Dedekind Domain Homework Questions

Caitlin Beecham

1. Let $R = \mathbb{C}[x]$ and $F = \mathbb{C}[x]$. Show that R[y] is an integrally closed domain that is not of height one. Show that $S = R[y]/(y^2 - x^3)$ is an integral domain that has height one but is not integrally closed. What is the integral closure of S in its fraction field $F[y]/(y^2 - x^3)$?

Nota Bene: Throughout my proofs in this problem I am heavily using the fact that all irreducible elements are prime in any unique factorization domain.

• We first show that R[y] is integrally closed.

Assume not. Assume that there is some element in the fraction field but not R[y] which satisfies some monic polynomial with coefficients in R[y]. Very important: one notes that $\mathbb C$ a unique factorization domain implies that $\mathbb C[x]$ is a unique factorization domain as is $\mathbb C[x][y]$. So, the notion of a greatest common divisor makes sense in R[y]. Now, take some element $\frac{p}{q} \in \operatorname{Frac}(R[y])$ where $p, q \in R[y]$ such that $\gcd(p,q) \in R[y]^{\times}$ (akin to saying the greatest common divisor is 1, we're saying it's a unit). In particular if $\gcd(p,q) \notin R[y]^{\times}$ then say $r := \gcd(p,q)$. Now, R[y] a unique factorization domain implies that we have factorizations $p = u \prod_{i \in I} p_i^{e_i}$ and $q = v \prod_{i \in I} p_i^{d_i}$ into irreducibles p_i where $e_i, d_i \in \mathbb{N}$ (but to be clear some d_i, e_i may be zero) and $u, v \in R[y]^{\times}$ are some units. Also, none of the p_i and p_j are associated for $i \neq j$. Then, $r = w \prod_{i \in I} p_i^{e_i}$ where $e_i \leq \min\{e_i, d_i\}$ and $u \in R[y]^{\times}$ is some unit. Then, let $p' := uw^{-1} \prod_{i \in I} p_i^{e_i - c_i}$ and $q' := vw^{-1} \prod_{i \in I} p_i^{d_i - c_i}$.

Now, I claim every common divisor of p' and q' is a unit.

Why? Assume not, assume there exists some $r' \in R \setminus R^{\times}$ so that $r' \mid p'$ and $r' \mid q'$. By definition a greatest common divisor is a common divisor of p,q such that every other common divisor divides it. Also, we need to use factorization into irreducible elements. So, namely, say that $r' = y \prod_{i \in I} p_i^{b_i}$ where y is some unit. So, in particular $b_i \leq min\{e_i - c_i, d_i - c_i\}$ and $b_i > 0$ for some i. Say $b_j > 0$. Then, note that $p_j^{c_j + b_j} \mid p$ and $p_j^{c_j + b_j} \mid q$. However, this provides a contradiction as it says $p_j^{c_j + b_j}$ is a common divisor of p and q. However, $p_j^{c_j + b_j} \nmid r$ does not divide our chosen greatest common divisor, a contradiction. Thus, such an r' does not exist (namely all the b_i 's must be zero is what we formally proved). So, now any greatest common divisor of p', q' is a unit. We can always use such a procedure to get p', q' whose greatest common divisor is a unit. Call those p,q.

Now, we assume for contradiction that $\frac{p}{q} \in \operatorname{Frac}(R[y])$ satisfies some monic polynomial, f, with coefficients in R[y]. Say

$$f(z) = z^{N} + \sum_{i=0}^{N-1} g_{i}z^{i}$$

where $g_i \in R[y]$. So, in particular, we have that

$$f(\frac{p}{q}) = \frac{p}{q}^N + \sum_{i=0}^{N-1} g_i(\frac{p}{q})^i$$
$$= 0$$

so that

$$-(\frac{p^{N}}{q^{N}}) = \sum_{i=0}^{N-1} g_{i} \frac{p^{i}}{q^{i}}$$

which implies

$$-p^{N} = \sum_{i=0}^{N-1} g_{i} \frac{p^{i} q^{N}}{q^{i}}$$
$$= \sum_{i=0}^{N-1} g_{i} p^{i} q^{N-i}.$$

So, namely one sees that q divides the right-hand side, which implies that q divides the left-hand side. However, $\frac{p}{q} \notin R[y]$ means that the denominator $q \notin R[y]^{\times}$ is not a unit. So, now one has $q \mid -p^N$. We have factorizations

$$q = u \prod_{i \in I} q_i^{a_i}$$

$$-p^N = w \prod_{i \in I} q_i^{s_i}$$

$$= w' (\prod_{i \in I} q_i^{h_i})^N$$

$$= w \prod_{i \in I} q_i^{Nh_i}$$

where we have chosen q_i such that $q_j \not\sim q_k$ for all $k \neq j$ (where \sim means associated) and u, w units and some a_i, s_i, h_i may be zero.

