1

a) $f(x) = x^{p}, \forall x \in (0, \infty), p \ge 1$ $f'(x) = px^{p-1}, f''(x) = p(p-1)x^{p-2}$

 $p\geq 1$, takže $p(p-1)\geq 0$ a zároveň $\forall x\in (0,\infty): x^{p-2}>0 \implies \forall x\in (0,\infty): f''(x)\geq 0$. Interval $(0,\infty)$ je konvexní množina. Takže je funkce f konvexní.

b) Zvolme $x,y\in[0,\infty)$ a $\theta\in[0,1]$. Pokud x=y=0, tak je konvexita zřejmá. Pokud $x,y\in(0,\infty)$, tak konvexita plyne z a). Zbývá tedy případ, kdy BÚNO $x\in(0,\infty),y=0$.

$$g(\theta x + (1 - \theta)y) = (\theta x + (1 - \theta)y)^p = (\theta x)^p = \theta^p x^p \stackrel{\theta \in [0,1]}{\leq} \theta x^p = \theta g(x) + (1 - \theta)g(y)$$

 $[0,\infty)$ je konvexní množina. Takže g je konvexní funkce na $[0,\infty)$.

2

Podmínku můžeme alternativně vyjádřit: $x, -x \succeq_K 0 \iff x, -x \in K$. \Rightarrow : Máme tedy x tž. $x, -x \in K$. K je kužel, takže platí: $\forall \lambda \in [0, \infty] : \lambda x \in K, \lambda(-x) \in K \iff \forall \lambda \in \mathbb{R} : \lambda x \in K$. Pokud $x \neq 0$, tak $\{\lambda x, \forall \lambda \in \mathbb{R}\}$ je přímka. K nesmí obsahovat přímky, takže musí platit x = 0. \iff : $x = 0 \implies x = -x = 0$. K je kužel, neboli obsahuje počátek $(x, -x \in K)$.

3

f je afinní neboli $\exists A \in \mathbb{R}^{n \times k}, b \in \mathbb{R}^n, \forall x \in \mathbb{R}^k : f(k) = Ak + b$. Chceme dokázat, že $f^{-1}(X)$ je konvexní. Tedy zvolme $\lambda \in [0,1], c,d \in f^{-1}(X)$ a ukážeme $\lambda c + (1-\lambda)d \in f^{-1}(X) \iff \exists p \in X : f(\lambda c + (1-\lambda)d) = p$. Jelikož $c,d \in f^{-1}(X) \implies \exists k,l \in X : f(c) = k, f(d) = l$. X je konvexní, takže $\lambda k + (1-\lambda)l \in X$.

$$f(\lambda c + (1 - \lambda)d) \stackrel{def,zobr.}{=} A(\lambda c + (1 - \lambda)d) + b = \lambda Ac + Ad - \lambda Ad + b =$$

$$= \lambda Ac + Ad - \lambda Ad + b + \lambda b - \lambda b = (Ad + b) + \lambda (Ac - Ad + b - b) \stackrel{substituce}{=} l + \lambda (k - l) = \lambda k + (1 - \lambda)l \in X$$

Našli jsme $p := \lambda k + (1 - \lambda)l$.

4

Z lineární algebry víme, že každá reálná pozitivně semidefinitní matice je ortogonálně diagonalizovatelná a má nezáporná vlastní čísla. Pokud tedy $A \in \mathbb{R}^{n \times n}, A \in S^n_+$, tak existují matice $R, D \in \mathbb{R}^{n \times n}$ takové, že R je ortonormální a D je diagonální s nezápornými prvky na hlavní diagonále a platí $A = RDR^T$. Z definice násobení matic vidíme, že jako λ_i položíme i. prvek na diagonále D a jako v_i položíme i. řádek matice R.