<u>Табло</u> / Моите курсове / <u>Бакалаври, летен семестър 2020/2021</u> / <u>КН</u> / <u>Езици, автомати и изчислимост, летен семестър 2020/2021</u> / 24 май - 30 май / <u>Тест на граматики</u>

Започнат на	петък, 28 май 2021, 14:15
Състояние	Завършен
Приключен на	петък, 28 май 2021, 14:57
Изминало време	42 мин. 36 сек.
Оценка	5,50 ot 10,00 (55 %)

Въпрос 1

Неправилен отговор

0,00 от максимално 1,00 точки

За граматика G и дума $\alpha=a_1a_2\cdots a_n\in \Sigma^*$ дефинираме множеството $V[i][j]=\{A\in V\mid A\Rightarrow^\star a_ia_{i+1}\cdots a_{i+j-1}\}$. Нека G има правилата:

$$S
ightarrow a \mid AB \mid AC, \quad C
ightarrow SB \mid AS, \quad A
ightarrow a, \quad B
ightarrow b.$$

Нека lpha=aabba .

Кои от следните твърдения са верни?

Изберете едно или повече:

- $V[2][3] = \{S, C\}$
- V[1][2] = V[2][3]
- $V[2][2] = \{S, C\}$
- $V[4][1] = \{A\}$

Правилните отговори са: $V[2][2] = \{S,C\}$, V[1][2] = V[2][3]

Въпрос 2

Правилен отговор

1,00 от максимално 1,00 точки

Коя граматика разпознава езика $\{a^{m-n}b^{m+n}\mid n\leq m\in\mathbb{N}\}$?

Изберете едно

- $\bigcirc \quad S \rightarrow ASB \mid \varepsilon, \quad A \rightarrow aA \mid \varepsilon, \quad B \rightarrow bbB \mid \varepsilon$
- igcirc $S o aSbb\midarepsilon$
- igcircless $S o AB, \quad A o aAb \mid arepsilon, \quad B o bbB \mid arepsilon$
- $igcup S
 ightarrow AB, \quad A
 ightarrow aA \mid arepsilon, \quad B
 ightarrow bB \mid arepsilon$

Правилният отговор е: $S o AB, \quad A o aAb \mid arepsilon, \quad B o bbB \mid arepsilon$

Въпрос 3

Неправилен отговор

0,00 от максимално 1,00 точки

Да разгледаме граматиката G зададена с правилата:

$$S
ightarrow AS \mid b, \quad A
ightarrow AC \mid BC \mid a, \quad B
ightarrow BC \mid CC \mid b, \quad C
ightarrow arepsilon \mid CA \mid a \; .$$

Нека G' е еквивалентна граматика на G, получена чрез процедурата за премахване на ε -преходи. Колко е броят на правилата в G'?

(Не броим правила от вида X o X)

Отговор: 12

Правилният отговор е: 14

Въпрос 4

Правилен отговор

1,00 от максимално 1,00 точки

Ако L_1 и L_2 са безконтекстни езици, то $L_1\cap L_2$ също е безконтекстен език.

Изберете едно:

- ОИстина
- 🔍 Лъжа 🗸

Браво :)

Правилният отговор е "Неистина"

Въпрос 5

Правилен отговор

1,00 от максимално 1,00 точки

За кои езици A и B сечението им е безконтестен език?

Изберете едно или повече:

- $extstyle A = \{ lpha eta \in \{a,b\}^\star \mid lpha^R$ е префикс на $eta \}$ и $B = \{\omega \in \{a,b\}^\star \mid \omega$ не завършва на $bab \}.$
- $A = \{a^n b^n c^n \mid \in \mathbb{N}\}, B = \{a^n b^k c^n \mid n, k \in \mathbb{N}\}$
- $lacksymbol{oxtimes} A = \{a^nb^n \mid n \in \mathbb{N}\}, B = \{\omega \in \{a,b\}^\star \mid \omega$ започва с $bab\}$
- $A = \{a^n b^n c^m \mid n, m > 0\}, B = \{a^m b^n c^n \mid n, m > 0\}$

Правилните отговори са: $A=\{\alpha\beta\in\{a,b\}^\star\mid\alpha^R$ е префикс на $\beta\}$ и $B=\{\omega\in\{a,b\}^\star\mid\omega$ не завършва на $bab\}$. , $A=\{a^nb^n\mid n\in\mathbb{N}\}, B=\{\omega\in\{a,b\}^\star\mid\omega$ започва с $bab\}$

Въпрос 6

Частично правилен отговор

0,17 от максимално 1,00 точки

Да разгледаме езика $L = \{lpha.\,eta.\,lpha^{rev} \mid |eta| \leq |lpha| \}$.

Според лемата за покачването, за да докажем, че L не е безконтекстен, следваме стъпките:

- 1. Разглеждаме произволна константа $p \geq 1$.
- 2. Избираме дума $\omega \in L$ с дължина поне p
- 3. Разглеждаме произволно разбиване на думата $\omega = xyuvw$ и $|yv| \geq 1, |yuv| \leq p$.
- 4. Намираме i, за което думата $xy^iuv^iw \notin L$.

