香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

練習卷 PRACTICE PAPER

數學 必修部分 試卷-MATHEMATICS COMPULSORY PART PAPER 1

評卷參考(暫定稿) PROVISIONAL MARKING SCHEME

本評卷參考乃香港考試及評核局專爲本科練習卷而編寫,供教師參考之用。教師應提醒學生,不應將評卷參考視爲標準答案,硬背死記,活剝生吞。這種學習態度,既無助學生改善學習,學懂應對及解難,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各位教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for teachers' reference. Teachers should remind their students NOT to regard this marking scheme as a set of model answers. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, will not help students to improve their learning nor develop their abilities in addressing and solving problems. The Authority is counting on the co-operation of teachers in this regard.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

PP-DSE-MATH-CP 1-1

香港中學文憑考試 數學 必修部分 試卷一

一般閲卷原則

- 1. 本評卷參考屬暫定稿,未經統一評卷標準的程序。在檢視學生答卷後,如有需要,本局或 會予以修訂。在採用此評卷參考評閱學生答卷前,任課教師宜先於校內訂定一些評卷準 則;訂定準則後,教師便應緊依評卷參考和有關準則,評閱學生的答卷。
- 2. 評卷時,教師須跟循評卷參考的評分標準給分,這是十分重要的。很多時學生會運用評卷 參考以外的方法而得到正確答案,一般來說,只要運用合理的方法而取得正確答案,該學 生應可獲得該部分的**所有分數**(除題目特別指明特定方法外)。教師應有耐性地評閱評卷 參考以外的解題方法。
- 3. 在評卷參考中,分數會分爲下列三類:

「**M**」分 使用正確方法的得分; 「**A**」分 正確答案的得分;

沒有「M」或「A」的分 正確地完成證題或推演得題目所給的答案的得分。

某些題目由數部分組成,而較後部分的答案卻需依賴較前部分所得的結果。在這情況下,若學生因爲前部分錯誤的結果而導致後部分的答案錯誤,但卻能運用正確的方法去解題,則方法正確的步驟可給「M」分,而相應的答案將沒有「A」分(除特別指明外)。

- 4. 為方便教師評卷,評卷參考已盡量詳盡。當然,學生的答案多不會如評卷參考般清楚列寫 出來,諸如欠缺某幾個步驟或將步驟隱含於字裏行間。如遇到類似情況,教師應運用他們 的專業知識去判斷是否給分。一般來說,如學生的答案顯示他已運用相關的概念或技巧, 則該部分應予給分。
- 5. 學生可使用評卷參考以外的正確符號,不被扣分。
- 6. 評卷時遇有不清楚的地方,應以學生的利益爲依歸。
- 7. 錯誤單位 (u) 或表達欠佳 (pp) 可被扣分:
 - a. 符號 (u-1) 代表因錯誤單位而被扣 1 分。在甲部 (1) 和甲部 (2),每部因錯誤單位最多可扣 1 分。在乙部,不可扣 u 分。
 - b. 符號 *pp-1* 代表因表達欠佳而被扣 1 分。在甲部 (1) 和甲部 (2),每部因表達欠佳最多可扣 **1 分**。在乙部,不可扣 *pp* 分。
 - c. 在甲部 (1) 和甲部 (2), 每部最多可扣 1 分。
 - d. 在任何情況下,學生在未獲得該部分的分數時,不可被扣分。
- 8. 評卷參考中,塗上陰影的部分代表可省略的步驟, 有外框的部分代表運用不同方法的答 案。所有分數答案必須化簡。

