차원 축소

Dimension Reduction

데이터 분석 과정

■ 머신러닝을 이용한 데이터 분석 과정

차원 축소는 데이터 분석 과정 중 전처리에서 주로 사용됨

차원 축소의 필요성

고차원 → 저차원

- 고차원 데이터 (High dimensional data)의 예시
 - 문서 요약 (<u>데이콘 예시</u>)
 - 예) 한 문서의 크기 → 한 언어의 단어 수로 표현
 - Billions of documents * bag of words
 - 추천 시스템
 - 예) 사용자 * 총 영화 수 matrix 로 표현
 - 480,189 users * 17,770 movie
 - 유전자 군집화
 - 예) 유전자 수 * 유전자의 컨디션
 - 10,000 genes * 1,000 conditions

- 차원의 저주 (Curse of dimensionality)
 - 차원이 증가할 수록 동일 정보량을 표현하기 위해 필요한 데이터의 수는 지수적으로 증가한다는 의미
 - 데이터 학습을 위해 차원이 증가하면서 학습 데이터 수가 차원 수보다 적어져 모델의
 성능이 저하되는 현상
 - 데이터 차원이 증가할 수록 개별 차원 내 학습할 데이터 수가 적어지는(sparse) 현상 발생 자유
 - 무조건 변수의 수가 증가한다고 해서 차원의 저주 문제가 있는 것은 아니며, 데이터의 수 보다 변수의 수가 많아지면 발생 (데이터 200개, 변수 7000개)

- 차원의 저주 (Curse of dimensionality)
 - 일반적으로 intrinsic dimension은 original dimension 보다 상대적으로 작음
 - 예시) ^{______} ^{ૠૠ}
 - MNIST 16x16 (256 dimensions) 데이터
- 北部一湖
- PCA와 ISOMAP을 통한 2차원 데이터로 차원 축소

2차원이지만 대략적으로 MNIST 클래스의 <mark>형태가 유지됨</mark>

- 차원의 저주 (Curse of dimensionality)
 - <mark>차원이 높을 수록</mark> 발생하는 문제
 - 데이터에 포함될 <mark>노이즈의 비율도 높아</mark>짐
 - 성능 감소를 야기함
 - 모델 학습과 추론의 계산 복잡도가 높아짐
 - 동일한 성능을 얻기 위해 더 많은 데이터의 수가 필요함
 - 차원의 저주 해결 법
 - 도메인 지식을 이용 → <mark>중요한 특성</mark>만 사용
 - 목적함수에 Regularization term 추가
 - 차원 축소 기술을 전처리로 사용

- 차원 축소 배경
 - 이론적으로, 차원의 증가는 모델 성능을 향상 시킴
 - 가정: 모든 변수가 서로 독립일 경우 ▼

- 실제로, <mark>차원의 증가는 모델 성능 저하를</mark> 가져옴
 - 모든 변수는 <u>서로 상관관계가</u> 있고, <u>노이즈가 존재</u>함
- 차원 축소 목적
 - 모델의 성능을 최대로 해주는 변수의 일부 셋을 찾는 것
- 차원 축소 효과
 - 변수간 <mark>상관 관계(correlations) 제거</mark>
 - 단순한 <mark>후처리 (Post-processing</mark>)
 - 적절한 정보를 유지하면서 중복되거나 불필요한 변수를 제거
 - 시<u>각화가 가능</u>

가넷(청합) 만약하면 통해 5인생 극대라 X , Y

- 지도학습 기반 차원 축소
 - 학습결과가<mark>피드백</mark> 되어 Feature Selection 을 반복함

- 비지도학습 기반 차원 축소 🗡 💢
 - 지도학습 처럼 <mark>피드백을 통한 Feature Selection 반복 없음</mark>

- 차원 축소 방법
 - 변수/피쳐 선택(Feature selection): 유의미한 변수만 선택
 - 장점: 선택한 변수 해석 용이
 - 단점: 변수간 상관관계 고려의 어려움

$$x_1, x_2, \dots, x_{100} \rightarrow x_1, x_5$$

the second secon

- 변수/피쳐 추출(Feature extraction): 예측 변수의 변환을 통해 새로운 변수 추출
 - 변수/피쳐 생성(Feature construction) 이라고도 함
 - 장점: 변수간 상관관계 고려, 변수의 개수를 "많이" 줄일 수 있음
 - 단점: 추출된 변수의 해석이 어려움

$$Z = f(x_1, x_2, \dots, x_{100})$$
Althor

$$Z_{1} = \lambda_{11} \chi_{1} + \lambda_{12} \chi_{2} + \lambda_{3} \chi_{3} - \lambda_{10} \chi_{100}$$

$$Z_{2} = \lambda_{21} \chi_{1} + \lambda_{22} \chi_{2} + \lambda_{32} \chi_{3} - \lambda_{2100} \chi_{100}$$

