Les questions de cours portent sur ce qui est entre accolades et en gras. On attend une maîtrise de l'intégralité des notions abordées.

Matrices

E, F, G sont trois ev de dimensions finies respectives, p, n, q. b désigne une base $(e_1, ..., e_p)$ de $E, b' = (f_1, ..., f_n)$ une base de F.

Matrices et applications linéaires.

Matrice d'un vecteur x dans une base b noté $[x]_b$. Matrice d'une famille de vecteurs dans une base. Pour tout u dans $\mathcal{L}(E,F)$, matrice de u dans les bases b et b', notée $[u]_b^b$. [L'application $\mathcal{L}(E,F) \to \mathcal{M}_{n,p}(K)$, $u \mapsto [u]_b^b$ est un isomorphisme d'espaces vectoriels]. Compatibilité avec le produit matriciel. Pour tout x dans E, u dans $\mathcal{L}(E,F)$, $[u(x)]_{b'} = [u]_{b'}^b[x]_b$. [Soit $v \in \mathcal{L}(F,G)$ et b'' une base de G, alors $[v \circ u]_{b''}^b = [v]_{b''}^{b'}[u]_{b'}^b$]. L'application $\mathcal{L}(E) \to \mathcal{M}_n(\mathbb{K})$, $u \mapsto [u]_b^b$ est un isomorphisme d'anneau. Caractérisation de l'inversibilité d'une matrice par la bijectivité de l'application linéaire dont elle est une matrice. Matrices de projecteurs, de symétries.

Pour tout A dans $\mathcal{M}_{n,p}(K)$, application linéaire canoniquement associée à $A: f_A: \mathcal{M}_{p,1}(\mathbb{K}) \to \mathcal{M}_{n,1}(\mathbb{K}), X \mapsto AX$. Identification entre $\mathcal{M}_{s,1}(\mathbb{K})$ et \mathbb{K}^s . Si b et b' sont les bases canoniques de $\mathcal{M}_{p,1}(\mathbb{K})$ et $\mathcal{M}_{n,1}(\mathbb{K})$, alors $[f_A]_b^{b'} = A$. Image, noyau, rang d'une matrice. L'image d'une matrice est l'espace engendré par ses colonnes. Son noyau est l'intersection des hyperplans déterminés par les formes linéaires associées à ses lignes non nulles. [Pour A carrée, on a l'équivalence : A inversible ssi $\ker(A) = \{0\}$ ssi les colonnes de A engendrent $\mathcal{M}_{n,1}(\mathbb{K})$ ssi $\operatorname{rg}(A) = n$]. Une matrice A est inversible ssi elle est inversible à gauche ssi elle est inversible à droite.

Systèmes linéaires, structure des solutions, sous-espace affine vide ou de direction $\ker(A)$. [Pour A carrée, on a l'équivalence : A inversible ssi pour tout B dans $\mathcal{M}_{n,1}(K)$, le système linéaire AX = B possède une unique solution ssi en notant (E_1, \ldots, E_n) la base canonique pour tout i dans [[1, n]], $AX = E_i$ possède une unique solution].

Outils hors-programme sur les polynômes de matrices, mis en place sur des exemples pratiques afin de déterminer, inverse et/ou puissances d'une matrice.

Changements de bases.

Matrice de passage de b à b' définie comme la matrice de la famille b' dans la base b, notée $P_b^{b'}$. $P_b^{b'} = [\operatorname{Id}_E]_b^{b'}$, est inversible, d'inverse $P_{b'}^b$. Pour tout x dans E, $[x]_b = P_b^{b'}[x]_{b'}$. Soit e, e' deux bases de E, f, f' deux bases de F et $u \in \mathcal{L}(E,F)$, alors $[u]_{f'}^{e'} = P_{f'}^{f}[u]_f^e P_e^{e'}$. Cas particulier d'un endomorphisme, $[u]_{e'}^{e'} = P_{e'}^{e}[u]_e^e P_e^{e'} = P_{e'}^{e}[u]_e^e (P_{e'}^e)^{-1}$.

Matrice J_r . [Soit $u \in \mathcal{L}(E,F)$ de rang r. Alors il existe une base b de E et une base b' de F telle que $[u]_{b'}^b = J_r$]. Relation d'équivalence entre matrices. [Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $r \in [[0,\min(n,p)]]$. Alors $\operatorname{rg}(A) = r$ ssi A est équivalente à J_r]. Deux matrices sont équivalentes ssi elles ont même rang. Invariance du rang par transposition. Le rang de A est la dimension de l'espace engendré par les lignes de A. Matrice extraite. Décroissance du rang par extraction. [Le rang est le maximum des tailles d matrices carrées inversibles extraites de A]. Calcul de rang par échelonnement.

Matrices semblables. Deux matrices sont semblables ssi elles représentent le même endomorphisme dans deux bases. Trace d'une matrice. Pour tout A,B dans $\mathcal{M}_n(\mathbb{K})$, $\operatorname{Tr}(AB)=\operatorname{Tr}(BA)$. Invariance de la trace par similitude. Trace d'un endomorphisme. Pour tous endomorphismes u,v, $\operatorname{Tr}(v\circ u)=\operatorname{Tr}(u\circ v)$. La trace d'un projecteur est égal à son rang.

Exercices

Les exercices porteront sur les matrices. Notez que les déterminants n'ont pas été abordés, mais qu'ils peuvent utiliser le déterminant 2×2 , $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ pour caractériser l'inversibilité d'une matrice de $\mathcal{M}_2(\mathbb{K})$.

* * * * *