# Sequential Decision Making Lecture 1: From Batch to Sequential Learning

Emilie Kaufmann







M2 Data Science, 2021/2022

#### Who am I?

- ▶ a CNRS researcher in the CRIStAL computer science lab
- a member of the Inria team Scool (Sequential COntinual Online Learning)
- Contact : emilie.kaufmann@univ-lille.fr

#### Practical information:

- ► Evaluation : final homework + paper reading
- ► Webpage of the class : https://emiliekaufmann.github.io/SDM.html

# **Sequential Decision Making**

#### Sequential Decision Making vs. Supervised Learning

sequential learning: the data needs to be processed sequentially
 (= one by one) online learning



- ▶ decisions can influence the data collection process
- → collect data in a smart way in order to optimize some criterion [e.g., in *Reinforcement Learning* maximize some *cumulated reward*]

### Outline of the SDM course

- Online Learning, Adversarial Bandits
- Stochastic Multi-Armed Bandits
- Contextual Bandits
- Introduction to Markov Decision Processes (MDP)
- Solving a known MDP: Dynamic Programming
- 6 Solving an unknown MDP: RL algorithms
- Reinforcement Learning with Function Approximation
- Bandit tools for Reinforcement Learning

### Outline of the SDM course

- Online Learning, Adversarial bandits
- Stochastic Multi-Armed Bandits
- Contextual Bandits
- Introduction to Markov Decision Processes (MDP)
- Solving a known MDP: Dynamic Programming
- 6 Solving an unknown MDP: RL algorithms
- Reinforcement Learning with Function Approximation
- Bandit tools for Reinforcement Learning

1 Recap: (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II: Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

# **Supervised Learning**

We observe a database containing  $\underline{\text{features}}$  (X) and  $\underline{\text{labels}}$  (Y)

$$\mathcal{D}_n = \{(X_i, Y_i)\}_{i=1,\dots n} \in \mathcal{X} \times \mathcal{Y}$$
("labeled examples")

Typically  $\mathcal{X} = \mathbb{R}^d$  (features are represented by vectors) and

- $\mathcal{Y} = \{0,1\}$ : binary classification
- $ightharpoonup 3 \leq |\mathcal{Y}| < \infty$  : multi-class classification
- $ightharpoonup \mathcal{Y} = \mathbb{R}$  : regression

The goal is to build a **predictor**  $\hat{g}_n : \mathcal{X} \to \mathcal{Y}$ , which is a function that depends on the data  $\mathcal{D}_n$ , such that for a new observation  $(\boldsymbol{X}, \boldsymbol{Y})$ 

$$\hat{g}_n(\boldsymbol{X}) \simeq \boldsymbol{Y}.$$

→ smart prediction by means of generalization from examples

## **Examples**

#### Image classification:



<u>Features</u>: pixel values <u>Label</u>: type of image (classification)

#### Personalized marketing:

|                          | Allistate Claim Prediction Challenge  Also part dissurance is charging each costoner the appropriate price for the risk they represent.  \$10,000 102 hears = 6 years app |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overview Data Discussion | Leaderboard Rules Team                                                                                                                                                    |
|                          |                                                                                                                                                                           |
| Allstate.                | Allstate Claims Severity                                                                                                                                                  |
| You're in good hands.    | How severe is an insurance claim?                                                                                                                                         |
|                          | 3,055 teams - 10 months ago                                                                                                                                               |
| Overview Data Kernels D  | iscussion Leaderboard Rules Team My Submissions Late Submission                                                                                                           |
|                          |                                                                                                                                                                           |

<u>Features</u>: customer information <u>Label</u>: yearly claim

(regression)

