Aim: Implement the Naive Bayes learning algorithm on Balance Scale Dataset.

Code:

```
Mdl = fitcnb(BCDE,A)
[label,Posterior,Cost] = predict(Mdl,row)
[xx1, xx2] = meshgrid(4:.01:8,2:.01:4.5);
XGrid = [xx1(:) xx2(:)];
figure('Units','Normalized','Position',[0.25,0.55,0.4,0.35]);
sz = size(xx1);
```

Output: Mdl = ClassificationNaiveBayes PredictorNames: {'VarName2' 'VarName4' 'VarName5'} ResponseName: 'B' CategoricalPredictors: [] ClassNames: [B L R] ScoreTransform: 'none' NumObservations: 625 DistributionNames: {'normal' 'normal' 'normal' } DistributionParameters: {3×4 cell} Properties, Methods label = 2×1 categorical array L R Posterior = 0.2108 0.2291 0.5601

Cost =

 Aim: Classify the iris dataset using Decision Tree learning algorithm. Calculate the classification accuracy using 5-fold cross validation.

Code:

```
load fisheriris
Mdl = fitctree(meas, species);
CVMdl = crossval(Mdl,'Kfold',5);
L = kfoldLoss(CVMdl);
%view(Mdl)
view(Mdl,'Mode','graph');
```



```
Command Window
  >> decision_tree
  >> Mdl
  Mdl =
    ClassificationTree
                 ResponseName: 'Y'
       CategoricalPredictors: []
              ClassNames: ('setosa' 'versicolor' 'virginica')
ScoreTransform: 'none'
              NumObservations: 150
    Properties, Methods
  >> CVMdl
  CVMdl =
    classreq.learning.partition.ClassificationPartitionedModel
    CrossValidatedModel: 'Tree'
           PredictorNames: {'x1' 'x2' 'x3' 'x4'}
              ResponseName: 'Y'
           NumObservations: 150
                      KFold: 5
            Partition: [1x1 cvpartition]
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
    Properties, Methods
  >> L
      0.0533
```

Experiment-3

Aim: Implement the K-means algorithm and apply it on any two datasets. Evaluate performance by measuring the Euclidean distance of each example from its class center. Test the performance of algorithm as a function of k.

Code:

1) Fisheriris Dataset

```
load fisheriris
X = meas(:, 3:4);
figure;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)';
rng(1); % For reproducibility
eva = evalclusters(meas, 'kmeans', 'CalinskiHarabasz', 'KList',
[1:4]);
[idx, C, sumD, D] = kmeans(X, 3);
x1 = min(X(:,1)):0.01:max(X(:,1));
x2 = min(X(:,2)):0.01:max(X(:,2));
[x1G, x2G] = meshgrid(x1, x2);
XGrid = [x1G(:), x2G(:)]; % Defines a fine grid on the plot
idx2Region = kmeans(XGrid, 3, 'MaxIter', 1, 'Start', C);
figure;
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...
    [0,0.75,0.75;0.75,0,0.75;0.75,0.75,0],'...');
hold on;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)';
legend('Region 1', 'Region 2', 'Region
3','Data','Location','SouthEast');
hold off;
```

```
Command Window
                                                                        0.028360000000000 21.83059027777770 10.121198224852071
                                                                        0.0035600000000000
                                                                                          20.15225694444435
                                                                                                              8.973505917159763
  D =
                                                                        0.029160000000000 21.47309027777771
                                                                                                              9.902736686390533
                                                                        0.029160000000000 21.47309027777771
                                                                                                              9.902736686390533
     0.005960000000000 20.981423611111104 9.537352071005916
                                                                        0.0283600000000000
                                                                                          21.830590277777770 10.121198224852071
     0.005960000000000 20.981423611111104 9.537352071005916
                                                                        0.14436000000000 18.033090277777767 7.675813609467454
     0.028360000000000 21.83059027777770 10.121198224852071
                                                                        0.215560000000000 16.34059027777771
                                                                                                              6.501198224852071
     0.003560000000000 20.152256944444435
                                          8.973505917159763
                                                                        0.0067600000000000
                                                                                          20.623923611111103
                                                                                                              9.318890532544378
     0.005960000000000 20.981423611111104
                                           9.537352071005916
                                                                        0.021160000000000 19.343090277777769
                                                                                                              8.429659763313609
     0.080360000000000 17.858923611111102
                                            7.488890532544377
                                                                        0.005960000000000 20.981423611111104
                                                                                                              9.537352071005916
     0.006760000000000 20.623923611111103
                                           9.318890532544378
                                                                        0.003560000000000 20.15225694444435
                                                                                                              8.973505917159763
     0.003560000000000 20.152256944444435
                                            8.973505917159763
                                                                                                              9.537352071005916
                                                                        0.005960000000000 20.981423611111104
     0.005960000000000 20.981423611111104
                                           9.537352071005916
                                                                       11.8163600000000000
                                                                                           1.2089236111111109
                                                                                                              0.188890532544379
     0.02276000000000 20.529756944444436 9.211967455621300
                                                                       10.801959999999999
                                                                                           1.489756944444442 0.078121301775148
     0.003560000000000 20.152256944444435
                                            8.973505917159763
                                                                       13.3923600000000002
                                                                                          0.773090277777776 0.422736686390533
     0.021160000000000 19.343090277777769
                                           8.429659763313609
                                                                        7.5523599999999998
                                                                                           3.09059027777774
                                                                                                               0.074275147928994
     0.025160000000000 21.358923611111102
                                           9.775813609467454
                                                                       11.419559999999997
                                                                                           1.280590277777776
                                                                                                              0.134275147928994
     0.152360000000000 23.966423611111097
                                          11.587352071005915
                                                                       10.340359999999999
                                                                                           1.744756944444442
                                                                                                              0.055044378698225
     0.070760000000000 22.699756944444434 10.725044378698223
                                                                       12.317959999999999
                                                                                           0.993923611111109
                                                                                                              0.251967455621302
     0.025160000000000 19.457256944444435
                                           8.556582840236684
                                                                        3.946759999999999
                                                                                           6.347256944444441 1.056582840236686
     0.049960000000000 21.135590277777769
                                            9.704275147928994
                                                                       10.957959999999996
                                                                                          1.53559027777776
                                                                                                              0.111198224852071
     0.006760000000000 20.623923611111103
                                           9.318890532544378
                                                                        7.275559999999999
                                                                                           3.282256944444441
                                                                                                              0.139659763313610
     0.059560000000000 18.196423611111101
                                           7.687352071005915
                                                                        4.721959999999999
                                                                                           5.468923611111107
                                                                                                              0.708890532544378
     0.004360000000000 19.794756944444437
                                           8.755044378698223
                                                                        9.0691600000000000
                                                                                           2.23725694444441
                                                                                                              0.029659763313610
     0.058760000000000 18.553923611111102
                                           7.905813609467454
                                                                        7.009959999999999
                                                                                           3.623090277777774
                                                                                                              0.189659763313609
     0.025160000000000 19.457256944444435
                                           8.556582840236684
                                                                       11.8163600000000000
                                                                                          1.208923611111109
                                                                                                              0.188890532544379
     0.215560000000000 24.498090277777766 11.992736686390531
                                                                        5.6819600000000000
                                                                                           4.527256944444440
                                                                                                              0.449659763313609
                                           7.310428994082838
     0.121160000000000 17.541423611111099
                                                                        9.9635600000000001
                                                                                           1.8364236111111107
                                                                                                              0.020428994082840
     0.193960000000000 17.03559027777771
                                            6.918121301775147
                                                                       10.801959999999999
                                                                                           1.489756944444442 0.078121301775148
     0.021160000000000 19.343090277777769
                                           8.429659763313609
                                                                        7.527559999999997
                                                                                           3.3139236111111108
                                                                                                               0.145813609467456
     0.042760000000000 18.648090277777769
                                          8.012736686390531
                                                                       10.801959999999999
                                                                                           1.489756944444442 0.078121301775148
     0.003560000000000 20.15225694444435
                                            8.973505917159763
                                                                        6.673159999999999
                                                                                           3.754756944444440 0.195044378698225
     0.005960000000000 20.981423611111104
                                           9.537352071005916
                                                                       13.557159999999998
                                                                                           0.689756944444443
                                                                                                              0.491198224852071
     0.021160000000000 19.34309027777769
                                           8.429659763313609
                                                                        7.552359999999998
                                                                                           3.090590277777774 0.074275147928994
     0.021160000000000 19.343090277777769
                                           8.429659763313609
                                                                       13,3923600000000002
                                                                                           0.773090277777776
                                                                                                              0.422736686390533
     0.025160000000000 19.457256944444435
                                           8.556582840236684
                                                                       11.39476000000000000
                                                                                           1.5039236111111108
                                                                                                              0.205813609467456
     0.022760000000000 20.52975694444436
                                            9.211967455621300
                                                                        9.1651599999999997
                                                                                          2.223090277777775
                                                                                                              0.002736686390533
     0.005960000000000 20.981423611111104
                                           9.537352071005916
                                                                        9.9635600000000001
                                                                                           1.836423611111107
                                                                                                              0.020428994082840
     0.00356000000000 20.152256944444435 8.973505917159763
                                                                       12.473959999999998
                                                                                           1.039756944444443
                                                                                                              0.285044378698225
     0.070760000000000 22.699756944444434 10.725044378698223
                                                                       14.63155999999999 0.468923611111110 0.661967455621302
```

```
>>> eva
eva =

CalinskiHarabaszEvaluation with properties:

NumObservations: 150
    InspectedK: [1 2 3 4]
    CriterionValues: [NaN 5.139245459802769e+02 5.616277566296201e+02 5.304871420421677e+02]
    OptimalK: 3
```


