

[Versione 2024-06-05.UML]

Sapienza Università di Roma
Facoltà di Ing. dell'Informazione, Informatica e Statistica, Laurea in Informatica
Insegnamento di Basi di Dati, Modulo 2

Prof. Toni Mancini
Dipartimento di Informatica
http://tmancini.di.uniroma1.it

Esame BD2. Esame. Risposte - Modulo risposte prova scritta (diagramma delle classi UML)

Dati dello studente e dell'esame
Cognome e nome: Matricola:
Data:
Corso di laurea e canale di appartenenza:
☐ Laurea in Informatica, canale 1 (Prof. G. Perelli)
☐ Laurea in Informatica, canale 2 (Prof.ssa M. De Marsico)
Firma di un membro della Commissione per avvenuta identificazione:
Rinuncia alla prova
☐ Desidero rinunciare a questa prova d'esame. Firma:

Istruzioni e regole d'esame

Prima dell'esame

- Stampare questo modulo, preferibilmente fronte-retro, e rilegarlo con un fermaglio rimovibile, come quello disegnato in alto
- Compilare il frontespizio con i propri dati, come richiesto
- Scrivere la propria matricola nello spazio apposito nella parte alta di tutte le pagine

Durante l'esame

- La prova è dimensionata per essere svolta in circa 3 ore. Tuttavia, data la sua natura fortemente progettuale, la Commissione offre agli studenti la più ampia disponibilità di tempo, al fine ovviare ad eventuali (e limitati) errori di analisi/progettazione rilevati più a valle del ciclo di vita.
 - Il tempo massimo per la consegna è quindi rilassato a 5 ore (il massimo tempo compatibile con le disponibilità di aule).
- Scrivere le risposte negli spazi predisposti sotto le relative domande. Le ultime pagine sono vuote e possono essere usate come minute oppure, se puntate opportunamente, per contenere risposte in caso gli spazi appositi dovessero risultare insufficienti.
- Non è possibile usare alcun tipo di materiale didattico.
- In caso di necessità di ulteriori fogli (in proprio possesso), chiedere preventivamente alla Commissione una nuova procedura di controllo.
- La Commissione può rispondere solo a brevi domande inerenti al testo dei quesiti.
- Tra la seconda e la quarta ora d'esame, gli studenti possono effettuare **brevi pause** (uno studente alla volta) seguendo la seguente procedura:
 - 1. Alla lavagna è riportata una coda denominata 'Coda prenotazioni pause'. Sia n (un intero) l'elemento in fondo alla coda (si assuma n=0 in caso di coda vuota).
 - 2. Recarsi alla lavagna ed aggiungere l'intero n+1 come proprio contrassegno in fondo alla coda, seguito da una stringa a propria scelta (ad es., le proprie iniziali).
 - 3. Se il proprio contrassegno non è l'elemento affiorante della coda, tornare al lavoro in attesa che lo diventi
 - 4. Consegnare tutti i fogli di lavoro e il testo d'esame alla Commissione ed uscire.
 - 5. Al rientro, cancellare il proprio contrassegno dalla coda di modo da permettere al successivo studente prenotato di uscire, e riprendere i fogli prima consegnati.

Al momento della consegna

- Ordinare tutti i fogli che si vuole far valutare e rilegarli con un fermaglio rimovibile. Non includere fogli che la Commissione non deve valutare (ad es., requisiti, minute), ma includere ovviamente il frontespizio.
- Consegnare i fogli ordinati nelle mani di un membro della Commissione. Non lasciare l'aula senza la conferma, da parte della Commissione, del buon esito delle operazioni di consegna.

In caso di rinuncia

• È possibile rinunciare alla consegna a partire dalla seconda ora d'esame. In caso di rinuncia, consegnare nelle mani della Commissione solo il frontespizio, dopo aver compilato e firmato la sezione dedicata.

_
_
2
=
\rightarrow
т.
10
=
-05.
9
\circ
_
-
~.
(1
0
\overline{a}
(I)
~
=
0
. =
ý
_
υ
>

Matricola:

Sommario delle domande

Si richiede di progettare l'applicazione descritta dalla specifica dei requisiti effettuando le fasi di Analisi concettuale dei requisiti e di Progettazione logica della base dati e delle funzionalità, utilizzando la metodologia vista nel corso.

