

Tipo de Prova	Ano letivo	Data
Exame de recurso	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	1H:30M	

Observações:

- Preencha todo o cabeçalho da folha(s) de teste: nome completo do estudante, número do estudante, data da realização da prova de avaliação, nome da unidade curricular e nome do curso de licenciatura.
- Os estudantes deverão colocar em cima da mesa onde irão realizar a prova de avaliação o seu cartão de estudante ou outro cartão que os identifique.
- Os estudantes deverão colocar em cima da mesa para a realização da prova de avaliação, salvo indicação em contrário pelo docente, apenas os seguintes materiais, caneta, lápis, borracha. Todo o restante material deverá ser colocado debaixo da mesa.
- Os estudantes não deverão sair da sala de exame sem terem assinado a folha de presenças no caso de um exame final ou de passar o cartão de estudante na máquina de registo de presenças no caso de um momento de avaliação que não exame final.
- Os estudantes só podem sair da sala ao fim de 30 minutos depois do início da prova.
- Caso um estudante queira desistir deverá escrever na folha de exame "Desisto" e colocar por baixo a sua assinatura.
- Apresente a resolução desta prova apenas na(s) folha(s) fornecida(s) para esse fim.
- Justifique convenientemente todas as respostas.
- Qualquer estudante que necessite de mais folhas de teste ou mais folhas de rascunho deverá solicitar as mesmas ao docente.
- Quando um estudante solicitar uma nova folha de teste não deverá esquecer-se de no cabeçalho atualizar o número de folhas de teste. Cada folha de teste é constituída por quatro páginas, assim o número de folhas é 1/1. Caso o estudante solicite nova folha de teste o número de folhas a indicar na primeira folha será 1/2 e na segunda folha 2/2. Para não haver engano na contagem este parâmetro do cabeçalho deve apenas ser preenchido aquando da conclusão da prova de avaliação.
- Não é permitido o uso de qualquer dispositivo eletrónico, tais como por exemplo, máquina de calcular, salvo indicação em contrário, dada pelo docente responsável da unidade curricular.
- Não é permitido o uso de qualquer documentação além da indicada/fornecida pelo docente.
- Na altura da entrega da prova pelo estudante, este deve entregar tudo o que lhe foi entregue pelo docente, folha de teste, folha de rascunho, enunciado, folhas de apoio, etc.

ESTGF-PR05-Mod013V1 Página 1 de12

Tipo de Prova	Ano letivo	Data
Exame de recurso 2017/		xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	1H:30M	

Grupo I

(Resposta correta = 100%; Resposta errada = - 25%; Resposta em branco = 0%)

1.

O código BCD natural é baseado nas primeiras:

- a) Dezasseis combinações do código binário
- b) Vinte combinações do código binário
- c) Cinco combinações do código binário
- d) Nenhuma das anteriores

Cotação: 2 valores

2.

Os circuitos sequenciais são circuitos lógicos, segundo os quais, os valores das suas saídas:

- a) Dependem exclusivamente dos valores apresentados nas entradas num determinado momento, mas também dos valores que já estavam presentes anteriormente nas suas saídas
- b) Dependem exclusivamente dos valores apresentados nas entradas num determinado momento e da sua constituição interna
- Dependem exclusivamente dos valores apresentados nas entradas num determinado momento, mas também dos valores que já estavam presentes anteriormente nas suas saídas e ainda da sua constituição interna
- d) Nenhuma das anteriores

Cotação: 2 valores

3.

Os microprogramas são:

- a) Os responsáveis apenas pela execução das diversas etapas de manipulação de dados
- b) Os responsáveis pela execução das diversas etapas de manipulação de dados e transferências entre registos
- c) Os responsáveis apenas pela execução das diversas etapas de transferência entre registos
- d) Nenhuma das anteriores

Cotação: 2 valores

4.

O registo Instruction Register:

ESTGF-PR05-Mod013V1 Página 2 de12

D	DO	דכו	

Tipo de Prova	Ano letivo	Data
Exame de recurso 2017/		xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	1H:30M	

- a) Contém a instrução que está a ser executada pelo processador
- b) Contém o endereço da próxima instrução armazenada em memória a ser executada
- c) É um apontador para uma zona reservada da memória denominada Stack
- d) Nenhuma das anteriores

Cotação: 2 valores

5.

