A-Level Mathematics Edexcel 2024 Predicted Paper

Scan me for walkthrough

Paper 3

Statistics and Mechanics

Name:	
Date:	

2 hours allowed

You may use a calculator

Rough Grade Boundaries

These <u>do not</u> guarantee you the same mark in the exam.

A* - 75%

A - 55%

B - 45%

C - 35%

D - 25%

E - 15%

Question	Possible Marks	Marks Gained
Section A:	50	
Statistics		
Section B:	50	
Mechanics		
Total	100	

If you would like to **upgrade** to one of our Exam Masterclasses or Revision Bootcamps, which include our 2024 predicted papers **AND**:

- 2024 predicted paper video walkthroughs
- Live revision tutorials (exam masterclasses only)
- Easter Exam Prep Live tutorials with exam skills focus
 - Teaching videos
 - Quizzes
- 2023 predicted papers and walkthroughs (not all subjects)
 - Flashcards
 - Workbooks

... and so much more, please e-mail <u>Academy@primrosekitten.com</u> and we will deduct the cost of the predicted papers you have already bought.

Achieve more, stress less!

SECTION A: Statistics

01	${\cal C}$ and ${\cal D}$ are two independent events.	
	It is known that: $P(\mathcal{C}') = 0.60 \text{ and } P(\mathcal{C} \cap \mathcal{D}) = 0.11$	
a)	Find $P(D)$	[3 marks]
b)	Find $P(C \cup D)$	[2 marks]

c) Find P(C'|D)

[3 marks]

d) Complete the Venn diagram.

[2 marks]

U Z	distribution.
	15% of runners took more than 22 minutes to complete the race. 18% of runners took less than 12 minutes to complete the race.
a)	Use this information to find the values for the mean, μ , and the standard deviation, σ .
	[7 marks]

b)	Write down the median time taken to complete the race.	[1 mark]
c)	Find the probability that a runner took more than 25 complete the race. Include the distribution used in your answer.	minutes to
	Therade the distribution assault your district.	[3 marks]

03	A runner has run 20 races. They won 6 of these races. They are going to run another 50 races in the next year.
	If we assume that they have a fixed probability of winning the races we can model this as a binomial distribution.
a)	State two other conditions that must be met to model the probability of the runner winning races as a binomial distribution. [2 marks]
b)	Write down the binomial distribution to model the probability of winning their next 50 races. Include the test statistic in your answer. [2 marks]
c)	Work out the probability of the runner winning exactly 25 races. [1 mark]

but less than 20.
[3 marks]

The runner employed a new coach who promised to increase the proportion of races they won.

After employing the coach, the runner wins 24 out of 50 races.

e)	Evaluate if, at the 5% level of significance, the new coach has increased the proportion of races won. State your hypotheses clearly. [6 marks]
	[o marks]

04 A shop owner has an ice-cream shop at a holiday resort in Camborne.

They were interested to see what effect the amount of rainfall had on the sales of ice-cream.

The data below shows the amount of rainfall and the sales of icecream on different days of the week during a week in June.

Day	Rainfall (mm)	Ice-cream sales (£)
Monday	4.4	1500.65
Tuesday	0.8	3001.58
Wednesday	0	3200.50
Thursday	0.4	3512.44
Friday	2.6	2105.65
Saturday	1.6	2987.58
Sunday	0.2	3407.98

a)	Calculate the product moment correlation coemcient.	[1	l mark]
b)	State the explanatory (independent) variable and t (dependent) variable.		esponse marks]

The shop owner wanted to investigate the correlation between rainfall and ice-cream sales.

To do this they need to use the table of critical values for correlation coefficients.

Product moment correlation coefficient					
	Significance level				
0.10	0.05	0.025	0.01	size, n	
0.6870	0.8054	0.8783	0.9343	5	
0.6084	0.7293	0.8114	0.8822	6	
0.5509	0.6694	0.7545	0.8329	7	
0.5067	0.6215	0.7067	0.7887	8	

c)	negative correlation between the rainfall and the ice-crea State your hypothesis clearly.	
		[3 marks]
d)	Suggest a reason for the observed correlation.	[1 mark]

05 A teacher wanted to analyse their year groups mock exam results.

The results of the 130 students in the year group was summarised in the table below.

