Lecture

Felipe Alves

August 4, 2017

NYU

Table of contents

- 1. Consumption Savings Problem
- 2. Distribution
- 3. Transion Dynamics
- 4. Why do I care??

References

THEORY

- Pham (2009) Continuous-time Stochastic Control (finance)
- · Lecture notes
 - → Caldentey (????) Stochastic processes and optimal control nice lecture notes Enio uses them
 - → Ross (????) Stochastic Control in Continuous Time alternative to math books Fleming and Soner (2006), Øksendal (2003), Øksendal and Sulem (2007)

THEORY (MACRO)

- Moll's website
- Bayer and Wälde (2015)
 - → Sennewald (2007) (theory paper), Walde (2008) (heuristic)
- Stokey (2009) book Impulse control Problem

Numeric

- Achdou, Han, Lasry, Lions, and Moll (2016) (mainly the numerical appendix), Moll's website (tons
 of examples and materials)
- Forsyth and Vetzal (2012) (Also has some slides) good introduction to "viscosity solutions"
- Interested? Check . . .
- → Thomas and Nuño (2016), Nuño and Moll (2017) (improve notation), Kaplan, Moll, and Violante (2016), PHACT

Consumption Savings Problem

Problem of Household

$$\begin{aligned} \max_{\{c_t\}_{t\geq 0}} \mathbb{E}_0 & \int_0^\infty e^{-\rho t} u(c_t) dt \\ & \text{S.t } da_t = \left\{ ra_t + z_t - c_t \right\} dt \\ & z_t \text{ is a ct markov chain on } \{b,w\} \text{ with intensities } \lambda_1, \lambda_2 \\ & dz_t = (w-b) dq_\mu - (w-b) dq_s, \quad q_\mu \sim \text{Poisson}(\lambda_1), \ q_s \sim \text{Poisson}(\lambda_2) \end{aligned}$$

Individuals' consumption and saving decision is summarized by HJB equation

$$\rho v_k(a) = \max_c \left\{ u(c) + v_k'(a)[ra + z_k - c] \right\} + \lambda_k \left[v_{-k}(a) - v_k(a) \right]$$
 (1)

Households

Analytical results from Walde (2008)

•

Problem of Household

$$\begin{aligned} \max_{\{c_t\}_{t\geq 0}} \mathbb{E}_0 & \int_0^\infty e^{-\rho t} u(c_t) dt \\ & \text{S.t } da_t = \big\{ r_t a_t + z_t - c_t \big\} dt \\ & z_t \text{ is a ct markov chain on } \{b, w\} \text{ with intensities } \lambda_1, \lambda_2 \\ & dz_t = (w-b) dq_\mu - (w-b) dq_s, \quad q_\mu \sim \operatorname{Poisson}(\lambda_1), \ q_s \sim \operatorname{Poisson}(\lambda_2) \\ & a_t \geq \underline{a} \end{aligned}$$

Individuals' consumption and saving decision is summarized by HJB equation

· time dependent

$$\rho v_k(a,t) = \max_c \left\{ u(c) + \partial_a v_k(a,t) [r_t a + z_k - c] \right\} + \lambda_k \left[v_{-k}(a,t) - v_k(a,t) \right] + \partial_t v_k(a,t) \quad (2)$$

stationary

$$\rho v_k(a) = \max_c \left\{ u(c) + v_k'(a)[ra + z_k - c] \right\} + \lambda_k \left[v_{-k}(a) - v_k(a) \right]$$
(3)

Continuous × Discrete time

Consider the first-order condition for consumption

$$u'(c) = \partial_a v(a, z) \tag{4}$$

$$u'(c) \ge \beta \int \partial_a v(a', z') dF(z'|z), \quad a' = z + (1+r)a - c$$
 (5)

Continuous time advantages:

- 1. "today" = "tomorrow" foc is static
- 2. HJB is not stochastic evolution of stochastic process is captured by additive terms
- 3. foc always holds with equality Borrowing constraint shows only as state constraint boundary condition

$$u'(c_i(\underline{a},t)) = \partial_a v_i(\underline{a},t) \ge u'(r_t \underline{a} + z_i)$$
(6)

which ensures $c_i(\underline{a}, t) \le r_t \underline{a} + z_i$ so that the borrowing constraint is never violated.

