CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 4 OTTOBRE 2022

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Per ogni $a \in \mathbb{N}$, sia $\tau(a)$ la somma delle cifre di a nella sua rappresentazione in base 10 (cioè: $\tau(a) = c_t + c_{t-1} + \cdots + c_1 + c_0$, dove $t \in \mathbb{N}$, $\forall i \in \{0, 1, \dots, t\} (10 > c_i \in \mathbb{N})$ e $a = \sum_{i=0}^t c_i 10^i$); ad esempio, $\tau(3411) = 3 + 4 + 1 + 1 = 9$.

Si consideri la relazione binaria σ in \mathbb{N} definita ponendo, per ogni $a, b \in \mathbb{N}$,

$$a \sigma b \iff (a = b \lor \tau(a) < \tau(b)).$$

Dando per noto che σ è una relazione d'ordine,

- (i) determinare in (\mathbb{N}, σ) gli eventuali elementi minimali, massimali, minimo e massimo. (\mathbb{N}, σ) è un reticolo?
- (ii) Disegnare il diagramma di Hasse di (T, σ) , dove $T = \{9999, 103, 200, 4017, 525, 1100, 10100\}$. (T, σ) è un reticolo?
- (iii) Determinare in (T, σ) un sottoinsieme totalmente ordinato massimale.
- (iv) Se $T_1 = T \cup \{11\}$ e $T_2 = T \cup \{1000000000\}$, quali tra (T_1, σ) e (T_2, σ) sono reticoli?

Esercizio 2. Si consideri l'applicazione $f: A \in \mathcal{P}(\mathbb{Z}) \setminus \{\emptyset\} \mapsto \min\{|a|: a \in A\} \in \mathbb{N}$.

- (i) f è iniettiva? f è suriettiva?
- (ii) Determinare $\overleftarrow{f}(\{f(\{-2\})\})$.

Esercizio 3. Determinare i numeri interi n tali che

- (i) 16 + n sia congruo a 143n 14 modulo n e quelli tali che
 - (ii) 16 + n sia congruo a 143n 14 modulo 186.

Esercizio 4. Per ogni $n \in \mathbb{N}$, sia $f_n = \overline{3}x^4 + \overline{15}x^3 + \overline{60}x^2 + \overline{6}x + \overline{3} \in \mathbb{Z}_n[x]$.

- (i) Qualora sia possibile, stabilire per quali valori di n il polinomio f_n ha grado 4, per quali valori di n ha grado $-\infty$, per quali valori di n ha grado 3.
- (ii) Che grado ha f_n se n = 1? E se n = 0?
- (iii) Scomporre in prodotto di fattori irriducibili f_5 , sapendo che f_5 non possiede divisori di grado 2.

Esercizio 5. Sia $S = \mathbb{N}^* = \mathbb{N} \setminus \{0\}$. Per ogni $a, b \in S$, indichiamo con Div(a, b) l'insieme dei divisori positivi comuni di a e b. Prendiamo ora in considerazione la seguente operazione binaria * definita in S:

$$*: (a,b) \in S \times S \longmapsto 2^{|\operatorname{Div}(a,b)|} \in S.$$

- (i) Per quali coppie $(a,b) \in S$ si ha a*b=2?
- (ii) * è commutativa? È associativa?
- (iii) Trovare tutti gli elementi neutri a destra o a sinistra in (S, *).
- (iv) Siano $T = \{n \in S \mid n \text{ è pari}\}\$ e $U = \{n \in S \mid n = 2^k \text{ per qualche } k \in \mathbb{N}\}\$. T è una parte stabile (ovvero: chiusa) in (S,*)? E U?