CS 584-04: Machine Learning

Autumn 2019 Assignment 4

Question 1 (50 points)

In 2014, Allstate provided the data on Kaggle.com for the Allstate Purchase Prediction Challenge which is open. The data contain transaction history for customers that ended up purchasing a policy. For each Customer ID, you are given their quote history and the coverage options they purchased.

The data is available on the Blackboard as Purchase_Likelihood.csv. It contains 665,249 observations on 97,009 unique Customer ID. You will build a multinomial logistic model with the following specifications.

- 1. The nominal target variable is **A** which have these categories 0, 1, and 2
- 2. The nominal features are (categories are inside the parentheses):
 - a. **group_size**. How many people will be covered under the policy (1, 2, 3 or 4)?
 - b. **homeowner**. Whether the customer owns a home or not (0 = No, 1 = Yes)?
 - c. married_couple. Does the customer group contain a married couple (0 = No, 1 = Yes)?
- 3. Include the Intercept term in the model
- 4. Enter the five model effects in this order: group_size, homeowner, married_couple, group_size * homeowner, and homeowner * married_couple (No forward or backward selection)
- 5. The optimization method is Newton
- 6. The maximum number of iterations is 100
- 7. The tolerance level is 1e-8.
- 8. Use the sympy.Matrix().rref() method to identify the non-aliased parameters

Please answer the following questions based on your model.

a) (5 points) List the aliased parameters that you found in your model.

Solution:-

group_size_4
homeowner_1
married_couple_1
group_size_1 * home_owner_1
group_size_2 * home_owner_1
group_size_3 * homeowner_1
group_size_4 * homeowner_0
group_size_4 * homeowner_1
homeowner_0 * married_couple_1

homeowner_1 * married_couple_0
homeowner_1 * married_couple_1

- b) (5 points) How many degrees of freedom do you have in your model?Solution:- Degrees of freedom = 20
- c) (10 points) After entering a model effect, calculate the Deviance test statistic, its degrees of freedom, and its significance value between the current model and the previous model. List your Deviance test results by the model effects in a table.

Solution:-

Model effect	Chi-square statistic	Degree of freedom	Significance
group_size	987.5766005262267	6	4.347870389027117e- 210
homeowner	5867.781500353478	2	0.0
married_couple	84.57800238393247	2	4.3064572180356084 e-19
group_size * homeowner	254.07812536344863	6	5.5121059685664295 e-52
homeowner * married_couple	70.84227676945738	2	4.13804354793157e-1 6

d) (5 points) Calculate the Feature Importance Index as the negative base-10 logarithm of the significance value. List your indices by the model effects.

Solution:-

Model Effect	Feature Importance Index
group_size	209.36172341080683
homeowner	Infinity
married_couple	18.365879862870976
group_size * homeowner	51.2586824418404
homeowner * married_couple	15.383204943219134

e) (10 points) For each of the sixteen possible value combinations of the three features, calculate the predicted probabilities for A = 0, 1, 2 based on the multinomial logistic model. List your answers in a table with proper labelling.

Solution:-

Possibilities	Pr(A=0)	Pr(A=1)	Pr(A=2)
group_size_1_homeowner_0_married_couple_0	0.2596505294674	0.58917499922	0.1511744713101
	657	24112	232
group_size_1_homeowner_0_married_couple_1	0.2600917257573	0.59210579575	0.1478024784921
	4996	04566	9338
group_size_1_homeowner_1_married_couple_0	0.1836024871259	0.68202954795	0.1343679649149
	8187	90752	4285
group_size_1_homeowner_1_married_couple_1	0.1540230016390	0.70991797504	0.1360590233129
	0653	80099	8358
group_size_2_homeowner_0_married_couple_0	0.2219361377687	0.62110513967	0.1569587225515
	4224	97336	2415
group_size_2_homeowner_0_married_couple_1	0.2223208689711	0.62421616161	0.1534629694139
	648	4875	6015
group_size_2_homeowner_1_married_couple_0	0.2025095494428	0.65977268413	0.1377177664220
	9226	50491	5874
group_size_2_homeowner_1_married_couple_1	0.1705515551369	0.68944950933	0.1399989355295
	7823	34505	7146
group_size_3_homeowner_0_married_couple_0	0.2395700821998	0.60461592070	0.1558139970959
	8554	4135	7948
group_size_3_homeowner_0_married_couple_1	0.2399917487557	0.60766047069	0.1523477805482
	1322	60655	2107
group_size_3_homeowner_1_married_couple_0	0.3011398506574	0.53129677962	0.1675633697200
	032	25498	4698
group_size_3_homeowner_1_married_couple_1	0.2590173731094	0.56701664362	0.1739659832696
	2163	09104	6792
group_size_4_homeowner_0_married_couple_0	0.1944846874453	0.66968590537	0.1358294071768
	793	77223	984
group_size_4_homeowner_0_married_couple_1	0.1946921010052	0.67259209013	0.1327158088646
	6804	01082	2372
group_size_4_homeowner_1_married_couple_0	0.3877190926982	0.48497444674	0.1273064605520
	077	97125	7973
group_size_4_homeowner_1_married_couple_1	0.3391717120963	0.52640408607	0.1344242018247
	9435	88882	1734

