Neural Networks with TensorFlow

Overview

Neural networks are representation based machine learning algorithms

Neural networks are made up of building blocks called neurons

Each neuron is made up of a linear function and an activation function

Performance is very sensitive to details such as proper choice of activation

Overfitting in neural networks is mitigated using techniques such as dropout

Understanding Machine Learning

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

Corpus

Classification Algorithm

Corpus

Naive Bayes, Support Vector Machines, Decision Trees

Understanding Peep Learning

Corpus

Classification Algorithm

Corpus

Feature Selection by Experts

Classification Algorithm

Corpus

Feature Selection by Experts

Classification Algorithm

"Traditional" ML-based systems still rely on experts to decide what features to pay attention to

Corpus

Feature Selection by Experts

Classification Algorithm

"Representation" ML-based Binary Classifier

Corpus

Feature Selection Algorithm

Classification Algorithm

"Representation" ML-based Binary Classifier

Corpus

Feature Selection Algorithm

Classification Algorithm

"Representation" ML-based systems figure out by themselves what features to pay attention to

"Representation" MI-based Binary Classifier

"Deep Learning" systems are one type of representation systems

Deep Learning and Neural Networks

Deep Learning

Algorithms that learn what features matter

Neural Networks

The most common class of deep learning algorithms

Neurons

Simple building blocks that actually "learn"

"Deep Learning"-based Binary Classifier

Corpus of Images

Feature Selection & Classification Algorithm

"Deep Learning"-based Binary Classifier

Corpus of Images

"Visible layer"

"Visible layer"

"Deep Learning"-based Binary Classifier

Corpus of Images

"Hidden Layers"

Neural Networks Introduced

Corpus of Images

Layers in a neural network

Neural Networks Introduced

Corpus of Images

Each layer consists of individual interconnected neurons

The Computational Graph

Corpus of Images

Operations (nodes) on data (edges)

The Computational Graph

Corpus of Images

The nodes in the computation graph are neurons (simple building blocks)

The Computational Graph

Corpus of Images The edges in the computation graph are data items called tensors

Neuron as a Learning Unit

A Neural Network

Corpus of Images

Each layer consists of individual interconnected neurons

For an active neuron a change in inputs should trigger a corresponding change in the outputs

The outputs of neurons feed into the neurons from the next layer

Each connection is associated with a weight

If the second neuron is sensitive to the output of the first neuron the connection between them gets

W increases

stronger

A single neuron is generally connected to multiple neurons in the next layer. Each connection will have its own weight

A Neural Network

Once a neural network is trained all edges have weights which help it make predictions

Each neuron only applies two simple functions to its inputs

The affine transformation alone can only learn linear relationships between the inputs and the output

The combination of the affine transformation and the activation function can learn any arbitrary relationship

The values W_1 , $W_2...W_n$ are called the weights

The value b is called the bias

The affine transformation is just a weighted sum with a bias added:

$$W_1x_1 + W_2x_2 + ... + W_nx_n + b$$

Where do the values of W and b come from?

The weights and biases of a neuron are determined by the training process

The combination of the affine transformation and the activation function can learn any arbitrary relationship

Activation Functions for Non-Linear Relationships

Set of Points

Single Neuron

Regression Line

activation=None, simply passes the output of the linear affine transformation to the output of the neuron

Also called a linear neuron

Linear Regression with One Neuron

Logistic Regression

SoftMax for True/False Classification

Linear Regression with One Neuron

Shape (b) = [1]

Logistic Regression with One Neuron

SoftMax N-category Classification

1 3

Multilabel Digit Classification

One-versus-all: Train 10 binary classifiers

- O-detector, I-detector...
- Predicted label = output of detector with highest score

One-versus-one: Train 45 binary classifiers

- One detector for each pair of digits
- For N labels, need N(N-1)/2 classifiers
- Predicted label = output of digit that wins most duels

The logistic or softmax function is just one of many that can be used for activation

Activation Function

Various choices of activation functions exist and drive the design of your neural network

ReLU Activation

The most common form of the activation function is the ReLU

ReLU: Rectified Linear Unit

ReLU(x) = max(O,x)

Tanh Activation

S-shaped, continuous and differentiable

Output ranges from -1 to 1

Makes each layer's output normalized (centered around O)

SoftMax Activation

Another very common form of the activation function is the SoftMax

SoftMax(x) outputs a number between O and I

This output can be interpreted as a probability

This curve is also called a logit curve

Importance of Activation

The choice of activation function is crucial in determining performance

To see why, we must understand the training process of a Neural Network

Neuron as a Learning Unit

Many of these simple neurons arranged in layers can do magical stuff

Training a Neural Network: Optimization and Back Propagation

A Neural Network

Example: Training for Linear Regression

Set of Points

Single neuron with no activation function

Regression Line

Example: Training for Linear Regression

The activation function to learn linear regression is simply the identity function

Training as an Optimization Problem

Objective Function

Minimize variance of the residuals (MSE)

Constraints

Express relationship as a straight line

$$y = Wx + b$$

Decision Variables

Values of W and b

The "best fit" line is called the regression line

The actual training of a neural network happens via Gradient Descent Optimization

"Gradient Pescent"

"Training" the Algorithm

Start Somewhere

"Gradient Pescent"

"Gradient Pescent"

Training via Back Propagation

Optimiser

Training via Back Propagation

Training via Back Propagation

Back propagation allows the weights and biases of the neurons to converge to their final values

