Supplementary Material

1. Integral Feature set conversion

Table S.1 Comprehensive analysis of each classifier for MDVR-KCL(Read Text).

<mark>lodel</mark>	80:20 ratio										5-fold (%)	10- fold
ML Model	Feature Set	Accuracy (%)	Precision	Recall	F1 Score	ROC AUC	MCC	Cohen's Kappa	Training Time	Testing Time		<mark>(%)</mark>
	MFCC	81.80%	0.852	0.650	0.738	0.94	0.62	0.60	156.546	0.038	85.17	84.77
	Spectrogram	<mark>77.45%</mark>	0.730	0.675	0.701	0.84	0.52	0.52	94.390	0.122	76.52	<mark>76.72</mark>
RF	Spectral	81.37%	0.828	0.663	0.736	0.89	0.60	0.59	132.747	0.040	74.36	74.75
	Voice_Quality	100.00%	1.000	1.000	1.000	1.00	1.00	1.00	66.495	0.072	99.90	99.02
	All Combined	98.53%	0.975	0.988	0.981	1.00	0.97	0.97	144.121	0.116	98.33	98.13
	MFCC	89.71%	0.915	0.813	0.861	0.96	0.78	0.78	2.974	0.007	90.47	90.96
	Spectrogram	65.20%	0.605	0.325	0.423	0.68	0.22	0.20	0.592	0.010	63.36	63.65
KNN	Spectral	63.24%	0.533	0.500	0.516	0.66	0.22	0.22	0.467	0.004	64.64	62.97
	Voice_Quality	<mark>98.04%</mark>	0.987	0.963	0.975	1.00	0.96	0.96	0.439	0.003	91.35	95.09
	All Combined	<mark>74.50%</mark>	0.700	0.613	0.653	0.72	0.46	0.45	4.233	0.017	<mark>66.71</mark>	67.97
	MFCC	70.10%	0.604	0.688	0.643	0.75	0.39	0.39	8.902	0.014	70.34	73.27
	Spectrogram	73.53%	0.732	0.513	0.603	0.76	0.43	0.41	1.913	0.004	70.92	68.66
DT	Spectral	71.57%	0.641	0.625	0.633	0.74	0.40	0.40	2.674	0.004	72.30	71.42
	Voice_Quality	100.00%	1.000	1.000	1.000	1.00	1.00	1.00	1.324	0.004	94.70	94.41
	All Combined	100.00%	1.000	1.000	1.000	1.00	1.00	1.00	5.455	0.002	82.80	86.64
	MFCC	83.82%	0.831	0.738	0.781	0.92	<mark>0.66</mark>	<mark>0.65</mark>	332.499	0.063	<mark>79.76</mark>	<mark>78.58</mark>
	Spectrogram	<mark>78.43%</mark>	0.737	<mark>0.700</mark>	0.718	0.82	0.54	0.54	57.863	0.069	<mark>68.47</mark>	<mark>66.30</mark>
Adaboost	Spectral	81.37%	0.828	0.663	0.736	0.90	0.60	0.59	89.127	0.076	<mark>69.94</mark>	69.15
	Voice_Quality	100.00%	1.000	1.000	1.000	1.00	1.00	1.00	<mark>9.564</mark>	0.002	<mark>97.35</mark>	<mark>97.05</mark>
	All Combined	100.00%	1.000	1.000	1.000	1.00	1.00	1.00	183.142	0.040	<mark>98.43</mark>	<mark>96.66</mark>
	MFCC	<mark>90.59%</mark>	0.88	0.85	0.87	1.00	0.78	0.78	115.64	0.02	80.16	80.84
Ensemble model	Spectrogram	<mark>78.94%</mark>	0.72	0.71	0.72	1.00	0.54	0.54	53.91	0.02	75.83	<mark>75.84</mark>
nble 1	Spectral	84.82%	0.84	0.73	0.78	1.00	0.66	0.65	69.20	0.04	75.05	76.63
Enser	Voice_Quality	100.00%	1.00	1.00	1.00	1.00	1.00	1.00	34.86	0.02	100.00	100.00
	All Combined	98.03%	0.96	<mark>0.99</mark>	0.98	1.00	0.96	0.96	211.58	0.05	96.36	96.47

*Note: Bold value indicates the best performance

Table S.2 Comprehensive analysis of each classifier for PC-GITA (Read Text).

