Another approach

Morris, S.

June 2, 2015

So far, I have not been able to really find a good approach that works consistently. There appears to be some challenges when trying to estimate α using the pairwise likelihood. Based on some of my previous research, it would appear that the pairwise likelihood does a reasonably good job estimating the bandwidth term ρ . Brian and I had originally discussed fixing both ρ and α in the simulation study, because when they're fixed, we can outperform spatial probit and logit. The purpose of this document is to explore what happens when we search over a grid of ρ terms and fix rho in the MCMC to arg min $_{\rho}\ell$.

Setting 1:

 $\alpha = 0.2, \pi = 0.05, \rho = 0.15$

Dataset 1

From the pairwise likelihood, we'll be using $\rho = 0.1071$.

simulated dataset

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0 = -4.772$, and $\xi = 0.25$.

Dataset 2 From the pairwise likelihood, we'll be using $\rho=0.1071.$

simulated dataset

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0 = -7.598$, and $\xi = 0.25$.

Dataset 3 From the pairwise likelihood, we'll be using $\rho=0.1071.$

simulated dataset

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0 = -11.634$, and $\xi = 0.25$.

Brier Scores

The brier scores are

Logit 1-1: 0.1207

Probit 1-1: 0.0121

GEV 1-1: 0.012

The brier scores are

Logit 2-1: 0.1207

Probit 2-1: 0.0121

GEV 2-1: 0.012

The brier scores are

Logit 3-1: 0.1207

Probit 3-1: 0.0121

GEV 3-1: 0.012

Setting 2:

$$\alpha = 0.2, \pi = 0.01, \rho = 0.15$$

Dataset 1

From the pairwise likelihood, we'll be using $\rho = 0.1071$.

simulated dataset

 β_0

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0 = -4.168$, and $\xi = 0.25$.

Dataset 2

From the pairwise likelihood, we'll be using $\rho = 0.1071$.

simulated dataset

 β_0

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0 = -3.138$, and $\xi = 0.25$.

fit.gev\$beta

-18 -16 -14 -12 -10

0 10 20 30 40 50

Index

Dataset 3

From the pairwise likelihood, we'll be using $\rho = 0.1071$.

simulated dataset

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0 = -4.167$, and $\xi = 0.25$.

 β_0

ξ

Brier Scores

The brier scores are

Logit 1-2: 106.99

Probit 1-2: 0.45

GEV 1-2: 0.04

The brier scores are

Logit 2-2: 106.99

Probit 2-2: 0.45

GEV 2-2: 0.04

The brier scores are

Logit 3-2: 106.99

Probit 3-2: 0.45

GEV 3-2: 0.04