

Probabilidade e inferência estatística com R - Módulo 3

Prof. Suellen Teixeira Zavadzki de Pauli

Objetivos

- Compreender os conceitos de correlação e regressão;
- Avaliar a correlação entre variáveis por meio de gráficos e teste
- Estimar e visualizar um modelo de regressão;
- Interpretar coeficientes de regressão e estatísticas no contexto de problemas reais;
- Utilizar modelos de regressão para realizar previsões;
- Compreender os conceitos da Análise de Variância.

Correlação e Regressão Linear Simples

 Em determinadas situações, estamos interessados em descrever a relação entre duas variáveis ou até predizer o valor de uma a partir da outra.

• Exemplos:

- \circ Qual o peso de determinado indivíduo se sabemos qua a altura dele é X?
- \circ Qual o consumo de combustível, em litros, dado que o carro percorreu uma distância de X km?
- Qual a relação entre a renda semanal de uma família e as despesas de consumo?

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	\$	<u>(5)</u>
FAMÍLIA 2	\$ \$ \$ \$	5 5

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	S	<u>(S)</u>
FAMÍLIA 2	S S	S S
FAMÍLIA 3	\$ \$ \$	S S S

Renda x Despesas

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	S	<u>(S)</u>
FAMÍLIA 2	\$ \$ \$ \$	S S
FAMÍLIA 3	\$ \$ \$ \$ \$ \$ \$	S S S
FAMÍLIA 4	S S S	S S S

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	S	(5)
FAMÍLIA 2	S S S	S S
FAMÍLIA 3	S S S S	§ § §
FAMÍLIA 4	S S S	S S S
FAMÍLIA 5	S S	(3)

Renda x Despesas

	RENDA	DESPESAS				
FAMÍLIA 1	\$ 5	<u>(S)</u>				
FAMÍLIA 2	\$ \$ \$ \$	S S				
FAMÍLIA 3	\$ \$ \$ \$ \$ \$	\$ \$ \$				
FAMÍLIA 4	S S S	S S S				
FAMÍLIA 5	S S	<u>S</u>				
FAMÍLIA 6	S S S S	S S S				

Renda x Despesas

Renda x despesas

Renda x despesas

"All models are wrong but some are useful"

George Box

- Estudar a relação linear entre duas variáveis quantitativas:
 - Explicitando a forma dessa relação: regressão
 - É indispensável identificar qual variável é a variável dependente.
 - Quantificando a força ou o grau dessa relação: correlação
 - ullet Não é necessário identificar qual variável é a variável dependente, pois queremos estudar o grau de relacionamento entre as variáveis X e Y , ou seja, uma medida de covariabilidade entre elas.
 - A correlação é considerada como uma medida de influência mútua entre variáveis, por isso não é necessário especificar quem influencia e quem é influenciado.

Diagrama de dispersão

• Os dados para a análise de regressão e correlação simples são da forma:

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$$

- Com base no conjunto de dados é possível construir um diagrama de dispersão, o qual deve exibir uma tendência linear para que se possa usar a regressão linear;
- ullet Com isso podemos decidir impiricamente se um relacionamento linear entre X e Y pode ser assumido;
- É possível verificar se o grau de relacionamento linear entre as variáveis é forte ou fraco.

Diagrama de dispersão

Coeficiente de correlação linear

O grau de relação entre duas variáveis pode ser medido através do coeficiente de correlação linear (r), dado por

$$r = rac{\sum_{i=1}^{n} x_i y_i - n ar{x} ar{y}}{\sqrt{(\sum_{i=1}^{n} x_i^2 - n ar{x}^2)(\sum_{i=1}^{n} y_i^2 - n ar{y}^2)}}$$

onde -1 < r < 1;

- r=1: relação linear perfeita positiva entre X e Y;
- ullet r=0: : inexistência de relação linear entre X e Y;
- ullet r=-1: relação linear perfeita negativa entre X e Y;
- r>0: relação linear positiva entre X e Y;
- r < 0: relação linear negativa entre X e Y;

Coeficiente de determinação

- Existem muitos tipos de associações possíveis, e o coeficiente de correlação avalia o quanto uma nuvem de pontos no gráfico de dispersão se aproxima de uma reta;
- ullet O coeficiente de determinação (r^2) é o quadrado do coeficiente de correlação, por consequência;

$$0 \le r^2 \le 1$$

- ullet O r^2 nos dá a porcentagem de variação em Y que pode ser explicada pela variável independente X.
- Quanto mais próximo de 1, maior é a explicação da variável Y pela variável X.

