Специальность **09.02.07** «Информационные системы и программирование»

# ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ ПП по ПМ.03 РЕВЬЮИРОВАНИЕ ПРОГРАММНЫХ МОДУЛЕЙ

| Выполнил студент 3 курса группы ИС             |                                                        |
|------------------------------------------------|--------------------------------------------------------|
| подпись                                        |                                                        |
| место практики наименование юридич             | неского лица, ФИО ИП                                   |
| Период прохождения:<br>c «» 2025 г.            | Руководитель практики от<br>техникума: Материкова А.А. |
| по «» 2025 г.                                  | Оценка:                                                |
| Руководитель практики от предприятия должность | «»2025 года                                            |
| подпись                                        |                                                        |

 $M\Pi$ 

# СОДЕРЖАНИЕ

| 1. ВВЕДЕНИЕ3                                   |
|------------------------------------------------|
| 2. ПОСТАНОВКА ЗАДАЧИ И АНАЛИЗ ТРЕБОВАНИЙ4      |
| 3. ВЫБОР ТЕХНОЛОГИЙ И ИНСТРУМЕНТОВ РАЗРАБОТКИ5 |
| 4. ПРОЕКТИРОВАНИЕ АРХИТЕКТУРЫ ПРИЛОЖЕНИЯ6      |
| 5. РЕАЛИЗАЦИЯ МОДУЛЯ ОБРАБОТКИ ИЗОБРАЖЕНИЯ7    |
| 6. РЕАЛИЗАЦИЯ МОДУЛЯ ГРАФИЧЕСКОГО ИНТЕРФЕЙСА8  |
| 7. ИНТЕГРАЦИЯ МОДУЛЕЙ И ТЕСТИРОВАНИЕ9          |
| 8. ДИАГРАММА КОМПОНЕНТОВ10                     |
| 9. ДИАГРАММА СЦЕНАРИЕВ ИСПОЛЬЗОВАНИЯ11         |
| 10. ДИАГРАММА ПОСЛЕДОВАТЕЛЬНОСТЕЙ1             |
| 11. МЕТОДОЛОГИЯ ИЗМЕРЕНИЙ13                    |
| 12. АНАЛИЗ РАЗМЕРОВ СИСТЕМЫ14                  |
| 13. СТЕК ТЕХНОЛОГИЙ15                          |
| 14. ИНСТРУМЕНТЫ РАЗРАБОТКИ16                   |
| 15. ПРОБЛЕМЫ ПРОИЗВОДИТЕЛЬНОСТИ17              |
| 16. АРХИТЕКТУРНЫЕ УЛУЧШЕНИЯ18                  |
| ЗАКЛЮЧЕНИЕ19                                   |
| СПИСОК ЛИТЕРАТУРЫ20                            |
| ПРИЛОЖЕНИЯ21                                   |

1. ВВЕДЕНИЕ

Сроки практики: с 06.10.2025 по 19.10.2025

Место прохождения практики: ООО Малленом Системс

Студент: Горняк Герман Игоревич, группа ИС-34

Руководитель практики: Южакова Надежда Витальевна

практики: приобретение профессиональных навыков области

разработки программного обеспечения, изучение современных технологий

создания графических приложений с использованием Python и фреймворка

PyQt, получение опыта проектирования и реализации программных систем

для обработки и манипуляции изображениями.

Задачи практики:

- Разработка приложения для обработки изображений

- Освоение технологии PyQt для создания GUI

- Изучение библиотеки Pillow для работы с изображениями

- Приобретение навыков модульного проектирования

- Освоение принципов ООП в практической разработке

3

## 2. ПОСТАНОВКА ЗАДАЧИ И АНАЛИЗ ТРЕБОВАНИЙ

Была поставлена задача разработки desktop-приложения для обработки изображений с графическим интерфейсом пользователя. Основные требования:

## Функциональные требования:

- Изменение размера изображения
- Склеивание изображений в одно изображение
- Поворот изображения на заданный угол
- Переименование названия изображения
- Перемещение изображения в другие папки

## Нефункциональные требования:

- Стабильность работы при обработке больших файлов
- Интуитивно понятный графический интерфейс на базе PyQt
- Минимальное потребление системных ресурсов
- Модульная архитектура

