Module 4 Data Representation and Arithmetic Algorithms

- The booth algorithm is a multiplication algorithm that allows us to multiply the two signed binary integers in 2's complement, respectively.
- It is also used to speed up the performance of the multiplication process.
- It is very efficient too.

- The multiplicand and multiplier are placed in the M and Q registers respectively.
- A and Q-1 are initially set to 0.
- Control logic checks the two bits Q0 and Q-1.

- If the two bits are same (00 or 11) then all of the bits of A, Q, Q-1 are shifted 1 bit to the right.
- If they are not the same and if the combination is 10 then the multiplicand is subtracted from A and if the combination is 01 then the multiplicand is added with A.
- In both the cases results are stored in A, and after the addition or subtraction operation, A, Q, Q-1 are right shifted.
- The result of the multiplication will appear in the A and Q.

Booth's Algorithm steps

- 1. Start
- 2. Get the multiplicand (M) and Multiplier (Q) from the user
- 3. Initialize $A = Q_{-1} = 0$
- 4. Convert M and Q into binary
- 5. Compare Q₀ and Q₋₁ and perform the respective operation.

Operation	
Arithmetic right shift	
A+M and Arithmetic right shift	
A-M and Arithmetic right shift	

- 6. Repeat steps 5 till all bits are compared
- 7. Convert the result to decimal form and display
- 8. End

Example 1: Multiply the two numbers 7 and 5 by using the Booth's algorithm.

Given data:

First of all, we need to convert 7 and 3 into binary numbers 7 = (0111) and 5 = (0101).

M = 0111

Q = 0101

Count represents the number of bits, and here we have 4 bits, so set the C = 4.

Example 1: Multiply the two numbers 7 and 5 by using the Booth's algorithm.

$$M = 0111$$

- M is 2's complement of M i.e. 0111

	0 1 1 1
1's complement is:	1000
2's complement is:	+ 1
	1001

To make calculation easy we rewrite equation AC-M as AC+ (-M) So, we will calculate -M first so simplify operation.

Thus -M = 1001

Example 1: Multiply the two numbers 7 and 5 by using the Booth's algorithm.

Α	Q	Q-	1 M		
0000	0101	0	0111	Initial value	
1001	0101	0	0111	A → A-M	First cycle
1100	1010	1	0111	shift	
0011	1010	1	0111	A A+M	Second cycle
0001	1101	0	0111	shift	
1010	1101	0	0111	A A-M	Third cycle
1101	0110	1	0111	shift	
0100	0110	1	0111	A ~ A+M	Fourth cycle
0010	0011	0	0111	shift	

00100011 -> 35 Thus 0111 * 0101 = 00100011 **Example 2:** Multiply the two numbers -6 and 2 by using the Booth's algorithm.

Given data:

$$M = (-6)10 = 1010$$

-M is 2's complement of M

$$-\mathbf{M} = (6)_{10} = 0110$$

1's complement: 1001

2's complement: 1010

$$Q = 2 = 0010$$

Example 3: Multiply the two numbers -6 and 2 by using the Booth's algorithm.

A	Q	Q_,	operation	ycle
0000	0010	0	qnihial	loimeis pg. (pi
0000	0001	01	A.S.R.	1st cycle
0110	0001	0	(i) A = A - M ⇒ 0000 + 0110	and wde
0011	0000	1	(i) A. S. R.	
1101	0000	J	(1) A= A+M	3nd ycle
1110	1000	<u>o</u>	1101 1101 1101 1101	
1 L 1 Seal	0100	, 0	A.S.R.	4th yde

$$(11110100)_2 = (-12)$$

To verify, take 2's complement of (11110100)2

$$\frac{+}{00001100} = (12)$$

00001011

Example 4: Multiply the two numbers -11 and -5 by using

the Booth's algorithm.

