Темпоральные GNN и задача ЕТА

Зелинский Никита

План лекции

O1. Graph attention

План лекции

O1. Graph attention

O2. Темпоральные GNN

План лекции

O1. Graph attention

O2. Темпоральные GNN

ОЗ. Задача ETA

Графовая свертка GraphConv

https://pytorchgeometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html

Графовая свертка GraphConv

$$x_i' = Hx_i + \sum_{j \in [1, N(i)]} Wx_j$$

W и H имеют размерность k x k': (1 x k) * (k x k') = 1 x k'

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html

' ' C

Графовая свертка GraphConv

$$x_i' = Hx_i + \sum_{j \in [1, N(i)]} Wx_j$$

$$W$$
 и H имеют размерность $k \ x \ k'$: $(1 \ x \ k) \ ^* (k \ x \ k') = 1 \ x \ k'$

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html

M T

Графовая свертка GraphConv

$$x_i' = Hx_i + \sum_{j \in [1, N(i)]} Wx_j$$

W и H имеют размерность k x k': (1 x k) * (k x k') = 1 x k'

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html

Графовая свертка GraphConv

https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html

Вместо суммы – другие агрегирующие функции

GraphConv

$$x_i' = Hx_i + \sum_{j \in [1,N(i)]} Wx_j$$

$$X' = \sigma \big(\widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} XW\big)$$

GraphConv

$$x_i' = Hx_i + \sum_{j \in [1,N(i)]} Wx_j$$

$$X' = \sigma \big(\widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} XW\big)$$

Чем отличаются
$$A$$
 и \widetilde{A} ?

$$\tilde{A} = A + I_N$$

GraphConv

$$x_i' = Hx_i + \sum_{j \in [1,N(i)]} Wx_j$$

Чем отличаются A и \widetilde{A} ?

$$X' = \sigma \left(\widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} XW \right)$$

$$\tilde{A} = A + I_N$$

0	1					1	1			
1	0					1	1			
		0		1	\longrightarrow			1		1
	1		0				1		1	
		1		0				1		1

М Т С

GraphConv

$$x_i' = Hx_i + \sum_{j \in [1,N(i)]} Wx_j$$

GCNConv

$$X' = \sigma \big(\widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} XW\big)$$

Чем отличаются A и \widetilde{A} ?

$$\tilde{A} = A + I_N$$

$$\widetilde{D}_{ii} = \sum_{j} \widetilde{A}_{ij}$$

GraphConv

$$x_i' = Hx_i + \sum_{j \in [1,N(i)]} Wx_j$$

$$X' = \sigma \left(\widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} XW \right)$$

Чем отличаются
$$A$$
 и \widetilde{A} ?

$$\tilde{A} = A + I_N$$

$$\widetilde{D}_{ii} = \sum_{j} \widetilde{A}_{ij}$$

Еще пишут так
$$\tilde{X} = GCN(A, X) = ReLU(\tilde{A}XW_0)$$

$$\tilde{A} = \tilde{D}^{-1/2} \hat{A} \tilde{D}^{-1/2}$$
 $\tilde{A} = A + I_N$

$$\hat{A} = A + I_N$$

м т С

Графовая свертка GCNConv

 \hat{A} (5x5)

1	1			
1	1		1	
		1		1
	1		1	
		1		1

м т С

Графовая свертка GCNConv

Л Т

Графовая свертка GCNConv

$$X' = \sigma \big(\widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} XW\big)$$

Отличаются?

GraphConv

$$x_i' = Hx_i + \sum_{j \in [1,N(i)]} Wx_j$$

GCNConv

$$X' = \sigma(\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}XW)$$

HO!

Отличаются?

М Т С

GraphConv

$$x_i' = Hx_i + \sum_{j \in [1,N(i)]} Wx_j$$

GCNConv

$$X' = \sigma(\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}XW)$$

HO!

Работает для бипартитных графов!

