Základní typy topologií paralelních a distribuovaných architektur

Z FITwiki

Obsah

- 1 Komunikace mezi procesory
 - 1.1 SDÍLENÁ PAMĚŤ A PŘEDÁVÁNÍ ZPRÁV U MIMD
- 2 Topologie
 - 2.1 Statické propojovací sítě
 - 2.1.1 Úplné propojení
 - 2.1.2 Hvězda
 - 2.1.3 Lineární pole
 - 2.1.4 D-rozměrná mřížka
 - 2.1.5 K-ární d-rozměrná kostka
 - 2.1.6 D-ární strom
 - 2.2 Dynamické propojovací sítě
 - 2.2.1 Křížový přepínač (crossbar)
 - 2.2.2 Sběrnice
 - 2.2.3 Víceúrovňové sítě

Komunikace mezi procesory

Sdílená paměť

- obtížně použitelná pro synchronizaci
- skutečná x simulovaná
- Všechny procesory mají přístup do celého paměť ového prostoru.
- Řešení současného přístupu k jedné buňce:
 - EREW Exclusive Read, Exclusive Write (velmi omezující)
 - CREW Concurrent Read, Exclusive Write (časté, jednoduché)
 - ERCW Exclusive Read, Concurrent Write (nedává smysl)
 - CRCW Concurrent Read, Concurrent Write (složité)

Předávání zpráv

- možnosti:
 - kanály (synchronní x asynchronní (kapacita), jednosměrný x obousměrný (ACK))
 - volání vzdálených procedur (RPC)
 - všesměrové vysílání (broadcasting) (úmyslné posílání zpráv všem procesorům, záplava na jednu zprávu odpoví procesy jinou b. zprávou)
- Každý procesor má vlastní adresový prostor.
- Také každý procesor má vlastní fyzickou paměť, přístup jinam komunikací.

SDÍLENÁ PAMĚŤ A PŘEDÁVÁNÍ ZPRÁV U MIMD

Multitasking

1 CPU přepíná kontext (virtuální procesor), paměť je sdílená, předávání zpráv simulováno SW

Systém se sdílenou pamětí

CPU mají svou cache, zbytek na sběrnici (boj), předávání zpráv může být v HW nebo simulace SW

Virtuální sdílená paměť

CPU má svou paměť, ale je virtuálně spojena v simulovanou sdílenou, opět HW/SW simulované zasílání zpráv

Systém s předáváním zpráv

CPU vázány volně (např. počítačová síť), sdílená paměť simulovaná SW

Topologie

Použití propojovacích sítí: propojit procesory se sdílenou pamětí nebo propojit spolu

Statické propojovací sítě

- Všechny uzly jsou procesory.
- Všechny hrany jsou komunikační kanály.
- Pro architektury bez sdílené paměti

Průměr (diameter)

je nejdelší délka nejkratších cest mezi všemi dvojicemi uzlů.

Konektivita (arc conectivity)

je minimální počet hran, které je nutné odstranit pro rozdělení na dvě části.

Šířka bisekce (bisection width)

je minimální počet hran, které spojují dvě přibližně stejně velké části sítě. (určuje, zda v síti nevzniká úzké místo - tzv. bottleneck)

Úplné propojení

- Průměr: 1
- Konektivita: p-1
- Šířka bisekce: p² / 4

Hvězda

- pro úlohy, které lze rozdělit na samostatné části
- Průměr: 2
- Konektivita: 1
- Šířka bisekce: (p-1)/2

Lineární pole

data proudí přes všechny procesory

Průměr: p-1Konektivita: 1

Šířka bisekce: 1

D-rozměrná mřížka

p^{1H}

d-rozměrná mřížka šířky p (obvykle d=2)

■ Průměr: dp^{1 / d}

Konektivita: d

• Šířka bisekce: 2*p*^(1-1/d)

K-ární d-rozměrná kostka

Průměr: d(k/2)

■ Konektivita: 2d

■ Šířka bisekce: 2k^{d-1}

D-ární strom

• **Průměr:** $2log_d((p+1)/2)$

Konektivita: 1Šířka bisekce: 1obvykle binární

Dynamické propojovací sítě

Uzly jsou procesory, paměťové moduly nebo přepínače.

dynamické přepojování propojení - změna topologie za běhu

Často implementují sdílenou paměť.

Křížový přepínač (crossbar)

• v jednom okamžiku propojení p prvků

neblokující

■ Průměr: 1

Konektivita: 1Šířka bisekce: p

Sběrnice

- propojení pouze 2 prvků v jednom okamžiku
- blokující

Víceúrovňové sítě

- spojují p procesorů s p paměť ovými moduly pomocí p.log(p) přepínačů.
- mohou blokovat i pokud různé procesory přistupují k různým pamětem (souboj o přepínače)

Citováno z "http://wiki.fituska.eu/index.php?

title=Z%C3%A1kladn%C3%AD_typy_topologi%C3%AD_paraleln%C3%ADch_a_distribuovan%C3%BDch_architektur&oldid=9870" Kategorie: Státnice 2011 | Paralelní a distribuované algoritmy

Stránka byla naposledy editována 7. 6. 2012 v 13:27.