

SIERPINSKI, WACŁAW

*Sierpiński, Wacław. Teoria liczb. [Theory of numbers.] 3rd ed. Monografie Matematyczne, Tom XIX. Warszawa, Wrocław, 1950. vi+544 pp.

This is a new edition of a book first published in 1914, but with some modifications and additions. It is an exposition of the elementary theory of numbers together with the most elementary parts (as Tchebyscheff's theorem on density of prime numbers, Gauss's theory of binary quadratic forms, elementary theory of quadratic number fields) of its more advanced fields (analytic theory of numbers, diophantine equations, quadratic forms, algebraic numbers), serving as introduction to a further study of these fields. The purpose of the author is to give, at the same time, a text-book in number theory for beginning students and an elementary treatise initiating secondary school teachers (and even non-mathematicians interested in mathematics) into this theory. Thus, though elementary, this book is written, within the limits of its subject, with a rather encyclopedic scope. In addition to the proved results, many more special or more difficult ones are quoted without proof. The book contains also many problems and exercises.

Table of contents: (1) Divisibility of numbers and decomposition into prime factors; (2) Indeterminate equations of first degree; (3) Fundamental properties of congruences, congruences of first degree with prime modulus; (4) Theorems of Wilson, Euler and Fermat; theorems on decomposition into a sum of squares; (5) Number and sum of factors, perfect numbers, summation formulas; (6) Möbius' function, Gauss' function, the relation $F(n) = \sum d_i f(d)$ and its inversion; (7) Density of distribution of prime numbers in the sequence of natural numbers; (8) Euler's theorem, Lagrange's theorem, primitive residues and indices; (9) Systematic developments with an arbitrary base of numeration; (10) Pythagoras' equation and its generalizations; (11) Pell's equation; (12) Continued fractions; (13) Theory of congruences of first and second degree; (14) Theory of Legendre's symbol and of Jacobi's symbol; (15) Sketch of the theory of quadratic forms; (16) Theory of complex integers; (17) Introduction to the theory of numerical fields; (18) Introduction to the theory of ideals; (19) Fermat's great theorem for exponents 5 and 7; (20) Complements to various chapters.

M. Krasner.

Source: Mathematical Reviews,

Vol 13 No. 9

fA

SIERPINSKI, W.

Wacław Sierpiński

*Theory of Sets, Theory of Functions of
Real Variables*

2

Sierpiński, Waclaw. Solution de l'équation $\omega^t = \xi^x$ pour
les nombres ordinaux. Acta Sci. Math. Szeged **12**,
Erdős János et Frédéric Riesz LX annos natus
Eur. 1930, 10-12, 50 (1930).

This memoir solves a special case of the problem of finding
two ordinal numbers α and β which satisfy the equation
 $\omega^\alpha = \xi^\beta$. The general problem, however, has already been
completely solved by F. Leibniz [Math. Ann. **64**, 475-
488, 1907, see also § 4].

F. Bagemihl

Source: Mathematical Reviews,

Vol 11 No. 9

~~SIERPINSKI, W.~~

SIERPINSKI, W.

Sierpinski, W. Contribution à l'étude des restes cubiques.

Ann. Soc. Polon. Math. 22 (1949), 269-272 (1950).

Theorem. Let q be a prime number and $m > 1$, a natural number. In order that there exist for every integer x an integer y such that $x \equiv y \pmod{m}$, it is necessary and sufficient that m be a product of distinct primes none of which is of the form $qk+1$. Sketch of proof. From elementary group-theoretic considerations it is easy to see that every integer prime to m is a q th-power residue if and only if m is not divisible by either q^2 or any prime of the form $qk+1$ [cf. Meyer, Arch. Math. Phys. 43, 413-436 (1865)]. For m not divisible by q^2 or by any prime of the form $qk+1$, the residue classes not prime to m give trouble only if m is non-squarefree.

P. T. Bateman (Urbana, Ill.).

Source: Mathematical Reviews,

Vol. 11

No. 9

3

Sierpinski, W.

Sierpinski, W. Sur les puissances du nombre 2. Ann.
Soc. Polon. Math. 23, 246-251 (1950). 10

Two theorems are proved concerning terminal and initial digits of 2^n when written to the base 10^4 . The first theorem proves that the sequence 1, 2, 4, 8, ... when taken modulo 10^4 ultimately becomes periodic of proper period $4 \cdot 5^{k-1}$, the

Source: Mathematical Reviews, Vol 12 No. 9.

(SN)

Sierpinski, W.

Let u_1, u_2, \dots be an infinite sequence of integers. The author writes $\{u_n\} \in F_m$ if $\{u_n\}$ is periodic (mod m) (by periodic the author means periodic from a certain point on), $\{u_n\} \in F$ if $\{u_n\}$ is periodic mod m for every m . The author proves among others the following theorems: (1) If $\{u_n\} \in F_m$, $\{v_n\} \in F_m$, then $\{u_n + v_n\} \in F_m$, $\{u_n \cdot v_n\} \in F_m$. (2) $\{a^n\} \in F$ for every a , $n \in F$, $\{n^a\} \in F$, etc. (3) If $\{u_n\} \in F_m$, $v_n \geq 0$, $\lim v_n = \infty$, $\{v_n\} \in F$, then $\{u_n \cdot v_n\} \in F_m$. (4) If $\{u_n\} \in F_m$, $\{\sum_{k=1}^n u_k\} \in F_m$. These results imply the periodicity of all the usually occurring sequences in number theory. The author remarks that $v_n \geq 0$, $\{v_n\} \in F$ does not imply $\{2^{v_n}\} \in F$; e.g., $v_n = n! - [(n-1)!]$ (compare with (3)).

P. Erdos (Aberdeen).

Source: Mathematical Reviews,

Vol 12 No. 9.

Sierpiński, Wacław

Sierpiński, Wacław. Le dernier théorème de Fermat pour les nombres ordinaux. Fund. Math. 37, 201-20

This author proves various theorems on ordinal numbers. He proves among others that there are arbitrarily large transfinite ordinals α , β , γ , $\alpha < \beta < \gamma$ so that for all $n = 1, 2, \dots$, $\alpha^n + \beta^n = \gamma^n$. He also remarks that $\omega + 10$ is the smallest even transfinite ordinal which is not the sum of two prime ordinals, and that ω^2 is the smallest ordinal not the sum of a finite number of primes. P. Erdős (Aberdeen).

Source: Mathematical Reviews,

Vol. 37, No. 2

4m

SIERPINSKI, WACŁAW

Sierpiński, Waclaw. Sur un type ordinal d'
a une infinité indénombrable de divi
Fund. Math. 37, 206-208 (1950).

The author proves in a simple and inge
there exists a countable order type which
left divisors. The question of the existence
types was raised by Mostowski. P. Erdős

Source: Mathematical Reviews.

nombrable qui
sures gauches.

sions way that
has 2^{\aleph_0} distinct
of these order

(Aberdeen).

Vol. 12 No. 9.
SMW)

SIERPIN'SKI, WACŁAW

Sierpiński, Wacław. L'équivalence par décomposition et la mesure extérieure des ensembles. Fund. Math. 37, 209-212 (1950).

Given a real number $\mu > 0$ and a bounded Euclidean m -space R_m ($m \geq 1$) with volume measure $m^*(E) > 0$, when can one assert that by finite decomposition to some set $H \subset R_m$ with $2^{K_0} = K_1$, the author shows that E decomposed into two sets each of which has equal to $m^*(E)$, and from this lemma he deduces that the assertion in question is true whenever $\mu \leq m$ when $0 < \mu < m^*(E)$ and $m \geq 3$. On the other hand, in case $m = 1$ or 2 and $0 < \mu < m^*(E)$, the assertion is false whenever $\mu \leq m$ by following an idea of Lusin [C. Acad. Sci. Paris 198, 1671-1674 (1934), p. 1673], but the proof is then much more difficult. J. C. Oxtoby (Bryn Mawr, Pa.).