解	分	備註
1. $\frac{(m^5 n^{-2})^6}{m^4 n^{-3}}$		
$=\frac{m^{30}n^{-12}}{m^4n^{-3}}$	1M	給 $(ab)^p = a^p b^p$ 或 $(a^p)^q = a^{pq}$
$=\frac{m^{30-4}}{n^{12-3}}$	1M	
$=\frac{m^{26}}{n^9}$	1A	
	(3)	
5+h		
2. $\frac{5+b}{1-a} = 3b$ $5+b = 3b(1-a)$	1M	給 3b(1-a)
5+b=3b-3ab $3ab=2b-5$	1M	給將 a 放在一邊
$a = \frac{2b - 5}{3b}$	1A	或等價
$\frac{5+b}{1-a} = 3b$		
5+b=3b(1-a)	1M	給 3b(1-a)
$a = 1 - \frac{5+b}{3b}$	1M	給將 a 放在一邊
$a = \frac{3b - (5+b)}{3b}$ $2b - 5$		
$a = \frac{2b - 5}{3b}$	1A	或等價
3. (a) $9x^2 - 42xy + 49y^2$ $= (3x - 7y)^2$	1A	或等價
(b) $9x^2 - 42xy + 49y^2 - 6x + 14y$		
$= (3x-7y)^2 - 6x + 14y$ = $(3x-7y)^2 - 2(3x-7y)$	1M	給利用 (a)
= (3x - 7y) - 2(3x - 7y) = $(3x - 7y)(3x - 7y - 2)$	1A	或等價
	(3)	
PP-DSE-MATH-CP 1–3		

	解	分	備註
4.	設 x 為該椅子的標價。 x(80%) = 360(1+30%) $x = \frac{360(1.3)}{0.8}$	1M+1M+1A	pp-1 給未有定義的符號 IM 給 x(80%) + IM 給 360(1+30%)
	x = 0.8 x = 585 因此,該椅子的標價為 \$585。	1A	u-1 給漏寫單位
	該椅子的標價 = 360(1+30%) = \$585	1M+1M+1A	1M 給 360 (1 + 30%) + 1M 給除以 80% u-1 給漏寫單位
	4555	(4)	6 1 WH 1449 VO 국고 IT.
5.	設 x 公升及 y 公升分別爲一個瓶子及一個杯子的容量。		pp-1 給未有定義的符號
	$\begin{cases} \frac{x}{y} = \frac{4}{3} \\ 7x + 9y = 11 \end{cases}$	}1A+1A	
	故此,可得 $7x+9\left(\frac{3x}{4}\right)=11$ 。	1M	
	求解後,可得 $x = \frac{4}{5}$ 。	1A	0.8
	因此,一個瓶子的容量爲 $\frac{4}{5}$ 公升。		u-1 給漏寫單位
	設 x 公升爲一個瓶子的容量。		pp-1 給未有定義的符號
	$7x + 9\left(\frac{3x}{4}\right) = 11$		1A
	求解後,可得 $x = \frac{4}{5}$ 。	1A	0.8
	因此,一個瓶子的容量為 $\frac{4}{5}$ 公升。	(4)	u-1 給漏寫單位
PP-	-DSE-MATH-CP 1–4		

只限教師參閱

FOR TEACHERS' USE ONLY

解	分	備註
(a) $\angle AOC$ = 337° -157°	1M	給考慮 ∠AOC
=180° 因此, <i>A</i> 、 <i>O</i> 與 <i>C</i> 共線。	1A	必須顯示理由
(b) 留意 BO ⊥ AC。 ΔABC 的面積		
$=\frac{1}{2}(13+15)(14)$	1M	
=196	1A (4)	
留意 ∠BCD = 90°。	1A	
同時留意 $\angle CBD = 180^{\circ} - 90^{\circ} - 36^{\circ} = 54^{\circ}$ 。 再留意 $\angle BAC = \angle BDC = 36^{\circ}$ 。 由於 $AB = AC$,可得 $\angle ACB = \angle ABC$ 。	1M	
故此,可得 $\angle ABC = \frac{180^{\circ} - 36^{\circ}}{2}$ 。	1M	
所以,可得 ∠ABC = 72°。		
$\angle ABD$ $= \angle ABC - \angle CBD$ $= 72^{\circ} - 54^{\circ}$		
= 72 -34 = 18°	1A	u-1 給漏寫單位
留意 $\angle BAC = \angle BDC = 36^{\circ}$ 。 由於 $AB = AC$,可得 $\angle ACB = \angle ABC$ 。	1M	
故此,可得 $\angle ACB = \frac{180^{\circ} - 36^{\circ}}{2}$ 。	1M	
所以,可得 ∠ACB = 72°。 同時留意 ∠BCD = 90°。	1A	
∠ACD = 90° - 72°		
=18°		
$\angle ABD$ $= \angle ACD$		
=18°	1A (4)	u-1 給漏寫單位
P-DSE-MATH-CP 1–5		

