MARC AURÈLE GILLES

ma-gilles.github.io

Princeton University, Fine Hall \diamond Washington Road, Princeton NJ 08544 French citizen \diamond US permanent resident

RESEARCH RESUME

My research focuses on numerical linear algebra, computational imaging, and applications to cryogenic electron-microscopy (cryo-EM). I build tools to analyze large, high-dimensional and noisy datasets arising in cryo-EM.

EDUCATION

Cornell University

September 2014 - May 2019

Ph.D. in Applied Mathematics

Ithaca, NY

Advised by Prof. Alex Townsend

Thesis title: At the intersection of differential equations and optimization: inverse problems, path planning and Krylov subspaces.

Rutgers University

January 2012 - May 2014

New Brunswick, NJ

B.A. in Mathematics Summa Cum Laude

Minor in Economics

Raritan Valley Community College

September 2010 - January 2012

Branchburg, NJ

Concentration in Economics

PROFESSIONAL EXPERIENCE

Princeton University, Department of Mathematics

September 2024 - Present

Assistant Professor of Mathematics

Princeton, NJ

Princeton University, PACM

September 2021 - September 2024

Princeton, NJ

 $Postdoctoral\ Research\ Associate$

- · Advised by Prof. Amit Singer.
- · Researched algorithms for reconstruction of protein structures by cryo-EM.
- · Developed computational priors for Bayesian inference of protein structure and methods for covariance estimation of inferred potentials.
- · Developed computational methods for heterogeneity analysis in cryo-EM.

Facebook Reality Labs

July 2019 - September 2021

Research Scientist

Redmond, WA

- · Researched core technologies for augmented and virtual reality.
- · Developed efficient algorithms for precise calibration, processing, and state estimation for novel sensors and imaging technologies.
- · Invented and patented novel sensors for augmented reality.
- · Led the optimal design of hardware components.
- · Mentored and managed two Ph.D. interns on research projects.

Facebook Reality Labs

June 2018 - August 2018

Research Intern

Redmond, WA

- · Designed novel computer vision and optimization algorithms for eye tracking and calibration.
- · Implemented algorithms in C++ using OpenCV and Eigen.
- · Worked alongside mechanical engineers and optical scientists to build experimental setups.
- · Conceived and conducted user studies.

Argonne National Laboratory

June 2017 - August 2017

Research Intern

Lemont, IL

- · Designed algorithms to perform 3D image reconstruction of nanometer-scale objects from X-ray mea-
- · Solved inverse problems with tens of millions of unknowns using supercomputers with tens of thousands of cores.
- · Wrote high performance, massively parallel code in C using MPI and MKL.
- · Collaborated with a team of physicists, engineers, and mathematicians.

Center for Discrete Mathematics And Theoretical Computer Science (DIMACS)

June 2013 - August 2013

Piscataway, NJ

Undergraduate Researcher

· Developed computational imaging tools for biomedical applications under the supervision of Prof. Schliep.

TEACHING EXPERIENCE

Princeton University

January 2023 - May 2023

Instructor

Princeton, NJ

- · (Spring 2025) MAT 204: Advanced Linear Algebra with Applications
- · (Fall 2024) Mathematics Junior Seminar: The Top 10 Algorithms of the 20th Century
- · (Fall 2024) MAT 321/APC 321: Numerical Analysis and Scientific Computing
- · (Spring 2023) MAT 321/APC 321: Numerical Methods

Cornell University Teaching Assistant

- · Prepared and held recitations
- · Held office hours
- · Wrote and graded exams.
- · Classes taught:

INFO 2950 - Introduction to Data Science (Head TA)

CS4780/5780 - Machine Learning for Intelligent Systems

CS 1112 - Introduction to Computing Using MATLAB

MATH 1910 - Calculus for engineers

MATH 1920 - Multivariable Calculus for engineers

MATH 1110 - Calculus I

ADVISING

· Won-Jae Chang (co-advised with Amit Singer). Princeton Undergraduate (B.A., economics, 2024). PACM certificate - project on "Efficient algorithms for Ewald sphere correction in cryo-EM"

HONORS AND PRIZES

September 2014 - July 2019

Ithaca, NY

- · McGraw Center's examplar mentor award for graduate students and postdocs (2024)
- · SIAM Student Travel Award (3×) in 2017 and 2018, 2023
- · NSF Mathematical Sciences Graduate Internship in 2017
- · Lawrence Corwin Memorial Math Prize in 2014
- · Stanley E. Brasefield Mathematics Scholarship in 2013

