

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 790 281 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 05.12.2001 Bulletin 2001/49 (51) Int CI.7: **C09B 67/22**, C09B 48/00, C09D 5/00

(21) Application number: 97810053.5

(22) Date of filing: 04.02.1997

(54) Pigment compositions

Pigmentzusammensetzungen Compositions pigmentaires

(84) Designated Contracting States: CH DE FR GB IT LI

(30) Priority: 13.02.1996 US 11566

(43) Date of publication of application: **20.08.1997 Bulletin 1997/34**

(73) Proprietor: Ciba Specialty Chemicals Holding Inc. 4057 Basel (CH)

(72) Inventor: Hendi, Shivakumar Basalingappa Newark, DE 19702 (US) (56) References cited:

EP-A- 0 362 703 EP-A- 0 485 337 EP-A- 0 500 494 US-A- 3 275 637

 DATABASE WPI Section Ch, Week 9435 Derwent Publications Ltd., London, GB; Class E23, AN 94-283483 XP002043978 & JP 06 212 088 A (DAINIPPON INK & CHEM INC), 2 August 1994

 DATABASE WPI Section Ch, Week 8637 Derwent Publications Ltd., London, GB; Class E23, AN 86-241040 XP002043979 & JP 61 168 666 A (DAINIPPON INK & CHEM KK), 30 July 1986

EP 0 790 281 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

20

25

30

35

40

45

50

55

[0001] The present invention relates to pigment compositions which have improved rheology characteristics when dispersed and which are used to prepare coating compositions which yield coatings having enhanced saturation. The inventive pigment compositions contain a phthalimidomethylquinacridone and a pyrazolylmethylquinacridone as additives in addition to the pigment.

[0002] It is known in the art that the inclusion of certain pigment derivatives in pigment compositions serves to control and/or improve a variety of properties of dispersions containing the pigment composition. The beneficial effects of the presence of pigment derivatives are especially observed in properties such as color strength, hue, gloss, transparency, rheology, deflocculation and the like.

[0003] For example, United States Patent No. 5,334,727 discloses pyrazolylmethyl derivatives of pigments, including pyrazolylmethylquinacridone, that are used to impart excellent rheological and tinctoral properties to finished or semifinished pigment compositions. United States Patent No. 5,334,727 also discloses that such pyrazolylmethyl pigment derivatives are advantageously combined with sulfonated pigment derivatives in pigment compositions for beneficial effects over and above those observed for the individual pyrazolylmethyl or sulfonated pigment derivative.

[0004] United States Patent No. 3,275,637 discloses o-carboxybenzamidomethylquinacridone compounds which are used in pigment compositions as rheology improving agents, and in preparatory processes as particle growth inhibitors. The o-carboxybenzamido-methylquinacridone compounds are partial hydrolysis products of the phthalimidomethylquinacridone compounds used according to the present invention and are considered to be equivalents thereof.

[0005] The present invention relates to the discovery that the presence of both a phthalimidomethylquinacridone derivative and a pyrazolylmethylquinacridone derivative in a pigment composition that is dispersed unexpectedly results in a reduction in viscosity which is greater than could have been expected based on the prior art. The present invention further relates to the discovery that the incorporation of both a phthalimidomethylquinacridone derivative and a pyrazolylmethylquinacridone derivative into a coating composition unexpectedly results in a coating that has improved saturation.

[0006] The present invention relates to a pigment composition which comprises a pigment, a first quinacridone derivative and a second quinacridone derivative wherein the first quinacridone derivative is a phthalimidomethylquinacridone of the formula

or a o-carboxybenzamidomethylquinacridone partial hydrolysis product thereof, and the second quinacridone derivative is a pyrazolylmethylquinacridone of the formula

$$(MO_3S)_{\overline{X}}$$
 Q CH_2 N R_3 Y

in which formulae

5

10

Q is a quinacridone radical,

R' is hydrogen, halogen, or C1-C4alkyl,

R1, R2, and R3 are independently, hydrogen, halogen, unsubstituted C1-C18alkyl, C1-C18alkyl which is substituted by one or more halogen or C1-C6alkoxy groups, unsubstituted C6-C10 aryl, C6-C10 aryl which is substituted by one or more C1-C18alkyl, halogen, nitro or C1-C6alkoxy groups, or R1 and R2 together with the carbons of the pyrazole ring form part of a fused alicyclic, aromatic or heterocyclic ring,

M is hydrogen, a quaternary ammonium cation, or a metal cation,

n is 1, 2, 3 or 4,

x is a number from 0 to 2, and

y is 1, 2, 3 or 4.

[0007] Preferably, R' is hydrogen, chlorine or methyl.

[0008] Especially useful pigment compositions are those wherein R2 is hydrogen and R1 and R3 are methyl, in particular those wherein R' is hydrogen, chlorine or methyl, especially hydrogen.

[0009] The pigment is a phthalocyanine, indanthrone, isoindolone, isoindoline, flavanthrone, pyranthrone, anthraquinone, thioindigo, perylene pigment, or preferably a 1,4-diketopyrrolopyrrole or quinacridone pigment, especially a quinacridone pigment. The pigment is also a solid solution containing a quinacridone or 1,4-diketopyrrolopyrole pigment, for example, a solid solution composed of only two or more quinacridone or 1,4-diketopyrrolopyrrole pigments, a solid solution composed of one or more quinacridone pigments and one or more 1,4-diketopyrrolopyrrole pigments, or a solid solution composed of one or more quinacridone pigments and/or one or more 1,4-diketopyrrolopyrrole pigments and a pigment of a different class, such as a quinacridonequinone, and/or a stabilizer, such as an anilinoacridone. Especially useful solid solutions include binary solid solutions composed of 1,4-diketo-3,6-bis(4-chlorophenyl)pyrrolo [3,4-c]pyrrole and 2,9-dichloroquinacridone and ternary solid solutions composed of 1,4-diketo-3,6-diphenylpyrrolo [3,4-c]pyrrole, 1,4-diketo-3,6-bis(4-chlorophenyl)pyrrolo [3,4-c]pyrrole and 2,9-dichloroquinacridone.

