Statistics 2 - Problem Sheet 1

Dom Hutchinson

January 31, 2020

Question - 1.

Question 1 a)

If **Y** and **X** are random vectors st $\mathbf{Y} = C\mathbf{X}$ where C is a matrix of fixed coefficients, show that if Σ_X and Σ_Y are the covariance matrices for **X** and **Y** respectively then

$$\Sigma_y = C\Sigma_X C^T$$

Answer 1 a)

$$\mu_{y} = \mathbb{E}(Y)$$

$$= \mathbb{E}(CX)$$

$$= C\mathbb{E}(X)$$

$$= C\mu_{X}$$

$$\Sigma_{y} = \mathbb{E}[(Y - \mu_{Y})(Y - \mu_{Y})^{T}]$$

$$= \mathbb{E}[(CX - C\mu_{X})(CX - C\mu_{X})^{T}]$$

$$= \mathbb{E}[C(X - \mu_{X})(X - \mu_{X})^{T}C^{T}]$$

$$= C\mathbb{E}[(X - \mu_{X})(X - \mu_{X})^{T}]C^{T}$$

$$= C\Sigma_{X}C^{T}$$

Question 1 b)

Consider a multivariate normal random vector $\mathbf{X} \sim \text{Normal}(\boldsymbol{\mu}_X, \Sigma_X)$ and suppose that the covariance matrix can be decomposed $\Sigma_X = CC^T$ (THis can always be done for a full rank covariance matrix using a Choleski decomposition). Show that $\Sigma_X^{-1} = C^{-T}C^{-1}$ and that $\mathbf{Y} = C^{-1}(\mathbf{X} - \boldsymbol{\mu}_X) \sim \text{Normal}(\mathbf{0}, I)$.

Answer 1 b)

$$\Sigma_{X}\Sigma_{X}^{-1} = I$$

$$\Rightarrow CC^{T}\Sigma_{X}^{-1} = 1$$

$$\Rightarrow C^{T}\Sigma_{X}^{-1} = C^{-1}$$

$$\Rightarrow \Sigma_{X}^{-1} = C^{-1}(\mathbf{X} - \boldsymbol{\mu}_{X})$$

$$= C^{-1}\mathbf{X} - C^{-1}\boldsymbol{\mu}_{X}$$
We have $\mathcal{M}_{X}(\mathbf{t}) = \exp\left\{\mathbf{t}^{T}\boldsymbol{\mu}_{X} + \frac{1}{2}\mathbf{t}^{T}\Sigma_{X}\mathbf{t}\right\}$

$$= \exp\left\{\mathbf{t}^{T}\boldsymbol{\mu}_{X} + \frac{1}{2}\mathbf{t}^{T}CC^{T}\mathbf{t}\right\}$$

$$\Rightarrow \mathcal{M}_{Y}(\mathbf{t}) = \exp\left\{-\mathbf{t}^{T}C^{-1}\boldsymbol{\mu}_{X}\right\}\mathcal{M}_{X}(C^{-t}\mathbf{t})$$

$$= \exp\left\{-\mathbf{t}^{T}C^{-1}\boldsymbol{\mu}_{X}\right\}\exp\left\{\mathbf{t}^{T}C^{-1}\boldsymbol{\mu}_{X} + \frac{1}{2}\mathbf{t}^{T}C^{-1}CC^{T}C^{-T}\mathbf{t}\right\}$$

$$= \exp\left\{\frac{1}{2}\mathbf{t}^{T}\mathbf{t}\right\}$$

$$= \mathcal{M}_{Z}(\mathbf{t}) \text{ where } \mathbf{Z} \sim \operatorname{Normal}(\mathbf{0}, I)$$

Since Y has the same moment generating function as $\mathbf{Z} \sim \text{Normal}(\mathbf{0}, I)$ they have the same distribution.

