Candidate's Name:		•••••
	Random No.	Personal No.
Signature:	12	į

(Do not write your School/Centre Name or Number anywhere on this booklet.)

P525/1 CHEMISTRY (Theory) Paper 1 Nov. /Dec. 2019. 2³/₄ hours.

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

CHEMISTRY
(THEORY)
Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in Section A and six questions in Section B.

All questions must be answered in the spaces provided.

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Where necessary use the following:

Molar gas constant, $R = 8.31 \text{ JK}^{-1} \text{mol}^{-1}$

Molar volume of gas at s.t.p. is 22.4 litres

Standard temperature = 273 K

Standard pressure = 101325 Nm^{-2}

For Examiners' Use Only																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Tota
			C.	- 2	e", f	11 - 1							0	ry i c			
	1.11	4	1 111	.conf		1	11.6		15		1.17	ite) .	1000	K . I			1

© 2019 Uganda National Examinations Board

Turn Over

SECTION A (46 MARKS)

Answer all questions from this section.

1. (a) Complete the following nuclear reaction equations.

(i)
$${}^{27}_{13}Al + {}^{4}_{2}He \longrightarrow \dots + {}^{1}_{0}n$$
. (01 mark)

(ii)
$$\frac{113}{48}Cd + \dots \frac{114}{48}Cd + \gamma$$
. (01 mark)

(iii)
$${}^{233}_{91}Pa \longrightarrow \dots + {}^{0}_{-1}e$$
 (01 mark)

(iv)
$${}^{7}Li + \dots + {}^{4}He + {}^{4}_{2}He$$
. (01 mark)

2. State what would be observed and write equation(s) for the reaction(s) that would take place to a solution of iron(II) sulphate when;

(a) aqueous sodium hydroxide was added drop-wise until in excess and the mixture was allowed to stand. (3½ marks)

 •	 	
 •	 	
	111	

(b) a few drops of concentrated sulphuric acid was added followed by concentrated nitric acid and the mixture was boiled. (03 marks)

3. A hydrocarbon Z, with molecular formular C_xH_y , reacts with oxygen according to the following equation:

$$C_x H_y + (x + \frac{y}{4}) O_2 \rightarrow x CO_2 + \frac{y}{2} H_2 O_2$$

When 20 cm^3 of Z was exploded in 200 cm^3 of an excess amount of oxygen, it burnt completely with a sooty flame. The volume of the residual

