Colección de Problemas y Ejercicios - Bloque 2: Decisión

Los problemas y ejercicios que se incluyen pertenecen en su mayoría a exámenes de convocatorias anteriores. Junto a cada ejercicio se muestra los puntos del temario de la asignatura cubiertos:

- 2.1. Decisión multiclase.
- 2.2. Decisión binaria.
- 2.3. Caso binario con verosimilitudes gaussianas.
- 2.4. Caracterización de clasificadores mediante la curva ROC.
- 2.5. Otras reglas de clasificación: Neyman-Pearson y minimax.
- 2.6. Función discriminante.

Notación:

- Decisor ML: Decisor de máxima verosimilitud $[\phi_{\rm ML}(\mathbf{x})]$.
- Decisor MAP: Decisor máximo a posteriori $[\phi_{MAP}(\mathbf{x})]$.
- LRT: Test de razón de verosimilitudes.
- \blacksquare $P_{\rm e}$: probabilidad de error.
- P_{FA}: probabilidad de falsa alarma.
- \bullet P_{M} : probabilidad de pérdidas.
- $P_{\rm D}$: probabilidad de detección.
- Curva ROC: curva característica de operación.

Ejercicio 1 (2.2; 2.4; 2.6)

En un problema de clasificación binaria se sabe que las observaciones presentan las siguientes distribuciones:

$$\begin{aligned} p_{X|H}(x|0) &= \exp(-x), & x > 0 \\ p_{X|H}(x|1) &= a \exp(-ax), & x > 0 \end{aligned}$$

con a > 1. Para la toma de la decisión se dispone de un conjunto de K observaciones independientes tomadas bajo la misma hipótesis: $\left\{X^{(k)}\right\}_{k=1}^{K}$.

- (a) Obténgase el decisor ML basado en el conjunto de observaciones $\{X^{(k)}\}_{k=1}^K$ y compruébese, a partir de resultado obtenido, que $T = \sum_{k=1}^K X^{(k)}$ es un estadístico suficiente para la decisión. Considérese para el resto del ejercicio K = 2.
- (b) Calcúlense las verosimilitudes del estadístico T, $p_{T|H}(t|0)$ y $p_{T|H}(t|1)$.
- (c) Calcúlense, en función del valor de η , las $P_{\rm FA}$ y $P_{\rm M}$ del decisor de umbral

$$\begin{array}{ccc}
D = 0 \\
t & \gtrless & \eta \\
D = 1
\end{array}$$

(d) Represéntese de forma aproximada la curva ROC del decisor anterior, indicando:

- Cómo se desplaza el punto de trabajo al aumentar η .
- Cómo se modificaría la curva ROC si creciese el número de observaciones disponibles (K).
- Cómo se modificaría la curva ROC al incrementar el valor de a.

(a)
$$t \underset{D=1}{\overset{D=0}{\gtrless}} \frac{K \ln a}{a-1}$$

(b)
$$p_{T|H}(t|0) = t \exp(-t),$$
 $t > 0$
 $p_{T|H}(t|1) = a^2 t \exp(-at),$ $t > 0$

(c)
$$P_{\text{FA}} = 1 - (\eta + 1) \exp(-\eta)$$
 $P_{\text{M}} = (a\eta + 1) \exp(-a\eta)$

- (d) Para $\eta = 0$, $P_{\text{FA}} = P_{\text{D}} = 0$; Para $\eta \to \infty$, $P_{\text{FA}} = P_{\text{D}} = 1$.
 - Si crece el número de observaciones, necesariamente debe mejorar la curva ROC.
 - Si crece el valor de a, también debe mejorar la curva ROC. Una comprobación rigurosa sería: $\frac{\partial P_{\rm M}}{\partial a} = -a\eta^2 exp(-a\eta) < 0$, luego la probabilidad de pérdida decrece al aumentar el valor de a.

Ejercicio 2 (2.3; 2.6)

Considérese un sistema de comunicaciones en el que los símbolos "+1" ó "-1" se transmiten simultáneamente por dos canales ruidosos, tal y como se ilustra en la figura:

$$s = +1/-1$$

$$b$$

$$X_1 = as + N_1$$

$$N_1$$

$$X_2 = bs + N_2$$

siendo a y b dos constantes positivas desconocidas que caracterizan a los canales y N_1 y N_2 dos variables de ruido gaussiano caracterizados por

$$\left(\begin{array}{c} N_1 \\ N_2 \end{array}\right) \sim G \left[\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right) \right].$$

donde $|\rho| < 1$. Se sabe, además, que las probabilidades de transmisión de ambos símbolos son iguales.

- (a) Si se desea construir un decisor para discriminar cuál fue el símbolo transmitido utilizando únicamente una de las dos observaciones disponibles, X_1 o X_2 , indíquese cuál de las dos variables utilizaría, justificando su respuesta en función de los valores de las constantes. Proporciónese la forma analítica del decisor ML correspondiente.
- (b) Obténgase el decisor binario de mínima probabilidad de error basado en la observación conjunta de X_1 y X_2 , expresando el resultado como función de a, b y ρ . Simplifique la expresión de dicho decisor tanto como le sea posible.

(c) Para $\rho=0$, calcúlese la probabilidad de error del decisor diseñado en b). Exprese su resultado utilizando la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Solution:

(a) Si
$$a > b$$
: $x_1 \gtrsim 0$ Si $a < b$: $x_2 \gtrsim 0$
$$D = 0$$

$$D = 0$$

(b)
$$(a - \rho b)x_1 + (b - \rho a)x_2 \stackrel{D=1}{\gtrless} 0$$

 $D=0$

(c)
$$P_{\rm e} = F(-\sqrt{a^2 + b^2})$$

Ejercicio 3 (2.2; 2.4)

Las siguientes verosimilitudes caracterizan un problema de decisión binario bidimensional con $P_H(0) = 3/5$:

$$p_{X_1, X_2 \mid H}(x_1, x_2 \mid 0) = \left\{ \begin{array}{ll} 2, & 0 < x_1 < 1 & 0 < x_2 < 1 - x_1 \\ 0, & \text{en el resto} \end{array} \right.$$

$$p_{X_1, X_2 \mid H}(x_1, x_2 \mid 1) = \begin{cases} 3(x_1 + x_2), & 0 < x_1 < 1 & 0 < x_2 < 1 - x_1 \\ 0, & \text{en el resto} \end{cases}$$

Considérese un decisor LRT genérico con umbral η ,

- (a) Calcúlese la $P_{\rm FA}$ en función de η .
- (b) La siguiente figura representa la ROC del LRT. Justificando su respuesta:
 - Indique sobre la ROC cómo varía el punto de trabajo del decisor al aumentar o disminuir el umbral del test.
 - Situe sobre la ROC los puntos de trabajo correspondientes al decisor ML, al decisor de mínima probabilidad de error y al decisor de Neyman-Pearson con $P_{\rm FA}=0.3$.

