Central Bank Swap Lines as Bilateral Sovereign Debt

Francisco Roldán IMF César Sosa-Padilla Notre Dame

DebtCon 7 PSE, May 2024

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

- · Swap line: two lines of credit involving two central banks
 - ... Each makes available an amount of its own currency to the other, for a fixed term
 - ... Short-term arrangements (typically one year, typically renewed)
- Used to mainly involve AEs
 Fed-ECB-BoE-BoJ-BoC
 - ... to support lender-of-last-resort functions with multinational firms
- \cdot Large increase in bilateral swaps and loans involving EMs since early 2000s
 - ... for EM, swap resources are hard currency
 - ... for EM, swap can be used for financing BoP (or as borrowed reserves)

Question

- Swap line: two lines of credit involving two central banks
 - ... Each makes available an amount of its own currency to the other, for a fixed term
 - ... Short-term arrangements (typically one year, typically renewed)
- Used to mainly involve AEs
 Fed-ECB-BoE-BoJ-BoC
 - ... to support lender-of-last-resort functions with multinational firms
- Large increase in bilateral swaps and loans involving EMs since early 2000s
 - ... for EM, swap resources are hard currency
 - ... for EM, swap can be used for financing BoP (or as borrowed reserves)

Question

- Swap line: two lines of credit involving two central banks
 - ... Each makes available an amount of its own currency to the other, for a fixed term
 - ... Short-term arrangements (typically one year, typically renewed)
- Used to mainly involve AEs
 Fed-ECB-BoE-BoJ-BoC
 - ... to support lender-of-last-resort functions with multinational firms
- · Large increase in bilateral swaps and loans involving EMs since early 2000s
 - ... for EM, swap resources are hard currency
 - ... for EM, swap can be used for financing BoP (or as borrowed reserves)

Question

- Swap line: two lines of credit involving two central banks
 - ... Each makes available an amount of its own currency to the other, for a fixed term
 - ... Short-term arrangements (typically one year, typically renewed)
- Used to mainly involve AEs
 Fed-ECB-BoE-BoJ-BoC
 - ... to support lender-of-last-resort functions with multinational firms
- · Large increase in bilateral swaps and loans involving EMs since early 2000s
 - ... for EM, swap resources are hard currency
 - ... for EM, swap can be used for financing BoP (or as borrowed reserves)

Question

How do Central Bank Swap Lines affect the Market Structure of Sovereign Debt?

· We abstract from currencies, collateral, and focus on the borrowing

- Borrowing with bonds
 - ... interest rate reflects default risk
- Borrowing from the swap line
 - ... interest rate and drawings negotiated

Defaulting on the debt does not mean defaulting on the swap

How do Central Bank Swap Lines affect the Market Structure of Sovereign Debt?

· We abstract from currencies, collateral, and focus on the borrowing

- Borrowing with bonds
 - ... interest rate reflects default risk
- · Borrowing from the swap line
 - ... interest rate and drawings negotiated
- Defaulting on the debt does not mean defaulting on the swap

How do Central Bank Swap Lines affect the Market Structure of Sovereign Debt?

· We abstract from currencies, collateral, and focus on the borrowing

- Borrowing with bonds
 - ... interest rate reflects default risk
- · Borrowing from the swap line
 - ... interest rate and drawings negotiated

· Defaulting on the debt does not mean defaulting on the swap

The Dangers of Borrowing through Swap Lines

Main findings

- Swap drawings small relative to debt, but
 - · Presence of swaps affects sovereign debt markets
 - ... can provide financing when other sources dry up
 - ... can increase risk-taking
- Lending around or in default maximizes surplus in swap negotiations
 - Availability of swaps in default:
 - ... raises the value of default
 - ... which increases the default frequency
 - ... and worsens borrowing terms in bond markets
 - · Without restricting swaps in default, welfare losses for the government
- Swap lines create overborrowing incentives similar to the debt dilution problem
 - Surplus requires spreads spreads require risk

