

	L11: 2/10 Ynm
r	N-din discrete
o Dimension of Vector Space:	
$ \psi\rangle = \sum_{i=1}^{n} c_{i}$	$ e_i\rangle$
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Dasis vector
Examples: _ Infinite: 1,	Sin x, Sin 2x,
- All the solutions c	of 1-D badicle in a box iscrete and Infinite)
(d	iscrete and Infinite)
- Finite! (1) (↓)	2 basis functions. spin up and
	spin down for dections.
	dections.
The notion of completeness	<u>\$</u> :
h 1 0 1 H	al basis vectors needed vectors in the linear
Number of ormogen	al basis vectors needed
To span all possible	e vectors in the linear
vector space.	
Λ -+ P - 1 + H	ormal vectors is said to
A sel of such ormand	ormal vectors is said to
be 'complete'.	1
The set can be finite c	or infinite
The set can be ferrite of	T
discrete o	or continuous.
Think of examples from previous chapiters.	our discussion in
brazious chapitara	
Trevious Crispiles.	

L11: 4/10 Ynm · |ψ> as a column vector (φ) as a row vector. Think of $|\psi\rangle = \begin{pmatrix} \psi(x_1) \\ \psi(x_2) \\ \psi(x_3) \end{pmatrix}$ and $\langle \varphi | = \langle \varphi_1^*, \varphi_2^*, \varphi_3^*, --- \rangle$ For continuous functions

(fg) = \int f*(x) g(x) dx

[ANNER PRODUCT

Generalized dot product Inner Product: - Matrix multiplication in finite. - Angle, Norm. notions - Measure of overlap generalized. with real functions: $\int_{-\infty}^{60} \varphi(x) \psi(x) dx$ = 0orthogonal. town with $\langle \phi | \psi \rangle = \int_{-\infty}^{\infty} \phi(x) \psi(x) dx$ Inner product degree of overlap.

L11: (5/10) ynm
Kets & Bras.
Lo' must Horespectively.
ot commutative
tant
Ξ (Φ) (ÂΨ)> number.
number.
$ r_2\rangle$
2) 2, A 42
(اورالاله)
omplex no.
ch l

Adjoint of
$$\hat{A}$$
 (simply adjoint)

 $\langle \psi | \hat{A}^{\dagger} | \phi \rangle = \langle \phi | \hat{A} | \psi \rangle^*$ Definition.

 $(\hat{A}^{\dagger})^{\dagger} = (\hat{A}^{\dagger})^{\dagger} = (\hat{A}^{\dagger})^{\dagger$

$$\begin{vmatrix} a \hat{A} \psi \rangle = \\ \langle a \hat{A}^{\dagger} \psi | = a^{*} \langle \psi | (\hat{A}^{\dagger})^{\dagger} = a^{*} \langle \psi | \hat{A} \rangle$$

$$\langle \psi | \hat{A} | \phi \rangle = \langle \hat{A}^{\dagger} \psi | \phi \rangle = \langle \psi | \hat{A} \phi \rangle$$

L11: (710) Ynm Adjoint of A (simply adjoint) $\langle \psi | \hat{A}^{\dagger} | \phi \rangle = \langle \phi | \hat{A} | \psi \rangle^*$ Definition. Flip & Conjugate $(\hat{A}^{\dagger})^{\dagger} = \hat{A}$ 1. $\alpha^{\dagger} = \alpha^{*}$ 2. $|\psi\rangle^{\dagger} = \langle\psi|$ $(a \hat{A})^{\dagger} = a^* \hat{A}^{\dagger}$ $(A+B+c)^{\dagger} = A^{\dagger} + B^{\dagger} + c^{\dagger}$ 3. $\hat{A} \rightarrow \hat{A}^{\dagger}$ (ABC W) - < W/CTBT AT $|a\hat{A}\psi\rangle = a\hat{A}|\psi\rangle$ $\langle a\hat{A}\psi| = a^* \langle \psi|A^{\dagger}$ $\langle a \hat{A}^{\dagger} \psi | = a^* \langle \psi | (\hat{A}^{\dagger})^{\dagger} = a^* \langle \psi | \hat{A}$ $\langle \psi | \hat{A} | \phi \rangle = \langle \hat{A}^{\dagger} \psi | \phi \rangle = \langle \psi | \hat{A} \phi \rangle$ You must have encountered adjoint in matrices. Same idea with complex functions. To take Adjoint: flip, dagger, * | sequence.

ermitian Operators that ermitian Operators that À = A Hermitian Definition or, $\langle \psi | \hat{A} | \phi \rangle = \langle \phi | \hat{A} | \psi \rangle^*$ Oberator remains same on Same on flip and *

Note: In Seneral, $\hat{A}^{\dagger} \neq \hat{A}$ For an operators not acceptable.

Skew Hermitian: (also called) $\hat{B} = -\hat{B}$ or $\langle \psi | \hat{B} | \phi \rangle = -\langle \phi | \hat{B} | \psi \rangle$ Example: Show that Show that dx is anti-Hermitian -it d is Hermitian? iii) Is & Hermitian?

Important Properties of Hermitian A Claim: Expectation of Hermitian A is real. $\langle \Psi | \hat{A} | \phi \rangle = \langle \phi | \hat{A} | \psi \rangle^*$ Defin: $\therefore \quad \langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{A} | \psi \rangle^*$ i.e. If $\hat{A}^{\dagger} = \hat{A}$ then $\langle \hat{A} \rangle$ is real. For anti-Hermitian (or, skew Hermitian) $\hat{B}^{\dagger} = -\hat{B} \qquad \text{or, } \langle \psi | \hat{B} | \phi \rangle = \langle \phi | \hat{B} | \psi \rangle$

The requirement of Hermiticity in physical operators stems from the need to have their expectation value real.

All operators corresponding to physical observables must be Hermitian.

L11: 90/10 ynm Ex. What is the Adjoint of da $= \int_{-60}^{60} \left(\frac{t_1}{i} \frac{df}{da}\right)^{\frac{1}{2}} g dx = \left(\frac{\hat{p}f}{g}\right) + \text{Hermitian}$ $= \int (xf)^{\frac{1}{2}} g dx = \langle xf(g) \rangle$ $= \int (xf)^{\frac{1}{2}} g dx = \langle xf(g) \rangle$ Hermitian. 1 29/01/2024 - .