LE GROUPE FONDAMENTAL

Question : Étant donné deux espaces topologiques, disons *X* et *Y*, comment peut-on décider s'ils sont homéomorphes ou non?

Il n'y a pas de méthode générale. Une possibilité est de procéder de la manière suivante.

Une considération naïve. On choisit un espace simple, par exemple le cercle S^1 . Si les espaces $C^0(S^1,X)$ et $C^0(S^1,Y)$ sont différents, alors X et Y ne sont pas homéomorphes. Cela soulève la question suivante :

Question : Comment peut-on décider si les espaces $C^0(S^1, X)$ et $C^0(S^1, Y)$ sont différents?

Parfois, on peut démontrer que les composants connexes (par arcs) de $C^0(S^1,X)$ et $C^0(S^1,Y)$ sont différents. Par exemple, si on peut démontrer que $C^0(S^1,X)$ est connexe par arcs et $C^0(S^1,Y)$ n'est pas connexe par arcs, on conclut que X et Y ne sont pas homéomorphes.

C'est cette approche qui se révèle effective et que nous décrivons ici plus en détail.

1/13

Soit X un espace topologique quelconque. Nous rappelons qu'un arc joignant $x_0 \in X$ et $x_1 \in X$ est une application $\gamma \colon [0,1] \to X$ continue tq $\gamma(0) = x_0$ et $\gamma(1) = x_1$. On note $I \coloneqq [0,1]$.

Définition

Deux arcs $\gamma_0, \gamma_1: I \to X$ tq $\gamma_0(0) = x_0 = \gamma_1(0)$ et $\gamma_0(1) = x_1 = \gamma_1(1)$ sont dits homotopes relativement à $\{0,1\}$ s'il existe une application continue $h: I \times I \to X$ avec les propriétés suivantes :

- 1. $h(t,0) = \gamma_0(t)$ pour tout $t \in I$;
- 2. $h(t,1) = \gamma_1(t)$ pour tout $t \in I$;
- 3. $h(0,s) = x_0$ pour tout $s \in I$;
- 4. $h(1,s) = x_1 \text{ pour tout } s \in I$.

L'application h qui apparaît dans la définition ci-dessus s'appelle une homotopie entre γ_0 et γ_1 .

Si γ_0 et γ_1 sont homotopes, on écrit $\gamma_0 \simeq \gamma_1$ rel $\{0,1\}$ (ou, simplement $\gamma_0 \simeq \gamma_1$).

Si on definit $\gamma_s: I \to X$ par $\gamma_s(t) = h(t,s)$, on peut penser de la famille $\{\gamma_s \mid s \in I\}$ comme un arc (dans $C^0(I,X)$) joignant γ_0 et γ_1 . Alors, informellement, γ_0 et γ_1 sont homotopes, si on peut déformer continûment γ_0 vers γ_1 (en préservant les extrémités).

Proposition

Si X est un sous-ensemble de \mathbb{R}^n convexe, alors tous les arcs (joignants x_0 et x_1) sont homotopes.

Démonstration.

Posons

$$h(t,s) := (1-s)\gamma_0(t) + s\gamma_1(t).$$

Une vérification directe montre que c'est une homotopie entre γ_0 et γ_1 .

3/13

Lemma

 \simeq rel $\{0,1\}$ est une relation d'équivalence sur l'ensemble de tous les arcs dans X joignant x_0 et x_1 .

Démonstration.

La réflexivité est évidente.

Si h est une homotopie entre γ_0 et γ_1 , alors $\hat{h}(t,s) := h(t,1-s)$ est une homotopie entre γ_1 et γ_0 . Donc, \simeq est symétrique.

Soient h une homotopie entre γ_0 et γ_1 et \tilde{h} une homotopie entre γ_1 et γ_2 , donc

$$\tilde{h}(t,0) = \gamma_1(t)$$
 et $\tilde{h}(t,1) = \gamma_2(t)$

(de plus, on a toujours que les extrémités sont préservées). On definit

$$H(t,s) := \begin{cases} h(t,2s) & \text{si } s \in [0,1/2], \\ \tilde{h}(t,2s-1) & \text{si } s \in [1/2,1]. \end{cases}$$

Puisque $h(t,1) = \gamma_1(t) = \tilde{h}(t,0)$, l'application H est continue. De plus, H préserve les extrémités. Ainsi, H est une homotopie entre γ_0 et γ_2 qui montre la transitivité.

