Essentials of MOSFETs

Unit 1: Transistors and Circuits

Lecture 1.3: Analog/RF Circuits

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Applications of MOSFETs

pymbo

Why analog /RF? Why CMOS?

Many applications involve analog / RF signals:

- many natural signals are analog (sensors)
- 2) disk drive electronics
- wireless receivers and transmitters
- 4) optical receivers
- 5) microprocessors / memories

CMOS:

- 1) many systems are both analog and digital
- 2) CMOS dominant for digital electronics
- 3) CMOS performance is acceptable for many analog applications (but not, generally as good as bipolar)

Basic CS Amplifier

4

Basic CS Amplifier: ac analysis

ac ground

$$\upsilon_{out} = -i_d R_D = -g_m R_D \upsilon_{in}$$

$$v_{out} = -i_d R_D = -g_m R_D v_{in}$$

$$A_v = \frac{v_{out}}{v_{in}} = -g_m R_D$$

Transconductance is an important analog figure of merit.

It is a measure of the transistor's ability to amplify.

Maximum gain

6

Transconductance

$$g_m \equiv \frac{\partial I_D}{\partial V_{GS}}\bigg|_{V_{DS}}$$

Output resistance

$$\delta i = \frac{\delta \upsilon}{r_0}$$

$$r_o \equiv \left[\left. \partial I_D / \partial V_{DS} \right|_{V_{GS}} \right]^{-1}$$

Maximum gain

high impedance current source

$$A_{\nu}(\max) = -g_{m}r_{0}$$

The **output resistance**, r_0 , of the MOSFET is an important figure of merit.

So is the **self gain**, $g_m r_o$.

Self-gain for 65 nm digital CMOS

$$g_m \approx \frac{0.2 \text{ mA/}\mu\text{m}}{0.2 \text{ V}} = 1 \text{ mS/}\mu\text{m}$$

$$r_o \approx \frac{1.2 \text{ V}}{0.18 \text{ mA/}\mu\text{m}} \approx 7 \text{ K}\Omega\text{-}\mu\text{m}$$

$$|A_{\upsilon}(\max)| = g_{m}r_{o} \approx 7$$

C.-H. Jan. et al., 2005 IEDM

Self-gain vs. scaling

Analog designers are frequently forced to use non-minimum length (NML) devices.

High frequency performance

Small-signal, low frequency equivalent circuit

$$i_d = g_m v_{gs} + v_{ds} / r_0$$

High frequency performance

Small-signal, high frequency equivalent circuit

$$i_d = g_m v_{gs} + v_{ds}/r_0$$

Short circuit current gain

$$i_{out} + (j\omega C_{gd})\upsilon_{gs} = g_{m}\upsilon_{gs} \to i_{out} \approx g_{m}\upsilon_{gs}$$

$$\upsilon_{gs} = i_{in} \frac{1}{j\omega(C_{gs} + C_{gd})}$$

$$i_{out} \approx \frac{g_{m}}{j\omega C_{TOT}}i_{in}$$

Gain-bandwidth product

$$i_{out} \approx \frac{g_m}{j\omega C_{TOT}} i_{in}$$

$$|\beta(\omega)| \approx \frac{g_m}{\omega C_{TOT}}$$

$$\left|\beta(\omega_T)\right| = 1 = \frac{g_m}{\omega_T C_{TOT}}$$

$$\omega_T = \frac{g_m}{C_{TOT}} = 2\pi f_T$$

Gain-bandwidth product

$$\omega_T = 2\pi f_T = \frac{g_m}{C_{TOT}}$$

The **gain-bandwidth product** is an important figure of merit for high frequency transistors.

f_{MAX}

$$f_T = \frac{g_m}{2\pi C_{TOT}}$$

insensitive to r_g and r_o independent of W channel length scaling increases f_T

$$f_{MAX} \approx \frac{\omega_T}{\sqrt{4r_g\left(1/r_o + \omega_T C_{gd}\right)}}$$
 sensitive to parasitics

 $-r_o$ $-C_{gd}$

Another figure of merit is f_{MAX} , the *maximum frequency of* oscillation or the *unity power gain*.

Analog figures of merit

transconductance

device noise

self gain

device mismatch

 f_T and f_{MAX}

device linearity

Source coupled pairs

Summary

Small signal transconductance is an important figure of merit for a transistor.

Self-gain (g_mr₀) is another important figure of merit.

f_T and f_{max} are key figure of merit for RF applications.

Other important device parameters are noise, mismatch, and linearity.

Next topic: Device metrics

Now that we understand what's important for digital and analog circuits, we can define an easily-measured, relevant set of **device metrics**.