## 3. ВЫБОР ТЕХНОЛОГИЙ И ИНСТРУМЕНТОВ РАЗРАБОТКИ

Для реализации проекта были выбраны следующие технологии:

Python - основной язык программирования:

- ростота синтаксиса для быстрой разработки и поддержки
- Богатая экосистема библиотек для работы с графикой
- Кросс-платформенность без изменений кода между ОС

PyQt5 - для графического интерфейса:

- Современный и мощный фреймворк для создания десктопных приложений
- Хорошая документация и множество примеров для обучения
- Поддержка различных ОС без изменения кода

Pillow (PIL) - для обработки изображений:

- Широкая поддержка форматов PNG, JPEG, BMP, GIF и других
- Простой АРІ для операций изменения размера и склеивания
- Активная разработка и регулярные обновления

Среда разработки: VS Code с расширениями для Python

#### 4. ПРОЕКТИРОВАНИЕ АРХИТЕКТУРЫ ПРИЛОЖЕНИЯ

Была разработана двухмодульная архитектура:



## 5. РЕАЛИЗАЦИЯ МОДУЛЯ ОБРАБОТКИ ИЗОБРАЖЕНИЯ

Ключевые классы и методы:

## Класс ImageProcessor:

load\_image() - загрузка с проверкой ошибок и валидацией форматов resize\_image() - изменение размера с использованием LANCZOS и поддержкой пропорций concatenate\_images() - склеивание изображений горизонтально и вертикально

get\_image\_info() - получение метаданных и статистики изображения

#### Особенности реализации:

- Обработка исключений на всех этапах работы с файлами и изображениями
- Поддержка горизонтального и вертикального склеивания изображений
- Автоматическое сохранение пропорций при изменении размера
- Генерация уникальных имен файлов с временными метками

## 6. РЕАЛИЗАЦИЯ МОДУЛЯ ГРАФИЧЕСКОГО ИНТЕРФЕЙСА

## Класс MainWindow содержит:

- Инициализацию виджетов согласно макету с использованием PyQt5
- Обработчики событий для кнопок "Обзор", "Изменить размер", "Склеить"
- Методы отображения информации об изображениях и статуса операций
- Систему уведомлений об ошибках через QMessageBox и статус-бар

## Интерфейс разделен на:

- Верхнюю секцию с элементами выбора изображений и путями к файлам
- Центральную панель с группами элементов для операций изменения размера и склеивания
- Нижнюю панель с кнопками выполнения операций и статус-баром

## 7. ИНТЕГРАЦИЯ МОДУЛЕЙ И ТЕСТИРОВАНИЕ

## Процесс интеграции:

- 1. Создание интерфейса в gui module.py с использованием PyQt5
- 2. Реализация логики в image\_module.py с библиотекой Pillow
- 3. Связывание через обработчики событий и вызовы методов
- 4. Тестирование функциональности на изображениях различных форматов и размеров

## Проведенные тесты:

- Загрузка различных форматов изображений PNG, JPEG, BMP, GIF
- Изменение размеров с разными параметрами ширины, высоты и сохранения пропорций
- Склеивание изображений в горизонтальном и вертикальном направлениях
- Обработка ошибочных сценариев и некорректных входных данных

#### 8. ДИАГРАММА КОМПОНЕНТОВ

#### Описание архитектуры системы:

[Пользователь]  $\longleftrightarrow$  [Графический интерфейс PyQt]  $\longleftrightarrow$  [ImageProcessor Module]

$$\longleftrightarrow$$
 [Pillow Library]  $\longleftrightarrow$  [Файловая система]

 $[ImageProcessorGUI] \longleftrightarrow [ImageProcessor Module] \\ \longleftrightarrow [Pillow Library]$ 

←→[File System]

 $\longleftrightarrow$  [OS Services]

#### Компоненты системы:

- ImageProcessorGUI графический интерфейс пользователя на PyQt5
- ImageProcessor Module основная бизнес-логика обработки изображений
- Pillow Library низкоуровневые операции с графикой и изображениями
- File System хранение исходных и результирующих файлов
- OS Module взаимодействие с операционной системой

