САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчёт по лабораторной работе №1
«Дискретные системы управление. Моделирование и устойчивость»
по дисциплине
«Дискретные системы управления»
Вариант 9

Выполнили: студенты потока 1.2

Дюжев В. Д. Лалаянц К. А.

Преподаватель:

Краснов А.Ю.

ОГЛАВЛЕНИЕ

Цел	ь работы	1
Теоретическая часть		1
1	Дискретизация	1
2	Построение линейных дискретных генераторов внешних воз-	
	действий	2
3	Устойчивость дискретных систем	4
Экс	периментальная часть	5
1	Исследнование влияния дискретного элемента на непрерыв-	
	ную систему	5
2	Исследование устойчивости дискретных систем	8
3	Построение дискретных командных генераторов	12
Выволы		14

Цель работы

Ознакомиться с методами синтеза и анализа дискретных системам. Получить опыт построения регуляторов и генераторов внешних воздействий для дискретных систем.

Теоретическая часть

Дискретизация

В ходе работы мы будем использовать модели дискретных элементов (при непрерывном изменении входной переменной выходная переменная изменяется только в дискретные моменты времени). В частности таким является экстраполятор нулевого порядка, задающийся уравнением 1.

$$\begin{cases} x_2(t) = x_1(mT) \\ t = mT + \tau \\ 0 \le \tau \le T \end{cases}$$
 (1)

, где x_1 — непрерывный входной сигнал, x_2 — дискретный выходной сигнал, T — интервал дискретности, $m \in \mathbb{Z}_{+}$. Экстраполятор нулевого порядка (zero order hold, далее — ZOH) является частным случаем импульсного элемента.

Для преобразования непрерывной системы в дискретный вид рассмотрим последовательное соединение ZOH и непрерывной линейной системы (НЛС). Полученная система задается уравнениями 2.

$$\begin{cases} \dot{x} = A_c x + B_c \varepsilon \\ y = C x \\ \varepsilon (mT + \tau) = u(mT), 0 \le \tau \le T \end{cases}$$
 (2)

Рассмотрим значения системы 2 в дискретные моменты времени t=Тт. Запишем решение ОДУ в виде свертки:

$$x((m+1)T) = e^{A_cT}x(mT) + \int_{mT}^{(m+1)T} e^{A_c((m+1)T - \theta)} B_c \varepsilon(\theta) d\theta$$

Сделав замену $\theta=mT+\tau, 0\leq \tau\leq T$ и заметив, что $\varepsilon(mT+\tau)=\varepsilon(mT)$ перепишем уравнение выше:

$$x((m+1)T) = e^{A_cT}x(mT) + \int_0^T e^{A_c(T-\tau)}d\tau B_c\varepsilon(mT)$$

Вычислим значение интеграла:

$$\int_0^T e^{A_c(T-\tau)} d\tau = e^{A_cT} \int_0^T e^{-A_c\tau} d\tau = e^{A_cT} A_c^{-1} \left(I - e^{-A_cT} \right) = A_c^{-1} \left(e^{A_cT} - I \right) =$$

$$= A_c^{-1} \sum_{i=0}^{\infty} \left(\frac{A_c^i T^i}{i!} - I \right) = A_c^{-1} \left(I + \sum_{i=1}^{\infty} \frac{A_c^i T^i}{i!} - I \right) = \sum_{i=1}^{\infty} \frac{A_c^{i-1} T^i}{i!}.$$

Таким образом, подставив выражение для интеграла, можем записать:

$$x((m+1)T) = Ax(mT) + B\varepsilon(mT) \tag{3}$$

, где
$$A = e^{A_c T} = \sum_{i=0}^{\infty} \frac{A_c^i T^i}{i!}, B = \sum_{i=1}^{\infty} \frac{A_c^{i-1} T^i}{i!} B_c.$$

Рекурсивно подставляя выражения для x в 3, получим аналитическое выражение состояния дискретной системы:

$$x(mT) = A^{m}x(0) + \sum_{i=0}^{m-1} A^{i}Bu(iT)$$
(4)

Построение линейных дискретных генераторов внешних воздействий

Рассмотрим построение дискретных моделей генераторов внешних возмущений g(k).

Метод разностей

Основным методом построения дискретных моделей внешних возмущений является последовательное взятие разностей. Рассмотрим его на примере из задания 3(a):

$$g(k) = A_q \sin(kT\omega) \tag{5}$$

За первую компоненту вектора состояний возьмем сам сигнал $\xi_1(k) = g(k)$.

Выразим g(k+1) на основе 5:

$$\xi_2(k) = \xi_1(k+1) = g(k+1) = A_g \sin(kT\omega)\cos(T\omega) + A_g \sin(T\omega)\cos(kT\omega)$$
(6)

Заметим, что $A_g \sin(kT\omega)\cos(T\omega) = g(k)\cos(\omega T)$.