### Mathematical formalization

Modelling assumption :  $\mathcal{D}_n = \{(X_i, Y_i)\}_{i=1,...n}$  contains **i.i.d samples** whose distribution is that of a random vector

$$(\boldsymbol{X}, \boldsymbol{Y}) \sim \mathbb{P}.$$

#### Goal

Given a loss function  $\ell$ , build a predictor with small risk

$$R(g) = \mathbb{E}_{(\boldsymbol{X}, \boldsymbol{Y}) \sim \mathbb{P}} [\ell(g(\boldsymbol{X}), \boldsymbol{Y})]$$

## A learning algorithm: Empirical risk minimization

Given a class  ${\cal G}$  of possible predictors, one can compute/approximate

$$\hat{g}_n^{\mathsf{ERM}} \in \operatorname*{argmin}_{g \in \mathcal{G}} \left[ \frac{1}{n} \sum_{i=1}^n \ell(g(X_i), Y_i) \right]$$

# Many supervised learning algorithms

#### Some of them can be related to an ERM:

- → linear regression (Gauss, 1795)
- → logistic regression (1950s)
- → *k*-nearest neighbors (1960s)
- → Decision Trees (CART, 1984)
- → Support Vector Machines (1995)
- → Boosting algorithms (Adaboost, 1997)
- → Random Forest (2001)
- → Neural Networks (1960s-80s, Deep Learning 2010s)

Emilie Kaufmann | CRIStAL -

.

# **Example: Linear Regression**

$$\mathcal{X} = \mathbb{R}^d$$
 and  $\mathcal{Y} = \{-1, 1\}$  (binary classification).

## Linear regression

$$\hat{g}_n(x) = \operatorname{sgn}\left(\langle x|\hat{\theta}_n\rangle\right)$$
 where

$$\hat{\theta}_n \in \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - \langle X_i, \theta \rangle)^2$$

Links with the ERM with

- $\triangleright \mathcal{G} = \{\text{linear functions}\}\$
- ightharpoonup square loss :  $\ell(u,v) = (u-v)^2$

# **Example: Logistic Regression**

$$\mathcal{X} = \mathbb{R}^d$$
 and  $\mathcal{Y} = \{-1, 1\}$  (binary classification).

## Logistic regression

$$\hat{g}_n(x) = \mathrm{sgn}\left(\langle x|\hat{ heta}_n
angle
ight)$$
 where

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \sum_{i=1}^n \ln \left( 1 + \mathrm{e}^{-Y_i \langle X_i, heta 
angle} 
ight)$$

Links with the ERM with

- $\triangleright \mathcal{G} = \{ \text{linear functions} \}$
- logistic loss :  $\ell(u, v) = \ln(1 + e^{-uv})$

#### **Batch versus Online**

#### **Supervised Learning:**

Based on a large database (batch), predict the label of new data (e.g., a test set).

#### **Online Learning:**

Data is collected sequentially, and we have to predict their label one-by-one (online), after which the true label is revealed.

#### **Examples:**

- predict the value of a stock
- predict electricity consumption for the next day
- predict the behavior of a customer

Emilie Kaufmann | CRISTAL - 12

..

# Can existing methods be (efficiently) adapted to the online setting?

Linear regression : not at first sight...

Closed-form expression for the least-square estimate :

$$\hat{\theta}_n = \left(X_{(n)}^{\top} X_{(n)}\right)^{-1} X_{(n)}^{\top} Y_{(n)}$$

where

$$\mathbf{X}_{(n)} = \begin{pmatrix} \mathbf{X}_{1}^{\top} \\ \mathbf{X}_{2}^{\top} \\ \cdot \\ \mathbf{X}_{n}^{\top} \end{pmatrix} \in \mathbb{R}^{n \times d} \quad \text{and} \quad \mathbf{Y}_{(n)} = \begin{pmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \\ \cdot \\ \mathbf{Y}_{n} \end{pmatrix} \in \mathbb{R}^{n}$$

design matrix

vector of labels

- $\rightarrow$  need to invert a  $d \times d$  matrix depending on  $\mathcal{D}_n$  in each round n+1
- → need to store a growing matrix and vector

