Machine Learning Tools for RCTs

1) Introduction + The Lasso

Bruno Fava

November 13, 2023

An Intro to Machine Learning for Development

So... what is Machine Learning?

What is Machine Learning about?

- Typically, suited for prediction problems: predict Y given X
 - → Ex: image classification, self-driving cars, predicting treatment effects from covariates!
- Different from inference problems
 - Ex: is the (causal) population parameter θ positive?
- However, many recent developments on ML for inference!

An Intro to Machine Learning for Development

So... what is Machine Learning?

First, let's explore the bias-variance tradeoff

- Consider the problem of estimating any θ
- Denote $\widehat{\theta}$ any estimator
- We can always decompose the Mean Squared Error (MSE):

$$\mathbb{E}\left[\left(\widehat{\theta} - \theta\right)^{2}\right] = \underbrace{\left(\mathbb{E}\left[\widehat{\theta}\right] - \theta\right)^{2}}_{\text{Bias}^{2}} + \underbrace{\mathbb{E}\left[\left(\widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right]\right)^{2}\right]}_{\text{Variance}}$$

- Typical inference problem: reduce variance among unbiased estimators
 - → Remember: OLS is BLUE!
- However... biased estimators can have lower MSE!

So... what is Machine Learning?

One answer...

- There is no dictionary definition of what is and isn't "Machine Learning"
- One answer...ML has two features:
 - 1. Regularization for bias/variance tradeoff
 - → Allows for bias to minimize MSE
 - 2. Data-driven procedure for choosing amount of regularization
 - → For example, cross-validation
- Today: example from Lasso!

Where Can Machine Learning be Useful?

- Most obviously: prediction
 - \hookrightarrow For example, predicting individual TEs or group TEs
- High-dimensional estimation (under conditions)
- Variable selection
- Exploring heterogeneous treatment effects

The Lasso

LASSO - Least Absolute Shrinkage and Selection Operator

- Remember definition of OLS:

$$\widehat{\beta} = \arg\min_{b} \sum_{i=1}^{n} (Y_i - X_i'b)^2$$

- Lasso solves:

$$\widehat{\beta} = \arg\min_{b} \sum_{i=1}^{n} (Y_i - X_i'b)^2 + \lambda \sum_{i=1}^{p} |b_i|$$

$$\hookrightarrow \lambda = 0 \implies OLS$$

$$\hookrightarrow \lambda = \infty \implies \hat{\beta}_j = 0 \text{ for all } j$$

- Crucially, Lasso depends on hyperparameter $\lambda > 0$
- Intermediary values lead to some $\hat{\beta}_i = 0$, and others different from zero!

Recurring Theme in Machine Learning

- An important insight is that in-sample error is different from out-of-sample!
- Even though OLS minimizes sum of square error, that is done in-sample!
- But: what happens if regression has many coefficients that are truly zero?

- OLS will never set $\widehat{\beta}_j = 0$, so lots of noise!
- This could lead to poor out-of-sample predictive performance:
 - Less degrees of freedom from learning non-zero coefficients
 - More variance from including many insignificant covariates
- Lasso can help here!
 - → Allows for bias to reduce variance and improve MSE

Beyond the Linear Model

- Note that any smooth function f(x) can be approximated by a polynomial

$$f(x) \approx a_0 + a_1 x^1 + a_2 x^2 + \cdots + a_k x^k$$

- \rightarrow Approximation error made arbitrarily small by choosing large k
- With many covariates: add both powers and interactions

$$f(x,y) \approx a_{0,0} + a_{1,0}x^1 + a_{0,1}y^1 + a_{1,1}x^1y^1 + a_{2,1}x^2y^1 + \dots$$

- Since Lasso allows for many covariates, suggests including interactions to better approximate $\mathbb{E}[Y|X]$

Why Lasso Sets Some $\widehat{\beta}_j = 0$

Note Lasso is equivalent to

$$\min_{b} \sum_{i=1}^{n} (Y_i - X_i' b)^2 \text{ s.t. } \sum_{j=1}^{p} |b_j| \le C$$

Setting $\widehat{\beta}_j = 0$: Pros and Cons

Pros:

- Can interpret which variables are "most important"
- Data-driven way to exclude small coefficients to improve MSE and power
- Possible to run even if p > n

Cons:

- Always possible that picked model is "wrong"
- Estimator is biased
- Number of picked X depends on choice of λ

How Does λ Affect Estimator?

$$\widehat{\beta} = \arg\min_b \sum_{i=1}^n (Y_i - X_i'b)^2 + \lambda \sum_{j=1}^p |b_j| \ (\lambda \approx 0: \text{OLS. } \lambda \approx \infty: \text{all } \widehat{\beta}_j = 0)$$

How Does λ Affect Estimator?

