

TECHNISCHE UNIVERSITÄT MÜNCHEN

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Dr. med. genehmigten Dissertation.

Oligomerization of β_2 -Adrenergic Receptors

Stephan Martin Skawran

INSTITUT FÜR PHARMAKOLOGIE UND TOXIKOLOGIE

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Dr. med. genehmigten Dissertation.

Oligomerisierung von β_2 -Adrenorezeptoren

Stephan Martin Skawran

Vorsitzender: Prof. Dr. Dr. Stefan Engelhardt

Prüfer der Dissertation: 1.

2.

3.

Die Dissertation wurde am TODO: Submission date bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am TODO: Submission date angenommen.

Ich erkläre an Eides statt, dass ich diese, bei der Fakultät	
fung vorgelegte Arbeit ohne sonstige Hilfe erstellt und be und 7 Satz 2 angegebenen Hilfsmittel benutzt habe.	i der Abtassung nur die gemäß § 6 Abs. 6
München, TODO: Submission date	Stephan Martin Skawran

Verzeichnis der Abkürzungen

 β_2 **AR** β_2 -Adrenorezeptor.

CLIP-tag s. SNAP-tag.

DMSO Dimethylsulfoxid.

ICI ICI-118,551.

MIS Membraninsertionssequenz.

PBS Dulbecco's Phosphate Buffered Saline.

 ${f SNAP ext{-}tag}$ Markenname des auf O 6 -Alkylguanin-DNA Alkyltransferase basierenden Proteinlabelingsystems.

tr-FRET time resolved Fluorescence Resonance Energy Transfer.

zB zum Beispiel.

Inhaltsverzeichnis

Da	nksa	igung		iii
Ve	rzeic	hnis de	er Abkürzungen	vii
1	Einl	eitung		1
	1.1	_	tein-gekoppelte Rezeptoren (GPCR)	1
	1.2		energe Rezeptoren	1
		1.2.1	Das β -adrenerge System	1
		1.2.2	Polymorphismen der β -adrenergen Rezeptoren	1
		1.2.3	Rezeptorinternalisierung	1
	1.3	Oligor	nerisierung G-Protein-gekoppelter Rezeptoren	1
		1.3.1	Homo- und Heterooligomerisierung G-Protein-gekoppelter Rezeptoren	1
		1.3.2	Pharmakologische Anwendung	1
	1.4	Metho	den zur Untersuchung der Oligomerisierung von Rezeptoren	1
		1.4.1	time-resolved FRET	1
	1.5	Zielset	zung dieser Arbeit	1
2	Mat	orial &	Methoden	3
_	2.1	Materi		3
	2.1	2.1.1	Plasmide	3
		2.1.2	Bakterien	3
		2.1.3	Zelllinien & Zellkultur	3
		2.1.3	Chemikalien & Reagenzien	4
		2.1.5	SNAP-Substrate und fluoreszierende Liganden	4
		2.1.6	Enzyme	4
		2.1.7	Oligonukleotidprimer	4
		2.1.7	Pharmaka	5
	2.2		ularbiologische Methoden	5
	2.2	2.2.1	DNA-Amplifikation mittels Polymerasekettenreaktion (PCR)	5
		2.2.2	Agarose-Gelelektrophorese	6
		2.2.3	Extraktion von DNA aus Agarosegelen	
		2.2.4	Restriktionsenzymverdau von PCR-Produkten und Plasmid-DNA	7
		2.2.5	Ligation von DNA-Fragmenten	7
		2.2.6	Klonierung mittels Gateway-Technologie	7
		2.2.7	Mutagenese	8
		2.2.8	Transformation elektrokompetenter DH10B-Bakterien	9
		2.2.9	Mini/Maxi-Kultur und Mini/Maxi-DNA-Aufreinigung	9
		2.2.10	Enzymatische Deglykosylierung	10
			Messung der DNA-Konzentrationen	10
			DNA-Sequenzierung	10
	2.3		den der eukaryotischen Zellbiologie	11
	2.0		Kultivierung eukaryotischer Zelllinien	11

		2.3.2	Auftauen und Einfrieren von Zellen	11
		2.3.3	Transiente Transfektion von HEK293- und HeLa-Zellen mit Effectene	12
		2.3.4	Generierung stabil exprimierender HEK293- und HeLa-Zelllinien	12
	2.4	Mikro	skopische Methoden	13
		2.4.1	Fluoreszenzmikroskopische Aufnahmen	13
		2.4.2	Fluoreszenzfärbungen mit SNAP-Substraten	13
		2.4.3	Färbungen mit fluoreszierenden Liganden	13
	2.5	Fluore	eszenzoptische Methoden	14
		2.5.1	trFRET mit SNAP-Substraten	14
		2.5.2	trFRET mit fluoreszierenden Liganden	16
	2.6	Statist	ische Methoden	16
3	Erge	ebnisse		17
	3.1	Gener	ierung von eta_2 -Adrenorezeptoren mit dem SNAP-tag \dots	17
	3.2	Fluore	eszenzmikroskopie des eta_2 -Adrenorezeptor (eta_2 AR) mit dem SNAP-tag	19
	3.3	Oligo	merisierung des β_2 AR mit SNAP-tag	20
		3.3.1	time resolved Fluorescence Resonance Energy Transfer (tr-FRET) mit SNAP-Substraten	20
		3.3.2	Einfluss der Stimulation mit Liganden des β_2 AR auf seine Oligomerisierung .	20
		3.3.3	Einfluss der Glycosylierung auf die Oligomerisierung des β_2 AR	20
	3.4	tr-FRE	ET mit fluoreszierenden Liganden des $\beta_2 AR$	20
4	Disl	kussior	1	23
5	Zus	ammen	fassung	25
Al	bild	ungsve	erzeichnis	27
Ta	belle	nverze	ichnis	29
Li	teratı	ır		31

1 Einleitung

- 1.1 G-Protein-gekoppelte Rezeptoren (GPCR)
- 1.2 β -adrenerge Rezeptoren
- 1.2.1 Das β -adrenerge System
- 1.2.2 Polymorphismen der β -adrenergen Rezeptoren
- 1.2.3 Rezeptorinternalisierung
- 1.3 Oligomerisierung G-Protein-gekoppelter Rezeptoren
- 1.3.1 Homo- und Heterooligomerisierung G-Protein-gekoppelter Rezeptoren
- 1.3.2 Pharmakologische Anwendung
- 1.4 Methoden zur Untersuchung der Oligomerisierung von Rezeptoren
- 1.4.1 time-resolved FRET
- 1.5 Zielsetzung dieser Arbeit

2 Material & Methoden

2.1 Material

2.1.1 Plasmide

Die folgenden Plasmide stammen entweder aus dem Laborbestand (IPT, TU München) oder wurden von New England Biolabs GmbH (Frankfurt a. M.) erworben. Sie wurden unverändert transfiziert bzw. für weitere Klonierung verwendet.

Vektor	Insert	Referenz
pSNAPf	-	New England Biolabs GmbH (Frankfurt a. M.)
pCLIPf	-	New England Biolabs GmbH (Frankfurt a. M.)
pSNAPf	5mis-SNAP-ADRB2-Gly16	New England Biolabs GmbH (Frankfurt a. M.)
pCLIPf	5mis-SNAP-ADRB2-Gly16	New England Biolabs GmbH (Frankfurt a. M.)
pENTR	ADRB2-Arg16	IPT (TU München)
pT-REx Dest 30	-	IPT (TU München)

In die in der folgenden Tabelle aufgeführten Vektoren wurden die angegebenen Inserts kloniert. Dazu wurde die Methode der homologen Rekombination als Teil der Gateway-Technologie (Invitrogen GmbH, Karlsruhe) verwendet.

