Combined Author Index

H.J. Aaronson	1915-1945A	A. Bose	211-219A	W. Dahi	537-544A	W.M. Garrison, Jr.	485-496A
R. Abbaschian	1817-1827A 2863-2872A	A. Böttger R.R. Bowman	1129-1145A 1493-1508A	R.P. Das	545-549A 91-93B	G. Gasc R.M. Gates	2917-2921A 3231-3244A
F. Abe	3025-3034A	P. Bracconi	2917-2921A	A.K. Datye	1063-1070A		3231-3244A
	469-477A	G.H. Bray	3055-3066A	S.A. David	371-384B	M. Gaune-Escard	39-44B
K. Abiko	3025-3034A 263-269A	LVM Down	3055-3066A	D.L. Davidson C.Z. De	865-879A 1413-1421A	F.W. Gayle R.M. German	2409-2417A 211-219A
N. ADIKO	1515-1519A	J.W. Bray S.S. Brenner	485-496A 2725-2736A	H.C. de Groh, III	2169-2181A	n.w. German	377-381A
M.B. Aboukheshem	285-294B	P.L. Bretz	519-526A	T. Debroy	207-214B		1455-1465A
S.G. Acharya A. Adams	493-503B 2941-2945A	J.K. Brimacombe	2469-2480A	S. Delfino G.P. Demopoulos	1005-1012A 847-856B	11 01	2357-2364A
B.L. Adams	759-768A	P.K. Brindley	2527-2540A	G.F. Demopoulos	857-864B	H. Ghonem	3067-3072A 3169-3171A
	2501-2513A	JP. Bros	2541-2548A 39-44B		865-877B		3067-3072A
A Ashiani	2515-2526A 2365-2372A	L.C. Brown	2469-2480A		847-856B 857-864B	10.00	3169-3171A
A. Advani S. Ahuja	669-680A	S. Brown	2091-2103A		865-877B	J.C. Gibeling	3077-3084A 3077-3084A
o. ranaja	2326-2330A	J.D. Bryant	1719-1735A	T.H. Denda	519-526A	P.P. Gillis	2817-2831A
J.L. Albarran	3161-3166A	J.M. Burgess B.D. Butler	267-283B 1617-1626A	J.H. Devletian B.K. Dhindaw	451-455A	R.W. Glaisher	1063-1070A
D.E. Albert	3161-3166A	D.D. Datio	1011 102011	R.J. Dippenaar	2326-2330A 395-397B	M.E. Glicksman M.J. Godbole	659-667A 1095-1103A
D.L. MOON	3035-3043A 3035-3043A			M. Djahazi	2111-2120A	A.K. Gogia	401-415A
M. Alkan	409-413B	J.R. Cahoon	2491-2500A	Ö.N. Dogan	2121-2129A	A.N. Gokarn	567-572B
E. Allain S.M. Allen	249-259B 3303-3308A		3399-3404A	R.D. Doherty	307-319A 321-334A	N.A. Gokçen	93-96B 453-458B
O.W. Allen	3303-3308A	GJ. Cai	3399-3404A 1631-1640A	S.L. Draper	2527-2540A	A.M. Gokhale	2973-2980A
C.J. Altstetter	237-249A	R.B. Calhoun	2291-2299A		2541-2548A		2973-2980A
G. Amberg C.D. Anderson	2301-2311A 2699-2714A	B. Campillo	3161-3166A	K.S. Dubey Ph. Dubois	2675-2678A 2791-2801A	I.S. Golovin	2567-2579A
I.E. Anderson	2159-2167A		3161-3166A	A. Dubus	2281-2289A	J.L. Gonzalez Velazquez	2211-2221A
J.P. Anderson	769-777A	B. Cantor	3207-3218A	H. Dunlop	977-988A	S.H. Goods	1021-1032A
HO. Andrén	1631-1640A	S.H. Carpenter	3207-3218A 779-783A	J.S. Dunning B.M. Dupen	2061-2068A 2069-2071A	N. Gope	221-235A
T. Angeliu T.M. Angeliu	2887-2904A 3343-3359A	R.M. Cassidy	125-133B	D.J. Duquette	1551-1562A		1596A 2193-2204A
	3343-3359A	M.G. Castelli	551-561A		1563-1572A	J.A. Gordon	1013-1020A
H. Anzai	1291-1298A	S. Chakraborty	135-151B 153-167B			D 0	1840A
K. Anzai	881-882B 881-882B	K.S. Chan	497-507A			R. Goswami	3207-3218A 3207-3218A
K. Aoki	2131-2140A		183-199A	K. Eckler G.R. Edwards	2672-2675A 215-222B	S. Gowri	3369-3376A
D. Apelian	477-492B	S. Chang	1663-1677A 1333-1346A	D. El Allam	39-44B		3369-3376A
H. Araki R. Armstrong	469-477A 2339-2347A	Y.A. Chang	2081-2090A	M.S. El-Eskandarany	2131-2140A	N.J. Grant G.T. Gray, III	1083-1093A 77-86A
S.M. Arnold	2527-2540A		1038-1043A	S.M. El-Soudani S.P. Elder-Randall	1719-1735A 1817-1827A		87-97A
E. Arzt	1521-1539A	S.K. Chatterjee	1371-1373A	J.I. Eldridge	2527-2540A	H.A. Grebe J.T. Gregory	2365-2372A
G. Asai	2007-2013A 2061-2068A	U.K. Chatterjee K. Chattopadhyay	1479-1492A 3207-3218A	M. Elices	1573-1584A	R.N. Gregory	2393-2400A 1807-1815A
R.J. Asaro	1375-1379A	, , , , , , , , , , , , , , , , , , , ,	3207-3218A	J.E. Epperson J.W. Evans	769-777A 429-435B	C.K. Gupta	437-442B
R.J. Asfahani M. Atzmon	2183-2191A 49-53A	01/ 01-11	2419-2429A	Olivi Evallo	420 4000	M. Gupta	719-736B 719-736B
R. Ayer	2447-2453A	S.K. Chattopadhyay M.C. Chaturvedi	1371-1373A 3399-3404A				831-843A
	2455-2467A		3399-3404A	L.M. Fabietti	3361-3368A		845-850A
J.A. Azzi	903-918A	C. Chen	163-170A	B. Farouk	3361-3368A 477-492B	R.C. Gupta	3317-3324A 3317-3324A
		CC. Chen D. Chen	2105-2110A 398B	M. Feller-Kniepmeier	99-105A	R.I.L. Guthrie	765-778B
J.C. Bae	2557-2565A	D.M. Chen	785-795A	11.1.5	745-757A	1 11 Commission	765-778B
K. Balasubramanian	709-727A	O.I. Ohan	785-795A	H.J. Feng F. Fernandez	2373-2379A 389-400A	A. M. Gyurko	3073-3076A 3073-3076A
A. Ball	729-744A 627-638A	G.L. Chen	3115-3120A 3115-3120A	A. Ferreira	3251-3261A		00.000.00.
R.G. Ballinger	3231-3244A	G.S. Chen	1551-1562A	R. Ferro	3251-3261A 1005-1012A		
	3231-3244A	U Chan	1563-1572A	D.P. Field	2501-2513A	R.T. Haasch	2631-2639A
	3177-3192A	H. Chen	1439-1444A 769-777A		2515-2526A 695-700B	P. Haasen J.P. Hajra	1901-1914A 747-752B
A. Bandopadhyay	3177-3192A 207-214B		1431-1437A	J.R. Fincke	695-700B 695-700B	on . ragin	747-752B
A. Banerjee	207-214B 401-415A	J. Chen	737-745B 737-745B	H.F. Fischmeister	1631-1640A	DAL Mala	23-28B 1863-1868A
D. Banerjee	417-431A	J.H. Chen	509-517A	K. Fitzner	1836-1839A	B.N. Hale J.C. Hamilton	851-855A
S. Banerjee	2015-2028A		2549-2556A	M.C. Flemings	997-1003A 2672-2675A	Q. Han	398B
D.R. Barker R.W. Bartlett	295-305A 241-248B	S. Chen	355-371A	J.E. Flinn	2557-2565A	K.J. Handerhan	485-496A
P.S. Bate	1467-1478A	S.W. Chen Y.L. Chen	1038-1043A 2437-2445A	P.J. Flint	267-283B	N. Hansen G.S. Hanumanth	807-819A 753-763B
W.J. Baxter	3045-3053A	Z.W. Chen	2393-2400A	C.L. Foiles S. Foner	1105-1109A 573-586A		753-763B
T.D. Davids	3045-3053A	L. Cheng	1129-1145A	J.E. Franklin	851-855A	J. Hao	65-68A
T.D. Bayha	1607-1615A 1653-1662A	S.C. Cheng P.R. Chidambaram	1509-1513A 215-222B	W.E. Frazier	719-736B	W.C. Harrigan, Jr. SI. Hashimoto	1541-1549A 3085-3091A
R.J. Bayuzick	2699-2714A	S.E. Chidiac	841-845B	D.R. Frear	719-736B 2641-2655A		3085-3091A
G.R. Belton L.P. Bendel	45-51B 2447-2453A		841-845B	H. Fredriksson	2301-2311A	E.B. Hawbolt	2469-2480A 39-44B
I.M. Bernstein	1313-1322A	H.C. Cho Y. Choi	201-210A 2387-2392A	N. Frey	1719-1735A	E. Hayer X.L. He	2111-2120A
R.A. Berryman	223-227B	R.T.C. Choo	357-369B	K. Frisk	639-649A 1271-1278A	C.R. Heiple	779-783A
J. Besson B.P. Bewlay	2791-2801A 121-133A		371-384B	F.H. Froes	1071-1081A	G.A. Henshall D.M. Herlach	881-889A 1585-1591A
H.K.D.H. Bhadeshia	1171-1179A	Y.T. Chow Y. Chryssoulakis	81-90B	M.G. Frohberg	747-752B 747-752B	D.M. Heridon	2672-2675A
S.B. Bhaduri	251-261A	BL. Chu	1801-1806A 2105-2110A		23-28B	J. Hertz	815-819B
S.C. Bhanawat K. Bhanumurthy	91-93B 3393-3394A	M.G. Chu	2323-2325A	G. Frommeyer	527-535A	D.W. Hetzner	815-8198 513-522B
re. Drianamorary	3393-3394A		3394-3399A	R.J. Fruehan	29-37B 45-51B	P.D. Hicks	237-249A
V.V. Bhanuprasad	1373-1375A	WY. Chu	3394-3399A 1299-1312A		117-123B	M. Hillert	3141-3149A 3141-3149A
M.L. Bhatia	2833-2847A 2849-2857A	T.H. Chuang	1187-1193A	K. Fujiwara	415-421B		665B
S.K. Bhatia	493-503B	KS. Churn	2141-2145A	R. Fujiwara K. Fukita	459-466B 183-187B	C.R. Hills	2641-2655A
A. Bhattacharya F.S. Biancaniello	23-34A 2409-2417A	J.B. Clark W.M. Clift	2183-2191A 851-855A	· · · · · · · · · · · · · · · · · · ·		K. Hirao J.P. Hirth	2783-2790A 1013-1020A
F.O. Diamodificilo	3263-3272A	T.W. Clyne	977-988A			G.F. Hilli	1840A
N.C. Distr	3263-3272A 3263-3272A	R.S. Coates J.B. Cohen	2625-2630A 1617-1626A	I. Gaballah	249-259B		1851-1852A 1851-1852A
N.C. Birla D.K. Biswas	2849-2857A 1479-1492A	J.B. COMEN	2685-2697A	C.M. Gabryel JC. Gachon	1279-1283A 815-819B	A.F.A. Hoadley	1851-1852A 631-642B
P.L. Blackwell	2667-2669A		341-354A		815-819B	W.H. Hofmeister	2699-2714A
D.R. Boehme W.J. Boettinger	851-855A	M. Cohen	2987-2998A 2987-2998A	W.F. Gale	2657-2665A 355-371A	D.A. Hoke G.R. Holcomb	77-86A 789-790B
N.R. Bonda	2409-2417A 479-484A	H. Comert	2401-2407A	M. Gao F.A. Garner	1963-1976A		789-790B
J.P. Bonsack	261-266B	D.C. Crawford	1195-1206A	R.K. Garrett	2183-2191A	N.J.H. Holroyd	1679-1689A

H. Hoshino A. Houndri J.M. Howe	169-173B 1801-1806A 135-148A	S.K. Khera	3393-3394A 3393-3394A 1373-1375A	S. Lele R. LeSar	401-415A 417-431A 3105-3113A	P.J. Meschter L.W. Meyer MCh. Meyer-Joly	1763-1772A 77-86A 249-259B
P.R. Howell	2159-2167A	M. Kikuchi	1389-1393A	n. Lesai	3105-3113A	M.A. Meyers	3251-3261A
G.L. Hu	785-795A	R.J. Kilmer	1653-1662A	J.J. Lewandowski	1679-1689A	,,	77-86A
	785-795A	B.C. Kim	2803-2816A	N. Lewis	121-133A		87-97A 3251-3261A
Z.Q. Hu S.C. Huang	1253-1258A 375-377A	N.J. Kim S. Kim	2589-2596A 1807-1815A	C. Leymonie C. Li	2243-2248A 3293-3301A	G.M. Michal	2121-2129A
X. Huang	339-356B	SS. Kim	2141-2145A	O. LI	3293-3301A	V.J. Michaud	2263-2280A
J.D. Hunt	1111-1120A	T.K. Kim	2581-2587A	D. Li	2873-2878A	J. Miettinen	1155-1170A
W.B. Hutchinson	373-375A	WJ. Kim	527-535A	F. Li	2667-2669A	A. Mikula M. Militzer	601-611B 821-830A
I.S. Hwang	3231-3244A 3231-3244A	W.T. Kim	3207-3218A 3207-3218A	G.F. Li	331-337B 2879-2885A	Will Williams	3013-3023A
	3177-3192A	YH. Kim	2589-2596A	H.P. Li	251-261A	A = A400	3013-3023A
	3177-3192A	YW. Kim	1663-1677A	P.E. Li	1379-1381A	A.E. Miller A.R. Miller	69-76A 65-68A
K.S. Hwang	2775-2782A 1947-1955A	Y.D. Kim	2981-2986A 2981-2986A	Z.G. Li P.K. Liaw	1063-1070A	DJ. Min	29-37B
R.W. Hyland, Jr.	1947-1955A	Y.G. Kim	2753-2760A	K.C. Liddell	1541-1549A 879-881B	Y. Minamino	2783-2790A
			477-492B		879-881B	R.V. Miner F.A. Mirza	551-561A 841-845B
M. Igarashi	953-961A	Y.S. Kim	1679-1689A	JC. Lin	2081-2090A	r.A. Will Zd	841-845B
H. lizuka	609-616A	H. Kimura	263-269A 1515-1519A	M. Lin	2987-2998A 2987-2998A	A. Mitchell	791-803B
K. Ikeuchi	2905-2915A	J.E. King	2657-2665A	T. Link	99-105A		805-814B
R. Inoue S.W. Ip	613-621B	J.S. Kirkaldy	651-657A	C.M. Liu	263-269A		791-803B 805-814B
G.A. Irons	303-311B 779-788B	•	1883-1890A		1515-1519A	E.J. Mittemeijer	1129-1145A
	779-788B		709-727A 729-744A	H. Liu	3394-3399A 3394-3399A	K. Miyata	953-961A
	753-763B	H.J. Klaar	537-544A	H.L. Liu	1051, 1062A	K.L. Moazed R. Mochizuki	1999-2006A 459-466B
J.A. Isaacs	753-763B 1207-1219A		545-549A	T.F. Liu	1395-1401A	F. Mohamed	831-843A
K. Ishida	1147-1153A	R.J. Klassen	3273-3280A	W.G. Liu	2939-2941A		845-850A
K.N. Ishihara	2431-2435A		3281-3291A 3273-3280A	Y. Liu	3303-3308A 3303-3308A	F.A. Mohamed	719-736B
M. Iwase	459-466B		3281-3291A		2481-2482A	D. Mondal	719-736B 3309-3315A
R.M. Izatt	169-173B 65-72B	C.F. Klein	2455-2467A		335-340A		3309-3315A
***************************************	00 125	O.J. Kleppa	1836-1839A	Y.L. Liu	807-819A 1403-1411A	N.E. Moody, Jr.	1013-1020A
			53-56B 997-1003A	ZY. Liu J.D. Livingston	3303-3308A	J.J. Moore	1840A 59-64A
K.T. Jacob	57-64B	A. Kobayashi	313-316B	olb. Livingoloii	3303-3308A	S.S. WIGGIG	2373-2379A
	3325-3335A	M. Kobayashi	3085-3091A	J. Llorca	919-934A	M.M. Morra	3231-3244A
S.B. Jagtap	3325-3335A 93-96B	M.M. Kocakerim	3085-3091A 409-413B	I.E. Locci	1493-1508A 1705-1718A		3231-3244A 3177-3192A
N.C. Jain	891-901A	J. Koch	2887-2904A	C.M. Lombard	2669-2672A		3177-3192A
A.F. Jankowski	1601-1606A	M.J. Koczak	3219-3230A	G. Lorang	2243-2248A	J.E. Morral	3245-3249A
G.M. Janowski	2715-2723A	11 Mahama	3219-3230A	W. Löser	1585-1591A		3245-3249A
	3263-3272A 3263-3272A	H. Kokawa G.E. Korth	2905-2915A 2557-2565A	K.A. Lou M.L. Lovato	121-133A 935-951A	J.W. Morris, Jr.	2069-2071A 2999-3012A
Å. Jansson	2953-2962A	D.A. Koss	2159-2167A	C.M. Loxton	2631-2639A	5.11. World, 51.	2999-3012A
	2953-2962A	T. Kottke	2365-2372A	B. Lo	2597-2605A		857-864A
P. Jarry S. Jauregi	2281-2289A 389-400A	F. Kovac W. Kowbel	373-375A 1051, 1062A	H. Lu P. Lu	2483-2490A 1063-1070A	A. Mortensen	1323-1332A 1207-1219A
S.C. Jeng	1395-1401A	P.F. Kozlowski	903-918A	G.K. Lucey, Jr.	1323-1332A	A. WORLDISON	2071-2073A
D.J. Jensen	807-819A	J.J. Kramer	1987-1998A	C.P. Luo	1403-1411A		2263-2280A
J.Y. Jeon W. Jie	2581-2587A 1363-1370A	G. Krauss	1221-1232A 1233-1241A				2281-2289A
J.Z. Jin	1379-1381A	A. Kroupa	709-727A			M. Moulaert	2291-2299A 1773-1781A
W.C. Johnson	2761-2773A	7 ii Tiroupu	729-744A	D. Ma	3377-3381A	B.C. Muddle	3193-3205A
J.J. Jonas	821-830A	B.R. Krueger	55-58A	X.L. Ma	3377-3381A 1121-1128A		3193-3205A
	271-293A 1641-1651A	R. Kuklinski A.M. Kumar	659-667A 1013-1020A	D. Macciò	1005-1012A	A.K. Mukherjee	3135-3140A 3135-3140A
	3013-3023A	A.W. Maria	1840A	M. Maeda	423-427B	T. Mukherjee	221-235A
	3013-3023A	D.M. Kundrat	385-394B		183-187B 325-330B		1596A
	2111-2120A 963-975A	J. Kuniya K.H. Kuo	1291-1298A	Y.R. Mahajan	2223-2230A	D. Mukhanadhuau	2193-2204A 2015-2028A
	597-608A	K.H. Kuo	1121-1128A 2437-2445A		2833-2847A	P. Mukhopadhyay M.E. Mullins	2387-2392A
	2607-2617A	D. Kwon	1375-1379A	K. Malau S.S. Mani	249-259B 211-219A	Z.A. Munir	7-13A
J.W. Jones	1033-1037A	H W Kwee	2803-2816A	S.L. Mannah	1751-1761A	A. Munitz	1817-1827A
S. Jonsson	3141-3149A 3141-3149A	HW. Kwon A.K. Kyllo	2121-2129A 573-582B	S.L. Mannan	3093-3103A	K. Muraleedharan K. Muralledharan	401-415A 417-431A
S. Joo	765-778B	,		E I Mannian	3093-3103A	J.C. Murray	2357-2364A
	765-778B			F.J. Mannion L.K. Mansur	45-51B 1977-1986A	A.H. Mutz	55-58A
R. Joos J. Juarez-Islas	1521-1539A 719-736B	S. Lafreniere	753-763B	X. Mao	2873-2878A		
O. Oddroz Isids	719-736B		753-763B	Z. Mao	295-302B		
J.A. Juarez-Islas	3161-3166A	G. Laird, II M.G. Lakshmikantha	2941-2945A 23-34A	S.W. Marcuson H. Margolin	573-582B 3151-3160A	K. Nagata T. Nagoya	331-337B 263-269A
S.B. Jung	3161-3166A 2783-2790A	Y. Lan	537-544A	11. Margolli	3151-3160A	R. Najafabadi	3105-3113A
WG. Jung	53-56B		545-549A	S.B. Margolis	15-22A		3105-3113A
T.L. Jungling	2183-2191A	A.M. Lancha K.A. Lark	1573-1584A 295-305A	B. Marquardt S.P. Marsh	295-305A 659-667A	A. Najafi-Zadeh	2607-2617A 339-356B
		J.C. LaSalvia	87-97A	L. Martinez	3161-3166A	F.M. Najjar S. Nakazawa	3025-3034A
		E. Lavernia	831-843A		3161-3166A	C. Hanazawa	469-477A
R. Kainuma	1147-1153A	E I I avenue	845-850A	V. Martínez	389-400A	THE Manual	3025-3034A
M. Kajihara B.B. Kale	1389-1393A 567-572B	E.J. Lavernia	719-736B 719-736B	C.N. Marzinsky I. Masaoka	2455-2467A	T.K. Nandy	401-415A
	93-96B		719-736B 3394-3399A	T.A. Mason	1291-1298A 695-700B	V.C. Nardone	417-431A 563-572A
G.B. Kale	3393-3394A		3394-3399A		695-700B	C.S. Narendranath	1479-1492A
	3393-3394A 1373-1375A	C.C. Law	2923-2937A 2069-2071A	C.R. Masson T. Mathews	227-229B 3325-3335A	A. Nasar C. Nassaralla	467-476B 117-123B
G.M. Kale	382-384A	A. Lawley	3393-3394A	1. Widthews	3325-3335A	K.A. Natarajan	5-11B
	833-839B	,	3393-3394A	D.K. Matlock	3325-3335A 1221-1232A	M.V. Nathal	5-11B 2527-2540A
	833-839B 57-64B		3219-3230A	E E Matthus	1233-1241A	H Navah Hashami	2541-2548A
R.G. Kamar	57-64B 2469-2480A	T.R. Leax	3219-3230A 2725-2736A	E.F. Matthys	701-718B 701-718B	 H. Nayeb-Hashemi A. Needleman 	573-586A 919-934A
M. Kang	2469-2480A 2483-2490A	JP. Lebrat ES. Lee	69-76A	J. Mazumder	2419-2429A 2631-2639A	R.W. Neu	2619-2624A
M.K. Kang	785-795A	ES. Lee	2753-2760A	MIK M.O.	2631-2639A	M.G. Nicholas	1773-1781A
A.M. Kanury	785-795A 2349-2356A	E.H. Lee, Sr. E.U. Lee	1977-1986A 2205-2210A	M.K. McCarter	537-548B 549-555B	J.F. Nie	3193-3205A 3193-3205A
Z. Karagôlge	409-413B	H.K. Lee	747-752B	M.R. McCartney	1063-1070A	X. Nie	737-745B
S. Karagoz	1631-1640A		747-752B	K.F. McCarty	851-855A		737-745B
M. Karayaka M.E. Kassner	2029-2038A 881-889A	J.K. Lee	1891-1900A 2387-2392A	P.G. McCormick	1285-1290A 2211-2221A	K. Nishioka	1869-1881A 1147-1153A
U.R. Kattner	2081-2090A	S. Lee	1375-1379A	A.J. McEvily A.D. McLeod	1279-1283A	T. Nishizawa W.D. Nix	2007-2013A
H. Kaufmann	2071-2073A		2803-2816A	P.A. McQuay	149-161A	E. Niyama	881-882B
Y. Kawamoto	459-466B 3337-3341A	EV LaCoura	2589-2596A	H.J. McQueen	881-889A	•	881-882B
W. Ke	3337-3341A 3337-3341A	F.K. LeGoues T.C. Lei	1915-1945A 2879-2885A	Z. Mei J.M. Meininger	857-864A 3077-3084A	T. Noda R.D. Noebe	469-477A 1493-1508A
T.F. Kelly	2557-2565A	B.W. Leitch	797-806A	o.m. monninger	3077-3084A	11.0. 110606	1705-1718A

	-W. Noh	2141-2145A 2905-2915A	M. Rappaz	631-642B	O.D. Sherby	2491-2500A	I. Tamura	2737-2751A
	.H. North . Nourbakhsh	3151-3160A	J.C. Rawers	2941-2945A 2061-2068A		1509-1513A 527-535A	Q. Tan	2147-2158A 737-745B
		1181-1186A 3151-3160A	K.K. Ray	3309-3315A 3309-3315A	G.J. Shiflet	1259-1269A	Z. Tan	737-745B 1627-1630A
1.	C. Noyan	479-484A	S.P. Ray	2381-2385A	Y. Shigeno T. Shimada	429-435B 169-173B	M. Tanaka	609-616A
			R.P. Reed A.J. Reeves	2061-2068A 977-988A	P.H. Shingu R.K. Shiue	2431-2435A 163-170A	T. Tanaka K.N. Tandon	2431-2435A 3399-3404A
L	L. Oden	453-458B	M.A. Reuter W.C. Revelos	643-650B 587-595A	Q.H. Shu	1413-1421A		3399-3404A
T	. Ogura .l. Oh	459-466B 963-975A	A.P. Reynolds	3055-3066A 3055-3066A	D. Sichen D. Sil	317-324B 3166-3169A	DP. Tao H.M. Tawancy	526-528B 1829-1833A
	. Ohmori	2737-2751A	W.H. Rhee	3055-3066A 3151-3160A		3166-3169A	K.A. Taylor	107-119A
т	Oishi	2147-2158A 583-590B	C.R. Ribaudo	3151-3160A	S. Simeonov	183-187B 325-330B	P.R. Taylor FE. Teng	443-451B 2859-2861A
•	Olstii	459-466B	G.G. Richards	513-522B 573-582B 3263-3272A	E.A. Simielli	597-608A	J.L. Terrier S.K. Tewari	2791-2801A 2631-2639A
1	H. Okabe	415-421B 583-590B	S.D. Ridder	3263-3272A 3263-3272A	A.K. Singh	3317-3324A 3317-3324A	S.N. Tewari	3383-3392A
		415-421B	A. Rist	385-394B	K. Singh R.P. Singh	437-442B 3393-3394A	N.N. Thadhani	3383-3392A 3251-3261A
C	.J. O'Keefe .L. Olson	591-599B 215-222B	R.O. Ritchie A.S. Rodríguez	2249-2257A 271-293A	H.F. Singil	3393-3394A		41-48A
0	.B. Olson	2987-2998A 2987-2998A	D.W. Roh A.D. Romig, Jr.	2753-2760A 3245-3249A		307-319A 321-334A		3251-3261A 2365-2372A
	. Ono	313-316B	A.D. Honing, or.	3245-3249A	V. Singh	689-690A	G. Thauvin D.J. Thoma	2243-2248A 1347-1362A
H	. Ono	583-590B 415-421B	H.M. Roshan	2641-2655A 2223-2230A	O.P. Sinha	2849-2857A 3317-3324A	B.G. Thomas	903-918A
	. Ono	1389-1393A 382-384A	J. Rösler M. Roy	1521-1539A 2833-2847A		3317-3324A	A.W. Thompson	339-356B 3035-3043A
	. Osamura L. Oscarson	65-72B	G. Roy Chaudhury	91-93B	S. Sircar	2419-2429A 2631-2639A		485-496A 1299-1312A
	. Oztekin . Ozturk	73-80B 523-526B	O.A. Ruano K.C. Russel	527-535A 1963-1976A	T. Siwecki	373-375A		1313-1322A
	. OZIUK	323-320B	V. Ruth	1853-1862A	D.J. Smith P.R. Smith	1063-1070A 587-595A	R.G. Thompson	3035-3043A 1783-1799A
			N. Ryum	433-444A 445-449A	R.N. Smith W.O. Soboyejo	659-667A 1737-1750A	R.G. Thompson R.C. Thomson	1171-1179A
	.H. Palma .C. Pan	389-400A 1187-1193A			W.O. GODOYOJO	2039-2059A	H. Tian YW. Tian	681-687A 666-669B
-	.R. Pande	567-572B	M.D. Saban	125-133B	H.Y. Sohn	2249-2257A 285-294B	J.K. Tien	3073-3076A
	. Pantelis .G. Papangelakis	1801-1806A 847-856B	A. Saccone	1005-1012A	11.1. 00111	537-548B		519-526A 3073-3076A
		857-864B 865-877B	Y. Sahai	135-151B 153-167B	M.C. Somani	549-555B 2849-2857A	R. Tirard-Collet R.H. Titran	2281-2289A 3121-3133A
		847-856B	O. Sahin	3151-3160A 3151-3160A	I.D. Sommerville	223-227B		3121-3133A
		857-864B 865-877B	P.R. Sahm	3377-3381A	I. Song	227-229B 41-48A	J.M. Toguri W.K. Tolley	303-311B 65-72B
	. Parameswaran	1751-1761A	K. Sakaguchi	3377-3381A 423-427B	D.B. Sorenson	2259-2262A 171-181A	J. Toribio	1573-1584A 701-718B
•	.S. Parikh	879-881B 879-881B	T. Sakai	423-427B 325-330B	G. Spanos J.A. Spitznagel	2725-2736A	G. Trapaga	701-718B
1	S. Park .H. Park	201-210A 1641-1651A	Y. Sakuma	1221-1232A 1233-1241A	S. Sridhara	3193-3205A 3193-3205A		683-693B 683-693B
E	.R. Patterson	2481-2482A	F.H. Samuel	3369-3376A 3369-3376A	S. Srikanth	101-103B	C.H. Tsau	2313-2321A
	.K. Patwardhan .C. Paul	891-901A 537-548B	E. Samuelsson	791-803B	V. Srinivasan	879-881B 879-881B	SC.Y. Tsen A.A. Tseng	1063-1070A 457-467A
		549-555B		805-814B 791-803B	D.J. Srolovitz	3105-3113A	H.T. Tsou T.H. Tsou	1051, 1062A
1	.J. Pearlstein .J. Pedraza	73-80B 1095-1103A		805-814B	G.R. St. Pierre	3105-3113A 789-790B	F. Tsukihashi	2775-2782A 175-181B
1	.E. Peebles .H. Perepezko	2641-2655A 1347-1362A	J.M. Sanchez	3073-3076A 3073-3076A		789-790B	U.H. Tundal	313-316B 433-444A
	. Perez	3161-3166A	N. Sano	175-181B 313-316B	G.R. Stafford M.K. Stalker	2715-2723A 3245-3249A		445-449A
1	P. Perng	3161-3166A 2105-2110A	D.S. Sarma	221-235A	E.A. Starke, Jr.	3245-3249A 3055-3066A	A. Turnbull	3231-3244A 3231-3244A
	. Pesic	13-22B		1596A 2193-2204A		3055-3066A		
	.D. Peteves	557-566B 1773-1781A	Y.I. Sarrak Y. Sasaki	2567-2579A 45-51B	D.M. Stefanescu	1333-1346A 681-687A	J.J. Urcola	389-400A
1	. Petric .J. Piccone	59-64A 2672-2675A	R. Sasikumar	2326-2330A		669-680A	J.J. Orcola	003-400A
-	I.R. Piehler	2669-2672A	S.M.L. Sastry S. Satoh	2039-2059A 2761-2773A	V.C. Storhok	2326-2330A 557-566B		
	i.A. Pirzada I. Pishbin	443-451B 2817-2831A	G.B. Schaffer	1285-1290A	M.G. Stout	935-951A	J.J. Valencia	701-718B 701-718B
9	. Polymenis . Pourrahimi	1801-1806A 573-586A	R. Schmidt J.L. Schmitt	745-757A 1957-1961A	KI. Sugimoto	3085-3091A 3085-3091A	R.Z. Valiev	3135-3140A 3135-3140A
1	I. Prabhu	135-148A	D.S. Schwartz J.D. Scott	2039-2059A	Y. Sugimura H. Suito	2231-2242A 613-621B	M. Valsan	1751-1761A
1	V.R.K. Prasad	3093-3103A 2849-2857A	J.R. Scully	125-133B 2641-2655A	L.B. Sukla	91-93B	T.J. Van Der Walt J.S.J. Van Deventer	643-650B 643-650B
		3093-3103A	S. Seetharaman V. Seetharaman	317-324B 295-305A	J. Sun M. Sun	2483-2490A 591-599B	W.H. Van Niekerk	395-397B
	.N. Pratt	2223-2230A 2401-2407A		2669-2672A	W.P. Sun	821-830A	R.A. Varin	2963-2972A 617-625A
1	M.K. Premkumar	3219-3230A 3219-3230A	H. Sehitoglu	2619-2624A 2029-2038A		3013-3023A 3013-3023A		1243-1252A 2963-2972A
1	M. Psaila-		J.A. Sekhar	3361-3368A 3361-3368A	70.00	2111-2120A	A. Varma	69-76A
	Dombrowski	3231-3244A 3231-3244A		23-34A	Z.Q. Sun	3115-3120A 3115-3120A	S.K. Varma	3166-3169A 3166-3169A
	.W. Pugh I.P. Puls	2259-2262A	N. Selhaoui	251-261A 815-819B	G. Sundararajan M. Sundararaman	2833-2847A 2015-2028A	V.K. Vasudevan	690-697A
,	n.P. Puis	797-806A		1836-1839A	B. Sundman	821-831B	S. Vecchio B. Venkataraman	87-97A 2833-2847A
			S.L. Semiatin	815-819B 1719-1735A	J.K. Sung	821-831B 1033-1037A	 M. Venkatraman S. Venugopal 	1479-1492A 3093-3103A
	B.H. Rabin P. Rachev	35-40A 175-181B		963-975A 295-305A	J.R. Suriy	2887-2904A	-	3093-3103A
	3.V. Radhakrishna			2669-2672A		3343-3359A 3343-3359A	G.E. Vignoul	3073-3076A 3073-3076A
	Bhat B. Radhakrishnan	2223-2230A 1783-1799A	S.P. Sengupta	149-161A 1371-1373A	A.J. Sunwoo	857-864A	M. Vijayalakshmi	1751-1761A
	S.V. Raj	1493-1508A	R. Shah	3383-3392A	S. Suresh	1323-1332A 919-934A	B. Vinokur I.S. Virk	1833-1836A 617-625A
		1691-1703A 1705-1718A	H. Shahani	3383-3392A 2301-2311A		2231-2242A	G.B. Viswauathan	1243-1252A 690-697A
(. Ramachandra	689-690A 3317-3324A	M.A. Shaker M. Shamsuddin	96-101B 467-476B	A.K. Suri C. Suryanarayana	437-442B 1071-1081A	C. Vivès	189-206B
		3317-3324A	B. Shang	295-302B	M. Susa S.O. Suvorova	331-337B 2567-2579A	V.R. Voller T. Vreeland, Jr.	651-664B 55-58A
	P. Ramachandrarao B. Ramaswami	2675-2678A 3273-3280A	D. Shangguan	1333-1346A 1111-1120A	K. Suzuki	2131-2140A		
		3281-3291A	H.C. Charter	669-680A	C.R. Swaminathan W.D. Swank	651-664B 695-700B	D Weer-	1001 10144
		3273-3280A 3281-3291A	H.S. Shankar R.E. Shannon	493-503B 1541-1549A		695-700B	R. Wagner W.S. Walston J.L. Walter	1901-1914A 1313-1322A 2259-2262A
	(.T. Ramesh .S.B. Rao	2625-2630A 2849-2857A	A.J. Shapiro R.S. Sharma	2409-2417A 91-93B	J. Szekely	701-718B 701-718B	J.L. Walter F.G. Wang	2259-2262A 1379-1381A
	.G. Rao	3166-3169A	R.M. Sharp	2393-2400A		683-693B	G.Z. Wang	509-517A
	C.B.S. Rao	3166-3169A 1751-1761A	D.H. Shastry Y.Y. Sheng	1751-1761A 779-788B		683-693B 357-369B	H. Wang H.Y. Wang	903-918A 3105-3113A
- 1				779-788B		371-384B		3105-3113A

M. Wang	821-831B
N. Wang	821-831B 1423-1430A
P. Wang R. Wang	690-697A
R. Wang	3115-3120A 3115-3120A
S.C. Wang	505-511B
Y. Wang Z. Wang	2859-2861A 1423-1430A
ZC. Wang	623-629B 666-669B
Z.F. Wang	3337-3341A
	3337-3341A
Z.G. Wang	1253-1258A 2939-2941A
G.S. Was	2939-2941A 1033-1037A 1195-1206A 2887-2904A
	2887-2904A
	3343-3359A 3343-3359A
D. Watkins	2669-2672A 1607-1615A
F.E. Wawner	1653-1662A
C.M. Wayman	1439-1444A 2981-2986A
	1431-1437A 1445-1454A
	1445-1454A 2981-2986A
G.C. Weatherly	1403-1411A
	3273-3280A 3281-3291A
	3281-3291A 3273-3280A 3281-3291A
	3281-3291A 1423-1430A
P.S. Wei	81,90B
R.P. Wei P.D. Weidman	505-511B 355-371A 2169-2181A
P.D. Weidman R. Westhoff	2169-2181A 683-693B
	683-693B 357-369B
R.C. Westhoff K.Y. Wien C. Wiesner K. Wijayatilleke D.S. Wilkinson	357-369B 2437-2445A
C. Wiesner	989-996A
D.S. Wilkinson	2387-2392A 841-845B
R.A. Winholtz	841-845B 341-354A
M.B. Winnicka	2963-2972A
D.G. Wirth	2963-2972A 2373-2379A
J. Wlassich J. Wolfenstine	2091-2103A
J. Wolfenstine	1509-1513A 527-535A
I.M. Wolff	2091-2103A 1509-1513A 527-535A 627-638A
R.N. Wright S.I. Wright	35-4UA 759-768A
S.I. Wright C.C. Wu L. Wu	1395-1401A 1627-1630A
R.G. Wu Y. Wu	2879-2885A 2923-2937A
Y. Wu	2923-2937A
C.D. Xi Z. Xia	1413-1421A 295-302B
L. Xiao P. Xu	2863-2872A
P. Xu	2999-3012A 2999-3012A
Y.B. Xu	1253-1258A
M. Yamamoto T. Yamane C. Yan B. Yang	169-173B
C. Yan	2783-2790A 2549-2556A
B. Yang	2850-2861A
D.Z. Yang H.S. Yang	3135-3140A
J.H. Yang	2939-2941A 3135-3140A 3135-3140A 1439-1444A
N.Y.C. Yang	1445-1454A 1021-1032A
S.P. Yang	851-855A 785-795A
	785-795A
JW. Yeh H.C. Yi M.H. Yoo HL. Yu H.T. Yu	2313-2321A 59-64A
M.H. Yoo	1891-1900A
H.T. Yu	666-669B 1413-1421A
J. Yu	201-210A
H.H. Yue	2581-2587A 1413-1421A 1641-1651A
S. Yue	597-608A
HM Voc	2607-2617A 3121-3133A
H.M. Yun	3121-3133A 3121-3133A
V.F. Zackay	2447-2453A
S. Zajac	373-375A
S. Zajac R. Zakhem K.L. Zeik	2169-2181A 2159-2167A 3135-3140A
M.G. Zelin	3135-3140A 3135-3140A
	3133-314UA

3394-3399A 3394-3399A 3394-3399A 1627-1630A 1627-1630A 177-381A 1253-1256A 337-381A 338-8 623-629B 623-629B 623-629B 337-3341A 3337-3341A 3367-3072A 3169-3171A 2597-2605A 1259-1269A 666-669B 13-22B 2905-2915A 2597-2615A 2597-2615A 2597-3615A 337-3341A 337-3341A 337-3341A

X. Zeng B. Zhang H. Zhang

J.H. Zhang J.S. Zhang W. Zhang X. Zhang X.-H. Zhang

Y. Zhang D. Zheng

X. Zheng D.S. Zhou H. Zhou J.-K. Zhou

T. Zhou Y. Zhou

J. Zhu M. Zhu Y.T. Zhu Z.Y. Zhu

H. Zou J. Zou J.M. Zumder

Combined Subject Index

Absolute viscosity See Viscosity		Activity coefficients See Activity (chemical)	
Absorbance See Absorption (energy)		Acurad process See Die casting	
Absorbing		Adhesives See Binders (adhesives)	
See Absorption (energy)		Glue	
Absorptance See Absorptivity		Aerospace Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium	2077 20044
Absorption (energy) Energy-Beam Redistribution and Absorption in a Drilling or Welding Cavity.	505-511B	Alloys. Processing and Microstructure of Powder Metallurgy Al— Fe—Ni Alloys.	3077-3084A 3219-3230A
Absorption coefficient		Aerospace industry See Aerospace	
See Absorption (energy) Absorptivity		Age hardening	
Absorptivity, pH effects Adsorption of Gold on Activated Carbon in Bromide Solutions.	557-566B	See Aging Aging (artificial) Precipitation hardening Precipitation heat treatment	
Acicular structure Unidirectional Solidification of Al—Si Eutectic With the Accelerated Crucible Rotation Technique.	i363-1370A	Age softening See Overaging	
Acid leaching	1000 101011	Ageing See Aging	
A Possible Method for the Characterization of Amorphous Slags: Recovery of Refractory Metal Oxides From Tin		Agents	
Slags. A Fundamental Study on the Preparation of Niobium Alumi-	249-259B	See Catalysts Deoxidizers	
nide Powders by Calciothermic Reduction. A Nitriding Process for the Recovery of Niobium From Fer-	415-421B	Fluxes Aging	
roniobium. Acid leaching, pH effects	437-442B	See also Aging (artificial) Overaging	
Leaching Kinetics of Colemanite by Aqueous EDTA Solu- tions.	409-413B	Precipitation heat treatment Influence of Prolonged Thermal Exposure on Intergranular	
Acoustic drilling See Drilling	403-4100	Fatigue Crack Growth Behavior in Alloy 718 at 650°C. Hydrogen Transport in Nickel-Base Alloys. Stress Corrision Cracking of An Al—Lu Alloy.	3169-3171A 3231-3244A 3337-3341A
Acoustic emission testing Acoustic Emission Produced by the Delta-to-Alpha Phase		Aging (artificial)	
Transformation in Pu—Ga Alloys. Actinide metals	779-783A	The Effect of Ternary Trace Additions on the Nucleation and Growth of γ : Precipitates in an Al—4.2 at.% Ag Alloy. (Conference Paper)	135-148A
See Uranium		Influence of Long-Term Aging at 520°C and 560°C and the Superimposed Creep Stress on the Microstructure of	004 0054
Activation energy Reaction Synthesis Processes: Mechanisms and Character-		1.25Cr—0.5Mo Steel. (Conference Paper) Transformations in a Ti—24Al—15Nb Alloy. II. A Composi-	221-235A
istics. (Conference Paper) The Asymptotic Theory of Gasless Combustion Synthesis.	7-13A	tion Invariant $\beta_0 \rightarrow 0$ Transformation. Tempering of Iron—Carbon—Nitrogen Martensites. Phase Transition in an Fe—23.2AI—4.1Ni Alloy.	417-431A 1129-1145A
(Conference Paper) Numerical Modeling of Solidification Combustion Synthesis.	15-22A	The Effect of Aging on the Hydrogen-Assisted Fatigue Crack-	1395-1401A
(Conference Paper) Plastic-Flow Behavior and Microstructural Development in a	23-34A	ing of a Precipitation-Hardened AI—Li—Zr Alloy. Correction to "Influence of Long-Term Aging at 520°C and	1551-1562A
Cast Alpha-Two Titanium Aluminide. (Conference Paper) Application of a Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reduction of Metallic Oxides. I. A	295-305A	560°C and the Superimposed Creep Stress on the Micro- structure of 1.25Cr—0.5Mo Steel*. (Conference Paper) Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc Alloy.	1596A 1947-1955A
General Treatment and Its Application to the Reduction of the Oxides of Molybdenum by Hydrogen.	317-324B	An Interpretation of the Carbon Redistribution Process Dur- ing Aging of High Carbon Martensite.	2147-2158A
The Plastic Deformation of an ar-Ti Alloy and its Thermal Acti- vation Process vs. Effective Stress. (Conference Paper) Kinetics of Iridium Reduction by Hydrogen in Hydrochloric	335-340A	Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V	2111 21001
Acid Solution. Kinetics of the Growth of Spinel, MgAl ₂ O ₄ , on Alumina Partic-	737-745B	Steel. Aging Embrittlement and Grain Boundary Segregation in a	2193-2204A
ulate in Aluminum Alloys Containing Magnesium. Morphological and Calorimetric Studies on the Amorphiza-	1279-1283A	NiCrMoV Rotor Steel. Instabilities in Stabilized Austenitic Stainless Steels.	2243-2248A 2455-2467A
tion Process of Rod-Milled Al ₅₀ Zr ₅₀ Alloy Powders. The Activation Energy for Lattice Self-Diffusion and the	2131-2140A	Atom Probe Examination of Thermally Aged CF8M Cast Stainless Steel.	2725-2736A
Engel—Brewer Theory. Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al. Distributed-Activation Kinetics of Heterogeneous Martensitic	2491-2500A 2783-2790A	Agitation See Bubbling	
Nucleation. The Effect of Tungsten on Creep Behavior of Tempered Mar-	2987-2998A	Air melting See Melting	
tensitic 9Cr Steels. Activation energy, Heating effects	3025-3034A	Aircomatic welding See Gas metal arc welding	
Atom Probe Examination of Thermally Aged CF8M Cast Stainless Steel. Activation entropy	2725-2736A	Aircraft components Fracture Behavior of a B2Ni—30Al—20Fe—0.05Zr Intermetallic Alloy in the Temperature Range 300-1300K.	1691-1703A
See Activation energy		Aircraft equipment	
Activity (chemical) Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and		See Aircraft components Alkali metals	
Iron-Ilmenite-Ulvospinel Equilibria. Activities of Titanium in Molten Copper at Dilute Concentra- tions Measured by Solid-State Electrochemical Cells at	57-64B	See Potassium Sodium	
1373K. Solubility of BaS in BaO—BaF ₂ Slag and the Influence of	169-173B	Alkaline earth metal alloys See Magnesium base alloys Alkaline earth metal compounds	
FeO _x , SiO ₂ , Cr ₂ O ₃ , BaCl ₂ , CaO, and MgO on the Sulfide Capacity of This System. Nitrogen Activity Determination in Plasmas.	175-181B 207-214B	See Barium compounds	
Comparative Investigations Among Binary Molten Salt Mix- tures PbCl ₂ —AgCl, PbCl ₂ —LiCl, and PbCl ₂ —KCl Using an Isopiestic Technique.	666-669B	Alkaline earth metals See Magnesium	
The Thermochemistry of Magnesium in Nickel-Base Alloys. I. The Determination of Thermochemical Parameters Using		Alkaline leaching A Possible Method for the Characterization of Amorphous	
the Atomic Absorption Technique. The Thermochemistry of Magnesium in Nickel-Base Alloys. II.	791-803B 805-814B	Slags: Recovery of Refractory Metal Oxides From Tin Slags. Allow powders	249-259B
Activity of Magnesium. Na ₂ O—Al ₂ O ₃ System: Activity of Na ₂ O in $(\alpha + \beta)$ - and $(\beta + \beta')$ -Alumina.	833-839B	Alloy powders A Fundamental Study on the Preparation of Niobium Aluminide Powders by Calciothermic Reduction.	415-421B

Alloy powders, Magnetic properties Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effect.	2917-2921A	Aluminum base alloys, Casting A Numerical and Experimental Study of the Solidification Rate in a Twin—Belt Caster.	477-492B
Alloy steels		A General Enthalpy Method for Modeling Solidification Pro- cesses.	651-664B
See Chromium steels High strength steels		A Novel Technique for Outlining the Solidification Crater Pro-	001 0010
Low alloy steels		file of a Commercial-Size Aluminum Alloy Ingot Cast by the Direct Chill Method.	2323-2325A
Manganese steels		Effect of Gravity Level on Grain Refinement in Aluminum Al-	2323-2323A
Nickel steels		loys.	3399-3404A
Alloying See Mechanical alloying		Aluminum base alloys, Coating	
Surface alloying		Laser Melting Treatment by Overlapping Passes of Pre-	4004 40004
Alloys		heated Nickel Electrodeposited Coatings on Al—Si Alloy.	1801-1806A
See Brazing alloys		Aluminum base alloys, Composite materials	
Dispersion hardening alloys Low expansion alloys		Fabrication of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Infiltration.	295-302B
Precipitation hardening alloys		Recovery and Recrystallization in Cold-Rolled Al—SiCw	
Shape memory alloys		Composites.	807-819A
Alpha annealing		The Effect of Ceramic Reinforcements During Spray Atom- ization and Codeposition of Metal Matrix Composites. I.	
See Annealing		Heat Transfer.	831-843A
Alphatizing		The Effect of Ceramic Reinforcements During Spray Atom-	
See Annealing		ization and Codeposition of Metal Matrix Composites. II. Solid-State Cooling Effects.	845-850A
Alumina		An Experimental and Numerical Study of Cyclic Deformation	045-050A
See Aluminum oxide		in Metal—Matrix Composites.	919-934A
Aluminium See Aluminum		Kinetics of the Growth of Spinel, MgAl ₂ O ₄ , on Alumina Partic- ulate in Aluminum Alloys Containing Magnesium.	1279-1283A
		Formation of Magnesium Aluminate (Spinel) in Cast SiC	1270 12007
Aluminizing Decomposition of the B2-Type Matrix of Aluminide Diffusion		Particulate-Reinforced Al(A356) Metal Matrix Composites.	1423-1430A
Coatings on Single-Crystal Nickel-Base Superalloy Sub-		Nondestructive Evaluation for Large-Scale Metal-Matrix Composite Billet Processing.	1541-1549A
strates.	2657-2665A	Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC	
Aluminum, Alloying elements		Particle-Reinforced Composites.	1607-1615A
Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace		The Fracture Characteristics of Al—9Ti/SiC _p Metal Matrix Composites.	1653-1662A
of Boron.	1515-1519A	Prediction of Thermomechanical Fatigue Lives in Metal Ma-	
Aluminum, Binary systems		trix Composites. (Conference Paper)	2029-2038A
Thermodynamic Assessment and Calculation of the Ti-Al	0004 00004	Thermal Stress and Strain in a Metal Matrix Composite With a Spherical Reinforcement Particle.	2205-2210A
System. Solidification Kinetics and Metastable Phase Formation in Bi-	2081-2090A	Processing Map for Hot Working of Powder Metallurgy 2124	
nary TiAl.	2699-2714A	AI—20 Vol.% SiC _p Metal Matrix Composite. Effects of SiC Content on Fatigue Crack Growth in Aluminum	2223-2230A
A Thermodynamic Evaluation of the Al—Mn System.	2953-2962A	Alloys Reinforced With SiC Particles.	2231-2242A
Aluminum, Claddings		Infiltration of Fiber Preforms by a Binary Alloy. II. Further The-	
Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Re- tention.	513-522B	ory and Experiments. Infiltration of Fiber Preforms by an Alloy. III. Die Casting Ex-	2263-2280A
	313-3226	periments.	2281-2289A
Aluminum, Coatings Decomposition of the B2-Type Matrix of Aluminide Diffusion		Fracture Mechanisms of a 2124 Aluminum Matrix Composite	0500 05004
Coatings on Single-Crystal Nickel-Base Superalloy Sub-		Reinforced With SiC Whiskers. The Effect of Particulate Reinforcement on the Sliding Wear	2589-2596A
strates.	2657-2665A	Behavior of Aluminum Matrix Composites.	2833-2847A
Aluminum, Composite materials Particle Sedimentation During Processing of Liquid Metal-		Interaction Mechanisms Between Ceramic Particles and At- omized Metallic Droplets.	2923-2937A
Matrix Composites.	753-763B	Effect of Cooling Rate on the Solidification Behavior of Al-	2320-2301 A
Structure and Room-Temperature Deformation of Alumina	1007 10104	7Si—SiC _p Metal-Matrix Composites.	3369-3376A
Fiber-Reinforced Aluminum. Wetting of SAFFIL Alumina Fiber Preforms by Aluminum at	1207-1219A	Aluminum base alloys, Corrosion	
973K. (Conference Paper)	2071-2073A	Metallurgical Factors Influencing the Corrosion of Aluminum, Al—Cu, and Al—Si Alloy Thin Films in Dilute Hydrofluoric	
Infiltration of Fiber Preforms by a Binary Alloy. II. Further The- ory and Experiments.	2263-2280A	Solution.	2641-2655A
Infiltration of Fibrous Preforms by a Pure Metal, IV, Morpho-		Stress Corrision Cracking of An Al—Li Alloy.	3337-3341A
logical Stability of the Remelting Front. Discussion of "Behavior of Ceramic Particles at the Solid/	2291-2299A	Aluminum base alloys, Crystal growth	
Liquid Interface in Metal Matrix Composites" and Reply.	2326-2330A	Mushy Zone Modeling With Microstructural Coarsening Ki- netics.	659-667A
Combustion Synthesis of Ceramic—Metal Composite Materi-	0070 00704	Dynamic Restoration Mechanisms in Al-5.8 at.% Mg De-	
als: the TiC—Al ₂ O ₃ —Al System. (Conference Paper) Fabrication of Metal Matrix Composites of TiC—Al Through	2373-2379A	formed to Large Strains in the Solute Drag Regime.	881-889A
Self-Propagating Synthesis Reaction. (Conference Paper)	2387-2392A	Microsegregation in Solidification for Ternary Alloys. Oscillations in Load Observed During High-Temperature Low	1038-1043A
The Effect of Particulate Reinforcement on the Sliding Wear	0000 00474	Strain-Rate Testing of Superplastic Materials.	2667-2669A
Behavior of Aluminum Matrix Composites. The Strength of Metal Matrix Composites Reinforced With	2833-2847A	Aluminum base alloys, Directional solidification	
Randomly Oriented Discontinuous Fibers.	3045-3053A	Unidirectional Solidification of Al—Si Eutectic With the Accel-	
Aluminum, Corrosion		erated Crucible Rotation Technique.	1363-1370A
Metallurgical Factors Influencing the Corrosion of Aluminum,		Aluminum base alloys, Forming	1467 14704
Al—Cu, and Al—Si Alloy Thin Films in Dilute Hydrofluoric Solution.	2641-2655A	Plastic Anisotropy in a Superplastic Al—Li—Mg—Cu Alloy.	1467-1478A
Aluminum, Crystal growth		Aluminum base alloys, Heat treatment Dissolution of Particles in Binary Alloys. I. Computer Simula-	
Relationship Between Grain Boundary Curvature and Grain		tions.	433-444A
Size.	2481-2482A	Dissolution of Particles in Binary Alloys. II. Experimental In-	445 4404
Aluminum, Diffusion		vestigation on an Al—Si Alloy.	445-449A
Application of the Square Root Diffusivity to Diffusion in Ni— Cr—Al—Mo Alloys.	3245-3249A	Aluminum base alloys, Mechanical properties Microstructure, Excess Solid Solubility, and Elevated-	
•	0240-0240A	Temperature Mechanical Behavior of Spray-Atomized and	
Aluminum, Mechanical properties Effect of Strain Rate on Cell Size Refinement and Strengthen-		Codeposited Al—Ti—SiC _p .	719-736B
ing in Nickel and Aluminum.	3166-3169A	Dynamic Restoration Mechanisms in Al—5.8 at.% Mg De- formed to Large Strains in the Solute Drag Regime.	881-889A
Crystallographic Fatigue Crack Growth in Incompatible Alu- minum Bicrystals: Its Dependence on Secondary Slip.	3293-3301A	Compression Testing Techniques to Determine the Stress/	
Aluminum, Reactions (chemical)	JE50-3301A	Strain Behavior of Metals Subject to Finite Deformation. Structure and Mechanical Properties of Boron-Doped Cubic	935-951A
The Effect of Interfacial Diffusion Barriers on the Ignition of		Zirconium Trialuminides.	1243-1252A
Self-Sustained Reactions in Metal-Metal Diffusion Cou-	40 50+	Microstructure and Creep Properties of Dispersion- Strengthened Aluminum Alloys.	
ples. (Conference Paper)	49-53A	The Effect of Aging on the Hydrogen-Assisted Fatigue Crack-	1521-1539A
Cu—C and Al—Cu—C Phase Diagrams and Thermodynamic		ing of a Precipitation-Hardened Al—Li—Zr Alloy.	1551-1562A
Aluminum, Ternary systems Cu—C and Al—Cu—C Phase Diagrams and Thermodynamic Properties of Carbon in the Alloys Form 1550°C to 2300°C. The Alloys Form 150°C to 2300°C.	453-458B	Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr Alloy in a 0.5M Sodium Chloride Solution.	1563-1572A
The Al—Cu—Fe Phase Diagram: 0-25 at.% Iron and 50- 75 at.% Aluminum—Equilibria Involving the Icosahedral		Lead-Induced Solid Metal Embrittlement of an Excess Silicon	
Phase.	2409-2417A	Al—Mg—Si Alloy at Temperatures of —4°C to 80°C. Fatigue Crack Tip Deformation Processes as Influenced by	1679-1689A
An Assessment of the Al—Fe—N System.	3141-3149A	the Environment.	2211-2221A
Aluminum base alloys, Alloy development Characterization of Dispersed Intermetallic Phases in Rapidly		Thermal Activation Model of Endurance Limit.	2597-2605A
Quenched Al—Ti—Ce Alloys.	3193-3205A	Effect of Hydrostatic Pressure on the Hot-Working Behavior of a Gamma Titanium Aluminide.	2669-2672A