Выразим g(k + 2) на основе 6:

$$\xi_2(k+1) = g(k+2) = g(k+1)\cos(\omega T) + A_g\sin(T\omega)\cos((k+1)T\omega)$$
 (7)

Заметим:

$$A_g \sin(T\omega)\cos((k+1)T\omega) = A_g \sin(T\omega)(\cos(kT\omega)\cos(T\omega) - \sin(kT\omega)\sin(T\omega))$$

Подставив $A_g \sin(T\omega)\cos(kT\omega) = g(k+1) - g(k)\cos(\omega T)$ из 6 и выражение g(k) из 5 получим:

$$A_g \sin(T\omega) \cos((k+1)T\omega) = g(k+1) \cos(\omega T) - g(k) \cos^2(\omega T) - g(k) \sin^2(\omega T)$$

Подставив полученный результат в 7:

$$\xi_2(k+1) = 2\cos(\omega T)\xi_2(k) - \xi_1(k) \tag{8}$$

Итого, получаем дискретную модель внешнего возмущения 5:

$$\begin{cases}
\xi(k+1) = \Gamma \xi(k), \Gamma = \begin{bmatrix} 0 & 1 \\ -1 & 2\cos(\omega T) \end{bmatrix} \\
g(k) = H\xi, H = \begin{bmatrix} 1 & 0 \end{bmatrix}_T \\
\xi(0) = \begin{bmatrix} 0 & A_g \sin(T\omega) \end{bmatrix}^T
\end{cases} \tag{9}$$

Непрерывный аналог

Возможно также построить непрерывный аналог модели $g_c: g_c(kT) = g(k)$ предполагамого генератора и дискретизировать систему согласно уравнениям 2-3:

$$\begin{cases}
g_c = C_g \xi_c \\
\dot{\xi}_c = \Gamma_c \xi_c \\
\xi(k+1) = \Gamma \xi(k) \\
g(k) = H \xi(k) = H \Gamma^k \xi(0)
\end{cases}$$
(10)

Рассмотрим его на примере из задания 3(с):

$$g(k) = e^{-5kT}\sin(6kT + 2.5) + 0.03kT$$
(11)

Непрерывным аналогом данного сигнала является: $g_c = e^{-5t} \sin(6t + 2.5) + 0.03t$. Непрерывная система с такими модами может быть получена следующим образом:

$$\begin{cases} \dot{\xi}_c = \begin{bmatrix} -5 & 6 & 0 & 0 \\ -6 & -5 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xi_c \\ g_c = \begin{bmatrix} 1 & 0 & 0.03 & 0 \end{bmatrix} \xi_c \\ \xi_c(0) = \begin{bmatrix} \sin(2.5) & \cos(2.5) & 0 & 1 \end{bmatrix}^T \end{cases}$$
(12)

Дискретизовав систему изложенным выше образом (3), можем задать дискретную систему в виде:

$$\begin{cases} \xi(k+1) = \Gamma\xi, \Gamma = \begin{bmatrix} 0.02027 & 0.2858 & 0 & 0 \\ -0.2858 & 0.02027 & 0 & 0 \\ 0 & 0 & 1 & 0.25 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ g(k) = H\xi, H = \begin{bmatrix} 1 & 0 & 0.03 & 0 \\ \xi(0) = \begin{bmatrix} \sin(2.5) & \cos(2.5) & 0 & 1 \end{bmatrix}^T \end{cases}$$
(13)

Устойчивость дискретных систем

Рассмотрим дискретную систему вида:

$$x(m+1) = F(x(m)) \tag{14}$$

где x-n-мерный вектор состояния, F-n-мерная нелинейная векторнозначная функция векторного аргумента такая, что при x=0 F(0)=0, и решение исходного разностного уравнения при произвольных начальных условиях единственно.

Будем называть систему асимптотически устойчивой, если:

$$\lim_{m \to \infty} ||x(m)|| = 0 \tag{15}$$

Будем называть систему экспоненциально устойчивой, если:

$$||x(m)|| \le \beta \alpha^m ||x(0)||, \forall m \in \mathbb{Z}_+$$
(16)

Для линейных систем применим корневой критерий устойчивости. Рассмотрим класс ситем вида:

$$x(m+1) = Fx(m)$$

Перейдем в базис (матрицей перехода M), в котором матрица $F_g = M^{-1}FM$ — диагональна (предположим, что такой существует):

$$x = M\xi, \xi(m+1) = F_q\xi(m) \tag{17}$$

Тогда можем записать:

$$x(m) = M\xi(m) = MF_q^m \xi(0)$$

, что эквивалентно:

$$x_i(m) = \sum_{j=1}^n M_{ij} z_j^m \xi_j(0)$$
 (18)

, где z_j — корни характеристического полинома F. Положив все корни вещественными (и не кратными), можно заметить, что если $\forall z_j: |z_j| < 1$, то выполнено условие 15 и система асимптотически устойчива. Если модуль хотя бы одного корня > 1 — система неустойчива.