[0010] In general, the quinacridone radicals, Q, are of the formula

40

45

50

55

30

35

wherein each R is independently hydrogen or a substituent, such as halogen or unsubstituted or substituted C1-C4alkyl. In particular, R is hydrogen, chlorine or methyl. The quinacridone radical present in the phthalimidomethylquinacridone and the pyrazolylmethylquinacridone are the same or different, especially the same. In a preferred embodiment, both R substituents in each Q group are the same. Preferred quinacridone radicals are derived from quinacridone, 2,9-dichloroquinacridone, 4,11-dichloroquinacridone, 2,9-dimethylquinacridone and 4,11-dimethylquinacridone

[0011] Preferably, the pigment is a quinacridone, a 1,4-diketopyrrolopyrrole or a solid solution thereof.

[0012] In a particular embodiment, the pigment is a quinacridone or 1,4-diketopyrrolopyrrole, or solid solution thereof, and R' is hydrogen, R2 is hydrogen and R1 and R3 are methyl.

[0013] Quinacridone, 2,9-dichloroquinacridone, 4,11-dichloroquinacridone, 2,9-dimethylquinacridone, 4,11-dimethylquinacridone, 2,9-difluoroquinacridone, and solid solutions thereof, are important quinacridone pigments in the present pigment compositions.

[0014] 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole, 1,4-diketo-3,6-bis(4-methylphenyl)pyrrolo[3,4-c]pyrrole, 1,4-diketo-3,6-bis(4-chlorophenyl)pyrrolo[3,4-c)pyrrole, 1,4-diketo-3,6-bis(4-chlorophenyl)pyrrolo[3,4-c)pyrrole, 1,4-diketo-3,6-bis(3- or 4-cyanophenyl)pyrrolo[3,4-c]pyrrole, 1,4-diketo-3,6-bis(3- or 4-cyanophenyl)pyrrolo[3,4-c]pyrrolo

derivatives, based on the weight of the pigment composition. Preferably, the pigment compositions contain from 0.1 to 12 percent by weight of the first quinacridone derivative and from 0.1 to 12 percent by weight of the second quinacridone derivative for a total of up to 15 percent by weight of the mixture of quinacridone derivatives, all percentages being based on the weight of the pigment composition. Most preferably, the pigment composition contains from 4 to 10 percent by weight of the mixture of quinacridone derivatives and from 2 to 8 percent of the first quinacridone derivative and from 2 to 8 percent of the second quinacridone derivative, especially approximately equal parts by weight of the first and second quinacridone derivatives.

[0016] The inventive pigment compositions are advantageously used to pigment coating compositions, especially paints. Thus, the present invention further relates to a process for preparing a coating composition which comprises incorporating an effective pigmenting amount of the pigment composition of claim 1 into the coating composition by mixing the pigment composition with the coating composition or by mixing components of the pigment composition with the coating composition. Accordingly, the inventive pigment composition is also prepared *in situ*.

[0017] The present invention also relates to a coating composition which comprises an effective pigmenting amount of a pigment and a mixture of quinacridone derivatives, which mixture of quinacridone derivatives consists essentially of a first quinacridone derivative and a second quinacridone derivative, wherein the first quinacridone derivative is a phthalimidomethylquinacridone of the formula

or a o-carboxybenzamidomethylquinacridone partial hydrolysis product thereof, and the second quinacridone derivative is a pyrazolylmethylquinacridone of the formula

$$(MO_3S)_{\overline{X}}$$
 Q CH_2 N R_3

in which formulae

Q is a quinacridone radical,

R' is hydrogen, halogen, or C1-C4alkyl,

R1, R2, and R3 are independently, hydrogen, halogen, unsubstituted C1-C18alkyl, C1-C18alkyl which is substituted by one or more halogen or C1-C6alkoxy groups, unsubstituted C6-C10 aryl, C6-C10 aryl which is substituted by one or more C1-C18alkyl, halogen, nitro or C1-C6alkoxy groups, or R1 and R2 together with the carbons of the pyrazole ring form part of a fused alicyclic, aromatic or heterocyclic ring,

M is hydrogen, a quaternary ammonium cation, or a metal cation, n is 1, 2 or 3.

4

20

15

10

25

30

35

40

45

50

x is a number from 0 to 2, and y is 1, 2, 3 or 4.

10

25

30

35

40

45

50

55

[0018] All of the preferences discussed above with regard to the pigment compositions also apply to the inventive coating compositions.

[0019] Especially useful coating compositions are those wherein the pigment is a quinacridone pigment, such as quinacridone, 2,9-dichloroquinacridone, 4,11-dichloroquinacridone, 2,9-dimethylquinacridone, 4,11-dimethylquinacridone, or 2,9-difluoroquinacridone, or a diketopyrrolopyrrole, such as 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole, 1,4-diketo-3,6-bis(4-methylphenyl)pyrrolo[3,4-c]pyrrole, 1,4-diketo-3,6-bis(4-chlorophenyl)pyrrolo[3,4-c]pyrrole, 1,4-diketo-3,6-bis(4-biphenylyl)pyrrolo[3,4-c]pyrrole, 1,4-diketo-3,6-bis(3-or 4-cyanophenyl)pyrrolo[3,4-c]pyrrole, or 1,4-diketo-3,6-bis(3,4-dichlorophenyl)pyrrolo[3,4-c]pyrrole, or a solid solution thereof.

[0020] Particularly useful coating compositions are those wherein R' is hydrogen, R2 is hydrogen and R1 and R3 are methyl.