We can write our HJB in a PDE notation

$$0 = F(x, V, DV, D^2V)$$
(7)

where $\mathbf{x} := (\mathbf{x}, \tau)$. How do we proceed to solve it??

Finite difference methods: replace derivatives by differences. Simple right? Does it work?

Suppose we define a grid $\{x_0, x_1, \ldots, x_i, \ldots\}$ and a set of timesteps $\{i\Delta : i \in \mathbb{N}\}$ Let $V_i^n \approx V(x_i, \tau_n)$ be the approximate value of the solution at node x_i time $\tau^n := T - t$. Then we can write a general **discretization** of the HJB equation at node (x_i, τ^{n+1})

$$0 = S_i^{n+1} \Big((\Delta, \Delta x), V_i^{n+1}, \{ V_j^m \}_{m \neq n+1, j \neq i} \Big)$$
 (8)

Sufficient Conditions Convergence

Condition (Monotonicity) . — The numerical scheme (8) is monotone if

$$S_i^{n+1}(\cdot, V_i^{n+1}, \{Y_j^m\}) \leq S_i^{n+1}(\cdot, V_i^{n+1}, \{Z_j^m\})$$

for all Y > Z.

Condition (Stability) . — The numerical scheme (8) is stable if for every $\tilde{\Delta}>0$ it has a solution which is uniformly bounded independently of $\tilde{\Delta}$.

Condition (Consistency) .— The numerical scheme (8) is consistent if for every smooth function ϕ with bounded derivatives we have

$$S_i^{n+1}(\tilde{\Delta},\phi(\boldsymbol{x}_i^{n+1}),\{\phi(\boldsymbol{x}_i^m)\}) \to F(\boldsymbol{x},\phi,D\phi,D^2\phi)$$

as $\tilde{\Delta} o 0$ and $\mathbf{x}_i^{n+1} o \mathbf{x}$.

Sufficient Conditions Convergence

Theorem Barles and Souganidis (1990). If the numerical scheme S (8) satisfies monotonicity, stability and consistency conditions, then its solution converges locally uniformly to the unique viscosity solution of (7).

- Convergence here is about $\tilde{\Delta} \to 0$
- For given $\tilde{\Delta}$, we have a system of I non-linear equations for each timestep that we must solve somehow. Theorem guarantees that the solution $\{V_i^\tau\}$ of this system converges to the "viscosity solution" of the original PDE as $\tilde{\Delta} \to 0$
- "viscosity solution" of the HJB is the the value function

Recall our time-dependent HJB equation as

$$\partial_{\tau} v_k(a,\tau) + \rho v_k(a,\tau) - \sup_{c \in \Gamma_k(a)} \left\{ u(c) + \mathcal{D}_{\tau_{-\tau}}^c v_k(a,\tau) \right\} = 0 \tag{9}$$

where

$$\mathcal{D}_t^c \phi_k(a) = \partial_a \phi_k(a) [r_t a + z_k - c] + \lambda_k \Big[\phi_{-k}(a) - \phi_k(a) \Big]$$

Define a grid $\{a_1, a_2, \ldots, a_i, \ldots\}$ and let $v_k^n = \left(v_k(a_1, \tau^n), \ldots, v_k(a_i, \tau^n), \ldots\right)'$. Discretizing this equation requires deciding upon

· which fd approximation to use: forward/backward differencing

$$\partial_a v_k(a) \approx \frac{v_{k,i+1} - v_{k,i}}{a_{i+1} - a_i}, \quad \partial_a v_k(a) \approx \frac{v_{k,i} - v_{k,i-1}}{a_i - a_{i-1}},$$

