

מבני נתונים ומבוא לאלגוריתמים מפגש הנחיה מס' 2

מדעי המחשב, קורס מס' 20407 סמסטר 2016ב

מנחה: ג'ון מרברג

?מה ראינו במפגש הקודם

- מושגים בסיסיים כגון: בעיה, אלגוריתם, יעילות ועוד.
- טכניקות לבניית אלג': לולאות, הפרד ומשול, רקורסיה
 - הוכחת נכונות של אלג': שמורת לולאה, אינדוקציה
 - עיתוח זמנים: ספירת פעולות, סדר גודל, מקרה גרוע
 - בעיית החיפוש: לינארי, בינארי
 - בעיית המיון: ■
 - מיון אינקרמנטלי בזמן $O(n^2)$ מיון אינקרמנטלי \blacksquare
- כגון מיון מיזוג O($n\log n$ מיון בשיטת הפרד ומשול בזמן

מפגש שני

- נושאי השיעור 🔳
- פרק 2 בספר תרגול נוסף של סוגי אלגוריתמים 🔳
 - פרק 3 בספר גידול של פונקציות 🔳
 - תוכן העניינים
- נתוח דוגמאות של אלגוריתם רקורסיבי ואלגוריתם איטרטיבי
 - המוטיבציה לשימוש בסימונים אסימפטוטיים 💂
 - הגדרת הסימונים
 - חסמים שימושיים ותכונות שימושיות
 - חישוב סיבוכיות הזמן של אלגוריתם
 - תרגיל אלגוריתמים לחישוב טור גאומטרי

מבוסס על מצגת של ברוך חייקין ואיציק בייז

מגדלי האנוי - אלגוריתם רקורסיבי

הבעיה: העברת *ח* טבעות מעמוד המקור לעמוד היעד

 $\mathbf{Hanoi}(n, src, dst, aux)$

Input: A source peg src, initially with disks 1, 2, ..., n; a destination peg dst, and an auxiliary peg aux.

Output: A sequence of legal moves that brings all disks to peg *dst* (legal moves – one disk at a time, and a disk can not be put on a smaller disk).

- 1. **if** n > 0
- **then** Hannoi(n-1, src, aux, dst)
- 3. move disk *n* from peg *src* to peg *dst*
- Hannoi(n-1, aux, dst, src)

aux

src

כדורים בכד - אלגוריתם איטרטיבי

בכד יש m כדורים שחורים ו- n כדורים לבנים, כאשר n=2k>0 (כלומר n זוגי). כמו כן, מחוץ לכד יש מספר בלתי מוגבל של כדורים שחורים.

בצע את הצעדים הבאים:

- '. אם בכד יש פחות משני כדורים, עצור.
- 2. הוצא מהכד (בלי להסתכל בתוך הכד) שני כדורים כלשהם.
- 3. אם שני הכדורים שהוצאת הם מאותו צבע, הכנס כדור שחור אחד לכד
 - שהוצאת בדור הלבן שהוצאת בלבו שהוצאת.
 - 1. חזור לצעד 5

<u>טענה</u>: הלולאה בשורות 1-5 עוצרת. בעצירה יש בדיוק כדור אחד בכד, וצבעו שחור. <u>הוכחה</u>: בעזרת שמורת לולאה

תרגיל: הוכח כי בתחילת האלגוריתם נחוצים בדיוק k כדורים שחורים מחוץ לכד (כלומר k הוא מספר הכרחי ומספיק).

