

What is learning?

Learning is a process that leads to *change*, which occurs as a result of running through *data* and increases the potential of improved *performance*

How do we learn?

At the end of the training period, we will apply what we have learned and hope for the best ©

Fix \hat{f} accordingly

$$f(X) = y$$

$$f = ?$$

$$\hat{y} = \hat{f}(X)$$

$$\hat{y} \approx y \rightarrow L(\hat{y}, y) \approx \min(L) \rightarrow \hat{f} \approx f$$
Actually we are looking for $P(y|X)$

$$P\left(y = 1[shekel]|X = \binom{4.5[g]}{19[mm]}\right) = 0.1$$

Estimating current feeling with EEG

- Get an EEG signal as an input.
- Estimate the probability of every feeling (apply \hat{f}).
- Show the computer the correct answer (feeling).
- Fix the probability function through the weights using our loss function.
- Get a new signal with its' label (adequate feeling) and repeat.

How do we decide?

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\mathcal{L}(\widehat{y}, y) = -(y \log \widehat{y} + (1 - y) \log(1 - \widehat{y}))$$

The idea of loss is saying "bad computer" when it is wrong. The loss is lower for "more correct" prediction and higher for "less correct".

$$z = x_1 w_1 + x_2 w_2 + b$$

$$\widehat{y} = \sigma(z)$$

$$\mathcal{L}(\widehat{y}, y)$$

$$P\left(y = 1[shekel]|X = {4.5[g] \choose 19[mm]}\right) = \sigma(4.5w_1 + 19w_2 + b) = 0.9$$

$$P\left(y = 5[shekel]|X = {4.5[g] \choose 19[mm]}\right) = 1 - \sigma(z) = 0.1$$

$$P(y = 1|X) > P(y = 5|X) \to \hat{y} = 1$$

Our aim is to LEARN correctly (w_1, w_2, b) i.e. the set of parameters that minimizes the loss

Calculus as learning factor

Gradient descent

Visualize learning

Why not stop here?

Mimicking our brain

From feature engineering to representation learning

Hands on with Python

```
from sklearn.model_selection import train test_split
from sklearn.linear model import LogisticRegression
X # nX2
y # 1Xn
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_pred_test = log_reg.predict(X_test)
y_pred_proba_test = log_reg.predict_proba(X_test)
EEG # nXt
X_train, X_test, y_train, y_test = train_test_split(EEG, y, test_size=0.2)
window_size=60
n filters start=64
n hidden start=512
len_sub_window=10
dropout=0.5
model = Sequential()
model.add(Conv1D(n_filters_start, len_sub_window, activation='relu', input_shape=(60, 1)))
#------ #----- Implement your code here:-----
model.add(Conv1D(2 * n filters start, len sub window, activation='relu'))
model.add(MaxPool1D())
model.add(Conv1D(4 * n filters start, len sub window, activation='relu'))
model.add(Dropout(dropout))
model.add(Flatten())
model.add(Dense(n hidden start, activation='relu'))
model.add(Dense(int(n hidden start / 2), activation='relu'))
model.add(Dense(int(n_hidden_start / 4), activation='relu'))
model.add(Dropout(dropout))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', metrics=['accuracy'], loss='binary_crossentropy')
model.fit(rr train, y train, batch size=1024, epochs=20)
model.predict(X_test)
```

Results for NN

Why we should **not** throw away engineering

(A) Cow: 0.99, Pasture:

(B) No Person: 0.99, Water:

(C) No Person: 0.97,

Beyond Classification

Beyond Classification