· Implicit/explicit timestepping

Let \mathscr{D}^c be the discrete form of the differential operator \mathcal{D}^c , so that

$$\left(\mathscr{D}^{c}v\right)_{k,i} = \alpha_{k,i}(c)v_{k,i-1} + \beta_{k,i}(c)v_{k,i+1} - \left(\alpha_{k,i}(c) + \beta_{k,i}(c) + \lambda_{i}\right)v_{k,i} + \lambda_{i}v_{-k,i}$$

and the discretization

$$\frac{v_{k,i}^{n+1} - v_{k,i}^{n}}{\Delta} - \sup_{c \in \Gamma_{k,i}} \left\{ u(c) + \left(\mathscr{D}^{c} v^{n(+1)} \right)_{k,i} \right\} = 0$$
 (10)

where discretization can use forward, backward or central discretization. If

$$\alpha_{k,i}^{n+1} \ge 0, \ \beta_{k,i}^{n+1} \ge 0$$

we say that (10) is positive coefficient discretization.

Why do we care?

We care because a *positive coefficient discretization* is also *monotone*. To see it check that

$$S_{k,i}^{n+1}\left(\tilde{\Delta},v_{k,i}^{n+1},v_{k,i+1}^{n(+1)},v_{k,i-1}^{n(+1)},v_{k,i}^{n},v_{-k,i}^{n(+1)}\right)$$

is a nonincreasing function of the neighbor nodes $\{v_{\ell,j}^m\}$. Check a example!

Upwind scheme

In order to ensure a *positive coefficient discretization* our choice of central/forward/backward differencing will depend, in general, on the control c. A useful rule for this problem is to use the so-called *upwind scheme*.

IDEA: Use forward difference whenever drift is positive, and use backward whenever it is negative.

Suppose that we have the value of consumption $c_{k,i}$ at a particular node. Let $s_{k,i} = ra_i + z_k - c_{k,i}$. In this case, the derivatives are approximated

$$\dots \frac{v_{k,i+1} - v_{k,i}}{a_{i+1} - a_i} s_{k,i}^+ + \frac{v_{k,i} - v_{k,i-1}}{a_i - a_{i-1}} s_{k,i}^- + \dots$$

which in terms of our α, β

$$\alpha_{k,i}^{up} = -\frac{s_{k,i}^{-}}{a_{i} - a_{i-1}} \ge 0, \quad \beta_{k,i}^{up} = \frac{s_{k,i}^{+}}{a_{i+1} - a_{i}} \ge 0$$

But we don't know $c_{k,i}!!!$ HJB equation is highly nonlinear, so we need an iterative method to solve it.

Implicit timestepping

Start with a vector v^n and update v^{n+1} according to

$$\frac{v_{k,i}^{n+1} - v_{k,i}^{n}}{\Delta} + \rho v_{k,i}^{n+1} = u(c_{k,i}^{n}) + \frac{v_{k,i+1}^{n+1} - v_{k,i}^{n+1}}{a_{i+1} - a_{i}} \left[s_{k,i}^{F,n} \right]^{+} + \frac{v_{k,i}^{n+1} - v_{k,i-1}^{n+1}}{a_{i} - a_{i-1}} \left[s_{k,i}^{B,n} \right]^{-} + \lambda_{k} \left[v_{-k,i}^{n+1} - v_{k,i}^{n+1} \right]$$

$$(11)$$

- Compute the policy from the foc $\left(u'(c_{k,i}^n)=\partial_a v_{k,i}^n\right)$ for the backward AND forward derivative of the value function.
- Define $s_{k,i}^{B,n} = ra_i + z_k c_{k,i}^{B,n}, \ s_{k,i}^{F,n} = ra_i + z_k c_{k,i}^{F,n}.$ Set $c_{k,i}^n = \mathbbm{1}\left\{s_{k,i}^{B,n} \leq 0\right\} \times c_{k,i}^{B,n} + \mathbbm{1}\left\{s_{k,i}^{F,n} \geq 0\right\} \times c_{k,i}^{F,n} + \mathbbm{1}\left\{s_{k,i}^{F,n} \leq 0 \leq s_{k,i}^{B,n}\right\} \times (ra_i + z_k)$
- · Collecting terms with the same subscripts on the right-hand side

