H4:	Eai	itan
H4:	FOI	JTEN

4.1 het centrale limiet theorema

4.1.1 som van onafhankelijke variabelen

Gauss in discrete exp.

Gooi een dobbelsteen

> kans op elk nummer is:

$$p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = \frac{1}{6}$$

gooi nu twee dobbelstenen gelijk

> hoe vaker je gooit hoe meer de distributie een Gauss benaderd

4.1.2 het centrale limiet theorema

theorem: centrale limiet theorema 4.1.1

Als we de som X maken van N onafhankelijke variabelen x_i met i = 1,2,...,N > stel dat die elk afkomstig zijn van een verdeling met gemiddelde μ_i en standaardafwijking σ_i

> dan geldt voor de verdeling van X:

1. ze een verwachtingswaarde heeft

$$\langle X \rangle = \sum_{i=1}^{N} \mu_i$$

2. ze een variantie heeft

$$V(X) = \sum_{i=1}^{N} V_i = \sum_{i=1}^{N} \sigma_i^2$$

3. ze Gaussisch wordt als $N \longrightarrow \infty$

stelling: centrale limiet bij afh. vars.

Als de variabelen niet onafhankelijk verdeelt zijn

> dan geldt in 4.1.1 stelling 1 wel, maar niet 2

4.2 werken met fouten

4.2.1 waarom één meting altijd fout is

fouten in exp.

metingen verkrijgen fouten van vele verschillende fouten

> onvolkomenheden van metingen komen niet van één effect, maar meerdere

> CLT is perfect van toepassing

4.2.2 fouten op herhaalde metingen

Som van herhaalde metingen

meet eenzelfde grootheid X meerdere malen

> CLT toepassen in eenvoudigste vorm

nl: alle μ_i zijn gelijk μ en alle σ_i zijn gelijk σ

> verwachtingswaarde op de som S_N van N metingen:

$$\langle S_N \rangle = \sum_N \mu = N\mu$$

gemiddelde op herhaalde metingen

De verwachtingswaarde van het (ongekende) gemiddelde $\bar{x} \equiv \frac{S_N}{N}$ is dan

$$\langle \bar{x} \rangle = \mu$$

onderscheid X en ¯x¯	Theoretische verwachtingswaarde is <x></x>
ondersencia X en X	Experimentele verwachtingswaarde is < x >
	> afhankelijk van statistische fluctuaties
stelling: variantie van x̄	Indien de metingen onafhankelijk zijn
	> variantie van \bar{x} is dan:
	$V(\bar{x}) = \frac{\sigma^2}{N}$
	geeft ger verschil tss je meting x̄ en de 'ware' waarde μ
4.2.3 gewogen gemiddelde	
def: gewogen gemiddelde	Voor N metingen van dezelfde grootheid met elk een fout σ_{i}
	> het juiste gemiddelde is het gewogen gemiddelde:
	$\sum_{i}^{N} \frac{x_i}{\frac{1}{2}}$
	$\bar{x} = \frac{\sum_{i}^{N} \frac{x_i}{\sigma_i^2}}{\sum_{i}^{N} \frac{1}{\sigma_i^2}}$
stelling: resolutie gewogen gem.	= de noemer: 1
	$V(\bar{x}) = \frac{1}{\sum_{i}^{N} \sigma_{i}^{-2}}$
	4.3 fouten combinatie
4.3.1 één variabele	
stelling: variantie toevallige var.	De variantie ve toevallige variabele fx uit een lin. functie f = aX+b ve toev. var. X is:
	$V(f_X) = a^2 V(X)$
	Dit kan ook geschreven worden in termen van de standaardafwijking als:
	$\sigma_f = a \sigma_x$
stelling: variantie ve functie	voor een algemene functie f(X) ve toev. var X met een kleine variantie V(x) geldt:
	$V(f) \sim \left(\frac{df}{df}\right)^2 V(g)$
	$V(f) pprox \left(rac{df}{dx} ight)^2 V(x)$
stelling: afhankelijkheid van de	De correlatie coëfficiënt tss de toev. var X en een lin. ftie $fx = f(X) = aX + b$ ervan
correlatie coëfficiënt	$>$ is onafhankelijk van σ_x en is altijd +-1
4.3.2 twee variabelen	T
stelling: variantie ftie twee variabelen	Zei $f(X,Y) = aX + bY + c$ een lineaire functie van twee toev. vars. X en Y Zei $V(X)$ en $V(Y)$ de varianties van X en Y
	> dan heeft de functie een variantie:
	$V(f) = a^2V(X) + b^2V(Y) + 2ab \operatorname{cov}(X, Y)$
variantie som en verschil	Door kwadratische aard van de stelling geldt er:
	V(X - Y) = V(X) + V(Y) = V(X + Y)
stelling: variantie algemene ftie twee variabelen	Zei $f(X,Y)$ een algemene functie van twee toevallige variabelen X en Y Zei σ_x^2 en σ_y^2 hun varianties
	> dan geldt:
	$\sigma_f^2 = \left(\frac{df}{dx}\right)^2 \sigma_x^2 + \left(\frac{df}{dy}\right)^2 \sigma_y^2 + 2\left(\frac{df}{dx}\right) \left(\frac{df}{dy}\right) \rho \sigma_x \sigma_y$
	waarbij de afgeleiden weer geëvalueerd worden bij de echte of gemeten waarden $\left(x,y\right)$
	1

