1 Algebra of Least Squares

Notation: y_i is a scalar, and x_i is a $K \times 1$ vector. Y is an $n \times 1$ vector, and X is an $n \times K$ matrix.

1.1 OLS estimator

As we have learned from the previous lecture, the parameter β in the linear projection model

$$y_i = x_i'\beta + e_i$$
$$E[x_i e_i] = 0$$

can be written as $\beta = (E[x_i x_i'])^{-1} E[x_i y_i]$. In reality we possess a sample of n observations, not the population. We thus replace the population mean $E[\cdot]$ by the sample mean, and the resulting estimator is

$$\widehat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} x_i y_i = (X'X)^{-1} X'y.$$

This is one way to motivate the OLS estimator.

Alternatively, we can derive the OLS estimator from minimizing the sum of squared residuals $\sum_{i=1}^{n} (y_i - x_i'\beta)^2$. By a routine optimization, we derive exactly the same $\widehat{\beta}$.

Some definitions.

- Fitted value: $\widehat{Y} = X\widehat{\beta}$.
- Residual: $\hat{e} = Y \hat{Y}$.
- Projector: $P_X = X (X'X)^{-1} X$; Annihilator: $M_X = I_n P_X$.
- $\bullet \ P_X M_X = M_X P_X = 0.$
- Idempotent matrix: $P_X P_X = P_X$, $M_X M_X = M_X$.

Some properties of the residual

•
$$\hat{e} = Y - \hat{Y} = Y - X\hat{\beta} = M_X Y = M_X (X\beta + e) = M_X e$$
.

- $X'\widehat{e} = XM_Xe = 0$.
- $\frac{1}{n} \sum_{i=1}^{n} \widehat{e}_i = 0$ if x_i contains a constant.

1.2 Goodness of Fit

The so-called R-square is the most popular measure of goodness-of-fit in the linear regression. R-square is defined only when a constant is included in the regressors. Let $M_{\iota} = I_n - \frac{1}{n}\iota\iota'$, where ι is

an $n \times 1$ vector of 1's. M_{ι} is the demeaner, that is, $M_{\iota}(z_1, \ldots, z_n)' = (z_1 - \overline{z}, \ldots, z_n - \overline{z})'$, where $\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$. For any X, we can decompose $Y = P_X Y + M_X Y = \widehat{Y} + \widehat{e}$. The total variation is

$$Y'M_{\iota}Y = (\widehat{Y} + \widehat{e})' M_{\iota} (\widehat{Y} + \widehat{e})$$
$$= \widehat{Y}'M_{\iota}\widehat{Y} + 2\widehat{Y}'M_{\iota}\widehat{e} + \widehat{e}'M_{\iota}\widehat{e}$$
$$= \widehat{Y}'M_{\iota}\widehat{Y} + \widehat{e}'\widehat{e}.$$

where the last equality follows by $M_t \hat{e} = \hat{e}$ as $\frac{1}{n} \sum_{i=1}^n \hat{e}_i = 0$, and $\hat{Y}' \hat{e} = Y' P_X M_X e = 0$. R-square is $\hat{Y}' M_t \hat{Y} / Y' M_t Y$.

1.3 Frish-Waugh-Lovell Theorem

If
$$Y = X_1\beta_1 + X_2\beta_2 + e$$
, then $\widehat{\beta}_1 = (X_1'M_{X_2}X_1)^{-1}X_1'M_{X_2}Y$.

2 Statistical Properties of Least Squares

To talk about the statistical properties, we impose the following assumptions.

- 1. The data $(y_i, x_i)_{i=1}^n$ is a random sample from the same data generating proces $y_i = x_i'\beta + e_i$.
- 2. e_i and x_i are independent.
- 3. $e_i \sim N(0, \sigma^2)$.

2.1 Normal Regression

Under the normality assumption, $y_i|x_i \sim N\left(x_i'\beta,\gamma\right)$, where $\gamma = \sigma^2$. The *conditional* likelihood of observing a sample $(y_i,x_i)_{i=1}^n$ is

$$\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\gamma}} \exp\left(-\frac{1}{2\gamma} \left(y_i - x_i'\beta\right)^2\right),\,$$

and the log-likelihood function is

$$L(\beta, \gamma) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \gamma - \frac{1}{2\gamma} \sum_{i=1}^{n} (y_i - x_i'\beta)^2.$$

Therefore, the maximum likelihood estimator (MLE) coincides with the OLS estimator, and the MLE of γ is $\widehat{e}'\widehat{e}/n$.

We can show the finite sample exact distribution of $\widehat{\beta}$. Since

$$\widehat{\beta} = (X'X)^{-1} X'y = (X'X)^{-1} X' (X'\beta + e) = \beta + (X'X)^{-1} X'e,$$

we have the estimator $\widehat{\beta}|X \sim N\left(\beta, \sigma^2 \left(X'X\right)^{-1}\right)$, and

$$\widehat{\beta}_k | X \sim N\left(\beta_k, \eta_k' \sigma^2 \left(X'X\right)^{-1} \eta_k\right) \sim N\left(\beta_k, \sigma^2 \left(X'X\right)_{kk}^{-1}\right),$$

where $\eta_k = (1\{l=k\})_{l=1,\dots,K}$ is the selector of the k-th element.

