CORRIGÉ : PSEUDO-INVERSE D'UNE MATRICE CARRÉE (extrait de ICARE 1997)

- 1. Il s'agit ici de *questions de cours*, mais j'en refais quand même la démonstration.
 - a) Si $y \in \text{Im}(AB)$, il existe $x \in \mathbb{R}^n$ tel que $y = \Phi_A \circ \Phi_B(x)$ donc $y = \Phi_A [\Phi_B(x)] \in \text{Im}(A, d'où l'inclusion Im}(AB) \subset \text{Im}(A, d'où l'inclusion Im}(AB) \subset \text{Im}(A, d'où l'inclusion Im}(AB))$
 - Si $x \in \text{Ker B alors } \Phi_B(x) = 0$ d'où $\Phi_A \circ \Phi_B(x) = \Phi_A(0) = 0$ et $x \in \text{Ker(AB)}$. On a donc bien l'inclusion $Ker B \subset \text{Ker(AB)}$.
 - b) La démonstration qui suit diffère un peu de celle vue en cours :
 - Puisque $Im(AB) \subset ImA$, on a $dim Im(AB) \leq dim ImA$ soit $rg(AB) \leq rgA$.
 - Puisque Ker B \subset Ker(AB), on a dim Ker(B) \leq dim Ker(AB) donc, en utilisant le théorème du rang, n-rg(AB) d'où rg(AB) \leq rg B.

On a donc bien $rg(AB) \leq min(rgA, rgB)$.

2. On vérifie aisément que A = A² = A³ ; de l'équation AAA = A on déduit que A est un inverse faible de A. De plus, A commutant avec lui-même, A est un pseudo-inverse de A.

Posons $M = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. Le calcul montre que AMA = A et MAM = M. En revanche, $A = MA \neq AM = M$ donc

M est un inverse faible mais pas un pseudo-inverse de A.

3. On calcule: Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Alors $AMA = \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}$, donc $AMA = A \iff b = 1 \iff M = \begin{pmatrix} a & 1 \\ c & d \end{pmatrix}$ puis $MAM = \begin{pmatrix} a & 1 \\ ad & d \end{pmatrix}$ donc $MAM = M \iff c = ad$.

Les inverses faibles de A sont donc les matrices de la forme $M = \begin{pmatrix} a & 1 \\ ad & d \end{pmatrix}$.

Il est facile de vérifier qu'aucune de ces matrices ne commute avec A, donc A n'a pas de pseudo-inverse.

- **4. a)** On a $(AM)^2 = AMAM = (AMA)M = AM$ et $(MA)^2 = MAMA = M(AMA) = MA$, donc AM et MA sont des matrices de projection.
 - **b)** On applique le résultat de la question préliminaire :

 $rg(AM) \le rg(A)$ et $rg(A) = rg((AM)A) \le rg(AM)$ donc rg(A) = rg(AM).

Puisque AM et MA sont des matrices de projection, on en déduit que

$$rg(A) = rg(AM) = trace d'un projecteur tr(AM) = trace d'un projecteur tr(AM) = rg(MA)$$

Finalement, rgA = rg(AM) = rg(MA) = tr(AM).

5. On part de la relation AMA = A ; on multiplie à droite par A^{-1} ce qui donne $AM = I_n$. On en déduit que M est l'inverse de A : $M = A^{-1}$. Cela prouve l'unicité de M. De plus, les relations (1), (2) et (3) sont trivialement vérifiées :

Si $A \in GL_n(\mathbb{R})$, la seule matrice M vérifiant (1) est A^{-1} et c'est un pseudo-inverse de A.

Si on suppose seulement que M vérifie (2) et (3), on ne peut rien conclure a priori : par exemple, si $A = I_n$, (3) est toujours vérifiée et (2) exprime simplement le fait que $M^2 = M$, c'est-à-dire que M est une matrice de projection. Autre remarque possible : M = A et M = 0 vérifient toutes deux (2) et (3).

6. On a AMAM' = (AMA)M' = AM'. De même, MAM'A = M(AM'A) = MA. Or, A commute avec M et avec M' d'après (3), donc ces deux matrices sont égales : AM' = MA(*).

On a ensuite :
$$M = MAM = MAM' = AM'M' = AM'M' = M'AM' = M'$$

d'où l'on déduit M = M':

Le pseudo inverse, *s'il existe*, est unique. On pourra donc dire *le* pseudo-inverse, et non plus *un* pseudo-inverse.

