Optimization and Computational Linear Algebra for Data Science Midterm review problems

Problem 0.1. Let $A, B \in \mathbb{R}^{n \times n}$. For each the following subset of \mathbb{R}^n below, say whether it is a subspace of \mathbb{R}^n and justify your answer:

- 1. $E_1 = \{x \in \mathbb{R}^n \mid Ax = 0\}.$
- 2. $E_2 = \{x \in \mathbb{R}^n \mid Ax = Bx\}.$
- 3. $E_3 = \{x \in \mathbb{R}^n \mid Ax = e_1\}.$
- 4. $E_4 = \{x \in \mathbb{R}^n \mid Ax \in \text{Span}(e_1)\}.$

Problem 0.2. True or False: There exists matrices $M \in \mathbb{R}^{2\times 3}$ such that $\dim(\operatorname{Ker}(M)) = 1$ and $\operatorname{rank}(M) = 2$.

Problem 0.3. Let n > m and $A \in \mathbb{R}^{n \times m}$. Assume that A has "full rank", meaning that $\operatorname{rank}(A) = \min(n, m) = m$.

- 1. Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example)
- 2. Can there exists two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

Problem 0.4. Let n < m and $A \in \mathbb{R}^{n \times m}$. Assume that A has "full rank", meaning that $\operatorname{rank}(A) = \min(n, m) = n$.

- 1. Does Ax = b has a solution for all $b \in \mathbb{R}^n$? (Prove or give a counter example)
- 2. Can there exists two vectors $x \neq x'$ such that Ax = Ax'? (Prove or give a counter example).

Problem 0.5. True or False: There exists a family of k non-zero orthogonal vectors of \mathbb{R}^n , for some k > n.

Problem 0.6. Let $A \in \mathbb{R}^{n \times m}$.

- 1. Prove that $Ker(A^{\mathsf{T}})$ and Im(A) are orthogonal to each other, i.e. that for all $x \in Ker(A^{\mathsf{T}})$ and $y \in Im(A)$ we have $x \perp y$.
- 2. Show that $Ker(A^{\mathsf{T}}) = Im(A)^{\perp}$.

Problem 0.7. True or False: The matrix of an orthogonal projection is symmetric.

Problem 0.8. True or False: The matrix of an orthogonal projection is orthogonal.

Problem 0.9. Let S be a subspace of \mathbb{R}^n and let P_S be the orthogonal projection onto S. Show that $\dim(S) = \operatorname{Tr}(P_S)$.

Problem 0.10. True or False: Let $A, B \in \mathbb{R}^{n \times n}$. Assume that $v \in \mathbb{R}^n$ is an eigenvector of A and B.

- 1. Is v an eigenvector of A + B?
- 2. Is v an eigenvector of AB?

Problem 0.11. Let $A \in \mathbb{R}^{n \times n}$ and let $v_1, v_2 \in \mathbb{R}^n$ be two eigenvectors of A, associated with the same eigenvalue λ .

Show that any non-zero eigenvector in $Span(v_1, v_2)$ is an eigenvector of A, associated with λ .

Problem 0.12. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Let (v_1, v_2, \dots, v_n) be an orthonormal family of eigenvectors of A, associated to the eigenvalues $\lambda_1, \dots, \lambda_n$. Give an orthonormal basis of Ker(A) and Im(A) in terms of the v_i 's.

Problem 0.13. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, that satisfies $A^2 = \text{Id}$. Show that the matrix

$$M = \frac{1}{2}(A + \mathrm{Id})$$

is the matrix of an orthogonal projection.

Problem 0.14. Let $\rho \in (0,1)$. Let $v_1, \ldots, v_k \in \mathbb{R}^n$ such that

$$||v_i|| = 1$$
 and $\langle v_i, v_j \rangle = \rho$ for all $i \neq j$.

Show that $k \leq n$.