[0021] In a preferred embodiment, the coating composition is based on an alkyd/melamine, acrylic/melamine, acrylic/urethane resin or a thermosetting or thermoplastic acrylic resin.

[0022] Most preferably, the coating composition is a paint, especially an automotive paint.

[0023] The present invention further relates to a process for improving the rheology characteristics of a pigment dispersion, which comprises incorporating an effective viscosity-reducing amount of a mixture of quinacridone derivatives into the pigment dispersion, wherein the mixture of quinacridone derivatives consists essentially of a first quinacridone derivative and a second quinacridone derivative wherein the first quinacridone derivative is a phthalimidomethylquinacridone of the formula

$$(MSO_3)_{\overline{X}}$$
 Q CH_2 N Q R'

or a o-carboxybenzamidomethylquinacridone partial hydrolysis product thereof, and the second quinacridone derivative is a pyrazolylmethylquinacridone of the formula

$$(MO_3S)_{\overline{X}}$$
 Q CH_2 N R_3

in which formulae

Q is a quinacridone radical,

R' is hydrogen, halogen, or C1-C4alkyl,

R1, R2, and R3 are independently, hydrogen, halogen, unsubstituted C1-C18alkyl, C1-C18alkyl which is substi-

EP 0 790 281 B1

tuted by one or more halogen or C1-C6alkoxy groups, unsubstituted C6-C10 aryl, C6-C10 aryl which is substituted by one or more C1-C18alkyl, halogen, nitro or C1-C6alkoxy groups, or R1 and R2 together with the carbons of the pyrazole ring form part of a fused alicyclic, aromatic or heterocyclic ring,

M is hydrogen, a quaternary ammonium cation, or a metal cation,

n is 1, 2, 3 or 4,

x is a number from 0 to 2, and

y is 1, 2, 3 or 4.

[0024] An unexpected advantage of the present coating compositions is that the saturation of coatings prepared from such coating compositions is enhanced. Saturation is readily measured according to the CIE LAB system as the A component. In general, the present coating compositions yield coatings having a higher value for the saturation component, A, in the CIE LAB measurement system. Preferably, the color of coatings having improved saturation is violet, magenta, blue-shade red, yellow-shade red or orange.

[0025] Thus, the present invention further relates to a process for enhancing the saturation of a coating, which comprises incorporating an effective saturation-enhancing amount of a mixture of quinacridone derivatives into the coating, wherein the mixture of quinacridone derivatives consists essentially of a first quinacridone derivative and a second quinacridone derivative wherein the first quinacridone derivative is a phthalimidomethylquinacridone of the formula

20

5

10

$$(MSO_3)_{\overline{X}}$$
 Q $CH_{\overline{z}}$ N Q R'

30

25

or a o-carboxybenzamidomethylquinacridone partial hydrolysis product thereof, and the second quinacridone derivative is a pyrazolylmethylquinacridone of the formula

35

40

$$(MO_3S)_{\overline{X}} Q \qquad CH_2 \qquad N = \begin{pmatrix} R_1 & R_2 \\ R_3 & R_3 \end{pmatrix}_{\overline{Y}}$$

45

50

55

in which formulae

Q is a quinacridone radical,

R' is hydrogen, halogen, or C1-C4alkyl,

R1, R2, and R3 are independently, hydrogen, halogen, unsubstituted C1-C18alkyl, C1-C18alkyl which is substituted by one or more halogen or C1-C6alkoxy groups, unsubstituted C6-C10 aryl, C6-C10 aryl which is substituted by one or more C1-C18alkyl, halogen, nitro or C1-C6alkoxy groups, or R1 and R2 together with the carbons of the pyrazole ring form part of an alicyclic, aromatic or heterocyclic ring,

M is hydrogen, a quaternary ammonium cation, or a metal cation,

EP 0 790 281 B1

n is 1, 2, 3 or 4, x is a number from 0 to 2, and y is 1, 2, 3 or 4.

[0026] The following examples further illustrate, but do not limit, the scope of the invention. All parts are parts by weight unless otherwise identified.

[0027] Example 1: 4.0 grams of 1,4-diketo-3,6-bis(4-chlorophenyl)pyrrolopyrrole, 6.0 grams of 2,9-dichloroquinacridone, 1 gram of dimethyl glutarate, 0.5 grams of surfactant and 40.0 grams of Al2SO4•15-18 H2O are added to a 1 liter ball mill containing steel balls and nails as grinding media. After the mill is rolled for 24 hours, the contents are discharged and separated from the milling media. The resulting mill powder is stirred with 2% aqueous sulfuric acid for two hours at 90°C. The resulting slurry is filtered and washed with hot water until neutral and free of salts.

[0028] Example 2: 92 parts of the presscake prepared according to Example 1 is wet blended with 4 parts of pyrazolylmethylquinacridone and 4 parts of quinacridone sulfonic acid and then dried. 16.5 grams of the resulting blend is combined with 41.2 grams of acrylourethane resin, 0.9 grams of dispersant resin and 98.3 grams of thinner. The resulting blend is milled for 64 hours using 980 grams of grinding media to yield a pigment base containing 10% pigment and 30% solids at a pigment to binder ratio of 0.5.

[0029] Example 3: 93 parts of the presscake prepared according to Example 1 is wet blended with 4 parts of pyrazolylmethylquinacridone and 3 parts of phthalimidomethylquinacridone and dried. 16.5 grams of the resulting blend is combined with 41.2 grams of acrylourethane resin, 0.9 grams of dispersant resin and 98.3 grams of thinner. The resulting blend is milled for 64 hours using 980 grams of grinding media to yield a pigment base containing 10% pigment and 30% solids at a pigment to binder ratio of 0.5.

[0030] Example 4: The viscosity of the pigment bases prepared according to Examples 2 and 3 are determined at room temperature using a Brookfield DV-11 apparatus. The rheology profiles of the pigment bases are summarized in the following table.

