Introduction à l'analyse de transcriptome par RNA-seq

Daniel Gautheret

Avec des diapos de:
Yannick Boursin, IGR
Frédéric Lemoine, Institut Pasteur
Sacha Schutz

Préparation des banques RNA-seq

second strand synthesis

end repair, A-

ligation

addition, adapter

Van Dijk et al. Exp Cell. Res. 2014

Applications du RNA-seq

- Mesurer l'expression des gènes
- Mesurer l'épissage alternatif
- Détecter les mutations exprimées
- Annoter les gènes: nouveaux exons
- Détecter les transcrits de fusion

RNA-seq application Cancer #1: Découverte de transcrits de fusion

RNA-seq application Cancer #2: Expression profiling

Expression from median

Variations on RNA-seq

- Small RNA-seq
 - Size filter <30nt (for siRNA, miRNA)
- polyA+ vs. ribozero RNA-seq

Un pipeline d'analyse RNA-seq

Quality controls on raw reads: which metrics to check?

Mainly:

Quality score per base and over the reads

But also:

- Read length distribution
- Sequence content per base and % of GC
- K-mers content
- Overrepresented sequences
- Duplicated reads

Per base sequence quality

Qualité dans le format fastq

1 Q 2 0 3 • • 4 • 5 •	32 1 34 2 35 2 36 5 37 8 38 4 41 4 42 4	64 8 65 8 66 8 67 C 68 E 78 F 71 G 72 H 73 I 74 J	96 · 97 a 98 b 99 c d 181 e 182 f 183 9 184 h 185 i 186 j 187 k	128 C 129 U 138 6 131 A 132 A 133 A 134 A 135 C	168 6 161 1 162 6 163 6 164 6 165 8 166 8 167 8 168 6 178 7 171 5 172 8 173 4	192 L 193 J 194 T 195 F 196 - 197 † 198 A 200 U	224 0 225 0 226 0 227 0 228 5 229 0 238 µ 231 Þ 232 Þ
11 6 12 9 13 P 14 P 15 6 16 4 17 18 1 19 19 20 8 21 - 21 7	3567898412345678 4423445678455555555555556	74 J K 75 L 77 M 79 P 88 P 81 P 82 S 84 T	189 m 118 n 111 o 112 p 113 q 114 r	135 0 136 0 137 1 138 1 139 1 148 1 141 1 142 8 143 6 145 6 147 0	174 « 175 » 176 177 178	201 E 202 E 203 E 204 E 205 E 206 E 207 T 208 D 210 E 211 E	232 P 233 6 234 6 235 6 236 9 237 9 238 - 248 - 241 ± 242 = 243 %
19 # 20 # 21 # 22 - 23 † 24 † 26 + 27 + 28 + 29 + 30 *	52 4 53 5 54 6 55 8 57 9 58 57 58 6 61 - 62 7	84 T B 86 U 86 U 88 X Y 98 Z (\ 92 7 3 7 4 95 -	116 t 117 u 118 v 119 w 128 x 121 v 122 c 124 t 125) 126 ~	143 8 144 6 145 8 146 6 147 0 148 0 158 0 151 0 152 0 153 0 156 E 157 0 158 x 159 f	179 188 181 6 182 6 183 6 185 186 187 188 189 0 198 19	206 0 H 207 200 200 200 200 200 200 200 200 200	238 - 239 - 248 ± 242 ± 243 € 245 € 246 ± 248 ± 258 ± 253 ± 255 ±

Qualité=-10	log ₁₀ (P _{erreur})
-------------	--

Score de qualité phred	Probabilité d'une identification incorrecte	Précision de l'identification d'un base
10	1 pour 10	90 %
20	1 pour 100	99 %
30	1 pour 1000	99.9 %
40	1 pour 10000	99.99 %
50	1 pour 100000	99.999 %

