ROBOTICS

Lecture notes

Simone Carletti

A.Y. 2023/2024

Indice

1	Catene Cinematiche					
	1.1	Definizioni				
	1.2	Tipi di robot				
		1.2.1 Possibili shoulder configurations				
		1.2.2 Wrist				
2	Cinematica dei Robot					
	2.1	Cinematica Diretta				
	2.2	Convenzioni di Denavit-Hartenberg				
		2.2.1 Sistemi di riferimento				
		2.2.2 Trasformazione delle coordinate				
	2.3	Operational space e Joint space				
	2.4					
	2.5	Accuracy e Repeatability				
	2.6	Cinematica inversa				
		2.6.1 Manipolatore con polso sferico				
า	Con	ontrollo 17				
3	3.1	Attuatori elettrici				
	5.1	3.1.1 Derivazione modello				
		3.1.2 Amplificatore di potenza				
		3.1.3 Velocity generator				
		v O				
		1 0				
	3.2	3.1.5 Torque generator vs. Velocity generator				
	3.3	Controllo decentralizzato a giunti indipendenti				
	5.5	3.3.1 Controllo del singolo giunto				
		3.3.2 Struttura del controllo				
		3.3.3 Attuatori saturanti				
		3.3.4 Feedforward compensation				
		3.3.5 Computed torque feedworward control				
	3.4	Controllo centralizzato ai giunti				
	0.1	3.4.1 Controllo a dinamica inversa				
		3.4.2 Controllo PD con compensazione della gravità				
	3.5	Controllo nello spazio operazionale				
	5.5	3.5.1 Controllo a Jacobiano inverso				
		3.5.2 Controllo a Jacobiano trasposto				
		3.5.3 Controllo PD con compensazione della gravità				
		3.5.4 Controllo a dinamica inversa				

INDICE 2

		3.5.5	Considerazioni generali	43		
	3.6	Contro	ollo dell'interazione	43		
		3.6.1	Cedevolezza passiva ed attiva	43		
		3.6.2	Strategie di controllo dell'interazione	44		
		3.6.3	Controllo di rigidezza (compliance control)	44		
	C	41		49		
A	Con	Control				
	Control A.1 Cose dette da Rizzo che non ho capito che c'entrano			49		
	A.2 Derivazione del valore di steady-state per il motore velocity-generator					

Capitolo 1

Catene Cinematiche

Una kinematic chain (KC) è composta da un numero variabile di links e joints (entrambi rigidi ed ideali) connessi fra loro. È importante sottolineare che una KC è un puro oggetto geometrico (no massa, no frizioni, etc.).

Per analizzare una KC viene posto un sistema di riferimento (RF, reference frame) su ogni link. In particolare esiste una convenzione per posizionare questi RF, chiamata convenzione di Denavit—Hartenberg.

1.1 Definizioni

- Link: barra geometrica idealizzata che connette 2 o più giunti
- **Joint**: componente fisico ideale che permette il movimento relativo fra 2 links (un giunto permette un singolo **DoF**: translazione o rotazione). Ne esistono di 2 tipi:
 - Revolute (rotational) joint
 - **Prismatic** (translational) joint

In generale i giunti sono mossi da attuatori (motori, etc.). Se questo non accade il giunto viene chiamato passivo.

1.1. Definizioni 4

Figura 1.1: Tipi di giunti

Noi analizzeremo solo **open chains** (in contrasto alle *closed chains*): i.e. catene dove c'è solo 1 link fra due giunti qualunque. In questo caso la KC ha una struttura ad albero. Nel caso delle **closed chain**, invece, ci sono in generale più di un link fra due giunti e la struttura è ciclica.

I vari giunti sono schematizzati come mostrato in fig. 1.2.

(b) Giunti prismatici

Figura 1.2

End Effector

Oltre al braccio, un robot solitamente ha un *tool* posto all'estremità (ultimo link). Questo è chiamato **end effector**, **gripper** o semplicemente **end tool**.

1.2. Tipi di robot

Figura 1.3: Braccio robotico schematizzato

Il **TCP** (*Tool Center Point*) è quel punto ideale sul'end-effector che i software muoveranno nello spazio. Come i vari giunti/link anche questo ha un proprio RF.

1.2 Tipi di robot

I robot industriali sono solitamente composti da una **shoulder** e un **wrist** (spalla e polso). Ponendo per notazione: P = "prismatic joint", R = "revolute joint". Di seguito i vari tipi, con le configurazioni delle relative shoulders.

1.2.1 Possibili shoulder configurations

Cartesian

3P = **P-P-P**: abbiamo 3 DoF, corrispondenti alle 3 coordinate cartesiane. Il *task space* è un parallelepipedo. Posizionamento accurato ma desterità limitata.

Cylindrical

1R-2P = **R-R-P**. Abbiamo 3 DoF, corrispondenti alle 3 coordinate cilindriche. Il *task space* è una sezione di cilindro.

La stuttura essendo meno rigida rispetto al precedente ci da meno accuratezza (che va a diminuire con l'elongazione del braccio).

1.2. Tipi di robot

Polar or spherical

2R-1P = **R-R-P**. Abbiamo 3 DoF, corrispondenti alle 3 coordinate polari. Il *task space* è una sezione di una sfera. È ancora meno rigido rispetto alle precedenti (e come nel caso cilindrico l'accuratezza diminuisce con l'elongazione).

SCARA

2R-1P = **R-R-P**. SCARA = Selective Compliance Assembly Robot Arm). Utili per manipolare piccoli componenti (e.g. μ C). Abbiamo una corrispondenza fra DoM (degree of motion) e coordinata cartesiana solo per la componente verticale. L'effetto della gravità è compensato dalla struttura stessa, che è rigida verticalmente ma *compliant* orizzontalmente.

Articulated or Anthropomorphic

3R = **R-R-R**. Simile ad un braccio umano. Non c'è corrispondenza fra giunti e coordinate cartesiane. Il *task space* è una specie di sezione di una sfera. L'accuratezza non è costante in tutto il task-space. È la tipologia più comune visto che ci da la migliore desterità.

1.2. Tipi di robot

Parallel or closed chains

Utili per manipolare payload pesanti, visto che questo tipo di struttura è molto rigida.

1.2.2 Wrist

Lo scopo principale del polso è quello di orientare il TCP. Possiamo dire che la shoulder setta l'origine del TCP mentre il polso la sua orientazione.

La tipologia più comune è quello dello **spherical wrist**. Comunemente un wrist (sferico e non) è **composto da 3 rotational joints**.

Capitolo 2

Cinematica dei Robot

In questo capitolo studieremo il metodo geometrico per ottenere la posizione dell'end-effector a partire dalle joint variables (angoli o posizioni). Notare che qua non consideriamo forze e coppie.

2.1 Cinematica Diretta

Sia \mathcal{R}_b il **base frame** solidale con la base del robot, e sia \mathcal{R}_e un sistema di riferimento mobile solidale con la punta operativa (end-effector) del robot. Di conseguenza, la posa dell'end-effector sarà data dalla posizione ed orientamento di \mathcal{R}_e rispetto a \mathcal{R}_b .

La cinematica diretta ha come scopo il calcolo della posa della punta operativa in funzione delle variabili giunto q_i , quindi dobbiamo esprimere la relazione fra i 2 RF in modo analitico. Possiamo osservare che \mathcal{R}_e può essere può essere rappresentato nel base frame \mathcal{R}_b per mezzo della matrice di trasformazione:

$${}^{b}\mathbf{T}_{e}(\mathbf{q}) = \begin{bmatrix} {}^{b}\mathbf{R}_{e}(\mathbf{q}) & {}^{b}\mathbf{p}_{e}(\mathbf{q}) \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} {}^{b}\mathbf{n}_{e}(\mathbf{q}) & {}^{b}\mathbf{s}_{e}(\mathbf{q}) & {}^{b}\mathbf{a}_{e}(\mathbf{q}) & {}^{b}\mathbf{t}_{e}(\mathbf{q}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

dove:

- ${}^b\mathbf{p}_e(\mathbf{q})$ è l'origine di \mathcal{R}_e in \mathcal{R}_b
- ${}^b\mathbf{R}_e(\mathbf{q})$ è la matrice di rotazione di \mathcal{R}_e rispetto a \mathcal{R}_b
- ${}^{b}\mathbf{n}_{e}(\mathbf{q}), {}^{b}\mathbf{s}_{e}(\mathbf{q}), {}^{b}\mathbf{a}_{e}(\mathbf{q})$ sono i 3 versori del sistema di riferimento dell'end-effector \mathcal{R}_{e} (rispettivamente **approach**, **sliding** e **normal**).

Il nome dei 3 versori deriva dal fatto che:

• approach: posizionato nella direzione di approccio dell'utensile al pezzo

2.1. Cinematica Diretta

- sliding: posizionato nel piano di scorrimento (sliding) delle ganasce
- normal: ottenuto come prodotto vettoriale fra i primi due (e quindi normale a loro).

Visto che

$$\mathbf{x} = (x, y, z, \phi, \theta, \psi) = {}^{b}\mathbf{T}_{e}(\mathbf{q})$$

risolvere la cinematica diretta significa determinare trovare la matrice \mathbf{T} , che è specifica per ogni particolare robot (essendo dipendente dalla sua struttura fisica).

Soltanto nel caso di manipolatori estremamente semplici, con pochi gradi di libertà, è possibile risolvere il problema della cinematica diretta delle posizioni per via geometrica (i.e a manina). In generale, per un manipolatore con n+1 links, collegati da n giunti, è necessario ricorrere ad una procedura sistematica, basata su:

- Definizione di n+1 sistemi di riferimento $\mathcal{R}_0 \dots \mathcal{R}_n$ ciascuno solidale con un braccio del robot dalla base (braccio/link $0, \mathcal{R}_0 \equiv \mathcal{R}_b$) fino all'ultimo braccio (n)
- Calcolo della matrice di trasformazione come prodotto (composizione) delle varie matrici di trasformazione fra i singoli sistemi di riferimento:

$${}^{b}\mathbf{T}_{e}(\mathbf{q}) \equiv {}^{0}\mathbf{T}_{n}(\mathbf{q}) = {}^{b}\mathbf{T}_{1}(q_{1}){}^{1}\mathbf{T}_{2}(q_{2})\cdots {}^{n-1}\mathbf{T}_{n}(q_{n})$$

Figura 2.2: Sistemi di riferimento $\mathcal{R}_0 \dots \mathcal{R}_n$

Nota: la matrice $\mathbf{T}(\mathbf{q})$ non è costante, ma dipende dalla configurazione corrente del robot!

Inoltre, se per qualche motivo la base e l'end effector non coincidono con i frame 0 e n ci basta aggiungere le 2 rispettive trasformazioni

$${}^{b}\mathbf{T}_{e}(\mathbf{q}) = {}^{b}\mathbf{T}_{0}{}^{0}\mathbf{T}_{n}(\mathbf{q})^{n}\mathbf{T}_{e}$$

che in generale sono costanti e non dipendono da q.

2.2 Convenzioni di Denavit-Hartenberg

Queste convenzioni stabiliscono delle regole generali e sistematiche per la definizione dei sistemi di riferimento di ogni link. In particolare ci permettono di definire in maniera sistematica la matrice $^{i-1}\mathbf{T}_i(q_i)$.