Forming Limit Diagrams Calculated Using Hill's Nonquadratic Yield Criterion. Microstructure and Ordering of L1 ₂ Titanium Trialuminides.	2817-2831A 2963-2972A	Aluminum compounds, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys.	690-697A
Mechanisms of Fatigue Crack Retardation Following Single Tensile Overloads in Powder Metallurgy Aluminum Alloys.	3055-3066A	Aluminum compounds, Powder technology A Fundamental Study on the Preparation of Niobium Alumi-	
Aluminum base alloys, Microstructure Decagonal Quasicrystal and Related Crystalline Phases in		nide Powders by Calciothermic Reduction. Reactive Sintering and Reactive Hot Isostatic Compaction of	415-421B
Slowly Solidified Al—Co Alloys. Lattice Imperfections Studied by X-Ray Diffraction in De-	1121-1128A	Niobium Aluminide NbAl ₃ . (Conference Paper) Dynamic Compaction of Titanium Aluminides by Explosively	2357-2364A
formed Aluminum-Base Alloys: Al—Cu Alloy Flow Softening and Microstructure Evolution puring Hot	1371-1373A	Generated Shock Waves: Microstructure and Mechanical Properties.	3251-3261A
Working of Wrought Near-Gamma Titanium Aluminides. The Microstructures and Properties of an Al—12 wt.% Si	1719-1735A	An Experimental Investigation of Reactive Atomization and Deposition Processing of Ni ₃ Al/Y ₂ O ₃ Using Ni ₂ —O ₂ Atom-	
Alloy Produced by a New Layer-Deposition Process. The Microstructure of Electrodeposited Titanium—Aluminum Alloys.	2313-2321A 2715-2723A	ization. Aluminum compounds, Reactions (chemical)	3394-3399A
Aluminum base alloys, Phase transformations On the Phase Transformation Between the Quasicrystalline to Crystalline Phases in Alloys of Al—Cu—Fe—Co.	3161-3166A	Standard Molar Enthaplies of Formation of MeAl (Me = Ru, Rh, Os, Ir). Deoxidation of Titanium Aluminide by Ca—Al Alloy Under Controlled Aluminum Activity.	53-56B 583-590B
Aluminum base alloys, Powder technology	010101001	Aluminum compounds, Synthesis	365-3500
Recent Trends and Developments With Rapidly Solidified Materials. (Conference Paper) Morphological and Calorimetric Studies on the Amorphiza-	1083-1093A	Shock-Induced Chemical Reactions and Synthesis of Nickel Aluminides. (Conference Paper)	41-48A
tion Process of Rod-Milled AlsoZrso Alloy Powders. Processing and Microstructure of Powder Metallurgy Al—	2131-2140A	Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites. (Conference Paper)	69-76A
Fe—Ni Alloys. Aluminum base alloys, Structural hardening	3219-3230A	Aluminum killed steels, Mechanical properties Forming Limit Diagrams Calculated Using Hill's Nonquadratic Yield Criterion.	2817-2831A
The Effect of Ternary Trace Additions on the Nucleation and Growth of γ' Precipitates in an Al—4.2 at.% Ag Alloy.	405 4404	Aluminum oxide	790 700D
(Conference Paper) Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc	135-148A	The Solubility of Alumina in Liquid Iron. Aluminum oxide, Coating	789-790B
Alloy. The Early Stages of Solute Distribution Below a Transition Temperature.	1947-1955A 2685-2697A	Na ₂ O—Al ₂ O ₃ System: Activity of Na ₂ O in $(\alpha + \beta)$ - and $(\beta + \beta')$ -Alumina.	833-839B
Aluminum base alloys, Welding	2003-2037 A	Aluminum oxide, Composite materials Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites.	
Beam Focusing Characteristics and Alloying Element Effects on High-Intensity Electron Beam Welding.	81-90B	(Conference Paper)	69-76A
Aluminum compounds		Recovery and Recrystallization in Cold-Rolled Al—SiC _w Composites.	807-819A
See also Aluminum oxide Aluminum compounds, Coatings		Structure and Room-Temperature Deformation of Alumina Fiber-Reinforced Aluminum.	1207-1219A
Decomposition of the B2-Type Matrix of Aluminide Diffusion Coatings on Single-Crystal Nickel-Base Superalloy Sub-		Kinetics of the Growth of Spinel, MgAl ₂ O ₄ , on Alumina Particulate in Aluminum Alloys Containing Magnesium.	1279-1283A
strates.	2657-2665A	Wetting of SAFFIL Alumina Fiber Preforms by Aluminum at 973K. (Conference Paper)	2071-2073A
Aluminum compounds, Composite materials Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites.		Infiltration of Fiber Preforms by an Alloy. III. Die Casting Experiments.	2281-2289A
(Conference Paper) Fracture Behavior of Stainless Steel-Toughened NiAl Com-	69-76A	Infiltration of Fibrous Preforms by a Pure Metal. IV. Morphological Stability of the Remelting Front.	2291-2299A
posite Plate. Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced	563-572A	Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper)	2373-2379A
Ni ₃ Al Composite. Aluminum compounds, Diffusion	3151-3160A	Boride-Alumina Composites: Synthesis and Fabrication. (Conference Paper)	2381-2385A
Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al.	2783-2790A	The Strength of Metal Matrix Composites Reinforced With Randomly Oriented Discontinuous Fibers. Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced	3045-3053A
Aluminum compounds, Heat treatment Segregation and Homogenization of a Near-Gamma Titanium Aluminide. (Conference Paper)	149-161A	Ni ₃ Al Composite.	3151-3160A
Transformations in a Ti—24AI—15Nb Alloy. I. Phase Equilibria and Microstructure.	401-415A	Aluminum oxide, Joining A Thermodynamic Criterion to Predict Wettability at Metal/	
Transformations in a Ti—24Al—15Nb Alloy. II. A Composition Invariant $\beta_0 \rightarrow 0$ Transformation.	417-431A	Alumina Interfaces. Aluminum oxide, Powder technology	215-222B
Aluminum compounds, Mechanical properties Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference		Plasma—Particle Interactions in Plasma Spraying Systems. Aluminum plating	683-693B
Paper)	35-40A	See Aluminizing Amorphization	
Influence of Microstructure on Intrinsic and Extrinsic Tough- ening in an Alpha-Two Titanium Aluminide Alloy. (Confer- ence Paper)		Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Al- loying.	2105-2110A
Plastic-Flow Behavior and Microstructural Development in a Cast Alpha-Two Titanium Aluminide. (Conference Paper)	183-199A 295-305A	Morphological and Calorimetric Studies on the Amorphiza- tion Process of Rod-Milled AlsoZrso Alloy Powders.	2131-2140A
Microstructures and Property Tradeoffs in Wrought TiAl- Base Alloys.	375-377A	Analyzing	
Developing Hydrogen-Tolerant Microstructures for an α_2 Titanium Aluminide Alloy.	497-507A	See Mathematical analysis Stress analysis	
Mechanical Behavior and Microcracking of Cubic Ternary Zir- conium Trialuminides.	617-625A	Andrade method See Crystal growth	
An Analysis of the Isothermal Hot Compression Test.	963-975A	Anisotropy	
Zirconium Trialuminides. Hydrogen Effects on Brittle Fracture of the Titanium Alumi-	1243-1252A	See also Magnetic anisotropy Anisotropy, Deformation effects	
nide Alloy Ti—24Al—11Nb. Correlation of Deformation Mechanisms With the Tensile and		Plastic Anisotropy in a Superplastic AI—Li—Mg—Cu Alloy. Annealing	1467-1478A
Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Al- loys.	1493-1508A	See also Homogenizing Isothermal annealing	
Superplastic Behavior of Two-Phase Titanium Aluminides. Fracture Behavior of a B2Ni—30Al—20Fe—0.05zr Intermetallic Alloy in the Temperature Range 300-1300K.	1691-1703A	Temper annealing The Morphology, Crystallography, and Mechanism of Carbide Precipitation in an Fe—0.12C—3.28Ni Alloy. (Confer-	
Deformation Behavior of a Ni—30Al—20Fe—0.05Zr Inter- metallic Alloy in the Temperature Range 300-1300K.	1705-1718A	ence Paper) Effect of Heat Treatments on Phase Chemistry of the Nickel-	171-181A
An Investigation of the Fracture Behavior of Gamma-Based Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and		Base Superalloy SRR 99. Recovery and Recrystallization in Cold-Rolled Al—SiC _w	745-757A
α ₂ + γ Phase Fields. (Conference Paper) Nonequilibrium Synthesis of NbA and Nb—Al—V Alloys by Laser Cladding I Microstructure Evolution	2039-2059A 2419-2429A	Composites. Carbide Precipitation in 12Cr1MoV Power Plant Steel.	807-819A 1171-1179A
Laser Cladding, I. Microstructure Evolution. Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding, II. Oxidation Behavior.	2631-2639A	Intercritically Annealed and Isothermally Transformed 0.15% Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. I.	
Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₃ Zr Intermetallic Compound.	3073-3076A	Transformation, Microstructure, and Room-Temperature Mechanical Properties. Intercritically Annealed and Isothermally Transformed 0.15%	1221-1232A
Aluminum compounds, Microstructure Decagonal Quasicrystal and Related Crystalline Phases in	1101 1100	Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. II. Effect of Testing Temperature on Stress—Strain Behavior	1000.10414
Slowly Solidified Al—Co Alloys. Crystallographic Relationships of the Al ₄ Cr Crystalline and Quasicrystalline Phases.	1121-1128A 2437-2445A	and Deformation-Induced Austenite Transformation. Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC Particle-Reinforced Composites.	1233-1241A 1607-1615A
additing the state of the state	ETO! ETTON		

The Fracture Characteristics of Al-9Ti/SiCp Metal Matrix	1050 10001	The Effect of Ceramic Reinforcements During Spray Atom-	
Composites. An Investigation of the Fracture Behavior of Gamma-Based Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and	1653-1662A	ization and Codeposition of Metal Matrix Composites. II. Solid-State Cooling Effects. Recent Trends and Developments With Rapidly Solidified	845-850A
$\alpha_2 + \gamma$ Phase Fields. (Conference Paper) Influence of Transverse Rolling on the Microstructural and	2039-2059A	Materials. (Conference Paper) Microstructural Evolution and Thermal Stability Associated	1083-1093A
Texture Development in Pure Tantalum.	2183-2191A	With a Gas-Atomized Cu—Nb Alloy. Interaction Mechanisms Between Ceramic Particles and At-	2159-2167A
Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced Ni ₃ Al Composite.	3151-3160A	omized Metallic Droplets.	2923-2937A
On the Phase Transformation Between the Quasicrystalline to Crystalline Phases in Alloys of Al—Cu—Fe—Co.	3161-3166A	Processing and Microstructure of Powder Metallurgy Al— Fe—Ni Alloys. Beneficial Effects of Nitrogen Atomization on an Austenitic	3219-3230A
Anodic dissolution Comparison of the Anodic Dissolution Behavior of Butte and		Stainless Steel. An Experimental Investigation of Reactive Atomization and	3263-3272A
Transvaal Chalcocite. Stress Corrision Cracking of An Al—Li Alloy.	879-881B 3337-3341A	Deposition Processing of Ni ₃ Al/Y ₂ O ₃ Using Ni ₂ —O ₂ Atomization.	3394-3399A
Antiferromagnetism		Auger electron spectroscopy	
Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. II. Transformation Behavior.	1439-1444A	Observations on the Evolution of Potassium Bubbles in Tung- sten Ingots During Sintering. (Conference Paper)	121-133A
Antifriction alloys		Austenite See also Retained austenite	
See Tin base alloys		The Principle of Additivity and the Proeutectoid Ferrite Transformation.	2469-2480A
Antimony, Binary systems Role of Entropy of Solution in Controlling Eutectic Microstructure.	2675-2678A	Atom Probe Examination of Thermally Aged CF8M Cast Stainless Steel.	2725-2736A
Antimony, Ternary systems		Austenite, Solubility Experimental Investigation of the Thermodynamics of the	
Thermodynamic Properties in the Liquid Ag—Sb—Zn System.	601-611B	Fe—Ti—C Austenite and the Solubility of Titanium Carbide. Experimental Investigation of the Thermodynamics of Fe—	709-727A
Antimony, Trace elements		Nb—C Austenite and Nonstoichiometric Niobium and Tita-	720.7444
Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel.	2243-2248A	nium Carbides (T = 1273 to 1473K). Austenitic stainless steels, Coating	729-744A
Antiphase boundaries		The Effect of Additives on the Nucleation and Growth of Cop- per Onto Stainless Steel Cathodes.	591-599B
Shear Mechanisms of the γ' Phase in Single-Crystal Superalloys and Their Relation to Creep. (Conference Paper)	99-105A	Austenitic stainless steels, Composite materials	391-3390
Arc plasma welding See Plasma arc welding		Fracture Behavior of Stainless Steel-Toughened NiAl Composite Plate.	563-572A
Arc spraying		Austenitic stainless steels, Corrosion	
See Plasma spraying Arc welding		The Effect of Crack-Tip Strain Rate and Potential on the Propagation Rate of Stress Corrosion Crack for 321 Stain-	
See Plasma arc welding Submerged arc welding		less Steel in Boiling 42% MgCl ₂ Solution. Austenitic stainless steels, Crystal growth	2873-2878A
Arc welds		Theoretical Treatment of the Solidification of Undercooled Fe—Cr—Ni Melts.	1585-1591A
See Welded joints		Austenitic stainless steels, Irradiation	
Argon, Environment The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High-	4405 40004	Relationships Between Phase Stability and Void Swelling in Fe—Cr—Ni Alloys During Irradiation.	1977-1986A
Purity Water. Argon arc welding	1195-1206A	Austenitic stainless steels, Machining Residual Stresses After Orthogonal Machining of AISI 304: Numerical Calculation of the Thermal Component and	
See Gas tungsten arc welding		Comparison With Experimental Results.	989-996A
Arrhenius activation energy See Activation energy		Austenitic stainless steels, Magnetic properties Magnetic Susceptibility of an Atomized 304L Stainless Steel	2917-2921A
Arsenic, Trace elements Aging Embrittlement and Grain Boundary Segregation in a NICrMoV Rotor Steel.	2243-2248A	Powder: Particle Size Effect. Austenitic stainless steels, Mechanical properties Crack Paths, Microstructure, and Fatigue Crack Growth in	2917-2921A
Arsenides See Gallium arsenide		Annealed and Cold-Rolled AISI 304 Stainless Steels. (Con- ference Paper)	355-371A
Artificial aging		Compression Testing Techniques to Determine the Stress/ Strain Behavior of Metals Subject to Finite Deformation.	935-951A
See Aging (artificial)		Fatigue Crack Tip Deformation Processes as Influenced by	2211-2221A
Astroceram See Ceramics		the Environment. Instabilities in Stabilized Austenitic Stainless Steels. Microstructure Stabilization in a Rapidly Solidified Type 304	2455-2467A
Atomic absorption analysis The Thermochemistry of Magnesium in Nickel-Base Alloys. I.		Stainless Steel: Influence on Tensile Properties. The Effect of Tungsten on Creep Behavior of Tempered Mar-	2557-2565A
The Determination of Thermochemical Parameters Using the Atomic Absorption Technique.	791-803B	tensitic 9Cr Steels.	3025-3034A
The Thermochemistry of Magnesium in Nickel-Base Alloys. II. Activity of Magnesium.	805-814B	Austenitic stainless steels, Metal working Optimization of Hot Workability in Stainless Steel-Type AISI 304L Using Processing Maps.	3093-3103A
Atomic beam spectroscopy See Atomic absorption analysis		Austenitic stainless steels, Microstructure	
Atomic bonds		A Study of Stacking Faults in Deformed Austenitic Stainless Steel by X-Ray Diffraction.	2859-2861A
See Chemical bonds Atomic diffusion		Austenitic stainless steels, Powder technology Beneficial Effects of Nitrogen Atomization on an Austenitic	
See Diffusion Atomic properties		Stainless Steel.	3263-3272A
See Atomic structure Atomic reactors		Austenitic stainless steels, Solubility Characterization of Stainless Steels Melted Under High Nitrogen Pressure. (Conference Paper)	2061-2068A
See Nuclear reactors		Austenitic stainless steels, Welding	
Atomic structure Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis- locations.		On the Calculation of the Free Surface Temperature of Gas- Tungsten-Arc Weld Pools From First Principles. II. Model- ing the Weld Pool and Comparison With Experiments. Finite Element Modeling of Transient Heat Transfer and	371-384B
Atomic structure, Impurity effects		Microstructural Evolution in Welds. II. Modeling of Grain Growth in Austenitic Stainless Steels.	841-845B
The Atomic Arrangement of Interstitials in Molybdenum Or- dered Solutions.	1601-1606A	Microstructural Damage and Residual Mechanical Properties in Helium-Bearing Gas Metal Arc Weldments.	1021-1032A
Atomization See Atomizing		Austenitizing New Observation of Martensitic Morphology and Substruc-	
Atomizing		ture Using Transmission Electron Microscopy. Microstructural Changes During Overtempering of High-	1413-1421A
Influence of Atmosphere on Sintering of T15 and M2 Steel Powders.	389-400A	Speed Steels. An Interpretation of the Carbon Redistribution Process Dur-	1631-1640A
Behavior of Liquid Metal Droplets in an Aspirating Nozzle. The Effect of Ceramic Reinforcements During Spray Atomization and Codeposition of Metal Matrix Composites. I. Heat Transfer	695-700B	ing Aging of High Carbon Martensite. Auto oxidation See Ovidation	2147-2158A
meat transfer	ASA-RAZA	See Ovidation	

Autodiffusion See Diffusion		Bioleaching See Bacterial leaching	
Automobile components		Bismuth, Binary systems	
See Automotive components Automotive bodies, Mechanical properties Ductility and Strain-Induced Transformation in a High-		Role of Entropy of Solution in Controlling Eutectic Microstruc- ture. Bismuth, Quaternary systems	2675-2678A
Strength Transformation-Induced Plasticity-Aided Dual- Phase Steel.	3085-3091A	An Assessment of the Thermodynamic Properties of Liquid Quaternary Alloys With the Wilson Equation.	526-528B
Automotive components See also Automotive bodies		Blast furnace components See Tuyeres	
Automotive components, Mechanical properties The Strength of Metal Matrix Composities Reinforced With Randomly Oriented Discontinuous Fibers.	3045-3053A	Blast furnace practice A Fundamental Study of Raceway Size in Two Dimensions.	267-283B
Backscattering	0010 00001	Treatment of Multiple Injections in the Iron Blast Furnace by the Rist Diagram.	385-394B
Automatic Analysis of Electron Backscatter Diffraction Pat- terns.	759-768A	Infiltration of Carbon in Pores Within Coke and Charcoal by Methane Cracking.	429-435B
Bacteria Model for Ferric Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals. I. Modeling Uniform Size Ore Fragments.	537-548B	Blast furnace slags, Reactions (chemical) Activity Determinator for the Automatic Measurements of the Chemical Potentials of FeO in Metallurgical Slags.	459-466B
Bacterial leaching		Blast furnaces Treatment of Multiple Injections in the Iron Blast Furnace by	
Electrobioleaching of Base Metal Sulfides. Percolation Bacterial Leaching of Rajpura Dariba Ore in 4 Ton Column.	5-11B 91-93B	the Rist Diagram. Infiltration of Carbon in Pores Within Coke and Charcoal by	385-394B
Bainite	91-935	Methane Cracking. Blast furnaces, Design	429-435B
The Time—Temperature-Transformation Diagram Within the Medium Temperature Range in Some Alloy Steels. Correction to "The Time—Temperature-Transformation Dia- gram Within the Medium Temperature Range in Some Alloy	785-795A	A Fundamental Study of Raceway Size in Two Dimensions. Blending See Powder blending	267-283B
Steels". The Crystallography of Bainite in a Medium-Carbon Steel	785-795A	Blunging	
Containing Silicon, Manganese, and Molybdenum. Influence of Long-Term Aging and Superimposed Creep	1403-1411A	See Mixing Body centered cubic lattice, Composition effects	
Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V Steel. Bainite, Microstructure	2193-2204A	Theoretical Treatment of the Solidification of Undercooled Fe—Cr—Ni Melts.	1585-1591A
The Nature of Lower Bainite Midrib. Ball milling	2483-2490A	Body centered cubic lattice, Impurity effects The Atomic Arrangement of Interstitials in Molybdenum Ordered Solutions.	1601-1606A
On the Kinetics of Mechanical Alloying. Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Al-	1285-1290A	Body centered cubic metals See BCC metals	
loying. Formation of Metastable Phases of Ni—C and Co—C Sys-	2105-2110A	Body centered orthorhombic lattice	
tems by Mechanical Alloying. Ballistic missile components	2431-2435A	See Orthorhombic lattice Body centered tetragonal lattice	
See Rocket components		See Tetragonal lattice	
Banded structure An Investigation of the Effects of Microstructure on the Fatigue and Fracture Behavior of $\alpha_2 + \beta$ Forged Ti—24Al—		See Atomic structure	
11Nb.	1737-1750A	Boiler scale See Scale (corrosion)	
Barium compounds, Reactions (chemical) Kinetics of Solid State Reaction Between Barium Carbonate and Cupric Oxide.	493-503B	Bomb reduction See Reduction (chemical)	
Batch type furnaces See Converters		Bonds (chemical) See Chemical bonds	
BCC metals, Diffusion		Borides, Composite materials Boride-Alumina Composites: Synthesis and Fabrication.	
The Activation Energy for Lattice Self-Diffusion and the Engel—Brewer Theory. Belts	2491-2500A	(Conference Paper) Borides, Synthesis	2381-2385A
See Casting belts		Reaction Synthesis Processes: Mechanisms and Character- istics. (Conference Paper)	7-13A
Bendability See Formability		Reaction Synthesis/Dynamic Compaction of Titanium Dibo- ride. (Conference Paper)	77-86A
Beneficiation See Flotation		Boron, Alloying elements Nb(C,N) Precipitation and Austenite Recrystallization in	
Bicrystals, Mechanical properties Crystaliographic Fatigue Crack Growth in Incompatible Alu- minum Bicrystals: Its Dependence on Secondary Slip.		Boron-Containing High-Strength Low-Alloy Steels. Effect of Gravity Level on Grain Refinement in Aluminum Al-	2111-2120A
minum Bicrystals: Its Dependence on Secondary Slip. Billets, Nondestructive testing	3293-3301A	loys. Boron, Chemical analysis	3399-3404A
Nondestructive Evaluation for Large-Scale Metal-Matrix Composite Billet Processing.	1541-1549A	Grain-Boundary Segregation and Precipitation of Boron in 0.2% Carbon Steels. (Conference Paper)	107-119A
Bimetals, Reactions (chemical) Theoretical Models for the Combustion of Alloyable Materi-	0000 00474	Boron, Dopants Effect of Boron on the Grain Boundary Segregation of Phosphorus and Intergranular Fracture in High-Purity Fe—	
als. (Conference Paper) Binary systems, Phases (state of matter)	2339-2347A	O.2P—B Alloys. (Conference Paper) Structure and Mechanical Properties of Boron-Doped Cubic	263-269A
Enthalpies of Formation of Liquid and Solid (Gallium + Palladium) Alloys.	39-44B	Zirconium Trialuminides.	1243-1252A
Thermodynamic Assessment of the Mn—O System. Phase Equilibria in the Binary Rare-Earth Alloys: the Erbium—Magnesium System.	821-831B 1005-1012A	Boron, Extraction Leaching Kinetics of Colemanite by Aqueous EDTA Solutions.	409-413B
Note on the Thermochemistry of the Au + V, Au + Nb, and Au + Ta Systems. Thermodynamic Assessment and Calculation of the Ti—Al	1836-1839A	Boron compounds See Borides	
System. Constitutional Studies of Cobalt—Tin Alloys.	2081-2090A 2401-2407A	Boundaries See Antiphase boundaries	
Role of Entropy of Solution in Controlling Eutectic Microstruc- ture.	2675-2678A	Grain boundaries Phase boundary	
Solidification Kinetics and Metastable Phase Formation in Bi- nary Ti—Al.	2699-2714A	Boundary lubrication	
A Thermodynamic Evaluation of the Al—Mn System. Binary systems, Reactions (chemical)	2953-2962A	See Lubrication Brasses, Mechanical properties	
Thermochemistry of Binary Alloys of Transition Metals: the Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Systems.	997-1003A	Compression Testing Techniques to Determine the Stress/ Strain Behavior of Metals Subject to Finite Deformation. Some Aspects of Deformation Behavior of Coarse Multi- phase Metallic Materials.	935-951A 3309-3315A
Binders (adhesives) Thermal Debinding of Powder Injection Molded Parts: Observations and Mechanisms.	2775-2782A	Braze See Brazing	

Braze bonding See Brazing		The Morphology, Crystallography, and Mechanism of Car- bide Precipitation in an Fe—0.12C—3.28Ni Alloy. (Confer-	
Brazing Liquid/Solid Interface Migration at Grain Boundary Regions During Transient Liquid Phase Brazing.	2905-2915A	ence Paper) Processing and Superplastic Properties of Fine-Grained Iron Carbide.	171-181A 527-535A
Brazing alloys Liquid/Solid Interface Migration at Grain Boundary Regions	2905-2915A	Thermodynamic Calculation and Experimental Verification of the Carbonitride-Austenite Equilibrium in Ti—Nb Microal- loyed Steels. Influence of Intergranular Carbide Density and Grain Size on	651-657A
During Transient Liquid Phase Brazing. Bridgman method	2903-2913A	Creep of Fe—15Cr—25Ni Alloys.	1379-1381A
See Crystal growth Brine		Carbides, Composite materials Fracture Behavior of Stainless Steel-Toughened NiAl Com- posite Plate.	563-572A
See Salt water Brittle fracture		Carbides, Heating effects Carbide Precipitation in 12Cr1MoV Power Plant Steel.	1171-1179A
Fiber—Matrix Interactions in Brittle Matrix Composites. (Conference) The Tearing Topography Surface as the Zone Associated	1051, 1062A	Carbon See also Graphite	11/15/11/38
With Hydrogen Embrittlement Processes in Pearlitic Steel. Ductile-Phase Toughening and Fatigue-Crack Growth in Niobium-Reinforced Molybdenum Disilicide Intermetallic	1573-1584A	Carbon, Alloying elements The Effect of Grain Boundary Chemistry on Intergranular	
Composites.	2249-2257A	Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C.	2887-2904A
Brittle fracture, Environmental effects Hydrogen Effects on Brittle Fracture of the Titanium Aluminide Alloy Ti—24AI—11Nb.	1299-1312A	Effects of Grain Boundary Chemistry on the Intergranular Cracking Behavior of Ni—16Cr—9Fe in High-Temperature Water.	3343-3359A
Brittle fracture, Impurity effects Lead-Induced Solid Metal Embrittlement of an Excess Silicon Al—Mg—Si Alloy at Temperatures of —4°C to 80°C.	1679-1689A	Carbon, Dopants Effect of Carbon on the Low-Temperature Creep Behavior of Ni—16Cr—9Fe.	1033-1037A
Brittle fracture, Microstructural effects	1070 100071	Carbon, Impurities	
Influence of Microstructure on Crack-Tip Micromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy. Brittleness	1663-1677A	The Atomic Arrangement of Interstitials in Molybdenum Or- dered Solutions. Influence of Carbon and Nitrogen on Solid Solution Decay	1601-1606A
See also Temper brittleness		and "475°C Embrittlement" of High-Chromium Ferritic Steels.	2567-2579A
The Tearing Topography Surface as the Zone Associated With Hydrogen Embrittlement Processes in Pearlitic Steel. Brittleness, Impurity effects	1573-1584A	Carbon, Sorption Adsorption of Gold on Activated Carbon in Bromide Solutions.	557-566B
Lead-Induced Solid Metal Embrittlement of an Excess Silicon Al—Mg—Si Alloy at Temperatures of —4°C to 80°C. Influence of Carbon and Nitrogen on Solid Solution Decay	1679-1689A	Carbon, Ternary systems Cu—C and Al—Cu—C Phase Diagrams and Thermodynamic Properties of Carbon in the Alloys From 1550°C to 2300°C.	453-458B
and "475°C Embritt!ement" of High-Chromium Ferritic Steels.	2567-2579A	Carbon compounds	400 4000
Brittleness, Microstructural effects Microstructure and Ordering of L1 ₂ Titanium Trialuminides.	2963-2972A	See Carbides Carbonates	
Bubbling		Carbonitrides	
Modeling Flows and Mixing in Steelmaking Ladles Designed for Single- and Dual-Plug Bubbling Operations. Measurements of the Internal Structure of Gas—Liquid	765-778B	Carbon fibers, Composite materials Fabrication of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Infiltration.	295-302B
Plumes. Building up See Hard surfacing	779-788B	Carbon manganese steels, Mechanical properties A Comparison of Toughness of C—Mn Steel With Different Grain Sizes.	2549-2556A
Burdening		Carbon steels	
See Blast furnace practice Burning See Combustion		See also Carbon manganese steels Carbon tool steels High carbon steels	
Cadmium, Binary systems		Low carbon steels Medium carbon steels	
Role of Entropy of Solution in Controlling Eutectic Microstruc- ture. Cadmium, Quaternary systems	2675-2678A	Carbon steels, Casting Microscopic Modeling of Fundamental Phase Transforma- tions in Continuous Castings of Steel.	457-467A
An Assessment of the Thermodynamic Properties of Liquid Quaternary Alloys With the Wilson Equation.	526-528B	Simple Constitutive Equations for Steel at High Temperature. Carbon steels, Chemical analysis	903-918A
Cadmium, Ternary systems High-Temperature Isopiestic Studies on the Liquid Solutions Hg—Cd—Sn.	623-629B	Grain-Boundary Segregation and Precipitation of Boron in 0.2% Carbon Steels. (Conference Paper) Carbon steels, Rolling	107-119A
Cadmium compounds, Solubility Thermodynamic Investigations of Tellurium-Saturated Solid		Recrystallization Kinetics of Microalloyed Steels Deformed in the Intercritical Region.	597-608A
CdSe—CdTe Alloys. Cakes (metal) See Ingots	467-476B	Carbon tool steels, Microstructure New Observation of Martensitic Morphology and Substruc- ture Using Transmission Electron Microscopy.	1413-1421A
Calcium compounds		Carbonates, Reactions (chemical) Kinetics of Solid State Reaction Between Barium Carbonate	
See Gypsum Calculating		and Cupric Oxide.	493-503B
See Computer programs Mathematical analysis		Carbonitrides Thermodynamic Calculation and Experimental Verification of the Carbonitride-Austenite Equilibrium in Ti—Nb Microal-	
Calculation See Computer programs Mathematical analysis		loyed Steels. Carburization See Carburizing	651-657A
Calibration		Carburizing	
The Thermochemistry of Magnesium in Nickel-Base Alloys. I. The Determination of Thermochemical Parameters Using the Atomic Absorption Technique.	791-803B	Application of Commercial Computer Codes to Modeling the Carburizing Kinetics of Alloy Steels. (Conference Paper) Low-Temperature Creep of a Carburized Steel.	2069-2071A 2619-2624A
Calorimetry Standard Molar Enthaplies of Formation of MeAl (Me = Ru, Rh, Os, Ir).	53-56B	Case carburizing See Carburizing	
Titanium Tetrachloride-Supercritical Carbon Dioxide Interac- tion: a Solvent Extraction and Thermodynamic Study.	65-72B	Case hardening See Carburizing	
Enthalpies of Formation of Some Solid Hafnium Nickel Com- pounds and of the Nickel-Rich HfNi Liquid by Direct Reac- tion Calorimetry.		Nitriding Case hardness	
Thermochemistry of Binary Alloys of Transition Metals: the			
Mo Ti Me 7r and Mr. 14 (Mr. City Called	815-819B	See Surface hardness	
Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Systems.	997-1003A	Cast iron See White iron	
Me-Ti, Me-Zr, and Me-Hf (Me = Silver, Gold) Sys-	997-1003A	Cast iron	

Rheocasting Slab casting Spray casting		Reactor Models for a Series of Continuous Stirred Tank Re- actors With a Gas—Liquid—Solid Leaching System. II. Gas-Transfer Control.	857-864B
Squeeze casting Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at		Reactor Models for a Series of Continuous Stirred Tank Re-	001-004B
Different Cooling Rates. On the Drag of Model Dendrite Fragments at Low Reynolds	1817-1827A	actors With a Gas—Liquid—Solid Leaching System. III. Model Application.	865-877B
Number.	2169-2181A	Chemical reduction See Reduction (chemical)	
Casting belts Modeling Superheat Removal During Continuous Casting of		Chemical vapor deposition	
Steel Slabs. A Numerical and Experimental Study of the Solidification	339-356B	Diffusion Mechanisms in Chemical Vapor-Deposited Iridium Coated on Chemical Vapor-Deposited Rhenium.	851-855A
Rate in a Twin—Belt Caster. Casting defects	477-492B	See Physical chemistry	
On the Drag of Model Dendrite Fragments at Low Reynolds Number.	2169-2181A	Surface chemistry Thermochemistry	
A Novel Technique for Outlining the Solidification Crater Pro- file of a Commercial-Size Aluminum Alloy Ingot Cast by the Direct Chill Method.	2323-2325A	Chill casting See Direct chill casting	
Casting machines	2323-2323A	Chip formation Residual Stresses After Orthogonal Machining of AISI 304:	
See Continuous casting machines Castings		Numerical Calculation of the Thermal Component and Comparison With Experimental Results.	989-996/
See also Ingots		Chlorides	
Castings, Directional solidification On the Formation of Macrosegregations in Unidirectionally Solidified Sn—Pb and Pb—Sn Alloys.	2301-2311A	See Sodium chloride Chloridizing	
Castings, Reactions (chemical) Formation of Magnesium Aluminate (Spinel) in Cast SiC		Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron.	261-2668
Particulate-Reinforced Al(A356) Metal Matrix Composites. Catalysts, Reactions (chemical)	1423-1430A	Chromium, Alloying elements Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference	05.404
Na ₂ O—Al ₂ O ₃ System: Activity of Na ₂ O in $(\alpha + \beta)$ - and $(\beta + \beta'')$ -Alumina.	833-839B	Paper) Mechanical Behavior and Microcracking of Cubic Ternary Zir-	35-40/
Catalytic converters See Automotive components		conium Trialuminides. Effect of Chromium on the Ordering Behavior and Ductility of	617-625/
Cavitation Creep Cavitation in a NiCr Steel. (Conference Paper)	201-210A	an Ni—Ni ₄ Mo Alloy. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50%	1829-1833/
Cavities See Holes	2012104	NaOH at 140°C. Microstructure and Ordering of L1 ₂ Titanium Trialuminides.	2887-2904/ 2963-2972/
CCT curves		Effects of Grain Boundary Chemistry on the Intergranular Cracking Behavior of Ni—16Cr—9Fe in High-Temperature	2212 222
See TTT curves Cellular precipitates		Water. Effect of Gravity Level on Grain Refinement in Aluminum Al- loys.	3343-3359
Microsegregation in Cellular Microstructure. Cementite	3377-3381A	Chromium, Claddings Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Re-	
Ferrite:Cementite Crystallography in Pearlite. Ceramics	1259-1269A	tention.	513-522
See also Aluminum oxide Silicon carbide Titanium carbide		Chromium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al. Application of the Square Root Diffusivity to Diffusion in Ni— Cr—Al—Mo Alloys.	2783-2790/ 3245-3249/
Titanium nitride Ceramics, Welding		Chromium, Mechanical properties	GE40 GE40
Interface Microchemistry of Silicon Nitride/Nickel— Chromium Alloy Joints.	1773-1781A	Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis- locations.	3115-3120
CGF forging process See Forging		Chromium, Physical properties	3113-3120
Chalcocite, Beneficiation Comparison of the Anodic Dissolution Behavior of Butte and Transvaal Chalcocite.	879-881B	A Thermodynamic Criterion to Predict Wettability at Metal/ Alumina Interfaces. Chromium, Ternary systems	215-222
Chalcogenides See Sulfides		Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction	00.00
Chalcopyrite, Beneficiation Upgrading Copper Concentrate by Hydrothermally Convert-		Parameters. Formation and Stability of a Nitride With the Structure of Beta Manganese in Ni—Cr—N Ternary System.	1389-1393
ing Chalcopyrite to Digenite.	241-248B	Chromium base alloys, Phases (state of matter) Formation and Stability of a Nitride With the Structure of Beta	
Chapmanizing See Nitriding		Manganese in Ni—Cr—N Ternary System. Chromium base alloys, Solubility	1389-1393
Charpy impact tests See Impact tests		Solubility of Nitrogen in Cr—Fe—Mo—Ni Alloys.	1271-1278
Charring See Combustion		Chromium compounds, Microstructure Crystallographic Relationships of the Al ₄ Cr Crystalline and Ouseicrystalline Phases	2437-2445
Chemical analysis See Quantitative analysis		Quasicrystalline Phases. Chromium manganese steels, Microstructure	
Chemical bonds, Alloying effects Effects of Alloying Elements on the Distortion in the Matrix of	1922 49264	The Nature of Lower Bainite Midrib. Chromium molybdenum nickel steels See Nickel chromium molybdenum steels	2483-2490
a Complex Alloyed Steel. Chemical equilibrium Modeling of Metal—Slag Equilibrium Processes Using Neural Nets.	1833-1836A 643-650B	Chromium molybdenum steels See also Chromium molybdenum vanadium steels Nickel chromium molybdenum steels	
Chemical kinetics See Reaction kinetics		Chromium molybdenum steels, Corrosion Carbide/Matrix Interface Mechanism of Stress Corrosion	
Chemical processes See Reactions (chemical)		Cracking Behavior of High-Strength CrMo Steels. Chromium molybdenum steels, Microstructure	2879-2885
Chemical processing equipment See Chemical reactors		Influence of Long-Term Aging at 520°C and 560°C and the Superimposed Creep Stress on the Microstructure of	224 225
Chemical properties See Activity (chemical)		1.25Cr—0.5Mo Steel. (Conference Paper) Correction to "Influence of Long-Term Aging at 520°C and 560°C and the Superimposed Creep Stress on the Micro-	221-235
Heat of reaction Chemical reactions		structure of 1.25Cr—0.5Mo Steel* (Conference Paper) Chromium molybdenum vanadium steels, Heat treatment	1596
See Reactions (chemical)		Carbide Precipitation in 12Cr1MoV Power Plant Steel.	1171-1179
Chemical reactors Reactor Models for a Series of Continuous Stirred Tank Reactors With a Gas—Liquid—Solid Leaching System. I. Surface Reaction Control.	847-856B	Chromium molybdenum vanadium steels, Microstructure Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V Steel.	2193-2204

Chromium nickel molybdenum steels See Nickel chromium molybdenum steels		Strengthening in Multiphase (MP35N) Alloy. II. Elevated Temperature Tensile and Creep Deformation. (Conference	
Chromium nickel steels See Nickel chromium steels		Paper) Effects of Tungsten Content on the Creep-Rupture Proper- ties of Low-Carbon Cobalt-Base Heat-Resistant Alloys.	321-334A 609-616A
Chromium steels See also Chromium manganese steels Chromium molybdenum steels Nickel chromium steels		Cobalt compounds, Microstructure Decagonal Quasicrystal and Related Crystalline Phases in Slowly Solidified Al—Co Alloys.	1121-1128A
Chromium steels, Crystal lattices Effects of Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel.	1833-1836A	See Crack opening displacement Coefficient of expansion	
Chromium steels, Mechanical properties The Role of Microstructural Instability on Creep Behavior of a Martensitic 9Cr—2V9 Steel. Influence of Carbon and Nitrogen on Solid Solution Decay and "475°C Embrittlement" of High-Chromium Ferritic	469-477A	See Thermal expansion Coefficient of thermal expansion See Thermal expansion Coke	
Steels. Chromium steels, Microstructure New Observation of Martensitic Morphology and Substruc-	2567-2579A	See also Metallurgical coke A Fundamental Study of Raceway Size in Two Dimensions. Coke breeze	267-283B
ture Using Transmission Electron Microscopy. Chromium vanadium steels	1413-1421A	See Coke Cold cracking (welds)	
See Chromium molybdenum vanadium steels Clad metals, Corrosion		See Weld defects Cold deformation	
Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Retention.	513-522B	See Deformation Cold ductility	
Cladding Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Re-		See Ductility	
tention. A Thermal Model of Laser Cladding by Powder Injection.	513-522B 631-642B	See Formability	
Diffusion Reaction in the Zirconium—Copper System. Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. I. Microstructure Evolution.	1373-1375A 2419-2429A	Cold isostatic pressing Observations on the Evolution of Potassium Bubbles in Tungsten Ingots During Sintering. (Conference Paper)	121-133A
Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. II. Oxidation Behavior. Cleavage	2631-2639A	Cold rolling Recovery and Recrystallization in Cold-Rolled Al—SiC _w Composites.	807-819A
Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference		Cold shortness See Brittleness	
Paper) The Tearing Topography Surface as the Zone Associated With Hydrogen Embrittlement Processes in Pearlitic Steel.	35-40A 1573-1584A	Cold swaging See Swaging	
Cleavage, Alloying effects	1370-13047	Cold working	
Substitutional Alloying and Deformation Modes in High Chro- mium Ferritic Alloys.	627-638A	See Cold rolling Columbium	
Cleavage, Microstructural effects Influence of Microstructure on Crack-Tip Micromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy.	1663-1677A	See Niobium Columbium base alloys See Niobium base alloys	
Cleavage, Temperature effects Study of Mechanism of Cleavage Fracture at Low Tempera- ture.	509-517A	Columbium compounds See Niobium compounds	
Fracture Behavior of a B2Ni—30AI—20Fe—0.05Zr Intermet- allic Alloy in the Temperature Range 300-1300K.	1691-1703A	Columnar structure, Composition effects The Transition From Columnar to Equiaxed Dendritic Growth	
Close packed hexagon See Hexagonal lattice		in Proeutectic, Low-Volume Fraction Copper, Pb—Cu Alloys.	1807-1815A
Clustering Nondestructive Evaluation for Large-Scale Metal-Matrix		Combustion See also Ignition	
Composite Billet Processing. Nucleation at Larger Supersaturations. The Scaling of Nucleation Rates.	1541-1549A 1853-1862A 1863-1868A	Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites.	23-34A
Coalescence	1003-1000A	(Conference Paper) Theoretical Models for the Combustion of Alloyable Materi-	69-76A
See Coalescing Coalescing		als. (Conference Paper) A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper)	2339-2347A 2349-2356A
Void Growth and Coalescence in Constrained Silver Interlayers.	3273-3280A	Combustion Synthesis and Subsequent Explosive Densifica- tion of Titanium Carbide Ceramics. (Conference Paper)	2365-2372A
Coating See Diffusion coating Metallizing		Combustion Synthesis of Ceramic—Metal Composite Materi- als: the TiC—Al ₂ O ₃ —Al System. (Conference Paper) Fabrication of Metal Matrix Composites of TiC—Al Through	2373-2379A
Coatings See Diffusion coatings		Self-Propagating Synthesis Reaction. (Conference Paper) Compacting	2387-2392A
Vapor deposited coatings Cobalt, Binary systems		See also Explosive compacting Reactive Sintering and Reactive Hot Isostatic Compaction of	
Constitutional Studies of Cobalt—Tin Alloys. Cobalt, Coatings	2401-2407A	Niobium Aluminide NbAl ₃ . (Conference Paper) Compacts	2357-2364A
Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC Particle-Reinforced Composites.	1607-1615A	See Powder compacts Compliance (elasticity)	
The Fracture Characteristics of Al—9Ti/SiC _p Metal Matrix Composites.		See Modulus of elasticity	
Cobalt, Composite materials Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC	1653-1662A	Components	
	1653-1662A	Components See Aircraft components Automotive components	
Particle-Reinforced Composites. The Fracture Characteristics of AI—9Ti/SiC _p Metal Matrix Composites.	1653-1662A 1607-1615A 1653-1662A	See Aircraft components Automotive components Nozzles Nuclear reactor components	
The Fracture Characteristics of Al—9Ti/SiC _p Metal Matrix Composites. Cobalt, Diffusion	1607-1615A 1653-1662A	See Aircraft components Automotive components Nozzles Nuclear reactor components Rocket components Composite materials	
The Fracture Characteristics of AI—9Ti/SiC _p Metal Matrix Composites. Cobalt, Diffusion Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ AI. Cobalt, Powder technology Formation of Metastable Phases of Ni—C and Co—C Sys-	1607-1615A 1653-1662A 2783-2790A	See Aircraft components Nozzles Nuclear reactor components Nuclear reactor components Rocket components Composite materials See also Fiber composites Laminates Particulate composites	
The Fracture Characteristics of AI—9Ti/SiC _p Metal Matrix Composites. Cobalt, Diffusion Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ AI. Cobalt, Powder technology Formation of Metastable Phases of Ni—C and Co—C Systems by Mechanical Alloying. Cobalt base alloys, Claddings	1607-1615A 1653-1662A	See Aircraft components Automotive components Nozzles Nuclear reactor components Rocket components Composite materials See also Fiber composites Laminates	1051, 1062A
The Fracture Characteristics of AI—9Ti/SiC _p Metal Matrix Composites. Cobalt, Diffusion Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ AI. Cobalt, Powder technology Formation of Metastable Phases of Ni—C and Co—C Systems by Mechanical Alloying.	1607-1615A 1653-1662A 2783-2790A	See Aircraft components Nozzles Nuclear reactor components Nuclear reactor components Rocket components Composite materials See also Fiber composites Laminates Particulate composites Whisker composites Fiber—Matrix Interactions in Brittle Matrix Composites.	1051, 1062A

Composite materials, Powder technology Strength and Microstructure of Powder Metallurgy Processed Restacked Cu—Nb Microcomposites.	573-586A	Condensing The Scaling of Nucleation Rates. Thermodynamic Formula for Evaluating the Reversible Work	1863-1868A
cessed Restacked Cu—Nb Microcomposites. Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper)	2373-2379A	to Form a Critical Nucleus and Influence of Critical Nucleus	1960-19914
Boride-Alumina Composites: Synthesis and Fabrication. (Conference Paper)	2381-2385A	Size Upon Interfacial Tension. The Entropy Production and Variable Surface Tension Barriers to Nucleation and Growth in Steady- and Quasi-Steady	1869-1881A
Composite materials, Synthesis Reaction Synthesis Processes: Mechanisms and Characteristics. (Conference Paper)	7-13A	State Condensing Systems. Theory of Shape Bifurcation During Nucleation in Solids. Homogeneous Nucleation of Liquid From the Vapor Phase in	1883-1890A 1891-1900A
Compositions		an Expansion Cloud Chamber. Consolidation	1957-1961A
See Eutectic composition Compounds		An Experimental Investigation of Reactive Atomization and Deposition Processing of Ni ₃ Al/Y ₂ O ₃ Using Ni ₂ —O ₂ Atom-	
See Aluminum compounds Intermetallics Selenium compounds		ization. Constitutional diagrams	3394-3399A
Compressibility		See Phase diagrams	
See Compressibility (powder) Compressibility (powder)		Consumption See Energy consumption	
Prediction of Sintered Density for Bimodal Powder Mixtures. Compression casting	1455-1465A	Contact testing See Ultrasonic testing	
See Pressure casting		Continuous casting See also Direct chill casting	
Compression strength See Compressive strength		Horizontal continuous casting Effect of Slag Cover on Heat Loss and Liquid Steel Flow in	
Compression tests Compression Testing Techniques to Determine the Stress/	005 0544	Ladles Before and During Teeming to a Continuous Casting Tundish.	135-151B
Strain Behavior of Metals Subject to Finite Deformation. An Analysis of the Isothermal Hot Compression Test. Compressive modulus	935-951A 963-975A	Effect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Continuous Casting Tundishes. Activities of Titanium in Molten Copper at Dilute Concentra-	153-167B
See Modulus of elasticity		tions Measured by Solid-State Electrochemical Cells at 1373K.	169-173B
Compressive properties See also Compressive strength		Modeling Superheat Removal During Continuous Casting of Steel States.	339-356B
Compressive properties, Alloying effects Beneficial Effects of Nitrogen Atomization on an Austenitic Stainless Steel.	3263-3272A	Microscopic Modeling of Fundamental Phase Transforma- tions in Continuous Castings of Steel. Solubility of Titanium Nitride in Continuous Casting Powders. A General Enthalpy Method for Modeling Solidification Pro-	457-467A 523-526B
Compressive strength Compression Testing Techniques to Determine the Stress/ Strain Behavior of Metals Subject to Finite Deformation.	935-951A	cesses. Simple Constitutive Equations for Steel at High Temperature. Continuous casting machines	651-664B 903-918A
An Analysis of the Isothermal Hot Compression Test. Compressive strength, Alloying effects	963-975A	Modeling Superheat Removal During Continuous Casting of Steel Slabs.	339-356B
Mechanical Behavior and Microcracking of Cubic Ternary Zir- conium Trialuminides.	617-625A	A Numerical and Experimental Study of the Solidification Rate in a Twin—Belt Caster. Solubility of Titanium Nitride in Continuous Casting Powders.	477-492B 523-526B
Compressive strength, Composition effects Structure and Mechanical Properties of Boron-Doped Cubic Zirconium Trialuminides.	1243-1252A	Control See Process control	
Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Al- loys.		Controlled atmospheres See Inert atmospheres	
Compressive strength, Deformation effects	1100 100011	Convection	
Structure and Room-Temperature Deformation of Alumina Fiber-Reinforced Aluminum. Compressive strength, Microstructural effects	1207-1219A	Coriolis Effects on the Stability of Plane-Front Solidification of Dilute Pb—Sn Binary Alloys. Unidirectional Solidification of Al—Si Eutectic With the Accel- erated Crucible Rotation Technique.	73-80B 1363-1370A
Superplastic Behavior of Two-Phase Titanium Aluminides.	1509-1513A	Conversion	1505-15767
Compressive yield strength See Compressive strength		A Mathematical Model of the Nickel Converter. II. Application and Analysis of Converter Operation.	573-582B
Computer programs Application of Commercial Computer Codes to Modeling the Carburizing Kinetics of Alloy Steels. (Conference Paper)	2069-2071A	Converters A Mathematical Model of the Nickel Converter. II. Application and Analysis of Converter Operation.	573-582B
Computer simulation Dissolution of Particles in Binary Alloys. I. Computer Simula-		Cooling See Splat cooling	
tions. Model for Ferritic Sulfate Leaching of Copper Ores Contain-		Supercooling Cooling rate	
ing a Variety of Sulfide Minerals. II. Process Modeling of In Situ Operations.	549-555B	Microscopic Modeling of Fundamental Phase Transforma- tions in Continuous Castings of Steel.	457-467A
Laser-Enhanced Sputter or Vapor Deposition of Thin Metallic Films on Ceramic Substrates. (Conference Paper) Modeling of the Liquid/Solid and the Eutectoid Phase Trans-	1095-1103A	A Numerical and Experimental Study of the Solidification Rate in a Twin—Belt Caster.	477-492B
formations in Spheroidal Graphite Cast Iron. Application of Invariant Set Theory to Dynamic Recrystalliza-	1333-1346A	Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys.	690-697A
tion Constitutive Behavior. A Thermodynamic Evaluation of the Al—Mn System.	2091-2103A 2953-2962A	An Analysis of Undirectional Solidification of Pure Metals Cooled Through an Interface Resistance.	881-8828
Evolution of Bivariate Particle Size Distributions. Computer Simulation of Microstructure Development During	2973-2980A	Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at Different Cooling Rates. Discussion of "Solidification of Highly Undercooled Fe—P Al-	1817-1827A
a Martensitic Transformation. Concast	2999-3012A	loys" and Reply. Effect of Cooling Rate on the Solidification Behavior of Al-	2672-2675A
See Continuous casting Concentrating		7Si—SiC _p Metal-Matrix Composites. Copper, Alloying elements	3369-3376A
Upgrading Copper Concentrate by Hydrothermally Convert- ing Chalcopyrite to Digenite.	241-248B	Mechanical Behavior and Microcracking of Cubic Ternary Zir- conium Trialuminides. Microstructure and Ordering of L1 ₂ Titanium Trialuminides.	617-625A 2963-2972A
Concentration (composition) The Thermochemistry of Magnesium in Nickel-Base Alloys. I The Determination of Thermochemical Parameters Using		Copper, Binary systems Role of Entropy of Solution in Controlling Eutectic Microstruc-	
the Atomic Absorption Technique.	791-803B	ture.	2675-2678A
The Thermochemistry of Magnesium in Nickel-Base Allovs. II	805-814B	Copper, Casting Fluid Flow, Heat Transfer, and Solidification of Molten Metal	
The Thermochemistry of Magnesium in Nickel-Base Alloys. II Activity of Magnesium. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper)		Droplets Impinging on Substrates: Comparison of Numeri-	
Activity of Magnesium. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Concentration (process)	2349-2356A	cal and Experimental Results. Copper, Coatings	701-718B
Activity of Magnesium. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper)		cal and Experimental Results.	701-718B 591-599B

Copper, Crystal growth Application of Invariant Set Theory to Dynamic Recrystallization Constitutive Behavior.	2091-2103A	Copper mattes Entrainment Behavior of Copper and Copper Matte in Copper Smelting Operations.	303-311B
Copper, Diffusion Analysis of Low-Temperature Intermetallic Growth in		Copper ores See also Chalcocite	
Copper—Tin Diffusion Couples.	857-864A	Chalcopyrite	
Diffusion Reaction in the Zirconium—Copper System. Discussion of "Diffusion Reaction in the Zirconium-Copper System" and Reply.	1373-1375A 3393-3394A	Copper ores, Beneficiation Model for Ferric Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals. I. Modeling Uniform Size Ore	
Copper, Extraction Percolation Bacterial Leaching of Rajpura Dariba Ore in 4 Ton Column.	91-93B	Fragments. Model for Ferritic Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals. II. Process Modeling of In	537-548B
Collagen Proteins in Electrorefining: Rate Constants for Glue Hydrolysis and Effects of Molar Mass on Glue Activity.	125-133B	Situ Operations. Copper ores, Reduction (chemical)	549-555B
Upgrading Copper Concentrate by Hydrothermally Convert- ing Chalcopyrite to Digenite. Model for Ferric Sulfate Leaching of Copper Ores Containing	241-248B	Entrainment Behavior of Copper and Copper Matte in Copper Smelting Operations.	303-311B
a Variety of Sulfide Minerals. I. Modeling Uniform Size Ore Fragments. Model for Ferritic Sulfate Leaching of Copper Ores Contain-	537-548B	Copper plating The Effect of Additives on the Nucleation and Growth of Copper Onto Stainless Steel Cathodes.	591-599B
ing a Variety of Sulfide Minerals. II. Process Modeling of In Situ Operations.	549-555B	Core hardness See Hardness	
Modeling of Metal—Slag Equilibrium Processes Using Neural Nets.	643-650B	Corex process	
Comparison of the Anodic Dissolution Behavior of Butte and Transvaal Chalcocite.	879-881B	See Ironmaking	
Copper, Mechanical properties Heterogeneity of Intergranular Damage in Copper Crept in		Coriolis force Coriolis Effects on the Stability of Plane-Front Solidification of Dilute Pb—Sn Binary Alloys.	73-80B
Plane-Strain Tension. Some Aspects of Deformation Behavior of Coarse Multi-	2515-2526A	Corrodents	
phase Metallic Materials.	3309-3315A	See Corrosion environments Corrosion	
Copper, Microstructure Automatic Analysis of Electron Backscatter Diffraction Pat-		See Stress corrosion cracking	
terns.	759-768A	Corrosion cracking	
Copper, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/ Alumina Interfaces.	215-222B	See Stress corrosion cracking Corrosion environments Metallurgical Factors influencing the Corrosion of Aluminum,	
Copper, Ternary systems Cu—C and Al—Cu—C Phase Diagrams and Thermodynamic Properties of Carbon in the Alloys From 1550°C to 2300°C. Representation of Thermodynamic Properties of Ternary	453-458B	Al—Cū, and Al—Si Alloy Thin Films in Dilute Hydrofluoric Solution. Effects of Grain Boundary Chemistry on the Intergranular Cracking Behavior of Ni—18Cr—9Fe in High-Temperature	2641-2655A
Systems and its Application to the System Silver—Gold—	747 7500	Water.	3343-3359A
Copper at 1350K. The Al—Cu—Fe Phase Diagram: 0-25 at.% Iron and 50-75 at.% Aluminum—Equilibria Involving the Icosahedral Phase.	747-752B 2409-2417A	Corrosion fatigue Crack Paths, Microstructure, and Fatigue Crack Growth in Annealed and Cold-Rolled AISI 304 Stainless Steels. (Con-	
Copper, Thin films	L400 L4111	ference Paper)	355-371A
Laser-Enhanced Sputter or Vapor Deposition of Thin Metallic Films on Ceramic Substrates. (Conference Paper)	1095-1103A	Corrosion fatigue, Environmental effects Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr Alloy in a 0.5M Sodium Chloride Solution.	1563-1572A
Copper, Welding On the Calculation of the Free Surface Temperature of Gas- Tungsten-Arc Weld Pools From First Principles. I. Modeling the Welding Arc.	357-369B	Corrosion fatigue, Heating effects The Effect of Aging on the Hydrogen-Assisted Fatigue Cracking of a Precipitation-Hardened Al—Li—Zr Alloy.	1551-1562A
Copper base alloys	00, 0005	Corrosion potential Stress Corrision Cracking of An Al—Li Alloy.	3337-3341A
See also Brasses		Corrosion potential, Environmental effects	0007-004174
Copper base alloys, Casting Activities of Titanium in Molten Copper at Dilute Concentra- tions Measured by Solid-State Electrochemical Cells at 1373K.	169-173B	Metallurgical Factors Influencing the Corrosion of Aluminum, Al—Cu, and Al—Si Alloy Thin Films in Dilute Hydrofluoric Solution.	2641-2655A
Copper base alloys, Crystal growth	100 1102	Corrosion prevention See Passivation	
The Growth of Cu—Sn Intermetallics at a Pretinned Copper/ Solder Interface. Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at	1323-1332A	Corrosion products See Scale (corrosion)	
Different Cooling Rates.	1817-1827A	Corrosion resistance, Heating effects	
Copper base alloys, Joining Diffusion Reaction in the Zirconium—Copper System.	1373-1375A	Effect of Heat Treatment on the Hardness—Microstructure Inter-Relation in a 7.5Mn—5Cr—1.5Cu Alloy White Iron: a Modeling Approach.	891-901A
Copper base alloys, Mechanical properties The Influence of Morphology and Distribution of α Phase on the Properties of Polycrystalline CuZnAl Shape Memory		Corrosion resistant steels See Stainless steels	
Alloy. Segregation Effects on Intergranular Fracture: an Atomistic	2939-2941A	CO2 arc welding See Gas metal arc welding	
Simulation Study of Ni—Cu Alloys. Copper base alloys, Microstructure The Structure and Mechanical Properties of Metallic	3105-3113A	Crack closure, Microstructural effects Effects of SiC Content on Fatigue Crack Growth in Aluminum	
Nanocrystals. (Conference Paper) Effects of Ordering Type and Degree on Monoclinic Distor-	1071-1081A	Alloys Reinforced With SiC Particles. Crack growth	2231-2242A
tion of 18R-Type Martensite in Cu—Zn—Al Alloys. A Comparison Between Calculated and Observed Elastically Induced Precipitate Shape Transitions in a Cu—2 at.% Co		See Crack propagation Crack initiation The Tearing Topography Surface as the Zone Associated	
Alloy. Copper base alloys, Phase transformations	2761-2773A	With Hydrogen Embrittlement Processes in Pearlitic Steel.	1573-1584A
High-Resolution Microscopy and Early-Stage Precipitation Kinetics. An Assessment of Studies on Homogeneous Diffusional Nu-	1901-1914A	Crack initiation, Composition effects Structure and Mechanical Properties of Boron-Doped Cubic Zirconium Trialuminides.	1243-1252A
cleation Kinetics in Binary Metallic Alloys.	1915-1945A	Crack initiation, Environmental effects	
Copper base alloys, Powder technology Microstructural Evolution and Thermal Stability Associated With a Gas-Atomized Cu—Nb Alloy.	2159-2167A	Hydrogen Effects on Brittle Fracture of the Titanium Alumi- nide Alloy Ti—24Al—11Nb. Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr	1299-1312A
Copper base alloys, Structural hardening		Alloy in a 0.5M Sodium Chloride Solution. Crack initiation, Heating effects	1563-1572A
The Early Stages of Solute Distribution Below a Transition Temperature. Copper compounds, Mechanical properties	2685-2697A	The Effect of Aging on the Hydrogen-Assisted Fatigue Crack- ing of a Precipitation-Hardened Al—Li—Zr Alloy. The Fracture Characteristics of Al—9Ti/SiC _o Metal Matrix	1551-1562A
Structure and Mechanical Properties of Boron-Doped Cubic Zirconium Trialuminides.	1243-1252A	Composites.	1653-1662A
Copper compounds, Reactions (chemical) Kinetics of Solid State Reaction Between Barium Carbonate and Cupric Oxide.		Crack initiation, Microstructural effects Influence of Microstructure on Intrinsic and Extrinsic Toughening in an Alpha-Two Titanium Aluminide Alloy. (Conference Paper)	183-199A

