GEOMETRIA ANALÍTICA - SEMANA 2 Vetores

Professor: Victor M. Cunha

Instituto de Matemática e Estatística (IME) - UFBA

ABRIL 2022

- 1 Soma de ponto e vetor
- 2 Adição de Vetores
- 3 Produto de vetor por escalar

4 Combinações lineares e bases

- 1 Soma de ponto e vetor
- 2 Adição de Vetores
- 3 Produto de vetor por escalar
- 4 Combinações lineares e bases

- Dados um ponto A e um vetor \vec{v} , definimos a soma $A + \vec{v}$ como o ponto B tal que $\vec{v} = \overrightarrow{AB}$.
- \blacksquare Se colocarmos a origem de \vec{v} em A, a extremidade será B.
- Intuitivamente, se 'andarmos' a partir do ponto A pelo vetor \vec{v} , chegamos à B
- \blacksquare Algebricamente, encontramos as coordenadas de B somando as coordenadas de A e $\vec{v}.$
- A partir desta definição a representação do vetor $\vec{v} = \overrightarrow{AB} = B A$ como a diferença de dois pontos faz mais sentido.

- 1 Soma de ponto e vetor
- 2 Adição de Vetores
- 3 Produto de vetor por escalar
- 4 Combinações lineares e bases

■ Fazemos a soma de dois vetores colocando a origem de um na extremidade do outro e formando o vetor que vai da origem do primeiro para a extremidade do segundo.

5

Adição de Vetores

■ Para a soma de mais vetores, o procedimento é análogo:

lacktriangle Caso a extremidade do último coincida com a origem do primeiro, a soma o vetor nulo $\vec{0}$.

Adição de Vetores

■ Para dois vetores não-paralelos, podemos também considerar uma mesma origem e completar um paralelogramo para visualizar a soma.

Propriedades da Soma

Associatividade: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

Comutatividade: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$

Elemento neutro: Para todo vetor \vec{v} , temos $\vec{v} + \vec{0} = \vec{v}$.

Elemento oposto: Para todo \vec{v} , existe um vetor $-\vec{v}$ tal que $\vec{v} + (-\vec{v}) = \vec{0}$.

- Como representar esta soma através das coordenadas?
- Isto é, como encontramos as coordenadas de $\vec{u} + \vec{v}$ a partir das coordenadas de \vec{u} e \vec{v} ?
- Podemos simplesmente somar coordenada a coordenada:

$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2)$$
$$(u_1, u_2, u_3) + (v_1, v_2, v_3) = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

1

- Considere um paralelogramo ABCD, onde A(0,1,1), B(2,0,-1) e C(-1,-2,0). Quais as coordenadas do vértice D?
- Considere os vetores $\vec{u} = (-1, 1)$ e $\vec{v} = (2, 1)$. Calcule:
 - Os módulos de \vec{u} , \vec{v} e $\vec{u} + \vec{v}$.
 - ightharpoonup O cosseno do ângulo entre \vec{u} e \vec{v} .
- Caracterize o lugar geométrico formado pelos vetores $\vec{u} + \vec{v}$, em que $\|\vec{u}\| = 5$ e $\|\vec{v}\| = 2$.
- Prove que se $\vec{u} + \vec{v} = \vec{u} + \vec{w}$ então $\vec{v} = \vec{w}$.
- Mostre que $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$.
- Mostre que $\|\vec{u} + \vec{v}\| \ge \|\vec{v}\| \|\vec{u}\|\|$.

- 1 Soma de ponto e vetor
- 2 Adição de Vetores
- 3 Produto de vetor por escalar
- 4 Combinações lineares e bases

- O produto de um vetor \vec{v} por um escalar $\alpha \neq 0$ é o vetor $\alpha \vec{v}$ com as seguintes características:
 - ightharpoonup Módulo: $\|\alpha \vec{v}\| = |\alpha| \|\vec{v}\|$.
 - ightharpoonup Direção: A direção de αv é a mesma de v.
 - ▶ Sentido: O sentido de αv é o mesmo de \vec{v} se $\alpha > 0$ e o contrário se $\alpha < 0$.

• Se $\alpha = 0$, temos simplesmente $0 \cdot \vec{v} = \vec{0}$.

