Internship

13 July 2020

Offline transaction for IoT devices

1st stage

- Use ESP8266 as an IoT device that directly send data to blockchain
 - save power -wifi scheduler (trigger by RTC and input data)
 - power is measured using usb power meter
 - save memory shrink the code (i.e, split web application from the skeleton code)
 - Offline transaction save data in a textfile, and send all data in one transaction when the wifi is on
 - security (use cryptography to protect private key)

- 2nd stage
 - implement using a low power device (flash memory:256 kB)

Lead by Shen Yik

Dapp for Supply Chain

1st stage:

- Integrate blockchain with IPFS
- Elliptic-curve cryptography(encrypt using public key, decrypt using private key)
- upload encrypted file to IPFS
 - download from IPFS and decrypt the encrypted file
- Create smart contract for a supply chain node

- 2nd stage
 - create a complete DAPP for all supply chain node
 - ensure ownership transfer is successful

Lead by Aathira

Anonymous Blockchain (1)

1st stage

- create a blockchain
- integrate with stealth address, ring signature, and RingCT (monero)
- integrate with Faster Dual-Key Stealth Address Protocol (paper: Faster Dual-Key Stealth Address for Blockchain-Based Internet of Things Systems)

- 2nd stage
 - integrate with a new anonymous blockchain algorithm
 - analyze the performance of these algorithms

Lead by Hank

Anonymous Blockchain (2)

1st stage

- Anonymous device identity on blockchain
 - implement zk-SNARK in Ethereum (using ZoKrates)
 - create a smart contract as a verifier
- generate a proof and convince the verifier regarding identity of the device

2nd stage

- implement Zokrate using IoT devices
- analyze minimum resource requirement for IoT devices

Lead by Nathan