Code:

1) Kmeans Dataset

```
load kmeansdata
Y = X(:, 3:4);
figure;
plot(Y(:,1),Y(:,2),'k*','MarkerSize',5);
title 'K-Means Data';
xlabel 'X';
ylabel 'Y';
rng(1); % For reproducibility
eva = evalclusters(X,'kmeans','CalinskiHarabasz','KList',[1:4]);
[idx, C, sumD, D] = kmeans(Y, 4);
x1 = min(Y(:,1)):0.01:max(Y(:,1));
x2 = min(Y(:,2)):0.01:max(Y(:,2));
[x1G, x2G] = meshgrid(x1, x2);
XGrid = [x1G(:), x2G(:)]; % Defines a fine grid on the plot
idx2Region = kmeans(XGrid, 4, 'MaxIter', 1, 'Start', C);
figure;
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...
    [0,0.75,0.75;0.75,0,0.75;0.75,0.75,0;0.75,0.75,0.75],'..');
hold on;
plot(Y(:,1),Y(:,2),'k*','MarkerSize',5);
title 'K-Means Data';
xlabel 'X';
ylabel 'Y';
legend('Region 1', 'Region 2', 'Region 3', 'Region
4','Data','Location','SouthEast');
hold off;
```

Command Window					♠ Command Window					
>> D					21.4592	23.4506	44.1953	2.340		
					57.9583	49.9502	105.2711	4.541		
D =					16.2973	37.7318	53.0167	3.055		
					43.1487	56.9035	98.4597	3.844		
32.4842	44.7349	78.1733	1.1332		37.0126	22.1212	59.6297	0.953		
31.2985	28.3614	61.2225	0.1236		22.1708	16.6074	35.0543	5.118		
39.1968	32.4856	73.1326	0.2594		42.6669	28.7091	72.2329	0.710		
40.4226	25.1963	66.3610	0.7556		33.1804	20.4025	53.7638	1.259		
37.7314	38.9524	78.0933	0.4815		37.7446	20.9868	58.9115	1.227		
38.2181	23.7844	62.7371	0.7493		26.9777	29,2369	57.5834	0.381		
46.8248	47.3781	93.8471	2.3433		25.5716	37.7943	64.6042	0.745		
38.4742	29.9993	69.8929	0.2330		32.7680	23.3925	57.0496	0.643		
29.9111	41.1405	72.3644	0.7139		20.4495	19,7374	37.5688	4.128		
34.6566	49.1528	84.0819	1.8960		75.8924	78.0502	142.0791	14.164		
36.9680	26.6371	64.8519	0.3316		53.4354	38.3760	90.9710	2.519		
34.7824	37.7767	74.1790	0.2744		24.3427	20.0924	43.4298	2.509		
42.5601	16.1333	56.8120	3.0824		31.6321	23.1208	55.5683	0.720		
32.2696	40.6589	74.3550	0.5652		28.2430	30.6996	60.5166	0.204		
22.7930	28.4175	51.8351	1.1362		30.0904	26.1960	57.5682	0.356		
21.0189	24.6142	45.0931	2.2028		33.1226	15.3224	46.6809	3.043		
29.3519	45.3611	75.4585	1.3871		14.4213	38.7866	51.3282	3.955		
31.0319	56.6570	86.2696	3.7926		38.8501	37.7166	77.9664	0.447		
38.9413	30.3953	70.7360	0.2581		47.3546	47.5959	94.4941	2.442		
37.5992	36.4389	75.5835	0.2843		60.6838	60.5378	116.4204	6.916		
27.6725	40.6839	69.5709	0.8220		42.9668	48.6825	91.5631	2.151		
18.5477	27.9591	45.7980	2.4808		26.3730	30,3083	58.0572	0.408		
30.7191	35.9912	68.4207	0.1811		50.7703	34.8382	85.3421	1.890		
44.5659	24.8492	69.5258	1.3255		43.8412	40,2938	84.8657	1.121		
16.1985	17.8267	26.0553	9.3919		34.3331	24.8483	60.3100	0.429		
28.2569	13.1240	37.4437	5.1760		43.3349	36.8064	81.1046	0.807		
24.1329	33.8676	59.1700	0.7267		22.9844	28,6173	52.2904	1.076		
36.6691	44.9082	82.4541	1.1707		32.2176	25.7599	59.2595	0.323		
34.6476	21.9410	57.1503	0.9087		48.8535	42.1710	90.8834	1.976		
47.3815	44.8478	92.0849	2.0641		57.2587	45.7928	100.9798	3.884		
22.8036	14.1878	31.4730	6.8163		27.4579	26.3764	54.9411	0.560		
58.7501	62.6124	116.5293	7.0217		36.9716	21.4369	58.7508	1.087		
30.6368	13.7260	41.4125	4.1955		31.8372	27.8913	61.2571	0.139		
21.3446	30.1981	52.0043	1.3576		29.8452	27.2753	58.5239	0.267		
37.3975	36,9200	75.8576	0.3041		30.2781	17.2978	46.5067	2.439		
59,6276	31.6377	88.6908	3.9892	fx	22.2145	29.5502	52.3790	1.181		

```
>> eva
```

eva =

CalinskiHarabaszEvaluation with properties:

NumObservations: 560

InspectedK: [1 2 3 4]

CriterionValues: [NaN 477.6418 729.6816 1.4548e+03]

OptimalK: 4

Aim: Implement linear regression on Iris Dataset.

Code:

```
load fisheriris
x = hwydata(:,1);
y = hwydata(:, 2);
format long
b1 = x y
yCalc1 = b1*x;
scatter(x,y)
hold on
plot(x,yCalc1)
xlabel('Petal Width')
ylabel('Petal Length')
title ('Linear Regression Relation Between Petal Length & Petal
Width')
grid on
X = [ones(length(x), 1) x];
b = X \setminus y
yCalc2 = X*b;
plot(x,yCalc2,'--')
legend('Data','Slope','Slope&Intercept','Location','best');
```


Aim: Classify Dataset using Neural Networks.

Aim: Classify Dataset by increasing number of layers and number of neurons in each layer using Neural Networks . Report classification accuracy.

Aim: Use Covertype Dataset and implement PCA. Reduce the number of attributes to 10. Classify this data, using any two machine learning algorithms.

Code:

```
Command Window
  coeff =
      0.0624 \quad -0.0454 \quad 0.2777 \quad 0.6895 \quad 0.6638 \quad -0.0148 \quad 0.0262 \quad 0.0074 \quad 0.0057 \quad -0.0002
      0.0144 \quad -0.0074 \quad -0.0542 \quad -0.6613 \quad 0.7170 \quad 0.0661 \quad -0.2002 \quad 0.0270 \quad -0.0160 \quad 0.0013
     -0.0009 \quad -0.0003 \quad 0.0008 \quad -0.0000 \quad -0.0007 \quad 0.1170 \quad -0.0584 \quad -0.1932 \quad 0.8905 \quad 0.3906
      0.0219 \quad 0.0001 \quad 0.9501 \quad -0.2361 \quad -0.1538 \quad -0.1103 \quad -0.0670 \quad -0.0264 \quad 0.0036 \quad -0.0005
     -0.0001 -0.0009 0.1248 -0.0463 -0.0036 0.8675 0.4251 0.2176 -0.0397
                                                                                                 0.0016
      0.9109 \quad -0.4047 \quad -0.0391 \quad -0.0353 \quad -0.0599 \quad 0.0061 \quad -0.0050 \quad -0.0019 \quad -0.0008
                                                                                                  0.0000
              0.0010
                        0.0021
                                   0.0797 -0.0724 0.0303 -0.4085
                                                                            0.6600
     -0.0024
                                                                                       -0.1515
                                                                                                  0.6017
              -0.0004 -0.0053 -0.0446 0.0229 -0.2548 0.2037 0.6905
                                                                                       0.4132
      0.0040
                                                                                                 -0.4935
      0.0076
               -0.0014
                         -0.0077
                                   -0.1402 0.1104
                                                        -0.3887
                                                                   0.7498
                                                                            0.0381
                                                                                       -0.1071
                                                                                                  0.4918
      0.4069
              0.9133 -0.0040
                                   0.0129
                                             0.0002
                                                                                                  0.0000
```

