东南大学考研复习卷(E卷)

1	Tá	未 程名称	丰节	子体物理 92	29	编 铒 印	可同 20	13-1	得分		
	ŭ	5用专业_	电子科	学与技术	考试	形式	闭卷	考试	时间长度	180 分钟	
		******				/ ,电子	生电量 e=1.6	6×10 ⁻¹⁹ 6	C.		
	-	、 填空题	(每空1	分,共 35	分)						
线	1.	用单电子近似法研究晶体中电子状态的理论称为能带论。在能带论中,费米能级是个非常有用的概念,在能带中引入费米能级是为了									
	2.	金在硅中的施主能级在价带顶上方 0.35 eV 处,受主能级在导带底带下方 0.54 eV 处。已知硅的禁带宽度 E _g =1.12eV,硅中金原子浓度为 10 ¹⁵ cm ⁻³ ,在硅中掺入浓度为 10 ¹⁶ cm 的硼,则该硅是 型半导体,金的带电状态为 。 常规掺杂半导体是通过价带空穴和导带电子导电,在重掺杂的简并半导体中,杂质深度很高,杂质原子相互靠近,被杂质原子束缚的电子的波函数显著重叠,杂质能级摄为杂质能带。重掺杂半导体还可以通过杂质带导电:杂质能带中的电子可以通过系质原子间的									
***	3.										
	4.	两块 n 型	硅材料,	在某温度了	,第一	块与第二	块的电子沟		为 <i>n</i> ₁ / <i>n</i> ₂ =	<i>• e</i> ,第一块	
例	١٨	材料的费米能级在导带底下 3k ₀ T 处,那第二块材料的费米能级位置在,两块材料的空穴浓度之比为。									
,	5.	电流连续	性方程:	$\frac{\partial p}{\partial t} = D_p \frac{\partial}{\partial t}$	$\frac{p^2p}{2x^2}-p\mu$	$u_p \frac{d\varepsilon}{dx} - \varepsilon_i$	$u_p \frac{\partial p}{\partial x} - \frac{\Delta p}{\tau_p}$	+ g _p 。 オ	告用适当频	率的光脉冲	
		为 gp, 光	脉冲停止 一部分,	:后的连续情 均匀产生=	生方程简	前化为_		; 若稳定	定光照射均	子的产生率 匀掺杂 <i>n</i> 型 ,则连续性	
	6.	PN 结的	击穿有热	击穿和电击	占穿,电	击穿有	雪崩击穿和	齐纳击罗	字。齐纳击	穿电压具有	
!		83	(填'	"正"或"负	(")温度	至系数,原	因是		。对于半导	体材料Si、	
į		Ge 和 Ga	aAs,		_最容易	号 发生热品	方穿,原因 ₂	是	٥		
				共	4 页	第1页	Į		(luobin =	考研复习卷)	

姓名

꺄

7.	pn 结的 n 区掺有施主杂质 $\mathbf{N}_{\mathrm{D}}=10^{18}cm^{-3}$, p 区掺有受主杂质 $\mathbf{N}_{\mathrm{A}}=10^{16}cm^{-3}$ 。 pn 结								
	施加正向偏压 V_f ,电流密度为 J ,反向饱和电流 $J_S = \frac{qD_n}{L_n} n_{p0} + \frac{qD_p}{L_p} p_{n0}$ 。室温下本								
	征载流子浓度 $n_i=1.5\times 10^{10}cm^{-3}$,非平衡载流子电子的寿命 $\tau_n=0.5us$,非平衡载流								
	子空穴的寿命 $\tau_p = 5us$, 电子的迁移率 $\mu_n = 1350cm^2/V \cdot s$, 空穴的迁移率								
	$\mu_p = 480cm^2/V \cdot s$ 。该 pn 结的接触电势差 V_D 为; 当电流密度								
	1A/cm²时,外加电压为。								
8.	金属的电导率与温度的关系比较单一,一般随温度的升高而(填"增加"、"不变"或"减小"),原因是。								
9.	已知未知半导体的禁带宽度 \mathbf{E}_{g} = 1.1eV ,且 \mathbf{N}_{C} = \mathbf{N}_{V} ,掺有 10^{15} cm^{-3} 的施主杂质,								
	施主能级比 E_c 低 $0.2 \mathrm{eV}$,费米能级 E_F 比 E_c 低 $0.3 \mathrm{eV}$,室温下本征激发忽略不计。								
	半导体导带有效状态密度 N _C 为, 半导体的空穴浓度为。								
10.	异质结相对于同质结,主要优势有、、等。								
	半导体非平衡载流子的注入方法有、,其中								
	满足 $\Delta n = \Delta p$ 。								
12.	室温下,硅的本征载流子浓度 $n_i=1.5\times 10^{10} cm^{-3}$,硅的禁带宽度 $\mathbf{E}_{\mathrm{g}}=1.12\mathrm{eV}$,在受								
	主浓度为 10^{18} cm^{-3} 的硅(电子亲和能为 $4eV$)表面淀积一层功函数为 $4.6eV$ 的金属。这								
	是一个肖特基接触还是一个欧姆接触?。金属的功函数为多少时可以改变这个接触的类型?。								
13.	根据费米分布函数,比较大小: A.电子占据 E_F 能级的几率; B.空穴占据 E_F 能级的几率; C.电子占据 $(E_{F^-}k_0T)$ 能级的几率; D.空穴占据 $(E_{F^-}k_0T)$ 能级的几率。								
14.	某新型半导体的 $N_C = 10^{19} cm^{-3}$ 、 $N_V = 5 \times 10^{18} cm^{-3}$, 禁带宽度 $E_g = 2 eV$, 若掺入								
	10 ¹⁷ <i>cm</i> ⁻³ 的施主杂质(完全电离),室温下空穴浓度为,费米能级的位置 在禁带中央上。								
	共4页 第2页 (luobin 考研复习卷)								