Fastqc

Pour couper les extrémités de basse qualité: FastqTrimmer

Per sequence quality scores

Per base sequence content

• Adaptateurs et séquences surreprésentées

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
TTTTTTGGAAACCTCTGCGCCATGAGAGCCAAGTGGAGGAAGAAGCGAA	608	0.22002120599123534	No Hit
TTTTTGGAAACCTCTGCGCCATGAGAGCCAAGTGGAGGAAGAAGCGAATG	478	0.17297719813126725	No Hit
CTCCAGTCAAAAGTTCTTTGAGACGATGCCATCGGCCTTGGCCAATCGGA	411	0.14873144023420679	No Hit
TTTTTTGGAAACCTCTGCGCCATGAGAGCCAAGTGGAGGAAGAAGCGAAT	356	0.1288282061396049	No Hit
GCAGGCGCAGCCCAGCCTCGAAATGCAGAACGACGCCGGCGAGTTCGTGG	337	0.1219525434523788	No Hit
CAGGCGCAGCCCAGCCTCGAAATGCAGAACGACGCCGGCGAGTTCGTGGA	308	0.11145811092977054	No Hit
CGCAGATAGCATAAGTTTTAAACTGGCCATTAAACCTGCCTG	288	0.1042205712590062	No Hit

Mapping

Mapper=trouver tous les loci où le read est présent à k erreurs près.

ACGTTACCGAATCGATCAAGTCGA TAC

OK pour 1 read: O(3.10e9 x 100) Mais pour 1e8 reads???

L'algorithme de BLAST

- Dictionnaire de k-mots de la référence
- Recherche des k-mots de la query dans le dictionnaire
- Extension autour des k-mots par alignement

Gestion problématique des mismatches dans les k-mers Effet important de la taille de k

Suffix array

"GOOGOL"

Tableau trié de tous les suffixes d'une chaîne de caractères

```
0 GOOGOL$

1 OOGOL$

2 OGOL$

3 GOL$

4 OL$

5 L$

4 OL$

5 L$

4 OL$

1 OOGOL$
```

Propriété: toutes les occurrences d'une même chaîne sont regroupées.

Suffix arrays

Exemple: trouver la chaîne GO

```
0 GOOGOL$

1 OOGOL$

2 OGOL$

3 GOL$

3 GOL$

4 OL$

5 L$

4 OL$

6 $

1 OOGOL$
```

Les algorithmes de mapping

name	seed-and-extend	pigeon hole	spaced seed	q-gram	suf, tree	BW
SSAHA	X					
Blat	X					
MUMmer2	10.00				X	
Eland			X			
MAQ		X				
SOAP		×	×			
RMAP		X	×			
SeqMap		×				
QPalma					X	
Mosaik	X					
SOCS	1058	X				
ZOOM			X			
PASS	X					
SOAP2						X
BWA						X
SHRIMP				X		
Bowtie						X
BFAST			X		X	
mrFAST	X					
RazerS				X		
MPScan					X	
PerM			×			
CloudBurst			X			
GNUMap			X			
mrsFAST	×					
novoalign	?	?	?	?		
GASSST			X			
Stampy	X					
SOAP3						X
Bowtie2						X
Saruman				×		

La spécificité des reads RNA-seq

Le programme TopHat (HiSat)

TopHat: Trapnell et. al. Bioinformatics, 2009 **HiSat**: Kim et al. Nat.

