4o. Trabalho Computacional (TIP7077 – Inteligência Computacional Aplicada)

Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

Departamento de Engenharia de Teleinformática (DETI)

Universidade Federal do Ceará (UFC)

Responsável: Prof. Guilherme de Alencar Barreto

Aluno: Weslley Lioba Caldas

Matricula: 372598

1)

Foram utilizados os seguintes algoritmos, Mínimos quadrados e Perceptron Simples, Maquina de Aprendizado Extremo, e Perceptron Multicamadas.

Para as redes neurais foram usados os seguintes parâmetros:

- I. Alpha=0.5
- II. b=-1.
- III. Número de interações =1000.

Após o término das 100 rodadas de treinamento e teste, calcular as taxas de acerto

- I. Média.
- II. Mínima.
- III. Máxima.

Tabela 1	Mínimos	Perceptron	MLP	ELM
	Quadrados	Simples		
Taxa média:	0.8659	0.6395	0.9647	0.8910
Taxa mínima:	0.7436	0.1795	0.9423	0.9489
Taxa máxima	0.9744	0.9487	0.9936	0.9872

Desvio padrão da taxa de acerto para as 100 rodadas.

Tabela 2	Mínimos	Perceptron	MLP	ELM
	Quadrados	Simples		
Desvio padrão	0.0475	0.2214	0.0108	0.0185

Calcular as taxas de acerto médias por classe.

Tabela 3	Mínimos	Perceptron	MLP	ELM
	Quadrados	Simples		
Para a classe 1:	0.9477	0.6958	91.7049	81.1299
Para a classe 0:	0.6141	0.4598	97.6145	98.0927

Comparação dos métodos implementados:

Tabela 1	Mínimos	Perceptron	MLP	ELM
	Quadrados	Simples		
Taxa máxima	0.9744	0.9487	0.9936	0.9872

É bem fácil verificar que os métodos não lineares conseguiram resultados um pouco melhores, mas isso já era o esperado devido ao grau de sofisticação mais elevado que estes últimos têm.

Neste problema a rede MLP conseguiu o melhor desempenho entre os demais métodos, seguida pela rede ELM que conseguiu um desempenho semelhante, porém vale ressaltar a rapidez em que a rede ELM convergiu em relação a rede concorrente MLP.

O problema em destaque é linearmente separável e muito simples, logo mesmo métodos mais simples como o dos Mínimos quadrados ou o Perceptron simples conseguiram convergir para uma resposta razoável. Neste caso usar as redes MLP e ELM, seria apenas gasto de processamento desnecessário visto que o problema não exige métodos mais sofisticados para ser solucionado.

Nos arquivos em anexo, "NeuroniosMLP.txt" e "NeurôniosELM.txt" é possível observar o melhor número de neurônios por rodada (i.e. o que foi escolhido na fase de validação).