Fundamentals of Optimization Heuristics

Pham Quang Dung

dungpq@soict.hust.edu.vn Department of Computer Science

Content

- Overview
- Examples

Overview

- Exact methods (Constraint Programming, Branch and Cut, ..) cannot handle large-scale combinatorial optimization problems
- In practice, high quality solutions found in a reasonable computation time are required

Overview

- S: a solution is represented by a set of components
- C: set of candidates of components to be added to the solution
- select(C): select the most promising component among candidates
- solution(S): return true if S is a solution to the original problem
- feasible(S): return true if S does not violate any constraints

```
Greedy() {
S = \{\};
while C \neq \emptyset and
        not solution(S){
   x = select(C);
   C = C \setminus \{x\};
   if feasible(S \cup \{x\}) {
     S = S \cup \{x\};
return S;
```

TSP

 Given n points 1, 2, ..., n in which d(i,j) is the distance from point i to point j. Find the shortest closed tour starting from 1 visiting other points and terminating at 1 such that the total travel distance is minimal

TSP

- Greedy idea
 - The tour is initialized by point 1
 - At each step
 - Select the nearest point to the last point of the tour under construction and add this point to the end of the tour

TSP

- Greedy idea
 - The tour is initialized by point 1
 - At each step
 - Select the nearest point to the last point of the tour under construction and add this point to the end of the tour

Multi knapsack problem

 Given unlimited number of bins having capacity Q and n items 1,2,..., n in which the weight of item i is w(i). How to put these n items into bins such that the total weight of items put into each bin cannot exceed Q and the number of bins used is minimal