סימונים אסימפטוטים - מוטיבציה

- זמן הריצה (מספר הפעולות) של אלגוריתמים מתואר בעזרת *f: N→R*+ פונקציות מהטבעיים לממשיים החיוביים:
 - $f(n) = 4n^3 + n^2 \cdot \lg^5 n + 100n + 17$
 - $g(n) = n \sum_{k=1}^{n} 1/k \blacksquare$

כאשר n הוא גודל הקלט

- נרצה דרך פשוטה להשוות את הגודל של פונקציות שונות
- הסימון האסימפטוטי הוא דרך פשוטה להשוות פונקציות כאלה

$$f(n) = \Theta(n^3)$$

 $g(n) = \sum_{k=1}^n 1/k$ זה טור הרמוני $g(n) = \Theta(n \lg n)$

מוטיבציה - המשך

- מה שחשוב הוא קצב הגידול של הפונקציה איך משתנה הפונקציה ככל ש-n גדל.
 - "מטרתנו היא לבצע "חלוקה גסה למגירות של סדרי גודל"
 - לכן אפשר להתעלם מקבועים ומחזקות נמוכות.
 - מתעניינים בעצם בהתנהגות האסימפטוטית של הפונקציה איך מתנהגת הפונקציה כש-ח שואף לאינסוף.
 - . כלשהו אנו מתעניינים רק בקלט הגדול או שווה ל n_0 כלשהו \blacksquare
 - .ניתן לחשוב על כל קלט הקטן מ n_0 כמקרה קצה \blacksquare
 - כל מגירה של סדר גודל היא מחלקת שקילות של הפונקציות מאותו סדר גודל

הסימונים האסימפטוטים

באופן **אינטואיטיבי**, הסימונים מאפשרים להשוות בין **סדרי הגודל** שתי פונק' ולומר מי "גדולה", מי "קטנה", או האם הן "שוות" (בכל היחסים מדובר בסדר גודל) :

חסם עליון \leq O \geq חסם תחתון Ω \geq Ω חסם הדוק Θ < חסם עליון לא הדוק ω ω חסם תחתון לא הדוק ω

: דוגמאות

 $f(n) = O(g(n)), \quad h(n) = O(g(n)), \quad f(n) = O(q(n)) = g$, g קטנה שווה בסדר גודל מ- g הן מאותו סדר גודל, g גדולה ממש בסדר גודל מ- g

הסימון O - חסם עליון

הגדרה

- עם קיימים קבועים חיוביים c ו- c כך שמתקיים f(n) = O(g(n)) אם c לכל $f(n) \leq cg(n)$
- g משמעות: החל מנקודה n_0 הערכים של f אינם גדולים מאלו של (עד כדי כפל בקבוע c)
- אינסוף nשואף לאינסוף g (או: g היא חסם עליון של $f \leq g$ (או: g
 - פתאימים n_0 -ו c יש למצוא, f(n) = O(g(n)) -ם כדי להוכיח ש

דוגמה

$$f(n) = 10n^2 + 30 = O(n^2)$$

$$f(n) = 10n^2 + 30 = O(n^3)$$

הסימון Ω - חסם תחתון

הגדרה

- אם qיים אם חיוביים c ו- c אם $f(n) = \Omega(g(n))$ אם $f(n) = \Omega(g(n))$ אם $f(n) = \Omega(g(n))$ אם $f(n) = \Omega(g(n))$
- g משמעות: החל מנקודה n_0 הערכים של f אינם קטנים מאלו של (c)
 - שואף n-שואף (f אונטואיטיבית: $g \le f$ או: $g \le g$ אונטואיטיבית: לאינסוף
 - םתאימים n_0 -ו c יש למצוא, $f(n) = \Omega(g(n))$ -ם כדי להוכיח ש

דוגמה

$$f(n) = n^3 - 5n^2 + 10 = \Omega(n^3)$$

$$f(n) = n^3 - 5n^2 + 10 = \Omega(n^2)$$

הסימון Θ (טתא) - חסם הדוק

הגדרה

- - g משמעות: החל מנקודה n_0 הערכים של f קרובים לאלו של (עד כדי כפל בקבוע)
- אינסוף n-שואף אינסוף g (או: g בסדר גודל של f=g שואף אינסוף
 - םתאימים n_0 -ו c_2 , c_1 יש למצוא, $f(n) = \Theta(g(n))$ -ם בדי להוכיח ש