4.3.3 de wet van foutenpropagatie	1	
stelling: variantie algemene functie in m toevallige variabelen	Zei $f(\mathbf{X})$ een functie van m toev. variabelen $\mathbf{X} = \{X_{(1)},,X_{(m)}\}$	
	> dan geldt:	
	$V(f) = \sum_{p=1}^{m} \left(\frac{\partial f}{\partial X_{(p)}}\right)^{2} V(X_{(p)}) + \sum_{p} \sum_{q \neq p} \left(\frac{\partial f}{\partial X_{(p)}}\right) \left(\frac{\partial f}{\partial X_{(q)}}\right) \operatorname{cov}(X_{(p)}, X_{(q)})$	
	of in matrixvorm:	
	$V_f = \left(rac{\partial f}{\partial X_{(1)}} rac{\partial f}{\partial X_{(2)}} \cdots rac{\partial f}{\partial X_{(m)}} ight) \mathbf{V}_X \left(egin{matrix} \partial_{X_{(2)}} f \ \partial_{X_{(2)}} f \ dots \ \partial_{X_{(m)}} f \end{matrix} ight)$	
	met $\mathbf{V}_{\mathbf{X}}$ de covariantiematrix	
th: wet van de foutenpropagatie	Zei $f(\textbf{X})$ een algemene functie van m onafhankelijke toev. variabelen Zei σ_i de respectievelijke fout van elke variabele	
	> f heeft een variantie:	
	$\sigma_f^2 = \left(\frac{df}{dx_1}\right)^2 \sigma_1^2 + \left(\frac{df}{dx_2}\right)^2 \sigma_2^2 + \dots + \left(\frac{df}{dx_m}\right)^2 \sigma_m^2$	
4.3.4 correlatie tss functies van multic	limensionale variabelen	
herhaling covariantie	als er m variabelen zijn: $\mathbf{x} = \{x_{(1)},,x_{(m)}\}$ (waarbij de haakjes aanduiden dat het gaat om m elementen in één enkele meting) > covariantie tss twee variabelen in een steekproef is dan:	
	$cov(x_{(i)}, x_{(j)}) = \overline{x_{(i)}} \overline{x_{(j)}} - \overline{x_{(i)}} \overline{x_{(j)}}$	
	dit is precies hetzelfde voor twee ars met een gemeenschappelijke verdeling $P(X_{(1)},X_{(2)},\dots,X_{(m)})$	
	$cov(X_{(i)}, X_{(j)}) = \langle X_{(i)} X_{(j)} \rangle - \langle X_{(i)} \rangle \langle X_{(j)} \rangle$ = $\langle X_{(i)} X_{(j)} \rangle - \mu_i \mu_j$	
	waarbij μ_i identiek is aan de verwachtingswaarde $< X_{(i)} >$. Dit zijn de elementen van de <i>covariantie matrix</i> , ook bekend als de foutenmatrix $\mathbf V$ waarbij $V_{ij} = \mathrm{cov}(X_{(i)}, X_{(j)})$.	
	De diagonaalelementen zijn precies de varianties: $V_{ii} = \mathrm{cov}(X_{(i)}, X_{(i)}) = \sigma_i^2.$	
	de <i>correlatiematrix</i> is het dimensieloze equivalent:	
	$\rho_{ij} = \frac{\text{cov}(X_{(i)}, X_{(j)})}{\sigma_i \sigma_i}$	
	> geeft aan hoe sterk twee vars gecorreleerd zijn	
stelling: covariantie tss functies	Zei $f_1(X_{(1)},,X_{(m)})$ en $f_2(X_{(1)},,X_{(m)})$ twee functies met m variabelen	
	> de covariantie is dan:	
	$cov(f_1, f_2) = \sum_{p=0}^{m} \sum_{q=0}^{m} \left(\frac{\partial f_1}{\partial X_{(p)}}\right) \left(\frac{\partial f_2}{\partial X_{(q)}}\right) cov(X_{(p)}, X_{(q)})$	
def: covariantiematrix tss k functies	De covariantiematrix tss k functies $\mathbf{f} = \{f_1,, f_k\}$ van m vars $\mathbf{X} = \{X_{(1)},, X_{(m)}\}$ is:	
	$\mathbf{V_f} = \mathbf{G}\mathbf{V_x}\mathbf{ ilde{G}}$	
	waar $\mathbf{V_X}$ en $\mathbf{V_f}$ foutenmatrices zijn van X en f en \mathbf{G} is de Jacobi-matrix:	
	$\mathbf{V_f}: V_{pl} = cov(f_p, f_l) \qquad \mathbf{V_X}: V_{ij} = cov(X_{(i)}, X_{(j)}) \qquad \mathbf{G}: G_{pi} = \left(\frac{\partial f_p}{\partial X_{(i)}}\right)$	