Source: Mathematical Reviews.

position rule
Fund. Math.

subset E of
Euclidean outer
measure equivalent
with $m^*(H) = \mu$
can always be
decomposed into two sets each of which has
outer measure equal to $m^*(E)$, and also
hand, in case
above lemma
is not measurable. As the author remarks, the
(and its consequences) can be proved with
assumption $2^{K_0} = K_1$ by following an idea of Lusin [C. Acad. Sci. Paris 198, 1671-1674 (1934), p. 1673], but the proof is then
much more difficult. J. C. Oxtoby (Bryn Mawr, Pa.).

Vol. 12 No. 8:

SM

STERPIŃSKI, WACŁAW

Sierpiński, Waclaw. Sur les ensembles linéaires. Fund. Math. 37, 53-264 (1950).
Proofs are given of the results stated in the preceding review, and of several related theorems. F. Bagemihl.

Source: Mathematical Reviews,

Vol. 13 No. 1

SMW

Sierpinski, W.

Sierpiński, W. L'opération du crible et les fonctions quelconques d'une suite infinie d'ensembles. Soc. Sci. Lett. Varsovie, C. R. Cl. III. Sci. Math. Phys. 41 (1948), 47-62 (1950). (French. Polish summary)

Une fonction univoque $f(E_1, E_2, \dots)$ d'une suite infinie quelconque d'ensembles linéaires et dont la valeur est toujours un ensemble linéaire, est dite [Kantorovich et Livenson, Fund. Math. 18, 214-279 (1932), pp. 224-225] "fonction analytique" si les hypothèses α $f(E_1, E_2, \dots)$ et β non- $f(H, H, \dots)$, a et b étant deux nombres réels, entraînent toujours l'existence d'un entier $k > 0$ tel que ou bien aE_k et b non- H , ou bien a non- E_k et bH . Une fonction analytique f étant donnée, on appelle F_f la famille de tous les ensembles $f(E_1, E_2, \dots)$ où les E_n ($n = 1, 2, \dots$) sont des ensembles linéaires fermés. Q étant un ensemble plan et π étant une propriété qu'un ensemble linéaire peut avoir ou ne pas avoir, on appelle $\Gamma_\pi(Q)$ l'ensemble de tous les nombres réels α tels que l'intersection de la droite $x = \alpha$ avec Q ait la propriété π . Une propriété π d'ensemble linéaire étant donnée, on appelle Φ_π la famille de tous les ensembles $\Gamma_\pi(Q)$.

Sources: Mathematical Reviews.

l'autre démontre les théorèmes suivants. Théorème 1: Pour toute fonction analytique f il existe une propriété π d'ensemble linéaire telle que $\Phi_\pi = F_f$. Théorème 2: Pour toute propriété π d'ensemble linéaire, il existe une fonction analytique f telle que $\Phi_\pi = F_f$. Théorème 3: La famille de toutes les fonctions analytiques est la plus petite famille F de fonctions univoques d'une suite infinie d'ensembles linéaires ayant pour valeur un ensemble linéaire et joignant des trois propriétés suivantes: (1) Toute fonction $f(E_1, E_2, \dots) = E_k$ ($k = 1, 2, \dots$) appartient à F . (2) Si $f \in F$, alors $X - fX$ (X étant l'ensemble de tous les nombres réels). (3) La réunion d'un ensemble quelconque de fonctions appartenant à F appartient à F . L'auteur compare les fonctions analytiques avec leur cas particulier: les "fonctions analytiques positives" [Kantorovich et Livenson, loc. cit.] ces dernières coïncident [ibid.] avec les fonctions de F. Hausdorff. Le théorème 2 cesse d'être vrai si, dans son énoncé, on remplace les mots "fonction analytique" par les mots "fonction analytique positive".

Appen.

SIERPIŃSKI, WACLAW

* Sierpiński, Wacław. Algèbre des ensembles. Monografie Matematyczne. Tom XCIII. Państwowe Wydawnictwo Matematyczne, Warszawa-Wrocław, 1951. 18 + 205 pp.

Ce rapport donne les titres originaux des chapitres, signalant les paragraphes non nécessairement impliqués par ces titres ainsi que les résultats, notions ou notations caractéristiques et contenant quelques remarques. Chapitre I (§1-6). Algèbre des propositions. Les notations pour les quantificateurs sont Π , $P(x)$ et $\sum P(x)$. Les problèmes logiques sont mentionnés avec citation des travaux spécialisés. Chapitre II (§7-13). Ensembles, éléments, sous-ensembles. Les questions de la calculabilité d'un nombre, de la "définition" ou "construction" d'un ensemble sont signalées. Chapitre III (§14-22). Opérations élémentaires sur les ensembles. La réunion de deux ensembles, appelée aussi somme, est représentée par $A+B$. L'intersection, appelée aussi produit, par AB . La différence par $A-B$. §19. Parallelisme entre l'algèbre des propositions et l'algèbre des ensembles. Algèbre de Boole.

Source: Mathematical Reviews,

Vol. 13 No. 6

La notion d'anneau booleen n'est pas indiquée. Chapitre IV (§23-30). Fonctions, images d'ensembles, relations. §25. Théorèmes de Banach et de Cantor-Bernstein. §29. La topologie comme chapitre de la théorie générale des ensembles. Chapitre V (§31-39). §35. Théorèmes sur la séparabilité des ensembles. §34. Les opérations de Hausdorff. Ce dernier chapitre contient des notions et propositions qui ne se trouvent pas dans les ouvrages classiques traitant de la théorie des ensembles et qui peuvent être intéressants en théorie de la mesure ou en topologie. Voici deux spécimens: Si Φ est un anneau d'ensembles (suivant Hausdorff) et si $E\Phi$, $H\Phi$, et $R\Phi$, il existe un ensemble P appartenant à la famille Φ , tel que $HCP\subset E$. Si Φ est un corps d'ensembles (suivant Hausdorff), toute paire M , N d'ensembles disjoints de la famille Φ est séparable Φ , c'est-à-dire qu'il existe dans Φ , deux ensembles disjoints P et R incluant M et N respectivement. L'ouvrage est d'une lecture aisée et agrémenté d'exercices.

C. Paut (le Cap).

SIERPIŃSKI, WACŁAW

*Sierpiński, Waclaw. Asady algebry wyższej z przypisem
Andrzeja Mostowskiego zarys teorii Galois. [Prin-
ciples of Higher Algebra with an appendix by Andrzej
Mostowski, Outline of Galois Theory]. 2d ed. Mono-
grafie Matematyczne. Tom XI. Polskie Towarzystwo
Matematyczne, Warszawa-Wrocław, 1951. viii+436 pp.
For a review of the first edition see these Rev. 8, 498.

Source: Mathematical Reviews,

Vol 17, No.

(7/11/67)

SIERPINSKI, W.

Sierpiński, W. Sur un problème de M. J. Novák. Czechoslovak Math. J. 1(76), 97-101 (1951) = Českoslovack. Mat. ř. 1(76), 117-122 (1951).

