been identified. Characteristics of a new variety of spring durum wheat groats directions Bezenchuk-Orlovskaya 1, handed over in 2016 to the State Variety Test, was given.

Keywords: selection, spring hard wheat, interspecific hybrids, hulless emmer wheat, variety, line, yield.

УДК 633.2

СТРУКТУРА И КАЧЕСТВО КОРМОВОЙ МАССЫ РАЗЛИЧНЫХ ВИДОВ МНОГОЛЕТНИХ ТРАВ

З.А. ЗАРЬЯНОВА, С.В. КИРЮХИН, С.В. БОБКОВ,

кандидаты сельскохозяйственных наук

Д.Е. МЕРКУЛОВ

ФГБНУ «ВНИИ ЗЕРНОБОБОВЫХ И КРУПЯНЫХ КУЛЬТУР»

E-mail: office@vniizbk.orel.ru

Проведено изучение структуры сухого вещества различных видов и сортов многолетних трав. Установлено, что их кормовая масса состояла из 28,2-65,5% стеблей (в среднем 48,3%), и 34,5-71,8% листьев и соцветий (в среднем 51,7%). Содержание сырого протеина в кормовой массе отдельных видов многолетних трав колебалось от 6,3 до 19,3%. В сухом веществе бобовых трав содержалось 14,9-19,6% сырого протеина, злаковых трав — 6,3-14,3%. Наибольшее количество сырого протеина было сосредоточено во фракциях листьев и соцветий — 58,0-84,5% (в среднем 71,2%). В стеблях содержалось 15,6-42,0% (в среднем 28,8%) сырого протеина кормовой массы. Наибольшим сбором сырого протеина с урожаем характеризовались клевер луговой, люцерна изменчивая, эспарцет песчаный, кострец безостый, канареечник тростниковый.

Ключевые слова: многолетние травы, виды, урожайность, сухое вещество, сырой протеин, структура урожая, листья, стебли, облиственность.

Наиболее дешёвым и доступным источником кормов для животноводства являются многолетние травы. Эти культуры используются для получения высокопитательной кормовой массы, богатой протеином, углеводами, ценными аминокислотами, витаминами, макро- и микроэлементами [1].

Многолетние травы неприхотливы к условиям произрастания, возделываются на полевых землях, сенокосах и пастбищах для получения зелёного корма, сена, сенажа, силоса, сенной муки, гранул, брикетов. Они хорошо сочетаются в травосмесях, а имея различную скороспелость, используются в системе зелёного конвейера [1, 2, 3, 4, 5].

Полезным качеством многолетних трав является их почвоулучшающая способность. Благодаря симбиозу с азотофиксирующими бактериями, бобовые многолетние травы обогащают почву азотом, доступным для усвоения другими растениями. Злаковые многолетние травы улучшают структуру почвы, препятствуют ветровой и водной эрозии. Использование бобовых и бобово-злаковых травосмесей многолетних трав в севооборотах увеличивает урожаи зерновых, крупяных, пропашных культур за счёт обогащения почвенной среды легкоусвояемым азотом. При этом увеличивается эффективность применения других агротехнических мероприятий, усиливается действие различных препаратов и ростактивирующих веществ [1, 6, 7, 8].

Питательная ценность кормовой массы многолетних трав определяется сочетанием органических и минеральных веществ в их составе. Важным показателем качества корма является содержание в его составе белка, являющегося незаменимым элементом питания животных. Содержание протеина в кормовой массе в значительной степени определяется структурой урожая многолетних трав. Наиболее богатой белком частью растений являются листья, они мягче и нежнее стеблей, содержат меньше клетчатки и охотнее поедаются

животными. Вследствие этого имеет значение подбор для возделывания сортов, имеющих высокую облиственность. Вследствие случающихся потерь части листьев при заготовке сена необходимо подбирать для возделывания виды и сорта многолетних трав, имеющих высокое содержание протеина не только в листьях, но и в стеблях [9, 10, 11].