Vektor	Insert	Polymorphismus / Mutation
pSNAPf	5mis-SNAP-ADRB2	Arg16, Tyr284
pSNAPf	ADRB2	Arg16
pCLIPf	ADRB2	Arg16
pENTR	ADRB2-SNAP-ADRB2'	Arg16
pT-REx Dest 30	ADRB2-SNAP-ADRB2'	Arg16

2.1.2 Bakterien

Zur DNA-Amplifikation wurde der Bakterienstamm E. coli (DH10B) (IPT, TU München) verwendet.

2.1.3 Zelllinien & Zellkultur

Zur Mikroskopie bzw. als Negativkontrollen wurden unverändert folgende Zelllinien verwendet: Außerdem zur Transfektion wurden von diesen HEK293 und HeLa-Zellen verwendet.

Basierend auf den angegebenen HEK293- und HeLa-Zelllinien wurden folgende stabile Zelllinien generiert. Die mit 5-mis-SNAP gekennzeichneten exprimierten Rezeptoren trugen am N-terminalen Ende einen vom Serotonin (5HT₃)-Rezeptor abgeleitete Membraninsertionssequenz sowie direkt C-terminal anschließend den SNAP-Tag (SNAP-tag, New England Biolabs GmbH, Frankfurt a. M.).

Name	Ursprung (Organ)	Referenz
HEK293 HeLa	humanes, embryonales Nierenepithel humanes Cervixepithel	IPT (TU München) IPT (TU München)
16HBE14o Calu-3 A549	menschliches Lungenzellepithel menschliches Lungenzellepithel menschliches Lungenzellepithel	Getu Abraham, Universität Leipzig Getu Abraham, Universität Leipzig Getu Abraham, Universität Leipzig
Name	Stabil überexprimiertes Pro	otein Polymorphismen/Mutation
SNAP- β_2 A SNAP- β_2 A		Arg16, Gly16, Tyr284 Arg16, Gly16, Tyr284

2.1.4 Chemikalien & Reagenzien

Falls nicht anders angegeben, wurden alle Chemikalien und Reagenzien von Applichem (Darmstadt), Carl Roth (Karlsruhe), Merck (Darmstadt) und Sigma-Aldrich (Taufkirchen) bezogen.

2.1.5 SNAP-Substrate und fluoreszierende Liganden

Die SNAP-Substrate, die über eine O^6 -Benzylguanin-Gruppe verfügten, sind mit BG gekennzeichnet. Sie wurden wie angegeben bezogen.

Die verwendeten Fluorophore waren mit der Methode des *tr-FRET* kompatibel: Als Donorfluorophor wurde ein Tb³⁺-Cryptat (*Lumi4*, Cisbio Bioassays, Codolet, Frankreich) verwendet. Als Akzeptor wurde auf *d*2 (ein kommerzielles Alexa 647-Derivat, Cisbio Bioassays, Codolet, Frankreich) und Alexa 647 zurückgegriffen.

Die fluoreszierenden Liganden basierten auf dem inversen β_2 Adrenorezeptoragonisten ICI-118,551 (ICI). Über einen passenden Linker waren die angegebenen Fluorophore an den Liganden kovalent gekoppelt. Die Verbindungen wurden wie angegeben zur Synthese in Auftrag gegeben.

Name	Referenz
BG-Alexa 488	New England Biolabs (Frankfurt a. M.)
BG-d2	Cisbio Bioassays (Codolet, Frankreich)
BG-Lumi4	Cisbio Bioassays (Codolet, Frankreich)
ICI-Alexa 647	Prof. Dr. Peter Gmeiner, Universität Erlangen-Nürnberg
ICI-Lumi4	Cisbio Bioassays (Codolet, Frankreich)

2.1.6 Enzyme

2.1.7 Oligonukleotidprimer

Die Oligonukleotidprimer wurden entweder von Eurofins MWG Biotech (Ebersberg) oder Sigma-Aldrich (München) synthetisiert. Sie wurden in bidestilliertem Wasser (ddH_2O) gelöst und auf 1mM eingestellt.

Name		Referenz		
DNA Ligase T4 DNA Polymerase AccuPrime <i>Pfx</i> DNA Polymerase Quikchange Lightning N-Glykosidase F (PNGase F) Restriktionsendonukleasen		New England Biolabs (Frankfurt a. M.) Invitrogen (Karlsruhe) Agilent Technologies (Waldbronn) New England Biolabs (Frankfurt a. M.) New England Biolabs (Frankfurt a. M.)		
Name	Sequenz (5' \rightarrow 3	3')	Produkt	
		Klonierung		
ADRB2-SbfI-for	GGG AAC GG	GCA GGC GGG CAA CCC	SbfI- ADRB2 -XhoI	
ADRB2-XhoI-rev	ATG ACT CAC	C TGC TGT AAC TCG AGT	56)1 1 15 1152 11161	
SNAP-MfeI-for SNAP-MfeI-rev	CGA AAT GAA	A TTG CGA CAA AGA CTG A G A TTG ATA CCC AGC CCA	MfeI- SNAP-tag -MfeI	
		Mutagenese		
ADRB2-c850t_t851a-for	GCT GCC CTT		ADRB2(Leu284Tyr)	
ADRB2-c850t_t851a-rev	GAA GGG CAC AGT GCC CAT	G CCA GCA GTA GGT GAA G	, , , , ,	
ADRB2-c549t-for ADRB2-c549t-rev	ATG CCA ATG	G AAG CCA TCA ATT GCT A TAG CAA TTG ATG GCT	ADRB2-MfeI-ADRB2′	
	TCC TGG TGG			

2.1.8 Pharmaka

Name	Тур	Referenz
Alprenolol	β_2 Adrenorezeptoranagonist	Sigma-Aldrich GmbH
ICI-118,551	inverser β_2 Adrenorezeptoragonist	Sigma-Aldrich GmbH
Isoproterenol	β_2 Adrenorezeptoragonist	Sigma-Aldrich GmbH
Epinephrin	natürlicher Adrenorezeptoragonist	Sigma-Aldrich GmbH

2.2 Molekularbiologische Methoden

2.2.1 DNA-Amplifikation mittels Polymerasekettenreaktion (PCR)

Zur Amplifikation von kodierender DNA wurde die Methode der Polymerasekettenreaktion (PCR) mittels des Enzyms AccuPrime *pfx* DNA Polymerase verwendet. Dabei wurde folgendesReaktionsgemisch Reaktionsgemisch vorbereitet.

Das Reaktionsgemisch wurde nach folgendem Protokoll in einem Mastercycler Pro (Eppendorf,

cDNA oder Plasmid-DNA	100ng
Vorwärtsprimer	20pmol
Rückwärtsprimer	20pmol
AccuPrime <i>pfx</i> Reaktionspuffer	5μL
AccuPrime <i>pfx</i> DNA Polymerase	1μL
ddH ₂ O	ad 50µL

Hamburg) zur DNA-Amplifikation den angegebenen Zyklen ausgesetzt.