In particular, now we have $a_i \leq s_i = Nh_i$. I would like to show for contradiction that p,q have some non-unit common divisor. Take $j \in I$ so that $a_j \neq 0$. Now, if $a_j \leq h_j$, then $p_j^{a_j}$ is a non-unit common divisor of p,q providing a contradiction and we are happy. Otherwise, one has that $a_j > h_j$. However, the fact that $q \mid -p^N$ means that still $a_j \leq s_j = Nh_j$. So, $h_j < a_j \leq Nh_j$. Then, let $m = max\{m \in \mathbb{N} | mh_j < a_j\}$. Then, however, then that implies that $p_j^{a_j - mh_j}$ is a common divisor of p,q (with $a_j - mh_j \neq 0$ and $a_j - mh_j \leq min\{a_j,h_j\}$), also a contradiction.

So, this completes the proof that such an element $\frac{p}{q} \in \operatorname{Frac}(R[y]) \setminus R[y]$ does not exist. So, namely R[y] is integrally closed.

- Now, to show that R[y] is not of height 1, we need to give two non-zero prime ideals P_1, P_2 such that $P_1 \subsetneq P_2 \subsetneq R$. Take $P_1 = (y)$ and $P_2 = (x,y)$. Clearly $P_1, P_2 \neq 0$. Also, $P_2 \neq R$ since $1 \notin P_2$. Also, P_2 prime because elements of P_2 are of the form p(x,y) with constant term zero. If I multiply any two polynomials in the complement of P_2 the constant term of the product will remain non-zero since $\mathbb C$ is an integral domain. So, the product will remain out of P_2 , which means P_2 is prime (prime iff complement closed under product). Also, P_1 is prime since it is generated by p which is irreducible and in a unique factorization domain all irreducible elements are prime. Finally, $P_1 \neq P_2$ since p0 and p1.
- To show $R[y]/(y^2-x^3)$ is an integral domain it suffices to show that (y^2-x^3) is a prime ideal in R[y]. Now, the fact that $\mathbb C$ is a field implies that $R[y] \cong \mathbb C[x][y]$ is unique factorization domain. Since in a unique factorization domain any irreducible element is prime it suffices to show that y^2-x^3 is irreducible. Assume not. Then there exist $p(x), q(x) \in \mathbb C[x]$ such that $y^2-x^3=(y-p(x))(y-q(x))=y^2-y(p(x)+q(x))+p(x)q(x)$. Now, that implies that p(x)=-q(x), so that $(y-p(x))(y-q(x))=y^2-p^2(x)=y^2-x^3$. However, then that implies that $p(x)^2=x^3$ a contradiction. So, y^2-x^3 is irreducible and therefore prime which means $R[y]/(y^2-x^3)$ is an integral domain.
- To show that S has height one, first note that S is integral over R since we are adjoining root α satisfying $\alpha^2 x^3 = 0$ a monic polynomial with coefficients in R. Then, assume for contradiction S has height ≥ 2 . Then, there exist prime ideals $0 \subseteq P_1 \subseteq P_2 \subseteq S$. Then, consider $Q_1 = P_1 \cap R$ and $Q_2 = P_2 \cap R$, which are both prime ideals in R. Also, $P_1 \subseteq P_2$ implies that $Q_1 \subseteq Q_2$. However, then recall that $R = \mathbb{C}[x]$ is a principal ideal domain, and that all prime ideals are maximal. Thus, $Q_1 = Q_2$. I used this resource which showed that (Proposition 2.2.1) If I have a ring R and S integral over R and prime ideals $0 \subseteq P_1 \subseteq P_2 \subseteq S$ that lie over the same prime (and maximal) ideal $P = P_1 \cap R = P_2 \cap R$, then $P_1 = P_2$.