Экспериментальная часть

Исследнование влияния дискретного элемента на непрерывную систему

Соберем схему согласно заданию ($T=0.2, K_{CO}=5.7$):

Рис. 1. Схема 1.

Обозначим состояние системы за x. Очевидно, что $\dot{x}=0$ возможно только в случаях $K_{FB}=0$ или x=1. Первый случай соответствует нейтрольной границе устойчивости, второй — устойчивому положению. Заметим также, что при $K_{FB}>\frac{2}{TK_{CO}}$ система теряет устойчивость (изменение переменной за период дискретизации превышает текущее расстояние до устойчивого положения в два раза, что приводит к нарастанию сигнала). При $K_{FB}=\frac{2}{TK_{CO}}=1.754$ достигается колебательная граница устойчивости.

При $K_{FB} > \frac{1}{TK_{CO}}$ система приобретает колебательность с периодом равным T (максимальная аммплитуда — на колебательной границе устойчивости). При $K_{FB} < \frac{1}{TK_{CO}}$ колебания отсутсвуют (изменение сигнала за время

T всегда меньше текущего расстояния до устойчивого положения). При $K_{FB}=\frac{1}{TK_{CO}}=0.877$ наблюдается наискорейший переходный процесс (за конечное время T).

Ниже приведены графики, демонстрирующие полученные свойства:

 $Puc.\ 2.\ H$ ейтральная грница устойчивости $K_{FE}=0.$

 $Puc. \ 3. \ Kолебательная грница устойчивости <math>K_{FE}=1.754.$

 $Puc.\ 4.\ Maксимальная\ колебательность\ K_{FE}=1.754.$

 $Puc.\ 5.\ Omcymcmвие\ колебаний\ K_{FE} < 0.877.$

Рис. 6. Оптимальное время переходного процесса (T) $K_{FE} = 0.877$.

Исследование устойчивости дискретных систем

Рассмотрим непрерывную систему $\ddot{y} = u$:

$$\begin{cases}
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\
y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \implies \begin{cases} \dot{x} = A_c x + B_c u \\ y = C x \end{cases} \tag{19}$$

Воспользуемся выражениями 3 для дискретизации системы (T=0.2):

$$\begin{cases} x(m+1) = Ax(m) + Bu(m) \\ y(m) = Cx(m) \end{cases}, A = \begin{bmatrix} 1 & 0.2 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0.02 \\ 0.2 \end{bmatrix}$$
 (20)

Задавшись сигналом управления u = -Kx, можем добиться требуемых собственных чисел матрицы динамики системы F = A - BK =

$$=egin{bmatrix} 1-0.02k_1 & 0.2-0.02k_2 \ -0.2k_1 & 1-0.2k_2 \end{bmatrix}$$
 (модальный регулятор).

Для всех предложенных наборов корней выполнено условие $|z_i| < 1$ и все системы являются устойчивыми (что согласуется с корневым критерием, и также демонстрирует его применимость с комплексными корнями).

Схема моделирования:

Рис. 7. Схема 2.

Результаты моделирования представлены ниже:

 $Puc.\ 8.\ Peзультат\ моделирования\ замкнутой\ cucmeмы\ (z_1=0.9,z_2=0.1).$

 $Puc.\ 9.\ Peзультат\ моделирования\ замкнутой\ системы\ (z_1=-0.1,z_2=-0.8).$

 $Puc.\ 10.\ Peзультат\ моделирования\ замкнутой\ системы\ (z_1=0.2,z_2=0).$

Рис. 11. Результат моделирования замкнутой системы $(z_1=0.8i,z_2=-0.8i)$.

 $Puc.\ 12.\ Peзультат\ моделирования\ замкнутой\ системы\ (z_1=-0.2+0.9i, z_2=-0.2-0.9i).$

Построение дискретных командных генераторов

Синтез требуемых командных генераторов приведен в качестве примеров в теоретической части (9 и 13). Построим схему для моделирования:

Рис. 13. Схема 3.

Проведем моделирование, сравнив сигнал с непрерывным аналогом:

 $Puc.\ 14.\ Komandhый$ генератор гармонического сигнала 5.

Рис. 15. Командный генератор сигнала 11.

Выводы

В ходе выполнения работы ознакомились с принципом синтеза дискретных систем, анализом устойчивости, а также управления ими. Теоретические выкладки, сделанные в соответствующей секции были подтверждены во время про ведения экспериментов, что можно наблюдать на графиках моделирования.