

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Risoluzione di sistemi lineari Lezione 2.5b

La Fattorizzazione LU

Risoluzione di sistemi lineari (la fattorizzazione LU)

- \triangleright MEG = scomposizione di A come prodotto di due matrici triangolari
 - L triangolare inferiore, con $L_{ii}=1 \ \forall i$ ed i moltiplicatori $m_{i,k}$

$$L = \begin{pmatrix} 1 & 0 & \dots & 0 \\ m_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & \dots & m_{n,n-1} & 1 \end{pmatrix}$$

U triangolare superiore, data dall'ultimo passo del MEG

$$U = A^{(n)} \leftarrow A^{(1)} = A$$

Fattorizzazione LU

$$A = LU$$

Risoluzione di sistemi lineari (la fattorizzazione LU)

> La fattorizzazione LU è una reinterpretazione del MEG

$$A = LU$$

Dal punto di vista pratico è possibile risolvere il sistema

$$A\mathbf{x} = \mathbf{b}$$

senza eseguire esplicitamente il MEG

ightharpoonup E' possibile sviluppare un algoritmo che sfrutta la caratterizzazione di A come prodotto di L e U

Decomposizione di Doolittle

Risoluzione di sistemi lineari (vantaggi della LU)

> Vantaggi della fattorizzazione LU per risolvere

$$A\mathbf{x} = \mathbf{b}$$

1. L e U non dipendono dal termine noto b

$$A = LU$$

√ È possibile utilizzare la stessa fattorizzazione per risolvere

$$A\mathbf{x} = \mathbf{c}$$

c generico termine noto

2. Risoluzione del sistema

$$A\mathbf{x} = LU\mathbf{x} = \mathbf{c}$$

Risolvere due sistemi triangolari

Risoluzione di sistemi lineari (vantaggi della LU)

 \triangleright Risoluzione del sistema $A\mathbf{x} = \mathbf{c}$

$$A = LU \longrightarrow LU\mathbf{x} = \mathbf{c}$$

> Ponendo

$$\mathbf{y} = U\mathbf{x} \longrightarrow L\mathbf{y} = \mathbf{c}$$

ightharpoonup L è una matrice triangolare inferiore e ${f c}$ è il termine noto

$$L\mathbf{y}=\mathbf{c}$$
 Sostituzioni in avanti

ightharpoonup Calcolato $\mathbf y$, lo si usa come termine noto per risolvere

$$U\mathbf{x}=\mathbf{y}$$
 Sostituzioni all'indietro

Risoluzione di sistemi lineari (costo della LU)

ightharpoonup Risoluzione del sistema $A\mathbf{x}=\mathbf{c}$ con la fattorizzazione LU è