Se seguiamo le regole della convenzione (per il posizionamento dei RF), ogni matrice di quel tipo sarà funzione di soli 4 parametri:

- a_i : lunghezza del link i
- α_i : twist del link i
- d_i : offset del link i
- θ_i : angolo del giunto i

Inoltre, visto che la matrice finale $^{i-1}\mathbf{T}_i(q_i)$ è dipendente solo da una variabile (q_i) , solo 1 fra quei 4 parametri potrà essere variabile, mentre gli altri saranno costanti. In particolare quelli variabili sono:

- Se giunto rotoidale: $\theta_i = q_i$
- Se giunto prismatico: $d_i = q_i$

2.2.1 Sistemi di riferimento

Introduciamo ora il metodo che dovremmo utilizzare per definire i vari RF. In particolare vanno definiti n+1 sistemi di riferimento \mathcal{R}_i , ognuno solidale con uno specifico

Figura 2.3: Convenzione di Denavit-Hartenberg

braccio/link i (importante notare che questo RF quindi si muoverà con quel particolare braccio, che a sua volta è attuato dal joint i)

Un ulteriore sistema di riferimento solidale con la punta operativa può essere introdotto, orientandone gli assi in maniera consona alla definizione del compito da svolgere.

Il sistema di riferimento \mathcal{R}_i solidale con $LINK_i$ viene definito secondo le seguenti regole¹:

- (1) Asse z_i e origine O_i
 - L'asse z_i è posto lungo l'asse di movimento di g_{i+1} (asse di rotazione o di traslazione a seconda del tipo di giunto)
 - L'origine O_i è posta all'intersezione di z_i con la normale comune (common normal) fra gli assi z_{i-1} e z_i . La normale comune è quella retta perpendicolare ad entrambi gli assi (nota entrambi angoli retti nella figura)
 - Casi particolari:
 - $-\mathcal{R}_0$: qua è univocamente definita solo la direzione di z_0 , data dall'asse di movimento di g_1 ; l'origine O_0 e x_0 possono essere fissati a piacimento
 - $-\mathcal{R}_n$: visto che non esiste il giunto g_{n+1} , z_n e O_n non sono univocamente definiti. Per consuetudine si fissa l'origine nel centro della pinza. E visto che tipicamente l'ultimo giunto è rotoidale, z_n è presa coincidente a a z_{n-1} (così da semplificare la matrice di rotazione, visto che otterremo elementi nulli)

Figura 2.4: Assi z e origini

(2) Asse x_i e y_i

- L'asse x_i è fissato lungo la normale comune fra gli assi z_{i-1} e z_i
 - Se z_{i-1} e z_i si intersecano, l'origine di \mathcal{R}_i coincide con il loro punto di intersezione e la direzione di x_i (ortogonale a z_i) è arbitraria
 - se z_{i-1} e z_i sono paralleli, l'origine può essere posta in un punto a scelta e x_i appartiene al piano normale a z_{i-1} e z_i con direzione e verso arbitrari

¹Notazioni slide italiano: $b_i \equiv LINK_i$ $g_i \equiv JOINT_i$

ullet L'asse y_i completa la terna destrorsa

Figura 2.5: Assi $x \in y$

(3) Parametri di DH

Per comprendere meglio i parametri di DH possiamo introdurre un sistema di riferimento "intermedio" $\mathcal{R}_{i'}$ (vedi fig. 2.6b):

- $z_{i'}$ diretto lungo z_{i-1}
- $O_{i'}$ posta all'intersezione di z_{i-1} con la normale comune fra z_{i-1} e z_i
- $x_{i'}$ diretto lungo la normale comune fra z_{i-1} e z_i (come x_i)

La posizione e l'orientamento di \mathcal{R}_i sono completamente specificati rispetto a \mathcal{R}_{i-1} dai seguenti 4 parametri:

- $d_i \rightarrow \text{link offset}$: coordinata di $O_{i'}$ lungo z_{i-1}
- $\theta_i \to \text{joint angle}$: angolo di rotazione da x_{i-1} a x_i attorno all'asse $z_{i'}$ (positivo quando la rotazione è anti-oraria)
- $a_i \to \text{link length}$: distanza (con segno) fra O_i e $O_{i'}$
- $\alpha_i \to \text{link twist}$: angolo di rotazione da z_{i-1} a z_i attorno all'asse x_i (positivo quando la rotazione è anti-oraria)

Figura 2.6

2.2.2 Trasformazione delle coordinate

Ora, come possiamo usare questi parametri per ottenere T(q)?

$$(1) \mathcal{R}_{i-1} \to \mathcal{R}_{i'}$$

 $\mathcal{R}_{i'}$ (partendo da \mathcal{R}_{i-1}) è dato da una translazione d_i lungo z_{i-1} seguito da una rotazione di θ_i attorno a z_i , quindi:

$${}^{i-1}\mathbf{T}_{i'} = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & 0\\ s\theta_i & c\theta_i & 0 & 0\\ 0 & 0 & 1 & d_i\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(2) \mathcal{R}_{i'} \to \mathcal{R}_i$$

 \mathcal{R}_i (partendo da $\mathcal{R}_{i'}$) è dato da una translazione a_i lungo $x_{i'}$ seguito da una rotazione di α_i attorno a x_i , quindi:

$${}^{i'}\mathbf{T}_{i} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c\alpha_{i} & -s\alpha_{i} & 0 \\ 0 & s\alpha_{i} & c\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3) \mathcal{R}_{i-1} \to \mathcal{R}_i$$

Infine, componendo le due trasformazioni, otteniamo:

$${}^{i-1}\mathbf{T}_{i}(q_{i}) = {}^{i-1}\mathbf{T}_{i'}{}^{i'}\mathbf{T}_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Quindi, per ottenere ${}^{0}\mathbf{T}_{n}(\mathbf{q})$ non ci basterà che comporre le varie matrici ottenute sopra, le quali possono essere facilmente ricavate inserendo i giusti valori dei 4 parametri.

2.3 Operational space e Joint space

L'operational space (task space, o cartesian space) è quello spazio dove è definito il vettore di posizioni e orientamento dell'end effector, ovvero:

$$\boldsymbol{x}_e = (\boldsymbol{p}_e, \boldsymbol{\phi}_e) = (x, y, z, \phi, \theta, \psi)$$

In contrasto, il **joint space (o configuration space)** è quello spazio dove è definito:

$$\mathbf{q} = [q_1 \dots q_n] \in \mathbb{R}^n$$

 q_i è la singola variabile di un giunto (ricordiamo che a ciascun giunto corrisponde un grado di libertà). In particolare:

- Giunto rotoidale: $q_i = \theta_i$ (rotazione)
- Giunto prismatico: $q_i = d_i$ (traslazione)

La postura della catena cinematica è quindi determinata dalla posa di tutti i corpi rigidi (i bracci) che la costituiscono ed è una funzione di q:

$$m{x}_e = egin{bmatrix} x(q_1, \dots, q_n) \ y(q_1, \dots, q_n) \ z(q_1, \dots, q_n) \ \phi(q_1, \dots, q_n) \ \theta(q_1, \dots, q_n) \ \psi(q_1, \dots, q_n) \end{bmatrix} = m{k}(m{q})$$

dove k(q) è la funzione di cinematica diretta.

Una soluzione di questa funzione è data dalla matrice ${}^{0}\mathbf{T}_{n}(\mathbf{q})$ definita prima. Notiamo che però la soluzione trovata utilizza una rappresentazione non minimale dell'assetto (matrice di rotazione), mentre nella definizione di k(q) è minimale (angoli di eulero).

Figura 2.7

2.4 Workspace (spazio di lavoro)

Con riferimento allo spazio operazionale lo **spazio di lavoro** del robot è definito da tutti quei punti di x_e ottenuti eseguendo tutte le possibili configurazioni dei giunti.

Figura 2.8: Esempio di spazio di lavoro

All'interno di questo spazio possiamo specificarne due:

- Reachable workspace: è lo spazio di lavoro che l'end-effector può raggiungere con almeno un orientamento
- **Dexterous workspace**: è lo spazio di lavoro che l'end-effector può raggiungere con più di un orientamento. Ovviamente dexterous workspace ⊂ reachable workspace

Ad esempio, la punta di un manipolatore con meno di 6 gradi di libertà non può certamente raggiungere qualunque posa nello spazio 3D.

2.5 Accuracy e Repeatability

Per via di imprecisioni meccaniche, esisteranno sempre delle discrepanze fra i parametri DH nominali e quelli reali. Questa discrepanza prende il nome di **accuratezza**. Un requisito necessario per averla elevata è avere una struttura **rigida**.

Nei manipolatori moderni è < 1mm e solitamente varia con la posizione dell'end-effector.

La **repetibilità** invece è la capacità del manipolatore di ritornare ad una posizione precedente con un certo grado di precisione (questa dipende dalla struttura meccanica ma anche dalle strategie di controllo utilizzate e dalla precisione dei trasduttori).

Figura 2.9: Esempi accuracy e repeatability

2.6 Cinematica inversa

Il problema della cinematica inversa delle posizioni consiste nella determinazione delle variabili giunto q corrispondenti ad un dato x_e o una data ${}^b\mathbf{T}_e(\mathbf{q})$.

L'esistenza della soluzione a tale problema è garantita solo se la posizione e l'orientamento della punta appartengono allo spazio di lavoro (di destrezza) del manipolatore.

Il **problema** della cinematica inversa delle posizioni è **molto più complesso** di quello della cinematica diretta:

- Le **equazioni** da risolvere sono in generale **non lineari** (a causa di *sin*, *cos*, ...) e di conseguenza non è sempre possibile trovare una soluzione in forma chiusa
- Possono esistere molteplici soluzioni (cioè più posture del manipolatore corrispondenti alla stessa posizione ed assetto della punta). Addirittura possono risultare infinite nel caso di un manipolatore ridondante

2.6. Cinematica inversa

• Possono anche non esistere proprio soluzioni: vincoli cinematici nella struttura reale del robot potrebbero ridurre o azzerare il numero di soluzioni "ammissibili"

Putroppo non esistono procedure per il calcolo della cinematica inversa di un robot: la determinazione della soluzione in forma chiusa è fortemente basata su intuizioni algebriche e geometriche.

Nei casi in cui sia impossibile (o estremamente difficoltoso) giungere alla soluzione in forma chiusa si ricorre a **tecniche numeriche di soluzione**, ad esempio:

$$\min_q = \|oldsymbol{x}_{ ext{e ref}} - oldsymbol{k}(oldsymbol{q})\|$$

Per quanto riguarda quest'ultime abbiamo come vantaggio che sono applicabili a qualunque struttura cinematica, ma che però non forniscono (in generale) tutte le possibili soluzioni. Alternativamente è possibile utilizzare la **Jacobiana** (che vedremo più avanti), invertendo le velocità ed integrando per ottenere la posizione.

2.6.1 Manipolatore con polso sferico

Nel caso di un manipolatore a 6 DOF con polso sferico, è possibile disaccoppiare il problema della cinematica inversa in due sottoproblemi, relativi uno alla determinazione della posizione (del polso) e l'altro dell'assetto (dell'end-effector).

Indichiamo il centro del polso (inteso come la posizione in cui si intersecano gli assi dei suoi giunti) con W.

Se $p \in (n, s, a)$ (posizione e orientamento del polso) sono noti:

$$W = p - d_6 a$$

poichè W, rappresentato dal vettore p_W , è ottenibile come sottrazione vettoriale fra p e il vettore lungo d_6 orientato nel verso di a.

Grazie a questa osservazione, possiamo ora suddividere il problema della cinematica inversa in 2 parti:

- 1. Dalla posizione p della punta è possibile ricavare W e quindi risolvere la cinematica inversa per determinare le tre variabili giunto "della spalla": calcola la posizione del polso $W(q_1, q_2, q_3)$ tramite la formula sopra, e poi risolvi la cinematica inversa per (q_1, q_2, q_3)
- 2. Tenendo conto della cinematica ormai nota della spalla, si passa al calcolo dei restanti q_i a partire dall'assetto della punta: calcola ${}^0R_3(q_1,q_2,q_3) \Longrightarrow {}^3R_6(\theta_1,\theta_2,\theta_3) = ({}^0R_3)^T {}^0R_e$ e quindi risolvi la cinematica inversa per $(\theta_1,\theta_2,\theta_3)$ tramite 3R_6

Capitolo 3

Controllo

Il problema del controllo del moto di un manipolatore consiste nella **determinazione** dell'andamento temporale delle coppie generalizzate (**generalized torque**), che gli attuatori devono applicare ai giunti **affinché venga eseguito il compito assegnato**, rispettando specifiche sul transitorio e sul comportamento in regime permanente.

