

PROCESO DE GESTIÓN DE FORMACIÓN PROFESIONAL INTEGRAL ANEXO COMPONENTE FORMATIVO

FORMULARIO DE MUESTREO

MUESTREO ALEATORIO SIMPLE EN POBLACIONES INFINITAS.

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
ESTIMADOR	$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$	$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i, \qquad y_i = 0, 1$
VARIANZA MUESTRAL (apenas se utiliza en muestreo)	$s^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - \overline{y} \right)^{2} = \left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} \right) - \overline{y}^{2}$	$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \hat{p}\hat{q}$
CUASIVARIANZA MUESTRAL	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{\sum_{i=1}^{n} y_{i}^{2} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}}{n-1}$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{n \hat{p} \hat{q}}{n-1}$
VARIANZA DEL ESTIMADOR	$\widehat{V}(\overline{y}) = \frac{S^2}{n}$	$\widehat{V}(\widehat{p}) = \frac{\widehat{pq}}{n-1}$
B LIMITE DEL ERROR DE ESTIMACIÓN	$B_{\mu} = z_c \sqrt{\widehat{V}(\overline{y})} = z_c \frac{S}{\sqrt{n}}$	$B_{p} = z_{c} \sqrt{\widehat{V}(\widehat{p})} = z_{c} \sqrt{\frac{\widehat{p}\widehat{q}}{n-1}}$
INTERVALO DE CONFIANZA	$\left(\overline{y} - B_{\mu}, \overline{y} + B_{\mu}\right)$	$(\hat{p} - B_p, \hat{p} + B_p)$
TAMAÑO MUESTRAL	$n = \frac{\sigma^2}{\frac{B_{\mu}^2}{z_c^2}} = \frac{\sigma^2}{D} \qquad D = \frac{B_{\mu}^2}{z_c^2}$ $\widehat{\sigma^2} = S^2 , \widehat{\sigma^2} = \left(\frac{R}{4}\right)^2$	$n = \frac{pq}{\frac{B_p^2}{z_c^2}} = \frac{pq}{D}$ $D = \frac{B_p^2}{z_c^2}$ $p \text{ se estima con } \hat{p}$

MUESTREO ALEATORIO SIMPLE EN POBLACIONES FINITAS.

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
ESTIMADOR	$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$ $\hat{\tau} = N \overline{y} = \frac{N}{n} \sum_{i=1}^{n} y_{i}$	$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad y_i = 0, 1$ $\hat{\tau} = N \hat{p}$
VARIANZA DEL ESTIMADOR	$\widehat{V}(\overline{y}) = \frac{S^2}{n} \frac{N - n}{N}$ $\widehat{V}(\widehat{\tau}) = N^2 \widehat{V}(\overline{y}) = N(N - n) \frac{S^2}{n}$	$\widehat{V}(\widehat{p}) = \frac{\widehat{pq}}{n-1} \frac{N-n}{N}$ $\widehat{V}(\widehat{\tau}) = N^2 \widehat{V}(\widehat{p}) = N(N-n) \frac{\widehat{pq}}{n-1}$
B LIMITE DEL ERROR DE ESTIMACIÓN	$B_{\mu} = z_{c} \sqrt{\hat{V}(\bar{y})}$ $B_{\tau} = z_{c} \sqrt{\hat{V}(\hat{\tau})} = NB_{\mu}$	$B_{p} = z_{c} \sqrt{\hat{V}(\hat{p})}$ $B_{\tau} = z_{c} \sqrt{\hat{V}(\hat{\tau})} = NB_{p}$
INTERVALO DE CONFIANZA	$\left(\overline{y} - B_{\mu}, \overline{y} + B_{\mu}\right)$ $\left(\hat{\tau} - B_{\tau}, \hat{\tau} + B_{\tau}\right) = N\left(\overline{y} - B_{\mu}, \overline{y} + B_{\mu}\right)$	$\left(\hat{p} - B_p, \hat{p} + B_p\right)$ $\left(\hat{\tau} - B_\tau, \hat{\tau} + B_\tau\right) = N\left(\hat{p} - B_p, \hat{p} + B_p\right)$
TAMAÑO MUESTRAL	$n = \frac{N\sigma^2}{(N-1)D + \sigma^2}$ $D = \frac{B_{\mu}^2}{z_c^2} (media)$ $D = \frac{B_{\tau}^2}{z_c^2 N^2} (total)$ $\widehat{\sigma^2} = S^2 , \widehat{\sigma^2} = \left(\frac{R}{4}\right)^2$	$n = \frac{Npq}{(N-1)D + pq}$ $D = \frac{B_p^2}{z_c^2} (proporcion)$ $D = \frac{B_\tau^2}{z_c^2 N^2} (total)$ $p \text{ se estima con } \hat{p}$

