Digitaltechnik Wintersemester 2017/2018 2. Vorlesung

Inhalt

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Weitere Rechenbeispiele
- 7. Logikgatter
- 8. Zusammenfassung

Einleitung

010111001100110010010111011001111111111
01111000110001100001011111011111010000
0000100100010000001011011101011010110010
001111110000111011111110101010101011110000
010111100010110100011001000010010101110
0111011000010101011010111100111111101111
1001101111010010110001110101010101111011
0101000000111010110001011011110100110010
0111000000100011011111101100100001010110
1101100011000101001110111011001011101001
1000000001011110101101010000110100001110
01110011011010100000000110000101001011
0010110011001110111110001101110010111000
0001101111001011111001111101111100000110
110110000111011011111000111001001101101
0001101100001011010001111011100010111011

Organisatorisches

- Übungsbetrieb angelaufen
 - bisher 732 Anmeldungen im Moodle
 - 650 Zuordnungen zu Übungsgruppen
 - G22 und G23 (Mo 14:25-16:05) kaum nachgefragt
 - Mehr Interessenten für G24 (Fr 11:40-13:20)?

Organisatorisches

- Übungsbetrieb angelaufen
 - bisher 732 Anmeldungen im Moodle
 - 650 Zuordnungen zu Übungsgruppen
 - G22 und G23 (Mo 14:25-16:05) kaum nachgefragt
 - ► Mehr Interessenten für G24 (Fr 11:40-13:20)?
- Testate erst ab KW 44

Organisatorisches

- Übungsbetrieb angelaufen
 - bisher 732 Anmeldungen im Moodle
 - 650 Zuordnungen zu Übungsgruppen
 - G22 und G23 (Mo 14:25-16:05) kaum nachgefragt
 - Mehr Interessenten für G24 (Fr 11:40-13:20)?
- Testate erst ab KW 44
- Übungsausfall am 31.10.2017 (Reformationstag)
 - betrifft G05, G08, G09
 - kein Ersatztermin
 - Lösungsvorschlag und Sprechstunde nutzen
 - Zugehörige Testate (T2) wie geplant in KW 45

Rückblick auf letzte Vorlesung

- ▶ Beherrschen von Komplexität
 - Abstraktion
 - Diszplin
 - Hierarchie
 - Modularität
 - Regularität
- Digitale Abstraktion
 - Bits und Bitfolgen
 - Binäre Größenfaktoren (KiBi, MeBi, GiBi, TeBi)
 - Nibble, Bytes, Wort

Wiederholung: Zweierpotenzen schnell schätzen

- Etwa wie viele Farben definiert
 - ▶ 15 bit Real Color?
 - 24 bit True Color?
 - ▶ 42 bit Deep Color?

Wiederholung: Zweierpotenzen schnell schätzen

- Etwa wie viele Farben definiert
 - ▶ 15 bit Real Color?
 - 24 bit True Color?
 - 42 bit Deep Color?
- Wie viele Bits nötig zur Repräsentation von
 - 24 Übungsgruppen
 - 750 Studierenden (DT)
 - 26 360 Studierenden (TU Da)

5

10

15

Wiederholung: Zweierpotenzen schnell schätzen

Etwa wie viele Farben definiert

▶ 15 bit Real Color? $2^5 \cdot 2^{10} \approx 32$ Tausend

▶ 24 bit True Color? $2^4 \cdot 2^{20} \approx 16$ Millionen

▶ 42 bit Deep Color? $2^2 \cdot 2^{40} \approx 4$ Billionen

Wie viele Bits nötig zur Repräsentation von

► 24 Übungsgruppen 5 bit

► 750 Studierenden (DT) 10 bit

26 360 Studierenden (TU Da) 15 bit

Überblick der heutigen Vorlesung

- ► Zahlensysteme: Bitfolgen ↔ (ganze) Zahlen
 - Dezimal-, Binär-, Hexadezimalzahlen
 - Darstellung
 - Umrechnung
 - Addition von Binärzahlen
 - Vorzeichenbehaftete Binärzahlen
- Logikgatter: Einfache Boolsche Funktionen
 - Wahrheitswertetabellen
 - Symbole und Schreibweisen
 - Anwendung

Harris 2013 Kap. 1.4 + 1.5 Seite 9 - 22

Darstellung von natürlichen Zahlen

010001011100111000100010111101000000110
01000000011110110010000001011010000111001
1001110011100101100000011000010101111
010011101010001110111111101001011010010
1000001101011010110011011000101110000011
101110011010001101000111100011011101101
101111100110110110101001111100101111010011
1101111001101101000010001000110001010101
1000110101100100011101010011101000000101
1110101101000010100011001100000000111101
11000111111010001101101011001110111111000
1011001110110010100100110011101110101011
1001001001010101011110110110100010011010
1111110010001000011110010101011001010101
110011010000110100000100100000101010100
1001010011000001111001001111110111011110

Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, ...\}$

- ▶ Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, ...\}$
- ► Ganze Zahlen $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

- Ganze Zahlen $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- ▶ Rationale Zahlen $\mathbb{Q} = \{\frac{a}{b} : a \in \mathbb{Z} \land b \in \mathbb{N} \land b \neq 0\}$

- $\mathbb{N} = \{0, 1, 2, ...\}$ Natürliche Zahlen
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ Ganze Zahlen
- $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z} \land b \in \mathbb{N} \land b \neq 0 \right\}$ Rationale Zahlen
- Reele Zahlen \mathbb{R}

- Natürliche Zahlen
- N = {0, 1, 2, ...}
- Ganze Zahlen
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- Rationale Zahlen
- $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z} \land b \in \mathbb{N} \land b \neq 0 \right\}$

Reele Zahlen

- K
- ► Komplex, Transzendent, Algebraisch, ...

- ▶ Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, ...\}$
- ▶ Ganze Zahlen $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- ▶ Rationale Zahlen $\mathbb{Q} = \{\frac{a}{b} : a \in \mathbb{Z} \land b \in \mathbb{N} \land b \neq 0\}$
- ▶ Reele Zahlen
- Komplex, Transzendent, Algebraisch, ...
- $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}|$

- Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, ...\}$
- ▶ Ganze Zahlen $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- ▶ Rationale Zahlen $\mathbb{Q} = \{\frac{a}{b} : a \in \mathbb{Z} \land b \in \mathbb{N} \land b \neq 0\}$
- ► Reele Zahlen ℝ
- Komplex, Transzendent, Algebraisch, ...
- $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}|$
- $\triangleright \infty \notin \mathbb{N}$

Dezimal:
$$5347 = 7 \cdot 1 + 4 \cdot 10 + 3 \cdot 100 + 5 \cdot 1000$$

= $7 \cdot 10^0 + 4 \cdot 10^1 + 3 \cdot 10^2 + 5 \cdot 10^3$

Hexadezimal: $1F3A_{16} = 10 \cdot 16^0 + 3 \cdot 16^1 + 15 \cdot 16^2 + 1 \cdot 16^3$

Hexadezimal:
$$1F3A_{16} = 10 \cdot 16^{0} + 3 \cdot 16^{1} + 15 \cdot 16^{2} + 1 \cdot 16^{3}$$

= $10 \cdot 1 + 3 \cdot 16 + 15 \cdot 256 + 1 \cdot 4096$
= 7994_{10}

Darstellungen von natürlichen Zahlen — Verallgemeinerung (Abstraktion)

Definition: vorzeichenloses Stellenwertsystem

Für eine Basis $b \in \mathbb{N} \land b \geq 2$ ist $Z_b := \{0, 1, ..., b-1\}$ die Menge der verfügbaren Ziffern. Die Funktion $u_{b,k}$ bildet eine Ziffernfolge der Breite $k \in \mathbb{N}$ auf eine natürliche Zahl ab:

$$\mathsf{u}_{b,k}: (a_{k-1} \dots a_1 a_0) \in Z_b^k \mapsto \sum_{i=0}^{k-1} a_i \cdot b^i \in \mathbb{N}$$

polyadisches Zahlensystem

- polyadisches Zahlensystem
- Niedrigstwertige Stelle (LSB): a₀
- Höchstwertige Stelle (MSB): a_{k-1}

- polyadisches Zahlensystem
- ▶ Niedrigstwertige Stelle (LSB): a₀
- ► Höchstwertige Stelle (MSB): a_{k-1}
- ► Kleinste darstellbare Zahl: $\sum_{i=0}^{k-1} 0 \cdot b^i = 0$

- polyadisches Zahlensystem
- ▶ Niedrigstwertige Stelle (LSB): a₀
- ▶ Höchstwertige Stelle (MSB): a_{k-1}
- ► Kleinste darstellbare Zahl: $\sum_{i=0}^{k-1} 0 \cdot b^i = 0$
- ► Größte darstellbare Zahl: $\sum_{i=0}^{k-1} (b-1) \cdot b^i = b^k 1$

- polyadisches Zahlensystem
- ▶ Niedrigstwertige Stelle (LSB): a₀
- ▶ Höchstwertige Stelle (MSB): a_{k-1}
- ► Kleinste darstellbare Zahl: $\sum_{i=0}^{k-1} 0 \cdot b^i = 0$
- ► Größte darstellbare Zahl: $\sum_{i=0}^{k-1} (b-1) \cdot b^i = b^k 1$
- ► Anzahl der darstellbaren Werte: $|Z_b^k| = |Z_b|^k = b^k$

- polyadisches Zahlensystem
- ▶ Niedrigstwertige Stelle (LSB): a₀
- ▶ Höchstwertige Stelle (MSB): a_{k-1}
- ► Kleinste darstellbare Zahl: $\sum_{i=0}^{k-1} 0 \cdot b^i = 0$
- Größte darstellbare Zahl: $\sum_{i=0}^{k-1} (b-1) \cdot b^i = b^k 1$
- ► Anzahl der darstellbaren Werte: $|Z_b^k| = |Z_b|^k = b^k$
- ► Eineindeutig (bijektiv) auf Wertebereich $\{0, ..., b^k 1\}$ für festes k