(a)
$$x_1 + x_2 \underset{D=0}{\overset{D=1}{\geq}} \frac{2}{3} \eta = \eta'$$
 $P_{\text{FA}} = 1 - \eta'^2$

• P_{FA} y P_{D} decrecen al aumentar el umbral

• Decisor ML:
$$\eta = 1$$
, $\eta' = \frac{2}{3}$, $P_{\text{FA}} = \frac{5}{9}$.
Decisor MAP: $\eta = \frac{3}{2}$, $\eta' = 1$, $P_{\text{FA}} = 0$.
Decisor N-P: $P_{\text{FA}} = 0.3$.

Decisor MAP:
$$\eta = \frac{3}{2}, \, \eta' = 1, \, P_{\text{FA}} = 0.$$

Ejercicio 4 (2.3)

Considere el par de hipótesis equiprobables:

$$\begin{aligned} H &= 0: & X &= N \\ H &= 1: & X &= N + aS \end{aligned}$$

donde N y S son variables aleatorias gaussianas independientes, con medias nulas y varianzas v_n y v_s , respectivamente, y a es una constante conocida.

(a) Verifique que el test de mínima probabilidad de error tiene la forma

$$c_1 \exp\left(c_2 x^2\right) \geqslant \eta$$

y calcule las constantes c_1 y c_2 , indicando el criterio de decisión asociado.

(b) Determine las regiones de decisión sobre x. Nótese que dichas regiones pueden expresarse en función de las constantes c_1 y c_2 .

Solution:

(a)
$$c_1 \exp\left(c_2 x^2\right) \begin{tabular}{l} $D=1$ \\ $\geqslant $ \\ $D=0$ \end{tabular}$$
 1, donde $c_1 = \frac{P_H(0)}{P_H(1)} \sqrt{\frac{v_n}{v_n + a^2 v_s}} \end{tabular}$ y $c_2 = \frac{1}{2v_n} - \frac{1}{2\left(v_n + a^2 v_s\right)}$

(b)
$$|x| \underset{D=0}{\overset{D=1}{\gtrless}} \sqrt{\frac{-\ln c_1}{c_2}}$$

Ejercicio 5 (2.2)

La densidad de probabilidad conjunta de las variables aleatorias X y Z es

$$p_{X,Z}(x,z) = x + z, \qquad 0 \le x, z \le 1$$

Considérese el problema de decisión basado en la observación de X (pero no de Z) dado por las hipótesis:

$$H = 0: Z < 0.6$$

 $H = 1: Z > 0.6$

- (a) Determinese $p_{Z|X}(z|x)$.
- (b) Obténganse las probabilidades a posteriori de ambas hipótesis.
- (c) Determínese el decisor MAP basado en X.
- (d) Aplicando el Teorema de Bayes, calcúlense $p_{X|H}(x|0)$ y $p_{X|H}(x|1)$.
- (e) Calcúlese la probabilidad de falsa alarma del decisor MAP.
- (f) Determínese el decisor ML basado en X.

(a)
$$p_{Z|X}(z|x) = \frac{2(x+z)}{2x+1}, \quad 0 \le x, z \le 1$$

(b)
$$P_{H|X}(0|x) = \frac{1.2x + 0.36}{2x + 1}$$
 $P_{H|X}(1|x) = 1 - \frac{1.2x + 0.36}{2x + 1}$

$$\begin{array}{ccc}
D = 0 \\
\text{(c)} & x & \gtrless & 0.7 \\
D = 1 & & & & \\
\end{array}$$

(d)
$$p_{X|H}(x|0) = \frac{2x + 0.6}{1.6} \text{ y } p_{X|H}(x|1) = \frac{0.8x + 0.64}{1.04}$$

(e) $P_{\rm FA} = 0.5687$

$$\begin{array}{ccc}
D = 0 \\
\text{(f)} & x & \gtrless & 0.5 \\
D = 1
\end{array}$$

Ejercicio 6 (2.2; 2.4; 2.5)

Considérese el problema de decisión binario dado por $P_H(1) = 2P_H(0)$ y verosimilitudes:

$$p_{X|H}(x|0) = 2(1-x), \quad 0 \le x \le 1$$

 $p_{X|H}(x|1) = 2x - 1, \quad \frac{1}{2} \le x \le \frac{3}{2}$

- (a) Determínese el decisor de mínimo coste medio con $c_{00} = c_{11} = 0$, $c_{10} = 4c_{01}$.
- (b) Determínese el decisor de Neyman-Pearson dado por $P_{\rm FA}=0.04$.
- (c) Determínense, en función del parámetro α , las probabilidades de detección y falsa alarma de la familia de decisores de la forma

$$\begin{array}{ccc}
D = 1 \\
x & \gtrless & \alpha \\
D = 0
\end{array}$$

- (d) Represéntese gráficamente (de forma aproximada) la curva característica de operación (ROC), tomando α como parámetro libre, e indicando cómo varía el punto de trabajo del decisor en función de su valor.
- (e) Indíquese si los decisores de los apartados (a) y (b) se corresponden con algún punto de la ROC y, en su caso, indique con cuál(es).

Solution:

(a) Si
$$x < \frac{1}{2}$$
: $D = 0$; Si $\frac{1}{2} < x < 1$: $x > 0 = 1$ $\frac{5}{6}$; Si $x > 1$: $D = 1$

(b) $\alpha = 0.8$.

(c)
$$P_{\text{FA}} = \begin{cases} (1-\alpha)^2 & 0 < \alpha < 1\\ 0 & 1 < \alpha < \frac{3}{2} \end{cases}$$
 $P_{\text{D}} = \begin{cases} 1 & 0 < \alpha < \frac{1}{2}\\ 1 - \left(\alpha - \frac{1}{2}\right)^2 & \frac{1}{2} < \alpha < \frac{3}{2} \end{cases}$

(d)
$$\begin{cases} 1 < \alpha < \frac{3}{2} & P_{\text{FA}} = 0 \\ \frac{1}{2} < \alpha < 1 & P_{\text{FA}} = (1 - \alpha)^2 & P_{\text{D}} = 1 - \left(\alpha - \frac{1}{2}\right)^2 \\ 0 < \alpha < \frac{1}{2} & P_{\text{FA}} = (1 - \alpha)^2 & P_{\text{D}} = 1 \end{cases}$$
(e) (a) $\alpha = 5/6$ (b) $\alpha = 0.8$

Ejercicio 7 (2.3)

Se tiene un problema de clasificación binaria bidimensional definido por las siguientes verosimilitudes:

$$p_{X_1,X_2|H}(x_1,x_2|0) = G\left(\mathbf{0}, \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

$$p_{X_1,X_2|H}(x_1,x_2|1) = G\left(\mathbf{m}, \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

Represéntese en el plano $X_1 - X_2$ la frontera de decisión que proporciona el decisor MAP cuando se satisfacen las siguientes condiciones: $P_H(0) = P_H(1)$, $v_0 = v_1$ y $\rho = 0$. Indique cómo se modificaría la frontera anterior si:

- (a) Las probabilidades a priori fuesen $P_H(0) = 2P_H(1)$.
- (b) Se incrementase el valor de ρ .

Solution: La frontera es la mediatriz de la recta que une los centros de las dos gaussianas.

- (a) Si la $P_H(0)$ es mayor, la recta se desplaza hacia la verosimilitud de H=1, es decir, hacia el punto \mathbf{m} .
- (b) No varía.

