

數位邏輯實習

計數器、狀態機

國立台北科技大學 電機工程系 吳昭正

Outline

- 計數器
- 狀態機
- VHDL語法介紹
- 作業題

計數器設計(1/7)

- 1. Create a state graph to count in the desired sequence.
- 2. Create a state table from the state graph created in (1). We need one flip-flop per bit. Ex: if we need to count from 0 to 7, we need 3 bits, therefore we should use three flip-flops.
- Derive Karnaugh maps from the state table created in (2) and solve for the inputs to each flip-flop.

計數器設計(2/7)

Table 12-3: State Table for Figure 12-21

С	В	Α	C ⁺	$ B^{^{+}} $	A^{\dagger}
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	-	-	-
1	1	0	-	-	-
1	1	1	0	1	0

Figure 12-21: State Graph for Counter

計數器設計(3/7)

We could derive T_C , T_B , and T_A directly from the state table, but it is often more convenient to plot next-state maps showing C^+ , B^+ , and A^+ as functions of C, B, and A, and then derive T_C , T_B , and T_A from these maps.

計數器設計(4/7)

Figure 12-22

計數器設計(5/7)

Table 12-4. Input for T Flip-Flop

Q	Q^+	T	
0	0	0	
0	1	1	$T = Q^+ \oplus Q$
1	0	1	
1	1	0	

Given the present state of a T flip-flop (Q) and the desired next state (Q^+) , the T input must be a 1 whenever a change in state is required. Thus, T = 1 whenever $Q^+ \neq Q$.

計數器設計(6/7)

Figure 12-23: Counter Using T Flip-Flops

計數器設計(7/7)

Table 12-9. Determination of Flip-Flop Input Equations from Next-State Equations Using Karnaugh Maps

		Q :	Andrew Art Annual Annua		ming Input Map :-State Map*		
Type of Flip-Flop	Input	$Q^+ = 0$	$Q^{+} = 1$	$Q^+ = 0$	$Q^{+} = 1$	Q = 0 Half of Map	Q = 1 Half of Map
Delay	D	0	1	0	1	no change	no change
Toggle	T	0	1	1	0	no change	complement
Set-Reset	S	0	1	0	Х	no change	replace 1's with X's**
	R	Х	0	1	0	replace 0's with X's**	complement
J-K	J	0	1	Х	X	no change	fill in with X's
	K	X	X	1	0	fill in with X's	complement

Q+ means the next state of Q

X is a don't-care

**Fill in the remaining squares with 0's.

^{*}Always copy X's from the next-state map onto the input maps first.

狀態機基本概念(1/13)

Moore or Mealy State Machine

Moore or Mealy State Machine?

狀態機基本概念(2/13)

Moore or Mealy State Machine

狀態機基本概念(3/13)

從電路推導狀態圖

Although constructing timing charts is satisfactory for small circuits and short input sequences, the construction of state tables and graphs provides a more systematic approach which is useful for the analysis of larger circuits and which leads to a general synthesis procedure for sequential circuits.

The state table specifies the next state and output of a sequential circuit in terms of its present state and input.

Section 13.3 (p. 401)

狀態機基本概念(4/13)

從電路推導狀態圖

The following method can be used to construct the state table:

- 1. Determine the flip-flop input equations and the output equations from the circuit.
- 2. Derive the next-state equation for each flip-flop from its input equations, using one of the following relations:

D flip-flop
$$Q^+ = D$$
 (13-1)
D-CE flip-flop $Q^+ = D \cdot CE + Q \cdot CE'$ (13-2)
T flip-flop $Q^+ = T \oplus Q$ (13-3)
S-R flip-flop $Q^+ = S + R'Q$ (13-4)
J-K flip-flop $Q^+ = JQ' + K'Q$ (13-5)

狀態機基本概念(5/13)

從電路推導狀態圖

- 3. Plot a next-state map for each flip-flop.
- 4. Combine these maps to form the state table. Such a state table, which gives the next state of the flip-flops as a function of their present state and the circuit inputs, is frequently referred to as a transition table.