Pigment Base	10rpm	20rpm	50rpm
Example 2	480	410	328
Example 3	360	310	260

Example 5: - Paint Evaluations

Aluminum Base

[0031] An aluminum base is prepared by mixing 405 grams of aluminum paste with 315 grams of acrylic dispersion resin and 180 grams of acrylic resin until lump free.

Metallic Clear Solution

[0032] 1353 grams of a non-aqueous dispersion resin, 786.2 grams of a melamine resin, 144.6 grams of xylene, 65.6 grams of a UV screener solution and 471 grams of acrylourethane resin are added to a container in the order mentioned and mixed thoroughly for 15 minutes. 89.0 grams of premixed catalyst and 90.0 grams of methanol are slowly added to yield the metalic clear solution.

45 Metallic Paint Formulation

[0033] A basecoat paint containing 7.1% pigment and 54.4% solids with a pigment to binder ratio of 0.15 is prepared by mixing 46.8 grams of pigment base, 4.2 grams of aluminum base, 4.4 grams of nonaqueous dispersion resin and 44.6 grams of metallic clear solution.

Mica Base

[0034] A mica base is prepared by mixing 251.1 grams of Russet Mica with 315 grams of acrylic resin and 180 grams of dispersion resin until lump free.

55

50

10

25

30

Mica Paint Formulation

[0035] A basecoat paint is prepared by mixing 122.4 grams of pigment base, 70.2 grams of mica base, 20.8 grams of nonaqueous dispersion resin, 30.6 grams of melamine resin, 2.6 grams of UV screener and 3.5 grams of catalyst on a paint shaker for 5 minutes. The final paint is prepared by diluting with xylene to a spray viscosity of 23 seconds in a #2 Fischer cup.

[0036] Aluminum panels treated with gray primer are sprayed with two coats of basecoat paint, spaced by a 90 second flash at room temperature, to a thickness of 15-20 microns on a dry film basis. After a flash of 3 minutes, the acrylic topcoat is applied by spraying two coats to a film thickness of 37-50 microns on a dry film basis. The panels are dried for 10 minutes at room temperature and baked at 120°C for 30 minutes.

[0037] The following table compares the color saturation of coatings prepared from the pigment base of Examples 2 and 3.

sample	Delta A		
	80/20 aluminum	50/50 mica	
MONASTRAL BRILLIANT RED RT-380-D	control	control	
Example 2	0.16	0.13	
Example 3	0.30	1.49	

Claims

10

15

20

25

30

35

40

45

1. A pigment composition which comprises a pigment selected from the group of phthalocyanine, indanthrone, iso-indolone, isoindolone, flavanthrone, pyranthrone, anthraquinone, thioindigo, perylene, 1,4-diketopyrrolopyrrole or quinacridone pigment, a first quinacridone derivative and a second quinacridone derivative wherein the first quinacridone derivative is a phthalimidomethylquinacridone of the formula

or a o-carboxybenzamidomethylquinacridone partial hydrolysis product thereof, and the second quinacridone derivative is pyrazolylmethylquinacridone of the formula

$$(MO_3S)_X - Q$$
 CH_2
 R_1
 R_2
 R_3
 R_3

in which formulae

Q is a quinacridone radical,

R' is hydrogen, halogen, or C1-C4alkyl,

R1, R2, and R3 are independently, hydrogen, halogen, unsubstituted C1-C18alkyl,

C1-C18alkyl which is substituted by one or more halogen or C1-C6alkoxy groups, unsubstituted C6-C10 aryl, C6-C10 aryl which is substituted by one or more C1-C18alkyl, halogen, nitro or C1-C6alkoxy groups, or R1 and R2 together with the carbons of the pyrazole ring form part of a fused alicyclic, aromatic or heterocyclic ring, M is hydrogen, a quaternary ammonium cation, or a metal cation,

n is 1, 2, 3 or 4,

x is a number from 0 to 2, and

y is 1, 2, 3 or 4.

25

35

45

50

5

10

15

20

- 2. A pigment composition of claim 1 wherein R' is hydrogen, chlorine or methyl.
- 3. A pigment composition of claim 1 wherein R2 is hydrogen and R1 and R3 are methyl.
- 30 4. A pigment composition of claim 3 wherein R' is hydrogen, chlorine or methyl.
 - 5. A pigment composition of claim 4 wherein R' is hydrogen.
 - **6.** A pigment composition of claim 1 wherein the pigment is a quinacridone, a 1,4-diketo-3,6-diarylpyrrolopyrrole or a solid solution thereof.
 - 7. A pigment composition of claim 1 which comprises up to 15 percent by weight of the mixture of quinacridone derivatives, based on the weight of the pigment.
- **8.** A pigment composition of claim 7 which comprises from 0.1 to 12 percent by weight of the first quinacridone derivative and from 0.1 to 12 percent by weight of the second quinacridone derivative based on the weight of the pigment composition.
 - **9.** A process for preparing a coating composition which comprises incorporating an effective pigmenting amount of the pigment composition of claim 1 into the coating composition by mixing the pigment composition with the coating composition or by mixing components of the pigment composition with the coating composition.
 - 10. A process for improving the rheology characteristics of a pigment dispersion, which comprises incorporating an effective viscosity-reducing amount of a mixture of quinacridone derivatives into the pigment dispersion, said pigment dispersion comprising a pigment selected from the group of phthalocyanine, indanthrone, isoindolone, isoindoline, flavanthrone, pyranthrone, anthraquinone, thioindigo, perylene, 1,4-diketopyrrolopyrrole or quinacridone pigment, wherein the mixture of quinacridone derivatives consists essentially of a first quinacridone derivative and a second quinacridone derivative wherein the first quinacridone derivative is of the formula

or a o-carboxybenzamidomethylquinacridone partial hydrolysis product thereof, and the second quinacridone derivative is of the formula

$(MO_3S)_{\overline{X}} - Q - CH_2 - N$ R_3 R_3

in which formulae

5

10

15

20

25

30

35

40

45

50

55

Q is a quinacridone radical,

R' is hydrogen, halogen, or C1-C4alkyl,

R1, R2, and R3 are independently, hydrogen, halogen, unsubstituted C1-C18alkyl, C1-C18alkyl which is substituted by one or more halogen or C1-C6alkoxy groups, unsubstituted C6-C10 aryl, C6-C10 aryl which is substituted by one or more C1-C18alkyl, halogen, nitro or C1-C6alkoxy groups, or R1 and R2 together with the carbons of the pyrazole ring form part of an alicyclic, aromatic or heterocyclic ring,

M is hydrogen, a quaternary ammonium cation, or a metal cation,

n is 1, 2, 3 or 4,

x is a number from 0 to 2, and

y is 1, 2, 3 or 4.

