CS2040S Data Structures and Algorithms

Hashing! (Part 1)

Plan: this week and next

Three (or Four) Days of Hashing

- Applications
- Basic theory
- Handling collisions
- (Hashing in Java)
- Amortized analysis (doubling/shrinking)
- Sets and Bloom filters

Topic of the Week: Hash Tables

Abstract Data Types

Symbol Table

public interface	SymbolTable	
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Note: no successor / predecessor queries.

Symbol Table

Examples:

Dictionary: key = word

value = definition

Phone Book key = name

value = phone number

Internet DNS key = website URL

value = IP address

Java compiler key = variable name

value = type and value

Implement symbol table with an AVL tree: $(C_I = cost insert, C_S = cost search)$

1.
$$C_I = O(1), C_S = O(1)$$

2.
$$C_I = O(1), C_S = O(\log n)$$

3.
$$C_I = O(1), C_S = O(n)$$

$$\checkmark$$
4. $C_I = O(\log n)$, $C_S = O(\log n)$

5.
$$C_I = O(n), C_S = O(\log n)$$

6.
$$C_I = O(n), C_S = O(n)$$

Symbol Table

Implement a symbol table with:

$$- C_{I} = O(1)$$

$$- C_S = O(1)$$

Fast, fast, fast....

What can you do with a dictionary but not a symbol table?

Sorting with a dictionary:

- 1) Insert every item into the dictionary.
- 2) Search for the minimum item.
- 3) Repeat: find successor

Running time to implement sorting: With an AVL tree/dictionary?

Sorting with a dictionary:

- 1) Insert every item into the dictionary.
- 2) Search for the minimum item.
- 3) Repeat: find successor

Running time to implement sorting:
With an AVL tree/dictionary? O(n log n)
With a symbol table?

Sorting with a dictionary:

- 1) Insert every item into the dictionary.
- 2) Search for the minimum item.
- 3) Repeat: find successor

Running time to implement sorting:

With an AVL tree/dictionary? O(n log n)

With a symbol table? $O(n^2)$

- No efficient way to find minimum item!
- No ordering of elements.

Sorting (aside)

Isn't O(1) search/insert impossible?

Sorting takes $\Omega(n \log n)$ comparisons.

Sorting (aside)

Isn't O(1) search/insert impossible?

Sorting takes $\Omega(n \log n)$ comparisons.

- How do you sort with a symbol table?
- Only search/insert/delete.

Sorting (aside)

Isn't O(1) search/insert impossible?

Sorting takes $\Omega(n \log n)$ comparisons.

- How do you sort with a symbol table?
- Only search/insert/delete.

(Binary) search takes $\Omega(\log n)$ comparisons.

- Impossible to search in fewer than log(n) comparisons.
- But a symbol table finds an item in O(1) steps!!
- Conclusion: symbol table is not *comparison-based*.

Building a Symbol Table

Attempt #1: Use a table, indexed by keys.

0	null
1	null
2	item1
234	null
	null
5	item3
6	null
7	null
8	item2
9	null

Universe U= $\{0..9\}$ of size m = 10.

(key, value)

(2, item1)

(8, item2)

(5, item3)

Assume keys are distinct.

Attempt #1: Use a table, indexed by keys.

		_
0	null	
1	null	
2	item1	
234	null	
	null	4
567	item3	
6	null	
	null	
8	item2	
9	null	

Example: insert(4, Seth)

Attempt #1: Use a table, indexed by keys.

null	
null	Example: insert(4, Seth)
item1	
null	
Seth	
item3	
null	
null	
item2	
null	
	null item1 null Seth item3 null null item2

Time: O(1) / insert, O(1) / search

Problems:

- What if keys are not integers?
 - Where do you put the key/value "(hippopotamus, bob)"?
 - Where do you put 3.14159...?

Pythagoras said, "Everything is a number."

"The School of Athens" by Raphael

Pythagoras said, "Everything is a number."

- Everything is just a sequence of bits.
- Treat those bits as a number.

