

KLAUSUR ZUR LINEAREN ALGEBRA I

— Wiederholungsprüfung —

MUSTERLÖSUNG

11. April 2008

Name:		
Matrikelnummer:		
Studiengang:		

Aufgabe	1	2	3	4	5	6	Summe
Punktzahl							/50

Allgemeine Hinweise:

- Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung und ggf. auf die Rückseite. Wenn der Platz nicht ausreicht, bitten Sie die Aufsicht um zusätzliches Aufgabenpapier.
- Verwenden Sie immer für jede Aufgabe ein separates Blatt.
- Vermerken Sie auf jedem Blatt Ihren Namen und Ihre Matrikelnummer.
- Einziges erlaubtes Hilfsmittel ist ein von Ihnen selbst beidseitig handbeschriebenes DIN A4-Blatt.

Wir wünschen viel Erfolg!

Aufgabe 1 (8 Punkte)

In \mathbb{R}^3 seien die folgenden Vektoren gegeben:

$$u_1 := \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}, \quad u_2 := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad w_1 := \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \quad w_2 := \begin{pmatrix} -7 \\ 1 \\ -4 \end{pmatrix}.$$

Es seien $U := \text{Lin}(u_1, u_2)$ und $W := \text{Lin}(w_1, w_2)$. Bestimmen Sie eine Basis des Unterraums $U \cap W$.

Lösung. Ein Vektor $v \in \mathbb{R}^3$ liegt genau dann in $U \cap W$, wenn es Skalare $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ gibt, so dass $v = \alpha_1 u_1 + \alpha_2 u_2 = \beta_1 w_1 + \beta_2 w_2$ gilt. Wir müssen also das lineare Gleichungssystem

$$2\alpha_1 + \alpha_2 - \beta_1 + 7\beta_2 = 0$$
$$\alpha_2 + 2\beta_1 - \beta_2 = 0$$
$$2\alpha_1 + \alpha_2 + 4\beta_2 = 0$$

in $\alpha_1, \alpha_2, \beta_1, \beta_2$ lösen. Anwendung des Eliminationsverfahrens auf die zugehörige Matrix liefert:

$$\begin{pmatrix} 2 & 1 & -1 & 7 \\ 0 & 1 & 2 & -1 \\ 2 & 1 & 0 & 4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 1 & -1 & 7 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & -3 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 2 & 1 & 0 & 4 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & -3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 0 & 0 & -1 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & -3 \end{pmatrix}$$

Setzt man $\beta_2 = 1$, so erhält man den Vektor $(\frac{1}{2}, -5, 3, 1)^t$, der den Lösungsraum erzeugt. Der Durchschnitt $U \cap W$ hat also den Basisvektor

$$\frac{1}{2}u_1 - 5u_2 = (-4, -5, -4)^t.$$

Aufgabe 2 (10 Punkte)

(a) Berechnen Sie die Determinanten der folgenden reellen quadratischen Matrizen: (5 Punkte)

$$A := \begin{pmatrix} 1 & 1 & 5 \\ 7 & 1 & 1 \\ 5 & 1 & 4 \end{pmatrix}$$
$$B := A - E_3$$
$$C := A^4 - A^3$$

(b) Zeigen Sie, dass die Matrix

(5 Punkte)

$$D = \left(\begin{array}{cccc} 1 & 3 & 4 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right)$$

invertierbar ist. Bestimmen Sie alle Eigenwerte und Basen der zugehörigen Eigenräume von D und von D^{-1} .

(*Hinweis*: Die Berechnung von D^{-1} können Sie durch ein geeignetes Argument vermeiden.)

Lösung. (a) Man berechnet direkt $\det(A) = 10$ und $\det(B) = 19$. Damit erhält man $\det(C) = \det(A^4 - A^3) = \det(A^3(A - E_3)) = \det(A)^3 \cdot \det(B) = 1000 \cdot 19 = 19.000$.