		解	分	備註
8.	(a)	A' 的坐標 = (3, 4)	1A	pp-1 給漏寫「(」或「)」
		B' 的坐標 = (5,-2)	1A	pp-1 給漏寫「(」或「)」
	(b)	設 (x, y) 為 P 的坐標。 $\sqrt{(x-3)^2 + (y-4)^2} = \sqrt{(x-5)^2 + (y-(-2))^2}$	1M+1A	
		$x^2 - 6x + 9 + y^2 - 8y + 16 = x^2 - 10x + 25 + y^2 + 4y + 4$ 4x - 12y - 4 = 0 因此,所求的方程為 $x - 3y - 1 = 0$ 。	1A	或等價
		$A'B'$ 的中點的坐標 $ = \left(\frac{3+5}{2}, \frac{4+(-2)}{2}\right) $ $ = (4,1)$	1M	
		$A'B'$ 的斜率 $= \frac{4 - (-2)}{3 - 5}$ $= -3$ 故此,所求的方程爲 $y - 1 = \frac{1}{3}(x - 4)$ 。	1A	
		因此,所求的方程為 $x-3y-1=0$ 。	1A	或等價
9.	(a)	該分佈的四分位數間距的最小可取值		
		= 5-5 或 2-2 = 0 該分佈的四分位數間距的最大可取值	1M 1A	任何一項
		= 5 - 2 $= 3$	1A	
	(b)	由於 $r=9$ 及該分佈的中位數爲 3 ,可得 $9+8>12+s$ 。 所以 ,可得 $s<5$ 。	1M	
		故此,可得 s=1,2,3 或 4。 因此, s 有 4 個可取值。	1A (5)	必須顯示理由
PP-	DSE-I	MATH-CP 1–6		

解	分	備註
10. (a) 留意當 f(x) 除以 x-1 時, 餘數爲 4。 f(x)	1M	可以被包含
$= (x-1)(6x^2 + 17x - 2) + 4$ $= 6x^3 + 11x^2 - 19x + 6$	1M	給 $(x-1)(6x^2+17x-2)+r$
$f(-3)$ = $6(-3)^3 + 11(-3)^2 - 19(-3) + 6$ = 0	1A (3)	
(b) $f(x)$ = $(x+3)(6x^2 - 7x + 2)$ = $(x+3)(2x-1)(3x-2)$	1M+1A 1A (3)	$1M 給 (x+3)(ax^2+bx+c)$
11. (a) 設 $C = a + bx^2$, 其中 a 及 b 均爲非零的常數 故此 ,可得 $a + (20^2)b = 42$ 及 $a + (120^2)b = 112$		給任何一項代換
求解後,可得 $a = 40$ 及 $b = \frac{1}{200}$ 。 所求的成本	1A	給兩項均正確
$=40+\frac{1}{200}(50^2)$		
= \$ 52.5	1A (4)	u-1 給漏寫單位
(b) $40 + \frac{1}{200}x^2 = 58$ $x^2 = 3600$	1M	
x = 60 因此,所求的長度為 $60 cm$ 。	1A (2)	u-1 給多寫單位
PP-DSE-MATH-CP 1–7		

