04. Relaciones entre esfuerzos y deformaciones

sección 2.8

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica de sólidos

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

Derrotero

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 4.8.2. Deformación plana Caso isótropo
- **⑤** 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Derrotero

Repaso

- 2 4.8. Particularización de tres a dos dimensiones
- 3 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 4.8.2. Deformación plana Caso isótropo
- **⑤** 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Isótropo

Deformaciones longitudinales

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu (\sigma_y + \sigma_z))$$

$$\varepsilon_y = \frac{1}{E} (\sigma_y - \nu (\sigma_x + \sigma_z))$$

$$\varepsilon_z = \frac{1}{E} (\sigma_z - \nu (\sigma_x + \sigma_y))$$

Isótropo

Deformaciones angulares

$$\gamma_{xy} = \frac{1}{G}\tau_{xy}, \qquad \gamma_{yz} = \frac{1}{G}\tau_{yz}, \qquad \gamma_{xz} = \frac{1}{G}\tau_{xz}; \qquad G := \frac{E}{2(1+\nu)}$$

Isótropo

Despejando los esfuerzos:

Ecuaciones de Lamé

$$\sigma_x = \lambda e + 2G\varepsilon_x$$

$$\sigma_y = \lambda e + 2G\varepsilon_y$$

$$\sigma_z = \lambda e + 2G\varepsilon_z$$

$$\tau_{xy} = G\gamma_{xy}$$

$$\tau_{xz} = G\gamma_{xz}$$

$$\tau_{yz} = G\gamma_{yz}$$

La constante de Lamé:

$$\lambda \coloneqq \frac{\nu E}{(1+\nu)(1-2\nu)}$$

A.5. Notación tensorial de Voigt

Woldemar Voigt

Esta notación se emplea para representar un tensor simétrico como uno de orden menor.

La matriz de esfuerzos de Cauchy:

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{pmatrix}$$

Se puede expresar como un vector de dimensión 6:

$$\underline{\boldsymbol{\sigma}} = [\sigma_x, \sigma_y, \sigma_z, \tau_{yz}, \tau_{xz}, \tau_{xy}]^T \equiv [\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6]^T$$

Isótropo

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{yz} \\ \tau_{xx} \end{pmatrix} = \frac{E}{1+\nu} \begin{pmatrix} \frac{1-\nu}{1-2\nu} & \frac{\nu}{1-2\nu} & \frac{\nu}{1-2\nu} & 0 & 0 & 0 \\ \frac{\nu}{1-2\nu} & \frac{1-\nu}{1-2\nu} & \frac{\nu}{1-2\nu} & 0 & 0 & 0 \\ \frac{\nu}{1-2\nu} & \frac{\nu}{1-2\nu} & \frac{1-\nu}{1-2\nu} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{pmatrix}$$

 D, Matriz constitutiva o matriz de constantes elásticas para un material isótropo

Código

04_03_03.ipynb

Derrotero

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 4.8.2. Deformación plana Caso isótropo
- **6** 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Particularización de tres a dos dimensiones

Existen 3 casos de particularización:

- Tensión plana
- Deformación plana
- Caso axisimétrico

Tensión y deformación plana se conocen como los casos de elasticidad plana. wikipedia/elasticidad_plana.

Particularización de tres a dos dimensiones

Existen 3 casos de particularización:

- Tensión plana
- Deformación plana
- Caso axisimétrico

Tensión y deformación plana se conocen como los **casos de elasticidad plana**. wikipedia/elasticidad_plana.

Particularización de tres a dos dimensiones

Existen 3 casos de particularización:

- Tensión plana
- Deformación plana
- Caso axisimétrico

Tensión y deformación plana se conocen como los **casos de elasticidad plana**. wikipedia/elasticidad_plana.

Derrotero

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 4.8.2. Deformación plana Caso isótropo
- § 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

En elementos estructurales en los cuales una dirección es muy pequeña comparada con las otras dos, es decir, cuando un elemento es muy delgado.

Supondremos que:

- El elemento no tiene cargas aplicadas en la dirección z ni sobre la superficie ortogonal al eje z.
- Las cargas están aplicadas en el contorno del cuerpo, ortogonal al eje z, distribuidas uniformemente en su espesor.

$$\sigma_z = \tau_{xz} = \tau_{uz} = 0$$

Supondremos que:

- El elemento no tiene cargas aplicadas en la dirección z ni sobre la superficie ortogonal al eje z.
- Las cargas están aplicadas en el contorno del cuerpo, ortogonal al eje z, distribuidas uniformemente en su espesor.

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

Supondremos que:

- El elemento no tiene cargas aplicadas en la dirección z ni sobre la superficie ortogonal al eje z.
- Las cargas están aplicadas en el contorno del cuerpo, ortogonal al eje z, distribuidas uniformemente en su espesor.

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

Supondremos que:

- El elemento no tiene cargas aplicadas en la dirección z ni sobre la superficie ortogonal al eje z.
- Las cargas están aplicadas en el contorno del cuerpo, ortogonal al eje z, distribuidas uniformemente en su espesor.