11. A process for enhancing the saturation of a coating, which comprises incorporating an effective saturation-enhancing amount of a mixture of quinacridone derivatives into the coating, wherein the mixture of quinacridone derivatives consists essentially of a first quinacridone derivative and a second quinacridone derivative wherein the first quinacridone derivative is of the formula

EP 0 790 281 B1

or a o-carboxybenzamidomethylquinacridone partial hydrolysis product thereof, and the second quinacridone derivative is of the formula

5

10

15

20

25

in which formulae

Q is a quinacridone radical,

R' is hydrogen, halogen, or C1-C4alkyl,

R1, R2, and R3 are independently, hydrogen, halogen, unsubstituted C1-C18alkyl, C1-C18alkyl which is substituted by one or more halogen or C1-C6alkoxy groups, unsubstituted C6-C10 aryl, C6-C10 aryl which is substituted by one or more C1-C18alkyl, halogen, nitro or C1-C6alkoxy groups, or R1 and R2 together with the carbons of the pyrazole ring form part of an alicyclic, aromatic or heterocyclic ring, M is hydrogen, a quaternary ammonium cation, or a metal cation,

n is 1, 2, 3 or 4,

x is a number from 0 to 2, and

y is 1, 2, 3 or 4.

35

30

12. A coating composition which comprises an effective pigmenting amount of a pigment selected from the group of phthalocyanine, indanthrone, isoindolone, isoindoline, flavanthrone, pyranthrone, anthraquinone, thioindigo, perylene, 1,4-diketopyrrolopyrrole or quinacridone pigment, and a mixture of quinacridone derivatives, which mixture of quinacridone derivatives consists essentially of a first quinacridone derivative and a second quinacridone derivative, wherein the first quinacridone derivative is of the formula

40

45

50

or a o-carboxybenzamidomethylquinacridone partial hydrolysis product thereof, and the second quinacridone derivative is of the formula

$$(MO_3S) = Q - CH_2 - N = R_3$$

$$R_3$$

$$R_3$$

in which formulae

15

20

25

5

10

Q is a quinacridone radical,

R' is hydrogen, halogen, or C1-C4alkyl,

R1, R2, and R3 are independently, hydrogen, halogen, unsubstituted C1-C18alkyl, C1-C18alkyl which is substituted by one or more halogen or C1-C6alkoxy groups, unsubstituted C6-C10 aryl, C6-C10 aryl which is substituted by one or more C1-C18alkyl, halogen, nitro or C1-C6alkoxy groups, or R1 and R2 together with the carbons of the pyrazole ring form part of an alicyclic, aromatic or heterocyclic ring,

M is hydrogen, a quaternary ammonium cation, or a metal cation,

Chinacridonderivat ein Phthalimidomethylchinacridon der Formel

n is 1, 2 or 3,

x is a number from 0 to 2, and

y is 1, 2, 3 or 4.

Patentansprüche

30

35

40

45

50

 $(MSO_3)_{\overline{X}}$ Q CH_2 R'

1. Pigmentzusammensetzung, die ein Pigment, ausgewählt aus der Gruppe von Phthalocyanin-, Indanthron-, Isoin-dolon-, Isoindolin-, Flavanthron-, Pyranthron-, Anthrachinon-, Thioindigo-, Perylen-, 1,4-Diketopyrrolopyrrol- oder Chinacridonpigment, ein erstes Chinacridonderivat und ein zweites Chinacridonderivat umfasst, wobei das erste

oder ein o-Carboxybenzamidomethylchinacridon-Teilhydrolyseprodukt davon darstellt, und das zweite Chinacridonderivat Pyrazolylmethylchinacridon der Formel

$$(MO_3S)_{\overline{X}}$$
 Q CH_2 R_2 R_3

15

5

10

darstellt, wobei in den Formeln

Q einen Chinacridonrest darstellt,

R' Wasserstoff, Halogen oder C₁-C₄-Alkyl darstellt,

20

R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, Halogen, unsubstituiertes C₁-C₁₈-Alkyl, C₁-C₁₈-Alkyl, das mit einem oder mehreren Halogen- oder C₁-C₆-Alkoxygruppen substituiert ist, unsubstituiertes C₆-C₁₀-Aryl, C₆-C₁₀-Aryl, das mit einem oder mehreren C₁-C₁₈-Alkyl-, Halogen-, Nitro- oder C₁-C₆-Alkoxygruppen substituiert ist, darstellen, oder R₁ und R₂ zusammen mit den Kohlenstoffatomen des Pyrazolrings Teil eines kondensierten alicyclischen, aromatischen oder heterocyclischen Rings bilden,

M Wasserstoff, ein quaternäres Ammoniumkation oder ein Metallkation darstellt,

n 1, 2, 3 oder 4 ist,

x eine Zahl von 0 bis 2 ist, und

y 1, 2, 3 oder 4 ist.