# Can existing methods be (efficiently) adapted to the online setting?

▶ Linear regression : ... but yes thanks to online least-squares

Another way to write the least-square estimate

$$\hat{\theta}_n = \left(\sum_{t=1}^n X_t X_t^\top\right)^{-1} \left(\sum_{t=1}^n Y_t X_t\right)$$

Hence

$$\hat{\theta}_{n+1} = \left(\sum_{t=1}^{n} X_t X_t^{\top} + X_{n+1} X_{n+1}^{\top}\right)^{-1} \left(\sum_{t=1}^{n} Y_t X_t + Y_{n+1} X_{n+1}\right)$$

→ easy online update thanks to the Sherman-Morisson formula :

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u}$$

 $\rightarrow$  only requires to store a  $d \times d$  matrix and a vector in  $\mathbb{R}^d$ 

# Can existing methods be (efficiently) adapted to the online setting?

▶ Logistic regression : not so clear...

The optimization problem

$$\hat{\theta}_n = \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \ \sum_{i=1}^n \ln \left( 1 + \mathrm{e}^{-Y_i \langle X_i, \theta \rangle} \right)$$

has no closed-form solution...

- → no hope for an explicit only update
- → online version of the optimization algorithms used?

## Online Learning: general framework

## Online Learning

At every time step t = 1, ..., T,

- **①** observe (features)  $x_t \in \mathcal{X}$
- $oldsymbol{0}$  predict (label)  $\hat{y}_t \in \mathcal{Y}$
- **1**  $y_t$  is revealed and we suffer a loss  $\ell(y_t, \hat{y}_t)$ .

Goal: Minimize the cumulated loss

$$\sum_{t=1}^{T} \ell(y_t, \hat{y}_t)$$

#### We can compare our performance to :

- $\rightarrow$  that of the best predictor in a family  $\mathcal{G}$
- → that of ("black-box") experts that propose predictions

1 Recap: (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II: Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

# **Learning the Best Predictor Online**

Let  $\mathcal{G}$  be a class of predictors.

### A particular Online Learning problem

A each time step t = 1, ..., T,

- choose a predictor  $g_t \in \mathcal{G}$
- **2** observe  $x_t \in \mathcal{X}$  and predict  $\hat{y}_t = g_t(x_t)$
- **3** observe  $y_t$  and suffer a loss  $\ell(y_t; \hat{y}_t)$ .
- ► Goal : minimize regret

## Regret of a prediction strategy $(g_t)_{t \in \mathbb{N}}$

The regret is the difference between the cumulative loss of the **strategy** and the cumulative loss of the best predictor in  $\mathcal{G}$ :

$$R_T = \sum_{t=1}^T \ell(y_t; \hat{y}_t) - \min_{g \in \mathcal{G}} \sum_{t=1}^T \ell(y_t; g(x_t)).$$

## **Learning the Best Predictor Online**

Let  $\mathcal{G}$  be a class of predictors.

#### A particular Online Learning problem

A each time step t = 1, ..., T,

- **1** choose a predictor  $g_t \in \mathcal{G}$  (based on previous observation)
- **2** observe  $x_t \in \mathcal{X}$  and predict  $\hat{y}_t = g_t(x_t)$
- **3** observe  $y_t$  and suffer a loss  $\ell(y_t; \hat{y}_t)$ .
- ► Goal : minimize regret

## Regret of a prediction strategy $(g_t)_{t\in\mathbb{N}}$

The regret is the difference between the cumulative loss of the **strategy** and the cumulative loss of the best predictor in G:

$$R_T = \sum_{t=1}^T \ell(y_t; \hat{y}_t) - \min_{g \in \mathcal{G}} \sum_{t=1}^T \ell(y_t; g(x_t)).$$

Let  $\mathcal{G}$  be a class of predictors.

