Aufgaben zur Geometrischen Optik

24.03.2010

1. Dicke Linse

Gegeben ist eine Dicke Linse mit einer Brechzahl n = 1, 5, den beiden Radien $r_1 = 40$ mm und $r_2 = -60$ mm. Die Dicke der Linse beträgt d = 40mm.

- a) Berechne die Brennweiten der beiden Grenzflächen
- b) Bestimme die bild- und gegenstandsseitigen Brennpunkte der Linse
- c) Bestimme mithilfe einer Zeichnung (maßstabsgetreu!) die Brennweite f, die eine dünne Ersatzlinse haben müsste!
- d) Berechne die Brennweite f, die diese Ersatzlinse haben müsste (Strahlensatz)!
- e) Berechne f unter Zuhilfenahme der Formel für die Brennweite einer dicken Linse!
- f) Bestimme die Orte, an denen sich die Hauptebenen h_1 und h_2 befinden!
- g) Bestimme die Bildweite b für einen Gegenstand, der sich 20mm vor der Linse befindet!

2. Spiegel

Ein ebener Spiegel, auf den eine Welle unter dem Winkel α einfällt, wird um den Winkel δ gedreht. Um welchen Winkel ändert sich die Richtung der reflektierten Welle?

Wie sieht diese Änderung bei einem sphärische Spiegel aus, auf den die Welle vor der Drehung in Richtung der Symmetrieachse einfällt?

3. Spiegelbild

Vor einem ebenen Spiegel befindet sich im Abstand a ein Gegenstand der Größe y.

- a) Führe eine Bildkonstruktion durch (sauber zeichnen!!). Entsteht ein virtuelles Bild?
- b) Ermittle die Bildweite a* mithilfe der Abbildungsgleichung!

4. Abbildungsgleichung

Leite die Abbildungsgleichung

$$\frac{1}{g} + \frac{1}{b} = \frac{1}{f}$$

her. Skizziere dazu den Strahlengang eines Gegensandes A, der durch die Linse abgebildet werden soll.

5. Zwei Spiegel

Zwischen zwei ebenen Spiegeln $(z=\pm\frac{d}{2})$ wird eine punktförmige Lichtquelle A an die Stelle $(z=\frac{1}{3}d,\,x=0)$ gebracht. Ermittle durch Zeichnen der Abbildungsstrahlen die vier Bilder B_i , die A am nächsten liegen!

6. Vergrößerung

Du sollst mit einer Linse ein 10fach vergrößertes Bild eines Gegenstandes A auf einem Bildschirm B entwerfen, der 3m von A entfernt ist. Welche Brennweite muss die Linse haben?

7. Brennweite Linsensystem

Zwei dünne Linsen $f_1 = 10$ cm und $f_2 = 50$ cm haben den Abstand D = 5cm. Wie groß ist die Brennweite des Linsensystems?

8. System aus zwei Spiegeln

Zwei konkave Spiegel M_1 , M_2 mit Krümmungsradien R_1 und R_2 stehen sich im Abstand d gegenüber. Wo liegt das Bild B des Punktes A, der sich 6cm von Spiegel 1 entfernt auf der Symmetrieachse befindet?

$$(R_1 = 24 \text{cm}, R_2 = 40 \text{cm}, d = 60 \text{cm})$$