#### **IDEAL 2019**



# Detection of Abnormal Load Consumption in the Power Grid Using Clustering and Statistical Analysis

Matúš Cuper

\_

Marek Lóderer

Viera Rozinajová

Slovak University of Technology

14.11.2019, Manchester UK

#### Problem statement

- Identification of abnormal behavior
  - data evolution, unlabeled dataset, noise, anomaly definition etc.
  - classification, clustering, statistical methods etc.
  - local and global anomalies
- Prevention of illegal consumption, identification of malfunctioning devices, optimization of energy distribution
- Behavior that differs from behavior of neighboring instances

## **Existing solutions**

- Clustering based
  - sliding windows to keep relevant information
  - suitable for quasi-periodic time series
- Statistical based
  - robust to anomalous fluctuations
  - reduction of false-alarms
- Other
  - distance based
  - density based

## Proposed method

- 1. Clustering of time series
- 2. Scoring of instances and clusters
- 3. Customer selection
- 4. S-H-ESD analysis
- 5. Combining of computed scores

## Proposed method



## 1. Clustering of time series

- Data preprocessing
  - normalization (z-score)
  - window alignment
  - division (workdays and non-workdays)
- Dataset aggregation by sliding windows
  - windows size (2 weeks)
  - window shift (1 week)
- Clustering using k-medoids
  - distance metric (GAK)

## 2. Scoring of instances and clusters

- Instance scoring
  - different values for different instances
  - relative distance of instance within given cluster
- Cluster scoring
  - different values for different clusters
  - small cluster penalization

## 2. Scoring of instances and clusters



#### 3. Customer selection

Interval of interquartile rule for anomaly detection

$$<$$
Q1 – 1.5\*IQR, Q3 + 1.5\*IQR>

- FeaClip method
- Based on suspicion
- Visualization

#### 3. Customer selection



## 4. S-H-ESD analysis

- Smoothing in order to eliminate numerous local anomalies
- S-H-ESD analysis
  - based on Grubb's test
  - using median absolute deviation
  - capable of identifying up to 50% anomalies
- Output of S-H-ESD analysis is a flag
  - Intervals with dense occurrence of flags are grouped
  - Intervals with sparse occurrence of flags are smoothed

## 5. Combining of computed scores

- Combining of smoothed flags from S-H-ESD analysis and computed score from k-medoids
- Lower granularity
- Result is not flag indicating anomalousness, but number representing degree of anomalousness of given measurement

## 5. Combining of computed scores



Anomaly score = Consumer score + S-H-ESD score

## 5. Combining of computed scores





#### **Evaluation**

- Dataset from Irish CER Smart Metering Project
- Clustering
  - experiments
  - cluster validation indexes
- Proposed method compared to
  - PEWMA
  - SD-EWMA
  - KNN-LDCD
  - S-H-ESD

### **Evaluation**





Proposed Method



Score

1.50

1.25

1.00 0.75

## Evaluation

| Method<br>Name     | TP     | TN     | FP     | FN     | Precision | Recall  | F1 score |
|--------------------|--------|--------|--------|--------|-----------|---------|----------|
| PEWMA              | 0.6 %  | 82.5 % | 3.3 %  | 13.6 % | 17.67 %   | 4.90 %  | 7.67 %   |
| SD-EWMA            | 0.7 %  | 83.1 % | 2.6%   | 13.6 % | 20.36 %   | 4.69 %  | 7.62 %   |
| KNN-LDCD           | 0.04 % | 85.6 % | 0.03 % | 14.2 % | 60.00 %   | 0.31 %  | 0.62 %   |
| S-H-ESD            | 6.4 %  | 58.1 % | 27.6 % | 7.9 %  | 18.82 %   | 44.90 % | 26.52 %  |
| Proposed<br>Method | 4.4 %  | 80.6 % | 5.1 %  | 9.9 %  | 42.84 %   | 39.27 % | 40.98 %  |
| Reality            | 14.3 % | 85.7 % | -      | -      | -         | -       | -        |

## Summary

- Only consumers with high score are analyzed
- Flag replaced by degree of anomalousness
- Possible online processing

## Thank you for your attention