Application of Neural Networks to Conformal Field Theory

Joydeep Naskar, Aditya Kumar

NISER, Bhubaneswar

December 10, 2020

What is a CFT?

The conformal group is the set of transformations of spacetime that preserve angles (but not necessarily distances). A conformal field theory is a quantum(classical) field theory that is invariant under the conformal group.

$$x'^{\mu}=x^{\mu}+a^{\mu}$$
 (Translation) $x'^{\mu}=\alpha x^{\mu}$ (Dilation) $x'^{\mu}=M^{\mu}_{\nu}x^{\nu}$ (Rotation) $x'^{\mu}=\frac{x^{\mu}-b^{\mu}x^2}{1-2b\cdot x+b^2x^2}$ (SCT)

Why CFTs are important?

- Some of the most important equations in physics are conformally invariant. E.g, Maxwell's equation of free EM fields in (3+1)D.
- Useful for study of RG flows, phase transitions and critical phenomena of statistical mechanical systems such as Ising Model.
- High energy phenomenological motivations.
- AdS/CFT correspondence (gauge-gravity duality).
- String theory- If string theory is correct, then in some sense conformal invariance is one of the most fundamental features of reality.

Outline of this Work

Warm Up: Discrete Symmetries

- Odd-Even Classification
- Point Cloud Symmetry Classification

CFT Classification Problems

- Scale vs Conformal Invariance
- Scale vs Conformal Invariance using only Correlators
- Scale vs Conformal Invariance in Embedding Space
- Scale vs Conformal Invariance using only Correlators in Embedding Space
- Scale vs Conformal Invariance for spinning 3-pt function
- Scale vs Conformal Invariance for spinning 3-pt function using only correlators
- CFT Regression Problem: Predicting the OPE Coefficient

We give a proof of concept.

Warm Up: Odd-Even & Point Cloud Symmetry

Odd-Even Symmetry:

Given
$$f(x)$$
. Let $x \longrightarrow -x$. Define

$$f(-x) = -f(x) \quad odd$$

$$f(-x) = f(x)$$
 even

Point Cloud Symmetry:

Define

$$(x, y, z) \longrightarrow (x, y, -z)$$
 reflection $(x, y, z) \longrightarrow (-x, -y, -z)$ antipodal $(x_1, y_1, z_1) \longrightarrow (x_2, y_2, z_2)$ null

Contd.: Odd-Even & Point Cloud Symmetry

Generating training data

- 1. Start with random numbers
- 2. Do mathematical operations to give them an appropriate form
- 3. Add the labels
- 4. Arrange them in handy order
- 5. Save the data as a file from which can be totally recovered

Kids park

Contd.: Odd-Even & Point Cloud Symmetry

Odd Even Classifier

Point Cloud	X	Y
Even Function	$(\mathbf{x}, \mathbf{f}(\mathbf{x}), -\mathbf{x}, \mathbf{f}(\mathbf{x}))$	(1,0)
Odd Function	$(\mathbf{x}, \mathbf{f}(\mathbf{x}), -\mathbf{x}, -\mathbf{f}(\mathbf{x}))$	(0, 1)

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 20)	4020
dense_2 (Dense)	(None, 10)	210
dropout_1 (Dropout)	(None, 10)	0
dense_3 (Dense)	(None, 2)	22
======================================	=========	

Relu
Relu
Softmax

SGD

Binary Cross entropy

Contd.: Odd-Even & Point Cloud Symmetry

3D symmetries

Point Cloud Symmetry	X	Y
Plane Reflection	$(\mathbf{x},\mathbf{y},\mathbf{z}) \cup (\mathbf{x},\mathbf{y},-\mathbf{z})$	(1, 0, 0)
Antipodal Reflection		(0, 1, 0)
Null	$(\mathbf{x}_1,\mathbf{y}_1,\mathbf{z}_1)\cup(\mathbf{x}_2,\mathbf{y}_2,\mathbf{z}_2)$	(0, 0, 1)

Layer (type)	Output	Shape	Param #	
dense_1 (Dense)	(None,	50)	7550	Relu
dense 2 (Dense)	(None,	20)	1020	
dropout_1 (Dropout)	(None,	20)	0	Relu
dense_3 (Dense)	(None,	3)	63	Softmax
Total params: 8,633 Trainable params: 8,633 Non-trainable params: 0				

SGD

Categorical cross entropy

Contd.: Learning curves

Figure: Learning curves for Point cloud symmetries(Top) and Odd Even(Bottom)

Scale vs Conformal Invariance: 2-point functions

• A 2-point function is in general a function of two space-time points

$$f(x_1, x_2)$$

• In a D-dimensional quantum field theory with Poincare symmetry containing **scalar** operators $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3$ with scaling dimensions $\Delta_1, \Delta_2, \Delta_3$ respectively, Scale invariant 2-point function is constrained to be:

$$<\mathcal{O}_{\Delta_i}(x_1)\mathcal{O}_{\Delta_j}(x_2)>=rac{c_{ij}}{|x_1-x_2|^{\Delta_i+\Delta_j}}$$

