

Infinite transducers on terms denoting graphs

Irène Durand and Bruno Courcelle

LaBRI, Université de Bordeaux

June, 2013

European Lisp Symposium, ELS2013

Objectives

What:

Compute information about finite graphs

- Verify properties (boolean values)
 - has the graph a proper coloring?
- Compute non boolean values
 - compute the number of proper colorings?
 - compute a proper coloring

How:

- represent graphs by terms
- term automata
- term transducers

Graphs as relational structures

For simplicity, we consider simple, loop-free, undirected graphs extensions are easy

Every graph G can be identified with the relational structure (\mathcal{V}_G, edg_G) where \mathcal{V}_G is the set of vertices and $edg_G \subseteq \mathcal{V}_G \times \mathcal{V}_G$ the binary symmetric relation that defines edges.

$$\begin{array}{lll} \mathcal{V}_G = & \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\} \\ \textit{edg}_G = & \{(v_1, v_2), (v_1, v_4), (v_1, v_5), (v_1, v_7), (v_2, v_3), (v_2, v_6), \\ & & (v_3, v_4), (v_4, v_5), (v_5, v_8), (v_6, v_7), (v_7, v_8)\} \end{array}$$

Representation of graphs by terms

- depends on the chosen decomposition (here clique-width)
- ▶ other widths : tree-width, path-width, boolean-width, ...

```
Let Ports a finite set of port labels (or ports) \{a,b,c,\ldots\}.
Graphs G=(\mathcal{V}_G,edg_G) s.t.
each vertex v\in\mathcal{V}_G has a port, port(v)\in Ports.
```

Operations:

- constant a denotes a graph with a single vertex labeled a,
- ▶ ⊕ (binary) : union of disjoint graphs
- ▶ add_{a_b} (unary) : adds the missing edges between every vertex labeled a and every vertex labeled b,
- ren_{a_b} (unary) : renames a to b

Let $\mathcal{F}_{\mathsf{Ports}}$ be the signature containing these operations and constants.

Every *cwd*-term $t \in \mathcal{T}(\mathcal{F}_{\mathsf{Ports}})$ defines a graph G_t whose vertices are the constants (leaves) of the term t.

$t_0 = a$	$t_1 = b$	$t_2=\oplus(a,b)$	
a	b	a	
$t_3 = add_{a_b}(t_2)$	$add_{a_b}(\oplus(t_2,t_2))$	$add_{a_b}(\oplus(a,ren_{a_b}(t_3)))$	
a b	a b a a	b b	

Definition

A graph has clique-width at most k if it is defined by some $t \in \mathcal{T}(\mathcal{F}_{\mathsf{Ports}})$ with $|\mathsf{Ports}| \leq k$.

History of the project

Theorem

[Courcelle (1990) for tree-width, Courcelle, Makowski, Rotics (2001) for clique-width]

Every monadic second-order definable set of finite graphs of bounded tree-width (or clique-width) has a linear time recognition algorithm.

- ▶ the algorithm is given by a term automaton recognizing the terms denoting graphs satisfying the property
- ▶ How can we compute such automaton?

"Courcelle's theorem is a very nice theoretical result but unusable in practice"

The project : make it work

Beginning of the project [2009]

The Autowrite Lisp system [2001—...] first designed to verify call-by-need properties of term rewriting systems

Implements

- ► Terms
- ► Term rewriting systems
- ▶ Finite term automata (bottom-up) and operations
 - Emptiness
 - Boolean operations
 - Homomorphisms and inverse homomorphisms
 - Miminization

A finite term automaton \mathcal{A} is given by a tuple $(\mathcal{F}, Q, Q^f, \delta)$. The transition function δ is represented by a table.

Autograph: ELS2010

Courcelle's theorem + Autowrite \Longrightarrow Autograph

Library of automata working on cwd-terms (built with the \mathcal{F}_{Ports} signature) verifying graph properties expressed in MSOL (or not)

- connectedness
- ▶ *k*-colorability, *k*-acyclic-colorability
- forest
- regularity
- **.** . . .

First presentation at ELS2010 (lisbon).

- methods for computing the automata (from the formula, direct constructions)
- ▶ Some Results

Example: the Stable property

Automaton 2-STABLE

States: <a> <ab> error

A graph is stable if it has no edge.

```
Final States: <a> <b> <ab>
Transitions a -> <a>
add a b(\langle a \rangle) \rightarrow \langle a \rangle
ren_a_b(<a>) -> <b>
ren_a_b(\langle b \rangle) \rightarrow \langle b \rangle
ren a b(<ab>) -> <b>
oplus*(<a>,<a>) -> <a>
oplus*(<a>,<b>) -> <ab>
oplus*(<a>,<ab>) -> <ab>
add_a_b(<ab>) -> error
add a b(error) -> error
oplus*(error,q) -> error for all q
```

Signature: a b ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2*

ELS2010: First results

Connectedness property : $|Q| = 2^{2^{cwd}-1} + 2^{cwd} - 2$

For cwd = 4 : |Q| = 32782

cwd	2	3	4
$\mathcal{A}/min(\mathcal{A})$	10 / 6	134 / 56	out

Stable property : $|Q| = 2^{cwd}$ works up to cwd = 11.

