

TRAVAUX DIRIGES DE CHIMIE ORGANIQUE

TD 1 Formules et abbreviations

Effets électroniques, Stabilités espèces ioniques et radicalaires

Exercice 1: Donner la formule brute de l'alcane suivant :

Exercice 2: Écrire la structure des composés suivants en formule semi-développée et en formule abrégée.

- a) 3-éthyl-2,3,4-triméthyloctane
- b) 2-i.propyl-3-n.butylhept-1-ene
- c) 2-n.propyl-3-sec-butylhept-1-éne
- d) 3-méthylbutanoate d'éthyle
- e) 3,4-diméthyl-5-*n*.propyloct-4-ene
- f) 3-n.butyl-2-méthoxycyclohexanone
- g) 2-cyclopropylbutan-1-ol
- h) 5-méthyl-2-phénylheptanal

Exercice 3:

1. Réécrire les formules en remplaçant les abréviations communes par les atomes correspondants (en formule condensée) :

2. Réécrire les formules en remplaçant le plus possible les groupements ou parties de molécules par les abréviations correspondantes :

$$\uparrow$$

3. Dessiner la formule plane développée et donner le nom des fonctions présentes dans ces molécules :

C₃H₇COOEt C₃H₇COEt (C₃H₇CO)₂O C₃H₇COOH CH₃CONH₂

 C_6H_5CHO C_2H_5COCI EtCHNEt MeOCH₂CN

Exercice 4:

1. Ces atomes ou groupements présents dans la molécule ont-ils un effet **inductif** donneur ou attracteur :

CH₃, F, MeCO, NO₂, CH₃CH₂, R-MgBr, CH₃CO₂-, Ph-NH₃+

2. Ces atomes ou groupements présent dans la molécule ont-ils un effet **mésomère** donneur ou mésomère attracteur :

Br, MeO, MeCO, R-NH₂, R-SH, R-OMe, CH₃CH₂CN, iBu-NO₂

3. Indiquer pour chacune des molécules le sens de l'effet inductif et/ou mésomère :

4. Ecrire les formes mésomères des formules suivantes :

Exercice 5:

1. Classer les carbocations par ordre de stabilité croissante :

$$H_3C \stackrel{\oplus}{\longrightarrow} CH_3$$
 $H_3C \stackrel{\oplus}{\longrightarrow} CH_3$ $H_3C \stackrel{\oplus}{\longrightarrow} NO_2$ $H \stackrel{\oplus}{\longrightarrow} H$ $H_3C \stackrel{\oplus}{\longrightarrow} H$ CH_3

2. Classer les carbanions par ordre de stabilité croissante :

H₃C
$$\bigcirc$$
 CH₃ H₃C \bigcirc CH₃ H₃C \bigcirc CH₃ CH₃

3. Classer les radicaux par ordre de stabilité croissante :