Lecture 18: Digital CMOS circuits (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Why digital?

- You know the answer.
 - And you know what it actually is. (Binary)
- Today, we will consider the following questions:
 - How can we treat the arithmetic operations (Addition, subtraction, multiplication, ...)
 - What is the elemental operation?
 - Then, what are the essential circuits to build such a system?
 - (It will be a short review on <u>Digital Design</u>.)
- Inverter and NAND gates

Addition

- Once you can add two numbers, x and y, you can do
 - Addition, x + y (of course)
 - Subtraction, x y = x + (-y)
 - Multiplication, $x \times y$

Even in addition,

- You can recognize that
 - Addition of two 1-bit binary numbers is the core operation!
 - There are only four possible cases!

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$ Carry

Inclusion of carry-bit

 In order to unify the notation, we introduce a separate bit for representing the carry.

Carry-bit & sum-bit

$$0 + 0 = 00$$

 $0 + 1 = 01$
 $1 + 0 = 01$
 $1 + 1 = 10$
Sum

– Treat them separately!

Relation btw x, y, and sum

- Concentrate on the sum-bit.
 - A table can be made.
 - It is called a truth table.

x	y	sum
0	0	0
0	1	1
1	0	1
1	1	0

Yes, it is the exclusive OR, x XOR y.

Relation btw x, y, and carry

- Concentrate on the carry-bit.
 - A table can be made, again.

\boldsymbol{x}	y	carry
0	0	/ 0 \
0	1	0
1	0	0
1	1	\ 1 /

Yes, it is the AND operation, x AND y

After all,

- As much as we have AND, OR, and NOT gates, we can implement any Boolean function.
 - With NAND, NOR, and NOT gates, we can, too.

(Google Images)

Inverter and NAND

NOR can be implemented similarly.

x	NOT
0	1
1	0

x	y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

In circuit,

- How can we represent 0 and 1?
 - V_{DD} is assigned to the logical value, 1.
 - *GND* is assigned to the logical value, 0.

Inverter

- When the output becomes 0?
 - Only when the input is high.
 - You have seen it before!

Vin	Vout
0	1
1	0

Voltage transfer characteristic

- When $V_{in} < V_{TH}$,
 - Trivially, $V_{out} = V_{DD}$.
- When V_{in} is slightly larger than V_{TH} , the NMOSFET is in the saturation region.

$$V_{out} = V_{DD} - I_D R_D$$

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$$

• When V_{in} is further increased, the NMOSFET is in the triode region.

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D [2(V_{in} - V_{TH})V_{out} - V_{out}^2]$$

Draw it! (1/2)

 V_{out}

The parameters used in Example 17. 14 without modification.

- $\mu_n C_{ox} = 100 \, \mu \text{A/V}^2$, $V_{TH} = 0.5 \, \text{V}$, $\frac{W}{L} = \frac{10}{0.18}$, $R_D = 1 k \Omega$ and $V_{DD} = 1 k \Omega$

1.8 V

Draw it! (2/2)

With a wider NMOSFET

–
$$\mu_n C_{ox}=100~\mu\text{A/V}^2$$
 , $V_{TH}=0.5~\text{V}$, $\frac{W}{L}=\frac{50}{0.18}$, $R_D=1k\Omega$ and $V_{DD}=1.8~\text{V}$

 V_{in}