2022-2023 MP2I

18. Polynômes, corrigé

Exercice 1. Soit (P,Q) un couple de polynômes solution. Notons d_1 et d_2 leurs degrés. En considérant les degrés dans la relation proposé, on a alors $2d_1 = 1 + 2d_2$. On en déduit que d_1 et d_2 ne peuvent pas être entiers (on aurait un nombre pair égal à un nombre impair). Ils sont donc tous les deux égaux à $-\infty$. La seule solution de cette équation est donc P = Q = 0.

Exercice 6. On sait à chaque fois que le reste sera un polynôme de degré 1 à coefficients réels

- 1) Pour le reste de la division euclidienne de X^n par $X^2 5X + 4 = (X 1)(X 4)$, il suffit d'évaluer la relation $X^n = Q(X) \times (X^2 5X + 4) + aX + b$. On obtient alors que 1 = a + b et $4^n = 4a + b$, ce qui donne $a = (4^n 1)/3$ et $b = 1 (4^n 1)/3$.
- 2) Pour le reste par $X^2 + 1 = (X + i)(X i)$, il suffit d'évaluer en i. On obtient donc $i^n = ai + b$, ce qui donne, si n est pair de la forme 2k, a = 0 et $b = (-1)^k$ et si n est impair de la forme 2k + 1, $a = (-1)^k$ et b = 0.
- 3) Pour le reste par $X^2 2X + 1 = (X 1)^2$, on commence par évaluer en 1 pour obtenir 1 = a + b. Pour obtenir la seconde équation, on dérive (car on a une racine double!) la relation $X^n = Q \times (X 1)^2 + aX + b$ pour obtenir $nX^{n-1} = Q' \times (X 1)^2 + 2Q \times (X 1) + a$ et on évalue en 1 ce qui donne n = a. On a donc a = n et b = 1 n.

Exercice 10. Si $\alpha \in \mathbb{C}$ est une racine au moins double de P, on a $P(\alpha) = P'(\alpha) = 0$. Or, on a $P' = 5X^4 - 1$. Ceci entraine que $\alpha^4 = \frac{1}{5}$. Si on réinjecte dans $P(\alpha)$, on trouve :

$$P(\alpha) = \alpha^5 - \alpha - 1 = \frac{\alpha}{5} - \alpha - 1 = -\frac{4\alpha}{5} - 1.$$

Ceci entraine que $\alpha = -\frac{5}{4}$. On vérifie alors facilement que cette valeur n'est pas racine de P, ce qui entraine que P n'a pas de racines au moins doubles. Toutes les racines de P sont donc simples.

Exercice 13. Supposons par l'absurde qu'il existe $P \in \mathbb{C}[X]$ tel que $\forall z \in \mathbb{C}$, $P(z) = \overline{z}$. On en déduit que $zP(z) + 1 = |z|^2 + 1$. Le polynôme Q = XP(X) + 1 n'admet donc aucune racine dans \mathbb{C} . Ceci est absurde d'après le théorème de d'Alembert!

Exercice 15.

- 1) On remarque que le polynôme nul et les polynômes constants ne sont pas surjectif. Soit à présent P un pôlynôme de degré supérieur ou égal à 1. Soit $y \in \mathbb{C}$. Alors, si on considère le polynôme Q = P y, d'après le théorème de d'Alembert, ce polynôme admet au moins une racine $\alpha \in \mathbb{C}$. On a alors $P(\alpha) = y$ et on a bien construit un antécédent à y. On a donc montré que les polynômes surjectifs de \mathbb{C} dans \mathbb{C} sont tous les polynômes de degré supérieur ou égal à 1.
- 2) Soit $P: \mathbb{C} \to \mathbb{C}$ un polynôme injectif. Remarquons tout d'abord que P n'est pas nul et pas constant. Il est donc de degré supérieur ou égal à 1 et admet au moins une racine α . Si il admet une autre racine $\beta \neq \alpha$, on a alors $P(\alpha) = P(\beta) = 0$, ce qui est absurde (0 a alors au moins 2 antécédents). On en déduit que P n'a qu'une racine, et est donc de la forme $\lambda(X \alpha)^r$ avec $\lambda \neq 0$. Supposons que $r \geq 2$. Alors, on remarque que $P(\alpha + 1) = P(\alpha + \omega_r)$ où ω_r est une racine r-ième de l'unité différente de 1. On en déduit que P n'est pas injectif. On a donc trouvé que P devait être de la forme $\lambda(X \alpha)$ avec $\lambda \neq 0$ et $\alpha \in \mathbb{C}$.