Ejercicio 8 (2.2; 2.3; 2.6)

En un problema de clasificación binaria se sabe que las observaciones presentan distribuciones discretas de Bernoulli con parámetros p_0 y p_1 ($0 < p_0 < p_1 < 1$):

$$P_{X|H}(x|0) = \begin{cases} p_0 & x = 1\\ 1 - p_0 & x = 0\\ 0 & \text{en el resto} \end{cases} \qquad P_{X|H}(x|1) = \begin{cases} p_1 & x = 1\\ 1 - p_1 & x = 0\\ 0 & \text{en el resto} \end{cases}$$

Para la toma de la decisión se dispone de un conjunto de K observaciones independientes y tomadas bajo la misma hipótesis: $\left\{X^{(k)}\right\}_{k=1}^{K}$. Se define el siguiente estadístico de las observaciones: $T = \sum_{k=1}^{K} X^{(k)}$, i.e., la variable aleatoria T es igual al número de observaciones que son igual a la unidad.

- (a) Obténgase el decisor ML basado en el conjunto de observaciones $\{X^{(k)}\}_{k=1}^K$. Exprésese el resultado en función de la v.a. T.
- (b) Sabiendo que la media y la varianza de una distribución Bernoulli con parámetro p valen p y p(1-p), respectivamente, determínense las medias y varianzas del estadístico T bajo ambas hipótesis: m_0 y v_0 (para H=0) y m_1 y v_1 (para H=1).

Considérese para el resto del ejercicio $p_0 = 1 - p_1$.

Para K suficientemente grande, se decide aproximar la v.a. T mediante una distribución Gaussiana, tomando las medias y varianzas calculadas en el apartado anterior.

(c) Calcúlense las $P_{\rm FA}$ y $P_{\rm M}$ del decisor de umbral

$$\begin{array}{ccc} D=1 \\ t & \gtrless & \eta \\ D=0 \end{array}$$

en función del valor de η . Exprésese el resultado utilizando la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

- (d) Represéntese de forma aproximada la curva ROC del decisor anterior, indicando:
 - lacktriangle Cómo se desplaza el punto de trabajo al aumentar η .
 - Cómo se modificaría la curva ROC si creciese el número de observaciones disponibles (K).
 - Cómo varía la curva ROC si el valor de p_1 crece (manteniendo la condición $p_0 = 1 p_1$).

Solution:

(a)
$$t = 0$$
 $= 1$ $= 0$

(b)
$$m_0 = Kp_0$$
 $m_1 = Kp_1$ $v_0 = Kp_0 (1 - p_0)$ $v_1 = Kp_1 (1 - p_1)$

(c)
$$P_{\text{FA}} = F\left(\frac{\eta - K(1 - p_1)}{\sqrt{Kp_1(1 - p_1)}}\right)$$
 $P_{\text{M}} = 1 - F\left(\frac{\eta - Kp_1}{\sqrt{Kp_1(1 - p_1)}}\right)$

(d) Se tiene que si $\eta \to -\infty$, $P_{\text{FA}} = 0$ y $P_{\text{D}} = 0$ y si $\eta \to \infty$, $P_{\text{FA}} = 1$ y $P_{\text{D}} = 1$. Al aumentar K, aumenta el area bajo la curva ROC. Al disminuir p_1 , aumenta el area bajo la curva ROC.

Ejercicio 9 (2.2)

Considérese un problema de decisión binario con hipótesis H=0 y H=1 y observación X. Cierto decisor adopta D=1 si X se encuentra en cierta región \mathcal{X}_1 y D=0 en caso contrario, obteniendo probabilidades de falsa alarma y detección P_{FA} y P_{D} , respectivamente.

El decisor opuesto decide D'=0 si X se encuentra en \mathcal{X}_1 y D'=1 en caso contrario, siendo P'_{FA} y P'_{D} sus probabilidades de falsa alarma y detección, respectivamente. Determínese la relación entre las probabilidades de falsa alarma y detección de ambos decisores.

Solution:

$$P'_{\rm FA} = 1 - P_{\rm FA}$$
 $P'_{\rm D} = 1 - P_{\rm D}$

Ejercicio 10 (2.3; 2.6)

Se tiene un problema de decisión binaria definido por las siguientes verosimilitudes:

$$p_{X_1,X_2|H}(x_1,x_2|0) = G\left(\mathbf{0}, \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

$$p_{X_1,X_2|H}(x_1,x_2|1) = G\left(\mathbf{m}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\right)$$

siendo $\mathbf{m} = [m, m]^T$, con m > 0 y $|\rho| < 1$.

- (a) Sabiendo que $P_H(0) = P_H(1)$, obténgase el decisor bayesiano de mínima probabilidad de error. Represéntese en el plano $X_1 X_2$ la frontera de decisión obtenida.
- (b) Sobre el clasificador obtenido en a), compruébese que $Z = X_1 + X_2$ es un estadístico suficiente para la decisión. Obténganse las verosimilitudes de H = 0 y H = 1 sobre la variable aleatoria Z, $p_{Z|H}(z|0)$ y $p_{Z|H}(z|1)$.
- (c) Calcúlense las probabilidades de falsa alarma, de pérdida y de error del decisor anterior; exprésense estas probabilidades utilizando la función

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

(d) Analícese cómo varía la probabilidad de error con el valor de ρ ; para ello, considérense los casos $\rho = -1$, $\rho = 0$ y $\rho = 1$. Indíquese sobre el plano $X_1 - X_2$, para cada valor de ρ , cómo se distribuyen las verosimilitudes, y representese la frontera de decisión.

Solution:

(a)
$$x_1 + x_2 \underset{D=0}{\overset{D=1}{\gtrless}} m$$

$$\begin{array}{ccc}
D = 1 \\
\text{(b)} & t & \geqslant & m \\
D = 0 & & \end{array}$$

$$p_{Z|H}(z|0) = G(0, 2(1+\rho))$$
 $p_{Z|H}(z|1) = G(2m, 2(1+\rho))$

(c)
$$P_{\text{FA}} = P_{\text{M}} = P_{\text{e}} = 1 - F\left(\frac{m}{\sqrt{2(1+\rho)}}\right)$$

(d) Si
$$\rho \to -1$$
: $P_{\rm e} = 0$ Si $\rho = 0$: $P_{\rm e} = 1 - F\left(\frac{m}{\sqrt{2}}\right)$ Si $\rho \to 1$: $P_{\rm e} = 1 - F\left(\frac{m}{2}\right)$

Ejercicio 11 (2.3)

Las verosimilitudes

$$p_{\mathbf{X}|H}(\mathbf{x}|0) = G(\mathbf{0}, v\mathbf{I})$$

$$p_{\mathbf{X}|H}(\mathbf{x}|1) = G(\mathbf{m}, v\mathbf{I})$$

donde $\mathbf{0}$ y \mathbf{m} son vectores N-dimensionales de componentes 0 y $\{m_n\}$, respectivamente, e \mathbf{I} la matriz unitaria $N \times N$, corresponden a las observaciones X (N-dimensionales) en un problema de decisión binaria (gaussiano).

