Programação Linear - análise de sensibilidade Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

21 de Março de 2022

Análise de sensibilidade

antes

- Até aqui, assumimos que os dados não eram alteráveis.
- Na realidade, os dados podem não estar totalmente correctos, ou podemos querer avaliar se deveremos actuar para os alterar.

Guião

- Para além de determinar a solução óptima, é importante analisar como é que a solução óptima varia quando varia o valor de um qualquer dado (passaremos a tratá-lo como um parâmetro),
- ou seja, analisar a sensibilidade da solução óptima ao parâmetro.
- Parâmetros a analisar: quantidade de recurso disponível e coeficiente da função objectivo.
- Analisaremos também a atractividade de novas actividades.

depois

 Os solvers de programação linear produzem relatórios que ajudam a efectuar a análise de sensibilidade.

Motivação

• Resolvendo o seguinte modelo com um solver de PL:

```
max: 30x1 +20x2 +10x3;

restricao1: 1x1 + 1x2 + 2x3 <= 40;

restricao2: 2x1 + 2x2 + 1x3 <= 150;

restricao3: 2x1 + 1x2 <= 20;
```

• obtém-se o seguinte relatório com a solução óptima:

Objective	
Variables	result
	500
x1	0
x2	20
x3	10

 Para além de conhecer a solução óptima (fazer 20 unidades da actividade 2 e 10 unidades da actividade 3) e o valor do óptimo (500), podemos querer saber ...

Questões pós-optimização:

- Se a quantidade do recurso 1 variasse, qual o efeito no valor da solução óptima?
- Qual o lucro mínimo da actividade 1 para ela ser atractiva?
- Se o lucro da actividade 3 descesse, será que ainda seria atractiva?
- Qual o limite dessa descida para ainda ser atractiva?

Uma designação alternativa é Análise pós-optimização:

- o objectivo é analisar os efeitos na solução óptima que resultam da alteração (dentro de certos limites) de um dado do problema, e.g.,
 - o custo de uma matéria prima, por oscilações de preço do mercado;
 - a quantidade de um recurso, enquadrada numa acção deliberada de aquisição de mais recursos;

Para além de determinarem a solução óptima do problema,

 os solvers de PL produzem Relatórios de análise de sensibilidade com informação para responder às questões pós-optimização.

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
х3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

Conteúdo

- Parte I
 - Alteração do termo independente b_i de uma restrição
 - Preço-sombra (de uma restrição / recurso)
- Parte II
 - Avaliação de uma nova actividade
- Parte III
 - Alteração de um coeficiente c_i da função objectivo
 - Custo reduzido (de uma variável)
- Apêndices

Parte I

Alteração do termo independente b_i

• O valor do termo independente b_i da restrição $\mathbf{a}^i \mathbf{x} \leq b_i$ indica frequentemente a quantidade de recurso disponível.

Conteúdo

- Interpretação geométrica
- Preço-sombra (de uma restrição / recurso)
- Relatório Duals
- Análise: efeito e limites de variação sem alterar a base óptima.

Exemplo 1: espaço a duas dimensões

Modelo, quadro óptimo e relatório Duals:

```
max: 12x1 +10x2;
tmaquina: 3x1 + 2x2<=120;
maodobra: 1x1 + 2x2<= 80;
material: 1x1 <= 30;
```

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	
<i>X</i> ₂	0	0	1	-0.25	0.75	0	30
<i>s</i> ₃	0	0	0	-0.5	0.5	1	10
x_1	0	1	0	s ₁ -0.25 -0.5 0.5	-0.5	0	20
Z	1	0	0	3.5	1.5	0	540

Duals			
Variables	value	from	till
objective	540	540	540
tmaquina	3,5	80	140
maodobra	1,5	60	120
material	0	$-\infty$	+∞
×1	0	$-\infty$	+∞
x2	0	$-\infty$	+∞

- Como varia o valor da solução óptima quando o valor do parâmetro maodobra aumenta de 80 para 104?
- Do ponto de vista geométrico, a variação de um parâmetro b_i traduz-se numa translação da recta associada à restrição.