Идея Graph Attention (не механизм)

м т С

Идея Graph Attention (не механизм)

$$a_{ij} = at(Wx_i, Wx_j)$$
$$x_i = X_{i,j=1..k}$$

м т С

Идея Graph Attention (не механизм)

l T C

$$a_{ij} = at(Wx_i, Wx_j)$$

1. Давайте считать a_{ij} только для вершин, имеющих общее ребро (показано на экспериментах что хватает 1 шага) – назовем это **masked attention**

$$a_{ij} = at(Wx_i, Wx_j)$$

- 1. Давайте считать a_{ij} только для вершин, имеющих общее ребро (показано на экспериментах что хватает 1 шага) назовем это **masked attention**
- 2. Давайте нормировать коэффициенты внимания

$$\alpha_{ij} = softmax_j (a_{ij}) = \frac{e^{a_{ij}}}{\sum_{k \in N_i} e^{a_{ik}}}$$

Graph Attention

$$a_{ij} = at(Wx_i, Wx_j)$$

- 1. Давайте считать a_{ij} только для вершин, имеющих общее ребро (показано на экспериментах что хватает 1 шага) назовем это **masked attention**
- 2. Давайте нормировать коэффициенты внимания

$$\alpha_{ij} = softmax_j (a_{ij}) = \frac{e^{a_{ij}}}{\sum_{k \in N_i} e^{a_{ik}}}$$

3. Давайте внимание сделаем линейным слоем с функцией активации LeakyReLU

$$\alpha_{ij} = \frac{e^{LeakyReLU(a^T[Wx_i||Wx_j])}}{\sum_{k \in N_i} e^{LeakyReLU(a^T[Wx_i||Wx_k])}}$$

м т С

Graph Attention

 $\left[Wx_i||Wx_j\right]$

Л Т

Л Т

I T C

Multihead Graph Attention

Графовая свертка GATConv

Реализация в РуG

The graph attentional operator from the "Graph Attention Networks" paper.

$$\mathbf{x}_i' = lpha_{i,i} \mathbf{\Theta}_s \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} lpha_{i,j} \mathbf{\Theta}_t \mathbf{x}_j,$$

where the attention coefficients $lpha_{i,j}$ are computed as

$$lpha_{i,j} = rac{\exp\left(ext{LeakyReLU}\left(\mathbf{a}_s^{ op}oldsymbol{\Theta}_s\mathbf{x}_i + \mathbf{a}_t^{ op}oldsymbol{\Theta}_t\mathbf{x}_j
ight)
ight)}{\sum_{k\in\mathcal{N}(i)\cup\{i\}}\exp\left(ext{LeakyReLU}\left(\mathbf{a}_s^{ op}oldsymbol{\Theta}_s\mathbf{x}_i + \mathbf{a}_t^{ op}oldsymbol{\Theta}_t\mathbf{x}_k
ight)
ight)}.$$

If the graph has multi-dimensional edge features $\mathbf{e}_{i,j}$, the attention coefficients $\alpha_{i,j}$ are computed as

$$lpha_{i,j} = rac{\exp\left(\mathrm{LeakyReLU}\left(\mathbf{a}_s^{ op} oldsymbol{\Theta}_s \mathbf{x}_i + \mathbf{a}_t^{ op} oldsymbol{\Theta}_t \mathbf{x}_j + \mathbf{a}_e^{ op} oldsymbol{\Theta}_e \mathbf{e}_{i,j}
ight)
ight)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(\mathrm{LeakyReLU}\left(\mathbf{a}_s^{ op} oldsymbol{\Theta}_s \mathbf{x}_i + \mathbf{a}_t^{ op} oldsymbol{\Theta}_t \mathbf{x}_k + \mathbf{a}_e^{ op} oldsymbol{\Theta}_e \mathbf{e}_{i,k}
ight)
ight)}.$$

If the graph is not bipartite, $\mathbf{\Theta}_s = \mathbf{\Theta}_t$.

Какая проблема с GATConv?

$$x_i' = \sigma\left(\sum_{j \in N_i} \alpha_{ij} \, W x_j\right)$$

$$\alpha_{ij} = \frac{e^{LeakyReLU(a^T[Wx_i||Wx_j])}}{\sum_{k \in N_i} e^{LeakyReLU(a^T[Wx_i||Wx_k])}}$$

Какая проблема с GATConv?

M T

Graph Attention 2

$$\alpha_{ij} = \frac{e^{a^T LeakyReLU(W[x_i||x_j])}}{\sum_{k \in N_i} e^{a^T LeakyReLU(W[x_i||x_k])}}$$

Сравните

$$\alpha_{ij} = \frac{e^{LeakyReLU(a^T[Wx_i||Wx_j])}}{\sum_{k \in N_i} e^{LeakyReLU(a^T[Wx_i||Wx_k])}}$$
 vs

$$\alpha_{ij} = \frac{e^{a^T LeakyReLU(W[x_i||x_j])}}{\sum_{k \in N_i} e^{a^T LeakyReLU(W[x_i||x_k])}}$$

$$\alpha_{ij} = \frac{e^{LeakyReLU(a^T[Wx_i||Wx_j])}}{\sum_{k \in N_i} e^{LeakyReLU(a^T[Wx_i||Wx_k])}}$$

$$\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i + \sum_{j \in [1, N(i)]} \mathbf{x}_j NN(e_{ij})$$

$$\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i + \sum_{j \in [1, N(i)]} \mathbf{x}_j NN(e_{ij})$$

$$\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i + \sum_{j \in [1, N(i)]} \mathbf{x}_j NN(e_{ij})$$