JOURNAL PUBLICATIONS

- 1. M. A. GILLES AND A. SINGER, Cryo-em heterogeneity analysis using regularized covariance estimation and kernel regression, Proceedings of the National Academy of Sciences, (to appear)
- 2. A. Zhang, O. Mickelin, J. Kileel, E. J. Verbeke, N. F. Marshall, M. A. Gilles, and A. Singer, *Moment-based metrics for molecules computable from cryogenic electron microscopy images*, Biological Imaging, 4 (2024), p. e3
- 3. M. A. GILLES AND A. SINGER, A molecular prior distribution for bayesian inference based on wilson statistics, Computer methods and programs in biomedicine, 221 (2022), p. 106830
- 4. E. J. Verbeke, M. A. Gilles, T. Bendory, and A. Singer, Self fourier shell correlation: properties and application to cryo-et, Communications Biology, 7 (2024), p. 101
- 5. M. A. GILLES AND A. TOWNSEND, Continuous analogues of Krylov subspace methods for differential operators, SIAM Journal on Numerical Analysis, 57 (2019), pp. 899–924
- 6. M. A. GILLES, C. EARLS, AND D. BINDEL, A subspace pursuit method to infer refractivity in the marine atmospheric boundary layer, IEEE Transactions on Geoscience and Remote Sensing, 57 (2019), pp. 5606–5617
- 7. M. A. GILLES, Y. NASHED, M. DU, C. JACOBSEN, AND S. WILD, 3D X-ray imaging of continuous objects beyond the depth of focus limit, Optica, 5 (2018), pp. 1078–1086
- 8. M. A. GILLES AND A. VLADIMIRSKY, Evasive path planning under surveillance uncertainty, Dynamic Games and Applications, (2018)

TALKS AND PRESENTATIONS

- · RECOVAR: A Bayesian framework for cryo-EM heterogeneity analysis (Selected poster talk), Gordon Research Conference, Barcelona, Spain, 2024
- · RECOVAR: A Bayesian framework for cryo-EM heterogeneity analysis, Gordon Research Seminar, Barcelona, Spain, 2024
- · Reconstructing flexible proteins from cryo-EM datasets, SIAM ALA, Sorbonne Université, 2024
- · Reconstructing flexible proteins from massive microscopy datasets, Applied Mathematics Seminar, Yale University, New Haven, 2024
- · Reconstructing flexible proteins from massive microscopy datasets, Applied Mathematics Seminar (online), University of Texas at Austin, 2024
- · A Bayesian framework for cryo-EM heterogeneity analysis, CCM-CCB seminar, Flatiron Institute, NYC, 2023
- · A Bayesian framework for cryo-EM heterogeneity analysis, Cryo-EM One World seminar series (online)

- · Cryo-EM heterogeneity analysis by regularized covariance estimation, IAS, Gottingen, 2023
- · Cryo-EM heterogeneity analysis by regularized covariance estimation, ICIAM, Tokyo, 2023
- · Cryo-EM heterogeneity analysis by regularized covariance estimation, Cryo-EM summer workshop, Flatiron Institute, New York, 2023
- · High Dimensional Covariance Estimation in Cryo-EM, SIAM MDS, San Diego, 2022
- · Heterogeneity analysis in cryo-EM, IPAM seminar, Los Angeles, 2022
- · Near Real-Time Heterogeneity Analysis by Sketched Covariance, GRC Three Dimensional Microscopy, Barcelona, Spain, 2022 (Selected Poster Presentation)
- · A Molecular Prior Distribution for Bayesian Inference Based on Wilson Statistics, Cryo-EM seminar, Flatiron Institute, NY (online), 2022
- · Computing with subspaces generated by differential operators, IDeAS seminar, Princeton University, 2021
- · 3D X-ray imaging beyond the depth of focus limit, SIAM Conference on Imaging Science, 2018
- · Continuous analogues of Krylov methods for differential operators, SIAM Conference on Applied Linear Algebra, 2018
- · Continuous analogues of Krylov methods for differential operators, Scientific Computing and Numerics seminar, Cornell University, 2018
- · Adversarial path planning, Scientific Computing and Numerics seminar, Cornell University, 2017
- · A Subspace Pursuit Method to Invert the Refractivity Profile within the Marine Atmospheric Boundary Layer (Poster), SIAM Conference on Computational Science and Engineering, 2017

ORGANIZED EVENTS

- · Co-organized "Advances of regularization techniques in iterative reconstruction" minisymposium at SIAM Conference on Imaging Science (2018)
- · Organized Applied Mathematics student-invited speaker series at Cornell University (2017-2019)

SOFTWARE

- · RECOVAR [1]: https://github.com/ma-gilles/recovar
- · C++ companion library to [7]: github.com/eikonal-equation/Stationary_SEG
- · MATLAB companion libraries to [4]: chebfun.org/examples/ode-linear/Krylov.html
- · Python companion library https://github.com/ma-gilles/wilson_prior

TECHNICAL SKILLS

Computer Languages Python, MATLAB, Julia, C++, C
Libraries PyTorch, JAX, OpenCV, Eigen, MPI
Others Github, Mercurial, Linux