

BSM 101 BİLGİSAYAR MÜHENDİSLİĞİNE GİRİŞ

HÜSEYİN ESKİ, İSMAİL ÖZTEL

~ Sayı ve Kodlama Sistemleri ~

İÇERİK

- Sayı sistemleri
- Tamsayıların gösterimi
- Alfabetik karakterlerin gösterimi
- Veri sıkıştırma
- Şifreleme ve şifre çözme

Sayı ve Kodlama Sistemleri

- Bu bölümde sayıların bilgisayarlarda nasıl kullanıldıkları üzerinde durulacaktır.
- Her bilgisayar ikili bir sistemdir, insanlar ise günlük hayatlarında onluk sayılar kullanmaktadır.
- Bu sebeple insanlar ikili makine olan bilgisayarlara sayıları girerken burada bir dönüştürme mekanizmasına ihtiyaç vardır.

Sayı ve Kodlama Sistemleri

- Bilgisayarlar tamsayıları, virgüllü sayıları, metinsel karakterler ile özel karakterleri, ses, resim ve video görüntülerini farklı şekillerde tutar.
- Özellikle ses, resim ve video dosyaları çok yer kapladıklarından, ağ üzerinden gönderilmeleri problem yaratır. Bunun için sıkıştırma yaklaşımları mevcuttur.
- Ayrıca gönderilen dosyaların güvenli bir biçimde gönderilmesi için şifreleme ve şifre çözme yöntemleri mevcuttur.

- Sayma kavramı M.Ö. 3000 li yıllara kadar dayanmaktadır.
- En çok kullanım on tabanlı sayı sistemi olan onlu sayı sistemidir.
- Anglosaksonlar para ve ağırlık ölçülerinde onikilik tabanı kullanmışlardır.
- Bilgisayarlar ise sadece 0 ve 1'lerden anlar (kapılardan akım geçerse 1, geçmezse 0) bu da ikili sayı sistemidir.
- Her karakter bilgisayarlarda ikili bitler olarak gösterilir: A → 01000001
- Her karakter uygun bit dizisine dönüştürülür.
- Bilgisayardan çıktı alınacağı zaman da bit dizileri insanların anlayabileceği şekle dönüştürülür.

- On tabanlı sayı sistemi:
 - $(S)_{10} = T_n T_{n-1} \dots T_1 T_0, K_1 K_2 \dots K_m$ (T: tam sayılar, K:kesirli sayılar)
 - $(S)_{10} = \sum_{i=0}^{n} T_i \cdot 10^i + \sum_{j=1}^{m} K_j \cdot 10^{-j}$
 - On tabanlı sayı sisteminde
 - En küçük rakam 0
 - En büyük rakam 9
 - n hane yazılabilecek en büyük sayı $10^n 1$
 - n haneye kadar yazılabilecek sayıların adeti ise 10^n

- On tabanlı sayı sistemi:
 - 5432 sayısının on tabanına göre açılımı:

•
$$2 \times 10^0 = 2 \times 1 = 2$$

•
$$3 \times 10^1 = 3 \times 10 = 30$$

•
$$4 \times 10^2 = 4 \times 100 = 400$$

•
$$5 \times 10^3 = 5 \times 1000 = 5000$$

• 5432

- İki tabanlı sayı sistemi:
 - $(S)_2 = T_n T_{n-1} \dots T_1 T_0, K_1 K_2 \dots K_m$ (T: tam sayılar, K:kesirli sayılar)
 - $(S)_2 = \sum_{i=0}^n T_i \cdot 2^i + \sum_{j=1}^m K_j \cdot 2^{-j}$
 - İki tabanlı sayı sisteminde
 - En küçük rakam 0
 - En büyük rakam 1
 - n hane yazılabilecek en büyük sayı $2^n 1$
 - n haneye kadar yazılabilecek sayıların adeti ise 2^n

- İki tabanlı sayı sistemi:
 - İkilik tabanda 3 hane yazılabilecek sayılarına adeti 8'dir.
 - $000 \rightarrow 0$
 - 001 → 1
 - 010 \rightarrow 2
 - $011 \rightarrow 3$
 - 100 *→ 4*
 - 101 → *5*
 - 110 → 6
 - 111 → 7

- İki tabanlı sayı sistemi:
 - 100101 sayısının on tabanına göre açılımı:

•
$$1 \times 2^0 = 1 \times 1 = 1$$

•
$$0 \times 2^1 = 0 \times 2 = 0$$

•
$$1 \times 2^2 = 1 \times 4 = 4$$

•
$$0 \times 2^3 = 0 \times 8 = 0$$

•
$$0 \times 2^4 = 0 \times 16 = 0$$

•
$$1 \times 2^5 = 1 \times 32 = 32$$

37

- İki tabanlı sayı sistemi:
 - Toplama
 - 1011 → 11
 - 1100 \rightarrow 12
 - $\begin{array}{ccc}
 & 1010 & \rightarrow 10 \\
 \hline
 & 100001 & \rightarrow 33
 \end{array}$

Çıkarma

 $11011 \rightarrow 27$

 $10101 \rightarrow 21$

 $00110 \rightarrow 6$

- İki tabanlı sayı sistemi:
 - Tümleyen kullanarak çıkarma: Bilgisayarlarda çıkarma işlemleri tümleyen yoluyla toplama işlemine dönüştürülerek yapılır.
 - $(S)_B$ nin tümleyeni $\rightarrow (S')_B = B^n (S)_B$
 - Ör: (01101)' = 100000 01101 = 10011
 - 11011 01101 işleminin tümleyen yolu ile çözümü:
 - $11011 + 10011 2^5 = 101110 2^5 = 01110$

- İki tabanlı sayı sistemi:
 - Çarpma
 - $1011 \rightarrow 11$
 - 10 \rightarrow 2
 - 0000

1011

 $10110 \rightarrow 22$

- İki tabanlı sayı sistemi:
 - Bölme
 - 1011 11
 - 11 11
 - 0101

0010

- Sekiz tabanlı sayı sistemi:
 - $(S)_8 = T_n T_{n-1} \dots T_1 T_0, K_1 K_2 \dots K_m$ (T: tam sayılar, K:kesirli sayılar)
 - $(S)_8 = \sum_{i=0}^n T_i . 8^i + \sum_{j=1}^m K_j . 8^{-j}$
 - İki tabanlı sayı sisteminde
 - En küçük rakam 0
 - En büyük rakam 7
 - n hane yazılabilecek en büyük sayı $8^n 1$
 - n haneye kadar yazılabilecek sayıların adeti ise 8^n

- Sekiz tabanlı sayı sistemi:
 - Toplama
 - 653
 - 362
 - 1235

110001001 ikili sayısının sekiz tabanında karşılığı?

$$110 - 001 - 001$$

$$(110001001)_2 = (611)_8$$

- Onaltı tabanlı sayı sistemi:
 - $(S)_{16} = T_n T_{n-1} \dots T_1 T_0$, $K_1 K_2 \dots K_m$ (T: tam sayılar, K:kesirli sayılar)
 - $(S)_{16} = \sum_{i=0}^{n} T_i \cdot 16^i + \sum_{j=1}^{m} K_j \cdot 16^{-j}$
 - İki tabanlı sayı sisteminde
 - En küçük rakam 0
 - En büyük rakam F
 - n hane yazılabilecek en büyük sayı $16^n 1$
 - n haneye kadar yazılabilecek sayıların adeti ise 16^n

Onaltı tabanlı sayı sistemi:

$$A = 10, B = 11, C = 12, D = 13, E = 14, F = 15$$

$$(2BE)_{16} = 14 * 16^{0} \rightarrow 14$$
 $11 * 16^{1} \rightarrow 176$
 $2 * 16^{2} \rightarrow 512$
 702

11000100 ikili sayısının onaltı tabanında karşılığı?

1100 - 0100

C - 4

 $(11000100)_2 = (C4)_{16}$

• Ör: 101.101 sayısının onluk tabandaki karşılığı nedir?

•
$$101.101 = 1 * 2^2 + 0 * 2^1 + 1 * 2^0 + 1 * 2^{-1} + 0 * 2^{-2} + 1 * 2^{-3}$$

= $4+0+1+0,5+0+0,125$
= $5,625$

Bilgisayarlarda Tamsayıların Gösterimi

- Onlu sayılar genel olarak ikili tabandaki karşılıklarına dönüştürülerek bellekte saklanırlar.
- Bu sayılar tam sayı ya da kayan noktalı sayılar olabilir.
 - Eğer 8 bitlik bir saklayıcı varsa 0 ile 255 arasındaki sayılar saklanabilir.
 - 16 bitlik bir saklayıcıda [0, 65535] aralığındaki sayılar saklanabilir.
 - ..

