

$$a_1 = 1093/27,6 = 39,6; a_0 = 444,4 - 39,6 \times 12,2 = -40,1$$

На рисунке 4.1 проиллюстрирован геометрический смысл a_0 и $a_1 = tq\alpha$. Найденная функциональная зависимость:

$$\tilde{y} = -40.1 + 39.6x \tag{4.6}$$

Ее иногда называют:

- 1) прямолинейной простой регрессией y на x;
- 2) математической моделью эколого-экономической взаимосвязи;
- 3) прямолинейным трендом как устойчивой закономерностью рассматриваемого эколого-экономического процесса.

МНК Гаусса пригоден также для нахождения коэффициентов многих других (*но не всех!*) теоретических закономерностей. Например, на рисунке 4.2 штриховыми линиями показан криволинейный тренд, который можно записать как квадратичную параболу.

Часто возникает принципиальный вопрос о том, возможно ли исследуемые точки «сгладить» прямой линией? С этой целью обычно вычисляют коэффициент корреляции Пирсона:

$$r_{xy} = \frac{s_{xy}}{\sigma_x \sigma_y} \tag{4.7}$$

Сначала вычисляется дисперсию по функции у:

$$D_{y} = \frac{\sum (y_{j} - \overline{y})^{2} f_{j}}{n} = \begin{bmatrix} (146 - 444,4)^{2} \cdot 5 + (197 - 444,4)^{2} \cdot 6 + (514 - 444,4)^{2} \cdot 10 + \\ + (652 - 444,47)^{2} \cdot 4 \end{bmatrix} / 30 = 1462273 / 30 = 48742$$

Квадратичные корни из дисперсий обычно называют «среднеквадратичными отклонениями» (или, американский термин, «среднеквадратичными стандартами»):

$$\sigma_v = \sqrt{48742} = 220,7;$$
 $\sigma_v = \sqrt{27,6} = 5,3.$

Подставляя в формулу 4.8, окончательно получим значение для коэффициента корреляции:

$$r_{xy} = \frac{1093}{220.7 \cdot 5.3} = 0.94$$

Такое значение коэффициента корреляции Пирсона обычно свидетельствует о достаточно сильной корреляции. Если бы $r_{xy} = 1$ (или -1), то точки лежали бы строго на прямой линии (восходящей или нисходящей), а соответствующая связь была бы функциональной. Если бы $r_{xy} = 0$, то это бы свидетельствовало об отсутствии какой-либо связи между аргументом x и функцией y.

Полученное уравнение прямой линии (формула 4.6) позволяет, во-первых, осуществлять точечный прогноз величины y. Обычно упреждение прогноза не превышает 0.3R, где R=20 — размах значений аргумента. Например, при x=29 прогнозное значение y=1108 тыс. руб.

Во-вторых, можно говорить о так называемой средней «эластичности» модели:

$$\overline{\Im} = a_1 \frac{\overline{x}}{\overline{y}} = 39.6 \frac{12.2}{444.4} = 1.1$$
 (4.8)

Её смысл таков: если аргумент x увеличить на 1%, то функция y в среднем изменится на 1,1%.

4.2.3. Выборочный метод. Статистическая оценка генеральной средней

Ранее речь шла о так называемой «выборке» предприятий общественного питания, x число n=30. Но в рассматриваемом регионе таких предприятий N=1000. Естественно, возникает вопрос о возможности переноса полученных результатов на *«генеральную совокупность»*, т.е. на регион. Существуют формулы Чебышева П.Л. и Ляпунова А.М., позволяющие определить интервалы изменения

аргумента X и функции Y для «генерального» случая N=1000 для требуемого уровня риска p:

$$\bar{x} - t_p \frac{\sigma_x}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \le X \le \bar{x} + t_p \frac{\sigma_x}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

$$\bar{y} - t_p \frac{\sigma_y}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \le Y \le \bar{y} + t_p \frac{\sigma_y}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

$$(4.9)$$

Теорию «малых выборок» (n < 50) разработал английский математик Стьюдент. Если принять риск p = 5%, тогда $t_p = 2$ (по таблице критических точек распределения Стьюдента, представленной в приложении А в таблице А.1). Подставляя уже известные значения величин, фигурирующие в этих формулах, получаем:

$$10,3 \le X \le 14,1;$$
 $365 \le Y \le 524$

Здесь Y — средний экологический штраф (штраф Пигу) для рассматриваемого региона, тыс. руб.; X — средний ежемесячный экономический оборот предприятий региона, млн. руб.

Пользуясь формулой 4.3, вычислим пределы изменения экологического штрафа Пигу:

$$3,5 \le \overline{IIIII} \le 3,7\%$$
.