דוגמה 📗

$$f(n) = 10n^2 + 100n + 30 = \Theta(n^2)$$

החסם o – חסם עליון לא הדוק

הגדרה

- אם $\frac{dc}{dc}$ אם $\frac{dc}{dc}$ חיובי c קיים קבוע חיובי f(n) = o(g(n)) אם f(n) = o(g(n)) אם f(n) < cg(n)
 - g משמעות: החל מנקודה n_c הערכים של f קטנים ממש מאלו של (c עד כדי כפל בקבוע (c
- שואף n-שואף (f שואף שואף) אינטואיטיבית: g (או: g או: g אונטואיטיבית: לאינסוף
 - c מתאים כפונקציה של, f(n) = o(g(n)) כדי להוכיח ש
 - הגדרה שקולה
 - $\lim_{n\to\infty} f(n)/g(n) = 0$ אם f(n) = o(g(n))
 - דוגמה:
 - $f(n) = 2n^2 = o(n^3)$

החסם ω - חסם תחתון לא הדוק

הגדרה •

- אם $\frac{dc}{dc}$ אם $\frac{dc}{dc}$ חיובי c קיים קבוע חיובי $f(n) = \omega(g(n))$ אם $f(n) = \omega(g(n))$ אם f(n) < f(n)
 - g משמעות: החל מנקודה n_c הערכים של t גדולים ממש מאלו של (c)
 - ח-שם (f או: g היא חסם תחתון לא הדוק של g כש-g שואף לאינסוף
 - c מתאים כפונקציה של, $f(n)=\omega(g(n))$ כדי להוכיח ש σ_c יש למצוא
 - הגדרה שקולה
 - $\lim_{n\to\infty} f(n)/g(n) = \infty$ אם $f(n) = \omega(g(n))$
 - דוגמה:
 - $f(n) = n^2 = \omega(\text{nlgn}) \blacksquare$

חסמים הדוקים

חסמים הדוקים ■

$$f(n) = \Theta(g(n))$$
 אז $f(n) \neq o(g(n))$ וגם $f(n) = O(g(n))$ אם \bullet

$$f(n) = \Theta(g(n))$$
 אז $f(n) \neq \omega(g(n))$ אם $f(n) = \Omega(g(n))$ אם $f(n) = \Omega(g(n))$

$$f(n) = \Omega(g(n))$$
 וגם $f(n) = O(g(n))$ אם"ם $f(n) = \Theta(g(n))$

חסמים שימושיים

טור חשבוני

$$A(n) = \sum_{k=1}^{n} k = \frac{1}{2}n(n+1) = \Theta(n^2)$$

(|x| < 1) טור גאומטרי מתכנס

$$G(n, x) = \sum_{k=0}^{n} x^k = (x^{n+1} - 1) / (x - 1) = \Theta(1)$$

 $(a_d \neq 0) d$ פולינום מדרגה

$$P_d(n) = \sum_{k=0}^{d} a_k n^k = \Theta(n^d)$$

חזקות של לוגריתמים

$$k > 0$$
 לכל $\log^k n = o(n)$

הטור ההרמוני

$$H_n = \sum_{k=1}^n 1/k = \Theta(\log n)$$

 $(F_n=F_{n-1}+F_{n-2}\,,\,F_0=0,\,F_1=1)$ מספרי פיבונאצ'י $F_n=\Theta(\varphi^n),\,\varphi=\frac{1}{2}(\sqrt{5}+1)\cong 1.618$

עצרת

$$n! = o(n^n)$$

$$\log(n!) = \Theta(n\log n)$$

תכונות שימושיות

טרנזיטיביות החסם העליון

$$g(n) = O(h(n))$$
 וגם $f(n) = O(g(n))$ אם $f(n) = O(h(n))$ אז $f(n) = O(h(n))$ של Ω באופן דומה קיימת טרנזיטיביות של

חסם עליון על סכום פונקציות 🔳

$$f_2(n) = O(g_2(n))$$
 אם $f_1(n) = O(g_1(n))$ וגם $f_1(n) + f_2(n) = O(\max\{g_1(n), g_2(n)\})$ אז