	解	分	備註
2. (a)	所求的時段 = 63-32 = 31 分鐘	1M 1A	u-1 給漏寫單位
(b)	假設 <u>珮玲與志偉</u> 在距離 P 城 x km 的地點相遇。 $\frac{x}{78} = \frac{12}{120}$ $x = 7.8$ 因此, <u>珮玲與志偉</u> 在距離 P 城 7.8 km 的地點相遇。	1M+1A 1A	1M 給比 78:120
(c)	<u>珮玲</u> 的平均速率 $= \frac{12}{2}$ $= 6 \text{ km/h}$ <u>志偉</u> 的平均速率 $= \frac{16-2}{2}$ $= 7 \text{ km/h}$	1M	任何一項 : : : : : : :
	留意 7>6。 因此, <u>志偉</u> 跑得較快。	1A	必須顯示理由
	在該期間, <u>珮玲</u> 跑了 12 km 而 <u>志偉</u> 跑了 14 km。 留意 14>12。 故此, <u>志偉</u> 的平均速率較 <u>珮玲</u> 的高。 因此, <u>志偉</u> 跑得較快。	1M 1A	必須顯示理由
P-DSF-	MATH-CP 1–8		

	解	分	備註
3. (a)	設 n 為該群學生人數。 $\frac{6}{n} = \frac{3}{20}$ $n = 40$	1M	pp-1 給未有定義符號
	k = 40 - 6 - 11 - 5 - 10 = 8	1M 1A	
(b)	(i) 所求的角 $= \frac{5}{40} (360^{\circ})$	1M	
	= 45° (ii) 設 <i>m</i> 爲新學生人數。	1A	u-1 給漏寫單位 pp-1 給未有定義符號
	假設表示最喜愛的水果是橙的扇形的角會是原來的兩倍。 $\frac{5+m}{40+m} = \frac{(45)(2)}{360}$ $20+4m = 40+m$ $3m = 20$	1M	給考慮 $\frac{5+m}{n+m}$
	由於 20 不是 3 的倍數,表示最喜愛的水果是橙的扇形的角不會是原來的兩倍。	1A (4)	必須顯示理由
'-DSE-	MATH-CP 1–9		

		解	分	備註
14. (a)	ΔB	$CD \sim \Delta OAD$	2A (2)	
(b)	(i)	設 (0, h) 爲 C 的坐標。	1M	
		藉 (b),可得 $\left(\frac{CD}{AD}\right)^2 = \frac{16}{45}$ 。	1M	給利用相似性質
		$\left(\frac{12-h}{\sqrt{6^2+12^2}}\right)^2 = \frac{16}{45}$	1M	給 AD 或 CD 中任何一項
		$h^2 - 24h + 80 = 0$ h = 4 或 $h = 20$ (捨去) 因此, C 的坐標為 $(0, 4)$ 。	1A	pp-1 給漏寫「(」或「)」
	(ii)	留意 AC 為圓 $OABC$ 的一直徑。 故此,該圓的圓心的坐標為 $(3,2)$ 。 同時,該圓的半徑為 $\sqrt{(3-0)^2 + (4-2)^2} = \sqrt{13}$ 。	1M 1M	 任何一項
		同時,該圓的年徑為 $\sqrt{(3-0)^2 + (4-2)^2} = \sqrt{13}$ 。 因此, 圓 $OABC$ 的方程為 $(x-3)^2 + (y-2)^2 = 13$ 。	1A	$x^2 + y^2 - 6x - 4y = 0$
		假定圓 $OABC$ 的方程爲 $x^2 + y^2 + k_1 x + k_2 y + k_3 = 0$, 其中 k_1 、 k_2 及 k_3 均爲常數。 $\left[0^2 + 0^2 + k_1(0) + k_2(0) + k_3 = 0\right]$	1M	
		$\begin{cases} 0^2 + 0^2 + k_1(0) + k_2(0) + k_3 = 0 \\ 6^2 + 0^2 + k_1(6) + k_2(0) + k_3 = 0 \\ 0^2 + 4^2 + k_1(0) + k_2(4) + k_3 = 0 \end{cases}$		
		求解後,可得 $k_1 = -6$ 、 $k_2 = -4$ 及 $k_3 = 0$ 。	1M	 給解方程組
		因此,圓 $OABC$ 的方程為 $x^2 + y^2 - 6x - 4y = 0$ 。	1A	NO 197 /J 15. NO.
			(7)	
PP-DSE-	MAT	H-CP 1–10		