Variação do valor do óptimo: interpretação geométrica

Variação do valor do óptimo: interpretação geométrica

Limite variação parâmetro: interpretação geométrica

Variação do valor do óptimo em função do parâmetro b_2

• Discussão: quais são os recursos mais críticos?

$\overline{\mathsf{Valor}}$ de $z^*(b_2)$ em toda a extensão do parâmetro b_2

A forma da função ilustra a Lei dos ganhos marginais decrescentes.

Preço-sombra de uma restrição (recurso)

Preço-sombra: valor que o decisor atribui a uma unidade do recurso,

- medido pelo aumento do valor da função objectivo resultante de se usar uma unidade adicional do recurso.
- O valor é algo individual: diferentes agentes económicos podem atribuir valores diferentes a um mesmo recurso.
- Cada agente optimiza um modelo semelhante, mas com diferenças, e.g., nas quantidades disponíveis dos restantes recursos.

Preço-sombra de um recurso vs. custo de um recurso

- O custo de um recurso (preço no mercado) é uma coisa diferente.
- A comparação do preço-sombra e do custo ajuda a tomar decisões no âmbito da análise pós-optimização.

É equivalente definir como o decremento do valor da função objectivo resultante de se usar menos uma unidade do recurso. Também se usa a designação Valor marginal do recurso i.

O preco-sombra é definido com respeito a uma solução óptima, e o seu valor é válido em torno da solução óptima para variações cujos limites vamos determinar usando uma análise matricial

Na sua determinação, assume-se que todos os restantes dados do problema permanecem iguais (i.e., et cæteris paribus).

Exemplo 2: o preço-sombra no quadro simplex

Quadro Inicial

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>S</i> 3	
s_1	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
<i>s</i> ₃	0	1 2 2	1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0

Quadro Óptimo

	Z	x_1	x_2	<i>X</i> 3	<i>s</i> ₁	s 2	<i>5</i> 3	
X3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	-1/2 -3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	0	2	1	0	0	0	1	20
Z	1	5	0	0	5	0	15	500

O preço-sombra do recurso i é dado pelo elemento i do vector $c_B B^{-1}$:

- $(c_B B^{-1})_i = \delta z / \delta(-s_i)$, i.e.,
- o valor da função objectivo aumenta $\delta z/\delta(-s_i)$ unidades por cada unidade adicional do recurso i;
- acontece o oposto do que quando se aumenta a variável de folga s_i .

Exemplo 2: preço-sombra dos recursos 1 e 2

		Z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
		0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
•	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	500

- O preço-sombra do recurso 1 é $\delta z/\delta(-s_1) = +5$.
- O valor da função objectivo aumenta 5 unidades por cada unidade adicional do recurso 1.
- O preço-sombra do recurso 2 é $\delta z/\delta(-s_2) = +0$.
- O aumento do recurso 2 não aumenta o valor da função objectivo, só aumenta a folga s_2 : não há interesse em ter unidades adicionais.

Relatório Duals (vamos ver que há um problema dual)

- A coluna value apresenta os valores da linha da função objectivo do quadro simplex:

 - {recurso1,...,recurso3} \leftrightarrow variáveis de decisão do dual ($c_B B^{-1}$).

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
x3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

- O relatório *Duals* indica que o preço-sombra do recurso 1 é 5.
- Vamos ver como se calculam os limites **from** e **till** dos recursos.

Relatório Duals: interpretação

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
х3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

e.g., relativamente ao recurso 1:

• quando a quantidade de recurso 1 (b_1) varia desde 20 até 240, o valor do óptimo da função objectivo é dado por:

$$z^*(b_1) = 500 + 5 (b_1 - 40), \quad \forall b_1 \in [20, 240],$$

• e as variáveis básicas óptimas continuam a ser as mesmas.

Análise matricial: alteração de um b_i

Quais os vectores / matrizes que sofrem alterações no quadro óptimo?

