Numerikus módszerek 1.

Programtervező informatikus BSc Vizsgakérdések és válaszok

Frissítve: 2025. augusztus 31.

1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját!

Az $a=\pm m2^k, \ (m=\sum_{i=1}^t m_i2^{-i}, \ m_i\in\{0,1\}, m_1=1, t\in\mathbb{N}, k\in\mathbb{Z})$ számot normalizált lebegőpontos számnak nevezzük, ahol m a mantissza, t a mantissza hossza, ka karakterisztika. Jelölése: $a = \pm [m_1 \dots m_t | k]$.

Gépi számok halmaza: $M = M(t, k^-, k^+)$

$$M(t, k^-, k^+) := \left\{ a = \pm m2^k \mid m = \sum_{i=1}^t m_i 2^{-i}, m_i \in \{0, 1\}, m_1 = 1, k^- \le k \le k^+ \right\} \cup \{0\}.$$

2. Írja le a gépi számhalmaz nevezetes számait!

A legnagyobb pozitív szám: $M_{\infty} = +[11\dots 1|k^+] = (1-\frac{1}{2^t})2^{k^+}$

A legkisebb pozitív szám: $\varepsilon_0 = [10...0|k^-] = \frac{1}{2}2^{k^-}$

A számábrázolás relatív pontossága: $\varepsilon_1 = \underbrace{\begin{bmatrix} 10 \dots 01 \mid 1 \end{bmatrix}}_{1 \text{ rákövetkezőie}} - \underbrace{\begin{bmatrix} 10 \dots 00 \mid 1 \end{bmatrix}}_{1} = \underbrace{\frac{1}{2^t}}_{1} 2^1 = 2^{1-t}$

3. Definálja az input függvény fogalmát, és írja le a hibájára vonatkozó tételt!

Legyen $\mathbb{R}_M := \{ x \in \mathbb{R} : |x| \le M_{\infty} \}.$

Az $fl: \mathbb{R}_M \to M$ függvényt input függvénynek nevezzük, ha

$$f\!\!\!/(x) = \begin{cases} 0, & \text{ha } 0 \leq |x| < \varepsilon_0 \\ \text{az x-hez közelebbi gépi szám a kerekítés szerint, ha } \varepsilon_0 \leq |x| \leq M_\infty \end{cases}$$

Tétel: Ha $x \in \mathbb{R}_M$, akkor

$$|x - f(x)| \le \begin{cases} \varepsilon_0, & \text{ha } 0 \le |x| < \varepsilon_0 \\ \frac{1}{2}|x|\varepsilon_1, & \text{ha } \varepsilon_0 \le |x| \le M_{\infty} \end{cases}$$

4. Adja meg a hibaszámítás alapfogalmait: hiba, abszolút-, relatív hiba és korlátjaik!

Legyen A a pontos érték, a pedig közelítő érték. Ekkor

A pontos hiba: $\Delta a = A - a$

Abszolút hiba: $|\Delta a| = |A - a|$

Egy abszolút hibakorlát: $\Delta_a \ge |\Delta a|$ Relatív hiba: $\delta a = \frac{\Delta a}{A} \approx \frac{\Delta a}{a}$ Egy relatív hibakorlát: $\delta_a \ge |\delta a|$

5. Írja le az alapműveletek abszolút hibakorlátjaira vonatkozó képleteket!

$$\Delta_{a\pm b} = \Delta_a + \Delta_b$$

$$\Delta_{ab} = |a|\Delta_b + |b|\Delta_a$$

$$\Delta_{\frac{a}{b}} = \frac{|a|\Delta_b + |b|\Delta_a}{b^2} = \frac{|a|}{|b|} \left(\frac{\Delta_a}{|a|} + \frac{\Delta_b}{|b|}\right)$$

6. Írja le az alapműveletek relatív hibakorlátjaira vonatkozó képleteket!

$$\begin{split} \delta_{a\pm b} &= \frac{|a|\delta_a + |b|\delta_b}{|a\pm b|} \\ \delta_{ab} &= \delta_a + \delta_b \\ \delta_{\frac{a}{b}} &= \delta_a + \delta_b \end{split}$$

7. Írja le a függvényérték abszolút hibakorlátjára vonatkozó összefüggést!

Tegyük fel, hogy
$$f \in C^1(k(a))$$
 és $k(a) := [a - \Delta_a; a + \Delta_a]$, ekkor
$$\Delta_{f(a)} = M_1 \Delta_a, \text{ ahol } M_1 := \max\{|f'(x)| : x \in k(a)\}.$$

8. Írja le a függvényérték abszolút- és relatív hibakorlátjára vonatkozó összefüggést (a függvényről kétszer folytonosan deriválhatóságot feltételezve)!

Tegyük fel, hogy $f \in C^2(k(a))$, ekkor

$$\Delta_{f(a)} = |f'(a)|\Delta_a + \frac{M_2}{2}\Delta_a^2$$
, ahol $M_2 := \max\{|f''(x)| : x \in k(a)\}.$

A relatív korlátra

$$\delta_{f(a)} = \frac{|a| \cdot |f'(a)|}{|f(a)|} \, \delta_a.$$

9. Definiálja az f függvény a pontbeli kondíciószámát!

A
$$c(f, a) = \frac{|a||f'(a)|}{|f(a)|}$$
 mennyiséget az f függvény a -beli kondiciószámának nevezzük.

