# Bondinho

 $Nome\ do\ arquivo:$  bondinho.cp, bondinho.pas, bondinho.java, bondinho.js ou bondinho.py

A turma do colégio vai fazer uma excursão na serra e todos os alunos e monitores vão tomar um bondinho para subir até o pico de uma montanha. A cabine do bondinho pode levar 50 pessoas no máximo, contando alunos e monitores, durante uma viagem até o pico. Neste problema, dado como entrada o número de alunos A e o número de monitores M, você deve escrever um programa que diga se é possível ou não levar todos os alunos e monitores em apenas uma viagem!



#### Entrada

A primeira linha da entrada contém um inteiro A, representando a quantidade de alunos. A segunda linha da entrada contém um inteiro M, representando o número de monitores.

#### Saída

Seu programa deve imprimir uma linha contendo o caractere S se é possível levar todos os alunos e monitores em apenas uma viagem, ou o caractere N caso não seja possível.

# Restrições

- $1 \le A \le 50$
- $1 \le M \le 50$

| Entrada  | Saída |
|----------|-------|
| 10<br>20 | S     |
|          |       |
| Entrada  | Saída |

| Entrada | Saída |
|---------|-------|
| 12      | N     |
| 39      |       |
|         |       |

| Entrada | Saída |
|---------|-------|
| 49      | S     |
| 1       |       |

# Móbile

Nome do arquivo: mobile.c, mobile.cpp, mobile.pas, mobile.java, mobile.js ou mobile.py

O móbile na sala da Maria é composto de três hastes exatamente como na figura abaixo. Para que ele esteja completamente equilibrado, com todas as hastes na horizontal, os pesos das quatro bolas A, B, C e D têm que satisfazer todas as seguintes três condições:

- 1. A = B + C + D; e
- 2. B + C = D; e
- 3. B = C.



Nesta tarefa, dados os pesos das quatro bolas, seu programa deve decidir se o móbile está ou não completamente equilibrado.

# Entrada

A entrada consiste de quatro linhas contendo, cada uma, um número inteiro, indicando os pesos das bolas. Os números são dados na ordem:  $A, B, C \in D$ .

# Saída

Seu programa deve escrever uma única linha na saída, contendo o caractere "S" se o móbile estiver equilibrado, ou o caractere "N" se não estiver equilibrado.

# Restrições

• 
$$1 \le A, B, C, D \le 1000$$

| Entrada | Saída |
|---------|-------|
| 12      | S     |
| 3       |       |
| 3       |       |
| 6       |       |
|         |       |

| Entrada                   | Saída |
|---------------------------|-------|
| 2002<br>560<br>560<br>882 | N     |
| 560                       |       |
| 560                       |       |
| 882                       |       |
|                           |       |

# Prêmio do Milhão

Nome do arquivo: premio.c, premio.cpp, premio.pas, premio.java, premio.js ou premio.py

Alice e Bia criaram uma página na Internet com informações sobre o Macaco-prego-de-peitoamarelo, uma espécie em extinção. A página mostra como todos podem ajudar a manter o habitat natural para evitar que a espécie seja extinta.

Uma empresa gostou tanto da iniciativa de Alice e Bia que prometeu doar um prêmio para que as duas amigas possam realizar outras iniciativas semelhantes. A empresa decidiu que o prêmio seria dado quando a soma do número de acessos à página chegasse a 1 milhão.

Dada a lista de acessos diários que ocorreram à página de Alice e Bia, escreva um programa para determinar quantos dias foram necessários para a soma dos acessos chegar a 1 milhão e as amigas ganharem o prêmio.

#### Entrada

A primeira linha da entrada contém um número inteiro N, que indica o número de dias que a lista contém. Cada uma das linhas seguintes contém um único inteiro A, o número de acessos em um dia. O primeiro número dado indica o número de acessos no primeiro dia, o segundo número dado indica o número de acessos no segundo dia, e assim por diante.

#### Saída

Seu programa deve escrever na saída uma única linha, contendo um único número inteiro, o número de dias que foram necessários para a soma dos acessos à pagina de Alice e Bia chegar a 1000000.

#### Restrições

- $1 \le N \le 10^3$ , ou seja, a lista tem no máximo 1000 números
- $0 < A \le 10^6$ , ou seja, cada inteiro A da lista é positivo e menor do que ou igual a 1 milhão.
- A soma de todos os valores A da lista é maior do que ou igual a 1 milhão (ou seja, Alice e Bia certamente ganham o prêmio).

| Entrada | Saída |
|---------|-------|
| 5       | 4     |
| 100     |       |
| 99900   |       |
| 400000  |       |
| 500000  |       |
| 600000  |       |
|         |       |

| Entrada | Saída |
|---------|-------|
| 1       | 1     |
| 1000000 |       |

# Plantação de morango

Nome do arquivo: morango.c, morango.cpp, morango.pas, morango.java, morango.js, morango.py2 ou morango.py3

Os administradores da Fazenda Fartura planejam criar uma nova plantação de morangos, no formato retangular. Eles têm vários locais possíveis para a nova plantação, com diferentes dimensões de comprimento e largura. Para os administradores, o melhor local é aquele que tem a maior área. Eles gostariam de ter um programa de computador que, dadas as dimensões de dois locais, determina o que tem maior área. Você pode ajudá-los?