In particolare (vengono indicati i tempi suggeriti per i diversi passi chiave):

Parte 1: Analisi concettuale dei requisiti Effettuare la fase di Analisi concettuale dei requisiti producendo lo schema concettuale per l'applicazione, che includa:

- Analisi dei dati (45 minuti; 75 minuti al massimo):
 - un diagramma UML concettuale delle classi (*)
 - (parte del)le specifiche formali delle classi e delle associazioni
 - le specifiche dei tipi di dato
 - la specifica formale dei vincoli esterni (*)
- Analisi delle funzionalità:
 - un diagramma UML degli use-case (5 minuti; 10 minuti al massimo)
 - la segnatura di tutte le operazioni di use-case (10 minuti)
 - (parti del)le specifiche formali degli use-case. (30 minuti; 60 minuti al massimo)

Si richiede esplicitamente di modellare le specifiche formali delle operazioni di clase e/o use-case necessarie a modellare i requisiti contrassegnati dalla barra laterale (come quella qui a sinistra), incluse tutte le eventuali operazioni ausiliarie, usando l'estensione della logica del primo ordine studiata nel corso. (*)

Parte 2: Progettazione della base dati e delle funzionalità Effettuare la progettazione della base dati e delle funzionalità a partire dallo schema concettuale prodotto nella Parte 1, ed in particolare eseguire i seguenti passi:

- Progettazione della base dati relazionale con vincoli:
 - Ristrutturazione del diagramma UML concttuale delle classi e delle specifiche (20 minuti; 30 minuti al massimo):
 - * scelta del DBMS da utilizzare
 - * progettazione della corrispondenza tra i tipi di dato concettuali ed opportuni domini SQL (domini base o utente, oppure realizzati mediante relazioni aggiuntive) supportati dal DBMS scelto
 - * ristrutturazione del diagramma UML concttuale delle classi e delle specifiche dei vincoli esterni.
 - Produzione dello schema relazionale della base dati e dei relativi vincoli (*) (30 minuti; 60 minuti al massimo)
- Progettazione delle funzionalità (30 minuti; 45 minuti al massimo):
 - definizione della specifica realizzativa delle operazioni necessarie a modellare i requisiti contrassegnati dalla barra laterale, in modo conforme alla loro specifica concettuale prodotta nella fase di Analisi, in termini di algoritmi in pseudo-codice e comandi SQL immersi. (*)

Le pagine seguenti contengono le domande specifiche a cui è richiesto rispondere, ulteriori delucidazioni per ogni singolo punto, e spazi per le risposte.

Le pagine da 31 in poi possono essere utilizzate per scrivere minute che non verranno valutate.

^(*) Una risposta soddisfacente a questa domanda è condizione necessaria (ma non sufficiente) per superare la prova.

Questa pagina è stata intenzionalmente lasciata vuota

1 Analisi concettuale

Domanda 1 (10 minuti) Raffinare la specifica dei requisiti eliminando inconsistenze, omissioni e ridondanze e producendo un elenco numerato di requisiti il meno ambiguo possibile. (La risposta a questa domanda non sarà valutata, ma si consiglia di svolgere accuratamente questo passo, in quanto può facilitare di molto le attività di progetto.)

Risposta 1 Autostrada 1.1 codice 1.2 nome* 1.3 localita 1 1.4 localita 2	Pros.con + Une delle 2 definime de done mi loleile le diffurçae 2. Casello 2.1 outostroole 2.2 name 3 UNIVOCI NELLA RETE 2.3 repolice 3 UNIVOCI NELLA RETE 2.4 posizione 2.5 Volume Evaffico (Neichi Gra) 2.6 Payamento 2 Mymesse (teleposs o no?) 2.7 Presenza Servizio clienti	Antost tada
3. Cliente Lelepass 3.1 name 3.2 cognone	2.8 TARIFFE Casello [Dota Ora	teva:
3.3 <u>CF</u>		C250(10)
3.4 IBAN	4. Tagliando 4.1 COD* 4.2 Classe Veicolo	2.2

Domanda 2 (45 minuti; 75 minuti al massimo) Proseguire la fase di Analisi Concettuale dei requisiti, producendo un diagramma UML concettuale delle classi per l'applicazione, le specifiche di classi, associazioni, tipi di dato e vincoli esterni.

Una risposta soddisfacente a questa domanda è condizione *necessaria* (ma non sufficiente) per superare la prova.

Diagramma UML concettuale delle classi

Produrre un diagramma UML concettuale delle classi per l'applicazione in termini di classi, associazioni, attributi, generalizzazioni, operazioni di classe.

Specifiche delle classi o associazioni Per ogni classe o associazione del diagramma con operazioni o vincoli:

- Definire la specifica formale di eventuali operazioni necessarie a modellare i requisiti contrassegnati dalla barra laterale, ed eventuali vincoli esterni. Usare la logica del primo ordine estesa con teoria degli insiemi e semantica di mondo reale vista nel corso, usando il seguente alfabeto:
 - Un simbolo di predicato C/1 per ogni classà C. Semantica di C(x): x è una istanza di C.
 - Un simbolo di predicato T/1 per ogni tipo di dato T. Semantica di T(x): x è un valore di T.
 - Un simbolo di predicato assoc/2 per ogni associazione binaria assoc. Semantica di assoc (c_1, c_2) : (c_1, c_2) è una istanza di assoc.
 - Un simbolo di predicato attr/2 per ogni attributo attr di entità Semantica di attr(c, v): uno dei valori dell'attributo attr dell'istanza c è v.
 - Un simbolo di predicato attr/3 per ogni attributo attr di associazione binaria. Semantica di attr (c_1, c_2, v) : uno dei valori dell'attr. attr del link (c_1, c_2) è v.
 - Un simbolo di predicato op/(n+2) per ogni operazione di classe ad n argomenti. Semantica di op $(c, \arg_1, \ldots, \arg_n, v)$: uno dei valori di ritorno di op, quando invocata sull'istanza c e con argomenti $\arg_1, \ldots, \arg_n \ \ \ \ \ v$.
 - Il simbolo di =/2 (la cui interpretazione è la relazione che lega ogni elemento del dominio di interpretazione solo con se stesso) e opportuni simboli di predicato e di funzione, soggetti a semantica di modo reale, per relazioni e funzioni standard tra elementi dei tipi di dato, tra cui adesso/0, interpretato come il valore del dominio DataOra che rappresenta l'istante corrente.

Risposta

2 Tipo: Classe Associazione (cerchiare) 1 Tipo: Classe Associazione (cerchiare) Nome: Rilevazione Nome: Rilevazione Operazioni, vincoli: Operazioni, vincoli: V. vilevato_Neicolo_classe] V. coerenza_vik+azione Senso-True Yr, ir, fr, v, t, it, ft [Rilevazione(r) \ istlnizio (ir) \ ∀r, N, E, C [Rilevazione(v) Aril-nei (v. N) A cla-nei (N. c) A ist Fine (r. Fr) A ril-401 (r, 1) A Eut-ril (r, t) A $tut_ril(t,r)] \rightarrow velocitaMasc(t,c)$ poslniziokM(t, it) Aposfinek(t, Ft) A Senso(t, Lue)]-V. inizio-poi-fine $\forall r, i, f [Rilevazione(v) \land inizio(r, i) \land fine(r, f)] \rightarrow i < f$ [] tay, c, iec, pe Tayliando(tay) Asenso(tay, true) A tag-nei(tay, N) 1 (asello (c) Nentrata (tay.c) 1 iec Lir 1 A ist(tay,c,iec) ∧ PoskH(c, pe) ∧ pe ≤ it Macziuc, pu Casello (c2) A poskH(c2,pw) A uscita(tay,c2) A ist(tay,c2,ivc)] [iuc ≥ Fr A pu ≥ FE]

Versione 2024-06-05.UML]

3 Tipo: Classe Associazione (cerchiare)

Nome: Tayliando.

Operazioni, vincoli:

[V.senso_di_marcia]

Yt, ce, cu, pe, pu

[Taylizado(t) Nentrata(t, ce) Nuscita(t, cu) N poskH (ce, pe) A posKH (cu, pu)]→

[senso(t, True)] () [pe(pu]

V. Eagliando_classe_veicolo]

YE, N.C, a, cl [Tayliando(t) Ntay - Nei(t, N) N[entrata(t, c) V uscita(t,c)] ∧ cla_nei(n,cl) ∧ 2ut.cas(2,c)]→ Eaviffa (a,cl)

6 Tipo: **(lasse | Associazione** (cerchiare)

Nome: Tayliando

Operazioni, vincoli:

V.entra_poi_esce

 $\forall t$, c_1, c_2, e , u [Tayliando(t) \wedge entrata(t, c_1) \wedge $\Lambda uscita(t,c2) \wedge ist(t,c2,u) \wedge ist(t,c1,e) \rightarrow e < u$

V.casello-telepass]

YE, C

[Tayliando(t)n [entrata(t,c) V uscita(t,c)] A

Jc1 cli_tal(clit)]→ CaselloTelepas(c)

4 Tipo: Classe Associazione (cerchiare)

Nome: Tagliando.

Operazioni, vincoli:

costo(): Reale 20

·pre-cond: 3 u uscita(this, u)

opost-cond: Sia tar :=

Ic, a, v, ol tay-vei(this, v) / [entrata(this, c) V wscita(this,c)] A zut.cas(c,a) A tariffo(a,cl) A cla-vei (cl, N) N euro KM(2, cl, Ear)

Siano p1, p2 :=

Ica,ca entrata(this,ci) AposKM(ci,pi) Auscita(this,ca) A posky (c2, p2)

Result = |p1-p2|.tar

|7| Tipo: Casse | Associazione (cerchiare)

Nome: Tyter.

Operazioni, vincoli:

Senso(): bool

·pre-cond: nessun &

· post-cond: Siano CiF:=

poslnizioKM(Łhizii) Apos FineKM(Łhis, F)

c'<f → Result = True 1 i>F - Result: False

[V.compieso_in_autostrada]

YL, a, et, ut[Tutor(t) A poslnizioKN(t, et) A posfineKN(t, ut) A aut-tut(a,t)]→[3c1,c2,e,u aut-c35(a,c1)∧ zut_czs(2,c2)∧posKM(c1,e)∧posKM(c2,e)∧eśeŁ∧u≥uŁ]

5 Tipo: (Casse | Associazione (cerchiare)

Nome: Tutor.