- 二、 简答题 (共72分)
- 1.(12分) 假设n 型半导体中的复合中心位于禁带的上半部,间接复合理论给出小注入条件

下非平衡少数载流子的寿命
$$\tau = \frac{\Delta p}{U} = \frac{c_n(n_0+n_1)+c_p(p_0+p_1)}{N_t c_n c_p(n_0+p_0)}$$
 , 其中有 $\tau_n = \frac{1}{N_t c_n}$,

导体非平衡少数载流子的寿命与温度的关系如图所示,解释说明这种关系。已知导带有效状态密度为 $N_{\rm C}=2(\frac{2\pi m_{\rm dn}k_{\rm 0}T}{h^2})^{\frac{3}{2}}~,~~$ 价 带 有 效 状 态 密 度 为 $2\pi m_{\rm c} L T$

- 2.(12分)定性画出并解释导体、半导体和绝缘体的能带结构。
- 3.(10分)何谓直接复合和间接复合?
- 4.(12分) 试画出 n 型半导体的费米能级随温度变化规律, 并解释之。
- 5.(12分)什么是热载流子?随着温度的升高,热载流子的迁移率将怎么变化,为什么?
- 6.(14分) 若在掺有受主杂质 N_A 的 p 型衬底上采用扩散工艺又掺入一层浓度为 N_D 施主杂质,且 $N_D\gg N_A$,本征载流子浓度为 n_i 。求:
- (1)叙述空间电荷区的形成过程, 画出平衡时 pn 结的能带图;
- (2) 分析说明外加正向偏置 V_f 时正向扩散电流的组成成分, 分析扩散区载流子的运动方向, 画出外加正向偏置 pn结的能带图;
- (3) 若外加反向电压为 V, 时,分析说明反向饱和电流的组成成分,画出外加反向偏置 pn 结的能带图。
- 三、 计算题 (共43分)

1.(13分) 均匀掺杂的 p 型半导体样品中掺入的施主杂质浓度为 N_D ,掺入的受主杂质浓度为 N_A ,如果两种载流子对电导率的贡献不可忽略,试推导出电导率的公式:

$$\sigma = \frac{1}{2} q \mu_p (\mathbf{N}_{A} - \mathbf{N}_{D}) (1+a) \{ [1 + \frac{4n_i^2}{(\mathbf{N}_{A} - \mathbf{N}_{D})^2}]^{1/2} + \frac{1-a}{1+a} \}, \ \ \sharp \oplus a = \mu_n / \mu_p .$$

如果进入本征区, 简化上式。

共 4 页 第 3 页

(luobin 考研复习卷)

2.(15分)在室温下,有一块本征 Ge 材料,其导带有效状态密度 $N_{\rm C}=1.05\times 10^{19}\,cm^{-3}$,价带有效状态密度 $N_{\rm V}=3.9\times 10^{18}\,cm^{-3}$,已知室温下锗的禁带宽度 $E_g=0.67eV$ 。锗的电子迁移率 $\mu_n=3900cm^2/V\cdot s$,锗的空穴迁移率 $\mu_p=1900cm^2/V\cdot s$,电子的热运动速度为 $v=2\times 10^7\,cm/s$,电子的有效质量 $m_n^{\ *}=0.3m_0\approx 3\times 10^{-31}\,g$ 。

- (1) 求电子的平均自由程 \overline{l} 和空穴的扩散系数 D_{n} ;
- (2) 求在外加电场 $\varepsilon = 10V / cm$ 下的电子漂移速度 v_n 及电流密度 J;
- (3) 当外加电场 $\varepsilon > 10^3 V/cm$ 时,Ge 材料电子的漂移速度 v_n 将怎么变化,并加以解释。

3.(15分) 在一个足够长的条形 Si 半导体样品中,横截面积为 $0.5cm^2$,掺入施主杂质,掺杂浓度为 $10^{16}cm^{-3}$,硅的禁带宽度 $E_g=1.12eV$,本征载流子浓度 $n_i=1.5\times 10^{10}cm^{-3}$ 。该均匀掺杂 n 型 Si 半导体无外场作用。在半导体的一面存在均匀稳定的光照,光被半导体表面薄层均匀吸收以 $G_{op}=5\times 10^{18}cm^{-2}s^{-1}$ 的产生率产生非平衡载流子,即小注入。室温下(T=300K),半导体少数载流子空穴的寿命为 5us,迁移率 $\mu_p=480cm^2/V\cdot s$,半导体的长度远远大于少数载流子的扩散长度。

- (1) 在 x = 100nm 处 E_C 和 E_{Fn} 的间隔为多少?
- (2) 距表面一个少数载流子的扩散长度处少子的扩散流密度为多少?

(提示: 非平衡载流子的产生只是在表面非常薄的一层内发生,所以非平衡载流子的产生率 只是 以边界 条件 出现: $G_{op} = -D_p \frac{d\Delta p}{dx}\Big|_{x=0}$, 非平衡载流子的连续性方程为

$$\frac{\partial p}{\partial t} = D_p \frac{\partial^2 p}{\partial x^2} - p \mu_p \frac{d\varepsilon}{dx} - \varepsilon \mu_p \frac{\partial p}{\partial x} - \frac{\Delta p}{\tau_p} + g_p$$

共4页 第4页

(luobin 考研复习卷)