Практическое занятие 7 РАСЧЕТ АКУСТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЗВУКОПОГЛОЩАЮЩЕЙ ОБЛИЦОВКИ

Постановка задачи. Для обеспечения уровня шума в помещении, не превышающего допустимого, используются звукопоглощающие облицовки. Эффективность звукопоглощения определяется размерами помещения, качеством звукопоглощащих облицовок и площадью покрытия. Следует отметить, что в производственых условиях звукопоглощающие облицовки обычно ставятся на потолок, при этом их эффективность падает для высоких помещений. В судовых условиях звукопоглощающие облицовки и звукоизолирующие ограждения обычно совмещают с теплоизоляцией и декоративным покрытием. Более того, к ним предъявляются жесткие нормативные требования по пожарной безопастности. В случае возгорания, без эффекта распространения огня, выделяемые при горении газы не должны быть ядовитыми. Расчет носит проверочный характер.

Uсходные данные. Геометрические размеры помещения: A, B, H — длина, ширина, высота соответственно. Реверберационные коэффициенты звукопоглощения конструкций в октавной полосе частот $\alpha(\omega)$ (табл. 2.1) и исходный спектр шума в помещении $L_p(\omega)$.

Таблица 2.1

Тип	Mama	Плот-	Среді	Среднегеометрическая частота октавной полосы, Гц								
конст-	Мате-	ность р,	63	125	250	500	1000	2000	4000	8000		
рукции	риал	кг/м ²	Коэффициенты звукопоглощения конструкций $\alpha(\omega)$									
Плоские,	1	60	0,16	0,18	0,26	0,50	0,60	0,80	0,80	0,80		
не отне-	2	25	0,15	0,15	0,25	0,50	0,65	0,80	0,82	0,92		
сенные	3	80	0,15	0,28	0,50	0,50	0,70	0,70	0,70	0,65		
от стенки	4	20	0,10	0,12	0,35	0,40	0,82	0,90	0,92	0,88		
Плоские,	1	60	0,20	0,30	0,45	0,65	0,87	0,80	0,95	0,80		
отнесен-	2	25	0,15	0,20	0,40	0,60	0,73	0,75	0,75	0,80		
ные от	3	80	0,20	0,43	0,60	0,95	0,87	0,80	0,86	0,95		
стенки	4	20	0,15	0,20	0,52	0,67	0,85	0,88	0,85	0,90		

Примечание. Материалы: 1 – капроновое волокно, 2 – штапельное волокно, 3 – минеральная вата, 4 – базальтовое волокно.

Требуется рассчитать спектр шума в помещении после проведения акустической обработки $L_r(\omega)$.

Алгоритм расчета. Объем помещения V = ABH м³. Площадь ограждающих поверхностей S = 2(AB + BH + AH) м². Площадь звукопоглощающей конструкции S_0 , м² выбирается по конструктивным и экономическим соображениям. Постоянная помещения до акустической обработки $B_p(\omega)$ определяется по графику или соответствующей табл. 2.2.

Средний коэффициент звукопоглощения помещения до его акустической обработки:

$$\alpha_n(\omega) = \frac{B_p(\omega)}{B_p(\omega) + S}.$$

Постоянная помещения после акустической обработки, M^2

$$B_{pa}(\omega) = [S G(\omega)] / [S - G(\omega)],$$

где
$$G(\omega) = S\alpha_n(\omega) - S_0[\alpha_n(\omega) - \alpha(\omega)].$$

Таблица 2.2

Объем		Среднегеометрическая частота октавной полосы, Гц									
помещения	63	125	250	500	1000	2000	4000	8000			
V, м ²		Постоянная помещения $B_p(\omega)$									
50	2,1	2,5	3	3,5	4	5	7	10			
100	4,5	5	6	7	8	11	15	18			
200	8,5	10	12	15	18	20	30	40			
500	17	19	23	29	36	50	65	100			
1000	40	50	65	80	90	100	150	180			
2000	80	90	110	140	180	200	260	350			
5000	200	220	250	310	400	500	600	850			

Значение снижения уровня звукового давления (дБ)

$$\Delta L(\omega) = 10 \lg [B_{pa}(\omega)/B_{p}(\omega)].$$

Спектр шума в помещении после акустической обработки

$$L_r(\omega) = L_p(\omega) - \Delta L(\omega).$$

Ограничения, которые должны учитываться при расчете: при $\alpha_n(\omega) = 0.25$ на частоте $\omega = 1000$ Гц акустическая обработка нецелесообразна при данных геометрических размерах помещения.

Hanpumep, исходные данные: A=10 м, B=10 м, H=5 м. Объем помещения:

$$V = ABH = 10 \cdot 10 \cdot 5 = 500 \text{ m}^3.$$

Остальная часть расчета приведена в табл. 2.3.

Таблица 2.3

Попомота	Среднегеометрическая частота октавной полосы, Гц									
Параметр	63	125	250	500	1000	2000	4000	8000		
$L_p(\omega)$, дБ	83	89	96	91	92	90	82	74		
α(ω)	0,1	0,24	0,7	0,82	0,75	0,8	0,75	0,78		
$B_p(\omega)$, M^2	17	19	23	29	36	50	65	100		
$\alpha_n(\omega)$	0,04	0,04	0,05	0,07	0,09	0,11	0,14	0,2		
$G(\omega)$	22	37,5	86,2	102	103	121	117	138		
$B_{pa}(\omega)$, M^2	23,3	41,4	109	138	138	178	165	211		
$\Delta L(\omega)$, дБ	1,37	3,4	6,8	6,8	5,8	5,6	4,0	3,2		
$L_r(\omega)$, дБ	81,6	85,6	89,2	84,2	86,2	84,5	78	71,8		

Данные для расчета. Исходное значение уровня шума в помещении $L_p(\omega)$ и значение коэффициента $\alpha(\omega)$ приведены в табл. 2.4, а характеристики помещения для различных вариантов в табл. 2.5.

Таблица 2.4

Пополет	Среднегеометрическая частота октавной полосы, Гц									
Параметр	63	125	250	500	1000	2000	4000	8000		
$L_p(\omega)$, дБ	82	88	95	90	91	98	81	73		
$\alpha(\omega)$	0,1	0,2	0,7	0,8	0,7	0,8	0,75	0,78		

Таблица 2.5

Величина	Вариант									
Величина	1	2	3	4	5	6	7	8	9	10
А, м	10	10,5	9,5	10,3	9,8	9,7	10,2	9,7	10,4	10
В, м	10	10,5	9,5	9,8	10,4	10,2	9,8	10,3	10,2	9,3
Н, м	5	5,5	4,5	5,0	5,1	4,9	5,2	4,9	4,9	5,2

Для анализа влияния исходных параметров на результат расчета необходимо использовать значения коэффициентов звукопоглощения, которые приведены в табл. 2.1 .