7.1: General Concepts and Criteria

Taylor

University of Virginia

Taylor (UVA) "7.1" 1 / 18

Definitions

A **point estimator** of a parameter θ is a single number that can be regarded as a sensible value for θ (e.g \bar{X} is an estimator for μ when your data are iid normal).

A **point estimate** is a particular realization for a point estimator (e.g. after you observe data \bar{x} comes out to be 3.98).

This situation is analogous to the difference between X and x that we talked about before.

Taylor (UVA) "7.1" 2 / 18

Example 7.2 and 7.3 from the book

You want to estimate μ of a normal distribution. You can use the mean, the median, the midrange, or a trimmed mean.

You want to estimate σ^2 of a normal distribution. You can use $S^2 = \frac{\sum_i (X_i - \bar{X})^2}{n-1}$ or $\hat{\sigma}^2 = \frac{\sum_i (X_i - \bar{X})^2}{n}$

Taylor (UVA) "7.1" 3/18

Definition

Usually we have a few options for estimators $\hat{\theta}$. How do we compare them?

bias of an estimator $\hat{\theta}$ estimating the parameter θ , written $\text{Bias}(\hat{\theta})$, is defined as

$$E\left[\hat{\theta}-\theta\right]$$

mean square error of an estimator $\hat{\theta}$ estimating the parameter θ , written $MSE(\hat{\theta})$, is defined as

$$E\left[(\hat{\theta}-\theta)^2\right]$$

Taylor (UVA) "7.1" 4 / 1:

Note

Note: $(\hat{\theta} - \theta)$, $|\hat{\theta} - \theta|$ or $(\hat{\theta} - \theta)^2$ are all random variables. That's why we take the average.

◆□▶◆□▶◆壹▶◆壹▶ 壹 少Qで

Taylor (UVA) "7.1" 5 / 18

A result

Here's a useful result. Verify the third equality.

$$E\left[(\hat{\theta} - \theta)^{2}\right] = E\left[(\hat{\theta} - E(\hat{\theta}) + E(\hat{\theta}) - \theta)^{2}\right]$$

$$= E\left[\left(\hat{\theta} - E(\hat{\theta})\right)^{2} + \left(E(\hat{\theta}) - \theta\right)^{2} + 2\left(\hat{\theta} - E(\hat{\theta})\right)\left(E(\hat{\theta}) - \theta\right)\right]$$

$$= E\left[(\hat{\theta} - E\hat{\theta})^{2}\right] + E\left[(\theta - E\hat{\theta})^{2}\right] + 0$$

$$= E\left[(\hat{\theta} - E\hat{\theta})^{2}\right] + (\theta - E\hat{\theta})^{2}$$

So
$$\mathsf{MSE}(\hat{ heta}) = V(\hat{ heta}) + \left[\mathsf{Bias}(\hat{ heta})\right]^2$$

Taylor (UVA) "7.1" 6 / 18

We want to estimate the population proportion of successes (p). Let's take an estimator \hat{p} to be the empirical proportion of successes. More specifically, let X be the number of successes out of n things. We know $X \sim \text{Binomial}(n, p)$. Then $\hat{p} = \frac{X}{n}$. What's its bias? What is its MSE?

Taylor (UVA) "7.1" 7/18

We want to estimate the population proportion of successes (p). Let's take an estimator \hat{p} to be the empirical proportion of successes. More specifically, let X be the number of successes out of n things. We know $X \sim \text{Binomial}(n,p)$. Then $\hat{p} = \frac{X}{n}$. What's its bias? What is its MSE?

$$E[\hat{p}] = E\left[\frac{X}{n}\right] = \frac{EX}{n} = \frac{np}{n} = p$$

Taylor (UVA) "7.1" 7/1

We want to estimate the population proportion of successes (p). Let's take an estimator \hat{p} to be the empirical proportion of successes. More specifically, let X be the number of successes out of n things. We know $X \sim \text{Binomial}(n,p)$. Then $\hat{p} = \frac{X}{n}$. What's its bias? What is its MSE?

