

$$I(J^P) = 0(\frac{1}{2}^+)$$
 Status: ***

In the quark model, a Λ_b^0 is an isospin-0 udb state. The lowest Λ_b^0 ought to have $J^P = 1/2^+$. None of *I*, *J*, or *P* have actually been

10 MASS

VALUE (MeV)		EVIS	DOCUMENT ID		TECN	COMMENI
$5619.58 \pm$	0.17 OUR AVI	ERAGE				
$5619.65\pm$	$0.17\!\pm\ 0.17$		¹ AAIJ	16Y	LHCB	pp at 7, 8 TeV
$5619.30\pm$	0.34		² AAIJ	14 AA	LHCB	pp at 7 TeV
$5620.15\pm$	$0.31\!\pm\ 0.47$		³ AALTONEN	14 B	CDF	$p\overline{p}$ at 1.96 TeV
5619.7 \pm	$0.7 ~\pm~ 1.1$		³ AAD	13 U	ATLS	pp at 7 TeV
$5619.44\pm$	$0.13 \pm \ 0.38$		³ AAIJ	13AV	LHCB	pp at 7 TeV
5621 \pm	4 ± 3		⁴ ABE	97 B	CDF	$p\overline{p}$ at 1.8 TeV
$5668 \pm$	16 ± 8	4	⁵ ABREU	96N	DLPH	$e^+e^- \rightarrow Z$
5614 \pm	21 ± 4	4	⁵ BUSKULIC	96L	ALEP	$e^+e^- ightarrow Z$
• • • We d	do not use the f	ollowing o	lata for averages,	fits, li	mits, etc	E. • • •
$5619.19\pm$	$0.70\pm~0.30$		³ AAIJ	12E	LHCB	Repl. by AAIJ 13AV
5619.7 ±	$1.2 ~\pm~ 1.2$		⁶ ACOSTA	06	CDF	Repl. by AALTO- NEN 14B
not seen			⁷ ABE	93 B	CDF	Repl. by ABE 97B
5640 \pm	± 30	16	⁸ ALBAJAR	91E	UA1	<i>p</i> p 630 GeV
5640 $^{+1}_{-2}$		52	BARI	91	SFM	$\Lambda_b^0 ightarrow ho D^0 \pi^-$
5650 $ +1 \\ -2 $		90	BARI	91	SFM	$\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^+ \pi^- \pi^-$
	_	_			_	

$$m_{\Lambda_b^0} - m_{B^0}$$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
339.2±1.4±0.1	¹ ACOSTA	06	CDF	$p\overline{p}$ at 1.96 TeV

¹Uses exclusively reconstructed final states containing $J/\psi \rightarrow \mu^+\mu^-$ decays.

 $^{^{1} \}text{Uses } \Lambda_{b}^{0} \rightarrow p \psi(2S) K^{-}, \Lambda_{b}^{0} \rightarrow p J/\psi \pi^{+} \pi^{-} K^{-}, \text{ and } \Lambda_{b}^{0} \rightarrow p J/\psi K^{-} \text{ decays.}$ $^{2} \text{Uses exclusively reconstructed final states } \Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} D_{s}^{-}, \Lambda_{c}^{+} D^{-} \text{ and } \overline{B}{}^{0} \rightarrow D^{+} D_{s}^{-} \text{ decays.}$ $^{3} \text{Uses } \Lambda_{b}^{0} \rightarrow J/\psi \Lambda \text{ fully reconstructed decays.}$

 $^{^4}$ ABE 97B observed 38 events with a background of 18 \pm 1.6 events in the mass range 5.60–5.65 GeV/ c^2 , a significance of > 3.4 standard deviations.

 $^{^5}$ Uses 4 fully reconstructed Λ_b events.

⁶ Uses exclusively reconstructed final states containing a $J/\psi \to \mu^+\mu^-$ decays.

⁷ABE 93B states that, based on the signal claimed by ALBAJAR 91E, CDF should have found 30 \pm 23 $\Lambda_h^0 \to J/\psi(1S)\Lambda$ events. Instead, CDF found not more than 2 events.

 $^{^8}$ ALBAJAR 91E claims 16 ± 5 events above a background of 9 ± 1 events, a significance of about 5 standard deviations.

$m_{\Lambda_b^0} - m_{B^+}$

•				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
339.72 ± 0.28 OUR AVERAGE				
$339.72 \pm 0.24 \pm 0.18$	$^{ m 1}$ AAIJ	14 AA	LHCB	pp at 7 TeV
$339.71 \pm 0.71 \pm 0.09$	² AAIJ	12E	LHCB	pp at 7 TeV
¹ Uses exclusively reconstructed decays.	final states $arLambda_b^0 ightarrow$	$\Lambda_c^+ L$	ρ_s^- , Λ_c^+	D^- and $\overline B{}^0 o D^+ D_s^-$
² Uses exclusively reconstructed	final states contai	ning J	$I/\psi ightarrow$	$\mu^+\mu^-$ decays.

10 MEAN LIFE

See b-baryon Admixture section for data on b-baryon mean life average over species of b-baryon particles.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

$VALUE (10^{-12} \text{ s})$	VTS	DOCUMENT ID		TECN	COMMENT
1.470±0.010 OUR EVAL	UAT	ION			
$1.415 \pm 0.027 \pm 0.006$		¹ AAIJ	14E	LHCB	pp at 7 TeV
$1.479 \pm 0.009 \pm 0.010$		² AAIJ	14 U	LHCB	<i>pp</i> at 7, 8 TeV
$1.565 \pm 0.035 \pm 0.020$		¹ AALTONEN	14 B	CDF	$p\overline{p}$ at 1.96 TeV
$1.449 \pm 0.036 \pm 0.017$		¹ AAD		ATLS	pp at 7 TeV
$1.503 \pm 0.052 \pm 0.031$		¹ CHATRCHYAN	1 13AC	CMS	pp at 7 TeV
$1.303 \pm 0.075 \pm 0.035$		¹ ABAZOV	12 U	D0	$p\overline{p}$ at 1.96 TeV
$1.401 \pm 0.046 \pm 0.035$		³ AALTONEN	10 B	CDF	$p\overline{p}$ at 1.96 TeV
\bullet \bullet We do not use the	follo	wing data for aver	rages,	fits, lim	its, etc. • • •
$1.482 \!\pm\! 0.018 \!\pm\! 0.012$		⁴ AAIJ	13 BE	LHCB	Repl. by AAIJ 14∪
$1.537 \pm 0.045 \pm 0.014$		$^{ m 1}$ AALTONEN	11	CDF	Repl. by AALTONEN 14B
$1.218 {+ 0.130 \atop - 0.115} \pm 0.042$		¹ ABAZOV	07s	D0	Repl. by ABAZOV 12U
$1.290 {}^{+ 0.119}_{- 0.110} {}^{+ 0.087}_{- 0.091}$		⁵ ABAZOV	07 U	D0	$p\overline{p}$ at 1.96 TeV
$1.593 {+ 0.083 \atop - 0.078} \pm 0.033$		¹ ABULENCIA	07A	CDF	Repl. by AALTONEN 11
$1.22 \ ^{+ 0.22}_{- 0.18} \ \pm 0.04$		¹ ABAZOV	05 C	D0	Repl. by ABAZOV 07S
$1.11 \ ^{+0.19}_{-0.18} \ \pm 0.05$		⁶ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$
$1.29 \ ^{+ 0.24}_{- 0.22} \ \pm 0.06$		⁶ ACKERSTAFF	98G	OPAL	$e^+e^- \rightarrow Z$
1.21 ± 0.11		⁶ BARATE	98 D	ALEP	$e^+e^- ightarrow Z$
$1.32 \pm 0.15 \pm 0.07$		⁷ ABE	96M	CDF	<i>p</i> p at 1.8 TeV
$1.19 \begin{array}{c} +0.21 & +0.07 \\ -0.18 & -0.08 \end{array}$		ABREU	96 D	DLPH	Repl. by ABREU 99W
$1.14 \begin{array}{l} +0.22 \\ -0.19 \end{array} \pm 0.07$	69	AKERS	95K	OPAL	Repl. by ACKERSTAFF 98G
$1.02 \ ^{+0.23}_{-0.18} \ \pm 0.06$	44	BUSKULIC	95L	ALEP	Repl. by BARATE 98D

$\tau_{\Lambda_b^0}/\tau_{\overline{\Lambda}_b^0}$

DOCUMENT ID TECN COMMENT

AAIJ 14E LHCB pp at 7 TeV $0.940 \pm 0.035 \pm 0.006$

$au_{\it A^0_L}/ au_{\it B^0}$ MEAN LIFE RATIO

$\tau_{\Lambda^0}/\tau_{B^0}$ (direct measurements)

"OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group

(HFLAV) by including b	both B^0 and B^+ d	ecays.		
VALUE	DOCUMENT ID		TECN	COMMENT
0.964 ± 0.007 OUR EVALUAT	TION			
0.969 ± 0.010 OUR AVERAGE	Error includes so	cale fa	ctor of 1	6. See the ideogram below.
$0.929\!\pm\!0.018\!\pm\!0.004$	¹ AAIJ	14E	LHCB	pp at 7 TeV
$0.974 \pm 0.006 \pm 0.004$	² AAIJ	14 U	LHCB	<i>pp</i> at 7, 8 TeV
$0.960 \pm 0.025 \pm 0.016$	³ AAD	13 U	ATLS	pp at 7 TeV
$0.864 \pm 0.052 \pm 0.033$	^{4,5} ABAZOV	12 U	D0	$p\overline{p}$ at 1.96 TeV
$1.020 \pm 0.030 \pm 0.008$	⁴ AALTONEN	11	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the following	owing data for avera	ages, f	its, limit	s, etc. • • •
$0.976\!\pm\!0.012\!\pm\!0.006$	⁶ AAIJ	13 BB	LHCB	Repl. by AAIJ 14U
$0.811^{+0.096}_{-0.087}{\pm}0.034$	^{4,5} ABAZOV	07 S	D0	Repl. by ABAZOV 12U
1 0/1 1 0 057	7 ARIII ENCIA	074	CDE	Popl by AALTONEN 11

$0.976 \pm 0.012 \pm 0.006$	⁶ AAIJ	13BB LHCB	Repl. by AAIJ 14U
$0.811^{+0.096}_{-0.087}\!\pm\!0.034$	^{4,5} ABAZOV	07s D0	Repl. by ABAZOV 12U
1.041 ± 0.057	⁷ ABULENCIA	07A CDF	Repl. by AALTONEN 11
$0.87 \ ^{+0.17}_{-0.14} \ \pm 0.03$	⁷ ABAZOV	05C D0	Repl. by ABAZOV 07S

 $^{^1}$ Measured using $\varLambda_b^0 \to ~J/\psi \varLambda$ and $B^0 \to ~J/\psi \textit{K}^{*0}$ decays.

 $^{^1\,\}mathrm{Measured}$ mean life using fully reconstructed $\varLambda_h^0\,\to\,\,J/\psi\,\varLambda$ decays.

² Used $\Lambda_h^0 \rightarrow J/\psi p K^-$ decays.

 $^{^3}$ Measured mean life using fully reconstructed $\varLambda_b^0\to~\varLambda_c^+\pi^-$ decays.

⁴ Measured the lifetime ratio of decays $\Lambda_b^0 \to J/\psi p K^-$ to $B^0 \to J/\psi \pi^+ K^-$ to be $0.976 \pm 0.012 \pm 0.006$ with $\tau_{B^0} = 1.519 \pm 0.007$ ps.

 $^{^5}$ Measured using semileptonic decays $\Lambda_b^0 o \Lambda_c^+ \mu \nu X$ and $\Lambda_c^+ o \kappa_S^0 \, p$.

⁶ Measured using $\Lambda_{c}\ell^{-}$ and $\Lambda\ell^{+}\ell^{-}$.

⁷ Excess $\Lambda_c \ell^-$, decay lengths.

¹ Measured using $\Lambda_h^0 \to J/\psi \Lambda$ decays.

 $^{^2}$ Used $\Lambda_b^0 \to J/\psi \, p \, K^-$ and $B^0 \to J/\psi \, K^*(892)^0$ decays.

³ Measured with $\Lambda_b^0 \rightarrow J/\psi(\mu^+\mu^-) \Lambda^0(p\pi^-)$ decays.

⁴Uses fully reconstructed $\Lambda_b \to J/\psi \Lambda$ decays.

⁵Uses $B^0 \to J/\psi K_S^0$ decays for denominator.

 $^{^6}$ Measures $1/\tau_{A_L^0}$ $-1/\tau_{B^0}$ and uses $\tau_{B^0}=1.519\pm0.007$ ps to extract lifetime ratio.

 $^{^7}$ Measured mean life ratio using fully reconstructed decays.

Λ_b^0 DECAY MODES

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode		Fraction (Γ_i/Γ)	Scale factor/ Confidence level
_	$J/\psi(1S)\Lambda imes B(b o \Lambda_b^0)$		(5.8 \pm 0.8) \times 10	- 5
_	$J/\psi(1S)$ Λ			
Γ ₃	$\psi(2S)\Lambda$			
	$\rho D^0 \pi^-$		(6.5 ± 0.7) \times 10^{-2}	
Γ_5	pD^0K^-		(4.7 ± 0.8) \times 10	-5
Γ_6	$ hoJ/\psi\pi^-$		$(2.6 \begin{array}{c} +0.5 \\ -0.4 \end{array}) \times 10^{-6}$	-5
Γ ₇	$p J/\psi K^-$		$(3.2 \begin{array}{c} +0.6 \\ -0.5 \end{array}) \times 10^{-1}$	-4
Γ ₈	$P_c(4380)^+K^-$, $P_c o pJ/\psi$	[a]	$(2.7 \pm 1.4) \times 10^{-2}$	-5
Γ ₉	$P_c(4450)^+ K^-$, $P_c \rightarrow pJ/\psi$	[a]	$(1.3 \pm 0.4) \times 10^{-3}$	-5
HTT	P://PDG.LBL.GOV Page	4	Created: 5/3	30/2017 17:22

$$\begin{array}{lll} \Gamma_{44} & \Lambda^0 \phi & & (2.0 \pm 0.5) \times 10^{-6} \\ \Gamma_{45} & p \pi^- \pi^+ \pi^- & \\ \Gamma_{46} & p \, K^- \, K^+ \pi^- & & \end{array}$$

- [a] P_c^+ is a pentaquark-charmonium state.
- [b] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.
- [c] Here h^- means π^- or K^- .

CONSTRAINED FIT INFORMATION

An overall fit to 10 branching ratios uses 12 measurements and one constraint to determine 7 parameters. The overall fit has a $\chi^2=10.7$ for 6 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

10 BRANCHING RATIOS

$\Gamma(J/\psi(1S)\Lambda \times B(b \to \Lambda_b^0))/\Gamma_{\text{total}}$

 Γ_1/Γ

Created: 5/30/2017 17:22

<i>VALUE</i> (units 10 ⁻⁵)	EVTS	DOCUMENT ID		TECN	COMMENT
5.8 ± 0.8 OUR AVERAG	GE.				
$6.01 \pm \ 0.60 \pm \ 0.58 \pm 0.28$		¹ ABAZOV	110	D0	$p\overline{p}$ at 1.96 TeV
$4.7 \pm 2.3 \pm 0.2$		² ABE	97 B	CDF	$p\overline{p}$ at 1.8 TeV
• • • We do not use the following	owing data	for averages, fits,	limits	etc. •	• •
180 ± 60 ± 90	16	ALBAJAR	91E	UA1	$p\overline{p}$ at 630 GeV
1 ABAZOV 110 uses B(B^{0}	J/ψ	$K_{S}^{0}) \times B(b \rightarrow$	$B^{0}) =$	(1.74	\pm 0.08) $ imes$ 10 ⁻⁴ to
obtain the result. The (\exists			of this	product	is listed as the last
uncertainty of the measur					
2 ABE 97B reports [B(Λ_b^0	$\rightarrow J/\psi \Lambda$)	$\times B(b \rightarrow \Lambda_b^0)$	/ [B(<i>E</i>	$3^0 \rightarrow 0$	$J/\psi K_S^0) \times B(b \rightarrow$
$[B^0] = 0.27 \pm 0.12 \pm 0.0$	5. We mult	tiply by our best v	alue B	$(B^0 \rightarrow$	$J/\psi K_{S}^{0}) \times B(b \rightarrow$
B^0) = (1.74 ± 0.08) × 1	$.0^{-4}$. Our	first error is their	exper	iment e	rror and our second

error is the systematic error from using our best value.