Lo schema di controllo può essere sviluppato:

- 1. Nello spazio dei giunti
- 2. Nello spazio operazionale

tenendo conto che la descrizione del compito è solitamente elaborata nello spazio operazionale, mentre le azioni di controllo esercitate dagli attuatori sono definite nello spazio dei giunti.

Joint space control

Figura 3.1: Schema generale di joint space control

L'azione di controllo fa sì che q(t) insegua il vettore $q_d(t)$ della traiettoria desiderata ai giunti, ricavato dalla cinematica inversa (che è comodamente disaccoppiata dal controllo).

Svantaggio: Non si ha nè un feedback, nè un controllo diretto sulla variabile dello spazio operazionale $\mathbf{p} \implies$ dobbiamo avere una cinematica inversa perfetta (ma tolleranze di costruzione, elasticità ai giunti, giochi nei motoriduttori potrebbero causare imprecisioni).

Operational space control

Qui cerchiamo di fare inseguire un vettore \mathbf{p}_d definito nello spazio operazionale. Con questa tecnica introduciamo una **complessità maggiore**, visto che la cinematica inversa è ora inclusa

Figura 3.2: Schema generale di operational space control

nel controllore. Il **vantaggio** però è quello di poter operare direttamente nello spazio operazionale.

Anche se in primo luogo potrebbe non sembrare un vantaggio (la "misura" di \mathbf{p} è spesso ricavata indirettamente da misure ai giunti per mezzo della cinematica diretta \implies sembra lo stesso svantaggio di imprecisione della cinematica inversa che c'era nel controllo sui giunti): questo controllo è però utile (ad esempio) come base per il controllo dell'interazione con l'ambiente.

Cosa vedremo

Vedremo che la presenza di **motoriduttori** con elevato rapporto di trasformazione tende a **linearizzare la dinamica** del manipolatore e quindi a disaccoppiare i giunti, grazie alla riduzione degli effetti non lineari \implies si giustifica in tal caso l'adozione di una strategia di **controllo decentralizzato**, a giunti indipendenti.

Questo però introduce uno svantaggio: i motoriduttori introducono possibili fenomeni di elasticità, gioco ed attriti non lineari, talora più "fastidiosi" degli effetti di accoppiamento fra i giunti. L'utilizzo di motori ad azione diretta elimina questi problemi ma mantiene rilevanti gli effetti non lineari e di accoppiamento fra i giunti, che non possono essere trascurati o considerati come disturbi \implies diventa opportuno in tal caso utilizzare una strategia di controllo centralizzato, che tenga conto della dinamica non lineare del manipolatore. Svantaggio: la legge di controllo è necessariamente non lineare e computazionalmente pesante.

3.1 Attuatori elettrici

Prima di introdurre i sistemi di controllo, iniziamo parlando di come poter modellare gli attuatori elettrici che andremmo ad utilizzare.

Gli attuatori maggiormente impiegati sono motori DC o brushless. Fortunatamente dal punto di vista matematico, un motore DC e un brushless dotato degli appositi sensori, possono essere modellati allo stesso modo. A seconda delle caratteristiche del regolatore inserito, il comportamento dell'attuatore può essere assimilato:

- Ad un generatore di velocità controllata (velocity controlled)
- Ad un generatore di coppia controllata (torque controlled)

In fig. 3.3 possiamo vedere il modello del motore che utilizzeremo. Notazione usata:

- ω_m e θ_m sono la velocità e la posizione angolare dell'albero motore
- V_a e I_a sono la tensione e la corrente del circuito di armatura

• τ_m è la coppia motrice, mentre τ_r è la coppia dovuta al carico

Figura 3.3: Modello del motorore comandato in armatura

3.1.1 Derivazione modello

Partendo dal circuito illustrato in fig. 3.4 (il quale modella un motore DC), possiamo derivare il circuito mostrato in fig. 3.3.

Figura 3.4: Modello circuitale del motore

Il bilancio elettrico dell'armatura è definito da:

$$L\frac{dI_a}{dt} + RI_a = V_a - V_b \quad \stackrel{\mathcal{L}}{\Longrightarrow} \quad V_a = (R_a + sL_a)I_a + V_g$$

$$V_g = K_\omega \omega_m$$
(3.1)

Dove V_g è la **back-emf**, ovvero quella tensione generata dalla dal movimento delle coils del motore nel campo magnetico (e questa tensione è proporzionale alla velocità del conduttore nel campo, ovvero a $\omega_m = \dot{\theta}_m$). Questa tensione, tenderà ad opporsi al flusso di corrente nel conduttore.

Il bilancio meccanico è invece definito da:

$$\tau_m = (s\Gamma_m + \beta_m)\omega_m + \tau_r \tag{3.2}$$

$$\tau_m = K_i \Gamma_a \tag{3.3}$$

Dove Γ_m e β_m sono rispettivamente il momento d'inerzia e il coefficiente di attrito viscoso dell'albero motore. Queste formule derivano da:

- 1. Ricordando da fisica 1: $F=ma \iff \tau=I\alpha$ dove I, α sono il momento di inerzia e l'accellerazione angolare
- 2. Allora, facendo riferimento al motore: $\tau = I\alpha \iff \tau_m = \Gamma_m \dot{\omega}_m$
- 3. Ora "aggiungiamo" l'attrito viscoso (che come ricordiamo è proporzionale alla velocità): $\tau_m \beta_m \omega_m = \Gamma_m \dot{\omega}_m$
- 4. Infine, passando a Laplace: $\tau_m = \beta_m \omega_m + \Gamma_m s \omega_m \implies \tau_m = (s\Gamma_m + \beta_m)\omega_m$

3.1.2 Amplificatore di potenza

Visto che solitamente V_a ha valori elevati, si tende ad utilizzare un **amplificatore di potenza** per poter comandare il motore con una tensione $V_c \ll V_a$: il nuovo circuito è illustrato in fig. 3.5.

 G_v è il guadagno di tensione, mentre T_v è una costante di tempo trascurabile (poiché nell'ordine di 10-100 kHz), di conseguenza il blocco dell'amplificatore di potenza può essere assimilato al solo guadagno G_v .

Figura 3.5: Modello motore con amplificatore di potenza

3.1.3 Velocity generator

Possiamo ora completare il circuito aggiungendo una retroazione sulla corrente I_a e un compensatore che utilizzi tale feedback.

Prima di vedere l'effetto della retroazione, però, iniziamo dal caso più semplice, dove $K_i = 0$: in questa modalità riusciamo ad impostare a piacimento la velocità del motore, giocando sulla tensione di controllo V_c' .

Figura 3.6: Circuito motore in modalità velocity generator

Per dimostrare quando affermato, analizziamo lo steady-state del circuito in fig. 3.6. Ricordandoci che il coefficiente di attrito viscoso meccanico β_m è trascurabile rispetto al coefficiente di attrito viscoso elettrico (mi son dimenticato come si ricava ma avevo chiesto al prof e aveva senso):

$$\beta_m \ll \frac{K_\omega K_t}{R_a}$$

e supponendo $C_i(s) = 1$, $\tau_r = 0$ (per semplicità di calcolo), otteniamo:

$$\omega_m \approx \frac{G_v}{K_{c}} V_c'$$

Ovvero, in questo caso, possiamo impostare la velocità angolare a piacere (per la derivazione del valore di steady-state vedi appendice A.2).

3.1.4Torque generator

Passiamo ora al caso in cui $K_i \neq 0$: circuito in fig. 3.7. In questa modalià, vedremo invece che è possibile controllare a piacere la coppia (al posto della velocità come nel caso precedente).

Figura 3.7: Circuito motore in modalità torque generator

Adesso, come accennato, il motore si comporta come un torque-controlled generator. Questo perchè, con $K_i \neq 0$, se si sceglie $K_i \gg R_a$ otteniamo il seguente steady-state (la derivazione segue lo stesso ragionamento usato per il caso velocity-controlled):

$$\tau_m \approx \frac{K_t}{K_i} (V_c^{'} - \frac{K_\omega}{G_v} \omega_m) \approx \frac{K_t}{K_i} V_c^{'}$$

(supponendo $G_v \gg 1 \implies \frac{K_\omega}{G_v} \to 0$). Questo significa che possiamo impostare il torque del motore giocando sul voltaggio di controllo V_c .

3.1.5Torque generator vs. Velocity generator

Quando ci conviene utilizzare uno invece che l'altro? In seguito vedremo che in tutte le applicazioni in cui è necessario ottenere un'elevata reiezione di coppie di disturbo, come nel caso del controllo decentralizzato a giunti indipendenti, è opportuno NON inserire l'anello di controllo in corrente ed utilizzare i motori come generatori di velocità.

Al contrario, in caso di strategie di controllo centralizzate, è consigliabile introdurre l'anello di retroazione in corrente ed utilizzare i motori come generatori di coppie (opportuni accorgimenti vengono adottati in entrambi i casi per limitare la corrente ed evitare danni ai dispositivi).

E' possibile vedere questa differenza calcolando le relazioni input/output fra ω_m e V_c' , τ_r . Da queste equazioni si può vedere che senza feedback di corrente (i.e. velocity-controlled generator) si ha una reiezione migliore della coppia di disturbo τ_r : i coefficienti legati a τ_r in questo caso sono molto minori del caso torque-controlled (\Longrightarrow riduciamo di più gli effetti dei disturbi).

Semplificando:

$$\omega_m^{\text{velocity}} = \alpha_{\text{velocity}} V_c' + \lambda_{\text{velocity}} \tau_r$$

$$\omega_m^{\text{torque}} = \alpha_{\text{torque}} V_c' + \lambda_{\text{torque}} \tau_r$$
(3.4)

$$\omega_m^{\text{torque}} = \alpha_{\text{torque}} V_c' + \lambda_{\text{torque}} \tau_r \tag{3.5}$$

se il primo è per il caso velocity-controlled, mentre il secondo per il caso torque-controlled abbiamo che $\lambda_{\text{velocity}} \ll \lambda_{\text{torque}}$.

3.2 Trasmissions aka motoriduttori

Vediamo ora in dettaglio gli effetti che i motoriduttori utilizzati nel motore hanno sul sistema.

Figura 3.8: Motoriduttore

In generale, se indichiamo con k_r il rapporto di trasformazione (gear-ratio) di un motoriduttore ideale, abbiamo che:

$$\theta_m = k_r \theta$$

ove θ_m è la posizione angolare dell'albero motore e θ è la posizione angolare sul secondario (giunto). k_r è invece definito come il rapporto tra i raggi dei due gears:

$$k_r = \frac{r}{r_m} = \frac{\theta_m}{\theta} = \frac{\omega_m}{\omega}$$

Considerando attriti viscosi e coppie, possiamo scrivere le equazioni di equilibrio:

$$\tau_{m} = \Gamma_{m}\dot{\omega}_{m} + \beta_{m}\omega_{m} + fr_{m}$$
$$fr = \Gamma\dot{\omega} + \beta_{s}\omega + \tau_{d}$$

(La forza f scambiata tra i due ingranaggi genera una coppia di reazione fr_m per il moto all'asse del motore ed una coppia motrice fr per il moto di rotazione del carico). Dopo alcuni passaggi si ottiene:

$$\tau_m = \left(\Gamma_m + \frac{\Gamma}{k_r^2}\right)\dot{\omega}_n + \left(\beta_m + \frac{\beta_g}{k_r^2}\right)\omega_m + \frac{\tau_d}{k_r}$$

Notiamo che qualunque coppia applicata sul secondario è riportata sul primario ridotta del fattore k_r (e viceversa).

