Exercice: Dresser le tableau de variations

1)
$$f(x) = \frac{3x}{x+2}$$
 $I = \mathbb{R} \setminus \{-2\}$

2)
$$f(x) = -\frac{3}{x^2-5x}$$

3)
$$f(x) = \frac{x^2+7}{x+3}$$

1)
$$f(x) = \frac{u}{v}$$

1)
$$f(x) = \frac{u}{v}$$
 $u = 3x$ $v = x+2$ $u' = 3$ $v' = 1$

$$f'(x) = \frac{u'v - uv'}{v^2} = \frac{3(x+2) - (3x)(1)}{(x+2)^2} =$$

$$= \frac{3/x + 6 - 3/x}{(x+2)^2} = \frac{6}{(x+2)^2}$$

$$\left(\triangle x+2=0 \text{ impossible} => x=-2 \text{ V.I.} \right)$$

Étude de signe de f':

6 est positif; (x+2) est positif sout pour x=-2

*	-00	-2	+∞
کم		+	
(x+z)2	+		+
ę'	+		+

Tableau de variations:

X	-a - 2	e too
71	+	+
4	7	7

2)
$$f(x) = \frac{u}{v}$$

$$u=-3 \qquad v=\chi^2-5\chi$$

$$f'(x) = \frac{u'v - uv'}{v^2} = \frac{O(x^2 - 5x) - (-3)(2x - 5)}{(x^2 - 5x)^2} = \frac{bx - 15}{(x^2 - 5x)^2}$$

$$x(x-5)=0 =>$$

$$x=0$$
 et $x=9$

Étude de signe de l':

de de signe de
$$f'$$
:
 $6x-15>0 <=> x>15/6; (x^2-5x)^2 est positif sout
pour $x=0$ et $x=5$.$

% \	-00	٥	15/6	5	+0
64-15		_	ф	+	
$(\chi^2-5\chi)^2$	+		+		+
f'	_		_ 0 -	-	+

Tableau de variations:

$$f\left(\frac{15}{6}\right) = 0,48$$

3)
$$f(x) = \frac{x^2+7}{x+3}$$
 $I = [-1, 5]$

$$f(x) = \frac{u}{v} \qquad u = x^2 + 7 \qquad v = x + 3$$

$$u' = 2x \qquad v' = 1$$

$$f'(x) = \frac{u'v - uv'}{v^2} = \frac{(2x)(x+3) - (x^2+7)(1)}{(x+3)^2} = \frac{2x^2 + 6x - x^2 - 7}{(x+3)^2} = \frac{x^2 + 6x - 7}{(x+3)^2}$$

signe de f':

$$x^{2} + 6x - 1$$
 $\alpha = 1$ $b = 6$ $c = -1$

$$\Delta = 36 - 4 \times 1 \times (-1) = 36 + 28 = 64$$

$$x_{1} = \frac{-6 - 8}{7} = -7$$

$$x_{2} = \frac{-6 + 8}{7} = 1$$

(x+3)2 est possitif sout pour x=-3 V.I.

$$f(-1) = \frac{(-1)^2 + 7}{-1 + 3} = \frac{8}{2} = 4$$

$$f(1) = \frac{1^2+7}{1+3} = \frac{8}{4} = 2$$

$$f(5) = \frac{5^2+7}{5+3} = \frac{32}{8} = 4$$