- Note que ao multiplicarmos um vetor por um escalar, sempre obtemos um vetor paralelo ao original.
- De fato, dois vetores são paralelos se e somente se um é múltiplo do outro. Ou seja: $\vec{v} = \alpha \vec{u}$ ou $\vec{u} = \beta \vec{v}$.
- Aí está a razão de considerarmos o vetor nulo paralelo a qualquer outro vetor.
- Observação: Para dividir um vetor por um escalar não-nulo basta multiplicá-lo pelo inverso deste escalar.

$$\frac{\vec{v}}{\alpha} = \alpha^{-1} \cdot \vec{v}$$

Propriedades do produto por escalar

Associatividade: $(\alpha\beta)\vec{v} = \alpha(\beta\vec{v})$

Multiplicação por 1: Para todo vetor \vec{v} , $1 \cdot \vec{v} = \vec{v}$

Distributivas: $(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$ e $\alpha(\vec{u} + \vec{v}) = \alpha\vec{u} + \alpha\vec{v}$

- Como representar este produto algebricamente? Ou seja, como encontrar as coordenadas de $\alpha \vec{v}$ a partir das coordenadas de \vec{v} ?
- Basta multiplicarmos cada coordenada de \vec{v} por α :

$$\alpha \cdot (v_1, v_2) = (\alpha v_1, \alpha v_2)$$
$$\alpha \cdot (v_1, v_2, v_3) = (\alpha v_1, \alpha v_2, \alpha v_3)$$

■ Note que deste modo mantemos a direção e:

$$\|\alpha \vec{v}\| = \sqrt{(\alpha v_1)^2 + (\alpha v_2)^2} = \sqrt{\alpha^2 (v_1^2 + v_2^2)}$$
$$= |\alpha| \sqrt{(v_1^2 + v_2^2)} = |\alpha| \|\vec{v}\|$$

■ Ao multiplicarmos cada coordenada de um vetor por um número negativo, também já trocamos seu sentido.

Exercícios

- Encontre o versor do vetor $\vec{v} = (-4, 2, 4)$.
- Dados A(1,3) e B(-2,-1), encontre o ponto P do seguimento \overline{AB} tal que $d_{BP}=2d_{AP}.$
- De modo geral, dados $A(x_A, y_A)$ e $B(x_B, y_B)$, encontre o ponto P do seguimento \overline{AB} tal que $d_{AP} = \alpha \cdot d_{AB}$, onde $0 < \alpha < 1$.
- Encontre o baricentro do triângulo ABC, onde $A(x_A, y_A)$, $B(x_B, y_B)$ e $C(x_C, y_C)$.
- Encontre a interseção da reta \overrightarrow{AB} , onde A(-1,2,1) e B(2,0,-3), com o plano xy.
- Dados $\vec{u}=(1,3), \vec{v}=(-2,1)$ e $\vec{w}=(1,0)$, encontre $\alpha_1,\alpha_2\in\mathbb{R}$ tais que $\vec{w}=\alpha_1\vec{u}+\alpha_2\vec{v}.$

- 1 Soma de ponto e vetor
- 2 Adição de Vetores
- 3 Produto de vetor por escalar
- 4 Combinações lineares e bases

Combinações Lineares

■ Dados os vetores $\vec{u}_1, \dots, \vec{u}_n$, uma combinação linear deles é dada por:

$$\vec{v} = \sum_{j=1}^{n} \alpha_j \vec{u}_j = \alpha_1 \vec{u}_1 + \dots + \alpha_n \vec{u}_n$$

onde $\alpha_1, \ldots, \alpha_n$ são números reais.

- O conjunto de vetores que podem ser formados pela combinação linear de $\vec{u}_1, \dots, \vec{u}_n$ é chamado *span* deste grupo de vetores.
- Exemplos:
 - Representar o vetor (5, -1) como combinação linear dos vetores (2, 1) e (-1, 3).
 - \blacktriangleright É possível representar o vetor (1,1) como combinação linear dos vetores (2,4) e (3,6)?
- Dados os vetores $\mathcal{U} = \{\vec{u}_1, \dots, \vec{u}_n\}$, e $\vec{v} \in span(\mathcal{U})$. Mostre que $span(\mathcal{U} \cup \{\vec{v}\}) = span(\mathcal{U})$.