Poiché $\mathbf{k_r}$ è elevato, l'effetto di coppie di disturbo agenti sul secondario risulta fortemente ridotto sul primario. Se tali coppie dipendono non-linearmente da θ , allora la presenza di un alto fattore di riduzione tende a linearizzare il sistema.

Nel caso vettoriale (molteplici giunti), possiamo riscrivere alcune utili relazioni:

$$\mathbf{q}_m = \mathbf{K}_r \mathbf{q} \tag{3.6}$$

$$\boldsymbol{\tau}_m = \mathbf{K}_r^{-1} \boldsymbol{\tau} \tag{3.7}$$

Dove quest'ultima deriva (intuitivamente) dal fatto che con l'aumentare del *gear-ratio* si diminiusce la velocità angolare ma si aumenta il torque (e viceversa).

3.3 Controllo decentralizzato a giunti indipendenti

Decentralized Joint Space Control

Nel controllo decentralizzato a giunti indipendenti **ogni** singolo **giunto** attuato è considerato come un **sottosistema SISO disaccoppiato e indipendente**, descritto da un modello dinamico approssimato. Gli **effetti di accoppiamento** non-lineari presenti nella dinamica propria del robot sono **considerati come disturbi**.

Lo schema di controllo complessivo è formato da n controllori (uno per ogni giunto), basati su reti di compensazione classiche, ciascuno agente in modo indipendente dagli altri.

Ricordiamo che il nostro obiettivo è quello di far eseguire una sequenza $\mathbf{q}(t)$ in modo che $\mathbf{q}(t) \to \mathbf{q}_d(t)$.

Figura 3.9: Schema generale del controllo a giunti indipendenti

Come accennato in precedenza, in questo caso andremo a controllare gli attuatori in velocità (questo esce in "automatico" dalle equazioni: vedi sezione 3.3.1).

Ora qua Rizzo ha detto roba che non ho capito. Lo stesso concetto si deriva comunque seguendo i prossimi discorsi. Per vedere quello che ha detto Rizzo vedi appendice A.1

Richiamando i capitoli precedenti, ricordiamo che il modello dinamico del manipolatore (in assenza di forze scambiate con l'ambiente esterno) è espresso da:

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q) = \tau = K_r\tau_m$$
(3.8)

L'ultima uguaglianza deriva dall'utilizzo dei motoriduttori (vedi (3.7)).

Per elaborare uno schema di controllo decentralizzato ai giunti è opportuno riportare le equazioni dinamiche a monte del motoriduttore (sul primario, i.e. lato motore):

$$K_r^{-1}B(q)K_r^{-1}\ddot{q}_m + K_r^{-1}C(q,\dot{q})K_r^{-1}\dot{q}_m + K_r^{-1}F_vK_r^{-1}\dot{q} + K_r^{-1}g(q) = au_m$$

(Questa equazione è ottenuta semplicemente applicando (3.6) e (3.7) a (3.8)).

Figura 3.10: Circuito relativo a (3.10)

È possibile notare che $\mathbf{B}(q)$ può essere decomposto in $\mathbf{B}(q) = \bar{\mathbf{B}} + \Delta \mathbf{B}(q)$, ove $\bar{\mathbf{B}}$ è una matrice diagonale costante e $\Delta \mathbf{B}(q)$ è una matrice configuration-dependent. Possiamo quindi riscrivere l'ultima equazione come:

$$egin{aligned} (ar{B} + \Delta B(q)) K_r^{-1} \ddot{q} + C(q, \dot{q}) K_r^{-1} \dot{q} + F_v K_r^{-1} \dot{q} + g(q) &= K_r au_m \ &\downarrow \ &K_r^{-1} ar{B} K_r^{-1} \ddot{q}_m + d + K_r^{-1} F_v K_r^{-1} \dot{q}_m &= au_m \end{aligned}$$

dove possiamo considerare gli effetti degli altri giunti su quello corrente come disturbi:

$$d \triangleq K_r^{-1} \Delta B(q) K_r^{-1} \ddot{q}_m + K_r^{-1} C(q, \dot{q}) K_r^{-1} \dot{q}_m + K_r^{-1} g(q)$$
(3.9)

Inoltre, visto che questi termini sono moltiplicati per K_r^{-1} , più alto è il gear-ratio e meno questi termini influenzeranno il nostro sistema ($d \downarrow$ quando $K_r \uparrow$), portandoci così ad un sistema sempre più lineare e disaccoppiato (ovviamente c'è un limite, visto che gear-ratio altissimi non produrrebbero praticamente alcune velocità).

Riassumendo:

$$K_r^{-1}\bar{B}K_r^{-1}\ddot{q}_m + F_m\dot{q}_m + d = \tau_m$$
 (3.10)

dove $F_m \triangleq K_r^{-1} F_v K_r^{-1}$.

Detto questo, per la parte lineare possiamo ora far riferimento alla nota teoria del controllo LTI per sistemi SISO.

3.3.1 Controllo del singolo giunto

Partendo da (3.10) possiamo estrarre la relazione per un singolo giunto:

$$\Gamma \ddot{q}_m + \beta \dot{q}_m + d = \tau_m \tag{3.11}$$

dove Γ e β sono rispettivamente il momento di inerzia totale equivalente ed il coefficiente di attrito viscoso totale equivalente, definiti come segue ¹:

$$\Gamma = \frac{1}{\mathbf{K}_{r_i}^2} \bar{\mathbf{B}}_{ii} \quad , \quad \beta = \frac{1}{\mathbf{K}_{r_i}^2} \mathbf{F}_{mi},$$

Passando a Laplace (con condizioni iniziali nulle) otteniamo:

$$(s\Gamma + \beta)\omega_m(s) = \tau_m(s) - d(s) \tag{3.12}$$

considerando $\omega_n(s)$ come uscita, otteniamo il circuito di fig. 3.11: notare che questo <u>coincide</u> col modello del motore in modalità velocity-generator (fig. 3.6) con $C_i(s) = 1 \implies$ usiamo attuatore in modalità velocity-controlled.

Figura 3.11: Schema a blocchi del singolo giunto

Cerchiamo ora di semplificare un po' questo modello. Possiamo iniziare supponendo L_a trascurabile, dato che le perdite ad essa associate sono solitamente molto piccole. Dall'equazione di equilibrio elettrico (3.1) possiamo quindi rimuovere L_a , e ottenere:

$$V_a - R_a I_a = K_\omega \omega_m \tag{3.13}$$

Allora, ricordando che $I_a = \tau_m K_t^{-1}$ e sostituendo τ_m con l'espressione (3.12) otteniamo

$$V_a - R_a K_t^{-1} \tau_m = K_\omega \omega_m \implies V_a - R_a K_t^{-1} ((s\Gamma + \beta)\omega_m + d) = K_\omega \omega_m$$

Riorganizzando i termini, e ignorando il termine relativo a β (visto che è trascurabile rispetto a ω_m), otteniamo:

$$\left(\frac{R_a\Gamma}{K_tK_\omega}s+1\right)\omega_m = \frac{1}{K_\omega}V_a - \frac{R_a}{K_tK_\omega}d$$

Da qui possiamo identificare 2 funzioni di trasferimento (a seconda di cosa consideriamo ingresso):

$$G_{\omega}(s) \triangleq \frac{\omega_m(s)}{V_a(s)} = \frac{1}{K_{\omega}(1+sT)} \tag{3.14}$$

$$G_d(s) \triangleq \frac{\omega_m(s)}{d(s)} = -\frac{T}{\Gamma(1+sT)} = -K_d G_\omega(s)$$
(3.15)

dove:

$$T = \frac{R_a \Gamma}{K_t K_\omega} \quad , \quad K_d = \frac{R_a}{K_t}$$

Da queste equazioni possiamo quindi passare allo schema a blocchi di fig. 3.12.

¹notando che $\mathbf{K}_{r_i}^{-1} \alpha \mathbf{K}_{r_i}^{-1} = (1/\mathbf{K}_{r_i}^2) \alpha$

Figura 3.12: Schema a blocchi semplificato

Comparazione con le slide di Rizzo

Nelle slide è presente il seguente circuito. Anche se a prima vista potrebbe sembrare diverso è in realtà identico a quello di figura 3.12.

Ricordando la differente notazione: $I \equiv \Gamma$, $k_v \equiv K_\omega$, possiamo unire i 3 blocchi in uno unico. Partiamo dal forward path:

$$F(s) = \frac{k_t}{R_a s I}$$

Poi, incorporando il feedback, otteniamo

$$\frac{F(s)}{1 + F(s)k_v} = \frac{\frac{k_t}{R_a s I}}{1 + \frac{k_v k_t}{R_a s I}} = \frac{1}{k_v (1 + sT)}$$

Ovvero la stessa forma di quanto mostrato in fig. 3.12.

3.3.2 Struttura del controllo

In fig. 3.13 possiamo vedere lo schema di controllo generale, con retroazione su posizione, velocità e accelerazione (nota: per semplicità G_v è stato incluso nell'anello di controllo più interno).

In generale, il controllore viene progettato modo che si abbia un guadagno elevato nel blocco a monte del punto di ingresso del disturbo (per ottenere un elevato fattore di attenuazione) e in modo che ci sia un'azione integrale, affinché gli effetti della coppia di gravità vengano cancellati in regime permanente.

Figura 3.13: Schema generale del controllo

Queste richieste portano alla scelta di un **controllore PI (proporzionale-integrale)** della forma:

$$C(s) = K_p \frac{1 + sT_p}{s} \tag{3.16}$$

Retroazione sulla posizione

Possiamo partire dal caso più semplice, ovvero introducento un controllo con solo la retroazione k_{TP} su θ_m . Poniamo $C_v(s) = C_A(s) = 1$ e $k_{TV} = k_{TA} = 0$, mentre mettiamo $C_p(s)$ nella forma (3.16).

Figura 3.14: Solo position feedback

La funzione di trasferimento del ramo diretto risulta (richiamando (3.16) e (3.14)):

$$G(s) = \underbrace{K_p \frac{1 + sT_p}{s}}_{C_p(s) = (3.16)} \underbrace{\frac{1}{K_{\omega}(1 + sT)}}_{G_{\omega}(s) = (3.14)} \frac{1}{s} = \frac{K_p(1 + sT_p)}{s^2 K_{\omega}(1 + sT)}$$

da cui si ricava la funzione di trasferimento ad anello chiuso:

$$W(s) = \frac{K_p(1 + sT_p)}{s^2 K_{\omega}(1 + sT) + K_P K_{TP}(1 + sT_P)}$$

Figura 3.15: Circuito di fig. 3.14 con blocco motore accorpato $(q_{r,m} \equiv \theta_r, q_m \equiv \theta_m)$

Da qui è possibile analizzarne la stabilità, ad esempio tramite il luogo delle radici (vedi fig. 3.16).