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

tensión plana

$$\sigma_z = 0$$

$$\tau_{xz} = 0$$

$$\tau_{xz} = 0$$
$$\tau_{yz} = 0$$

Derrotero

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 3 4.8.1. Tensión plana Caso isótropo
- 4.8.2. Deformación plana
- **6** 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Tensión plana

Deformaciones longitudinales

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu (\sigma_{y} + \sigma_{z}))$$

$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu (\sigma_{x} + \sigma_{z}))$$

$$\varepsilon_{z} = \frac{1}{E} (\sigma_{z} - \nu (\sigma_{x} + \sigma_{y}))$$

Deformaciones angulares

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}, \qquad \gamma_{yz} = \frac{1}{G} \tau_{yz}, \qquad \gamma_{xz} = \frac{1}{G} \tau_{xz}$$

Tensión plana

Aplicando las condiciones de tensión plana:

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y)$$

$$\varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x)$$

$$\varepsilon_z = -\frac{\nu}{E} (\sigma_x + \sigma_y)$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}$$

$$\gamma_{yz} = 0$$

$$\gamma_{xz} = 0$$

Tensión plana

Ley de Hooke generalizada para un material isótropo, tensión plana

$$\sigma_x = \frac{E}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y)$$

$$\sigma_y = \frac{E}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x)$$

$$\sigma_z = 0$$

$$\tau_{xy} = G\gamma_{xy}$$

$$\tau_{xz} = 0$$

$$\tau_{yz} = 0$$

Tensión plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \begin{pmatrix} \frac{E}{1-\nu^2} & \frac{E\nu}{1-\nu^2} & 0 \\ \frac{E\nu}{1-\nu^2} & \frac{E}{1-\nu^2} & 0 \\ 0 & \frac{E}{2(1+\nu)} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Las matrices de esfuerzos y deformaciones simplificadas al caso de tensión plana:

$$\underline{\underline{\sigma}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\det \underline{\sigma} = 0} \qquad \underline{\underline{\varepsilon}} = \begin{pmatrix} \varepsilon_x & \gamma_{xy} & 0 \\ \gamma_{xy} & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}$$

Tensión plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \begin{pmatrix} \frac{E}{1-\nu^2} & \frac{E\nu}{1-\nu^2} & 0 \\ \frac{E\nu}{1-\nu^2} & \frac{E}{1-\nu^2} & 0 \\ 0 & \frac{E}{2(1+\nu)} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Las matrices de esfuerzos y deformaciones simplificadas al caso de tensión plana:

$$\underline{\underline{\sigma}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\det \underline{\underline{\sigma}} = 0} \qquad \underline{\underline{\varepsilon}} = \begin{pmatrix} \varepsilon_x & \gamma_{xy} & 0 \\ \gamma_{xy} & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}$$

Derrotero

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 3 4.8.1. Tensión plana

Caso isótropo

Caso ortótropo

4.8.2. Deformación plana

Caso isótropo

- **⑤** 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Caso ortótropo

Tensión plana

Ley de Hooke generalizada para un material ortótropo TP

$$\sigma_x = \frac{E_x}{1 - \nu_{xy}\nu_{yx}} (\varepsilon_x + \nu_{yx}\varepsilon_y)$$

$$\sigma_y = \frac{E_y}{1 - \nu_{xy}\nu_{yx}} (\varepsilon_y + \nu_{xy}\varepsilon_x)$$

$$\sigma_z = 0$$

$$\tau_{xy} = G_{xy}\gamma_{xy}$$

$$\tau_{xz} = 0$$

$$\tau_{yz} = 0$$

Caso ortótropo

Tensión plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \frac{1}{1 - \nu_{xy}\nu_{yx}} \begin{pmatrix} E_x & E_x\nu_{yx} & 0 \\ E_y\nu_{xy} & E_y & 0 \\ 0 & (1 - \nu_{xy}\nu_{yx})G_{xy} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Caso ortótropo

Tensión plana

Si las direcciones de los ejes de ortotropía x', y' están inclinadas un ángulo θ con respecto a los ejes globales x, y de la estructura, la matriz constitutiva para el material ortótropo en coordenadas globales D_{TP} es:

$$oldsymbol{D}_{TP} = oldsymbol{T}_{oldsymbol{arepsilon},2D}^T oldsymbol{D}_{TP}^\prime oldsymbol{T}_{arepsilon,2D}$$

Recuerde:

$$\sigma = \underbrace{T_{arepsilon}^T D' T_{arepsilon}}_{D} arepsilon$$

Derrotero

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 3 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 4.8.2. Deformación plana Caso isótropo
- § 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

En elementos estructurales en los cuales una dimensión es mucho más grande que las otras dos.

