```
STEP1: First we will set the working directory and load the files from the working directory
getwd()
setwd("C:/Raj - Personal/CourseEra/Course 8- Practical Machine Learning/Assignment")
getwd()
STEP2: Will prepare the environment with all the required packages and libraries
## Preparing the overall environment
library(caret); library(ggplot2); library(knitr); library(randomForest); library(rattle)
set.seed(1234)
STEP3: Read the csv files and save it to variables
training<- read.csv("./pml-training.csv")</pre>
testing<- read.csv("./pml-testing.csv")
dim(training);dim(testing)
STEP4: create the training and test sets
# create a partition with the training dataset
intrain <- createDataPartition(training$classe, p=0.7, list=FALSE)
training_set <- training[intrain, ]</pre>
testing_set <- training[-intrain, ]
dim(training set);dim(testing set)
STEP5: Remove the variables with zero variance and those which are with NA
# remove variables with Nearly Zero Variance
NZV <- nearZeroVar(training set)
training_set <- training_set[, -NZV]
testing set <- testing set[, -NZV]
dim(training_set);dim(testing_set)
## remove the variables that are NA
AllNA <- sapply(training set, function(x) mean(is.na(x))) > 0.95
training_set <- training_set[, AllNA==FALSE]</pre>
testing set <- testing set[, AllNA==FALSE]
dim(training_set);dim(testing_set)
str(training_set)
STEP6: Analyze the correlation between the various variables in the data set
training_set <- training_set[, -(1:5)]</pre>
testing set <- testing set[, -(1:5)]
dim(training_set);dim(testing_set)
## Analyze the corelation between the various variables in the data set
```

my num data <- mydata[, sapply(mydata, is.numeric)]</pre>

```
library(corrplot)
corMatrix <- cor(training_set[, -54])
corrplot(corMatrix, order = "FPC", method = "color", type = "lower",
    tl.cex = 0.8, tl.col = rgb(0, 0, 0))</pre>
```

Outcome of the correlation chart picture below:

The highly corelated variables are in the dark color in the graph below

STEP7: Building a prediction model using various models such as Random forests, Decision trees, and Generalized Boosted Models.

A confusion matrix is plotted for each of these models to depict the accuracy of these models

Random Forest Model:

```
cv <- trainControl(method="cv", number=3, verboseIter=FALSE)
mod_rf <- train(classe ~ ., data=training_set, method="rf",
              trControl=cv)
```

> mod_rf\$finalModel

call:

randomForest(x = x, y = y, mtry = param\$mtry)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 27

OOB estimate of error rate: 0.21% Confusion matrix: E class.error 3904 0 2 0 0 0.0005120328 В 3 2651 3 0 0.0026335591 1 C 0 6 2390 0 0 0.0025041736 0 0.0035523979 8 2244 D 5 2519 0.0023762376 Ε

predict the same on the test data predictrf <- predict(mod_rf, newdata=testing_set)</pre> cmrf <- confusionMatrix(predictrf, testing set\$classe)</pre> cmrf

Confusion Matrix and Statistics

Reference									
Prediction	Α	В	C	D	Е				
Α	1674	3	0	0	0				
В	0	1136	1	0	0				
С	0	0	1025	2	0				
D	0	0	0	962	3				
Е	0	0	0	0	1079				

Overall Statistics

Accuracy: 0.9985 95% CI: (0.9971, 0.9993)

No Information Rate: 0.2845 P-Value [Acc > NIR]: < 2.2e-16

Карра: 0.9981 Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	class: c	Class: D	Class: E
Sensitivity	1.0000	0.9974	0.9990	0.9979	0.9972
Specificity	0.9993	0.9998	0.9996	0.9994	1.0000

Pos Pred Value	0.9982	0.9991	0.9981	0.9969	1.0000
Neg Pred Value	1.0000	0.9994	0.9998	0.9996	0.9994
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2845	0.1930	0.1742	0.1635	0.1833
Detection Prevalence	0.2850	0.1932	0.1745	0.1640	0.1833
Balanced Accuracy	0.9996	0.9986	0.9993	0.9987	0.9986

Next is to plot the accuracy of the Random Forest Model

Random Forest - Accuracy = 0.9985

Modeling using Decision Trees:

We will use decision tree model and plot the outcome, below is the outcome of the model

library(rpart)

library(rpart.plot)
mod_dt <- rpart(classe ~ ., data=training_set, method="class")
fancyRpartPlot(mod_dt)</pre>

Appling the model on to the testing data set and check the outcome of the confusion matrix predictdt <- predict(mod_dt, newdata=testing_set, type="class") cfdt <- confusionMatrix(predictdt, testing_set\$classe) cfdt

Confusion Matrix and Statistics

F	Refere	nce			
Prediction	Α	В	C	D	Е
Α	1489	206	54	76	52
В	70	671	34	84	111

C	19	70	823	128	98
D	81	134	49	618	133
Е	15	58	66	58	688

Overall Statistics

Accuracy: 0.7288 95% CI: (0.7172, 0.7401) No Information Rate: 0.2845 P-Value [Acc > NIR]: < 2.2e-16