Question 1 c)

Assuming that $\mathbf{X} \sim \text{Normal}(\boldsymbol{\mu}_X, \Sigma_X)$ show that

$$(\mathbf{X} - \boldsymbol{\mu}_X)^T \Sigma_X^{-1} (\mathbf{X} - \boldsymbol{\mu}_X) = \mathbf{Y}^T \mathbf{Y} \text{ where } \mathbf{Y} \sim \text{Normal}(\mathbf{0}, I)$$

Answer 1 c)

It is reasonable to assume that Σ_X is full rank and thus $\exists C$ st $\Sigma_X = CC^T$. Thus

$$(\mathbf{X} - \boldsymbol{\mu}_X)^T \Sigma_X^{-1} (\mathbf{X} - \boldsymbol{\mu}_X) = (\mathbf{X} - \boldsymbol{\mu}_X)^T (CC^T)^{-1} (\mathbf{X} - \boldsymbol{\mu}_X)$$

$$= (\mathbf{X} - \boldsymbol{\mu}_X)^T C^{-T} C^{-1} (\mathbf{X} - \boldsymbol{\mu}_X)$$

$$= (\mathbf{X} - \boldsymbol{\mu}_X)^T C^{-T} C^{-1} (\mathbf{X} - \boldsymbol{\mu}_X)$$

$$= \mathbf{Y}^T \mathbf{Y} \text{ as required}$$

Question 1 d)

If $Z_i \stackrel{\text{iid}}{\sim} \text{Normal}(0,1)$ random variables then

$$\sum_{i=1}^{n} Z_i^2 \sim \chi_n^2$$

What is the distribution of

$$(\mathbf{X} - \boldsymbol{\mu}_X)^T \Sigma_X^{-1} (\mathbf{X} - \boldsymbol{\mu}_X)$$

if $\mathbf{X} \sim \text{Normal}(\boldsymbol{\mu}_X, \Sigma_X)$?

Answer 1 e) -

$$\begin{aligned} (\mathbf{X} - \boldsymbol{\mu}_X)^T \Sigma_X^{-1} (\mathbf{X} - \boldsymbol{\mu}_X) &= \mathbf{Y}^T \mathbf{Y} \\ &= \sum_{i=1}^n y_i^2 \text{ where } y_i \sim \text{Norma}(0, 1) \\ &\sim \chi_n^2 \end{aligned}$$

Question - 2.

Question 2 a)

Define
$$\mathbf{y} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -3 & 0 \end{pmatrix}$.

Answer 2 a)

Find $B^T \mathbf{y}$.

$$\begin{pmatrix} -1 & 2 & -1 \\ 2 & -3 & 0 \end{pmatrix}^T \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 - 7 \\ 2 + 9 \\ -1 + 0 \end{pmatrix} = \begin{pmatrix} -7 \\ 11 \\ -1 \end{pmatrix}$$

Question 2 b)

Let A be a full rank 3×3 matrix and B be a full rank 5×3 matrix.

State the dimensions of the following, if they exist. For those that do not exist, state why in a single sentence.

Answer 2 b)

Let $M \in \mathbb{R}(a, b)$ & $N \in \mathbb{R}(c, d)$ with $a, b, c, d \in \mathbb{N}$.

MN is a valid matrix multiplication iff b = c. If b = c then $(MN) \in \mathbb{R}(a, d)$. M + N is a valid matrix addition iff a = c and b = d. If these critera are fulfilled then $(M + N) \in \mathbb{R}(a, b)$.

- i) $A^{-1}B^T$ $A^{-1} \in \mathbb{R}(3 \times 3), \ B^T \in \mathbb{R}(3 \times 5) \implies A^{-1}B^T \in \mathbb{R}(3 \times 5)$
- ii) $A^{-1}B$ $A^{-1} \in \mathbb{R}(3 \times 3), B \in \mathbb{R}(5 \times 3) \implies$ these matrices are incompatible for multiplication.
- iii) $B^{-1}A$ $B^{-1} \in \mathbb{R}(3 \times 5), A \in \mathbb{R}(3 \times 3) \implies$ these matrices are incompatible for multiplication.
- iv) BA $B \in \mathbb{R}(5 \times 3), A \in \mathbb{R}(3 \times 3) \implies BA \in \mathbb{R}(5 \times 3)$
- v) $B^{-1}A^T$ $B^{-1} \in \mathbb{R}(3 \times 5), A^T \in \mathbb{R}(3 \times 3) \implies$ these matrices are incompatible for multiplication.
- vi) BA^{-1} $B \in \mathbb{R}(5 \times 3), \ A^{-1} \in \mathbb{R}(3 \times 3) \implies BA^{-1} \in \mathbb{R}(5 \times 3).$
- vii) $(BA)^{-1}$ We know that $BA \in \mathbb{R}(5 \times 3) \implies (BA)^{-1} \in \mathbb{R}(3 \times 5)$.
- viii) $B^T A$ $B^T \in \mathbb{R}(3 \times 5), A \in \mathbb{R}(3 \times 3) \implies$ these matrices are incompatible for multiplication.
- ix) B + A $B \in \mathbb{R}(3 \times 5)$, $A \in \mathbb{R}(3 \times 3)$. Matrices must have the exact same dimensions in order to be added together, thus this in an illegal equation.
- x) $B + A^T$ $B \in \mathbb{R}(3 \times 5)$, $A \in \mathbb{R}(3 \times 3)$. Matrices must have the exact same dimensions in order to be added together, thus this in an illegal equation.

