Quantitative Relational Synthesis With Semantic Preference Objectives

Sumit Lahiri

PRAISE Group, CSE Dept. IIT Kanpur

M.Tech Defense

A property that relates multiple executions of (the same or different) program(s) is referred to as a *relational property*.

A property that relates multiple executions of (the same or different) program(s) is referred to as a *relational property*.

A property that relates multiple executions of (the same or different) program(s) is referred to as a *relational property*.

A property that relates multiple executions of (the same or different) program(s) is referred to as a *relational property*.

When both programs \mathcal{P}_1 and \mathcal{P}_2 are the same programs, i.e \mathcal{P} , relational properties become hyper-properties.

What is program sketching?

A partial program (referred to as a *sketch*), which leaves out certain $\lfloor holes \rfloor$ for the synthesizer to fill such that the completed program satisfies the required specification.

What is program sketching?

A partial program (referred to as a *sketch*), which leaves out certain $\lfloor holes \rfloor$ for the synthesizer to fill such that the completed program satisfies the required specification.

Specification as a Hoare Triple,

What is program sketching?

A partial program (referred to as a *sketch*), which leaves out certain $\lfloor holes \rfloor$ for the synthesizer to fill such that the completed program satisfies the required specification.

Specification as a **Hoare Triple**,


```
1 int P(int n){
2     // PRE:     assume(n > 1);
3     int i = 0, x = 0;
4     while(i < n){
5         i = i + 1;
6         x = .
7     }
8     // POST:     assert(x > 2 * n);
9     return x;
10 }
```

Lifting Program Sketching to Relational Sketching

Given partial programs $\mathcal{P}_1^{[\cdot]}$ and $\mathcal{P}_2^{[\cdot]}$, find completion \mathcal{E} , where $\mathcal{E}.H$ and $\mathcal{E}.G$ respective completions of $\mathcal{P}_1^{[\cdot]}$ and $\mathcal{P}_2^{[\cdot]}$ that satisfy a specification.

Lifting Program Sketching to Relational Sketching

Given partial programs $\mathcal{P}_1^{[\cdot]}$ and $\mathcal{P}_2^{[\cdot]}$, find completion \mathcal{E} , where $\mathcal{E}.H$ and $\mathcal{E}.G$ respective completions of $\mathcal{P}_1^{[\cdot]}$ and $\mathcal{P}_2^{[\cdot]}$ that satisfy a specification.

Relational Synthesis

$$\exists \mathcal{E}. \quad \frac{\{\mathsf{Pre}(\vec{x_1}, \vec{x_2})\}}{\{\mathsf{Pre}(\vec{x_1}, \vec{x_2})\}} \quad \mathcal{P}_1^{[\mathcal{E}.H]}, \mathcal{P}_2^{[\mathcal{E}.G]} \quad \{\mathsf{Post}(y_1, y_2)\}$$

Verification for Program Equivalence.

Program equivalence requires that, any two executions of a pair of programs, \mathcal{P}_1 and \mathcal{P}_2 on same the same input \vec{x} , must yield the same outputs.

Verification for Program Equivalence.

Program equivalence requires that, any two executions of a pair of programs, \mathcal{P}_1 and \mathcal{P}_2 on same the same input \vec{x} , must yield the same outputs.

A Verification Problem

$$\forall \vec{x}. \ \mathcal{P}_1(\vec{x}) = \mathcal{P}_2(\vec{x})$$

Given a reference program \mathcal{P}_1 and a partial program \mathcal{P}_2 that has a hole $\boxed{\cdot}$, we are interested in *completing* the partial program by synthesizing an expression to fill the hole such that the two programs are rendered semantically equivalent.

Given a reference program \mathcal{P}_1 and a partial program \mathcal{P}_2 that has a hole $\boxed{\cdot}$, we are interested in *completing* the partial program by synthesizing an expression to fill the hole such that the two programs are rendered semantically equivalent.

