学 号: 1221004042

课程报告

题	目	基于python和spark的文本分类
学	院	理学院
专	业	数据科学与大数据技术
班	级	大数据222
姓	名	张徐烨

2025 年 6 月 20 日

摘要

本文针对自然语言处理中的句子级分类任务,采用 BERT 模型进行深层语义特征提取,并结合传统机器学习中的逻辑回归(Logistic Regression, LR)分类器,完成对 GLUE 数据集中的 CoLA 和 SST-2 子任务的建模与评估。通过在 PySpark 框架中构建分布式特征处理与模型训练流程,有效提升了计算效率。在特征工程、参数调优与结构设计方面进行多次优化,使得 CoLA 的 Matthews 相关系数 (MCC) 从初始的 0.22 提升至 0.4067, SST-2 的准确率达到了 86.01%。本文详细介绍数据预处理、特征提取、模型结构、训练优化及评估指标,并分析该模型在实际落地场景下的潜力与扩展。

关键字: BERT; GLUE; Spark; 逻辑回归; Matthews

课程报告

目 录

1	51 目 4	1
2	国内外研究现状	4
3	特征工程	4
	3.1 原始文本表示	4
	3.2 BERT 表达特征	4
	3.3 特征处理方式	4
4	模型结构分析	5
	4.1 总统结构框架	5
	4.2 模型组件说明	6
	4.3 其他优化细节	6
5	数据处理与实验设置	7
	5.1 数据预处理	7
	5.2 内存优化	7
6	实验结果与分析	7
	6.1 CoLA 任务结果	7
	6.2 SST-2 任务结果	8
	6.3 效果分析	8
7	结论与展望	3
参	· 考文献(9

1 引言

随着深度学习的发展,基于 Transformer 的语言模型已成为 NLP 的核心工具。BERT 通过双向 Transformer 编码器,在多个下游任务中表现卓越。然而直接使用 BERT 进行分类面临显存开销大、微调成本高等问题,本文采用轻量级策略,即冻结 BERT 权重,仅使用其提取的句子特征训练传统的 LR 分类器,在保证效果的同时降低训练成本。本研究任务选取了 GLUE 基准中的 CoLA (语法接受性判断)与 SST-2 (情感分析)两个子任务,在 PySpark 分布式环境中结合 BERT 表达能力与逻辑回归的判别性,构建高效的轻量级文本分类系统。

2 国内外研究现状

国外如 Google、Facebook 等机构常采用 BERT + 分类器作为通用微调基线,但多数使用完整 fine-tuning; 国内高校与企业更重视部署效率与轻量模型,常采用冻结 BERT + 简单分类器策略;本文采用方案兼具迁移能力、部署友好、训练可控三者平衡,适合工业实际应用。

3 特征工程

3.1 原始文本表示

- 每个样本为一句英文句子(例如: "Fred watered the plants flat.")。
- CoLA 数据集每条样本标注是否为语法正确(0/1), SST-2 则标注情感极性(0=负面,1=正面)。

3.2 BERT 表达特征

- 使用 bert-base-uncased 作为预训练模型,具体配置:
 - ▶ 12 层 Transformer 编码器
 - ▶ 12 个注意力头
 - ▶ 隐藏层维度 768
 - ▶ 词表大小 30522
 - ▶ 最大序列长度 512

特征提取过程:

- ▶ 批处理大小为 32, 使用 torch.no grad() 节省内存
- ▶ 使用 BERT tokenizer 进行分词,支持自动填充(padding)和截断(truncation)
- ▶ 输入包含 input ids 和 attention mask 两个张量
- ▶ 提取最后一层 [CLS] token 的隐藏状态作为句子表示
- 模型参数保持冻结状态 (model. eval()), 仅作为编码器;
- 除了 BERT 的 [CLS] 向量,还添加了"句子长度"作为一个附加维度,最终特征维度为 769:768(来自 BERT) + 1(长度)。

3.3 特征处理方式

● 特征提取后使用 Pandas 组装为 DataFrame, 并与标签拼接;

- 转换为 Spark DataFrame,并通过 VectorAssembler 转化为向量字段 features;
- 所有特征统一归一化以匹配 LR 假设。

4 模型结构分析

4.1 总统结构框架

1. 输入层

- 输入文本首先通过 BERT Tokenizer 进行分词
- 生成 token IDs 和 attention mask 两个关键张量
- 同时对原始文本进行分词统计,获取长度特征

2. BERT特征提取

- 使用预训练的 BERT-base-uncased 模型
- 12层 Transformer 编码器串联
- 提取最后一层 [CLS] token 的隐藏状态作为句子表示
- 输出维度为 768

3. 特征融合

- 将 BERT 的 [CLS] 向量(768维)与句子长度特征(1维)拼接
- 得到最终的 769 维特征向量

4. 分类器

- 使用 Spark ML 的 LogisticRegression 实现
- 支持 L1/L2 正则化
- 通过 Softmax 输出二分类概率

5. 训练优化

- 3折交叉验证确保模型稳定性
- 网格搜索优化超参数
- 支持 ElasticNet 混合正则化

4.2 模型组件说明

BERT (Bidirectional Encoder Representations from Transformers):

输入处理:

- ▶ 词嵌入层: 将 token ID 转换为 768 维向量
- ▶ 位置编码:添加位置信息

Transformer层:

- ▶ 12个相同的 Transformer 编码器层
- ▶ 每层包含:
- ▶ 12头自注意力机制
- ▶ 残差连接和层归一化
- ▶ 前馈神经网络

分类器结构:

- ▶ 输入: 769维特征向量
- ▶ 权重矩阵: 769 x 2
- ▶ 偏置项:2维
- ➤ Softmax激活输出概率

关键配置:

- ▶ 隐藏层维度: 768
- ▶ 注意力头数: 12
- ➤ Transformer层数: 12

逻辑回归(Logistic Regression):

- CoLA 任务(语法接受性):
 - 参数网格更大,包含:
 - ▶ L2 正则化系数: [0.01, 0.1]
 - ➤ ElasticNet 混合参数: [0.0, 0.5]
 - ▶ 最大迭代次数: [50, 100]
 - ▶ 使用 3 折交叉验证
- SST-2 任务(情感分析):

参数网格较简单:

- ▶ 仅调整 L2 正则化系数: [0.01, 0.1]
- ▶ 固定最大迭代次数: 100
- ▶ 同样使用 3 折交叉验证
- ▶ 任务相对简单,参数空间可以更小

4.3 其他优化细节

- 使用 joblib 持久化最佳模型系数:避免每次推理重新训练;
- 添加 length 特征弥补 BERT 对句法长度的弱敏感性;
- 所有 Spark 表达式使用 cache() 减少数据重复计算。

5 数据处理与实验设置

5.1 数据预处理

CoLA 和 SST-2 数据集均以 TSV 形式提供:

train.tsv: 训练集; dev.tsv: 验证集; test.tsv: 无标签测试集。使用 Pandas 和 PySpark 完成统一格式转换, 字段仅保留 sentence 和 label, 最终保存为 processed_data/{task}_*.tsv。

5.2 内存优化

BERT 特征提取:

- 使用 torch. no_grad() 上下文管理器
- 批处理机制 (batch size=32) 减少内存占用
- 及时将 GPU 张量转移到 CPU 并转换为 NumPy 数组

Spark 配置:

- 使用 6GB 驱动器内存
- 设置本地多线程模式 local[*]

6 实验结果与分析

6.1 CoLA 任务结果

验证集指标如下:

准确率: 0.7680精确率: 0.7719召回率: 0.9431F1分数: 0.8489

● Matthews指数: 0.4067

```
加载 BERT 模型与 Tokenizer from ./bert_model...
任务: COLA | 使用设备: cuda
加载验证集: processed_data/cola_dev.tsv
📊 验证集评估指标:
准确率: 0.7680
精确率: 0.7719
召回率: 0.9431
F1 分数: 0.8489
MCC: 0.4067
分类报告:
            precision
                        recall f1-score
                        0.3758
         0
               0.7469
                                 0.5000
                                             322
                        0.9431
               0.7719
                                 0.8489
                                             721
         1
                                 0.7680
                                            1043
   accuracy
                                            1043
               0.7594
                        0.6595
                                 0.6745
  macro avg
weighted avg
               0.7642
                        0.7680
                                 0.7412
                                            1043
加载待预测文本: processed_data/cola_test.tsv
预测结果保存到: cola_test_pred.tsv
```

6.2 SST-2 任务结果

验证集指标如下:

准确率: 0.8601精确率: 0.8531召回率: 0.8761F1分数: 0.8644

● Matthews指数: 0.7202

6.3 效果分析

- 原始版本中仅使用 BERT + LR 且未调参时, CoLA 任务 MCC 仅为 0.22 左右;
- 添加 length 特征、进行特征标准化和正则调参后提升至 0.4067,增幅达 +18%;
- SST-2 原本准确率仅 80%左右,优化后达到 86.01%。

7 结论与展望

本文通过构建 BERT 特征提取器与 PySpark 中的逻辑回归分类器,成功实现了对 CoLA 与 SST-2 两个文本分类任务的建模与评估,取得了令人满意的结果。

优点:

- 利用预训练模型提取深层语义特征,增强泛化能力;
- 结合分布式计算加速训练与特征处理;
- 参数少,部署成本低,适合轻量场景。

局限性:

- 仍依赖 BERT 模型加载,推理耗时相较传统方法较高;
- 不支持多类别或多标签扩展,需进一步改造;
- 无法端到端训练,存在误差传播风险。

展望:

- 尝试使用 BERT 其他层的输出特征
- 添加更多语言学特征(如词性、句法树等)

- 尝试其他预训练模型(如 RoBERTa、ALBERT 等)
- 研究不同的分类器组合(如 SVM、随机森林等)
- 实现模型的增量训练
- 添加文本预处理和后处理模块

参考文献

- [1] 胡健. 基于Spark的中文文本情感分析研究[D]. 景德镇陶瓷大学, 2023. DOI:10. 27191/d. cnki. gjdtc. 2023. 0000 89.
- [2] 崔金英, 周芸竹. 基于BERT模型的文献自动分类研究[J]. 数字与缩微影像, 2025, (02):1-4.
- [3] 李卓冉. 逻辑回归方法原理与应用[J]. 中国战略新兴产业, 2017, (28):114-115. DOI:10. 19474/j. cnki. 10-1156/f. 001686.