Lecture 17:

Common Source/Gate/Drain Amplifiers

Prof. Niknejad

Lecture Outline

- MOS Common Source Amp
- Current Source Active Load
- Common Gate Amp
- Common Drain Amp

Common-Source Amplifier

Load-Line Analysis to find Q

Small-Signal Analysis

Two-Port Parameters:

Generic Transconductance Amp

Find
$$R_{in}$$
, R_{out} , G_m

Two-Port CS Model

Reattach source and load one-ports:

Maximize Gain of CS Amp

$$A_{v} = -g_{m}R_{D} \parallel r_{o}$$

- Increase the g_m (more current)
- Increase R_D (free? Don't need to dissipate extra power)
- Limit: Must keep the device in saturation

$$V_{DS} = V_{DD} - I_D R_D > V_{DS,sat}$$

- For a fixed current, the load resistor can only be chosen so large
- To have good swing we'd also like to avoid getting to close to saturation

Current Source Supply

- Solution: Use a current source!
- Current independent of voltage for ideal source

CS Amp with Current Source Supply

Load Line for DC Biasing

Both the I-source and the transistor are idealized for DC bias analysis

Two-Port Parameters

$$R_{in} = \infty$$

$$G_m = g_m$$

$$R_{out} = r_o \parallel r_{oc}$$

P-Channel CS Amplifier

DC bias: $V_{SG} = V_{DD} - V_{BIAS}$ sets drain current $-I_{Dp} = I_{SUP}$

Two-Port Model Parameters

Small-signal model for PMOS and for rest of circuit

Common Gate Amplifier

CG as a Current Amplifier: Find A_i

$$i_{out} = i_d = -i_t$$

$$A_i = -1$$

$$A_i = -1$$

CG Input Resistance

At input:
$$i_t = -g_m v_{gs} + g_{mb} v_t + \left(\frac{v_t - v_{out}}{r_o}\right)$$

Output voltage: $v_{out} = -i_d(r_{oc} \parallel R_L) = i_t(r_{oc} \parallel R_L)$

$$i_{t} = g_{m}v_{t} + g_{mb}v_{t} + \left(\frac{v_{t} - (r_{oc} || R_{L})i_{t}}{r_{o}}\right)$$

Approximations...

• We have this messy result

$$\frac{1}{R_{in}} = \frac{i_t}{v_t} = \frac{g_m + g_{mb} + \frac{1}{r_o}}{1 + \frac{r_{oc} \parallel R_L}{r_o}}$$

• But we don't need that much precision. Let's start approximating:

$$g_m + g_{mb} >> \frac{1}{r_o}$$
 $r_{oc} \parallel R_L \approx R_L$ $\frac{R_L}{r_o} \approx 0$

$$R_{in} = \frac{1}{g_m + g_{mb}}$$

CG Output Resistance

$$\frac{v_s}{R_S} - g_m v_{gs} - (-g_{mb} v_s) + \frac{v_s - v_t}{r_o} = 0$$

$$v_s \left(\frac{1}{R_S} + g_m + g_{mb} + \frac{1}{r_o} \right) = \frac{v_t}{r_o}$$

CG Output Resistance

Substituting $v_s = i_t R_S$

$$i_t R_S \left(\frac{1}{R_S} + g_m + g_{mb} + \frac{1}{r_o} \right) = \frac{v_t}{r_o}$$

The output resistance is $(v_t/i_t) || r_{oc}$

$$R_{out} = r_{oc} \parallel \left(R_S \left(\frac{r_o}{R_S} + g_m r_o + g_{mb} r_o + 1 \right) \right)$$

Approximating the CG R_{out}

$$R_{out} = r_{oc} \| [r_o + g_m r_o R_S + g_{mb} r_o R_S + R_S]$$

The exact result is complicated, so let's try to make it simpler:

$$g_m \approx 500 \mu S$$
 $g_{mb} \approx 50 \mu S$ $r_o \approx 200 k\Omega$

$$R_{out} \cong r_{oc} \parallel [r_o + g_m r_o R_S + R_S]$$

Assuming the source resistance is less than r_o ,

$$R_{out} \approx r_{oc} \| [r_o + g_m r_o R_S] = r_{oc} \| [r_o (1 + g_m R_S)]$$

CG Two-Port Model

Function: a current buffer

- Low Input Impedance
- High Output Impedance

Common-Drain Amplifier

CD Voltage Gain

Note
$$v_{gs} = v_t - v_{out}$$

$$\frac{v_{out}}{r_{oc} \parallel r_o} = g_m v_{gs} - g_{mb} v_{out}$$

$$\frac{v_{out}}{r_{oc} \mid\mid r_o} = g_m \left(v_t - v_{out} \right) - g_{mb} v_{out}$$

CD Voltage Gain (Cont.)

KCL at source node: $\frac{v_{out}}{r_{oc} \parallel r_o} = g_m (v_t - v_{out}) - g_{mb} v_{out}$

$$\left(\frac{1}{r_{oc} \parallel r_o} + g_{mb} + g_m\right) v_{out} = g_m v_t$$

Voltage gain (for v_{SB} not zero):

$$\frac{v_{out}}{v_{in}} = \frac{g_m}{1 + g_{mb} + g_m}$$

$$\frac{v_{out}}{v_{in}} \approx \frac{g_m}{g_{mb} + g_m} \approx 1$$

CD Output Resistance

Sum currents at output (source) node:

$$R_{out} = r_o \| r_{oc} \| \frac{v_t}{i_t} \qquad i_t = g_m v_t + g_{mb} v_t$$

$$R_{out} \approx \frac{1}{g_m + g_{mb}}$$

CD Output Resistance (Cont.)

 $r_o \parallel r_{oc}$ is much larger than the inverses of the transconductances \rightarrow ignore

Function: a voltage buffer

- High Input Impedance
- Low Output Impedance

