EIBST-ORDER LOGIC

CHAPTER 8

Outline

- ♦ MPÀ EOF5
- \Diamond Syntax and semantics of FOL
- Sentences ⇒ Fun with sentences
- JO∃ ni bl¹ow suqmuW ♦

Pros and cons of propositional logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)

 E.g., cannot say "pits cause breezes in adjacent squares"

except by writing one sentence for each square

Digol 19bro-terif

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- ◆ Objects: people, houses, numbers, theories, Ronald McDonald, colors,
 ◆ Daseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried ...,
 brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of

• •

Logics in general

known interval va	facts + degree of truth	Jigol yszu A
degree of belief	facts	Probability theory
true/false/unknov	facts, objects, relations, times	Temporal logic
true/false/unknov	facts, objects, relations	First-order logic
true/false/unknov	facts	Propositional logic
Commitment	Lommitment	
Isoigolomətsiq <u>∃</u>	lesigolotnO	Language

Syntax of FOL: Basic elements

Atomic sentences

```
Atomic sentence = predicate(term_1,\dots,term_n)

or term_1 = term_2

Term = function(term_1,\dots,term_n)

or constant or variable

E.g., Brother(KingJohn, RichardTheLionheart)

> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
```

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S, \quad S_1 \land S_2, \quad S_1 \lor S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2 \\ \blacksquare. \textbf{g.} \quad Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) \\ > (1,2) \lor (1,2)$$

 $(2,1) \ge \lor (2,1) <$ $(2,1) < \vdash \land (2,1) <$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation Model contains ≥ 1 objects (domain elements) and relations among them

```
Interpretation specifies referents for constant symbols → objects predicate symbols → relations function symbols → functional relations
```

An atomic sentence $predicate(term_1, \dots, term_n)$ is true iff the objects referred to by $term_1, \dots, term_n$ are in the relation referred to by predicate

Models for FOL: Example

Truth example

Consider the interpretation in which $Richard \rightarrow Richard$ the Lionheart $John \rightarrow the$ evil King John $Srother \rightarrow the$ brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each constant symbol C in the vocabulary For each choice of referent for C from n objects \ldots

Computing entailment by enumerating FOL models is not easy!

Universal quantification

```
\forall \langle variables \rangle \ \langle sentence \rangle
\exists veryone \ at \ Berkeley \ is \ smart:
\forall x \ At(x, Berkeley) \Rightarrow Smart(x)
\forall x \ At(x, Berkeley) \Rightarrow Smart(x)
```

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
(At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn)) 
 \land (At(Richard, Berkeley) \Rightarrow Smart(Richard)) 
 \land (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley)) 
 \land (At(Berkeley) \Rightarrow Smart(Berkeley) 
 \land (At(Berkeley) \Rightarrow Smart(Berke
```

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \land as the main connective with \forall :

$$(x)$$
 $At(x)$, $Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Existential quantification

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

$$(x) trum S \Leftarrow (brotn t S, x) t A x =$$

is true if there is anyone who is not at Stanford!

Properties of quantifiers

```
"Everyone in the world is loved by at least one person"
                              \forall y \exists x \ Loves(x, y)
  "There is a person who loves everyone in the world"
                              \exists x \ \forall y \ Loves(x,y)
               x \vdash y \lor \text{se ames ant } \textbf{jon} \text{ si } y \lor x \vdash y
```

Quantifier duality: each can be expressed using the other

$$\forall x \ Likes(x, IceCream) \ \neg \exists x \ \neg Likes(x, Broccoli)$$

$$\exists x \ Likes(x, Broccoli)$$

Brothers are siblings

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

Brothers are siblings

(v, y) Brother $(x, y) \Rightarrow Sibling(x, y)$.

"Sibling" is symmetric

(x,y) paildis $\Leftrightarrow (y,x)$ paildis y,x

One's mother is one's female parent

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$

"Sibling" is symmetric

(x,y)gnildi $S \Leftrightarrow (y,x)$ gnildi $S y,x \forall y$

One's mother is one's female parent

 $\forall x, y \ Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

(x,y) gainst (x,y) gainst (x,y) gainst (x,y)

One's mother is one's female parent

 $\forall x, y \ Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $Parent(ps,y) \land Sind(p,y) \land Sind(p,y) \land Sind(p,y) \land Sind(ps,y) \land Sind$

Equality

 $term_1=term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g., $\bot= \bot$ and $\forall x \ \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable bilay si $\bot= \bot$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:

```
Tell(KB, Percept([Smell, Breeze, None], 5))
Ask(KB, \exists a \ Action(a, 5))
```

I.e., does KB entail any particular actions at t=5?

```
Answer: Yes, \{a/Shoot\} \rightarrow substitution (binding list)
```

Given a sentence S and a substitution σ ,

...g.ə ;S otni σ gnigging of these shorts of σ .

$$S = Smarter(x, y)$$

$$\sigma = \{x/Hillary, y/Bill\}$$

$$S\sigma = Smarter(Hillary, Bill)$$

Knowledge base for the wumpus world

```
"Perception" \forall b, g, t \ Percept([Smell,b,g],t) \Rightarrow Smelt(t) \\ \forall s,b,t \ Percept([s,b,Glitter],t) \Rightarrow AtGold(t) \\ Reflex: \forall t \ AtGold(t) \Rightarrow Action(Grab,t) \\ Reflex: \forall t \ AtGold(t) \Rightarrow Action(Grab,t) \\ \forall t \ AtGold(t) \land \neg Holding(Gold,t) \Rightarrow Action(Grab,t) \\ \forall t \ AtGold(t) \land \neg Holding(Gold,t) \Rightarrow Action(Grab,t) \\ Holding(Gold,t) \ cannot \ be \ observed
```

⇒ keeping track of change is essential

Deducing hidden properties

Properties of locations:

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect $\forall y \;\; Breezy(y) \Rightarrow \exists x \;\; Pit(x) \land Adjacent(x,y)$

 $\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x,y)$

Causal rule—infer effect from cause $\forall x,y \;\; Pit(x) \land Adjacent(x,y) \Rightarrow Breezy(y)$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the $Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$

Keeping track of change

Facts hold in situations, rather than eternally E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold,Now) denotes a situation

Situations are connected by the Result function s in s in the situation that results from doing s in s

Describing actions I

```
"Effect" axiom—describe changes due to action \forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s)) "Frame" axiom—describe \mathbf{non-changes} due to action \forall s \ HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s)) \forall s \ HaveArrow(s) \Rightarrow HaveArrow(hesult(Grab, s))
```

Frame problem: find an elegant way to handle non-change (a) representation—avoid frame axioms

(b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, ...

Describing actions II

P true already and no action made P false

Successor-state axioms solve the representational frame problem Each axiom is "about" a **predicate** (not an action per se):

P true afterwards \Leftrightarrow [an action made P true

Making plans

```
Initial condition in KB:
```

$$At(Gold,[1,1],S_0)$$

$$At(Gold,[1,2],S_0)$$

Query: $Ask(KB,\exists s\ Holding(Gold,s))$ i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab,Result(Forward,S_0))\}$ i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \ldots, a_n]$

Then the query $Ask(KB,\exists p\ Holding(Gold,PlanResult(p,S_0)))$ has the solution $\{p/[Forward,Grab]\}$

Definition of PlanResult in terms of Result:

 $\forall a, p, s \ PlanResult([a|b], s) = PlanResult(p, Result(a, s))$

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

- Conventions for describing actions and change in FOL

- Situation calculus:
- AN auluste planning as inference on a situation calculus KB