stelling: fractionele fout Voor producten en quotienten worden de fractionele fouten kwadratisch opg	
	$\left(\frac{\sigma_f}{f}\right)^2 = \left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2$
	4.4 systematische fouten
verschil systematisch - toevallige fout	bij systematische fouten geldt er: 1: experiment herhalen doet het netto effect van de fouten niet verminderen
	2: metingen op verschillende plaatsen zijn niet onafhankelijk van elkaar
4.4.1 systematische fouten ontdekke	n en elimineren
types systematische fouten	1: factoren met gekende fouten > expliciet te evalueren in de gegevens
minst erg 	2: fout op getallen waarvan je niet precies de onnauwkeurigheid kan weten > intelligent raden wat de syst. fout kan zijn
≀ V ergst	3: syst. fout doordat je impliciet constanten gebruikt zonder ervan bewust te zijn > altijd opletten en niet te snel assumpties maken
	4: syst. fout doordat bvb een elektronische component plots uitvalt > vaak genoeg opstelling checken
4.4.2 systematische fouten evalueren	
combinatie van stat. en syst. fouten	 statistische fouten trede op door toevallige statistische fluctuaties systematische fouten zijn alle andere fouten
	> het kan handig zijn om deze fouten apart voor te stellen: $A = -10.2 \pm 1.2 \pm 2.3$
4.4.3 leven met systematische fouten	
stelling: variantie van syst. fouten	Zei er twee metingen x_1 en x_2 met een gemeensch. syst. fout S Zei er voor elk een statistische fout σ_1 en σ_2
	> deel de meeting op in een systematisch en statistisch deel $ > x_1^R \text{ met een statistische fout } \sigma_1 \text{ en } x_1^S \text{ met een syst. fout S, analoog } x_2 \\ > x_1^R \text{ en } x_2^R \text{ zijn onafhankelijk} \\ x_1^S \text{ en } x_2^S \text{ zijn volledig gecorreleerd} $
	(a) De variantie van x_i is dan gegeven door :
	$V(x_i) = \sigma_i^2 + S^2$
	(b) De covariantie tussen x_1 en x_2 is alleen afhankelijk van de systematische fout:
	$cov(x_1, x_2) = S^2$