Assignment 7

There are total 30 points in this assignment. 27 points is considered 100%. If you go over 27 points, you will get over 100% for this homework and it will count towards your course grade (not over 115%).

Your solutions should contain full proofs. Bare answers will not earn you much. This assignment covers Section 3.6 in Bartle–Sherbert.

1. Properly divergent sequences

In the exercises below we look at sequences that "go to infinity".

DEFINITION. Let (x_n) be a sequence of real numbers. We say that (x_n) tends to (diverges to) $+\infty$, and write $\lim(x_n) = +\infty$, if for every $\alpha \in \mathbb{R}$ there exists a natural number K such that if n > K, then $x_n > \alpha$.

Another notation is $x_n \to +\infty \ (n \to \infty)$.

(1) [2pt] Give an analogous definition of a sequence that tends to $-\infty$.

DEFINITION. We say that (x_n) is properly divergent in case we have either $\lim(x_n) = +\infty$ or $\lim(x_n) = -\infty$.

- (2) (\sim Example 3.6.2) For the following sequences determine whether they are properly divergent.
 - (a) $[1pt] x_n = n.$
 - (b) [1pt] $x_n = n^2$.
 - (c) [1pt] $x_n = (-1)^n n$.
 - (d) [2pt] $x_n = c^n$, where c is a given real number. (*Hint:* Note that the answer depends on c. For c > 1, use Bernoulli's inequality.)
- (3) [3pt]
 - (a) Suppose (x_n) is properly divergent. Show that (x_n) is ultimately nonzero and that $\lim_{n \to \infty} (1/x_n) = 0$.
 - (b) Suppose $\lim(y_n) = 0$ and $y_n > 0$ for all sufficiently large n. $\lim(1/y_n) = +\infty$.
- (4) [2pt] (Theorem 3.6.4) Prove that following theorem (we may call it the squeeze theorem for properly divergent sequences).

Let (x_n) and (y_n) be two sequences of real numbers and suppose that

$$x_n \leq y_n$$
 for all $n \in \mathbb{N}$.

If
$$\lim(x_n) = +\infty$$
, then $\lim(y_n) = +\infty$.
If $\lim(y_n) = -\infty$, then $\lim(x_n) = -\infty$.

(5) [2pt] (Exercise 3.6.1) Show that if (x_n) is an unbounded sequence, then it has a properly divergent subsequence.

— see next page —

- (6) [3pt] (\sim Exercise 3.6.2) Give examples of sequences (x_n) and (y_n) that tend to $+\infty$ and:
 - (a) $\lim (x_n/y_n) = 0,$
 - (b) $\lim (x_n/y_n) = 10$,
 - (c) $\lim (x_n/y_n) = +\infty$,
 - (d) $\lim(x_n/y_n)$ does not exist as either a real number or infinity.
- (7) [3pt] (Theorem 3.6.5) Prove that following theorem. Let (x_n) and (y_n) be two sequences of positive real numbers and suppose that for some $L \in \mathbb{R}$, L > 0, we have

$$\lim(x_n/y_n) = L.$$

Then $\lim(x_n) = +\infty$ if and only if $\lim(y_n) = +\infty$. (*Hint:* Show that for n large enough, $\frac{1}{2}L < x_n/y_n < \frac{3}{2}L$. Then use the theorem in Prob. 4.)

- (8) [3pt]
 - (a) Suppose that $\lim(a_n) = L \neq 0$ and $\lim(b_n) = +\infty$. Show that $(a_n b_n)$ is properly divergent. (*Hint*: Use the above theorem. Don't forget that you need two positive sequences to use it.)
 - (b) Suppose that $\lim(a_n) = L \neq 0$, $\lim(b_n) = 0$, and $b_n > 0$ for all sufficiently large n. Use the previous item and Problem 3b to show that (a_n/b_n) is properly divergent.
- (9) [2pt] (Exercise 3.6.6) Let (x_n) be properly divergent and let (y_n) be such that $\lim(x_ny_n)$ exists as a real number. Show that (y_n) converges to 0.
- (10) (~ Exercise 3.6.8, 10) For the following sequences determine whether they are properly divergent.
 - (a) [2pt] $x_n = \sqrt{n^2 1}/\sqrt{n + 100}$. (Hint: Use the theorem in Prob. 7.)
 - (b) $[1pt] x_n = \sin \sqrt{n}$.
 - (c) [2pt] x_n if it is given that $\lim(x_n/n) = L$, where L > 0. (Hint: Don't forget that to use the previous theorem, you have to explain why $x_n > 0$ first.)