Figura 3.16: Root locus per W(s) con solo retroazione sulla posizione

I parametri K_P e T_P devono essere scelti in modo da:

- Garantire l'asintotica stabilità del sistema in catena chiusa
- Evitare oscillazioni significative nella sua risposta
- Garantire un elevato fattore di attenuazione del disturbo

Per calcolare meglio i requirements è possibile esprimere W(s) in funzione di ω_n e ζ :

$$W(s) = \frac{\frac{1}{K_{TP}}(1 + sT_P)}{\left(1 + \frac{2\zeta}{\omega_n} + \frac{s^2}{\omega_n^2}\right)(1 + \tau s)}$$

Come possiamo vedere anche dal root locus:

- Deve essere $T_P > T$ affinché si abbia asintotica stabilità
- Se $T_P \gg T$ si velocizza la risposta del sistema (diventano dominanti i poli complessi coniugati). Inoltre per elevati valori del guadagno K_P la pulsazione del polo reale di W(s) tende a quella dello zero ($\tau \approx T_P$) e quindi il sistema risulta rappresentato in prima approssimazione dalla sola dinamica del II° ordine associata ai poli complessi coniugati
- La parte reale dei poli dominanti non può comunque essere inferiore a -1/(2T)

Applicando le regole dell'algebra dei blocchi, è possibile anche ricavare la funzione di trasferimento fra il disturbo D e l'uscita θ_m del sistema:

$$\frac{\Theta_m(s)}{D(s)} = -K_d \frac{\frac{s}{K_p K_{TP}(1+sT_p)}}{1 + \frac{s^2 K_{\omega}(1+sT)}{K_p K_{TP}(1+sT_p)}}$$

Da questa t.f. è possibile vedere che il fattore di attenuazione del disturbo vale K_PK_{TP} . Valori troppo elevati di K_P possono però portare ad avere oscillazioni inaccettabili sull'uscita (lo smorzamento ζ risulta troppo piccolo).

Il tempo necessario per avere un'attenuazione significativa del disturbo è approssimabile come $T_R = \max\{T_P, \frac{1}{\zeta\omega_n}\}$

Retroazione di posizione e velocità

Per questo secondo caso consideriamo il seguente setup (qua $C_A(s) = 1$, $k_{TA} = 0$), rappresentato in fig. 3.17:

$$C_P(s) = K_P$$
 $C_V(s) = K_V \frac{1 + sT_V}{s}$

Ovvero un'azione solo proporzionale per la posizione, mentre un'azione PI per la velocità. La costante di tempo T_V può essere scelta in modo da cancellare il polo meccanico del giunto attuato:

 $T_V = T$

$$q_{r,m}$$
 K_p
 K_p
 $K_v(1+sT_v)$
 K_{rv}
 K_{rv}

Avendo posto d = 0 per calcolare W(s)

Figura 3.17: Circuito con retroazione su posizione e velocità

Come per il caso precedente, possiamo analizzare la stabilità del sistema tramite il root-locus della funzione di trasferimento in ciclo chiuso W(s):

$$W(s) = \frac{K_P K_V}{K_W s^2 + K_V K_{TV} s + K_{TP} K_P K_V}$$

e gli effetti dei disturbi con la funzione di trasferimento $\Theta_m(s)/D(s)$ (saltando la definizione della forma esplicita): in questo caso il **fattore di attenuazione del disturbo** è dato dal prodotto $\mathbf{K_P}\mathbf{K_{TV}}\mathbf{K_V}$, ormai completamente definito, avendo imposto K_P e K_V per imporre i poli desiderati.

Aumentando il guadagno del feedback di posizione K_P , è possibile confinare i poli dell'anello chiuso in una regione del piano complesso con grandi valori assoluti della parte reale. Poi, la posizione effettiva può essere stabilita mediante una scelta adeguata di K_V .

Figura 3.18: Root-locus con retroazione di velocità e posizione

Retroazione di posizione, velocità ed accelerazione

Per concludere vediamo il controllo con tutti e 3 i feedback:

$$C_P(s) = K_P$$
 $C_V(s) = K_V$ $C_A(s) = K_A \frac{1 + sT_A}{s}$

Avendo a disposizione un parametro libero in più, sarebbe possibile in questo caso:

- Assegnare la dinamica desiderata al sistema ad anello chiuso
- Imporre il fattore di attenuazione del disturbo

Problema: La misura dell'accelerazione però non è solitamente disponibile. Per implementare uno schema di controllo comprendente la retroazione dell'accelerazione risulterebbe necessario ricavarla indirettamente dalle misure disponibili.

Avendo a disposizione la misura diretta della velocità, è possibile **stimare l'accelerazione** per mezzo di un filtro del primo ordine (vedi fig. 3.20), purché avente banda sufficientemente ampia. Scegliendo questa larghezza di banda sufficientemente ampia, gli effetti dovuti ai ritardi di misurazione non sono un problema, e quindi è possibile prendere l'uscita del filtro di accelerazione come quantità per il feedback. Problemi possono comunque incorrere a causa del rumore presente sul segnale di accelerazione così ottenuto.

Figura 3.19: Root-locus con retroazione di accelerazione, velocità e posizione

Figura 3.20: Filtro del I° ordine per la stima dell'accelerazione

3.3.3 Attuatori saturanti

In un'applicazione reale, il comportamento del sistema può allontanarsi da quello del suo modello teorico a causa di dinamiche "parassite" o non lineari, non incluse nella descrizione considerata, con evidenti conseguenze sulle prestazioni del controllo. Una di queste è ad esempio la presenza di attuatori saturanti.

Quest'ultima però può essere modellata semplicemente aggiugendo sul ramo diretto dell'anello di controllo un blocco che rappresenta la seguente relazione:

$$\begin{cases} y_{max} &, u(t) > u_{max} \\ ku(t) &, u_{min} \le u(t) \le u_{max} \\ y_{min} &, u(t) < u_{min} \end{cases}$$

L'inserimento di blocchi di saturazione è solitamente legato a necessità di sicurezza e di salvaguardia del sistema.

Quando le grandezze coinvolte (correnti, tensioni) raggiungono il valore massimo consentito ed entra in azione il blocco di saturazione, l'inseguimento della traiettoria non è più realizzato con le caratteristiche e l'accuratezza prevista. In caso di movimenti PTP non è inusuale che vengano raggiunte situazioni di saturazione: in tal caso infatti è solitamente prioritario raggiungere il più rapidamente possibile la configurazione finale desiderata, anziché rispettare la traiettoria prefissata in ogni istante.

3.3.4 Feedforward compensation

Quando è richiesto l'inseguimento di traiettorie con elevati valori di velocità e di accelerazione, è possibile ridurre l'errore di inseguimento utilizzando i valori del riferimento in velocità (ed in accelerazione) per calcolare termini di compensazione in avanti (feedforward compensation), da sommare all'azione del controllore posto sul ramo diretto.

Si noti che, in generale, calcolare derivate non è possibile (perchè dovremmo "predire il futuro"). In questo caso però essendo la traiettoria nota a priori, non ci sono problemi.

Figura 3.21: Schema a blocchi del controllo con feedback di posizione e feedforward compensation decentralizzato

3.3.5 Computed torque feedworward control

È possibile aggiungere un altro blocco di feedforward. Richiamando (3.10):

$$K_r^{-1}\bar{B}K_r^{-1}\ddot{q}_m+F_m\dot{q}_m+d=\tau_m$$

se vogliamo reiettare perfettamente il disturbo d potremmo provare a calcolarci in anticipo il valore di d, per poi sommarlo nel lato destro dell'equazione.

$$K_r^{-1}ar{B}K_r^{-1}\ddot{q}_m+F_m\dot{q}_m+\not d= au_m+\not d$$

Ponendo $q \equiv q_d$ ci basta usare (3.9) per calcolarci d (calcolo fatto offline).

Figura 3.22: Circuit with computed torque feedworward control

3.4 Controllo centralizzato ai giunti

Centralized Joint Space Control

In alcuni casi il **controllo decentralizzato** a giunti indipendenti **può risultare inadeguato**. Questo accade, ad esempio, quando:

- sono **richieste velocità operative elevate** \implies le coppie di disturbo strutturato dipendenti dalla velocità (di Coriolis, centrifughe) influiscono pesantemente sul comportamento dei giunti
- i motori sono ad azione diretta \implies a causa dell'assenza dei motoriduttori ($\mathbf{K}_r = \mathbf{I}$) non si beneficia di alcuna riduzione degli effetti non lineari e di accoppiamento fra i giunti

In tali casi gli effetti delle coppie di disturbo \mathbf{d} possono determinare errori troppo elevati di inseguimento della traiettoria.

Poiché in questi casi non è possibile ridurre sufficientemente gli effetti indotti dalle coppie di disturbo d, diventa conveniente cercare di eliminare direttamente tali coppie, ricorrendo ad una strategia di controllo contenente termini non lineari di compensazione.

Si parla di **controllo centralizzato** perché la coppia applicata a ciascun giunto risulta funzione anche delle variabili di posizione e velocità degli altri giunti, a differenza di quanto accade nel controllo a giunti indipendenti.

Negli schemi di controllo centralizzato il manipolatore è considerato come un **unico sistema MIMO**, con n ingressi (le coppie applicate ai giunti) e n uscite (le posizioni dei giunti) che interagiscono fra loro secondo relazioni non lineari. La **legge di controllo** centralizzato dovrà tenere conto del modello dinamico del manipolatore ed essere **non-lineare** (visto che il modello è non lineare).

Ora usiamo attuatori torque-controlled

Come accennato all'inizio in questo caso userremo motori in modalità generatori di coppia. Intuitivamente queseto segue dal fatto che gli attuatori dovranno fornire coppie tali da compensare "esattamente" (o quanto meglio possibile) i disturbi strutturati: da questo si consegue che è opportuno utilizzare i motori come generatori di coppia anziché di velocità.

Richiamando la forma semplificata del bilancio elettrico di armatura (3.13), possiamo scrivere:

$$I_a = R_a^{-1}(V_a - K_\omega \omega_m) = R_a^{-1}(G_v V_c - K_\omega \omega_m)$$

Dove l'ultima ugualianza deriva dall'amplificatore di potenza: $V_a = G_v V_c$. Di conseguenza, ricordando (sempre al modello del motore: vedi fig. 3.3), che $\tau_m = K_t I_a$, possiamo scrivere:

$$\tau = K_r \tau_m = K_r K_t I_a = K_r K_t R_a^{-1} (G_v V_c - K_\omega \omega_m)$$

che si può notare essere uguale a (A.1.1).

Visto che però vogliamo avere un motore torque-controlled è necessario inserire la corrente in retroazione. Per magimagia (forse vedi sezione 3.1.4) diciamo che il termine con K_{ω} diventa trascurabile e quindi:

$$I_a = R_a^{-1}(G_v V_c - K_{\omega} \widetilde{\omega_m}) = G_i V_c$$

Di conseguenza

$$au = K_r K_t G_i V_c = u$$

ove ${\bf u}$ è il vettore di comandi disponibili per il controllo.

3.4.1 Controllo a dinamica inversa

Il principale approccio di controllo centralizzato è detto a dinamica inversa, ed è basato sull'idea di ottenere una linearizzazione della dinamica del sistema per mezzo di una retroazione non lineare degli stati tale da condurre ad un sistema lineare e disaccoppiato rispetto ad un nuovo vettore di accelerazioni di comando da progettare.

Detto in altre parole, applichiamo la tecnica nota come feedback linearization.

Prima di cominciare, per comodità definiamo il modello della dinamica come:

$$B(q)\ddot{q} + n(q,\dot{q}) = \tau = u \tag{3.17}$$

dove:

$$n(q,\dot{q}) riangleq C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q)$$

Supponendo di poter calcolare esattamente $\mathbf{B}(\mathbf{q})$ e $\mathbf{n}(\mathbf{q}, \dot{\mathbf{q}})$, definiamo il nostro comando di controllo come

$$u = B(q)y + n(q,\dot{q})$$

questo perchè, così facendo, riusciamo ad ottenere una linearizzazione esatta del sistema:

$$B(q)\ddot{q} + \underline{n}(q,\dot{q}) = \tau = u = B(q)y + \underline{n}(q,\dot{q})$$

$$\updownarrow$$
 $B(q)\ddot{q} = B(q)y$

$$\updownarrow$$

$$\ddot{q} = y$$

Il sistema risultante è costituito da n doppi integratori: la i-esima componente y_i del nuovo comando influenza solo il comportamento della i-esima coordinata giunto q_i , che risulta indipendente dal moto degli altri giunti.