>> score									
score =									
1.0e+03 *									
-1.0877	4.2291	0.0316	-0.0147	-0.0535	-0.0490	0.0158	0.0009	-0.0017	-0.00
-1.2203	4.2285	-0.0099	-0.0081	-0.0399	-0.0516	0.0192	0.0028	-0.0015	-0.00
1.2946	2.9942	-0.0016	-0.0285	-0.0183	0.0296	0.0031	0.0248	0.0006	0.00
1.2475	3.1135	-0.0226	-0.0420	-0.0109	0.0857	0.0121	0.0379	0.0069	-0.00
-1.2421	4.1796	-0.0632	0.0158	-0.0362	-0.0411	0.0266	0.0045	-0.0020	-0.00
-1.5912	4.1820	0.0789	-0.0752	0.0089	-0.0619	-0.0165	0.0080	0.0022	-0.00
-0.9843	4.1579	0.0421	-0.0098	-0.0621	-0.0396	0.0084	-0.0040	-0.0002	-0.00
-1.0511	4.1566	0.0100	-0.0040	-0.0503	-0.0380	0.0169	0.0019	-0.0017	-0.00
-0.9592	4.1330	0.0218	0.0022	-0.0532	0.0112	0.0272	0.0052	-0.0018	0.00
-0.9923	4.1326	0.0220	-0.0075	-0.0472	-0.0236	-0.0045	-0.0029	0.0000	0.00
-0.9043	4.0841	-0.0486	-0.0981	0.0641	0.0070	0.0252	0.0237	-0.0020	-0.00
2.3483	0.2610	0.0406	-0.1026	-0.1209	-0.0094	-0.0290	0.0126	0.0032	0.00
1.3073	2.9555	-0.1310	-0.0341	-0.0535	0.0691	-0.0297	0.0236	0.0080	-0.00
-0.8766	4.0595	-0.0807	-0.1047	0.0753	0.0027	0.0316	0.0229	0.0019	-0.00
-1.2230	3.5460	-0.1848	-0.1191	-0.0279	-0.0198	0.0088	0.0164	-0.0017	-0.00
-1.1644	3.4937	-0.2080	-0.0490	-0.1123	-0.0157	0.0165	0.0021	-0.0021	0.00
-1.0728	4.0205	-0.1103	-0.1183	0.1200	-0.0282	-0.0037	0.0123	-0.0051	-0.00
-1.2923	3.5844	-0.1556	-0.0513	-0.0801	-0.0156	0.0082	0.0067	-0.0015	0.00
-1.2204	3.5146	-0.1498	-0.0234	-0.1444	-0.0326	0.0449	-0.0003	-0.0014	-0.00
-1.1817	3.4787	-0.1628	-0.0467	-0.1214	-0.0184	0.0275	0.0025	-0.0027	-0.00
-1.1616	3.4607	-0.1899	-0.0614	-0.0997	-0.0060	0.0027	0.0052	-0.0014	0.00
2.2133	0.6172	-0.1021	-0.1045	-0.0330	-0.0060	0.0185	0.0104	0.0121	0.00
1.3738	2.7957	-0.0853	-0.0155	-0.0689	0.0867	-0.0433	0.0161	0.0043	-0.00
-1.2684	3.5327	-0.1215	-0.0541	-0.1063	-0.0236	0.0042	-0.0020	-0.0014	-0.00
-1.1977	3.4631	-0.1266	-0.0417	-0.1352	-0.0175	0.0299	-0.0069	-0.0009	0.00
-1.0992	3.3746	-0.2575	-0.1023	-0.0546	-0.0117	0.0053	0.0168	-0.0009	-0.00
-1.1116	3.3717	-0.2315	-0.1301	-0.0401	-0.0189	-0.0012	0.0200	0.0045	0.00
2.6889	-0.6098	-0.0073	-0.0657	-0.1154	0.0023	-0.0430	0.0124	0.0065	-0.00
1.5458	2.3590	-0.0745	-0.0335	-0.0400	-0.0019	0.0111	0.0109	-0.0057	-0.00
1.3426	2.8762	-0.1568	-0.0179	-0.0718	0.0690	-0.0527	0.0126	0.0062	-0.00
1.2936	2.9964	-0.2240	-0.0232	-0.0786	0.0640	-0.0781	0.0011	0.0103	-0.00
-1.3062	3.5492	-0.1232	-0.0776	-0.0596	-0.0215	-0.0062	0.0116	-0.0005	-0.00
-1.2912	3.5317	-0.1206	-0.0809	-0.0647	-0.0228	0.0022	0.0118	-0.0010	0.00
-1.2609	3.4990	-0.0941	-0.0408	-0.1281	-0.0334	0.0280	-0.0041	-0.0011	-0.00

