

Régression Linéaire

MAP 433

PC₆

MAP433 Régression Linéaire PC6 1 / 25

Quels métiers en Mathématiques Appliquées?

The worst and best jobs in 2014 (from CareerCast, 2014)

The Best	The Worst
Mathematician	200. Lumberjack
University Professor	199. Newspaper Reporter
Statistician	198. Enlisted Military
	Personnel
4. Actuary	197. Taxi Driver
5. Audiologist	196. Broadcaster

Un panorama partiel des metiers en Mathématiques Appliquées

Secteur	Exemples d'employeurs	Métiers
Business Analytics et optimisation de la production	Cabinets de consultants (Capgemini, Accenture, etc), PME / start-up (fifty-five, vertica, Mu Sigma, Eurodecision, MFG labs, Palantir, spatialytics, etc) la plupart des grands groupes (en interne)	Marketing Gestion des ressources (approvisionnement, ressources humaines) Gestion des tarifications Optimisation de la conception et des procédés Recherche opérationnelle
Services web et logiciels	Services web (Google, Yahoo, etc), Logiciels (Microsoft, IBM, Dassault-system, Xerox, etc) SSII et start-up (IBM, Logica, CSC, GFI informatique, etc) Paiement electronique (Visa, E-commerce, etc)	Moteurs de recherche, fonctionnalités web, etc Logiciels génériques ou solutions spécialisées Cryptographie (services sécurisés)
R&D réseaux et communication	Opérateurs mobile (Orange, Bouygues, Free, SFR, etc), Constructeurs (Alcatel-Lucent, Huawei, Ericsson, Sagem, etc),	Planification réseaux Prospective technologie et équipements Qualité de service
Analyste statisticien	Industrie pharmaceutique (Sanofi, Servier, etc), Blointelligence, Toutes les branches de l'industrie / agroalimentaire, Organismes parapubliques (sécurité sanitaire, surveillance d'épidémie / pollution, services sociaux et de santé, etc)	Biostatistiques Production d'indices et prévision (trafic, consommation, ozone, coûts, marché, etc)
R&D signal & images	Thales, Safran, Dassault-system, Matra, General Electric, etc	Traitement du signal et images Guidage et contrôle Imagerie médicale
R&D énergie, transport et	RTE, EDF, Areva, Veolia, SNCF, Schlumberger, Industrie pétrolière (Total, etc), Michelin, Renault, PSA, EADS, Dassault-	Analyse, prévision, prospective Gestion des risques Modélisation, dimensionnement

La régression linéaire: Théorie

PC6

Le modèle de régression

Observations

- Réponse: $y_1, \ldots, y_n \in \mathbb{R}$,
- Covariables: $x_1, \ldots, x_n \in \mathbb{R}^k$.

Modèle de régression

$$y_i = r(x_i) + \xi_i$$
 où $\mathbb{E}(\xi_i) = 0$.

Régression Linéaire

$$y_i = x_i^T \theta + \xi_i$$
 où $\theta \in \mathbb{R}^k$.

◆□ → ◆同 → ◆ □ → □ → ○○○

MAP433

Estimateur des moindres carrés

Modèle linéaire

Modèle: $r(x) = x^T \theta$ donc

$$Y = X\theta + \xi$$
 où $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}$ et $\xi = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$.

Estimateur des moindres carrés

$$\hat{\theta}_{\mathrm{MC}} = \operatorname*{argmin}_{\theta \in \mathbb{R}^k} \| Y - X\theta \|^2$$

Formules:

$$X\hat{\theta}_{\mathrm{MC}} = \mathrm{Proj}_{\mathrm{Im}(X)}(Y) \quad \mathrm{et} \quad \hat{\theta}_{\mathrm{MC}} = (X^TX)^{-1}X^TY.$$

<□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

5 / 25

MAP433 Régression Linéaire PC6

Cas Gaussien

Cas gaussien et design fixe

Si $\xi_i \sim \mathcal{N}(0, \sigma^2)$, x_i déterministes et $\hat{\theta}$ estimateur des MC on a:

$$\hat{\sigma}^2 = \frac{1}{n-k} \|Y - X\hat{\theta}\|^2$$
 vérifie $\mathbb{E}(\hat{\sigma}^2) = \sigma^2$

et

$$\frac{\hat{\theta}_j - \theta_j}{\sqrt{\hat{\sigma}^2[(X^TX)^{-1}]_{jj}}} \sim \mathrm{Student}(n-k) := \frac{\mathcal{N}(0,1)}{\sqrt{\frac{\chi^2(n-k)}{n-k}}}.$$

Cas non gaussien: approximativement vrai pour n grand.

t-value:
$$\hat{T}_j = \hat{\theta}_j / \sqrt{\hat{\sigma}^2[(X^TX)^{-1}]_{jj}}$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♡