Использование видов и сортов многолетних трав с высокой продуктивностью кормовой массы, повышенным содержанием протеина, адаптированных к условиям произрастания, позволит повысить эффективность отрасли кормопроизводства Орловской области.

Материал и методика исследований

Исследования были проведены в 2014-2015 гг. на базе опытного поля ВНИИ зернобобовых и крупяных культур, в условиях северной части Центрально-Чернозёмного региона и лесостепной зоны РФ. Почва опытного участка места проведения опытов — тёмносерая лесная среднесуглинистого состава, слабокислая (р $H_{\text{сол.}} = 5,5$). Содержание гумуса составляет 5,1%, $K_2O - 7,8$ мг/100 г почвы, $P_2O_5 - 18,6$ мг/100 г почвы.

Закладка питомников, полевые наблюдения, оценка морфологических и хозяйственных признаков, учёт урожайности проведены в соответствии с общепринятыми методическими указаниями [12]. Посев делянок был осуществлён селекционной сеялкой СКС-6-10 рядовым способом (расстояние между рядками – 0,15 м). Площадь делянки – 10 м², повторность – четырёхкратная. Урожайность зелёной массы учитывали в фазу начала цветения культур путём скашивания и взвешивания кормовой массы с делянок. Сбор сухого вещества определяли методом пробного снопа весом 1 кг, отобранного во время учёта урожайности зелёной массы, с последующим его высушиванием до воздушно-сухого состояния и взвешивания. Качество корма видов и сортов многолетних трав определяли в лаборатории физиологии и биохимии института на основе химического анализа средних проб. отобранных в фазу начала цветения. Содержание общего азота устанавливали по методу Къельдаля на анализаторе ИДК – 152 с использованием VELP Scientifica (Италия). Коэффициент перевода общего азота в сырой протеин – 6,25 [13]. Сбор сырого протеина с урожаем определяли путём перерасчёта его содержания в образце на урожайность сухого вещества. В исследовании были представлены 19 сортов и селекционных номеров 11 различных видов многолетних трав, полученных от ведущих научно-исследовательских учреждений Российской Федерации (табл. 1).

Таблица 1 Наименование и происхождение видов и сортов многолетних трав, представленных в исследовании (2014-2015 гг.)

представленных в исследовании (2014-2013 11.)							
№ п/п	Вид многолетних трав	Сорт многолетних трав	Происхождение				
1.	Клевер луговой	Памяти Лисицына	вниизьк				
2.	Клевер белый	ВИК 70	ВНИИ кормов				
3.	Лядвенец рогатый	Мозырянин	Беларусь				
4.	Люцерна изменчивая	Bera 87	ВНИИ кормов				
5.	Люцерна изменчивая	Превосходная	Беларусь				
6.	Эспарцет песчаный	Павловский	Воронежская ОС				
7.	Эспарцет песчаный	СибНИИК 30	СибНИИ кормов				
8.	Эспарцет песчаный	Михайловский 5	СибНИИ кормов				
9.	Эспарцет песчаный	Розовый 95	НИИСХ Юго-Востока				
10.	Двукисточник тростниковый	Первенец	Ленинградский НИИСХ				
11.	Житняк гребневидный	Павловский 12	Воронежская ОС				
12.	Кострец безостый	СГП 07/12	ВНИИЗБК				
13.	Кострец безостый	Павловский 22/05	Воронежская ОС				
14.	Кострец безостый	Воронежский 17	Воронежская ОС				
15.	Кострец безостый	Усход	Беларусь				
16.	Овсяница луговая	ВИК 5	ВНИИ кормов				
17.	Овсяница луговая	Зорька	Беларусь				
18.	Райграс пастбищный	ВИК 66	ВНИИ кормов				
19.	Тимофеевка луговая	СГП 04/09	ВНИИЗБК				

Метеорологические условия 2014-2015 гг. характеризовались повышенной температурой воздуха и пониженным количеством осадков в период активной вегетации растений в сравнении с многолетними данными. Среднемесячная температура воздуха в маеавгусте 2014 года была выше многолетних данных на $2,1\,^{0}$ С, 2015 года — на $1,4\,^{0}$ С. Сумма осадков в среднем за месяц этого периода составляла к многолетнему уровню 66,9% и 67,0% соответственно.

