Лекция 4

Продолжение примеров

1. $C_p[a,b] = \{ f \in C[a,b] \}$

$$||f||_{C_p[a,b]} = ||f||_p = \left(\int_a^b |f(x)| \, dx\right)^{\frac{1}{p}}, \quad p \geqslant 1.$$

Это норма:

- Не меньше нуля
- $||f|| = 0 \iff f = 0$
- $\|\lambda f\| = |\lambda| \cdot \|f\|$
- Неравенство треугольника $||f|| + ||g|| \ge ||f + g||$ (сейчас доказывать не будем)

Эта норма не полная. Но есть процедура пополнения.

Theorem 1 (без доказательства)). (X, ρ) — метрическое пространство. Тогда $\exists ! (Y, \tilde{\rho})$ полное метрическое пространство, такое что

- $\begin{array}{ll}
 (b) & \rho = \tilde{\rho} \mid_{X \times X} \\
 (c) & Y = dX
 \end{array}$

Такое пространство пополняется до $L_p(a, b)$.

2. $l_p = \{x = (x_1, ...) \mid x_j \in \mathbb{R}, \exists \lim_{n \to \infty} \sum_{j=1}^n |x_j|^p \},$ $p\geqslant 1$ Такое пространство тоже нормиро-

$$||x||_{\rho} = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}.$$

 $Practice. \ l_p$ полно

Note. В бесконечномерных нормированных пространствах компактность не равносильна замкнутости и конечности. Верно только в правую сторону.

• l_p . Возьмем шар $B = \{x \in l_p \mid ||x|| \leq 1\}$

$$e^{1} = (1, 0, 0, ...)$$

 $e^{2} = (0, 1, 0, 0, ...)$
 \vdots
 $e^{k} = (\underbrace{0, ...0}_{k-1}, 1, 0, ...)$

Practice. Проверить не компактность $B = \{f \in C[a,b] \mid \|f\| = 1\}$ в C[a,b].

0.1Сжимающие отображения 6 march

Definition 1

(X,
ho) — метрическое пространство. U: X o X. U называется сжимающим отображением, если

$$\forall \gamma < 1 \ \forall x_1, x_2 \in X \colon \rho(U(x_1), U(x_2)) \leqslant \gamma \rho(x_1, x_2).$$

Theorem 2 (Принцип сжимающих отображений). (X, ρ) *полно.*

- 1. $U-сжимающее отображение \Longrightarrow \exists !x_* \colon U(x_1)=x_*-$ неподвижная точка
- 2. Если $\exists N : U^N c$ жимающее отображение $\Longrightarrow \exists ! x_* : U(x_* = x_*)$

Доказательство.

1. Рассмотрим траекторию точки x_1 .

$$x_1, x_2 = U(x_1), x_3 = U(x_2), \dots x_n = U(x_{n-1}).$$

$$\rho(x_{n+1}, x_n) \leqslant \gamma \rho(x_n, x_{n-1}) \leqslant$$

$$\gamma^2 \rho(x_{n-1}, x_{n-2}) \leqslant$$

$$\dots$$

$$\leqslant \gamma^{n-1} \rho(x_2, x_1) = \gamma^{n-1} d$$

Тогда по неравенству треугольника

$$\forall m > n \colon \rho(x_n, x_m) \leqslant \sum_{k=n-1}^{\infty} \gamma^k d = \gamma^{n-1} d(1 + \gamma + \ldots) = \frac{\gamma^{n-1} d}{1 - \gamma} \longrightarrow 0.$$

Следовательно, $\{x_n\}$ фундаментальна. Так как наше пространство полно, существует предел этой последовательности. $U(x_n) = x_{n+1}$. Первое стремиться к $U(x_*)$, второе — к x_* .

Единственность следует из того, что иначе мы можем уменьшить расстояние между двумя фиксированными неподвижными точками.