Question - 3.

The Exponential Distribution is often a reasonable model of the times between random events. Suppose then, that x_1, \ldots, x_n are observations of times between hardware faults on a computer network, and it is reasonable to treat the faults as independent. To plan for fault tolerance the network managers need a reasonable model for the fault occurrence rate. The pdf of an Exponential Distribution is

$$f(x) = \mathbb{1}\{x \ge 0\}\lambda e^{-\lambda x}$$

where λ is a positive parameter.

The variance of an exponential random variable is λ^{-2} .

Question 3 a) - Let $X \sim \text{Exponential}(\lambda)$. Find $\mathbb{E}(X)$.

Answer 3 a)

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(t) dt$$

$$= \int_{-\infty}^{\infty} \mathbb{1}\{t \ge 0\} x \lambda e^{-\lambda t} dt$$

$$= \int_{0}^{\infty} x \lambda e^{-\lambda t} dt$$

$$= \left[-x e^{-\lambda x} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda x} dx \text{ integration by parts}$$

$$= \left[-x e^{-\lambda x} - \frac{1}{\lambda} e^{-\lambda x} \right]_{0}^{\infty}$$

$$= \left[0 - 0 \right] - \left[0 - \frac{1}{\lambda} \right]$$

$$= \frac{1}{\lambda}$$

Question 3 b) - Hence, suggest an estimator, $\hat{\lambda}$, for λ .

Answer 3 b)

Since $\mathbb{E}(X) = 1/\lambda \implies \lambda = 1/\mathbb{E}(X)$ and $\bar{X} \to_{\mathbb{P}} \mathbb{E}(X)$.

Thus I suggest

$$\hat{\lambda} = \frac{1}{\bar{X}}$$
 where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Question 3 c) - What is the variance of $\hat{\lambda}^{-1}$?

Answer 3 c)

$$\operatorname{var}\left(\hat{\lambda}^{-1}\right) = \operatorname{var}(\bar{X})$$

$$= \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{n}{n^{2}}\operatorname{var}(X_{1})$$

$$= \frac{1}{n\lambda^{2}}$$

Question 3 d)

Let $\bar{x} = \frac{1}{n} \sum x_i$.

Find a first order Taylor Expansion of $\hat{\lambda}$ about $\mathbb{E}(\bar{x})$, considering $\hat{\lambda}$ as a function of \bar{x} .

Answer 3 d)

We have

$$\hat{\lambda}(\bar{x}) = \frac{1}{\bar{x}} \implies \frac{d}{d\bar{x}}\hat{\lambda}(\bar{x}) = -\frac{1}{\bar{x}^2}$$

A First Order Taylor Expansion give us the following approximation

$$f(x) \approx f(a) + f'(a)(x-a)$$
 for $a \in \mathbb{R}$

Define $f(x) = \hat{\lambda}(x)$ and $a = \mathbb{E}(\bar{x}) \in \mathbb{R}$. Then

$$\begin{split} \hat{\lambda}(\bar{x}) &\approx \hat{\lambda}(\mathbb{E}(\bar{x})) + [\bar{x} - \mathbb{E}(\bar{x})] \frac{d}{d\bar{x}} \hat{\lambda}(\bar{x}) \\ &= \frac{1}{\mathbb{E}(\bar{x})} - \frac{\bar{x} - \mathbb{E}(\bar{x})}{\mathbb{E}(\bar{x})^2} \\ &= \frac{\bar{x}}{\mathbb{E}(\bar{x})^2} \\ &= \lambda^2 \bar{x} \end{split}$$

Question 3 e)

Hence find an approximation for the variance of $\hat{\lambda}$, in terms of n and \bar{x} . This use of Taylor expansions to computer approximate variances via linearisation is known as the Δ -method in statistics.