$\Gamma(\psi(2S)\Lambda)/\Gamma(J/\psi(1S)\Lambda)$					Γ_3/Γ_2
VALUE	DOCUMENT ID			COMMENT	
	¹ AAD			pp at 8 TeV	
1 AAD 15CH uses B($J/\psi ightarrow \mu$ B($\psi(2S) ightarrow \mu^{+}\mu^{-}$) = (7.89 universality.	$(\mu^{+}\mu^{-}) = (5.96)$ $(0.17) \times 10^{-}$	1 ± 0 $\cdot 3$ (P)).033) × DG 14)	10 ⁻² (PDG 14) is used assuming). And g lepton
$\Gamma(\rho D^0 \pi^-)/\Gamma_{\text{total}}$ VALUE VALUE EVTS	DOCUMENT ID		TECN	COMMENT	Γ ₄ /Γ
• • We do not use the following				·	
seen 52	BARI	91	SFM	$D^0 ightarrow \kappa^- \pi^+$	
seen	BASILE	81	SFM	$D^0 \rightarrow K^-\pi^+$	
$\Gamma(\rho D^0 K^-)/\Gamma(\rho D^0 \pi^-)$					Γ ₅ /Γ ₄
VALUE (units 10 ⁻²)	DOCUMENT ID		TECN	COMMENT	
$7.3 \pm 0.8 ^{+0.5}_{-0.6}$	AAIJ	14 H	LHCB	pp at 7 TeV	
$\Gamma(ho J/\psi \pi^-)/\Gamma(ho J/\psi K^-)$					Γ_6/Γ_7
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
$8.24 \pm 0.25 \pm 0.42$	AAIJ	14K	LHCB	<i>pp</i> at 7, 8 TeV	
$\Gamma(\rho J/\psi K^-)/\Gamma_{\text{total}}$					Γ ₇ /Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
$3.17 \pm 0.04 {+0.57 \atop -0.45}$	¹ AAIJ	16A	LHCB	<i>pp</i> at 7, 8 TeV	
¹ AAIJ 16A reported the measure where the first uncertainty is stated branching fraction of $B^0 \rightarrow J_A$ f_{Λ_b}/f_d . We combined in quadratic uncertainty. $\Gamma(P_c(4380)^+ K^-, P_c \rightarrow pJ/q)$	atistical, the seco $/\psi K^* (892)^0$, and ature second to for	nd is s	systemat fourth is	tic, the third is du due to the know	e to the ledge of
P_{c}^{+} is a pentaquark-charmon					
VALUE (units 10^{-5})	DOCUMENT ID		TECN	COMMENT	
$2.66 \pm 0.22 ^{+1.41}_{-1.38}$	¹ AAIJ			<i>pp</i> at 7, 8 TeV	
¹ AAIJ 16 total systematic include	es the uncertaint	ies on	$f(P_c^+)$ a	and B($\Lambda_b o pJ_f$	$/\psi K^-$).
$\Gamma(P_c(4450)^+ K^-, P_c \rightarrow pJ/q)$ P_c^+ is a pentaquark-charmon	,				٦٩/٢
VALUE (units 10^{-5})	DOCUMENT ID		TECN	COMMENT	
$1.30\pm0.16^{+0.42}_{-0.39}$				<i>pp</i> at 7, 8 TeV	
$^{ m 1}$ AAIJ 16 total systematic include	es the uncertaint	ies on	$f(P_c^+)$ a	and B($\Lambda_b o pJ/$	$/\psi K^-$).

 $\Gamma(\rho J/\psi(1S)\pi^+\pi^-K^-)/\Gamma(\rho J/\psi K^-)$ Γ_{10}/Γ_{7} ¹ AAIJ $0.2086 \pm 0.0096 \pm 0.0134$ 16Y LHCB pp at 7, 8 TeV ¹ Excludes $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$. $\Gamma(p\psi(2S)K^{-})/\Gamma(pJ/\psi K^{-})$ Γ_{11}/Γ_{7} $0.2070 \pm 0.0076 \pm 0.0059$ LHCB pp at 7, 8 TeV 1 AAIJ 16Y reports a measurement of $0.2070\pm0.0076\pm0.0046\pm0.0037$ where the third uncertainty is due to the knowledge of J/ψ and $\psi(2S)$ branching fractions. We have combined both systematic uncertainties in quadrature. $\Gamma(p\overline{K}^0\pi^-)/\Gamma_{\text{total}}$ Γ_{12}/Γ VALUE (units 10^{-5}) 14Q LHCB pp at 7 TeV $1.26 \pm 0.19 \pm 0.36$ ¹ Used the normalizing mode branching fraction value of B($B^0 \to K^0 \pi^+ \pi^-$) = (4.96 \pm $0.20) \times 10^{-5}$. $\Gamma(pK^0K^-)/\Gamma_{\text{total}}$ Γ_{13}/Γ TECN COMMENT 14Q LHCB pp at 7 TeV $\Gamma(\Lambda_c^+\pi^-)/\Gamma_{\text{total}}$ Γ_{14}/Γ *VALUE* (units 10^{-3}) **4.9** \pm **0.4 OUR FIT** Error includes scale factor of 1.2. **4.9** \pm **0.5 OUR AVERAGE** Error includes scale factor of 1.5. $4.57 {+0.31\atop -0.30} \pm 0.23$ ¹ AAIJ 14 LHCB pp at 7 TeV ² AAIJ $5.97 \pm 0.28 \pm 0.81$ 14Q LHCB pp at 7 TeV ³ ABULENCIA $8.8 \pm 2.8 \pm 1.5$ 07B CDF • • • We do not use the following data for averages, fits, limits, etc. • • • 96N DLPH $\Lambda_c^+ \rightarrow pK^-\pi^+$ 96L ALEP $\Lambda_c^+ \rightarrow pK^-\pi^+$, $p\overline{K}^0$, $\Lambda\pi^+\pi^+\pi^-$ **ABREU** seen 4 **BUSKULIC** seen 1 AAIJ 14I reports (4.30 \pm 0.03 $^{+0.12}_{-0.11}$ \pm 0.26 \pm 0.21) \times 10^{-3} from a measurement of $[\Gamma(\Lambda_b^0 \to \Lambda_c^+\pi^-)/\Gamma_{\text{total}}] \times [B(B^0 \to D^-\pi^+)]$ assuming $B(B^0 \to D^-\pi^+) = (2.68 \pm 0.13) \times 10^{-3}$, which we rescale to our best value $B(B^0 \to D^-\pi^+) = (2.52 \pm 0.13) \times 10^{-3}$ 10^{-3} . Our first error is their experiment's error and our second error is the systematic error from using our best value. Uses information on f_{barvon}/f_d from measurement in semileptonic decays by the same authors. ²Obtained using the branching fraction of $\Lambda_c^+ \to pK^-\pi^+$ decay. 3 The result is obtained from $(f_{
m baryon}/f_{
m d})$ $({\sf B}(\Lambda_b^0 o \Lambda_c^+\pi^-)/{\sf B}(\overline{B}{}^0 o D^+\pi^-))=$

³ The result is obtained from $(f_{\rm baryon}/f_{\rm d})$ $(B(\Lambda_b^0 \to \Lambda_c^+\pi^-)/B(\overline{B}^0 \to D^+\pi^-)) = 0.82 \pm 0.08 \pm 0.11 \pm 0.22$, assuming $f_{\rm baryon}/f_{\rm d} = 0.25 \pm 0.04$ and $B(\overline{B}^0 \to D^+\pi^-) = (2.68 \pm 0.13) \times 10^{-3}$.

```
\Gamma(\rho D^0 \pi^-)/\Gamma(\Lambda_c^+ \pi^-)
                                                                                                                \Gamma_4/\Gamma_{14}
0.132 \pm 0.007 \pm 0.007
   ^{1}\,\text{AAIJ 14H reports}\,\,[\Gamma(\varLambda_{b}^{0}\,\rightarrow\,\,p\,D^{0}\,\pi^{-})/\Gamma(\varLambda_{b}^{0}\,\rightarrow\,\,\varLambda_{c}^{+}\,\pi^{-})]\,\times\,[\mathrm{B}(D^{0}\,\rightarrow\,\,K^{-}\,\pi^{+})]\,\,/\,\,A^{-}\,(A^{-}\,\mu^{-})]
     [B(\Lambda_c^+ \to pK^-\pi^+)] = (8.06 \pm 0.23 \pm 0.35) \times 10^{-2} which we multiply or divide by
     our best values B(D^0 \to K^-\pi^+) = (3.89 ± 0.04) × 10<sup>-2</sup>, B(\Lambda_c^+ \to pK^-\pi^+) =
     (6.35\pm0.33)\times10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best values.
\Gamma(\Lambda_c^+ K^-)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{15}/\Gamma
VALUE (units 10^{-4})
3.59 \pm 0.30 OUR FIT Error includes scale factor of 1.2.
3.55 \pm 0.44 \pm 0.50
                                                                        14Q LHCB pp at 7 TeV
   <sup>1</sup>Obtained using the branching fraction of \Lambda_c^+ \to pK^-\pi^+ decay.
\Gamma(\Lambda_c^+ K^-)/\Gamma(\Lambda_c^+ \pi^-)
                                                                                                              \Gamma_{15}/\Gamma_{14}
VALUE (units 10^{-2})
                                                  DOCUMENT ID TECN COMMENT
7.31±0.22 OUR FIT
7.31 \pm 0.16 \pm 0.16
                                                  AAIJ
                                                                       14H LHCB pp at 7 TeV
\Gamma(\Lambda_c^+ a_1(1260)^-)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{16}/\Gamma
                                           DOCUMENT ID TECN COMMENT
                                                                96N DLPH \Lambda_c^+ \rightarrow p K^- \pi^+, a_1^- \rightarrow \rho^0 \pi^- \rightarrow \pi^+ \pi^- \pi^-
                                           ABREU
seen
\Gamma(\Lambda_c^+ D_s^-)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{18}/\Gamma
                                                  DOCUMENT ID TECN COMMENT
VALUE (units 10^{-2})
1.1 \pm 0.1
                                                                       14AA LHCB pp at 7 TeV
   ^1 Uses B(\overline{B}{}^0 \to D^+D_s^-) = (7.2 \pm 0.8) 	imes 10^{-3} and their measured B(\Lambda_b^0 \to D^+D_s^-)
     \Lambda_c^+\pi^-))/B(\overline{B}^0 \to D^+\pi^-) values.
\Gamma(\Lambda_c^+\,D^-)/\Gamma(\Lambda_c^+\,D_s^-)
                                                                                                              \Gamma_{17}/\Gamma_{18}
                                                  DOCUMENT ID
                                                                          TECN COMMENT
0.042 \pm 0.003 \pm 0.003
                                                                        14AA LHCB pp at 7 TeV
\Gamma(\Lambda_c^+\pi^+\pi^-\pi^-)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{19}/\Gamma
VALUE (units 10<sup>-3</sup>)
                                                  DOCUMENT ID
                                                                               TECN COMMENT
 7.7\pm1.1 OUR FIT Error includes scale factor of 1.1.
14.9^{+3.8}_{-3.2}\pm1.2
                                                <sup>1</sup> AALTONEN
                                                                     12A CDF p\overline{p} at 1.96 TeV
• • • We do not use the following data for averages, fits, limits, etc. •
                                                                       91 SFM \Lambda_c^+ \rightarrow pK^-\pi^+
                                                  BARI
   <sup>1</sup> AALTONEN 12A reports [\Gamma(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)/\Gamma_{\mathsf{total}}] / [B(\Lambda_b^0 \to \Lambda_c^+ \pi^-)] =
     3.04\pm0.33^{+0.70}_{-0.55} which we multiply by our best value B(\Lambda_b^0\to\Lambda_c^+\pi^-) = (4.9 \pm
     0.4) 	imes 10^{-3}. Our first error is their experiment's error and our second error is the
     systematic error from using our best value.
HTTP://PDG.LBL.GOV
                                                       Page 9
                                                                                 Created: 5/30/2017 17:22
```