Conformal invariant 2-point function is further constrained to

$$c_{ij} = \delta_{ij}$$

Scale vs Conformal Invariance: 3-point functions

- 3-pt functions put more prominent restrictions.
- Only scale invariant 3-pt function has the form:

$$<\mathcal{O}_{\Delta_1}(x_1)\mathcal{O}_{\Delta_2}(x_2)\mathcal{O}_{\Delta_3}(x_3)> = \sum_{\{a,b,c\}} \frac{c_{abc}}{|x_1-x_2|^a|x_2-x_3|^b|x_3-x_1|^c}$$

with the constraint

$$a + b + c = \Delta_1 + \Delta_2 + \Delta_3$$

Conformal invariant 3-pt function is further constrained to:

$$<\mathcal{O}_{\Delta_1}(x_1)\mathcal{O}_{\Delta_2}(x_2)\mathcal{O}_{\Delta_3}(x_3)> = \frac{\lambda_{123}}{|x_1-x_2|^{\alpha_{123}}|x_2-x_3|^{\alpha_{231}}|x_3-x_1|^{\alpha_{312}}}$$

with

$$\alpha_{ijk} = \Delta_i + \Delta_j - \Delta_k$$

SI vs CI: Setting up the Machine Learning Problem

Scale Vs Conformal Invariance

Non-trainable params: 0

Symmetry	X	Y
Scale Invariance	$\left(\mathbf{x}_{12}, \mathbf{x}_{23}, \mathbf{x}_{31}, \Delta_{1}, \Delta_{2}, \Delta_{3}, f_{scale}^{(3)}\right)_{(100)}$	(1,0)
Conformal Invariance	$\left(\mathbf{x}_{12}, \mathbf{x}_{23}, \mathbf{x}_{31}, \Delta_{1}, \Delta_{2}, \Delta_{3}, f_{cft}^{(3)}\right)_{(100)}$	

Layer (type)	Output Shape	Param #		SGD
dense_4 (Dense)	(None, 50)	350050	Relu	SGD
dense_5 (Dense)	(None, 20)	1020		
dropout_2 (Dropout)	(None, 20)	0	Sigmoid	Binary
dense_6 (Dense)	(None, 2)	42	Softmax	Cross entropy
Total params: 351,112 Trainable params: 351,112			- Columbia	

SI vs CI: Setting up the Machine Learning Problem

Scale Vs Conformal Invariance with Correlator

Symmetry	X	Y
Scale Invariance	$\left(\mathbf{x}_{12}, \mathbf{x}_{23}, \mathbf{x}_{31}, f_{\Delta_1}^{(2)}, f_{\Delta_2}^{(2)}, f_{\Delta_3}^{(2)}, f_{\text{scale}}^{(3)}\right)_{(100)}$	(1,0)
Conformal Invariance	$\left(\mathbf{x}_{12}, \mathbf{x}_{23}, \mathbf{x}_{31}, f_{\Delta_{1}}^{(2)}, f_{\Delta_{2}}^{(2)}, f_{\Delta_{3}}^{(2)}, f_{\text{conformal}}^{(3)}\right)_{(100)}$	(0, 1)

Layer (type)	Output Shape	Param #		
dense_1 (Dense)	(None, 40)	280040	Sigmoid	SGD
dense_2 (Dense)	(None, 10)	410		
dropout_1 (Dropout)	(None, 10)	0	Sigmoid	Dinom
dense_3 (Dense)	(None, 2)	22	Sigmoid	Binary Cross entropy
Total params: 280,472 Trainable params: 280,472 Non-trainable params: 0	2			

SI vs CI: Results

Figure: Learning curves for Scalar vs Conformal invariance(Top) and Scalar vs Conformal invariance with correlator(Bottom)

Embedding Space

• The conformal group in D dimensions is isomorphic to SO(D+1,1).