- (a) Diséñese el decisor ML.
- (b) Si $P_H(0) = 1/4$, diseñese el decisor de mínima probabilidad de error.
- (c) Calcúlense P_{FA} y P_{M} para el decisor ML. ¿Qué ocurre si crece el número de dimensiones y $\{m_n\} \neq 0$?
- (d) Si en la práctica se tiene acceso a

$$Z = \mathbf{m}^T \mathbf{X} + N$$

donde N es $G(m', v_n)$ e independiente de \mathbf{X} , en lugar de a las observaciones \mathbf{X} , ¿cómo ha de modificarse el diseño del decisor ML?

(e) Calcúlense P'_{FA} y P'_{M} para el diseño del apartado d). ¿Cómo varían respecto a P_{FA} y P_{M} ? Nota: Utilícese, cuando convenga, la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Solution:

(a)
$$\mathbf{m}^T \mathbf{X} \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2} ||\mathbf{m}||_2^2$$

(b)
$$\mathbf{m}^T \mathbf{X} \overset{D=1}{\underset{D=0}{\gtrless}} \frac{1}{2} ||\mathbf{m}||_2^2 - v \ln 3$$

(c)
$$P_{\text{FA}} = P_{\text{M}} = F\left(-\frac{||\mathbf{m}||_2}{2\sqrt{v}}\right)$$
, tiende a 0 cuando N se hace infinito.

$$\begin{array}{ccc} D=1 & \\ (\mathrm{d}) & z & \gtrless & \frac{1}{2}||\mathbf{m}||_2^2+m' \\ D=0 & \end{array}$$

(e)
$$P'_{FA} = P'_{M} = F\left(-\frac{||\mathbf{m}||_{2}}{2\sqrt{v + \frac{v_{n}}{||\mathbf{m}||_{2}^{2}}}}\right)$$
 y crecen con $\frac{v_{n}}{||\mathbf{m}||_{2}^{2}}$.

Ejercicio 12 (2.2; 2.4)

Considérese el problema de decisión binaria descrito por:

$$p_{X_1, X_2 \mid H}(x_1, x_2 \mid 0) = \begin{cases} \alpha x_2 & 0 < x_1 < \frac{1}{4} & 0 < x_2 < 1 \\ 0 & \text{en el resto} \end{cases}$$

$$p_{X_1, X_2 \mid H}(x_1, x_2 \mid 1) = \begin{cases} \beta x_1 & 0 < x_1 < 1 & 0 < x_2 < \frac{1}{2} \\ 0 & \text{en el resto} \end{cases}$$

- (a) Tras obtener los valores de las constantes α y β , represéntense las regiones de decisión correspondientes a un decisor LRT. Indíquese cómo varían las regiones de decisión en función del umbral del clasificador. ¿Existe algún valor de dicho umbral para el que el clasificador obtenido sea lineal?
- (b) Obténganse las densidades de probabilidad marginales de x_1 y x_2 bajo ambas hipótesis (H=0 y H=1). ¿Qué relación estadística existe entre X_1 y X_2 ?
- (c) Por sencillez, se decide utilizar un detector de umbral basado en una única observación, de X_1 o de X_2 :

DEC1:
$$x_1 \gtrsim \eta_1$$
 DEC2: $x_2 \gtrsim \eta_2$

$$D = 0$$

$$D = 1$$

Calcúlense las probabilidades de falsa alarma y de detección de los clasificadores DEC1 y DEC2, expresándolas en función de los umbrales de dichos decisores: η_1 y η_2 , respectivamente.

- (d) Dibújense las curvas características de operación (ROC) (i.e., las curvas que representan $P_{\rm D}$ en función de $P_{\rm FA}$) correspondientes a los decisores DEC1 y DEC2, y discútase cómo cambia el punto de operación de cada clasificador al modificar el valor del umbral correspondiente.
- (e) A la luz de los resultados obtenidos, ¿puede concluirse que alguno de los dos decisores propuestos, DEC1 o DEC2, sea superior al otro?.

(a) $\alpha = 8 \text{ y } \beta = 4.$

Donde $p_{X_1,X_2|H}(x_1,x_2|0)$ o $p_{X_1,X_2|H}(x_1,x_2|1)$ son nulas se decide la hipótesis contraria. En la región donde ambas hipótesis no son nulas, considerando el LRT dado por

$$\begin{array}{c}
D = 0 \\
2x_2 - \eta x_1 & \geqslant 0 \\
D = 1
\end{array}$$

Para $\eta = 4$ la frontera es lineal.

(b) Las observaciones son independientes entre sí bajo ambas hipótesis.

$$p_{X_1|H}(x_1|0) = 4, \quad 0 < x_1 < \frac{1}{4}$$

$$p_{X_2|H}(x_2|0) = 2x_2, \quad 0 < x_2 < 1$$

$$p_{X_1|H}(x_1|1) = 2x_1, \quad 0 < x_1 < 1$$

$$p_{X_2|H}(x_2|1) = 2, \quad 0 < x_2 < \frac{1}{2}$$

(c) DEC1:
$$\begin{cases} P_{\text{FA}} = \begin{cases} 1 - 4\eta_1, & 0 < \eta_1 < 1/4 \\ 0, & 1/4 < \eta_1 < 1 \end{cases} & \text{DEC2:} \begin{cases} P_{\text{FA}} = \eta_2^2, & 0 < \eta_2 < 1 \\ P_{\text{D}} = 1 - \eta_1^2, & 0 < \eta_1 < 1 \end{cases} \\ P_{\text{D}} = \begin{cases} 2\eta_2, & 0 < \eta_2 < 1/2 \\ 1, & 1/2 < \eta_2 < 1 \end{cases} \end{cases}$$

(d) DEC1: $\eta_1=1$ estamos en el punto $P_{\rm FA}=0$ y $P_{\rm D}=0$, y si $\eta_1=0$ estamos en el punto $P_{\rm FA}=1$ y $P_{\rm D}=1$.

DEC2: $\eta_2=1$ estamos en el punto $P_{\rm FA}=1$ y $P_{\rm D}=1$, y si $\eta_2=0$ estamos en el punto $P_{\rm FA}=0$ y $P_{\rm D}=0$.

(e) No puede afirmarse que ninguno de los dos sea siempre mejor que el otro.

Ejercicio 13 (2.1)

Se conocen las d.d.p. de tres variables aleatorias independientes:

$$p_{X_1}(x_1) = \begin{cases} 1, & 0 < x_1 < 1 \\ 0, & \text{en el resto} \end{cases}$$

$$p_{X_2}(x_2) = 2 \exp(-2x_2), \quad x_2 > 0$$

$$p_{X_3}(x_3) = 2 \exp(2(x_3 - 1)), \quad x_3 < 1$$

Considerando las hipótesis:

$$H = 1:$$
 $X = X_1$
 $H = 2:$ $X = X_2$
 $H = 3:$ $X = X_3$

obténgase:

- (a) el decisor bayesiano que minimiza el coste medio global cuando las tres hipótesis son equiprobables y la política de costes es $c_{ii} = 0$, i = 1, 2, 3 y $c_{ij} = c$ con $i \neq j$.
- (b) las probabilidades de decidir D=i dada la hipótesis H=i, i.e., P(D=i|H=i) para

Considerando ahora el problema de decisión binaria dado por:

$$\begin{array}{ll} H = 1: & X = X_1 \\ H = 0: & X = X_2 + X_3 \end{array}$$

obténgase:

- (c) el correspondiente decisor ML.
- (d) las probabilidades de falsa alarma, P(D=1|H=0), y de pérdidas, P(D=0|H=1).