Результаты исследований и их обсуждение

Изучение структуры урожая кормовой массы показало, что сухое вещество многолетних трав содержало от 28,2 до 65,5% стеблей (в среднем 48,3%), и от 34,5 до 71,8% листьев и соцветий (в среднем 51,7%) (табл. 2).

В 2014 году по наибольшему содержанию стеблей в сухой массе выделялись тимофеевка луговая и кострец безостый (65,5 и 63,3% соответственно). Также была высокая доля стеблей у люцерны изменчивой -60,1% и двукисточника тростникового -55,2%. У сортов клевера лугового средняя доля стеблей в сухой массе составляла 51,6%. Доля листьев и соцветий была наиболее высокой у клевера белого -67,7%, лядвенца рогатого -57,6%, эспарцета песчаного -57,2% и райграса пастбищного -53,2%.

В 2015 году более половины стеблей в сухой массе имели только растения житняка гребневидного – 55,5%. Сухая масса остальных трав содержала больше листьев и соцветий. Выделились по этому показателю овсяница луговая – 71,8% и двукисточник тростниковый – 64,0%. Облиственность других трав в опыте составляла 50,3-53,2%. В сухой массе клевера лугового содержалось 56,8% листьев и соцветий, люцерны изменчивой – 53,2%, эспарцета песчаного – 53,2%.

Таблица 2 Содержание различных фракций в составе сухого вещества многолетних трав и их доля в сборе сырого протеина с урожаем

	Доля в урожае сухого Доля в сборе сыро							
Наименование вида	вещес	вещества, %		протеина, %				
многолетних трав	листья и	стебли	листья и	стебли				
	соцветия	Стебли	соцветия					
Урожай 2014 г.								
Клевер луговой	48,4	51,6	69,8	30,2				
Клевер ползучий	67,7	32,3	76,6	23,4				
Люцерна изменчивая	39,9	60,1	61,7	38,3				
Лядвенец рогатый	57,6	42,4	77,3	22,7				
Эспарцет песчаный	57,2	42,8	76,1	23,9				
Двукисточник тростников.	44,8	55,2	65,1	34,9				
Кострец безостый	36,7	63,3	64,0	36,0				
Райграс пастбищный	53,2	46,8	74,5	25,5				
Тимофеевка луговая	34,5	65,5	58,0	42,0				
Урожай 2015 г.								
Клевер луговой	56,8	43,2	75,4	24,6				
Люцерна изменчивая	53,2	46,8	74,4	25,6				
Эспарцет песчаный	50,3	49,7	72,1	27,9				
Двукисточник тростников.	64,0	36,0	81,4	18,6				
Житняк гребневидный	44,5	55,5	61,7	38,3				
Кострец безостый	51,8	48,2	71,4	28,6				
Овсяница луговая	71,8	28,2	84,5	15,5				
Среднее по травам	52,2	47,8	71,5	28,5				
Максимальное	71,8	65,5	84,5	42,0				
Минимальное	34,5	28,2	58,0	15,6				

Содержание белка в сухой массе является одним из важнейший показателей, определяющих питательную ценность корма. Установлено, что кормовая масса различных

видов многолетних трав содержала от 6,3 до 19,3 % сырого протеина, в среднем 13,8 %. (табл. 3).

В сухой массе бобовых трав количество сырого протеина колебалось от 14,9 до 19,6%. Наиболее богаты протеином были растения клевера белого — 19,6%. Клевер луговой содержал в своём состава 16,2-16,5%, люцерна изменчивая — 14,9-17,5%, эспарцет песчаный — 16,2-16,6%, лядвенец рогатый — 16,0% сырого протеина.

