Мехмат ЮФУ, курс по теории категорий, листок 2

Конструкции на категориях

18 марта 2017 г.

1. Докажите существование контравариантного функтора $F: \mathbf{Rel} \to \mathbf{Rel^{op}}$, действующего по правилу:

$$F(A) = A, F(R) = R^{op},$$

где A – объект категории **Rel**, а R^{op} – отношение на $B \times A$, определённое по правилу:

$$(b,a) \in R^{op} \longleftrightarrow (a,b) \in R.$$

Напомним, что функтор F называется контравариантным, если для него вместо свойства

$$F(f \circ g) = F(f) \circ F(g)$$

выполняется

$$F(f \circ g) = F(g) \circ F(f),$$

а вместо

$$F(f:A\to B) = F(f):F(A)\to F(B)$$

выполняется

$$F(f:A \to B) = F(f): F(B) \to F(A).$$

- 2. Докажите, что стрелки в категории **Mon** (второй пример на лекции) являются функторами между категориями с одним объектом и элементами моноида в качестве стрелок (первый пример на лекции).
- 3. Постройте произведение конечных категорий 3×2 .
- 4. Пусть C, D объекты категории ${\bf C}$. Пусть есть стрелка $g: C \to D$. Докажите, что существует функтор $F: {\bf C}/C \to {\bf C}/D$, переводящий объект f категории ${\bf C}/C$ в $g \circ f$. Куда этот функтор переведёт объекты ${\bf C}/C$?
- 5. Является ли категория под объектом C (coslice category) двойственной к категории над этим объектом (slice category)?
- 6. Пусть P частично упорядоченное множество (на P существует частичный порядок \leq , то есть рефлексивное, транзитивное и антисимметричное отношение). Категорию \mathbf{P} зададим следующим образом: объектами категории будут являться элементы множества P, а стрелками элементы отношения частичного порядка, то есть пары $(a,b): a \leq b$. Пусть $p \in \mathbf{P}$. Опишите структуру категории \mathbf{P}/p .
- 7. Пусть ${\bf C}$ категория, C её объект. Постройте функтор $U: {\bf C}/C \to {\bf C}$, «забывающий» об объекте C и взятии категории над объектом C (можно ещё сказать обратный к построению категории над C (slice category)).
- 8. Возьмём функтор U из предыдущего задания. Постройте функтор $F: \mathbf{C}/C \to \mathbf{C}^{\to}$, такой, что $\operatorname{dom} \circ F = U$.
- 9. Постройте функторы из категории **3** в **2** (обозначим его F_1) и функтор из категории **2** в **3** (обозначим его F_2). Постройте категории запятой:

$$(F_1 \downarrow F_1), (F_2 \downarrow F_2).$$