– English:

- 26 letters => 5 bits/letter
- Longest word = 28 letters (antidisestablishmentarianism?)
- 28 letters * 5 bits = 140 bits
- So we can store any English word in a direct-access array of size 2^{140} .

Pythagoras said, "Everything is a number."

- Everything is just a sequence of bits.
- Treat those bits as a number.

– English:

- 26 letters => 5 bits/letter
- Longest word = 28 letters (antidisestablishmentarianism?)
- 28 letters * 5 bits = 140 bits
- So we can store any English word in a direct-access array of size 2¹⁴⁰. ≈ number of atoms in observable universe

Problems:

- What if keys are not integers?
 - Where do you put the key/value "(hippopotamus, bob)"?
 - Where do you put 3.14159...?
 - → Can represent anything as a sequence of bits.

- Too much space
 - If keys are integers, then table-size > 4 billion
 - → Hashing

Problem:

- e.g., 2¹⁴⁰
- Huge universe U of possible keys.
- Smaller number *n* of actual keys.

Problem:

- Huge universe U of possible keys.
- Smaller number n of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Problem:

- Huge universe U of possible keys.
- Smaller number n of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Define hash function $h: U \rightarrow \{1..m\}$

- Store key k in bucket h(k).
- Time complexity:
 - Time to compute h + Time to access bucket
- Usually: assume hash function has cost 1 to compute.

unless otherwise specified, e.g., long strings.

0	null
1	null
2	null
3	null
23456	null
5	null
6	null
7	null
8	null
9	null

 $insert(k_1, A)$

 $insert(k_1, A)$ $insert(k_2, B)$

 $insert(k_1, A)$ $insert(k_2, B)$ $insert(k_3, C)$ Collision! 0 null null $h(k_1) = 2$ k_1 A null $h(k_3) = 2$ null 4 5 null null 6 $h(k_2) = 8$ null B 9 null

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if: $h(k_1) = h(k_2)$

Can we choose a hash function with no collisions?

- 1. Yes
- 2. Sometimes, if we choose carefully
- ✓3. No, impossible

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if:

$$h(k_1) = h(k_2)$$

- Unavoidable!
 - The table size is smaller than the universe size.
 - The pigeonhole principle says:
 - There must exist two keys that map to the same bucket.
 - Some keys must collide!

Coping with Collision

Idea: choose a new, better hash functions

Coping with Collision

Idea: choose a new, better hash functions

- Hard to find.
- Requires re-copying the table.
- Eventually, there will be another collision.

Coping with Collision

Idea: choose a new, better hash functions

- Hard to find.
- Requires re-copying the table.
- Eventually, there will be another collision.

Idea: chaining (today)

– Put both items in the same bucket!

Idea: open addressing (next week)

Find another bucket for the new item.

Coping with Collision

Idea: choose a new, better hash functions

- Hard to find.
- Requires re-copying the table.
- Eventually, there will be another collision.

Idea: chaining (today)

– Put both items in the same bucket!

Idea: open addressing (next week)

Find another bucket for the new item.

Chaining

Each bucket contains a linked list of items.

Chaining

Each bucket contains a linked list of items.

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key)
 - Calculate h(key)
 - Search for (key, value) in the linked list.

What is the worst-case cost of inserting a (key, value)? Assume cost(h) is cost of computing the hash function.

- ✓1. O(1 + cost(h))
 - 2. $O(\log n + \operatorname{cost}(h))$
 - 3. O(n + cost(h))
 - 4. O(n cost(h))
 - 5. $O(n^2)$.

Do we care about duplicates?

→ If so, the cost of insert is higher because we need to search for duplicates.

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key,value) to the linked list.

(Note: this allows duplicate keys. Need to specify more precisely the behavior or insert!)

- search(key)
 - Calculate h(key)
 - Search for (key,value) in the linked list.

What is the worst-case cost of searching a (key, value)?

- 1. O(1 + cost(h))
- 2. $O(\log n + \operatorname{cost}(h))$
- 3. O(n + cost(h))
- 4. O(n*cost(h))
- 5. We cannot determine it without knowing h.

