Машинное обучение: мониторинг моделей в production

Эмели Драль

Проектная работа

Весь объем работы можно разделить на три стадии:

- Предпроектное исследование
- Работа над проектом
- Работа после окончания проекта

Мониторинг моделей в production

- 1. Что может пойти не так?
- 2. Структура мониторинга

Что может пойти не так?

Machine Learning Service Life Cycle

Data quality and integrity issues

Data processing issues

Broken pipelines, infrastructure updates, wrong source...

Data loss at the source

Broken sensor, logging error, database outage...

Data schema change

Change in the upstream system, external APIs, catalogue update...

Broken upstream model

One model's broken output = another model's corrupted feature

Example: data schema change

CI_ID	Name	Туре	Length	Status
#1229	######	card	2:27	solved
#1203	######	card	12:12	solved
#5661	######	account	8:06	solved
#8791	######	account	1:01	solved

Client ID	Client name	Call Type	Call Length	Channel preference	Status
#1229	######	card-lost	2:27	phone	solved
#1203	######	card-lost	12:12	phone	solved
#5661	######	account- balance	8:06	phone	solved
#8791	######	account- balance	1:01	email	solved

BEFORE AFTER

Example: broken upstream model

Data drift: change in feature distribution

Example: users come from a new channel.

Concept drift: change in underlying relationships

Example: same distribution, new pattern.

Target class (churn)

Gradual concept drift

Sudden concept drift

Sales of loungewear

Time

Решение: мониторинг

How is machine learning monitoring different?

Data health

Data DRIFT

BROKEN PIPELINES

CONCEPT DRIFT

SCHEMA CHANGE

DATA OUTAGE

MODEL BIAS

UNDERPERFORMING

SEGMENTS

Model health

How is machine learning monitoring different?

670 do not monitor their models

How to monitor?

ML-focused Reports / Dashboards

(e.g. BI tools Tableau, Looker; or custom in Matplotlib, Plotly)

How to monitor?

ML-focused Reports / Dashboards

(e.g. BI tools Tableau, Looker; or custom in Matplotlib, Plotly)

Add ML metrics to service health monitoring (e.g. Prometheus/Grafana)

Структура мониторинга

Monitoring approach: factors to consider

Use case importance

- Economic value
- Cost of error
- Risks

Complexity

- Data source diversity
- Pipeline complexity
- Batch / real-time
- Immediate / delayed response

Team resources

 Development resources 1.

Does it work?

Model Calls: Start With Basics

2.

How it performs?

Did anything break?

What if all we have are predictions?

Early monitoring when there is no ground truth

Model Output Distribution: Check Sanity and Ranges

If there is no immediate feedback loop

Model Output Distribution: Compare with Training

If you have some extra time

Model quality

Ground truth is needed. Compare with results in hold-out to benchmark performance.

Interpretable metric

45.8 MAE

Model quality

Ground truth is needed. Compare with results in hold-out to benchmark performance.

Perecentage Error Distribution: Check for Abnormalities

Business Metric: e.g. Share of Errors > 100

3.

Where it breaks?

Where to dig further?

Missing Data, Range Compliance, Type Compliance

Feature Correlation: Check for Changes

Feature Correlation: Check for Changes

4.

Is model still relevant?

Service health

Model performance

Data quality and integrity

Data and concept drift

Why It Matters? Concept Drift.

1 / GRADUAL DRIFT

(model needs retraining / update)

New type of fraud appeared

Equipment wears out

Why It Matters? Concept Drift.

1 / GRADUAL DRIFT

(model needs retraining / update)

New type of fraud appeared

Equipment wears out

2 / SUDDEN DRIFT

(model is often rebuilt)

Grocery demand in pandemic

Unseen change in interest rate

Why It Matters? Concept Drift.

1 / GRADUAL DRIFT

(model needs retraining / update)

New type of fraud appeared

Equipment wears out

2/SUDDEN DRIFT

(model is often rebuilt)

Grocery demand in pandemic

Unseen change in interest rate

+ 3 / RECURRING DRIFT - unknown seasonality

Why It Matters? Data Drift.

Feature Distribution And Statistics

Pragmatic approach: look only at key drivers. Check distribution visually & statistically.

- Example: "feels like temperature" feature
- Model trained during summer, but applied in autumn

Comrehensive Monitoring: More Things to Look for

Pragmatic Approach: Summing Up

Машинное обучение: мониторинг моделей в production

Спасибо! Эмели Драль