Carga e descarga de capacitor

RELATÓRIO DE FÍSICA III

Aluno:

João Phellipe Salaroli Nogueira

Objetivo

Através dos gráficos das experiências, verificar se a expressão teórica para a descarga de capacitores está correta, assim como as expressões de associação de capacitores em série e paralelo.

Materiais

Nesta prática utilizaram-se os seguintes materiais listados em ordem alfabética na **Tabela 1** a seguir.

Quantidade	Material					
01	Capacitor de 220µF / 35V					
01	Cronômetro digital					
04	Fios com pinos banana					
01	Fonte CC 2-20V					
01	Multímetro					
01	Protoboard					
01	Voltímetro					

Tabela 1

Procedimento experimental

Montou-se o circuito representado na **Figura 1** a seguir com um capacitor de $220\mu F$ por 35V, após isso ligou-se-o na fonte de corrente contínua com intuito de se carregar o capacitor envolvido no sistema.

Figura 1

Após carregar o capacitor C1, desligou-se a fonte de corrente contínua do sistema retirando um dos fios que nele estava conectado e mediu-se o tempo dos instantes em que a tensão decaía nos terminais do capacitor C1 com auxílio de um voltímetro e um cronômetro digital. Os valores encontrados estão registrados na **Tabela 2** a seguir.

ΔV	8Volts	7 Volts	6 Volts	5 Volts	4 Volts	3 Volts	2 Volts
Δt	0	7 Seg.	14 Seg.	21 Seg.	31 Seg.	44 Seg.	62 Seg.

Tabela 2

Análise e tratamento de dados

Em posse dos dados obtidos e registrados na **Tabela 2**, montou-se um gráfico com os valores de ΔV e Δt , para melhor análise e estudo do experimento. O gráfico em questão pode ser analisado logo a seguir em **Gráfico 1**.

Gráfico 1

A seguir, linearizou-se o **Gráfico 1**, para estudo dos fatos. Para tal, utilizou-se as propriedades do logarítimo neperiano. Montou-se então o **Gráfico 2** com auxílio dos dados encontrados na **Tabela 3**.

LN(ΔV)	2,07	1,94	1,79	1,60	1,38	1,09	0,69
Δt	0	7 Seg.	14 Seg.	21 Seg.	31 Seg.	44 Seg.	62 Seg.

Tabela 3

Gráfico 2

nEstudando e analisando a reta obtida em **Gráfico 2**, observou-se que o coeficiente ângular da reta em questão seria igual ao inverso do resistor do sistema multiplicado pela capacitando de C1, demonstra-se tal abaixo em **Equação 1**.

$$\alpha = 1/RC$$

Equação 1

A fim de se encontrar o resistor do sistema, ajeitou-se a **Equação 1**, tendo então a **Equação 2**.

$$R = 1/\alpha C$$

Equação 2

Calculou-se o valor de \mathbf{R} , e encontrou-se o valor aproximado de $\mathbf{20M}\Omega$.

Conclusão

Após o experimento ficou claro que as expressões teóricas utilizadas para carga e descarga de capacitores são totalmente válidas.

Quanto a resistência **R** encontrada, conclui-se que a mesma é a resistência interna de nosso voltímetro, que necessita de uma resistência muito grande, que tenda ao infinito.

Referências Bibliográficas

https://www.circuitlab.com/editor/ (Para criação dos circuitos)

http://fisica3.if.ufrj.br - UFRJ

Halliday Volume 3 – 8ª Edição