NOTE: The 72 pin module standards that follow describe two separate devices. Both have a 4 byte data interface. One is intended to be used with or without parity bits while the other contains error correction bits ECC). The one with ECC is similar to the parity module but is not completely pin compatible

4.4.2 – 72 PIN SIMM DRAM MODULE FAMILY

CAPACITY—256K TO 512M WORDS OF 32 or 36 BITS

CONFIGURATION—SINGLE OR DOUBLE SIDED MODULES

—USING 1M, 4M, 16M, 64M, or 256M MEMORY DEVICES

LOGIC FEATURES, These modules contain a "presence detect" feature which conists of output pins which supply an encoded value which defines the storage capacity and speed of the module.

PACKAGE—72 PIN SIMM MODULE

PIN ASSIGNMENTS—Fig. 4.4.2-2A

BLOCK DIAGRAMS—Fig. 4.4.2-2 A⇒K. A series of block diagrams for recommended configurations is summarized in Fig 4.4.2-1 and detailed in Figs. 4.4.2-2 B⇒K

POWER & INTERFACE VOLTAGE LEVELS: A pinout is provided for 5.0 V and for 3.3 V power and interface levels as defined by a voltage key in the socket.

- 72 PIN SIMM DRAM ECC MODULE FAMILY

CAPACITY-256K TO 512M WORDS OF 36 or 39 BITS

CONFIGURATION—SINGLE OR DOUBLE SIDED MODULES

-USING 1M, 4M, 16M. 64M, or 256M MEMORY DEVICES

LOGIC FEATURES, These modules are optimized for ECC applications. They are similar to but not the same as the modules described in Fig. 4–6. The Standard defines a "presence detect" feature which consists of output pins which supply an encoded value which defines the storage capacity and speed of the module. The PD code identifies the presence of an ECC module as well as the speed and organization of the module. The Standard also defines the logic organization of the modules in Figs. 4.4.2–3B & 4.4.2–3C.

PACKAGE-72 PIN SIMM MODULE

PIN ASSIGNMENTS-Fig. 4.4.2-3A

BLOCK DIAGRAMS—Figs. 4.4.2–3 B & C. A series of block diagrams for recommended configurations is summarized in Fig 4.4.2–1 and detailed in Figs. 4.4.2–3 B & C

POWER & INTERFACE VOLTAGE LEVELS: A pinout is provided for 5.0 V and for 3.3 V power and interface levels as defined by a voltage key in the socket.

72 Pin SIMM Block Diagrams

The block diagrams given in the 12 pages, Figs 4.4.2–2 B \Rightarrow K and Figs 4.4.2–3 B & C), are applicable to the 72 Pin SIMM pinouts shown in Figures 4.4.2–2 A and 4.4.2–3 A. These block diagrams are provided for guidance only. Other implementations with different block configurations are also acceptable.

The following table shows the applicability of the block configurations given to the 5 V and 3.3 V Non-ECC and ECC modules.

Configuration	# Banks	Applies to: 5 V SIMM	Applies to: 3.3 V SIMM
Parity, Non-Parity			
X32/36 W/X4, X1 (X36)	1 or 2	Х	Х
X32/36 W/X16, X18	1 or <mark>2</mark>	X	Х
X36 W/X4, X4/4CE	1 or 2	Х	X
X36 W/X4, X2/2CE	1 or 2	X	Х
X36 W/X16, X4/4CE	1 or 2	X	Х
X36 W/X16, X2/2CE	1 or 2	X	X
X32 W/X8	1 or 2		Х
X36 W/X8, X2/2CE	1 or 2		Х
X32 W/X32	1 or 2		Х
X36 W/X32, X2/2CE	1 or 2		X
ECC			
X36/40 W/X4	1 or 2	X	X (X36 only)

Note: To reduce the number of diagrams, only 2 bank versions are shown. In addition, in cases where one SIMM I/O width can be described as a depopulation of another SIMM (i.e. X36⇒X32), the depopulated devices are shown by a "dashed" outline.

RE AND G WIRING FOR BYTE WRITE SIMMS.								
SIGNAL NAME	5 V SIMMs	3.3 V SIMMs						
G	Tied to GND	Wired to Pin 46						
RE0	Connected as shown. Tied to pin 44 (RE0)	RE0, RE2 nets connected together and tied to pin 44 (RE0)						
RE1	Connected as shown. Tied to pin 45 (RE1)	RE1, RE3 nets connected together and tied to pin 45 (RE1)						
RE2	Connected as shown. Tied to pin 34 (RE2)	RE0, RE2 nets connected together and tied to pin 44 (RE0)						
RE3	Connected as shown. Tied to pin 33 (RE3)	RE1, RE3 nets connected together and tied to pin 45 (RE1)						

