Partial exam 2 - Jeudi 4 mai 2017 - Duration: 60 min

No document, no phone, no computing machine.

Name:	First name :			Signature:		
	Exercise 1 :	Exercis	e 2 :	G	rade /20 :	
Consider the follow — "T=Temper — "W=Wind"	Bayes Test, ≈ 10 pt owing data set with cature" taking on the taking on the possi classification "S=Sw	two pred e possibl ible value	e values : es : weak a	low, i	medium and higl trong,	1,
1. Calculate the	ne look up tables fr	T low low medium high om the tr	W weak strong weak strong aining da	no no yes no	. Show your calcu	ılation.

UNS/LF 1/5 2016/2017

2. We now end	counter a new ex	tample : "T=hig	gh" and "W=we:	ak". How should	this exam
2. We now end be classified	counter a new ex d using the Naive	xample : "T=hig Bayes test?Sh	gh″ and "W=wea ow your calcula	ak". How should	this exam
be classified	counter a new ex l using the Naive	ample : "T=hi Bayes test?Sh	gh″ and "W=wea ow your calcula	ak". How should ition.	this exam
be classified	counter a new ex d using the Naive	ample : "T=hi Bayes test?Sh	gh″ and "W=wea ow your calcula	ak". How should	this exam
be classified	counter a new ex d using the Naive	ample : "T=hi Bayes test?Sh	gh″ and "W=wea ow your calcula	ak". How should	this exam
be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=wea ow your calcula	ak". How should	this exam
be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=we ow your calcula	ak". How should	this exam
be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=wea	ak". How should	this exam
. We now end be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=wea	ak". How should	this exam
. We now end be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=wea	ak". How should	this exam
. We now end be classified	counter a new ex	ample : "T=hi Bayes test? Sh	gh″ and "W=wea	ak". How should	this exam
. We now end be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=we ow your calcula	ak". How should	this exam
be classified	counter a new ex	ample : "T=hi Bayes test? Sh	gh″ and "W=wea	ak". How should	this exam
e. We now end be classified	counter a new ex	ample : "T=hi Bayes test? Sh	gh″ and "W=we ow your calcula	ak". How should	this exam
e. We now end be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=we ow your calcula	ak". How should	this exam
e. We now end be classified	counter a new ex	ample : "T=hi Bayes test? Sh	gh″ and "W=wea	ak". How should	this exam
2. We now end be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=wea	ak". How should	this exam
2. We now end be classified	counter a new ex	ample : "T=hi Bayes test? Sh	gh″ and "W=wea	ak". How should	this exam
2. We now end be classified	counter a new ex	ample : "T=hi Bayes test?Sh	gh″ and "W=wea	ak". How should	this exam
2. We now end be classified	counter a new ex	ample : "T=hi Bayes test? Sh	gh″ and "W=wei	ak". How should	this exam
2. We now end be classified	counter a new ex	rample : "T=hi Bayes test?Sh	gh″ and "W=wei ow your calcula	ak". How should	this examp

Data Valorization

Polytech Nice Sophia/MAM4/SI4/EIT Digital

UNS/LF 2/5 2016/2017

3. W	hen you	encour	nter the	situation	n "T=hig e predicti	h" and "'	W=weak"	, which ir vith the in	ituitive (decisio Evolai:
301		SOTIABLE	to take :	Does the	predicti	on be con	1515tC11t W	vitii tiite iii	turtion:	Explai
			≃ 10 pts)		fon ADM	A(n a) tin	a corioc	Allvariabl	oc and n	ototio
		efined ca		IIIIIIOII O	i an Arwi	A(p,q) tiii	ie series.	All variabl	es and n	otatio
			<u>J</u>							
					dy statio	nary stoc	hastic pro	ocess. Wh	at does i	t mea
Gl	ve a mai	nematio	cal answ	er.						

UNS/LF 3/5 2016/2017

$(\rho_k)_{k\in\mathbb{Z}}$ for	definition (all r or a weakly stati					
sitive into	egers.					
4. Calculate	the autocorrela	tion function	$(\rho_k)_{k\in\mathbb{Z}}$ of	a MA(1) time	e series with	coefficients
and β_1 .						

UNS/LF 4/5 2016/2017

FIGURE 1 – Sample autocorrelation of a time series.

5. Figure 1 shows the autocorrelation of a time series. Do you think that this times series could be well modeled by MA(1)? If not, which model could be more relevant?

UNS/LF 5/5 2016/2017