$\Gamma(\Lambda_c^+\pi^+\pi^-\pi^-)/\Gamma(\Lambda_c^+\pi^-)$	<u>DOCUMENT ID</u>		TECN	COMMENT	Γ_{19}/Γ_{14}
1.56±0.21 OUR FIT 1.43±0.16±0.13	AAIJ			pp at 7 TeV	
$\Gamma(\Lambda_c(2595)^+\pi^-$, $\Lambda_c(2595)^+$	$\rightarrow \Lambda_c^+ \pi^+ \pi^-)$	/Γ(Λ	$_{c}^{+}\pi^{+}\pi$	$^-\pi^-)$	Γ_{20}/Γ_{19}
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
$4.4\pm1.7^{+0.6}_{-0.4}$	AAIJ				
$\Gamma(\Lambda_c(2625)^+\pi^-$, $\Lambda_c(2625)^+$	$\rightarrow \Lambda_c^+ \pi^+ \pi^-)$	/Γ(Λ	$_{c}^{+}\pi^{+}\pi^{-}$	$^-\pi^-)$	Γ_{21}/Γ_{19}
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
4.3±1.5±0.4				pp at 7 TeV	
$\Gamma(\Sigma_c(2455)^0\pi^+\pi^-$, $\Sigma_c^0 ightarrow \Lambda$	$(\Lambda_c^+\pi^-)/\Gamma(\Lambda_c^+\pi^-)$.+ _π -	π^-		Γ_{22}/Γ_{19}
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
7.4±2.4±1.2				pp at 7 TeV	
$\Gamma(\Sigma_c(2455)^{++}\pi^-\pi^-,\Sigma_c^{++})$	$\rightarrow \Lambda_c^+ \pi^+)/\Gamma(\Lambda_c^+)$	$\Lambda_c^+\pi^{\scriptscriptstyle{\dagger}}$	$+\pi^{-}\pi^{-}$	-)	Γ_{23}/Γ_{19}
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
4.2±1.8±0.7	AAIJ	11E	LHCB	pp at 7 TeV	
$\Gamma(\Lambda K^0 2\pi^+ 2\pi^-)/\Gamma_{ m total}$					Γ ₂₄ /Γ
	DOCUMENT ID				
• • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
seen 4	¹ ARENTON	86	FMPS	$\Lambda K_{S}^{0} 2\pi^{+} 2\pi^{-}$	_
$^{ m 1}$ See the footnote to the AREN $^{ m 1}$	TON 86 mass val	ue.			

See the footnote to the ARENTON 86 mass value.

 $\Gamma(\Lambda_c^+\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$ I 25/I The values and averages in this section serve only to show what values result if one assumes our B($b \rightarrow b$ -baryon). They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $B(b \rightarrow b\text{-baryon})$ as described in the note on "Production and Decay of b-Flavored Hadrons."

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.104 ± 0.022 OUR AVE	RAGE				
$0.098\!\pm\!0.018\!\pm\!0.013$		$^{ m 1}$ BARATE	98 D	ALEP	$e^+e^- ightarrow Z$
$0.13 \ ^{+0.05}_{-0.04} \ \pm 0.02$	29	² ABREU	95 S	DLPH	$e^+e^- \rightarrow Z$
• • • We do not use th	e following	g data for averages	s, fits,	limits, e	etc. • • •
$0.086 \pm 0.021 \pm 0.012$	55				Repl. by BARATE 98D
$0.17\ \pm0.06\ \pm0.02$	21	⁴ BUSKULIC	92E	ALEP	$\Lambda_c^+ \rightarrow pK^-\pi^+$
$0.0086 \pm 0.0007 \pm (8.8 \pm 1.2) \times 10^{-2}$ the systematic error 2 ABREU 95S reports	0.0014 w . Our firs from usin $\Gamma(\Lambda_b^0 -$	hich we divide by t error is their expg our best value. In $\Lambda_C^+ \ell^- \overline{\nu}_\ell$ anyth	our l perime Measu ing)/Γ	pest valont's erro red usin total] >	\times [B($\overline{b} \rightarrow b\text{-baryon}$)] = ue B($\overline{b} \rightarrow b\text{-baryon}$) = or and our second error is g $\Lambda_c \ell^-$ and $\Lambda \ell^+ \ell^-$. \times [B($\overline{b} \rightarrow b\text{-baryon}$)] = $\overline{b} \rightarrow b\text{-baryon}$) = (8.8 \pm

 $1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 3 BUSKULIC 95L reports $[\Gamma(\Lambda_b^0\to\Lambda_c^+\ell^-\overline{\nu}_\ell\,{\rm anything})/\Gamma_{\rm total}]\times [{\rm B}(\overline{b}\to b{\rm -baryon})]$ $=0.00755\pm0.0014\pm0.0012$ which we divide by our best value ${\rm B}(\overline{b}\to b{\rm -baryon})=(8.8\pm1.2)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ BUSKULIC 92E reports $[\Gamma(\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell \, \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = 0.015 \pm 0.0035 \pm 0.0045$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.8 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$$\Gamma(\Lambda_c^+\ell^-\overline{\nu}_\ell)/\Gamma(\Lambda_c^+\pi^-)$$
 $VALUE$
 $DOCUMENT ID$
 $TECN$
 $COMMENT$
 $TECN$
 $TECN$

$$\frac{\Gamma(\Lambda_{c}^{+}\pi^{+}\pi^{-}\ell^{-}\overline{\nu}_{\ell})/\Gamma_{\text{total}}}{\frac{DOCUMENT\ ID}{1}} \underbrace{\frac{DOCUMENT\ ID}{TECN}}_{1} \underbrace{\frac{COMMENT}{COMMENT}}_{1} \underbrace{\frac{COMMENT}{COMMENT}}_{27}/\Gamma_{27$$

 1 Derived from the fraction of $\Gamma(\Lambda_{b}^{0}\to\Lambda_{c}^{+}\ell^{-}\overline{\nu}_{\ell})$ / ($\Gamma(\Lambda_{b}^{0}\to\Lambda_{c}^{+}\ell^{-}\overline{\nu}_{\ell})+\Gamma(\Lambda_{b}^{0}\to\Lambda_{c}^{+}\pi^{+}\pi^{-}\ell^{-}\overline{\nu}_{\ell})$) = $0.47^{+0.10}_{-0.08}^{+0.07}_{-0.06}$.