- Quando há uma alteração de um elemento do vector b (vector dos termos independentes das restrições),
- as únicas alterações no quadro óptimo são no vector $B^{-1}b$ e no elemento $c_BB^{-1}b$.

$egin{array}{c c} B^{-1} & 0 & * \ \hline \hline c_B B^{-1} & 1 & \end{array}$	A -c	0	b
=	$B^{-1}A$ $c_BB^{-1}A-c$	B^{-1} $c_B B^{-1}$	$B^{-1}b$ $c_BB^{-1}b$

Exemplo 2: efeito da variação de b_1 (passa a ser $40 + \alpha$)

Novo vector **b**_{novo}:

$$\boldsymbol{b}_{novo} = \begin{bmatrix} 40 + \alpha \\ 150 \\ 20 \end{bmatrix}$$

• Novo vector $B^{-1}b_{novo}$:

$$\boldsymbol{B}^{-1}\boldsymbol{b}_{novo} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 40 + \alpha \\ 150 \\ 20 \end{bmatrix} = \begin{bmatrix} 10 + 1/2\alpha \\ 100 - 1/2\alpha \\ 20 \end{bmatrix}$$

• Novo valor de $c_B B^{-1} b_{novo}$:

$$c_B B^{-1} b_{novo} = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 40 + \alpha \\ 150 \\ 20 \end{bmatrix} = 500 + 5\alpha$$

Exemplo 2: quadro óptimo quando há uma variação de b_1

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>5</i> 3	
	s_1	0	1	1	2	1	0	0	40 + <i>α</i>
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>5</i> 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
	X3	0	-1/2	0	1	1/2	0	-1/2	$10 + 1/2\alpha$
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	$100 - 1/2\alpha$
•	<i>x</i> ₂	0	2	1	0	Ô	0	1	20
	Z	1	5	0	0	5	0	15	500 +5α

- Este quadro é óptimo enquanto todos os elementos de ${\bf B}^{-1}{\bf b}_{novo}$ forem não-negativos, o que define limites máximos de variação de α .
- Dentro dos limites, as variáveis básicas óptimas são x_3, s_2 e x_2 .
- Se o valor de α estiver para além desses limites, haverá um elemento negativo no lado direito do quadro, e é necessário usar o simplex dual [veremos depois] para determinar o novo quadro óptimo.

Exemplo 2: determinação dos limites de variação de α

• Limites de variação de α :

$$\boldsymbol{B}^{-1}\boldsymbol{b}_{novo} = \begin{bmatrix} 10+1/2\alpha \\ 100-1/2\alpha \\ 20 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} \alpha \geq -20 \\ \alpha \leq 200 \end{cases}$$

ou seja,

$$-20 \le \alpha \le 200$$
.

• Limites de variação de b_1 (no quadro inicial, $b_1 = 40$):

$$40 - 20 \le b_1 \le 40 + 200,$$

ou seja,

$$20 \le b_1 \le 240$$
.

• Estes são os valores apresentados no relatório Duals.

nota: coluna do quadro mostra alterações em $B^{-1}b$

• O novo vector $\mathbf{B}^{-1}\mathbf{b}_{novo}$ pode ser expresso em função do vector anterior $\mathbf{B}^{-1}\mathbf{b}_{ant}$ e de uma parcela de variação:

$$B^{-1}b_{novo} = B^{-1}b_{novo} + B^{-1}b_{ant} - B^{-1}b_{ant} =$$

= $B^{-1}b_{ant} + B^{-1}(b_{novo} - b_{ant})$

• As alterações produzidas em $B^{-1}b_{ant}$ seguem a alteração existente na coluna da variável de folga associada ao recurso que varia (neste exemplo, a coluna de s_1).