Uma interrupção externa:

- a) É uma exceção gerada por um programa
- b) É usada para transferir o controlo para o sistema operativo
- c) É gerada por um dispositivo I/O
- d) Nenhuma das anteriores

Cotação: 2 valores

6.

Barramentos:

- a) São o conjunto de fios condutores para colocar informação nesses mesmos fios
- b) São o conjunto de fios condutores e regras para colocar e retirar informação desses mesmos fios
- c) São o conjunto de fios condutores para colocar e retirar informação desses mesmos fios
- d) Nenhuma das anteriores

Cotação: 2 valores

7.

Num disco magnético, o tempo necessário para mover a cabeça de leitura/escrita (quando a cabeça de leitura é móvel) para a pista correta, denomina-se por:

- a) Seek Time
- b) Latência rotacional
- c) Tempo de transferência
- d) Nenhuma das anteriores

Cotação: 2 valores

8.

Na multiplicação de números binários, quando se executa repetidamente operações de shift e adição ou

ESTGF-PR05-Mod013V1 Página 3 de12

	P.PORTO	Tipo de Prova Exame de recurso	Ano letivo 2017/2018	Data xx-xx-2018
		Curso Licenciatura em Engenharia Informática / Licenciatura em Segurança Informática em Redes de Computadores		Hora xx:xx
		Unidade Curricular		Duração

subtração, estar	nos a utilizar a técnica de:	
a)	Deslocar e somar	
b)	Adicionar repetidas vezes	
c)	Algoritmo de Booth	
d)	Nenhuma das anteriores	
		Cotação: 2 valores

Sistemas Digitais e Arquitetura de Computadores

1H:30M

Grupo II

9.
Projete um circuito que implemente a seguinte função lógica F, $F = X.Y + Y.\bar{Z} + \bar{X}.Z$, utilizando um
multiplexer de quatro entradas de informação. (Mantenha a seguinte ordem das variáveis X, Y e Z. Caso seja
necessário descartar alguma variável, descarte a variável Z.)
Cotação: 2 valores

10. Elabore um programa que coloque dois bytes em hexadecimal, A9H e 7BH, nos registos B e C, e calcule a respetiva soma. Se a soma for maior que 8 bits, ou seja, se produzir carry, então coloque o número 00H no porto PORT2, cujo endereço é 02H, e na posição de memória 1080H. Caso contrário, guarde a soma apenas na posição de memória 1080H. Cotação: 2 valores

Instruções do microprocessador da INTEL 8085

Nomenclatura:

	Legenda
pr	Par de registos: HL, BC, DE, SP, PC
reg	Registo: A, B, C, D, E, H, L

ESTGF-PR05-Mod013V1 Página 4 de12

Tipo de Prova	Data	
Exame de recurso 2017/2018		xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	1H:30M	

М	Posição de memória
addr	Endereço de 16 bits de uma posição de memória
х	O bit do registo de flags é afetado
byte	Constante, ou expressão lógica/aritmética que representa um dado de 8 bits
double	Constante, ou expressão lógica/aritmética que representa um dado de 16 bits
	Conteúdo do que se encontra dentro de parênteses retos
[[]]	Conteúdo do conteúdo do que se encontra dentro de parênteses retos
CS	Flag de carry
label	Endereço de uma posição de memória
port	Endereço de um dispositivo I/O

Grupo de transferência de dados

			ıs do re	gisto	de fla	gs	
Instrução	Operandos	CS	AC	Z	S	Р	Operação realizada
LDAX	pr						$[A] \leftarrow [[pr]]$ Load A using implied addressing by BC (pr=B) or DE (pr=D)
STAX	pr						[[pr]] ← [A] Store A using implied addressing by BC (pr=B) or DE (pr=D)
MOV	r,M						$[r] \leftarrow [[HL]]$ Load any register using implied addressing by HL
MOV	M,r						[[HL]] ← [r] Store any register using implied addressing by HL

ESTGF-PR05-Mod013V1 Página 5 de12

Tipo de Prova	Data	
Exame de recurso	xx-xx-2018	
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
Sistemas Digitais e Arquitetura de Computadore	1H:30M	