On vérifie réciproquement que tous les polynômes de degré 1 sont injectifs de C dans C.

Exercice 16. Soit $P \in \mathbb{R}[X]$ de degré n.

- 1) Notons $x_1 < x_2 < \ldots < x_n$ les racines réelles distinctes de P. Puisque P est infiniment dérivable, on peut utiliser le théorème de Rolle sur chaque intervalle $[x_k, x_{k+1}]$ ce qui entraine qu'il existe $y_k \in]x_k, x_{k+1}[$ tel que $P'(y_k) = 0$ pour tout $k \in [1, n-1]$. On a donc trouvé n-1 racines réelles distinctes de P'. Puisque $\deg(P') = \deg(P) 1 = n 1$, on a toutes les racines de P' ce qui entraine que P' a toutes ses racines réelles (et elles sont bien distinctes car les y_k appartiennent à des intervalles disjoints).
- 2) On remarque qu'en appliquant plusieurs fois le résultat précédent, on a que P'' a toutes ses racines réelles distinctes, P''' aussi, etc. Tous les polynômes dérivées de P de degré supérieur ou égal à 1 ont donc des racines réelles distinctes. Supposons par l'absurde que P ait deux coefficient consécutifs

nuls, par exemple a_k et a_{k+1} . On a donc $P(X) = \sum_{j=0}^{k-1} a_j X^j + \sum_{j=k+2}^n a_j X^j$. Dérivons alors P(X) fois.

On obtient alors que $P^{(k)} = \sum_{j=k+2}^{n} a_j j(j-1) \dots (j-k+1) X^{j-k}$. Or, on voit que ce polynôme se

factorise par X^2 , ce qui entraine qu'il admet 0 comme racine double. C'est absurde car toutes les dérivées devaient avoir des racines réelles simples (car distinctes).

3) On suppose que P admet n racines réelles (comptées avec multiplicité). On a donc P de la forme $P = \lambda \prod_{k=1}^p (X - x_k)^{r_k} \text{ où } x_1 < \ldots < x_p \text{ sont les racines réelles distinctes de } P \text{ et } r_1, \ldots, r_p \in \mathbb{N}^* \text{ leur}$

multiplicité. On remarque que $deg(P) = n = \sum_{k=1}^{p} r_k$.

Étudions à présent les racines de P'. Avec le théorème de Rolle, on peut construire p-1 racines réelles distinctes (car on a p racines différentes de P). On va à présent utiliser le second critère de multiplicité pour trouver d'autres racines de P'. Puisque x_1 est racines de multiplicité r_1 dans P, on a $\forall k \in [0, r_1 - 1]$, $P(x_1) = 0$ et $P^{(r_1)}(x_1) \neq 0$. On en déduit que $\forall k \in [0, r_1 - 2]$, $P^{(k)}(x_1) = 0$ et $P^{(r_1)}(x_1) \neq 0$. On en déduit que $P^{(r_1)}(x_1) \neq 0$. On procède de même pour $P^{(r_1)}(x_1) \neq 0$. On en déduit que $P^{(r_1)}(x_1) \neq 0$.

Comptons à présent le nombre de racines de P'. On en a trouvé (p-1) (avec le théorème de Rolle) et $\sum_{k=1}^{p} (r_k - 1)$ (avec les racines multiples). On en a donc :

$$(p-1) + \sum_{k=1}^{p} (r_k - 1) = \sum_{k=1}^{p} r_k + (p-1) - p = n - 1 = \deg(P').$$

On a donc trouvé autant de racines que le degré de P'. On a donc toutes les racines de P'. P' a donc bien toutes ses racines réelles.

