

CT60A9600

[LAHTI]

Discrete Models and Methods 2: Functional Programming

Course Introduction

Iflaah Salman, PhD.

About Me

I am the main responsible person for this course.

Present

Postdoctoral Researcher (Dept. of Software Engineering)
School of Engineering Science, LUT (Lahti)
[Aug 2022 to Present]

Past

- Postdoctoral Researcher M3S Research Unit, University of Oulu, Oulu, Finland. [2020 to Jun 2022]
- Software Quality Assurance Engineer i2c inc., Lahore, Pakistan. [2010 to 2012]
- Software Developer University of the Punjab, Lahore, Pakistan. [2009 to 2010]

Iflaah Salman (PhD)

PhD, MSc (Information Processing Science)

BSc (Computer Science)

Abdul Qadir Ahmed Abbasi

TEACHING ASSISTANT

PRESENT

- Masters Thesis Worker (Elisa Viihde Service)
 Elisa Oyj Headquarters, Helsinki, Finland [Jan 2023 to Present]
- Erasmus+ Scholar (Software Engineer for Green Deal Masters)
 Lappeenranta-Lahti University of Technology, Finland
 Vrije University Amsterdam, Netherlands
 University of L'Aquila, Italy [2021 to 2023]

PAST

- Technical Project lead (Supersense Eco)
 Innotect Oyj, Espoo, Finland [Mar to Jun 2022]
- Managing Consultant (Cloud & Emerging Technologies)
 Abacus Global, Islamabad, Pakistan [May to Aug 2021]
- Software Engineer (Research & Development)
 Eureka WLL, Hidd, Bahrain [2019 to 2021]
- Backend Developer (Software Development)
 Servup Pvt. Ltd., Lahore, Pakistan [2017 to 2019]
- Bachelors (Computer Science)
 National University of Computer & Emerging Sciences, Pakistan
 Murray State University, Kentucky, USA [2013 to 2017]

Contacting Us

Email addresses:

Main responsible person: iflaah.salman@lut.fi

Teaching assistant:

abdul.qadir.ahmed.abbasi@student.lut.fi

Email subject must contain: "CT60A9600"

Email body must mention:

- Your Official Name
- Your student no.

Meeting setup only via email!

Pre-Requisites

- Introduction to Programming Course
- Object Oriented Programming

Course Contents

This Photo by Unknown Author is licensed under CC BY-SA-NC

Topic	Date		
L1: Course Introduction + Introduction to Functional Programming	14.3.2023		
L2: Functional Programming in Scala	21.3.2023		
L3: Higher Order Functions	28.3.2023		
L4: Immutable Collections	4.4.2023		
EASTER HOLIDAYS			
L5: Types and Pattern Matching	12.4.2023		
L6: Exception Handling: A Functional Approach	18.4.2023		
L7: Advanced Concept(s)	25.4.2023		

Learning Outcomes

- Programming in Scala.
- 2. Programming in Functional paradigm in Scala language.
- Theoretical understanding and practical implementation of FP concepts:
 - pure functions
 - _{2.} recursion
 - 3. Immutability
- 4. Collections
- 5. Exception handling

Course Material

- Lecture Slides and Recording
- Exercise Material
 - Instructions
 - Tools
- (possible) Additional Material Uploaded to Moodle
- Reference Books
 - Hunt, J. (2018). A Beginner's Guide to Scala, Object Orientation and Functional Programming. In A Beginner's Guide to Scala, Object Orientation and Functional Programming. Springer International Publishing. https://doi.org/10.1007/978-3-319-75771-1
 - Chiusano, P., & Bjarnason, R. (2014). Functional Programming in Scala. Manning publications.

Course Schema 1

- Lectures
 - Onsite and Recorded
- Exercise:
 - Exercise Sessions (on-site, virtual)
 - Exercise deliverables
- Project:
 - Programming
 - Done in a group of 2-3 persons.
 - A possibility to earn extra/bonus (max 3) points if the work is outstanding.
- Exam
 - During the exam weeks
 - Assessment of theoretical and practical aspects

Course Schema 2

Grading

Module	Task	QTY	Points [100]	Min to Pass Points
M1	Lecture Sessions	7	8	5
M2	Exercise Sessions	7	7	17 out of 35
	Exercise Deliverables	7	28	
M3	Project	1 (in group)	40	20
M4	Exam	1	17	8

You pass when M1+M2+M3+M4 >= 50 pts.

OR

You pass when M2 + M3+ M4 \geq =55 pts., which means M1(Lectures) < 5 pts.

Grading and Passing

Points	Final Grade	
0-49	O [FAIL]	
50-60	1	
61-70	2	
71-80	3	
81-90	4	
91-100	5	

Moodle Page Demo!

