



# HTC's Data Analytics Case Competition

Sameer Kamran, Abrar Rehan, Muzammil Saleem, Noor Syed, Shreya Shah





### **Problem Statement**

Keyera's Expanding Role: Storing, processing, and marketing natural gas
& NGLs with a focus on innovation & sustainability.

#### Western Canadian Sedimentary Basin:

- o 600+ active gas plants generating vast amounts of critical data.
- A high-growth region for the energy sector.

#### Current Challenge:

- Data is readily available but manual, time-consuming, and inefficient to analyze.
- Slows down decision-making and operational optimization.

#### - The Need:

- A faster, more dynamic way to analyze and act on this information.
- A centralized system for storing, managing, and analyzing data to drive informed decisions.





### **Our Goal**

- Goal: Develop an AWS QuickSight dashboard to help Keyera store, access, and analyze critical data efficiently.
- **Impact**: Saves time, resources, and increases efficiency, aligning with Keyera's five core values.

#### Core Dashboard Features:

- Key operational metrics for data-driven decision-making.
- User-friendly navigation for seamless data access.

#### Beyond the Requirements:

- Conducted sustainability & environmental impact analytics.
- Identified areas for process improvement to enhance efficiency.
- Because without sustainability, there isn't a future to innovate.

Made of two dashboards

#### Dashboard 1

- Provides insight regarding the various gasses produced at each gas plant and compares them
  - Throughput
  - · Nameplate Capacity
  - Utilization Rate
  - NGL Component Yields:
  - Last Month's Throughputs:
- Includes an interactive map that enables the user to lookup facts about a specific gas plant and compare its statistics with others.

#### Dashboard 2

- Dives into the sustainability of each gas plant
- Analyzes greenhouse gas emissions
- Summarizes critical emissions metrics:
  - CO<sub>2</sub> Emissions
  - CH<sub>4</sub> Emissions
  - Total Emissions
  - Flaring Index
  - Methane Leakage Rate

# Dashboard 1

#### Dashboard 1 - Key Features

#### Name Plate Capacity:

- Donut Graph displaying the License Capacity .of Raw Gas for different plants
- Cochrane Straddle and Empress Straddle Plants are the two plants with the greatest capacity

#### **Utilization Rate:**

- Computed using the throughput gas and license capacities for different plants
- The lower rates indicate that the license capacity of the plant is not being utilized to its full potential.
- May highlight regions for improvements

#### Map and Queries:

- A geographical map that is interactive and different filters to produce query specific results.

#### Nameplate Capacity (MMcf/d)

SHOWING TOP 20 IN PLANT NAME

# Highest Nameplate Capacity

Cochrane Straddle Plant





#### Dashboard 1 - Key Features

#### Last Month's Throughputs:

- Pie Chart displaying the processed gas transported from the different plant facilities.
- Along with the utilization rate, can be used to identify areas that are not being used to their full potential.

#### **NGL Component Yields:**

- Four pie charts displaying the different liquid yields for 4 NGL components that are transported to users.
- Identifies the plants with highest output, indicating regions where capacity may want to be expanded to take adavntage of this.

#### **Total Liquid Component Yields:**

- The sum of NGL liquid compnents produced by each plant. Along with individual component yields, can identify plants that may not be used to their full potential.

#### Last month's gas throughput (MMcf/d)

SHOWING TOP 20 IN PLANT NAME



# Last Month's Throughput



#### Ethane Liquid Yield by Product









# Dashboard 2

# Greenhouse Gas Emissions Dashboard



# Greenhouse Emissions Monitoring

This dashboard provides an in-depth analysis of greenhouse gas emissions across multiple facilities in the oil and gas sector. It allows us to identify high-emission sites, analyze methane leakage and flaring inefficiencies, and compare emissions intensity across different locations.

#### Components:

- Geographic Emissions Overview (Map)
- Key Performance Indicators (KPIs)
- Flaring Inefficiency Analysis
- Methane Leakage Rate Analysis
- Emissions Breakdown by Facility



#### Dashboard 2 - Key Features

#### Geographic Emissions Overview:

- A geospatial bubble map displaying total greenhouse gas (GHG) emissions (CO<sub>2</sub>e) by facility location.
- Bubble size represents total emissions, and colors differentiate companies or facility types.
- Clicking on a facility dynamically filters the entire dashboard, updating other charts to focus on that specific site.
- Helps pinpoint emission hotspots and facilities that may require intervention for emission reduction strategies.

#### **Key Performance Indicators:**

- Five large KPI tiles summarizing critical emissions metrics: CO<sub>2</sub> Emissions, CH<sub>4</sub> Emissions, Total Emissions, Flaring Index & Methane Leakage Rate
- Provides an at-a-glance summary of emissions trends across all facilities



## Emissions Breakdown By Facility

- A stacked bar chart displaying emissions composition per facility, segmented by gas type.
- Provides a detailed emissions profile for each facility, helping identify key areas for reduction efforts.



Dashboard 2 - Key Features

#### Flaring Inefficiency Analysis

- A ranked bar chart displaying the Flaring Index for each facility.
- Helps identify plants with poor gas combustion efficiency, enabling targeted solutions like flare gas recovery systems.

#### Methane Leakage Rate Analysis

- A ranked bar chart showing methane leakage rates across facilities.
- Enables early detection of pipeline leaks, reducing both emissions and financial losses.

# Thank You for Your Time!

Github link: https://github.com/muzman123/htc\_case\_comp