2nd Class Test on

Cryptography and Network Security (CS60065)

Duration: 1 hour

Time: 12 noon

Date: 9.11.2022

Full Marks - 20

Answer All the Questions

(a) Write down the Wiener's attack Theorem. (b) Compute the continued fraction expansion of 35/99 by applying the Euclidean Algorithm.

(c) Also derive the convergents of the above continued fraction.

[1+1.5+2.5]

2. (a) Let g be a primitive root for Fp. Suppose that x = a and x = b are both integer solutions to the congruence $g^x \equiv h \pmod{p}$. Prove that $a \equiv b \pmod{p-1}$.

(b) Suppose that p > 2 is prime and $\alpha \in \mathbb{Z}_p^*$. Then prove that α is a primitive element modulo p if and only if $\alpha^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all primes q such that $q \mid (p-1)$.

(c) Calculate the time complexity of Pollard p-1 algorithm.

[2+2+1]

3. (A) After having studied the Diffic-Hellman protocol, a young cryptographer decides to implement it. In forder to simplify the implementation, he decides to use the additive group (Zp, +) instead of the multiplicative one $(\mathbb{Z}_p^*, .)$. As an experienced cryptographer, what do you think about this new protocol?

(b) Suppose Bob has an RSA Cryptosystem with a large modulus n for which the factorization can't be found, e.g., n is 1024 bits long and Alice sends a message to Bob by representing each alphabetic character as an integer between 0 and 25 (i.e., $A \rightarrow 0$, $B \rightarrow 1, \dots Z \rightarrow 25$) and then encrypting each letter as a separate plaintext character. Describe how an eavesdropper can easily decrypt a message which is encrypted in this way.

[2+3]

4. Consider the Diffie-Hellman key exchange procedure between Alice and Bob. Alice selects a large prime number p and a multiplicative generator g (mod p). Both p and g are made public. Alice picks a secret random x, with $1 \le x \le (p-2)$. She sends $M_A = g^x \pmod{p}$ to Bob. Bob picks a secret random y, with 1 $\leq y \leq (p-2)$. He sends $M_B = g^y \pmod{p}$ to Alice. Using the received messages, Bob and Alice compute the shared session key K.

Suppose Eve discovers that p = Tq + 1, where q is an integer and T is small. Eve intercepts M_A and M_B sent by Alice and Bob respectively. Eve sends Bob $M_A^q \pmod{p}$, and sends Alice $M_B^q \pmod{p}$.

Show that Alice and Bob calculate the same shared key K'.

Show that there are only T possible values for K', so Eve may find K' by exhaustive search.

[2+3]