CIRCUITOS LOGICOS DIGITALES

Universidad Peruana de Ciencias Aplicadas

Laureate International Universities®

FUNCIONES DE LÓGICA COMBINACIONAL MSI – MEDIUM SIZE OF INTEGRATION – PARTE 1

CICLO ACADÉMICO: 2024-I

¿QUÉ SABRÁS AL FINAL DEL CAPÍTULO?

- El funcionamiento y las principales aplicaciones de los circuitos lógicos combinacionales de media escala de integración MSI, como los siguientes:
 - Codificadores
 - Decodificadores

CARACTERÍSTICAS DE LAS FUNCIONES DE LÓGICA COMBINACIONAL DE MEDIA ESCALA DE INTEGRACION – MSI

- Son bloques funcionales combinacionales más complejos que las puertas lógicas básicas.
- Realizan una función lógica en específico.
- Se obtienen a partir de puertas lógicas básicas.
- Se pueden usar para implementar funciones booleanas (ello se revisará en la 2da parte de esta clase).
- Su nivel de integración, de media escala de integración, involucra la construcción de circuitos que utilizarán entre 10 y 100 puertas
- Usan señales de control que permiten controlar su funcionamiento.
- Tipos:

MULTIPLEXOR
DEMULTIPLEXOR
CODIFICADOR
DECODIFICADOR

DEFINICIÓN DE CIRCUITOS CODIFICADORES – CODIFICADOR BINARIO

Un codificador binario es un circuito combinacional que recibe como máximo 2^n entradas para codificar los números que ingresas por sus entradas-activas** en n salidas. La salida muestra el dato codificado el cual se corresponde con el número de orden de su entrada-activa. Existen 2 tipos de codificadores: con prioridad y sin prioridad.

CIRCUITOS CODIFICADORES – CODIFICADOR BINARIO 8 X 3 – SIN PRIORIDAD

D0

TABLA DE VERDAD

	D0	D1	D2	D3	D4	D5	D6	D7	х	Y	z
0	1	0	0	0	0	0	0	0	0	0	٥
	0	1	0	0	0	0	0	0	0	1	1
12 3 4 5 6 7	0	0	0	1	0	0	0	0	0	1	1
4	0	0	0	0	1	0	0	0	Ι	0	0
5	0	0	0	0	0	1	0	0	1	0	1
6	0	0	0	0	0	0	1	0	1	1	Ü
7	0	0	0	0	0	0	0	1	1	1	1

FUNCIONES LÓGICAS PARA LAS SALIDAS:

$$X = D4 + D5 + D6 + D7$$

 $Y = D2 + D3 + D6 + D7$
 $Z = D1 + D3 + D5 + D7$

CIRCUITO LÓGICO

CIRCUITOS CODIFICADORES – CODIFICADOR BINARIO 8 X 3 – SIN PRIORIDAD

ANÁLISIS: ¿Cuál será la salida del codificador si se activan 2 entradas de forma simultánea?

- Por ejemplo: COD(0,1,0,0,1,0,0,0), es decir 001(D1) y 100(D4)
- La salida será: 101, equivalente a la entrada D5(101)
- Esta salida evidencia un conflicto.

¿Cómo se soluciona este conflicto?:

- Integrando una señal de activación (ENABLE) el cual se usa para activar o desactivar el codificador.
- Aplicando el principio de PRIORIZACIÓN de las entradas activas. En el ejemplo analizado donde se presenta una activación simultanea de 2 entradas; la prioridad lo tendrá el código que represente al número de mayor orden de su entrada-activa seleccionada.

CIRCUITOS CODIFICADORES – CODIFICADOR BINARIO DE 4 X 2 & 8 X 3 CON ENABLE – CON PRIORIDAD

CIRCUITOS CODIFICADORES – CODIFICADOR DECIMAL A BCD SIN PRIORIDAD

Este tipo de codificador tiene 10 entradas-activas, que representan un dígito decimal, y tiene 4 salidas codificadas que representan su código BCD.

