

PicsimLab_0_7_0

Luis Claudio Gambôa Lopes <lcgamboa@yahoo.com>

Download: github or sourceforge

January 30, 2018

Contents

I	Manual em Português	3
1	Introdução	6
2	Interface	7
3	Placas	10
4	Comunicação Serial	16
5	Depuração Integrada com o MPLABX (PIC)	20
6	Integração com a IDE do Arduino (ATMEGA)	21
7	Depuração com o avr-gdb (ATMEGA)	22
8	Osciloscópio	23
9	Partes Avulsas	24
10	Como Fazer (How To's)	31
II	English Manual	32
1	Introduction	35
2	Interface	36
3	Boards	39
4	Serial Communication	44
5	MPLABX Integrated Debug (PIC)	48
6	Arduino IDE Integration (ATMEGA)	49

CONTENTS	
7 avr-gdb Debug (ATMEGA)	50
8 Oscilloscope	51
9 Partes Avulsas	52
10 How To's	59
III License	60

Parte I Manual em Português

Table of Contents

1	Intr	odução	6
2	Inte	rface	7
	2.1	Janela Principal	7
	2.2	Comandos	9
3	Plac	eas	10
	3.1	Características da Placa 1	10
	3.2	Características da Placa 2	11
	3.3	Características da Placa 3	12
	3.4	Características da Placa 4	13
	3.5	Características da Placa 5	14
4	Con	nunicação Serial	16
	4.1	Instalação e Configuração do com0com (Windows	16
	4.2	Instalação e Configuração do tty0tty (Linux)	18
5	Dep	uração Integrada com o MPLABX (PIC)	20
6	Inte	gração com a IDE do Arduino (ATMEGA)	21
7	Dep	uração com o avr-gdb (ATMEGA)	22
8	Osc	iloscópio	23

TA	BLE	OF CONTENTS	5		
9	Partes Avulsas				
	9.1	Servo Motor	26		
	9.2	Step Motor	26		
	9.3	Push Buttons	27		
	9.4	Switchs	28		
	9.5	LEDs	28		
	9.6	Potentiometers	29		
	9.7	RGB LED	30		
10	Com	o Fazer (How To's)	31		

Introdução

PICsimLab significa PIC Simulator Laboratory

O PicsimLab é um emulador de tempo real de placas de desenvolvimento com integração de depuração com o MPLABX/avr-gdb. O OPicsimLab suporta os microcontroladores do picsim: PIC16F628/16F777/16F877A/18F452/18F4550/18F4620 e o microcontrolador do simavr: ATMEGA328. O PICSimLab tem integração com as IDE MPLABX/Arduino para programação dos microcontroladores das placas.

Interface

2.1 Janela Principal

A janela principal é composta de um menu, uma barra de status, um combobox de seleção de frequência, um botão liga/desliga para acionar a depuração (debug), alguns controles específicos da placa e parte de interface da placa em si.

No título da janela é mostrado o nome do simulador PICSimLab, seguido da placa e do microcontrolador em uso.

O combobox de seleção de frequência altera diretamente a velocidade de trabalho do microcontrolador, quando o label "Clock (MHz)" fica em vermelho indica que o computador não está sendo capaz de executar o programa em tempo real para o clock

selecionado. Neste caso a simulação pode apresentar alguma diferença do esperado e a carga da CPU ser aumentada.

O botão liga/desliga para acionar a depuração serve para habilitar o suporte à depuração, com o suporte ativo a uma carga maior de simulação.