 \Box / 13

PRODUIT

Soit γ un arc joignant x_0 et x_1 ; soit β un arc joignant x_1 et x_2 . On définit un arc $\gamma * \beta$ par

$$\gamma * \beta(t) := \begin{cases} \gamma(2t) & \text{si } t \in [0, 1/2], \\ \beta(2t-1) & \text{si } t \in [1/2, 1]. \end{cases}$$

Notons que $\gamma * \beta$ est continu et joigne x_0 à x_2 .

Remarque

« Le produit » $\gamma * \beta$ est bien défini seulement si $\gamma(1) = \beta(0)$!

Lemme

$$Si \gamma_0 \simeq \gamma_1 \text{ rel } \{0,1\} \text{ et } \beta_0 \simeq \beta_1 \text{ rel } \{0,1\}, \text{ alors}$$

$$\gamma_0 * \beta_0 \simeq \gamma_1 * \beta_1 \text{ rel } \{0,1\}.$$

La démonstration est à vous comme exercice.

5/13

Soit X un espace topologique quelconque. On choisit $x_0 \in X$. Considérons $\Omega(X, x_0) := \{ \gamma \text{ est un arc dans } X \text{ joignant } x_0 \text{ à } x_1 = x_0 \}$.

Tout élément γ de $\Omega(X,x_0)$ s'appelle un lacet (base en x_0). Un lacet est simplement une application continue $\gamma:S^1\to X$ tq $\gamma(0)=x_0=\gamma(1)$, ou on pense de S^1 comme $[0,1]/\sim$.

Définition

L'ensemble

$$\pi_1(X,x_0) = \Omega(X,x_0)/\simeq$$

s'appelle *le groupe fondamental* de X (base en x_0).

Notons qu'à ce stade, $\pi_1(X, x_0)$ est bien défini seulement comme un ensemble. On va justifier le nom plus tard.

Si γ est un lacet, $[\gamma] \in \pi_1(X, x_0)$ s'appelle la classe d'équivalence de γ . On peut voir $[\gamma]$ comme la composante connexe par arcs de γ dans $\Omega(X, x_0)$ (nous n'essayons pas ni de prouver cela ni même de définir une topologie sur $\Omega(X, x_0)$).

Théorème

 $\pi_1(X,x_0)$ est un groupe par rapport à la multiplication

$$[\gamma_1] \cdot [\gamma_2] := [\gamma_1 * \gamma_2]. \tag{*}$$

On va prouver ce théorème en plusieurs étapes.

Étape 1. Soit γ un lacet et ρ : $[0,1] \rightarrow [0,1]$ une application continue tq $\rho(0) = 0$ et $\rho(1) = 1$. Alors, $[\gamma \circ \rho] = [\gamma]$.

En effet, $h(t,s) = \gamma((1-s)t + s\rho(t))$ est une homotopie.

Étape 2. Le produit (*) est bien défini et associatif.

On a déjà démontré que l'application $\pi_1(X,x_0) \times \pi_1(X,x_0) \to \pi_1(X,x_0)$ donnée par (*) est bien défini. Pour démontrer l'associativité, on observe d'abord que

$$(a * \beta) * \gamma(t) = \begin{cases} \alpha(4t) & \text{si } t \in [0, 1/4], \\ \beta(4t-1) & \text{si } t \in [1/4, 1/2], \\ \gamma(2t-1), & \text{si } t \in [1/2, 1], \end{cases}$$

7/13

et

$$\alpha * (\beta * \gamma)(t) = \begin{cases} \alpha(2t) & \text{si } t \in [0, 1/2], \\ \beta(4t - 2) & \text{si } t \in [1/2, 3/4], \\ \gamma(4t - 3), & \text{si } t \in [3/4, 1]. \end{cases}$$

On peut vérifier que

$$(a * \beta) * \gamma = ((a * \beta) * \gamma) \circ \rho,$$

ou

$$\rho(t) = \begin{cases} t/2, & \text{si } t \in [0, 1/2], \\ t - 1/4, & \text{si } t \in [1/2, 3/4], \\ 2t - 1, & \text{si } t \in [3/4, 1]. \end{cases}$$

Donc,

$$([\alpha][\beta])[\gamma] = [\alpha * \beta][\gamma] = [(\alpha * \beta) * \gamma] = [\alpha * (\beta * \gamma)]$$
$$= [\alpha][\beta * \gamma] = [\alpha]([\beta][\gamma]).$$

Étape 3. Il existe un élément neutre dans $\pi_1(X, x_0)$ par rapport au produit (*).