$$E[\hat{p}] = E\left[\frac{X}{n}\right] = \frac{EX}{n} = \frac{np}{n} = p$$

$$E[(\hat{p}-p)^2] = E[(\hat{p}-E[\hat{p}])^2] = Var(\hat{p})$$

and

$$\operatorname{\mathsf{Var}}(\hat{p}) = \operatorname{\mathsf{Var}}\left(\frac{X}{n}\right) = \frac{1}{n^2}\operatorname{\mathsf{Var}}(X) = \frac{np(1-p)}{n^2} = p(1-p)/n$$

Taylor (UVA) "7.1" 7/18

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. Let's evaluate the estimator $\hat{\lambda} = \bar{X}$. What's its bias? What is its MSE?

Taylor (UVA) "7.1" 8/18

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. Let's evaluate the estimator $\hat{\lambda} = \bar{X}$. What's its bias? What is its MSE?

$$E[\hat{\lambda}] = E\left[\frac{\sum X_i}{n}\right] = \lambda$$

Taylor (UVA) "7.1" 8 / 18

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. Let's evaluate the estimator $\hat{\lambda} = \bar{X}$. What's its bias? What is its MSE?

$$E[\hat{\lambda}] = E\left[\frac{\sum X_i}{n}\right] = \lambda$$

$$E[(\hat{\lambda} - \lambda)^2] = E[(\hat{\lambda} - E[\hat{\lambda}])^2] = Var(\hat{\lambda})$$

and

$$\operatorname{Var}(\hat{\lambda}) = \operatorname{Var}\left(\frac{\sum_{i} X_{i}}{n}\right) = \frac{1}{n^{2}} \sum_{i} \operatorname{Var}(X_{i}) = \frac{n\lambda}{n^{2}} = \lambda/n$$

"7.1"

Definitions

In our last example, the mean of the estimator was the thing we were trying to estimate. This is not always the case. When this happens, it has a name.

A point estimator $\hat{\theta}$ for θ is an **unbiased estimator** if

$$E[\hat{\theta}] = \theta$$

for all possible θ . We can also write this as

$$E[\hat{\theta} - \theta] = 0$$

Taylor (UVA) "7.1" 9 / 18

Example

Let's say we're getting ready to observe some data $X_1,\ldots,X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu,\sigma^2)$. Say we want to estimate σ^2 with $\hat{\sigma}^2 = \frac{\sum_i (X_i - \bar{X})^2}{n}$. Is this estimator unbiased?

We're going to use that variance shortcut formula a lot: $E[X^2] = V[X] + (E[X])^2$.

Also we'll use the fact that $\sum_i (x_i - \bar{x})^2 = \sum_i x_i^2 - n\bar{x}^2$ (we used this last chapter talking about the sampling distribution of $(n-1)S^2/\sigma^2$)

Taylor (UVA) "7.1" 10 / 18

$$E[\hat{\sigma}^{2}] = E\left[\frac{\sum_{i}(X_{i} - \bar{X})^{2}}{n}\right]$$

$$= \frac{1}{n}E\left[\sum_{i}X_{i}^{2} - n\bar{X}^{2}\right]$$

$$= \frac{1}{n}\left[\sum_{i}E[X_{i}^{2}] - nE[\bar{X}^{2}]\right]$$

$$= \frac{1}{n}\sum_{i}E[X_{i}^{2}] - E[\bar{X}^{2}]$$

$$= \frac{1}{n}\sum_{i}\left[V[X_{i}] + (E[X_{i}])^{2}\right] - \left[V[\bar{X}] + (E[\bar{X}])^{2}\right]$$

$$= \frac{1}{n}\sum_{i}\left[\sigma^{2} + \mu^{2}\right] - \left[\frac{\sigma^{2}}{n} + \mu^{2}\right]$$