Montrer que P' a également toutes ses racines réelles.

Exercice 17. (m) Considérons le polynôme unitaire de degré 3 dont les racines sont x, y et z. On a alors :

$$P = (X - x)(X - y)(X - z) = X^{3} - (x + y + z)X^{2} + (xy + xz + yz)X - xyz.$$

Or, puisque (x, y, z) est solution du système de l'énoncé, et que $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{xy + xz + yz}{xyz}$, on en déduit que trouver x, y, z revient à trouver les racines du polynômes :

$$X^3 - X^2 - 4X + 4$$
.

On a 1 comme racine évidente et alors $X^3 - X^2 + 4X - 4 = (X - 1)(X^2 - 4) = (X - 1)(X - 2)(X + 2)$. Les solutions du système sont donc toutes les permutations possibles du triplet (-2, 2, 1).

Exercice 20. Soit $n \in \mathbb{N}$. Soit P un polynôme unitaire de degré n à coefficients entiers ayant toutes ses racines (complexes) de module inférieur ou égal à 1. On en déduit que $P = \prod_{k=1}^{n} (X - x_k)$ avec

 $|x_k| \le 1$. Or, sous forme développée, on a également $P = \sum_{k=0}^n a_k X^k$ avec $a_n = 1$ (P est unitaire) et $a_{n-k} = (-1)^k \sigma_k$. Or, on a pour $k \in [1, n]$:

$$|a_{n-k}| = |\sigma_k|$$

$$= \left| \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} \dots x_{i_k} \right|$$

$$\leq \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} |x_{i_1} x_{i_2} \dots x_{i_k}| \quad \text{(par inégalité triangulaire)}$$

$$\leq \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} 1$$

$$\leq \sum_{1 \leq i_1, i_2, \dots, i_k \leq n} 1$$

$$\leq n^{\overline{k}}.$$

On en déduit que le coefficient a_{n-k} ne peut prendre qu'un nombre fini de valeurs entières (puisqu'il est à valeurs dans $[-n^k, n^k]$). Tous les coefficients ne peuvent prendre qu'un nombre fini de valeurs et on a un nombre fini de coefficients, ce qui entraine que l'on a qu'un nombre fini de polynômes unitaires de degré n à coefficients entiers ayant toutes leurs racines de module inférieur ou égal à 1.

Exercice 21. Soient x, y, z trois complexes non nuls tels que $x + y + z = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$. On peut exprimer x, y, z comme les racines de :

$$(X-x)(X-y)(X-z) = X^3 - (x+y+z)X^2 + xyz\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)X - xyz$$

= X^3 - xyz.

Posons alors $\lambda = xyz$. On a donc que $x^3 - \lambda = 0$ (car x est une racine de P). On a donc en prenant le module que $|x|^3 = |\lambda|$, c'est à dire que $|x| = |\lambda|^{1/3}$. On procède de même pour y et z, ce qui montre que les trois racines ont même module.

Exercice 22.

- 1) On a $X^4 + X^2 + 1 = (X^2 + 1)^2 X^2 = (X^2 + X + 1)(X^2 X + 1)$ (avec une identité remarquable). Ces deux polynômes ont un discriminant strictement négatif. Ils sont donc irréductibles dans $\mathbb{R}[X]$ et on a bien factorisé $X^4 + X^2 + 1$.
- 2) On a 1 comme racine évidente. On a ici $X^5 X^4 + X 1 = (X 1)(X^4 + 1)$. En reprenant la factorisation de $X^4 + 1$ du cours, on obtient $X^5 X^4 + X 1 = (X 1)(X^2 + \sqrt{2}X + 1)(X^2 \sqrt{2}X + 1)$.
- 3) On remarque que $P_3(X) = P_1(X^2)$. On en déduit, en gardant les notations précédentes que :

$$P_3(X) = (X^4 - X^2 + 1)(X^4 + X^2 + 1)$$

= $(X^4 - X^2 + 1)(X^2 - X + 1)(X^2 + X + 1).$

Il ne reste plus qu'à décomposer le polynôme $X^4 - X^2 + 1$. On peut remarquer que :

$$X^{4} - X^{2} + 1 = (X^{2} + 1)^{2} - 3X^{2}$$
$$= (X^{2} - \sqrt{3}X + 1)(X^{2} + \sqrt{3}X + 1).$$

