Examen d'Analyse Numérique

1ère année ISIMA

V. Barra, J. Koko et Ph. Mahey

27 novembre 2007

Exercice 1

Soit $A = \begin{pmatrix} 4 & 2 & 1 \\ 4 & -6 & 2 \\ -8 & 2 & 1 \end{pmatrix}$. Donner une décomposition LU de A (sans recherche du pivot partiel).

Utiliser la décomposition LU de la première question pour résoudre le système

$$\begin{cases} 4x + 2y + z = 14 \\ 4x - 6y + 2z = 14 \\ -8x + 2y + z = 2 \end{cases}$$

Exercice 2 Soient les points de \mathbb{R}^2

1.— Trouver l'équation de la droite passant au mieux par ces points, au sens des moindres carrés. Calculer l'erreur commise.

Soit un modèle affine à une entrée $p(t)=a_0+a_1t$, où le vecteur $x=(a_0\ a_1)^T$ est le paramètre à déterminer. On effectue n mesures à partir des entrées t_1,\ldots,t_n et soient y_1,\ldots,y_n les mesures de sortie.

- 2.— Ecrire le système d'équations linéaires correspondant à ce problème. On notera A la matrice et y le second membre.
 - 3.- Ecrire le système aux équation normales. Montrer que

$$A^{T}A = \begin{pmatrix} n & \sum_{i=1}^{n} t_{i} \\ \sum_{i=1}^{n} t_{i} & \sum_{i=1}^{n} t_{i}^{2} \end{pmatrix}, \qquad A^{T}y = \begin{pmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} t_{i} y_{i} \end{pmatrix}$$

Calculer le vecteur x solution du système aux équations normales.

4.— On pose

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

les moyennes des t_i et y_i , respectivement. Montrer que

$$\frac{1}{n}\sum_{i=1}^{n}(t_i-\bar{t})(y_i-\bar{y}) = \frac{1}{n}\sum_{i=1}^{n}t_iy_i-\bar{t}\bar{y}.$$

On pose

$$\sigma(t,y) = \frac{1}{n} \sum_{i=1}^{n} (t_i - \bar{t})(y_i - \bar{y}), \quad \sigma(t^2) = \frac{1}{n} \sum_{i=1}^{n} (t_i - \bar{t})^2.$$

En déduire que

$$a_1 = \frac{\sigma(t,y)}{\sigma(t^2)}$$
 $a_0 = \bar{y} - a_1\bar{t}$

5.- Montrer que le point moyen (\bar{t}, \bar{y}) apartient à la droite $y = a_0 + a_1 t$.