Очень долго сходится, для вычисления $\ln 2$ с точностью до 0.00001 надо вычислить 100000 членов.

Второй способ: $(\ln(1+x))' = \frac{1}{x+1} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$ Почленно интегрируя, получим $\ln(1+x) = x + \frac{x^2}{2} - \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots$

6) $f(x)=\arctan x$. $(\arctan x)'=\frac{1}{1+x^2}=1-x^2+x^4+\cdots+(-1)^nx^{2n}+\cdots$. Ряд сходится на интервале (-1;1). $f(x)-f(0)=\int_0^x (\arctan t)'dt=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots+(-1)^n\frac{x^{2n+1}}{2n+1}$. Пусть x=1. Тогда $f(x)-f(0)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots+(-1)^n\frac{x^{2n+1}}{2n+1}$. Отсюда $\pi=4\sum_{n=0}^\infty\frac{(-1)^n}{2n+1}$.

§7. Применение рядов к приближенным вычислениям П.1. Приближенные вычисления функций

Пусть f(x) бесконечно дифференцируема в окрестности точки A. Тогда ее можно разложить в ряд Тейлора в данной точке $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$. Очевидно, что для вычисления значения функции с определенной точностью достаточно посчитать частичную сумму данного ряда. При этом погрешность можно оценивать двумя способами:

- 1) С помощью остаточного члена формулы Тейлора $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^n$.
- 2) По хвосту ряда $r_n(x) = \sum_{k=n+1}^{\infty} \frac{f^{(k)}(a)}{(n+1)!} (x-a)^k$.

Замечание. Вторая оценка удобна для знакочередующихся рядов.

Пример. $e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}$. $R_n(1)=\frac{e^{\xi}(1-0)^{n+1}}{(n+1)!}<\frac{e^1}{(n+1)!}<\frac{3}{(n+1)!},\xi\in(0;1); r_n(1)=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots=\frac{1}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+2)(n+3)}+\cdots\right)<\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)!}$

Как ускорить сходимость логарифма: рассмотрим разложение в ряд выражения $\ln(1+x)-\ln(1-x)=2x+\frac{2x^3}{3}+\frac{2x^5}{5}+\cdots 2\frac{x^{2n+1}}{2n+1}$. Тогда $\ln\frac{1+x}{1-x}=2\sum_{n=0}^{\infty}\frac{x^{2n+1}}{2n+1}$. Для вычисления $\ln 2$ поимеем $x=\frac{1}{3}$. Для достижения точности 0.00001 необходимо вычислить всего 5 членов.

П.1. Приближенные вычисления интегралов

Пусть надо найти $\int_a^x f(t)dt = F(x)$. Изначально разложим f(x) в ряд Тейлора, при этом промежуток [a;x] должен попасть в область его сходимости. Тогда на этом промежутке мы можем его интегрировать, и посчитать частичную сумму про-интегрированного ряда. Для вычисления понадобится:

- 1) Разложить f(x) в ряд Тейлора
- 2) Ограничиться конечным числом членов.
- 3) Проинтегрировать почленно, оценить погрешность.

Пример.
$$six = \int_0^x \frac{\sin x}{x} dx = \int_0^x \left(\frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}}{x} \right) dx = \int_0^x \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right) dx = x - \frac{x^3}{3!3} + \frac{x^5}{5!5} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!(2n+1)}.$$

§8. Ряды с комплексными членами П.1. Числовые ряды

Рядом с комплексными членами называется выражение вида $u_1+u_2+\cdots+u_n+\cdots$, где $u_n=a_n+ib_n$. Этот ряд сходится, если существует конечный предел частичных сумм $\lim_{n\to\infty}S_n$. Тогда $S_n=\sum_{k=1}^na_k+i\sum_{k=1}^nb_k=\sigma_n+i\tau_n$. Условия о конечном пределе частичных сумм необходимо и достаточно для того, чтобы существовали пределы $\lim_{n\to\infty}\sigma_n$; $\lim_{n\to\infty}\tau_n$. Таким образом, сходимость ряда с комплексными членами эквивалентна сходимости двух вещественных рядов.

Теорема 22. Если сходится ряд $\sum_{n=1}^{\infty} |u_n|$, то сходится и $\sum_{n=1}^{\infty} u_n$.

Доказательство. $|u_n| = \sqrt{a_n^2 + b_n^2}$. Получаем, что $|a_n| \le |u_n|$; $|b_n| \le |u_n|$. По признаку сходимости получаем, что если сходится $\sum_{n=1}^{\infty} |u_n|$, то сходятся абсолютно и ряды $\sum_{n=1}^{\infty} a_n$; $\sum_{n=1}^{\infty} b_n$. То есть сходится и ряд $\sum_{n=1}^{\infty} u_n$.

<u>Замечание.</u> Все свойства действительных абсолютно сходящихся рядов переносятся на комплексные абсолютно сходящиеся ряды.

Рассмотрим степенной комплексный ряд $c_0+c_1z+c_2z^2+\cdots+c_nz^n+\cdots$, z=x+iy, или в другой форме $c_0+c_1(z-z_0)+c_2(z-z_0)^2+\cdots+c_n(z-z_0)^n+\cdots$.

Теорема 23 (Абеля). Если степенной комплексный ряд сходится при $z=z_0$, то он абсолютно сходится и при любом z таком, что $|z|<|z_0|$. Если этот же ряд расходится в точке $z=z_1$, то он будет расходиться и в любой точке z такой, что $|z|>|z_0|$.

Доказательство.

- 1) Пусть ряд $\sum_{n=0}^{\infty} c_n z_0^n$ сходится. Тогда его общий член стремится к нулю $\lim_{n\to\infty} c_n z_0^n = 0$. Тогда существует такое M>0, что для любого n выполняется $|c_n z_0^n| < M$. Рассмотрим ряд $\sum_{n=0}^{\infty} c_n z^n = c_0 + c_1 \frac{z}{z_0} z_0 + c_2 \left(\frac{z}{z_0}\right)^2 z_0^2 + \dots + c_n \left(\frac{z}{z_0}\right)^n z_0^n + \dots$. Теперь рассмотрим ряд, состоящий из абсолютных величин $|c_0| + \left|\frac{z}{z_0}\right| |c_1 z_0| + \left|\frac{z}{z_0}\right|^2 |c_2 z_0^2| + \dots + \left|\frac{z}{z_0}\right|^n |c_n z_0^n| + \dots$. Все правые модули, как уже было сказано, меньше M. Тогда этот ряд можно смажорировать так, что для любого n будет выполняться $\left|\frac{z}{z_0}\right|^n |c_n z_0^n| < \left|\frac{z}{z_0}\right|^n M$. $\left|\frac{z}{z_0}\right|^n M$ геометрическая прогрессия с $q = \left|\frac{z}{z_0}\right| < 1$. Тогда, по признаку сравнения ряд $\sum_{n=1}^{\infty} |c_n z^n|$ сходится абсолютно и, следовательно, сходится.
- 2) От противного. Если расходится в при $z=z_1$ и сходится в при $|z|>|z_1|$, то по первому пункту должен сойтись и при $z=z_1$. Противоречие. Следовательно, расходится при $|z|>|z_1|$.

Замечание. Существует радиус сходимости степенного комплексного ряда такой, что при |z| < R ряд сходится, при |z| > R расходится, точки на окружности требуют дополнительной проверки. Радиус сходимости можно искать так же, как и для вещественных рядов: по признаку Даламбера.

<u>Замечание.</u> пенные ряды.	Можно	вводить	функции	комплексной	переменной	через сте-
пенные ряды.						