□ 1 - Combinaison de réactions

Soient les deux réactions entre le cuivre, le dioxygène et l'oxyde de cuivre (I) :

$$4\,Cu_{(s)} + O_{2(g)} \,=\, 2\,Cu_2O_{(s)} \quad (1) \quad \Delta_r H_1^\circ(298\ K) = -333\ kJ \cdot mol^{-1} \quad (1)$$

$$2\, Cu_2O_{(s)} + O_{2(g)} \, = \, 4\, CuO_{(s)} \quad (2) \quad \Delta_r H_2^\circ(298 \; \text{K}) = -287 \; \text{kJ} \cdot \text{mol}^{-1} \quad (2)$$

1. En déduire l'enthalpie standard de réaction $\Delta_r H_3^{\circ}(298 \text{ K})$ de la réaction d'équation :

$$2Cu_{(s)} + O_{2(g)} = 2CuO_{(s)}$$
 (3)

- 2. La réaction est-elle endothermique ou exothermique?
- 3. Calculer l'entropie standard de réaction $\Delta_r S_3^{\circ}(298 \text{ K})$ de la réaction (3). Commenter son signe.
- 4. En déduire l'enthalpie libre standard de réaction $\Delta_{\rm r} G_3^{\circ}(T)$ et sa valeur à 500 K. En déduire la valeur de la constante d'équilibre à cette température.

			Cu ₂ O _(s)	$O_{2(g)}$
$S_{\rm m}^{\circ}(298 {\rm K}) ({\rm J} \cdot {\rm K}^{-1} \cdot {\rm mol}^{-1})$	33,2	42,6	93,1	205

□ 2 – Densité et coefficient de dissociation

$$PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$$

Deux moles de pentachlorure de phosphore sont chauffées à la température de 230°C sous une pression de 1 bar; à l'équilibre la densité du mélange gazeux par rapport à l'air est égale à 4,62.

- 1. Calculer dans cet état :
 - (a) le degré de dissociation du pentachlorure de phosphore;
 - (b) la constante d'équilibre K° ;
 - (c) l'avancement de la réaction;
 - (d) la composition du mélange gazeux.

- 2. Déterminer l'enthalpie standard de réaction $\Delta_r H^\circ$ à 298 K et en déduire la valeur de la constante d'équilibre à 430°C dans l'approximation d'Ellingham.
- 3. Déterminer le degré de dissociation de PCl_5 à $430^{\circ}C$ sous une pression de 1 bar. La dissociation du pentachlorure de phosphore est-elle favorisée à basse ou haute température?
- 4. Déterminer le degré de dissociation de PCl_5 à 230°C sous une pression de 5 bar. La dissociation du pentachlorure de phosphore est-elle favorisée à basse ou haute pression?

Masses molaires atomiques (en $g \cdot mol^{-1}$): P: 31; Cl: 35,5

	$Cl_{2(g)}$	$PCl_{3(g)}$	PCl _{5(g)}
$\Delta_{\rm f} H^{\circ}(298~{ m K})~{ m en}~{ m kJ}\cdot{ m mol}^{-1}$	0	-287,0	-374,9

□ 3 – Dissociation d'un complexe solide

On considère l'équilibre de décomposition du complexe solide

$$[\mathsf{CaCl}_2,\mathsf{NH}_3]_{(s)} \Longrightarrow \mathsf{CaCl}_{2(s)} + \mathsf{NH}_{3(g)}$$

- 1. On mesure la pression en ammoniac à l'équilibre $p_{\rm eq}$ en fonction de la température T (en K) et on obtient la relation $\ln\left(\frac{p_{\rm eq}}{p^\circ}\right)=19,38-\frac{9380}{T}$.
 - (a) Déterminer les valeurs de l'enthalpie standard de la réaction $\Delta_r H^\circ$ et de l'entropie standard de réaction $\Delta_r S^\circ$ dans le cadre de l'approximation d'Ellingham.
 - (b) Le signe de $\Delta_r S^{\circ}$ était-il prévisible?
- 2. Dans un réacteur initialement vide, on introduit 0, 10 mole du complexe solide. La température est fixée à 500 K et la pression totale constante et égale à 1 bar.
 - (a) L'équilibre chimique est-il réalisé?
 - (b) Quel est l'état final du système?

□ 4 - Solutions acides et basiques

1. Une quantité n_0 d'acide méthanoïque HCOOH est versée dans un volume V d'eau. On note $C_0 = n_0/V$ la concentration initiale d'acide méthanoïque; le p K_A du couple HCOOH/HCOO $^-$ est égal à 3,8. Déterminer le pH de la solution finale ainsi que le taux de dissociation de l'acide pour les trois concentrations initiales C_0 suivantes : $1,0 \times 10^{-2}$, $1,0 \times 10^{-3}$ et $1,0 \times 10^{-4}$ mol·L $^{-1}$.