Bilgisayarlarda Tamsayıların Gösterimi

- Tamsayıları gösterirken sayının pozitif ya da negatif olduğunu da göstermek gerekir.
- En soldaki bit işaret bitidir: $0 \rightarrow pozitif$, $1 \rightarrow negatif$
- Eğer 16 bitlik bir saklayıcı varsa ve sayının işareti de gösterilecekse burada [-32768, 32767] arasındaki sayılar saklanabilir.

Bilgisayarlarda Tamsayıların Gösterimi

- Tamsayıları gösterirken sayının pozitif ya da negatif olduğunu da göstermek gerekir.
- En soldaki bit işaret bitidir: 0 → pozitif, 1 → negatif
- Eğer 16 bitlik bir saklayıcı varsa ve sayının işareti de gösterilecekse burada [-32768, 32767] arasındaki sayılar saklanabilir.

1. bit	2. bit	Onluk değer
0	1	+1
0	0	0
1	1	-1
1	0	-2

- Sayısal sistemlerde karakterlerin bazı kodlama sistemlerine göre kodlanmaları gerekir.
- Örneğin bir rakam yazdırılmak istendiğinde rakamın ilgili kodlama sistemindeki karşılığı yazıcıya gönderilir.
- Sayıları ve karakterleri göstermede kullanılan farklı kodlama sistemleri vardır.
 - Ör: ASCII, EBCDIC
 - ASCII ilk geliştirilen standart kodlamadır.
 - EBCDIC, BCD kodlama sisteminin genişletilmiş bir versiyonudur.

- BCD kodlama (Binary Coded Decimal):
 - Bu sistemde onluk (decimal) sayıdaki her basamak 4 basamaklı ikili sayı grubu ile ayrı ayrı kodlanır.
 - Rakamlar için 4 bitlik gösterim yeterli olurken, diğer harf ve özel karakterler için 6 bitlik gösterim gerekmektedir.

decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

ASCII

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`	128	80	Ç	160	AO	á	192	CO	L	224	EO	ox.
1	01	Start of heading	33	21	į.	65	41	A	97	61	a	129	81	ü	161	A1	í	193	C1	_	225	E1	ß
2	02	Start of text	34	22	"	66	42	В	98	62	b	130	82	é	162	A2	ó	194	C2	т	226	E2	Г
3	03	End of text	35	23	#	67	43	С	99	63	c	131	83	â	163	A3	ú	195	C3	F	227	E 3	п
4	04	End of transmit	36	24	ş	68	44	D	100	64	d	132	84	ä	164	A4	ñ	196	C4	-	228	E4	Σ
5	05	Enquiry	37	25	\$	69	45	E	101	65	e	133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
6	06	Acknowledge	38	26	٤	70	46	F	102	66	f	134	86	å	166	A6	2	198	C6	F	230	E6	μ
7	07	Audible bell	39	27	'	71	47	G	103	67	g	135	87	Ç	167	A7	۰	199	C7	⊩	231	E7	τ
8	08	Backspace	40	28	(72	48	Н	104	68	h	136	88	ê	168	A8	č	200	C8	L	232	E8	Φ
9	09	Horizontal tab	41	29)	73	49	I	105	69	i	137	89	ë	169	A9	_	201	C9	F	233	E9	•
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	ز	138	8A	è	170	AA	¬	202	CA	╨	234	EA	Ω
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k	139	8B	ï	171	AB	1-2	203	CB	T	235	EB	δ
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1	140	8C	î	172	AC	1 ₄	204	CC	╠	236	EC	
13	OD	Carriage return	45	2 D	-	77	4D	М	109	6D	m	141	8 D	ì	173	AD	i	205	CD	=	237	ED	Ø
14	OE	Shift out	46	2 E	.	78	4E	N	110	6E	n	142	8 E	Ä	174	AE	«	206	CE	<u></u> ተ	238	ΕE	ε
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0	143	8F	Å	175	AF	»	207	CF	-	239	EF	Π
16	10	Data link escape	48	30	0	80	50	P	112	70	р	144	90	É	176	BO		208	DO	т	240	FO	=
17	11	Device control 1	49	31	1	81	51	Q	113	71	đ	145	91	æ	177	B1	*****	209	D1	=	241	F 1	±
18	12	Device control 2	50	32	2	82	52	R	114	72	r	146	92	Æ	178	B2		210	D2	π	242	F2	≥
19	13	Device control 3	51	33	3	83	53	ສ	115	73	8	147	93	ô	179	В3	I	211	DЗ	L	243	FЗ	≤
20	14	Device control 4	52	34	4	84	54	Т	116	74	t	148	94	ö	180	В4	4	212	D4	Ŀ	244	F4	ĺ
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u	149	95	ò	181	B5	4	213	D5	F	245	F5	J
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v	150	96	û	182	В6	1	214	D6	Г	246	F6	÷
23	17	End trans, block	55	37	7	87	57	v	119	77	w	151	97	ù	183	В7	П	215	D7	#	247	F7	×
24	18	Cancel	56	38	8	88	58	Х	120	78	х	152	98	Ϋ́	184	В8	٦	216	D8	+	248	F8	•
25	19	End of medium	57	39	9	89	59	Y	121	79	У	153	99	Ö	185	В9	1	217	D9	7	249	F9	•
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z	154	9A	Ü	186	BA		218	DA	г	250	FA	<mark>-</mark> ;
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{	155	9B	¢	187	BB	in .	219	DB		251	FB	Ą
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	I	156	9C	£	188	BC	1	220	DC	<u> </u>	252	FC	P.
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}	157	9D	¥	189	BD	Ш	221	DD	I	253	FD	g.
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~	158	9E	R.	190	BE	4	222	DE	I	254	FE	•
31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F		159	9F	f	191	BF	٦	223	DF	-	255	FF	