Häufig verwendete Basen

	Dual/Binär	Oktal	Dezimal	Hexadezimal
b	2	8	10	16
Z_b	$\{0,1\} := \mathbb{B}$	$\{0,\dots,7\}$	$\{0, \dots, 9\}$	$\{0, \dots, 9, A, B, C, D, E, F\}$
Literale	1101001 <mark>1</mark> 2	32 <mark>3</mark> 8	21110	D3 ₁₆
	0b11010011	00323	0d211	0xD3
		0323	211	

Häufig verwendete Basen

	Dual/Binär	Oktal	Dezimal	Hexadezimal
b	2	8	10	16
Z_b	$\{0,1\}\coloneqq \mathbb{B}$	$\{0,\dots,7\}$	$\{0, \dots, 9\}$	$\{0, \dots, 9, A, B, C, D, E, F\}$
Literale	11010011 ₂	323 ₈	211 ₁₀	D3 ₁₆
	0b11010011	0o323	0d211	0xD3
		0323	211	

Weniger gebräuchlich:

- b = 20 wenn man mit Händen und Füßen rechnet
- ▶ b = 60 zur Angabe von Zeit bzw. Längen-/Breitengrade
- b = 12 ein "Dutzend"

Umrechnen zwischen Zahlensystemen

00101010010000110010011100011010000110	11
0100111010001011000001101111011010101	00
000001011011111010111111001010010111111	01
01110100000101011000000011100000001101	00
0100010110101110000100110100111111	01
01111011111101010000011100101101101111	110
11011100001011011101100100100010001000	000
000000101011101111001101000011111101110	11
10001000010101100010011110100101111100	11
01000100110011001000100001000010011110	01
100001011001000100111010111111010011101	110
0110000011000101100011000101100010110	000
1000101101010100110001110100100100110	11 (
1101111110000111010101101000010000101	00
011111110100100010000100010000000100111	01
10011010111100001000000110001111111011	110

Handwerkszeug: Zweiterpotenzen

Handwerkszeug: Nibble-Werte


```
0000_2 =
 0001_2 =
0010_2 =
                              _
0011_2 =
0100_2 =
0101_2 =
0110_2 =
0111_2 =
 1000_2 =
1001_2 =
\frac{1001_2}{1010_2} = 1001_2
 1011_2 =
 1100_2 =
 1101_2 =
 1110_2 =
 1111_2 =
                              =
```

Handwerkszeug: Nibble-Werte

$0000_2 = 0001_2 = 0010_2 = 0011_2 = 0100_2 = 0101_2 = 0101_2 = 0101_2 = 0101_2 = 00001_2 = 00001_2 = 0000001_2 = 0000001_2 = 0000001_2 = 0000001_2 = 0000001_2 = 0000001_2 = 00000001_2 = 00000000000000000000000000000000000$	0 ₁₀ 1 ₁₀ 2 ₁₀ 3 ₁₀ 4 ₁₀	$= 0_{16}$ $= 1_{16}$ $= 2_{16}$ $= 3_{16}$ $= 4_{16}$ $= 5_{16}$
$0101_2 = 0111_2 = 0111_1$	5 ₁₀ 6 ₁₀	$= 5_{16}$ $= 6_{16}$
$0111_2 = 1000_2 = 1001_2 = 1$	7 ₁₀ 8 ₁₀ 9 ₁₀	$= 7_{16}$ $= 8_{16}$ $= 9_{16}$
$1010_{2} = 1011_{2} = 1100_{2} = 1101_{2} = 1110_{2} $	10 ₁₀ 11 ₁₀ 12 ₁₀ 13 ₁₀ 14 ₁₀	$= A_{16}$ $= B_{16}$ $= C_{16}$ $= D_{16}$ $= E_{16}$
11112 =	15 ₁₀	$= F_{16}$

Binär/Hexadezimal → Dezimal

Polyadische Abbildung anwenden:

$$u_{2,5}(10011_{2}) = 1.10^{\circ} + 1.2^{\circ} + 1.$$

Binär/Hexadezimal o Dezimal

- ▶ Polyadische Abbildung anwenden:
- $u_{2.5}(10011_2) =$

$Bin\ddot{a}r/Hexadezimal o Dezimal$

▶ Polyadische Abbildung anwenden:

$$u_{2,5}(10011_2) = 2^4 + 2^1 + 2^0 = 19_{10}$$

$$u_{16,3}(4AF_{16}) = 4 \cdot 16^2 + 10 \cdot 16^1 + 15 \cdot 16^0 = 1199_{10}$$