Test score, t	Frequency
1-20	15
21-40	23
41-60	34
61-80	26
81-100	19
101-120	13

Where $\sum ft = 7565$ and $\sum ft^2 = 553332.5$

a) Use linear interpolation to find an estimate for the interquartile range of the results.

Give your answer to 2 decimal places.

[3 marks]

b)	Estimate the mean test score. [1 mark]
c)	Estimate the variance of the test score. [2 marks]
	The highest score in the test was 115 and the lowest score was 2.
	Outliers can be found using the equations:
	$outliers < Q_1 - 1.5 \times IQR$
	$outliers > Q_3 + 1.5 \times IQR$
d)	Show that there are no outliers in these results. [2 marks]

SECTION B: Mechanics

06 A ball is kicked into the air from the ground by a footballer.

The moment the ball leaved the footballers foot it moves with a speed of U at an angle α to the horizontal.

The football lands on the ground 20 m away from the footballer.

The football is modelled as a particle moving freely under gravity, g.

a) Show that:

20 tan α –	200 <i>g</i>	0004	~		(
20 tan α –	112	sec	и	_	·

[6 marks]

It is given that $\cos \alpha = \frac{3}{5}$.

b)	Find the initial speed of the ball when it is kicked by the	footballer. [3 marks]
c)	Calculate the maximum height reached by the football.	[3 marks]
d)	State one assumption made in this model.	[1 mark]

07 A particle, A, moves with a velocity v ms⁻¹ at time t.

$$\boldsymbol{v} = (t^2 + 2t)\mathbf{i} + (-8t + 5)\mathbf{j}$$

Where \boldsymbol{i} and \boldsymbol{j} are unit vectors due east and north respectively.

a)	Find the magnitude of the acceleration of the particle when $t=5s$. [4 marks]

b)	Find the displacement between $t = 1 s$ and $t = 4 s$.	[4 marks]
c)	Find the times the particle is moving in the north-west di	rection. [3 marks]

08 Two balls, A and B, are connected by a light, inextensible string.

Ball A has a mass of 2.3 kg and ball B has a mass of 2.7 kg.

Ball A is held at rest on the surface of a rough, horizontal table.

The string connecting A and B is passed over a smooth, light pulley.

Ball B hangs freely at rest, vertically below the pulley.

At t=0, ball A is released and moves with an acceleration of a.

Ball B hits the ground in 0.7 seconds.

alculate the acceleration of ball A. [3 marks]	a)
alculate the tension, T , in the string. [3 marks]	b)

c)	Calculate the coefficient of friction, μ , between the table and [6	d ball A. marks]

09 A ladder of mass 5 kg and length 10a is placed against a smooth vertical wall onto rough horizontal ground.

The coefficient of friction between the ladder and the ground is 0.4.

The angle between the ladder and the ground is α .

A person of weight 70 kg stands on the ladder at the point Y where XY:YZ = 3:1.

Given that the ladder is modelled as a uniform rod and is under limiting equilibrium, find the angle α . [7 marks]

10 A box of mass 2 kg is placed on a rough plane at point X.

The coefficient of friction between the plane and the box is 0.7.

The incline of the plane is α , such that $\cos \alpha = \frac{3}{10}$

The box is released from rest, and it slides down the plane. After 0.5 seconds the box reaches point Y.