MUESTREO ALEATORIO ESTRATIFICADO: ESTIMACIÓN.

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
ESTIMADOR	$\overline{y}_{st} = \frac{1}{N} \sum_{i=1}^{L} N_i \overline{y}_i = \sum_{i=1}^{L} \frac{N_i}{N} \overline{y}_i$ $\hat{\tau}_{st} = N \overline{y}_{st} = \sum_{i=1}^{L} N_i \overline{y}_i$	$\hat{p}_{st} = \frac{1}{N} \sum_{i=1}^{L} N_i \hat{p}_i = \sum_{i=1}^{L} \frac{N_i}{N} \hat{p}_i$ $\hat{\tau}_{st} = N \hat{p}_{st} = \sum_{i=1}^{L} N_i \hat{p}_i$
VARIANZA DEL ESTIMADOR	$\begin{split} \widehat{V}(\overline{y}_{st}) &= \frac{1}{N^2} \sum_{i=1}^{L} N_i^2 \ \widehat{V}(\overline{y}_i) = \\ &= \frac{1}{N^2} \sum_{i=1}^{L} N_i^2 \frac{S_i^2}{n_i} \frac{N_i - n_i}{N_i} = \\ &= \sum_{i=1}^{L} \left(\frac{N_i}{N}\right)^2 \frac{S_i^2}{n_i} \frac{N_i - n_i}{N_i} \\ &\frac{N_i - n_i}{N_i} \cong 1 en \ poblaciones \ infinitas \end{split}$	$\begin{split} \widehat{V}(\widehat{p}_{st}) &= \frac{1}{N^2} \sum_{i=1}^{L} N_i^2 \ \widehat{V}(\widehat{p}_i) = \\ &= \frac{1}{N^2} \sum_{i=1}^{L} N_i^2 \frac{\widehat{p}_i \widehat{q}_i}{n_i - 1} \frac{N_i - n_i}{N_i} = \\ &= \sum_{i=1}^{L} \left(\frac{N_i}{N}\right)^2 \frac{\widehat{p}_i \widehat{q}_i}{n_i - 1} \frac{N_i - n_i}{N_i} \\ &= \frac{N_i - n_i}{N_i} \cong 1 en \ poblaciones \ infinitas \end{split}$
	$\widehat{V}(\widehat{\tau}_{st}) = N^2 \widehat{V}(\overline{y}_{st}) = \sum_{i=1}^{L} N_i^2 \frac{S_i^2}{n_i} \frac{N_i - n_i}{N_i}$	$\hat{V}(\hat{\tau}_{st}) = N^2 \hat{V}(\hat{p}_{st}) = \sum_{i=1}^{L} N_i^2 \frac{\hat{p}_i \hat{q}_i}{n_i - 1} \frac{N_i - n_i}{N_i}$

MUESTREO ALEATORIO ESTRATIFICADO: ASIGNACIÓN MUESTRAL. POBLACIONES FINITAS.