Изберете едно или повече:

- [®] Нека на стъпка 2.) сме избрали думата $\omega=a^pb^pa^pb^pa^p$. Тогава на стъпка 4.) Мумата xy^2uv^2w ще продължи да е в езика, можем да изберем i=2, ако разбиването, което ни е дадено на стъпка 3.), е такова, че $yuv=a^\ell$, за някое $\ell\geq 1$.
- Нека на стъпка 2.) сме избрали думата $\omega = a^{2p}b^pc^pa^{2p}$. Тогава на стъпка 4.) можем да изберем i=2, независимо от разбиването, което ни е дадено на стъпка 3.).
- Нека на стъпка 2.) сме избрали думата $\omega = a^{2p}b^pc^pa^{2p}$. Тогава на стъпка 4.) можем да изберем i=0, независимо от разбиването, което ни е дадено на стъпка 3.).
- Нека на стъпка 2.) сме избрали думата $\omega = a^p b^p a^p b^{2p} a^p$. Тогава на стъпка 4.) можем да изберем i=p, ако разбиването, което ни е дадено на стъпка 3.), е такова, че $yuv=a^\ell$, за някое $\ell \geq 1$.
- lacktriangled Нека на стъпка 2.) сме избрали думата $\omega=a^pb^pa^pb^{2p}a^p$. Тогава на стъпка 4.) можем да изберем i=0, ако разбиването, което ни е дадено на стъпка 3.), е такова, че $yuv=b^\ell$, за някое $\ell\geq 1$.

Правилните отговори са: Нека на стъпка 2.) сме избрали думата $\omega=a^pb^pa^pb^{2p}a^p$. Тогава на стъпка 4.) можем да изберем i=p, ако разбиването, което ни е дадено на стъпка 3.), е такова, че $yuv=a^\ell$, за някое $\ell\geq 1$., Нека на стъпка 2.) сме избрали думата $\omega=a^{2p}b^pc^pa^{2p}$. Тогава на стъпка 4.) можем да изберем i=2, независимо от разбиването, което ни е дадено на стъпка 3.).

Въпрос 7

Частично правилен отговор

0,67 от максимално 1,00 точки

Нека L_1 и L_2 са к.св. езици.

Нека G е граматика за L_1 с n на брой променливи.

Кои от следните са верни със сигурност:

lacksquare $L_1. (L_1 \cup L_2)$ е к.св. език

✓ Това са стандартни конструкции

- $\overline{}$ $\overline{L_1}.\overline{L_2}$ не е к.св. език
- $\ lue{}$ Ако $L_1\cap L_2$ е регулярен, то $L_1\setminus L_2$ е к.св. език
- $\ igsim L_1 \cap \Sigma^{21} \,$ е к.св. език

✓ Езикът е краен

Вашият отговор отчасти е верен.

Вие правилно сте избрали 2.

Правилните отговори са:

 $L_1\cap \Sigma^{21}\,$ е к.св. език

Ако $L_1\cap L_2$ е регулярен, то $L_1\setminus L_2$ е к.св. език

 $L_1.\left(L_1\cup L_2
ight)$ е к.св. език

Въпрос **8**

Неправилен отговор

0,00 от максимално 1,00 точки

Кои от следните езици са безконтекстни?

Изберете едно или повече:

- $\square \quad \{\omega c^n \omega^{\text{rev}} \mid \omega \in \{a,b\}^* \ \& \ n = |\omega|\}$
- $lacksquare \{\omega \sharp \omega^{\mathrm{rev}} \mid \omega \in \{a,b\}^*\}$

.

- $\square \{a,b\}^* \setminus \{a^nb^n \mid n \in \mathbb{N}\}$.

×

Правилните отговори са: $\{a,b\}^\star\setminus\{a^nb^n\mid n\in\mathbb{N}\}$., $\{\omega\sharp\omega^{\mathrm{rev}}\mid\omega\in\{a,b\}^\star\}$, $\{a^nb^mc^k\mid n,m,k$ не са страни на триъгълник $\}$

Въпрос 9	
Правилен отговор	
1,00 от максимално 1,00 точки	

Нека G е граматика със следните правила:

$$S
ightarrow BS \mid arepsilon, \quad B
ightarrow abB \mid C \;, \quad C
ightarrow cC \mid c.$$

Изберете едно или повече:

- ${\Bbb V}\ L(G)$ е регулярен език.
- $C \in L(G)$ (abcabc in L(G))
- \(cba \in L(G) \)

Вашият отговор е верен.

Правилните отговори са: (L(G)) е регулярен език., $(c \in L(G))$, $(abcabc \in L(G))$

Въпрос 10	
Частично правилен отговор	
0,67 от максимално 1,00 точки	
Нека е дадена безконтекстната граматика \(G\) с правила \([S\\ to aASc aS aB , A\\ to aA \varepsilon, B\\ to bBc bB b,\] където \((a, b, c\)\) са терминални, а \(S, A, B\) са нетерминални символи. Като приложим алгоритъма за строене на стеков автомат пграматика, получаваме стеков автомат \([A = (\{q\},\Sigma,\Gamma,\delta, q,S)\] над \(\Sigma = \{a,b,c\}\), който разпознава \((L(G)\)). Кои от следните са верни?	0
Изберете едно или повече: ☑ а. Дъното на стека е \(S\)	~
<pre>b. \(\Gamma = \{S, A, B\}\)</pre>	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
d. \((q,\sigma)\in\delta(q,\varepsilon,A)\iff \sigma=aA\) или \(\sigma=\varepsilon\)	~
e. \((q,S)\in\delta(q,\varepsilon,S)\)	
f. \((q,\varepsilon)\in\delta(q,b,b) \)	
Правилните отговори са: Дъното на стека е \(S\) , \((q,\varepsilon)\in\delta(q,b,b) \)	
, $\((q, sigma)\in (q, varepsilon, A)) iff sigma=aA) или ((sigma=varepsilon))$	
⊲ Изчислимост	
Отиди на	
···	

Упражнения, вторник, 25 май, от 8:15 до 10:00, П. Митанкин ►