Лабораторная работа 5.1

Измерение коэффициента ослабления потока γ -лучей

Цель работы

Измерение линейных коэффициентов ослабления потока γ -лучей в свинце, железе и алюминии с использованием сцинтилляционного счетчика и определение энергии γ -квантов.

Введение

Гамма-лучи возникают в результате перехода возбужденных ядер между энергетическими состояниями. Эти кванты не имеют заряда и массы, что позволяет им эффективно проходить через различные материалы. Закон ослабления излучения описывается экспоненциальной зависимостью, отражающей взаимодействие γ -лучей с веществом.

Формулы

$$I = I_0 e^{-\mu l} \tag{1}$$

$$I = I_0 e^{-\mu' m_1} (2)$$

где:

- *I* интенсивность прошедшего излучения,
- \bullet I_0 интенсивность падающего излучения,
- l длина пути γ -лучей,
- \bullet m_1 масса пройденного вещества на единицу площади,
- μ и μ' коэффициенты ослабления, зависящие от вещества.

Оборудование

- Сцинтилляционный счетчик
- Образцы свинца, железа и алюминия
- Источник γ -лучей

Методика

- 1. Установим сцинтилляционный счетчик и источник γ -лучей.
- 2. Измерим интенсивность падающего излучения I_0 без вещества.
- 3. Поочередно поместим образцы свинца, железа и алюминия между источником и счетчиком.
- 4. Для каждого образца измерим интенсивность прошедшего излучения $_{I}$
- 5. Рассчитаем линейные коэффициенты ослабления μ и μ' для каждого материала.
- 6. Определим энергию γ -квантов на основе полученных данных.

Обработка данных

- 1. Построим графики зависимости $\ln \left(\frac{I}{I_0} \right)$ от толщины образцов для каждого материала.
- 2. Определим коэффициенты наклона, которые равны $-\mu$.

Результаты

Выводы

Были получены следующие значения линейных коэффициентов ослабления и энергии γ -квантов:

$$\begin{split} \mu_{\rm Al} &= (0.20033 \pm 0.00346) \ {\rm cm}^{-1}, \quad h \omega_{\rm Al} = 0.75 \ {\rm M} {\rm sB} \\ \mu_{\rm Fe} &= (0.5534 \pm 0.0069) \ {\rm cm}^{-1}, \quad h \omega_{\rm Fe} = 0.77 \ {\rm M} {\rm sB} \\ \mu_{\rm Pb} &= (1.012 \pm 0.056) \ {\rm cm}^{-1}, \quad h \omega_{\rm Pb} = 0.75 \ {\rm M} {\rm sB} \end{split}$$

Средняя энергия γ -квантов:

$$h\omega_{\rm avg} = (0.757 \pm 0.016) \; {
m MэB}$$