Общие выводы:

- с ростом экономического оборота x монотонно увеличивается экологический штраф у (рисунок 4.1);
 - в то же время налог Пигу изменяется немонотонно (рисунок 4.2);
- средний экономический налог для 30 предприятий общественного питания составил 3,6%;
- «корреляционное поле» на рисунке 4.1 можно «сгладить» прямолинейной зависимостью (4.7), используя теорию Гаусса;
- если аргумент х увеличить на 1%, то функция у в среднем изменится на 1,1%;
- значение коэффициента корреляции, равное 0,94, свидетельствует о достаточно сильной корреляции;

- средний экологический штраф (штраф Пигу) для рассматриваемого региона на уровне риска 5% меняется в пределах 3,5...3,7;
 - прогнозное значение «зелёного штрафа» при *x*=29 равно 1108 тыс. руб.

4.3 Ход работы

1. Получить у преподавателя вариант задания (таблицы 4.4 – 4.18).

Таблица 4.4 – Вариант 1

x_i	7	4	1	12	13	10	12	18	21	7	8	9	15	16	17
Уi	240	100	90	430	500	400	400	640	720	250	250	350	620	600	640
x_i	2	7	13	12	15	19	21	20	13	18	8	9	13	12	21
Уi	90	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблица 4.5 – Вариант 2

x_i	7	4	4	12	13	10	12	18	21	7	8	9	15	16	17
Уi	240	100	90	430	500	400	400	640	720	250	250	350	620	600	640
x_i	5	7	13	12	15	19	21	20	13	18	8	9	13	12	24
y_i	90	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблица 4.6 – Вариант 3

x_i	6	4	5	12	13	10	12	18	21	7	8	9	15	16	17
Уi	240	100	90	430	500	400	400	640	720	250	250	350	620	600	640
x_i	4	7	13	12	15	19	21	20	13	18	8	9	13	12	24
y_i	90	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблица 4.7 – Вариант 4

x_i	5	6	5	12	13	10	12	18	21	7	8	9	15	16	17
y_i	240	290	250	430	500	400	400	640	720	250	250	350	620	600	640
x_i	5	7	13	12	15	19	21	20	13	18	8	9	13	12	25
Уi	300	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблица 4.8 – Вариант 5

1 4031	пца і	· · ·	apma	111 0											
x_i	8	4	3	12	13	10	12	18	21	7	8	9	15	16	17
y_i	240	100	90	430	500	400	400	640	720	250	250	350	620	600	640
x_i	2	7	13	12	15	19	21	20	13	18	8	9	13	12	22
Уi	90	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблица 4.9 – Вариант 6

x_i	6	4	3	12	13	10	12	18	21	7	8	9	15	16	17
Уi	240	100	90	430	500	400	400	640	720	250	250	350	620	600	640
x_i	2	7	13	12	15	19	21	20	13	18	8	9	13	12	22
y_i	90	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблина	4 10	- Вариант 7
т иолици	1.10	Dupiluli /

x_i	7	4	3	12	13	10	12	18	21	10	8	9	15	16	17
Уi	240	100	90	430	500	400	400	640	720	450	250	350	620	600	640
x_i	2	7	13	12	15	19	21	20	13	18	8	9	13	12	22
Уi	90	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблица 4.11 – Вариант 8

x_i	8	7	5	12	13	10	12	18	21	7	8	9	15	16	17
Уi	240	200	120	430	500	400	400	640	720	250	250	350	620	600	640
x_i	5	7	13	12	15	19	21	20	13	18	8	9	13	12	25
Уi	140	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблица 4.12 – Вариант 9

x_i	8	7	8	12	13	10	12	18	21	7	8	9	15	16	17
y_i	240	200	280	430	500	400	400	640	720	250	250	350	620	600	640
x_i	8	7	13	12	15	19	21	20	13	18	8	9	13	12	27
y_i	290	240	550	470	660	720	780	720	540	660	270	350	480	470	800

Таблица 4.13 – Вариант 10

x_i	10	7	4	15	16	13	15	21	24	10	11	12	18	19	20
Уi	250	110	100	440	510	410	410	650	730	260	260	360	630	610	650
x_i	5	10	16	15	18	22	24	23	16	21	11	12	16	15	24
y _i	100	250	560	480	670	730	790	730	550	670	280	360	490	480	810

Таблица 4.14 – Вариант 11

x_i	10	7	7	15	16	13	15	21	24	10	11	12	18	19	20
y_i	250	110	100	440	510	410	410	650	730	260	260	360	630	610	650
x_i	8	10	16	15	18	22	24	23	16	21	11	12	16	15	27
Уi	100	250	560	480	670	730	790	730	550	670	280	360	490	480	810

Таблица 4.15 – Вариант 12

x_i	9	7	8	15	16	13	15	21	24	10	11	12	18	19	20
y _i	260	120	110	450	520	420	420	660	740	270	270	370	640	620	660
x_i	7	10	16	15	18	22	24	23	16	21	11	12	16	15	27
y_i	110	260	570	490	680	740	800	740	560	680	290	370	500	490	820

Таблица 4.16 – Вариант 13

x_i	7	8	7	14	15	12	14	20	23	9	10	11	17	18	19
Уi	260	310	270	450	520	420	420	660	740	270	270	370	640	620	660
x_i	7	9	15	14	17	21	23	22	15	20	10	11	15	14	27
y_i	320	260	570	490	680	740	800	740	560	680	290	370	500	490	820