Fracture Mechanisms of a 2124 Aluminum Matrix Composite Reinforced With SiC Whiskers. Crack initiation, Temperature effects	2589-2596A	Cracking (fracturing), Alloying effects Mechanical Behavior and Microcracking of Cubic Ternary Zirconium Trialuminides.	617-625A
Study of Mechanism of Cleavage Fracture at Low Tempera- ture. The Effect of Temperature on the Deformation and Fracture	509-517A	Cracking (fracturing), Corrosion effects Evaluation of Hydrogen-Assisted Cracking Behavior of Low- Alloy Steel in the Range 95-350°C.	1291-1298A
of SiC/Ti—24AI—11Nb.	2527-2540A	Cracking (fracturing), Environmental effects	1201-12001
Crack opening displacement Fracture Toughness and the Extents of Primary Void Growth. The Micromechanics of Fatique Crack Growth at 25°C in Ti—	485-496A	The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water.	1195-1206A
The Micromechanics of Fatigue Crack Growth at 25°C in Ti— 6AI—4V Reinforced With SCS-6 Fibers.	865-879A	•	1100 1200/1
Crack opening displacement, Pressure effects Fatigue Crack Tip Deformation Processes as Influenced by the Environment.	2211-2221A	Cracking (fracturing), Microstructural effects The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites.	977-988A
Crack opening displacement, Temperature effects Study of Mechanism of Cleavage Fracture at Low Tempera-		Cracking (fracturing), Stress effects Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium Alloys.	3077-3084A
ture.	509-517A	Cratering (welding)	
Crack propagation Fracture Behavior of Stainless Steel-Toughened NiAl Com-		See Weid defects Craters	
posite Plate. The Micromechanics of Fatigue Crack Growth at 25°C in Ti—	563-572A	A Novel Technique for Outlining the Solidification Crater Pro-	
6AI—4V Reinforced With SCS-6 Fibers. The Tearing Topography Surface as the Zone Associated	865-879A	file of a Commercial-Size Aluminum Alloy Ingot Cast by the Direct Chill Method.	2323-2325A
With Hydrogen Embrittlement Processes in Pearlitic Steel. Ductile-Phase Toughening and Fatigue-Crack Growth in	1573-1584A	Creep (materials) See also Creep life	
Niobium-Reinforced Molybdenum Disilicide Intermetallic Composites.	2249-2257A	Creep rate Creep rupture strength	
Creep Rupture in a Nickel-Based Superalloy. Role of Matrix/Reinforcement Interfaces in the Fracture	2581-2587A	Creep strength Influence of Long-Term Aging at 520°C and 560°C and the	
Toughness of Brittle Materials Toughened by Ductile Reinforcements.	2863-2872A	Superimposed Creep Stress on the Microstructure of 1.25Cr—0.5Mo Steel. (Conference Paper)	221-235A
The Effect of Crack-Tip Strain Rate and Potential on the Propagation Rate of Stress Corrosion Crack for 321 Stain-	2000 20727	Strengthening in Multiphase (MP3SN) Alloy. II. Elevated Temperature Tensile and Creep Deformation. (Conference	2E 1-255A
less Steel in Boiling 42% MgCl ₂ Solution. Crystallographic Fatigue Crack Growth in Incompatible Alu-	2873-2878A	Paper)	321-334A
minum Bicrystals: Its Dependence on Secondary Slip.	3293-3301A	Dynamic Restoration Mechanisms in Al—5.8 at.% Mg Deformed to Large Strains in the Solute Drag Regime.	881-889A
Crack propagation, Alloying effects The Effect of Grain Boundary Chemistry on Intergrapular		Correction to "Influence of Long-Term Aging at 520°C and 560°C and the Superimposed Creep Stress on the Micro-	
The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C.	2887-2904A	structure of 1.25Cr—0.5Mo Steel". (Conference Paper) Prediction of Thermomechanical Fatigue Lives in Metal Ma-	1596A
Crack propagation, Corrosion effects	2007-23U4A	trix Composites. (Conference Paper)	2029-2038A
Evaluation of Hydrogen-Assisted Cracking Behavior of Low- Alloy Steel in the Range 95-350°C.	1291-1298A	Creep (materials), Deformation effects Deformation Behavior of a Ni—30AI—20Fe—0.05Zr Intermetallic Alloy in the Temperature Range 300-1300K.	1705-1718A
Crack propagation, Environmental effects Hydrogen-Enhanced Cracking of Superalloys. (Conference		Creep (materials), Diffusion effects	
Paper) Crack Paths, Microstructure, and Fatigue Crack Growth in	237-249A	Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation.	3013-3023A
Annealed and Cold-Rolled AISI 304 Stainless Steels. (Conference Paper)	355-371A	Creep (materials), Microstructural effects Shear Mechanisms of the y' Phase in Single-Crystal Superal-	00 1054
Crack propagation, Heating effects The Effect of Aging on the Hydrogen-Assisted Fatigue Crack-		loys and Their Relation to Creep. (Conference Paper) Microstructure and Creep Properties of Dispersion-	99-105A
ing of a Precipitation-Hardened Al—Li—Zr Alloy. The Fracture Characteristics of Al—9Ti/SiC _p Metal Matrix	1551-1562A	Strengthened Aluminum Alloys. Heterogeneity of Intergranular Damage in Copper Crept in	1521-1539A
Composites.	1653-1662A	Plane-Strain Tension. Creep life	2515-2526A
Crack propagation, High temperature effects Frequency Interactions in High-Temperature Fatigue Crack Growth in Superalloys.	3067-3072A	Creep Rupture in a Nickel-Based Superalloy. Creep life, Alloying effects	2581-2587A
Crack propagation, Impurity effects Lead-Induced Solid Metal Embrittlement of an Excess Silicon	4670 46904	Effects of Tungsten Content on the Creep-Rupture Properties of Low-Carbon Cobalt-Base Heat-Resistant Alloys.	609-616A
Al—Mg—Si Alloy at Temperatures of —4°C to 80°C. Crack propagation, Microstructural effects	1679-1689A	Creep limit See Creep (materials)	
Influence of Microstructure on Intrinsic and Extrinsic Tough- ening in an Alpha-Two Titanium Aluminide Alloy. (Confer-		Creep properties See Creep (materials)	
ence Paper) Inclusion Size Effect on the Fatigue Crack Propagation Mech-	183-199A	Creep rate, Alloying effects	
anism and Fracture Mechanics of a Superalloy. An Investigation of the Effects of Microstructure on the Fatigue and Fracture Behavior of α ₂ + β Forged Ti—24AI—	519-526A	The Effect of Tungsten on Creep Behavior of Tempered Mar- tensitic 9Cr Steels.	3025-3034A
11Nb. Effects of SiC Content on Fatigue Crack Growth in Aluminum	1737-1750A	Creep rate, Heating effects Low-Temperature Creep of a Carburized Steel.	2619-2624A
Alloys Reinforced With SiC Particles. Fracture Mechanisms of a 2124 Aluminum Matrix Composite	2231-2242A	Creep rate, Microstructural effects Influence of Intergranular Carbide Density and Grain Size on	
Reinforced With SiC Whiskers.	2589-2596A	Creep of Fe—15Cr—25Ni Alloys. Effect of Microstructure on Creep of Ti—24Al—11Nb Poly-	1379-1381A
Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels.	2879-2885A	crystals.	3035-3043A
Crack propagation, Pressure effects Fatigue Crack Tip Deformation Processes as Influenced by		Creep resistance See Creep strength	
the Environment.	2211-2221A	Creep rupture strength	201 2404
Crack propagation, Stress effects Mechanisms of Fatigue Crack Retardation Following Single		Creep Cavitation in a NiCr Steel. (Conference Paper) Creep Rupture in a Nickel-Based Superalloy.	201-210A 2581-2587A
Tensile Overloads in Powder Metallurgy Aluminum Alloys. Influence of Prolonged Thermal Exposure on Intergranular	3055-3066A	Creep rupture strength, Alloying effects Effects of Tungsten Content on the Creep-Rupture Proper-	
Fatigue Crack Growth Behavior in Alloy 718 at 650°C.	3169-3171A	ties of Low-Carbon Cobalt-Base Heat-Resistant Alloys.	609-616A
Crack propagation, Temperature effects Fracture Behavior of a B2Ni—30Al—20Fe—0.05Zr Intermet-		The Effect of Tungsten on Creep Behavior of Tempered Mar- tensitic 9Cr Steels.	3025-3034A
allic Alloy in the Temperature Range 300-1300K. The Effect of Temperature on the Deformation and Fracture	1691-1703A	Creep strength, Alloying effects	
of SiC/Ti—24Al—11Nb. Thermal Activation Model of Endurance Limit.	2527-2540A 2597-2605A	The Effect of Tungsten on Creep Behavior of Tempered Mar- tensitic 9Cr Steels.	3025-3034A
Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys.		Creep strength, Composition effects Effect of Carbon on the Low-Temperature Creep Behavior of	
Crack resistance		Ni—16Cr—9Fe.	1033-1037A
See Crack propagation		Creep strength, Corrosion effects Developing Hydrogen-Tolerant Microstructures for an α ₂ Ti-	
Cracking (fracturing) See also Crack closure		tanium Aluminide Alloy.	497-507A
Crack initiation Crack propagation Stress corrosion cracking		Creep strength, Heating effects Developing Hydrogen-Tolerant Microstructures for an α ₂ Titanium Aluminide Alloy.	497-507A

Creep strength, High temperature effects Frequency Interactions in High-Temperature Fatigue Crack Growth in Superalloys. Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₃ Zr Intermetallic Compound.	3067-3072A 3073-3076A	Metastable Precipitate in a Duplex Martensite + Ferrite Precipitation-Hardening Stainless Steel. The Nature of Lower Baintle Midrib. Effects of Ordening Type and Degree on Monoclinic Distortion of 18R-Type Martensite in Cu—Zn—Al Alloys.	2447-2453A 2483-2490A 2753-2760A
Creep strength, Microstructural effects Microstructures and Property Tradeoffs in Wrought TiAl-	075 0774	Evolution of Bivariate Particle Size Distributions. Crystal structure, Alloying effects Microstructure and Ordering of L1 ₂ Titanium Trialuminides.	2973-2980A 2963-2972A
Base Alloys. The Role of Microstructural Instability on Creep Behavior of a Martensitic 9Cr—2W Steel.	375-377A 469-477A	Crystal structure, Composition effects The Microstructure of Electrodeposited Titanium—Aluminum	
Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys.	1379-1381A	Alloys.	2715-2723A
Effect of Microstructure on Creep of Ti—24AI—11Nb Polycrystals.	3035-3043A	Crystal structure, Heating effects An Interpretation of the Carbon Redistribution Process During Aging of High Carbon Martensite.	2147-2158A
Creep strength, Stress effects Influence of Prolonged Thermal Exposure on Intergranular Fatigue Crack Growth Behavior in Alloy 718 at 650°C.	3169-3171A	Crystal structure, Impurity effects The Atomic Arrangement of Interstitials in Molybdenum Ordered Solutions.	1601-1606A
Creep tests Creep Cavitation in a NiCr Steel. (Conference Paper)	201-210A	Crystallinity See Crystal structure	
Strengthening in Multiphase (MP35N) Alloy. II. Elevated Tem- perature Tensile and Creep Deformation. (Conference		Crystallization	
Paper) Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V	321-334A	See also Recrystallization Correlation Between the Structure and Internal Friction of Metallic Glass Cu ₄₅ Ti ₅₅ .	1627-1630A
Steel. Creep Rupture in a Nickel-Based Superalloy.	2193-2204A 2581-2587A	Crystallization, Composition effects Theoretical Treatment of the Solidification of Undercooled	
Creeping See Creep (materials)		Fe—Cr—Ni Melts.	1585-1591A
Cross tension test See Tension tests		Crystallization, Heating effects On the Phase Transformation Between the Quasicrystalline to Crystalline Phases in Alloys of Al—Cu—Fe—Co.	3161-3166A
Crushing strength		Crystallography	
See Compressive strength Cryogenic quenching		See also Diffractography The Morphology, Crystallography, and Mechanism of Car-	
Low-Temperature Creep of a Carburized Steel.	2619-2624A	bide Precipitation in an Fe—0.12C—3.28Ni Alloy. (Conference Paper) Ferrite:Cementite Crystallography in Pearlite.	171-181A 1259-1269A
Cryogenic temperature See Cryogenics		Crystals	1235-1205A
Cryogenics Incoloy 908, a Low Coefficient of Expansion Alloy for High-		See Polycrystals Single crystals	
Strength Cryogenic Applications. I. Physical Metallurgy.	3177-3192A	CTT curves See TTT curves	
Crystal defects See also Dislocations Stacking faults		Cubic lattice See also Body centered cubic lattice	
Lattice Imperfections Studied by X-Ray Diffraction in De- formed Aluminum-Base Alloys: AI—Cu Alloy.	1371-1373A	Face centered cubic lattice	
Distributed-Activation Kinetics of Heterogeneous Martensitic Nucleation.	2987-2998A	Cubic lattice, Alloying effects Effect of Chromium on the Ordering Behavior and Ductility of an Ni—Ni ₄ Mo Alloy.	1829-1833A
Crystal defects, Composition effects The Microstructure of Electrodeposited Titanium—Aluminum Alloys.	2715-2723A	Curves See Stress strain curves	1023-1000A
Crystal growth	ETTO ETEOR	TTT curves	
Mushy Zone Modeling With Microstructural Coarsening Kinetics.	659-667A	Cutting parameters Energy-Beam Redistribution and Absorption in a Drilling or Welding Cavity.	505-511B
Experimental and Numerical Study of Pattern Formation in Faceted Cellular Array Growth. (Conference Paper) Unidirectional Solidification of AI—Si Eutectic With the Accel-	1111-1120A	Residual Stresses After Orthogonal Machining of AISI 304: Numerical Calculation of the Thermal Component and	
erated Crucible Rotation Technique. Correlation Between the Structure and Internal Friction of	1363-1370A	Comparison With Experimental Results. CVD	989-996A
Metallic Glass Cu ₄₅ Ti ₅₅ . The Entropy Production and Variable Surface Tension Barri-	1627-1630A	See Chemical vapor deposition	
ers to Nucleation and Growth in Steady- and Quasi-Steady State Condensing Systems.	1883-1890A	Cyanidation Adsorption of Gold on Activated Carbon in Bromide Solu-	
High-Resolution Microscopy and Early-Stage Precipitation Kinetics.	1901-1914A	tions.	557-566B
Evolution of Bivariate Particle Size Distributions.	2973-2980A	Cyanide process See Cyanidation	
Crystal growth, Cooling effects Microscopic Modeling of Fundamental Phase Transforma-		Cycles See Stress cycle	
tions in Continuous Castings of Steel. Discussion of "Solidification of Highly Undercooled Fe—P Al-	457-467A	Thermal cycling	
loys" and Reply. Crystal growth, Deformation effects	2672-2675A	Cyclic loads Hardening Mechanisms in a Dynamic Strain Aging Alloy,	
Application of Invariant Set Theory to Dynamic Recrystalliza- tion Constitutive Behavior.	2091-2103A	HASTELLOY X, During Isothermal and Thermomechanical Cyclic Deformation. As Exercises and Numerical Study of Cyclic Deformation.	551-561A
Crystal growth, Microstructural effects		An Experimental and Numerical Study of Cyclic Deformation in Metal—Matrix Composites. Frequency Interactions in High-Temperature Fatigue Crack	919-934A
Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth.	2121-2129A	Growth in Superalloys. Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium	3067-3072A
Crystal lattices See Cubic lattice		Alloys.	3077-3084A
Hexagonal lattice Orthorhombic lattice		Cyclical heating See Thermal cycling	
Superlattices Tetragonal lattice		Damage	
Crystal orientation		See Radiation damage Decarbonizing	
See Crystal structure Crystal structure		See Decarburizing	
See also Elongated structure Quasicrystalline structure		Decarburizing Rate of Decarburization of Fe—C _{sat} Melts by H ₂ O at 1523 and 1873K.	AE 545
Widmanstatten structure The Short-Range Order Structure of a Water-Quenched Ni—		Decarburization of Silicon Melt for Solar Cells by Filtration	45-51B
12.5 at % Si Alloy—a Synchrotron X-Ray Diffuse Scatter- ing Study.	769-777A	and Oxidation. Decomposition	423-427B
In-Plane Structure and Properties of Iron Multilayers. (Con- ference Paper)	1105-1109A	See Phase decomposition	
Formation of Magnesium Aluminate (Spinel) in Cast SiC Particulate-Reinforced Al(A356) Metal Matrix Composites.	1423-1430A	Decomposition reactions See Hydrolysis	
Crystallographic Relationships of the Al ₄ Cr Crystalline and		Deep carburizing	

Defects See Casting defects		Detectors See Sensors	
Crystal defects Inclusions		Diagrams	
Weld defects Deflagration		See Phase diagrams Stress strain curves	
See Combustion Deformability		Diamond pyramid hardness, Alloying effects Mechanical Behavior and Microcracking of Cubic Ternary Zir- conium Trialuminides.	617-625A
See Formability Deformation See also Plastic deformation		Diamond pyramid hardness, Composition effects Structure and Mechanical Properties of Boron-Doped Cubic Zirconium Trialuminides.	1243-1252A
Prestraining Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Some Aspects of Deformation Behavior of Coarse Multi- phase Metallic Materials.	3013-3023A 3309-3315A	Diamond pyramid hardness, Heating effects Effect of Heat Treatment on the Hardness—Microstructure Inter-Relation in a 7.5Mm—5Cr—1.5Cu Alloy White Iron: a Modeling Approach	891-901A
Deformation mechanisms, High temperature effects Interaction of High-Temperature Deformation Mechanisms in a Magnesium Alloy With Mixed Fine and Coarse Grains.	3135-3140A	Microstructural Changes During Overtempering of High- Speed Steels. Laser Melting Treatment by Overlapping Passes of Pre-	1631-1640A
Deformation resistance Forming Limit Diagrams Calculated Using Hill's Nonquadratic Yield Criterion.	2817-2831A	heated Nickel Electrodeposited Coatings on Al—Si Alloy. Die casting Infiltration of Fiber Preforms by a Binary Alloy. II. Further The-	1801-1806A
Deformation resistance, Microstructural effects Microstructural Influences on the Dynamic Response of		ory and Experiments. Infiltration of Fiber Preforms by an Alloy. III. Die Casting Experiments.	2263-2280A 2281-2289A
Tungsten Heavy Alloys. Deformation resistance, Temperature effects The Effect of Temperature on the Deformation and Fracture	2625-2630A	Infiltration of Fibrous Preforms by a Pure Metal. IV. Morphological Stability of the Remelting Front. Differential thermal analysis	2291-2299A
of SiC/Ti—24Al—11Nb. Deforming See Deformation	2527-2540A	Thermal Stress and Strain Effects on Phase Transition Tem- peratures in Differential Thermal Analysis Testing.	451-455A
Delaminating The Micromechanics of Fatigue Crack Growth at 25°C in Ti— 6AI—4V Reinforced With SCS-6 Fibers.	865-879A	Diffraction See Electron diffraction Neutron diffraction X ray diffraction	
Role of Matrix/Reinforcement Interfaces in the Fracture Toughness of Brittle Materials Toughened by Ductile Reinforcements.	2863-2872A	Diffraction patterns Automatic Analysis of Electron Backscatter Diffraction Patterns.	759-768A
Dendrite See Bondritie attricture		Diffractography	. 55-100/
See Dendritic structure Dendritic structure		Automatic Analysis of Electron Backscatter Diffraction Pat- terns.	759-768A
Mushy Zone Modeling With Microstructural Coarsening Kinetics.	659-667A	Crystallographic Relationships of the Al ₄ Cr Crystalline and Quasicrystalline Phases.	2437-2445A
Dendritic Growth During Directional Solidification of Hypoeu- tectic Fe—C—Si Alloys.	681-687A	Diffusion See also Electrodiffusion	
Mathematical Simulatión of Interdendritic Solidification of Low-Alloyed and Stainless Steels. Macrosegregation During Steady-State Arrayed Growth of	1155-1170A	The Effect of Interfacial Diffusion Barriers on the Ignition of Self-Sustained Reactions in Metal—Metal Diffusion Cou-	
Dendrites in Directionally Solidified Pb—Sn Alloys.	3383-3392A	ples. (Conference Paper) Diffusion Mechanisms in Chemical Vapor-Deposited Iridium	49-53A
Dendritic structure, Composition effects The Transition From Columnar to Equiaxed Dendritic Growth in Proeutectic, Low-Volume Fraction Copper, Pb—Cu Al-		Coated on Chemical Vapor-Deposited Rhenium. Analysis of Low-Temperature Intermetallic Growth in Copper—Tin Diffusion Couples.	851-855A 857-864A
loys. Dendritic structure, Cooling effects Supercooling Effects in Cu. 10 at % Co Alloys Solidified at	1807-1815A	Microsegregation in Solidification for Ternary Alloys. Theoretical Models for the Combustion of Alloyable Materi- als. (Conference Paper)	1038-1043A 2339-2347A
Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at Different Cooling Rates. Discussion of 'Solidification of Highly Undercooled Fe—P Al-	1817-1827A	The Activation Energy for Lattice Self-Diffusion and the Engel—Brewer Theory.	2491-2500A
loys" and Reply. Effect of Cooling Rate on the Solidification Behavior of Al— 7Si—SiC _p Metal-Matrix Composites.	2672-2675A 3369-3376A	Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al. Discussion of "Diffusion Reaction in the Zirconium-Copper System" and Reply.	2783-2790A 3393-3394A
Dendritic structure, Size effects Microstructural Evolution and Thermal Stability Associated With a Gas-Atomized Cu—Nb Alloy.	2159-2167A	Diffusion, Alloying effects The Effect of Tungsten on Creep Behavior of Tempered Martensitic 9Cr Steels.	3025-3034A
Densification Microstructural Characterization of Self-Propagating High-	LIGOLIGIA	Diffusion, Heating effects Segregation and Homogenization of a Near-Gamma Titanium Aluminide. (Conference Paper)	149-161A
Temperature Synthesis/Dynamically Compacted and Hot- Pressed Titanium Carbides. (Conference Paper) Prediction of Sintered Density for Bimodal Powder Mixtures.	87-97A 1455-1465A	Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc Alloy.	1947-1955A
Collapse of Interconnected Open Pores in Solid-State Sinter- ing of W—Ni.	2141-2145A	Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced Ni ₃ Al Composite.	3151-3160A
Combustion Synthesis and Subsequent Explosive Densifica- tion of Titanium Carbide Ceramics. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materi-	2365-2372A	Diffusion, Radiation effects Thermal and Irradiation-Induced Phase Separation in Fe—Ni Based Invar-Type Alloys. (Conference Paper, Review)	1963-1976A
als: the TiC—Al ₂ O ₃ —Al System. (Conference Paper) Boride-Alumina Composites: Synthesis and Fabrication. (Conference Paper)	2373-2379A 2381-2385A	Diffusion, Temperature effects Diffusion-Controlled Growth and Coarsening of MnS During	3013-3023A
Deoxidation See Deoxidizing		Diffusion bonding	0010 002011
Deoxidizers Deoxidation of Titanium Aluminide by Ca—Al Alloy Under Controlled Aluminum Activity.	583-590B	See Diffusion welding Diffusion coating Decomposition of the B2-Type Matrix of Aluminide Diffusion	
Deoxidizing Equilibrium Between Na ₂ O-Containing Slags and Carbon-		Coatings on Single-Crystal Nickel-Base Superalloy Sub- strates.	2657-2665A
Saturated Iron at 1350°C: the Controlling Oxygen Potential. Deoxidation of Titanium Aluminide by Ca—Al Alloy Under Controlled Aluminum Activity.	395-397B 583-590B	Diffusion coating (process) See Diffusion coating Diffusion coatings	
Silicon—Oxygen Equilibrium and Nitrogen Distribution Be- tween CaO—SiO ₂ Slags and Liquid Iron.	613-621B	Decomposition of the B2-Type Matrix of Aluminide Diffusion Coatings on Single-Crystal Nickel-Base Superalloy Sub-	2657-2665A
See also Electrodeposition		strates. Diffusion coefficient	2037-2003A
Vapor deposition An Experimental Investigation of Reactive Atomization and Deposition Processing of Ni₃Al/Y₂O₃ Using Ni₂—O₂ Atom-		See Diffusion Diffusion couples	
ization.	3394-3399A	See Diffusion	
Desulfurizing Sulfide Capacities of CaO—CaF ₂ —CaCl ₂ Melts. Silicon—Oxygen Equilibrium and Nitrogen Distribution Be-	325-330B	Diffusion welding Diffusion Reaction in the Zirconium—Copper System. Interface Microchemistry of Silicon Nitride/Nickel—	1373-1375A
tween CaO-SiO ₂ Slags and Liquid Iron.	613-621B	Chromium Alloy Joints.	1773-1781A

719-736B 521-1539A
313-2321A
394-3399A
791-2801A
373-1375A
3/3-13/3A
398B
433-444A
445-449A
409-413B
505-511B
221-1232A
233-1241A
233-1241A
515-1519A
313-1319A
262 2604
263-269A
263-269A 493-1508A
493-1508A
493-1508A
493-1508A 691-1703A 479-1492A
493-1508A 691-1703A
493-1508A 691-1703A 479-1492A
493-1508A 691-1703A 479-1492A
493-1508A 691-1703A 479-1492A 2669-2672A
493-1508A 691-1703A 479-1492A 2669-2672A
493-1508A 691-1703A 479-1492A 2669-2672A 1083-1093A 1147-1153A
493-1508A 691-1703A 479-1492A 2669-2672A 1083-1093A 1147-1153A 2817-2831A
3

Effects of Tungsten Content on the Creep-Rupture Properties of Low-Carbon Cobalt-Base Heat-Resistant Alloys, Substitutional Alloysing and Deformation Medicing High Chee	609-616A	Edge dislocations Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body Content Cubic Transition Metals With Dis-	
Substitutional Alloying and Deformation Modes in High Chro- mium Ferritc Alloys. Effect of Chromium on the Ordering Behavior and Ductility of	627-638A	Atoms in Body-Centered Cubic Transition Metals With Dis- locations.	3115-3120A
an Ni—Ni ₄ Mo Alloy. Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by	1829-1833A	Elastic constants See also Modulus of elasticity	
Laser Cladding. I. Microstructure Evolution. Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by	2419-2429A	Elastic constants, Microstructural effects The Structure and Mechanical Properties of Metallic	
Laser Cladding, II. Oxidation Behavior. Plasma-Melted Nitrogen-Bearing Cast Stainless Steels—	2631-2639A	Nanocrystals. (Conference Paper) Elastic modulus	1071-1081A
Microstructure and Tensile Properties. Ductility, Composition effects	3317-3324A	See Modulus of elasticity Elastic properties	
Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Al-	4400 45004	See Elastic constants	
loys. Ductility, Corrosion effects Effect of Ordering on Susceptibility to Hydrogen Embrittlement of a Nickel-Base Superalloy.	1493-1508A 953-961A	Elasticity See also Superelasticity Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis-	2445 24224
Ductility, Deformation effects	333-301A	locations. Elasticity, Microstructural effects	3115-3120A
An Experimental and Numerical Study of Cyclic Deformation in Metal—Matrix Composites. Deformation Behavior of a Ni—30Al—20Fe—0.05Zr Inter-	919-934A	Computer Simulation of Microstructure Development During a Martensitic Transformation.	2999-3012A
metallic Alloy in the Temperature Range 300-1300K. Ductility, Environmental effects	1705-1718A	Electric arc drilling See Drilling	
Hydrogen-Enhanced Cracking of Superalloys. (Conference Paper)	237-249A	Electric arc melting See Plasma arc melting	
Hydrogen Effects on Brittle Fracture of the Titanium Alumi- nide Alloy Ti—24Al—11Nb.	1299-1312A	Electric assemblies See Electronic devices	
Ductility, Heating effects Intercritically Annealed and Isothermally Transformed 0.15%		Electric components See Electronic devices	
Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. I. Transformation, Microstructure, and Room-Temperature	1001 10001	Electric conductors (materials) See Electrolytes	
Mechanical Properties. Intercritically Annealed and Isothermally Transformed 0.15% Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. II.	1221-1232A	Superconductors	
Effect of Testing Temperature on Stress—Strain Behavior and Deformation-Induced Austenite Transformation.	1233-1241A	See Welding current	
An Investigation of the Fracture Behavior of Gamma-Based Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and		See Electronic devices	
α ₂ + γ Phase Fields. (Conference Paper) Ductility, Impurity effects	2039-2059A	Electric equipment See Electronic devices	
The Effect of Internal Hydrogen on a Single-Crystal Nickel- Base Superalloy.	1313-1322A	Electric generators See Solar generators	
Influence of Sulfide Inclusion on Ductility and Fracture Behav- ior of Resulfurized HY-80 Steel.	1479-1492A	Electric lamps See Incandescent lamps	
Ductility, Microstructural effects Sintering Time and Atmosphere Influences on the Micro-		Electric power generation Carbide Precipitation in 12Cr1MoV Power Plant Steel.	1171-1179A
structure and Mechanical Properties of Tungsten Heavy Al- loys. (Conference Paper) Metal—Ceramic Composites Based on the Ti—B—Cu Po-	211-219A	Electric power plants	IIIIIII
rosity System. (Conference Paper) Microstructures and Property Tradeoffs in Wrought TiAl-	251-261A	See Electric power generation Electric power stations	
Base Alloys. Homogenization and Microstructure Effects on the Proper-	375-377A	See Electric power generation Electrical steels, Crystal growth	
ties of Injection Molded Fe—2Ni Steel. Microstructure and Creep Properties of Dispersion- Strengthened Aluminum Alloys.	377-381A 1521-1539A	Strain-Induced Nucleation of MnS in Electrical Steels. Electrical steels, Diffusion	821-830A
Influence of Microstructure on Crack-Tip Micromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy.	1663-1677A	Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation.	3013-3023A
Fracture Mechanisms of a 2124 Aluminum Matrix Composite Reinforced With SiC Whiskers.	2589-2596A	Electroceramics See Ceramics	
Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys.	2625-2630A	Electrode potentials	
Ductility, Pressure effects Effect of Hydrostatic Pressure on the Hot-Working Behavior		See Corrosion potential Electrodeposition	
of a Gamma Titanium Aluminide. Ductility, Temperature effects Fracture Behavior of a B2Ni—30AI—20Fe—0.05Zr Intermet-	2669-2672A	See also Electroplating Collagen Proteins in Electrorefining: Rate Constants for Glue Hydrolysis and Effects of Molar Mass on Glue Activity.	125-133B
allic Alloy in the Temperature Range 300-1300K. The Effect of Temperature on the Deformation and Fracture	1691-1703A	Electrodiffusion On Void Nucleation and Growth in Metal Interconnect Lines	
of SiC/Ti-24AI-11Nb. Ductility and Strain-Induced Transformation in a High-	2527-2540A	Under Electromigration Conditions. Electrogalvanizing	2007-2013A
Strength Transformation-Induced Plasticity-Aided Dual- Phase Steel. Optimization of Hot Workability in Stainless Steel-Type AISI	3085-3091A	See Electroplating	
304L Using Processing Maps.	3093-3103A	Electrogas welding See Gas metal arc welding	
Ductility, Welding effects Microstructural Damage and Residual Mechanical Properties in Helium-Bearing Gas Metal Arc Weldments.	1021-1032A	Electrolytes The Effect of Additives on the Nucleation and Growth of Copper Onto Stainless Steel Cathodes.	591-599B
Duplex stainless steels, Microstructure Metastable Precipitate in a Duplex Martensite + Ferrite		Electrolytic deposition See Electrodeposition	
Precipitation-Hardening Stainless Steel. Duplex stainless steels, Phase transformations	2447-2453A	Electrolytic dissolution See Anodic dissolution	
Atom Probe Examination of Thermally Aged CF8M Cast Stainless Steel.	2725-2736A	Electromagnetic absorption See X ray absorption	
Dynamic tests See Impact tests		Electromagnetic stirring Elaboration of Semisolid Alloys by Means of New Electro-	
Dynamics See Fluid dynamics		magnetic Rheocasting Processes.	189-206B
Dynapak extrusion		See Electron beam machining	
See Extrusion Dynapak forging See Forging		Electron beam machining Energy-Beam Redistribution and Absorption in a Drilling or Welding Cavity.	505-511B
Dynapak process See Extrusion		Electron beam melting A Nitriding Process for the Recovery of Niobium From Fer-	
Forging		roniobium.	437-442B

Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at Different Cooling Rates.	1817-1827A	Energy of formation See Free energy Heat of formation	
Electron beam processing See Electron beam melting Electron beam welding		Energy of fracture See Toughness	
Electron beam vacuum melting See Electron beam melting		Energy of solution See Free energy	
Electron beam welding		Heat of solution	
Energy-Beam Redistribution and Absorption in a Drilling or Welding Cavity.	505-511B	Engine components See Pistons	
A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds.	1783-1799A	Turbine blades	
Electron beam welding, Alloying effects Beam Focusing Characteristics and Alloying Element Effects	81-90B	Engines See Gas turbine engines Heat engines	
on High-Intensity Electron Beam Welding. Electron diffraction	01-300	Enthalpy	
In-Plane Structure and Properties of Iron Multilayers. (Con- ference Paper)	1105 1100A	Enthalpies of Formation of Some Solid Hafnium Nickel Com- pounds and of the Nickel-Rich HfNi Liquid by Direct Reac-	
Crystallographic Relationships of the Al ₄ Cr Crystalline and	1105-1109A	tion Calorimetry.	815-819B
Quasicrystalline Phases.	2437-2445A	Entrainment Entrainment Behavior of Copper and Copper Matte in Copper	
See also Transmission electron microscopy		Smelting Operations.	303-311B
Recent Studies of Thin Films and Surfaces by High- Resolution Electron Microscopy. (Conference Paper)	1063-1070A	Entropy of activation See Activation energy	
Electron spectroscopy		Entropy of formation	
See Auger electron spectroscopy		See Heat of formation	
See Electronic devices		Entropy of reaction See Heat of reaction	
Electronic components See Electronic devices		Entropy of solution	
Electronic devices		See Heat of solution	
See also Transistors Metal/Semiconductor Interfacial Reactions.	1999-2006A	Environment See Corrosion environments	
On Void Nucleation and Growth in Metal Interconnect Lines		Marine environments Space environment	
Under Electromigration Conditions.	2007-2013A	Equations	
Electronic devices, Fabrication Analysis of Low-Temperature Intermetallic Growth in		Creep Cavitation in a NiCr Steel. (Conference Paper)	201-210A
Copper—Tin Diffusion Couples. The Growth of Cu—Sn Intermetallics at a Pretinned Copper/	857-864A	Effect of Heat Treatment on the Hardness—Microstructure Inter-Relation in a 7.5Mn—5Cr—1.5Cu Alloy White Iron: a	
Solder Interface.	1323-1332A	Modeling Approach. Simple Constitutive Equations for Steel at High Temperature.	891-901A 903-918A
Electronic equipment See Electronic devices		Modeling of the Liquid/Solid and the Eutectoid Phase Trans- formations in Spheroidal Graphite Cast Iron.	1333-1346A
Electroplating		Equiaxed structure	1000 10101
The Effect of Additives on the Nucleation and Growth of Cop- per Onto Stainless Steel Cathodes.	591-599B	Microstructures and Property Tradeoffs in Wrought TiAl- Base Alloys.	375-377A
Electrorefining		Equilibrium	010-01114
Collagen Proteins in Electrorefining: Rate Constants for Glue Hydrolysis and Effects of Molar Mass on Glue Activity.	125-133B	See Chemical equilibrium	
Elongated structure		Equilibrium constants See Chemical equilibrium	
Microstructure and Creep Properties of Dispersion- Strengthened Aluminum Alloys.	1521-1539A	Equilibrium diagrams	
Elongated structure, Deformation effects		See Phase diagrams	
Influence of Transverse Rolling on the Microstructural and Texture Development in Pure Tantalum.	2183-2191A	Phase Equilibria in the Binary Rare-Earth Alloys: the	
Elongation, Temperature effects		Erbium—Magnesium System.	1005-1012A
Ductility and Strain-Induced Transformation in a High- Strength Transformation-Induced Plasticity-Aided Dual-		Eutectic composition Role of Entropy of Solution in Controlling Eutectic Microstruc-	
Phase Steel.	3085-3091A	ture.	2675-2678A
See also Hydrogen embrittlement		Eutectics, Cooling effects Effect of Cooling Rate on the Solidification Behavior of Al—	
On the Mechanisms of High-Temperature Intergranular Em- brittlements of Ni ₃ Al—Zr Alloys.	1187-1193A	7Si—SiC _p Metal-Matrix Composites.	3369-3376A
Dynamic Compaction of Titanium Aluminides by Explosively Generated Shock Waves: Microstructure and Mechanical		Eutectoid decomposition, Heating effects The Morphology, Crystallography, and Mechanism of Car-	
Properties.	3251-3261A	bide Precipitation in an Fe-0.12C-3.28Ni Alloy. (Conference Paper)	171-181A
Embrittlement, Alloying effects Effect of Chromium on the Ordering Behavior and Ductility of		Eutectoid reactions	171-1018
an Ni—Ni ₄ Mo Alloy.	1829-1833A	See Eutectoid decomposition	
Embrittlement, Composition effects Aging Embrittlement and Grain Boundary Segregation in a		Exothermic reactions Kinetics of Solid State Reaction Between Barium Carbonate	
NiCrMoV Rotor Steel.	2243-2248A	and Cupric Oxide.	493-503B
Embrittlement, Impurity effects Lead-Induced Solid Metal Embrittlement of an Excess Silicon		Boride-Alumina Composites: Synthesis and Fabrication. (Conference Paper)	2381-2385A
Al-Mg-Si Alloy at Temperatures of -4°C to 80°C.	1679-1689A	Expansion	
Influence of Carbon and Nitrogen on Solid Solution Decay and "475°C Embrittlement" of High-Chromium Ferritic		See Thermal expansion Explosive compacting	
Steels.	2567-2579A	Shock Synthesis of GaAs From Elemental Powders. (Confer-	CE COA
Endurance (testing) See Fatigue tests		ence Paper) Reaction Synthesis/Dynamic Compaction of Titanium Dibo-	65-68A
Endurance limit		ride. (Conference Paper) Combustion Synthesis and Subsequent Explosive Densifica-	77-86A
See Fatigue limit Energy		tion of Titanium Carbide Ceramics. (Conference Paper) Dynamic Compaction of Titanium Aluminides by Explosively	2365-2372A
See Free energy		Generated Shock Waves: Microstructure and Mechanical Properties.	3251-3261A
Surface energy Energy consumption		Explosive drilling	3231-3201A
Determination of Refractive Index and Absorption Coefficient of Iron-Oxide-Bearing Slags.	331-337B	See Drilling	
Energy of activation	001-001B	Extraction See Cyanidation	
See Activation energy		Solvent extraction	
Energy of dissociation See Free energy		Extraction plants Percolation Bacterial Leaching of Rajpura Dariba Ore in	
Heat of formation		4 Ton Column	91-93B

Extractive metallurgy See also Hydrometallurgy Pyrometallurgy		Fatigue failure, Microstructural effects Inclusion Size Effect on the Fatigue Crack Propagation Mechanism and Fracture Mechanics of a Superalloy.	519-526A
Model for Ferric Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals. I. Modeling Uniform Size Ore		An Investigation of the Effects of Microstructure on the Fatigue and Fracture Behavior of $\alpha_2 + \beta$ Forged Ti—24AI—	
Fragments. Model for Ferritic Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals. II. Process Modeling of In	537-548B	11Nb. Effects of SiC Content on Fatigue Crack Growth in Aluminum Alloys Reinforced With SiC Particles.	1737-1750A 2231-2242A
Situ Operations. A Mathematical Model of the Nickel Converter, II. Application	549-555B	The Influence of Morphology and Distribution of α Phase on the Properties of Polycrystalline CuZnAl Shape Memory	
and Analysis of Converter Operation. Extrusion	573-582B	Alloy. Fatigue failure, Pressure effects	2939-2941A
Application of Invariant Set Theory to Dynamic Recrystalliza- tion Constitutive Behavior.	2091-2103A	Fatigue Crack Tip Deformation Processes as Influenced by the Environment.	2211-2221A
Processing and Microstructure of Powder Metallurgy Al— Fe—Ni Alloys.	3219-3230A	Fatigue failure, Temperature effects Thermal Activation Model of Endurance Limit.	2597-2605A
See Pressure casting		Fatigue fracture See Fatigue failure	
Extrusion compacting See Compacting		Fatigue life, Composition effects Prediction of Thermomechanical Fatigue Lives in Metal Ma-	
Extrusion pressing See Extrusion		trix Composites. (Conference Paper) Fatigue life, Microstructural effects	2029-2038A
Extrusions, Mechanical properties Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Alloys.	1493-1508A	High-Temperature Low-Cycle Fatigue Behavior of a NI- MONIC PE-16 Superalloy—Correlation With Deformation and Fracture.	1751-1761A
Extrusions, Rolling Influence of Transverse Rolling on the Microstructural and		Fatigue life, Stress effects Mechanisms of Fatigue Crack Retardation Following Single Tensile Overloads in Powder Metallurgy Aluminum Alloys.	3055-3066A
Texture Development in Pure Tantalum. Face centered cubic lattice Thermoelastic Martensite and Shape Memory Effect in B2	2183-2191A	Fatigue limit, Temperature effects Thermal Activation Model of Endurance Limit.	2597-2605A
Base Ni—Al—Fa Alloy With Enhanced Ductility. Solubility of Nitrogen in Cr—Fe—Mo—Ni Alloys.	1147-1153A 1271-1278A	Fatigue properties See Fatigue (materials)	
Face centered cubic lattice, Composition effects Theoretical Treatment of the Solidification of Undercooled		Fatigue strength Recent Trends and Developments With Rapidly Solidified	
Fe—Cr—Ni Melts. The Microstructure of Electrodeposited Titanium—Aluminum	1585-1591A	Materials. (Conference Paper) Fatigue strength, Environmental effects	1083-1093A
Alloys. Face centered cubic lattice, Deformation effects	2715-2723A	Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr Alloy in a 0.5M Sodium Chloride Solution.	1563-1572A
Development of Iron-Based Shape Memory Alloys Associated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. II. Transformation Behavior.	1439-1444A	Fatigue strength, Microstructural effects Effects of SiC Content on Fatigue Crack Growth in Aluminum Alloys Reinforced With SiC Particles.	2231-2242A
Face centered cubic metals See FCC metals		Fatigue strength, Pressure effects Fatigue Crack Tip Deformation Processes as Influenced by	
Face centered orthorhombic lattice See Orthorhombic lattice		the Environment. Fatigue tests	2211-2221A
Face centered tetragonal lattice See Tetragonal lattice		Prediction of Thermomechanical Fatigue Lives in Metal Ma- trix Composites. (Conference Paper)	2029-2038A
Failure See Delaminating Fatigue failure		FCC metals, Diffusion The Activation Energy for Lattice Self-Diffusion and the Engel—Brewer Theory.	2491-2500A
Fatigue (materials) See also Corrosion fatigue		Ferric compounds See Iron compounds	
Fatigue life Fatigue limit Fatigue strength		Ferrite Ferrite:Cementite Crystallography in Pearlite.	1259-1269A
Low cycle fatigue Thermal fatigue		Phase Transition in an Fe—23.2AI—4.1Ni Alloy. The Crystallography of Bainite in a Medium-Carbon Steel.	1395-1401A
Hardening Mechanisms in a Dynamic Strain Aging Alloy, HASTELLOY X, During Isothermal and Thermomechanical Cyclic Deformation.	551-561A	Containing Silicon, Manganese, and Molybdenum. Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V	1403-1411A
The Tearing Topography Surface as the Zone Associated With Hydrogen Embrittlement Processes in Pearlitic Steel.	1573-1584A	Steel. Metastable Precipitate in a Duplex Martensite + Ferrite	2193-2204A
Ductile-Phase Toughening and Fatigue-Crack Growth in Niobium-Reinforced Molybdenum Disilicide Intermetallic		Precipitation-Hardening Stainless Steel. The Principle of Additivity and the Proeutectoid Ferrite Transformation.	2447-2453A 2469-2480A
Composites. The Influence of Morphology and Distribution of α Phase on the Properties of Polycrystalline CuZnAl Shape Memory	2249-2257A	formation. Atom Probe Examination of Thermally Aged CF8M Cast Stainless Steel.	2725-2736A
Alloy. Fatigue (materials), High temperature effects	2939-2941A	Ferritic stainless steels, Crystal growth Theoretical Treatment of the Solidification of Undercooled	
Frequency Interactions in High-Temperature Fatigue Crack Growth in Superalloys.	3067-3072A	Fe—Cr—Ni Melts.	1585-1591A
Fatigue (materials), Microstructural effects An Investigation of the Effects of Microstructure on the Fa-		Ferritic stainless steels, Mechanical properties Influence of Carbon and Nitrogen on Solid Solution Decay and "475°C Embrittlement" of High-Chromium Ferritic	
tigue and Fracture Behavior of $\alpha_2 + \beta$ Forged Ti—24AI—11Nb.	1737-1750A	Steels. Ferroalloys	2567-2579A
Fatigue (materials), Stress effects Influence of Prolonged Thermal Exposure on Intergranular	2452 24744	See Ferroniobium Ferrocolumbium	
Fatigue Crack Growth Behavior in Alloy 718 at 650°C. Fatigue cracking	3169-3171A	See Ferroniobium Ferromagnetic films	
See Cracking (fracturing) Fatigue (materials) Fatigue failure		See Ferromagnetic materials	
Fatigue failure Fracture Behavior of Stainless Steel-Toughened NiAl Com-		Ferromagnetic materials, Magnetic properties Nucleation and Growth Effects in Thin Ferromagnetic Sheets: a Review Focusing on Surface Energy-Induced Secondary Recrystallization.	1987-1998A
posite Plate. The Micromechanics of Fatigue Crack Growth at 25°C in Ti— 6AI—4V Reinforced With SCS-6 Fibers.	865-879A	Ferroniobium, Recovering A Nitriding Process for the Recovery of Niobium From Fer-	
Ductile-Phase Toughening and Fatigue-Crack Growth in Niobium-Reinforced Molybdenum Disilicide Intermetallic		roniobium.	437-442B
Composites. Crystallographic Fatigue Crack Growth in Incompatible Aluminum Bicrystals: its Dependence on Secondary Slip.	2249-2257A 3293-3301A	Ferrous alloys See also Steels	
Fatigue failure, Environmental effects Crack Paths, Microstructure, and Fatigue Crack Growth in		Ferrous alloys, Crystal growth Microstructural Transitions During Containerless Processing of Undercooled Fe—Ni Alloys.	1347-1362A
Annealed and Cold-Rolled AISI 304 Stainless Steels. (Con- ference Paper)	355-371A	Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth.	2121-2129A

Discussion of "Solidification of Highly Undercooled Fe-P Alloys" and Reply.	2672-2675A	Fiber reinforcement See Filaments	
Ferrous alloys, Directional solidification Dendritic Growth During Directional Solidification of Hypoeu-		Fibers See Carbon fibers	
tectic Fe—C—Si Alloys. Ferrous alloys, Magnetic properties Nucleation and Growth Effects in Thin Ferromagnetic Sheets:	681-687A	Fibrous structure Fracture Mechanisms of a 2124 Aluminum Matrix Composite Reinforced With SiC Whiskers.	2589-2596A
a Review Focusing on Surface Energy-Induced Secondary Recrystallization.	1987-1998A	Fields (physics) See Magnetic fields	
Ferrous alloys, Mechanical properties Effect of Boron on the Grain Boundary Segregation of Phosphorus and Intergranular Fracture in High-Purity Fe—		Filaments Observations on the Evolution of Potassium Bubbles in Tung- sten Ingots During Sintering. (Conference Paper)	121-133A
0.2P—B Alloys. (Conference Paper) Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys.	263-269A 627-638A	Filaments, Crystal growth Effects of Vibration on the Grain Morphology of Some Tung-	
Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys.	1379-1381A	sten Incandescent Lamp Filaments. Filler metal	2259-2262A
Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. I. Shape Memory Behavior.	1431-1437A	See Brazing alloys Solders Weld metal	
Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. III. Microstructures.	1445-1454A	Films See Magnetic films	
Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace of Boron.	1515-1519A	Sputtered films Thin films	
Ferrous alloys, Metallography	1010 1010/	Filtering See Filtration	
Recent Studies of Thin Films and Surfaces by High- Resolution Electron Microscopy. (Conference Paper) Ferrous alloys, Microstructure	1063-1070A	Filtration Decarburization of Silicon Melt for Solar Cells by Filtration and Oxidation.	423-427B
In-Plane Structure and Properties of Iron Multilayers. (Con- ference Paper)	1105-1109A	Fines	420-4270
Ferrous alloys, Phase transformations Phase Transition in an Fe—23.2AI—4.1Ni Alloy.	1395-1401A	See Ultrafines Finite element method	
Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. II. Transformation Behavior.	1439-1444A	A Thermal Model of Laser Cladding by Powder Injection. Finite Element Modeling of Transient Heat Transfer and Microstructural Evolution in Welds. II. Modeling of Grain	631-642B
Distributed-Activation Kinetics of Heterogeneous Martensitic Nucleation.	2987-2998A	Growth in Austenitic Stainless Steels. An Analysis of the Isothermal Hot Compression Test.	841-845B 963-975A
Room-Temperature Detormation and Stress-Induced Phase Transformation of Laves Phases in Fe—10 at.% Zr Alloy.	3303-3308A	Residual Stresses After Orthogonal Machining of AISI 304: Numerical Calculation of the Thermal Component and Comparison With Experimental Results.	989-996A
Ferrous alloys, Physical properties Thermal and Irradiation-Induced Phase Separation in Fe—Ni Based Invar-Type Alloys. (Conference Paper, Review)	1963-1976A	Application of Commercial Computer Codes to Modeling the Carburizing Kinetics of Alloy Steels. (Conference Paper) Computer Simulation of Microstructure Development During	2069-2071A
Ferrous alloys, Solubility Experimental Investigation of the Thermodynamics of Fe-		a Martensitic Transformation.	2999-3012A
Nb—C Austenite and Nonstoichiometric Niobium and Tita- nium Carbides (T = 1273 to 1473K).	729-744A	Fission reactors See Nuclear reactors	
Ferrous alloys, Structural hardening Epsilon Carbide Precipitation During Tempering of Plain Car-		Flexural vibration See Fatigue (materials)	
bon Martensite. Ferrous alloys, Thermal properties	2737-2751A	Flotation Upgrading Copper Concentrate by Hydrothermally Convert- ing Chalcopyrite to Digenite.	241-248B
Discussion of "Quadratic Formalism for Magnesium in Liquid Iron".	665B	Flow See Fluid flow	
Ferrous alloys, Welding On the Calculation of the Free Surface Temperature of Gas- Tungsten-Arc Weld Pools From First Principles. II. Model-	274 2040	Flow stress See Yield strength	
ing the Weld Pool and Comparison With Experiments. Ferrous compounds	371-384B	Fluid dynamics Effect of Slag Cover on Heat Loss and Liquid Steel Flow in	
See Iron compounds Ferrous metals		Ladles Before and During Teeming to a Continuous Casting Tundish.	135-151B
See Ferrous alloys		Effect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Continuous Casting Tundishes. Measurements of the Internal Structure of Gas—Liquid	153-167B
Fiber composites, Casting Fabrication of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Infiltration.	295-302B	Plumes. Fluid flow	779-788B
Infiltration of Fiber Preforms by a Binary Alloy. II. Further The- ory and Experiments.	2263-2280A	See also Viscous flow Effect of Slag Cover on Heat Loss and Liquid Steel Flow in	
Infiltration of Fiber Preforms by an Alloy. III. Die Casting Ex- periments. Infiltration of Fibrous Preforms by a Pure Metal. IV. Morpho-	2281-2289A	Ladles Before and During Teeming to a Continuous Casting Tundish.	135-151B
logical Stability of the Remelting Front.	2291-2299A	Effect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Continuous Casting Tundishes. Modeling Superheat Removal During Continuous Casting of	153-167B
Fiber composites, Fabrication Wetting of SAFFIL Alumina Fiber Preforms by Aluminum at 973K. (Conference Paper)	2071-2073A	Steel Šlabs.	339-356B
Fiber composites, Heat treatment	2011-20101	Fluidity See Viscosity	
Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced Ni ₃ Al Composite.	3151-3160A	Fluorides See Hydrofluoric acid	
Fiber composites, Mechanical properties Effect of Environment on the Thermal Fatigue Response of an SCS-6/Ti—24AI—11Nb Composite.	587-595A	Fluxes Phosphate Capacity of CaO—Al ₂ O ₃ Slags Containing CaF ₂ , BaO, Li ₂ O, or Na ₂ O.	117-123B
The Micromechanics of Fatigue Crack Growth at 25°C in Ti— 6AI—4V Reinforced With SCS-6 Fibers.	865-879A	Determination of Standard Gibbs Energies of Formation of CaC ₂ , SrC ₂ , and BaC ₂ .	
Structure and Room-Temperature Deformation of Alumina Fiber-Reinforced Aluminum.	1207-1219A	Solubility of Titanium Nitride in Continuous Casting Powders. Fluxes. Reactions (chemical)	523-526B
The Effect of Temperature on the Deformation and Fracture of SiC/Ti—24AI—11Nb.	2527-2540A	Group Optical Basicities of Polymerized Anions in Slags.	227-229B
Effect of Fiber Strength on the Room Temperature Tensile Properties of SiC/Ti—24AI—11Nb. The Strength of Metal Matrix Composites Reinforced With	2541-2548A	Fluxing Determination of Standard Gibbs Energies of Formation of	245 242
Randomly Oriented Discontinuous Fibers. Tensile Strain-Rate Sensitivity of Tungsten/Niobium Composites at 1300 to 1600K.	3045-3053A	CaC ₂ , SrC ₂ , and BaC ₂ . Foil, Welding Interface Microchemistry of Silicon Nitride/Nickel—	313-316B
Fiber composites, Powder technology Fabrication of Metal Matrix Composites of TiCAl Through		Chromium Alloy Joints.	1773-1781A
Self-Propagating Synthesis Reaction. (Conference Paper) Fiber metal brazing	2387-2392A	See Foil Foil brazing	
See Brazing		See Brazing	

Foils (structural shapes)		Fracturing Frankling fracture	
See Foil Force See Coriolis force		See also Brittle fracture Cracking (fracturing) Ductile fracture Intergranular fracture	
Forging Application of Invariant Set Theory to Dynamic Recrystalliza-		Transgranular fracture Void Growth and Coalescence in Constrained Silver Interlay-	2072 20004
tion Constitutive Behavior. Formability	2091-2103A	ers. Void Nucleation in Constrained Silver Interlayers.	3273-3280A 3281-3291A
Plastic-Flow Behavior and Microstructural Development in a Cast Alpha-Two Titanium Aluminide. (Conference Paper)	295-305A	Free energy See also Activation energy Stacking fault energy	
Formability, Deformation effects Forming Limit Diagrams Calculated Using Hill's Nonquadratic Yield Criterion.	2817-2831A	Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Cu—C and Al—Cu—C Phase Diagrams and Thermodynamic	57-64B
Formation entropy See Heat of formation		Properties of Carbon in the Alloys From 1550°C to 2300°C. A Thermodynamic Evaluation of the Al—Mn System. Segregation Effects on Intergranular Fracture: an Atomistic	453-458B 2953-2962A
Forming See Extrusion		Simulation Study of Ni—Cu Alloys. An Assessment of the Al—Fe—N System.	3105-3113A 3141-3149A
Forging Superplastic forming Swaging		Free energy of activation See Activation energy	
Forming limit See Formability		Free energy of dissociation See Free energy Heat of formation	
Fracture mechanics See also Crack opening displacement		Free energy of formation See Free energy	
J integral Study of Mechanism of Cleavage Fracture at Low Tempera-		Heat of formation	
ture. Inclusion Size Effect on the Fatigue Crack Propagation Mechanism and Fracture Machanism of a Superalley	509-517A 519-526A	Free energy of reaction See Free energy Heat of reaction	
anism and Fracture Mechanics of a Superalloy. The Micromechanics of Fatigue Crack Growth at 25°C in Ti— 6AI—4V Reinforced With SCS-6 Fibers.	865-879A	Free energy of solution	
Creep Rupture in a Nickel-Based Superalloy. Fracture Mechanisms of a 2124 Aluminum Matrix Composite	2581-2587A	See Free energy Heat of solution	
Reinforced With SiC Whiskers. Fracture mechanisms	2589-2596A	Free energy of transformation See Free energy	
See Fracture mechanics Fracturing		Free machining steels See Resulfurized steels	
Fracture strength, Environmental effects Hydrogen Effects on Brittle Fracture of the Titanium Alumi-		Freezing points See Melting points	
nide Alloy Ti—24Al—11Nb. Fracture strength, Microstructural effects	1299-1312A	Friction See Internal friction	
The Effect of Interfacial Reaction Layer Thickness on Frac- ture of Titanium—SiC Particulate Composites.	977-988A	Sliding friction Fuel injection	
Fracture testing The Tearing Topography Surface as the Zone Associated With Hydrogen Embrittlement Processes in Pearlitic Steel.	1573-1584A	A Fundamental Study of Raceway Size in Two Dimensions. Treatment of Multiple Injections in the Iron Blast Furnace by the Rist Diagram.	267-283B 385-394B
Fracture toughness Ductile-Phase Toughening and Fatigue-Crack Growth in	1010 100 11	Fuels See Coke	
Niobium-Reinforced Molybdenum Disilicide Intermetallic Composites. Role of Matrix/Reinforcement Interfaces in the Fracture	2249-2257A	Fumes See Welding fumes	
Toughness of Brittle Materials Toughened by Ductile Rein- forcements.	2863-2872A	Furnaces See Blast furnaces	
Void Growth and Coalescence in Constrained Silver Interlay- ers. Void Nucleation in Constrained Silver Interlayers.	3273-3280A 3281-3291A	Fused salts, Reactions (chemical) Comparative Investigations Among Binary Molten Salt Mix-	
Fracture toughness, Environmental effects	0201-0231A	tures PbCl ₂ —AgCl, PbCl ₂ —LiCl, and PbCl ₂ —KCl Using an Isopiestic Technique.	666-669B
Effects of Hydrogen on the Mixed Mode I/III Toughness of a High-Purity Rotor Steel. Correction to "Effects of Hydrogen on the Mixed Mode I/III	1013-1020A	Fusion (melting) See Melting	
Toughness of a High-Purity Rotor Steel". Fracture toughness, Heating effects	1840A	Fusion welding See also Electron beam welding Laser beam welding	
The Fracture Characteristics of A! —STi/SiC _p Metal Matrix Composites. An Investigation of the Fracture Behavior of Gamma-Based	1653-1662A	Finite Element Modeling of Transient Heat Transfer and Microstructural Evolution in Welds. II. Modeling of Grain Growth in Austenitic Stainless Steels.	841-845B
Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and $\alpha_2 + \gamma$ Phase Fields. (Conference Paper)	2039-2059A	Gages	047-0435
Fracture toughness, Microstructural effects Influence of Microstructure on Intrinsic and Extrinsic Tough-		See Knudsen gages Gallium, Binary systems	
ening in an Alpha-Two Titanium Aluminide Alloy. (Confer- ence Paper) Metal—Ceramic Composites Based on the Ti—B—Cu Po-	183-199A	Enthalpies of Formation of Liquid and Solid (Gallium + Palladium) Alloys.	39-44B
rosity System. (Conference Paper) Microstructures and Property Tradeoffs in Wrought TiAl-	251-261A	Gallium, Melting A General Enthalpy Method for Modeling Solidification Processes.	651-664B
Base Alloys. Fracture Toughness and the Extents of Primary Void Growth.		Gallium arsenide, Synthesis Shock Synthesis of GaAs From Elemental Powders. (Confer-	
Influence of Microstructure on Crack-Tip Micromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy. An Investigation of the Effects of Microstructure on the Fa-	1663-1677A	ence Paper) Gallium compounds	65-68A
tigue and Fracture Behavior of $\alpha_2 + \beta$ Forged Ti—24Al—11Nb.	1737-1750A	See Gallium arsenide	
A Comparison of Toughness of C—Mn Steel With Different Grain Sizes.	2549-2556A	Galvannealing See Annealing	
Fracture Mechanisms of a 2124 Aluminum Matrix Composite Reinforced With SiC Whiskers. Fracture toughness, Temperature effects	2589-2596A	Gas metal arc welding Microstructural Damage and Residual Mechanical Properties in Helium-Bearing Gas Metal Arc Weldments.	1021-1032A
Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys.	3105-3113A	Gas tungsten arc welding On the Calculation of the Free Surface Temperature of Gas-	1021-10021
Fracture toughness, Welding effects Correlation of Microstructure and Fracture Properties in Weld Heat-Affected Zones of Thermomechanically Controlled		Tungsten-Arc Weld Pools From First Principles. I. Modeling the Welding Arc. On the Calculation of the Free Surface Temperature of Gas-	357-369B
Processed Steels. Fractures	2803-2816A	Tungsten-Arc Weld Pools From First Principles. II. Modeling the Weld Pool and Comparison With Experiments.	371-384B
Dynamic Compaction of Titanium Aluminides by Explosively Generated Shock Waves: Microstructure and Mechanical	2051 20614	Gas turbine engines, Mechanical properties Effect of Microstructure on Creep of Ti—24AI—11Nb Poly-	2025-20424