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de *z*.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

Deformación plana

Supondremos que:

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

Deformación plana

deformación plana

$$\varepsilon_z = 0$$

$$\gamma_{xz} = 0$$

$$\gamma_{xz} = 0 \\
\gamma_{yz} = 0$$

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 3 4.8.1. Tensión plana

Caso isótropo Caso ortótropo

- 4 4.8.2. Deformación plana Caso isótropo
- **⑤** 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Deformación plana

Deformaciones longitudinales

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu (\sigma_{y} + \sigma_{z}))$$

$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu (\sigma_{x} + \sigma_{z}))$$

$$\varepsilon_{z} = \frac{1}{E} (\sigma_{z} - \nu (\sigma_{x} + \sigma_{y}))$$

Deformaciones angulares

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}, \qquad \gamma_{yz} = \frac{1}{G} \tau_{yz}, \qquad \gamma_{xz} = \frac{1}{G} \tau_{xz}$$

Deformación plana

Aplicando las condiciones de deformación plana:

$$\varepsilon_x = \frac{1+\nu}{E} \left((1-\nu)\sigma_x - \nu\sigma_y \right)$$

$$\varepsilon_y = \frac{1+\nu}{E} \left((1-\nu)\sigma_y - \nu\sigma_x \right)$$

$$\varepsilon_z = 0$$

$$\gamma_{xy} = \frac{1}{G}\tau_{xy}$$

$$\gamma_{yz} = 0$$

$$\gamma_{xz} = 0$$

Deformación plana

Ley de Hooke generalizada para un material isótropo, deformación plana

$$\sigma_x = \frac{E}{(1+\nu)(1-2\nu)}((1-\nu)\varepsilon_x + \nu\varepsilon_y)$$

$$\sigma_y = \frac{E}{(1+\nu)(1-2\nu)}(\nu\varepsilon_x + (1-\nu)\varepsilon_y)$$

$$\sigma_z = \frac{\nu E}{(1+\nu)(1-2\nu)}(\varepsilon_x + \varepsilon_y)$$

$$\tau_{xy} = G\gamma_{xy}$$

$$\tau_{xz} = 0$$

$$\tau_{yz} = 0$$

Deformación plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{pmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & \frac{1-2\nu}{2} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Las matrices de esfuerzos y deformaciones simplificadas al caso de deformación plana:

$$\underline{\underline{\sigma}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\sigma_z = \nu(\sigma_x + \sigma_y)} \qquad \underline{\underline{\varepsilon}} = \underbrace{\begin{pmatrix} \varepsilon_x & \gamma_{xy} & 0 \\ \gamma_{xy} & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}}_{\det \underline{\varepsilon} = 0}$$

Deformación plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{pmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & & \frac{1-2\nu}{2} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Las matrices de esfuerzos y deformaciones simplificadas al caso de deformación plana:

$$\underline{\underline{\sigma}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\sigma_z = \nu(\sigma_x + \sigma_y)} \qquad \underline{\underline{\varepsilon}} = \underbrace{\begin{pmatrix} \varepsilon_x & \gamma_{xy} & 0 \\ \gamma_{xy} & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}}_{\det \underline{\varepsilon} = 0}$$

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 3 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 4.8.2. Deformación plana Caso isótropo
- **⑤** 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional

Deformación plana

$$\begin{split} &\sigma_1 = \text{máx} \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, \nu(\sigma_x + \sigma_y) \right) \\ &\sigma_2 = \text{mediana} \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, \nu(\sigma_x + \sigma_y) \right) \\ &\sigma_3 = \text{min} \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, \nu(\sigma_x + \sigma_y) \right) \\ &\tau_{máx} = \text{máx} \left(\frac{|(\sigma_1)_{xy} - \nu(\sigma_x + \sigma_y)|}{2}, \frac{|(\sigma_2)_{xy} - \nu(\sigma_x + \sigma_y)|}{2}, \frac{|(\sigma_1)_{xy} - (\sigma_2)_{xy}|}{2} \right) \end{split}$$

Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional

Tensión plana

$$\sigma_1 = \max \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, 0 \right)$$

$$\sigma_2 = \operatorname{mediana} \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, 0 \right)$$

$$\sigma_3 = \min \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, 0 \right)$$

$$\tau_{m\acute{a}x} = \max \left(\frac{|(\sigma_1)_{xy}|}{2}, \frac{|(\sigma_2)_{xy}|}{2}, \frac{|(\sigma_1)_{xy} - (\sigma_2)_{xy}|}{2} \right)$$

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 3 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 4.8.2. Deformación plana Caso isótropo
- § 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Ejemplo 2.9.4

Ejemplo: esfuerzos y direcciones principales 2D

Considere un punto sujeto a los esfuerzos $\sigma_x = -1Pa$, $\sigma_y = 2Pa$ y $\tau_{xy} = -3Pa$; encuentre los esfuerzos principales (y su dirección) para el punto en consideración.

Código

02_09_04_ejemplo.ipynb

Ejemplo 4.8.3

Ejemplo: esfuerzos y direcciones 3D

Solucionar el Ejemplo 2.9.4 considerando que el sólido es tridimensional. Aplicar simplificaciones de 3D a 2D.

Código

- 04_08_03_ejemplo_DP.ipynb
- 04_08_03_ejemplo_TP.ipynb

- Repaso
- 2 4.8. Particularización de tres a dos dimensiones
- 3 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 4.8.2. Deformación plana Caso isótropo
- § 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Referencias I

Álvarez, D. A. (2022). *Teoría de la elasticidad*, volume 1. Universidad Nacional de Colombia.

Links

• Repositorio del curso: github/medio_continuo