Ces deux polynômes sont alors de discriminant strictement négatif. On en déduit que :

$$P_3(X) = (X^2 - \sqrt{3}X + 1)(X^2 + \sqrt{3}X + 1)(X^2 - X + 1)(X^2 + X + 1).$$

Exercice 24. On pose pour $n \in \mathbb{N}$, $P_n(X) = (X+1)^{6n+1} - X^{6n+1} - 1$.

Pour tester la divisibilité de $P_n(X)$ par $Q(X)=(X^2+X+1)^2$, on va utiliser les nombres complexes. En effet, on a $X^2+X+1=(X-j)(X-j^2)$ avec $j=e^{2i\pi/3}$ et $j^2=e^{4i\pi/3}$. On a donc $Q(X)=(X-j)^2(X-j^2)^2$. La question est donc de savoir si j et j^2 sont racines doubles de P_n .

On rappelle que $j^3=1$ (puisque j est la première racine troisième de l'unité) et $j^2+j+1=0$. On a alors :

$$P_n(j)=(j+1)^{6n+1}-j^{6n+1}-1=(-j^2)^{6n+1}-j-1.$$
 Or, $(-j^2)^{6n+1}=-j^2\times(-j^2)^{6n}=-j^2\times1.$ On a donc :

$$P_n(j) = -j^2 - j - 1 = 0.$$

De plus, puisque P_n est \tilde{A} coefficients réels, on a $P(\bar{j}) = 0$ donc $P_n(j^2) = 0$.

Pour tester si ces racines sont doubles, on va tester si ce sont des racines de P'. On a $P'_n(X) = (6n+1)(X+1)^{6n} - (6n+1)X^{6n}$. On a alors :

$$P'_n(j) = (6n+1)(j+1)^{6n} - (6n+1)j^{6n} = (6n+1)(-j^2)^{6n} - 1) = 0.$$

De la même manière, P'_n étant à coefficients réels, $j^2 = \overline{j}$ est encore racine de P'_n . On en déduit que j et j^2 sont racines doubles de P_n et donc que $(X^2 + X + 1)^2$ divise P_n .

Exercice 25. On pose $Y = X^n$. On a alors $X^{2n} - 2\cos(\alpha)X^n + 1 = Y^2 - 2\cos(\alpha)Y + 1$. Le discriminant est $4\cos^2(\alpha) - 4 = -4\sin^2(\alpha)$. Les racines sont donc $\frac{2\cos(\alpha) \pm i\sin(\alpha)}{2} = e^{\pm i\alpha}$. On en déduit que :

$$X^{2n} - 2\cos(\alpha)X^n + 1 = (X^n - e^{i\alpha})(X^n - e^{-i\alpha}).$$

Les racines n-ièmes de $e^{i\alpha}$ sont $e^{\frac{i\alpha}{n}+\frac{2ik\pi}{n}}$ avec $0 \le k \le n-1$ et les racines n-ièmes de $e^{-i\alpha}$ sont $e^{-\frac{i\alpha}{n}-\frac{2ik\pi}{n}}$ avec $0 \le k \le n-1$ (on utilise un signe — pour obtenir exactement le conjugué du terme précédent, on remarque que l'on parcoure toujours n termes consécutifs). On en déduit la factorisation du polynôme demandé dans $\mathbb{C}[X]$ (puisque l'on a trouvé exactement 2n racines pour un polynôme de degré 2n unitaire):

$$X^{2n} - 2\cos(\alpha)X^n + 1 = \prod_{k=0}^{n-1} \left(X - e^{\frac{i\alpha}{n} + \frac{2ik\pi}{n}}\right) \left(X - e^{-\frac{i\alpha}{n} - \frac{2ik\pi}{n}}\right).$$

