SDS | Page No. Bayesian Computing Name - Pucksha Ashok Patel Sapid - 60004210126 Branch : Computer Engineering. Experiment no. 2 Sim 5- To implement a Discrete Prior, Beta Brior, Histogram Prior, Prediction model using R Discrete Prior : A discrete Prior is a probability distribution over finite or countably infinite set of possible values. represents the belief about a parameter before any data observed. Discrete Privors are commonly used for rategorical Mathematically a discrete prior for a person parameter can be represented as follows: P(0=0;)=pi suhere O; is one of the possible walus of o and pi is the proposility that 0 = 0; A beta prior is a probability distribution over the internal [0,1] It is commonly used as a prior for parameters that represent propostions or probabilities. The beta price is characterized by 2 hyperparameters, of and B, which control the shape of the distribution mathematically, the beta prior is defined as follows: P(0 | x, B) = B(x, B) 0 2-1 (1-0) B-1 where B(x, B) is the beta function. The beta prior is a conjugate prior for the binomial distribution

Histogram Prior 5 A Histogram Prior is a probability distribution that takes the form of a histogram. It can be used as a prior for it is after and often used for type of Mariable but histogram prior is specified continuous unriable. The Sequence of his boundaries and associated probabilities Mothematically a histogram prior is defined where bis it his and pi is the probability that x falls in bin bi. A prediction model is a statistical model that is used to predict future observations or events. In Bayesian computing, prediction models are typically based on posterior posterior distribution provides a probability unknown parameters of the model, which can then be used to make prediction about future observations. Conclusion 5 In this experiment, we learned that how to implement different types of priors and posterior distributions binomial parameter p using R, we also simulate for from the predictine distribution for future observation we compared the results of discrete, beta and histogram prior for p and how they affected the posterior and predictive distributions rue observed how prior information of data influenced I peation of posterior distribution and how the posterior reflected the unextainty about p , we also observed distribution incorporated both the uncertainty about p of variability luture observation

SAP ID.: 60004210126 Name: Preksha Ashok Patel

Batch: C2-1

Subject: Bayesian Computing Laboratory Semester: VII

Experiment No. 2

Aim:

To implement a Discrete Prior, Beta Prior, Histogram Prior, Prediction Model using R.

Code:

Loading the dataset

library('LearnBayes')

Using a Discrete Prior

```
library('LearnBayes') p <- seq(0.05, 0.95, by = 0.1) prior <- c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0) prior <- prior / sum(prior) plot(p, prior, type = "h", ylab="Prior Probability")
```

The posterior for p

```
data <- c(11, 16) post <-
pdisc(p, prior, data)

round(cbind(p, prior,
post),2)

library(lattice)

PRIOR <- data.frame("prior", p, prior)

POST <- data.frame("posterior", p, post)
```

$$\begin{split} & names(PRIOR) <- c("Type", "P", "Probability") \; names(POST) <- \\ & c("Type", "P", "Probability") \; data <- \; rbind(PRIOR, POST) \; xyplot(Probability \sim P \mid Type, \; data=data, \; layout=c(1,2), \; type="h", \; lwd=3, \; col="black") \end{split}$$

Using a Beta Prior

```
quantile2 <- list(p=.9, x=.5)
quantile1 <- list(p=.5, x=.3)
(ab <- beta.select(quantile1,quantile2))
```

Bayesian triplot

```
\begin{array}{l} a <- \ ab[1] \ b <- \ ab[2] \ s <- \ 11 \ f <- \ 16 \ curve (dbeta(x, a+s, b+f), from=0, to=1, xlab="p", ylab="Density", lty=1, lwd=4) \ curve (dbeta(x, s+1, f+1), add=TRUE, lty=2, lwd=4) \ curve (dbeta(x, a, b), add=TRUE, lty=3, lwd=4) \ legend(.7, 4, c("Prior", "Likelihood", "Posterior"), lty=c(3, 2, 1), lwd=c(3, 3, 3)) \end{array}
```