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
	$n = \frac{\sum_{i=1}^{L} N_i \sigma_i \sqrt{c_i}}{N^2 D + \sum_{i=1}^{L} N_i \sigma_i^2}$	$n = \frac{\sum_{i=1}^{L} N_i \sqrt{p_i q_i c_i}}{N^2 D + \sum_{i=1}^{L} N_i \sqrt{\frac{p_i q_i}{c_i}}}$
	<i>t</i> =1	<i>i</i> =1
ASIGNACIÓN ÓPTIMA	(coste fijo C) $n = \frac{C\sum_{i=1}^{L} \frac{N_{i}\sigma_{i}}{\sqrt{c_{i}}}}{\sum_{i=1}^{L} N_{i}\sigma_{i}\sqrt{c_{i}}}$	(coste fijo C) $n = \frac{C\sum_{i=1}^{L} N_i \sqrt{\frac{p_i q_i}{c_i}}}{\sum_{i=1}^{L} N_i \sqrt{p_i q_i c_i}}$
	$\omega_{j} = \frac{\frac{N_{j}\sigma_{j}}{\sqrt{c_{j}}}}{\sum_{i=1}^{L} \frac{N_{i}\sigma_{i}}{\sqrt{c_{i}}}}$	$\omega_{j} = \frac{N_{j} \sqrt{\frac{p_{j}q_{j}}{c_{j}}}}{\sum_{i=1}^{L} N_{i} \sqrt{\frac{p_{i}q_{i}}{c_{i}}}}$
	$n = \frac{\left(\sum_{i=1}^{L} N_i \sigma_i\right)^2}{N^2 D + \sum_{i=1}^{L} N_i \sigma_i^2}$	$n = \frac{\left(\sum_{i=1}^{L} N_i \sqrt{p_i q_i}\right)^2}{N^2 D + \sum_{i=1}^{L} N_i p_i q_i}$
ASIGNACIÓN DE NEYMAN (error fijo B)	<i>i</i> =1	i=l
	$\omega_{j} = \frac{N_{j}\sigma_{j}}{\sum_{i=1}^{L} N_{i}\sigma_{i}}$	$\omega_{j} = \frac{N_{j} \sqrt{p_{j} q_{j}}}{\sum_{i=1}^{L} N_{i} \sqrt{p_{i} q_{i}}}$
ASIGNACIÓN PROPORCIONAL (error fijo B)	$n = \frac{\sum_{i=1}^{L} N_i \sigma_i^2}{ND + \frac{1}{N} \sum_{i=1}^{L} N_i \sigma_i^2}$	$n = \frac{\sum_{i=1}^{L} N_{i} p_{i} q_{i}}{ND + \frac{1}{N} \sum_{i=1}^{L} N_{i} p_{i} q_{i}}$
(ciroi jijo b)	$\omega_j = \frac{N_j}{N}$	$\omega_j = \frac{N_j}{N}$
	$D = \frac{B_{\mu}^2}{z_c^2} (media)$	$D = \frac{B_p^2}{z_c^2} (proporcion)$
	$D = \frac{B_{\tau}^2}{z_c^2 N^2} (total)$	$D = \frac{B_{\tau}^2}{z_c^2 N^2} (total)$
	$\widehat{\sigma_i^2} = S_i^2$, $\widehat{\sigma_i^2} = \left(\frac{R_i}{4}\right)^2$	p_i se estima con $\hat{p_i}$

MUESTREO ALEATORIO ESTRATIFICADO: ASIGNACIÓN MUESTRAL. POBLACIONES INFINITAS. Pesos de los estratos conocidos: $W_i (\cong N_i/N)$