Conformal invariants in D dim \leftrightarrow Lorentz invariants in (D+1,1) dim

ullet Coordinates in (D+1,1) space are related to D space coordinates

$$X^{M} \equiv (X^{+}, X^{-}, X^{\mu}) = (1, x^{2}, x^{\mu})$$

• **2-pt function** in (D+1,1) space:

$$<\Phi(X)\Phi(Y)>\propto \frac{1}{(X.Y)^{\Delta}}$$

3-pt function:

$$<\Phi_1(X_1)\Phi_2(X_2)\Phi_3(X_3)> \propto rac{1}{(X_1.X_2)^{lpha_{123}}(X_2.X_3)^{lpha_{231}}(X_3.X_1)^{lpha_{312}}}$$

SI vs CI: Framing the problem in Embedding Space

Scale vs Conformal Invariance in Embedded Coordinates

Symmetry		X				Υ		
Scale Inv.	$X_1.X_2$	$X_2.X_3$	$X_3.X_1$	Δ_1	Δ_2	Δ_3	$f_{scale}^{(3)}$	(1,0)
Conformal Inv.	$X_1.X_2$	$X_2.X_3$	$X_3.X_1$	Δ_1	Δ_2	Δ_3	$f_{cft}^{(3)}$	(0,1)

Layer (type)	Output Shape	Param #		
				A -1
dense_1 (Dense)	(None, 50)	350050	Sigmoid	Adam
dense_2 (Dense)	(None, 20)	1020	9	
dropout_1 (Dropout)	(None, 20)	0	Sigmoid	
dense 3 (Dense)	(None, 2)	42		Binary
======================================			Sigmoid	Cross entropy
Trainable params: 351,112 Non-trainable params: 0				

SI vs CI: Framing the problem in Embedding Space

Scale vs Conformal Invariance with correlator in Embedded Coordinates

Non-trainable params: 0

Symmetry		X			Υ			
Scale Inv.	$X_1.X_2$	$X_2.X_3$	$X_3.X_1$	$f_{\Delta_1}^{(2)}$	$f_{\Delta_2}^{(2)}$	$f_{\Delta_3}^{(2)}$	$f_{scale}^{(3)}$	(1,0)
Conformal Inv.	$X_1.X_2$	$X_2.X_3$	$X_3.X_1$	$f_{\Delta_1}^{(2)}$	$f_{\Delta_2}^{(2)}$	$f_{\Delta_3}^{(2)}$	$f_{cft}^{(3)}$	(0,1)

Layer (type)	Output Shape	Param #		
dense_1 (Dense)	(None, 50)	350050	Sigmoid	Adam
dense_2 (Dense)	(None, 20)	1020		
dropout_1 (Dropout)	(None, 20)	0	Sigmoid	2
dense_3 (Dense)	(None, 2)	42	Sigmoid	Binary Cross entrop
Total params: 351,112 Trainable params: 351,11	2			

17 / 28

New Results! SI vs CI: Classification in Embedding Space

Figure: Learning curves for Scalar vs Conformal invariance(Top) and Scalar vs Conformal invariance with correlator(Bottom) in embedded space.

Open problem: What about fields with spin?

- All our discussion so far was limited to scalar operators.
- Spinning 2-point Function:

Scale Invariant Spin(I=1)-Spin(I=1)

$$<\phi_{\Delta_1\mu}(x)\phi_{\Delta_2\nu}(y)>=rac{I_{\mu\nu}(x-y)}{(x-y)^{\Delta_1+\Delta_2}}$$

where

$$I_{\mu\nu}(x-y) = \delta_{\mu\nu} + \beta \frac{(x-y)_{\mu}(x-y)_{\nu}}{(x-y)^2}$$

Demanding conformal invariance, we have $\beta = -2 \& \Delta_1 = \Delta_2$.

• Spinning 3-point Function:

Conformal invariantscalar-scalar-spin(I=1) 3-pt function

$$<\phi_{\Delta_1}(x_1)\phi_{\Delta_2}(x_2)\Phi_{\Delta_3\mu}(x_3)> \propto rac{R_{\mu}(x,y|z)}{|x_1-x_2|^{\alpha_{123}}|x_2-x_3|^{\alpha_{231}}|x_3-x_1|^{\alpha_{312}}}$$

where

$$R_{\mu}(x,y|z) = \frac{|y-z||x-z|}{|x-y|} (\frac{(x-z)_{\mu}}{|x-z|^2} - \frac{(y-z)_{\mu}}{|y-z|^2})$$

SI vs CI: Setting up the problem for spinning correlators

Scale Vs Conformal Invariance in system with spin 1

Symmetry	X					Υ		
Scale Inv.	<i>x</i> ₁₂	X ₂₃	<i>x</i> ₃₁	Δ_1	Δ_2	Δ_3	$f_{scale}^{(3)}{}_{\mu=1,,N}$	(1,0)
Conformal Inv.	<i>x</i> ₁₂	X ₂₃	X31	Δ_1	Δ_2	Δ_3	$f_{cft}^{(3)}{}_{\mu=1,,N}$	(0,1)

Layer (type)	Output Shape	Param #		
Input (Dense)	(None, 80)	8080	relu	Adam
Relu (Dense)	(None, 40)	3240	Sigmoid	
dense_1 (Dense)	(None, 4)	164	Olginola	Binary
Total params: 11,484			Softmax	Cross entropy
Trainable params: 11,484				

