Theoretische Physik II – Quantenmechanik – Blatt 12

Sommersemester 2023

Webpage: http://www.thp.uni-koeln.de/~rk/qm_2023.html/

Abgabe: bis **Mittwoch**, **12.07.23**, **10:00** in elektronischer Form per ILIAS unter https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_5154210.html

45. Zur Diskussion

0 Punkte

Zeigen Sie, dass das Betragsquadrat J^2 des Drehimpulsoperators \vec{J} mit der Komponente J_3 vertauscht: $[J^2,J_3]=0$.

46. Drehimpuls-Operatoren

3+3+3=9 Punkte

a) Zeigen Sie für die Operatoren

$$J_{+} = J_{1} + iJ_{2}, \qquad J_{-} = J_{1} - iJ_{2}$$

die Vertauschungsrelationen

$$[J_3, J_+] = +\hbar J_+, \quad [J_3, J_-] = -\hbar J_-, \quad [J^2, J_+] = 0.$$

- b) $|a,b\rangle$ sei ein gemeinsamer Eigenzustand der Operatoren J^2 und J_3 zu Eigenwerten a und b. Zeigen Sie mittels a), dass dann der Vektor $J_+\,|a,b\rangle$ gemeinsamer Eigenvektor von J^2 und J_3 zu Eigenwerten a und $b+\hbar$ ist, und $J_-\,|a,b\rangle$ ein gemeinsamer Eigenvektor zu Eigenwerten a und $b-\hbar$ (solange $J_\pm\,|a,b\rangle\neq 0$).
- c) Zeigen Sie, dass die Erwartungswerte von J_1 und J_2 im Zustand $|a,b\rangle$ verschwinden. [Hinweis: $\langle a,b|J_+|a,b\rangle$ betrachten.]

47. Drehimpuls-Erwartungswerte

5 Punkte

Ein System befinde sich in einem Drehimpulseigenzustand $|j,m\rangle$. Wie lauten die Erwartungswerte der Drehimpuls-Operatoren J^2 , J_3 , J_1 und J_1^2 in diesem Zustand? Welche Werte können die Drehimpulsquantenzahlen j und m annehmen?

48. Gedrehter Stern-Gerlach-Magnet

3 Punkte

Ein in \vec{e}_3 -Richtung Spin-polarisierter Strahl von Silberatomen wird durch einen Stern-Gerlach-Magneten geführt, dessen Achse mit \vec{e}_3 einen Winkel von $\varphi=60^o$ einschließt. Mit welcher Wahrscheinlichkeit werden die Atome in diesem Stern-Gerlach-Magneten in positive Richtung abgelenkt?

Aufgrund seines Spins besitzt ein Elektron ein magnetisches Moment

$$\vec{\mu} = g \frac{e}{2mc} \vec{s} \,.$$

Hierbei sind e bzw. m Elektronladung und -masse, c die Lichtgeschwindigkeit und g=2.0023 das gyromagnetische Verhältnis (Landé-Faktor) des Elektrons, $\vec{s}=\frac{\hbar}{2}\vec{\sigma}$ ist der Elektron-Spin. Im homogenen Magnetfeld $\vec{B}=B\,\vec{n}$ wird die Spin-Dynamik durch den Hamiltonian

$$H = -\vec{\mu} \cdot \vec{B}$$

beschrieben. Zeigen Sie, dass der Spin eine Präzessionsbewegung um die Achse $-\vec{n}$ mit Larmorfrequenz $\omega = geB/(2mc)$ ausführt.

[Hinweis: Deuten Sie den Zeitentwicklungsoperator U(t) des Spins als Rotationsoperator $U_{spin}(R(t))$ einer zeitabhängigen Rotation R(t).]