$$\frac{\Gamma(\Lambda_c^+\ell^-\overline{\nu}_\ell)/\left[\Gamma(\Lambda_c^+\ell^-\overline{\nu}_\ell)+\Gamma(\Lambda_c^+\pi^+\pi^-\ell^-\overline{\nu}_\ell)\right]}{\frac{DOCUMENT\ ID}{DOCUMENT\ ID}} \frac{\Gamma_{26}/(\Gamma_{26}+\Gamma_{27})}{\frac{COMMENT}{26}}$$

$$0.47^{+0.10}_{-0.08} + 0.06$$
ABDALLAH 04A DLPH $e^+e^- \rightarrow Z^0$

 $^{^1}$ Derived from a combined likelihood and event rate fit to the distribution of the Isgur-Wise variable and using HQET. The slope of the form factor is measured to be $\rho^2=2.03\pm0.46^{+0.72}_{-1.00}$.

```
\left[\frac{1}{2}\Gamma(\Sigma_{c}(2455)^{0}\pi^{+}\ell^{-}\overline{\nu}_{\ell}) + \frac{1}{2}\Gamma(\Sigma_{c}(2455)^{++}\pi^{-}\ell^{-}\overline{\nu}_{\ell})\right]/\Gamma(\Lambda_{c}^{+}\ell^{-}\overline{\nu}_{\ell})
                                                                                                                                                                                                   (ᡱ┌<sub>30</sub>┼ᡱ┌<sub>31</sub>)/┌<sub>26</sub>
                                                                                                         DOCUMENT ID
                                                                                                                                                                    TECN
0.054 \pm 0.022 ^{+0.021}_{-0.018}
                                                                                                         AALTONEN
                                                                                                                                                    09E CDF
                                                                                                                                                                                          p\overline{p} at 1.96 TeV
\Gamma(ph^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                          \Gamma_{32}/\Gamma
                                                                                                                                                    050 CDF
       <sup>1</sup> Assumes f_A / f_d = 0.25, and equal momentum distribution for \Lambda_b and B mesons.
\Gamma(p\pi^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                          \Gamma_{33}/\Gamma
VALUE (units 10^{-6})
          4.3±0.8 OUR FIT
                                                                                                   <sup>1</sup> AALTONEN
           3.8 \pm 0.8 \pm 0.5
                                                                                                                                                    09c CDF
                                                                                                                                                                                          p\overline{p} at 1.96 TeV

    • • We do not use the following data for averages, fits, limits, etc.

                                                                                                   <sup>2</sup> BUSKULIC
                                                                                                                                                    96V ALEP e^+e^- \rightarrow Z
 < 50
      ^{1}\text{AALTONEN 09C reports } [\Gamma(\varLambda_{b}^{0} \to \ p\pi^{-})/\Gamma_{\mathsf{total}}] \ / \ [\mathsf{B}(B^{0} \to \ K^{+}\pi^{-})] \ \times \ [\mathsf{B}(\overline{b} \to A^{-})] \ / \ [\mathsf{B}(B^{0} \to B^{-})] \ / \ [\mathsf{B
           b-baryon)] / [B(\overline{b} \rightarrow B^0)] = 0.042 \pm 0.007 \pm 0.006 which we multiply or divide
          by our best values B(B^0 \to K^+\pi^-) = (1.96 \pm 0.05) \times 10<sup>-5</sup>, B(\overline{b} \to b-baryon) = (8.8 \pm 1.2) \times 10<sup>-2</sup>, B(\overline{b} \to B^0) = (40.4 \pm 0.6) \times 10<sup>-2</sup>. Our first error is their experiment's error and our second error is the systematic error from using our best values.
       <sup>2</sup>BUSKULIC 96V assumes PDG 96 production fractions for B^0, B^+, B_s, b baryons.
\Gamma(pK^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                          \Gamma_{34}/\Gamma
VALUE (units 10^{-6})
                                                                                                                                                             TECN COMMENT
              5.1 ± 0.9 OUR FIT
                                                                                                   <sup>1</sup> AALTONEN
             5.9 \pm 1.1 \pm 0.8
                                                                                                                                                    09c CDF
• • • We do not use the following data for averages, fits, limits, etc. •
                                                                                                   <sup>2</sup> ADAM
                                                                                                                                                    96D DLPH e^+e^- \rightarrow Z
                                                                        90
                                                                        90
                                                                                                   <sup>3</sup> BUSKULIC
                                                                                                                                                    96V ALEP e^+e^- \rightarrow Z
 < 50
      ^1 AALTONEN 09C reports [Γ(\varLambda_b^0 \to pK^-)/Γ_{
m total}] / [B(B^0 \to K^+\pi^-)] 	imes [B(\overline{b} \to K^+\pi^-)] 	imes [B(\overline{b} \to K^+\pi^-)] × [B(\overline{b} \to K^+\pi^-)]
           b-baryon)] / [B(\overline{b} \rightarrow B^0)] = 0.066 \pm 0.009 \pm 0.008 which we multiply or divide
           by our best values B(B^0 \to K^+\pi^-) = (1.96 \pm 0.05) \times 10<sup>-5</sup>, B(\overline{b} \to b-baryon)
           = (8.8 \pm 1.2) \times 10^{-2}, B(\overline{b} \rightarrow B^0) = (40.4 \pm 0.6) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best values.
      ^2\,\mathrm{ADAM} 96D assumes f_{B^0}=f_{B^-}=0.39 and f_{B_\mathrm{S}}=0.12.
       <sup>3</sup>BUSKULIC 96V assumes PDG 96 production fractions for B^0, B^+, B_s, b baryons.
\Gamma(p\pi^-)/\Gamma(pK^-)
                                                                                                                                                                                                                                   \Gamma_{33}/\Gamma_{34}
                                                                                                                                                                   TECN COMMENT
0.84 ± 0.09 OUR FIT
0.86 \pm 0.08 \pm 0.05
                                                                                                        AAIJ
                                                                                                                                                    12AR LHCB pp at 7 TeV
\Gamma(pD_{\epsilon}^{-})/\Gamma_{\text{total}}
                                                                                                                                                                                                                                          \Gamma_{35}/\Gamma
                                                                         CL%
                                                                                                        DOCUMENT ID
                                                                                                                                                                   TECN COMMENT
  <4.8 \times 10^{-4}
                                                                        90
                                                                                                        AAIJ
                                                                                                                                                    14Q LHCB pp at 7 TeV
HTTP://PDG.LBL.GOV
                                                                                                                Page 12
                                                                                                                                                                      Created: 5/30/2017 17:22
```

 $\Gamma(p\mu^-\overline{\nu}_{\mu})/\Gamma_{\text{total}}$ VALUE (units 10⁻⁴)

1 AAIJ

1 AAIJ

1 SBG LHCB

1 p p at 8 TeV

 1 The ratio of B($\Lambda_b^0 \to p \, \mu^- \overline{\nu}_\mu$) to B($\Lambda_b^0 \to \Lambda_c^+ \, \mu^- \overline{\nu}_\mu$) is measured within a restricted q^2 region. Combined with theoretical calculations of the form factors and the previously measured value of $|V_{cb}|$, the first $|V_{ub}|=(3.27\pm0.15\pm0.16\pm0.06)\times10^{-3}$ measurement from the Λ_b decay is obtained, consistent with the exclusively measured world averages.

$\Gamma(\rho\mu^{-}\overline{\nu}_{\mu})/\Gamma(\Lambda_{c}^{+}\ell^{-}\overline{\nu}_{\ell})$

 Γ_{36}/Γ_{26}

VALUE (units 10⁻²) DOCUMENT ID TECN COMMENT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $1.0 \pm 0.04 \pm 0.08$ 15BG LHCB pp at 8 TeV

 1 This measurement is a ratio of $\Gamma(\Lambda_b^0\to p\mu^-\overline{\nu}_\mu)[{\bf q}^2>15~{\rm GeV/c^2}]$ to $\Gamma(\Lambda_b^0\to \Lambda_c^+\mu^-\overline{\nu}_\mu)[{\bf q}^2>7~{\rm GeV/c^2}]$ within a restricted ${\bf q}^2$ region. Combined with theoretical calculations of the form factors and the previously measured value of $|V_{cb}|$, the first $|V_{ub}|=(3.27\pm0.15\pm0.16\pm0.06)\times10^{-3}$ measurement from the Λ_b decay is obtained, consistent with the exclusively measured world averages.

$\Gamma(\Lambda\mu^+\mu^-)/\Gamma_{\text{total}}$

 Γ_{37}/Γ

VALUE (units 10^{-7})DOCUMENT IDTECNCOMMENT 10.8 ± 2.8 OUR AVERAGE $9.6 \pm 1.6 \pm 2.5$ 1 AAIJ13AJ LHCBpp at 7 TeV $17.3 \pm 4.2 \pm 5.5$ AALTONEN11AI CDF $p\overline{p}$ at 1.96 TeV

¹ Uses B($\Lambda_b^0 \to J/\psi \Lambda$) = (6.2 \pm 1.4) \times 10⁻⁴. This measurement comes from the sum of the differential rates in q² regions excluding those corresponding to J/ψ and $\psi(2S)$ ([8.68,10.09] and [12.86, 14.18] GeV²/c⁴).

 $\Gamma(\Lambda^0 \eta)/\Gamma_{\text{total}}$ Γ_{39}/Γ

VALUE (units 10⁻⁶)

DOCUMENT ID

TECN
COMMENT

 $9^{+7}_{-5}\pm 1$ 15AH LHCB pp at 7, 8 TeV

 1 AAIJ 15AH reports $[\Gamma(\Lambda_b^0\to\Lambda^0\eta)/\Gamma_{total}]$ / $[B(B^0\to\eta'K^0)]=0.142^{+0.11}_{-0.08}$ which we multiply by our best value $B(B^0\to\eta'K^0)=(6.6\pm0.4)\times10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The single uncertainty quoted with the original measurement combines in quadrature statistical and systematic uncertainties.

