Künstliche Intelligenz Hidden Markov Models

Dr.-Ing. Stefan Lüdtke

Universität Leipzig

Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)

Motivation

- Die Welt verändert sich über die Zeit
 - Wahrscheinlichkeitsverteilungen müssen für jeden Zeitschritt angepasst werden
 - Aber: Systemzustand ist abhängig von der Vergangenheit
- Generelle Idee
 - Großes Bayes'sches Netz, in dem es Knoten (= Zufallsvariablen) für jeden Zeitpunkt gibt
 - Spezialisierte Inferenzalgorithmen, die die besondere Netzwerkstruktur ausnutzen

Sequentielle Prozesse

- Gegeben: Zustandsraum X, zu jedem Zeitpunkt t hat das System einen Zustand $x_t \in X$
- Auch gegeben: Beobachtungsraum Y, zu jedem Zeitpunkt t machen wir eine Beobachtung $y_t \in Y$
- Was ist eine sinnvolle Struktur des Bayes'sches Netzes? Wie hängen Zufallsvariablen voneinander ab?

Markov-Ketten

- Annahme: Zustände bilden eine *Markov-Kette ester Ordnung*: Zustand X_t hängt nur vom Zustand X_{t-1} ab
- Außerdem nehmen wir an, dass sich die Art der Abhängigkeit im Verlauf der Zeit nicht ändert, d.h. diese kann über eine bedingte Wahrscheinlichkeitsverteilung $P(X_t \mid X_{t-1})$ beschrieben werden
- Wir nennen $P(X_t | X_{t-1})$ Transitionsmodell

Observationsmodell

- lacktriangle Annahme: Beobachtung Y_t hängt nur von Zustand X_t ab
- Auch diese Abhängigkeit ändert sich nicht im Verlauf der Zeit, d.h. Repräsentation als bedingte Verteilung $P(Y_t \mid X_t)$
- Nennen $P(Y_t | X_t)$ Observationsmodell

Hidden Markov Model

Ein Hidden Markov Model ist definiert durch

- Transitionsmodell $P(X_t | X_{t-1})$
- lacktriangle Observationsmodell $P(Y_t \,|\, X_t)$
- Initialverteilung (A-Priori-Verteilung) $P(X_1)$

Inferenz in HMMs

- Query: Berechne $P(X_t | y_1, \dots, y_t) = P(X_t | y_{1:t})$ für jedes t
 - Diese Inferenzaufgabe nennt sich *Filtering*, später werden wir noch andere typische Aufgaben kennenlernen
- Im Prinzip mit Standard-Inferenzalgorithmen für Bayes'sche Netze, aber das ist unnötig ineffizient
- Kann stattdessen die besondere Netzwerkstruktur ausnutzen, um effiziente, rekursive Formulierung zu erhalten

Inferenz in HMMs: Filtering

- Angenommen, wir haben $P(X_{t-1} | y_{1:t-1})$ (d.h. Filtering-Query für t-1) schon ausgerechnet
- Gehen jetzt in 2 Schritten vor:
 - lacksquare Berechne $Vorhersage\ P(X_t\,|\,y_{1:t-1})\ (d.h.\ ohne\ Einbeziehen\ von\ y_t)$
 - Berechne Korrektur $P(X_t | y_{1:t-1}, y_t)$

Filtering: Vorhersage

$$P(x_t | y_{1:t-1}) = \sum_{x_{t-1}} P(x_t, x_{t-1} | y_{1:t-1})$$

$$= \sum_{x_{t-1}} P(x_t | x_{t-1} y_{1:t-1}) P(x_{t-1} | y_{1:t-1})$$

$$= \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | y_{1:t-1})$$

Filtering: Korrektur

$$P(x_t | y_{1:t-1}, y_t) = \frac{P(y_t | x_t, y_{1:t-1}) P(x_t | y_{1:t-1})}{P(y_t | y_{1:t-1})}$$
$$= \frac{P(y_t | x_t) P(x_t | y_{1:t-1})}{P(y_t)}$$

Der Term $P(y_t) = \sum_{x_t} P(y_t \,|\, x_t) \, P(x_t \,|\, y_{1:t-1})$ ist ein Normalisierungsfaktor und ergibt sich automatisch, wenn wir den Zähler für alle x_t berechnen

1 Sequentielle Prozesse

Hier ein einfaches Modell:

Sequentielle Prozesse

Nicht im Diagramm:

$$p(x_1) = \begin{array}{c|c} Rain & 0.3 \\ Sunny & 0.7 \end{array}$$

Filtern, Vorhersage, Glätten und MAP-Sequenz im Vergleich

Die Bestimmung von $p(x_t | y_{1:t})$ wird auch als *Filterung* bezeichnet.

