ARITMÉTICA – ÁLGEBRA SOLUCIÓN 1

A1. Juan no quiso vender su auto cuando le ofrecieron \$us.3000, con lo cuál hubiera ganado el 20% del costo que él pagó, pero poco después tuvo que venderlo en \$us. 2900. ¿Qué porcentaje del costo que pagó ganó el propietario?

Sea "x" el costo que él pago por el auto y "y" el porcentaje que gana con la venta en \$us. 2900.

$$\rightarrow 3000 = x + \frac{20}{100}(x) \rightarrow 3000 = \frac{6}{5}x \rightarrow \frac{5(3000)}{6} = x \rightarrow 2500 = x$$

$$\rightarrow 2900 = 2500 + \frac{y}{100}(2500) \rightarrow 400 = y(25) \rightarrow \frac{400}{25} = x \rightarrow \boxed{16 = x}$$

RESPUESTA (B) 16%

A2. La suma de las soluciones de la ecuación: $\frac{3^x + 3^{-x}}{3^{-x}} = 10 \cdot 3^{x-1}$ es:

$$\frac{3^{x} + 3^{-x}}{3^{-x}} = 10 \cdot 3^{x-1} \to u = 3^{x} \to \frac{u + \frac{1}{u}}{\frac{1}{u}} = \frac{10u}{3} \to \frac{u^{2} + 1}{\frac{1}{u}} = \frac{10u}{3}$$

$$u^{2} + 1 = \frac{10u}{3} \to 3u^{2} - 10u + 3 = 0 \to u_{1} = 3, u_{2} = \frac{1}{3}$$

$$3^{x} = 3, \ 3^{x} = \frac{1}{3} \to x_{1} = 1, x_{2} = -1 \to x_{1} = 0$$

RESPUESTA (C) 0

A3. El primer término de una progresión aritmética, con diferencia común distinta de cero, es 2. El primero, tercero y onceavo de la progresión original forman una progresión geométrica. Hallar la suma de los 11 primeros términos de la progresión aritmética.

$$u_1, u_2, u_3, u_4, u_{11}$$

Progresión aritmética: 2, 2 + d, 2 + 2d, 2 + 3d, ..., 2 + 10d

 $\rightarrow \rightarrow a_1, a_2, a_3$ es progresión geométrica, Entonces $\rightarrow \rightarrow a_1 = 2, a_2 = 2 + 2d, a_3 = 2 + 10d$

$$\rightarrow \rightarrow r = \frac{2+2d}{2} = \frac{2+10d}{2+2d} \rightarrow 1+d = \frac{1+5d}{1+d} \rightarrow (1+d)^2 = 1+5d$$

$$\rightarrow \rightarrow 1 + 2d + d^2 = 1 + 5d \rightarrow d^2 - 3d = 0 \rightarrow d = 0 \ 0 \ d = 3 \rightarrow d = 3$$

→→Progresión aritmética: 2,5,8,11,14,17,20,23,26,29,32

$$\rightarrow$$
→ Suma = $S_{11} = \frac{11(2+32)}{2} = 187$

RESPUESTA (B) 187

A4. Un tanque tiene 3 llaves de agua, si se abren las llaves A y B, el tanque se llena en 6 horas; si se abren las llaves B y C, se llena en 8 horas; y si se abren A y C, se llena en 4 horas. ¿En cuánto tiempo se llenará el tanque si se abre solo la llave B?

LLAVE A EN X HRS. LLENA 1 TANQUE. EN 1 HORA LLENA 1/X DEL TANQUE LLAVE B EN Y HRS. LLENA 1 TANQUE. EN 1 HORA LLENA 1/Y DEL TANQUE LLAVE C EN Z HRS. LLENA 1 TANQUE. EN 1 HORA LLENA 1/Z DEL TANQUE

$$\begin{cases} \frac{1}{X} + \frac{1}{Y} = \frac{1}{6} (1) \\ \frac{1}{Y} + \frac{1}{Z} = \frac{1}{8} (2) & \text{de-1(2)+(3):} \\ \frac{1}{X} + \frac{1}{Z} = \frac{1}{4} (3) \end{cases} \xrightarrow{\frac{1}{Y} + \frac{1}{Z} = \frac{1}{4} (3)} \xrightarrow{\frac{-1}{Y} + \frac{1}{X} = \frac{1}{8} (4)$$

$$\text{de -1(4)+(1):} \left\{ \begin{array}{c} \frac{-1}{Y} + \frac{1}{X} = \frac{1}{8} \quad (4) \\ \frac{1}{X} + \frac{1}{Y} = \frac{1}{6} \quad (1) \end{array} \right. \rightarrow \frac{2}{Y} = \frac{1}{24} \rightarrow Y = 48 \text{ hrs.}$$

RESPUESTA (B) 48 horas

GEOMETRÍA - TRIGONOMETRÍA SOLUCIÓN 1

G5. En un \triangle ABC, el ángulo A mide 130° y el ángulo que forma la altura con la bisectriz del ángulo exterior trazadas desde el vértice A mide 80°. Hallar el menor ángulo del \triangle ABC.