All sets concerned are to be sets of natural numbers. Of two sets A and B the relation $B \supset^* A$ is to mean that $A - B$ is finite and $B - A$ to mean that $A - B$ is finite and $B - A$ infinite. Consider the following two problems, N and L , problem N having been proposed by J. Novák recently and problem L by N. Lusin in 1947. Problem N : Can a transfinite sequence of infinite sets N_ξ be found for $\xi < \Omega$ such that $N_\xi \supset^* N_\eta$ for all $\xi < \eta < \Omega$ and yet for no infinite set A does $N_\xi \supset^* A$ for all $\xi < \Omega$? Problem L : Can a transfinite sequence of infinite sets N_ξ be found for $\xi < \Omega$ such that $N_\xi >^* N_\eta$ for all $\xi < \eta < \Omega$ and yet for no infinite set A does $N_\xi >^* A$ for all $\xi < \Omega$? The author proves these two problems equivalent. He has previously shown [Fund. Math. 35, 141-150 (1948); these Rev. 10, 689] that problem L can be answered affirmatively under the continuum hypothesis. Thus problem N can also; this is reproved by direct construction.

W. Gustin (Bloomington, Ind.).

Source: Mathematical Reviews,

Vol

13 No.

87M. J. G.

SIERPINSKI, WACLAW

2
33

Sierpiński, Waclaw. Sur les fonctions continues d'une variable ordinaire. Fund. Math. 38, 204-208 (1951).

Let φ be an ordinal number without an immediate predecessor. The author defines that the sequence of ordinals

$\{a_\xi\}$, $\xi < \varphi$, has the ordinal λ as its limit, if for every $\nu < \lambda$ there exists a $\mu < \varphi$ so that, for $\mu < \xi < \varphi$, $\nu < a_\xi \leq \lambda$. A function $f(\xi)$ is said to be continuous if $\lim_{\xi \rightarrow \nu} f(\xi) = f(\nu)$. The author then proves various theorems on continuous functions. Let α be any countable ordinal number, $f(\xi)$ any function defined for the ordinals $\xi < \alpha$. Then $f(\xi) = \lim f_n(\xi)$, $n = 1, 2, \dots$, where the $f_n(\xi)$ are continuous functions. On the other hand the function $f(\xi) = \xi + 1$, $\xi < \Omega$ is not the limit of any transfinite sequence of continuous functions. P. Erdős.

Source: Mathematical Reviews,

Vol 13 No. 9

SIERPINSKI, WACŁAW

Sierpiński, Wacław. Sur quelques propriétés des familles d'ensembles. Soc. Sci. Lett. Varsovie. C. R. Cl. III. Sci. Math. Phys. 42 (1949), 30-35 (1952). (French. Polish summary).

A study is made of conditions under which a family F of sets each of which is the sum of two disjoint sets of F has the property that each set of F is the sum of an infinity of disjoint sets of F —also of the related questions in which the word "disjoint" is replaced, respectively, by "distinct" and by "distinct from itself." For example, it is shown that if F is an arbitrary family of countable sets each of which is the sum of two disjoint sets of F , then each set of F is the sum of an infinity of disjoint sets of F . However, this conclusion does not follow without the assumption of countability on the sets of F , even though F itself is a countable family.

G. T. Whyburn (Charlottesville, Va.).

Source: Mathematical Reviews,

Vol. 13 No. 9

8PM
22

SIERPIŃSKI, WACŁAW

Matt
Sierpiński, Waclaw. Sur les bases dénombrables de la famille de tous des ensembles linéaires dénombrables. Soc. Sci. Lett. Varsovie, C. R. Cl. III. Sci. Math. Phys. 42 (1949), 182-184 (1952). (French-Polish summary)
À l'aide de l'hypothèse du continu Alazar [intimes C. R. 31, 102-103 (1938); aussi Sierpiński, Fund. Math. 31, 259-261 (1938)] a prouvé l'existence d'une suite S dénombrable d'ensembles linéaires tels que chaque ensemble linéaire dénombrable soit limite d'une suite partielle de S ; dans la présente note l'A. montre (sans se servir de l'hypothèse du continu) que les termes de S ne peuvent être ni mesurables L_1 ni pourvus de la propriété de Baire (au sens large).

D. Kurepa (Zagreb).

Source: Mathematical Reviews,

Vol. 13 No. 10

SIERPIŃSKI, WACŁAW: On the Enumerable Bases of the Family of the Enumerable Linear Sets (L. Sm.)

SIERPINSKI, WACLAW

Mathematical Reviews
Vol. 14 No. 11
Dec. 1953
Analysis

Sierpinski, Wacław. Sur l'extension d'un théorème de M. D. Poncaré aux nombres transfinis. Soc. Sci. Lett. Varsovie, C. R. Cl. III. Sci. Math. Phys. 43 (1950), 1-3 (1952).

A natural number n is composite if and only if $n = a + b + c + d$, where a, b, c, d are natural numbers such that $ad = bc$. The author shows that if ν is an ordinal number such that $\nu = \alpha + \beta + \gamma + \delta$, where $\alpha, \beta, \gamma, \delta$ are positive ordinals satisfying $\alpha\delta = \beta\gamma$, then ν is composite. The converse, however, does not hold (e.g., if $\nu = \omega + 2$). In order that a transfinite ordinal ν be composite, it is necessary and sufficient that there exist positive ordinals $\alpha, \beta, \gamma, \delta$ such that $\nu = \alpha + \beta + \gamma + \delta$ and either $\alpha\delta = \beta\gamma$ or each of the numbers $\alpha, \beta, \gamma, \delta$ is greater than 1 and less than ν . F. Bagemihl.

SIERPIŃSKI, WACLAW

Mathematical
Reviews
Vol. 14 No. 11
Dec. 1953
Analysis

Sierpiński, Waclaw.

~~Mathemat. Soc. 31~~

Phys. 43 (1950), 20-24 (1952).

The author obtains results concerning rearrangements of infinite products $\prod_{\beta < \alpha} a_\beta$ in the usual sense, where the factors are ordinal numbers, which are analogous to those which he has found (*Fund Math.* 36, 248-253 (1949); *these Rev.* 12, 14) for sums. In particular, for a given sequence $\{a_\beta\}_{\beta < \alpha}$, only a finite number of different values can be obtained by rearranging the product, and if the sequence is nondecreasing, then rearrangement of the product produces no change in its value. In the course of the proof it is shown that if a is a transfinite ordinal number such that $\beta = 0$ for $0 < \beta < a$.

Sur les produits infinis de nombres.

Lett. Varsovie. C. R. Cl. III. Sci. Math.

F. Bagaria (Princeton, N. J.).

Mathematical Reviews
Vol. 14 No. 10
Nov. 1953
Analysis

Sierpiński, Waclaw. Sur quelques conséquences du théorème de M. Kondô concernant l'uniformisation des complémentaires analytiques. Soc. Sci. Lett. Varsovie. C. R. Cl. III. Sci. Math. Phys. 44 (1951), 56-62 (1952).

Using a theorem of Kondô the author proves various theorems on the projective classes of sets. Among others he proves that if $U = U_1, \dots$ is an infinite sequence of sets all belonging to the class $C(A)$ or $PC(A)$, there exists an infinite sequence of disjoint sets $V_n \subset U_n$ belonging to the same class so that $\sum V_n = \sum U_n$. P. Erdős.

SIERPINSKI, WACLAW

Mathematical Reviews
Vol. 14 No. 11
Dec. 1953
Topology

Sierpiński, Wacław. Sur une homéomorphie de classe 1, 1 entre un segment de droite et un carré. Soc. Sci. Lett. Varsovie. C. R. Cl. III. Sci. Math. Phys. 44 (1951), 62–63 (1952).

Let S denote the segment $-1 \leq l \leq 1$, and Q denote the square $0 \leq x \leq 1, 0 \leq y \leq 1$. The author [Revista Mat. Hispanoamericana. (2) 2, 193–197 (1927)] has given a one-to-one correspondence T between S and Q , defined by $x = \phi(l)$, $y = \psi(l)$, where ϕ and ψ are continuous on the left at every point of S . A consequence of a result proved by Kuratowski [Fund. Math. 22, 206–220 (1934), p. 212] is that there exists a correspondence between S and Q which is a homeomorphism of class 1, 1. In the note under review, the author shows that T is such a correspondence.