	Temperatur	Dauer	Zyklen
Initiale Denaturierung	95°C	120s	1
Denaturierung Annealing Elongation	95°C 57°C 68°C	15s 30s 60s/kb	35
Finale Elongation	68°C	60s	1

2.2.2 Agarose-Gelelektrophorese

50xTAE-Puffer:	Tris	0,2M
	Essigsäure (0,5M)	57,1mL
	Na ₂ EDTA x 2H ₂ O	37,2mL
	ddH_2O	ad 1L
5xDNA-Ladepuffer:	Xylencyanol	0,025g
	EDTA (0,5M)	1,4mL
	Glycerol	3,6mL
	ddH_2O	7,0mL

Die Herstellung eines einprozentigen Agarosegels erfolgte mit 1g Agarose in 100mL 1xTAE-Puffer, die durch Erhitzen in einer Mikrowelle gelöst wurde. Nach Abkühlen auf etwa 45°C wurden 6,5µL Ethidiumbromid hinzugefügt und das Gel mit den gewünschten Kämmen gegossen. Nach dem Auspolymerisieren wurde das Gel in eine, mit 1xTAE-Puffer befüllte Elektophoresekammer (Peqlab, Erlangen) transferiert. Die DNA-Proben wurden 1:5 mit DNA-Ladepuffer verdünnt und in die Geltaschen geladen. Parallel wurden vorverdaute DNA-Stücke bekannter Länge (1-10kb) in eine Geltasche geladen.

An die so beladene Gelkammer wurde eine Spannung von 120V für 45min angelegt. Die negativ geladenen DNA-Fragmente liefen abhängig von ihrer Länge mit unterschiedlicher Geschwindigkeit anodenwärts. Das sich im Gel befindliche Ethidiumbromid interkalierte in die doppelsträngige DNA.

Anschließend konnte unter UV-Licht (Wellenlänge 312nm) der Standard mit den gesuchten Fragmenten abgeglichen werden.

2.2.3 Extraktion von DNA aus Agarosegelen

Zur Extraktion von DNA-Fragmenten aus Agarosegelen wurde die gewünschte DNA-Bande mit einem sterilen Skalpell ausgeschnitten und mithilfe des QIAquick Gel Extraction Kit (Qiagen, Hilden)

gemäß dem Protokoll des Herstellers extrahiert. Schließich wurde die DNA aus der Extraktionssäule mit $15\mu L ddH_2O$ eluiert.

2.2.4 Restriktionsenzymverdau von PCR-Produkten und Plasmid-DNA

PCR-Produkte und Plasmid-DNA wurden entsprechend den Empfehlungen des Enzymherstellers (New England Biolabs, Frankfurt a. M.) mit Restriktionsendonukleasen verdaut. Wenn möglich wurden die High-Fidelity-(HF)-Varianten der Restriktionsenzyme verwendet.

Für den vollständigen Verdau von Plasmid-DNA wurden 1-2U des gewünschten Enzyms mit 1µg DNA für 2,5h bei 37°C inkubiert. Zur Überprüfung der DNA-Fragmentlänge nach Mini-Präparation durchlief die verdaute DNA erneut eine Gelelektrophorese.

2.2.5 Ligation von DNA-Fragmenten

Zur Ligation von DNA-Fragmenten (Insert DNA und Vektor DNA) wurde die T4 DNA-Ligase (New England Biolabs, Frankfurt a. M.) verwendet.

Das Verhältnis der Insertkopienanzahl gegenüber dem Vektor wurde mindestens 3:1 gewählt. Die zu verwendende Masse des Inserts wurde dazu wie folgt berechnet:

$$m({
m Insert}) = rac{3 imes m({
m Vektor}) imes {
m L\"{a}nge} \ {
m des} \ {
m Inserts} \ {
m in} \ {
m Basenpaaren}}{{
m L\"{a}nge} \ {
m des} \ {
m Vektors} \ {
m in} \ {
m Basenpaaren}}$$

Ein Ligationsansatz wurde folgendermaßen hergestellt:

10x T4-Ligase Puffer 1,5μL T4 DNA-Ligase 1μL

Vektor-DNA $2.5\mu L \equiv 100 \text{ng}$

Insert-DNA xx µL

 ddH_2O ad $15\mu L$

Die Ligation erfolgte 30min – 60min bei 22°C oder über Nacht bei 16°C. Anschließend wurden 3µL für die Transformation von DH10B-Bakterien verwendet (s. 2.2.8).

2.2.6 Klonierung mittels Gateway-Technologie

Die Gateway Technologie (Invitrogen, Karlsruhe) ist ein kommerziell verfügbares System zur effizienten Klonierung und Transfektion mittels gelieferter wohldefinierter Vektoren. Es wird dabei zwischen "Entry-" und Destinationsvektoren unterschieden. In dieser Arbeit wurde ein bestehender "Entry-Vektor" modifiziert und mit der LR-Reaktion in einen Destinations kloniert.

LR-Reaktion

Die im Kit enthaltenen Enzyme "Excisionase", "Integration Host Factor" und "Integrase" katalysieren die Rekombination zwischen der mit der *attL*-Sequenz flankierten DNA im Entryvektor und dem mit der *attR*-Sequenz flankiertem Abschnitt des Destinationsvektors (*LR-Reaktion*).

Das so vorbereitete Reaktionsgemisch wurde 1h bei 25°C inkubiert. Darauf wurde 1µL Proteinase K zugegeben und die Reaktion so durch 10min Inkubation bei 37°C gestoppt. 1µL des DNA-Reaktionsgemisches wurde wie beschrieben in DH10B-Bakterien elektroporiert und so amplifiziert.

pENTR (Entryvektor)	150ng
pT-Rex DEST30	150ng
TE-Puffer, pH 8	ad 8µL
LR-Clonase II	2μL

2.2.7 Mutagenese

Zur Generierung des dimerisierungsdefizienten Variante Tyr284 des β_2 AR und der Klonierung des SNAP-tags in den zweiten extrazellulären Loop des β_2 AR wurde der "QuikChange Lightning Site-Directed Mutagenesis Kit" (Agilent, Waldbronn) verwendet.

Die Mutagenese beruht auf einander komplementären "Vorwärts-" und "Rückwärtsprimern", die die gewünschte Mutation enthalten. Eine DNA-Polymerase katalysierte die Elongation der Plasmide. Das Reaktionsgemisch wurde den nachfolgend beschriebenen Zyklen ausgesetzt. Dadurch wurden die gewünschte Mutation tragende Plasmide generiert.

10x Reaktionspuffer	5μL
Ausgansplasmid	100ng
Vorwärtsprimer	125ng
Rückwärtsprimer	125ng
dNTP-Mix	1μL
QuikSolution-Reagenz	1,5µL
ddH_2O	ad 50µL
DNA-Polymerase Quikchange Lightning	1μL

Temperatur	Dauer	Zyklen	
95°C	120s	1	
95°C	20s		
60°C	10s	18	
68°C	30s/kb		
68°C	300s	1	

Das Reaktionsgemisch wurde nachfolgend mit 2µL des DpnI-Enzyms 5min bei 37°C verdaut. Mittels dieses Enzyms wurde methylierte und hemimethylierte DNA – damit das nicht mutierte Ausgangsplasmid – degradiert. Anschließend wurden 2µL des so verdauten PCR-Produktes mittels Transformation durch Elektroporation in DH10B-Bakterien und Mini-DNA-Kultur und -aufreinigung amplifiziert und die Mutagenese über DNA-Sequenzierung verifiziert.

