9. Übung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 35)

Man bestimme alle lokalen Extremstellen, deren Art (Minimal- oder Maximalstelle) sowie die entsprechenden lokalen Extremwerte der folgenden Funktionen:

a)
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x, y, z) = x^3 - 3x + y^2 + z^2$,

b)
$$f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = z^2(1 + xy) + xy$$
,

c)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^3 + 3xy^2 - 15x - 12y$$
,

d)
$$f: (-1, \infty) \times (1, \infty) \to \mathbb{R}, f(x, y) = (x + 1)(y - 1) + \frac{1}{x+1} + \frac{1}{y-1}$$
.

(A 36)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch $f(x, y, z) = x^3 + y^2 + z^2 + 12xy + 2z$. Man bestimme

- a) $H_f(x, y, z)$ für einen beliebigen Punkt $(x, y, z) \in \mathbb{R}^3$,
- b) alle Vektoren $(x, y, z) \in \mathbb{R}^3$ mit der Eigenschaft, dass $H_f(x, y, z)$ negativ definit ist.
- c) Hat f globale Extremstellen?