Solution:

D = 2: 0 < x < 0.34 y x > 1(a) D = 1: 0.34 < x < 0.65 D = 3: 0.65 < x < 1 y x < 0

(b)
$$P(D=1|H=1)=0.31, P(D=2|H=2)=0.6353$$
 y $P(D=3|H=3)=0.6353$

(c) D = 0: x < 0 y x > 1D = 1: 0 < x < 1

(d) $P_{\text{FA}} = P(D = 1|H = 0) = 0.4323 \text{ y } P_{\text{M}} = P(D = 0|H = 1) = 0$

Ejercicio 14 (2.2)

Considérese el problema de decisión descrito por las siguientes verosimilitudes:

$$p_{X|H}(x|0) = \begin{cases} \frac{2}{a^2}x & 0 < x < a \\ 0 & \text{en el resto} \end{cases}$$

$$p_{X|H}(x|1) = \begin{cases} \frac{1}{a} & 0 < x < a \\ 0 & \text{en el resto} \end{cases}$$

Represéntese la curva característica de operación $(P_D \text{ vs } P_{FA})$ del decisor LRT con un umbral genérico η . Represéntese sobre dicha curva el punto de trabajo del decisor de máxima verosimilitud.

Solution: La curva ROC viene dada por la siguiente ecuación: $P_{\rm FA}=P_{\rm D}^2$

El punto de trabajo del decisor ML es: $P_{\rm D}=\frac{1}{2}$ y $P_{\rm FA}=\frac{1}{4}$

Ejercicio 15 (2.2)

Un problema de decisión binaria bidimensional viene caracterizado por la equiprobabilidad de las hipótesis y por las verosimilitudes

$$p_{X_1,X_2|H}(x_1,x_2|0) = K_0x_1(1-x_2), \quad 0 < x_1, x_2 < 1$$

$$p_{X_1, X_2|H}(x_1, x_2|1) = K_1 x_1 x_2,$$
 $0 < x_1, x_2 < 1$

 $(K_0, K_1 > 0).$

(a) Calcúlense los valores de las constantes K_0 y K_1 .

- (b) Establézcase el decisor de mínima probabilidad de error, e indíquese el carácter de los estadísticos X_1 y X_2 .
- (c) Determínense las ddp marginales $p_{X_i|H}(x_i|j)$, i=1,2 y j=0,1. ¿Qué relación estadística hay entre X_1 y X_2 bajo cada hipótesis?
- (d) Calcúlense P_{FA} , P_{M} y P_{e} .
- (e) En la práctica, la medida de X_2 viene acompañada de un ruido aditivo N independiente de X_1 y X_2 ; es decir, se observa $Y = X_2 + N$. Diséñese el decisor óptimo para esta situación cuando la ddp de este ruido tiene la forma:

$$p(n) = 1, \quad 0 < n < 1$$

(f) Calcúlense $P'_{\rm FA},\,P'_{\rm M}$ y P'_e para la situación y el diseño del apartado anterior.

Solution:

(a) $K_0 = K_1 = 4$

(b) $x_2 \begin{subarray}{c} D=1 \\ \geqslant \\ D=0 \end{subarray}$; X_1 es irrelevante para la decisión y X_2 es un estadístico suficiente.

(c) $p_{X_1|H}(x_1|0) = 2x_1, \ 0 < x_1 < 1; \quad p_{X_1|H}(x_1|1) = 2x_1, \ 0 < x_1 < 1$ $p_{X_2|H}(x_2|0) = 2(1-x_2), \ 0 < x_2 < 1; \quad p_{X_2|H}(x_2|1) = 2x_2, \ 0 < x_2 < 1$ X_1 y X_2 son independientes bajo cada hipótesis.

(d) $P_{\text{FA}} = P_{\text{M}} = P_{\text{e}} = \frac{1}{4}$.

(e) Llamando $Y = X_2 + N$, se seguirá cumpliendo: $p_{X_1,Y|H}(x_1,y|i) = p_{X_1|H}(x_1|i)p_{Y|H}(y|i)$, i = 0, 1 y bastará trabajar con Y, cuyas ddps (bajo cada hipótesis) se obtienen convulocionando las de X_2 y de N:

$$p_{Y|H}(y|0) = \begin{cases} 0, & y < 0 \\ 2y - y^2, & 0 < y < 1 \\ 4 - 4y + y^2, & 1 < y < 2 \\ 0, & y > 2 \end{cases} \qquad p_{Y|H}(y|1) = \begin{cases} 0, & y < 0 \\ y^2, & 0 < y < 1 \\ 2y - y^2, & 1 < y < 2 \\ 0, & y > 2 \end{cases}$$

resultando el decisor: $y = x_2 + n \geqslant 1$

(f) $P'_{\text{FA}} = P'_{\text{M}} = P'_{\text{e}} = \frac{1}{3}$.

Ejercicio 16 (2.2; 2.6)

Un sistema genera dos observaciones, X_1 y X_2 , que, tanto bajo hipótesis H=0 como H=1, son independientes e idénticamente distribuidas, siendo

$$\begin{aligned} p_{X_i|H}(x_i|1) &= 2x_i & 0 < x_i < 1 \\ p_{X_i|H}(x_i|0) &= 2(1-x_i) & 0 < x_i < 1 \end{aligned}$$

Suponga hipótesis equiprobables.

(a) Determine el decisor MAP basado en X_1 y calcule su probabilidad de error.

Sea DMAP1 el decisor del apartado a), suponga que si $|x_1 - 0.5| < a$ (siendo 0 < a < 0.5), se observa X_2 y, con objeto de seguir aplicando decisión por umbral, se descartan X_1 y la decisión de DMAP1. En su lugar, se aplica un segundo decisor, basado en X_2 y también MAP, que llamaremos DMAP2.

- (b) Represente gráficamente sobre el plano $X_1 X_2$, para un valor de a arbitrario, las regiones de decisión del esquema conjunto DMAP1-DMAP2.
- (c) Determine la probabilidad de error global del esquema conjunto DMAP1-DMAP2.
- (d) Determine la máxima reducción de la probabilidad de error global que puede conseguirse utilizando el esquema conjunto, respecto al decisor DMAP1.
- (e) Compare las prestaciones del decisor conjunto DMAP1-DMAP2 con las del decisor MAP que utiliza simultáneamente X_1 y X_2 .

(a)
$$x_1 \underset{D=0}{\overset{D=1}{\geqslant}} \frac{1}{2}$$
 $P_e = \frac{1}{4}$

(b)
$$D = 0$$
: $x_1 < 1/2 - a$ y $1/2 - a < x_1 < 1/2 + a$, $x_2 < 1/2$
 $D = 1$: $1/2 - a < x_1 < 1/2 + a$, $x_2 > 1/2$ y $x_1 > 1/2 + a$

(c)
$$P_e = a^2 - 0.5a + 0.25$$

(d) La variación máxima de la probabilidad de error es $\frac{1}{16}$

(e) DMAP
$$(X_1 y X_2)$$
: $P_e = \frac{1}{6}$
DMAP1- DMAP2: P_e varía de $\frac{1}{4}$ a $\frac{1}{16}$

Ejercicio 17 (2.2)

Considérese el problema de decisión binaria descrito por:

$$p_{X_1,X_2|H}(x_1,x_2|i) = a_i^2 \exp(-a_i(x_1+x_2))$$
 $x_1,x_2 > 0$ $i = 0,1$

donde $a_0 = 1$ y $a_1 = 2$.