Os menus e suas funções são listados abaixo:

• File

- Load Hex Carrega arquivo .hex
- Reload Last Recarrega último arquivo .hex utilizado
- Configure Abre a janela de configuração
- Save Workspace Salva todas as configurações atuais do workspace em um arquivo .pzw
- Load Workspace Carrega as configurações salvas de uma arquivo .pzw
- Exit

• Board

- 1 McLab1 Escolhe a placa 1
- 2 K16F Escolhe a placa 2
- 3 McLab2 Escolhe a placa 3
- 4 PICGenios Escolhe a placa 4
- 5 Arduino Escolhe a placa 5

• Microcontroller

 xxxxx - Seleciona o microcontrolador a ser utilizado (depende da placa selecionada)

Modules

- Oscilloscope Abre a janela do osciloscópio
- Spare Parts Abre a janela de peças avulsas

• Tools

- Serial Term - Abre o terminal serial Cutecom

• Help

- Contents Abre a janela de Ajuda
- Examples Carrega exemplos
- About Mostra mensagem de versão e autor

Na primeira parte da barra de status é mostrado o estado da simulação, na parte do meio o estado do suporte a depuração e na última parte o nome da porta serial utilizada, sua velocidade padrão e o erro em relação a velocidade real configurada no microcontrolador.

2.2 Comandos

Sobre a área de interface da placa é possível interagir de algumas formas:

- Clique no conector ICSP para carregar um arquivo .hex.
- Clique no botão PWR para ligar/desligar o emulador.
- Os botões podem ser acionados pelo mouse ou pelas teclas 1, 2, 3 ...

Placas

3.1 Características da Placa 1

Emula a placa de desenvolvimento McLab1 da Labtools que utiliza um PIC16F628A.

Esquemático da placa 1.

Os códigos fontes de exemplo podem ser carregados através do menu **Help->examples** do Picsimlab.

O código fonte de exemplo da placa picsimlab1 usando o MPLABX e o compilador XC8 está no diretório: src/board_1/.

Compra do kit McLab1, manual e exemplos na área de donwload www.mosaico.com.br O hardware e a utilização do kit também é descrita no livro **Desbravando o PIC** - **Ampliado e Atualizado para PIC 16F628A** da editora Erica (ISBN: 978-85-7194-867-9).

3.2 Características da Placa 2

Emula uma placa didática desenvolvida pelo autor.

Esquemático da placa 2.

Os códigos fontes de exemplo podem ser carregados através do menu **Help->examples** do Picsimlab.

O código fonte de exemplo da placa picsimlab2 usando o MPLABX e o compilador XC8 está no diretório: src/board_2/.

3.3 Características da Placa 3

Emula a placa de desenvolvimento McLab2 da Labtools que utiliza um PIC16F877A ou um PIC18F452.

Esquemático da placa 3.

Os códigos fontes de exemplo podem ser carregados através do menu **Help->examples** do Picsimlab.

O código fonte de exemplo da placa picsimlab3 usando o MPLABX e o compilador XC8 está no diretório: src/board_3/.

Compra do kit McLab2, manual e exemplos na área de donwload www.mosaico.com.br O hardware e a utilização do kit também é descrita no livro **Conectando o PIC -Recursos Avançados** da editora Erica (ISBN: 978-85-7194-737-5).

3.4 Características da Placa 4

Emula a placa de desenvolvimento PICGenios PIC18F e PIC16F Microchip da microgenios que utiliza um PIC16F877A ou um PIC18F452.

Esquemático da placa 4.

Os códigos fontes de exemplo podem ser carregados através do menu **Help->examples** do Picsimlab.

O código fonte de exemplo da placa picsimlab4 usando o MPLABX e o compilador XC8 está no diretório: src/board_4/.

Compra do kit PICGenios PIC18F e PIC16F Microchip e manual em www.microgenios.com

3.5 Características da Placa 5

Emula a placa de desenvolvimento Arduino que utiliza um ATMEGA328.

Esquemático da placa 5.

Os códigos fontes de exemplo podem ser carregados através do menu **Help->examples** do Picsimlab.

O código fonte de exemplo da placa picsimlab5 usando a IDE Arduino com o avrgec está no diretório: src/board_5/.

