Matematika 2

2. Masovne instrukcije

Vektori. Pravac i ravnina.

11. ožujka 2011.

(pripremio V. Ćosić)

Zadatak 1. (Skalarni produkt)

Zadani su vektori $\vec{p}=\lambda\vec{a}+17\vec{b}$ i $\vec{q}=3\vec{a}-\vec{b}$, gdje je $|\vec{a}|=2,$ $|\vec{b}|=5$ i $\angle(\vec{a},\vec{b})=\frac{2\pi}{3}$. Odredi:

- (a) koeficijent λ tako da vektori \vec{p} i \vec{q} budu međusobno okomiti,
- (b) duljinu vektora $\vec{r} = 4\vec{p} 23\vec{q}$.

Zadatak 2. (Skalarna i vektorska projekcija)

Zadane su točke A(2,3,2), B(0,1,1), C(4,4,0) i D(8,6,6). Odredite vektorsku projekciju vektora \overrightarrow{AB} na vektor \overrightarrow{CD} i njezinu duljinu.

Zadatak 3. (Vektorski produkt)

Dani su vektori $\vec{a}=(0,2\lambda,\lambda),\, \vec{b}=(2,2,1)$ i $\vec{c}=(-1,-2,-1).$

- (a) Odredite parametar λ takav da je $(\vec{a} \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \lambda$.
- (b) Odredite vektor \vec{d} koji zadovoljava uvjete $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ i $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$.
- (c) Pokažite da su vektori $\vec{a} \vec{d}$ i $\vec{b} \vec{c}$ kolinearni.

Zadatak 4. (Linearna kombinacija vektora)

- (a) Zadan je deltoid ABCD. Neka je točka E presjecište dijagonala. Prikaži vektor \overrightarrow{BE} kao linearnu kombinaciju vektora \overrightarrow{AB} i \overrightarrow{BC} .
- (b) Točke P i Q imaju radij vektore \vec{p} i \vec{q} s obzirom na ishodište O. Neka je točka X polovište od \overline{PQ} i točka Y takva da je $\overrightarrow{OY} = 2\overrightarrow{YX}$. Prikaži \overrightarrow{OY} i \overrightarrow{PY} pomoću \vec{p} i \vec{q} .

Zadatak 5. (Površina i visina trokuta i paralelograma)

- (a) Trokut \overrightarrow{ABC} $\overrightarrow{AB} = 3\vec{p} 4\vec{q}$ i $\overrightarrow{BC} = \vec{p} + 5\vec{q}$, pri čemu je $|\vec{p}| = |\vec{q}| = 2$ i $\angle(\vec{p}, \vec{q}) = \frac{\pi}{2}$. Odredite površinu P i visinu v_c spuštenu iz vrha C.
- (b) Odredite površinu paralelograma s dijagonalama $\vec{e}=-\vec{i}-2\vec{j}-2\vec{k}$ i $\vec{f}=5\vec{i}-4\vec{j}-8\vec{k}$.

Zadatak 6. (Površina i duljina dijagonala romba)

Neka su \vec{a} i \vec{b} jedinični vektori koji zatvaraju kut od $\frac{\pi}{3}$. Izračunajte duljine dijagonala i površinu romba razapetog vektorima \vec{a} i \vec{b} .

Zadatak 7. (Mješoviti produkt)

Zadani su vektori $\vec{a}=(1,2\alpha,1), \ \vec{b}=(2,\alpha,\alpha)$ i $\vec{c}=(3\alpha,2,-\alpha).$

- (a) Izračunajte mješoviti produkt vektora \vec{a} , \vec{b} i \vec{c} .
- (b) Odredite $\alpha \in \mathbb{R}$ takav da su vektori \vec{a}, \vec{b} i \vec{c} komplanarni.

Zadatak 8. (Volumen i visina paralelepipeda)

- (a) Izračunajte volumen paralelepipeda razapetog vektorima $\vec{a}=(1,-3,1),$ $\vec{b}=(2,1,-3)$ i $\vec{c}=(1,2,1).$
- (b) Izračunajte visinu paralelepipeda razapetog vektorima $\vec{a}=(3,2,-5),$ $\vec{b}=(1,-1,4)$ i $\vec{c}=(1,-3,1)$ ako je osnovica paralelogram razapet vektorima \vec{a} i \vec{b} .

Zadatak 9. (Jednadžba ravnine)

Odredite jednadžbu ravnine koja prolazi točkom $T_0 = (2, -1, 3)$ i:

- (a) na koordinatnim osima odsijeca iste odsječke $a \neq 0$,
- (b) sadrži x-os,
- (c) sadrži ishodište i točku T = (1, 1, 1).