Operazioni, vincoli:

[V.no_intersezioni_tutor]

YE1, 62, 61, 62, 62, 2 [Tutor(61) ATutor(62) A aut.tut(2,61) Λ aut_tut(a,t2) Λ poslnizioKM(t1,e1) Λ posFineKM(t1, u1) Λ poslnizioKM(t2,e2) A posFineKM(t2, 42) A 42>e1 A 42>e2 A senso(LI, Love) A senso(L2, Love) - [U2 ce1 VU1 ce2]

YE1, E2, e1, 41, e2, 42, 2 [Tutor(t1) ATutor(t2) A aut_tut(2,t1) Λ aut_but(a,t2)Λ postnizioKM(t1,e1)Λ posFineKM(t1, μ1)Λ poslnizioKM(12,e2) A posFineKM(12,42) A 42 < e1 A 42 < e2 A senso(ti, fabe) A senso(t2, fale)]

→ [U2>e1 VU1>e2]

8 Tipo: Classe | Associazione (cerchiare)

Nome: Rileyazione.

Operazioni, vincoli:

Nelocita (): Reale >0

· pre-cond: nessuna

·post-cond:

Siano pi, pf, ci, if tali da soudisfare:

istlnizio(this, ii) A ist Fine(this, iF) A = tut.vil(this,t) A posluizioKH(Łpi)A posFineKH(Ł,PF)

oveTrascorse(ii,if,o) semantica mondo reale

Result = |pi-pf|

Versione 2024-06-05.UML]

Specifiche dei tipi di dato, specifiche di ulteriori vincoli esterni ed altre specifiche

V.no_rilevazioni_che_si_intersecano]

 $\frac{-}{\forall r_1.v_2.i_1.i_2.f_1.f_2.N} \qquad \text{[Rilevazione(r_1) \land Rilevazione(v_2) \land istlnizio(r_1.i_1) \land cstlnizio(r_2.i_2) \land istfine(r_1.f_1) \land istfine(r_2.f_2) \land istfin$

[V. no_tayliand:_che_si_intersecano_cli]

VC, L1, L2, e1, e2[Tayliand(L1) ATayliando(L2) Acli_Lal(L1,c) Acli_Lol(L2,c) AJc entrota(L1,c) Abitla Aist(L1,c,e1) AJK entrota(L2,K) Aist(L2,K,e2)] → ¬Jt L≥e1 A[Vu,Lu uscito(L1,u) Aist(L1,u,Lu) → Lu≥L] At≥e2 A[Vu,Lu uscito(L2,u) Aist(L1,u,Lu) → Lu≥L]

[V.tayliando_caselli_stessa_autostrada]

Yt,e,u [Tayl: ando(t) Nentrata(tie) Nuscita (tiu)] →] & aut-cas(a,e) N aut-cas(a,u)

[V.coerenza_vik+vazione] Senso-False

Yr, ir, fr, N, E, it, ft [Rilevazione(r) \ istlnizio (ir) \ istline(r, Fr) \ \ ril-tei(r, N) \ \Lut_ril(r, E) \ \ poslnizio \text{KM (E, it) \ \text{posFineK(E, Ft) \ \text{Senso(E, False)]} \}

[] \Lag_1 \ C_1 ie C_1 \ pe

Tayliando(\text{Lay}) \ \text{Nsenso(\text{Lay, False}) \cap \Lag_-Nei(\text{Lay, N})

\text{\Lasello(c) \ \text{Nentrate}(\text{Lay, C}) \ \text{\Lasello(c) \ \text{Nentrate}(\text{Lay, C}) \ \text{\Lasello(c2) \text{\text{Neschlo}(c2) \\ poskM(C2, pu) \ \text{\Lasello(c2) \\ \text{poskM(C2, pu) \text{\Lasello(c2) \\ \text{

Tipi di Dato

COD = [A-Z0-3]+

IBAN=[A-Z]{2}[0-4]{2}[A-Z][0-3]{22}

CF = [A-Z]{6}[0-4]{2}[A-Z][0-4]{12}[A-Z][0-9]{3}[A-Z]

Targz=[A-2]{2}[0-9]{3}[A-2]{2}

Risposta alla Domanda 2 (segue)

Domanda 3 (5 minuti; 10 minuti al massimo) Proseguire la fase di Analisi Concettuale dei requisiti, producendo un diagramma UML degli use-case che definisca ad alto livello tutte le funzionalità richieste al sistema.

Risposta

Questa pagina è stata intenzionalmente lasciata vuota

Questa pagina è stata intenzionalmente lasciata vuota

Una risposta soddisfacente a questa domanda è condizione *necessaria* (ma non sufficiente) per superare la prova.

