Interconnessioni del sistema cardiovascolare

SYSTEM

The heart pumps blood

nutrients to, and removing

wastes from, all body cells.

through as many as

vessels delivering

60,000 miles of blood

Integumentary System

Ch flo te

Changes in skin blood flow are important in temperature control.

Skeletal System

Bones help control plasma calcium levels.

Muscular System

Blood flow increases to exercising skeletal muscle, delivering oxygen and nutrients and removing wastes.

Muscle actions help the blood

circulate. Nervous System

The brain depends on blood flow for survival. The nervous system helps control blood flow and blood pressure.

Endocrine System

Hormones are carried in the bloodstream. Some hormones directly affect the heart and blood vessels.

Lymphatic System

The lymphatic system returns tissue fluids to the bloodstream.

Digestive System

The digestive system breaks down nutrients into forms readily absorbed by the bloodstream.

Respiratory System

The respiratory system oxygenates the blood removes carbon dioxide. Respiratory movements help the blood circulate.

Urinary System

The kidneys clear the blood of wastes and substances present in excess. The kidneys help control blood pressure and blood volume.

Reproductive System

Blood pressure is important in normal function of the sex organs.

Regolazione della gittata cardiaca

Regolazione intrinseca (eterometrica): regolazione di Frank-Starling 🕇 Gettata cardiaca 🗸 Regolazione estrinseca (omeometrica): SN simpatico e parasimpatico (vago) Frequenza cardiaca Gettata sistolica Volume Contrattilità 1 ventricolare telediastolico (legge di Attività Frank-Starling) simpatica **Variazioni** Attività Della forza di contrazione si dicono parasimpatica **INOTROPISMO** Della frequenza di dicono **CRONOTROPISMO**

Della velocità di conduzione si dicono

DROMOTROPISMO

Adrenalina

circolante

Innervazione cardiaca

Il vago raggiunge il cuore mediante le branche cardiache superiori ed inferiori e toraciche del vago destro e sinistro. Le fibre terminano al nodo seno-atriale ed in misura minore al miocardio ventricolare

Le fibre simpatiche derivano dai segmenti T2-T4 della corda spinale e sono distribuiti attraverso i gangli cervicali mediani e toraco-cervicali (o stellati) e dai primi 4 gangli della catena simpatica toracica. Le fibre passano nel plesso cardiaco e da qui al nodo seno atriale.

Regolazione nervosa della frequenza

La stimolazione <u>colinergica</u> (parasimpatica) iperpolarizza il potenziale di membrana delle cellule autoritmiche e rallenta la velocità di depolarizzazione, riducendo la frequenza

La stimolazione <u>adrenergica</u>
(ortosimpatica e a drenalina
circolante) depolarizza le cellule
pacemaker e aumenta la velocità
di depolarizzazione,
incrementando la frequenza

Regolazione nervosa della frequenza

Frequenze > 100 battiti/min: tachicardia

Frequenze < 60 battiti/min: bradicardia

I-band

Thin filament

A-band

Thick filament

Regolazione di Frank-Starling (eterometrica)

L'incremento del ritorno venoso (volume telediastolico: LVEDP) causa un incremento del volume sistolico (SV). Il punto indica le condizioni "normali" a circa 8 mmHg e 70 ml

Famiglia di curve di Starling. Variazioni del postcarico e dell'inotropismo spostano la curva su o giù

Long SL

J Physiol Sci. 2014; 64(4): 221–232.

Regolazione nervosa della gittata cardiaca (omeometrica)

Limiti alla regolazione della gittata cardiaca

Frequenza max: 250 battiti/min

Frequenze > 150-170 battiti/min: ridotto riempimento ventricolare

Variazioni del ciclo cardiaco: effetto della stimolazione adrenergica

Pressione aortica

Pressione ventricolo sinistro

Flusso aortico

dP/dT

Volume ventr.

Frazione di eiezione > 0,6 ÷ 0,75

<u>>Volume sistolico</u>

Volume telediastolico

Variazioni del ciclo cardiaco: effetto dell'incremento del postcarico (pressione aortica)

Il controllo del cuore

Trasduzione segnale adrenergico