(b) Es ist $det(D) = 4 \neq 0$, also ist D invertierbar. Da D bereits obere Dreicksgestalt hat, sind die Eigenwerte gerade die Diagonaleinträge 1 und 2. Wir bestimmen die Eigenräume: Der Eigenraum von D zum Eigenwert 1 ist

$$U_1 = \operatorname{Kern}(D - E_4) = \operatorname{Kern} \begin{pmatrix} 0 & 3 & 4 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{Lin}((1, 0, 0, 0)^t).$$

Der Eigenraum von D zum Eigenwert 2 ist

$$U_2 = \operatorname{Kern}(D - 2E_4) = \operatorname{Kern} \begin{pmatrix} -1 & 3 & 4 & 0 \\ 0 & -1 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \operatorname{Lin}((19, 5, 1, 0)^t, (0, 0, 0, 1)^t).$$

Zu D^{-1} stellen wir folgende allgemeine Überlegung an: Ist $\lambda \in \mathbb{R}$ ein Eigenwert von D mit Eigenvektor v, so gilt nach Definition $Dv = \lambda v$. Da D invertierbar ist, muss $\lambda \neq 0$ sein, und es folgt $D^{-1}v = \lambda^{-1}v$. Die Umkehrung gilt ebenso. Die Zuordnung $\lambda \mapsto \frac{1}{\lambda}$ gibt also eine Bijektion zwischen den Eigenwerten von D und D^{-1} , und die Eigenräume bleiben dieselben. Damit ist gezeigt, dass D^{-1} die Eigenwerte 1 und $\frac{1}{2}$ hat, mit jeweils den gleichen Eigenräumen, d.h. zum Eigenwert 1 von D^{-1} gehört der Eigenraum U_1 und zum Eigenwert $\frac{1}{2}$ von D^{-1} gehört der Eigenraum U_2 .

Aufgabe 3 (8 Punkte)

Sei (G, \circ, e) eine Gruppe mit mindestens zwei Elementen, und sei $g \in G, g \neq e$.

(a) Betrachten Sie die Abbildung

(3 Punkte)

$$\lambda_g \colon \left\{ \begin{array}{ccc} G & \to & G \\ h & \mapsto & g \circ h. \end{array} \right.$$

Beweisen oder widerlegen Sie die folgenden Aussagen:

Die Abbildung λ_g ist

- (i) injektiv.
- (ii) surjektiv.
- (iii) ein Gruppenhomomorphismus.
- (b) Sei nun G endlich (d.h. G habe nur endlich viele Elemente). Zeigen Sie, dass es $m, n \in \mathbb{N}$ gibt mit $m \neq n$ und $g^m = g^n$. Folgern Sie, dass es ein $k \in \mathbb{N}$ gibt mit $g^k = e$.

(Dabei ist
$$g^n := \underbrace{g \circ \cdots \circ g}_{n-\text{mel}}$$
 für alle $n \in \mathbb{N}$.) (3 Punkte)

(c) Sei G endlich. Zeigen Sie, dass es sogar ein $k \in \mathbb{N}$ gibt, so dass $h^k = e$ für alle $h \in G$ gleichzeitig gilt.

(2 Punkte)

Lösung. (a) Die Abbildung λ_g ist injektiv, denn sind $h_1, h_2 \in G$ mit $\lambda_g(h_1) = \lambda_g(h_2)$, so folgt $g \circ h_1 = g \circ h_2$ und nach Multiplikation mit g^{-1} von links $h_1 = h_2$.

Sie ist auch surjektiv, denn für jedes $h \in G$ gilt $h = g \circ (g^{-1} \circ h) = \lambda_q(g^{-1} \circ h)$.

