Introduction to NGS data: Genotype and SNP calling

Matteo Fumagalli

Population genetics

Demographic inference

Adaptive evolution

Find the bioinformatician inside yourself

Next-Generation Sequencing

A. Extracted gDNA

B. gDNA is fragmented into a library of small segments that are each sequenced in parallel.

C. Individual sequence reads are reassembled by aligning to a reference genome

D. The whole-genome sequence is derived from the consensus of aligned reads.

From genome to variants

Genome (FASTA)

```
>ARPM2ref|NC_000001.10|:2938046-2939467 Homo sapiens chromosome 1, GRCh37 primary reference assembly 
TGGAAGAGGCCTCAGCAGGCCCAGGCCACCTGGAGGGAGAGCAGACCTGCGGCTGAGGATGCAGGGCTCC 
CGGGCACGGTGCTAGCCCTTGAGACACCCCGAGAGCTGTGGGAAGAGCTGTGGGATCCCCTATTGC 
ATCACAAAGCGGCCCTGGAGGGCTGGTCTTTATTTTGATGAGGCTGAGAAGGGAAGGCTGCGGGCATGTT 
TAATCCGCACGCTTTAGACTCCCCGGCTGTGATTTTTGACAATGGCTCGGGGTTCTGCAAAGCGGGCCTG 
TCTGGGGAGTTTGGACCCCGGCACATGGTCAGCTCCATCGTGGGGCACCTGAAATTCCAGGCTCCCTCAG
```


Reads (FASTQ)

CCAATGATTTTTTCCGTGTTTCAGAATACGGTTAA
+SRR038845.41 HWI-EAS038:6:1:0:1474 length=36
BCCBA@BB@BBBBAB@B9B@=BABA@A:@693:@B=
@SRR038845.53 HWI-EAS038:6:1:1:360 length=36
GTTCAAAAAGAACTAAATTGTGTCAATAGAAAACTC
+SRR038845.53 HWI-EAS038:6:1:1:360 length=36

Mapped Reads (mpileup, BAM)

	seq1	272	т	24	,.\$,.,.,^+. <<<+;<<<<<<<<<<<<<<
	seq1	273	\mathbf{T}	23	
	seq1	274	T	23	,.\$,,.,., 7<7;<;<<<<<=<;<;<<6
	seq1	275	Α	23	,\$,.,.,^1. <+;9*<<<<<<=<<:;<<<
	seq1	276	G	22	
	seq1	277	Т	22	
	seq1	278	G	23	
	seq1	279	C	23	AT,,,,,,,,,,;;75&<<<<<<<<<<<<<<<<<
	_				

Variants (VCF)

Parameter *f* is frequency of G

Parameter *f* is frequency of G

Parameter *f* is frequency of G

Likelihood approach:

- All the information on the parameter is in the likelihood function (we use all the data!).
- More data leads to less bias and less variance.
- Suitable for hypothesis testing.

Likelihood approach:

- All the information on the parameter is in the likelihood function (we use all the data!).
- More data leads to less bias and less variance.
- Suitable for hypothesis testing.

$$L(Data | G = \{A_1, A_2\})$$

 $A_i \in \{A, C, G, T\}$

How many genotype likelihoods do we have for each individual at each site?

$$L(Data | G = \{A_1, A_2\})$$

 $A_i \in \{A, C, G, T\}$

How many genotype likelihoods do we have for each individual at each site?

3 if both alleles are known 10 if not

- **SAMtools** (H Li et al., 2008): quality scores, quality dependency
- **soapSNP** (R Li et al., 2009): quality scores, quality dependency
- GATK (McKenna et al, 2010): quality scores
- Kim et al. (2011): type specific errors
- ...

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

Chrom6 342

A T T Individual 1 T

Individual 2

A | A | Individual 3 T | T

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

Chrom6 342 ATTT

AA
AC
AG
AT
CC
CG
CT
GG
GT

Iterate through every read for every genotypic configuration...

