Chapter 1

Enunciados de problemas: Introducción

1

Considerar el siguiente fragmento de programa para 2 procesos P_1 y P_2 :

Los dos procesos pueden ejecutarse a cualquier velocidad. ξ Cuáles son los posibles valores resultantes para x?. Suponer que x debe ser cargada en un registro para incrementarse y que cada proceso usa un registro diferente para realizar el incremento.

- ¿ Cómo se podría hacer la copia del fichero f en otro g, de forma concurrente, utilizando la instrucción concurrente cobegin-coend? . Para ello, suponer que:
 - los archivos son secuencia de items de un tipo arbitrario T, y se encuentran ya abiertos para lectura (f) y escritura (g). Para leer un ítem de f se usa la llamada a función **leer**(f) y para saber si se han leído todos los ítems de f, se puede usar la llamada **fin**(f) que devuelve verdadero si ha habido al menos un intento de leer cuando ya no quedan datos. Para escribir un dato x en g se puede usar la llamada a procedimiento **escribir**(g,x).

- El orden de los ítems escritos en g debe coincidir con el de f.
- Dos accesos a dos archivos distintos pueden solaparse en el tiempo.

3

Construir, utilizando las instrucciones concurrentes **cobegin-coend** y **fork-join**, programas concurrentes que se correspondan con los grafos de precedencia que se muestran a continuación:

4

Dados los siguientes fragmentos de programas concurrentes, obtener sus grafos de precedencia asociados:

```
begin
   cobegin
      begin
        cobegin
           P1;P2;
        coend
       P5;
      end
      begin
        cobegin
          P3;P4;
        coend
       P6;
      end
   coend
   P7 ;
end
```

5

Suponer un sistema de tiempo real que dispone de un captador de impulsos conectado a un contador de energía eléctrica. La función del sistema consiste en contar el número de impulsos producidos en 1 hora (cada *Kwh* consumido se cuenta como un impulso) e imprimir este número en un dispositivo de salida.

Para ello se dispone de un programa concurrente con 2 procesos: un proceso acumulador (lleva la cuenta de los impulsos recibidos) y un proceso escritor (escribe en la impresora). En la variable común a los 2 procesos n se lleva la cuenta de los impulsos. El proceso acumulador puede invocar un procedimiento Espera_impulso para esperar a que llegue un impulso, y el proceso escritor puede llamar a Espera_fin_hora para esperar a que termine una hora.

El código de los procesos de este programa podría ser el siguiente:

```
{ variable compartida: }
var n : integer; { contabiliza impulsos }
                                              process Escritor;
process Acumulador;
                                              begin
begin
   while true do begin
                                                 while true do begin
      Espera_impulso();
                                                    Espera_fin_hora();
       < n := n+1 > ; { (1) }
                                                     write( n ) ;
                                                                      { (2) }
                                                     < n := 0 > ;
                                                                      { (3) }
 end
                                                 end
                                              end
```

En el programa se usan sentencias de acceso a la variable n encerradas entre los símbolos < y >. Esto significa que cada una de esas sentencias se ejecuta en exclusión mutua entre los dos procesos, es decir, esas sentencias se ejecutan de principio a fin sin entremezclarse entre ellas.

Supongamos que en un instante dado el acumulador está esperando un impulso, el escritor está esperando el fin de una hora, y la variable n vale k. Después se produce de forma simultánea un nuevo impulso y el fin del periódo de una hora. Obtener las posibles secuencias de interfolicación de las instrucciones (1),(2), y (3) a partir de dicho instante, e indicar cuales de ellas son correctas y cuales incorrectas (las incorrectas son aquellas en las cuales el impulso no se contabiliza).

6

Supongamos un programa concurrente en el cual hay, en memoria compartida dos vectores a y b de enteros y con tamaño par, declarados como sigue:

```
var a,b : array[1..2*n] of integer ; { n es una constante predefinida }
```

Queremos escribir un programa para obtener en b una copia ordenada del contenido de a (nos da igual el estado en que queda a después de obtener b).

Para ello disponemos de la función **Sort** que ordena un tramo de a (entre las entradas s y t, ambas incluidas). También disponemos la función Copiar, que copia un tramo de a (desde s hasta t) en b (a partir de o)

El programa para ordenar se puede implementar de dos formas:

- Ordenar todo el vector a, de forma secuencial con la función **Sort**, y después copiar cada entrada de a en b, con la función Copiar.
- Ordenar las dos mitades de a de forma concurrente, y después mezclar dichas dos mitades en un segundo vector b (para mezclar usamos un procedimiento Merge).

