Correction feuille de TD n.3 de IPD 2015-2016, Ensimag 2A IF

H. Guiol & J. Lelong

Exercice 1.1 Pont Brownien

Définition. Soit W_t un mouvement brownien standard. Le pont brownien entre 0 et 1 est le processus gaussien défini sur [0,1] par

 $B_t^{0,1} = W_t - tW_1, \ \forall t \in [0,1].$

C'est un processus à trajectoires continues, qui vaut 0 aux temps 0 et 1.

Dans tout ce qui suit on notera W_t un M.B.S. et B_t un pont borwnien entre 0 et 1.

1. Caractéristiques du pont brownien.

(a) Montrer que $\mathbb{E}(B_t) = 0$ et $Cov(B_t, B_s) = s(1-t)$ pour $s \leq t$. En déduire la loi de B_t .

Réponse. Pour tout $t \in [0,1]$, B_t est de loi normale centrée de variance t(1-t)

(b) Montrer que $B_t = W_t - tW_1$ est indépendant de W_1 .

Réponse. Le vecteur $(B_t, W_1) = (W_t - tW_1, W_1)$ est Gaussien il suffit de voir que $Cov(B_t, W_1) = 0$ ce que le calcul donne immédiatement.

(c) Trouver la densité conditionnelle de W_t sachant $W_1 = 0$. Comparer la avec la densité de B_t .

Réponse. On écrit $W_t = B_t + tW_1$ la loi de W_t sachant $\{W_1 = 0\}$ est donc la loi de B_t sachant $\{W_1 = 0\}$. Mais comme B_t est indépendant de W_1 on en déduit que c'est la loi de B_t . Donc la densité est celle d'une loi normale centrée de variance t(1-t).

2. Pont Brownien sur [u, v].

Soient $a, b \in \mathbb{R}$ et $0 \le u \le v$.

On définit pour tout $t \in [u, v]$ le processus

$$B_t^{u,v} = (W_t - W_u) - \frac{t - u}{v - u}(W_v - W_u).$$

(a) Montrer que $B_t^{u,v}$ est un processus Gaussien centré, indépendant de $\sigma(W_s, 0 \le s \le u)$ et $\sigma(W_s, v \le s)$. **Réponse.** On montre que pour tout choix de $t_1, ..., t_n$ le vecteur $\mathbf{B} := (B_{t_1}^{u,v}, ..., B_{t_n}^{u,v})$ est Gaussien centré. On vérifie également que $Cov(B_t^{u,v}, W_s) = 0$ pour tout $s \in [0, u] \cup [v, +\infty[$.

(b) Montrer que W_t sachant $W_u = a$ et $W_v = b$ est de loi normale $\mathcal{N}(\mu, \sigma^2)$ de paramètres

$$\mu = a + \frac{t-u}{v-u}(b-a), \ \sigma^2 = \frac{(v-t)(t-u)}{v-u}$$

Réponse. On écrit

$$W_{t} = \frac{v - t}{v - u} W_{u} + B_{t}^{u, v} + \frac{t - u}{v - u} W_{v}$$

qui a sous les conditions de l'énoncé même loi que

$$\frac{v-t}{v-u}a+B_t^{u,v}+\frac{t-u}{v-u}b$$

3. Simulation de $\max W_t$ par la méthode du pont Brownien. Soit $M_t = \max_{0 \le u \le t} W_u$. On a

$$P(M_t \ge y|W_t = x) = \exp\left(-2\frac{y(y-x)}{t}\right)$$

(a) Proposer une méthode de simulation de W_t sur [0,T]. En fixant un h assez petit on simule W_{t_i} , $t_{i+1} = t_i + h$.

Réponse. Par exemple on découpe l'intervalle [0,T] en 2^n sous intervalles $[t_i,t_{i+1}]$ de façon que $t_{i+1}-t_i \leq h$. On simule W_T de loi $\mathcal{N}(0,T)$, on note y_T le résultat de cette simulation. Puis on simule $W_{T/2}$ sachant $\{W_T=y_T\}$: qui est de loi $\mathcal{N}(\frac{y_T}{2}, T/4)$. On note $y_{T/2}$ le résulta de cette simulation. Puis on va simuler $W_{T/4}$ sachant $\{W_{T/2} = y_{T/2}\}$, et on simule $W_{3T/4}$ sachant $\{W_{T/2}=y_{T/2},W_T=y_T\}$ et ainsi de suite... (b) Simuler M_t par inversion.

Réponse. Il suffit de simuler une loi normale centrée de variance t. On note x le résultat de cette simulation. Puis on simule par inversion : on inverse la fonction $G(y) = exp\left(-2\frac{y(y-x)}{t}\right)$ ce qui conduit à prendre la racine positive de l'équation $y^2 - xy + (t/2)\ln(u) = 0$:

$$Simu(M_t) = \frac{x + \sqrt{x^2 - 2t \ln(U)}}{2}$$

ou U est uniforme [0,1].