数学Y問題

(120分)

【必答問題】 $Y1\sim Y4$ は全員全問解答せよ。

- **Y1** 箱の中に、1から4までの数が1つずつ書かれたカードが計4枚入っている。箱の中から1枚のカードを取り出して、数を確認して箱の中に戻す作業を3回行う。
 - (1) 取り出されたカードに書かれた3つの数がすべて異なる確率を求めよ。
 - (2) 取り出されたカードに書かれた3つの数の最大値が奇数である確率を求めよ。また、取り出されたカードに書かれた3つの数の最大値が奇数であるとき、3つの数がすべて異なる条件付き確率を求めよ。 (配点 20)

- **Y2** 関数 $f(x) = \sin x + a \cos x$ (a は定数) があり、 $f\left(\frac{\pi}{3}\right) = \sqrt{3}$ である。
 - (1) a の値を求めよ。
 - (2) $0 \le x \le \frac{\pi}{2}$ のとき, f(x) の最大値と最小値を求めよ。また, そのときのx の値をそれ ぞれ求めよ。

THE PARTY OF THE P

- $\mathbf{Y3}$ O を原点とする座標平面上に、放物線 $C: y=x^2$ があり、C上の点 $A(a, a^2)$ における Cの接線を ℓ とする。ただし、a は正の定数とする。
 - (1) ℓの方程式を求めよ。
 - (2) ℓ と χ 軸との交点の χ 座標を α を用いて表せ。また,C, ℓ および χ 軸で囲まれた図形の面積を S_1 とする。 S_1 を α を用いて表せ。
 - (3) 点 A を通り、 ℓ に垂直な直線とy軸との交点を B とする。C、線分 AB、線分 OB で囲まれた図形の面積を S_2 とする。(2)で求めた S_1 に対し、 $S_2 = 10S_1$ となる a の値を求めよ。 (配点 40)

- **Y4** 座標平面上の3点(-3, 2), (1, 4), (5, -4)を通る円を C₁とする。
 - (1) C₁ の中心の座標と半径を求めよ。
 - (2) C_1 の接線で傾きが $-\frac{3}{4}$ であるもののうち、y 切片が正であるものを ℓ とする。 ℓ の方程式を求めよ。
- (3) (2)のとき, C₁の中心を通り, y軸およびℓに接する円を C₂とする。 C₂の方程式を求めよ。 (配点 40)

9

【選択問題】次の指示に従って解答しなさい。

【数学Ⅲを学習していない場合(P.10~11)】	Y5~Y7の3題中2題を解答せよ。
【数学Ⅲの「2次曲線」,「複素数平面」,「数列の極限」のいずれかの学習を終えている場合 (P.12~13)】	Y7~Y10の4題中2題を解答せよ。

- $\mathbf{Y7}$ 右の図のように、OA=3、OB=2、BC=1、
 - $\cos \angle AOB = -\frac{2}{3}$, $OA /\!\!/ CB$ である台形 OABC がある。線分 AB を 2:1 に内分する点を D,線分 OC の中点を E とし,直線 DE と直線 OA の交点を F とする。また, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とする。

- (1) 内積 $\vec{a} \cdot \vec{b}$ の値を求めよ。また, \overrightarrow{OD} を \vec{a} , \vec{b} を用いて表せ。
- (2) 点Gを $\overrightarrow{DG} = k\overrightarrow{DE}$ (kは実数)を満たす点とする。 \overrightarrow{OG} を \overrightarrow{a} , \overrightarrow{b} , kを用いて表せ。また,点Gが点Fに一致するとき,kの値を求めよ。
- (3) 点 H を $\overrightarrow{OH} = t\overrightarrow{b}$ (t は 0 でない実数) を満たす点とする。 $\overrightarrow{OH} \perp \overrightarrow{CH}$ であるとき、t の値を求めよ。また、このとき $\triangle AFH$ の面積を求めよ。 (配点 40)
- $oxed{Y8}$ O を原点とする座標平面上に、焦点の1つが点 $(\sqrt{2}, 0)$ である楕円 $C: \frac{x^2}{a^2} + y^2 = 1$ (a>1) がある。
 - (1) aの値を求めよ。

- (2) 点 A(0, 2) から C に異なる 2 つの接線 ℓ_1 , ℓ_2 を引く。 ℓ_1 , ℓ_2 の方程式を求めよ。ただし、 $(\ell_1$ の傾き) > (ℓ_2 の傾き) とする。
- (3) 点 P が C の y < 0 の部分を動くとする。(2)で求めた ℓ_1 , ℓ_2 に対して, 点 P から ℓ_1 に 引いた垂線と ℓ_1 との交点を H_1 とし, 点 P から ℓ_2 に引いた垂線と ℓ_2 との交点を H_2 とする。四角形 AH_1PH_2 の面積が $\frac{9}{8}$ となるとき, 点 P の座標を求めよ。 (配点 40)

- $\mathbf{Y9}$ p を実数の定数とする。x の 2 次方程式 $x^2-2px+p^2+3=0$ の虚数解のうち、虚部が正であるものを α とし、O を原点とする複素数平面上で、 α を表す点を \mathbf{A} とする。
 - (1) α を p を 用いて 表 せ。
 - (2) 点 A を原点のまわりに $\frac{\pi}{3}$ だけ回転し、さらに原点からの距離を $\frac{1}{2}$ 倍にした点を $B(\beta)$ とすると、 β の虚部が $2\sqrt{3}$ となった。このとき、 ρ の値を求めよ。
 - (3) (2)のとき、 $\triangle OAB$ の外接円の周上に $2 \, \triangle C$, D を BC = BD, $\angle CBD = \frac{\pi}{6}$ となるようにとる。 $2 \, \triangle C$, D を表す複素数を求めよ。ただし、 $3 \, \triangle B$, C, D はこの順に反時計回りにあるものとする。

Y10 数列 $\{a_n\}$ は $a_1=5$, $a_{n+1}=2a_n-3$ $(n=1, 2, 3, \dots)$ を満たしている。また、数列 $\{b_n\}$ は $b_1=b$ (b は定数), $b_{n+1}=b_n+a_n-3$ $(n=1, 2, 3, \dots)$ を満たしている。

- (1) anをnを用いて表せ。
- (2) bnをn, bを用いて表せ。
- (3) rを正の数とする。 $\lim_{n\to\infty}\frac{b_n}{r^n}=1$ であるとき,rの値を求めよ。さらに,このとき,

 $\lim_{n\to\infty} \sum_{k=1}^n \frac{b_k}{r^{2k}} = 3 \ となる b の値を求めよ。 \tag{配点 40}$