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
	(error fijo B)	(error fijo B)
	$n = \frac{\sum_{i=1}^{L} W_i \ \sigma_i \ \sqrt{c_i} \sum_{i=1}^{L} W_i \ \frac{\sigma_i}{\sqrt{c_i}}}{D}$	$n = \frac{\sum_{i=1}^{L} W_i \sqrt{p_i q_i c_i}}{D} \frac{\sum_{i=1}^{L} W_i \sqrt{\frac{p_i q_i}{c_i}}}{D}$
ASIGNACIÓN ÓPTIMA	(coste fijo C) $n = \frac{C\sum_{i=1}^{L} W_{i} \frac{\sigma_{i}}{\sqrt{c_{i}}}}{\sum_{i=1}^{L} W_{i} \sigma_{i} \sqrt{c_{i}}}$	(coste fijo C) $n = \frac{C\sum_{i=1}^{L} W_i \sqrt{\frac{p_i q_i}{c_i}}}{\sum_{i=1}^{L} W_i \sqrt{p_i q_i c_i}}$
	$\omega_{j} = \frac{W_{j} \frac{\sigma_{j}}{\sqrt{c_{j}}}}{\sum_{i=1}^{L} W_{i} \frac{\sigma_{i}}{\sqrt{c_{i}}}}$	$\omega_{j} = rac{W_{j} \sqrt{rac{p_{j}q_{j}}{c_{j}}}}{\displaystyle\sum_{i=1}^{L}W_{i} \sqrt{rac{p_{i}q_{i}}{c_{i}}}}$
ASIGNACIÓN DE	$n = \frac{\left(\sum_{i=1}^{L} W_i \ \sigma_i\right)^2}{D}$	$n = \frac{\left(\sum_{i=1}^{L} W_i \sqrt{p_i q_i}\right)^2}{D}$
NEYMAN (error fijo B)	$\omega_{j} = \frac{W_{j} \sigma_{j}}{\sum_{i=1}^{L} W_{i} \sigma_{i}}$	$\omega_{j} = \frac{W_{j} \sqrt{p_{j}q_{j}}}{\sum_{i=1}^{L} W_{i} \sqrt{p_{i}q_{i}}}$
ASIGNACIÓN PROPORCIONAL	$n = \frac{\sum_{i=1}^{L} W_i \ \sigma_i^2}{D}$	$n = \frac{\sum_{i=1}^{L} W_i \ p_i q_i}{D}$
(error fijo B)	$\omega_j = W_j$	$\omega_j = W_j$
	$D = \frac{B_{\mu}^2}{z_c^2} (media)$	$D = \frac{B_p^2}{z_c^2} (proporcion)$
	$\widehat{\sigma_i^2} = S_i^2$, $\widehat{\sigma_i^2} = \left(\frac{R_i}{4}\right)^2$	p_i se estima con $\widehat{p_i}$

ESTIMACIÓN DE RAZÓN.

	RAZÓN	MEDIA TOTAL
ESTIMADOR	$r = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} = \frac{y}{x}$	$\hat{\mu}_{y} = r\mu_{x}$ $\hat{\tau}_{y} = r\tau_{x}$
VARIANZA RESIDUAL	$S_r^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - rx_i)^2 = \frac{1}{n-1}$	$\frac{1}{-1} \left(\sum_{i=1}^{n} y_i^2 + r^2 \sum_{i=1}^{n} x_i^2 - 2r \sum_{i=1}^{n} x_i y_i \right)$
VARIANZA DEL ESTIMADOR	$\widehat{V}(r) = \frac{1}{\mu_x^2} \frac{N - n}{N} \frac{S_r^2}{n} \cong \frac{1}{x^2} \frac{N - n}{N} \frac{S_r^2}{n}$	$\hat{V}(\hat{\mu}_y) = \mu_x^2 \hat{V}(r) = \frac{N-n}{N} \frac{S_r^2}{n}$ $\hat{V}(\hat{\tau}_y) = \tau_x^2 \hat{V}(r) = N^2 \frac{N-n}{N} \frac{S_r^2}{n}$ $\hat{V}(\hat{\tau}_y) \cong \frac{\tau_x^2}{r^2} \frac{S_r^2}{n} en \ poblaciones \ infinitas$
TAMAÑO MUESTRAL	$D = \frac{B_R^2 \mu_x^2}{z_c^2} ($ $D = \frac{B_\mu^2}{z_c^2} ($	rs infinitas $main muestra\ previa$ $main muestra\ previa$ $para\ estimar\ R)$ $para\ estimar\ \mu_y)$ $para\ estimar\ au_y)$

ESTIMACIÓN DE REGRESIÓN.