Find the velocity of the box at Y. [7 marks]

END OF QUESTIONS

MARKING GUIDANCE

Question	Solution
1 (a)	A1M for $P(C) = 1 - P(C') = 0.4$
	A1M for use of $P(C) \times P(D) = P(C \cap D)$
	P(D) = 0.11/0.4
1 (b)	A1M for 0.275
1 (0)	A1M for use of $P(C \cup D) = P(C) + P(D) - P(C \cap D)$
	$P(C \cup D) = 0.4 + 0.275 - 0.11$ A1M for 0.565
1 (c)	A1M for $P(C' \cap D) = 0.165$
	A1M for use of $P(C' D) = \frac{P(C' \cap D)}{P(D)} = \frac{0.165}{0.275}$
	A1M for 0.6
1 (d)	
	C' D
	0.29 0.11 0.165
	0.435
	A2M for correct Venn diagram
2 (a)	Allow A1M for 3 correct values $A1M \text{ for } P(X<12) = 0.18$
2 (a)	,
	A1M for $\frac{12-\mu}{\sigma} = -0.91537$
	A1M for $P(X>22) = 0.15$
	A1M for $\frac{22-\mu}{\sigma} = 1.03643$
	A1M for correct method to solve e.g. simultaneous equations
	A1M for $\mu = 16.6899$
	A1M for $\sigma = 5.1235$

2 (b)	A1M for 16.6899
2 (c)	A1M for $X \sim N(16.6899, 5.1235^2)$
	A1M for P(X>25)
	A1M for 0.05241
3 (a)	A2M for any two from:
	The is a fixed number of trials Each trial has only two outcomes – winning the race or not winning The trials are independent of each other
3 (b)	A1M for $X \sim B(50, 0.3)$
	A1M for X = number of races won
3 (c)	A1M for $P(X = 25) = 0.00144$
3 (d)	A1M for $P(X \le 10) = 0.07885$
	A1M for $P(X < 20) = P(X \le 19) = 0.9152$
2()	A1M for $P(10 < X < 20) = 0.9152 - 0.07885 = 0.83635$
3 (e)	A1M for $H_0=0.3$ and $H_1>0.3$
	A1M for $P(X \ge 24) = 1 - P(X \le 23)$ or alternative method to find $P(X \ge 24)$
	A1M for $P(X \ge 24) = 0.00559$ (implies previous mark – award
	both for correct value)
	A1M for 0.00559<0.05
	A1M for reject null hypothesis
	A1M for there is sufficient evidence that the new coach
4 (a)	increased the likelihood of winning races. A1M for -0.9646
4 (b)	A1M for Explanatory – rainfall
. (5)	A1M for Response – ice-cream sales
4 (c)	A1M for H_0 : $\rho = 0$ and H_1 : $\rho < 0$
	A1M for 0.6694<0.9646
	A1M for There is enough evidence to reject H ₀ , there is a
4 (4)	negative correlation between rainfall and ice-cream sales.
4 (d)	A1M for any reasonable explanation, e.g. People are more likely to stay home when it rains and therefore not buy ice-
	cream.
5 (a)	A1M for $Q_1 = \frac{20}{23} \times 17.5 + 20.5$ or alternative method to find Q_1 OR Q_3
	A1M for $Q_1 = 35.71739$ AND $Q_3 = 80.11538$
	A1M for IQR = 44.40
5 (b)	A1M for $\mu = \frac{7565}{130} = 58.1923076 \dots$
	Accept correctly rounded answer e.g. 58.2

