BIOC4540 Enzymology Problem Set #1 ANSWERS

- 1. The activity of the enzyme(s) that convert sugars to starch is destroyed by heat inactivation.
- 2. The cytoplasmic density is 1.20 gm/mL and is 20% soluble protein. Thus the concentration of soluble protein (all enzymes in this case) is: 0.20 x 1.20 gm/mL = 0.24 gm/mL protein. However, there are 1000 different enzymes ∴ the concentration of each enzyme is: 0.24 mg/mL. The molar concentration of each enzyme (MW = 100,000 g/mol) is: 0.24 mg/mL x 1 mmol/10⁵mg = 2.40 x 10⁻⁶ M = 2.40 µM.
- 3. Urease enhances urea hydrolysis by 10^{14} fold at 20° C and pH 8.0. If a given quantity of urease hydrolyzes a given amount of urea in 5 min then it would take: 5 min x 10^{14} to hydrolyze this amount of urea in the absence of urease. Thus, 5 x 10^{14} min x 1h/60min x 1d/24h x 1y/365.25 d = 9.506 x 10^{8} y.
- 4. The substrate complexes the enzyme and this E-S complex is more stable than the enzyme alone. In other words, the substrate stabilizes the structure of the enzyme.
- 5. (a) The number of residues spaced between Arg^{145} and Glu^{270} is 270 145 = 125 residues. The translation distance between residues is 5.4 Å/3.6 residues = 1.5 Å/residue. Therefore, the linear or extended distance between Arg^{145} and Glu^{270} is 125 residues x 1.5 Å/residue = 187.5 Å.
 - (b) The three-dimensional folding of the enzyme brings these two residues into close proximity.
- 6. The reaction rate can be measured by following the decrease in the absorption of NADH (at 340 nm) as the reaction proceeds. Determine the K_m value from kinetic experiments that give data that can be plotted according to a Michaelis-Menten graph. Next, using substrate concentrations well above the K_m, measure the initial rate (rate of NADH disappearance with time as determined spectrophotometrically) at several known enzyme concentrations, and make a plot of initial rates at increasing concentrations of enzyme. The plot should be linear, with a slope that provides a measure of LDH concentration.
- 7. (a) $1.6 \times 10^{-3} \mu moles/min$
 - (b) $(1.6 \times 10^{-3} \, \mu \text{moles/(min} \times 0.1 \, \text{mL} \times 1 \, \text{L/} 10^3 \, \text{mL})) = 16 \, \mu \text{moles/L} \cdot \text{min}$
 - (c) $(1.6 \times 10^{-3} \, \mu \text{moles/min}) \times (1 \, \text{mL/}(24 \, \text{mg} \times 0.020 \, \text{mL})) = 3.33 \times 10^{-3} \, \mu \text{moles/min} \cdot \text{mg}$
 - (d) $1.6 \times 10^{-3} \mu \text{moles/(min } \times 0.020 \text{ mL}) = 0.08 \text{ U/mL}$
 - (e) from (c) the specific activity is 3.33 x 10⁻³ μmoles/min·mg which is 3.33 x 10⁻³ U/mg

- 8. (a) In 7(d) above the extract contained 0.08 U/mL x 50 mL = 4.00 U (total). After fractionation and dialysis the sample had: $5.9 \times 10^{-3} \, \mu \text{moles/min} = 5.9 \times 10^{-3} \, \text{U/0.020}$ mL = 0.295 U/mL x 12 mL sample volume = 3.54 U (total). The percent recovery of enzyme activity is: $3.54/4.00 \times 100\% = 88.5\%$.
 - (b) In 7(e) above the specific activity = 3.33×10^{-3} U/mg. After fractionation and dialysis the specific activity = 5.9×10^{-3} µmoles/(min x 30 mg/mL x 0.020 mL) = 9.8×10^{-3} U/mg. The degree of purification is: $(9.8 \times 10^{-3} \text{ U/mg})/(3.33 \times 10^{-3} \text{ U/mg}) = 2.95$ fold.
- 9. $v_0 = 8.5 \text{ mg maltose/min} = 8.5 \text{ x } 10^{-3} \text{ g/min x } 1 \text{mole/} 342 \text{ g} = 2.49 \text{ x } 10^{-5} \text{ moles/min.}$ [(2.49 x 10^{-5}moles/min)/15 x $10^{-3} \text{ mg amylase}$] x ($10^6 \text{ } \mu \text{mole/} 1 \text{mole}$) = $1660 \text{ } \mu \text{mole } \text{min}^{-1} \text{mg}^{-1} = 1660 \text{ U/mg.}$ 1.66 x $10^3 \text{ } \mu \text{mole } \text{min}^{-1} \text{mg}^{-1} \text{ x } (1 \text{mole/} 10^6 \text{ } \mu \text{mole}) \text{ x } (1 \text{ min/} 60 \text{s)} \text{ x } (10^6 \text{mg/} 1 \text{kg}) = 27.67 \text{ mole } \text{s}^{-1} \text{kg}^{-1} \text{ or } 27.67 \text{ katal/kg.}$
- 10. (i) original stock = 3 mL; dilute stock by taking 12.5 μ L (80 X) to 1000 μ L
 - (ii) remove 5.5 μ L aliquots \Rightarrow assay for activity (5.5, 5.9, 5.75 μ g PNP; mean = 5.72 μ g)
 - (iii) secondary stock = 0.23 mg mL^{-1} protein
 - (iv) $(5.72 \,\mu\text{g PNP}/125 \,\text{sec}) \,\text{x}$ $(60 \,\text{sec}/1\text{min}) = (2.75 \,\mu\text{g/min}) \,\text{x}$ $(1 \,\mu\text{mole}/139.11 \,\mu\text{g}) = 1.98 \,\text{x}$ $10^{-2} \,\text{U}$.
 - (v) $1.98 \times 10^{-2} \text{U/}(5.5 \times 10^{-3} \text{mL} \times 0.23 \text{ mg/mL}) = 15.65 \text{ U/mg}$ protein; note: same specific activity for primary and secondary stocks since only diluting with fluid (15.65 µmole PNP/(min x mg protein)) x (1 mole/ 10^6 µmoles) x (1 min/60 sec) x (10^6 mg protein/1 kg protein) = 0.261 katal/kg.