## 9. ДИАГРАММА СЦЕНАРИЕВ ИСПОЛЬЗОВАНИЯ

## Акторы системы:

- Пользователь основной пользователь приложения
- Тестировщик проверка корректности работы функций
- Администратор управление системой
- Разработчик доработка и расширение функциональности

## Основные сценарии:

| Актор   Сценарий   Цель                                                             |
|-------------------------------------------------------------------------------------|
|                                                                                     |
| Пользователь   Выбор изображений   Загрузка файлов для обработки                    |
| Пользователь   Изменение размера   Корректировка размеров изображения               |
| Пользователь   Склеивание изображений   Создание композиции из<br>нескольких файлов |
| Пользователь   Сохранение результата   Экспорт обработанного изображения            |
| Тестировщик   Проверка форматов   Валидация поддержки различных типов<br>файлов     |
| Разработчик   Добавление фильтров   Расширение функциональности модуля              |

## 10. ДИАГРАММА ПОСЛЕДОВАТЕЛЬНОСТЕЙ

Пользователь -> Система: Выбрать изображение для обработки

Система -> Файловая система: Проверить существование файла

Файловая система --> Система: Статус проверки

Система --> Пользователь: Подтверждение загрузки

Пользователь -> GUI: Нажать кнопку "Изменить размер"

GUI -> ImageProcessor: Вызвать resize image()

ImageProcessor -> Pillow: Загрузить изображение

Pillow --> ImageProcessor: Объект изображения

ImageProcessor -> Pillow: Выполнить изменение размера

Pillow --> ImageProcessor: Результат операции

ImageProcessor -> Файловая система: Сохранить изображение

Файловая система --> ImageProcessor: Путь к сохраненному файлу

GUI -> Пользователь: Показать сообщение об успехе

Диаграмма деятельности:

Начало → Выбор изображения → Проверка валидности файла

- → Выбор операции → Настройка параметров
- → Обработка изображения → Сохранение результата
- $\rightarrow$  [Успех]  $\rightarrow$  Показать результат  $\rightarrow$  Конец
- ightarrow [Ошибка] ightarrow Сообщение об ошибке ightarrow Повтор выбора ightarrow Конец

## 11. МЕТОДОЛОГИЯ ИЗМЕРЕНИЙ

#### Инструменты тестирования:

- time.perf counter() для замеров времени выполнения операций
- memory\_profiler для анализа потребления памяти при обработке изображений
- pytest для модульного тестирования функций ImageProcessor
- unittest для интеграционного тестирования GUI

#### Результаты измерений

Таблица производительности операций

#### 12. АНАЛИЗ РАЗМЕРОВ СИСТЕМЫ

## Общие метрики:

- Исходный код: 320 строк (Python)
- Бинарные файлы: 18.7 МБ (с зависимостями PyQt5)
- Временные файлы: 0-5 МБ (автоочистка)
- Логи и кэш: 2-10 МБ (в процессе работы)
- Библиотеки зависимостей: 45 МБ (Pillow, PyQt5)

## Распределение по модулям:

- Графический интерфейс (PyQt): 195 строк
- Логика обработки изображений: 85 строк
- Главный модуль и конфигурация: 40 строк
- Тесты и примеры использования: 120 строк

## 13. СТЕК ТЕХНОЛОГИЙ

## Технический стек:

- Язык: Python 3.8+

- Графический фреймворк: PyQt5

- Обработка изображений: Pillow 10.0+

- Файловая система: Стандартная библиотека OS

## Графический интерфейс:

- Язык: Python 3.8+

- Фреймворк: PyQt5

- Стили: QSS (Qt Style Sheets)

- Дизайн: Qt Designer

#### 14. ИНСТРУМЕНТЫ РАЗРАБОТКИ

Интегрированные среды разработки (IDE)

#### markdown

- 1. PyCharm Professional
  - Плюсы: Глубокая интеграция с Django, умный анализ кода
  - Минусы: Высокие системные требования, стоимость

#### 2. Visual Studio Code

- Плюсы: Глубокая интеграция с PyQt и Python, умный анализ кода, отладчик
  - Минусы: Высокие системные требования, стоимость