Figura 3.23: Feedback linearization

La scelta più semplice per il nuovo comando y è data da una legge di **controllo di tipo** PD:

$$y = -K_P q - K_D \dot{q} + r$$

che quindi, sostituendo a $\ddot{q} = y$, otteniamo il seguente sistema di equazioni del secondo ordine:

$$\ddot{q} + K_D \dot{q} + K_P q = r \tag{3.18}$$

asintoticamente stabile se le matrici K_P e K_D sono definite positive. Scegliendo in particolare K_P e K_D diagonali, il sistema rimane disaccoppiato e ad ogni variabile giunto viene assegnata la dinamica corrispondente ai guadagni imposti con:

$$\mathbf{K}_{\mathbf{P}} = diag\{\omega_{n1}^2, \ldots, \omega_{nn}^2\} \quad \mathbf{K}_{\mathbf{D}} = diag\{2\zeta\omega_{n1}, \ldots, 2\zeta\omega_{nn}^2\}$$

Il vettore di riferimento r è definito a partire dalla traiettoria desiderata, **pianificata ai giunti**, come:

$$r riangleq \ddot{q}_d + K_D \dot{q}_d + K_P q_d$$

Possiamo ora analizzare la dinamica dell'errore di inseguimento, sostituendo la definizione di r a (3.18):

$$(\ddot{q}_d - \ddot{q}) + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q) = 0 \implies \ddot{e} + K_D\dot{e} + K_Pe = 0$$

se e(0) = 0 e $\dot{e}(0) = 0$, l'errore converge a 0 con velocità e caratteristiche determinate da K_P e K_D .

Il sistema risultante è mostrato in fig. 3.24, dove notiamo due anelli: quello più interno è l'anello di linearizzazione, mentre quello esterno è il controllo (ora lineare) del nostro sistema.

Problemi

L'ipotesi di linearizzazione esatta presuppone la capacità di calcolare *online* le matrici $\mathbf{B}(\mathbf{q})$ e $\mathbf{n}(\mathbf{q}, \dot{\mathbf{q}})$ in modo esatto. Nella pratica però questo non è sempre possibile. Per compensare a questi errori è necessario utilizzare altre tecniche, ad esempio algoritmi di controllo robusto.

Figura 3.24: Schema a blocchi del controllo a dinamica inversa nello spazio dei giunti

Supponiamo di avere solo delle approssimazioni delle matrici, che chiameremo $\hat{\mathbf{B}}(\mathbf{q})$ e $\hat{\mathbf{n}}(\mathbf{q}, \dot{\mathbf{q}})$:

$$B(q)\ddot{q}+n(q,\dot{q})=\hat{B}(q)y+\hat{n}(q,\dot{q})$$
 \updownarrow
 $\ddot{q}=B^{-1}\hat{B}y+B^{-1}(\hat{n}-n)$
 \updownarrow
 $\ddot{q}=y+(B^{-1}\hat{B}-I)y+B^{-1}(\hat{n}-n)$
 \updownarrow
 $\ddot{q}=y-\eta(q,\dot{q},y)$
 \Downarrow
 $\ddot{e}+K_D\dot{e}+K_Pe=\eta(q,\dot{q},y)$

dove

$$\eta(q,\dot{q},y) \stackrel{\scriptscriptstyle \Delta}{=} (I-B^{-1}\hat{B})y-B^{-1}(\hat{n}-n)$$

Il sistema ottenuto non è più lineare e disaccoppiato.

Per fortuna, **nella pratica**, il metodo della dinamica inversa **risulta abbastanza robusto** anche nel caso di linearizzazione approssimata, per cui viene usato sia senza ulteriori modifiche, sia con l'aggiunta di un termine robustificante.

Vari schemi visti come dinamica inversa

Tra gli schemi a dinamica inversa con linearizzazione approssimata, che non prevedono l'inserimento di termini robustificanti, possiamo includere:

• Controllo a giunti indipendenti: questo approccio precedentemente analizzato può essere considerato come un caso particolare di controllo a dinamica inversa con linearizzazione approssimata, ottenuto ponendo:

$$\hat{B}(q) = \bar{B}$$
 , $\hat{n}(q,\dot{q}) = 0$

• Metodo della coppia calcolata (o controllo a dinamica inversa in feedforward): visto in sezione 3.3.5

• Controllo PD con compensazione della gravità, che vediamo nella prossima sezione; questo controllo può essere visto come dinamica inversa ponendo:

$$\hat{B}(q) = I$$
 , $\hat{n}(q,\dot{q}) = g(q)$

3.4.2 Controllo PD con compensazione della gravità

Nel caso in cui si voglia assegnare al manipolatore una **postura di equilibrio costante** (anziché una traiettoria completa), è possibile realizzare un controllore tale da garantire la stabilità asintotica globale di tale postura.

Facendo riferimento a (3.17): $B(q)\ddot{q} + n(q,\dot{q}) = u$, definiamo il controllo come:

$$u riangleq g(q) + K_P(q_d-q) - K_D \dot{q}$$

Così facendo, sostituendo u a (3.17), otteniamo:

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q) = g(q) + K_P(q_d - q) - K_D\dot{q}$$
(3.19)

Ovvero si riescono a cancellare gli effetti della gravità.

Figura 3.25: Controllo PD con compensazione della gravità

(notare che nel circuito non è presente \dot{q}_d : questo poichè essendo q_d costante la sua derivata è nulla)

Analizzando il sistema risultante da (3.19), possiamo vedere che l'unico punto di equilibrio è dato da $q \equiv q_d$:

$$x$$
 punto di equilibro $\iff \dot{x} = \begin{pmatrix} \dot{q} \\ \ddot{q} \end{pmatrix} = 0$

$$0 \qquad 0 \qquad 0$$

$$sostituendo a (3.19) \iff B(q)\dot{\dot{q}} + C(q,\dot{q})\dot{\dot{q}} + F_v\dot{\dot{q}} = K_P(q_d - q) - K_D\dot{\dot{q}}$$

$$\iff 0 = K_P(q_d - q)$$

$$essendo K_P > 0 \iff q = q_d$$

$$(3.20)$$

Ovvero proprio quello che volevamo: stabilità in una postura costante \mathbf{q}_d .

Per fare un esempio, immagina il robot in figura 3.26: il motori dovranno applicare delle coppie (i quali valori dipendono dal valore di ${\bf u}$ mostrato prima) per far rimanere il braccio in questa posizione statica.

Figura 3.26: Esempio di compensazione gravità

Dimostrazione stabilità

Per dimostrare le caratteristiche di stabilità del punto di equilibrio corrispondente alla postura desiderata, è possibile applicare il **metodo diretto di Lyapunov**. Definiamo $e \triangleq q_d - q$ e consideriamo come funzione di Lyapunov:

$$V(\dot{q},e) = rac{1}{2}\dot{q}^TB(q)\dot{q} + rac{1}{2}e^TK_Pe > 0 \hspace{0.5cm} orall q,e
eq 0$$

Dove possiamo interpretare il primo termine come l'energia cinetica del sistema ed il secondo come l'energia potenziale immagazzinata grazie alle rigidezze equivalenti date dai guadagni delle retroazioni delle posizioni ai giunti.

In questa funzione è stato scelto come stato del sistema il vettore $(e, \dot{q})^T$ che, dal punto di vista dell'equilibro è equivalente a quanto specificato in (3.20):

$$\gamma riangleq egin{pmatrix} e \ \dot{q} \end{pmatrix} = egin{pmatrix} q - q_d \ \dot{q} \end{pmatrix} \implies \dot{\gamma} = egin{pmatrix} \dot{e} \ \ddot{q} \end{pmatrix} = egin{pmatrix} \dot{q} - \dot{q}_d \end{pmatrix} = egin{pmatrix} \dot{q} \ \ddot{q} \end{pmatrix}$$

Ora passiamo allo studio del segno di V lungo le traiettorie del sistema (come è richiesto dal metodo di Lyapunov). Derivando (ricordando che $\dot{q}_d = 0$, essendo q_d costante), otteniamo:

$$\dot{V}=\dot{q}^TB(q)\ddot{q}+rac{1}{2}\dot{q}\dot{B}(q)\dot{q}-\dot{q}^TK_Pe$$

procediamo sostituendo a $B(q)\ddot{q}$ la forma di esso fornita da (3.19) (ricordando la definizione di $e \triangleq q_d - q$):

$$B(q)\ddot{q}+C(q,\dot{q})\dot{q}+F_v\dot{q}=K_Pe-K_D\dot{q}$$
 \updownarrow $B(q)\ddot{q}=-C(q,\dot{q})\dot{q}-F_v\dot{q}+K_Pe-K_D\dot{q}$ \Downarrow $\dot{V}=\dot{q}^T(-C(q,\dot{q})\dot{q}-F_v\dot{q}+K_Pe-K_D\dot{q})+rac{1}{2}\dot{q}\dot{B}(q)\dot{q}-\dot{q}^TK_Pe$

 \Diamond

Raccogliendo i termini rimasti si ha

$$\dot{V} = rac{1}{2}\dot{q}^T(\dot{B}(q)-2C(q,\dot{q}))\dot{q} - \dot{q}^T(F_v + K_D)\dot{q}$$

dove la cancellazione a 0 è fatta grazie alla *null-property* di quella differenza (si può dimostrare dalle equazioni della dinamica).

Allora:

$$\dot{V} = -\dot{q}^T (F_v + K_D) \dot{q}$$

che risulta essere **semi-definita negativa**. È solo **semi-**definita poichè è presente solo \dot{q} : $\dot{V} = 0$ per $\dot{q} = 0$ ma per qualsiasi e.

Possiamo però ora osservare che comunque $\dot{V} = 0 \iff \dot{q} = 0$, e di conseguenza anche $\ddot{q} = 0$. Ricordando da (3.20) che $(\dot{q}, \ddot{q}) = (0, 0)$ è la condizione di equilibrio, possiamo dire che \dot{V} si annulla solo per l'unico punto di equilibrio del sistema. Dal teorema di La Salle-Krasowski risulta pertanto globalmente asintoticamente stabile, come desiderato.

Thm. La Salle-Krasowski

Supponi che un sistema dinamico sia rappresentato da $\dot{\mathbf{x}} = f(\mathbf{x})$, dove \mathbf{x} è il vettore dello stato e $f(\mathbf{0}) = 0$.

Se prendiamo una funzione V tale che:

$$\begin{cases} V(\mathbf{x}) > 0 \\ \dot{V}(\mathbf{x}) \le 0 \end{cases}$$

(i.e. V positiva e \dot{V} semi-definita negativa), ma

$$\dot{V}(\mathbf{x}) = 0 \iff \mathbf{x} = 0$$

allora abbiamo che l'origine $\mathbf{x} = 0$ è asintoticamente stabile.

3.5 Controllo nello spazio operazionale

La traiettoria desiderata da applicare al manipolatore è spesso pianificata nello spazio operazionale, mentre gli schemi di controllo analizzati finora sono tutti definiti nello spazio dei giunti. In tutti questi casi, il riferimento di posizione ai giunti deve essere determinato a partire da quello cartesiano per mezzo della cinematica inversa (i riferimenti di velocità ed accelerazione sono spesso determinati per differenziazione numerica, dato che la cinematica inversa delle velocità e soprattutto delle accelerazioni può risultare troppo gravosa).

Una diversa soluzione al problema può essere trovata definendo lo schema di controllo direttamente nello spazio operazionale anziché in quello dei giunti.

Poiché le variabili disponibili (misurabili) sono quelle ai giunti (posizione ed eventualmente la velocità), è necessario in questo caso utilizzare la cinematica diretta per determinare le variabili cartesiane da confrontare con il riferimento desiderato. Si definiscono così anelli di controllo in retroazione in cui l'inversione cinematica della traiettoria è sostituita dalla trasformazione delle coordinate, racchiusa nell'anello di controllo stesso.