	MEDIA TOTAL
VARIANZA, COVARIANZA Y COEF. DE CORRELACIÓN MUESTRALES	$s_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{2} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \right) - \overline{x}^{2} \qquad (an a log amente para la variable Y)$ $s_{xy} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right) \left(y_{i} - \overline{y} \right) = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} \right) - \overline{x} \overline{y}$ $r_{xy}^{2} = \frac{s_{xy}^{2}}{s_{x}^{2} s_{y}^{2}}$
ESTIMADOR	$\hat{\mu}_{yL} = \overline{y} + b(\mu_x - \overline{x}) \qquad b = \frac{s_{xy}}{s_x^2}$ $\hat{\tau}_{yL} = N\hat{\mu}_{yL}$
VARIANZA RESIDUAL	$S_L^2 = \frac{1}{n-2} \sum_{i=1}^n \left(y_i - \left(\overline{y} + b(x_i - \overline{x}) \right) \right)^2 = \frac{n}{n-2} \left(s_y^2 - \frac{s_{xy}^2}{s_x^2} \right) = \frac{n}{n-2} s_y^2 \left(1 - r_{xy}^2 \right)$
VARIANZA DEL ESTIMADOR	$\widehat{V}(\widehat{\mu}_{yL}) = \frac{N - n}{N} \frac{S_L^2}{n}$ $\widehat{V}(\widehat{\tau}_{yL}) = N^2 \widehat{V}(\widehat{\mu}_{yL})$
TAMAÑO MUESTRAL	$n = \frac{N\sigma_L^2}{ND + \sigma_L^2}$ $n = \frac{\sigma_L^2}{D} en \ poblaciones \ infinitas$ $\widehat{\sigma}_L^2 = S_L^2 de \ una \ muestra \ previa$ $D = \frac{B_\mu^2}{z_c^2} \qquad (para \ estimar \ \mu_y)$ $D = \frac{B_\tau^2}{z_c^2 N^2} (para \ estimar \ \tau_y)$

ESTIMACIÓN DE DIFERENCIA.

	MEDIA TOTAL	
ESTIMADOR	$\widehat{\mu}_{yD} = \overline{y} + (\mu_x - \overline{x}) = \mu_x + \overline{d} \qquad \overline{d} = \overline{y} - \overline{x} = \frac{1}{n} \sum_{i=1}^n d_i \qquad d_i = y_i - x_i$	
	$\hat{\tau}_{yD} = N \hat{\mu}_{yD}$	
VARIANZA RESIDUAL	$S_D^2 = \frac{1}{n-1} \sum_{i=1}^n \left(y_i - (x_i + \overline{d}) \right)^2 = \frac{1}{n-1} \sum_{i=1}^n \left(d_i - \overline{d} \right)^2 = \frac{\sum_{i=1}^n d_i^2 - \frac{\left(\sum_{i=1}^n d_i \right)^2}{n}}{n-1}$	
VARIANZA DEL ESTIMADOR	$\hat{V}(\hat{\mu}_{yD}) = \frac{N - n}{N} \frac{S_D^2}{n}$ $\hat{V}(\hat{\tau}_{yD}) = N^2 \hat{V}(\hat{\mu}_{yD})$	
TAMAÑO MUESTRAL	$\widehat{V}(\widehat{\tau}_{yD}) = N^2 \widehat{V}(\widehat{\mu}_{yD})$ $n = \frac{N\sigma_D^2}{ND + \sigma_D^2}$ $n = \frac{\sigma_D^2}{D} en \ poblaciones \ infinitas$ $\widehat{\sigma}_D^2 = S_D^2 de \ una \ muestra \ previa$ $D = \frac{B_\mu^2}{z_c^2} \qquad (para \ estimar \ \mu_y)$ $D = \frac{B_\tau^2}{z_c^2 N^2} (para \ estimar \ \tau_y)$	

MUESTREO POR CONGLOMERADOS.