- (a) Diséñese el decisor MAP correspondiente en función del parámetro $R = P_H(1)/P_H(0)$.
- (b) Compruébese que $T = X_1 + X_2$ es un estadístico suficiente y calcúlense las verosimilitudes de dicho estadístico, $p_{T|H}(t|i)$, i = 0, 1.
- (c) Calcúlense las probabilidades de falsa alarma, de pérdida y de error del decisor diseñado en (a).

Solution:

(a)
$$D = 1$$
: $x_1 + x_2 < \ln(4R)$
 $D = 0$: $x_1 + x_2 > \ln(4R)$

(b)
$$D = 1: t < \ln(4R)$$

 $D = 0: t > \ln(4R)$

$$p_{T|H}(t|0) = t \exp\left(-t\right), \quad t > 0 \qquad \quad p_{T|H}(t|1) = 4t \exp\left(-2t\right), \quad t > 0$$

(c)
$$P_{\text{FA}} = 1 - \frac{1 + \ln(4R)}{4R}$$
 $P_{\text{M}} = \frac{1 + 2\ln(4R)}{(4R)^2}$ $P_{\text{e}} = P_H(0) \left(1 - \frac{3}{16R} - \frac{1}{8R}\ln(4R)\right)$

Ejercicio 18 (2.2; 2.5)

las observaciones son:

$$p_{X|H}(x|0) = 2(1-x)$$
 $0 < x < 1$
 $p_{X|H}(x|1) = 1/a$ $0 < x < a$

siendo $a \ge 1$ un parámetro determinista.

(a) Considerando que la política de costes viene dada por: $c_{00} = c_{11} = 0$ y $c_{01} = c_{10} = 1$, diséñese el decisor óptimo supuesto que es conocido el valor de a.

Supóngase ahora que el valor de a es desconocido. Se opta por aplicar una estrategia minimax, fijando para la toma de decisiones un umbral x_u^* elegido para minimizar el máximo coste medio; es decir,

$$x_u^* = \arg\left\{\min_{x_u}\left\{\max_a C(x_u, a)\right\}\right\}$$

siendo x_u un umbral de decisión genérico

$$\begin{array}{ccc}
D = 1 \\
x & \geqslant & x_u \\
D = 0
\end{array}$$

- (b) Determinese x_u^* .
- (c) Calcúlese el incremento del coste medio que se produce al aplicar la estrategia minimax respecto al que se tendría si el valor del parámetro a fuese conocido.

Solution:

(a)
$$x \stackrel{D=1}{\underset{D=0}{\gtrless}} 1 - \frac{1}{2a} \quad 0 < x < a$$

(b)
$$x_u^* = \frac{1}{2}$$

(c)
$$\Delta P_{\rm e} = \frac{1}{8} - \frac{1}{4a} \left(1 - \frac{1}{2a} \right)$$
 nulo para $a=1$ y positivo para $a>1$.

Ejercicio 19 (2.3)

Considérese el problema bidimensional binario Gaussiano

$$p_{X_1,X_2|H}(x_1,x_2|0) = G\left(\left[\begin{array}{c} 1\\0 \end{array}\right],\left[\begin{array}{cc} 2 & -1\\-1 & 2 \end{array}\right]\right)$$

$$p_{X_1,X_2|H}(x_1,x_2|1) = G\left(\left[\begin{array}{c} 0\\1 \end{array}\right], \left[\begin{array}{cc} 2 & -1\\-1 & 2 \end{array}\right]\right)$$

Las probabilidades de las hipótesis son $P_H(0) = 2/3$ y $P_H(1) = 1/3$, y los costes asociados son $c_{00} = c_{11} = 0$, $c_{01} = c_{10} = 1$.

- (a) Establézcase la expresión que proporciona el correspondiente decisor Bayesiano en función del vector de observaciones \mathbf{X} .
- (b) Representese cómo se desplaza la frontera de decisión al variar el valor de $P_H(0)$.

(a)
$$x_2 - x_1 \gtrsim 10 \ln 2$$

 $D = 0$

(b) Si aumenta $P_H(0)$ la frontera se mueve hacia el punto $[0,1]^T$ y si disminuye $P_H(0)$ la frontera se mueve hacia el punto $[1,0]^T$.

Ejercicio 20 (2.2; 2.4)

Considérese un escenario de decisión radar en el que se sabe que los blancos que se desea detectar pueden causar ecos con dos niveles diferentes de intensidad:

$$H=0$$
 (no hay blanco): $X=N$
 $H=1$ (hay blanco):
$$\begin{cases} H=1a: & X=s_1+N\\ H=1b: & X=s_2+N \end{cases}$$

donde los valores reales s_1 y s_2 son los dos niveles de eco conocidos para cada tipo de blanco, y N es una v.a. con distribución G(0,1). Se sabe, además, que $P_H(1a|1) = P$ y $P_H(1b|1) = 1 - P$ (0 < P < 1).

- (a) Establézcase la forma general del test de razón de verosimilitudes que permite discriminar H=0 frente a H=1, y justifíquese que si los signos de s_1 y s_2 coinciden, dicho detector es un detector de un único umbral.
- (b) ¿Existen combinaciones de valores de s_1 y s_2 para los que un test de máxima verosimilitud decida siempre la misma hipótesis?
- (c) Asumiendo $s_2 < s_1 < 0$ y el siguiente detector de umbral:

$$\begin{array}{ccc}
D = 0 \\
x & \geqslant & \eta \\
D = 1
\end{array}$$

determínense $P_{\rm FA}$ y $P_{\rm D}$ en función de η y exprese su resultado utilizando la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Represéntese de forma aproximada la curva ROC (P_D vs P_{FA} en función de η) del detector, situando sobre la misma los puntos correspondientes a $\eta \to \pm \infty$, e indicando cómo varía el punto de trabajo en función del umbral.

- (d) Explíquese qué efectos tendrían sobre la ROC:
 - \blacksquare aumentar s_1 .
 - disminuir s_2 .
 - \blacksquare aumentar P.
 - \blacksquare aumentar $P_H(0)$.

(a)
$$P \exp\left(-\frac{1}{2}\left(s_1^2 - 2s_1x\right)\right) + (1 - P) \exp\left(-\frac{1}{2}\left(s_2^2 - 2s_2x\right)\right) \begin{cases} D = 1 \\ \gtrless \eta \\ D = 0 \end{cases}$$

- (b) No
- (c) $P_{\text{FA}} = F(\eta)$, $P_{\text{D}} = 1 PF(\eta s_1) (1 P)F(\eta s_2)$
- (d) \blacksquare aumentar s_1 : disminuye el area de la ROC
 - disminuir s_2 : aumenta el area de la ROC
 - lacksquare aumentar P: disminuye el area de la ROC
 - aumentar $P_H(0)$: no afecta

Ejercicio 21 (2.2; 2.5)

Considérese el problema de decisión binaria descrito por

$$p_{X|H}(x|0) = a_0 x^2$$
 $|x| < 1$
 $p_{X|H}(x|1) = a_1 (3 - |x|)$ $|x| < 3$

donde a_0 y a_1 son constantes, las probabilidades de las hipótesis son iguales y los costes $c_{00} = c_{11} = 0$, $c_{10} = c_{01} = c$ para c > 0.