(a)	Calc	ulate the molecu	lar formula of Z .	(2½ m	nar
•••••					
•••••	•••••				
.,,,	•••••			.,	
•••••	•••••				
•••••	•••••			·····	
•••••					
•••••					
(b)	Who	en Z was treated	with bromine in the	e presence of iron(III	I)
	bro	mide, the bromin	e was decolorised.	Identify Z . (01 n	ma
	0.0.	inde, the oronin			mu
(c)				ynthesized from ethyn	•••
(c)				1	 1e.
	Wri	te equation(s) to s	how how Z can be sy	ynthesized from ethyn	 ne. nar
	Wri	te equation(s) to s	how how Z can be sy	ynthesized from ethyn (1½ m	 ne. n <i>ar</i>
	Wri	te equation(s) to s	how how Z can be sy	ynthesized from ethyn (1½ m	 ne. n <i>ar</i>
	Wri	te equation(s) to s	how how Z can be sy	ynthesized from ethyn (1½ m	ne.
	Wri	te equation(s) to s	how how Z can be sy	ynthesized from ethyn (1½ m	ne.
	Wri data ir	te equation(s) to s	how how Z can be sy	ynthesized from ethyn (1½ m	ne.
The calkyl	Wri data ir halide	te equation(s) to s	how how Z can be sy	ynthesized from ethyn (1½ m	ne.
The calkyl	Wri data ir halide	te equation(s) to s	how how Z can be synonymous contained for the reacydroxide solution.	ynthesized from ethyn (1½ m	ne.
The calkyl Table Experi	Wri data ir halide e 1 ment	te equation(s) to so the Table 1 was e, R and sodium h	how how Z can be synonymous and be synonymous obtained for the reacydroxide solution. [OH] (mol dm ⁻³)	ynthesized from ethyn (1½ m tion between an	ne.
The calkyl Table Experi	Wri data ir halide e 1 ment	the Table 1 was e, R and sodium hy	obtained for the reacydroxide solution. [OH] (mol dm ⁻³) 0.50 0.25	ynthesized from ethyn $(1\frac{1}{2} m)^{\frac{1}{2}}$ etion between an $\frac{\text{Rate (mol dm}^{-3} \text{ s}^{-1})}{2.0 \times 10^{-3}}$ 2.0×10^{-3}	ne.
The calkyl Table Experi	Wri data ir halide e 1 ment	te equation(s) to so the Table 1 was e, R and sodium hy [R] (mol dm ⁻³) 0.100 0.100 0.050	obtained for the reacydroxide solution. [OH] (mol dm ⁻³) 0.50 0.25 0.25	ynthesized from ethyn $(1\frac{1}{2} m)^{\frac{1}{2}}$ etion between an $\frac{\text{Rate (mol dm}^{-3} \text{ s}^{-1})}{2.0 \times 10^{-3}}$ 2.0×10^{-3} 1.0×10^{-3}	ne.
The calkyl Table Experi	Wri data ir halide e 1 ment	the Table 1 was e, R and sodium hy	obtained for the reacydroxide solution. [OH] (mol dm ⁻³) 0.50 0.25	ynthesized from ethyn $(1\frac{1}{2} m)^{\frac{1}{2}}$ etion between an $\frac{\text{Rate (mol dm}^{-3} \text{ s}^{-1})}{2.0 \times 10^{-3}}$ 2.0×10^{-3}	ne.
The calkyl Table Experi	Wri	te equation(s) to so the Table 1 was e, R and sodium hy [R] (mol dm ⁻³) 0.100 0.100 0.050 0.025	obtained for the reacydroxide solution. [OH] (mol dm ⁻³) 0.50 0.25 0.25 0.25 0.25	ynthesized from ethyn (1½ m) Rate (mol dm ⁻³ s ⁻¹) 2.0 × 10 ⁻³ 2.0 × 10 ⁻³ 1.0 × 10 ⁻³ 5.0 × 10 ⁻⁴	ne.
The calkyl Table Experi	Wri	the Table 1 was e, R and sodium hy [R] (mol dm ⁻³) 0.100 0.100 0.050 0.025	show how Z can be symmetric contained for the reacty droxide solution.	ynthesized from ethyn $(1\frac{1}{2} m)^{\frac{1}{2}}$ etion between an $\frac{\text{Rate (mol dm}^{-3} \text{ s}^{-1})}{2.0 \times 10^{-3}}$ 2.0×10^{-3} 1.0×10^{-3} 5.0×10^{-4} espect to:	ne.
The calkyl Table Experi	Wri	te equation(s) to so the Table 1 was e, R and sodium hy [R] (mol dm ⁻³) 0.100 0.100 0.050 0.025	show how Z can be symmetric contained for the reacty droxide solution.	ynthesized from ethyn (1½ m) Rate (mol dm ⁻³ s ⁻¹) 2.0 × 10 ⁻³ 2.0 × 10 ⁻³ 1.0 × 10 ⁻³ 5.0 × 10 ⁻⁴	ne.
The calkyl Table Experi	Wri	the Table 1 was e, R and sodium hy [R] (mol dm ⁻³) 0.100 0.100 0.050 0.025	show how Z can be symmetric contained for the reacty droxide solution.	ynthesized from ethyn $(1\frac{1}{2} m)^{\frac{1}{2}}$ etion between an $\frac{\text{Rate (mol dm}^{-3} \text{ s}^{-1})}{2.0 \times 10^{-3}}$ 2.0×10^{-3} 1.0×10^{-3} 5.0×10^{-4} espect to:	ne.
The calkyl Table Experi	Wri	the Table 1 was e, R and sodium hy [R] (mol dm ⁻³) 0.100 0.100 0.050 0.025	show how Z can be symmetric contained for the reacty droxide solution.	ynthesized from ethyn $(1\frac{1}{2} m)^{\frac{1}{2}}$ etion between an $\frac{\text{Rate (mol dm}^{-3} \text{ s}^{-1})}{2.0 \times 10^{-3}}$ 2.0×10^{-3} 1.0×10^{-3} 5.0×10^{-4} espect to:	ne.