			pts ≈ 1.
	解	分	備註
15. (a)	設 s 為該測驗中得分的標準差。 $\frac{36-48}{s} = -2$ $s = 6$	1M	
	$\frac{$a$}{6}$ 在該測驗的標準分 = $\frac{66-48}{6}$ = 3	1A	任何一項
(b)	留意 <u>家華</u> 的得分相等於該班的平均得分。 故此,該班的平均得分沒有改變。	(2)	
	該測驗中得分的偏差之平方和沒有改變,而學生人數則減少1。 所以,標準差增加。 由此, <u>偉明</u> 的標準分減少。 因此, <u>偉明</u> 的標準分會改變。	1M 1A	必須顯示理由
		(2)	
P-DSE-	MATH-CP 1–11		

	解	分	備註
16. (a)	所求的概率 $= \frac{C_4^{18}}{C_4^{30}}$	1M	給分子或分母
	$=\frac{68}{609}$	1A	接受答案準確至 0.112
	所求的概率 $ = \left(\frac{18}{30}\right) \left(\frac{17}{29}\right) \left(\frac{16}{28}\right) \left(\frac{15}{27}\right) $	1M	$ \oint_{\mathbb{R}^{2}} \left(\frac{r}{n} \right) \left(\frac{r-1}{n-1} \right) \left(\frac{r-2}{n-2} \right) \left(\frac{r-3}{n-3} \right) , r < n $
	$=\frac{68}{609}$	1A	接受答案準確至 0.112
(b)	所求的概率 (2) cl ²		
	$=1 - \frac{68}{609} - \frac{C_4^{12}}{C_4^{30}}$ $= \frac{530}{2}$	1M	給 1-(a)-p ₁
	= 609	1A	接受答案準確至 0.870
	$= \frac{C_1^{18}C_3^{12} + C_2^{18}C_2^{12} + C_3^{18}C_1^{12}}{C_4^{30}}$	1M	給考慮 3 個情況
	$=\frac{530}{609}$	1A	接受答案準確至 0.870
	所求的概率 $=1-\frac{68}{609} - \left(\frac{12}{30}\right) \left(\frac{11}{29}\right) \left(\frac{10}{28}\right) \left(\frac{9}{27}\right)$	1M	給 1 − (a) − p ₂
	$=\frac{530}{609}$	1A	接受答案準確至 0.870
	所求的概率 $= 4 \left(\frac{18}{30}\right) \left(\frac{12}{29}\right) \left(\frac{11}{28}\right) \left(\frac{10}{27}\right) + 6 \left(\frac{18}{30}\right) \left(\frac{17}{29}\right) \left(\frac{12}{28}\right) \left(\frac{11}{27}\right) + 4 \left(\frac{18}{30}\right) \left(\frac{17}{29}\right) \left(\frac{16}{28}\right) \left(\frac{12}{27}\right)$	1M	給考慮 14 個情況
	$=\frac{530}{609}$	1A	接受答案準確至 0.870
P-DSE-N	MATH-CP 1–12		