- (a) Calcúlense las constantes a_0 y a_1 .
- (b) Determínese el decisor correspondiente.
- (c) Calcúlese la probabilidad de error de ese decisor.
- (d) Diséñese el decisor Neyman-Pearson que garantiza una $P_{\rm FA}$ no superior a un valor dado α .

Solution:

- (a) $a_0 = 3/2$ y $a_1 = 1/9$.
- $\begin{array}{ll} \text{(b)} & D=1: & |x| < 0.43 \; \text{y} \; |x| > 1 \\ D=0: & 0.43 < |x| < 1 \end{array}$
- (c) $P_{\rm e} = 0.184$.
- $\begin{array}{ll} \text{(d)} & D=1: & \quad |x|<\alpha^{1/3} \; \text{y} \; |x|>1 \\ D=0: & \quad \alpha^{1/3}<|x|<1 \end{array}$

Ejercicio 22 (2.2)

Considere el problema de decisión binaria especificado por los costes $c_{00} = c_{11} = 0$, $c_{01} = c_{10} = 1$,

$$p_{X|H}(x|0) = \lambda_0 \exp(-\lambda_0 x) \qquad x \ge 0$$

$$p_{X|H}(x|1) = \lambda_1 \exp(-\lambda_1 x) \qquad x \ge 0$$

siendo $\lambda_0 = 2\lambda_1$.

- (a) Diseñe el decisor de mínimo coste medio suponiendo $P_H(1) = 1/2$.
- (b) Determine las probabilidades $P_{\rm FA}$ y $P_{\rm M}$ del decisor obtenido en (a).
- (c) Suponiendo que el verdadero valor de $P_H(1)$ es P > 0, represente gráficamente el riesgo del detector obtenido en a) en función de P.
- (d) Se aplica la decisión anterior a dos observaciones independientes. Determine la probabilidad de cometer exactamente 0, 1 y 2 errores, en función de *P*.
- (e) Suponga que el riesgo asociado a las dos decisiones no es la suma de los costes de cada decisión, sino que
 - El coste de acertar en ambas decisiones es 0.
 - El coste de cometer un solo error es 1.
 - El coste de cometer 2 errores es c = 18.

Represente gráficamente el valor medio del riesgo total en función de P.

(a)
$$x \stackrel{D=1}{\underset{D=0}{\gtrless}} \frac{1}{\lambda_1} \ln 2$$

(b)
$$P_{\rm FA} = 0.25$$
 $P_{\rm M} = 0.5$

(c)
$$R = (1+P)/4$$

(c)
$$R = (1+P)/4$$

(d) $P \{0 \text{ errores}\} = \frac{1}{16}(3-P)^2$
 $P \{1 \text{ error}\} = 2 \cdot \frac{1}{4}(1+P) \cdot \frac{1}{4}(3-P)$
 $P \{2 \text{ errores}\} = \frac{1}{16}(1+P)^2$

(e) El riesgo de dos decisiones es: $P^2 + \frac{5}{2}P + \frac{3}{2}$.

Ejercicio 23 (2.2)

Un instituto de estudios sociológico quiere predecir que partido va a ganar las próximas elecciones. Para ello lo primero que intenta evaluar es si la participación del electorado va a ser baja o alta. Históricamente se sabe que una participación baja favorece al PDD y una participación alta favorece al CSI. La verosimilitud de que gane cada partido con una participación alta y baja se muestra en la siguiente tabla:

p(Participación Partido ganador)	baja	alta
PDD	0.7	0.3
CSI	0.4	0.6

Una vez que se ha medido la participación se mide el carisma del líder de cada partido político y se obtiene la siguiente tabla de probabilidades condicionada al partido ganador y a si la participación es alta o baja:

p(Carisma Participación, Partido ganador)	_	=	+
baja, PDD	0.6	0.3	0.1
alta, PDD	0.5	0.15	0.35
baja, CSI	0.4	$0.3 \\ 0.15 \\ 0.2$	0.4
alta, CSI	0.1	0.1	0.8

En la tabla, – indica que el líder del PDD es más carismático, + indica que el líder del CLI es más carismático e = indica que ambos tienen el mismo carisma.

Por último se realiza una encuesta a los ciudadanos sobre su intención de voto y se obtiene la siguiente tabla de verdad conjunta entre el partido ganador y lo que predijeron las encuestas:

p(Partido ganador, predicción)	Pred. PDD	Pred. CSI
PDD	0.35	0.05
CSI	0.2	0.4

Para conocer la efectividad de las tres medidas (suponer que la victoria del CSI es la hipótesis nula), determine:

- (a) El decisor de máxima verosimilitud para las pruebas de participación y carisma realizadas de forma conjunta. Asimismo, determine la probabilidad que se prediga de forma correcta que ganó el PDD y la de que ganó el CSI.
- (b) El decisor de máximo a posteriori para las pruebas de participación y las encuestas realizadas de forma conjunta. Calcule la probabilidad de equivocarse.
- (c) Calcule la ROC del LRT para las pruebas de participación y carisma realizadas de forma conjunta. Marque en ella la solución de máxima verosimilitud.

(d) Obtenga el detector de Neyman-Pearson para las tres pruebas de forma conjunta con una probabilidad de falsa alarma máxima de 0.1 y calcule la probabilidad de detección. Utilice para ello la siguiente tabla de probabilidades condicionadas a cada una de las hipótesis.

	PDD	PDD	PDD	PDD	PDD	PDD	CSI	CSI	CSI	CSI	CSI	CSI
$P(dat \mid H_i)$	baja	baja	baja	alta	alta	alta	baja	baja	baja	alta	alta	alta
	_	=	+	_	=	+	_	=	+	_	=	+
PDD	0.3675	0.1837	0.0612	0.1312	0.0525	0.0788	0.0525	0.0262	0.0087	0.0187	0.0075	0.0112

Solution:

(a) El decisor ML es:

Participación \ Carisma	_	=	+
baja	PDD	PDD	CSI
alta	PDD	CSI	CSI

$$P\{D = CSI | H = CSI\} = 0.7 \text{ y } P\{D = PDD | H = PDD\} = 0.78$$

(b) El decisor MAP es:

Participación \ Predicción	Pred. PDD	Pred. CSI
baja	PDD	CSI
alta	CSI	CSI

$$P_{\rm e} = 0.235$$

(c) La curva ROC viene dada por los siguientes puntos de trabajo

Rango de η	P_{FA}	P_{D}
$\eta < 0.21875$	1	1
$0.21875 < \eta < 0.4375$	0.52	0.895
$0.4375 < \eta < 0.75$	0.36	0.825
$0.75 < \eta < 2.5$	0.3	0.78
$2.5 < \eta < 2.625$	0.24	0.63
$2.625 < \eta$	0	0

El punto de trabajo del decisor ML se da cuando $0.75 < \eta < 2.5$.