 $m{H}$ и выходной слой NN имеют размерность $m{k}$ х $m{k}'$: $(m{1}$ х $m{k})$ * $(m{k}$ х $m{k}')$ = $m{1}$ х $m{k}'$ Входной слой NN имеет размерность $m{l}$ (NN — часто MLP)

Темпоральные графы

Типы темпоральных графов

(a) Dynamic graph with temporal signal.

(b) Dynamic graph with static signal.

(c) Static graph with temporal signal.

(FT) предикт класса ноды в будущем, *предсказание траффика*

(FT) предикт класса ноды в будущем, *предсказание траффика*

FI (future-inductive) – предикт класса **новой** ноды (не было в обучении) в будущем

(FT) предикт класса ноды в будущем, *предсказание траффика*

PT: Detecting critical stages during disease progression from gene expression profiles (Gao et al., 2022)

FI (future-inductive) – предикт класса **новой** ноды (не было в обучении) в будущем

(FT) предикт класса ноды в будущем, *предсказание траффика*

PT: Detecting critical stages during disease progression from gene expression profiles (Gao et al., 2022)

FI (future-inductive) – предикт класса **новой** ноды (не было в обучении) в будущем

PI (past-inductive), предикт класса ноды, которая была недоступна (маскирована) в трейне или предикт ребра между нодами, которых не было в обучении

LDE == low-dimension embedding

и т С

EvolveGCN (2019)

На вход RNN подавать не фичи / эмбеддинги вершин, а веса графовой свертки

EvolveGCN-H (2019)

$$H_t^{l+1} = \sigma(A_t H_t^l W_t^l)$$

$$W_t^l = GRU(H_t^l, W_{t-1}^l)$$

Вместо GRU - можно RNN, LSTM и пр.

(a) EvolveGCN-H, where the GCN parameters are hidden states of a recurrent architecture that takes node embeddings as input.

EvolveGCN-O (2019)

$$H_t^{l+1} = \sigma(A_t H_t^l W_t^l)$$

$$W_t^l = LSTM(W_{t-1}^l)$$

(b) EvolveGCN-O, where the GCN parameters are input/outputs of a recurrent architecture.

В июне 2023 появился первый бенчмарк

https://tgb.complexdatalab.com/

https://torch-spatiotemporal.readthedocs.io/en/latest/
https://github.com/TorchSpatiotemporal/tsl

https://www.youtube.com/watch?v=rUR3-YIHFt0

Задача ЕТА

Эффект от GNN в задаче ETA в Google Maps

Дороги в графы

Дороги в графы

$$\mathbf{e}'_{k} = \phi^{e} \left(\mathbf{e}_{k}, \mathbf{v}_{s_{k}}, \mathbf{v}_{t_{k}}, \mathbf{u} \right)$$

$$\mathbf{v}'_{i} = \phi^{v} \left(\bar{\mathbf{e}}'_{i}, \mathbf{v}_{i}, \mathbf{u} \right)$$

$$\mathbf{u}' = \phi^{u} \left(\bar{\mathbf{e}}', \bar{\mathbf{v}}', \mathbf{u} \right)$$

Текущие и исторические скорости, длина сегмента и приоритет (напр.: хайвэй), время и пр.

Время проезда по сегмента и скорости. Плюс обучаемые эмбеддинги сегмента / суперсегмента

м т С

Схема работы

Схема работы

Не густо деталей. И где время?

Схема работы

Не густо деталей. И где время?

5 GNN для пяти временных горизонтов

GLU (борьба с затуханием градиентов)

м т С

Градиент gate в LSTM

Градиент gate в GLU

$$\nabla (\tanh(X) \odot \sigma(X)) = \tanh'(X) \nabla X \odot \sigma(X) + \sigma'(X) \nabla X \odot \tanh(X)$$

$$\nabla (X \odot \sigma(X)) = \nabla X \odot \sigma(X) + X \odot \sigma'(X) \nabla X$$

STAEformer

^{*} Notably, we also apply layer normalization, residual connection and multi-head mechanism