$$\frac{v_{k,i}^{n+1}-v_{k,i}^n}{\Delta} + \rho v_{k,i}^{n+1} = u(c_{k,i}^n) + \alpha_{k,i} v_{k,i-1}^{n+1} + \beta_{k,i} v_{k,i+1}^{n+1} - \left(\alpha_{k,i} + \beta_{k,i} + \lambda_k\right) v_{k,i}^{n+1} + \lambda_i v_{k,i}^{n+1}$$
(12)

where

$$\alpha_{k,i}^{up} = -\frac{\left[s_{k,i}^{B,n}\right]^{-}}{a_{i} - a_{i-1}} \ge 0, \quad \beta_{k,i}^{up} = \frac{\left[s_{k,i}^{F,n}\right]^{+}}{a_{i+1} - a_{i}} \ge 0$$

• Equation (12) is just a system of linear equations!!

Implicit Timestepping

Equation (12) can be written in matrix notation as

$$\frac{1}{\Delta}(v^{n+1}-v^n)+\rho v^{n+1}=u(c^n)+{\pmb A}^n v^{n+1}$$

where the sparse matrix A looks like

entries of row i

$$\begin{bmatrix} \alpha_{k,i} & \underbrace{-\left(\alpha_{k,i}+\beta_{k,i}+\lambda_{k}\right)}_{\text{outflow}} & \underbrace{\beta_{k,i}}_{\text{inflow }i+1} \end{bmatrix} \begin{bmatrix} v_{k,i-1} \\ v_{k,i} \\ v_{k,i+1} \end{bmatrix}$$

Distribution

Distributions

- We now know how to solve the Household problem. But interesting questions require dealing with distributions.
- Denote by $g_i(a, t)$ i = 1, 2 the joint density of income z_i and welath a.
- The evolution of the density given a fixed initial distribution $g_i(a,0)$ is described by the Kolmogorov forward equation
 - · time dependent

$$\frac{\partial}{\partial t}g(a,t) = -\frac{\partial}{\partial a}\left[s_k(a,t)g_k(a,t)\right] - \lambda_k g_k(a,t) + \lambda_{-k}g_{-k}(a,t)$$
(13)

stationary

$$0 = -\frac{\mathrm{d}}{\mathrm{d}a} \left[s_k(a) g_k(a) \right] - \lambda_k g_k(a) + \lambda_{-k} g_{-k}(a) \tag{14}$$

Consider the stationary KFE

$$0 = -\frac{\mathrm{d}}{\mathrm{d}a} \Big[s(a, z_k) g(a, z_k) \Big] - \lambda_k g(a, z_k) + \lambda_{-k} g(a, z_k)$$

with the following discretization

$$0 = -\frac{\left(s_{k,i}^{F}\right)^{+}g_{k,i} - \left(s_{k,i-1}^{F}\right)^{+}g_{k,i-1}}{\Delta a} - \frac{\left(s_{k,i+1}^{B}\right)^{-}g_{k,i+1} - \left(s_{k,i}^{B}\right)^{-}g_{k,i}}{\Delta a} - \lambda_{k}g_{k,i} + \lambda_{-k}g_{-k,i} \quad (15)$$

Collecting terms with the same subscripts on the right-hand side

$$0 = \underbrace{\frac{\left(s_{k,i-1}^F\right)}{\Delta a}}_{\beta_{k,i-1}} g_{k,i-1} + \underbrace{\left(\frac{\left(s_{k,i}^B\right)}{\Delta a} - \frac{\left(s_{k,i}^F\right)}{\Delta a} - \lambda_k\right)}_{\gamma_{k,i}} g_{k,i} + \underbrace{\left(-\frac{\left(s_{k,i+1}^B\right)}{\Delta a}\right)}_{\alpha_{k,i+1}} g_{k,i+1} + \lambda_{-k} g_{-k,i}$$

which in matrix notation reads $\mathbf{A}^T \mathbf{g} = \mathbf{0}$.

This makes sense: the operation is exactly the same as that used for finding the stationary distribution of a discrete Poisson process (continuous-time Markov chain). The matrix A captures the evolution of the stochastic process over a very short interval — it is our discretized *infinitesimal generator* of our state — and to find the stationary distribution, one solves the eigenvalue problem $A^Tg=0$.