En regroupant chaque terme avec son conjugué, on obtient :

$$X^{2n} - 2\cos(\alpha)X^n + 1 = \prod_{k=0}^{n-1} \left(X^2 - 2\cos\left(\frac{\alpha}{n} + \frac{2k\pi}{n}\right)X + 1 \right).$$

Ceci est la factorisation en produit de polynômes irréductibles si $\cos\left(\frac{\alpha}{n} + \frac{2k\pi}{n}\right) \neq \pm 1$. Si certains termes valent ± 1 , on peut factoriser $X^2 - 2X + 1 = (X - 1)^2$ et $X^2 + 2X + 1 = (X + 1)^2$. Dans tous les autres cas, le discriminant est strictement négatif.

Exercice 26.

1) A l'aide du binome de Newton, on a $P(X) = \sum_{k=0}^{n} \binom{n}{k} (X^{n-k} - (-1)^k X^{n-k})$. Le terme d'indice k = 0 est nul et le terme d'indice k = 1 est $2nX^{n-1}$. On en déduit que P est de degré n - 1 et de coefficient dominant 2n.

On cherche ensuite les racines complexes de P. On a P(z)=0 si et seulement si $(z+1)^n=(z-1)^n$. On remarque que z=1 n'est pas racine (car $2^n\neq 0$). On suppose donc $z\neq 1$, ce qui nous ramène à chercher les $z\neq 1$ tels que :

$$\left(\frac{z+1}{z-1}\right)^n = 1$$

On en déduit qu'il existe $k\in [0,n-1]$, $\frac{z+1}{z-1}=e^{\frac{2ik\pi}{n}}$. On remarque que l'on doit avoir $k\neq 0$ puisque sinon on a $\frac{z+1}{z-1}=1$, ce qui revient z+1=z-1, soit 2=0: absurde. Pour $k\in [1,n-1]$, on a alors:

$$z + 1 = (z - 1)e^{\frac{2ik\pi}{n}} \Leftrightarrow z = -\frac{1 + e^{\frac{2ik\pi}{n}}}{1 - e^{\frac{2ik\pi}{n}}}.$$

On utilise alors l'arc moitié pour obtenir :

$$z = \frac{2\cos\left(\frac{k\pi}{n}\right)}{2i\sin\left(\frac{k\pi}{n}\right)} = -i\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)}.$$

On en déduit que $P(X) = 2n \prod_{k=1}^{n-1} \left(X + i \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} \right)$.

2) On va poser n = 2p + 1 et utiliser les relations coefficients/racines dans le polynôme précédent. En utilisant le produit des racines, on a alors :

$$2(2p+1)(-1)^{2p} \prod_{k=1}^{2p} i \frac{\cos\left(\frac{k\pi}{2p+1}\right)}{\sin\left(\frac{k\pi}{2p+1}\right)} = P(0) = 1 - (-1)^{2p+1} = 2.$$

On a alors
$$\prod_{k=1}^{2p} \frac{1}{\tan\left(\frac{k\pi}{2p+1}\right)} = \frac{(-1)^p}{2p+1}$$
 d'où :
$$\prod_{k=1}^{2p} \tan\left(\frac{k\pi}{2p+1}\right) = (-1)^p (2p+1).$$

De plus, en utilisant le changement d'indice k' = 2p + 1 - k, on a :

$$\prod_{k=p+1}^{2p} \tan\left(\frac{k\pi}{2p+1}\right) = \prod_{k=1}^{p} \tan\left(\frac{(2p+1-k)\pi}{2p+1}\right) = \prod_{k=1}^{p} \left(-\tan\left(\frac{k\pi}{2p+1}\right)\right) = (-1)^{p} \prod_{k=1}^{p} \tan\left(\frac{k\pi}{2p+1}\right).$$

On en déduit que $\left(\prod_{k=1}^p \tan\left(\frac{k\pi}{2p+1}\right)\right)^2 = (2p+1)$. De plus, toutes les tangentes dans le produit sont positives (l'angle est dans $]0,\pi/2[$. On en déduit donc que :

$$\prod_{k=1}^{p} \tan\left(\frac{k\pi}{2p+1}\right) = \sqrt{2p+1}.$$

Exercice 27. Polynômes de Hermite.