Таблица 4.17 – Вариант 14

	x_i	10	6	5	14	15	12	14	20	23	9	10	11	17	18	19
	y_i	260	120	110	450	520	420	420	660	740	270	270	370	640	620	660
Ī	χ_i	4	9	15	14	17	21	23	22	15	20	10	11	15	14	24
Ī	Уi	110	260	570	490	680	740	800	740	560	680	290	370	500	490	820

Таблица 4.18 – Вариант 15

x_i	8	6	5	14	15	12	14	20	23	9	10	11	17	18	19
Уi	270	130	120	460	530	430	430	670	750	280	280	380	650	630	670
x_i	4	9	15	14	17	21	23	22	15	20	10	11	15	14	24
Уi	120	270	580	500	690	750	810	750	570	690	300	380	510	500	830

- 2. Представит исходную эколого-экономическую информацию в виде корреляционной таблицы y = f(x), используя метод группировок.
 - 3. Построить математическую модель эколого-экономической корреляции.
 - 4. Провести статистический анализ генеральной средней.
 - 5. Сделать общий вывод по проделанной работе.

4.4 Содержание отчёта

- 1. Цель работы.
- 2. Краткое теоретическое введение.
- 3. Представление исходной эколого-экономической информации в виде корреляционной таблицы y = f(x). Метод группировок.
 - 4. Математическая модель эколого-экономической корреляции.
 - 5. Статистическая оценка генеральной средней.
 - 6. Выводы по работе в развернутом виде.

4.5 Контрольные вопросы

- 1. Статистическая и корреляционная зависимость. Что такое корреляционная связь?
- 2. Корреляционная таблица. Расчет средних по данным корреляционной таблицы.
- 3. Что такое корреляционная функция и в чём её отличие от ковариационной функции?

- 4. Ковариация. Свойства ковариации.
- 5. В чём смысл коэффициента корреляции? Свойства корреляции?
- 6. Что характеризует средняя «эластичности» модели?

ПРИЛОЖЕНИЕ А Критические точки распределения Стьюдента

Таблица А.1 – Критические точки распределения Стьюдента

, [TT	Уровень значимости α											
Число сте-		(
пеней сво-	0.10			итическая обл		0.001						
боды k	0.10 6.31	0.05	0.02 31.82	0.01	0.002	0.001						
1	2.92	12.7		63.7 9.92	318.3	637.0						
2 3	2.35	4.30	6.97	9.92 5.84	22.33	31.6						
	2.33	3.18 2.78	4.54 3.75	3.84 4.60	10.22 7.17	12.9						
4 5	2.13		3.73	4.00	5.89	8.61						
6	2.01 1.94	2.58 2.45	3.37	4.03 3.71	5.89	6.86 5.96						
7	1.94	2.45	3.14	3.71	4.79	5.40						
8	1.89	2.30	2.90	3.36	4.79	5.04						
9		2.31										
	1.83		2.82	3.25	4.30	4.78						
10	1.81	2.23	2.76	3.17	4.14	4.59						
11	1.80	2.20	2.72	3.11	4.03	4.44						
12	1.78	2.18	2.68	3.05	3.93	4.32						
13	1.77	2.16	2.65	3.01	3.85	4.22						
14	1.76	2.14	2.62	2.98	3.79	4.14						
15	1.75	2.13	2.60	2.95	3.73	4.07						
16	1.75	2.12	2.58	2.92	3.69	4.01						
17	1.74	2.11	2.57	2.90	3.65	3.96						
18	1.73	2.10	2.55	2.88	3.61	3.92						
19	1.73	2.09	2.54	2.86	3.58	3.88						
20	1.73	2.09	2.53	2.85	3.55	3.85						
	0.05	0.025	0.01	0.005	0.001	0.0005						
		овень значимо				l .						
Число сте-	•	овень значимо	,									
пеней сво-	0.10	0.05	0.02	0.01	0.002	0.001						
боды k	0.10	0.03	0.02	0.01	0.002	0.001						
21	1.72	2.08	2.52	2.83	3.53	3.82						
22	1.72	2.07	2.51	2.82	3.51	3.79						
23	1.71	2.07	2.50	2.81	3.49	3.77						
24	1.71	2.06	2.49	2.80	3.47	3.74						
25	1.71	2.06	2.49	2.89	3.45	3.72						
26	1.71	2.06	2.48	2.78	3.44	3.71						
27	1.71	2.05	2.47	2.77	3.42	3.69						
28	1.70	2.05	2.46	2.76	3.40	3.66						
29	1.70	2.05	2.46	2.76	3.40	3.66						
30	1.70	2.04	2.46	2.75	3.39	3.65						
40	1.68	2.02	2.42	2.70	3.31	3.55						
60	1.67	2.00	2.39	2.66	3.23	3.46						
120	1.66	1.98	2.36	2.62	3.17	3.37						
∞	1.64	1.96	2.33	2.58	3.09	3.29						
		1		ачимости α	1							
	(односторонняя критическая область)											