Сухая масса злаковых трав содержала от 6,3 до 14,3 % сырого протеина. Наиболее богата белком была сухая масса двукисточника тростникового — 13,7-14,3%, житняка гребневидного и овсяницы луговой — 12,0-12,3%, костреца безостого — 8,8-12,4%. Тимофеевка луговая и райграс пастбищный были беднее этим компонентом и имели в своём составе только 6,3-7,4% сырого протеина.

Таблица 3 Содержание сырого протеина в сухом веществе различных видов многолетних трав и их отдельных фракциях

ил отдельных фракциих							
	Содержание сырого протеина, %						
Наименование вида	сухое вещество	в том числе					
	сулос вещество	стебли	листья и соцветия				
2014 год							
Клевер луговой	16,2	8,4	21,2				
Клевер ползучий	19,6	14,2	22,2				
Люцерна изменчивая	14,9	9,5	23,0				
Лядвенец рогатый	16,0	8,6	21,5				
Эспарцет песчаный	16,6	9,1	22,3				
Двукисточник тростниковый	13,7	8,6	19,8				
Кострец безостый	8,8	5,0	15,3				
Райграс пастбищный	7,4	4,0	10,3				
Тимофеевка луговая	6,3	4,0	10,5				
	2015 год		·				
Клевер луговой	16,5	8,6	22,4				
Люцерна изменчивая	17,5	9,6	24,5				
Эспарцет песчаный	16,2	9,0	23,3				
Двукисточник тростниковый	14,3	7,4	11,2				
Житняк гребневидный	12,0	8,3	16,7				
Кострец безостый	12,4	7,4	17,0				
Овсяница луговая	12,5	12,5 6,9					
Среднее	13,8	13,8 8,0					
Максимальное	19,6	14,2					
Минимальное	6,3	4,0	10,3				

Содержание протеина в стеблях изучаемых видов трав было ниже, чем в целом в растениях, и составляло от 4,0 до 14,2% (в среднем 8,0%). При этом значительных различий между злаками и бобовыми не было. В стеблях злаковых трав присутствовало от 4,0 до 8,6% протеина. Среди них по этому показателю отличились двукисточник тростниковый — 7,4-8,6%, житняк гребневидный — 8,3%. Стебли костреца безостого в различные годы исследования в среднем по сортам содержали в своём составе 5,0-7,4% сырого протеина. Стебли бобовых трав в сравнении со злаковыми травами были более богаты протеином — 8,4-14,2%. Наибольшим количеством сырого протеина характеризовались стебли клевера ползучего (14,2%). Стебли клевера лугового, люцерны изменчивой, эспарцета песчаного, люцерны изменчивой в своём составе имели от 8,4 до 9,6% этого компонента.

В листьях и соцветиях изучаемых видов трав наблюдалось в среднем в 2,3 раза больше сырого протеина, чем в стеблях. Количество протеина в листьях и соцветиях колебалось от 10,3 до 24,5% (в среднем 18,2%). При этом листья и соцветия бобовых трав имели в своём составе больше протеина (21,2-24,5%), чем злаковые травы (10,3-19,8%). Среди злаков

наименее богаты протеином были листья и соцветия райграса пастбищного и тимофеевки луговой -10.3 и 10.5% соответственно. Листья и соцветия костреца безостого имели 15.3-17.0% сырого протеина, двукисточника тростникового -11.2-19.8%, овсяницы луговой и житняка гребневидного -14.7-16.7%.

Наиболее высокое содержание сырого протеина наблюдалось в листьях и соцветиях клевера лугового и лядвенца рогатого -21,2-22,4%, клевера ползучего и эспарцета песчаного -22,2-23,2%, люцерны изменчивой -23,0-24,5%.

Наибольшая доля белка в сухой массе изучаемых видов многолетних трав была сосредоточена во фракции листьев и соцветий – от 58,0 до 84,5% (в среднем 71,2%). Во фракции стеблей содержалось 15,5-42,0% (в среднем 28,8%) от всего протеина кормовой массы трав (табл. 2).