7. Les résultats suivants sont de simples vérifications :

matrice	A	M	λΑ	^t A	\mathbf{A}^k	PAP ⁻¹
pseudo-inverse	M	A	$\lambda^{-1}M$	^t M	M^k	PMP^{-1}

1/3

(pour le pseudo-inverse de A^k , on utilise le fait que A et M commutent pour pouvoir écrire, par exemple, $(AM)^k = A^k M^k$).

- **8.** a) Conséquence directe du théorème du rang (et des diverses caractérisations de deux sous-espaces vectoriels supplémentaires).
 - b) Pour tout $v \in \mathbb{R}^n$, $p[\Phi_A(v)] = \Phi_A(v)$ puisque les éléments de ImA sont invariants par p. Donc $p \circ \Phi_A = \Phi_A$. Soit $v \in \mathbb{R}^n$. On décompose v dans la somme $\mathbb{R}^n = \text{Ker}(A) \oplus \text{Im}(A)$: il existe $k \in \text{Ker}(A)$ et $i \in \text{Im}(A)$ tels que v = k + i. Alors $\Phi_A[p(v)] = \Phi_A(i)$ et $\Phi_A(v) = \Phi_A(v) + \Phi_A(i)$ donc $\Phi_A \circ p(v) = \Phi_A(v)$ et $\Phi_A(v) = \Phi_A(v) = \Phi_A(v)$.
 - c) Remarque préliminaire : d'après le théorème d'isomorphisme, la restriction Ψ_A de Φ_A à ImA, qui est un supplémentaire de KerA, induit un automorphisme de ImA.

Soit maintenant $v \in \mathbb{R}^n$. Montrons l'existence et l'unicité de $w \in Im(A)$ tel que $\Phi_{\Lambda}(w) \in Ker(A)$.

Existence : on décompose v dans la somme $\mathbb{R}^n = \text{Ker}(A) \oplus \text{Im}(A)$: il existe $k \in \text{Ker}(A)$ et $i \in \text{Im}(A)$ tels que v = k + i. Puisque Ψ_A est un automorphisme de Im(A), il existe donc un (unique) vecteur $w \in \text{Im}(A)$ tel que $i = \Psi_A(w) = \Phi_A(w)$. Ainsi, $v - \Phi_A(w) \in \text{Ker}(A)$.

Unicité: on suppose qu'il existe un vecteur $w' \in \text{Im}(A)$ tel que $\Phi_A(w') - v \in \text{Ker}(A)$. Alors $\Phi_A(w - w') = \Phi_A(w) - \Phi_A(w') \in \text{Ker}(A)$ Or $\Phi_A(w - w')$ est également élément de Im(A), ce qui montre que $\Phi_A(w - w') = 0$. Puisque w - w' est élément de Im(A), on a donc $w - w' \in \text{Ker}(A) \cap \text{Im}(A)$ et donc w = w'.

Pour tout $v \in \mathbb{R}^n$, il existe un unique élément w de ImA tel que $\Phi_A(w) - v \in \text{KerA}$.

- d) Si on reprend la construction précédente, on a en fait i = p(v) où p est la projection sur ImA parallèlement à KerA, puis $w = \Psi_A^{-1}(i)$. Donc $w = \Psi_A^{-1} \circ p(v) = \varphi(v)$, ce qui montre que φ est linéaire, puisque Ψ_A^{-1} et p le sont. De plus, pour tout $v \in \mathbb{R}^n$:
 - $-\Phi_{A} \circ \varphi(v) = \Psi_{A} \circ \Psi_{A}^{-1} \circ p(v) = p(v) \text{ et } \varphi \circ \Phi_{A}(v) = \Psi_{A}^{-1} \circ p \circ \Phi_{A}(v) = \Psi_{A}^{-1} \circ \Phi_{A} \circ p(v) = p(v) \text{ donc}$ $\Phi_{A} \circ \varphi = \varphi \circ \Phi_{A} = p \quad (3).$
 - $\Phi_{\mathbf{A}} \circ \varphi \circ \Phi_{\mathbf{A}} = p \circ \Phi_{\mathbf{A}} = \Phi_{\mathbf{A}} \quad (1)$
 - $\varphi \circ \Phi_{\mathbf{A}} \circ \varphi(v) = \varphi \circ p(v) = \Psi_{\mathbf{A}}^{-1} \circ p \circ p(v) = \Psi_{\mathbf{A}}^{-1} \circ p(v) = \varphi(v) \text{ donc } \varphi \circ \Phi_{\mathbf{A}} \circ \varphi = \varphi$ (2).