$$\mathbf{B}^{-1}\mathbf{b}_{novo} = \begin{bmatrix} 10\\100\\20 \end{bmatrix} + \begin{bmatrix} 1/2&0&-1/2\\-1/2&1&-3/2\\0&0&1 \end{bmatrix} * \begin{bmatrix} \alpha\\0\\0 \end{bmatrix} = \begin{bmatrix} 10\\100\\20 \end{bmatrix} + \alpha \begin{bmatrix} 1/2\\-1/2\\0 \end{bmatrix}$$

nota: preço-sombra mostra alteração do valor de $c_B B^{-1} b$

• O novo valor da função objectivo $c_B B^{-1} b_{novo}$ pode ser expresso em função do valor anterior $c_B B^{-1} b_{ant}$ e de uma parcela de variação:

$$c_B B^{-1} b_{novo} = c_B B^{-1} b_{novo} + c_B B^{-1} b_{ant} - c_B B^{-1} b_{ant} =$$

= $c_B B^{-1} b_{ant} + c_B B^{-1} (b_{novo} - b_{ant})$

• As alterações produzidas em $c_B B^{-1} b_{ant}$ seguem o preço-sombra associado ao recurso que varia (neste exemplo, o recurso associado à variável de folga s_1).

$$\boldsymbol{c}_{B}\boldsymbol{B}^{-1}\boldsymbol{b}_{novo} = 500 + \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} = 500 + 5\alpha$$

Parte II

Avaliação de uma nova actividade

- Será que uma dada nova actividade é atractiva quando também podemos realizar as actividades da solução óptima?
- É possível responder à questão sem resolver o problema com a nova actividade desde o início,

porque

 a informação existente no quadro óptimo permite calcular como aparece a respectiva coluna no quadro óptimo.

A coluna no quadro óptimo de uma dada ...

nova actividade, definida por um a_{novo} e um c_{novo} , tem

- no corpo central, o vector $B^{-1}a_{novo}$, e
- na linha da função objectivo, o elemento $c_B B^{-1} a_{novo} c_{novo}$.
- O elemento permite avaliar se a nova actividade é atractiva.
- Se não for, podemos rejeitá-la; caso contrário, podemos partir do quadro com a nova coluna, para determinar a nova solução óptima.

Exemplo:

• A nova actividade é descrita pela coluna $a_{novo} = (2 \ 0 \ 1)^{\top}$ e tem um lucro associado $c_{novo} = 30$.

Exemplo

Quadro Inicial

		Z	x_1	<i>x</i> ₂	<i>X</i> 3	X _{novo}	s_1	<i>s</i> ₂	s 3	
	<i>s</i> ₁	0	1	1	2	2	1	0	0	40
	<i>s</i> ₂	0	2	2	1	0	0	1	0	150
	<i>5</i> 3	0	2	1	0	1	0	0	1	20
_	Z	1	-30	-20	-10	-30	0	0	0	0

Quadro Óptimo

					×novo				
<i>X</i> 3	0	-1/2	0	1	?	1/2	0	-1/2	10
<i>s</i> ₂	0	-3/2	0	0	?	-1/2	1	-3/2	100
<i>x</i> ₂	0	2	1	0	?	0	0	1	20
Z	1	5	0	0	?	5	0	15	500

Cálculo do elemento da linha da função objectivo no quadro óptimo:

$$c_B B^{-1} a_{novo} - c_{novo} = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} - 30 = -5$$

A nova actividade é atractiva.

Exemplo

Quadro Inicial

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	X _{novo}	s_1	s ₂	s 3	
<i>s</i> ₁	0	1	1	2	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	0	1	0	150
<i>s</i> ₃	0	2	1	0	1	0	0	1	20
Z	1	-30	-20	-10	-30	0	0	0	0

Quadro Óptimo

					X_{novo}				
<i>X</i> 3	0	-1/2	0	1	?	1/2	0	-1/2	10
<i>s</i> ₂	0	-3/2	0	0	? ?	-1/2	1	-3/2	100
<i>x</i> ₂	0	2	1	0	?	0	0	1	20
Z	1	5	0	0	-5	5	0	15	500

