Question Number	Scheme	Marks
5.	$V = 500 \Longrightarrow 4h^3 = 500$	M1
	$\Rightarrow h = 5$	A1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = 12h^2$	M1 A1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{12h^2} \times 36$	M1
	$= \frac{36}{12 \times 5^2} = \frac{3}{25} = 0.12 \text{ cm/s}$	M1 A1 (7)

Notes

Question 5

Note: Parts of the question can be found anywhere in their working on the page

M1 for
$$V = 500 \Rightarrow 4h^3 = 500$$

A1 h = 5 cso

M1 for differentiating $V = 4h^3$ (usual rules apply)

A1 for
$$\frac{dV}{dh} = 12h^2$$
 cso

M1 for applying chain rule to find an expression for $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$ or any correct arrangement (expression is sufficient – substitution of values is not required for this mark)

M1 for substituting values into their $\frac{dh}{dt}$

A1 for $\frac{dh}{dt} = \frac{3}{25} = 0.12$ (cm s⁻¹) oe - exact answer only.