10. Mennyi a Gauss-elimináció illetve a visszahelyettesítés műveletigénye? $(x + \mathcal{O}(n^y))$

A Gauss elimináció műveletigénye:

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

A visszahelyettesítés műveletigénye:

$$n^2 + \mathcal{O}(n),$$
ahol $\mathcal{O}(n) = 0,$ így a műveletigény n^2

11. Írja fel az L_k mátrixot, melyet $A^{(k-1)}$ -re alkalmazva a Gauss-elimináció egy lépését kapjuk!

A Gauss-elimináció k. lépése felírható $\mathbf{L_k}\mathbf{A^{(k-1)}} = \mathbf{A^{(k)}}$ alakban, ahol $\mathbf{L_k} \in \mathcal{L}^{(1)}$

$$\begin{aligned}
\text{és } \mathbf{L}_{\mathbf{k}} &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -l_{k+1,k} & \ddots & 0 & 0 \\ 0 & \vdots & 0 & 1 & 0 \\ 0 & -l_{nk} & 0 & 0 & 1 \end{bmatrix} = \mathbf{I} - \mathbf{l}_{\mathbf{k}} \mathbf{e}_{\mathbf{k}}^{\top}, \text{ ahol } \mathbf{l}_{\mathbf{k}} &= \begin{bmatrix} 0 \\ \vdots \\ 0 \\ l_{k+1,k} \\ \vdots \\ l_{nk} \end{bmatrix}, \text{ és } l_{ik} = \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}.
\end{aligned}$$

12. Adjon elégséges feltételt az LU-felbontás létezésére! (Gauss-eliminációval)

Ha a Gauss-elimináció elvégezhető sor és oszlop csere nélkül, akkor létezik az $\mathbf{A} = \mathbf{L}\mathbf{U}$ felbontás, ahol $\mathbf{L} \in \mathcal{L}_1, \mathbf{U} \in \mathcal{U}$.

13. Adjon elégséges feltételt az LU-felbontás létezésére és egyértelműségére! (Gauss-elimináció nélkül)

Ha
$$D_k = \det((a_{ij})_{i,j=1}^k) \neq 0 \quad (k=1,\ldots,n-1),$$
akkor az $\mathbf{A} = \mathbf{L}\mathbf{U}$ felbontás létezik, és $u_{kk} \neq 0 \quad k=1,\ldots,n-1).$

Ha $det(\mathbf{A}) \neq 0$, akkor a felbontás egyértelmű.

14. Mennyi az LU-felbontás, illetve egy háromszög mátrixú LER megoldásának műveletigénye? $(x+\mathcal{O}(n^y))$

Az LU-felbontásnak $\frac{2}{3}n^3 + \mathcal{O}(n^2)$, egy háromszög mátrixú LER megoldásának $n^2 + \mathcal{O}(n)$ a műveletigénye.

15. Mikor nevezzük A-t szimmetrikus és pozitív definit mátrixnak?

Az **A** mátrix szimmetrikus mátrix, ha
$$\mathbf{A}^{\top} = \mathbf{A}$$
 és pozitív definit, ha $\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^{\top} \mathbf{A}\mathbf{x} > 0 \ (\forall \mathbf{x} \neq \mathbf{0})$

16. Mikor nevezzük A-t a soraira (oszlopaira) nézve szigorúan diagonálisan dominánsnak?

A szigorúan diagonálisan domináns a soraira, ha

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \quad \forall i$$
-re.

A szigorúan diagonálisan domináns az oszlopaira, ha

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ji}| \quad \forall i$$
-re.

17. Definiálja A fél sávszélességét!

Az **A** fél sávszélessége
$$s \in \mathbb{N}$$
, ha $\forall i, j : |i - j| > s : a_{ij} = 0$, és $\exists k, l : |k - l| = s : a_{kl} \neq 0$.

18. Definiálja A profilját!

Az **A** profilja a
$$k_i$$
 és l_j számok összessége, melyekre $j = 1 \dots k_i$ -re $a_{ij} = 0$ és $a_{i,k_i+1} \neq 0$ illetve $i = 1 \dots l_j$ -re $a_{ij} = 0$ és $a_{l_j+1,j} \neq 0$.

19. Definiálja az A mátrix A₁₁-re vonatkozó Schur-komplementerét!

Ha $\mathbf{A_{11}} \in \mathbb{R}^{k \times k}$ és invertálható, akkor az $[\mathbf{A} \mid \mathbf{A_{11}}] = \mathbf{A_{22}} - \mathbf{A_{21}} \cdot \mathbf{A_{11}}^{-1} \cdot \mathbf{A_{12}}$ mátrix az \mathbf{A} -nak az $\mathbf{A_{11}}$ -re vonatkozó Schur-komplementere.

