

406 079

63-3-6

ASD TR 7-678 (IV)

ASD INTERIM REPORT 7-678(IV)
May 1963

DEVELOPMENT AND STATISTICAL ANALYSIS
EVALUATION OF MELTING AND TRANSVERSE PROPERTIES OF
HIGH-STRENGTH (H-11 TYPE) STEEL

Joseph C. Truszynski

Jack A. Yoblin

LADISH CO.

Contract: AF33(600)-38767
ASD Project: 7-678

Interim Engineering Report No. 4
September 23, 1962 -- April 23, 1963

Four vacuum arc remelt process variations commercially available for the production of high-strength steel were statistically compared in terms of smooth and notch tensile test data developed from transverse and longitudinal specimens removed from 10-inch RCS press-forged billets. Of the four processes, (a) air melt-VAR, (b) air melt-degas-VAR, (c) air melt-double VAR, and (d) vacuum induction melt-VAR, investigated at a 300 Ksi ultimate strength level, the vacuum induction melt-VAR process provided the highest ductility and the most nearly uniform transverse and longitudinal strength and ductility. The air melt-VAR material ranked second in overall property response and uniformity, although significantly lower than that provided by the vacuum induction melt-VAR process. Air melt-degas-VAR and air melt-double VAR processes ranked third and fourth, respectively, but were not significantly different when compared with air melt-VAR property data.

METALLURGICAL PROCESSING BRANCH
MANUFACTURING TECHNOLOGY DIVISION
AIR FORCE MATERIALS LABORATORY

AFSC Aeronautical Systems Division
United States Air Force
Wright-Patterson Air Force Base, Ohio

DDC

JUN 11 1963

DEVELOPMENT AND STATISTICAL ANALYSIS
EVALUATION OF MELTING AND TRANSVERSE PROPERTIES OF
HIGH-STRENGTH (H-11 TYPE) STEEL

Joseph C. Truszynski
et al

LADISH CO.

Four vacuum arc remelt process variations commercially available for the production of high-strength steel were statistically compared in terms of smooth and notch tensile test data developed from transverse and longitudinal specimens removed from 10-inch RCS press-forged billets. Of the four processes, (a) air melt-VAR, (b) air melt-degas-VAR, (c) air melt-double VAR, and (d) vacuum induction melt-VAR, investigated at a 300 Ksi ultimate strength level, the vacuum induction melt-VAR process provided the highest ductility and the most nearly uniform transverse and longitudinal strength and ductility. The air melt-VAR material ranked second in overall property response and uniformity, although significantly lower than that provided by the vacuum induction melt-VAR process. Air melt-Degas-VAR and air melt-double VAR processes ranked third and fourth, respectively, but were not significantly different when compared with air melt-VAR property data.

A total of 928 tensile specimens were removed from each of the four billets representing a separate vacuum arc remelt process variation. Sectioning was accomplished in a manner yielding comparable smooth and notched, transverse and longitudinal, surface, mid-radius, and center specimen blanks from each of 16 major sections long the length of the billet. Subsequent to testing, generated data was statistically analyzed to determine the influence upon mechanical properties of specimen type, direction, cross-sectional position, and location from top to bottom of the billet. From smooth specimens, yield and ultimate strength, per cent elongation, and reduction in area were analyzed. Notch ultimate strength and notch/smooth strength ratio values for the various combinations of conditions were also analyzed.

Statistical values reported include arithmetic mean, range, standard deviation, coefficient of variation, and standard deviation of the mean. Methods of evaluation employed included (a) preparation of control charts to illustrate the variation of mechanical property data from top to bottom of each billet (upper and lower control limits are given to indicate the relative degree of control afforded by each melting practice for each property and condition combination studied), (b) frequency distribution plots (histograms) prepared by an IBM 1620 computer to permit direct comparison of 144 separate groups of property data, and (c) miscellaneous charts and tables to effectively portray mean and standard deviation values for each data group.

A statistical-metallurgical evaluation of Phase III data indicates that the vacuum induction melt-VAR process possesses the capability of achieving one of the basic aims of the program (to be subsequently verified by testing closed-die-forged parts during Phase IV). The attainment of essentially isotropic properties is clearly feasible since transverse strength and ductility values closely approach those obtained from longitudinal specimens.

Notch/smooth ultimate strength relationships established for each remelt process variation at the 300 Ksi strength level, however, evidence considerable within-heat variation, primarily because of the sizable variation in notch strength values. Although mean values for the vacuum induction melt-VAR process N/S ratio exceeded average values for every comparable specimen direction and location in the other three processes, in no case did any average value equal or exceed unity at the strength level tested. Consequently, notch sensitivity must be considered a governing criterion in the design of H-11 steel components at this strength level.

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from ASTIA, Document Service Center, Arlington Hall Station, Arlington 12, Virginia.

Copies of ASD Technical Reports should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This Interim Engineering Report covers the work performed under Contract AF33(600)-38767 from September 23, 1962 to April 23, 1963. It is published for technical information only and does not necessarily represent the recommendations, conclusions, or approval of the Air Force.

The Contract with Ladish Co., Cudahy, Wisconsin, was initiated under Aeronautical Systems Division Project 7-678 to investigate and determine the effect of melting and hot reduction practices on transverse ductility of high-strength steel. It is being accomplished under the technical direction of Mr. A. J. Merkle of the Basic Industry Branch, ASRCTB, Manufacturing Technology Laboratory, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio.

The testing program and statistical evaluation are being accomplished under the auspices and technical direction of Ladish Co. Metallurgical Department. Mr. Joseph C. Truszynski is project engineer, Mr. Carl Lugar is Coordinator of Mechanical Testing, and Mr. Jack A. Yoblin, Director of the Research and Development Division of the Metallurgical Department, is project director. Contract administration and Governmental liaison is under the direction of Mr. Charles Burley, Jr., Director, Government Relations Division. Report editing was provided by Mr. W. R. Semrou, Technical Writer, Metallurgical Department.

The primary objective of the Air Force Manufacturing Methods Program is to increase producibility, and improve the quality and efficiency of fabrication of aircraft, missiles, and components thereof. This report is being disseminated in order that methods and/or equipment developed may be used throughout industry, thereby reducing costs and giving "MORE AIR FORCE PER DOLLAR."

Your comments are solicited on the potential utilization of the information contained herein as applied to your present or future production methods. Suggestions concerning additional Manufacturing Methods development required on this or other subjects will be appreciated.

PRODUCTION REVIEW

Approved by:

Jack A. Yoblin

JACK A. YOBLIN, Director
RESEARCH & DEVELOPMENT DIVISION
METALLURGICAL DEPARTMENT

Approved by:

Charles Burley

CHARLES BURLEY, JR., Director
GOVERNMENT RELATIONS DIVISION

TABLE OF CONTENTS

PAGE NO.

ABSTRACT-SUMMARY	1
NOTICES	11
FOREWORD	111
TABLE OF CONTENTS	iv
LIST OF FIGURES AND TABLES	viii
I. INTRODUCTION	1
II. MATERIAL PROCUREMENT AND PROCESSING	6
A. Selection of Process Variations	6
B. Acceptance Requirements	10
C. Selection of Supplier	11
D. Acceptance Testing	12
E. Material Processing	44
III. DATA PROCESSING	51
IV. DATA EVALUATION	56
V. CONCLUSIONS	84
VI. RECOMMENDATIONS	94
APPENDIX I -- TENSILE PROPERTIES OF AIR MELT-VACUUM ARC REMELT H-11 STEEL (HEAT NO. W-24341-1)	1-1
Section 1 --- Transverse Tensile Properties of Air Melt-Vacuum Arc Remelt H-11 Steel (Heat No. W-24341-1) . .	1-2
Section 2 --- Longitudinal Tensile Properties of Air Melt-Vacuum Arc Remelt H-11 Steel (Heat No. W-24341-1) .	1-9
Section 3 --- Transverse Notched Tensile Properties of Air Melt-Vacuum Arc Remelt H-11 Steel (Heat No. W-24341-1)	1-14

TABLE OF CONTENTS
(Continued)

PAGE NO.

Section 4 --- Longitudinal Notched Tensile Properties of Air Melt-Vacuum Arc Remelt H-11 Steel (Heat No. W-24341-1)	1-18
APPENDIX II - TENSILE PROPERTIES OF AIR MELT-DEGAS-VACUUM ARC REMELT H-11 STEEL (HEAT NO. W-24342-V1)	2-1
Section 1 --- Transverse Tensile Properties of Air Melt-Degas-Vacuum Arc Remelt H-11 Steel (Heat No. W-24342-V1)	2-2
Section 2 --- Longitudinal Tensile Properties of Air Melt-Degas-Vacuum Arc Remelt H-11 Steel (Heat No. W-24342-V1)	2-9
Section 3 --- Transverse Notched Tensile Properties of Air Melt-Degas-Vacuum Arc Remelt H-11 Steel (Heat No. W-24342-V1)	2-14
Section 4 --- Longitudinal Notched Tensile Properties of Air Melt-Degas-Vacuum Arc Remelt H-11 Steel (Heat No. W-24342-V1)	2-18
APPENDIX III - TENSILE PROPERTIES OF AIR MELT-DOUBLE VACUUM ARC REMELT H-11 STEEL (HEAT NO. W-24341-2)	3-1
Section 1 --- Transverse Tensile Properties of Air Melt-Double Vacuum Arc Remelt H-11 Steel (Heat No. W-24341-2)	3-2
Section 2 --- Longitudinal Tensile Properties of Air Melt-Double Vacuum Arc Remelt H-11 Steel (Heat No. W-24341-2)	3-9
Section 3 --- Transverse Notched Tensile Properties of Air Melt-Double Vacuum Arc Remelt H-11 Steel (Heat No. W-24341-2)	3-14

**TABLE OF CONTENTS
(Continued)**

PAGE NO.

Section 4 --- Longitudinal Notched Tensile Properties of Air Melt-Double Vacuum Arc Remelt H-11 Steel (Heat No. W-24341-2)	3-18
APPENDIX IV - TENSILE PROPERTIES OF VACUUM INDUCTION MELT-VACUUM ARC REMELT H-11 STEEL (HEAT NO. W-24403-1)	4-1
Section 1 --- Transverse Tensile Properties of Vacuum Induction Melt-Vacuum Arc Remelt H-11 Steel (Heat No. W-24403-1)	4-2
Section 2 --- Longitudinal Tensile Properties of Vacuum Induction Melt-Vacuum Arc Remelt H-11 Steel (Heat No. W-24403-1)	4-9
Section 3 --- Transverse Notched Tensile Properties of Vacuum Induction Melt-Vacuum Arc Remelt H-11 Steel (Heat No. W-24403-1)	4-14
Section 4 --- Longitudinal Notched Tensile Properties of Vacuum Induction Melt-Vacuum Arc Remelt H-11 Steel (Heat No. W-24403-1)	4-18
APPENDIX V -- HISTOGRAMS FOR ULTIMATE STRENGTH, PER CENT REDUCTION IN AREA, NOTCH ULTIMATE STRENGTH, AND NOTCH SMOOTH STRENGTH RATIO PLOTTED FOR EACH MELT PROCESS, SPECIMEN DIRECTION, AND CROSS-SECTIONAL LOCATION	5-1
Section 1 --- Histograms for Air Melt-Vacuum Arc Remelt H-11 Steel Heat No. W-24341-1	5-2
Section 2 --- Histograms for Air Melt-Degas-Vacuum Arc Remelt H-11 Steel Heat No. W-24342-V1	5-21
Section 3 --- Histograms for Air Melt-Double Vacuum Arc Remelt H-11 Steel Heat No. W-24341-2	5-40

TABLE OF CONTENTS
(Concluded)

	<u>PAGE NO.</u>
Section 4 --- Histograms for Vacuum Induction Melt-Vacuum Arc Remelt H-11 Steel Heat No. W-24403-1	5-59
APPENDIX VI - ARITHMETIC MEAN AND RANGE CONTROL CHARTS FOR TENSILE PROPERTIES DETERMINED FOR EACH MELT PROCESS VARIATION	6-1
Section 1 --- Arithmetic Mean and Range Control Charts for Tensile Properties of Air Melt-VAR Heat W-24341-1	6-2
Section 2 --- Arithmetic Mean and Range Control Charts for Tensile Properties of Air Melt-Degas- VAR Heat W-24342-V1	6-15
Section 3 --- Arithmetic Mean and Range Control Charts for Tensile Properties of Air Melt-Double VAR Heat W-24341-2	6-28
Section 4 --- Arithmetic Mean and Range Control Charts for Tensile Properties of Vacuum Induction Melt-VAR Heat W-24403-1	6-41

DISTRIBUTION LIST

CATALOG CARDS

LIST OF FIGURES AND TABLES

<u>FIGURE NO.</u>		<u>PAGE NO.</u>
1	Sectioning Diagram for Acceptance Test Material	13
2	Transverse Macroetch of Billet Top -- Air Melt-Vacuum Arc Remelt Heat No. W-24341-1	16
3	Transverse Macroetch of Billet Bottom -- Air Melt-Vacuum Arc Remelt Heat No. W-24341-1	17
4	Longitudinal Macroetch at Billet Top and Bottom -- Air Melt-Vacuum Arc Remelt Heat No. W-24341-1	18
5	Mid-radius Microstructure at Billet Top and Bottom -- Air Melt-Vacuum Arc Remelt Heat No. W-24341-1	19
6	Transverse Macroetch of Billet Top -- Air Melt-Degas-Vacuum Arc Remelt Heat No. W-24342-V1	22
7	Transverse Macroetch of Billet Bottom -- Air Melt-Degas-Vacuum Arc Remelt Heat No. W-24342-V1	23
8	Longitudinal Macroetch at Billet Top and Bottom -- Air Melt-Degas-Vacuum Arc Remelt Heat No. W-24342-V1	24
9	Mid-radius Microstructure at Billet Top and Bottom -- Air Melt-Degas-Vacuum Arc Remelt Heat W-24342-V1	25
10	Transverse Macroetch of Billet Top -- Air Melt-Double Vacuum Arc Remelt Heat No. W-24341-2	28
11	Transverse Macroetch of Billet Bottom -- Air Melt-Double Vacuum Arc Remelt Heat No. W-24341-2	29
12	Longitudinal Macroetch at Billet Top and Bottom -- Air Melt-Double Vacuum Arc Remelt Heat No. W-24341-2	30
13	Mid-radius Microstructure at Billet Top and Bottom -- Air Melt-Double Vacuum Arc Remelt Heat W-24341-2	31

LIST OF FIGURES AND TABLES
(Continued)

<u>FIGURE NO.</u>	<u>PAGE NO.</u>
14 Transverse Macroetch of Billet Top -- Vacuum Induction Melt-Vacuum Arc Remelt Heat No. W-24403-1	34
15 Transverse Macroetch of Billet Bottom -- Vacuum Induction Melt-Vacuum Arc Remelt Heat No. W-24403-1	35
16 Longitudinal Macroetch at Billet Top and Bottom -- Vacuum Induction Melt- Vacuum Arc Remelt Heat No. W-24403-1 . . .	36
17 Mid-radius Microstructure at Billet Top and Bottom -- Vacuum Induction Melt- Vacuum Arc Remelt Heat No. W-24403-1 . . .	37
18 Billet Sectioning Diagram	45
19 Smooth and Notched Tensile Specimen Design for H-11 Steel Tested by Contractor	47
20 Melt Process Comparison -- Mean and Standard Deviation for Ultimate Strength and Per Cent Reduction in Area -- Values Based Upon Smooth Tensile Test Results Plotted for Transverse, Longitudinal, and Combined Directions	66
21 Melt Process Comparison -- Mean and Standard Deviation for Ultimate Strength and Per Cent Reduction in Area -- Values Based Upon Smooth Transverse Tensile Test Results Plotted for Surface, Mid-radius, and Center Positions	67
22 Melt Process Comparison -- Mean and Standard Deviation for Ultimate Strength and Per Cent Reduction in Area -- Values Based Upon Smooth Longitudinal Tensile Test Results Plotted for Surface, Mid-radius, and Center Positions	68
23 Melt Process Comparison -- Mean and Standard Deviation for Notch Strength and Notch/Smooth Strength Ratio -- Values Based Upon Tensile Test Results Plotted for Transverse, Longitudinal, and Combined Directions	69

LIST OF FIGURES AND TABLES
(Continued)

<u>FIGURE NO.</u>	<u>PAGE NO.</u>
24 Melt Process Comparison -- Mean and Standard Deviation for Notch Strength and Notch/Smooth Strength Ratio -- Values Based Upon Transverse Tensile Test Results Plotted for Surface, Mid-radius, and Center Positions	70
25 Melt Process Comparison -- Mean and Standard Deviation for Notch Strength and Notch/Smooth Strength Ratio -- Values Based Upon Longitudinal Tensile Test Results Plotted for Surface, Mid-radius, and Center Positions	71
26 Melt Process Comparison by Means of Coefficient of Variation Plotted for Ultimate Strength, Per Cent Reduction in Area, Notch Strength, and Notch/Smooth Strength Ratio	73
27 Coefficient of Variation for Strength and Ductility Versus Melt Process Cost . . .	93
5-1 Histograms for Air Melt-Vacuum Arc Remelt H-11 Steel Heat No. W-24341-1 . . .	5-3
thru thru	
5-18 5-20	
5-19 Histograms for Air Melt-Degas-Vacuum Arc Remelt H-11 Steel Heat No. W-24342-V1 . .	5-22
thru thru	
5-36 5-39	
5-37 Histograms for Air Melt-Double Vacuum Arc Remelt H-11 Steel Heat No. W-24341-2 . .	5-41
thru thru	
5-54 5-58	
5-55 Histograms for Vacuum Induction Melt-Vacuum Arc Remelt H-11 Steel Heat No. W-24403-1	5-60
thru thru	
5-72 5-77	
6-1 Arithmetic Mean and Range Control Charts for Tensile Properties of Air Melt-VAR Heat W-24341-1	6-3
thru thru	
6-12 6-14	
6-13 Arithmetic Mean and Range Control Charts for Tensile Properties of Air Melt-Degas-VAR Heat W-24342-V1	6-16
thru thru	
6-24 6-27	
6-25 Arithmetic Mean and Range Control Charts for Tensile Properties of Air Melt-Double VAR heat W-24341-2	6-29
thru thru	
6-36 6-40	

LIST OF FIGURES AND TABLES
(Continued)

<u>FIGURE NO.</u>	<u>PAGE NO.</u>
6-37 Arithmetic Mean and Range Control Charts thru for Tensile Properties of Vacuum 6-48 Induction Melt-VAR Heat W-24403-1	6-42 thru 6-53
 <u>TABLE NO.</u>	
I Comparison of Different Methods of Vacuum Melting and Degassing	8
II Tensile Specimen Identity and Distribution in Each Major Billet Section	46
III Statistical Summary of Smooth and Notched Tensile Test Data for Air Melt-Vacuum Arc Remelt Heat W-24341-1 Computed by Specimen Direction and Location	58
IV Statistical Summary of Smooth and Notched Tensile Test Data for Air Melt-Degas-Vacuum Arc Remelt Heat W-24342-V1 Computed by Specimen Direction and Location	59
V Statistical Summary of Smooth and Notched Tensile Test Data for Air Melt-Double Vacuum Arc Remelt Heat W-24341-2 Computed by Specimen Direction and Location	60
VI Statistical Summary of Smooth and Notched Tensile Test Data for Vacuum Induction Melt-Vacuum Arc Remelt Heat W-24403-1 Computed by Specimen Direction and Location	61
VII Statistical Summary of Smooth and Notched Tensile Test Data for Air Melt-Vacuum Arc Remelt Heat W-24341-1 Computed by Billet Section . . .	62
VIII Statistical Summary of Smooth and Notched Tensile Test Data for Air Melt-Degas-Vacuum Arc Remelt Heat W-24342-V1 Computed by Billet Section . . .	63
IX Statistical Summary of Smooth and Notched Tensile Test Data for Air Melt-Double Vacuum Arc Remelt Heat W-24341-2 Computed by Billet Section . . .	64

LIST OF FIGURES AND TABLES
(Concluded)

<u>TABLE NO.</u>	<u>PAGE NO.</u>
X Statistical Summary of Smooth and Notched Tensile Test Data for Vacuum Induction Melt-Vacuum Arc Remelt Heat W-24403-1 Computed by Billet Section . . .	65

I. INTRODUCTION

Contract AF33(600)-38767 was awarded to Ladish Co. to determine the optimum steel producing process for the production of sound high-strength forging stock with uniform longitudinal and transverse ductility, and to subsequently test the selected process by making closed-die forgings. Program objective is a production process for forged parts with increased overall strength and ductility to reduce weight and increase functional effectiveness of aerospace vehicle components. Forged parts are to be produced and tested in Phase IV. In Phase III, the Contractor's objective has been to determine the effects of variations in the mill production process (vacuum arc remelting) which was statistically demonstrated in Phase II to offer the greatest potential for achievement of program objectives.

Interim Engineering Report No. 4 describes the work accomplished in the final portion of Phase III. Activity covered is that performed subsequent to the receipt of press-forged billet material produced by four commercially-available vacuum arc remelt process variations which were selected at the beginning of the phase as candidate mill practices suitable for evaluation as to their effectiveness in improving transverse ductility at ultrahigh-strength levels. Thus, the basic purpose of this phase has been to determine the effect of the variations of the vacuum arc remelt process which was selected in Phase II by virtue of its ability to provide transverse ductility markedly superior to that found in steel which has been electric furnace air melted and statically cast.

Vacuum melting technology has advanced rapidly in recent years. The improved reliability and higher quality of vacuum arc remelted materials is evidenced by its widespread acceptance and use in critical parts of missiles, jet engines, high-performance bearings, and other similar applications requiring high-quality forgings. Improvement is attributed to: 1) decreased gas content, 2) smaller and more uniformly distributed nonmetallic inclusions, and 3) decreased segregation due to rapid, progressive, controlled solidification.

The average degree of improvement in transverse ductility provided by vacuum arc remelted material when compared to conventionally-air melted H-11 steel was established in Phase II by means of a comprehensive statistical analysis of nearly 5000 sets of transverse tensile test data.

During Phase II, over 4000 sets of data from specimens in a strength range of 280,000 to 300,000 psi were obtained from six mills and Contractor's records. Data represented more than 500 individual heats, both melting practices (air melt and vacuum arc remelt), varying degrees of hot work as indicated by a range of billet sizes from 4-inch through 24-inch square, and two specimen locations (mid-radius and center). To supplement this data, the Contractor performed additional tests on samples from 44 heats of air melted, vacuum degassed, and vacuum arc remelted material. Specimens were prepared from full cross section billet material in a size range of 8-inch through 24-inch square, inclusive. Three specimen locations

(surface, mid-radius, and center) were involved in these tests, and all 528 specimens were heat treated to provide a minimum strength level of 300,000 psi.

The average ductility of remelt material as measured by per cent reduction of area of transverse specimens taken from mid-radius locations in billet material heat treated to an ultimate strength range of 280 to 300 Ksi was determined to be 20.6 per cent, or 75 per cent greater than comparable air melt ductility of 11.8 per cent. The even greater difference in mean ductility values for specimens taken from center-of-billet locations (air melt: 6.3 per cent; vacuum arc remelt: 19.6 per cent reduction of area) is attributed to the lack of soundness and the higher nonmetallic inclusion content generally associated with the center location in air melt material, particularly in the larger cross sections. For both mill practices, as billet size increased, average ductility decreased and displayed more variation from specimen to specimen; however, the rate of decrease was less pronounced in remelt than in air melt material. Both strength and ductility values were considerably more uniform in remelt material, irrespective of billet size or test location. In general, strength and ductility tended to diminish from surface to mid-radius to center location, except that the mid-radius ductility average in air melt material heat treated to a minimum strength level of 300 Ksi was determined to be even slightly lower than the comparable air melt average from center specimens. Considerable variation in properties between mills and billet sizes was observed.

The presence of areas of inherently low and varied transverse ductility found in hot-worked billets of air melted, statically-cast aircraft-quality steel should be recognized as a possible limiting factor for designers of high-strength steel aircraft and missile components, particularly at high strength levels where ductility falls off and becomes increasingly erratic. Notch tensile strength variation also dictates caution, since at high ultimate strength levels, notch tensile strength values are frequently lower than smooth specimen yield strength values. As a consequence, the possibility exists that failure of high-strength steel parts may be frequently the result of inadequate ductility rather than inadequate strength. In the light of such findings, the advisability of evaluating steel produced by advanced melting and processing methods for high-strength applications becomes even more apparent.

Since variables affecting material quality have the most pronounced effect on directional properties of steel at high strength levels, it therefore follows that improved control of variables which contribute to that effect must be attained if the benefits of high-strength materials are to be fully realized. Use of cleaner and more homogeneous material suggests itself as a practicable method for reducing the effect of directionality on mechanical properties of steel as demonstrated by the improvement realized by vacuum arc remelting of H-11 steel over conventional air melting. The resulting effect of comparable hot working on mechanical properties of each material was undeniably significant.

Interim Engineering Report No. 4, then, describes the statistical evaluation of mechanical property data generated from 10-inch square press-forged billets of H-11 steel melted by the following remelt process variations: a) air melt-vacuum arc remelt, b) air melt-vacuum degas-vacuum arc remelt, c) air melt-double vacuum arc remelt, and d) vacuum induction melt-vacuum arc remelt.

II. MATERIAL PROCUREMENT AND PROCESSING

A. Selection of Process Variations

Recently published technical literature reviewed in Interim Engineering Report No. 3 has substantiated that the improvement of mechanical properties in existing alloys cannot be dissociated from ingot solidification phenomena, and the frequency, size, shape, and distribution of nonmetallic inclusions.

Since each of the vacuum processes reviewed possessed certain inherent advantages and disadvantages of varying degree, it seemed logical that the result of combining or duplexing the processes should definitely promote a more favorable end product.

From the standpoint of their current level of development, and compatibility with the scope and requirements of the Contract, the only vacuum processes which appeared worthy of consideration were vacuum degassing, vacuum induction melting, and vacuum arc remelting. Although extremely promising, electron beam melting, for example, was still considered to be in an early stage of commercial development. Similarly, the availability of powder metallurgy electrodes for use in vacuum arc remelting had not advanced sufficiently to warrant inclusion in this program. None of the other melting processes or modifying techniques reviewed appeared to have sufficient immediate potential for commercially producing ingot sizes and tonnages required in current production applications.

Of the three vacuum processes, namely, vacuum degassing, vacuum induction melting, and vacuum arc remelting, a total of four process combinations were selected for the purpose of determining the optimum melting practice. These were:

1. Air Melt-Vacuum Arc Remelt,
2. Air Melt-Double VAR,
3. Air Melt-Vacuum Degas-VAR, and
4. Vacuum Induction Melt-VAR.

Table I is a comparison of methods of vacuum melting and degassing which provided an advance indication of the magnitude of improvement to be expected from several duplex processes.

Test results with the air melt-VAR material were recognized as essential to provide a base line for comparison of the relative degree of improvement obtainable from the other process variations. Although much property data for this remelt process had been compiled and extensively studied in Phase II, the preponderant portion of such data represented material heat treated to a 280 to 300 ksi strength level. Of the billet samples from 29 heats which had been treated to a minimum strength of 300 ksi, considerable variation was manifest with respect to quality, sample origin within the billet, mill processing procedures, and as-received condition. This was as expected, since Phase II was essentially a comprehensive study to determine the current state-of-the-art for transverse ductility. Exclusion of data from discrepant material would have tended to defeat the requirement of establishing existing

Of the three vacuum processes, namely, vacuum degassing, vacuum induction melting, and vacuum arc remelting, a total of four process combinations were selected for the purpose of determining the optimum melting practice. These were:

1. Air Melt-Vacuum Arc Remelt,
2. Air Melt-Double VAR,
3. Air Melt-Vacuum Degas-VAR, and
4. Vacuum Induction Melt-VAR.

Table I is a comparison of methods of vacuum melting and degassing which provided an advance indication of the magnitude of improvement to be expected from several duplex processes.

Test results with the air melt-VAR material were recognized as essential to provide a base line for comparison of the relative degree of improvement obtainable from the other process variations. Although much property data for this remelt process had been compiled and extensively studied in Phase II, the preponderant portion of such data represented material heat treated to a 280 to 300 Ksi strength level. Of the billet samples from 29 heats which had been treated to a minimum strength of 300 Ksi, considerable variation was manifest with respect to quality, sample origin within the billet, mill processing procedures, and as-received condition. This was as expected, since Phase II was essentially a comprehensive study to determine the current state-of-the-art for transverse ductility. Exclusion of data from discrepant material would have tended to defeat the requirement of establishing existing

TABLE I
COMPARISON OF DIFFERENT METHODS OF VACUUM MELTING AND DEGASSING*

METHOD	MELTING VARIABLES			PRODUCT CHARACTERISTICS			PHYSICAL PROPERTIES
	TEMPERATURE (°F)	PRESSURE	TIME METAL MOLTED	HOT WORKABILITY	GAS CONTENT (PPM)	CLEANLINESS	
Air Melting	2500 - 3100	1 Atmosphere	2 Hours to 3 Hours	Poor to Fair Pair	H ₂ 4-20 O ₂ 10-150 N ₂ 30-500	Fair	Normal
Vacuum Degassing	2500 - 3100	Melting: 1 Atmosphere Degas-sing: 0.5-10 mm	1/2 Hour to 4 Hours (for 40 to 150 tons of steel)	Fair to Good	H ₂ 1-4 O ₂ 10-60 N ₂ 40-120	Fair to Clean	Normal Improved by 5 - 50 Per Cent
Vacuum Induction Melting	2500 - 3100	1 to 100 Microns	1 Hour to 5 Hours	Good	H ₂ < 1 O ₂ 4-10 N ₂ 3-50	Very Clean	Normal Improved by 20 - 200 Per Cent
From Air Melted Electrode	2500 - 8500	5 to 500 Microns	15 Minutes to 30 Minutes	Good	H ₂ 1-2 O ₂ 6-30 N ₂ 40-100	Clean	Relatively Free Improved by 10 - 100 Per Cent
From Vacuum Arc Remelting From Vacuum Induction Melted Electrode				Very Good	H ₂ < 1 O ₂ 1-5 N ₂ 2-20	Extremely Clean	Improved by 30 - 300 Per Cent

* After A. M. Askoy, Vacuum Metals Corporation

capability, and therefore, Phase II material tested by the Contractor was not subjected to prior acceptance testing. In Phase III, however, it was desirable that data be generated from only the highest quality, commercially-available material. Accordingly, Phase III steel was ordered and acceptance tested in accordance with stringent chemical and metallurgical requirements which were selected in part on the basis of Phase II findings.

The air melt-vacuum degas-VAR combination was selected for inclusion in the investigation along with the other three combinations of vacuum processes which had been originally proposed since it was considered to afford an economically desirable electrode quality level generally above that of air melt, but lower than that of the VAR or vacuum induction melted electrodes.

The precise quality level obtainable was recognized as depending greatly upon the effectiveness of the specific degassing unit, the type of steel being melted, and the particular quality advantages under consideration.

Finally, in establishing the particular sequence for each combination of processes, it seemed only logical to end with VAR because of its inherent advantages associated with progressive solidification. This sequence provides an ingot free of normal defects such as center looseness and shrinkage cavities resulting from static casting. In all four of the combinations evaluated, initial electrodes were prepared from statically-cast ingots. It was anticipated that subsequent vacuum arc remelting

would result in the elimination of the undesirable defects and thus provide a much more uniform and reliable end product.

Through statistical evaluation of the strength-ductility test results of the four metal processing combinations, the intention was to ascertain the optimum metal processing technique which, when applied to high-strength steels such as H-11, would contribute most to the production of forging material with isotropic or nearly isotropic properties.

B. Acceptance Requirements

Material acceptance requirements for Phase III material (adjusted on the basis of information derived from the statistical evaluation of vacuum arc remelted material in Phase II) were as follows:

<u>Chemistry:</u>	Carbon	0.38/0.43 (Aim 0.39/0.42)	+0.02	-0.00
	Manganese	0.20/0.30	+0.00	-0.05
	Phosphorus	0.010 Max.	+0.002	
	Sulfur	0.010 Max.	+0.002	
	P + S	0.015 Max.	+0.002	
	Silicon	0.75/0.90	+0.00	-0.05
	Chromium	5.00/5.25	+0.10	-0.05
	Molybdenum	1.20/1.40	+0.05	-0.05
	Vanadium	0.45/0.55	+0.02	-0.02

Magnetic Particle Inspection: AMS-2300.

Macroetch: 3 or better based on Ladish Co. Freckle Rating Chart.

Mechanical Properties: To be based on 0.505" tensile specimens, two (2) each, top and bottom, while maintaining a stress rate of 70,000-90,000 psi/minute to failure at mid-radius location.

Ultimate Strength (Ksi) 300 to 330

Transverse Reduction of Area (per cent) 4 Minimum
6 Average (4 tests)

Grain Size: 7 or finer per ASTM E112-58T.

Microstructure: Carbides must be fine and uniformly distributed with no evidence of segregation.

Heat Treat Condition: Material shall be furnished in a machinable condition having a hardness not higher than 235 BHN.

Rejection: Material not conforming to the above requirements at top and bottom ingot locations will be rejected.

C. Selection of Supplier

Material acceptance requirements were incorporated into inquiries sent to four of the six mills which participated in Phase II.

Selection of these four as potential suppliers of Phase III material was based upon an analysis of Phase II performance.

Replies from each of the four mills queried were evaluated with respect to exceptions taken to requirements, availability of necessary facilities, relative performance in Phase II (considered as indicative of respective capability), promised delivery, and price. The cost of material ultimately procured ranged from \$0.85 per pound for the air melt-vacuum arc remelt billet to \$3.60 per pound for the vacuum induction melt-vacuum arc remelt billet.

The selected mill provided the advantage of the highest transverse ductility (average per cent reduction of area) and the lowest average variation (overall standard deviation) developed statistically in Phase II from mill-supplied and in-house data for vacuum arc remelt material. This combination of highest average ductility together with least variation, or spread, between high and low values was interpreted as indicative of the maximum currently-available degree of uniformly good transverse ductility in remelt material. Thus, considerable assurance was established that the vacuum arc remelted material procured

in Phase III would be representative of the highest quality currently available.

An added factor favoring the selected mill was in-house capability to produce all four process variations investigated by the statistical evaluation of generated property data, thereby obviating concern over process variables peculiar to different mills.

A further advantage was seen in the fact that it was possible for three of the four process variations to be developed from a single master air melt heat. The fourth, vacuum induction melt-vacuum arc remelt, had, of necessity, to originate as a separate heat. Thus, the opportunity was presented to further substantially reduce the influence of qualitative differences known to be present in air melt heats as a variable affecting mechanical properties apart from variation of the duplex process.

D. Acceptance Testing

Upon receipt of ten-inch RCS press-forged billet material produced by each of the four vacuum arc remelt process variations under investigation, ultrasonic inspection was performed. Subsequently, the Contractor removed five sections of steel from the top and bottom extremities of each billet to establish compliance with metallurgical acceptance requirements. Figure 1 illustrates the acceptance test sectioning plan and lists the types of tests for which each section was utilized.

Transverse Macroetch, Chemistry, Microstructure,
 Microcleanliness, Grain Size Determination
 Transverse Tensile Test Specimens
 Stepdown Bars for Magnetic Particle Inspection
 Longitudinal Tensile Test Specimens
 Longitudinal Macroetch

FIGURE 1
SECTIONING DIAGRAM FOR ACCEPTANCE TEST MATERIAL

After the inner face of Sections 1 and 6 were polished, etched in concentrated hydrochloric acid at 170°F, and photographed to establish the transverse macrostructure of the full cross section of each billet top and bottom, Sections 1 and 6 were used to determine (a) chemical composition percentages at surface, mid-radius, and center locations, (b) surface, mid-radius, and center microcleanliness, (c) mid-radius grain size, and (d) mid-radius microstructure at magnifications of 100 and 1000.

Acceptance test Sections 2 and 7 each yielded five surface, five mid-radius, and five center specimens for transverse tensile testing. These were divided into groups of six consisting of a single surface, mid-radius, and center specimen from each end of the billet. Heat treatment of each group was varied with respect to tempering temperature, which ranged from 900 to 1000°F in increments of 25°F. Tempering temperatures were varied to establish the optimum treatment for each billet. Specimens were preheated at 1400°F (one hour at temperature), austenitized at 1850°F (one hour at temperature), fan air cooled while tumbling, triple tempered followed by still air cooling after each two-hour temper (at temperature), stress relieved at 650°F for three hours, and still air cooled to room temperature.

A single longitudinal tensile specimen was removed from the surface, mid-radius, and center locations of Sections 4 and 9. Heat treatment for longitudinal tensile specimens was the same as for transverse specimens, except that all six longitudinal specimens were given a 925°F triple temper.

Sections 3 and 8 were forged down to a four-inch diameter round, prepared into stepdown bars, and magnetic particle inspected per AMS-2300A. Heat treatment after rough machining included a double temper at 1200°F for four hours each. Inspected surfaces were finish machined to 32 RMS.

Longitudinal macroetches from surface to billet center were prepared from Sections 5 and 10.

Acceptance test results for the air melt-vacuum arc remelt billet of H-11 steel were as follows:

Sonic Test: Satisfactory

Macroetch: Transverse Section from Top of Ingot --
Figure 2
Transverse Section from Bottom of Ingot --
Figure 3
Longitudinal Section from Top of Ingot and
Bottom of Ingot -- Figure 4

Magnetic Particle Inspection: (Forged stepdown bars processed per AMS-2300A)
Frequency/Severity Rating at --
Top .00/.00
Bottom .00/.00

Microstructure: See Figure 5

Microcleanliness: (ASTM E45-51, Method "A")
Surface, mid-radius, and center positions in cross section at top and bottom of billet exhibited predominantly oxide-type inclusions. Thin series = 1.0. Heavy series = 0.5. These ratings were exceeded only at the top mid-radius position where thin series = 1.5 and heavy series = 1.0.

Grain Size: (Mid-radius position)
Top ---Range 6-8, Predominant 6
Bottom-Range 6-8, Predominant 7

19932

FIGURE 2

TRANSVERSE MACROETCH OF BILLET TOP --
AIR MELT-VACUUM ARC REMELT HEAT NO. W-24341-1

19933

FIGURE 3

TRANSVERSE MACROETCH OF BILLET BOTTOM --
AIR MELT-VACUUM ARC REMELT HEAT NO. W-24341-1

19936

Top

Bottom

FIGURE 4

LONGITUDINAL MACROETCH AT BILLET TOP AND BOTTOM --
AIR MELT-VACUUM ARC REMELT HEAT NO. W-24341-1

C-2933

Top 100X

Top 1000X

Etchant: 4% Nital

C-2938

Bottom 100X

Bottom 1000X

FIGURE 5

MID-RADIUS MICROSTRUCTURE AT BILLET TOP AND BOTTOM --
AIR MELT-VACUUM ARC REMELT HEAT NO. W-24341-1

Chemistry:

Location	C	Mn	P	S	S1	N1	Cr	Mo	Cu	V
Top-Surface	.39	.22	.007	.005	.76	.11	5.10	1.24	.08	.51
Top-Mid-radius	.42	.22	.007	.005	.76	.11	5.12	1.25	.08	.50
Top-Center	.40	.23	.007	.005	.78	.14	5.16	1.25	.08	.53
Bottom-Surface	.38	.22	.007	.005	.75	.12	5.07	1.21	.08	.52
Bottom-Mid-radius	.38	.22	.007	.005	.76	.11	5.06	1.22	.08	.50
Bottom-Center	.385	.22	.007	.005	.77	.11	5.08	1.21	.07	.52
Average (Ladish Co.)	.39	.22	.007	.005	.76	.11	5.09	1.23	.08	.52
Average (Mill)	.38	.23	.006	.005	.79		5.01	1.25		.54

Tensile Tests: (0.505-inch specimen, 7/8-inch thread)

Transverse Specimens -- 1850°F Austenitize, 900°F Triple Temper

Location	Ultimate Strength (psi)	Reduction in Area (per cent)
Top-Surface	316,500	5.0
Top-Mid-radius	268,750	1.9
Top-Center	251,250	0.8
Bottom-Surface	298,500	5.8
Bottom-Mid-radius	296,800	4.7
Bottom-Center	288,000	3.2

Transverse Specimens -- 1850°F Austenitize, 925°F Triple Temper

Top-Surface	302,500	2.3
Top-Mid-radius	278,750	1.9
Top-Center	235,000	0.8
Bottom-Surface	301,500	4.7
Bottom-Mid-radius	297,500	4.0
Bottom-Center	280,800	2.4

Transverse Specimens -- 1850°F Austenitize, 950°F Triple Temper

Top-Surface	307,500	5.4
Top-Mid-radius	239,500	0.4
Top-Center	210,400	1.2
Bottom-Surface	302,500	12.1
Bottom-Mid-radius	300,000	6.2
Bottom-Center	294,400	3.2

Transverse Specimens -- 1850°F Austenitize, 975°F Triple Temper

Top-Surface	294,300	11.9
Top-Mid-radius	287,500	4.3
Top-Center	228,500	1.4
Bottom-Surface	290,000	8.1
Bottom-Mid-radius	286,500	7.7
Bottom-Center	282,500	3.5

Transverse Specimens -- 1850°F Austenitize, 1000°F Triple Temper

<u>Location</u>	<u>Ultimate Strength (psi)</u>	<u>Reduction in Area (per cent)</u>
Top-Surface	283,500	21.6
Top-Mid-radius	286,500	3.2
Top-Center	255,500	1.2
Bottom-Surface	280,000	14.5
Bottom-Mid-radius	280,000	10.4
Bottom-Center	277,000	4.7

Longitudinal Specimens -- 1850°F Austenitize, 925°F Triple Temper

Top-Surface	314,300	16.7
Top-Mid-radius	295,600	2.4
Top-Center	263,050	2.4
Bottom-Surface	303,200	12.9
Bottom-Mid-radius	302,000	7.0
Bottom-Center	300,000	6.6

Acceptance test results for the air melt-degas-vacuum arc remelt billet of H-11 steel were as follows:

Sonic Test: Satisfactory

Macroetch: Transverse Section from Top of Ingot --
Figure 6
Transverse Section from Bottom of Ingot --
Figure 7
Longitudinal Section from Top of Ingot and
Bottom of Ingot -- Figure 8

Magnetic Particle
Inspection: (Forged stepdown bars processed per AMS-2300A)
Frequency/Severity Rating at --
Top .02/.07
Bottom .00/.00

Microstructure: See Figure 9

Microcleanliness: (ASTM E45-51, Method "A")
Surface, mid-radius, and center positions in
cross section at top and bottom of billet
exhibited predominantly oxide-type inclusions.
Thin series = 1.0. Heavy series = 0.5.

Grain Size: (Mid-radius position)
Top ---- Range 6-8, Predominant 7
Bottom - Range 6-8, Predominant 7

FIGURE 1

DETAILED EXAMINATION OF FILLED PAPER
IN SPANISH VILLAGE, ALICANTE, SPAIN, NOVEMBER 1971.

Top
Bottom

FIGURE 8
19937

LONGITUDINAL MACROETCH AT BILLET TOP AND BOTTOM --
AIR MELT-DEGAS-VACUUM ARC REMELT HEAT NO. W-24342-V1

C-2943

Top 100X

Top 1000X

Etchant: 4% Nital

C-2948

Bottom 100X

Bottom 1000X

FIGURE 9

MID-RADIUS MICROSTRUCTURE AT BILLET TOP AND BOTTOM --
AIR MELT-DEGAS-VACUUM ARC REMELT HEAT W-24342-V1

Chemistry:

Location	C	Mn	P	S	S1	N1	Cr	Mo	Cu	V
Top-Surface	.395	.22	.007	.005	.76	.12	5.10	1.22	.07	.51
Top-Mid-radius	.39	.23	.007	.005	.75	.12	5.09	1.22	.07	.57
Top-Center	.39	.23	.007	.005	.75	.10	5.05	1.22	.07	.48
Bottom-Surface	.365	.20	.007	.005	.75	.10	5.11	1.20	.07	.50
Bottom-Mid-radius	.38	.20	.007	.005	.79	.10	5.13	1.21	.07	.49
Bottom-Center	.39	.20	.007	.005	.75	.10	5.14	1.22	.07	.49
Average (Ladish Co.)	.39	.22	.007	.005	.76	.10	5.10	1.22	.07	.50
Average (Mill)	.38	.24	.006	.005	.77		5.00	1.26		.54

Tensile Tests: (0.505-inch specimen, 7/8-inch thread)

Transverse Specimens -- 1850°F Austenitize, 900°F Triple Temper

Location	Ultimate Strength (psi)	Reduction in Area (per cent)
Top-Surface	307,100	6.7
Top-Mid-radius	303,750	5.4
Top-Center	288,200	4.0
Bottom-Surface	300,000	16.1
Bottom-Mid-radius	305,000	5.0
Bottom-Center	287,500	2.3

Transverse Specimens -- 1850°F Austenitize, 925°F Triple Temper

Top-Surface	298,750	3.5
Top-Mid-radius	293,200	3.2
Top-Center	298,800	4.7
Bottom-Surface	304,375	13.4
Bottom-Mid-radius	303,800	3.6
Bottom-Center	300,500	3.1

Transverse Specimens -- 1850°F Austenitize, 950°F Triple Temper

Top-Surface	303,900	5.9
Top-Mid-radius	308,200	7.8
Top-Center	296,250	3.9
Bottom-Surface	301,250	15.6
Bottom-Mid-radius	302,500	9.2
Bottom-Center	288,800	1.6

Transverse Specimens -- 1850°F Austenitize, 975°F Triple Temper

Top-Surface	297,500	7.0
Top-Mid-radius	300,000	5.8
Top-Center	291,800	5.2
Bottom-Surface	295,000	13.7
Bottom-Mid-radius	291,250	4.3
Bottom-Center	299,300	3.2

Transverse Specimens -- 1850°F Austenitize, 1000°F Triple Temper

<u>Location</u>	<u>Ultimate Strength (psi)</u>	<u>Reduction in Area (per cent)</u>
Top-Surface	286,500	5.8
Top-Mid-radius	287,500	9.2
Top-Center	285,000	5.8
Bottom-Surface	283,500	28.2
Bottom-Mid-radius	281,000	15.2
Bottom-Center	288,500	5.0

Longitudinal Specimens -- 1850°F Austenitize, 925°F Triple Temper

Top-Surface	301,500	12.2
Top-Mid-radius	308,000	5.3
Top-Center	305,500	5.5
Bottom-Surface	302,500	14.8
Bottom-Mid-radius	302,200	8.2
Bottom-Center	308,750	3.5

Acceptance test results for the air melt-double vacuum arc remelt billet of H-11 steel were as follows:

Sonic Test: Satisfactory

Macroetch: Transverse Section from Top of Ingot --
Figure 10
Transverse Section from Bottom of Ingot --
Figure 11
Longitudinal Section from Top of Ingot and
Bottom of Ingot -- Figure 12

Magnetic Particle
Inspection: (Forged stepdown bars processed per AMS-2300A)
Frequency/Severity Rating at --
Top .00/.00
Bottom .00/.00

Microstructure: See Figure 13

Microcleanliness: (ASTM E45-51, Method "A")
Surface, mid-radius, and center positions in
cross section at top and bottom of billet
exhibited predominantly oxide-type inclusions.
Thin series = 1.0 to 1.5. Heavy series =
0.5.

Grain Size: (Mid-radius position)
Top ---- Range 5-8, Predominant 7
Bottom - Range 6-8, Predominant 7

19975

FIGURE 10

TRANSVERSE MACROETCH OF BILLET TOP --
AIR MELT-DOUBLE VACUUM ARC REMELT HEAT NO. W-24341-2

19976

FIGURE 11

TRANSVERSE MACROETCH OF BILLET BOTTOM --
AIR MELT-DOUBLE VACUUM ARC REMELT HEAT NO. W-24341-2

19977

Bottom

Top

FIGURE 12

LONGITUDINAL MACROETCH AT BILLET TOP AND BOTTOM --
AIR MELT-DOUBLE VACUUM ARC REMELT HEAT NO. W-24341-2

C-3327

Top 100X

Top 1000X

Etchant: 4% Nital

C-3332

Bottom 100X

Bottom 1000X

FIGURE 13

MID-RADIUS MICROSTRUCTURE AT BILLET TOP AND BOTTOM --
AIR MELT-DOUBLE VACUUM ARC REMELT HEAT W-24341-2

Chemistry:

Location	C	Mn	P	S	Si	Ni	Cr	Mo	Cu	V
Top-Surface	.40	.20	.010	.006	.76	.10	5.15	1.24	.07	.51
Top-Mid-radius	.40	.20	.010	.006	.74	.12	5.14	1.25	.07	.52
Top-Center	.41	.20	.010	.006	.73	.11	5.15	1.24	.07	.52
Bottom-Surface	.37	.20	.010	.006	.73	.10	5.10	1.23	.07	.52
Bottom-Mid-radius	.39	.29	.010	.006	.73	.10	5.12	1.24	.07	.52
Bottom-Center	.38	.29	.010	.006	.71	.09	5.10	1.22	.06	.50
Average (Ladish Co.)	.39	.22	.010	.006	.73	.10	5.12	1.24	.07	.52
Average (Mill)	.39	.20	.006	.005	.77		5.02	1.22		.55

Tensile Tests: (0.505-inch specimen, 7/8-inch thread)

Transverse Specimens -- 1850°F Austenitize, 900°F Triple Temper

Location	Ultimate Strength (psi)	Reduction in Area (per cent)
Top-Surface	285,000	2.7
Top-Mid-radius	300,500	4.0
Top-Center	227,000	1.1
Bottom-Surface	289,300	2.0
Bottom-Mid-radius	280,300	4.4
Bottom-Center	269,200	2.0

Transverse Specimens -- 1850°F Austenitize, 925°F Triple Temper

Top-Surface	291,500	1.9
Top-Mid-radius	313,200	6.3
Top-Center	268,200	1.9
Bottom-Surface	296,250	4.3
Bottom-Mid-radius	297,200	4.4
Bottom-Center	288,100	2.4

Transverse Specimens -- 1850°F Austenitize, 950°F Triple Temper

Top-Surface	295,500	7.6
Top-Mid-radius	307,400	8.2
Top-Center	296,400	7.8
Bottom-Surface	297,000	5.9
Bottom-Mid-radius	291,000	4.0
Bottom-Center	293,200	4.4

Transverse Specimens -- 1850°F Austenitize, 975°F Triple Temper

Top-Surface	288,150	7.5
Top-Mid-radius	300,500	5.1
Top-Center	288,300	3.6
Bottom-Surface	285,400	5.9
Bottom-Mid-radius	290,000	11.1
Bottom-Center	285,800	4.4

Transverse Specimens -- 1850°F Austenitize, 1000°F Triple Temper

<u>Location</u>	<u>Ultimate Strength (psi)</u>	<u>Reduction in Area (per cent)</u>
Top-Surface	281,500	17.4
Top-Mid-radius	289,400	5.1
Top-Center	276,000	3.1
Bottom-Surface	269,200	2.4
Bottom-Mid-radius	293,200	14.9
Bottom-Center	280,400	5.9

Longitudinal Specimens -- 1850°F Austenitize, 925°F Triple Temper

Top-Surface	311,250	16.3
Top-Mid-radius	314,300	5.9
Top-Center	304,500	4.0
Bottom-Surface	300,000	6.6
Bottom-Mid-radius	307,500	7.0
Bottom-Center	293,500	5.1

Acceptance test results for the vacuum induction melt-vacuum arc remelt billet of H-11 steel were as follows:

Sonic Test: Satisfactory

Macroetch: Transverse Section from Top of Ingot --
Figure 14
Transverse Section from Bottom of Ingot --
Figure 15
Longitudinal Section from Top of Ingot and
Bottom of Ingot -- Figure 16

Magnetic Particle
Inspection: (Forged stepdown bars processed per AMS-2300A)
Frequency-Severity Rating at --
Top .00/.00
Bottom .00/.00

Microstructure: See Figure 17

Microcleanliness: (ASTM E45-51, Method "A")
Surface, mid-radius, and center positions in
cross section at top and bottom of billet
exhibited predominantly oxide-type inclusions.
Thin series = 0.5 to 1.0. Heavy series = 0.5.

Grain Size: (Mid-radius position)
Top ---- Range 6-8, Predominant 7
Bottom - Range 6-8, Predominant 7

20037

FIGURE 14

TRANSVERSE MACROETCH OF BILLET TOP --
VACUUM INDUCTION MELT-VACUUM ARC REMELT HEAT NO. W-24403-1

20038

FIGURE 15

TRANSVERSE MACROETCH OF BILLET BOTTOM --
VACUUM INDUCTION MELT-VACUUM ARC REMELT HEAT NO. W-24403-1

FIGURE 16

LONGITUDINAL MACROETCH AT BILLET TOP AND BOTTOM --
VACUUM INDUCTION MELT-VACUUM ARC REMELT HEAT NO. W-24403-1

C-4163

Top 100X

Top 1000X

Etchant: 4% Nital

C-4168

Bottom 100X

Bottom 1000X

FIGURE 17

MID-RADIUS MICROSTRUCTURE AT BILLET TOP AND BOTTOM --
VACUUM INDUCTION MELT-VACUUM ARC REMELT HEAT NO. W-24403-1

Chemistry:

Location	C	Mn	P	S	Si	Ni	Cr	Mo	Cu	V
Top-Surface	.39	.18	.005	.005	.75	.20	5.15	1.29	.02	.46
Top-Mid-radius	.40	.17	.004	.005	.77	.21	5.12	1.29	.02	.45
Top-Center	.405	.18	.005	.005	.75	.20	5.10	1.26	.02	.45
Bottom-Surface	.395	.18	.005	.005	.75	.20	5.12	1.28	.02	.47
Bottom-Mid-radius	.41	.15	.004	.005	.75	.20	5.15	1.28	.02	.46
Bottom-Center	.40	.18	.005	.005	.75	.20	5.15	1.28	.02	.46
Average (Ladish Co.)	.40	.18	.005	.005	.75	.20	5.12	1.28	.02	.46
Average (Mill)	.42	.20	.005	.004	.81		5.04	1.31		.47

Tensile Tests: (0.505-inch specimen, 7/8-inch thread)

Transverse Specimens -- 1850°F Austenitize, 900°F Triple Temper

Location	Ultimate Strength (psi)	Reduction in Area (per cent)
Top-Surface	278,800	4.4
Top-Mid-radius	281,300	7.0
Top-Center	290,000	6.2
Bottom-Surface	291,500	10.4
Bottom-Mid-radius	288,500	8.9
Bottom-Center	282,500	5.0

Transverse Specimens -- 1850°F Austenitize, 925°F Triple Temper

Top-Surface	288,750	10.0
Top-Mid-radius	283,750	8.9
Top-Center	290,000	9.6
Bottom-Surface	285,000	9.2
Bottom-Mid-radius	291,250	9.7
Bottom-Center	284,300	10.8

Transverse Specimens -- 1850°F Austenitize, 950°F Triple Temper

Top-Surface	302,500	18.4
Top-Mid-radius	287,500	11.5
Top-Center	301,250	7.7
Bottom-Surface	291,250	14.8
Bottom-Mid-radius	295,000	15.6
Bottom-Center	289,300	15.3

Transverse Specimens -- 1850°F Austenitize, 975°F Triple Temper

Top-Surface	291,000	22.7
Top-Mid-radius	294,250	14.8
Top-Center	286,500	14.8
Bottom-Surface	288,000	21.3
Bottom-Mid-radius	285,750	22.3
Bottom-Center	293,250	17.7

Transverse Specimens -- 1850°F Austenitize, 1000°F Triple Temper

<u>Location</u>	<u>Ultimate Strength (psi)</u>	<u>Reduction in Area (per cent)</u>
Top-Surface	282,400	25.6
Top-Mid-radius	286,750	25.8
Top-Center	277,000	14.5
Bottom-Surface	282,000	33.1
Bottom-Mid-radius	284,000	24.1
Bottom-Center	284,000	23.7

Longitudinal Specimens -- 1850°F Austenitize, 925°F Triple Temper

Top-Surface	305,000	20.6
Top-Mid-radius	301,250	6.6
Top-Center	300,000	5.4
Bottom-Surface	296,500	19.2
Bottom-Mid-radius	305,000	12.2
Bottom-Center	306,250	8.5

Mill-reported values for ultimate strength and per cent reduction in area on the basis of mid-radius transverse test specimens given a 975°F triple temper were as follows:

Air Melt-Vacuum Arc Remelt Material

<u>Location</u>	<u>Ultimate Strength (psi)</u>	<u>Reduction in Area (per cent)</u>
Top-Mid-radius	306,000	4
	305,000	7
	304,000	8
	302,000	9
Bottom-Mid-radius	301,000	10
	303,000	12
	303,000	10
	304,000	9

Air Melt-Vacuum Degas-Vacuum Arc Remelt Material

Top-Mid-radius	304,000	6
	301,000	11
Bottom-Mid-radius	306,000	8
	304,000	7
	302,000	7
	304,000	9
	304,000	8
	305,000	9

Air Melt-Double Vacuum Arc Remelt Material

<u>Location</u>	<u>Ultimate Strength (Psi)</u>	<u>Reduction in Area (per cent)</u>
Top-Mid-radius	305,000	6
	304,000	9
	306,000	7
	305,000	6
Bottom-Mid-radius	303,000	5
	306,000	10
	304,000	8
	305,000	7

Vacuum Induction Melt-Vacuum Arc Remelt Material

Top-Mid-radius	314,000	13
	316,000	13
	308,500	16
Bottom-Mid-radius	312,000	15
	312,500	19
	320,000	24
	314,500	22
	312,000	20

Comparison of acceptance test results for each process variation resulted in the following preliminary observations:

1. The vacuum induction melted-vacuum arc remelted material appeared to provide substantially higher ductility in both longitudinal and transverse directions than the other three melting process variations.
2. The air melted-double vacuum arc remelted material appeared to possess the lowest ductility.
3. Based upon both longitudinal and transverse ductility, the apparent order of preference was (a) vacuum induction melt-VAR, (b) air melt-vacuum degas-VAR, (c) air melt-VAR, and (d) air melt-double VAR.
4. The air melt-VAR and air melt-vacuum degas-VAR materials appeared to demonstrate a more erratic strength-ductility

relationship than the vacuum induction melt-VAR and air melt-double VAR materials.

