El modelo canónico de robots móviles no-holonómicos

Kjartan Halvorsen

March 1, 2023

De robot diferencial a modelo canónico

De robot diferencial a modelo canónico

Actividad Encuentra las relaciones entre (ω, v) y (ω_L, ω_R)

De robot diferencial a modelo canónico

Actividad Encuentra las relaciones entre (ω, v) y (ω_L, ω_R)

$$v = \frac{v_L + v_R}{2} = \frac{r}{2} (\omega_L + \omega_L)$$
$$\omega = \frac{v_R - v_L}{d} = \frac{r}{d} (\omega_R - \omega_L)$$

$$\omega_{L} = \frac{v_{L}}{r} = \frac{1}{r} \left(v - \frac{d}{2} \omega \right)$$
$$\omega_{R} = \frac{v_{R}}{r} = \frac{1}{r} \left(v + \frac{d}{2} \omega \right)$$

Diferencial a modelo canónico

Asumiendo simetría entre las dos ruedas y en la dirección de giro.

$$\omega_L,\,\omega_R \in [-\omega_{\it max},\omega_{\it max}]$$

Diferencial a modelo canónico

Asumiendo simetría entre las dos ruedas y en la dirección de giro.

$$\omega_L, \, \omega_R \, \in \, [-\omega_{max}, \omega_{max}]$$

Actividad En el plano v, ω , dibuje la región de posibles valores de la señal de entrada al modelo canónico,

$$u(t) = \begin{bmatrix} \omega(t) \\ v(t) \end{bmatrix},$$

dado los límites de la velocidad angular de las ruedas.

Diferencial a modelo canónico

Para un robot que se mueve instantaneamente en una trayectoria círcular con radie R, la relación entre su velocidad lineal v y su velocidad angular ω es

Para un robot que se mueve instantaneamente en una trayectoria círcular con radie R, la relación entre su velocidad lineal v y su velocidad angular ω es

$$v = R\omega$$
 $\omega = \frac{1}{R}v$

Para un robot que se mueve instantaneamente en una trayectoria círcular con radie R, la relación entre su velocidad lineal v y su velocidad angular ω es

$$v = R\omega$$
 $\omega = \frac{1}{R}v$

Actividad Determine el radie de giro instantaneo R como función del ángulo de dirección ϕ .

Para un robot que se mueve instantaneamente en una trayectoria círcular con radie R, la relación entre su velocidad lineal v y su velocidad angular ω es

$$v = R\omega$$
 $\omega = \frac{1}{R}v$

Actividad Determine el radie de giro instantaneo R como función del ángulo de dirección ϕ .

Actividad Determine la velocidad angular ω como función de la velocidad v y del ángulo de dirección ϕ . Determine también la función inversa.

Para cierto robot

$$v \in [-v_{lm}, v_{um}], \quad \phi \in [-\phi_{max}, \phi_{max}]$$

Para cierto robot

$$v \in [-v_{lm}, v_{um}], \quad \phi \in [-\phi_{max}, \phi_{max}]$$

Actividad En el plano v, ω , dibuje la región de posibles valores de la señal de entrada al modelo canónico,

$$u(t) = \begin{bmatrix} \omega(t) \\ v(t) \end{bmatrix},$$

dado los límites de la velocidad v y del ángulo de dirección ϕ .