Московский физико-технический институт (национальный исследовательский университет)

Лабораторная работа по общему курсу физики

Отчёт о выполнении лабораторной работы 1.4.1 Измерение интенсивности радиационного фона

Апарин Сергей Владимирович Группа Б01-205

Долгопрудный 2022

1. Описание работы

В работе измеряется интенсивность радиационного фона, в основном состоящего из потока космических частиц. Используются методы обработки полученных измерений при помощи построения графиков и их анализа.

Используемое оборудование:

- счётчик Гейгера-Мюллера (СТС-6) для обнаружения космических лучей и измерения их интенсивности (по ионизации газа).
- компьютер с интерфейсом связи с счётчиком для считывания импульсов счётчика и фиксации результатов измерений.
- блок питания.

2. Теоретические сведения и методика измерений

Счётчик Гейгера-Мюллера представляет собой 2 электрода: катод - металлический цилиндр и анод - тонкая металлическая нить вдоль оси цилиндра. Электроны, попадающие в счетчик ионизируют газ и разгоняются при напряжении 400 В, образуя с помощью конденсатора C_1 лавину электронов, которая создает импульс, передаваемый через конденсатор C_2 компьютеру. Схема включения счётчика представлена на Рис. 1.

Рис. 1

Методы обработки полученных результатов те же, что и для расчёта случайных погрешностей, так как в данном опыте измеряется величина, меняющаяся со временем случайным образом.

В процессе выполнения работы убеждаемся, что при увеличении числа измерений:

- измеряемая величина флуктуирует.
- флуктуации среднего значения уменьшаются, а среднее занчение выходит на постоянну величину.
- флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного эксперимента выходит на постоянну величину.
- флуктуации величины погрешности среднего значения уменьшаются, а сама величина убывает.

Будем использовать следующие формулы:

Среднее число срабатываний счетчика за одно измерение при проведении N измерений:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{n} n_i \tag{1}$$

Среднеквадратичная ошибка отдельного измерения:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (n_i - \overline{n})^2}$$
 (2)

Определение стандартной ошибки величины \overline{n} :

$$\sigma_{\overline{n}} = \frac{\sigma}{\sqrt{N}} \tag{3}$$

И относительной ошибки:

$$\epsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} \tag{4}$$

Окончательный результат(оценка истинного среднего значения) будет соответствовать формуле:

$$n_t = \overline{n} \pm \sigma_{\overline{n}} \tag{5}$$

3. Результаты измерений и обработка данных

№ опыта	1	2	3	4	5	6	7	8	9	10
0	27	23	26	23	21	22	13	35	31	24
10	28	19	30	19	19	32	29	25	30	22
20	27	29	32	30	30	23	21	32	25	24
30	31	21	28	26	24	35	31	28	35	27
40	22	28	28	29	24	24	32	25	27	30
50	27	17	21	22	17	25	32	26	33	20
60	15	22	21	24	31	26	10	24	23	17
70	16	25	27	27	22	27	35	26	28	16
80	29	25	25	23	26	23	27	21	20	23
90	23	26	21	24	35	19	18	30	25	34
100	32	31	23	24	22	24	29	30	38	24
110	16	30	27	13	22	29	28	25	24	27
120	16	24	22	28	22	26	16	29	23	25
130	23	25	17	31	26	25	27	25	26	30
140	26	27	22	25	26	20	28	23	30	22
150	28	27	27	31	33	25	27	20	31	30
160	24	22	31	24	23	16	20	13	26	22
170	23	30	29	26	20	17	25	28	26	13
180	31	31	25	26	30	23	18	25	30	34
190	31	21	19	30	22	24	26	27	33	30

Таблица 1.

Число срабатываний счётчика за 20 с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	50	49	43	48	55	47	49	51	54	52
10	56	62	53	53	49	52	54	59	59	62
20	50	57	48	57	57	44	43	42	58	53
30	37	45	57	34	40	41	54	49	61	44
40	54	48	49	48	43	49	45	54	48	59
50	63	47	46	59	62	46	40	51	53	51
60	40	50	48	45	48	48	48	51	52	56
70	53	47	46	51	52	55	58	58	47	61
80	46	55	39	33	48	53	55	37	53	39
90	62	51	53	43	64	52	49	46	53	63

Таблица 2. Число срабатываний счётчика за 40 с

Число импульсов n_i	4	5	6	7	8	9	10
Число случаев	4	0	10	16	22	29	28
Доля случаев w_n	0,01	0	0,025	0,04	0,055	0,0725	0,07
Число импульсов n_i	11	12	13	14	15	16	17
Число случаев	39	47	48	42	27	28	27
Доля случаев w_n	0,0975	0,1175	0,12	0,105	0,0675	0,07	0,0675
Число импульсов n_i	18	19	20	21	22	23	24
Число случаев	12	10	5	3	1	1	0
Доля случаев w_n	0,03	0,025	0,0125	0,0075	0,0025	0,0025	0
Число импульсов n_i	25						
Число случаев	1						
Доля случаев w_n	0,0025		·	·		·	