20. Mondja ki a a Gauss-elimináció (legalább) 4 tulajdonságának megmaradási tételét!

- Ha ${\bf A}$ szimmetrikus, akkor $[{\bf A} \mid {\bf A_{11}}]$ is szimmetrikus.
- Ha \mathbf{A} szimmetrikus pozitív definit, akkor $[\mathbf{A} \mid \mathbf{A}_{11}]$ is szimmetrikus pozitív definit.
- Ha ${\bf A}$ szigorúan diagonálisan domináns, akkor $[{\bf A}\mid {\bf A_{11}}]$ is szigorúan diagonálisan domináns.
- Ha $\bf A$ fél szávszélessége s, akkor $[\bf A \mid \bf A_{11}]$ fél sávszélessége is legfeljebb s. (A sávon kívüli nulla elemek megmaradnak.)
- $[A \mid A_{11}]$ profilja az A profiljához képest nem csökkenhet. (A soronkénti és oszloponkjénti első nulla elemig minden nulla marad.)
- $\det(\mathbf{A}) \neq 0 \Rightarrow \det([\mathbf{A} \mid \mathbf{A_{11}}]) \neq 0.$

21. Definiálja a Cholesky-felbontást!

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$$
, ahol **A** szimmetrikus, $\mathbf{L} \in \mathcal{L}$ és $l_{ii} > 0 \ \forall i$ -re.

22. Milyen tételt tanult a Cholesky-felbontásról?

Ha **A** szimmetrikus és pozitív definit, akkor $\exists ! \mathbf{A} = \mathbf{L}\mathbf{L}^{\top}$ felbontás.

23. Mennyi a Cholesky-felbontás, illetve egy háromszög mátrixú LER megoldásának műveletigénye? $(x + \mathcal{O}(n^y))$

A Cholesky-felbontás műveletigénye $\frac{1}{3}n^3 + \mathcal{O}(n^2)$, egy háromszög mátrixú LER megoldásának $n^2 + \mathcal{O}(n)$ a műveletigénye.

24. Milyen tételt tanult a QR-felbontásról?

Ha **A** oszlopai lineárisan függetlenek, akkor $\exists \mathbf{A} = \mathbf{Q}\mathbf{R}$ felbontás. Ha még feltesszük, hogy az $r_{ii} > 0 \,\forall i$ -re, akkor egyértelmű is.

25. Mennyi a QR-felbontás műveletigénye?

$$2n^3 + \mathcal{O}(n^2)$$
.

26. Definiálja a Householder mátrixot!

 $\mathbf{A} \mathbf{H}(\mathbf{v}) = \mathbf{I} - 2\mathbf{v}\mathbf{v}^{\top} \ (\mathbf{v} \in \mathbb{R}^n, \|\mathbf{v}\|_2 = 1)$ mátrix a \mathbf{v} vektorhoz tartozó Householder mátrix.

27. Írja le a Householder-transzformáció 4 tanult tulajdonságát!

- 1) $\mathbf{H} = \mathbf{H}(\mathbf{v})$ szimmetrikus $(\mathbf{H}^{\top} = \mathbf{H})$. 2) \mathbf{H} ortogonális $(\mathbf{H}^{-1} = \mathbf{H}^{\top} = \mathbf{H}, \mathbf{H}^{2} = \mathbf{I})$.
- 3) $\mathbf{H}(\mathbf{v})\mathbf{v} = -\mathbf{v}$.
- 4) $\forall \mathbf{y} : \mathbf{y} \perp \mathbf{v}$ -re $\mathbf{H}(\mathbf{v}) \mathbf{y} = \mathbf{y}$.

28. Adja meg azt a Householder mátrixot, melyre az azonos hosszúságú a \neq b vektorok esetén Ha = b!

Legyen $\mathbf{a} \neq \mathbf{b}$, $(\mathbf{a}, \mathbf{b} \neq \mathbf{0})$ és $\|\mathbf{a}\|_2 = \|\mathbf{b}\|_2$, ekkor

$$\mathbf{v} := \pm \frac{\mathbf{a} - \mathbf{b}}{\|\mathbf{a} - \mathbf{b}\|_2} \quad \mathbf{H}(\mathbf{v}) = \mathbf{I} - 2\mathbf{v}\mathbf{v}^{\mathsf{T}} \quad \Rightarrow \quad \mathbf{H}(\mathbf{v})\,\mathbf{a} = \mathbf{b}.$$

29. Írja le a vektornorma definiáló tulajdonságait!

 $A \parallel \cdot \parallel : \mathbb{R}^n \to \mathbb{R}$ függvényt vektornormának nevezzük, ha

- 1) $\|\mathbf{x}\| \ge 0 \quad \forall \mathbf{x} \in \mathbb{R}^n$,
- $2) \|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0},$
- 3) $\|\lambda \mathbf{x}\| = |\lambda| \cdot \|\mathbf{x}\|$ $\forall \lambda \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^n$,
- 4) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

30. Írja le a mátrixnorma definiáló tulajdonságait!

A $\|\cdot\| \colon \mathbb{R}^{n \times n} \to \mathbb{R}$ függvényt mátrixnormának nevezzük, ha

- 1) $\|\mathbf{A}\| \geq 0 \quad \forall \mathbf{A} \in \mathbb{R}^{n \times n}$,
- $2) \|\mathbf{A}\| = 0 \Leftrightarrow \mathbf{A} = \mathbf{0},$
- 3) $\|\lambda \mathbf{A}\| = |\lambda| \cdot \|\mathbf{A}\| \quad \forall \lambda \in \mathbb{R}, \mathbf{A} \in \mathbb{R}^{n \times n}$
- 4) $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\| \quad \forall \, \mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$
- 5) $\|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \cdot \|\mathbf{B}\| \quad \forall \mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$.
- 31. Írja le az indukált mátrixnormáról tanult tételt!

Legyen $\|\cdot\|_v$ tetszőleges vektornorma, ekkor az

$$\|\mathbf{A}\| := \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_v}{\|\mathbf{x}\|_v}$$

mennyiség mátrixnormát definiál, és indukált mátrixnormának nevezzük.