The Dangers of Borrowing through Swap Lines

Main findings

- Swap drawings small relative to debt, but
 - Presence of swaps affects sovereign debt markets
 - ... can provide financing when other sources dry up
 - ... can increase risk-taking
- · Lending around or in default maximizes surplus in swap negotiations
 - Availability of swaps in default:
 - ... raises the value of default
 - ... which increases the default frequency
 - ... and worsens borrowing terms in bond markets
 - · Without restricting swaps in default, welfare losses for the government
- Swap lines create overborrowing incentives similar to the debt dilution problem
 - Surplus requires spreads spreads require risk

The Dangers of Borrowing through Swap Lines

Main findings

- Swap drawings small relative to debt, but
 - · Presence of swaps affects sovereign debt markets
 - ... can provide financing when other sources dry up
 - ... can increase risk-taking
- · Lending around or in default maximizes surplus in swap negotiations
 - Availability of swaps in default:
 - ... raises the value of default
 - ... which increases the default frequency
 - ... and worsens borrowing terms in bond markets
 - · Without restricting swaps in default, welfare losses for the government
- · Swap lines create overborrowing incentives similar to the debt dilution problem
 - Surplus requires spreads spreads require risk

Model

Timeline of events

Two markets

- · Owe debt b in markets: long-term debt, geometrically-decaying coupons
- Owe drawn amount m to "monopolist" Central Bank [Total amount available = k]

· Nash bargaining over transfer x and amount owed/drawn m'

$$\max_{\mathbf{x},\mathbf{m}'} \mathcal{L}_{\mathbf{R}}(b',\mathbf{x},\mathbf{m},\mathbf{m}',\mathbf{z})^{\theta} \times \mathcal{B}_{\mathbf{R}}(b',b,\mathbf{x},\mathbf{m},\mathbf{m}',\mathbf{z})^{1-\theta}$$
Lender surplus

Lender surplus

- Interest rate: $x = \frac{1}{1+r}m' m$
- Expected profits from m^r

- Extra financing after b
- · Interest rate \neq default prob.

- Lender has pure profit motive ...and same *sdf* as private creditors ... to focus on the effect of market structure
- · Market discipline: monopolist cannot offer worse terms than private creditors

· Nash bargaining over transfer x and amount owed/drawn m'

$$\max_{\mathbf{x},\mathbf{m}'} \mathcal{L}_{R}(b',\mathbf{x},\mathbf{m},\mathbf{m}',\mathbf{z})^{\theta} \times \mathcal{B}_{R}(b',b,\mathbf{x},\mathbf{m},\mathbf{m}',\mathbf{z})^{1-\theta}$$
 Government surplus

Lender surplus

- Interest rate: $x = \frac{1}{1+r}m' m$
- · Expected profits from m'

- Extra financing after b
- · Interest rate \neq default prob.

- Lender has pure profit motive ...and same sdf as private creditors
 ... to focus on the effect of market structure
- Market discipline: monopolist cannot offer worse terms than private creditors

· Nash bargaining over transfer x and amount owed/drawn m'

$$\max_{\boldsymbol{x},\boldsymbol{m}'} \mathcal{L}_{R}(b',\boldsymbol{x},\boldsymbol{m},\boldsymbol{m}',\boldsymbol{z})^{\theta} \times \mathcal{B}_{R}(b',b,\boldsymbol{x},\boldsymbol{m},\boldsymbol{m}',\boldsymbol{z})^{1-\theta}$$

Lender surplus

- · Interest rate: $x = \frac{1}{1+r}m' m$
- Expected profits from m'

- Extra financing after b'
- · Interest rate \neq default prob.

- Lender has pure profit motive ...and same sdf as private creditors
 ... to focus on the effect of market structure
- Market discipline: monopolist cannot offer worse terms than private creditors

· Nash bargaining over transfer x and amount owed/drawn m'

$$\max_{\boldsymbol{x},\boldsymbol{m}'} \mathcal{L}_{R}(b',\boldsymbol{x},\boldsymbol{m},\boldsymbol{m}',z)^{\theta} \times \mathcal{B}_{R}(b',b,\boldsymbol{x},\boldsymbol{m},\boldsymbol{m}',z)^{1-\theta}$$

Lender surplus

- · Interest rate: $x = \frac{1}{1+r}m' m$
- Expected profits from m'

- · Extra financing after b'
- · Interest rate \neq default prob.

