Técnicas de Projeto (Parte 4) Projeto e Análise de Algoritmo

Adaptado: Felipe Cunha

Técnicas de Projeto

1) Algoritmos Gulosos

Algoritmos Gulosos

- Tipicamente algoritmos gulosos são utilizados para resolver problemas de otimização.
- Uma característica comum dos problemas onde se aplicam algoritmos gulosos é a existência de subestrutura ótima, semelhante à programação dinâmica:
 - Programação dinâmica: tipicamente os subproblemas são resolvidos quanto à otimalidade antes de se proceder a escolha de um elemento que irá compor a solução ótima
 - Algoritmo guloso: primeiramente é feita a escolha de um elemento que irá compor a solução ótima e só depois um subproblema é resolvido.

Algoritmos Gulosos

- Um algoritmo guloso sempre faz a escolha que parece ser a melhor a cada iteração, ou seja, de acordo com um critério guloso. É uma decisão localmente ótima.
- Propriedade da escolha gulosa: garante que a cada iteração é tomada uma decisão que irá levar a um ótimo global.
- Em um algoritmo guloso uma escolha que foi feita nunca é revista, ou seja, não há qualquer tipo de retrocesso.

- Um caixeiro viajante deseja visitar N cidades e entre cada par de cidades existe uma rota;
- Cada rota possui uma distância (ou o custo necessário) para percorrê-la;
- O caixeiro viajante deseja encontrar um caminho que passe por cada cidade apenas uma vez, e além disso que tenha um custo menor que certo valor.

Traveling
Salesman
Problem - TSP

N	Rotas por Segundo	(n - 1)!	Cálculo Total	
5	250 milhões	24	Insignificante	
10	110 milhões	362 880	0.003 seg	
15	71 milhões	87 bilhoes	20 min	
20	53 milhões	1.2×10^{17}	73 anos	
25	42 milhões	6.2 x 10 ²³	470 milhões de anos	

Vizinho mais próximo (Abordagem Gulosa)

- 1 Selecione arbitrariamente uma cidade inicial
- 2 Selecione a menor rota até qualquer cidade. Repita até todas as cidades terem sido visitadas.

 PROBLEMA: se a distância da última cidade até a primeira foi muito grande, a solução é obrigada a escolher esse caminho.

Características de Algoritmos Gulosos

- Quando funciona corretamente, a primeira solução encontrada é sempre ótima.
- Se o objetivo é:
 - Maximizar: provavelmente escolherá o candidato restante que proporcione o maior ganho individual.
 - Minimizar: então será escolhido o candidato restante de menor custo.
- O algoritmo nunca muda de ideia:
 - Um candidato escolhido e adicionado à solução passa a fazer parte dessa solução permanentemente.
 - Um candidato excluído do conjunto solução, não é mais reconsiderado.

Características de Algoritmos Gulosos

- Para construir a solução ótima existe um conjunto ou lista de candidatos.
- São acumulados um conjunto de candidatos considerados e escolhidos, e o outro de candidatos considerados e rejeitados.
- Existe uma função verifica se um conjunto de candidatos é viável
- Uma função de seleção indica a qualquer momento quais dos candidatos restantes é o mais promissor.
- Uma função objetivo fornece o valor da solução encontrada, como o comprimento do caminho construído (não aparece de forma explicita no algoritmo guloso).

Prog. Dinâmica X Algoritmos Gulosos

- Possuem sub-estrutura ótima.
- Programação dinâmica:
 - Faz uma escolha a cada passo.
 - Escolha depende das soluções dos sub-problemas.
 - Resolve os problemas bottom-up.
- Técnica gulosa:
 - Trabalha na forma top-down.

- Problema da Mochila (enunciado):
 - Um ladrão acha n itens numa loja.
 - o Item *i* vale v_i unidades (dinheiro, e.g., R\$, US\$, etc).
 - Item i pesa w_i unidades (kg, etc).
 - v_i e w_i são inteiros.
 - Consegue carregar W unidades no máximo.
 - Deseja carregar a "carga" mais valiosa.