32. Mit jelent az illeszkedés normák esetén?

A $\|\cdot\|$ mátrixnorma és a $\|\cdot\|_v$ vektornorma illeszkedik, ha $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{n \times n}$ -re $\|\mathbf{A}\mathbf{x}\|_v \leq \|\mathbf{A}\| \cdot \|\mathbf{x}\|_v$.

33. Írja le az $1, 2, \infty$ és Frobenius mátrixnormát!

1-es mátrixnorma:

$$\|\mathbf{A}\|_1 = \max_{j=1}^n \sum_{i=1}^n |a_{ij}|.$$

2-es mátrixnorma:

$$\|\mathbf{A}\|_2 = \varrho(\mathbf{A}^{\top}\mathbf{A})^{\frac{1}{2}} = (\max_{i=1,\dots,n} \lambda_i(\mathbf{A}^{\top}\mathbf{A}))^{\frac{1}{2}}.$$

 ∞ mátrixnorma:

$$\|\mathbf{A}\|_{\infty} = \max_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|.$$

Frobenius mátrixnorma:

$$\|\mathbf{A}\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}.$$

34. Mit nevezünk egy mátrix spektrálsugarának?

A $\varrho(\mathbf{B}):=\max_{i=1}^n |\lambda_i(\mathbf{B})|$ mennyiség a $\mathbf{B}\in\mathbb{R}^{n\times n}$ mátrix spektrálsugara.

35. Definiálja a kondíciószámot mátrixok esetén! Mikor értelmezhető?

A cond $(\mathbf{A}) := \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|$ mennyiséget az \mathbf{A} kondíciószámának nevezzük. Akkor értelmezhető, ha \mathbf{A} -nak létezik inverze.

36. Írja le a LER jobboldalának változásakor érvényes perturbációs tételt!

Tegyük fel, hogy $\mathbf{b} \neq \mathbf{0}$ és \mathbf{A} invertálható, ekkor illeszkedő normákra

$$\frac{1}{\|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|} \cdot \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \le \frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\| \cdot \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}.$$

37. Írja le a LER mátrixának változásakor érvényes perturbációs tételt!

Tegyük fel, hogy **A** invertálható, **b** \neq **0**, $\|\Delta \mathbf{A}\| \cdot \|\mathbf{A}^{-1}\| < 1$ és $\|\cdot\|$ indukált norma, ekkor

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{\operatorname{cond}(\mathbf{A})}{1 - \|\Delta \mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|} \cdot \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|}.$$

38. Definiálja a reziduum vektort (maradékvektort)!

Legyen $\tilde{\mathbf{x}}$ közelítő megoldása az $\mathbf{A}\mathbf{x} = \mathbf{b}$ lineáris egyenletrendszernek. Ekkor az $\mathbf{r} := \mathbf{b} - \mathbf{A}\tilde{\mathbf{x}}$ vektort reziduum vektornak nevezzük.

39. Definiálja a relatív maradékot!

Legyen $\widetilde{\mathbf{x}}$ közelítő megoldása az $\mathbf{A}\mathbf{x} = \mathbf{b}$ lineáris egyenletrendszernek, ahol \mathbf{A} invertálható. Ekkor az

$$\eta := \frac{\|\mathbf{r}\|}{\|\mathbf{A}\|\cdot\|\widetilde{\mathbf{x}}\|}$$

mennyiséget relatív maradéknak nevezzük.

40. Írja le a relatív maradékról tanult két állítást!

1. Állítás: Ha A invertálható, akkor bármely illeszkedő normában

$$\eta \le \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|}.$$

2. Állítás: Ha A invertálható, akkor a 2-es normában

$$\eta = \frac{\|\Delta \mathbf{A}\|_2}{\|\mathbf{A}\|_2}.$$

41. Írja le a kondíciószám (legalább) 4 tulajdonságát!

- 1) $c \neq 0 \ (\in \mathbb{R})$ esetén $\operatorname{cond}(c\mathbf{A}) = \operatorname{cond}(\mathbf{A})$.
- 2) Indukált mátrixnormában: $cond(\mathbf{A}) \geq 1$.
- 3) Ha \mathbf{Q} ortogonális mátrix, akkor $\operatorname{cond}_2(\mathbf{Q}) = 1$.
- 4) Ha **A** szimmetrikus, akkor $\operatorname{cond}_2(\mathbf{A}) = \frac{\max_i |\lambda_i(\mathbf{A})|}{\min_i |\lambda_i(\mathbf{A})|}$
- 5) Ha **A** szimmetrikus és pozitív definit, akkor $\operatorname{cond}_2(\mathbf{A}) = \frac{\max \lambda_i(\mathbf{A})}{\min \lambda_i(\mathbf{A})}$.
- 6) Ha **A** invertálható, akkor $\operatorname{cond}(\mathbf{A}) \geq \frac{\max |\lambda_i(\mathbf{A})|}{\min |\lambda_i(\mathbf{A})|}$.

42. Írja le a kontrakció fogalmát $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ függvény esetén!

A φ függvény kontrakció, ha $\exists\, q: 0 \leq q < 1$

$$\|\varphi(\mathbf{x}) - \varphi(\mathbf{y})\| \le q \cdot \|\mathbf{x} - \mathbf{y}\| \quad \forall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

43. Írja le a Banach-féle fixponttételt \mathbb{R}^n -re!