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

Chrom6 342 ATTT

AA
AC
AG
AT
CC
CG
CG
CT
GG
GT

Iterate through every read for every genotypic configuration...

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC)=$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC)=$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC)=(\frac{L_A^{(1)}}{2}+\frac{L_C^{(1)}}{2})*$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC)=(\frac{L_A^{(1)}}{2}+\frac{L_C^{(1)}}{2})*$$

$$L_A^{(1)} = \ L_C^{(1)} =$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC)=(\frac{L_A^{(1)}}{2}+\frac{L_C^{(1)}}{2})*$$

$$L_A^{(1)} = \frac{\varepsilon}{3}$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC)=(\frac{L_A^{(1)}}{2}+\frac{L_C^{(1)}}{2})*$$

$$L_A^{(1)} = 1 - \varepsilon$$

$$L_C^{(1)} = \frac{\varepsilon}{3}$$

$$L_C^{(1)} = \frac{\varepsilon}{2} \qquad P(X = A | G = AC) = \frac{1 - \varepsilon}{2} + \frac{\varepsilon}{6}$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC) = \left(\frac{L_A^{(1)}}{2} + \frac{L_C^{(1)}}{2}\right) * \left(\frac{L_A^{(2)}}{2} + \frac{L_C^{(2)}}{2}\right) *$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC) = (\frac{L_A^{(1)}}{2} + \frac{L_C^{(1)}}{2}) * (\frac{L_A^{(2)}}{2} + \frac{L_C^{(2)}}{2}) * \frac{\mathcal{E}}{3}$$

$$P(X|G=bh) = \prod_{i=1}^{r} \left(\frac{L_b^{(i)}}{2} + \frac{L_h^{(i)}}{2}\right) \quad b, h \in \{A, C, G, T\}$$

Example:

$$P(X|G=AC) = \left(\frac{L_A^{(1)}}{2} + \frac{L_C^{(1)}}{2}\right) * \left(\frac{L_A^{(2)}}{2} + \frac{L_C^{(2)}}{2}\right) * \left(\frac{L_A^{(3)}}{2} + \frac{L_C^{(3)}}{2}\right) * \left(\frac{L_A^{(4)}}{2} + \frac{L_C^{(4)}}{2}\right)$$

$$=\left(\frac{1-\varepsilon}{2}+\frac{\varepsilon}{6}\right)*\frac{\varepsilon}{3}*\frac{\varepsilon}{3}*\frac{\varepsilon}{3}$$

Genotype	Likelihood (log10)
AA	-7.44
AC	-7.74
AG	-7.74
AT	-1.22
CC	-9.91
CG	-9.91
СТ	-3.38
GG	-9.91
GT	-3.38
TT	-2.49

ATTT

 $\varepsilon = 0.01$

Genotype	Likelihood (log10)
AA	-7.44
AC	-7.74
AG	-7.74
AT	-1.22
CC	-9.91
CG	-9.91
СТ	-3.38
GG	-9.91
GT	-3.38
TT	-2.49

ATTT

 $\varepsilon = 0.01$

What is the genotype here?

Genotype	Likelihood (log10)
AA	-7.44
AC	-7.74
AG	-7.74
AT	-1.22
CC	-9.91
CG	-9.91
СТ	-3.38
GG	-9.91
GT	-3.38
TT	-2.49

Simple genotype caller: **Maximum Likelihood**

Choose the genotype with the largest likelihood

Genotype	Likelihood (log10)
AA	-7.44
AC	-7.74
AG	-7.74
AT	-1.22
CC	-9.91
CG	-9.91
СТ	-3.38
GG	-9.91
GT	-3.38
TT	-2.49

Simple genotype caller: **Maximum Likelihood**

But **only** call the genotype if the largest likelihood is **much better** than the second best

Likelihood Ratio:

$$\log_{10} \frac{L_{G(1)}}{L_{G(2)}} > t$$

$$t = 1$$

The most likely genotype is at least 10 times more likely than the second most likely one