$\Gamma(\Lambda^0 \eta'(958))/\Gamma_{\text{total}}$

 Γ_{40}/Γ

Created: 5/30/2017 17:22

 $\frac{\text{VALUE}}{\text{<3.1 \times 10^{-6}}}$ $\frac{\text{CL\%}}{\text{90}}$ $\frac{\text{DOCUMENT ID}}{\text{15AH LHCB}}$ $\frac{\text{COMMENT}}{\text{pp at 7, 8 TeV}}$

HTTP://PDG.LBL.GOV

Page 13

 $^{^1}$ AAIJ 15AH reports $[\Gamma(\Lambda_b^0\to \Lambda^0\,\eta'(958))/\Gamma_{total}]~/~[B(B^0\to \eta'\,\kappa^0)]<~0.047$ which we multiply by our best value B(B^0 $\to~\eta'\,\kappa^0)=6.6\times 10^{-5}$.

 $\Gamma(\Lambda\pi^{+}\pi^{-})/\Gamma(\Lambda_{c}^{+}\pi^{-})$

 Γ_{41}/Γ_{14}

VALUE (units 10⁻⁴

 $9 \pm 4 \pm 1$

 $^{1}\,\text{AAIJ 16W reports}\,\, [\Gamma(\varLambda_{b}^{0}\,\rightarrow\,\,\, \varLambda\pi^{+}\,\pi^{-})/\Gamma(\varLambda_{b}^{0}\,\rightarrow\,\,\, \varLambda_{c}^{+}\,\pi^{-})]\,\,/\,\, [\text{B}(\varLambda_{c}^{+}\,\rightarrow\,\,\, \varLambda\pi^{+})]\,=\,$ $(7.3 \pm 1.9 \pm 2.2) imes 10^{-2}$ which we multiply by our best value B($\Lambda_{C}^{+}
ightarrow \Lambda \pi^{+}) =$ $(1.30\pm0.07)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\Lambda K^+\pi^-)/\Gamma(\Lambda_s^+\pi^-)$

 Γ_{42}/Γ_{14}

VALUE (units 10^{-4}) $11.5 \pm 2.3 \pm 0.6$

 $1 \frac{\textit{DOCUMENT ID}}{\textit{AAIJ}}$ 16 W LHCB pp at 7, 8 TeV

 $^{1}\,\text{AAIJ 16W reports}\,\,[\Gamma\big(\varLambda_{b}^{0}\,\rightarrow\,\,\,\varLambda\,K^{+}\,\pi^{-}\big)/\Gamma\big(\varLambda_{b}^{0}\,\rightarrow\,\,\,\varLambda_{c}^{+}\,\pi^{-}\big)]\,\,/\,\,[\mathrm{B}(\varLambda_{c}^{+}\,\rightarrow\,\,\,\varLambda\,\pi^{+})]\,=$ (8.9 \pm 1.2 \pm 1.3) imes 10 $^{-2}$ which we multiply by our best value B(Λ_C^+ \to $\Lambda\pi^+$) = $(1.30\pm0.07)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Lambda K^+ K^-)/\Gamma(\Lambda_s^+ \pi^-)$

 Γ_{43}/Γ_{14}

VALUE (units 10^{-3})

 $3.28 \pm 0.35 \pm 0.18$

 $^{1}\text{AAIJ 16W reports } [\Gamma(\varLambda_{b}^{0} \rightarrow ~\varLambda\, K^{+}\, K^{-})/\Gamma(\varLambda_{b}^{0} \rightarrow ~\varLambda_{c}^{+}\, \pi^{-})]~/~[\mathrm{B}(\varLambda_{c}^{+} \rightarrow ~\varLambda\, \pi^{+})]~=~$ $(25.3\pm1.9\pm1.9) imes10^{-2}$ which we multiply by our best value B($\Lambda_c^+ o \Lambda\pi^+$) = $(1.30 \pm 0.07) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\Lambda^0 \phi)/\Gamma_{\text{total}}$

 Γ_{44}/Γ

VALUE (units 10^{-6}) $2.0\pm0.5\pm0.2$

16J LHCB pp at 7, 8 TeV

 1 AAIJ 16J reports $[\Gamma \left(\varLambda_b^0
ightarrow ~ \varLambda^0 \, \phi
ight) / \Gamma_{ ext{total}}] \, / \, [\mathrm{B}(B^0
ightarrow ~ \kappa^0 \, \phi)] = 0.275 \pm 0.055 \pm 0.032$ which we multiply by our best value B($B^0 \to K^0 \phi$) = $(7.3 \pm 0.7) \times 10^{-6}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

PARTIAL BRANCHING FRACTIONS IN $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

$B(\Lambda_b \to \Lambda \mu^+ \mu^-) (q^2 < 2.0 \text{ GeV}^2/c^4)$

VALUE (units 10^{-7})

0.71±0.27 OUR AVERAGE

 $0.72^{\,+\,0.24}_{\,-\,0.22}\,{\pm}\,0.14$

¹ AAIJ

15AE LHCB pp at 7, 8 TeV

 $0.15 \pm 2.01 \pm 0.05$

AALTONEN

11AI CDF $p\overline{p}$ at 1.96 TeV

• • We do not use the following data for averages, fits, limits, etc.

 $0.56 \pm 0.76 \pm 0.80$

 2 AAII

13AJ LHCB Repl. by AAIJ 15AE

Created: 5/30/2017 17:22

 $^1\,\text{AAIJ}$ 15AE measurement covers $0.1 < \text{q}^2 \ < 2.0 \text{ GeV}^2/\text{c}^4.$

² Uses B($\Lambda_h^0 \to J/\psi \Lambda$) = (6.2 ± 1.4) × 10⁻⁴.

```
B(\Lambda_b \to \Lambda \mu^+ \mu^-) (2.0 < q<sup>2</sup> < 4.3 GeV<sup>2</sup>/c<sup>4</sup>)
VALUE (units 10^{-7}
                                                                        TECN
                 OUR AVERAGE
0.253^{\,+\,0.276}_{\,-\,0.207}\,{\pm}\,0.046
                                            <sup>1</sup> AAIJ
                                                                 15AE LHCB pp at 7, 8 TeV
                                                                 11AI CDF
1.8 \pm 1.7 \pm 0.6
                                              AALTONEN
                                                                                  p\overline{p} at 1.96 TeV

    • • We do not use the following data for averages, fits, limits, etc.

                                           <sup>2</sup> AAIJ
                                                                 13AJ LHCB Repl. by AAIJ 15AE
0.71 \pm 0.60 \pm 0.23
   ^{1}_{2}\,\text{AAIJ}\,\,15\text{AE}\, measurement covers 2.0 < \text{q}^{2}\,\, < 4.0\,\,\text{GeV}^{2}/\text{c}^{4}.
   <sup>2</sup> Uses B(\Lambda_h^0 \to J/\psi \Lambda) = (6.2 ± 1.4) × 10<sup>-4</sup>.
B(\Lambda_b \to \Lambda \mu^+ \mu^-) (q^2 < 4.3 \text{ GeV}^2/c^4)
VALUE (units 10^{-7})
                                              DOCUMENT ID TECN COMMENT
2.7\pm2.5\pm0.9
                                                               11ai CDF
B(\Lambda_b \to \Lambda \mu^+ \mu^-) (4.0 < q<sup>2</sup> < 6.0 GeV<sup>2</sup>/c<sup>4</sup>)
                                              DOCUMENT ID TECN COMMENT
0.04^{+0.18}_{-0.00}\pm0.02
                                              AAIJ
                                                                 15AE LHCB pp at 7, 8 TeV
B(\Lambda_b \to \Lambda \mu^+ \mu^-) (1.0 < q<sup>2</sup> < 6.0 GeV<sup>2</sup>/c<sup>4</sup>)
VALUE (units 10^{-7})
                                              DOCUMENT ID TECN COMMENT
0.47^{+0.31}_{-0.27} OUR AVERAGE
0.45^{\,+\,0.30}_{\,-\,0.25}\,{\pm}\,0.10
                                            <sup>1</sup> AAIJ
                                                                 15AE LHCB pp at 7 and 8 TeV
1.3 \pm 2.1 \pm 0.4
                                              AALTONEN
                                                               11AI CDF
                                                                                  p\overline{p} at 1.96 TeV
   ^{1} AAIJ 15AE measurement covers 1.1 < q^{2} < 6.0 \text{ GeV}^{2}/c^{4}.
B(\Lambda_b \to \Lambda \mu^+ \mu^-) (6.0 < q^2 < 8.0 GeV<sup>2</sup>/c<sup>4</sup>)
                                              DOCUMENT ID _____ TECN COMMENT
VALUE (units 10^{-7})
0.50^{+0.24}_{-0.22}\pm0.10
                                              AAIJ
                                                                 15AE LHCB pp at 7, 8 TeV
B(\Lambda_b \to \Lambda \mu^+ \mu^-) (4.3 < q<sup>2</sup> < 8.68 GeV<sup>2</sup>/c<sup>4</sup>)
VALUE (units 10^{-7})
                                              DOCUMENT ID TECN COMMENT
  0.5 ±0.7 OUR AVERAGE
                                            <sup>1</sup> AAIJ
                                                                 13AJ LHCB pp at 7 TeV
  0.66 \pm 0.74 \pm 0.18
-0.2 \pm 1.6 \pm 0.1
                                              AALTONEN
                                                                 11AI CDF p\overline{p} at 1.96 TeV
   <sup>1</sup> Uses B(\Lambda_b^0 \to J/\psi \Lambda) = (6.2 ± 1.4) × 10<sup>-4</sup>.
B(\Lambda_b \to \Lambda \mu^+ \mu^-) (10.09 < q<sup>2</sup> < 12.86 GeV<sup>2</sup>/c<sup>4</sup>)
\underline{VALUE} (units 10^{-7})
                                              DOCUMENT ID
                                                                  TECN
2.2 ±0.6 OUR AVERAGE
2.08^{+0.42}_{-0.39}\pm0.42
                                            <sup>1</sup> AAIJ
                                                                 15AE LHCB pp at 7, 8 TeV
3.0 \pm 1.5 \pm 1.0
                                              AALTONEN
                                                                 11ai CDF
                                                                                  p\overline{p} at 1.96 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           <sup>2</sup> AAIJ
                                                                 13AJ LHCB Repl. by AAIJ 15AE
1.55 \!\pm\! 0.58 \!\pm\! 0.55
HTTP://PDG.LBL.GOV
                                                 Page 15
                                                                         Created: 5/30/2017 17:22
```