Methods, 2015

Le programme STAR

Dobin et. al. Bioinformatics, 2013

La mappabilité: une partie du génome reste invisible

		H.sapiens	M.musculus	D.melanogaster (de	Celegans		
		(hg19)	(mm9)	with het.	without het.	(ce6)	
Genome size (bp	0	3,107,677,273	2,725,765,481	168,736,537	159,454,756	100,281,426	
Repeat sequence	s (bp)	1,406,290,513	1,153,714,659	44,719,009	38,601,028	13,121,257	
Proportion of rep	seats.	45.25%	42.33%	26.50%	24.20%	13.08%	
LTR		8.05%	10.56%	10.46%	2	10.46%	
Non-LTR	SINEs	12.59%	7.39%	0.00%		0.09%	
	LINEs	19.73%	19.66%	7.08%		0.36%	
Uniquely mappe	d positions (m=	0)					
k=36		2,489,885,654	2,178,433,024	119,915,412	116,918,511	92,332,303	
		(80.12%)	(79.92%)	(71.07%)	(73,32%)	(92.07%)	
k = 50		2,627,947,484	2,267,226,534	121,732,432	118,368,697	93,775,749	
		(84.56%)	(83.18%)	(72.14%)	(74,23%)	(93.51%)	
k=75		2,729,902,459	2,349,591,487	124,087,375	120,329,119	95,226,461	
		(87.84%)	(86.20%)	(73.54%)	(75,46%)	(94.96%)	
Uniquely mappe	d positions (m=	2)					
k = 36		2,175,066,863	1,964,593,763	114,889,241	113,088,604	87,385,879	
		(69.99%)	(72.07%)	(68.09%)	(70,92%)	(87.14%)	
k = 50		2,380,109,920	2,100,436,231	117,178,560	114,915,550	90,050,144	
		(76.59%)	(77,06%)	(69.44%)	(72,06%)	(89.80%)	
k = 75		2,582,297,225	2,225,670,208	119,798,046	116,955,098	92,369,340	
		(83.09%)	(81.65%)	(71.00%)	(73,35%)	(92.11%)	

Repeat elements have been identified and classified by the RepeatMasker program [37]. The mappability has been computed for k = 36.50 and 75, with m = 0 and 2. doi:10.1371/journal.pone.0030377.t002

Après le mapping

Format SAM

Contient les reads alignés sur le génome.

Concept:

chr7 1324324 ACGTGCGTTTGCGT chr8 1724354 GCGTGATGCGTAAG chr8 1424324 GTATGTTATATGTA

SAM format

11 champs obligatoires

Sequence ID	Flag	Chr	Position	Map Qual	Cigar	P	aired end ir	nfo
HWI-ST1136:196:HS113:4:1101:4333:28021	163	chr2	217279469	255	100M	-100	217279487	117
HWI-ST1136:196:HS113:4:1101:4333:28021	83	chr2	217279487	255	99M15	-	217279469	-117
HWI-ST1136:196:ES113:4:1101:4320:28039	163	chr11	65271253	255	100%	-	65271335	182
HWI-ST1136:196:HS113:4:1101:4320:28039	83	chr11	65271335	255	100%	-	65271253	-182
HWI-ST1136:196:HS113:4:1101:4274:28047	99	chr4	763497	255	100%		763607	210
HWI-ST1136:196:HS113:4:1101:4274:28047	147	chr4	763607	255	100%	-	763497	-210
HWI-ST1136:196:HS113:4:1101:4333:28054	99	chr17	74433086	255	100M	-	74433100	114
HWI-ST1136:196:HS113:4:1101:4333:28054	147	chr17	74433100	255	100M	-	74433086	-114
HWI-ST1136:196:HS113:4:1101:4353:28065	99	chr11	62293812	255	100%	-	62293909	197
HWI-ST1136:196:HS113:4:1101:4353:28065	147	chr11	62293909	255	100%	*	62293812	-197

Le champ CIGAR

Example: 52M36890N45M3S

All Cigar operations

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
	7	sequence match
X	8	sequence mismatch

Les Flags SAM

Example:

Decimal Flag Value

83

Binary Flag Value

To each bit corresponds a meaning

I	3it	Description
1	0x1	template having multiple segments in sequencing
2	0x2	each segment properly aligned according to the aligner
4	0x4	segment unmapped
8	0x8	next segment in the template unmapped
16	0x10	SEQ being reverse complemented
32	0x20	SEQ of the next segment in the template being reverse complemented
64	0x40	the first segment in the template
128	0x80	the last segment in the template
256	0x100	secondary alignment
512	0x200	not passing filters, such as platform/vendor quality controls
1024	0x400	PCR or optical duplicate
2048	0x800	supplementary alignment