Binär ↔ **Hexadezim**al

- Nibble-weise umwandeln
- bei least significant bit beginnen
- ▶ führende Nullen weglassen oder ergänzen (je nach geforderter Bitbreite)
- ► 11 1010 0110 1000₂ =

JA 6 8/16

Binär ↔ **Hexadezimal**

- Nibble-weise umwandeln
- bei least significant bit beginnen
- führende Nullen weglassen oder ergänzen (je nach geforderter Bitbreite)
- ► 11 1010 0110 1000₂ =

► 7BF₁₆ =

Binär ↔ Hexadezimal

- Nibble-weise umwandeln
- bei least significant bit beginnen
- führende Nullen weglassen oder ergänzen (je nach geforderter Bitbreite)
- ightharpoonup 11 1010 0110 1000₂ = 3A68₁₆

Dezimal → Binär

- Methode 1 (links nach rechts): Maximale Zweierpotenzen abziehen
- Methode 2 (rechts nach links): Halbieren mit Rest

Dezimal → **Binär**

 Methode 1 (links nach rechts): Maximale Zweierpotenzen abziehen

$$53_{10}$$
= 32 + 21
= 32 + 16 + 5
= 32 + 16 + 4 + 1
= $2^5 + 2^4 + 2^2 + 2^0$
= 110101₂

Methode 2 (rechts nach links): Halbieren mit Rest

$$53_{10}$$
= 2 \cdot 26 + 1
= 2 \cdot (2 \cdot 13 + 0) + 1
= 2 \cdot (2 \cdot 6 + 1) + 0) + 1
= 2 \cdot (2 \cdot (2 \cdot 3 + 0) + 1) + 0) + 1
= 2 \cdot (2 \cdot (2 \cdot (2 \cdot (2 \cdot 1 + 1) + 0) + 1) + 0) + 1

Umrechnen zwischen Zahlensystemen

Zweierpotenzen verinnerlichen!

Addition von vorzeichenlosen Binärzahlen

1010001110110011101101110001011010011000
1011110110101010011000111100111101111
101101111100100101110111000111011111111
1000000111010000101011011010001110001010
1100110110101000000010000110010001110011
0010001111000001010111100100001001100110
011001111010011011010111111100100110110
1100100000000011010001100011111000010
010010000100110010011110110001101011
1000101000010100010111011001100011001111
111001111001001010101101110111011111111
1001100001100001010111000000011101111100
0010011100001001110111100111101010111101
100100010110100100000010000100111111111
10010101001011101000001100111111100101100
0000110110111011000011101111111011111101

Schriftliche Addition

Dezimal:

		1	Λ		Übertrag
	3	7	3	4	Summand
+	5	1	6	8	Summand
	8	9	0	2	Summe

Schriftliche Addition

Dezimal:

▶ Binär:

Schriftliche Addition

Dezimal:

▶ Binär:

		1	1		Ubertrag
	1	0	1	1	Summand
+	0	0	1	1	Summand
=	1	1	1	0	Summe

Addition mit Überlauf

Binär:

- Digitale Systeme arbeiten i.d.R. mit festen Bitbreiten
 - Langzahlarithmetik nur in Software (Bitbreite nur durch verfügbaren Arbeitsspeicher beschränkt)
 - Overflow-flag zum Signalisieren arithmetischer Ausnahmen in Hardware

Addition mit Überlauf

Binär:

- Digitale Systeme arbeiten i.d.R. mit festen Bitbreiten
 - Langzahlarithmetik nur in Software (Bitbreite nur durch verfügbaren Arbeitsspeicher beschränkt)
 - Overflow-flag zum Signalisieren arithmetischer Ausnahmen in Hardware
- Operation (bspw. Addition) läuft über, wenn Ergenis nicht mit der verfügbaren Bitbreite dargestellt werden kann
- ▶ für 4 bit Addierer gilt: 11 + 6 = 1

Vorzeichenbehaftete Binärzahlen

00111111011010111111100011001000011100	010
10010111111100100100111001011100111001	100
101010101000010001111110011100001000010	011
1001111000111011010110100111000111010	110
1010100111010110010101011110101001110	111
01100110110101101011001101011111000011	010
1011000011100011010101000011111101110	001
01011011001001001001 0101 0001110000111010	000
11010010100010101110000010101111100100	111
0011110101010110011000001010100011111	111
0000001100100000111111010111010100100	011
00011100000011101111000100111110000001	010
00011101110000000000	100
000111100001011101000011001110111011	111
00110110110001111000111001110111111101	101
1100111100100000100101001100101100101	011

Darstellungen von ganzen Zahlen — Dezimal

$$-5347_{10} = (7 \cdot 1 + 4 \cdot 10 + 3 \cdot 100 + 5 \cdot 1000) \cdot -1$$
$$= (7 \cdot 10^{0} + 4 \cdot 10^{1} + 3 \cdot 10^{2} + 5 \cdot 10^{3}) \cdot (-1)^{1}$$