 $\begin{tabular}{l} \begin{tabular}{l} \begin{ta$

Число импульсов n_i	33	34	35	36	37	38	39
Число случаев	1	1	0	0	2	0	2
Доля случаев w_n	0,01	0,01	0	0	0,02	0	0,02
Число импульсов n_i	40	41	42	43	44	45	46
Число случаев	3	1	1	4	2	3	5
Доля случаев w_n	0,03	0,01	0,01	0,04	0,02	0,03	0,05
Число импульсов n_i	47	48	49	50	51	52	53
Число случаев	4	10	7	3	6	5	9
Доля случаев w_n	0,04	0,1	0,07	0,03	0,06	0,05	0.09
Число импульсов n_i	54	55	56	57	58	59	60
Число случаев	5	4	2	4	3	4	0
Доля случаев w_n	0,05	0,04	0,02	0,04	0,03	0,04	0
Число импульсов n_i	61	62	63	64			
Число случаев	2	4	2	1			
Доля случаев w_n	0,02	0,04	0,02	0,01			

. Таблица 4. Данные для построения гистограммы распределения числа срабатываний счетчика за $40\ {
m c}$

На основе данных из таблиц 3 и 4 построим гистаграммы распределения числа срабатываний счетчика за 10 с и 40 с:

Среднее число срабатываний счётчика за 10 с по формуле (1):

$$\overline{n_1} = \frac{5051}{400} = 12,62$$

Среднеквадратичная ошибка отдельного измерения по формуле (2):

$$\sigma_1 = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (n_i - \overline{n_1})^2} = \sqrt{\frac{5067}{400}} \approx 3,56.$$

Убедимся в справедливости формулы:

$$\sigma_1 \approx \sqrt{\overline{n}_1}; \quad 3,56 \approx \sqrt{12,62} = 3,55.$$

Определим долю случаев, когда отклонения от среднего значения не превышают $\sigma_1, 2\sigma_1$, и сравним с теоретическими оценками:

Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка
$\pm \sigma_1 = \pm 3,56$	259	65	68
$\pm 2\sigma_1 = \pm 7, 12$	385	96	95

Таблица 5

Среднее число срабатываний счётчика за 40 с по формуле (1):

$$\overline{n_2} = \frac{5051}{100} = 50,51$$

Среднеквадратичная ошибка отдельного измерения по формуле (2):

$$\sigma_2 = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (n_i - \overline{n_2})^2} = \sqrt{\frac{4473}{100}} \approx 6, 7.$$

Убедимся в справедливости формулы:

$$\sigma_2 \approx \sqrt{\overline{n}_2}; \quad 6, 7 \approx \sqrt{50, 51} = 7, 1.$$

Сравним среднеквадратичные ошибки отдельных измерений для двух распределений: $\overline{n}_1=12,62; \sigma_1=3,56$ и $\overline{n}_2=50,5; \sigma_2=7,1$. Легко видеть, что хотя абсолютное значение σ во втором распределении больше, чем в первом (7,1>3,56), относительная полуширина второго распределения меньше:

$$\frac{\sigma_1}{\overline{n}_1} \cdot 100\% = \frac{3,56}{12,62} \cdot 100\% \approx 28\%$$

$$\frac{\sigma_2}{\overline{n}_2} \cdot 100\% = \frac{7,1}{50,51} \cdot 100\% \approx 14\%$$

Это также следует из построенных гистограмм.

Определим стандартную ошибку величины $\overline{n_1}$ по формуле (3):

$$\sigma_{\overline{n_1}} = \frac{\sigma_1}{\sqrt{N_1}} = \frac{3,56}{\sqrt{400}} \approx 0,18$$

Найдем относительную ошибку по формуле (4):

$$\epsilon_{\overline{n_1}} = \frac{\sigma_{\overline{n_1}}}{\overline{n_1}} \cdot 100\% = \frac{0.18}{12.62} \cdot 100\% \approx 1,42\%$$

По равенству $\epsilon_{\overline{n}} = \frac{1}{\sqrt{\overline{n}N}}$ получим:

$$\epsilon_{\overline{n_1}} = \frac{100\%}{\sqrt{12,62 \cdot 400}} \approx 1,40\%$$

Окончательный результат:

$$n_{t=10c} = \overline{n_1} \pm \sigma_{\overline{n_1}} = 12,62 \pm 0,18$$

Аналогично для $N_2=100$ измерений по 40 с:

$$\sigma_{\overline{n_2}} = \frac{7, 1}{\sqrt{100}} \approx 0,71$$

$$\epsilon_{\overline{n_2}} = \frac{0,71}{50,51} \cdot 100\% \approx 1,41\%$$

$$\epsilon_{\overline{n_2}} = \frac{100\%}{\sqrt{50,51 \cdot 100}} \approx 1,41\%$$

Окончательный результат:

$$n_{t=40c} = 50, 51 \pm 0, 71$$