Наряду с урожайностью кормовой массы важное значение имеет сбор сырого протеина и выход листьев и соцветий с единицы площади. Исследования показали значительные различия между отдельными видами многолетних трав по этим показателям (табл. 4).

Среди видов многолетних трав высокой урожайностью сухого вещества характеризовались: кострец безостый — 11,9 т/га в 2014 г., 20,3 т/га в 2015 г., 16,1 т/га в среднем за 2 года; двукисточник тростниковый — 18,1, 11,8, 15,0 т/га; люцерна изменчивая — 18,1, 9,7, 13,9 т/га; клевер луговой — 12,5, 12,1, 12,3 т/га, эспарцет песчаный — 13,0, 10,3, 11,6 т/га соответственно (табл. 4).

Таблица 4 Урожайность и качество кормовой массы различных видов многолетних трав, в среднем по сортам

многолетних трав, в среднем по сортам									
	Урожай-	Содержа-	Сбор	Облист-	Выход				
Наименование вида	ность сухого	ние сырого	сырого	венность, %	листьев с				
многолетних трав	вещества,	протеина,	протеина,		урожаем,				
	т/га	%	т/га		т/га				
Урожай 2014 г.									
Клевер луговой	12,5	16,2	2,0	56,8	7,1				
Клевер ползучий	3,4	19,6	0,7	67,2	2,3				
Люцерна изменчивая	18,1	14,9	2,8	45,6	8,2				
Лядвенец рогатый	5,4	16,0	0,9	57,6	3,1				
Эспарцет песчаный	13,0	16,6	2,2	56,4	7,3				
Двукисточник тростниковый	18,1	13,7	2,5	44,8	8,1				
Кострец безостый	11,9	8,8	1,0	36,7	4,4				
Райграс пастбищный	5,9	7,4	0,4	53,2	3,1				
Тимофеевка луговая	10,3	6,3	0,6	34,5	3,6				
	Урож	кай 2015 г.							
Клевер луговой	12,1	16,5	2,0	57,3	6,9				
Люцерна изменчивая	9,7	17,5	1,7	53,2	5,2				
Эспарцет песчаный	10,3	16,2	1,7	50,3	5,2				
Двукисточник тростниковый	11,8	14,3	1,7	63,9	7,6				
Житняк гребневидный	10,3	12,0	1,2	44,4	4,6				
Кострец безостый	20,3	12,4	2,5	51,9	10,5				
Овсяница луговая	8,9	12,5	1,1	71,8	6,4				
Среднее по травам	11,4	13,8	1,6	50,9	5,8				
Максимальное	20,3	19,6	2,8	71,8	10,5				
Минимальное	3,4	6,3	0,4	34,5	2,3				

Наиболее высокий сбор сырого протеина с урожаем сухого вещества отмечен у люцерны изменчивой -2.8 т/га в 2014 г., 1,7 т/га в 2015 г., 2,3 т/га в среднем за год; клевера лугового -2.0, 2,0, 2,0 т/га, эспарцета песчаного -2.2, 1,7, 1,9 т/га, костреца безостого -1.0, 2,5, 1,8 т/га; двукисточника тростникового -2.5, 1,7, 2,1 т/га соответственно. Житняк

гребневидный, овсяница луговая, лядвенец рогатый, клевер ползучий, тимофеевка луговая, райграс пастбищный были менее урожайными и обеспечили сбор сырого протеина в пределах 0,4-0,9 т/га.

Выход листьев и соцветий с урожаем кормовой массы колебался по видам трав в широких пределах — от 2,3 до 10,5 т/га (в среднем 5,8 т/га). Наиболее высокий сбор листьев и соцветий обеспечили клевер луговой — 7,1 т/га в 2014 г., 6,9 т/га в 2015 г., 7,0 т/га — в среднем за 2 года; люцерна изменчивая — 8,2, 9,7, 8,9 т/га; эспарцет песчаный — 7,3, 5,2, 6,2 т/га; кострец безостый — 4,4, 10,5, 7,5 т/га; двукисточник тростниковый — 8,1, 7,6 7,9 т/га соответственно.