#### A particular Online Learning problem

A each time step t = 1, ..., T,

- $oldsymbol{0}$  choose a predictor  $g_t \in \mathcal{G}$
- **2** observe  $x_t \in \mathcal{X}$  and predict  $\hat{y}_t = g_t(x_t)$
- **3** observe  $y_t$  and suffer a loss  $\ell(y_t; \hat{y}_t)$ .

**Example**:  $\mathcal{X} = \mathbb{R}^d$ ,  $\mathcal{Y} = \mathbb{R}$  (can be converted to prediction in  $\{-1,1\}$ ).

- $ightharpoonup \mathcal{G}$  is the set of linear functions :  $\mathcal{G} = \{g(x) = \langle x, \theta \rangle, \theta \in \mathbb{R}^d\}$
- $\rightarrow$  there exists  $\theta_t \in \mathbb{R}^d$  such that  $g_t(x) = \langle \theta_t, x \rangle$
- $\blacktriangleright$   $\ell$  is the logistic loss :  $\ell(y_t; \hat{y}_t) = \ln(1 + e^{-y_t \langle \theta_t, x_t \rangle})$

Let  $\mathcal{G}$  be a class of predictors.

### A particular Online Learning problem

A each time step t = 1, ..., T,

- **1** choose a predictor  $g_t \in \mathcal{G}$
- **2** observe  $x_t \in \mathcal{X}$  and predict  $\hat{y}_t = g_t(x_t)$
- **3** observe  $y_t$  and suffer a loss  $\ell(y_t; \hat{y}_t)$ .

Goal: the regret that we should minimize rewrites

$$R_T = \underbrace{\sum_{t=1}^T \ln \left( 1 + e^{-y_t \langle \theta_t, x_t \rangle} \right)}_{\text{total states of the states}} - \underbrace{\min_{\theta \in \mathcal{R}^d} \sum_{t=1}^T \ln \left( 1 + e^{-y_t \langle \theta, x_t \rangle} \right)}_{\text{total states}}$$

loss obtained by updating our predictor in an online fashion

loss obtained by the logistic regression predictor trained with the whole dataset

 $\mathcal{G}$  is a parametric class of predictors :  $\mathcal{G} = \{g_{\theta}, \theta \in \mathbb{R}^d\}$ 

### A particular Online Learning problem

A each time step t = 1, ..., T,

- **①** choose a vector  $\theta_t \in \mathbb{R}^d$
- **2** a loss function is observed :  $\ell_t(\theta) = \ln (1 + e^{-y_t \langle \theta, x_t \rangle})$
- **3** we suffer a loss  $\ell_t(\theta_t)$ .

Goal: the regret that we should minimize rewrites

$$R_T = \underbrace{\sum_{t=1}^{T} \ln \left( 1 + e^{-y_t \langle \theta_t, x_t \rangle} \right)}_{\text{total elements}} - \underbrace{\min_{\theta \in \mathcal{R}^d} \sum_{t=1}^{T} \ln \left( 1 + e^{-y_t \langle \theta, x_t \rangle} \right)}_{\text{total elements}}$$

loss obtained by updating our predictor in an online fashion

loss obtained by the logistic regression predictor trained with the whole dataset

 $\mathcal{G}$  is a parametric class of predictors :  $\mathcal{G} = \{g_{\theta}, \theta \in \mathbb{R}^d\}$ 

### A particular Online Learning problem

A each time step t = 1, ..., T,

- **①** choose a vector  $\theta_t \in \mathbb{R}^d$
- **2** a loss function is observed :  $\ell_t(\theta) = \ln (1 + e^{-y_t \langle \theta, x_t \rangle})$
- **3** we suffer a loss  $\ell_t(\theta_t)$ .