Ha φ kontrakció \mathbb{R}^n -en, akkor

- 1) $\exists ! \mathbf{x}^* \in \mathbb{R}^n$ fixpont, azaz $\mathbf{x}^* = \varphi(\mathbf{x}^*)$.
- 2) $\forall \mathbf{x}^{(0)} \in \mathbb{R}^n : \mathbf{x}^{(k+1)} := \varphi(\mathbf{x}^{(k)}) \ (k \in \mathbb{N}_0)$ iterációs sorozat konvergens és

$$\lim_{k \to \infty} (\mathbf{x}^{(k)}) = \mathbf{x}^*.$$

3) Hibabecslés: $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le q^k \cdot \|\mathbf{x}^{(0)} - \mathbf{x}^*\|$ illetve

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{q^k}{1 - q} \cdot \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|.$$

44. Adjon elégséges feltételt az $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{c}$ alakú iterációk konvergenciájára!

Ha $\|\mathbf{B}\| < 1$, akkor az $\mathbf{x}^{(k+1)} := \mathbf{B}\mathbf{x}^{(k)} + \mathbf{c}$ iteráció $\forall \mathbf{x}^{(0)} \in \mathbb{R}^n$ -re konvergál az $\mathbf{A}\mathbf{x} = \mathbf{b}$ megoldásához.

45. Írja le az indukált normák és spektrálsugár kapcsolatáról tanult lemmát!

$$\varrho(\mathbf{B}) = \inf\{\|\mathbf{B}\| : \mathrm{ahol}\,\|.\|\,\mathrm{induk\'alt}\,\,\mathrm{norma}\}$$
 (azaz $\forall \varepsilon > 0 \,\,\exists\,\,\|\cdot\|\,\mathrm{induk\'alt}\,\,\mathrm{norma}\colon\,\|\mathbf{B}\| < \varrho(\mathbf{B}) + \varepsilon).$

46. Adjon szükséges és elégséges feltételt az $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{c}$ alakú iterációk konvergenciájára!

$$\forall \ \ \mathbf{x}^{(0)}: \ \ \mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{c} \ \text{iteráció konvergál az } \mathbf{A}\mathbf{x} = \mathbf{b} \ \text{megoldásához} \ \Leftrightarrow \ \varrho(\mathbf{B}) < 1$$

47. Írja le a Jacobi- és a csillapított Jacobi iterációt

Jacobi iteráció

$$\mathbf{x}^{(k+1)} = -\underbrace{\mathbf{D}^{-1} \cdot (\mathbf{L} + \mathbf{U})}_{\mathbf{B}_J} \mathbf{x}^{(k)} + \underbrace{\mathbf{D}^{-1} \cdot \mathbf{b}}_{\mathbf{c}_J}$$

$$x_i^{(k+1)} = -\frac{1}{a_{ii}} \cdot \left(\sum_{j=1 \neq i}^n a_{ij} x_j^{(k)} - b_i \right)$$

Csillapított Jacobi iteráció

$$\mathbf{x}^{(k+1)} = \underbrace{((1-\omega)\mathbf{I} - \omega\mathbf{D}^{-1} \cdot (\mathbf{L} + \mathbf{U}))}_{\mathbf{B}_{J(\omega)}} \mathbf{x}^{(k)} + \underbrace{\omega\mathbf{D}^{-1} \cdot \mathbf{b}}_{\mathbf{c}_{J(\omega)}}$$

$$x_i^{(k+1)} = (1 - \omega)x_i^{(k)} - \frac{\omega}{a_{ii}} \left(\sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} - b_i \right)$$

48. Adjon elégséges feltételt a Jacobi iteráció és a csillapított Jacobi iteráció konvergenciájára!

Jacobi iteráció

Ha **A** szigorúan diagonálisan domináns a soraira, akkor $\|\mathbf{B_j}\|_{\infty} < 1$ (azaz $\forall \mathbf{x}^{(0)}$ -ra konvergens a J(1)).

Csillapított Jacobi iteráció

Ha J(1) konvergens $\forall \mathbf{x}^{(0)}$ -ra, akkor $0 < \omega < 1$ -re a $J(\omega)$ is konvergens.

49. Írja le a Gauss-Seidel-iterációt (a koordinátás alakot is!)!

$$\mathbf{x}^{(k+1)} = \underbrace{-(\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{U}}_{\mathbf{B}_S} \mathbf{x}^{(k)} + \underbrace{(\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{b}}_{\mathbf{c}_S}$$

Koordinátás alak:

$$x_{i}^{(k+1)} = \frac{-1}{a_{ii}} \left(\sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} + \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)} - b_{i} \right).$$

50. Írja le a Gauss-Seidel relaxációs módszert (a koordinátás alakot is)!

$$\mathbf{x}^{(k+1)} = \underbrace{(\mathbf{D} + \omega \mathbf{L})^{-1} ((1 - \omega) \cdot \mathbf{D} - \omega \mathbf{U})}_{\mathbf{B}_{\mathbf{S}(\omega)}} \mathbf{x}^{(k)} + \underbrace{\omega \cdot (\mathbf{D} + \omega \mathbf{L})^{-1} \mathbf{b}}_{\mathbf{c}_{\mathbf{S}(\omega)}}$$

Koordinátás alak:

$$x_i^{(k+1)} = (1 - \omega) \cdot x_i^{(k)} - \frac{\omega}{a_{ii}} \left(\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^n a_{ij} x_j^{(k)} - b_i \right).$$

51. Milyen szükséges és elégséges feltételt tanult a Gauss-Seidel relaxáció konvergenciájáról?

Ha $S(\omega)$ konvergens $\forall \mathbf{x}^{(0)}$ -ra, akkor az $\omega \in (0, 2)$.