Soit x_0 le lacet constant, càd l'application constante $I \to X_0$, $t \mapsto x_0$. Pour un lacet γ , on a

 $(\gamma * x_0)(t) = \begin{cases} \gamma(2t) & \text{si } t \in [0, 1/2], \\ x_0 & \text{si } t \in [1/2, 1]. \end{cases}$

Si on définit ρ par

$$\rho(t) = \begin{cases} 2t & \text{si } t \in [0, 1/2], \\ 1 & \text{si } t \in [1/2, 1], \end{cases}$$

on a évidemment que $\gamma \circ \rho = \gamma * x_0$. Ainsi

$$[\gamma] = [\gamma * x_0] = [\gamma][x_0].$$

De la même manière, on obtient $[x_0][\gamma] = [\gamma]$. Par conséquent, $[x_0]$ est l'élément neutre dans $\pi_1(X, x_0)$.

9/13

Étape 4. Nous prouvons l'existence d'un inverse.

Pour un lacet γ , on définit

$$\bar{\gamma}(t) := \gamma(1-t).$$

On va prouver que $\gamma * \bar{\gamma} \simeq x_0 \simeq \bar{\gamma} * \gamma$. En effet, considérons

$$h(t,s) := \begin{cases} \gamma(2t) & \text{si } t \in [0, s/2], \\ \gamma(s) & \text{si } t \in [s/2, 1 - s/2], \\ \gamma(2 - 2t) & \text{si } t \in [1 - s/2, 1]. \end{cases}$$

Puisque $h(t,0)=x_0$ et $h(t,1)=\gamma*\bar{\gamma}(t)$, on obtient que $\gamma*\bar{\gamma}\simeq x_0$. De la même manière, on a $\bar{\gamma}*\gamma\simeq x_0$. Ainsi,

$$\lceil \gamma \rceil^{-1} = \lceil \bar{\gamma} \rceil \in \pi_1(X, x_0)$$

est l'élément inverse de $[\gamma]$.

En résumé, les étapes 1 – 4 montrent que $\pi_1(X, x_0)$ est un groupe.

Proposition

 $Si X \subset \mathbb{R}^n$ est convexe, alors $\pi_1(X, x_0) \cong \{1\}$ pour tout $x_0 \in X$.

Proposition

Si X est connexe par arcs, alors $\pi_1(X,x_0)$ et $\pi_1(X,x_1)$ sont isomorphes pour tous $x_0,x_1 \in X$.

On peut trouver une démonstration dans *Gamelin, Greene. Introduction to topology, Theorem 3.3.*

Si X est connexe par arcs, on note par $\pi_1(X)$ la classe d'isomorphisme du groupe $\pi_1(X,x_0)$. Parfois, on dit que $\pi_1(X)$ est le groupe fondamental de X même si ce n'est pas tout à fait correct.

11/13

HOMOMORPHISMES INDUITS

Soit $f: X \to Y$ une application continue $\operatorname{tq} f(x_0) = y_0 \in Y$. Définissons $f_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$ par $f_*[\gamma] = [f \circ \gamma]$.

Théorème

L'application f_* est bien définie. En fait, f_* est un homomorphisme de groupes. De plus, si $g: Y \to Z$ est une autre application continue, on a

$$(g \circ f)_* = g_* \circ f_*.$$

Démonstration.

Si h et une homotopie entre γ_0 at γ_1 , alors $f \circ h$ est une homotopie entre $f \circ \gamma_0$ et $f \circ \gamma_1$. Par conséquent, f_* est bien défini.

Si γ et β sont deux lacets, on a

$$f \circ (\gamma * \beta)(t) = \begin{cases} f \circ \gamma(2t) & \text{si } t \in [0, 1/2] \\ f \circ \beta(2t-1) & \text{si } t \in [1/2, 1] \end{cases} = (f \circ \gamma) * (f \circ \beta) (t).$$

Ш

Démonstration (suite).

Par conséquent,

$$f_*([\gamma][\beta]) = (f_*[\gamma])(f_*[\beta]),$$

càd que f_* est un homomorphisme de groupes.

La propriété $(g \circ f)_* = g_* \circ f_*$ découle immédiatement de la définition de f_* .

Corollaire

Si f est un homéomorphisme, alors $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ est un isomorphisme.

Démonstration.

Si f est un homéomorphisme, alors $\exists g: Y \to X \text{ tq } f \circ g = id_Y \text{ et } g \circ f = id_X \text{ (bien sûr, } g = f^{-1}\text{)}.$ En utilisant le théorème précédent, on obtient

$$f_* \circ g_* = (id_Y)_* = id : \pi_1(Y, y_0) \to \pi_1(Y, y_0)$$
 avec $y_0 = f(x_0)$ et $g_* \circ f_* = id : \pi_1(X, x_0) \to \pi_1(X, x_0)$.

Ainsi, f_* est un isomorphisme.

13/13