

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Přenosná média

Josef Horálek doplnil Peter Mikulecký

Přenosná média

- = Účelem těchto médií je umožnit výměnu dat mezi počítači
- = Postupně bylo vyvinuto několik přenosných systémů
 - = floppy disk
 - = magnetooptický disk
 - = CD
 - = DVD
 - = flash disk

Diskové paměti s magnetickou vrstvou

- Diskové paměti patří v současnosti mezi nejrozšířenější typ pamětí určený pro trvalý záznam dat
 - u těchto typů pamětí jsou data zaznamenávána na magnetickou vrstvu, která je nanesena na:
 - = rotující pevný (tuhý) disk
 - nebo na rotující pružný disk vyrobený z ohebného plastu

Vývoj disket a disketových mechanik

= Magnetické paměti:

- = vynález roku 1967
- v roce 1971 bylo toto paměťové zařízení komerčně dostupné
 - = jednalo se o disketovou mechaniku určenou pro diskety o průměru osm palců
 - kapacita dosahovala hodnoty 100 kB na jednu
- = v roce 1976 uvedeny disketové mechaniky pro disky o průměru 5 1/4 palce
 - kapacity se pohybovaly od 80 kB u jednostranných disket až po cca 1200 kB u disket oboustranných s dvojnásobnou hustotou stop
- postupně byli nahrazovány disketovými jednotkami pro diskety velikosti 3
 1/2 palce.
 - důležitým konstrukčním prvkem byl pečlivě navržený obal s automaticky otevíranými dvířky

Vývoj disket a disketových mechanik

Disketa 51/4 palce

Diskety 3,5 palce

Magnetooptické disky

- = Záznam na MO disky byl prováděn změnou magnetizace vhodného materiálu
 - = při zápisu i při čtení je použit laserový paprsek
 - magnetooptické disky v sobě kombinují přednosti magnetického záznamu i záznamu optického
 - je vytvořen z několika vrstev složených z různých materiálů a majících značně rozdílnou tloušťku
 - základ tvoří polykarbonátový disk o typické tloušťce 1,2 mm
 - na tomto disku je nanesena vrstva tlustá pouze 100 nm, která je vytvořena z dielektrického materiálu
 - = další vrstvu tvoří vlastní feromagnetický materiál o tloušťce 30 nm
 - čtvrtou vrstvu tvoří opět dielektrikum
 - nad ní je pátá vrstva vytvořená z hliníku sloužící k odrazu laserového paprsku a zlepšení účinnosti čtení
 - poslední vrstva je tvořena ochranným lakem vytvrzeným ultrafialovým světlem

Struktura MO disků - Jednotlivé vrstvy

Struktura MO disků

- V polykarbonátové vrstvě jsou vytvořeny drážky
 - slouží k navádění čtecí a zápisové hlavy
 - tvar drážek (groove) je pakován i v dalších vrstvách
 - drážky přispívají k rozkladu světla na magnetooptických discích

Zápis dat na magnetooptický disk

- Zápis informací na magnetooptický disk je prováděn pomocí zapisovací magnetické hlavy a laserového paprsku
 - feromagnetická vrstva na magnetooptickém disku je vytvořena z materiálu, který je za běžných pokojových teplot možné zmagnetizovat pouze působením velmi silného pole, který zapisovací hlava nemůže vyvinout
- když teplota feromagnetické vrstvy překoná Curieovu teplotu
 - překonán náhodný pohyb atomů vnitřní síly působící spontánní magnetizaci a z feromagnetické látky se stává látka paramagnetická
 - = na ní již relativně slabé magnetické pole zapisovací hlavy může působit
 - teplota feromagnetické vrstvy je zvyšována laserovým paprskem, který je velmi přesně zaostřen právě na tuto vrstvu a dokáže zvýšit teplotu zápisového místa na cca 180°C.