P. Bagoński

SIERPINSKI, W.

(5)
Sierpiński, W. Une généralisation des théorèmes de S.
Mazurkiewicz et P. Bagescu. - Fund. Math. 40, 1-2
(1953).

The author proves the following theorem: Associate with each line l of the plane a cardinal number m_l satisfying $2 \leq m_l \leq 2^{\aleph_0}$. Then there exists a set S in the plane so that for each l the cardinal number of the intersection of S with l equals m_l .

P. Erdős (South Bend, Ind.).

Row

Sierpinski, W.

Sierpinski, W., Sur une propriété des ensembles analytiques bornés (solution d'un problème de E. Marczewski). Fund. Math. 40, 171 (1953).

Soit F la famille de tous les ensembles plans dont chacun est l'intersection d'une suite dénombrable dont les termes sont réunion d'un nombre fini de rectangles aux côtés parallèles aux axes des coordonnées. Alors, tout ensemble analytique linéaire borné est la projection orthogonale d'un élément de F [cf. Souslin, C. R. Acad. Sci. Paris 164, 88-91 (1917), Th. IV].

G. Kurepa (Zagreb).

Math. Sets

WILKOWSKI, MAREK

Trojkaty pitagorejskie. (Wyd. 1.) Warszawa, Państwowe Wydawn. Naukowe, 1954.
94 p. (Monografie popularnonaukowe. Matematyka) (Pythagorean triangles. 1st ed.
footnotes, tables)

S: Monthly List of East European Acquisitions, (SEAL), LC, Vol. 4, no. 10, Oct. 1955,
Incl.

L.D. UNIT, U.S.

"A Proposition Equivalent to a Total of Real Numbers of Power \aleph_0 ", P. 53,
(TULICA ARABICA MAG., Vol. 2, N. 2, 1974, Warsaw, Poland)

SC: Monthly List of East European Acquisitions (EAL), LC, Vol. 4, No. 3,
March 1965, inc.

SIERPINSKI, W.

Sierpiński, W. Sur un problème concernant un réseau à ~~des points~~. Ann. Soc. Polon. Math. 24 (1951), no. 2, 173-174 (1954).

The following problem is due to Zarankiewicz. Let $n > 3$. Denote by R_n the system of n^2 points situated on n horizontal and vertical lines (i.e., an n by n matrix). Determine the smallest integer $k(n)$ so that any subset of R_n having $k(n)$ elements contains 9 points situated on three horizontal

and three vertical lines. It is easy to see that $k(4) = 14$, $k(5) = 21$. The author proves that $k(6) = 27$. P. Erdős.

2
0
0
0

DEAN
V

SIERPINSKI, W.

Sierpiński, W. Un théorème concernant les fonctions continues sur les ensembles ordonnés. Ann. Soc. Polon. Math. 24 (1951), no. 2, 175-180 (1954).

Let E be an ordered set, $f(E)$ a function defined on the elements of E whose values lie in the ordered set H . The author proves that if E is denumerable then $f(E)$ is the limit of a sequence of continuous functions. (The continuity is defined in the order topology.) This generalizes a previous result of the author [Fund. Math. 38, 204-208 (1951); these Rev. 13, 828].

P. Erdős (South Bend, Ind.).

Sierpinski, Waclaw

✓ Sierpiński, Waclaw. Arytmetyka teoretyczna. [Theoretical arithmetic.] With the cooperation of Jerzy Łoś. Państwowe Wydawnictwo Naukowe, Warszawa, 1955. 258 pp. zł. 30.

I - F/W

This is an excellent introductory text covering elementary number theory and an axiomatic foundation of the number system. The chapters are as follows: I. Theory of non-negative integers (based on the axioms of Peano); II. Theory of integers and rational numbers; III. Properties of integers (divisibility, prime numbers, Euler's ϕ function etc.); IV. Congruences, their properties and applications; V. Real numbers (Cantor's approach); VI. Complex numbers and quaternions.

In chapter II the Erdős version of Chebyshev's proof of Bertrand's postulate is reproduced in all detail.

An American reader may be somewhat surprised at the selection of topics (usually covered here in different courses) but it seems to correspond to a course in Polish universities. There is a nice supply of problems. C.N. M. Kac.

Sierpinski, W.

Sierpinski, W. Prime numbers. Wiadom. Mat. (2) 1.
47-64 (1955). (Polish)
Elementary expository paper.

1 - F/W

Sikorski, W.

PHASE I BOOK EXPLOITATION

POL/4232

Polskie Towarzystwo Matematyczne

Prace Matematyczne, II, 1 (Mathematical Transactions, Vol. 2, pt. 1). Warszawa, Państwowe wyd-wo naukowe, 1956. 200 p. 790 copies printed.

Editorial Committee: Wladyslaw Orlicz (Chief Ed.), Stefan Drobot (Deputy Chief Ed.), Adam Bielecki, Stanislaw Hartman, Jan Mikusinski, Roman Sikorski, Marceli Stark, Hanna Szmuszkowicz, Krzysztof Tatarkiewicz, and Wlodzimierz Wrona.

PURPOSE: This book is intended for mathematicians.

COVERAGE: This collection of articles deals with the theory of numbers, algebra, and some other subjects connected with mathematics. Among topics treated are the pursuit method of K. Zurawski, consisting mainly of a discussion of his mathematical work. No personalities are mentioned. References and summaries in Russian and English are given after several of the articles.

Card 1/4

Mathematical Transactions (Cont.)

POL/4232

TABLE OF CONTENTS:

Ważewski, T. Effect of New Mathematical Methods on the Development of Classical Branches of Mathematics	1
Steinhaus, H. Probability Calculation as an Instrument for Research in Natural Science and Production	27
Sierpiński, W. What We Know and Do Not Know About the Decomposition of Natural Numbers Into Sums of Squares, Cubes, and Bisquares	56
Steinhaus, H. Length, Shape, and Area	65
Ślebodziński, W. Scientific Work Carried Out by Kazimierz Żorawski	79
Dobrzycki, S. On the Geometry of the Zeros of Polynomials	94
Zięba, A. On Pursuit	117
Card 2/4	

Mathematical Transactions (Cont.)	POL/4232
Sierpiński, W. On Certain Expansions of Real Numbers Into Infinite Rapidly Converging Products	131
Goetz, A., S. Hartman, and H. Steinhaus. Invariant Measures in Spaces With a Transitive Group of Transformations	139
Sikorski, R. On the Vitali Theorem	146
Górski, J. On a Certain Sequence Which Converges to the Generalized Transfinite Diameter of a Plane Set	152
Krzyż, J. Olivier's Theorem and Its Generalizations	159
Knapowski, S. A Theorem in the Theory of Finite Groups	165
Ehrenfeucht, A. A Criterion of Indecomposability of Polynomials	167
Knapowski, S. A Criterion of Irreducibility of the Equations of Degree p + 1	170
Czarnota, A. The Necessary and Sufficient Conditions for the Card 3/4	

Mathematical Transactions (Cont.)