(in our example t=1.27)

Likelihood Ratio:

$$\log_{10}\left(\frac{L_{G(1)}}{L_{G(2)}}\right) > t$$

$$t = 1$$

The most likely genotype is at least **10 times** more likely than the second most likely one

- Higher confidence of called genotypes
- More missing data

Bayesian inference

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)} = \frac{P(X|\theta)P(\theta)}{\sum_{\theta} P(X|\theta)P(\theta)}$$

$$P(X|\theta) \longleftarrow \text{ Likelihood of } \theta$$

$$P(\theta) \longleftarrow \text{ Prior probability distribution of } \theta$$

$$P(\theta|X) \longleftarrow \text{ Posterior probability distribution of } \theta$$

- Parameter is not fixed (point estimate) but rather has a probability distribution
- We update our "belief" on the parameter after performing the experiment
- As P(f|D) is a proper probability distribution, we can easily derive credible intervals

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44		
AC	-7.74		
AG	-7.74		
AT	-1.22		
CC	-9.91		
CG	-9.91		
СТ	-3.38		
GG	-9.91		
GT	-3.38		
TT	-2.49		

Simple genotype caller: **Bayesian**

?

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44	1/10	~ 0
AC	-7.74	1/10	~ 0
AG	-7.74	1/10	~ 0
AT	-1.22	1/10	0.94
CC	-9.91	1/10	~ 0
CG	-9.91	1/10	~ 0
СТ	-3.38	1/10	0.006
GG	-9.91	1/10	~ 0
GT	-3.38	1/10	0.006
TT	-2.49	1/10	0.05

Simple genotype caller: **Bayesian**

?

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44	1/10	~ 0
AC	-7.74	1/10	~ 0
AG	-7.74	1/10	~ 0
AT	-1.22	1/10	0.94
CC	-9.91	1/10	~ 0
CG	-9.91	1/10	~ 0
СТ	-3.38	1/10	0.006
GG	-9.91	1/10	~ 0
GT	-3.38	1/10	0.006
TT	-2.49	1/10	0.05

Simple genotype caller: **Bayesian**

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44	1/10	~ 0
AC	-7.74	1/10	~ 0
AG	-7.74	1/10	~ 0
AT	-1.22	1/10	0.94
CC	-9.91	1/10	~ 0
CG	-9.91	1/10	~ 0
СТ	-3.38	1/10	0.006
GG	-9.91	1/10	~ 0
GT	-3.38	1/10	0.006
TT	-2.49	1/10	0.05

Simple genotype caller: **Bayesian**

But **only** call the genotype if the largest probability is above a threshold (e.g. > 0.95)

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44		
AC	-7.74		
AG	-7.74		
AT	-1.22		
CC	-9.91		
CG	-9.91		
СТ	-3.38		
GG	-9.91		
GT	-3.38		
TT	-2.49		

Simple genotype caller: **Bayesian**

Example: reference is T

AT (?)

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44	0.01	~ 0
AC	-7.74	0.01	~ 0
AG	-7.74	0.01	~ 0
AT	-1.22	0.09	0.67
CC	-9.91	0.01	~ 0
CG	-9.91	0.01	~ 0
СТ	-3.38	0.09	0.005
GG	-9.91	0.01	~ 0
GT	-3.38	0.09	0.0005
TT	-2.49	0.81	0.32

Simple genotype caller: **Bayesian**

P(A) = 0.9 if A is the **reference** allele; P(A) = 0.1 otherwise

Example: reference is T

$$P(TT) = P(A)^2$$

e.g. Illumina Casava

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44		
AC	-7.74		
AG	-7.74		
AT	-1.22		
CC	-9.91		
CG	-9.91		
СТ	-3.38		
GG	-9.91		
GT	-3.38		
TT	-2.49		