Dígito		Códig	go BC	D
decimal	A_3	A_2	A_1	A_0
0 0 0	0	0	0	0
D1 1	0	0	0	1
D2 2	0	0	1	0
D3 3	0	0	1	1
D4 4	0	1	0	0
D5 5	0	1	0	1
D6 6	0	1	1	0
D7 7	0	1	1	1
D8 8	1	0	0	0

TABLA DE VERDAD

CIRCUITOS CODIFICADORES – CODIFICADOR DECIMAL A BCD SIN PRIORIDAD

FUNCIONES LÓGICAS PARA LAS SALIDAS:

$$\begin{array}{l} A_3 = D8 + D9 \\ A_2 = D4 + D5 + D6 + D7 \\ A_1 = D2 + D3 + D6 + D7 \\ A_0 = D1 + D3 + D5 + D7 + D9 \end{array}$$

CIRCUITO LÓGICO

TABLA DE VERDAD

	Dígito		Códig	go BC	D
	decimal	A_3	A_2	A_1	A_0
	D0 0	0	0	0	0
	D1 1	0	0	0	1
	D2 2	0	0	1	0
	D3 3	0	0	1	1
_SB	D4 4	0	1	0	0
	D5 5	0	1	0	1
	D6 6	0	1	1	0
	D7 7	0	1	1	1
	D8 8	1	0	0	0
	D9 9	1	0	0	1
MSB		I			

CIRCUITOS CODIFICADORES – CODIFICADOR DECIMAL A BCD CON ENABLE – PRIORIDAD – IC 74LS147

CIRCUITOS CODIFICADORES – CODIFICADOR DECIMAL A BCD SIN PRIORIDAD MEDIANTE VHDL USANDO ESTILO FLUJO DE DATOS

CIRCUITOS CODIFICADORES – CODIFICADOR DECIMAL A BCD CON ENABLE – PRIORIDAD -TECLADO NUMÉRICO + IC 74LS147

DEFINICIÓN DE CIRCUITOS DECODIFICADORES – DECODIFICADOR BINARIO

Un decodificador binario es un circuito combinacional que recibe n entradas-activas codificadas para generar, como máximo, 2^n salidas decodificadas. La salida muestra el dato decodificado el cual se corresponde con el número de orden de su entrada-activa.

NOMENCLATURA:

DEC n X m

 $m=2^n$

CARACTERÍSTICA DE CIRCUITOS DECODIFICADORES – DECODIFICADOR BINARIO

Los Decodificadores cuentan con una entrada de habilitación activa en bajo \overline{Enable} . Si $\overline{Enable} \equiv 0$, el Decodificador se habilita; si $\overline{Enable} \equiv 1$, se inhabilita.

CIRCUITOS DECODIFICADORES – DECODIFICADOR BINARIO 2 X 4 CON ENABLE

DECODIFICADOR

ESTÁ

INHABILITADO

TABLA DE VERDAD

	E	A1	Α0		D0	D1	D2	D3
0	0	0	0	0	0	1	1	1
1	0	0	1	1	1	0	1	1
2	0	1	0	2	1	1	0	1
3	0	1	1	3	1	1	1	0
4	1	0	0	4	1	1	1	1
5	1	0	1	5	1	1	1	1
6	1	1	0	6	1	1	1	1
7	1	1	1	7	1	1	1	1

