Shiva gahlod Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Coordination Chemistry:

11. Which of the following species is not expected to be a ligand

(A) NO+

(B) NH4+

(C) $NH_2^- + NH_3^+$

(D) CO

66. The correct order of magnetic moments is:

(A) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$

(B) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$

(C) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$

(D) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$

75. The complex that can show fac- and mer-isomers is :

[JEE MAIN 2020]

(1) [Co(NH₃)₄Cl₂]⁺

(2) [Pt(NH₃)₂Cl₂]

(3) [Co(NH₃)₃(NO₂)₃]

(4) [CoCl2(en)2]

67. Which one of the following complexes is an outer orbital complex?

(A) [Fe(CN)₆]⁴⁻

(B) [Mn(CN)6]4-

(C) $[Co(NH_3)_6]^{3+}$

(D) $[Ni(NH_3)_6]^{2*}$

Statement-1: Cis-isomer of [Co(en)₂Cl₂]Cl shows optical activity.

Statement-2: Cis-isomer of [Co(en)2Cl2]Cl is a symmetric molecule.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

Atomic Structure:

52.		ocity of 90 ms. If the uncertainty in its velocity is × 10m. (Rounded off to the nearest integer) [Given: h = 6.63 × 10Js] [JEE Main (April) 2021]				
Ans.	1					
18.	The binding energy of e- in ground state of Beject out an electron from three lowest states (A) 13.6, 10.2, 3.4 (B) 13.6, 3.4, 1.5					
31.	In a sample of H-atoms, electrons de-excite from a level 'n' to 1. The total number of lines belonging to Balmer series are two. If the electrons are ionized from level 'n' by photons of energy 13 eV. Then the kinetic energy of the ejected photoelectrons will be: (A) 12.15 eV (B) 11.49 eV (C) 12.46 eV (D) 12.63 eV					
	(A) 12.13 CV (B) 11.47 CV	(C) 12.40 CV (D) 12.03 CV				
13.	The ionziation enthalpy of hydrogen atom is $1.312 \times 10^6 \text{ J mol}^{-1}$. The energy required to excite the electron in the atom from n =1 to n =2 is [AIEEE-2008] (1) $8.51 \times 10^5 \text{ J mol}^{-1}$ (2) $6.56 \times 10^5 \text{ J mol}^{-1}$ (3) $7.56 \times 10^5 \text{ J mol}^{-1}$ (4) $9.84 \times 10^5 \text{ J mol}^{-1}$					
61.	Which quantum number is not related with Schrodinger equation					
	(A) Principal	(B) Azimuthal				
	(C) Magnetic	(D) Spin				
	Compound Angle:					
9.		in θ)(cot θ + tan θ)[wherever defined] is equal to (C) 2 (D) -2				

2.	If $T_n = (sin^n \ \theta + cos^n \ \theta)$, then $\frac{T_5 - T_3}{T_7 - T_5}$ is equal to					
	(A) $\frac{T_1}{T_3}$	(B) $\frac{T_2}{T_4}$	(C) $\frac{T_5}{T_7}$	(D) $\frac{T_3}{T_7}$		
12.	The value of $\sum_{k=1}^{13}$	$\frac{1}{\sin\left(\frac{\pi}{a} + \frac{(k-1)\pi}{a}\right)\sin\left(\frac{\pi}{a} + \frac{k\pi}{a}\right)}$	is equal to	[JEE Advanced 2016]		
	(A) $3 - \sqrt{3}$	(B) 2(3 – √3)	(C) $2(\sqrt{3}-1)$	(D) $2(2+\sqrt{3})$		
17.	Let a vertical tower AB have its end A on the level ground. Let C be the mid-point of AB and P be a point on the ground such that $AP = 2AB$. If $\angle BPC = \beta$, then tan β is equal to : [JEE-Mains 2017]					
	(A) ² / ₉	(B) 4/9	(C) ⁶ / ₇			
13.	The expression $\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A}$ can be written as : (A) $\sec A + \csc A$ (B) $\sin A \cos A + 1$ (C) $\sec A \csc A + 1$ (D) $\tan A + \cot A$					
	1 /					
	Functions:					
5.	Which one of the following function is surjective but not injective?					
	(A) $f: R \to R$, $f(x)$	$= x^3 + x + 1$	(B) $f:[0,\infty)\to(0,\infty)$	1]; $f(x) = e^{- x }$.		
	(C) $f: R \to R, f(x)$	$= x^3 + 2x^2 - x + 1$	(D) $f: R \rightarrow R^+, f(x)$	$=\sqrt{1+x^2}$		
10.	Let $f: R \to R$ and $g: R \to R$ be two non-constant differentiable functions. If $f'(x) = (e^{(f(x))-g(x)})g'(x)$ for all $x \in R$, and $f(1) = g(2) = 1$, then which of the following					
	statement(s) is (a	re) TRUE ?		[JEE Ad. 2018]		
	(A) $f(2) < 1 - lo$	g _e 2	(B) $f(2) > 1 - \log$	e 2		
	(C) $g(1) > 1 - lo$	g _e 2	(D) $g(1) < 1 - \log x$	g _e 2		
1.	$If f(x) = 4x^3 - x^2$	v 1		$g_e 2$ $0 \le x \le 1$ $0 \le x \le 1$ then find the value of		

If graph of a function f(x) which is defined in [-1,4] is shown in the adjacent figure then identify
the correct statement(s).

- (A) domain of f(|x| 1) is [-5,5]
- (B) range of f(|x| + 1) is [0,2]
- (C) range of f(-|x|) is [-1,0]
- (D) domain of f(|x|) is [-3,3]

πx

37. Let a function f : N → N be defined by.

[JEE - Main 2022]

$$f(x) = \begin{bmatrix} 2n, & n = 2, 4, 6, 8, \dots \\ n-1, & n = 3, 7, 11, 15, \dots \\ \frac{n+1}{2}, & n = 1, 5, 9, 13, \dots \end{bmatrix}$$
 then f is

- (A) One-one but not onto
- (B) Onto but not one-one
- (C) Neither one-one nor onto
- (D) one-one and onto