- A tabela a seguir relaciona as distâncias percorridas por carros (km) e seus consumos de combustível (litros), em uma amostra de 10 carros novos.
 - Calcule o coeficiente de correlação linear e o coeficiente de determinação.
 - Faça um diagrama de disperção.

Distância	20.00	60.00	15.00	45.00	35.00	80.00	70.00	73.00	28.00	85.00
Consumo	1.33	5.45	1.66	3.46	2.92	6.15	4.11	5.00	2.95	6.54

Consumo x Distância

- A tabela a seguir relaciona os pesos de carros (t) e o rendimento de combustível (em km/l), para uma amostra de 10 carros.
 - Calcule o coeficiente de correlação linear e o coeficiente de determinação.
 - Faça um diagrama de disperção.

Peso	1.32	1.59	1.27	1.99	1.13	1.54	1.36	1.5	1.27	1.09
Rendimento	13.18	11.45	12.33	10.63	13.18	12.33	11.90	11.9	11.90	14.00

Peso x Rendimento

Teste para o coeficiente de correlação

- Usualmente definimos o coeficiente de correlação para uma amostra, pois desconhecemos esse valor para a população.
- Uma população que tenha duas variáveis não correlacionadas pode produzir uma amostra com coeficiente de correlação diferente de zero.
- Para testar se uma amostra foi colhida de uma população para o qual o coeficiente de correlação entre duas variáveis é nulo, precisamos obter a distribuição amostral da estatística r.

Teste para o coeficiente de correlação

- Seja ho o verdadeiro coeficiente de correlação populacional desconhecido. Seja ho o verdadeiro coeficiente de correlação populacional desconhecido.
- Para testar se o coeficiente de correlção populacional é igual a zero, realizamos um teste de hipótese com

$$H_0:
ho = 0$$

$$H_1:
ho
eq 0$$

A estatística de teste utilizada é

$$t_{calc} = r \sqrt{rac{n-2}{1-r^2}}$$

que tem distribuição t de Student com n-2 graus de liberdade.

Teste para o coeficiente de correlação

Procedimentos gerais

- Hipóteses $H_0:
 ho=0, H_1:
 ho
 eq 0$
- ullet Nível de significância lpha
- ullet Verificar a região de rejeição com base no nível de significância t_{crit} , com n-2 graus de liberdade
- Calculo da estatística do teste sob a hipótese nula

$$t_{calc} = r \sqrt{rac{n-2}{1-r^2}}$$

• Rejeitar a hipótese nula se a estatística de teste calculada estiver dentro da região de rejeição ou $|t_{calc}|$ > $|t_{crit}|$

Exercício 1 - continuação

Com base nas informações do exercício 1, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.95$$

Exercício 1 - continuação

Com base nas informações do exercício 1, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.95$$

$$t_{calc} > t_{crit}$$

Rejeitamos a hipótese nula de que não há correlação entre as variáveis, com 95% de confiança.

Exercício 2 - continuação

Com base nas informações do exercício 2, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.85$$

Exercício 2 - continuação

Com base nas informações do exercício 2, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

 $r=0.85~t_{calc}=-4.563861~|t_{calc}|>|t_{crit}|~4.56>2.306$, então, rejeitamos a hipótese nula de que não há correlação entre as variáveis, com 95% de confiança.

Exercício 1 - continuação

 Construa um gráfico no qual seja possível visualizar os valores das duas variáveis no eixo y.

Correlação x Causalidade?

Taxa de divórcio no Maine se correlaciona com o consumo per capita de margarina

Fonte: https://www.tylervigen.com/spurious-correlations

Correlação x Causalidade?

As importações de petróleo bruto dos EUA da Noruega se correlacionam com motoristas mortos em colisão com trem ferroviário

Fonte: https://www.tylervigen.com/spurious-correlations

Correlação x Causalidade?

A idade da miss America correlaciona-se com assassinatos por vapor, vapores quentes e objetos quentes

Fonte: https://www.tylervigen.com/spurious-correlations