- Problema da Mochila o –1 ou (o –1 Knapsack Problem):
 - O item *i* é levado integralmente ou é deixado.
- Problema da Mochila Fracionário:
 - Fração do item i pode ser levada.

- Possuem a propriedade de sub-estrutura ótima.
- Problema inteiro:
 - Considere uma carga que pesa no máximo W com n itens.
 - Remova o item j da carga (específico mas genérico).
 - Carga restante deve ser a mais valiosa pesando no máximo $W w_j$ com n 1 itens.

Problema fracionário:

- Considere uma carga que pesa no máximo W com n itens.
- Remova um peso w do item j da carga (específico mas genérico).
- O Carga restante deve ser a mais valiosa pesando no máximo W w com n -1 itens mais o peso w_i w do item j.

Situação Inicial

Item	Peso	Valor	V/P
1	10	60	6
2	20	100	5
3 30		120	4

Carga máxima da mochila: 50

Estratégia Gulosa

Soluções possíveis:

#	Item (Valor)				
1	2 + 3 = 100 + 120 = 220				
2	1 + 2 = 60 + 100 = 160				
3	1 + 3 = 60 + 120 = 180				

→ Solução 2 é a gulosa.

- Levar o item 1 faz com que a mochila fique com espaço vazio
- Espaço vazio diminui o valor efetivo da relação v / w
- Neste caso deve-se comparar a solução do sub-problema quando:

Item é incluído na solução X Item é excluído da solução

- Passam a existir vários sub-problemas
- Programação dinâmica passa a ser a técnica adequada

Estratégia Gulosa Problema Fracionário

Item	Peso	Valor	Fração	
1	10	60	1	
2	20	100	1	
3	30	80	2/3	

- → Total = 240.
- → Solução ótima!

Exercícios

- Descreva como o algoritmo de PRIM utiliza a abordagem gulosa para construir a árvore geradora mínima de um grafo simples qualquer
- Projete uma abordagem gulosa para o problema do troco de moedas

- $S = \{a_1 ... a_n\}$: conjunto de n atividades que podem ser executadas em um mesmo local. Exemplo: palestras em um auditório.
- Para todo i = 1 ... n, a atividade a_i começa no instante s_i e termina no instante f_i , com $o <= s_i < f_i$. Ou seja, supõe-se que a atividade a_i será executada no intervalo de tempo (semiaberto) $[s_i; f_i]$.
- Definição: As atividades a_i e a_j são ditas compatíveis se os intervalos [s_i; f_i) e [s_i; f_i) são disjuntos.

I	1	2	3	4	5	6	7	8	9	10	11
$S_{\rm i}$	1	3	0	5	3	5	6	8	8	2	12
F _i	4	5	6	7	8	9	10	11	12	13	14

- Pares de atividades incompatíveis: (a₁; a₂), (a₁; a₃)
- Pares de atividades compatíveis: (a₁; a₄), (a₄; a₈)
- Conjuntos máximos de atividades compatíveis: (a₁; a₄; a₈; a₁₁)
 e (a₂; a₄; a₉; a₁₁)
- As atividades estão ordenadas em ordem crescente de tempos de término.

- Inicialmente verificaremos que o problema da seleção de atividades tem a propriedade da sub-estrutura ótima e, então, definiremos recursivamente o valor de uma solução ótima.
- Em seguida, mostraremos que há uma forma de resolver uma quantidade consideravelmente menor de subproblemas do que é feito na programação dinâmica.
- Isto será garantido por uma propriedade de escolha gulosa, a qual dará origem a um algoritmo guloso.