FIGURE 4.4.2–1
72 PIN DRAM SIMM APPLICABILITY TABLE

	5 V	3.3 V			5 V	3.3 V	
	Byte	Byte			Byte	Byte	
	Write	Write			Write	Write	
_	PIN NAME	PIN NAME		PIN#		PIN NAME	
1	vss	VSS		37	PDQ17, NC	PDQ17, NC	
2	DQ0	DQ0		38	PDQ35,, NC	PDQ35,, NC	
3	DQ18	DQ18		39	VSS	VSS	
4	DQ1	DQ1		40	CE0	CE0	
5	DQ19	DQ19		41	CE2	CE2	
6	DQ2	DQ2		42	CE3	CE3	
7	DQ20	DQ20		43	CE1	CE1	
8	DQ3	DQ3		44	RE0	RE0	
9	DQ21	DQ21		45	NC, RE1	NC, RE1	
10	VDD	VDD		46	NC	G	
11	NU	PD5		47	\overline{W}	\overline{w}	
12	A0	Α0		48	PD(ECC)	PD(ECC)	
13	A1	A 1		49	DQ9	DQ9	
14	A2	A2		50	DQ27	DQ27	
15	А3	А3		51	DQ10	DQ10	
16	A4	A4		52	DQ28	DQ28	
17	A5	A5		53	DQ11	DQ11	
18	A6	A6		54	DQ29	DQ29	
19	NC, A10	NC, A10		55	DQ12	DQ12	
20	DQ4	DQ4		56	DQ30	DQ30	
21	DQ22	DQ22		57	DQ13	DQ13	
22	DQ5	DQ5		58	DQ31	DQ31	
23	DQ23	DQ23		59	VDD	VDD	
24	DQ6	DQ6		60	DQ32	DQ32	
25	DQ24	DQ24		61	DQ14	DQ14	
26	DQ7	DQ7		62	DQ33	DQ33	
27	DQ25	DQ25		63	DQ15	DQ15	
28	A7	A7		64	DQ34	DQ34	
29	NC, A11	NC, A11		65	DQ16	DQ16	
30	VDD	VDD		66	NC	EDO	
31	A8	A8		67	PD1	PD1	
32	NC, A9	NC, A9		68	PD2	PD2	
33	NC, RE3	NC, A12		69	PD3	PD3	
34	RE2	NC, A13		70	PD4	PD4	
35	PDQ26, NC	PDQ26, NC		71	NC	PD(REF)	
36	PDQ8, NC	PDQ8, NC		72	VSS	VSS	
			•			-	

PRESENCE DETECT TRUTH TABLE									
CONFIGURATION	tRAC	ECC	PD1	PD2	PD3	PD4			
1MB (256K X 36)	100 nS	0	s	0	S	S			
64MB (16M X 32/36)	80 nS	0	S	0	0	S			
	70 nS	0	S	0	S	0			
	60 nS	0	S	0	0	0			
2MB (512K X 36)	100 nS	0	0	S	S	S			
128MB (32M X 32/36)	80 nS	0	0	S	0	S			
	70 nS	0	0	S	S	0			
	60 nS	0	0	S	0	0			
4MB (1M X 36)	100 nS	0	S	S	S	S			
256MB (64M X 32/36)	80 nS	0	S	S	0	S			
	70 nS	0	S	S	S	0			
	60 nS	0	S	S	0	0			
BMB (2M X 36)	100 nS	0	0	0	S	S			
0.5GB (128M X 32/36)	80 nS	0	0	0	0	S			
	70 nS	0	0	0	ഗ	0			
	60 nS	0	0	0	0	0			
16MB (4M X 36)	50 nS	0	S	0	S	S			
1GB (256M X 32/36)	80 nS	0	S	0	0	S			
	70 nS	0	S	0	S	0			
	60 nS	0	S	0	0	0			
32MB (8M X 36)	50 nS	0	0	S	S	S			
2GB (512M X 36)	80 nS	0	0	S	0	S			
	70 nS	0	0	S	S	0			
O = NO CONNECTION	60 nS	0	0	S	0	0			

O = NO CONNECTION S = CONNECTED TO VSS EDO Pin: VSS for EDO, NC for Fast Page.

Note: The ECC Function (Pin 48) is not a defined function for the devices in this standard, however, it is used in a companion Standard for 72 pin ECC modules shown in Fig. 4.4.2–3. The presence of a VSS connection on this pin signifies that an ECC module has been inserted.

CONFIGURATION PIN ASSIGNMENT TABLE												
	ODULE SIZE, 36 BIT WORDS											
PIN#	256K	512K	1M	2M	4M	8M	16M	32M	64M	128M	256M	512M
19	NC	NC	NC	NC	A10	A10	A10	A10	A10	A10	A10	A10
*29	NC	NC	NC	NC	A11	A11	A11	A11	A11	A11	A11	A11
32	NC	NC	Α9	A9	A9	Α9	Α9	A9	A9	A9	A9	A9
*33	NC	RE3	NC	RE3	NC	RE3	A12	A12	A12	A12	A12	A12
*34	NC	RE2	NC	RE2	NC	RE2	NC	NC	A13	A13	A13	A13
45	NC	RE1	NC	RE1	NC	RE1	NC	RE1	NC	RE1	NC	RE1

* A11, A12, or A13 on Pins 29, 33, or 34 are used on modules containing devices that require asymetric ROW/ COLUMN addresses. NOTE – This family of pinouts is approved for use in SIMM modules which are nominally 4.25" long and with a height which varies depending on the configuration and the memory devices used. See JEDEC Publication 95.

5.0 v 72 Pin DRAM SIMM VOLTAGE KEY $\begin{array}{c|c} \underline{} \underline{\phantom{$

See Figure 4-18 for applicable block diagrams

3.3 V 72 Pin DRAM SIMM VOLTAGE KEY

FIGURE 4.4.2-2 A

256K TO 256M BY 36, 72 PIN DRAM MODULE PINOUT

FIGURE 4.4.2–2 B
X32/36 DRAM SIMM, 2 Banks with X4 & X1 DRAMs