Domácí úkol 7

Termín odevzdání: 2. 12. 2024 do cvičení

1.)

U každého z následujících tvrzení rozhodněte zda je pravdivé či nikoli a vše řádně odůvodněte.

- a) $\operatorname{arccos}(x) = O(\sqrt{1-x}), x \to 0$
- b) $\arccos(x) = O(\sqrt{1-x}), x \to 1$
- c) $\operatorname{arccos}(x) = o(\sqrt{1-x}), x \to 1$
- d) $\operatorname{arccos}(x) \sim \sqrt{1-x}, x \to 1$
- e) $\operatorname{arccos}(x) \simeq \sqrt{1-x}, x \to 1$

2.)

Najděte limitu (za správných předpokladů smíte použít l'Hospitalovo pravidlo)

$$\lim_{y \to 0} \frac{1 - \cos(y^2)}{y^2 \sin(y^2)}$$

1.)

U každého z následujících tvrzení rozhodněte zda je pravdivé či nikoli a vše řádně odůvodněte.

- a) $\operatorname{arccos}(x) = O(\sqrt{1-x}), x \to 0$
- b) $\arccos(x) = O(\sqrt{1-x}), x \to 1^{-}$
- c) $\operatorname{arccos}(x) = o(\sqrt{1-x}), x \to 1^-$
- d) $\arccos(x) \sim \sqrt{1-x}, x \to 1^-$
- e) $\arccos(x) \simeq \sqrt{1-x}, x \to 1^-$

 $Re\check{s}en\acute{i}$: Připomeňme si definice symbolů pro asymptotické chování funkcí f a g kolem bodu $a \in \mathbb{R}$:

- $f(x) = O(g(x)), x \to a$ $\Leftrightarrow_{def} \exists K > 0, \exists \delta > 0, \forall x \in P_{\delta}(x) : |f(x)| \le K|g(x)|$
- $f(x) = o(g(x)), x \to a$ $\Leftrightarrow_{def} \lim_{x \to a} \frac{f(x)}{g(x)} = 0$ $f(x) \sim g(x), x \to a$ $\Leftrightarrow_{def} \exists C > 0 : \lim_{x \to a} \frac{f(x)}{g(x)} = C$
- $f(x) \simeq g(x), x \to a$ $\Leftrightarrow_{def} \lim_{x \to a} \frac{f(x)}{g(x)} = 1$

a) Platí

Uvědomíme si, že obě funkce jsou na okolí bodu 0 spojité, tedy na nějakém okolí 0 také omezené, speciálně platí, že $\arccos(x) \le \pi$ na (-1,1). Jelikož, má funkce $\sqrt{1-x}$ v 0 nenulovou limitu, ze spojitosti víme, že na nějakém okolí 0 je tato funkce "odražena od nuly", tedy platí

$$\exists \rho \in (0,1), \exists D > 0, \forall x \in U(0,\rho) : \sqrt{1-x} \ge D$$

Nyní stačí vzít $K := \frac{\pi}{D}$ a $\delta = \rho$ a z toho již plyne

$$\forall x \in P_{\delta}(0) : K \left| \sqrt{1-x} \right| \ge \frac{\pi}{D} \sqrt{1-x} \ge \frac{\pi}{D} D = \pi \ge \arccos(x)$$

Takže jsme splnili definici a výrok platí. Konkrétní hodnoty vyhovující nerovnostem jsou například $\rho = \frac{1}{2}$ a $D = \frac{1}{\sqrt{2}}$.

b) Platí

Dokážeme, že vlastnost $f(x) \sim g(x)$ implikuje f(x) = O(g(x)). Důkaz povedeme přímo. Předpokládejme, že $f(x) \sim g(x), x \to a$, tedy platí

$$\lim_{x \to a} \frac{f(x)}{g(x)} = C \in \mathbb{R} \setminus \{0\}.$$

Jelikož tato limita existuje, víme že zlomek $\frac{f(x)}{g(x)}$ je definovaný na nějakém okolí a, tedy $g(x) \neq 0$ na tomto okolí (Pozn. čistě teoreticky bychom mohli uvažovat i funkce, jejichž podíl nebude sice všude na okolí a definovaný, ale minimálně bude omezený, tedy pokud povolíme body x_0 , ve kterých $g(x_0) = 0$, musí také $f(x_0) = 0$). Z definice limity platí, že existuje $\delta > 0$ takové, že