Influence of Prolonged Thermal Exposure on Intergranular Fatigue Crack Growth Behavior in Alloy 718 at 650°C.	3169-3171A	Grain growth Strain-Induced Nucleation of MnS in Electrical Steels.	821-830A
Gas turbines See Gas turbine engines		Grain growth, Alloying effects Nb(C,N) Precipitation and Austenite Recrystallization in	
Gibbs free energy See Free energy		Boron-Containing High-Strength Low-Alloy Steels. Grain growth, Composition effects	2111-2120A
Glass See Metallic glasses		The Effect of Ceramic Reinforcements During Spray Atom- ization and Codeposition of Metal Matrix Composites. II. Solid-State Cooling Effects.	845-850A
Glissile dislocations, High temperature effects Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₃ Zr Intermetallic Compound.	3073-3076A	The Transition From Columnar to Equiaxed Dendritic Growth in Proeutectic, Low-Volume Fraction Copper, Pb—Cu Al- loys.	1807-1815A
Glue Collagen Proteins in Electrorefining: Rate Constants for Glue Hydrolysis and Effects of Molar Mass on Glue Activity.	125-133B	Grain growth, Cooling effects Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at Different Cooling Rates.	1817-1827A
GMAW	120-1000	Grain growth, Deformation effects Dynamic Restoration Mechanisms in AI—5.8 at.% Mg De-	
See Gas metal arc welding Gold, Binary systems		formed to Large Strains in the Solute Drag Regime. Application of Invariant Set Theory to Dynamic Recrystalliza-	881-889A
Note on the Thermochemistry of the Au + V, Au + Nb, and Au + Ta Systems. Role of Entropy of Solution in Controlling Eutectic Microstruc-	1836-1839A	tion Constitutive Behavior. Influence of Transverse Rolling on the Microstructural and	2091-2103A
ture. Gold. Extraction	2675-2678A	Texture Development in Pure Tantalum. Oscillations in Load Observed During High-Temperature Low Strain-Rate Testing of Superplastic Materials.	2183-2191A 2667-2669A
Adsorption of Gold on Activated Carbon in Bromide Solu- tions. Reactor Models for a Series of Continuous Stirred Tank Re-	557-566B	Grain growth, Heating effects Recovery and Recrystallization in Cold-Rolled Al—SiC _w Composites.	807-819A
actors With a Gas—Liquid—Solid Leaching System. I. Sur- face Reaction Control. Reactor Models for a Series of Continuous Stirred Tank Re-	847-856B	Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V Steel.	2193-2204A
actors With a Gas—Liquid—Solid Leaching System. II. Gas-Transfer Control. Reactor Models for a Series of Continuous Stirred Tank Reactors With a Gas—Liquid—Solid Leaching System. III.	857-864B	Grain growth, Microstructural effects Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth.	2121-2129A
Model Application. Gold, Reactions (chemical) Thermochemistry of Binary Alloys of Transition Metals: the	865-877B	Grain growth, Shape effects Relationship Between Grain Boundary Curvature and Grain Size.	2481-2482A
Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Systems. Gold, Sorption	997-1003A	Grain growth, Vibration effects Effects of Vibration on the Grain Morphology of Some Tung-	2259-2262A
Adsorption of Gold on Activated Carbon in Bromide Solutions.	557-566B	sten Incandescent Lamp Filaments. Grain growth, Welding effects	2239-2202A
Gold, Ternary systems Representation of Thermodynamic Properties of Ternary Systems and its Application to the System Silver—Gold—		Finite Element Modeling of Transient Heat Transfer and Microstructural Evolution in Welds. II. Modeling of Grain Growth in Austenitic Stainless Steels.	841-845B
Copper at 1350K. Gold base alloys, Structural hardening	747-752B	Grain orientation The Nature of Lower Bainite Midrib. Measurement and Representation of Grain-Boundary Tex-	2483-2490A
The Early Stages of Solute Distribution Below a Transition			2501-2513A
Temperature.	2685-2697A	ture. Heterogeneity of Intergranular Damage in Copper Crept in	
Temperature. GP zone See Guinier Preston zone	2685-2697A		2515-2526A
GP zone	2685-2697A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension.	
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular	2685-2697A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Rain refinement The Microstructures and Properties of an AI—12 wt.% Si	2515-2526A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water.		Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by	2515-2526A 2313-2321A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound-	1181-1186A 1195-1206A 1379-1381A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ AI Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper)	2515-2526A 2313-2321A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—18Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundries by Alln Precipitates	1181-1186A 1195-1206A 1379-1381A 1783-1799A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing, (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys, (Conference Paper)	2515-2526A 2313-2321A 3399-3404A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size.	1181-1186A 1195-1206A 1379-1381A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing, (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper)	2515-2526A 2313-2321A 3399-3404A 35-40A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25N Alloys.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing, (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austentie Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Trans-	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Ailoys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing, (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austentile Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2879-2885A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₂ AI Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2879-2885A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50°6 NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2879-2885A 2887-2904A 3013-3023A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austentie Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transtormation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys. Effect of Microstructure on Creep of Ti—24Al—11Nb Polycrystals.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A 2557-2565A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys. Grain boundaries, Composition effects Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Al- loys. Aging Embrittlement and Grain Boundary Segregation in a	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2879-2885A 2887-2904A 3013-3023A 3105-3113A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing, (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructural Influence on Tensile Properties. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys. Effect of Microstructure on Creep of Ti—24Al—11Nb Polycrystals. Effect of Strain Rate on Cell Size Refinement and Strengthening in Nickel and Aluminum.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A 2557-2565A 2625-2630A 3035-3043A 3166-3169A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys. Grain boundaries, Composition effects Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAI and NiAI(Zr) Intermetallic Al- loys. Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2879-2885A 2887-2904A 3013-3023A 3105-3113A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₂ AI Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Microstructure and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25N Alloys. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys. Effect of Strain Rate on Cell Size Refinement and Strengthening in Nickel and Aluminum. Processing and Microstructure of Powder Metallurgy AI—Fe—Ni Alloys. Grain size, Cooling effects	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A 2557-2565A 2625-2630A 3035-3043A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50° NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys. Grain boundaries, Composition effects Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAI and NiAI(Zr) Intermetallic Al- loys. Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2879-2885A 2887-2904A 3013-3023A 3105-3113A 1493-1508A 2243-2248A 2455-2467A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Microstructure and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys. Effect of Strain Rate on Cell Size Refinement and Strengthening in Nickel and Aluminum. Processing and Microstructure of Powder Metallurgy AI—Fe—Ni Alloys. Grain size, Cooling effects The Effect of Ceramic Reinforcements During Spray Atomization and Codeposition of Metal Matrix Composites. II.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A 2557-2565A 2625-2630A 3035-3043A 3166-3169A 3219-3230A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys. Grain boundaries, Composition effects Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAI and NiAI(Zr) Intermetallic Al- loys. Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel. Grain boundaries, Heating effects Instabilities in Stabilized Austenitic Stainless Steels. Grain boundary Migration Pinning of Grain Boundaries by Deformable Particles. Liquid/Solid Interface Migration at Grain Boundary Regions During Transient Liquid Phase Brazing.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2879-2885A 2887-2904A 3013-3023A 3105-3113A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ AI Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys. Effect of Microstructure on Creep of Ti—24AI—11Nb Polycrystals. Effect of Strain Rate on Cell Size Refinement and Strengthening in Nickel and Aluminum. Processing and Microstructure of Powder Metallurgy Al—Fe—Ni Alloys. Grain size, Cooling effects The Effect of Ceramic Reinforcements During Spray Atomization and Codeposition of Metal Matrix Composites. II. Solid-State Cooling Effects. Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at Different Cooling Rates.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A 2557-2565A 2625-2630A 3035-3043A 3166-3169A 3219-3230A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50° NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys. Grain boundaries, Composition effects Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAI and NiAI(Zr) Intermetallic Al- loys. Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel. Grain boundary Migration Pinning of Grain Boundaries by Deformable Particles. Liquid/Solid Interface Migration at Grain Boundary Regions During Transient Liquid Phase Brazing.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2887-2904A 3013-3023A 3105-3113A 1493-1508A 2243-2248A 2455-2467A 1181-1186A 2905-2915A 1181-1186A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys. Effect of Microstructure on Creep of Ti—24Al—11Nb Polycrystals. Effect of Strain Rate on Cell Size Refinement and Strengthening in Nickel and Aluminum. Processing and Microstructure of Powder Metallurgy Al—Fe—Ni Alloys. Grain size, Cooling effects The Effect of Ceramic Reinforcements During Spray Atomization and Codeposition of Metal Matrix Composites. II. Solid-State Cooling Effects Influence of Transverse Rolling on the Microstructural and Texture Development in Pure Tantalum.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A 2557-2565A 2625-2630A 3035-3043A 3166-3169A 3219-3230A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—TeCr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Strees Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys. Grain boundaries, Composition effects Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAl and NiAI(Zr) Intermetallic Al- loys. Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel. Grain boundary migration Pinning of Grain Boundaries by Deformable Particles. Liquid/Solid Interface Migration at Grain Boundary Regions During Transient Liquid Phase Brazing. Grain boundary sliding Pinning of Grain Boundaries by Deformable Particles.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2879-2885A 2887-2904A 3013-3023A 3105-3113A 1493-1508A 2243-2248A 2455-2467A 1181-1186A 2905-2915A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing, (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructural Influence on Tensile Properties. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys. Effect of Microstructure on Creep of Ti—24AI—11Nb Polycrystals. Effect of Microstructure on Creep of Ti—24AI—11Nb Polycrystals. Effect of Strain Rate on Cell Size Refinement and Strengthening in Nickel and Aluminum. Processing and Microstructure of Powder Metallurgy AI—Fe—Ni Alloys. Grain size, Cooling effects Influence of Transverse Rolling on the Microstructural and Texture Development in Pure Tantalum. Grain Size, Deformation effects Influence of Transverse Rolling on the Microstructural and Texture Development in Pure Tantalum. Grain Refinement by Dynamic Recrystallization During the Simulated Warm-Rolling of Interstitial Free Steels.	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A 2557-2565A 2625-2630A 3035-3043A 3166-3169A 3219-3230A
GP zone See Guinier Preston zone Gradients See Temperature gradient Grain boundaries Pinning of Grain Boundaries by Deformable Particles. The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water. Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Pinning of Austenite Grain Boundaries by AlN Precipitates and Abnormal Grain Growth. Relationship Between Grain Boundary Curvature and Grain Size. Measurement and Representation of Grain-Boundary Tex- ture. Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels. The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Diffusion-Controlled Growth and Coarsening of MnS During Hot Deformation. Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys. Grain boundaries, Composition effects Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAI and NiAI(Zr) Intermetallic Al- loys. Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel. Grain boundary Migration Pinning of Grain Boundaries by Deformable Particles. Liquid/Solid Interface Migration at Grain Boundary Regions During Transient Liquid Phase Brazing. Grain boundary Suling Pinning of Grain Boundaries by Deformable Particles. Superplastic Behavior of Two-Phase Titanium Aluminides.	1181-1186A 1195-1206A 1379-1381A 1783-1799A 2121-2129A 2481-2482A 2501-2513A 2887-2904A 3013-3023A 3105-3113A 1493-1508A 2243-2248A 2455-2467A 1181-1186A 2905-2915A 1181-1186A	Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Grain refinement The Microstructures and Properties of an AI—12 wt.% Si Alloy Produced by a New Layer-Deposition Process. Grain refinement, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Grain size Microstructure and Tensile Properties of Fe ₃ AI Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Sintering Time and Atmosphere Influences on the Microstructure and Mechanical Properties of Tungsten Heavy Alloys. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Influence of Intergranular Carbide Density and Grain Size on Creep of Fe—15Cr—25Ni Alloys. Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth. The Principle of Additivity and the Proeutectoid Ferrite Transformation. A Comparison of Toughness of C—Mn Steel With Different Grain Sizes. Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties. Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys. Effect of Microstructure on Creep of Ti—24AI—11Nb Polycrystals. Effect of Strain Rate on Cell Size Refinement and Strengthening in Nickel and Aluminum. Processing and Microstructure of Powder Metallurgy Al—Fe—Ni Alloys. Grain size, Cooling effects The Effect of Ceramic Reinforcements During Spray Atomization and Codeposition of Metal Matrix Composites. II. Solid-State Cooling effects Influence of Transverse Rolling on the Microstructural and Texture Development in Pure Tantaluctural and Refinement by Dynamic Recrystallization During the	2515-2526A 2313-2321A 3399-3404A 35-40A 211-219A 1071-1081A 1379-1381A 2121-2129A 2469-2480A 2549-2556A 2557-2565A 2625-2630A 3035-3043A 3166-3169A 3219-3230A 845-850A 1817-1827A 2183-2191A

irain size, High temperature effects Interaction of High-Temperature Deformation Mechanisms in a Magnesium Alloy With Mixed Fine and Coarse Grains.	3135-3140A	Hard soldering See Brazing	
irain size, Shape effects Relationship Between Grain Boundary Curvature and Grain	3135-3140A	Hard surfacing A Thermal Model of Laser Cladding by Powder Injection.	631-642B
Size. Grain size, Temperature effects	2481-2482A	Hardness See also Diamond pyramid hardness Microhardness	
Microstructure, Excess Solid Solubility, and Elevated- Temperature Mechanical Behavior of Spray-Atomized and Codeposited Al—Ti—SiC _p .	719-736B	Surface hardness Hardness, Alloying effects	
Distributed-Activation Kinetics of Heterogeneous Martensitic Nucleation. Optimization of Hot Workability in Stainless Steel-Type AISI	2987-2998A	Beneficial Effects of Nitrogen Atomization on an Austenitic Stainless Steel.	3263-3272A
304L Using Processing Maps.	3093-3103A	Hardness, Composition effects Characterization of Stainless Steels Melted Under High Nitrogen Pressure. (Conference Paper)	2061-2068A
See also Acicular structure Banded structure Dendritic structure		HAZ See Heat affected zone	
Equiaxed structure The Crystallography of Bainite in a Medium-Carbon Steel		Hazardous wastes See Industrial wastes	
The Crystallography of Bainite in a Medium-Carbon Steel Containing Silicon, Manganese, and Molybdenum. Superplastic Behavior of Two-Phase Titanium Aluminides. Microstructure and Creep Properties of Dispersion-	1403-1411A 1509-1513A	Hazelett process See Continuous casting	
Strengthened Aluminum Alloys. The Effect of Aging on the Hydrogen-Assisted Fatigue Crack-	1521-1539A	Heat affected zone	
ing of a Precipitation-Hardened Al-Li—Zr Alloy. The Microstructures and Properties of an Al—12 wt.% Si	1551-1562A	Microstructural Damage and Residual Mechanical Properties in Helium-Bearing Gas Metal Arc Weldments. A Model for the Formation and Solidification of Grain Bound-	1021-1032A
Alloy Produced by a New Layer-Deposition Process. A Novel Technique for Outlining the Solidification Crater Pro- file of a Commercial-Size Aluminum Alloy Ingot Cast by the	2313-2321A	ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Heat affected zone, Crystal growth	1783-1799A
Direct Chill Method. The Nature of Lower Bainite Midrib. Microstructural Influences on the Dynamic Response of	2323-2325A 2483-2490A	Finite Element Modeling of Transient Heat Transfer and Microstructural Evolution in Welds. II. Modeling of Grain Growth in Austenitic Stainless Steels.	841-845B
Tungsten Heavy Alloys. Evolution of Bivariate Particle Size Distributions. Processing and Microstructure of Powder Metallurgy Al—	2625-2630A 2973-2980A	Heat affected zone, Mechanical properties Instabilities in Stabilized Austenitic Stainless Steels.	2455-2467A
Fe—Ni Alloys. Microsegregation in Cellular Microstructure.	3219-3230A 3377-3381A	Correlation of Microstructure and Fracture Properties in Weld Heat-Affected Zones of Thermomechanically Controlled Processed Steels.	2803-2816A
Grain structure, Composition effects On the Formation of Macrosegregations in Unidirectionally Solidified Sn—Pb and Pb—Sn Alloys.	2301-2311A	Heat capacity See Specific heat	
Grain structure, Heating effects On the Phase Transformation Between the Quasicrystalline		Heat checking See Thermal fatigue	
to Crystalline Phases in Alloys of Al—Cu—Fe—Co. Grain structure, High temperature effects	3161-3166A	Heat content See Enthalpy	
Interaction of High-Temperature Deformation Mechanisms in a Magnesium Alloy With Mixed Fine and Coarse Grains. Grain structure, Temperature effects	3135-3140A	Heat engines, Materials selection Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced Ni ₃ Al Composite.	3151-3160
Microstructure, Excess Solid Solubility, and Elevated- Temperature Mechanical Behavior of Spray-Atomized and Codeposited Al—Ti—SiC _p .	719-736B	Heat measurement See Calorimetry	
	713-7300	Heat of activation	
Graphite, Powder technology Combustion Synthesis and Subsequent Explosive Densification of Titanium Carbide Ceramics. (Conference Paper) Formation of Metastable Phases of Ni—C and Co—C Sys-	2365-2372A	See Activation energy Heat of combination See Heat of reaction	
tems by Mechanical Alloying. Gray iron	2431-2435A	Heat of condensation See Heat of vaporization	
See Nodular iron		Heat of decomposition	
See Lubrication		See Heat of formation Heat of dissociation	
Green density See Compressibility (powder)		See Heat of formation Heat of dissolution	
Growth See Crystal growth		See Heat of solution Heat of formation	
Grain growth Growth rate Kinetics of the Growth of Spinel, MgAl ₂ O ₄ , on Alumina Partic-		Enthalpies of Formation of Liquid and Solid (Gallium + Palladium) Alloys.	39-44
ulate in Aluminum Alloys Containing Magnesium.	1279-1283A	Standard Molar Enthaplies of Formation of MeAl (Me = Ru, Rh, Os, Ir).	53-56
Growth rate, Cooling effects Discussion of "Solidification of Highly Undercooled Fe—P Alloys" and Reply.	2672-2675A	Determination of Standard Gibbs Energies of Formation of CaC ₂ , SrC ₂ , and BaC ₂ . Enthalpies of Formation of Some Solid Hafnium Nickel Com-	313-316
GTAW See Gas tungsten arc welding		pounds and of the Nickel-Rich HfNi Liquid by Direct Reac- tion Calorimetry. Thermochemistry of Binary Alloys of Transition Metals: the	815-819
Guided missile components See Rocket components		Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Systems. Formation of Magnesium Aluminate (Spinel) in Cast SiC	997-1003
Guinier Preston zone The Early Stages of Solute Distribution Below a Transition Temperature.	2685-2697A	Particulate-Reinforced Al(A356) Metal Matrix Composites. Note on the Thermochemistry of the Au + V, Au + Nb, and Au + Ta Systems.	1423-1430 1836-1839
Gypsum, Reduction (chemical) Studies in the Carbothermic Reduction of Phosphogypsum.	567-572B	Heat of hydrogenation See Heat of reaction	
Hafnium, Claddings Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Retention.	513-522B	Heat of isomerization See Heat of reaction	
Hafnium, Reactions (chemical)	313-322B	Heat of mixing See also Heat of solution	
Thermochemistry of Binary Alloys of Transition Metals: the Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Systems.	997-1003A	Thermodynamic Properties in the Liquid Ag—Sb—Zn Sys- tem. High-Temperature Isopiestic Studies on the Liquid Solutions	601-611
Hafnium base alloys, Phases (state of matter) Enthalpies of Formation of Some Solid Hafnium Nickel Com-	337 1003A	Hg—Cd—Sn. Thermochemistry of Binary Alloys of Transition Metals: the Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Sys-	623-629
pounds and of the Nickel-Rich HfNi Liquid by Direct Reac- tion Calorimetry.	815-819B	tems. Note on the Thermochemistry of the Au + V, Au + Nb, and	997-1003
Hard coating See Hard surfacing		Au + Ta Systems. A Thermodynamic Evaluation of the Al—Mn System.	1836-1839/ 2953-2962/
Hard facing		Heat of neutralization	

Heat of reaction See also Heat of formation Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper)	23-34A	Hexagonal lattice, Deformation effects Development of Iron-Based Shape Memory Alloys Associated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. II. Transformation Behavior.	1439-1444A
Kinetics of Solid State Reaction Between Barium Carbonate and Cupric Oxide.	493-503B	High alloy steels See Stainless steels	
Heat of solution Thermodynamic Investigations of Tellurium-Saturated Solid CdSe—CdTe Alloys.	467-476B	High carbon steels, Heat treatment An Interpretation of the Carbon Redistribution Process During Aging of High Carbon Martensite.	2147-2158A
Role of Entropy of Solution in Controlling Eutectic Microstruc- ture. Heat of transformation	2675-2678A	High carbon steels, Mechanical properties Load Sharing of the Phases in 1080 Steel During Low-Cycle Fatigue. (Conference Paper)	341-354A
See Heat of vaporization Heat of vaporization		High carbon steels, Metallography Ferrite:Cementite Crystallography in Pearlite.	1259-1269A
Plasma—Particle Interactions in Plasma Spraying Systems.	683-693B	High carbon steels, Phase transformations	
Heat resistant alloys See Superalloys Heat transfer		The Time—Temperature-Transformation Diagram Within the Medium Temperature Range in Some Alloy Steels. Correction to "The Time—Temperature-Transformation Dia- gram Within the Medium Temperature Range in Some Alloy	785-795A
Determination of Refractive Index and Absorption Coefficient of Iron-Oxide-Bearing Stags.	331-337B	Steels". High carbon steels, Structural hardening	785-795A
Modeling Superheat Removal During Continuous Casting of Steel Slabs. Mushy Zone Modeling With Microstructural Coarsening Ki-	339-356B	Epsilon Carbide Precipitation During Tempering of Plain Carbon Martensite.	2737-2751A
netics. The Effect of Ceramic Reinforcements During Spray Atom-	659-667A	High energy electron diffraction	
ization and Codeposition of Metal Matrix Composites. I. Heat Transfer.	831-843A	See Electron diffraction High energy milling	
Finite Element Modeling of Transient Heat Transfer and Microstructural Evolution in Welds. II. Modeling of Grain		See Mechanical alloying High speed tool steels, Heat treatment	
Growth in Austenitic Stainless Steels. Heat treatment See also Annealing	841-845B	Application of Commercial Computer Codes to Modeling the Carburizing Kinetics of Alloy Steels. (Conference Paper)	2069-2071A
Austenitizing Normalizing (heat treatment) Precipitation heat treatment		High speed tool steels, Powder technology Influence of Atmosphere on Sintering of T15 and M2 Steel Powders.	389-400A
Quenching (cooling) Solution heat treatment Tempering		High speed tool steels, Structural hardening Microstructural Changes During Overtempering of High- Speed Steels.	1631-1640A
Instabilities in Stabilized Austenitic Stainless Steels. Heats (energies) See Heat of mixing	2455-2467A	High strength low alloy steels, Mechanical properties Influence of Sulfide Inclusion on Ductility and Fracture Behav- ior of Resulfurized HY-80 Steel.	1479-1492A
Heat of reaction Heavy metal alloys		High strength low alloy steels, Structural hardening Nb(C,N) Precipitation and Austenite Recrystallization in Boron-Containing High-Strength Low-Alloy Steels.	2111-2120A
See Lead base alloys Tin base alloys Heavy metals See Antimony		High strength low alloy steels, Welding Correlation of Microstructure and Fracture Properties in Weld Heat-Affected Zones of Thermomechanically Controlled Processed Steels.	2803-2816A
Bismuth Cadmium		High strength steels	
Lead (metal) Mercury Tin		See also High strength low alloy steels High strength steels, Mechanical properties	
Heliarc welding See Gas tungsten arc welding		Fracture Toughness and the Extents of Primary Void Growth. Ductility and Strain-Induced Transformation in a High- Strength Transformation-Induced Plasticity-Aided Dual-	485-496A
Helium, Environment Microstructural Damage and Residual Mechanical Properties in Helium-Bearing Gas Metal Arc Weldments.	1021-1032A	Phase Steel. HIP See Hot isostatic pressing	3085-3091A
Helmholtz free energy		Holes Fracture Toughness and the Extents of Primary Void Growth.	485-496A
See Free energy Heterogeneous structure Pinning of Austenite Grain Boundaries by AIN Precipitates		Energy-Beam Redistribution and Absorption in a Drilling or Welding Cavity.	505-511B
and Abnormal Grain Growth. The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process.	2121-2129A 2313-2321A	Homogeneous structure Computer Simulation of Microstructure Development During a Martensitic Transformation.	2999-3012A
The Influence of Morphology and Distribution of α Phase on the Properties of Polycrystalline CuZnAl Shape Memory		Homogeneous structure, Alloying effects Microstructure and Ordering of L1 ₂ Titanium Trialuminides.	2963-2972A
Alloy. Heterogeneous structure, Cooling effects	2939-2941A	Homogenizing Segregation and Homogenization of a Near-Gamma Titanium	
Heterogeneous Nucleation of Lead Particles Embedded in a Zinc Matrix.	3207-3218A	Aluminide. (Conference Paper) Homogenization and Microstructure Effects on the Proper-	149-161A
Heterogeneous structure, Deformation effects		ties of Injection Molded Fe—2Ni Steel. Dissolution of Particles in Binary Alloys. I. Computer Simula-	377-381A
A Comparison Between Calculated and Observed Elastically Induced Precipitate Shape Transitions in a Cu—2 at.% Co	2761 27724	tions. Dissolution of Particles in Binary Alloys. II. Experimental In-	433-444A
Alloy. Heterogeneous structure, Heating effects Laser Melting Treatment by Overlapping Passes of Pre-	2761-2773A	vestigation on an Al—Si Alloy. Horizontal continuous casting, Cooling effects A Numerical and Experimental Study of the Solidification	445-449A
heated Nickel Electrodeposited Coatings on Al—Si Alloy. Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V	1801-1806A	Rate in a Twin—Belt Caster. Hot brittleness	477-492B
Steel. Heterogeneous structure, Temperature effects	2193-2204A	See Brittleness Hot compacting	
Microstructure, Excess Solid Solubility, and Elevated- Temperature Mechanical Behavior of Spray-Atomized and		See Compacting	
Codeposited Al—Ti—SiC _p . Distributed-Activation Kinetics of Heterogeneous Martensitic	719-736B	Hot compression See Hot pressing	
Nucleation. Hexagonal close packed lattice	2987-2998A	Hot cracking See Cracking (fracturing)	
See Hexagonal lattice		Hot cracking (welds) See Weld defects	
Hexagonal lattice The Activation Energy for Lattice Self-Diffusion and the Engel—Brewer Theory.	2491-2500A	Hot deformation See Deformation	
Hexagonal lattice, Alloying effects Effect of Chromium on the Ordering Behavior and Ductility of		Hot dip coating Intermetallic Phases Formed During Hot Dipping of Low Car-	

Hot dip coatings		Hydrogen embrittlement	
Intermetallic Phases Formed During Hot Dipping of Low Car- bon Steel in a Zn—5Al Melt at 450°C.	2393-2400A	Hydrogen-Enhanced Cracking of Superalloys. (Conference Paper)	237-249A
Hot ductility See Ductility		Crack Paths, Microstructure, and Fatigue Crack Growth in Annealed and Cold-Rolled AISI 304 Stainless Steels. (Con-	
Hot fractures		ference Paper) Developing Hydrogen-Tolerant Microstructures for an α_2 Ti-	355-371A
See Fractures Hot hardness		tanium Aluminide Alloy. Finite Element Calculations of the Accommodation Energy of a Misfitting Precipitate in an Elastic—Plastic Matrix.	497-507A
See Hardness Hot isostatic pressing		Effect of Ordering on Susceptibility to Hydrogen Embrittle- ment of a Nickel-Base Superalloy.	797-806A 953-961A
Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference		Evaluation of Hydrogen-Assisted Cracking Behavior of Low- Alloy Steel in the Range 95-350°C.	1291-1298A
Paper) Processing and Superplastic Properties of Fine-Grained Iron	35-40A	Hydrogen Effects on Brittle Fracture of the Titanium Alumi- nide Alloy Ti—24Al—11Nb.	1299-1312A
Carbide. Reactive Sintering and Reactive Hot Isostatic Compaction of	527-535A	The Effect of Internal Hydrogen on a Single-Crystal Nickel- Base Superalloy.	1313-1322A
Niobium Aluminide NbAl ₃ . (Conference Paper) Fabrication of Metal Matrix Composites of TiC—Al Through	2357-2364A	Degradation of Plastic Properties After Electrocharging in 1N H ₂ SO ₄ .	1375-1379A
Self-Propagating Synthesis Reaction. (Conference Paper) Processing Map for Controlling Microstructure in Hot Work- ing of Hot Isostatically Pressed Powder Metallurgy Nimonic	2387-2392A	The Tearing Topography Surface as the Zone Associated With Hydrogen Embrittlement Processes in Pearlitic Steel. Stress Corrision Cracking of An Al—Li Alloy.	1573-1584A 3337-3341A
AP-1 Superalloy. Beneficial Effects of Nitrogen Atomization on an Austenitic Stainless Steel.	2849-2857A 3263-3272A	Hydrogen reduction Application of a Nonisothermal Thermogravimetric Method to	
Hot pressing See also Hot isostatic pressing	3203-3212A	the Kinetic Study of the Reduction of Metallic Oxides. I. A General Treatment and its Application to the Reduction of the Oxides of Molybdenum by Hydrogen.	317-324B
Processing and Microstructure of Powder Metallurgy Al— Fe—Ni Alloys. Hot reduction	3219-3230A	Hydrogen reduction, Pressure effects Gas—Solid Reaction-Rate Enhancement by Pressure Cycling.	285-294B
See Hot working		Hydrolysis Collagen Proteins in Electrorefining: Rate Constants for Glue	
Hot rolling Finishing Conditions Appropriate for Recrystallization Con- trolled Rolling of Ti—V—N Steel.	070 0754	Hydrolysis and Effects of Molar Mass on Glue Activity.	125-133B
Trolled Holling of 11—V—N Steel. Application of Invariant Set Theory to Dynamic Recrystallization Constitutive Behavior.	373-375A 2091-2103A	Hydrolytic resistance See Corrosion resistance	
Hot roughing	2031-2100A	Hydrometallurgy Electrobioleaching of Base Metal Sulfides.	5-11B
See Hot rölling Hot shortness		Percolation Bacterial Leaching of Rajpura Dariba Ore in 4 Ton Column.	91-93B
See Brittleness		Kinetics of Iridium Reduction by Hydrogen in Hydrochloric Acid Solution.	737-745B
Hot strength See Tensile strength		Reactor Models for a Series of Continuous Stirred Tank Re- actors With a Gas—Liquid—Solid Leaching System. I. Sur-	
Hot swaging See Swaging		face Reaction Control. Reactor Models for a Series of Continuous Stirred Tank Reactors With a Gas—Liquid—Solid Leaching System. II.	847-856B
Hot tensile strength See Tensile strength		Gas-Transfer Control. Reactor Models for a Series of Continuous Stirred Tank Re-	857-864B
Hot torsion tests See Torsion tests		actors With a Gas—Liquid—Solid Leaching System. III. Model Application.	865-877B
Hot workability		Comparison of the Anodic Dissolution Behavior of Butte and Transvaal Chalcocite.	879-881B
Processing Map for Hot Working of Powder Metallurgy 2124 AI—20 Vol.% SiC _p Metal Matrix Composite. Processing Map for Controlling Microstructure in Hot Working of Hot Isostatically Pressed Powder Metallurgy Nimonic	2223-2230A	Hydrostatic pressure Effect of Hydrostatic Pressure on the Hot-Working Behavior of a Gamma Titanium Aluminide.	2669-2672A
AP-1 Superalloy. Hot workability, Microstructural effects Optimization of Hot Workability in Stainless Steel-Type AISI	2849-2857A	Hysteresis Load Sharing of the Phases in 1080 Steel During Low-Cycle Fatigue. (Conference Paper)	341-354A
304L Using Processing Maps. Hot workability, Pressure effects	3093-3103A	Icosahedral phase The Al—Cu—Fe Phase Diagram: 0-25 at.% Iron and 50-	
Effect of Hydrostatic Pressure on the Hot-Working Behavior of a Gamma Titanium Aluminide.	2669-2672A	75 at.% Aluminum—Equilibria Involving the Icosahedral Phase.	2409-2417A
Hot working See also Hot rolling Plastic-Flow Behavior and Microstructural Development in a		Icosahedral phase, Heating effects On the Phase Transformation Between the Quasicrystalline to Crystalline Phases in Alloys of Al—Cu—Fe—Co.	3161-3166A
Cast Alpha-Two Titanium Aluminide. (Conference Paper) Flow Softening and Microstructure Evolution During Hot	295-305A	Ignition Shock-Induced and Self-Propagating High-Temperature Syn-	
Working of Wrought Near-Gamma Titanium Aluminides. Processing Map for Hot Working of Powder Metallurgy 2124	1719-1735A	thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper)	55-58A
AI—20 Vol.% SiC _p Metal Matrix Composite. Processing Map for Controlling Microstructure in Hot Work-	2223-2230A	Ignition, Diffusion effects The Effect of Interfacial Diffusion Barriers on the Ignition of	
ing of Hot Isostatically Pressed Powder Metallurgy Nimonic AP-1 Superalloy. Optimization of Hot Workability in Stainless Steel-Type AISI	2849-2857A	Self-Sustained Reactions in Metal—Metal Diffusion Cou- ples. (Conference Paper)	49-53A
304L Using Processing Maps. Hydrides	3093-3103A	Ilmenite, Reduction (chemical) Entrained-Flow Chlorination of Ilmenite to Produce Titanium	
Finite Element Calculations of the Accommodation Energy of a Misfitting Precipitate in an Elastic—Plastic Matrix.	797-806A	Tetrachloride and Metallic Iron. Immersion coating	261-266B
Hydrofluoric acid, Environment Metallurgical Factors Influencing the Corrosion of Aluminum,		See Hot dip coating	
Al—Cu, and Al—Si Alloy Thin Films in Dilute Hydrofluoric Solution.	2641-2655A	Immersion testing (ultrasonic) See Ultrasonic testing	
Hydrogen, Diffusion Hydrogen Transport in Nickel-Base Alloys.	3231-3244A	Immiscibility See Miscibility	
Hydrogen, Environment Hydrogen-Enhanced Cracking of Superalloys. (Conference		Impact strength Fracture Behavior of Stainless Steel-Toughened NiAl Com- posite Plate.	563-572A
Paper) Effects of Hydrogen on the Mixed Mode I/III Toughness of a	237-249A	Impact strength, Alloying effects	
High-Purity Rotor Steel. Hydrogen Effects on Brittle Fracture of the Titanium Alumi-	1013-1020A	Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace of Boson	1515,15104
nide Alloy Ti—24Al—11Nb. Correction to "Effects of Hydrogen on the Mixed Mode I/III Toughness of a High-Purity Rotor Steel".	1299-1312A 1840A	of Boron. Impact strength, Impurity effects Influence of Sulfide Inclusion on Ductility and Fracture Behav-	1515-1519A
Hydrogen, Impurities The Effect of Internal Hydrogen on a Single-Crystal Nickel-Base Superalloy.	1313-1322A	for of Resulfurized HY-80 Steel. Impact strength, Welding effects	1479-1492A
Hydrogen compounds See Hydrides		Correlation of Microstructure and Fracture Properties in Weld Heat-Affected Zones of Thermomechanically Controlled Processed Steels.	2803-2816A
outyunues		, , , , , , , , , , , , , , , , , , , ,	e-23

Impact tests Influence of Sulfide Inclusion on Ductility and Fracture Behavior of Resulfurized HY-80 Steel.	1479-1492A	Interconnection On Void Nucleation and Growth in Metal Interconnect Lines Under Electromigration Conditions.	2007-2013A
Impact toughness	1470 14027	Interface reactions	2007 201071
See Impact strength Impurities		An Analytical Model for the Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface.	669-680A
See also Interstitial impurities Comparison of the Anodic Dissolution Behavior of Butte and		The Effect of Interfacial Reaction Layer Thickness on Frac- ture of Titanium—SiC Particulate Composites.	977-988A
Transvaal Chalcocite.	879-881B	Kinetics of the Growth of Spinel, MgAl ₂ O ₄ , on Alumina Particulate in Aluminum Alloys Containing Magnesium.	1279-1283A
In situ leaching Model for Ferric Sulfate Leaching of Copper Ores Containing		Formation of Magnesium Aluminate (Spinel) in Cast SiC Particulate-Reinforced Al(A356) Metal Matrix Composites.	1423-1430A
a Variety of Sulfide Minerals. I. Modeling Uniform Size Ore Fragments. Model for Ferritic Sulfate Leaching of Copper Ores Contain-	537-548B	Interface Microchemistry of Silicon Nitride/Nickel— Chromium Alloy Joints. Metal/Semiconductor Interfacial Reactions.	1773-1781A 1999-2006A
ing a Variety of Sulfide Minerals. II, Process Modeling of In Situ Operations.	549-555B	Theoretical Models for the Combustion of Alloyable Materi- als. (Conference Paper)	2339-2347A
Incandescent lamps		A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper)	2349-2356A
Observations on the Evolution of Potassium Bubbles in Tung- sten Ingots During Sintering. (Conference Paper) Effects of Vibration on the Grain Morphology of Some Tung- sten Incandescent Lamp Filaments.	121-133A 2259-2262A	Interaction Mechanisms Between Ceramic Particles and At- omized Metallic Droplets. Interface reactions, Heating effects	2923-2937A
Incineration	2233-2202A	Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC Particle-Reinforced Composites.	1607-1615A
See Combustion		The Fracture Characteristics of Al—9Ti/SiC _p Metal Matrix Composites.	1653-1662A
Inclusions See also Nonmetallic inclusions		Laser Melting Treatment by Overlapping Passes of Pre- heated Nickel Electrodeposited Coatings on AI—Si Alloy.	1801-1806A
Inclusion Size Effect on the Fatigue Crack Propagation Mechanism and Fracture Mechanics of a Superalloy.	519-526A	Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced	3151-3160A
On the Drag of Model Dendrite Fragments at Low Reynolds Number.	2169-2181A	Ni₃Al Composite. Interfaces	3131-3160A
Computer Simulation of Microstructure Development During a Martensitic Transformation.	2999-3012A	Discussion of "Behavior of Ceramic Particles at the Solid/ Liquid Interface in Metal Matrix Composites" and Reply.	2326-2330A
Indium, Dopants The Effect of Ternary Trace Additions on the Nucleation and		Interfacial energy See Surface energy	
Growth of γ' Precipitates in an Al—4.2 at.% Ag Alloy. (Conference Paper)	135-148A	Intergranular corrosion, Alloying effects	
Induction melting		The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50%	2027 20244
See Levitation melting Industrial wastes, Recovering		NaOH at 140°C. Intergranular fracture	2887-2904A
A Possible Method for the Characterization of Amorphous Slags: Recovery of Refractory Metal Oxides From Tin Slags.	249-259B	The Tearing Topography Surface as the Zone Associated With Hydrogen Embrittlement Processes in Pearlitic Steel.	1573-1584A
Inelasticity See Elasticity		Intergranular fracture, Alloying effects Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace	
Inert atmospheres		of Boron. Effects of Grain Boundary Chemistry on the Intergranular	1515-1519A
Characterization of Dispersed Intermetallic Phases in Rapidly Quenched Al—Ti—Ce Alloys. Inert gas welding	3193-3205A	Cracking Behavior of Ni—16Cr—9Fe in High-Temperature Water.	3343-3359A
See Gas tungsten arc welding		Intergranular fracture, Composition effects Effect of Boron on the Grain Boundary Segregation of Phos-	
Infiltration Fabrication of Fiber-Reinforced Metal-Matrix Composites by		phorus and Intergranular Fracture in High-Purity Fe— 0.2P—B Alloys. (Conference Paper)	263-269A
Variable Pressure Infiltration. Infiltration of Fiber Preforms by a Binary Alloy. II. Further The-	295-302B	Intergranular fracture, Corrosion effects	200 20011
ory and Experiments. Infiltration of Fiber Preforms by an Alloy. III. Die Casting Ex-	2263-2280A	Effect of Ordering on Susceptibility to Hydrogen Embrittle- ment of a Nickel-Base Superalloy.	953-961A
periments. Infiltration of Fibrous Preforms by a Pure Metal. IV. Morpho-	2281-2289A	Intergranular fracture, Environmental effects	
logical Stability of the Remelting Front.	2291-2299A	The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High-	*****
Ingot casting See Direct chill casting		Purity Water. Intergranular fracture, Heating effects	1195-1206A
Ingots, Casting		Instabilities in Stabilized Austenitic Stainless Steels.	2455-2467A
A Novel Technique for Outlining the Solidification Crater Pro- file of a Commercial-Size Aluminum Alloy Ingot Cast by the Direct Chill Method.	2323-2325A	Intergranular fracture, Impurity effects Lead-Induced Solid Metal Embrittlement of an Excess Silicon AI—Mg—Si Alloy at Temperatures of —4°C to 80°C.	1679-1689A
Initiation See Crack initiation		Intergranular fracture, Microstructural effects On the Mechanisms of High-Temperature Intergranular Em-	
Injection		brittlements of Ni ₃ Al—Zr Alloys.	1187-1193A
See Fuel injection		Influence of Microstructure on Crack-Tip Micromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy.	1663-1677A
Injection casting See Die casting		Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension.	2515-2526A
Injection molding Homogenization and Microstructure Effects on the Proper-		Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels.	2879-2885A
ties of Injection Molded Fe-2Ni Steel.	377-381A	Intergranular fracture, Welding effects	
Prediction of Sintered Density for Bimodal Powder Mixtures. Thermal Debinding of Powder Injection Molded Parts: Observations and Mechanisms.	1455-1465A	Microstructural Damage and Residual Mechanical Properties in Helium-Bearing Gas Metal Arc Weldments.	1021-1032A
Inorganic acids	2775-2782A	Intergranular precipitation Grain-Boundary Segregation and Precipitation of Boron in	
See Hydrofluoric acid Sulfuric acid		0.2% Carbon Steels. (Conference Paper) On the Mechanisms of High-Temperature Intergranular Em-	107-119A
Inorganic compounds		brittlements of Ni ₃ Al—Zr Alloys.	1187-1193A
See Ceramics		Intergranular precipitation, Composition effects Effect of Boron on the Grain Boundary Segregation of Phos-	
Inorganic salts See Fused salts		phorus and Intergranular Fracture in High-Purity Fe— 0.2P—B Alloys. (Conference Paper)	263-269A
Intensity See Stress intensity		Intergranular precipitation, Heating effects	200-203A
Interatomic bonds		An Investigation of the Fracture Behavior of Gamma-Based Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and	
See Chemical bonds		$\alpha_2 + \gamma$ Phase Fields. (Conference Paper)	2039-2059A
Interatomic distance Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis-	2445 2422	Intermetallic compounds See Intermetallics Intermetallic phases	
locations. Interatomic distance, Alloying effects	3115-3120A	Microstructures and Property Tradeoffs in Wrought TiAl- Base Alloys.	375-377A
Effects of Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel	1833-1836A	An Experimental and Theoretical Study of the Phase Equilibria in the Fe.—Mo.—Ni System	639-649A

Enthalpies of Formation of Some Solid Hafnium Nickel Compounds and of the Nickel-Rich HfNi Liquid by Direct Reac-		Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₉ Zr Intermetallic Compound.	3073-3076A
tion Calorimetry. Phase Equilibria in the Binary Rare-Earth Alloys: the	815-819B	Intermetallics, Microstructure	
Erbium—Magnesium System. The Growth of Cu—Sn Intermetallics at a Pretinned Copper/	1005-1012A	Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50-x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) Decagonal Quasicrystal and Related Crystalline Phases in	59-64A
Solder Interface. Diffusion Reaction in the Zirconium—Copper System.	1323-1332A 1373-1375A	Slowly Solidified Al—Co Alloys. Crystallographic Relationships of the Al ₄ Cr Crystalline and	1121-1128A
Superplastic Behavior of Two-Phase Titanium Aluminides. Note on the Thermochemistry of the Au + V, Au + Nb, and	1509-1513A	Quasicrystalline Phases.	2437-2445A
Au + Ta Systems. Some Aspects of the Precipitation of Metastable Intermetallic Phases in Inconel 718. (Conference Paper)	1836-1839A 2015-2028A	Intermetallics, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys.	690-697A
Thermodynamic Assessment and Calculation of the Ti—Al System.	2081-2090A	Intermetallics, Powder technology	
Intermetallic Phases Formed During Hot Dipping of Low Car- bon Steel in a Zn—5Al Melt at 450°C.	2393-2400A	A Fundamental Study on the Préparation of Niobium Alumi- nide Powders by Calciothermic Reduction. Reactive Sintering and Reactive Hot Isostatic Compaction of	415-421B
Constitutional Studies of Cobalt—Tin Alloys. Solidification Kinetics and Metastable Phase Formation in Bi-	2401-2407A	Niobium Aluminide NbAl ₃ . (Conference Paper) Dynamic Compaction of Titanium Aluminides by Explosively	2357-2364A
nary Ti—Al. Incoloy 908, a Low Coefficient of Expansion Alloy for High- Strength Cryogenic Applications. I. Physical Metallurgy.	2699-2714A 3177-3192A	Generated Shock Waves: Microstructure and Mechanical Properties.	3251-3261A
Hydrogen Transport in Nickel-Base Alloys. Discussion of "Diffusion Reaction in the Zirconium-Copper	3231-3244A	An Experimental Investigation of Reactive Atomization and Deposition Processing of Ni ₃ Al/Y ₂ O ₃ Using Ni ₂ —O ₂ Atom-	
System" and Reply.	3393-3394A	ization.	3394-3399A
Intermetallic phases, Cooling effects Characterization of Dispersed Intermetallic Phases in Rapidly Quenched Al—Ti—Ce Alloys.	3193-3205A	Intermetallics, Reactions (chemical) Standard Molar Enthaplies of Formation of MeAl (Me = Ru, Rh, Os, Ir).	53-56B
Intermetallic phases, Heating effects Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC		Intermetallics, Solubility Thermodynamic Investigations of Tellurium-Saturated Solid	
Particle-Reinforced Composites. Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc	1607-1615A	CdSe—CdTe Alloys.	467-476B
Alloy.	1947-1955A	Intermetallics, Synthesis Shock-Induced Chemical Reactions and Synthesis of Nickel	
Intermetallic phases, Reactions (chemical) Thermochemistry of Binary Alloys of Transition Metals: the		Aluminides. (Conference Paper) Shock-Induced and Self-Propagating High-Temperature Syn-	41-48A
Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Systems.	997-1003A	thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper)	55-58A
Intermetallic phases, Temperature effects A Thermodynamic Evaluation of the AlMn System.	2953-2962A	Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites. (Conference Paper)	69-76A
Intermetallics		Internal combustion engines See Gas turbine engines	
Deoxidation of Titanium Aluminide by Ca—Al Alloy Under Controlled Aluminum Activity.	583-590B	Internal friction	
Intermetallics, Coatings Decomposition of the B2-Type Matrix of Aluminide Diffusion Coatings on Single-Crystal Nickel-Base Superalloy Sub-		Influence of Carbon and Nitrogen on Solid Solution Decay and "475°C Embrittlement" of High-Chromium Ferritic Steels.	2567-2579A
strates. Intermetallics, Composite materials	2657-2665A	Internal friction, Microstructural effects Correlation Between the Structure and Internal Friction of	
Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites. (Conference Paper)	69-76A	Metallic Glass Cu ₄₅ Ti ₅₅ .	1627-1630A
Fracture Behavior of Stainless Steel-Toughened NiAl Composite Plate.	563-572A	Internal stress See Residual stress	
Ductile-Phase Toughening and Fatigue-Crack Growth in Niobium-Reinforced Molybdenum Disilicide Intermetallic Composites.	2249-2257A	Interrupted quenching Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High- Strength Low-Alloy Steels.	1641-1651A
Role of Matrix/Reinforcement Interfaces in the Fracture Toughness of Brittle Materials Toughened by Ductile Rein-		Interstitial impurities The Atomic Arrangement of Interstitials in Molybdenum Or-	
forcements. Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced	2863-2872A	dered Solutions.	1601-1606A
Ni ₃ Al Composite. Intermetallics, Diffusion	3151-3160A	Interstitial solutions, Microstructure The Atomic Arrangement of Interstitials in Molybdenum Or-	1601-1606A
Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al.	2783-2790A	dered Solutions. lon beam mixing	1007-1000A
Intermetallics, Heat treatment Segregation and Homogenization of a Near-Gamma Titanium Aluminide. (Conference Paper)	149-161A	Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Re- tention.	513-522B
Transformations in a Ti—24Al—15Nb Alloy. I. Phase Equilibria and Microstructure.	401-415A	Iridium, Diffusion Diffusion Mechanisms in Chemical Vapor-Deposited Iridium	
Transformations in a Ti—24Al—15Nb Alloy. II. A Composition Invariant $\beta_0 \rightarrow 0$ Transformation.	417-431A	Coated on Chemical Vapor-Deposited Rhenium.	851-855A
Intermetallics, Mechanical properties Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference		Iridium, Extraction Kinetics of Iridium Reduction by Hydrogen in Hydrochloric Acid Solution.	737-745B
Paper) Influence of Microstructure on Intrinsic and Extrinsic Toughening in an Alpha-Two Titanium Aluminide Alloy. (Conference)	35-40A	Iridium compounds, Mechanical properties Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₃ Zr Intermetallic Compound.	3073-3076A
ence Paper) Plastic-Flow Behavior and Microstructural Development in a	183-199A	Iridium compounds, Reactions (chemical)	
Cast Alpha-Two Titanium Aluminide. (Conference Paper) Microstructures and Property Tradeoffs in Wrought TiAl-	295-305A	Standard Molar Enthaplies of Formation of MeAl (Me = Ru, Rh, Os, Ir).	53-56B
Base Alloys. Developing Hydrogen-Tolerant Microstructures for an α_2 Ti-	375-377A	Iron See also Pig iron	
tanium Aluminide Alloy. Mechanical Behavior and Microcracking of Cubic Ternary Zir-	497-507A	Iron, Alloying elements	2002 20724
conium Trialuminides. An Analysis of the Isothermal Hot Compression Test.	617-625A 963-975A	Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Iron, Extraction	2963-2972A
Hydrogén Effects on Brittle Fracture of the Titanium Alumi- nide Alloy Ti—24AI—11Nb.	1299-1312A	Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron.	261-266B
Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Al-		Modeling of Metal—Slag Equilibrium Processes Using Neu- ral Nets.	643-650B
loys. Superplastic Behavior of Two-Phase Titanium Aluminides.	1493-1508A 1509-1513A	Iron, Mechanical properties	
Fracture Behavior of a B2Ni—30Al—20Fe—0.05Zr Intermetallic Alloy in the Temperature Range 300-1300K. Deformation Behavior of a Ni—30Al—20Fe—0.05Zr Inter-	1691-1703A	Evolution of Dislocation Structures and Deformation Behav- ior of Iron at Different Temperatures. I. Strain Hardening Curves and Cellular Structure.	537-544A
metallic Alloy in the Temperature Range 300-1300K. An Investigation of the Fracture Behavior of Gamma-Based	1705-1718A	Evolution of Dislocation Structures and Deformation Behav- ior of Iron at Different Temperatures. II. Dislocation Density	55. 544A
Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and $\alpha_2 + \gamma$ Phase Fields. (Conference Paper)	2039-2059A	and Theoretical Analysis. Application of Nonlocal Elasticity to the Energetics for Solute	545-549A
Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. I. Microstructure Evolution.	2419-2429A	Atoms in Body-Centered Cubic Transition Metals With Dis- locations.	3115-3120A
Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. II. Oxidation Behavior.	2631-2639A	Some Aspects of Deformation Behavior of Coarse Multi- phase Metallic Materials.	3309-3315A

The Thermochemistry of Magnesium in Nickel-Base Alloys. I. The Determination of Thermochemical Parameters Using the Atomic Absorption Technique.	791-803B	Alkaline leaching Bacterial leaching In situ leaching	
Knudsen gages		Leaching See also Acid leaching	
Kinetics See Reaction kinetics		See Multilayers	
Killed steels See Aluminum killed steels		Transformation of Laves Phases in Fe—10 at.% Zr Alloy. Layers	3303-3308A
See Continuous casting		Laves phase, Stress effects Room-Temperature Deformation and Stress-Induced Phase	2202 2202
See Soldered joints Welded joints Junghans Rossi casting		Effects of Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel.	1833-1836A
Soldering Joints Soldered in interest		Alloys. Lattice vibration, Alloying effects	2715-2723A
Joining See Brazing Mechanical joining		Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Lattice sites, Composition effects The Microstructure of Electrodeposited Titanium—Aluminum	2963-2972A
Jet engines See Gas turbine engines		Effects of Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel.	1833-1836A
Correction to "Effects of Hydrogen on the Mixed Mode I/III Toughness of a High-Purity Rotor Steel".		Decagonal Quasicrystal and Related Crystalline Phases in Slowly Solidified Al—Co Alloys. Lattice parameters, Alloying effects	1121-1128A
J integral Effects of Hydrogen on the Mixed Mode I/III Toughness of a High-Purity Rotor Steel.	1013-1020A	Lattice parameters Silicide Phases in Some Complex Titanium Alloys.	689-690A
Izod impact tests See Impact tests		Lattice defects See Crystal defects	
See Isothermal annealing		Lattice constant See Lattice parameters	
Speed Steels.	1631-1640A	Laser welding See Laser beam welding	
Dissolution of Particles in Binary Alloys. I. Computer Simula- tions. Microstructural Changes During Overtempering of High-	433-444A	Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. II. Oxidation Behavior.	2631-2639A
Hot isostatic pressing Isothermal annealing		Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding, I. Microstructure Evolution.	2419-2429A
Isostatic pressing See Cold isostatic pressing		Laser-Enhanced Sputter or Vapor Deposition of Thin Metallic Films on Ceramic Substrates. (Conference Paper)	1095-1103A
Irradiation damage See Radiation damage		Laser-Clad NiAICrHf Alloys With Improved Alumina Scale Re- tention. A Thermal Model of Laser Cladding by Powder Injection.	513-522B 631-642B
the Rist Diagram. Infiltration of Carbon in Pores Within Coke and Charcoal by Methane Cracking.	385-394B 429-435B	See also Laser beam hardening Laser beam melting Laser beam welding	
Ironmaking A Fundamental Study of Raceway Size in Two Dimensions. Treatment of Multiple Injections in the Iron Blast Furnace by	267-283B	Energy-Beam Redistribution and Absorption in a Drilling or Welding Cavity. Laser processing	505-511B
Iron powder See Iron		Welding Cavity. Laser machining	505-511B
Iron ores See Pyrite		Laser beam welding Energy-Beam Redistribution and Absorption in a Drilling or	
Iron compounds, Mechanical properties Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper)	35-40A	Laser-Enhanced Sputter or Vapor Deposition of Thin Metallic Films on Ceramic Substrates, (Conference Paper) Laser Melting Treatment by Overlapping Passes of Pre- heated Nickel Electrodeposited Coatings on Al—Si Alloy.	1095-1103A 1801-1806A
Iron compounds See also Pyrite		Laser Transformation Hardening of Tempered 4340 Steel. (Conference Paper) Laser beam melting	163-170A
iron base alloys See Ferrous alloys	0.00	See Laser machining Laser beam hardening	
Equilibrium Between Na ₂ O [*] Containing Slags and Carbon- Saturated iron at 1350°C: the Controlling Oxygen Potential. Correction to "Dissolution Equilibrium of Magnesium Vapor in Liquid Iron".	395-397B 398B	forcements. Laser beam cutting	2863-2872A
Determination of Refractive Index and Absorption Coefficient of Iron-Oxide-Bearing Slags. Equilibrium Between Na ₂ O-Containing Slags and Carbon-	331-337B	Laminates, Mechanical properties Role of Matrix/Reinforcement Interfaces in the Fracture Toughness of Brittle Materials Toughened by Ductile Rein-	
CaC ₂ , SrC ₂ , and BaC ₂ . Sulfide Capacities of CaO—CaF ₂ —CaCl ₂ Melts.	313-316B 325-330B	See also Birnetals Clad metals	
Optimum Percentage of Burnt Lime and Mill Scale in the Slag for Modification of Pig Iron. Determination of Standard Gibbs Energies of Formation of	96-101B	Laminates	
Iron and steel making See also Ironmaking Steel making Ontimum Percentage of Burat Lime and Mill Scale in the Slag		Working of Wrought Near-Gamma Titanium Aluminides. Lamina See Laminates	1719-1735A
Phase. An Assessment of the Al—Fe—N System.	2409-2417A 3141-3149A	Lamellar structure, Deformation effects Flow Softening and Microstructure Evolution During Hot	.000 10777
An Experimental and Theoretical Study of the Phase Equilib- ria in the Fe—Mo—Ni System. The AI—Cu—Fe Phase Diagram: 0-25 at.% Iron and 50- 75 at.% Aluminum—Equilibria Involving the Icosahedral	639-649A	Quenched Ti-48 at.% Al Alioys. Superplastic Behavior of Two-Phase Titanium Aluminides. Influence of Microstructure on Crack-Tip Micromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy.	690-697A 1509-1513A 1663-1677A
Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters.	23-28B	Microstructures and Property Tradeoffs in Wrought TiAl- Base Alloys. Observation of a Massive Transformation from α to γ in	375-377A
The Solubility of Alumina in Liquid Iron. Iron, Ternary systems	789-790B	Plumes. Lamellar structure	779-788B
tween CaO—SiO ₂ Slags and Liquid Iron. Iron, Solubility	613-621B	Modeling Flows and Mixing in Steelmaking Ladles Designed for Single- and Dual-Plug Bubbling Operations. Measurements of the Internal Structure of Gas—Liquid	765-778B
Iron, Refining Silicon—Oxygen Equilibrium and Nitrogen Distribution Be-		Plumes. Ladies	779-788B
Prediction of Sintered Density for Bimodal Powder Mixtures. Thermal Debinding of Powder Injection Molded Parts: Observations and Mechanisms.	1455-1465A 2775-2782A	for Single- and Dual-Plug Bubbling Operations. Measurements of the Internal Structure of Gas—Liquid	765-778B
Iron, Powder technology		Silicon—Oxygen Equilibrium and Nitrogen Distribution Between CaO—SiO₂ Slags and Liquid Iron. Modeling Flows and Mixing in Steelmaking Ladles Designed	613-621B
Iron, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/ Alumina Interfaces.	215-222B	Rate of Decarburization of Fe—C _{sat} Melts by H ₂ O at 1523 and 1873K.	45-51B
Iron, Phases (state of matter) Thermal Stress and Strain Effects on Phase Transition Temperatures in Differential Thermal Analysis Testing.	451-455A	The Thermochemistry of Magnesium in Nickel-Base Alloys. II. Activity of Magnesium. Ladie metallurgy	805-814B
		The Thermore and antisters of Managerium in Mintel Page Allers H	

