9. Übungsblatt zu Analysis I (WS 20/21)

Name(n): Joshua Detrois, Leo Knapp, Juan Provencio

Gruppe: F

Punkte: ___/___/___ Σ ___

9.1 Aufgabe 1

a) $\bar{M} := M \cup \partial M$

Nehmen wir ein Element aus dem Komplement unserer Menge $m \in \bar{M}^C$. Dann gibt es eine offene Menge N mit $m \in N \subseteq M^C$ und N enthält keinen Randpunkt von M. Daher ist $m \in N \subseteq \bar{M}^C$ und m ist innerer Punkt von \bar{M}^C , oder $m \in (\bar{M}^C)^\circ = \bar{M}^C$. Somit ist \bar{M}^C offen und \bar{M} abgeschlossen.

b) Wenn A abgeschlossen, dann ist $A = \bar{A}$

$$M \subset A \implies \bar{M} \subset A$$

$$M \subset \bar{A} \implies \bar{M} \subset \bar{A}$$

Angenommen $\bar{M} \not\subset A$. Das heißt es gibt einen Punkt in \bar{M} , für den gilt $p \in \bar{M}$ und $p \notin \bar{A}$. Wir wissen, dass gilt $M \subset A$, somit müssen wir nur den Rand von M betrachten, also ∂M .

Wenn $p \in \partial M$, so gibt es Ball mit Radius r > 0 für den gilt $B_r(p) \cap M \neq \emptyset \neq B_r(p) \cap M^C$. Da p aber außerhalb von A liegt und $M \subset A$ und A abgeschlossen ist, lässt sich so einen Punkt nicht finden. Das ist ein Widerspruch. Daraus folgt dass $\bar{M} \subset A$.

c) $\bar{M} = \bigcap \{ A \subset \mathbb{R}^n | M \subset A \text{ und } A \text{ abgeschlossen } \}$

Sei $RHS \equiv \cap \{A \subset \mathbb{R}^n | M \subset A \text{ und } A \text{ abgeschlossen } \}$

Nach b) gilt: Für alle A gilt $\bar{M} \subset A$

"
 "Sei $p\in \bar{M}.$ Nach b) wissen wir, dass ps
icherlich in allen Amit $M\subset A$ enthalten
ist. Also $p\in RHS$

"⊃" Für alle $A \in RHS$ gilt: $M \subset A \implies \bar{M} \subset A \implies \cap \{...\} \subset \bar{M}$

9.2 Aufgabe 2

a) Für alle $n \in \mathbb{N} : K_n \subset \mathbb{R}^d$ kompakt und gelte $\cap f \in F$ für alle endliche Teilmengen $F \subset \mathbb{N}$ und $(|F| < \infty)$

Z.z. ist
$$\bigcap_{n\to\infty} K_n \neq \emptyset$$

 $K_n \subset \mathbb{R}^d$ kompakt $\iff K_n$ abgeschlossen und beschränkt.

Schnitt der K_f nichtleer und wegen "Schnitt über beliebige abgeschlossene Mengen abgeschlossen" sicher abgeschlossen.

Zudem beschränkt (setze r von $B_r(0)$ auf $\max K_f(f \in F)$).

 $\cap_{f \in F}$ kompakt und nichtleer.

Betrachte nun paarwweise endliche Mengen F mit $F_1 \cap F_2 \neq \emptyset$, d.h. F_1 schneidet F_2 in mindestens einem Element. Da F_1 endlich und F_2 endlich gilt $F_1 \cup F_2$ endlich.

Ferner gilt somit $\cap_{f \in F_1 \cup F_2} K_f \neq \emptyset$.

Dies kann man nun für alle F_i, F_j die das obige Kriterium erfüllen machen. Alle F_i, F_j vereingt sind aber gerade \mathbb{N} .

Daraus folgt, dass
$$\cap \underset{n \in \mathbb{N}}{K_f} \emptyset$$
. Es gibt aber $p \in \cap \underset{n \in \mathbb{N}}{K_f}$.

Per Widersprucht: Sei p nicht in allen K_n enthalten. Somit gibt es "D" Teilmengen von \mathbb{N} für die gilt $\cap = \emptyset$. Widerspruch zur Annahme der Aufgabe $\cap K_n \neq \emptyset$

9.3 Aufgabe 3

a) C ist kompakt $\iff C$ abgeschlossen und beschränkt.

 $C_0 = [0,1], C_{n>0} \subset [0,1]$ da C_{n+1} durch Drittelung der vorhandenen Intervalle aus C_n konvergiert

$$C \equiv \cap_{n \in \mathbb{N}} C_n \subset [0, 1] \tag{1}$$

$$\exists r > 0 : C \subset B_r(0)$$
 z.B. $r = 1$ (2)

(3)

Daraus folgt, C ist beschränkt.

Feiner entstehen die C_{n+1} aus "Entnahme" des offenen mittleren Drittels der je in C_n vorhandenen Intervalle.

$$M$$
 abgeschlossen $\iff M^C$ offen (4)

$$\implies C_n \text{ abgeschlossen}$$
 (5)

 $\implies \cap_{n \in \mathbb{N}} C_n$ abgeschlossen, da beliebige Schnitte abgeschlossener Mengen abgeschlossen sind (6)

$$\implies C \text{ kompakt}$$
 (7)

b) Die Länge I_n der Menge C_n ist definiert als die Summe aller ihrer disjunkten Teilmengen. Zu einem beliebigen n gibt es 2^n Teilmengen mit jeweils einer Länge von 3^{-n} .

Dann ist die Länge L der Menge C_n

$$2^k \cdot 3^{-k} = \left(\frac{2}{3}\right)^k \tag{8}$$

Der Grenzwert geht gegen 0:

$$\lim_{k \to \infty} \left(\frac{2}{3}\right)^k = 0 \tag{9}$$

c) Inneres $A^{\circ} := A \partial A$

Annahme: $C \neq \emptyset$. D.h. für r > 0 gibt es $p \in C$ mit $B_r^{\circ}(p) \subset C$. Es lässt sich also ein n^* finden, für das $B_r^{\circ}(p) \subset C_{n^*}$ und damit im Schnitt über $(C_1, ..., C_{n^*})$.

Da aber über alle n geschnitten wird, kann man sicher auch $\bar{n} > n^*$ finden, sodass entweder $B_r^{\circ}(p) \cap C \neq \emptyset \neq B_r^{\circ}(p) \cap C^C$ oder $B_r^{\circ}(p) \subset C^C$ gilt.

Da nach b) die Interballänge gegen null geht, gibt es für jedes p und b^* ein solches \bar{n} . Somit ist dies ein Widerspruch und C° leer

9.4 Aufgabe 4: Quiz

Code Leo Knapp: CT4tjK

Code Juan Provencio: v5WrSJ