2.2.8 Transformation elektrokompetenter DH10B-Bakterien

LB-Agar:	1% Bacto-Trypton 0,5% Hefeextrakt 0,5% NaCl Agar	10g 5g 5g 15g
	NaOH 1M ddH ₂ O	1mL ad 1L
LB-Medium:	1% Bacto-Trypton 0,5% Hefeextrakt 0,5% NaCl NaOH 1M ddH ₂ O	10g 5g 5g 1mL ad 1L

nach Resistenzgen des Plasmids: $Ampicillin 100 \mu g/mL$

Kanamycin 33µg/mL

Zur DNA-Amplifikation von Plasmiden oder Ligationsprodukten wurden 0,5µL Plasmid-DNA bzw. 3µL Ligationsreaktion zu 50µL elektrokompetenten DH10B-Bakterien gegeben, in eine Küvette (Gene Pulser 0,1cm Cuvette, Bio-Rad GmbH, München) überführt und mit einem Elektroporationsgerät (MicroPulser, Bio-Rad GmbH, München) eine gepulste Spannung von initial 1,8kV angelegt. Das Elektroporationsprodukt wurde sofort in ein 1,5mL-Reaktionsgefäß überführt und in einem Schüttelinkubator (Thermomixer, Eppendorf AG, Hamburg) für 1h bei 37°C und 350rpm inkubiert.

Bei Plasmid-Amplifikation wurden verschiedene Verdünnungen um 1:10, bei Ligation das vollständige Bakterienvolumen auf Agarplatten ausgestrichen, die über das dem Resistenzgen des Vektors entsprechende Antibiotikum verfügten. Die Agarplatten wurden über Nacht bei 37°C inkubiert.

2.2.9 Mini/Maxi-Kultur und Mini/Maxi-DNA-Aufreinigung

Zur weiteren DNA-Amplifikation im Rahmen einer Mini-Kultur wurde mittels einer sterilen Pipettenspitze eine einzelne Bakterienkolonie von einer Agarplatte aufgenommen und in ein Reaktionsgefäß mit 4mL LB-Medium und dem Vektor entsprechenden Antibiotikum (Ampicillin 100µg/mL bzw. Kanamycin 33µg/mL) abgeworfen. In einem Schüttelinkubator (Thermoschüttler, Adolf-Kühner AG, Birsfelden) wurde die Kultur mindestens 6h oder über Nacht bei 37°C und 170rpm inkubiert.

Die im folgenden beschriebene DNA-Aufreinigung erfolgte unter Verwendung der Puffer des Plasmid Maxi Kits (Qiagen, Hilden).

Mini-DNA-Aufreinigung

1,5mL der Mini-Kultur wurden in einem 1,5mL Reaktionsgefäß für 15s bei 15000rpm abzentrifugiert, der Überstand verworfen. Zur Vergrößerung des Pellets wurde der Zentrifugationsschritt nach erneuter Zugabe von 1,5mL der Mini-Kultur wiederholt.

Das Pellet wurde in 250µL Resuspensionspuffer (P1) zur Degradation der bakteriellen RNA aufgenommen und 5min bei Raumtemperatur inkubiert. Nach Zugabe von 250µL Lysispuffer (P2) wurden die Proben gemischt und erneut 5min bei Raumtemperatur inkubiert. Die so in alkalischem Niveau

lysierten Zellen wurden mit 300µL auf 4°C gekühltem Neutralisierungspuffer (P3) neutralisiert und 5min auf Eis inkubiert.

Nach Zentrifugation (10min, 15000rpm, 4° C) wurde die im Überstand befindliche DNA in ein neues Reaktionsgefäß überführt und mit 750μ L reinem Ethanol für 5min bei Raumtemperatur präzipitiert. Mit einem weiteren Zentrifugationsschritt (5min, 15000rpm, 4° C) wurde die DNA pelletiert, mit 750μ L 70%igem Ethanol gewaschen, nochmals eine Minute zentrifugiert, luftgetrocknet und in 10μ L ddH_2O gelöst. Die Konzentration der DNA wurde photometrisch bestimmt.

Nach Restriktionsverdau zur Integritätsprüfung der über Mini-Präparation amplifizierten Plasmide erfolgte, wenn nötig, weitere Amplifikation mittels Maxi-Kultur. Sollten die Klone weiter amplifiziert werden, wurden 2ml der Mini-Kultur in sterile Erlenmeyer-Reaktionsgefäße mit 100mL LB-Medium sowie dem entsprechenden Antibiotikum überführt und wiederum über Nacht im Schüttelinkubator inkubiert.

Maxi-DNA-Aufreinigung

Die Maxi-Kulturen wurden bei 6000g für 10min bei 4°C abzentrifugiert (Zentrifuge 5810R, Eppendorf, Hamburg), der Überstand verworfen. Die DNA-Aufreinigung der Maxi-Kultur erfolgte entsprechend den Vorgaben des Herstellers des Plasmid Maxi Kits von Qiagen (Hilden). Dazu wurde nach Degradation der in der Bakterienkultur befindlichen RNAasen eine alkalische Zelllyse durchgeführt, der pH-Wert anschließend angepasst und in salzfreier Lösung bei passendem pH die negativ geladene DNA über eine Anionenaustauschersäule gebunden, eluiert und mit Isopropanol präzipitiert. Das luftgetrocknete DNA-Pellet wurde in 150μL ddH₂O gelöst und die Konzentration wie beschrieben bestimmt.

2.2.10 Enzymatische Deglykosylierung

N-Glykosidase F (PNGase F, New England Biolabs, Frankfurt am Main) ist ein Enzym, das N-Glykan-Ketten hydrolysiert. Es eignet sich damit zur Deglykosylierung von humanen Proteinen.

In 384-well-Mikrotiterplatten wurden 7000 Zellen, die das zu deglykosylierende Protein exprimierten ausgesät und über Nacht inkubiert. Zur Deglykosylierung wurden 60U der des PNGase-Enzyms mit DMEM++ gemischt. Das Zellkulturmedium wurde durch dieses Medium ersetzt. Zur enzymatischen Deglykosylierung wurden die Mikrotiterplatten 1h bei 37°C und 5%CO₂ inkubiert. Darauf wurden die Zellen für weitere fluoreszenzoptische Färbungen, wie in 2.5.1 beschrieben, verwendet.

2.2.11 Messung der DNA-Konzentrationen

Die Bestimmung der Konzentration in Wasser gelöster DNA erfolgte mittels des Spektrophotometers ND-1000 (NanoDrop, Wilmington, USA) und der vom Hersteller mitgelieferten Software. Mithilfe der NanoDrop Software konnte über die Absorption bei 260nm die Konzentration der gelösten DNA und über den Quotienten der Absorption bei 260nm und 280nm die Reinheit der Probe bestimmt werden. Lag der Quotient über 1,8, konnte von einem hohen Reinheitsgrad, d.h. geringer Kontamination mit Proteinen, Phenol oder anderen Kontaminanten ausgegangen werden.

2.2.12 DNA-Sequenzierung

Die Sequenzierung von Plasmid-DNA und PCR-Produkten wurde durch Eurofins MWG Biotech (Ebersberg) durchgeführt. Dazu wurden $20\mu L$ in ddH_2O gelöster DNA der Konzentration $0.1\mu g/\mu L$

zur Sequenzierung gegeben und die Sequenz anschließend mit der Software MacVector (MacVector, Inc.) mit der erwarteten Basenfolge abgeglichen.