 $^1\,\text{AAIJ}$ 15AE measurement covers 11.0 < q 2 $\,<$ 12.5 $\text{GeV}^2/\text{c}^4.$ ² Uses B($\Lambda_b^0 \to J/\psi \Lambda$) = (6.2 ± 1.4) × 10⁻⁴.

$B(\Lambda_b \to \Lambda \mu^+ \mu^-)$ (14.18 < q² < 16.0 GeV²/c⁴)

 $2.04^{+0.35}_{-0.33}\pm0.42$

¹ AAIJ

15AE LHCB pp at 7, 8 TeV

 $1.0 \pm 0.7 \pm 0.3$

AALTONEN

 $p\overline{p}$ at 1.96 TeV 11ai CDF

• • We do not use the following data for averages, fits, limits, etc.

 $1.44 \pm 0.44 \pm 0.42$

 2 AALL

13AJ LHCB Repl. by AAIJ 15AE

 1 AAIJ 15AE measurement covers $15.0 < q^{2} < 16.0 \text{ GeV}^{2}/c^{4}$.

² Uses B($\Lambda_h^0 \to J/\psi \Lambda$) = (6.2 ± 1.4) × 10⁻⁴.

$B(\Lambda_h \to \Lambda \mu^+ \mu^-) (16.0 < q^2 \text{ GeV}^2/c^4)$

VALUE (units 10⁻⁷)

DOCUMENT ID

 $7.0 \pm 1.9 \pm 2.2$

AALTONEN

11AI CDF

• • We do not use the following data for averages, fits, limits, etc.

 $4.73 \pm 0.77 \pm 1.25$

1,2 AAIJ

13AJ LHCB Repl. by AAIJ 15AE

 ${}^{1}\, \text{Uses B}(\varLambda_{b}^{0} \to \ J/\psi \varLambda) = (6.2 \pm 1.4) \times 10^{-4}.$ Requires $16.00 < q^{2} < 20.30 \ \text{GeV}^{2}/\text{c}^{4}.$

$B(\Lambda_b \to \Lambda \mu^+ \mu^-)$ (18.0 < q² < 20.0 GeV²/c⁴)

VALUE (units 10^{-7})

DOCUMENT ID TECN COMMENT

 $2.44 \pm 0.28 \pm 0.50$

AAIJ

15AE LHCB pp at 7, 8 TeV

$B(\Lambda_b \to \Lambda \mu^+ \mu^-)$ (15.0 < q² < 20.0 GeV²/c⁴)

VALUE (units 10^{-7})

DOCUMENT ID

TECN COMMENT

 $6.00 \pm 0.45 \pm 1.25$

AAIJ

15AE LHCB pp at 7, 8 TeV

CP VIOLATION

 A_{CP} is defined as

$$A_{CP} = \frac{B(\Lambda_b^0 \to f) - B(\overline{\Lambda}_b^0 \to \overline{f})}{B(\Lambda_b^0 \to f) + B(\overline{\Lambda}_b^0 \to \overline{f})},$$

the *CP*-violation asymmetry of exclusive Λ_h^0 and $\overline{\Lambda}_h^0$ decay.

$A_{CP}(\Lambda_b \rightarrow p\pi^-)$

 $0.06\pm0.07\pm0.03$

AALTONEN

14P CDF

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.03 \pm 0.17 \pm 0.05$

AALTONEN

11N CDF

Repl. by AALTONEN 14P

$A_{CP}(\Lambda_b \rightarrow pK^-)$

ALUE <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

=0.10±0.08±0.04 AALTONEN 14P CDF $p\bar{p}$ at 1.96 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.37 \pm 0.17 \pm 0.03$

AALTONEN 11N CDF Repl. by AALTONEN 14P

$A_{CP}(\Lambda_b \to \rho \overline{K}{}^0 \pi^-)$

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **0.22±0.13±0.03** AAIJ 14Q LHCB *pp* at 7 TeV

$\Delta A_{CP}(J/\psi p \pi^-/K^-) \equiv A_{CP}(J/\psi p \pi^-) - A_{CP}(J/\psi p K^-)$

 $VALUE \text{ (units } 10^{-2}\text{)}$ DOCUMENT ID TECN COMMENT

5.7±2.4±1.2

AAIJ 14K LHCB pp at 7, 8 TeV

$A_{CP}(\Lambda_b \rightarrow \Lambda K^+ \pi^-)$

$A_{CP}(\Lambda_b \rightarrow \Lambda K^+ K^-)$

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 −0.28±0.10±0.07
 1 AAIJ
 16W LHCB
 pp at 7, 8 TeV

CP AND T VIOLATION PARAMETERS

Measured values of the triple-product asymmetry parameters, odd under time-reversal, are defined as $A_{c(s)}(\Lambda/\phi) = (N_{c(s)}^+ - N_{c(s)}^-) / (\text{sum})$ where $N_{c(s)}^+$, $N_{c(s)}^-$ are the number of Λ or ϕ candidates for which the $\cos(\Phi)$ and $\sin(\Phi)$ observables are positive and negative, respectively. Angles $\cos(\Phi)$ and $\sin(\Phi)$ are defined as in LEITNER 07.

$A_c(\Lambda)$

VALUE

VALUE	<u>DOCUMENT ID</u>		IECN	COMMENT	
$-0.22\pm0.12\pm0.06$	AAIJ	16 J	LHCB	<i>pp</i> at 7, 8 TeV	
$A_s(\Lambda)$					
VALUE	DOCUMENT ID)	TECN	COMMENT	
$0.13 \pm 0.12 \pm 0.05$	AAIJ	16 J	LHCB	<i>pp</i> at 7, 8 TeV	
$A_c(\phi)$					
VALUE	DOCUMENT ID)	TECN	COMMENT	
$-0.01\pm0.12\pm0.03$	AAIJ	16 J	LHCB	<i>pp</i> at 7, 8 TeV	
$A_s(\phi)$					

TECN COMMENT

16J LHCB pp at 7, 8 TeV

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

 $-0.07\pm0.12\pm0.01$

AAIJ

¹ Measured relative to $\Lambda_h^0 \to \Lambda_c^+ \pi^-$ decay.

¹ Measured relative to $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$ decay.

$a_P(\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-)$

Observable calculated as average of the triple products for Λ_b^0 and $\overline{\Lambda}_b^0$, which is sensitive to parity violation.

VALUE (%)	DOCUMENT ID		TECN	COMMENT
$-3.71\pm1.45\pm0.32$	¹ AAIJ	17 H	LHCB	pp at 7, 8 TeV

¹ Measured over full phase space of the decay.

$a_P(\Lambda_b^0 \rightarrow \rho K^- K^+ \pi^-)$

Observable calculated as average of the triple products for Λ_b^0 and $\overline{\Lambda}_b^0$, which is sensitive to parity violation.

VALUE (%)	DOCUMENT ID		TECN	COMMENT
$3.62 \pm 4.54 \pm 0.42$	¹ AAIJ	17H	LHCB	<i>pp</i> at 7, 8 TeV

¹ Measured over full phase space of the decay.

$a_{CP}(\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-)$

Observable calculated as half of the difference between triple products for Λ_b^0 and $\overline{\Lambda}_b^0$, which is sensitive to CP violation.

