

DSP Lab Experiments Using MATLAB

- 1. BASIC_OPERATIONS_ON_AUDIO_SIGNALS
- 2. CONVOLUTION OF TWO DISCRETE SIGNALS
- 3. DISCRETE FOURIER TRANSFORM
- 4. POWER SPECTRAL DENSITY
- 5.ECG_SIGNAL_READ AND PLOT

1.BASIC_OPERATIONS_ON_AUDIO_SIGNALS

Aim:-To write a code for Basic operations of audio signals using MATLAB

Tool:-MATLAB&SIMULINK

Version:-R2018b

Procedure:-

- 1. Open MATLAB file
- 2. Give a correct MATLAB path
- 2. Write a code for basic_operations on audio signals in "Editor"
- 3. First write clear all and close all because sometimes before program values are stored, those will be execute.
- 4. Download audio songs, those are in same MATLAB path only
- 5.Using the "audioread" function we have to read the all songs
- 6.In the same way read all signals (which you want to operate)
- 7. Important thing is that if you want to add or subtract the "matrix length" must be same
- 8. using "plot" function you can see the signal individually and if you want to see all signals at a time use "subplot" function
- 9. save the file only lowercase letters only and it doesn't take uppercase and space also.

```
clear;
%%
[g,f3]=audioread('guitar.wav');
sound(g,f3);
%%clear sound
gg=size(g,1);
%figure(1);
%plot(g);
%%
[b,f1]=audioread('bass.wav');
%sound(b,f1);
%%clear sound
```

```
bb=size(b,1);
b=b(1:qq);
%figure(2);
%plot(b);
응응
[d, f2] = audioread('drums.wav');
%sound(d, f2);
%%clear sound
dd=size(d,1);
d=d(1:gg);
%figure(3);
%plot(d);
응응
compound=b+d+q;
compound2=q-b-d;
%sound(compound, 44100);
%figure(4);
%plot(compound);
응응
subplot(3,2,1);plot(q);title('Guitar signal');
subplot(3,2,2);plot(d);title('bass signal');
subplot(3,2,3);plot(b);title('drums signal');
subplot(3,2,4);plot(compound);title('add signal');
subplot(3,2,5);plot(compound2);title('sub signal');
subplot(3,2,6);plot(d ramp);title('Ramp sig signal');
dnew=d(1:100000);
qnew=q(1:100000);
bnew=b(1:100000);
reapt=[dnew;gnew;bnew];
%sound(reapt, f1);
dnew=d(1:100000);
qnew=q(1:100000);
reapt=[dnew,qnew];
%sound(reapt, f1);
응응
ramp=0:(1/size(d,1)):1;
ramp=ramp(1:size(d,1));
ramp=(ramp)';
d ramp=d.*ramp;
%plot(d ramp)
```

Name

values

b,	4593084x1 double
bb,	4646687
compound,	4593084x1 double
compound2,	4593084x1 double
d,	4593084x1 double
dd,	4725975
f1,	44100
f2,	44100
f3,	44100
g,	4593084x1 double
gg	4593084

Output figure:-

Conclusion:-

Using MATLAB the output of the Basic_operations_on_signals are executed.

2. CONVOLUTION OF FREQUENCY SIGNALS

Aim:-To write a code for convolution of two discrete signals using "Direct method" and direct "conv" function in MATLAB

Tool:-MATLAB&SIMULINK

Version:-R2018b

Procedure:-

- 1. Open MATLAB file
- 2. Give a correct MATLAB path
- 3. Write a code for convolution in "Editor Window"
- 4.first initialize the sample frequency(fs)and time(t)
- 5. Write an expression for 20hz sine wave sig and plot it.
- 6. In the same way write an expression for 1hz sine wave sig and plot it.
- 7. Now add the both signals(sig 20hz+sig 1hz)
- 8. Design a filter using filter design analysis (fda) tool with 1 to 6 bandwidth and order 39
- 9. Now using `conv' function we can directly convolve the signals
- 10. And also find convolution using direct method also
- 11. If we want to see this plots in single figure use subplot function

```
fs=100;
%% 20hz sine wave
f1=20;
ts=1/fs;
t=0:ts:3;
sig_20hz=sin(2*pi*f1*t);
% figure(1);
% plot(sig_20hz);
%% 1hz sinewave
f2=1;
sig_1hz=sin(2*pi*f2*t);
% figure(2);
```

```
% plot(sig 1hz);
%% 20hz+1hz sine wave
signal 20hz 1hz=sig 20hz+sig 1hz;
% figure(3);
% plot(sig 20hz+sig 1hz);
%% design a filter using filter design analysis (FDA) tool
%fdatool
%pause
응응
 impulse response=impulse;
% plot(impulse response);
%% convolution
output sig=conv(signal 20hz 1hz,impulse response);
% plot(sig 20hz+sig 1hz);
% figure(4);
subplot(4,1,1);plot(sig 20hz+sig 1hz);title('signal 2
0hz 1hz');
subplot(4,1,2);plot(impulse response);title('impulse
response');
subplot(4,1,3);plot(output sig);title('conv output si
qnal');
%% direct method of conv
m=length(signal 20hz 1hz);
m=length(impluse response);
l=m+n-1;
y=zeros(1,1);
for i=1:m;
   x1=signal 20hz 1hz(i) *impulse response;
   x2 = [zeros(1, i-1), x1, zeros(1, m-i)];
   y=y+x2;
end
% plot(y);
subplot(4,1,4);plot(y);title('Direct method');
```