Zápis dat na magnetooptický disk

Zápis dat na magnetooptický disk

- = Starší mechaniky měly 3 fáze pro zápis:
 - = přemazání kombinací laserového paprsku a zápisové hlavy
 - = vlastní zápis
 - = verifikace zapsaných dat
- = Moderní mechaniky:
 - = Sloučily 1 a 2 fázi

Čtení dat z magnetooptického disku

- Čtení zaznamenaných dat je založeno na tzv. Kerrově jevu
 - na magnetický materiál dopadne polarizovaný laserový paprsek, je vlivem magnetizace materiálu pootočen jedním či druhým směrem podle toho, jak je doména polarizovaná
 - úhel pootočení je menší než jeden stupeň
 - jako analyzátor polarizace se používá takzvaný Wollastonův dvojlomný hranol
 - měří se úhel natočení odraženého polarizovaného laserového paprsku, dle toho pak citlivé polarizační filtry ve čtecí hlavě poznají, zda byl zaznamenán bit 0 nebo bit 1.

Média z pohledu využití

- Nejčastější MO jsou o průměru 130 mm
 - kapacity magnetooptických disků 128 MB, 230 MB, 540 MB, 600MB, 640 MB, 1,2 GB, 1,3 GB, 2,6 GB a 5,2 GB a 9,1 GB
 - disky s kapacitou 128 MB až 1,3 GB jsou standardizovány ECMA

= rychlost přenosu dosahuje u novějších modelů hodnoty až 5,9 MB za

sekundu

- Magnetooptické disky (MO) tvoří velmi specializovanou oblast a jsou ideální pro společnosti a podniky, které musí dodržovat vládní předpisy pro archivaci, zpracovávají velké objemy dokumentů nebo vyžadují rychlý přístup k uloženým či archivovaným souborům.
- Magnetooptické disky nacházejí využití v následujících oblastech: zdravotnictví, oblast práva, grafika, tisk, správa dokumentů, vládní a vzdělávací organizace.
- Disky k jednorázovému zápisu a přepisovatelné disky HP překračují požadavky standardů ISO, IEC i ANSI. Testy kontroly kvality HP zahrnují 40 000 cyklů zavedení a vyjmutí, které minimalizují riziko poškození závěru a nenapravitelných problémů se čtením záznamu a zaručují kompletní přístup k souborům.

- Výhodou optických pamětí je bezkontaktní čtení a záznam informací
 - optický disk se paměťové mechaniky dotýká pouze ve střední části, kde se nachází upínací mechanismus k motorku, jenž diskem otáčí
- = Patří sem:
 - = CD (Compact Disk)
 - = DVD (Digital Versatile Disk)
 - = Blu Ray Disk

Kompaktní disk (CD)

- = Kompaktní disk (CD, Compact Disc)
 - = paměť určená pouze pro čtení
 - zápis přímo při výrobě CD pomocí matrice (raznice)
 - na je vytvořen inverzní obraz budoucí stopy a takzvaných pitů.
 - v roce 1980 byl CD DA (Digital Audio) určený pro záznam zvuku, přijat jako průmyslový standard
 - v roce 1985 se původní CD DA rozšířilo i o možnost záznamu dat a vznikl CD ROM
 - = technické charakteristiky CD jsou popsány v "barevných" knihách
 - = základem je Červená kniha (Red Book) popsáno CD DA (Digital Audio)
 - žlutá kniha (Yellow book) s popisem CD ROM
 - následují knihy, kde jsou popsány technologie CD-R, CD-RW, paketový zápis dat pro CD-RW apod.
 - všechny kompaktní disky splňující standard CD DA by měly obsahovat logo Compact Disc Digital Audio.

Uložení dat na CD

– Kompaktní disk tvoří tři vrstvy

- nosnou vrstvou je substrát vytvořený z polykarbonátu
- tato vrstva představuje většinu hmoty kompaktního disku
- je zde pomocí matrice vytlačena spirálová stopa s jamkami
- tato struktura je pokryta tenkou reflexní vrstvou materiálu
 - dobře odráží světlo vlnové délky 780 nm
- na reflexní vrstvě je nanesena vrstva ochranná
 - = tato vrstva chrání reflexní vrstvu před mechanickým poškozením
- průměr disku je 12 centimetrů a tloušťka dosahuje 1,2 milimetru
- vnitřní otvor má průměr 15 milimetrů
- binárně zakódované informace jsou na kompaktním disku uloženy na spirálové stopě
 - začátek leží uvnitř disku a konec na jeho okraji
 - = délka stopy CD-ROM dosahuje cca 4500 metrů
 - samotná stopa je tvořena jamkami (pits) a mezerami mezi jamkami (lands)
 - = hloubka jamek je 0,13 μm
 - přechod mezi jamkou a mezerou či mezi mezerou a jamkou představuje logickou jedničku, místa bez přechodů pak logickou nulu