狀態機基本概念(6/13)

從電路推導狀態圖

As an example of this procedure, we will derive the state table for the circuit of Figure 13-5:

1. The flip-flop input equations and output equation are

$$D_A = X \oplus B'$$
 $D_B = X + A$ $Z = A \oplus B$

2. The next-state equations for the flip-flops are

$$A^+ = X \oplus B'$$
 $B^+ = X + A$

Figure 13-5

狀態機基本概念(7/13)

從電路推導狀態圖

3. The corresponding maps are

狀態機基本概念(8/13)

從電路推導狀態圖

4. Combining these maps yields the transition table in Table 13-2(a), which gives the next state of both flip-flops (A^+B^+) as a function of the present state and input. The output function Z is then added to the table. In this example, the output depends only on the present state of the flip-flops and not on the input, so only a single output column is required.

Table 13-2. Moore State Tables for Figure 13-5

	A ⁺ B ⁺		Present	Next State		Present	
AB	X=0	X=1	Z	State	X = 0	X = 1	Output(Z)
00	10	01	0	S ₀	S ₃	S ₁	0
01	00	11	1	S ₁	S_0	S ₂	1
11	01	11	0	S_2	S ₁	S_2	0
10	11	01	1	S ₃	S ₂	S ₁	1

(a) (b)

狀態機基本概念(9/13)

從電路推導狀態圖

Table 13-2

Present	Next	Present					
State	X = 0	X = 1	Output(Z)				
So	S ₃	S ₁	0				
S ₁	S ₀	S_2	1				
S_2	S ₁	S_2	0				
S ₃	S ₂	S ₁	1				
(b)							

Each node in the graph represents a state in the circuit.

Figure 13-9: Moore State Graph for Figure 13-5

狀態機基本概念(10/13)

從電路推導狀態圖

Figure 13-7

We can construct the next-state and output equations from the circuit diagram:

$$A^{+} = J_{A}A' + K'_{A}A = XBA' + X'A$$

 $B^{+} = J_{B}B' + K'_{B}B = XB' + (AX)'B = XB' + X'B + A'B$
 $Z = X'A'B + XB' + XA$

狀態機基本概念(11/13)

從電路推導狀態圖

Next, we can plot Karnaugh maps for A^+ , B^+ , and Z. We can then use these maps to derive the transition table.

X AB	0	1	AB X	0	1	AB	0	1
00	0	0	00	0	1	00	0	1
01	0	1	01	1	1	01	1	0
11	1	0	11	1	0	11	0	1
10	1	0	10	0	1	10	0	1
	Α	+		В	+	,	8)	Z

Figure 13-10

狀態機基本概念(12/13)

從電路推導狀態圖

	(a)		
	A^+B^+		Z	
AB	X = 0	1	X = 0	1
00	00 (01	0	1
01	01	11	1	0
11	11 (00	0	1
10	10	01	0	1

	(b)	
3		Present
Present	Next State	Output
State	X = 0 1	X = 0 1
S_0	S_0 S_1	0 1
S ₁	S_1 S_2	1 0
S_2	S_2 S_0	0 1
S_3	S_3 S_1	0 1

Table 13-3. Mealy State Tables for Figure 13-7

狀態機基本概念(13/13)

從電路推導狀態圖

Figure 13-11: Mealy State Graph for Figure 13-7

狀態機設計(1/5) 從狀態圖推導電路

1. 從狀態圖建立狀態表

	(b)	
	5 - A-111 - E-1	Present
Present	Next State	Output
State	X = 0 1	X = 0 1
S ₀	S_0 S_1	0 1
S₀ S₁	S_1 S_2	1 0
S_2	S_2 S_0	0 1
S ₃	S_3 S_1	0 1

狀態機設計(2/5) 從狀態圖推導電路

2. 把狀態表中的 S_0 、 S_1 、...、 S_n 改成二進位數字

	(b)	
		Present
Present	Next State	Output
State	X = 0 1	X = 0 1
S ₀	S_0 S_1	0 1
S_1	S_1 S_2	1 0
S_2	S_2 S_0	0 1
S ₃	S_3 S_1	0 1

狀態機設計(3/5) 從狀態圖推導電路

3.從狀態表建立Next-State Map

		(a)			
	A^+B	<u>;</u> +	Z		
AB	X = 0	1	X = 0	1	
00	00	01	0	1	
01	01	11	1	0	
11	11	00	0	1	
10	10	01	0	1	

X AB	0	1	AB	0	1	AB	0	1
00	0	0	00	0	1	00	0	1
01	0	1	01	1	1	01	1	0
11	1	0	11	1	0	11	0	1
10	1	0	10	0	1	10	0	1
	А	+		В	+		0	Z