• É necessário calcular o resto da coluna:

$$\boldsymbol{B}^{-1}\boldsymbol{a}_{novo} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \\ -5/2 \end{bmatrix}$$

Exemplo: nova coluna no quadro óptimo

Quadro	Inicial
Quadio	IIIICIai

		Z	x_1	<i>x</i> ₂	<i>X</i> 3	X _{novo}	s_1	<i>s</i> ₂	s 3	
_	<i>s</i> ₁	0	1	1	2	2	1	0	0	40
	<i>s</i> ₂	0	2	2	1	0	0	1	0	150
	<i>s</i> ₃	0	2	1	0	1	0	0	1	
_	Z	1	-30	-20	-10	-30	0	0	0	0

Quadro Óptimo

			x_1	<i>x</i> 2	<i>x</i> 3	Xnovo	51	S 2	5 3		
						1/2					
,	<i>s</i> ₂	0	-3/2	0	0	0	-1/2	1	-3/2	100	
	<i>x</i> ₂	0	2	1	0	-5/2	0	0	1	20	
	Z	1	5	0	0	-5	5	0	15	500	

- Para obter a solução óptima, é necessário re-optimizar o quadro:
- a variável x_{novo} entra na base, e sai a variável x_3 .

Parte III

Alteração num coeficiente da função objectivo

 O valor do coeficiente c_j da função objectivo está frequentemente relacionado com o preço de venda ou com o lucro associado a uma actividade.

Conteúdo

- Interpretação geométrica
- Relatório Objective
- Custo reduzido (de uma variável)
- Análise: efeito e limites de variação sem alterar a base óptima.

Exemplo 1: espaço a duas dimensões

• Modelo, quadro óptimo e relatório Objective:

max: 12x1 +10x2; tmaquina: 3x1 + 2x2<=120; maodobra: 1x1 + 2x2<= 80; material: 1x1 <= 30;

	z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
<i>x</i> ₂	0	0	1	-0.25	0.75	0	30
s 3	0	0	0	-0.5	0.5	1	10
x_1	0	1	0	-0.25 -0.5 0.5	-0.5	0	20
Z	1	0	0	3.5	1.5	0	540

Objective							
Variables	from	till	from	till			
			value	value			
objective	540	540	540	540			
×1	5	15	$-\infty$	0			
x2	8	24	$-\infty$	0			

- Porque é que a solução óptima muda se o valor do coeficiente c_1 estiver fora do intervalo [5,15]?
- Do ponto de vista geométrico, a alteração de um coeficiente c_j traduz-se numa alteração da direcção do vector gradiente.

Exemplo 1: alteração de um coeficiente da f. objectivo

Exemplo 1: alteração de um coeficiente da f. objectivo

Exemplo 1: alteração de um coeficiente da f. objectivo

Relatório Objective: interpretação

 Não há alteração das actividades atractivas (variáveis básicas na solução óptima) se todos os coeficientes da função objectivo pertencerem ao intervalo definido pelas colunas from e till.

Exemplo 2:

• Os coeficientes da função objectivo são $(c_1, c_2, c_3) = (30, 20, 10)$.

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
х3	0	20	-inf	0

Alteração de c_i : quais as alterações no quadro óptimo?

• É necessário distinguir 2 casos:

Caso I: Variável x_i é **não-básica** no quadro óptimo

- ullet se se alterar o elemento c_j do vector $oldsymbol{c}$ do quadro inicial,
- altera-se apenas o elemento $c_B B^{-1} a_i c_i$ do quadro final.

Caso II: Variável x_i é **básica** no quadro óptimo

- se se alterar o elemento c_j do vector c do quadro inicial,
 e portanto o vector c_B (que é construído a partir de c),
- há alterações em $c_B B^{-1} A c$, $c_B B^{-1}$ e $c_B B^{-1} b$ do quadro final.
- nota: há alterações nos vectores e no elemento do quadro óptimo que envolvem os coeficientes da função objectivo que se alteram nos dados iniciais.

