Use Of Jigsaw Puzzle Solving Algorithms In The Real World

Luca Sartore

May 2023

Contents

1	Abs	stract	3
2	Introduction		
	2.1	Classification	3
	2.2	Digital vs Real-World Jigsaw Puzzles	3
3	Pre	evious Literature	4
	3.1	General Structure Of The Algorithms	4
		3.1.1 The Splitter:	
		3.1.2 The Comparator:	
		3.1.3 The Solver:	4
	3.2	Solving Jigsaw Puzzles By The Graph Connection Laplacian	4

1 Abstract

The jigsaw puzzle problem has been in the eye of computer scientists for a while, and some clever solutions have already been found. These algorithms are made to work with a "digital" jigsaw puzzle F1, but there aren't papers (at least not popular enough to be searchable) that try to apply the solution to a "real world" jigsaw puzzle F2.

The problem has been tackled by some small projects. But, as said earlier, the process and eventual challenges has never been documented by a full paper, this wants to be the first.

As a bonus the paper will also cover the creation of a user friendly app that will be open source and free to

2 Introduction

2.1 Classification

This paper will focus on type 2 puzzles. A type 2 puzzle is a puzzle where the position, and the orientation of each piece is unknown.

2.2 Digital vs Real-World Jigsaw Puzzles

There is another important distinction between different types of puzzles. They can be divided into "digital" and "real world" jigsaw puzzles.

Figure F1: An example of a "digital" jigsaw puzzle

Figure F2: An example of a "real world" jigsaw puzzle

The reason this distinction is important is because, despite the generic concept of the puzzle not changing, obtaining accurate matches of a piece's characteristics is far easier with a digital puzzle, since there are far less things that can go wrong.

Figure F3: An example of what can go wrong when dealing with the real world

3 Previous Literature

This section will analyze 3 different algorithms that have been proposed as a solution of type 2 puzzles. The objective is to understand the strengths and the weaknesses of each one, to build up some knowledge that will be useful for the next section.

3.1 General Structure Of The Algorithms

All the algorithms that will be analyzed are composed of 3 sub algorithms:

3.1.1 The Splitter:

This component takes as input one or more images containing all the pieces. It then split all the pieces from each other, 9and split each piece into his four sides.

3.1.2 The Comparator:

This component compares each side with all the others, in order to understand whether they match or not

There are two distinct kinds of "Comparator" algorithms: The "Binary Comparison" and the "Non Binary Comparison". As the name suggests when comparing two sides with a "Binary Comparison" the result can either be 0 (they do not match) or 1 (they match). In contrast a "Non Binary Comparison" can give any value between 0 and 1. This allows states of uncertainty to be represented.

3.1.3 The Solver:

This component uses the information provided by the Comparator 3.1.2, and tries to find a solution (i.e. a position and an orientation for each piece) that is the most likely to be correct.

3.2 Solving Jigsaw Puzzles By The Graph Connection Laplacian

[1]

References

[1] Leslie Lamport, Addison Wesley, Massachusetts, 2nd edition, 1994