2. $\exists x_*$, посмотрим на $U^N(x_*)$. Посмотрим на последовательное применение U несколько раз. На N-ом шаге мы придем в x_* .

Единственность уже доказали.

Example 1 (Обыкновенная линейное дифференциальное уравнение первого порядка).

$$f'(x) + a(x) \cdot f(x) = b(x),$$
 $a, b \in C[0, 1],$ $f(0) = c$

Задача: найти $f \in C^1[0,1]$. То есть доказать, что оно существует и единственна.

$$f(x) = c + \int_0^x (b(t) - a(t)f(t)) dt.$$

Заведем отображение $U: C[0,1] \to C[0,1]$, что $(U(f))(x) = c + \int_0^x \left(b(t) - a(t) f(t) \right) dt$. Хотим найти неподвижную точку отображения U (то есть такую f).

Пусть $(U_0(f))(x) = -\int_0^x a(t)f(t)dt$. Правда ли, что

1.
$$U^n(f) - U^n(g) = U_0^n(f) - U_0^n(g) = U_0^n(f-g)$$

2. $\exists n : U_0^n$ — сжимающее отображение из C[0,1] в C[0,1].

Проверим

1. При n = 1, очевидно.

$$U^{n}(f) - U^{n}(g) = U\left(U^{n-1}(f)\right) - U\left(U^{n-1}(g)\right) =$$

$$= U_{0}\left(U_{0}^{n-1}(f)\right) - U_{0}(U_{0}^{n-1}(g)) =$$

$$= U_{0}\left(U^{n-1}(f) - U^{n-1}(g)\right) =$$

$$= U_{0}\left(U_{0}^{n-1}(f) - U_{0}^{n-1}(g)\right) =$$

$$= U_{0}^{n}(f) - U_{0}^{n}(g)$$

2. $||U_0^n(f-g)||_{\infty} \leq \gamma ||f-g||$

Пусть f-g=h. $\|U_0^n(h)\|_{\infty}=\gamma\|h\|$. Пусть $M=\max|a|,\ \|h\|_{\infty}|h(x)|$.

$$(U_0^1(h))(x) = -\int_0^x a(t_1)h(t_1)dt_1$$

$$(U_0^2(h))(x) = (-1)^2 \int_0^x a(t_2) \left(\int_0^{t_2} a(t_1)h(t_1)dt_1\right)dt_2$$

$$\vdots$$

$$(U_0^n(h))(x) = (-1)^n \int_0^x a(t_n) \int_0^{t_n} (\dots) dt_n$$

Оценим

$$|(U_0^n(h))(x)| \leqslant M^n \cdot ||h||_{\infty} \int_0^x \int_0^{t_n} \int_0^{t_{n-1}} \dots \int_0^{t_1} dt_1 dt_2 \dots dt_n = M^n \cdot ||h||_{\infty} \frac{x^n}{n!}.$$

$$||U_0^n(h)||_{\infty} \leqslant \left(M^n \frac{x^n}{n!}\right) ||h||_{\infty}.$$

Выражение в скобках стремиться к нулю при $n \to \infty$. Значит, U_0^n сжимающее.

Note. На самом деле мы сейчас посчитали объем обрезанного куба.

$$f\in C[0,1]$$
. Так как $f(x)=c+\int_0^x (b(t)-a(t)f(t))dt,\,f\in C^1[a,b]$

Practice. X полно, $U: X \to X$, $\forall x, y : \rho(U(x), U(y)) < \rho(x, y)$.

- 1. Верно ли, что U сжимающее?
- 2. Верно ли, что обязательно есть неподвижная точка?

