Machine Learning Flags Fast Neutrino-Flavor Instabilities

John McGuigan & Sherwood Richers

University of Tennessee Knoxville, Department of Physics and Astronomy

Background on Neutrinos

- Core-collapse Supernovae Release on the order of 10⁵⁸ neutrinos, which is ~99% of the total gravitational energy released.1
- Neutrino Flavors Mix (swap); This mixing—in extreme environments can happen fast ⁵ — instabilities act on cm/ns⁷
- Missing this physics = wrong explosion + wrong nucleosynthesis

SN 1987A light curve – photons arrived ≈ 3 h after 24 detected neutrinos, proving neutrinos escape first and carry the energy. ³ Image captured by 4

Machine Learning Motivation

- A realistic 3-D core-collapse grid solved deterministically is computationally very difficult ¹¹
- Orders of magnitude beyond feasible simulation time ¹¹

Solution: Replace the solver with Machine Learning 9,10

- Feed the network a compact feature vector for each cell⁹
- Network outputs a confidence P(Instability|x) much faster than solving the dispersion equation.
- We then set a cutoff confidence and use a simple rule: 9

 $P > P_{\text{cut}} \Rightarrow \text{Flag Instability}(1)$

Neural Network Architecture

Forward Pass

Batch Normalization

Batch Normalization equations from ¹²

Binary Cross Entropy (BCE) Loss

Loss Optimizer (AdamW) AdamW Optimizer Equations ¹³ BCE Loss equation and weight decay 13 Mini-batch gradient

Model Eval

Due to the large class imbalance that will be discussed, we use f1, precision, and recall for model performance evaluation.

How to choose the right cutoff?

These statistical performance metrics are "cutoff" dependent, which means the confidence threshold chosen, for instability assignment changes the performance.

Training Data and Procedure

Features(x)	Neutrino Flux	
Train/Test	80/20 (train/ Val)	
Batch Size	4,096-16,384	
Learning Rate	.003007	
Hidden Layers	4-6	
Hardware	1xV100 (16 GB)	

Training Data: 4 snapshots (CC-SN, one-flavor, random, NSM) of local and global neutrino-flux dot products.

Split: 80/20 Split stratified by data set then randomly split into batches.

Data Class Imbalance Instable points (1) 92.1%

Stable points (0)

Model Convergence

Each plot shows clean model loss convergence for 2 separate random seeds (for generalization) This is to show effective regularization and optimization practices and no clear signs of overfitting.

Results and Conclusions

Latency time normalized by batch

Current Evaluation Results

Layers	Hidden Size	Precision	Recall	F1
4	256	0.9722	0.9617	0.9669
4	384	0.9757	0.9498	0.9626
5	256	0.9787	0.9588	0.9687
5	384	0.9764	0.9586	0.9674
6	256	0.973	0.9625	0.9677
6	384	0.967	0.9634	0.9652

Comments:

 Speed-aware design: Model width and depth were deliberately capped; we prioritized real-time deployability over marginal gains from larger architectures.

Future and Current Work:

o Faster Architecture: the focus right now is continuing to improve inference for implementation in actual Simulations

References

study. Phys. Rev. D, 107, 103034.

- . Bethe, H. A., & Wilson, J. R. (1985). Revival of a stalled super-nova shock by neutrino heating. ApJ, 295, 14.
- 2. Volpe, M. C. (2022). Neutrinos: from the r-process to the diffuse super-nova neutrino background. J. Phys. Conf. Ser., 2156, 012126. 3. Hirata, K. et al. (Kamiokande-II Coll.) (1987). Observation of a neutrino burst from the super-nova SN 1987A. Phys. Rev. Lett., 58, 1490-
- 4. European Southern Observatory. (2007, February 24). SN 1987A in the Large Magellanic Cloud.

7. Ehring, J. et al. (2023). Fast neutrino flavor conversion in core-collapse super-novae: a parametric 1-D

- 6. Yi, C., Ma, L., Martin, J. D., & Duan, H. (2019). Dispersion relation of the fast neutrino oscillation wave. Phys. Rev. D, 99, 063005.
- 5. Sigl, G., & Raffelt, G. (1993). General kinetic description of relativistic mixed neutrinos. Nucl. Phys. B, 406, 423–451.
- 8. Johns, L., Richers, S., & Wu, M.-R. (2025). Neutrino Oscillations in Core-Collapse Supernovae and Neutron-Star Mergers. Annu. Rev. Nucl. Part. Sci., in press, arXiv:2503.05959.
- 9. Abbar, S. (2023). Applications of machine learning to detecting fast neutrino flavor instabilities in CCSNe and NS mergers. Phys. Rev. D, 107, 103006.
- 10. Abbar, S., Harada, A., & Nagakura, H. (2024). Machine-learning-based detection of non-axisymmetric fast neutrino flavor instabilities in
- CCSNe. Phys. Rev. D, 111, 063077 11. Mezzacappa, A. et al. (2020). Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse super-novae. Living **Rev. Comput. Astrophys.**, 6, 4. § 6 pp. 108–115.
- 12. Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167.
- 13. Loshchilov, I., & Hutter, F. (2019). Decoupled Weight Decay Regularization (AdamW). arXiv:1711.05101. 14. Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. Proc. ICML.