Заключение

Изучение структуры урожая показало, что сухая масса изученных видов многолетних трав состояла из 28,2-65,5% стеблей (в среднем 48,3%), и 34,5-71,8% листьев и соцветий (в среднем 51,7%). Содержание сырого протеина в сухом веществе многолетних трав колебалось от 6,3 до 19,3%. Бобовые многолетние травы были наиболее богаты сырым протеином — 14,9-19,6% сырого протеина в сухом веществе. Содержание этого элемента питания в злаковых травах было ниже и составляло 6,3-14,3%. Наибольшее количество сырого протеина было сосредоточено во фракции листьев и соцветий — 58,0-84,5% (в среднем 71,2%). В стеблях содержалось 15,6-42,0% (в среднем 28,8%) протеина кормовой массы.

Высокую урожайность сухого вещества в среднем за год сформировали кострец безостый – 16,1 т/га, двукисточник тростниковый – 15,0 т/га, люцерна изменчивая – 13,9 т/га, клевер луговой – 12,3 т/га, эспарцет песчаный – 11,6 т/га. Эти виды многолетних трав обеспечили с единицы площади наибольший сбор сырого протеина, составивший в среднем за год 1,8-2,2 т/га.

Литература

- 1. Косолапов В.М., Шамсутдинов З.Ш., Ившин Г.И. и др. Основные виды и сорта кормовых культур: Итоги научной деятельности Центрального селекционного центра / Φ ГБНУ ВНИИ кормов им. В.Р. Вильямса РАН. М.: Наука, 2015. 545 с.
- 2. Новосёлова А.С., Новосёлов М.Ю., Бекузарова С.А. и др. Адаптивная селекция и сорта клевера нового поколения для различных почвенно-климатических условий России // Адаптивное кормопроизводство: проблемы и решения. М.: ФГНУ «Росинформагротех», 2002. С. 271-278.
- 4. Зарьянова 3.А., Осин А.А., Кирюхин С.В., Кормовая продуктивность и долголетие отдельных видов многолетних трав и травосмесей в условиях Орловской области // Зернобобовые и крупяные культуры, 2014. № 1 (9). С.72-79.
- 5. Зарьянова З.А., Кирюхин С.В., Осин А.А. Экологическая оценка различных видов и сортов многолетних трав в условиях Орловской области // Земледелие, 2016. № 4. С. 39-42
- 6. Спиридонов А.М. Многолетние бобовые травы как источник биологического азота в земледелии // Земледелие. -2007. -№ 3. C. 14-15.
- 7. Кирсанова Е.В. Изучение эффективности использования биопрепаратов на зерновых, зернобобовых и крупяных культурах // Вестник ОрёлГАУ. 2011. № 5. С. 111-115.
- 8. Лысенко Н.Н., Кирсанова Е.В. Управление агробиоценозом сои // Образование, наука и производство. 2014. № 2 (7). С. 52-60.
- 9. Косолапов В.М., Воронкова Ф.В. Количественная и качественная характеристика сырого протеина кормовых растений, кормов и биологического материала животных и птицы. М.: Угрешская типография, 2014. 160 с.
- 10. Бекузарова С.А., Беляева В.А., Бушуева В.И. Биохимическая оценка селекционных образцов клевера лугового // Кормопроизводство. -2008. -№ 11. С. 21-23.
- 11. Кирюхин С.В., Зарьянова З.А., Бобков С.В. Оценка качества кормовой массы сортов и селекционных номеров клевера лугового по содержанию сырого протеина // Зернобобовые и крупяные культуры. − 2014. − № 4 (12). − С. 90-95.
- 12. Методические указания по проведению опытов с кормовыми культурами. М.: ВИК, 1987. 200 с.
- 13. ГОСТ 32044.1-2012 (ISO5S83-1:2005). Межгосударственный стандарт. Корма, комбикорма, комбикормовое сырьё. Определение массовой доли азота и вычисление массовой доли сырого протеина. Часть 1. Метод Къельдаля. Дата введения 2014-07-01.