2.3 Methoden der eukaryotischen Zellbiologie

2.3.1 Kultivierung eukaryotischer Zelllinien

HEK293-, HeLa-Zellen und die Lungenepithelzellen Calu-3, 16HBE140, A549 wurden bei 5%CO₂ und 37°C in folgendem Zellkulturmedium inkubiert:

DMEM+++ Dulbecco's modified eagle's medium (DMEM) (Invitrogen, Karlsruhe)

- + 1% L-Glutamin
- + 1% Penicillin (10.000U/mL) / Streptomycin (10.000 μg/mL)
- + 10% fötales Rinderserum (FBS)

Transfizierte Zelllinien wurden zusätzlich mit folgendem Antibiotikum kultiviert:

+ 0,4g/L Geniticin (G-418)

das Kulturmedium für Calu-3, 16HBE140 und A549 enthielt zusätzlich:

+ 1% Non-Essential-Amino-Acids (NEAA) (Invitrogen, Karlsruhe)

Die Zelllinien wurden in 6cm- bzw. 10cm-Zellkulturschalen (Nunc, Thermo Scientific, Braunschweig) kultiviert. Die Zelllinien verdoppelten ihre Zellzahl in Kultur nach etwa 24h und wuchsen als adhärente Monolayer. Alle drei bis vier Tage wurden die Zellen gesplittet. Nach Absaugen des Mediums und einmaligem Waschen mit Dulbecco's Phosphate Buffered Saline (PBS) wurden die Zellen mit Trypsin-EDTA-Lösung (0,5g/L Trypsin, 0,2g/L EDTA, Invitrogen, Karlsruhe) für 1min bei 5%CO₂ und 37°C inkubiert, die Trypsin-EDTA-Lösung abgenommen und die nun abgelösten Zellen in Kulturmedium resuspendiert. Sie wurden 1:8 in neue Kulturschalen mit vorgelegtem Medium gesät.

2.3.2 Auftauen und Einfrieren von Zellen

Einfriermedium DMEM+++ (s. 2.3.1)

- + 20% fötales Rinderserum (FBS)
- + 10% Dimethylsulfoxid (DMSO)

Zum Auftauen von zuvor in flüssigem Stickstoff gefrorenen Zellen, wurden sie in Kryogefäßen (Sarstedt AG, Nümbrecht) in einem Wasserbad bei 37°C aufgetaut. Währenddessen wurden die beschriebenen Zellkulturmedien auf 37°C vorgewärmt und in Zellkulturschalen vorgelegt. Die aufgetaute Zellsuspension wurde zugegeben. Nach etwa vier Stunden, wenn die Zellen adhärent waren, wurde das Zellkulturmedium abgesaugt und durch frisches Medium ersetzt, das kein DMSO mehr enthielt.

Sollten kultivierte Zellen eingefroren werden, wurden sie mittels Trypsin-EDTA-Lösung von den Zellkulturschalen abgelöst (s. 2.3.1), in einem 15mL-Reaktionsgefäß bei 1200rpm für 5min bei Raumtemperatur zentrifugiert und in auf 4°C gekühltem Einfriermedium resuspendiert. Jeweils 1mL der Suspension wurde in vorgekühlte Kryogefäße gefüllt und bei -20°C gefroren. Nach 24h wurden sie weiter auf -80°C gekühlt. Nach weiteren 24h konnten die gefrorenen Zellen in flüssigen Stickstoff überführt werden.

2.3.3 Transiente Transfektion von HEK293- und HeLa-Zellen mit Effectene

Zur transienten Transfektion von HEK293- und HeLa-Zellen wurde Effectene (Qiagen, Hilden) benutzt.

Zum Zeitpunkt der Transfektion waren die Zellen in 6-Well-Platten bzw. 6cm-Zellkulturschalen zu 60-80% konfluent kultiviert. Unmittelbar vor der Transfektion wurden die Zellen einmal mit PBS gewaschen, daraufhin die unten beschriebene Menge DMEM vorgelegt.

Zur Herstellung des Transfektionsansatzes wurden angegebene Volumina der zu transfizierenden Plasmid-DNA, EC-Puffer und Enhancer vermischt und fünf Minuten bei Raumtemperatur inkubiert.

Mit dem Enhancer wurden die DNA-Moleküle in einem durch den EC-Puffer korrekt eingestellten Puffersystem so zuerst kondensiert. Die anschließende Zugabe des Effectene-Reagenzes führte zur Komplexierung der DNA mit einem kationischen Lipid.

Nach ausreichendem Mischen und zehnminütiger Inkubation konnte die so komplexierte DNA tropfenweise auf die zu transfizierenden Zellen gegeben werden. Die DNA-Moleküle konnten damit in den Zellkern eingeschleust werden. Nun in großer Zahl im eukaryoten Zellkern vorhandene transfizierte DNA wurde von den Zellen abgelesen und führte zu einem ausreichend hohen Expressionslevel.

Mit dem verwendeten Reagenz konnte eine Transfektionseffizienz von etwa 70% erreicht werden.

	6-Well-Platte	6cm-Schale
DNA (1μg/μL) EC-Puffer	0,4μg 100μL	1μg 150μL
Enhancer	3,2µL 1s vortexen u	8μL nd 5min bei Raumtemperatur inkubieren
Effectene	5μL	10µL
	10s vortexen u	und 10min bei Raumtemperatur inkubieren
DMEM	600µL	1mL
DMEM vorgelegt	1,5mL	4mL

2.3.4 Generierung stabil exprimierender HEK293- und HeLa-Zelllinien

Alle verwendeten Plasmide besaßen das Neomycin-Geniticin-Resistenzgen (Neo^r). Zellen, die die transfizierte Plasmid-DNA stabil in ihr Genom integriert hatten, konnten so mit Geniticin (G-418, Invitrogen, Karlsruhe) selektioniert werden.

Mit den Plasmiden aus 2.1.1 wurden unter Verwendung der in 2.3.3 beschriebenen Methode HEK293- und HeLa-Zellen mit Effectene transfiziert. Danach wurden die überexprimierenden Zellen in 10cm-Zellkulturschalen ausgesät. 24h nach Transfektion wurden die Zellen täglich für ein bis zwei Wochen mit frischem Medium versorgt, das mit 0,8g/L Geniticin versetzt war.

Als unter dem invertierten Mikroskop einzelne Kolonien erkennbar waren, wurden diese gepickt und in eigenen Zellkulturschalen ausgesät. Die so entstandenen heterogen exprimierenden Zellen wurden für fluoreszenzoptische Untersuchungen herangezogen.

2.4 Mikroskopische Methoden

2.4.1 Fluoreszenzmikroskopische Aufnahmen

Im Folgenden beschriebene fluoreszenzmikrokopische Aufnahmen von lebenden Zellen wurden an einem Inversmikroskop (Axio Observer Z1, Zeiss, Göttingen) durchgeführt. Die Mikroskopie wurde mit den Plan-Apochromat 63x und Plan-Apochromat 40x Ölimmersionsobjektiv vorgenommen. Folgende Filtersets (Chroma Technology, Bellow Falls, USA) standen in Kombination mit dem jeweiligen Fluorophor zur Verfügung:

Fluorophor	Anregungsfilter	Strahlenteiler	Emissionsfilter
Alexa 488 d2	ET470/40x	T495LPXR	ET525/50x

Mit einer Retiga 4000DC Kamera (Qimaging, Burnaby, Kanada) konnten hochauflösende Graustufenbilder mit einer Auflösung von 2048x2048 Bildpunkten aufgenommen werden.