Uložení dat na CD

- = samotná jamka (pit) má délku 0,5 μm a šířku 1,6 μm
- = počet jamek dosahuje až tři miliardy
- = celou stopu je možné chápat jako sekvenci bitů
 - ty jsou rozděleny do fyzických sektorů
 - každý sektor má pevnou délku 2352 bytů
 - každý blok začíná dvanáctibytovým synchronizačním vzorkem a čtyřbytovým záhlavím sektoru
 - zde je uvedena tříbytová adresa sektoru
 (ve formátu minuta:sekunda:sektor) a především mód (číslo 1 či 2)
 - = podle použitého módu se rozlišuje, jak má být chápáno zbylých 2336 bytů
 - = v módu 2 mohou být všechny tyto byty využity pro záznam uživatelských dat
 - v módu 1 je pro uživatelská data vyhrazeno pouze 2048 bytů a zbylých
 288 bytů slouží pro uložení detekčních a korekčních kódů (EDC a ECC)
 - konkrétně je zde ve čtyřech bytech uložen kontrolní součet (EDC), následovaný osmi volnými byty a korekčním kódem (P-parita 172 bytů a Q-parita 104 bytů)

Uložení dat na CD

- Na logické úrovni je situace složitější
 - pro CD-ROM je na logické úrovni nejčastěji používána norma ISO 9660 (popis způsobu reprezentace logické struktury dat na disku)
 - délka logického bloku se nemusí shodovat s délkou bloku fyzického
 - fyzický blok má délku 2048 bytů, blok logický může mít 512 či 1024 bytů
- Na začátku kompaktního disku jsou uloženy tabulky adresářových cest (Path Tables)
 - umožňují rychlý přístup k jednotlivým souborům

- Reflexní vrstva odráží laserový paprsek zpět v plné intenzitě
- Při průchodu paprsku pitem je absorbováno větší množství energie
 - Každá změna intenzity (přechod mezi pitem a landem či naopak) je považována za logickou jedničku

- Zvukové kompaktní disky měnily při čtení dat průběžně otáčky tak, aby byl zajištěn konstantní datový tok (CLV – Constant Linear Velocity).
 - konkrétně se dosahovalo rychlosti čtení zvukových dat 1,4 MB/s, což odpovídá parametrům zvukového záznamu
 - pokud pro datová CD odečteme synchronizační signály, hlavičky sektorů a ECC i EDC, dostaneme se k číslu 150 kilobytů za sekundu
 - hodnota, jíž dosahují jednorychlostní mechaniky CR-ROM

Postup výroby "lisovaných" CD

- Způsob výroby lisovaných zvukových či datových kompaktních disků je rozdělena do tří kroků:
 - premastering se vytváří přesná bitová podoba výsledného kompaktního disku
 - vstupem jsou data rozdělená do bloků o délce 2048 bytů
 - každému bloku se programově dopočítají synchronizační data, chybové a detekční kódy (ECC, EDC) i adresy sektorů
 - = mastering výrobní fáze, během níž se vytvoří raznice
 - = výroba výsledného CD

- = Firmy Sony a Philips v roce 1988 vytvořily specifikaci zapisovatelných kompaktních disků
 - = zachována zpětná kompatibilita
 - čistý disk CD-R má ve své spodní straně polykarbonátového disku předdefinovánu spirálovou stopu, kterou zapisovací hlava s laserem sleduje

= Průběh zápisu

- hlava s laserovou diodou zapnutou na nízký výkon sleduje předdefinovanou spirálovou stopu
- v místě, kde by na lisovaném kompaktním disku měl být vytvořen pit, je intenzita laserového paprsku zaostřenému na datovou vrstvu zvýšena, takže dojde ke vzrůstu teploty na vrstvě organického barviva - modifikace optických vlastností organického barviva –změna odrazivosti

