

Nomenclature — 1/2

- Aft Deck as extension of nozzle
 - Length L
 - Aspect ratio AR
 - Slot height h

Nomenclature — 2/2

- Aft Deck standing off from Nozzle
 - Trailing Edge Length, Xte
 - Standoff from lipline, h

Nozzle geometries

- Nozzles designed to minimize velocity distortion at exit (Frate & Bridges AIAA 2011-0975)
- Parametric variation in aspect ratio (AR) and bevel length (L/De)

Conclusions from PIV studies of Rectangular Jets Without Aft Deck

- Potential core relative to nozzle area shrinks with increasing aspect ratio
 - Scales with slot height.
- 10% variation in peak turbulence intensities of rectangular jets
 - Increasing aspect ratio lengthens peak region, lowers peak.
 - TKE = $(u^2+v^2+w^2)/2$ is well approximated by u^2 .
- Increased coherence (longer lengthscales) in minor axis plane
 - Jet likes to flap

Rectangular Nozzles with Aft Deck

- Constant Deck Standoff = 0
- Vary Trailing Edge length, L
- Vary nozzle aspect ratio

Round Nozzles with Aft Deck

(Fixed Wing's Jet Surface Interaction Test)

- Vary Deck Standoff from lipline, h/D
- Vary Trailing edge length, Xte
- Constant nozzle geometry (round)

Dependence of second shear layer on plate length

Validating RANS

- Primarily using WindUS and Daussalt Systems' SolidWorks Flow Solver
- Using K-espsilon or SST Mentor turbulence models
- WindUS uses structured grid, SWFS uses unstructured grid with auto refinement.
- Previous experience with RANS on isolated jets favorable, especially for cold subsonic jets.
 - Peak TKE correct, within a jet diameter of proper location
 - Codes give comparable results, relatively insensitive to grid.

RANS Predictions

Marginal asymmetry!

Rectangular Nozzles with Aft Deck

PIV measurements

Significant asymmetry!

Rectangular Nozzles with Aft Deck with Standoff

Xte/D = 2

Plume Asymmetry Downstream of Aft Deck

- 8:1 nozzle with *L* = 2.7*De*
- Cold, Ma = 0.9 flow

Mean axial velocity
Turbulent axial velocity

Source of Enhanced Turbulence?

Shear stress downstream of plate in round jet

- Radial profiles from shortly downstream of plate to where peak turbulence occurs.
- Shear stresses only slightly asymmetric. Enough?

Radial shear stress dU/dy Turbulent axial velocity

<u>Summary</u>

- Rectangular jets studied as prototypical non-circular jet.
- Most turbulence statistics similar to round jets.
- Surface in close proximity to jet can produce high turbulence levels just downstream of surface trailing edge.
 - Demonstrated on rectangular and circular nozzles
 - Degree of amplification dependent upon many factors
 - Amplification reduced quickly as surface is removed from jet.
- RANS CFD does not seem to pick this up.
- Early in exploring cause of RANS failure to predict enhanced turbulence by aft deck.

TREC13 PIV Supplemental plan

- To capture what happens to the TKE between h/D = 0.0 and 0.5, we will repeat these two cases and two in between using the same Xte/D = 6 wall
- In addition, we will repeat this for shorter wall which may be of more interest in practice.
- Anticipating that the large AR nozzle is an accentuated version, we will test A8ZO with a plate that matches the A8B2 bevel and then add standoff.
 We will also make this more extreme by adding wall length.
- Finally, at Mark Wernet's suggestion we will try transient acquisition, both moving the nozzle toward and away from the plate, to see exactly where the behavior changes.
- We will only limit ourselves to setpoint 7, no freejet for expediency
- We will only limit ourselves to the first 25" of flow.
- We will only measure single nozzle configurations, not twin.

Planned TREC13 PIV Surface Supplement Test Matrix

Nozzle	Spacing	Clocking	Surface Xte (inches)	Surface h (Inches)	Setpoints	Mf
TCON	NA (Z9)	150	12	0	70	0.05
TCON	NA (Z9)	150	12	0.2	70	0.05
TCON	NA (Z9)	150	12	0.5	70	0.05
TCON	NA (Z9)	150	12	1	70	0.05
TCON	NA (Z9)	150	4	0	70	0.05
TCON	NA (Z9)	150	4	0.1	70	0.05
TCON	NA (Z9)	150	4	0.3	70	0.05
TCON	NA (Z9)	150	4	0.5	70	0.05
A8Z0	NA (Z9)	150	4	0	70	0.05
A8Z0	NA (Z9)	150	4	0.1	70	0.05
A8Z0	NA (Z9)	150	4	0.3	70	0.05
A8Z0	NA (Z9)	150	4	0.5	70	0.05
A8Z0	NA (Z9)	150	2.7	0	70	0.05
A8Z0	NA (Z9)	150	2.7	0.1	70	0.05
A8Z0	NA (Z9)	150	2.7	0.3	70	0.05
A8Z0	NA (Z9)	150	2.7	0.5	70	0.05