Goal: the regret that we should minimize rewrites

$$R_T = \sum_{t=1}^T \ell_t(\theta_t) - \min_{\theta \in \mathcal{R}^d} \sum_{t=1}^T \ell_t(\theta)$$

loss obtained by updating our predictor in an online fashion

loss obtained by the logistic regression classifier trained with the whole dataset

→ fits the framework of Online Convex Optimization

## **Online Convex Optimization**

## Online Convex Optimization

A each time step t = 1, ..., T,

- choose  $\theta_t \in \mathcal{K}$ , a convex set
- **2** a **convex loss function**  $\ell_t(\theta)$  is observed
- **3** we suffer a loss  $\ell_t(\theta_t)$ .

Goal: minimize the regret

$$R_T = \sum_{t=1}^T \ell_t( heta_t) - \min_{ heta \in \mathcal{R}^d} \sum_{t=1}^T \ell_t( heta)$$
loss obtained by updating loss obtained by the

ss obtained by updating  $\theta$  in an online fashion loss obtained by the best static choice of  $\theta$ 

### **Online Gradient Descent**

## Online (Projected) Gradient Descent

$$\begin{cases} \theta_1 & \in \mathcal{K} \\ \theta_{t+1} & = \Pi_{\mathcal{K}} \left( \theta_t - \eta \nabla \ell_t(\theta_t) \right) \end{cases}$$

where  $\Pi_{\mathcal{K}}(x) = \operatorname{argmin}_{u \in \mathcal{K}} ||x - u||$  is the projection on  $\mathcal{K}$ .

## Theorem [e.g., Theorem 3.2 in Bubeck 2015]

Assume  $||\nabla \ell_t(\theta)|| \leq L$  and  $\mathcal{K} \subseteq B(\theta_1, R)$ . Then

$$R_T = \max_{\theta \in \mathcal{K}} \sum_{t=1}^T (\ell_t(\theta_t) - \ell_t(\theta)) \le \frac{R^2}{2\eta} + \frac{\eta L^2 T}{2}$$





### **Online Gradient Descent**

## Online (Projected) Gradient Descent

$$\begin{cases} \theta_1 & \in \mathcal{K} \\ \theta_{t+1} & = \Pi_{\mathcal{K}} (\theta_t - \eta \nabla \ell_t(\theta_t)) \end{cases}$$

where  $\Pi_{\mathcal{K}}(x) = \operatorname{argmin}_{u \in \mathcal{K}} ||x - u||$  is the projection on  $\mathcal{K}$ .

## Theorem [e.g., Theorem 3.2 in Bubeck 2015]

Assume  $||\nabla \ell_t(\theta)|| \leq L$  and  $\mathcal{K} \subseteq B(\theta_1, R)$ . Then

$$R_T = \max_{\theta \in \mathcal{K}} \sum_{t=1}^{T} (\ell_t(\theta_t) - \ell_t(\theta)) \le \frac{R^2}{2\eta} + \frac{\eta L^2 T}{2}$$

**Corollary** : for the choice  $\eta_T = \frac{R}{L\sqrt{T}}$ , we obtain  $R_T \leq RL\sqrt{T}$ 

## ... and beyond

- smaller regret for more regular functions (smooth, strongly convex)
- > second order methods (e.g. online version of Newton's algorithm)

#### References:





[Introduction to Online Optimization]

1 Recap: (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II: Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

## Prediction with expert advice

- we want to sequentially predict some phenomenon (market, weather, energy cunsumption...)
- ▶ no probabilistic hypothesis is made about this phenomenon
- $\blacktriangleright$  we rely on experts (black boxes)  $\pm$  good
- we want to be at least as good as the best expert



# A prediction game

K experts. Prediction space  $\mathcal{Y}$ . Loss function  $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ .

### Prediction with Expert Advice

At each time step t = 1, ..., T,

- each expert k makes a prediction  $z_{k,t} \in \mathcal{Y}$  (that we observe)
- **2** we predict  $\hat{y}_t \in \mathcal{Y}$
- $y_t$  is revealed and we suffer a loss  $\ell(\hat{y}_t, y_t)$ . Expert k suffers a loss  $\ell(z_{k,t}, y_t)$ .

