Mat 1748 Hiver 2017

Méthodes de preuve

1. Preuve de $P \Rightarrow Q$

Nous allons voir deux techniques : la preuve directe et la preuve de la contraposée.

PREUVE DIRECTE

On suppose que P est vraie et on en déduit que Q est vraie.

Voici un exemple.

1.1. **Proposition.** Soit $x \in \mathbb{R}$. Si -1 < x < 0 alors $x^3 > x$.

Preuve. Supposons que -1 < x < 0.

Donc x > -1 et x < 0. En multipliant l'inégalité x > -1 par le nombre négatif x, on obtient $x^2 < -x$.

En multipliant l'inégalité x > -1 par -1, on obtient

$$-x < 1$$
.

Donc $x^2 < -x < 1$, donc $x^2 < 1$. En multipliant cette dernière inégalité par x, on obtient enfin $x^3 > x$.

Preuve de la contraposée (aussi appelée "preuve indirecte")

Pour prouver que $P \Rightarrow Q$ est vraie, il suffit de prouver que $\neg Q \Rightarrow \neg P$ est vraie. En effet ces deux formules sont équivalentes, donc si une est vraie alors l'autre l'est aussi. La preuve indirecte de $P \Rightarrow Q$ consiste à faire une preuve directe de l'implication $\neg Q \Rightarrow \neg P$.

Assertion: $P \Rightarrow Q$ Preuve. Supposons que $\neg Q$ est vraie.

:

Donc $\neg P$ est vraie.

Ceci montre que $\neg Q \Rightarrow \neg P$ est vraie, donc $P \Rightarrow Q$ est vraie.

1.2. **Proposition.** Soit $n \in \mathbb{Z}$. Si n^2 est pair, alors n est pair.

Preuve. La contraposée est:

(1) Si
$$n$$
 est impair, alors n^2 est impair.

On fait une preuve directe de (1). Supposons que n est impair. Alors il existe $a \in \mathbb{Z}$ tel que n = 2a + 1. Alors $n^2 = (2a + 1)^2 = 4a^2 + 4a + 1 = 2(2a^2 + 2a) + 1$, donc $n^2 = 2N + 1$ où N est un entier (en fait $N=2a^2+2a$), donc n^2 est impair. Ceci démontre (1), donc la proposition est démontrée.

Exercice. Soient $a, b \in \mathbb{Z}$. Démontrez l'implication

Si ab est pair, alors au moins un des entiers a, b est pair.

2. Preuve de
$$P \Leftrightarrow Q$$

Pour prouver $P \Leftrightarrow Q$, on doit prouver les deux implications $P \Rightarrow Q$ et $Q \Rightarrow P$.

3. Preuve par séparation des cas

Supposons qu'on veut prouver une assertion Q, sachant qu'une assertion $P_1 \vee P_2$ est vraie. La méthode par séparation des cas consiste à faire deux preuves :

- \bullet on prouve que si P_1 est vraie, alors Q est vraie
- on prouve que si P_2 est vraie, alors Q est vraie.

Assertion: Q

Preuve. On sait que $P_1 \vee P_2$ est vraie.

- Supposons que P_1 est vraie, alors ..., donc Q est vraie.
- Supposons que P_2 est vraie, alors ..., donc Q est vraie.

Donc Q est démontrée.

Voici deux exemples de preuves par séparation des cas.

3.1. **Proposition.** Soit $x \in \mathbb{R}$. Alors $0 \le \frac{x+|x|}{2} \le |x|$.

Preuve. On sait que $x \ge 0$ ou x < 0.

- Si $x \ge 0$ alors |x| = x, donc $\frac{x+|x|}{2} = \frac{x+x}{2} = x = |x|$, donc $0 \le \frac{x+|x|}{2} \le |x|$. Si x < 0 alors |x| = -x, donc $\frac{x+|x|}{2} = \frac{x-x}{2} = 0$, donc $0 \le \frac{x+|x|}{2} \le |x|$.

Donc
$$0 \le \frac{x+|x|}{2} \le |x|$$
.

3.2. **Proposition.** Soit n un entier qui n'est pas divisible par 3. Alors $n^2 - 1$ est divisible par 3.

Preuve. Puisque n n'est pas un multiple de 3, on a :

n est 1 de plus qu'un multiple de 3 **ou** n est 2 de plus qu'un multiple de 3.

- Supposons que n est 1 de plus qu'un multiple de 3. Alors il existe $a \in \mathbb{Z}$ tel que n = 3a + 1. Alors $n^2 1 = (3a + 1)^2 1 = 9a^2 + 6a + 1 1 = 3(3a^2 + 2a)$, donc $n^2 1$ est divisible par 3.
- Supposons que n est 2 de plus qu'un multiple de 3. Alors il existe $a \in \mathbb{Z}$ tel que n = 3a + 2. Alors $n^2 1 = (3a + 2)^2 1 = 9a^2 + 12a + 4 1 = 3(3a^2 + 4a + 1)$, donc $n^2 1$ est divisible par 3.

Donc $n^2 - 1$ est divisible par 3.

4. Preuve Par Contradiction

Si on veut démontrer l'assertion P en utilisant la technique de preuve "par contradiction", on commence par supposer que P est fausse et on déduit de cette hypothèse une conséquence impossible. Ceci montre qu'il est impossible que P soit fausse, donc P est prouvée.

