Общеобразовательная автономная некоммерческая организация «Лицей «Сириус»

Приложение к ООП ООО ПРИНЯТО: Решением педагогического совета ОАНО «Лицей «Сириус» протокол № 2 от 31.08.2020

РАБОЧАЯ ПРОГРАММА СРЕДНЕЕ ОБЩЕЕ ОБРАЗОВАНИЕ Физические задачи инженерных олимпиад

1. Планируемые результаты освоения учебного курса

Программа рассчитана на старшеклассников (10-11 классы) и согласована с углубленным курсом физики 10-11 классов. Она позволит расширить представления школьников о физических методах в реальных инженерных задачах и в работе сложных механизмов. Программа предполагает решение учащимися задач из банка заданий инженерных олимпиад различных Вузов.

Личностные, метапредметные и предметные результаты освоения содержания курса

Личностные результаты:

- 1. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире инженерных профессий.
- 3. Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде.
- 5. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).
- 6. Воспитание уважения к творцам науки и техники, отношения к физике как элементу общечеловеческой культуры.

Межпредметные

В ходе обучения учащиеся научатся использовать графики и таблицы реальных измерений, схемы, диаграммы, электрические схемы, инженерные тексты. Вычислять погрешности и обсуждать целесообразность того или

иного механизма с точки зрения его КПД и возможного экологического вреда.

В ходе изучения обучающиеся приобретут умение проводить простейшие наблюдения природных явлений и физические эксперименты.

Они получат возможность решать задачи как аналитическим, так и графическим способами, разбивая задачу на отдельные составляющие части.

Обучающийся научатся сверять свои экспериментальные результаты с теоретическими, оценивать ошибки и погрешности тех или иных инженерных моделей.

Обучающийся сможет:

определять критерии правильности принципов действия различных технических устройств;

анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;

свободно пользоваться выработанными критериями оценки расчетов, проверки их точности и соотношения возможности использования имеющихся технических средств с возможными другими;

Обучающийся сможет уметь организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;

корректно и аргументировано отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);

критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

предлагать альтернативное решение в конфликтной ситуации;

выделять общую точку зрения в дискуссии.

Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее – ИКТ). Обучающийся сможет:

целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;

выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;

выделять информационный аспект задачи, оперировать данными, использовать модель решения инженерной задачи;

использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных инженерных задач, в том числе: вычисление, создание презентаций, построения моделей и др.;

Предметные

В результате изучения курса ученик научится:

понимать смысл основных инженерно-физических терминов: коэффициент действия механизма, энергетические при работе полезного потери устройства, детектирование, модуляция, доза радиации, также методические И инструментальные погрешности измерений, целесообразность использования того или иного механизма, экологическое воздействие того или иного прибора;

распознавать проблемы инженерии, которые можно решить при помощи физических методов; разделять решение задач на отдельные этапы и интерпретировать результаты каждого этапа, оценивать точность аналитических преобразований и возможностей приборов;

ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

понимать роль эксперимента в получении научной информации;

проводить прямые измерения физических величин. Уметь пользоваться приборами: микроскоп, простейшая дифракционная решетка, источник тока, амперметр, вольтметр, омметр. Рассчитывать КПД различных механизмов. Проводить расчеты и оценивать реальность измеренного параметра, сравнивать его с теоретически рассчитанным с учетом погрешности прибора.

Выпускник получит возможность научиться:

осознавать ценность инженерно-физических исследований, роль инженерных приборов в использовании в окружающем мире и их вклад в улучшение качества жизни;

использовать приемы построения физических моделей инженерной физики, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов и проверки их на основе экспериментальных факторов;

сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;

самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности обосновывать выбор способа измерений, измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;

использовать знания о механических, тепловых, электрических, оптических явлениях в повседневной жизни, о их пользе и вреде для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических, тепловых, электрических, оптических явлениях и физических законах; примеры использования возобновляемых источников энергии; использование атомных электростанций, экологических последствий их использования;

находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по физике с использованием математического аппарата, так и при помощи экспериментальных инженерных подходов.

2. Содержание учебного курса

Физическое образование в старшей школе должно расширить формирование у обучающихся представлений о реальной картине мира — важного ресурса научно-технического прогресса, ознакомление обучающихся с физическими явлениями, основными принципами работы как простых механизмов, так и реакторов и других высокотехнологичных устройств, а также развитие лазерных технологий.

Учебный курс способствует формированию у обучающихся умений безопасно использовать лабораторное оборудование, проводить естественно-научные исследования и эксперименты, анализировать полученные результаты, представлять и научно аргументировать полученные выводы.

Изучение курса в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний физики в жизни основано на межпредметных связях с предметами: «Математика», «Информатика», «Химия», «Биология», «География», «Экология», «Основы безопасности жизнедеятельности», «История»,

Программа курса содержит основные разделы "Механические задачи в инженерии", "Приборы и методы, основанные на термодинамических законах", "Электрические приборы в инженерии", "Производство и передача электроэнергии на большие расстояния", "Приборы, основанные на электромагнитном излучении, развитие GPS-навигации и ее использование в повседневной жизни", "Оптические применения и развитие лазерных технологий", "Структура ускорителей элементарных частиц и ядерных реакторов, польза и вред их в рамках всей нашей планеты".

2. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы (10 класс)

Количество часов, отведенное на изучение каждой темы, может быть скорректировано учителем в сторону уменьшения или увеличения в зависимости от конкретного годового учебного календарного графика.

Точное (итоговое за год) количество часов определяется конкретным годовым учебным календарным графиком.

Номер	Тема	Количество часов (30-34)
1	Решение задач на поступательное движение относительно различных систем отсчета.	1 или 2
2	Баллистическое движение различных тел и применение его в технике.	1
3	Принципы относительного движения и их использование в навигации.	1
4	Самостоятельная работа по теме «Баллистическое движение тела».	1
5	Границы применимости закона Гука в реальных пружинных механизмах.	1
6	Применение законов Ньютона для различных механических систем.	1 или 2
7	Вращающиеся диски и учет силы инерции.	1
8	Закон сохранения импульса в ракетах и орудиях.	1
9	Закон сохранения механической энергии и потери энергии в реальных механизмах.	1 или 2
10	Равновесие сложных конструкций с точки зрения основных законов статики.	1
11	Лобовое сопротивление при движении самолетов и подводных лодок.	1
12	Самостоятельная работа на тему "Механические задачи в инженерии"	1

13	Свойства различных веществ с точки зрения их молекулярного строения.	1
14	Устройство термометров, шкалы измерения температуры и оценки точности.	1 или 2
15	Передача тепла в тепловых машинах. Оценки потерь энергии.	1
16	Применение газов в технике. Возможность использования приближения идеального газа.	1
17	Оценка реальных скоростей молекул воздуха Земной атмосферы. Разреженность воздуха в зависимости от высоты.	1
18	КПД реальных тепловых двигателей, сравнение их с газовыми двигателями.	1
19	Роль испарение в климате нашей планеты, механизм испарения и возможность влияния на него.	1
20	Приборы для измерения влажности воздуха, оценка точности и сравнение применимости различных приборов для различных условий.	1
21	Использование кристаллических тел в различных приборах. Преимущества жидких кристаллов.	1
22	Учет и использование теплового расширения тел в технике.	1
23	Самостоятельная работа по теме "Приборы и методы, основанные на термодинамических законах"	1
24	Электрические поля, которые нас окружают. Польза и вред.	1
25	Применимость проводников и диэлектриков в технике. Пробой диэлектрика.	1 или 2
26	Аккумуляторы. Использование электрических	1

	цепей для питания различных приборов.	
27	Полупроводниковые приборы и их особенности.	1
28	Электронно-лучевая трубка в мониторах и телевизорах и замена ее на жидкокристаллические панели.	1
29	Самостоятельная работа по теме "Электрические приборы в инженерии"	1

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы (11 класс).

Номер	Тема	Количество часов (30-34)
1	Колебательные системы на примере простых маятниковых механизмов.	1 или 2
2	Колебания заряда как источник электромагнитных излучений. Влияние излучений на биосферу.	1
3	Распространение электромагнитных волн через атмосферу Земли. Понятие ионосферы.	1
4	Наличие магнитного поля у Земли и его влияние на электромагнитные волны.	1
5	Влияние магнитного поля на движущиеся частицы. Принцип работы ускорителей частиц.	1
6	Использование ферромагнетиков для усиления магнитного поля.	1
7	Использование переменного тока в инженерии.	1 или 2

8	Генератор переменного тока. Трехфазный ток.	1
9	Линии электропередачи и потери в них.	1
10	Примеры передачи и перераспределения электрической энергии. Эффективное использование энергии.	1
11	Самостоятельная работа по теме "Производство и передача электроэнергии на большие расстояния"	1
12	GPS навигация. Принцип действия и приборы.	1
13	Использование фотометрии в технике.	1 или 2
14	Применение оптических приборов в технике.	1
15	Рефракторы и рефлекторы. Различия и сходства. Возможности использования.	1
16	Применение дифракционной решетки в инженерии.	1
17	Поляризаторы света и их особенности.	1
18	Различные виды лазеров. Применение их в медицине и технике.	1 или 2
19	Развитие лазерных технологий	1
20	Спектральный анализ звезд. Другие использования спектральных аппаратов.	1
21	Использование фотоэффекта в повседневной жизни и в сложных приборах.	1
22	Современные представления о строении атома. Соотношение неопределенностей.	1
23	Понятие кварков. Взаимодействие кварков.	1

24	Различные виды ядерных реакций.	1 или 2
	Использование их в ядерных реакторах и	
	ядерном оружии.	
25	Степени защиты ядерных реакторов. Допустимая	1
	доза облучения. Реальные аварии на АЭС.	
26	Проблема захоронения ядерных отходов как	1
	проблема науки и экологии. Ядерное оружие.	
27	Современные ускорители элементарных частиц.	1
	Энергии, требуемые для них.	
28	Самостоятельная работа по теме «Элементарные	1
	частицы, строение атома, ядерные	
	взаимодействия»	
29	Современная единая физическая картина мира.	1