SI vs CI: Setting up the problem for spinning correlators

Scale Vs Conformal Invariance with correlator in systems with spin 1

Sym	X						Υ	
SI	X ₁₂	X23	X31	$f_{\Delta_1}^{(2)}$	$f_{\Delta_2}^{(2)}$	$f_{\Delta_3 \mu, \nu=1,,N}^{(2)}$	$f_{scale\mu=1,,N}^{(3)}$	(1,0)
CI	<i>x</i> ₁₂	X ₂₃	<i>X</i> 31	$f_{\Delta_1}^{(2)}$	$f_{\Delta_2}^{(2)}$	$f_{\Delta_3}^{(2)}_{\mu,\nu=1,,N}$	$f_{cft}^{(3)}{}_{\mu=1,,N}$	(0,1)

Layer (type)	Output Shape	Param #		A -l
dense_1 (Dense)	(None, 60)	960060	Relu	Adam
dense_2 (Dense)	(None, 30)	1830		
dropout_1 (Dropout)	(None, 30)	0	Sigmoid	Binary
dense_3 (Dense)	(None, 2)	62	Softmax	Cross entropy

Total params: 961,952 Trainable params: 961,952 Non-trainable params: 0

New Results! SI vs CI: Scalar-Scalar-Spin 1

Figure: Learning curves for Scalar vs Conformal invariance(Top) and Scalar vs Conformal invariance with correlator(Bottom) in systems with spin 1.

Conformal Blocks

4-pt function of 4 equal dimension scalars can be written as

$$<\phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)>=rac{g(u,v)}{|x_1-x_2|^{2\Delta_{\phi}}|x_3-x_4|^{2\Delta_{\phi}}}$$

where

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}; \quad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

• g(u, v) can be written as

$$g(u, v) = 1 + \sum_{\mathcal{O}(I, \Delta)} \lambda_{\mathcal{O}}^2 G_{\mathcal{O}}(u, v)$$

where $G_{\mathcal{O}} \equiv G_{\Delta}^{(l)}$ It is called the conformal block expansion.

1D Conformal Block as Toy Model

Consider a 1D scalar conformal block expansion

$$f(z) = \sum_{\{h\}} c_h z^h 2F1(h, h; 2h; z)$$

- For our analysis
 - Assume: Scalar operators with $h \in Z$.[Not so physical].
 - Truncate at n=5.

$$f(z) = \sum_{n=0}^{5} c_n z^n 2F1(n, n; 2n; z)$$

OPE Coefficient: Setting up the Regression problem

OPE Coefficiencient (Regression problem)

OPE Coefficients	X	Y				
$c_n \in (0,1) \forall n \leq 5$	$\left\{ f\left(x_{i} ight) ight\}$	$\{c_2 z^2 {}_2F_1(2,2,4;z) \mid z \in \{-0.8, -0.4, 0.4, 0.8\},\$	}			

$$\left\{f \quad (x_i) \quad | \quad x_i = -0.8 + i\, \frac{1.6}{N}\,, i \in [0,N-1]\right\} \ \, \text{N=100}$$

Layer (type)	Output Shape	Param #			RMSprop
Input (Dense)	(None, 80)	8080	Relu	l	(1e-6)
nelu (Dense)	(None 40)	2240			
Relu (Dense)	(None, 40)	3240	Sigmoid		
dense_1 (Dense)	(None, 4)	164	•	1	=
Total params: 11,484			Softmax		MSE
Trainable params: 11,484					

OPE Coefficient: Regression Results

Figure: Loss plot(left) and actual vs predicted result(right) for OPE coefficient calculation.

•

Future Work: Exciting Journey Ahead!

- Extend the scale-conformal invariance classification to higher spin operators and test the accuracy with increasing spin.
- Do more analysis with conformal blocks in higher space-time dimension CFTs.
- Extend the OPE coefficient prediction to spinning conformal blocks.
- Classification and regression problems in Ising model and other unitary minimal model CFTs.
- Machine learn the CFT data.

References

- H. Chen, Y. He, S. Lal, M.Z. Zaz, "Machine Learning Etudes in Conformal Field Theory", arXiv:2006.16114 (2020).
- S. J. Wetzel, R.G. Melko, J. Scott, M. Panju, V. Ganesh, "Discovering symmetry invariants and conserved quantities by interpreting siamese neural networks", Phys. Rev. Research 2, 033499 (2020).
- § Slava Rychkov, "EPFL Lectures on Conformal Field Theory in $D \ge 3$ Dimensions", arXiv:1601.05000 (2016).
- P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher et al., A high-bias, low-variance introduction to machine learning for physicists, Physics Reports 810 (2019).
- H. Osborn F.A. Dolan. Conformal four point functions and the operator product expansion. Nucl. Phys., B599:459–496 (2001)