狀態機設計(4/5)

從狀態圖推導電路

		Q = 0		Q = 1		Rules for Forming Input Map From Next-State Map*	
Type of Flip-Flop	Input	$Q^+ = 0$	$Q^{+} = 1$	$Q^{+} = 0$	$Q^{+} = 1$	Q = 0 Half of Map	Q = 1 Half of Map
Delay	D	0	1	0	1	no change	no change
Toggle	T	0	1	1	0	no change	complement
Set-Reset	S	0	1	0	Х	no change	replace 1's with X's**
	R	Х	0	1	0	replace 0's with X's**	complement
J-K	J	0	1	X	Х	no change	fill in with X's
	K	Х	Χ	1	0	fill in with X's	complement

AB					
00	0	0			
01	0	1			
11	1	0			
10	1	0			
	D _A				
AB X	0	1			
00	0	0			
0 1	0	1			
11	0	1			
11 10	0	1			

狀態機設計(5/5)

從狀態圖推導電路

5.從卡諾圖推導最簡布林代數式

VHDL設計程序(1/5)

Modeling State Machine

1. 插入library

library ieee;

2. 插入USE

use ieee.std_logic_1164.all;

VHDL設計程序(2/5)

Modeling State Machine

3. 宣告entity

```
entity test is
    port (
        -- Input ports
        clk : in std_logic;

        -- Output ports
        a_out, b_out, c_out : out std_logic );
end test;
```


VHDL設計程序(3/5)

Modeling State Machine

4.1. 宣告architecture決定設計方式 (component)

原圖請見投影片第8頁

```
architecture test arch of test is
     component my TFF
          port (
               Ck, T: in std_logic;
               Q : out std_logic );
     end component;
     signal a, b, c : std_logic := '0';
begin
     TFFA: my_TFF port map (Clk, (c or b), a);
     TFFB: my_TFF port map (Clk, (a and not(c)) or (not(b) and c), b);
     TFFC: my_TFF port map (Clk, (b and c) or (not(b) and not(c)), c);
    a out <= a;
     b out <= b;
     c out <= c;
end test_arch;
```


VHDL設計程序(4/5)

Modeling State Machine

4.2. 宣告architecture決定設計方式 (布林代數式)

原圖請見投影片第6頁

```
architecture test boolean arch of test boolean is
       signal Ta, Tb, Tc: std logic;
       signal a, b, c : std logic := '0';
begin
       Ta \le c \text{ or } b;
       Tb \le (a \text{ and } not(c)) \text{ or } (c \text{ and } not(b));
       Tc \le (b \text{ and } c) \text{ or } (not(b) \text{ and } not(c));
       a out <= a;
       b out <= b;
       c out <= c;
       process(clk) is
       begin
               if(rising edge(clk)) then
                       a <= Ta xor a;
                       b <= Tb xor b;
                       c <= Tc xor c;
               end if;
       end process;
end test boolean arch;
```


VHDL設計程序(5/5)

Modeling State Machine

4.3. 宣告architecture決定設計方式(狀態圖)

原圖請見投影片第4頁

```
architecture state_graph of test_state_graph is
     signal z : std logic vector(2 downto 0) := "000";
Begin
     a out \leq z(0);
     b out \leq z(1);
     c out \leq z(2);
     process(clk) is
     begin
           if(rising_edge(clk)) then
                 if(z = "000") then z \le "100";
                 elsif(z = "100") then z <= "111";
                 elsif(z = "111") then z <= "010";
                 elsif(z = "010") then z <= "011";
                 else z <= "000";
                 end if;
           end if;
     end process;
end state graph;
```


作業題(1/4)

- 作業題1:利用*J-K*正反器推導出下頁狀態圖的 計數器電路。
- 挑選一組設計模式完成本題的計數器。
 - 第一組: 投影片32頁的設計方式+拉電路
 - 第二組: 投影片32頁的設計方式 + 挑選投影片 30-31頁的一種設計方式

作業題(2/4)

作業題(3/4)

- 作業題2:利用*T*正反器推導出下頁狀態圖的狀態機電路。
- 挑選一組設計模式完成本題的狀態機。
 - 第一組: 投影片32頁的設計方式+拉電路
 - 第二組: 投影片32頁的設計方式 + 挑選投影片 30-31頁其中一種設計方式

作業題(4/4)