LDA	addr	[A] ← [addr] Load A using direct addressing
STA	addr	[addr] ← [A] Store A using direct addressing
LHLD	addr	[L] ← [addr] and [H] ← [addr+1] Load H and L registers using direct addressing
SHLD	addr	[addr] ← [L] and [addr+1] ← [H] Store H and L registers using direct addressing
MOV	r,r	$[r] \leftarrow [r]$ Move any register to any register
XCHG		$[D] \leftarrow \rightarrow [H]$ and $[E] \leftarrow \rightarrow [L]$ Exchange DE with HL
SPHL		[HL] ← [SP] Move HL to SP
LXI	pr,double	$[pr] \leftarrow$ double Load 16 bits immediate data into BC (pr=B), DE (pr=D), HL (pr=H), SP (pr=SP)
MVI	M,byte	[[HL]] ← byte Load 8 bit immediate data into memory location with implied addressing by HL
MVI	r,byte	[r] ← byte Load 8 bit immediate data into any register

Grupo aritmético, lógico e de rotação

			ıs do re	gisto (de fla	gs	
Instrução	Instrução Operandos CS AC 2	Z	S	Р	Operação realizada		
ADD	М	x	x	x	x	x	[A] ← [A] + [[HL]] Add register A with implied addressing by HL and store the result in register A
ADC	М	x	x	x	x	x	[A] ← [A] + [[HL]] + [CS] Add register A with carry with implied addressing by HL and store the result in register A
SUB	М	x	x	x	x	x	$[A] \leftarrow [A] - [[HL]] \\$ Subtract register A with implied addressing by HL and store the result in register A
SBB	М	x	x	x	x	x	$[A] \leftarrow [A] - [[HL]] - [CS] \\$ Subtract register A with carry with implied addressing by HL and store the result in register A

ESTGF-PR05-Mod013V1 Página 6 de12

Tipo de Prova	Ano letivo	Data
Exame de recurso	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular	Duração	
l Sistemas Digitais e Arquitetura de Computadore	25	1H:30M

ANA	М	0	1	x	x	x	$[A] \leftarrow [A] \ AND \ [[HL]] \\ AND \ between \ register \ A \ with \ implied \ addressing \ by \ HL \ and \ store \ the \ result \ in \ register \ A$
XRA	М	0	0	x	x	x	[A] ← [A] XOR [[HL]] Exclusive-OR between register A with implied addressing by HL and store the result in register A
ORA	М	0	0	x	x	x	$[A] \leftarrow [A] \ OR \ [[HL]]$ OR between register A with implied addressing by HL and store the result in register A
СМР	М	x	x	x	x	x	[A] – [[HL]] Compare register A with implied addressing by HL If register A < [[HL]] than the carry flag is set (1) If register A = [[HL]] than the zero flag is set (1) If register A > [[HL]] than the carry and zero flags are reset (0)
INR	М	x	х	x	x	x	[[HL]] ← [[HL]] + 1 Increment memory
DCR	М	x	х	x	x	x	[[HL]] ← [[HL]] -1 Decrement memory
ADI	byte	x	x	x	x	x	[A] ← [A] + byte Add register A with 8 bit immediate data and store the result in register A
ACI	byte	x	x	x	x	x	[A] ← [A] + byte + [CS] Add register A with 8 bit immediate data with carry and store the result in register A
SUI	byte	x	x	x	x	x	[A] ← [A] – byte Subtract register A with 8 bit immediate data and store the result in register A
SBI	byte	x	х	x	x	x	[A] ← [A] - byte - [CS] Subtract register A with 8 bit immediate data with carry and store the result in register A
ANI	byte	0	1	x	x	x	[A] \leftarrow [A] AND byte AND between register A with 8 bit immediate data and store the result in register A
XRI	byte	0	0	x	x	x	[A] ← [A] XOR byte Exclusive-OR between register A with 8 bit immediate data and store the result in register A
ORI	byte	0	0	x	x	x	[A] \leftarrow [A] OR byte OR between register A with 8 bit immediate data and store the result in register A
СРІ	byte	x	x	x	x	x	[A] — byte Compare register A with 8 bit immediate data If register A < byte than the carry flag is set (1) If register A = byte than the zero flag is set (1) If register A > byte than the carry and zero flags are reset (0)
ADD	r	x	x	x	x	x	$[A] \leftarrow [A] + [r]$ Add register A with any register and store the result in register A
ADC	r	x	x	x	x	х	[A] \leftarrow [A] + [r] + [CS] Add register A with any register with carry and store the result in register A

