Abstract Algebra hw2

Chengyu Hsieh, B13201053

- 1) The identity element of G is 0. We assume 2) is proven (the proof is given below at 2)).
 - (a) $1, 14 \in G_1$, but $1 + 14 = 15 \notin G_1$, so it is not close under addition \Rightarrow not a subgroup.
 - (b) G_2 is non empty. For any $g_1, g_2 \in G_2$, $g_1 = 2a$, $g_2 = 2b$, we have $g_1 + g_2 = 2(a + b) \in G_2$, so G_2 is closed under addition. For any $g_1 = 2a \in G_2$, $0 \le a \le 14$, we have $g_1 + 2(15 - a) = 0$. Note $2(15 - a) \in G_2$, hence it is $-g \in G_2$.

Hence by 2) G_2 is a subgroup of G.

- (c) The identity element $0 \notin G_3$, so it is not a subgroup of G.
- 2) (i) For any $a \in H$, since $a^{-1} \in H$ and H is closed under *, we have $e = a * a^{-1} \in H$. Combined with the given criterion and that $H \subset G$, we have the required properties for a group. Hence $H \leq G$.
 - (ii) Note we have det(AB) = (detA)(detB). The identity matrix has determinant 1 so $SL_n(\mathbb{R})$ is non empty. For any $A, B \in SL_n(\mathbb{R})$, $det(AB) = 1 \times 1 = 1$, so $SL_n(\mathbb{R})$ is closed. For any $A \in SL_n$, since A^{-1} exists and $det(A^{-1}) = \frac{1}{det(A)} = 1$ so $A^{-1} \in SL_n$. By the criterions in (i), we know $SL_n(\mathbb{R}) \leq GL_n(\mathbb{R})$.
- 3) (a) Composites of bijections are clearly bijections. Also the composition of functions satisfy associativity. The identity mapping is $I(x) = x \,\forall x \in G$. For any mapping $f(x) \in S_n$, since f is bijective, $\exists f^{-1}(x) \in S_n$, the inverse mapping of f, is the inverse of f in S_n , satisfying $f(f^{-1}(x)) = I(x)$. Hence S_n is a group. For its order, f(1) has f(n) = f(n) assigning f(1), f(2) has f(n) = f(n) has f(n)
 - (b) The closure is trivial. The inverse is just the inverse mapping. Hence $S := \{ \sigma \in S_4 | \sigma(1) = 1 \}$ is a subgroup of S_4 .
 - (c) The identity of the given group is $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. By calculation we find $a^4 = I$ and $b^3 = I$. Hence a has order 4 and b has order 3.

4)

Claim 1. For any $x \in G$, $g \in G$ a generator of G, we have $x = xg^{bn}$ for any $b \in \mathbb{Z}$.

Proof. $g^n = e$, so $g^b n = (g^n)^b = e^b = e$ for any $b \in \mathbb{Z}$.

Claim 2. Let $a, b \in \mathbb{Z}$, a, b > 0. If $\exists c, d \in \mathbb{Z}$ such that ca + db = 1, then(a, b) = 1.

Proof. Suppose (a,b)=k>1. Let $a=k\alpha,\,b=k\beta$. Let c,d be integers such that ca+db=1. Substitute in $k\alpha$ and $k\beta$ we obtain '

$$k(c\alpha + d\beta) = 1$$

Since k and $c\alpha + d\beta$ are integers, we have $(k = 1 \land c\alpha + d\beta = 1) \lor (k = -1 \land c\alpha + d\beta = -1)$. But we assumed that k > 1 and so we arrived at an contradiction. Hence (a, b) = 1.

Claim 3. Let $a, b \in \mathbb{Z}$, a, b > 0. If (a, b) = m, then exists $c, d \in \mathbb{Z}$ such that ca + db = m.

Proof. First note that if $d|a \wedge d|b$, then d|m. Now let $M = \{ca + db|c, d \in \mathbb{Z}\}$. 1a + 0b = a > 0, so M has positive integers. Let $M^+ = \{ca + db > 0|c, d \in \mathbb{Z}\}$, which is non empty. Clearly $\min M^+$ exist. Let $m' = \min M^+$. Then m' = c'a + d'b for some $c', d' \in \mathbb{Z}$. Now for any $x = ca + db \in M$, let x = m'q + r with 0 < r < m'.

$$r = x - m'q = (c - c'q)a + (d - d'b)b \in M$$

Since we have $0 \le r < m'$, we have r = 0. (Otherwise $m' \ne \min(M^+)$).) Therefore $m'|x \ \forall x \in M$. Note that $a, b \in M \Rightarrow m'|a \land m'|b$. Also, for any d such that $d|a \land d|b$ we have d|c'a + d'b, so d|m'. Hence m' = (a, b) = m. We conclude that $\exists c, d \in \mathbb{Z}$ such that ca + db = m.

