

Этикетка

<u>КСНЛ.431253.005 ЭТ</u> Микросхема 1564ТМ8ТЭП

Микросхема интегральная 1564ТМ8ТЭП Функциональное назначение:

Четыре D – триггера с прямыми и инверсными выходами

Таблица назначения выводов

No	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	CLR	Вход установки «0»	9	CLK	Вход тактовый
2	Q1	Выход первого триггера	10	Q3	Выход третьего триггера
3	Q1	Выход инверсный первого триггера	11	$\overline{\mathrm{Q3}}$	Выход инверсный третьего триггера
4	D1	Вход первого триггера	12	D3	Вход третьего триггера
5	D2	Вход второго триггера	13	D4	Вход четвёртого триггера
6	$\overline{\mathrm{Q2}}$	Выход инверсный второго триггера	14	Q4	Выход инверсный четвёртого триггера
7	Q2	Выход второго триггера	15	Q4	Выход четвёртого триггера
8	0V	Общий	16	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B I_{O} = 20 мкА	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 мкА		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} =4,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		ı	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B, I_{O} = 20 mkA	$\mathrm{U}_{\mathrm{OHmin}}$	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} = 20 mkA		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 мкА		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 4,0 mA		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	${ m I}_{ m IL}$	ı	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	1	8,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, } f = 1.0 \text{ M} \Gamma \text{ц}$	I_{OCC}	-	0,75

7. Максимальная тактовая частота, МГц, при:			
	£	6	
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}$	$f_{C max}$	6	-
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		30	-
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		35	-
8. Время задержки распространения при включении (выключении), нс, при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	t _{PHL1}	-	210
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	(t _{PLH1})	-	42
$U_{CC} = 6.0 \text{ B}, C_1 = 50 \text{ m}\Phi$	t _{PHL2}	-	37
	(t _{PLH2})		
при:	(*I LI12)		
$U_{CC} = 2.0 \text{ B, } C_1 = 50 \text{ п}\Phi$	t _{PHL3} .	_	175
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	- /	_	35
	(t _{PLH3})	-	
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	30
			15 (вывод
9. Входная емкость, пФ,			9, 10)
при: $U_{CC} = 0 B$	C_{I}	_	10 (выводы
np occ v 2	J1		1, 4, 5, 12,13)
	1	l	1, 4, 3, 12,13)

 $t_{PHL1,}\,t_{PLH1}$ – от входа CLK к выходам Q $t_{PHL2,}\,t_{PLH2}$ – от входа CLK к выходам \overline{Q} $t_{PHL3,}\,t_{PLH3}$ – от входа CLR к выходам Q и \overline{Q}

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

в том числе:

золото г/мм на 16 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-18ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТМ8ТЭП соответствуют техническим условиям АЕЯР.431200.424-18ТУ и признаны годными для эксплуатации.

Приняты по от	(дата)
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произ	ведена» (дата)
Приняты по $\frac{}{} (uзвещение, акт и др.) \hspace{3mm} \text{от}$	(дата)
Место для штампа ОТК	Место для штампа П

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