■ No plano, sendo \vec{v}_1 e \vec{v}_2 dois vetores $n\tilde{a}o$ paralelos, qualquer outro vetor \vec{w} pode ser representado de modo único como combinação linear de \vec{v}_1 e \vec{v}_2 :

$$\vec{w} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2$$

- Esses vetores formam uma *base* $B = \{\vec{v}_1, \vec{v}_2\}$ do plano.
- \blacksquare α_1 e α_2 são as coordenadas de \vec{w} na base B.
- Em particular, note que $\vec{i}=(1,0)$ e $\vec{j}=(0,1)$ formam uma base do plano, e $\vec{v}=(v_1,v_2)$ é dado por:

$$\vec{v} = v_1 \vec{i} + v_2 \vec{j}$$

■ Essa base é dita ortonormal, porque seus vetores são unitários e ortogonais entre si.

Base canônica do plano

- A base $\{\vec{i}, \vec{j}\}$ é a chamada *canônica*.
- Quando representamos um vetor do plano como $\vec{v} = (v_1, v_2)$, estamos falando as coordenadas dele na base canônica.
- Podemos definir $\vec{v} = (x, y)$ como a combinação linear $x \cdot \vec{i} + y \cdot \vec{j}$.
- Note que as coordenadas de um vetor podem ser interpretadas como seus coeficientes na base canônica.

Combinações Lineares no Espaço

- É possível representar os vetores (7,4,8) e (-1,1,0) como combinação linear de (7,4,8) e (-1,1,0)?
- Dois vetores não são suficientes para representar o espaço.
- Representar o vetor (1,1,-1) como combinação linear dos vetores (1,1,1), (1,2,3) e (0,1,0).
- \blacksquare É possível formar o vetor (1,0,0) a partir dos vetores (1,1,1), (1,1,0) e (1,1,-1)?

Bases no Espaço

■ No espaço, sendo \vec{v}_1 , \vec{v}_2 e \vec{v}_3 três vetores $n\tilde{a}o$ coplanares, qualquer outro vetor \vec{w} pode ser representado de modo único como combinação linear de \vec{v}_1 , \vec{v}_2 e \vec{v}_3 :

$$\vec{w} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \alpha_3 \vec{v}_3$$

- Esses vetores formam uma base $B = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ do espaço.
- \bullet α_1, α_2 e α_3 são as coordenadas de \vec{w} na base B.
- Em particular, note que $\vec{i}=(1,0,0)$, $\vec{j}=(0,1,0)$ e $\vec{k}=(0,0,1)$ formam uma base do espaço, e $\vec{v}=(v_1,v_2,v_3)$ é dado por:

$$\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$$

- \blacksquare $\{\vec{i}, \vec{j}, \vec{k}\}$ formam a base *canônica* do espaço.
- Esta base é ortonormal, e tem *orientação positiva*.

Base Canônica do Espaço

■ Assim como no plano, podemos definir $\vec{v}=(x,y,z)$ como a combinação linear $x\cdot\vec{i}+y\cdot\vec{j}+z\cdot\vec{k}$ e as coordenadas de um vetor podem ser interpretadas como seus coeficientes na base canônica.

- Quais as coordenadas de $\vec{v} = (2,0,1)$ na base $\mathcal{B} = \{(1,0,0),(1,2,1),(0,1,-1)\}$?
- Considere a base $\mathcal{B} \{(1, -2), (-1, 0)\}$ e o vetor $\vec{v} = (2, -1)_{\mathcal{B}}$. Quais as coordenadas de \vec{v} na base canônica?
- Verifique se os seguintes vetores são coplanares:
 - $\vec{u} = (1, 0, -1), \vec{v} = (-1, -2, -1) \text{ e } \vec{w} = (3, 2, -1).$
 - $\vec{u} = (1, -2, 1), \vec{v} = (-2, 4, -2) \text{ e } \vec{w} = (1, 1, 0).$
 - $\vec{u} = (1, -2, 0), \vec{v} = (0, 1, -1) \text{ e } \vec{w} = (1, 1, 1).$
- Represente o vetor (1,2) como uma combinação linear dos vetores (-3,1), (2,2) e (1,-1). Esta representação é única?
- Considere o conjunto de vetores $\mathcal{U} = \{\vec{u}_1, \dots, \vec{u}_n\}$, e sejam $\vec{v}_1, \vec{v}_1 \in span(\mathcal{U})$. Mostre que $\alpha \vec{v}_1 \in \vec{v}_1 + \vec{v}_2$ também estão no *span* de \mathcal{U} .