MCA	Feature Set	Accuracy (%)	Precision	Recall	F1 Score	ROC AUC	MCC	Cohen's Kappa	Training Time	Testing Time	5-fold (%)	10- fold (%)
	MFCC	44.444	0.421	0.364	0.390	0.491	- 0.116	-0.115	214.609	0.188	56.121	56.542
	Spectrogram	62.222	0.609	0.636	0.622	0.666	0.245	0.245	<mark>79.742</mark>	0.307	50.283	50.198
RF	Spectral	55.556	0.556	0.455	0.500	0.580	0.109	0.107	84.275	0.133	63.293	63.715
	Voice_Quality	80.000	0.882	0.682	0.769	0.931	0.613	0.598	96.893	0.262	74.212	<mark>76.996</mark>
	All Combined	<mark>66.667</mark>	0.667	0.636	0.651	0.779	0.333	0.332	147.011	0.084	60.596	62.055
	MFCC	57.778	0.571	0.545	0.558	0.636	0.154	0.154	6.275	0.100	<mark>57.899</mark>	55.672
	Spectrogram	51.111	0.500	0.500	0.500	0.573	0.022	0.022	4.842	0.009	45.222	49.723
KNN	Spectral	35.556	0.316	0.273	0.293	0.385	- 0.296	-0.293	4.003	0.015	42.960	48.399
	Voice_Quality	84.444	0.857	0.818	0.837	0.864	0.689	0.688	4.629	0.010	61.081	61.996
	All Combined	48.889	0.471	0.364	0.410	0.496	- 0.029	-0.028	5.164	0.033	45.677	46.581
	MFCC	56.790	0.576	0.475	0.521	0.639	0.136	0.134	11.093	0.005	53.846	56.567
	Spectrogram	60.494	0.591	0.650	0.619	0.658	0.212	0.211	0.991	0.000	<mark>49.358</mark>	54.317
DT	Spectral	<mark>61.728</mark>	0.655	0.475	0.551	0.655	0.241	0.232	1.124	0.005	58.577	52.323
	Voice_Quality	95.062	0.929	0.975	0.951	0.985	0.902	0.901	0.985	0.004	84.102	86.329
	All Combined	<mark>77.778</mark>	0.762	0.800	0.780	0.784	0.556	0.556	2.127	0.021	<mark>65.506</mark>	64.793
	MFCC	<mark>56.790</mark>	0.564	0.550	0.557	0.583	0.135	0.135	137.875	0.304	56.824	58.543
<u>.</u>	Spectrogram	50.617	0.500	0.475	0.487	0.528	0.012	0.012	157.958	0.263	53.086	49.098
Adaboost	Spectral	61.728	0.600	0.675	0.635	0.592	0.237	0.236	141.733	0.234	57.806	58.098
	Voice_Quality	98.765	0.976	1.000	0.988	0.998	0.976	0.975	142.180	1.607	78.127	92.256
	All Combined	76.543	0.733	0.825	0.776	0.825	0.536	0.532	388.858	0.787	66.478	<mark>67.494</mark>
	MFCC	<mark>56.790</mark>	0.568	0.525	0.545	0.564	0.135	0.135	21.889	0.189	59.287	56.579
mode	Spectrogram	55.556	0.577	0.375	0.455	0.569	0.114	0.107	2.824	0.112	52.361	45.683
Ensemble model	Spectral	64.198	0.720	0.450	0.554	0.707	0.302	0.281	3.152	0.094	53.346	51.878
Ense	Voice_Quality	97.531	0.975	0.975	0.975	0.995	0.951	0.951	2.462	0.063	95.540	97.524
	All Combined	<mark>88.889</mark>	<mark>0.844</mark>	<mark>0.950</mark>	<mark>0.894</mark>	0.927	0.784	0.778	<mark>4.265</mark>	<mark>0.141</mark>	63.065	<mark>79.366</mark>

2. Spectral feature Set:

Table S.3. Comprehensive analysis of Performance evaluation for MDVR-KCL dataset.