Risposta

Calcola_conto (c: ClienteTelepass, m:1..12, anno: Interozo): (Stringa, Stringa, DataOro. DataOra, Rodezo) [o..+]

· pre-cond: nessuna

• post-cond:

(ne,nu,de,du,im)

| Tayliando(t) \(\cdot \cdot \cdot \lambda \cdot \c

Result = C

rileva_passayjo (E:Tutor, i:DataOra, F:DataOra, v:Veicolo):Rilevazione

· pre-cond: 3cl Classeleicolo (a) Ncla-vei (v, d) A velocita Max (t, cl)

· post-cond: Sia & un nuovo oggetto del dominio tale che:

Rilevazione (α) Λ ist $lnizio(\alpha,i)$ Λ ist $lne(\alpha,f)$ Λ ril_vei(α,v)

Siz Wax tale che

3cl Classeleicolo (=1) Acla-vei (v, cl) A velocita Max(t, cl) Avel(t, cl, vMax)

Sia vel tale che: velocita (a. vel)

Se vel sullax: Termina operazione ed a viene cancellato.

Se vel > vMax: a e' un nuovo oggetto del dominio: Mout = Min U { a}

Risposta alla Domanda 5 (segue)

Matricola:

2 Progettazione della base dati e delle funzionalità

Domanda 6 (20 minuti; 30 minuti al massimo) Iniziare la fase di progettazione logica della base di dati decidendo il DBMS da utilizzare e ristrutturando lo schema UML delle classi concettuale, il dizionario dei dati e i vincoli esterni. In particolare:

- progettare una corrispondenza tra i tipi di dato concettuali ed opportuni domini SQL (domini base o utente, oppure realizzati mediante relazioni aggiuntive) supportati dal DBMS scelto
- eliminare attributi multivalore o composti
- eliminare relazioni is-a e generalizzazioni
- definire un identificatore primario per ogni classe
- ristrutturare i vincoli esterni per renderli consistenti con la struttura del nuovo diagramma.

Descrivere brevemente le principali scelte effettuate.

DBMS da utilizzare Postgre SQL.

Corrispondenza tra tipi di dato concettuali e domini supportati dal DBMS

create domain cod as warchar ~ [A-2-9]+

create domain IBAN as warchar ~ [A-2]{2}[0-9]{2}[A-2][0-9]{22}

create domain Real-GEZ as Real check (walve >= 0);

create domain Int_GEZ as Integer check (walve >= 0);

create domain CF as Narchar ~ [A-2]{6}[0-9]{2}[A-2][0-9]{12}[A-2][0-9]{3}[A-2]

create domain Stringa as Narchar Not NULL;

create domain Tarya as Narchar ~ [A-2]{2}[0-9]{3}[A-2][0-9]{3}[A-2][0]

create domain Mese as Integer check (valve >= 1 AND Nalve <= 12);

Diagramma UML delle classi ristrutturato

Breve descrizione delle scelte effettuate durante la ristrutturazione

Fusione su Casello

Vincoli esterni introdotti o modificati durante la fase di ristrutturazione

(si omettano i vincoli esterni la cui formulazione è rimasta identica a seguito della ristrutturazione)

[V.casello-telepass]

YE, C

[Tayliando(t) Nentrata(t.c) V uscita(t.c)] Acasello(c) A 3cl cli_tal(cl,t)] ->

[Lelepass (C, Twe)]

Domanda 7 (30 minuti; 60 minuti al massimo) Proseguire la fase di progettazione logica della base di dati producendo lo schema relazionale della base dati e i relativi vincoli a partire dallo schema UML delle classi ristrutturato.

Una risposta soddisfacente a questa domanda è condizione necessaria (ma non sufficiente) per superare

a prova.								
1 Relazio	one Class	Veicolo	(nome)		Derivante da	:classe)	associazion	e (cerchiare
Attributi	none							
Domini	Strings							
Gli attributi c	hiave primaria	sono sottoline	eati, quelli i cui	valori possono	essere NULL son	o contrassegn	ati con *	
Vincoli (foi	reign key, i	nclusione, a	ltra chiave,	di ennupla, d	di dominio):			
	•		-	entano le seg	uenti associa:	zioni:		
2 Relazio	one Veice	P	(nome)		Derivante da	: classe	associazion	e (cerchiare
Attributi	Earge	clssse						
Domini	Tarya	Stringe						
Gli attributi c	hiave primaria	sono sottoline	eati, quelli i cui	valori possono	essere NULL son	o contrassegn	ati con *	
Vincoli (foi	reign key, i	nclusione, a	ltra chiave,	di ennupla, d	di dominio):			
•				·	,			
		+K C18550	yer Ou	sseVeicolo (no	, C C C			
La relazion	e accorpa	le relazioni (che impleme	entano le seg	uenti associa:	zioni:el	J-Nei	
3 Relazio	one Auto	strada	(nome)		Derivante da	classe	associazion	e (cerchiare
Attributi	codice	nome*						
Domini	COD	Stringa	1					
Gli attributi c	hiave primaria	sono sottoline	eati, quelli i cui	valori possono	essere NULL son	o contrassegn	ati con *	
Vincoli (foi	reign kev. i	nclusione. a	ltra chiave.	di ennupla, d	di dominio):			
(6), .	,	,					
La relazion	e accorpa	le relazioni (che impleme	entano le seg	uenti associa:	zioni:		
4 Relazio	one Lace	zli.t.a	(nome)		Derivante da	classe	associazion	e (cerchiare
 Attributi		1						
Domini	5 Evinga	<u> </u>	<u> </u>			<u> </u>	i	
			eati, quelli i cui	valori possono	essere NULL son	o contrassegn	ati con *	1
	•		-	di ennupla, c				
Thicon (10)	Cigii Ney, I	inclusione, a	icia ciliave,	ar cimapia, c	a. aoiiiiiio).			