E'≡0 -> HABILITADO F'≡1 -> INHABILITADO

E': ENABLE

FUNCIONES LÓGICAS DE SALIDAS SIMPLIFICADAS APLICANDO LEYES De Morgan:

$$D0 = \overline{E} \cdot \overline{A1} \cdot \overline{A0}$$

$$D1 = \underline{A0} \cdot \overline{A1} \cdot \overline{E}$$

$$D2 = \overline{A0} \cdot A1 \cdot \overline{E}$$

$$D3 = A0 \cdot A1 \cdot \overline{E}$$

DEC

2 X 4

CIRCUITOS DECODIFICADORES – DECODIFICADOR BINARIO DE 2 X 4 & 3 X 8 CON ENABLE

CIRCUITOS DECODIFICADORES – DECODIFICADOR 3 X 8 CON ENABLE – IC 74LS138

CIRCUITOS DECODIFICADORES – DECODIFICADOR 3 X 8 CON ENABLE – IC 74LS138

SIMBOLO LÓGICO DEC 3 X 8 CON IC 74LS138

TABLA DE VERDAD

	Inputs				Outputs							
	Enable	Outputs										
G1	G2 (Note 1)	С	В	Α	YO	Y1	Y2	Y 3	Y4	Y 5	Y6	Y7
Х	Н	Х	Х	Х	Н	Η	Н	Н	Н	Н	Н	Н
L	Х	Х	Х	Х	н	Н	н	н	н	н	Н	н
н	L	L	L	L	L	Н	н	н	н	н	Н	н
н	L	L	L	Н	н	L	н	Н	Н	н	Н	н
н	L	L	Н	L	н	Н	L	Н	Н	н	Н	н
н	L	L	Н	Н	н	Н	н	L	н	н	Н	н
н	L	Н	L	L	н	Н	н	н	L	н	Н	н
н	L	Н	L	Н	н	н	н	н	н	L	Н	н
н	L	Н	Н	L	н	Н	н	н	н	н	L	н
н	L	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	L

H = HIGH Level

L = LOW Level

X = Don't Care

Note 1: G2 = G2A + G2B

CIRCUITOS DECODIFICADORES – DECODIFICADOR 4 X 16 CON ENABLE – IC 74LS154

CIRCUITO LÓGICO DEC 4 X 16

CARACTERÍSTICA DE LOS CIRCUITOS DECODIFICADORES DE PROPÓSITOS ESPECÍFICOS

- Existen decodificadores cuyas salidasactivas (útiles) m son menores a 2^n . Es decir $m \le 2^n$
- En este caso las salidas que no se usen son consideradas como don't care.
- Una aplicación específica de este tipo de decodificadores es para la activación de displays o visualizadores de 7 segmentos tipo Ánodo o Cátodo común.

^{**}Las salidas activas son aquellas que están habilitadas para proporcionar información decodificada.