2.4.2 Fluoreszenzfärbungen mit SNAP-Substraten

Zur Färbung von lebenden Zellen, die ein Protein exprimierten, das den SNAP-tag trug, wurden die in 2.1.4 angegebenen SNAP-Substrate verwendet.

Stabil oder transient exprimierende HEK293- bzw. HeLa-Zellen wurden in einer Zellkonzentration von $2.5x10^5$ /mL in 100μ L Medium schwarze, für die Fluoreszenzmikroskopie spezialisierte 96-well-Platten (μ -Plate, ibidi, Martinsried) ausgesät und mindestens fünf Stunden oder bevorzugt über Nacht im passenden Zellkulturmedium kultiviert, um ausreichende Adhärenz zu gewährleisten. Um die Adhärenz weiter zu verbessern wurden die Mikroskopieplatten vor Verwendung für 30min bei 37°C mit Poly-D-Lysin beschichtet und einmal mit PBS gewaschen.

Für jedes Well wurden SNAP-Substrat-Lösungen mit 1μM BG-Alexa 488 in 50μL DMEM++ vorbereitet.

Das Zellkulturmedium wurde abgesaugt, die Zellen mit 50µL des vorbereiteten Färbemediums mit den SNAP-Substraten für 30min bei 37°C und 5% CO₂ inkubiert. Nach dem Färben wurden die Zellen drei Mal mit 100µL PBS gewaschen, um freies SNAP-Substrat, sowie eventuell störende Einflüsse des im DMEM-Zellkulturmedium enthaltenen Indikators zu reduzieren. Die so gefärbten Zellen wurden in 50µL PBS mikroskopiert. Zur Mikroskopie wurde das in 2.4 angegebene Inversmikroskop mit dem passenden Filterset verwendet.

2.4.3 Färbungen mit fluoreszierenden Liganden

Zur Fluoreszenzfärbung von Zellen, die den nicht-modifizierten β_2 AR exprimierten, konnten die in 2.1.5 angegebenen extern synthetisierten fluoreszierenden Liganden verwendet werden. Dazu wurden $3x10^5$ Zellen, sowie untransfizierte HeLa-Zellen als Negativkontrolle in 150µL in 96-well-Mikrotiterplatten (μ -Plate, ibidi, Martinsried) ausgesät und mindestens 5h bei 37°C und 5% CO $_2$

inkubiert.

Zur Färbung mit dem fluoreszierenden Liganden ICI wurden sättigende Konzentrationen des Derivates verwendet. Das Zellkulturmedium wurde durch frisches DMEM++ ersetzt, das mit 10nM bzw. 100nM der fluoreszierenden Liganden versetzt war. Nach einem einstündigen Inkubationsschritt bei 37°C und einmaligem Waschen mit PBS wurden die Zellen mit dem in 2.4 beschriebenen Inversmikroskop evaluiert.

2.5 Fluoreszenzoptische Methoden

Alle trFRET-Studien wurden entweder in 96-well-Platten (μ -Plate, ibidi, Martinsried) oder 384-well-Platten (Nunc, Thermo Fisher Scientific, Braunschweig) durchgeführt. Die Mikrotiterplatten wurden in einem Mikrotiterplattenlesegerät (Pherastar FS, BMG Labtech, Ortenberg) ausgelesen.

In allen Versuchen wurde sowohl die Intensität bei 620nm als auch bei 665nm gemessen. Für jedes Well der Mikrotiterplatten wurden jeweils 60 Messzyklen (*flashes per well*) durchgeführt. Die Messwerte repräsentieren eine Fläche unter der Intensitätskurve im Zeitverlauf (*AUC*). Zur numerischen Integration wurden dazu die Messbereiche zwischen 60µs bis 400µs nach initialer Exzitation gewählt.

2.5.1 trFRET mit SNAP-Substraten

Zur Messung von intermolekularem trFRET zwischen β_2 -Rezeptoren, die mit dem SNAP-tag versehen waren, wurden unterschiedliche Versuchsreihen durchgeführt. In einem Schritt wurde die Interaktion zwischen trFRET-Donor und trFRET-Akzeptor geprüft. Im zweiten war zu überprüfen, ob eine lineare Korrelation zwischen transfizierter DNA-Menge und trFRET-Signal bestand.

Interaktion zwischen trFRET-Donor und trFRET-Akzeptor

Um ausreichende Zelladhärenz zu gewährleisten, mussten alle Mikrotiterplatten zuvor mit Poly-D-Lysin beschichtet werden. 384-well-Platten wurden dazu mit 25µL Poly-D-Lysin für 30min bei 37°C inkubiert und einmal mit PBS gewaschen.

 10^5 Zellen pro Well der stabil oder transient exprimierenden HEK293- bzw. HeLa-Zellen wurden in 6-Tupeln für jede Bedingung in 30μ L passenden Mediums in die Mikrotiterplatten ausgesät. Die Mikrotiterplatten wurden über Nacht bei 37° C und 5% CO₂ inkubiert.

In Experimenten, in denen eine Ligandenstimulation erfolgte, wurde im nächsten Schritt eine Prästimulation durchgeführt. In allen Wells wurde das Zellkulturmedium durch 20µL frisches Medium mit oder ohne dem gewünschten Liganden ersetzt.

Zur Reaktion mit den SNAP-Substraten wurden die in 2.1.5 angegebenen Donor- und Akzeptorfluorophore mit O⁶-Benzylguaningruppen in doppelter Konzentration im Vergleich zur finalen Konzentration vorbereitet. Die Konzentration des Akzeptorfluorophors wurde dabei über die angegebenen Bereiche variiert, während die Konzentration des Donorfluorophors BG-Lumi4-Tb konstant auf eine finale Konzentration von 10nM festgesetzt wurde. Die SNAP-Substrate wurden im Vergleich zur Stock-Konzentration (teilweise DMSO-haltig) in starker Verdünnung in DMEM++ angesetzt. Anschließend wurden zum Erreichen der finalen Konzentration die Lösungen 1:1 gemischt.

Zur Reaktion zwischen SNAP-tag und Benzylguaningruppe wurde das in den Wells vorhandene

Zellkulturmedium durch 10μL pro Well der vorbereiteten Lösungen ersetzt. Die Mikrotiterplatten wurden 1h bei 37°C und 5% CO₂ inkubiert.

Nach der Inkubation wurden die Zellen vier Mal mit reinem PBS gewaschen. Im Falle einer Ligandenstimulation wurden sie nach dem letzten Waschschritt in einer PBS-Lösung aufgenommen, die den Liganden enthielt, sonst wurde reiner PBS-Puffer zugegeben.

Die Mikrotiterplatten wurden wie angegeben im Mikrotiterplattenlesegerät ausgelesen.

Messung des trFRET-Signals bei Ligandenstimulation

Zur Messung des trFRET-Signals SNAP-getaggter Rezeptoren im Falle einer Ligandenstimulation wurden Versuchsreihen analog zu 2.5.1 durchgeführt. Die Konzentration des Akzeptorfluorophors wurde jedoch auf den Wert festgesetzt, mit dem das maximale trFRET-Signal zu erwarten war ([BG-Lumi4] = 10nM; [BG-d2] = 100nM).