f) (5 points) Based on your model, what values of group_size, homeowner, and married_couple will maximize the odds value Prob(A=1) / Prob(A = 0)? What is that maximum odd value?
 Solution:- group_size = 1, homeowner = 1, married_couple = 1

Maximum odd value = **4.609168549460486**

g) (5 points) Based on your model, what is the odds ratio f or group_size = 3 versus group_size = 1, and A = 2 versus A = 0? Mathematically, the odds ratio is (Prob(A=2)/Prob(A=0) | group_size = 3) / ((Prob(A=2)/Prob(A=0) | group_size = 1).

Solution:-

```
 (Prob(A=2)/Prob(A=0) \mid group\_size = 3) / ((Prob(A=2)/Prob(A=0) \mid group\_size = 1) => log((Prob(A=2)/Prob(A=0) \mid group\_size = 3) / ((Prob(A=2)/Prob(A=0) \mid group\_size = 1) )= log(Prob(A=2)/Prob(A=0) \mid group\_size = 3) - log(Prob(A=2)/Prob(A=0) \mid group\_size = 1)
```

- → (group_size_3 group_size_1)+ (group_size_3*homeowner_0 group_size_1*homeowner_0)(1-h)
- → (-0.274022 + 0.384741)*(1-h)

```
(Prob(A=2)/Prob(A=0) | group\_size = 3) / ((Prob(A=2)/Prob(A=0) | group\_size = 1)

\Rightarrow exp (0.527471 - 0.801493) + (-0.5987 + 0.983441)(1-h)

\Rightarrow exp ((-0.274022 + 0.384741)*(1-h))
```

Here the odds ratio depends on the values of group_size and homeowner. So h take values of (0 or 1) where h is homeowner.

h) (5 points) Based on your model, what is the odds ratio for homeowner = 1 versus homeowner = 0, and A = 0 versus A = 1? Mathematically, the odds ratio is $(Prob(A=0)/Prob(A=1) \mid homeowner = 1) / ((Prob(A=0)/Prob(A=1) \mid homeowner = 0).$

Solution: (Prob(A=0)/Prob(A=1) | homeowner = 1) / ((Prob(A=0)/Prob(A=1) | homeowner = 0) => log(Prob(A=0)/Prob(A=1) | homeowner = 1) - log(Prob(A=0)/Prob(A=1) | homeowner = 0) = (0.800157 - 1.505554 * g1 - 1.164638 * g2 - 0.654639 * g3 + 0.212483 * (1-m).

```
(Prob(A=0)/Prob(A=1) \mid homeowner = 1) / ((Prob(A=0)/Prob(A=1) \mid homeowner = 0)
\Rightarrow exp((0.800157 - 1.505554 * g1 - 1.164638 * g2 - 0.654639 * g3 + 0.212483 * (1-m)).
```

Here the odds ratio depends on the values of group_size and married_couple. So g1, g2, , g3, m take values of (0 or 1) where g1, g2, g3 is group_size_1, group_size_2, group_size_3 respectively. And m is married_couple.

Question 2 (50 points)

You are asked to build a Naïve Bayes model using the same Purchase_Likelihood.csv. The model specifications are:

- 1. No smoothing is needed. Therefore, the Laplace/Lidstone alpha is zero
- 2. The nominal target variable is **A** which have these categories 0, 1, and 2
- 3. The nominal features are (categories are inside the parentheses):
 - a. group_size. How many people will be covered under the policy (1, 2, 3 or 4)?
 - b. **homeowner**. Whether the customer owns a home or not (0 = No, 1 = Yes)?
 - c. married_couple. Does the customer group contain a married couple (0 = No, 1 = Yes)?