CIRCUITOS DECODIFICADORES PARA ACTIVACIÓN DE DISPLAYS DE 7 SEGMENTOS ÁNODO/CÁTODO COMÚN

SIMBOLO LÓGICO DISPLAY 7 SEGMENTOS ANODO/CATODO COMÚN

CIRCUITOS DECODIFICADORES PARA ACTIVACIÓN DE DISPLAYS DE 7 SEGMENTOS ÁNODO/CÁTODO COMÚN USANDO IC 74LS47

CIRCUITO LÓGICO DECODIFICADOR BCD A DISPLAY 7-SEGMENTOS ANODO/CATODO COMÚN

CIRCUITOS DECODIFICADORES PARA ACTIVACIÓN DE DISPLAYS DE 7 SEGMENTOS ÁNODO/CÁTODO COMÚN USANDO IC 74LS47

SIMBOLO LÓGICO DECODIFICADOR BCD A DISPLAY 7-SEGMENTOS ANODO/CATODO COMÚN

 \overline{LT} : Lamp Test

RBI: Ripple Blank Input

 \overline{BI} : Blanking Input

RBO: Ripple Blank Output

TABLA DE VERDAD

Decimal			Inpu	etı			Outputs							
Or Function	ιŦ	RBI	A ₃	A2	A1	A ₀	BI/RBO	a	b	c	d	e	f	g
0 (Note 1)	н	н	L	L	L	L	н	н	н	н	н	Н	н	L
1 (Note 1)	н	×	L	L	L	н	н	L	н	Н	L	L	L	L
2	н	x	L	L	н	L	н	н	н	L	н	н	L	н
3	н	×	L	L	н	н	н	н	н	н	н	L	L	н
4	н	×	L	н	L	L	н	L	н	н	L	L	н	н
5	н	x	L	н	L	н	н	н	L	н	н	L	н	н
6	н	×	L	н	н	L	н	L	L	н	н	н	н	н
7	н	x	L	н	н	н	н	н	н	н	L	L	L	L
8	н	×	н	L	L	L	н	н	н	Н	н	Н	Н	н
9	н	x	н	L	L	н	н	н	н	н	L	L	н	н
10	н	x	н	L	н	L	н	L	L	L	н	н	L	н
11	н	×	н	L	н	н	н	L	L	Н	н	L	L	н
12	Н	×	н	н	L	L	н	L	н	L	L	L	Н	н
13	н	×	н	н	L	н	н	н	L	L	н	L	Н	н
14	н	×	н	н	н	L	н	L	L	L	н	н	н	н
15	н	×	н	н	н	н	н	L	L	L	L	L	L	L
BI (Note 2)	x	×	×	×	×	×	L	L	L	L	L	L	L	L
RBI (Note 3)	н	L	L	L	L	L	L	L	L	L	L	L	L	L
LT (Note 4)	L	x	ж	x	ж	x	н	н	н	н	н	н	н	н

CIRCUITOS DECODIFICADORES PARA ACTIVACIÓN DE DISPLAYS DE 7 SEGMENTOS ÁNODO/CÁTODO COMÚN USANDO IC 74LS47 & DISPLAY 7-SEG ANODO COMÚN

CIRCUITO LÓGICO

CIRCUITOS CODIFICADOR & DECODIFICADO PARA ACTIVACIÓN DE DISPLAYS DE 7 SEGMENTOS ÁNODO/CÁTODO COMÚN USANDO IC 74LS147, 74LS46/47/48 & DISPLAY 7-SEG ANODO/CATODO COMÚN

CIRCUITOS CODIFICADOR & DECODIFICADO PARA ACTIVACIÓN DE DISPLAYS DE 7 SEGMENTOS ÁNODO/CÁTODO COMÚN USANDO TECLADO 16-CARACTERES, IC 74C922, 74LS46/47/48 & DISPLAY 7-SEG ANODO/CATODO COMÚN

CIRCUITO LÓGICO

CIRCUITOS DECODIFICADOR BCD A DISPLAY 7-SEG PARA REPRESENTACIÓN DE NUMEROS DECIMALES DE MÁS DE 1 CIFRA USANDO ICs 74LS47 & DISPLAY 7-SEG ANODO/CATODO COMÚN

CIRCUITO LÓGICO

CIRCUITOS DECODIFICADOR BCD A DECIMAL USANDO IC 74LS42

Sólo una salida está activa en nivel BAJO(0)

CIRCUITOS DECODIFICADOR BCD A DECIMAL USANDO IC 74LS42

TABLA DE VERDAD

No.	В	CDI	npu	ıts		Decimal Outputs									
	D	С	В	Α	0	1	2	3	4	5	6	7	8	9	
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	
1	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	
2	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	
3	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	
4	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	
6	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	
7	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	
8	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	
9	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	
1	н	7	н	L	н	Н	н	н	Н	Н	н	н	н	н	
N	н	ī	н	Н	н	н	н	н	н	н	н	н	н	н	
٧	н	H	ï	ï	н	н	н	н	н	н	н	н	н	н	
Α	н	н	Ĺ	H	н	н	н	н	н	н	н	Н	н	н	
L	н	н	H	Ľ	н	н	н	н	н	н	н	н	н	н	
- 1	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
D	п	п	п	п	п	п	п	п	п	п	п	п	п	п	