Dynamische Erde Übung 8 Metamorphe Gesteine I

09. November 2020

Alex Guthauser alexg@student.ethz.ch D-ERDW, ETH Zürich

Übung 8 – Metamorphe Gesteine I

- Ziel der Übung
- Einführung
- Gefüge metamorpher Gesteine
- Mineralien
- Namensgebung
- Hausaufgabe

➤ Ziel der Übung

- Einführung
- Gefüge metamorpher Gesteine
- Mineralien
- Namensgebung
- Hausaufgabe

Ziel der Übung

Ihr könnt:

- die Gefüge und die Mineralogie von metamorphen Gesteinen beschreiben
- die Gesteine provisorisch nach dem Schema benennen

Ziel der Übung

➤ Einführung

- Gefüge metamorpher Gesteine
- Mineralien
- Namensgebung
- Hausaufgabe

Was ist Gesteinsmetamorphose?

Umwandlung des Phasenbestandes (Mineralien) durch Änderung der physikalischen Bedingungen (P, T) in einem chemisch geschlossenen System (der Gesamtchemismus des Gesteins bleibt erhalten).

Was ist Gesteinsmetamorphose?

- Umkristallisation im festen Zusant
- Grenzen: Diagnese und Schmelzbildung
- Zunehmender Metamorphosegrad: Entwässerung des Systems

Metasomatose: Chemisch nicht geschlossenes System → Veränderung des Gesamtchemismus (z.B. durch Fluide)

Erkennen eines metamorphen Gesteins

- Mineralsbestand (weder magmatisch noch sedimentär) → z.B.
 Kyanit, Staurolith, Aktinolith
- Charakteristisches Gefüge und Texturen → z.B. Schieferung

Bemerkung:

magmatische oder sedimentäre Strukturen werden mit zunehmendem Metamorphosegrad überprägt

Wo entstehen metamorphe Gesteine?

Voraussetzung: starke P- & T-Veränderungen

Regionalmetamorphose:

- Orogenese (Gebirgsbildung): niedrige bis mittlere P/T-Gradienten
- Subduktion: hohe P/T-Gradienten

Kontaktmetamorphose:

Hauptächlich T-Veränderung

Weitere: Bruchzonenmetamorphose, Schock- / Impaktmetamorphose

- Ziel der Übung
- Einführung
- ➤ Gefüge metamorpher Gesteine
- Mineralien
- Namensgebung
- Hausaufgabe

Gefüge metamorpher Gesteine

Wichtige Begriffe

a.) Textur

b.) Struktur

c.) Unterscheidung des Gefüges nach Schieferungsabstand

Dynamische Erde I - HS 2020 Alex Guthauser 12

Wichtige Begriffe

- Blastese: metamorphes Kornwachstum
- → Metamorphe Begriffe haben die Endung "-blastisch"
- Idioblasten: bilden eigene Formgestalt aus (z.B. Kyanit, Staurolith, Granat)
- Xenoblasten: bilden eigene Formgestalt kaum aus (z.B. Quarz, Feldspat, Calcit)

Dynamische Erde I - HS 2020 Alex Guthauser 13

a.) Textur

Räumliches Gefüge / räumliche Anordnung der Mineralkörner / Gemengenteile

a.) Textur

- Massig, richtungslos
- Linear, gestreckt, stengelig
- Paralleltexturiert
- Geschiefert
- Faserig; Augentextur
- Gefältet
- Lagig, gebändert
- Geadert

b.) Struktur

Äussere Gestalt, Grösse und die wechselseitigen Beziehungen der Mineralkörner

Wichtig: metamorphe Begriffe haben die Endung "-blastisch"

Dynamische Erde I - HS 2020 Alex Guthauser 16

b.) Struktur

- Absolute Korngrösse (analog magmatische Gesteine)
- Relative Korngrösse:

Gleichkörnig:

- Granoblastisch → körnige Aggregate
- Lepidoblastisch

 schuppig bis blättrig (Schichtsilikate)
- Nematoblastisch → strahlig bis faserige Aggregate

Ungleichkörnig:

Porphyroblastisch → grosse Minerale in feinkörniger Grundmasse

c.) Unterscheidung des Gefüges nach Schieferungsabstand

Phyllit: Schieferungsflächen mit < mm-Abstand (v.A.