Forest property : $|Q| = 3^{3^{cwd}}$ does not work even for cwd = 2.

Parallel experimentation done by Frédérique Carrère using MONA .

Observation : the automata are simply too big! ⇒ fly-automata (easy in Lisp not in MONA)

Fly Term automata

A fly term automaton is given by $(\mathcal{F}, \delta, \mathsf{fsp})$ where

- lacktriangle the signature ${\mathcal F}$ may be countably infinite,
- lacktriangleright δ is computable transition function
- fsp is the final state predicate

Implementation : the transition function δ is represented by a Lisp function

The complete sets of transitions, states and final states are never computed in extenso.

Fly automaton for the Stable property

```
(defclass stable-state (graph-state)
  ((ports :type ports :initarg :ports :reader ports)))
(defmethod make-stable-state ((ports port-state))
  (make-instance 'stable-state :ports ports))
(defmethod state-final-p ((s stable-state)) t)
(defun stable-automaton (&optional (cwd 0))
  (make-fly-automaton
   (cwd-signature cwd)
   (lambda (root states)
     (let ((*ports* (port-iota cwd))
           (*neutral-state-final-p* t))
       (stable-transitions-fun root states)))
   :name (format nil "~A-STABLE" cwd)))
```

Fly automaton for the Stable property (continued)

13/30

```
(defmethod stable-transitions-fun
    ((root constant-symbol) (arg (eql nil)))
  (let ((port (port-of root)))
    (when (or (not *ports*) (member port *ports*))
     (make-stable-state (make-ports-from-port port)))))
(defmethod stable-transitions-fun ((root abstract-symbol) (arg list))
  (common-transitions-fun root arg))
(defmethod graph-add-target (a b (s stable-state))
  (let ((ports (ports s)))
    (unless (and (ports-member a ports) (ports-member b ports))
     s)))
(defmethod graph-oplus-target ((s1 stable-state) (s2 stable-state))
  (make-stable-state
  (ports-union (ports s1) (ports s2))))
(defmethod graph-ren-target (a b (state stable-state))
  (make-stable-state
  (ports-subst b a (ports state))))
```

Fly automaton for the Stable property

```
AUTOGRAPH> (defparameter *stable* (stable-automaton))
*STABLE*
AUTOGRAPH> *t1*
oplus*(a,oplus*(b,c))
AUTOGRAPH> (recognized-p *t1* *stable*)
T
!<{abc}>
AUTOGRAPH> *t2*
add_a_b(oplus*(a,oplus*(b,c)))
AUTOGRAPH> (recognized-p *t2* *stable*)
NIL
NII.
```

Advantages of fly automata

- when finite, may be compiled to a table-automaton
- solve the space problem for huge finite automata
- yield new perspectives

Fly automata may be infinite in two ways : infinite signature \Longrightarrow may work on any clique-width

- ▶ we are no longer restricted to graphs of bounded cwd infinite set of states ⇒ counting states, attributed states
 - beyond MSOL
 - computation of non boolean values
 - we gain in expressing power
 - ▶ we loose linearity (Complexity issues discussed in CAI2013).

term automata → term transducers

Attributed Fly Automata (deterministic case)

An attributed fly automaton $\mathcal B$ is a fly automaton based on a fly automaton $\mathcal A$ which in parallel to computing states synthetizes an attribute.

Computation of the attribute :

Function symbol-fun (f) which applied to a symbol f returns the function which computes the new attribute from the attributes of the children nodes.

$$a_3 = (funcall (symbol-fun f) a_1 a_2)$$

Example: computing the number of vertices

(so the number of constants)
For all constants c, symbol-fun (c) is (lambda () 1)
For all non constant symbol f, symbol-fun (f) is #'+

To compute the depth use

```
(lambda (&rest attributes)
  (1+ (reduce #'max attributes :initial-element 0)))
instead of #'+
```

Attributed Fly Automata: non deterministic case

 $a_5 = (funcall (symbol-fun f) a_1 a_3)$ $a_6 = ?$ There are two ways to access state q_6

$$a_6^1 = (\text{funcall (symbol-fun f)} a_1 a_4)$$

 $a_6^2 = (\text{funcall (symbol-fun f)} a_2 a_3)$

$$a_6 = (\text{funcall combine-fun} a_6^1 a_6^2)$$

Attribution mechanism

As seen previously the mechanism to attribute an automaton requires two functions :

- symbol-fun (f) for computing attributes
- combine-fun for handling non-determinism

```
(defclass afuns ()
  ((symbol-fun :reader symbol-fun :initarg :symbol-fun)
   (combine-fun :reader combine-fun :initarg :combine-fun)))
Counting the number of runs:
(defgeneric count-run-symbol-fun (symbol))
(defmethod count-run-symbol-fun ((s abstract-symbol)) #'*)
(defvar *count-afun*
  (make-instance 'afun
                 :symbol-fun #'count-run-symbol-fun
                 :combine-fun #'+))
```

Transducers

The run of a fly automaton on a term returns a boolean value

"Is the term recognized by the automaton?"

