

SSNS - Final Project Presentation

Muhammad Muzamil Himanshu Prajapat Abdul Haq

Frankfurt University of Applied Sciences

July 31st, 2025

Final Presentation - Application Overview

Problem:

- Indoor air pollution significantly affects health—especially in poorly ventilated spaces. It can:
 - Lead to fatigue, reduced cognitive performance for a normal person
 - Serious short/long term respiratory issues in sensitive groups like children, the elderly and asthmatic patients

Our Goal/Solution:

- ▶ Build a scalable, adaptable IAQ monitoring system prototype, suitable for settings like healthcare, workplaces, and safety-critical environments.
- Can be tailored for:
 - Healthcare (asthmatic/sensitive patients/hospitals)
 - Schools / Offices
 - ► High-risk zones: Labs, factories, control rooms etc

Key Features

- ► Real-Time Web-Dashboard (live sensor data)
- ▶ 24 Hour Data Visualization with Key Insights (can be tailored for any type of environment)
- ▶ Alert System based on guidelines by WHO, ASHREA, EPA, RESET, WELL
- ► Basic Error Diagnosis & Fault Tolerance
 - Independent sensor handling: one failure doesn't affect the other
 - ► Fault indication sent to server on pin/config errors
- Sensor Data Validation
 - Discards invalid readings (zeros or out-of-range values)
 - ightharpoonup Collects 3 readings per minute ightharpoonup computes average, to minimize random measuring errors
- ► Mesh-based Thread network enables auto-rejoining of sensor nodes after failure and allows easy scalability with additional nodes.

Hardware Architecture

The setup includes:

- ▶ 3x nRF 52840 Development Kits
- Sensors:
 - SCD41 CO2, Temperature, Humidity
 - ► CCS811 TVOC, Equivilent CO2 (eCO2)
 - ► SPS30 Particulate Matter (PM1.0, 2.5, 10)
- ► FT232 USB to serial UART interface
- Laptop

Hardware Architecture - Component Diagram

Software Architecture - Overview

Sensor Nodes:

- Runs on Zephyr RTOS
- ▶ Read data via I2C from SCD41, CCS811, SPS30
- ► Format sensor readings into JSON
- Send JSON formatted data in string data type to Server via CoAP PUT (Thread Network)

Server Node:

- Acts as CoAP Server
- ► Sends raw JSON over UART (FT232) to laptop

► Laptop (Host):

- Runs Web Dashboard using Flask Application
- Reads data from Serial Comms via FT232
- Logs data into Excel and Updates real-time dashboard (HTML/CSS/JS)
- Renders 24-hour IAQI stats

Software Architecture - Deployment Diagram

Thread Network - CoAP PUT over IEEE 802.15.4

Network Architecture

Sensor Nodes to Server Node:

- Communication is established over Thread Network based on IEEE 802.15.4 (Low-power wireless).
- Sensor Nodes send data to the Server Node using CoAP (Constrained Application Protocol).
- ▶ Data is transmitted as CoAP PUT requests to a fixed IPv6 address.

Server Node to Laptop:

- ▶ Server Node forwards received data to the Laptop using FT232 UART to USB.
- ► This link uses serial communication, providing a bridge between embedded system and the data logging/visualization layer.

Network Architecture - Network Diagram

System Behavior - Use Case Diagram

Figure: System Use Case Diagram

Sequence Diagram - Monitor Real Time Data

Figure: Monitor Real-Time Data

Sequence Diagram - Receive Recommendation/Alert

Figure: Receive Recommendation/Alerts

Sequence Diagram - View 24 Hour Analysis

Figure: View 24 Hour Analysis

Toolchain

Following tools were used for the development:

- ▶ nRF Connect SDK v2.6.2: Firmware Development for nRF 52840 DK
- ▶ **VS Code**: Firmware Development and Web-Dashboard development
- ► **Git/GitHub**: Version controlling and Code Maintenance
- ▶ Python v3.13.3 (Pandas, Flask): Web Dashboard, Statistical Analysis
- ► HTML/CSS/JS: Frontend for Web-Dashboard
- ► Flask: Backend for Web-Dashboard
- MS Excel: Data logging, Data Filtering, Data Visualization

Demo

- ► Development Setup
- ► Live Demo

Reliability

The setup was tested continuously for:

- ▶ 2x 12 Hours Data Acquisition
- ► 1x 24 Hours Data Acquisition

The setup worked continuously without causing any issue, except for:

► CCS811 stopped working both times in 2x 12 Hours Data Acquisition, rebooting the DK fixed the issue.

Data Acquisition and Statistical Analysis

Data Acquisition Environment:

- ► Private Room
- ▶ **Duration**: 24 Hours (12.00 12.00)
- ➤ **Sampling Rate**: Collect 3 times every 15 seconds and average it send to server after every 1 Minute
- ► **Ventilation**: via Tilted/Opened Window
- ▶ Outdoor Weather: Hot Sunny Day with Max 31°C

Data Acquisition

Time	Activity Description	Window Status
12:00	Monitoring started	Tilted
12:50	Sprayed deodorant	Tilted
13:12	Hung washed clothes to dry	Tilted
19:16	Left room	Closed
19:23	Briefly returned and left again	Closed
19:45	Brought dinner and consumed	Tilted
20:15	Felt hot, fully opened window	Open
22:00	Cleaned room using a brush	Open
23:30	Went to sleep	Tilted
03:50	Woke up and fully opened window	Open
04:05	Went back to sleep	Tilted
07:30	Woke up and resumed activity	Tilted
08:15	Went to kitchen for Breakfast	Tilted
09:05	Returned to room and resumed work	Tilted
10:05	Felt hot, fully opened window	Open
11:00	Sprayed deodorant	Open
12:00	Monitoring Stopped	Open