Mais informações sobre o Arduino em www.arduino.cc

Comunicação Serial

Para utilizar o a porta serial do simulador, instale um emulador NULL-MODEM:

- Windows: com0com http://sourceforge.net/projects/com0com/
- Linux: tty0tty https://github.com/lcgamboa/tty0tty

Para comunicação o PICSimLab deve ficar em uma porta do emulador NULL-MODEM e o outro aplicativo na outra porta. Exemplos de configuração ligando o PICSimLab ao Cutecom para comunicação serial:

OS	porta PicsimLab	porta Cutecom	NULL-Modem prog.	Conexão
Windows	com1	com2	com0com	com1<=>com2
Linux	/dev/tnt2	/dev/tnt3	tty0tty	/dev/tnt2<=>/dev/tnt3

4.1 Instalação e Configuração do com0com (Windows

Faça o download da versão assinada do com0com.

Descompacte o arquivo .zip baixado e execute o instalador específico de seu sistema operacional, x86 para windows 32 bits ou x64 para windows 64 bits.

Configure a janela "choose components" como a figura abaixo:

Na última janela da configuração, marque a opção "Launch setup":

Na janela do setup, troque os nomes das portas para COM1, COM2, COM3.... Marque apenas a opção "enable buffer overrun" nas duas portas, clique no botão "Apply" e feche o setup. Na configuração mostrada na figura abaixo, as portas COM1 e COM2 formam uma conexão NULL-MODEM, onde uma porta deve ser utilizada pelo PICSimLab e outra pela aplicação com comunicação serial.

4.2 Instalação e Configuração do tty0tty (Linux)

Faça o download do tty0tyy. Descompacte a pasta baixada.

Abra um terminal e entre na pasta tty0tty/module e digite os comandos na sequência:

```
sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get -y install gcc make linux-headers-'uname -r'
make
sudo make install
```

Depois de instalado, o módulo cria 8 portas interconectadas da seguinte forma:

```
/dev/tnt0 <=> /dev/tnt1
/dev/tnt2 <=> /dev/tnt3
/dev/tnt4 <=> /dev/tnt5
/dev/tnt6 <=> /dev/tnt7
```

a conexão entre cada par é da forma:

```
TX -> RX
RX <- TX
RTS -> CTS
CTS <- RTS
DSR <- DTR
```

```
CD <- DTR
DTR -> DSR
DTR -> CD
```

Qualquer par de portas formam uma conexão NULL-MODEM, onde uma porta deve ser utilizada pelo PICSimLab e outra pela aplicação com comunicação serial.

Depuração Integrada com o MPLABX (PIC)

Para utilizar o IDE MPLABX para depurar e programar o PicsimLab, basta instalar o plugin com-picsim-picsimlab.nbm no MPLABX.

O plugin se conecta ao Picsimlab através de um socket TCP na porta 1234, permita o acesso no firewall.

Tutorial: Como usar o MPLABX para programar e depurar o PICsimLab (Inglês)

Integração com a IDE do Arduino (ATMEGA)

Para utilização integrada com a IDE do Arduino, basta fazer a configuração da porta serial como explicado na seção 4 e carregar o bootloader do Arduino. O bootloader pode ser carregado pelo menu "help->exemplos" escolhendo o arquivo ATmega-BOOT_168_atmega328.pzw.

No windows, considerando o com0com fazendo uma conexão NULL-MODEM entre a porta COM1 e COM2, basta conectar o PICSimLab na porta COM1 e a IDE Arduino na porta COM2 ou vice-versa.

No Linux o funcionamento é o mesmo, mas utilizando por exemplo as portas /dev/tnt2 e /dev/tnt3.

No Linux para as portas virtuais serem detectadas no Arduino é necessário substituir a biblioteca lib/liblistSerialsj.so do Arduino por uma com suporte a detecção das portas do tty0tyy, que pode se baixada no link listSerialC com suporte ao tty0tyy.