KNN:

```
score1 = xlsread('score1.xlsx');
Y = score1(:,11);
%Mdl = fitcknn(score1,Y);
Mdl = fitcknn(score1,Y,'NumNeighbors',5,'Standardize',1);
```

```
>> Md1
Mdl =
 ClassificationKNN
            ResponseName: 'Y'
    CategoricalPredictors: []
              ClassNames: [1 2 5]
          ScoreTransform: 'none'
          NumObservations: 1370
                Distance: 'euclidean'
             NumNeighbors: 5
  Properties, Methods
>> Mdl.ModelParameters
ans =
       NumNeighbors: 5
          NSMethod: 'exhaustive'
          Distance: 'euclidean'
        BucketSize: []
        IncludeTies: 0
     DistanceWeight: 'equal'
         BreakTies: 'smallest'
           Exponent: []
              Scale: []
    StandardizeData: 1
           Version: 1
            Method: 'KNN'
              Type: 'classification'
```

Kmeans

```
X = score(:,9:10);
figure;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'CoverType Data';
rng(1); % For reproducibility
[idx,C,sumD,D] = kmeans(X,3);
x1 = min(X(:,1)):0.01:max(X(:,1));
x2 = min(X(:,2)):0.01:max(X(:,2));
```

```
[x1G,x2G] = meshgrid(x1,x2);
XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot
idx2Region = kmeans(XGrid,3,'MaxIter',1,'Start',C);
figure;
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...
      [0,0.75,0.75;0.75,0,0.75;0.75,0],'..');
hold on;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'CoverType Data';
legend('Region 1','Region 2','Region
3','Data','Location','SouthEast');
hold off;
```


Aim: Classify dataset using SVM's.

Code:

```
% SVM Linear classification
% A 2-feature example
clear all; close all;
% Load training features and labels
[y, x] = libsvmread('twofeature.txt');
% Set the cost
C = 100;
% Train the model and get the primal variables w, b from the
model
% Libsvm options
% -s 0 : classification
% -t 0 : linear kernel
% -c somenumber : set the cost
model = svmtrain(y, x, sprintf('-s 0 -t 0 -c %g', C));
w = model.SVs' * model.sv coef;
b = -model.rho;
if (model.Label(1) == -1)
    w = -w; b = -b;
```

```
% Plot the data points
figure
pos = find(y == 1);
neg = find(y == -1);
plot(x(pos,1), x(pos,2), 'ko', 'MarkerFaceColor', 'b'); hold on;
plot(x(neg,1), x(neg,2), 'ko', 'MarkerFaceColor', 'g')

% Plot the decision boundary
plot_x = linspace(min(x(:,1)), max(x(:,1)), 30);
plot_y = (-1/w(2))*(w(1)*plot_x + b);
plot(plot_x, plot_y, 'k-', 'LineWidth', 2)

title(sprintf('SVM Linear Classifier with C = %g', C),
'FontSize', 14)
```