https://faculty.math.illinois.edu/~r-ash/ComAlg/ComAlg2.pdf

• To show that S is not integrally closed, we simply exhibit an element $f \in \operatorname{Frac}(S) \setminus S$ that is integral over S. Namely, take $f = \frac{y}{x} + (y^2 - x^3)$. Then, f satisfies the following monic polynomial $g \in S[x]$. Take $g(t) = t^3 - (y + (y^2 - x^3))$. (I know I'm writing things in a weird way, but I mean we're in a quotient ring so every element of S is of the form $w + (y^2 - x^3)$ so I'm just being pedantic) So, f is integral. However, $f \notin S$. The integral closure is $S[\frac{y}{x} + (y^2 - x^3)]$. Call $t := \frac{y}{x} + (y^2 - x^3)$. Also, I claim $\mathbb{C}[t] \cong S[\frac{y}{x} + (y^2 - x^3)]$. Why? Well, $S[\frac{y}{x} + (y^2 - x^3)] \cong \mathbb{C}[x, y, \frac{y}{x}]/(y^2 - x^3) \cong \mathbb{C}[x, y, t]/(y^2 - x^3, xt - y)$. We construct a map $\phi : \mathbb{C}[x, y, t] \to \mathbb{C}[t]$. Namely, $\phi(x) = t^2$, $\phi(y) = t^3$, $\phi(t) = t$ and $\phi(c) = c$ for all $c \in \mathbb{C}$. Then, $\ker(\phi) = (y^2 - x^3, xt - y)$, which implies that $\mathbb{C}[t] \cong \mathbb{C}[x, y, t]/(y^2 - x^3, xt - y)$. Finally, note that $\operatorname{Frac}(S) \cong \mathbb{C}(t)$ and $S[\frac{y}{x} + (y^2 - x^3)] \cong \mathbb{C}[t]$. Noting that $\mathbb{C}[t]$ is integrally closed in $\mathbb{C}(t)$ (since any principal ideal domain is integrally closed) one has that $S[\frac{y}{x} + (y^2 - x^3)]$ is the integral closure of S in its fraction field.

http://mathworld.wolfram.com/IntegrallyClosed.html https://math.stackexchange.com/questions/1346738/find-the-integral-closure-of-an-integral-domain-in-its-field-of-fractions?noredirect=1&lq=1 https://math.stackexchange.com/questions/744356/show-ker-phi-is-a-principal-ideal

2. (a) Show that a Dedekind ring R with only finitely many prime ideals is a principal ideal domain.

It suffices to show that all prime ideals are principal. Why? Well, in a Dedekind domain any ideal can be factored as a product of powers of prime ideals. So, assuming all prime ideals (of which there are finitely many) are principal, one then takes an arbitrary ideal I and notes

$$I = \prod_{i=1}^{r} P_i^{e_i}$$

$$= \prod_{i=1}^{r} (x_i)^{e_i}$$

$$= \prod_{i=1}^{r} (x_i^{e_i})$$

$$= (\prod_{i=1}^{r} x_i^{e_i})$$

and we see that I is principal with generator $\prod_{i=1}^{r} x_i^{e_i}$.

So, now we aim to show that all prime ideals are principal. The fact that there are only finitely many prime ideals allows for a useful application of the Chinese Remainder Theorem. Namely, consider the natural projection map

$$\pi: R \to (R/P_1^2) \times (R/P_2) \times \cdots \times (R/P_r).$$

It is surjective meaning that in particular there exists $s \in R$ such that

$$\pi(s) =: (\pi_1(s), \pi_2(s), \dots, \pi_r(s))$$
 $= (p_1^* + P_1^2, 1 + P_2, \dots, 1 + P_r).$

where $p_1^* \in P_1 \setminus P_1^2$ (obviously the Chinese Remainder Theorem only guarantees that $\pi_1(s) = p_1^* + P_1^2$ and as a small point note that there may exist $p_1^{**} \in P_1 \setminus P_1^2$ with $p_1^{**} \neq p_1^*$ such that $p_1^{**} + P_1^2 = p_1^* + P_1^2$). Anyhow, one then considers the principal ideal (s). It has some prime factorization

$$(s) = \prod_{i=1}^{r} P_i^{e_i}.$$

Then, recall $p_1^* \notin P_1^2$ but $p_1^* \in P_1$, which implies that $s \in P_1$ but $s \notin P_1^2$. Also, $\pi_k(s) = 1 + P_k \neq P_k$ for all $k \in \{2, \dots, r\}$ implies that $s \notin P_k$ for all $k \in \{2, \dots, r\}$. Then, recall that there is some relation between containment and division. Namely, one has that $(s) \subseteq P_1$, $(s) \not\subseteq P_1^2$, and $(s) \not\subseteq P_k$ for all $k \in \{2, \dots, r\}$. In particular, this means that $P_1|s$, but $P_1^2 \nmid (s)$ and $P_k \nmid (s)$ for all $k \in \{2, \dots, r\}$. So, $e_1 = 1$ and $e_k = 0$ for all $k \neq 1$. So, finally

$$(s) = P_1$$

and we have shown P_1 is principal. By renaming any other prime ideal P_j as P_1 , we have shown that all prime ideals are principal, which concludes the proof that all ideals in this domain are principal.

