Lemma 1 If we draw N i.i.d. samples $x_1, x_2 ... x_N$ through the generative process in Equation 1 (main paper) corresponding to N users, and the vectors probability mass function of the items y estimated from these N samples are $\hat{p}(y)$ whereas the true p.m.f is p(y) with $y \in \{y_1, y_2 ... y_D\}$, then with probability at least $1 - \delta$ with $\delta \in (0, 1)$,

$$||\hat{p}(y) - p(y)||_F \le \frac{2}{\tilde{d}_{1s}\sqrt{N}} \left(1 + \sqrt{\frac{\log(1/\delta)}{2}}\right) \tag{1}$$

$$||\hat{p}(y,y) - p(y,y)||_F \le \frac{2}{\tilde{d}_{2s}\sqrt{N}} \left(1 + \sqrt{\frac{\log(1/\delta)}{2}}\right)$$
 (2)

$$||\hat{p}(y,y,y) - p(y,y,y)||_F \le \frac{2}{\tilde{d}_{3s}\sqrt{N}} \left(1 + \sqrt{\frac{\log(1/\delta)}{2}}\right)$$
 (3)

where, $\tilde{d}_{1s} = \frac{1}{N} \sum_{i=1}^{N} nnz(x_i)$, $\tilde{d}_{2s} = \frac{1}{N} \sum_{i=1}^{N} nnz(x_i)^2$, $\tilde{d}_{3s} = \frac{1}{N} \sum_{i=1}^{N} nnz(x_i)^3$, and $nnz(x_i)$ is the non-zero entries in row x_i of the data X as described in section 3.

Proof The generative process in Equation 1 (main paper) results in samples $x_{1:N}$ that are vectors of count data, with $\sum_y [x_u]_d = n_u$, where x_u is the sample corresponding to the user u, and n_u is the sum of the counts of all the items for u. The operation \sum_y denotes the sum across the dimensions. From here, we can show that $||x_u|| = \sqrt{\sum_y [x_u]_d^2} \le \sum_y [x_u]_d = n_u$, since $[x_u]_d \ge 0, \forall d \in 1, 2...D$. Therefore, the samples have bounded norm.

Without loss of generality, if we assume $||x|| \le 1 \ \forall x \in X$, then from Lemma 7 of supplementary material of Wang and Zhu (2014), with probability at least $1 - \delta$ with $\delta \in (0,1)$,

$$\left| \left| \hat{\mathbb{E}}[x] - \mathbb{E}[x] \right| \right|_F \le \frac{2}{\sqrt{N}} \left(1 + \sqrt{\frac{\log(1/\delta)}{2}} \right) \tag{4}$$

$$\left| \left| \hat{\mathbb{E}}[x \otimes x] - \mathbb{E}[x \otimes x] \right| \right|_F \le \frac{2}{\sqrt{N}} \left(1 + \sqrt{\frac{\log(1/\delta)}{2}} \right)$$
 (5)

$$\left| \left| \hat{\mathbb{E}}[x \otimes x \otimes x] - \mathbb{E}[x \otimes x \otimes x] \right| \right|_{F} \le \frac{2}{\sqrt{N}} \left(1 + \sqrt{\frac{\log(1/\delta)}{2}} \right)$$
 (6)

where \mathbb{E} stands for true expectation, and $\hat{\mathbb{E}}$ stands for the expectation estimated from the N samples, i.e.,

$$\hat{\mathbb{E}}[x] = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{N} X^{\top} \mathbf{1}$$

$$\hat{\mathbb{E}}[x \otimes x] = \frac{1}{N} \sum_{i=1}^{N} x_i \otimes x_i = \frac{1}{N} X^{\top} X$$

$$\hat{\mathbb{E}}[x \otimes x \otimes x] = \frac{1}{N} \sum_{i=1}^{N} x_i \otimes x_i \otimes x_i = \frac{1}{N} X \otimes X \otimes X$$

Now, since each of our samples $x_{1:N}$ contains binary data, probability of the items can be estimated from the training data as $\hat{p}(y) = \frac{\hat{\mathbb{E}}[x]}{\sum_y \hat{\mathbb{E}}[x]}$, where $\sum_y \hat{\mathbb{E}}[x]$ is the sum of $\hat{\mathbb{E}}[x]$ across the dimensions, i.e., all the items. Also, it can be shown that $\sum_y \hat{\mathbb{E}}[x] = \tilde{d}_{1s}$. Therefore $\hat{p}(y) = \frac{\hat{\mathbb{E}}[x]}{\hat{d}_{1s}}$. Please note that $\sum_y \mathbb{E}[x] \approx \sum_y \hat{\mathbb{E}}[x] = \tilde{d}_{1s}$, and therefore, $\hat{p}(y) - p(y) = \frac{1}{\hat{d}_{1s}}(\hat{\mathbb{E}}[x] - \mathbb{E}[x])$, and using this in Equation 4, we get the first inequality of the Lemma (Equation 1).

Since $\tilde{d}_{2s} = \sum_{y} \sum_{y} \hat{\mathbb{E}}[x \otimes x]$ and $\tilde{d}_{3s} = \sum_{y} \sum_{y} \sum_{y} \hat{\mathbb{E}}[x \otimes x \otimes x]$, the pairwise and triplewise probability matrices can be estimated as,

$$\hat{p}(y,y) = \frac{\hat{\mathbb{E}}[x \otimes x]}{\sum_{y} \hat{\mathbb{E}}[x \otimes x]} = \frac{\hat{\mathbb{E}}[x \otimes x]}{\tilde{d}_{2s}}$$
$$\hat{p}(y,y,y) = \frac{\hat{\mathbb{E}}[x \otimes x]}{\sum_{y} \sum_{y} \hat{\mathbb{E}}[x \otimes x \otimes x]} = \frac{\hat{\mathbb{E}}[x \otimes x \otimes x]}{\tilde{d}_{3s}}$$

Since $\sum_{y} \sum_{y} \mathbb{E}[x \otimes x] \approx \sum_{y} \sum_{y} \hat{\mathbb{E}}[x \otimes x] = \tilde{d}_{2s}$, and $\sum_{y} \sum_{y} \sum_{y} \mathbb{E}[x \otimes x \otimes x] \approx \sum_{y} \sum_{y} \sum_{y} \hat{\mathbb{E}}[x \otimes x \otimes x] = \tilde{d}_{3s}$, we can establish the following equations,

$$\hat{p}(y,y) - p(y,y) = \frac{1}{\tilde{d}_{2s}} \left(\hat{\mathbb{E}}[x \otimes x] - \mathbb{E}[x \otimes x] \right)$$

$$\hat{p}(y,y,y) - p(y,y,y) = \frac{1}{\tilde{d}_{3s}} \left(\hat{\mathbb{E}}[x \otimes x \otimes x] - \mathbb{E}[x \otimes x \otimes x] \right)$$

Substituting these equations in Equation 5 and 6, we complete the proof.

References

Yining Wang and Jun Zhu. Spectral methods for supervised topic models. In *Advances in Neural Information Processing Systems*, pages 1511–1519, 2014. URL https://papers.nips.cc/paper/5517-spectral-methods-for-supervised-topic-models.