Darstellungen von ganzen Zahlen — Dezimal

Darstellungen von ganzen Zahlen — Dezimal

$$-5347_{10} = (7 \cdot 1 + 4 \cdot 10 + 3 \cdot 100 + 5 \cdot 1000) \cdot 1$$
$$= (7 \cdot 10^{0} + 4 \cdot 10^{1} + 3 \cdot 10^{2} + 5 \cdot 10^{3}) \cdot (-1)^{1}$$

$$+5347_{10} = (7 \cdot 1 + 4 \cdot 10 + 3 \cdot 100 + 5 \cdot 1000) \cdot 1$$
$$= (7 \cdot 10^{0} + 4 \cdot 10^{1} + 3 \cdot 10^{2} + 5 \cdot 10^{3}) \cdot (-1)^{0}$$

- Vorzeichen
 - Ist spezielle Ziffer an höchstwertiger Stelle
 - Kann auch als 0/1 repräsentiert werden

Darstellung von ganzen Zahlen — Verallgemeinerung (Abstraktion)

Definition: Betrag und Vorzeichen

Für eine Basis $b \in \mathbb{N} \land b \ge 2$ ist $Z_b := \{0, 1, ..., b-1\}$ die Menge der verfügbaren Ziffern. Die Funktion bv $_{b,k}$ bildet eine Ziffernfolge der Breite $k \in \mathbb{N}$ auf eine ganze Zahl ab:

$$bv_{b,k}: (a_{k-1} \dots a_1 a_0) \in \{0,1\} \times Z_b^{k-1} \mapsto \underbrace{(-1)^{a_{k-1}} \cdot \sum_{i=0}^{k-2} a_i \cdot b^i}_{i=0} \in \mathbb{Z}$$

Ganze Zahlen als Betrag und Vorzeichen

- Niedrigstwertige Stelle: a₀
- ► Höchstwertige Stelle: a_{k-1}
- Kleinste darstellbare Zahl: $(-1)^1 \cdot \sum_{i=0}^{k-2} (b-1) \cdot b^i = -(b^{k-1}-1)$
- ► Größte darstellbare Zahl: $(-1)^0 \cdot \sum_{i=0}^{k-2} (b-1) \cdot b^i = +(b^{k-1}-1)$
- Anzahl der darstellbaren Werte: $2 \cdot b^{k-1}$
- ▶ Nicht eindeutig (doppelte Darstellung f
 ür Null: ±0)

Beispiele

ele
$$bv_{2,4}(1110_2) = (0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2) \cdot (-1) = -6_{10}$$

Beispiele

$$bv_{2,4}(1110_2) \quad = \left(\ 0 \ \cdot \ 2^0 \ + \ 1 \ \cdot \ 2^1 \ + \ 1 \ \cdot \ 2^2 \ \right) \cdot (-1)^1 = -6_{10}$$

$$bv_{2,4}(0110_2) = (0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2) \cdot (-1)^0 = +6_{10}$$

Beispiele

Inkompatibel mit binärer (unsigned) Addition:

Beispiele

$$bv_{2,4}\textcolor{red}{(11110_2)} \quad = \left(\ 0 \ \cdot \ 2^0 \ + \ 1 \ \cdot \ 2^1 \ + \ 1 \ \cdot \ 2^2 \ \right) \cdot (-1)^1 = \textcolor{red}{-6_{10}}$$

$$bv_{2,4}(0110_2) = (0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2) \cdot (-1)^0 = +6_{10}$$

► *Inkompatibel* mit binärer (unsigned) Addition:

Darstellung von ganzen Zahlen — Digitaler "Goldstandard"

Definition: Zweierkomplement

Die Funktion s_k bildet eine Bitfolge der Breite $k \in \mathbb{N}$ auf eine ganze Zahl ab:

$$s_k: (a_{k-1} \dots a_1 a_0) \in \{0,1\}^k \mapsto \underbrace{a_{k-1} \cdot (-2^{k-1})}_{i=0} + \underbrace{\sum_{i=0}^{k-2} a_i \cdot 2^i}_{i=0} + \underbrace{\sum_{i=0}^{k-2}$$

Ganze Zahlen als Zweierkomplement

- Niedrigstwertige Stelle: a₀
- ► Höchstwertige Stelle:
- ► Kleinste darstellbare Zahl: $1 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 0 \cdot 2^i = -2^{k-1}$
- ► Größte darstellbare Zahl: $0 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 1 \cdot 2^i = 2^{k-1}$
- Anzahl der darstellbaren Werte: 2^k
- ► Eineindeutig (bijektiv) auf Wertebereich $\{-2^{k-1}, ..., 2^{k-1} 1\}$ für festes k

Beispiele $s_4(1010_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot -2^3 = -6_{10}$

Beispiele

$$s_4(1010_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot -2^3 = -6_{10}$$

$$s_4(0110_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot -2^3 = +6_{10}$$

Beispiele

$$s_4(1010_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot -2^3 = -6_{10}$$

$$s_4(0110_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot -2^3 = +6_{10}$$