Depuração com o avr-gdb (ATMEGA)

Com o suporte a depuração habilitado é possível utilizar o avr-gdb para depurar o código utilizado no simulador. Utilize o avr-gdb com o arquivo .elf como parâmetro:

avr-gdb arquivo_compilado.elf

e o comando abaixo para se conectar:

target remote localhost:1234

Osciloscópio

O PICSimLab possui um osciloscópio básico de dois canais que pode ser utilizado para ver o sinal em qualquer pino do microcontrolador. O osciloscópio pode ser acessado pelo menu "Modules->Oscilloscope".

Partes Avulsas

O PICsimLab possui uma janela que permite a ligação de partes avulsas ao microcontrolador, ela pode ser acessada pelo menu "Modules->Spare parts".

A janela principal possui o menu com as seguintes funções:

- File
 - Save configuration Salva as configurações atuais das partes avulsas em um arquivo .pcf
 - Load configuration Carrega as configurações de uma arquivo .pcf
- Add
 - Servo Motor Adiciona um servo motor
 - Step Motor Adiciona um motor de passo
 - Push Buttons Adciona 8 botões de pressionar
 - Switchs Adiciona 8 chaves
 - LEDs Adiciona 8 LEDs vermelhos
 - Potentiometers Adiciona 4 potênciometros
 - RGB LED Adiciona 1 LED RGB
- Help
 - Contents Abre a janela de Ajuda
 - About Mostra mensagem de versão e autor

Depois de adicionado a parte, com um clique com o botão direito do mouse é possível acessar o menu das opções da parte com as opções:

- Propierties Abre a janela de configuração das conexões
- Move Desbloqueia a parte para movimentação
- Delete Remove a parte

9.1 Servo Motor

O servo motor é um componente que deve ser acionado com um pulso de largura variável de 1ms a 2ms a cada 20 ms. Um pulso de 1ms posiciona o servo a -90°, um de 1,5ms a 0° e um de 2ms a 90°.

9.2 Step Motor

O motor de passo e um componente com 4 bobinas que devem ser acionadas na ordem correta para fazer o deslocamento do rotor. Cada passo do motor é de 1.8°.

9.3 Push Buttons

Esta parte é formada por 8 botões de pressão. Quando pressionado a saída vai para nível lógico "1".

9.4 Switchs

Esta parte é formada por 8 chaves com posição ligado ou desligado (0 ou 1).

9.5 LEDs

Essa parte é uma barra de 8 LEDs vermelhos independentes.

9.6 Potentiometers

Essa parte é formada por 4 potênciometros ligados entre 0 e 5 Volts, a saída está ligada ao cursor e varia dentro dessa faixa de tensão.

9.7 RGB LED

Essa parte é formada por um LED RGB de 4 terminais. Cada cor pode ser acionada de forma independente. Utilizando PWM é possível gerar varias cores através da combinação da 3 cores primárias.

Como Fazer (How To's)

- How to use MPLABX to program and debug PICsimLab.
- (Deprecated) How to Compile PICsimLab and Create New Boards.

Part II English Manual

Table of Contents

1	Intr	oduction	35	
2	Interface			
	2.1	Janela Principal	36	
	2.2	Comandos	38	
3	Boa	rds	39	
	3.1	Features of Board 1	39	
	3.2	Features of Board 2	40	
	3.3	Features of Board 3	41	
	3.4	Features of Board 4	42	
	3.5	Features of Board 5	43	
4	Seri	al Communication	44	
	4.1	Instalação e Configuração do com0com (Windows	44	
	4.2	Instalação e Configuração do tty0tty (Linux)	46	
5	MP	LABX Integrated Debug (PIC)	48	
6	Ard	uino IDE Integration (ATMEGA)	49	
7	avr-	gdb Debug (ATMEGA)	50	
8	Osci	illoscone	51	

TA	TABLE OF CONTENTS				
9	Partes Avulsas				
	9.1	Servo Motor	54		
	9.2	Step Motor	54		
	9.3	Push Buttons	55		
	9.4	Switchs	56		
	9.5	LEDs	56		
	9.6	Potentiometers	57		
	9.7	RGB LED	58		
10	How	To's	59		

Chapter 1

Introduction

PICsimLab means PIC Simulator Laboratory

PicsimLab is a realtime emulator of development boards with integrated MPLABX/avrgdb debugger. PicsimLab supports picsim microcontrollers: PIC16F628/16F777/16F877A/18F452/18F4550/18F4620 and simavr microcontroller: ATMEGA328. PICSimLab have integration with MPLABX/Arduino IDE for programing the boards microcontrollers.

