Introduction to Machine Learning

Bayesian Regression

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Outline

Linear Regression

Problem Formulation Learning Parameters Issues with Linear Regression

Bayesian Linear Regression

Bayesian Regression

Estimating Bayesian Regression Parameters Prediction with Bayesian Regression

Handling Outliers in Regression

Generative vs. Discriminative Classifiers

Probabilistic Interpretation of Logistic Regression

Logistic Regression - Training

Using Gradient Descent for Learning Weights
Using Newton's Method
Regularization with Logistic Regression
Handling Multiple Classes
Bayesian Logistic Regression

 ←□ → ←□ → ← ≧ → ← ≧ → ← ≧ → ○
 ○

 Chandola@UB
 CSE 474/574
 2 / 23

Linear Regression

- ► There is one scalar **target** variable *y* (instead of hidden)
- ► There is one vector **input** variable *x*
- ► Inductive bias:

$$y = \mathbf{w}^{\top} \mathbf{x}$$

Linear Regression Learning Task

Learn **w** given training examples, $\langle \mathbf{X}, \mathbf{y} \rangle$.

3 / 23

Probabilistic Interpretation

y is assumed to be normally distributed

$$y \sim \mathcal{N}(\mathbf{w}^{\top}\mathbf{x}, \sigma^2)$$

or, equivalently:

$$y = \mathbf{w}^{\top} \mathbf{x} + \epsilon$$

where $\epsilon \sim \mathcal{N}(0, \sigma^2)$

- y is a *linear combination* of the input variables
- ► Given **w** and σ^2 , one can find the probability distribution of y for a given **x**

Learning Parameters - MLE Approach

Find **w** and σ^2 that maximize the likelihood of training data

$$\begin{aligned} \widehat{\mathbf{w}}_{MLE} &= & (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \\ \widehat{\sigma}_{MLE}^2 &= & \frac{1}{N}(\mathbf{y} - \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w}) \end{aligned}$$

Issues with Linear Regression

- 1. Not truly Bayesian
- 2. Susceptible to outliers
- 3. Too simplistic Underfitting
- 4. No way to control overfitting
- 5. Unstable in presence of correlated input attributes
- 6. Gets "confused" by unnecessary attributes

Putting a Prior on w

- ► "Penalize" large values of w
- ► A zero-mean Gaussian prior

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, \tau^2 I)$$

► What is posterior of **w**

$$p(\mathbf{w}|\mathcal{D}) \propto \prod_{i} \mathcal{N}(y_i|\mathbf{w}^{\top}\mathbf{x}_i, \sigma^2)p(\mathbf{w})$$

► Posterior is also Gaussian

Posterior Estimates of the Weight Vector

► Regularized least squares estimate of w

$$\arg\max_{\mathbf{w}} \sum_{i=1}^{N} log \mathcal{N}(y_i | \mathbf{w}^{\top} \mathbf{x}_i, \sigma^2) + \log \mathcal{N}(\mathbf{w} | 0, \tau^2 I)$$

Parameter Estimation for Bayesian Regression

► Prior for w

$$\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, au^2 \mathbf{I}_D)$$

Posterior for w

$$\begin{split} \rho(\mathbf{w}|\mathbf{y}, \mathbf{X}) &= \frac{\rho(\mathbf{y}|\mathbf{X}, \mathbf{w})\rho(\mathbf{w})}{\rho(\mathbf{y}|\mathbf{X})} \\ &= \mathcal{N}(\bar{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X} + \frac{\sigma^2}{\tau^2}\mathbf{I}_N)^{-1}\mathbf{X}^{\top}\mathbf{y}, \sigma^2(\mathbf{X}^{\top}\mathbf{X} + \frac{\sigma^2}{\tau^2}\mathbf{I}_N)^{-1}) \end{split}$$

- ▶ Posterior distribution for w is also Gaussian
- ▶ What will be MAP estimate for w?

Prediction with Bayesian Regression

- For a new \mathbf{x}^* , predict y^*
- ► Point estimate of *y**

$$y^* = \widehat{\mathbf{w}}_{MLE}^{\top} \mathbf{x}^*$$

Treating y as a Gaussian random variable

$$p(y^*|\mathbf{x}^*) = \mathcal{N}(\widehat{\mathbf{w}}_{MLE}^{\top}\mathbf{x}^*, \widehat{\sigma}_{MLE}^2)$$

$$p(y^*|\mathbf{x}^*) = \mathcal{N}(\widehat{\mathbf{w}}_{MAP}^{\top}\mathbf{x}^*, \widehat{\sigma}_{MAP}^2)$$

Full Bayesian Treatment

Treating y and w as random variables

$$p(y^*|\mathbf{x}^*) = \int p(y^*|\mathbf{x}^*, \mathbf{w})p(\mathbf{w}|\mathbf{X}, \mathbf{y})d\mathbf{w}$$

▶ This is also Gaussian!