ESTGF-PR05-Mod013V1 Página 7 de12

Tipo de Prova	Ano letivo	Data
Exame de recurso	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	ciatura em	Hora xx:xx
Unidade Curricular	_	Duração
Sistemas Digitais e Arquitetura de Computadore	· C	1H:30M

SUB	r	x	х	x	x	x	$[A] \leftarrow [A] - [r]$ Subtract register A with any register and store the result in register A
SBB	r	x	x	x	x	x	$[A] \leftarrow [A] - [r] - [CS]$ Subtract register A with any register with carry and store the result in register A
ANA	r	0	1	x	x	x	$[A] \leftarrow [A] \text{ AND } [r]$ AND between register A with any register and store the result in register A
XRA	r	0	0	x	x	x	[A] ← [A] XOR [r] Exclusive-OR between register A with any register and store the result in register A
ORA	r	0	0	x	x	x	[A] \leftarrow [A] OR [r] OR between register A with any register and store the result in register A
СМР	r	x	x	x	x	x	[A] – [r] Compare register A with any register If register A < r than the carry flag is set (1) If register A = r than the zero flag is set (1) If register A > r than the carry and zero flags are reset (0)
INR	r		x	x	x	x	$[r] \leftarrow [r] + 1$ Increment any register
DCR	r		х	x	x	x	$[r] \leftarrow [r] - 1$ Decrement any register
СМА							[A] ← [Ā] Complement register A
DAA		x	x	x	x	x	The contents of the accumulator are changed from a binary value to two 4-bit binary coded decimal (BCD) digits. This is the only instruction that uses the auxiliary flag (AC) to perform the binary to BCD conversion, and the conversion procedure is described below. If the value of the low-order 4-bits in the accumulator is greater than 9 or if AC flag is set (1), the instruction adds 6 to the low-order four bits. If the value of the high-order 4-bits in the accumulator is greater than 9 or if the Carry flag (CS) is set (1), the instruction adds 6 to the high-order four bits.
RLC		х					Each binary bit of the register accumulator is rotated left by one position. Bit D7 is placed in the position of D0 as well as in the Carry flag. The carry flag (CS) is modified according to bit D7. Register accumulator MSB LSB x D7 D6 D5 D4 D3 D2 D1 D0
RRC		x					Each binary bit of the register acumulator is rotated right by one position. Bit D0 is placed in the position of D7 as well as in the Carry flag. The carry flag (CS) is modified according to bit D0. Register acumulator MSB LSB x D7—D6—D5—D4—D3—D2—D1—D0

ESTGF-PR05-Mod013V1 Página 8 de12

Tipo de Prova	Ano letivo	Data						
Exame de recurso	2017/2018	xx-xx-2018						
Curso		Hora						
Licenciatura em Engenharia Informática / Licen	ciatura em	1						
Segurança Informática em Redes de Computadores xx:xx								
Unidade Curricular		Duração						
Sistemas Digitais e Arquitetura de Computadores 1H:30M								

Grupo de controlo e de salto

In atura a	Operandos	Statu	s do re	gisto	de fla	gs	Onormaño vontinuda
Instrução	Operandos	CS	AC	Z	S	P	Operação realizada
JMP	label						[PC] ← label Jump to instruction at address label
PCHL							[PC] ← [HL] Jump to instruction at address contained in HL
CALL	label						[[SP]] ← [PC] , [PC] ← label, [SP] ← [SP] – 2 Jump to subrotine starting at address label
СС	label						[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the carry flag (CS) equal to 1
CNC	label						[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the carry flag (CS) equal to 0

ESTGF-PR05-Mod013V1 Página 9 de12

	Data
2017 /2010	
2017/2018	xx-xx-2018
atura em es	Hora xx:xx
	Duração 1H:30M
at	tura em