17. (a) $\frac{1}{1+2i}$ $= \left(\frac{1}{1+2i}\right)\left(\frac{1-2i}{1-2i}\right)$ $= \frac{1}{5} - \frac{2}{5}i$ $1M$ $1A$ (2) (b) (i) 留意 $\frac{10}{1+2i} = 2-4i$ 及 $\frac{10}{1-2i} = 2+4i$ 。 m雨根之和 $= \frac{10}{1+2i} + \frac{10}{1-2i}$ $= (2-4i)+(2+4i)$ $= 4$	$= \left(\frac{1}{1+2i}\right) \left(\frac{1-2i}{1-2i}\right)$ $= \frac{1}{5} - \frac{2}{5}i$ (b) (i) 留意 $\frac{10}{1+2i} = 2-4i$ 及 $\frac{10}{1-2i} = 2+4i$ 。 兩根之和 $= \frac{10}{1+2i} + \frac{10}{1-2i}$ $= (2-4i) + (2+4i)$ $= 4$ 兩根之積	1A (2)	
(ii) 當方程 $x^2-4x+20=r$ 有實根時,可得 $\Delta \ge 0$ 。	因此,可得 $p=-4$ 及 $q=20$ 。 (ii) 當方程 $x^2-4x+20=r$ 有實根時,可得 $\Delta \ge 0$ 。 故此,可得 $(-4)^2-4(1)(20-r)\ge 0$ 。	1A 1M 1A	任何一項

,		分	備註
ι)	藉餘弦公式, $AB^2 = AC^2 + BC^2 - 2(AC)(BC)\cos \angle ACB$	1M	
	$AB^2 = 20^2 + 12^2 - 2(20)(12)\cos 60^{\circ}$		
	$AB = 4\sqrt{19}$ cm	1A	接受答案準確至 17.4 cm
			$AB \approx 17.43559577 \text{ cm}$
		(2)	
)	藉正弦公式,		
	$\frac{\sin \angle BAC}{BC} = \frac{\sin \angle ACB}{AB}$	1M	
	$\sin \angle BAC \sin 60^{\circ}$		
	$\frac{\sin \angle BAC}{12} = \frac{\sin 60^{\circ}}{4\sqrt{19}}$		
	∠BAC ≈ 36.58677555°		
	設 Q 爲由 C 至 AB 的垂足。		
	$\sin \angle BAC = \frac{CQ}{AC}$	1M	
	$CQ \approx 20 \sin 36.58677555^{\circ}$		
	$CQ \approx 11.92079121 \mathrm{cm}$		
	由於 $\Delta ABC \cong \Delta ABD$, 所求的角爲 $\angle CQD$ 。	1M	給確認該角
	$\sin\frac{\angle CQD}{2} = \frac{\frac{1}{2}CD}{CQ}$		
	$\sin\frac{2CQD}{2} = \frac{2}{CQ}$		
	$\sin \frac{\angle CQD}{2} \approx 0.587209345$		
	$\angle CQD \approx 71.91844786^{\circ}$		
	∠CQD≈71.9° 田山 亦五 ADC 昭亦五 ADD 明之六条形 71.0°	1A	接受答案準確至 71.9°
	因此,平面 ABC 與平面 ABD 間之交角為 71.9°。		
	藉正弦公式,		
	$\frac{\sin \angle ABC}{ABC} = \frac{\sin \angle ACB}{ABC}$	1M	
	$\frac{AC}{\sin \angle ABC} = \frac{\sin 60^{\circ}}{\sqrt{1 - \cos 60^{\circ}}}$		
	$\frac{\sin 2\pi i \delta}{20} = \frac{\sin \delta}{4\sqrt{19}}$		
	∠ABC ≈ 83.41322445°		
	設 Q 爲由 C 至 AB 的垂足。		
	$\sin \angle ABC = \frac{CQ}{BC}$	1M	
	$CQ \approx 12 \sin 83.41322445^{\circ}$		
	$CQ \approx 11.92079121 \mathrm{cm}$		
	由於 $\Delta ABC \cong \Delta ABD$, 所求的角為 $\angle CQD$ 。	1M	給確認該角
	$\frac{1}{CD}$		
	$\sin\frac{\angle CQD}{2} = \frac{\frac{1}{2}CD}{CQ}$		
	$\sin \frac{\angle CQD}{2} \approx 0.587209345$		
	∠ <i>CQD</i> ≈ 71.91844786°		
	∠CQD ≈ 71.9°	1A	接受答案準確至 71.9°
	因此,平面 ABC 與平面 ABD 間之交角為 71.9°。		