5 Relazione Casello (nome)	Derivante da: associazione (cerchiare)
Attributi nome codCasello vdumeMax Servizio	posKH id Lelepass localita
Domini Strings COD Int-GEZ bool	Real-GEZ Sevial bool Stringa
Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono	essere NULL sono contrassegnati con *

La relazione accorpa le relazioni che implementano le seguenti associazioni:

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio): Fr localita ver Localita (nome);

V. Inclusione := Casello (id) = Cas-pay (casello);

6 Relazione(non	ne)	Derivante da:	classe assoc	iazione (cerchiare
Attributi <u>zvtostrada</u> <u>c z sello</u>				
Domini COD Integer				
Gli attributi chiave primaria sono sottolineati d	quelli i cui valori possono	essere NIIII sono	contrassegnati con *	•

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

V.Inclusione: Casello (id) = aut-cas (casello);

V.inclusione: Autostrada (codice) = zut-cas (zutostrada);

La relazione accorpa le relazioni che implementano le seguenti associazioni:

7 Relazione Payamento (nome) Derivante da: **classe** associazione (cerchiare) Attributi | Nome Domini | strings

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

La relazione accorpa le relazioni che implementano le seguenti associazioni:

8 Relazione . C. P. C. (nome) Derivante da: classe associazione (cerchiare) Attributi casello payamento Domini | Integer Deringa

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

FK casello ref Casello (id);

FK payamento ref Payamento(nome);

La relazione accorpa le relazioni che implementano le seguenti associazioni:

9 Relazione .Clie	Deriv	ante da: 🞜 🕳	⊋ associ	azione (cerchiare)		
Attributi nome	counome codfis	iban				
Domini Strinsa	Stringe CF	BAN				

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

La relazione accorpa le relazioni che implementano le seguenti associazioni:

10 Relazione Tay	isingo	. (nome)		Derivante (da: classe	associazio	ne (cerchiare)
Attributi senso	codice	cliente *	veicolo	entrata	istE	vscita*	istU*
Domini tool	COD	<i>C</i> F	Tarya	Integor	DateTime	Integer	Integer

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

Fix cliente ref Cliente Telepass (codfis); fix veicolo ref Veicolo (tarya); Fix uscita ref Casello (id); OR (ISEU IS NOT NULL AND VSCIED IS NOT NULL); FK entrata VEF Casello (id); Check (iste List V);

La relazione accorpa le relazioni che implementano le seguenti associazioni: cli-tel, tay vei cata procita

11 Relazione 上神汗。 (nome)	Derivant	e da: classe	associa	nzione (cerchiare)			
Attributi autostrada classa Evrokii							
Domini COD Strings Real-GE2							
Gli attributi chiave primaria sono sottolineati, quelli i cui valori posso	no essere NULL	sono contrasse	gnati con *				
Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio): Fr. aubstrada ref Aubstrada (codice);							
FK classe ver ClasseVeicolo (nome); La relazione accorpa le relazioni che implementano le s	seguenti asso	ociazioni:					

12 Relazione Tutor (nome)		Derivante	da: cta	sse associ	azione (cerch	iiare)
Attributi poslni 2:0KM pos Fine KM id	autostrada	Jenso				
Domini Real-GEZ Roal-GEZ Sevial	C00	bool				
Gli attributi chiave primaria sono sottolineati, quelli i cui val	ori possono ess	sere NULL s	ono contr	assegnati con *		
Vincoli (foreign key, inclusione, altra chiave, di	ennupla, di	dominio):				
FK aubostrada ref Aubostrada (codice); check (poslnizioKH <> posfineKH);						
Check ((Jenso = True AND postnizioKH < postineKH) OR ((Jenso = False AND postnizioKH) postineKH);						
La relazione accorpa le relazioni che implementa	ano le segue	enti assoc	azioni:	aut-tut		