Assertion: P	
Preuve. Supposons $\neg P$.	
Contradiction.	

Voici un exemple classique de preuve par contradiction. Cette preuve a été donnée par Aristote il y a plus de 2300 ans.

4.1. **Proposition.** $\sqrt{2}$ est irrationnel.

Dans la démonstration de 4.1 nous utiliserons le fait suivant, qui a été démontré en 1.2 :

(‡) Si k est un entier tel que k^2 est pair, alors k est pair.

Preuve de 4.1. Supposons que $\sqrt{2}$ est rationnel.

Alors il existe des entiers m et n tels que $\sqrt{2} = m/n$ (où $n \neq 0$). On peut choisir m et n de telle sorte que la fraction m/n soit réduite, ce qui signifie que le seul diviseur commun de m, n est 1. En particulier, m et n ne sont pas tous les deux pairs.

Mais $\sqrt{2} = m/n$ implique $2 = m^2/n^2$, donc $m^2 = 2n^2$, donc m^2 est pair. En vertu de (‡), on déduit que m est pair. Puisque m et n ne sont pas tous les deux pairs, on obtient:

n est impair.

Puisque m est pair, on a m=2a où a est un entier. Alors $4a^2=m^2=2n^2$, donc $n^2=2a^2$, donc n^2 est pair et (\ddagger) implique:

n est pair.

On a donc démontré que l'entier n est à la fois pair et impair ; autrement dit, l'hypothèse que $\sqrt{2}$ est rationnel a une conséquence impossible. Ceci termine la preuve par contradiction. \square

Preuve d'une implication $P \Rightarrow Q$ par contradiction

Ici on suppose que l'implication $P\Rightarrow Q$ est fausse et on en déduit une impossibilité. Rappelezvous que $P\Rightarrow Q$ est fausse lorsque P est vraie et Q est fausse.

Assertion: $P \Rightarrow Q$	
Preuve. Supposons que P est vraie et que Q est fausse.	
:	
Contradiction.	

Redémontrons 1.2 en utilisant cette technique.

Proposition. Soit $n \in \mathbb{Z}$. Si n^2 est pair, alors n est pair.

Preuve. Procédons par contradiction : supposons que n^2 est pair et que n est impair. Alors il existe $a,b\in\mathbb{Z}$ tels que

$$n^2 = 2a$$
 et $n = 2b + 1$.

Alors $2a = n^2 = (2b+1)^2 = 4b^2 + 4b + 1$, donc

$$2(a - 2b^2 - 2b) = 1.$$

Ceci est absurde, car 2 fois un entier ne peut pas être égal à 1. Cette contradiction complète la démonstration. \Box

Exercices

- (1) Soit $a \in \mathbb{R}$. Montrez que si 0 < a < 1 alors $a^2 < a$. (Suggestion: preuve directe).
- (2) Soit $a \in \mathbb{R}$. Montrez que si a^5 est irrationnel, alors a est irrationnel. (Suggestion: preuve indirecte).
- (3) Soient $a, b \in \mathbb{Z}$. Montrez que si ab est pair, alors au moins un des entiers a, b est pair. (Suggestion: preuve indirecte).
- (4) Si $x, y \in \mathbb{R}$, on définit

$$\min(x,y) = \begin{cases} x & \text{si } x \le y, \\ y & \text{si } x > y; \end{cases} \quad \max(x,y) = \begin{cases} y & \text{si } x \le y, \\ x & \text{si } x > y. \end{cases}$$

Faites une preuve par séparation des cas pour montrer que $\min(x, y) + \max(x, y) = x + y$.

- (5) Soient a < b des nombres rationnels. Montrez qu'il existe une infinité de nombres rationnels x satisfaisant a < x < b. (Suggestion: preuve par contradiction.)
- (6) Soit $n \in \mathbb{Z}$. Montrez que $n^5 + 7$ est pair si et seulement si n est impair. Suggestion : faites une preuve directe de "n impair $\Rightarrow n^5 + 7$ pair", et une preuve indirecte de " $n^5 + 7$ pair" $\Rightarrow n$ impair".
- (7) Sur l'île des chevaliers et des coquins, les habitants A et B ont dit:
 - A: Au moins un de nous deux est un coquin, et cette île est l'île de Maya.
 - **B:** Ce qu'a dit A est vrai.
 - (a) Prouvez que A est coquin, au moyen d'une preuve par contradiction.
 - (b) Pouvez-vous dire si cette île est l'île de Maya? Pouvez-vous déterminer le type de B?
- (8) Sur l'île des chevaliers et des coquins, les habitants A et B ont dit:
 - A: Au moins un de nous deux est un coquin, ou cette île est l'île de Maya.
 - **B:** Ce qu'a dit A est vrai.
 - (a) Prouvez que A est chevalier, au moyen d'une preuve par contradiction.
 - (b) Pouvez-vous dire si cette île est l'île de Maya? Pouvez-vous déterminer le type de B?
- (9) Sur l'île des chevaliers et des coquins, les habitants A et B ont dit:
 - A: Si je suis chevalier, alors B est coquin ou cette île est l'île de Maya.
 - **B:** Si je suis coquin alors A est chevalier ou cette île est l'île de Maya.
 - (a) Prouvez que A est chevalier, au moyen d'une preuve par contradiction.
 - (b) Déterminez le type de B. Pouvez-vous dire si cette île est l'île de Maya?