

ΦΕΑ Катедра КСТ Дипломна Работа на тема:

"Проектиране на микроконтролерен модул с цел използване на AVR/PIC асемблер"

Дипломант:

Веселин Станчев

ФН: 614872

спец. КСТ

Научен Ръководител: доц. д-р инж. Мария Маринова

Цел на дипломната работа

• Да бъде проектиран микроконтролерен модул с цел използване на AVR-базиран микроконтролер и PIC-базиран микроконтролер. Трябва да бъде осъществена комуникация между двата микроконтролера на асемблерно ниво. Модулът ще може да бъде използван за учебни и университетски цели. Проектът е изцяло open-source с цел по-доброто бъдещо развитие.

Поставени задачи

- Обзор на съществуващи микроконтролерни модули с AVR/PIC базирани микроконтролери
- Изисквания към проекта
- Анализ на микроконтролерите които ще бъдат използвани за микроконтролерния модул
- Анализ на асемблерните инструкции които ще бъдат използвани
- Софтуерни инструменти за проектиране на микроконтролерният модул и програмиране
- Проектиране на микроконтролерния модул
- Програмиране на микроконтролерите
- Реализиране на кода като библиотека
- Постигнати резултати. Бъдещо развитие

1.Обзор на съществуващи микроконтролерни модули

ANAVI MACRO PAD 2 - базиран на ATTiny 85 – AVR RISC архитектура

AVR64DD32 Curiosity Nano - базиран на AVR64DD32 – PIC базиран

ANAVI LIGHT CONTROLLER - базиран на ESP32 – RISC архитектура

Raspberry Pi Pico - базирана на RP2040 – RISC архитектура

Характеризирани са 4 микроконтролерни модули. Направена е характеристика на предметната област както и класификация на микроконтролерите.

За всеки микроконтролер е направено изследване, което обхваща:

- обща характеристика на микроконтролерният модул
- микроконтролерите, които поддържа
- комуникационните протоколи, които поддържа
- интерфейсите, които поддържа
- асемблери, на които може да бъде програмирани микроконтролерите

2. Изисквания към проекта

Поставени са изисквания към софтуерната и хардуерна част на проекта.

За хардуерната част трябва:

- Да се изберат подходящи микроконтролери чрез които да бъде изграден микроконтролерният модул
- Да се изберат интерфейси, с които ще разполага модула
- Да се избере софтуер за проектирането на модула

За софтуерната част трябва:

- да бъдат избрани асемблери съвместими с архитектурата на микроконтролерите
- да бъде реализиран протокол за комуникация между микроконтролерите
- трябва да бъде избран протокол за комуникация, спрямо който да бъде написан кодът
- кодът за микроконтролерите трябва да бъде реализиран чрез функции labels

3. Анализ на микроконтролерите, които ще бъдат използвани за микроконтролерния модул

AtTiny-85

ATTiny85 разполага със следните възможности:

- 8Kb Flash памет
- 512 байта EEPROM памет
- комуникация през универсален сериен интерфейс (USI)
- възможност за I2C комуникация чрез пиновете PB0.PB2

PIC10F320

PIC10F320 разполага със следните възможности:

- 128 байта памет
- 8 битов таймер
- ADC-конвентер
- комуникация през вътрешен интерфейс (ICSP)

4. Анализ на асемблерните инструкции, които ще бъдат използвани (ISA)

За ATTiny85 са достъпни следните видове инструкции:

- аритметико-логически инструкции
- инструкции за разклоняване на потока от данни
- инструкции за работа с битове
- инструкции за пренос на данни

За PIC10F320 са достъпни следните видове инструкции:

- инструкции за разклоняване на потока от данни
- инструкции за работа с битове
- инструкции за работа с байтове

5. Софтуерни инструменти за проектиране на микроконтролерният модул и програмиране

Git е разпределена система за контрол на версиите с отворен код, която може да бъде използвана за проследяване на промените за всеки тип файл.

Avra е инструмент за компилиране на avr assembler.

GNU Make е система за автоматизация на компилацията или тестването на програма. Част е от GNU проекта.