차원 축소 (Dimension Reduction)

■ 차원 축소 방법 정리

차원 축소 (Dimension Reduction)

- 최근 동향: Representation learning: Deep Auto-Encoder
 - 인공 신경망 방법을 이용하여 차원을 축소해보자
 - Bottleneck layer의 차원이 고차원 데이터를 잘 표현 할 수 있도록 축소 한 것

차원 축소 (Dimension Reduction)

- 최근 동향: Representation learning: Convolutional Neural Network
 - 인공 신경망 방법을 이용하여 차원을 축소해보자
 - Bottleneck layer의 차원이 고차원 데이터를 잘 표현 할 수 있도록 축소 한 것

차원 축소: PCA

Dimension Reduction

주성분 분석(PCA)

- 주성분 분석의 목적
 - 차원을 줄이는 비지도 학습 방법 중 한가지
 - 사영 후 원 데이터의 분산(variance)을 최대한 보존할 수 있는 기저를 찾아 차원을
 줄이는 방법

주성분 분석(PCA)

Feature →1/p vector

⇒2D,3D

则: 七-SNE

MNIST의 예시

16×16=256

MNIST

주성분 분석(PCA)

- 주성분 분석
 - 데이터를 사영(projection)시킬 경우 손실되는 정보의 양이 적은 쪽의 기저(축)를 선택
 - 아래 예시의 경우 왼쪽 기저 (축)가 오른쪽 기저 보다 원 데이터의 분산을 최대로 유지하므로 왼쪽의 기저 축을 주성분으로 선택하는 것이 좋음

주성분 분석 (PCA): 수리적 배경

- 주성분 분석: 선형 결합
 - 데이터(X) 사영 변환 후(Z)에도 분산이 보존하는 기저(a)을 찾는 것

기 시
$$Z_1 = \alpha_1^T X = \alpha_{11} X_1 + \alpha_{12} X_2 + \cdots + \alpha_{1p} X_p$$
 $Z_2 = \alpha_2^T X = \alpha_{21} X_1 + \alpha_{22} X_2 + \cdots + \alpha_{2p} X_p$:
$$Z_p = \alpha_p^T X = \alpha_{p1} X_1 + \alpha_{p2} X_2 + \cdots + \alpha_{pp} X_p$$
 X_1, X_2, \dots, X_p : 원 데이터 P 개 변수 $\alpha_i = [\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ip}] : i$ 번째 기저(basis) 또는 계수(loading) Z_1, Z_2, \dots, Z_p : 각 기저로 사영 변환 후 변수 (주성분)

주성분 분석(PCA): 수리적 배경

- 공분산 (Covariance) : 변수의 상관 정도
 - X : 입력 데이터 (n 개의 데이터, d 개의 변수)

입력 데이터 (n 개의 데이터, d 개의 변수)
$$(\sigma \lor (x) = \frac{1}{n} (x - \overline{x}) (x - \overline{x})^T$$
 [dxd] $[dxn]$ [nxd]

- 데이터 셋의 전체 분산(Total variance)
 - \rightarrow tr[Conv(x)] = Conv(X)₁₁+ Conv(X)₂₂ + ··· + Conv(X)_{dd}

예시)
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 5 & 4 & 1 \\ 3 & 8 & 6 \end{bmatrix}, \quad Conv(A) = \begin{bmatrix} 2.67 & 0.67 & -2.67 \\ 0.67 & 4.67 & 2.33 \\ -2.67 & 2.33 & 4.67 \end{bmatrix}$$

주성분 분석(PCA): 수리적 배경

■ 사영 (Projection)

x: 사영후 벡터, p: 직교 사영을 위한 스케일러 b = 데이터, a = 기저축 (PC)