Tonminerale)

Schiefer: Schieferungsflächen mit mm-Abstand (v.A.

Schichtsilikate)

Gneis: Schieferungsflächen mit cm-Abstand (v.A. Quarz und

Feldspat)

Fels: Brechen nicht in einer bevorzugten Ebene

c.) Unterscheidung des Gefüges nach Schieferungsabstand

- Ziel der Übung
- Einführung
- Gefüge metamorpher Gesteine
- **≻**Mineralien
- Namensgebung
- Hausaufgabe

Mineralien

Rein metamorph

- Granat
- Alumosilikate
- Staurolith
- Talk
- Serpentin
- Amphibole:
 - Aktinolith
 - Glaukophan
 - Tremolit
- Chlorit
- Omphazit

Metamorph und magmatisch

- Olivin
- Pyroxene (Ortho- und Clinopyroxene)
- Biotit
- Muskovit

Granat

Endglied	Formel	Farbe (rein)
Pyrop	Mg ₃ Al ₂ Si ₃ O ₁₂	Im Gestein: Knallrot
Almandin	Fe ₃ Al ₂ Si ₃ O ₁₂	dunkelviolett , rostbraun
Spessartin	Mn ₃ Al ₂ Si ₃ O ₁₂	rosa
Grossular	Ca ₃ Al ₂ Si ₃ O ₁₂	Im Gestein: orange
Andradit	Ca ₃ Fe ₂ Si ₃ O ₁₂	braun

Pyrop Serpentinit-Abbaue bei Zöblitz im Erzgebirge, Sachsen, (D) Slo.: D. Neumann BNr.: 0834 BB.: ca. 54mm

Mg-reiche Meta(ultra)basika

Fe-reiche Metapelite

Amphibole

• Tremolit: weiss, strahlig

Aktinolith: grün, strahlig, ausschliesslich metamorph

• Hornblende: schwarz, strahlig (häufig: Garben)

• Glaukophan: blau, auschliesslich metamorph

Schichtsilikate

Chlorit: grün/schwarz, schuppig, weich

Serpentin: grün, schuppig

Talk: weiss, extrem weich, perlmuttglanz

Biotit: schwarz/braun, schuppig, blättrig, weich

Muskovit: weiss/farblos, schuppig, blättrig, weich

Alumosilikate

Kyanit Silimanit Andalusit

Eigenschaften: ausschliesslich metamorph, Polymorphe (gleicher Chemismus, andere Gestalt), guter P-T-Indikator

Staurolith

Eigenschaften:

- Ausschliesslich metamorph
- Rostige Farbe
- Stengelig, oft Kreuze (Zwillinge)
- Häufig zusammen mit Alumosilikaten (in Metapeliten)

- Ziel der Übung
- Einführung
- Gefüge metamorpher Gesteine
- Mineralien
- ➤ Namensgebung
- Hausaufgabe

Namensgebung

Minerale-Gefüge, (Protolith + Fazies)

Bsp: Granat-Staurolith-2-Glimmer-Schiefer, (Metapelit in Amphibolit Fazies)

Wichtig: Quarz und Felspäte werden nicht im Namen erwähnt! Viele Gesteine haben Spezialnamen!

- Ziel der Übung
- Einführung
- Gefüge metamorpher Gesteine
- Mineralien
- Namensgebung
- > Hausaufgabe

Hausaufgabe

Druck (P) und Temperatur (T) unter einer kontinentalen Kruste berechnen (in 10, 20 und 30 km Tiefe).

Dynamische Erde I - HS 2020 Alex Guthauser 30

Übung

- Ende Lektion Abgabe einer Gesteinsbestimmung
- Gesteinsnummer notieren!
- Gibt wertvolles Feedback;)
- Zuerst beobachten, dann interpretieren!
- Eine klare Struktur hilft euch und dem der korrigiert.
- Aufpassen, ob ihr Minerale oder das Gesamtgestein beschreibt.
- "Kapitel" können helfen: 1. Mineralbestand (erst beschreiben, dann benennen), 2. Gefüge, 3. Namensgebung, 4. Interpretation der Entstehung