SAM

Sequence

AGAGAATCGACAAAAGGCTCTGGCCCG TCTGGCCCGCAGAGCTGAGAAGTTATT AACGAATGTAACTTTAAGGCAGGAAAG ATAGAGGCCCTCTAAATAAGGAATAAA CCTGAGATGTGCGTAGCCTCCGTGTAA ACCCAGCCTTTACCAGCAGCGTACGGC GCTGGCATGGTGGTGGGCACCCATAAT GGGCACCCATAATCCTAGCTGCTCAGG GCCCTTTCAACTTTCCCTCTGGTCCTT CACATCCCCATCTGGGCCCCTCTCCTTT

Base qualities

Optional tags

NH:1:1	HITTIT	AS:1:197	nMilit
NH:i:1	Hititi	AS:1:197	nM:i:0
NH:1:1	HI::::1	AS:1:198	nM:1:0
NH:1:1	MISSIE	AS:1:198	nM:1:0
NH:1:1	HI:1:1	AS:1:198	nM:i:0
NH:1:1	Missis	AS:1:198	mM:1:0
NH:1:1	HI:i:I	AS:1:198	nM:i:0
NR:1:1	HI:1:1	AS:1:198	nM:1:0
NH:1:1	HI:1:1	AS:1:196	nM:1:1
NH:1:1	Hisisi	AS:1:196	nM:i:1

SAM

BAM

Fichier texte

Fichier binaire

Differential expression

Mesure de l'expression par RNA-seq

Entrée 1: Fichiers BAM indexés

- Pour connaître les reads alignés sur une région donnée, il faut indexer le fichier BAM
- Sans index, il faudrait parcourir tout le fichier pour répondre
- Indexation= tri par position + création d'une table des positions
- Produit un fichier .BAI

```
samtools sort sample.bam —o sample_sorted.bam
samtools index sample_sorted.bam
```

Entrée 2: fichier de features (format GFF ou GTF)

GFF:

- seqname The name of the sequence (chromosome/scaffold)
- source The program that generated this feature
- feature Type of feature ("CDS", "start_codon", "stop_codon", "exon")
- start Starting position of the feature in the sequence (starts at 1)
- end Ending position of the feature (inclusive).
- score Score between 0 and 1000 (or "." if no value)
- strand '+', '-', or '.'
- frame If coding exon, frame should be 0-2: reading frame of the first base.
- group All lines with the same group are linked together into a single item.

Format GTF

=format GFF avec extension du champ 9

C111-3F	ngao_reroene	exon	1002/0102	T30E13ET4	0.000000	-	-	gene_id	THE UZUNUS,	transcript_io	NW 020403
chr9	hg38_refGene		133275162	133275214	0.000000		-9,1		NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	start_codon	133275187	133275189	0.000000			gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	CDS	133275162	133275189	0.000000		0	gene_id	NM 020469;	transcript_id	NM_020469
chr9	hg38_refGene	exon	133262099	133262168	0.000000		*	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	CDS	133262099	133262168	0.000000	,	2	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	exon	133261318	133261374	0.000000	+	4	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	CDS	133261318	133261374	0.0000000		1	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	exon	133259819	133259866	0.000000			gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	CDS	133259819	133259866	0.0000000		1	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	exon	133258097	133258132	0.000000		+1	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	CDS	133258097	133258132	0.000000	٠	1	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	expn	133257409	133257542	0.0000000		041	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	CDS	133257409	133257542	0.000000		1	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	exon	133255176	133256356	0.0000000	-	+	gene_id	NM_020469;	transcript_id	NM_020469
chr9	hg38_refGene	CDS	133255669	133256356	0.000000		1	gene_id	NM_020469;	transcript_id	NM_020469
thr9	hg38_refGene	stop_codon	133255666	133255668	0.0000000	10		gene_id	NM_020469;	transcript_id	NM_020469

Récupérer une annotation GTF du génome humain (Gencode)

```
wget
ftp://ftp.sanger.ac.uk/pub/gencode/release_3c/genco
de.v3c.annotation.GRCh37.gtf.gz

(curl sur MacOS)
```

Comment estimer l'expression de chaque gène?

