Aula 9 - Algoritmo Hi-DSD (Cont.)

Prova de corretude

Definição: grafo de testes T(S)

Lema 1

Demora, no máximo, logN rodadas de testes para um nodo i testar um de seus clusters $C_{i,s}$, $1 \le s \le logN$.

Teorema 1

O menor caminho entre dois vértices quaisquer de T(S) contém, no máximo, logN arestas. .

Por indução em T, considerando que o sistema S tem $N=2^T$ nodos.

Base: considere um sistema com 2 nodos (T=1). Neste caso, cada nodo sem-falha testa o outro em cada intervalo de testes, assim o menor caminho entre eles tem tamanho 1=log2.

Hipótese: considere que em um sistema com 2^T nodos, o menor caminho entre duas vértic es tem, no máximo, logN arestas.

Passo: Provamos agora que, se é verdade que para um sistema de 2^t nodos que o caminho tamanho T, então para um sistema de 2^{T+1} o caminho mínimo tem, no máximo, T+1 ares stas. $2^{T+1} = 2 \times 2^T$

_ _ _ _ _ _

Um sistema de 2^{T+1} nodos consiste de dois sistemas de 2^T nodos.

Lembre-se: em cada um destes sub-sistemas de 2^T nodos, o caminho mínimo tem tamanho T.

Considere dois nodos i e j, cada um em um subsistema de 2^T nodos diferente. Sem perda c le generalidade, considere os testes executados pelo nodo i.

O nodo i testa um único nodo sem-falha no cluster do j e obtém informações sobre o restaunte de cluster.

Seja p o nodo testado por i. A distância do nodo p para o nodo j é, no máximo, T.

Portanto, a distância de i para j tem tamanho máximo de T+1 = log N.

A latência é, no pior caso, log^2N .

Teorema 2

Considere um sistema S em uma determinada situação de falhas; em, no máximo, log^2N ro odadas de testes o diagnóstico distribuído completa.

Prova

Segundo o Lema 1, em até logN rodadas de teste um nodo testa um cluster.

Segundo o Teorema 1, existem, no máximo, logN arestas (testes) entre dois nodos.

Portanto, em até $logN \times logN = log^2 N$ rodadas de testes, um nodo obtém informações so obre todos os outros.

AdaptiveDSD(N)	HiADSD (log^2N)
2	1
8	3*3=9
32	25
128	49
512	81
1024	100

Qual é o número de testes executados pelo algoritmo HiADSD no pior caso?

Antes: na média, $\sim N \times log N$

Neste caso, quantos testes são executados em uma rodada de testes?

Cada nodo testou
$$\frac{N}{2}$$
.

$$\frac{N}{2} \times \frac{N}{2} = \frac{N^2}{4} = O(N^2)$$

Qual o diagnóstico força-bruta?

A cada intervalo, todos os nodos testam todos os outros nodos. Número de testes:

$$N \times N = N^2 = O(N^2)$$

Para evitar o pior caso do número de testes: Detours (desvios)

Um detour é um caminho entre dois nodos que não passa pelo cluster do nodo testado m as mantém a distância.

Ao testar um nodo falho, **antes** de seguir testando, o nodo testador deve checar quais tes deve efetuar.

Como determinar quais nodos testar o nodo j?

O primeiro nodo sem-falha de $C_{i,s}$ é o seu testador.

Nodos estão testando cluster s=3.

 $C_{4.3} = (0, 1, 2, 3)$

0 é o testador de 4.

 $C_{5,3} = (\mathbf{1}, 2, 3, 0)$

1 é o testador de 5.

 $C_{6.3} = (2, 3, 0, 1)$

2 é o testador de 6.

 $C_{7,3} = (3, 0, 1, 2)$

3 é o testador de 7.

Quais informações obter?

O armazenamento de informações de diagnóstico não pode mais ser simplesmente uma ind dicação de falho/sem-falha/desconhecido, pois um nodo pode obter informações sobre outro a partir de le vários caminhos.

Usamos contadores de estados; inicialmente cada nodo tem estado 0 (sem-falha)

Testou falho <- 1

Testou sem-falha <- 2

Testou falho <- 3

i.e. Toda vez que o testador detecta uma mudança no estado, incrementa o contador.

Quando um nodo obtém informações de diagnóstico, atualiza estado apenas quando o cont ador obtido for maior que o contador correspondente local.

Quando o teste inicial é realizado, o testador i obtém todas as informações do testado j.

- *j* armazena a informação: <u>quais</u> informações foram passadas para *i*.
- No próximo intervalo de testes, *j* só passa as "novidades" para *i*.