Exemplo 2: caso de var. não-básica no quadro óptimo

e.g., relativamente ao coeficiente da função objectivo c_1 :

• A solução óptima terá como variáveis básicas óptimas x_3 , s_2 e x_2 se o coeficiente c_1 for menor ou igual a 35.

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
х3	0	20	-inf	0

 Acima desse valor, a variável não-básica x₁ torna-se atractiva para entrar na base, e é necessário usar o algoritmo simplex primal para determinar o novo quadro óptimo.

Exemplo 2: caso de var. não-básica no quadro óptimo

		Z	x_1	x_2	<i>X</i> 3	<i>s</i> ₁	s 2	<i>5</i> 3	
	$\overline{s_1}$	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0
		Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
		0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	z	1	5	Λ	Λ	5	Λ	15	500

- Quando há uma alteração do coeficiente de custo c_j de uma variável não-básica, o único elemento que se altera no quadro óptimo é o custo reduzido de x_j, i.e., o elemento c_BB⁻¹a_j - c_j (ver Análise 1).
- O custo reduzido da variável não-básica x_1 (5) é justamente o valor do aumento do coeficiente c_1 a partir do qual a variável se torna atractiva ($c_1 > 35$) neste problema de maximização.

Custo reduzido (de uma variável)

Portanto, o custo reduzido de uma variável não-básica x_i indica

• o valor da melhoria do coeficiente de custo c_j a partir do qual ela se torna atractiva, e pode ter um valor positivo na solução óptima.

Pode ser interpretado como Custo de oportunidade

Custo reduzido (de uma variável)

Portanto, o custo reduzido de uma variável não-básica x_i indica

• o valor da melhoria do coeficiente de custo c_j a partir do qual ela se torna atractiva, e pode ter um valor positivo na solução óptima.

Pode ser interpretado como Custo de oportunidade (ou Custo de opção):

 perda de valor ou benefício (equivale, por isso, a um custo) que ocorre por se optar por uma dada actividade, em vez de realizar a(s) actividade(s) que proporciona(m) maior valor ou benefício.

O significado algébrico explica o conceito de custo de oportunidade:

• por cada unidade de incremento de x_j (igual a 0 na solução óptima), o valor da função objectivo z decresce $c_B B^{-1} a_j - c_j$ unidades:

$$-(\mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{a}_{j}-c_{j})=\partial z/\partial x_{j}$$

Para as variáveis básicas, os custos reduzidos são nulos.

O custo reduzido da variável não-básica x_j pode ser também interpretado como o preço-sombra associado à restrição $-x_j \le 0$. < c

Exemplo 2: caso de variável básica no quadro óptimo

e.g., relativamente ao coeficiente da função objectivo c3:

• A solução óptima terá como variáveis básicas óptimas x_3 , s_2 e x_2 se o coeficiente c_3 pertencer ao intervalo [0,20].

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

- Se o valor for inferior a 0, a actividade x_3 deixa de ser atractiva.
- Se o valor for superior a 20, a actividade x_3 permanece atractiva, mas a solução óptima terá outras variáveis básicas.
- Ver informação adicional no Análise 2.

Análise matricial

Efeito e limites de variação sem alterar a base óptima

- 1. alteração de c_i (var. não-básica no quadro óptimo)
- 2. alteração de c; (var. básica no quadro óptimo)

Exemplo

Quadro	Inicial

		^1						
<i>s</i> ₁	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
<i>5</i> 3	0	1 2 2	1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0
	7	Y1	Χa	Υa	_{S1}	So	So	İ

Quadro Óptimo

		``I						
<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	0	-1/2 -3/2 2	1	0	0	0	1	20
Z	1	5	0	0	5	0	15	500

 $\begin{array}{|c|c|c|c|c|} B^{-1} & \mathbf{0} \\ \hline c_B B^{-1} & 1 \\ \hline \end{array}$

=

$B^{-1}A$	B^{-1}	<i>B</i> −¹ <i>b</i>
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