	(ii)	Sodium hydroxide.	(01 mar
•••••			
(b)	Wri	te the rate equation for the reaction.	(01 mar)
(c)	(i)	State the class of the alkylhalide.	(01 mari
	(ii)	Give a reason for your answer in (c)(i).	(01 mark
(a)	Pers	pex is a synthetic polymer with a structure; $\begin{array}{c} CH_3 \\ CH_2 \\ \end{array}$	
		$COOCH_3$	
	(i)	Name the type of reaction that leads to the format perspex.	(½ marks
		Write the structure of the monomer of perspex.	(01 mark
		**************************************	••••••
(b)	silico	1.25×10^{-3} moles of perspex were heated strongly n(IV) oxide as a catalyst, 4.85 g of the monomer wallate the;	with as produced.
	(i)	value of n .	(02 marks)

10 15 15 16

		(11) molar mass of perspex.	(01 mark)
	(b)	State one use of perspex.	
6.	(a)	When manganese(II) nitrate was heated, a black solid I	 R. was
	•••••	Write equation for the reaction that took place.	(1½ marks)
	(b)	R was heated with excess potassium hydroxide:	
		(i) State what was observed.	(01 mark)
		(ii) Write equation for the reaction that took place.	(1½ marks)
	(c)	To the mixture in (b), chlorine gas was bubbled. Write the reaction that took place.	equation for (1½ marks)
7.	Fe	e standard electrode potentials for some redox systems are $O_4^{2-}(aq) + 8H^{+}(aq) + 3e^{-} \rightarrow Fe^{3+}(aq) + 4H_2O(l)$ $(g) + 4H^{+}(aq) + 4e^{-} \rightarrow 2H_2O(l)$	$E^0 = +2.20 \text{ V}$
	(a)		
	·	combined.	(01 mark)
		(ii) The overall equation for the reaction.	(1½ marks)
			T O

. 8		(1) 	Calculate the e.m.f. of the cell in (a).	,
		(ii)	State whether the cell reaction in (a)(ii) is find Give a reason for your answer.	feasible or not. (01 mark)
3.	Write (a)	equ	ation(s) to show how the following conversion CH_2CHO to $CH_3CH_2NH_2$.	ons can be effected: (3½ marks)
	(b)		MgBr to $COOH$.	
		\\		(2½ marks)
. / t	S. 11.70.		e equation for the reaction between fluorine	
		(1)	water.	(1½ marks)
		(11)	hot concentrated sodium hydroxide.	(1½ marks)
		••••••		

TOVET STREET

	(b)	it behaves diff	orine is an element in group(VII) of the ferently from the other members of the	
		State three reamembers.	asons why fluorine behaves different	ly from the other (1½ marks)
			mon. Only nous bearing at low and	
		in the second	SECTION B (54 MARKS)	
	•	and from	this section. Any additional question	(s) answered will
<i>Answ</i> not <i>b</i>	o mar	ked		
10.	Com	plete the follow	ring equations and in each case outling	e a mechanism for
	(a)	$(CH_3)_3C-B$	$\frac{CH_3CH_2\bar{O}Na^{\dagger}}{CH_3CH_2OH/\text{ heat}}$	(03 marks)
	Mec	hanism:		
			•••••	
	(b)	+ C	'H ₃ COCl AlCl ₃	(03 marks)
	Med	chanism:		o a Communication
				••••
	(c)	$HC \equiv CH$	(1) Na/NH3(l)	(03 marks)
1 - 2			$(2) CH_3CH_2Br$	
	Me	chanism:		
	••••			
			7	Turn Over

11. Table 2 shows acid dissociation constants, Ka, for some acids at 25°C.

Table 2

Acid	Ka (mol dm ⁻³)
Н – СООН СН ₃ СООН СН ₃ СН ₂ СООН	1.70×10^{-4} 1.70×10^{-5} 1.35×10^{-5}

	(i)	State the trend in acid strength of the acids in Table 2. (01 ma	rk)
	••••••		•••
	(ii)	Explain your answer in (a)(i). (03 max	rks
	•••••		• • • •
•••••	••••••		
•••••	••••••		•••
(b)	Calc	culate the pH of a 0.5 M CH ₃ CH ₂ COOH solution. (1½ mark	s)
•••••	•••••		•••
c)	(i)	45.0 cm ³ of a solution in (b) was mixed with 35.0 cm ³ of a 0.5 M potassium hydroxide solution. Calculate the change in pH of the solution. (2½marks	
		7 m m m 1 m m m m m m m m m m m m m m m	
			••

continues.