Impact of outliers on regression

- Linear regression training gets impacted by the presence of outliers
- ▶ The square term in the exponent of the Gaussian pdf is the culprit
 - Equivalent to the square term in the loss
- ► How to handle this (*Robust Regression*)?
- Probabilistic:
 - Use a different distribution instead of Gaussian for $p(y|\mathbf{x})$
 - Robust regression uses Laplace distribution

$$p(y|\mathbf{x}) \sim Laplace(\mathbf{w}^{\top}\mathbf{x}, b)$$

- ▶ Geometric:
 - Least absolute deviations instead of least squares

$$J(\mathbf{w}) = \sum_{i=1}^{N} |y_i - \mathbf{w}^{\top} \mathbf{x}|$$

12 / 23

Generative vs. Discriminative Classifiers

Probabilistic classification task:

$$p(Y = benign | \mathbf{X} = \mathbf{x}), p(Y = malicious | \mathbf{X} = \mathbf{x})$$

▶ How do you estimate $p(y|\mathbf{x})$?

$$p(y|\mathbf{x}) = \frac{p(y,\mathbf{x})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$

- Two step approach Estimate generative model and then posterior for y (Naïve Bayes)
- Solving a more general problem [2, 1]
- ▶ Why not directly model p(y|x)? Discriminative approach

Which is Better?

- Number of training examples needed to learn a PAC-learnable classifier $\propto VC$ -dimension of the hypothesis space
- Number of parameters for $p(y, \mathbf{x}) > \text{Number of parameters for } p(y|\mathbf{x})$

Discriminative classifiers need lesser training examples to for PAC learning than generative classifiers

14 / 23

Logistic Regression

- $ightharpoonup y | \mathbf{x}$ is a *Bernoulli* distribution with parameter $\theta = sigmoid(\mathbf{w}^{\top}\mathbf{x})$
- When a new input x* arrives, we toss a coin which has sigmoid(w[⊤]x*) as the probability of heads
- ▶ If outcome is heads, the predicted class is 1 else 0
- Learns a linear boundary

Learning Task for Logistic Regression

Given training examples $\langle \mathbf{x}_i, y_i \rangle_{i=1}^D$, learn **w**

Learning Parameters

- MLE Approach
- Assume that $y \in \{0, 1\}$
- What is the likelihood for a bernoulli sample?

▶ If
$$y_i = 1$$
, $p(y_i) = \theta_i = \frac{1}{1 + exp(-\mathbf{w}^\top \mathbf{x}_i)}$
▶ If $y_i = 0$, $p(y_i) = 1 - \theta_i = \frac{1}{1 + exp(\mathbf{w}^\top \mathbf{x}_i)}$

• If
$$y_i = 0$$
, $p(y_i) = 1 - \theta_i = \frac{1}{1 + \exp(\mathbf{w}^{\top} \mathbf{x}_i)}$

ln general, $p(y_i) = \theta_i^{y_i} (1 - \theta_i)^{1 - y_i}$

Log-likelihood

$$LL(\mathbf{w}) = \sum_{i=1}^{N} y_i \log \theta_i + (1 - y_i) \log (1 - \theta_i)$$

No closed form solution for maximizing log-likelihood

4 D > 4 A > 4 B > 4 B > B = 900

Using Gradient Descent for Learning Weights

- Compute gradient of LL with respect to w
- A convex function of **w** with a unique global maximum

$$\frac{d}{d\mathbf{w}}LL(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \theta_i)\mathbf{x}_i$$

► Update rule:

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \eta \frac{d}{d\mathbf{w}_k} LL(\mathbf{w}_k)$$

Chandola@UB

Using Newton's Method

- \triangleright Setting η is sometimes *tricky*
- ► Too large incorrect results
- ► Too small slow convergence
- Another way to speed up convergence:

Newton's Method

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \eta \mathbf{H}_k^{-1} \frac{d}{d\mathbf{w}_k} LL(\mathbf{w}_k)$$

Chandola@UR

What is the Hessian?

- ▶ Hessian or **H** is the second order derivative of the objective function
- Newton's method belong to the family of second order optimization algorithms
- ► For logistic regression, the Hessian is:

$$H = -\sum_i heta_i (1 - heta_i) \mathbf{x}_i \mathbf{x}_i^{ op}$$

Regularization with Logistic Regression

- Overfitting is an issue, especially with large number of features
- ▶ Add a Gaussian prior $\sim \mathcal{N}(\mathbf{0}, \tau^2)$
- Easy to incorporate in the gradient descent based approach

$$LL'(\mathbf{w}) = LL(\mathbf{w}) - \frac{1}{2}\lambda \mathbf{w}^{\top} \mathbf{w}$$
$$\frac{d}{d\mathbf{w}} LL'(\mathbf{w}) = \frac{d}{d\mathbf{w}} LL(\mathbf{w}) - \lambda \mathbf{w}$$
$$H' = H - \lambda I$$

where *I* is the identity matrix.

Handling Multiple Classes

- $ightharpoonup p(y|\mathbf{x}) \sim Multinoulli(\theta)$
- ightharpoonup Multinoulli parameter vector heta is defined as:

$$\theta_j = \frac{exp(\mathbf{w}_j^{\top} \mathbf{x})}{\sum_{k=1}^{C} exp(\mathbf{w}_k^{\top} \mathbf{x})}$$

▶ Multiclass logistic regression has *C* weight vectors to learn

Chandola@UB

Bayesian Logistic Regression

- ► How to get the posterior for w?
- ► Not easy Why?

Laplace Approximation

- ▶ We do not know what the true posterior distribution for w is.
- ▶ Is there a close-enough (approximate) Gaussian distribution?

References

A. Y. Ng and M. I. Jordan.

On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes.

In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, NIPS, pages 841-848. MIT Press, 2001.

V. Vapnik. Statistical learning theory. Wiley, 1998.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺

23 / 23