In the Claims:

Please amend the claims as follows:

online safety control,

 (currently amended) A method to increase a safety integrity level of a single <u>safety</u> controller for control of real world objects, the method comprising:

attaching to the single <u>safety</u> controller a safety-hardware unit wherein the safetyhardware unit communicates with a central processing unit of the single <u>safety</u> controller,

connecting a bus to the single safety controller and connecting an input/output unit to the bus.

downloading safety-related configuration data and/or diagnostic information to the attached safety-hardware unit and downloading a control function software to the single <u>safety</u> controller.

configuring the attached safety-hardware unit to execute logic, which depends on the downloaded safety-related configuration data and/or diagnostic information, and actively or passively setting output values of the single safety controller to a safe state for

obtaining access to a plurality of input and output values of a real world object through the bus, and

verifying a validity of the bus communication with the attached safety hardware unit.

(currently amended) The method according to claim 1, wherein the <u>single safety</u>controller has the capability of executing a set of non-safety critical control functions, which set

of non-safety critical control functions is the same before as well as after the safety hardware unit is attached.

 (currently amended) The method according to claim 2, wherein the configuring comprises:

downloading to the attached safety hardware unit diagnostic information, which previously was automatically generated by a software tool as a result of user's configuration of the <u>single safety</u> controller and which diagnostic information is used in the attached safety hardware unit during safety critical control.

4. (cancelled)

- (previously amended) The method according to claim 1, wherein the timing supervision of the controller is verified in the attached safety hardware unit.
- (previously amended) The method according to claim 1, wherein correct sequence of code logic is verified in the attached safety hardware unit.
- (previously amended) The method according to claim 1, wherein correctness of memory content of the controller is verified in the attached safety hardware unit.
- (previously amended) The method according to claim 1, wherein a download of new control functionality logic to the controller is verified in the attached safety hardware unit.

- 9. (previously amended) The method according to claim 1, wherein the attached safety hardware unit performs checks in order to allow only users logged on as safety classified engineers and safety classified operators to modify the control functionality logic and parameters.
- (previously amended) The method according to claim 4, wherein the bus
 communication verification logic in the attached safety hardware unit is implemented diverse.
- 11. (previously amended) The method according to claim 4, wherein the attached safety hardware unit is diverse generating a safety related header for the bus communication.
- 12. (previously amended) The method according to claim 11, wherein the input/output unit has two diverse implementations each verifying the correctness of the bus traffic and each generating a safety related header for the bus communication.
- 13. (previously amended) The method according to claim 1, wherein the attached safety hardware unit comprises a first and a second module in a redundant configuration, the second module is updated with data that exists first module at the time of a failure and the second module takes over the safety related control of the control system from the first module if a failure of the first module is detected.
 - 14. (currently amended) The method according to claim 13, wherein the redundant

controller unit is attached to the <u>single safety</u> controller, which takes over in case of a failure of a primary controller and the redundant controller unit establish communication with either the active first module or the active second module of the attached safety hardware unit.

- 15. (currently amended) A single or 1-channel control system intended for safety-related control of real-world objects, comprising:
- a single main central processing unit handling main processes of a <u>single safety</u> controller.
- a safety-hardware unit attached to said <u>single safety</u> controller, the safety-hardware unit comprising means to increase a safety-integrity level of the <u>single safety</u> controller and comprising means to set output values of the <u>single safety</u> controller in a safe state for online safety control.
- 16. (currently amended) The control system according to claim 15, wherein the <u>single safety</u> controller has the capability of executing a set of non-safety critical control functions, which set of non-safety critical control functions is the same before as well as after the safety hardware unit is attached.
- 17. (previously amended) The control system according to claim 16, further comprising: means for downloading to the attached safety hardware unit diagnostic information, which previously was automatically generated by a software tool as a result of user's configuration of the controller and which diagnostic information is used in the attached safety hardware unit during safety critical control.

- 18. (previously amended) The control system according to claim 17, further comprising: an input/output unit connected to the controller by a bus and the validity of the bus communication is verified in the attached safety hardware unit.
- 19. (previously amended) The control system according to claim 18, wherein the bus communication verification logic in the attached safety hardware unit is implemented diverse.
- 20. (previously amended) The control system according to claim 19, wherein the attached safety hardware unit is diverse generating a safety related header for the bus communication.