#### Системы контроля версий

- Git + GitHub/GitLab для хостинга репозиториев
- Упрощенная модель ветвления (main + feature branches)
- Ручное тестирование и сборка для десктопного приложения

#### Инструменты качества кода

#### Статический анализ:

- Pylint проверка стиля и ошибок Python кода
- Flake8 анализ соблюдения PEP8
- Black автоматическое форматирование кода
- туру проверка статической типизации

#### 15. ПРОБЛЕМЫ ПРОИЗВОДИТЕЛЬНОСТИ

## Критические:

- 1. Модуль склеивания изображений показывает наибольшее время выполнения (220 мс)
- 2. Высокое потребление памяти при работе с большими изображениями (до 120 МБ)

#### Рекомендации по оптимизации:

- 1. Оптимизация памяти
  - Внедрить постепенную загрузку больших изображений
  - Добавить автоочистку временных данных после операций
- 2. Оптимизация обработки изображений
  - Добавить проверку размера файлов перед обработкой
- Реализовать автоматическое масштабирование для очень больших изображений
- 3. Асинхронная обработка
  - Вынести операции склеивания в отдельные потоки
  - Использовать QThread для предотвращения блокировки GUI

#### 16. АРХИТЕКТУРНЫЕ УЛУЧШЕНИЯ

- 1. Модульная архитектура
  - Выделить операции с изображениями в независимые модули
  - Создать отдельные классы для каждой группы операций
- 2. Расширяемость архитектуры
  - Реализовать систему плагинов для новых фильтров и эффектов
  - Добавить конфигурационные файлы для настройки параметров

Улучшения процесса разработки

- 1. Автоматизация сборки
  - Автоматизировать создание исполняемых файлов для разных платформ
  - Внедрить автоматическое тестирование основных функций
- 2. Система контроля качества
  - Настроить автоматическую проверку кода (pylint, black)
  - Внедрить модульное тестирование для ImageProcessor
- 3. Документация и сопровождение
  - Создать документацию по установке и использованию
  - Поддерживать актуальный README с примерами работы
  - Добавить комментарии к публичным методам

#### ЗАКЛЮЧЕНИЕ

#### Результаты работы:

- Разработано десктопное приложение для обработки изображений
- Реализована двухмодульная архитектура (GUI + Logic)
- Создан интуитивно понятный интерфейс на PyQt5
- Обеспечена обработка ошибок и валидация данных
- Достигнута кросс-платформенность (Windows, Linux, macOS)

#### Приобретенные навыки:

- Разработка на Python с использованием ООП
- Создание GUI с помощью PyQt5
- Работа с изображениями через Pillow
- Проектирование модульной архитектуры
- Тестирование и отладка приложений

## Перспективы развития:

- Добавление новых операций обработки (фильтры, коррекция цвета)
- Реализация пакетной обработки изображений
- Добавление поддержки RAW-форматов
- Создание плагинной архитектуры для расширения функциональности

## СПИСОК ЛИТЕРАТУРЫ

Официальная документация Python - https://docs.python.org/3/

PyQt5 документация - https://www.riverbankcomputing.com/static/Docs/PyQt5/

Pillow (PIL) документация - https://pillow.readthedocs.io/

Python стандартная библиотека - https://docs.python.org/3/library/

OpenCV для Python - https://opencv-python-tutroals.readthedocs.io/

Qt Documentation - https://doc.qt.io/qt-5/

PyQt5 Tutorials - https://www.learnpyqt.com/

#### ПРИЛОЖЕНИЯ

#### ПРИЛОЖЕНИЕ 1. Руководство пользователя

#### Установка и запуск:

- 1. Установить Python 3.8 или выше
- 2. Установить зависимости: pip install -r requirements.txt
- 3. Запустить приложение: python main.py

#### Основные операции:

- 1. Выбор изображений кнопки "Обзор..." для выбора первого и второго изображения
- 2. Изменение размера задать ширину/высоту и нажать "Изменить размер"
- 3. Склеивание изображений выбрать направление и нажать "Склеить изображения"
- 4. Просмотр информации через кнопку "@" рядом с полем выбора файла

# ПРИЛОЖЕНИЕ 2. Диаграмма деятельности



# ПРИЛОЖЕНИЕ 3. Диаграмма последовательностей

