Master Thesis Timeline

Yutong Zhao

Mid Feb	End April	May – June	July-Aug	before Aug. 29th
Thesis outline	Thesis draft	Thesis Review	Thesis Defence	Thesis submission to Graduate studies
Setup the structure of the Thesis, begin to write the contents.	Finish the first draft.	Review and refine the Thesis. Submit to committee and start to prepare the defence.	Defence time depends on how fast the committee can finish read the Thesis.	Corrections on the thesis and submit to Graduate Studies UofM.

Feb 7th 2020

\mathbf{A}	Abstract				
Та	Table of Contents				
Li	st of	Figures	v		
Li	st of	Tables	vi		
1	Intr	troduction			
	1.1	Hybridization in various coupled systems	1		
	1.2	Discovery of dissipatively coupled cavity magnonics $\dots \dots$	1		
	1.3	Thesis Outline	1		

2	The	eoretical Background			
	2.1	Lagrai	rangian formalism of coupled systems		
		2.1.1	Coherent coupled systems	3	
		2.1.2	Dissipative coupled systems	3	
	2.2	Hamil	tonian formalism of coupled systems	3	
		2.2.1	Coherent coupled systems	3	
		2.2.2	Dissipative coupled systems	3	
	2.3	N-port	t Network	3	
		2.3.1	Scattering parameters in a two-port network	3	
		2.3.2	Group velocity of electromagnetic wave	3	
	2.4	Nume	rical method	3	
		2.4.1	Simulation use finite element analysis method $\dots \dots$	3	
		2.4.2	Electric and magnetic field distribution	3	
		2.4.3	Time domain analysis use ODE solver	3	

3	Exp	erime	nts and Results	4
	3.1	Backg	round	4
		3.1.1	Microwave resonators	4
			Typical types of microstrip resonators	5
			Excitations of split ring resonators	5
		3.1.2	Scattering parameters	5
		3.1.3	Ferromagnetic resonance	5
	3.2	Dissip	atively coupled magnon-photon system	6
		3.2.1	Coupling mechanism in metamaterials	6
		3.2.2	Design of dissipatively coupled matamaterials	6
		3.2.3	Observation of zero damping conditions (ZDCs)	6
		3.2.4	Voltage controlled dissipative coupling	6
		3.2.5	Slowed light and effective negative damping	6
		3.2.6	Damping influenced ZDCs	6
		3.2.7	Modification of magnon damping	6
		3.2.8	Enhancement of effective bandwidth	6
	3.3	Summ	ary	6