A transducer is an extension of a fly automaton which may return non boolean values.

It is just a fly automaton equipped with an output function returning a value computed from the accessible final states

The run of an attributed fly automaton gives a set of attributed final states

$$\{[q_1, a_1], \ldots, [q_n, a_n]\}$$

Applying the combine-fun to the attributes of the final states

(funcall combine-fun
$$a_1', \ldots, a_m'$$
)

yields the final value.

Application to coloring problems

proper coloring: two vertices connected by an edge do not have the same color

k-coloring : coloring with at most k colors

A graph is k-colorable iff it admits a proper k-coloring.

Deciding k-Colorability (NP-complete for $k \geq 3$)

Colored graphs and terms

To deal with colored graphs, we use a modified constant signature. If we are dealing with k colors then every constant c yields k colored constants c^1, \ldots, c^k .

In a term, the constant c~i means that the corresponding vertex is colored with color i.

For instance, the term add_a_b(oplus(a~1,oplus(b~2,oplus(a~1,b~2)))) represents the following graph properly 2-colored

Proper coloring automaton

Recognizes graphs with a proper coloring.

```
(defclass colors-state (graph-state)
  ((color-fun :initarg :color-fun :reader color-fun)))
(defgeneric coloring-transitions-fun (root arg))
(defmethod coloring-transitions-fun
    ((root color-constant-symbol) (arg (eql nil)))
  (let ((color (symbol-color root))
        (port (port-of root)))
    (when-correct-port
    port
     (make-colors-state
      (make-color-port-color-fun color port)))))
(defmethod graph-add-target (a b (colors-state colors-state))
  (let ((color-fun (color-fun colors-state)))
    (unless (intersection
             (get-colors a color-fun)
             (get-colors b color-fun))
      colors-state)))
```

Proper coloring automaton (continued)

```
AUTOGRAPH> (defparameter *2-coloring* (coloring-automaton 2))
*2COL*
AUTOGRAPH> *tcol*
add_a_b(oplus*(a~1,oplus*(b~2,oplus*(a~1,b~2))))
AUTOGRAPH> (recognized-p *tcol* *2-coloring*)
T
!<a:1 b:2>
```

Automaton for deciding k-colorability

A graph is k-colorable iff it admits a proper k-coloring.

Automaton level : projection ⇒ non deterministic automaton

```
Color projection : color-projection(c^i) = c.
```

```
2-coloring-automaton; deterministic; non deterministic a -> !<a:1> a -> !<a:2> b -> !<b:2> b -> !<b:2> colorability-automaton; non deterministic a -> !!<a:2> !<a:2> !<a:2> !<a:2> b -> !<b:2> !<b:1>} b -> !<b:2> !<b:1>}
```

Other transitions identical.

Counting the number of proper colorings

```
AUTOGRAPH> (defparameter *2-coloring-counting* ;; count runs
              (attribute-automaton *2-coloring* *count-afun*))
*2-COLORING-COUNTING*
AUTOGRAPH> (defparameter *count-2-colorings*
              (color-projection-automaton
                                                 ;; color projection
               *2-coloring-counting* 2))
*COUNT-2-COLORINGS*
AUTOGRAPH> (compute-final-target *t* *count-2-colorings*)
\{[!\langle a:1 b:2\rangle,1] [!\langle a:2 b:1\rangle,1]\}
AUTOGRAPH> (compute-final-value *t* *count-2-colorings*)
2
AUTOGRAPH> (with-time
             (compute-final-value
              (petersen)
              (color-projection-automaton
               (attribute-automaton (coloring-automaton 4) *count-afun*)
 in 5.532sec
12960
```

Computing colorings

The coloring of a graph can be described by a color assignment to constant positions.

Positions in a term being represented by Dewey words in $\{0,1\}^*$ (empty position : E)

Enumerating values

28/30

The set of proper colorings of a graph is generally of exponential size.

We do not necessarily need all of them.

The enumeration mechanism presented at ELS12 is just what we need.

```
AUTOGRAPH> (defparameter *e*
    (final-value-enumerator
    (petersen)
    *computing-4-colorings*))
*E*
AUTOGRAPH> (call-enumerator *e*)
(([0.0.0.0:3] [0.0.0.1.0.0.0.0.0:4]
[0.0.0.1.0.0.0.0.1.0.0.0.0:3]
```

Summary

Future work

Short-term

- tests
- tests on real graphs and random graphs
- improve our graph decomposition system (parsing problem NP-Complete)

Long-term

- dags
- parallelism
- apply fly automata to other domains