Tutti gli schemi di controllo realizzati nello spazio operazionale sono "pesanti" dal punto di vista computazionale: questo può portare a serie limitazioni sulla scelta del passo di campionamento e conseguentemente a degradate prestazioni del controllo. Nonostante questo, a differenza degli schemi di controllo nello spazio dei giunti (che sono solitamente idonei ad ottenere un buon controllo del moto), gli schemi di controllo nello spazio operazionale sono basilari nel caso in cui il manipolatore sia in contatto con l'ambiente esterno ed il compito da svolgere richieda (anche) il controllo delle forze scambiate.

Gli schemi di controllo nello spazio operazionale sono tipicamente riconducibili a due schemi generali:

- Controllo a Jacobiano inverso
- Controllo a Jacobiano trasposto

In entrambi i casi nel ramo in retroazione viene inserita la cinematica diretta per la determinazione di p a partire da q; il vettore p viene poi confrontato con il vettore p_d della traiettoria desiderata pianificata, costruendo così il vettore dell'errore (o deviazione) nello spazio
operazionale: $\Delta p \triangleq p_d - p$ (dal puto di vista della notazione il Siciliano usa x: $p \equiv x$).

3.5.1 Controllo a Jacobiano inverso

Negli schemi a Jacobiano inverso si presuppone che la deviazione Δp sia sufficientemente piccola e che quindi la corrispondente deviazione nello spazio dei giunti possa essere calcolata attraverso lo Jacobiano inverso come:

$$\Delta q = J_a^{-1}(q) \Delta p$$

Il sistema risultante può essere visto come un sistema meccanico con una molla generalizzata a n dimensioni nello spazio dei giunti, la cui rigidezza è data dalla matrice dei guadagni. Il ruolo di tale sistema è portare la deviazione Δq a zero. Se la matrice dei guadagni è diagonale, la molla generalizzata corrisponde a n elementi elastici indipendenti, uno per ogni giunto.

Figura 3.27: Schema a Jacobiano inverso

3.5.2 Controllo a Jacobiano trasposto

Negli schemi a Jacobiano trasposto l'errore Δp nello spazio operazionale viene direttamente moltiplicato per una matrice di guadagni. L'uscita di tale blocco può essere considerata come la forza elastica generata da una molla generalizzata, la cui funzione è di ridurre o cancellare la deviazione Δp . In altre parole la forza risultante guida la punta operativa lungo una direzione tale ridurre Δp .

La forza elastica definita nello spazio operazionale viene quindi trasformata nella corrispondente coppia da applicare ai giunti per mezzo dello Jacobiano trasposto (secondo le relazioni della statica viste).

Figura 3.28: Schema a Jacobiano trasposto

Per questi schemi generali (sia questo che quello a Jacobiano inverso) non è né garantita la stabilità asintotica né l'accuratezza di inseguimento della traiettoria, che dovranno essere assicurate dall'impiego di specifiche leggi di controllo, inserite in schemi dell'uno o dell'altro tipo.

3.5.3 Controllo PD con compensazione della gravità

Vediamo nuovamente una tecnica di controllo PD con compensazione della gravità, questa volta però nello spazio operazionale.

Sia p_d la posa costante desiderata per la punta operativa; obiettivo del controllo è garantire che asintoticamente si abbia $p_d - p = 0$.

È possibile dimostrare che tale richiesta è soddisfatta dalla legge di controllo:

$$u = g(q) + J_A^T(q)(K_P(p_d - p) - K_D J_A(q)\dot{q})$$
(3.21)

costituita da una compensazione non lineare delle coppie di gravità, definita nello spazio dei giunti, e da una legge lineare di tipo PD definita nello spazio operazionale.

Figura 3.29: Schema circuitale controllo PD con compensazione della gravità

Dimostrazione stabilità

Con passaggi simili a quelli seguiti nello spazio dei giunti, si può dimostrare che il sistema raggiunge una postura di equilibrio asintoticamente stabile. Partiamo nuovamente selezionando una funzione di Lyapunov (di nuovo $e \triangleq p_d - p$):

$$V(\dot{q},e) = rac{1}{2}\dot{q}^TB(q)\dot{q} + rac{1}{2}e^TK_Pe > 0 \qquad orall \dot{q}, e
eq 0$$

e analizziamone il segno:

$$\dot{V}=\dot{q}^TB(q)\ddot{q}+rac{1}{2}\dot{B}(q)\dot{q}+\dot{e}K_Pe=\dot{q}^TB(q)\ddot{q}+rac{1}{2}\dot{B}(q)\dot{q}-\dot{q}^TJ_A^T(q)K_Pe$$

dove abbiamo usato il fatto che $\dot{x}_d = 0$, $\dot{x} = J_A(q)\dot{q} \implies \dot{e} = \dot{x}_d - \dot{x} = -J_A(q)\dot{q}$. Raccogliendo, richiamando di nuovo la *null-property* di $\dot{B}(q) - 2C(q,\dot{q})$ e sostituendo a $B(q)\ddot{q}$ la forma di esso fornito da (3.19), otteniamo:

$$\dot{V} = -\dot{q}^T F \dot{q} + \dot{q}^T (u - g(q) - J_A^T(q) K_P e)$$

dove, se sostituiamo ad u la forma del controllo di (3.21), otteniamo:

$$\dot{V} = -\dot{q}^T F \dot{q} - \dot{q}^T J_A^T(q) K_D J_A(q) \dot{q}$$

e possiamo vedere che, per qualsiasi traiettoria del sistema, $\dot{V} \leq 0$ e $\dot{V} = 0 \iff \dot{q} = 0$ (allora, per La Salle-Krasowski abbiamo stabilità asintotica). Seguendo lo stesso ragionamento per la stabilità visto in sezione 3.5.3, possiamo dire che il sistema raggiunge la postura di equilibrio asintoticamente stabile corrispondente a:

$$J_{A}^{T}(q)K_{P}e=0$$

e, sotto l'assunzione che lo Jacobiano abbia full-rank, risulta

$$e = 0$$

ovvero ciò che volevamo.

Possiamo infine notare che questo schema (analogo a quello visto nello spazio dei giunti), è un esempio di controllo nello spazio operazionale a Jacobiano trasposto.

3.5.4 Controllo a dinamica inversa

In sezione 3.4.1 avevamo visto il controllo a dinamica inversa nello spazio dei giunti, dove avevamo selezionato il controllo $u = B(q)y + n(q, \dot{q})$, che sotto l'ipotesi di linearizzazione esatta portava ad un sistema di n doppi integratori $\ddot{q} = y$ (Il comando dell'anello esterno y era stato quindi progettato per garantire l'inseguimento di una traiettoria q_d nello spazio dei giunti).

È possibile ora riprogettare tale comando y direttamente nello spazio operazionale per ottenere l'inseguimento di una traiettoria cartesiana p_d . Derivando la relazione della cinematica diretta delle velocità $\dot{p} = J_A(q)\dot{q}$ si ottiene l'espressione dell'accelerazione cartesiana:

$$\ddot{p} = J_A(q)\ddot{q} + \dot{J}_A(q,\dot{q})\dot{q}$$

che "suggerisce" di definire y come (ricordando che $e \triangleq p_d - p$):

$$y riangleq J_A^{-1}(q)ig(\ddot{p}_d + K_D\dot{e} + K_Pe - \dot{J}_A(q,\dot{q})\dot{q}ig)$$

(il ragionamento per la scelta di questa forma è lo stesso fatto in sezione 3.4.1).

Con questa definizione di \boldsymbol{y} infatti si ottiene:

$$\ddot{e} + K_D \dot{e} + K_P e = 0$$

e scegliendo K_P e K_D (diagonali) definite positive, si assegna la dinamica all'errore di inseguimento, garantendone la convergenza a zero.

Figura 3.30: Controllo a dinamica inversa nello spazio operazionale

3.5.5 Considerazioni generali

Tutti gli schemi di **controllo** sviluppati **nello spazio operazionale richiedono** il calcolo dello **Jacobiano**, che è influenzato dalla **presenza di singolarità e di ridondanza**.

Ad esempio, in caso di passaggio per una configurazione singolare gli algoritmi di controllo potrebbero "bloccarsi" e "bloccare" il manipolatore in una configurazione diversa da quella desiderata (poichè $J_A^T(q)K_Pe=0$ ma con $e\neq 0$).

Inoltre, lo sviluppo degli schemi considerati presuppone l'utilizzo di una rappresentazione minima dell'assetto (data dalla terna di angoli, che compare nella definizione di p); in caso contrario si dovrebbe fare ricorso allo Jacobiano geometrico con un aumento della complessità dell'analisi di stabilità.

3.6 Controllo dell'interazione

Molti compiti prevedono il contatto della punta operativa con superfici esterne o la manipolazione di oggetti. Per compiere questo tipo di operazioni non è sufficiente controllare il moto del manipolatore, ma è necessario saper gestire la sua interazione con l'ambiente esterno.

La grandezza che descrive in modo efficace la condizione di interazione, e che deve essere controllata in modo diretto o indiretto, è quindi la **forza di contatto** sulla punta operativa. L'idea base per il controllo della forza è quella di agire sulla cedevolezza (**compliance**) del sistema robotambiente, in modo passivo o attivo.

3.6.1 Cedevolezza passiva ed attiva

Il sistema formato dal manipolatore e dall'ambiente esterno con cui è in contatto è rappresentato da una **molla generalizzata equivalente**, di cui si impone il coefficiente (matrice nel caso a più dimensioni) di rigidezza (ovvero il suo reciproco, cioè la cedevolezza).

Il **controllo** della cedevolezza può avvenire in maniera **passiva**, mediante l'inserimento di appositi dispositivi installati al polso del robot che reagiscono in modo opportuno a forze esterne.

Figura 3.31: Esempio di Remote Center of Compliance

Ad esempio, Un RCC (*Remote Center of Compliance*) inserisce una cedevolezza passiva fra robot e superficie esterna, "disaccoppiando" le forze e le coppie di contatto: le forze generano solo traslazioni, le coppie solo rotazioni.

Tali dispositivi sono però poco versatili, di limitato utilizzo e non sono adatti ad applicazioni più evolute, che richiedano il controllo dei movimenti del robot mentre sono applicate forze controllate su oggetti ed elementi dell'ambiente esterno.

Si passa quindi ad un **controllo attivo** della cedevolezza, cioè ad un controllo attivo dell'interazione (il prezzo da pagare è ovviamente costituito da un aumento della complessità del controllo e necessità di conoscere (in modo più o meno accurato) le caratteristiche degli elementi con cui il robot entra in contatto).

3.6.2 Strategie di controllo dell'interazione

Le strategie di controllo dell'interazione possono essere distinte in due categorie principali:

- Controllo indiretto della forza: ottenuto attraverso uno schema di controllo del moto, senza la chiusura esplicita di un anello di forza. Tra le principali tecniche troviamo controllo della rigidezza (o della cedevolezza) e controllo di impedenza.
- Controllo diretto della forza: prevedono la chiusura di un anello di forza, in aggiunta ad un anello interno di posizione o di velocità; possono includere il contemporaneo controllo di posizione e forza lungo direzioni appropriate (controllo ibrido).

3.6.3 Controllo di rigidezza (compliance control)

Prima di vedere il caso generale, introduciamo un caso semplificato per aiutarci a capire.

Caso semplificato

Il concetto alla base del controllo di rigidezza può essere ben rappresentato nel caso semplificato ad 1 grado di libertà, ovvero sotto l'ipotesi che la forza applicata dalla punta del manipolatore sia diretta lungo la sola direzione perpendicolare alla superficie di contatto.