Hyperparameters

Decisions in Traditional ML Models

Initial values

Type of optimizer

Number of epochs

Batch size

More Pecisions in Neural Networks

Network Topology i.e. neuron connections

Number of layers

Number of neurons in each layer

Activation function

How well the model performs is sensitive to these decisions

These are hyperparameters of our model

Model Parameters vs. Hyperparameters

Model parameters

The weights and biases determined during the training process

Result of the training process

Used to make predictions

Measure using validation datasets to find the best possible model

Hyperparameters

The design of the actual model determined before the training process begins

Input to the training process

Used to generate the best possible model

Hyperparameter tuning to generate the model which is then evaluated using validation datasets

Vanishing, Exploding Gradients, Dying Neurons

Back Propagation

This is an iterative process

Fails either if

- gradients don't change at all
- gradients change too fast

"Vanishing Gradient Problem"

The weights of the earlier layers remain unchanged

The algorithm never converges to a good solution

"Exploding Gradient Problem"

The weights of the layers become larger and meaningless

The algorithm diverges and never reaches a good solution

Vanishing and Exploding Gradients

Back propagation fails if

- gradients are vanishing
- gradients are exploding

This was an important reason why PNNs were mostly abandoned for a long time

Coping with Vanishing/Exploding Gradients

Proper initialisation

Gradient clipping

Batch normalisation

Non-saturating activation function

Xavier and He Initialization

Proper initialisation

The variance of the outputs in each direction is equal to variance of inputs

Connections weights must be initialized randomly

Xavier and He Initialization

Proper initialisation

Normal distribution:

- mean O
- standard deviation based on num_inputs and num_outputs for that layer

Xavier and He Initialization

Proper initialisation

Uniform distribution:

- between -r and +r
- r based on num_inputs and num_outputs for that layer

Coping with Vanishing/Exploding Gradients

Proper initialisation

Gradient clipping

Batch normalisation

Non-saturating activation function

Gradient Clipping

Gradient clipping

Limit the gradients to under a threshold during back propagation

Most often used with recurrent neural networks

Coping with Vanishing/Exploding Gradients

Proper initialisation

Gradient clipping

Batch normalisation

Non-saturating activation function

Batch Normalisation

Batch normalisation Zero center the inputs before passing to the activation functions

Subtract the mean and divide by the standard deviation

Allows use of saturating activation functions as well

Coping with Vanishing/Exploding Gradients

Proper initialisation

Gradient clipping

Batch normalisation

Non-saturating activation function

Coping with Vanishing/Exploding Gradients

Proper initialisation

Gradient clipping

Batch normalisation

Non-saturating activation function

A Neural Network

Unresponsive Neurons

What if the weights of the connections do not change in response to changing input?

Unresponsive Neurons

Neurons may be dead

Activation Functions

Various choices of activation functions exist and drive the design of your neural network

Activation Functions

Consider an S-shaped (sigmoid) activation function

Activation Functions

This is the active or responsive region of the function

Saturating Activation Functions

The activation function saturates at either end

Saturating Activation Functions

If a neuron operates within these saturation regions throughout training it might become unresponsive

Saturation

Dying Neurons

- Neuron might become unresponsive output won't change as input changes
- If this continues throughout training, neuron is "dead"
- Saturation of neuron occurs at both ends of S-curve, for instance

Saturating Activation Functions

Saturation

Logit Activation

Saturates for very large and very small values of input

ReLU Activation

Saturates for very small (negative values) of inputs

ELU Activation

Mitigates dying-neuron problem of ReLU

- Linear for positive values
- Exponential for negative values

ELU is the new favorite activation function

Dying and unresponsive neuron issues can be mitigated by using activations functions such as ELU

Overfitting and the Bias-Variance Trade-off

Challenge: Fit the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

A simple straight line performs worse in training, but better with test data

Overfitting

Low Training Error

Model does very well in training...

High Test Error

...but poorly with real data

Cause of Overfitting

Sub-optimal choice in the bias-variance trade-off

An overfitted model has:

- high variance error
- low bias error

Low bias

Few assumptions about the underlying data

High bias

More assumptions about the underlying data

Model too complex

Training data all-important, model parameter counts for little

Model too simple

Model parameter all-important, training data counts for little

Variance

High variance

The model changes significantly when training data changes

Low variance

The model doesn't change much when the training data changes

Variance

Model too complex

Model varies too much with changing training data

Model too simple

Model not very sensitive to training data

Bias-Variance Trade-off

Model too complex

High variance error

Model too simple

High bias error

Bias-Variance Trade-off

- High-bias algorithms: simple parameters
 - Regression
- High-variance algorithms: complex parameters
 - Decision trees
 - Dense neural networks

Mitigating Overfitting

Preventing Overfitting

- Regularisation
- Cross-validation
- Ensemble learning
 - Dropout

Preventing Overfitting

Regularisation - Penalise complex models

Cross-validation - Distinct training and validation phases

Dropout - Intentionally turn off some neurons during training

easy

Regularisation

Penalise complex models

Simple in Gradient Descent

Add penalty to objective function

Penalty as function of neuron weights

Forces optimiser to keep it simple

Cross-Validation

Distinct training and validation phases

Train different models (with training data only)

Select model that does best on validation data

"Hyperparameter tuning"

1 3

Propout

Specify a fraction of neurons that will stay off in each training step

"Dropout" neurons chosen at random

Different neurons off in each training step

In effect, each training step builds different network configuration

Pensely Connected Neural Network

Corpus of Images

High risk of overfitting during training due to dense, complex network

Corpus of Images

Randomly switch off say 50% of neurons in each training step

Corpus of Images

Training forced to rely on a much simpler neural network

Corpus of Images

Each training step will build a different configuration

Corpus of Images

Each training step will build a different configuration

Dropout During Training Only

Corpus of Images

During actual usage in test mode, full dense neural network is used