Figure: Activity Table

Statistical Analysis for Anomaly Detection

- Statistical Method: Shewhart Control Chart
- Reason to chose:
 - Well suited for Time Series Sensor Data
 - Lightweight and simple to implement on any microprocessor (Raspberry Pi, Nvidia Jetson Nano etc)
 - Easy to interpret
 - Doesn't require complex tuning and training data
- ► How it works?
 - Define Control limits using Mean and Standard Deviation:
 - ▶ UCL = μ +3 σ (Upper Control Limit)
 - ▶ LCL = μ -3 σ (Lower Control Limit)
 - Any data point outside these limits is flagged as an anomaly.

Statistical Analysis - CO2

Statistical Analysis - CO2

Summary:

Statistically stable process, no data point exceeded the control limit.

Findings:

▶ Keeping the window tilted is enough to maintain CO2 levels.

Statistical Analysis - TVOC

Statistical Analysis - TVOC

Summary:

- Recorded 3 sets of anomalies:
 - ▶ 19.00-20.00: Student ate dinner, VOC emitted from food accumulated in the room.
 - ▶ **06.00-07.00**: No indoor activity, spike caused by outdoor air infiltration.
 - ▶ **09.00-11.00**: Caused by continuous bioeffluent accumulation bcs of sweat due to rising temperature and humidity

Findings:

- ► Tilted window not enough for reducing TVOC, while fully opened window quickly reduced!
- ▶ Natural ventilation helps in maintaining IAQ but have to be cautious about Outdoor AQ as well.

Statistical Analysis - PM

Statistical Analysis - PM

Summary:

- Recorded 2 sets of anomalies:
 - ▶ 12.00-01.00 & 10.00-11.00: Spike caused when the student sprayed a deodorant.

Findings:

- ▶ Well ventilated room can quickly mitigate high PM concentration, tilted window is sufficient.
- ► Aerosol products are significant source of indoor PM.

Statistical Analysis - Temperature

Statistical Analysis - Humidity

Statistical Analysis - Temp & Humidity

Summary:

► Multiple individual data points out of Control boundaries, probably because of brief sensor malfunction.

Findings:

▶ Is SCD41 reliable for Temp/Humidity? Brief malfunction of integrated SHT4X (Integrated Sensor in SCD41) - while CO2 readings remain stable, adds question for further investigation.

Conclusion

- ► The prototype is well-built, scalable, and adaptable to different environments including hospitals, schools, and safety-critical systems.
- Data collected is statistically reliable, as confirmed through analysis using Shewhart Control Charts.
- CCS811 Limitation:
 - ▶ The sensor stopped working twice during the 12-hour test.
 - eCO2 values were consistently exaggerated and unreliable compared to SCD41 CO2 readings.
 - ▶ **Recommendation**: Better not to rely on CCS811 for CO2 values; use dedicated CO2 sensors (i.e: SCD41).

Conclusion - cont.

- ► Simply keeping the window tilted or open was enough to maintain IAQ within WHO. RESET, and WELL thresholds Natural Ventilation is effective.
- ▶ Natural ventilation is only effective when outdoor air is clean. Poor outdoor AQ can negatively impact indoor air, as seen in elevated TVOC and PM levels during early morning hours.
- Recommendation: Always monitor outdoor AQ if relying on open windows for IAQ control.

Future Work

- Adopt a more scalable IoT backend stack to support real-time analytics and remote access.
- Address following security vulnerabilities:
 - ▶ DoS attacks via rogue IEEE 802.15.4 packets disrupting communication
 - Replay attacks
- Improve basic safety features to reduce false alarms, ensure consistent sensor behavior, and define minimum safety guarantees.
- Improve dashboard usability and design to make insights more accessible for non-technical users.
- ▶ Implement multi-channel alerts (e.g., mobile app, email, push notifications) with context-aware guidance.
- Develop customized versions for hospitals, offices, schools, and safety-critical systems

References

- National Center for Biotechnology Information, "Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments", PMCID: PMC4892924 PMID: 26502459.
- ► ASHARE, "ASHRAE Technical FAQ".
- ▶ Researchgate, "Indoor relative humidity: relevance for health, comfort, and choice of ventilation system".
- Kaiterra, "Understanding TVOC: What You Need To Know About Volatile Organic Compounds".
- Environmental Protection Agency "Particulate Matter (PM) Basics".
- ASHRAE, "Position Document on Indoor Carbon Dioxide," Apr. 2022.
- ► World Health Organization, "WHO Global Air Quality Guidelines: PM2.5 and PM10," Sep. 2021.

References

- ASHRAE Standard 55, "Thermal Environmental Conditions for Human Occupancy," 2023.
- ► RESET / WELL Building Standards, "Indoor Air Quality: TVOC & PM1.0 Recommendations," 2022.
- ▶ Muhammad Muzamil. (2025). indoor-air-quality-monitoring-system [Source code].
- Poonam Yadav; Nirdesh Sagathia; Dan Wade, "Demo: Battery Depletion Attack Through Packet Injection on IoT Thread Mesh Network", 2024.