NAME	value
f1	20
f2	1
Fs	100

Impulse	1*40 double
M	301
output_sig	1*340 double
sig_1hz	1*301 double
sig_20hz	1*301 double
signal_20hz_1hz	1*301 double
Т	1*301 double
Ts	0.0100

Output figure:-

Conclusion:-

Using MATLAB the convolution of two frequency signals using "Direct method" and direct "conv" function are executed

3. DISCRETE FOURIER TRANSFORM

Aim:-To write a code for Discrete Fourier transform using direct method and FFT command and comparision of two methods performance

Tool:-MATLAB&SIMULINK

Version:-R2018b

Procedure:-

- 1. open MATLAB file
- 2. Give a correct MATLAB path
- 3. Write a code for 'DTFT' in "Editor window"
- 4. First consider the sample rate(srate)
- 5. Signal length(I) depends upon the srate
- 6. Signal length is equal to csw(complex sine wave)length
- 7. Then csw length is depends on FourTime
- 8. FourTime depends on points(srate)
- 9. Now dot product on csw and signal, then it develop a new signal
- 10. Then new signal length will be "summable"
- 11. Then create only one single signal
- 12. That is the Fourier Transform signal
- 13. Here we use "tic toc" to calculate the speed of the operation
- 14. Then completion of the code save and Run it.we can observe the single signal

```
clc
clear
close all
%% Creating signal
srate =1000;
time=0:1/srate:2;
pnts=length(time);
signal=2.5*sin(2*pi*4*time)+1.5*sin(2*pi*6.5*time);
%Fourier Transeform
```

```
tic;
fourTime=(0:pnts-1)/pnts;
fCoefs=zeros(size(signal));
for fi=1:pnts
   %create complex sine wave
   csw=exp(-1i*2*pi*(fi-1)*fourTime);
   %compute dot product between sine wave and signal
   fCoefs(fi) = sum(signal.*csw)/pnts;
end
t(1) = toc
%amplitudes
ampls=2*abs(fCoefs);
%compute frequencie vector
hz=linspace(0, srate/2, floor(pnts/2)+1);
figure
subplot (311)
plot(time, signal, 'k')
xlabel('Time(s)'), ylabel('Amplitude')
title('Time domain')
subplot (312)
stem(hz, ampls(1:length(hz)), 'ks-')
set(gca,'xlim',[0 8],'ylim',[-.01 3])
xlabel('Frequency(Hz)'), ylabel('Amplitude(a.u.)')
title('Frequency domain')
%% Fourier Tranceform using fft command
tic;
fcoefsF=fft(signal)/pnts;
t(2) = toc;
amplsF=2*abs(fcoefsF);
subplot (313)
stem(hz, amplsF(1:length(hz)), 'or')
set(gca, 'xlim', [0 8], 'ylim', [-.01 3])
xlabel('Frequency Transform using FFT')
title ('Fourier Trance form using FFT')
%% the inverse fourier transform
% initialize time-domain reconstuction
reconSignal=zeros(size(signal));
tic;
for fi=1:pnts
   %create coefficient-modulated complex sine wave
   csw1=fCoefs(fi) *exp(1i*2*pi*(fi-1)*fourTime);
   %sum them together
   reconSignal=reconSignal+csw1;
end
%divide by N
```

```
reconSignal=reconSignal/pnts;
t(3) = toc;
%figure(2),clf
%subplot(2,1,1)
%plot(time, signal)
%legend({'original'})
%subplot(2,1,2)
%plot(time, real(reconSignal), 'r-')
%legend
%hold on
%% Inverse legend({'Original';'Reconstructed'})fourier
reconTS=real(ifft(fCoefs))*pnts;
t(4) = toc;
subplot(3,1,1), hold on
plot(time(1:3:end), reconTS(1:3:end), 'ro');
legend({'Original';'Reconstructed'})
zoom on
%% time computations plot
figure, bar(t);
title('Computing time values')
%plot(time, signal)
```

