1 Lecture Review

1.1 Orthogonality of Subspaces

- 1. If V, W are vector subspaces of \mathbb{R}^n , we say that V and W are orthogonal if for every $v \in V$ and $w \in W$ we have $v^T w = 0$.
- 2. Given a vector subspace V of \mathbb{R}^n , we denote by V^{\perp} the set of all vectors $w \in \mathbb{R}^n$ which are orthogonal to all vectors in V; that is $v^T w = 0$ for every $v \in V$. We call V^{\perp} the orthogonal complement of V.
- 3. $(V^{\perp})^{\perp} = V$.
- 4. Given an $m \times n$ matrix A,

$$Col(A)^{\perp} = LeftNull(A), Row(A)^{\perp} = Null(A).$$

1.2 Linear Transformations

1. Let V and W be vector spaces. A function T from V to W is linear if for every $v_1, v_2 \in V$ and $c_1, c_2 \in \mathbb{R}$ we have

$$T(c_1v_1 + c_2v_2) = c_1T(v_1) + c_2T(v_2).$$

2 Problems

1. Let V be a vector subspace of \mathbb{R}^n . Check that V^{\perp} is a vector space.

Solution. To check V^{\perp} is a vector space, we check that if w_1, w_2 are in V^{\perp} then $c_1w_1 + c_2w_2$ is in V^{\perp} for any constants c_1, c_2 .

Take $w_1, w_2 \in V^{\perp}$. This means that

$$w_1^T v = 0, \quad w_2^T v = 0$$

for any $v \in V$. Then for any $v \in V$, we have

$$(c_1w_1 + c_2w_2)^T v = c_1w_1^T v + c_2w_2^T v = 0$$

so that $c_1w_1 + c_2w_2 \in V^{\perp}$. This shows that V^{\perp} is a vector space.

2. Find bases and dimensions for the four fundamental subspaces associated with the following matrices

(a)
$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 5 & 8 \end{pmatrix}$, (c) $\begin{pmatrix} 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$, (d) $\begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$.

Solution. (a) Set $A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{pmatrix}$. Since the columns are multiples of one another and the rows are multiples of one another, we have

$$\operatorname{Col}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\2 \end{pmatrix} \right\}, \quad \operatorname{Row}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\4 \end{pmatrix} \right\}.$$

Since LeftNull(A) = Col(A)^T, we have that LeftNull(A) consist of vectors (x, y) in \mathbb{R}^2 such that

$$0 = \begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = x + 2y$$

which is spanned by (-2,1), thus

LeftNull(A) = span
$$\left\{ \begin{pmatrix} -2\\1 \end{pmatrix} \right\}$$
.

Since $\text{Null}(A) = \text{Row}(A)^T$, we have that Null(A) consists of vectors (x, y, z) in \mathbb{R}^3 such that

$$0 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}^T \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = x + 2y + 4z.$$

Setting y = 0, we get a solution (-4,0,1). Setting z = 0, we get a solution (-2,1,0). Since (-4,0,1) and (-2,1,0) are linearly independent (they are not multiples of each other) and since a plane has dimension two, we have that they form a basis for the plane x + 2y + 4z = 0. Thus

$$Null(A) = span\left\{ \begin{pmatrix} -4\\0\\1 \end{pmatrix}, \begin{pmatrix} -2\\1\\0 \end{pmatrix} \right\}.$$

Altogether, we have

	Col(A)	Row(A)	LeftNull(A)	Null(A)
basis	$\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} 1\\2\\4 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} -2\\1 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} -4\\0\\1 \end{pmatrix}, \begin{pmatrix} -2\\1\\0 \end{pmatrix} \right\}$
dimension	1	1	1	2

(b) Set $A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 5 & 8 \end{pmatrix}$. Note that the third column is a multiple of the first, but the first and second columns are linearly independent. Similarly, the first and second rows are linearly independent. Thus

$$\operatorname{Col}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \end{pmatrix} \right\}, \quad \operatorname{Row}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} \right\}.$$

Since $\operatorname{Col}(A)$ is spanned by two linearly independent vectors in \mathbb{R}^2 , we must have $\operatorname{Col}(A) = \mathbb{R}^2$. Then

LeftNull(A) = Col(A)^T = {
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 }.