- Čtení dat je prováděno stejným způsobem jako v případě lisovaného kompaktního disku
 - hlava s laserem nastaveným na nízký výkon sleduje stopu a čte z ní dříve zapsané informace
 - ty jsou vyhodnocovány na základě změny intenzity odraženého laserového paprsku
 - = změna intenzity přitom znamená zápis logické jedničky
 - = absence změny pak znamená logickou nulu
 - všechny údaje jsou zapisovány v kódu Eight-To-Fourteen (8:14)
 - data ukládané na nosič se rozdělí do bloků velikých 8 bitů. Každý blok se nahradí zodpovídajícím 14 bitovým kódem podle kódovací tabulky.

- Dalším stadiem vývoje optických pamětí byly přepisovatelné kompaktní disky označované zkratkou CD-RW (CD ReWritable)
 - = zápis i čtení dat je prováděno pomocí laserového paprsku
 - datová vrstva je v případě CD-RW vytvořena ze slitiny, která při určité teplotě mění svou původně krystalickou strukturu na strukturu amorfní a při odlišné teplotě naopak krystalizuje
 - během zápisu dat jednotlivá místa v datové vrstvě mění svoji strukturu z fáze krystalické na fázi amorfní
 - u krystalické fáze slitina odráží více světla
 - mazání dat, které předchází zápisu, se provádí zpětnou změnou fáze, tj. z původně amorfní fáze do fáze krystalické
 - poměr mezi výkonem laserového paprsku při zápisu a mazání je zhruba 10:1
 v závislosti na konkrétním materiálu použitém při výrobě datové vrstvy

Formát dat CD-RW

- = Data lze na CD-RW zapisovat ve formátu:
 - = specifikovaném v Red booku (CD-DA)
 - = ISO-9660 (CD-ROM)
 - v tomto případě je možné informace zapisovat buď na celý disk současně ("Disk at Once") nebo celou stopu současně ("Track at Once")
 - často je potřeba zapisovat či mazat jednotlivé soubory, měnit adresářovou strukturu apod.
 - pro tento účel je možné CD-RW naformátovat aby umožňoval paketový zápis dat,
 který se snaží na kompaktním disku simulovat chování diskety či pevného disku

- = Firmy Philips a Sony přišly se systémem Multimedia CD (MMCD)
- Ve zhruba stejnou dobu se objevil konkurenční Super Density Digital Video Disc (SDDVD), který vyvíjelo konsorcium firem Toshiba, Thomson, Pioneer, JVC a další
- Výsledný produkt dostal nejdříve jméno Digital Video Disc (digitální video disk)
- Později přejmenován na Digital Versatile Disc

- = Při návrhu DVD se vycházelo z již existující technologie
 - = zůstaly zachovány základní rozměry optického média
 - = průměr dvanáct centimetrů a tloušťka 1,2 mm
 - = také způsob čtení informací se nezměnil

= Změny oproti CD:

- rozdělení polykarbonátové nosné vrstvy na dvě části
- tloušťka nosné vrstvy poloviční tedy 0,6 mm
 - jsou použity dvě polykarbonátové vrstvy, mezi nimiž se nachází jedna či dvě datové vrstvy a jednostranná či oboustranná reflexní vrstva

Struktura DVD vers. CD

= Nevýhody tohoto řešení:

- mírné zvýšení výrobních nákladů
 - = lisování a následné slepení obou polovin disku musí být zcela přesné
- = při oboustranném záznamu se disk musí ručně obracet
- laserový paprsek musí být zaostřen na datovou vrstvu vzdálenou 0,6 mm od povrchu disku
 - = v místě jeho dopadu na polykarbonátovou vrstvu je jeho stopa menší, než u CD

= Vylepšením DVD oproti CD je:

- zmenšení záznamové stopy
- zmenšení délek jednotlivých pitů
 - minimální vzdálenost mezi osou stopy se snížila z hodnoty 1,6 mikronu na 0,74 mikronu, délka pitu z 0,972 mikronu na 0,4 mikronu
- nepatrně se zvětšila plocha pro zápis informace prodloužení datové stopy
 - = stopa na kompaktním disku leží na ploše 86,0 centimetrů čtverečních, na DVD je to 87,6 centimetrů čtverečních
 - lepší využití sektorů (na CD zabírá dvoukilobytový sektor ve skutečnosti 2352 bytů, na DVD pouze 2060 bytů)
 - odlišné kódování bytů na povrchu atd.