Die Abbildung λ_g ist jedoch kein Gruppenhomomorphismus: Denn wäre λ_g ein Gruppenhomomorphismus, so müsste $\lambda_g(e) = e$ gelten. Es gilt jedoch $\lambda_g(e) = g \circ e = g$ und $g \neq e$ nach Voraussetzung. (Wenn man auf den Trick mit dem neutralen Element nicht kommt, kann man auch direkt ansetzen: Wäre λ_g ein Gruppenhomomorphismus, dann müsste für alle $h_1, h_2 \in G$ die Gleichheit $\lambda_g(h_1 \circ h_2) = \lambda_g(h_1) \circ \lambda_g(h_2)$ gelten. Dies ist äquivalent zu $g \circ h_1 \circ h_2 = g \circ h_1 \circ g \circ h_2$. Durch Multiplikation mit g^{-1} von links und h_2^{-1} von rechts folgt daraus $h_1 = h_1 \circ g$. Somit folgt g = e, ein Widerspruch.)

(b) Wäre $g^m \neq g^n$ für alle $m, n \in \mathbb{N}$, so wäre die Teilmenge $\{g^n : n \in \mathbb{N}\}$ von G unendlich, ein Widerspruch. Seien also $m \neq n \in \mathbb{N}$ mit $g^m = g^n$ und es gelte ohne Einschränkung m > n. Setze k := m - n. Durch Multiplikation der Gleichheit $g^m = g^n$ mit $g^{-n} := g^{-1} \circ \cdots \circ g^{-1}$ folgt $g^k = e$.

(c) Sei $G = \{g_1, \ldots, g_n\}$. Nach (b) gibt es zu jedem $i \in \{1, \ldots, n\}$ ein $m_i \in \mathbb{N}$ mit $g_i^{m_i} = e$. Setze $k := m_1 \cdots m_n$. Dann gilt für alle $i \in \{1, \ldots, n\}$:

$$g_i^k = g_i^k = (g_i^{m_i})^{\frac{k}{m_i}} = e^{\frac{k}{m_i}} = e.$$

Aufgabe 4 (10 Punkte)

Erinnerung: Eine lineare Abbildung $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ heißt eine Spiegelung, wenn sie $\varphi^2 = \mathrm{id}_{\mathbb{R}^3}$ erfüllt. Sei $\mathcal{E} = (e_1, e_2, e_3)$ die Standardbasis von \mathbb{R}^3 und sei eine lineare Abbildungen φ durch die folgende darstellende Matrix gegeben:

$$\operatorname{Mat}_{\mathcal{E}}^{\mathcal{E}}(\varphi) = \begin{pmatrix} -5 & 8 & 6 \\ -3 & 5 & 3 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Zeigen Sie, dass φ eine Spiegelung ist. (1 Punkt)
- (b) Bestimmen Sie eine Basis \mathcal{B}_1 von $\operatorname{Kern}(\varphi \operatorname{id}_{\mathbb{R}^3})$ sowie eine Basis \mathcal{B}_2 von $\operatorname{Kern}(\varphi + \operatorname{id}_{\mathbb{R}^3})$.

(3 Punkte)

- (c) Zeigen Sie, dass $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ eine Basis von \mathbb{R}^3 ist. (2 Punkte)
- (d) Geben Sie die darstellende Matrix $\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(\varphi)$ an. (4 Punkte)

 $L\ddot{o}sung$. Sei $A:=\mathrm{Mat}_{\mathcal{E}}^{\mathcal{E}}(\varphi)$. (a) Man rechnet nach, dass $A^2=E_3$ gilt und φ somit eine Spiegelung ist.

(b) Wir lösen das lineare Gleichungssystem

$$\begin{pmatrix}
-6 & 8 & 6 \\
-3 & 4 & 3 \\
0 & 0 & 0
\end{pmatrix}
\quad
\sim \quad
\begin{pmatrix}
-3 & 4 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

und bestimmen damit die Basis $\mathcal{B}_1 = ((1,0,1)^t, (4,3,0)^t)$ von $\operatorname{Kern}(\varphi - \operatorname{id}_{\mathbb{R}^3})$. Analog lösen wir das Gleichungssystem

$$\begin{pmatrix} -4 & 8 & 6 \\ -3 & 6 & 3 \\ 0 & 0 & 2 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} -2 & 4 & 3 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} -1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

und erhalten die Basis $\mathcal{B}_2 = ((2,1,0)^t)$ von Kern $(\varphi + id_{\mathbb{R}^3})$.