0.1.1 Линейные и полилинейные непрерывные отображения (операторы)

Definition 2: Линейное отображение

X,Y — линейные пространства над одним полем скаляров (либо \mathbb{R} , либо \mathbb{C}). U:X o Y называется линейным, если

- 1. $\forall x_1, x_2 \in X : U(x_1 + x_2) = U(x_1) + U(x_2)$
- 2. $\forall x \in X, \ \lambda$ скаляр: $U(\lambda x) = \lambda U(x)$

Note. Для экономии университетского мела не пишут скобки у линейный отображений: $U(x_1) = Ux_1$ **Designation.** Hom(X,Y) — множество всех линейных отображений из X в Y.

Definition 3

 $X_1, \dots X_n$ — линейные пространства, Y — линейное пространство над одним скаляром. $U: X_1 \times X_2 \times \dots \times X_n \to Y$ — полилинейное отображение, если оно линейно по каждому из аргументов.

Designation. $\operatorname{Poly}(X_1, \dots X_n, Y)$ — множество всех полилинейных отображений.

Definition 4

Если Y — поле скаляров, линейное отображение $U: X \to Y$ называется линейным функционалом.

Example 2. $X = \{x = (x_1, ...) \mid x_j \in \mathbb{R}, \text{ лишь конечное число отлично от нуля} U: X \to X, x \mapsto (x_1, 2x_2, 3x_3, ...)$

Example 3 (δ -функция). $\delta: C[-1,1] \to \mathbb{R}, \ \delta(f) = f(0).$

Example 4. $U: C[a,b] \to \mathbb{R}, \ Uf = \int_a^b f(x) dx$

Example 5. $U: C[a,b] \to \mathbb{R}, \ Uf(x) = \int_a^x f(t)dt$

Example 6. $U \in \text{Poly}(\underbrace{\mathbb{R}, \mathbb{R}, \dots \mathbb{R}}_{n}; \mathbb{R}), \ U(x_{1}, \dots x_{n}) = x_{1}x_{2}x_{3}\dots x_{n}$

Example 7. $U \in \text{Poly}(\mathbb{R}^n, \mathbb{R}^n; \mathbb{R}), \ U(x, y) = (x, y)$

Example 8. $U \in \text{Poly}(\mathbb{R}^3, \mathbb{R}^3; \mathbb{R}^3), U(x,y) - [x,y]$ — векторное произведение.

Example 9. Определитель, все возможные формы объема.

Example 10. $U_j \in \text{Hom}(X,Y)$. Можно сделать из этого полилинейное $U \in \text{Poly}(X_1,X_2,\ldots,X_n;Y), U(x_1,\ldots x_n)$ $U_1x_1 + U_2x_2 + \ldots U_nx_n$

Example 11. $U: C^1[a,b] \to C[a,b], \ Uf = f'$

Theorem 3 (Эквивалентные условия непрерывности линейного отображения). X, Y — линейный нормированные пространства с одним полем скаляров, $U \in \text{Hom}(X,Y)$. Следующие утвержения эквивалентны:

- 1. U непрерывно
- 2. U непрерывно в 0
- 3. $\exists C \ \forall x \in X \colon ||Ux||_Y \leqslant C||x||_X$

Definition 5

U — непрерывное линейное отображение (оператор) из X в Y.

$$||U|| = \inf\{C \mid x \in X, \ ||Ux|| \le C||x||\}.$$

 $\|U\|$ — операторная норма.

Note. Если U — разрывное отображение, считаем, что $||U|| = \infty$.

Note.

$$||U|| = \sup_{x \neq 0} \frac{||Ux||}{||x||}.$$

Example 12. Нормы в прошлых примерах

- $2 \|U\| = \infty$
- $3 \|U\| = 1$
- $4 \|U\| = b a$
- $5 \|U\| = b a$
- ?? ||U|| = 1

Theorem 4 (Условие непрерывности полилинейного отображения). $U \in Poly(X_1, \dots X_m; Y), X_i, Y$ — линейные нормированные пространства. Следующие утверждения эквивалентны:

- 1. U непрерывно
- 2. U непрерывно в 0
- 3. $\exists C \ \forall x_1 \in X_1, x_2 \in X_2, \dots x_n \in X_n : \|U(x_1, \dots x_n)\| \leqslant X \|x_1\| \cdot \dots \cdot \|x_n\|$