주성분 분석 (PCA): 수리적 배경

■ 고유값(eigenvalue)과 고유벡터(eigenvector)

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \quad \rightarrow \quad (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = 0$$

- 벡터에 행렬을 곱하는 것은 선형 변환의 의미를 가짐 ❤️
 - 고유벡터는 변환에 의해 방향 변화가 발생하지 않음
 - 고유벡터의 <u>크기 변화는 λ 만큼</u>

주성분 분석(PCA): 수리적 배경

■ 고유값(eigenvalue)과 고유벡터(eigenvector)

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \quad \rightarrow \quad (\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$$

- 행렬 A 가 Non-singular 하다면, d개의 고유값과 고유벡터가 존재함
- 고유벡터는 서로 직교함(orthogonal)

•
$$\operatorname{tr}(A) = \lambda_1 + \lambda_2 + \dots + \lambda_d$$

PCA THE ME AND

주성분 분석 알고리즘 PcA

- Step1: 데이터 센터링 (data centering)
 - 데이터 평균을 0으로 변경

X,	2.5	0.5	2.2	1.9	3.1	2.3	2	1	1.5	1.1	
X ₂	2.4	0.7	2.9	2.2	3	2.7	1.6	1.1	1.6	0.9	
X,	0.69	-1.31	0.39	0.09	1.29	0.49	0.19	-0.81	-0.31	-0.71	
X ₂	0.49	-1.21	0.99	0.29	1.09	0.79	-0.31	-0.81	-0.31	-1.01	1
4 [3 . 2 . 2	+	1 2 X1	3	4		2 0 × 0 ·		0 X1	• • • • • • • • • • • • • • • • • • • •		T \$ (

- Step2: 최적화 문제 정의
 - 데이터 X를 기저 벡터 W에 사영(projection)하면, 사용 후 분산은 다음과 같음

$$V = \frac{1}{n} (\mathbf{w}^{\mathrm{T}} \mathbf{X}) (\mathbf{w}^{\mathrm{T}} \mathbf{X})^{\mathrm{T}} = \frac{1}{n} \mathbf{w}^{\mathrm{T}} \mathbf{X} \mathbf{X}^{\mathrm{T}} \mathbf{w} = \mathbf{w}^{\mathrm{T}} \mathbf{S} \mathbf{w}$$

- S는 X의 covariace matrix
- PCA의 목적은 사영 이후 분산 V를 최대화 하는 것

$$\max \mathbf{w}^{\mathrm{T}} \mathbf{S} \mathbf{w}$$

s. t.
$$\mathbf{w}^{\mathsf{T}}\mathbf{w} = 1 \quad \Leftarrow \quad \omega^{\mathsf{T}}\omega^{\mathsf{T}} \quad (\lambda^{\mathsf{T}}, \lambda^{\mathsf{T}})$$

$$S = \begin{pmatrix} 0.6166 & 0.6154 \\ 0.6154 & 0.7166 \end{pmatrix}$$

주성분 분석 알고리즘

S 는 X의 covariance matrix W는 S의 eigen vector 람다는 S의 eigen value

- Step3: 최적화 문제 술루션
 - 라그랑지 멀티플라이어(Lagrangian multiplier) 적용

$$\max \quad \mathbf{w}^T \mathbf{S} \mathbf{w}$$
$$s.t. \quad \mathbf{w}^T \mathbf{w} = 1$$

$$L = \mathbf{w}^T \mathbf{S} \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1)$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{S}\mathbf{w} - \lambda\mathbf{w} = 0 \Rightarrow (\mathbf{S} - \lambda\mathbf{I})\mathbf{w} = 0$$

$$Eigenvectors = \begin{bmatrix} 0.6779 & -0.7352 \\ 0.7352 & 0.6779 \end{bmatrix}$$

$$Eigenvalues = (1.2840\ 0.0491)$$

주성분 분석 알고리즘

S는 X의 covariance matrix W는 S의 eigen vector

라마 크나 = 기가크나= eigenvalue가 크나

- Step4: 주축 정렬
 - Eigenvalue 에 해당되는 eigenvectors를 순서대로 <mark>정렬</mark>

$$Eigenvectors = \begin{bmatrix} 0.6779 & -0.7352 \\ 0.7352 & 0.6779 \end{bmatrix}$$
 $Eigenvalues = \begin{pmatrix} 1.2840 & 0.0491 \end{pmatrix}$