CZ	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the zero flag (Z) equal to 1
CNZ	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the zero flag (Z) equal to 0
СР	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the sign flag (S) equal to 0
СМ	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the sign flag (S) equal to 1
СРЕ	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the parity flag (P) equal to 1
СРО	label			[[SP]] \leftarrow [PC] , [PC] \leftarrow label, [SP] \leftarrow [SP] $-$ 2 Jump to subrotine starting at address label if the parity flag (P) equal to 0
RET				[PC] ← [[SP]] , [SP] ← [SP] + 2 Return from subrotine
RC				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the carry flag (CS) equal to 1
RNC				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the carry flag (CS) equal to 0
RZ				[PC] ← [[SP]] , [SP] ← [SP] + 2 Return from subrotine if the zero flag (Z) equal to 1
RNZ				[PC] ← [[SP]] , [SP] ← [SP] + 2 Return from subrotine if the zero flag (Z) equal to 0
RM				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the sign flag (S) equal to 0
RP				$[PC] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Return from subrotine if the sign flag (S) equal to 1
RPE				[PC] ← [[SP]] , [SP] ← [SP] + 2 Return from subrotine if the parity flag (P) equal to 1
RPO				[PC] ← [[SP]] , [SP] ← [SP] + 2 Return from subrotine if the parity flag (P) equal to 0
JC	label			[PC] ← label Jump to instruction at address label if the carry flag (CS) equal to 1
JNC	label			[PC] ← label Jump to instruction at address label if the carry flag (CS) equal to 0

ESTGF-PR05-Mod013V1 Página 10 de12

Tipo de Prova	Ano letivo	Data							
Exame de recurso	2017/2018	xx-xx-2018							
Curso	Hora								
Licenciatura em Engenharia Informática / Licen	ciatura em								
Segurança Informática em Redes de Computadores									
Unidade Curricular	Duração								
Sistemas Digitais e Arquitetura de Computadore	25	1H:30M							

JZ	label			PC] ← label ump to instruction at address label if the zero flag (Z) equal to 1
JNZ	label			PC] ← label Ump to instruction at address label if the zero flag (Z) equal to 0
JP	label			PC] ← label Ump to instruction at address label if the sign flag (S) equal to 0
JM	label			PC] ← label ump to instruction at address label if the sign flag (S) equal to 1
JPE	label		-	PC] ← label ump to instruction at address label if the parity flag (P) equal to 1
JPO	label		-	PC] ← label ump to instruction at address label if the parity flag (P) equal to 0
RST	n		lo wi so lo Ins RS RS RS RS	ST 1 0008H ST 2 0010H ST 3 0018H ST 4 0020H ST 5 0028H ST 6 0030H

Grupo de controlo do CPU, I/O e da Pilha

Instrução	Operandos	Status do registo de flags					Onorma andianda
		CS	AC	Z	S	Р	Operação realizada
IN	port						[A] ← [port] Input to register acumulator (A) from I/O port
OUT	port						[port] ← [A] Ouput from register acumulator (A) to I/O port
PUSH	pr						[[SP]] \leftarrow [pr] , [SP] \leftarrow [SP] $-$ 2 Push register pair BC (pr=B), DE (pr =D), H (pr=HL), PSW (pr=PSW) contentes onto stack
POP	pr						$[pr] \leftarrow [[SP]]$, $[SP] \leftarrow [SP] + 2$ Pop stack into register pair BC (pr=B), DE (pr =D), H (pr=HL), PSW (pr=PSW)
XTHL							[HL] ← [[SP]] Exchange HL with top of stack

ESTGF-PR05-Mod013V1 Página 11 de12

Tipo de Prova	Ano letivo	Data
Exame de recurso	2017/2018	xx-xx-2018
Curso Licenciatura em Engenharia Informática / Licen Segurança Informática em Redes de Computado	Hora xx:xx	
Unidade Curricular Sistemas Digitais e Arquitetura de Computadore	95	Duração 1H:30M

EI		Enable interrupts following execution of next instruction
DI		Disable interrupts
SIM		Set interrupt mask
RIM		Read interrupt mask
NOP		[PC] ← $[PC] + 1No operation but program counter (PC) is incremented$
HLT		HALT Stop CPU operation

ESTGF-PR05-Mod013V1 Página 12 de12