- Pigmentzusammensetzung nach Anspruch 1, worin R' Wasserstoff, Chlor oder Methyl darstellt. 30 2.
 - 3. Pigmentzusammensetzung nach Anspruch 1, worin R₂ Wasserstoff darstellt und R₁ und R₃ Methyl darstellen.
 - 4. Pigmentzusammensetzung nach Anspruch 3, worin R' Wasserstoff, Chlor oder Methyl darstellt.

35

25

Pigmentzusammensetzung nach Anspruch 4, worin R' Wasserstoff darstellt. 5.

Pigmentzusammensetzung nach Anspruch 1, worin das Pigment ein Chinacridon, ein 1,4-Diketo-3,6-diarylpyrrolopyrrol oder eine feste Lösung davon ist.

40

50

- 7. Pigmentzusammensetzung nach Anspruch 1, die bis zu 15 Gewichtsprozent des Gemisches von Chinacridonderivaten, bezogen auf das Gewicht des Pigments, umfasst.
- Pigmentzusammensetzung nach Anspruch 7, die 0,1 bis 12 Gewichtsprozent des ersten Chinacridonderivats und 45 0,1 bis 12 Gewichtsprozent des zweiten Chinacridonderivats, bezogen auf das Gewicht der Pigmentzusammensetzung, umfasst.
 - Verfahren zur Herstellung einer Beschichtungszusammensetzung, das Einarbeiten einer wirksam pigmentierenden Menge der Pigmentzusammensetzung von Anspruch 1 in die Beschichtungszusammensetzung durch Vermischen der Pigmentzusammensetzung mit der Beschichtungszusammensetzung oder durch Vermischen der Komponenten der Pigmentzusammensetzung mit der Beschichtungszusammensetzung umfasst.
 - 10. Verfahren zur Verbesserung der Rheologieeigenschaften einer Pigmentdispersion, das Einarbeiten einer die Viskosität wirksam vermindernden Menge eines Gemisches von Chinacridonderivaten in die Pigmentdispersion umfasst, wobei die Pigmentdispersion ein Pigment, ausgewählt aus der Gruppe von Phthalocyanin-, Indanthron-, Isoindolon-, Isoindolin-, Flavanthron-, Pyranthron-, Anthrachinon-, Thioindigo-, Perylen-, 1,4-Diketo-pyrrolopyrroloder Chinacridonpigment, umfasst, wobei das Gemisch von Chinacridonderivaten im Wesentlichen aus einem ersten Chinacridonderivat und einem zweiten Chinacridonderivat besteht, wobei das erste Chinacridonderivat die

Formel

10

15

aufweist

oder ein o-Carboxybenzamidomethylchinacridon-Teilhydrolyseprodukt davon darstellt, und das zweite Chinacridonderivat die Formel

20

30

40

45

35 aufweist,

wobei in den Formeln

Q einen Chinacridonrest darstellt,

R' Wasserstoff, Halogen oder C₁-C₄-Alkyl darstellt,

R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, Halogen, unsubstituiertes C₁-C₁₈-Alkyl, C₁-C₁₈-Alkyl, das mit einem oder mehreren Halogen- oder $\mathrm{C_{1}}$ - $\mathrm{C_{6}}$ -Alkoxygruppen substituiert ist, unsubstituiertes $\mathrm{C_{6}}$ - $\mathrm{C_{10}}$ -Aryl, C_6 - C_{10} -Aryl, das mit einem oder mehreren C_1 - C_{18} -Alkyl-, Halogen-, Nitro- oder C_1 - C_6 -Alkoxygruppen substituiert ist, darstellen, oder R₁ und R₂ zusammen mit den Kohlenstoffatomen des Pyrazolrings Teil eines alicyclischen, aromatischen oder heterocyclischen Rings bilden,

M Wasserstoff, ein quaternäres Ammoniumkation oder ein Metallkation darstellt,

n 1, 2, 3 oder 4 ist,

x eine Zahl von 0 bis 2 ist, und

y 1, 2, 3 oder 4 ist.

55

50

11. Verfahren zur Erhöhung der Sättigung einer Beschichtung, das Einarbeiten einer die Sättigung wirksam erhöhenden Menge eines Gemisches von Chinacridonderivaten in die Beschichtung umfasst, wobei das Gemisch von Chinacridonderivaten im Wesentlichen aus einem ersten Chinacridonderivat und einem zweiten Chinacridonderivat besteht, wobei das erste Chinacridonderivat die Formel

$$(MSO_3)_X$$
 Q CH_2 N

15 aufweist oder ein o-Carboxybenzamidomethylchinacridon-Teilhydrolyseprodukt davon darstellt und das zweite Chinacridonderivat die Formel

$$(MO_3S)_X$$
 Q CH_2 R_2 R_3

aufweist wobei in den Formeln

5

10

20

25

30

35

40

45

50

55

Q einen Chinacridonrest darstellt,

R' Wasserstoff, Halogen oder C₁-C₄-Alkyl darstellt,

 R_1 , R_2 und R_3 unabhängig voneinander Wasserstoff, Halogen, unsubstituiertes C_1 - C_{18} -Alkyl, C_1 - C_{18} -Alkyl, das mit einem oder mehreren Halogen- oder C_1 - C_6 -Alkoxygruppen substituiert ist, unsubstituiertes C_6 - C_{10} -Aryl, C_6 - C_{10} -Aryl, das mit einem oder mehreren C_1 - C_{18} -Alkyl-, Halogen-, Nitro- oder C_1 - C_6 -Alkoxygruppen substituiert ist, darstellen, oder R_1 und R_2 zusammen mit den Kohlenstoffatomen des Pyrazolrings Teil eines alicyclischen, aromatischen oder heterocyclischen Rings bilden,

M Wasserstoff, ein quaternäres Ammoniumkation oder ein Metallkation darstellt,

n 1, 2, 3 oder 4 ist,

x eine Zahl von 0 bis 2 ist, und

y 1, 2, 3 oder 4 ist.