Note. В прямом произведении есть норма (Например, такая)

$$||(x_1, \dots x_n)|| = \max\{||x_1||_{X_1}, \dots ||x_n||_{X_n}\}.$$

Definition 6: Норма полилинейного отображения

$$||U|| = \inf \{ C \mid \forall x_1 \in X_1, \dots x_n \in X_n \mid ||U(x_1, \dots x_n)| < C||x_1|| \cdot \dots ||x_n|| \}.$$

Theorem 5 (эквивалентные способы вычисления оперератора). U — линейное непрерывное отображение $X \to Y$. Тогда

$$||U|| = \sup_{x \neq 0} \frac{||U||}{||x||} = \sup_{||x|| = 1} ||Ux|| = \sup_{||x|| \leqslant 1} ||Ux|| = \sup_{||x|| < 1} ||Ux||.$$

Доказательство. Обозначим супремумы за A, B, C, D. Очевидно, что $C \geqslant B$ и $C \geqslant D$

$$C = \sup_{\|x\| \le 1} \|Ux\| \le \sup_{\|x\| \le 1} \frac{\|Ux\|}{\|X\|} \le \sup_{x \ne 0} \frac{\|Ux\|}{\|x\|} = A.$$

Докажем, что $B\geqslant A.\ x\neq 0,\ \tilde{x}=\frac{x}{\|x\|}.$

$$\frac{\|Ux\|}{\|x\|} = \|Ux\| \leqslant B.$$

Значит, $\sup_{x\neq 0} \frac{\|Ux\|}{\|x\|} \leqslant B$. Теперь докажем, что $D\geqslant A$.

$$x \neq 0, \ \varepsilon > 0 \colon \tilde{x} = \frac{x}{\|x\|} (1 - e\varepsilon), \quad \|\tilde{x}\| = 1 - \varepsilon < 1.$$

$$\begin{cases} \|U\tilde{x}\| \leqslant D \\ \|U\tilde{x}\| = \frac{1-\varepsilon}{\|x\|} \|Ux\| \end{cases} \implies \frac{\|Ux\|}{\|x\|} \leqslant \frac{D}{1-\varepsilon} \to 0.$$

Следовательно,

$$\frac{\|Ux\|}{\|x\|} \leqslant D \Longrightarrow \sup_{x \neq} \frac{\|Ux\|}{\|x\|} \leqslant D.$$

Remark. В конечномерных пространствах все линейные и полилинейные отображения непрерывны.

Theorem 6 (эквивалентные способы вычисления нормы полилинейного оператора). $U: X_1 \times$ $\ldots \times X_n \to Y$.

$$||U|| = \sup_{x_j \neq 0} \frac{||U(x_1, \dots x_n)||}{||x_1|| \cdot \dots ||x_n||} || = \sup_{||x_j|| \leq 1, \dots, x_n \geq 1} = \sup_{||x_j|| \leq 1} = \sup_{||x_j|| < 1} = \sup_{$$

0.1.2 Пространство линейных непрерывных операторов

Theorem 7 (О свойствах операторной нормы). $U_1, U_2, U_3: X \to Y$ — линейные непрерывные операторы, λ — скаляр. Тогда

1.
$$||U_1 + U_2|| \le ||U_1|| + ||U_2||$$

$$2. \|\lambda U\| = |\lambda| \|U\|$$

3.
$$||U|| = 0 \iff U = 0$$

4. $U:X \to Y, V:Y \to Z$ — линейные отображения.

$$\begin{split} \|VU\| &\leqslant \|V\| \cdot \|U\| \\ VU &= V \circ U \\ VUx &= V(U(x)) \end{split}$$

Designation. $L(X,Y) \subset \text{Hom}(X,Y)$ — пространство линейных операторов.