13 Relazione Rile	evo.zione (nome)		Derivante d	a: Class	e asso	ociazione (cerchiare)
Attributi id	istlnizio	istFine	Lutor	veicolo			
Domini serial	DateTime	DateTime	Intoyer	Tarya			
Gli attributi chiave primai	ria sono sottolinea	ati, quelli i cui	valori possono	essere NULL son	no contrass	segnati co	n *
Vincoli (foreign key, check (istlnizio 4 ist Fi			di ennupla, Lutor reF	,	FK 1	Picolo	veF Veicolo(tarya);

14 Relazione welecita Maze (nome)	Derivante da	: classe	associazi	one (cerchiare)		
Attributi Lubor classe, vel						
Domini Integer Strings Int.GEZ						
Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono	essere NULL sond	contrasseg	nati con *			
Vincoli (foreign key, inclusione, altra chiave, di ennupla, d	di dominio):					
FK Lubor ref Tubor(id); FK classe ref Classe Veicolo(nome); V.Inclusione:= Tubor(id) = Velocita Maz (bubor);						
La relazione accorpa le relazioni che implementano le seg	uenti associaz	ioni:				

15 Relazione .	5 Relazione (nome)			Derivante da: classe associazione (cerchiare)				
Attributi								
Domini								
Gli attributi chiave prin	naria sono so	ttolineati, quelli i	cui valori po	ssono essere NU	JLL sono contra	ssegnati con *		
Vincoli (foreign ke	y, inclusior	ne, altra chiave	e, di ennu	pla, di domir	nio):			
	•			•	,			

La relazione accorpa le relazioni che implementano le seguenti associazioni:

Ulteriori vincoli esterni

Per ogni ulteriore vincolo esterno (non ancora espresso perché non definibile mediante vincoli di chiave, foreign key, ennupla, dominio, inclusione), progettare un trigger che lo implementi, definendo: (a) gli eventi da intercettare (inserimento, modifica, eliminazione di ennuple); (b) quando intercettare tali eventi (appena prima o subito dopo l'evento intercettato); (c) la relativa funzione in pseudo-codice con SQL immerso che implementa il controllo del vincolo.

```
T. coeven22_vileva zione

op:Insevt o Update su Rilevazione

OK = EXISTS( SELECT *

FROM Tagliando t, Casello c_ent, aut_cas ac, Tutov tut, Casello c_usc
WHERE new Neiocolo = t_veicolo AND t_entrata = C_ent_id AND ac. casello = c_ent_id
AND ac. autostuada = tut. autostvada AND tut.id = new.tutov
AND t_senso = tut. senso AND new.istlnizio >= t_istE AND

((t_senso = Tove AND c_en.poskM < tut.poslniziokM))

AND(t_senso = Tove AND c_en.poskM > tut.poslniziokM))

AND(t_senso = Tove AND c_usc.poskM > tut.poslniziokM))

AND(t_senso = Tove AND c_usc.poskM > tut.poslniekM) or

(t_senso = Tove AND c_usc.poskM < tut.poslniekM))));

if OK = Tove: commit
```

if OK=True: commit else: evrore e vollback

```
T. senso_di_marcia
Insert o Update Tayliando

Error = EXISTS (SELECT *

FROM Casello e, Casello u

WHERE new.entrata = e.id AND new.uscita = u.id

AND ((new.senso = True AND u.poski) < e.poski)

OR (new.senso = False AND u.poski) < e.poski)

if Error: vollback

olse: commit
```

```
T. no_tayliandi_che_si_intersecano
Insert o Update Tayliando

Evrov = EXISTS (SELECT + FROM Tayliando t

WHERE (t.cliente=new.cliente or t.veicolo=new.veicolo)

AND (new.istE, new.istU) OVERLAPS (tistu));

if Evrov: vollback

else: commit
```

Risposta alla Domanda 7 (segue)

T. Casello_telepass
Insert & Update Tagliando

OK = EXISTS (SELECT *

FROM Casello ce, Casello cu

WHERE (new.entrata = ce.id AND

ce.telepass=True AND (new.uscita is False

OR (new.uscita = cu.id AND cu.telepass=True)))