只限教師參閱

FOR TEACHERS' USE ONLY

解	分	備註
藉正弦公式, $ \frac{\sin \angle BAC}{BC} = \frac{\sin \angle ACB}{AB} $ $ \frac{\sin \angle BAC}{12} = \frac{\sin 60^{\circ}}{4\sqrt{19}} $	1M	
$\angle BAC \approx 36.58677555^{\circ}$ 設 Q 為由 C 至 AB 的垂足。 $\sin \angle BAC = \frac{CQ}{AC}$ $CQ \approx 20 \sin 36.58677555^{\circ}$ $CQ \approx 11.92079121 \mathrm{cm}$ 藉對稱性質,可得 $DQ = CQ$ 。	1M	
$DQ \approx 11.92079121 \mathrm{cm}$ 由於 $\Delta ABC \cong \Delta ABD$,所求的角為 $\angle CQD$ 。 $CD^2 = CQ^2 + DQ^2 - 2(CQ)(DQ) \cos \angle CQD$	1M	給確認該角
$14^2 \approx 11.92079121^2 + 11.92079121^2 - 2(11.92079121)(11.92079121)\cos \angle CQD$ $\angle CQD \approx 71.91844786^\circ$ $\angle CQD \approx 71.9^\circ$ 因此,平面 ABC 與平面 ABD 間之交角為 71.9° 。	1A	接受答案準確至 71.9°
ΔABC 的面積 $= \frac{1}{2} (AC)(BC) \sin \angle ACB$ $= \frac{1}{2} (20)(12) \sin 60^{\circ}$	1M	
$=60\sqrt{3} \text{ cm}^2$ 設 Q 爲由 $C \cong AB$ 的垂足。		
$\frac{1}{2}(AB)(CQ) = 60\sqrt{3}$ $\frac{1}{2}(4\sqrt{19})(CQ) = 60\sqrt{3}$ $CQ \approx 11.92079121 \text{ cm}$	1M	
由於 $\triangle ABC \cong \triangle ABD$, 所求的角爲 $\angle CQD$ 。 $\sin \frac{\angle CQD}{2} = \frac{\frac{1}{2}CD}{CQ}$	1M	給確認該角
$\sin \frac{\angle CQD}{2} \approx 0.587209345$ $\angle CQD \approx 71.91844786^{\circ}$		
<i>∠CQD</i> ≈71.9° 因此,平面 <i>ABC</i> 與平面 <i>ABD</i> 間之交角為 71.9°。	1A	接受答案準確至 71.9°
(c) 設 Q 爲由 C 至 AB 的垂足。 留意 $\sin \frac{\angle CPD}{2} = \frac{1}{2} \frac{CD}{CP}$ 。 由於 $CP \ge CQ$,可得 $\angle CPD \le \angle CQD$ 。 因此,當 P 由 A 移動至 Q 期間, $\angle CPD$ 增加; 當 P 由 Q 移動至 B 期間, $\angle CPD$ 減少。	1M	必須顯示理由
PP-DSE-MATH-CP 1–15	(2)	