5. The vacuum induction melt-VAR billet evidenced the most uniform macroetch appearance in full transverse cross section as seen in Figures 14 and 15. The air melt-double VAR billet displayed the least uniform transverse macroetch appearance, particularly at the bottom location shown in Figure 11. Although Figure 11 established that the bottom of the double remelt billet did not meet the macroetch acceptance requirement of a three-or-better reading on the Ladish Co. Freckle Rating Chart, a decision against rejecting part of the bottom portion of the billet was made for two reasons.

The minimal length of the double consutroded billet (shortest of the four billets received) did not provide any allowance for rejecting end material without reducing the number of billet sections and test specimens which had been preplanned for the testing program. In addition, it was felt that existence of some material with greater than the desired degree of chemical segregation, as indicated by failure to conform to the macroetch requirement, would serve to extend slightly the range of quality levels under investigation. Therefore, it was decided that all of the double VAR material received should be tested.

6. A 950°F tempering temperature appeared to be optimum for all

relationship than the vacuum induction melt-VAR and air melt-double VAR materials.

5. The vacuum induction melt-VAR billet evidenced the most uniform macroetch appearance in full transverse cross section as seen in Figures 14 and 15. The air melt-double VAR billet displayed the least uniform transverse macroetch appearance, particularly at the bottom location shown in Figure 11. Although Figure 11 established that the bottom of the double remelt billet did not meet the macroetch acceptance requirement of a three-or-better reading on the Ladish Co. Freckle Rating Chart, a decision against rejecting part of the bottom portion of the billet was made for two reasons.

The minimal length of the double consutroded billet (shortest of the four billets received) did not provide any allowance for rejecting end material without reducing the number of billet sections and test specimens which had been preplanned for the testing program. In addition, it was felt that existence of some material with greater than the desired degree of chemical segregation, as indicated by failure to conform to the macroetch requirement, would serve to extend slightly the range of quality levels under investigation. Therefore, it was decided that all of the double VAR material received should be tested.

6. A 950°F tempering temperature appeared to be optimum for all

four remelt process variations from the standpoint of developing maximum ductility at the 300 ksi strength level. Mill-reported strength values (mid-radius specimens given a 975°F temper) exceeded comparable Ladish Co. acceptance test results which were predominantly below 300 ksi. The 950°F temper increased the number of values at a 300 ksi strength level.

7. Mill test results confirmed the Contractor's findings of superior ductility in the vacuum induction melt-VAR processed material.
8. The carbon content of air melt-VAR, air melt-degas-VAR, and air melt-double VAR heats of material (all produced from the same master air melt heat) tended toward the low side of the specified range of carbon contents. The carbon content of the vacuum induction melt-VAR material was on the high side of the specified range, but manganese and vanadium were on the low side. Nickel content of the vacuum induction melt-VAR heat was higher than that in the other three varieties of material.

The photomicrographs in Figures 5, 9, 13, and 17 show the as-received microstructure of each of the four billets at top and bottom extremities under magnifications of 100 and 1000. All specimens are from mid-radius locations with respect to billet cross section.

The thermal processing of all four billets at the mill subsequent to press forging consisted of a spheroidize anneal treatment

(slow cooling at a rate of 25°F per hour). Consequently, observed differences in microstructure may be attributed to melt process variations, particularly since the air melt-VAR, air melt-degas-VAR and air melt-double VAR billets all originated from the same master air melt heat of electric furnace-produced material.

At 100X, noticeable light and dark etching bands or areas may be observed at both the top and bottom locations in the air melt-VAR billet, Figure 5; at the bottom location in the air melt-degas-VAR billet, Figure 9; and to a lesser degree at the top location in the double VAR billet, Figure 13. Furthermore, at 100X the bottom location in Figure 5 and the top and bottom locations in Figure 13 evidence of considerable grain boundary precipitation may be observed. This condition appears to be most continuous at the bottom location in the double VAR billet as shown in Figure 13.

At 1000X, considerable evidence of well-spheroidized particles may be observed in all figures. However, dispersion appears to be least uniform in the air melt-double VAR billet. Here, spheroidization appears the least complete, since numerous grain boundaries exhibit heavy and nearly continuous precipitate accumulations. The air melt-VAR billet is judged to show the most uniform dispersion.

E. Material Processing

Subsequent to the evaluation of acceptance test results, each of the four vacuum arc remelt billets was sectioned and subsectioned as shown in Figure 18 in order to provide 928 tensile test specimen blanks per billet.

The 16 major billet sections were removed progressively from the top and bottom billet extremities and were identified with an alpha code which was preserved throughout subsequent processing and tensile testing. Sectioning of billets in a manner which located any excess material at the center of the billet length, rather than at the top or bottom end, provided for an evaluation of data on the most comparable basis practicable. To further insure representative sampling of the billet material, the specimen location layout was rotated 90 degrees for each successive billet section from top to bottom of the billet, thereby avoiding specimen repetition on the same side of successive sections. Distribution of the 58 blanks removed from each of the 16 major sections of each billet with respect to specimen type, direction, location, and code number is shown in Table II.

Six hundred and forty smooth and 288 notched tensile specimens were prepared from each billet. Both smooth and notched specimens were of the threaded, 1/2-inch diameter variety. The stress concentration factor for the notched specimens was $K_T = 5$. Additional specimen details are shown in Figure 19.

Test blanks were center-drilled and rough-machined to 0.100-inch

Legend:

S - Surface
M - Mid-radius
C - Center
N - Notched

Sub-section 2

094	104	114	124
S	S	S	S N
324	344	364	384
M	M	M	M N
334	354	374	394
N	N	N	M M

Sub-section 4

4-1/2"

Sub-section 2

Index Face 1

185	505	315	675	645	415	405	135
S	M	M	C	C N	M	M N	S N
175	485	395	665	655	435	425	145
S	M	M	C	M	M	M	S

Sub-section 4

Viewing Bottom Face

10"

Sub-section 1

Index Face 1

014	S	N
204	M	N
214	M	N
044	254	
604	C	N
614	C	
234	N	
244	M	
034	S	

10"

Sub-section 3

Index Face 1

054	S	N
264	N	N
274	M	N
084	314	
624	C	N
634	C	
294	N	
304	M	
074	S	

10"

Viewing Bottom Face

FIGURE 18
BILLET SECTIONING DIAGRAM

TABLE II
TENSILE SPECIMEN IDENTITY AND DISTRIBUTION IN
EACH MAJOR BILLET SECTION

SECTION IDENTITY	SMOOTH SPECIMENS						NOTCHED SPECIMENS					
	LONGITUDINAL			TRANSVERSE			LONGITUDINAL			TRANSVERSE		
	Center	Mid-radius	Surface	Center	Mid-radius	Surface	Center	Mid-radius	Surface	Center	Mid-radius	Surface
Sub-Section 1 (12 Specimens)				614	224	024				604	204	014
					234	034					214	
					244	044						
					254							
Sub-Section 2 (12 Specimens)					324	094					384	124
					334	104					394	
					344	114						
					354							
					364							
					374							
Sub-Section 3 (12 Specimens)				634	284	064				624	264	054
					294	074					274	
					304	084						
					314							
Sub-Section 4 (22 Specimens)	655 675	415 425 435 455 465 475 495 505 515	145 155 165 185				645	405 665 445 485	135 175			
58	2	9	4	2	14	9	2	3	2	2	6	3
TOTALS	15			25			7			11		
	40						18					

"SMOOTH" TENSILE SPECIMEN

FIGURE 19

SMOOTH AND NOTCHED TENSILE SPECIMEN DESIGN
FOR H-11 STEEL TESTED BY CONTRACTOR

oversize prior to heat treatment. For heat treat control purposes, one-inch square hardness blocks were prepared from billet material at locations adjacent to the end of surface and mid-radius notched specimens. The heat treatment of the 3712 rough-machined test blanks and associated hardness blocks consisted of austenitizing, forced-air quenching to harden, and triple tempering. Since it was deemed desirable to limit the influence of unavoidable variations in treatment conditions upon the response of the specimen blanks to the austenitize-and-harden cycle, the test blanks were regrouped for this operation. The 928 rough-machined test blanks and 116 hardness blocks from each of the four billets were arranged into 58 separate groups consisting of one tensile blank from each of the 16 billet sections and two hardness test blocks representing material from the top and bottom of the billet. The effect of this arrangement was to minimize the influence of any deviation in heat treat response which might result from a slight variation in conditions from charge to charge.

In addition to the normal electric furnace temperature control system, an auxiliary temperature recorder and separate thermocouple were used with each charge to ensure exactness of temperature and time at temperature.

The austenitize-and-harden treatment given the above 58 groups of specimens from each billet was identical for each melt practice, specifically:

1. Pre-heat at 1400°F for one hour (at temperature).
2. Austenitize at 1850°F for one hour (at temperature).
3. Forced-air quench to less than 150°F.

The cooling devices used for the forced-air quench portion of the treatment consisted of a motorized wire mesh drum which rotated at 10 revolutions per minute and a centrifugal fan with a capacity of approximately 700 cubic feet per minute. The output of the fan was directed through the mesh toward the center of the drum to ensure rapid, uniform cooling of specimens as they were tumbled.

After the above treatment had been applied to specimens and hardness blocks, all 464 hardness blocks were processed and tested to determine the effectiveness of the hardening operation.

The 3712 specimens and 464 hardness blocks were subsequently processed through the tempering operations in groups of 16 specimens and two hardness blocks from each billet. First, second, and third temper operations were each performed at 950°F for two hours (at temperature) followed by still-air cooling to room temperature. Hardness blocks were reprocessed and tested after the second and third temper operations.

Critical sections of all test specimens were ground to final dimensions. All smooth contour grinding was done with a Norton Model Type C, six by 18-inch cylindrical grinder operating with a work head speed of 530 RPM, and a Norton Grade 57A 60 L5VBE wheel at 6500 surface feet per minute. Wheel form was maintained by crushing as necessary. Texas Oil Company Soluble CX, a water-soluble oil, was employed as coolant.

The gauge length of the smooth tensile specimens was polished

with No. 320 abrasive cloth strips. Conformance to dimensional specifications was verified by use of a Jones & Lamson Model BC 14 optical comparator at 62.5 magnification.

Residual stresses resulting from grinding and polishing were subsequently relieved by a 3-hour thermal treatment at 650°F. Specimens were then air cooled to room temperature.

All tensile specimens were tested on Baldwin-Lima-Hamilton hydraulically-loaded tensile machines of 120,000 and 300,000-pound capacities, with the lesser capacity machine used to test the notched tensile specimens. Loading rate used for both smooth and notched specimens was 75,000 psi per minute to yield, with no increase in load thereafter to failure.

Testing rates and methods were within the limits specified for Method 211 in Federal Test Method Standard No. 151.

All fractured specimens were identified and stored. Data from each test was punched into an IBM card and processed for statistical analysis. Machine tabulations of arrayed data are presented in Appendices I through IV.

III. DATA PROCESSING

All tensile test data was thoroughly screened for accuracy and completeness of property values as developed. A few tests, in which specimens failed in the threads, or in which deviations from established processing or testing procedures occurred, were voided in their entirety. In some instances only a portion of the data to be derived from a single specimen could be reported. For example, extensometer difficulties or slippage occasionally resulted in the necessity for voiding a yield strength value. Similarly, inability to recover all specimen fragments after fracture made it impossible to report elongation and/or reduction in area values in other instances. The amount of data which could not be reported because of all such causes comprised a very small percentage of the total data collected. Of the 2560 smooth tensile tests performed, only 14 ultimate strength values and 15 reduction in area values were lost. With notched specimens, the percentage was even less significant. Ultimate strength values were reported for all but two of the 1152 notched specimens tested. The notched/smooth strength ratio could not be computed for 10 specimens, however, because of the lack of associated smooth ultimate strength values.

All acceptable data was translated onto punched IBM cards. Test results and pertinent identifying information which would facilitate statistical evaluation of the effects of (a) melt process variation, (b) specimen direction, (c) specimen type, (d) specimen location with respect to billet length, and (e) specimen

location with respect to billet cross section, were incorporated.

Each data card was processed through a verifier by a second operator to ensure the accuracy of data to be analyzed. A tabulated runoff of each test result was printed by an IBM 407 accounting machine. The runoff was given a critical review to provide further assurance of the accuracy of data to be analyzed statistically.

At this point, ultimate strength values from adjacent notched and smooth specimens were reproduced into a new deck of IBM cards which was subsequently processed by an IBM 1401 computer to provide the notched/smooth ratio. This value was then reproduced on the IBM card originally prepared for each notched specimen.

The 928 cards for each of the four melt processes then were re-sorted by specimen type (smooth and notched), direction (transverse and longitudinal), and location (surface, mid-radius, and center) in each of the 16 billet sections and the information was listed by the IBM 407 accounting machine for subsequent reproduction as Appendices I through IV, provided at the end of this report. Each of these four appendices, covering all test data developed for one of the four remelt process variations studied, is subdivided into four sections containing data from the appropriate heat for (1) smooth transverse, (2) smooth longitudinal, (3) notched transverse, and (4) notched longitudinal specimens, respectively.

All data was re-run on the IBM 407 to provide sub-totals of

property values by individual billet section and to total these property values across each entire billet. Totals were used to calculate arithmetic mean (\bar{X}) and range (R) values for each billet section. Values were subsequently plotted in the form of control charts, provided in Appendix VI, to illustrate the variation of mechanical property data from top to bottom of each billet. Upper and lower control values given on each chart in Appendix VI represent the three sigma limits of the average mean ($\bar{\bar{X}}$) or average range (\bar{R}) of specific property variables (yield and ultimate strength, elongation, reduction in area, notched strength and notched/smooth ratio). The control charts indicate the relative degree of control provided by each melting practice for each property variable.

Next, IBM test data cards for each mill practice were re-sorted by specimen type (smooth and notched), direction (transverse and longitudinal), and location (surface, mid-radius, and center) in each billet without regard for individual billet section. This arrangement was accomplished to permit a distribution analysis and the calculation of statistical criteria for subsequent evaluation. It provided the following breakdown:

The original IBM data cards were next reproduced to establish separate decks for each of the following tensile properties:

(1) smooth specimen ultimate strength, (2) smooth specimen per cent reduction in area, (3) notched specimen ultimate strength, and (4) notched/smooth strength ratio. Card format employed was that required for processing data on an IBM 1620 computer.

The 1620 computer program was obtained from IBM's General Program Library and is entitled DISTAT (Distribution of Statistics)
¹ 6.0.012. The decks were prepared so as to permit initial processing on the basis of the smallest groups first. Then by combining, groups were reprocessed to evaluate broader conditions. In this manner a total of 36 groups per heat, or a total of 144 groups in all, were statistically analyzed.

The 36 groups from each billet actually represented nine combinations of material variables for both smooth and notched specimens (longitudinal surface, mid-radius, and center, individually and combined (four groups); transverse surface, mid-radius, and center, also individually and combined (four more groups); and combined transverse and longitudinal (ninth group)). Since two

¹ Developed by H. E. Anderson, Sandia Corporation, Albuquerque, N.M.

test variables were also represented (ultimate strength and per cent reduction in area for smooth specimens, and ultimate strength and notched/smooth ratio for notched specimens), the arrangement comprised 18 groups of data for each type of specimen (smooth and notched), or a total of 36 groups of data per heat.

In addition to statistical criteria determined by the IBM 1620 computer for each group of data, including frequency, arithmetic mean, standard deviation, variance maximum and minimum values, range, and standard deviation of the mean, a histogram plot of the data for each of the four test variables was also provided. The computer-developed histogram for each of the 144 groups of data provided cell mid-point values (rounded to three places), number of observations falling within each cell, and a graph of the distribution truncated at a frequency of 55 values. This limitation was a function of the maximum stop setting of the console typewriter on which the data was printed. The computer program determined limits and cell size for each histogram on the basis of sample size and range of data. The histogram for each of the 36 combinations of material and test variables evaluated for each vacuum arc remelt process variation is contained in Appendix V.

IV. DATA EVALUATION

In the effort directed toward evaluation of the effects on mechanical properties of high-strength H-11 steels introduced by known variables such as melting practice, location from top to bottom within the billet, position of test specimens from surface to center of the billet, specimen direction with respect to the primary direction of rolling or working, and type of tensile specimen with respect to notch sensitivity, the mass of data generated from 3712 tests was analyzed by two basic statistical methods, namely, frequency distribution and control chart methods.

The frequency distribution method was chosen because it is a means of reliably translating large and small samples of comparatively unintelligible data into meaningful, understandable terms comparable with those of other samples representing similar or dissimilar conditions. Thus, it provided a common denominator for making direct comparisons between the 144 groups of data.

The control chart method provided a means of reliably comparing the arithmetic mean and range of tensile properties in each section of each billet on the basis of repetitive identical samples, thereby affording a continual check on process reproducibility of a single variable over the entire billet length.

Tensile test data subjected to the frequency distribution method of analysis (i.e., ultimate strength and per cent reduc-

tion in area of smooth specimens, and ultimate strength and notched/smooth strength ratio of notched specimens) was used to produce the 144 histograms contained in Appendix V. These are summarized in Tables III through VI wherein sample size (N), arithmetic mean (\bar{X}), and standard deviation (σ) are tabulated for each property, group of data, and remelt process variation.

Tensile test data subjected to the control chart method of analysis (i.e., smooth specimen values for yield and ultimate strength, per cent elongation and reduction in area, and notched specimen values for ultimate strength and notched/smooth strength ratio) yielded the 48 charts contained in Appendix VI. An individual chart, containing both mean and range values, is provided for each tensile property and specimen direction. Thus, twelve charts are provided for each remelt process variation to illustrate the degree of variation of each tensile property successively along the length of the billet. Upper and lower control limits for overall mean (\bar{X}) values and mean range (\bar{R}) values are provided to indicate which billet sections are out of control with respect to a three-sigma deviation from the mean.

Data graphically represented in Appendix VI is summarized in Tables VII through X wherein mean and range values for all tensile test data is tabulated by billet section and by specimen type and direction.

For comparative purposes the \bar{X} and σ values tabulated in Tables III through VI were plotted in Figures 20 through 31, in order

TABLE III
STATISTICAL SUMMARY OF SMOOTH AND NOTCHED TENSILE TEST DATA FOR
AIR MELT-VACUUM ARC REMELT HEAT W-24341-1
COMPUTED BY SPECIMEN DIRECTION AND LOCATION

SPECIMEN TYPE	SMOOTH						NOTCHED								
	DIRECTION AND LOCATION			ULTIMATE STRENGTH (KSI)			REDUCTION IN AREA (PER CENT)			ULTIMATE STRENGTH (KSI)			NOTCHED/SMOOTH RATIO		
	N	X̄	σ	N	X̄	σ	N	X̄	σ	N	X̄	σ	N	X̄	σ
Longitudinal	Center	32	295.9	5.3	32	7.9	2.4	31	213.0	21.2	32	.74	.11		
	Mid-radius	142	293.2	6.6	142	8.3	3.0	47	249.1	26.5	47	.86	.09		
	Surface	63	299.7	4.8	64	17.5	5.3	32	261.6	19.6	32	.86	.09		
Transverse	Longitudinal (Center, Mid-radius, Surface Combined)	237	295.3	6.6	238	10.7	5.5	110	242.6	30.0	111	.82	.11		
	Center	30	283.7	4.4	30	4.0	1.6	32	185.0	23.2	30	.63	.09		
	Mid-radius	220	293.3	7.4	220	5.3	2.4	96	202.8	38.8	94	.69	.12		
Process Variation	Surface	144	292.2	6.2	144	9.1	3.7	48	236.1	31.5	48	.83	.10		
	Transverse (Center, Mid-radius, Surface Combined)	394	292.2	7.2	394	6.6	3.5	176	208.6	38.8	172	.72	.13		
		631	293.3	7.2	632	8.1	4.8	286	221.7	39.3	283	.76	.13		

TABLE IV
STATISTICAL SUMMARY OF SMOOTH AND NOTCHED TENSILE TEST DATA FOR
AIR MELT-DEGAS-VACUUM ARC REWELD HEAT W-24342-V1
COMPUTED BY SPECIMEN DIRECTION AND LOCATION

SPECIMEN TYPE	SMOOTH						NOTCHED								
	ULTIMATE STRENGTH (KSI)			REDUCTION IN AREA (PER CENT)			ULTIMATE STRENGTH (KSI)			NOTCHED/SMOOTH RATIO					
DIRECTION AND LOCATION	N	\bar{X}	σ	N	\bar{X}	σ	N	\bar{X}	σ	N	\bar{X}	σ			
Longitudinal	Center	30	299.7	3.7	31	6.7	2.3	32	218.7	31.9	29	.71	.07		
	Mid-radius	144	302.6	3.7	144	7.6	3.6	48	251.8	26.6	47	.82	.09		
	Surface	64	293.7	8.1	64	14.0	4.7	31	258.7	26.8	31	.88	.07		
Transverse	Longitudinal (Center, Mid-radius, Surface Combined)			238	299.8	6.5	239	9.2	4.8	112	244.1	32.4	108	.81	.10
	Center	32	292.6	6.6	32	4.3	2.4	32	176.7	26.6	32	.63	.08		
	Mid-radius	223	297.0	8.9	222	5.8	2.9	96	201.2	33.9	96	.69	.13		
Process Variation	Surface	144	290.4	6.6	144	8.1	3.3	48	241.7	30.4	48	.82	.11		
	Transverse (Center, Mid-radius, Surface Combined)			399	294.3	8.6	398	6.5	3.2	176	207.8	38.9	176	.71	.13
Process Variation															

TABLE A
STATISTICAL SUMMARY OF SMOOTH AND NOTCHED TENSILE TEST DATA FOR
AIR-MULTED-DRILLED AND CERAMIC REINFORCED PLATE N-24341-2
COMPILED BY SPECIMEN DIRECTION AND LOCATION

SECTION TYPE	DIRECTION AND LOCATION	SMOOTH			REDUCTION IN AREA (PER CENT)			ULTIMATE STRENGTH (KSI)			NOTCHED/SMOOTH RATIO		
		N	\bar{X}	σ	N	\bar{X}	σ	N	\bar{X}	σ	N	\bar{X}	σ
Longitudinal	Center	32	298.6	8.4	32	6.8	2.4	32	233.3	28.1	32	.78	.09
	Mid-radius	144	301.4	10.0	144	7.2	3.6	48	255.0	25.0	48	.85	.09
	Surface	64	298.8	5.3	64	9.5	5.3	32	257.0	24.0	32	.86	.09
Longitudinal (Center, Mid-radius, Surface Combined)		240	300.3	8.9	240	7.8	4.1	112	249.4	27.4	112	.83	.10
Transverse	Center	31	288.9	12.9	31	3.0	1.4	32	182.0	42.2	31	.63	.15
	Mid-radius	223	292.1	11.7	222	3.7	1.5	96	213.2	41.2	96	.73	.15
	Surface	144	290.7	14.3	143	4.7	2.4	48	235.8	25.1	48	.82	.09
Transverse (Center, Mid-radius, Surface Combined)		398	291.3	12.8	396	4.0	1.9	176	213.6	41.5	175	.74	.15
Process Variation		638	294.7	12.3	636	5.4	3.5	288	227.6	40.6	287	.77	.14

TABLE VI
STATISTICAL SUMMARY OF SMOOTH AND NOTCHED TENSILE TEST DATA FOR
VACUUM INDUCTION MELT-VACUUM ARC RECAST HEAT V-24403-1
COMPUTED BY SPECIMEN DIRECTION AND LOCATION

SPECIMEN TYPE	SMOOTH						NOTCHED						
	ULTIMATE STRENGTH (KSI)			REDUCTION IN AREA (PER CENT)			ULTIMATE STRENGTH (KSI)			NOTCHED/SMOOTH RATIO			
	N	\bar{X}	σ	N	\bar{X}	σ	N	\bar{X}	σ	N	\bar{X}	σ	
Longitudinal	Center	32	288.4	3.6	32	11.0	2.1	32	241.2	21.3	32	.84	.08
	Mid-radius	144	296.1	4.3	144	12.1	3.3	48	261.8	31.6	48	.88	.10
	Surface	64	295.4	5.3	64	18.4	3.8	32	278.9	26.6	32	.94	.09
Transverse	Longitudinal (Center, Mid-radius, Surface Combined)	240	294.9	5.2	240	13.6	4.4	112	260.8	30.9	112	.89	.10
	Center	32	290.3	2.2	32	9.4	3.5	32	221.8	24.5	32	.76	.09
	Mid-radius	224	294.3	3.8	224	13.0	4.0	96	233.1	30.1	96	.79	.10
Process Variation	Surface	144	293.7	6.9	144	13.6	5.7	48	246.7	26.9	48	.84	.10
	Transverse (Center, Mid-radius, Surface Combined)	400	293.8	5.2	400	12.9	4.7	176	234.8	29.4	176	.80	.10

TABLE VII

STATISTICAL SUMMARY OF SMOOTH AND NOTCHED TENSILE TEST DATA FOR
 AIR MELT-VACUUM ARC REMELT HEAT W-24341-1
 COMPUTED BY BILLET SECTION

Billet Section	Statistical Value	SPECIMEN TYPE													
		SMOOTH								NOTCHED					
		LONGITUDINAL				TRANSVERSE				LONGITUD.		TRANSV.			
		F _{ty} ksi	F _{tu} ksi	% E.	% R.A.	F _{ty} ksi	F _{tu} ksi	% E.	% R.A.	F _{tu} ksi	N/S ratio	F _{tu} ksi	N/S ratio		
A	X	238.9	304.2	4.3	9.1	237.7	298.3	2.9	5.3	231.8	.76	191.7	.66		
	R	16.8	17.5	6.5	19.2	20.1	31.0	5.0	9.3	108.8	.35	139.2	.42		
B	X	237.1	304.0	4.2	7.7	235.4	292.0	2.7	4.8	259.6	.83	198.2	.69		
	R	15.5	20.0	3.0	9.5	17.1	44.5	5.5	10.7	101.8	.34	145.8	.39		
C	X	232.4	296.7	4.4	9.8	233.4	292.4	3.1	5.4	265.3	.89	207.2	.72		
	R	19.5	12.8	6.0	5.5	19.0	36.0	7.0	14.9	51.2	.20	91.6	.37		
D	X	231.0	297.7	4.9	10.4	233.9	293.1	3.2	6.3	245.1	.82	195.1	.69		
	R	13.1	21.2	7.0	25.2	22.6	28.2	5.5	16.2	83.9	.19	112.5	.38		
E	X	232.2	297.7	4.8	10.2	233.2	293.6	3.7	6.7	250.6	.84	211.2	.72		
	R	13.5	17.5	5.5	19.1	19.0	27.3	6.5	16.2	48.5	.15	111.3	.35		
H	X	229.2	293.0	5.1	14.3	232.4	294.2	3.5	6.8	257.9	.88	208.6	.72		
	R	26.7	28.3	6.5	25.3	14.1	33.6	5.0	12.6	96.7	.32	106.4	.35		
I	X	230.9	293.8	5.4	10.6	232.2	293.1	3.3	6.2	257.9	.88	217.5	.75		
	R	15.7	15.5	5.0	17.7	17.7	27.0	5.5	12.2	117.4	.43	109.8	.47		
J	X	231.4	296.0	5.6	11.8	232.5	292.1	3.3	6.3	272.6	.92	224.3	.78		
	R	11.3	15.0	5.0	17.0	14.2	25.3	5.5	12.3	52.8	.16	135.8	.52		
K	X	228.5	294.3	5.1	10.0	230.3	290.6	3.5	6.6	249.9	.84	215.4	.75		
	R	16.5	15.8	4.7	14.8	19.7	28.8	5.5	8.9	70.8	.24	103.1	.36		
L	X	228.2	293.6	5.3	10.8	230.7	292.0	3.6	6.8	256.5	.87	220.4	.76		
	R	21.4	23.3	6.5	20.6	18.0	18.2	4.7	11.4	50.4	.16	100.1	.33		
M	X	227.9	293.1	5.0	11.3	229.0	290.9	3.6	6.0	222.1	.76	191.6	.66		
	R	13.8	13.4	4.5	14.9	20.6	22.5	6.0	14.6	109.8	.36	169.4	.59		
N	X	229.2	292.6	5.0	9.8	230.3	290.5	3.5	6.5	215.1	.73	198.9	.69		
	R	11.4	16.8	4.5	5.6	26.9	22.2	5.2	12.1	82.0	.25	111.4	.38		
P	X	229.5	293.5	5.7	11.9	229.2	291.1	4.1	6.9	238.6	.81	213.4	.74		
	R	20.9	22.7	4.0	22.5	21.1	27.1	4.5	10.6	62.3	.24	104.1	.33		
S	X	227.3	291.6	5.5	11.6	229.3	290.8	4.0	7.8	234.1	.80	211.6	.73		
	R	17.3	14.3	4.7	17.6	14.9	28.2	5.5	13.6	94.5	.32	95.9	.32		
T	X	227.4	292.2	5.3	10.8	229.7	290.9	4.3	8.5	229.5	.78	215.1	.70		
	R	11.3	15.0	3.8	14.4	15.0	14.5	4.5	12.5	69.4	.24	129.3	.43		
V	X	227.0	292.4	5.2	10.5	228.6	289.3	4.0	7.7	219.3	.75	204.5	.71		
	R	11.3	17.4	3.0	8.0	17.0	32.1	6.0	13.8	52.3	.19	124.4	.39		
Avgs.	\bar{X}	230.6	295.3	5.1	10.6	231.7	292.2	3.5	6.6	244.1	.82	207.8	.72		
	\bar{R}	16.0	17.9	5.0	17.0	18.6	27.9	5.5	12.6	78.3	.26	118.1	.40		

TABLE VIII

STATISTICAL SUMMARY OF SMOOTH AND NOTCHED TENSILE TEST DATA FOR
AIR MELT-DEGAS-VACUUM ARC REMELT HEAT W-24342-V1
COMPUTED BY BILLET SECTION

Billet Section	Statistical Value	SPECIMEN TYPE											
		SMOOTH								NOTCHED			
		LONGITUDINAL				TRANSVERSE				LONG.		TRANS.	
		\bar{P}_{ty} ksi	P_{tu} ksi	\bar{s} E.	s R.A.	\bar{P}_{ty} ksi	P_{tu} ksi	\bar{s} E.	s R.A.	P_{tu} ksi	N/S RATIO	P_{tu} ksi	N/S RATIO
A	\bar{x} R	234.6 15.8	302.1 13.5	3.8 3.0	7.3 8.7	231.2 21.7	294.9 24.0	3.5 4.5	5.5 9.9	266.5 88.0	.88 .26	211.2 113.8	.72 .42
B	\bar{x} R	234.3 18.8	201.7 24.9	4.5 5.3	9.1 13.4	232.7 19.7	296.1 31.2	3.2 5.5	5.9 9.6	251.5 75.0	.83 .25	201.9 114.9	.69 .39
C	\bar{x} R	234.5 21.6	301.8 32.5	4.4 6.0	8.6 17.7	232.1 26.5	296.0 26.2	3.1 5.3	5.7 12.3	236.0 106.0	.78 .34	204.5 114.8	.69 .36
D	\bar{x} R	233.8 15.8	300.9 24.0	4.7 3.8	8.9 17.0	230.5 24.2	294.3 28.7	3.6 4.7	6.2 10.3	250.9 68.0	.84 .26	195.7 111.0	.66 .41
E	\bar{x} R	233.3 20.5	299.9 31.3	4.9 6.0	9.2 19.3	230.8 17.5	295.4 20.7	3.6 5.0	6.6 11.9	250.9 38.0	.84 .16	204.7 139.0	.70 .47
H	\bar{x} R	231.3 14.5	298.9 20.5	4.8 4.5	9.6 11.6	230.9 20.0	295.6 19.2	3.6 4.5	6.4 10.3	248.0 80.2	.83 .31	214.9 135.3	.73 .45
I	\bar{x} R	233.1 20.2	299.8 32.3	4.2 4.0	7.8 9.4	230.4 22.5	294.7 28.0	3.6 4.7	6.4 12.4	243.8 95.9	.82 .37	211.0 132.5	.72 .44
J	\bar{x} R	232.5 16.5	299.6 25.2	4.4 4.2	8.1 11.7	230.9 18.2	295.2 22.3	3.4 4.0	5.5 8.5	235.4 92.9	.79 .36	191.1 110.1	.65 .40
K	\bar{x} R	232.6 21.7	299.4 27.6	4.0 3.8	7.3 11.0	230.1 20.2	294.6 26.3	3.7 5.5	7.2 12.9	227.6 93.1	.76 .30	211.5 119.0	.72 .41
L	\bar{x} R	232.6 12.7	299.6 19.2	4.3 4.1	7.3 10.6	230.6 20.0	293.4 51.0	3.6 4.8	6.0 9.7	233.4 79.0	.78 .23	220.1 124.2	.76 .43
M	\bar{x} R	233.8 9.7	299.7 18.9	5.1 5.2	10.3 19.0	230.7 21.5	295.9 26.1	4.2 6.0	7.4 13.9	227.7 94.1	.78 .26	205.5 144.5	.70 .48
N	\bar{x} R	232.0 14.9	299.3 19.4	4.9 5.5	9.8 18.2	230.1 28.3	292.8 32.9	3.6 5.7	6.0 12.2	243.6 72.0	.81 .24	206.1 151.3	.71 .51
P	\bar{x} R	231.8 24.3	298.5 19.0	4.9 6.3	9.2 16.7	229.6 22.6	294.9 24.5	4.2 5.3	7.2 13.1	251.0 58.1	.84 .21	223.7 89.3	.76 .36
S	\bar{x} R	231.1 15.3	299.6 24.7	5.3 4.7	10.3 10.6	231.1 24.7	295.6 26.5	4.2 6.0	7.0 16.9	237.1 81.0	.79 .29	218.5 122.5	.74 .41
T	\bar{x} R	231.3 7.2	299.3 11.7	5.1 4.5	10.9 17.6	228.1 19.8	291.9 20.7	4.4 7.2	8.2 14.3	239.9 89.5	.80 .31	214.2 144.8	.74 .50
V	\bar{x} R	229.8 18.8	297.1 33.1	6.2 6.0	13.9 18.5	228.3 16.6	291.2 36.0	3.7 5.8	7.0 12.2	240.2 101.7	.80 .38	203.7 114.0	.70 .40
avg.	\bar{x} R	232.6 16.8	299.8 23.6	4.7 4.8	9.2 14.4	230.5 21.5	294.5 27.8	3.7 5.3	6.5 11.9	242.6 82.0	.81 .28	208.6 123.8	.71 .43

TABLE IX

STATISTICAL SUMMARY OF SMOOTH AND NOTCHED TENSILE TEST DATA FOR
AIR MELT-DOUBLE VACUUM ARC REMELT HEAT W-24341-2
COMPUTED BY BILLET SECTION

Billet Section	Statistical Value	SPECIMEN TYPE												
		SMOOTH						NOTCHED						
		LONGITUDINAL			TRANSVERSE			LONG.			TRANS.			
		F _{ty} ksi	F _{tu} ksi	% E.	% R.A.	F _{ty} ksi	F _{tu} ksi	% E.	% R.A.	F _{tu} ksi	N/S RATIO	F _{tu} ksi	N/S RATIO	
A	X	228.5	300.9	3.8	6.9	229.2	291.3	2.7	5.3	251.1	.86	222.4	.79	
	R	16.8	15.0	4.0	11.1	22.0	24.8	5.5	13.4	64.3	.35	103.4	.58	
B	X	226.3	297.0	4.5	8.6	228.4	293.5	2.7	4.7	237.0	.79	204.9	.71	
	R	17.0	14.3	4.2	8.8	20.1	25.5	6.0	8.7	88.6	.28	121.1	.43	
C	X	228.5	299.8	4.1	7.8	227.6	283.4	2.2	3.9	247.8	.83	205.3	.71	
	R	18.3	21.2	4.5	12.3	36.6	58.7	6.2	7.4	90.5	.30	102.3	.29	
D	X	226.8	297.3	3.3	6.2	226.5	285.9	2.2	4.1	244.8	.83	223.5	.79	
	R	14.2	19.4	3.7	8.8	25.1	40.6	4.0	7.5	64.5	.22	131.0	.57	
E	X	230.6	304.1	4.5	8.1	229.9	293.3	2.4	3.9	248.1	.82	218.1	.76	
	R	20.8	17.5	4.7	13.8	22.0	25.1	4.5	8.5	58.2	.20	118.0	.36	
H	X	230.8	302.8	3.6	6.6	230.4	290.8	1.9	3.6	234.8	.78	192.9	.66	
	R	20.1	14.2	6.5	9.1	16.0	35.7	3.0	4.7	103.5	.16	179.7	.61	
I	X	230.0	300.4	3.3	6.3	229.9	292.2	1.9	3.6	259.0	.86	206.8	.71	
	R	16.4	25.2	6.0	15.3	30.6	44.0	4.5	6.2	82.4	.26	147.8	.50	
J	X	222.7	291.0	3.4	6.7	228.0	287.7	1.8	3.7	237.3	.81	218.1	.76	
	R	19.0	21.2	5.0	9.6	23.6	45.7	2.7	5.5	86.9	.24	118.0	.36	
K	X	227.6	292.7	3.1	5.3	227.7	288.3	1.7	3.6	256.8	.88	230.3	.79	
	R	21.3	36.3	7.0	8.8	18.8	33.2	3.0	5.7	64.4	.28	85.9	.28	
L	X	228.8	301.8	4.5	8.1	230.8	290.7	1.8	3.3	255.0	.85	220.3	.75	
	R	17.6	26.7	5.5	10.5	23.8	28.4	2.7	3.7	70.2	.26	128.6	.45	
M	X	230.0	300.6	4.6	8.6	230.2	292.2	1.9	3.9	247.4	.83	193.9	.67	
	R	9.0	18.9	5.5	16.1	21.8	32.4	3.0	7.2	71.0	.25	161.9	.54	
N	X	229.0	300.7	3.9	8.0	228.8	293.2	1.9	3.5	239.7	.79	207.4	.71	
	R	15.3	15.7	5.5	16.6	28.3	31.0	2.7	6.3	123.0	.41	145.7	.51	
P	X	228.7	303.6	5.1	9.0	230.8	290.8	2.1	3.9	257.9	.85	235.2	.81	
	R	16.0	18.1	4.8	15.8	17.0	35.0	3.2	8.9	69.0	.21	92.9	.29	
S	X	229.7	301.6	3.8	6.3	230.2	292.8	2.3	4.2	268.3	.89	196.3	.68	
	R	12.3	21.8	5.0	11.8	18.0	55.6	4.1	6.6	39.4	.14	91.5	.26	
T	X	232.8	306.5	5.0	10.5	232.7	297.2	2.2	3.7	248.9	.82	204.9	.69	
	R	21.3	18.1	5.7	20.1	27.5	28.8	5.5	13.0	53.5	.18	155.1	.54	
V	X	233.4	308.4	5.4	11.7	235.8	304.4	2.7	4.7	256.3	.82	238.0	.79	
	R	24.4	21.2	5.7	18.3	19.5	27.8	4.8	9.2	69.2	.26	80.6	.33	
Aveg.		X	229.0	300.6	4.1	7.8	229.8	291.7	2.2	4.0	249.4	.83	213.6	.74
		R	17.5	20.3	5.2	12.9	23.2	35.8	4.1	7.7	74.9	.25	120.7	.43

TABLE X
STATISTICAL SUMMARY OF SMOOTH AND NOTCHED TENSILE TEST DATA FOR
VACUUM INDUCTION MELT-VACUUM ARC REMELT HEAT W-24403-1
COMPUTED BY BILLET SECTION

Billet Section Statistical Value	SPECIMEN TYPE													
	SMOOTH								NOTCHED					
	LONGITUDINAL				TRANSVERSE				LONG.			TRANS.		
	F _{ty} ksi	F _{tu} ksi	% E.	% R.A.	F _{ty} ksi	F _{tu} ksi	% E.	% R.A.	F _{tu} ksi	N/S ratio	F _{tu} ksi	N/S ratio		
A	X R	230.5 15.0	297.3 19.1	6.7 4.5	15.6 15.4	230.7 11.6	296.1 16.0	6.3 6.5	13.8 23.1	293.4 94.5	.99 .32	272.4 87.5	.92 .31	
B	X R	229.3 8.5	295.4 24.9	6.6 4.0	15.2 12.5	230.8 10.9	297.1 31.3	6.2 5.0	13.4 21.1	268.7 89.5	.91 .25	237.1 69.7	.81 .23	
C	X R	230.6 17.1	296.5 26.3	6.6 5.3	14.6 20.3	230.1 18.9	295.4 13.8	6.0 5.3	12.2 16.4	283.7 51.8	.96 .14	228.0 84.1	.77 .33	
D	X R	231.2 13.1	296.9 24.1	6.3 4.0	13.6 16.5	229.5 16.7	295.3 19.4	6.0 4.8	12.5 15.8	270.6 62.4	.91 .32	218.4 93.0	.74 .32	
E	X R	229.8 12.8	297.3 22.3	5.7 3.8	13.1 15.8	229.7 14.2	294.8 17.9	5.4 6.0	11.5 17.8	254.1 78.8	.86 .37	237.5 95.0	.81 .31	
H	X R	228.8 12.3	296.8 23.8	5.9 5.0	13.5 8.5	229.4 14.3	292.3 47.2	5.4 7.0	11.6 20.2	264.2 93.6	.88 .27	229.8 147.8	.79 .51	
I	X R	231.1 23.2	297.3 16.5	5.6 3.5	11.1 13.3	229.5 17.6	294.2 26.8	5.6 6.2	11.8 17.1	253.9 73.8	.85 .20	247.8 49.7	.84 .18	
J	X R	230.3 14.6	296.7 18.0	6.4 3.5	13.7 8.8	230.1 11.5	295.1 15.0	6.0 5.0	12.2 14.5	253.3 91.7	.85 .28	224.9 85.5	.76 .31	
K	X R	229.4 10.0	293.0 17.2	6.3 5.3	14.5 14.5	228.4 12.3	293.8 19.3	5.8 6.8	12.0 17.2	273.9 77.3	.94 .24	229.9 112.8	.78 .37	
L	X R	227.7 9.3	293.4 24.9	5.8 3.5	12.3 11.7	228.3 18.1	294.1 31.4	6.3 5.5	13.6 17.8	252.3 65.1	.86 .22	239.8 128.4	.81 .44	
M	X R	227.9 8.6	291.8 14.2	6.4 4.5	13.6 17.1	228.4 12.9	293.0 13.0	6.1 5.5	13.3 16.5	248.8 82.5	.86 .28	237.1 71.8	.81 .22	
N	X R	228.4 11.4	293.0 14.4	6.2 2.5	14.0 9.9	227.9 13.4	291.2 24.6	5.9 6.5	12.7 17.2	253.7 99.7	.86 .25	226.1 95.9	.77 .32	
P	X R	227.6 10.2	292.6 10.4	6.1 5.5	13.0 12.2	227.5 16.7	291.6 12.7	6.0 5.5	12.9 14.8	261.0 67.7	.89 .16	239.7 84.5	.82 .30	
S	X R	227.8 12.1	293.4 12.5	6.1 2.8	13.2 8.9	227.4 16.8	292.2 14.4	6.5 4.5	14.4 14.8	244.5 89.6	.84 .29	226.5 102.8	.78 .32	
T	X R	227.4 12.0	291.9 10.9	6.0 2.7	12.8 10.3	226.4 16.3	290.9 19.2	6.3 4.5	13.5 12.3	255.8 96.6	.88 .36	233.1 101.9	.80 .34	
V	X R	229.5 10.8	294.2 11.2	6.5 3.0	14.3 16.5	228.8 13.6	292.7 5.1	6.7 5.0	15.7 16.5	240.8 43.9	.82 .17	249.1 56.3	.85 .19	
AVGS	X R	229.2 12.6	294.9 18.2	6.2 4.0	13.6 13.3	229.0 14.7	293.8 20.4	6.0 5.6	12.9 17.1	260.8 78.7	.89 .26	236.1 91.7	.80 .31	

FIGURE 20

MELT PROCESS COMPARISON -- MEAN AND STANDARD DEVIATION FOR ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VALUES BASED UPON SMOOTH TENSILE TEST RESULTS PLOTTED FOR TRANSVERSE, LONGITUDINAL, AND COMBINED DIRECTIONS

FIGURE 21

MELT PROCESS COMPARISON -- MEAN AND STANDARD DEVIATION FOR ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VALUES BASED UPON SMOOTH TRANSVERSE TENSILE TEST RESULTS PLOTTED FOR SURFACE, MID-RADIUS, AND CENTER POSITIONS

FIGURE 22

MELT PROCESS COMPARISON -- MEAN AND STANDARD DEVIATION FOR ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VALUES BASED UPON SMOOTH LONGITUDINAL TENSILE TEST RESULTS PLOTTED FOR SURFACE, MID-RADIUS, AND CENTER POSITIONS

FIGURE 23

MELT PROCESS COMPARISON -- MEAN AND STANDARD DEVIATION FOR NOTCH STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VALUES BASED UPON TENSILE TEST RESULTS PLOTTED FOR TRANSVERSE, LONGITUDINAL, AND COMBINED DIRECTIONS

FIGURE 24

MELT PROCESS COMPARISON -- MEAN AND STANDARD DEVIATION FOR NOTCH STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VALUES BASED UPON TRANSVERSE TENSILE TEST RESULTS PLOTTED FOR SURFACE, MID-RADIUS, AND CENTER POSITIONS

FIGURE 25

MELT PROCESS COMPARISON -- MEAN AND STANDARD DEVIATION FOR NOTCH STRENGTH AND NOTCH/SMOOTH STRENGTH RATIO -- VALUES BASED UPON LONGITUDINAL TENSILE TEST RESULTS PLOTTED FOR SURFACE, MID-RADIUS, AND CENTER POSITIONS

to highlight the relationships between process variation and property data.

Figure 26 provides an additional measure of comparison. The \bar{X} and σ values for smooth and notched specimen strength and ductility from each process variation are translated into a coefficient of variation ($\frac{\sigma}{\bar{X}}$). This approach combines values for mean and standard deviation into a single value for a more effective comparison. The preferred condition is one with a low coefficient of variation, since a low value generally implies a relatively low standard deviation or spread in the variation of the property value under investigation.

Comparing overall smooth and notched ultimate strength distributions included in Appendix V for each of the four melting process variations, it is noted that all figures exhibit reasonably normal-appearing histogram plots with the exception of that for notched air melt-double VAR data, Figure 5-46, which tends to skew toward the lower strength values. Similarly, the overall distributions for the notched/smooth ultimate strength ratio exhibit normal-appearing histograms with the exception, again, of that for the air melt-double VAR data.

A comparison of per cent reduction in area on the same basis shows that only the vacuum induction melt-VAR figures tend to display normal-appearing histogram plots, while those for the remaining three process variations all exhibit a skewness toward the lower end of the range.

Further similarities or differences in the distributions of test

FIGURE 26

MELT PROCESS COMPARISON BY MEANS OF
COEFFICIENT OF VARIATION ($\frac{S}{X}$) PLOTTED FOR ULTIMATE STRENGTH,
PER CENT REDUCTION IN AREA, NOTCH STRENGTH, AND
NOTCH/SMOOTH STRENGTH RATIO

data statistically evaluated may be observed by viewing appropriate histogram plots and calculated statistical criteria presented in Appendix V figures.

Evaluation of the 12 control charts in Appendix VI which depict the mean and range values for tensile properties in each section of the air melt-VAR billet disclosed the following information:

1. Smooth transverse \bar{X} values for yield strength, Figure 6-1, and ultimate strength, Figure 6-2, are out of control at the top portion of the billet.
2. Smooth longitudinal \bar{X} values for yield strength, Figure 6-5, and ultimate strength, Figure 6-6, are also out of control at the top portion of the billet.
3. A definite downward trend in \bar{X} values for both transverse and longitudinal yield and ultimate strength from top to bottom of the billet is noted in Figures 6-1, 6-2, 6-5, and 6-6.
4. Transverse elongation, Figure 6-3, and reduction in area, Figure 6-4, indicate a definite upward trend in \bar{X} values even though all are within control over the full length of the billet.
5. Range values for all air melt-VAR conditions are essentially within control limits. Two exceptions are a single billet section for smooth transverse ultimate strength, Figure 6-2, and smooth longitudinal yield strength, Figure 6-5, in both

of which the upper control limit is slightly exceeded.

6. Further evidence of a significant difference between top and bottom portions of the billet is demonstrated in Figures 6-1, 6-5, 6-6, 6-11, and 6-12 wherein eight or more consecutive billet section \bar{X} values may be observed on the same side of the overall average. The probability of this occurring due to chance alone is 0.0039, or approximately four times in a thousand. The occurrence, therefore, strongly suggests a significant change in melt process control.

Evaluation of the 12 Appendix VI control charts depicting mean and range values in each section of the air melt-degas-VAR billet disclosed the following:

1. Longitudinal per cent elongation, Figure 6-19, and reduction in area, Figure 6-20, each indicate an out-of-control \bar{X} value above the upper control limit at the extreme bottom billet section, while corresponding yield strength, Figure 6-17, and ultimate strength, Figure 6-18, although in control, exhibit the lowest \bar{X} values for the entire billet.
2. A tendency to develop higher than average transverse and longitudinal yield and ultimate strength \bar{X} values at the top of the billet and lower than average values at the bottom of the billet may be observed in Figures 6-13, 6-14, 6-17, and 6-18. An inverse tendency is indicated for transverse and longitudinal per cent elongation and reduction in area in Figures 6-15, 6-16, 6-19, and 6-20.

3. Range values for all conditions plotted are within their respective control limits with but a single exception, a mid-length billet section value for smooth transverse ultimate strength as shown in Figure 6-14.
4. The recurrence of eight or more consecutive billet section averages on the same side of the \bar{X} chart mean for transverse per cent elongation, Figure 6-15, and longitudinal ultimate strength, Figure 6-18, indicates a significant difference between top and bottom values of the billet.

Evaluation of the 12 control charts in Appendix VI for the air melt-double VAR billet indicated the following information:

1. All smooth transverse properties except per cent elongation, Figure 6-27, and all smooth longitudinal properties exhibited out-of-control values above or below (in some instances both above and below) the billet average in various sections along the billet length.
2. Out-of-control range values exceed the upper control limits for all smooth transverse properties with other values closely approaching this limit. Only one value for smooth longitudinal properties, Figure 6-30, exceeds an upper control limit.
3. All notch properties for both longitudinal and transverse directions are within control limits on both \bar{X} and R charts.
4. The lowest \bar{X} values for all smooth longitudinal properties

occur at the middle of the billet length.

5. The significant difference between the center of the billet and the top and bottom ends is highlighted by the X charts for smooth transverse per cent elongation, Figure 6-27, and per cent reduction in area, Figure 6-28. Eight or more consecutive billet section averages fall below the billet average.

Evaluation of the final 12 control charts for vacuum induction melt-VAR billet provided the following information:

1. All of the smooth transverse X charts, Figures 6-37, 6-38, 6-40, 6-45, and 6-46, with the exception of per cent elongation, Figure 6-39, display one value out of control at either the top or bottom of the billet.
2. A definite downward trend in X values for smooth transverse yield strength, Figure 6-37, ultimate strength, Figure 6-38, smooth longitudinal yield strength, Figure 6-41, and ultimate strength, Figure 6-42, as well as notched longitudinal ultimate strength, Figure 6-47, is observable from top to bottom of the billet.
3. Range values for all R charts are within control limits, except for one smooth transverse ultimate strength value, Figure 6-38, and one smooth longitudinal yield strength value, Figure 6-41. Both indicate an excessively wide range at a billet location approximately one-third of the billet length from the top.

4. Significant differences from top to bottom of the billet are evident in the X charts for smooth transverse yield strength, Figure 6-37, smooth longitudinal ultimate strength, Figure 6-42, and in the R chart for smooth longitudinal yield strength, Figure 6-41. All three charts exhibit eight consecutive values on the same side of their respective overall average lines.

Evaluation of the statistical data presented in Tables III through VI and subsequently plotted in Figures 20 through 26 for transverse and longitudinal smooth and notched tensile specimens from surface, mid-radius, and center positions in each billet disclosed the following information:

1. Considering the average ultimate strength of all smooth specimens from each billet, Figure 20, considerable uniformity is evidenced for all melting techniques. Average smooth strength ranged from a low of 293.3 Ksi for the air melt-VAR billet to a high of 296.4 Ksi for the air melt-degas-VAR billet.
2. Average longitudinal ultimate strength, Figure 20, exceeded average transverse ultimate strength by only 0.4 per cent in vacuum induction melt-VAR material and by 3.1 per cent in air melt-double VAR material.
3. The mid-radius position yielded higher average ultimate strengths than center and surface locations with the exception of longitudinal specimens from the air melt-VAR

billet as can be seen by comparing Figures 21 and 22.

Mid-radius longitudinal specimens from the air melt-VAR billet averaged lower than comparable surface or center specimens. The highest average longitudinal ultimate strength for the air melt-VAR heat, 299.7 ksi, was found at the surface location. The value for the mid-radius position is 293.2 ksi. In the transverse direction, mid-radius and surface averages in the air melt-VAR billet were essentially the same, 293.3 and 292.2 ksi, respectively.

4. The coefficient of variation ($\frac{\sigma}{X}$) for smooth ultimate strength shown in Figure 26 ranges from .018 for vacuum induction melt-VAR material to .042 for the air melt-double VAR billet. Since the coefficient is a measure of variation per unit measured, the uniformity of the heat treat response of the vacuum induction melt-VAR material is shown to be markedly superior to that demonstrated by the other three materials.
5. As shown in Figure 20, the ductility of vacuum induction melt-VAR material (as measured by per cent reduction in area) is significantly superior to that provided by the other three process variations. The average value for all smooth specimens from each heat is as follows:

	% R.A.
Vacuum induction melt-VAR	13.2
Air melt-VAR	8.1
Air melt-vacuum degas-VAR	7.5
Air melt-double VAR	5.1

Thus, the average ductility of the vacuum induction melt-VAR billet is 63 per cent higher than the air melt-VAR billet, 76 per cent higher than the vacuum degassed billet, and 144 per cent higher than the double VAR-processed air melt heat.

6. Longitudinal ductility (in per cent reduction in area) exceeded transverse ductility, as shown in Figure 20, by only 5.4 per cent in the vacuum induction melt-VAR material, but the degree of directionality increases to 110 per cent for the double VAR-melted billet.
7. The surface of the billets provided the highest reduction in area values in both longitudinal and transverse directions as indicated in Figures 22 and 21. All mid-radius averages exceeded comparable center-of-the-billet values in both directions.
8. The coefficient of variation, Figure 26, for per cent reduction in area, ranged from .35 for vacuum induction melt-VAR material to .65 for the air melt-VAR material. The reduction in area for the vacuum induction melt-VAR billet is high compared to the other melt practices. The low coefficient of variation value indicates considerably less variation in ductility than shown by the other three melt practices.
9. Based upon the average notch tensile strength for all notched specimens from each billet, notch tensile strength

in the vacuum induction melt-VAR heat is 7.1 per cent higher than that in the air melt-double VAR heat, 9.4 per cent higher than that in vacuum degassed-VAR heat, and 9.7 per cent higher than that in the air melt-VAR heat, as shown in Figure 23.

10. Figure 23 also shows that longitudinal notch strength ranges from 11.7 per cent to 17.5 per cent higher than transverse notch strength for vacuum induction melt-VAR and air melt-degassed-VAR materials, respectively.
11. Figure 24 and Figure 25 evidence the fact that notch tensile strength is substantially lower at the center of the billet than at mid-radius or surface locations. For transverse specimens, the surface position provides the highest notch strength averages ranging from 11.8 to 36.9 per cent higher than corresponding center averages in vacuum induction melt-VAR and air melt-degas-VAR materials, respectively. The surface position also provides the highest notch tensile strengths in longitudinal specimens.
12. The coefficient of variation for notch tensile strength, Figure 26, indicates that the air melt-vacuum arc remelt process variations (including the vacuum degassed and the double VAR-processed billets) are essentially equal in regard to degree of variation. On the other hand, the vacuum induction melt-VAR billet, with a coefficient of variation 34.5 per cent lower than the air melt-VAR billet and 38

per cent lower than the vacuum degassed-VAR material, provides considerably greater uniformity in notch strength.