12. Beschichtungszusammensetzung, umfassend eine wirksam pigmentierende Menge eines Pigments, ausgewählt aus der Gruppe von Phthalocyanin-, Indanthron-, Isoindolon-, Isoindolin-, Flavanthron-, Pyranthron-, Anthrachinon-, Thioindigo-, Perylen-, 1,4-Diketopyrrolopyrrol- oder Chinacridonpigment und eines Gemisches von Chinacridonderivaten, wobei das Gemisch von Chinacridonderivaten im Wesentlichen aus einem ersten Chinacridonde-

rivat und einem zweiten Chinacridonderivat besteht, wobei das erste Chinacridonderivat die Formel

$$(MSO_3)_{\overline{X}}$$
 Q CH_2 N

aufweist oder ein o-Carboxybenzamidomethylchinacridon-Teilhydrolyseprodukt davon darstellt, und das zweite Chinacridonderivat die Formel

$$(MO_3S)_{\overline{X}} - Q - CH_2 - N = R_3$$

aufweist,

5

10

15

20

25

30

35

40

45

Q einen Chinacridonrest darstellt,

R' Wasserstoff, Halogen oder C₁-C₄-Alkyl darstellt,

 R_1 , R_2 und R_3 unabhängig voneinander Wasserstoff, Halogen, unsubstituiertes C_1 - C_{18} -Alkyl, C_1 - C_{18} -Alkyl, das mit einem oder mehreren Halogen- oder C_1 - C_6 -Alkoxygruppen substituiert ist, unsubstituiertes C_6 - C_{10} -Aryl, C_6 - C_{10} -Aryl, das mit einem oder mehreren C_1 - C_{18} -Alkyl-, Halogen-, Nitro- oder C_1 - C_6 -Alkoxygruppen substituiert ist, darstellen, oder R_1 und R_2 zusammen mit den Kohlenstoffatomen des Pyrazolrings Teil eines alicyclischen, aromatischen oder heterocyclischen Rings bilden,

M Wasserstoff, ein quaternäres Ammoniumkation oder ein Metallkation darstellt,

n 1, 2 oder 3 ist,

wobei in den Formeln

x eine Zahl von 0 bis 2 ist, und

y 1, 2, 3 oder 4 ist.

Revendications

1. Composition de pigment qui comprend un pigment choisi dans le groupe formé par la phtalocyanine, l'indanthrone, l'isoindolone, l'isoindolone, la flavanthrone, la pyranthrone, l'anthraquinone, le thioindigo, le pérylène, la 1,4-dicétopyrrolopyrrole ou un pigment de quinacridone, un premier dérivé de quinacridone et un deuxième dérivé de quinacridone, dans lequel le premier dérivé de quinacridone est une phtalimidométhylquinacridone de formule:

ou un de ses produite d'hydrolyse partielle 0-carboxybenzamidométhylquinacridone, et le deuxième dérivé de quinacridone est la pyrazolylméthylquinacridone de formule:

(MO₃S) - Q - CH₂ - N - R₃

formules dans lesquelles:

10

15

20

25

30

35

40

45

50

Q est un radical de quinacridone;

R' est un atome d'hydrogène, d'halogène ou un groupe alkyle en C₁ à C₄;

 R_1 , R_2 et R_3 représentent, indépendamment les uns des autres, un atome d'hydrogène, d'halogène, un groupe alkyle en C_1 à C_{18} non substitué, un groupe alkyle en C_1 à C_{18} qui est substitué par un ou plusieurs atomes d'halogène ou groupes alcoxy en C_1 à C_6 , un groupe aryle en C_6 à C_{10} non substitué, un groupe aryle en C_6 à C_{10} qui est substitué par un ou plusieurs groupes alkyle en C_1 à C_{18} , halogéno, nitro ou alcoxy en C_1 à C_6 , ou C_1 0 qui est substitué par un ou plusieurs groupes alkyle en C_1 1 à C_1 2, halogéno, nitro ou alcoxy en C_1 3 de C_1 4, ou C_1 5, nou C_1 6, ou C_1 6, ou C_1 7, aromatique ou hétérocyclique condensé;

M est un atome d'hydrogène, un cation ammonium quaternaire ou un cation métallique;

n vaut 1, 2, 3 ou 4;

x est un nombre compris entre 0 et 2;

y vaut 1, 2, 3 ou 4.

- Composition de pigment selon la revendication 1, dans laquelle R' est un atome d'hydrogène, de chlore ou de méthyle.
- Composition de pigment selon la revendication 1, dans laquelle R₂ est un atome d'hydrogène et R₁ et R₃ sont des groupes méthyle.
- **4.** Composition de pigment selon la revendication 3, dans laquelle R' est un atome d'hydrogène, de chlore ou un groupe méthyle.
 - Composition de pigment selon la revendication 4, dans laquelle R' est un atome d'hydrogène.
- **6.** Composition de pigment selon la revendication 1, dans laquelle le pigment est une quinacridone, une 1,4-dicéto-3,6-diarylpyrrolopyrrole ou une solution solide de celles-ci.
 - Composition de pigment selon la revendication 1, qui comprend jusqu'à 15 pourcent en poids du mélange des dérivés de quinacridone, par rapport au poids du pigment.

