Arithmetic Operation	$a(b+c) = ab + ac$ $\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$ $\frac{a \pm c}{b} = \frac{a}{b} \pm \frac{c}{b}$		
	$\frac{a/b}{c/d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc} \qquad \qquad \frac{a-b}{c-d} = \frac{b-a}{d-c}$		
	$x^{0} = 1 \ (x \neq 0)$ $x^{-m} = \frac{1}{x^{m}}$ $\frac{1}{x^{-m}} = x^{m}$		
Exponents	$x^m x^n = x^{m+n}$ $(x^m)^n = x^{mn}$ $(xy)^n = x^n y^n$		
	$\frac{x^m}{x^n} = x^{m-n} = \frac{1}{x^{n-m}} \qquad \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n} \qquad \left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n = \frac{y^n}{x^n}$		
D. PI.	$x^{1/n} = \sqrt[n]{x}$ (If n is even, then $x \ge 0$ and if n is odd, then x is a real number.) $x^2 = a \implies x = \pm \sqrt{a}$		
Radicals	$x^{m/n} = \sqrt[n]{x^m} = (x^m)^{1/m} = \left(\sqrt[n]{x}\right)^m \qquad \sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y} = \sqrt[n]{\frac{x}{y}} = \sqrt[n]{\frac{x}{y}}$		
Factoring	$x^{2} - y^{2} = (x + y)(x - y)$ $x^{2} + y^{2} = Prime$		
Special	$x^4 - y^4 = (x^2 + y^2)(x + y)(x - y)$		
Polynomials	$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$ $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$		
	$ax^{2} + bx + c = 0$, where $a \neq 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$		
Quadratic Formula	If $b^2 - 4ac > 0$, there are 2 real solutions		
1 of maia	If $b^2 - 4ac = 0$, there are 1 repeated real solutions		
	If $b^2 - 4ac < 0$, there are 2 complex solutions s.t. $a \pm bi$		
	$(x + y)^2 = x^2 + 2xy + y^2 (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$		
	$(x - y)^2 = x^2 - 2xy + y^2 \qquad (x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$		
	$(x+y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \dots + \binom{n}{k} x^{n-k} y^k + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$		
Binomial Theorem	$= x^{n} + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^{2} + \dots + \binom{n}{k}x^{n-k}y^{k} + \dots + nxy^{n-1} + y^{n}$		
	* Binomial Coefficient = $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot 2\cdot 3\cdot \cdots \cdot k}$		
	* $(x+a)^n$ has terms of $x^k = \binom{n}{n-k} a^{n-k} x^k$		
Distance	If 2 points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, the distance from P_1 to P_2 is		
Formula	$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
Midpoint Formula	$M = (x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ from 2 points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$		

	$i = \sqrt{-1}$ $i^2 = -1$ $\sqrt{-a} = i\sqrt{a} \ (a \ge 0)$ Basic Form: $a \pm bi$ $(a, b \text{ are real numbers })$				
Complex Numbers	$(a+bi) \pm (c+di) = (a \pm c) + (b \pm d)i$ $(a+bi)(a-bi) = a^2 + b^2$				
	$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$ $(a+bi)^2 = a+bi ^2$				
	$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{(ac+bd)-(ad-bc)i}{c^2+d^2}$				
	* Complex Modules: $\sqrt{a^2 + b^2} = a + bi = z = \sqrt{z} \bar{z}$ if $z = a + bi$.				
	* Complex Conjugate: $\overline{(a+bi)} = a - bi$				
	$(a+bi)\overline{(a+bi)} = (a+bi)(a-bi) = a^2 + b^2$				
	If $a < b$ and $b < c$, then $a < c$ If $a < b$, then $a \pm c < b \pm c$				
	If $a < b$ and $c > 0$, then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$				
Inequalities	If $a < b$ and $c < 0$, then $ca > cb$ and $\frac{a}{c} > \frac{b}{c}$				
and Absolute Value	If $a > 0$, then $ x = a \rightarrow x = a$ or $x = -a$ $ a = a$ if $a \ge 0$				
	$ x < a \rightarrow -a < x < a$ $-a \text{if} a < 0$ $ x > a \rightarrow x > a \text{or} x < -a$ $ a \ge 0$ $ -a = a $				
	$ x > a \rightarrow x > a \text{ or } x < -a \qquad a \ge 0 \qquad -a = a $				
	$* ab = a b $ $*\left \frac{a}{b}\right = \frac{ a }{ b }$ $*Triangle\ Inequality\ a+b \le a + b $				