Dieser Versuch wurde in zwei Varianten durchgeführt:

In der ersten Variante erfolgte eine Prästimulation mit den Agonisten und Antagonisten, wie in 2.5.1 beschrieben. Die Inkubation erfolgte ebenfalls mit Lösungen, die sowohl Donor- und Akzeptorfluorophor als auch die Liganden enthielten. Schließlich wurde mit PBS-Lösungen gewaschen, die ebenfalls die Liganden enthielten.

In einer zweiten Variante wurden die Liganden ausschließlich in den letzten Puffer gegeben, in dem auch die Messung erfolgte.

Korrelation zwischen transfizierter DNA-Menge und trFRET-Signal

Zur Messung des Einflusses der transfizierten Plasmid-Masse auf die Intensität des trFRET-Signals wurden $2x10^5$ Zellen pro Well in einer – wie beschrieben mit Poly-D-Lysin beschichteten – 96-well-Mikrotiterplatte (μ -Plate, ibidi, Martinsried) ausgesät und über Nacht bei 37°C und 5% CO₂ inkubiert.

Wie in 2.3.3 beschrieben, wurden zwischen 1ng und 200ng Plasmid-DNA, die für einen SNAP-tag tragendes Protein codierte, transfiziert. Die Zellen wurden 5h bei 37°C und 5% CO₂ inkubiert.

Anschließend wurden die transient exprimierenden Zellen mit entweder nur 10nM des SNAP-Substrat des Donor-Fluorophores BG-Lumi4 für 1h bei 37°C und 5% CO₂ oder mit 10nM BG-Lumi4 und 100nM BG-d2 inkubiert und vier Mal mit PBS gewaschen.

Die Mikrotiterplatten wurden im Mikrotiterplattenlesegerät Pherastar FS (BMG Labtech, Ortenberg) ausgelesen. Über die Messung der Signalintensität bei 620nm der nur mit dem Donor-Fluorophor gefärbten Zellen konnte die Menge des exprimierten Rezeptors bestimmt werden. Parallel konnte die trFRET-Intensität bei 665nm (Δ F665) der mit Donor- und Akzeptorfluorophor gefärbten Zellen gemessen werden.

Es erfolgte eine statistische Regressionsanalyse mit Prism 6 (GraphPad, La Jolla, USA), bei der die Signalintensität bei 620nm gegen die trFRET-Intensität aufgetragen wurde.

2.5.2 trFRET mit fluoreszierenden Liganden

Ligandenbindung und -sättigung

Zur Bestimmung der Sättigungskonzentration des fluoreszierenden trFRET-Donor-Liganden wurden 8000 Zellen pro Well in Poly-D-Lysin beschichtete 384-Well-Mikrotiterplatten ausgesät und über Nacht bei 37°C und 5% CO₂ inkubiert.

Zur Ligandenbindung wurde Zellkulturmedium DMEM++ mit steigenden Konzentrationen des Donor-Liganden (Lumi4-ICI) vorbereitet. Für jede Bedingung wurde ein 6-Tupel gemessen.

Das Zellkulturmedium wurde abgesaugt und durch das vorbereitete Medium, das den Liganden enthielt, ersezt. Die Mikrotiterplatten wurden 1h bei 37°C und 5% CO₂ inkubiert.

Die Zellen wurden drei Mal mit PBS gewaschen. Die Messung erfolgte in 20µL PBS im Mikrotiterplattenlesegerät mit zuvor beschriebenen Einstellungen.

Interaktion zwischen trFRET-Donor-Ligand und trFRET-Akzeptor-Ligand

Zur Messung der spezifischen räumlichen Interaktion zwischen trFRET-Donor- und trFRET-Akzeptorligand wurden 8000 Zellen der beschriebenen Zelllinien pro Well in 384-well-Mikrotiterplatten ausgesät und über Nacht bei 37° C und 5% CO₂ inkubiert.

Zur Ligandenbindung wurde Zellkulturmedium mit variablen Akzeptorkonzentrationen und fixer Akzeptorkonzentration vorbereitet. Das Zellkulturmedium wurde vorsichtig abgesaugt und die Zellen 1h bei 37°C und 5% CO₂ mit den Lösungen inkubiert.

Nach dreimaligem Waschen mit PBS wurden die Mikrotiterplatten wie angegeben im Mikrotiterplattenlesegerät ausgelesen.

2.6 Statistische Methoden

Wann immer möglich, erfolgte die statistische Auswertung von Messwerten. Diese wurde mithilfe von Prism 6 (GraphPad, La Jolla, USA) vorgenommen. Statistische Signifikanz wurde mit dem Student's-t-Test überprüft. Auf Ergebnisse verschiedener Gruppen wurde eine Varianzanalyse (oneway bzw. two-way ANOVA) angewendet. Der Signifikanzwert (p-Wert) wurde in beiden Fällen auf 0,05 festgelegt.

Wie in den Lebenswissenschaften üblich, sind Messwerte, wenn nicht anders angegeben, mit Mittelwert und Standardfehler dargestellt.

3 Ergebnisse

3.1 Generierung von β_2 -Adrenorezeptoren mit dem SNAP-tag

Zur Untersuchung der Oligomerisierung des β_2 AR wurde der Rezeptor so modifiziert, dass er über eine extrazelluläre Komponente verfügte, die Untersuchungen mit fluoreszierenden Substraten ermöglichte. Der SNAP-tag ermöglicht über seine O⁶-Alkylguanin-DNA-Alkyltransferase-Aktivität die kovalente Bindung nahezu beliebiger Moleküle (Gronemeyer et al. 2006). Die gewünschten Fluorophore müssen dazu eine O⁶-Benzylguanin oder O⁶-Alkylguanin-Gruppe tragen. Viele Fluorophore, darunter trFRET-kompatible, sind kommerziell verfügbar. Die Funktionsweise ist in Abbildung 3.1 dargestellt

Abbildung 3.1: Funktionsweise des SNAP-tag

Darauf basierend wurden Vektoren kloniert, die den β_2 AR trugen, der N-terminal über den SNAP-tag verfügte.

Mittels Fluoreszenzmikroskopie konnte initial gezeigt werden, dass mit der N-terminalen Modifikation des β_2 AR keine Membranexpression des β_2 AR mehr erfolgte (s. Abb. 3.3 in 3.2). Infolgedessen wurde weiter N-terminal eine Proteinsequenz zur Membraninsertion verwendet, die zur zufriedenstellenden Expression des β_2 AR führte.

In Abbildung 3.2 sind schematisch die Klonierungsstrategien zu den final verwendeten Vektoren dargestellt. Es wurden Expressionsvektoren erzeugt, die die SNAP-getaggten natürlich vorkommenden Varianten Arg16 und Gly16 des β_2 AR exprimierten.

Darüber hinaus wurden zwei weitere Expressionssysteme generiert: Ein Vektor, der den β_2 AR mit dem SNAP-tag im zweiten extrazellulären Loop trug, sowie einen weiteren, der die in der Literatur als dimerisierungsdefizient beschriebene Variante Tyr284 (Salahpour et al. 2004) enthielt.

Für zukünftige Anwendung wurden außerdem analog Vektoren kloniert, die den mit dem CLIP-tag versehenen β_2 AR trugen (nicht dargestellt).