13. As displayed in Figure 23, the notch/smooth strength ratio for the vacuum induction melt-VAR billet is 7.8 per cent higher than that for the air melt-double VAR billet, 9.3 per cent higher than that for the air melt-VAR billet, and 10.7 per cent higher than the vacuum degas-VAR billet overall N/S ratio.
14. For all four process variations the N/S ratio for the longitudinal direction is higher than the transverse N/S ratio. The difference is least in the vacuum induction melt-VAR billet (11.2 per cent) and greatest in the vacuum degas-VAR billet (14.1 per cent), on the basis of values plotted in Figure 23.
15. The N/S ratio is appreciably lower at the center of the billets than at mid-radius and surface. Surface N/S ratios for the transverse direction range from 10.5 per cent (induction melt-VAR) to 31.8 per cent (air melt-VAR) higher than corresponding averages at the center of the billet, as plotted in Figure 24. Surface N/S ratios in the longitudinal direction (Figure 25) range from 10.2 to 24 per cent higher than corresponding center values for the air melt-double VAR and the vacuum degas-VAR billets, respectively. In the vacuum induction melt-VAR billet, the surface N/S ratio is 11.8 per cent higher than the center N/S ratio.

16. The coefficient of variation for the N/S ratio shows that air melt-VAR, air melt-degas-VAR, and air melt-double VAR billets are essentially equal with respect to the degree of variation in the N/S ratio. The coefficient of variation for vacuum induction melt-VAR material is 22.8 per cent lower than the coefficient of variation for air melt-VAR material and 27.5 per cent lower than coefficient of variation for air melt-double VAR material.

V. CONCLUSIONS

Based upon overall heat averages for each of the four vacuum arc remelt process variations investigated, the following conclusions have been derived from statistical and metallurgical evaluation of smooth and notch tensile test data obtained from 3712 specimens processed and tested under rigidly-controlled conditions:

1. Of the four processes evaluated, the vacuum induction melt-VAR practice produced the highest quality product from the standpoint of maximum ductility in smooth specimens and least sensitivity to a notched condition, when heat treated for a 300 KSI strength level.
2. The air melt-VAR material ranked second in overall property response and uniformity, although at a markedly lower level than the vacuum induction melt-VAR material.
3. The air melt-vacuum degas-VAR and air melt-double VAR processed billets of H-11 steel ranked third and fourth in that order; however, the level of quality for these processes is not appreciably lower than air melt-VAR processed material in most comparisons.
4. The vacuum induction melt-VAR material greatly reduces the influence of directionality on smooth and notch tensile properties. Transverse ductility values closely approach those obtained from longitudinal specimens, thereby achieving one of the major aims of the program (to be verified subsequently for actual parts forged in closed dies during Phase IV).

The following conclusions relating to the influence of test direction and cross-sectional location, particularly with respect to the resultant degree of overall property uniformity obtained, were derived from the statistical analysis of ultimate strength values developed from tensile tests of smooth specimens:

1. Considering the average ultimate strength of all smooth specimens from each billet, considerable uniformity is evidenced for all melting techniques. Average smooth strength ranged from a low of 293.3 Ksi for the air melt-VAR billet to a high of 296.4 Ksi for the air melt-degas-VAR billet.
2. Average longitudinal ultimate strength exceeded average transverse ultimate strength by only 0.4 per cent in vacuum induction melt-VAR material and by 3.1 per cent in air melt-double VAR material.
3. The mid-radius location in billet cross section consistently yielded higher ultimate strength averages than center and surface locations with the exception of the longitudinal specimen average for air melt-VAR material.
4. The comparison of coefficient of variation values for ultimate strength indicate that the highest degree of heat treat response uniformity was attained in the vacuum induction melt-VAR material.

The following conclusions relating to test direction, cross-

sectional location, and overall property uniformity were derived from the statistical analysis of smooth specimen ductility as measured by per cent reduction of area:

1. The ductility of vacuum induction melt-VAR material (as measured by per cent reduction of area at the 300 ksi strength level) is significantly superior to that provided by the other three process variations. The average ductility of the vacuum induction melt-VAR billet is 63 per cent higher than the air melt-VAR billet, 76 per cent higher than the vacuum degassed-VAR billet, and 144 per cent higher than the double VAR-processed air melt heat.
2. Longitudinal ductility (in per cent reduction in area) exceeded transverse ductility by only 5.4 per cent in the vacuum induction melt-VAR material, but the degree of directionality increases to 110 per cent for the double VAR-melted billet.
3. Surface specimens consistently provided the highest reduction in area values in both longitudinal and transverse directions. Mid-radius averages exceeded comparable center-of-the-billet values in both directions.
4. The coefficient of variation for per cent reduction in area ranged from .35 for vacuum induction melt-VAR material to .65 for the air melt-VAR material. The low value for the vacuum induction melt-VAR billet indicates considerably less variation in ductility than shown by the other three melt practices.

The following conclusions were derived from the evaluation of notch tensile strength averages for each melt process as related to test direction, cross-sectional location, and property uniformity:

1. Based upon the average notch tensile strength of all notched specimens from each billet, notch tensile strength in the vacuum induction melt-VAR heat is 7.1 per cent higher than in the air melt-double VAR heat, 9.4 per cent higher than in the vacuum degassed-VAR heat, and 9.7 per cent higher than in the air melt-VAR heat.
2. Longitudinal notch strength ranges from 11.7 per cent to 17.5 per cent higher than transverse notch strength (vacuum induction melt-VAR and air melt-degassed-VAR materials, respectively).
3. Notch tensile strength is substantially lower at the center of each billet than at mid-radius or surface locations. For transverse specimens, the surface position provides the highest notch strength averages ranging from 11.8 to 36.9 per cent higher than corresponding center averages (vacuum induction melt-VAR and air melt-degas-VAR materials, respectively). The surface position also provides the highest notch tensile strengths in longitudinal specimens.
4. The coefficient of variation for notch tensile strength indicates that the three air melt-vacuum arc remelt process variations are essentially equal in regard to degree of

variation. On the other hand, the vacuum induction melt-VAR billet, with a coefficient of variation 34.5 per cent lower than the air melt-VAR billet and 38 per cent lower than the vacuum degassed-VAR material, provides considerably greater uniformity in notch strength than the other three processes.

Comparison of the notch/smooth ultimate strength ratio for each melt process as related to test direction, cross-sectional location, and property uniformity established the following conclusions:

1. The notch/smooth strength ratio for the vacuum induction melt-VAR billet is 7.8 per cent higher than for the air melt-double VAR billet, 9.3 per cent higher than for the air melt-VAR billet, and 10.7 per cent higher than the vacuum degas-VAR billet overall N/S ratio. The highest average N/S ratio obtained was .94 for longitudinal surface specimens in vacuum induction-vacuum arc remelt material.
2. For all four process variations, the N/S ratio for the longitudinal direction is higher than the transverse N/S ratio. The difference is least in the vacuum induction melt-VAR billet (11.2 per cent) and greatest in the vacuum degas-VAR billet (14.1 per cent).
3. The N/S ratio is appreciably lower at the center of the billets than at mid-radius or surface. Surface N/S ratios for the transverse direction range from 10.5 per cent (induction melt-VAR) to 31.8 per cent (air melt-VAR) higher

than corresponding averages at the center of the billet. Surface N/S ratios in the longitudinal direction range from 10.2 to 24 per cent higher than corresponding center values for the air melt-double VAR and the vacuum degas-VAR billets, respectively. In the vacuum induction melt-VAR billet, the surface N/S ratio is 11.8 per cent higher than the center N/S ratio.

4. The coefficient of variation for the N/S ratio shows that air melt-VAR, air melt-degas-VAR, and air melt-double VAR billets are essentially equal with respect to the degree of variation in average N/S ratio. The coefficient of variation for vacuum induction melt-VAR material is 22.8 per cent lower than the coefficient of variation for air melt-VAR material and 27.5 per cent lower than coefficient of variation for air melt-double VAR material.

The following conclusions were derived from an evaluation of the frequency distributions (histogram plots) contained in Appendix V:

1. Overall smooth and notched strength distributions for each of the four melting processes developed reasonably normal-appearing histogram plots with the exception of that for air melt-double VAR, which was skewed to the left.
2. Similarly, the overall distributions for the notched/smooth ultimate strength ratio developed normal-appearing histograms with the exception, again, of that for air melt-double VAR material which was skewed to the left.

3. A comparison of the distributions developed for the ductility data of each melting process showed that only the vacuum induction melt-VAR histogram developed a normal-appearing plot, while those for the remaining three processes were all skewed to the left.

The following conclusions were derived from interpretation of Appendix VI control charts depicting mean and range values for tensile properties at each billet section:

1. In all but a few instances, out-of-control mean values occurred in data developed from the top and bottom portions of the billets, while range values, as a rule, remained within three-sigma control limits.
2. Strength values generally tended to decrease from top to bottom end of the billet while ductility generally assumed the inverse tendency in keeping with the normal strength-ductility relationship.
3. Repeated instances in which eight or more consecutive points fall on the same side of the billet mean strongly indicate the introduction of a significant change in the manufacturing process variables, since the probability of this occurring by chance alone is 0.0039, or only four times in a thousand.

The following conclusions were derived from a comparison of melt process cost versus product uniformity in terms of the coefficient of variation for smooth specimen ultimate strength and for per cent reduction in area:

1. Generally, as quality is improved cost increases.
2. The air melt-double VAR processed-billet provides an obvious exception to the cost-quality relationship demonstrated by the other three process variations.
3. The air melt-double VAR material exhibits a quality level lower than that of either air melt-VAR or air melt-vacuum degas-VAR material, although the cost is approximately twice that of the latter two processes.
4. A substantial improvement in quality (decrease in coefficient of variation) for a relatively small increase in cost is indicated by comparison of the values for the air melt-VAR process and the conventional air melt process (derived from Phase II data).
5. The vacuum induction melt-VAR process delivers the highest quality product at the highest cost.

Since the coefficient of variation ($\frac{\sigma}{X}$) value incorporates the average property value with its corresponding standard deviation, the coefficient was judged to be an acceptable measure of both uniformity and quality and was plotted against the per-pound cost of each of the four differently-processed vacuum arc remelt

billets and the conventionally-air melted Phase II material. Thus, the direct relationship between material cost and material quality as measured by tensile strength and ductility could be graphically portrayed. Process costs shown in Figure 27 are those incurred by the Contractor. The purchase of larger quantities of material (3500-pound billets were ordered in Phase III) should result in somewhat lower process costs.

FIGURE 27

COEFFICIENT OF VARIATION FOR STRENGTH AND
DUCTILITY VERSUS MELT PROCESS COST

VI. RECOMMENDATIONS

1. Continuation of the program as outlined for Phase IV in Supplemental Agreement No. 1 dated October 19, 1960 is strongly recommended. The demonstrated usefulness of data and statistical techniques for evaluating voluminous quantities of metallurgical data developed under Contract AF33-(600)-38767 make it highly desirable to verify and evaluate the information developed to date in closed-die, aircraft-quality, production forgings of high-strength steel. Phase IV has been pre-planned to effectively utilize the information developed in the first three phases in order to achieve the program aim of reduced weight and increased functional effectiveness in forged aerospace components.
2. The use of vacuum induction melt-vacuum arc remelt processed high-strength steel is recommended in instances where design considerations demand maximum ductility and uniformity to the extent that such requirements outweigh economic considerations imposed by the cost of material.

APPENDIX I

**TENSILE PROPERTIES OF AIR MELT-VACUUM ARC
REMELT H-11 STEEL (HEAT NO. W-24341-1)**

SECTION 1

TRANSVERSE TENSILE PROPERTIES OF
AIR MELT-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24341-1)

**TRANSVERSE TENSILE PROPERTIES
OF AIR MELT-VACUUM ARC REMELT
H-11 STEEL HEAT NO. W 24341-1**

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD, STR, KSI .2% OFF	ULT. STR KSI	% ELONG	% R.A.	GWH
A	02 4	S	235.3	301.3	3.5	7.3	555
A	03 4	S	249.0	313.8	3.0	6.2	555
A	04 4	S	249.0	299.9	2.5	3.6	555
A	06 4	S	237.5	301.3	3.5	7.3	555
A	07 4	S	232.3	295.0	5.5	10.0	555
A	08 4	S	240.7	299.5	4.5	10.1	555
A	09 4	S	232.8	285.2	6.0	10.4	555
A	10 4	S	228.9	289.2	4.0	6.6	555
A	11 4	S	229.8	290.7	2.5	5.1	555
A	22 4	M	249.0	302.4	2.0	5.1	555
A	23 4	M					555
A	24 4	M	238.5	301.3	2.2	2.7	545
A	25 4	M	243.3	314.8	2.5	5.0	555
A	26 4	M	234.7	285.7	1.5	2.0	555
A	29 4	M	235.0	305.8	2.5	4.4	555
A	30 4	M	244.5	305.0	1.0	2.3	555
A	31 4	M	244.6	299.5	1.5	4.7	555
A	32 4	M	244.1	308.1	3.5	4.0	532
A	33 4	M	232.0	290.0	2.0	5.0	555
A	34 4	M	245.1	311.0	3.5	6.7	555
A	35 4	M	229.8	289.0	2.3	4.7	555
A	36 4	M	229.5	295.0	3.0	5.4	555
A	37 4	M	233.1	294.1	2.5	3.6	555
A	61 4	C C					555
A	63 4	C	232.0	283.8	2.0	1.1	555
B	02 4	S	234.7	293.2	6.0	11.9	555
B	03 4	S	233.6	290.0	2.5	3.6	555
B	04 4	S	237.0	299.0	5.0	6.6	555
B	06 4	S	237.6	303.5	5.0	7.4	555
B	07 4	S	228.0	292.5	4.0	6.2	555
B	08 4	S	241.5	300.6	4.5	9.0	555
B	09 4	S	228.9	284.8	3.0	5.6	555
B	10 4	S	226.8	260.0	.8	2.3	555
B	11 4	S	235.8	290.0	2.0	3.9	555
B	22 4	M	239.1	298.9	4.0	7.6	555
B	23 4	M	241.2	303.0	1.5	3.1	555
B	24 4	M	237.0	271.3	1.0	2.7	545
B	25 4	M	243.9	302.9	1.5	4.4	555
B	28 4	M	231.0	292.5	2.5	3.1	555
B	29 4	M	242.3	304.5	1.5	2.4	555
B	30 4	M	237.0	298.8	2.0	3.9	555
B	31 4	M					555
B	32 4	M	238.0	296.9	1.5	1.2	532
B	33 4	M	230.5	288.5	2.0	3.1	555
B	34 4	M	240.0	302.6	3.5	6.2	555
B	35 4	M	237.0	264.8	.5	1.6	555
B	36 4	M	231.1	292.9	4.0	6.9	555
B	37 4	M	232.8	300.9	3.0	2.8	555
B	61 4	C C	233.0	291.9	2.0	3.1	555
B	63 4	C	231.0	284.5	1.5	2.7	555
C	02 4	S	234.1	291.9	4.0	15.3	555
C	03 4	S	237.5	276.8	.4	5.8	555
C	04 4	S	233.5	292.0	3.0	3.9	555
C	06 4	S	234.1	294.4	2.5	3.2	555
C	07 4	S	227.8	287.5	5.5	9.6	555
C	08 4	S	241.5	298.2	4.5	7.4	555
C	09 4	S	232.6	289.0	4.0	6.3	555
C	10 4	S	233.2	294.9	3.5	9.9	555
C	11 4	S	234.3	300.0	7.0	14.1	555
C	22 4	M	240.1	292.8	2.0	2.8	555
C	23 4	M	236.6	289.7	1.5	2.4	555
C	24 4	M	229.5	290.0	2.5	4.7	545
C	25 4	M	237.5	293.9	2.0	1.9	555
C	28 4	M	231.5	299.4	4.0	6.3	555
C	29 4	M	236.5	291.3	1.5	2.2	555
C	30 4	M	233.8	302.9	3.0	3.1	555
C	31 4	M	234.1	302.1	3.0	6.7	555
C	32 4	M	239.8	292.0	3.0	10.1	532
C	33 4	M	234.1	291.1	2.5	2.8	555
C	34 4	M	240.5	312.5	4.0	8.9	555
C	35 4	M	224.3	286.9	1.5	1.4	555
C	36 4	M	232.3	295.0	4.5	9.2	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD,STR,ksi .2% OFF	ULT,STR ksi	% ELONG	% R.A.	BHN
C	37 4	M	222.5	287.3	2.0	3.1	555
C	61 4	C	233.9	285.7	1.5	1.7	555
C	63 4	C	222.5	276.5	1.5	3.9	555
D	02 4	S	236.6	295.0	5.0	11.9	555
D	03 4	S	235.5	293.8	2.5	5.8	555
D	04 4	S	236.0	290.8	1.5	1.9	555
D	06 4	S	234.1	289.7	5.5	11.5	555
D	07 4	S	228.5	292.5	2.5	4.3	555
D	08 4	S	234.8	298.8	3.3	5.4	555
D	09 4	S	228.5	287.2	5.5	11.2	555
D	10 4	S	236.3	294.9	6.0	14.6	555
D	11 4	S	239.8	296.3	7.0	18.1	555
D	22 4	M	247.1	302.8	2.5	6.3	555
D	23 4	M	235.5	289.3	1.5	2.8	555
D	24 4	M	232.0	292.5	2.2	5.0	545
D	25 4	M	237.0	310.0	3.5	4.7	555
D	28 4	M	235.0	295.8	4.5	5.5	555
D	29 4	M	236.0	300.0	2.5	3.5	555
D	30 4	M	242.0	306.5	3.0	6.7	555
D	32 4	M	242.3	295.2	1.5	2.4	532
D	33 4	M	225.0	283.5	2.5	2.7	555
D	34 4	M	239.8	298.9	2.0	3.2	555
D	35 4	M	224.5	281.8	2.0	4.3	555
D	36 4	M	229.5	291.3	3.0	10.0	555
D	37 4	M	225.5	286.4	2.0	4.3	555
D	61 4	C	226.5	275.3	1.5	2.7	555
D	63 4	C	225.5	286.0	2.5	3.1	555
E	02 4	S	236.1	292.8	7.0	16.0	555
E	03 4	S	236.6	298.5	5.0	11.2	555
E	04 4	S	233.0	291.5	4.0	1.9	555
E	06 4	S	238.2	299.5	4.5	8.2	555
E	07 4	S	231.3	293.8	5.5	8.9	555
E	08 4	S	236.2	289.5	1.5	2.6	555
E	09 4	S	231.6	289.4	6.5	11.2	555
E	10 4	S	232.5	291.8	5.0	9.6	555
E	11 4	S	238.0	300.0	7.5	17.0	555
E	22 4	M	241.5	299.0	4.5	7.0	555
E	23 4	M	237.3	290.0	1.5	3.6	555
E	24 4	M	230.6	292.2	3.0	5.8	545
E	25 4	M	239.0	306.3	3.5	7.7	555
E	28 4	M	230.6	297.1	3.0	5.1	555
E	29 4	M	233.1	295.0	1.8	2.6	555
E	30 4	M	235.0	305.0	3.5	4.7	555
E	31 4	M	235.0	300.2	4.0	8.2	555
E	32 4	M	234.0	298.8	4.0	7.7	532
E	33 4	M	229.5	279.0	1.0	.8	555
E	34 4	M	234.2	298.6	2.5	4.7	555
E	35 4	M	231.8	283.5	1.5	2.4	555
E	36 4	M	230.0	293.8	5.5	10.0	555
E	37 4	M	222.5	287.3	2.0	5.9	555
E	61 4	C	225.0	282.0	1.5	2.7	555
E	63 4	C	226.5	285.8	2.5	1.9	555
H	02 4	S	238.2	296.9	6.0	13.6	555
H	03 4	S	237.0	294.1	4.0	10.4	555
H	04 4	S	233.0	293.2	6.0	8.6	555
H	06 4	S	235.7	300.9	5.5	13.1	555
H	07 4	S	230.0	290.0	2.0	3.9	555
H	08 4	S	238.5	296.3	4.0	7.8	555
H	09 4	S	229.5	278.5	2.0	3.9	555
H	10 4	S	225.8	287.5	4.0	6.6	555
H	11 4	S	232.8	300.0	3.5	5.0	555
H	22 4	M	236.5	297.3	3.5	6.6	555
H	23 4	M	233.2	290.9	1.0	1.0	555
H	24 4	M	232.5	295.0	9.0	8.9	545
H	25 4	M	239.6	312.1	3.5	6.6	555
H	28 4	M	236.1	295.8	2.5	7.8	555
H	29 4	M	228.3	288.3	2.0	3.2	555
H	30 4	M	229.3	295.0	2.5	5.0	555
H	31 4	M	238.1	310.8	4.0	6.3	555
H	32 4	M	233.6	297.0	4.5	8.9	532
H	33 4	M	232.9	292.3	4.0	5.4	555
H	34 4	M	236.1	300.8	4.5	13.4	555
H	35 4	M	229.5	288.8	4.0	7.0	555
H	36 4	M	229.0	293.8	3.5	5.0	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% RED.	DW
H	37 4	M	225.5	289.6	2.5	4.4	555
H	61 4	C	226.5	286.3	3.0	4.4	555
H	63 4	C	228.3	285.0	1.7	3.9	555
I	02 4	S	234.4	296.2	3.5	9.6	555
I	03 4	S	235.6	297.8	6.5	14.5	555
I	04 4	S	232.5	293.8	4.0	9.6	555
I	06 4	S	239.3	299.5	3.5	4.0	555
I	07 4	S	227.3	287.5	2.5	4.3	555
I	08 4	S	237.8	297.5	6.3	13.3	555
I	09 4	S	230.5	290.9	5.0	9.3	555
I	10 4	S	226.2	285.0	5.0	9.3	555
I	11 4	S	232.5	297.5	5.5	9.8	555
I	22 4	M	239.0	299.0	3.5	2.3	555
I	23 4	M	237.5	288.0	1.5	2.8	555
I	24 4	M	230.0	296.3	2.5	3.9	545
I	25 4	M	239.1	287.0	1.0	5.5	555
I	26 4	M	235.1	294.4	2.0	2.4	555
I	28 4	M	228.3	291.0	1.8	3.4	555
I	29 4	M	236.4	302.0	3.0	5.9	555
I	30 4	M	240.9	309.5	3.0	7.4	555
I	31 4	M	231.0	297.0	5.0	10.1	532
I	32 4	M	228.1	291.1	2.7	5.7	563
I	33 4	M	236.0	298.5	3.5	6.3	555
I	34 4	M	222.8	283.8	2.0	4.7	555
I	35 4	M	232.8	290.9	4.0	4.4	555
I	36 4	M	224.0	282.5	2.0	2.4	555
I	61 4	C	224.0	285.1	2.5	3.6	555
I	63 4	C	228.6	289.6	1.7	3.6	555
J	02 4	S	234.3	299.7	3.5	5.1	555
J	03 4	S	229.5	290.0	4.5	8.9	555
J	04 4	S	235.0	293.8	4.0	11.9	555
J	06 4	S	234.9	298.3	5.0	10.5	555
J	07 4	S	225.3	277.5	3.0	9.6	555
J	08 4	S	239.1	298.0	3.0	9.6	555
J	09 4	S	230.6	288.2	6.5	14.2	555
J	10 4	S	233.8	283.2	1.5	3.2	555
J	11 4	S	233.0	280.0	1.0	1.9	555
J	22 4	M	239.0	298.3	4.5	9.6	555
J	23 4	M	237.0	290.8	1.5	2.3	555
J	24 4	M	227.3	292.2	2.2	4.7	545
J	25 4	M	236.6	297.9	3.5	7.4	555
J	28 4	M	232.0	288.8	4.0	7.4	555
J	29 4	M	230.8	294.8	2.5	2.6	555
J	30 4	M	232.3	301.0	6.0	9.1	555
J	31 4	M	238.1	302.8	3.5	9.9	555
J	32 4	M	234.2	299.1	4.5	4.7	532
J	33 4	M	227.0	287.2	2.7	5.1	563
J	34 4	M	237.3	302.5	4.0	6.2	555
J	35 4	M	226.8	286.5	2.3	3.9	555
J	36 4	M	227.0	286.5	4.0	11.1	555
J	37 4	M	226.0	291.0	3.0	5.0	555
J	61 4	C	239.5	296.5	1.5	2.4	555
J	63 4	C	226.5	284.3	2.0	4.3	555
K	02 4	S	233.0	291.4	6.5	10.5	555
K	03 4	S	232.0	292.0	3.0	3.5	555
K	04 4	S	231.5	295.5	3.5	9.2	555
K	06 4	S	239.2	297.0	9.0	9.0	555
K	07 4	S	229.3	288.8	5.0	8.1	555
K	08 4	S	232.5	292.0	5.0	10.8	555
K	09 4	S	228.1	288.4	4.5	7.4	534
K	10 4	S	229.7	289.2	4.0	8.8	563
K	11 4	S	230.9	295.0	5.5	11.1	555
K	22 4	M	238.2	294.2	4.0	11.2	534
K	23 4	M	233.3	291.9	2.5	4.7	534
K	24 4	M	228.3	293.8	4.0	6.6	563
K	25 4	M	230.5	296.9	3.5	7.0	534
K	28 4	M	227.6	292.1	2.0	4.0	555
K	29 4	M	231.3	292.0	2.0	3.2	555
K	30 4	M	226.5	270.0	1.0	2.3	555
K	31 4	M	233.0	293.9	2.0	4.7	555
K	32 4	M	231.9	294.2	3.5	6.3	532
K	33 4	M	230.6	286.3	2.5	5.1	555
K	34 4	M	233.0	298.8	3.0	4.7	534
K	35 4	M	227.5	286.0	2.5	3.8	555
K	36 4	M	231.9	292.5	4.5	9.7	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI 2% OFF	ULT STR KSI	% ELONG	% R.A.	BHN
K	37 4	M	219.5	284.0	3.0	3.1	555
	61 4	C	226.5	285.8	3.0	6.2	555
	63 4	C	225.0	283.0	3.0	3.5	555
L	02 4	S	237.6	299.0	5.0	10.2	555
	03 4	S	230.0	291.8	4.0	6.2	555
	04 4	S	231.0	293.8	4.0	6.6	555
	06 4	S	233.9	294.5	5.0	8.2	555
	07 4	S	225.0	288.8	4.0	7.0	555
	08 4	S	236.2	292.0	4.0	9.3	555
	09 4	S	232.0	290.3	4.5	8.5	534
	10 4	S	230.0	291.1	6.5	13.8	563
	11 4	S	232.5	295.0	5.5	11.5	555
	22 4	M	240.1	297.9	3.5	11.6	534
	23 4	M	236.5	289.6	1.8	4.4	534
	24 4	M	230.8	292.2	4.0	7.7	563
	25 4	M					534
	26 4	M	228.9	299.4	3.0	7.0	555
	29 4	M	228.5	289.8	2.5	4.7	555
	30 4	M	231.2	298.3	3.5	6.7	555
	31 4	M	235.5	299.7	2.5	5.5	555
	32 4	M	231.7	297.0	4.5	6.7	532
	33 4	M	228.3	284.5	2.0	4.3	555
	34 4	M	236.7	298.8	2.0	4.6	534
	35 4	M	225.3	286.0	2.5	3.9	555
	36 4	M	223.0	287.5	3.5	5.4	555
	37 4	M	222.1	286.1	2.5	2.4	555
	61 4	C	224.1	281.2	3.0	3.6	555
	63 4	C	225.0	285.0	2.5	3.9	555
M	02 4	S	231.5	294.1	5.5	8.6	555
	03 4	S	230.0	293.8	4.0	8.9	555
	04 4	S	234.9	293.2	3.0	5.9	555
	06 4	S	224.2	294.4	2.5	5.5	555
	07 4	S	227.8	291.3	5.0	7.0	555
	08 4	S	231.5	293.5	7.0	16.0	555
	09 4	S	229.6	289.6	5.0	10.4	534
	10 4	S	226.5	288.0	5.5	11.1	563
	11 4	S	232.5	291.3	2.5	6.6	555
	22 4	M	238.1	296.4	3.5	3.6	534
	23 4	M	229.8	282.8	1.0	1.4	534
	24 4	M	229.0	287.5	2.0	3.1	563
	25 4	M	233.5	298.2	3.0	4.0	534
	26 4	M	228.6	292.0	4.0	6.3	555
	29 4	M	225.6	292.2	2.5	3.4	555
	30 4	M	231.4	297.6	2.5	2.8	555
	31 4	M	235.5	297.2	3.0	3.6	555
	32 4	M	232.2	292.0	4.0	5.1	532
	33 4	M	223.3	284.2	2.7	2.8	555
	34 4	M	236.8	302.5	3.8	6.6	534
	35 4	M	221.5	283.8	3.0	4.3	555
	36 4	M	224.5	280.0	3.5	7.3	555
	37 4	M	217.5	287.3	2.5	3.5	555
	61 4	C	224.0	285.0	3.5	6.7	555
	63 4	C	224.1	284.2	4.0	6.7	555
N	02 4	S	247.4	296.0	4.5	14.1	555
	03 4	S	231.0	294.5	3.0	7.3	555
	04 4	S	232.0	293.1	2.5	6.7	555
	06 4	S	234.3	297.0	5.5	13.1	555
	07 4	S	223.5	288.8	5.2	7.0	555
	08 4	S	232.0	292.5	5.0	8.2	555
	09 4	S	230.0	289.5	5.5	9.2	534
	10 4	S	229.8	289.4	6.5	11.9	563
	11 4	S	232.0	293.8	4.5	7.7	555
	22 4	M	235.9	292.2	4.5	6.7	534
	23 4	M	234.9	290.7	2.5	5.5	534
	24 4	M	228.5	283.8	2.5	4.7	563
	25 4	M	234.4	294.5	3.5	9.7	534
	26 4	M	229.0	293.2	4.5	7.8	555
	29 4	M	227.3	285.3	1.3	2.6	555
	30 4	M	229.0	290.0	2.5	3.5	555
	31 4	M	240.5	300.7	2.5	5.1	555
	32 4	M	234.3	296.9	3.5	6.3	532
	33 4	M	225.8	283.8	2.0	3.1	555
	34 4	M	235.8	301.0	3.5	5.0	534
	35 4	M	223.5	285.9	2.5	3.2	555
	36 4	M	224.3	288.8	2.5	5.4	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD.STR.KSI .2% OFF	ULT.STR KSI	% ELONG	% R.A.	BRN
N	37 4	M	220.5	282.3	2.5	2.7	555
N	61 4	C	223.0	278.8	2.0	2.0	555
N	63 4	C	223.8	281.5	2.5	3.5	555
P	02 4	S	234.3	292.5	6.0	13.7	555
P	03 4	S	228.5	291.0	6.5	10.7	555
P	04 4	S	234.5	295.8	5.0	10.0	555
P	06 4	S	232.5	298.2	5.5	9.0	555
P	07 4	S	223.5	285.0	5.0	6.6	555
P	08 4	S	234.2	293.5	3.8	6.3	555
P	09 4	S	225.0	284.8	6.0	12.7	554
P	10 4	S	232.7	291.9	4.5	8.7	563
P	11 4	S	233.0	300.0	5.0	9.2	555
P	22 4	M	240.0	296.5	2.5	3.1	554
P	23 4	M	234.4	290.0	2.3	4.5	554
P	24 4	M	224.3	291.3	4.2	6.2	563
P	25 4	M	230.1	295.3	4.0	3.2	554
P	26 4	M	227.5	292.0	4.5	5.1	555
P	29 4	M	224.0	288.8	2.5	3.9	555
P	30 4	M	227.8	292.5	2.5	3.9	555
P	31 4	M	231.5	296.5	4.0	7.3	555
P	32 4	M	233.1	295.8	4.5	9.7	552
P	33 4	M	227.1	286.7	2.0	3.6	555
P	34 4	M	234.1	300.5	4.3	6.3	554
P	35 4	M	225.0	285.0	2.8	3.1	555
P	36 4	M	229.2	289.0	4.0	6.7	555
P	37 4	M	224.5	288.8	2.5	5.4	555
P	61 4	C	221.5	284.0	3.5	7.0	555
P	63 4	C	218.9	273.4	4.5	7.1	555
S	02 4	S	236.5	291.9	5.0	13.5	555
S	03 4	S	232.5	292.0	5.5	9.6	555
S	04 4	S	232.5	293.4	5.0	12.7	555
S	06 4	S	230.8	297.5	4.0	7.0	555
S	07 4	S	226.3	287.5	6.0	10.7	555
S	08 4	S	230.0	288.8	5.5	11.2	555
S	09 4	S	227.1	289.5	6.0	11.6	554
S	10 4	S	228.1	290.0	6.0	13.1	563
S	11 4	S	230.0	295.0	7.0	15.9	555
S	22 4	M	235.0	294.0	3.0	3.1	554
S	23 4	M	232.2	289.2	1.8	4.3	554
S	24 4	M	226.5	290.0	4.5	7.7	563
S	25 4	M	235.0	299.5	3.5	7.8	554
S	26 4	M	227.5	295.8	4.0	7.4	555
S	29 4	M	227.5	291.0	2.0	3.0	555
S	30 4	M	232.5	296.0	3.0	6.6	555
S	31 4	M	231.0	294.3	4.5	7.5	555
S	32 4	M	233.0	294.6	4.5	10.6	552
S	33 4	M	224.4	286.8	2.5	5.2	555
S	34 4	M	236.9	301.5	4.0	5.3	554
S	35 4	M	224.5	273.3	1.5	2.3	555
S	36 4	M	222.0	287.5	4.2	7.7	555
S	37 4	M	224.5	282.8	2.0	3.5	555
S	61 4	C	222.0	282.3	3.0	3.5	555
S	63 4	C	225.0	285.0	3.0	3.9	555
T	02 4	S	231.9	289.8	5.5	14.6	555
T	03 4	S	228.1	289.9	5.0	13.4	555
T	04 4	S	232.5	293.5	4.5	6.6	555
T	06 4	S	232.8	297.0	5.5	10.1	555
T	07 4	S	226.8	287.5	6.2	12.2	555
T	08 4	S	233.9	292.0	5.8	13.7	555
T	09 4	S	230.0	287.8	6.5	14.8	554
T	10 4	S	229.3	287.8	5.0	10.2	563
T	11 4	S	228.5	290.0	6.5	14.8	555
T	22 4	M	236.1	296.1	5.0	6.7	554
T	23 4	M	233.2	290.3	3.3	5.9	554
T	24 4	M	222.2	288.2	3.7	5.0	563
T	25 4	M	235.1	296.2	4.5	12.7	554
T	26 4	M	225.1	293.2	3.5	7.8	555
T	29 4	M	231.2	293.0	3.0	4.8	555
T	30 4	M	231.0	295.8	4.0	5.1	555
T	31 4	M	236.5	299.5	3.5	4.7	555
T	32 4	M	233.5	293.2	2.5	5.9	552
T	33 4	M	228.9	289.3	3.0	4.0	555
T	34 4	M	233.5	293.5	4.5	10.3	554
T	35 4	M	222.5	287.0	2.0	2.3	555
T	36 4	M	225.0	286.3	5.0	9.2	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	DHN
T	37 4	M	221.5	265.0	2.0	4.7	995
T	61 4	C	223.0	280.0	2.0	4.7	994
T	63 4	C	223.0	280.0	2.0	4.7	995
V	02 4	S	237.0	292.5	5.0	10.2	995
V	03 4	S	225.7	288.8	7.0	14.2	995
V	04 4	S	230.0	294.0	5.0	11.5	995
V	06 4	S	233.9	299.6	6.5	15.7	995
V	07 4	S	223.5	287.5	5.0	7.7	995
V	08 4	S	233.2	288.1	5.5	13.3	995
V	09 4	S	227.7	285.8	5.5	10.1	994
V	10 4	S	228.4	288.2	3.5	4.4	963
V	11 4	S	226.5	267.5	1.0	1.9	995
V	22 4	M	236.6	293.2	4.5	11.6	994
V	23 4	M	227.0	289.0	2.8	3.4	994
V	24 4	M	225.8	286.3	2.5	3.9	963
V	25 4	M	233.5	297.9	2.5	6.3	994
V	28 4	M	226.6	294.5	4.5	9.1	995
V	29 4	M	225.3	290.5	3.0	3.9	995
V	30 4	M	226.0	291.2	3.5	6.6	995
V	31 4	M	232.1	296.0	4.5	9.7	995
V	32 4	M	236.1	294.5	4.0	7.4	992
V	33 4	M	224.8	285.9	3.0	4.7	995
V	34 4	M	239.0	297.5	4.8	7.7	994
V	35 4	M	220.0	277.5	2.0	4.7	995
V	36 4	M	228.6	287.4	5.0	11.6	995
V	37 4	M	224.0	290.3	3.5	6.6	995
V	61 4	C	223.1	284.4	3.0	5.9	995
V	63 4	C	227.5	285.5	3.0	5.4	995

SECTION 2

**LONGITUDINAL TENSILE PROPERTIES OF
AIR MELT-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24341-1)**

**LONGITUDINAL TENSILE PROPERTIES
OF AIR MELT-VACUUM ARC REMELT
H 21 STEEL HEAT NO. W 24341-1**

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI 2% OFF	ULT STR KSI	% ELONG	% R.O.A.	BHN
A	14 5	S	240.0	305.0	6.0	11.5	578
	15 5	S	241.5	300.5	7.8	23.1	555
	16 5	S	246.5	312.5	8.0	15.6	555
	18 5	S	247.3	311.3	5.7	21.3	563
	41 5	M	230.5	295.0	4.0	6.6	555
	42 5	M	236.5	305.0	4.0	8.1	555
	43 5	M	233.8	300.0	4.2	6.6	555
	45 5	M	242.0	303.4	3.0	4.3	555
	46 5	M	237.0	301.3	3.2	5.8	555
	47 5	M					601
	49 5	M	241.0	302.2	1.5	4.4	578
	50 5	M	244.0	310.8	4.0	6.3	555
	51 5	M	227.5	298.8	3.3	3.9	555
	65 5	C	238.0	305.0	2.5	3.9	578
	67 5	C	239.3	307.5	3.5	5.4	578
B	14 5	S	239.5	307.5	6.0	12.3	578
	15 5	S	241.3	298.2	4.8	9.0	555
	16 5	S	239.0	307.5	4.5	7.0	555
	18 5	S	240.3	307.5	6.0	13.0	563
	41 5	M	232.2	305.8	3.0	5.1	555
	42 5	M	226.0	290.0	4.5	6.6	555
	43 5	M	235.5	301.3	4.5	7.0	555
	45 5	M	239.1	307.1	4.0	10.4	555
	46 5	M	229.5	295.0	6.0	12.2	555
	47 5	M	240.6	307.0	2.0	3.6	601
	49 5	M	245.0	310.0	3.0	3.9	578
	50 5	M					555
	51 5	M	235.0	305.0	3.0	5.0	555
	69 5	C	239.8	310.0	4.0	5.0	578
C	14 5	S	234.5	291.0	4.5	8.9	578
	15 5	S	237.0	303.0	8.0	21.3	555
	16 5	S	233.8	298.9	6.5	15.6	555
	18 5	S	240.8	303.8	4.2	9.6	563
	41 5	M	227.8	293.2	4.5	10.4	555
	42 5	M	228.5	289.5	5.5	12.6	555
	43 5	M	222.0	287.5	4.2	7.0	555
	45 5	M	231.0	291.8	2.0	7.7	555
	46 5	M	230.8	290.0	4.2	7.0	555
	47 5	M	230.8	301.3	4.0	7.3	601
	49 5	M	241.5	303.8	2.5	5.8	578
	50 5	M	232.5	305.0	4.5	7.3	555
	51 5	M	225.5	292.0	5.0	7.0	555
	65 5	C	237.5	303.8	2.5	11.1	578
	67 5	C	232.0	296.3	4.5	8.5	578
D	14 5	S	238.1	301.6	9.0	16.7	578
	15 5	S	234.0	301.8	8.5	21.2	555
	16 5	S	233.8	298.0	7.0	16.7	555
	18 5	S	237.4	308.7	8.0	27.9	555
	41 5	M	222.8	292.5	3.5	5.4	555
	42 5	M	229.0	292.0	5.0	11.1	555
	43 5	M	227.5	287.5	2.8	5.4	555
	45 5	M	230.1	289.8	4.5	5.5	555
	46 5	M	230.0	288.8	9.0	10.7	555
	47 5	M	239.0	303.8	3.5	7.0	601
	49 5	M	236.5	303.0	2.0	2.7	578
	50 5	M	231.3	305.0	9.0	10.4	555
	51 5	M	222.8	292.8	3.5	4.7	555
	65 5	C	225.0	300.0	3.5	5.8	578
	67 5	C	234.3	300.0	3.5	5.0	578
E	14 5	S	238.1	301.6	6.5	19.6	578
	15 5	S	239.5	299.5	8.3	23.0	555
	16 5	S	237.0	299.5	7.5	16.6	555
	18 5	S	237.5	307.5	5.0	8.1	555
	41 5	M	227.3	297.5	4.0	7.3	555
	42 5	M	232.9	294.8	5.0	12.6	555
	43 5	M	227.3	292.5	4.0	5.0	555
	45 5	M	230.5	291.0	4.0	5.4	555
	46 5	M	228.0	290.0	3.2	8.1	555
	47 5	M	229.0	300.0	3.5	6.2	601

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	S ELONG	S R.A.	BHN
E	49 5	M	236.5	303.8	2.8	3.9	578
	50 5	M	232.1	298.1	7.0	18.5	555
	51 5	M	225.8	296.5	3.3	4.3	555
	69 5	C	228.0	297.5	5.0	8.9	578
	67 5	C	234.5	295.0	3.0	5.3	578
H	14 5	S		302.8	8.2	20.4	578
	15 5	S	236.0	299.9	6.5	16.8	555
	16 5	S	236.7	299.9	6.5	31.2	555
	18 5	S	234.7	298.5	6.0	28.6	555
	41 5	M	232.5	290.8	4.0	9.2	555
	42 5	M	232.5	293.0	5.5	14.8	555
	43 5	M	226.5	291.0	4.0	8.5	555
	45 5	M	232.1	290.2	2.0	5.9	555
	46 5	M	229.5	289.8	5.5	15.6	555
	47 5	M	233.3	298.9	5.0	7.9	578
	49 5	M	210.0	274.5	3.5	19.6	578
	50 5	M	215.0	277.0	4.0	17.4	555
	51 5	M	232.8	297.1	4.0	7.5	555
	65 5	C	228.1	296.3	4.0	6.7	555
	67 5	C	228.5	295.0	4.2	8.3	578
I	14 5	S	234.0	300.9	6.0	10.5	578
	15 5	S	236.8	297.9	7.5	20.9	555
	16 5	S	236.8	299.5	6.5	16.8	555
	18 5	S	240.5	300.4	7.0	11.6	555
	41 5	M	227.5	285.0	4.0	6.2	555
	42 5	M	229.5	289.3	7.5	16.6	555
	43 5	M	226.0	291.3	4.8	6.6	555
	45 5	M	227.5	289.5	4.0	8.5	555
	46 5	M	224.8	285.8	6.5	13.1	555
	47 5	M	226.7	287.2	2.5	3.2	601
	49 5	M	238.1	299.0	4.0	7.8	578
	50 5	M	234.5	297.5	6.0	11.1	555
	51 5	M	225.0	291.5	4.8	6.6	555
	65 5	C	225.8	300.0	3.0	8.9	578
	67 5	C	230.0	292.5	5.0	10.7	578
J	14 5	S	237.3	298.5	8.0	21.7	578
	15 5	S	233.5	295.9	7.3	16.7	555
	16 5	S	235.0	309.0	7.0	16.3	555
	18 5	S	243.0	295.5	6.5	18.6	555
	41 5	M	227.8	297.5	4.9	7.3	555
	42 5	M	231.8	292.9	4.9	10.4	555
	43 5	M	227.0	291.3	5.8	9.2	555
	45 5	M	229.9	287.9	4.0	7.4	555
	46 5	M	226.6	290.0	7.8	17.7	555
	47 5	M	230.0	302.5	3.5	7.7	601
	49 5	M	235.0	302.5	5.3	12.2	578
	50 5	M	233.8	300.8	6.5	12.2	555
	51 5	M	221.8	290.0	4.8	9.2	555
	65 5	C	239.0	300.0	3.0	5.6	578
	67 5	C	230.0	290.0	3.0	4.7	578
K	14 5	S	233.7	296.5	5.5	16.3	555
	15 5	S	235.7	300.8	6.0	12.3	578
	16 5	S	231.0	299.5	7.5	19.2	555
	18 5	S	237.5	297.5	7.0	19.5	555
	41 5	M	226.8	291.3	5.8	8.1	555
	42 5	M	228.0	291.5	5.5	10.4	555
	43 5	M	221.8	286.3	4.0	7.7	555
	45 5	M	228.0	286.5	4.0	7.7	555
	46 5	M	228.0	292.5	6.0	10.7	555
	47 5	M	227.3	297.5	5.0	7.7	555
	49 5	M	229.3	298.3	3.8	4.7	555
	50 5	M	231.8	302.0	4.5	8.6	555
	51 5	M	221.0	289.5	2.8	5.4	555
	65 5	C	222.5	292.5	4.0	5.8	578
	67 5	C	225.5	292.2	5.5	5.9	578
L	14 5	S	231.6	297.8	7.0	18.5	555
	15 5	S	233.2	300.8	9.0	24.5	578
	16 5	S	239.5	300.0	7.5	17.8	555
	18 5	S	235.6	308.3	6.0	10.4	555
	41 5	M	220.0	288.8	5.0	9.6	555
	42 5	M	223.5	288.5	5.0	9.6	555
	43 5	M	220.3	285.0	6.0	11.1	555
	45 5	M	227.0	287.9	2.5	6.3	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI -2% OFF	ULT STR KSI	% ELONG	% R.A.	BRN
L	46 5	M	226.3	286.3	2.5	4.7	555
	47 5	M	229.7	298.6	3.5	3.9	555
	49 5	M	234.5	297.0	4.5	6.6	555
	50 5	M	234.0	296.0	5.3	11.7	555
	51 5	M	218.1	286.0	5.5	6.6	555
	65 5	C	222.5	291.3	6.5	12.2	555
	67 5	C	225.5	292.2	3.0	8.6	578
M	14 5	S	236.0	298.3	8.0	16.6	555
	15 5	SS	233.0	295.2	6.0	14.2	578
	16 5	SS	233.8	293.7	7.5	19.1	555
	18 5	S	236.5	299.6	6.5	19.9	555
	41 5	M	222.8	292.5	4.5	8.1	555
	42 5	M	223.5	291.5	4.5	9.6	555
	43 5	M	224.5	286.3	4.0	7.0	555
	45 5	M	226.1	287.2	4.5	10.1	555
	46 5	M	222.8	288.8	4.2	8.5	555
	47 5	M	225.0	295.0	5.0	9.6	555
	49 5	M	227.5	296.3	4.5	6.6	555
	50 5	M	228.8	295.8	4.0	8.9	555
	51 5	M	222.8	288.8	3.8	6.2	555
	65 5	CC	225.0	292.5	4.0	10.0	555
	67 5	C	228.3	295.0	3.5	5.0	578
N	14 5	S	234.0	299.9	8.0	15.3	555
	15 5	SS	231.5	291.5	7.5	20.6	578
	16 5	SS	234.8	297.5	5.0	10.0	555
	18 5	S	243.1	295.0	6.5	16.0	555
	41 5	M	223.3	284.5	4.0	7.4	555
	42 5	M	228.0	289.0	5.5	14.1	555
	43 5	M	223.0	286.3	4.8	8.5	555
	45 5	M	228.0	285.8	4.0	8.1	555
	46 5	M	226.1	290.8	4.0	6.7	555
	47 5	M	223.0	296.3	3.5	5.0	555
	49 5	M	229.1	298.2	3.5	6.3	555
	50 5	M	236.2	301.3	4.5	7.8	555
	51 5	M	221.8	288.3	4.0	5.4	555
	65 5	CC	224.3	291.3	5.0	8.1	555
	67 5	C	231.5	293.0	4.5	7.3	578
P	14 5	S	235.1	298.6	6.5	17.8	555
	15 5	SS	232.5	296.0	7.5	19.7	578
	16 5	SS	234.2	298.8	7.3	19.1	555
	18 5	S	240.9	308.2	6.5	14.9	555
	41 5	M	226.3	287.5	5.2	10.7	555
	42 5	M	226.0	285.9	6.0	7.3	555
	43 5	M	225.3	288.8	5.5	10.4	555
	45 5	M	230.1	285.8	4.0	10.8	555
	46 5	M	225.0	292.5	5.8	12.2	555
	47 5	M	229.0	298.8	6.0	9.2	555
	49 5	M	231.0	292.0	3.5	7.0	555
	50 5	M	292.5	298.2	5.5	11.4	555
	51 5	M	220.0	285.5	4.3	7.7	555
	65 5	C	224.5	293.8	5.5	10.7	555
	67 5	C	229.5	293.2	6.0	12.7	578
S	14 5	S	233.0	297.3	7.5	18.4	555
	15 5	SS	231.2	294.5	7.8	19.6	578
	16 5	SS	234.3	296.8	7.0	17.8	555
	18 5	S	238.0	297.5	8.0	23.0	555
	41 5	M	223.0	290.0	4.8	7.3	555
	42 5	M	224.1	284.5	6.0	10.4	555
	43 5	M	224.3	288.8	5.5	10.0	555
	45 5	M	224.4	284.5	4.5	9.7	555
	46 5	M	224.0	287.5	6.0	11.9	555
	47 5	M	223.8	287.5	3.5	5.4	555
	49 5	M	227.8	293.8	3.3	5.4	555
	50 5	M	226.8	298.8	5.0	11.1	555
	51 5	M	220.8	288.8	4.3	7.3	555
	65 5	C	224.9	291.7	5.0	7.8	555
	67 5	C	229.0	292.0	5.0	9.2	578
T	14 5	S	230.5	293.3	7.0	16.6	555
	15 5	SS	230.5	295.8	6.5	17.1	578
	16 5	SS	231.5	296.2	7.5	18.7	555
	18 5	S	232.5	295.0	7.0	17.4	555
	41 5	M	224.8	290.0	3.2	4.3	555
	42 5	M	224.5	288.0	5.0	7.3	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI 2% OFF	ULT STR KSI	% ELONG	% R.A.	BRIN
T	43 5	M	221.8	285.0	4.0	5.4	555
T	45 5	M	228.5	285.3	4.5	9.3	555
T	46 5	M	222.5	290.0	5.2	9.6	555
T	47 5	M	225.8	296.3	4.0	6.6	555
T	49 5	M	233.0	296.2	4.5	9.5	555
T	50 5	M	227.3	300.0	5.0	11.5	555
T	51 5	M	223.0	287.5	5.5	10.0	555
T	65 5	C	225.3	293.8	5.5	10.7	555
T	67 5	C	229.1	290.1	4.5	7.4	578
V	14 5	S	228.5	294.0	6.5	14.9	555
V	15 5	S	292.1	6.0	14.9	578	
V	16 5	S	233.5	297.5	7.0	15.2	555
V	18 5	S	232.5	296.0	7.0	15.3	555
V	41 5	M	223.5	288.8	4.2	8.9	555
V	42 5	M	224.5	289.3	5.0	8.9	555
V	43 5	M	222.5	286.3	4.0	7.3	555
V	45 5	M	226.5	283.5	4.5	7.3	555
V	46 5	M	223.0	288.6	5.2	10.7	555
V	47 5	M	223.3	297.5	4.5	7.3	555
V	49 5	M	231.0	298.3	4.0	8.9	555
V	50 5	M	233.1	300.9	5.5	11.2	555
V	51 5	M	222.3	290.0	4.3	7.3	555
V	65 5	C	225.0	292.5	5.0	7.7	555
V	67 5	C	228.5	290.8	6.0	11.9	578

SECTION 3

TRANSVERSE NOTCHED TENSILE PROPERTIES OF
AIR MELT-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24341-1)

**TRANSVERSE NOTCHED TENSILE PROPERTIES
OF AIR MELT-VACUUM ARC REMELT
H-11 STEEL HEAT NO. W-24341-1**

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
A	1 4	S	256.7	0.82	555
A	5 4	S	245.5	0.83	555
A	12 4	S	237.5	0.82	578
A	20 4	M	198.3	0.66	555
A	21 4	M	173.2		555
A	26 4	M	148.8	0.49	555
A	27 4	M	184.7	0.60	555
A	38 4	M	210.2	0.71	555
A	39 4	M	174.9	0.59	532
A	60 4	C	161.3		544
A	62 4	C	117.5	0.41	555
B	1 4	S	211.8	0.73	555
B	5 4	S	271.0	0.93	555
B	12 4	S	269.8	0.93	578
B	20 4	M	186.0	0.69	555
B	21 4	M	166.5	0.55	555
B	26 4	M	174.4	0.58	555
B	27 4	M	205.3	0.67	555
B	38 4	M	182.0	0.62	555
B	39 4	M	214.9	0.71	532
B	60 4	C	173.3	0.59	544
B	62 4	C	125.2	0.34	555
C	1 4	S	244.4	0.88	555
C	5 4	S	218.9	0.76	555
C	12 4	S	232.9	0.78	578
C	20 4	M	217.7	0.75	555
C	21 4	M	203.3	0.71	555
C	26 4	M	152.8	0.51	555
C	27 4	M	179.7	0.62	555
C	38 4	M	220.9	0.75	555
C	39 4	M	235.8	0.82	532
C	60 4	C	215.2	0.75	544
C	62 4	C	157.3	0.57	555
D	1 4	S	235.2	0.80	555
D	5 4	SS	268.0	0.92	555
D	12 4	S	230.9	0.78	578
D	20 4	M	162.4	0.56	555
D	21 4	M	162.1	0.56	555
D	26 4	M	164.7	0.55	555
D	27 4	M	155.8		555
D	38 4	M	261.3	0.90	555
D	39 4	M	155.5	0.54	532
D	60 4	C	168.8	0.61	544
D	62 4	C	181.9	0.64	555
E	1 4	S	248.5	0.83	555
E	5 4	S	247.5	0.84	555
E	12 4	S	261.0	0.87	578
E	20 4	M	182.9	0.63	555
E	21 4	M	213.5	0.74	555
E	26 4	M	224.5	0.74	555
E	27 4	M	229.9	0.78	555
E	38 4	M	198.4	0.68	555
E	39 4	M	149.7	0.52	532
E	60 4	C	171.2	0.61	544
E	62 4	C	196.3	0.69	555
H	1 4	S	210.5	0.72	555
H	5 4	S	226.0	0.78	555
H	12 4	S	249.2	0.83	578
H	20 4	M	219.7	0.74	555
H	21 4	M	248.3	0.85	555
H	26 4	M	208.7	0.71	555
H	27 4	M	186.5	0.65	555
H	38 4	M	245.5	0.84	555
H	39 4	M	173.4	0.60	532
H	60 4	C	142.8	0.50	544
H	62 4	C	184.0	0.65	555
I	1 4	S	248.3	0.83	555
I	5 4	S	204.2	0.99	555

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
I	12 4	S	270.8	0.91	578
I	20 4	M	291.8	0.85	555
I	21 4	M	175.2	0.61	555
I	26 4	M	214.9	0.71	555
I	27 4	M	191.0	0.66	555
I	38 4	M	235.2	0.81	555
I	39 4	M	174.4	0.62	532
I	60 4	CC	197.5	0.69	544
I	62 4	C	149.2	0.52	555
J	1 4	S	253.2	0.87	555
J	5 4	SS	283.8	1.02	555
J	12 4	S	167.5	0.60	578
J	20 4	M	262.0	0.90	555
J	21 4	M	240.5	0.83	555
J	26 4	M	241.0	0.80	555
J	27 4	M	213.4	0.72	555
J	38 4	M	252.5	0.88	555
J	39 4	M	215.1	0.74	532
J	60 4	CC	148.0	0.50	544
J	62 4	C	190.0	0.67	555
K	1 4	S	221.6	0.76	555
K	5 4	SS	253.6	0.88	555
K	12 4	S	250.9	0.85	555
K	20 4	M	241.7	0.82	534
K	21 4	M	150.5	0.52	534
K	26 4	M	179.8	0.67	534
K	27 4	M	181.4	0.62	534
K	38 4	M	246.4	0.84	534
K	39 4	M	211.2	0.74	532
K	60 4	CC	215.0	0.75	534
K	62 4	C	217.7	0.77	534
L	1 4	S	263.7	0.90	555
L	5 4	SS	265.9	0.92	555
L	12 4	S	262.6	0.89	555
L	20 4	M	260.0	0.89	555
L	21 4	M	169.8	0.57	534
L	26 4	M	236.8	0.79	534
L	27 4	M	218.2	0.75	534
L	38 4	M	170.8	0.59	534
L	39 4	M	170.5	0.60	532
L	60 4	CC	206.0	0.73	534
L	62 4	C	204.9	0.72	534
M	1 4	S	268.8	0.92	555
M	5 4	SS	237.2	0.81	555
M	12 4	S	141.0	0.48	555
M	20 4	M	151.9	0.53	534
M	21 4	M	099.4	0.35	534
M	26 4	M	244.6	0.82	534
M	27 4	M	191.3	0.65	534
M	38 4	M	261.8	0.94	534
M	39 4	M	204.8	0.71	532
M	60 4	CC	134.4	0.47	534
M	62 4	C	172.2	0.61	534
N	1 4	S	251.3	0.85	555
N	5 4	SS	227.0	0.79	555
N	12 4	S	257.6	0.88	555
N	20 4	M	212.3	0.75	534
N	21 4	M	146.2	0.50	534
N	26 4	M	168.8	0.58	534
N	27 4	M	185.6	0.65	534
N	38 4	M	216.2	0.75	534
N	39 4	M	149.6	0.53	532
N	60 4	CC	202.5	0.73	534
N	62 4	C	171.0	0.61	534
P	1 4	S	230.9	0.79	555
P	5 4	SS	244.4	0.86	555
P	12 4	S	263.5	0.88	555
P	20 4	M	185.6	0.64	534
P	21 4	M	191.9	0.66	534
P	26 4	M	216.9	0.74	534
P	27 4	M	200.9	0.69	534
P	38 4	M	256.2	0.89	534