只限教師參閱

FOR TEACHERS' USE ONLY

(a) $4000000(1-r\%)^3 = 1048576$ $(1-r\%)^3 = \frac{1048576}{4000000}$ $1-r\% = 0.64$ $r = 36$ (b) (i) 設 n 爲使該公司總收入多於 \$9000000 的所需年數。 $2000000 + 2000000(1-20\%) + \cdots + 2000000(1-20\%)^{n-1} > 9000000$ $\frac{2000000(1-(0.8)^n)}{1-0.8} > 9000000$ $(0.8)^n < 0.1$ $n \log 0.8 < \log 0.1$ $n > \frac{\log 0.1}{\log 0.8}$ $n > 10.31885116$	1M (2) 1M 1M	給左方
$1-r\% = 0.64$ $r = 36$ (b) (i) 設 n 為使該公司總收入多於 \$9000000 的所需年數。 $2000000 + 2000000(1-20\%) + \cdots + 2000000(1-20\%)^{n-1} > 90000000$ $\frac{2000000(1-(0.8)^n)}{1-0.8} > 9000000$ $(0.8)^n < 0.1$ $n \log 0.8 < \log 0.1$ $n > \frac{\log 0.1}{\log 0.8}$	(2) 1M	給左方
$r=36$ (b) (i) 設 n 為使該公司總收入多於 \$9000000 的所需年數。 $2000000 + 2000000(1-20\%) + \cdots + 2000000(1-20\%)^{n-1} > 90000000$ $\frac{2000000(1-(0.8)^n)}{1-0.8} > 9000000$ $(0.8)^n < 0.1$ $n \log 0.8 < \log 0.1$ $n > \frac{\log 0.1}{\log 0.8}$	(2) 1M	給左方
$2000000 + 2000000(1 - 20\%) + \dots + 2000000(1 - 20\%)^{n-1} > 9000000$ $\frac{2000000 (1 - (0.8)^n)}{1 - 0.8} > 9000000$ $(0.8)^n < 0.1$ $n \log 0.8 < \log 0.1$ $n > \frac{\log 0.1}{\log 0.8}$		給左方
$(0.8)^{n} < 0.1$ $n \log 0.8 < \log 0.1$ $n > \frac{\log 0.1}{\log 0.8}$	1M	
$n > \frac{\log 0.1}{\log 0.8}$		給等比數列之和
	1M	給解不等式
因此,所需最少年數為 11。	1A	
(ii) 該公司的總收入 $ < 2000000 + 2000000(1 - 20\%) + 2000000(1 - 20\%)^2 + \cdots $ $ = \frac{2000000}{1 - 0.8} $ $ = 10000000 $ 因此,該公司的總收入不會多於 $$10000000$ 。	1M 1A	必須顯示理由
(iii) 該公司首 m 年的總收入減總投資金額 $= \frac{2000000(1-(0.8)^m)}{1-0.8} - \frac{4000000(1-(0.64)^m)}{1-0.64}$ $= 10000000 \left((1-(0.8)^m) - \frac{10}{9} (1-(0.64)^m) \right)$	1M	
$= 10000000 \left((1 - (0.8)^m) - \frac{10}{9} (1 - (0.8)^{2m}) \right)$ $= \frac{10000000}{9} \left(10((0.8)^m)^2 - 9(0.8)^m - 1 \right)$	1M	給二次表示式
$=\frac{10000000}{9}\Big(10(0.8)^m+1\Big)\Big((0.8)^m-1\Big)$ 對任意正整數 m ,留意 $(0.8)^m>0$ 及 $(0.8)^m<1$ 。 所以,可得 $10(0.8)^m+1>0$ 及 $(0.8)^m-1<0$ 。	1M	給任何一項
故此,可得 $\frac{2000000(1-(0.8)^m)}{1-0.8} - \frac{4000000(1-(0.64)^m)}{1-0.64} < 0$ 因此,不同意該宣稱。	1A (10)	必須顯示理由

香港考試及評核局

香港中學文憑考試

練習卷

數學 必修部分 試卷二

題 號	答案	題 號	答案
1.	A	31.	D
2.	C	32.	В
3.	A	33.	C
4.	D	34.	D
5.	D	35.	A
6.	С	36.	В
7.	В	37.	A
8.	D	38.	C
9.	A	39.	A
10.	В	40.	C
11	D	41	В
11.	A	41.	A
12.	A	42. 43.	В
13.	В	43. 44.	D
14.	C		C
15.	C	45.	C
16.	D		
17.	C		
18.	A		
19.	D		
20.	С		
21.	С		
22.	В		
23.	C		
24.	D		
25.	В		
20.			
26.	D		
27.	В		
28.	A		
29.	В		
30.	C		