- = Změna ve způsobu zakódování logických informací
 - vede k cca sedminásobnému zvýšení kapacity jednovrstvého a jednostranného média oproti původnímu kompaktnímu disku (4,7 GB oproti 650 MB)
- = Změny ve vlastní optické mechanice
 - zpřesnění vedení čtecí hlavy
 - nutno laserové světlo přesněji zaostřit
 - použití odlišné frekvenci paprsku
 - = původní vlnová délka 780 nm se zmenšila na 650 nm
 - složitější zaostřování laserového paprsku
 - = u CD mechanik zaostřováno na 1,2 mm od povrchu
 - u DVD je paprsek zaostřován na 0,6 mm

- = Firma Pioneer v roce 1997 uvedla médium DVD-R
 - ve své první verzi mělo kapacitu 3,95 GB
 - ve verzi druhé 4,71 GB
 - = technologie umožňuje použití oboustranných médií
- V roce 2005, byla vyvinuta technologie záznamu do dvou vrstev zapisovaných a čtených z jedné strany disku
 - Dual Layer recording
 - média označována zkratkou DL
 - kapacita jedné strany disku dosahuje 8,54 GB
 - méně než teoretických 9,42 GB (2 × 4,71 GB) pity v horní vrstvě musí být nepatrně delší, aby při čtení nedocházelo k interferencím mezi daty zapsanými nad sebou v obou datových vrstvách
 - na výrobu byl využit podobný materiál jako u CD-R
 - rozdíl spočívá ve využití odlišné vlnové délky laserového světla při čtení a zápisu - nepatrně odlišná organická barviva datové vrstvy

- DVD-RW využívá pro zápis dat princip založený na změně fáze materiálu datové vrstvy
 - při každém zápisu dat dochází ke kumulujícím se degradacím datové vrstvy, především vlivem skokové změny teploty a následným pnutím ve vrstvě, vznikem mikrotrhlinek atd. - proto max. počet zápisů je cca 1000
 - při výrobě je datová vrstva opatřena vylisovanou spirálovou stopou s adresnými pity vytvořenými v mezerách mezi jednotlivými částmi záznamu
 - pro vlastní přepis informací na médiu je buď použit kontinuální přepis větší části disku
 - nebo lze simulovat i paketový zápis po jednotlivých blocích nebo skupinách ze sebou jdoucích bloků

- V roce 2008 vytvořena aktuální verze DVD+RW
 - média DVD-RAM svým formátem zápisu (nikoli však technologií) podobná spíše magnetooptickým diskům
 - nepoužívá stopu ve tvaru spirály
 - používá kruhové stopy rozdělené na sektory
 - několik desítek stop umístěných vedle sebe má stejné množství sektorů
 - začátky sektorů jsou na disk vylisovány při jeho výrobě
 - řízení hlavy s laserem při čtení a zápisu je prováděno přímo firmware optické mechaniky
 - DVD-RAM se uživateli jeví jako další pevný disk
 - má lépe vyřešenou detekci a korekci chyb
 - umožňuje provést více přepisů (sto tisíc přepisů versus jeden tisíc)
 - = kapacita oboustranného DVD-RAM 9,4 GB

- Shuji Nakamura vynalezl první prakticky použitelné laserové diody se světlem v modré oblasti spektra
 - umožněn vznik Blu-ray
- = Blu-ray
 - disky o průměru 12 cm
 - kapacitu jedné vrstvy celých 25 GB
 - = kapacita dvouvrstvé technologii 50 GB
 - používá laserové světlo s vlnovou délkou 405 nm
 - zmenšení šířky stopy i délky jednotlivých pitů
 - = současně zmenšena tloušťka polykarbonátového disku
 - zvýšena rychlost přenosu dat
 - = pro jednorychlostní mechaniku se jedná o 36 Mbitů/s za sekundu
 - = mechanika dvanáctirychlostní až o 432 Mbitů/s
 - = použit nový způsob šifrování dat pro účely DRM (Digital rights management)