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	SWN
P	39 4	H	207.8	0.72	532
P	60 4	C	159.4	0.56	534
P	62 4	C	190.0	0.69	534
S	1 4	S	239.0	0.82	535
S	5 4	S	249.0	0.87	535
S	12 4	S	258.5	0.88	535
S	20 4	H	209.3	0.72	534
S	21 4	H	200.9	0.69	534
S	26 4	H	211.1	0.71	534
S	27 4	H	162.6	0.56	534
S	38 4	H	220.9	0.77	534
S	39 4	H	189.0	0.65	532
S	60 4	C	186.5	0.66	534
S	62 4	C	206.4	0.72	534
T	1 4	S	282.6	0.97	535
T	5 4	S	245.5	0.85	535
T	12 4	S	206.5	0.72	535
T	20 4	H	235.0	0.82	535
T	21 4	H	158.0	0.34	534
T	26 4	H	242.4	0.82	534
T	27 4	H	214.8	0.73	534
T	38 4	H	240.3	0.84	534
T	39 4	H	186.9	0.66	532
T	60 4	C	153.3		
T	62 4	C	198.8	0.71	534
V	1 4	S	233.9	0.81	535
V	5 4	S	229.0	0.80	535
V	12 4	S	142.7	0.53	535
V	20 4	H	234.5	0.82	535
V	21 4	H	180.2	0.62	534
V	26 4	H	195.0	0.67	534
V	27 4	H	209.4	0.72	534
V	38 4	H	200.5	0.70	534
V	39 4	H	267.1	0.92	532
V	60 4	C	174.3	0.61	534
V	62 4	C	182.4	0.64	534

SECTION 4

LONGITUDINAL NOTCHED TENSILE PROPERTIES OF
AIR MELT-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24341-1)

(1-18)

**LONGITUDINAL NOTCHED TENSILE PROPERTIES
OF AIR MELT-VACUUM ARC REMELT
H-11 STEEL : MEAT NO. W-24341-1**

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BRINELL
A	13 5	S	235.9	0.77	534
	17 5	S	260.0	0.84	578
	40 5	M	253.5	0.83	544
	44 5	M	232.2	0.77	555
	48 5	M	255.0	0.82	555
	64 5	C	234.5	0.77	555
B	66 5	C	151.2	0.49	555
	13 5	S	276.8	0.90	534
	17 5	S	281.8	0.92	578
	40 5	M	255.7	0.88	534
	44 5	M	275.0	0.93	555
	48 5	M	304.9		555
C	64 5	CC	243.2	0.78	555
	66 5	C	180.0	0.59	555
	13 5	S	282.2	0.97	534
	17 5	S	256.2	0.84	578
	40 5	M	290.0	1.00	544
	44 5	M	236.9	0.82	555
C	48 5	M	244.9	0.80	555
	64 5	CC	299.0	0.98	555
	66 5	C	247.8	0.84	555
	13 5	S	269.0	0.89	534
	17 5	S	276.9	0.90	578
	40 5	M	265.4	0.91	555
D	44 5	M	259.9	0.90	555
	48 5	M	219.7	0.72	555
	64 5	CC	193.0	0.64	555
	66 5	C	292.0	0.77	555
E	13 5	S	271.9	0.90	534
	17 5	S	245.1	0.80	578
	40 5	M	261.8	0.89	555
	44 5	M	258.0	0.89	555
	48 5	M	260.8	0.87	555
	64 5	CC	223.4	0.75	555
F	66 5	C	233.3	0.79	555
	13 5	S	234.8	0.78	534
	17 5	S	318.9	1.07	578
	40 5	M	291.8	0.86	555
	44 5	M	279.3	0.96	555
	48 5	M	246.7	0.89	555
G	64 5	CC	251.8	0.85	555
	66 5	C	222.2	0.75	555
	13 5	S	230.3	0.77	534
	17 5	S	295.8	0.98	578
	40 5	M	297.2	1.03	555
	44 5	M	286.2	1.00	555
H	48 5	M	281.3	0.93	555
	64 5	CC	179.8	0.60	555
	66 5	C	239.0	0.80	555
	13 5	S	293.1	0.98	534
	17 5	S	288.0	0.97	578
	40 5	M	240.3	0.82	555
I	44 5	M	280.9	0.97	555
	48 5	M	283.6	0.94	555
	64 5	CC	255.5	0.85	555
	66 5	C	267.1	0.92	555
	13 5	S	235.7	0.79	534
	17 5	S	271.9	0.91	555
J	40 5	M	272.0	0.93	555
	44 5	M	270.0	0.92	552
	48 5	M	298.2	0.85	552
	64 5	CC	240.0	0.82	554
	66 5	C	201.2	0.69	555
	13 5	S	248.9	0.84	534
L	17 5	S	279.9	0.91	555

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	SHR
L	40 5	M	274.0	0.95	535
L	44 5	M	258.3	0.90	532
L	48 5	M	259.0	0.88	532
L	64 5	C	245.8	0.84	534
L	66 5	C	229.5	0.79	535
M	13 5	S	219.9	0.72	534
M	17 5	S	242.0	0.81	535
M	40 5	M	215.3	0.74	535
M	44 5	M	247.4	0.86	532
M	48 5	M	263.5	0.89	532
M	64 5	C	193.7	0.53	534
M	66 5	C	217.2	0.74	535
N	13 5	S	262.0	0.87	534
N	17 5	S	250.2	0.85	535
N	40 5	M	208.6	0.72	535
N	44 5	M	180.0	0.62	532
N	48 5	M	187.2	0.62	532
N	64 5	C	211.5	0.73	534
N	66 5	C	206.3	0.70	535
P	13 5	S	249.0	0.83	534
P	17 5	S	253.2	0.82	535
P	40 5	M	258.5	0.91	535
P	44 5	M	231.1	0.79	532
P	48 5	M	244.8	0.82	532
P	64 5	C	237.5	0.81	534
P	66 5	C	196.2	0.67	535
S	13 5	S	187.5	0.63	534
S	17 5	S	202.0	0.95	535
S	40 5	M	226.0	0.79	535
S	44 5	M	248.0	0.86	532
S	48 5	M	265.2	0.89	532
S	64 5	C	219.5	0.73	534
S	66 5	C	216.7	0.74	535
T	13 5	S	237.9	0.81	534
T	17 5	S	256.9	0.87	535
T	40 5	M	252.0	0.88	535
T	44 5	M	246.4	0.85	532
T	48 5	M	238.0	0.79	532
T	64 5	C	187.5	0.64	534
T	66 5	C	188.0	0.65	535
V	13 5	S	237.5	0.81	534
V	17 5	S	228.3	0.77	535
V	40 5	M	242.3	0.84	535
V	44 5	M	216.9	0.75	532
V	48 5	M	204.0	0.68	532
V	64 5	C	190.0	0.69	534
V	66 5	C	216.1	0.74	535

APPENDIX II

TENSILE PROPERTIES OF AIR MELT-DEGAS-VACUUM ARC
REMELT H-11 STEEL (HEAT NO. W-24342-V1)

(2-1)

SECTION 1

TRANSVERSE TENSILE PROPERTIES OF
AIR MELT-DEGAS-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24342-V1)

(2-2)

TRANSVERSE TENSILE PROPERTIES
OF AIR MELT DEGAS-VACUUM ARC REMELT
H 11 STEEL HEAT NO. W 24342-V1

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD.STR.KSI .25 OFF	ULT.STR KSI	S ELONG	S R.O.A.	EHN
A	02 4	S	220.3	289.0	3.0	3.0	555
A	03 4	S	224.5	289.0	3.5	6.2	554
A	04 4	S	229.3	286.5	3.2	5.8	520
A	06 4	S	228.8	292.0	4.3	4.7	555
A	07 4	S	227.4	290.0	2.9	3.1	524
A	08 4	S	242.0	295.5	2.0	3.5	555
A	09 4	S	230.0	305.0	3.5	12.2	578
A	10 4	S	230.8	292.5	3.5	6.6	545
A	11 4	S	231.0	296.5	6.0	13.0	578
A	22 4	H	238.0	302.0	3.5	5.4	555
A	23 4	H	229.3	296.5	2.5	3.1	524
A	24 4	H	229.8	287.0	3.5	3.1	555
A	25 4	H	237.0	309.0	3.5	6.3	563
A	26 4	H	230.0	298.0	4.0	5.0	555
A	27 4	H	229.0	292.0	2.5	3.1	555
A	29 4	H	239.3	303.0	4.0	4.3	555
A	31 4	H	232.5	299.5	3.0	6.2	555
A	32 4	H	237.8	302.5	2.5	4.7	555
A	33 4	H	234.9	294.1	3.0	5.9	555
A	34 4	H	230.0	296.0	4.5	6.6	555
A	35 4	H	229.0	294.0	1.5	3.5	524
A	36 4	H	227.9	297.0	4.5	5.5	524
A	37 4	H	228.4	286.0	2.5	2.2	524
A	61 4	C	238.9	291.0	2.5	3.2	555
A	63 4	C	232.0	294.3	2.5	4.9	555
B	02 4	S	225.5	299.0	4.5	10.4	555
B	03 4	S	224.5	287.5	2.5	6.2	554
B	04 4	S	228.0	295.0	4.0	5.0	520
B	06 4	S	227.5	290.0	4.5	5.9	555
B	07 4	S	222.5	287.5	3.0	6.6	524
B	08 4	S	227.0	296.0	3.0	5.5	555
B	09 4	S	234.9	298.0	2.0	5.5	578
B	10 4	S	234.8	287.5	6.0	10.4	545
B	11 4	S	229.5	289.0	4.5	7.7	578
B	22 4	H	242.0	306.0	3.0	7.0	555
B	23 4	H	239.0	292.0	2.5	3.9	524
B	24 4	H	236.0	295.0	3.5	6.1	555
B	25 4	H	236.0	294.0	4.0	6.8	523
B	26 4	H	232.0	291.0	1.5	1.4	524
B	27 4	H	231.0	277.5	1.2	1.0	555
B	28 4	H	240.75	300.75	3.0	10.7	555
B	31 4	H	236.5	292.0	2.0	5.5	555
B	32 4	H	240.5	304.0	3.5	9.0	555
B	33 4	H	237.5	292.0	2.5	3.1	524
B	34 4	H	239.0	305.0	2.5	5.6	555
B	35 4	H	239.0	290.0	2.0	3.1	524
B	36 4	H	225.8	297.0	4.5	6.6	524
B	37 4	H	230.6	292.0	2.5	4.4	524
B	61 4	C	242.3	305.0	3.0	5.9	555
B	63 4	C	236.5	296.0	1.0	3.9	555
C	02 4	S	224.0	287.5	5.0	11.1	555
C	03 4	S	229.1	292.2	6.0	11.1	554
C	04 4	S	223.3	291.0	5.5	7.7	520
C	06 4	S	228.5	294.3	6.5	13.4	545
C	07 4	S	229.0	296.5	4.0	5.0	554
C	08 4	S	220.5	287.0	3.5	7.0	555
C	09 4	S	232.5	298.0	3.0	4.5	578
C	10 4	S	226.0	289.0	3.5	4.7	545
C	11 4	S	225.0	291.1	4.0	6.6	578
C	22 4	H	247.0	312.5	1.0	5.0	555
C	23 4	H	232.0	300.0	2.0	3.1	524
C	24 4	H	241.1	304.5	2.5	3.6	555
C	25 4	H	261.3	309.0	2.2	4.7	563
C	26 4	H	237.5	291.0	1.2	3.1	555
C	27 4	H	237.0	294.5	1.5	2.7	555
C	30 4	H	237.0	305.0	4.0	11.9	555
C	31 4	H	203.5	293.0	1.0	1.1	555
C	32 4	H	242.3	299.0	1.0	1.1	555
C	33 4	H	239.0	297.5	2.0	7.0	555
C	34 4	H	235.5	300.0	3.0	9.0	555
C	35 4	H	230.0	290.0	1.5	2.8	524
C	36 4	H	229.0	300.0	3.0	5.0	554

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% REAe	BMW
C	37 4	M	229.3	286.3	1.5	3.1	534
C	61 4	C	230.3	293.8	2.5	3.9	535
C	63 4	C	233.5	295.0	3.0	4.3	535
D	02 4	S	223.3	286.9	3.8	7.0	535
D	03 4	S	226.0	291.0	5.0	8.9	534
D	04 4	S	226.0	286.0	6.0	11.1	528
D	06 4	S	226.8	292.3	5.5	9.6	535
D	07 4	S	221.9	285.0	4.5	10.0	534
D	08 4	S	222.3	287.8	6.2	8.1	535
D	09 4	S	234.3	296.3	5.8	12.6	578
D	10 4	S	233.0	296.0	3.0	3.1	535
D	11 4	S	230.5	297.5	4.5	7.7	578
D	22 4	M	243.5	307.5	2.5	3.9	535
D	23 4	M	234.3	303.8	3.0	3.9	534
D	24 4	M	238.0	298.8	2.5	3.5	535
D	25 4	M	239.3	305.0	4.5	8.9	563
D	26 4	M	228.8	292.8	4.5	8.5	535
D	29 4	M	237.5	295.8	1.5	2.3	535
D	30 4	M	238.5	307.5	3.0	3.3	535
D	31 4	M					535
D	32 4	M	234.5	296.3	3.3	5.0	535
D	33 4	M	232.5	292.5	2.0	3.9	535
D	34 4	M	224.8	298.0	3.0	4.0	535
D	35 4	M	226.8	278.8	1.5	2.3	534
D	36 4	M	219.3	295.0	4.0	7.7	534
D	37 4	M	227.0	288.0	3.0	3.5	534
D	61 4	C	234.5	294.7	2.0	4.7	535
D	63 4	C	234.5	290.1	1.5	4.0	535
E	02 4	S	230.0	293.0	4.5	7.0	535
E	03 4	S	225.8	286.5	4.0	6.2	534
E	04 4	S	226.3	291.0	2.5	5.0	528
E	06 4	S	229.3	294.3	5.5	9.2	535
E	07 4	S	224.9	288.2	5.0	10.3	534
E	08 4	S	226.6	295.4	3.0	5.1	535
E	09 4	S	231.7	300.8	3.8	5.5	578
E	10 4	S	231.0	295.0	4.0	6.6	535
E	11 4	S	232.5	293.7	6.0	13.3	578
E	22 4	M	239.0	307.3	4.0	5.0	535
E	23 4	M	231.5	294.5	1.5	4.3	534
E	24 4	M	234.5	302.5	3.5	6.2	535
E	25 4	M	240.0	301.0	1.8	9.0	563
E	28 4	M	230.0	297.8	6.5	12.6	535
E	29 4	M	231.5	293.8	1.8	3.1	535
E	30 4	M	233.5	290.8	2.5	5.4	535
E	31 4	M	230.0	290.0	2.0	4.3	535
E	32 4	M	239.0	302.5	6.3	12.2	535
E	33 4	M	236.5	299.5	2.5	7.0	535
E	34 4	M	222.5	294.3	5.5	7.7	535
E	35 4	M	227.1	304.5	2.5	4.7	534
E	36 4	M	223.8	294.2	4.0	8.5	534
E	37 4	M	230.0	291.0	3.0	1.4	534
E	61 4	C	231.1	291.1	3.0	5.9	535
E	63 4	C	233.1	291.6	2.0	3.6	535
H	02 4	S	227.5	296.9	5.8	12.6	535
H	03 4	S	233.5	296.8	4.5	8.5	534
H	04 4	S	228.3	293.3	6.0	11.9	528
H	06 4	S	223.8	285.8	3.0	5.0	545
H	07 4	S	226.3	288.6	5.0	8.1	534
H	08 4	S	223.4	287.6	3.0	8.1	535
H	09 4	S	236.8	302.5	5.3	10.7	578
H	10 4	S	226.5	288.5	5.0	6.2	535
H	11 4	S	227.4	288.6	5.0	7.0	578
H	22 4	M	240.8	305.0	3.5	5.4	535
H	23 4	M	233.9	293.2	1.5	2.3	534
H	24 4	M	230.2	294.5	3.5	5.9	535
H	25 4	M	238.0	302.5	5.0	6.6	563
H	26 4	M	230.3	291.8	5.0	10.7	535
H	29 4	M	229.8	295.8	2.5	1.7	535
H	30 4	M	232.5	299.5	2.5	5.0	535
H	31 4	M	235.0	304.8	2.5	3.1	535
H	32 4	M	239.3	303.8	3.5	7.0	535
H	33 4	M	234.5	295.0	2.0	5.0	535
H	34 4	M	229.5	295.0	3.5	5.0	535
H	35 4	M	229.8	305.0	2.5	3.9	534
H	36 4	M	220.8	297.5	4.5	7.7	534

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD, STR, KSI .2% OFF	ULT, STR KSI	% ELONG	% REAO	EWI
H	37 4	M	230.0	293.9	2.0	5.4	534
H	61 4	C	231.1	293.9	2.5	2.4	535
H	63 4	C	234.0	291.8	2.0	4.3	535
I	02 4	S	227.5	296.3	4.0	6.6	535
I	03 4	S	225.0	289.3	2.5	3.9	534
I	04 4	S	224.0	283.3	3.0	8.1	528
I	06 4	S	231.8	293.8	3.3	5.4	535
I	07 4	S	219.2	282.0	3.0	9.3	534
I	08 4	S	219.0	285.5	3.5	3.9	535
I	09 4	S	220.3	297.5	3.5	10.7	578
I	10 4	S	226.0	286.5	3.0	11.9	535
I	11 4	S	239.5	298.4	6.5	14.8	578
I	22 4	H	241.5	302.5	9.0	8.1	534
I	23 4	H	225.5	288.0	2.5	9.5	534
I	24 4	H	227.5	288.8	4.5	6.6	535
I	25 4	H	230.3	305.0	2.5	4.3	563
I	26 4	H	239.0	305.0	3.5	8.3	535
I	27 4	H	231.8	294.5	2.2	3.5	535
I	30 4	H	241.5	310.0	3.5	8.1	535
I	31 4	H	239.0	303.8	4.0	5.8	535
I	32 4	H	239.5	302.5	3.5	11.1	535
I	33 4	H	232.0	292.8	2.0	2.7	535
I	34 4	H	225.5	291.8	2.0	2.7	535
I	35 4	H	228.8	295.0	1.8	3.5	534
I	36 4	H	226.0	293.8	2.5	5.0	534
I	37 4	H	226.5	287.2	2.5	2.4	534
I	61 4	C	231.1	298.1	3.5	4.7	535
I	63 4	C	233.0	297.5	3.5	4.3	535
J	02 4	S	225.0	291.0	3.0	5.8	535
J	03 4	S	224.0	286.6	2.5	4.7	534
J	04 4	S	233.0	290.5	3.5	7.3	528
J	06 4	S	227.0	285.8	4.5	6.2	535
J	07 4	S	223.8	285.2	6.0	7.4	534
J	08 4	S	230.5	295.8	2.5	5.4	535
J	09 4	S	226.0	291.3	3.5	6.2	578
J	10 4	S	230.0	287.5	2.0	3.5	545
J	11 4	S	228.0	291.3	3.5	5.4	578
J	22 4	H	240.0	301.3	2.5	4.7	535
J	23 4	H	230.5	299.0	3.0	1.9	534
J	24 4	H	239.0	305.0	3.0	4.7	535
J	25 4	H	238.3	307.5	3.0	10.4	563
J	26 4	H	233.5	303.0	4.2	6.6	535
J	27 4	H	232.0	299.3	2.2	4.3	535
J	30 4	H	235.0	306.5	4.5	5.8	535
J	31 4	H	232.0	298.0	3.0	10.6	535
J	32 4	H	238.8	306.3	4.5	9.0	535
J	33 4	H	230.0	290.9	2.0	2.7	535
J	34 4	H	229.1	294.7	3.0	6.7	535
J	35 4	H	226.9	299.3	2.5	3.2	534
J	36 4	H	221.8	296.3	4.5	8.1	534
J	37 4	H	230.5	285.8	2.0	3.1	534
J	61 4	C	234.8	287.5	2.0	2.8	535
J	63 4	C	232.5	294.8	3.0	5.0	535
K	02 4	S	229.5	299.3	4.5	10.0	535
K	03 4	S	229.0	282.5	3.0	11.1	534
K	04 4	S	225.0	284.5	3.0	8.1	528
K	06 4	S	220.8	282.5	3.5	5.4	534
K	07 4	S	227.9	291.0	3.0	10.3	535
K	08 4	S	235.2	299.2	4.5	9.3	534
K	09 4	S	233.1	299.8	3.5	11.5	563
K	10 4	S	227.3	292.0	6.0	12.2	555
K	11 4	S	228.0	291.8	6.5	19.6	535
K	22 4	H	237.5	293.8	1.0	3.1	534
K	23 4	H	229.5	293.5	2.5	3.9	535
K	24 4	H	239.3	302.5	4.0	6.6	535
K	25 4	H	239.2	305.8	3.0	8.6	535
K	26 4	H	229.0	295.8	2.0	6.6	535
K	27 4	H	231.0	293.8	2.0	2.7	535
K	30 4	H	239.0	306.0	4.5	9.6	535
K	31 4	H	232.0	297.8	2.5	4.3	535
K	32 4	H	235.0	297.5	2.0	2.7	535
K	33 4	H	231.5	289.8	3.5	5.8	535
K	34 4	H	228.0	300.5	3.0	9.9	534
K	35 4	H	218.0	291.5	2.5	4.3	535
K	36 4	H	220.0	295.0	3.0	8.9	535

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD.STR.KSI .25 OFF	ULT.STR KSI	% ELONG	% R.A.	SHR
K	37 4	H	286.3	289.0	2.9	4.6	524
	61 4	C	285.0	292.5	3.0	5.4	525
	63 4	C	291.5	295.3	3.0	4.3	525
L	02 4	S	223.0	285.7	4.0	8.1	525
	03 4	S	223.0	283.3	5.0	8.3	524
	04 4	S	226.0	291.5	5.5	10.0	524
	06 4	S	230.5	289.5	4.5	5.8	525
	07 4	S	219.5	287.3	1.0	1.1	525
	08 4	S	228.5	292.2	4.5	7.4	524
	09 4	S	233.9	299.8	5.0	10.8	523
	10 4	S	230.3	305.0	5.0	6.2	525
	11 4	S	235.0	282.5	1.2	2.7	525
	22 4	H	237.5	296.0	2.5	3.9	524
	23 4	H	227.0	285.3	3.0	5.3	525
	24 4	H	225.5	287.5	3.5	6.4	525
	25 4	H	232.0	305.0	5.2	8.5	525
	26 4	H	239.5	308.3	5.0	8.7	525
	27 4	H	232.3	300.0	2.2	5.1	525
	30 4	H	237.5	305.7	4.0	8.4	525
	31 4	H	234.1	304.4	3.0	5.6	525
	32 4	H	235.0	301.3	3.3	5.9	525
	33 4	H	239.5	292.3	2.0	5.3	525
	34 4	H	229.5	297.3	4.5	7.3	524
	35 4	H	223.3	288.8	1.5	2.7	525
	36 4	H	220.8	295.0	5.0	9.8	525
	37 4	N	228.0	297.5	5.5	10.0	524
	61 4	CC	230.5	288.1	2.0	2.0	525
	63 4	C	232.5	295.3	3.0	7.0	525
M	02 4	S	226.3	291.5	3.5	5.0	524
	03 4	S	231.5	294.8	7.5	15.6	524
	04 4	S	225.5	286.5	6.0	7.3	524
	06 4	S	227.0	286.8	5.5	11.3	524
	07 4	S	219.5	281.4	4.5	9.6	525
	08 4	S	222.5	290.0	6.0	9.7	524
	09 4	S	234.3	301.0	6.3	18.9	523
	10 4	S	228.0	296.0	5.2	10.0	525
	11 4	S	229.3	288.5	7.0	12.7	525
	22 4	H	241.0	307.5	2.0	2.3	524
	23 4	H	239.5	307.5	3.0	4.3	525
	24 4	H	228.3	287.5	2.5	4.3	525
	25 4	H	237.6	298.2	1.5	2.0	525
	26 4	H	233.1	298.0	6.0	12.3	525
	27 4	H	233.3	292.0	1.5	2.1	525
	30 4	H	239.5	304.5	6.0	19.4	525
	31 4	H	236.5	307.3	3.0	5.2	525
	32 4	H	235.3	294.8	2.0	3.9	525
	33 4	H	238.0	300.5	3.5	5.8	525
	34 4	H	222.5	295.5	6.0	7.0	524
	35 4	H	228.3	303.8	2.2	4.3	525
	36 4	H	222.3	295.0	5.5	6.6	525
	37 4	N	227.0	292.5	3.0	3.9	524
	61 4	CC	232.6	295.8	3.0	4.0	525
	63 4	C	228.5	299.3	3.5	6.6	525
N	02 4	S	247.5	285.3	3.0	7.0	525
	03 4	S	224.5	286.8	5.0	11.9	524
	04 4	S	222.3	285.3	5.0	8.5	520
	06 4	S	227.5	293.5	7.5	11.9	520
	07 4	S	229.5	294.8	4.5	8.9	525
	08 4	S	224.0	288.0	5.0	6.6	524
	09 4	S	227.3	291.9	5.0	5.6	524
	10 4	S	219.2	274.6	1.5	4.3	523
	11 4	S	232.0	294.3	4.0	4.3	525
	22 4	H	244.5	300.5	4.3	5.5	524
	23 4	H	226.5	288.0	2.0	2.7	525
	24 4	H	232.6	298.1	4.5	6.3	525
	25 4	H	236.3	307.1	3.0	2.8	525
	26 4	H	232.3	298.8	5.5	13.0	525
	27 4	H	224.5	290.0	3.0	5.4	525
	30 4	H	240.0	307.5	5.0	6.2	525
	31 4	H	234.5	300.5	4.5	9.2	525
	32 4	H	236.0	295.0	1.5	1.9	525
	33 4	H	231.5	296.0	3.5	5.9	525
	34 4	H	223.8	293.9	5.0	7.4	524
	35 4	H	228.3	300.0	2.5	4.7	525
	36 4	H	220.4	293.1	2.0	5.1	525

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	S ELONG	S R.A.	SWN
N	37 4	N	226.5	290.3	1.8	2.8	934
N	61 4	C	230.8	288.8	2.8	2.3	935
N	63 4	C	233.5	280.5	8	8	935
P	02 4	S	220.3	287.5	4.3	8.1	934
P	03 4	S	229.0	293.8	5.5	10.4	934
P	04 4	S	229.5	293.5	6.0	9.2	934
P	06 4	S	222.5	283.0	2.2	4.7	938
P	07 4	S	218.9	276.2	2.5	3.5	935
P	08 4	S	220.4	296.1	6.0	8.1	934
P	09 4	S	227.0	291.3	4.8	9.6	933
P	10 4	S	229.7	295.0	5.5	10.0	935
P	11 4	S	231.0	298.0	6.2	6.6	935
P	22 4	M	237.8	297.5	1.5	3.9	934
P	23 4	M	227.0	291.8	3.0	5.0	935
P	24 4	M		291.3	5.0	6.2	935
P	25 4	M	230.3	307.5	4.8	9.6	935
P	26 4	M	235.3	306.5	3.5	6.2	935
P	29 4	M	228.0	293.5	2.5	3.9	935
P	30 4	M	241.9	307.5	2.0	4.7	935
P	31 4	M	236.5	302.5	4.0	7.0	935
P	32 4	M	237.0	297.5	6.8	16.6	935
P	33 4	M	234.5	301.0	3.5	7.3	935
P	34 4	M	220.5	290.8	6.0	8.3	934
P	35 4	M	224.3	305.0	5.0	7.0	935
P	36 4	M	229.5	291.0	5.0	9.2	935
P	37 4	M	232.5	291.8	5.0	8.3	934
P	61 4	C	226.3	298.0	4.5	4.3	935
P	63 4	C	231.0	293.0	3.0	6.2	935
S	02 4	S	248.0	288.5	4.0	5.0	935
S	03 4	S	225.0	290.3	5.0	7.0	934
S	04 4	S	223.3	286.3	6.5	18.8	928
S	06 4	S	223.3	287.5	3.8	5.0	934
S	07 4	S	226.0	283.5	2.5	2.3	935
S	08 4	S	227.0	290.5	3.0	8.3	934
S	09 4	S	231.8	300.0	5.0	9.2	933
S	10 4	S	232.5	298.3	6.5	13.4	935
S	11 4	S	233.5	296.0	5.0	9.2	935
S	22 4	M	238.9	302.2	3.0	4.0	934
S	23 4	M	223.0	285.8	2.5	1.9	935
S	24 4	M	233.3	296.3	3.5	5.8	935
S	25 4	M	235.0	310.0	5.5	7.3	935
S	26 4	M	232.5	300.5	5.5	10.0	935
S	29 4	M	232.5	298.8	2.8	4.7	935
S	30 4	M	236.7	307.1	3.0	4.7	935
S	31 4	M	232.5	296.3	4.0	6.2	935
S	32 4	M	238.2	302.5	4.0	6.8	935
S	33 4	M	230.9	296.0	3.0	9.1	935
S	34 4	M	228.0	298.5	5.0	8.2	934
S	35 4	M	225.5	300.0	2.5	4.7	935
S	36 4	M	226.5	294.3	7.0	13.0	935
S	37 4	M	230.0	295.7	3.5	8.9	934
S	61 4	C	232.6	293.4	3.0	5.2	935
S	63 4	C	230.4	292.1	2.5	5.9	935
T	02 4	S	222.1	282.9	2.5	7.4	935
T	03 4	S	220.3	292.0	6.5	10.4	934
T	04 4	S	220.0	282.8	5.0	8.1	928
T	06 4	S	228.3	293.3	6.0	16.3	928
T	07 4	S	218.2	288.1	6.5	11.5	935
T	08 4	S	224.0	291.4	6.0	9.6	934
T	09 4	S	229.0	295.7	3.5	4.7	933
T	10 4	S	223.0	282.3	3.8	4.3	935
T	11 4	S	227.0	283.0	1.8	3.5	935
T	22 4	M	237.8	298.8	3.0	7.2	934
T	23 4	M	228.5	290.8	3.0	5.8	935
T	24 4	M	238.0	302.1	3.5	10.4	935
T	25 4	M	239.5	302.0	3.0	10.0	935
T	26 4	M	225.5	290.5	3.0	9.8	935
T	27 4	M	227.8	297.5	3.2	4.3	935
T	30 4	M	235.0	300.8	5.0	9.2	935
T	31 4	M	226.5	290.5	3.5	6.2	935
T	32 4	M	234.5	296.3	6.8	14.8	935
T	33 4	M	230.2	291.1	4.5	6.6	935
T	34 4	M	233.7	297.4	5.0	7.8	934
T	35 4	M	224.2	303.0	3.8	4.7	935
T	36 4	M	225.6	295.7	7.0	14.9	935

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	D/W
T	37 4	N	226.2	290.3	3.0	5.3	534
T	61 4	C	232.4	295.3	3.5	14.7	555
T	63 4	C	227.5	264.2	.8	2.0	555
V	02 4	S	225.0	283.3	4.0	7.3	555
V	03 4	S	225.0	284.0	2.0	5.4	534
V	04 4	S	225.8	292.5	5.0	8.5	528
V	06 4	S	226.0	286.0	5.8	10.7	534
V	07 4	S	227.5	292.8	3.0	4.7	555
V	08 4	S	223.5	290.5	7.0	14.5	534
V	09 4	S	231.7	297.0	3.0	5.1	563
V	10 4	S	225.0	264.0	1.2	2.3	555
V	11 4	S	239.3	295.3	5.5	12.2	555
V	22 4	H	232.5	300.0	3.0	7.7	555
V	23 4	H	232.5	296.8	2.0	3.5	555
V	24 4	H	228.0	290.0	3.5	4.3	555
V	25 4	H	232.0	293.8	6.0	12.6	555
V	28 4	H	228.1	292.4	5.5	10.8	555
V	29 4	H	224.3	285.7	1.5	3.6	555
V	30 4	H	232.5	293.3	3.5	7.7	555
V	31 4	H	228.0	292.3	3.0	5.8	555
V	32 4	H	232.9	298.0	6.3	11.2	555
V	33 4	H	228.5	289.5	3.0	4.7	555
V	34 4	H	223.0	293.2	5.0	7.8	534
V	35 4	H	222.5	296.3	2.5	4.7	555
V	36 4	H	225.0	294.8	6.0	9.6	555
V	37 4	H	223.7	289.2	3.8	5.9	534
V	61 4	C	239.1	294.5	2.0	3.2	555
V	63 4	C	232.5	295.0	1.5	2.3	555

SECTION 2

LONGITUDINAL TENSILE PROPERTIES OF
AIR MELT-DEGAS-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24342-V1)

**LONGITUDINAL TENSILE PROPERTIES
OF AIR MELT DEGAS-VACUUM ARC. REMELT
H 11 STEEL HEAT NO. W 24342-V1**

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% REA	BRIN
A	14 5	S	232.5	296.5	4.0	6.6	544
A	15 5	S	228.0	295.3	3.0	10.0	555
A	16 5	S	239.3	298.8	5.0	11.5	555
A	18 5	S	243.8	308.8	5.5	13.0	555
A	41 5	H	230.3	300.0	3.0	4.7	555
A	42 5	H	233.5	301.3	4.0	11.9	578
A	43 5	H	239.1	300.5	3.0	5.1	578
A	45 5	H	232.8	301.3	4.0	6.2	578
A	46 5	H	234.2	307.0	4.2	7.0	555
A	47 5	H	234.0	306.3	2.5	4.3	578
A	49 5	H	239.0	308.0	3.0	4.8	578
A	50 5	H	230.0	307.5	5.0	9.2	555
A	51 5	H	234.0	297.5	2.5	4.3	578
A	65 5	C	233.6	300.6	2.8	5.3	555
A	67 5	C	234.5	302.5	3.0	5.8	555
B	14 5	S	230.8	295.5	7.8	18.1	544
B	15 5	S	224.4	285.1	7.0	18.1	555
B	16 5	S	227.5	287.5	5.5	13.0	555
B	18 5	S	237.5	308.8	5.5	8.9	555
B	41 5	H	230.0	305.0	3.5	5.8	555
B	42 5	H	243.2	306.1	3.0	15.2	578
B	43 5	H	240.9	303.3	2.8	5.9	578
B	45 5	H	234.8	302.5	3.0	5.4	578
B	46 5	H	235.9	303.8	6.0	8.9	555
B	47 5	H	236.5	301.5	2.5	5.4	578
B	49 5	H	237.6	307.0	3.0	5.9	578
B	50 5	H	231.5	310.0	4.5	9.6	555
B	51 5	H	236.8	305.7	3.8	5.5	578
B	65 5	C	236.5	303.8	3.5	5.8	555
B	67 5	C	231.8	300.0	2.8	4.7	555
C	14 5	S	229.0	291.8	8.0	23.0	544
C	15 5	S	219.5	278.8	7.0	13.7	544
C	16 5	S	233.4	298.0	6.5	13.0	555
C	18 5	S	234.8	306.3	9.2	8.5	555
C	41 5	H	233.0	306.3	3.0	6.6	555
C	42 5	H	241.1	304.9	3.5	7.0	578
C	43 5	H	240.0	309.3	5.5	7.0	578
C	45 5	H	232.3	302.5	3.0	5.0	578
C	46 5	H	240.0	311.3	4.2	8.1	555
C	47 5	H	240.0	310.0	2.5	4.3	578
C	49 5	H	239.0	304.5	3.5	5.9	578
C	50 5	H	232.5	307.5	6.0	8.5	555
C	51 5	H	233.5	300.0	2.0	2.3	578
C	65 5	C	231.0	298.3	5.0	9.6	555
C	67 5	C	238.5	303.8	3.5	6.2	555
D	14 5	S	225.2	284.7	5.8	9.6	544
D	15 5	S	233.5	295.6	7.0	20.9	555
D	16 5	S	230.0	291.8	7.0	19.9	555
D	18 5	S	236.8	303.8	6.0	10.0	555
D	41 5	H	238.8	303.0	3.5	5.8	555
D	42 5	H	237.5	301.3	6.0	16.6	578
D	43 5	H	241.0	303.3	3.8	5.8	578
D	45 5	H	229.3	298.8	3.8	9.0	578
D	46 5	H	235.3	308.8	4.0	7.0	555
D	47 5	H	234.5	303.8	4.5	9.4	578
D	49 5	H	236.8	304.4	3.5	5.1	578
D	50 5	H	231.0	307.0	4.5	6.4	555
D	51 5	H	234.0	302.0	3.8	6.3	578
D	65 5	C	230.8	298.3	4.0	7.7	555
D	67 5	C	233.5	305.0	3.2	5.9	555
E	14 5	S	225.0	286.5	9.0	20.0	544
E	15 5	S	219.5	278.1	7.0	16.6	544
E	16 5	S	238.8	300.5	6.5	16.6	555
E	18 5	S	239.0	308.5	5.5	11.5	555
E	41 5	H	234.8	302.5	3.0	5.0	578
E	42 5	H	236.0	303.8	6.0	2.7	578
E	43 5	H	229.3	302.1	3.0	4.0	578
E	45 5	H	232.3	303.8	4.2	4.3	578
E	46 5	H	230.3	298.8	5.8	13.4	555
E	47 5	H	240.0	306.1	3.5	5.8	578

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	S ELONG	S REA.	BMW
E	49 5	M	230.6	309.4	3.5	6.3	578
	50 5	M	229.5	294.5	4.5	7.0	555
	51 5	M	236.0	303.8	3.3	4.7	578
	65 5	C	234.0	295.9	4.5	10.4	555
	67 5	C	231.0	305.0	4.0	10.4	555
H	14 5	S	224.3	288.8	7.0	14.1	544
	15 5	S	226.0	286.3	6.0	12.2	544
	16 5	S	225.0	287.3	6.5	14.3	555
	18 5	S	235.0	303.5	6.3	10.7	555
	41 5	M	233.8	303.8	3.2	5.0	555
	42 5	M	237.8	302.2	6.5	16.0	578
	43 5	M	237.5	298.0	5.0	8.5	578
	45 5	M	228.7	300.9	3.5	4.7	578
	46 5	M	230.5	301.3	5.0	12.2	555
	47 5	M	236.0	302.5	3.0	6.2	578
	49 5	M	227.3	298.2	2.5	6.6	578
	50 5	M	227.8	303.2	6.0	12.6	563
	51 5	M	238.5	306.8	3.8	5.0	578
	65 5	C	231.0	296.0	3.0	6.7	555
	67 5	C	233.0	305.0	4.0	7.7	555
I	14 5	S	222.0	282.0	6.0	13.7	544
	15 5	S	231.0	295.0	5.0	10.4	544
	16 5	S	239.0	299.8	5.0	7.7	555
	18 5	S	235.3	300.0	6.5	11.8	555
	41 5	M	234.5	303.8	3.2	4.3	555
	42 5	M	240.5	302.5	5.0	13.0	578
	43 5	M	235.0	297.1	2.8	4.7	578
	45 5	M	233.3	302.5	2.5	4.3	578
	46 5	M	232.0	302.5	3.8	7.0	555
	47 5	M	233.0	302.5	4.0	7.7	578
	49 5	M	242.2	314.3	9.0	6.0	578
	50 5	M	229.0	303.8	3.0	7.7	555
	51 5	M	235.3	300.2	3.5	7.0	578
	65 5	C	233.0	297.5	3.0	5.0	555
	67 5	C	229.3	300.0	4.2	6.6	555
J	14 5	S	222.5	283.5	5.5	10.0	544
	15 5	S	230.0	292.0	5.0	10.4	555
	16 5	S	233.5	299.8	6.5	10.4	555
	18 5	S	234.0	300.0	7.0	15.2	555
	41 5	M	230.3	300.0	3.9	5.8	555
	42 5	M	238.0	305.0	3.0	8.3	578
	43 5	M	239.0	299.5	3.5	7.0	578
	45 5	M	232.0	302.5	2.8	3.5	578
	46 5	M	233.8	308.8	4.0	6.6	555
	47 5	M	237.5	306.3	3.5	5.8	578
	49 5	M	231.5	302.0	4.0	7.4	578
	50 5	M	229.4	306.1	3.5	10.0	555
	51 5	M	233.3	297.0	3.0	5.5	578
	65 5	C	234.5	296.0	4.5	8.9	555
	67 5	C	228.3	296.3	4.0	6.2	555
K	14 5	S	220.8	281.1	5.5	13.8	544
	15 5	S	223.0	282.5	6.3	15.2	563
	16 5	S	232.5	303.5	5.5	10.4	555
	18 5	S	242.5	307.5	5.5	10.4	555
	41 5	M	235.8	303.8	3.2	5.0	578
	42 5	M	231.1	294.6	4.0	5.9	578
	43 5	M	235.0	297.5	2.5	4.7	555
	45 5	M	225.0	301.3	2.5	4.3	555
	46 5	M	235.3	305.0	4.0	9.0	555
	47 5	M	237.5	305.0	4.0	4.3	578
	49 5	M	237.4	302.1	3.0	6.3	578
	50 5	M	234.0	308.8	4.5	6.6	555
	51 5	M	235.9	300.9	3.0	4.2	555
	65 5	C	230.8	298.0	3.0	6.1	555
	67 5	C					555
L	14 5	S	230.5	294.2	5.5	10.8	544
	15 5	S	225.5	287.0	6.5	13.1	555
	16 5	S	230.3	292.5	4.0	5.8	555
	18 5	S	233.5	301.3	4.0	9.4	555
	41 5	M	233.0	302.5	2.8	4.3	578
	42 5	M	238.1	300.9	3.5	5.5	578
	45 5	M	237.0	302.0	3.5	7.0	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD. STR. KSI .2% OFF	ULT. STR KSI	% ELONG	% R.A.	EHN
L	46 5	M	233.6	304.6	5.2	8.9	555
	47 5	M	233.5	306.3	4.5	6.2	578
	49 5	M	238.2	300.0	2.4	2.5	578
	50 5	M	228.0	306.3	5.5	8.9	555
	51 5	M	235.1	300.0	3.3	6.9	555
	65 5	C	230.0	294.6	4.5	10.1	555
	67 5	C	227.5	298.8	4.0	5.4	555
M	14 5	S	230.0	293.3	8.5	23.7	544
	15 5	S	231.0	291.0	5.5	14.1	555
	16 5	S	232.3	293.8	5.5	11.1	555
	18 5	S	231.5	303.8	7.5	14.8	555
	41 5	M	235.5	302.5	5.0	11.9	578
	42 5	M	237.0	302.5	4.0	11.9	578
	43 5	M	239.8	299.0	4.3	8.9	555
	45 5	M	231.9	298.3	4.2	5.5	555
	46 5	M	234.3	302.1	6.0	11.6	555
	47 5	M	235.0	303.8	3.8	5.4	578
	49 5	M	239.0	302.0	3.8	4.7	578
	50 5	M	231.1	307.0	6.0	9.3	563
	51 5	M	236.3	303.1	3.3	5.5	555
	65 5	C	232.6	298.3	3.8	5.1	555
	67 5	C	232.6	298.3	3.8	5.1	555
N	14 5	S	229.5	290.1	5.0	11.2	544
	15 5	S	229.5	288.1	8.0	22.1	563
	16 5	S	232.3	294.5	7.8	19.2	555
	18 5	S	232.3	297.5	7.5	15.2	555
	41 5	M	235.5	300.0	4.5	6.6	578
	42 5	M	238.0	302.5	4.5	11.5	578
	43 5	M	239.0	301.3	4.0	6.6	555
	45 5	M	231.8	302.5	3.2	3.9	555
	46 5	M	234.6	303.8	5.5	10.7	555
	47 5	M	234.0	305.0	3.5	6.6	578
	49 5	M	239.1	299.5	2.5	4.7	578
	50 5	M	227.5	307.5	5.3	8.9	563
	51 5	M	233.5	300.8	2.3	4.7	555
	65 5	C	227.5	297.0	4.5	8.5	555
	67 5	C	224.3	298.8	4.5	7.3	555
P	14 5	S	225.0	286.0	2.5	4.3	544
	15 5	S	221.9	286.9	5.3	11.1	563
	16 5	S	226.5	289.8	8.0	15.6	555
	18 5	S	232.8	305.0	8.5	20.6	555
	41 5	M	233.0	305.0	3.5	6.2	578
	42 5	M	239.5	306.0	5.5	11.1	578
	43 5	M	237.3	300.4	3.5	5.9	555
	45 5	M	232.9	300.0	2.2	3.9	555
	46 5	M	231.8	303.8	6.0	10.7	555
	47 5	M	245.8	304.7	4.5	7.8	578
	49 5	M	239.0	304.5	5.5	8.2	578
	50 5	M	228.7	303.3	6.5	12.3	555
	51 5	M	230.5	295.8	2.8	4.0	555
	65 5	C	230.7	293.9	4.5	8.6	555
	67 5	C	230.3	298.8	5.2	7.0	555
S	14 5	S	220.8	281.5	8.2	16.6	544
	15 5	S	230.5	294.3	5.5	16.3	555
	16 5	S	227.0	294.5	5.5	11.9	555
	18 5	S	234.3	306.0	7.3	14.1	555
	41 5	M	230.5	301.3	3.5	6.6	578
	42 5	M	234.0	303.8	4.5	7.3	578
	43 5	M	236.0	299.7	4.5	7.6	555
	45 5	M	234.3	301.3	4.5	7.7	555
	46 5	M	232.5	306.3	5.8	11.9	555
	47 5	M	234.8	303.8	4.5	8.1	578
	49 5	M	234.6	303.0	4.0	6.0	578
	50 5	M	225.0	302.2	6.5	14.9	555
	51 5	M	232.9	299.7	4.3	8.4	555
	65 5	C	231.5	297.0	5.5	10.7	555
	67 5	C	227.3	300.0	5.0	6.2	555
T	14 5	S	229.3	294.5	5.0	8.5	544
	15 5	S	228.0	294.5	4.0	22.3	555
	16 5	S	230.8	296.3	7.0	16.6	555
	18 5	S	228.0	296.3	6.3	11.9	555
	41 5	M	234.0	300.0	6.0	9.2	578
	42 5	M	232.5	299.3	6.5	22.7	578

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	S ELONG	S R.O.A.	BHN
T	43 5	H	230.0	299.0	9.5	8.9	555
T	45 5	H	230.0	302.5	9.0	7.3	555
T	46 5	H	228.8	296.3	6.5	13.7	555
T	47 5	H	239.0	302.5	4.5	7.3	578
T	49 5	H	234.2	301.8	4.0	7.3	578
T	50 5	H	230.0	306.3	5.0	8.5	555
T	51 5	H	235.3	301.3	4.0	7.7	555
T	63 5	C	233.0	299.6	2.5	5.1	555
T	67 5	C	230.5	300.0	4.0	5.0	555
V	14 5	S	224.0	287.0	9.0	23.3	544
V	19 5	S	219.3	278.1	8.5	22.3	563
V	16 5	S	229.5	289.3	7.8	15.9	555
V	18 5	S	236.3	305.0	6.5	21.3	555
V	41 5	H	226.0	290.0	5.5	13.0	578
V	42 5	H	236.0	297.5	6.0	21.3	578
V	43 5	H	230.0	292.5	4.8	10.7	555
V	45 5	H	232.3	302.5	5.0	6.2	555
V	46 5	H	231.3	303.8	4.5	8.1	555
V	47 5	H	230.0	307.5	4.0	7.7	578
V	49 5	H	227.7	295.5	7.5	16.1	578
V	50 5	H	227.0	301.7	6.0	20.9	555
V	51 5	H	228.5	293.1	4.8	11.2	555
V	63 5	C	230.0	311.3	5.0	5.8	555
V	67 5	C	231.5	301.3	4.0	5.0	555

SECTION 3

**TRANSVERSE NOTCHED TENSILE PROPERTIES OF
AIR MELT-DEGAS-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24342-V1)**

**TRANSVERSE NOTCHED TENSILE PROPERTIES
OF AIR MELT-DEGAS-VACUUM ARC REMELT
H-11 STEEL HEAT NO. W-24342-V1**

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
A	1 4	S	235.3	0.83	555
	5 4	S	255.1	0.88	555
	12 4	S	262.2	0.88	555
	20 4	M	275.0	0.96	563
	21 4	M	166.0	0.56	555
	26 4	M	172.3	0.57	555
	27 4	M	203.9	0.70	555
	38 4	M	161.3	0.54	534
	39 4	M	227.8	0.79	534
	60 4	C	179.3	0.62	555
B	62 4	C	184.5	0.63	555
	1 4	S	146.0	0.51	555
	5 4	S	229.0	0.80	555
	12 4	S	260.9	0.90	555
	20 4	M	176.8	0.60	563
	21 4	M	195.5	0.67	555
	26 4	M	215.9	0.70	555
	27 4	M	153.3	0.55	555
	38 4	M	222.0	0.75	534
	39 4	M	194.8	0.66	534
C	60 4	C	236.0	0.77	555
	62 4	C	191.0	0.64	555
	1 4	S	232.5	0.80	555
	5 4	S	228.6	0.77	555
	12 4	S	182.5	0.63	555
	20 4	M	174.8	0.57	563
	21 4	M	146.8	0.50	555
	26 4	M	263.5	0.86	555
	27 4	M	196.6	0.67	555
	38 4	M	290.0	0.77	534
C	39 4	M	197.5	0.69	534
	60 4	C	208.7	0.71	555
	62 4	C	185.8	0.63	555
	1 4	S	241.5	0.83	555
	5 4	S	240.0	0.84	555
	12 4	S	242.7	0.82	555
	20 4	M	207.4	0.69	563
	21 4	M	131.8	0.49	555
	26 4	M	197.3	0.64	555
	27 4	M	169.0	0.57	555
D	38 4	M	219.0	0.74	534
	39 4	M	168.5	0.59	534
	60 4	C	141.3	0.48	555
	62 4	C	194.1	0.67	555
	1 4	S	242.2	0.83	555
	5 4	S	179.0	0.62	555
	12 4	S	280.5	0.96	555
	20 4	M	290.5	0.83	563
	21 4	M	152.0	0.52	555
	26 4	M	230.0	0.79	555
E	27 4	M	194.3	0.53	555
	38 4	M	241.0	0.82	534
	39 4	M	178.0	0.61	534
	60 4	C	202.8	0.70	555
	62 4	C	141.5	0.49	555
	1 4	S	280.4	0.94	555
	5 4	S	219.5	0.76	555
	12 4	S	192.8	0.67	555
	20 4	M	263.0	0.89	563
	21 4	M	186.5	0.64	555
H	26 4	M	246.5	0.82	555
	27 4	M	145.1	0.49	555
	38 4	M	233.4	0.78	534
	39 4	M	187.5	0.64	534
	60 4	C	197.3	0.67	555
	62 4	C	211.7	0.73	555
	1 4	S	299.5	0.83	555
I	5 4	S	229.8	0.81	555

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STK KSI	N/S U.S. RATIO	BHN
I	12 4	S	280.2	0.94	555
	20 4	M	222.0	0.77	563
	21 4	M	148.5	0.52	555
	26 4	M	205.5	0.66	555
	27 4	M	189.4	0.64	555
	38 4	M	244.5	0.63	543
	39 4	M	197.8	0.69	534
	60 4	C	147.7	0.50	555
	62 4	C	216.0	0.73	555
J	1 4	S	254.3	0.89	555
	5 4	S	242.0	0.85	555
	12 4	S	168.3	0.58	555
	20 4	M	210.0	0.69	563
	21 4	M	154.8	0.52	555
	26 4	M	203.0	0.66	555
	27 4	M	172.8	0.58	555
	38 4	M	144.2	0.49	534
	39 4	M	210.8	0.74	534
	60 4	CC	167.0	0.58	555
K	62 4	C	174.8	0.59	555
	1 4	S	240.5	0.85	555
	5 4	S	254.0	0.87	555
	12 4	S	272.0	0.93	555
	20 4	M	231.5	0.77	563
	21 4	M	193.0	0.52	555
	26 4	M	228.5	0.74	534
	27 4	M	173.4	0.59	555
	38 4	M	213.0	0.72	534
	39 4	M	182.1	0.63	534
L	60 4	CC	198.2	0.68	555
	62 4	C	179.8	0.61	555
	1 4	S	282.3	1.00	555
	5 4	S	230.5	0.90	555
	12 4	S	162.8	0.58	555
	20 4	M	232.7	0.81	563
	21 4	M	195.0	0.68	555
	26 4	M	287.0	0.94	534
	27 4	M	207.3	0.69	555
	38 4	M	213.0	0.72	534
M	39 4	M	277.0	0.93	534
	60 4	CC	166.0	0.58	555
	62 4	C	168.0	0.57	555
	1 4	S	187.5	0.64	555
	5 4	S	239.5	0.84	555
	12 4	S	229.4	0.80	555
	20 4	M	134.0	0.47	563
	21 4	M	241.5	0.79	555
	26 4	M	232.5	0.76	534
	27 4	M	164.5	0.56	555
N	38 4	M	209.9	0.71	534
	39 4	M	278.5	0.95	534
	60 4	CC	192.8	0.52	555
	62 4	C	194.0	0.65	555
	1 4	S	249.5	0.85	555
	5 4	S	251.5	0.85	555
	12 4	S	264.5	0.90	555
	20 4	M	210.0	0.70	563
	21 4	M	183.5	0.64	555
	26 4	M	210.5	0.68	534
P	27 4	M	213.4	0.74	555
	38 4	M	214.5	0.73	534
	39 4	M	113.2	0.39	534
	60 4	CC	181.3	0.63	555
	62 4	C	181.2	0.63	555
	1 4	S	233.5	0.79	555
	5 4	S	261.7	0.95	555
	12 4	S	242.2	0.81	555
	20 4	M	225.4	0.77	563
	21 4	M	191.0	0.65	555

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	SWH
P	39 4	H	255.5	0.88	534
P	60 4	C	178.5	0.61	535
P	62 4	C	172.4	0.59	535
S	1 4	S	261.6	0.90	535
S	5 4	S	257.5	0.91	535
S	12 4	S	243.9	0.82	535
S	20 4	H	233.5	0.79	563
S	21 4	H	189.0	0.66	535
S	26 4	H	270.5	0.88	534
S	27 4	H	167.5	0.56	535
S	38 4	H	148.0	0.50	534
S	39 4	H	227.0	0.77	534
S	60 4	C	168.6	0.57	535
S	62 4	C	236.0	0.81	535
T	1 4	S	239.0	0.82	535
T	5 4	S	249.0	0.86	535
T	12 4	S	257.5	0.91	535
T	20 4	H	202.5	0.67	563
T	21 4	H	120.2	0.41	535
T	26 4	H	265.0	0.88	534
T	27 4	H	177.0	0.59	535
T	38 4	H	248.0	0.84	534
T	39 4	H	202.2	0.70	534
T	60 4	C	189.3	0.64	535
T	62 4	C	204.5	0.78	535
V	1 4	S	219.2	0.77	535
V	5 4	S	254.0	0.87	535
V	12 4	S	194.1	0.66	535
V	20 4	H	209.3	0.71	563
V	21 4	H	140.0	0.47	535
V	26 4	H	231.5	0.79	534
V	27 4	H	172.7	0.60	535
V	38 4	H	239.5	0.81	534
V	39 4	H	215.5	0.75	534
V	60 4	C	176.3	0.60	535
V	62 4	C	192.8	0.65	535

SECTION 4

LONGITUDINAL NOTCHED TENSILE PROPERTIES OF
AIR MELT-DEGAS-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24342-V1)

(2-18)