Formal Definition

$$\exists \mathcal{E} \in \mathcal{L}(\mathcal{G}). \ \forall \vec{x}. \ \mathcal{P}_1(\vec{x}) = \mathcal{P}_2^{[\mathcal{E}]}(\vec{x})$$

```
1 int P<sub>1</sub>(int n){
2     assume(n > 1);
3     int i = 0, ans = 0;
4     while(i < (n - 1)){
5         i = i + 1;
6         ans = ans + (5 * i) + 1;
7     }
8     return ans + 1;
9 }</pre>
```

(a) Program 1

```
1 int P<sub>2</sub><sup>[.]</sup>(int n){
2    assume(n > 1);
3    int x = 0, y = 0, z = n;
4    while(z ≠ 0){
5         z = z - 1;
6         x = ...;
7         y = y + 1;
8    }
9    return x + y;
10 }
```

(b) Program 2 (with hole \(\cdot \))

(a) Program 1

(b) Program 2 (with hole ·)

Post condition for sketching.

$$\exists \mathcal{E} \in \mathcal{L}(\mathcal{G}). \ \forall \vec{x}. \ \mathcal{P}_1(\vec{x}) = \mathcal{P}_2^{[\mathcal{E}]}(\vec{x})$$

(a) Program 1

(b) Program 2 (with hole)

Post condition for sketching.

$$\exists \mathcal{E} \in \mathcal{L}(\mathcal{G}). \ \forall \vec{x}. \ \mathcal{P}_1(\vec{x}) = \mathcal{P}_2^{[\mathcal{E}]}(\vec{x})$$
$$assert(ans + 1 = x + y)$$

```
1 int P<sub>1</sub>(int n){
2    assume(n > 1);
3    int i = 0, ans = 0;
4    while(i < (n - 1)){
5        i = i + 1;
6        ans = ans + (5 * i) + 1;
7    }
8    return ans + 1;
9 }</pre>
```

(a) Program 1

```
1 int \mathcal{P}_{2}^{[.]}(\text{int n}){
2    assume(n > 1);
3    int x = 0, y = 0, z = n;
4    while(z \neq 0){
5    z = z - 1;
6    x = x + 6 \cdot y - n;
7    y = y + 1;
8    }
9    return x + y;
10 }
```

(b) Program 2 (with completion)

Strict Equivalence

Program equivalence posed as a relational property.

Strict Equivalence

Program equivalence posed as a relational property.

Relational Synthesis for Program Equivalence

$$\exists \mathcal{E}. \ \{\vec{x_1} = \vec{x_2}\} \quad \mathcal{P}_1^{[\mathcal{E}.H]}, \mathcal{P}_2^{[\mathcal{E}.G]} \quad \{\mathcal{P}_1^{[\mathcal{E}.H]}(\vec{x_1}) = \mathcal{P}_2^{[\mathcal{E}.G]}(\vec{x_2})\}$$

Strict Non-Interference

Given public inputs, $(\vec{x_1}, \vec{x_2})$ and secret inputs (s_1, s_2) , program (\mathcal{P}) does not reveal any information about the secret inputs.

$$\exists \mathcal{E}. \ \{\vec{x_1} = \vec{x_2}\} \ \mathcal{P}^{[\mathcal{E}]} \ \ \{\mathcal{P}^{[\mathcal{E}]}(\ s_1\ , \vec{x_1}) = \mathcal{P}^{[\mathcal{E}]}(\ s_2\ , \vec{x_2})\}$$

Weaker Versions

Weak Equivalence

$$\exists \mathcal{E}. \; \{\vec{x_1} = \vec{x_2}\} \; \; \mathcal{P}_1^{[\mathcal{E}.H]}, \mathcal{P}_2^{[\mathcal{E}.G]} \; \{||\mathcal{P}_1^{[\mathcal{E}.H]}(\vec{x_1}) - \mathcal{P}_2^{[\mathcal{E}.G]}(\vec{x_2})|| \leq c\}$$

Weak Non-Interference

$$\exists \mathcal{E}. \ \{\vec{x_1} = \vec{x_2}\} \ \mathcal{P}^{[\mathcal{E}]} \ \{||\mathcal{P}^{[\mathcal{E}]}(s_1, \vec{x_1}) - \mathcal{P}^{[\mathcal{E}]}(s_2, \vec{x_2})|| \le c\}$$

Robustness

Small changes in the inputs must not lead to large difference in the responses of the program, \mathcal{P} .

$$\exists \mathcal{E}. \ \{||\vec{x_1} - \vec{x_2}|| \le d_1\} \ \mathcal{P}^{[\mathcal{E}]} \ \ \{||\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}) - \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})|| \le f(\vec{x_1}, \vec{x_2})\}$$

Group Fairness

Program, \mathcal{P} must not use the *sensitive attribute* (s) to be unfair to the minority population.