1. Exemplo: efeito da variação de c_1

• Como a actividade 1 não é atractiva, interessa analisar o aumento do valor do coeficiente c_1 , que passa a ser igual a $30 + \alpha$,

Caso I: Variável x_1 é não-básica no quadro óptimo

$$c_{ant} = \begin{bmatrix} 30 & 20 & 10 \end{bmatrix}$$

 $c_{novo} = \begin{bmatrix} 30 + \alpha & 20 & 10 \end{bmatrix}$

Novo vector $c_B B^{-1} A - c_{novo}$:

$$c_B B^{-1} A - c_{novo} = c_B B^{-1} A - c_{novo} + c_{ant} - c_{ant} = (c_B B^{-1} A - c_{ant}) + (c_{ant} - c_{novo})$$

$$c_B B^{-1} A - c_{novo} = \begin{bmatrix} 5 & 0 & 0 \end{bmatrix} + \begin{bmatrix} -\alpha & 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 - \alpha & 0 & 0 \end{bmatrix}$$

1. Exemplo: quadro óptimo quando há uma variação de c_1

		1								
		Z	x_1	x_2	<i>X</i> 3	s_1	<i>s</i> ₂	s 3		
	<i>s</i> ₁	0	1	1	2	1	0	0	40	
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150	
	<i>5</i> 3	0	2	1	0	0	0	1	20	
	Z	1	$-(30+\alpha)$	-20	-10	0	0	0	0	
		z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃		
	X3	0	-1/2	0	1	1/2	0	-1/2	10	
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100	
	<i>x</i> ₂	0	2	1	0	0	0	1	20	
	Z	1	$5-\alpha$	0	0	5	0	15	500	

- O único elemento que se altera é $c_B B^{-1} a_1 c_1$.
- Se $\alpha > 5$, a variável não-básica x_1 torna-se atractiva.
- o custo reduzido da variável não-básica x_1 é 5: a actividade 1 é candidata a entrar na base quando $c_1 > 35$.

1. Limites de variação de α

• Limites de variação de α :

$$c_B B^{-1} A - c_{novo} = \begin{bmatrix} 5 - \alpha & 0 & 0 \end{bmatrix}$$

$$\begin{cases} 5 - \alpha \ge 0 & \begin{cases} \alpha \le 5 \end{cases}$$

ou seja,

$$-\infty \le \alpha \le 5$$
.

Limites de variação de c₁:

$$-\infty \le c_1 \le 30 + 5,$$

ou seja,

$$-\infty \le c_1 \le 35$$
.

Estes são os valores apresentados no relatório Objective.

2. Efeito da variação de *c*₃

• Como a actividade 3 é atractiva, interessa analisar o decremento do valor do coeficiente c_3 , que passa a ser igual a $10 - \alpha$,

Caso II: Variável x3 é básica no quadro óptimo

$$c_{ant} = \begin{bmatrix} 30 & 20 & 10 \end{bmatrix}$$

 $c_{novo} = \begin{bmatrix} 30 & 20 & 10 - \alpha \end{bmatrix}$

$$c_{Bant} = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix}$$

 $c_{Bnovo} = \begin{bmatrix} 10 - \alpha & 0 & 20 \end{bmatrix}$

(continua)

2. variação de c_3 (cont.)

Caso II: Variável x₃ é básica no quadro óptimo

Novo vector $c_{B_{POVO}}B^{-1}$:

$$c_{Bnovo}B^{-1} = \begin{bmatrix} 10 - \alpha & 0 & 20 \end{bmatrix} * \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 - \alpha/2 & 0 & 15 + \alpha/2 \end{bmatrix}$$

Novo vector $c_{Bnovo}B^{-1}A - c_{novo}$ (após efectuar todos os cálculos):

$$c_{Bnovo}B^{-1}A - c_{novo} = \begin{bmatrix} 5 + \alpha/2 & 0 & 0 \end{bmatrix}$$

2. Quadro óptimo quando há uma variação de c_3

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
	s_1	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>s</i> ₃	0	2	1	0	0	0	1	20
	Z	1	30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> ₃	
	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

- Este quadro é óptimo enquanto todos os elementos de $c_B B^{-1} A c_{novo}$ e de $c_{Bnovo} B^{-1}$ forem não-negativos, o que define limites máximos de variação de α .
- Se o valor de α estiver para além desses limites, haverá um elemento negativo na linha da função objectivo, e é necessário usar o simplex primal para determinar o novo quadro óptimo.