Since $\text{Null}(A) = \text{Row}(A)^T$, we have that Null(A) consists of vectors (x, y, z) in \mathbb{R}^3 such that

$$0 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}^T \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = x + 2y + 4z, \quad \text{and} \quad 0 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}^T \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} = 2x + 5y + 8z.$$

We can find such a vector by taking the cross product of (1,2,4) and (2,5,8), or alternatively solve the system

$$x + 2y + 4z = 0$$
$$2x + 5y + 8z = 0$$

Multiplying the first equation by 2 and subtracting it from the second gives y = 0. Plugging this into the first equation gives

$$x + 4z = 0.$$

Set z = t, then x = -4t, so a general solution to the system is given by t(-4,0,1). Thus

$$Null(A) = span\left\{ \begin{pmatrix} -4\\0\\1 \end{pmatrix} \right\}.$$

Altogether, we have

	Col(A)	Row(A)	LeftNull(A)	Null(A)
basis	$\left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\5 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} 1\\2\\4 \end{pmatrix}, \begin{pmatrix} 2\\5\\8 \end{pmatrix} \right\}$	{ }	$\left\{ \begin{pmatrix} -4\\0\\1 \end{pmatrix} \right\}$
dimension	2	2	0	1

(c) Set $A = \begin{pmatrix} 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$. Note the first column is the zero column and the second and fourth columns are the same. Also, the second row is the zero row, thus

$$\operatorname{Col}(A) = \operatorname{span}\left\{ \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \right\}, \quad \operatorname{Row}(A) = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ 3 \\ 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Since $\operatorname{Col}(A)$ is a plane in \mathbb{R}^3 , we have $\operatorname{LeftNull}(A) = \operatorname{Col}(A)^{\perp}$ is spanned by the normal vector to this plane. This can be obtained by taking the cross product of (3,0,1) and (3,0,0). Alternatively, find $(x,y,z) \in \mathbb{R}^3$ solving

$$0 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}^T \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} = 3x + z, \quad \text{and} \quad 0 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}^T \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} = 3x.$$

The second equation gives x = 0. Substituting this into the first equation gives z = 0. Thus LeftNull(A) is the line (0, t, 0), that is

$$LeftNull(A) = span \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Since $\text{Null}(A) = \text{Row}(A)^T$, we have that Null(A) consists of vectors (x, y, z, w) in \mathbb{R}^4 such that

$$0 = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}^T \begin{pmatrix} 0 \\ 3 \\ 3 \\ 3 \end{pmatrix} = 3y + 3z + 3w, \quad \text{and} \quad 0 = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}^T \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = y + w.$$

Multiplying the second equation by 3 and subtracting it from the first yields z=0. The second equation also yields y=-w. We have (1,0,0,0) and (0,1,0,-1) satisfy these constraints. Observe that Null(A) has dimension 2 since the dimension of null space is dim \mathbb{R}^4 – dim Row(A) = 4 – 2 = 2, thus these two vectors form a basis. So

$$\operatorname{Null}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \right\}.$$

Altogether, we have

	$\operatorname{Col}(A)$	Row(A)	LeftNull(A)	Null(A)	
basis	$\left\{ \begin{pmatrix} 3\\0\\1 \end{pmatrix}, \begin{pmatrix} 3\\0\\0 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} 0\\3\\3\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$	$\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \right\}$	
dimension	2	2	1	2	

(d) Set
$$A = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$
. We have

$$\operatorname{Col}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\4\\5 \end{pmatrix} \right\}, \quad \operatorname{Row}(A) = \operatorname{span}\left\{ 1 \right\}.$$

Note that $Row(A) = \mathbb{R}^1 = \mathbb{R}$.

Since $\operatorname{LeftNull}(A) = \operatorname{Col}(A)^{\perp}$, we have that (x, y, z) is in $\operatorname{LeftNull}(A)$ exactly when

$$x + 4y + 5z = 0.$$

Since this is a plane, it suffices to find 2 linearly independent vectors satisfying the equation above to obtain a basis. Taking y = 0, we get x + 5z = 0 so that (-5, 0, 1) is a solution. Taking z = 0, we get x + 4y = 0 so that (-4, 1, 0). Thus

LeftNull(A) = span
$$\left\{ \begin{pmatrix} -5\\0\\1 \end{pmatrix}, \begin{pmatrix} -4\\1\\0 \end{pmatrix} \right\}$$
.

