ML Monday Week 3

Presented by Kyle Dampier

Agenda

- What are Neural Networks?
- What are Convolutions?
- Find and Collect Images
- Import Image Data
- Constructing our first
 Neural Network (if time)

Agenda

- What are Neural Networks?
- What are Convolutions?
- Find and Collect Images
- Import Image Data
- Constructing our first Neural Network (if time)

Basic Neural Network

Cmon, I've seen that before...

How about this?

Inputs & Outputs

- List of numbers
 - Most of the time
- F(x) = y
- F(inputs) = output
- Imagana babbroken

dov nur

Neural Network

Some Function F

Weights & Biases

- Lines = Weights
 - Scales function
 - $\circ F(x * w) = y$
- Circles = Biases
 - Shifts function
 - $\circ F(x * w + x * b) = y$

Activation Function

- Tries to **fit** inputs and outputs based on activation function.
- F(x) = y
- Different types of activation functions?

Regression Linear Activation Function

ReLU

Rectified Linear Unit

tanh

inverse tangent

Sigmoid aka Logistic

And Many More...

I thought this was cool

Changing Weights

Activation Function: Sigmoid

$$sig(x) = y$$

Weight = w

Input = x

Changing Biases

Activation Function: Sigmoid

$$sig(x) = y$$

Weight = w

Input = x

Bias = b

The Whole Picture...

Agenda

- What are Neural Networks?
- What are Convolutions?
- Find and Collect Images
- Import Image Data
- Constructing our first Neural Network (if time)

How is Image Data Stored?

How is Image Data Stored?

How is Image Data Stored?

Finally... Convolutions

				_	
3	1	1	2	8	4
1	0	7	3	2	6
2	3	5	1	1	3
1	4	1	2	6	5
3	2	1	3	7	2
9	2	6	2	5	1

Original image 6x6

Sound familiar?

Result of the element-wise product and sum of the filter matrix and the orginal image

Extracts Features

Easier for computer to understand

Feature Learning

What does this do?

Machine Learning

Deep Learning

Agenda

- What are Neural Networks?
- What are Convolutions?
- Find and Collect Images
- Import Image Data
- Constructing our first
 Neural Network (if time)

Finding Image Data

Kaggle

Limited to available datasets

Search Engines

Use Google to find images

Downloading Images

Image Downloader

Google Chrome Plugin

Selenium

Python Library

Agenda

- What are Neural Networks?
- What are Convolutions?
- Find and Collect Images
- Import Image Data
- Constructing our first Neural Network (if time)

Lets Code...