RESPUESTA (A) 15°

G6. La expresión trigonométrica $\frac{2(senx)(cos^2x)}{(1+cos2x)(tan\frac{x}{2})}$ se reduce a:

$$\frac{2\sin(x)\cos^2x}{\left(1+\cos 2x\right)\tan(\frac{x}{2})} = \frac{2\sin(x)\cos^2x}{\left(1+2\cos^2x-1\right)\tan(\frac{x}{2})} = \frac{2\sin(x)\cos^2x}{(2\cos^2x)\tan(\frac{x}{2})} = \frac{2\sin(x)\cos^2x}{(2\cos^2x)\tan(\frac{x}{2})} = 1+\cos x$$

RESPUESTA (C) 1 + cosx

G7. En la figura, O es el centro de la circunferencia circunscrita a un pentágono regular y "t" es una tangente a la circunferencia. Hallar x+y

$$Y = \frac{\widehat{ABCD} - \widehat{AE}}{2} = \frac{216^{\circ} - 72^{\circ}}{2} = 72^{\circ}$$

$$X = \frac{\widehat{BAE} - \widehat{CD}}{2} = \frac{144^{\circ} - 72^{\circ}}{2} = 36^{\circ}$$

$$X + Y = 108^{\circ}$$

RESPUESTA (A) 1080

G8. Si A y B son ángulos complementarios, hallar el valor de Z, si: $Z = \frac{\sin(A+2B) \cdot \tan(2A+3B)}{\cos(2A+B) \cdot \tan(4A+3B)}$

Sean
$$A + B = 90^{\circ} \rightarrow Z = \frac{\sin(A + 2B)\tan(2A + 3B)}{\cos(2A + B)\tan(4A + 3B)} = \frac{\sin(90 - B + 2B)\tan(180 - 2B + 3B)}{\cos(180 - 2B + B)\tan(360 - 4B + 3B)}$$
$$= \frac{\sin(90 + B)\tan(180 + B)}{\cos(180 - B)\tan(360 - B)} = \frac{\cos B \tan B}{(-\cos B)(-\tan B)} = 1$$

RESPUESTA (A) 1

$$M_{2}: N = M_{2} \alpha \qquad (-5)$$

$$\frac{\dagger_{A} - \zeta N = 0 \rightarrow N = \frac{\dagger_{A}}{\zeta} = \zeta [N]}$$

$$t_n P_- x = 5[m] \wedge 4 = 0$$

$$5 = \sqrt{2} V_0 t \rightarrow t = \frac{10}{\sqrt{2} V_0}$$

$$0 = 5 + \frac{\sqrt{2}}{2} V_0 \left(\frac{10}{\sqrt{2} V_0} \right) - 5 \left(\frac{10}{\sqrt{2} V_0} \right)^2 \longrightarrow V_0 = 5 \left[\frac{10}{\sqrt{6}} \right]$$

$$\chi_{\rm M} = 25 + \frac{5}{2} \begin{cases} 2 \\ \frac{1}{2} \end{cases}$$

$$\chi_{\alpha} = \frac{7}{3} t^2$$

$$\chi = 3t$$

$$\chi_{g} = 3 + 2$$

$$x_r = 3t$$
 Punto de ecuentro: $x_r = x_g$

$$\chi_r = 3(z) = (\epsilon [m]) < 10[m] = 2 Logra alcumzarlo$$

N°1 RESOLUCION EXAMEN

Q.13 Para el compuesto	$C_6H_5NO_2$ (nitrobenceno) (Masa molar = 124 g/r	nol). Calcular átomos de N por cada
átomo de C		

(A) 0,166

B) 1,023

C) 5,301

D) 0,356

E) Ninguno

atin:

tomus de N = ?

L'atomo de C

L'atomo de Cx 1 molde C 1 molde Cotto 100 1 molde Cotto 1000 1 molde Cotto 1000 1 molde Cotto 1000

6,022 x 10° atomos de N = 0,166 /atomos de N.

Rpta A) 0,166/

Q.14 El volumen de un gas a -33°C y 1,0 atm es 20,0 mL. ¿Qué volumen ocupara a 27°C y a 760 torr.

A) 30

B) 62

C) 10

E) Ninguno

V3 = 20,0 mL T3 = -33°C +273 T] = 1,0atm

T2 = 27°C+273 T3 = 760 Leot* 1 atm =

 $\sqrt{2} = \frac{\sqrt{172}}{\sqrt{1}} \quad \text{Reemplogando}$ $\sqrt{2} = \frac{20,0 \,\text{mL} * 300 \,\text{K}}{240 \,\text{K}} = 25 \,\text{cm omL/}$

Q.15 ¿Que volumen de HCl (ácido clorhídrico) gaseoso se producen al reaccionar 2,4 L de hidrogeno con 1,5 L de cloro? (Los volúmenes están a la misma T y P). La reacción es H₂ + Cl₂ → HCl								
	A) 40	B 3,0	c) 4,2	D) 3,9	E) Ninguno			
ator		1-12+	Cl2 -	2-icl	\	/× ?.		
	= ?	2.4 Lidetta	* 2Lde Hel	!= 4,82	deHCl			
	de Flz de Clz		2 * 2L de HC 1Lde Cl2			R. Lelle		
1.51 de 82 * 2 L de 1400 = 3,0 L de 1400								
Rpta: B) 3,0/								
Q.16 ¿ Cuantos gramos de NaOH se necesitan para preparar 200 mL de solución al 8,0 % en masa de NaOH?. La densidad de la solución es de 1,4 g/ml.								
	A) 32,4	B) 10,4	C) 22,4	D) 2	20,5 E) Nin	iguno		
atuz	0							
2 _{nu}		200	mLdesoluc *	1,4 gde	Toluc * 3	Ogde NaOH =		
Solu	$_{ic} = 200$) mL				- Standard		
) sdu	c = 200 $e = 1, 4$	g/mL	= 22.49	de Nua O	H /			

Repta: C) 22,4//