Linear Equation

Slava Farma of	$m=a$ slope of the line and 2 points $P_1=(x_1,y_1)$ and $P_2=(x_2,y_2)$,		
Slope Form of a linear equation	if $x_1 \neq x_2$, then $m = \frac{y_2 - y_1}{x_2 - x_1}$ if $x_1 = x_2$, then $m = undefined$		
Standard Form of a linear equation	$Ax^2 + Bx + c = 0$ Ais must be a positive integer $m = -\frac{B}{A}$		
Point-Slope Equation of a Line	a point $P_1 = (x_1, y_1)$ $m = a slope$ $y - y_1 = m(x - x_1)$		
Slope-Intercept Equation of a Line	$m = slope \ and \ b = y - intercept \ y = mx + b$		

Even function If and only if the graph is *symmetric* with respect to the y - axis f(-x) = f(x) **Odd function** If and only if the graph is *symmetric* with respect to the *origin* f(-x) = -f(x)

Library of Functions

Square Root Function

Summary of Graphing Techniques

To Graph	Draw the Graph of f and:	Functional change to f(x)	
Vertical Shifts $y = f(x) + \mathbf{k}, k > 0$ $y = f(x) - \mathbf{k}, k > 0$	Raise the graph of f by k units Lower the graph of f by k units	Add k to $f(x)$ Subtract k from $f(x)$	
Horizontal Shifts y = f(x + h), h > 0 y = f(x - h), h > 0	Shift the graph of f to the left h units Shift the graph of f to the right h units	Replace x by $\mathbf{x} + \mathbf{h}$ Replace x by $\mathbf{x} - \mathbf{h}$	
	Compressing or Stretching		
<u>Vertically</u>	Multiply each y - coordinate of $y = f(x)$ by a .	Multiply $f(x)$ by a	
y = af(x), if $0 < a < 1$	Compress the graph of f vertically		
if $a > 1$	Stretch the graph of f vertically		
<u>Horizontally</u>	Multiply each x - coordinate of $y = f(x)$ by $\frac{1}{a}$	Replace x by ax	
$y = f(\mathbf{a}x), \ if \ a > 1$	Compress the graph of f horizontally		
<i>if</i> $0 < a < 1$	Stretch the graph of f horizontally		
Reflection about the axis	•		
y = -f(x)	Reflection about the $x - axis$	Multiply $f(x)$ by -1	
y = f(-x)	Reflection about the $y - axis$	Replace x by $-x$	

 $y = a \sin k(x - b) + c$ $y = a \cos k(x - b) + c$ $y = a \tan k(x - b) + c$ a is Amplitude. If ais a negative \rightarrow flip $b \rightarrow shift \ left/right$, & $c \rightarrow shift \ up/down$ k is periodicity. $\sin x \ \& \cos x \ cases \rightarrow \frac{2\pi}{k}$ $\tan x \rightarrow \frac{\pi}{k}$ $(b,c) = new \ origin$.

Analyzing the Graph of a Polynomial Function $F(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ $a_n \neq 0$

Step 1: Determine the end behavior: The highest degree \rightarrow even # \land \land or \checkmark \lor odd # \checkmark \land or \land \lor

Step 2: Find the x and y intercepts.

Step 3: At a zero of **even** multiplicity: The grapg of **touches** the x – axis

At a zero of **odd** multiplicity: The grapg of **crosses** the x – axis

Step 4: Determine $maximum \ of \ turning \ ponts = n-1$

Step 5: Determine the graph behavior between zeros, the graph increases or decreases

Analyzing the Graph of a Rational Function R $R(x) = \frac{p(x)}{q(x)}$ $(q(x) \neq 0)$

Step 1: Factor p(x) and $q(x) \rightarrow$ Find the domain.

Step 2: Write R(x) in lowest terms

Step 3: Find the x & y intercepts (x - int. from p(x) = 0)Determine the behavior of the graph near each x - intercepts.

Step 4: Determine Vertical, Horizontal, or Oblique Asymtotes

Step 5: Determine points, if any, at Horizontal, or Oblique Asymtotes

Step 6: Determine the graph behavior between zeros and all asymtotes.