Kompatibel mit binärer (unsigned) Addition:

Beispiele

$$s_4(1010_2) \quad = \ 0 \ \cdot \ 2^0 \ + \ 1 \ \cdot \ 2^1 \ + \ 0 \ \cdot \ 2^2 \ + \ 1 \ \cdot -2^3 = -6_{10}$$

$$s_4(0110_2) \quad = \ 0 \ \cdot \ 2^0 \ + \ 1 \ \cdot \ 2^1 \ + \ 1 \ \cdot \ 2^2 \ + \ 0 \ \cdot -2^3 = +6_{10}$$

Kompatibel mit binärer (unsigned) Addition:

► Kein Überlauf bei Addition positiver und negativer Zahl gleicher Breite

$\textbf{Dezimal} \rightarrow \textbf{Zweierkomplement}$

- Methode 1 (links nach rechts): Größtmögliche Zweierpotenzen abziehen
 - -53₁₀

- Methode 2 (rechts nach links):
 Betrag negieren =
 Komplement und Inkrement =
 Bits kippen und Eins addieren
 - -53_{10}

- ▶ in beiden Fällen auf korrekte/geforderte Bitbreite achten
- ggf. müssen führende Null(en) schon für Betragsdarstellung eingefügt werden

$\textbf{Dezimal} \rightarrow \textbf{Zweierkomplement}$

- Methode 1 (links nach rechts): Größtmögliche Zweierpotenzen abziehen
- Methode 2 (rechts nach links):
 Betrag negieren =
 Komplement und Inkrement =
 Bits kippen und Eins addieren

$$-53_{10} = -64 + 11 -53_{10} = \sim$$

$$= -64 + 8 + 3 = 0$$

$$= -64 + 8 + 2 + 1 =$$

$$= -2^{6} + 2^{3} + 2^{1} + 2^{0} =$$

$$= 1001011_{2}$$

- ▶ in beiden Fällen auf korrekte/geforderte Bitbreite achten
- ▶ ggf. müssen führende Null(en) schon für Betragsdarstellung eingefügt werden

25.10.2017 | TU Darmstadt | Andreas Engel | 2. Vorlesung Digitaltechnik | 32 / 58

$$s_k(\tilde{a}_{k-1}...a_0) = (-a_{k-1}) \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} (-a_i) \cdot 2^i$$

$$S_{k}(\sim a_{k-1} \dots a_{0}) = \sim a_{k-1} \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} \sim a_{i} \cdot 2^{i}$$

$$= (1 - a_{k-1}) \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} (1 - a_{i}) \cdot 2^{i}$$

$$s_{k}(\sim a_{k-1} \dots a_{0}) = \sim a_{k-1} \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} \sim a_{i} \cdot 2^{i}$$

$$= (1 - a_{k-1}) \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} (1 - a_{i}) \cdot 2^{i}$$

$$= \left(1 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 1 \cdot 2^{i}\right) - \left((a_{k-1}) \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} a_{i} \cdot 2^{i}\right)$$

$$s_k(\sim a_{k-1} \dots a_0) = \sim a_{k-1} \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} \sim a_i \cdot 2^i$$

$$= (1 - a_{k-1}) \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} (1 - a_i) \cdot 2^i$$

$$= \left(1 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 1 \cdot 2^i\right) \left(-2^{k-1} + \sum_{i=0}^{k-2} a_i \cdot 2^i\right)$$

$$\underbrace{s_k(a_{k-1}...a_0)}$$

Bitbreitenerweiterung

notwendig, um unterschiedliche breite Bitfolgen zu addieren

Bitbreitenerweiterung

- notwendig, um unterschiedliche breite Bitfolgen zu addieren
- zero extension:
 - Auffüllen mit führenden Nullen für vorzeichenlose Darstellung

$$\mathsf{u}_{2,k+1}\big({\overset{}{0}} a_{k-1} \ldots a_0\big) = 0 \cdot 2^k + \sum_{i=0}^{k-1} a_i \cdot 2^i = \mathsf{u}_{2,k}\big(a_{k-1} \ldots a_0\big)$$

Bitbreitenerweiterung

- notwendig, um unterschiedliche breite Bitfolgen zu addieren
- zero extension:
 - Auffüllen mit führenden Nullen für vorzeichenlose Darstellung

$$u_{2,k+1}(0a_{k-1}...a_0) = 0 \cdot 2^k + \sum_{i=0}^{k-1} a_i \cdot 2^i = u_{2,k}(a_{k-1}...a_0)$$

- signed extension:
 - Auffüllen mit Wert des Vorzeichen-Bits für Zweierkomplement Darstellung

$$s_{k+1}(\underbrace{a_{k-1}a_{k-1}\dots a_0}) = a_{k-1} \cdot \underbrace{(-2^k)}_{2\cdot (-2^{k-1})} + a_{k-1} \cdot 2^{k-1} + \sum_{i=0}^{k-2} a_i \cdot 2^i$$

$$= a_{k-1} \cdot \left(-2^{k-1} - 2^{k-1} + 2^{k-1}\right) + \sum_{i=0}^{k-2} a_i \cdot 2^i$$

$$= s_k(a_{k-1}\dots a_0)$$

Bitbreitenerweiterung — Beispiel

► -5₁₀ im Zweierkomplement von 4 auf 8 Bit erweitern:

