Graphes

1 Définitions

1.1 Graphes

Un graphe **non orienté** est la donnée d'un couple G = (V, E), où V est un ensemble fini non vide et $E \subset \{\{x,y\} \mid (x,y) \in V^2\}$. Un graphe **orienté** est la donnée d'un couple H = (S,A), où S est un ensemble fini non vide et $A \in \mathcal{P}(S^2)$.

Les éléments de V et A sont appelés **sommets du graphe**, ceux de E sont ses **arrêtes**, et ceux de A ses **arcs**.

Si $e = \{x\} \in E$ (avec $x \in V$), e est une **boucle** sur x (idem pour e = (x, x) pour $x \in S$). Pour $(x, y) \in V^2$, on dit que x et y sont **voisins** ssi $x, y \in E$. Dans un graphe orienté, $x \in S$ est **successeur** (resp. prédecesseur)de $y \in V$ ssi (y, x) (resp. $(x, y) \in A$.

On appelle **voisinnage** de $x \in E$ l'ensemble de ses voisins. Le **degré** de x, noté deg x, est le cardinal de ce voisinnage.

Pour les graphes orientés, on distingue le **degré sortant** de x, noté $\deg^+ x$, le nombre de successeurs de x, du **degré entrant** de x, noté $\deg^- x$, le nombre de prédecesseurs de x.

On supposera par la suite que l'on travaille avec des graphes sans boucles

Propriété : Soit G = (V, E) un graphe. On a $\sum_{x \in V} \deg(x) = 2card(E)$

▷ On a :

$$\sum_{x \in V} \deg(x) = \sum_{x \in V} \sum_{y \in V} \mathbb{1}_{\{x,y\}} = \sum_{(x,y) \in V^2} \mathbb{1}_{\{x,y\}} = 2 \sum_{\{x,y\} \in V^2} \mathbb{1}_{\{x,y\}} = 2 \operatorname{card} (E).$$

Car le graphe est sans boucle. Il faudrait sinon ajouter le nombre de boucles présentes dans le graphe.

1.2 Accessibilité, connexité

On fixe G = (V, E) un graphe non orienté, et H = (A, S) un graphe orienté.

Soit $s = (s_i) \in V^{n+1}$. On dit que s est une **chaîne de** G ssi $\forall i \in [1, n[, \{s_i, s_{i+1}\} \in E]]$ On dit alors que s est une chaîne de longueur n et qui relie s_0 **et** s_n .

Soit $s = (s_i) \in A^{n+1}$. On dit que s est un **chemin de** G ssi $\forall i \in [1, n[, \{s_i, s_{i+1}\}]) \in E$ On dit alors que s est une chaîne de longueur n et qui relie s_0 à s_n .

On dit alors que s_n est accessible depuis s_0 . Par ailleurs, si $s_n = s_0$, on dit que s est un **cycle** pour un graphe non-orienté, ou un **circuit** dans un graphe orienté.

Si tous les (s_i) sont distincts, on dit que s est **élémentaire**.

Remarque : Il y a toujours un nombre fini de chaînes élémentaires, mais si G (resp. H) a des cycles (resp. des circuits), il y a un nombre infini de chaînes (il suffit de tourner en rond...).

Exercice 1: Définir la relation entre les circuits/chemins d'un graphe, qui met en relation deux circuits/chemins ssi ils relient les mêmes sommets. Est-ce une relation d'équivalence?

Propriété: La relation \mathcal{R} définie sur V^2 par $x\mathcal{R}y$ ssi x est accessible depuis y est une relation d'équivalence.

- \triangleright Soit $x \in V$. On a bien $x\mathcal{R}x$: la chaîne de longueur n=0 s=(x) convient.
- ⊳ Soit $(x,y) \in V^2$, tel que $x \mathcal{R} y$. Alors par définition il existe $s = (s_0, ..., s_n) \in V^{n+1}$ tel que $s_0 = x$ et $s_n = y$, et $\forall i \in [0, n[, \{s_i, s_{i+1}\} \in E$. Considérons $s' = (s_n, s_{n-1}, ..., s_1, s_0)$. s' est une chaîne reliant y et x. En effet, $s'_0 = s_n = y$ et $s'_n = s_0 = x$, et $\forall i \in [0, n[, \{s'_i, s'_{i+1}\} = \{s_{n-i}, \{n-i-1\} = \{s_k, s_{k+1}\}\} \in E$ en posant $k = n i 1 \in [0, n[$.
- Soit $(x,y,z) \in V^3$ tel que $x\mathcal{R}y$ et $y\mathcal{R}z$. Comme $x\mathcal{R}y$, il existe $s=(s_0,...,s_n) \in V^{n+1}$ une chaîne avec $s_0=x$ et $s_n=y$. Comme $y\mathcal{R}x$, il existe $t=(t_0,...,t_m) \in V^{m+1}$ une chaîne avec $t_0=y$ et $t_m=z$. Considérons $u=(s_0,...s_n,t_1,...t_m)$. u est bien une chaîne car $\forall i \in \llbracket 0,n+m \llbracket$, soit $i \in \llbracket 0,n \rrbracket$ et dans ce cas on a $\{u_i,u_{i+1}\}=\{s_i,s_{i+1}\} \in A$, soit i=n et on a $\{u_i,u_{i+1}\}=\{t_0,t_1\} \in E$, soit $i \in \llbracket n,n+m \rrbracket$ et $\{u_i,u_{i+1}\}=\{t_{i-n},t_{i-n+1}\} \in E$. On a par ailleurs $u_0=x$ et $u_{m+n}=z$, donc $x\mathcal{R}z$.

Exercice 2: Définir une relation d'équivalence similaire pour H, où l'on doit avoir un chemin dans chaque sens entre deux points en relation.

Une composante connexe de G est une classe d'équivalence pour la relation d'équivalence définie cidessus. Si G n'admet qu'une composante connexe, on dit que G est un graphe connexe. Dans le cas de la relation d'équivalence sur les graphes orientés, on appelle les classes d'équivalences composante fortement connexe.

Soit $W \subset V$ avec $W \neq \emptyset$. W est **convexe** ssi $\forall (x,y) \in W^2$, il existe une chaîne reliant x et y.

Propriété : W est une composante connexe ssi W est connexe minimal, c'est à dire si $\forall W' \subset V \setminus \{W\}, W \subset W', W'$ n'est pas connexe.

Soit G' = (V', E') un graphe. G' est un **sous-graphe** ssi $V' \subset V$, $E' \subset E$.

Soit $V' \subset V$ Le graphe induit par G sur V' est $G' = (V', \{\{x,y\} \in E \mid (x,y) \in V^2\})$.