CPSC 354 Report

Drew Floyd

Contents

1	The MU-Puzzle	2	
2	Rewriting Assignment	3	
3	String Rewriting Excercise 5 and 5b	7	

1 The MU-Puzzle

```
\mathrm{MI} \to \mathrm{MU}
```

Rule 1: If you possess a string whose last letter is I, add U.

Rule 2: Suppose you have Mx, you may add Mxx.

Rule 3: If III occurs in one of the strings, you may make a new string with U in place of III.

Rule 4: If UU, you can drop it.

 $\begin{array}{c} \text{MI} \\ \text{MII} \ \ Mxx \\ \text{MIIII} \ \ Mxx \\ \text{MIIIIIIIII} \ \ Mxx \\ \text{MUIIU} \ \ MIU \\ \varnothing \end{array}$

MI \rightarrow use Mxx rule ∞ times MIIII...

No matter what Rule you use you will never be able to get 0 Mod3, because I will always be 1 mod 3 or 2 mod 3

MUUU

MIII

Rule 1 does not affect # of I's.

Rule 2 does not give 0 mod 3.

Rule 3 does not solve the problem as removing 3 I's does not change the output of mod3.

Rule 4 does not change the # of I's.

We can never get rid of all of the I's, $0 \mod 3$ is not possible. Thus you cannot get MU from MI.

2 Rewriting Assignment

1.
$$A = \{\}$$

 $R = \{\}$

This diagram is terminating because there are no infinite loops, confluent because all paths lead to the same result, and has a unique normal form as there is only one final state.

2.
$$A = \{a\}$$

 $R = \{\}$

This diagram is terminating because there are no infinite loops, confluent because all paths lead to the same result, and has a unique normal form as there is only one final state.

3.
$$A = \{a\}$$

 $R = \{(a, a)\}$

This diagram is not terminating due to the presence of infinite loops, confluent because all paths merge, but does not have a unique normal form as multiple results are possible.

4.
$$A = \{a, b, c\}$$

 $R = \{(a, b), (a, b)\}$

This diagram is terminating as there are no infinite loops, not confluent because paths diverge, and does not have a unique normal form due to multiple end states.

5.
$$A = \{a, b\}$$

 $R = \{(a, a), (a, b)\}$

This diagram is not terminating due to the presence of infinite loops, confluent because all paths lead to b, it has a unique normal form as the single end state is b.

6.
$$A = \{a, b, c\}$$

 $R = \{(a, b), (b, b), (a, c)\}$

This diagram is not terminating due to the presence of infinite loops, not confluent because paths diverge, and has a unique normal form due to having a single end state on c.

7.
$$A = \{a, b, c\}$$

 $R = \{(a, b), (b, b), (a, c), (c, c)\}$

This diagram is not terminating due to the presence of infinite loops, not confluent because paths diverge, and does not have a unique normal form due to no end states.

Properties

${ m T}$	\mathbf{C}	U	Example(s)	Explanation
True	True	True	1, 2	These examples terminate, are confluent, and have a unique normal form because all paths lead to a single final state without divergence or loops.
True	True	False	None	This state is impossible because confluence implies a unique normal form when termination is true.
True	False	True	None	This state is impossible because non-confluence means paths diverge, which contradicts having a unique normal form.
True	False	False	4	This example terminates but is not confluent due to diverging paths and does not have a unique normal form as multiple end states exist.
False	True	True	5	This example does not terminate because a is a loop, but since it loops on itself it can still be confluent and point to b to result in a unique normal form.
False	True	False	3	This example does not terminate but is confluent because all paths merge, though it does not have a unique normal form due to multiple results.
False	False	True	None	This state is impossible because non-termination and non-confluence contradict having a unique normal form.
False	False	False	6, 7	These examples do not terminate, are not confluent due to diverging paths, and do not have a unique normal form as no single end state exists.

T: Terminating, C: Confluent, U: Unique Normal Form

3 String Rewriting Excercise 5 and 5b

$$\begin{array}{l} ab \rightarrow ba \\ ba \rightarrow ab \\ aa \rightarrow \varepsilon \\ b \rightarrow \varepsilon \end{array}$$

rewrite steps for abba and bababa:

$$\begin{array}{c} abba \rightarrow abab \rightarrow \infty \\ abba \rightarrow aaba \rightarrow aa \rightarrow \varepsilon \\ baba \rightarrow \infty \\ \\ ababa \rightarrow \infty \\ \\ bababa \rightarrow aaba \rightarrow aa \rightarrow a \\ \\ bababa \rightarrow \infty \end{array}$$

- 1. The ARS is not terminating because there is an infinite loop in the first two rules, as they are inverses of each other.
- 2. Two equivalence classes: $b \to \varepsilon$ means b's don't matter, and $aa \to \varepsilon$ means a's cancel in pairs. Normal forms: Even # of a's $\Rightarrow \varepsilon$ Odd # of a's $\Rightarrow a$
- 3. You can make the ARS terminating without changing the equivalence classes by removing one of the rules involved in the loop (either $ab \rightarrow ba$ or $ba \rightarrow ab$).
- 4. Semantic question the ARS can answer: "Is the number of a's even or odd?" This works because the complete invariant is the parity of # of a's.
- 5. If instead $aa \to a$, this changes the question from even-or-odd to: No a's $\Rightarrow \varepsilon$ At least one $a \Rightarrow a$