Homework 2

Vincent La PSTAT 160A October 6, 2016

- 10. (a) See variables X and Y in the .py file.
 - (b) See variables U and V in the .py file.
 - (c) Distribution of U_1 and V_1 .
 - i. First we identify the distribution of V_1 . First, notice that because X and Y $\sim N(0,1)$, it is the case that X_1^2 and $Y_1^2 \sim \chi_1^2$. Now, we also know that the sum of two chi-square random variables with n and m degrees of freedom respectively is also distributed as a chi-squared random variable with n+m degrees of freedom. Thus, $X_1^2 + Y_1^2 \sim \chi_2^2$. Now, we use the method of moment generating functions to find the distribution of $V := (X_1^2 + Y_1^2)/2$. Let $W = X_1^2 + Y_1^2 \sim \chi_2^2$. Then,

$$M_{V_1}(t) = \mathbb{E}[\exp(tW/2)]$$

$$= M_W(t/2)$$

$$= (1 - 2(\frac{t}{2}))^{-2/2}$$

$$= (1 - t)^{-1}$$

$$= \frac{1}{1 - t}$$

Which is also the moment generating function of the exponential distribution with $\beta = 1$. Since MGFs are unique, $V_1 \sim Exp(1)$.

ii. Now, we identify the distribution of U_1 .

$$F_{U_1} = \mathbb{P}(U_1 \le x)$$

$$= \mathbb{P}(1 - \exp(-V_1) \le x)$$

$$= \mathbb{P}(\exp(-V_1) \ge 1 - x)$$

$$= \mathbb{P}(-V_1 \ge \ln(1 - x))$$

$$= \mathbb{P}(V_1 \le \ln(1 - x))$$

$$= F_{V_1}(\ln(1-x))$$

$$= 1 - e^{\ln(1-x)}$$

$$= 1 - (1-x) = x$$

Thus, $U \sim \text{Uniform}(0,1)$.

- (d) See .py file.
- (e) Yes. In HW2.py I plotted $F_n(\cdot)$ and $F_U(\cdot)$ together on the same graph and they resemble each other a lot.