Better genotype caller: **Bayesian**

$$P(A) = f$$

Where f (=0.75) is the **allele frequency** from a reference panel

Example: reference is T

$$P(TT) = \dots$$

$$P(AT) = ...$$

$$P(AA) = ...$$

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44		
AC	-7.74		
AG	-7.74		
AT	-1.22		
СС	-9.91		
CG	-9.91		
СТ	-3.38		
GG	-9.91		
GT	-3.38		
TT	-2.49	0.56	

Better genotype caller: **Bayesian**

$$P(A) = f$$

Where f (=0.75) is the **allele frequency** from a reference panel

Example: reference is T

$$P(TT) = f^2$$

$$P(AT) = ...$$

$$P(AA) = ...$$

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44		
AC	-7.74		
AG	-7.74		
AT	-1.22	0.38	
СС	-9.91		
CG	-9.91		
СТ	-3.38		
GG	-9.91		
GT	-3.38		
TT	-2.49	0.56	

Better genotype caller: **Bayesian**

$$P(A) = f$$

Where f (=0.75) is the **allele frequency** from a reference panel

Example: reference is T

$$P(TT) = f^2$$

 $P(AT) = 2f(1-f)$
 $P(AA) = ...$

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44	0.06	~ 0
AC	-7.74	0	0
AG	-7.74	0	0
AT	-1.22	0.38	0.93
CC	-9.91	0	0
CG	-9.91	0	0
СТ	-3.38	0	0
GG	-9.91	0	0
GT	-3.38	0	0
TT	-2.49	0.56	0.07

Better genotype caller: **Bayesian**

$$P(A) = f$$

Where f is the allele frequency from a reference panel

Example: reference is T

$$P(TT) = f^2$$

 $P(AT) = 2f(1-f)$
 $P(AA) = (1-f)^2$

Assuming **f=0.75** and only **A and T** alleles

Statistical inference (3)

Genotype	Likelihood (log10)	Prior	Posterior probability
AA	-7.44	0.16	~ 0
AC	-7.74	0	0
AG	-7.74	0	0
AT	-1.22	0.48	0.96
СС	-9.91	0	0
CG	-9.91	0	0
СТ	-3.38	0	0
GG	-9.91	0	0
GT	-3.38	0	0
TT	-2.49	0.36	0.38

Better genotype caller: **Empirical Bayesian**

P(A) = f

Where f is the allele frequency estimated from the data itself

With **f=0.6**

Workflow

SNP calling procedures

Alignment-based caller

We completely rely on how reads have been mapped

SNP calling procedures

Assembly-based caller (as in GATK)

Local re-alignment around putative variants; better resolution for INDELs detection.

Haplotype-based caller (as in freebayes)

Individua I	True genotype	Reads allele A	Reads allele G
1	AA		
2	AA		
3	AG		
4	AG		
5	GG		
6	GG		
Tot.			

Assume only 2 allelic types

True allele frequency is 0.50

Individua I	True genotype	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

Assume only 2 allelic types

True allele frequency is 0.50

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

Simple allele frequency estimator:

from reads counts

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{(A,i)}}{\sum_{i=1}^{N} (n_{(A,i)} + n_{(G,i)})}$$

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

Simple allele frequency estimator:

from reads counts

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{(A,i)}}{\sum_{i=1}^{N} (n_{(A,i)} + n_{(G,i)})} = 0.75$$

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

Simple allele frequency estimator:

from reads counts

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{(A,i)}}{\sum_{i=1}^{N} (n_{(A,i)} + n_{(G,i)})} = 0.75$$

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

Simple allele frequency estimator:

from reads counts with error

$$\hat{f} = \frac{\sum_{i=1}^{N} (n_{(A,i)} - \varepsilon(n_{(A,i)} + n_{(G,i)}))}{\sum_{i=1}^{N} (n_{(A,i)} + n_{(G,i)})(1 - 2\varepsilon)}$$

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

Simple allele frequency estimator:

from reads counts with error

$$\hat{f} = \frac{\sum_{i=1}^{N} (n_{(A,i)} - \varepsilon (n_{(A,i)} + n_{(G,i)}))}{\sum_{i=1}^{N} (n_{(A,i)} + n_{(G,i)})(1 - 2\varepsilon)} = 0.77$$