Restoring Division algorithm

Restoring Division method-Example

Dividend Q = 17 n = 5 (n+1) b. Hous,	() 0090.	n M=3 es) ed for har -M=	$=(60011)_3$ Adding the borrow $=\frac{111100}{111101}$
C	AC 00000	Q 10001	← gritial
1 L	00001	0001	left shift AC2 AC-M 000001 11110
O Note: when	00001	00010	AC= AC+M 111110 pppp11 MO 60001
d wale	need to	restore	
0	00010	0010 🗆	left whiff A(= A(=)) 000010 111101
0	00010	00100	Propose A1 = AC+M Appoll (8) 000010
	ed with the	matringly (F.)	

Non-Restoring Division method

Non-Restoring-Example

9	Divid	le (1011)2	with (0011)	Lusing non-
	26 5 10	ring divisio	n method.	
⇒	Q =	= (1011)2		
		(00011)2	- M =	(11101)2
	C	AC	Q	Operation
	0	0000	1011	Initial value
st 5	0	0001	011 🖂	Shiftleht
10/4 }	1	1110	0110	AC=AG-M
		- 10	1	00001
				+ (1101
and S	- 1	1100	1100	Shift left
ycle {	1	11/1	1100	AC= A(+M) 11100 + 00011
rd C	1	1111	100	Shelf left-
cle}				AC= AC+M
(0	0010	100 1	+ 00011
		Do-	1	8 00016
	0	0101	0010	shift-left-
	0	0010	001	AC = AC-M
tre	7	D0-		\$00010

It count is zero, we check A is
The count is zero, we check A is negative or not. of its negative, we do AC = AC + M otherwise end it.
Here A is the beautif
Here A is the because C is o'in forth cycle so we directly end it.
$R = (000 0)_2 = (2)_{10}$
$Q = (0011)_2 = (3)_{10}$
(1011) ₂ : (0011) ₂ i.e. (11) ₁₀ : (3) ₁₀
Hense Q = (3)10 LR = (2)10

Datatype representation

- 1. Fixed point number representation
- 2. Floating point number representation

1. Fixed point number representation

$$(+7)_{10} = (0111)_2$$

$$(-7)_{10}$$
 = $(1001)_2$ by taking the 2's complement of +7

2. Floating point number representation

It has three parts:

- 1. Mantissa
- 2. Base
- 3. Exponent

2. Floating point number representation

For example,

Number	Mantissa	Base	Exponent
3 X 10 ^ 6	3	10	6
110 X 2 ^ 8	110	2	8
6132.784	6132784	10	-3

2. Floating point number representation

But processor can not understand these things, so IEEE made a special format for floating point numbers

IEEE 754 Floating point number representation

- 1. Single precision format
- 2. Double precision format

1. Single precision format

It have total 32 bits (0-31)Bias = 127 Exponent E = e +127

2. Double precision format

It have total 64 bits (0-63)Bias =1023 Exponent E = e +1023

Represent (1259.125)₁₀ in a single and double precision format

Solution:

Step 1: convert decimal number to binary $(1259)_{10} = (10011101011)_2$ $(0.125)_{10} = (001)_2$

 $(1259.125)_{10} = (10011101011.001)_2$

Step 2: Normalize the number: To normalize the number, shift the radix i.e. dot before the first 1 in a number as follows:

 $(10011101011.001)_2 = (1.0011101011001 X 2 ^ 10)$ is the normalized number.

Here exponent e = 10

```
Step 3: single precision format
To find SPF, find out E. (E=e+127)
       E = e + 127
        = 10 + 127
        = 137
Now convert 137 into binary:
(137)_{10} = (10001001)_2
```

```
Step 3: double precision format
To find DPF, find out E. (E=e+1023)
       E = e + 1023
         = 10 + 1023
         = 1033
Now convert (1033) into binary:
(1033)_{10} = (1000000100)_2
   64 62
                 52 51
        1000000100
                    001110101100.....00....
     1-bit
            11-bit
                                  52-bit
```