	MEDIA o PROPORCIÓN TOTAL (M conocido)	TOTAL
ESTIMADOR	$\hat{\mu} = \overline{y} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} m_i} \qquad \hat{\tau} = M \overline{y}$	$\hat{\tau}_t = N\overline{y}_t \qquad \left(\overline{y}_t = \frac{1}{n}\sum_{i=1}^n y_i\right)$
VARIANZA DEL ESTIMADOR	$\widehat{V}(\overline{y}) = \frac{1}{\overline{M}^2} \frac{N - n}{N} \frac{S_c^2}{n}$ $\widehat{V}(\widehat{\tau}) = M^2 \widehat{V}(\overline{y}) = N(N - n) \frac{S_c^2}{n}$	$\widehat{V}(\widehat{\tau}_t) = N^2 \widehat{V}(\overline{y}_t) = N(N-n) \frac{S_t^2}{n}$
	$S_{c}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - y_{i} - y_{i})^{2} = $ $= \frac{1}{n-1} \left(\sum_{i=1}^{n} y_{i}^{2} + y_{i}^{2} - y_{i}^$	$S_{t}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(y_{i} - \overline{y}_{t} \right)^{2} = \frac{\sum_{i=1}^{n} y_{i}^{2} - \frac{\left(\sum_{i=1}^{n} y_{i} \right)^{2}}{n}}{n-1}$ $N\sigma^{2}$
TAMAÑO MUESTRAL	$n = \frac{N\sigma_c^2}{ND + \sigma_c^2}$ $n = \frac{\sigma_c^2}{D} en \text{ poblaciones infinitas}$ $\widehat{\sigma_c^2} = S_c^2 de \text{ una muestra previa}$ $D = \frac{B_\mu^2 \overline{M}^2}{z_c^2} (media)$ $D = \frac{B_\tau^2}{z_c^2 N^2} (total)$	$n = \frac{N\sigma_t^2}{ND + \sigma_t^2}$ $n = \frac{\sigma_t^2}{D} en \text{ poblaciones infinitas}$ $\widehat{\sigma_t^2} = S_t^2 de \text{ una muestra previa}$ $D = \frac{B_\tau^2}{z_c^2 N^2} (total)$

NOTACIÓN:

N = conglomerados en la población (habitualmente conocido)

n = conglomerados en la muestra

 m_i = elementos en el conglomerado i

 $y_i = suma de las observaciones del conglomerado i$

$$M = \sum_{i=1}^{N} m_i = \text{elementos en la población}$$
 (habitualmente desconocido)

$$m = \sum_{i=1}^{n} m_i = elementos en la muestra$$

$$\overline{M} = \frac{1}{N} \sum_{i=1}^{N} m_i = \frac{M}{N} = \textit{tamaño medio de los conglomerados de la población (habitualmente desconocido)}$$

$$\frac{-}{m} = \frac{1}{n} \sum_{i=1}^{n} m_i = \frac{m}{n} = \text{tama\~no medio de los conglomerados de la muestra}. Este valor $\frac{-}{m}$ se usa para estimar el anterior, \overline{M} .}$$

ESTIMACIÓN DEL TAMAÑO DE LA POBLACIÓN

	MUESTREO DIRECTO	MUESTREO INVERSO
NOTACIÓN	t = elementos marcados $n =$ total de elementos en la muestra de recaptura $S =$ elementos marcados en la muestra de recaptur	а
ESTIMADOR	$\widehat{N} = \frac{t}{\widehat{p}} = \frac{nt}{s}$	$\widehat{N} = \frac{t}{\widehat{p}} = \frac{nt}{s}$
PROPIEDADES DEL ESTIMADOR	$E(\widehat{N}) = N + \frac{N(N-t)}{nt}$ $\widehat{V}(\widehat{N}) = \frac{t^2 n(n-s)}{s^3}$	$E(\widehat{N}) = N$ $\widehat{V}(\widehat{N}) = \frac{t^2 n(n-s)}{s^2(s+1)}$

