Tema 12. Conocimiento en aprendizaje

Razonamiento y Representación del Conocimiento

Introducción

- Aprendizaje automático:
 - Supervisado
 - No supervisado
 - Por refuerzo
 - Genético

Introducción

- Representación del conocimiento
 - Proceso automático
 - ¿Sabemos cómo se representa el conocimiento aprendido? → Principal problema
 - ¿Podemos inferir relaciones causales entre el resultado del entrenamiento y el conocimiento adquirido?

Introducción

- Muchos métodos de aprendizaje automático
 - Podemos centrarnos en uno de los más generales y utilizados:
 - Redes neuronales

Redes Neuronales

- ¿Qué son?
 - Sistema conexionista
 - Busca imitar el funcionamiento del cerebro de los seres vivos
 - Fundamento: reforzar o debilitar las conexiones de los elementos de la red para obtener el resultado

deseado

Redes neuronales

Neurona: modelo biológico

- Entradas: dendritas
- Integración: en el soma. Dispositivos "todo-onada" (solo se dispara salida si las entradas superan un nivel (umbral)
- Salidas: el axón transporta la señal de salida a otras neuronas. Conecta con sus dendritas a través de sinapsis

Neurona: modelo computacional

- Entradas: Números reales
- Integración: suma ponderada (net) por los pesos sinápticos seguida de una función de activación f(net)
- Salida: resultado y=f(net)

- Unidad de procesamiento muy simple
 - Integrar las entradas (suma) → net
- Cada entrada está ponderada por un peso → suma ponderada de las entradas de la neurona
 - Las entradas son valores reales
- Salida: función de activación f(net) devuelve 1 o 0 dependiendo de si se supera un cierto umbral Θ (sesgo, bias) → función escalón
- Aprendizaje: modificar los pesos para adecuar la respuesta de la red a las salidas esperadas

$$net = \sum_{i=1}^{N} w_i x_i, \quad y = f(net) = \begin{cases} 1 & si \ net > \Theta \\ 0 & otro \ caso \end{cases}$$

Feed Forward Network

- Simplificando el perceptrón
- Podemos simplificar el perceptrón si integramos el umbral Θ (sesgo, bias) dentro de la integración de la neurona

$$net = \sum_{i=1}^{N} (w_i x_i) - \Theta,$$

$$net = \sum_{i=0}^{N} w_i x_i, con x_0 = -1$$

$$y = f(net) = \begin{cases} 1 & si \ net > 0 \\ 0 & otro \ caso \end{cases}$$

- El conocimiento del perceptrón se encuentra repartido entre los pesos wi
- Modificando los pesos, podemos modificar la salida del perceptrón para un mismo vector de entrada

$$net = \sum_{i=1}^{N} (w_i x_i) - \Theta,$$

$$net = \sum_{i=1}^{N} (w_i x_i) - \Theta, \qquad net = \sum_{i=0}^{N} w_i x_i, con x_0 = -1$$

$$y = f(net) = \begin{cases} 1 & si \ net > 0 \\ 0 & otro \ caso \end{cases}$$

Interpretación geométrica

$$y = f\left(\sum_{i=0}^{N} w_i x_i\right) = \begin{cases} 1 & sinet > 0 \\ 0 & otro caso \end{cases}$$

- Analizando esta ecuación:
 - N=2 \rightarrow net = $w_1 x_1 + w_2 x_2 w_0$
 - N=3 \rightarrow net = $w_1 x_1 + w_2 x_2 + w_3 x_3 w_0$
 - N=k \rightarrow net = $w_1 x_1 + ... + w_k x_k w_0$
- ¿Qué es lo que tenemos?

- Interpretación geométrica
 - La neurona define un hiperplano de forma que los ejemplos etiquetados con y=1 caen al lado positivo y los etiquetados con y=0 al lado negativo

$$\sum_{i=1}^{N} (w_i x_i) - \Theta = 0$$

- Uso del perceptrón
 - Paso Feed Forward
 - Los datos son pasados a las entradas del perceptrón para que éste produzca una salida
 - Ejercicio:
 - (2, 2)
 - (7, -3)
 - (1, -1)

- Buscamos dar valor a los pesos del perceptrón para que sea capaz de reconocer la clase a la que pertenece un conjunto de ejemplos de entrenamiento
- Esos ejemplos están etiquetados:
 - Cada ejemplo tiene:
 - Un vector de características → datos de entrada
 - La clase a la que pertenece (y_d) → salida deseada

- Para un ejemplo del cto. De entrenamiento
 - ¿Podemos encontrar una configuración de pesos del perceptrón para que la salida sea igual a la clase del ejemplo?

- Para un ejemplo del cto. De entrenamiento
 - ¿Podemos encontrar una configuración de pesos del perceptrón para que la salida sea igual a la clase del ejemplo?

SÍ

Siempre

- Y con esos pesos, ¿podremos clasificar correctamente el resto de ejemplos?
 - Seguramente no
- Entonces, ¿qué hacemos con el perceptrón y sus pesos'
 - Buscar el conjunto de pesos que clasifique bien la mayoría de los ejemplos posibles

- ¿Podemos asegurar que el perceptrón simple acabará aprendiendo a clasificar todos los ejemplos de entrenamiento?
 - No, no podemos asegurarlo
 - Depende de la distribución espacial de los datos del conjunto de entrenamiento
 - Conjuntos linealmente separables

Uniendo perceptrones

- Una red neuronal está compuesta de varias neuronas :)
- Al igual que en el modelo biológico, podemos enlazar la salida de una neurona con la entrada de una o varias neuronas diferentes
- Si organizamos las neuronas por capas y conectamos la salida de las neuronas de una capa con la entrada de todas las neuronas de la siguiente capa tenemos el perceptrón multicapa

Perceptrón multicapa

- Neuronas agrupadas por capas
- Hoy se conoce como red fully connected

Perceptrón multicapa

- Interpretación geométrica
 - Problemas con regiones de decisión más complejas exigen distintas estrategias de separación
 - Dichas estrategias las proporcionan las capas ocultas

Perceptrón multicapa

Interpretación

$$y_k(x, w) = \sigma \left(\sum_{j=0}^{M} w_{kj}^{(2)} h \left(\sum_{i=0}^{D} w_{ji}^{(1)} x_i \right) \right)$$