- basis 중 해 (Pcl, R2..) W1은 Eigen vector이고 λ1은대응되는 eigen value 이다.
- (아래 식의 유도에 의하면) (W_1) 에 사영된 데이터의 분산은 λ_1 이다.

$$\mathbf{v} = (\mathbf{w}_1^T \mathbf{X})(\mathbf{w}_1^T \mathbf{X})^T = \mathbf{w}_1^T \mathbf{X} \mathbf{X}^T \mathbf{w}_1 = \mathbf{w}_1^T \mathbf{S} \mathbf{w}_1$$

Since $\mathbf{S} \mathbf{w}_1 = \lambda_1 \mathbf{w}_1$, $\mathbf{w}_1^T \mathbf{S} \mathbf{w}_1 = \mathbf{w}_1^T \lambda_1 \mathbf{w}_1 = \lambda_1 \mathbf{w}_1^T \mathbf{w}_1 = \lambda_1$

• 첫번째 주성분으로 설명가능한 데이터 비율 =
$$\frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{\lambda_2840}{1.2840 + 0.0491} = 0.96$$

주성분 분석 알고리즘

- Step5: PCA로 변환된 데이터
 - Principle Component 1 = $Z_1 = W_1^T X$

0.69 -0.81 -0.31 X, -1.31 0.39 0.09 1.29 0.49 0.19 -0.71-0.81 -0.31 X, 0.49 -1.21 0.99 0.29 1.09 0.79 -0.31 -1.01 0.83 -1.78 1.68 0.99 0.27 0.91 -0.10 -1.14 -0.44 -1.22 Z_1

주성분 분석 알고리즘 Pca 업 → 된

- - 2D 데이터 → 1D PCA → 2D 데이터 복원(reconstruction)

	χ -	Proje	ction	⊳ w [⊤]	x -	Reconstruc		પ્ર <mark>•િક</mark> ્ષ મામનુ X™WW		
	(d by n)			(1 by d)				1)(1 by d) (d		
X,	0.69	-1.31	0.39	0.09	1.29	0.49	0.19	-0.81	-0.31	-0.71
X ₂	0.49	-1.21	0.99	0.29	1.09	0.79	-0.31	-0.81	-0.31	-1.01
Z ₁	0.83	-1.78	0.99	0.27	1.68	0.91	-0.10	-1.14	-0.44	-1.22
X',	0.56	-1.21	0.67	0.19	1.14	0.62	-0.07	-0.78	-0.30	-0.83
X′2	0.61	-1.31	0.73	0.20	1.23	0.67	-0.07	-0.84	-0.32	-0.90

주성분 분석 이슈

_ 몇차원으로 줄일것인가?

- **주성분 개수 선정 법 →** 몇개의 주성분을 사용해야 할까?
 - 선택 방법 #1
 - 고유 값 감소율이 유의미하게 낮아지는 Elbow Point에 해당하는 주성분을 선택
 - 선택 방법 #2
 - 일정 수준 이상의 분산 비를 보존하는 <mark>최소의 주성분을 선택</mark> (보통 70% 이상)

첫번째 주성분으로
$$=\frac{\lambda_3}{\lambda_1+\lambda_2+\lambda_3}$$
 $=\frac{2.7596}{0.0786+0.1618+2.7596}$ $=0.920$

주성분 분석 이슈

- 몇개의 주성분을 사용해야 할까? 5개
 - 조건: 전체 분산의 80%를 포함해야 함
- 솔루션
 - (위) 원 데이터, (아래) PCA 결과
 - PCA결과의 누적분산비를 살펴보면 PC1~PC5까지 선택해야 전체 데이터 분산의 82%에 도달할 수 있음