חסם עליון על מכפלת פונקציות 🔳

$$f_2(n) = O(g_2(n))$$
 אם $f_1(n) = O(g_1(n))$ אם $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$ אז

יש תכונות נוספות בספר ובחוברת הלמידה

חישוב סיבוכיות הזמן של אלגוריתם

פעולות פשוטות 🔳

- $\Theta(1)$ ביצוע פעולות חשבון אלמנטריות:
 - $\Theta(1)$ השמה והשוואה: \bullet
 - $\Theta(1)$ יצירת אובייקט בגודל כלשהו: \blacksquare

פעולות מורכבות

- m קריאה לפונקציה שעלותה חסומה ע"י (O(g(n)), עם קלט בגודל O(g(m))
 - סדרה של k פעולות k קבוע) שעלות כל אחת מהן i חסומה ע"י $O(\max\{g_i(m)\})$ עם קלט בגודל $O(g_i(n))$
- עם קלטים ,O(g(n)) לולאה בת k חזרות על פעולה שעלותה חסומה ע"י לולאה בת בגודל $\Sigma_{i=1}{}^k O(g(m_i))$ בגודל בגודל

תרגיל: חישוב טור גאומטרי

- נתחו את זמן הריצה של שלושת האלגוריתמים הבאים לחישוב הטור $\Sigma_{i=0}^n x^i = 1 + x + ... + x^n$ הגאומטרי
 - x^i פתרון א' חשב וסכום את 1 + n האיברים מסוג

GeometricSeriesSum1(x, n)

- 1. $sum \leftarrow 0$
- 2. | for $i \leftarrow 0$ to n
- 3. **do** $prod \leftarrow 1$
- 4. | for $j \leftarrow 1$ to i
- 5. | **do** $prod \leftarrow prod * x$
- 6. $sum \leftarrow sum + prod$
- 7. return sum

Initialization and Finalization

 $\Theta(1)$ steps

Outer loop

add the *i*th term to the sum, i = 0, ..., n

Inner loop

compute the term x^i in $\Theta(i)$ steps

Summary

$$T(n) = \Theta(1) + \sum_{i=0}^{n} \Theta(i) = \Theta(n^2)$$

תרגיל: טור גאומטרי (המשך)

$$\Sigma_{i=0}^{n} x^{i} = (\Sigma_{i=0}^{n-1} x^{i})x + 1$$
 פתרון ב' – השתמש בכלל הורנר

GeometricSeriesSum2(x, n)

- 1. $sum \leftarrow 0$
- 2. | for $i \leftarrow 0$ to n
- 3. **do** $sum \leftarrow sum * x + 1$
- 4. return sum

Initialization and Finalization $\Theta(1)$ steps

<u>Loop</u> (for i = 0, ... n) multiply by x and increment by 1

Summary

$$T(n) = \Theta(1) + \sum_{i=0}^{n} \Theta(1) = \Theta(n)$$

תרגיל: טור גאומטרי (המשך)

$$\Sigma_{i=0}^{n} x^{i} = (x^{n+1} - 1) / (x - 1)$$
 פתרון ג' – בצע חישוב ישיר

$$x^{2m+1} = x \cdot (x^2)^m$$
, $x^{2m} = (x^2)^m$, $x^0 = 1$, $0^n = 0$: (שלם) שלם n) x^n חישוב חזקה

Summary

$$T(n) = \Theta(1) + P(n + 1)$$
$$= \Theta(\lg n)$$

GeometricSeriesSum3(x, n)

- 1. **if** x = 1
- 2. then return n+1
- 3. **else return** (Power(x, n + 1) 1) / (x 1)

Power(x, n)

- 1. if x = 0 then return 0
- 2. else if n = 0 then return 1
- 3. **else if** *n* is even
- 4. **then return** Power(x * x, n / 2)
- 5. **else return** x * Power(x * x, (n-1) / 2)

Power

$$P(n) = P(n / 2) + \Theta(1)$$

$$= ...$$

$$= \Theta(\lg n)$$