Fine-grained ILU Factorization

Group J

Gursimran Singh Saluja Abdullah Mujahid Basanagouda Somanakatti

Jun. -Prof. Dr. Andreas Vogel
High Performance Computing in the Engineering Sciences

Computational Engineering Ruhr Universität Bochum

Survey Review of ...

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

EDMOND CHOW AND AFTAB PATEL
School of Computational Science and Engineering, College of
Computing, Georgia Institute of Technology, Atlanta

Overview

Introduction: Recap of ILU

Previous Parallel ILU

New Parallel ILU algorithm

Reformulation of ILU Solution of constraint equations Algorithms and Implementation

Convergence theory

Experimental Results

Convergence of the algorithm

Nonsymmetric, nondiagonally dominant problems
Results for general SPD problems

Variation of convergence with problem size

Conventional ILU

- ► Given sparse matrix: A
- ► Sparsity pattern S:

$$S(i,j) = 1$$
, for $A(i,j) \neq 0$
 $S(i,j) = 0$, for $A(i,j) = 0$

▶ Get A = LU + r, where L and U also have the same sparsity pattern as A

Conventional ILU

- Method: Gaussian Elimination
- ▶ Inplace algorithm. L has ones on the diagonal (omitted, only entries of U are stored)
- Sequential in nature, parallelization is difficult.
- ILU is mostly used as a preconditioner
- Important property of ILU :

$$(LU)_{ij} = A_{ij} \ \forall (i,j) \in \mathcal{S}$$
 (1)

Previous Parallel ILU

Parallel Strategies

- Regular ILU isn't a suitable *Preconditioner* for very large matrices
- Multilevel domain decomposition is preferred
- ► ILU implemented in each sub domain (smaller matrices)
- Parallelism on a single node (on each sub-domain)
- Coarse-Grained

Figure: Domain Decompostion Illustration [3]

New Parallel ILU

Idea

- New fine-grained parallel algorithm implements ILU as solving nonlinear equations
- ▶ Variables : I_{ij} , u_{ij} which are entries of L and U
- Equations are constraints given as follows
- Entry of ILU is exact on the Sparsity pattern S

$$(LU)_{ij}=A_{ij} (2)$$

Problem

- Variables:

$$I_{ij}, i > j, (i,j) \in S$$

$$u_{ij}, i \leq j, (i,j) \in S$$

- Normalization: L has unit diagonal (not computed)
- ▶ Number of unknowns: |S|

$$\sum_{k=1}^{\min(i,j)} l_{ik} \ u_{ij} = a_{ij}, \ (i,j) \in S$$
 (3)

- Number of constraints: |S| = m (say)
- ▶ Problem of solving |S| unknowns with |S| equations
- ▶ |S| > n, where A is of size $n \times n$

Advantages

- Equations can be solved in parallel with fine-grained parallelism
- Exact solution not necessary for good ILU preconditioner
- Good initial guess helps in faster convergence

Solution of constraint equations

 Explicit expression for each unknown in terms of other unknowns

$$I_{ij} = \frac{1}{u_{ij}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} u_{kj} \right), \ i > j$$
 (4)

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} I_{ik} u_{kj}, \ i \le j$$
 (5)

Form:

$$x^{(p+1)} = G(x^p), \quad p = 0, 1, \dots$$

- Initial guess: $x^{(0)}$
- ▶ Components of $x^{(p+1)}$ can be computed in Parallel.