**Remark :** experts may exploit some underlying feature vector  $x_t \in \mathcal{X}$ 

#### Goal: minimize regret

The regret of a **prediction strategy** is

$$R_T = \sum_{\substack{t=1\\ \text{cumulative loss} \\ \text{of our prediction strategy}}}^T \ell(\hat{y}_t, y_t) - \min_{\substack{k \in K}} \left[ \sum_{t=1}^T \ell(z_{k,t}, y_t) \right]$$

## A prediction game

K experts. Prediction space  $\mathcal{Y}$ . Loss function  $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ .

### Prediction with Expert Advice

At each time step t = 1, ..., T,

- **①** each expert k makes a prediction  $z_{k,t} \in \mathcal{Y}$  (that we observe)
- **2** we predict  $\hat{y}_t \in \mathcal{Y}$  (using past observation + current predictions)
- $y_t$  is revealed and we suffer a loss  $\ell(\hat{y}_t, y_t)$ . Expert k suffers a loss  $\ell(z_{k,t}, y_t)$ .

**Remark :** experts may exploit some underlying feature vector  $x_t \in \mathcal{X}$ 

#### Goal: minimize regret

The regret of a **prediction strategy** is

$$R_T = \sum_{\substack{t=1\\ \text{cumulative loss} \\ \text{of our prediction strategy}}}^T \ell(\hat{y}_t, y_t) - \min_{\substack{k \in K}} \left[ \sum_{t=1}^T \ell(z_{k,t}, y_t) \right]$$

# Weighted (Average) Prediction

#### Idea

Assign a weight  $w_{k,t}$  for expert k at round t and predict a "weighted average" of the experts' predictions.

First idea:

$$\hat{y}_t = \frac{\sum_{k=1}^K w_{k,t} z_{k,t}}{\sum_{k=1}^K w_{k,t}} = \sum_{k=1}^K \left( \frac{w_{k,t}}{\sum_{i=1}^K w_{i,t}} \right) z_{k,t}.$$

- → the prediction of experts with large weights matter more
- → we should assign larger weights to "good" experts

# Weighted (Average) Prediction

#### Idea

Assign a weight  $w_{k,t}$  for expert k at round t and predict a "weighted average" of the experts' predictions.

First idea:

$$\hat{y}_t = \frac{\sum_{k=1}^K w_{k,t} z_{k,t}}{\sum_{k=1}^K w_{k,t}} = \sum_{k=1}^K \left( \frac{w_{k,t}}{\sum_{i=1}^K w_{i,t}} \right) z_{k,t}.$$

- → the prediction of experts with large weights matter more
- → we should assign larger weights to "good" experts

# Weighted (Average) Prediction

#### Idea

Assign a weight  $w_{k,t}$  for expert k at round t and predict a "weighted average" of the experts' predictions.

- ► Second idea :
- $\rightarrow$  compute the probability vector  $p_t = (p_{1,t}, \dots, p_{K,t})$  where

$$p_{k,t} := \frac{w_{k,t}}{\sum_{i=1}^{K} w_{i,t}},$$

- $\rightarrow$  select an expert  $k_t \sim p_t$ , i.e.  $\mathbb{P}(k_t = k) = p_{k,t}$
- $\rightarrow$  predict  $\hat{y}_t = z_{k_t,t} \in \mathcal{Y}$

## How to choose the weights?

The weights should depend on the quality of the expert in the past.

- ▶ cumulative loss of expert k at time  $t: L_{k,t} = \sum_{s=1}^{t} \ell(z_{k,s}, y_s)$
- "good expert" at time t =expert with a small loss

### A natural weight selection

 $w_{k,t} = F(L_{k,t-1})$  for some decreasing function F.

**Typical choice** :  $F(x) = \exp(-\eta x)$ .

→ leads to an easy multiplicative update

# **Exponentially Weighted Forecaster**

Parameter :  $\eta > 0$ .