1) Pour l'unicité, si pour tout $x \in \mathbb{R}$, $H_n(x)e^{-x^2} = G_n(x)e^{-x^2}$, on a alors pour tout $x \in \mathbb{R}$, $H_n(x) = G_n(x)$ avec H_n et G_n deux polynômes. Ils sont égaux en une infinité de valeurs et donc sont égaux comme polynômes.

Pour l'existence, on peut procéder par récurrence. En effet, g est infiniment dérivable sur \mathbb{R} et si on a $g^{(n)}(x) = H_n(x)e^{-x^2}$, alors en dérivant, on obtient :

$$g^{(n+1)}(x) = (H'_n(x) - 2xH_n(x))e^{-x^2}.$$

On peut alors poser $H_{n+1}(X) = H'_n(X) - 2XH_n(X)$ qui est bien un polynôme comme somme/produit de polynômes.

2) On a $H_0 = 1$, $H_1 = -2X$. On va donc montrer par récurrence simple que H_n est de degré n et de coefficient dominant $(-2)^n$. La propriété est vraie au rang 0. Si elle est vraie au rang $n \in \mathbb{N}$ fixé, alors on a H'_n de degré n-1 et $2XH_n(X)$ de degré n+1. On en déduit d'après la relation précédente que H_{n+1} est de degré n+1 et de coefficient dominant $(-2) \times (-2)^n = (-2)^{n+1}$. La propriété est donc vraie au rang n+1.

Pour la parité, on va vérifier que $H_n(-X) = (-1)^n H_n(X)$. La propriété est vraie au rang 0 et 1. Si la propriété est vraie au rang n fixé, alors, en dérivant, on obtient que $-H'_n(-X) = (-1)^n H'_n(X)$, soit $H'_n(-X) = (-1)^{n+1} H'_n(X)$. On a alors :

$$H_{n+1}(-X) = H'_n(-X) - 2(-X)H_n(-X) = (-1)^{n+1}(H'_n(X) - 2XH_n(X)) = (-1)^{n+1}H_{n+1}(X).$$

On en déduit que H_n est pair et n est pair et impair si n est impair.

3) La propriété demandée est vraie au rang 0 (puisque $H_0 = 1$ et $H_1 = -2X$ donc $H_1' = -2H_0$. Soit $n \in \mathbb{N}$. Supposons la propriété vraie au rang n. On a alors :

$$H'_{n+2} = (H'_{n+1} - 2XH_{n+1})'$$

$$= H''_{n+1} - 2H_{n+1} - 2XH'_{n+1}$$

$$= -2(n+1)H'_n - 2H_{n+1} - 2X(-2(n+1))H_n$$

$$= -2(n+1)(H'_n - 2XH_n) - 2H_{n+1}$$

$$= -2(n+1)H_{n+1} - 2H_{n+1}$$

$$= -2(n+2)H_{n+1}.$$

La propriété est donc vraie au rang n+1.

4) On a $g^{(n)}(0) = H_n(0)$. De plus, d'après la définition des H_n et la question 3 évaluées en 0, on a $H_{n+1}(0) = H'_n(0)$ et $H'_{n+1}(0) = -2(n+1)H_n(0)$. On en déduit que $H_{n+2}(0) = -2(n+1)H_n(0)$.

Si n est impair, puisque H_n est impair, on a $H_n(0) = 0$. Si n est pair, de la forme n = 2p, on a alors :

$$H_{2(p+1)}(0) = -2(2p+1)H_{2p}(0).$$

Par récurrence, on montre donc que $H_{2p}(0) = (-2)^p \prod_{k=0}^{p-1} (2k+1) = (-2)^p (2p)! \frac{1}{\prod_{k=1}^p 2k}$. On a donc : $g^{(2p)}(0) = H_{2p}(0) = \frac{(-2)^p (2p)!}{2^p p!} = \frac{(-1)^p (2p)!}{p!}.$

Exercice 28. Remarquons tout d'abord que le polynôme nul est solution de cette équation. Pour déterminer les autres solutions, on va raisonner par analyse/synthèse.