Source: https://bookdown.org/tpinto_home/Regularisation/lasso-regression.html

Is There an Optimal λ ?

- Extreme left: zero bias. Extreme right: zero variance.
- Some λ in the middle minimizes MSE!

Machine Learning and the "Truth"

- Remember $MSE = Bias^2 + Var$
 - \hookrightarrow Can pick λ to minimize MSE!
- But will that λ recover the "truth"/ "the true model"? Two points of view...
- Computer Scientist: "Truth? What is truth? Never heard of it... best λ gives the best model!"
- Econometrician: "In general, no. But under conditions, yes!"
- Important to keep in mind what the goal is! Lasso as a tool for prediction vs Lasso as tool inference
- We will discuss a little bit of theory later

How To Select λ ?

- Choosing λ is crucial for result of Lasso
- Data-driven way to pick λ : cross-validation
- Remember goal: minimize out-of-sample prediction error (MSE)!

Source: https://zitaoshen.rbind.io/project/machine_learning/machine-learning-101-cross-vaildation/

Cross Validation

- 1. Randomly split the sample of size n into K folds of size n = n
- 2. Fix some value of λ
- 3. For k = 1, ..., K, learn $\widehat{\beta}_{-k}(\lambda)$ by running Lasso on data from all but fold k
- 4. For k = 1, ..., K, calculate the squared prediction error using fold k:

$$\Gamma_k(\lambda) = \sum_{i \in \mathcal{I}_k} (Y_i - X_i' \widehat{\beta}_{-k}(\lambda))^2$$

- 5. Aggregate total error as $\Gamma(\lambda) = \sum_{k=1}^{K} \Gamma_k(\lambda)$
- 6. Repeat steps 2 through 5, varying λ in a grid
- 7. Cross-validated λ given by $\widehat{\lambda} = \arg \min_{\lambda} \Gamma(\lambda)$

Cross Validation

Cross Validation

Cross validation has a major drawback

- Different choices of "seed" lead to different splits of the sample into folds ...
- ... and this will lead to different $\widehat{\beta}_{-k}(\lambda)$ and $\Gamma_k(\lambda)$
- Hence, picked λ will be different!

- Different choice of λ leads to different $\widehat{\beta}$ from final Lasso...
- ... and potentially even selected model will be different!!

- Suggestion (Wüthrich and Zhu, 2023): increase picked λ by 50%
 - \hookrightarrow In the context of Post-Double Lasso. In practice, can try other values too!

An Alternative Method for Choosing λ : BIC

- An alternative for Cross Validation is the BIC: Bayesian Information Criterion

$$\widehat{\lambda} = \arg\min_{\lambda} BIC(\lambda) := \log \left(\frac{1}{n} \sum_{i=1}^{n} (Y_i - X_i' \widehat{\beta}(\lambda))^2 \right) + |\widehat{S}(\lambda)| C_n \frac{\log(n)}{n}$$

where $\widehat{\beta}(\lambda)$ is Lasso estimator, and $|\widehat{S}(\lambda)|$ is number of X included by Lasso

- Advantage: no randomness from splitting the sample!
- Disadvantage: constant C_n is an arbitrary sequence "that tends to ∞ "...
 - → Additional hyperparameter to choose...

Is Lasso "Machine Learning"?

- Answer: depends on your definition of Machine Learning!
- Initial definition:
 - 1. Regularization for variance/bias tradeoff
 - \hookrightarrow In Lasso: $\lambda!$
 - 2. Data-driven procedure for choosing amount of regularization
 - → In Lasso: cross-validation!
 - Is BIC "data-driven"?

A Little Bit of Theory...

Statistical Properties of the Lasso

- Important question: does the Lasso select the right model "asymptotically"?
- Yes, under the Irrepresentable Condition:

$$||\mathbb{E}[X_1X_1']^{-1}\mathbb{E}[X_1X_2']||_{\infty} \leq 1-\eta$$

for some $\eta > 0$, where X_1 are the relevant variables, and X_2 the irrelevant

- \rightarrow The coefficients of a regression of X_2 on X_1 are smaller than 1
- → That is, correlation between relevant and irrelevant not too high!
- Theorem (Zhao and Yu, 2006): Suppose *p* (n of covariates) and *s* (n of relevant covariates) are fixed, data is iid, *X* have finite second moments, and the irrepresentable condition holds. Furthermore, suppose that

$$\frac{\lambda_n}{n} o 0$$
 and $\frac{\lambda_n}{n^{\frac{1+c}{2}}} o \infty$ for $0 \le c < 1$

then, the Lasso is model-selection consistent

Statistical Properties of the Lasso

- Even as *n* goes to infinity, Lasso only selects correct model under conditions
 - → Irrelevant variables not too correlated with relevant
 - \rightarrow Asymptotics require specific rates for λ_n
- For finite *n*, performance can be worse

- Note: asymptotics assume number of coefficients is constant
- A lot of theory been done for *p* growing with *n*
 - → Number of covariates large relative to sample size
 - \hookrightarrow Allows for p > n

Other Topics on Lasso

The Adaptive Lasso

1. Estimate β with ordinary Lasso

$$\widehat{\beta} = \arg\min_{b} \left(\sum_{i=1}^{n} (Y_i - X_i'b)^2 + \lambda_1 \sum_{j=1}^{p} |b_j| \right)$$

and let \hat{S}_1 be set of selected covariates.