LibrePCB е сет от инструменти за проектиране на микроконтролерни модули

6. Проектиране на микроконтролерния модул

За реализацията на микроконтролерният модул са избрани микроконтролерите:

ATTiny85, PIC10F320

Интерфейси, с които ще разполага микроконтролерния модул:

USB за захранване, vrstanchev протокол за комуникация

Блокова схема на микроконтролерния модул

Символи на компонентите

Символ ATtiny-85

Символ PIC10F320

Footprint ATtiny-85

Footprint PIC10F320

Схема на микроконтролерния модул

Интерфейс	Свързаност	Използвани пинове
USB	Attiny85 ↔ USB	PB3,PB4
vrstanchev	Attiny85 ↔ PIC10F320	PB0, PB1 \rightarrow RA2, RA3

Разположение на модула

7. Програмиране на микроконтролерите

Избрани са следните асемблери:

- AVR Assembler
- PIC Assembler
- Избран е протокол за комуникация vrstanchev
- кодът за ATTiny85 ще бъде във функцията att_func()
- кодът за PIC10F320 ще бъде във функцията pic_func()
- функциите ще бъдат съобразени с протокола vrstanchev

- трябва да не се допуска излишно обръщение към регистрите
- трябва да бъде изложена логиката на компилацията
- трябва да бъде показана компилацията
- трябва кодът да бъде реализиран и като софтуерна библиотека поради:
- бъдещото развитие на проекта използване за различни проекти

Логика на кода

Софтуерната част на проекта се състои от функциите:

- att_func
- pic_func
- vrstanchev

Във функцията att_func ще бъде описано:

- в съответствие със схемата прави пиновете PB0 и PB1 на ATTINY-85 да бъдат изходни за сигнала, който достига до PIC10F320, след което са прави обръщение към избрания комуникационен протокол
- биват записани стойности в регистри, след като пиновете са направени изходни.
- Тези стойности след обръщането към протокола биват обработени и изпратени към
- другия микроконтролер.

Протокол за комуникация

- Във функцията ріс_func спрямо описаното в схемата пиновете RA2 и RA3 са входни. Чрез директивата call се обръщаме към протокола, за да получим данните.
- Реализиран е самостоятелен протокол за комуникация между микроконтролерите, подобен на UART. Функциите са реализирани в съответствие със схемата на микроконтролерния модул. След като съответните пинове бъдат конфигурирани се прави обръщение към лейбъла на протокола.

Използвани пинове относно протокола

Компонент	Използвани пинове
ATTiny85	PB0, PB1
PIC10F320	RA2, RA3
LED1, LED2	RA0, RA1

Сравнение между UART и самостоятелния протокол vrstanchev

Протокол	UART	VRSTANCHEV
Възможности	Half duplex, full duplex	Half duplex
Реализиран чрез	С	Assembler

Програмиране на микроконтролерите

```
.include "tn85def.inc"
.equ pb0 out=0b0000001
.equ pb1 out=0b0000010
.cseg
.org 0x00
att func:
sbi r16, pb0 out
sbi r17, pb1 out
out DDRB, r16
out PORTB,r16
out DDRB, r17
out PORTB,r17
```

Възможности за бъдещо развитие на проекта

- 1. Разширяване на възможностите на микроконтролерния модул хардуерна част:
- добавяне на допълнителни интерфейси към модула
- разработване и използване на допълнителни помощни модули към основния
- реализиране на различни версии на модула чрез

AVR-AVR

PIC-PIC

- 2. Разширяване на възможностите на микроконтролерния модул софтуерна част:
- адаптиране на библиотеката и реализираните функции за друга архитектура (ISA)
- разширяване на възможностите на комуникационния протокол vrstanchev

Насочеността на проекта е изцяло практическа.

Проектираният микроконтролен модул може да бъде използван за университетски и учебни

цели. Може да бъде използван при:

- провеждане на лабораторни упражнения
- изучаване на GNU Tools
- изучаване на взаимодействие между два асемблера
- програмиране на AVR базирани микроконтролери
- изучаване на протоколи за комуникация
- Постигнатите резултати са обобщени в статия по темата на дипломната. Изпратена е за преглед и публикуване в списание с индексиране в SCOPUS. Налична е в Research Gate

Заключение

В рамките на сегашната дипломна работа беше разгледана целта:

Да бъде проектиран микроконтролерен модул с използване на AVR-базиран микроконтролер и PIC-базиран микроконтролер с цел комуникация между двата микроконтролера на асемблерно ниво.

- Изискванията към софтуерната и хардуерна част на проекта бяха изпълнени.
- Реализиран е самостоятелен протокол за комуникация между микроконтролерите.
- Поставените цели бяха успешно изпълнени.
- Целта на дипломната работа е постигната.
- Дипломната работа ще бъде допълнително развита, чрез използване на някоя от посочените възможности.

Източници

- [1.1] ANAVI Macro Pad 2 DataSheet
- [1.2] ANAVI Light Controller DataSheet
- [1.3] avr64dd32 DataSheet
- [1.4] rp2040 board DataSheet
- [2] ATTiny85 Datasheet
- [3] PIC10F320 Datasheet
- [4] Linux Man Pages
- [5] LibrePCB Manual
- [6] Designing Microcontroller module with target to use AVR/PIC assembler