$$\forall x \in P_{\delta}(a) : \frac{f(x)}{g(x)} \le C + 1$$

Stačí položit K = C + 1 a δ stejné a dostáváme

$$\forall x \in P_{\delta}(a) : |f(x)| \le K|g(x)|$$

Tuto úlohu tak vyřešíme tak, že dokážeme případ za d)

c) Neplatí

Spočtěme limitu

$$\lim_{x \to 1^{-}} \frac{\arccos(x)}{\sqrt{1-x}} = \begin{vmatrix} x = \cos(y) \\ y \to 0^{+} \end{vmatrix} = \lim_{y \to 0^{+}} \frac{y}{\sqrt{1-\cos(y)}} = \lim_{y \to 0^{+}} \frac{y}{\sin(y)} \sqrt{1+\cos(y)} = \sqrt{2}$$

Vidíme, že tato limita není rovna 0, proto výrok neplatí.

d) Platí

Jelikož nám limita vyšla $\frac{1}{\sqrt{2}}$, což je konečné nenulové číslo, výrok platí.

e) Neplatí

Opět se stačí podívat na výsledek oné limity, ta nevyšla rovna 1, proto výrok neplatí.

2.)

Najděte limitu (za správných předpokladů smíte použít l'Hospitalovo pravidlo)

$$\lim_{y \to 0} \frac{1 - \cos(y^2)}{y^2 \sin(y^2)}$$

 $\check{R}e\check{s}en\acute{i}$: Vypočítejme tuto limitu l'Hospitalovým pravidlem. Funkce $1-\cos(y^2)$ a $y^2\sin(y^2)$ jsou určitě hladké, a tedy jejich derivace existují na okolí bodu existují. Zároveň obě mají 0 limitu v bodě 0. Zderivujme tedy obě funkce

$$(1 - \cos(y^2))' = 2y\sin(y^2)$$
$$(y^2\sin(y^2))' = 2y\sin(y^2) + 2y^3\cos(y^2) = 2y(\sin(y^2) + y^2\cos(y^2))$$

Poslední předpoklad l'Hospitalova pravidla je na derivaci funkce v jmenovateli a sice, že nesmí být nulová na nějakém okolí limitního bodu. Zde využijeme faktu, že $\sin(y^2) \geq \frac{1}{2}y^2$ a $\cos(y^2) \geq \frac{1}{2}$ na nějakém okolí 0. Platí tedy

$$\left| 2y \left(\sin \left(y^2 \right) + y^2 \cos \left(y^2 \right) \right) \right| \ge 2|y| \left(\frac{1}{2} y^2 + \frac{1}{2} y^2 \right) = 2 \left| y^3 \right| > 0 \qquad \text{na okolí 0 pro } y \ne 0$$

Můžeme tedy zkusit vyšetřit limitu derivací a pokud bude existovat, máme výsledek.

$$\lim_{y \to 0} \frac{2y \sin(y^2)}{2y \left(\sin(y^2) + y^2 \cos(y^2)\right)} = \lim_{y \to 0} \frac{\sin(y^2)}{\sin(y^2) + y^2 \cos(y^2)}$$

Do tohoto výrazu opět nemůžeme dosadit limitní bod, proto musíme hledat dále. Mohli bychom se opět pokusit použít l'Hospitala, ale počítat derivace je tady zbytečně složité. Zkusme použít klasickou metodu s aritmetikou limit a známou limitou $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.

$$\lim_{y \to 0} \frac{\sin(y^2)}{\sin(y^2) + y^2 \cos(y^2)} = \lim_{y \to 0} \frac{\sin(y^2)}{y^2 \left(\frac{\sin(y^2)}{y^2} + \cos(y^2)\right)} =$$

$$= \lim_{y \to 0} \frac{\sin(y^2)}{y^2} \cdot \lim_{y \to 0} \frac{1}{\frac{\sin(y^2)}{y^2} + \cos(y^2)} = 1 \cdot \frac{1}{2} = \frac{1}{2}$$