(b) Show that every non-zero ideal I in a Dedekind ring can be generated by two elements.

Take any $\alpha \in I \setminus \{0\}$. Now, say I has prime factorization

$$I = \prod_{i=1}^{n} P_i^{e_i}$$

Now, $\alpha \in I$ implies that $(\alpha) \subseteq I$ which also implies that $I \mid (\alpha)$. So, namely

$$(\alpha) = \prod_{i=1}^{n} P_i^{d_i} \prod_{j=1}^{m} Q_j^{c_j}$$

where $d_i \geq e_i$ for all $i \in [n]$ and $c_j \in \mathbb{N}$.

Now, intuitively (this is not a proof, just a little intuition before I jump into the details) if some element β is in I but not in (α) that is because $(\beta) = \prod_{i=1}^n P_i^{l_i} \prod_{j=1}^m Q_j^{h_j} \prod_{k=1}^t M_k^{b_k}$ where there exists some $i \in [n]$ such that $l_i < d_i$ or there exists some $j \in [m]$ such that $h_j < c_j$.

3

Now, we apply the Chinese Remainder Theorem to the following projection map

$$\pi: R \to R/P_1^{e_1+1} \times R/P_2^{e_2+1} \times \cdots \times R/P_n^{e_n+1} \times R/Q_1 \times \cdots \times R/Q_m.$$

First, for all $i \in [n]$, pick $p_i^* \in P_i^{e_i} \setminus P_i^{e_i+1}$. The Chinese Remainder Theorem guarantees the existence of $s \in R$ such that $\pi_{P_i^{e_i^1}}(s) = p_i^* + P_i^{e_i+1}$ for all $i \in [n]$ and such that $\pi_{Q_j} = 1 + Q_j$ for all $j \in [m]$. So, this implies that $s \in P_i^{e_i} \setminus P_i^{e_i+1}$ for all $i \in [n]$ and $s \notin Q_j$ for all $j \in [m]$.

So, we have some prime factorization

$$(s) = \prod_{i=1}^{n} P_i^{e_i} \prod_{j=1}^{m} Q_j^0 \prod_{k=1}^{t} M_k^{b_k}.$$

Now, take arbitrary $i \in I$, we wish to show that there exist $j, k \in R$ such that $i = j\alpha + ks$. So, consider the projection map

$$\phi: R \to R/P_1^{d_1} \times R/P_2^{d_2} \times \cdots \times R/P_n^{d_n} \times R/Q_1^{c_1} \times \cdots \times R/Q_m^{c_m}$$

Then, compute $\phi(i)$. If $\phi(i) = 0$, then $i \in (\alpha)$. Otherwise, some work remains.

We actually reduce via another projection map which will guarantee an element w such that $w \equiv i \mod (\alpha)$ and $w \equiv 0 \mod (s)$.

$$\phi^*: R \to \to R/P_1^{d_1} \times R/P_2^{d_2} \times \cdots \times R/P_n^{d_n} \times R/Q_1^{c_1} \times \cdots \times R/Q_m^{c_m} \times R/M_1^{b_1} \times \cdots \times R/M_t^{b_t}.$$

Then, for all $i\in[n]$ let $\tilde{p}_i\in P_i^{e_i}\cap(\pi_{P_i^{d_i}}(i)+P_i^{d_i})$ and let $\tilde{q}_j\in\pi_{Q_j^{c_j}}+Q_j^{c_j}$. Then, the Chinese Remainder Theorem guarantees the existence of an element $w\in R$ such that $\phi^*(w)=(\tilde{p}_1+P_1^{d_1},\tilde{p}_2+P_2^{d_2},\ldots,\tilde{p}_n+P_n^{d_n},\tilde{q}_1+Q_1^{c_1},\tilde{q}_2+Q_2^{c_2},\ldots,\tilde{q}_m+Q_m^{c_m},0,0,\ldots,0).$ So, namely, one has that $w\equiv i \bmod (\alpha)$ and $w\equiv 0 \bmod (s)$. So, there exist $j,k\in R$ such that $w=i+j\alpha$ and w=ks. So, $i=ks-j\alpha$ and we are done.