**LONGITUDINAL NOTCHED TENSILE PROPERTIES
OF AIR MELT-DEGAS-VACUUM ARC REMELT
H-11 STEEL HEAT NO. H-24342-V1**

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	DHN
A	13 5	S	265.2	0.89	578
	17 5	S	300.5	0.97	555
	40 5	M	270.1	0.90	555
	44 5	M	272.5	0.89	578
	48 5	M	273.6	0.89	578
	64 5	C	212.5	0.71	563
	66 5	C	270.8	0.90	555
B	13 5	S	279.5	0.95	578
	17 5	S	265.5	0.87	555
	40 5	M	250.9	0.82	555
	44 5	M	284.0	0.93	578
	48 5	M	240.9	0.78	578
	64 5	C	227.7	0.78	563
	66 5	C	209.0	0.70	555
C	13 5	S	236.0	0.81	578
	17 5	S	271.0	0.88	555
	40 5	M	262.2	0.86	555
	44 5	M	219.9	0.71	578
	48 5	M	203.3	0.92	578
	64 5	C	202.6	0.68	563
	66 5	C	177.3	0.58	555
D	13 5	S	266.3	0.94	578
	17 5	S	276.0	0.91	555
	40 5	M	265.9	0.88	555
	44 5	M	256.0	0.83	578
	48 5	M	233.0	0.78	563
	64 5	C	208.0	0.68	555
	66 5	C			
E	13 5	S	255.5	0.89	578
	17 5	S	243.6	0.79	555
	40 5	M	263.0	0.87	555
	44 5	M	260.5	0.87	578
	48 5	M	271.0	0.92	578
	64 5	C	225.0	0.76	563
	66 5	C	237.3	0.78	555
H	13 5	S	286.0	0.99	578
	17 5	S	205.8	0.68	555
	40 5	M	279.3	0.92	555
	44 5	M	272.5	0.90	578
	48 5	M	247.1	0.81	578
	64 5	C	223.0	0.75	563
	66 5	C	222.0	0.73	555
I	13 5	S	277.0	0.98	578
	17 5	S	281.0	0.94	555
	40 5	M	234.5	0.78	555
	44 5	M	189.1	0.61	578
	48 5	M	276.8	0.91	578
	64 5	C	237.8	0.80	563
	66 5	C	214.7	0.72	555
J	13 5	S	286.5	1.01	578
	17 5	S	251.5	0.84	555
	40 5	M	241.2	0.79	555
	44 5	M	204.5	0.66	578
	48 5	M	253.4	0.89	578
	64 5	C	217.0	0.73	563
	66 5	C	193.6	0.68	555
K	13 5	S	244.0	0.87	578
	17 5	S	279.0	0.91	555
	40 5	M	233.1	0.79	555
	44 5	M	189.9	0.61	555
	48 5	M	227.4	0.74	578
	64 5	C	192.4	0.69	563
	66 5	C	231.5		555
L	13 5	S	260.5	0.89	578
	17 5	S	266.5	0.88	555

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
L	40 5	H	212.9	0.71	555
L	44 5	H	239.9	0.79	555
L	48 5	H	251.1	0.82	578
L	64 5	C	215.5	0.73	563
L	66 5	C	187.5	0.63	555
M	13 5	S	242.0	0.83	578
M	17 5	S	261.9	0.86	595
M	40 5	H	271.7	0.90	555
M	44 5	H	194.1	0.64	555
M	48 5	H	243.0	0.79	578
M	64 5	C	209.6	0.68	563
M	66 5	C	177.6		555
N	13 5	S	248.9	0.86	578
N	17 5	S	266.0	0.89	595
N	40 5	H	264.0	0.87	555
N	44 5	H	266.5	0.88	555
N	48 5	H	230.9	0.75	578
N	64 5	C	194.5	0.65	563
N	66 5	C	234.1	0.78	555
P	13 5	S	263.8	0.92	578
P	17 5	S	251.5	0.82	555
P	40 5	H	271.2	0.90	555
P	44 5	H	251.0	0.83	555
P	48 5	H	255.7	0.84	578
P	64 5	C	213.1	0.71	555
S	13 5	S	263.9	0.94	578
S	17 5	S	244.9	0.80	555
S	40 5	H	236.8	0.78	555
S	44 5	H	274.5	0.90	555
S	48 5	H	229.4	0.75	578
S	64 5	C	221.0	0.74	563
S	66 5	C	193.5	0.65	555
T	13 5	S	280.0	0.95	578
T	17 5	S	229.0	0.77	555
T	40 5	H	246.5	0.83	555
T	44 5	H	236.4	0.80	555
T	48 5	H	270.7	0.88	578
T	64 5	C	190.5	0.64	563
T	66 5	C	224.0	0.75	555
V	13 5	S	276.5	0.96	578
V	17 5	S	241.9	0.79	555
V	40 5	H	281.9	0.95	555
V	44 5	H	196.5	0.65	555
V	48 5	H	271.7	0.90	578
V	64 5	C	179.8	0.58	563
V	66 5	C	233.2	0.77	555

APPENDIX III

TENSILE PROPERTIES OF AIR MELT-DOUBLE VACUUM
ARC REMELT H-11 STEEL (HEAT NO. W-24341-2)

SECTION 1

**TRANSVERSE TENSILE PROPERTIES OF
AIR MELT-DOUBLE VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24341-2)**

(3-2)

**TRANSVERSE TENSILE PROPERTIES
OF AIR MELT DOUBLE VACUUM ARC REMELT
H 11 STEEL HEAT NO. W 24341-2**

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	SWH
A	02 4	S	223.0	295.0	4.0	11.1	555
A	03 4	S	236.5	300.5	3.0	5.9	555
A	04 4	S	223.9	300.6	6.0	12.8	555
A	06 4	S	227.3	295.0	1.5	3.9	555
A	07 4	S	227.5	297.8	6.0	13.4	555
A	08 4	S	230.0	290.9	3.5	5.1	534
A	09 4	S	230.0	296.3	4.5	8.5	534
A	10 4	S	233.1	299.9	5.5	5.9	555
A	11 4	S	231.1	299.1	1.0	1.6	534
A	22 4	M	228.8	300.0	2.5	4.7	555
A	23 4	M	235.6	293.8	.5	.8	555
A	24 4	M	225.3	293.8	3.3	5.4	534
A	25 4	M	230.0	296.3	2.5	5.4	534
A	28 4	M	221.5	292.5	3.0	5.0	555
A	29 4	M	226.0	279.0	2.0	3.9	555
A	30 4	M	230.8	293.8	2.5	6.2	555
A	31 4	M	240.0	301.3	3.0	5.8	534
A	32 4	M	217.0	247.0	.5	2.0	555
A	33 4	M	229.3	292.5	2.0	4.3	555
A	34 4	M	221.0	287.5	2.5	5.8	555
A	35 4	M	235.0	297.5	1.9	3.1	555
A	36 4	M		222.5	.5	1.1	555
A	37 4	M	239.0	284.3	1.5	2.3	555
A	61 4	C	227.0	285.0	1.5	3.1	555
A	63 4	C	233.0	275.8	1.0		555
B	02 4	S	215.8	292.5	3.0	4.7	555
B	03 4	S	231.2	282.0	2.0	2.4	555
B	04 4	S	233.3	298.8	3.0	5.4	555
B	06 4	S	232.5	305.0	4.5	7.7	555
B	07 4	S	229.8	294.3	1.8	4.7	555
B	08 4	S	233.7	296.1	2.5	3.2	534
B	09 4	S	221.5	289.5	4.5	8.5	534
B	10 4	S	228.5	296.2	5.3	10.1	555
B	11 4	S	230.5	293.2	6.5	5.9	534
B	22 4	M	233.3	302.5	3.5	7.0	555
B	23 4	M	231.5	293.0	2.0	3.9	555
B	24 4	M	223.3	292.5	3.3	5.6	534
B	25 4	M	231.8	302.5	2.0	4.7	555
B	28 4	M	222.2	288.7	1.5	3.5	555
B	29 4	M	235.8	296.4	2.0	2.8	555
B	30 4	M	224.3	277.0	.5	1.4	555
B	31 4	M	224.5	295.0	2.8	4.7	534
B	32 4	M	231.8	296.9	4.0	3.6	555
B	33 4	M	228.0	290.0	2.0	4.7	555
B	34 4	M	227.5	298.3	2.5	4.3	555
B	35 4	M	225.5	293.8	3.0	6.2	555
B	36 4	M	232.5	292.8	.5	1.9	555
B	37 4	M	228.5	289.4	2.0	3.6	555
B	61 4	C	226.5	291.3	2.0	3.9	555
B	63 4	C	225.8	290.0	1.5	2.7	555
C	02 4	S	220.1	298.5	3.0	6.3	555
C	03 4	S	241.2	302.0	3.5	7.0	555
C	04 4	S	223.0	280.0	1.0	2.0	555
C	06 4	S	227.5	253.3	.5	2.7	555
C	07 4	S	220.3	275.5	1.3	2.7	555
C	08 4	S	237.2	254.1	1.0	1.6	534
C	09 4	S	229.8	275.5	3.5	6.2	534
C	10 4	S	251.0	310.0	3.5	5.8	555
C	11 4	S	234.7	308.4	6.5	8.2	534
C	22 4	M	229.3	298.8	4.0	5.8	555
C	23 4	M	234.3	296.2	1.0	2.7	555
C	24 4	M	220.8	287.5	1.8	3.1	534
C	25 4	M	221.8	267.5	1.0	3.1	555
C	28 4	M	216.8	277.5	2.3	3.6	555
C	29 4	M	231.6	288.5	2.0	4.0	555
C	30 4	M	223.2	282.5	1.5	4.3	555
C	31 4	M	226.3	262.3	.5	1.9	534
C	32 4	M	216.9	266.0	1.5	2.0	555
C	33 4	M	224.5	283.8	2.5	3.1	555
C	34 4	M	214.4	277.3	2.0	3.6	555
C	35 4	M	229.5	296.3	2.5	4.3	555
C	36 4	M	221.0	289.3	4.0	5.0	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD, STR, KSI .2% OFF	ULT, STR KSI	% ELONG	% R.A.	BMW
C	37 4	H	240.5	291.2	1.5	3.2	555
	61 4	C	228.5	249.0	.3	.8	555
	63 4	C	229.8	292.5	2.0	4.3	555
D	02 4	S	217.8	263.2	2.5	4.7	555
	03 4	S		188.5		.4	555
	04 4	S	216.8	278.0	1.0	3.8	555
	06 4	S	225.0	296.3	1.8	3.1	555
	07 4	S	227.0	291.5	4.5	9.1	555
	08 4	S	221.1	287.2	2.0	3.1	534
	09 4	S	227.0	229.2	.5	2.0	534
	10 4	S	226.5	272.0	1.5	2.7	555
	11 4	S	225.0	283.2	2.0	4.3	534
	22 4	H	228.0	276.3	1.5	4.7	555
	23 4	H	234.0	303.8	2.5	3.9	555
	24 4	H	221.5	285.5	2.9	3.9	534
	25 4	H	226.3	298.8	2.0	3.9	555
	26 4	H	228.5	270.0	1.0	1.9	555
	29 4	H	241.9	300.4	2.0	2.4	555
	30 4	H	230.3	301.3	2.5	3.9	555
	31 4	H	228.3	287.5	2.8	5.4	534
	32 4	H	220.5	285.4	2.5	5.5	555
	33 4	H	227.1	291.0	4.5	4.4	555
	34 4	H	224.9	291.2	2.0	3.9	555
	35 4	H	223.0	288.1	4.5	6.7	555
	36 4	H	223.5	289.0	1.5	3.5	555
	37 4	H	232.1	294.9	1.5	4.0	555
	61 4	C	230.5	301.0	2.5	9.0	555
	63 4	C	230.5	297.3	1.5	1.6	555
E	02 4	S	217.0	289.6	2.5	4.8	555
	03 4	S	233.5	297.3	3.5	7.7	555
	04 4	S	225.3	297.0	4.0	5.1	555
	06 4	S	227.3	295.8	3.0	5.9	555
	07 4	S	227.5	293.3	2.0	3.1	555
	08 4	S	226.0	291.3	2.0	4.4	534
	09 4	S	225.0	295.5	3.2	6.2	534
	10 4	S	229.5	295.8	2.0	3.1	555
	11 4	S	227.1	299.3	5.5	9.3	534
	22 4	H	235.0	296.3	1.5	3.5	555
	23 4	H	239.0	293.5	1.0	1.1	555
	24 4	H	220.8	287.5	1.8	3.9	534
	25 4	H	231.2	299.0	2.5	3.4	534
	28 4	H	229.3	297.5	2.5	4.7	555
	29 4	H	236.5	288.0	1.5	1.9	555
	30 4	H	228.5	295.0	2.0	4.3	555
	31 4	H	231.5	297.3	3.0	5.0	534
	32 4	H	230.0	281.8	2.0	2.7	555
	33 4	H	235.1	298.9	3.0	2.0	555
	34 4	H	224.5	296.1	3.0	2.8	555
	35 4	H	237.0	283.8	1.0	1.9	555
	36 4	H	231.5	306.3	3.0	3.9	555
	37 4	H	238.6	290.0	1.0	.8	555
	61 4	C	230.7	274.2	.8	2.8	555
	63 4	C					555
H	02 4	S	220.5	292.5	2.5	3.9	555
	03 4	S	235.5	294.0	2.0	5.1	555
	04 4	S	221.3	288.8	1.5	4.7	555
	06 4	S	227.5	290.0	2.0	3.5	555
	07 4	S	224.5	289.5	2.0	4.3	555
	08 4	S	229.5	283.4	2.0	4.7	534
	09 4	S	221.0	284.8	1.8	4.4	534
	10 4	S	230.5	292.3	1.5	3.5	555
	11 4	S	231.9	284.9	1.0	3.2	534
	22 4	H	231.3	296.3	2.0	3.9	555
	23 4	H	235.0	290.3	2.5	8.9	555
	24 4	H	231.8	300.0	2.3	3.9	534
	25 4	H	235.3	298.8	1.5	3.1	534
	26 4	H	234.5	298.8	2.3	3.9	555
	29 4	H	234.5	299.0	3.5	4.3	555
	30 4	H	233.5	305.0	3.0	3.9	555
	31 4	H	234.2	269.3	.5	1.6	534
	32 4	H	228.7	294.9	2.0	3.1	555
	33 4	H	230.0	295.8	1.5	2.0	555
	34 4	H	232.5	295.0	2.0	3.9	555
	35 4	H	236.5	285.0	1.0	2.7	555
	36 4	H	230.0	292.5	2.0	3.5	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI ,% OFF	ULT STR KSI	% ELONG	% R.A.	BHN
H	37 4	H	234.8	278.8	1.0	4	555
H	61 4	C	227.5	288.0	2.0	1.1	555
H	63 4	C	228.0	282.5	1.5	1.1	555
I	02 4	S	215.5	290.0	2.0	5.0	555
I	03 4	S	228.5	287.1	2.5	3.2	555
I	04 4	S	221.8	275.0	1.0	3.1	555
I	06 4	S	229.9	295.8	1.5	3.6	555
I	07 4	S	232.3	296.3	1.5	3.5	555
I	08 4	SS	232.1	297.5	3.0	4.0	534
I	09 4	S	227.0	266.0	.5	2.3	534
I	10 4	S	228.8	300.0	3.0	6.6	555
I	11 4	S	230.5	295.1	2.0	3.2	534
I	22 4	H	233.5	305.0	2.0	4.3	555
I	23 4	H	231.5	279.3	1.5	1.1	555
I	24 4	H	228.3	293.1	1.0	4.7	534
I	25 4	H	230.5	292.5	1.5	3.9	555
I	28 4	H	227.0	282.9	.8	2.3	555
I	29 4	H	246.1	297.2	1.5	3.6	555
I	30 4	H	231.0	297.5	1.0	4.3	555
I	31 4	H	229.2	291.3	2.0	3.6	534
I	32 4	H	230.9	287.1	1.5	2.8	555
I	33 4	H	236.6	285.9	1.5	1.2	555
I	34 4	H	227.0	308.8	5.0	7.3	555
I	35 4	H	245.0	301.3	2.0	2.3	555
I	36 4	H	236.0	310.0	2.0	3.1	555
I	37 4	H	228.0	288.0	1.5	2.4	555
I	61 4	C	230.5	300.0	2.5	4.7	555
I	63 4	C	209.5	282.5	2.5	5.0	555
J	02 4	S	222.5	278.9	1.5	3.2	555
J	03 4	S	227.5	267.0	1.0	2.3	555
J	04 4	S	227.3	277.8	1.0	2.7	555
J	06 4	S	233.3	297.5	1.5	3.1	555
J	07 4	S	232.3	285.5	1.0	3.9	555
J	08 4	S	227.0	292.4	2.0	5.1	534
J	09 4	S	230.5	280.0	1.0	3.1	534
J	10 4	S	232.0	298.0	2.5	4.3	555
J	11 4	S	234.0	296.0	3.0	5.5	534
J	22 4	H	235.0	297.5	1.5	4.3	555
J	23 4	H	239.1	307.1	2.0	2.4	555
J	24 4	H	224.5	295.0	2.5	5.0	534
J	25 4	H	228.3	298.8	3.0	4.7	555
J	26 4	H	226.7	285.1	1.5	3.5	555
J	29 4	H	230.0	282.8	1.0	3.1	555
J	30 4	H	223.8	281.6	1.5	2.3	555
J	31 4	H	229.3	287.0	1.8	3.9	534
J	32 4	H	221.6	283.3	2.0	5.9	555
J	33 4	H	226.0	261.8	.5	.4	555
J	34 4	H	225.0	292.5	2.5	3.5	555
J	35 4	H	219.5	283.8	3.2	5.4	555
J	36 4	H	234.0	307.5	2.0	3.1	555
J	37 4	H	224.5	277.0	1.5	3.1	555
J	61 4	C	223.1	279.8	1.3	4.4	555
J	63 4	C	228.0	298.8	2.0	4.7	555
K	02 4	S	222.5	285.8	1.0	2.3	555
K	03 4	S	224.0	295.0	2.5	6.2	555
K	04 4	S	230.0	291.7	2.0	3.9	555
K	06 4	S	228.8	292.0	1.8	4.4	555
K	07 4	S	235.3	301.2	1.8	2.8	555
K	08 4	S	232.1	302.4	3.8	6.6	534
K	09 4	S	228.3	286.5	1.0	1.9	534
K	10 4	S	228.5	294.0	2.0	3.9	578
K	11 4	S	227.0	292.5	2.0	5.4	555
K	22 4	H	233.5	303.8	2.5	5.0	578
K	23 4	H	230.0	286.5	2.0	2.3	555
K	24 4	H	223.9	283.8	1.0	2.8	555
K	25 4	H	225.0	295.0	1.8	5.0	555
K	26 4	H	233.5	276.3	.8	2.3	555
K	29 4	H	237.8	298.4	1.5	2.8	555
K	30 4	H	224.0	270.5	1.0	2.3	555
K	31 4	H	230.3	273.3	1.0	2.7	578
K	32 4	H	224.2	289.2	2.0	2.8	555
K	33 4	H	232.1	279.1	1.5	2.8	555
K	34 4	H	221.0	274.0	1.0	4.3	555
K	35 4	H	227.0	273.8	1.0	2.3	555
K	36 4	H	221.0	287.3	2.0	2.7	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .28 OFF	ULT STR KSI	% ELONG	% R.A.	DIN
K	37 4	H	225.0	292.3	2.5	6.2	555
K	61 4	C	219.0	284.0	1.5	1.9	555
K	63 4	C	229.0	299.8	2.0	3.9	555
L	02 4	S	232.0	285.5	1.5	2.0	555
L	03 4	S	227.3	299.5	3.0	4.7	555
L	04 4	S	231.5	300.0	3.0	4.7	555
L	06 4	S	227.8	295.0	1.5	3.9	555
L	07 4	S	226.0	290.0	2.0	3.5	555
L	08 4	S	222.8	280.8	1.3	2.8	534
L	09 4	S	231.8	295.5	2.2	4.3	534
L	10 4	S	234.3	295.5	1.5	3.5	578
L	11 4	S	234.0	302.8	1.5	1.4	555
L	22 4	H	224.3	285.0	1.5	3.5	578
L	23 4	H	230.4	285.9	2.0	4.0	555
L	24 4	H	223.0	294.4	3.0	5.1	555
L	25 4	H	221.0	273.7	.5	2.3	555
L	26 4	H	225.5	264.3	.3	1.4	555
L	29 4	H	244.8	309.0	1.5	2.8	555
L	30 4	H	230.0	298.8	3.0	5.0	555
L	31 4	H	232.3	289.5	.8	2.7	578
L	32 4	H	221.5	285.8	2.0	3.2	555
L	33 4	H	229.6	287.1	1.5	2.0	555
L	34 4	H	222.2	280.6	1.5	3.0	555
L	35 4	H	226.0	287.3	2.0	3.1	555
L	37 4	H	275.0	292.0	2.5	4.7	555
L	61 4	C	228.5	297.5	2.0	3.1	555
L	63 4	C	237.1	300.8	2.5	3.2	555
M	02 4	S	221.8	295.0	2.8	5.0	555
M	03 4	S	222.8	277.5	.8	1.9	555
M	04 4	S	220.0	293.7	3.0	8.6	555
M	06 4	S	226.6	298.2	1.5	2.8	555
M	07 4	S	231.0	285.0	1.0	3.1	555
M	08 4	S	231.3	295.0	1.8	6.8	534
M	09 4	S	228.0	297.0	2.8	5.0	534
M	10 4	S	231.1	278.8	1.0	2.8	578
M	11 4	S	229.0	297.2	2.3	5.3	555
M	22 4	H	230.0	292.5	2.0	5.0	578
M	23 4	H	230.0	290.9	1.9	3.9	555
M	24 4	H	222.8	279.3	1.3	2.8	555
M	25 4	H	225.0	295.0	2.0	3.1	555
M	26 4	H	228.8	277.2	.8	2.4	555
M	29 4	H	241.8	292.9	1.5	2.4	555
M	30 4	H	230.7	297.1	2.5	5.5	555
M	31 4	H	224.5	288.1	3.0	5.5	578
M	32 4	H	236.1	309.6	2.0	4.4	555
M	33 4	H	236.8	287.2	1.0	4.0	555
M	34 4	H	236.6	307.1	2.5	4.0	555
M	35 4	H	235.3	288.8	1.5	2.3	555
M	36 4	H	232.5	295.0	1.0	3.9	555
M	37 4	H	239.0	295.5	2.0	1.4	555
M	61 4	C	230.8	293.0	1.5	3.1	555
M	63 4	C	233.0	298.8	2.5	3.5	555
N	02 4	S	225.0	306.3	2.0	5.4	555
N	03 4	S	229.1	294.3	1.5	2.5	555
N	04 4	S	223.3	291.6	2.0	4.3	555
N	06 4	S	226.8	298.8	3.0	5.8	555
N	07 4	S	227.3	299.3	2.5	3.9	555
N	08 4	S	228.0	293.1	1.8	3.6	534
N	09 4	S	224.0	276.5	.8	1.1	534
N	10 4	S	208.8	289.5	1.5	2.3	578
N	11 4	S	233.5	291.1	1.5	3.0	555
N	22 4	H	236.8	307.5	2.0	3.9	578
N	23 4	H	233.5	286.3	1.5	1.4	555
N	24 4	H	231.8	293.8	1.5	3.1	555
N	25 4	H	232.0	292.2	1.5	3.9	555
N	26 4	H	231.8	297.5	1.5	3.9	555
N	29 4	H	227.0	286.5	3.0	3.1	555
N	30 4	H	234.3	307.5	2.8	5.4	555
N	31 4	H	227.2	283.2	1.0	2.8	578
N	32 4	H	226.0	294.8	2.5	7.0	555
N	33 4	H	237.0	286.1	1.0	2.4	555
N	34 4	H	231.5	300.3	3.0	3.1	555
N	35 4	H	231.3	283.7	1.0	.7	555
N	36 4	H	231.5	303.8	3.0	5.0	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	BRN
N	37 4	M	231.5	288.8	2.0	3.1	555
N	61 4	C	224.8	282.3	1.0	1.9	555
N	63 4	C	227.5	295.9	3.5	4.4	555
P	02 4	S	220.5	267.5	.5	1.9	555
P	03 4	S	226.3	297.5	4.0	7.7	555
P	04 4	S	230.5	297.8	3.5	6.3	555
P	06 4	S	229.7	280.0	1.0	3.6	555
P	07 4	S	233.3	291.3	1.5	2.3	555
P	08 4	S	227.8	295.0	2.5	3.1	534
P	09 4	S	223.7	294.8	5.2	10.1	534
P	10 4	S	224.5	295.0	2.5	5.0	578
P	11 4	S	229.9	265.6	.8	1.2	555
P	22 4	M	234.0	295.0	2.0	4.7	578
P	23 4	M	277.5	289.5	2.0	5.4	555
P	24 4	M	227.3	289.5	1.5	4.3	555
P	25 4	M	235.5	302.5	2.8	4.3	555
P	26 4	M	229.0	295.0	1.8	2.3	555
P	27 4	M	237.5	295.5	3.5	4.7	555
P	28 4	M	225.3	287.5	1.8	2.7	555
P	31 4	M	234.8	299.3	2.3	3.1	578
P	32 4	M	230.5	296.5	2.0	3.1	555
P	33 4	M	230.5	287.1	1.5	2.4	555
P	34 4	M	226.8	291.3	1.0	2.7	555
P	35 4	M	228.9	292.4	1.5	2.3	555
P	36 4	M	228.5	296.0	2.5	4.7	555
P	37 4	M	230.5	297.5	3.0	5.0	555
P	61 4	C	223.7	287.5	1.5	2.4	555
P	63 4	C	223.9	284.0	1.5	2.3	555
S	02 4	S	227.0	298.8	2.0	3.5	555
S	03 4	S	227.0	275.0	.2	.8	555
S	04 4	S	226.3	300.2	3.5	7.4	555
S	06 4	S	226.5	289.3	2.0	4.4	555
S	07 4	S	226.0	296.0	3.0	5.3	555
S	08 4	S	228.0	295.7	2.5	4.4	534
S	09 4	S	228.3	280.0	1.0	3.5	534
S	10 4	S	236.5	305.0	3.5	6.6	578
S	11 4	S	232.3	302.9	2.5	3.9	555
S	22 4	M	231.5	300.1	2.5	4.7	578
S	23 4	M	231.0	271.5	1.5	1.9	555
S	24 4	M	230.8	295.0	2.2	3.5	555
S	25 4	M	227.8	297.5	2.0	4.3	555
S	26 4	M	236.4	308.1	4.3	6.7	555
S	27 4	M	237.0	285.6	2.0	1.5	555
S	30 4	M	233.3	301.3	1.5	2.7	555
S	31 4	M	233.3	284.8	1.5	3.9	578
S	32 4	M	229.0	286.6	2.0	4.7	555
S	33 4	M	235.0	302.9	3.0	5.5	555
S	34 4	M	229.8	298.8	4.0	7.3	555
S	35 4	M	236.3	304.6	2.0	5.1	555
S	36 4	M	228.5	298.3	2.5	7.0	555
S	37 4	M	234.3	296.8	2.3	3.5	555
S	61 4	C	219.0	252.5	1.0	1.9	555
S	63 4	C	225.5	293.8	2.0	1.4	555
T	02 4	S	219.8	300.0	2.5	4.3	555
T	03 4	S	227.3	292.5	1.0	1.9	555
T	04 4	S	225.0	290.0	2.0	3.9	555
T	06 4	S	233.8	302.2	4.0	7.0	555
T	07 4	S	232.8	303.8	6.0	13.0	555
T	08 4	S	230.8	296.3	2.0	4.3	534
T	09 4	S	227.5	294.5	1.5	1.9	534
T	10 4	S	236.5	292.5	1.0	.8	578
T	11 4	S	232.8	287.5	1.3	2.3	555
T	22 4	M	234.0	307.5	2.0	2.7	578
T	23 4	M	236.0	293.4	1.0		555
T	24 4	M	229.3	297.5	2.5	5.4	555
T	25 4	M	234.5	295.0	.5	.8	555
T	26 4	M	237.9	311.0	2.8	4.7	555
T	27 4	M	237.1	286.3	1.5	2.0	555
T	30 4	M	247.3	309.3	1.3	1.4	555
T	31 4	M	233.9	295.8	3.0	7.0	578
T	32 4	M	232.1	282.2	1.9	2.8	555
T	33 4	M	237.0	292.5	1.5	2.0	555
T	34 4	M	229.8	295.1	2.5	4.5	555
T	35 4	M	237.9	302.5	2.0	2.7	555
T	36 4	M	233.9	307.5	3.5	5.0	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD.STR.KSI .2% OFF	ULT.STR KSI	% ELONG	% R.O.A.	DIN
T	37 4	H	240.8	302.5	2.0	3.9	555
T	61 4	C	229.3	294.0	2.5	3.5	555
T	63 4	C	229.3	299.0	2.5	5.0	555
V	02 4	S	227.8	296.3	1.5	3.9	555
V	03 4	S	228.5	290.0	1.2	3.1	555
V	04 4	S	225.0	302.5	3.0	5.8	555
V	06 4	S	244.3	312.5	2.0	3.9	555
V	07 4	S	236.5	300.0	3.0	6.2	555
V	08 4	S	234.2	305.8	3.8	5.1	534
V	09 4	S	226.8	296.5	3.8	5.0	534
V	10 4	S	226.5	301.6	5.5	6.2	578
V	11 4	S	232.5	303.8	6.0	11.1	555
V	22 4	H	237.1	308.4	2.5	4.7	578
V	23 4	H	239.1	289.3	1.5	2.4	555
V	24 4	H	228.3	298.3	2.5	5.1	555
V	25 4	H	243.0	312.5	2.5	3.9	555
V	28 4	H	237.5	308.8	3.0	4.3	555
V	29 4	H	242.5	308.8	2.0	1.9	555
V	30 4	H	246.0	315.5	1.5	2.7	555
V	31 4	H	238.0	312.5	2.8	5.8	578
V	32 4	H	242.0	314.6	2.0	4.3	555
V	33 4	H	235.6	292.0	1.5	4.4	555
V	34 4	H	244.0	313.8	3.0	6.6	555
V	35 4	H	238.0	305.0	2.0	3.5	555
V	36 4	H	242.2	317.1	2.0	3.6	555
V	37 4	H	233.2	300.0	3.5	5.1	555
V	61 4	C	232.2	300.4	2.0	3.1	555
V	63 4	C	235.0	309.0	2.5	4.3	555

SECTION 2

LONGITUDINAL TENSILE PROPERTIES OF
AIR MELT-DOUBLE VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24341-2)

**LONGITUDINAL TENSILE PROPERTIES
OF AIR MELT-DOUBLE VACUUM ARC REMELT
H 11 STEEL HEAT NO. W 24341-2**

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD. STR. KSI .2% OFF	ULT. STR KSI	% ELONG	% R.A.	BMW
A	14 5	S	224.3	292.5	2.0	9.5	555
A	15 5	S	220.2	293.2	3.9	6.7	555
A	16 5	S	221.6	294.1	4.0	9.5	555
A	18 5	S	233.6	305.9	5.5	10.8	555
A	41 5	H	232.5	302.8	3.0	6.2	555
A	42 5	H	227.5	306.3	4.0	6.2	534
A	43 5	H	237.0	296.5	4.5	9.2	555
A	45 5	H	224.3	297.5	4.2	9.6	555
A	46 5	H	224.8	302.0	5.0	7.0	555
A	47 5	H	230.8	306.3	3.0	6.7	534
A	49 5	H	226.0	303.0	2.0	5.5	555
A	50 5	H	227.5	298.4	6.0	14.6	555
A	51 5	H C	236.5	307.5	3.2	6.7	578
A	65 5	C	229.0	307.5	4.5	7.8	555
A	67 5	C	232.0	300.0	2.0	4.7	534
B	14 5	S	233.3	306.3	5.5	8.9	555
B	15 5	S	216.3	296.3	6.2	12.6	555
B	16 5	S	220.5	296.0	6.0	9.6	555
B	18 5	S	232.8	304.8	4.5	9.8	555
B	41 5	H	231.1	293.1	4.0	10.1	555
B	42 5	H	228.7	296.1	5.0	8.2	534
B	43 5	H	232.0	295.5	4.5	10.7	555
B	45 5	H	222.1	295.9	4.5	8.6	555
B	46 5	H	223.3	301.0	5.5	10.4	555
B	47 5	H	224.8	297.5	4.0	8.1	534
B	49 5	H	226.5	295.0	2.0	3.9	555
B	50 5	H	224.0	292.0	5.8	12.7	555
B	51 5	H C	221.9	293.1	4.2	9.7	578
B	65 5	C C	232.5	298.3	3.5	9.0	555
B	67 5	C	225.0	294.0	3.0	4.4	534
C	14 5	S	235.0	308.8	2.5	5.0	555
C	15 5	S	231.3	292.5	1.0	1.1	555
C	16 5	S	229.7	302.0	5.3	11.6	555
C	18 5	S	229.5	302.5	3.5	3.5	555
C	41 5	H	229.5	297.0	4.5	9.3	555
C	42 5	H	223.3	287.5	2.0	3.9	534
C	43 5	H	238.1	308.1	5.5	10.4	555
C	45 5	H	225.5	306.3	4.0	7.0	555
C	46 5	H	218.8	290.0	4.0	6.6	555
C	47 5	H	225.5	305.0	5.5	11.1	534
C	49 5	H	225.5	300.0	5.0	9.6	555
C	50 5	H	220.8	288.1	2.8	4.7	555
C	51 5	H	221.8	298.8	6.5	13.4	578
C	65 5	C C	237.0	308.8	4.5	10.0	555
C	67 5	C	235.8	302.5	4.8	10.0	534
D	14 5	S	226.0	293.8	2.0	4.7	555
D	15 5	S	220.7	287.1	1.8	2.0	555
D	16 5	S	221.3	287.5	3.0	6.2	555
D	18 5	S	228.5	291.1	2.0	5.9	555
D	41 5	H	225.5	298.5	4.0	6.6	555
D	42 5	H	230.5	299.0	4.5	9.2	534
D	43 5	H	234.4	303.2	3.8	5.8	534
D	45 5	H	233.4	306.5	4.0	6.8	555
D	46 5	H	225.0	301.0	5.5	10.8	555
D	47 5	H	234.2	305.7	2.8	4.0	534
D	49 5	H	227.0	304.0	2.0	5.5	555
D	50 5	H	220.3	295.0	2.8	5.0	555
D	51 5	H	224.3	300.0	3.2	5.4	578
D	65 5	C	226.0	296.0	4.0	7.3	555
D	67 5	C	225.0	295.0	4.0	8.5	534
E	14 5	S	230.0	297.4	6.5	13.0	555
E	15 5	S	217.1	303.2	7.2	18.5	555
E	16 5	S	226.0	302.1	6.8	10.4	555
E	18 5	S	227.9	301.0	6.5	13.1	555
E	41 5	H	235.5	307.5	3.0	5.0	555
E	42 5	H	232.0	301.3	5.0	6.2	534
E	43 5	H	236.5	310.9	3.2	5.1	534
E	45 5	H	231.0	300.0	4.0	7.3	555
E	46 5	H	234.4	310.9	5.5	7.0	555
E	47 5	H	232.5	307.2	2.5	5.9	534

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	BHN
E	49 5	M	228.5	313.8	3.5	5.0	555
	50 5	M	222.0	296.3	4.2	7.7	555
	51 5	M	237.9	307.1	3.5	4.7	578
	63 5	C	231.5	298.3	2.5	5.4	555
	67 5	C	235.5	305.0	4.0	7.0	534
H	14 5	S	231.0	297.5	5.0	8.5	555
	15 5	S	218.5	298.8	7.0	11.9	555
	16 5	S	221.3	299.0	4.0	6.5	555
	18 5	S	230.5	296.5	7.5	13.0	555
	41 5	M	237.1	308.5	2.5	4.7	555
	42 5	M	230.8	310.0	3.5	6.2	534
	43 5	M	232.1	309.7	3.5	4.7	555
	45 5	M	230.8	299.5	1.0	4.0	555
	46 5	M	238.6	309.2	4.5	8.5	555
	47 5	M	234.3	302.5	2.0	3.9	534
	49 5	M	226.3	306.3	2.5	5.0	555
	50 5	M	231.0	308.2	5.0	8.5	555
	51 5	M	231.8	305.0	2.5	4.3	578
	63 5	C	235.9	296.3	2.0	4.7	555
	67 5	C	232.0	295.8	1.8	4.7	534
I	14 5	S	229.3	298.8	3.5	7.7	555
	15 5	S	220.3	297.1	5.5	9.3	555
	16 5	S	225.9	298.2	4.5	7.0	555
	18 5	S	228.0	301.3	5.5	9.3	555
	41 5	M	234.6	286.0	1.5	2.4	555
	42 5	M	230.8	311.3	4.5	9.2	534
	43 5	M	236.8	297.5	1.5	3.5	534
	45 5	M	230.5	303.8	2.2	3.1	555
	46 5	M	235.5	308.1	3.5	6.5	555
	47 5	M	230.1	305.7	2.0	4.4	534
	49 5	M	227.5	303.8	2.0	3.1	555
	50 5	M	230.3	301.3	7.5	17.7	555
	51 5	M	230.4	303.4	2.2	4.4	578
	63 5	C	236.0	292.5	1.5	3.9	555
	67 5	C	224.8	297.5	2.3	2.7	534
J	14 5	S	230.0	305.0	4.5	7.3	555
	15 5	S	223.2	300.8	5.5	9.7	555
	16 5	S	218.5	299.5	3.0	5.5	555
	18 5	S	228.4	301.8	3.0	5.1	555
	41 5	M	218.5	285.0	2.5	7.0	555
	42 5	M	230.8	298.8	5.5	11.5	534
	43 5	M	228.5	291.3	3.0	4.7	534
	45 5	M		235.7	.5	8	555
	46 5	M	231.5	306.3	4.0	4.7	555
	47 5	M	225.5	262.5	.5	1.9	534
	49 5	M	218.0	293.2	4.0	10.8	555
	50 5	M	221.5	292.5	2.8	5.8	555
	51 5	M	218.2	288.2	2.5	5.9	578
	63 5	C	212.5	279.0	4.0	8.9	555
	67 5	C	213.3	270.0	2.5	5.0	534
K	14 5	S	224.0	291.3	2.0	4.7	578
	15 5	S	225.3	287.5	1.5	2.7	578
	16 5	S	233.2	293.8	1.8	3.4	555
	18 5	S	229.5	296.8	3.5	6.7	555
	41 5	M	228.5	299.5	4.5	8.6	555
	42 5	M	224.9	283.0	1.5	3.2	555
	43 5	M	232.2	294.2	3.5	4.4	555
	45 5	M	236.3	310.0	3.0	4.7	555
	46 5	M	227.4	293.5	3.5	4.7	555
	47 5	M	290.8	298.8	4.0	6.6	555
	49 5	M	222.0	282.1	1.5	3.2	555
	50 5	M	215.0	273.8	1.0	2.7	555
	51 5	M	224.3	283.8	1.0	3.9	555
	63 5	C	233.8	302.5	8.0	11.5	578
	67 5	C	226.4	299.9	5.5	8.5	555
L	14 5	S	224.1	283.0	1.5	4.4	578
	15 5	S	222.3	296.3	4.5	8.1	578
	16 5	S	221.8	296.3	5.2	7.0	555
	18 5	S	229.5	298.8	3.0	5.4	555
	41 5	M	230.0	304.5	4.0	6.3	555
	42 5	M	222.5	296.3	7.0	14.8	555
	43 5	M	238.1	308.3	5.5	8.9	555
	49 5	M	232.5	307.5	3.2	4.3	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD, STR, KSI .2% OFF	ULT, STR KSI	% ELONG	% R.A.	BRN
L	46 5	M	233.1	299.0	4.5	7.4	555
L	47 5	M	227.3	307.5	4.0	8.1	555
L	49 5	M	229.0	309.5	6.0	9.3	555
L	50 5	M	223.3	305.0	5.0	9.6	555
L	51 5	M	229.3	300.0	6.0	14.5	555
L	63 5	CC	239.3	309.7	4.0	6.6	578
L	67 5	C	230.8	305.0	3.8	6.6	534
M	14 5	S	226.3	296.3	5.0	9.2	578
M	15 5	S	225.0	298.8	6.5	6.6	578
M	16 5	S	227.2	299.3	7.3	19.3	555
M	18 5	S	231.0	288.6	2.0	3.2	555
M	41 5	M	233.1	307.1	3.0	5.9	555
M	42 5	M	229.8	300.0	7.5	17.4	555
M	43 5	M	232.5	305.0	4.0	7.7	555
M	45 5	M	230.0	301.8	2.5	4.4	555
M	46 5	M	233.0	303.5	7.0	11.2	555
M	47 5	M	234.0	302.0	3.5	4.7	555
M	49 5	M	226.3	303.8	3.5	6.6	555
M	50 5	M	226.8	297.1	7.0	14.9	555
M	51 5	M	233.5	307.5	2.8	5.4	555
M	63 5	CC	231.3	301.0	5.0	9.3	578
M	67 5	C	231.0	296.6	3.0	3.9	555
NN	14 5	S	231.8	305.0	5.0	8.1	578
NN	15 5	S	222.3	301.3	4.8	9.6	578
NN	16 5	S	225.3	303.8	5.5	12.6	555
NN	18 5	S	233.2	300.4	7.0	18.5	555
NN	41 5	M	230.7	299.4	2.5	6.3	555
NN	42 5	M	237.5	307.5	6.5	13.4	555
NN	43 5	M	233.2	298.1	1.8	3.3	555
NN	45 5	M	228.5	294.5	2.0	3.9	555
NN	46 5	M	234.0	309.4	5.5	12.3	555
NN	47 5	M	224.5	297.5	3.5	5.4	555
NN	49 5	M	222.5	300.8	4.0	7.0	555
NN	50 5	M	227.5	301.0	3.5	6.7	555
NN	51 5	M	225.0	299.8	1.5	1.9	555
NN	63 5	CC	235.0	301.3	2.5	3.9	578
NN	67 5	C	223.3	296.3	3.5	6.2	534
P	14 5	S	230.0	302.5	5.0	7.0	578
P	15 5	S	222.8	301.3	5.5	10.4	578
P	16 5	S	225.3	302.2	6.8	15.3	555
P	18 5	S	227.5	301.5	5.5	8.6	555
P	41 5	M	231.0	303.2	2.0	4.0	555
P	42 5	M	226.4	310.0	5.0	7.7	555
P	43 5	M	238.5	306.3	2.5	4.3	555
P	45 5	M	231.4	300.9	5.5	2.4	555
P	46 5	M	227.1	312.1	5.5	10.8	555
P	47 5	M	227.0	302.5	5.0	10.7	555
P	49 5	M	229.0	306.5	6.5	13.0	555
P	50 5	M	225.5	303.8	3.5	3.5	555
P	51 5	M	231.9	304.5	6.5	18.2	555
P	63 5	CC	231.3	303.3	6.0	9.3	578
P	67 5	C	225.5	294.0	5.8	11.9	534
S	14 5	S	227.0	300.0	6.0	8.9	578
S	15 5	S	223.5	300.0	2.2	4.7	578
S	16 5	S	223.7	304.0	5.0	4.4	555
S	18 5	S	235.7	304.5	6.5	14.5	555
S	41 5	M	235.0	313.3	3.5	5.9	555
S	42 5	M	230.0	303.3	3.0	3.6	555
S	43 5	M	234.5	303.8	4.0	5.8	555
S	45 5	M	231.7	301.8	4.5	5.1	555
S	46 5	M	239.8	308.3	3.5	5.9	555
S	47 5	M	233.8	302.5	2.2	5.8	555
S	49 5	M	225.0	292.5	1.5	2.7	555
S	50 5	M	228.2	303.3	4.0	7.8	555
S	51 5	M	225.8	297.5	3.5	6.6	578
S	63 5	CC	226.8	297.5	3.5	5.8	578
S	67 5	C	227.5	291.5	4.0	7.4	534
T	14 5	S	230.0	302.5	6.0	15.9	578
T	15 5	S	225.3	302.5	6.5	24.1	578
T	16 5	S	228.3	303.8	6.0	18.1	555
T	18 5	S	239.0	301.5	9.0	11.9	555
T	41 5	M	232.1	308.9	3.0	6.7	555
T	42 5	M	238.5	302.5	7.0	19.2	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	BHN
T	43 5	M	240.5	308.0	3.5	5.8	555
T	45 5	M	231.0	306.3	4.0	6.2	555
T	46 5	M	236.1	312.0	4.5	10.0	555
T	47 5	M	237.5	309.4	3.5	7.0	555
T	49 5	M	234.2	315.8	4.0	5.9	555
T	50 5	M	229.5	303.3	4.8	10.5	555
T	51 5	M	237.3	315.9	2.8	4.0	555
T	63 5	C	236.3	307.3	4.5	7.0	578
T	67 5	C	228.0	297.8	3.5	4.9	555
V	14 5	S	236.0	307.5	7.5	15.2	578
V	15 5	S	223.3	297.5	8.5	22.0	578
V	16 5	S	226.0	300.9	7.3	18.5	555
V	18 5	S	233.0	300.0	7.5	20.2	555
V	41 5	M	235.1	308.1	4.0	8.6	555
V	42 5	M	242.0	318.8	5.0	6.2	555
V	43 5	M	235.0	306.3	4.5	11.9	555
V	45 5	M	219.3	297.5	6.0	16.3	555
V	46 5	M	243.6	322.0	4.5	8.2	555
V	47 5	M	229.3	302.5	3.5	6.2	555
V	49 5	M	231.0	316.3	7.0	12.6	555
V	50 5	M	236.0	317.2	4.5	10.1	555
V	51 5	M	236.8	315.0	3.5	6.2	555
V	63 5	C	243.0	315.0	4.5	8.9	578
V	67 5	C	231.3	301.2	2.8	4.7	534

SECTION 3

TRANSVERSE NOTCHED TENSILE PROPERTIES OF
AIR MELT-DOUBLE VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24341-2)

(3-14)

TRANSVERSE NOTCHED TENSILE PROPERTIES
OF AIR MELT-DOUBLE VACUUM ARC REMELT
H-11 STEEL HEAT NO. W-24341-2

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BRINELL
A	1 4	S		0.76	555
	5 4	S	248.8	0.84	555
	12 4	S	257.0	0.87	555
	20 4	M	269.9	0.92	534
	21 4	M	166.5	0.57	555
	26 4	M	247.3	0.84	555
	27 4	M	212.2	0.76	555
	38 4	M	254.9	1.15	555
	39 4	M	183.6	0.65	555
	60 4	C	197.5	0.69	534
B	62 4	C	179.4	0.65	555
	1 4	S	237.5	0.84	555
	5 4	S	224.6	0.76	555
	12 4	S	229.7	0.78	555
	20 4	M	229.9	0.79	534
	21 4	M	133.2	0.45	555
	26 4	M	235.6	0.85	555
	27 4	M	191.3	0.63	555
	38 4	M	230.4	0.79	555
	39 4	M	254.3	0.88	555
C	60 4	CC	193.4	0.46	534
	62 4	C	154.3	0.53	555
	1 4	S	176.8	0.59	555
	5 4	SS	238.5	0.87	555
	12 4	S	259.0	0.84	555
	20 4	M	218.5	0.76	534
	21 4	M	200.9	0.68	555
	26 4	M	198.3	0.70	555
	27 4	M	184.1	0.64	555
	38 4	M	252.2	0.87	555
D	39 4	M	203.9	0.70	555
	60 4	CC	156.7	0.63	534
	62 4	C	169.3	0.58	555
	1 4	S	199.3	1.06	555
	5 4	S	276.8	0.95	555
	12 4	S	271.9	0.96	555
	20 4	M	237.5	0.83	534
	21 4	M	224.9	0.74	555
	26 4	M	246.3	0.82	555
	27 4	M	214.8	0.72	555
E	38 4	M	269.0	0.93	555
	39 4	M	145.8	0.49	555
	60 4	CC	174.7	0.58	534
	62 4	C	197.7	0.66	555
	1 4	S	241.0	0.81	555
	5 4	S	237.5	0.81	555
	12 4	S	255.0	0.85	555
	20 4	M	213.9	0.74	534
	21 4	M	274.2	0.93	555
	26 4	M	237.8	0.81	555
H	27 4	M	170.8	0.59	555
	38 4	M	244.0	0.80	555
	39 4	M	186.7	0.64	555
	60 4	CC	156.2	0.57	534
	62 4	C	182.4	0.55	555
	1 4	S	227.3	0.77	555
	5 4	SS	281.0	0.97	555
	12 4	S	240.5	0.84	555
	20 4	M	229.8	0.77	534
	21 4	M	186.5	0.64	555
I	26 4	M	161.1	0.53	555
	27 4	M	179.0	0.60	555
	38 4	M	186.5	0.64	555
	39 4	M	199.7	0.72	555
	60 4	C	129.2	0.45	534
I	62 4	C	101.3	0.36	555
	1 4	S	231.2	0.87	555
I	5 4	S	221.2	0.75	555

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
I	12 4	S	261.2	0.89	555
I	20 4	M	113.4	0.39	534
I	21 4	M	201.1	0.72	555
I	26 4	M	180.8	0.61	555
I	27 4	M	176.4	0.59	555
I	38 4	M	238.5	0.77	555
I	39 4	M	190.0	0.66	555
I	60 4	C	205.9	0.69	534
I	62 4	C	235.5	0.83	555
J	1 4	S	207.1	0.78	555
J	5 4	S	230.8	0.81	555
J	12 4	S	213.0	0.72	555
J	20 4	M	266.1	0.90	534
J	21 4	M	180.3	0.59	555
J	26 4	M	246.8	0.88	555
J	27 4	M	194.3	0.69	555
J	38 4	M	180.3	0.59	555
J	39 4	M	262.3	0.95	555
J	60 4	C	186.4	0.67	534
J	62 4	C	234.0	0.78	555
K	1 4	S	230.3	0.78	555
K	5 4	S	252.3	0.84	555
K	12 4	S	231.8	0.79	555
K	20 4	M	257.5	0.91	555
K	21 4	M	222.1	0.78	555
K	26 4	M	171.6	0.63	555
K	27 4	M	245.4	0.82	555
K	38 4	M	250.4	0.87	578
K	39 4	M	236.5	0.81	555
K	60 4	C	184.0	0.65	555
K	62 4	C	251.0	0.84	555
L	1 4	S	223.2	0.79	555
L	5 4	S	242.1	0.83	555
L	12 4	S	202.0	0.67	555
L	20 4	M	232.5	0.79	555
L	21 4	M	222.8	0.78	555
L	26 4	M	198.3	0.66	555
L	27 4	M	238.3	0.77	555
L	38 4	M	270.9	0.94	578
L	39 4	M	280.0	0.96	555
L	60 4	C	191.4	0.91	555
L	62 4	C	161.7	0.94	555
M	1 4	S	243.1	0.88	555
M	5 4	S	177.4	0.62	555
M	12 4	S	258.2	0.87	555
M	20 4	M	238.9	0.86	555
M	21 4	M	190.1	0.52	555
M	26 4	M	274.3	0.92	555
M	27 4	M	122.4	0.42	555
M	38 4	M	214.3	0.73	578
M	39 4	M	212.0	0.72	555
M	60 4	C	129.3	0.44	555
M	62 4	C	112.4	0.38	555
N	1 4	S	252.2	0.86	555
N	5 4	S	249.5	0.83	555
N	12 4	S	256.5	0.88	555
N	20 4	M	225.1	0.77	555
N	21 4	M	194.2	0.68	555
N	26 4	M	243.0	0.79	555
N	27 4	M	155.5	0.54	555
N	38 4	M	236.0	0.78	578
N	39 4	M	153.4	0.53	555
N	60 4	C	204.9	0.73	555
N	62 4	C	110.8	0.37	555
P	1 4	S	212.0	0.71	555
P	5 4	S	224.8	0.77	555
P	12 4	S	237.0	0.89	555
P	20 4	M	275.3	0.95	555
P	21 4	M	190.0	0.66	555
P	26 4	M	245.9	0.86	555
P	27 4	M	201.5	0.68	555
P	38 4	M	262.7	0.89	578

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
P	39 4	M	282.9	0.95	555
P	60 4	C	193.8	0.67	555
P	62 4	C	260.8	0.92	555
S	1 4	S	184.9	0.67	555
S	5 4	S	235.9	0.80	555
S	12 4	S	241.0	0.80	555
S	20 4	M	242.5	0.82	555
S	21 4	M	191.0	0.56	555
S	26 4	M	170.3	0.57	555
S	27 4	M	176.4	0.62	555
S	38 4	M	219.7	0.74	578
S	39 4	M	176.4	0.59	555
S	60 4	C	194.8	0.77	555
S	62 4	C	166.5	0.57	555
T	1 4	S	209.9	0.72	555
T	5 4	S	252.5	0.83	555
T	12 4	S	200.4	0.70	555
T	20 4	M	269.9	0.91	555
T	21 4	M	127.8	0.44	555
T	26 4	M	114.8	0.37	555
T	27 4	M	197.3	0.69	555
T	38 4	M	295.1	0.83	578
T	39 4	M	163.4	0.54	555
T	60 4	C	217.8	0.74	555
T	62 4	C	245.0	0.82	555
V	1 4	S	291.2	0.87	555
V	5 4	S	240.0	0.80	555
V	12 4	S	292.3	0.96	555
V	20 4	M	231.1	0.77	555
V	21 4	M	234.9	0.81	555
V	26 4	M	275.9	0.87	555
V	27 4	M	195.3	0.63	555
V	38 4	M	233.3	0.74	578
V	39 4	M	219.1	0.73	555
V	60 4	C	223.7	0.74	555
V	62 4	C	220.7	0.72	555

SECTION 4

LONGITUDINAL NOTCHED TENSILE PROPERTIES OF
AIR MELT-DOUBLE VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24341-2)

(3-18)

**LONGITUDINAL NOTCHED TENSILE PROPERTIES
OF AIR MELT-DOUBLE VACUUM ARC REMELT
H-11 STEEL HEAT NO. W-24341-2**

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
A	13 5	S	264.9	1.10	555
	17 5	S	290.1	0.95	554
	40 5	H	243.5	0.80	554
	44 5	H	254.8	0.84	555
	48 5	H	248.2	0.83	554
	64 5	C	230.1	0.75	563
	66 5	C	225.8	0.75	555
B	13 5	S	271.5	0.89	555
	17 5	S	253.2	0.83	554
	40 5	H	256.6	0.87	554
	44 5	H	246.2	0.82	555
	48 5	H	262.3	0.90	554
	64 5	C	186.6	0.63	563
	66 5	C	182.9	0.62	555
C	13 5	S	227.2	0.74	555
	17 5	S	239.4	0.79	554
	40 5	H	202.8	0.71	554
	44 5	H	293.3	1.01	555
	48 5	H	277.3	0.96	554
	64 5	CC	242.0	0.78	563
	66 5	C	252.6	0.84	555
D	13 5	S	262.6	0.89	555
	17 5	S	218.6	0.75	554
	40 5	H	253.4	0.86	554
	44 5	H	251.3	0.83	555
	48 5	H	269.1	0.96	554
	64 5	CC	220.0	0.74	563
	66 5	C	224.8	0.76	555
E	13 5	S	291.0	0.78	555
	17 5	S	287.3	0.95	554
	40 5	H	235.3	0.78	554
	44 5	H	239.8	0.77	555
	48 5	H	249.0	0.84	554
	64 5	CC	268.1	0.89	563
	66 5	C	229.1	0.75	555
H	13 5	S	265.6	0.89	555
	17 5	S	217.0	0.73	554
	40 5	H	241.1	0.78	554
	44 5	H	236.0	0.77	555
	48 5	H	260.5	0.85	554
	64 5	CC	162.1	0.55	563
	66 5	C	259.1	0.88	555
I	13 5	S	266.1	0.89	555
	17 5	S	288.0	0.96	554
	40 5	H	261.0	0.84	554
	44 5	H	276.4	0.90	555
	48 5	H	289.7	0.96	554
	64 5	CC	224.8	0.77	563
	66 5	C	207.3	0.70	555
J	13 5	S	249.0	0.80	555
	17 5	S	222.2	0.74	554
	40 5	H	257.5	0.86	554
	44 5	H	238.9	0.78	555
	48 5	H	279.2	0.94	554
	64 5	CC	233.8	0.84	563
	66 5	C	188.3	0.70	555
K	13 5	S	212.1	0.73	555
	17 5	S	272.5	0.92	555
	40 5	H	239.9	0.85	555
	44 5	H	267.5	0.91	555
	48 5	H	276.5	1.01	555
	64 5	CC	262.4	0.87	563
	66 5	C	266.7	0.89	555
L	13 5	S	232.9	0.82	555
	17 5	S	293.0	0.98	555

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
L	40 5	M	251.9	0.85	555
	44 5	M	279.6	0.94	555
	48 5	M	267.3	0.88	555
	64 5	C	222.8	0.72	563
	66 5	C	237.5	0.78	555
M	13 5	S	253.3	0.86	555
	17 5	S	254.5	0.88	555
	40 5	M	250.2	0.83	555
	44 5	M	243.7	0.80	555
	48 5	M	284.8	0.96	555
	64 5	C	213.8	0.71	563
	66 5	C	231.2	0.78	555
N	13 5	S	238.0	0.78	555
	17 5	S	272.8	0.91	555
	40 5	M	193.3	0.50	555
	44 5	M	276.4	0.89	555
	48 5	M	237.8	0.79	555
	64 5	C	232.8	0.77	563
	66 5	C	266.9	0.90	555
P	13 5	S	239.9	0.86	555
	17 5	S	296.3	0.98	555
	40 5	M	240.0	0.77	555
	44 5	M	300.7	0.96	555
	48 5	M	235.3	0.77	555
	64 5	C	241.3	0.80	563
	66 5	C	231.7	0.79	555
S	13 5	S	250.1	0.83	555
	17 5	S	257.2	0.84	555
	40 5	M	286.6	0.95	555
	44 5	M	278.0	0.90	555
	48 5	M	252.3	0.83	555
	64 5	C	289.3	0.97	563
	66 5	C	262.7	0.90	555
T	13 5	S	244.1	0.81	555
	17 5	S	280.0	0.93	555
	40 5	M	291.9	0.77	555
	44 5	M	249.4	0.78	555
	48 5	M	226.3	0.75	555
	64 5	C	257.0	0.84	563
	66 5	C	259.1	0.87	555
V	13 5	S	274.8	0.89	555
	17 5	S	282.9	0.94	555
	40 5	M	246.6	0.77	555
	44 5	M	262.1	0.81	555
	48 5	M	271.6	0.86	555
	64 5	C	213.7	0.68	563
	66 5	C	242.3	0.80	555