Since $Row(A) = span\{(1)\} = \mathbb{R}^1$, we have

$$Null(A) = Row(A)^{\perp} = \{0\}.$$

Altogether, we have

	$\operatorname{Col}(A)$	Row(A)	LeftNull(A)	Null(A)
basis	$\left\{ \begin{pmatrix} 1\\4\\5 \end{pmatrix} \right\}$	{1}	$\left\{ \begin{pmatrix} -5\\0\\1 \end{pmatrix}, \begin{pmatrix} -4\\1\\0 \end{pmatrix} \right\}$	{ }
dimension	1	1	2	0

3. Let A be an $m \times n$ matrix with full form singular value decomposition $U\Sigma V^T$. If A has rank r, find a basis for the following subspaces in terms of columns of U or V: (a) $\operatorname{Col}(A)$, (b) $\operatorname{LeftNull}(A)$, (c) $\operatorname{Row}(A)$, (d) $\operatorname{Null}(A)$.

Solution. Recall that we may write $U = \begin{pmatrix} U_1 & U_2 \end{pmatrix}$ and $V = \begin{pmatrix} V_1 & V_2 \end{pmatrix}$ in block matrix notation so that U_1 is $m \times r$ and V_1 is $n \times r$ and these are the left and right matrices which appear in the compact form SVD of A. Furthermore, we have

$$Col(A) = Col(U_1)$$
, $LeftNull(A) = Col(U_2)$, $Row(A) = Col(V_1)$, $Null(A) = Col(V_2)$.

Note that the columns of U_1 are linearly independent and likewise for U_2, V_1, V_2 . So we have:

- (a) the first r columns of U form a basis for Col(A),
- (b) the last m-r columns of U form a basis for LeftNull(A),
- (c) the first r columns of V form a basis for Row(A),
- (d) the last n-r columns of V form a basis for Null(A).

4. Suppose $\mathbf{v}=(a,b,c)\in\mathbb{R}^3$ is a nonzero vector. Viewing \mathbf{v}^T as a 1×3 matrix, find a basis for: (a) $\mathrm{Col}(\mathbf{v}^T)$, (b) $\mathrm{LeftNull}(\mathbf{v}^T)$, (c) $\mathrm{Row}(\mathbf{v}^T)$. (d) Using the fact that $\mathrm{Row}(\mathbf{v}^T)^{\perp}=\mathrm{Null}(\mathbf{v}^T)$, explain how this shows that the orthogonal complement of a plane is spanned by its normal vector.

Solution. (a) Since $Col(\mathbf{v}^T) = \mathbb{R}^1$ a basis is given by $\{1\}$.

- (b) The orthogonal complement of \mathbb{R}^1 is $\{0\}$, thus the empty basis $\{\}$ is the basis for LeftNull(A).
- (c) A basis for Row(A) is given by $\{v\}$.
- (d) The null space is given by all vectors orthogonal to \boldsymbol{v} . This is the plane

$$ax + by + cz = 0.$$

Since $(V^{\perp})^{\perp} = V$, we have that the orthogonal complement of the plane ax + by + cz = 0 is given by Row(A) which is the line spanned by \mathbf{v} , the normal vector to this plane.

5. Let A be an $n \times n$ orthogonal matrix with column vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$. Show that the orthogonal complement of $\operatorname{span}(\mathbf{a}_1, \dots, \mathbf{a}_r)$ is $\operatorname{span}(\mathbf{a}_{r+1}, \dots, \mathbf{a}_n)$.