ESTIMACIÓN DEL TAMAÑO DE LA POBLACIÓN

MUESTREO POR CUADROS		
	DENSIDAD	TOTAL
NOTACIÓN	A= área total $a=$ área de cada cuadro $n=$ número de cuadros en la muestra $m=$ número medio de elementos por cuadro en la mue	estra
ESTIMADOR	$\hat{\lambda} = \frac{\overline{m}}{a}$	$\widehat{M} = \widehat{\lambda} A$
VARIANZA DEL ESTIMADOR	$\widehat{V}\left(\widehat{\lambda}\right) = \frac{\widehat{\lambda}}{an} = \frac{\overline{m}}{a^2 n}$	$\widehat{V}(\widehat{M}) = A^2 \widehat{V}(\widehat{\lambda}) = \frac{A^2 \widehat{\lambda}}{an} = \frac{A^2 \overline{m}}{a^2 n}$
TAMAÑO MUESTRAL	$n = \frac{\lambda}{aD}$ $D = \frac{B_{\lambda}^{2}}{z_{c}^{2}} (para\ estimar\ \lambda)$ $\lambda \ \ debe\ estimarse\ con\ un$	$D = \frac{B_M^2}{z_c^2 A^2} (para\ estimar\ M)$

CUADROS CARGADOS		
	DENSIDAD TOTAL	
NOTACIÓN	A = cupartial $a = cupartial$ $a = a = cupartial$ $a = a = a = a$ $a = a =$	
ESTIMADOR	$\widehat{\lambda} = -\frac{1}{a} \ln \left(\frac{y}{n} \right)$ $\widehat{M} = A \widehat{\lambda} = -\frac{A}{a} \ln \left(\frac{y}{n} \right)$	
VARIANZA DEL ESTIMADOR	$\widehat{V}\left(\widehat{\lambda}\right) = \frac{1}{a^2} \frac{n - y}{ny}$	$\widehat{V}\left(\widehat{M}\right) = A^{2}\widehat{V}\left(\widehat{\lambda}\right) = \frac{A^{2}}{a^{2}} \frac{n - y}{ny}$

MUESTREO CON PROBABILIDADES DESIGUALES.