Ordering

$$g(i,j) = \{(i,j) \longrightarrow k\}$$

Row wise ordering

$$\begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 4 \end{bmatrix} \quad \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & 4 \end{bmatrix}$$

$$g(i,j) = egin{bmatrix} (1,1)
ightarrow 1 \ (2,2)
ightarrow 2 \ (3,1)
ightarrow 3 \ (3,3)
ightarrow 4 \ \end{pmatrix}$$

Gussian Elimination ordering

$$\begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & 4 \end{bmatrix}$$

$$g(i,j) = egin{bmatrix} (1,1)
ightarrow 1 \ (2,2)
ightarrow 3 \ (3,1)
ightarrow 2 \ (3,3)
ightarrow 4 \end{bmatrix}$$

Gaussian Elimination ordering:

Figure: Ordering illustration

Comparison to exact solution from Gaussian Elimination

Choices

- ▶ Different ordering of the unknown variables l_{ij} , u_{ij} can be chosen
- Iterative schemes possible:
 - Asynchronous (parallelizable, Jacobi like)
 - Synchronous (sequential, Gauss-Seidel like)

Case of Exact ILU from GE

Ordering: Gaussian Exact ILU in one iteration

Iteration method : Synchronous

Algorithm 1 : Incomplete Factorization

Algorithm 1 Fine-Grained Parallel Incomplete Factorization

```
1: Set unknowns x_{q(i,j)} (I_{ij} and U_{ij}) to initial values
 2: for sweep = 1,2, ... until convergence do
       parallel for (i, j) \in S do
 3:
          if i > j then
 4:
             X_{a(i,i)} = (a_{ii} - \sum_{k=1}^{j-1} X_{a(i,k)} X_{a(k,i)}) / X_{a(i,i)}
 5:
 6:
          else
             X_{a(i,i)} = (a_{ii} - \sum_{k=1}^{i-1} X_{a(i,k)} X_{a(k,i)})
 7:
          end if
 8:
       end
 9:
10: end
```

Algorithm 2: Symmetric Incomplete Factorization

Algorithm 2 Symmetric Fine-Grained Parallel IC

```
1: Set unknowns x_{q(i,j)} (I_{ij} and U_{ij}) to initial values
 2: for sweep = 1,2, ... until convergence do
       parallel for (i, j) \in S_{II} do
 3:
         s = a_{ii} - \sum_{k=1}^{j-1} X_{q(i,k)} X_{q(k,j)}
 4:
 5:
         if i \neq j then
            x_{a(i,i)} = s/x_{a(i,i)}
 6:
    else
 7:
            x_{a(i,i)} = \sqrt{s}
 8:
          end if
 9:
10:
       end
11: end
```

Convergence Theory

- Nonlinear Equation : F(x) = x G(x) = 0
- ► Iterative Equation : $x^{(p+1)} = G(x^{(p)})$

Useful Result

Sufficient Condition for **local** linear convergence of fixed point iteration

- 1. Existence of fixed point (exact ILU guarantees it)
- 2. G is differentiable around fixed point
- 3. Spectral radius (maximum eigen value) of $\frac{\partial G}{\partial x}$,

$$\rho(\frac{\partial G(x)}{\partial x}) < 1$$

Convergence Theory: condition 2 check

$$G_{g(i,j)}(x) = \begin{cases} \frac{1}{x_{g(j,j)}} \left(a_{ij} - \sum_{\substack{1 \le k \le j-1 \\ (i,k),(k,j) \in S}} x_{g(i,k)x_{g(k,j)}} \right) & \text{if } i > j \\ a_{ij} - \sum_{\substack{1 \le k \le i-1 \\ (i,k),(k,j) \in S}} x_{g(i,k)x_{g(k,j)}} & \text{if } i \le j \end{cases}$$
(6)

Domain of definition of G:

$$D = \{x \in \mathbb{R} \mid x_{g(j,j)} \neq 0, \ 1 \leq j \leq n\}$$

Convergence Theory: condition 2 check

For i > j:

$$\begin{split} \frac{\partial G_{g(i,j)}}{\partial u_{kj}} &= -\frac{I_{ik}}{u_{jj}}, \ k < j, \\ \frac{\partial G_{g(i,j)}}{\partial I_{ik}} &= -\frac{u_{kj}}{u_{jj}}, \ k < j, \\ \frac{\partial G_{g(i,j)}}{\partial u_{jj}} &= -\frac{1}{u_{jj}^2} (a_{ij} - \sum_{k=1}^{j-1} I_{ik} u_{kj}), \ k < j, \end{split}$$