PC6

6 / 25

MAP433 Régression Linéaire

La régression linéaire: un exemple

7 / 25

Logiciel d'analyse

Analyses réalisées avec R : c'est le logiciel standard en statistiques:

- gratuit! http://cran.r-project.org/
- partage de packages par toute la communauté stat :
 - principales analyses prêtes à l'emploi
 - accès aux procédures "état de l'art"
- défaut principal : aide en ligne peu performante. Pour apprendre : http://cran.r-project.org/doc/manuals/R-intro.pdf

Références

- Code R des analyses téléchargeable sur ma page web
- Livre: Régression avec R de Cornillon & Matzner-Lober

8 / 25

MAP433 Régression Linéaire PC6

Data

Données "ozone"

Relevés d'ozone (O3) et de covariables (Temperature, Nébulosité, Vent, etc) par l'association "Air Breizh".

- > load("ozone.Rdata")
- > dim(ozone)

50 10

> head(ozone)

О3	T12	T15	Ne12	N12	S12	E12	W12	Vx	O3v
63.60	13.40	15.00	7	0	0	3	0	9.35	95.60
89.60	15.00	15.70	4	3	0	0	0	5.40	100.20
79.00	7.90	10.10	8	0	0	7	0	19.30	105.60
81.20	13.10	11.70	7	7	0	0	0	12.60	95.20
88.00	14.10	16.00	6	0	0	0	6	-20.30	82.80
68.40	16.70	18.10	7	0	3	0	0	-3.69	71.40

9 / 25

Régression linéaire

```
> reg1 <- lm(03~.,data=ozone)
> names(reg1)
"coefficients" "residuals" "effects" "rank" "fitted.values"
"assign" "qr" "df.residual" "xlevels" "call" "terms" "model"
> reg1$coefficients
```

variable	Estimator
(Intercept)	54.7278
T12	-0.3518
T15	1.4972
Ne12	-4.1922
N12	1.2755
S12	3.1711
E12	0.5277
W12	2.4749
Vx	0.6077
O3v	0.2454

Inspection des résidus (1/4)

Distribution des résidus?

Les résidus $\hat{\xi} = Y - X\hat{\theta}$ sont donnés par

> reg1\$residuals

On peut tracer un histogramme des résidus

> hist(reg1\$residuals)

Histogram of reg1\$residual

Histogramme des résidus

11 / 25

MAP433 Régression Linéaire PC6

Inspection des résidus (2/4)

Quantiles

Le q-quantile de la loi de X est x_q tel que

$$x_q = \min\{x : \mathbb{P}(X \le x) \ge q\}$$

Normalité des résidus?

Le Q-Q Plot permet de comparer les quantiles des résidus avec les quantiles d'une loi gaussienne

> qqnorm(reg1\$residuals)

Normal Q-Q Plot 30 20 Sample Quantiles 10 0 -10 20

Theoretical Quantiles

12 / 25

Inspection des résidus (2bis/4)

Renormalisation

On a $\hat{\xi} = (I - P)\xi$ avec P est la matrice de projection sur l'image de X.

Donc si ξ_1, \ldots, ξ_n i.i.d. de loi $\mathcal{N}(0, \sigma^2)$, les résidus $\hat{\xi}_j$ ont pour loi $\mathcal{N}(0, (1 - P_{jj})\sigma^2)$.

Normalité du bruit?

Il faut regarder le Q-Q Plot des résidus renormalisés

$$ilde{\xi}_j = (1 - P_{jj})^{-1/2} \hat{\xi}_j$$

qui ont pour loi $\mathcal{N}(0, \sigma^2)$.

Inspection des résidus (3/4)

La variance dépend-elle du signal?

- > plot(reg1\$fitted.values,abs(reg1\$residuals), col=2)
- > lines(lowess(reg1\$fitted.values,abs(reg1\$residual),f=0.7))

Homoscédasticité des résidus

Inspection des résidus (4/4)

Structuration temporelle des résidus?

- > plot(reg1\$residual,col=2)
- > lines(lowess(reg1\$residual,f=0.7),lty=2)

Petite autocorrélation des résidus

Résultats complets

> summary(reg1)

	Estimate	Std. Error	t-value	Pr(> t)	
(Intercept)	54.7278	17.2789	3.17	0.0029	**
T12	-0.3518	1.5731	-0.22	0.8242	
T15	1.4972	1.5377	0.97	0.3361	
Ne12	-4.1922	1.0638	-3.94	0.0003	***
N12	1.2755	1.3632	0.94	0.3551	
S12	3.1711	1.9108	1.66	0.1048	
E12	0.5277	1.9427	0.27	0.7873	
W12	2.4749	2.0720	1.19	0.2393	
Vx	0.6077	0.4858	1.25	0.2182	
O3v	0.2454	0.0965	2.54	0.0150	*

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Seules les variables Ne12 et O3v semblent pertinentes !