Adsorption of Gold on Activated Carbon in Bromide Solutions.	557-566B	Long range order Effects of Ordering Type and Degree on Monoclinic Distortion of 18R-Type Martensite in Cu—Zn—Al Alloys.	2753-2760A
Lead (metal), Binary systems Role of Entropy of Solution in Controlling Eutectic Microstruc- ture.	2675-2678A	Loops (dislocation) See Dislocation loops	
Lead (metal), Extraction Modeling of Metal—Slag Equilibrium Processes Using Neural Nets.	643-650B	Low alloy steels See also High strength low alloy steels Resulfurized steels Silicon steels	
Lead (metal), Impurities Lead-Induced Solid Metal Embrittlement of an Excess Silicon AI—Mg—Si Alloy at Temperatures of —4°C to 80°C.	1679-1689A	Low alloy steels, Crystal growth Mathematical Simulation of Interdendritic Solidification of Low-Alloyed and Stainless Steels.	1155-1170A
Lead (metal), Quaternary systems An Assessment of the Thermodynamic Properties of Liquid Quaternary Alloys With the Wilson Equation.	526-528B	Low alloy steels, Joining Analysis of Metal—Ceramic Bonding by Frettage.	2791-2801A
Lead base alloys Elaboration of Semisolid Alloys by Means of New Electro- magnetic Rheocasting Processes.	189-206B	Low alloy steels, Mechanical properties Evaluation of Hydrogen-Assisted Cracking Behavior of Low- Alloy Steel in the Range 95-350°C.	1291-1298A
Lead base alloys, Casting A General Enthalpy Method for Modeling Solidification Pro-		The Tearing Topography Surface as the Zone Associated With Hydrogen Embrittlement Processes in Pearlitic Steel. Thermal Activation Model of Endurance Limit.	1573-1584A 2597-2605A
cesses. Lead base alloys, Directional solidification Coriolis Effects on the Stability of Plane-Front Solidification of Dilute Pb—Sn Binary Alloys.	651-664B 73-80B	Low alloy steels, Microstructure Thermodynamic Calculation and Experimental Verification of the Carbonitride-Austenite Equilibrium in Ti—Nb Microal- loyed Steels.	651-657A
The Transition From Columnar to Equiaxed Dendritic Growth in Proeutectic, Low-Volume Fraction Copper, Pb—Cu Alloys.	1807-1815A	Low alloy steels, Rolling Finishing Conditions Appropriate for Recrystallization Controlled Rolling of Ti—V—N Steel.	373-375A
On the Formation of Macrosegregations in Unidirectionally Solidified Sn—Pb and Pb—Sn Alloys. Macrosegregation During Steady-State Arrayed Growth of	2301-2311A	Low carbon steels, Casting A Numerical and Experimental Study of the Solidification Rate in a Twin—Belt Caster.	477-492B
Dendrites in Directionally Solidified Pb—Sn Alloys. Lead burning Con Evident Welding	3383-3392A	Low carbon steels, Cladding A Thermal Model of Laser Cladding by Powder Injection.	631-642B
See Fusion welding Leuders lines See Luders lines		Low carbon steels, Coating Intermetallic Phases Formed During Hot Dipping of Low Car- bon Steel in a Zn—5Al Melt at 450°C.	2393-2400A
Levitation melting Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at Different Cooling Rates.	1817-1827A	Low carbon steels, Mechanical properties Intercritically Annealed and Isothermally Transformed 0.15% Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. I.	2393-2400A
Life See Fatigue life		Transformation, Microstructure, and Room-Temperature Mechanical Properties.	1221-1232A
Light metal alloys See Aluminum base alloys Magnesium base alloys Titanium base alloys		Intercritically Annealed and Isothermally Transformed 0.15% Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. II. Effect of Testing Temperature on Stress—Strain Behavior and Deformation-Induced Austenite Transformation.	1233-1241A
Light metals See Aluminum Magnesium		Low carbon steels, Microstructure New Observation of Martensitic Morphology and Substructure Using Transmission Electron Microscopy.	1413-1421A
Titanium Line defects See Dislocations		Low carbon steels, Phase transformations The Time—Temperature-Transformation Diagram Within the Medium Temperature Range in Some Alloy Steels. Correction to "The Time—Temperature-Transformation Dia-	785-795A
Liquefaction See Melting		gram Within the Medium Temperature Range in Some Alloy Steels". The Principle of Additivity and the Proeutectoid Ferrite Trans-	785-795A
Liquid cooling See Water cooling		formation. Low cycle fatigue, Microstructural effects	2469-2480A
Liquid metal forging See Squeeze casting		Load Sharing of the Phases in 1080 Steel During Low-Cycle Fatigue. (Conference Paper)	341-354A
Liquid metals Particle Sedimentation During Processing of Liquid Metal-		Inclusion Size Effect on the Fatigue Crack Propagation Mech- anism and Fracture Mechanics of a Superalloy. Dislocation Structure in a Single-Crystal Nickel-Base Super-	519-526A
Matrix Composites. The Solubility of Alumina in Liquid Iron. Note on the Thermochemistry of the Au + V, Au + Nb, and Au + Ta Systems.	753-763B 789-790B 1836-1839A	alloy During Low Cycle Fatigue. High-Temperature Low-Cycle Fatigue Behavior of a NI- MONIC PE-16 Superalloy—Correlation With Deformation and Fracture.	1253-1258A 1751-1761A
Liquid metals, Powder technology Behavior of Liquid Metal Droplets in an Aspirating Nozzle.	695-700B	Low cycle fatigue, Stress effects Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium Alloys.	3077-3084A
Liquid metals, Thermal properties Discussion of "Quadratic Formalism for Magnesium in Liquid Iron".	665B	Low expansion alloys, Alloy development Incoloy 908, a Low Coefficient of Expansion Alloy for High- Strength Cryogenic Applications. I. Physical Metallurgy.	3177-3192A
Liquid phase diffusion See Diffusion		Low temperature tests Study of Mechanism of Cleavage Fracture at Low Tempera-	0177-0102A
Liquid phases An Assessment of the Thermodynamic Properties of Liquid Quaternary Alloys With the Wilson Equation.	526-528B	ture. Lubrication	509-517A
Thermodynamic Properties in the Liquid Ag—Sb—Zn Sys- tem. High-Temperature Isopiestic Studies on the Liquid Solutions	601-611B	Compression Testing Techniques to Determine the Stress/ Strain Behavior of Metals Subject to Finite Deformation.	935-951A
Hg—Cd—Sn. Enthalpies of Formation of Some Solid Hafnium Nickel Compounds and of the Nickel-Rich HfNi Liquid by Direct Reac-		Luders bands See Luders lines Luders lines	
tion Calorimetry. Liquid phases, Temperature effects	815-819B	Effects of Hydrogen on the Mixed Mode I/III Toughness of a High-Purity Rotor Steel. Correction to "Effects of Hydrogen on the Mixed Mode I/III	1013-1020A
A Thermodynamic Evaluation of the AI—Mn System. An Assessment of the AI—Fe—N System. Liquids	2953-2962A 3141-3149A	Toughness of a High-Purity Rotor Steel". Processing Map for Controlling Microstructure in Hot Working of Hot Isostatically Pressed Powder Metallurgy Nimonic	1840A
See Liquid metals Melts		AP-1 Superalloy. Crystallographic Fatigue Crack Growth in Incompatible Aluminum Bicrystals: Its Dependence on Secondary Slip.	2849-2857A 3293-3301A
Liquids metals, Reactions (chemical) Correction to "Dissolution Equilibrium of Magnesium Vapor in Liquid Iron".	398B	Machining See Drilling Electron beam machining	3200 JOU IA
Live loads See Cyclic loads		Laser machining Laser machining Magnesium, Alloying elements	
Lixiviation See Leaching		Discussion of "Quadratic Formalism for Magnesium in Liquid Iron".	665B

Magnesium, Chemical analysis Magnesium, Chemical analysis The Determination of Terminochemical Parameteris Using the Adonic Acceptors (Leftengue Magnesium, Niceorio Research) Magnesium, Records (Cemical) Magnesium, Records (Cemical) The Street, Composition Magnesium of Magnesium Niceorio Magnesium of Magnesium Niceorio (Magnesium) Magnesium, Beach (Composition) Magnesium, Beach (Composition) Magnesium, Beach (Composition) Magnesium have dilegy, Composition materials The Street, Composition Magnesium of Magnesium Niceorio Magnesium of Magnesium of Magnesium Niceorio (Magnesium) Magnesium have dilegy, Mechanical properties Instruction of Ingland of Viscoriany From the Associated Solution Magnesium of Viscoriany From the Associated Solution Modern Magnesium have dilegy and Viscoriany From the Associated Solution Magnesium of Viscoriany From the Associated Solution Modern Magnesium have dilegy and Viscoriany From the Associated Solution Magnesium of Viscoriany From the Associated Solution Modern on Magnesium of Magnesiu	Magnesium, Binary systems Phase Equilibria in the Binary Rare-Earth Alloys: the Erbium—Magnesium System. Role of Entropy of Solution in Controlling Eutectic Microstruc-	1005-1012A	Marine environments Effect of Heat Treatment on the Hardness—Microstructure Inter-Relation in a 7.5Mm—5Cr—1.5Cu Alloy White Iron: a Modeling Approach.	891-901A
The Thermochemotry of Magnesium in Nicke-Base Allys I, part Anoch Aborghorn Technique. The Thermochemotry of Magnesium in Nicke-Base Allys I, pages and the Aborghorn Technique. The Thermochemotry of Magnesium in Nicke-Base Allys I. Magnesium, Receiting (Aborghorn Composed to Pages) Correction to Dissolution Equilibrium of Magnesium Vapor in Magnesium Pages III. The Steepin of Media Marin Composities Relationed With The Steepin of Media Marin Magnesium Steeping Allys Media Marin Composities Relationed With The Steeping Media Magnesium Base allys, Physical properties Solution Modified The Magnesium Base allys, Physical Physi	ture.	2675-2678A	Martensite	
mb. Admir. Absorption Technique. Activity of Magnesian. Activity of	The Thermochemistry of Magnesium in Nickel-Base Alloys. I.		Containing Silicon, Manganese, and Molybdenum.	1403-1411A
Advicy of Magnesium, Magnesium of Magnesium vapor in Liudul front. Magnesium, Recomposite materials The Streetyn of Mala Matrix Composites Reinforced With Magnesium base alloys, Composite materials The Streetyn of Mala Matrix Composites Reinforced With Magnesium properties interaction of High-Temperature Deformation Mechanisms in Magnesium have alloys, Mechanical properties interaction of High-Temperature Deformation Mechanisms and Magnesium have alloys, Mechanism of Mosey and College of Management and Magnesium have alloys, Persical properties Scientific Magnesium have alloys, Persical properties Magnesium have alloys alloys and the Mark of Magnesium have alloys alloy	the Atomic Absorption Technique. The Thermochemistry of Magnesium in Nickel-Base Alloys. II.		ing Aging of High Carbon Martensite.	2147-2158A
Corrections to Pissaculation Equilibrium of Magnesium Vapor in Liquid from Liquid from Liquid from Liquid from Liquid from Magnesium base allays, Composite materials and Mark Mark Composites Reinforced With Randonly Oriented Bloodinous of Piers. Magnesium base allays, Mechanical properties Business and Mark Mark Composites Reinforced With Randonly Oriented Bloodinous of Piers. Magnesium base allays, Physical properties Discussions of Calcidation of Viscolity From the Associated South Model. State of Mark Composites Properties Discussions of Calcidation of Viscolity From the Associated South Model. State of Market Section Microscopy (Microsthockura effects in Reinforced With Resonance) Properties Discussions of Calcidation of Viscolity From the Associated South Magnesic Suspensibility of an Atomized 304L Stainless Steel Provider Particle Size Effect. Magnesic Elementa of Magnesic Magnesic Steels Section Microscopy (Conference Paper) Magnesic Inst. Metallography and Atomized 304L Stainless Steel Provider Particle Size Effects of Microscopy (Conference Paper) Magnesic Inst. Metallography and Atomized 304L Stainless Steel Provider Particle Size Effects of Microscopy (Conference Paper) Magnesic Inst. Metallography (Microschotter) and Atomized Size Associated With Face-Centered Cubic — Hexagonal Close-Packed Magnesic Provider Particle Size Effects of Alloying State Particle Size Effects of Microscopy (Conference Paper) Magnesic Inst. Metallography (Microschotter) and Atomized Size Associated With Face-Centered Cubic — Hexagonal Close-Packed Magnesic Paperties Size Hinton (Microschotter) and Atomized Size Associated With Face-Centered Cubic — Hexagonal Close-Packed Magnesic Paperties Size Associated With Face-Centered Cubic — Hexagonal Close-Packed Magnesic Paperties Size Associated With Face-Centered Cubic — Hexagonal Close-Packed Magnesic Paperties Size Associated With Face-Centered Cubic — Hexagonal Close-Packed Magnesic Paperties Size Associated Size Associated Size Associated With Face-Centered Cubic — Hex	Activity of Magnesium.	805-814B	Precipitation-Hardening Stainless Steel.	2447-2453A
Magnesium base alloys, Composite materials The Strength of Mall Matrix Corporalises Reinforced With The Strength of Mall Matrix Corporalises Reinforced With Magnesium has alloys, Michael and Coarse Grans. Magnesium has alloys, Michael and Michael Andreas Grans. Magnesium has alloys, Michael and Michael Andreas Grans. Magnesium has alloys and Coarse Michael Andreas Michael Andreas Grans. Magnesium has	Correction to "Dissolution Equilibrium of Magnesium Vapor in	398B	tion of 18R-Type Martensite in Cu-Zn-Al Alloys.	2753-2760A
Interaction of High-Temperature Deformation Mechanisms in a Magnesum Aloy With Miscle Fine and Coarse Grains. Magnesium base alloys, Physical properties Solution Moder. Magnesium Seal Subys, Physical properties Solution Moder. Magnesium Seal Subys, Physical properties Solution Moder. Magnesium Seal Substitution of Vicessity From the Associated Solution Moder. Magnesium Seal Substitution of Vicessity From the Associated Solution Moder. Magnesium Seal Substitution of Vicessity From the Seal Substitution of Vicessity From the Seal Substitution Seal Substitution Seal Seal Seal Seal Seal Seal Seal Seal	The Strength of Metal Matrix Composites Reinforced With	3045-3053A	Tempering of Iron—Carbon—Nitrogen Martensites. Martensite, Heating effects	1129-1145A
Nagnetic anisotropy, Microstructural effects Review Focusing on Surface Energy-Induced Secondary Recystalization Regarder anisotropy, Microstructural effects Review Focusing on Surface Energy-Induced Secondary Recystalization Recystalization Regarder anisotropy, Microstructural effects Review Focusing on Surface Energy-Induced Secondary Recystalization Regarder anisotropy, Microstructural effects Repowler Focusing on Surface Energy-Induced Secondary Recystalization Recystalization Recystalization Recystalization Repowler Foreities Size Effect Repowler	Magnesium base alloys, Mechanical properties Interaction of High-Temperature Deformation Mechanisms in		ture Using Transmission Electron Microscopy. Martensite, Microstructure	1413-1421A
Magnetic anisotropy, Microstructural effects a Review Focusing on Surface Energy-induced Secondary Recystalization. Magnetic Review Focusing on Surface Energy-induced Secondary Recystalization. Magnetic Review Focusing of Surface Energy-induced Secondary Recystalization. Magnetic Surface Street Filters. Magnetic Surface Street Filters. Magnetic Surface Street Filters. Magnetic Permeability, Size offects Magnetic Development of Induced Phase of Surface Packed Martenatic Transformations. In Transformation Behavior. Magnetic Surface Street Filters. Magnetic Professory Street Filters. Magnetic Surface Street Filters.	Magnesium base alloys, Physical properties		Neutron Powder Diffraction.	1617-1626A
Rajestic Protes Representation Report Particle Size Effects Representation Report Particle Size Effects Representation Represe		101-103B	Epsilon Carbide Precipitation During Tempering of Plain Car-	2737-2751A
Magnetic Disacraptibility of an Atomized 304L Stainless Steel Magnetic State Metallography Record Studies of Thir Films and Surfaces by High- Resolution Electron Microscopy. (Conference Paper) Resolution Electron Ele	Nucleation and Growth Effects in Thin Ferromagnetic Sheets: a Review Focusing on Surface Energy-Induced Secondary	1987-1998A	Martensitic stainless steels, Mechanical properties The Effect of Tungsten on Creep Behavior of Tempered Mar-	
Recent Studies of Thin Films and Surfaces by High- Recent Studies of Thin Films and Surfaces by High- Resolution Electron Microscopy, (Conference Paper) 1063-1070A Magnetic Bus welding See Gas metal are welding See Gas metal are welding Magnetic Stude State of Magnetic Properties See Particle Size Effect. Magnetic materials See Farronagnetic Magnetic Succeptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effect. Magnetic Succeptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effects Magnetic Succeptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effects Magnetic Succeptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effects Magnetic Succeptibility See Magnetic Powderials Magnetic In St. Magnetic Succeptibility See Magnetic Powderials Magnetic Succeptibility See Magnetic Powderials Magnetic Succeptibility See Nitronagnetic Succeptibility See Nitronagnetic Succeptibility See Nitronagnetic Succeptibility See Nitronagnetic S	Magnetic Susceptibility of an Atomized 304L Stainless Steel	2917-2921A	Martensitic transformations Acoustic Emission Produced by the Delta-to-Alpha Phase	
See Gas melair creding See Gas melair creding See Magnetic force See Magnetic fields Magnetic hysteresis See Hysteresis Magnetic bysteresis See Ferromagnetic materials Magnetic permeability, Field effects Magnetic permeability, Size effects Powder: Particle Size Effect. Magnetic permeability Size effects Powder: Particle Size Effect. Magnetic permeability Magnetic permeability See National See Private See See See See See See See See See S	Magnetic films, Metallography		Thermoelastic Martensite and Shape Memory Effect in B2	
Magnetic premeability. Size effects Magnetic permeability (an Atomized 304L Stainless Steel Powder: Particle Size Effect.) Magnetic permeability. Size effects Magnetic susceptibility and strain-induced fransformation in a High- District of Magnetic susceptibility and strain-induced fransformation in a High- District of Magnetic susceptibility and strain-induced fransformation from a to γ in Carlottic permeability. Size effects of Alloying Elements Magnetics of Alloying Elements on the Distriction in the Matrix of a Complex Alloyance Chiefwine to Predict Wettability at Magnetic permeability. Size effects of Magnetics and the Alloying Elements Magnetics properties A The		1063-1070A	Base Ni—AI—Fe Alloy With Enhanced Ductility. Observation of [011] Twins in Fe—Ni—C Martensite Using	
Magnetic hysteresis See Ferromagnetic materials See Ferromagnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effect. Magnetic Dyrender Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effect. Magnetic permeability, Size effects Magnetic permeability See Magnetic permeability See Magnetic permeability See Magnetic permeability See Magnetic permeability Magnetic properties See Magnetic permeability See Magnetic permeability See Magnetic permeability Magnetic properties See Magnetic permeability See Magnetic specification of the Marticology Magnetic permeability See Magnetic permeability See Magnetic permeability See Magnetic permeability See Magnetic specification of the Marticology Magnetic permeability See Magnetic specification of the Marticology Magnetic specification of the Marticology Anophratic of the Marticology Anophraticon of the Marticology Anophraticon of the Marticology Anophraticology Anophraticology Magnetic permeability See Magn				1017-1020A
Magnetic hysteresis See Hysteresis Development of fron-Based Shape Memory Alioys Associated With Face-Centered Cubic—Centered Cubic—Centered Cubic—Centered Cubic—Centered Cubic—Centered Cubic—Centered Cubic—Centered Cubic—Centered Cubic—Centered Cubic—Magnetic permeability, Field effects Magnetic permeability, Field effects Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder. Particle Size Effect. 2917-2921A Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder. Particle Size Effects. Magnetic Susceptibility of State of Cubic—Pleasage of Powder. Particle Size Effects. Magnetic Susceptibility of Magnetic Susceptibility of State of Cubic—Pleasage of State of Pleasage of State of Cubic—Pleasage of State of Pleasage of State of Pleasage of State of Cubic—Pleasage of State of Pleasage of Pleasage of Pleasage of Pleasage of Pleasage of State			ated With Face-Centered Cubic—Hexagonal Close-Packed	1421 14274
See Parcomagnetic materials Magnetic permeability, File of effects Powder: Particle Size Effect. Magnetic permeability, Size effects Magnetic permeability Magnetic magnetic magnetic permeability Magnetic permeability Magnetic permeability Magnetic permeability Magnetic permeability Magnetic magnetic magnetic permeability Magne			Development of Iron-Based Shape Memory Alloys Associ-	1431-143/A
Magnetic permeability, Field effects Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effects Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effects Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effects Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effects Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effects Magnetic Susceptibility Magnetic Susceptibility See Magnetic permeability See Plasma (physics) Magnetic Susceptibility See Plasma (physics) Magnetic Susceptibility See Natirofing See Plasma (physics) Magnetic Susceptibility See Natirofing See Plasma (physics) Magnetic Susceptibility See Natirofing See Sultriang See Plasma (physics) Magnetic Susceptibility See Magnetic permeability See Magnetic permeability See Natirofing See Plasma (physics) Magnetic Susceptibility See Magnetic permeability See Natirofing See Sultriang See Plasma (physics) Magnetic Susceptibility See Magnetic permeability See Natirofing See Natirofing See Plasma (physics) Magnetic Susceptibility See Magnetic permeability See Natirofing See Plasma (physics) Magnetic Susceptibility See Natirofing Magnetic Susceptibility See Magnetic permeability See Natirofing Magnetic Susceptibility and See Sultriang Magnetic Susceptibility and See See See See Susception See See See See See See See See Se	Magnetic materials		Martensitic Transformations. II. Transformation Behavior. Shape Recovery and Phase Transformation Behavior in Ni—	
Powder: Particle Size Effect. Magnetic permeability, Size effects Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effect. Magnetic permeability Magnetic properties See Magnetic ansotropy Magnetic permeability Magnetic permeability Magnetic permeability Magnetic permeability Magnetic permeability Magnetic susceptibility See Magnetic permeability Magnetic permeability Magnetic susceptibility See Magnetic permeability Magnetic permeability Magnetic susceptibility See Magnetic permeability Magnetic permeability Magnetic permeability Magnetic susceptibility See Magnetic permeability Magnetic susceptibility See Magnetic permeability Magnetic susceptibility See Magnetic permeability Magnetic susceptibility Magnetic susceptibility See Magnetic permeability Magnetic susceptibility See Magnetic permeability Magnetic susceptibility	Magnetic permeability, Field effects			2981-2986A
Magnetic Susceptibility Magnetic particle Size Effects See Magnetic ic anisotropy Magnetic permeability Magne	Powder: Particle Size Effect.	2917-2921A	Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed	1445-1454A
See Magnetic permeability Magnetic susceptibility See Magnetic permeability Magnetism See Antiferromagnetism See Plasma (physics) Magnetory susceptibility See Magnetory susceptibility See Magnetory susceptibility Magnetory see Magnetory susceptibility See Magnetory susceptibility See Magnetory susceptibility Magnetory susceptibility See Magnetory susceptibility See Magnetory susceptibility Magnetory susceptibility See Magnetory susceptibility Magnetory susceptibility See Magnetory susceptibility Magnetory susceptibility Magnetory susceptibility Magnetory susceptibility See Antiferromagnetism See Plasma (physics) Magnetors sputtering Magnetory susceptibility Ma	Magnetic Susceptibility of an Atomized 304L Stainless Steel Powder: Particle Size Effect.	2917-2921A	Computer Simulation of Microstructure Development During a Martensitic Transformation.	
See Magnetic permeability Ductility and Strain-Induced Prasticity-Aided Dualsons See Antiferromagnetism Ductility and Strain-Induced Prasticity-Aided Dualsons See Plasma (physics) 3085-391A Magnetoplasma See Plasma (physics) Magneton sputtering See Sputtering Magneton sputtering See Sputtering See Sputtering Magneton sputtering See	See Magnetic anisotropy		Fatigue Crack Tip Deformation Processes as Influenced by	2211-2221A
Magnetism See Antiferromagnetism Strength Transformation-Induced Plasticity-Aided Duishase See Antiferromagnetism Strength Transformation-Induced Plasticity-Aided Duishase See Antiferromagnetism 3085-3091A Magnetrom Spattering See Sputtering Magnetrom sputtering Magnetrom sputtering Mass transformation Kinetics of Heterogeneous Martensitic Nucleation. 2987-2998A Malcomizing See Nitiriding Manganese, Alloying elements Manganese, Alloying elements Massive type transformation, Cooling effects 299-378 Manganese, Alloying elements on the Distortion in the Matrix of a Complex Alloyed Steel. Alloying Clements on the Distortion in the Matrix of a Complex Alloyed Steel. 4 Thermodynamic Assessment of the Mn—O System. 4 Thermodynamic Assessment of the Mn—O System. 821-831B 821-831B <td></td> <td></td> <td>Ductility and Strain-Induced Transformation in a High-</td> <td></td>			Ductility and Strain-Induced Transformation in a High-	
Magnetoplasma See Plasma (physics) Management (physics) Magnetron sputtering (peep Plasma (physics)) Distributed-Activation Kinetics of Heterogeneous Martensitic to Distributed-Activation Kinetics of Heterogeneous Martensitic to Nucleation. 2987-2988A Magnetron sputtering See Sputtering Maccomising See Nitriding Magnetron Sputtering Massive type transformation, Cooling effects Observation of A dassive Transformation from α to γ in Quenched Ti-48 at % Al Alioys. 299-378 Manganese, Alloying elements Mechanical Behavior and Microcracking of Cubic Ternary Zirconium Trialuminides. 617-625A Massive type transformation, Cooling effects Observation of A adassive Transformation from α to γ in Quenched Ti-48 at % Al Alioys. 490-897A Manganese, Binary systems Thermodynamic Evaluation of the Miner Magneses and Time and Mill Scale in the Slag for Modification of Pig Iron. 821-8318 besting Materials Materials Manganese, Physical properties A Thermodynamic Evaluation of the All-Miner Interfaces. 96-1018 besting Time and Surface Cover in Ladies on Liquid Steel Flow in Ladies Before Paper) Materials testing				3085-3091A
Magnetron sputtering See Sputtering Mass transfer Rate of Reduction of FeO in Slag by Fe—C Drops. 29-37B Malcomizing See Intriding Mass transfer Rate of Reduction of FeO in Slag by Fe—C Drops. 29-37B Manganese, Alloying elements Mechanical Behavior and Microcracking of Cubic Ternary Zir- conium Trialuminides. 46-7-625A Mass transfer Rate of Reduction of FeO in Slag by Fe—C Drops. 690-697A Manganese, Alloying elements Microstructure and Ordering of L12 Titanium Trialuminides. 18-3-8-36A 2963-2972A Massive type transformation, Cooling effects Observation of a Massive Transformation from α to γ in Quenched Ti-48 at % Al Alioys. 690-697A Manganese, Binary systems Thermodynamic Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel. 18-3-18-18 See Caramics Composite materials See Cove temperature tests Materials See Caramics Composite materials Materials See Caramics Composite materials Materials testing See Low temperature tests Materials testing See Low temperatu	Magnetoplasma		Martensitic transformations, Temperature effects Distributed-Activation Kinetics of Heterogeneous Martensitic	
See SplittridingRate of Reduction of FeO in Stag by Fe—C Drops.29-378Manganese, Alloying elementsMassive type transformation, Cooling effects29-378Manganese, Alloying elementsMassive type transformation from α to γ in Quenched T-48 at.% Al Alloys.690-697AManganese, Elineary date in the Millor of a Complex Alloyed Steel.617-625A83-1836AMicrostructure and Ordering of L1₂ Titanium Trialuminides.183-1836A89-625-2972AManganese, Binary systems2953-2952AMaterials testing 2953-2952AMaterials testing 2953-2952AManganese, Impurities96-1018Materials testing 96-1018Materials testing 96-1018Materials testing 96-1018Materials design 96-1018Manganese, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/ Alumina Interfaces.96-1018Mathematical modelsMathematical modelsManganese base alloys, Powder technology Amorphization of Ti1_x,Mnx, Binary Alloys by Mechanical Alloying.215-222BMathematical modelsThe Asymptotic Theory of Gasless Combustion Synthesis. (Conference Paper) Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) A Flundamental Study of Reaction	Magnetron sputtering		Nucleation.	2987-2998A
Manganese, Alloying elements Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alioys. 690-697A Mechanical Behavior and Microcracking of Cubic Ternary Zirconium Trialuminides. 617-625A Manganese, Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steet. 617-625A Materials See Ceramics Composite materials See Ceramics Composite materials Dissimilar materials Dissimilar materials Materials Materials See Ceramics Composite materials Dissimilar materials Dissimilar materials Materials Materials Materials See Ceramics Composite materials Dissimilar materials Dissimilar materials Materials Materials See Ceramics Composite materials Dissimilar materials Dissimilar materials Materials Materials Materials See Ceramics Composite materials Dissimilar materials Dissimilar materials Material	Malcomizing		Rate of Reduction of FeO in Slag by Fe—C Drops.	29-37B
Mechanical Behavior and Microcracking of Cubic Ternary Zirconium Trialuminides. Effects of Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Manganese, Binary systems Thermodynamic Assessment of the Mn—O System. A Thermodynamic Evaluation of the Al—Mn System. Manganese, Impurities Optimum Percentage of Burnt Lime and Mill Scale in the Slag for Modification of Pig Iron. Manganese, Physical properties A Thermodynamic Circlerion to Predict Wettability at Metal/Alumina Interfaces. Manganese steels, Mendanism of Cleavage Fracture at Low Temperature. Manganese steels, Mechanism of Cleavage Fracture at Low Temperature. Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Materials See Ceramics Composite materials Dissimilar materials Materials See Ceramics Composite materials Dissimilar materials Materials See Ceramics Composite materials Dissimilar materials Materials See Ceramics Composite materials Dissimilar materials Materials See Low temperature tests Mathematical analysis Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Materials See Caramics Composite materials Dissimilar materials Materials See Low temperature tests Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Materials See Composite materials Dissimilar materials Materials See Low temperature tests Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Properties and Interaction Parameters. Materials See Low temperature tests Mathematical analysis Integral Treatment and Mill Scale in the Slag See Low temperature tests Materials See Low temperature tests Mathematical analysis Integral Treatment or the Representation of	•		Observation of a Massive Transformation from α to γ in	690-697A
Effects of Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Manganese, Binary systems Thermodynamic Evaluation of the Al—Mn System. A Thermodynamic Evaluation of the Al—Mn System. A Thermodynamic Evaluation of Pig Iron. Manganese, Impurities Optimum Percentage of Burnt Lime and Mill Scale in the Slag for Modification of Pig Iron. Manganese, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/Alumina Interfaces. Manganese salloys, Powder technology Amorphization of Ti _{1—X} Mn _X Binary Alloys by Mechanical Alloying. Manganese steels Manganese steels, Mechanical properties Study of Mechanism of Cleavage Fracture at Low Temperature. Manganese steels, Metallography Ferrite:Cementite Crystallography in Pearlite. Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Manganese steels, Merrostructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Manganese steels, Merrostructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Manganese steels, Merrostructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Manganese steels, Merrostructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Manganese steels, Merrostructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Manganese steels, Metallography Marine atmospheres Manganese steels, Metallography Marine atmospheres Manganese steels, Metallography Marine atmospheria tests Manthematical analysis Matematical manalysis Matem	Mechanical Behavior and Microcracking of Cubic Ternary Zir-	617-625A	Materials	
Manganese, Binary systems Thermodynamic Assessment of the Mn—O system. A Thermodynamic Assessment of the Al—Mn System. 2953-2962A Manganese, Impurities Optimum Percentage of Burnt Lime and Mill Scale in the Stag for Modification of Pig fron. Manganese, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/Alumina Interfaces. Manganese base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Manganese steels See also Chromium manganese steels Manganese steels, Mechanical properties Study of Mechanism of Cleavage Fracture at Low Temperature. Sudy of Mechanism of Cleavage Fracture at Low Temperature. Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Mathematical analysis Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. 23-28B Mathematical models The Asymptotic Theory of Gasless Combustion Synthesis. (Conference Paper) Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) A Fifect of Slag Cover on Heat Loss and Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting Tundishes. Steel Siove in Continuous Casting Tundishes. Sas – Solid Reaction-Rate Enhancement by Pressure Cycling. Patrication of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Infiltrat	a Complex Alloyed Steel.	1833-1836A	Composite materials	
Manganese, Impurities Optimum Percentage of Burnt Lime and Mill Scale in the Slag for Modification of Pig Iron. Manganese, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/Alumina Interfaces. Manganese base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Manganese steels Manganese steels Mechanical properties Study of Mechanism of Cleavage Fracture at Low Temperature. Manganese steels, Metallography Ferrite: Cementite Crystallography in Pearlite. Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters. Mathematical analysis Integral Treatment or the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters.	Manganese, Binary systems			
Optimum Percentage of Burnt Lime and Mill Scale in the Slag for Modification of Pig Iron. Manganese, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/Alumina Interfaces. Manganese base alloys, Powder technology Amorphization of Ti _{1—x} Mn _x Binary Alloys by Mechanical Alloying. Manganese steels Manganese steels Manganese steels Mechanical properties Situdy of Mechanism of Cleavage Fracture at Low Temperature. Manganese steels, Metallography Ferrite-Cementite Crystallography in Pearlite. Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Mathematical models The Asymptotic Theory of Gasless Combustion Synthesis. (Conference Paper) Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Humanical Modeling of Solidification Combustion Synthesis. (Conference Paper) Effect of Slag Cover on Heat Loss and Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting Tundishes. Treep Cavitation in a NiCr Steel. (Conference Paper) Strength Low-Alloy Steels. Manganese steels, Metallography Ferrite-Cementite Crystallography in Pearlite. 1259-1269A Marine atmospheres Mathematical models The Asymptotic Theory of Gasless Combustion Synthesis. (Conference Paper) Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Effect of Slag Cover on Heat Loss and Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting Tundishes. Treep Cavitation in a NiCr Steel. (Conference Paper) Steel (Flow in Continuous Casting Tundishes. Treep Cavitation in a NiCr Steel. (Conference Paper) Steel (Flow in Continuous Casting Tundishes. Torep Cavitation in a NiCr Steel. (Conference Paper) Steel (Flow in Continuous Casting Tundishes. Torep Cavitation in a NiCr Steel. (Conference Paper) Steel (Flow in Continuous Casting Tundishes. Torep Cavitation in a NiCr Steel. (Conference Paper) Steel (Flow in Continuous Casting Tundishes. Torep Cavitati			Mathematical analysis	
Manganese, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/ Alumina Interfaces. Manganese base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Al- loying. 215-222B Manganese steels See also Chromium manganese steels Manganese steels, Mechanical properties Study of Mechanism of Cleavage Fracture at Low Tempera- ture. Study of Mechanism of Cleavage Fracture at Low Tempera- ture. Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High- Strength Low-Alloy Steels. Manganese steels Manganese steels, Metallography Ferrite Cementite Crystallography in Pearlite. Manganese steels (Amethodis (Amorphization of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Intitration. Application of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Intitration. Application of a Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reduction of Medallic Oxides. I. A General Treatment and its Application to the Reduction of the Oxides of Molybdenum by Hydrogen. Marine atmospheres Mahmanical models The Asymptotic Theory of Gasless Combustion Synthesis. (Conference Paper) Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Pflect of Slag Cover on Heat Loss and Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting Tundish. Iffect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting Tundish. Iffect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting Tundish. Iffect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting Tundish. Iffect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting Tundish. Iffect of Holding	Optimum Percentage of Burnt Lime and Mill Scale in the Slag		Properties in Multicomponent Systems Using Interaction	23-28B
Manganese base alloys, Powder technology Amorphization of Ti _{1—x} Mn _x Binary Alloys by Mechanical Alloying. 2105-2110A Manganese steels See also Chromium manganese steels Manganese steels, Mechanical properties Study of Mechanism of Cleavage Fracture at Low Temperature. Manganese steels, Metallography Ferrite: Cementite Crystallography in Pearlite. Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres Authorized Modeling of Similaction Combustion Synthesis. (Conference Paper) Ladles Before and During Teeming to a Continuous Casting Tundishs. Seed if Novi Person Continuous Casting Tundishs. Seed if Novi Paceway Size in Two Dimensions. Creep Cavitation in a NiCr Steel. (Conference Paper) A Fundamental Study of Raceway Size in Two Dimensions. Cass—Solid Reaction-Rate Enhancement by Pressure Cycling. Patrication of 1 Piber-Reinforced Metal-Matrix Composites by Variable Pressure Infiltration. Application of a Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reduction of Metallic Oxides. I. A General Treatment and its Application to the Reduction of the Oxides Of Molybdenum by Hydrogen. Marine atmospheres 23-34A 23-54B 23-54B 23-54B 23-54B 23-54B 23-54B	Manganese, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal.		The Asymptotic Theory of Gasless Combustion Synthesis. (Conference Paper)	15-22A
loying. 2105-2110A Ladles Before and During Teeming to a Continuous Casting Tundish. 25ea also Chromium manganese steels Manganese steels, Mechanism of Cleavage Fracture at Low Temperature. 509-517A Study of Mechanism of Cleavage Fracture at Low Temperature. 509-517A Manganese steels, Metallography in Pearlite. 1259-1269A Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. 1641-1651A Marine atmospheres 1509-517A Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. 1641-1651A Marine atmospheres 1509-517A Ladles a Poter and During Teeming to a Continuous Casting Tundishs. 153-151B Steel Flow in Continuous Casting Tundishs. 153-167B 201-210A 267-283B 201-210A 267-283B 268-294B 267-283B 279-284B 279-283B 279-284B 279	Manganese base alloys, Powder technology		(Conference Paper) Effect of Slag Cover on Heat Loss and Liquid Steel Flow in	
See also Chromium manganese steels Manganese steels, Mechanical properties Study of Mechanism of Cleavage Fracture at Low Temperature. 509-517A Manganese steels, Metallography Ferrite: Cementite Crystallography in Pearlite. 1259-1269A Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. 1641-1651A Marine atmospheres 153-167B Steel Flow in Continuous Casting Tundishes. 153-167B 201-210A 267-228B 153-269A Steel Flow in Continuous Casting Tundishes. 153-167B 201-210A 267-228B 278-294B 285-294B 295-302B 295-302B 317-324B	loying.		Tundish.	135-151B
Study of Mechanism of Cleavage Fracture at Low Temperature. 509-517A Manganese steels, Metallography Ferrite:Cementite Crystallography in Pearlite. 1259-1269A Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels. Marine atmospheres 267-283B 287-283B 288-Solid Reaction-Rate Enhancement by Pressure Cycling. Fabrication of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Infiltration. Application of a Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reduction of Metallic Oxides. I. A General Treatment and Its Application to the Reduction of the Oxides of Molybdenum by Hydrogen. Modeling Superheat Removal During Continuous Casting of	See also Chromium manganese steels		Steel Flow in Continuous Casting Tundishes.	153-167B
Manganese steels, Metallography Ferrite: Cementite Crystallography in Pearlite. 1259-1269A Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High- Strength Low-Alloy Steels. 1641-1651A Marine atmospheres 1259-1269A	Study of Mechanism of Cleavage Fracture at Low Tempera-		A Fundamental Study of Raceway Size in Two Dimensions. Gas—Solid Reaction-Rate Enhancement by Pressure Cy-	267-283B
Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High- Strength Low-Alloy Steels. Marine atmospheres Application of a Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reduction of Metallic Oxides. I. A General Treatment and its Application to the Reduction of the Oxides of Molybdenum by Hydrogen. 317-324B		1259-1269A	Fabrication of Fiber-Reinforced Metal-Matrix Composites by	
Marine atmospheres the Oxides of Molybdenum by Hydrogen. 317-324B Modeling Superheat Removal During Continuous Casting of	Manganese steels, Microstructure Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High		Application of a Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reduction of Metallic Oxides. I. A General Treatment and its Application to the Reduction of	
	Marine atmospheres	1041-1031A	the Oxides of Molybdenum by Hydrogen. Modeling Superheat Removal During Continuous Casting of	317-324B

			wording
On the Calculation of the Free Surface Temperature of Gas-		Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Al-	0405 04404
Tungsten-Arc Weld Pools From First Principles. I. Modeling the Welding Arc. On the Calculation of the Free Surface Temperature of Gas-	357-369B	loying. Morphological and Calorimetric Studies on the Amorphiza-	2105-2110A 2131-2140A
Tungsten-Arc Weld Pools From First Principles. II. Modeling the Weld Pool and Comparison With Experiments.	371-384B	tion Process of Rod-Milled Al ₅₀ Zr ₅₀ Alloy Powders. Formation of Metastable Phases of Ni—C and Co—C Systems by Mechanical Alloying.	2431-2435A
Treatment of Multiple Injections in the Iron Blast Furnace by the Rist Diagram.	385-394B	Mechanical hysteresis	
An Investigation of Silicon Carbide Synthesis in a Nontrans- ferred Arc Thermal Plasma Reactor.	443-451B	See Hysteresis Mechanical joining	
Microscopic Modeling of Fundamental Phase Transforma- tions in Continuous Castings of Steel.	457-467A	Analysis of Metal—Ceramic Bonding by Frettage. Mechanical properties	2791-2801A
Thermodynamic Investigations of Tellurium-Saturated Solid CdSe—CdTe Alloys.	467-476B	See Brittleness Compressive properties	
A Numerical and Experimental Study of the Solidification Rate in a Twin—Belt Caster. Energy-Beam Redistribution and Absorption in a Drilling or	477-492B	Creep (materials) Deformation resistance	
Welding Cavity. Evolution of Dislocation Structures and Deformation Behav-	505-511B	Ductile brittle transition Ductility	
ior of Iron at Different Temperatures. II. Dislocation Density and Theoretical Analysis.	545-549A	Elastic constants Elasticity	
A Mathematical Model of the Nickel Converter. II. Application and Analysis of Converter Operation.	573-582B	Fatigue (materials) Fracture strength	
An Analytical Model for the Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface.	669-680A	Hardness Impact strength Plasticity	
Dendritic Growth During Directional Solidification of Hypoeutectic Fe—C—Si Alloys.	681-687A	Serrated yielding Shear properties	
Plasma—Particle Interactions in Plasma Spraying Systems. Kinetics of Iridium Reduction by Hydrogen in Hydrochloric Acid Solution	683-693B	Stiffness Strain	
Acid Solution. Representation of Thermodynamic Properties of Ternary Systems and its Application to the System Silver—Gold—	737-745B	Toughness Wear resistance	
Copper at 1350K. Modeling Flows and Mixing in Steelmaking Ladles Designed	747-752B	Mechanical tests	
for Single- and Dual-Plug Bubbling Operations. Measurements of the Internal Structure of Gas—Liquid	765-778B	See Compression tests Creep tests	
Plumes. The Solubility of Alumina in Liquid Iron.	779-788B 789-790B	Fatigue tests Fracture testing Tension tests	
Finite Element Modeling of Transient Heat Transfer and Microstructural Evolution in Welds. II. Modeling of Grain		Torsion tests	
Growth in Austenitic Stainless Steels. Reactor Models for a Series of Continuous Stirred Tank Re-	841-845B	Mechanics See Fracture mechanics	
actors With a Gas—Liquid—Solid Leaching System. I. Sur- face Reaction Control. Reactor Models for a Series of Continuous Stirred Tank Re-	847-856B	Mechanisms See Deformation mechanisms	
actors With a Gas—Liquid—Solid Leaching System. II. Gas-Transfer Control.	857-864B	Medium carbon steels, Microstructure The Crystallography of Bainite in a Medium-Carbon Steel	
Reactor Models for a Series of Continuous Stirred Tank Re- actors With a Gas—Liquid—Solid Leaching System. III.		Containing Silicon, Manganese, and Molybdenum.	1403-1411A
Model Application. An Analysis of Undirectional Solidification of Pure Metals	865-877B	Medium carbon steels, Phase transformations The Time—Temperature-Transformation Diagram Within the	705 705 4
Cooled Through an Interface Resistance. The Tearing Topography Surface as the Zone Associated	881-882B	Medium Temperature Range in Some Alloy Steels. Correction to "The Time—Temperature-Transformation Dia-	785-795A
With Hydrogen Embrittlement Processes in Pearlitic Steel. Theoretical Treatment of the Solidification of Undercooled	1573-1584A	gram Within the Medium Temperature Range in Some Alloy Steels".	785-795A
Fe—Cr—Ni Melts. Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High- Strength Low-Alloy Steels.	1585-1591A 1641-1651A	Melt spinning Characterization of Dispersed Intermetallic Phases in Rapidly	
A Model for the Formation and Solidification of Grain Boundary Liquid in the Heat-Affected Zone (HAZ) of Welds.	1783-1799A	Quenched Al—Ti—Ce Alloys. Heterogeneous Nucleation of Lead Particles Embedded in a	3193-3205A
Nucleation at Larger Supersaturations. Theory of Shape Bifurcation During Nucleation in Solids.	1853-1862A 1891-1900A	Zinc Matrix. Melt transfer	3207-3218A
An Assessment of Studies on Homogeneous Diffusional Nu- cleation Kinetics in Binary Metallic Alloys.	1915-1945A	See Pouring	
Prediction of Thermomechanical Fatigue Lives in Metal Ma- trix Composites. (Conference Paper)	2029-2038A	Melting See also Electron beam melting Laser beam melting	
An Investigation of the Fracture Behavior of Gamma-Based Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and	****	Infiltration of Fibrous Preforms by a Pure Metal. IV. Morphological Stability of the Remelting Front.	2291-2299A
α ₂ + γ Phase Fields. (Conference Paper) Application of Invariant Set Theory to Dynamic Recrystalliza- tion Constitutive Behavior.	2039-2059A	Melting points	
Thermal Stress and Strain in a Metal Matrix Composite With a Spherical Reinforcement Particle.	2091-2103A 2205-2210A	Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₃ Zr Intermetallic Compound. An Assessment of the Al—Fe—N System.	3073-3076A 3141-3149A
Discussion of "Behavior of Ceramic Particles at the Solid/ Liquid Interface in Metal Matrix Composites" and Reply.	2326-2330A	Melts	0141-01407
Theoretical Models for the Combustion of Alloyable Materials. (Conference Paper)	2339-2347A	See also Liquid metals Melts, Crystal growth	
Measurement and Representation of Grain-Boundary Tex- ture. Heterogeneity of Intergranular Damage in Copper Crept in	2501-2513A	Kinetics of the Growth of Spinel, MgAl ₂ O ₄ , on Alumina Particulate in Aluminum Alloys Containing Magnesium.	1279-1283A
Plane-Strain Tension. Thermal Activation Model of Endurance Limit.	2515-2526A 2597-2605A	Melts, Reactions (chemical) Rate of Decarburization of Fe—C _{sat} Melts by H ₂ O at 1523	
Effects of Ordering Type and Degree on Monoclinic Distor- tion of 18R-Type Martensite in Cu—Zn—Al Alloys.	2753-2760A	and 1873K. Activities of Titanium in Molten Copper at Dilute Concentra-	45-51B
A Comparison Between Calculated and Observed Elastically Induced Precipitate Shape Transitions in a Cu—2 at.% Co		tions Measured by Solid-State Electrochemical Cells at 1373K.	169-173B
Alloy. Analysis of Metal—Ceramic Bonding by Frettage. A Style of Steeking Faults in Deferred Australia Steinlage.	2761-2773A 2791-2801A	Solubility of BaS in BaO—BaF ₂ Slag and the Influence of FeO _x , SiO ₂ , Cr ₂ O ₃ , BaCl ₂ , CaO, and MgO on the Sulfide Capacity of This System.	175-181B
A Study of Stacking Faults in Deformed Austentitic Stainless Steel by X-Ray Diffraction. Liquid/Solid Interface Migration at Grain Boundary Regions	2859-2861A	Influence of Li ₂ O on the Carbonate Capacity of CaO— CaF ₂ —Al ₂ O ₃ Melts.	183-187B
During Transient Liquid Phase Brazing. Evolution of Bivariate Particle Size Distributions.	2905-2915A 2973-2980A	Carbon Solubility as Carbide in Calcium Silicate Melts. Decarburization of Silicon Melt for Solar Cells by Filtration	223-227B
Distributed-Activation Kinetics of Heterogeneous Martensitic Nucleation.	2987-2998A	and Oxidation.	423-427B
Optimization of Hot Workability in Stainless Steel-Type AISI 304L Using Processing Maps.	3093-3103A	Memory (shape) See Shape memory	
An Assessment of the Al—Fe—N System.	3141-3149A	Mercury, Ternary systems High-Temperature Isopiestic Studies on the Liquid Solutions	600 6000
See Finite element method Mathematical analysis		Hg—Cd—Sn. Mercury (metal)	623-629B
Mathematical models		See Mercury	
fattes		Metal carbides	
Mattes See Copper mattes Mechanical alloying		Metal carbides See Titanium carbide Metal inert gas welding	

Metal powders See also Alloy powders		Microscopy See Electron microscopy	
Homogenization and Microstructure Effects on the Properties of Injection Molded Fe—2Ni Steel.	377-381A	Microstructure See also Crystal structure	
Metal powders, Casting Thermal Debinding of Powder Injection Molded Parts: Obser-		Dislocation density Fibrous structure	
vations and Mechanisms. Metal powders, Reactions (chemical)	2775-2782A	Grain orientation Grain size	
The Effect of Interfacial Diffusion Barriers on the Ignition of Self-Sustained Reactions in Metal—Metal Diffusion Cou-	40 504	Grain structure Heterogeneous structure Homogeneous structure	
ples. (Conference Paper) Metal powders, Synthesis	49-53A	Lamellar structure Precipitate free zone	
The Asymptotic Theory of Gasless Combustion Synthesis. (Conference Paper)	15-22A	Spheroidal structure Texture	
Shock-Induced Chemical Reactions and Synthesis of Nickel Aluminides. (Conference Paper) Shock-Induced and Self-Propagating High-Temperature Syn-	41-48A	Nondestructive Evaluation for Large-Scale Metal-Matrix Composite Billet Processing.	1541-1549A
thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper)	55-58A	Microstructure, Alloying effects The Effect of Tungsten on Creep Behavior of Tempered Mar-	
Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites. (Conference Paper)	69-76A	tensitic 9Cr Steels. Microstructure, Deformation effects	3025-3034A
Metal spraying Behavior of Liquid Metal Droplets in an Aspirating Nozzle.	695-700B	Plastic-Flow Behavior and Microstructural Development in a Cast Alpha-Two Titanium Aluminide. (Conference Paper)	295-305A
Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numeri-		Shape Recovery and Phase Transformation Behavior in Ni— Al Alloys.	2981-2986A
cal and Experimental Results. Metal working	701-718B	Microstructure, Heating effects Segregation and Homogenization of a Near-Gamma Titanium	
See Hot working Thermomechanical treatment		Aluminide. (Conference Paper) Laser Transformation Hardening of Tempered 4340 Steel.	149-161A
Warm working Metallic compounds		(Conference Paper) Influence of Long-Term Aging at 520°C and 560°C and the Superimposed Creep Stress on the Microstructure of	163-170A
See Intermetallics Metallic glasses, Crystal growth		1.25Cr—0.5Mo Steel. (Conference Paper) Effect of Heat Treatment on the Hardness—Microstructure	221-235A
Correlation Between the Structure and Internal Friction of Metallic Glass Cu ₄₅ Ti ₅₅ .	1627-1630A	Inter-Relation in a 7.5Mn—5Cr—1.5Cu Alloy White Iron: a Modeling Approach.	891-901A
Metallizing Metal/Semiconductor Interfacial Reactions.	1999-2006A	Tempering of Iron—Carbon—Nitrogen Martensites. Intercritically Annealed and Isothermally Transformed 0.15%	1129-1145A
Metallographic structures See Microstructure		Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. I. Transformation, Microstructure, and Room-Temperature	1001 10004
Metallography		Mechanical Properties. Intercritically Annealed and Isothermally Transformed 0.15% Carbon Steels Containing 1.2% Si-1.5% Mn and 4% Ni. II.	1221-1232A
See Crystallography Metalloid compounds		Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. II. Effect of Testing Temperature on Stress—Strain Behavior and Deformation-Induced Austenite Transformation.	1233-1241A
See Silicon compounds Tellurium compounds		New Observation of Martensitic Morphology and Substruc- ture Using Transmission Electron Microscopy.	1413-1421A
Metalloids See Arsenic		Correction to "Influence of Long-Term Aging at 520°C and 550°C and the Superimposed Creep Series on the Microstyle of the Superimposed Creep Series on the Microstyle of the Superimposed Creep Series on the Microstyle of the Superimpose Series of the Su	1506A
Boron Carbon		structure of 1.25Cr—0.5Mo Steel". (Conference Paper) Microstructure, Stress effects	1596A
Silicon Metallurgical analysir		Influence of Long-Term Aging at 520°C and 560°C and the Superimposed Creep Stress on the Microstructure of	221-235A
See Phase ratio Quantitative analysis		1.25Cr—0.5Mo Steel. (Conference Paper) Correction to "Influence of Long-Term Aging at 520°C and 560°C and the Superimposed Creep Stress on the Micro-	221-233A
Metallurgical coke Infiltration of Carbon in Pores Within Coke and Charcoal by		structure of 1.25Cr—0.5Mo Steel". (Conference Paper) Influence of Prolonged Thermal Exposure on Intergranular	1596A
Methane Cracking. Metallurgical constituents	429-435B	Fatigue Crack Growth Behavior in Alloy 718 at 650°C. Mig arc welding	3169-3171A
See Ferrite Laves phase		See Gas metal arc welding MIG welding	
Metallurgy See Physical metallurgy		See Gas metal arc welding	
Powder metallurgy Metals		Migration See Diffusion	
See BCC metals Dissimilar metals		Mild carbon steels See Low carbon steels	
FCC metals Liquid metals		Mild steels See Carbon steels	
Metastable phases Correlation Between the Structure and Internal Friction of		Mill scale See Scale (corrosion)	
Metallic Glass Cu ₄₅ Ti ₅₅ . Some Aspects of the Precipitation of Metastable Intermetallic Phases in Inconel 718. (Conference Paper)	1627-1630A	Mining Model for Ferric Sulfate Leaching of Copper Ores Containing	
Formation of Metastable Phases of Ni—C and Co—C Systems by Mechanical Alloying.	2015-2028A 2431-2435A	a Variety of Sulfide Minerals. I. Modeling Uniform Size Ore Fragments.	537-548B
Metastable Precipitate in a Duplex Martensite + Ferrite Precipitation-Hardening Stainless Steel.	2447-2453A	Model for Ferritic Sulfate Leaching of Copper Ores Contain- ing a Variety of Sulfide Minerals. II. Process Modeling of In	007 0102
Solidification Kinetics and Metastable Phase Formation in Bi- nary Ti—Al.	2699-2714A	Situ Operations. Miscibility, Radiation effects	549-555B
Microalloyed steels See High strength low alloy steels		Thermal and Irradiation-Induced Phase Separation in Fe—Ni Based Invar-Type Alloys. (Conference Paper, Review)	1963-1976A
Microbial leaching See Bacterial leaching		Missile components See Rocket components	
Microcracking See Crack initiation		Mixing	
Microhardness Some Aspects of Deformation Behavior of Coarse Multi-		See also Dispersing Ion beam mixing Mechanical alloying	
phase Metallic Materials.	3309-3315A	Modeling Flows and Mixing in Steelmaking Ladles Designed for Single- and Dual-Plug Bubbling Operations.	765-778B
Microhardness, High temperature effects Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₃ Zr Intermetallic Compound.	3073-3076A	Measurements of the Internal Structure of Gas—Liquid Plumes.	779-788B
Microorganisms See Bacteria	3010-0010A	Mobility See Dislocation mobility	
Microparticles		Modification, Field effects Effect of Gravity Level on Grain Refinement in Aluminum Al-	
See Particles		loys.	3399-3404A

