Generative Adversarial Nets

Ian J.Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

Presenters

Do Quang Phong - 15021797

Nguyen Tuan Anh - 15020971

Nguyen Hoai Nam - 18020929

Nguyen Minh Dat - 18020288

Outline

- Introduction
- Generative Adversarial Nets
- Advancements
- Applications
- Conclusion

Introduction

Generative vs Discriminative Models

- Given a data sample x, Discriminative model aims at predicting its label y, hence its model by the posterior distribution P(y|x)
 - Generative models instead model the distribution P(x) defined over the datapoints x.

Generative Adversarial Networks

Taxonomy of Generative Models

GANs Over Time

4.5 years of GAN progress on face generation

GANs Over Time

Generative Adversarial Networks (GANs)

- An introduction to Generative Adversarial Networks (GANs Goodfellow) accepted in NIPS 2014.
 - Generator, discriminator.
 - Some GAN variants

Ian Goodfellow

Generative Adversarial Networks (GANs)

Generator
Generator learns to make fakes that look like real

Fake Section 1. The section of the s

Real

Fake

Discriminator Discriminator learns to distinguish **real** from **fake**

Discriminator

- The discriminator is a classification system
- It learns the probability of class Y (real or fake) given by features X.
- The probabilities are the feedback for generator

Generator

- The generator produces fake data
- It learns about the probability of features X

Noise Source

Generator

Fake Data

Discriminator

Putting It All Together

- The Binary Cross Entropy Loss is used for training model.
- GANs training in an alternating fashion
- Train Generator & Discriminator together, like a minimax game (adversarial training)

GAN Training Phase

In each iteration, alternately train

- Discriminator
 - o Learn a real sample : x
 - Learn a fake sample : G(z)
- Generator
 - o Optimize G to fool D
 - o G(z) -> Real
- Object Function

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

GAN Training Phase

Alternating optimization in GANs

Theoretical Analysis

• For a given generator, the optimal discriminator is:

$$D_G^*(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}$$
(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the quantity V(G,D)

$$V(G, D) = \int_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \log(D(\mathbf{x})) dx + \int_{z} p_{\mathbf{z}}(\mathbf{z}) \log(1 - D(g(\mathbf{z}))) dz$$
$$= \int_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \log(D(\mathbf{x})) + p_{g}(\mathbf{x}) \log(1 - D(\mathbf{x})) dx$$
(3)

For any $(a,b) \in \mathbb{R}^2 \setminus \{0,0\}$, the function $y \to a \log(y) + b \log(1-y)$ achieves its maximum in [0,1] at $\frac{a}{a+b}$. The discriminator does not need to be defined outside of $Supp(p_{\text{data}}) \cup Supp(p_g)$, concluding the proof.

Experiments

Vanilla GAN

DCGAN

Advancements

Conditional GAN (cGAN)

- Generate image x with known label y
- Input noise vector with one-hot presentation of y to both G & D
- Discriminator loss by class

Result on MNIST

Deep Convolutional GAN (DCGAN)

- First working CNN-based GAN
- Notably, the generator uses "transposed convolutional layers" also informally called "Deconvolution layers"

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- · Use batchnorm in both the generator and the discriminator.
- · Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Deep Convolutional GAN (DCGAN)

Deep Convolutional GAN (DCGAN)

Original GAN (CIFAR-10)

No convolution

One convolutional layer

DCGAN (ImageNet)

Many convolutional layers (Radford et al, 2015)

Wasserstein GAN (WGAN)

GAN Issues:

- In practice, can optimize the discriminator easier than the generator
- If distribution q far away from the ground truth p, the discriminator can saturate early & the generator barely learns anything.
- Research has indicated that if your discriminator is too good, then generator training can fail due to vanishing gradients.

Solution: Change loss function => More stable training

Discriminator/Critic

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right]$$

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right)$$

$$\nabla_{w} \frac{1}{m} \sum_{i=1}^{m} \left[D(x^{(i)}) - D(G(z^{(i)})) \right]$$

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} D\left(G\left(z^{(i)}\right)\right)$$

Applications

Applications

- Huge opportunity to work in applications
- Many companies are using GANs for their work
- Some applications such as:
 - Data Augmentation
 - Image Translation
 - Adversarial Machine Learning
 - Face Reenactment

Data Augmentation

- Training data issues :
 - Not enough data to achieve the best performance
 - Too imbalanced
- Supplement data when real data is ...
 - Too expensive
 - Too rare

Data Augmentation

Can mix the data augmentation techniques!

Image Translation

CycleGAN

- The most common unpaired training image-to-image translation
- Two similar generators
 - \circ G: $x \rightarrow y$ (forward)
 - o F: $y \rightarrow x$ (backward)
- Two similar discriminators DX and DY
- Cycle-consistency loss

Image Translation

From one domain to another

CycleGAN

Image Translation

GauGAN

Face Reenactment

Adversarial Research Areas

x
"panda"
57.7% confidence

 $sign(\nabla_{x}J(\theta, x, y))$ "nematode"
8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_x J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon"

99.3 % confidence

Adversarial examples

Companies using GANs

Next - gen Photoshop

Image Filters

Data Augmentation

Conclusion

- GANs have been successfully applied to several domain and tasks
- However, working with GANs can be very challenging in practice
 - Unstable optimization
 - Mode collapse
 - Evaluation
- Besides, many cool applications with GANs are using in real life.

Acknowledgement

- <u>I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, "Generative Adversarial Networks". In NIPS 2014.</u>
- <u>A. Radford, L. Metz, and S. Chintala. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks". In ICLR 2016.</u>
- M. Arjovsky, S. Chintala, and L. Bottou. "Wasserstein generative adversarial networks". In ICML 2017
- CVPR 2018 Tutorials on GANs
- Generative Adversarial Networks (GANs) Specialization
- https://github.com/hindupuravinash/the-gan-zoo

Further Reading

- https://github.com/goodfeli/adversarial
- http://nvidia-research-mingyuliu.com/gaugan/
- Improved Training of Wasserstein GANs
- https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
- https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
- CS236G Generative Adversarial Networks
- https://blog.paperspace.com/nvidia-gaugan-introduction/

Thank you for your attention