**Initialization**: for all  $k \in \{1, ..., K\}, w_{k,1} = \frac{1}{K}$ .

For t = 1, ..., T

- **①** Observe the experts' predictions :  $(z_{k,t})_{1 \le k \le K}$
- **2** Compute the probability vector  $p_t = (p_{1,t}, \dots, p_{K,t})$  where

$$p_{k,t} = \frac{w_{k,t}}{\sum_{i=1}^{K} w_{i,t}}$$
 (normalize the weights)

- **3** Select an expert  $k_t \sim p_t$ , i.e.,  $\mathbb{P}(k_t = k) = p_{k,t}$
- **9** Predict  $\hat{y}_t = z_{k_t,t}$  and observe the losses

$$\ell_{k,t} = \ell(z_{k,t}, y_t)$$
 for all  $k \in \{1, \dots, K\}$ 

**5** Update the weights:  $\forall k \in \{1, ..., K\}, \ w_{k,t+1} = w_{k,t} \exp(-\eta \ell_{k,t}).$ 

 $\mathrm{EWF}(\eta)$  algorithm (or  $\mathrm{HEDGE}$ )

# **Analysis of EWF**

As the algorithm is randomized, we consider the expected regret

$$\mathbb{E}[R_T] = \mathbb{E}\left[\sum_{t=1}^T \ell_{k_t,t} - \min_{k \in \{1,\dots,K\}} \sum_{t=1}^T \ell_{k,t}\right].$$

## Theorem (e.g., Cesa-Bianchi and Lugosi 06)

Assume that

- ▶ the losses  $\ell_{k,t} = \ell(z_{k,t}, y_t)$  are fixed in advance (oblivious case)
- ▶ for all  $k, t, 0 \le \ell_{k,t} \le 1$

Then for all  $\eta > 0$  and  $T \ge 0$ ,  $\mathrm{EWF}(\eta)$  satisfies

$$\mathbb{E}[R_T] \leq \frac{\ln(K)}{\eta} + \frac{\eta T}{8} .$$



### A useful lemma

#### Hoeffding's lemma

Let Z be a random variable supported in [a, b]. Then

$$\forall s \in \mathbb{R}, \ \ \ln \mathbb{E}\left[e^{sZ}\right] \leq s\mathbb{E}[Z] + \frac{s^2(b-a)^2}{8}$$

(we will say later that Z is  $\frac{(b-a)^2}{4}$ -subGaussian)

## **Analysis of EWF**

#### Theorem

Choosing 
$$\eta_{\mathcal{T}} = \sqrt{\frac{8 \ln(K)}{T}}$$
,  $\mathrm{EWF}(\eta_{\mathcal{T}})$  satisfies  $\mathbb{E}[R_{\mathcal{T}}] \leq \sqrt{\frac{\mathcal{T} \ln(K)}{2}}$ 

#### Remarks:

 $\triangleright$   $\eta$  can also be chosen without the knowledge of the "horizon" T with similar regret guarantees (up to a constant factor) :

$$\eta_t = \sqrt{\frac{8\ln(K)}{t}}$$

- ightharpoonup if  $\mathcal Y$  is convex, one can replace randomization by actual average, with the same regret guarantees
  - → Exponentially Weighted Average (EWA)

# **Exponentially Weighted Average**

Parameter :  $\eta > 0$ .

**Initialization**: for all  $k \in \{1, \dots, K\}, w_{k,1} = \frac{1}{K}$ .

For t = 1, ..., T

- **①** Observe the experts' predictions :  $(z_{k,t})_{1 \le k \le K}$
- **2** Compute the probability vector  $p_t = (p_{1,t}, \dots, p_{K,t})$  where

$$p_{k,t} = \frac{w_{k,t}}{\sum_{i=1}^{K} w_{i,t}}$$
 (normalize the weights)