Kappa: 0.6557 Mcnemar's Test P-Value: < 2.2e-16

Statistics by Class:

	Class: A G	Class: B	class: c	Class: D	Class: E
Sensitivity	0.8895	0.5891	0.8021	0.6411	0.6359
Specificity	0.9079	0.9370	0.9352	0.9193	0.9590
Pos Pred Value	0.7933	0.6918	0.7232	0.6089	0.7774
Neg Pred Value	0.9538	0.9048	0.9572	0.9290	0.9212
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2530	0.1140	0.1398	0.1050	0.1169
Detection Prevalence	0.3189	0.1648	0.1934	0.1725	0.1504
Balanced Accuracy	0.8987	0.7631	0.8687	0.7802	0.7974
Confusion Matrix and	Statistics	5			

	Refere	ence			
Prediction	Α	В	C	D	Е
Α	1489	206	54	76	52
В	70	671	34	84	111
C	19	70	823	128	98
D	81	134	49	618	133
F	15	58	66	58	688

Overall Statistics

Accuracy: 0.7288 95% CI: (0.7172, 0.7401) No Information Rate: 0.2845 P-Value [Acc > NIR]: < 2.2e-16

Kappa : 0.6557 Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:

	class: A	Class: B	class: c	Class: D	Class: E
Sensitivity	0.8895	0.5891	0.8021	0.6411	0.6359
Specificity	0.9079	0.9370	0.9352	0.9193	0.9590
Pos Pred Value	0.7933	0.6918	0.7232	0.6089	0.7774
Neg Pred Value	0.9538	0.9048	0.9572	0.9290	0.9212
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2530	0.1140	0.1398	0.1050	0.1169
Detection Prevalence	0.3189	0.1648	0.1934	0.1725	0.1504
Balanced Accuracy	0.8987	0.7631	0.8687	0.7802	0.7974

We will plot the matrix results plot(cfdt\$table, col = cfdt\$byClass, main = paste("Decision Tree - Accuracy =", round(cfdt\$overall['Accuracy'], 4)))

Decision Tree - Accuracy = 0.7288

Prediction

Generalized Boosting Model: Lets apply the GBM model and see the outcome

Apply the model on the testing data set and see the outcome predictGBM <- predict(mod_GBM, newdata=testing_set) cmGBM <- confusionMatrix(predictGBM, testing_set\$classe) cmGBM

Confusion Matrix and Statistics

	Refere	ence			
Prediction	Α	В	C	D	Е
Α	1674	14	0	0	0
В	0	1107	6	8	3
С	0	13	1019	8	4
D	0	5	0	946	10
Е	0	0	1	2	1065

Overall Statistics

Accuracy: 0.9874 95% CI: (0.9842, 0.9901) No Information Rate: 0.2845 P-Value [Acc > NIR]: < 2.2e-16

карра: 0.9841

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	class: c	Class: D	Class: E
Sensitivity	1.0000	0.9719	0.9932	0.9813	0.9843
Specificity	0.9967	0.9964	0.9949	0.9970	0.9994
Pos Pred Value	0.9917	0.9849	0.9761	0.9844	0.9972
Neg Pred Value	1.0000	0.9933	0.9986	0.9963	0.9965
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2845	0.1881	0.1732	0.1607	0.1810
Detection Prevalence	0.2868	0.1910	0.1774	0.1633	0.1815
Balanced Accuracy	0.9983	0.9842	0.9940	0.9891	0.9918
Confusion Matrix and	Statistic	٠.			

Contusion Matrix and Statistics

Prediction	Α	В	C	D	Е
Α	1674	14	0	0	0
В	0	1107	6	8	3
C	0	13	1019	8	4
D	0	5	0	946	10
Е	0	0	1	2	1065

Overall Statistics

Accuracy: 0.9874 95% CI: (0.9842, 0.9901) No Information Rate: 0.2845 P-Value [Acc > NIR]: < 2.2e-16

Kappa: 0.9841 Mcnemar's Test P-Value: NA

Statistics by Class:

	Class: A	Class: B	class: c	class: D	Class: E
Sensitivity	1.0000	0.9719	0.9932	0.9813	0.9843
Specificity	0.9967	0.9964	0.9949	0.9970	0.9994
Pos Pred Value	0.9917	0.9849	0.9761	0.9844	0.9972
Neg Pred Value	1.0000	0.9933	0.9986	0.9963	0.9965
Prévalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2845	0.1881	0.1732	0.1607	0.1810
Detection Prevalence	0.2868	0.1910	0.1774	0.1633	0.1815
Balanced Accuracy	0.9983	0.9842	0.9940	0.9891	0.9918

Let us plot the results

plot(cmGBM\$table, col = cmGBM\$byClass,

main = paste("GBM - Accuracy =", round(cmGBM\$overall['Accuracy'], 4)))

GBM - Accuracy = 0.9874

Based on the outcome of the three test results from three different models, we note that the most accurate one turns out to be Random Forest model. Hence we will apply Random Forest model on our testing data set.

Random Forest: 0.99 Decision Tree: 0.72

Gradient Boosting Model: 0.98

predict_testing <- predict(mod_rf, newdata=testing)</pre>

predict_testing