	MEDIA, PROPORCIÓN y TOTAL
PROBABILIDADES DE	$\pi_i = \sum_{s \ni i} p(s) \qquad \qquad \pi_{ij} = \sum_{s \ni i \& j} p(s)$
INCLUSIÓN	səi səi@j
PESOS MUESTRALES	$d_i = \frac{1}{\pi_i}$
PROBABILIDADES DE	r
INCLUSIÓN EN UN DISEÑO PPT	$\pi_i = n \frac{x_i}{\tau_x}$
PROBABILIDADES DE	
INCLUSIÓN EN M. A.	$\pi_i = \frac{n}{N} \qquad \qquad \pi_{ij} = \frac{n}{N} \frac{n-1}{N-1}$
SIMPLE	
	$ \pi_i = \frac{n_h}{N_h} $ si el individuo <i>i</i> pertenece al estrato <i>h</i> .
PROBABILIDADES DE INCLUSIÓN EN M. A. ESTRATIFICADO	$\pi_{ij} = \begin{cases} \frac{n_h}{N_h} \frac{n_h - 1}{N_h - 1} & \text{si ambos individuos } i \text{ y } j \text{ pertenecen al estrato } h. \\ \frac{n_h}{N_h} \frac{n_k}{N_h} & \text{si el individuo } i \text{ pertenece al estrato } h, \text{y el individuo } j \text{ al estrato } k \end{cases}$
	$\left[\frac{n_h}{N_h} \frac{n_k}{N_k}\right]$ si el individuo <i>i</i> pertenece al estrato <i>h</i> , y el individuo <i>j</i> al estrato <i>k</i>
	$\overline{y}_{HT} = \frac{1}{N} \sum_{i=1}^{n} \frac{y_i}{\pi}$
ESTIMADOR DE TIPO HORVITZ-THOMPSON	$\hat{p}_{HT} = \frac{1}{N} \sum_{i=1}^{n} \frac{y_i}{\pi_i} \qquad y_i = 0 o y_i = 1$
	$\hat{ au}_{HT} = N \; \overline{y}_{HT} = N \hat{p}_{HT} = \sum_{i=1}^n rac{{\cal Y}_i}{\pi_i}$
	$\hat{V}_{HT}(\bar{y}_{HT}) = \frac{1}{N^2} \sum_{i=1}^{n} (1 - \pi_i) \frac{y_i^2}{\pi_i^2} + \frac{2}{N^2} \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{\pi_{ij} - \pi_i \pi_j}{\pi_{ij}} \frac{y_i}{\pi_i} \frac{y_j}{\pi_j}$
VARIANZA DEL	$\hat{V}_{SYG}(\bar{y}_{HT}) = \frac{1}{N^2} \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{\pi_i \pi_j - \pi_{ij}}{\pi_{ij}} \left(\frac{y_i}{\pi_i} - \frac{y_j}{\pi_j} \right)^2$
ESTIMADOR DE	
HORVITZ-THOMPSON	$\hat{V}_{HT}(\hat{\tau}_{HT}) = N^2 \hat{V}_{HT}(\overline{y}_{HT}) = \sum_{i=1}^{n} (1 - \pi_i) \frac{y_i^2}{\pi_i^2} + 2 \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{\pi_{ij} - \pi_i \pi_j}{\pi_{ij}} \frac{y_i}{\pi_i} \frac{y_j}{\pi_j}$
	$\hat{V}_{SYG}\left(\hat{\tau}_{HT}\right) = N^2 \hat{V}_{SYG}\left(\overline{y}_{HT}\right) = \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{\pi_i \pi_j - \pi_{ij}}{\pi_{ij}} \left(\frac{y_i}{\pi_i} - \frac{y_j}{\pi_j}\right)^2$
	$\overline{y}_{H} = \frac{1}{\widehat{N}} \sum_{i=1}^{n} \frac{y_{i}}{\pi_{i}} \qquad \widehat{N} = \sum_{i=1}^{n} \frac{1}{\pi_{i}}$
ESTIMADOR DE TIPO HÁJEK	$\hat{p}_H = \frac{1}{\widehat{N}} \sum_{i=1}^n \frac{y_i}{\pi_i} \qquad y_i = 0 o y_i = 1$
	$\hat{\tau}_H = N \ \overline{y}_H = \frac{N}{\widehat{N}} \sum_{i=1}^n \frac{y_i}{\pi_i}$

VARIANZA DEL ESTIMADOR DE HÁJEK	$\hat{V}_{J}(\overline{y}_{H}) = \frac{N-n}{N} \frac{n-1}{n} \sum_{i=1}^{n} (\overline{y}_{H(i)} - \overline{y}_{H})^{2}$ $\overline{y}_{H(i)} = \frac{1}{\hat{N}_{(i)}} \sum_{j \in s, j \neq i} \frac{y_{j}}{\pi_{j}} , \hat{N}_{(i)} = \sum_{j \in s, j \neq i} \frac{1}{\pi_{j}}$
	$\hat{V}_{J}(\hat{\tau}_{H}) = N^{2}\hat{V}_{J}(\overline{y}_{H}) = \frac{N-n}{N} \frac{n-1}{n} \sum_{i=1}^{n} (\hat{\tau}_{H(i)} - \hat{\tau}_{H})^{2}$ $\hat{\tau}_{H(i)} = \frac{N}{\hat{N}_{(i)}} \sum_{j \in s, j \neq i} \frac{y_{j}}{\pi_{j}} , \hat{N}_{(i)} = \sum_{j \in s, j \neq i} \frac{1}{\pi_{j}}$
	$N_{(i)}$ $_{j\in s,j\neq i}$ π_{j} $_{j\in s,j\neq i}$ π_{j}
VARIANZA DE UN ESTIMADOR $\hat{\theta}$ USANDO BOOTSTRAP	$\hat{V}_B(\hat{\theta}) = \frac{1}{B-1} \sum_{b=1}^B (\hat{\theta}_{(b)} - \overline{\theta}_B)^2 \qquad ; \qquad \overline{\theta}_B = \frac{1}{B} \sum_{b=1}^B \hat{\theta}_{(b)}$