

Algoritmos Genéticos

ITBA 2024 Grupo 02

TABLA DE CONTENIDOS

01

Marco Teórico e Implementación

04

Métodos de Mutación 02

Métodos de Selección

05

Conclusiones

03

Métodos de Cruza

06

Area 51

El equipo

Girod, Joaquín

Ijjas, Christian

Magliotti, Gianfranco

Ferrutti, Francisco

Introducción

ITBUM ONLINE

Juego de rol donde el jugador tiene por objetivo defender sus tierras de enemigos mediante batallas. Para esto el jugador debe crear un personaje, asignando "puntos" que se le otorgan en distintos atributos que afectan sus habilidades de pelea.

Concepto

Nuestro objetivo es utilizar estos algoritmos para determinar el mejor personaje posible, con una cota de tiempo, y dadas las características del juego.

Fitness Function

Cromosoma → EVE → Desempeño

GENOTIPO					
Strength	Destreza	Inteligencia	Vigor	Constitució n	Altura
int	int	int	int	int	Float

- Estructura
- Nosotros implementamos la clase Genotype

Supongamos que la cantidad de puntos a asignar es 150...

CROMOSOMA					
Strength	Destreza	Inteligencia	Vigor	Constitució n	Altura
10	20	30	40	50	1.8

Normalización de Genes


```
function normalizer(genes, total_points):
    current_total = sum(genes)

while current_total ≠ total_points:
        gene ← random(gene)
        gene--
```

FENOTIPO

Algunos de los hiperparámetros de la configuración

HYPERPARAMETERS						
Pop. size	Operators		Selección			T. Criteria
	Crossove r	Mutatio n	Selection rate	Parents	Replacement	Max gen
100	Sin. point	gen	0.2	elite	elite	100

Métodos de Selección

Selección (padres y reemplazo)

- Boltzmann
- Elite

Roulette

Ranking

- Tournament
 - **Deterministic**
 - **Probabilistic**

Universal

Selección (padres y reemplazo)

- 100 generaciones
- 1000 individuos
- Utiliza 1 método por selección

- 100 generaciones
- 1000 individuos
- Utiliza 2 métodos por selección (50% de peso c/u)

¿Entonces?

- Utilizamos Elite para la mayoría de los análisis
- En ciertos casos, realizamos variaciones. Sin embargo, no introdujeron cambios en las conclusiones

03

Métodos de Cruza

Crossover/Cruza

Cruce de un punto

Cruce de dos puntos

Cruce Anular

• Cruce uniforme

Cruza

Seleccionar individuos

Mezclar sus alelos

- **Explotacion**: Acercarnos al máximo F(t) entre los padres.
- 2. Idealmente, F(cruzas) > F(padres)
- 3. Se cruzan estos individuos
- GOTO 1.

Cruza

 Exploracion: Búsqueda de nuevas soluciones entre los alelos padres

¡Optimización y Exploración!

PERO...

Se instancia una población inicial homogénea de individuos de clase Warrior con 200 puntos disponibles para asignar

	Best Individual in H-Population	Ideal
Strength	27	91
Intelligence	70	28
Constitution	1	0
Dexterity	1	81
Vigor	101	0
Height	1.9	1.92
Fitness	10.380	61.440 ⁽¹⁾

⁽¹⁾ Obtenido a fuerza bruta, explicado más adelante

Cruza

La cruza es un mecanismo de **exploracion** y **explotacion**, pero la exploración de nuevas soluciones que ofrece esta limitada por los posibles padres.

Cruza: Convergencia prematura

Limitación en posibilidades de cromosomas

Alta probabilidad de estancamiento en máximos locales

- Enfocarse exclusivamente en preservar la memoria genética reduce la diversidad genética
 - Convergencia prematura
- Enfocarse en explorar y reemplazar individuos reduce el crecimiento y la memoria genética
 - Nunca se encuentra una solución aceptable

La Banana Cavendish

Se reproducen asexualmente, vía clones

Diversidad genética muy baja

Se espera que sufran una extinción comercial en un futuro cercano

04 Métodos de Mutación

Cruza

Mutación

Tipos de Mutación

La elección afecta al nivel de **memoria genética** que queremos preservar

Tasa de Mutación y sus motivaciones

Tasas de mutaciones óptimas dependiendo del entorno

Nuestro caso vs Algún caso

Funciones de EVE

Función Rastring

Las funciones pueden ser **no derivables** o **demasiado grandes** para analizar de forma extensiva

Un poco más real

Peligros de mutación constante

Constante y Completa

Se puede perder la memoria genética

Mejorando la tasa de mutación

Constante

Decaimiento Exponencial

¿La solución es mutar menos?

2 poblaciones de 10

Podemos meternos en un problema de óptimo local. ¿Entonces...?

¿La solución es mutar menos?

Funciones de distribución de probabilidad de mutación

Uniforme, Gaussiana, Beta, Gamma

05

Conclusiones

Resumen

- Tamaño del genotipo como factor de complejidad
- El tiempo no fue limitante
- Mutación como factor clave
- Importancia de la diversidad genética y la memoria genética
- Inexistencia de una Silver Bullet Global
- Poder de los algoritmos genéticos

Area 51

Nuestro Caso...

- El EVE es una función de Fitness perfecta
- Fuerza Bruta sobre el EVE

```
def calc_best_eve()
  for (puntos)
  for(clases)
    for(attr_1)
    for(attr_2)
    for(attr_3)
    ...
  for(atrr_5)
    best \( \infty \) eve_anterior
```


Pero en Casos Reales...

- Tenemos que definir una función de fitness
- Se debe simplificar utilizando modelos imperfectos
- No podemos explorar el dominio real, entonces no hay forma de saber si es máximo global
- Las ejecuciones son más complejas espacial y temporalmente
- Las ejecuciones pueden suelen ser no determinísticas

¿Cómo nos adaptamos?

- Cambio en Termination Criteria
- Aprovechamiento de recursos de hardware
- Optimización de software
- Poblaciones iniciales que dependen del tamaño

Parameter Tuning (OFFLINE)

- Construcción de mapa exploratorio
- Busqueda de **patrones**

Parameter Control (ONLINE)

iGRACIAS

Referencias
https://stackoverflow.com/questions/10756
28/how-to-find-the-best-parameters-for-a-g
enetic-algorithm

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>