- 8. Composition de pigment selon la revendication 7, qui comprend de 0,1 à 12 pourcent en poids d'un premier dérivé de quinacridone et de 0,1 à 12 pourcent en poids du deuxième dérivé de quinacridone par rapport au poids de la composition de pigment.
- 9. Procédé pour préparer une composition de revêtement qui consiste à incorporer une quantité pigmentant efficacement de la composition de pigment selon la revendication 1 dans la composition de revêtement en mélangeant la composition de pigment avec la composition de revêtement ou en mélangeant des composants de la composition de pigment avec la composition de revêtement.
- 10. Procédé pour améliorer les caractéristiques de rhéologique d'une dispersion de pigment, qui consiste à incorporer une quantité, réduisant efficacement la viscosité, d'un mélange de dérivés de quinacridone dans la dispersion de pigment, ladite dispersion de pigment comprenant un pigment choisi dans le groupe formé par la phtalocyanine, l'indanthrone, l'isoindolone, l'isoindoline, la flavanthrone, la pyranthrone, l'anthraquir-one, le thioindigo, le pérylène, la 1,4-dicétopyrrolopyrrole ou un pigment de quinacridone, dans lequel le mélange des dérivés de quinacridone se compose essentiellement d'un premier dérivé de quinacridone et d'un deuxième dérivé de quinacridone dans lequel le premier dérivé de quinacridone est de formule:

ou un de ses produits d'hydrolyse partielle 0-carboxylbenzamidométhylquinacridone, et le deuxième dérivé de quinacridone est de formule:

45 formules dans lesquelles:

20

25

30

35

40

50

55

Q est un radical de quinacridone;

R' est un atome d'hydrogène, d'halogène ou un groupe alkyle en C₁ à C₄;

 R_1 , R_2 et R_3 représentent, indépendamment les uns des autres, un atome d'hydrogène, un atome d'halogène, un groupe alkyle en C_1 à C_{18} non substitué, un groupe alkyle en C_1 à C_{18} qui est substitué par un ou plusieurs atomes d'halogène ou groupes alcoxy en C_1 à C_6 , un groupe aryle en C_6 à C_{10} non substitué, un groupe aryle en C_6 à C_{10} qui est substitué par un ou plusieurs groupes alkyle en C_1 à C_{18} , halogéno, nitro ou alcoxy en C_1 à C_6 , ou C_1 0 ou C_1 1 et C_1 2 conjointement avec les atomes de carbone du cycle pyrazole forment une partie d'un cycle alicyclique, aromatique ou hétérocyclique;

M est un atome d'hydrogène, un cation ammonium quaternaire ou un cation métallique;

n vaut 1, 2, 3 ou 4;

x est un nombre compris entre 0 et 2; et

y vaut 1, 2, 3 ou 4.

11. Procédé pour favoriser la saturation d'un revêtement, qui consiste à incorporer une quantité, favorisant efficacement la saturation, d'un mélange de dérivés de quinacridone dans le revêtement, dans lequel le mélange de dérivés de quinacridone se compose essentiellement d'un premier dérivé de quinacridone et d'un deuxième dérivé de quinacridone dans lequel le premier dérivé de quinacridone est de formule

ou un de ses produits d'hydrolyse partielle 0-carboxybenzamidométhylquinacridone, et le deuxième dérivé de quinacridone est de formule:

formules dans lesquelles

Q est un radical de quinacridone;

R' est un atome d'hydrogène, d'halogène ou un groupe alkyle en C₁ à C₄;

 R_1 , R_2 et R_3 représentent, indépendamment les uns des autres, un atome d'hydrogène, d'halogène, un groupe alkyle en C_1 à C_{18} non substitué, un groupe alkyle en C_1 à C_{18} qui est substitué par un ou plusieurs atomes d'halogène ou groupes alcoxy en C_1 à C_6 , un groupe aryle en C_6 à C_{10} non substitué, un groupe aryle en C_6 à C_{10} qui est substitué par un ou plusieurs groupes alkyle en C_1 à C_{18} , halogéno, nitro ou alcoxy en C_1 à C_6 , ou C_1 0 ou C_1 1 et C_2 2 conjointement avec les atomes de carbone du cycle pyrazole forment une partie d'un cycle alicyclique, aromatique ou hétérocyclique;

M est un atome d'hydrogène, un cation ammonium quaternaire ou un cation métallique;

n vaut 1, 2, 3 ou 4;

x est un nombre compris entre 0 et 2;

y vaut 1, 2, 3 ou 4.

12. Composition de revêtement qui comprend une quantité pigmentant efficacement d'un pigment choisi dans le groupe formé par la phtalocyanine, l'indanthrone, l'isoindolone, l'isoindoline, la flavanthrone, la pyranthrone, l'anthraquinone, le thioindigo, le pérylène, la 1,4-dicétopyrrolopyrrole ou un pigment de quinacridone, et un mélange de dérivés de quinacridone, mélange de dérivés de quinacridone qui se compose essentiellement d'un premier dérivé de guinacridone et d'un deuxième dérivé de quinacridone, dans lequel le premier dérivé de quinacridone est de formule:

55

5

10

15

20

25

30

35

40

45

ou un de ses produits d'hydrolyse partielle 0-carboxybenzamidométhylquinacridone, et le deuxième dérivé de quinacridone est de formule:

formules dans lesquelles

5

10

15

20

25

30

35

40

45

50

55

Q est un radical de quinacridone;

R' est un atome d'hydrogène, d'halogène ou un groupe alkyle en C₁ à C₄;

 R_1 , R_2 et R_3 représentent, indépendamment les uns des autres, un atome d'hydrogène, d'halogène, un groupe alkyle en C_1 à C_{18} non substitué, un groupe alkyle en C_1 à C_{18} qui est substitué par un ou plusieurs atomes d'halogène ou groupes alcoxy en C_1 à C_6 , un groupe aryle en C_6 à C_{10} non substitué, un groupe aryle en C_6 à C_{10} qui est substitué par un ou plusieurs groupes alkyle en C_1 à C_{18} , halogéno, nitro ou alcoxy en C_1 à C_6 , ou C_1 0 ou C_2 1, a conjointement avec les atomes de carbone du cycle pyrazole forment une partie d'un cycle alicyclique, aromatique ou hétérocyclique;

M est un atome d'hydrogène, un cation ammonium quaternaire ou un cation métallique;

n vaut 1, 2, ou 3;

x est un nombre compris entre 0 et 2;

y vaut 1, 2, 3 ou 4.