APPENDIX IV

TENSILE PROPERTIES OF VACUUM INDUCTION MELT-VACUUM
ARC REMELT H-11 STEEL (HEAT NO. W-24403-1)

SECTION 1

TRANSVERSE TENSILE PROPERTIES OF
VACUUM INDUCTION MELT-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24403-1)

TRANSVERSE TENSILE PROPERTIES
OF VACUUM INDUCTION MELT-VACUUM ARC REMELT
H 11 STEEL HEAT NO. W 24409-1

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD.STR.KSI .2% OFF	ULT.STR KSI	% ELONG	% R.A.	BRINELL
A	02 4	S	224.8	295.1	5.2	10.8	545
A	03 4	S	230.7	295.7	7.5	19.7	534
A	04 4	S	233.0	300.5	6.5	11.9	555
A	06 4	S	230.2	295.7	7.3	15.8	534
A	07 4	S	232.2	306.3	6.5	13.4	555
A	08 4	S	234.4	302.3	5.5	10.0	534
A	09 4	S	232.2	295.3	9.0	25.8	555
A	10 4	S	236.4	301.4	9.0	24.1	534
A	11 4	S	233.7	295.8	7.5	20.2	555
A	22 4	M	226.5	293.8	7.2	18.8	563
A	23 4	M	228.0	290.9	5.5	11.5	534
A	24 4	M	228.8	297.1	8.5	18.8	555
A	25 4	M	231.2	296.5	7.0	15.8	555
A	28 4	M	230.5	295.0	8.5	19.5	555
A	29 4	M	230.8	295.0	5.0	9.6	555
A	30 4	M	230.8	291.3	6.5	13.7	555
A	31 4	M	230.0	293.3	6.0	2.7	555
A	32 4	M	233.9	293.5	7.5	15.2	555
A	33 4	M	232.0	295.5	3.0	6.2	555
A	34 4	M	228.2	298.3	7.0	17.4	545
A	35 4	M	232.0	293.0	5.0	8.9	555
A	36 4	M	229.2	302.0	5.0	8.9	545
A	37 4	M	233.2	299.6	2.5	5.8	534
A	61 4	C	227.2	290.3	5.0	10.7	555
A	63 4	C	227.9	290.6	5.5	9.2	534
B	02 4	S	226.2	297.8	7.0	13.7	545
B	03 4	S	230.0	298.4	6.0	10.7	534
B	04 4	S	232.0	303.8	6.0	8.5	555
B	06 4	S	230.4	299.2	6.8	17.3	534
B	07 4	S	229.7	295.8	7.5	15.2	555
B	08 4	S	232.0	300.5	8.0	24.6	534
B	09 4	S	237.1	319.0	8.5	23.5	555
B	10 4	S	232.2	295.3	8.5	21.3	534
B	11 4	S	232.7	306.3	6.5	16.3	555
B	22 4	M	233.5	296.8	6.7	13.4	563
B	23 4	M	233.1	294.0	5.3	9.3	534
B	24 4	M	228.8	295.9	7.0	18.1	555
B	25 4	M	232.4	295.9	5.5	9.3	555
B	28 4	M	228.0	295.0	7.0	14.5	555
B	29 4	M	230.0	292.5	6.5	11.9	555
B	30 4	M	227.2	290.0	7.0	15.9	555
B	31 4	M	231.0	293.3	6.0	16.6	555
B	32 4	M	235.0	294.5	6.0	13.0	555
B	33 4	M	231.5	295.8	5.5	11.5	555
B	34 4	M	226.4	300.7	5.5	11.1	545
B	35 4	M	233.5	294.3	3.5	3.5	555
B	36 4	M	228.2	297.7	6.0	10.9	545
B	37 4	M	230.2	295.2	3.8	7.5	534
B	61 4	C	229.5	287.7	5.0	9.7	555
B	63 4	C	230.1	291.7	4.5	8.9	534
C	02 4	S	223.7	299.6	6.8	13.4	545
C	03 4	S	229.5	300.4	6.0	11.7	534
C	04 4	S	228.5	292.0	7.5	17.0	555
C	06 4	S	229.7	296.3	6.8	13.7	534
C	07 4	S	229.2	296.8	8.5	10.0	555
C	08 4	S	233.4	295.2	7.5	22.2	534
C	09 4	S	230.7	296.1	6.0	13.4	555
C	10 4	S	231.4	297.8	7.8	19.2	534
C	11 4	S	242.6	293.6	6.5	17.0	555
C	22 4	M	233.5	295.3	6.7	17.7	563
C	23 4	M	229.7	291.3	5.0	8.5	534
C	24 4	M	228.8	297.1	6.5	13.3	555
C	25 4	M	232.7	302.8	6.5	11.7	555
C	28 4	M	231.0	296.0	5.5	11.8	555
C	29 4	M	230.5	293.8	5.0	8.5	555
C	30 4	M	231.0	296.3	6.0	11.9	555
C	31 4	M	232.5	296.3	6.0	10.4	555
C	32 4	M	230.0	295.5	6.0	11.1	555
C	33 4	M	230.0	293.0	4.0	3.8	555
C	34 4	M	225.9	298.3	3.2	7.0	545
C	35 4	M	228.0	289.8	4.0	9.7	555
C	36 4	M	230.7	295.9	6.5	13.0	545

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD.STR.KSI .2% OFF	ULT.STR KSI	% ELONG	% R.A.	BHN
C	37 4	M	225.1	297.7	5.5	8.3	534
C	61 4	C	229.2	290.3	5.0	6.6	555
C	63 4	C	225.5	289.0	4.5	12.0	534
D	02 4	S	220.7	293.3	6.5	15.6	545
D	03 4	S	222.2	303.5	7.8	17.0	534
D	04 4	S	227.5	294.5	8.0	18.4	555
D	06 4	S	227.4	297.9	8.3	20.8	534
D	07 4	S	234.2	300.3	7.5	18.8	555
D	08 4	S	237.4	304.3	7.3	19.0	534
D	09 4	S	229.7	297.3	8.0	5.0	555
D	10 4	S	222.2	294.6	5.0	7.7	534
D	11 4	S	232.2	296.8	6.0	8.1	555
D	22 4	M	234.8	298.3	6.0	13.4	563
D	23 4	M	228.5	289.4	4.5	7.4	534
D	24 4	M	226.5	289.7	7.5	17.0	555
D	25 4	M	232.9	299.0	7.0	17.9	555
D	28 4	M	237.0	298.3	4.0	8.2	555
D	29 4	M	232.5	296.3	3.5	6.6	555
D	30 4	M	234.2	295.0	5.0	9.3	555
D	31 4	M	228.5	290.0	6.0	13.0	555
D	32 4	M	237.0	298.8	6.0	13.0	555
D	33 4	M	223.1	284.9	5.0	11.8	563
D	34 4	M	227.7	298.3	6.5	14.1	545
D	35 4	M	228.5	289.3	6.5	14.1	555
D	36 4	M	230.0	299.0	4.2	9.1	545
D	37 4	M	231.0	295.9	3.5	7.4	534
D	61 4	C	227.1	289.5	6.0	13.1	555
D	63 4	C	224.7	288.3	3.8	7.0	534
E	02 4	S	230.9	294.6	7.5	19.5	545
E	03 4	S	224.9	294.6	7.5	20.9	534
E	04 4	S	230.0	294.5	5.5	8.1	555
E	06 4	S	229.4	295.1	5.0	7.7	534
E	07 4	S	229.7	294.8	7.0	15.9	555
E	08 4	S	231.0	297.7	7.5	18.3	534
E	09 4	S	230.7	293.3	5.5	8.1	555
E	10 4	S	226.2	293.8	7.0	15.9	534
E	11 4	S	229.7	295.3	6.5	14.8	555
E	22 4	M	234.5	298.8	6.5	11.9	563
E	23 4	M	228.2	292.3	3.0	3.1	534
E	24 4	M	229.8	295.9	5.5	8.9	555
E	25 4	M	230.4	293.9	7.5	17.6	555
E	28 4	M	232.6	299.8	7.0	17.0	555
E	29 4	M	231.3	293.8	2.5	3.5	555
E	30 4	M	233.3	296.3	6.5	17.4	555
E	31 4	M	230.5	295.8	4.0	8.1	555
E	32 4	M	238.5	299.0	7.5	15.6	555
E	33 4	M	232.5	293.3	4.7	9.2	563
E	34 4	M	226.9	297.1	7.0	16.3	545
E	35 4	M	227.6	290.0	2.5	4.0	555
E	36 4	M	229.5	301.4	3.0	5.2	545
E	37 4	M	226.0	295.2	3.5	7.5	534
E	61 4	C	225.2	290.1	5.0	8.1	555
E	63 4	C	224.3	283.5	1.5	3.9	534
H	02 4	S	225.2	290.1	7.5	18.8	545
H	03 4	S	222.2	294.6	6.0	14.5	534
H	04 4	S	227.5	291.8	8.0	21.6	555
H	06 4	S	226.6	297.9	7.5	20.7	534
H	07 4	S	226.6	295.0	6.5	6.3	555
H	08 4	S	230.0	304.3	5.5	13.9	534
H	09 4	S	227.2	257.1	1.0	1.4	555
H	10 4	S	224.2	283.3	2.0	2.7	534
H	11 4	S	225.7	267.4	1.0	3.5	555
H	22 4	M	234.3	297.5	6.7	13.4	563
H	23 4	M	227.2	289.3	5.0	6.6	534
H	24 4	M	232.2	299.6	4.5	6.2	555
H	25 4	M	235.2	303.5	7.5	19.6	555
H	28 4	M	233.0	299.3	6.5	13.4	555
H	29 4	M	232.0	298.8	5.0	7.6	555
H	30 4	M	233.3	293.8	6.5	18.1	555
H	31 4	M	226.0	290.0	5.5	14.5	555
H	32 4	M	236.5	298.3	5.5	9.6	555
H	33 4	M	233.5	298.0	5.5	10.4	563
H	34 4	M	233.1	301.4	7.0	19.7	545
H	35 4	M	234.0	294.5	6.0	11.5	555
H	36 4	M	228.2	290.3	7.5	20.2	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI ,2% OFF	ULT STR KSI	% ELONG	% R.A.	BHN
H	37 4	M	228.9	296.4	3.0	4.9	555
H	61 4	C	227.2	290.3	4.5	6.2	555
H	63 4	C	224.6	286.2	4.0	4.3	534
I	02 4	S	225.4	289.6	8.2	20.6	545
I	03 4	S	219.9	300.9	6.5	13.4	534
I	04 4	S	227.5	291.5	3.0	3.9	555
I	06 4	S	228.6	300.5	6.5	19.2	534
I	07 4	S	228.7	294.3	6.5	10.7	555
I	08 4	S	231.2	296.5	6.5	18.3	534
I	09 4	S	222.2	286.3	2.0	3.5	555
I	10 4	S	222.2	291.1	7.5	15.2	534
I	11 4	S	226.7	290.8	4.0	6.2	555
I	22 4	M	231.2	280.7	7.0	17.4	563
I	23 4	M	229.0	287.4	5.0	6.6	534
I	24 4	M	224.7	290.6	6.5	11.9	534
I	25 4	M	231.2	290.8	7.5	19.9	555
I	28 4	M	234.8	300.0	5.5	9.6	555
I	29 4	M	235.5	295.0	5.0	10.4	555
I	30 4	M	234.0	293.8	6.5	16.6	555
I	31 4	M	231.5	293.0	6.5	8.9	555
I	32 4	M	237.5	307.5	6.5	14.8	555
I	33 4	M	234.5	300.0	6.0	13.4	563
I	34 4	M	229.6	301.4	5.5	14.6	545
I	35 4	M	233.5	295.1	5.5	9.3	555
I	36 4	M	232.2	301.4	5.5	10.1	545
I	37 4	M	230.2	296.5	5.5	13.2	534
I	61 4	C	228.2	289.3	2.5	4.3	555
I	63 4	C	228.7	292.1	2.5	3.9	534
J	02 4	S	225.2	296.1	8.0	17.7	545
J	03 4	S	223.5	295.5	4.5	8.6	534
J	04 4	S	235.0	297.3	7.0	18.4	555
J	06 4	S	229.9	295.3	6.0	12.2	534
J	07 4	S	230.7	298.8	6.0	13.0	555
J	08 4	S	228.0	296.5	6.8	17.9	534
J	09 4	S	230.6	293.2	6.0	8.9	555
J	10 4	S	223.9	289.3	4.5	7.0	534
J	11 4	S	226.2	290.8	6.0	10.4	555
J	22 4	M	229.6	292.0	5.5	10.1	563
J	23 4	M	234.7	294.6	6.5	12.6	534
J	24 4	M	229.9	299.6	6.0	11.1	555
J	25 4	M	233.7	299.6	7.0	14.4	555
J	28 4	M	231.8	300.0	5.0	9.6	555
J	29 4	M	231.0	296.3	4.0	7.3	555
J	30 4	M	228.3	292.5	6.5	15.2	555
J	31 4	M	228.0	292.3	6.0	11.5	555
J	32 4	M	236.0	296.3	6.0	14.9	555
J	33 4	M	232.3	295.0	5.5	13.0	563
J	34 4	M	228.8	300.6	6.7	17.8	545
J	35 4	M	230.0	291.5	7.0	15.9	555
J	36 4	M	231.6	298.2	7.2	17.1	545
J	37 4	M	230.2	299.6	5.3	10.7	534
J	61 4	C	230.2	285.6	7.5	5.0	555
J	63 4	C	232.7	290.3	3.0	3.9	534
K	02 4	S	222.7	290.1	5.8	11.9	528
K	03 4	S	224.7	303.4	8.0	23.0	534
K	04 4	S	225.0	292.8	3.5	5.8	555
K	06 4	S	227.8	291.2	5.0	9.6	534
K	07 4	S	231.1	296.5	3.5	7.4	534
K	08 4	S	227.8	290.7	5.3	10.8	534
K	09 4	S	229.6	293.1	4.5	4.3	555
K	10 4	S	226.3	288.4	6.0	12.2	534
K	11 4	S	232.2	293.3	5.0	9.6	555
K	22 4	M	228.3	289.9	7.5	18.9	545
K	23 4	M	227.7	294.6	5.0	7.7	534
K	24 4	M	227.3	293.4	7.0	16.3	555
K	25 4	M	233.2	295.1	6.5	14.8	555
K	28 4	M	227.5	293.8	6.0	14.1	534
K	29 4	M	227.7	292.2	6.0	9.3	555
K	30 4	M	232.2	295.5	15.2	555	
K	31 4	M	231.0	291.8	7.5	14.8	555
K	32 4	M	235.0	295.8	5.5	16.3	555
K	33 4	M	233.0	298.2	5.5	14.5	545
K	34 4	M	224.5	295.1	6.5	15.7	528
K	35 4	M	230.5	289.8	4.0	5.9	555
K	36 4	M	227.8	296.3	6.0	15.4	534

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	BN
K	37 4	M	231.9	299.6	4.5	9.2	555
K	61 4	C	229.2	292.3	4.0	5.8	555
K	63 4	C	228.9	292.6	5.5	12.2	534
L	02 4	S	224.4	289.8	6.2	13.7	528
L	03 4	S	220.4	319.7	5.5	9.6	534
L	04 4	S	228.0	294.8	7.5	8.1	555
L	06 4	S	225.2	295.3	4.0	8.1	534
L	07 4	S	228.4	292.6	7.0	20.9	534
L	08 4	S	224.0	293.4	7.0	15.5	534
L	09 4	S	229.2	295.6	7.5	18.1	555
L	10 4	S	229.0	292.1	6.3	16.0	534
L	11 4	S	226.7	290.6	2.5	3.1	555
L	22 4	M	232.6	292.6	6.2	13.7	545
L	23 4	M	229.2	295.1	6.0	10.4	534
L	24 4	M	225.0	289.7	7.0	16.6	555
L	25 4	M	229.2	292.1	6.5	19.2	555
L	28 4	M	227.5	292.5	6.5	15.2	534
L	29 4	M	232.0	292.5	6.5	14.1	555
L	30 4	M	226.0	288.3	5.5	12.2	555
L	31 4	M	230.5	293.8	7.0	16.3	555
L	32 4	M	234.5	297.5	7.5	11.1	555
L	33 4	M	228.0	296.3	6.0	14.5	545
L	34 4	M	225.6	292.7	7.2	20.2	528
L	35 4	M	238.5	289.5	7.0	14.1	555
L	36 4	M	227.3	295.9	8.0	18.8	534
L	37 4	M	230.2	297.7	6.0	13.6	555
L	61 4	C	228.2	291.3	5.0	7.7	555
L	63 4	C	226.9	291.6	5.3	9.2	534
M	02 4	S	222.4	289.1	7.0	20.2	528
M	03 4	S	220.9	298.3	5.3	9.6	534
M	04 4	S	229.5	290.0	3.0	5.8	555
M	06 4	S	223.2	295.6	6.0	11.5	534
M	07 4	S	233.8	295.7	7.5	13.4	534
M	08 4	S	229.1	293.5	6.3	14.6	534
M	09 4	S	229.7	295.3	6.0	22.3	555
M	10 4	S	228.2	293.8	7.5	15.2	534
M	11 4	S	225.7	293.3	8.5	14.1	555
M	22 4	M	231.5	291.0	7.0	17.4	545
M	23 4	M	224.0	287.2	6.5	11.8	534
M	24 4	M	224.7	289.6	6.5	17.4	555
M	25 4	M	230.7	291.1	7.5	18.1	555
M	28 4	M	232.5	295.8	6.0	14.2	534
M	29 4	M	230.0	290.8	5.5	10.7	555
M	30 4	M	230.5	289.3	7.0	16.7	555
M	31 4	M	229.0	290.3	6.5	13.4	555
M	32 4	M	230.0	291.3	5.0	10.0	555
M	33 4	M	231.0	296.3	4.2	6.6	545
M	34 4	M	226.9	300.2	4.5	9.0	528
M	35 4	M	231.9	293.1	5.5	8.9	555
M	36 4	M	224.5	295.2	6.5	14.3	534
M	37 4	M	228.7	295.8	6.0	12.6	555
M	61 4	C	230.7	293.3	5.5	11.5	555
M	63 4	C	230.6	289.5	5.5	13.4	534
N	02 4	S	222.4	284.3	6.8	15.5	528
N	03 4	S	223.9	299.6	8.0	19.9	534
N	04 4	S	224.0	285.5	4.0	5.0	555
N	06 4	S	228.2	290.6	7.5	17.7	534
N	07 4	S	227.9	291.3	7.8	19.9	534
N	08 4	S	227.2	295.8	6.8	17.0	534
N	09 4	S	229.2	290.1	3.5	4.7	555
N	10 4	S	221.8	274.9	1.5	2.7	534
N	11 4	S	227.6	296.4	3.5	6.4	555
N	22 4	M	226.8	293.8	7.5	17.7	555
N	23 4	M	227.2	288.4	6.0	10.8	534
N	24 4	M	222.9	287.6	6.0	16.6	534
N	25 4	M	235.2	295.6	7.0	18.1	555
N	28 4	M	225.5	291.3	6.5	16.3	534
N	29 4	M	226.5	291.3	5.5	10.4	555
N	30 4	M	227.5	287.5	7.5	19.2	555
N	31 4	M	229.9	292.9	5.0	10.6	555
N	32 4	M	235.0	294.5	7.5	14.1	555
N	33 4	M	230.0	294.0	5.2	10.4	545
N	34 4	M	233.1	291.4	6.0	12.0	528
N	35 4	M	231.0	292.3	6.0	8.0	555
N	36 4	M	231.7	294.4	6.5	14.5	534

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	BRINELL
N	37 4	M	228.5	296.5	5.0	8.3	555
N	61 4	C	227.7	289.6	6.0	11.9	555
N	63 4	C	227.8	291.7	6.0	11.6	534
P	02 4	S	221.8	291.2	2.5	4.0	528
P	03 4	S	220.3	292.9	6.5	12.8	534
P	04 4	S	224.5	285.0	6.5	12.6	555
P	06 4	S	224.1	291.9	3.0	6.9	534
P	07 4	S	228.1	288.5	8.0	15.6	534
P	08 4	S	221.5	289.0	4.5	10.2	534
P	09 4	S	226.7	290.6	6.0	13.7	555
P	10 4	S	227.5	289.3	6.5	15.8	534
P	11 4	S	223.9	278.3	5.5	13.4	555
P	22 4	M	231.8	290.0	7.0	18.1	555
P	23 4	M	230.9	294.6	6.5	12.2	534
P	24 4	M	226.8	294.6	6.5	15.2	555
P	25 4	M	230.2	296.1	7.0	18.8	555
P	26 4	M	229.7	293.2	6.5	11.9	534
P	29 4	M	230.0	289.3	5.0	11.5	555
P	30 4	M	230.0	291.3	6.5	16.6	555
P	31 4	M	224.0	293.5	7.0	16.6	555
P	32 4	M	237.0	296.8	6.5	13.4	545
P	33 4	M	230.3	290.5	5.2	12.6	545
P	34 4	M	226.6	292.6	6.2	12.8	528
P	35 4	M	230.5	292.8	7.0	12.6	555
P	36 4	M	228.0	297.7	7.0	13.9	534
P	37 4	M	225.9	297.7	6.0	11.4	555
P	61 4	C	229.7	291.8	6.5	8.9	555
P	63 4	C	227.2	290.3	5.5	10.4	534
S	02 4	S	224.6	290.5	7.8	18.9	528
S	03 4	S	218.2	290.8	5.0	10.7	534
S	04 4	S	225.4	293.6	7.8	18.4	545
S	06 4	S	222.7	292.1	6.3	14.6	534
S	07 4	S	232.1	291.5	3.5	5.5	534
S	08 4	S	229.3	296.5	6.5	15.4	534
S	09 4	S	227.6	292.0	8.0	20.3	555
S	10 4	S	224.7	286.1	7.0	17.4	534
S	11 4	S	221.0	284.0	5.3	10.9	555
S	22 4	M	229.7	293.2	7.0	16.0	555
S	23 4	M	229.8	297.0	6.5	12.7	555
S	24 4	M	223.4	287.8	5.5	13.4	534
S	25 4	M	227.7	291.8	7.0	12.2	555
S	28 4	M	228.0	293.8	6.5	13.4	534
S	29 4	M	231.0	290.5	7.0	15.6	555
S	30 4	M	230.5	291.3	7.0	19.2	555
S	31 4	M	227.0	287.3	7.5	18.1	555
S	32 4	M	239.0	295.3	7.5	17.7	555
S	33 4	M	231.5	295.5	5.2	6.6	545
S	34 4	M	222.6	291.4	5.0	9.8	528
S	35 4	M	231.5	294.9	6.0	14.9	555
S	36 4	M	227.2	298.3	7.5	17.0	534
S	37 4	M	228.8	298.4	6.0	14.8	555
S	61 4	C	228.7	291.1	6.5	12.6	555
S	63 4	C	227.2	291.8	6.0	14.1	534
T	02 4	S	220.7	293.6	5.5	7.3	528
T	03 4	S	223.9	289.4	5.5	8.6	534
T	04 4	S	219.4	280.3	5.5	9.2	545
T	06 4	S	222.6	293.2	7.3	15.1	534
T	07 4	S	228.3	295.2	7.0	13.8	534
T	08 4	S	229.2	292.7	4.3	7.5	534
T	09 4	S	225.7	292.6	5.0	10.4	555
T	10 4	S	221.1	285.4	3.0	5.8	534
T	11 4	S	217.8	286.5	5.8	12.0	555
T	22 4	M	229.8	291.3	7.0	18.1	555
T	23 4	M	230.5	294.6	7.5	14.4	555
T	24 4	M	222.2	285.8	6.5	12.2	534
T	25 4	M	224.4	288.4	7.0	16.8	555
T	28 4	M	227.9	290.7	7.5	17.4	534
T	29 4	M	226.0	283.8	7.0	13.4	555
T	30 4	M	230.8	295.0	7.0	18.1	555
T	31 4	M	232.0	293.0	7.0	17.0	555
T	32 4	M	234.1	293.1	6.5	16.3	545
T	33 4	M	228.2	292.1	5.8	13.7	545
T	34 4	M	229.2	290.8	5.2	12.2	528
T	35 4	M	228.0	286.3	7.5	15.9	555
T	36 4	M	229.2	299.6	7.5	17.4	534

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD,STR,KSI .2% OFF	ULT,STR KSI	% ELONG	% R.A.	BHN
T	37 4	M	232.0	298.4	7.0	16.6	555
T	61 4	C	229.2	291.3	6.5	15.2	555
T	63 4	C	225.2	290.1	6.5	14.1	534
V	02 4	S	221.4	289.6	8.0	21.6	528
V	03 4	S	221.2	292.1	7.0	19.2	534
V	04 4	S	223.2	288.6	7.5	19.2	545
V	06 4	S	226.8	294.7	8.5	21.0	534
V	07 4	S	230.8	296.2	8.3	20.3	534
V	08 4	S	232.5	292.2	8.0	23.5	534
V	09 4	S	226.2	290.1	4.0	7.0	555
V	10 4	S	225.9	292.8	7.5	12.2	544
V	11 4	S	230.0	292.7	5.8	12.0	555
V	22 4	M	233.4	293.3	7.0	17.4	555
V	23 4	M	227.8	293.4	7.0	16.4	555
V	24 4	M	229.8	297.1	7.0	17.4	555
V	25 4	M	228.7	292.6	7.0	16.6	555
V	28 4	M	225.7	290.7	7.0	17.1	534
V	29 4	M	235.0	291.0	7.0	15.6	555
V	30 4	M	230.5	290.0	7.0	17.4	555
V	31 4	M	230.0	292.8	8.0	17.4	555
V	32 4	M	233.5	291.5	6.5	16.3	555
V	33 4	M	232.0	293.3	3.5	7.0	545
V	34 4	M	225.6	296.4	6.0	13.2	528
V	35 4	M	236.0	292.0	6.5	15.2	555
V	36 4	M	226.2	292.7	6.0	13.9	534
V	37 4	M	229.5	296.5	6.0	11.9	555
V	61 4	C	231.7	291.6	6.5	13.0	555
V	63 4	C	226.6	294.2	5.8	13.0	534

SECTION 2

LONGITUDINAL TENSILE PROPERTIES OF
VACUUM INDUCTION MELT-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24403-1)

LONGITUDINAL TENSILE PROPERTIES
OF VACUUM INDUCTION MELT-VACUUM ARC REMELT
H 11 STEEL HEAT NO. W 24403-1

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD,STR,ksi .2% OFF	ULT,STR ksi	% ELONG	% R.A.	BRINELL
A	14 5	S	231.7	296.3	7.0	18.4	555
A	15 5	S	231.8	295.0	8.5	23.0	555
A	16 5	S	228.7	296.1	9.5	26.5	555
A	18 5	S	233.7	301.0	7.5	17.7	555
A	41 5	M	229.7	298.3	5.5	11.5	555
A	42 5	M	227.0	295.6	7.0	14.9	555
A	43 5	M		302.5	6.0	11.5	555
A	45 5	M	237.5	298.5	6.0	16.1	555
A	46 5	M	231.2	297.1	7.0	14.5	555
A	47 5	M	224.5	297.1	6.0	11.5	555
A	49 5	M	234.5	304.5	6.0	10.5	555
A	50 5	M	229.4	299.3	6.8	19.4	534
A	51 5	M	234.2	297.6	7.0	15.2	555
A	65 5	C	230.1	295.7	5.5	11.9	545
A	67 5	C	222.5	285.4	5.0	11.1	545
B	14 5	S	231.2	308.8	7.5	18.8	555
B	15 5	S	233.3	296.3	7.8	21.3	555
B	16 5	S	229.2	297.6	8.0	19.9	555
B	18 5	S	235.0	299.5	7.5	15.3	555
B	41 5	M	225.2	294.6	5.5	8.9	555
B	42 5	M	229.6	291.8	7.5	21.4	555
B	43 5	M	229.7	290.6	6.5	15.6	555
B	45 5	M	227.5	294.7	4.0	7.7	555
B	46 5	M	227.7	299.6	7.0	17.7	555
B	47 5	M	226.4	298.3	5.0	9.6	555
B	49 5	M	229.5	296.9	6.0	14.2	555
B	50 5	M	232.9	297.8	7.5	19.5	534
B	51 5	M	230.7	291.7	8.0	12.2	555
B	65 5	C	226.4	289.3	5.5	11.9	545
B	67 5	C	224.7	283.8	7.0	14.5	545
C	14 5	S	232.2	299.1	9.5	25.4	555
C	15 5	S	233.0	293.8	8.2	26.1	555
C	16 5	S	239.7	309.6	7.0	15.3	555
C	18 5	S	227.7	294.0	8.5	19.4	555
C	41 5	M	225.2	297.1	6.0	10.4	555
C	42 5	M	230.9	297.8	6.5	15.3	555
C	43 5	M	232.0	293.1	7.5	17.8	555
C	45 5	M	230.0	297.5	4.5	5.8	555
C	46 5	M	233.0	299.0	7.0	15.8	555
C	47 5	M	231.2	297.1	6.5	11.3	555
C	49 5	M	229.0	300.7	5.5	12.0	555
C	50 5	M	236.3	301.3	6.8	18.1	534
C	51 5	M	232.7	296.3	6.5	8.1	555
C	65 5	C	222.8	288.0	5.5	10.7	545
C	67 5	C	222.7	283.3	4.2	6.6	545
D	14 5	S	236.2	296.3	7.0	17.0	534
D	15 5	S	232.8	292.5	8.5	23.7	555
D	16 5	S	238.1	309.4	7.0	18.8	555
D	18 5	S	228.0	292.5	6.5	17.0	555
D	41 5	M	226.4	297.7	4.5	7.2	555
D	42 5	M	234.7	299.2	6.5	16.3	555
D	43 5	M	233.5	294.1	7.0	15.3	555
D	45 5	M	232.7	294.9	7.0	7.8	555
D	46 5	M	230.6	303.2	5.5	10.4	555
D	47 5	M	227.5	294.6	6.0	12.6	555
D	49 5	M	231.8	300.7	5.5	11.6	555
D	50 5	M	231.2	308.3	6.5	13.4	534
D	51 5	M	232.2	294.1	7.0	13.4	555
D	65 5	C	227.8	291.3	5.2	9.2	545
D	67 5	C	224.9	285.3	5.0	10.0	545
E	14 5	S	231.8	304.0	7.5	16.3	534
E	15 5	S	235.5	297.5	7.8	22.0	555
E	16 5	S	233.2	307.5	7.5	20.6	555
E	18 5	S	230.0	297.5	7.0	18.8	555
E	41 5	M	224.7	295.8	5.0	10.7	555
E	42 5	M	233.0	297.5	6.5	15.2	555
E	43 5	M	233.1	293.7	5.0	9.7	555
E	45 5	M	230.0	292.8	4.5	7.3	555
E	46 5	M	232.6	300.2	6.0	13.6	555
E	47 5	M	229.8	300.3	4.0	6.2	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	BHN
E	49 5	M	227.4	299.6	4.0	6.6	555
E	50 5	M	235.1	307.0	5.5	21.0	534
E	51 5	M	223.9	290.9	5.5	10.1	555
E	65 5	C	223.6	290.3	5.5	9.3	545
E	67 5	C	222.8	285.2	4.5	8.9	545
H	14 5	S	231.2	304.0	8.0	18.8	534
H	15 5	S	232.6	296.1	8.1	23.4	555
H	16 5	S	227.3	299.5	9.0	26.6	555
H	18 5	S	231.0	297.2	7.0	19.5	555
H	41 5	M	222.9	294.6	4.0	8.1	555
H	42 5	M	235.0	306.3	6.5	10.7	555
H	43 5	M	229.7	293.6	4.0	8.5	555
H	45 5	M	227.1	291.8	5.5	10.8	555
H	46 5	M	233.1	304.5	5.5	9.7	555
H	47 5	M	227.2	297.1	4.0	8.5	555
H	49 5	M	226.3	292.0	5.0	10.8	555
H	50 5	M	229.6	308.3	7.0	21.7	534
H	51 5	M	232.2	293.8	5.0	8.1	555
H	65 5	C	224.6	289.4	5.0	9.7	545
H	67 5	C	222.8	284.5	4.5	8.1	545
I	14 5	S	247.1	300.8	7.0	16.3	534
I	15 5	S	234.3	300.0	6.2	13.4	555
I	16 5	S	236.0	299.1	7.5	19.5	555
I	18 5	S	228.5	297.2	6.0	9.6	555
I	41 5	M	227.4	299.6	5.0	8.9	555
I	42 5	M	232.6	296.4	6.0	14.9	555
I	43 5	M	234.5	297.2	4.5	6.3	555
I	45 5	M	231.1	295.0	4.5	9.7	555
I	46 5	M	230.5	307.0	6.5	9.7	555
I	47 5	M	224.7	295.2	5.5	9.8	555
I	49 5	M	227.1	295.7	4.0	7.4	555
I	50 5	M	230.1	303.3	6.0	14.2	534
I	51 5	M	230.2	294.1	6.0	8.9	555
I	65 5	C	228.0	290.5	4.0	7.7	545
I	67 5	C	223.9	288.9	5.0	10.6	545
J	14 5	S	228.1	299.5	8.5	18.5	534
J	15 5	S	232.8	292.5	7.0	18.8	535
J	16 5	S	231.0	294.7	7.0	16.6	555
J	18 5	S	229.0	295.0	7.5	18.4	555
J	41 5	M	229.6	296.4	6.0	14.0	555
J	42 5	M	228.0	293.8	7.0	14.8	555
J	43 5	M	233.1	295.7	6.0	11.9	555
J	45 5	M	226.5	291.3	6.5	14.1	555
J	46 5	M	240.9	307.5	5.0	13.2	555
J	47 5	M	226.3	295.7	6.5	11.6	555
J	49 5	M	227.9	299.6	6.0	10.0	555
J	50 5	M	234.2	308.8	5.5	11.1	555
J	51 5	M	231.7	298.1	6.0	13.7	555
J	65 5	C	227.3	290.8	5.7	12.2	545
J	67 5	C	227.8	291.9	6.0	13.3	545
K	14 5	S	230.4	291.6	9.5	23.0	534
K	15 5	S	230.5	296.3	7.5	19.3	555
K	16 5	S	227.0	293.5	7.0	16.8	555
K	18 5	S	232.0	286.3	7.0	18.8	555
K	41 5	M	225.5	297.1	6.5	10.0	534
K	42 5	M	232.0	297.8	6.0	13.4	555
K	43 5	M	225.2	291.1	5.5	12.2	555
K	45 5	M	237.5	287.3	6.0	15.6	555
K	46 5	M	227.5	293.8	7.0	17.4	534
K	47 5	M	227.7	294.6	6.5	12.2	555
K	49 5	M	232.5	298.2	5.5	13.5	555
K	50 5	M	229.7	298.1	7.0	15.6	555
K	51 5	M	231.2	297.8	4.9	8.5	545
K	65 5	C	230.4	290.9	4.2	8.9	545
K	67 5	C	222.5	281.0	5.0	11.5	545
L	14 5	S	231.5	296.2	8.0	18.2	534
L	15 5	S	228.8	292.5	6.5	17.0	555
L	16 5	S	225.5	291.6	6.5	11.1	555
L	18 5	S	232.0	295.0	8.0	20.2	555
L	41 5	M	222.7	290.3	5.5	9.4	534
L	42 5	M	223.3	292.7	5.0	8.7	545
L	43 5	M	232.0	297.4	5.0	8.9	555
L	45 5	M	229.5	290.0	4.5	10.4	555

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	BHN
L	46 5	M	228.3	294.0	5.0	13.4	534
L	47 5	M	229.9	295.8	5.5	10.7	555
L	49 5	M	226.4	290.8	5.5	10.7	555
L	50 5	M	231.2	307.5	5.0	12.2	555
L	51 5	M	230.2	292.8	6.0	11.1	555
L	65 5	C	225.0	291.3	5.0	10.0	545
L	67 5	C	223.7	282.6	6.0	12.6	545
M	14 5	S	228.1	294.2	7.5	14.2	534
M	15 5	S	228.8	287.5	7.0	17.0	555
M	16 5	S	233.1	292.5	8.0	20.3	555
M	18 5	S	227.0	290.0	8.0	19.5	555
M	41 5	M	224.4	293.3	6.0	12.6	534
M	42 5	M	229.3	293.5	7.0	18.9	545
M	43 5	M	232.5	295.7	5.5	13.4	555
M	45 5	M	226.6	292.2	5.5	11.9	555
M	46 5	M	227.5	291.4	5.5	12.7	534
M	47 5	M	226.4	290.8	6.0	11.1	555
M	49 5	M	225.2	292.1	6.0	12.6	555
M	50 5	M	228.1	296.2	3.5	3.2	555
M	51 5	M	231.2	295.6	7.0	10.7	555
M	65 5	C	226.0	290.2	6.5	11.2	545
M	67 5	C	225.2	282.1	6.5	14.1	555
N	14 5	S	224.9	292.3	6.5	14.8	534
N	15 5	S	227.8	285.0	7.0	18.1	555
N	16 5	S	229.5	290.1	7.5	20.0	555
N	18 5	S	229.4	291.8	7.0	17.0	555
N	41 5	M	227.5	299.4	5.0	11.2	534
N	42 5	M	229.0	296.7	7.0	17.3	545
N	43 5	M	231.7	295.3	6.0	11.5	555
N	45 5	M	228.1	290.2	5.5	10.1	555
N	46 5	M	233.1	297.1	5.5	13.8	534
N	47 5	M	221.8	290.9	6.5	12.6	555
N	49 5	M	228.7	298.3	6.0	13.0	555
N	50 5	M	229.2	295.3	5.5	13.4	555
N	51 5	M	230.7	294.6	7.0	12.2	555
N	65 5	C	228.1	289.0	6.2	12.2	545
N	67 5	C	226.9	288.3	5.5	12.2	555
P	14 5	S	230.2	292.6	9.0	20.2	534
P	15 5	S	230.0	288.8	6.5	15.2	555
P	16 5	S	232.2	294.3	7.5	19.5	555
P	18 5	S	231.8	293.8	8.0	20.9	555
P	41 5	M	222.9	295.8	5.0	9.2	534
P	42 5	M	228.0	293.4	6.0	13.0	545
P	43 5	M	226.6	291.7	5.5	10.6	555
P	45 5	M	229.5	294.0	5.0	9.2	555
P	46 5	M	227.5	296.3	8.5	19.0	534
P	47 5	M	222.0	292.2	3.5	7.7	555
P	49 5	M	225.5	295.7	5.0	10.5	555
P	50 5	M	228.2	294.3	6.0	13.4	555
P	51 5	M	228.2	291.8	5.5	11.9	555
P	65 5	C	226.6	289.2	5.0	8.5	545
P	67 5	C	224.8	285.9	6.0	12.7	555
S	14 5	S	227.7	297.9	7.3	13.4	534
S	15 5	S	227.8	293.8	6.5	15.9	555
S	16 5	S	225.6	293.2	6.5	13.4	555
S	18 5	S	226.8	290.0	6.5	14.5	555
S	41 5	M	227.2	299.6	5.5	10.7	534
S	42 5	M	226.3	292.7	4.5	7.0	545
S	43 5	M	222.1	290.5	6.0	12.7	555
S	45 5	M	229.1	295.5	5.5	11.6	555
S	46 5	M	229.5	292.9	5.0	12.0	534
S	47 5	M	222.4	290.8	6.5	14.1	555
S	49 5	M	231.3	293.2	6.5	14.5	555
S	50 5	M	232.2	298.1	7.0	17.7	555
S	51 5	M	234.2	294.6	6.0	12.2	555
S	65 5	C	229.8	291.3	6.0	13.7	545
S	67 5	C	224.7	287.1	6.0	14.1	555
T	14 5	S	224.5	288.7	6.5	10.0	534
T	15 5	S	227.5	287.5	7.5	20.6	555
T	16 5	S	229.2	293.8	7.0	19.5	555
T	18 5	S	224.9	291.0	6.5	15.5	555
T	41 5	M	228.1	293.2	5.5	12.7	535
T	42 5	M	229.5	298.4	4.8	10.0	545

BILLET SECTION	TEST NO	SPECIMEN LOCATION	YLD STR KSI .2% OFF	ULT STR KSI	% ELONG	% R.A.	BHN
T	43 5	M	234.0	294.8	6.0	13.9	555
T	45 5	M	229.1	293.5	5.5	9.3	555
T	46 5	M	222.0	289.8	5.0	9.7	534
T	47 5	M	223.9	289.8	5.0	9.6	555
T	49 5	M	223.4	289.6	5.5	11.1	555
T	50 5	M	226.7	296.3	6.0	13.4	555
T	51 5	M	232.7	289.6	6.0	13.0	555
T	65 5	C	228.3	294.5	5.5	9.6	545
T	67 5	C	226.8	288.4	6.5	13.7	555
V	14 5	S	232.2	296.3	8.5	18.8	534
V	15 5	S	230.0	295.0	8.5	22.0	555
V	16 5	S	229.6	291.7	8.0	22.1	555
V	18 5	S	226.5	289.0	6.5	15.6	555
V	41 5	M	226.2	295.8	6.0	14.1	534
V	42 5	M	226.8	297.0	6.2	16.3	545
V	43 5	M	235.5	292.4	7.0	5.6	555
V	45 5	M	231.3	293.3	4.5	7.4	555
V	46 5	M	231.4	296.5	6.0	17.5	534
V	47 5	M	224.7	290.8	6.0	13.7	555
V	49 5	M	230.2	296.3	6.0	12.2	555
V	50 5	M	229.1	300.2	6.0	13.1	555
V	51 5	M	231.7	295.6	7.0	16.3	555
V	65 5	C	228.3	269.8	5.5	10.0	545
V	67 5	C	228.9	293.3	5.5	10.4	555

SECTION 3

TRANSVERSE NOTCHED TENSILE PROPERTIES OF
VACUUM INDUCTION MELT-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24403-1)

(4-14)

TRANSVERSE NOTCHED TENSILE PROPERTIES
OF VACUUM INDUCTION MELT-VACUUM ARC REMELT
H-11 STEEL HEAT NO. W-24403-1

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
A	1 4	S	232.2	0.79	534
	5 4	S	234.5	0.77	534
	12 4	S	215.6	0.73	534
	20 4	M	201.2	0.95	534
	21 4	M	263.9	0.91	535
	26 4	M	303.1	1.04	535
	27 4	M	255.7	0.87	535
	38 4	M	297.8	0.99	535
	39 4	M	217.5	0.73	535
	60 4	C C	225.8	0.78	535
B	62 4	C	239.4	0.82	534
	1 4	S	215.2	0.72	534
	5 4	S	282.2	0.95	534
	12 4	S	214.0	0.70	534
	20 4	M	245.2	0.83	534
	21 4	M	238.1	0.81	535
	26 4	M	248.6	0.86	535
	27 4	M	251.9	0.86	535
	38 4	M	249.1	0.84	535
	39 4	M	212.5	0.72	535
C	60 4	C C	221.7	0.77	535
	62 4	C	229.2	0.79	534
	1 4	S	225.8	0.75	534
	5 4	S	241.4	0.81	534
	12 4	S	219.6	0.75	534
	20 4	M	196.1	0.66	534
	21 4	M	207.4	0.71	535
	26 4	M	189.5	0.64	535
	27 4	M	220.0	0.75	535
	38 4	M	258.8	0.87	535
D	39 4	M	255.4	0.86	535
	60 4	C C	216.1	0.74	535
	62 4	C	200.2	0.97	534
	1 4	S	209.5	0.69	534
	5 4	S	258.9	0.86	534
	12 4	S	210.0	0.71	534
	20 4	M	199.7	0.69	534
	21 4	M	194.1	0.67	535
	26 4	M	276.9	0.94	535
	27 4	M	221.1	0.73	535
E	38 4	M	233.3	0.78	535
	39 4	M	183.9	0.62	535
	60 4	C C	216.6	0.75	535
	62 4	C	198.7	0.69	534
	1 4	S	230.1	0.81	534
	5 4	S	268.7	0.91	534
	12 4	S	293.8	1.00	534
	20 4	M	224.3	0.76	535
	21 4	M	200.8	0.69	535
	26 4	M	217.6	0.73	535
F	27 4	M	241.1	0.82	535
	38 4	M	265.9	0.88	535
	39 4	M	223.8	0.76	535
	60 4	C C	208.4	0.72	535
	62 4	C	220.4	0.81	534
	1 4	S	272.3	0.92	534
	5 4	S	274.7	0.93	534
	12 4	S	251.0	0.94	534
	20 4	M	213.6	0.71	534
	21 4	M	158.3	0.55	535
G	26 4	M	289.7	0.99	535
	27 4	M	285.8	0.96	535
	38 4	M	199.2	0.69	535
	39 4	M	141.9	0.48	535
	60 4	C C	216.6	0.75	535
	62 4	C	224.2	0.78	534
	1 4	S	243.2	0.81	534

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
I	5 4	S	264.6	0.90	534
I	12 4	S	259.0	0.89	534
I	20 4	M	278.9	0.96	534
I	21 4	M	234.5	0.82	535
I	26 4	M	251.5	0.86	535
I	27 4	M	232.8	0.79	535
I	38 4	M	294.0	0.78	535
I	39 4	M	255.4	0.86	535
I	60 4	C C	242.2	0.84	535
I	62 4	C	229.2	0.78	534
J	1 4	S	222.7	0.75	534
J	5 4	S	266.8	0.89	534
J	12 4	S	224.8	0.77	534
J	20 4	M	202.8	0.68	534
J	21 4	M	219.7	0.75	535
J	26 4	M	210.5	0.72	535
J	27 4	M	215.6	0.73	535
J	38 4	M	282.2	0.95	535
J	39 4	M	221.2	0.74	535
J	60 4	C C	210.5	0.74	535
J	62 4	C	196.7	0.68	534
K	1 4	S	280.0	0.92	534
K	5 4	S	217.8	0.73	534
K	12 4	S	237.6	0.81	534
K	20 4	M	250.6	0.85	534
K	21 4	M	218.0	0.74	535
K	26 4	M	277.6	0.94	535
K	27 4	M	189.3	0.63	534
K	38 4	M	220.1	0.74	535
K	39 4	M	232.5	0.78	535
K	60 4	C C	237.6	0.81	535
K	62 4	C	167.2	0.57	534
L	1 4	S	235.5	0.74	534
L	5 4	S	293.4	1.01	534
L	12 4	S	167.0	0.57	534
L	20 4	M	246.9	0.85	534
L	21 4	M	228.4	0.77	535
L	26 4	M	262.1	0.91	535
L	27 4	M	243.3	0.89	535
L	38 4	M	253.5	0.87	535
L	39 4	M	248.3	0.83	535
L	60 4	C C	216.6	0.74	535
L	62 4	C	238.4	0.82	534
M	1 4	S	268.7	0.90	534
M	5 4	S	281.7	0.95	534
M	12 4	S	243.2	0.83	534
M	20 4	M	262.1	0.91	534
M	21 4	M	209.9	0.73	535
M	26 4	M	213.6	0.74	535
M	27 4	M	215.7	0.74	535
M	38 4	M	241.7	0.82	535
M	39 4	M	231.9	0.78	535
M	60 4	C C	221.7	0.76	535
M	62 4	C	218.5	0.79	534
N	1 4	S	298.5	0.86	534
N	5 4	S	210.9	0.72	534
N	12 4	S	239.3	0.81	534
N	20 4	M	232.3	0.81	534
N	21 4	M	294.4	0.88	535
N	26 4	M	178.0	0.62	535
N	27 4	M	262.1	0.90	535
N	38 4	M	268.7	0.91	535
N	39 4	M	196.2	0.66	535
N	60 4	C C	214.1	0.74	535
N	62 4	C	172.8	0.59	534
P	1 4	S	280.2	0.96	534
P	5 4	S	246.0	0.85	534
P	20 4	M	225.6	0.77	534
P	21 4	M	248.3	0.84	535
P	26 4	M	237.4	0.82	535
P	27 4	M	257.3	0.89	535
P	38 4	M	221.7	0.74	535

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	SWH
P	39 4	H	195.7	0.66	935
P	60 4	C	235.3	0.81	935
P	62 4	C	244.9	0.84	934
S	1 4	S	246.3	0.85	934
S	5 4	S	278.6	0.96	934
S	12 4	S	233.8	0.82	934
S	20 4	H	175.8	0.61	934
S	21 4	H	190.0	0.64	935
S	26 4	H	220.2	0.76	935
S	27 4	H	217.6	0.75	935
S	38 4	H	239.1	0.80	935
S	39 4	H C	214.6	0.72	935
S	60 4	C	235.4	0.88	935
S	62 4	C	220.1	0.75	934
T	1 4	S	247.8	0.86	934
T	5 4	S	262.4	0.89	934
T	12 4	S	235.0	0.89	934
T	20 4	H	231.4	0.81	934
T	21 4	H	249.8	0.85	935
T	26 4	H	225.8	0.77	935
T	27 4	H	229.9	0.81	935
T	38 4	H	218.7	0.73	935
T	39 4	H C	232.4	0.85	935
T	60 4	C	230.4	0.79	935
T	62 4	C	160.3	0.55	934
V	1 4	S	223.8	0.77	934
V	5 4	S	268.0	0.90	934
V	12 4	S	260.3	0.96	934
V	20 4	H	252.9	0.88	934
V	21 4	H	268.2	0.91	935
V	26 4	H	232.5	0.80	935
V	27 4	H	224.2	0.77	935
V	38 4	H	243.0	0.84	935
V	39 4	H	266.2	0.90	935
V	60 4	C	225.3	0.77	935
V	62 4	C	233.1	0.86	934

SECTION 4

LONGITUDINAL NOTCHED TENSILE PROPERTIES OF
VACUUM INDUCTION MELT-VACUUM ARC REMELT H-11 STEEL
(HEAT NO. W-24403-1)

(4-18)

**LONGITUDINAL NOTCHED TENSILE PROPERTIES
OF VACUUM INDUCTION MELT-VACUUM ARC REMELT
H-11 STEEL HEAT NO. W-24403-1**

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BNH
A	13 5	S	316.2	1.07	534
A	17 5	S	303.0	1.01	534
A	40 5	M	303.0	1.02	535
A	44 5	M	312.7	1.05	534
A	48 5	M	300.1	1.00	534
A	64 5	C	221.7	0.75	535
A	66 5	C	297.5	1.04	534
B	13 5	S	304.1	0.99	534
B	17 5	S	265.7	0.89	534
B	40 5	M	295.8	1.01	535
B	44 5	M	280.5	0.94	534
B	48 5	M	273.8	0.92	534
B	64 5	C	246.6	0.85	535
B	66 5	C	214.6	0.76	534
C	13 5	S	307.0	1.03	534
C	17 5	S	280.2	0.95	534
C	40 5	M	276.1	0.93	535
C	44 5	M	306.7	1.03	534
C	48 5	M	303.6	1.01	534
C	64 5	C	255.2	0.89	535
C	66 5	C	257.1	0.91	534
D	13 5	S	284.6	0.96	534
D	17 5	S	283.0	0.97	534
D	40 5	M	253.4	0.88	535
D	44 5	M	211.5	0.70	534
D	48 5	M	315.8	1.02	534
D	64 5	C	266.7	0.92	535
D	66 5	C	279.2	0.98	534
E	13 5	S	257.3	0.85	534
E	17 5	S	311.1	1.05	534
E	40 5	M	280.7	0.94	535
E	44 5	M	204.4	0.68	534
E	48 5	M	297.8	0.84	534
E	64 5	C	232.3	0.80	535
E	66 5	C	239.4	0.83	534
H	13 5	S	319.9	1.05	534
H	17 5	S	243.2	0.82	534
H	40 5	M	298.4	0.97	535
H	44 5	M	256.2	0.84	534
H	48 5	M	257.3	0.83	534
H	64 5	C	226.3	0.78	535
H	66 5	C	248.2	0.87	534
I	13 5	S	271.8	0.90	534
I	17 5	S	264.1	0.89	534
I	40 5	M	285.8	0.96	535
I	44 5	M	284.3	0.93	534
I	48 5	M	236.4	0.78	534
I	64 5	C	212.0	0.73	535
I	66 5	C	222.9	0.77	534
J	13 5	S	305.7	1.02	534
J	17 5	S	234.3	0.79	534
J	40 5	M	267.7	0.91	535
J	44 5	M	255.4	0.83	534
J	48 5	M	264.4	0.86	534
J	64 5	C	214.0	0.74	535
J	66 5	C	231.8	0.79	534
K	13 5	S	310.8	1.07	534
K	17 5	S	274.1	0.96	534
K	40 5	M	281.5	0.95	535
K	44 5	M	267.2	0.91	534
K	48 5	M	284.1	0.95	534
K	64 5	C	266.2	0.91	535
K	66 5	C	233.5	0.83	534
L	13 5	S	268.7	0.91	534
L	17 5	S	250.5	0.88	534

BILLET SECTION	TEST NO.	SPECIMEN LOCATION	ULT STR KSI	N/S U.S. RATIO	BHN
L	40 5	H	290.4	0.99	535
	44 5	H	292.3	0.79	534
	48 5	H	245.2	0.80	534
	44 5	C C	225.3	0.77	535
	64 5	C	245.6	0.87	534
	66 5				
M	13 5	S	286.1	0.97	534
	17 5	S	268.5	0.93	534
	40 5	H	287.3	0.98	535
	44 5	H	231.8	0.80	534
	48 5	H C C	206.9	0.70	534
	64 5	C	256.0	0.88	535
N	66 5		204.8	0.73	534
	13 5	S S	316.8	1.08	534
	17 5	S S H	243.5	0.83	534
	40 5	H H	217.1	0.73	535
	44 5	H H	247.3	0.83	534
	48 5	H H C C	252.9	0.86	534
P	64 5	C	246.6	0.85	535
	66 5		251.9	0.87	534
	13 5	S	278.9	0.94	534
	17 5	S S	293.4	1.00	534
	40 5	H H	225.7	0.77	535
	44 5	H H	267.5	0.90	534
S	48 5	H C C	246.6	0.84	534
	64 5	C	262.9	0.91	535
	66 5		255.4	0.89	534
	13 5	S S	276.1	0.93	534
	17 5	S S H	259.7	0.88	534
	40 5	H H	270.8	0.93	535
T	44 5	H H	186.3	0.64	534
	48 5	H H	271.3	0.91	534
	64 5	H C C	236.4	0.81	535
	66 5	C	219.0	0.75	534
	13 5	S S	313.7	1.09	534
	17 5	S S H	219.7	0.75	534
V	40 5	H H	292.7	0.98	535
	44 5	H H	297.0	0.89	534
	48 5	H H	217.1	0.73	534
	64 5	H C C	263.6	0.90	535
	66 5	C	226.8	0.79	534
	13 5	S S	253.7	0.86	534
V	17 5	S S H	259.5	0.90	534
	40 5	H H	215.6	0.73	535
	44 5	H H	229.9	0.78	534
	48 5	H H	259.5	0.86	534
	64 5	H C C	238.6	0.82	535
	66 5	C	228.4	0.78	534

APPENDIX V

HISTOGRAMS FOR ULTIMATE STRENGTH, PER CENT
REDUCTION IN AREA, NOTCH ULTIMATE STRENGTH,
AND NOTCH/SMOOTH STRENGTH RATIO PLOTTED FOR
EACH MELT PROCESS, SPECIMEN DIRECTION, AND
CROSS-SECTIONAL LOCATION

(5-1)

SECTION 1

HISTOGRAMS FOR AIR MELT-VACUUM ARC REMELT H-11
STEEL HEAT NO. W-24341-1

(5-2)

<u>Class</u>	<u>Mid-Point</u>	<u>Frequency</u>
--------------	------------------	------------------

261	1	X
264	1	X
267	1	X
270	1	X
272	3	XXX
275	2	XX
278	8	XXXXXXX
281	6	XXXXXX
283	27	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
286	62	XX
289	103	XX
292	97	XX
294	84	XX
297	87	XX
300	73	XX
302	38	XX
305	13	XXXXXXXXXXXXXX
308	11	XXXXXXXXXXXXXX
311	8	XXXXXXX
313	4	XXXX
316	1	X

Number of Tests 631
 Arithmetic Mean 293.3
 Standard Deviation 7.2
 Maximum Value 314.8
 Minimum Value 260.0
 Standard Deviation of the Mean .29

<u>Class</u>	<u>Mid-Point</u>	<u>Frequency</u>
--------------	------------------	------------------

1.2	15	XXXXXXXXXXXXXX
2.7	62	XXXXXXXXXXXXXX
4.3	107	XXXXXXXXXXXXXX
5.8	81	XXXXXXXXXXXXXX
7.3	111	XXXXXXXXXXXXXX
8.9	72	XXXXXXXXXXXXXX
10.4	57	XXXXXXXXXXXXXX
11.9	38	XXXXXXXXXXXXXX
13.5	20	XXXXXXXXXXXXXX
15.0	18	XXXXXXXXXXXXXX
16.6	17	XXXXXXXXXXXXXX
18.1	12	XXXXXXXXXXXXXX
19.6	7	XXXXXX
21.2	6	XXXXX
22.7	3	XXX
24.3	1	X
25.8	0	
27.3	1	X
28.9	2	XX
30.4	1	X
32.0	1	X