Interface

2.1 Janela Principal

A janela principal é composta de um menu, uma barra de status, um combobox de seleção de frequência, um botão liga/desliga para acionar a depuração (debug), alguns controles específicos da placa e parte de interface da placa em si.

No título da janela é mostrado o nome do simulador PICSimLab, seguido da placa e do microcontrolador em uso.

O combobox de seleção de frequência altera diretamente a velocidade de trabalho do microcontrolador, quando o label "Clock (MHz)" fica em vermelho indica que o computador não está sendo capaz de executar o programa em tempo real para o clock

selecionado. Neste caso a simulação pode apresentar alguma diferença do esperado e a carga da CPU ser aumentada.

O botão liga/desliga para acionar a depuração serve para habilitar o suporte à depuração, com o suporte ativo a uma carga maior de simulação.

Os menus e suas funções são listados abaixo:

• File

- Load Hex Carrega arquivo .hex
- Reload Last Recarrega último arquivo .hex utilizado
- Configure Abre a janela de configuração
- Save Workspace Salva todas as configurações atuais do workspace em um arquivo .pzw
- Load Workspace Carrega as configurações salvas de uma arquivo .pzw
- Exit

• Board

- 1 McLab1 Escolhe a placa 1
- 2 K16F Escolhe a placa 2
- 3 McLab2 Escolhe a placa 3
- 4 PICGenios Escolhe a placa 4
- 5 Arduino Escolhe a placa 5

• Microcontroller

 xxxxx - Seleciona o microcontrolador a ser utilizado (depende da placa selecionada)

• Modules

- Oscilloscope Abre a janela do osciloscópio
- Spare Parts Abre a janela de peças avulsas

• Tools

- Serial Term - Abre o terminal serial Cutecom

• Help

- Contents Abre a janela de Ajuda
- Examples Carrega exemplos
- About Mostra mensagem de versão e autor

Na primeira parte da barra de status é mostrado o estado da simulação, na parte do meio o estado do suporte a depuração e na última parte o nome da porta serial utilizada, sua velocidade padrão e o erro em relação a velocidade real configurada no microcontrolador.

2.2 Comandos

Sobre a área de interface da placa é possível interagir de algumas formas:

- Click in ICSP connector to load an .hex file.
- Click in PWR button to ON/OFF the emulator..
- The buttons can be activated through mouse or keys 1, 2, 3 e 4.

Boards

3.1 Features of Board 1

It emulates the Labtools development board McLab1 that uses one PIC16F628A.

Board 1 schematics.

The code examples can be loaded in PicsimLab menu Help->examples.

The source code of picsimlab1 example using MPLABX and XC8 compiler are in the folder: src/board_1/.

To buy McLab1 kit, download manual and examples you can go to www.mosaico.com.br The hardware and the use of kit are described in the book **Desbravando o PIC - Ampliado e Atualizado para PIC 16F628A** of Erica publisher (ISBN: 978-85-7194-867-9).

3.2 Features of Board 2

It emulates an didatic board developed by author.

Board 2 schematics.

The code examples can be loaded in PicsimLab menu Help->examples.

The source code of picsimlab2 example using MPLABX and XC8 compiler are in the folder: src/board_2/.

3.3 Features of Board 3

It emulates the Labtools development board McLab2 that uses one PIC16F877A or one PIC18F452.

