# 8.1 Fonction logarithme népérien

## 8.1.1 Fonction réciproque de la fonction exponentielle

#### Définition 1.8.

La fonction exponentielle est :

- \_\_\_\_\_ sur R.
- \_\_\_\_\_ sur R.
- $a > 0 \in$  donc d'après le corollaire du théorème des valeurs intermédiaires dans le cas des fonctions strictement croissantes, pour tout réel a > 0, il existe un unique réel x tel que  $e^x = a$ .

#### Définition 2.8.

La fonction qui, à tout réel x > 0, associe le réel  $\ln(x)$  s'appelle fonction logarithme népérien que l'on note  $\ln$  : cette fonction est définie sur ]0;  $+\infty[$  et c'est la fonction réciproque de la fonction exponentielle.

### Propriété 1.8.

Dans un repère orthonormé, les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation y=x.



### Propriétés 1.8.

- Pour tout b > 0 et pour tout réel  $a, e^a = b \iff$
- ln(1) = et ln(e) = .
- Pour tout réel a > 0,  $e^{\ln(a)} =$  .
- Pour tout réel a,  $\ln(e^a) =$ .
- **⇒** Application 1.8. Déterminer l'ensemble de définition des fonctions suivantes :

1. 
$$f(x) = \ln(5x - 2)$$

2. 
$$g(x) = \ln(-x^2 - 5x + 6)$$

ightharpoonup Application 2.8. Résoudre dans  $\mathbb R$  les équations suivantes :

1. 
$$e^x = 3$$

3. 
$$ln(x) = -3$$

2. 
$$e^{-5x+1} = 4$$

4. 
$$\ln(-3x+4) = 0$$

#### Relation fonctionnelle et propriétés algébriques 8.1.2

### Propriété 2.8. Relation fonctionnelle

Pour tous x et y réels strictement positifs,

$$ln(xy) = ln(x) + ln(y).$$

| $D\'{e}monstration.$ |  |
|----------------------|--|
| D C110010001 000010. |  |

# Propriété 3.8. Conséquences

Pour tous réels x et y strictement positifs :

• 
$$\ln\left(\frac{1}{x}\right) =$$

• 
$$\forall n \in \mathbb{Z}, \ln(x^n) =$$

• 
$$\ln\left(\frac{1}{x}\right) =$$

• 
$$\ln(\sqrt{x}) =$$
 .

• 
$$\ln\left(\frac{x}{y}\right) =$$

Démonstration. Prouvons la première égalité.

**Application 3.8.** Démontrer que  $\ln(8) - \ln(2) + \ln(4) - \ln(16) = 0$ .

# 8.2 Étude de la fonction ln

### 8.2.1 Dérivée et variations

Propriétés 2.8. Dérivées

• La fonction logarithme népérien est continue et dérivable sur ]0;  $+\infty[$  et pour tout réel x>0,

$$\ln'(x) = \frac{1}{x}$$

• Soit u une fonction  $d\acute{e}rivable$  sur un intervalle I telle que, pour tout  $x \in I$ , u(x) > 0. La fonction  $\ln \circ u : x \to \ln(u(x))$  est dérivable sur I et :

$$(\ln \circ u)' = \frac{u'}{u}$$

| $D\'{e}monstration.$ |  |  |  |
|----------------------|--|--|--|
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |

**Application 4.8.** Calculer la dérivée de la fonction f définie sur  $\mathbb{R}$  par  $f(x) = \ln(5x^2 + x + 3)$ .

Propriété 4.8. Sens de variation

La fonction logarithme népérien est strictement croissante sur ]0;  $+\infty$ [.

## Conséquences :

### Propriétés 3.8.

Pour tous réels a et b strictement positifs, on a :

- $\ln(a) = \ln(b) \iff$
- $\ln(a) \leqslant \ln(b) \iff$

En particulier, on a:

- $\ln(a) \leqslant 0 \iff$
- $\ln(a) \geqslant 0 \iff$

**Application 5.8.** On considère la suite  $(u_n)$  définie sur  $\mathbb{N}$  par  $u_n = 85 \times 0, 2^n + 15$ . Résoudre dans l'ensemble des entiers naturels :  $a_n < 15,004$ .

### 8.2.2 Limites

Propriété 5.8.

• 
$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\bullet \lim_{x \to 0} \ln(x) = -\infty$$

# Conséquences.

On peut dresser le tableau de variation de la fonction ln :



Courbe représentative de la fonction ln :



Propriété 6.8. Croissances comparées

- $\bullet \lim_{x \to +\infty} \frac{\ln x}{x} = 0.$
- $\bullet \lim_{x \to 0} x \ln(x) = 0.$

Pour tout entier naturel  $n \ge 2$ ,

•  $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$  et  $\lim_{x \to 0} x^n \ln(x) = 0$ .

# Propriété 7.8. Concavité

La fonction logarithme népérien est concave sur ]0;  $+\infty[$ : sa courbe représentative est donc toujours située en dessous de ses tangentes sur ]0;  $+\infty[$ .