2. Estimate β by

$$\widetilde{eta} = \arg\min_{b} \left(\sum_{i=1}^{n} \left(Y_i - \sum_{j \in \widehat{S}_1} X_{i,j} b_j \right)^2 + \lambda_2 \sum_{j \in \widehat{S}_1} |\widehat{\beta}_j|^{-1} |b_j| \right)$$

 \rightarrow Note: requires two tuning parameters λ_1 and λ_2

 \hookrightarrow Can choose by cross-validation

The Adaptive Lasso

- Benefit: Adaptive Lasso is model-selection consistent (and oracle efficient)
- Compromise: requires $\lambda_{1,n}/\sqrt{n} \to \lambda^* > 0$, $\lambda_{2,n}/\sqrt{n} \to 0$, $\lambda_{2,n} \to \infty$

- Intuition: Lasso selects a model that is "too big"
- Adaptive Lasso penalizes more covariates with small $|\widehat{eta}_j|$

From theory perspective: Adaptive Lasso is "better"

Other Related Estimators

- There are other estimators that behave similarly to Lasso (model selection)
 - SCAD (smoothly clipped absolute deviation)
 - Bridge
 - Square-root Lasso
 - Elastic Net
- And penalized estimators that do not perform model selection, such as Ridge:

$$\widehat{\beta} = \arg\min_{b} \left(\sum_{i=1}^{n} (Y_i - X_i'b)^2 + \lambda \sum_{j=1}^{p} (b_j)^2 \right)$$

Post-Lasso / Post-Adaptive-Lasso

- Remember Lasso creates bias on $\widehat{\beta}$

$$\widehat{\beta} = \arg\min_{b} \left(\sum_{i=1}^{n} (Y_i - X_i'b)^2 + \lambda \sum_{j=1}^{p} |b_j| \right)$$

- \hookrightarrow There is shrinkage of $\widehat{\beta}$ towards zero because of the penalty!
- Alternative to bypass bias:
 - 1. Run Lasso/Adaptive-Lasso only to select covariates
 - 2. Run OLS (unbiased) on set of selected variables
- If model picked by Lasso is correct \implies no bias in final estimator
- Post-Double-Lasso does something similar! (More on next talk)

Discussion

Discussion

- When would we want to run Lasso?
- How do we interpret output of Lasso?
- Is model selected by Lasso "optimal"?
- Does the Lasso select the "right" model?

Application Example

Example from Dizon-Ross and Jayachandran (2022)

- "This paper tests whether mothers and fathers differ in their spending on their daughters relative to their sons"
- Collect parents' willingness to pay (WTP) for specific goods for their children
 - Becker-DeGroot-Marschak mechanism: "ask the respondent if he or she was willing to purchase the good at a series of prices, in declining order from the market price to a price near zero"
 - Incentivized (expensive): "after price questions, one price would be randomly chosen and she would purchase the good at that price if and only if her response had been that she wanted to"
 - Non-incentivized (cheaper): good was shown to respondent (concrete), but they knew no transaction would take place
- Can we pool incentivized and non-incentivized WTP?

Example from Dizon-Ross and Jayachandran (2022)

- "Appendix B presents evidence that the non-incentivized WTP elicitation appears to have worked quite similarly to the incentivized WTP elicitation. As a result, we pool incentivized and non-incentivized WTP in our main specifications for statistical power."
- Focus on one good (practice tests), which they asked in incentivized manner (I-WTP) (first round) and non-incentivized (N-WTP) (second round)
- 1. Split each sample (first and second rounds) in two, randomly
- 2. In first halves, run Lasso to select important predictors of I-WTP and N-WTP

 → Same set of predictors! (2 among 29)
- 3. In second halves, run OLS on selected predictors and compare if coefficients are statistically different
 - → Differences are statistically insignificant!

Discussion

- Argument of the paper is that incentivized/non-incentivized WTP are similar
- Why split the sample?
- Why OLS in second stage?
- Under which conditions their approach is valid?
- Suggestions for improvement / robustness checks?
- Other thoughts?

Thank you!