VALUE (%)	DOCUMENT ID		TECN	COMMENT
1.15±1.45±0.32	¹ AAIJ	17H	LHCB	pp at 7, 8 TeV

¹ Measured over full phase space of the decay.

$a_{CP}(\Lambda_b^0 \rightarrow pK^-K^+\pi^-)$

Observable calculated as half of the difference between triple products for Λ_b^0 and $\overline{\Lambda}_b^0$, which is sensitive to CP violation.

VALUE (%)			TECN	COMMENT	
$-0.93\pm4.54\pm0.42$	¹ AAIJ	17H	LHCB	<i>pp</i> at 7, 8 TeV	
1.4	6.1				

¹ Measured over full phase space of the decay.

10 DECAY PARAMETERS

See the note on "Baryon Decay Parameters" in the neutron Listings.

α decay parameter for $\Lambda_b \rightarrow J/\psi \Lambda$

<i>j</i> . <i>D</i>	, ,				
VALUE	DOCUMENT ID		TECN	COMMENT	
0.18±0.13 OUR AVERAGE	·				
$0.30 \pm 0.16 \pm 0.06$	¹ AAD	14L	ATLS	pp at 7 TeV	
$0.05 \pm 0.17 \pm 0.07$	² AAIJ	13 AG	LHCB	pp at 7 TeV	

 $^{^1}$ An angular analysis of $\Lambda_b\to J/\psi\Lambda$ decay is performed and magnitudes of all helicity amplitudes are also reported.

${\sf A}_{FB}^\ell(\mu\mu) \ {\sf in} \ {\it \Lambda}_b ightarrow \ {\it \Lambda}\mu^+\mu^-$

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 −0.05±0.09±0.03
 1 AAIJ
 15AE LHCB
 pp at 7, 8 TeV

 $^{^2}$ An angular analysis of $\Lambda_b \to J/\psi \Lambda$ decay is performed and a Λ_b transverse production polarization of 0.06 \pm 0.07 \pm 0.02 is also reported.

 $^{^1\,\}text{AAIJ}$ 15AE measurement covers 15.0 $<\text{q}^2~<20.0~\text{GeV}^2/\text{c}^4.$

$A_{FB}^h(\rho\pi)$ in $\Lambda_b \to \Lambda(\rho\pi)\mu^+\mu^-$

<u>VALUE</u>
<u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **—0.29±0.07±0.03**1 AAIJ
15AE LHCB pp at 7, 8 TeV

$\mathrm{f}_L(\mu\mu)$ longitudinal polarization fraction in $\Lambda_b \to \Lambda \mu^+ \mu^-$

VALUEDOCUMENT IDTECNCOMMENT $0.61^{+0.11}_{-0.14} \pm 0.03$ 1 AAIJ15AE LHCBpp at 7, 8 TeV

FORWARD-BACKWARD ASYMMETRIES

The forward-backward assymmetry is defined as $A_{FB}(\Lambda_b^0) = [N(F) - N(B)] / [N(F) + N(B)]$, where the forward (F) direction corresponds to a particle $(\Lambda_b^0 \text{ or } \Lambda_b^-)$ sharing valence quark flavors with a beam particle with the same sign of rapidity.

$A_{FB}(\Lambda_b^0 \to J/\psi \Lambda)$

10 REFERENCES

AAIJ	17H	NATP 4021	R. Aaij et al.	(LHCb Collab.)
AAIJ	16	JHEP 1601 012	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16A	CP C40 011001	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16J	PL B759 282	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16W	JHEP 1605 081	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16Y	JHEP 1605 132	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAD	-	PL B751 63	G. Aad et al.	(ATLAS Collab.)
AAIJ		JHEP 1506 115	R. Aaji <i>et al.</i>	(LHCb Collab.)
AAIJ		JHEP 1509 006	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15BG	NATP 11 743	R. Aaij et al.	(LHCb Collab.)
ABAZOV	15I	PR D91 072008	V.M. Abazov et al.	(D0 Collab.)
AAD	14L	PR D89 092009	G. Aad et al.	(ATLAS Collab.)
AAIJ	14AA	PRL 112 202001	R. Aaij et al.	`(LHCb Collab.)
AAIJ	14E	JHEP 1404 114	R. Aaij et al.	(LHCb Collab.)
AAIJ	14H	PR D89 032001	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14I	JHEP 1408 143	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14K	JHEP 1407 103	R. Aaij et al.	(LHCb Collab.)
AAIJ	14Q	JHEP 1404 087	R. Aaij et al.	(LHCb Collab.)
AAIJ	14U	PL B734 122	R. Aaij et al.	(LHCb Collab.)
AALTONEN	14B	PR D89 072014	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	14P	PRL 113 242001	T. Aaltonen et al.	(CDF Collab.)
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
AAD	13U	PR D87 032002	G. Aad et al.	(ATLAS Collab.)
AAIJ	13AG	PL B724 27	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AJ	PL B725 25	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 110 182001	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13BB	PRL 111 102003	R. Aaij <i>et al.</i>	(LHCb Collab.)
CHATRCHYAN	13AC	JHEP 1307 163	S. Chatrchyan et al.	(CMS Collab.)
AAIJ	12AR	JHEP 1210 037	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12E	PL B708 241	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	12A	PR D85 032003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	12U	PR D85 112003	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AAIJ	11E	PR D84 092001	R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		PR D85 039904 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)

HTTP://PDG.LBL.GOV

Page 19

 $^{^1\,\}text{AAIJ}$ 15AE measurement covers 15.0 $<\text{q}^2~<20.0~\text{GeV}^2/\text{c}^4.$

 $^{^1\,\}text{AAIJ}$ 15AE measurement covers 15.0 $< \text{q}^2~< 20.0~\text{GeV}^2/\text{c}^4.$

 $^{^{1}}$ The measured asymmetry integrated over rapidity y in the range of 0.1 < |y| < 2.0.

AALTONEN AALTONEN AALTONEN ABAZOV AALTONEN AALTONEN AALTONEN ABAZOV ABAZOV ABULENCIA ABULENCIA LEITNER	11 11AI 11N 11O 10B 09C 09E 07S 07U 07A 07B 07	PRL 106 121804 PRL 107 201802 PRL 106 181802 PR D84 031102 PRL 104 102002 PRL 103 031801 PR D79 032001 PRL 99 142001 PRL 99 182001 PRL 98 122001 PRL 98 122002 NPBPS 174 169	T. Aaltonen et al. T. Aaltonen et al. T. Aaltonen et al. V.M. Abazov et al. T. Aaltonen et al. T. Aaltonen et al. T. Aaltonen et al. V.M. Abazov et al. V.M. Abazov et al. A. Abulencia et al. A. Abulencia et al. O. Leitner, Z.J. Ajaltouni	(CDF Collab.) (CDF Collab.) (CDF Collab.) (D0 Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (D0 Collab.) (D0 Collab.) (FNAL CDF Collab.)
ACOSTA	06	PRL 96 202001	D. Acosta <i>et al.</i>	(CDF Collab.)
ABAZOV	05C	PRL 94 102001	V.M. Abazov et al.	(D0 Collab.)
ACOSTA	05O	PR D72 051104	D. Acosta et al.	(CDF Collab.)
ABDALLAH	04A	PL B585 63	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA	02G	PR D66 112002	D. Acosta <i>et al.</i>	(CDF Collab.)
ABREU	99W	EPJ C10 185	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACKERSTAFF	98G	PL B426 161	K. Ackerstaff et al.	(OPAL Collab.)
BARATE	98D	EPJ C2 197	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABE	97B	PR D55 1142	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96M	PRL 77 1439	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	96D	ZPHY C71 199	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	96N	PL B374 351	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ADAM	96D	ZPHY C72 207	W. Adam et al.	(DELPHI Collab.)
BUSKULIC	96L	PL B380 442	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
BUSKULIC	96V	PL B384 471	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
PDG	96 occ	PR D54 1	R. M. Barnett <i>et al.</i>	(PDG Collab.)
ABREU AKERS	95S 95K	ZPHY C68 375 PL B353 402	P. Abreu <i>et al.</i> R. Akers <i>et al.</i>	(DELPHI Collab.)
BUSKULIC	95K 95L	PL B353 402 PL B357 685	D. Buskulic <i>et al.</i>	(OPAL Collab.) (ALEPH Collab.)
ABE	93E	PR D47 R2639	F. Abe <i>et al.</i>	(CDF Collab.)
BUSKULIC	93E 92E	PL B294 145	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
ALBAJAR	91E	PL B273 540	C. Albajar <i>et al.</i>	(UA1 Collab.)
BARI	91	NC 104A 1787	G. Bari <i>et al.</i>	(CERN R422 Collab.)
ARENTON	86	NP B274 707	M.W. Arenton <i>et al.</i>	(ARIZ, NDAM, VAND)
BASILE	81	LNC 31 97	M. Basile <i>et al.</i>	(CERN R415 Collab.)
				(==::::::::::::::::::::::::::::::::::::