POL/4232

Modules of the Congruence

$$\sum_{j=1}^{n-1} r^n - 1 = -1 \pmod{n}$$

172

Reports From Scientific Sessions Held at the Polish Mathematical Society

179

AVAILABLE: Library of Congress

Card 4/4

AC/wbc/ec
9-16-60

Sierpinskij 60

Sierpinskij W. What
about decomposition
of natural numbers into a sum of
squares, cubes, and
(1956), 56-64. (E)

Der Artikel behan-
Fragen über die Exist-
der natürlichen Zahl
 $n = x_1^r \pm x_2^r \pm \dots \pm x_k^r$
Zahlen sind und wo
fürliche oder ver-
schiedene natürliche
über die älteren, neu
diesem Gebiete und g
löste Probleme aus d

we know and what we do not know
of natural numbers into a sum of
fourth powers. -Prace Mat. 2

1-FW

lelt im Wesentlichen verschiedene
und die Anzahl von Zerlegungen
n in Summen von der Gestalt
wo x_i einige kleine natürliche
 x_i entweder ganze oder na-
lene ganze nichtnegative oder ver-
ahlen sind. Der Verfasser referiert
ren und die neuesten Resultate in
bt einige bis jetzt noch nicht ge-
esem Ideenkreise an.

V. Knichal (Prag).

SIERPINSKI, W.

Sierpiński, W.
into infinite
(1956), 131
maries)

Theorems
every sequence
unique expans
 d_k are natural

On certain expansions of real numbers
into infinite
fastconverging products. Prace Mat.
38 (Polish, Russian and English sum-

no 2. To every real number $x > 1$ and
 n_k of natural numbers there exists a
 n_k $x = (1 + n_1/d_1)(1 + n_2/d_2) \dots$, where the
numbers d_k and satisfy

$$d_k > (d_{k+1} - 1)(d_k + n_k)n_{k+1}/n_k$$

Here x is rational if and only if

$$n_{k+1} - 1 = (d_{k+1} - 1)(d_k + n_k)n_{k+1}$$

for large k . This strengthens results of A. Oppenheim
[Quart. J. Math. Oxford Ser. (2) 4 (1953), 303-307; MR
15, 4001]. The special case $n_k = 1$ (Theorem 3) is due to G.

B. Escott [Amer. Math. Monthly 44 (1937), 947-950], who
gives the expansion

$$\sqrt{((k+2)/(k-2))} = (1 + 2/(k_1 - 1))(1 + 2/(k_2 - 1)) \cdots$$

with $k_1 = k$ and $k_{n+1} = k_n(k_n^2 - 3)$.

K. Zeller

Sierpiński, W.

Sierpiński, W. Sur une propriété

Publ. Math. Debrecen 4 (1958), 184-185.

For every integer k , the equation

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550520012-0

$\varphi(x+k) = \varphi(x)$ has more than m roots

H. S. Zuckerman

(Seattle, Wash.)

JM

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550520012-0"

1-F\\

Sierpiński-Wacław. Sur quelques problèmes arithmétiques ordinaux. Czechoslovak Math. J. 6(81) (1956), 16-163. (Russian summary)

This is a talk, given at a congress of Czechoslovakian mathematicians in 1955, on some statements from elementary number theory which are true for transfinite ordinal numbers. Most of the results given involve either sums of squares of ordinals, or problems involving prime ordinal numbers or are already known in the literature. Two unsolved problems are given. These are (1) if α and β are order types and if $\alpha^2 = \beta^2$, find all solutions of ordinals of the first kind which satisfy $\alpha^2 = \beta^2$.

S. Ginsburg (Hawthorne, Calif.).

2

Some problems arithmetic
ordinal numbers. Czechoslovak
Math. J. 6(81) (1956), 16-163. (Russian summary)
on some statements from
which are true for transfinite
ordinal numbers. Most of the
results given involve either
sums of squares of ordinals,
or problems involving prime
ordinal numbers or
are already known in
the literature. Two unsolved
problems are given. These
are (1) if α and β are order
types and if $\alpha^2 = \beta^2$, find all
solutions of ordinals of the first kind which satisfy $\alpha^2 = \beta^2$.

Ginsburg

SIERNICKI, W.

"O rozwiązywaniu równań w liczbach całkowitych" (About solving of equations in integral numbers), by W. Sierninski. Reported in New Books (Nowe Książki), No. 12, June 15, 1956.

Sierpiński, W.

Mass
Sierpiński
ordinal
numbers
 $\xi^2 = \eta$

ski, W. Sur l'équation $\xi - \eta + 1$ pour les nombres
ordinaux transfinis. Fund. Math. 43 (1959), 1-2.
transfinite ordinal numbers ξ, η satisfy the equation
 $\xi^2 = \eta$. F. Bagemihl (Notre Dame, Ind.).

Sierpinski, W.

Sierpinski, W.

Fund. Math.

The necessary

and sufficient condition [cf. Bachmann-

Transfinite Zahlen, Springer, Berlin, 1955, p. 100; MR

17, 134] for the

validity of the relation $\alpha\beta=\beta\alpha$ for ordinal

numbers α, β is

derived without the use of the normal

form.

F. Bagemihl (Notre Dame, Ind.).

SIERPINSKI, WACLAW.

O rozkładach liczb wymiernych na ułamki proste.

Poland
Warszawa/(Państwowe Wydawn. Naukowe) 1957. 110 p.
(Monografie popularnonaukowe. Matematyka)

Monthly List of East European Accessions Index (EEAI), LC, Vol. 8, No. 6, June 1959
Uncl.

SIERPINSKI, WACLAW

"What the theory of numbers deals with"

p. 116 (Redaktor Rajmund Mormul, 'Wiedza Powszechna', Warsaw, Poland, 1957)

Monthly Index of East European Acquisitions (EEAI) LC, Vol. 8, No. 1, Jan. 59.

SIERPINSKI, W.

"What is known and what is unknown about the representation of natural numbers
as sums of squares, cubes, and fourth powers? Tr. from the Polish"

Fiziko-Matematichesko Spisanie. Sofiia, Bulgaria. Vol. 1, no. 1/2, 1958

Monthly list of East European Accessions (EEAI), LC, Vol. 8, No. 6, Jun 59, Unclassified

S'ERPINSKI, W.

S'ERPINSKI, V.

16(1)

PHASE I BOOK EXPLOITATION SOV/2508

Matematicheskoye prosvetshcheniye; matematika, yeye prepodavaniye, prilozheniya i istoriya, vyp. 4 (Mathematical Education; Mathematics, Its Teaching, Application and History, No. 4) Moscow, Gostekhizdat, 1959. 15,000 copies printed.

Ed.: I.N. Bronshteyn; Editorial Board of Series: I.N. Bronshteyn, A.I. Markushevich, I.M. Yaglom; Tech. Ed.: S.N. Akhlagov.

PURPOSE: This book is intended for persons without an extensive mathematical education who are interested in trends in contemporary mathematics. The book may be useful to high school mathematics teachers.

COVERAGE: The book consists of articles, reviews, and scientific and methodological reports, some of which are translations from other languages. The state of modern mathematics is covered, including applications, history, teaching of mathematics in schools, and mathematical developments in the USSR and abroad. One section deals with scientific and pedagogical life in the

Card 1/8

Mathematical Education; (Cont)

SOV/2508

USSR and another contains reviews of certain mathematical publications. Some mathematical background is necessary to understand the book; certain articles require a knowledge of higher mathematics.

TABLE OF CONTENTS:

I. REVIEWS, ARTICLES, TRANSLATIONS

Lyusternik, L.A. On the Computation of Values of Functions of One Variable (Conclusion)	3
Boltyanskiy, V.G., and V.A. Yefremovich. Outline of the Fundamental Ideas of Topology (Continuation)	27
Bohnenblust, H.F., (USA). Theory of Games (Translation from English by Yu.V. Geromimus, edited by V.B. Orlov)	53
Serpinskiy, V.; (Poland) Mathematics in Poland (translated from French by M.G. Shestopal)	87

Card 2/8

SERPINSKIY, Watalaw [Sierpinski, Waclaw], prof.; ZETEL', S.I., red.;
SIDOROVA, L.A., red.; GOLOVKO, B.N., tekhn.red.