Consider the T-statistic

$$T_{k} = \frac{\widehat{\beta}_{k} - \beta_{k}}{\sqrt{s^{2} (X'X)_{kk}^{-1}}} = \frac{\left(\widehat{\beta}_{k} - \beta_{k}\right) / \sqrt{\sigma^{2} (X'X)_{kk}^{-1}}}{\sqrt{s^{2} / \sigma^{2}}}.$$

The numerator follows a standard normal, and the denominator follows $\chi^2(n-K)$. Therefore $T_k \sim t(n-K)$.

The part below is not ready yet. Don't read.

2.2 Bias and Variance

When we discuss the statistical properties of the least squares in finite sample, we assume

$$y_i = x_i'\beta + e_i$$
$$E[e_i|x_i] = 0,$$

which is equivalent to assume $E[y_i|x_i] = x_i'\beta$ so the linear projection model and the conditional mean model coincide. In other words, the following statistical properties hold only when the conditional mean is a linear function.

- Unbiasedness: $E\left[\widehat{\beta}|X\right] = E\left[(X'X)^{-1}XY|X\right] = E\left[(X'X)^{-1}X(X'\beta + e)|X\right] = \beta.$
- Variance: $\operatorname{var}\left(\widehat{\beta}|X\right) = E\left[\left(\widehat{\beta} E\widehat{\beta}\right)\left(\widehat{\beta} E\widehat{\beta}\right)'|X\right] = E\left[\left(X'X\right)^{-1}X'ee'X\left(X'X\right)^{-1}|X\right] = (X'X)^{-1}X'E\left[ee'|X\right]X\left(X'X\right)^{-1}$. Under the *homoskedasticity* assumption, we simplify it as

$$\operatorname{var}\left(\widehat{\beta}\right) = \left(X'X\right)^{-1} X' \left(\sigma^{2} I_{n}\right) X \left(X'X\right)^{-1} = \sigma^{2} \left(X'X\right)^{-1}.$$

2.3 Gauss-Markov Theorem

Gauss-Markov theorem justifies the OLS estimator as the efficient estimator among all linear unbiased ones. Efficient here means that it enjoys the smallest variance in a family of estimators.

There are numerous linearly unbiased estimators. For example, $(Z'X)^{-1}Z'y$ for $z_i=x_i^2$ is unbiased because $E\left[(Z'X)^{-1}Z'y\right]=E\left[(Z'X)^{-1}Z'(X\beta+e)\right]=\beta$.

The error term is homoskedastic if $E\left[e_i^2|X\right] = \sigma^2$ for all i. Homoskedasticity is a restrictive assumption. An example of *heteroskedasticity*: consumption = income + e. A rich family has more variation in consumption than a poor family.

Let $\tilde{\beta} = A'y$ be a generic linear estimator, where A is any $n \times K$ functions of X. As

$$E[A'y|X] = E[A'(X\beta + e)|X] = A'X\beta.$$

So the unbiasedness of $\tilde{\beta}$ implies $A'X = I_n$. Moreover, the variance

$$\operatorname{var}\left(A'y|X\right) = E\left[\left(A'y - \beta\right)\left(A'y - \beta\right)'|X\right] = E\left[A'ee'A|X\right] = \sigma^2A'A.$$

Let $A = C + X (X'X)^{-1}$.

$$A'A - (X'X)^{-1}$$
= $(C + X(X'X)^{-1})'(C + X(X'X)^{-1}) - (X'X)^{-1}$
= $C'C + (X'X)^{-1}X'C + C'X(X'X)^{-1} = C'C$,

where the last equality follows as

$$(X'X)^{-1}X'C = (X'X)^{-1}X'(A - X(X'X)^{-1}) = (X'X)^{-1} - (X'X)^{-1} = 0.$$

The variance of any $\tilde{\beta}$ is no smaller than the OLS estimator $\hat{\beta}$.

However, notice that Gauss-Markov theorem is derived only in the conditional mean model under homoskedasticity. These conditions are restrictive.

2.4 Variance Estimation

Under homoskedasticity, var $(\widehat{\beta}) = \sigma^2 (X'X)^{-1}$. Popular estimator of σ^2 is the sample mean of the residuals $\widehat{\sigma}^2 = \frac{1}{n} \widehat{e}' \widehat{e}$ or the unbiased one $s^2 = \frac{1}{n-K} \widehat{e}' \widehat{e}$.

Under heteroskedasticity,

$$\operatorname{var}\left(\widehat{\beta}\right) = \left(X'X\right)^{-1} X'DX \left(X'X\right)^{-1}$$

where $D = \operatorname{diag}(\sigma_1^2, \dots, \sigma_n^2)$. We propose to estimate $\widehat{\sigma}_i^2 = \widehat{e}_i^2$ so that $X'DX = \sum_{i=1}^n x_i x_i' \widehat{e}_i^2$.