$$\exists \mathcal{E}. \{s_1 \leq s_2 \land \vec{x_2} \sqsubseteq \vec{x_1}\} \mathcal{P}^{[\mathcal{E}]} \{\mathcal{P}^{[\mathcal{E}]}(\vec{x_2}, s_2) \leq \mathcal{P}^{[\mathcal{E}]}(\vec{x_1}, s_1)\}$$

Monotonicity

For any two executions of the program, \mathcal{P} , if the inputs are ordered, so must be the outputs.

$$\exists \mathcal{E}. \ \{\vec{x_1} \sqsubseteq \vec{x_2}\} \ \mathcal{P}^{[\mathcal{E}]} \ \ \{\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}) \sqsubseteq \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})\}$$

Quantitative objectives on the synthesis problem that defines the *preference* among the feasible completions, \mathcal{E} .

Quantitative objectives on the synthesis problem that defines the *preference* among the feasible completions, \mathcal{E} .

Quantitative Objective, Γ

$$\Gamma(~\mathcal{P}_1^{[\mathcal{E}.H]}(\vec{x_1}),~\mathcal{P}_2^{[\mathcal{E}.H]}(\vec{x_2})~)$$

Quantitative objectives on the synthesis problem that defines the *preference* among the feasible completions, \mathcal{E} .

Quantitative Objective, Γ

$$\Gamma(\mathcal{P}_1^{[\mathcal{E}.H]}(\vec{x_1}), \mathcal{P}_2^{[\mathcal{E}.H]}(\vec{x_2}))$$

The most preferred completion can be found by **minimizing** the quantitative objective.

The ordering relation $\mathcal E$ is a partial order over the completions, defined by the relation, \sqsubseteq , and the *strict* ordering \sqsubseteq

The ordering relation $\mathcal E$ is a partial order over the completions, defined by the relation, \sqsubseteq , and the *strict* ordering \sqsubseteq

Dominance

A completion \mathcal{E}' dominates a completion \mathcal{E} if the value of Γ score with \mathcal{E}' is smaller or equals to \mathcal{E} across all input pairs $\langle \vec{x_1}, \vec{x_2} \rangle$

The ordering relation $\mathcal E$ is a partial order over the completions, defined by the relation, \sqsubseteq , and the *strict* ordering \sqsubseteq

Dominance

A completion \mathcal{E}' dominates a completion \mathcal{E} if the value of Γ score with \mathcal{E}' is smaller or equals to \mathcal{E} across all input pairs $\langle \vec{x_1}, \vec{x_2} \rangle$

Strict Dominance

Additionally requires the existence of at least one input-pair where the Γ score of \mathcal{E}' is strictly smaller than that of \mathcal{E}

Objective Function for different Relational Properties.

Monotonicity, Robustness, Weak Non-Interference, Weak Equivalence

Completions that minimize the distance between any two responses of the program.

$$\Gamma(\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}), \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})) \stackrel{\Delta}{=} ||\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}) - \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})||$$

Objective Function for different Relational Properties.

Monotonicity, Robustness, Weak Non-Interference, Weak Equivalence

Completions that minimize the distance between any two responses of the program.

$$\Gamma(\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}), \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})) \stackrel{\Delta}{=} ||\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}) - \mathcal{P}^{[\mathcal{E}]}(\vec{x_2})||$$

Group Fairness

Prefer completions where the deviation in responses between candidates of two populations is small for similar candidates.

$$\Gamma(\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}, s_1), \mathcal{P}^{[\mathcal{E}]}(\vec{x_2}, s_2)) \stackrel{\Delta}{=} \text{if } (s_1 < s_2 \land \vec{x_1} \sim \vec{x_2})$$

then $||\mathcal{P}^{[\mathcal{E}]}(\vec{x_1}, y_1) - \mathcal{P}^{[\mathcal{E}]}(\vec{x_2}, y_2)||$ else 0

Monotonicity Example

```
1 // PRE: (a_2 < a_1 \land b_2 > b_1)
2 int \mathcal{P}^{[\cdot]} (int a, int b){
3 assume((0 < a) && (a < b));
4 while (a < b) {
5 c = c + [\cdot];
6 a = a + 1;
7 }
8 return c;
9 }
10 // POST: (c_2 > c_1)
```