(a) If n = 1 then $g^k = e$ is always a generator, also gcd(k, n) = 1 for any k. We then consider n > 2

Sufficiency:

Suppose g^k is a generator of G. Since g^k is a generator, $g=(g^k)a$ for some a. Let $ka=bn+m, \ 1\leq m\leq n-1 (m$ cannot be zero as that leeds to g=e which cannot be true for $n\geq 2$.) Then by Claim 1, $g=(g^k)^a=g^{ak-bn}=g^m$. Applying g^{-1} to both sides, we obtain $g^{m-1}=e$. If $m-1\neq 0$ then we found n'=m-1< n such that $g^{n'}=e$, contradicting the fact that g is a generator of G. Hence m=1. Then by Claim 2, $\exists a, b\in \mathbb{Z}$ such that ak+(-b)n=1, so gcd(n,k)=1.

Necessity:

Suppose gcd(k, n) = 1. Then by Claim 3, $\exists a, b \in \mathbb{Z}$ such that ak + bn = 1. So $(g^k)^a = g^{ak} = g^{1-bn} = g^1 = g$. Clearly this leads to g^k also being a generator.

(b) Let n=ma. Consider $S=\{g^a,\,g^{2a},\,\ldots,g^{ma}\}$. Note that $0< a< 2a< \cdots < (m-1)a< ma=n,$ so |S|=m. For any $g^{\gamma a}\in S$, see that $g^{\gamma a}g^{(m-\gamma)a}=e$ and $g^{(m-\gamma)a}$ is clearly in S. Also S is clearly closed. Thus $S\leq G$ and we have found a subgroup of order m. Now suppose we find $H\leq G$ with |H|=m. Let c be the smallest positive integer such that $g^c\in H$. If $\exists g^x\in H$ with $x=yc+z,\,1\leq z\leq c-1$, we have $g^z=g^xG^{-yc}\in H$. But z< c so we have arrived at a contradiction. Hence $\forall g^x\in H$, we have $g^x=(g^c)^y$ for some g, and so g^c generates $g^x\in G$. Now, $g^{mc}=g^x$ so $g^x\in G$ so $g^x\in G$. Hence $g^x\in G$ so $g^x\in G$ and $g^x\in G$. But $g^x\in G$ is the smallest positive integer such that $g^x\in G$. So $g^x\in G$ and $g^x\in G$ is the smallest positive integer such that $g^x\in G$.

We conclude that G has exactly one subgroup of order m.

(c) $S_3 = \{(1), (12), (13), (23), (123), (132)\}$ has order 6. Order of (1) is 1 < 6, order of (12), (13), (23) are all 2 < 6, order of (123), (132) are both 3 < 6. Hence no elements of S_3 g can generate the entire group, so S_3 is not cyclic.

- 5) (a) For any $g_1N, g_2N \in G/N$, since $g_1*g_2 \in G$, we have $g_1N \cdot g_2N \in G/N$. For $g_1N, g_2N, g_3N \in G/N$, $(g_1N \cdot g_2N) \cdot g_3N = (g_1*g_2)N \cdot g_3N = (g_1*g_2*g_3)N = g_1N \cdot (g_2*g_3)N = g_1N \cdot (g_2N \cdot g_3N)$, thus associativity holds. $N = eN \in G/N$ is clearly the identity. For any $gN \in G/N$, $g^{-1}N$ is clearly in G/N and is the inverse of gN.
 - (b) $(13)H = \{(13), (123)\}, H(13) = \{(13), (132)\} \neq (13)H$. Thus H is not a normal subgroup of S_3 .
 - (c) Let $H \leq G$. $\forall h \in H$, $g \in G$, we have g * h = h * g so $gH = \{g * h | h \in H, g \in G\} = \{h * g | h \in H, g \in G\} = Hg$. So any subgroup of an abelian group G is normal.
 - (d) Consider the quaterion group $Q_4 = \pm 1, \pm i, \pm j, \pm k$ with $i^2 = j^2 = k^2 = -1$ and ij = -ji = k, jk = -kj = i, ki = -ik = j. This group satisfies the required conditions.