Example (continued)

$$\dots = \frac{1}{n} \sum_{i} \left[\sigma^{2} + \mu^{2} \right] - \left[\frac{\sigma^{2}}{n} + \mu^{2} \right]$$

$$= \frac{1}{n} n (\sigma^{2} + \mu^{2}) - \frac{\sigma^{2}}{n} - \mu^{2}$$

$$= \sigma^{2} - \frac{\sigma^{2}}{n}$$

$$= \sigma^{2} (1 - 1/n)$$

$$= \sigma^{2} \frac{n - 1}{n}$$

$$\neq \sigma^{2}$$

Taylor (UVA) "7.1" 12/18

Definition

Suppose we took all the unbiased estimators that exist, $\{\hat{\theta}_1, \hat{\theta}_2, \ldots\}$. Each of these has a variance, since it's a random variable. Sometimes their variance is a function of what they're trying to estimate (θ) .

Among alll estimators of θ that are unbiased, the one with the minimum variance for all θ , is called the **minimum variance unbiased estimator**. We'll talk about this more in later sections.

Note: sometimes it's called the uniformly minimum variance unbiased estimator to emphasize the fact that the variance is usually a function in θ , and our choice needs to have the smallest variance for all of these θ that you can plug in

Taylor (UVA) "7.1" 13/18

Definition

The **standard error** of an estimator $\hat{\theta}$ is its standard deviation.

$$\mathsf{SE}(\hat{\theta}) = \sqrt{V[\hat{\theta}]}$$

Sometimes the SE is a function of unknown parameters. The **estimated standard error** arises when we plug in estimates for the stuff we don't know for sure.

Taylor (UVA) "7.1" 14 / 18

Suppose $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$. Suppose further that we know σ^2 , but we don't know μ . Let's estimate μ with $\hat{\mu} = \bar{X}$.

$$V[\bar{X}] = V\left[\frac{\sum_{i} X_{i}}{n}\right] = \frac{1}{n^{2}} \sum_{i} V[X_{i}] = \frac{n\sigma^{2}}{n^{2}} = \frac{\sigma^{2}}{n}$$

So $SE(\bar{X}) = \frac{\sigma}{\sqrt{n}}$. If we didn't know σ , we could plug in s, the sample variance for it. This would give us an estimated standard error of $\frac{s}{\sqrt{n}}$.

Taylor (UVA) "7.1" 15 / 18

The bootstrap

A few things

- This is a quick intro
- This won't be covered on the test
- It's more computational than we're accustomed to
- It's a good last resort tool for when there's no chance we'll figure out a sampling distribution for $\hat{\theta}$

Taylor (UVA) "7.1" 16/18

The bootstrap

Here's the basic idea

- **1** You have some data x_1, \ldots, x_n
- ② You want to know the distribution of $\hat{\theta} = f(X_1, \dots, X_n)$
- ullet Computing this number from your data will give you a number, but it won't give you any idea what the distribution of $\hat{ heta}$ is like

Taylor (UVA) "7.1" 17/18

The bootstrap

It basically goes like this

- **1** sample from x_1, \ldots, x_n with replacement a bootstrap sample x_1^*, \ldots, x_n^*
- 2 this sample is the same length, so you're probably going to have some repeats in your sample
- $oldsymbol{0}$ compute an estimate $\hat{ heta}_1^*$ from this bootstrap sample. Now you have one estimate
- ① Do this over and over again, B times. You get $\{\hat{\theta}_1^*,\hat{\theta}_2^*,\hat{\theta}_3^*,\dots,\hat{\theta}_B^*\}$
- **1** Now you can do whatever you want with $\{\hat{\theta}_1^*, \hat{\theta}_2^*, \hat{\theta}_3^*, \dots, \hat{\theta}_B^*\}$. You can compute the mean, variance, standard deviation, or just plot a histogram.

Taylor (UVA) "7.1" 18 / 18