Number of Tests 632
 Arithmetic Mean 8.1
 Standard Deviation 4.8
 Maximum Value 31.2
 Minimum Value 0.4
 Standard Deviation of the Mean 0.19

FIGURE 5-1

HISTOGRAMS FOR SMOOTH SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

Class Mid-Point Ptu	Ksi	Frequency
262	1	X
265	1	X
268	1	X
271	2	XX
275	3	XXX
278	7	XXXXXXX
281	10	XXXXXXXXXX
284	39	XX
287	59	XX
291	78	XX
294	73	XX
297	52	XX
300	41	XX
304	15	XXXXXXXXXXXXXX
307	4	XXXX
310	4	XXXX
313	3	XXX
316	1	X

Number of Tests 394
 Arithmetic Mean 292.2
 Standard Deviation 7.2
 Maximum Value 314.8
 Minimum Value 260.0
 Standard Deviation of the Mean .36

Class Mid-Point \\$ R.A.	Frequency
0.9	7
2.0	26
3.0	51
4.0	48
5.1	57
6.1	43
7.2	35
8.2	24
9.3	30
10.3	22
11.3	15
12.4	8
13.4	12
14.5	9
15.5	5
16.5	1
17.6	0
18.6	1

Number of Tests 394
 Arithmetic Mean 6.6
 Standard Deviation 3.5
 Maximum Value 18.1
 Minimum Value 0.4
 Standard Deviation of the Mean 0.17

FIGURE 5-2

HISTOGRAMS FOR SMOOTH TRANSVERSE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

<u>Class</u>	<u>Mid-Point</u>	<u>F_{tu}</u>	<u>Ksi</u>	<u>Frequency</u>
262		1	X	
266		1	X	
270		0		
273		0		
277		3	XXX	
281		1	X	
285		7	XXXXXXX	
289		39	XX	
293		48	XX	
296		25	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
300		17	XXXXXXXXXXXXXXXXXXXX	
304		1	X	
308		0		
312		0		
316		1	X	
Number of Tests				
Arithmetic Mean				
Standard Deviation				
Maximum Value				
Minimum Value				
Standard Deviation of the Mean				

<u>Class</u>	<u>Mid-Point</u>	<u>% R.A.</u>	<u>Frequency</u>
1.0		1	X
2.3		6	XXXXX
3.6		11	XXXXXXXXXX
4.8		7	XXXXXX
6.1		19	XXXXXXXXXXXXXX
7.4		13	XXXXXXXXXXXXX
8.6		18	XXXXXXXXXXXXXX
9.9		22	XXXXXXXXXXXXXXXXXX
11.1		13	XXXXXXXXXXXXXX
12.4		7	XXXXXX
13.7		15	XXXXXXXXXXXXXX
14.9		6	XXXXX
16.2		4	XXXX
17.5		1	X
18.7		1	X
Number of Tests			
Arithmetic Mean			
Standard Deviation			
Maximum Value			
Minimum Value			
Standard Deviation of the Mean			

FIGURE 5-3

HISTOGRAMS FOR SMOOTH TRANSVERSE SURFACE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

Class	Mid-Point	
F_{tu}	Ksi	Frequency

266	1	X
269	1	X
272	2	XX
275	0	
278	2	XX
281	3	XXX
284	15	XXXXXXXXXXXXXX
287	29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
290	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
293	35	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
296	35	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
299	27	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
302	20	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
305	4	XXXX
307	3	XXX
310	4	XXXX
313	2	XX
316	1	X

Number of Tests 220
 Arithmetic Mean 293.2
 Standard Deviation 7.4
 Maximum Value 314.8
 Minimum Value 264.8
 Standard Deviation of the Mean 0.50

Class	Mid-Point	
$\% R.A.$		Frequency

1.2	5	XXXXX
1.9	4	XXXX
2.7	28	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.4	29	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.1	23	XXXXXXXXXXXXXXXXXXXXXX
4.9	39	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
5.6	17	XXXXXXXXXXXXXXXXXXXX
6.4	26	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
7.1	11	XXXXXXXXXXXX
7.8	14	XXXXXXXXXXXX
8.6	4	XXXX
9.3	3	XXX
10.1	8	XXXXXXX
10.8	3	XXX
11.5	4	XXXX
12.3	0	
13.0	1	X
13.8	1	X

Number of Tests 220
 Arithmetic Mean 5.3
 Standard Deviation 2.4
 Maximum Value 13.4
 Minimum Value 0.8
 Standard Deviation of the Mean 0.16

FIGURE 5-4

HISTOGRAMS FOR SMOOTH TRANSVERSE MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

<u>Class</u>	<u>Mid-Point</u>	<u>Frequency</u>
--------------	------------------	------------------

275	2	XX
278	2	XX
281	4	XXXX
284	8	XXXXXXXX
286	12	XXXXXXXXXX
289	0	
292	1	X
295	0	
298	1	X

Number of Tests	30
Arithmetic Mean	283.7
Standard Deviation	4.4
Maximum Value	296.5
Minimum Value	273.4
Standard Deviation of the Mean	0.79

<u>Class</u>	<u>Mid-Point</u>	<u>Frequency</u>
--------------	------------------	------------------

1.5	2	XX
2.2	3	XXX
3.0	5	XXXX
3.7	10	XXXXXXXXXX
4.5	3	XXX
5.2	1	X
6.0	2	XX
6.7	3	XXX
7.5	1	X

Number of Tests	30
Arithmetic Mean	4.0
Standard Deviation	1.6
Maximum Value	7.1
Minimum Value	1.1
Standard Deviation of the Mean	0.30

FIGURE 5-5

HISTOGRAMS FOR SMOOTH TRANSVERSE CENTER SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

Class Mid-Point Ptu ksi	Frequency	
276	1	X
278	1	X
280	0	
282	0	
285	10	XXXXXXXXXX
287	20	XXXXXXXXXXXXXXXXXXXXXX
289	31	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
291	25	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
293	22	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
296	27	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
298	34	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
300	26	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
302	12	XXXXXXXXXXXXXX
305	12	XXXXXXXXXXXXXX
307	8	XXXXXXX
309	5	XXXXX
311	2	XX
314	1	X

Number of Tests 237
 Arithmetic Mean 295.3
 Standard Deviation 6.6
 Maximum Value 312.5
 Minimum Value 274.5
 Standard Deviation of the Mean 0.43

Class Mid-Point % R.A.	Frequency	
3.5	11	XXXXXXXXXXXX
5.2	30	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.9	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
8.6	33	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
10.2	30	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
11.9	23	XXXXXXXXXXXXXXXXXXXXXX
13.6	4	XXXX
15.3	12	XXXXXXXXXXXXXX
16.9	15	XXXXXXXXXXXXXX
18.6	10	XXXXXXXXXX
20.3	7	XXXXXX
22.0	4	XXXX
23.7	3	XXX
25.3	1	X
27.0	0	
28.7	3	XXX
30.4	1	X
32.0	1	X

Number of Tests 238
 Arithmetic Mean 10.7
 Standard Deviation 5.5
 Maximum Value 31.2
 Minimum Value 2.7
 Standard Deviation of the Mean 0.36

FIGURE 5-6

HISTOGRAMS FOR SMOOTH LONGITUDINAL SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

Class Mid-Point F_{tu}	Ksi	Frequency
292	3	XXX
294	4	XXXX
296	11	XXXXXXXXXX
298	14	XXXXXXXXXXXX
300	12	XXXXXXXXXX
302	5	XXXXX
304	3	XXX
306	2	XX
308	6	XXXXX
310	1	X
312	1	X
313	1	X
Number of Tests		63
Arithmetic Mean		299.7
Standard Deviation		4.8
Maximum Value		312.5
Minimum Value		291.0
Standard Deviation of the Mean		0.61

Class Mid-Point $\% R.A.$	Frequency	
8.1	4 XXXX	
10.3	4 XXXX	
12.5	5 XXXXX	
14.7	9 XXXXXXXX	
16.9	16 XXXXXXXXXXXXXXX	
19.1	10 XXXXXXXX	
21.3	7 XXXXXX	
23.5	4 XXXX	
25.7	0	
27.9	2 XX	
30.1	2 XX	
32.3	1 X	
Number of Tests		64
Arithmetic Mean		17.5
Standard Deviation		5.3
Maximum Value		31.2
Minimum Value		7.0
Standard Deviation of the Mean		0.66

FIGURE 5-7

HISTOGRAMS FOR SMOOTH LONGITUDINAL SURFACE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

Class		
Mid-Point		
F _{tu} K _{si}	Frequency	

276	2	XX
278	0	
281	0	
284	4	XXXX
286	18	XXXXXXXXXXXXXXXXXXXX
289	37	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
291	20	XXXXXXXXXXXXXXXXXXXX
294	9	XXXXXXX
297	14	XXXXXXXXXXXXXX
299	14	XXXXXXXXXXXXXX
302	12	XXXXXXXXXXXXXX
304	7	XXXXXX
307	3	XXX
310	1	X
312	1	X

Number of Tests 142
 Arithmetic Mean 293.2
 Standard Deviation 6.6
 Maximum Value 310.8
 Minimum Value 274.5
 Standard Deviation of the Mean 0.56

}

Class		
Mid-Point		
δ R.A.	Frequency	

3.3	4	XXXX
4.4	10	XXXXXXXXXX
5.5	16	XXXXXXXXXXXXXX
6.7	23	XXXXXXXXXXXXXXXXXXXX
7.8	29	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
8.9	14	XXXXXXXXXXXXXX
10.0	17	XXXXXXXXXXXXXX
11.2	13	XXXXXXXXXXXXXX
12.3	7	XXXXXX
13.4	1	X
14.5	2	XX
15.7	2	XX
16.8	1	X
17.9	2	XX
19.1	1	X

Number of Tests 142
 Arithmetic Mean 8.3
 Standard Deviation 3.0
 Maximum Value 18.5
 Minimum Value 2.7
 Standard Deviation of the Mean 0.25

FIGURE 5-8

HISTOGRAMS FOR SMOOTH LONGITUDINAL MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

<u>Class</u>	<u>Mid-Point</u>	<u>F_{tu}</u>	<u>Ksi</u>	<u>Frequency</u>
291		9		XXXXXXXXXX
294		8		XXXXXXX
296		5		XXXX
299		1	X	
301		4		XXXX
304		2		XX
306		1	X	
309		1	X	
311		1	X	
Number of Tests				
Arithmetic Mean				
Standard Deviation				
Maximum Value				
Minimum Value				
Standard Deviation of the Mean				

<u>Class</u>	<u>Mid-Point</u>	<u>% R.A.</u>	<u>Frequency</u>
4.5		2	XX
5.6		9	XXXXXXXXXX
6.7		1	X
7.8		6	XXXXXX
8.9		6	XXXXXX
10.0		1	X
11.0		4	XXXX
12.1		2	XX
13.2		1	X
Number of Tests			
Arithmetic Mean			
Standard Deviation			
Maximum Value			
Minimum Value			
Standard Deviation of the Mean			

FIGURE 5-9

HISTOGRAMS FOR SMOOTH LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-VAR BILLET

Class	Mid-Point	Ptu Ksi	Frequency
119		2	XX
130		2	XX
141		6	XXXXXX
152		10	XXXXXXXXXX
163		9	XXXXXXXXX
174		19	XXXXXXXXXXXXXXXXXX
185		18	XXXXXXXXXXXXXXXXXX
196		23	XXXXXXXXXXXXXXXXXXXX
207		23	XXXXXXXXXXXXXXXXXXXX
218		23	XXXXXXXXXXXXXXXXXXXX
229		32	XXXXXXXXXXXXXXXXXXXX XXXXXXXXXX
240		34	XXXXXXXXXXXXXXXXXXXX XXXXXXXXXX
251		22	XXXXXXXXXXXXXXXXXXXX
262		25	XXXXXXXXXXXXXXXXXXXX XXXXXXXXXX
273		21	XXXXXXXXXXXXXXXXXXXX
284		16	XXXXXXXXXXXXXXXXXXXX
295		0	
306		1	X
Number of Tests		286	
Arithmetic Mean		221.7	
Standard Deviation		39.3	
Maximum Value		300.5	
Minimum Value		113.2	
Standard Deviation of the Mean		0.23	

Class	Mid-Point	N/S Ratio	Frequency
.371		1	X
.414		1	X
.456		1	X
.498		7	XXXXXX
.541		16	XXXXXXXXXXXXXX
.583		13	XXXXXXXXXXXXX
.625		20	XXXXXXXXXXXXXXXX
.668		19	XXXXXXXXXXXXXXXX
.710		34	XXXXXXXXXXXXXXXXXXXX
.752		30	XXXXXXXXXXXXXXXXXXXX
.795		28	XXXXXXXXXXXXXXXXXXXX
.837		42	XXXXXXXXXXXXXXXXXXXX XXXXXXXXXX
.879		36	XXXXXXXXXXXXXXXXXXXX XXXXXXXXXX
.922		18	XXXXXXXXXXXXXX
.964		11	XXXXXXXXXX
1.01		4	XXXX
1.05		1	X
1.09		1	X
Number of Tests		283	
Arithmetic Mean		0.76	
Standard Deviation		0.131	
Maximum Value		1.07	
Minimum Value		0.35	
Standard Deviation of the Mean		0.0078	

FIGURE 5-10

HISTOGRAMS FOR NOTCHED SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

Class	Mid-Point	Ftu	Ksi	Frequency
-------	-----------	-----	-----	-----------

119		2		XX
132		2		XX
144		10		XXXXXXXXXX
157		8		XXXXXXX
169		17		XXXXXXXXXXXXXXXXXX
181		18		XXXXXXXXXXXXXXXXXX
194		19		XXXXXXXXXXXXXXXXXX
206		17		XXXXXXXXXXXXXXXXXX
219		14		XXXXXXXXXXXXXXXXXX
231		23		XXXXXXXXXXXXXXXXXXXXXX
244		18		XXXXXXXXXXXXXXXXXX
256		13		XXXXXXXXXXXXXXXXXX
268		7		XXXXXX
281		7		XXXXXX
293		1		X

Number of Tests	176
Arithmetic Mean	208.6
Standard Deviation	38.8
Maximum Value	287.0
Minimum Value	113.2
Standard Deviation of the Mean	2.92

Class	Mid-Point	N/S Ratio	Frequency
-------	-----------	-----------	-----------

.374		1	X
.422		1	X
.470		3	XXX
.517		13	XXXXXXXXXXXXXX
.565		10	XXXXXXXXXXXX
.613		19	XXXXXXXXXXXXXXXXXX
.661		18	XXXXXXXXXXXXXXXXXX
.709		27	XXXXXXXXXXXXXXXXXXXXXXXXXX
.757		21	XXXXXXXXXXXXXXXXXXXXXX
.805		18	XXXXXXXXXXXXXXXXXX
.852		18	XXXXXXXXXXXXXXXXXX
.900		17	XXXXXXXXXXXXXXXXXX
.948		4	XXXX
.996		1	X
1.04		1	X

Number of Tests	172
Arithmetic Mean	0.72
Standard Deviation	0.129
Maximum Value	1.02
Minimum Value	0.35
Standard Deviation of the Mean	0.0098

FIGURE 5-11

HISTOGRAMS FOR NOTCHED TRANSVERSE SPECIMEN ULTIMATE STRENGTH
AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

Class Mid-Point Ptu Ksi	Frequency
155	2
172	2
189	4
206	0
223	7
240	15
257	13
274	4
291	1
	X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

48
236.1
31.5
282.3
146.0
4.55

Class Mid-Point N/S Ratio	Frequency
.514	2
.581	1
.649	0
.716	3
.784	11
.851	20
.919	8
.986	2
1.05	1
	X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

48
0.83
0.101
1.02
0.48
0.0146

FIGURE 5-12

HISTOGRAMS FOR NOTCHED TRANSVERSE SURFACE SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

Class Mid-Point \bar{N}_{tu} ksi	Frequency
121	2
137	4
153	9
168	11
184	10
200	15
216	16
232	13
247	6
263	6
279	3
295	1
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

Class Mid-Point N/S Ratio	Frequency
.377	1
.430	0
.484	3
.538	11
.591	9
.645	18
.699	16
.752	13
.806	11
.860	6
.913	5
.967	1
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

FIGURE 5-13

HISTOGRAMS FOR NOTCHED TRANSVERSE MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

Class Mid-Point	F _{tu}	K _{si}	Frequency
--------------------	-----------------	-----------------	-----------

147	4		XXXX
159	0		
171	7		XXXXXXX
183	7		XXXXXXX
195	7		XXXXXXX
206	4		XXXX
218	1		X
230	0		
242	2		XX

Number of Tests	32
Arithmetic Mean	185.0
Standard Deviation	23.3
Maximum Value	236.0
Minimum Value	141.3
Standard Deviation of the Mean	4.1

Class Mid-Point	N/S Ratio	Frequency
--------------------	-----------	-----------

.432	1	X
.477	1	X
.522	4	XXXX
.567	2	XX
.612	6	XXXXXX
.657	5	XXXXX
.702	6	XXXXXX
.747	4	XXXX
.792	1	X

Number of Tests	30
Arithmetic Mean	0.63
Standard Deviation	0.092
Maximum Value	0.77
Minimum Value	0.41
Standard Deviation of the Mean	0.0168

FIGURE 5-14

HISTOGRAMS FOR NOTCHED TRANSVERSE CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

<u>Class</u>		
<u>Mid-Point</u>		
<u>Ptu Kai</u>	<u>Frequency</u>	

182	5	XXXXX
190	7	XXXXXXX
199	3	XXX
208	4	XXXX
217	8	XXXXXXX
226	8	XXXXXXX
234	12	XXXXXXXXXXXX
243	10	XXXXXXXXXX
252	11	XXXXXXXXXXX
261	9	XXXXXXXXX
270	17	XXXXXXXXXXXXXXXX
278	11	XXXXXXXXXXX
287	4	XXXX
296	0	
305	1	X

Number of Tests 110
 Arithmetic Mean 242.3
 Standard Deviation 30.0
 Maximum Value 300.5
 Minimum Value 177.2
 Standard Deviation of the Mean 2.86

<u>Class</u>		
<u>Mid-Point</u>		
<u>M/S Ratio</u>	<u>Frequency</u>	

.511	2	XX
.552	0	
.594	2	XX
.635	7	XXXXXX
.676	3	XXX
.718	6	XXXXX
.759	13	XXXXXXXXXXXX
.801	21	XXXXXXXXXXXXXXXXXXXX
.842	16	XXXXXXXXXXXXXX
.884	17	XXXXXXXXXXXXXX
.925	10	XXXXXXXXXX
.966	10	XXXXXXXXXX
1.01	2	XX
1.05	1	X
1.09	1	X

Number of Tests 111
 Arithmetic Mean 0.82
 Standard Deviation 0.108
 Maximum Value 1.07
 Minimum Value 0.49
 Standard Deviation of the Mean 0.0103

FIGURE 5-15

HISTOGRAMS FOR NOTCHED LONGITUDINAL SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

<u>Class</u>	<u>Mid-Point</u>	<u>F_{tu} ksi</u>	<u>Frequency</u>
212		1	X
224		1	X
235		1	X
247		8	XXXXXXX
259		5	XXXXX
271		8	XXXXXXX
283		7	XXXXXXX
295		0	
306		1	X

Number of Tests 32
 Arithmetic Mean 261.6
 Standard Deviation 19.6
 Maximum Value 300.5
 Minimum Value 205.8
 Standard Deviation of the Mean 3.46

<u>Class</u>	<u>Mid-Point</u>	<u>N/S Ratio</u>	<u>Frequency</u>
.657		1	X
.712		1	X
.767		5	XXXX
.822		9	XXXXXXXX
.877		7	XXXXXX
.932		4	XXXX
.987		4	XXXX
1.04		0	
1.10		1	X

Number of Tests 32
 Arithmetic Mean 0.86
 Standard Deviation 0.088
 Maximum Value 1.07
 Minimum Value 0.63
 Standard Deviation of the Mean 0.0156

FIGURE 5-16

HISTOGRAMS FOR NOTCHED LONGITUDINAL SURFACE SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

Class Mid-Point F _{tu} K _{s1}	Frequency
191	4
204	1
216	2
228	5
241	6
253	8
265	10
278	10
290	1

Number of Tests	47
Arithmetic Mean	249.1
Standard Deviation	26.5
Maximum Value	284.0
Minimum Value	185.1
Standard Deviation of the Mean	3.86

Class Mid-Point N/S Ratio	Frequency
---------------------------------	-----------

.646	2	XX
.697	3	XXX
.748	3	XXX
.799	8	XXXXXXX
.851	8	XXXXXXX
.902	13	XXXXXXXXXXXX
.953	7	XXXXXXX
1.00	2	XX
1.06	1	X

Number of Tests	47
Arithmetic Mean	0.85
Standard Deviation	0.092
Maximum Value	1.03
Minimum Value	0.62
Standard Deviation of the Mean	0.0134

FIGURE 5-17

HISTOGRAMS FOR NOTCHED LONGITUDINAL MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

Class		
Mid-Point		
F _{tu}	K _{si}	Frequency
183	4	XXXX
195	5	XXXXX
206	4	XXXX
218	9	XXXXXXXXX
230	6	XXXXXX
242	2	XX
253	0	
265	0	
277	1	X
Number of Tests		
Arithmetic Mean		
Standard Deviation		
Maximum Value		
Minimum Value		
Standard Deviation of the Mean		

Class		
Mid-Point		
N/S Ratio		Frequency
.521	2	XX
.582	2	XX
.643	5	XXXXX
.704	4	XXXX
.766	10	XXXXXXXXXX
.827	7	XXXXXXX
.888	0	
.949	1	X
1.01	1	X
Number of Tests		
Arithmetic Mean		
Standard Deviation		
Maximum Value		
Minimum Value		
Standard Deviation of the Mean		

FIGURE 5-18

HISTOGRAMS FOR NOTCHED LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-VAR BILLET

SECTION 2

HISTOGRAMS FOR AIR MELT-DEGAS-VACUUM ARC
REMELT H-11 STEEL HEAT NO. W-24342-V1

Class Mid-Point Ptu ksi	Frequency	
206	1	X
212	0	
217	0	
223	0	
228	0	
234	0	
240	0	
245	0	
251	0	
256	1	X
262	2	XX
267	0	
273	1	X
278	7	XXXXXX
284	48	XX
289	111	XX-->
295	175	XX-->
300	161	XX-->
306	120	XX-->
312	9	XXXXXXX
317	1	X
Number of Tests		637
Arithmetic Mean		296.4
Standard Deviation		8.3
Maximum Value		314.3
Minimum Value		203.5
Standard Deviation of the Mean		0.33

Class Mid-Point % R.A.	Frequency	
0.6	5	XXXX
1.8	19	XXXXXXXXXXXXXXXXXXXX
3.0	55	XX
4.2	96	XX-->
5.3	107	XX-->
6.5	86	XX-->
7.7	56	XX-->
8.9	48	XX-->
10.1	42	XX-->
11.3	32	XX
12.4	32	XX
13.6	14	XXXXXXXXXXXXXX
14.8	11	XXXXXXXXXXXXXX
16.0	10	XXXXXXXXXXXXXX
17.2	6	XXXXXX
18.4	3	XXX
19.6	3	XXX
20.7	5	XXXXX
21.9	3	XXX
23.1	3	XXX
24.3	1	X
Number of Tests		637
Arithmetic Mean		7.5
Standard Deviation		4.1
Maximum Value		23.7
Minimum Value		0
Standard Deviation of the Mean		0.16

FIGURE 5-19

HISTOGRAMS FOR SMOOTH SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DEGAS-VAR BILLET

Class		
Mid-Point		
F _{tu}	K _{si}	Frequency
207		1 X
213		0
220		0
226		0
232		0
239		0
245		0
252		0
258		1 X
264		2 XX
271		0
277		4 XXXX
284	43	XX
290	118	XX--
296	139	XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX--
303	68	XX--
309	22	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
316	1	X
Number of Tests		399
Arithmetic Mean		294.3
Standard Deviation		8.5
Maximum Value		312.5
Minimum Value		203.5
Standard Deviation of the Mean		0.43

Class		
Mid-Point		
% R.A.		Frequency
1.3		7 XXXXXXX
2.4	30	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.5	58	XX--
4.5	70	XX--
5.6	44	XX
6.6	50	XX
7.7	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
8.7	26	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
9.8	22	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
10.9	19	XXXXXXXXXXXXXXXXXXXXXX
11.9	13	XXXXXXXXXXXXXX
13.0	11	XXXXXXXXXXXXXX
14.0	2	XX
15.1	6	XXXXXX
16.2	3	XXX
17.2	0	
18.3	0	
19.3	1	X
Number of Tests		398
Arithmetic Mean		6.5
Standard Deviation		3.24
Maximum Value		18.8
Minimum Value		0.8
Standard Deviation of the Mean		0.16

FIGURE 5-20

HISTOGRAMS FOR SMOOTH TRANSVERSE SPECIMEN ULTIMATE STRENGTH
AND PER CENT REDUCTION IN AREA -- AIR MELT-DEGAS-VAR BILLET

Class Mid-Point F _{tu} Ksi	Frequency
259	1 X
262	1 X
266	0
269	0
273	0
276	2 XX
279	0
283	16 XXXXXXXXXXXXXXXXXXXX
286	31 XXXXXXXXXXXXXXXXXXXXXXXXX
290	28 XXXXXXXXXXXXXXXXXXXXXXXXX
293	26 XXXXXXXXXXXXXXXXXXXXXXXXX
296	24 XXXXXXXXXXXXXXXXXXXXXXXXX
300	12 XXXXXXXXXXXXXXXX
303	1 X
307	2 XX

Number of Tests 144
 Arithmetic Mean 290.4
 Standard Deviation 6.6
 Maximum Value 305.0
 Minimum Value 257.2
 Standard Deviation of the Mean 0.55

Class Mid-Point % R.A.	Frequency
1.7	3 XXX
3.0	7 XXXXXX
4.3	12 XXXXXXXXXXXX
5.5	21 XXXXXXXXXXXXXXXXXXXX
6.8	26 XXXXXXXXXXXXXXXXXXXXXXXX
8.1	17 XXXXXXXXXXXXXXXXXXXX
9.3	15 XXXXXXXXXXXXXXXX
10.6	19 XXXXXXXXXXXXXXXXXXXY
11.8	10 XXXXXXXXXX
13.1	7 XXXXXX
14.4	2 XX
15.6	3 XXX
16.9	1 X
18.2	0
19.4	1 X

Number of Tests 144
 Arithmetic Mean 8.1
 Standard Deviation 3.3
 Maximum Value 18.8
 Minimum Value 1.1
 Standard Deviation of the Mean 0.28

FIGURE 5-21

HISTOGRAMS FOR SMOOTH TRANSVERSE SURFACE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA - AIR MELT-DEGAS-VAR BILLET

Class Mid-Point Ftu	Ksi	Frequency
207		1 X
213		0
220		0
226		0
232		0
239		0
245		0
252		0
258		0
264		0
271		0
277	2	XX
284	6	XXXXXX
290	51	XXX→
296	81	XXX→
303	59	XXX→
309	22	XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
316	1	X

Number of Tests 223
 Arithmetic Mean 297.0
 Standard Deviation 8.9
 Maximum Value 312.5
 Minimum Value 203.5
 Standard Deviation of the Mean 0.60

Class Mid-Point # R.A.	Frequency
1.6	9 XXXXXXXXXX
2.5	17 XXXXXXXXXXXXXXXXXXXX
3.4	30 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.3	42 XX
5.2	26 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.1	22 XXXXXXXXXXXXXXXXXXXXXXXX
7.0	24 XXXXXXXXXXXXXXXXXXXXXXXX
7.9	14 XXXXXXXXX
8.9	13 XXXXXXXXX
9.8	7 XXXXXX
10.7	6 XXXXX
11.6	2 XX
12.5	4 XXX
13.4	3 XXX
14.3	0
15.2	2 XX
16.1	0
17.1	1 X

Number of Tests 222
 Arithmetic Mean 5.8
 Standard Deviation 2.8
 Maximum Value 16.6
 Minimum Value 1.1
 Standard Deviation of the Mean 0.19

FIGURE 5-22

HISTOGRAMS FOR SMOOTH TRANSVERSE MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DEGAS-VAR BILLET

Class Mid-Point	F _{tu} ksi	Frequency
267	1	X
272	0	
277	0	
282	1	X
287	3	XXX
292	15	XXXXXXXXXXXXXXXXXX
297	11	XXXXXXXXXXXX
302	0	
308	1	X

Number of Tests	32
Arithmetic Mean	292.6
Standard Deviation	6.6
Maximum Value	305.0
Minimum Value	264.2
Standard Deviation of the Mean	1.17

Class Mid-Point	% R.A.	Frequency
1.7	6	XXXXXX
3.4	10	XXXXXXXXXX
5.1	12	XXXXXXXXXXXX
6.9	3	XXX
8.6	0	
10.4	0	
12.1	0	
13.8	0	
15.6	1	X

Number of Tests	32
Arithmetic Mean	4.3
Standard Deviation	2.4
Maximum Value	14.7
Minimum Value	0.8
Standard Deviation of the Mean	0.42

FIGURE 5-23

HISTOGRAMS FOR SMOOTH TRANSVERSE CENTER SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DEGAS-VAR BILLET

Class Mid-Point F _{tu} Ksi	Frequency
279	3 XXX
281	3 XXX
283	2 XX
286	5 XXXXX
288	7 XXXXXX
290	4 XXXX
292	6 XXXXXX
294	16 XXXXXXXXXXXXXXXX
296	17 XXXXXXXXXXXXXXXX
298	21 XXXXXXXXXXXXXXXXXXXX
300	42 XXXXXXXXXXXXXXXXXXXXXXXX
303	39 XXXXXXXXXXXXXXXXXXXXXXXX
305	38 XXXXXXXXXXXXXXXXXXXXXXXX
307	22 XXXXXXXXXXXXXXXXXXXXXXXX
309	10 XXXXXXXXXX
311	2 XX
313	0
315	1 X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	
	238
	299.8
	6.5
	314.3
	278.1
	0.42

Class Mid-Point % R.A.	Frequency
0.7	1 X
2.1	3 XXX
3.5	6 XXXXX
4.9	47 XXXXXXXXXXXXXXXXXXXXXXXX
6.3	42 XXXXXXXXXXXXXXXXXXXXXXXX
7.7	30 XXXXXXXXXXXXXXXXXXXXXXXX
9.1	24 XXXXXXXXXXXXXXXXXXXXXXXX
10.5	21 XXXXXXXXXXXXXXXXXXXXXXXX
11.8	16 XXXXXXXXXXXXXXXXXXX
13.2	12 XXXXXXXXXXXXXXX
14.6	9 XXXXXXXXX
16.0	11 XXXXXXXXX
17.4	2 XX
18.8	1 X
20.2	5 XXXXX
21.6	5 XXXXX
23.0	3 XXX
24.4	1 X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	
	239
	9.2
	4.8
	23.7
	0
	0.31

FIGURE 5-24

HISTOGRAMS FOR SMOOTH LONGITUDINAL SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DEGAS-VAR BILLET

<u>Class</u>		
<u>Mid-Point</u>		
<u>F_{tu}</u>	<u>Ksi</u>	<u>Frequency</u>
280	3	XXX
282	5	XXXXX
285	4	XXXX
288	9	XXXXXXXXXX
291	6	XXXXXX
293	10	XXXXXXXXXXXX
296	8	XXXXXXXXXX
299	5	XXXXX
302	2	XX
305	6	XXXXXX
307	4	XXXX
310	2	XX

Number of Tests	64
Arithmetic Mean	293.7
Standard Deviation	8.1
Maximum Value	308.8
Minimum Value	278.1
Standard Deviation of the Mean	1.02

<u>Class</u>		
<u>Mid-Point</u>		
<u>% R.A.</u>		<u>Frequency</u>
5.2	2	XX
7.0	2	XX
8.7	3	XXX
10.5	15	XXXXXXXXXXXXXXXXXX
12.2	10	XXXXXXXXXXXX
14.0	7	XXXXXX
15.8	11	XXXXXXXXXXXX
17.5	2	XX
19.3	3	XXX
21.1	3	XXX
22.8	5	XXXXX
24.6	1	X

Number of Tests	64
Arithmetic Mean	14.0
Standard Deviation	4.7
Maximum Value	23.7
Minimum Value	4.3
Standard Deviation of the Mean	0.58

FIGURE 5-25

HISTOGRAMS FOR SMOOTH LONGITUDINAL SURFACE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DEGAS-VAR BILLET

Class Mid-Point F _{tu} Ksi	Frequency
291	1 X
293	2 XX
294	3 XXX
296	3 XXX
298	8 XXXXXXXX
300	19 XXXXXXXXXXXXXXXXXXXXXXX
301	24 XXXXXXXXXXXXXXXXXXXXXXX
303	42 XXXXXXXXXXXXXXXXXXXXXXX
305	13 XXXXXXXXXXXXXXX
306	16 XXXXXXXXXXXXXXX
308	8 XXXXXXXX
310	3 XXX
312	1 X
313	0
315	1 X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

Class Mid-Point % R.A.	Frequency
3.0	4 XXXX
4.5	34 XXXXXXXXXXXXXXXXXXXXXXXXX
5.9	39 XXXXXXXXXXXXXXXXXXXXXXXXX
7.4	24 XXXXXXXXXXXXXXXXXXXXXXXXX
8.9	15 XXXXXXXXXXXXXXX
10.3	5 XXXX
11.8	10 XXXXXXXXXX
13.2	5 XXXX
14.7	2 XX
16.1	3 XXX
17.6	0
19.1	0
20.5	1 X
22.0	1 X
23.4	1 X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

FIGURE 5-26

HISTOGRAMS FOR SMOOTH LONGITUDINAL MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DEGAS-VAR BILLET

Class			
Mid-Point	Ftu	Ksi	Frequency
295		5	XXXXX
297		5	XXXXX
299		11	XXXXXXXXXXXX
301		3	XXX
304		2	XX
306		3	XXX
308		0	
310		0	
312		1	X

Number of Tests 30
 Arithmetic Mean 299.7
 Standard Deviation 3.7
 Maximum Value 311.2
 Minimum Value 293.9
 Standard Deviation of the Mean 0.68

Class		
Mid-Point	% R.A.	Frequency
0.7		1 X
2.0		0
3.3		1 X
4.7		6 XXXXXX
6.0		10 XXXXXXXXXXXX
7.4		5 XXXX
8.7		3 XXX
10.0		4 XXXX
11.4		1 X

Number of Tests 31
 Arithmetic Mean 6.7
 Standard Deviation 2.3
 Maximum Value 10.7
 Minimum Value 0
 Standard Deviation of the Mean 0.41

FIGURE 5-27

HISTOGRAMS FOR SMOOTH LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DEGAS-VAR BILLET

<u>Class</u>	<u>Mid-Point</u>	<u>F_{tu} ksi</u>	<u>Frequency</u>
106	1	X	
119	2	XX	
132	1	X	
145	10	XXXXXXXXXX	
158	14	XXXXXXXXXXXXXX	
170	19	XXXXXXXXXXXXXXXXXXXX	
183	24	XXXXXXXXXXXXXXXXXXXXXX	
196	19	XXXXXXXXXXXXXXXXXXXXX	
209	31	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
222	23	XXXXXXXXXXXXXXXXXXXXXX	
235	36	XXXXXXXXXXXXXXXXXXXXXX	
248	41	XXXXXXXXXXXXXXXXXXXXXX	
261	33	XXXXXXXXXXXXXXXXXXXXXX	
274	16	XXXXXXXXXXXXXX	
287	12	XXXXXXX	
300	5	XXXXX	
312	0		
325	1	X	
Number of Tests			288
Arithmetic Mean			221.9
Standard Deviation			40.5
Maximum Value			318.9
Minimum Value			99.4
Standard Deviation of the Mean			2.39

<u>Class</u>	<u>Mid-Point</u>	<u>N/S Ratio</u>	<u>Frequency</u>
.408	2	XX	
.445	1	X	
.481	6	XXXXXX	
.518	10	XXXXXXXXXX	
.554	10	XXXXXXXXXX	
.591	15	XXXXXXXXXXXXXXXXXX	
.627	23	XXXXXXXXXXXXXXXXXXXXXX	
.664	28	XXXXXXXXXXXXXXXXXXXXXX	
.700	18	XXXXXXXXXXXXXXXXXXXXX	
.736	23	XXXXXXXXXXXXXXXXXXXXXX	
.773	34	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
.809	21	XXXXXXXXXXXXXXXXXXXXXX	
.846	26	XXXXXXXXXXXXXXXXXXXXXX	
.882	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
.919	12	XXXXXXXXXXXXXX	
.955	15	XXXXXXXXXXXXXX	
.992	3	XXX	
1.03	1	X	
Number of Tests			284
Arithmetic Mean			0.75
Standard Deviation			0.131
Maximum Value			1.01
Minimum Value			0.39
Standard Deviation of the Mean			0.0078

FIGURE 5-28

HISTOGRAMS FOR NOTCHED SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH
STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

Class			
Mid-Point	F _{tu}	Ksi	Frequency
106	1	X	
119	2	XX	
132	1	X	
146	11	XXXXXXX	
159	12	XXXXXXX	
172	18	XXXXXXXXXXXXXX	
185	21	XXXXXXXXXXXXXXXXXXXX	
198	14	XXXXXXXXXXXXXX	
212	26	XXXXXXXXXXXXXXXXXXXXXX	
225	13	XXXXXXX	
238	18	XXXXXXXXXXXXXX	
251	20	XXXXXXXXXXXXXX	
264	15	XXXXXXXXXXXXXX	
278	3	XXX	
291	1	X	
Number of Tests			176
Arithmetic Mean			207.8
Standard Deviation			38.9
Maximum Value			284.2
Minimum Value			99.4
Standard Deviation of the Mean			2.93

Class			
Mid-Point	N/S Ratio	Frequency	
.412	3	XXX	
.455	2	XX	
.499	13	XXXXXXXXXXXX	
.542	6	XXXXX	
.586	18	XXXXXXXXXXXXXX	
.630	22	XXXXXXXXXXXXXXXXXX	
.673	19	XXXXXXXXXXXXXX	
.717	14	XXXXXXXXXXXXXX	
.760	19	XXXXXXXXXXXXXX	
.804	19	XXXXXXXXXXXXXX	
.847	16	XXXXXXXXXXXXXX	
.891	15	XXXXXXXXXXXXXX	
.935	7	XXXXXX	
.978	2	XX	
1.02	1	X	
Number of Tests			176
Arithmetic Mean			0.71
Standard Deviation			0.134
Maximum Value			1.00
Minimum Value			0.39
Standard Deviation of the Mean			0.0101

FIGURE 5-29

HISTOGRAMS FOR NOTCHED TRANSVERSE SPECIMEN ULTIMATE STRENGTH AND
NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

<u>Class</u>		
<u>Mid-Point</u>		
<u>F_{tu}</u>	<u>Ksi</u>	<u>Frequency</u>
150	2	XX
168	1	X
186	0	
204	3	XXX
222	5	XXXXX
239	14	XXXXXXXXXXXXXXXXXX
257	15	XXXXXXXXXXXXXXXXXX
275	7	XXXXXXX
293	1	X

Number of Tests	48
Arithmetic Mean	241.7
Standard Deviation	30.4
Maximum Value	284.2
Minimum Value	141.0
Standard Deviation of the Mean	4.39

<u>Class</u>		
<u>Mid-Point</u>		
<u>N/S Ratio</u>		<u>Frequency</u>
.541	1	X
.602	4	XXXX
.663	3	XXX
.724	0	
.786	9	XXXXXXX
.847	16	XXXXXXXXXXXXXXXXXX
.908	10	XXXXXXX
.969	4	XXXX
1.03	1	X

Number of Tests	48
Arithmetic Mean	0.82
Standard Deviation	0.109
Maximum Value	1.00
Minimum Value	0.51
Standard Deviation of the Mean	0.0157

FIGURE 5-30

HISTOGRAMS FOR NOTCHED TRANSVERSE SURFACE SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

Class Mid-Point Ftu	Ksi	Frequency
107	1	X
122	0	
138	0	
153	10	XXXXXX
168	15	XXXXXXXXXXXX
183	13	XXXXXXXXXXXX
198	12	XXXXXXXXXXXX
214	21	XXXXXXXXXXXXXXXXXXXX
229	6	XXXXX
244	11	XXXXXXXXXXXX
259	6	XXXXX
275	1	X

Number of Tests	96
Arithmetic Mean	201.2
Standard Deviation	33.9
Maximum Value	267.1
Minimum Value	99.4
Standard Deviation of the Mean	3.46

Class Mid-Point N/S Ratio	N/S Ratio	Frequency
.416	3	XXX
.468	4	XXXX
.520	8	XXXXXX
.571	11	XXXXXXXX
.623	9	XXXXXXX
.675	19	XXXXXXXXXXXXXXXXXXXX
.727	12	XXXXXXXXXXXX
.779	13	XXXXXXXXXXXXXX
.830	8	XXXXXX
.882	5	XXXX
.934	3	XXX
.986	1	X

Number of Tests	96
Arithmetic Mean	0.69
Standard Deviation	0.128
Maximum Value	0.96
Minimum Value	0.39
Standard Deviation of the Mean	0.0131

FIGURE 5-31

HISTOGRAMS FOR NOTCHED TRANSVERSE MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

Class Mid-Point Ftu Ksi	Frequency
124	2 XX
136	1 X
149	4 XXXX
161	3 XXX
174	6 XXXXXX
186	6 XXXXXX
199	5 XXXXX
211	4 XXXX
224	1 X

Number of Tests	32
Arithmetic Mean	176.6
Standard Deviation	26.6
Maximum Value	217.7
Minimum Value	117.5
Standard Deviation of the Mean	4.71

Class Mid-Point N/S Ratio	Frequency
.501	4 XXXX
.542	0
.583	7 XXXXXXX
.624	8 XXXXXXXX
.666	6 XXXXX
.707	2 XX
.748	2 XX
.789	2 XX
.831	1 X

Number of Tests	32
Arithmetic Mean	0.63
Standard Deviation	0.080
Maximum Value	0.81
Minimum Value	0.48
Standard Deviation of the Mean	0.0142

FIGURE 5-32

HISTOGRAMS FOR NOTCHED TRANSVERSE CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

Class Mid-Point F_{tu}	Ksi	Frequency
157	2	XX
169	0	
181	3	XXX
193	7	XXXXXXX
205	4	XXXX
217	10	XXXXXXXXXX
229	12	XXXXXXXXXXXX
241	18	XXXXXXXXXXXXXXXXXX
253	21	XXXXXXXXXXXXXXXXXXXX
265	11	XXXXXXXXXXXX
277	14	XXXXXXXXXXXXXXXXXX
289	5	XXXXX
301	4	XXXX
313	0	
325	1	X

Number of Tests 112
 Arithmetic Mean 244.1
 Standard Deviation 32.4
 Maximum Value 318.9
 Minimum Value 151.2
 Standard Deviation of the Mean 3.06

Class Mid-Point N/S Ratio	N/S Ratio	Frequency
.595	4	XXXX
.626	3	XXX
.657	6	XXXXXX
.687	5	XXXXX
.718	8	XXXXXXXX
.749	8	XXXXXXXX
.780	14	XXXXXXXXXXXXXXXXXX
.810	8	XXXXXXXX
.841	7	XXXXXXX
.872	13	XXXXXXXXXXXXXXXXXX
.902	16	XXXXXXXXXXXXXXXXXXXX
.933	8	XXXXXXXX
.964	5	XXXXX
.995	2	XX
1.03	1	X

Number of Tests 108
 Arithmetic Mean 0.81
 Standard Deviation 0.102
 Maximum Value 1.01
 Minimum Value 0.58
 Standard Deviation of the Mean 0.0098

FIGURE 5-33

HISTOGRAMS FOR NOTCHED LONGITUDINAL SPECIMEN ULTIMATE STRENGTH AND NOTCH/SMOOTH STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

Class	Mid-Point	
Ftu	Ksi	Frequency
196		1 X
212		1 X
229		4 XXXX
245		7 XXXXXXX
261		6 XXXXXX
278		8 XXXXXXXX
294		3 XXX
311		0
327		1 X

Number of Tests	31
Arithmetic Mean	258.7
Standard Deviation	26.8
Maximum Value	318.9
Minimum Value	187.5
Standard Deviation of the Mean	4.82

Class	Mid-Point	
N/S Ratio		Frequency
.701		1 X
.742		0
.783		4 XXXX
.824		4 XXXX
.866		6 XXXXXX
.907		6 XXXXXX
.948		5 XXXXXX
.989		3 XXX
1.03		1 X

Number of Tests	31
Arithmetic Mean	0.88
Standard Deviation	0.074
Maximum Value	1.01
Minimum Value	0.68
Standard Deviation of the Mean	0.0133

FIGURE 5-34

HISTOGRAMS FOR NOTCHED LONGITUDINAL SURFACE SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

Class Mid-Point F _{tu} K _{si}	Frequency
188	2
203	2
219	4
235	6
250	12
266	12
281	7
297	2
313	1

Number of Tests	48
Arithmetic Mean	251.8
Standard Deviation	26.6
Maximum Value	304.9
Minimum Value	180.0
Standard Deviation of the Mean	3.83

Class Mid-Point N/S Ratio	Frequency
.631	4
.674	1
.716	2
.759	3
.801	11
.844	6
.886	14
.929	5
.971	1

Number of Tests	47
Arithmetic Mean	0.82
Standard Deviation	0.089
Maximum Value	0.95
Minimum Value	0.61
Standard Deviation of the Mean	0.0129

FIGURE 5-35

HISTOGRAMS FOR NOTCHED LONGITUDINAL MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

<u>Class</u>		
<u>Mid-Point</u>		
<u>Ftu</u>	<u>Ksi</u>	<u>Frequency</u>
160	2	XX
179	4	XXXX
197	5	XXXXX
216	7	XXXXXXX
234	8	XXXXXXXX
253	4	XXXX
271	1	X
290	0	
308	1	X

Number of Tests	32
Arithmetic Mean	218.7
Standard Deviation	31.9
Maximum Value	299.0
Minimum Value	151.2
Standard Deviation of the Mean	5.64

<u>Class</u>		
<u>Mid-Point</u>		
<u>N/S Ratio</u>		<u>Frequency</u>
.600	2	XX
.640	6	XXXXXX
.680	3	XXX
.720	7	XXXXXXX
.760	6	XXXXX
.800	4	XXXX
.840	0	
.880	0	
.920	1	X

Number of Tests	29
Arithmetic Mean	0.71
Standard Deviation	0.069
Maximum Value	0.90
Minimum Value	0.58
Standard Deviation of the Mean	0.0129

FIGURE 5-36

HISTOGRAMS FOR NOTCHED LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DEGAS-VAR BILLET

SECTION 3

HISTOGRAMS FOR AIR MELT-DOUBLE VACUUM ARC
REMELT H-11 STEEL HEAT NO. W-24341-2

Class	Mid-Point	F _{tu}	Ksi	Frequency
192		1		X
199		0		
205		0		
212		0		
219		0		
225		1		X
232		1		X
239		1		X
245		1		X
252		4		XXXX
259		1		X
265		10		XXXXXXXXXX
272		14		XXXXXXXXXXXXXX
279		30		XX→
285		79		XX→
292		140		XX→
299		193		XX→
305		119		XX→
312		35		XX
319		7		XXXXXX
325		1		X

Number of Tests 638
 Arithmetic Mean 294.7
 Standard Deviation 12.3
 Maximum Value 322.0
 Minimum Value 188.5
 Standard Deviation of the Mean 0.49

Class	Mid-Point	% R.A.	Frequency
0.6		20	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.8		71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.0		124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.2		144	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
5.4		92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.6		59	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7.8		26	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
9.0		34	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
10.2		20	XXXXXXXXXXXXXXXXXXXXXX
11.4		11	XXXXXXXXXXXXXX
12.7		11	XXXXXXXXXXXXXX
13.9		3	XXX
15.1		7	XXXXXX
16.3		2	XX
17.5		2	XX
18.7		6	XXXXXX
19.9		2	XX
21.1		0	
22.3		1	X
23.5		0	
24.7		1	X

Number of Tests 636
 Arithmetic Mean 5.4
 Standard Deviation 3.5
 Maximum Value 24.1
 Minimum Value 0
 Standard Deviation of the Mean 0.138

FIGURE 5-37

HISTOGRAMS FOR SMOOTH SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point Ftu Ksi		Frequency
192	1	X
200	0	
207	0	
215	0	
223	1	X
230	1	X
238	0	
245	1	X
253	4	XXXX
260	3	XXX
268	11	XXXXXXXXXX
275	27	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
283	54	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
291	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
298	135	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
306	42	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
313	10	XXXXXXXXXX
321	1	X

Number of Tests 398
 Arithmetic Mean 291.3
 Standard Deviation 12.8
 Maximum Value 317.1
 Minimum Value 188.5
 Standard Deviation of the Mean 0.64

Class Mid-Point % R.A.		Frequency
0.4	5	XXXXX
1.2	21	XXXXXXXXXXXXXXXXXXXXXX
2.0	48	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2.8	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.6	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.3	66	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
5.1	47	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
5.9	22	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.7	13	XXXXXXXXXXXXXX
7.5	6	XXXXXX
8.3	5	XXXXX
9.1	3	XXX
9.9	2	XX
10.6	0	
11.4	2	XX
12.2	0	
13.0	2	XX
13.8	1	X

Number of Tests 396
 Arithmetic Mean 4.0
 Standard Deviation 1.9
 Maximum Value 13.4
 Minimum Value 0
 Standard Deviation of the Mean 0.098

FIGURE 5-38

HISTOGRAMS FOR SMOOTH TRANSVERSE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class		
Mid-Point		
F _{tu}	Ksi	Frequency
193		1 X
202		0
211		0
219		0
228		1 X
237		0
246		0
255		2 XX
264		5 XXXXX
273		5 XXXXX
281		19 XXXXXXXXXXXXXXXXXXXXXXX
290		39 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
299		63 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
308		8 XXXXXXXX
317		1 X
Number of Tests		144
Arithmetic Mean		290.7
Standard Deviation		14.3
Maximum Value		312.5
Minimum Value		188.5
Standard Deviation of the Mean		1.19

Class		
Mid-Point		
% R.A.		Frequency
1.3		7 XXXXXXX
2.2		16 XXXXXXXXXXXXXXXXX
3.1		24 XXXXXXXXXXXXXXXXXXXXXXXXX
4.0		30 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.9		23 XXXXXXXXXXXXXXXXXXXXXXXXX
5.8		13 XXXXXXXXXXXXXXXXX
6.7		12 XXXXXXXXXXXXXXXXX
7.6		4 XXX
8.5		5 XXXXX
9.4		2 XX
10.2		2 XX
11.1		2 XX
12.0		0
12.9		2 XX
13.8		1 X
Number of Tests		143
Arithmetic Mean		4.6
Standard Deviation		2.4
Maximum Value		13.4
Minimum Value		0.8
Standard Deviation of the Mean		0.20

FIGURE 5-39

HISTOGRAMS FOR SMOOTH TRANSVERSE SURFACE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point F_{tu}	Ksi	Frequency
225	1	X
231	0	
236	0	
242	0	
248	1	X
253	0	
259	0	
264	4	XXXX
270	5	XXXXX
275	11	XXXXXXXXXX
281	15	XXXXXXXXXXXXXX
286	44	XX
292	40	XX
298	61	XX
303	17	XXXXXXXXXXXXXXXXXX
309	18	XXXXXXXXXXXXXXXXXX
314	5	XXXXX
320	1	X

Number of Tests 223
 Arithmetic Mean 292.1
 Standard Deviation 11.7
 Maximum Value 317.1
 Minimum Value 222.5
 Standard Deviation of the Mean 0.78

Class Mid-Point $\% R.A.$	Frequency
0.3	3 XXX
0.8	4 XXXX
1.3	9 XXXXXXXXX
1.8	15 XXXXXXXXXXXXXXX
2.4	20 XXXXXXXXXXXXXXXXX
2.9	41 XXXXXXXXXXXXXXXXXXXXXXXXX
3.4	21 XXXXXXXXXXXXXXXXXXXXXXXXX
3.9	28 XXXXXXXXXXXXXXXXXXXXXXXXX
4.5	35 XXXXXXXXXXXXXXXXXXXXXXXXX
5.0	16 XXXXXXXXXXXXXXXXX
5.5	12 XXXXXXXXXXXXXXX
6.0	8 XXXXXXXX
6.5	3 XXX
7.1	6 XXXXX
7.6	0
8.1	0
8.6	0
9.2	1 X

Number of Tests 222
 Arithmetic Mean 3.7
 Standard Deviation 1.5
 Maximum Value 8.9
 Minimum Value 0
 Standard Deviation of the Mean 0.997

FIGURE 5-40

HISTOGRAMS FOR SMOOTH TRANSVERSE MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point	F _{t11}	Ksi	Frequency
--------------------	------------------	-----	-----------

253	2	XX	
260	0		
267	0		
274	2	XX	
281	6	XXXXXX	
288	4	XXXX	
295	8	XXXXXXXX	
302	8	XXXXXXXX	
308	1	X	

Number of Tests	31
Arithmetic Mean	288.9
Standard Deviation	12.9
Maximum Value	305.0
Minimum Value	249.8
Standard Deviation of the Mean	2.32

Class Mid-Point	% R.A.	Frequency
--------------------	--------	-----------

0.3	1	X
0.9	3	XXX
1.6	2	XX
2.2	5	XXXXX
2.8	6	XXXXXX
3.4	3	XXX
4.1	4	XXXX
4.7	4	XXXX
5.3	3	XXX

Number of Tests	31
Arithmetic Mean	3.0
Standard Deviation	1.4
Maximum Value	5.0
Minimum Value	0
Standard Deviation of the Mean	0.25

FIGURE 5-41

HISTOGRAMS FOR SMOOTH TRANSVERSE CENTER SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class	Mid-Point		
F _{tu}	Ksi	Frequency	
238	1	X	
243	0		
248	0		
253	0		
259	0		
264	1	X	
269	1	X	
274	1	X	
279	1	X	
284	6	XXXXXX	
289	12	XXXXXXXXXXXXXX	
294	40	XXXXXXXXXXXXXXXXXXXXXX	
299	65	XXXXXXXXXXXXXXXXXXXXXX	→
304	65	XXXXXXXXXXXXXXXXXXXXXX	→
309	35	XXXXXXXXXXXXXXXXXXXXXX	
314	9	XXXXXXX	
319	2	XX	
325	1	X	
Number of Tests			240
Arithmetic Mean			300.3
Standard Deviation			8.9
Maximum Value			322.0
Minimum Value			235.7
Standard Deviation of the Mean			0.57

Class	Mid-Point		
% R.A.	Frequency		
1.5	5	XXXXX	
2.9	18	XXXXXXXXXXXXXXXXXX	
4.2	43	XXXXXXXXXXXXXXXXXXXXXX	
5.6	41	XXXXXXXXXXXXXXXXXXXXXX	
7.0	34	XXXXXXXXXXXXXXXXXXXXXX	
8.3	25	XXXXXXXXXXXXXXXXXXXXXX	
9.7	22	XXXXXXXXXXXXXXXXXXXXXX	
11.1	16	XXXXXXXXXXXXXX	
12.4	13	XXXXXXXXXXXXXX	
13.8	4	XXXX	
15.2	5	XXXXX	
16.6	2	XX	
17.9	7	XXXXXX	
19.3	2	XX	
20.7	1	X	
22.0	1	X	
23.4	0		
24.8	1	X	
Number of Tests			240
Arithmetic Mean			7.8
Standard Deviation			4.1
Maximum Value			24.1
Minimum Value			0.8
Standard Deviation of the Mean			0.27

FIGURE 5-42

HISTOGRAMS FOR SMOOTH LONGITUDINAL SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point	F _{tu}	Ksi	Frequency
284	1	X	
287	3	XXX	
289	1	X	
291	2	XX	
294	6	XXXXXX	
296	7	XXXXXXX	
298	11	XXXXXXXXXXXX	
301	13	XXXXXXXXXXXXXX	
303	12	XXXXXXXXXXXX	
305	6	XXXXXX	
308	1	X	
310	1	X	
Number of Tests			64
Arithmetic Mean			298.8
Standard Deviation			5.3
Maximum Value			308.8
Minimum Value			283.0
Standard Deviation of the Mean			0.66

Class Mid-Point	% R.A.	Frequency
2.2	3	XXX
4.2	11	XXXXXXXXXXXX
6.3	15	XXXXXXXXXXXXXXXX
8.4	9	XXXXXXX
10.5	6	XXXXX
12.6	8	XXXXXXX
14.7	3	XXX
16.8	1	X
18.9	5	XXXX
21.0	2	XX
23.1	0	
25.1	1	X
Number of Tests		
Arithmetic Mean		
Standard Deviation		
Maximum Value		
Minimum Value		
Standard Deviation of the Mean		

