County Business Patterns
Analysis

By: Sandeep Moparthy, Pooja Kalra, Janit Modi, Jaebin Park

Presentation Agenda

1 Business Objective & Benefits

Data Intro. & Preprocessing

4

5 Conclusion & Inference

Results

3 Models & Analysis

Business Objective

Use data-driven methods to provide target market areas for clients.

Pinpointing the correct target market is a crucial first step towards a successful business plan, leaving the business to move on to the "how"

Decrease need for resources spent on finding optimal location.

As important the location is, the model allows businesses to allocate more time and resources on other areas, such as investment methods.

Three central benefits from the project

A.

High, medium, & low potential locations

Provide encompassing results

By taking into account features, such as the underlying industry and employee count in the establishment, we are able to provide results showing both the best and worst areas to start a business

В.

Flexibility in Strategizing

Small changes are all that's needed

Though we focused on a smaller portion of the data, all that's needed is a simple change in dataset for more comprehensive and expansive results

C.

Provide foundation for new businesses

There are 50 states & thousands of counties.

Whether it's a startup or an established corporation, finding new locations for anything from factories to operations can be difficult. This project derives data driven conclusions to provide the optimal outcome.

County Business Patterns Dataset

- Levels: US, State, County, Metropolitan, ZIP
 - Classified by NAICS (industry code)
- Includes 8 datasets, several dozen variables, millions of data points
 - Annual Payroll, Q1 Payroll, # of Establishments, Noise Flags, etc.

Data Preparation Process

Drop Unnecessary Variables	Class Size Distinction	NAICS & Merge	State & Industry Selection	Recursive Feature Elimination
From 8 datasets, chose	Number of	NAICS had "-" and "/" in	Dataset still large after	Eliminated feature that
Complete County, US, & State files	Establishments per Industry by Employee	it, forcing us to remove them	merging	didn't strongly contribute to analysis
	Size Class	Attempted to merge with NAICS, but data was too large. Random sampled to 1/sqrt(n)	Chose to specify Texas,	Narrowed down to 22 integral features
Removed variables, like Noise Flag, that were	Approx. dozen columns of size ranges		included largest amount of data points	
unusable in analysis			Focused on healthcare	
	1-99 -> Small		industry to replicate	
	100 - 999 -> Medium 1000+ -> Large	Merged with NAICS	client choosing industry	

Recursive Feature Elimination (RFE)

- Backwards predictor selection method
- Identifies which variables are important, unlike
 PCA which shows proportion of variance

State_lfo_ -: State legal form of organization

US establishment class size, large

Complete List of Variables

>	US_lfo:	US leg	gal form of organization	>	State_lfo_Z:	State legal form of organization
\triangleright	US_lfo_G:	US leg	gal form of organization Government			
\triangleright	US_lfo_O:	US leg	gal form of organization Other	>	state_q1:	State first quarter payroll
\triangleright	US_lfo_Z:	US leg	al form of organization S-Corporations	>	state_ap:	S. annual payroll
				>	state_est:	S. total number of establishments
\triangleright	COUNTY_em	p:	County total mid-march employees	>	state_sz_smal	l: S. establishment class size small
\triangleright	COUNTY_q1:		C. first quarter payroll	>	state_sz_med	S. establishment class size, medium
\triangleright	COUNTY_ap:		C. annual payroll	>	state_sz_lrg:	S. establishment class size, large
\triangleright	COUNTY_est	:	C. total number of establishments			
\triangleright	COUNTY_sz_s	small:	C. establishment class size small	>	US_sz_small:	US establishment class size small
>	COUNTY_sz_i	med:	C. establishment class size, medium	>	US_sz_med:	US establishment class size, medium

US_sz_lrg:

Fitted Models on AVG. Payroll for Counties

Model Evaluation Metrics

- Accuracy proportion of true results among total number of cases examined
- Precision proportion of predicted Positives is truly Positive
- Recall proportion of actual Positives is correctly classified
- > F1 harmonic mean between Precision and Recall, score between 0 and 1

$$\frac{TP + TN}{TP + FP + TN + FN}$$

$$\frac{TP}{TP + FP}$$

$$\frac{TP}{TP + FN}$$

$$2*\frac{Precision*Recall}{Precision+Recall}$$

Results

Model	Accuracy	Precision / Recall (0)	Precision / Recall (1)	Precision / Recall (2)	Precision / Recall (3)
Log. Reg	0.92	0.96 / 1	0.89 / 0.85	0.68 / 0.56	0.93 / 0.88
RF	0.89	1/1	0.88 / 0.85	0.43 / 0.45	0.79 / 0.69
NB	0.80	0.97 / 0.89	0.97 / 0.79	0.41 / 0.43	0.50 / 0.67
KNN	0.42	0.47 / 0.73	0.31 / 0.20	0.00 / 0.00	0.00 / 0.00
SVM - LIN	0.64	0.73 / 0.77	0.59 / 0.59	0.33 / 0.41	1.00 / 0.31
SVM - RBF	0.30	0.46 / 0.35	0.38 / 0.31	0.08 / 0.18	0.07 / 0.12
DT	0.92	1/1	0.90 / 0.92	0.63 / 0.55	0.82 / 0.88

- Portraying models with the best results
- Classified client data based on the average pay roll into 4 categories:
 - o 0 extremely low
 - o 1 low
 - o 2 medium
 - 3 high
- \triangleright Log. Reg. \rightarrow best model
 - Accuracy: 0.92
 - Precision Avg: 0.865
 - Recall Avg: 0.823

Conclusions & Inferences: What does it mean?