(d) Para obtener el decisor de Neyman-Pearson el umbral del LRT debe estar en el intervalo de valores (4.92, 6.56). Y en ese caso $P_{\rm D}=0.6824$

Ejercicio 24 (2.2)

Los clientes de una compañía de seguros se dividen en dos clases, clientes prudentes (H=0) y clientes temerarios (H=1). La probabilidad de que un cliente prudente tenga k accidentes en un año se modela como una distribución de Poisson de parámetro unidad:

$$P_{K|H}(k|0) = \frac{\exp(-1)}{k!}, \quad k = 0, 1, 2, \dots$$

mientras que en el caso de los clientes temerarios esta probabilidad se modela como una distribución de Poisson de parámetro 4:

$$P_{K|H}(k|1) = \frac{4^k \exp(-4)}{k!}, \quad k = 0, 1, 2, \dots$$

(donde se considera 0!=1)...

(a) Diseñe un decisor de máxima verosimilitud que detecte si un cliente es prudente o temerario en función del número de accidentes que ha sufrido durante el primer año.

- (b) Las prestaciones del decisor diseñado en el apartado anterior se pueden evaluar en función de dos parámetros:
 - el porcentaje de clientes prudentes que se clasifican como temerarios;
 - el porcentaje de clientes temerarios que se clasifiquen como prudentes y supongan pérdidas para la compañía;

Relacione esas cantidades con las probabilidades de falsa alarma, de detección, y calcule estas.

(c) Un estudio estadístico encargado por la compañía arroja que solamente uno de cada 17 clientes es temerario. Calcule el decisor de menor probabilidad de error a la vista de esta nueva información. Compare este decisor con el diseñado en el apartado (a) en términos de probabilidad de error, de falsa alarma y de pérdida.

Solution:

$$D = 1$$
(a) $k \geqslant 2.16$.
$$D = 0$$

(b) $P_{\rm FA}=8\,\%$ (es el porcentaje de clientes prudentes que abandonan la compañía). $P_{\rm D}=76.2\,\%$ (es el porcentaje de clientes temerarios que se clasifican como tales)

(c)
$$k = 1$$

 $P_{\text{FA}} = 0.37\%$. $P_{\text{M}} = 37.11\%$ y $P_{\text{e}} = 4\%$.

La $P_{\rm e}$ del decisor ML es 8.9 %.

A. Problemas adicionales

Se incluyen en este apéndice algunos problemas adicionales tomados del boletín de ejercicios y problemas de la titulación de Plan Antiguo, cuya resolución debe ser abordable por los alumnos de la asignatura de grado.

Ejercicio 2.E2 (2.2)

Considérense las hipótesis binarias

$$H = 0 : X = N$$

 $H = 1 : X = s + N$

siendo s > 0 una constante conocida, y estando el ruido N caracterizado por

$$p_N(n) = \begin{cases} \frac{1}{s} \left(1 - \frac{|n|}{s} \right), & |n| < s \\ 0, & |n| > s \end{cases}$$

Las probabilidades de las hipótesis son $P_H(0) = 1/3$, $P_H(1) = 2/3$.

- (a) Establézcase el decisor MAP
- (b) Calcúlense las correspondientes $P_{\rm FA}$ y $P_{\rm M}$, así como la probabilidad de error
- (c) Calcúlese cuánto variarían las anteriores probabilidades si se aplicase a esta situación el mismo tipo de decisor pero diseñado suponiendo que N fuese gaussiano con igual varianza que el ruido verdaderamente presente (y media también nula).

(a)
$$D0: -s < x < \frac{s}{3}$$
$$D1: \frac{s}{3} < x < 2s$$

(b)
$$P_{\rm FA} = \frac{2}{9} \approx 0.2222$$
 $P_{\rm M} = \frac{1}{18} \approx 0.0556$ $P_{\rm e} = \frac{1}{9} \approx 0.1111$

(c)
$$P_{\text{FA}} = \frac{\left(1 + \frac{\ln 2}{3}\right)^2}{8} \approx 0.1894$$
 (baja) $P_{\text{M}} = \frac{\left(1 - \frac{\ln 2}{3}\right)^2}{8} \approx 0.0739$ (sube)
$$P_{\text{e}} = \frac{\left(1 - \frac{\ln 2}{3}\right)^2}{12} + \frac{\left(1 + \frac{\ln 2}{3}\right)^2}{24} \approx 0.1124$$
 (sube)

Ejercicio 2.E8 (2.2)

El conmutador de la figura se encuentra en su posición superior ("1") con probabilidad conocida P. La variable aleatoria X tiene una densidad de probabilidad uniforme U(0,1).

La posición del conmutador no se puede observar, aunque sí el valor de la v.a. Y presente a su salida. A partir de la observación de este valor, se pretende aplicar un decisor bayesiano para decidir cuál es la posición del conmutador: siendo la política de costes $c_{00} = c_{11} = 0$, $c_{10} = 2c_{01}$.

- (a) Formúlese el problema en la forma habitual.
- (b) Determínese el correspondiente test, teniendo en cuenta los posibles valores de P.
- (c) Calcúlense $P_{\rm FA}$ y $P_{\rm M}$.

(Sugerencia: para determinar $p_Y(y)$, relaciónense las funciones de distribución de Y y de X).

(a)
$$H = 1$$
: $Y = X^2$, con probabilidad P $H = 0$: $Y = X$, con probabilidad 1-P

(b) - si
$$P > 4/5$$
: $\Rightarrow D = 1$ (siempre)

$$- \sin P < 4/5: \begin{cases} 0 < y < \frac{1}{16} \left(\frac{P}{1-P}\right)^2 \implies D = 1 \\ \frac{1}{16} \left(\frac{P}{1-P}\right)^2 < y < 1 \implies D = 0 \end{cases}$$

(c) - si
$$P > 4/5$$
: $P_{\text{FA}} = 1$; $P_{\text{M}} = 0$
- si $P < 4/5$: $P_{\text{FA}} = \frac{1}{16} \left(\frac{P}{1-P}\right)^2$; $P_{\text{M}} = \frac{1-\frac{5P}{4}}{1-P}$

Ejercicio 2.E10 (2.1)

Se lanza al aire un dado tradicional (caras con puntos de 1 a 6) y se genera la v.a. X tal que

$$p_X(x) = \begin{cases} \frac{2}{a} \left(1 - \frac{x}{a} \right), & 0 < x < a \\ 0, & \text{en otro caso} \end{cases}$$

de modo tal que su media viene dada por el resultado del lanzamiento (es igual a los puntos que muestra la cara de arriba).

Supóngase que, para una tirada, se tiene acceso a 3 medidas del valor de X tomadas independientemente, de valores $x^{(1)}=2, x^{(2)}=5, x^{(3)}=10$. Decídase a partir de ellas el resultado del lanzamiento del dado según el criterio de máxima verosimilitud.

Solution: El criterio de máxima verosimilitud determina que se ha de elegir la cara 5.