L'approche « coverage »

featureCounts takes as input SAM/BAM files and an annotation file including chromosomal coordinates of features. It outputs numbers of reads assigned to features (or meta-features).

Liao Y, Smyth GK, Shi W. Bioinformatics. 2014

Normalisation

Number of mapped reads is related to library size

Normalisation

A1BG	4
A1CF	41
A2M	1
A2ML1	3
A2MP1	3
A3GALT2	1
A4GALT	420
A4GNT	1
AA06	0
AAAS	2452
AACS	3234
AACSP1	1544

8 mapped reads

Transcrits alternatifs: pourquoi l'approche « coverage » est problématique

Trapnell et al. Cufflinks 2013

Count transcripts rather than genes?

Transcript-based vs. coverage-based

Accuracy of gene expression prediction

Benchmark on simulated data, by *Kanitz et al. Genome Biol. 2015*

Normalized expression units

- RPM
 - Normalized by library size
- RPKM
 - Normalized by library size and gene-size

FeatureCount

- TPM
 - Transcript-level count,
 normalized by library size

Cufflinks, RSEM, Kallisto, Salmon

Towards mapping-free methods

Sailfish Salmon Kallisto

Jeu de données « EMT »

Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition

Yueqin Yang, a,b Juw Won Park, c,d,e Thomas W. Bebee, a,b Claude C. Warzecha, a,be Yang Guo, c,f Xuequn Shang,f Yi Xing,c Russ P. Carstens a,b

Departments of Genetics" and Medicine, "Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA"; Department of Computer Engineering and Computer Science" and KBRIN Bioinformatics Core, "University of Louisville, Louisville, Kentucky, USA; School of Computer Science, Northwestern Polytechnical University, Xi'an, China'

(non-small cell lung cancer (NSCL) cell line H358)

Data

- Sequence libraries are polyA+, pair-end 2x100nt, each in biological triplicate.
- Sequencing is performed on a Illumina HiSeq 2500.
- Fastq files were obtained here: http://www.ncbi.nlm.nih.gov/sra?term=SRP066
 794

Data Sampling

- Initial fastq files: 72Mx2 reads
- Reads mapping Chr18 (STAR mapping + grep on SAM file): 685,000 x2 reads
- Sampled by a factor of 0.5 (Samtools): 343,000
 x2 reads

This represents 0.5% of total reads, thus actual runtimes and space requirement would be up to 200 times higher than in our exercices.

Exercices IGV

- Lancer IGV
- Vérifiez génome (HG19) et annotation (refseq)
- Chargez fichier BAM indexé « Day0 » (en fait=noDox)
 - Contient uniquement map sur chr 18 + échantillonné (0.5% des reads)
- Naviguez sur le chromosome 18
 - Orientation ? (color by « first of pair »)
 - Introns, exons, annotation étendue (expanded)
- Créez fichier bed décrivant le fragment chr18:47117279-47117482 et visualisez-le
- Trouvez des SNP/indels dans les régions exprimées

Beaux loci à regarder

- Chr18:19449740-19449780 (délétion)
- Chr18:21481000-21481200 (SNP)
- Des cas d'épissage alternatif dans les gènes ZNF397, C18orf21, SLC39A6
- Un IncRNA non annoté: chr18:35328141-35335717
- Un gène différentiel entre Day0 et Day7? (nécessite de charger le BAM pour Day7)

Appendices

Format bed

Attention

Le premier nucléotide est numéroté 0. end - start = taille de la séquence