Ha **A** szimmetrikus, pozitív definit és $\omega \in (0,2)$, akkor az $S(\omega)$ konvergens $\forall \mathbf{x}^{(0)}$ -ra.

52. Szigorúan diagonálisan domináns mátrix esetén mit tud mondani a Jacobiés a Gauss-Seidel-iteráció konvergenciájáról?

Ha **A** szigorúan diagonálisan domináns a soraira, akkor $||B_s||_{\infty} \le ||B_J||_{\infty} < 1$ (azaz S(1) és J(1) is konvergens).

53. Milyen tételt tanult szimmetrikus, pozitív definit és tridiagonális mátrixok esetén a J(1), S(1), S(w) módszerekről?

Ha **A** szimmetrikus, pozitív definit és tridiagonális, akkor J(1), S(1) és $S(\omega)$ is konvergens $\omega \in (0, 2)$ -re, és

$$\omega_0 = \frac{2}{1 + \sqrt{1 - \varrho(B_J)^2}}$$

az optimális paraméter $S(\omega)$ -ra.

Ha
$$\varrho(B_J) = 0$$
, akkor $\varrho(B_{S(\omega)}) = \varrho(B_S) = 0$,

ha
$$\varrho(B_J) \neq 0$$
, akkor $\varrho(B_{S(\omega)}) = \omega_0 - 1 < \varrho(B_S) = \varrho(B_J)^2$.

54. Vezesse le a Richardson-típusú iterációk alakját!

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad \mathbf{0} = -\mathbf{A}\mathbf{x} + \mathbf{b} \quad p \in \mathbb{R}$$

$$\mathbf{0} = -p\mathbf{A}\mathbf{x} + p\mathbf{b}$$

$$\mathbf{x} = \mathbf{x} - p\mathbf{A}\mathbf{x} + p\mathbf{b} = (\mathbf{I} - p\mathbf{A})\mathbf{x} + p\mathbf{b}$$

$$\mathbf{x}^{(k+1)} = \underbrace{(\mathbf{I} - p\mathbf{A})}_{\mathbf{B}_{\mathbf{R}(\mathbf{p})}} \mathbf{x}^{(k)} + \underbrace{p\mathbf{b}}_{\mathbf{c}_{\mathbf{R}(\mathbf{p})}}$$

55. Milyen tételt tanult a Richardson-típusú iterációkról?

Ha A szimmetrikus, pozitív definit és a sajátértékeire:

$$0 < m = \lambda_1 \le \dots \le \lambda_n = M$$
,

akkor $p \in (0, \frac{2}{M})$ -re R(p) konvergens $\forall \mathbf{x}^{(0)}$ -ra.

Az optimális paraméter $p_0 = \frac{2}{M+m}$ és ekkor $\varrho(B_{R(p_0)}) = \frac{M-m}{M+m}$.

56. Definiálja a J pozíció halmazra illeszkedő részleges LU-felbontást!

Legyen J a mátrix elemek pozícióinak olyan halmaza, mely nem tartalmazza a főátlót. Az $\bf A$ mátrix J pozícióhalmazra vonatkozó ILU-felbontásán olyan LU-felbontást értünk, melyre $\bf L$ és $\bf U$ alakja a szokásos, továbbá

$$(i,j) \in J$$
-re $l_{ij} = 0, u_{ij} = 0$ és $(i,j) \notin J$ -re $(\mathbf{A})_{ij} = (\mathbf{L}\mathbf{U})_{ij}$.

57. Írja le az ILU-felbontás algoritmusát (L, U és Q előállításának felírása)!

$$\begin{split} \tilde{\mathbf{A}}_1 &:= \mathbf{A} \\ k &= 1, \dots, n-1: \\ 1.) \text{ Sz\'etbont\'as: } \tilde{\mathbf{A}}_k = \mathbf{P}_k - \mathbf{Q}_k \text{ alakra, ahol} \\ & (\mathbf{P}_k)_{ik} = 0 \quad (i,k) \in J \\ & (\mathbf{P}_k)_{kj} = 0 \quad (k,j) \in J \\ & (\mathbf{Q}_k)_{ik} = -\tilde{a}_{ik}^{(k)} \quad (i,k) \in J \\ & (\mathbf{Q}_k)_{kj} = -\tilde{a}_{kj}^{(k)} \quad (k,j) \in J \end{split}$$

2.) Elimináció:

$$\tilde{\mathbf{A}}_{k+1} = \mathbf{L}_k \mathbf{P}_k$$

Az ILU felbontással kapott részmátrixokból:

$$\mathbf{U} = \tilde{\mathbf{A}}_n, \ \mathbf{L} = \mathbf{L}_1^{-1} \dots \mathbf{L}_{n-1}^{-1}, \ \mathbf{Q} = \mathbf{Q}_1 + \mathbf{Q}_2 + \dots + \mathbf{Q}_{k-1} \quad \Rightarrow \quad \mathbf{A} = \mathbf{L}\mathbf{U} - \mathbf{Q}.$$

58. Adjon elégséges feltételt az ILU-felbontás létezésére és egyértelműségére!

Ha A szigorúan diagonálisan domináns a soraira, akkor ∃! ILU-felbontás.