STRUCTURE AND QUALITY OF FODDER MASS OF DIFFERENT TYPES OF PERENNIAL GRASSES

Z.A. Zaryanova, S.V. Kiryuhin, S.V. Bobkov, D.E. Merkulov

FGBNU «THE ALL-RUSSIA RESEARCH INSTITUTE OF LEGUMES AND GROAT CROPS»

Abstract: The structure of dry matter of various species and varieties of perennial grasses has been studied. It was established that their forage mass consisted of 28,2-65,5% of stalks (on average 48,3%), and 34,5-71,8% of leaves and inflorescences (on average 51,7%). The content of crude protein in the forage mass of individual species of perennial grasses ranged from 6,3 to 19,3%. Dry matter of leguminous herbs contained 14,9-19,6% of crude protein, of cereal grasses – 6,3-14,3%. The greatest amount of protein was concentrated in the fractions of leaves and inflorescences – 58,0-84,5% (an average of 71,2%). The stems contained 15,6-42,0% (an average of 28,8%) of the fodder protein. The largest collection of protein with a crop characterized by red clover, lucerne changeable, sandy sainfoin, smooth brome-grass, reed canary grass.

Keywords: perennial grasses, species, yield, dry matter, crude protein, crop structure, leaves, stems, foliage.

УДК 631.4:633.2:631.5

ВЛИЯНИЕ СТРУКТУРЫ ДЕРНОВЫХ ОГЛЕЕННЫХ ПОЧВ НА ПРОДУКТИВНОСТЬ СМЕШАННЫХ ПОСЕВОВ МНОГОЛЕТНИХ ТРАВ

А.Г. КРАСНОПЁРОВ, Н.И. БУЯНКИН, доктора сельскохозяйственных наук **О.А. АНЦИФИРОВА*,** кандидат сельскохозяйственных наук

 Φ ГБНУ «КАЛИНИНГРАДСКИЙ НИИ СЕЛЬСКОГО ХОЗЯЙСТВА» E-mail: kalining radniish@yandex.ru * Φ ГБОУ ВО «КАЛИНИНГРАДСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Установлена пространственная неоднородность почвы на опытном участке ФГБНУ «Калининградский НИИСХ» со смешанными посевами злаковых трав и козлятника восточного (Galega orientalis Lam.), что оказывает влияние на продуктивность зеленой массы и семян. Структура пахотного горизонта — слабоуплотненная, глыбистая, с тенденцией увеличения количества крупных глыб, при возрастании степени гидроморфизма почв. Реакция среды в пахотных почвах близка к нейтральной, содержание гумуса в пахотном горизонте изученных почв соответствует агроэкологическим требованиям галеги восточной. Почвы являются карбонатными, максимум карбонатов приурочен к нижним иллювиальным глееватым горизонтам. Режим влажности почвы показал, что смешанные посевы козлятника восточного со злаковыми травами отличаются высокой продуктивностью на различных ареалах дерновых глееватых почв. Дерновые оглеенные почвы (подтипы дерново-глеевых) обладают высоким потенциальным плодородием для возделывания бобовых культур и козлятника восточного со злаковыми травами в частности.

Ключевые слова: смешанные бобово-злаковые посевы, галега восточная, морфологическое строение почвы, дерновые оглеенные почвы, агроэкологические условия, режим влажности.

Более 70% всей площади сельскохозяйственных угодий Калининградской области вовлечены в сферу кормопроизводства, однако обеспеченность скота кормами остается крайне низкой и не превышает 2,5 тыс. тонн кормовых единиц на условную голову скота. В целях обеспечения продовольственной безопасности Калининградской области и удовлетворения потребности населения в продуктах животноводств исходя из медицинских норм ежегодно требуется 390 тыс. тонн молока, 75 тыс. тонн мяса и 250 млн. шт. яиц. В