[Pythagorean triangles; textbook for teachers] Pifagorovy
treugol'niky; posobie dlja uchitelei. Pod red. S.I.Zetelia.
Moskva, Gos.uchebno-pedagog.izd-vo M-va prosv. RSFSR, 1959.
110 p. [Translated from the Polish]. (MIRA 12:7)

1. Varshavskiy universitet. Vitse-prezident Pol'skoy Akademii
nauk (for Serpinskiy).
(Triangle)

SERBIA, M. [Sieradzki, M.] (Vorobeyev); SIERADZKI, M. [Sieradzki]

Mathematics in Poland. Mat. res. no. 48-93 '50.

(MIA 12:11)

(Poland--Mathematics)

SIERPINSKI, W.

On a problem of H. Steinhaus concerning the ensembles of points on the plane. In French. p. 191.

FUNDAMENTA MATHEMATICAE. (Polska Akademia Nauk) Warszawa, Poland.
Vol. 46, no. 2, 1959.

Monthly List of East European Accessions (EEAI) LC, Vol. 9, no. 2,
Feb. 1960

Uncl.

SERPINSKIY, Vatslav [Sierpinski, Waclaw]; GOLUHEV, V.A. [translator];
DOLGOPOLOV, V.G., red.; MAKAROVA, N.F., tekhn.red.

[One hundred simple and yet difficult arithmetical problems;
on the border between geometry and arithmetic (textbook for
teachers)] Sto prostykh, no odnovremenno i trudnykh voprosov
arifmetiki; na granitse geometrii i arifmetiki (posobie dlia
uchitelei). Predisl. i primechaniia V.A. Golubeva. Moscow.
Uchpedgiz, 1961. 74 p. Translated from the Polish.

(MIRA 15:5)

1. Vitse-prezident Pol'skoy Akademii nauk (for Serpinskii).
(Arithmetic—Problems, exercises, etc.)

SIERPINSKI, W. (Warszawa)

On a problem of Fermat. Rocznik matematyczny 4 no.2:177-181 '61.

(Numbers, Theory of)

SIERPINSKI, W. (Warszawa)

A remark on composite numbers m which divide $a^m - 1$. Rocznik matematyczny 4
no.2:183-184 '61.

(Numbers, Theory of)

SIERPINSKI, W. (Warszawa)

A remark on Pythagorean triangles. Rocznik matematyczny 4 no.2:185 '61.

(Numbers, Theory of) (Triangles)

SIERPINSKI, W. (Warszawa)

Remarks on M. J. W. S. Cassella's work "On a diophantine equation".
Acta arithmetica 6 no.4: 469-471 '61.

SIERPINSKI, Waclaw (Warszawa)

Elementary demonstration of a theorem on the sum of three distinct prime numbers. Glas mat fiz Hrv 16 no.1/2:87-88 '61.

SIERPINSKI, Waclaw (Warszawa)

On the families of infinite sets of natural numbers. Fund mat 49
no.2:151-155 '61. (EEAI 10:9)

(Aggregates) (Numbers, Theory of)

SIERPINSKI, W. (Warszawa)

On a problem of the n value logic. Fund mat 49 no.2:167-170 '61.

SIERPINSKI, W.

On a hypothesis with respect to prime numbers. Glas mat fiz Hrv
16 no.3/4:328 '61.

SIERPINSKI, W. (Warszawa)

On natural numbers D for which the expansion period of the
number \sqrt{D} on the arithmetic chain fraction has three terms.
Rocznik matematyczny 5:53-55 '61.

SIERPINSKI, W. (Warszawa)

What has been achieved in the theory of numbers with the
help of electronic machines? Rocznik matematyczny 5:57-65
'61.

SIERPINSKI, W.

On a A. Makowski's problem concerning tetrahedral numbers.
Publ Inst math SANU 2(16):115-119 '62 [publ. '63].

SIERPINSKI, W. (date 2044)

Triangular numbers being the sum of two smaller triangular numbers. Rocznik matematyczny 7 no.1-27-28 '63.

A certain theorem equivalent to the theorem on arithmetic progression. Rocznik matematyczny 7 no.1-29 '63.

Sequences of numbers in couples or prime numbers respectively. Ibid., 31-38

On infinity. Ibid., 39-49 '63.

SIERPIECKI, W. (Varsovie)

Composed numbers of the form $a^{2n} + 1$. Col math 10 no.1:133.
135 '63.

SIERPINSKI, Waclaw, prof. dr.

The Polish School of Mathematics. Problemy 19 no.3:146-155 '63.

1. Członek rzeczywisty Polskiej Akademii Nauk, Warszawa.

SIERPIŃSKI, W. (Warsaw)

The families of infinite sets of natural numbers. Fund math
56 no.1:115-116 '64.

SIERPINSKI, Waclaw; MEL'NIKOV, I.G. [translator]

[What we know and do not know about the prime numbers.
Translated from the Polish] Chto my znaem i chego ne
znaem o prostykh chislakh. Leningrad, Gos.izd-vo fi-
ziko-matem. lit-ry, 1963. 90 p. (MIRA 18:3)

"APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550520012-0

STERLINGSKI, W. (Warsaw)

Remarks on a certain portion of P. Strode. Recd wld matem
7 nc.41221-246 '64.

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550520012-0"

UCHINSKI, S., SIERPINSKI, A. (unseen)

On the equation $x^2 - 2y^2 = k$. Recz wied matek?
no, 2:229-232

SIERPIŃSKI, Z.

POL.

3310

632.043 : 632.709 : 634.048

Sierpiński Z. Observations on the Prospects of Chemically Combating the Xyloterus lineatus L. Beetle.

„Spostrzeżenia nad możliwością chemicznego zwalczania drapieżnika gąsienicowego Xyloterus lineatus L.” Sylwan. No. 1, 1951, pp. 63–67, 1 tab.

The Xyloterus lineatus beetle is, although not actually a menace to felling timber resources, harmful to timber, since, particularly in felled conifers it bores worm holes which impair the technical value of the timber. This harmful insect is occurring in increased numbers and the necessity therefore arises to prepare to combat it. Observations reveal that Xyloterus lineatus is particularly susceptible to contact insecticides, particularly to hexa-chlorates. The brief swarming period facilitates chemical combating of this pest; the effects cannot, however, be ascertained until after comparative investigation of the occurrence of the beetle on timber sprayed and unsprayed.

SIERPINSKI, Z.

POL.

3348

032.943 : 632.708 : 634.948

Kierpiński Z. The State of Studies on the Chemical Combating of the
Ips typographus Beetle.

"Stan badań nad chemiczną walką z kornikiem drukarzem w lesie".
Sylwan. No. 2, 1954, pp. 85-90.

The prevalent method of fighting the Ips typographus beetle by means of trap trees has the disadvantage of leaving alive in forests some 20 to 20 per cent of the population of this beetle. Insecticides are the most radical method of combating the beetle, but are harmful in so far as they simultaneously destroy other useful species of forest fauna. Falling other means of combating, chemical means are therefore being used in cases of substantial gradation. Efforts are, moreover, being directed towards selecting such chemical media as do not destroy any but the particular species of beetle against which the campaign is being pursued. The author reviews chemical media hitherto in use, the degree of their effectiveness, and the advantages and disadvantages of using them. Brief reference is also made to the combating of the Ips typographicus beetle at round-timber yards.

SILKOWSKI, S.; STANKA, R., Z.

Biologia of the double-toothed bark beetle (*Ips duplicatus Sahib.*). p.59
ROZDZIELANIE IN. PTM (Instytut Parowcowy Lśnictwa i Instytut Technologii Drewna)
Warszawa Vol. 13, 1956

So. East European Accoridng List

Vol. 4, No. 9

September 1956

SIERPINSKI, Z.

More attention to the pine moth (Heringia Dodecella L.). p.9.