A continuación vemos el código de ambas versiones:

```
procedure Concurrente() ;
procedure Secuencial();
   var i : integer ;
                                           begin
begin
                                             cobegin
   Sort ( 1, 2*n );
                      { ordena a
                                                Sort (1,
                                                            n
   Copiar(1, 2*n); { copia a en b }
                                                Sort ( n+1, 2*n );
end
                                             coend
                                             Merge( 1, n+1, 2*n );
                                           end
```

El código de **Merge** se encarga de ir leyendo las dos mitades de a, en cada paso, seleccionar el menor elemento de los dos siguientes por leer (uno en cada mitad), y escribir dicho menor elemento en la siguiente mitad del vector mezclado b. El código es el siguiente:

```
procedure Merge( inferior, medio, superior: integer );
                                              { siguiente posicion a escribir en b
   var escribir : integer := 1 ;
   var leer1
                  : integer := inferior ; { siguiente pos. a leer en primera mitad de a }
   var leer2
                  : integer := medio ; { siguiente pos. a leer en segunda mitad de a }
begin
   { mientras no haya terminado con alguna mitad }
   while leer1 < medio and leer2 <= superior do begin</pre>
      if a[leer1] < a[leer2] then begin { minimo en la primera mitad }</pre>
          b[escribir] := a[leer1] ;
          leer1 := leer1 + 1 ;
      end else begin { minimo en la segunda mitad }
          b[escribir] := a[leer2] ;
          leer2 := leer2 + 1 ;
      end
      escribir := escribir+1 ;
   { se ha terminado de copiar una de las mitades, copiar lo que quede de la otra }
   if leer2 > superior then Copiar( escribir, leer1, medio-1 ); { copiar primera }
                          else Copiar( escribir, leer2, superior ); { copiar segunda }
end
```

Llamaremos $T_s(k)$ al tiempo que tarda el procedimiento **Sort** cuando actua sobre un segmento del vector con k entradas. Suponemos que el tiempo que (en media) tarda cada iteración del bucle interno que hay en **Sort** es la unidad (por definición). Es evidente que ese bucle tiene k(k-1)/2 iteraciones, luego:

$$T_s(k) = \frac{k(k-1)}{2} = \frac{1}{2}k^2 - \frac{1}{2}k$$

El tiempo que tarda la versión secuencial sobre 2n elementos (llamaremos S a dicho tiempo) será evidentemente $T_s(2n)$, luego

$$S = T_s(2n) = \frac{1}{2}(2n)^2 - \frac{1}{2}(2n) = 2n^2 - n$$

con estas definiciones, calcula el tiempo que tardará la versión paralela, en dos casos:

- (1) Las dos instancias concurrentes de **Sort** se ejecutan en el mismo procesador (llamamos P_1 al tiempo que tarda).
- (2) Cada instancia de **Sort** se ejecuta en un procesador distinto (lo llamamos P_2)

escribe una comparación cualitativa de los tres tiempos $(S_1P_1 \ y \ P_2)$.

Para esto, hay que suponer que cuando el procedimiento **Merge** actua sobre un vector con p entradas, tarda p unidades de tiempo en ello, lo cual es razonable teniendo en cuenta que en esas circunstancias **Merge** copia p valores desde a hacia b. Si llamamos a este tiempo $T_m(p)$, podemos escribir

$$T_m(p) = p$$

.

Supongamos que tenemos un programa con tres matrices (a,b y c) de valores flotantes declaradas como variables globales. La multiplicación secuencial de a y b (almacenando el resultado en c) se puede hacer mediante un procedimiento **MultiplicacionSec** declarado como aparece aquí:

```
var a, b, c : array[1..3,1..3] of real ;

procedure MultiplicacionSec()
   var i, j, k : integer ;

begin
   for i := 1 to 3 do
      for j := 1 to 3 do begin
            c[i,j] := 0 ;
        for k := 1 to 3 do
            c[i,j] := c[i,j] + a[i,k]*b[k,j] ;
      end
end
```

Escribir un programa con el mismo fin, pero que use 3 procesos concurrentes. Suponer que los elementos de las matrices a y b se pueden leer simultáneamente, así como que elementos distintos de c pueden escribirse simultáneamente.

8

Un trozo de programa ejecuta nueve rutinas o actividades $(P_1, P_2, ..., P_9)$, repetidas veces, de forma concurrentemente con **cobegin coend** (ver la figura de la izquierda), pero que requieren sincronizarse según determinado grafo (ver la figura de la derecha):

Trozo de programa:

while true do cobegin P_1 ; P_2 ; P_3 ; P_4 ; P_5 ; P_6 ; P_7 ; P_8 ; P_9 ; coend

Grafo de sincronización:

Supón que queremos realizar la sincronización indicada en el grafo, usando para ello llamadas desde cada rutina a dos procedimientos (EsperarPor y Acabar). Se dan los siguientes hechos:

CHAPTER 1. ENUNCIADOS DE PROBLEMAS: INTRODUCCIÓN

- El procedimiento **EsperarPor** (i) es llamado por una rutina cualquiera (la número k) para esperar a que termine la rutina número i, usando espera ocupada. Por tanto, se usa por la rutina k al inicio para esperar la terminación de las otras rutinas que corresponda según el grafo.
- El procedimiento **Acabar**(i) es llamado por la rutina número i, al final de la misma, para indicar que dicha rutina ya ha finalizado.
- Ambos procedimientos pueden acceder a variables globales en memoria compartida.
- Las rutinas se sincronizan única y exclusivamente mediante llamadas a estos procedimientos, siendo la implementación de los mismos completamente transparente para las rutinas.

Escribe una implementación de **EsperarPor** y **Acabar** (junto con la declaración e inicialización de las variables compartidas necesarias) que cumpla con los requisitos dados.