Solution. Write $A = \begin{pmatrix} A_1 & A_2 \end{pmatrix}$ in block matrix notation where A_1 is the $n \times r$ matrix formed by the first r columns of A and A_2 is the $n \times (n-r)$ matrix formed by the last n-r columns of A. Let Σ be the $n \times r$ matrix $\begin{pmatrix} I_r \\ 0 \end{pmatrix}$ in block notation where I is the $r \times r$ identity and 0 denotes the $(n-r) \times r$ zero matrix. Then

$$A_1 = U\Sigma V^T$$

if we set U = A and V to be the $r \times r$ identity. Note that this gives a full form SVD for A_1 . The compact form SVD is given by

$$A_1 = U_1 \Sigma_1 V_1^T.$$

where $U_1 = A_1$, $\Sigma_1 = I_r$ and $V_1 = I_r$. In particular, we have $U = \begin{pmatrix} A_1 & A_2 \end{pmatrix}$ in block matrix notation (here A_1 is our usual U_1 and A_2 is our usual U_2) so that

$$\operatorname{Col}(A_1)^{\perp} = \operatorname{LeftNull}(A_1) = \operatorname{Col}(A_2).$$

This is exactly the statement that the orthogonal complement of $\operatorname{span}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_r)$ is $\operatorname{span}(\boldsymbol{a}_{r+1},\ldots,\boldsymbol{a}_n)$.

6. Suppose W is a vector subspace of \mathbb{R}^n . For any $\mathbf{v} \in \mathbb{R}^n$ check that $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$ for some $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$. Using the Pythagorean theorem, show that the vector $\mathbf{w} \in W$ which minimizes $\|\mathbf{v} - \mathbf{w}\|$ is given by \mathbf{w}_1 .

Solution. Recall that we can project v onto the subspace W which gives a vector $w_1 \in W$ so that $v - w_1$ is orthogonal to W. Setting $w_2 = v - w_1$ we have

$$\boldsymbol{v} = \boldsymbol{w}_1 + \boldsymbol{w}_2$$

where $\boldsymbol{w}_1 \in W$ and $\boldsymbol{w}_2 \in W^{\perp}$.

We want to minimize $\|v - w\|$ over all $w \in W$. This is the same as minimizing $\|v - w\|^2$ over all w. Writing

$$\boldsymbol{v} - \boldsymbol{w} = (\boldsymbol{w}_1 - \boldsymbol{w}) + \boldsymbol{w}_2$$

we have that $w_1-w \in W$, so by the Pythagorean theorem (using that w_1-w and w_2 are perpendicular)

$$\|\boldsymbol{v} - \boldsymbol{w}\|^2 = \|\boldsymbol{w}_1 - \boldsymbol{w}\|^2 + \|\boldsymbol{w}_2\|^2.$$

This is minimized when $\|\boldsymbol{w}_1 - \boldsymbol{w}\|^2 = 0$ which is when $\boldsymbol{w} = \boldsymbol{w}_1$.

7. Let V and W be vector spaces. Explain why a linear transformation T from V to W must send the zero vector in V to the zero vector in W.

Solution. If $\mathbf{0}$ is the zero vector in V and $0 \in \mathbb{R}$ is the zero scalar (difference is in bolding), then

$$T(\mathbf{0}) = T(0 \cdot \mathbf{0}) = 0 T(\mathbf{0}) = 0$$

where we used linearity in the second equality.

8. Check whether the following maps are linear transformations:

$$\begin{array}{ll} \text{(a) } T(x,y) = (x-y,x+y), & \text{(b) } T(x,y,z) = (x+1,y+1,z+1), \\ \text{(c) } T(x,y) = (xy,x), & \text{(d) } T(x,y,z) = (x+y+z,y+z,z). \end{array}$$

For the instances where T is a linear transformation, can you find a matrix A such that

$$T(x,y) = A \begin{pmatrix} x \\ y \end{pmatrix}$$
 or $T(x,y,z) = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

Solution. Note that if $T(\mathbf{v}) = A\mathbf{v}$ for some $m \times n$ matrix A, then T is a linear transformation. Indeed if $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n$ and $c_1, c_2 \in \mathbb{R}$, then

$$T(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2) = A(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2) = c_1 A \mathbf{v}_1 + c_2 A \mathbf{v}_2$$

by linearity of matrix-vector product.

(a) This is a linear transformation because we can write

$$T(x,y) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

- (b) This is not a linear transformation since T(0,0,0) = (1,1,1) and linear transformations must send the zero vector to the zero vector.
- (c) This is not a linear transformation. Indeed, we have

$$T(2,2) = (4,2), \quad T(1,1) = (1,1) \implies T(2,2) \neq 2T(1,1).$$

(d) This is a linear transformation because we can write

$$T(x,y,z) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$