Visión por Computadora I

Ing. Andrés F. Brumovsky (ab<u>rumov@fi.uba.ar)</u>

Laboratorio de Sistemas Embebidos -FIUBA

PROGRAMA SUGERIDO

- 👱 Clase 1: Introducción a imágenes y OpenCV
- Clase 2: Op. de píxel, histogramas, binarización, White patch, coord. cromáticas
- **Clase 3:** Filtros: Lineales, separables, padding, DoG, Fourier, Bordes (Canny)
- Clase 4: Bordes. Harris. Transformada de Hough. Pirámides.
- Clase 5: Extracción de características. SIFT, SURF, ORB, FAST.
- Clase 6: Segmentación: K-Means, watersheed, mean-shift, texturas, graph-cut.
- Clase 7: Introducción a clasificación y detección: PCA, SVMs, AdaBoost.
- Clase 8: Seguimiento. Kalman, filtro de partículas.

RÉGIMEN DE APROBACIÓN

- , Trabajos prácticos a implementarse y entregarse luego de las clases
- Examen teórico final online

Dinámica esperada para las clases:

- 90 minutos de teoría
- 10 minutos de descanso
- > 80 minutos de práctica

HERRAMIENTAS PARA LA CURSADA

- Lenguaje de programación

 - Phyton 3.8 Python
- Librerías de código
 - Numpy 1.18
 - OpenCV 3.4.2
- Matplotlib 3.1.3
- Entorno de programación
- Jupyter notebook 6.0.3
- IDE recomendado
 - Anaconda Navigator 1.9.12
 - https://www.anaconda.com/distribution/

BIBLIOGRAFÍA SUGERIDA

- La bibliografía es de referencia y no será obligatorio el uso de la misma.
- Computer Vision: Algorithms and Applications | Szeliski | Springer
 - http://szeliski.org/Book
- Computer Vision: A Modern Approach | Forsyth, Ponce | Pearson
- Computer Vision | Shapiro | Pearson
- Learning OpenCV | Bradski, Kaehler | O'Reilly

DESAFÍOS

- ¿Por qué puede la visión por computadora resultar compleja?
 - Lo humanos reconocemos nuestro entorno con relativa facilidad
 - Podemos segmentar objetos de un entorno aparentemente sin esfuerzo
 - Podemos mirar una foto y nombrar a las personas que reconocemos
 - Inclusive podemos intuir sus emociones a partir de las expresiones
 - Podemos seguir una persona que se mueve a través de un entorno complejo

PERCEPCIÓN DE LA LUZ POR EL 010

- Cornea: Superficie transparente que envuelve al ojo
- Sclera: Lo que resta de la cobertura exterior
- Coroide: Capa que contiene capilares sanguíneos, dentro de esta capa está la retina
- Retina: Contiene dos tipos de células receptivas de luz, conos y bastones
- Nervio óptico: Conjunto de nervios que provienen de la retina
- Cristalino: Lente que cambia de forma mediante control muscular

FIGURE 2.4-6. Lateral inhibition effect.

PERCEPCIÓN DE LA LUZ POR EL 0J0

- Bastones: Intensidad (responden poco al rojo). 120 millones
- Conos: Color (concentrados en la mácula). 6~7 millones
 - Rojos 64%
 - **Verdes** − 32 %
 - **>■** Azules 2 %
 - Respuesta logarítmica. Fracción de Weber (0.02)
- Daltonismo (8% hombres / 1% mujeres)

MODELOS DE COLOR

• RGB: Commission Internationale d'Eclairage (CIE) en 1930

Rojo: 700 nm

• Verde: 546,1 nm

• Azul: 435,8nm

• XYZ: Resuelve el color negativo

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0,49 & 0,31 & 0,20 \\ 0,17697 & 0,81240 & 0,01063 \\ 0,00 & 0,01 & 0,99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Además, permite separar crominancia de luminancia

$$\widetilde{\chi} = \frac{\widetilde{\chi}}{X + Y + Z} \qquad \widetilde{Q} = \frac{\widetilde{\chi}}{X + Z}$$

$$\widetilde{x} = \frac{\widetilde{x}}{X+Y+Z} \qquad \widetilde{y} = \frac{\widetilde{y}}{X+Y+Z} \qquad \widetilde{z} = \frac{Z}{X+Y+Z} = \frac{1-\chi}{y}.$$

Figure 2.28 Standard CIE color matching functions: (a) $\bar{r}(\lambda)$, $\bar{g}(\lambda)$, $\bar{b}(\lambda)$ color spectra obtained from matching pure colors to the R=700.0nm, G=546.1nm, and B=435.8nm primaries; (b) $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ color matching functions, which are linear combinations of the $(\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda))$ spectra.

OTROS ESPACIOS DE COLOR

• CIELAB (L*a*b)

$$\underline{L}^* = \underline{116} f\left(\frac{Y}{\underline{Yn}}\right); \quad \underline{\underline{a}^*} = \underline{500} \left[f\left(\frac{X}{Xn}\right) - f\left(\frac{Y}{Yn}\right) \right]; \quad \underline{\underline{b}^*} = 200 \left[f\left(\frac{Y}{Yn}\right) - f\left(\frac{Z}{Zn}\right) \right]$$

$$f(t) = \begin{cases} t^{1/3}, & \text{si } t > \delta^3, \\ \frac{t}{3\delta^2} + \frac{2\delta}{3}, & \text{otro caso} \end{cases}$$

HSV

• **Hue**: Dirección alrededor de la rueda de color, en grados $\in [0, 360]$

Saturation: Distancia escalada desde la diagonal $\in [0, 1]$

• Value: Promedio o máximo valor de color $\in [0, 1]$

Conversión RGB \rightarrow HSV

$$\bullet \widehat{V} = \underline{M} = \max(R, G, B); \ \underline{m} = \min(R, G, B)$$

•
$$S = (M - m)/M$$
 $(S = 0, si V = 0)$

$$H = 60 \times \begin{cases} 0 & \text{, si } (M-m) = 0 \\ 0 + (G-B)/(M-m), & \text{si } max = R \\ 2 + (B-R)/(M-m), & \text{si } max = G \\ 4 + (R-G)/(M-m), & \text{si } max = B \end{cases}$$

$$H = H + 360$$
, $si H < 0$

	TIPOS	DE	SENSORES
filho	de Bayer.		
B E R	• CCD (c. Willard B	harge- oyle y	couple device): George E. Smith

– Laboratorios Bell – <u>1969</u>

A/D central 20 a 75MHz

Blooming Smearing

Mayor sensibilidad

Nombre Resolución Nro. píxels **VGA** 640×480 0,3 MP (Megapixel) **SVGA** 800×600 0,48 MP (Megapixel) XGA 1024x768 0,78 MP (Megapíxel) **SXGA** 1280x1024 1,3 MP (Megapíxel) **UXGA** 1600x1200 1,9 (2) MP (Megapíxel) SUXGA 2048x1536 3,1 MP (Megapíxel) 2048x2048 4,0 MP (Megapíxel) 5,0 MP (Megapíxel) 2452x2054

3200x2400

1280x720

1920x1080

OUXGA

Full HD

HD

7,7 MP (Megapíxel)

0,92 MP (Megapixel)

2,1 MP (Megapíxel)

cmos (complementary metal oxide semiconductor)

>R, 6=61+62+63+64/4, B....

Conversión en el fotositio

Rolling shutter / global

Microlentes

Otros parámetros a considerar

Eficiencia cuántica

Capacidad de pozo

Binning

ROI •

LUTs