Please answer the following questions based on your model.

a) (5 points) Show in a table the frequency counts and the Class Probabilities of the target variable. **Solution:**

	А	Count	Proportion
0	0	143691	0.215996
1	1	426067	0.640462
2	2	95491	0.143542

b) (5 points) Show the crosstabulation table of the target variable by the feature group_size. The table contains the frequency counts.

Solution:-

group_size					
A	1	2	3	4	
0	115460	25728	2282	221	
1	329552	91065	5069	381	
2	74293	19600	1505	93	

c) (5 points) Show the crosstabulation table of the target variable by the feature homeowner. The table contains the frequency counts.

Solution:-

homeowner		
Α	0	1
0	78659	65032
1	183130	242937
2	46734	48757

d) (5 points) Show the crosstabulation table of the target variable by the feature married_couple. The table contains the frequency counts.

Solution:-

married_couple		
Α	0	1
0	117110	26581
1	333272	92795
2	75310	20181

e) (10 points) Calculate the Cramer's V statistics for the above three crosstabulations tables. Based on these Cramer's V statistics, which feature has the largest association with the target A?

Solution:-

Cramer's V Value for group_size is: **0.027102014055820786**Cramer's V Value for homeowner is: **0.09708641964781962**Cramer's V Value for married_couple is: **0.03242164583520746**"homeowner" has the largest association with the target A.

f) (5 points) Based on the assumptions of the Naïve Bayes model, express the joint probability Prob(A = a, group_size = g, homeowner = h, married_couple = m) as a product of the appropriate probabilities.

Solution:-

Prob(A=a, group_size=g, homeowner=h, married_couple=m) =
Prob(group_size=g, homeowner=h, married_couple=m | A=a)*Prob(A=a) =

Prob(group_size=g | A=a)*Prob(homeowner=h | A=a)*Prob(married_couple=m | A=a)*Prob(A=a)

g) (10 points) For each of the sixteen possible value combinations of the three features, calculate the predicted probabilities for A = 0, 1, 2 based on the Naïve Bayes model. List your answers in a table with proper labelling.

Solution:-

Possibilities	Pr(A=0)	Pr(A=1)	Pr(A=2)
group_size_1_homeowner_0_married_couple_0	0.269721900	0.580133399	0.150144699
	83648967	3691891	79432118
group_size_1_homeowner_0_married_couple_1	0.232789218	0.614218557	0.152992223
	51630957	8024016	68128876
group_size_1_homeowner_1_married_couple_0	0.194037904	0.669659004	0.136303090
	75559898	8821739	3622272
group_size_1_homeowner_1_married_couple_1	0.164935004	0.698278045	0.136786949
	743777	9509148	30530805
group_size_2_homeowner_0_married_couple_0	0.231143327	0.616518459	0.152338212
	3249531	7447714	93027552
group_size_2_homeowner_0_married_couple_1	0.198015591	0.647906780	0.154077627
	405003	7659843	82901277
group_size_2_homeowner_1_married_couple_0	0.163627525	0.700287808	0.136084665
	52123652	8359464	64281702
group_size_2_homeowner_1_married_couple_1	0.138274170	0.725954963	0.135770866
	44457968	0220522	53336812
group_size_3_homeowner_0_married_couple_0	0.308219393	0.515924167	0.175856438
	78427693	7311622	48456095
group_size_3_homeowner_0_married_couple_1	0.268311057	0.550950897	0.180738045
	11605896	1155715	76836952
group_size_3_homeowner_1_married_couple_0	0.226971831	0.609611781	0.163416387
	46374494	1433283	39292683
<pre>group_size_3_homeowner_1_married_couple_1</pre>	0.194369513	0.640409773	0.165220712
	62831584	5081213	86356266
group_size_4_homeowner_0_married_couple_0	0.375490390	0.487810100	0.136699508
	7259939	5336526	74035344
group_size_4_homeowner_0_married_couple_1	0.330743444	0.527098304	0.142158250
	1365481	946624	91682782
group_size_4_homeowner_1_married_couple_0	0.282172679	0.588196454	0.129630865
	6029393	8622688	5347919
group_size_4_homeowner_1_married_couple_1	0.243930339	0.623765964	0.132303696
	20041854	2682374	53134402

h) (5 points) Based on your model, what values of group_size, homeowner, and married_couple will maximize the odds value Prob(A=1) / Prob(A = 0)? What is that maximum odd value? **Solution:**-

The maximum value occurs when group_size = **2**, homeowner = **1**, married_couple = **1**. The maximum value is: **5.250112589270714**