Bitbreitenerweiterung — Beispiel

► −5₁₀ im Zweierkomplement von 4 auf 8 Bit erweitern:

$$5_{10} = 0101_{2}$$

$$\Rightarrow -5_{10} = 0101_{2} + 1$$

$$= 1010_{2} + 1$$

$$= 1011_{2}$$

$$= 11111011_{2}$$

$$= 11111011_{2} + 1 = 00000100_{2} + 1$$

$$= 00000101_{2}$$

$$= 5_{10}$$

Vergleich der binären Zahlendarstellungen für k=4

Weitere Rechenbeispiele

1100010011001000000010000111000101000	0000
0010000010000001111010110110010110000	0100
0101100111000101010000110111111111111	0001
101100011101101010111010011011011011011	0011
0100111011100110001011110010110000100	0000
111010000010111100111100000010111010	1000
010110110110110001101011000111101001	1010
01101010011000000000110010011111111010	1010
1000111101000001100010001110010101010	0011
0000010001111100110111101010111111	1000
111001110011110100000000010000001100	0000
10000000000110100001110101011010100	0100
110110010111010011110001111111110100011	1111
11010110000011101100010110001001011	1100
1011110100101100101111111101100000000	0001
10100001001110000110110010101111111	0101

Wertebereiche

► U_{2,7}

bv_{2,6}

► S_{2,10}

Wertebereiche

•
$$u_{2.7} \mapsto \{0, \dots, 127\}$$

▶
$$bv_{2,6} \mapsto \{-31, ..., 31\}$$

$$s_{2,10} \mapsto \{-512, \dots, 511\}$$

$\mathbf{Bin\ddot{a}r} \rightarrow \mathbf{(Hexa-)Dezimal}$

$$u_{2.6}(110011_b) =$$

$$\triangleright$$
 bv_{2,6}(110011_b) =

$$ightharpoonup$$
 $s_{2,6}(110011_b) =$

$$\rightarrow$$
 hex(110011_b) =

Binär \rightarrow (Hexa-)Dezimal

$$u_{2,6}(110011_b) = 32 + 16 + 2 + 1 = 51_{10}$$

$$\triangleright$$
 bv_{2,6}(110011_b) = -(16 + 2 + 1) = -19₁₀

$$s_{2,6}(110011_b) = -32 + 16 + 2 + 1 = -13_{10}$$

 $hex(110011_b) = 33_{16}$

$\textbf{Dezimal} \rightarrow \textbf{Zweierkompliment, Addition}$

▶ 8 Bit Zweierkomplement von 60₁₀ =

▶ 6 Bit Zweierkomplement von -20_{10} =

binär addieren:

▶ Überlauf?

$\textbf{Dezimal} \rightarrow \textbf{Zweierkompliment, Addition}$

▶ 8 Bit Zweierkomplement von 60₁₀ = 00111100₂

▶ 6 Bit Zweierkomplement von $-20_{10} = 101100_2$

binär addieren: $001111100_2 + 11101100_2 = 00101000_2 = 40_{10}$

► Überlauf? Nur bei reinen unsigned-Addierern ohne Überlauf-Maskierung bei ungleichen Vorzeichen

Nabla-Katalog für Rechnerarchitektur

https://nabla.algo.informatik.tu-darmstadt.de

Binäre Addition	
Addition und Subtraktion von Bits	
	Binary number: addition Bereitgestellt von Wikipedia.org
Leicht	00
Mittel Schwer	
⊙ Start	
Erstellungsdatum: Freitag, 26. Mai 2017	Autor: Lukas Weber

Logikgatter

00000010011010111101000101110011110	001011
00111011111011010110010001010110010	011111
00101111101010101001101111001111001	101000
100010101000011111110010000110001000	010010
10011101111111001000010001100011101	100111
101110001101010111111110000001011001	111110
100010100111010000100111100010111	101100
000111110100011000 0111 010100001111	100111
0111111010011001000100000110001011	100000
0111010110000010101110111010111010	011001
00011011111111010000111111100000010	011101
0100111000101001110111000011001010	001011
11001101011100110111001100000000101	111110
10110011110000101000110111001011110	011111
11100110110110111111001100110101	100000
110010111101011010011111100111000111	110101