NAME	VALUES	
Ampls	1x2001 double	
amplsF	1x2001 double	
Csw	1x2001 complex	
csw1	1x2001 complex	
fCoef	1x2001 complex	
fcoefsF	1x2001 complex	
Fi	2001	
fourTime	1x2001 double	
Hz	1x2001 double	
Pnts	2001	
reconSignal	1x2001 complex	
reconTS	1x2001 double	
Signal	1x2001 double	
Srate	1000	
T		
[0.323965151558465,0.288773243209917,0.198709844782867,0.		
005325228938764]		

Output figure:-

Conclusion:-

Using MATLAB we have observe the output of the Discrete Fourier transform for given signal.

4.POWER SPECTRAL DENSITY

AIM:- To generate power spectral density by using pwelch method in MATLAB

Tool:- MATLAB&SIMULINK

Version:-R2018b

Procedure:-

- 1. Open MATLAB file.
- 2. Give a correct path
- 3.Type "edit"in the MATLAB prompt '>>'that Appear in command window
- 4. Write the program in the "Editor window" and save it in m-file.
- 5. Run the program.
- 6. Enter the input in the command window
- 7. The result is displayed in the command window
- 8. The graphical output is displayed in the figure window

```
clc
clear
close all
% Generating a signal
fs=1000;
t=0:1/fs:0.6;
x=\sin(2*pi*50*t)+\sin(2*pi*55*t);
figure,
plot(fs*t(1:50),x(1:50))
title('Given signal')
xlabel('time(milliseconds)');
ylabel('Amplitude(Volts)');
%% Pwelch method(default window is Hamming window)
for len=50:50:600
   figure; pwelch (x, len, [], len, fs);
end
```


Conclusion:PSD of a signal has been performed in MATLAB

5.ECG_SIGNAL_READ_PLOT

Aim:-To write a code to read ECG signal using MATLAB

Tool:-MATLAB&SIMULINK

Version:-R2018b

Procedure:-

- 1. Open MATLAB file
- 2. Make sure your database path must be clear
- 3. Write a code for ECG Signal read and plot in "Editor"
- 3. First write clear all and close all because sometimes before program values are stored, those will be execute.
- 4. After write the programming run the program
- 5. It will ask enter the path -you have to give correct path 6.output will be displayed.

7. ECG signals Database: From MIT-BIH - physionet.org get the ECG signals database link here:

https://drive.google.com/drive/folders/1nj70UY20fkoj0v-N2TFCfMqIXGkdEKOB?usp=sharing

```
clc; clear;
close all;
%% Overall samples in the data is 6,50,000. As it takes
much time to load.
%So we take up to 6000 samples with sampling rate 1000.
rate=1000;
time=0:1/rate:6;
pnts=length(time);
Input Directory = input('Enter the Input Path : '); %
Enter the path to get database..
A = dir(Input Directory); % Getting entire
directory...
for i=1:size(A, 1)-3
                   % Loop runs for persons in
the database
  %% database consists 48 persons ECG signal data
excelsheets.each excel
  %named with "rec 1", it consists of 650000 sample
values of that ECG
```

```
%signal. Now we read xlsheet from given database. for
reading the xlsheet we
    % use"xlsread" command.
    inpSig = xlsread([Input_Directory '\' A(i+3,1).name
'\rec_1.xlsx']);% loading persons ecg samples record
file
    inpSig=inpSig(:,1); %taking only first ecg channel.
    disp(strcat(num2str(A(i+3,1).name)))%disply person

ID
    perfect_beat=(inpSig(1:6001))';
    plot(time,perfect_beat,'k','linew',2) %ploting the
ecg signal
    xlabel('Time(s)'),ylabel('Amplitude')
    title('Time domine')
    sound(perfect_beat);% we can hear the person heartbeat
sound
end
```

WORKSPACE:-

Output plot:-

Conclusion:-

The ECG signal to be plotted using given database in MATLAB

MATLAB CODES, AUDIO FILES AND ECG RECORDS AVAILABLE IN BELOW LINK (please download these files)

(https://drive.google.com/drive/folders/1mNpJNQo2rtAkE1jDKlpSn4flbUo2e0se?usp=sharing)

.....THANK YOU......