- Definição: $S_{ij} = \{a_k \in S : f_i <= s_k < f_k <= s_j\}$, i.e., o conjunto de tarefas que começam depois do término de a_i e terminam antes do início de a_j .
- Tem-se que $S = S_{0; n+1}$ e, com isso, S_{ij} está bem definido para qualquer par (i ; j) tal que 0 <= i ; j <= n + 1.
- Supondo que $f_0 <= f_1 <= f_2 <= ... f_n < f_{n+1}$, ou seja, que as tarefas estão ordenadas em ordem crescente de tempos de término, pode-se concluir que $S_{ii} = \emptyset$ para todo i >= j.

Subestrutura ótima:

- Considere o subproblema da seleção de atividades definido sobre S_{ii}.
- Suponha que a_k pertence a uma solução ótima de S_{ij} .
- Como $f_i <= s_k < f_k <= s_j$, uma solução ótima para S_{ij} que contenha a_k será composta pelas atividades de uma solução ótima de S_{ik} , pelas atividades de uma solução ótima de S_{kj} e por a_k .

- Definição: para todo o <= i, j <= n + 1, seja c[i,j] o valor ótimo do problema de seleção de atividades para a instância S_{ij} . Deste modo, o valor ótimo do problema de seleção de atividades para instância $S = S_{o;n+1}$ é c[o, n + 1].
- Fórmula de recorrência:

$$c[i,j] = \begin{cases} 0 & S_{ij} = \phi \\ \max\{c[i,k] + c[k,j] + 1\}, S_{ij} \neq \phi \end{cases}$$

- Teorema: (escolha gulosa)
- Considere o subproblema definido para uma instância nãovazia S_{ij} , e seja a_m a atividade de S_{ij} com o menor tempo de término, i.e.:

$$f_m = min \{f_k : a_k \in S_{ij}\}$$

Então:

- o existe uma solução ótima para S_{ij} que contém a_m e
- \circ S_{im} é vazio e o subproblema definido para esta instância é trivial, portanto, a escolha de a_m deixa apenas um dos subproblemas com solução possivelmente não-trivial, já que S_{mj} pode não ser vazio.

```
SelecionaAtivGulosoRec(s; f; i; j)
Entrada: vetores s e f com instantes de início e término
das atividades i , i + 1,..., j, sendo f_i <= \ldots <= f_i.
Saída: conjunto de tamanho máximo de índices de
atividades mutuamente compatíveis.
1. m = i + 1;
// Busca atividade com menor tempo de término que pode
estar em S_{ij}
2. enquanto m < j e s_m < f_i faça m = m + 1;
3. se m >= j então retorne conjunto-vazio;
4. senão
5. se f_m > s_i então retorne conjunto-vazio; // a_m \notin S_{ij}
6. senão retorne \{a_m\} \cup SelecionaAtivGulosoRec(s, f,
m, j).
```

A chamada inicial será

SelecionaAtivGulosoRec(s,f,0,n+1).

- Complexidade: $\Theta(n)$.
- Ao longo de todas as chamadas recursivas, cada atividade é examinada exatamente uma vez no laço da linha 2. Em particular, a atividade a_k é examinada na última chamada com i < k.

Exercícios

- Encontre uma colocação ótima de parênteses de um produto de cadeias de matrizes cuja sequência de dimensões é <5, 10, 3, 12, 5, 50, 6>
- Resolva o problema da mochila fracionária considerando uma mochila com capacidade 50 e 4 itens conforme peso e valor especificados na tabela abaixo

	Α	В	С	D	E	
Peso	40	30	20	10	20	
Valor	840	600	400	100	300	

Exercícios

- Implemente um programa que resolva o problema do Ciclo Hamiltoniano, usando backtracking. Compare o desempenho do programa que usa a técnica de força bruta
- Enumere as diferenças e semelhanças entre a técnica de Divisão e Conquista e Programação Dinâmica
- Mostre que o tempo de execução de Quicksort é Θ(n²)
 quando todos os elementos do vetor A são distintos e estão
 ordenados em ordem decrescente