ASCII

 İkili sayı sistemindeki aşağıdaki mesaj ASCII kodunda kodlanmıştır. Bu mesajın anlamı nedir?

01001000 01000101 01001100 01001100 01001111

• 48 45 4C 4C 4F		•			•	
	•	48	45	4C	4C	4F

• H E L L O

Ses verisi

http://www.igcseict.info/theory/0/anadig/

Ses verisi

Ses verisi

http://www.igcseict.info/theory/0/anadig/

- Ses verisi
 - Ses bir dalga olduğu için bu dalgaya ait genlik ve sıklık bilgileri mevcuttur.
 - Sıklık → hertz (Hz), genlik → desibel (dB)
 - Sıklık düşükse ses kalın, yüksek ise ses incedir.
 - Genlik alçak ise sessiz, yüksek ise seslidir.
 - Ses sayısal ortamda tutulabilmesi için ADC ile sayısala dönüştürülür (örnekleme).
 - Sayısal ses verisinden analog ses verisini elde etmek için DAC kullanılır.
 - Ses bilgileri yaygın olarak "wav" ve "mp3" gibi formatlarda saklanır.

Resim verisi – siyah beyaz görüntü

https://www.mathworks.com/help/images/binary-images.html

Resim verisi – gri seviyeli görüntü

Neves et al., Analysis of Emotions From Body Postures Based on Digital Imaging, Third International Conference on Advances in Signal, Image and Video Processing, 2018

Resim verisi – renkli görüntü

Karim et al., A new approach for LSB based image steganography using secret key, Computer and Information Technology (ICCIT), 2011

- Resim verisi
 - Resmi oluşturan nokta sayısına "çözünürlük" denir.
 - Bu noktalara da "pixel Picture elements resim öğesi" denir.
 - Bir piksel için ayrılan bit dizsinin büyüklüğüne renk derinliği denir.
 - 24 bit derinliği ile 16777216 farklı renk elde edilebilir.
 - Resimleri saklamak için kullanılan bazı formatlar: jpg, gif, png, tif

- Video verisi
 - Saniyede 25 gibi bir sayıda resimlerin arka arkaya gösterilmesi ile elde edilir.
 - Çok sayıda resim kullanılacağı için depolama alanı ve ağ trafiğinde problemlere neden olacaktır.
 - Video verilerinin sıkıştırılmasında "codec compressor/decompressor sıkıştırıcı/açıcı "kullanılmaktadır.
 - Yaygın kullanılan codeclerden bazıları: MPEG, DivX
 - AVI ve MOV gibi codecler bir videodaki hem ses hem de görüntü öğelerini de sıkıştırabilir.

Veri Sıkıştırma

- Veri sıkıştırma; verilerin saklanmasında ve gönderilmesinde veri boyutundan kaynaklanan problemlerin önüne geçmek amacıyla, veri boyutunu azaltmak için yapılır.
- "Sıkıştırma oranı" dosyanın ne oranda küçüldüğünü gösterir.
- Veri sıkıştırma, kayıplı ve kayıpsız sıkıştırma olmak üzere iki farklı sınıfta incelenebilir.