Les relations ci-dessus prouvent donc que ϕ est le pseudo-inverse de Φ_A .

9. a) De M = MAM = (AM)M = A(MM) on tire, en utilisant le résultat de la question préliminaire : $Im M \subset Im A$.

De A = AMA = (MA)A = M(AA) on tire: $Im A \subset Im M$

On a donc bien Im M = Im A.

De M = MAM = MMA on tire: $KerA \subset KerM$; de A = AMA = AAM on tire: $KerM \subset KerA$.

On a donc bien | Ker M = Ker A.

Soit $x \in \text{Ker A} \cap \text{Im A}$. Il existe donc $y \in \mathbb{R}^n$ tel que $x = \Phi_A(y)$. De plus, $\Phi_A(x) = 0$. On en déduit que

$$x = \Phi_{\mathbf{A}}(y) \underset{(1)}{=} \Phi_{\mathbf{A}} \circ \Phi_{\mathbf{M}} \circ \Phi_{\mathbf{A}}(y) \underset{(3)}{=} \Phi_{\mathbf{M}} \circ \Phi_{\mathbf{A}} \circ \Phi_{\mathbf{A}}(y) = \Phi_{\mathbf{M}} \circ \Phi_{\mathbf{A}}(x) = 0.$$

On a donc montré que $Ker A \cap Im A = \{0\}$ d'où l'on déduit que $\mathbb{R}^n = Ker A \oplus Im A$.

b) Puisque $(AM)^2 = AMAM = AM$, on sait que AM est la matrice de projection sur Im(AM), parallèlement à Ker(AM).

On sait de plus que $\operatorname{Ker}(AA) = \operatorname{Ker}(AM) = \operatorname{Ker}(AM$

Enfin, $\operatorname{Im}(AM) \subset \operatorname{Im} A = \operatorname{Im}(AMA) \subset \operatorname{Im}(AM)$, ce qui prouve que $\operatorname{Im} A = \operatorname{Im}(AM)$.

Conclusion : AM est la matrice de projection de \mathbb{R}^n sur ImA parallèlement à KerA.

- **10.** On remarque que l'on a toujours ImA² ⊂ ImA, d'où facilement : $(ii) \iff (iv)$.
 - On a aussi toujours Ker A ⊂ Ker A² d'où, avec l'aide du théorème du rang, l'équivalence : $(ii) \iff (iii)$.
 - Les deux questions précédentes prouvent l'équivalence

A admet un pseudo-inverse $\iff \mathbb{R}^n = \text{Ker}(A) \oplus \text{Im}(A)$.

Donc $(i) \Longrightarrow \mathbb{R}^n = \text{Ker}(A) \oplus \text{Im}(A) \Longrightarrow \text{Im} A = \Phi_A(\mathbb{R}^n) = \Phi_A(\text{Im} A) = \text{Im}(A^2)$ (ii)

et , si (iii) est vérifiée, alors, si $x \in \text{KerA} \cap \text{ImA}$, $\Phi_A(x) = 0$ et $\exists y \in \mathbb{R}^n \text{ tq } x = \Phi_A(y)$ d'où $\Phi_A^2(y) = 0$ d'où $y \in \text{KerA}^2 = \text{KerA}$ d'où x = 0. Ainsi $\text{KerA} \cap \text{ImA} = \{0\}$, et le théorème du rang permet de conclure $\mathbb{R}^n = \text{Ker}(A) \oplus \text{Im}(A)$ d'où (i).

- On a ensuite $(v) \Longrightarrow \operatorname{Im} A \subset \operatorname{Im} A^2 \Longrightarrow (ii)$.
- Puis (vi) ⇒ KerA² ⊂ KerA ⇒ (iii).
- Enfin, $(i) \Longrightarrow (v)$ en prenant V = M et $(i) \Longrightarrow (vi)$ en prenant W = M.

11. On a : $AV = (WA^2)V = W(A^2V) = WA d'où$

 $W^{2}A = W(WA) = W(AV) = (WA)V = (AV)V = AV^{2}$ puis

 $A(WAV) = A(AV^2) = (A^2V)V = AV = WA = W(WA^2) = (W^2A)A = (WAV)A$ (3)

 $A(WAV)A = A((WAV)A) = A(AV) = A^2V = A$ (1)

(WAV)A(WAV) = (WAV)((A(WAV)) = (WAV)(AV) = ((WAV)A)V = (WA)V = WAV (2)

Ainsi (1), (2) et (3) sont vérifiées avec M = WAV donc WAV est le pseudo-inverse de A

* * * * *