Week 7 – Network Layer Contd

Internet Technologies COMP90007

How does IP datagram look then

 IPv4 (Internet Protocol) header is carried on all packets and has fields for the key parts of the protocol

IPv4 Datagram Structure in Detail

- IPv4 datagram consists of a header and some text
- Header is 20 byte fixed part + variable length optional part
- Version: IPv4 or IPv6
- IHL: Header Length in 32bits units, min 5 and max is 15
- Type: differentiates different classes of service
- Total Length: header and payload, maximum length 65535 bytes
- Identification: allows host to determine which datagram the new fragment belongs to - all fragments of same datagram have same ID
- DF: Don't Fragment byte
 - Originally, it was intended to support hosts incapable of putting the pieces back together again.
 - Now it is used as part of the process to discover the path MTU, which is the largest packet that can travel along a path without being fragmented.

IPv4 Datagram Structure in Detail (continued)

- MF: More Fragment byte are there more or is this the last one
- Fragment offset: where in the datagram the current fragment belongs
- TTL: limits packet lifetimes hops or seconds
- Protocol: TCP, UDP, others...
- Header Checksum: Verifies the header only
- Source Address: IP host/network
- Destination Address: IP host/network
- Options: eg., security options, timestamping by routers if need be, etc.

Other Protocols to Consider: Internet Control Protocols

- IP works with the help of several control protocols:
 - ICMP is a companion to IP that returns error info to source
 - Required, and used in many ways at routers, e.g., for traceroute
 - ARP (Address Resolution Protocol)
 - Finds MAC address of a local IP address
 - Glue that is needed to send IP packets
 - E.g. over Ethernet query an address and the owner replies
 - DHCP assigns a local IP address to a host
 - Gets host started by automatically configuring it
 - Host sends request to server, which grants a lease

Remaining Considerations

- Congestion Control Algorithms
- Quality of Service (QoS) Guarantees

- Handling these is the responsibility of the Network and Transport layers working together
- We go back to these after looking into the Transport Layer

Transport Layer

Internet Technologies COMP90007

Reading

- Please read Chapter 6 from the book
 - □ This is a long chapter, selective reading is needed
 - Please read algorithms we see in this chapter more carefully then others

Transport Layer Function

- Main function
 - provide <u>efficient, reliable</u> & cost-effective data transmission service to the processes in the application layer...independent of physical or data networks
- Recall: To Achieve this
 - It calls services provided by the Network layer

Transport Layer Services

- Transport Layer Services provide interfaces between the <u>Application Layer and the Network Layer</u>
- Transport Entities (the hardware or software which actually does the work) can exist in multiple locations
- Where are these entities and where it should not be (but sometimes is)?
 - OS kernel
 - System library (library package bound into network applications)
- Not so much...
 - User process
 - Network interface card

Services Contd.

- Transport layer adds <u>reliability</u> to the network layer
 - Also offers connectionless (e.g., UDP) service in addition to famous <u>connection-oriented</u>/TCP services to applications
- Relationship between network, transport and application layers:

Transport Layer and Network Layer Services Comparison

- Transport and Network layers are very similar in many ways but why two layers then
- Transport layer code runs entirely on hosts,
 Network layer code runs almost entirely on routers
- Transport layer fixes reliability problems
 caused by the Network layer (e.g., delayed, lost
 or duplicated packets)
- Users have no real control over the network
 layer Transport layer: we can improve QoS

Position of the Transport Layer

- The Transport Layer occupies a key position in the layer hierarchy because it clearly delineates
 - providers of data transmissions services
 - at the network, data link, and physical layers
 - users of reliable data transmission services
 - at the application layer
- In particular, users commonly access connection-oriented transport services for a reliable service on top of an unreliable network
- And we commonly write programs at this layer