2. Limites de variação de α

• Limites de variação de α :

$$c_{Bnovo}B^{-1}A - c_{novo} = \begin{bmatrix} 5 + \alpha/2 & 0 & 0 \end{bmatrix} \ge \mathbf{0}$$

$$c_{Bnovo}B^{-1} = \begin{bmatrix} 5 - \alpha/2 & 0 & 15 + \alpha/2 \end{bmatrix} \ge \mathbf{0}$$

$$\begin{cases} 5 + \alpha/2 \ge 0 \\ 5 - \alpha/2 \ge 0 \\ 15 + \alpha/2 \ge 0 \end{cases}$$

$$\begin{cases} \alpha \ge -10 \\ \alpha \le 10 \\ \alpha \ge -30 \end{cases}$$

ou seja,

$$-10 \le \alpha \le 10$$
.

• Limites de variação de c3 :

$$10 - 10 \le c_3 \le 10 - (-10),$$

ou seja,

$$0 \le c_3 \le 20$$
.

Estes são os limites apresentados no relatório Objective.

Conclusão

- Os conceitos de preço-sombra e de custo de oportunidade são conceitos fundamentais.
- A análise de sensibilidade permite avaliar alternativas ao cenário actual, ajudando em processos de decisão pós-optimização;
- pode permitir evitar ter de resolver novamente o problema com novos valores dos parâmetros.
- A análise de sensibilidade à variação simultânea de vários parâmetros pode ser feita com análise matricial.
- A análise de sensibilidade de elementos a_{ij} da matriz \boldsymbol{A} é mais complexa.

Apêndices

- Identificação da variável que entra na base quando há alteração do coeficiente de uma variável básica para além dos limites de variação
- Significado do elemento from value

1. Aumento do preço associado à actividade x_3

- Qual a variável não-básica que se tornaria atractiva se o preço associado à actividade x_3 fosse igual a $20 + \varepsilon$ (*i.e.*, $\alpha = -10 \varepsilon$)?
- Qual a variável básica que sairia da base?

		z	x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> ₃	
	s_1	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> ₃	
	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

1. Decréscimo do preço associado à actividade x_3

- Qual a variável não-básica que se tornaria atractiva se o preço associado à actividade x_3 fosse igual a 0ϵ (i.e., $\alpha = 10 + \epsilon$)?
- Qual a variável básica que sairia da base?

		z	x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> ₃	
	s_1	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>s</i> ₃	0	2	1	0	0	0	1	20
	Z	1	30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

2. Significado do elemento from value

- No Relatório Objective, o elemento da coluna from value só é significativo para variáveis não-básicas na solução óptima.
- Quando x_1 é atractiva (coluna pivô), entra na base, e toma o valor 20/2 = 10.
- É o valor da menor razão positiva (a linha pivô é a da variável básica x_2 (ver diapositivo seguinte).

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

2. Exemplo

		z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	s 2	<i>s</i> ₃		
Quadro Inicial	<i>s</i> ₁	0	1	1	2	1	0	0	40	
	<i>s</i> ₂	0	2	2	1	0	1	0	150	
	<i>5</i> 3	0	2	1	0	0	0	1	20	
	Z	1	$-(30+\alpha)$	-20	-10	0	0	0	0	
Quadro Óptimo		z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃		
	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10	
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100	
	<i>X</i> 2	0	2	1	0	0	0	1	20	
	Z	1	$5-\alpha$	0	0	5	0	15	500	

Fim