

Introduction to Creating a Vision Solution in the Cloud

Nishita Sant, Computer Vision Scientist
May 2018

GumGum Overview

GumGum is an artificial intelligence company with a particular focus in computer vision

Agenda

- 1. Why Computer Vision in the Cloud?
- 2. Performance Metrics
- 3. Computer Vision System Design
 - Computer Vision Modules, Features and API
 - Efficiency Studies (CPU vs GPU)

Why Computer Vision in the Cloud?

Computer Vision System Design

Key Performance Indicators

Recall

F1 Score

CPM

Throughput

Class Support

$$\left(\frac{TP}{TP+FP}\right)$$

$$(rac{TP}{TP+FN}$$

$$\left(rac{TP}{TP+FP}
ight) \qquad \left(rac{TP}{TP+FN}
ight) \qquad 2*\left(rac{Precision*Recall}{Precision+Recall}
ight) \qquad \left(rac{\$}{1000frames}
ight) \qquad \left(rac{frames}{sec}
ight) \qquad labels = [l_1, l_2, \ldots l_N]$$

$$\left(\frac{\$}{1000 frame}\right)$$

$$\left(rac{frames}{sec}
ight)$$

$$labels = [l_1, l_2, \dots l_N]$$

- **TP** True Positive
- **FP** False Positive
- **FN** False Negative

*CPM - Cost Per Mille

Design Principles

01 Scalability

03 (A)Synchronicity

02 Modularity/ Flexibility

04 Efficiency

Design Principles - 01 Scalability

Design Principles - 01 Scalability: How

Design Principles - 01 Scalability: Effect on metrics

Example: Logo Detection Engine

Estimate Acc.

Recall = 60% FPR = 2%

Production

Throughput = 1M images/day
Estimated presence of logos = 1% = 10K images
Expected Recall = 0.6*10K = 6K
Expected FPs = 0.02*(1M-10K)

~ 20K

Realized Precision

Red Ford Mustang

Red-Ford-Mustang

Not-Red-Ford-Mustang

DenseNet

Blue BMW Z4

Blue-BMW-Z4

Not-Blue-BMW-Z4

DenseNet

Computer Vision Modules

ML-based: CNNs, LSTMs, SVMs

Traditional: Feature Matching

Hybrid: Feature Matching + SVM

Heuristic: Design Logic

Computer Vision Features

JSON for Inter-Process Communication

Region: List of points describing a contour

Property: Car

(Sub)Region: List of points describing a contour within another contour

Property: Tire, Black

Property: Car, Ford, Mustang, Red

Design Principles - 03 (A)Synchronicity

Design Principles - 03 (A) Synchronicity

Design Principles - 04 Efficiency

Design Principles - 04 Efficiency

Hardware Efficiency

RAM/GPU Memory

Minimize memory footprint

Utilization

Maximize CPU/GPU utilization

Design Principles - 04 Efficiency

	CPU	GPU
COST	Detector: \$1.63 CPM	Detector: \$0.0829 CPM
	Classifier: \$0.124 CPM	Classifier: \$0.0338 CPM
RUNTIME	Detector: 14.59 sec/image	Detector: 0.4596 sec/image
	Classifier: 1.11 sec/image	Classifier: 0.1873 sec/image

^{*} CPM = Cost Per Mille

Key Takeaways

Thank You

Resources

- Computer Vision: At the Edge or In the Cloud? It Depends.
- Keras Wiki, Keras Documentation, Github Keras
- MXNet
- PyTorch
- Open Neural Network Exchange
- Caffe2
- TensorFlow
- Swapper API Development Tool
- Amazon ElasticSearch
- Amazon ElasticBeanstalk
- Spring Framework for Java Platform
- Densly Connected Convolutional Networks
- Three reasons why apache avro data serialization is a good choice
- Apache Avro Schema 1.8.1

About GumGum

70%
Of Fortune 100
Companies

Computer Vision Applications

...in Augmented Advertising

CONTENT ENHANCES AD

Ad creative built to incorporate image content

Localized detection of objects, people, or body parts using Computer Vision

Sports Sponsorship Measurement

Social Listening

61.4K

GUMGUM SOCIAL

Ingest social posts with visual content from firehose of Twitter, Instagram, etc.