Convergence Theory: condition 2 check

For $i \leq j$:

$$\begin{split} &\frac{\partial G_{g(i,j)}}{\partial I_{ik}} = -u_{kj}, \ k < i, \\ &\frac{\partial G_{g(i,j)}}{\partial u_{kj}} = -u_{ik}, \ k < i, \end{split}$$

Convergence Theory: condition 3 check

Variables dependence :

$$\frac{\partial G(x)}{\partial x} = \begin{bmatrix} 0 & \dots & \dots \\ \vdots & \ddots & \vdots \\ \dots & \dots & 0 \end{bmatrix}_{|S|}$$

$$\rho(\frac{\partial G(x)}{\partial x}) = 0$$

Experimental Results

Test platform

- Intel Xeon Phi with 61 cores running at 1.09 GHz
- Each core supporting four way simultaneous multithreading

Aim of tests

- 1. Convergence of L and U
- 2. Challenging cases: Nondiagonally dominant
- Sweeps required for convergence for an effective preconditioner
- 4. Problem size study
- Execution times

Experimental Results

Diagnostic tools

- Convergence is determined by taking 1-norm of the residual
- $ightharpoonup L_1$ norm:

$$\sum_{(i,j)\in\mathcal{S}}\left|a_{ij}-\sum_{k=1}^{\min(i,j)}I_{ik}u_{kj}\right|$$

- sweep is the iteration of fixed-point iteration of ILU
- solver iteration count: number of iterations in the PCG algorithm to get the solution of Ax = b.
- Quality of factorization is determined by taking the solver iteration count.

Experiment 1 : Convergence of Algorithm

Symmetric Positive Definite Matrix

- Test Matrix: FEM discretization of Laplacian
- ▶ Matrix entries : 203,841 rows and 1,407,811 nonzeros.
- Ordering used : Reverse Cuthill-McKee. (Diagonally dominant)
- Components of b are uniformly distributed from [-0.5,0.5]

Sparsity level	0	1	2
Number of non-zeros	805,826	1,008,929	1,402,741

Experiment 1 : Convergence of the algorithm

- Unpreconditioned case: 1223 iterations
- ▶ No sweeps : 404 iterations

Experiment 1 : Convergence of the algorithm

Experiment 1 : Convergence of the algorithm

Observations

 Higher level factorizations lead to lower solver iteration counts

level	time for 1 thread	speedup for 60 threads
0	0.189	42.4
1	0.257	44.7
2	0.410	48.8

- solver count increase till 20 threads, then plateau.
- Algorithm can be highly parallelized
- Good preconditioner is generated with just a single sweep

Experiment 2 : Nonsymmetric, nondiagonally dominant problems

Test Setup

▶ 2D Convection-Diffusion problem :

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + \beta\left(\frac{\partial e^{xy} u}{\partial x} + \frac{\partial e^{-xy} u}{\partial y}\right) = g$$

- ▶ Central Differencing Scheme on $[0,1] \times [0,1]$, Dirichlet Boundary Conditions
- Larger $\beta \rightarrow$ nonsymmetric, non diagonally dominant matrices
- Mesh Size: 450 × 450, Matrix: 202,500 rows and 1,010,700 nonzeros
- ▶ Large β → more challenging matrices
- ▶ Two tests: $\beta = 1500$ and $\beta = 3000$

Experiment 2 : Nonsymmetric, nondiagonally dominant

Experiment 2 : Nonsymmetric, nondiagonally dominant

Experiment 2 : Nonsymmetric, nondiagonally dominant

Observations

- No preconditioning CG iterations: 1211 and 1301
- Nonlinear residuals:
 - decrease with increasing sweeps
 - larger for higher thread count
- Comparable to that from exact IC
- Few sweeps lead to a good preconditioner