Modulus of elasticity		Neutral atmospheres	
Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis-		See Inert atmospheres Neutron diffraction	
locations. Modulus of elasticity, Composition effects Characterization of Stainless Steels Melted Under High Nitro-	3115-3120A	Observation of [011] Twins in Fe—Ni—C Martensite Using Neutron Powder Diffraction.	1617-1626A
gen Pressure. (Conference Paper) Modulus of rigidity	2061-2068A	Nickel, Alloying elements Substitutional Alloying and Deformation Modes in High Chro- mium Ferritic Alloys.	627-638A
See Shear modulus Modulus of shear See Shear modulus		Nickel, Brazing Liquid/Solid Interface Migration at Grain Boundary Regions During Transient Liquid Phase Brazing.	2905-2915A
Modulus of torsion See Shear modulus		Nickel, Cladding Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Re-	2803-2813K
Moistening See Wetting		tention. Nickel, Coatings	513-522B
Moisture See Water		Laser Melting Treatment by Overlapping Passes of Pre- heated Nickel Electrodeposited Coatings on Al—Si Alloy. Nickel, Composite materials	1801-1806A
Molality See Concentration (composition)		Fabrication of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Infiltration.	295-302B
Molarity See Concentration (composition)		Nickel, Diffusion Hydrogen Transport in Nickel-Base Alloys.	3231-3244A
Molding (process) See Slip casting Molds		Nickel, Extraction Application of Ultrasound in Extractive Metallurgy: Sono- chemical Extraction of Nickel.	13-22B
See Casting belts		Gas—Solid Reaction-Rate Enhancement by Pressure Cy- cling.	285-294B
Molten metals See Liquid metals		A Mathematical Model of the Nickel Converter. II. Application and Analysis of Converter Operation.	573-582B
Molten salts See Fused salts		Nickel, Mechanical properties Effect of Strain Rate on Cell Size Refinement and Strengthen- ing in Nickel and Aluminum.	3166-3169A
Molybdenum, Alloying elements Effects of Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel. Application of the Square Root Diffusivity to Diffusion in Ni—	1833-1836A	Nickel, Physical properties A Thermodynamic Criterion to Predict Wettability at Metal/ Alumina Interfaces.	215-222B
Cr—Al—Mo Alloys. Molybdenum, Extraction Application of a Nonisothermal Thermogravimetric Method to the Kinetic Study of the Reduction of Metallic Oxides. I. A	3245-3249A	Nickel, Powder technology Formation of Metastable Phases of Ni—C and Co—C Systems by Mechanical Alloying.	2431-2435A
General Treatment and Its Application to the Reduction of the Oxides of Molybdenum by Hydrogen. Molybdenum, Mechanical properties	317-324B	Nickel, Reactions (chemical) The Effect of Interfacial Diffusion Barriers on the Ignition of Self-Sustained Reactions in Metal—Metal Diffusion Couples. (Conference Paper)	49-53A
Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis- locations. Molybdenum, Microstructure	3115-3120A	Nickel, Ternary systems Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction Parameters.	23-28B
The Atomic Arrangement of Interstitials in Molybdenum Or- dered Solutions.	1601-1606A	An Experimental and Theoretical Study of the Phase Equilib- ria in the Fe—Mo—Ni System. Formation and Stability of a Nitride With the Structure of Beta	639-649A
Molybdenum, Powder technology Prediction of Sintered Density for Bimodal Powder Mixtures. Molybdenum, Ternary systems	1455-1465A	Manganese in Ni—Cr—N Ternary System. Nickel, Thin films	1389-1393A
An Experimental and Theoretical Study of the Phase Equilibria in the Fe—Mo—Ni System.	639-649A	Laser-Enhanced Sputter or Vapor Deposition of Thin Metallic Films on Ceramic Substrates. (Conference Paper)	1095-1103A
Molybdenum, Thin films Metal/Semiconductor Interfacial Reactions.	1999-2006A	Nickel base alloys, Alloy development Incoloy 908, a Low Coefficient of Expansion Alloy for High- Strength Cryogenic Applications. I. Physical Metallurgy.	3177-3192A
Molybdenum chromium nickel steels See Nickel chromium molybdenum steels		Nickel base alloys, Chemical analysis The Thermochemistry of Magnesium in Nickel-Base Alloys. II. Activity of Magnesium.	805-814B
Molybdenum chromium steels See Chromium molybdenum steels Molybdenum compounds, Composite materials		Nickel base alloys, Coatings Decomposition of the B2-Type Matrix of Aluminide Diffusion	000 0142
Ductile-Phase Toughening and Fatigue-Crack Growth in Niobium-Reinforced Molybdenum Disilicide Intermetallic Composites.	2249-2257A	Coatings on Single-Crystal Nickel-Base Superalloy Sub- strates.	2657-2665A
Role of Matrix/Reinforcement Interfaces in the Fracture Toughness of Brittle Materials Toughened by Ductile Rein- forcements.	2863-2872A	Nickel base alloys, Corrosion Hydrogen-Enhanced Cracking of Superalloys. (Conference Paper)	237-249A
Molybdenum nickel chromium steels See Nickel chromium molybdenum steels	2000 20727	Effect of Ordering on Susceptibility to Hydrogen Embrittle- ment of a Nickel-Base Superalloy. The Effect of Grain Boundary Chemistry on Intergranular	953-961A
Molybdenum ores, Reduction (chemical) Application of a Nonisothermal Thermogravimetric Method to		Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Effects of Grain Boundary Chemistry on the Intergranular	2887-2904A
the Kinetic Study of the Reduction of Metallic Oxides. I. A General Treatment and Its Application to the Reduction of the Oxides of Molybdenum by Hydrogen.	317-324B	Cracking Behavior of Ni—16Cr—9Fe in High-Temperature Water.	3343-3359A
Molybdenum steels See Chromium molybdenum steels		Nickel base alloys, Diffusion Hydrogen Transport in Nickel-Base Alloys. Application of the Square Root Diffusivity to Diffusion in Ni—	3231-3244A
Monel See Nickel base alloys		Cr—Al—Mo Alloys. Nickel base alloys, Heat treatment Effect of Heat Treatments on Phase Chemistry of the Nickel-	3245-3249A
Monitoring Activity Determinator for the Automatic Measurements of the Chemical Potentials of FeO in Metallurgical Slags.	459-466B	Base Superalloy SRR 99. Nickel base alloys, Mechanical properties	745-757A
Monocrystals See Single crystals		Shear Mechanisms of the γ' Phase in Single-Crystal Superal- loys and Their Relation to Creep. (Conference Paper)	99-105A
Multilayers, Microstructure In-Plane Structure and Properties of Iron Multilayers. (Conference Paper)	1105-1109A	Inclusion Size Effect on the Fatigue Crack Propagation Mech- anism and Fracture Mechanics of a Superalloy. Hardening Mechanisms in a Dynamic Strain Aging Alloy. HASTELLOY X, During Isothermal and Thermomechanical	519-526A
Multipurpose reactors		Cyclic Deformation. Effect of Carbon on the Low-Temperature Creep Behavior of	551-561A
See Nuclear reactors Near net shaping		Ni—16Cr—9Fe. Thermoelastic Martensite and Shape Memory Effect in B2	1033-1037A
Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numeri- cal and Experimental Results.	701-718B	Base Ni—AI—Fe Alloy With Enhanced Ductility. On the Mechanisms of High-Temperature Intergranular Embrittlements of Ni₃AI—Zr Alloys.	1147-1153A 1187-1193A

	The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High-	1405 40004	Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₃ Zr Intermetallic Compound.	3073-3076A
	Purity Water. Dislocation Structure in a Single-Crystal Nickel-Base Super- alloy During Low Cycle Fatigue.	1195-1206A 1253-1258A	Nickel compounds, Microstructure Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50—x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper)	59-64A
	The Effect of Internal Hydrogen on a Single-Crystal Nickel- Base Superalloy.	1313-1322A	Nickel compounds, Powder technology	33-04A
	Fracture Behavior of a B2Ni—30Al—20Fe—0.05Zr Intermet- allic Alloy in the Temperature Range 300-1300K. Deformation Behavior of a Ni—30Al—20Fe—0.05Zr Inter-	1691-1703A	An Experimental Investigation of Reactive Atomization and Deposition Processing of Ni ₃ Al/Y ₂ O ₃ Using Ni ₂ —O ₂ Atomization.	3394-3399A
	metallic Alloy in the Temperature Range 300-1300K. High-Temperature Low-Cycle Fatigue Behavior of a NI-	1705-1718A	Nickel compounds, Synthesis Shock-Induced Chemical Reactions and Synthesis of Nickel	
	MONIC PE-16 Superalloy—Correlation With Deformation and Fracture. Effect of Chromium on the Ordering Behavior and Ductility of	1751-1761A	Aluminides. (Conference Paper) Shock-Induced and Self-Propagating High-Temperature Syn-	41-48A
	an Ni—Ni ₄ Mo Alloy. Creep Rupture in a Nickel-Based Superalloy.	1829-1833A 2581-2587A	thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper)	55-58A
	Shape Recovery and Phase Transformation Behavior in Ni— Al Allovs.	2981-2986A	Combustion Synthesis of Ni ₃ AI and Ni ₃ AI-Matrix Composites. (Conference Paper)	69-76A
	Effect of Microstructure on Creep of Ti—24Al—11Nb Polycrystals.	3035-3043A	Nickel molybdenum chromium steels	00 7 0.1
	Frequency Interactions in High-Temperature Fatigue Crack Growth in Superalloys.	3067-3072A	See Nickel chromium molybdenum steels Nickel molybdenum steels	
	Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys.	3105-3113A	See Nickel chromium molybdenum steels	
	Influence of Prolonged Thermal Exposure on Intergranular Fatigue Crack Growth Behavior in Alloy 718 at 650°C.	3169-3171A	Nickel ores, Reduction (chemical) Gas—Solid Reaction-Rate Enhancement by Pressure Cycling.	285-294B
•	Nickel base alloys, Metal working Processing Map for Controlling Microstructure in Hot Work- ing of Hot Isostatically Pressed Powder Metallurgy Nimonic AP-1 Superalloy.	2849-2857A	Nickel plating Laser Melting Treatment by Overlapping Passes of Preheated Nickel Electrodeposited Coatings on Al—Si Alloy.	1801-1806A
1	Nickel base alloys, Microstructure The Short-Range Order Structure of a Water-Quenched Ni—		Nickel steels See also Nickel chromium steels	
	12.5 at.% Si Alloy—a Synchrotron X-Ray Diffuse Scattering Study.	769-777A	Nickel steels, Heat treatment The Morphology, Crystallography, and Mechanism of Car-	
	Microsegrégation in Cellular Microstructure. Nickel base alloys, Phase transformations	3377-3381A	bide Precipitation in an Fe—0.12C—3.28Ni Alloy. (Conference Paper)	171-181A
	High-Resolution Microscopy and Early-Stage Precipitation Kinetics. Nickel base alloys, Phases (state of matter)	1901-1914A	Nickel steels, Mechanical properties Homogenization and Microstructure Effects on the Properties of Injection Molded Fe—2Ni Steel.	377-381A
	Nickel base alloys, Phases (state of matter) Enthalpies of Formation of Some Solid Hafnium Nickel Com- pounds and of the Nickel-Rich HfNi Liquid by Direct Reac- tion Calorimetry.	815-819B	Nickel steels, Microstructure Observation of 011 Twins in Fe—Ni—C Martensite Using Neutron Powder Diffraction.	1617-1626A
-	Nickel base alloys, Powder technology Recent Trends and Developments With Rapidly Solidified	1002 10021	Niobium, Alloying elements Substitutional Alloying and Deformation Modes in High Chro-	
1	Materials. (Conference Paper) Nickel base alloys, Structural hardening	1083-1093A	mium Ferritic Alloys. Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-	627-638A
	Some Aspects of the Precipitation of Metastable Intermetallic Phases in Inconel 718. (Conference Paper)	2015-2028A	Strength Low-Alloy Steels. Niobium, Binary systems	1641-1651A
1	Nickel base alloys, Welding Interface Microchemistry of Silicon Nitride/Nickel—		Note on the Thermochemistry of the Au + V, Au + Nb, and Au + Ta Systems.	1836-1839A
	Chromium Alloy Joints. A Model for the Formation and Solidification of Grain Boundary Liquid in the Heat-Affected Zone (HAZ) of Welds.	1773-1781A 1783-1799A	Niobium, Composite materials Strength and Microstructure of Powder Metallurgy Pro-	
1	Nickel chromium molybdenum steels, Heat treatment Laser Transformation Hardening of Tempered 4340 Steel.	1100 110011	cessed Restacked Cu—Nb Microcomposites. Ductile-Phase Toughening and Fatigue-Crack Growth in Niobium-Reinforced Molybdenum Disilicide Intermetallic	573-586A
1	(Conference Paper) Nickel chromium molybdenum steels, Mechanical	163-170A	Composites. Role of Matrix/Reinforcement Interfaces in the Fracture	2249-2257A
	properties An Analysis of the Isothermal Hot Compression Test.	963-975A	Toughness of Brittle Materials Toughened by Ductile Reinforcements.	2863-2872A
	Effects of Hydrogen on the Mixed Mode I/III Toughness of a High-Purity Rotor Steel.	1013-1020A	Tensile Strain-Rate Sensitivity of Tungsten/Niobium Com- posites at 1300 to 1600K.	3121-3133A
	Correction to "Effects of Hydrogen on the Mixed Mode I/III Toughness of a High-Purity Rotor Steel".	1840A	Niobium, End uses Nitrogen Activity Determination in Plasmas.	207-214B
	Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel.	2243-2248A	Niobium, Mechanical properties	
-	Low-Temperature Creep of a Carburized Steel. Nickel chromium steels	2619-2624A	Compression Testing Techniques to Determine the Stress/ Strain Behavior of Metals Subject to Finite Deformation. Application of Nonlocal Elasticity to the Energetics for Solute	935-951A
	See also Nickel chromium molybdenum steels		Atoms in Body-Centered Cubic Transition Metals With Dis- locations.	3115-3120A
	Nickel chromium steels, Irradiation Relationships Between Phase Stability and Void Swelling in Fe—Cr—Ni Alloys During Irradiation.	1977-1986A	Niobium, Recovering A Possible Method for the Characterization of Amorphous	
	Nickel chromium steels, Mechanical properties		Slags: Recovery of Refractory Metal Oxides From Tin Slags.	249-259B
	Creep Cavitation in a NiCr Steel. (Conference Paper) Nickel chromium steels, Microstructure	201-210A	A Nitriding Process for the Recovery of Niobium From Fer- roniobium.	437-442B
	New Observation of Martensitic Morphology and Substruc- ture Using Transmission Electron Microscopy.	1413-1421A	Niobium base alloys, Mechanical properties Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by	101 1125
	Nickel compounds, Coatings Decomposition of the B2-Type Matrix of Aluminide Diffusion		Laser Cladding. I. Microstructure Evolution. Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by	2419-2429A
	Coatings on Single-Crystal Nickel-Base Superalloy Sub- strates.	2657-2665A	Laser Cladding, II. Oxidation Behavior. Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium	2631-2639A
	Nickel compounds, Composite materials Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites.		Alloys. Niobium compounds, Mechanical properties	3077-3084A
	(Conference Paper) Fracture Behavior of Stainless Steel-Toughened NiAl Com-	69-76A	Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. I. Microstructure Evolution.	2419-2429A
	posite Plate. Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced	563-572A	Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. II. Oxidation Behavior.	2631-2639A
	Ni ₃ Al Composite. Nickel compounds, Diffusion	3151-3160A	Niobium compounds, Powder technology A Fundamental Study on the Preparation of Niobium Alumi-	
	Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al.	2783-2790A	A Fundamental Study on the Preparation of Nicolum Alumi- nide Powders by Calciothermic Reduction. Reactive Sintering and Reactive Hot Isostatic Compaction of	415-421B
	Nickel compounds, Mechanical properties Correlation of Deformation Mechanisms With the Tensile and		Niobium Aluminide NbAl ₃ . (Conference Paper)	2357-2364A
	Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Al- loys.	1493-1508A	Nitrides See also Carbonitrides	
	Fracture Behavior of a B2Ni—30AI—20Fe—0.05Zr Intermet- allic Alloy in the Temperature Range 300-1300K. Deformation Behavior of a Ni—30AI—20Fe—0.05Zr Inter-	1691-1703A	Silicon nitride Titanium nitride Characterization of Stainless Staals Maltad Under High Nitro	
	metallic Allov in the Temperature Range 300-1300K.	1705-1718A	Characterization of Stainless Steels Melted Under High Nitro- gen Pressure. (Conference Paper)	2061-2068A

Nitriding A Nitriding Process for the Recovery of Niobium From Fer- roniobium. Formation and Stability of a Nitride With the Structure of Beta Manganese in Ni—Cr—N Ternary System.	437-442B	Thermodynamic Formula for Evaluating the Reversible Work to Form a Critical Nucleus and Influence of Critical Nucleus Size Upon Interfacial Tension. The Entropy Production and Variable Surface Tension Barriages to Nucle	1869-1881A
Nitrogen, Alloying elements Beneficial Effects of Nitrogen Atomization on an Austenitic	1389-1393A	ers to Nucleation and Growth in Steady- and Quasi-Steady State Condensing Systems. Theory of Shape Bifurcation During Nucleation in Solids. High Resolution Microscopy and Early State Precipitation	1883-1890A 1891-1900A
Stainless Steel. Plasma-Melted Nitrogen-Bearing Cast Stainless Steels—	3263-3272A	High-Resolution Microscopy and Early-Stage Precipitation Kinetics.	1901-1914A
Microstructure and Tensile Properties.	3317-3324A	An Assessment of Studies on Homogeneous Diffusional Nu- cleation Kinetics in Binary Metallic Alloys.	1915-1945A
Nitrogen, Dopants Characterization of Stainless Steels Melted Under High Nitrogen Pressure. (Conference Paper)	2061-2068A	Homogeneous Nucleation of Liquid From the Vapor Phase in an Expansion Cloud Chamber. Nucleation and Growth Effects in Thin Ferromagnetic Sheets:	1957-1961A
Nitrogen, Impurities Influence of Carbon and Nitrogen on Solid Solution Decay and "475°C Embrittlement" of High-Chromium Ferritic	0507.0570.4	a Review Focusing on Surface Energy-Induced Secondary Recrystallization. Evolution of Bivariate Particle Size Distributions. Void Nucleation in Constrained Silver Interlayers.	1987-1998A 2973-2980A 3281-3291A
Steels. Nitrogen, Solubility	2567-2579A	Nucleation, Composition effects	
Solubility of Nitrogen in Cr—Fe—Mo—Ni Alloys. Characterization of Stainless Steels Melted Under High Nitro-	1271-1278A	The Effect of Ternary Trace Additions on the Nucleation and Growth of γ' Precipitates in an Al—4.2 at.% Ag Alloy. (Conference Paper)	135-148A
gen Pressure. (Conference Paper)	2061-2068A	Theoretical Treatment of the Solidification of Undercooled Fe—Cr—Ni Melts.	1585-1591A
Nitrogen, Ternary systems Formation and Stability of a Nitride With the Structure of Beta Manganese in Ni—Cr—N Ternary System. An Assessment of the Al—Fe—N System.	1389-1393A 3141-3149A	Nucleation, Cooling effects Heterogeneous Nucleation of Lead Particles Embedded in a Zinc Matrix.	3207-3218A
Nitrogen compounds See Nitrides		Nucleation, Diffusion effects Diffusion-Controlled Growth and Coarsening of MnS During	
Nodular iron, Casting Correction to "Dissolution Equilibrium of Magnesium Vapor in Liquid Iron".	398B	Hot Deformation. Nucleation, Heating effects Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc	3013-3023A
Nodular iron, Phase transformations Modeling of the Liquid/Solid and the Eutectoid Phase Trans-		Alloy.	1947-1955A
formations in Spheroidal Graphite Cast Iron. Nondestructive testing	1333-1346A	Nucleation, Microstructural effects Strain-Induced Nucleation of MnS in Electrical Steels.	821-830A
See Acoustic emission testing Ultrasonic testing		Nucleation, Temperature effects Distributed-Activation Kinetics of Heterogeneous Martensitic Nucleation.	2987-2998A
Nonferrous alloys See Cobalt base alloys		Nuclei (transformation) See Nucleation	
Hafinium base alloys Manganese base alloys Nickel base alloys Zinc base alloys Zirconium base alloys		Oil quenching Effect of Heat Treatment on the Hardness—Microstructure Inter-Relation in a 7.5Mn—5Cr—1.5Cu Alloy White Iron: a Modeling Approach.	891-901A
Nonferrous metals		Oiling (lubrication)	
See Cobalt Copper		See Lubrication Order disorder	
Gallium Hafnium		See also Long range order Short range order	
Indium Manganese		Effect of Microstructure on Creep of Ti—24AI—11Nb Polycrystals.	3035-3043A
Nickel Zinc		Order disorder, Alloying effects	0000 00 00
Zirconium Nonferrous smelting		Effect of Chromium on the Ordering Behavior and Ductility of an Ni—Ni ₄ Mo Alloy.	1829-1833A
See Smelting		Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Ordered alloys	2963-2972A
Nonmetallic inclusions Solubility of Titanium Nitride in Continuous Casting Powders.		See Intermetallics	
Influence of Sulfide Inclusion on Ductility and Fracture Behav- ior of Resulfurized HY-80 Steel.	1479-1492A	Ordering See Order disorder	
Normalizing (heat treatment) The Crystallography of Bainite in a Medium-Carbon Steel Containing Silicon, Manganese, and Molybdenum.	1403-1411A	Ores See Copper ores Molybdenum ores	
Influence of Long-Term Aging and Superimposed Creep Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V		Nickel ores	
Steel.	2193-2204A	Orientation See also Grain orientation	
Notch brittleness See Brittleness		Orientation relationships Stress Corrision Cracking of An Al—Li Alloy.	3337-3341A
Notch ductility See Ductility		Orientation relationships Silicide Phases in Some Complex Titanium Alloys.	689-690A
Notch impact strength		Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys.	690-697A
See Impact strength Notch impact tests		Automatic Analysis of Electron Backscatter Diffraction Pat- terns.	759-768A
See Impact tests		The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper)	1071-1081A
Notched bar tensile test See Tension tests Nozzles		Decagonal Quasicrystal and Related Crystalline Phases in Slowly Solidified Al—Co Alloys. The Role of Grain Boundary Misorientation in Intergranular	1121-1128A
Behavior of Liquid Metal Droplets in an Aspirating Nozzle.	695-700B	Cracking of Ni—16Cr—9Fe in 360°C Argon and High- Purity Water.	1195-1206A
Nuclear reactor components, Materials selection The Role of Microstructural Instability on Creep Behavior of a Martensitic 9Cr—2W Steel.	469-477A	The Crystallography of Bainite in a Medium-Carbon Steel Containing Silicon, Manganese, and Molybdenum.	1403-1411A
Nuclear reactors		Orthorhombic lattice Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50-x} Pd _x Alloys Produced by Combustion Synthesis (Conference Paper)	59-64A
Effects of Grain Boundary Chemistry on the Intergranular Cracking Behavior of Ni—16Cr—9Fe in High-Temperature Water.	3343-3359A	Produced by Combustion Synthesis. (Conference Paper) Transformations in a Ti—24Al—15Nb Alloy. II. A Composition Invariant $\beta_0 \rightarrow 0$ Transformation.	417-431A
Nuclear reactors, Materials substitution		tion invariant β ₀ → O Transformation. Decagonal Quasicrystal and Related Crystalline Phases in Slowly Solidified Al—Co Alloys.	1121-1128A
The Effect of Tungsten on Creep Behavior of Tempered Mar- tensitic 9Cr Steels.	3025-3034A	Oscillations. Alloving effects	
Nucleation The Effect of Additives on the Nucleation and Growth of Cop-		Effects of Alloying Elements on the Distortion in the Matrix of a Complex Alloyed Steel.	1833-1836A
per Onto Stainless Steel Cathodes. Nucleation at Larger Supersaturations. The Scaling of Nucleation Rates.	591-599B 1853-1862A 1863-1868A	Osmium compounds, Reactions (chemical) Standard Molar Enthaplies of Formation of MeAl (Me = Ru, Rh, Os, Ir).	53-56E

Osprey process See Spray casting		The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process.	2313-2321A
Overaging Effect of Heat Treatments on Phase Chemistry of the Nickel-		A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) The Effect of Resignator Reinforcement on the Stiding Week	2349-2356A
Base Superalloy SRR 99. Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr	745-757A	The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites. Magnetic Susceptibility of an Atomized 304L Stainless Steel	2833-2847A
Alloy in a 0.5M Sodium Chloride Solution. Oxidation	1563-1572A	Powder: Particle Size Effect.	2917-2921A
Decarburization of Silicon Melt for Solar Cells by Filtration and Oxidation. Oxidation, Alloying effects	423-427B	Particle size, Deformation effects A Comparison Between Calculated and Observed Elastically Induced Precipitate Shape Transitions in a Cu—2 at.% Co	2761-2773A
Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. II. Oxidation Behavior.	2631-2639A	Particle size, Heating effects	2101-2113A
Oxidation, Heating effects Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced Ni ₃ Al Composite.	3151-3160A	Dissolution of Particles in Binary Alloys. I. Computer Simula- tions. Dissolution of Particles in Binary Alloys. II. Experimental In-	433-444A 445-449A
Oxidation, Temperature effects Low-Temperature Oxidation of Molybdenum Disilicide.	1763-1772A	vestigation on an Al—Si Alloy. Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High- Strength Low-Alloy Steels.	1641-1651A
Oxidation resistance, Temperature effects Low-Temperature Oxidation of Molybdenum Disilicide.	1763-1772A	Particle size distribution Upgrading Copper Concentrate by Hydrothermally Convert-	
Oxides See also Aluminum oxide		ing Chalcopyrite to Digenite. Evolution of Bivariate Particle Size Distributions.	241-248B 2973-2980A
Oxides, Alloying additive		Particle size distribution, Heating effects	
An Experimental Investigation of Reactive Atomization and Deposition Processing of Ni ₃ Al/Y ₂ O ₃ Using Ni ₂ —O ₂ Atomization.	3394-3399A	Dissolution of Particles in Binary Alloys. II. Experimental Investigation on an Ai—Si Alloy. Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-Strength Low-Alloy Steels.	445-449A 1641-1651A
Oxides, Composite materials Tensile Strain-Rate Sensitivity of Tungsten/Niobium Composites at 1300 to 1600K.	3121-3133A	Particles Discussion of "Behavior of Ceramic Particles at the Solid/ Liquid Interface in Metal Matrix Composites" and Reply.	2326-2330A
Oxides, Reactions (chemical) Kinetics of Solid State Reaction Between Barium Carbonate	400 F00D	Particles, Coating Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC	
and Cupric Oxide. Oxides, Reduction (chemical)	493-503B	Particle-Reinforced Composites. The Fracture Characteristics of Al—9Ti/SiC _p Metal Matrix	1607-1615A
Carbothermic Reduction of Nickel Oxide: Effect of Catalysis on Kinetics.	93-96B	Composites. Particulate composites	1653-1662A
Oxidizing See Oxidation		Discussion of "Behavior of Ceramic Particles at the Solid/ Liquid Interface in Metal Matrix Composites" and Reply.	2326-2330A
Oxygen, Binary systems Thermodynamic Assessment of the Mn—O System.	821-831B	Particulate composites, Casting Kinetics of the Growth of Spinel, MgAl ₂ O ₄ , on Alumina Partic-	
Oxygen, Impurities The Atomic Arrangement of Interstitials in Molybdenum Ordered Solutions.	1601-1606A	ulate in Aluminum Alloys Containing Magnesium. Effect of Cooling Rate on the Solidification Behavior of Al— 75i—SiC _p Metal-Matrix Composites.	1279-1283A 3369-3376A
Oxygen compounds See Carbonates		Particulate composites, Crystal growth An Analytical Model for the Interaction Between an Insoluble	
Oxides		Particle and an Advancing Solid/Liquid Interface. Kinetics of the Growth of Spinel, MgAl ₂ O ₄ , on Alumina Partic-	669-680A
Oxygen pressure leaching Reactor Models for a Series of Continuous Stirred Tank Re-		ulate in Aluminum Alloys Containing Magnesium.	1279-1283A
actors With a Gas—Liquid—Solid Leaching System. I. Sur- face Reaction Control. Reactor Models for a Series of Continuous Stirred Tank Re-	847-856B	Particulate composites, Fabrication The Effect of Ceramic Reinforcements During Spray Atomization and Codeposition of Metal Matrix Composites. I.	
actors With a Gas—Liquid—Solid Leaching System. II. Gas-Transfer Control. Reactor Models for a Series of Continuous Stirred Tank Re-	857-864B	Heat Transfer. The Effect of Ceramic Reinforcements During Spray Atomization and Codeposition of Metal Matrix Composites. II.	831-843A
actors With a Gas—Liquid—Solid Leaching System. III. Model Application.	865-877B	Solid-State Cooling Effects.	845-850A
Packing (crystal density) See Crystal structure		Particulate composites, Mechanical properties Metal—Ceramic Composites Based on the Ti—B—Cu Po- rosity System. (Conference Paper)	251-261A
Packing (liquid structure)		Fracture Behavior of Stainless Steel-Toughened NiAl Composite Plate.	563-572A
See Atomic structure Palladium, Binary systems		An Experimental and Numerical Study of Cyclic Deformation in Metal—Matrix Composites.	919-934A
Enthalpies of Formation of Liquid and Solid (Gallium + Palladium) Alloys.	39-44B	The Effect of Interfacial Reaction Layer Thickness on Frac- ture of Titanium—SiC Particulate Composites.	977-988A
Palladium base alloys, Microstructure Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50-x} Pd _x Alloys		Pinning of Grain Boundaries by Deformable Particles. The Fracture Characteristics of Al—9Ti/SiC _p Metal Matrix	1181-1186A
Produced by Combustion Synthesis. (Conference Paper) Palladium compounds, Microstructure	59-64A	Composites. Prediction of Thermomechanical Fatigue Lives in Metal Ma-	1653-1662A
Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50-x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper)	59-64A	trix Composites. (Conference Paper) Thermal Stress and Strain in a Metal Matrix Composite With a Spherical Reinforcement Particle.	2029-2038A 2205-2210A
Parameters See Cutting parameters		Effects of SiC Content on Fatigue Crack Growth in Aluminum Alloys Reinforced With SiC Particles.	2231-2242A
Lattice parameters Welding parameters		Ductile-Phase Toughening and Fatigue-Crack Growth in Niobium-Reinforced Molybdenum Disilicide Intermetallic	LEG! EL IE!
Partial pressure		Composites. The Effect of Particulate Reinforcement on the Sliding Wear	2249-2257A
The Thermochemistry of Magnesium in Nickel-Base Alloys. I. The Determination of Thermochemical Parameters Using		Behavior of Aluminum Matrix Composites.	2833-2847A
the Atomic Absorption Technique. The Thermochemistry of Magnesium in Nickel-Base Alloys. II. Activity of Magnesium.	791-803B 805-814B	Particulate composites, Metal working Processing Map for Hot Working of Powder Metallurgy 2124 AI—20 Vol.% SiC _p Metal Matrix Composite.	2223-2230A
Partial pressure, Alloying effects Discussion of "Quadratic Formalism for Magnesium in Liquid Iron".	665B	Particulate composites, Nondestructive testing Nondestructive Evaluation for Large-Scale Metal-Matrix Composite Billet Processing.	1541-1549A
Particle shape Evolution of Bivariate Particle Size Distributions.	2973-2980A	Particulate composites, Reactions (chemical) Formation of Magnesium Aluminate (Spinel) in Cast SiC	
Particle size Leaching Kinetics of Colemanite by Aqueous EDTA Solu-		Particulate-Reinforced Al(A356) Metal Matrix Composites. Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC Particle Painforced Composites	1423-1430A
tions. An Investigation of Silicon Carbide Synthesis in a Nontrans-	409-413B	Particle-Reinforced Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper)	1607-1615A
ferred Arc Thermal Plasma Reactor. Behavior of Liquid Metal Droplets in an Aspirating Nozzle.	443-451B 695-700B	ence Paper) Interaction Mechanisms Between Ceramic Particles and Atomized Metallic Droplets.	2349-2356A 2923-2937A
Microstructural Evolution and Thermal Stability Associated With a Gas-Atomized Cu—Nb Alloy. Effects of SiC Content on Fatigue Crack Growth in Aluminum	2159-2167A	Particulate composites, Synthesis	
Alloys Reinforced With SiC Particles.	2231-2242A	Particle Sedimentation During Processing of Liquid Metal- Matrix Composites.	753-763B

assivation The Effect of Crack-Tip Strain Rate and Potential on the Propagation Rate of Stress Corrosion Crack for 321 Stain-		Phase Transition in an Fe—23.2AI—4.1Ni Alloy. Phase stability, Heating effects	1395-1401A
less Steel in Boiling 42% MgCl ₂ Solution.	2873-2878A	Transformations in a Ti—24Al—15Nb Alloy. I. Phase Equilib- ria and Microstructure.	401-415A
See Diffraction patterns		Transformations in a Ti—24Al—15Nb Alloy. II. A Composition Invariant $\beta_0 \rightarrow 0$ Transformation.	417-431A
earlite Ferrite:Cementite Crystallography in Pearlite.	1259-1269A	Effect of Heat Treatments on Phase Chemistry of the Nickel- Base Superalloy SRR 99.	745-757A
enrose tiling See Quasicrystalline structure		Phase stability, Radiation effects Relationships Between Phase Stability and Void Swelling in Fe—Cr—Ni Alloys During Irradiation.	1977-1986A
erforations See Holes		Phase stability, Temperature effects The Short-Range Order Structure of a Water-Quenched Ni—	1077 10007
eritectic reactions Constitutional Studies of Cobalt—Tin Alloys.	2401-2407A	12.5 at.% Si Alloy—a Synchrotron X-Ray Diffuse Scatter- ing Study.	769-777A
ermanent mold casting See Die casting		Phase structure See Solid phases	
ermeability (magnetic) See Magnetic permeability		Phase transformations See also Martensitic transformations	
hase boundary Representation of Thermodynamic Properties of Ternary Systems and Its Application to the System Silver—Gold— Copper at 1350K.	747-752B	Massive type transformation Acoustic Emission Produced by the Delta-to-Alpha Phase Transformation in Pu—Ga Alloys. Modeling of the Liquid/Solid and the Eutectoid Phase Trans-	779-783A
hase decomposition See also Eutectoid decomposition		formations in Spheroidal Graphite Cast Iron. Microstructural Transitions During Containerless Processing of Undercooled Fe—Ni Alloys.	1333-1346A 1347-1362A
Spinodal decomposition High-Resolution Microscopy and Early-Stage Precipitation		The Crystallography of Bainite in a Medium-Carbon Steel Containing Silicon, Manganese, and Molybdenum.	1403-1411A
Kinetics. The Early Stages of Solute Distribution Below a Transition Temperature.	1901-1914A 2685-2697A	A Tribute to Professor Guy Marshall Pound. Nucleation at Larger Supersaturations. The Scaling of Nucleation Rates.	1851-1852A 1853-1862A 1863-1868A
hase decomposition, Temperature effects The Short-Range Order Structure of a Water-Quenched Ni—	2000 2007	Thermodynamic Formula for Evaluating the Reversible Work to Form a Critical Nucleus and Influence of Critical Nucleus	1003-1000A
12.5 at.% Si Alloy—a Synchrotron X-Ray Diffuse Scattering Study.	769-777A	Size Upon Interfacial Tension. The Entropy Production and Variable Surface Tension Barriers to Nucleation and Growth in Steady- and Quasi-Steady	1869-1881A
hase diagram reactions See also Martensitic transformations Peritectic reactions Phase decomposition		State Condensing Systems. Theory of Shape Bifurcation During Nucleation in Solids. High-Resolution Microscopy and Early-Stage Precipitation	1883-1890A 1891-1900A
A Thermodynamic Evaluation of the Al—Mn System.	2953-2962A	Kinetics. An Assessment of Studies on Homogeneous Diffusional Nu-	1901-1914
hase diagram reactions, Temperature effects An Assessment of the Al—Fe—N System.	3141-3149A	cleation Kinetics in Binary Metallic Alloys. Some Aspects of the Precipitation of Metastable Intermetallic Phases in Inconei 718. (Conference Paper)	2015-2028A
hase diagrams Enthalpies of Formation of Liquid and Solid	20.440	The Principle of Additivity and the Proeutectoid Ferrite Transformation.	2469-2480/
(Gallium + Palladium) Alloys. Discussion of "Phase Diagram of Cu ₂ O—CuO—Y ₂ O ₃ System	39-44B	Phase transformations, Cooling effects Microscopic Modeling of Fundamental Phase Transforma-	
in Air", Authors' Reply. Activity Determinator for the Automatic Measurements of the Chemical Potentials of FeO in Metallurgical Slags.	382-384A 459-466B	tions in Continuous Castings of Steel. Solidification Kinetics and Metastable Phase Formation in Bi-	457-467/
Thermodynamic Properties in the Liquid Ag—Sb—Zn System.	601-611B	nary Ti—Al. Phase transformations, Deformation effects	2699-2714/
High-Temperature Isopiestic Studies on the Liquid Solutions Hg—Cd—Sn. An Experimental and Theoretical Study of the Phase Equilib-	623-629B	Evolution of Textures in Zirconium Alloys Deformed Uniaxi- ally at Elevated Temperatures. (Conference Paper)	271-293
ria in the Fe—Mo—Ni System. Thermodynamic Assessment of the Mn—O System. Phase Equilibria in the Binary Rare-Earth Alloys: the	639-649A 821-831B	Phase transformations, Heating effects Transformations in a Ti—24AI—15Nb Alloy. I. Phase Equilibria and Microstructure.	401-415
Erbium—Magnesium System. Fractal Analysis of Carbide Morphology in High-Chromium White Cast Irons.	1005-1012A 2941-2945A	Transformations in a Ti—24Al—15Nb Alloy. II. A Composition Invariant β ₀ — O Transformation. Phase Transition in an Fe—23.2Al—4.1Ni Alloy.	417-431
hase ratio	2041-2040/	On the Phase Transformation Between the Quasicrystalline to Crystalline Phases in Alloys of Al—Cu—Fe—Co.	3161-3166
Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50—x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) Shear Mechanisms of the γ' Phase in Single-Crystal Superal-	59-64A	Phase transformations, Stress effects Room-Temperature Deformation and Stress-Induced Phase	
loys and Their Relation to Creep. (Conference Paper) Influence of Microstructure on Intrinsic and Extrinsic Toughening in an Alpha-Two Titanium Aluminide Alloy. (Conference)	99-105A	Transformation of Laves Phases in Fe—10 at.% Zr Alloy. Phase transformations, Temperature effects	3303-3308
ence Paper) Microstructures and Property Tradeoffs in Wrought TiAl-	183-199A	The Time—Temperature-Transformation Diagram Within the Medium Temperature Range in Some Alloy Steels.	785-795
Base Alloys. Fracture Toughness and the Extents of Primary Void Growth. The Influence of Morphology and Distribution of α Phase on	375-377A 485-496A	Correction to "The Time—Temperature-Transformation Dia- gram Within the Medium Temperature Range in Some Alloy Steels".	785-795
the Properties of Polycrystalline CuZnAl Shape Memory Alloy. Fractal Analysis of Carbide Morphology in High-Chromium	2939-2941A	Phases (state of matter) See also Icosahedral phase	
White Cast Irons.	2941-2945A	Intermetallic phases Liquid phases Metastable phases	
Transformations in a Ti—24Al—15Nb Alloy. I. Phase Equilibria and Microstructure.	401-415A	Solid phases Vapor phases CuC and AlCuC Phase Diagrams and Thermodynamic	
Transformations in a Ti—24Al—15Nb Alloy. II. A Composition Invariant $\beta_0 \rightarrow 0$ Transformation. Dissolution of Particles in Binary Alloys. I. Computer Simula-	417-431A	Properties of Carbon in the Alloys From 1550°C to 2300°C. Representation of Thermodynamic Properties of Ternary	453-458
tions. Effect of Heat Treatments on Phase Chemistry of the Nickel- Base Superalloy SRR 99.	433-444A 745-757A	Systems and Its Application to the System Silver—Gold— Copper at 1350K. Thermodynamic Assessment of the Mn—O System.	747-752 821-831
Tempering of Iron—Carbon—Nitrogen Martensites. An Investigation of the Fracture Behavior of Gamma-Based	1129-1145A	Formation and Stability of a Nitride With the Structure of Beta Manganese in Ni—Cr—N Ternary System.	1389-1393
Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and $\alpha_2 + \gamma$ Phase Fields. (Conference Paper)	2039-2059A	Role of Entropy of Solution in Controlling Eutectic Microstruc- ture.	2675-2678
hase stability Thermal Stress and Strain Effects on Phase Transition Tem-		Fractal Analysis of Carbide Morphology in High-Chromium White Cast Irons.	2941-2945
peratures in Differential Thermal Analysis Testing. The Role of Microstructural Instability on Creep Behavior of a Martensitic 9Cr—2W Steel.	451-455A 469-477A	Phases (state of matter), Alloying effects Microstructure and Ordering of L1 ₂ Titanium Trialuminides.	2963-2972
Thermodynamic Calculation and Experimental Verification of the Carbonitride-Austenite Equilibrium in Ti—Nb Microal-		Phases (state of matter), Heating effects Phase Transition in an Fe—23.2AI—4.1Ni Alloy. Phasephorus Alloying elements	1395-1401
loyed Steels. Solubility of Nitrogen in Cr—Fe—Mo—Ni Alloys. Formation and Stability of a Nitride With the Structure of Beta	651-657A 1271-1278A	Phosphorus, Alloying elements The Effect of Grain Boundary Chemistry on Intergranular Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50%	
romation and Stability of a Millide With the Structure of Deta	1389-1393A		2887-2904

Effects of Grain Boundary Chemistry on the Intergranular Cracking Behavior of Ni—16Cr—9Fe in High-Temperature		Plasma oscillations See Oscillations	
Water.	3343-3359A	Plasma processing	
Phosphorus, Dopants Effect of Boron on the Grain Boundary Segregation of Phosphorus and Intergranular Fracture in High-Purity Fe—0.2P—B Alloys. (Conference Paper)	263-269A	See also Plasma arc melting Plasma arc welding Plasma spraying Nitrogen Activity Determination in Plasmas.	207-214B
Phosphorus, Impurities Optimum Percentage of Burnt Lime and Mill Scale in the Slag		An Investigation of Silicon Carbide Synthesis in a Nontrans- ferred Arc Thermal Plasma Reactor.	443-451B
for Modification of Pig Iron. Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace	96-101B	Plasma spraying Plasma—Particle Interactions in Plasma Spraying Systems. Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numeri-	683-693B
of Boron. Phosphorus, Trace elements	1515-1519A	cal and Experimental Results. Plastic deformation	701-718B
Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel.	2243-2248A	Plastic-Flow Behavior and Microstructural Development in a Cast Alpha-Two Titanium Aluminide. (Conference Paper)	295-305A
Photo oxidation See Oxidation		The Plastic Deformation of an α -Ti Alloy and Its Thermal Acti- vation Process vs. Effective Stress. (Conference Paper)	335-340A
Physical chemistry Enthalpies of Formation of Liquid and Solid		Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys.	479-484A
(Gallium + Palladium) Alloys. Rate of Decarburization of Fe—C _{sat} Melts by H ₂ O at 1523	39-44B	Evolution of Dislocation Structures and Deformation Behav- ior of Iron at Different Temperatures. I. Strain Hardening Curves and Cellular Structure.	537-544A
and 1873K. Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and	45-51B	Evolution of Dislocation Structures and Deformation Behav- ior of Iron at Different Temperatures. II. Dislocation Density	
Iron-Ilmenite-Ulvospinel Equilibria. Titanium Tetrachloride-Supercritical Carbon Dioxide Interaction: a Solvent Extraction and Thermodynamic Study.	57-64B 65-72B	and Theoretical Analysis. Dynamic Restoration Mechanisms in Al—5.8 at.% Mg Deformed to Large Strains in the Solute Drag Regime.	545-549A 881-889A
Solubility of BaS in BaO—BaF ₂ Slag and the Influence of FeO _x , SiO ₂ , Cr ₂ O ₃ , BaCl ₂ , CaO, and MgO on the Sulfide Ca-		Compression Testing Techniques to Determine the Stress/ Strain Behavior of Metals Subject to Finite Deformation.	935-951A
pacity of This System. Influence of Li ₂ O on the Carbonate Capacity of CaO—	175-181B	An Analysis of the Isothermal Hot Compression Test. Structure and Room-Temperature Deformation of Alumina	963-975A
CaF ₂ —Al ₂ O ₃ Melts. Carbon Solubility as Carbide in Calcium Silicate Melts. Group Optical Basicities of Polymerized Anions in Slags.	183-187B 223-227B 227-229B	Fiber-Reinforced Aluminum. Shape Recovery and Phase Transformation Behavior in Ni—	1207-1219A
Phase Equilibria in the Binary Rare-Earth Alloys: the Erbium—Magnesium System.	1005-1012A	Al Alloys. Mechanisms of Fatigue Crack Retardation Following Single Tensile Overloads in Powder Metallurgy Aluminum Alloys.	2981-2986A 3055-3066A
Physical metallurgy	1000 10121	Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium Alloys.	3077-3084A
Incoloy 908, a Low Coefficient of Expansion Alloy for High- Strength Cryogenic Applications. I. Physical Metallurgy.	3177-3192A	Plastic deformation, Alloying effects Substitutional Alloying and Deformation Modes in High Chro-	
Physical properties See Absorptivity		mium Ferritic Alloys.	627-638A
Anisotropy Diffusivity Miscibility		Plastic strain See Plastic deformation	
Porosity Rheological properties		Plasticity See also Superplasticity	
Solubility Wettability		Plasticity, Stress effects Mechanisms of Fatigue Crack Retardation Following Single	
Pi bonds See Chemical bonds		Tensile Overloads in Powder Metallurgy Aluminum Alloys. Plasticity, Temperature effects	3055-3066A
Pig iron Optimum Percentage of Burnt Lime and Mill Scale in the Slag for Modification of Pig Iron.	96-101B	Ductility and Strain-Induced Transformation in a High- Strength Transformation-Induced Plasticity-Aided Dual- Phase Steel.	3085-3091A
Piles (nuclear)		Plating See Copper plating	
See Nuclear reactors Pinning		Electroplating Nickel plating	
Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth.	2121-2129A	Platinum metal alloys See Palladium base alloys	
Pistons, Mechanical properties The Strength of Metal Matrix Composites Reinforced With		Platinum metal compounds See Iridium compounds	
Randomly Oriented Discontinuous Fibers. Pitting (corrosion), Environmental effects	3045-3053A	Osmium compounds Palladium compounds Rhodium compounds	
Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr Alloy in a 0.5M Sodium Chloride Solution. Metallurgical Factors Influencing the Corrosion of Aluminum,	1563-1572A	Ruthenium compounds	
Al—Cu, and Al—Si Alloy Thin Films in Dilute Hydrofluoric Solution.	2641-2655A	Platinum metals See Iridium Palladium	
Pitting potential See Corrosion potential		Ruthenium Plutonium base alloys, Phase transformations	
Pitting (corrosion) Planning		Acoustic Emission Produced by the Delta-to-Alpha Phase Transformation in Pu—Ga Alloys.	779-783A
Residual Stresses After Orthogonal Machining of AISI 304: Numerical Calculation of the Thermal Component and		Poling See Deoxidizing	
Comparison With Experimental Results. Plants	989-996A	Pollutants	
See Extraction plants		See Industrial wastes Polycrystals	
Plasma (physics) Nitrogen Activity Determination in Plasmas.	207-214B	See also Bicrystals Polycrystals, Microstructure	
Plasma arc casting See Casting		Measurement and Representation of Grain-Boundary Tex- ture.	2501-2513A
Plasma arc melting Plasma-Melted Nitrogen-Bearing Cast Stainless Steels— Microstructure and Tensile Properties.	3317-3324A	Pores See Porosity	
Plasma arc plating See Plasma spraying		Porosity Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites.	00.701
Plasma arc spraying		(Conference Paper) Microstructural Characterization of Self-Propagating High- Temperature Synthesis/Dynamically Compacted and Hot-	69-76A
See Plasma spraying Plasma arc welding	007 711	Pressed Titanium Carbides. (Conference Paper) Sintering Time and Atmosphere Influences on the Micro-	87-97A
Nitrogen Activity Determination in Plasmas. Plasma jet spraying	207-214B	structure and Mechanical Properties of Tungsten Heavy Al- loys. (Conference Paper)	211-219A
See Plasma spraying Plasma jets		Metal—Ceramic Composites Based on the Ti—B—Cu Po- rosity System. (Conference Paper) Homogenization and Microstructure Effects on the Proper-	251-261A
Plasma—Particle Interactions in Plasma Spraying Systems	683-693B	ties of Injection Molded Fe.—2Ni Steel	377-381A

Influence of Atmosphere on Sintering of T15 and M2 Steel Powders.	389-400A	Precipitates See also Cellular precipitates	
Collapse of Interconnected Open Pores in Solid-State Sintering of W-Ni.	2141-2145A	Pinning of Austenite Grain Boundaries by AIN Precipitates and Abnormal Grain Growth.	2121-2129A
Infiltration of Fiber Preforms by an Alloy. III. Die Casting Experiments.	2281-2289A	Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels.	2879-2885A
Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper)	2373-2379A	Precipitation See also Intergranular precipitation	2070 200071
Porosity, Alloying effects Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Porosity, Heating effects	2963-2972A	Finite Element Calculations of the Accommodation Energy of a Misfitting Precipitate in an Elastic—Plastic Matrix. High-Resolution Microscopy and Early-Stage Precipitation	797-806A
Laser Melting Treatment by Overlapping Passes of Pre- heated Nickel Electrodeposited Coatings on Al—Si Alloy.	1801-1806A	Kinetics. Precipitation, Diffusion effects Diffusion-Controlled Growth and Coarsening of MnS During	1901-1914A
Porosity, Welding effects Beam Focusing Characteristics and Alloying Element Effects on High-Intensity Electron Beam Welding.	81-90B	Hot Deformation. Precipitation, Heating effects The Morphology, Crystallography, and Mechanism of Car-	3013-3023A
Portevin-Le Chatelier effect See Serrated yielding		bide Precipitation in an Fe = 0.12C = 3.28Ni Alloy. (Conference Paper) Microstructural Changes During Overtempering of High-	171-181A
Potassium, Dopants Observations on the Evolution of Potassium Bubbles in Tung-		Speed Steels. Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-	1631-1640A
sten Ingots During Sintering. (Conference Paper) Pouring	121-133A	Strength Low-Alloy Steels. Oxidation of a Zirconia-Toughened Alumina Fiber-Reinforced	1641-1651A
Effect of Slag Cover on Heat Loss and Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting		Ni ₃ Al Composite. Precipitation, Microstructural effects	3151-3160A
Tundish. Effect of Holding Time and Surface Cover in Ladles on Liquid	135-151B	Strain-Induced Nucleation of MnS in Electrical Steels.	821-830A
Steel Flow in Continuous Casting Tundishes. Powder blending	153-167B	Precipitation hardening The Effect of Aging on the Hydrogen-Assisted Fatigue Cracking of a Precipitation-Hardened Al—Li—Zr Alloy.	1551-1562A
Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying.	2105-2110A	An Assessment of Studies on Homogeneous Diffusional Nu- cleation Kinetics in Binary Metallic Alloys.	1915-1945A
Morphological and Calorimetric Studies on the Amorphiza- tion Process of Rod-Milled Al ₅₀ Zr ₅₀ Alloy Powders. Formation of Metastable Phases of Ni—C and Co—C Sys-	2131-2140A	Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc Alloy. Some Aspects of the Precipitation of Metastable Intermetallic	1947-1955A
tems by Mechanical Alloying.	2431-2435A	Phases in Inconel 718. (Conference Paper) The Early Stages of Solute Distribution Below a Transition	2015-2028A
Powder compacts See also Sintered compacts		Temperature.	2685-2697A
Powder compacts, Mechanical properties Dynamic Compaction of Titanium Aluminides by Explosively Generated Shock Waves: Microstructure and Mechanical		Precipitation hardening, Alioying effects Nb(C,N) Precipitation and Austenite Recrystallization in Boron-Containing High-Strength Low-Alloy Steels.	2111-2120A
Properties. Beneficial Effects of Nitrogen Atomization on an Austenitic Stainless Steel. Powder metallurgy	3251-3261A 3263-3272A	Precipitation hardening, Composition effects The Effect of Ternary Trace Additions on the Nucleation and Growth of γ° Precipitates in an Al—4.2 at.% Ag Alloy. (Conference Paper)	135-148A
See also Sintering (powder metallurgy) Strength and Microstructure of Powder Metallurgy Processed Restacked Cu—Nb Microcomposites. On the Kinetics of Mechanical Alloying.	573-586A	Precipitation hardening, Heating effects Epsilon Carbide Precipitation During Tempering of Plain Carbon Martensite.	2737-2751A
Processing Map for Hot Working of Powder Metallurgy 2124 AI—20 Vol.% SiC _p Metal Matrix Composite. Microstructure Stabilization in a Rapidly Solidified Type 304	1285-1290A 2223-2230A	Precipitation hardening alloys, Mechanical properties The Effect of Aging on the Hydrogen-Assisted Fatigue Crack- ing of a Precipitation-Hardened Al—Li—Zr Alloy. Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr	1551-1562A
Stainless Steel: Influence on Tensile Properties. Thermal Debinding of Powder Injection Molded Parts: Obser-	2557-2565A	Alloy in a 0.5M Sodium Chloride Solution.	1563-1572A
vations and Mechanisms. Powder metallurgy parts, Mechanical properties Microstructure and Tensile Properties of Fe ₃ Al Produced by	2775-2782A	Precipitation hardening alloys, Microstructure Metastable Precipitate in a Duplex Martensite + Ferrite Precipitation-Hardening Stainless Steel.	2447-2453A
Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper) Sintering Time and Atmosphere Influences on the Micro-	35-40A	Precipitation heat treatment Epsilon Carbide Precipitation During Tempering of Plain Carbon Martensite.	2737-2751A
structure and Mechanical Properties of Tungsten Heavy Al- loys. (Conference Paper) Recent Trends and Developments With Rapidly Solidified	211-219A	Preferential attack (corrosion) See Intergranular corrosion	
Materials. (Conference Paper) Powder spraying	1083-1093A	Preforming Infiltration of Fiber Preforms by a Binary Alloy. II. Further The-	
Microstructure, Excess Solid Solubility, and Elevated- Temperature Mechanical Behavior of Spray-Atomized and		ory and Experiments. Infiltration of Fiber Preforms by an Alloy. III. Die Casting Ex-	2263-2280A 2281-2289A
Codeposited Al—Ti—SiC _p . Recent Trends and Developments With Rapidly Solidified	719-736B	periments. Infiltration of Fibrous Preforms by a Pure Metal. IV. Morphological Stability of the Remelting Front.	2291-2299A
Materials. (Conference Paper) Powder technology	1083-1093A	Pressing	
See also Atomizing Powder metallurgy		See Hot pressing Pressure	
Processing and Superplastic Properties of Fine-Grained Iron Carbide.	527-535A	See Partial pressure Vacuum	
Powdering A Fundamental Study on the Preparation of Niobium Aluminide Powders by Calciothermic Reduction.	415-421B	Pressure casting Infiltration of Fiber Preforms by an Alloy. III. Die Casting Experiments.	2281-2289A
Powders	410 4212	Infiltration of Fibrous Preforms by a Pure Metal. IV. Morphological Stability of the Remelting Front.	2291-2299A
See also Metal powders Powders, Reactions (chemical)		Pressure die casting	
Combustion Synthesis and Subsequent Explosive Densifica- tion of Titanium Carbide Ceramics. (Conference Paper)	2365-2372A	See Die casting Pressure leaching See Oxygen pressure leaching	
Power generation See Electric power generation		Pressure molding	
Power plants See Electric power generation		See Injection molding Pressure sintering	
Powerhouses See Electric power generation		See Hot pressing Pressure welding	
Precious metal alloys		See Diffusion welding	
See Gold base alloys Precious metals		Prestraining Development of Iron-Based Shape Memory Alloys Associ-	
See Gold Silver Precipitate free zone, Heating effects		ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. I. Shape Memory Behavior. Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed	1431-1437A
Instabilities in Stabilized Austenitic Stainless Steels.	2455-2467A	Martensitic Transformations. II. Transformation Behavior.	1439-1444A

Prestraining

Development of Iron-Based Shape Memory Alloys Associated With Face-Centered Cubic—Hexagonal Close-Packed		Heterogeneous Nucleation of Lead Particles Embedded in a Zinc Matrix.	3207-3218A
Martensitic Transformations. III. Microstructures.	1445-1454A	Processing and Microstructure of Powder Metallurgy Al— Fe—Ni Alloys.	3219-3230A
Process control Optimization of Hot Workability in Stainless Steel-Type AISI 304L Using Processing Maps.	3093-3103A	Dynamic Compaction of Titanium Aluminides by Explosively Generated Shock Waves: Microstructure and Mechanical Properties.	3251-3261A
Process metallurgy See Extractive metallurgy Refining		Rapid solidification, Composition effects Theoretical Treatment of the Solidification of Undercooled FeCrNi Melts.	1585-1591A
Propagation See Crack propagation		Rare earth metals See Erbium	
Properzi process See Continuous casting		Rare gases See Argon	
Puddling See Ironmaking		Helium Rates	
Pulse echo technique		See Cooling rate Growth rate	
See Ultrasonic testing Pyrite, Beneficiation		Strain rate Wear rate	
Reactor Models for a Series of Continuous Stirred Tank Re- actors With a Gas—Liquid—Solid Leaching System. I. Sur-	047.0500	Ratios See Phase ratio	
face Reaction Control. Reactor Models for a Series of Continuous Stirred Tank Re-	847-856B	Reaction entropy See Heat of reaction	
actors With a Gas—Liquid—Solid Leaching System. II. Gas-Transfer Control. Reactor Models for a Series of Continuous Stirred Tank Re-	857-864B	Reaction kinetics	
actors With a Gas—Liquid—Solid Leaching System. III. Model Application.	865-877B	Electrobioleaching of Base Metal Sulfides. Application of Ultrasound in Extractive Metallurgy: Sono-	5-11B
Pyroceram	000-0110	chemical Extraction of Nickel. Rate of Reduction of FeO in Slag by Fe—C Drops. Shock-Induced Chemical Reactions and Synthesis of Nickel	13-22B 29-37B
See Ceramics Pyrometallurgy		Aluminides. (Conference Paper) Rate of Decarburization of Fe—C _{sat} Melts by H ₂ O at 1523	41-48A
Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction		and 1873K. Shock-Induced and Self-Propagating High-Temperature Syn-	45-51B
Parameters. Rate of Reduction of FeO in Slag by Fe—C Drops.	23-28B 29-37B	thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper) Carbothermic Reduction of Nickel Oxide: Effect of Catalysis	55-58A
Carbothermic Reduction of Nickel Oxide: Effect of Catalysis on Kinetics. Determination of Standard Cibbs Energies of Engration of	93-96B	on Kinetics. Entrained-Flow Chlorination of Ilmenite to Produce Titanium	93-96B
Determination of Standard Gibbs Energies of Formation of CaC ₂ , SrC ₂ , and BaC ₂ . Modeling of Metal—Slag Equilibrium Processes Using Neu-	313-316B	Tetrachloride and Metallic Iron. Application of a Nonisothermal Thermogravimetric Method to	261-266B
ral Nets. Quantitative analysis	643-650B	the Kinetic Study of the Reduction of Metallic Oxides. I. A General Treatment and Its Application to the Reduction of	247 2040
Grain-Boundary Segregation and Precipitation of Boron in 0.2% Carbon Steels. (Conference Paper)	107-119A	the Oxides of Molybdenum by Hydrogen. Discussion of "Phase Diagram of Cu ₂ O—CuO—Y ₂ O ₃ System	317-324B
Quasicrystalline structure	107 1101	in Air", Authors' Reply. Activity Determinator for the Automatic Measurements of the	382-384A 459-466B
Decagonal Quasicrystal and Related Crystalline Phases in Slowly Solidified Al—Co Alloys.	1121-1128A	Chemical Potentials of FeO in Metallurgical Slags. Kinetics of Solid State Reaction Between Barium Carbonate and Cupric Oxide.	493-503B
Crystallographic Relationships of the Al ₄ Cr Crystalline and Quasicrystalline Phases.	2437-2445A	Model for Ferric Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals. I. Modeling Uniform Size Ore	
Quasicrystalline structure, Heating effects On the Phase Transformation Between the Quasicrystalline to Crystalline Phases in Alloys of Al—Cu—Fe—Co.	3161-3166A	Fragments. Model for Ferritic Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals. II. Process Modeling of In	537-548B
Quaternary systems, Phases (state of matter) An Assessment of the Thermodynamic Properties of Liquid	506 500D	Situ Operations. Studies in the Carbothermic Reduction of Phosphogypsum. Kinetics of Iridium Reduction by Hydrogen in Hydrochloric	549-555B 567-572B
Quaternary Alloys With the Wilson Equation. Quench hardening The Early Stages of Solute Distribution Below a Transition	526-528B	Acid Solution. Reactor Models for a Series of Continuous Stirred Tank Reactors With a Gas—Liquid—Solid Leaching System. I. Sur-	737-745B
Temperature.	2685-2697A	face Reaction Control. Reactor Models for a Series of Continuous Stirred Tank Re-	847-856B
See also Cryogenic quenching		actors With a Gas—Liquid—Solid Leaching System. II. Gas-Transfer Control.	857-864B
Interrupted quenching Oil quenching Quench hardening		Reactor Models for a Series of Continuous Stirred Tank Re- actors With a Gas—Liquid—Solid Leaching System. III.	005 0770
Quenching and tempering Water quenching		Model Application. Comparison of the Anodic Dissolution Behavior of Butte and Transvaal Chalcocite.	865-877B 879-881B
New Observation of Martensitic Morphology and Substruc- ture Using Transmission Electron Microscopy.	1413-1421A	On the Kinetics of Mechanical Alloying.	1285-1290A
Quenching and tempering		Reaction kinetics, Diffusion effects The Effect of Interfacial Diffusion Barriers on the Ignition of	
Microstructural Changes During Overtempering of High- Speed Steels.	1631-1640A	Self-Sustained Reactions in Metal—Metal Diffusion Cou- ples. (Conference Paper)	49-53A
Low-Temperature Creep of a Carburized Steel. Quenching stresses See Residual stress	2619-2624A	Reaction kinetics, Pressure effects Gas—Solid Reaction-Rate Enhancement by Pressure Cy-	
Radiation damage		cling. Reactions (chemical)	285-294B
Relationships Between Phase Stability and Void Swelling in Fe—Cr—Ni Alloys During Irradiation.	1977-1986A	See also Combustion Deoxidizing	
Radioactive tracers Nucleation and Growth Effects in Thin Ferromagnetic Sheets:		Desulfurizing Dissolution	
a Review Focusing on Surface Energy-Induced Secondary Recrystallization.	1987-1998A	Exothermic reactions Interface reactions	
Radiocrystallography	1307-1330A	Oxidation Activity Determinator for the Automatic Measurements of the	
See Crystallography Raney nickel		Chemical Potentials of FeO in Metallurgical Slags. Comparative Investigations Among Binary Molten Salt Mixtures PbOl ₂ —AgCl, PbOl ₂ —LiCl, and PbOl ₂ —KCl Using an	459-466B
See Catalysts Rapid solidification		Isopiestic Technique.	666-669B
Recent Trends and Developments With Rapidly Solidified Materials. (Conference Paper)	1083-1093A	Reactivity (chemical) See Activity (chemical)	
Microstructural Evolution and Thermal Stability Associated With a Gas-Atomized Cu—Nb Alloy.	2159-2167A	Reactor vessels (chemical) See Chemical reactors	
The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process.	2313-2321A	Reactor vessels (nuclear) See Nuclear reactors	
Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties.	2557-2565A	Reactors	
Characterization of Dispersed Intermetallic Phases in Rapidly Quenched Al—Ti—Ce Alloys.	3193-3205A	See Chemical reactors Nuclear reactors	

