

Chapter 06. 무엇이든 진짜처럼 생성하는 생성 모델(Generative Networks)

Variational Autoencoder

VAE Variational Autoencoder

Mean Vector Latent Variables

Proceder Services Latent Variables

Standard Deviation Vector

GAN에 대해서 먼저 알아보았기 때문에, VAE는 조금 더 쉽게 이해할 수 있을 것이다!

Why VAE?

$$P(X=x_1)$$

$$P(X=x_2)$$

$$P(X = x_1) = P(X = x_2)$$

임의로 영상을 생성할 경우, 좌측과 우측 영상이 발생할 확률은 동일하다.

Natural Image는 전체 영상 Domain 중에서 매우 Sparse하다.

Manifold Learning

 $x \in \mathbb{R}^N$

더 낮은 차원으로(N > M) 변환하는 것을 Embedding이라 하고, 이 Embedding Function을 학습하는 것을 Manifold Learning이라 한다.

Manifold Learning Example

Image Space

Latent Space

 $z \in \mathbb{R}^2$

64차원 → 2차원의 Manifold Learning의 예 (PCA)

Image Space에서 생성하는 것 보다 Latent Space에서 생성하기가 훨씬 쉽다.

VAE Structure (1/2)

VAE Structure (2/2)

Latent Space

Mean Vector Latent Variables

Standard Deviation Vector

앞의 스토리를 보고 나니 좀 더 느낌이 오지 않는가?

KL Divergence Kullback-Leibler Divergence

$$D_{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

$$= \int p(x) \log p(x) dx - \int p(x) \log q(x) dx$$

$$\neq D_{KL}(q||p)$$

KL Divergence는 두 확률 분포가 다른 정도를 나타내는 것이 목적이다. '거리(Distance)'라고 부를 수는 없는데, 교환법칙이 성립하지 않기 때문이다.

KLD of Gaussian Distribution

$$N(\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$p(x) = N(\mu_1, \sigma_1)$$

 $q(x) = N(\mu_2, \sigma_2)$

$$D_{KL}(p||q) = -\int p(x)\log q(x) dx + \int p(x)\log p(x) dx$$

$$= \frac{1}{2}\log(2\pi\sigma_1^2) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}(1 + \log 2\pi\sigma_1^2)$$

$$= \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}$$

두 Gaussian 분포의 비교는 KL Divergence로 쉽게 표현할 수 있다.

Evidence Lower Bound (ELBO) (1/3)

$$\log P(x_i) = \log \frac{P(x_i|z)p(z)}{P(z|x_i)}$$

$$= \log P(x_i|z) + P(z) - \log P(z|x_i) - \log P(z|x_i)$$

Log-Likelihood를 최대화 하고 싶다. (MLE)

$$\log P(x_i) = \log P(x_i) \int q(z|x_i) dz$$
$$= \int q(z|x_i) \underline{\log P(x_i)} dz$$

위 수식을 대입하고 하나씩 전개해 보자.

Evidence Lower Bound (ELBO) (2/3)

$$\log P(x_{i}) = \int q(z|x_{i})[\log P(x_{i}|z) + \log P(z) - \log P(z|x_{i})]dz$$

$$= E_{q(z|x_{i})}[\log P(x_{i}|z)] + \int q(z|x_{i})\log p(z) dz - \int q(z|x_{i})\log P(z|x_{i}) dz + \int q(z|x_{i})\log q(z|x_{i}) dz$$

$$= E_{q(z|x_{i})}[\log P(x_{i}|z)] - \int q(z|x_{i})\log q(z|x_{i}) dz + \int q(z|x_{i})\log p(z) dz$$

$$+ \int q(z|x_i) \log q(z|x_i) dz - \int q(z|x_i) \log P(z|x_i) dz$$

$$=E_{q(z|x_i)}[\log P(x_i|z)]-D_{KL}\big(q(z|x_i)||P(z)\big)+D_{KL}\big(q(z|x_i)||P(z|x_i)\big)$$
Decoder의 사후확률은 알기 어렵다.

$$\geq E_{q(z|x_i)}[\log P(x_i|z)] - D_{KL}(q(z|x_i)||P(z))$$

Evidence Lower Bound (ELBO) (3/3)

Loss Function

$$\log P(x_i) \ge \underbrace{E_{q(z|x_i)}[\log P(x_i|z)] - D_{KL}(q(z|x_i)||P(z))}_{\text{Reconstruction Error}} - \underbrace{\text{Regularization}}$$

.

$$D_{KL}(q(z|x_i)||P(z)) = D_{KL}(N(\mu_{q(x_i)}, \sigma_{q(x_i)}^2)||N(0,1))$$

$$z \sim N(0,1)$$

둘 모두 Gaussian 분포를 따른다.

$$= \sum_{i} -\log \sigma_{q(x_i)} + \frac{1}{2} \left(\sigma_{q(x_i)}^2 + \mu_{q(x_i)}^2 - 1 \right)$$

Interesting Results

Figure 5. Linear interpolation for latent vector. Each row is the interpolation from left latent vector z_{left} to right latent vector z_{right} . e.g. $(1-\alpha)z_{left} + \alpha z_{right}$. The first row is the transition from a non-smiling woman to a smiling woman, the second row is the transition from a man without eyeglass to a man with eyeglass, the third row is the transition from a man to a woman, and the last row is the transition between two fake faces decoded from $z \sim \mathcal{N}(0,1)$.

Interesting Results

Figure 6. Vector arithmetic for visual attributes. Each row is the generated faces from latent vector z_{left} by adding or subtracting an attribute-specific vector, i.e., $z_{left} + \alpha \ z_{smiling}$, where $\alpha = 0, 0.1, \ldots, 1$. The first row is the transition by adding a smiling vector with a linear factor α from left to right, the second row is the transition by subtracting a smiling vector, the third and fourth row are the results by adding a eyeglass vector to the latent representation for a man and women, and the last row shows results by subtracting an eyeglass vector.

https://arxiv.org/pdf/1610.00291.pdf