Board 3 schematics.

The code examples can be loaded in PicsimLab menu **Help->examples**.

The source code of picsimlab3 example using MPLABX and XC8 compiler are in the folder: src/board_3/.

To buy McLab2 kit, download manual and examples you can go to www.mosaico.com.br
The hardware and the use of kit are described in the book **Conectando o PIC - Recursos Avançados** of Erica publisher (ISBN: 978-85-7194-737-5).

3.4 Features of Board 4

It emulates the microgenius development board PICGenios PIC18F e PIC16F Microchip that uses one PIC16F877A or one PIC18F452.

Board 4 schematics.

The code examples can be loaded in PicsimLab menu **Help->examples**.

The source code of picsimlab4 example using MPLABX and XC8 compiler are in the folder: src/board_4/.

To buy PICGenios PIC18F and PIC16F Microchip kit and download manual www.microgenios.com.

3.5 Features of Board 5

Serial Communication

Para utilizar o a porta serial do simulador, instale um emulador NULL-MODEM:

- Windows: com0com http://sourceforge.net/projects/com0com/
- Linux: ttyOtty https://github.com/lcgamboa/ttyOtty

Para comunicação o PICSimLab deve ficar em uma porta do emulador NULL-MODEM e o outro aplicativo na outra porta. Exemplos de configuração ligando o PICSimLab ao Cutecom para comunicação serial:

OS	porta PicsimLab	porta Cutecom	NULL-Modem prog.	Conexão
Windows	com1	com2	com0com	com1<=>com2
Linux	/dev/tnt2	/dev/tnt3	tty0tty	/dev/tnt2<=>/dev/tnt3

4.1 Instalação e Configuração do com0com (Windows

Faça o download da versão assinada do com0com.

Descompacte o arquivo .zip baixado e execute o instalador específico de seu sistema operacional, x86 para windows 32 bits ou x64 para windows 64 bits.

Configure a janela "choose components" como a figura abaixo:

Na última janela da configuração, marque a opção "Launch setup":

Na janela do setup, troque os nomes das portas para COM1, COM2, COM3.... Marque apenas a opção "enable buffer overrun" nas duas portas, clique no botão "Apply" e feche o setup. Na configuração mostrada na figura abaixo, as portas COM1 e COM2 formam uma conexão NULL-MODEM, onde uma porta deve ser utilizada pelo PICSimLab e outra pela aplicação com comunicação serial.

4.2 Instalação e Configuração do tty0tty (Linux)

Faça o download do tty0tyy. Descompacte a pasta baixada.

Abra um terminal e entre na pasta tty0tty/module e digite os comandos na sequência:

```
sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get -y install gcc make linux-headers-'uname -r'
make
sudo make install
```

Depois de instalado, o módulo cria 8 portas interconectadas da seguinte forma:

```
/dev/tnt0 <=> /dev/tnt1
/dev/tnt2 <=> /dev/tnt3
/dev/tnt4 <=> /dev/tnt5
/dev/tnt6 <=> /dev/tnt7
```

a conexão entre cada par é da forma:

```
TX -> RX
RX <- TX
RTS -> CTS
CTS <- RTS
DSR <- DTR
```

CD <- DTR
DTR -> DSR
DTR -> CD

Qualquer par de portas formam uma conexão NULL-MODEM, onde uma porta deve ser utilizada pelo PICSimLab e outra pela aplicação com comunicação serial.

MPLABX Integrated Debug (**PIC**)

To use the MPLABX IDE for debug and program the PicsimLab, install the plugin com-picsim-picsimlab.nbm in MPLABX.

The plugin connect to Picsimlab through a TCP socket using port 1234, and you have to allow the access in the firewall.

Tutorial: how to use MPLABX to program and debug PICsimLab.

Arduino IDE Integration (ATMEGA)

Para utilização integrada com a IDE do Arduino, basta fazer a configuração da porta serial como explicado na seção 4 e carregar o bootloader do Arduino. O bootloader pode ser carregado pelo menu "help->exemplos" escolhendo o arquivo ATmegaBOOT_168_atmega328.pzw.

