Optimization Method homework 9

Qingfu Wen

2015213495

November 15, 2015

CONTENTS

i. Problem 1	2
ii. Problem 2	2
iii. Problem 3	3
iv. Problem 4	3

I. PROBLEM 1

Suppose *A* is a m * n matrix, *B* is a n * l matrix, $c \in E^n$, Prove that only one of the following two system has solutions:

1.
$$Ax \le 0, Bx = 0, c^T x > 0, x \in E^n$$

2.
$$A^T y + B^T z = c, y \ge 0, y, z \in E^n$$

Proof: since Bx = 0 is the same as

$$\begin{cases} Bx \le 0 \\ Bx \ge 0 \end{cases}$$

so the first system can turn into

$$\begin{bmatrix} A \\ B \\ -B \end{bmatrix} x \le 0, c^T x > 0$$

according to Farkas Theorem,

$$\begin{bmatrix} A^T & B^T & -B^T \end{bmatrix} \begin{bmatrix} y \\ u \\ v \end{bmatrix} = c, \begin{bmatrix} y \\ u \\ v \end{bmatrix} > 0$$

has no solutions. we set z = u - v, we know that $A^T y + B^T z = c$, $y \ge 0$ has no solution, or vice versa.

II. PROBLEM 2

Suppose *A* is a m * n matrix, $c \in E^n$, Prove that only one of the following two system has solutions:

1.
$$Ax \le 0, x \ge 0, c^T x > 0, x \in E^n$$

2.
$$A^T y \ge 0, y \ge 0, y \in E^n$$

Proof:

the first system can turn into

$$\begin{bmatrix} A \\ -I \end{bmatrix} x \le 0, c^T x > 0$$

according to Farkas Theorem,

$$\begin{bmatrix} A^T & -I \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = c, \begin{bmatrix} y \\ u \end{bmatrix} > 0$$

has no solutions. It means $A^T y - u = c, y \ge 0, u \ge 0$ has no solution. Also we have

$$A^T y \ge 0, y \ge 0$$

has no solutions, or vice versa.

III. PROBLEM 3

 $f(x_1, x_2) = 10 - 2(x_2 - x_1^2)^2$, $S = \{(x_1, x_2) | -11 \le x_1 \le 1, -1 \le x_2 \le 1\}$, is $f(x_1, x_2)$ a convex function on S?

Solution:

for each (x_1, x_2) ,

$$\nabla^2 f(x) = \begin{bmatrix} -24x_1^2 + 8x_2 & 8x_1 \\ 8x_1 & -4 \end{bmatrix}$$

obviously, $\nabla^2 f(x)$ is not positive semidefinite for all x, $f(x_1, x_2)$ is not a convex function.

IV. PROBLEM 4

Suppose f is a convex function on E^n , $x^{(1)}$, $x^{(2)}$, ..., $x^{(n)}$ belongs to E^n , prove that

$$f(\lambda_1 x^{(1)} + \dots + \lambda_k x^{(k)}) \le \lambda_1 f(x^{(1)}) + \dots + \lambda_k f(x^{(k)})$$

$$\lambda_1 + \lambda_2 + \cdots + \lambda_k = 1, \lambda_i > 0, i = 1, 2, \cdots, k.$$

Proof:

Using mathematical induction, when k = 2, since f(x) is a convex function on E^n .

$$f(\lambda_1 x^{(1)} + \lambda_2 x^{(2)}) \le \lambda_1 f(x^{(1)}) + \lambda_2 f(x^{(2)})$$

Suppose when k = n the equation holds, k = n + 1,

$$f(\lambda_1 x^{(1)} + \dots + \lambda_{n+1} x^{(n+1)}) = f(\sum_{i=1}^{n} \lambda_i (\frac{\lambda_1}{\sum_{i=1}^{n} \lambda_i} x^{(1)} + \dots + \frac{\lambda_n}{\sum_{i=1}^{n} \lambda_i} x^{(n)}) + \lambda_{n+1} x^{(n+1)})$$

Set $\hat{x} = \frac{\lambda_1}{\sum_{i=1}^n \lambda_i} x^{(1)} + \dots + \frac{\lambda_n}{\sum_{i=1}^n \lambda_i} x^{(n)}$, since f(x) is convex and $\sum_{i=1}^n \lambda_i + \lambda_{n+1} = 1$, we have

$$f(\lambda_1 x^{(1)} + \dots + \lambda_{n+1} x^{(n+1)}) \le (\sum_{i=1}^{n} \lambda_i) f(\hat{x}) + \lambda_{n+1} f(x^{(n+1)})$$

Moreover, from hypothesis we have

$$f(\hat{x}) \le \frac{\lambda_1}{\sum_{i=1}^{n} \lambda_i} f(x^{(1)}) + \dots + \frac{\lambda_n}{\sum_{i=1}^{n} \lambda_i} f(x^{(n)})$$

then we get

$$f(\lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_{n+1} x^{(n+1)}) \le \lambda_1 f(x^{(1)}) + \lambda_2 f(x^{(2)}) + \dots + \lambda_{n+1} f(x^{(n+1)})$$

thus, the original equation holds.