Partiamo supponendo che la rigidezza della superficie non sia infinita. A causa di tale cedevolezza la punta provoca una deformazione, anche se estremamente piccola, della superficie stessa:

Sia x la posizione della punta lungo la direzione di applicazione della forza, x_e la posizione della superficie "a riposo" e x_r la posizione di riferimento (interna alla superficie stessa e quindi non raggiungibile nella pratica). La forza applicata dal manipolatore è data da:

$$f_e = K_e(x - x_e)$$

ove K_e è il coefficiente di rigidezza dell'oggetto con cui il robot è in contatto.

L'equazione dinamica del sistema robot + ambiente esterno può essere scritta come (ovvero $F = ma = m\ddot{x} + \text{legge di Hooke}$):

$$m\ddot{x} + K_e(x - x_e) = f_c$$

ove m è la massa equivalente del manipolatore nella direzione x e f_c è la forza di comando applicata (si suppone che la gravità non eserciti alcuna azione lungo la direzione x).

Si consideri quindi una legge di controllo di tipo puramente PD (per l'ipotesi introdotta non è richiesta compensazione della gravità lungo x)

$$f_c = K_P(x_r - x) - K_D \dot{x}$$

con x_r costante.

Sostituendo l'espressione di f_c nell'equazione dinamica del sistema si ottiene:

$$m\ddot{x} + K_e(x - x_e) = K_P(x_r - x) - K_D\dot{x} \implies m\ddot{x} + K_D\dot{x} + (K_e + K_P)x = K_ex_e + K_Px_r$$

Scegliendo K_D e K_P positivi, il sistema risulta asintoticamente stabile. In condizione di equilibrio $(\dot{x}, \ddot{x}) = (0, 0)$ si ha:

$$(K_e + K_P)x = K_e x_e + K_P x_r$$

da cui si ricava la **posizione** raggiunta dalla punta in condizioni di equilibrio:

$$\bar{x} = \frac{K_e x_e + K_p x_r}{K_e + K_P}$$

e la forza applicata in questo stato di equilibrio risulta quindi:

$$\bar{f}_e = K_e(\bar{x} - x_e)$$

Attraverso K_P e x_r è possibile assegnare il valore desiderato per la forza da applicare all'equilibrio. Si ottiene così un **controllo indiretto della forza** mediante le sole retroazioni di posizione e di velocità.

Oss.

Il guadagno K_D non ha alcuna influenza sul comportamento del sistema in regime permanente, ma solo sulla stabilità del sistema e sulla velocità con cui viene raggiunta la condizione di stazionarietà. Il valore della forza all'equilibrio dipende sia dalla posizione x_e dell'oggetto con cui il manipolatore è in contatto, sia dal suo coefficiente di rigidezza K_e . Solo conoscendo il valore di questi parametri è possibile assegnare esattamente la forza all'equilibrio.

Caso generale

Nel caso completo (a n gradi di libertà), possiamo rappresentare il legame fra le forze generalizzate applicate dal manipolatore $\mathbf{F_e}$ e lo spostamento elementare come

$$\mathbf{F_e} = \begin{bmatrix} \mathbf{f} \\ \mathbf{n} \end{bmatrix} = \mathbf{K} \begin{bmatrix} d\mathbf{x} \\ \boldsymbol{\omega} dt \end{bmatrix}$$

ove K è la matrice di rigidezza dell'ambiente, simmetrica e semi-definita positiva.

In assenza di accoppiamenti fra le componenti di traslazione e di rotazione, la matrice risulta diagonale, inoltre, è solo semi-definita positiva, perché l'ambiente potrebbe non resistere a forze lungo tutte le direzioni.

Il vettore dello spostamento elementare può essere trasformato nelle coordinate operazionali $(d\mathbf{p} = (d\mathbf{x}, d\boldsymbol{\alpha})^T)$ ricordando il legame esistente fra lo Jacobiano geometrico e quello analitico, dato da:

$$J(q) = T_A(p)J_A(q) = \begin{bmatrix} I & 0 \\ 0 & T(\alpha) \end{bmatrix} J_A(q)$$
 (3.22)

ove l'espressione di $T(\alpha)$ dipende dalla particolare rappresentazione scelta per l'assetto della punta. Possiamo quindi esprimere quindi \mathbf{F}_e come:

$$F_e = KT_A(p)dp = KT_A(p)(p - p_e)$$
(3.23)

ove \mathbf{p}_e è il vettore della posa dell'ambiente a riposo.

Le coppie generalizzate risultanti (presenti nel modello dinamico del manipolatore) sono quindi date da:

$$au_e = J^T(q) F_e = \underbrace{J_A^T(q) T_A^T(p)}_{J^T(q)} \underbrace{KT_A(p) (p-p_e)}_{F_e}$$

Questa relazione può essere vista anche come:

$$au_e = J_A^T(q) K_A(p) (p-p_e)$$

dove

$$K_A(p) \triangleq T_A^T(p)KT_A(p)$$
 (3.24)

è la matrice di rigidezza (rigidity) dell'ambiente, espressa nelle coordinate operazionali (funzione delle coordinate stesse!). Se esiste, K_A^{-1} è la matrice di cedevolezza (compliance).

Controllo

Consideriamo allora l'equazione dinamica del manipolatore, comprensiva del contributo delle forze scambiate con l'ambiente esterno (ponendo $e \triangleq p_d - p$):

$$B(q)\ddot{q}+C(q,\dot{q})\dot{q}+F_v\dot{q}+g(q)=u-J^T(q)F_e$$

e l'algoritmo di controllo PD con compensazione della gravità, sviluppato nello spazio operazionale:

$$u=g(q)+J_A^T(q)\left(K_Pe-K_DJ_A(q)\dot{q}
ight)$$

Unendo le due equazioni, e ponendoci in condizione di calcolo dell'equilibrio $(\dot{q}, \ddot{q}) = (0, 0)$, otteniamo:

$$B(q)\ddot{q} + C(q, \dot{q})\dot{q} + F_v\dot{q}$$
 $+ g(q) = g(q) + J_A^T(q) \left(K_Pe - K_DJ_A(q)\dot{q}^{-0}\right) - J^T(q)F_e$ \downarrow $J_A^T(q)K_Pe = J^T(q)F_e$ \downarrow $e = K_P^{-1}(J_A^T(q))^{-1}J^T(q)F_e$ \downarrow $e = K_P^{-1}T_A^T(p)F_e$

dove l'ultima implicazione è stata fatta richiamando (3.22): $J(q) = T_A(q)J_A(q) \implies T_A(q) = J(q)J_A^{-1}(q) \implies T_A^T(q) = (J_A^{-1}(q))^TJ^T(q)$.

Poi, ricordando la definizione di \mathbf{F}_e da (3.23) e quella di $\mathbf{K}_A(p)$ da (3.24) possiamo scrivere:

$$e = K_P^{-1} T_A^T(p) F_e = K_P^{-1} T_A^T(p) K T_A(p) (p - p_e) = K_P^{-1} K_A(p) (p - p_e)$$

e quindi all'equilibrio:

$$p = (I + K_P^{-1} K_A(p))^{-1} (p_d + K_P^{-1} K_A(p) p_e)$$

da cui è possibile anche ricavare il vettore delle forze generalizzate \bar{F}_e applicate all'equilibrio, applicando il valore di p trovato a (3.23). Quest'ultimo (\bar{F}_e) è funzione di K_P^{-1} , che può essere considerata come la cedevolezza attiva (*active compliance*) del robot, e della posa di riferimento p_d , oltre che delle caratteristiche fisiche e geometriche dell'ambiente ($K \in p_e$).

È possibile controllare la rigidezza K_P del robot (o la sua cedevolezza K_P^{-1}), in modo che "il robot prevalga sull'ambiente" o viceversa, lungo le diverse direzioni:

- ullet valori elevati degli elementi diagonali di K_P rendono rigido il robot lungo le direzioni in cui si vuole controllare la posizione
- ullet mentre valori bassi degli elementi diagonali di K_P rendono "cedevole" il robot lungo le direzioni in cui si vuole controllare la forza

Nelle slide in italiano ora qua fa il controllo di impedenza, controllo diretto della forza e moto vincolato, che però noi skippiamo.

Appendice A

Control

A.1 Cose dette da Rizzo che non ho capito che c'entrano

Come accennato in precedenza, in questo caso andremo a controllare gli attuatori in velocità. È possibile dimostrare (vedi dopo) la seguente assunzione:

$$\mathbf{G}_{v}\mathbf{v}_{c} pprox \mathbf{K}_{\omega}\mathbf{K}_{r}\mathbf{\dot{q}}$$

L'importante di questa espressione è la proporzionalità fra \mathbf{G}_v e $\dot{\mathbf{q}}$ (velocità), che notiamo essere indipendente dai parametri del manipolatore. Inoltre questa proporzione è tanto più valida quanto velocità/accellerazioni sono piccole (per questa cosa viene in aiuto anche il gearreduction ratio K_r).

Dim.

Partendo dal modello dinamico $B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q) = \tau$ introduciamo in esso la frizione viscosa elettrica. Ovvero poniamo $F_v = F_{v.\ mech.} + F_{v.\ electr.} = F_{v.\ mech.} + K_r K_t R_a^{-1} K_{\omega} K_r$.

Inoltre dal modello del motore: $\tau_m = K_r^{-1}\tau = K_tI_a \implies \tau = K_rK_tI_a$. Sappiamo anche che $V = Ri \implies i = \frac{V}{R}$ e quindi, ricordando che $V_c = G_vV_c'$, otteniamo $I_a = R_a^{-1}G_vV_c$. Unendo il tutto otteniamo $\tau = K_rK_tR_a^{-1}G_vV_c$. Inserendo tutto nella formula del modello dinamico otteniamo:

$$B(q)\ddot{q}+C(q,\dot{q})\dot{q}+F_{v.\ mech.}\dot{q}+g(q)=K_rK_tR_a^{-1}G_vV_c-K_rK_tR_a^{-1}K_\omega K_r$$

Ovvero, raccogliendo i termini a destra (ricordando che originalmente quello era τ):

$$\tau = K_r K_t R_a^{-1} (G_v V_c - K_\omega K_r \dot{q})$$
(A.1.1)

Quello che otteniamo fra le parentesi è l'espressione ipotizzata inizialmente. (la quasi uguaglianza viene dal fatto che $K_r \gg 1$, R_a molto piccolo, τ non troppo grosso).

A.2 Derivazione del valore di steady-state per il motore velocity-generator

Per calcolare il valore di steady-state utilizziamo il tool simbolico di Matlab.

1 Iniziamo definendo i vari simboli e i vari blocchi:

```
syms s R L beta Gamma K_omega K_i G_v C_i K_t

% Electrical and Mechanical balance t.f.
G_electrical = 1/(R + s*L);
G_mechanical = 1/(beta + s*Gamma);
```

2 Proseguiamo accorpando i percorsi di forward e di feedback:

```
% Simplify controller (remember that here K_i = 0)
ForwardCtrl = C_i * G_v;
```

```
% Calculate the closed-loop t.f. (supposing tau_r = 0)
Forward = G_electrical * K_t * G_mechanical;
ClosedLoop = Forward/(1 + Forward*K_omega);
```

③ Infine uniamo tutto e calcoliamo il valore in *steady-state* tramite il teorema del valore finale $y_{\infty} = \lim_{s \to 0} sF(s)$:

```
% Put everything toghether
Final = simplify(ForwardCtrl*ClosedLoop*(1/s));

% Calculate steady-state (lim_{s->0} sF(s))
steady_state = subs(s*Final, s, 0);
% Remove beta from the assumption that beta << (K_omega*K_t)/R
steady_state = subs(steady_state, beta, 0);
% Set C_i = 1
steady_state = subs(steady_state, C_i, 1);
pretty(simplify(steady_state))</pre>
```

dove, l'ultima espressione ritorna proprio:

$$\frac{G_v}{K_\omega}$$