PRANVEER SINGH INSTITUTE OF TECHNOLOGY **KANPUR**

Odd Semester

Session 2021-22

CT-I

B. Tech. First Semester

Engineering Mathematics-I (KAS103T)	
CO Number	Course Outcome (Please include all COs of your Course here)
CO1	Define/state/find (L1-Remember) the various terms and concepts of matrices and calculus.
CO2	Discuss/ Explain/Compute (L2-Understand) the various derivatives, Jacobian, multiple integral, approximate values and the value of basic terms (e.g. rank, inverse, eigenvalues, eigenvectors, etc.) of matrices and calculus including life-long learning.
CO3	Apply/use (L3-Apply) the basic concepts to solve (L3- Apply) various problems and to calculate (L3- Apply) the values of variables involved in matrices and calculus related to applications in engineering including health and society.
CO4	Examine/Test (L4-Aanalysis) the dynamical system involved in various problems of matrices and calculus to prove and verify (L5-Evaluate) results including societal and environmental contexts.

Time: 1.5 Hrs.

M. M. 15

Q1. Attempt all questions:

Section A

(1X3 = 3 Marks)

Define Hermitian and Skew-Hermitian matrix. a)

CO₁

b) Find the eigen values of
$$3A^3 + 5A^2 - 6A + 2I$$
, where $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$ CO1

Find the value of b for which the rank of the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ b & 0 & 1 \end{bmatrix}$$
 is 2

Section B

Q2. Attempt all questions:

(2X4 = 8 Marks)

a i) Compute the inverse of the given matrix
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
 by using elementary CO2 transformations.

Compute the non-singular matrices
$$P$$
 and Q such that PAQ is in the normal form for the matrix $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$

- Compute the rank of the matrix $A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$ by reducing into normal form. CO2
- ii) Compute the rank and nullity of the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ -1 & -2 & 0 \end{bmatrix}$ CO2
- Calculate the values of λ and μ such that the system $2x 5y + 2z = 8, \ 2x + 4y + 6z = 5, \ x + 2y + \lambda z = \mu$ has (i) no solution, (ii) a unique solution, (iii) infinite number of solutions.
 - Solve the system of linear equations by matrix method: $x_1 + 3x_2 + 2x_3 = 0$, $2x_1 x_2 + 3x_3 = 0$, $3x_1 5x_2 + 4x_3 = 0$, $x_1 + 17x_2 + 4x_3 = 0$
- Calculate A^*A is a Hermitian matrix where A^* is the conjugate transpose of the matrix A CO3 if $A = \begin{bmatrix} 2+i & 3 & -1+3i \\ -5 & i & 4-2i \end{bmatrix}$

Or

- (ii) Calculate the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$
 - **Section C**

(4X1 = 4 Marks)

- Q3.

 i) Verify Cayley-Hamilton theorem for the matrix = $\begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$ Also evaluate A^{-1} by Using Cayley-Hamilton theorem.
 - Prove that the matrix $(I N)(I + N)^{-1}$ is unitary if $N = \begin{bmatrix} 0 & 1 + 2i \\ -1 + 2i & 0 \end{bmatrix}$, where I is unit matrix of the same order of N.