

Link Stealing Attacks on Inductive Trained Graph Neural Networks

Bachelor Thesis Introduction - Philipp Zimmermann

Outline

- Graphs
- Graph Neural Networks
- Our Approach: Link Stealing Attacks on Inductive Trained Graph Neural Networks
- Experimental Setup
- Goal

- Data Structure
 - Model large data and relationships between entities
 - Nodes with features
 - Edges

- Data Structure
 - Model large data and relationships between entities
 - Nodes with features
 - Edges

- Chemical Networks
 - Protein-protein interactions

- Data Structure
 - Model large data and relationships between entities
 - Nodes with features
 - Edges

- Chemical Networks
 - Protein-protein interactions
- Social Networks
 - Instagram
 - Facebook
 - Twitter

- Data Structure
 - Model large data and relationships between entities
 - Nodes with features
 - Edges

- Chemical Networks
 - Protein-protein interactions

- Social Networks
 - Instagram
 - Facebook
 - Twitter

- Data Structure
 - Model large data and relationships between entities
 - Nodes with features
 - Edges

- Chemical Networks
 - Protein-protein interactions

- Social Networks
 - Instagram
 - Facebook
 - Twitter

- **Data Structure**
 - Model large data and relationships between entities
 - Nodes with features
 - Edges

- **Chemical Networks**
 - Protein-protein interactions

- Social Networks
 - Instagram
 - Facebook
 - Twitter

- Data Structure
 - Model large data and relationships between entities
 - Nodes with features
 - Edges

- Chemical Networks
 - Protein-protein interactions
- Social Networks
 - Instagram
 - Facebook
 - Twitter

- Data Structure
 - Model large data and relationships between entities
 - Nodes with features
 - Edges

- Chemical Networks
 - Protein-protein interactions
- Social Networks
 - Instagram
 - Facebook
 - Twitter

Machine Learning Model over Graphs

- Different Tasks
 - Node classification
 - Graph classification
 - Link prediction
- Different Learning Methods
 - Transductive
 - Inductive

- Transductive
 - Fix graph (features and link)
 - Some nodes' labels are missing
 - Limited scenario

- Inductive
 - Extends transductive setting
 - Able to generalize to unseen nodes
 - Unnecessary to retrain the model
 - Broader scenario

- Scenario:
 - GNN trained on graph G to perform downstream task
 - Attacker
 - Black box access to target model
 - Partial graph with incomplete set of edges
- Goal:
 - Recover missing links from partial graph

Attacker Graph

Attacker Graph with One Missing Link

Attacker Graph

[0.3, 0.2, 0.3, ..., 0.1]

[0.2, 0.1, 0.4, ..., 0.1]

[0.3, 0.2, 0.3, ..., 0.1]

[0.2, 0.1, 0.4, ..., 0.1]

[0.3, 0.2, 0.3, ..., 0.1]

[0.2, 0.1, 0.4, ..., 0.1]

[0.3, 0.2, 0.3, ..., 0.1]

[0.2, 0.1, 0.4, ..., 0.1]

[Cosine, Manhattan, ..., Euclidean]

[Cosine, Manhattan, ..., Euclidean]

[Cosine, Manhattan, ..., Euclidean]

[Cosine, Manhattan, ..., Euclidean]

MLP (Attack Model)

Prediction whether two nodes are connected or not

- Three Datasets
 - Cora
 - CiteSeer
 - Pubmed

- Three Graph Neural Network Types
 - GraphSAGE
 - GAT
 - GCN (inductive)

- Attack 1
 - Same distribution

[0.3, 0.2, 0.3, ..., 0.1, 0.2, 0.1, 0.4, ..., 0.1]

- Attack 2
 - Same Distribution

[Cosine, Manhattan, ..., Euclidean]

- Attack 3
 - Different Distribution

[Cosine, Manhattan, ..., Euclidean]

Goal

- Observation
 - Inductive trained GNNs are likely to reveal sensitive information about their training graph
- Serious Concerns
 - Intellectual property
 - Confidentiality
 - Privacy