(c) Erste Möglichkeit: Die beiden Basen \mathcal{B}_1 , \mathcal{B}_2 sind Basen der Eigenräume zu zwei verschiedenen Eigenwerten. Damit besteht die Familie $(\mathcal{B}_1, \mathcal{B}_2)$ aus drei linear unabhängigen Vektoren, die somit eine Basis von \mathbb{R}^3 bilden.

Zweite Möglichkeit: Die Matrix

$$\left(\begin{array}{ccc}
1 & 4 & 2 \\
0 & 3 & 1 \\
1 & 0 & 0
\end{array}\right)$$

hat die Determinante $10 \neq 0$. Damit besteht die Familie $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ aus drei linear unabhängigen Vektoren, die somit eine Basis von \mathbb{R}^3 bilden.

(d) Erste Möglichkeit: Die Basen \mathcal{B}_1 und \mathcal{B}_2 sind jeweils Basen der Eigenräume zu den Eigenwerten 1 und -1. Da diese zusammen eine Basis von \mathbb{R}^3 bilden, hat die transformierte Matrix $\mathrm{Mat}_{\mathcal{B}}^{\mathcal{B}}(\varphi)$ die Diagonalgestalt

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Zweite Möglichkeit: Es gilt

$$T_{\mathcal{E}}^{\mathcal{B}} = \left(\begin{array}{ccc} 1 & 4 & 2 \\ 0 & 3 & 1 \\ 1 & 0 & 0 \end{array}\right).$$

Ihre Inverse berechnet sich zu

$$T_{\mathcal{B}}^{\mathcal{E}} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 2 \\ -1 & 2 & 1 \\ 3 & -4 & -3 \end{pmatrix}$$

und man erhält

$$\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(\varphi) = T_{\mathcal{B}}^{\mathcal{E}} \cdot \operatorname{Mat}_{\mathcal{E}}^{\mathcal{E}}(\varphi) \cdot T_{\mathcal{E}}^{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Aufgabe 5 (6 Punkte)

Sei K ein Körper und V ein K-Vektorraum. Sei $n \in \mathbb{N}$, $n \geq 2$, und sei $\varphi \colon V \to V$ ein Endomorphismus von V, der $\varphi^n = \varphi$ erfüllt. Zeigen Sie, dass

- (a) $\operatorname{Kern}(\varphi) \cap \operatorname{Bild}(\varphi) = \{0\}$ und
- (b) $\operatorname{Kern}(\varphi) + \operatorname{Bild}(\varphi) = V$ gelten.

Lösung. (a) Sei $v \in \text{Kern}(\varphi) \cap \text{Bild}(\varphi) = \{0\}$. Dann gilt also $\varphi(v) = 0$ und es gibt $w \in V$ mit $\varphi(w) = v$. Wegen $n \geq 2$ folgt nun $v = \varphi(w) = \varphi^n(w) = \varphi^{n-1}(\varphi(w)) = \varphi^{n-1}(v) = \varphi^{n-2}(\varphi(v)) = \varphi^{n-2}(0) = 0$.