Reclamation See Recycling		Residual austenite See Retained austenite	
Recovering A Possible Method for the Characterization of Amorphous Slags: Recovery of Refractory Metal Oxides From Tin		Residual stress Residual Stresses After Orthogonal Machining of AISI 304: Numerical Calculation of the Thermal Component and	
Slags. A Nitriding Process for the Recovery of Niobium From Fer- roniobium.	249-259B 437-442B	Comparison With Experimental Results. Tensile Strain-Rate Sensitivity of Tungsten/Niobium Composites at 1300 to 1600K.	989-996A 3121-3133A
Recovery Dynamic Restoration Mechanisms in AI—5.8 at.% Mg De-		Some Aspects of Deformation Behavior of Coarse Multi- phase Metallic Materials.	3309-3315A
formed to Large Strains in the Solute Drag Regime. Recovery, Heating effects	881-889A	Resistance See Corrosion resistance	
Recovery and Recrystallization in Cold-Rolled Al—SiC _w Composites.	807-819A	Resistance welds See Welded joints	
Recrystallization See also Grain refinement Secondary recrystallization		Resonance testing See Ultrasonic testing	
Strengthening in Multiphase (MP35N) Alloy. I. Ambient Temperature Deformation and Recrystallization. (Conference Paper)	307-319A	Resulfurized steels, Mechanical properties Influence of Sulfide Inclusion on Ductility and Fracture Behav- ior of Resulfurized HY-80 Steel.	1479-1492A
Recrystallization, Alloying effects Nb(C,N) Precipitation and Austenite Recrystallization in Boron-Containing High-Strength Low-Alloy Steels.	2111-2120A	Retained austenite The Crystallography of Bainite in a Medium-Carbon Steel Containing Silicon, Manganese, and Molybdenum.	1403-1411A
Recrystallization, Deformation effects Finishing Conditions Appropriate for Recrystallization Con- trolled Rolling of Ti—V—N Steel.	373-375A	Revaporization See Vaporizing	
Recrystallization Kinetics of Microalloyed Steels Deformed in the Intercritical Region.	597-608A	Reversion The Early Stages of Solute Distribution Below a Transition	
Dynamic Restoration Mechanisms in Al—5.8 at.% Mg Deformed to Large Strains in the Solute Drag Regime.	881-889A	Temperature. Reynolds number	2685-2697A
Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Application of Invariant Set Theory to Dynamic Recrystalliza- tion Constitutive Behavior.	1719-1735A 2091-2103A	On the Drag of Model Dendrite Fragments at Low Reynolds Number.	2169-2181A
Influence of Transverse Rolling on the Microstructural and Texture Development in Pure Tantalum.	2183-2191A	Rhenium, Coating Diffusion Mechanisms in Chemical Vapor-Deposited Iridium Coated on Chemical Vapor-Deposited Rhenium.	851-855A
Grain Refinement by Dynamic Recrystallization During the Simulated Warm-Rolling of Interstitial Free Steels.	2607-2617A	Rhenium, Diffusion Diffusion Mechanisms in Chemical Vapor-Deposited Iridium	001 0001
Oscillations in Load Observed During High-Temperature Low Strain-Rate Testing of Superplastic Materials.	2667-2669A	Coated on Chemical Vapor-Deposited Rhenium.	851-855A
Recrystallization, Heating effects Recovery and Recrystallization in Cold-Rolled Al—SiC _w Composites. Continuous-Cooling-Precipitation Kinetics of Nb(CN) in High-	807-819A	Rheocasting Elaboration of Semisolid Alloys by Means of New Electro- magnetic Rheocasting Processes.	189-206B
Strength Low-Alloy Steels.	1641-1651A	Rheological properties See also Viscoplasticity	
Recrystallization, Temperature effects Optimization of Hot Workability in Stainless Steel-Type AISI 304L Using Processing Maps.	3093-3103A	Viscosity Elaboration of Semisolid Alloys by Means of New Electro- magnetic Rheocasting Processes.	189-206B
Recrystallization, Vibration effects Effects of Vibration on the Grain Morphology of Some Tung- sten Incandescent Lamp Filaments.	2259-2262A	Rhodium compounds, Reactions (chemical) Standard Molar Enthaplies of Formation of MeAl (Me = Ru, Rh, Os, Ir).	53-56B
Recycling A Possible Method for the Characterization of Amorphous Stags: Recovery of Refractory Metal Oxides From Tin	240.0500	Rocket components, Coating Diffusion Mechanisms in Chemical Vapor-Deposited Iridium Coated on Chemical Vapor-Deposited Rhenium.	851-855A
Slags. Red hardness See Hardness	249-259B	Rod milling Morphological and Calorimetric Studies on the Amorphiza- tion Process of Rod-Milled Al ₅₀ Zr ₅₀ Alloy Powders.	2131-2140A
Red shortness See Brittleness		Rokide process See Powder spraying	
Reduction See Reduction (chemical)		Roll pressing See Rolling	
Reduction (chemical) See also Chloridizing		Rolling See also Cold rolling	
Deoxidizing A Fundamental Study on the Preparation of Niobium Alumi-		Hot rolling Recrystallization Kinetics of Microalloyed Steels Deformed in	
nide Powders by Calciothermic Reduction. Studies in the Carbothermic Reduction of Phosphogypsum.	415-421B 567-572B	the Intercritical Region. Influence of Transverse Rolling on the Microstructural and	597-608A
Kinetics of Iridium Reduction by Hydrogen in Hydrochloric Acid Solution.	737-745B	Texture Development in Pure Tantalum. Grain Refinement by Dynamic Recrystallization During the Simulated Warm-Rolling of Interstitial Free Steels.	2183-2191A 2607-2617A
Reduction (metal working) See Rolling Reduction of area, Stress effects		Rolling direction Influence of Transverse Rolling on the Microstructural and	2183-2191A
Tensile Strain-Rate Sensitivity of Tungsten/Niobium Com- posites at 1300 to 1600K.	3121-3133A	Texture Development in Pure Tantalum. Rotating beam fatigue tests	2103-2191A
Refining See also Electrorefining Silicon—Oxygen Equilibrium and Nitrogen Distribution Be-		See Fatigue tests Roughing (rolling) See Hot rolling	
tween CaO—SiO ₂ Slags and Liquid Iron. Refractory alloys See Chromium base alloys Niobium base alloys	613-621B	Roughness, Stress effects Mechanisms of Fatigue Crack Retardation Following Single Tensile Overloads in Powder Metallurgy Aluminum Alloys.	3055-3066A
Tungsten base alloys Refractory metal compounds		Rupture strength See Creep rupture strength	
See Chromium compounds Molybdenum compounds Niobium compounds		Ruthenium, Alloying elements Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys.	627-638A
Refractory metals See Chromium Molybdenum Niobium		Ruthenium compounds, Reactions (chemical) Standard Molar Enthaplies of Formation of MeAl (Me = Ru, Rh, Os, Ir).	53-56E
Ricolum Rhenium Tantalum		Saline water See Salt water	
Tungsten Vanadium		Salt (sodium chloride) See Sodium chloride	
Remelting See Melting		Salt roasting	

Salt water, Environment Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr Alloy in a 0.5M Sodium Chloride Solution.	1563-1572A	Sensors Na $_2$ O—Al $_2$ O $_3$ System: Activity of Na $_2$ O in (α + β)- and (β + β)-Alumina.	833-839B
Saturation (material composition) Thermodynamic Investigations of Tellurium-Saturated Solid	1000 10727	Separation See Filtration	
CdSe—CdTe Alloys. The Solubility of Alumina in Liquid Iron.	467-476B 789-790B	Serrated yielding, Composition effects Structure and Mechanical Properties of Boron-Doped Cubic	
SAW See Submerged arc welding		Zirconium Trialuminides. Shape	1243-1252A
Scale (corrosion), Coating effects Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Retention.	513-522B	See Particle shape Shape memory	
Scattering	313-3225	Thermoelastic Martensite and Shape Memory Effect in B2 Base Ni—Al—Fe Alloy With Enhanced Ductility.	1147-1153A
See Backscattering Schottky effect		Shape memory, Deformation effects Development of Iron-Based Shape Memory Alloys Associated With Face-Centered Cubic—Hexagonal Close-Packed	
See Work functions Scorification		Martensitic Transformations. I. Shape Memory Behavior. Shape Recovery and Phase Transformation Behavior in Ni—	1431-1437A
See Concentrating Fluxing		Al Alloys. Shape memory, Microstructural effects	2981-2986A
Screw dislocations Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dislocations.	3115-3120A	Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. III. Microstructures. Shape memory alloys, Mechanical properties	1445-1454A
Season cracking See Stress corrosion cracking		Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. I. Shape Memory Behavior.	1431-1437A
Secondary hardening Microstructural Changes During Overtempering of High- Speed Steels.	1631-1640A	Development of Iron-Based Shape Memory Alloys Associated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. III. Microstructures.	1445-1454A
Secondary recrystallization		The Influence of Morphology and Distribution of α Phase on the Properties of Polycrystalline CuZnAl Shape Memory	1440 14047
Strain-Induced Nucleation of MnS in Electrical Steels. Nucleation and Growth Effects in Thin Ferromagnetic Sheets: a Review Focusing on Surface Energy-Induced Secondary	821-830A	Alloy. Shape memory alloys, Microstructure	2939-2941A
Recrystallization. Seeding	1987-1998A	Microstructural Study of Ti _{so} Pd ₅₀ and Ti _{so} Ni ₅₀ —,Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) Effects of Ordering Type and Degree on Monoclinic Distor-	59-64A
See Nucleation Segregations		tion of 18R-Type Martensite in Cu—Zn—Al Alloys.	2753-2760A
Grain-Boundary Segregation and Precipitation of Boron in 0.2% Carbon Steels. (Conference Paper) Microsegregation in Solidification for Ternary Alloys.	107-119A 1038-1043A	Shape memory alloys, Phase transformations Development of Iron-Based Shape Memory Alloys Associated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. II. Transformation Behavior.	1439-1444A
An Assessment of Studies on Homogeneous Diffusional Nu- cleation Kinetics in Binary Metallic Alloys. On the Drag of Model Dendrite Fragments at Low Reynolds	1915-1945A	Shaping See Near net shaping	
Number. Infiltration of Fiber Preforms by a Binary Alloy. II. Further Theory and Experiments.	2169-2181A 2263-2280A	Shear bands See Luders lines Slip planes	
The Microstructures and Properties of an Al—12 wt.% Si Alloy Produced by a New Layer-Deposition Process.	2313-2321A	Shear modulus	
Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension. Microsegregation in Cellular Microstructure.	2515-2526A 3377-3381A	Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis- locations.	3115-3120A
Macrosegregation During Steady-State Arrayed Growth of Dendrites in Directionally Solidified Pb—Sn Alloys.	3383-3392A	Shear properties See also Shear modulus Shear strength	
Segregations, Alloying effects Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace of Boron.	1515-1519A	Shear properties, Deformation effects Shape Recovery and Phase Transformation Behavior in Ni— Al Alloys.	2981-2986A
Segregations, Composition effects Effect of Boron on the Grain Boundary Segregation of Phosphorus and Intergranular Fracture in High-Purity Fe—		Shear strength, Microstructural effects Shear Mechanisms of the \(\gamma^2 \) Phase in Single-Crystal Superalloys and Their Relation to Creep. (Conference Paper)	99-105A
0.2P—B Alloys. (Conference Paper) Aging Embrittlement and Grain Boundary Segregation in a	263-269A	Sheet metal See also Foil	00 100/1
NiCrMoV Rotor Steel. On the Formation of Macrosegregations in Unidirectionally Solidified Sn—Pb and Pb—Sn Alloys.	2243-2248A 2301-2311A	Sheet metal, Forming Plastic Anisotropy in a Superplastic Al—Li—Mg—Cu Alloy.	1467-1478A
Segregations, Deformation effects Flow Softening and Microstructure Evolution During Hot		Sheet metal, Magnetic properties Nucleation and Growth Effects in Thin Ferromagnetic Sheets:	1407-1470A
Working of Wrought Near-Gamma Titanium Aluminides. Segregations, Heating effects Segregation and Homogenization of a Near-Gamma Titanium	1719-1735A	a Review Focusing on Surface Energy-Induced Secondary Recrystallization. Sheet metal, Mechanical properties	1987-1998A
Auminide. (Conference Paper) Segregations, Radiation effects	149-161A	Forming Limit Diagrams Calculated Using Hill's Nonquadratic Yield Criterion.	2817-2831A
Thermal and Irradiation-Induced Phase Separation in Fe—Ni Based Invar-Type Alloys. (Conference Paper, Review)	1963-1976A	Sherritt Gordon process See Alkaline leaching Hydrometallurgy	
Segregations, Temperature effects Segregation Effects on Intergranular Fracture: an Atomistic Simulation Study of Ni—Cu Alloys.	3105-3113A	Powder technology Shielded arc welding	
Selenium compounds, Solubility Thermodynamic Investigations of Tellurium-Saturated Solid CdSe—CdTe Alloys.	467-476B	See Gas metal arc welding Shock waves Shock-Induced Chemical Reactions and Synthesis of Nickel	44 404
Self diffusion See Diffusion		Aluminides. (Conference Paper) Shock-Induced and Self-Propagating High-Temperature Syn- thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio	41-48A
Semiconductor devices See Transistors		Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper) Dynamic Compaction of Titanium Aluminides by Explosively Generated Shock Waves: Microstructure and Mechanical	55-58A
Semiconductors See Gallium arsenide Silicon		Properties. Short arc welding	3251-3261A
Semicontinuous casting		See Gas metal arc welding Short range order	
See Continuous casting Semikilling		The Short-Range Order Structure of a Water-Quenched Ni— 12.5 at.% Si Alloy—a Synchrotron X-Ray Diffuse Scatter-	
See Deoxidizing Sensible heat See Enthalory		ing Study. Sigma bonds See Chemical bonds	769-777A

igma hard facing See Gas metal arc welding		Void Nucleation in Constrained Silver Interlayers. Silver, Reactions (chemical)	3281-3291A
igma welding See Gas metal arc welding		Thermochemistry of Binary Alloys of Transition Metals: the Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Sys-	007 4000
and the state of t	1763-1772A	tems. Silver, Ternary systems Thermodynamic Properties in the Liquid Ag—Sb—Zn Sys-	997-1003A
ilicon, Alloying elements Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace	1515 15101	term. Representation of Thermodynamic Properties of Ternary Systems and Its Application to the System Silver—Gold—	601-611B
ilicon, Reactions (chemical)	1515-1519A	Copper at 1350K. Simulation	747-752B
Decarburization of Silicon Melt for Solar Cells by Filtration and Oxidation.	423-427B	See also Computer simulation A Fundamental Study of Raceway Size in Two Dimensions.	267-283B
ilicon carbide, Composite materials Effect of Environment on the Thermal Fatigue Response of an SCS-6/Ti—24AI—11Nb Composite.	587-595A	Experimental and Númerical Study of Pattern Formation in Faceted Cellular Array Growth. (Conference Paper) Mathematical Simulation of Interdendritic Solidification of	1111-1120A
Particle Sedimentation During Processing of Liquid Metal- Matrix Composites. Recovery and Recrystallization in Cold-Rolled Al—SiC _w	753-763B	Low-Alloyed and Stainless Steels. On the Drag of Model Dendrite Fragments at Low Reynolds Number.	1155-1170A 2169-2181A
Composites. The Effect of Ceramic Reinforcements During Spray Atom-	807-819A	Planar to Equiaxed Transition in the Presence of an External Wetting Surface.	3361-3368A
ization and Codeposition of Metal Matrix Composites. I. Heat Transfer. The Effect of Ceramic Reinforcements During Spray Atom- ization and Codeposition of Metal Matrix Composites. II.	831-843A	Single crystals, Crystal growth Unidirectional Solidification of Al—Si Eutectic With the Accelerated Crucible Rotation Technique.	1363-1370A
Solid-State Cooling Effects. The Micromechanics of Fatigue Crack Growth at 25°C in Ti—6AI—4V Reinforced With SCS-6 Fibers.	845-850A	Single crystals, Heat treatment Effect of Heat Treatments on Phase Chemistry of the Nickel-	
An Experimental and Numerical Study of Cyclic Deformation in Metal—Matrix Composites.	865-879A 919-934A	Base Superalloy SRR 99. Single crystals, Mechanical properties	745-757A
The Effect of Interfacial Reaction Layer Thickness on Frac- ture of Titanium—SiC Particulate Composites.	977-988A	Shear Mechanisms of the y' Phase in Single-Crystal Superal- loys and Their Relation to Creep. (Conference Paper) The Effect of Internal Hydrogen on a Single-Crystal Nickel-	99-105A
Formation of Magnesium Aluminate (Spinel) in Cast SiC Particulate-Reinforced Al(A356) Metal Matrix Composites. Nondestructive Evaluation for Large-Scale Metal-Matrix	1423-1430A	Base Superalloy. Single crystals, Microstructure	1313-1322A
Composite Billet Processing. Reaction Kinetics of an AI—Co Intermetallic in AI—9Ti/SiC Particle-Reinforced Composites.	1541-1549A 1607-1615A	The Short-Range Order Structure of a Water-Quenched Ni— 12.5 at.% Si Alloy—a Synchrotron X-Ray Diffuse Scatter-	
The Fracture Characteristics of Al—9Ti/SiC _p Metal Matrix Composites.	1653-1662A	ing Study. Sinterability, Size effects	769-777A
Prediction of Thermomechanical Fatigue Lives in Metal Ma- trix Composites. (Conference Paper) Thermal Stress and Strain in a Metal Matrix Composite With	2029-2038A	An Investigation of Silicon Carbide Synthesis in a Nontrans- ferred Arc Thermal Plasma Reactor.	443-451E
a Spherical Reinforcement Particle. Processing Map for Hot Working of Powder Metallurgy 2124	2205-2210A	Sintered compacts Prediction of Sintered Density for Bimodal Powder Mixtures.	1455-1465/
AI—20 Vol.% SiC _p Metal Matrix Composite. Effects of SiC Content on Fatigue Crack Growth in Aluminum Alloys Reinforced With SiC Particles.	2223-2230A 2231-2242A	Sintered compacts, Mechanical properties Homogenization and Microstructure Effects on the Proper-	077 004
Discussion of "Behavior of Ceramic Particles at the Solid/ Liquid Interface in Metal Matrix Composites" and Reply.	2326-2330A	ties of Injection Molded Fe—2Ni Steel. Sintering	377-381/
The Effect of Temperature on the Deformation and Fracture of SiC/Ti—24Al—11Nb. Effect of Fiber Strength on the Room Temperature Tensile	2527-2540A	See also Sintering (powder metallurgy) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper)	2373-2379/
Properties of SiC/Ti—24Al—11Nb. Fracture Mechanisms of a 2124 Aluminum Matrix Composite	2541-2548A	Boride-Alumina Composites: Synthesis and Fabrication. (Conference Paper)	2381-2385/
Reinforced With SiC Whiskers. The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites.	2589-2596A 2833-2847A	Sintering (powder metallurgy) See also Vacuum sintering	
Interaction Mechanisms Between Ceramic Particles and Atomized Metallic Droplets.	2923-2937A	Observations on the Evolution of Potassium Bubbles in Tung- sten Ingots During Sintering. (Conference Paper) Sintering Time and Atmosphere Influences on the Micro-	121-133/
The Strength of Metal Matrix Composites Reinforced With Randomly Oriented Discontinuous Fibers. Effect of Cooling Rate on the Solidification Behavior of Al—	3045-3053A	structure and Mechanical Properties of Tungsten Heavy Al- loys. (Conference Paper)	211-219/
7Si—SiC _p Metal-Matrix Composites. ilicon carbide, Powder technology	3369-3376A	Homogenization and Microstructure Effects on the Proper- ties of Injection Molded Fe—2Ni Steel. Influence of Atmosphere on Sintering of T15 and M2 Steel	377-381
An Investigation of Silicon Carbide Synthesis in a Nontrans- ferred Arc Thermal Plasma Reactor.	443-451B	Powders. Prediction of Sintered Density for Bimodal Powder Mixtures. Collapse of Interconnected Open Pores in Solid-State Sinter-	389-400/ 1455-1465/
illicon compounds See also Silicides Silicon carbide		ing of W—Ni. Reactive Sintering and Reactive Hot Isostatic Compaction of	2141-2145/
Silicon carpounds, Composite materials		Niobium Aluminide NbAl ₃ . (Conference Paper) Fabrication of Metal Matrix Composites of TiC—Al Through Self-Propagating Synthesis Reaction. (Conference Paper)	2357-2364
Ductile-Phase Toughening and Fatigue-Crack Growth in Niobium-Reinforced Molybdenum Disilicide Intermetallic		Analysis of Metal—Ceramic Bonding by Frettage.	2791-2801
Composites. Role of Matrix/Reinforcement Interfaces in the Fracture Toughness of Brittle Materials Toughened by Ductile Rein-	2249-2257A	See Lattice sites	
forcements.	2863-2872A	Size distribution (particle) See Particle size distribution	
Shock-Induced and Self-Propagating High-Temperature Syn- thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio		Skull casting See Casting	
Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper) Silicon iron	55-58A	Slab casting Modeling Superheat Removal During Continuous Casting of Steel Slabs.	339-356
See Silicon steels Silicon nitride, Joining		Slabbing (rolling) See Rolling	
Analysis of Metal—Ceramic Bonding by Frettage. Silicon nitride, Welding	2791-2801A	Slags	
Interface Microchemistry of Silicon Nitride/Nickel— Chromium Alloy Joints.	1773-1781A	See also Blast furnace slags Rate of Reduction of FeO in Slag by Fe—C Drops. Phosphate Capacity of CaO—Al ₂ O ₃ Slags Containing CaF ₂ .	29-371
Silicon steels See also Electrical steels		BaO, Li ₂ O, or Na ₂ O. Entrainment Behavior of Copper and Copper Matte in Copper	117-123
Silicon steels, Microstructure The Nature of Lower Bainite Midrib.	2483-2490A	Smelting Operations. Determination of Standard Gibbs Energies of Formation of CaCo. SrCo. and BaCo.	303-311
Silver, Binary systems Role of Entropy of Solution in Controlling Eutectic Microstruc-		CaC ₂ , SrC ₂ , and BaC ₂ . Sulfide Capacities of CaO—CaF ₂ —CaCl ₂ Melts. Determination of Refractive Index and Absorption Coefficient	325-330
ture. Silver, Mechanical properties	2675-2678A	of Iron-Oxide-Bearing Slags. Equilibrium Between Na₂O-Containing Slags and Carbon-Saturated Iron at 1350°C: the Controlling Oxygen Potential.	331-3371
Void Growth and Coalescence in Constrained Silver Interlay-		Silicon-Oxygen Equilibrium and Nitrogen Distribution Be-	

Modeling of Metal—Stag Equilibrium Processes Using Neural Nets.	643-650B	Soldered joints, Mechanical properties Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys.	479-484A
Slags, Reactions (chemical) Solubility of BaS in BaO—BaF ₂ Slag and the Influence of		Soldering	475-4047
FeO _x , SiO ₂ , Cr ₂ O ₃ , BaCl ₂ , CaO, and MgO on the Sulfide Capacity of This System.	175-181B	Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys.	479-484A
Influence of Li ₂ O on the Carbonate Capacity of CaO— CaF ₂ —Al ₂ O ₃ Melts.	183-187B	The Growth of Cu—Sn Intermetallics at a Pretinned Copper/ Solder Interface.	1323-1332A
Carbon Solubility as Carbide in Calcium Silicate Melts. Group Optical Basicities of Polymerized Anions in Slags. Slags, Recovering	223-227B 227-229B	Solders, Crystal growth The Growth of Cu—Sn Intermetallics at a Pretinned Copper/ Solder Interface.	1323-1332A
A Possible Method for the Characterization of Amorphous Slags: Recovery of Refractory Metal Oxides From Tin Slags.	249-259B	Solders, Diffusion Analysis of Low-Temperature Intermetallic Growth in Copper—Tin Diffusion Couples.	857-864A
Sliding friction, Size effects The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites.	2833-2847A	Solders, Mechanical properties Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys.	479-484A
Slip		Solid phases	
See also Slip planes Evolution of Textures in Zirconium Alloys Deformed Uniaxially at Elevated Temperatures. (Conference Paper)	271-293A	Enthalpies of Formation of Some Solid Hafnium Nickel Com- pounds and of the Nickel-Rich HfNi Liquid by Direct Reac- tion Calorimetry.	815-819B
Crystallographic Fatigue Crack Growth in Incompatible Aluminum Bicrystals: Its Dependence on Secondary Slip.	3293-3301A	Solid phases, Temperature effects A Thermodynamic Evaluation of the Al—Mn System. An Assessment of the Al—Fe—N System.	2953-2962A 3141-3149A
Slip bands See Slip planes		Solid solubility	3141-31437
Slip casting Prediction of Sintered Density for Bimodal Powder Mixtures. Slip planes	1455-1465A	Thermodynamic Investigations of Tellurium-Saturated Solid CdSe—CdTe Alloys. The Transition From Columnar to Equiaxed Dendritic Growth in Proeutectic, Low-Volume Fraction Copper, Pb—Cu Al-	467-476B
Evolution of Textures in Zirconium Alloys Deformed Uniaxi- ally at Elevated Temperatures. (Conference Paper)	271-293A	loys. Influence of Carbon and Nitrogen on Solid Solution Decay	1807-1815A
Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed		and "475°C Embrittlement" of High-Chromium Ferritic Steels.	2567-2579A
Martensitic Transformations. III. Microstructures. Superplastic Behavior of Two-Phase Titanium Aluminides. Deformation Behavior of a Ni—30AI—20Fe—0.05Zr Inter-	1445-1454A 1509-1513A	Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al. Solid solubility, Temperature effects	2783-2790A
metallic Alloy in the Temperature Range 300-1300K. High-Temperature Low-Cycle Fatigue Behavior of a NI- MONIC PE-16 Superalloy—Correlation With Deformation	1705-1718A	Microstructure, Excess Solid Solubility, and Elevated- Temperature Mechanical Behavior of Spray-Atomized and Codeposited Al—Ti—SiC _p .	719-736B
and Fracture. Heterogeneity of Intergranular Damage in Copper Crept in	1751-1761A	Solid solutions See Interstitial solutions	
Plane-Strain Tension. Slip planes, Alloying effects	2515-2526A	Solidification See also Directional solidification	
Effect of Chromium on the Ordering Behavior and Ductility of an Ni—Ni _A Mo Alloy.	1829-1833A	Rapid solidification Elaboration of Semisolid Alloys by Means of New Electro-	
Smelting		magnetic Rheocasting Processes. A General Enthalpy Method for Modeling Solidification Pro-	189-206B
Rate of Reduction of FeO in Slag by Fe—C Drops. Rate of Decarburization of Fe—C _{sat} Melts by H ₂ O at 1523 and 1873K.	29-37B 45-51B	cesses. Mushy Zone Modeling With Microstructural Coarsening Ki-	651-664B 659-667A
Entrainment Behavior of Copper and Copper Matte in Copper Smelting Operations.	303-311B	netics. An Analytical Model for the Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface.	669-680A
A Mathematical Model of the Nickel Converter. II. Application and Analysis of Converter Operation.	573-582B	Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numeri-	
Modeling of MetalSlag Equilibrium Processes Using Neu- ral Nets.	643-650B	cal and Experimental Results. Mathematical Simulation of Interdendritic Solidification of	701-718B 1155-1170A
Smelting, Size effects Upgrading Copper Concentrate by Hydrothermally Convert-		Low-Alloyed and Stainless Steels. Modeling of the Liquid/Solid and the Eutectoid Phase Transformations in Spheroidal Graphite Cast Iron.	1333-1346A
ing Chalcopyrite to Digenite. Soaking	241-248B	Microstructural Transitions During Containerless Processing of Undercooled Fe—Ni Alloys.	1347-1362A
Effect of Heat Treatment on the Hardness—Microstructure Inter-Relation in a 7.5Mn—5Cr—1.5Cu Alloy White Iron: a	901 0014	A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. On the Drag of Model Dendrite Fragments at Low Reynolds	1783-1799A
Modeling Approach. Sodium, Reactions (chemical) Na ₂ O—Al ₂ O ₃ System: Activity of Na ₂ O in $(\alpha + \beta)$ - and	891-901A	Number: A Novel Technique for Outlining the Solidification Crater Pro- file of a Commercial-Size Aluminum Alloy Ingot Cast by the	2169-2181A
$(\beta + \beta^{"})$ -Alumina.	833-839B	Direct Chill Method. Liquid/Solid Interface Migration at Grain Boundary Regions	2323-2325A
Sodium chloride, Environment Crack Paths, Microstructure, and Fatigue Crack Growth in		During Transient Liquid Phase Brazing. Effect of Cooling Rate on the Solidification Behavior of Al-	2905-2915A
Annealed and Cold-Rolled AISI 304 Stainless Steels. (Conference Paper)	355-371A	7Si—SiC _p Metal-Matrix Composites. Effect of Gravity Level on Grain Refinement in Aluminum Al-	3369-3376A
Sodium compounds See Sodium chloride		loys. Solidification, Cooling effects	3399-3404A
Soft annealing See Annealing		A Numerical and Experimental Study of the Solidification Rate in a Twin—Belt Caster.	477-492B
Soft soldering		Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at Different Cooling Rates.	1817-1827A
See Soldering Soft solders		Discussion of "Solidification of Highly Undercooled FeP Alloys" and Reply.	2672-2675A
See Solders		Solidification Kinetics and Metastable Phase Formation in Bi- nary Ti—Al.	2699-2714A
See also Strain softening		Solidification, Diffusion effects Microsegregation in Solidification for Ternary Alloys.	1038-1043A
Softening, Deformation effects Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides.	1719-1735A	Solubility See also Solid solubility Solubility of BaS in BaO—BaF ₂ Slag and the Influence of	
Sol gel process Reaction Kinetics of an Al—Co Intermetallic in Al—9Ti/SiC		Solubility of BaS in BaO—BaF ₂ Slag and the Influence of FeO _x , SiO ₂ , Cr ₂ O ₃ , BaCl ₂ , CaO, and MgO on the Sulfide Capacity of This System.	175-181B
Particle-Reinforced Composites. The Fracture Characteristics of Al—9Ti/SiC _o Metal Matrix	1607-1615A	Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austenite and the Solubility of Titanium Carbide. Experimental Investigation of the Thermodynamics of Fe—	709-727A
Composites. Solar cells	1653-1662A	Nb—C Austenite and Nonstoichiometric Niobium and Tita- nium Carbides (T = 1273 to 1473K).	729-744A
See Solar generators Solar generators		The Solubility of Alumina in Liquid Iron. Solubility of Nitrogen in Cr—Fe—Mo—Ni Alloys.	789-790B 1271-1278A
Decarburization of Silicon Melt for Solar Cells by Filtration and Oxidation.	423-427B	Characterization of Stainless Steels Melted Under High Nitro- gen Pressure. (Conference Paper)	2061-2068A
Thermodynamic Investigations of Tellurium-Saturated Solid CdSe—CdTe Alloys.	467-476B	Solubility, Temperature effects An Assessment of the AI—Fe—N System.	3141-3149A

Solution entropy See Heat of solution		Spray casting Fluid Flow, Heat Transfer, and Solidification of Molten Metal	
Solution hardening See Solution strengthening		Droplets Impinging on Substrates: Comparison of Numeri- cal and Experimental Results. Recent Trends and Developments With Rapidly Solidified	701-718B
Solution heat treatment Transformations in a Ti—24Al—15Nb Alloy, I. Phase Equilib-		Materials. (Conference Paper) Spray forming	1083-1093A
ria and Microstructure. Effect of Heat Treatments on Phase Chemistry of the Nickel-Base Superalloy SRR 99.	401-415A 745-757A	Behavior of Liquid Metal Droplets in an Aspirating Nozzle. Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numeri-	695-700B
Nb(C,N) Precipitation and Austenite Recrystallization in Boron-Containing High-Strength Low-Alloy Steels.	2111-2120A	cal and Experimental Results. The Effect of Ceramic Reinforcements During Spray Atom-	701-718B
Solution potential See Corrosion potential		ization and Codeposition of Metal Matrix Composites. I. Heat Transfer. The Effect of Ceramic Reinforcements During Spray Atom-	831-843A
Solution strengthening, Alloying effects Nb(C,N) Precipitation and Austenite Recrystallization in Boron-Containing High-Strength Low-Alloy Steels.	2111-2120A	ization and Codeposition of Metal Matrix Composites. II. Solid-State Cooling Effects.	845-850A
Solvent extraction		Spraying See Metal spraying	
Application of Ultrasound in Extractive Metallurgy: Sono- chemical Extraction of Nickel. Titanium Tetrachloride-Supercritical Carbon Dioxide Interac-	13-22B	Powder spraying Spray casting Spray forming	
tion: a Solvent Extraction and Thermodynamic Study. Model for Ferric Sulfate Leaching of Copper Ores Containing a Variety of Sulfide Minerals. I. Modeling Uniform Size Ore	65-72B	Sputtered films, Corrosion Metallurgical Factors Influencing the Corrosion of Aluminum,	
Fragments. Model for Ferritic Sulfate Leaching of Copper Ores Contain-	537-548B	Al—Cu, and Al—Si Alloy Thin Films in Dilute Hydrofluoric Solution.	2641-2655A
ing a Variety of Sulfide Minerals. II. Process Modeling of In Situ Operations.	549-555B	Sputtering Laser-Enhanced Sputter or Vapor Deposition of Thin Metallic	
Adsorption of Gold on Activated Carbon in Bromide Solutions.	557-566B	Films on Ceramic Substrates. (Conference Paper) Squeeze casting	1095-1103A
Solvent extraction, pH effects Leaching Kinetics of Colemanite by Aqueous EDTA Solu-		Fabrication of Fiber-Reinforced Metal-Matrix Composites by Variable Pressure Infiltration.	295-302B
tions.	409-413B	Wetting of SAFFIL Alumina Fiber Preforms by Aluminum at 973K. (Conference Paper)	2071-2073A
Solvus (metallurgical) See Solid solubility		Stability See Phase stability	
Sonics See Ultrasonics		Thermal stability Stacking fault energy	
Sorption See Absorption (energy)		Effect of Strain Rate on Cell Size Refinement and Strengthen- ing in Nickel and Aluminum.	3166-3169A
Sound waves See Shock waves		Stacking faults Lattice Imperfections Studied by X-Ray Diffraction in Deformed Aluminum-Base Alloys: Al—Cu Alloy.	1371-1373A
Space environment Effect of Gravity Level on Grain Refinement in Aluminum Alloys.	3399-3404A	Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed	
Spacing, Cooling effects Effect of Cooling Rate on the Solidification Behavior of Al—		Martensitic Transformations. III. Microstructures. A Study of Stacking Faults in Deformed Austenitic Stainless Steel by X-Ray Diffraction.	1445-1454A 2859-2861A
7Si—SiC _p Metal-Matrix Composites. Spalling, Coating effects Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Re-	3369-3376A	Stacking faults, Stress effects Room-Temperature Deformation and Stress-Induced Phase Transformation of Laves Phases in Fe—10 at.% Zr Alloy.	3303-3308A
tention.	513-522B	Stainless steels See also Austenitic stainless steels	
Specific heat Note on the Thermochemistry of the Au + V, Au + Nb, and Au + Ta Systems.	1836-1839A	Duplex stainless steels Ferritic stainless steels Martensitic stainless steels	
Spelter See Zinc		Stainless steels, Crystal growth	
Spheroidal iron See Nodular iron		Mathematical Simulation of Interdendritic Solidification of Low-Alloyed and Stainless Steels.	1155-1170A
Spheroidal structure Superplastic Behavior of Two-Phase Titanium Aluminides.	1509-1513A	Stainless steels, Mechanical properties Plasma-Melted Nitrogen-Bearing Cast Stainless Steels— Microstructure and Tensile Properties.	3317-3324A
Microstructure and Creep Properties of Dispersion- Strengthened Aluminum Alloys. High-Temperature Low-Cycle Fatigue Behavior of a NI-	1521-1539A	Stainless steels, Powder technology Prediction of Sintered Density for Bimodal Powder Mixtures.	1455-1465A
MONIC PE-16 Superalloy—Correlation With Deformation and Fracture.	1751-1761A	Standardization See Calibration	
Metastable Precipitate in a Duplex Martensite + Ferrite Precipitation-Hardening Stainless Steel.	2447-2453A	Static casting See Casting	
Spheroidal structure, Cooling effects Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at		Static fatigue See Creep rupture strength	
Different Cooling Rates. Spheroidal structure, Deformation effects	1817-1827A	Static pressure	
A Comparison Between Calculated and Observed Elastically Induced Precipitate Shape Transitions in a Cu—2 at.% Co		See Hydrostatic pressure Steel constituents	
Alloy.	2761-2773A	See Austenite Bainite	
Spheroidal structure, Heating effects Microstructural Changes During Overtempering of High- Speed Steels.	1631-1640A	Cementite Martensite Pearlite	
Spheroids See Spheroidal structure		Steel making Rate of Reduction of FeO in Slag by Fe—C Drops.	29-37B
Spinodal decomposition The Entropy Production and Variable Surface Tension Barri-		Phosphate Capacity of CaO—Al ₂ O ₃ Slags Containing CaF ₂ , BaO, Li ₂ O, or Na ₂ O.	117-123B
ers to Nucleation and Growth in Steady- and Quasi-Steady State Condensing Systems.	1883-1890A	Influence of Li ₂ O on the Carbonate Capacity of CaO— CaF ₂ —Al ₂ O ₃ Melts.	183-187B
Thermal and Irradiation-Induced Phase Separation in Fe—Ni Based Invar-Type Alloys. (Conference Paper, Review)	1963-1976A	Modeling Flows and Mixing in Steelmaking Ladles Designed for Single- and Dual-Plug Bubbling Operations.	765-778B
Spinodal decomposition, Heating effects Atom Probe Examination of Thermally Aged CF8M Cast		Measurements of the Internal Structure of Gas—Liquid Plumes. Steels	779-788B
Stainless Steel. Splat cooling Theoretical Treatment of the Solidification of Undercooled	2725-2736A	See also Carbon steels Dual phase steels	
Fe—Cr—Ni Melts. Sponginess	1585-1591A	Steels, Casting Effect of Slag Cover on Heat Loss and Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting	
See Porosity		Tundish.	135-151B

Effect of Holding Time and Surface Cover in Ladles on Liquid Steel Flow in Continuous Casting Tundishes.	153-167B	Plastic Anisotropy in a Superplastic Al—Li—Mg—Cu Alloy. Oscillations in Load Observed During High-Temperature Low	1467-1478A
Modeling Superheat Removal During Continuous Casting of Steel Slabs.	339-356B	Strain-Rate Testing of Superplastic Materials. Forming Limit Diagrams Calculated Using Hill's Nonquadratic	2667-2669A
Solubility of Titanium Nitride in Continuous Casting Powders. A General Enthalpy Method for Modeling Solidification Processes.	523-526B 651-664B	Yield Criterion. Processing Map for Controlling Microstructure in Hot Working of Hot Isostatically Pressed Powder Metallurgy Nimonic	2817-2831A
Steels, Corrosion Degradation of Plastic Properties After Electrocharging in 1N H ₂ SO ₄ .	1375-1379A	AP-1 Superalloy. The Effect of Crack-Tip Strain Rate and Potential on the Propagation Rate of Stress Corrosion Crack for 321 Stain-	2849-2857A
Steels, Mechanical properties Some Aspects of Deformation Behavior of Coarse Multi-		less Steel in Boiling 42% MgCl ₂ Solution. Strain rate, Microstructural effects	2873-2878A
phase Metallic Materials. Steels, Reactions (chemical)	3309-3315A	Effect of Strain Rate on Cell Size Refinement and Strengthening in Nickel and Aluminum.	3166-3169A
Solubility of BaS in BaO—BaF ₂ Slag and the Influence of FeO _x , SiO ₂ , Cr ₂ O ₃ , BaCl ₂ , CaO, and MgO on the Sulfide Capacity of This System.	175-181B	Strain rate, Stress effects Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium Alloys.	3077-3084A
Steels, Rolling Influence of Transverse Rolling on the Microstructural and		Tensile Strain-Rate Sensitivity of Tungsten/Niobium Composites at 1300 to 1600K.	3121-3133A
Texture Development in Pure Tantalum. Grain Refinement by Dynamic Recrystallization During the Simulated Warm-Rolling of Interstitial Free Steels.	2183-2191A 2607-2617A	Strain rate, Temperature effects Ductility and Strain-Induced Transformation in a High- Strength Transformation-Induced Plasticity-Aided Dual-	
Steels, Welding On the Calculation of the Free Surface Temperature of Gas-		Phase Steel. Optimization of Hot Workability in Stainless Steel-Type AISI	3085-3091A
Tungsten-Arc Weld Pools From First Principles. I. Modeling the Welding Arc.	357-369B	304L Using Processing Maps. Strain resistance	3093-3103A
Step quenching		See Deformation resistance	
See Interrupted quenching Stibium		Strain softening Load Sharing of the Phases in 1080 Steel During Low-Cycle	
See Antimony		Fatigue. (Conference Paper) Recrystallization Kinetics of Microalloyed Steels Deformed in	341-354A
Stiffness, Microstructural effects Effects of SiC Content on Fatigue Crack Growth in Aluminum		the Intercritical Region.	597-608A
Alloys Reinforced With SiC Particles. Stirring See also Electromagnetic stirring	2231-2242A	Strain softening, Corrosion effects Degradation of Plastic Properties After Electrocharging in 1N H ₂ SO ₄ .	1375-1379A
Particle Sedimentation During Processing of Liquid Metal- Matrix Composites.	753-763B	Strengthening (solution) See Solution strengthening	
Modeling Flows and Mixing in Steelmaking Ladles Designed for Single- and Dual-Plug Bubbling Operations.	765-778B	Stress analysis Load Sharing of the Phases in 1080 Steel During Low-Cycle	
Measurements of the Internal Structure of Gas—Liquid Plumes. Strain, Deformation effects	779-788B	Fatigue. (Conference Paper) Simple Constitutive Equations for Steel at High Temperature. An Analysis of the Isothermal Hot Compression Test.	341-354A 903-918A 963-975A
Shape Recovery and Phase Transformation Behavior in Ni— Al Alloys.	2981-2986A	Stress corrosion See Corrosion fatigue	
Strain, High temperature effects Frequency Interactions in High-Temperature Fatigue Crack Growth in Superalloys.	3067-3072A	Stress corrosion cracking Hydrogen-Enhanced Cracking of Superalloys. (Conference	
Strain, Microstructural effects		Paper) The Effect of Crack-Tip Strain Rate and Potential on the	237-249A
Computer Simulation of Microstructure Development During a Martensitic Transformation. Effect of Microstructure on Creep of Ti—24AI—11Nb Poly-	2999-3012A	Propagation Rate of Stress Corrosion Crack for 321 Stain- less Steel in Boiling 42% MgCl ₂ Solution. Stress Corrision Cracking of An Al—Li Alloy.	2873-2878A 3337-3341A
crystals. Interaction of High-Temperature Deformation Mechanisms in a Magnesium Alloy With Mixed Fine and Coarse Grains.	3035-3043A 3135-3140A	Stress corrosion cracking, Alloying effects The Effect of Grain Boundary Chemistry on Intergranular	
Strain, Stress effects Mechanisms of Fatigue Crack Retardation Following Single		Stress Corrosion Cracking of Ni—Cr—Fe Alloys in 50% NaOH at 140°C. Effects of Grain Boundary Chemistry on the Intergranular	2887-2904A
Tensile Overloads in Powder Metallurgy Aluminum Alloys. Strain hardening	3055-3066A	Cracking Behavior of Ni—16Cr—9Fe in High-Temperature Water.	3343-3359A
Strengthening in Multiphase (MP35N) Alloy. I. Ambient Temperature Deformation and Recrystallization. (Conference Paper)	307-319A	Stress corrosion cracking, Composition effects Effect of Carbon on the Low-Temperature Creep Behavior of Ni—16Cr—9Fe.	1033-1037A
Strengthening in Multiphase (MP35N) Alloy. II. Elevated Temperature Tensile and Creep Deformation. (Conference Paper)	321-334A	Stress corrosion cracking, Environmental effects Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr Alloy in a 0.5M Sodium Chloride Solution.	1563-1572A
Load Sharing of the Phases in 1080 Steel During Low-Cycle Fatigue. (Conference Paper) Evolution of Dislocation Structures and Deformation Behav-	341-354A	Stress corrosion cracking, Heating effects	1000-107EA
ior of Iron at Different Temperatures. I. Strain Hardening Curves and Cellular Structure. Hardening Mechanisms in a Dynamic Strain Aging Alloy.	537-544A	The Effect of Aging on the Hydrogen-Assisted Fatigue Cracking of a Precipitation-Hardened Al—Li—Zr Alloy. Instabilities in Stabilized Austenitic Stainless Steels.	1551-1562A 2455-2467A
HASTELLOY X, During Isothermal and Thermomechanical Cyclic Deformation. Strength and Microstructure of Powder Metallurgy Pro-	551-561A	Stress corrosion cracking, Microstructural effects Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels.	2879-2885A
cessed Restacked Cu—Nb Microcomposites. Compression Testing Techniques to Determine the Stress/	573-586A	Stress corrosion resistance	20.0 2000.
Strain Behavior of Metals Subject to Finite Deformation. Structure and Room-Temperature Deformation of Alumina	935-951A	See Corrosion resistance Stress cycle	
Fiber-Reinforced Aluminum. Intercritically Annealed and Isothermally Transformed 0.15% Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni, II.		High-Temperature Low-Cycle Fatigue Behavior of a NI- MONIC PE-16 Superalloy—Correlation With Deformation and Fracture.	1751-1761A
Effect of Testing Temperature on Stress—Strain Behavior and Deformation-Induced Austenite Transformation.	1233-1241A	Stress intensity	
Strain hardening, Corrosion effects Degradation of Plastic Properties After Electrocharging in 1N H ₂ SO ₄ .		Mechanisms of Fatigue Crack Retardation Following Single Tensile Overloads in Powder Metallurgy Aluminum Alloys. Application of Nonlocal Elasticity to the Energetics for Solute	3055-3066A
Strain hardening, Temperature effects	1375-1379A	Atoms in Body-Centered Cubic Transition Metals With Dis- locations.	3115-3120A
Ductility and Strain-Induced Transformation in a High- Strength Transformation-Induced Plasticity-Aided Dual- Phase Steel.	3085-3091A	Stress rupture strength See Creep rupture strength	
Strain rate		Stress strain curves Plastic-Flow Behavior and Microstructural Development in a	
Strengthening in Multiphase (MP35N) Alloy. II. Elevated Tem- perature Tensile and Creep Deformation. (Conference Paper)		Cast Alpha-Two Titanium Aluminide. (Conference Paper) Evolution of Dislocation Structures and Deformation Behav-	295-305A
The Plastic Deformation of an α-Ti Alloy and Its Thermal Acti-	321-334A	ior of Iron at Different Temperatures. I. Strain Hardening Curves and Cellular Structure.	537-544A
vation Process vs. Effective Stress. (Conference Paper) Evolution of Dislocation Structures and Deformation Behav- ior of Iron at Different Temperatures. II. Dislocation Penetity		Compression Testing Techniques to Determine the Stress/ Strain Behavior of Metals Subject to Finite Deformation.	935-951A
ior of Iron at Different Temperatures. II. Dislocation Density and Theoretical Analysis.	545-549A	Structure and Room-Temperature Deformation of Alumina Fiber-Reinforced Aluminum.	1207-1219A

intercritically Annealed and Isothermally Transformed 0.15% Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. I. Transformation, Microstructure, and Room-Temperature		Hardening Mechanisms in a Dynamic Strain Aging Alloy, HASTELLOY X, During Isothermal and Thermomechanical Cyclic Deformation.	551-561A
Mechanical Properties. Intercritically Annealed and Isothermally Transformed 0.15%	1221-1232A	Effect of Carbon on the Low-Temperature Creep Behavior of Ni—16Cr—9Fe.	1033-1037A
Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. II. Effect of Testing Temperature on Stress—Strain Behavior	1000 10414	Dislocation Structure in a Single-Crystal Nickel-Base Super- alloy During Low Cycle Fatigue.	1253-1258A
and Deformation-Induced Austenite Transformation. Influence of Microstructure on Crack-Tip Micromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy.	1233-1241A 1663-1677A	The Effect of Internal Hydrogen on a Single-Crystal Nickel- Base Superalloy. High-Temperature Low-Cycle Fatigue Behavior of a Ni-	1313-1322A
Processing Map for Controlling Microstructure in Hot Work- ing of Hot Isostatically Pressed Powder Metallurgy Nimonic		MONIC PE-16 Superalloy—Correlation With Deformation and Fracture.	1751-1761A
AP-1 Superalloy. Shape Recovery and Phase Transformation Behavior in Ni—	2849-2857A	Creep Rupture in a Nickel-Based Superalloy. Effect of Microstructure on Creep of Ti—24AI—11Nb Poly-	2581-2587A
Al Alloys. Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium	2981-2986A	crystals. Frequency Interactions in High-Temperature Fatigue Crack	3035-3043A
Alloys. Stresses	3077-3084A	Growth in Superalloys. Influence of Prolonged Thermal Exposure on Intergranular	3067-3072A
See Residual stress Stress intensity Tensile stress Thermal stresses		Fatigue Crack Growth Behavior in Alloy 718 at 650°C. Superalloys, Metal working Processing Map for Controlling Microstructure in Hot Working of Hot Isostatically Pressed Powder Metallurgy Nimonic	3169-3171A
Structural hardening		AP-1 Superalloy.	2849-2857A
See Precipitation hardening Secondary hardening Solution strengthening		Superalloys, Microstructure Microsegregation in Cellular Microstructure.	3377-3381A
Strain hardening		Superalloys, Powder technology Recent Trends and Developments With Rapidly Solidified	1000 10001
See Atomic structure	,	Materials. (Conference Paper) Superalloys, Structural hardening	1083-1093A
Structure factor Formation of Magnesium Aluminate (Spinel) in Cast SiC Particulate-Reinforced Al(A356) Metal Matrix Composites.	1423-1430A	Some Aspects of the Precipitation of Metastable Intermetallic Phases in Inconel 718. (Conference Paper) Superalloys, Welding	2015-2028A
Structures (crystalline) See Crystal structure Grain structure		A Model for the Formation and Solidification of Grain Bound- ary Liquid in the Heat-Affected Zone (HAZ) of Welds. Superconductors	1783-1799A
Microstructure Submerged arc welding		Kinetics of Solid State Reaction Between Barium Carbonate and Cupric Oxide.	493-503B
Correlation of Microstructure and Fracture Properties in Weld Heat-Affected Zones of Thermomechanically Controlled Processed Steels.	2803-2816A	Variation of the Partial Thermodynamic Properties of Oxygen With Composition in YBa ₂ Cu ₃ O _{7—4} .	3325-3335A
Submerged arc welds See Welded joints		Supercooling Microstructural Transitions During Containerless Processing of Undercooled Fe—Ni Alloys.	1347-1362A
Substrates		Theoretical Treatment of the Solidification of Undercooled Fe—Cr—Ni Melts.	1585-1591A
Na ₂ O—Al ₂ O ₃ System: Activity of Na ₂ O in $(\alpha + \beta)$ - and $(\beta + \beta)$ -Alumina.	833-839B	Supercooling Effects in Cu—10 wt.% Co Alloys Solidified at Different Cooling Rates.	1817-1827A
Suction See Vacuum		Discussion of "Solidification of Highly Undercooled Fe—P Al- loys" and Reply.	2672-2675A
Sulfates See Gypsum		Solidification Kinetics and Metastable Phase Formation in Bi- nary Ti—Al. Heterogeneous Nucleation of Lead Particles Embedded in a	2699-2714A
Sulfuric acid		Zinc Matrix.	3207-3218A
Sulfides Strain-Induced Nucleation of MnS in Electrical Steels. Sulfides, Reduction (chemical)	821-830A	Superelasticity, Deformation effects Development of Iron-Based Shape Memory Alloys Associated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. I. Shape Memory Behavior.	1431-1437A
Electrobioleaching of Base Metal Sulfides. Sulfur, Impurities	5-11B	Superfines	1401 14077
Optimum Percentage of Burnt Lime and Mill Scale in the Slag for Modification of Pig Iron.	96-101B	See Ultrafines Superlattices	
Influence of Sulfide Inclusion on Ductility and Fracture Behav- ior of Resulfurized HY-80 Steel.	1479-1492A	In-Plane Structure and Properties of Iron Multilayers. (Con- ference Paper)	1105-1109A
Sulfur compounds See Sulfides		Superplastic forming Plastic Anisotropy in a Superplastic AI—Li—Mg—Cu Alloy.	1467-1478A
Sulfuric acid, Synthesis	667 E70D	Superplasticity Processing and Superplastic Properties of Fine-Grained Iron	
Studies in the Carbothermic Reduction of Phosphogypsum. Sulphur	567-572B	Carbide. Processing Map for Hot Working of Powder Metallurgy 2124	527-535A
See Sulfur Superalloys, Alloy development		AI—20 Vol.% SiC _p Metal Matrix Composite. Oscillations in Load Observed During High-Temperature Low	2223-2230A
Incoloy 908, a Low Coefficient of Expansion Alloy for High- Strength Cryogenic Applications. I. Physical Metallurgy.	3177-3192A	Strain-Rate Testing of Superplastic Materials. Superplasticity, Deformation effects	2667-2669A 1467-1478A
Superalloys, Coatings Decomposition of the B2-Type Matrix of Aluminide Diffusion Single State Niels Res. Superallar Sch.		Plastic Anisotropy in a Superplastic Al—Li—Mg—Cu Alloy. Superplasticity, Microstructural effects	
Coatings on Single-Crystal Nickel-Base Superalloy Sub- strates.	2657-2665A	Superplastic Behavior of Two-Phase Titanium Aluminides. Interaction of High-Temperature Deformation Mechanisms in a Magnesium Allow With Mixed Fine and Coarse Grains	1509-1513A 3135-3140A
Superalloys, Corrosion Hydrogen-Enhanced Cracking of Superalloys. (Conference		a Magnesium Alloy With Mixed Fine and Coarse Grains. Supersonic nozzles	3133-3140A
Paper) Effect of Ordering on Susceptibility to Hydrogen Embrittle- ment of a Nickel-Base Superalloy.	237-249A 953-961A	See Nozzies Surface alloying	
Superalloys, Diffusion		Laser-Clad NiAlCrHf Alloys With Improved Alumina Scale Re- tention.	513-522B
Hydrogen Transport in Nickel-Base Alloys. Superalloys, Heat treatment	3231-3244A	Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. I. Microstructure Evolution.	2419-2429A
Effect of Heat Treatments on Phase Chemistry of the Nickel- Base Superalloy SRR 99.	745-757A	Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. II. Oxidation Behavior.	2631-2639A
Superalloys, Mechanical properties Shear Mechanisms of the γ ' Phase in Single-Crystal Superalloys and Their Relation to Creep. (Conference Paper)	99-105A	Surface chemistry Recent Studies of Thin Films and Surfaces by High- Resolution Electron Microscopy. (Conference Paper)	1063-1070A
Strengthening in Multiphase (MP35N) Alloy. I. Ambient Tem- perature Deformation and Recrystallization. (Conference Paper)	307-319A	Surface diffusion See Diffusion	
Strengthening in Multiphase (MP35N) Alloy. II. Elevated Tem- perature Tensile and Creep Deformation. (Conference Paper)		Surface energy Computer Simulation of Microstructure Development During a Martensitic Transformation.	2999-3012A
Inclusion Size Effect on the Fatigue Crack Propagation Mechanism and Fracture Mechanics of a Superalloy.		Surface hardening See Laser beam hardening	