Consider the time dependent

$$\frac{\partial}{\partial t}g(a,t) = -\frac{\partial}{\partial a}\Big[s_k(a,t)g_k(a,t)\Big] - \lambda_k g_k(a,t) + \lambda_{-k}g_{-k}(a,t)$$

Given an initial condition, the KFE can be easily solve through a implicit method

$$\frac{g^{n+1} - g^n}{\Delta} = \left(\mathbf{A}^{n(+1)}\right)^T g^{n+1} \tag{16}$$

In the case wiht a dirac mass on the boundary constraint

$$M_1(t) + \int_0^a g_1(a,t) = G_1(a,t), \qquad \int_0^a g_2(a,t) = G_2(a,t)$$
 (17)

and we may write

$$\frac{\partial}{\partial t}g_1(a,t) = -\frac{\partial}{\partial a}\left[s_1(a,t)g_1(a,t)\right] - \lambda_1 g_1(a,t) + \lambda_2 g_2(a,t)$$
(18)

$$\frac{\partial}{\partial t}g_2(a,t) = -\frac{\partial}{\partial a}\left[s_2(a,t)g_2(a,t)\right] - \lambda_2g_2(a,t) + \lambda_1g_1(a,t) + \lambda_1M_1\delta_0(a)$$
(19)

$$\frac{\partial}{\partial t} M_1(t) = -\lim_{\epsilon \to 0} s_1(\underline{a} + \epsilon, t) g_1(\underline{a} + \epsilon, t) - \lambda_1 M_1$$
(20)

Integrating the KFE between $\underline{\mathbf{a}} + \epsilon$ and ∞

$$\frac{\partial}{\partial t} \int_{\underline{\underline{a}}+\epsilon} g_1(a,t) = s_1(\underline{\underline{a}}+\epsilon,t)g_1(\underline{\underline{a}}+\epsilon,t) - \lambda_1 \int_{\underline{\underline{a}}+\epsilon} g_1(a,t) + \lambda_2 \int_{\underline{\underline{a}}+\epsilon} g_2(a,t)$$

Using the definition on distributions and taking the limit as $\epsilon o 0$

$$-\frac{\partial}{\partial t}\Big(M_1(t)-G_1(t)\Big)=\lim_{\epsilon\to 0}s_1(\underline{a}+\epsilon,t)g_1(\underline{a}+\epsilon,t)+\lambda_1\Big(M_1(t)-G_1(t)\Big)+\lambda_2G_2(t)$$

but note that $\frac{\partial}{\partial t}G_1(t)=-\lambda_1G_1(t)+\lambda_2G_2(t)$. That leave us with (20).

Transion Dynamics

Equilibrium (stationary)

$$\rho v_k(a) = \max_{c} \left\{ u(c) + \partial_a v_k(a) \right\} + \lambda_k \left[v_\ell(a) - v_k(a) \right]$$
 [HJB]

$$\begin{split} 0 &= \frac{\mathrm{d}}{\mathrm{d}a} \big[s_k(a) g_k(a) \big] - \lambda_k g_k(a) + \lambda_\ell g_\ell(a) \\ 1 &= \int_{\mathsf{a}}^{\infty} \Big(g_1(a) + g_2(a) \Big) da \end{split}$$
 [KFE]

$$0 = \int_{\underline{a}}^{\infty} a \Big(g_1(a) + g_2(a) \Big) da$$
 [Equil]

Experiment

Suppose an increase in the unemployment risk λ_2 . What would you expect?

Consumption Policy

Transition Dynamics

Note:

Why do I care??