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key) → time depends on length of linked list
 - Calculate h(key)
 - Search for (key, value) in the linked list.

Assume all keys hash to the same bucket!

- Search costs O(n)
- Oh no!

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

Why don't we just insert each key into a random bucket (instead of using a hash function h)?

Why don't we just insert each key into a random bucket (instead of using hash function h)?

- It would be slow to insert.
- 2. Computers don't have a real source of randomness.
- 3. By choosing the keys carefully, a user could force the random choices to create many collisions.
- ****
 - 4. Searching would be very slow.
 - 5. None of the above.

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m

= average # items / bucket.

Expected search time = 1 + expected # items per bucket

linked list traversal

hash function + array access

Probability Theory

Set of outcomes for $X = (e_1, e_2, e_3, ..., e_k)$:

- $Pr(e_1) = p_1$
- $Pr(e_2) = p_2$
- - ...
- $Pr(e_k) = p_k$

Expected outcome:

$$E[X] = e_1p_1 + e_2p_2 + ... + e_kp_k$$

Probability Theory

Linearity of Expectation:

$$- E[A + B] = E[A] + E[B]$$

Example:

- -A = # heads in 2 coin flips
- B = # heads in 2 coin flips
- -A + B = # heads in 4 coin flips

$$E[A+B] = E[A] + E[B] = 1 + 1 = 2$$

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m

= average # items / bucket.

Expected search time = 1 + expected # items per bucket

linked list traversal

hash function + array access

A little more probability

```
X(i, j) = 1 if item i is put in bucket j
= 0 otherwise
```

$$Pr(X(i, j) == 1) = ?$$

- **✓**1. 1/m
 - 2. 1/n
 - 3. 1/(m+n)
 - 4. m/n
 - 5. n/m
 - 6. log(n)

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j)==1) = 1/m$$

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j)==1) = 1/m$$

$$E(X(i, j)) = ??$$

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j) == 1) = 1/m$$

$$E(X(i, j)) = Pr(X(i, j)==1)*1 + Pr(X(i, j)==0)*0$$

$$= Pr(X(i, j)==1)$$

$$= 1/m$$

What is the expected number of items in a bucket?

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

 $\Sigma_i X(i, b)$ = number of items in bucket b

Each item contributes '1' to the bucket it is in...

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

 $\Sigma_i X(i, b)$ = number of items in bucket b

Calculate expected number of items per bucket:

Expected
$$(\Sigma_i X(i, b)) =$$

Calculate expected number of items per bucket:

$$\mathbf{E}(\Sigma_i \mathbf{X}(i,b)) = \Sigma_i \mathbf{E}(\mathbf{X}(i,b))$$

Linearity of expectation: E(A + B) = E(A) + E(B)

Calculate expected number of items per bucket:

$$\mathbf{E}(\Sigma_i \mathbf{X}(i,b)) = \Sigma_i \mathbf{E}(\mathbf{X}(i,b))$$

$$= \sum_{i} 1/m$$

$$= n/m$$

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m

= average # items / buckets.

- Expected search time = 1 + n/m

hash function + array access

linked list traversal

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - $m = \Omega(n)$ buckets, e.g., m = 2n

- Expected search time = 1 + n/m= O(1)

Searching:

- Expected search time = 1 + n/m = O(1)
- Worst-case search time = O(n)

Inserting:

- Worst-case insertion time = O(1)

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

- Analogy:
 - Throw n balls in m = n bins.
 - What is the maximum number of balls in a bin?

Cost: O(log n)

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

- Analogy:
 - Throw n balls in m = n bins.
 - What is the maximum number of balls in a bin?

Cost: $\Theta(\log n / \log \log n)$

Hashing: Recap

Problem: coping with large universe of keys

- Number of possible keys is very, very large.
- Direct Access Table takes too much space

Hash functions

- Use hash function to map keys to buckets.
- Sometimes, keys collide (inevitably!)
- Use linked list to store multiple keys in one bucket.

Analyze performance with simple uniform hashing.

- Expected number of keys / bucket is O(n/m) = O(1).