시리얼 이름	제조업체명	유형	칼로리	단백질	지방	나트륨	식이섬유	복합탄수화물	설탕	칼륨	비타민	
100% Bran	N	C	70	4	1	130	10	5	6	280	25	
100% Natural Bran	Q	С	120	3	5	15	2	8	8	135	0	
All-Bran	K	C	70	4	1	260	9	7	5	320	25	
All-Bran with Extra Fibe	er K	C	50	4	0	140	14	8	0	330	25	
Almond Delight	R	C	110	2	2	200	1	14	8		25	
Apple Cinnamon Chee	rios G	C	110	2	2	180	1.5	10.5	10	70	25	
Apple Jacks	K	C	110	2	0	125	1	11	14	30	25	
Basic 4	G	C	130	3	2	210	2	18	8	100	25	
Bran Chex	R	C	90	2	1	200	4	15	6	125	25	
Bran Flakes	P	C	90	3	0	210	5	13	5	190	25	
Cap'n'Crunch	Q	C	120	1	2	220	0	12	12	35	25	
Cheerios	G	C	110	6	2	290	2	17	1	105	25	
Cinnamon Toast Cruno	ch G	C	120	1	3	210	0	13	9	45	25	
Clusters	G	C	110	3	2	140	2	13	7	105	25	
Cocoa Puffs	G	C	110	1	1	180	0	12	13	55	25	
Corn Chex	R	C	110	2	0	280	0	22	3	25	25	
Corn Flakes	K	C	100	2	0	290	1	21	2	35	25	
Corn Pops	K	C	110	1	0	90	1	13	12	20	25	
Count Chocula	G	C	110	1	1	180	0	12	13	65	25	
Cracklin' Oat Bran	K	C	110	3	3	140	4	10	7	160	25	

변수이름	PCI 1	PC2 2	PC3 3	4	5	6	7
calories	0.2995424	0.39314792	0.11485746	0.20435865	0.20389892	-0.25590625	-0.02559552
protein	-0.30735639	0.16532333	0.27728197	0.30074316	0.319749	0.120752	0.28270504
fat	0.03991544	0.34572428	-0.20489009	0.18683317	0.58689332	0.34796733	-0.05115468
sodium	0.18339655	0.13722059	0.38943109	0.12033724	-0.33836424	0.66437215	-0.28370309
fiber	-0.45349041	0.17981192	0.06976604	0.03917367	-0.255119	0.0642436	0.11232537
carbo	0.19244903	-0.14944831	0.56245244	0.0878355	0.18274252	-0.32639283	-0.26046798
sugars	0.22806853	0.35143444	-0.35540518	-0.02270711	-0.31487244	-0.15208226	0.22798519
potass	-0.40196434	0.30054429	0.06762024	0.09087842	-0.14836049	0.02515389	0.14880823
vitamins	0.11598022	0.1729092	0.38785872	-0.6041106	-0.04928682	0.12948574	0.29427618
shelf	-0.17126338	0.26505029	-0.00153102	-0.63887852	0.32910112	-0.05204415	-0.17483434
weight	0.05029929	0.45030847	0.24713831	0.15342878	-0.22128329	-0.39877367	0.01392053
cups	0.29463556	-0.21224795	0.13999969	0.04748911	0.12081645	0.09946091	0.74856687
rating	-0.43837839	-0.25153893	0.1818424	0.0383162	0.05758421	-0.18614525	0.06344455
분산	3.63360572	3.1480546	1.90934956	1.01947618	0.98935974	0.72206175	0.67151642
분산비(%)	27.95081329	24.21580505	14.6873045	7.84212446	7.61045933	5.55432129	5.16551113
누적분산비(%)	27.95081329	52.16661835	66.85391998	74.69604492	82.3065033	87.86082458	93.02633667

주성분 분석 한계

- 한계점 1 only 당일 거유시만 lunitmodel
 - 데이터 분포가 가우시안(non-gaussian)이 아니거나 다중 가우시안(multimodal -gaussian) 자료들에 대해서는 적용하기 어려움

- 한계점 2
 - 분류 문제를 위해 디자인되지 않음, <mark>즉 분류 성능 향상을 보장하지 못함</mark>

차원 축소: 기타

Dimension Reduction

Randomized PCA, Kernelized PCA

랜덤 PCA의 개념

- 자료의 크기 또는 특성변수의 크기가 매우 크면 주성분 W 를 구하기 위한 SVD 계산 이 불가능하거나 시간이 많이 소요됨
- 이런 경우 Randomized PCA 가 유용
- Randomized PCA는 QR 분해를 이용하여 행렬의 SVD를 수행함

커널 PCA 개념

- PCA는 선형 변환이고 Kernelized PCA는 비선형 변환임
- SVM의 커널트릭을 PCA에서도 사용
- 특성 변수 x를 비선형 h(x)로 번환한 후 이에 대해 PCA를 하여 차원 축소를 하는 방법임