Posterior summaries

```
1 - pbeta(0.5, a + s, b + f) qbeta(c(0.05, 0.95), a + s, b + f)
```

Simulating from posterior

```
ps <- rbeta(1000, a + s, b + f)
hist(ps, xlab="p")
```

```
sum(ps \ge 0.5) / 1000
quantile(ps, c(0.05, 0.95))
```

```
Using a Histogram Prior
midpt \leq- seq(0.05, 0.95, by = 0.1) prior \leq- c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)
prior <- prior / sum(prior) curve(histprior(x, midpt, prior), from=0, to=1,
ylab="Prior density", ylim=c(0, .3))
curve(histprior(x,midpt,prior) * dbeta(x, s + 1, f + 1), from=0, to=1, ylab="Posterior
density")
p \le seq(0, 1, length=500) post \le histprior(p, midpt,
prior) * dbeta(p, s + 1, f + 1) post <- post / sum(post)
ps <- sample(p, replace = TRUE, prob = post) hist(ps,
xlab="p", main="")
```

Prediction Model

Discrete prior approach

```
p \le seq(0.05, 0.95, by=.1) prior \le c(1, 5.2, by=.1)
8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0) prior <- prior /
sum(prior) m <- 20 ys <- 0:20
pred <- pdiscp(p, prior, m, ys)</pre>
cbind(0:20, pred)
```

Continuous prior approach

```
ab <- c(3.26, 7.19) m <-
20 ys <- 0:20 pred <-
pbetap(ab, m, ys)
```

Simulating predictive distribution

```
p \le rbeta(1000, 3.26, 7.19)
y <- rbinom(1000, 20, p)
table(y)
freq <- table(y) ys <- as.integer(names(freq)) predprob <- freq /
sum(freq) plot(ys, predprob, type="h", xlab="y", ylab="Predictive
Probability")
dist <- cbind(ys, predprob)
```

Construction of a prediction interval

```
covprob
discint(dist, covprob)
```

Output:

Using a Discrete Prior

The posterior for p

	p	prior	post
[1,]	0.05	0.03	0.00
[2,]	0.15	0.18	0.00
[3,]	0.25	0.28	0.13
[4,]	0.35	0.25	0.48
[5,]	0.45	0.16	0.33
[6,]	0.55	0.07	0.06
[7,]	0.65	0.02	0.00
[8,]	0.75	0.00	0.00
[9,]	0.85	0.00	0.00
[10,]	0.95	0.00	0.00

Using a Beta Prior

3.26 7.19

Bayesian triplot

Posterior summaries

0.0690226

0.2555267 0.5133608

Simulating from posterior

0.064

5% 95% 0.2373968 0.5094293

Using a Histogram Prior

Prediction Model Discrete prior approach

		pred
[1,]	0	2.030242e-02
[2,]	1	4.402694e-02
[3,]	2	6.894572e-02
[4,]	3	9.151046e-02
[5,]	4	1.064393e-01
[6,]	5	1.124487e-01
[7,]	6	1.104993e-01
[8,]	7	1.021397e-01
[9,]	8	8.932837e-02
[10,]	9	7.416372e-02
[11,]	10	5.851740e-02
[12,]	11	4.383668e-02
[13,]	12	3.107700e-02
[14,]	13	2.071698e-02
[15,]	14	1.284467e-02
[16,]	15	7.277453e-03
[17,]	16	3.667160e-03
[18,]	17	1.575535e-03
[19,]	18	5.381536e-04
[20,]	19	1.285179e-04
[21,]	20	1.584793e-05

Simulating predictive distribution

Department of Computer Engineering Academic Year 2023-2024

Construction of a prediction interval

\$pr	ob									
	11									
0.9	11									
\$se	t									
1	2	3	4	5	6	7	8	9	10	11
1	2	3	4	5	6	7	8	9	10	11