Commenter la **loi d'Ostwald** : « la dilution augmente la dissociation de l'acide ».

2. Le pH d'une solution aqueuse de fluorure d'hydrogène HF de concentration 1,00 \times 10^{-2} mol \cdot L^{-1} est de 2,7.

En déduire le p K_A du couple HF/F $^-$.

3. Le pH d'une solution aqueuse d'ammoniac NH_3 de concentration $1,00\times 10^{-3}~\text{mol}\cdot L^{-1}$ est de 10, 1.

En déduire le p K_A du couple NH_4^+/NH_3 .

□ 5 – Synthèse du trioxyde de soufre

On étudie l'équilibre $2 \, {\rm SO}_{2(g)} + {\rm O}_{2(g)} \iff 2 \, {\rm SO}_{3(g)}$ à la température T=730 K.

	SO _{2(g)}	SO _{3(g)}	O _{2(g)}
$\Delta_{\rm f} H^{\circ}(298~{ m K})~{ m en}~{ m kJ}\cdot{ m mol}^{-1}$	-297	-396	0
$S_{\rm m}^{\circ}(298~{\rm K})~{\rm en}~{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}$	248	257	205

- 1. On souhaite obtenir un rendement de 90% à partir d'un mélange initial composé de $n_0=0,1$ mol de $O_{2(g)}$, n_0 moles de $SO_{2(g)}$ et $4n_0$ de $N_{2(g)}$. Quelle doit être la valeur de la pression p?
- 2. Comment évolue le rendement lorsqu'on augmente la pression, tout en maintenant la température constante?
- 3. Calculer alors le rendement de la synthèse dans les conditions utilisées en industrie : pression de 1,0 bar et température de 730 K.

☐ 6 – Dissociation du calcaire

À T=1100 K, la constante de l'équilibre $CaCO_{3(s)} \iff CaO_{(s)} + CO_{2(g)}$ vaut $K^{\circ}=0,358$.

Dans un récipient initialement vide de volume V = 10,0 L, maintenu à 1100 K, on introduit n_0 moles de carbonate de calcium solide.

- 1. Donner l'état final lorsque
 - (a) $n_0 = 10,0 \text{ mmol}$;
 - (b) $n_0 = 100 \text{ mmol.}$
- 2. Au mélange obtenu dans la question 1b, on ajoute 0,1 mole de $CO_{2(g)}$. Déterminer la nouvelle composition du système à l'état final.
- 3. Au mélange obtenu dans la question 1b, on ajoute 0,1 mole de $CaO_{(s)}$. Déterminer la nouvelle composition du système à l'état final.

☐ 7 – Craquage thermique du méthane

La réaction de craquage thermique du méthane s'écrit :

$$CH_{4(g)} \rightleftharpoons C_{(s)} + 2H_{2(g)}$$

Au départ, le système ne contient que du méthane.

Proposer des conditions de travail pour obtenir un taux de craquage du méthane d'au moins 90%.

Données

Espèce	CH _{4(g)}	C _(gr)	H _{2(g)}
$\Delta_{\rm f} H^{\circ} \ (298 \ { m K}) \ { m en} \ { m kJ} \cdot { m mol}^{-1}$	-74,8	0	0
$S_{\mathbf{m}}^{\circ}$ en $\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$	186,2	5,7	130,6

□ 8 - Oxydes de cuivre

On étudie l'équilibre $4 \, \text{CuO}_{(s)} \Longleftrightarrow 2 \, \text{Cu}_2 O_{(s)} + O_{2(g)}$ dans le cadre de l'approximation d'Ellingham.

1. À $T_1 = 1223\,$ K, la pression vaut $p_1 = 46,6\,$ hPa. À $T_2 = 1323\,$ K, la pression vaut $p_2 = 296\,$ hPa. Déterminer l'enthalpie et l'entropie standard de réaction.

- 2. Dans un récipient de volume $V=10,0\,$ L, à 1273 K, on introduit 0,1 mole de CuO, 0,01 mole de Cu₂O et n moles de O₂. Prévoir le sens d'évolution du système pour n=0,01 mol et n=0,02 mol. Déterminer les quantités de matière à l'état final dans chaque cas.
- 3. À partir de ces états finaux, on modifie la température de $\delta T=1$ K à pression constante. Prévoir le sens d'évolution et décrire le nouvel état final .