10-fold cross	<mark>validati</mark> o	on(mean)									5-fold cros validation
Models	Feature Set	Accuracy (%)	Precision	Recall	F1 Score	ROC AUC	Cohen's Kappa	Specificity	Training Time (s)	Testing Time (s)	Accuracy (%)
	CQT	94.09	<mark>0.94</mark>	<mark>0.94</mark>	0.94	0.97	0.87	0.96	157.34	<mark>4.66</mark>	69.90
	<mark>Chrom</mark> a	88.29	0.88	0.88	0.88	<mark>0.94</mark>	<mark>0.74</mark>	0.94	149.25	<mark>4.16</mark>	<mark>66.06</mark>
MobileNetV2	MFCC	80.95	0.81	0.81	0.80	0.87	0.57	0.92	145.56	<mark>4.74</mark>	<mark>76.85</mark>
	Mel	92.67	0.93	0.93	0.92	0.95	0.84	<mark>0.97</mark>	208.67	12.51	89.04
	STFT	88.00	0.88	0.88	0.88	0.94	0.74	<mark>0.94</mark>	208.67	12.51	<mark>65.80</mark>
VGG-19	CQT	81.62	0.79	0.82	0.80	0.86	0.57	0.93	3658.81	12.98	<mark>90.09</mark>
	<mark>Chrom</mark> a	77.33	0.77	0.77	<u>0.77</u>	0.83	<mark>0.50</mark>	0.87	1635.71	<mark>7.49</mark>	71.05
	MFCC	70.76	0.71	0.71	0.68	0.76	0.31	<mark>0.89</mark>	2554.37	12.32	<mark>67.61</mark>
	Mel	81.05	0.81	0.81	0.81	0.87	0.58	<mark>0.89</mark>	1758.83	13.34	<mark>78.95</mark>
	STFT	<mark>75.24</mark>	<mark>0.77</mark>	<mark>0.75</mark>	<mark>0.72</mark>	0.81	0.41	<mark>0.92</mark>	6775.18	<mark>6.96</mark>	<mark>73.90</mark>
ResNet50	CQT	<mark>74.29</mark>	<mark>0.74</mark>	<mark>0.74</mark>	0.72	<mark>0.76</mark>	0.40	0.91	8268.41	8.03	<mark>75.03</mark>
	<mark>Chrom</mark> a	<mark>69.81</mark>	0.69	0.70	<mark>0.67</mark>	<mark>0.74</mark>	0.29	0.88	1135.74	8.31	61.05
	MFCC	<mark>70.76</mark>	<mark>0.71</mark>	<mark>0.71</mark>	<mark>0.68</mark>	<mark>0.76</mark>	0.31	<mark>0.90</mark>	1048.36	<mark>7.18</mark>	<mark>62.57</mark>
	Mel	62.57	0.39	0.63	0.48	<mark>0.59</mark>	<mark>57.00</mark>	1.00	4397.08	<mark>7.18</mark>	<mark>62.57</mark>
	STFT	70.29	<mark>0.66</mark>	<mark>0.70</mark>	0.63	<mark>0.70</mark>	0.25	<mark>0.96</mark>	1048.36	<mark>7.18</mark>	<mark>89.90</mark>
<mark>Proposed</mark>	CQT	<mark>93.90</mark>	<mark>0.939</mark>	<mark>0.939</mark>	0.937	<mark>0.960</mark>	0.864	<mark>0.969</mark>	12325.36	<mark>7.04</mark>	<mark>88.57</mark>
<mark>Model</mark> (Dataset-I)	<mark>Chrom</mark> a	92.10	0.924	0.921	<mark>0.918</mark>	<mark>0.946</mark>	0.823	<mark>0.965</mark>	<mark>6305.56</mark>	<mark>8.17</mark>	<mark>85.8</mark>
	MFCC	81.90	0.827	0.819	0.805	0.877	0.585	0.921	1907.31	<mark>5.78</mark>	73.04
	Mel	<mark>94.19</mark>	0.942	0.942	0.941	<mark>0.966</mark>	0.872	0.971	2756.17	<mark>4.50</mark>	<mark>89.04</mark>
	STFT	95.90	0.961	0.959	0.958	0.978	<mark>0.908</mark>	0.988	2718.81	<mark>4.87</mark>	88.47

Table S.4. Comprehensive analysis of Performance evaluation for Image spectrum for PC-GITA (Read Text).