Zadatak 10. (Pramen ravnina)

Kroz presjek ravnina 4x - y + 3z - 1 = 0 i x + 5y - z + 2 = 0 postavi ravninu tako da:

- (a) prolazi točkom M(1,0,2),
- (b) je paralelna sa xy-ravninom,
- (c) je okomita na ravninu 2x y + 5z 3 = 0.

Zadatak 11. (Okomite ravnine)

(a) Odredite jednadžbu ravnine π_0 koja prolazi točkom M(2, -1, 1) i okomita je na ravnine

$$\pi_1...3x + 2y - z - 4 = 0$$

 $\pi_2...x + y + z - 3 = 0$

(b) Odredite jednadžbu ravnine π koja prolazi točkama A(1,2,3) i B(3,2,1) i okomita je na ravninu $\pi_1...4x - y + 2z - 7 = 0$.

Zadatak 12. (Jednadžba pravca)

Odredite kanonsku i parametarsku jednadžbu pravca koji:

- (a) prolazi točkama M(1,2,-1) i N(2,0,3),
- (b) je zadan kao presjek ravnina

$$\pi_1...x - y + z - 4 = 0$$

$$\pi_2...2x + y - 2z + 5 = 0$$

Zadatak 13. (Okomiti pravci)

Zadane su točke A(1,2,2), B(3,1,2), C(-1,5,2) i D(2,-1,0). Odredite jednadžbu pravca p koji prolazi točkom T(1,2,3) i okomit je na pravce određene vektorima \overrightarrow{AB} i \overrightarrow{CD} .

Zadatak 14. (Ravnina paralelna pravcu)

Odredite jednadžbu ravnine π koja prolazi točkama A(1,0,-1) i B(-1,2,1), a paralelna je s pravcem p koji je presjek ravnina

$$\pi_1...3x + y - 2z - 6 = 0$$

$$\pi_2...4x - y + 3z = 0$$

Zadatak 15. (Sjecište pravca i ravnine)

Zadan je pravac p kao presjek ravnina $\pi_1...x - 2z - 3 = 0$ i $\pi_2...y - 2z = 0$. Odredite sjecište pravca p i ravnine $\pi...x + 3y - z + 4 = 0$.

Zadatak 16. (Sjecište dvaju pravaca)

Odredite sjecište pravaca

$$p_1...\frac{x-1}{4} = \frac{y-2}{3} = \frac{z}{1}$$

$$p_2...\frac{x}{3} = \frac{y+1}{3} = \frac{z-2}{0}$$

Zadatak 17. (Ortogonalna projekcija točke na pravac)

Odredite točku N simetričnu točki M(1,0,2) s obzirom na pravac

$$p...\frac{x-2}{3} = \frac{y}{5} = \frac{z+1}{1}$$

Zadatak 18. (Ortogonalna projekcija točke na ravninu)

Odredite ortogonalnu projekciju točke M(-1,0,1) na ravninu 2x+y-z=7.

Zadatak 19. (Ortogonalna projekcija pravca na ravninu)

Odredite parametarsku jednadžbu ortogonalne projekcije q pravca

$$p...\frac{x}{-2} = \frac{y - \frac{12}{7}}{1} = \frac{z - \frac{10}{7}}{3}$$

na ravninu $\pi ... 2x - y + 5z - 5 = 0$.

Zadatak 20. (Udaljenost točaka)

Odredite jednadžbu skupa točaka jednako udaljenih od točaka A(2,-1,2) i B(0,1,0).

Zadatak 21. (Udaljenost ravnina)

Nađite udaljenost između ravnina

$$\pi_1...2x + 3y - 6z + 14 = 0$$

 $\pi_2...2x + 3y - 6z - 35 = 0$

Zadatak 22. (Udaljenost pravca od ravnine)

Nađite ravninu π koja je paralelna i jednako udaljena od pravaca

$$p_1 \dots \left\{ \begin{array}{l} y = 2x - 1 \\ z = 3x + 2 \end{array} \right.$$

$$p_2 \dots \left\{ \begin{array}{l} y = -x + 2 \\ z = 4x - 1 \end{array} \right.$$

Zadatak 23. (Udaljenost točke od pravca)

Odredite udaljenost točke T(2,1,3) od pravca

$$p...\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{3}$$

Zadatak 24. (Udaljenost paralelnih pravaca)

Odredite udaljenost između paralelnih pravaca

$$p_1...\frac{x}{1} = \frac{y-1}{1} = \frac{z}{2}$$

$$p_2...\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{2}$$