CD 0.7 GB

Track Pitch: 1,6 um Minimum Pit Length: 0,8 um Storage Density: 0,41Gb/in²

DVD 4.7GB

Track Pitch: 0,74um
Minimum Pit Length: 0,4um
Storage Density: 2,77Gb/in²

Blu-ray Disc 25GB

Track Pitch: 0,32um

Minimum Pit Length: 0,15um Storage Density: 14,73Gb/in²

Flash paměti a jejich technologie

- Princip pamětí typu flash, tj. nevolatilních pamětí, jsou odvozeny od EEPROM
 - samotná morfologie paměťových buněk a propojovací sítě mezi paměťovými buňkami je odlišná
 - podle způsobu zapojení paměťových buněk i principu jejich práce rozlišujeme flash paměti typu:
 - = NAND
 - = NOR

První flash paměti používaly strukturu NOR

- připomínala zapojení hradla typu NOR sestaveného z unipolárních tranzistorů
- = každá buňka se skládá z jediného tranzistoru s izolovanou elektrodou
 - ta plní paměťovou funkci
- nad ní je umístěna běžná brána
 - u bipolárních tranzistorů by se jednalo o bázi
- připojená k adresovému vodiči
- každou paměťovou buňku je díky tomu možné adresovat samostatně
 - samostatné adresování bitů se týká čtení dat a jejich zápisu
 - mazání, se provádí po větších blocích

- Klasická flash paměť dokáže v jedné paměťové buňce uložit právě jeden bit informace
 - může nabývat pouze dvou stavů logické nuly a logické jedničky
 - technologie se označuje SLC
- Některé flash paměti, však používají odlišnou technologii MLC
 - jedné paměťové buňce ukládají informace o dvou či třech bitech
 - čtecí zesilovač tedy nerozlišuje pouze dva stavy, ale stavy čtyři či dokonce osm

- Paměťové buňky flash pamětí uspořádány do mřížky jako u typu NOR
 - liší se způsob jejich vzájemného propojení
 - vždy několik paměťových buněk zapojeno za sebou v sérii
 - není možné přistupovat k jednotlivým bitovým buňkám
 - lepší využití plochy čipu
 - nejmenší adresovatelná jednotka se nazývá stránka (page)
 - několik stránek je sdruženo do bloku (block)
 - = čtení a zápis dat je po stránkách
 - mazání po blocích
 - velikost stránky je u typických čipů rovna 2112 bytům
 - = 2048 bytů použito pro zaznamenávání dat
 - zbytek použit pro uložení detekčních a korekčních kódů

NOR vers. NAND

Technologie	NAND	NOR
	Rychlý zápis	Náhodný přístup
Přednosti	Rychlé čtení	Možnost zápisu po bytech
Zápory	Pomalý náhodný přístup	Pomalý zápis
	Složitý zápis po bytech	Pomalé mazání
Aplikace	Náhrada pevných disků	Náhrada PROM, EPROM, EEPROM
		Jednoduché připojení k procesoru

USB disk, paměťová karta atd.

- Například paměťové karty určené do slotů PCMCIA používaly technologii NOR
 - po několika letech se přešlo na technologii NAND
 - všechny komplikace kvůli odlišnému způsobu adresování jsou řadičem a částečně i operačním systémem zamaskovány
 - uživateli se jeví že data zapisuje a čte po jednotlivých bytech
 - nevolatilní paměti typu flash jsou používány pro konstrukci hybridních pevných disků
 - disk je vytvořen kombinací klasického pevného disku a paměti typu flash

= SSD (Solid State Disc)

- = jde o paměť typu flash s přidaným řadičem a rozhraním
 - většinou SCSI, IDE či Serial ATA
 - uvnitř SSD najdeme pouze několik čipů s řadičem paměti, stykovým obvodem zajištujícím standardizované rozhraní s počítačem a vlastní flash pamětí typu NAND
 - předností SSD že je lze použít i ve stávajících počítačích
 - = průměrně je cca 2,4 × rychlejší než typický pevný disk

