Appunti di Lezione

Stefano Videsott

15 settembre 2025

Indice

1 Notazione				
	1.1	Definizioni		
	1.2	Quantificatori		
	1.3	Operazioni su proposizioni		
		1.3.1 Negazione		
		1.3.2 Connettivi logici		
	1.4	Tabelle di verità		
	1.5	Implicazione logica		
	1.6	Doppia implicazione (equivalenza logica)		

1 Notazione

In matematica è necessario utilizzare un linguaggio non ambiguo; per questo motivo si fa uso della **logica proposizionale**.

1.1 Definizioni

Definizione Una **proposizione** è una frase che può essere solo *vera* oppure *falsa*. **Esempi:**

- Oggi è soleggiato. (V)
- 2000 studenti oggi sono in aula. (F)

Definizione Un **predicato** è un'espressione logica con n parametri liberi; al variare di essi può assumere valore vero o falso.

Esempi:

- $P(x): x^2 > 25$
- Q(d,m): Il docente d spiega la materia m
- R(a, b, c) : a < b + c

1.2 Quantificatori

∀ "per ogni", ∃ "esiste almeno un elemento", ∃! "esiste un unico"

Esempi:

- P(x): x > 25, $\exists x \in \mathbb{N} \ P(x)$ (vero)
- $P(x): x \ge 25$, $\forall x \in \mathbb{N} \ P(x)$ (falso)
- P(s,m): "allo studente s piace la materia m" $\exists s \ \forall m \ P(s,m)$ Traduzione: esiste almeno uno studente a cui piacciono tutte le materie.
- P(s,m): "allo studente s piace la materia m" $\forall m \; \exists s \; P(s,m)$ Traduzione: per ogni materia esiste almeno uno studente a cui piace quella materia.

1.3 Operazioni su proposizioni

1.3.1 Negazione

La negazione di una proposizione si indica con \neg e inverte la veridicità della stessa, scambiando i quantificatori.

$$\neg(\exists x \ P(x)) \equiv \forall x \ \neg P(x), \qquad \neg(\forall x \ P(x)) \equiv \exists x \ \neg P(x)$$

Esempi:

- N(p): "la pecora p è nera", $\exists p \ N(p)$. Negazione: $\forall p \ \neg N(p)$ (tutte le pecore non sono nere).
- Ogni anno a, esiste almeno uno studente s che non passa nessun esame: $\forall a \exists s \ \forall e \ Bocciato(a, s, e)$. Negazione: $\exists a \ \forall s \ \exists e \ \neg Bocciato(a, s, e)$.

1.3.2 Connettivi logici

Congiunzione $(A \wedge B)$ $A \wedge B$ è vera solo se sia A sia B sono vere.

Disgiunzione $(A \lor B)$ $A \lor B$ è vera se almeno una tra $A \in B$ è vera (anche entrambe).

Disgiunzione esclusiva $(A \oplus B)$ $A \oplus B$ ("aut") è vera se esattamente una tra $A \in B$ è vera, ma non entrambe.

Leggi di De Morgan

$$\neg (A \land B) \equiv (\neg A) \lor (\neg B), \qquad \neg (A \lor B) \equiv (\neg A) \land (\neg B)$$

1.4 Tabelle di verità

A	$\mid B \mid$	$A \wedge B$	$A \vee B$	$A \oplus B$
V	V	V	V	F
V	$\mid F \mid$	F	V	V
F	$\mid V \mid$	F	V	V
F	F	F	F	F

1.5 Implicazione logica

Definizione L'implicazione $A \Rightarrow B$ si legge "se A allora B". È definita come:

$$A \Rightarrow B \equiv \neg A \lor B$$

Ed è falsa solo nel caso in cui A sia vera e B sia falsa.

A	B	$A \Rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

Esempi

- Se piove (A), allora porto l'ombrello (B). L'implicazione è falsa solo se piove e non porto l'ombrello.
- Se $\forall x \in \mathbb{Z}x \geq 3 \Rightarrow x^2 \geq 9$ (V)
- Se n è divisibile per 4, allora n è pari. Vero per ogni $n \in \mathbb{Z}$.
- Se un numero è pari, allora è divisibile per 4. Falso: ad esempio n=6.

1.6 Doppia implicazione (equivalenza logica)

Definizione La doppia implicazione $A \Leftrightarrow B$ si legge "A se e solo se B". È definita come:

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$$

Tabella di verità

A	B	$A \Leftrightarrow B$
V	V	V
V	F	F
F	V	F
$\mid F \mid$	F	V

Esempi

- Un numero n è pari $\Leftrightarrow n$ è divisibile per 2. (vero)
- \bullet Una figura è quadrato \Leftrightarrow ha quattro lati uguali e quattro angoli retti. (vero per definizione)