Chapter 6 Orthogonality and Least Squares

David Robinson

Inner Product, Length, and Orthogonality

Theorem 1

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- 3. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = u \cdot (c\mathbf{v})$
- 4. $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$

The Length of a Vector

The length (or norm) of \mathbf{v} is the nonnegative scalar $\|\mathbf{v}\|$ defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}, \text{ and } \|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$$

Distance in \mathbb{R}^n

For **u** and **v** in \mathbb{R}^n , the **distance between u and v**, written as $\text{dist}(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u} - \mathbf{v}$.

$$dist(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$

Orthogonal Vectors

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Theorem 2 — The Pythagorean Theorem

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Theorem 3

Let *A* be an $m \times n$ matrix. The orthogonal complement of the row space of *A* is the null space of *A*, and the orthogonal complement of the column space of *A* is the null space of A^T

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$

Key Points

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \times \mathbf{v}$
- 2. A unit vector in the direction of a vector can be determined by dividing that vector by its length.
- 3. $||c\mathbf{v}||$ is not always equal to $c||\mathbf{v}||$. Since length is always positive, the value of $||c\mathbf{v}||$ is positive for all values of c. However, $c||\mathbf{v}||$ is negative if c is negative.