Analyse: Soit $P \in \mathbb{R}[X]$ différent du polynôme nul vérifiant $P(X^2) = P(X)P(X+1)$. Notons d le degré de P. On a alors, en considérant le degré dans l'équation précédente, que 2d = 2d. Ceci ne nous apporte aucune information. Supposons que $\alpha \in \mathbb{C}$ soit une racine de P (on sait qu'elle existe, si P n'est pas constant, d'après le théorème de d'Alembert). On a alors $P(\alpha^2) = 0$ donc α^2 est aussi une racine de P. Par récurrence, on montre alors que $(\alpha^{2^n})_{n \in \mathbb{N}^*}$ sont toutes des racines de P. Supposons par l'absurde que $|\alpha| \neq 1$ et que $\alpha \neq 0$. Alors, les éléments de la famille $(\alpha^{2^n})_{n \in \mathbb{N}^*}$ sont tous distincts

(leur module est à chaque fois différent). On en déduit que P admet une infinité de racines, donc plus que son degré, ce qui est absurde!

On a donc montré que les racines de P sont soit 0, soit de module 1. Supposons cette fois que α soit une racine de P de module 1. En appliquant la relation de l'énoncé en $\alpha-1$, on a alors que $P((\alpha-1)^2)=0$. Puisque $(\alpha-1)^2$ est racine de P, l'étude précédente montre que son module vaut soit 0, soit 1. Or, on a (on rappelle que $|\alpha|=1$):

$$|(\alpha - 1)^2| = (\alpha - 1)(\bar{\alpha} - 1)$$
$$= |\alpha|^2 + 1 - \alpha - \bar{\alpha}$$
$$= 2 - 2\operatorname{Re}(\alpha).$$

On en déduit que $\operatorname{Re}(\alpha)=1$ ou $\operatorname{Re}(\alpha)=\frac{1}{2}$. Puisque $|\alpha|=1$, on en déduit que $\alpha=1$ ou $\alpha=e^{\pm\frac{i\pi}{3}}$.

On peut encore limiter les racines de P. En effet, si $e^{\pm \frac{i\pi}{3}}$ était racine de P, alors d'après la première étude, on aurait $e^{\pm \frac{2i\pi}{3}}$ qui serait racine de P, ce qui est absurde d'après la seconde étude! On en déduit que les seules racines complexes possibles de P sont 0 et 1. On en déduit que $P(X) = \lambda X^n (X-1)^m$ avec $\lambda \in \mathbb{R}$.

En réinjectant cette expression dans l'équation de départ, on trouve que :

$$\lambda X^{2n} (X^2 - 1)^m = P(X) P(X + 1) = \lambda^2 X^n (X - 1)^m (X + 1)^n X^m$$

Ces deux polynômes ont même coefficient dominant donc on a $\lambda^2 = \lambda$, soit $\lambda = 1$ (puisque si $\lambda = 0$, alors le polynôme est nul). De plus, les racines de ces deux polynômes doivent avoir la même multiplicité. On en déduit que 2n = n + m, c'est à dire n = m. On en déduit que P est de la forme $P(X) = X^n(X-1)^n$ avec $n \in \mathbb{N}$.

Synthèse: Réciproquement, supposons que $P(X) = X^n(X-1)^n$ avec $n \in \mathbb{N}$. On a alors:

$$P(X^{2}) = X^{2n}(X^{2} - 1)^{n}$$

$$= X^{n}(X - 1)^{2} \cdot (X + 1)^{2}X^{n}$$

$$= P(X) \cdot P(X + 1).$$

P est donc solution de l'équation. On en déduit que l'ensemble des solutions est le polynôme nul et les polynômes de la forme $X^n(X-1)^n$ avec $n \in \mathbb{N}$.