

OTIMIZAÇÃO COM ALGORITMO GENÉTICO

Estudo na Função N°2 de Schaffer

Aluno: Pedro Henrique do Vale Guimarães

Professor: Dr. Roberto Célio Limão de Oliveira

SUMÁRIO

- 01. INTRODUÇÃO
- 02. OBJETIVOS
- **03.** AMBIENTE E BIBLIOTECAS
- 06. EVOLUÇÃO DO MELHOR INDIVÍDUO
- 07. MATRIZ DE EVOLUÇÃO DO GENE
- 08. GRÁFICO DE CONVERGÊNCIA
- 09. DESEMPENHO COMPUTACIONAL

01 Introdução

- O que é otimização?
 - o Problema em que se busca a melhor solução dentre as todas as viáveis
- Algoritmo Genético
 - Meta-heurística classica para busca em espaços complexos
 - o Inspirada nas leis da genética de Mendel e na teoria da evolução de Darwin
- Avaliação de desempenho
 - Funções complexas podem avaliar desempenho do algoritmo ao lidar com muitos mínimos locais e poucos globais

Situação Problema

$$f(x,y) = 0.5 + \frac{\left(\sin\sqrt{(x^2 + y^2)}^2 - 0.5\right)}{\left[1.0 + 0.001(x^2 + y^2)\right]^2}$$

- Função N° 2 de Schaffer (ou F6):
 - Mono-objetiva,
 - Bidimensional (x, y)
 - Domínio de x,y em [-100, 100]
 - \circ Máximo global em f(0,0) = 1
 - Tipo multimodal, contínua, sem restrições
 - o Padrão de vales e picos oscilantes concêntricos

03 Objetivos

- Executar um algoritmo genético para buscar o ótimo global da F6
 - Utilizar representação binária com 5 casas decimais de precisão para x e y;
 - o Rodar 500 gerações, com população de 500 indivíduos, sem elitismo
 - o Implementar taxa de cruzamento de 80% e taxa de mutação de 1%;
 - Utilizar seleção por Roleta e cruzamento de um ponto de corte;
 - Realizar 32 rodadas do algoritmo para avaliar efeito da aleatoriedade no resultado;
- Gerar visualizações para avaliar o progresso e desempenho do algoritmo
 - o Animar o movimento do melhor indivíduo pelo espaço de busca ao longo das gerações;
 - Plotar a matriz de genes do melhor indivíduo ao longo das gerações;
 - o Gerar o gráfico de aptidão média e desvio padrão ao longo das gerações;
 - o Avaliar o tempo, CPU e RAM consumidos ao longo das gerações;

Ambiente e Bibliotecas

- Ambiente utilizado para execução
 - Notebook: Acer Aspire VX 15;
 - Processador Intel Core i5 de 4 núcleos de 2,50GHz;
 - 16 GB de mémoria RAM.
 - Programação em Python 3.11
 - Ambiente virtual com bibliotecas pelo sistema de pacotes Conda
- Bibliotecas utliizadas
 - Numpy, Pandas operações de dados
 - o Matplotlib, seaborn, opency visualização de resultados
 - os, time, glob, pickle, psutil armazenamento e funções de sistema

Ambiente e Bibliotecas

- Ambiente utilizado para execução
 - Notebook: Acer Aspire VX 15;
 - Processador Intel Core i5 de 4 núcleos de 2,50GHz;
 - 16 GB de mémoria RAM.
 - Programação em Python 3.11
 - Ambiente virtual com bibliotecas pelo sistema de pacotes Conda
- Bibliotecas utliizadas
 - Numpy, Pandas operações de dados
 - o Matplotlib, seaborn, opency visualização de resultados
 - os, time, glob, pickle, psutil armazenamento e funções de sistema

Evolução do Melhor indivíduo

Matriz de Evolução do Gene

Gráfico de Convergência

Desempenho Computacional

Obrigado!

pedro.guimaraes@itec.ufpa.br

GitHub