59. Vezesse le az ILU-algoritmust! A reziduum vektor bevezetésével írja fel a gyakorlatban használt alakot is!

$$\mathbf{A} = \mathbf{P} - \mathbf{Q}, \text{ ahol } \mathbf{P} = \mathbf{L}\mathbf{U}$$

$$\mathbf{A}\mathbf{x} = (\mathbf{P} - \mathbf{Q}) \mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad \mathbf{P}\mathbf{x} = \mathbf{Q}\mathbf{x} + \mathbf{b}$$

$$\mathbf{x} = \mathbf{P}^{-1}\mathbf{Q}\mathbf{x} + \mathbf{P}^{-1}\mathbf{b}$$

$$\mathbf{x}^{(k+1)} = \mathbf{P}^{-1}\mathbf{Q}\mathbf{x}^{(k)} + \mathbf{P}^{-1}\mathbf{b}$$

$$\mathbf{r}^{(0)} := \mathbf{b} - \mathbf{A}\mathbf{x}^{(0)}$$

$$k=0,1\dots$$
leállásig
$$\mathbf{LU}\,\mathbf{s}^{(k)}=\mathbf{r}^{(k)}\quad \text{két háromszögmátrixú LER megoldása}$$

$$\mathbf{x}^{(k+1)}:=\mathbf{x}^{(k)}+\mathbf{s}^{(k)}$$

$$\mathbf{r}^{(k+1)}:=\mathbf{r}^{(k)}-\mathbf{A}\mathbf{s}^{(k)}$$

60. Írja le a Bolzano-tételt!

$$f \in C[a,b], f(a)f(b) < 0 \Rightarrow \exists x^* \in (a,b): f(x^*) = 0.$$

61. Írja le az intervallum-felezés algoritmusát és hibabecslését!

$$x_0 := a, \ y_0 := b$$

$$k = 0, 1 \dots \text{le\'all\'asig}$$

$$s_k := \frac{x_k + y_k}{2}$$

$$f(s_k)f(x_k) < 0 \quad \Rightarrow \quad x_{k+1} := x_k, \ y_{k+1} := s_k$$

$$f(s_k)f(x_k) > 0 \quad \Rightarrow \quad x_{k+1} := s_k, \ y_{k+1} := y_k$$

$$f(s_k)f(x_k) = 0 \quad \Rightarrow \quad x^* := \frac{x_k + y_k}{2}$$

Hibabecslés:

$$|x_k - x^*|, |y_k - x^*| < y_k - x_k \le \frac{b - a}{2^k}$$

62. Írja le a Brouwer-féle fixponttételt!

$$\varphi: [a;b] \to [a;b] \text{ és } \varphi \in C[a;b] \Rightarrow \exists x^* \in [a;b]: x^* = \varphi(x^*)$$

63. Írja le a fixponttételt az [a;b] intervallumra!

Legyen $\varphi: [a;b] \to [a;b]$ kontrakció, ekkor

- 1) $\exists ! \ x^* \in [a;b] : \ x^* = \varphi(x^*)$
- 2) $\forall x_0 \in [a; b]: x_{k+1} := \varphi(x_k) \ (k \in \mathbb{N}_0)$ iterációs sorozat konvergens és $\lim_{k \to \infty} (x_k) = x^*$.
- 3) Hibabecslése: $|x_k x^*| \le \frac{q^k}{1 q} |x_1 x_0|$.

64. Adjon meg elégséges feltételt a kontrakcióra!

$$\varphi \in C^1[a;b]$$
 és $|\varphi'(x)| \le q < 1 \ \forall x \in [a;b] \implies \varphi$ kontrakció $[a;b]$ -n.

65. Definiálja a konvergencia rend fogalmát!

Az (x_k) konvergens sorozat $(\lim(x_k) = x^*)$ p-edrendben konvergál, ha $\exists c > 0$:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

66. Írja le az m-ed rendű konvergenciára vonatkozó tételt!

Legyen $\varphi \in C^m[a;b]$ és

$$\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(m-1)}(x^*) = 0, \text{ de } \varphi^{(m)}(x^*) \neq 0.$$

Továbbá az $x_{k+1} := \varphi(x_k)$ sorozat konvergál x^* -hoz, ekkor a sorozat konvergenciája m-edrendű és hibabecslése

$$|x_{k+1} - x^*| \le \frac{M_m}{m!} |x_k - x^*|^m,$$

ahol $M_m = \max\{|\varphi^{(m)}(\xi)|: \xi \in [a; b].\}$

67. Vezesse le a Newton-módszer képletét!

A függvényt az $(x_k, f(x_k))$ ponton áthaladó érintőjével közelítjük:

$$y = f(x_k) + f'(x_k)(x - x_k).$$

A k+1. közelítést az érintő és az x-tengely metszéspontjaként kapjuk.

$$-f(x_k) = f'(x_k)(x_{k+1} - x_k) \quad \Rightarrow \quad x_{k+1} - x_k = -\frac{f(x_k)}{f'(x_k)} \quad \Rightarrow \quad x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

68. Írja le a Newton-módszer monoton konvergencia tételét!