Observations for $\beta = 3000$

- slow convergence, single sweep no longer is good
- effect of number of threads is pronounced
- Algorithm affected by degree of diagonal dominance
- initial guesses are unstable

Test Setting

- Matrices from University of Florida Sparse Matrix Collection
- level 0 sparsity pattern is used

Matrix	No. equations	No. nonzeros
af_shell3	504855	17562051
thermal2	1228045	8580313
ecology2	999999	4995991
apache2	715176	4817870
G3_circuit	1585478	7660826
offshore	259789	4242673
parabolic_fem	525825	3674625

	Sweeps	Nonlin. resid.	PCG iter
af shell3	0	1.58+05	852
_	1	1.66+04	798.3
	2	2.17+03	701
	3	4.67+02	687.3
	IC	0	685
thermal2	0	1.13+05	1876
	1	2.75+04	1422.3
	2	1.74+03	1314.7
	3	8.03+01	1308
	IC	0	1308
ecology2	0	5.55+04	2000+
	1	1.55+04	1776.3
	2	9.46+02	1711
	3	5.55+01	1707
	IC	0	1706
apache2	0	5.13+04	1409
	1	3.66+04	1281.3
	2	1.08+04	923.3
	3	1.47+03	873
	IC	0	869

	Sweeps	Nonlin. resid.	PCG iter
G3_circuit	0	1.06+05	1048
	1	4.39+04	981
	2	2.17+03	869.3
	3	1.43+02	871.7
	IC	0	871
offshore	0	3.23+04	401
	1	4.37+03	349
	2	2.48+02	299
	3	1.46+01	297
	IC	0	297
parabolic_fem	0	5.84+04	790
	1	1.61+04	495.3
	2	2.46+03	426.3
	3	2.28+02	405.7
	IC	0	405

Observations

In all cases:

- solver iteration counts corresponding to : 3 sweeps and exact IC are similar
- a good preconditioner achieved without full convergence of ILU

Experiment 4: Variation of convergence with problem size

Test Setup

- 7-Point Finite Difference 3D Laplacian matrices
- Mesh size :
 - ► 50 × 50 × 50
 - ► 60 × 60 × 60
 - ▶ 70 × 70 × 70
 - ▶ 80 × 80 × 80

Experiment 4: Convergence with problem size

Experiment 4 : Convergence with problem size

Observations

- Convergence is better for larger problem size
- For smaller problems, higher fraction of unknowns updated simultaneously.
- Asynchronous method being closer to Jacobi type fixed point method.
- For large problems little variation with problem size

Experiment 5: Execution time comparison

Test Setup

- Level scheduled ILU vs Parallel ILU
- ► Test case: Matrix from 5-point Finite Difference on 100 × 100 grid
- Non-symmetric version algorithm used, ordering is natural

Experiment 5 : Execution time comparison

Result

- Level scheduled ILU scales well for large parallelism
- New ILU Algorithm is better when parallelism is limited
- For large problems with more parallelism, level scheduling is better because parallel ILU uses more sweeps
- Time for constructing level scheduling is excluded

Approximate Triangular Solves

Parallel Sparse Triangular Solve

- Time for sparse triangular dominates overall solve time
- Methods:
 - Level Schedule Method
 - Inverse as product of sparse triangular factors

- Edmond Chow and Aftab Patel Fine-Grained Parallel Incomplete LU Factorization, SIAM J. SCI. COMPUT. Vol. 37, No. 2, pp. C169 C193, 2015.
- Rudi Helfenstein and Jonas Koko
 Parallel preconditioned conjugate gradient algorithm on
 GPU,
 Journal of Computational and Applied Mathematics Volume
 236, Issue 15, September 2012, Pages 3584-3590.
- Grasedyck, Lars and Kriemann, Ronald and Le Borne, Sabine
 Domain decomposition based *H*-LU preconditioning,
 Volume 112, Numerische Mathematik, May 2009.
- Dr. Vasile Gradinaru and Dr. Roger Käppeli Numerical methods D-PHYS Course at ETH Zürich Course link