MAthesis

Julia Joos

14 August 2017

Table 1: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

bin	EpochBins	MeanBins	nIndividuals	nSpecies	nGenera
(0.1e-06]	Modern	0.0000005	240	58	17
(1e-06,0.0117]	Holocene	0.0058500	12	6	4
(0.0117, 0.126]	Upper Pleistocene	0.0688500	46	15	7
(0.126, 0.781]	Middle Pleistocene	0.4535000	46	9	6
(0.781, 2.59]	Lower Pleistocene	1.6845000	68	24	11
(2.59, 3.6]	Upper Pliocene	3.0940000	21	14	9
(3.6, 5.33]	Lower Pliocene	4.4660000	27	16	8
(5.33, 11.6]	Upper Miocene	8.4700000	41	21	9

Figure 1: Map displaying all fossil occurrences of testudinids, with color indicating whether relevant literature was available (black if not) and if it was, whether body size data was available or not (yes and no, respectively).

Figure 2: Map displaying all localities for which body size data for testudinids was available in the literature. Size of points denotes sample size, color denotes approximate age.

Fossil species, CL, per Locality

Fossil species, CL, per Reference

Fossil genera, CL, per Locality

Fossil genera, CL, per Reference

Warning: Removed 16 rows containing missing values (geom_pointrange).

Warning: Removed 16 rows containing missing values (geom_pointrange).

Figure 3: Boxplots of each genus per time bin

Figure 4: Mean body size and standard deviation per genus in each time bin

1 including Island species (n=2215)

Table 2: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	VV	nn	mm
0.0000005	2.126636e + 09	1968	246.8335
0.0058500	1.245041e + 05	11	688.5455
0.0688500	8.098707e + 04	45	447.6480
0.4535000	3.704545e + 04	45	333.8707
1.6845000	1.833202e+05	66	415.0939
3.0940000	2.812598e + 05	18	642.0167
4.4660000	5.319102e+05	22	1004.9909
8.4700000	3.097159e + 05	40	582.7750

```
##
## Comparing 3 models [n = 7, method = AD]
##
## logL K AICc Akaike.wt
## GRW -50.30596 2 107.6119    0.038
## URW -50.78070 1 104.3614    0.191
## Stasis -47.28232 2 101.5646    0.772
```

 $\label{thm:condition} \begin{tabular}{ll} Table 3: Model-fitting results for testudinidae, individuals, including island species \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-50.30596	2	107.6119	0.038
URW	-50.78070	1	104.3614	0.191
Stasis	-47.28232	2	101.5646	0.772

Figure 5: individuals, including island species

EpochBins	meanSpeciesCL	nSpecies	MeanBins
Holocene	671.4667	5	0.00585
Upper Pleistocene	521.4533	17	0.06885
Middle Pleistocene	384.8626	10	0.45350
Lower Pleistocene	581.2039	28	1.68450
Upper Pliocene	610.4591	11	3.09400
Lower Pliocene	1009.4738	14	4.46600
Upper Miocene	680.7708	24	8.47000

Figure 6: paleoTS plot with species mean, including island species

nn	vv	mm	tt
50	104321.19	400.5972	0.0000005
5	195810.92	671.4667	0.0058500
17	67149.55	521.4533	0.0688500

tt	mm	VV	nn —
0.4535000	384.8626	99603.12	10
1.6845000	581.2039	319998.46	28
3.0940000	610.4591	260640.34	11
4.4660000	1009.4738	437400.60	14
8.4700000	680.7708	349806.99	24

##

Comparing 3 models [n = 7, method = AD]

##

logL K AICc Akaike.wt

GRW -47.86862 2 102.73724 0.059

URW -47.99319 1 98.78638 0.422

Stasis -45.68754 2 98.37508 0.519

	logL	K	AICc	Akaike.wt
GRW	-47.86862	2	102.73724	0.059
URW	-47.99319	1	98.78638	0.422
Stasis	-45.68754	2	98.37508	0.519

Figure 7: paleoTS plot with species mean, including island species $\frac{1}{2}$