Legyen $f \in C^2[a;b]$ és

- 1) $\exists x^* \in [a;b]: f(x^*) = 0,$
- 2) f', f'' állandó előjelű,
- 3) $x_0 \in [a;b]: f(x_0)f''(x_0) > 0.$

Ekkor az x_0 -ból indított Newton-módszer monoton konvergál az x^* gyökhöz.

69. Írja le a Newton-módszer lokális konvergencia tételét!

Legyen $f\in C^2[a;b]$ és

- 1) $\exists x^* \in [a;b]: f(x^*) = 0,$
- 2) $f'(x) \neq 0 \ \forall x \in [a; b]$ (vagyis f'állandó előjelű),
- 3) $m_1 := \min_{x \in [a;b]} |f'(x)| > 0,$
- 4) $M_2 := \max_{x \in [a;b]} |f''(x)| < \infty, \quad M := \frac{M_2}{2m_1},$
- 5) $x_0 \in [a; b]: |x_0 x^*| < r := \min\{\frac{1}{M}, |x^* a|, |x^* b|\}.$

Ekkor az x_0 -ból indított Newton-módszer másodrendben konvergál az x^* gyökhöz és hibabecslése

$$|x_{k+1} - x^*| \le M \cdot |x_k - x^*|^2$$
.

70. Definiálja a húr-módszert!

Tegyük fel, hogy $f(a) \cdot f(b) < 0$ és legyen $x_0 := a, x_1 := b$, ekkor

$$x_{k+1} := x_k - \frac{f(x_k)(x_k - x_s)}{f(x_k) - f(x_s)}$$
 $(k = 0, 1, 2, ...),$

ahol s a legnagyobb index, melyre $f(x_k) \cdot f(x_s) < 0$.

71. Definiálja a szelő-módszert!

Legyen $x_0 := a, x_1 := b$, ekkor

$$x_{k+1} := x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
 $(k = 0, 1, 2, ...).$

72. Írja le a szelő-módszer lokális konvergencia tételét!

Legyen $f \in C^2[a;b]$ és

- 1) $\exists x^* \in [a; b] : f(x^*) = 0$,
- 2) $f'(x) \neq 0 \ \forall x \in [a; b]$ (állandó előjelű),
- 3) $m_1 := \min_{x \in [a;b]} |f'(x)| > 0,$
- 4) $M_2 := \max_{x \in [a;b]} |f''(x)|, \quad M := \frac{M_2}{2m_1},$

5)
$$|x^* - a|, |x^* - b| < r := \frac{1}{M}$$
.

Ekkor az a és b pontból indított szelő-módszer $p=\frac{1+\sqrt{5}}{2}$ rendben konvergál az x^* gyökhöz és hibabecslése

$$|x_{k+1} - x^*| \le M \cdot |x_k - x^*| \cdot |x_{k-1} - x^*|$$

73. Vezesse le a többváltozós Newton-módszer képletét!

Legyen $\mathbf{f} \in \mathbb{R}^n \to \mathbb{R}^n$ függvény, amit a Taylor-polinomjával közelítjük:

$$\begin{aligned} \mathbf{T}(\mathbf{x}) &= \mathbf{f}(\mathbf{x_k}) + \mathbf{f}'(\mathbf{x_k})(\mathbf{x} - \mathbf{x_k}).\\ \mathbf{x_{k+1}}\text{-re közelítésre } \mathbf{T}(\mathbf{x_k}) &= \mathbf{0}\\ \mathbf{0} &= \mathbf{f}(\mathbf{x_k}) + \mathbf{f}'(\mathbf{x_k})(\mathbf{x_{k+1}} - \mathbf{x_k}) \end{aligned}$$

$$\begin{aligned} -\mathbf{f}(\mathbf{x}_k) &= \mathbf{f}'(\mathbf{x}_k)(\mathbf{x}_{k+1} - \mathbf{x}_k) \\ -[\mathbf{f}'(\mathbf{x}_k)]^{-1} \cdot \mathbf{f}(\mathbf{x}_k) &= \mathbf{x}_{k+1} - \mathbf{x}_k \\ \mathbf{x}_{k+1} &= \mathbf{x}_k - [\mathbf{f}'(\mathbf{x}_k)]^{-1} \cdot \mathbf{f}(\mathbf{x}_k) \end{aligned}$$

74. Milyen becslést tanult polinomok gyökeinek elhelyezkedéséről?

Legyen $P(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0,\ a_0,\ldots,a_n\in\mathbb{R}$ és tegyük fel, hogy $a_0,a_n\neq 0$. A P polinom bármely x_k gyökére

$$\frac{1}{1 + \frac{\max_{i=1,\dots,n} |a_i|}{|a_0|}} =: r < |x_k| < R := 1 + \frac{\max_{i=0,\dots,n-1} |a_i|}{|a_n|}.$$

75. Írja le a polinom helyettesítési értékeinek gyors számolására tanult Horneralgoritmust!

Legyen $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ a_0, \ldots, a_n \in \mathbb{R}$ és a $\xi \in \mathbb{R}$ pontban szeretnénk a polinom helyettesítési értékét kiszámolni.

$$a_n^{(1)} := a_n,$$

$$k = n - 1, \dots, 0$$

$$a_k^{(1)} := a_{k+1}^{(1)} \cdot \xi + a_k,$$

$$\Rightarrow P(\xi) = a_0^{(1)}.$$