No windows, considerando o com0com fazendo uma conexão NULL-MODEM entre a porta COM1 e COM2, basta conectar o PICSimLab na porta COM1 e a IDE Arduino na porta COM2 ou vice-versa.

No Linux o funcionamento é o mesmo, mas utilizando por exemplo as portas /dev/tnt2 e /dev/tnt3.

No Linux para as portas virtuais serem detectadas no Arduino é necessário substituir a biblioteca lib/liblistSerialsj.so do Arduino por uma com suporte a detecção das portas do tty0tyy, que pode se baixada no link listSerialC com suporte ao tty0tyy.

avr-gdb Debug (ATMEGA)

Com o suporte a depuração habilitado é possível utilizar o avr-gdb para depurar o código utilizado no simulador. Utilize o avr-gdb com o arquivo .elf como parâmetro:

avr-gdb arquivo_compilado.elf

e o comando abaixo para se conectar:

target remote localhost:1234

Oscilloscope

O PICSimLab possui um osciloscópio básico de dois canais que pode ser utilizado para ver o sinal em qualquer pino do microcontrolador. O osciloscópio pode ser acessado pelo menu "Modules->Oscilloscope".

Partes Avulsas

O PICsimLab possui uma janela que permite a ligação de partes avulsas ao microcontrolador, ela pode ser acessada pelo menu "Modules->Spare parts".

A janela principal possui o menu com as seguintes funções:

- File
 - Save configuration Salva as configurações atuais das partes avulsas em um arquivo .pcf
 - Load configuration Carrega as configurações de uma arquivo .pcf
- Add
 - Servo Motor Adiciona um servo motor
 - Step Motor Adiciona um motor de passo
 - Push Buttons Adciona 8 botões de pressionar
 - Switchs Adiciona 8 chaves
 - LEDs Adiciona 8 LEDs vermelhos
 - Potentiometers Adiciona 4 potênciometros
 - RGB LED Adiciona 1 LED RGB
- Help
 - Contents Abre a janela de Ajuda
 - About Mostra mensagem de versão e autor

Depois de adicionado a parte, com um clique com o botão direito do mouse é possível acessar o menu das opções da parte com as opções:

- Propierties Abre a janela de configuração das conexões
- Move Desbloqueia a parte para movimentação
- Delete Remove a parte

9.1 Servo Motor

O servo motor é um componente que deve ser acionado com um pulso de largura variável de 1ms a 2ms a cada 20 ms. Um pulso de 1ms posiciona o servo a -90°, um de 1,5ms a 0° e um de 2ms a 90°.

9.2 Step Motor

O motor de passo e um componente com 4 bobinas que devem ser acionadas na ordem correta para fazer o deslocamento do rotor. Cada passo do motor é de 1.8°.

9.3 Push Buttons

Esta parte é formada por 8 botões de pressão. Quando pressionado a saída vai para nível lógico "1".

9.4 Switchs

Esta parte é formada por 8 chaves com posição ligado ou desligado (0 ou 1).

9.5 LEDs

Essa parte é uma barra de 8 LEDs vermelhos independentes.

9.6 Potentiometers

Essa parte é formada por 4 potênciometros ligados entre 0 e 5 Volts, a saída está ligada ao cursor e varia dentro dessa faixa de tensão.

9.7 RGB LED

Essa parte é formada por um LED RGB de 4 terminais. Cada cor pode ser acionada de forma independente. Utilizando PWM é possível gerar varias cores através da combinação da 3 cores primárias.

How To's

- How to use MPLABX to program and debug PICsimLab.
- (Deprecated) How to Compile PICsimLab and Create New Boards.

Part III

License

Copyright © 2018 Luis Claudio Gambôa Lopes <lcgamboa@yahoo.com>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.