**3** Predict  $\hat{y}_t = \sum_{k=1}^K p_{k,t} z_{k_t,t}$  and observe the losses

$$\ell_{k,t} = \ell(z_{k,t}, y_t)$$
 for all  $k \in \{1, \dots, K\}$ 

• Update the weights :  $\forall k \in \{1, \dots, K\}, \ w_{k,t+1} = w_{k,t} \exp(-\eta \ell_{k,t}).$ 

 $\mathrm{EWA}(\eta)$  algorithm

1 Recap: (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II: Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

## From full information to partial information

## Prediction with Expert Advice

At each time step t = 1, ..., T,

- **①** each expert k makes a prediction  $z_{k,t} \in \mathcal{Y}$  (that we observe)
- **2** we predict  $\hat{y}_t \in \mathcal{Y}$
- **3**  $y_t$  is revealed and we suffer a loss  $\ell_{k,t} := \ell(\hat{y}_t, y_t)$ .
- ▶ A full information game : we assumed to observe the losses of all experts
- **Partial** information game : we only observe a **subset of the**  $(\ell_{k,t})_k$
- ▶ Bandit information : we predict  $\hat{y}_t = z_{k_t,t}$  and only observe the **loss** of the chosen expert,  $\ell_{k_t,t}$

**Bandit information :** Our prediction strategy has consequences on the loss received but also on the information gathered.

#### Can we use EWF?

#### The Bandit game

At each time step t = 1, ..., T,

- **1** nature picks a loss vector  $\ell_t = (\ell_{1,t}, \dots, \ell_{K,t})$  [unobserved]
- **2** the learner selects an action  $k_t \in \{1, ..., K\}$
- $oldsymbol{3}$  the learner receives (and observes) the loss of the chosen action  $\ell_{k_t,t}$
- ► EWF update :

$$\forall k \in \{1, \dots, K\}, \ w_{k,t+1} = w_{k,t} \exp(-\eta \ell_{k,t})$$

 $\rightarrow$  not possible for  $k \neq k_t ...$ 

### EWF becomes EXP3

Parameter :  $\eta > 0$ . Initialization : for all  $k \in \{1, \dots, K\}$ ,  $w_{k,1} = \frac{1}{K}$ . For  $t = 1, \dots, T$ 

- **①** Observe the experts' predictions :  $(z_{k,t})_{1 \le k \le K}$
- **2** Compute the probability vector  $p_t = (p_{1,t}, \dots, p_{K,t})$  where

$$p_{k,t} = \frac{w_{k,t}}{\sum_{i=1}^{K} w_{i,t}}$$
 (normalize the weights)

- **3** Select an expert  $k_t \sim p_t$ , i.e.,  $\mathbb{P}(k_t = k) = p_{k,t}$
- **1** Predict  $\hat{y}_t = z_{k_t,t}$  and observe  $\ell_{k_t,t}$
- **6** Compute estimates of the unobserved losses :  $\tilde{\ell}_{k,t} = \frac{\ell_{k,t}}{\rho_{k,t}} \mathbb{1}_{(k_t=k)}$
- Update the weights :  $\forall k, \quad w_{k,t+1} = w_{k,t} \exp\left(-\eta \tilde{\ell}_{k,t}\right)$ .

### EXP3 (Explore, Exploit and Exponential Weights)

## Theoretical guarantees for EXP3

#### Why does it work?

$$ilde{\ell}_{k,t} = rac{\ell_{k,t}}{p_{k,t}} \mathbb{1}_{(k_t=k)}$$
 is an unbiaised estimate of  $\ell_{k,t}$ 

## Theorem [Auer et al., 02]

For the choice

$$\eta_T = \sqrt{\frac{\log(K)}{KT}}$$

EXP3( $\eta_T$ ) satisfies

$$\mathbb{E}[\mathcal{R}_T] \leq \sqrt{2\ln(K)}\sqrt{KT}$$

- $\rightarrow$  regret in  $\sqrt{T}$  for both EWF and EXP3
- → worse dependency in the number of "arms" K for EXP3

## Reference



[Prediction, Learning and Games]