Detect presence and location of brand logos or other objects

Analytics dashboard, interact with influencers

Design Principles

ACCURACY SPECS CAN BE CASE SPECIFIC

Example: Brand Safety in Digital Advertising


```
"version":"1.1",
"relationship_aux":null,
"footprint_aux":null,
"property_aux":null,
"point aux":null.
"region aux":null.
"image_annotation_aux":null,
"video annotation_aux":null,
"media_annotation":{
   "codes":{ ⊟
      "array":[ ⊟
        { ⊟
            "server": "ObjectDetector",
            "ver": "3.0",
            "code": "SUCCESS",
            "company": "qumqum",
            "date": "20180308180145",
            "annotator": "machine",
            "tstamps": { -
               "аггау":[ ⊟
            "labels":{
              "аггау":[ ⊟
            "id": "ObjectDetector 20180308180145"
        { ⊟
            "server": "MakeModelClassifier".
            "ver": "3.0.4".
            "code": "SUCCESS",
            "company": "gumgum"
            "date": "20180308180146";
            "annotator": "machine",
            "tstamps": {
               "аггау":[ ⊟
            "labels":{
              "аггау":[ ⊟
            "id": "MakeModelClassifier 20180308180146'
```

Inter-Process Communication

```
"server": "MakeModelClassifier",
"ver":"3.0.4",
"code": "SUCCESS".
"company": "gumgum",
"date": "20180308180146",
"annotator": "machine".
"tstamps":{ □
   "arrav": [ □
"labels": { □
   "array": [ □
```



```
( B
"x":0.0566369
     "y":0.25181
     "x":0.955127.
     "y":0.25181
      "x":0.955127.
     "y":0.884749
     "x":0.0566369
      "y":0.884749
     "module_id":3,
      "property_id":37,
      "server": "ObjectDetector"
      "ver": "3.0",
      "company": "gungun".
      "property_type": "object",
      "value verhose":
      "confidence":0.998437
      "confidence_min":0.05,
      "fraction":1
      "relationships":null.
      "footprint id": "ObjectDetector 20180308180145"
      "module_id":13.
     "property_id":10,
      "server": "MakeModelClassifier",
      "ver": "3.0.4".
      "conpany": "gungun"
      "property_type": "make"
       "value": "ford".
      "value verbose"
      "confidence":0.789843
       "confidence min":0.85.
      "fraction":1.
      "relationships":null,
      "footprint_id": "MakeModelClassifler_20180308180146"
       "nodule id":13.
      "property_id":10117,
       "server": "MakeModelClassifter",
      "ver": "3.0.4",
      "company": "gungun"
       "property_type": "model"
      "value": "nustang"
      "value_verbose":
       "confidence":0.789843,
      "confidence_min":0.05,
      "fraction":1,
      "relationships":null.
      "footprint_id": "MakeModelClassifier_20180308180146"
"features":null.
"sub_regions":null
```

Inter-Process Communication

```
"props":[ =
  { ⊟
     "module id":3.
     "property_id":37.
     "server": "ObjectDetector",
     "ver": "3.0",
     "company": "gumgum",
     "property_type": "object",
     "value": "car",
     "value_verbose":""
     "confidence": 0.998437.
     "confidence_min":0.05.
     "fraction":1,
     "relationships":null,
     "footprint_id": "ObjectDetector_20180308180145"
  { ⊟
     "module id":13.
     "property id":10.
     "server": "MakeModelClassifier",
     "ver": "3.0.4",
     "company": "gumgum",
     "property_type": "make",
     "value": "ford",
     "value verbose":""
     "confidence": 0.789043.
     "confidence_min":0.05,
     "fraction":1,
     "relationships":null.
     "footprint id": "MakeModelClassifier 20180308180146"
  { ⊟
     "module_id":13,
     "property_id":10117,
     "server": "MakeModelClassifier",
     "ver": "3.0.4",
     "company": "gumgum",
     "property_type": "model",
     "value": "mustang",
     "value_verbose": "",
     "confidence": 0.789043.
     "confidence_min":0.05.
     "fraction":1,
     "relationships":null.
     "footprint id": "MakeModelClassifier 20180308180146"
```