A binary string $a_1 \cdots a_n$ is a palindrome if it reads equivalently forward as backward, or in other words,

$$a_n \cdots a_1 = a_1 \cdots a_n$$

We consider ϵ to be a palindrome. Let the S be the set of all binary strings that are plaindromes.

- 1. Find a formula for the number of n length binary strings in the set S with proof.
- 2. Let $\omega(a_1 \cdots a_n) = \sum_{i=1}^n (a_i + 1)$. Let H be the set of strings in S with even length. Determine $\Phi_H(x)$ with repsect to ω

Solution:

1. Let T be the set of all length $\lceil n/2 \rceil$ binary strings. Let S_n be the set of all length n binary strings. We claim a bijection $T \rightleftharpoons S_n$. Let $f: T \to S_n$ be a function by letting $\alpha = b_1 \cdots b_{\lceil n/2 \rceil} \in T$, be mapped to

$$f(\alpha) = b_1 \cdots b_{\lfloor n/2 \rfloor} b_{\lceil n/2 \rceil} b_{\lfloor n/2 \rfloor} b_{\lfloor n/2 \rfloor - 1} \cdots b_1$$

Clearly $l(f(\alpha)) = \lceil n/2 \rceil + \lfloor n/2 \rfloor = n$. Additionally, we observe that $f(\alpha)$ reads equivalently forward as backward and hence $f(\alpha) \in S_n$. Let $\gamma = b_1 \cdots b_n \in S_n$, the we choose $\beta = b_1 \cdots b_{\lceil n/2 \rceil} \in T$ to construct the map $f(\beta) = \gamma$, hence f is surjective. If $f(\gamma) = f(\beta)$ for $\gamma = a_1 \cdots a_{\lceil n/2 \rceil}, \beta = b_1 \cdots b_{\lceil n/2 \rceil} \in T$, then $a_1 \cdots a_n = b_1 \cdots b_n$, since two strings are equal if and only if each bit is equal, we have that $a_1 \cdots a_{\lceil n/2 \rceil} = b_1 \cdots b_{\lceil n/2 \rceil}$, which implies that $\gamma = \beta$, hence f is injective. Since f is both sujrective and injective, we conclude that there exists a bijection between S_n and T, and hence $|T| = |S_n| = 2^{\lceil n/2 \rceil}$

2.

$$\sum_{\alpha \in H} x^{\omega(\alpha)} = \sum_{k \ge 0} \sum_{\beta \in T} x^{\left(2 \sum_{i=1}^{k} (b_i + 1)\right)}$$

$$= \sum_{k \ge 0} \sum_{\beta \in T} x^{\left(2(b_1 + 1 + \dots + b_k + 1)\right)}$$

$$= \sum_{k \ge 0} \sum_{\beta \in T} x^{2(b_1 + 1) + \dots + 2(b_k + 1)}$$

$$= \sum_{k \ge 0} \sum_{b_1 = 0}^{1} x^{2(b_1 + 1)} \sum_{b_2 = 0}^{1} x^{2(b_2 + 1)} \dots \sum_{b_k = 0}^{1} x^{2(b_k + 1)}$$

$$= \sum_{k \ge 0} \sum_{b_1 = 0}^{1} x^{2(b_1 + 1)} \sum_{b_2 = 0}^{1} x^{2(b_2 + 1)} \dots \sum_{b_k = 0}^{1} x^{2(b_k + 1)}$$

$$= \sum_{k \ge 0} \left(\sum_{b=0}^{1} x^{2(b+1)}\right)^k$$

$$= \sum_{k \ge 0} (x^2 + x^4)^k$$

$$= \frac{1}{1 - x^2 - x^4}$$