Schichtenmodell eines Computers

Anwendungssoftware

Programme

Betriebssysteme

Gerätetreiber

Architektur

Befehle Register

Mikroarchitektur Datenpfade Steuerung

Logik

Addierer Speicher

Digitalschaltungen UND Gatter

Analogschaltungen

Verstärker Filter

Bauteile

Transistoren Dioden

Physik

Elektronen

George Boole, 1815 - 1864

- In einfachen Verhältnissen geboren
- Brachte sich selbst Mathematik bei
- Professor am Queen's College in Irland
- "An Investigation of the Laws of Thought" (1854)
- ⇒ Grundlegende Logische Variablen und Operationen

Logische Operationen

- ▶ Verknüpfen binäre Werte: $\mathbb{B}^n \to \mathbb{B}^k$
- zunächst k = 1
- ▶ Beispiele für
 - ► n = 1: NOT
 - ▶ n = 2: AND, OR, XOR
 - n = 3: MUX
- Charakterisierung durch Wahrheitswertetabellen

 $\mathsf{BUF}:\mathbb{B}\to\mathbb{B}$

NOT: $\mathbb{B} \to \mathbb{B}$

AND : $\mathbb{B}^2 \to \mathbb{B}$

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Alternativ: $Y = A \cdot B = A \& B = A \wedge B$

 $\textbf{OR}:\mathbb{B}^2\to\mathbb{B}$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Alternativ: $Y = A|B = A \lor B$

 $\textbf{XOR}: \mathbb{B}^2 \to \mathbb{B}$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Alternativ: $Y = A^B$

NAND : $\mathbb{B}^2 \to \mathbb{B}$

NOR : $\mathbb{B}^2 \to \mathbb{B}$

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

XNOR : $\mathbb{B}^2 \to \mathbb{B}$

Entspricht Test auf Gleichheit

XOR mit mehreren Eingängen

- Paritätsfunktion
 - Erkennt gerade oder ungerade Anzahl von Eingängen mit Wert 1
- XOR
 - Ungerade Paritätsfunktion
 - Liefert 1 am Ausgang, wenn ungerade Anzahl von Eingängen den Wert 1 haben

Α	В	С	$A \oplus B \oplus C$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Anwendung der Paritätsfunktion Fehlererkennung

- Zur Fehlererkennung bei Übertragung oder Speicherung
 - "Sender" := Schreiboperation
 - "Empfänger" := Leseoperation
- Z. B. 7 Bit-Kodierung auf eine redundante 8 Bit-Kodierung erweitert
 - 8-tes Bit durch XOR-Schaltung erzeugt: Paritätsbit
 - ▶ genau dann = 1, wenn an Eingängen (7 Bit) ungerade Zahl von Einsen
 - erzeugte Kodierung hat immer gerade Zahl von Einsen (even parity)
- Bei Verfälschung in
 - nur einem Bit ⇒ Zahl der Einsen nicht mehr gerade ⇒ Fehler
 - gerader Anzahl von Bits: Fehler nicht erkennbar
- Alternativ: auch Paritätsbit für ungerade Zahl von Einsen (odd parity)

Anwendung der Paritätsfunktion Fehlererkennung

Parity Bit: Zählt Anzahl der 1en, bspw.

```
    Sender: 10 111 001 PB: 1
    Empfänger: 10 101 001 PB: 0
    Empfänger(2): 10 001 001 PB: 1
```

- 1 bit Fehler erkennbar, 2 bit Fehler nicht erkennbar
- ➤ Korrekturen nicht möglich ⇒ Wiederholte Übertragung des Datums
- Variante: weitere Prüfbits (Längs- und Querparität)

Zusammenfassung

11101010011110110100000001011000001010	11
111001101110010111001101111011110001011	11
001010110000001100001101001100110011	10
101001001000010111101000101010101010101	0 0
100101110101011111111111110110000010001	0 1
011101011100001111110101010011000000010	10
000110101111001100111101101111010111000	0 0
1101111110100011111 1000 1000110000111100	10
10101101110111110110000101111111110100	1 1
011011000100000110010000001100100101	1 1
100000111011000110011000100011001111100	0 1
101001101011110011101101100111011101110011	0 0
001110100011101110011011101010010111100	0 0
11110011111001101011100001011011101010	1 1
00111100011011101001100000101000110111	1 1
1000111010100001011110010101011110111000	0 1

Zusammenfassung und Ausblick

- ► Zahlensysteme: Bitfolgen ↔ (ganze) Zahlen
 - Dezimal-, Binär-, Hexadezimalzahlen
 - Darstellung
 - Umrechnung
 - Addition von Binärzahlen
 - Vorzeichenbehaftete Binärzahlen
- Logikgatter
 - Darstellung
 - Wahrheitswertetabellen

Zusammenfassung und Ausblick

- ► Zahlensysteme: Bitfolgen ↔ (ganze) Zahlen
 - Dezimal-, Binär-, Hexadezimalzahlen
 - Darstellung
 - Umrechnung
 - Addition von Binärzahlen
 - Vorzeichenbehaftete Binärzahlen
- Logikgatter
 - Darstellung
 - Wahrheitswertetabellen
- Nächste Vorlesung behandelt
 - Physikalische Realisierung von Logikgattern