Abbildung 3.2: **Klonierungsstrategien**: **1)** Generierung eines Expressionsvektors mit dem SNAP-tag im zweiten extrazellulären Loop des β₂AR; **2)** SNAP-tag am N-Terminus des β₂AR; **3)** SNAP-tag am N-Terminus der dimerisierungsdefizienten Mutante des β₂AR

3.2 Fluoreszenzmikroskopie des β_2 AR mit dem SNAP-tag

Die Charakterisierung der Oligomerisierung des β_2 AR zunächst außer Acht gelassen, wurden zuerst Fluoreszenzfärbungen mit SNAP-Substraten durchgeführt. Dabei sollte geprüft werden, ob der mit dem SNAP-tag versehene Rezeptor korrekt in die Zellmembran integriert wird, bzw. noch trivialer, ob die Transfektion mit zufriedenstellender Effizienz gelungen war.

Wie in 3.1 beschrieben, konnten erfolgreich Vektoren erzeugt werden, die den mit dem SNAP-tag versehenen β_2 AR trugen. Diese Plasmide konnten in die HeLa- und HEK293-Zelllinien transient transfiziert werden.

Abbildung 3.3: **Fluoreszenzfärbung mit SNAP-Substraten:** transient exprimierende HEK293- und stabile HeLa-Zellen.

Zunächst wurden direkt nach der Transfektion in HEK293-Zellen mit BG-Alexa-488 SNAP-basierte Fluoreszenzfärbungen durchgeführt. Dabei zeigten sich die in Abbildung 3.3 in der mit HEK gekennzeichneten Zeile dargestellten Expressionsmuster: Als Negativkontrolle dienten entweder nicht transfizierte Zellen oder Zellen, die mit dem β_2 AR transfiziert worden waren, der den CLIP-tag trug. Für den Arg16Gly-Polymorphismus zeigte sich in beiden Fällen ein deutliches Membranexpressionsmuster mit vernachlässigbarem Hintergrundsignal. Für die Variante des Vektors, der N-terminal vor dem SNAP-tag kein Membraninsertionssignal enthielt, war keine Membranfärbung nachweisbar. Auch die Variante des β_2 AR, die den SNAP-tag im zweiten extrazellulären Loop trug, war fluoreszenzmikroskopisch kein Membranexpressionsmuster erkennbar. Die Tyr284-Variante, wurde in HeLa-Zellen transfiziert. Dort war keine Membranfärbung erkennbar.

HEK293-Zellen eigneten sich aufgrund ihrer geringen Adhärenz nicht für die weiteren Versuchsreihen, die allesamt häufiges Waschen benötigten. Somit wurden stabile Zelllinien nur mit den stärker adhärenten HeLa-Zellen generiert. Diese zeigten in der Fluoreszenzmikroskopie eine den HEK293-Zellen vergleichbare Membranexpression. Die Ergebnisse sind in Abbildung 3.3 dargestellt. Sowohl bei der Arg16- als auch bei der Gly16-Variante des β_2 AR war eine klare lineare Membranfärbung feststellbar.

3.3 Oligomerisierung des β_2 AR mit SNAP-tag

Zur Analyse der Oligomerisierung des β_2 AR wurde der in der Einleitung beschriebene trFRET-Ansatz verwendet. Dazu wurden zuerst mit trFRET kompatible Fluorophore, die an Substrate des SNAP-tag gekoppelt waren, in unterschiedlichen Versuchsreihen zur Untersuchung der prinzipiellen Oligomerisierung des modifizierten β_2 AR eingesetzt. In den in Abschnitt 3.4 vorgestellten Ergebnissen konnten dann fluoreszierende Liganden des unveränderten β_2 AR in analogen Versuchsreihen die Oligomerisierung des Rezeptors zeigen.

3.3.1 tr-FRET mit SNAP-Substraten

Mit Hilfe der trFRET-Methode konnte die räumliche Interaktion von Molekülen es β_2 AR nachgewiesen werden. Dazu wurde in einem ersten Schritt die optimale Konzentration des Donorfluorophors bestimmt. Darauf konnte eine räumliche Interaktion gemessen werden. In einem letzten Schritt wurde gezeigt, dass diese spezifisch war.

Bestimmung der Sättigungskinetik der SNAP-Substrate

Zur optimalen Einstellung der Konzentrationen der verwendeten SNAP-Substrate wurden Sättigungsassays durchgeführt. Dazu wurden steigende Konzentrationen des mit dem Donorfluorophor Lumi4 verbundenen SNAP-Substrats (Lumi4-BG) mit Zellen inkubiert, die den SNAP-getaggten β_2 AR trugen. Diese Zellen waren zuvor fluoreszenzmikroskopisch auf ihre Expression untersucht worden. Als Negativkontrolle und zur Abschätzung unspezifischer Bindung des SNAP-Substrates dienten nicht-transfizierte Zellen. Über die Messung der Intensität der Fluoreszenz des Donorfluorophores bei 620nm konnte auf die Sättigung der SNAP-tags Rückschluss gezogen werden. Das Ergebnis ist in Abbildung 3.4 dargestellt.

Über steigenden Konzentrationen des SNAP-Substrates zeigte sich ein sigmoider Intensitätsverlauf, der bei spezifischer sättigbarer Bindung zu erwarten ist. Die unspezifische Bindung erwies sich als gering. Für die weitere Analyse waren mehrere Bedingungen zu optimieren: Zum einen sollte die Konzentration der SNAP-Substrate gering gehalten werden, um nicht-spezifische Bindung vernachlässigen zu können. Zum anderen war für eine zufriedenstellende signal-to-noise-ratio eine ausreichend hohe Konzentration zu wählen.

Diese Bedingung waren am besten bei der etwa halbmaximal sättigenden Konzentration des SNAP-Substrates gegeben. Für die Analyse der spezifischen Interaktion der SNAP-getaggten Rezeptoren wurde daher die Konzentration des Donor-Substrates auf 10nM festgelegt.

Räumliche Interaktion des SNAP-getaggten β_2 AR

Nachweis der spezifischen Interaktion zwischen Rezeptoroligomeren

- 3.3.2 Einfluss der Stimulation mit Liganden des β_2 AR auf seine Oligomerisierung
- 3.3.3 Einfluss der Glycosylierung auf die Oligomerisierung des β_2 AR
- 3.4 tr-FRET mit fluoreszierenden Liganden des β_2 AR

Abbildung 3.4: Bindungskinetik des Lumi4-Donorfluorophors

Abbildung 3.5: Maximierung des FRET-Signals

4 Diskussion

5 Zusammenfassung

Abbildungsverzeichnis

3.1	Funktionsweise des SNAP-tag	17		
3.2	Klonierungsstrategien: 1) Generierung eines Expressionsvektors mit dem SNAP-tag			
	im zweiten extrazellulären Loop des β_2 AR; 2) SNAP-tag am N-Terminus des β_2 AR;			
	3) SNAP-tag am N-Terminus der dimerisierungsdefizienten Mutante des β_2 AR	18		
3.3	3.3 Fluoreszenzfärbung mit SNAP-Substraten: transient exprimierende HEK293- und			
	stabile HeLa-Zellen	19		
3.4	Bindungskinetik des Lumi4-Donorfluorophors	21		
3.5	Maximierung des FRET-Signals	21		

Tabellenverzeichnis

Literatur

Gronemeyer, T., C. Chidley, A. Juillerat, C. Heinis & K. Johnsson (2006). "Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling". In: *Protein Eng Des Sel* 19.7, S. 309–316.

Salahpour, A., S. Angers, J.-F. Mercier, M. Lagacé, S. Marullo & M. Bouvier (2004). "Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting." In: *J Biol Chem* 279.32, S. 33390–7.