Lecture 3

Brennan Becerra

2024-01-16

Additional Data Sets

 $.csv \rightarrow comma\text{-separated variables}$

c1	c2
data	data
data	data

 $.data \rightarrow Text\text{-}formatted \ data$

 $x o ext{scan("path to the file of data name")}$

Linear Regression

Linear Regression

A statistical methodology that utilizes the relation between two or more QUANTITATIVE variables so that one variable can be predicted from other(s).

Ex.

- Sales of product vs amount of advertising expenditure.
- The <u>length of hospital stay</u> of a surgical patient vs the severity of the surgical operation
- Dollar sales of product vs the number of units sold

$$Y = f(x) \ (x_1,y_1), (x_2,y_2), (x_3,y_3), \dots, (x_n,y_n)$$

1. Mathematical Functions

$$Y = f(x)$$
 $X : ext{units sold} ext{ } Y : ext{dollar sales}$

Each unit is \$2.

Units sold	Dollar sales
25	\$50
75	\$150
100	\$200

2. Statistical Function. $Y = f(x) + \epsilon$ where ϵ is the error.

Note: $Y = f(x) + \epsilon$

 $\bullet Y :$ Response or Dependent variable

• x: Explanatory or Independent or predictors

Note: If f() is linear, we call the model *Linear Regression Model*. If we only have one predictor,

$$Y = eta_0 + eta_1 x + \epsilon$$
Simple Linear Regresiion Model

If we have more than one independent variables, x_1, x_2, \ldots, x_p , we write

$$Y = eta_0 + eta_1 x_1 + eta_2 x_2 + \dots + eta_p x_p$$
Multiple Linear Regression Model

Simple Linear Regression Model

Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ ("Bi-variate Data")

Model: $Y = eta_0 + eta_1 x + \epsilon, i = 1, 2, \dots, n$

Goal: Estimate β_0, β_1 from $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

 \implies Estimated values of $\beta_0, \beta_1 : \hat{\beta_0}, \hat{\beta_1}$

Assess the estimated values of $\hat{\beta}_0$, $\hat{\beta}_1$ through test of hypothesis.

- 1. x_i 's: Given constants
- 2. β_0, β_1 : Unknown Constants
- 3. ϵ_i : Random variables with mean 0 and variance of σ^2

$$\underbrace{E(\epsilon_i)}_{ ext{Expected Value}} = 0, \underbrace{ ext{Var}(\epsilon_i)}_{ ext{Variance}} = \sigma^2$$

$$Y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{Unknown Constant}} + \underbrace{\epsilon_i}_{r.v}$$

4. $E(Y_i) = Ee(\beta_0 + \beta_1 x_i + \epsilon_i) = \beta_0 + \beta_1 x_i + E(\epsilon_i)$ = $\beta_0 + \beta_1 x_i$; Regression function. From $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ we try to estimate

$$E(Y_i) = eta_0 + eta_1 x_i
ightarrow E(\hat{Y_i}) = \hat{eta_0} + \hat{eta_1} \cdot x_i$$

Note: Sir. Francis Galton, 19th century.

Estimation of β_0, β_1 .

 $\begin{cases} \epsilon_i \sim N(0,\sigma^2) : \text{Maximum Likelihood Estimation(MLE)} \\ \epsilon_i \sim (0,\sigma^2) : \text{Least Squares Estimation(LSE)} \end{cases}$

Least Squares Estimation

$$\epsilon_i=y_i-(eta_0+eta_1x_i), i=1,2,3,\ldots,n \ Q=\sum_{i=1}^n\epsilon_i^2$$

We want to minimize this with respect to β_0, β_1 .

$$egin{aligned} Q &= \sum_{i=1}^n \epsilon_i^2 \ &= \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i)^2 \end{aligned}$$

And we can say

$$egin{aligned} rac{\partial Q}{\partial eta_0} &= 2 \cdot \sum_{i=1}^n (y_i - \hat{eta_0} - \hat{eta_1} x_i) \cdot -1 = 0 \ rac{\partial Q}{\partial eta_1} &= 2 \cdot \sum_{i=1}^n (y_i - \hat{eta_0} - \hat{eta_1} x_i) \cdot -x_i = 0 \end{aligned}$$

Which yields

$$egin{aligned} \sum_{i=1}^n y_i - \hat{n}eta_0 - \hat{eta}_1 \sum_{i=1}^n x_i &= 0 \ \sum_{i=1}^n x_i y_i - eta_0 \sum_{i=1}^n x_i - \hat{eta}_1 \sum_{i=1}^n x_i^2 &= 0 \end{aligned}$$

Normal Equations

$$egin{align} \hat{eta_1} &= rac{\sum_{i=1}^n (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} \ & \hat{eta_0} &= \overline{y} - \hat{eta_1} \overline{x}, \end{aligned}$$

where
$$\overline{x} = \sum_{i=1}^n rac{x_i}{n}$$
 and $\overline{y} = \sum_{i=1}^n rac{y_i}{n}$.

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \epsilon_i$$

we can rewrite this as

$$ec{Y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}, ec{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}, ec{\epsilon} = egin{pmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{pmatrix}, ec{eta} = egin{pmatrix} eta_0 \ b \ eta_1 \end{pmatrix}$$

such that

$$Y=ec{x}ec{eta}+ec{\epsilon}.$$