Surface hardness, Heating effects Laser Transformation Hardening of Tempered 4340 Steel.		Temperature gradient Planar to Equiaxed Transition in the Presence of an External	
(Conference Paper)	163-170A	Wetting Surface. Tempering	3361-3368A
Surface properties See Roughness		See also Quenching and tempering	
Surface structure Wetting		Temper annealing Influence of Long-Term Aging and Superimposed Creep	
Surface roughness See Roughness		Stress on the Microstructure of 0.50Cr—0.50Mo—0.25V Steel.	2193-2204A
Surface structure		Epsilon Carbide Precipitation During Tempering of Plain Car- bon Martensite.	2737-2751A
Frequency Interactions in High-Temperature Fatigue Crack Growth in Superalloys.	3067-3072A	Carbide/Matrix Interface Mechanism of Stress Corrosion Cracking Behavior of High-Strength CrMo Steels.	2879-2885A
Surface structure, Stress effects Influence of Prolonged Thermal Exposure on Intergranular Fatigue Crack Growth Behavior in Alloy 718 at 650°C.	3169-3171A	Tenacity See Tensile strength Tensile modulus	
Surfacing		See Modulus of elasticity	
See Hard surfacing Susceptibility (magnetic)		Tensile properties See Elongation	
See Magnetic permeability Swaging		Reduction of area Tensile strength Yield strength	
Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys.	2625-2630A	Tensile shear strength See Shear strength	
Swelling, Radiation effects Relationships Between Phase Stability and Void Swelling in		Tensile strength	
Fe—Cr—Ni Alloys During Irradiation. Synthesis	1977-1986A	Fracture Behavior of Stainless Steel-Toughened NiAl Com- posite Plate. Strength and Microstructure of Powder Metallurgy Pro-	563-572A
Reaction Synthesis Processes: Mechanisms and Character-	7-13A	cessed Restacked Cu-Nb Microcomposites.	573-586A
istics. (Conference Paper) The Asymptotic Theory of Gasless Combustion Synthesis.		Effect of Environment on the Thermal Fatigue Response of an SCS-6/Ti—24AI—11Nb Composite.	587-595A
(Conference Paper) Numerical Modeling of Solidification Combustion Synthesis.	15-22A	Recent Trends and Developments With Rapidly Solidified Materials. (Conference Paper)	1083-1093A
(Conference Paper) Microstructure and Tensile Properties of Fe ₃ Al Produced by	23-34A	The Strength of Metal Matrix Composites Reinforced With Randomly Oriented Discontinuous Fibers.	3045-3053A
Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper)	35-40A	Tensile strength, Alloying effects	
Shock-Induced Chemical Reactions and Synthesis of Nickel Aluminides. (Conference Paper)	41-48A	Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace	
Shock-Induced and Self-Propagating High-Temperature Syn- thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio	41 40/1	of Boron. Plasma-Melted Nitrogen-Bearing Cast Stainless Steels—	1515-1519A
Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper)	55-58A	Microstructure and Tensile Properties.	3317-3324A
Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50—x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) Shock Synthesis of GaAs From Elemental Powders. (Confer-	59-64A	Tensile strength, Composition effects Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Al-	
ence Paper) Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites.	65-68A	loys. Characterization of Stainless Steels Melted Under High Nitro-	1493-1508A
(Conference Paper) Reaction Synthesis/Dynamic Compaction of Titanium Dibo-	69-76A	gen Pressure. (Conference Paper) Effect of Fiber Strength on the Room Temperature Tensile	2061-2068A
ride. (Conference Paper) Microstructural Characterization of Self-Propagating High-	77-86A	Properties of SiC/Ti-24Al-11Nb.	2541-2548A
Temperature Synthesis/Dynamically Compacted and Hot- Pressed Titanium Carbides. (Conference Paper) Metal—Ceramic Composites Based on the Ti—B—Cu Po-	87-97A	Tensile strength, Corrosion effects Effect of Ordering on Susceptibility to Hydrogen Embrittlement of a Nickel-Base Superalloy.	953-961A
rosity System. (Conference Paper) Particle Sedimentation During Processing of Liquid Metal-	251-261A	Tensile strength, Deformation effects	
Matrix Composites.	753-763B	Strengthening in Multiphase (MP35N) Alloy. II. Elevated Tem- perature Tensile and Creep Deformation. (Conference	321-334A
Synthetic coke See Coke		Paper) Structure and Room-Temperature Deformation of Alumina	
Systems (metallurgical)		Fiber-Reinforced Aluminum. Deformation Behavior of a Ni—30AI—20Fe—0.05Zr Inter-	1207-1219A
See Binary systems Quaternary systems		metallic Alloy in the Temperature Range 300-1300K.	1705-1718A
Ternary systems Tantalum, Binary systems		Tensile strength, Environmental effects Hydrogen Effects on Brittle Fracture of the Titanium Alumi-	4000 40404
Note on the Thermochemistry of the Au + V, Au + Nb, and Au + Ta Systems.	1836-1839A	nide Alloy Ti—24Al—11Nb. Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr	1299-1312A
Tantalum, End uses	1836-1839A	Alloy in a 0.5M Sodium Chloride Solution.	1563-1572A
Nitrogen Activity Determination in Plasmas.	207-214B	Tensile strength, Heating effects Intercritically Annealed and Isothermally Transformed 0.15%	
Tantalum, Mechanical properties Application of Nonlocal Elasticity to the Energetics for Solute		Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. I. Transformation, Microstructure, and Room-Temperature	
Atoms in Body-Centered Cubic Transition Metals With Dis- locations.	3115-3120A	Mechanical Properties. Intercritically Annealed and Isothermally Transformed 0.15%	1221-1232A
Tantalum, Recovering	0110 012011	Carbon Steels Containing 1.2% Si—1.5% Mn and 4% Ni. II. Effect of Testing Temperature on Stress—Strain Behavior	
A Possible Method for the Characterization of Amorphous Slags: Recovery of Refractory Metal Oxides From Tin		and Deformation-Induced Austenite Transformation. The Effect of Aging on the Hydrogen-Assisted Fatigue Crack-	1233-1241A
Slags.	249-259B	ing of a Precipitation-Hardened Al—Li—Zr Alloy. An Investigation of the Fracture Behavior of Gamma-Based	1551-1562A
Tantalum, Rolling Influence of Transverse Rolling on the Microstructural and Texture Development in Pure Tantalum.	2183-2191A	Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and $\alpha_2 + \gamma$ Phase Fields. (Conference Paper)	2039-2059A
Teeming	2100 210111	Instabilities in Stabilized Austenitic Stainless Steels. Tensile strength, Impurity effects	2455-2467A
See Pouring Tellurium compounds, Solubility		The Effect of Internal Hydrogen on a Single-Crystal Nickel- Base Superalloy.	1313-1322A
Thermodynamic Investigations of Tellurium-Saturated Solid CdSe—CdTe Alloys.	467-476B	Tensile strength, Microstructural effects Microstructure and Tensile Properties of Fe ₃ Al Produced by	
Temper annealing Tempering of Iron—Carbon—Nitrogen Martensites.	1129-1145A	Combustion Synthesis/Hot Isostatic Pressing. (Conference Paper)	35-40A
Temper brittleness, Alloying effects		Sintering Time and Atmosphere Influences on the Micro- structure and Mechanical Properties of Tungsten Heavy Al-	
Prevention of the Intergranular Fracture by Addition of Silicon and Aluminum to a High-Purity Fe—0.2P Alloy With a Trace of Boron.	1515-1519A	loys. (Conference Paper) Microstructure and Creep Properties of Dispersion- Strengthened Aluminum Alloys.	211-219A 1521-1539A
Temper brittleness, Composition effects		High-Temperature Low-Cycle Fatigue Behavior of a NI- MONIC PE-16 Superalloy—Correlation With Deformation	102 . 1003A
Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel.	2243-2248A	and Fracture.	1751-1761A
Temper hardening		Microstructure Stabilization in a Rapidly Solidified Type 304 Stainless Steel: Influence on Tensile Properties.	2557-2565A
See Secondary hardening Temperature		Tensile strength, Stress effects Tensile Strain-Rate Sensitivity of Tungsten/Niobium Com-	
See Temperature gradient		posites at 1300 to 1600K.	3121-3133A

Tensile strength, Temperature effects Microstructure, Excess Solid Solubility, and Elevated- Temperature Mechanical Behavior of Spray-Atomized and		Thermal stability, Size effects Microstructural Evolution and Thermal Stability Associated With a Gas-Atomized Cu—Nb Alloy.	2159-2167A
Codeposited Al—Ti—SiC _p . Fracture Behavior of a B2Ni—30Al—20Fe—0.05Zr Intermet-	719-736B	Thermal stability, Temperature effects	
allic Alloy in the Temperature Range 300-1300K. Ductility and Strain-Induced Transformation in a High- Strength Transformation-Induced Plasticity-Aided Dual-	1691-1703A	Microstructure, Excess Solid Solubility, and Elevated- Temperature Mechanical Behavior of Spray-Atomized and Codeposited Al—Ti—SiC _p .	719-736B
Phase Steel. Tensile stress	3085-3091A	Thermal Stresses Thermal Stress and Strain Effects on Phase Transition Tem-	
Ductility and Strain-Induced Transformation in a High- Strength Transformation-Induced Plasticity-Aided Dual-		peratures in Differential Thermal Analysis Testing. Effect of Environment on the Thermal Fatigue Response of an SCS-6/Ti—24AI—11Nb Composite.	451-455A 587-595A
Phase Steel. Tensile tests	3085-3091A	Frequency Interactions in High-Temperature Fatigue Crack Growth in Superalloys.	3067-3072A
See Tension tests		Understanding the High-Temperature Deformation Behavior of an Ordered Ir ₃ Zr Intermetallic Compound.	3073-3076A
Tensile yield strength See Yield strength		Low-Cycle Fatigue of Niobium and Niobium—1% Zirconium Alloys.	3077-3084A
Tension impact tests See Impact tests		Influence of Prolonged Thermal Exposure on Intergranular Fatigue Crack Growth Behavior in Alloy 718 at 650°C.	3169-3171A
Tension tests Development of Iron-Based Shape Memory Alloys Associ-		Thermochemistry Thermochemistry of Binary Alloys of Transition Metals: the	
ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. I. Shape Memory Behavior.	1431-1437A	Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Systems.	997-1003A
Fracture Behavior of a B2Ni—30Al—20Fe—0.05Zr Intermet- allic Alloy in the Temperature Range 300-1300K.	1691-1703A	Thermocycling See Thermal cycling	
Ternary systems, Phases (state of matter)		Thermodynamics	
Cu—C and Al—Cu—C Phase Diagrams and Thermodynamic Properties of Carbon in the Alloys From 1550°C to 2300°C.	453-458B	See also Enthalpy Heat of mixing	
Thermodynamic Properties in the Liquid Ag—Sb—Zn System.	601-611B	Heat of reaction Integral Treatment for the Representation of Thermodynamic	
High-Temperature Isopiestic Studies on the Liquid Solutions Hg—Cd—Sn.	623-629B	Properties in Multicomponent Systems Using Interaction Parameters.	23-28B
An Experimental and Theoretical Study of the Phase Equilib- ria in the Fe—Mo—Ni System.	639-649A	Titanium Tetrachloride-Supercritical Carbon Dioxide Interac- tion: a Solvent Extraction and Thermodynamic Study.	65-72B
Representation of Thermodynamic Properties of Ternary Systems and Its Application to the System Silver—Gold—	747 7000	Discussion of "Calculation of Viscosity From the Associated Solution Model".	101-103B
Copper at 1350K. Formation and Stability of a Nitride With the Structure of Beta Manganese in Ni—Cr—N Ternary System.	747-752B 1389-1393A	Sulfide Capacities of CaO—CaF ₂ —CaCl ₂ Melts. Discussion of "Phase Diagram of Cu ₂ O—CuO—Y ₂ O ₃ System	325-330B
The AI—Cu—Fe Phase Diagram: 0-25 at.% Iron and 50- 75 at.% Aluminum—Equilibria Involving the Icosahedral	1309-1393A	in Air", Authors' Reply. Equilibrium Between Na ₂ O-Containing Slags and Carbon-	382-384A
Phase. An Assessment of the Al—Fe—N System.	2409-2417A 3141-3149A	Saturated Iron at 1350°C: the Controlling Oxygen Potential. An Assessment of the Thermodynamic Properties of Liquid	395-397B
Ternary systems, Reactions (chemical)	0141-01488	Quaternary Alloys With the Wilson Equation. Thermodynamic Calculation and Experimental Verification of	526-528B
Integral Treatment for the Representation of Thermodynamic Properties in Multicomponent Systems Using Interaction		the Carbonitride-Austenite Equilibrium in Ti—Nb Microal- loyed Steels. Experimental Investigation of the Thermodynamics of the	651-657A
Parameters. Tetragonal lattice	23-28B	Fe—Ti—C Austenite and the Solubility of Titanium Carbide. Experimental Investigation of the Thermodynamics of Fe—	709-727A
Observation of [011] Twins in Fe—Ni—C Martensite Using Neutron Powder Diffraction.	1617-1626A	Nb—C Austenite and Nonstoichiometric Niobium and Tita- nium Carbides (T = 1273 to 1473K). Representation of Thermodynamic Properties of Ternary	729-744A
Texture Nucleation and Growth Effects in Thin Ferromagnetic Sheets:		Systems and its Application to the System Silver—Gold— Copper at 1350K.	747-752B
a Review Focusing on Surface Energy-Induced Secondary Recrystallization.	1987-1998A	Thermodynamic Assessment of the Mn—O System. Microsegregation in Solidification for Ternary Alloys.	821-831B 1038-1043A
Measurement and Representation of Grain-Boundary Tex- ture.	2501-2513A	Solubility of Nitrogen in Cr—Fe—Mo—Ni Alloys. A Tribute to Professor Guy Marshall Pound.	1271-1278A 1851-1852A
Effect of Microstructure on Creep of Ti—24Al—11Nb Polycrystals.	3035-3043A	Thermodynamic Formula for Evaluating the Reversible Work to Form a Critical Nucleus and Influence of Critical Nucleus	1001 10027
Texture, Deformation effects Evolution of Textures in Zirconium Alloys Deformed Uniaxi-		Size Upon Interfacial Tension. An Assessment of Studies on Homogeneous Diffusional Nu-	1869-1881A
ally at Elevated Temperatures. (Conference Paper)	271-293A	cleation Kinetics in Binary Metallic Alloys. Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc	1915-1945A
Thawing See Melting		Alloy. Thermodynamic Assessment and Calculation of the Ti—Al	1947-1955A
Thermal analysis See Differential thermal analysis		System. Variation of the Partial Thermodynamic Properties of Oxygen	2081-2090A
Thermal capacity		With Composition in YBa ₂ Cu ₃ O _{7—4} . An Experimental Investigation of Reactive Atomization and	3325-3335A
See Specific heat Thermal cycling		Deposition Processing of Ni ₃ Al/Y ₂ O ₃ Using Ni ₂ —O ₂ Atomization.	3394-3399A
Acoustic Emission Produced by the Delta-to-Alpha Phase Transformation in Pu—Ga Alloys.	779-783A	Thermoelastic properties See Shape memory	
Thermal Stress and Strain in a Metal Matrix Composite With a Spherical Reinforcement Particle.	2205-2210A	Thermomechanical treatment	
Thermal expansion		Finishing Conditions Appropriate for Recrystallization Controlled Rolling of Ti—V—N Steel.	373-375A
Thermal Stress and Strain in a Metal Matrix Composite With a Spherical Reinforcement Particle.	2205-2210A	Recovery and Recrystallization in Cold-Rolled Al—SiC _w Composites.	807-819A
Thermal Stress and Strain in a Metal Matrix Composite With a Spherical Reinforcement Particle.	2205-2210A	Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. I. Shape Memory Behavior.	1431-1437A
Thermal fatigue, Coating effects Effect of Environment on the Thermal Fatigue Response of		Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed Martensitic Transformations. II. Transformation Behavior.	1439-1444A
an SCS-6/Ti—24AI—11Nb Composite. Thermal properties	587-595A	Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc	1719-1735A
See Melting points Specific heat		Alloy.	1947-1955A
Thermal expansion Thermal stability		Thermostability See Thermal stability	
Vapor pressure Thermal reduction		Thin films Laser-Enhanced Sputter or Vapor Deposition of Thin Metallic	
See Smelting		Films on Ceramic Substrates. (Conference Paper)	1095-1103A
Thermal spraying See Plasma spraying		Thin films, Corrosion Metallurgical Factors Influencing the Corrosion of Aluminum,	
Powder spraying Thermal stability		Al—Cu, and Al—Si Alloy Thin Films in Dilute Hydrofluoric Solution.	2641-2655A
Interface Microchemistry of Silicon Nitride/Nickel— Chromium Alloy Joints.	1773-1781A	Tig arc welding See Gas tungsten arc welding	

TIG welding See Gas tungsten arc welding		Titanium, Recovering A Possible Method for the Characterization of Amorphous	
Time quenching See Interrupted quenching		Slags: Recovery of Refractory Metal Oxides From Tin Slags.	249-259B
Time temperature transformation curves See TIT curves		Titanium base alloys, Composite materials Effect of Environment on the Thermal Fatigue Response of an SCS-6/Ti—24AI—11Nb Composite.	587-595A
Tin, Binary systems Constitutional Studies of Cobalt—Tin Alloys.	2401-2407A	The Micromechanics of Fatigue Crack Growth at 25°C in Ti— 6AI—4V Reinforced With SCS-6 Fibers.	865-879A
Role of Entropy of Solution in Controlling Eutectic Microstruc- ture.	2675-2678A	The Effect of Temperature on the Deformation and Fracture of SiC/Ti—24AI—11Nb.	2527-2540A
Tin, Diffusion	2013-2010A	Effect of Fiber Strength on the Room Temperature Tensile	
Analysis of Low-Temperature Intermetallic Growth in Copper—Tin Diffusion Couples.	857-864A	Properties of SiC/Ti—24AI—11Nb. Titanium base alloys, Crystal growth	2541-2548A
Tin, Dopants		Correlation Between the Structure and Internal Friction of Metallic Glass Cu ₄₅ Ti ₅₅ .	1627-1630A
The Effect of Ternary Trace Additions on the Nucleation and Growth of γ' Precipitates in an Al—4.2 at.% Ag Alloy.		Titanium base alloys, Heat treatment	1027-1030A
(Conference Paper) Tin, Extraction	135-148A	Segregation and Homogenization of a Near-Gamma Titanium Aluminide. (Conference Paper)	149-161A
Modeling of Metal—Slag Equilibrium Processes Using Neural Nets.	643-650B	Transformations in a Ti—24AI—15Nb Alloy. I. Phase Equilibria and Microstructure.	401-415A
Tin, Physical properties	043-0300	Transformations in a Ti—24Al—15Nb Alloy. II. A Composition Invariant $\beta_0 \rightarrow 0$ Transformation.	417-431A
A Thermodynamic Criterion to Predict Wettability at Metal/ Alumina Interfaces.	215-222B	Titanium base alloys, Mechanical properties	417-431A
Tin, Powder technology		Influence of Microstructure on Intrinsic and Extrinsic Tough- ening in an Alpha-Two Titanium Aluminide Alloy. (Confer-	
Behavior of Liquid Metal Droplets in an Aspirating Nozzle. Tin, Quaternary systems	695-700B	ence Paper) Plastic-Flow Behavior and Microstructural Development in a	183-199A
An Assessment of the Thermodynamic Properties of Liquid Quaternary Alloys With the Wilson Equation.	526-528B	Cast Alpha-Two Titanium Aluminide. (Conference Paper)	295-305A
Tin, Ternary systems	320-3200	The Plastic Deformation of an α -Ti Alloy and its Thermal Activation Process vs. Effective Stress. (Conference Paper)	335-340A
High-Temperature Isopiestic Studies on the Liquid Solutions Hg—Cd—Sn.	623-629B	Developing Hydrogen-Tolerant Microstructures for an α ₂ Ti- tanium Aluminide Alloy.	497-507A
Tin. Trace elements		Hydrogen Effects on Brittle Fracture of the Titanium Alumi- nide Alloy Ti—24Al—11Nb.	1299-1312A
Aging Embrittlement and Grain Boundary Segregation in a NiCrMoV Rotor Steel.	2243-2248A	Superplastic Behavior of Two-Phase Titanium Aluminides. Influence of Microstructure on Crack-Tip Micromechanics	1509-1513A
Tin base alloys, Chemical analysis The Thermochemistry of Magnesium in Nickel-Base Alloys. I.		and Fracture Behaviors of a Two-Phase TiAl Alloy. An Investigation of the Effects of Microstructure on the Fa-	1663-1677A
The Determination of Thermochemical Parameters Using the Atomic Absorption Technique.	791-803B	tigue and Fracture Behavior of $\alpha_2 + \beta$ Forged Ti—24AI—11Nb.	1737-1750A
Tin base alloys, Crystal growth	731-000D	An Investigation of the Fracture Behavior of Gamma-Based Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and	
The Growth of Cu—Sn Intermetallics at a Pretinned Copper/ Solder Interface.	1323-1332A	$a_2 + \gamma$ Phase Fields. (Conference Paper) The Effect of Temperature on the Deformation and Fracture	2039-2059A
Tin base alloys, Directional solidification		of SiC/Ti—24AI—11Nb. Forming Limit Diagrams Calculated Using Hill's Nonquadratic	2527-2540A
On the Formation of Macrosegregations in Unidirectionally Solidified Sn—Pb and Pb—Sn Alloys.	2301-2311A	Yield Criterion.	2817-2831A
Macrosegregation During Steady-State Arrayed Growth of Dendrites in Directionally Solidified Pb—Sn Alloys.	3383-3392A	Effect of Microstructure on Creep of Ti—24Al—11Nb Polycrystals.	3035-3043A
Tin base alloys, Mechanical properties Deformation Inhomogeneity and Representative Volume in		Titanium base alloys, Microstructure Microstructural Study of TisoPdso and TisoNiso-xPdx Alloys	
Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys.	479-484A	Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni ₅₀ _x Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper)	59-64A
Deformation Inhomogeneity and Representative Volume in	479-484A	Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50-x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper)	59-64A 1071-1081A
Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering)	479-484A	Microstructural Study of Ti _{sip} Pd _{s0} and Ti _{sip} Ni _{s0-m} Pd _s Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides.	
Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements		Microstructural Study of Ti _{sip} Pd _{s0} and Ti _{sip} Ni _{sio—x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in	1071-1081A 1719-1735A
Deformation Inhomogeneity and Representative Volume in PhSn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chro-	523-526B	Microstructural Study of Ti _{sip} Pd _{s0} and Ti _{sip} Ni _{sio—x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys.	1071-1081A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders.		Microstructural Study of Ti _{sip} Pd _{s0} and Ti _{sip} Ni _{sio—x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in	1071-1081A 1719-1735A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys.	523-526B 627-638A	Microstructural Study of Ti _{sip} Pd _{s0} and Ti _{sip} Ni _{si0} pd _s Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology	1071-1081A 1719-1735A 690-697A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems	523-526B 627-638A 2963-2972A	Microstructural Study of Ti _{io} Pd ₅₀ and Ti _{io} Ni _{io} pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying.	1071-1081A 1719-1735A 690-697A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nirtide in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminum Alloys. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System.	523-526B 627-638A 2963-2972A	Microstructural Study of Ti _{np} Pd _{s0} and Ti _{s0} Ni _{s0-m} Pd _s Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Al-	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al	523-526B 627-638A 2963-2972A 3399-3404A	Microstructural Study of Ti _{lop} Pd ₅₀ and Ti ₅₀ Ni _{50-w} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Alurninides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper)	1071-1081A 1719-1735A 690-697A 689-690A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L12 Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A	Microstructural Study of Ti _{lop} Pd ₅₀ and Ti ₅₀ Ni _{50-w} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-w} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Tranium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L12 Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper)	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A	Microstructural Study of Ti _{no} Pd _{s0} and Ti _{s0} Ni _{s0-w} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-w} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materi-	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L12 Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Tikeness on Fracture of Titanium—SiC Particulate Composites.	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A	Microstructural Study of Ti _{np} Pd _{s0} and Ti _{s0} Ni _{s0-w} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₂ —Al System. (Conference Paper)	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper)	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A	Microstructural Study of Ti _{np} Pd _{s0} and Ti _{s0} Ni _{s0-w} Pd _s Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper) Fabrication of Metal Matrix Composites of TiC—Alloys—Al System. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A
Deformation Inhomogeneity and Representative Volume in Ph/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference A Kinetic Model for Metal + Nonmetal Reactions. (Conference Me	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A	Microstructural Study of Ti _{no} Pd ₅₀ and Ti ₅₀ Ni ₅₀ pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti ₁ , Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper) Fabrication of Metal Matrix Composites of TiC—Al Through Self-Propagating Synthesis Reaction. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites.	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidilication Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interlacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al. Titanium, Extraction	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A	Microstructural Study of Ti _{np} Pd _{s0} and Ti _{s0} Ni _{s0-w} Pd _s Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₂ —Al System. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites.	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in NigAl. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria.	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A	Microstructural Study of Ti _{np} Pd ₅₀ and Ti ₅₀ Ni _{50-m} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at % Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-m} Mn _R Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al/Qp.—Al System, (Conference Paper) Fabrication of Metal Matrix Composites of TiC—Al Through Self-Propagating Synthesis Reaction. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites.	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in NigAl. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Titanium Tetrachloride-Supercritical Carbon Dioxide Interaction: a Solvent Extraction and Thermodynamic Study.	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A 2783-2790A	Microstructural Study of Ti _{nip} Pd _{s0} and Ti _{s0} Ni _{s0} pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti ₁ , Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₂ —Al System. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites. Titanium carbide, Microstructure Microstructural Characterization of Self-Propagating High-Temperature Synthesis Opnamically Compacted and Hot-Pressed Titanium Carbides. (Conference Paper) Titanium carbide, Powder technology	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2973-2379A 2387-2392A 2833-2847A
Deformation Inhomogeneity and Representative Volume in Pn/Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering) Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in Ni ₃ Al. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Titanium Tetrachloride-Supercritical Carbon Dioxide Interaction: a Solvent Extraction and Thermodynamic Study. Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metalic Iron.	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A 2783-2790A 57-64B	Microstructural Study of Ti _{np} Pd _{s0} and Ti _{s0} Ni _{s0-w} Pd _s Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper) The Effect of Particulate Reinforcement on the Silding Wear Behavior of Aluminum Matrix Composites. Titanium carbide, Microstructure Microstructural Characterization of Self-Propagating High-Temperature Synthesis Tynamically Compacted and Hot-Pressed Titanium Carbides. (Conference Paper) Titanium carbide, Microstructure Microstructural Characterization of Self-Propagating High-Temperature Synthesis Tynamically Compacted and Hot-Pressed Titanium Carbides. (Conference Paper)	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2973-2379A 2387-2392A 2833-2847A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in NigAl. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Titanium Tetrachloride-Supercritical Carbon Dioxide Interaction: a Solvent Extraction and Thermodynamic Study. Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron. Titanium, Phases (state of matter)	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A 2783-2790A 57-64B 65-72B	Microstructural Study of Ti _{np} Pd _{s0} and Ti _{s0} Ni _{s0-m} Pd _s Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-m} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper) The Effect of Particulate Reinforcement on the Silding Wear Behavior of Aluminum Matrix Composites. Titanium carbide, Microstructure Microstructural Characterization of Self-Propagating High-Temperature Synthesis and Subsequent Explosive Densilication of Titanium Carbide, Powder technology Combustion Synthesis and Subsequent Explosive Densilication of Titanium Carbide Ceramics. (Conference Paper)	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A 2833-2847A 87-97A 2365-2372A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in NigAl. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Titanium, Extraction and Thermodynamic Study. Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron. Titanium, Phases (state of matter) Thermal Stress and Strain Effects on Phase Transition Temperatures in Differential Thermal Analysis Testing.	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A 2783-2790A 57-64B 65-72B	Microstructural Study of Ti _{np} Pd ₅₀ and Ti ₅₀ Ni ₅₀ pd _x Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₂ —Al System. (Conference Paper) Fabrication of Metal Matrix Composites of TiC—Al Through Self-Propagating Synthesis Reaction. (Conference Paper) The Effect of Particulate Reinforcement on the Silding Wear Behavior of Aluminum Matrix Composites. Titanium carbide, Microstructure Microstructural Characterization of Self-Propagating High-Temperature Synthesis Dynamically Compacted and Hot-Pressed Titanium Carbides. (Conference Paper) Titanium carbide, Powder technology Combustion Synthesis and Subsequent Explosive Densification of Titanium Carbide Ceramics. (Conference Paper) Titanium carbide, Solubility of fitanium Carbide Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austenite and the Solubility of fitanium Carbide. Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austenite and the Folubility of fitanium Carbide.	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A 2833-2847A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Soldering) Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt. Chromium, and Titanium in Ni ₃ Al. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Titanium Textraction Chemical Potential of Thermodynamic Study. Entraned-Flow Chlorination of Ilmenite to Produce Titanium Tetrachoride and Metallic Iron. Titanium Talvas Strass and Strain Effects on Phase Transition Temperatures in Differential Thermal Analysis Testing.	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A 2783-2790A 57-64B 65-72B 261-266B	Microstructural Study of Ti _{no} Pd ₅₀ and Ti ₅₀ Ni ₅₀ pd ₆ Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti ₁ , Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₂ —Al System. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites. Titanium carbide, Microstructure Microstructural Characterization of Self-Propagating High-Temperature Synthesis Dynamically Compacted and Hot-Pressed Titanium Carbides. (Conference Paper) Titanium carbide, Powder technology Combustion Synthesis and Subsequent Explosive Densification of Titanium Carbides. (Conference Paper) Titanium carbide, Solubility Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austentie and the Solubility of fitanium Carbide.	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A 2833-2847A 87-97A 2365-2372A 709-727A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in NigAl. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Titanium Tetrachloride-Supercritical Carbon Dioxide Interaction: a Solvent Extraction and Thermodynamic Study. Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron. Titanium, Phases (state of matter) Thermal Stress and Strain Effects on Phase Transition Temperatures in Differential Thermal Analysis Testing. Titanium, Powder technology Combustion Synthesis and Subsequent Explosive Densification of Titanium Carbide Ceramics. (Conference Paper)	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A 2783-2790A 57-64B 65-72B 261-266B	Microstructural Study of Ti _{no} Pd ₅₀ and Ti ₅₀ Ni ₅₀ pd ₆ Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti ₁ , Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₂ —Al System. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites of TiC—All Through Self-Propagating Synthesis Reaction. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites. Titanium carbide, Microstructure Microstructural Characterization of Self-Propagating High-Temperature Synthesis/Dynamically Compacted and Hot-Pressed Titanium Carbides. (Conference Paper) Titanium carbide, Solubility Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austenite and the Solubility of 'fitanium Carbide. Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austenite and the Solubility of 'fitanium Carbide. Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austenite and the Solubility of 'fitanium Carbide. Experimental Investigation of the Thermodynamics of Fe—Nb—C Austenite and the Solubility of 'fitanium Carbide.	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A 2833-2847A 87-97A 2365-2372A 709-727A 729-744A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Alsystem. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in NigAl. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Titanium, Extraction and Thermodynamic Study. Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron. Titanium, Phases (state of matter) Thermal Stress and Strain Effects on Phase Transition Temperatures in Differential Thermal Analysis Testing. Titanium, Powder technology Combustion Synthesis and Subsequent Explosive Densification of Titanium Carbide Ceramics. (Conference Paper)	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A 2783-2790A 57-64B 65-72B 261-266B 451-455A	Microstructural Study of Ti _{np} Pd ₅₀ and Ti ₅₀ Ni ₅₀ pd ₆ Alloys Produced by Combustion Synthesis. (Conference Paper) The Structure and Mechanical Properties of Metallic Nanocrystals. (Conference Paper) Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides. Titanium base alloys, Phase transformations Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys. Titanium base alloys, Phases (state of matter) Silicide Phases in Some Complex Titanium Alloys. Titanium base alloys, Powder technology Amorphization of Ti _{1-x} Mn _x Binary Alloys by Mechanical Alloying. Titanium base alloys, Synthesis Numerical Modeling of Solidification Combustion Synthesis. (Conference Paper) Titanium carbide, Composite materials A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Combustion Synthesis of Ceramic—Metal Composite Materials: the TiC—Al ₂ O ₃ —Al System. (Conference Paper) The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites. Titanium carbide, Microstructure Microstructural Characterization of Self-Propagating High-Temperature Synthesis and Subsequent Explosive Densification of Titanium Carbides. (Conference Paper) Titanium carbide, Powder technology Combustion Synthesis and Subsequent Explosive Densification of Titanium Carbide Ceramics. (Conference Paper) Titanium carbide, Solubility Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austentie and the Solubility of fitanium Carbide. Experimental Investigation of the Thermodynamics of the Fe—Ti—C Austentie and Nonstoichiometric Niobium and Titanium Carbide, Synthesis Microstructural Characterization of Self-Propagating High-Temperature Synthesis/Dynamically Compacted and Hot-Publes.	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A 2833-2847A 87-97A 2365-2372A 709-727A 729-744A
Deformation Inhomogeneity and Representative Volume in Pp\Sn Solder Alloys. Tin nickel alloy plating See Nickel plating See Nickel plating Tinning (soldering) See Soldering) Titanium, Alloying elements Solubility of Titanium Nitride in Continuous Casting Powders. Substitutional Alloying and Deformation Modes in High Chromium Ferritic Alloys. Microstructure and Ordering of L1 ₂ Titanium Trialuminides. Effect of Gravity Level on Grain Refinement in Aluminum Alloys. Titanium, Binary systems Thermodynamic Assessment and Calculation of the Ti—Al System. Solidification Kinetics and Metastable Phase Formation in Binary Ti—Al. Titanium, Composite materials Metal—Ceramic Composites Based on the Ti—B—Cu Porosity System. (Conference Paper) The Effect of Interfacial Reaction Layer Thickness on Fracture of Titanium—SiC Particulate Composites. A Kinetic Model for Metal + Nonmetal Reactions. (Conference Paper) Titanium, Diffusion Diffusion of Cobalt, Chromium, and Titanium in NigAl. Titanium, Extraction Chemical Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ilvospinel Equilibria. Titanium Tetrachloride-Supercritical Carbon Dioxide Interaction: a Solvent Extraction and Thermodynamic Study. Entrained-Flow Chlorionation of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron. Titanium, Phases (state of matter) Thermal Stress and Strain Effects on Phase Transition Temperatures in Differential Thermal Analysis Testing. Titanium, Powder technology Combustion Synthesis and Subsequent Explosive Densification of Titanium Carbide Ceramics. (Conference Paper)	523-526B 627-638A 2963-2972A 3399-3404A 2081-2090A 2699-2714A 251-261A 977-988A 2349-2356A 2783-2790A 57-64B 65-72B 261-266B 451-455A 2365-2372A	Microstructural Study of Ti _{lop} Pd ₅₀ and Ti ₅₀ Ni ₅₀	1071-1081A 1719-1735A 690-697A 689-690A 2105-2110A 23-34A 2349-2356A 2373-2379A 2387-2392A 2833-2847A 87-97A 2365-2372A 709-727A 729-744A

Titanium compounds, Composite materials Boride-Alumina Composites: Synthesis and Fabrication. (Conference Paper)	2381-2385A	Iron compounds Nickel compounds Titanium compounds	
Titanium compounds, Heat treatment Segregation and Homogenization of a Near-Gamma Titanium		Zirconium compounds Transition metals	
Aluminide. (Conference Paper) Transformations in a Ti—24Al—15Nb Alloy. I. Phase Equilib-	149-161A	See Cadmium Cobalt	
ria and Microstructure. Transformations in a Ti—24Al—15Nb Alloy, II, A Composi-	401-415A	Copper Hafnium	
tion Invariant $\beta_0 \rightarrow 0$ Transformation.	417-431A	Iron Manganese	
Titanium compounds, Mechanical properties Influence of Microstructure on Intrinsic and Extrinsic Tough-		Mercury Nickel	
ening in an Alpha-Two Titanium Aluminide Alloy. (Conference Paper)	183-199A	Titanium Zinc	
Plastic-Flow Behavior and Microstructural Development in a Cast Alpha-Two Titanium Aluminide. (Conference Paper)	295-305A	Zirconium	
Microstructures and Property Tradeoffs in Wrought TiAl- Base Alloys.	375-377A	Transmission electron microscopy New Observation of Martensitic Morphology and Substruc-	
Developing Hydrogen-Tolerant Microstructures for an α_2 Titanium Aluminide Alloy.	497-507A	ture Using Transmission Electron Microscopy. An Interpretation of the Carbon Redistribution Process Dur-	1413-1421A
An Analysis of the Isothermal Hot Compression Test. Hydrogen Effects on Brittle Fracture of the Titanium Alumi-	963-975A	ing Aging of High Carbon Martensite. Crystallographic Relationships of the Al ₄ Cr Crystalline and	2147-2158A
nide Alloy Ti—24Al—11Nb. Superplastic Behavior of Two-Phase Titanium Aluminides.	1299-1312A 1509-1513A	Quasicrystalline Phases. Metastable Precipitate in a Duplex Martensite + Ferrite	2437-2445A
An Investigation of the Fracture Behavior of Gamma-Based Titanium Aluminides: Effects of Annealing in the $\alpha + \gamma$ and		Precipitation-Hardening Stainless Steel. Atom Probe Examination of Thermally Aged CF8M Cast	2447-2453A
α ₂ + γ Phase Fields. (Conference Paper)	2039-2059A	Stainless Steel.	2725-2736A
Titanium compounds, Microstructure Microstructural Study of Ti ₅₀ Pd ₅₀ and Ti ₅₀ Ni _{50—x} Pd _x Alloys Produced by Combustion Synthesis. (Conference Paper)	50.044	Transuranium metal alloys See Plutonium base alloys	
Titanium compounds, Phase transformations	59-64A	TTT curves Transformations in a Ti—24AI—15Nb Alloy. I. Phase Equilib-	
Observation of a Massive Transformation from α to γ in Quenched Ti-48 at.% Al Alloys.	690-697A	ria and Microstructure. The Time—Temperature-Transformation Diagram Within the	401-415A
Titanium compounds, Powder technology	000 00174	Medium Temperature Range in Some Alloy Steels. Correction to 'The Time—Temperature-Transformation Dia-	785-795A
Dynamic Compaction of Titanium Aluminides by Explosively Generated Shock Waves: Microstructure and Mechanical		gram Within the Medium Temperature Range in Some Alloy	785-795A
Properties.	3251-3261A	Steels". Tundishes	/85-/95A
Titanium compounds, Reactions (chemical) Deoxidation of Titanium Aluminide by Ca—Al Alloy Under	E00 E00D	Effect of Slag Cover on Heat Loss and Liquid Steel Flow in Ladles Before and During Teeming to a Continuous Casting	
Controlled Aluminum Activity. Titanium compounds. Synthesis	583-590B	Tundish. Effect of Holding Time and Surface Cover in Ladles on Liquid	135-151B
Titanium compounds, Synthesis Shock-Induced and Self-Propagating High-Temperature Syn- thesis Reactions in Two Powder Mixtures: 5:3 Atomic Ratio		Steel Flow in Continuous Casting Tundishes.	153-167B
Ti/Si and 1:1 Atomic Ratio Ni/Si. (Conference Paper)	55-58A	Tungsten, Alloying elements Effects of Tungsten Content on the Creep-Rupture Proper-	
Titanium nitride, Synthesis Reaction Synthesis Processes: Mechanisms and Character-		ties of Low-Carbon Cobalt-Base Heat-Resistant Alloys. The Effect of Tungsten on Creep Behavior of Tempered Mar-	609-616A
istics. (Conference Paper)	7-13A	tensitic 9Cr Steels.	3025-3034A
Titanium ores See Ilmenite		Tungsten, Composite materials Tensile Strain-Rate Sensitivity of Tungsten/Niobium Com-	2404 24224
Tool steels See Carbon tool steels		posites at 1300 to 1600K. Tungsten, Crystal growth	3121-3133A
High speed tool steels		Effects of Vibration on the Grain Morphology of Some Tung- sten Incandescent Lamp Filaments.	2259-2262A
Torsion tests Dynamic Restoration Mechanisms in Al—5.8 at.% Mg De-		Tungsten, Mechanical properties	
formed to Large Strains in the Solute Drag Regime. Torsional modulus	881-889A	Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis-	
See Shear modulus		locations. Tungsten arc welding	3115-3120A
Torsional strength See Shear strength		See Gas tungsten arc welding	
Total heat See Enthalpy		Tungsten base alloys, Mechanical properties Sintering Time and Atmosphere Influences on the Micro-	
Toughness		structure and Mechanical Properties of Tungsten Heavy Al- loys. (Conference Paper)	211-219A
See also Fracture toughness		Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys.	2625-2630A
Toughness, Alloying effects Substitutional Alloying and Deformation Modes in High Chro-	627-638A	Tungsten base alloys, Powder technology	
mium Ferritic Alloys. Tracers	027-038A	Observations on the Evolution of Potassium Bubbles in Tung- sten Ingots During Sintering. (Conference Paper)	121-133A
See Radioactive tracers		Collapse of Interconnected Open Pores in Solid-State Sinter- ing of WNi.	2141-2145A
Tracing (radioactive) See Radioactive tracers		Tungsten inert gas welding See Gas tungsten arc welding	
Transformations (materials) See Phase transformations		Tungsten lamps	
Transformer steels		See Incandescent lamps	
See Electrical steels Transgranular fracture, Microstructural effects		Turbine blades Fracture Behavior of a B2Ni—30Al—20Fe—0.05Zr Intermet-	1001 17004
The Influence of Morphology and Distribution of α Phase on		allic Alloy in the Temperature Range 300-1300K. Deformation Behavior of a Ni—30AI—20Fe—0.05Zr Inter-	1691-1703A
the Properties of Polycrystalline CuZnAl Shape Memory Alloy.	2939-2941A	metallic Alloy in the Temperature Range 300-1300K. Turbines	1705-1718A
Transistors Thermodynamic Investigations of Tellurium-Saturated Solid		See Gas turbine engines	
CdSe—CdTe Alloys.	467-476B	Tuyeres, Design A Fundamental Study of Raceway Size in Two Dimensions.	267-283B
Transition metal alloys See Cobalt base alloys		Twinning	
Copper base alloys Ferrous alloys		Development of Iron-Based Shape Memory Alloys Associ- ated With Face-Centered Cubic—Hexagonal Close-Packed	4445 44544
Hafnium base alloys Manganese base alloys		Martensitic Transformations. III. Microstructures. Observation of [011] Twins in Fe—Ni—C Martensite Using	1445-1454A
Nickel base alloys Titanium base alloys		Neutron Powder Diffraction. Influence of Microstructure on Crack-Tip Micromechanics	1617-1626A
Zinc base alloys Zirconium base alloys		and Fracture Behaviors of a Two-Phase TiAl Alloy. A Study of Stacking Faults in Deformed Austenitic Stainless	1663-1677A
Transition metal compounds See Cadmium compounds		Steel by X-Ray Diffraction. Twinning, Composition effects	2859-2861A
Cobalt compounds Copper compounds		The Microstructure of Electrodeposited Titanium—Aluminum Alloys.	2715-2723A
zappo. compound			

Twinning, Heating effects New Observation of Martensitic Morphology and Substructure Using Transmission Electron Microscopy.	1413-1421A	Viscous flow On the Drag of Model Dendrite Fragments at Low Reynolds Number.	2169-2181A
Twinning, Stress effects Room-Temperature Deformation and Stress-Induced Phase		Voids Void Growth and Coalescence in Constrained Silver Interlay-	
Transformation of Laves Phases in Fe—10 at.% Zr Alloy. Udylite process	3303-3308A	ers. Void Nucleation in Constrained Silver Interlayers.	3273-3280A 3281-3291A
See Electroplating Ultimate shear strength		Voids, Diffusion effects On Void Nucleation and Growth in Metal Interconnect Lines	2007-2013A
See Shear strength Ultimate tensile strength		Under Electromigration Conditions. Voids, Radiation effects Relationships Between Phase Stability and Void Swelling in	2007-2013A
See Tensile strength Ultrafines, Powder technology		Fe—Cr—Ni Alloys During Irradiation. Volatilizing	1977-1986A
An Investigation of Silicon Carbide Synthesis in a Nontrans- ferred Arc Thermal Plasma Reactor.	443-451B	See Vaporizing	
Ultrasonic testing Nondestructive Evaluation for Large-Scale Metal-Matrix Composite Billet Processing.	1541-1549A	Warm working Grain Refinement by Dynamic Recrystallization During the Simulated Warm-Rolling of Interstitial Free Steels.	2607-2617A
Ultrasonics Application of Ultrasound in Extractive Metallurgy: Sono- chemical Extraction of Nickel.	13-22B	Waste disposal Studies in the Carbothermic Reduction of Phosphogypsum. Waste incineration	567-572B
Undercooling See Supercooling	10-220	See Waste disposal Wastes	
UP hardfacing method		See Industrial wastes	
See Hard surfacing Uranium, Extraction		Water See also Salt water	
Percolation Bacterial Leaching of Rajpura Dariba Ore in 4 Ton Column. V notch Charpy impact tests	91-93B	Water, Environment The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni—16Cr—9Fe in 360°C Argon and High-	
See Impact tests		Purity Water. Water cooling	1195-1206A
V notch Charpy tests See Impact tests Vacuum		A Numerical and Experimental Study of the Solidification Rate in a Twin—Belt Caster.	477-492B
Fatigue Crack Tip Deformation Processes as Influenced by the Environment.	2211-2221A	Water cooling (cooling of water) See Water cooling	
Vacuum drilling See Drilling Vacuum sintering		Water quenching Dissolution of Particles in Binary Alloys. II. Experimental Investigation on an AI—Si Alloy. Phase Transition in an Fe—23.2AI—4.1Ni Alloy.	445-449A 1395-1401A
Influence of Atmosphere on Sintering of T15 and M2 Steel Powders.	389-400A	Homogeneous Nucleation Kinetics of Al ₃ Sc in a Dilute Al—Sc Alloy.	1947-1955A
Vanadium, Alloying effects Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. II. Oxidation Behavior.	2631-2639A	An Interpretation of the Carbon Redistribution Process Dur- ing Aging of High Carbon Martensite. Grain Refinement by Dynamic Recrystallization During the	2147-2158A
Vanadium, Alloying elements	2031-2039A	Simulated Warm-Rolling of Interstitial Free Steels. Wear rate, Size effects	2607-2617A
Nonequilibrium Synthesis of NbAl ₃ and Nb—Al—V Alloys by Laser Cladding. I. Microstructure Evolution.	2419-2429A	The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites.	2833-2847A
Vanadium, Binary systems Note on the Thermochemistry of the Au + V, Au + Nb, and Au + Ta Systems.	1836-1839A	Wear resistance, Composition effects Characterization of Stainless Steels Melted Under High Nitrogen Pressure. (Conference Paper)	2061-2068A
Vanadium, Mechanical properties Application of Nonlocal Elasticity to the Energetics for Solute Atoms in Body-Centered Cubic Transition Metals With Dis- locations.	3115-3120A	Wear resistance, Size effects The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites.	2833-2847A
Vapor deposited coatings, Diffusion Diffusion Mechanisms in Chemical Vapor-Deposited Iridium		Weld defects A Model for the Formation and Solidification of Grain Boundary Liquid in the Heat-Affected Zone (HAZ) of Welds.	1783-1799A
Coated on Chemical Vapor-Deposited Rhenium. Vapor deposition See also Chemical vapor deposition	851-855A	Weld metal, Mechanical properties A Comparison of Toughness of C—Mn Steel With Different Grain Sizes.	2549-2556A
Laser-Enhanced Sputter or Vapor Deposition of Thin Metallic Films on Ceramic Substrates. (Conference Paper)	1095-1103A	Welded joints, Mechanical properties	2040-20001
Vapor phases Homogeneous Nucleation of Liquid From the Vapor Phase in an Expansion Cloud Chamber.	1957-1961A	Microstructural Damage and Residual Mechanical Properties in Helium-Bearing Gas Metal Arc Weldments. Correlation of Microstructure and Fracture Properties in Weld Heat-Affected Zones of Thermomechanically Controlled	1021-1032A
Vapor pressure Comparative Investigations Among Binary Molten Salt Mix-		Processed Steels. Welded joints, Reactions (chemical)	2803-2816A
tures PbCl ₂ —AgCl, PbCl ₂ —LiCl, and PbCl ₂ —KCl Using an Isopiestic Technique. The Thermochemistry of Magnesium in Nickel-Base Alloys. I.	666-669B	Interface Microchemistry of Silicon Nitride/Nickel— Chromium Alloy Joints.	1773-1781A
The Determination of Thermochemical Parameters Using the Atomic Absorption Technique. The Thermochemistry of Magnesium in Nickel-Base Alloys. II.	791-803B	Welding See Fusion welding	
Activity of Magnesium.	805-814B	Welding current On the Calculation of the Free Surface Temperature of Gas-	
Vapor pressure, Alloying effects Discussion of "Quadratic Formalism for Magnesium in Liquid Iron".	665B	Tungsten-Arc Weld Pools From First Principles. I. Modeling the Welding Arc. On the Calculation of the Free Surface Temperature of Gas-	357-369B
Vaporizing Plasma—Particle Interactions in Plasma Spraying Systems.	683-693B	Tungsten-Arc Weld Pools From First Principles. II. Modeling the Weld Pool and Comparison With Experiments.	371-384B
Vibration See Lattice vibration		Welding fumes On the Calculation of the Free Surface Temperature of Gas-	
Vickers hardness See Diamond pyramid hardness		Tungsten-Arc Weld Pools From First Principles. II. Modeling the Weld Pool and Comparison With Experiments.	371-384B
Video Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numeri-		Welding parameters On the Calculation of the Free Surface Temperature of Gas- Tungsten-Arc Weld Pools From First Principles. I. Modeling the Welding Arc.	357-369B
cal and Experimental Results. Viscoplasticity	701-718B	On the Calculation of the Free Surface Temperature of Gas- Tungsten-Arc Weld Pools From First Principles. II. Model- ing the Weld Pool and Comparison With Experiments.	
An Experimental and Numerical Study of Cyclic Deformation in Metal—Matrix Composites.	919-934A	ing the weld Pool and Comparison With Experiments. Energy-Beam Redistribution and Absorption in a Drilling or Welding Cavity.	371-384B 505-511B
Viscosity Discussion of "Calculation of Viscosity From the Associated Solution Model".	101-103B	Correlation of Microstructure and Fracture Properties in Weld Heat-Affected Zones of Thermomechanically Controlled Processed Steels	

Welds See Welded joints		Yield strength, Deformation effects Strengthening in Multiphase (MP35N) Alloy. I. Ambient Tem-	
Wettability A Thermodynamic Criterion to Predict Wettability at Metal/		perature Deformation and Recrystallization. (Conference Paper)	307-319A
Alumina Interfaces. Wetting A Thermodynamic Criterion to Predict Wettability at Metal/	215-222B	Yield strength, Environmental effects Corrosion Fatigue of a Precipitation-Hardened Al—Li—Zr Alloy in a 0.5M Sodium Chloride Solution.	1563-1572A
Alumina Interfaces. Fabrication of Fiber-Reinforced Metal-Matrix Composites by	215-222B	Yield strength, Heating effects The Effect of Aging on the Hydrogen-Assisted Fatigue Crack-	
Variable Pressure Infiltration. Wetting of SAFFIL Alumina Fiber Preforms by Aluminum at	295-302B	ing of a Precipitation-Hardened Al—Li—Zr Alloy. Instabilities in Stabilized Austenitic Stainless Steels.	1551-1562A 2455-2467A
973K. (Conference Paper)	2071-2073A	Low-Temperature Creep of a Carburized Steel.	2619-2624A
Infiltration of Fiber Preforms by an Alloy. III. Die Casting Experiments. Planar to Equiaxed Transition in the Presence of an External	2281-2289A	Yield strength, Microstructural effects Microstructure and Tensile Properties of Fe ₃ Al Produced by Combustion Synthesis/Hot Isostatic Pressing. (Conference	
Wetting Surface. Whisker composites, Crystal growth	3361-3368A	Paper) Sintering Time and Atmosphere Influences on the Micro-	35-40A
Recovery and Recrystallization in Cold-Rolled Al—SiC _w Composites.	807-819A	structure and Mechanical Properties of Tungsten Heavy Al- loys. (Conference Paper) Superplastic Behavior of Two-Phase Titanium Aluminides.	211-219A 1509-1513A
Whisker composites, Mechanical properties Metal—Ceramic Composites Based on the Ti—B—Cu Po-		High-Temperature Low-Cycle Fatigue Behavior of a NI- MONIC PE-16 Superalloy—Correlation With Deformation	
rosity System. (Conference Paper) An Experimental and Numerical Study of Cyclic Deformation	251-261A	and Fracture. A Comparison of Toughness of C—Mn Steel With Different	1751-1761A
in Metal—Matrix Composites. Fracture Mechanisms of a 2124 Aluminum Matrix Composite Reinforced With SiC Whiskers.	919-934A 2589-2596A	Grain Sizes. Effect of Strain Rate on Cell Size Refinement and Strengthen- ing in Nickel and Aluminum.	2549-2556A 3166-3169A
Whisker composites, Synthesis		Yield strength, Temperature effects The Plastic Deformation of an α-Ti Alloy and Its Thermal Acti-	
Combustion Synthesis of Ni ₃ Al and Ni ₃ Al-Matrix Composites. (Conference Paper) White iron, Heat treatment	69-76A	vation Process vs. Effective Stress. (Conference Paper) Microstructure, Excess Solid Solubility, and Elevated- Temperature, Machanical Behavior of Spray-Atomized and	335-340A
Effect of Heat Treatment on the Hardness—Microstructure Inter-Relation in a 7.5Mn—5Cr—1.5Cu Alloy White Iron: a		Codeposited AI—Ti—SiC _p . Thermal Stress and Strain in a Metal Matrix Composite With	719-736B
Modeling Approach. White iron, Phases (state of matter)	891-901A	a Spherical Reinforcement Particle. Thermal Activation Model of Endurance Limit. Optimization of Hot Workability in Stainless Steel-Type AISI	2205-2210A 2597-2605A
Fractal Analysis of Carbide Morphology in High-Chromium White Cast Irons.	2941-2945A	304L Using Processing Maps.	3093-3103A
White metal (copper matte)		Yield stress See Yield strength	
See Copper mattes Widmanstatten structure		Youngs modulus See Modulus of elasticity	
Influence of Microstructure on Intrinsic and Extrinsic Tough- ening in an Alpha-Two Titanium Aluminide Alloy. (Confer-		Zinc, Alloying elements	
ence Paper) An Investigation of the Effects of Microstructure on the Fa-	183-199A	Beam Focusing Characteristics and Alloying Element Effects on High-Intensity Electron Beam Welding.	81-90B
tigue and Fracture Behavior of $\alpha_2+\beta$ Forged Ti—24Al—11Nb.	1737-1750A	Zinc, Extraction Percolation Bacterial Leaching of Rajpura Dariba Ore in	91-93B
Wire bar See Billets		4 Ton Column. Zinc, Ternary systems	91-935
Wolfram See Tungsten		Thermodynamic Properties in the Liquid Ag—Sb—Zn System.	601-611B
Work functions Thermodynamic Formula for Evaluating the Reversible Work to Form a Critical Nucleus and Influence of Critical Nucleus	1000 10011	Zinc base alloys, Coatings Intermetallic Phases Formed During Hot Dipping of Low Carbon Steel in a Zn—5Al Melt at 450°C.	2393-2400A
Size Upon Interfacial Tension. Work hardening See Strain hardening	1869-1881A	Zinc base alloys, Microstructure Heterogeneous Nucleation of Lead Particles Embedded in a Zinc Matrix.	3207-3218A
Work softening		Zirconium, Diffusion Diffusion Reaction in the Zirconium—Copper System.	1373-1375A
See Strain softening Work strengthening		Discussion of "Diffusion Reaction in the Zirconium-Copper System" and Reply.	3393-3394A
See Strain hardening		Zirconium, Dopants	3030-30347
Workability See also Formability Hot workability		Correlation of Deformation Mechanisms With the Tensile and Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Al- loys.	1493-1508A
Flow Softening and Microstructure Evolution During Hot Working of Wrought Near-Gamma Titanium Aluminides.	1719-1735A	Zirconium, Phases (state of matter) Thermal Stress and Strain Effects on Phase Transition Tem-	451-455A
X ray absorption In-Plane Structure and Properties of Iron Multilayers. (Con-	1105-1109A	peratures in Differential Thermal Analysis Testing. Zirconium, Reactions (chemical)	451-455A
ference Paper) X ray analysis	1103-1103A	Thermochemistry of Binary Alloys of Transition Metals: the Me—Ti, Me—Zr, and Me—Hf (Me = Silver, Gold) Sys-	
See X ray diffraction		tems.	997-1003A
X ray diffraction In-Plane Structure and Properties of Iron Multilayers. (Conference Paper)	1105-1109A	Zirconium, Recovering A Possible Method for the Characterization of Amorphous Slags: Recovery of Refractory Metal Oxides From Tin Slags.	249-259B
Lattice Imperfections Studied by X-Ray Diffraction in De- formed Aluminum-Base Alloys: Al—Cu Alloy. A Study of Stacking Faults in Deformed Austenitic Stainless	1371-1373A	Zirconium base alloys, Crystal growth	245-2350
A Study of Stacking Faults in Deformed Austennic Stainless Steel by X-Ray Diffraction. X ray diffractometer	2859-2861A	Finite Element Calculations of the Accommodation Energy of a Misfitting Precipitate in an Elastic—Plastic Matrix.	797-806A
See X ray diffraction		Zirconium base alloys, Joining Diffusion Reaction in the Zirconium—Copper System.	1373-1375A
Yield Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron.	261-266B	Zirconium base alloys, Microstructure Evolution of Textures in Zirconium Alloys Deformed Uniaxi-	271-293A
Yield strain See Strain		ally at Elevated Temperatures. (Conference Paper) Zirconium base alloys, Powder technology Morphological and Calorimetric Studies on the Amorphiza-	211-293A
Yield strength Deformation Inhomogeneity and Representative Volume in Pb/Sn Solder Alloys.	479-484A	tion Process of Rod-Milled Al ₅₀ Zr ₅₀ Alloy Powders. Zirconium compounds, Composite materials	2131-2140A
Yield strength, Composition effects An Experimental and Numerical Study of Cyclic Deformation		Boride-Alumina Composités: Synthesis and Fabrication. (Conference Paper) Zirconium compounds, Mechanical properties	2381-2385A
in Metal—Matrix Composites. Yield strength, Corrosion effects	919-934A	Mechanical Behavior and Microcracking of Cubic Ternary Zir- conium Trialuminides.	617-625A
Degradation of Plastic Properties After Electrocharging in 1N H ₂ SO ₄ .	1375-1379A	Structure and Mechanical Properties of Boron-Doped Cubic Zirconium Trialuminides.	1243-1252A

Understanding the High-Temperature Deformation Behavior of an Ordered Ir₃Zr Intermetallic Compound. 3073-3076A