LAS POLSKI. (Ministerstwo Lesnictwa oraz Stowarzyszenie Naukowo-Techniczne
Inżynierów i Techników Leśnictwa i Drzewnictwa) Warszawa, Poland. Vol. 29
no. 1, Jan. 1955

Monthly list of East European Accessions (EEAI) LC, Vol. 9, no. 2, Feb. 1960

Uncl.

SIEMIENSKI, Z.

Possibilities of applying Silvexol for fighting spruce beetles. p. 17.

IAS PELMI. (Ministretwo Leśnictwa oraz Stowarzyszenie Naukowo-Techniczne
Inżynierów i Techników Leśnictwa i Przemictwa) Warszawa, Poland.
Vol. 29, no. 5, May 1969.

Monthly list of East European Accessions (EEAI) LC, Vol. 9, no. 2, Feb. 1960

Uncl.

BABKA, Piotr; SIERPOWSKI, Andrzej

Possibilities of real utilization of waste heat in the iron
and steel industry. Problemy proj hut maszyn 11 no. 5: 138-
143 My '63.

1. Biprostal, Krakow.

SIERZPUTOWSKI, Antoni

From a foreign mother; the Polish Tartars. Problemy 19 no.9:
555-565 '63.

SIERZPUTOWSKI, Jerzy, inz.

Municipality funds for local roads. Drogownictwo 17 no.2:
41-43 F '62.

WILHELM STOZ, Germany

Chemical Abst.
Vol. 48 No. 9
May 10, 1954
Analytical Chemistry

✓ The use of thioacetamide in toxicological analyses.
Jerzy Siestrzenciewicz and Eugeniusz Zwierzchowski (Zaklad
Chem. Toksykolog. i Sadowy Wydziału Farm. Akad. Med.,
Łódź). *Farm. Polska* 9, 205-6 (1953).—Thioacetamide
gives the same results as H₂S in toxicological analyses.

L. J. Plotrowski

SIEWASTIANKOV, .B., doc. [Sewast'yanov, N.N.], JALCZKI, G., inz. [translator]

A scheme for stability standards based on the calculus of probability.
Bad okretowe Warszawa 10 no.1:10-14 Ja '65.

1. Head, Department of Theory of Ships of the Kaliningrad Technological
Institute of Fish Industry and Farming, Kaliningrad(for Sewast'yanov).

SAFETY DATA SHEET, 1.

POLAND/Chemical Technology - Chemical Products and Their
Application, Part 4. - Artificial and Synthetic
Fibers. H-32

Abs Jour : Ref Zhur - Khimiya, No 14, 1958, 48945

Author : W. Czosnowska, S. Sicwierska

Inst : Institute of Fiber Industry.

Title : Development of Determination Method of Hydroxyl Groups
and Hydrogen Bonds in Viscous Fibers.

Orig Pub : Przen. wlokienniczy, Bull. Inst. wlokiennictwa, 1954, 8,
No 6, 27-28.

Abstract : No abstract.

Card 1/1

3/

POLAND/Chemical Technology. Chemical Products and Their
Application. Cellulose and Its Production.
Paper.

H-33

Abs Jour: Ref. Zhur-Khimia, No 11, 1958, 38315.

Author : Kuznicka-Serwowa A, Siewierska S

Inst : Not given.

Title : The Investigation of the Absorption Spectra of Hydro- and
Oxy-Cellulose in Infrared-Rays.

Orig Pub: Przeg. wlokienniczy, 1956, 10, No 12, Bull Inst wlokienni-
ictwa, 23-24.

Abstract: Describes the advantages of a spectral chemical analysis
of cellulose by the determination of the degree of decompo-
sition of the cellulose and the formation of oxy- and
hydrocellulose.

Card : 1/1

END

KARCZEWSKI, T.; KOZLOWSKI, W.; LEWASZKIEWICZ, W.; SIEMIERSKA, S.; WLODARSKI, G.

Contribution to the problem of determining the crystallinity of viscose fibers on the basis of their density. Przegl wloken 18 no.10:448-449 O '64.

1. Institute of Artificial and Synthetic Fibers, Warsaw.

SIEWIERSKI, J.

(3.2.1.1.)

Polish Technical Abst.
No. 1 1954
Mechanics, Electrotechnics,
Power

CR
3/154

2599

621.317.443 : 533.082/083 : 669.15-184.58 : 622.341.1

✓ Kozłowski J., Siewierski J. The Balance for Magnetic Analyses.
"Waga do analiz magnetycznych". (Prace Inst. Min. Hutnicęwa No. 1).
Katowice, 1953, PWT, 9 pp., 18 figs., 2 tabs.

The authors discuss the principles of magnetic analysis, and give
a list of the more important types of magnetic balances for such ana-
lyses. A description of the balance designed by the authors, executed
at the Institute of Metallurgy. This balance has a horizontal displace-
ment; it consists of an appliance for measuring the lifting force, an
electromagnet, a beam with a chuck for holding a sample, a damping
device, a device for reading the exact zero position, a furnace for heat-
ing the sample, and an appliance for temperature measurement. The
paper contains test measurement results and a comparison of the re-
sults of investigations conducted, with the help of this balance, over
ferreous powders. The usefulness of the balance was established in the
quantitative determination of magnetic content in ferreous sands, and
in the determination of ferrite content in austenitic steel.

SJEMIĘCKI, J.

"Organizing harvesting and threshing work in collective farms." p. 85. (Nowe Rolnictwo, Vol. 2, no. 7, July 1953. Warszawa.)

SO: Monthly List of East European Accessions, Vol. 3, No. 2, Library of Congress,
Feb. 1954, Unc1.

J. SIEWIERSKI

"Some Remarks Concerning the Introduction of Premiums by Collective Farms"
Page 4 (NOWE ROLNICTWO. Vol. 2, No. 9, Sept. 1953 Warszawa, Poland)

SO: East European, L.C. Vol. 2, No. 12, Dec. 1953

STANISLAWI, J.

Metallurgical Abst.
Vol. 21 May 1954
Laboratory Apparatus,
Instruments, Etc.

Balance for Magnetic Analysis. I. Kozłowski and J.
Slewiński *Prace Inst. Ministr. Huta*, 1953, 5, (1), 47-50.

The Report. The constructional details and main characteristics of a balance designed for the magnetic analysis of Fe-ore and austenitic steels are given. The balance can be used for the control of the ferromagnetic phase content in Fe-ore concentrates, and in austenitic steels subjected to cold working or heat-treatment. -S. F. L.

"APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550520012-0

SIEWIERSKI, J.

Methods of Measuring Magnetic Properties of Permanent
Magnets. L. Kozlowski and J. Siewierski (Procz Inst.
Min'g. Huia, 1964, 6, (1), 44-49).—(In Polish). Electro-
dynamic and induction methods are reviewed, and two types
of coercimeters designed and built in the Instytut Metalurgii
are described.—S. K. L.

(3)

BB/10/18/54

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550520012-0"

Category : POLAND/Nuclear Physics - Instruments and Installations. Methods of Measurement and Investigation C-2

Abs Jour : Ref Zhur - Fizika, No 1, 1957, No 326

Author : Siewierski, Jerzy

Title : Problems of Labor Safety and Hygiene when Working with Radioactive Isotopes

Orig Pub : Hutnik (Polska), 1955, 23, No 4, 172-175

Abstract : No Abstract

Card : 1/1

Chemical Technology
POLAND/Chemical Technology - Chemical Products and Their
Applications, Part 1. - Safety and Sanitation
Techniques.

H-6

Abs Jour : Ref Zhur . Khimiya, No 14, 1958, 47253
Author : Jerzy Sievierski
Inst :
Title : Problems of Safety Technique and Labor Hygiene at Work
With Radioactive Isotopes.
Orig Pub : Hutnik (Polska), 1956, 23, No 4, 172-175
Abstract : The action of radioactive substances on the organism and
the protective measures are briefly discussed.