- Kayıpsız veri sıkıştırma: Bir dosyadaki verilerin içerisinde tekrar eden desenlerin daha az alan kaplayacak şekilde gösterilmesidir.
 - Ör: tekrar eden veriler farklı şekillerde yazılabilir.
 - AXAXAXAXAX \rightarrow AX5
- Kayıplı veri sıkıştırma: Kodlama yapmak için bazı veriler silinebilir.
 - Ses, resim ve video dosyalarında insanların algılayamayacağı ayrıntılar silinir.
 - Ses dosyalarında "MP3" resim dosyalarında "JPEG" ve video dosyalarında "MPEG" kayıplı sıkıştırma dosyalarına örnek olarak verilebilir.

- Shannon–Fano coding
 - Adını Claude Shannon ve Robert Fano'dan alan Shannon-Fano kodlaması, bir dizi sembole ve bunların olasılıklarına (tahmin edilen veya ölçülen) dayalı bir önek kodu oluşturmak için iki farklı ancak ilgili tekniğin bir araya gelmesi ile oluşur.

%56 	Α	0.36		
	В	0.20		
%44	С	0.16		
	D	0.15		
	Е	0.08		
	F	0.05		

%56	Α	0.36	0		
	В	0.20	0		
%44	С	0.16	1		
	D	0.15	1		
	Е	0.08	1		
	F	0.05	1		

%56 	Α	0.36	0	0	
	В	0.20	0	1	
%44	С	0.16	1		
	D	0.15	1		
	Е	0.08	1		
	F	0.05	1		

	Α	0.36	0	0		
%16	В	0.20	0	1		
/01U	С	0.16	1			
%28	D	0.15	1			
	Е	0.08	1			
	F	0.05	1			

	Α	0.36	0	0		
%16	В	0.20	0	1		
/01U	С	0.16	1	0		
%28	D	0.15	1	1		
	E	0.08	1	1		
	F	0.05	1	1		

	Α	0.36	0	0		
	В	0.20	0	1		
%15	С	0.16	1	0		
7015	D	0.15	1	1	0	
%13	E	0.08	1	1	1	
	F	0.05	1	1	1	

	Α	0.36	0	0			
	В	0.20	0	1			
	C	0.16	1	0			
0/ O	D	0.15	1	1	0		
%8	Е	0.08	1	1	1	0	
%5	F	0.05	1	1	1	1	

Α	00
В	01
С	10
D	110
E	1110
F	1111

Shannon–Fano coding

Α	00
В	01
С	10
D	110
E	1110
F	1111

codding:

BABA → 01 00 01 00

encoding:

01000100 → BABA

Shannon–Fano coding

Α	00
В	01
С	10
D	110
E	1110
F	1111

Shannon-Fano olmadan gereken karakter sayısı:

BABA \rightarrow 3 (bit) * 4 (karakter) = 12 bit

Shannon-Fano ile gereken karakter sayısı:

BABA \rightarrow 01 00 01 00 \rightarrow 8 bit

Şifreleme ve Şifre Çözme

- Bilgisayar ağlarına bağlı sistemlerde, bu sistemlerin güvenliğini sağlanmak zorunludur.
- Sistemlerin haberleştiği ortamlarda güvenlik kırıcıların (hacker) sayısı hayli fazladır.
 - Güvenlik kırıcıların amacı şaka gibi basit eğilimlerden başlayıp yıkıcı boyutlara kadar ulaşabilir.
- Bu sebeple güvenlik amaçlı şifreleme ve şifre çözme teknikleri kullanılmalıdır.
- Şifreleme ve şifre çözme aktif çalışma alanlarıdır.

Şifreleme ve Şifre Çözme

- Uç sistemler kendi aralarında haberleşirken genellikle verinin önünün kesilmesi ihtimali vardır.
- Çok güçlü bir şekilde şifrelenmiş bir verinin şifresinin çözülebilmesi için bir bilgisayar çok uzun zaman harcamak zorunda kalır.
- Şifreleme/şifre çözme çalışmaların yürütüldüğü bilim dalı "gizleme bilimi cryptology" olarak isimlendirilmektedir.

Şifreleme ve Şifre Çözme