FIGURE 5-43

HISTOGRAMS FOR SMOOTH LONGITUDINAL SURFACE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point	F _{tu}	Ksi	Frequency
239	1		X
245		0	
251		0	
257		0	
263	1		X
270		0	
276	1		X
282	4		XXXX
288	5		XXXXX
294	22		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
300	46		XX
307	46		XX
313	13		XXXXXXXXXXXXXX
319	4		XXXX
325	1		X
Number of Tests			144
Arithmetic Mean			301.4
Standard Deviation			10.0
Maximum Value			322.0
Minimum Value			235.7
Standard Deviation of the Mean			0.84

Class Mid-Point	% R.A.	Frequency
1.5	3	XXX
2.8	8	XXXXXXX
4.1	33	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
5.4	21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.7	24	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
8.0	15	XXXXXXXXXXXXXXXXXXXX
9.3	10	XXXXXXXXXXXX
10.7	13	XXXXXXXXXXXXXX
12.0	4	XXXX
13.3	4	XXXX
14.6	4	XXXX
15.9	1	X
17.2	2	XX
18.5	1	X
19.9	1	X
Number of Tests		
Arithmetic Mean		
Standard Deviation		
Maximum Value		
Minimum Value		
Standard Deviation of the Mean		

FIGURE 5-44

HISTOGRAMS FOR SMOOTH LONGITUDINAL MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point	F _{tu}	Ksi	Frequency
--------------------	-----------------	-----	-----------

273	1	X	
278	1	X	
284	0		
290	1	X	
295	12	XXXXXXXXXXXXXX	
301	10	XXXXXXXXXX	
307	5	XXXXX	
312	1	X	
318	1	X	

Number of Tests	32
Arithmetic Mean	298.6
Standard Deviation	8.4
Maximum Value	315.0
Minimum Value	270.0
Standard Deviation of the Mean	1.48

Class Mid-Point	F _{tu}	% R.A.	Frequency
--------------------	-----------------	--------	-----------

3.3	1	X	
4.4	9	XXXXXXXX	
5.8	4	XXXX	
6.7	5	XXXXX	
7.9	3	XXX	
9.0	6	XXXXX	
10.2	2	XX	
11.3	1	X	
12.5	1	X	

Number of Tests	32
Arithmetic Mean	6.7
Standard Deviation	2.4
Maximum Value	11.9
Minimum Value	2.7
Standard Deviation of the Mean	0.42

FIGURE 5-45

HISTOGRAMS FOR SMOOTH LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point Ftu	Ksi	Frequency
107	3	XXX
119	3	XXX
131	5	XXXXX
142	1	X
154	9	XXXXXXXXX
166	10	XXXXXXXXXX
178	13	XXXXXXXXXXXX
189	17	XXXXXXXXXXXXXXX
201	17	XXXXXXXXXXXXXXX
213	16	XXXXXXXXXXXXXXX
224	29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
236	47	XX
248	40	XX
260	31	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
271	26	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
283	13	XXXXXXXXXXXXXXX
295	7	XXXXXX
307	1	X
Number of Tests		288
Arithmetic Mean		227.5
Standard Deviation		40.6
Maximum Value		300.7
Minimum Value		101.3
Standard Deviation of the Mean		2.39

Class Mid-Point N/S Ratio	Frequency	
.383	5 XXXXX	
.430	5 XXXXX	
.476	2 XX	
.523	9 XXXXXXXXX	
.569	14 XXXXXXXXXXXXXXX	
.616	9 XXXXXXXXX	
.662	20 XXXXXXXXXXXXXXXXX	
.709	25 XXXXXXXXXXXXXXXXX	
.755	37 XXXXXXXXXXXXXXXXX	
.801	47 XXXXXXXXXXXXXXXXX	
.848	50 XXXXXXXXXXXXXXXXX	
.894	28 XXXXXXXXXXXXXXXXX	
.941	27 XXXXXXXXXXXXXXXXX	
.987	6 XXXXX	
1.03	0	
1.08	2 XX	
1.13	0	
1.17	1 X	
Number of Tests		287
Arithmetic Mean		0.77
Standard Deviation		0.137
Maximum Value		1.15
Minimum Value		0.36
Standard Deviation of the Mean		0.0081

FIGURE 5-46

HISTOGRAMS FOR NOTCHED SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

Class		
Mid-Point		
F _{tu}	Ksi	Frequency
108	5	XXXXX
122	2	XX
135	4	XXXX
149	7	XXXXXX
163	8	XXXXXXX
176	15	XXXXXXXXXXXXXXXXXX
190	16	XXXXXXXXXXXXXXXXXX
204	17	XXXXXXXXXXXXXXXXXXXX
217	17	XXXXXXXXXXXXXXXXXXXX
231	27	XXXXXXXXXXXXXXXXXXXXXXXX
245	26	XXXXXXXXXXXXXXXXXXXXXXXX
258	17	XXXXXXXXXXXXXXXXXXXX
272	11	XXXXXXXXXXXX
285	3	XXX
299	1	X

Number of Tests 176
 Arithmetic Mean 213.6
 Standard Deviation 41.5
 Maximum Value 292.3
 Minimum Value 101.3
 Standard Deviation of the Mean 3.13

Class		
Mid-Point		
N/S Ratio		Frequency
.388	5	XXXXX
.445	6	XXXXXX
.501	3	XXX
.557	13	XXXXXXXXXXXXXX
.614	17	XXXXXXXXXXXXXXXXXX
.670	19	XXXXXXXXXXXXXXXXXX
.727	22	XXXXXXXXXXXXXXXXXXXX
.783	34	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.840	22	XXXXXXXXXXXXXXXXXXXXXX
.896	21	XXXXXXXXXXXXXXXXXXXXXX
.952	11	XXXXXXXXXXXX
1.01	0	
1.07	1	X
1.12	0	
1.18	1	X

Number of Tests 175
 Arithmetic Mean 0.74
 Standard Deviation 0.146
 Maximum Value 1.15
 Minimum Value 0.36
 Standard Deviation of the Mean 0.0110

FIGURE 5-47

HISTOGRAMS FOR NOTCHED TRANSVERSE SPECIMEN ULTIMATE STRENGTH
AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

Class			
Mid-Point			
F _{tu}	Ksi	Frequency	
184	3	XXX	
198	3	XXX	
213	4	XXXX	
227	10	XXXXXXXXXX	
242	12	XXXXXXXXXXXX	
256	12	XXXXXXXXXXXX	
271	2	XX	
285	1	X	
300	1	X	

Number of Tests	48
Arithmetic Mean	235.8
Standard Deviation	25.1
Maximum Value	292.3
Minimum Value	176.8
Standard Deviation of the Mean	3.62

Class			
Mid-Point			
N/S Ratio		Frequency	
.619	2	XX	
.678	3	XXX	
.737	7	XXXXXX	
.796	12	XXXXXXXXXXXX	
.854	17	XXXXXXXXXXXXXXXX	
.913	2	XX	
.972	4	XXXX	
1.03	0		
1.09	1	X	

Number of Tests	48
Arithmetic Mean	0.81
Standard Deviation	0.090
Maximum Value	1.06
Minimum Value	0.59
Standard Deviation of the Mean	0.0130

FIGURE 5-48

HISTOGRAMS FOR NOTCHED TRANSVERSE SURFACE SPECIMEN ULTIMATE STRENGTH AND NOTCH/SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point	F _{tu} ksi	Frequency
121	4	XXXX
137	1	X
152	5	XXXXX
167	6	XXXXXX
183	14	XXXXXXXXXXXXXXXX
198	12	XXXXXXXXXXXX
214	8	XXXXXXX
229	14	XXXXXXXXXXXXXXXX
244	14	XXXXXXXXXXXXXXXX
260	8	XXXXXXX
275	9	XXXXXXX
291	1	X

Number of Tests	96
Arithmetic Mean	213.2
Standard Deviation	41.2
Maximum Value	282.9
Minimum Value	113.4
Standard Deviation of the Mean	4.20

Class Mid-Point	N/S Ratio	Frequency
.405	4	XXXX
.476	2	XX
.547	8	XXXXXXX
.618	16	XXXXXXXXXXXXXXXX
.689	14	XXXXXXXXXXXXXXXX
.760	20	XXXXXXXXXXXXXXXXXXXXXX
.831	13	XXXXXXXXXXXXXX
.902	13	XXXXXXXXXXXXXX
.973	5	XXXX
1.04	0	
1.11	0	
1.19	1	X

Number of Tests	96
Arithmetic Mean	0.73
Standard Deviation	0.146
Maximum Value	1.15
Minimum Value	0.37
Standard Deviation of the Mean	0.0149

FIGURE 5-49

HISTOGRAMS FOR NOTCHED TRANSVERSE MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point	F _{tu}	Ksi	Frequency
111		3	XXX
131		3	XXX
151		4	XXXX
171		5	XXXXX
191		7	XXXXXXX
211		4	XXXX
231		3	XXX
251		2	XX
271		1	X

Number of Tests	32
Arithmetic Mean	182.0
Standard Deviation	42.2
Maximum Value	260.8
Minimum Value	101.3
Standard Deviation of the Mean	7.46

Class Mid-Point	N/S Ratio	Frequency	
.395		3	XXX
.465		3	XXX
.535		3	XXX
.605		5	XXXXX
.675		7	XXXXXXX
.745		5	XXXXX
.815		4	XXXX
.885		0	
.955		1	X

Number of Tests	31
Arithmetic Mean	0.63
Standard Deviation	0.147
Maximum Value	0.92
Minimum Value	0.36
Standard Deviation of the Mean	0.0264

FIGURE 5-50

HISTOGRAMS FOR NOTCHED TRANSVERSE CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

Class Mid-Point	F _{tu} ksi	Frequency
159	2	XX
169	0	
180	1	X
190	2	XX
201	1	X
211	4	XXXX
222	9	XXXXXXXXXX
232	13	XXXXXXXXXXXXX
243	19	XXXXXXXXXXXXXXXXXXXX
253	17	XXXXXXXXXXXXXXXXXXXX
264	18	XXXXXXXXXXXXXXXXXXXX
274	12	XXXXXXXXXXXXXX
285	10	XXXXXXXXXXXX
295	3	XXX
306	1	X
Number of Tests		112
Arithmetic Mean		249.4
Standard Deviation		27.4
Maximum Value		300.7
Minimum Value		153.3
Standard Deviation of the Mean		2.59

Class Mid-Point	N/S Ratio	Frequency
.521	1	X
.564	1	X
.607	1	X
.650	1	X
.693	5	XXXXX
.736	11	XXXXXXXXXXXX
.779	21	XXXXXXXXXXXXXXXXXXXXXX
.821	22	XXXXXXXXXXXXXXXXXXXXXX
.864	14	XXXXXXXXXXXXXX
.907	16	XXXXXXXXXXXXXX
.950	14	XXXXXXXXXXXXXX
.993	4	XXXX
1.04	0	
1.08	0	
1.12	1	X
Number of Tests		112
Arithmetic Mean		0.83
Standard Deviation		0.095
Maximum Value		1.10
Minimum Value		0.50
Standard Deviation of the Mean		0.0090

FIGURE 5-51

HISTOGRAMS FOR NOTCHED LONGITUDINAL SPECIMEN ULTIMATE STRENGTH AND NOTCH/SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

<u>Class</u>	<u>Mid-Point</u>	<u>Ftu</u>	<u>Ksi</u>	<u>Frequency</u>
--------------	------------------	------------	------------	------------------

217		4		XXXX
228		3		XXX
238		2		XX
249		5		XXXXX
259		4		XXXX
270		7		XXXXXXXX
281		2		XX
291		4		XXXX
302		1		X

Number of Tests	32
Arithmetic Mean	257.0
Standard Deviation	24.0
Maximum Value	296.3
Minimum Value	212.1
Standard Deviation of the Mean	4.24

<u>Class</u>	<u>Mid-Point</u>	<u>N/S Ratio</u>	<u>Frequency</u>
--------------	------------------	------------------	------------------

.753		5		XXXXX
.799		6		XXXXXX
.846		5		XXXXX
.892		7		XXXXXXXX
.938		6		XXXXXX
.984		2		XX
1.03		0		
1.08		0		
1.12		1		X

Number of Tests	32
Arithmetic Mean	0.86
Standard Deviation	0.087
Maximum Value	1.10
Minimum Value	0.73
Standard Deviation of the Mean	0.0154

FIGURE 5-52

HISTOGRAMS FOR NOTCHED LONGITUDINAL SURFACE SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

Class		
Mid-Point		
Ftu Ksi	Frequency	
163	1	X
181	0	
199	1	X
218	1	X
236	13	XXXXXXXXXXXXXXXXX
255	16	XXXXXXXXXXXXXXXXXX
273	10	XXXXXXX
291	5	XXXXX
310	1	X

Number of Tests 48
 Arithmetic Mean 255.0
 Standard Deviation 25.0
 Maximum Value 300.7
 Minimum Value 153.3
 Standard Deviation of the Mean 3.61

Class		
Mid-Point		
N/S Ratio	Frequency	
.532	1	X
.596	0	
.659	0	
.723	2	XX
.787	14	XXXXXXXXXXXXXX
.851	16	XXXXXXXXXXXXXXXXXX
.914	7	XXXXXX
.978	6	XXXXXX
1.04	2	XX

Number of Tests 48
 Arithmetic Mean 0.85
 Standard Deviation 0.089
 Maximum Value 1.01
 Minimum Value 0.50
 Standard Deviation of the Mean 0.0129

FIGURE 5-53

HISTOGRAMS FOR NOTCHED LONGITUDINAL MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

<u>Class</u>	<u>Mid-Point</u>	<u>Ftu</u>	<u>Ksi</u>	<u>Frequency</u>
--------------	------------------	------------	------------	------------------

170		1		X
186		3		XXX
202		1		X
218		6		XXXXXX
234		9		XXXXXXXXX
250		4		XXXX
266		7		XXXXXXX
282		0		
297		1		X

Number of Tests	32
Arithmetic Mean	233.3
Standard Deviation	28.1
Maximum Value	289.5
Minimum Value	162.1
Standard Deviation of the Mean	4.96

<u>Class</u>	<u>Mid-Point</u>	<u>N/S Ratio</u>	<u>Frequency</u>
--------------	------------------	------------------	------------------

.576		1		X
.629		2		XX
.681		3		XXX
.734		6		XXXXXX
.786		9		XXXXXXXXX
.839		3		XXX
.891		7		XXXXXXX
.944		0		
.996		1		X

Number of Tests	32
Arithmetic Mean	0.78
Standard Deviation	0.093
Maximum Value	0.97
Minimum Value	0.55
Standard Deviation of the Mean	0.0163

FIGURE 5-54

HISTOGRAMS FOR NOTCHED LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- AIR MELT-DOUBLE VAR BILLET

SECTION 4

HISTOGRAMS FOR VACUUM INDUCTION MELT-VACUUM
ARC REMELT H-11 STEEL HEAT NO. W-24403-1

Class Mid-Point	F _{tu}	K _{si}	Frequency
--------------------	-----------------	-----------------	-----------

259	1	X	
262	0		
265	0		
268	1	X	
271	0		
274	1	X	
277	1	X	
281	4	XXXX	
284	13	XXXXXXXXXXXXXX	
287	29	XXX→	
290	131	XXX→	
293	172	XXX→	
296	163	XXX→	
299	83	XXX→	
302	20	XXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
306	9	XXXXXXX	
209	10	XXXXXX	
312	0		
315	0		
318	1	X	
321	1	X	

Number of Tests 640
 Arithmetic Mean 294.2
 Standard Deviation 5.2
 Maximum Value 319.7
 Minimum Value 257.1
 Standard Deviation of the Mean 0.21

Class Mid-Point	F _{tu}	K _{si}	Frequency
--------------------	-----------------	-----------------	-----------

2.0	1	X	
3.3	14	XXXXXX	
4.6	11	XXXXXX	
5.8	19	XXXXXXXXXXXXXX	
7.1	28	XXXXXXXXXXXXXXXXXXXXXX	
8.3	46	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
9.6	55	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
10.8	52	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
12.1	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX→	
13.4	69	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX→	
14.6	61	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX→	
15.9	45	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
17.1	51	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
18.4	41	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
19.7	32	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
20.9	16	XXXXXXXXXXXXXX	
22.2	8	XXXXXX	
23.4	7	XXXXXX	
24.7	2	XX	
26.0	4	XXXX	
27.2	1	X	

Number of Tests 640
 Arithmetic Mean 13.2
 Standard Deviation 4.63
 Maximum Value 26.6
 Minimum Value 1.4
 Standard Deviation of the Mean 0.183

FIGURE 5-55

HISTOGRAMS FOR SMOOTH SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point Ftu Ksi	Frequency	
259	1	X
262	0	
265	0	
268	1	X
271	0	
274	1	X
277	1	X
281	2	XX
284	7	XXXXXXX
287	19	XXXXXXXXXXXXXXXXXXXX
290	91	XX
293	108	XX
296	101	XX
299	48	XX
302	13	XXXXXXXXXXXXXX
306	4	XXXX
309	1	X
312	0	
315	0	
318	1	X
321	1	X
Number of Tests		400
Arithmetic Mean		293.7
Standard Deviation		5.20
Maximum Value		319.7
Minimum Value		257.1
Standard Deviation of the Mean		0.260

Class Mid-Point % R.A.	Frequency	
2.0	1	X
3.2	10	XXXXXXX
4.5	14	XXXXXXXXXXXX
5.7	13	XXXXXXXXXXXX
6.9	19	XXXXXXXXXXXXXX
8.1	23	XXXXXXXXXXXXXXXXXXXX
9.3	31	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
10.5	31	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
11.8	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
13.0	38	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
14.2	40	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
15.4	33	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
16.6	28	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
17.9	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXX
19.1	19	XXXXXXXXXXXXXXXXXXXX
20.3	16	XXXXXXXXXXXXXXXXXXXX
21.5	4	XXXX
22.7	3	XXX
24.0	3	XXX
25.2	1	X
26.4	1	X
Number of Tests		400
Arithmetic Mean		12.9
Standard Deviation		4.74
Maximum Value		25.8
Minimum Value		1.4
Standard Deviation of the Mean		0.237

FIGURE 5-56

HISTOGRAMS FOR SMOOTH TRANSVERSE SPECIMEN ULTIMATE STRENGTH
AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR
BILLET

Class Mid-Point	F _{tu}	Ksi	Frequency
259		1	X
264		0	
268		1	X
273		1	X
277		1	X
282		2	XX
286		8	XXXXXXX
291		44	XXX--
295		58	XXX
300		18	XXXXXXXXXXXXXXXXXXXX
304		8	XXXXXXX
309		0	
313		0	
317		1	X
322		1	X
Number of Tests		144	
Arithmetic Mean		293.7	
Standard Deviation		6.94	
Maximum Value		319.7	
Minimum Value		257.1	
Standard Deviation of the Mean		0.58	

Class Mid-Point	% R.A.	Frequency	
2.3	4	XXXX	
4.0	6	XXXXXX	
5.8	9	XXXXXXXXX	
7.5	13	XXXXXXXXXXXX	
9.2	11	XXXXXXXXXXXX	
11.0	11	XXXXXXXXXXXX	
12.7	16	XXXXXXXXXXXXXX	
14.5	15	XXXXXXXXXXXXXX	
16.2	15	XXXXXXXXXXXXXX	
18.0	13	XXXXXXXXXXXXXX	
19.7	14	XXXXXXXXXXXXXX	
21.4	11	XXXXXXXXXXXX	
23.2	3	XXX	
24.9	2	XX	
26.7	1	X	
Number of Tests		144	
Arithmetic Mean		13.6	
Standard Deviation		5.67	
Maximum Value		25.8	
Minimum Value		1.4	
Standard Deviation of the Mean		0.473	

FIGURE 5-57

HISTOGRAMS FOR SMOOTH TRANSVERSE SURFACE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point Ftu Ksi	Frequency	
281	1	X
283	1	X
285	1	X
286	2	XX
288	9	XXXXXXXXX
289	18	XXXXXXXXXXXXXXXXXXXXXX
291	26	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
293	35	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
294	26	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
296	46	XX
297	19	XXXXXXXXXXXXXXXXXXXXXX
299	25	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
300	7	XXXXXX
302	5	XXXXX
304	2	XX
305	0	
307	0	
308	1	X
Number of Tests		224
Arithmetic Mean		294.3
Standard Deviation		3.84
Maximum Value		307.5
Minimum Value		280.7
Standard Deviation of the Mean		0.26

Class Mid-Point % R.A.	Frequency	
3.2	4	XXXX
4.2	1	X
5.3	3	XXX
6.3	10	XXXXXXXXXX
7.3	9	XXXXXXXXX
8.4	6	XXXXXX
9.4	20	XXXXXXXXXXXXXXXXXXXXXX
10.4	14	XXXXXXXXXXXXXX
11.4	20	XXXXXXXXXXXXXXXXXXXXXX
12.5	12	XXXXXXXXXXXXXX
13.5	24	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
14.5	23	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
15.6	16	XXXXXXXXXXXXXXXXXXXXXX
16.6	23	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
17.6	25	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
18.7	5	XXXXX
19.7	7	XXXXXX
20.7	2	XX
Number of Tests		224
Arithmetic Mean		13.0
Standard Deviation		3.98
Maximum Value		20.2
Minimum Value		2.7
Standard Deviation of the Mean		0.266

FIGURE 5-58

HISTOGRAMS FOR SMOOTH TRANSVERSE MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point	F _{tu}	Ksi	Frequency
284	1	X	
285	1	X	
287	1	X	
288	2	XX	
290	7	XXXXXXX	
291	9	XXXXXXXXX	
292	9	XXXXXXXXX	
294	1	X	
295	1	X	

Number of Tests	32
Arithmetic Mean	290.3
Standard Deviation	2.22
Maximum Value	294.2
Minimum Value	283.4
Standard Deviation of the Mean	0.39

Class Mid-Point	% R.A.	Frequency
4.2	5	XXXXX
5.7	3	XXX
7.2	3	XXX
8.6	5	XXXXX
10.1	3	XXX
11.5	5	XXXXX
13.0	5	XXXXX
14.5	2	XX
15.9	1	X

Number of Tests	32
Arithmetic Mean	9.4
Standard Deviation	3.53
Maximum Value	15.2
Minimum Value	3.5
Standard Deviation of the Mean	0.623

FIGURE 5-59

HISTOGRAMS FOR SMOOTH TRANSVERSE CENTER SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR BILLET

Class	Mid-Point	F _{tu}	Ksi	Frequency
282		3	XXX	
283		2	XX	
285		6	XXXXXX	
287		5	XXXXX	
289		10	XXXXXXXXXX	
290		27	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
292		30	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
294		31	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
295		35	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
297		39	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
299		17	XXXXXXXXXXXXXXXXXX	
300		15	XXXXXXXXXXXXXX	
302		2	XX	
304		6	XXXXXX	
305		0		
307		6	XXXXXX	
309		5	XXXXX	
310		1	X	
Number of Tests				240
Arithmetic Mean				294.9
Standard Deviation				5.2
Maximum Value				309.6
Minimum Value				281.0
Standard Deviation of the Mean				0.33

Class	Mid-Point	% R.A.	Frequency
3.9		1	X
5.3		2	XX
6.6		7	XXXXXX
8.0		16	XXXXXXXXXXXXXX
9.4		29	XXXXXXXXXXXXXXXXXXXXXX
10.8		28	XXXXXXXXXXXXXXXXXXXXXX
12.1		35	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
13.5		35	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
14.9		16	XXXXXXXXXXXXXX
16.3		13	XXXXXXXXXXXXXX
17.7		15	XXXXXXXXXXXXXX
19.0		20	XXXXXXXXXXXXXXXXXXXXXX
20.4		9	XXXXXXX
21.8		6	XXXXXX
23.2		4	XXXX
24.5		0	
25.9		3	XXX
27.3		1	X
Number of Tests			
Arithmetic Mean			
Standard Deviation			
Maximum Value			
Minimum Value			
Standard Deviation of the Mean			

FIGURE 5-60
HISTOGRAMS FOR SMOOTH LONGITUDINAL SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point Ftu Ksi	Frequency
-------------------------------	-----------

286	2	XX
288	5	XXXXX
291	6	XXXXXX
293	15	XXXXXXXXXXXXXX
295	11	XXXXXXXXXXXX
297	11	XXXXXXXXXXXX
300	6	XXXXXX
302	2	XX
304	2	XX
306	0	
308	3	XXX
311	1	X

Number of Tests	64
Arithmetic Mean	295.4
Standard Deviation	5.28
Maximum Value	309.6
Minimum Value	285.0
Standard Deviation of the Mean	0.66

Class Mid-Point % R.A.	Frequency
------------------------------	-----------

10.4	4	XXXX
11.9	0	
13.5	4	XXXX
15.0	7	XXXXXX
16.6	9	XXXXXXX
18.1	13	XXXXXXXXXXXX
19.6	12	XXXXXXXXXXXX
21.2	4	XXXX
22.7	6	XXXXXX
24.3	1	X
25.8	3	XXX
27.4	1	X

Number of Tests	64
Arithmetic Mean	18.4
Standard Deviation	3.74
Maximum Value	26.6
Minimum Value	9.6
Standard Deviation of the Mean	0.468

FIGURE 5-61

HISTOGRAMS FOR SMOOTH LONGITUDINAL SURFACE SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point	F _{tu}	K ₁	Frequency
--------------------	-----------------	----------------	-----------

288	1	X	
290	7	XXXXXXX	
291	16	XXXXXXXXXXXXXXXXXX	
293	16	XXXXXXXXXXXXXXXXXX	
294	22	XXXXXXXXXXXXXXXXXXXX	
296	24	XXXXXXXXXXXXXXXXXXXX	
297	21	XXXXXXXXXXXXXXXXXXXX	
299	13	XXXXXXXXXXXXXX	
300	10	XXXXXXXXXXXX	
302	2	XX	
303	2	XX	
305	2	XX	
306	3	XXX	
308	4	XXXX	
310	1	X	

Number of Tests	144
Arithmetic Mean	296.1
Standard Deviation	4.30
Maximum Value	308.8
Minimum Value	287.2
Standard Deviation of the Mean	0.36

Class Mid-Point	% R.A.	Frequency
--------------------	--------	-----------

3.9	1	X
5.2	2	XX
6.5	4	XXXX
7.8	10	XXXXXXXXXX
9.2	20	XXXXXXXXXXXXXXXXXX
10.5	23	XXXXXXXXXXXXXXXXXXXX
11.8	21	XXXXXXXXXXXXXXXXXXXX
13.1	25	XXXXXXXXXXXXXXXXXXXX
14.4	13	XXXXXXXXXXXXXX
15.8	12	XXXXXXXXXXXXXX
17.1	5	XXXXX
18.4	3	XXX
19.7	2	XX
21.0	2	XX
22.4	1	X

Number of Tests	144
Arithmetic Mean	12.1
Standard Deviation	3.34
Maximum Value	21.7
Minimum Value	3.2
Standard Deviation of the Mean	0.278

FIGURE 5-62

HISTOGRAMS FOR SMOOTH LONGITUDINAL MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point <u>F_{tu}</u> K _{s1}	Frequency
282	3 XXX
284	3 XXX
286	4 XXXX
287	3 XXX
289	7 XXXXXXX
291	9 XXXXXXXXX
293	1 X
295	1 X
297	1 X

Number of Tests	32
Arithmetic Mean	288.4
Standard Deviation	3.62
Maximum Value	295.7
Minimum Value	281.0
Standard Deviation of the Mean	0.64

Class Mid-Point <u>% R.A.</u>	Frequency
7.1	1 X
8.1	3 XXX
9.1	4 XXXX
10.1	6 XXXXXX
11.0	5 XXXXX
12.0	5 XXXX
13.0	3 XXX
14.0	4 XXXX
15.0	1 X

Number of Tests	32
Arithmetic Mean	11.0
Standard Deviation	2.05
Maximum Value	14.5
Minimum Value	6.6
Standard Deviation of the Mean	0.362

FIGURE 5-63

HISTOGRAMS FOR SMOOTH LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND PER CENT REDUCTION IN AREA -- VACUUM INDUCTION MELT-VAR BILLET

Class	Mid-Point	F _{tu} ksi	Frequency
147		1	X
158		2	XX
168		3	XXX
179		2	XX
189		6	XXXXXX
199		10	XXXXXXXXXX
210		22	XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
220		42	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
231		34	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
241		32	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
252		36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
262		28	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
273		20	XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
283		23	XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
294		10	XXXXXXXXXX
304		9	XXXXXXX
315		7	XXXXXX
325		1	X
Number of Tests			
Arithmetic Mean			
Standard Deviation			
Maximum Value			
Minimum Value			
Standard Deviation of the Mean			

Class	Mid-Point	N/S Ratio	Frequency
.498		1	X
.534		2	XX
.570		2	XX
.606		4	XXXX
.641		4	XXXX
.677		12	XXXXXXXXXX
.713		24	XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.749		31	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.785		36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.821		32	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.857		38	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.893		39	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.929		16	XXXXXXXXXXXXXXXXXX
.964		22	XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.00		11	XXXXXXXXXX
1.04		10	XXXXXXX
1.07		3	XXX
1.11		1	X
Number of Tests			
Arithmetic Mean			
Standard Deviation			
Maximum Value			
Minimum Value			
Standard Deviation of the Mean			

FIGURE 5-64
HISTOGRAMS FOR NOTCHED SPECIMEN ULTIMATE STRENGTH AND
NOTCH/SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR
BILLET

Class Mid-Point Ftu ksi	Frequency
148	1 X
159	2 XX
171	4 XXXX
182	2 XX
194	10 XXXXXXXXXXXX
205	11 XXXXXXXXXXXX
217	32 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
228	28 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
240	24 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
251	24 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
263	15 XXXXXXXXXXXXXXXXX
274	10 XXXXXXXXXX
286	9 XXXXXXXXX
297	3 XXX
309	1 X

Number of Tests 176
 Arithmetic Mean 234.8
 Standard Deviation 29.4
 Maximum Value 303.1
 Minimum Value 141.9
 Standard Deviation of the Mean 2.21

Class Mid-Point N/S Ratio	Frequency
.500	1 X
.540	2 XX
.580	3 XXX
.620	3 XXX
.660	7 XXXXXX
.700	11 XXXXXXXXXX
.740	35 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.780	24 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.820	25 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.860	24 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.900	20 XXXXXXXXXXXXXXXXXXXXXXXXX
.940	10 XXXXXXXXXX
.980	8 XXXXXXXX
1.02	2 XX
1.06	1 X

Number of Tests 176
 Arithmetic Mean 0.80
 Standard Deviation 0.100
 Maximum Value 1.04
 Minimum Value 0.48
 Standard Deviation of the Mean 0.0075

FIGURE 5-65

HISTOGRAMS FOR NOTCHED TRANSVERSE SPECIMEN ULTIMATE STRENGTH
 AND NOTCH SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR
 BILLET

Class Mid-Point F_{tu} ksi	Frequency
.75	1 X
191	0
207	5 XXXXX
223	7 XXXXXX
239	13 XXXXXXXXXXXXXXX
256	7 XXXXXX
272	8 XXXXXXXX
288	6 XXXXXX
304	1 X

Number of Tests	48
Arithmetic Mean	246.7
Standard Deviation	26.9
Maximum Value	295.8
Minimum Value	167.0
Standard Deviation of the Mean	3.88

Class Mid-Point N/S Ratio	Frequency
.597	1 X
.652	0
.707	7 XXXXXX
.762	7 XXXXXX
.817	8 XXXXXXXX
.872	10 XXXXXXXXXXXX
.927	10 XXXXXXXXXXXX
.982	4 XXX
1.04	1 X

Number of Tests	48
Arithmetic Mean	0.84
Standard Deviation	0.095
Maximum Value	1.01
Minimum Value	0.57
Standard Deviation of the Mean	0.0137

FIGURE 5-66

HISTOGRAMS FOR NOTCHED TRANSVERSE SURFACE SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point F _{tu} K _{s1}	Frequency
149	1 X
164	1 X
179	3 XXX
193	9 XXXXXXXXX
208	9 XXXXXXXXX
223	20 XXXXXXXXXXXXXXXXXXXXXXXX
237	16 XXXXXXXXXXXXXXXXXXXXXXX
252	20 XXXXXXXXXXXXXXXXXXXXXXXX
266	8 XXXXXXXX
281	6 XXXXXX
296	2 XX
310	1 X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

Class Mid-Point N/S Ratio	Frequency
.505	1 X
.556	1 X
.607	3 XXX
.658	8 XXXXXXXX
.709	13 XXXXXXXXXXXXXXX
.760	21 XXXXXXXXXXXXXXXXXXXXXXX
.811	14 XXXXXXXXXXXXXXXX
.862	18 XXXXXXXXXXXXXXXXXXXX
.913	8 XXXXXXXX
.964	6 XXXXXX
1.01	2 XX
1.07	1 X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

FIGURE 5-67

HISTOGRAMS FOR NOTCHED TRANSVERSE MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR BILLET

<u>Class</u>	<u>Mid-Point</u>	<u>Frequency</u>
<u>F_{tu}</u>	<u>K_{s1}</u>	

168	3	XXX
183	0	
198	2	XX
213	9	XXXXXXXXXX
228	9	XXXXXXXXXX
243	6	XXXXXX
258	2	XX
273	0	
288	1	X

Number of Tests	32
Arithmetic Mean	221.8
Standard Deviation	24.5
Maximum Value	280.2
Minimum Value	160.5
Standard Deviation of the Mean	4.32

<u>Class</u>	<u>Mid-Point</u>	<u>Frequency</u>
<u>N/S Ratio</u>		

.576	3	XXX
.629	0	
.681	2	XX
.734	9	XXXXXXXXXX
.786	11	XXXXXXXXXXXX
.839	5	XXXXX
.891	1	X
.944	0	
.996	1	X

Number of Tests	32
Arithmetic Mean	0.76
Standard Deviation	0.085
Maximum Value	0.97
Minimum Value	0.55
Standard Deviation	0.0150

FIGURE 5-68

HISTOGRAMS FOR NOTCHED TRANSVERSE CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point F_{tu} ksi	Frequency
191	1 X
201	2 XX
210	6 XXXXX
220	6 XXXXX
229	11 XXXXXXXXXXXX
239	7 XXXXXX
248	9 XXXXXXXX
258	16 XXXXXXXXXXXXXXXX
267	15 XXXXXXXXXXXXXXXX
277	10 XXXXXXXXXX
287	8 XXXXXXXX
296	6 XXXXXX
306	7 XXXXXXX
315	7 XXXXXXX
325	1 X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

Class Mid-Point N/S Ratio	Frequency
.656	1 X
.688	3 XXX
.720	5 XXXXX
.752	5 XXXXX
.785	14 XXXXXXXXXXXXXXXX
.817	9 XXXXXXXXX
.849	11 XXXXXXXXXXXX
.881	11 XXXXXXXXXXXX
.913	13 XXXXXXXXXXXXXXXX
.945	14 XXXXXYXXXXXXX
.977	8 XXXXXXXX
1.01	8 XXXXXXXX
1.04	6 XXXXXX
1.07	3 XXX
1.11	1 X
Number of Tests	
Arithmetic Mean	
Standard Deviation	
Maximum Value	
Minimum Value	
Standard Deviation of the Mean	

FIGURE 5-69

HISTOGRAMS FOR NOTCHED LONGITUDINAL SPECIMEN ULTIMATE STRENGTH AND NOTCH/SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point Ftu ksi	Frequency
226	1 X
238	3 XXX
251	3 XXX
264	6 XXXXX
276	5 XXXXX
289	4 XXXX
301	4 XXXX
314	5 XXXXX
326	1 X

Number of Tests	32
Arithmetic Mean	278.9
Standard Deviation	26.6
Maximum Value	319.9
Minimum Value	219.7
Standard Deviation of the Mean	4.70

Class Mid-Point N/S Ratio	Frequency
.771	2 XX
.814	2 XX
.856	2 XX
.899	7 XXXXXX
.941	6 XXXXX
.984	4 XXXX
1.03	3 XXX
1.07	5 XXXX
1.11	1 X

Number of Tests	32
Arithmetic Mean	0.94
Standard Deviation	0.089
Maximum Value	1.09
Minimum Value	0.75
Standard Deviation of the Mean	0.0157

FIGURE 5-70

HISTOGRAMS FOR NOTCHED LONGITUDINAL SURFACE SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point	F _{tu}	K _{si}	Frequency
--------------------	-----------------	-----------------	-----------

195	1	X	
211	6	XXXXXX	
227	4	XXXX	
243	4	XXXX	
259	10	XXXXXXXXXX	
275	9	XXXXXXXXX	
292	8	XXXXXXX	
308	5	XXXXX	
324	1	X	

Number of Tests	48
Arithmetic Mean	261.8
Standard Deviation	31.6
Maximum Value	315.8
Minimum Value	186.4
Standard Deviation of the Mean	4.57

Class Mid-Point	N/S Ratio	Frequency
--------------------	-----------	-----------

.666	2	XX
.717	5	XXXXX
.768	4	XXXX
.819	8	XXXXXXXX
.871	5	XXXXX
.922	10	XXXXXXXXXX
.973	7	XXXXXX
1.02	6	XXXXX
1.08	1	X

Number of Tests	48
Arithmetic Mean	0.88
Standard Deviation	0.104
Maximum Value	1.05
Minimum Value	0.64
Standard Deviation of the Mean	0.0151

FIGURE 5-71

HISTOGRAMS FOR NOTCHED LONGITUDINAL MID-RADIUS SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point Ftu ksi	Frequency
-------------------------------	-----------

211	5	XXXXX
222	5	XXXXX
234	7	XXXXXXX
245	4	XXXX
257	5	XXXXX
269	4	XXXX
280	1	X
292	0	
303	1	X

Number of Tests	32
Arithmetic Mean	241.2
Standard Deviation	21.3
Maximum Value	297.5
Minimum Value	204.8
Standard Deviation of the Mean	3.77

Class Mid-Point N/S Ratio	Frequency
---------------------------------	-----------

.749	6	XXXXXX
.788	7	XXXXXXX
.827	4	XXXX
.866	6	XXXXXX
.904	7	XXXXXXX
.943	0	
.982	1	X
1.02	0	
1.06	1	X

Number of Tests	32
Arithmetic Mean	0.84
Standard Deviation	0.075
Maximum Value	1.04
Minimum Value	0.73
Standard Deviation of the Mean	0.0133

FIGURE 5-72

HISTOGRAMS FOR NOTCHED LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR BILLET

Class Mid-Point Ftu Ksi	Frequency
-------------------------------	-----------

211	5	XXXXX
222	5	XXXXX
234	7	XXXXXXX
245	4	XXXX
257	5	XXXXX
269	4	XXXX
280	1	X
292	0	
303	1	X

Number of Tests 32
 Arithmetic Mean 241.2
 Standard Deviation 21.3
 Maximum Value 297.5
 Minimum Value 204.8
 Standard Deviation of the Mean 3.77

Class Mid-Point N/S Ratio	Frequency
---------------------------------	-----------

.749	6	XXXXXX
.788	7	XXXXXXX
.827	4	XXXX
.866	6	XXXXXX
.904	7	XXXXXXX
.943	0	
.982	1	X
1.02	0	
1.06	1	X

Number of Tests 32
 Arithmetic Mean 0.84
 Standard Deviation 0.075
 Maximum Value 1.04
 Minimum Value 0.73
 Standard Deviation of the Mean 0.0133

FIGURE 5-72

HISTOGRAMS FOR NOTCHED LONGITUDINAL CENTER SPECIMEN ULTIMATE STRENGTH AND NOTCH SMOOTH STRENGTH RATIO -- VACUUM INDUCTION MELT-VAR BILLET

APPENDIX VI

ARITHMETIC MEAN AND RANGE
CONTROL CHARTS FOR TENSILE
PROPERTIES DETERMINED FOR EACH
MELT PROCESS VARIATION

SECTION 1

ARITHMETIC MEAN AND RANGE
CONTROL CHARTS FOR TENSILE
PROPERTIES OF AIR MELT-VAR
HEAT W-24341-1

(6-3)

FIGURE 6-1
CONTROL CHART FOR YIELD STRENGTH OF SMOOTH
TRANSVERSE TENSILE SPECIMENS FROM
AIR MELT-VAR BILLET

(6-4)

FIGURE 6-2
CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-VAR BILLET

(6-4)

FIGURE 6-2
CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH
TRANSVERSE TENSILE SPECIMENS FROM
AIR MELT-VAR BILLET

(6-5)

FIGURE 6-3
CONTROL CHART FOR PER CENT ELONGATION OF
SMOOTH TRANSVERSE TENSILE SPECIMENS FROM
AIR MELT-VAR BILLET

(6-6)

FIGURE 6-4
CONTROL CHART FOR PER CENT REDUCTION IN AREA OF
SMOOTH TRANSVERSE TENSILE SPECIMENS FROM
AIR MELT-VAR BILLET

(6-7)

FIGURE 6-5
CONTROL CHART FOR YIELD STRENGTH OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-VAR BILLET

(6-8)

FIGURE 6-6
 CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH
 LONGITUDINAL TENSILE SPECIMENS FROM
 AIR MELT-VAR BILLET

(6-9)

FIGURE 6-7
CONTROL CHART FOR PER CENT ELONGATION OF SMOOTH
LONGITUDINAL TENSILE SPECIMENS FROM
AIR MELT-VAR BILLET

(6-10)

FIGURE 6-8

CONTROL CHART FOR PER CENT REDUCTION IN AREA OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-VAR BILLET

(6-10)

FIGURE 6-8

CONTROL CHART FOR PER CENT REDUCTION IN AREA OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-VAR BILLET

(6-11)

FIGURE 6-9

CONTROL CHART FOR ULTIMATE STRENGTH OF NOTCHED TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-VAR BILLET

(6-12)

FIGURE 6-10
CONTROL CHART FOR N/S STRENGTH RATIO OF TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-VAR BILLET

(6-13)

FIGURE 6-11

CONTROL CHART FOR ULTIMATE STRENGTH OF NOTCHED TENSILE TEST SPECIMENS FROM AIR MELT-VAR BILLET

(6-14)

FIGURE 6-12
CONTROL CHART FOR N/S STRENGTH RATIO OF LONGITUDINAL
TENSILE SPECIMENS FROM AIR MELT-VAR BILLET

SECTION 2

ARITHMETIC MEAN AND RANGE
CONTROL CHARTS FOR TENSILE
PROPERTIES OF AIR MELT-DEGAS-VAR
HEAT W-24342-V1

(6-15)

(6-16)

FIGURE 6-13
CONTROL CHART FOR YIELD STRENGTH OF SMOOTH TRANSVERSE
TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

(6-17)

FIGURE 6-14
CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

(6-18)

FIGURE 6-15
CONTROL CHART FOR PER CENT ELONGATION OF SMOOTH
TRANSVERSE TENSTILE SPECIMENS FROM AIR MELT-DEGAS-VAR
BILLET

(6-19)

FIGURE 6-16

CONTROL CHART FOR PER CENT REDUCTION IN AREA OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

(6-20)

FIGURE 6-17
CONTROL CHART FOR YIELD STRENGTH OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

(6-20)

FIGURE 6-17
CONTROL CHART FOR YIELD STRENGTH OF SMOOTH LONGITUDINAL
TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

(6-21)

FIGURE 6-18
CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH LONGITUDINAL
TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

FIGURE 6-19
CONTROL CHART FOR PER CENT ELONGATION OF SMOOTH LONGITUDINAL
SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

(6-23)

FIGURE 6-20
 CONTROL CHART FOR PER CENT REDUCTION IN AREA OF SMOOTH
 LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR
 BILLET

(6-24)

FIGURE 6-21
CONTROL CHART FOR ULTIMATE STRENGTH OF NOTCHED TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

70

(6-25)

FIGURE 6-22
CONTROL CHART FOR N/S STRENGTH RATIO OF TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

FIGURE 6-23
CONTROL CHART FOR ULTIMATE STRENGTH OF NOTCHED LONGITUDINAL
TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

FIGURE 6-23

(6-27)

FIGURE 6-24

CONTROL CHART FOR N/S STRENGTH RATIO OF LONGITUDINAL,
 TENSILE SPECIMENS FROM AIR MELT-DEGAS-VAR BILLET

SECTION 3

ARITHMETIC MEAN AND RANGE
CONTROL CHARTS FOR TENSILE
PROPERTIES OF AIR MELT-DOUBLE VAR
HEAT W-24341-2

FIGURE 6-25

CONTROL CHART FOR YIELD STRENGTH OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-30)

FIGURE 6-26
CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-31)

FIGURE 6-27
 CONTROL CHART FOR PER CENT ELONGATION OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-32)

FIGURE 6-28
CONTROL CHART FOR PER CENT REDUCTION IN AREA OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-33)

FIGURE 6-29
CONTROL CHART FOR YIELD STRENGTH OF SMOOTH LONGITUDINAL
TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-34)

FIGURE 6-30
CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH LONGITUDINAL
TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-35)

FIGURE 6-31

CONTROL CHART FOR PER CENT ELONGATION OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-36)

FIGURE 6-32
CONTROL CHART FOR PER CENT REDUCTION IN AREA OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-37)

FIGURE 6-33
CONTROL CHART FOR ULTIMATE STRENGTH OF NOTCHED TRANSVERSE
TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-38)

FIGURE 6-34
CONTROL CHART FOR N/S STRENGTH RATIO OF TRANSVERSE TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-39)

FIGURE 6-35
CONTROL CHART FOR ULTIMATE STRENGTH OF NOTCHED LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

(6-40)

FIGURE 6-36

CONTROL CHART FOR N/S STRENGTH RATIO OF LONGITUDINAL TENSILE SPECIMENS FROM AIR MELT-DOUBLE VAR BILLET

SECTION 4

ARITHMETIC MEAN AND RANGE
CONTROL CHARTS FOR TENSILE
PROPERTIES OF VACUUM INDUCTION
MELT-VAR HEAT W-24403-1

(6-42)

FIGURE 6-37
CONTROL CHART FOR YIELD STRENGTH OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

(6-43)

FIGURE 6-38
CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

(6-44)

FIGURE 6-39

CONTROL CHART FOR PER CENT ELONGATION OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

(6-45)

FIGURE 6-40
CONTROL CHART FOR PER CENT REDUCTION IN AREA OF SMOOTH TRANSVERSE TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

(6-46)

FIGURE 6-41
 CONTROL CHART FOR YIELD STRENGTH OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

FIGURE 6-42
CONTROL CHART FOR ULTIMATE STRENGTH OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

(6-48)

FIGURE 6-43
CONTROL CHART FOR PER CENT ELONGATION OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

(6-49)

FIGURE 6-44
CONTROL CHART FOR PER CENT REDUCTION IN AREA OF SMOOTH LONGITUDINAL TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

FIGURE 6-45
CONTROL CHART FOR ULTIMATE STRENGTH OF NOTCHED TRANSVERSE TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

(6-51)

FIGURE 6-46
CONTROL CHART FOR N/S STRENGTH RATIO OF TRANSVERSE TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

FIGURE 6-47
CONTROL CHART FOR ULTIMATE STRENGTH OF NOTCHED LONGITUDINAL TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

(6-52)

(6-53)

FIGURE 6-48
CONTROL CHART FOR N/S STRENGTH RATIO OF LONGITUDINAL
TENSILE SPECIMENS FROM VACUUM INDUCTION MELT-VAR BILLET

DISTRIBUTION LIST
CONTRACT AF33(600)-38767

- Headquarters (6)
Aeronautical Systems Division
United States Air Force
Wright-Patterson Air Force Base, Ohio
ATTN: ASRCTB
- Aeronautical Systems Division
United States Air Force
Wright-Patterson Air Force Base, Ohio
ATTN: WCLSS
- Aeronautical Systems Division
United States Air Force
Wright-Patterson Air Force Base, Ohio
ATTN: WCLTEME
- Aeronautical Systems Division
United States Air Force
Wright-Patterson Air Force Base, Ohio
ATTN: WCLTLPL
- Aircraft Industries Association
15th and H Streets, N.W.
Washington, D.C.
- Arcturus Manufacturing Corporation
Venice,
California
- Armed Services Technical Information Agency (10)
Arlington Hall Station
Arlington 12, Virginia
- Armour Research Foundation of
Illinois Institute of Technology
Metals Research Department
10 West 35th Street
Chicago 16, Illinois
ATTN: Mr. Paul R. Gouwens
- Baldwin-Lima-Hamilton Corporation
Industrial Equipment Division
Philadelphia 42, Pennsylvania
ATTN: Mr. Fred Fielder
- Bell Aircraft Corporation
P.O. Box 1
Niagara Falls, New York
ATTN: Mr. George Kappelt

DISTRIBUTION LIST
CONTRACT AF33(600)-33737
(Continued)

Bendix Aviation Corporation
Landing Gear
401 Bendix Drive
South Bend, Indiana
ATTN: Mr. W. E. Eldred,
Engineering Manager

The Beryllium Corporation
Reading,
Pennsylvania
ATTN: Mr. Larry Boland

The Boeing Company
Manufacturing Research & Development
Seattle 14, Washington
ATTN: Mr. M. L. Schuele,
Manager

The Boeing Company
P.O. Box 3707
Seattle 24, Washington
ATTN: Mr. E. E. Bauer, 2-5000

The Boeing Company
Wichita 1,
Kansas
ATTN: Mr. Kenneth C. Knight,
Librarian

Bridgeport Brass Company
P.O. Box 244
Ashtabula, Ohio
ATTN: Mr. H. L. Rubenstein

Bridgeport Brass Company
1221 Wilmington Avenue
Dayton 20, Ohio
ATTN: Col. O. A. Kinney

Cameron Iron Works
P.O. Box 1212
Houston, Texas
ATTN: Mr. J. W. Brough

Canton Drop Forging & Manufacturing Company
2100 Willett Avenue
Canton 2, Ohio
ATTN: Mr. E. L. Branchler

DISTRIBUTION LIST
CONTRACT AF33(600)-38767
(Continued)

Douglas Aircraft Company, Inc.
Missiles and Space Systems
Santa Monica, California
ATTN: Mr. R. L. Johnson,
Chief Engineer

Fansteel Metallurgical Corporation
North Chicago,
Illinois
ATTN: Mr. Harry W. Highwriter,
Vice-President

General Dynamics Corporation/Astronautics
Mail Zone 400-00
P.O. Box 1128
San Diego 12, California
ATTN: Production Engineering Manager,
Dept. 400-0

General Electric Company
Aircraft Gas Turbine Division
Cincinnati, Ohio
ATTN: Mr. K. W. Stalker,
Manager Manufacturing Engineering &
Process Development

Grumman Aircraft Engineering Corporation
Bethpage, Long Island,
New York
ATTN: Mr. A. Meade

Harvey Machine Company
19200 South Western Avenue
Torrance, California
ATTN: Mr. G. A. Moudry

Heppenstall Company
Pittsburgh 1,
Pennsylvania
ATTN: Mr. H. F. Powders
Manager, Defense Marketing

Hughes Aircraft Corporation
Culver City,
California
ATTN: Mr. M. S. Harned

Kropp Forge Company
5301 West Roosevelt Road
Chicago, Illinois
ATTN: Mr. Victor Brown,
Vice-President

DISTRIBUTION LIST
CONTRACT AF33(600)-38767
(Continued)

Chambersburg Engineering Company
Chambersburg,
Pennsylvania
ATTN: Mr. E. C. Clarke, Jr.

Chance Vought Corporation
9314 West Jefferson
Dallas, Texas
ATTN: Chief, Materials and Processes

Crucible Steel Corporation
Oliver Building
Pittsburgh, Pennsylvania
ATTN: Dr. Walter Finlay

Curtiss-Wright Corporation
Metals Processing Division
Buffalo, New York
ATTN: Plant Manager

Curtiss-Wright Corporation
Wood-Ridge,
New Jersey
ATTN: Mr. H. Hanink

Defense Metals Information Center
Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio
ATTN: Mr. R. Runck

Department of the Navy
Bureau of Aeronautics
Washington 25, D.C.
ATTN: Mr. N. E. Promisel

Douglas Aircraft Company, Inc.
El Segundo,
California
ATTN: Mr. R. H. Cassner,
Chief Metallurgist

Douglas Aircraft Company, Inc.
Metals and Processes
3000 Ocean Park Boulevard
Santa Monica, California
ATTN: Mr. F. T. Wood,
Chief

DISTRIBUTION LIST
CONTRACT AF33(600)-38767
(Continued)

A. O. Smith Corporation
P.O. Box 584
Milwaukee, Wisconsin
ATTN: Mr. F. J. Altmann, Chief
Government Contracts Division

Standard Pressed Steel, Inc.
Jenkintown 44,
Pennsylvania
ATTN: Mr. Bennett Jones

Steel Improvement & Forge Company
970 East 64th Street
Cleveland 3, Ohio
ATTN: Mr. D. McGinty

Taylor Forge & Pipe Works
4735 West 145th Street
Cicero, Illinois
ATTN: Mr. E. L. Roshong

Thompson-Ramo-Wooldridge, Inc.
23555 Euclid Avenue
Cleveland 17, Ohio
ATTN: Mr. Charles Clements

Thompson-Ramo-Wooldridge, Inc.
TAPCO Group
211 Talbott Tower
Dayton 2, Ohio
ATTN: Mr. J. L. Haggerty

Townsend Engineered Products, Inc.
P.O. Box 2025
Santa Ana, California
ATTN: Mr. George Norville,
President

Transue & Williams Steel Forging Corporation
Forging Division
Alliance, Ohio
ATTN: Mr. J. W. Ament,
Sales Manager

U.S. Department of Commerce
Business & Defense Services Administration
Raw Materials Branch
Iron & Steel Division
Commerce Building
Washington 25, D.C.
ATTN: Forgings Branch/Mr. R. Curran

DISTRIBUTION LIST
CONTRACT AF33(600)-38767
(Continued)

Lear Siegler, Inc.
1700 East Grand Avenue
El Segundo, California
ATTN: Chief Engineer

Lockheed Aircraft Corporation
2555 Hollywood Way
Burbank, California
ATTN: Mr. George W. Papen

The Martin Company
Manufacturing Research & Development
Baltimore 3, Maryland
ATTN: Mr. Leon Laux,
Mail No. 540

Metallurgical Engineers
2340 S.W. Jefferson Street
Portland 7, Oregon
ATTN: Mr. Harry Czyzewski

North American Aviation, Inc.
Columbus,
Ohio
ATTN: Mr. F. A. Wedberg,
Chief Research Engineer

North American Aviation, Inc.
International Airport
Los Angeles 45, California
ATTN: Mr. L. P. Spalding,
Chief Research Engineer

Pratt & Whitney Aircraft
Division of United Aircraft Corporation
Chemical & Metallurgical Processes
East Hartford 8, Connecticut
ATTN: Mr. S. W. Deming,
Chief

Republic Aviation Corporation
Farmingdale, Long Island,
New York
ATTN: Mr. Adolph Kastelowitz,
Chief Manufacturing Engineer

Scientific and Technical Information Facility
P.O. Box 5700
Bethesda, Maryland
ATTN: NASA Representative (S-AK/DL)

DISTRIBUTION LIST
CONTRACT AF33(600)-38767
(Concluded)

Wright Aeronautical Division
Curtiss-Wright Corporation
Wood-Ridge, New Jersey
ATTN: Miss Alice M. Kettle

Wyman-Gordon Company
North Grafton,
Massachusetts
ATTN: Mr. Arnold Rustay

UNCLASSIFIED

AD

Ladish Co., Cudahy, Ws.
DEVELOPMENT AND STATISTICAL
ANALYSIS EVALUATION OF MELTING AND
TRANSVERSE PROPERTIES OF HIGH-
STRENGTH (H-11 TYPE) STEEL, by
J.C.Truszynski, et al. May 1963.
304p. incl. illus. tables. (Proj.
7-678) (ASD TR 7-678(IV)
(Contract AF33(600)-38767)

Unclassified report

Four vacuum arc remelt process
variations commercially available
for the production of high-strength
steel were statistically compared
(over)

AD

In terms of smooth and notch ten-
sile test data developed from
transverse and longitudinal speci-
mens removed from 10-inch RCS
press-forged billets. Of the four
processes, (a) air melt-VAR, (b)
air melt-degas-VAR, (c) air melt-
double VAR, and (d) vacuum induc-
tion melt-VAR, investigated at a
300 Ksi ultimate strength level,
the vacuum induction melt-VAR pro-
cess provided the highest ductility
and the most nearly uniform trans-
verse and longitudinal strength
and ductility.

UNCLASSIFIED

UNCLASSIFIED

AD

Ladish Co., Cudahy, Ws.
DEVELOPMENT AND STATISTICAL
ANALYSIS EVALUATION OF MELTING AND
TRANSVERSE PROPERTIES OF HIGH-
STRENGTH (H-11 TYPE) STEEL, by
J.C.Truszynski, et al. May 1963.
304p. incl. illus. tables. (Proj.
7-678) (ASD TR 7-678(IV)
(Contract AF33(600)-38767)

Unclassified report

Four vacuum arc remelt process
variations commercially available
for the production of high-strength
steel were statistically compared
(over)

AD

in terms of smooth and notch ten-
sile test data developed from
transverse and longitudinal speci-
mens removed from 10-inch RCS
press-forged billets. Of the four
processes, (a) air melt-VAR, (b)
air melt-degas-VAR, (c) air melt-
double VAR, and (d) vacuum induc-
tion melt-VAR, investigated at a
300 Ksi ultimate strength level,
the vacuum induction melt-VAR pro-
cess provided the highest ductility
and the most nearly uniform trans-
verse and longitudinal strength
and ductility.

UNCLASSIFIED

UNCLASSIFIED

AD