Example

- looks nice, but why should I pay a cost if I can do discrete time?
- It was my original tought, but recently...
- Consumption/savings problem + direct search labor market

$$\begin{split} V^{u}(a) &= \max_{c, \, a'} u(c) + \beta \mathcal{R}^{u}(a') \\ \text{S.t.} \quad c &+ \frac{a'}{1+r} = b+a, \quad a' \geq \underline{a} \end{split}$$

euler equation for asset holdings

$$u'(c(\cdot)) \geq \beta(1+r) \bigg\{ \big(1 - p(\theta(a',\tilde{w}))\big) V_a^u(a') + p(\theta(a',\tilde{w})) V_a^e(a',\tilde{w}) + p'(\theta(a',\tilde{w}) \frac{\partial \theta(a',\tilde{w})}{\partial a} \Big[V^e(a',\tilde{w}) - V^u(a',\tilde{w}) \Big] \bigg\}$$

- EGM for consumption/savings, VFI for labor choice.
- Finding the equilibrium requires iterating over a lot of stuff

$$V(\cdot) \hookrightarrow \hat{\theta}(\cdot) \hookrightarrow \mathcal{J}(\cdot) \hookrightarrow \theta(\cdot)$$

• couldn't do it = (...

Example

• How does this look in continuous time, today is tomorrow

$$\rho V^{u}(a) = \max_{c} \left\{ u(c) + V_{a}^{u}(b + ra - c) \right\} + \underbrace{\lambda_{u}}_{\text{rate of search}} \max_{\tilde{w}} \left\{ p(\theta(a, \tilde{w})) \left[V^{e}(a, w) - V^{u}(a) \right] \right\}$$
(21)

This is wayyyyy simpler and importantly it doesn't seem I am throwing away anything
of the economics

This is a title 10pt

Here is some content on the slide

$$f(x) = ax^2 + bx + c$$

Some more content

References

- Achdou, Y., J. Han, J.-M. Lasry, P.-L. Lions, and B. Moll (2016): "Heterogeneous Agent Models in Continuous Time," .
- Barles, G., and P. Souganidis (1990): Convergence of Approximation Schemes for Fully Nonlinear Second Order Equations, Lefschetz Center for Dynamical Systems and Center for Control Science: Lefschetz Center for Dynamical Systems and Center for Control Sciences. Division of Applied Mathematics. +Brown University+. Lefschetz Center for Dynamical Systems and Center for Control Sciences, Division of Applied Mathematics, Brown University.
- BAYER, C., AND K. WÄLDE (2015): "The Dynamics of Distributions in Continuous-Time Stochastic Models." .
- CALDENTEY, R. (????): Stochastic Control.
- FLEMING, W., AND H. SONER (2006): Controlled Markov Processes and Viscosity Solutions, Stochastic Modelling and Applied Probability. Springer New York.
- FORSYTH, P. A., AND K. R. VETZAL (2012): Numerical Methods for Nonlinear PDEs in Financepp. 503–528. Springer Berlin Heidelberg, Berlin, Heidelberg.

References ii

- Kaplan, G., B. Moll, and G. L. Violante (2016): "Monetary Policy According to HANK," Working Papers 1602, Council on Economic Policies.
- Nuño, G., AND B. MOLL (2017): "Social Optima in Economies with Heterogeneous Agents," Discussion paper.
- ØKSENDAL, B. (2003): Stochastic Differential Equations: An Introduction with Applications, Hochschultext / Universitext. Springer.
- ØKSENDAL, B., AND A. SULEM (2007): Applied Stochastic Control of Jump Diffusions. Springer Berlin Heidelberg.
- Pham, H. (2009): Continuous-time Stochastic Control and Optimization with Financial Applications. Springer Publishing Company, Incorporated, 1st edn.
- Ross, K. (????): Stochastic Control in Continuous Time.
- Sennewald, K. (2007): "Controlled stochastic differential equations under Poisson uncertainty and with unbounded utility," *Journal of Economic Dynamics and Control*, 31(4), 1106 1131.
- STOKEY, N. L. (2009): The Economics of Inaction: Stochastic Control Models with Fixed Costs. Princeton University Press.
- THOMAS, C., AND G. NUÑO (2016): "Monetary Policy and Sovereign Debt Vulnerability," 2016 Meeting Papers 329, Society for Economic Dynamics.
- WALDE, K. (2008): Applied Intertemporal Optimization, no. econ1 in Books. Business School - Economics, University of Glasgow.