- Lender has pure profit motive ...and same *sdf* as private creditors
 - ... to focus on the effect of market structure
- Market discipline: monopolist cannot offer worse terms than private creditors

· Nash bargaining over transfer x and amount owed/drawn m'

$$\max_{\substack{\textbf{x},\textbf{m}'\\\textbf{x},\textbf{m}'}} \mathcal{L}_{\textbf{R}}(b',\textbf{x},\textbf{m},\textbf{m}',z)^{\theta} \times \mathcal{B}_{\textbf{R}}(b',b,\textbf{x},\textbf{m},\textbf{m}',z)^{1-\theta}$$

Lender surplus

- · Interest rate: $x = \frac{1}{1+r}m' m$
- · Expected profits from m'

- Extra financing after b'
- · Interest rate \neq default prob.

- Lender has pure profit motive ...and same *sdf* as private creditors ... to focus on the effect of market structure
- · Market discipline: monopolist cannot offer worse terms than private creditors

Dynamics and Quantitative

Results

- When debt is low and default is unlikely, private markets lend at close to r
 ... Little value added from the monopolist's presence
- When debt is less safe, spreads open up $r^p > r$... Monopolist can offer better terms and make a profit $r^p > r^m > r$

- Twist: monopolist can charge lower rates during debt accumulation episodes
 ... Conversely, charge higher rates during debt deleveraging
- Bilateral relationship creates incentives for risk-taking and overborrowing

- When debt is low and default is unlikely, private markets lend at close to r
 ... Little value added from the monopolist's presence
- When debt is less safe, spreads open up $r^p > r$... Monopolist can offer better terms and make a profit $r^p > r^m > r$

- Twist: monopolist can charge lower rates during debt accumulation episodes
 ... Conversely, charge higher rates during debt deleveraging
- Bilateral relationship creates incentives for risk-taking and overborrowing

- When debt is low and default is unlikely, private markets lend at close to r
 ... Little value added from the monopolist's presence
- When debt is less safe, spreads open up $r^p > r$... Monopolist can offer better terms and make a profit $r^p > r^m > r$

- Twist: monopolist can charge lower rates during debt accumulation episodes
 ... Conversely, charge higher rates during debt deleveraging
- Bilateral relationship creates incentives for risk-taking and overborrowing

- When debt is low and default is unlikely, private markets lend at close to r
 ... Little value added from the monopolist's presence
- When debt is less safe, spreads open up $r^p > r$... Monopolist can offer better terms and make a profit $r^p > r^m > r$

- Twist: monopolist can charge lower rates during debt accumulation episodes
 ... Conversely, charge higher rates during debt deleveraging
- Bilateral relationship creates incentives for risk-taking and overborrowing

Dynamics with swap lines

need to redo the graph with name Delevered

Dynamics with swap lines

need to redo the graph with name Delevered

Dynamics with swap lines

need to redo the graph with name Delevered

Welfare effects of swap lines

	No swap	Unrestricted, $\theta = 0.5$	Delevered, $\theta = 0.5$
Avg spread (bps)	901	2447	1406
Std spread (bps)	532	1578	960
$\sigma(c)/\sigma(y)$ (%)	110	110	114
Debt to GDP (%)	20.5	19.6	20.5
Swap to GDP (%)	0	3.25	1.27
Corr. swap & spreads (%)	-	62.6	70.1
Default frequency (%)	7.07	15.2	10.7
Welfare gains (rep)	-	-0.36%	-0.22%

Concluding remarks

- Simple model with monopolist/fringe structure
- Strong interaction between two markets for sovereign debt
 - ... even if swaps are **not** used intensely on the equilibrium path
- · Market power crucial in model
 - ... how to discipline in model?
 - ... how to affect in reality?
- · Large welfare effects, policy challenges
 - · How to limit their use during defaults?
 - Strengthened debt dilution more gains from fiscal rules, state-contingent debt?

Scan to find the paper