Ein weiteres Verfahren von Interesse nennt sich Glättung.

D.h., gesucht: $p(x_t | y_{1:T})$

Die Idee ist, für die Schätzung zum Zeitpunkt t (hier: t=3) die gesamte Sequenz von Beobachtungen $y_{1:T}$ zu verwenden.

Analog zum Lesen eines Kriminalromans: Die Vermutung über den Täter auf Seite 1 ist oft eine andere, als die nach dem Lesen der letzten Seite.

$$\begin{split} p(x_t \,|\, y_{1:T}) &= \sum_{x_{t+1}} p(x_t, x_{t+1} \,|\, y_{1:T}) & \text{Marginalisierung} \\ &= \sum_{x_{t+1}} p(x_t \,|\, x_{t+1}, y_{1:T}) p(x_{t+1} \,|\, y_{1:T}) & \text{Kettenregel} \\ &= \sum_{x_{t+1}} p(x_t \,|\, x_{t+1}, y_{1:t}) p_t(x_{t+1} \,|\, y_{1:T}) & \text{Unabh. in HMM} \\ &= \sum_{x_{t+1}} \frac{p(x_{t+1} \,|\, x_t, y_{1:t}) \, p(x_t \,|\, y_{1:t})}{p(x_{t+1} \,|\, y_{1:t})} p(x_{t+1} \,|\, y_{1:T}) & \text{Bayes} \\ &= \sum_{x_{t+1}} \frac{p(x_{t+1} \,|\, x_t) \, p(x_t \,|\, y_{1:t})}{p(x_{t+1} \,|\, y_{1:T})} p(x_{t+1} \,|\, y_{1:T}) & \text{Unabh. in HMM} \\ &= p(x_t \,|\, y_{1:t}) \sum_{x_{t+1}} p(x_{t+1} \,|\, x_t) \frac{p(x_{t+1} \,|\, y_{1:T})}{p(x_{t+1} \,|\, y_{1:t})} \end{split}$$

Die Glättung arbeitet von hinten nach vorne und nutzt dabei Vorhersage und Ergebnis der Filterung.

Sequentielle Prozesse

Annahme:

- Systemmatrix A gegeben
- Observierungsmatrix O gegeben
- Zustandswahrscheinlichkeiten zum Zeitpunkt t-1 als Vektor \mathbf{p}_{t-1} gegeben
- \blacksquare Beobachtung y_t gegeben.

Dann erhalten wir

lacktriangle den Vektor der Vorhersagewahrscheinlichkeiten lacktrianglet $_{t|t-1}$ durch:

$$\mathbf{p}_{t|t-1} = \mathbf{A}\mathbf{p}_{t-1}$$

und die Zustandswahrscheinlichkeiten für den Zeitpunkt t durch:

$$\mathbf{p}_t = rac{1}{\|\mathbf{ ilde{p}}_t\|_1}\mathbf{ ilde{p}}_t \qquad ext{wobei } \mathbf{ ilde{p}}_t = \mathbf{p}_{t|t-1} \circ \mathbf{O}_{[\cdot,y_t]}$$

Sequentielle Prozesse

Dabei ist:

- a o b das Hadamard-Produkt (auch Schur-Produkt genannt)
- $lackbox{O}_{[\cdot,y_t]}$ der zu y_t korrespondierende Spaltenvektor der Matrix $oldsymbol{O}$.
- $\|\mathbf{a}\|_1$ die L_1 -Norm des Vektors \mathbf{a} , also einfach die Summe der Absolutbeträge der Vektorelemente.

In R:

```
fstep <- function(A,O,yt,pt1) {
  tilde.pt <- O[,yt] * (A %*% pt1)
  tilde.pt / sum(tilde.pt)
}</pre>
```

■ Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?

- Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?
 - Explizite Konstruktion aus Domänenwissen

- Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?
 - Explizite Konstruktion aus Domänenwissen
 - Angenommen, Sequenzen x_1, \ldots, x_T und y_1, \ldots, y_T vorhanden (sog. *überwachtes Lernen*): Relative Häufigkeiten ("Auszählen")

- Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?
 - Explizite Konstruktion aus Domänenwissen
 - Angenommen, Sequenzen x_1, \ldots, x_T und y_1, \ldots, y_T vorhanden (sog. *überwachtes Lernen*): Relative Häufigkeiten ("Auszählen")

- Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?
 - Explizite Konstruktion aus Domänenwissen
 - Angenommen, Sequenzen x_1, \ldots, x_T und y_1, \ldots, y_T vorhanden (sog. *überwachtes Lernen*): Relative Häufigkeiten ("Auszählen")
 - Angenommen, nur Sequenzen y_1, \ldots, y_T vorhanden (unüberwachtes Lernen): Expectation Maximization-Algorithmus (\rightarrow Statistische Signalverarbeitung und Inferenz)

- Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?
 - Explizite Konstruktion aus Domänenwissen
 - Angenommen, Sequenzen x_1, \ldots, x_T und y_1, \ldots, y_T vorhanden (sog. *überwachtes Lernen*): Relative Häufigkeiten ("Auszählen")
 - Angenommen, nur Sequenzen y_1, \ldots, y_T vorhanden (unüberwachtes Lernen): Expectation Maximization-Algorithmus (\rightarrow Statistische Signalverarbeitung und Inferenz)
- Inferenzalgorithmen (mindestens) linear in |X| was, wenn |X| sehr groß ist?

- Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?
 - Explizite Konstruktion aus Domänenwissen
 - Angenommen, Sequenzen x_1, \ldots, x_T und y_1, \ldots, y_T vorhanden (sog. *überwachtes Lernen*): Relative Häufigkeiten ("Auszählen")
 - Angenommen, nur Sequenzen y_1, \ldots, y_T vorhanden (unüberwachtes Lernen): Expectation Maximization-Algorithmus (\rightarrow Statistische Signalverarbeitung und Inferenz)
- Inferenzalgorithmen (mindestens) linear in |X| was, wenn |X| sehr groß ist?
 - Approximative Inferenzalgorithmen, z.B. Sampling-basiert (Partikelfilter)

- Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?
 - Explizite Konstruktion aus Domänenwissen
 - Angenommen, Sequenzen x_1, \ldots, x_T und y_1, \ldots, y_T vorhanden (sog. *überwachtes Lernen*): Relative Häufigkeiten ("Auszählen")
 - Angenommen, nur Sequenzen y_1, \ldots, y_T vorhanden (unüberwachtes Lernen): Expectation Maximization-Algorithmus (\rightarrow Statistische Signalverarbeitung und Inferenz)
- Inferenzalgorithmen (mindestens) linear in |X| was, wenn |X| sehr groß ist?
 - Approximative Inferenzalgorithmen, z.B. Sampling-basiert (Partikelfilter)
- Variante für kontinuierlichen Zustandsraum X (z.B. 2D-Position im Raum): Kalman-Filter (aber: Normalverteilungsannahmen)

- Woher kommen die Verteilungen $P(X_t \mid X_{t-1})$, $P(Y_t \mid X_t)$ und $P(X_1)$? Ideen?
 - Explizite Konstruktion aus Domänenwissen
 - Angenommen, Sequenzen x_1, \ldots, x_T und y_1, \ldots, y_T vorhanden (sog. *überwachtes Lernen*): Relative Häufigkeiten ("Auszählen")
 - Angenommen, nur Sequenzen y_1, \ldots, y_T vorhanden (unüberwachtes Lernen): Expectation Maximization-Algorithmus (\rightarrow Statistische Signalverarbeitung und Inferenz)
- Inferenzalgorithmen (mindestens) linear in |X| was, wenn |X| sehr groß ist?
 - Approximative Inferenzalgorithmen, z.B. Sampling-basiert (Partikelfilter)
- Variante für *kontinuierlichen* Zustandsraum *X* (z.B. 2D-Position im Raum): Kalman-Filter (aber: Normalverteilungsannahmen)
- Variante für Nicht-atomaren Zustandsraum: Dynamische Bayes'sche Netze $(P(\mathbf{X}_t | y_{1:t})$ wird als Bayes'sches Netz repräsentiert)

HMM Anwendungen

- Verarbeitung natürlicher Sprache, z.B. Part-Of-Speech-Tagging
- Audiodatenvararbeitung: Spracherkennung
- Bioinformatik: Analyse von Proteinsequenzen
- Sensorbasierte Aktivitätserkennung

Zusammenfassung

- Sequentielle Modelle sind ein wichtiger Spezialfall Bayes'scher Netze
- Markov- und Stationaritäts-Annahmen, sodass ein Modell durch
 - Transitionsmodell $P(X_t | X_{t-1})$
 - Observationsmodell $P(Y_t | X_t)$
 - Initialverteilung $P(X_1)$

vollständig beschrieben ist

- Wenn X eine endliche Menge ist, nennen wir das entstehende Modell *Hidden Markov Model*
- Das Filtering-, Smoothing- und MAP-Problem kann durch Ausnutzung der Modelleigenschaften effizient gelöst werden