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

Simple allele frequency estimator:

from reads counts with error

$$\hat{f} = \frac{\sum_{i=1}^{N} (n_{(A,i)} - \varepsilon (n_{(A,i)} + n_{(G,i)}))}{\sum_{i=1}^{N} (n_{(A,i)} + n_{(G,i)})(1 - 2\varepsilon)} = 0.77$$

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

Simple allele frequency estimator: from reads counts with error and weights (Y Li et al. 2010)

$$p_{i} = \frac{n_{(A,i)} - \varepsilon(n_{(A,i)} + n_{(G,i)})}{(n_{(A,i)} + n_{(G,i)})(1 - 2\varepsilon)}$$

Weighting function

$$\hat{f} = \frac{1}{\sum_{i=1}^{N} w_i} \sum_{i=1}^{N} p_i w_i = 0.57$$

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

$$L = \prod_{i=1}^{N} p(D_i \mid f)$$

$$L = \prod_{i=1}^{N} p(D_i | f)$$

$$p(D_i | f) = \sum_{g \in \{0,1,2\}} p(D | G = g) p(G = g | f)$$

$$L = \prod_{i=1}^{N} p(D_i | f)$$

$$p(D_i | f) = \sum_{g \in \{0,1,2\}} p(D | G = g) p(G = g | f)$$

$$L = \prod_{i=1}^{N} p(D_i \mid f)$$
 Genotype likelihoods $p(D_i \mid f) = \sum_{g \in \{0,1,2\}} p(D \mid G = g) p(G = g \mid f)$

Maximum Likelihood (ML) estimator (Kim et al. 2011)

$$L = \prod_{i=1}^{N} p(D_i \mid f)$$

Genotype likelihoods

$$p(D_i | f) = \sum_{g \in \{0,1,2\}} p(D | G = g) p(G = g | f)$$

If we assume HWE:
$$p(G = AA \mid f) = f^2$$

$$p(G = AG | f) = 2f(1-f)$$

$$p(G = GG | f) = (1-f)^2$$

Individu al	True genotyp e	Reads allele A	Reads allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Tot.		41	14

$$\hat{f} = \operatorname{arg\,max}_{p} \prod_{i=1}^{N} p(D_{i} \mid f)$$

$$\hat{f} = 0.46$$

Workflow

 A lot of missing data if calling genotypes at low depth (heterozygotes can be lost!)

Rare variants are hard to detect

 Trade-off between False Positives and False Negatives

 What is the most straightforward method for SNP calling?

- What is the most straightforward method for SNP calling?
 - Assign as SNPs sites where at least one heterozygote has been called

— ...

- What is the most straightforward method for SNP calling?
 - Assign as SNPs sites where at least one heterozygote has been called
 - Assign as SNPs sites where the estimated allele frequency is above a certain threshold (e.g. ?)

MLE of allele frequency at each site:

Call a SNP if

$$\hat{f}_{MLE} > t$$

Where t can be defined as the minimum sample allele frequency detectable (e.g. with 10 samples t can be set to 0.05)

Likelihood Ratio Test

Compare the goodness of fit of the null and alternative model

- Null Model: frequency=0
- Alternative Model: frequency>0

The model with more parameters "tends" to fit better.

Whether or not this fit is "significantly better" is assessed by the comparison of the two likelihoods.

 Likelihood Ratio Test (LRT): test statistical hypotheses based on comparing the maximum likelihood under 2 different models.

$$T = -2 \ln \left(\frac{L(f=0)}{L(f \neq 0)} \right)$$

T is chi-squared distributed with 1 degree of freedom -> assign a p-value

Workflow

Practical

- Basic filtering
- · Estimation of allele frequencies and SNP calling
- Genotype calling
- · Advanced methods to estimate SFS

Raghavan et al. 2015 Science