#### Entrada

A entrada contém quatro linhas, cada uma contendo um número inteiro. As duas primeiras linhas indicam as dimensões (comprimento e largura) de um dos possíveis locais. As duas últimas linhas indicam as dimensões (comprimento e largura) de um outro possível local para a plantação de morangos. As dimensões são dadas em metros.

#### Saída

Seu programa deve escrever uma linha contendo um único inteiro, a área, em metros quadrados, do melhor local para a plantação, entre os dois locais dados na entrada.

# Restrições

- $1 \le \text{comprimento} \le 100$
- $1 \le \text{largura} \le 100$

| Entrada    | Saída |
|------------|-------|
| 30         | 616   |
| 8          |       |
| 11         |       |
| 11<br>  56 |       |
|            |       |

| Entrada | Saída |
|---------|-------|
| 12      | 456   |
| 38      |       |
| 5       |       |
| 20      |       |
|         |       |

# Jogo de par ou ímpar

 $Nome\ do\ arquivo:$  jogo.cp, jogo.pas, jogo.java, jogo.js, jogo.py2 ou jogo.py3

Dois amigos, Alice e Bob, estão jogando um jogo muito simples, em que um deles grita ou "par" ou "fmpar" e o outro imediatamente responde ao contrário, respectivamente "fmpar" ou "par". Em seguida, ambos exibem ao mesmo tempo uma mão cada um, em que alguns dedos estão estendidos e outros dobrados. Então eles contam o número total de dedos estendidos. Se a soma for par, quem gritou "par" ganha. Se a soma for fmpar, quem gritou "fmpar" ganha.

Por exemplo, suponhamos que a Alice gritou "par" e o Bob respondeu "ímpar". Em seguida, Alice não deixou nenhum dos seus dedos estendidos, ao passo que Bob deixou três dedos estendidos. A soma então é três, que é ímpar, portanto Bob ganhou.

Seu programa deve determinar quem ganhou, tendo a informação de quem gritou par e o número de dedos estendidos de cada um.

### Entrada

A entrada contém três linhas, cada uma com um número inteiro, P,  $D_1$  e  $D_2$ , nesta ordem. Se P=0 então Alice gritou "par", ao passo que se P=1 então Bob gritou "par". Os números  $D_1$  e  $D_2$  indicam, respectivamente, o número de dedos estendidos da Alice e do Bob.

#### Saída

Seu programa deverá imprimir uma única linha, contendo um único número inteiro, que deve ser 0 se Alice foi a ganhadora, ou 1 se Bob foi o ganhador.

# Restrições

- P = 0 ou P = 1
- $0 \le D_1 \le 5$
- $0 \le D_2 \le 5$

| Entrada | Saída |
|---------|-------|
| 0       | 1     |
| 0       |       |
| 3       |       |
|         |       |

| Entrada | Saída |  |
|---------|-------|--|
| 1       | 0     |  |
| 0       |       |  |
| 3       |       |  |
|         |       |  |

| Entrada | Saída |  |
|---------|-------|--|
| 0       | 0     |  |
| 1       |       |  |
| 5       |       |  |
|         |       |  |

# Lâmpadas

Nome do arquivo: lampadas.c, lampadas.cpp, lampadas.pas, lampadas.java, lampadas.js, lampadas.py2 ou lampadas.py3

Você está de volta em seu hotel na Tailândia depois de um dia de mergulhos. O seu quarto tem duas lâmpadas. Vamos chamá-las de A e B. No hotel há dois interruptores, que chamaremos de  $I_1$  e  $I_2$ . Ao apertar  $I_1$ , a lâmpada A troca de estado, ou seja, acende se estiver apagada e apaga se estiver acesa. Se apertar  $I_2$ , ambas as lâmpadas A e B trocam de estado.

As lâmpadas inicialmente estão ambas apagadas. Seu amigo resolveu bolar um desafio para você. Ele irá apertar os interruptores em uma certa sequência, e gostaria que você respondesse o estado final das lâmpadas A e B.

#### Entrada

A primeira linha contém um número N que representa quantas vezes seu amigo irá apertar algum interruptor. Na linha seguinte seguirão N números, que pode ser 1, se o interruptor  $I_1$  foi apertado, ou 2, se o interruptor  $I_2$  foi apertado.

### Saída

Seu programa deve imprimir dois valores, em linhas separadas.

Na primeira linha, imprima 1 se a lâmpada A estiver acesa no final das operações e 0 caso contrário. Na segunda linha, imprima 1 se a lâmpada B estiver acesa no final das operações e 0 caso contrário.

# Restrições

•  $1 \le N \le 10^5$ 

# Informações sobre a pontuação

• Em um conjunto de casos de teste equivalente a 20 pontos, N=3.

| Entrada | Saída |
|---------|-------|
| 3       | 1     |
| 1 2 2   | 0     |
|         |       |

| Entrada | Saída |
|---------|-------|
| 4       | 0     |
| 2 1 2 2 | 1     |
|         |       |