Copyright © 2012 by Pearson Education, Inc. J. Correa -Math Lab of Learning Resources -- Hialeah Campus, MDC

Rational Function
$$R(x) = \frac{p(x)}{q(x)}$$
 $(q(x) \neq 0)$

Vertical Asymptote (V.A.) x = r

 $R(x) = \frac{p(x)}{q(x)}$ in lowest terms r is a real zero of the denominator q.

$$ex) \ \frac{2x}{x^2 - 9} = \frac{2x}{(x+3)(x-3)}$$
 $\Rightarrow V.A. : x = \pm 3 \quad Dmain \{x | x \neq 3, x \neq -3\}$

$$ex) \ \frac{x^2 - 1}{x+1} = \frac{(x+1)(x-1)}{x+1} = x - 1 \qquad \Rightarrow V.A. \ none \qquad Dmain \{x | x \neq -1\}$$

$$ex$$
) $\frac{x^2 - 1}{x + 1} = \frac{(x + 1)(x - 1)}{x + 1} = x - 1$ $\Rightarrow V.A. none$ $Dmain\{x | x \neq -1\}$

$$ex) \ \frac{x^2 - x - 6}{x^2 - 9} = \frac{(x - 3)(x + 2)}{(x + 3)(x - 3)} = \frac{(x + 2)}{(x + 3)} \Rightarrow V.A. : x = -3 \quad Dmain \{x | x \neq 3, x \neq -3\}$$

Horizontal (H.A.) or Oblique Asymptote (O.A.)

$$R(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + a_0} \sim f(x) = \frac{a_n x^n}{b_m x^m}$$
 { m is the highest degree of numerator multiple of the highest degree of numerator multiple of

n < m	H.A.: y=0	$\frac{x-5}{3x^2+x-1} \sim \frac{x}{3x^2} = \frac{1}{3x}$	H.A.: y=0
n = m	$H.A.: y = \frac{a_n}{b_m} (= a \ number)$	$\frac{5 - 2x^3}{3x^3 - 4x + 1} \sim \frac{-2x^3}{3x^3} = -\frac{2}{3}$	$H.A.: y = -\frac{2}{3}$
n = m + 1	$0.A.: y = mx + b (a \ line)$	$\frac{(1-x)^3}{x^2} = (3-x) + \frac{1-3x}{x^2} \left(\sim -\frac{x^3}{x^2}\right)$	0.A.: y = -x + 3
n > m + 1	Neither H.A. nor O.A.	$\frac{x^5 + 7x^2 - 3}{6x^2 - x - 1} \sim \frac{x^5}{6x^2}$	

	$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$	0! = 1	! = 1
Permutations &	$_{n}P_{r} = P(n,r) = \frac{n!}{(n-r)!}$	$0 \le r \le n$	
Combinations	$\binom{n}{r} =_n C_r = C(n,r) = \frac{n!}{(n-r)! r!}$	$0 \le r \le n$	$_{n}C_{n} = _{n}C_{0} = 1$ $_{n}C_{1} = \binom{n}{1} = \binom{n}{n-1} = n$
			n = (1) (n-1)

Arithmetic Sequence	$a_1 + (a_1 + d) + (a_1 + 2d) + \dots + [a_1 + (n-1)d] = \frac{n}{2}[2a_1 + (n-1)d] = \frac{n}{2}[a_1 + a_n]$		
Geometric Sequence	$a_1 + a_1 r + a_1 r^2 + \dots + a_1 r^{n-2} + a_1 r^{n-1} = a_1 \cdot \frac{1 - r^n}{1 - r}$ $r \neq 0, 1$		
Sums of Sequences	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{k=1}^{n} k^3 = \frac{n(n+1)(2n+1)}{6}$		
Geometric Series	$ If r < 1, \ a_1 + a_1 r + a_1 r^2 + \dots + a_1 r^{n-1} + a_1 r^n + \dots = \sum_{k=1}^{\infty} a_1 r^{k-1} = \frac{a_1}{1-r} \rightarrow converges$		

