Local-Access Generators

Amartya Shankha Biswas, Ronitt Rubinfeld, Anak Yodpinyanee CSAIL, MIT

Partial Sampling from a Distribution

Full Sampling $R \sim D$ in $\mathcal{O}(T)$ time

Do we need to spend $\mathcal{O}(T)$ upfront?

Problem Statement

A local-access generator of a random object $R \sim D$, provides indirect access to R' with a query oracle s.t.

- ightharpoonup All query responses ($partial\ samples$) are **consistent**
- ► The **distribution** of R' is ϵ -close to D in L_1 distance

Sampling G(n,p): Vertex-Pair queries

Vertex-Pair: Given vertices u, v, decide whether $(u, v) \in E$. Trivial: just a collection of $\binom{n}{2}$ Bernoulli RVs with bias p.

Next-Neighbor queries (skip-sampling)

Next-Neighbor: Return neighbors of v in order.

Issue: Naïve sampling spends 1/p time sampling the 0's *Idea*: can compute **Next-Neighbor**'s distribution's CDF from $\mathbb{P}[k \text{ non-neighbors before next-neighbor}] = p(1-p)^k$

Skip-sampling Draw from Next-Neighbor distribution Can sample from this distribution in $\tilde{\mathcal{O}}(1)$ time [ELMR17]

► Further analysis required for finite-precision arithmetic

Issue: Adjacency matrix is symmetric; we need to record

all generated 0's in the corresponding column of v

Issue: if the sampled neighbor is already 0, must re-sample \Rightarrow may hit 0's many times – **too many re-samplings**

Random-Neighbor queries (Bucketing-Generator)

Random-Neighbor: Return a neighbor of v uniformly at random.

Issue: next-neighbor can't jump to a random potential neighbor of v

Bucketing Divide each row of the adjacency matrix into contiguous buckets \Rightarrow random neighbor of $v \approx$ random neighbor in a random bucket of v

Issue: do **not** know deg(v); must return each neighbor with probability 1/deg(v) Rejection Sampling Return any neighbor with the same probability

 $\mathbb{P}[\text{return } u] = \frac{1}{\text{\#buckets}} \times \frac{1}{\text{\#neighbors in bucket}} \times \frac{\text{\#neighbors in bucket}}{\mathcal{O}(\log n)} \approx \frac{\Omega(1/\log n)}{\text{\#neighbors of } v}$ $\mathbb{P}[\text{return any neighbor}] \approx \Omega(1/\log n) \Rightarrow \mathcal{O}(\log n) \text{ iterations suffice}$

Data Structure bucket maintains its known neighbors and a **filled** marker "fill" with expected $\mathcal{O}(1)$ Next-Neighbor queries $\mathcal{O}(\log n)$ expected time Random-Neighbor succeeds in $\mathcal{O}(\log n)$ tries $\mathcal{O}(n+m)$ total space usage

Stochastic Block Model (Counting-Generator)

Model: Each v is assigned to a random community (color) from C_1, \ldots, C_r . \Rightarrow If $u \in C_i, v \in C_j$, then $\mathbb{P}[(u, v) \in E] = p_{ij}$. ($|C_i|$'s are given as input)

Idea #1 use #nodes of each color in any contiguous range to can generate SBM probability that v has a probability that v has a neighbor in any [a,b] of v's Next-Neighbor implementation any [a,b] expected #neighbors bucketing of v's Random-Neighbor

adjacency matrix row

implementation

Idea #2 implement a **Counting-Generator** to answer counting queries \Rightarrow BBST, split on-the-fly with *Multivariate Hypergeometric Distribution*

of v in any [a, b]

Multivariate Hypergeometric Distribution

[GGN10] solves the special case of r=2 and $B=2\ell$.

COUNTING-GENERATOR

- ▶ Extending to $B \neq 2\ell$: Divide ℓ into dyadic segments.
- ► Extending to r > 2: Make a tree with a leaf for each C_i Every branch in the tree is equivalent to a 2-splitting
- ► Use Counting-Generator to sample community counts
- ▶ Run the Bucketing-Generator as before

Work in Progress

A $2 \times n$ grid tiled with dominoes: F_n tilings possible.

Query: i^{th} column configuration: vertical, left, right?

Sufficent to approximate F_c/F_{c-1} : Use ϕ if $c = \Omega(\log(n))$ **Open:** $k \times n$ grid for $k = \omega(1)$ and Dimer model

Random Coloring: Glauber Dynamics

Consider a uniform random coloring of the input graph. Query: What is v's color in the random coloring?

Global Algorithm (Glauber Dynamics) for $k > 2\Delta$

- Sample $r = \mathcal{O}(n \log n)$ (vertex, color) pairs $\langle (v_i, c_i) \rangle_{i \in [r]}$
- For steps $i = 1, \ldots, r$
- If no neighbor of v_i has color c_i , set v_i 's color to c_i
- Else, do nothing

Local Algorithm for $k = \Omega(\Delta \log n)$

- Locally sample *all* occurrences of (v, \star) : implemented effenciently with the proposed **Counting-Generator**
- Sample (w, \star) if necessary, where w is neighbor of v
- Query tree is of size $\mathcal{O}(1)$ for $k = \Omega(\Delta \log n)$

Open: $k = o(\Delta \log n)$