MAP433 Régression Linéaire PC6 16 / 25

Régression modèle réduit

Modèle réduit:

régression de O3 par rapport aux variables Ne12 et O3v

- > reg2 <- lm(03~Ne12+03v,data=ozone)</pre>
- > summary(reg2)

	Estimate	Std. Error	t-value	Pr(> t)	
(Intercept)	85.0203	11.0943	7.66	0.0000	***
Ne12	-5.4801	0.9102	-6.02	0.0000	***
O3v	0.3416	0.0925	3.69	0.0006	***

Inspection des résidus du modèle réduit

Et quid d'un modèle intermédaire?

Modèle intermédiaire:

- > reg3 <- lm(03~T15+Ne12+Vx+03v,data=ozone)</pre>
- > summary(reg3)

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	61.8252	14.8972	4.15	0.0001	***
T15	1.0577	0.4522	2.34	0.0239	*
Ne12	-3.9935	1.0072	-3.97	0.0003	***
Vx	0.3146	0.1608	1.96	0.0566	
O3v	0.2629	0.0922	2.85	0.0065	**

Certaines variables déclarées non-importantes dans le modèle complet, sont déclarées importantes dans le modèle intermédiaire...

Quel modèle choisir?

Sélection de modèle

Notations

On associe à chaque sous-ensemble m de variables

- $\widehat{\theta}_m$ obtenu par la régression de O3 par rapport aux variables dans m.
- $\mathcal{L}(m) = \text{la log-vraisemblance de } \widehat{\theta}_m$.

Critères classiques

Choix de \widehat{m} vérifiant

$$\widehat{m} \in \underset{m}{\operatorname{argmin}} \left\{ -2\mathcal{L}(m) + \lambda \operatorname{Card}(m) \right\}$$
 avec

critère AIC : $\lambda_{AIC} = 2$

critère BIC: $\lambda_{BIC} = \log(n)$

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P

MAP433

Sélection de modèle : cadre gaussien

Cadre gaussien: $-2\mathcal{L}(m) = n \log(\|Y - X\widehat{\theta}_m\|^2) + \dots$

Critère AIC et BIC: cadre gaussien

$$\widehat{m} \in \operatorname*{argmin}_{m} \left\{ n \log(\|Y - X\widehat{\theta}_{m}\|^{2}) + \lambda \operatorname{Card}(m) \right\}$$
 avec

AIC: $\lambda_{AIC} = 2$

BIC: $\lambda_{BIC} = \log(n)$

Attention!

AIC et BIC sont très utilisés, mais leur justification est asymptotique: valables uniquement dans le cas $n \gg k$

où n = taille d'échantillon et k = nombre de variables

Une analyse non-asymptotique donne le choix: $\lambda \approx 1 + 2 \log(k)$

<□ > <⊡ > < ≣ > < ≣ > < ∃ ≥ < 9 < €

Sélection de modèle avec BIC

> library(leaps)
> sel<-regsubsets(03~.,method="exhaustive",data=ozone)
> par(mfrow=c(1,2))
> plot(summary(sel)\$bic,xlab="dimension",col=2)
> plot(sel)

Régression partielle (1/3)

Questions

- le modèle linéaire par rapport à la variable j est-il raisonnable?
- quelle est l'influence de la variable *j*?

Régression partielle par rapport à la variable j

Si
$$Y = \sum_k \theta_k X_k + \xi$$
 alors

$${\sf Im}(Y\sim -j)$$
\$residuals = $heta_j$ ${\sf Im}(j\sim -j)$ \$residuals + ${\sf Im}(\xi\sim -j)$ \$residuals

Cette relation permet d'inspecter graphiquement la relation de linéarité entre Y et X_i

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへで

23 / 25

MAP433 Régression Linéaire PC6

Régression partielle (2/3)

Régression partielle par rapport à Ne12:

- > PartialRes <- lm(03~T15+Vx+03v,data=ozone)\$residuals
- > PartialNe12 <- lm(Ne12~T15+Vx+03v,data=ozone)\$residuals
- > plot(PartialNe12,PartialRes, col=2)
- > lines(lowess(PartialNe12,PartialRes,f=0.7), lty=2)

Régression partielle (3/3)

Régression partielle par rapport à T15:

- > PartialRes <- lm(03~Ne12+Vx+03v,data=ozone)\$residuals
- > PartialT15 <- lm(T15~Ne12+Vx+O3v,data=ozone)\$residuals
- > plot(PartialT15,PartialRes, col=2)
- > lines(lowess(PartialT15,PartialRes,f=0.7), lty=2)
- > plot(03~T15,data=ozone,col=2)
- > lines(lowess(ozone[c("T15","03")],f=0.7), lty=2)

MAP433