Bias Variance Tradeoff

Fraida Fund

Contents

n this lecture	. 1
rediction error	. 2
Model class	. 2
Model class vs. true function	. 2
Sources of prediction error	. 2
Quantifying prediction error	
Output mean squared error (1)	
Output mean squared error (2)	. 3
Irreducible error (1)	. 3
Irreducible error (2)	. 3
Function MSE (1)	. 3
Function MSE (2)	. 3
Function MSE (3)	. 4
A hypothetical (impossible) experiment	. 4
Bias in function MSE	. 4
Variance in function MSE	. 4
Bias and variance	. 5
Summary: decomposition of MSE	. 5
What does it indicate?	. 5
How to get small error?	. 5
Bias variance tradeoff	. 6

In this lecture

- Quantifying prediction error Bias-variance tradeoff

Prediction error

Model class

General ML estimation problem: given data (x_i, y_i) , want to learn $y \approx \hat{y} = f(x)$

The **model class** is the **set** of possible estimates:

$$\hat{y} = f(\mathbf{x}, \boldsymbol{\beta})$$

parameterized by β

Model class vs. true function

Our learning algorithm assumes a model class

$$\hat{y} = f(\mathbf{x}, \boldsymbol{\beta})$$

But the data has a true relation

$$y = f_0(\mathbf{x}) + \epsilon, \quad \epsilon \sim N(0, \sigma_{\epsilon}^2)$$

Sources of prediction error

- Noise: ϵ is fundamentally unpredictable, occurs because y is influenced by factors not in ${f x}$
- Assumed model class: maybe $f(\mathbf{x}, \boldsymbol{\beta}) \neq f_0(\mathbf{x})$ for any $\boldsymbol{\beta}$ (under-modeling)
- Parameter estimate: maybe $f(\mathbf{x},m{eta})=f_0(\mathbf{x})$ for some true $m{eta}_0$, but our estimate $\hat{m{eta}}
 eqm{eta}_0$

Quantifying prediction error

Given

- parameter estimate \hat{eta} (computed from a fixed training set)
- a test point \mathbf{x}_{test} (was not in training set)

Then

- predicted value $\hat{y} = f(\mathbf{x}_{test}, \hat{\beta})$ true value $y = f_0(\mathbf{x}_{test}) + \epsilon$

Output mean squared error (1)

Definition: output MSE given $\hat{\beta}$:

$$MSE_y(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}}) := E[y - \hat{y}]^2$$

$$= E[f_0(\mathbf{x}_{test}) + \epsilon - f(\mathbf{x}_{test}, \hat{\pmb{\beta}})]^2$$

Output mean squared error (2)

Noise ϵ on test sample is independent of $f_0(\mathbf{x}_{test}), f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})$ so

$$\begin{split} &= E[f_0(\mathbf{x}_{test}) + \epsilon - f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})]^2 \\ &= E[f_0(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})]^2 + E[\epsilon]^2 \\ &= E[f_0(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})]^2 + \sigma_{\epsilon}^2 \end{split}$$

Irreducible error (1)

Irreducible error σ^2_ϵ is a fundamental limit on ability to predict y (lower bound on MSE).

$$MSE(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}}) \geq \sigma_{\epsilon}^2$$

Irreducible error (2)

Best case scenario: if

- true function is in model class: $f(\mathbf{x}, \boldsymbol{\beta}) = f_0(\mathbf{x})$ for a true $\boldsymbol{\beta_0}$, and
- our parameter estimate is perfect: $\hat{eta} = eta_0$

then $E[f_0(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \hat{\pmb{\beta}})]^2 = 0$ so output error = σ^2_ϵ .

Function MSE (1)

We had output MSE, error on predicted value:

$$MSE_y(\mathbf{x}_{test}) := E[y - \hat{y}]^2 = E[f_0(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \hat{\pmb{\beta}})]^2 + \sigma_{\epsilon}^2$$

Now we will define function MSE, error on underlying function:

$$MSE_f(\mathbf{x}_{test}) := E[f_0(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})]^2$$

Function MSE (2)

Which can be decomposed into two parts:

$$MSE_f(\mathbf{x}_{test}) := E[f_0(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \hat{\beta})]^2$$

$$\begin{split} MSE_f(\mathbf{x}_{test}) = \\ & (f_0(\mathbf{x}_{test}) - E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})])^2 + \\ & E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}}) - E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})]]^2 \end{split} \tag{1}$$

Function MSE (3)

Note: cancellation of the cross term - Let $\bar{f}(\mathbf{x}_{test}) = E[f(\mathbf{x}_{test}, \hat{\pmb{eta}})]$. The cross term

$$\begin{split} &E[(f_0(\mathbf{x}_{test}) - \bar{f}(\mathbf{x}_{test}))(f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}}) - \bar{f}(\mathbf{x}_{test}))] \\ &= (f_0(\mathbf{x}_{test}) - \bar{f}(\mathbf{x}_{test}))E[(f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}}) - \bar{f}(\mathbf{x}_{test}))] \\ &= (f_0(\mathbf{x}_{test}) - \bar{f}(\mathbf{x}_{test}))(\bar{f}(\mathbf{x}_{test}) - \bar{f}(\mathbf{x}_{test})) = 0 \end{split}$$

A hypothetical (impossible) experiment

Suppose we would get many independent training sets (from same process). For each training set,

- · train our model (estimate parameters), and
- · use this model to estimate value of test point

Bias in function MSE

Bias: How much the average value of our estimate differs from the true value:

$$Bias(\mathbf{x}_{test}) := f_0(\mathbf{x}_{test}) - E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})]$$

Variance in function MSE

Variance: How much the estimate varies around its average:

$$Var(\mathbf{x}_{test}) := E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}}) - E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})]]^2$$

Bias and variance

Figure 1: Example: 100 trials, mean estimate and standard deviation.

Summary: decomposition of MSE

Output MSE is the sum of squared bias, variance, and irreducible error:

$$\begin{split} MSE(\mathbf{x}_{test}) = \\ & (f_0(\mathbf{x}_{test}) - E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}})])^2 + \\ & E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}}) - E[f(\mathbf{x}_{test}, \hat{\boldsymbol{\beta}}]]^2 + \\ & \sigma_{\epsilon}^2 \end{split} \tag{2}$$

What does it indicate?

Bias:

• Model "not flexible enough" - true function is not in model class (under-modeling or underfitting)

Variance:

- · Model is very different each time we train it on a different training set
- Model "too flexible" model class is too general and also learns noise (overfitting)

How to get small error?

- Get model selection right: not too flexible, but flexible enough (how?)
- · Have enough data to constrain variability of model
- · Other ways?

Bias variance tradeoff

Figure 2: Bias variance tradeoff