	10-fold cross validation(mean)											
Models	Feature Set	Accuracy (%)	Precision	Recall	F1 Score	ROC AUC	Cohen's Kappa	Specificity	Training Time (s)	Testing Time (s)	Accuracy	
MobileNetV2	CQT	95.20	0.95	0.95	0.95	0.97	0.90	0.96	157.34	4.66	71.42	
	<mark>Chroma</mark>	<mark>66.55</mark>	<mark>0.69</mark>	<mark>0.67</mark>	<mark>0.66</mark>	<mark>0.74</mark>	0.33	<mark>0.76</mark>	149.25	<mark>4.16</mark>	<mark>84.08</mark>	
	MFCC	85.35	0.86	0.85	0.85	0.93	0.71	<mark>0.84</mark>	145.56	<mark>4.74</mark>	<mark>69.38</mark>	
	Mel	<mark>96.40</mark>	<mark>0.97</mark>	<mark>0.96</mark>	<mark>0.96</mark>	<mark>0.97</mark>	0.93	<mark>0.95</mark>	<mark>684.47</mark>	<mark>4.20</mark>	<mark>79.18</mark>	
	STFT	97.20	<mark>0.97</mark>	<mark>0.97</mark>	<mark>0.97</mark>	<mark>0.97</mark>	<mark>0.94</mark>	<mark>0.98</mark>	208.67	12.51	75.51	
VGG-19	CQT	80.29	0.78	0.80	0.78	0.83	0.54	0.93	3658.81	12.98	<mark>90.09</mark>	
	Chroma	<mark>78.67</mark>	0.78	<mark>0.79</mark>	0.78	0.85	0.53	0.88	1635.71	<mark>7.49</mark>	75.33	
	MFCC	<mark>71.14</mark>	0.71	0.71	0.68	<mark>0.78</mark>	0.32	<mark>0.89</mark>	2554.37	12.32	<mark>69.14</mark>	
	<mark>Mel</mark>	81.52	0.81	0.82	0.81	<mark>0.86</mark>	0.62	<mark>0.89</mark>	1758.83	13.34	51.41	
	STFT	88.59	<mark>0.88</mark>	<mark>0.89</mark>	0.88	<mark>0.89</mark>	<mark>0.56</mark>	<mark>0.91</mark>	<mark>6775.18</mark>	<mark>6.96</mark>	<mark>66.12</mark>	
ResNet50	CQT	<mark>62.22</mark>	<mark>0.63</mark>	<mark>0.62</mark>	<mark>0.61</mark>	<mark>0.64</mark>	0.23	<mark>0.47</mark>	8268.41	8.03	53.87	
	Chroma	<mark>66.55</mark>	<mark>0.69</mark>	<mark>0.67</mark>	<mark>0.66</mark>	<mark>0.74</mark>	0.33	<mark>0.76</mark>	1135.74	8.31	52.65	
	MFCC	<mark>52.22</mark>	0.27	0.52	0.36	<mark>0.60</mark>	0.20	<mark>0.45</mark>	476.45	<mark>7.18</mark>	51.42	
	Mel	56.30	0.56	<mark>0.56</mark>	0.54	0.61	0.11	0.37	<mark>4397.08</mark>	7.18	55.51	
	STFT	53.93	0.50	<mark>0.54</mark>	0.48	<mark>0.56</mark>	0.06	<mark>0.67</mark>	1048.36	<mark>7.18</mark>	51.42	
<mark>Proposed</mark> Model	CQT	97.20	<mark>0.97</mark>	<mark>0.97</mark>	0.97	<mark>0.99</mark>	<mark>0.94</mark>	<mark>0.98</mark>	403.32	1.21	<mark>88.57</mark>	
	Chroma	<mark>91.57</mark>	<mark>0.92</mark>	<mark>0.92</mark>	0.92	<mark>0.95</mark>	0.83	<mark>0.88</mark>	608.95	1.24	<mark>85.8</mark>	
	MFCC	86.30	0.87	0.86	0.86	0.90	0.72	0.80	<mark>725.61</mark>	3.31	73.04	
	Mel	92.59	0.93	0.93	0.92	0.93	0.85	<mark>0.89</mark>	503.87	1.26	89.04	
	STFT	93.20	0.94	0.93	0.93	<mark>0.97</mark>	0.87	<mark>0.91</mark>	7102.88	1.22	88.47	

*Note: Bold value indicates the best performance

3. Independent Speaker Validation: Dataset-I, II

Table S.5: Performance evaluation metrics of independent speakers for dataset-I using different Feature Set.

Feature Set	Accuracy (%)	Precision	Recall	F1 Score	Training Time (s)	Testing Time (s)
CQT	79 ± 6	0.80 ± 0.05	0.79 ± 0.06	0.78 ± 0.07	<mark>5867</mark>	<mark>32.9</mark>
Chroma	73 ± 5	0.75 ± 0.04	0.73 ± 0.05	0.71 ± 0.08	3912	<mark>9.0</mark>
MFCC	77 ± 8	0.78 ± 0.08	0.77 ± 0.08	0.76 ± 0.08	<mark>4293</mark>	14.8
Mel	75 ± 5	0.77 ± 0.03	0.75 ± 0.05	0.73 ± 0.07	<mark>7239</mark>	<mark>19.8</mark>
STFT	63 ± 4	0.53 ± 0.13	0.63 ± 0.04	0.56 ± 0.08	<mark>4674</mark>	19.3

Table S.6: Performance evaluation metrics of independent speakers for dataset-II using different Feature Set.

Feature Type	Accuracy (%)	Precision	Recall	F1-Score	Training Time (s)	Testing Time (s)
CQT	68 ± 5	0.63 ± 0.14	0.68 ± 0.05	0.63 ± 0.10	<mark>5086</mark>	<mark>8.9</mark>
Chroma	61 ± 2	0.37 ± 0.02	0.61 ± 0.02	0.46 ± 0.02	1358	<mark>7.5</mark>
MFCC	63 ± 4	0.53 ± 0.13	0.63 ± 0.04	0.56 ± 0.08	<mark>4674</mark>	19.3
Mel	67 ± 5	0.68 ± 0.07	0.67 ± 0.05	0.65 ± 0.07	<mark>8262</mark>	<mark>29.3</mark>
STFT	77 ± 5	0.80 ± 0.03	0.77 ± 0.05	0.75 ± 0.08	3680	8.5