	(ii)	Predict the effect of adding two drops of dilut acid to the solution in (c)(i).	(01 mark)
(a)		atomic number of aluminium is 13.	
	(i)	electronic configuration of aluminium.	(01 mark)
	(ii)	formula of the chloride of aluminium.	(01 mark
 (b)	Writ	e equation for the reaction between aluminium	
	(i)	water.	(1½ mark
		water.	(1½ mark.
	(ii)	excess ammonia solution. excess sodium hydroxide solution.	(1½ mark. (1½ mark.
	(ii)	excess ammonia solution.	(1½ mark (1½ mark (03 mark

(a)	CH3COOCH2CH3 and CH3CH2COOH.	(02 -
	engeochieng and engengeoom	(03 m
	•••••	•
•••••	***************************************	······
•••••		••••••
•••••		
a >		
(b)	$HO \longrightarrow \ddot{C} \longrightarrow H$ and $HO \longrightarrow C \longrightarrow C \longrightarrow OH$	(03 ma
•••••	••••••	
•••••		
•••••	······································	
•••••		
•••••		
(c)	\bigcirc $-CH_2I$ and H_3C	
•••••	2 3.2 1.30	(03 ma
•••••		
•••••		
•••••		
••••••		
(a)	Define the term molar conductivity.	

(b)	(i) ·	Sketch a graph to show the variation of molar conductivity	
		of sodium chloride with dilution. (02 marks)	

	(ii) Explain the shape of the graph in (b)(i).	(2½ marks)
	the state resident severes in object	······································
(c)	The electrolytic conductivity of a saturated solution of chloride at 25° C is $1.5 \times 10^{-4} \Omega^{-1} \text{m}^{-1}$. The molar consinfinite dilution of silver and chloride ions are $6.2 \times 7.7 \times 10^{-3} \Omega^{-1} \text{m}^2 \text{mol}^{-1}$ respectively.	ductivities at
	Determine the solubility of silver chloride at 25 °C.	$(3\frac{1}{2} \text{ marks})$
•••••	•••••••••••••••••••••••••••••••••••••••	
•••••	••••••	4
	••••••	•••••

(a)	Writ	on heating to form a green solid. e equation to show the effect of heat on cobalt(II	
		to show the effect of heat on cobalt(II) nitrate.
	*******		(1½ ma
	= + + + = + + + +	***************************************	************
(b)	woul	what would be observed and write equation for the data place when the following substances are a sign of cobalt(II) nitrate in water.	
	(1)	Concentrated hydrochloric acid.	(02 ma
		······································	
	• • • • • • • • • •		
		Ασυσο	
	()	Aqueous ammonium thiocyanate solution	(03
•••••			••••••
• • • • • • •			
	····	Aqueous	
	()	Aqueous sodium hydroxide.	
	••••••		

16. (a) (i) Draw the structure and name the shape of the following oxyanions. (04 marks)

Oxyanion	Structure	Shape
SO_3^{2-}		
kedasi .		
SO ₄ ²⁻		
7. 187	the group of a second to	A to the second
e como de desper	Detago y y y h h y d bt e	the state of the s

	(ii)	Explain the structure of the SO_3^2 ion.	(1½ marks)
	••••		
•••••	•••••		
•••••	•••••		3 (5)
(b)	(i)	Name the reagent(s) that can be used to distin the oxyanions in (a)(i).	
	(i)	State what would be observed; if a solution of oxyanion is treated separately with the reage.	
		named in (b)(i).	(01 mark)
	••••••		
•••••			

3 % ,7 .	(ii)	Write the equation(s) for any reaction(s) that would a solution of each of the oxyanions is treated separ	atery with the
		gent(s) you have named in (b)(i).	(1½ marks)

17.	(a)	S.	N
	(a)	State three conditions that enable isolation of a semixture by solvent	olute from a
		mixture by solvent extraction.	$(1\frac{1}{2} marks)$
	,	***************************************	
	•••••		•••••
	•••••	NA	
	(b)	When one litre of an aqueous solution and it	25.0
		was shaken with 500 cm ³ of ethoxyethane, 9.7g of the ethoxyethane layer.	X was extracted in
		Calculate the partition coefficient of X between et water.	
	•••••		(°2 marks)
		••••••	•••••••••••••••••••••••••••••••••••••••
			•
	•••••		
	(c)	The solution in (b) was shaken with two successive of ethoxyethane. Calculate the total mass extracte	250 cm ³ portions d. (04 marks)
	•••••	(14(1-) finite of the party of the par	

	······	The state of the s	
	•••••		
			••••••
19 0	1. 强制产员	14	

• • • • • • • • • • • • • • • • • • • •	••••••	
(4)	O	(01 mark)
(d)	Comment on the result in (c).	(OI mark)
	, , ,	
•••••		

15

Turn Over