Answer 3 e)

By definition

$$\operatorname{var}(\hat{\lambda}) = \mathbb{E}[(\hat{\lambda} - \mathbb{E}(\hat{\lambda}))^2] = \mathbb{E}(\hat{\lambda}^2) - \mathbb{E}(\hat{\lambda})^2$$

Note that

$$\mathbb{E}(\hat{\lambda}) \approx \mathbb{E}(\lambda^{2}\bar{X})$$

$$= \lambda^{2}\mathbb{E}(\bar{X})$$

$$= \lambda^{2} \cdot \frac{1}{\lambda}$$

$$= \lambda$$

$$\mathbb{E}(\hat{\lambda}^{2}) \approx \mathbb{E}\left[\left(\lambda^{2}\bar{x}\right)^{2}\right]$$

$$= \mathbb{E}[\lambda^{4}\bar{X}^{2}]$$

$$= \lambda^{4}\mathbb{E}[\bar{X}^{2}]$$

$$= \lambda^{4}[\operatorname{var}(\bar{X}) + \mathbb{E}(\bar{X})^{2}]$$

$$= \lambda^{4}\left[\frac{1}{n}\operatorname{var}(X_{1}) + \left(\frac{1}{\lambda}\right)^{2}\right]$$

$$= \lambda^{4}\left[\frac{1}{n\lambda^{2}} + \frac{1}{\lambda^{2}}\right]$$

$$= \lambda^{2}\left[\frac{1}{n} + 1\right]$$

$$\Rightarrow \operatorname{var}(\hat{\lambda}) = \lambda^{2}\left[\frac{1}{n} + 1\right] - \lambda^{2}$$

$$= \frac{\lambda^{2}}{n}$$

Question - 4.

Consider again the setup from the previous question, but now taking a Bayesian approach. This means taht we need to augment our model with a prior distribution for the parameter, $\lambda \sim \Gamma(\alpha, \theta)$. So the prior pdf of λ is

$$f(\lambda) = \frac{\lambda^{\alpha - 1} e^{-\lambda/\theta}}{\theta^{\alpha} \Gamma(\alpha)}$$

with $\mathbb{E}(\lambda) = \alpha \theta$ and $var(\lambda) = \alpha \theta^2$.

Question 4 a) - Write down the *pdf* for the joint distribution of the data x_1, x_2, \ldots given λ .

Answer 4 a)

$$f_n(\mathbf{x}; \lambda) = \prod_{i=1}^n f(x_i; \lambda)$$
$$= \prod_{i=1}^n \mathbb{1}\{x_i \ge 0\} \lambda e^{-\lambda x_i}$$
$$= \mathbb{1}\{\text{all } x \ge 0\} \lambda^n e^{-\lambda n\bar{X}}$$

Question 4 b) - By considering the joint distribution of λ and \mathbf{x} , indentify the posterior distribution of λ given \mathbf{x} .

Answer 4 b)

$$f(\lambda; \mathbf{x}) \propto f(\mathbf{x}; \lambda) f(\lambda)$$

$$= \lambda^n e^{-\lambda n \bar{x}} \cdot \frac{\lambda^{\alpha - 1} e^{-\lambda / \theta}}{\theta^{\alpha} \Gamma(\alpha)}$$

$$\propto \lambda^{n + \alpha - 1} e^{-\lambda (n \bar{x} + 1 / \theta)}$$

$$= \lambda^{n + \alpha - 1} e^{-\lambda \frac{n \bar{x} \theta + 1}{\theta}}$$

$$\sim \Gamma\left(n + \alpha, \frac{\theta}{n \bar{x} \theta + 1}\right)$$

Question 4 c) - What are the posterior expection and variance of λ ?

Answer 4 c)

$$\mathbb{E}[\lambda; \mathbf{x}] = \frac{\theta(n+\alpha-1)}{n\bar{x}\theta+1} \quad \text{var}(\lambda; \mathbf{x}) = \frac{\theta^2(n+\alpha-1)}{(n\bar{x}\theta+1)^2}$$

Question 4 d)

Consider the situation in which $n \to \infty$.

What happens to the Bayesian and frequentist inferences aboute λ in this case?

Answer 4 d)

$$\mathbb{E}[\lambda; \mathbf{x}] \stackrel{n \to \infty}{\longrightarrow} \frac{1}{\bar{x}} = \hat{\lambda}_{\text{Frequentist}}$$