- / \	2
5 (c)	A1M for $\sigma^2 = \frac{553332.5}{130} - \left(\frac{7565}{130}\right)^2$
	A1M for = 870.05917
	Accept correctly round answer e.g. 870.1
5 (d)	A1M for 35.71739 - 1.5 x 44.40 = -30.88261 AND 80.11538 +
	1.5 x 44.40 = 146.71538
	A1M for No outliers, as the biggest result is smaller than 146.7
6 (a)	and smallest result is bigger than -30.88.
0 (a)	A2M for $x = U \cos \alpha t = 20$
	A2M for $y = U \sin \alpha t - \frac{1}{2}gt^2 = 0$
	A1M for correct substitution
	$U \sin \alpha \times \frac{20}{U \cos \alpha} - \frac{1}{2}g \times \frac{400}{U^2 \cos^2 \alpha} = 0$
	$U\cos\alpha = 2^g + U^2\cos^2\alpha$
	A1M for correct use of identities to get:
	$20 \tan \alpha - \frac{200g}{U^2} \sec^2 \alpha = 0$
((b)	Č
6 (b)	A1M for correctly identifying: 4
	$\tan \alpha = \frac{1}{2}$
	5
	$\tan \alpha = \frac{4}{3}$ $\sec \alpha = \frac{5}{3}$
	A1M for correct substitution:
	$20 \times \frac{4}{2} - \frac{200g}{U^2} \times \left(\frac{5}{2}\right)^2 = 0$
	$U^2 \wedge (3)$
	A1M for U = 14.29 ms^{-1}
6 (c)	A1M for U = 14.29 ms ⁻¹ A1M Use of $v^2 = u^2 + 2as$
	A1M correct substitution:
	$0^2 = \left(14.29 \times \frac{4}{5}\right)^2 + 2 \times -9.8 \times s$
	\ 3/
C (4)	A1M for s = 6.67 m
6 (d) 7 (a)	A1M for No air resistance/wind.
/ (a)	A1M for $\mathbf{a} = \frac{d\mathbf{v}}{dt} = (2t+2)\mathbf{i} - 8\mathbf{j}$
	A1M for $(2 \times 5 + 2)\mathbf{i} - 8\mathbf{j} = 12\mathbf{i} - 8\mathbf{j}$
	A1M for $\sqrt{12^2 + (-8)^2}$
	A1M for 14.42 ms ⁻²

7 (b)	A2M for $s = \int_{1}^{4} v dt = \left[\left(\frac{t^{3}}{3} + \frac{2t^{2}}{2} \right) i + \left(-\frac{8t^{2}}{2} + 5t \right) j \right]_{1}^{4}$
	A1M for $\left[\left(\frac{4^3}{3} + \frac{2 \times 4^2}{2} \right) i + \left(-\frac{8 \times 4^2}{2} + 5 \times 4 \right) j \right] - \left[\left(\frac{1^3}{3} + \frac{2 \times 1^2}{2} \right) i + \frac{1}{2} \right] $
	$\left[\left(-\frac{8\times1^2}{2}+5\times1\right)j\right]$
	A1M for 36i-45j
7 (c)	A1M for $-(t^2 + 2t) = (-8t + 5)$
	A1M for $(t-5)(t-1) = 0$
	A1M for $t = 1s$ and $t = 5s$
8 (a)	A1M for Use of $s = ut + \frac{1}{2}at^2$
	A1M for Correct substitution $0.4 = 0 \times 0.7 + \frac{1}{2} \times a \times 0.7^2$
	A1M for 1.63 ms ⁻²
8 (b)	A2M for $2.7g - T = 2.7 \times 1.63$
	A1M for T = 22.059N
8 (c)	A1M for $R = 2.3g$
	A1M for $F_r = \mu \times 2.3g$
	A2M for $T - \mu \times 2.3g = 2.3a$ A1M for $22.059 - \mu \times 2.3g = 2.3 \times 1.63$
	A1M for $\mu = 0.81$
9	A1M for resolving vertically $R = 5g + 70g = 75g$
	A1M for resolving horizontally $Fr = \mu R = N$
	A2M for moments around X
	$5a\cos\alpha \times 5g + 7.5a\cos\alpha \times 70g = N \times 10a\sin\alpha$ A1M for correct substitution:
	$5a\cos\alpha \times 5g + 7.5a\cos\alpha \times 70g = 0.4 \times 75g \times 10a\sin\alpha$
	A1M for correct simplification
	55
	$\tan \alpha = \frac{35}{30}$
	A1M for $\alpha=61.4^{\circ}$

10	A1M for resolving perpendicular to the plane: $R = 2a \cos \alpha = 2a \times 3$
	$R = 2g\cos\alpha = 2g \times \frac{3}{10}$ A2M for resolving perpendicular to the plane:
	$2g\sin\alpha - 0.7 \times 2g\cos\alpha = 2a$
	A1M for correct substitution:
	$2g \times \frac{\sqrt{91}}{10} - 0.7 \times 2g \times \frac{3}{10} = 2a$
	A1M for a = 7.29 ms^{-2}
	A1M for correct use of suvat:
	$v = 0 + 7.29 \times 0.5$
	A1M for $v = 3.645 \text{ ms}^{-1}$
Total	100