Exponential & Logarithmic functions

Exponential & Logarithmic functions	Law of Logarithms	Cancellation Equations
$\log_a 1 = 0 \qquad \log_a a = 1$ $\log_a x = y \iff a^y = x, \qquad x > 0$ $ex) \ 2^3 = 8 \iff \log_2 8 = 3$	$\log_a xy = \log_a x + \log_a y$ $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$ $\log_a (x^r) = r \log_a x$	$\log_{a}(a^{x}) = x \qquad a^{\log_{a} x} = x$ $ln(e^{x}) = x \qquad e^{\ln x} = x$ $a^{x} = e^{\ln a^{x}} = e^{x \ln a}$
$\log x = \log_{10} x$ $\ln x = \log_e x \text{where } \ln e = 1$ $\ln x = y \Leftrightarrow e^y = x$	Change-of-base $a, b \neq 1$ $\log_a x = \frac{\log_b x}{\log_b a} \approx \frac{\log x}{\log a} \approx \frac{\ln x}{\ln a}$	$M = N \iff a^M = a^N$ $M = N \iff \log_a M = \log_a N$ $e = 2.71828 \cdots$

Graphs

Limit $\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to \infty} e^x = \infty \qquad \lim_{x \to 0^+} (\ln x) = 0 \qquad \lim_{x \to \infty} (\ln x) = \infty$

Analytic Geometry

Parabola / Quadratic function a > 0 upward a < 0 downward	Completing Square: $f(x) = y = x^2 + bx + c \rightarrow \left(x + \frac{b}{2}\right)^2 \& c = \left(\frac{b}{2}\right)^2$ If $f(x) = ax^2 + bx + c = a(x - h)^2 + k$ $(a \neq 0)$ $*f(x) = y$ Vertex is at $(h, k) = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$ $h = -\frac{b}{2a} \& k = \frac{4ac - b^2}{4a}$
Standard Equation of a Circle	$(x-h)^2 + (y-k)^2 = r^2$ $r = Radius$, $(h,k) = center$
Ellipse	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \qquad (h,k) = center$ $vertices "a" units left/right from the center$ $vertices "b" units up/down from the center$
Hyperbola	$\frac{(x-h)^2}{c^2} - \frac{(y-k)^2}{d^2} = 1 \qquad opens \ left \& \ right$ $vertices "c" \ units \ left/right \ from \ the \ center$ $(h,k) = center \qquad asymptotes \ that \ pass \ through \ center \ with \ slope \pm \frac{d}{c}$ $\frac{(x-h)^2}{d^2} - \frac{(y-k)^2}{c} = 1 \qquad opens \ up \ \& \ down$ $vertices \ "d" \ units \ up/down \ from \ the \ center$ $(h,k) = center \qquad asymptotes \ that \ pass \ through \ center \ with \ slope \pm \frac{d}{c}$

Hyperbolic Functions

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{csch} x = \frac{1}{\sinh x}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\coth x = \frac{\cosh x}{\sinh x}$$

Inverse Hyperbolic Functions

$$y = \sinh^{-1} x \iff \sinh y = x$$

$$y = \cosh^{-1}x \iff \cosh y = x \text{ and } y \ge 0$$

$$y = \tanh^{-1}x \iff \tanh y = x$$

$$\sinh^{-1}x = \ln(x + \sqrt{x^2 + 1})$$

$$\cosh^{-1}x = \ln(x + \sqrt{x^2 - 1})$$

$$\tanh^{-1}x = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$$

 $\underline{Geometric\ formulas} \qquad \textbf{h} = Hight(Altitude), \quad \textbf{A} = Area, \quad \textbf{,P} = Perimeter, \quad \textbf{S} = Surface\ area, \quad \textbf{V} = volume$

Triangle	$A = \frac{1}{2}bh = \frac{1}{2}$	$ab \sin \theta$ $(b = Base)$	a h
Rectangle	A = lw	$P = 2l + 2w = 2(l + w)$ $(l = Length \ w = Width)$	w I
Circle	$A=\pi r^2$	$C = 2\pi r$ ($C = Circumference$ $r = radius$)	, r
Sector of Circle	$A = \frac{1}{2}r^2\theta$	$s = r\theta$ $(r = in \ radians)$	r s
Rectangular Box	V = lwh	S = 2(lw + lh + wh) = 2lw + 2lh + 2wh	h /
Sphere	$V = \frac{4}{3}\pi r^3$	$S=4\pi r^2$	P
Right Circular Cylinder	$V = \pi r^2 h$	$S=2\pi r^2+2\pi r h$	<u> </u>
Cone	$V = \frac{1}{3}\pi r^2 h$	$A = \pi r \sqrt{r^2 + h^2}$	h

Order of Operations : PEMDAS

Parentheses or Brackets

 ${\bf E} x ponents$

Multiply or Divide

Add or Subtract

Pythagorean Theorem

$$a^2 + b^2 = c^2$$