Monotonicity Example: Product Program

```
int \mathcal{P}^{[\cdot]} (int a_1, int b_1, int a_2, int b_2){
3
        assume((0 < a_1) && (a_1 < b_1));
        assume((0 < a_2) && (a_2 < b_2));
        assume((a_2 < a_1) \&\& (b_2 > b_1));
        int c_1 = 0, c_2 = 0;
        while (a_1 < b_1) \mid (a_2 < b_2) ) {
             if (a_1 < b_1) {
                 c_1 = c_1 + \ \vdots;
a_1 = a_1 + 1;
10
11
12
             if ((a_2 < b_2)) {
13
                 14
15
16
17
18
        return c_1, c_2;
19 }
```

Tool Architecture

Monotonicity Example: First Completion

```
1 // PRE: (a_2 < a_1 \wedge b_2 > b_1)
2 int \mathcal{P}^{[.]} (int a, int b){
3 assume((0 < a) && (a < b));
4 while (a < b) {
5 c = c + b;
6 a = a + 1;
7 }
8 return c;
9 }
10 // POST: (c_2 > c_1)
```

QBSynth

Monotonicity Example: Second Completion

```
1 // PRE: (a_2 < a_1 \land b_2 > b_1)
2 int \mathcal{P}^{[.]} (int a, int b){
3 assume((0 < a) && (a < b));
4 while (a < b) {
5 c = c + \boxed{1};
6 a = a + \boxed{1};
7 }
8 return c;
9 }
10 // POST: (c_2 > c_1)
```

QBSynth

Monotonicity Example: Third Completion

```
1 // PRE: (a_2 < a_1 \land b_2 > b_1)
2 int \mathcal{P}^{[.]} (int a, int b){
3 assume((0 < a) && (a < b));
4 while (a < b) {
5 c = c + (b - c) + 1];
6 a = a + 1;
7 }
8 return c;
9 }
10 // POST: (c_2 > c_1)
```


Experiments

- RQ1. Relational synthesis without quantitative objectives
- RQ2. Relational synthesis with quantitative objectives

Experiments

Grammar to describe the expressions to be instantiated for the holes in the program sketches; $\langle var \rangle$ and $\langle num \rangle$ refer to program variables and numbers respectively.

Experiments

Grammar to describe the expressions to be instantiated for the holes in the program sketches; $\langle var \rangle$ and $\langle num \rangle$ refer to program variables and numbers respectively.

Domain Specific Language

$$E ::= E + E \mid E - E \mid E * E \mid \langle \mathtt{var} \rangle \mid \langle \mathtt{num} \rangle$$

Instances without quantitative objectives.

Bench	Property	Time(s)
b26	Strict Equivalence	4
b10	Strict Equivalence	3
b18	Strict Equivalence	2
b16	Strict Equivalence	1
b21	Strict Equivalence	3
b27	Strict Equivalence	4
b04	Strict Equivalence	3
b34	Strict Equivalence	10
b05	Strict Equivalence	7
nonintf01	Strict Non-Interference	7
nonintf02	Strict Non-Interference	8
nonintf05	Strict Non-Interference	6

Instances with quantitative objectives

Bench	Property	Time(s)	Best?
mono01	Monotonicity	329	V
mono02	Monotonicity	311	✓
mono02	Monotonicity	310	V
weak01	Weak Equivalence	210	V
weak02	Weak Equivalence	198	V
weak03	Weak Equivalence	128	V
weak04	Weak Equivalence	168	✓
robust01	Robustness	95	V
robust02	Robustness	102	V
fair01	Group Fairness	82	V
nonintf03	Weak Non-Interference	70	V
nonintf04	Weak Non-Interference	75	V

Conclusion & Future Directions

New Synthesis Problem!

Relational synthesis with semantic quantitative objectives—and designed an algorithm to solve the same.

Conclusion & Future Directions

New Synthesis Problem!

Relational synthesis with semantic quantitative objectives—and designed an algorithm to solve the same.

Conclusion

- QRS instantiates this algorithm and solves non-trivial problems in a reasonable time.
- Our solutions are optimal only for a k-bounded setting, however, we do achieve the globally optimal completions (empirically) for all benchmarks in our suite.

Conclusion & Future Directions

New Synthesis Problem!

Relational synthesis with semantic quantitative objectives—and designed an algorithm to solve the same.

Conclusion

- QRS instantiates this algorithm and solves non-trivial problems in a reasonable time.
- Our solutions are optimal only for a k-bounded setting, however, we do achieve the globally optimal completions (empirically) for all benchmarks in our suite.

Future Directions

- Synthesis for global optimality.
- Synthesis problems for those beyond 2-safety.

Thank You!

Questions?