OR new.cliente is NULL);

if OK = True: Commit

T. Eayliando_classe_veicolo Insert o update Tayliando

else: evvoie e vollback

OK = EXISTS (SELECT *

FROM Casello c, Eariffa t, aut_cas ac, Veicolo N
WHERE C.id=new.entrato
AND ac.casello = c.id AND ac.autostrada = t.autostrada
AND t.classe = N.classe AND N.tary a = new. veicolo);

if OK=True: commit else: evrore e vollback

T.no_intersezioni_tutor Insert or Upolate Tutor

Error = EXISTS (SELECT * FROM Tutor t WHERE t.autostrada : new.autostrada and t.senso=new.senso
AND (new.poslnizioKI), new.posFineKH) OVERLAPS
(t.poslnizioKI), t.posFineKH));

if Error: vollback else: commit

T. no_vilevazioni_che_si_intersecano Insert o Update Rilevazione

Evror = EXISTS (SELECT * FROM Rilevazione r WHERE r. veicolo = new. veicolo AND (new. istlnizio, new. istlnizio, new. istlnizio, r. istlnizio,

if Error: vollback else: commit

```
Risposta alla Domanda 7 (segue)
```

T. tayliando_caselli_stessa_autostrada Inselt o Update Tayliando

EWOV = EXISTS (SELECT

FROM Casello e, Casello u, aut-cas ace, aut-cas acu
WHERE e.id=new.entrata AND
u.id=new.uscita AND ace. casello=e.id AND
acu.casello=u.id AND ace.autostrada<>> acu.autostrada>)

if Error: vollback else: commit

T. compreso_in_autostrada Insert & Update Tutor

OK: EXISTS (SELECT

FROM Casello e, Casello u, aut_cas ce, aut_cas cu
WHERE ce.autostrada = cu. autostrada = new. autostrada
AND ce.casello = e.id AND cu.casello = u.id AND
AND ((new.senso = True and e.posKH <= new.posInizioKH AND u.posKH >= new.posFineKH)
OR (new.senso = False and e.posKH >=new.posInizioKH AND u.posKH <= new.posFineKH)))j

if OK=True: commit else: evrore e vollback Matricola:

Domanda 8 (30 minuti; 45 minuti al massimo) Proseguire la fase di progettazione dell'applicazione producendo le specifiche realizzative delle operazioni di classe e/o use-case definite per modellare i requisiti contrassegnati dalla barra laterale della specifica dei requisiti.

In particolare, per ogni operazione definire la segnatura, in termini di nome dell'operazione, nomi e dominio SQL degli argomenti, dominio SQL dell'eventuale valore di ritorno, e un algoritmo in pseudo-codice con SQL immerso che verifichi le precondizioni e garantisca il raggiungimento delle postcondizioni definite in fase di Analisi. Specificare, per ogni operazione, se debba essere implementata nel DBMS o nel *back-end*.

Una risposta soddisfacente a questa domanda è condizione *necessaria* (ma non sufficiente) per superare la prova.

```
Risposta
                      costo(ty: COD) : Real-GEZ
Create function
     Euror = EXISTS (SELECT * FROM Tagliando WHERE id=ta AND uscita IS NULL);
     if (Error = Erve): Eermina operazione
     Q = SELECT ( Lavi Fa. euro KM * ABS (e. pos KM - U. pos KM)
          FROM Casello e, Casello u, Tayliando E, Autostrada a, Veicolo N, Classe Veicolo NC, Eariffa, zut.cas
          WHERE L. codice = ty AND L.entrata = e.id AND L.uscita = u.id
           AND V. Langa = E. veicolo AND VC. NOME = N. classe AND tariffa. classe = V. classe
          AND e.id = zut.cas.casello AND aut.cas. autostrada = 2. codice;
     result = Q
create function velocita (ril: Integer): Real-GEZ
     V= SELECT ABS( L. poskillnizio-poskilfine)/(EXTRACT(EPOCH FROM (r. istfine-r. istlinizio))/3600)
        FROM Rilevazione r, Tutor E
        WHERE
                r.id=ril AND E.id=r. Eutor
     result = V
```

```
Risposta alla Domanda 8 (segue)
```

Calcola-conto (cl: CF, m: Hese, anno: Intero>= o): Insieme (Stringa, Stringa, DateTime, DateTime, Real-GEZ)

Q = SELECT e.nome, u.nome, istE, istU, costo(t.cop)

FROM Tayliando t, Casello e, Casello u

WHERE t.cliente = cl AND

EXTRACT ('month' FROM istE) = m AND EXTRACT ('month' FROM istU) = m AND

EXTRACT ('year' FROM istE) = znno AND EXTRACT ('year' FROM istU) = znno AND

AND t.entrata=e.id AND t.uscita=u.id;

result = Q

rileva_passaggio (Eut: Integer, i: DateTime, f: DateTime, vt: Tarya): Integer [0.1]

OK = EXISTS (SELECT +

FROM velocita Max vm, Veicolo v
WHERE NM. Lutor: Lut AND vm. classe = N. classe AND N. Lavy a = Nt)

if (OK=False): Lermina operazione

ril = Insert INTO Rilevazione (i, f, Eut, Nt) returning id;

D= EXISTS (WITH V as (SELECT Nel FROM velocita Max Nm, Veicolo N WHERE N. Eargz=NE AND N. Eubon=Eub)

SELECT #
FROM Rilevazione r, V WHERE V.vel >= Velocita(r.id)
AND r.id=vil);

if (D==True): DELETE FROM Rilevazione WHERE id=vilj else:tesult=vil