(b) Die Inklusion (\subseteq) ist klar. Für die umgekehrte Inklusion (\supseteq), sei $v \in V$ gegeben. Wegen $\varphi^n = \varphi$ gilt $\varphi(v - \varphi^{n-1}(v)) = 0$, also $v - \varphi^{n-1}(v) \in \operatorname{Kern}(\varphi)$. Wegen $n \ge 2$ gilt außerdem $\varphi^{n-1}(v) = \varphi(\varphi^{n-2}(v)) \in \operatorname{Bild}(\varphi)$. Insgesamt gilt also

$$v = \underbrace{v - \varphi^{n-1}(v)}_{\in \operatorname{Kern}(\varphi)} + \underbrace{\varphi^{n-1}(v)}_{\in \operatorname{Bild}\varphi}.$$

Aufgabe 6 (8 Punkte)

Sei K ein Körper, und seien $m, n \in \mathbb{N}$. Seien V und W zwei K-Vektorräume mit $\dim(V) = n$ und $\dim(W) = m$.

- (a) Zeigen Sie: Der Vektorraum $\operatorname{Hom}_{\mathbb K}(V,W)$ aller linearen Abbildungen $V\to W$ hat die Dimension mn.
- (b) Sei $f \in \text{End}_K(V)$ mit dim(Kern(f)) = d. Zeigen Sie, dass

$$W = \{ f \circ g ; g \in \operatorname{End}_K(V) \}$$
 (6 Punkte)

ein $(n^2 - nd)$ -dimensionaler Unterraum von $\operatorname{End}_K(V)$ ist.

(*Hinweis:* Betrachten Sie zur Bestimmung der Dimension die lineare Abbildung φ_f : End_K(V) \to End_K(V), $g \mapsto f \circ g$.)

Lösung. (a) Erste Möglichkeit: Nach Wahl von Basen für V und W entsprechen die linearen Abbildungen $V \to W$ genau ihren darstellenden Matrizen, d.h. man man hat einen Vektorraumisomorphismus $\operatorname{Hom}_{K}(V,W) \cong \operatorname{Mat}_{m\times n}(K)$. Es genügt also zu zeigen, dass der K-Vektorraum $\operatorname{Mat}_{m\times n}(K)$ die Dimension mn hat. Das ist aber klar, denn eine Basis von $\operatorname{Mat}_{m\times n}(K)$ ist durch die Elementarmatrizen $E_{ij} = (\delta_{ik} \cdot \delta_{jl})_{k=1,\dots,m,l=1,\dots,n}$ gegeben (d.h. E_{ij} hat an der Stelle (i,j) den Eintrag 1, sonst 0), und es gibt offenbar mn verschiedene Elementarmatrizen.

Zweite Möglichkeit: Sei (v_1, \ldots, v_n) eine Basis von V und (w_1, \ldots, w_m) eine Basis von W. Für jedes $i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}$, definiere nach dem Prinzip der linearen Ausdehnung eine Abbildung $f_{ij}: V \to W$ durch $f_{ij}(v_i) = w_j$ und $f_{ij}(v_k) = 0$ für alle $k \neq i$. Zeige nun, dass die mn verschiedenen linearen Abbildungen f_{ij} eine Basis von $\text{Hom}_K(V, W)$ bilden.

(b) Der Unterraum W ist gerade $Bild(\varphi_f)$. Nach der Dimensionsformel für lineare Abbildungen und Teil (a) gilt

$$\dim(\operatorname{Kern}(\varphi_f)) + \dim(\operatorname{Bild}(\varphi_f)) = \dim(\operatorname{End}_K(V)) = m^2.$$

Wir bestimmen dim (Kern (φ_f) : Der Unterraum Kern (φ_f) besteht genau aus den Endomorphismen $g: V \to V$ für die $f \circ g = 0$ gilt. Dies ist genau dann der Fall, wenn Bild $(g) \subset \text{Kern}(f)$ gilt. Damit gilt also

$$\operatorname{Kern}(\varphi_f) \cong \operatorname{Hom}_K(V, \operatorname{Kern}(f)).$$

Mit $\dim(\operatorname{Kern}(f)) = d$ und Teilaufgabe (a) folgt $\dim(\operatorname{Kern}(\varphi_f) = md$ und $\dim(W) = m^2 - md$, wie behauptet.