Card 1/1

SIEWIERSKI, J.

PRACE INSTITUTU

Międzynarodowej

Nr 6, 1957

J. Komorowski, J. Siewierski

MEASURING OF MAGNETIC PROPERTIES OF FERRO- AND
PARAMAGNETIC MATERIALS

ALSO IN THE RANGE OF TEMPERATURES UP TO 500°C

Summary

Principles of magnetic analysis by means of differential and integral methods for measurement of magnetic susceptibility and saturation intensity of magnetization

and makes possible the examination of magnetic susceptibility and saturation intensity of magnetization at the temperature up to 500°C of a test piece up to 500 mm

P/039/61/000/003/002/002
A221/A126

AUTHORS: Kieszniewski, Jan, Master, Kuś, Lesław, Siewierski, Jerzy, and Wusatowski, Roman, Masters of Engineering

TITLE: Radio-isotopic investigation of drawing die attrition, depending on lubrication and drawing rate

PERIODICAL: Hutnik, no. 3, 1961, 91 - 106

TEXT: In this report the authors describe their investigations, made to establish optimum conditions at which the attrition of drawing dies can be reduced and also to establish the best combination of base coating material and lubricants applied at wire drawing. To measure the attrition of drawing dies, they used irradiated holes through which the wire was drawn. Samples of drawn wire were subsequently examined for their radioactivity, caused by a number of radioactive particles torn off the die hole and adhering to the wire. Test drawing was carried out at 1.5, 2.0 and 2.5 m/sec rate, using 5.5 mm thick wire rods in 5 mm die. 4.1 mm wire rod in 3.5 mm drawing die and 2.3 mm wire rod in 2 mm drawing die. Chemical composition of wire rods used for these experiments was the

APPROVED FOR RELEASE 08/23/2000

CIA-RDP86-00513R001550520012-0"

Card 1/3

P/039/61/000/003/002/002
A221/A126

Radio-isotopic investigation of drawing die attrition...

following:

Type of steel	Alloying constituents %					
	C	Mn	Si	P	S	Ni
Low carbon steel	0.08	0.27	0.06	0.021	0.031	0.02
D45A	0.46	0.52	0.17	0.035	0.023	0.02
D85A	0.86	0.55	0.18	0.022	0.021	0.12

For each variant of experiments, 3 coils of about 600 m of wire each were used. For establishing the degree of radioactivity of the drawn wire, 1.3 m long sample pieces were cut out from it, at the beginning at every 4.5 m, then at every 20 m and finally at every 30 m. From these 1.3 m long samples, shorter pieces were cut out and placed in 43 x 45 mm. aluminum frames to be examined for radioactivity by 2 Geiger-Müller counters simultaneously, from the top and from the bottom. The attrition of the drawhole equals about 0.08 g/ton of the drawn wire and, therefore, for a 5 mm wire it will be 1.2×10^{-5} g/m; assuming that the shortest piece of a sample is 0.2 m, the attrition of the drawhole along this piece will be 2.4×10^{-6} g. Therefore the maximum specific radioactivity of drawhole would be $s = \frac{3 \times 10^{-4}}{2.2 \times 10^{-6} \text{ g}} \approx 120 \mu\text{C/g}$; similarly, the radioactivity of the largest draw-

Card 2/3

MALKIEWICZ, T., prof.; SIEWERSKI, J., mgr.; inż.

Application and utilization perspectives of radiating isotopes
in the iron metallurgical industry. Przegl techn no.19:5,6
13 My '62.

1. Instytut Metalurgii. Zelaza.

SIEWIERSKI, L.

Methods of measurement of magnetic properties of permanent
magnet materials. I. Kozłowski and L. Siewierski (Prace Inst.
Minist. Hutnic., 1954, 8, 44-49) — Methods of measurement and
types of instruments used are reviewed with special reference to
two coercimeters designed and built in the Polish Metallurgical
Institute.

S. K. LACHOWICZ

9/18/54

SIEWIERSKI, L.

SCIENCE

Periodical KOSMOS. SERIA A: BIOLOGIA. Vol. 8, no. 3, 1957. In French.

SIEWIERSKI, L. The local variation of single-valued functions, algebraic
on the half-plane. p. 1.

Monthly List of East European Acquisitions (EEAI), LC, Vol. 8, No. 3, May 1959
Unclass.

SIEWIERSKI, L.

SCIENCE

Periodical: KOSMOS. SERIA A: BIOLOGIA. Vol. 8, no. 9, 1957. In French.

SIEWIERSKI, L. Extreme functions in the family of single-valued functions,
algebraic on the half-plane. p. 1.

Monthly List of East European Acquisitions (EEAI), LC, Vol. 8, No. 3, May 1959
Unclass.

Country : POLAND
Category: Plant Physiology. Respiration and Metabolism...

Abs Jour: RZhBiol., No 14 1958, No 62969

Author : Siewinski, I.; Majer, S.; Kocor M.

Inst : -
Title : Tomatine Content in Tomato Leaves, and a Simple
Method of Obtaining Tomatidine From Them.

Orig Pub: Przem. chemicz., 1957, 13 No 9, 543-544.

Abstract: No abstract

Card : 1/1

I-8

KOCOR, M.; NESPIAK, A.; SIEWINSKI, A.

Myrothecium roridum tode metabolites. I. Myrothecin. Bul chim PAN 9
no.4:207-211 '61.

1. Department of General Chemistry and Department of Phytopathology,
College of Agriculture, Wroclaw. Presented by T. Urbanski.

(*Myrothecium roridum*) (Metabolites)

URBANSKI, Stanislaw; SHWKO, Stanislaw

A countercurrent chimney recuperator. Przegl odlew 14
no.2:59-60 F'64.

SIFAJ, S.; NIEPŁ, G.

Placement of workers with diminished working ability due to
rheumatic conditions. Pracowni lek. 2 no.4:169-174 15 Sept
50. (CIML 20:4)

L 36374-66 EEC(k)-2/EWT'd /EWT(1)/FSS-2 TT/GW/AST
ACC NR: AP6010462 (N) SOURCE CODE: UR/0401/66/000/003/0026/0027

AUTHOR: Siforov, V. (Corresponding member AN SSSR)

85
B

ORG: none

TITLE: Luna-9 automatic space station and its radioelectronic systems

SOURCE: Starshina-serzhant, no. 3, 1966, 26-27

TOPIC TAGS: automatic space station, soft landing spacecraft, space electronics/
Luna-9 automatic space station

ABSTRACT: The article deals with the Luna-9 automatic space station and its diverse radio electronic equipment consisting of radio receivers and transmitters, a television set, a temperature-control system, electronic optical equipment for orienting the space station during flight, a radio orbit-control system, a programmed timer, and a radio system for a soft lunar landing. The orbit transfer maneuver was controlled from the Earth. The Luna-9 space station carried out a panoramic survey of the moon and transmitted pictures of its landscape to the Earth with the aid of special television equipment. The braking action of the Luna-9 space station for a soft lunar landing began at an altitude of 75 km from the Moon's surface. A soft-landing control system ensured the reduction of the speed of the Luna-9 station from 2600 m/sec to a few m/sec near the Moon's surface. Orig. art. has: 2 figures. [NT]

SUB CODE: 22/ SUBM DATE: none
Card 1/1

SIFMAN, R.I. (Moscow).

Public questionnaires as a source of studying morbidity in England and the
United States. Sov.zdrav. 12 no.6:56-59 II-D '53. (MLRA 6:11)
(United States--Statistics, Medical) (England--Statistics, Medical)