

Ma/CS 6a

Class 1

By Adam Sheffer

- Adam Sheffer.
- adamsh@caltech.edu
- 1:00 Monday, Wednesday, and Friday.
- http://www.math.caltech.edu/~2014-15/1term/ma006a/

- No exam!
- Grade based on weekly homework assignments.
 - Due by noon on Thursdays.
- TAs: Victor Kasatkin and Henry Macdonald.
- Book: Discrete Mathematics, 2nd edition, by Norman Biggs.

What is in this Course?

- Combinatorics.
- Algorithms.
- Graph theory.
- Number theory.
- Group theory.
- Generating functions.
- ..

$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

- Alice needs to send bob a message.
- Eve can read the communications.
- Alice *encrypts* the message.

Classic Cryptography

 Alice and Bob exchange some information in advance, in a secure way.

Example: Atbash Cipher

 Replace each letter with a symbol, according to the sequence (key):

Α	В	С	D	Е	F	G	Н	Ī	J	K	L	М
Ζ	Y	Χ	W	٧	U	T	S	R	Q	Р	0	N

"My hovercraft is full of eels"

"Nb slevixizug rh ufoo lu vvoh"

Other Historical Ciphers

 Scytale transposition cipher, used by the Spartan military.

 The Enigma machine in World War II.

• Cipher runes.

The Internet

 Problem. When performing a secret transaction over the internet, we cannot securely exchange information in advance.

Public-key Cryptography

- Idea. Use a public key which is used for encryption and a private key used for decryption.
- Bob generates both keys. Keeps the private key and publishes the public one.

- Idea. Use a public key which is used for encryption and a private key used for decryption.
- Alice encrypts her message with Bob's public key and sends it.

Public-key Cryptography

- Eve has the public key and the encrypted message.
- We need an action that is easy to do (encrypt using a public key) but very difficult to reverse (decrypt using a public key).

- Eve has the public key and the encrypted message.
- We need an action that is easy to do
 (encrypt using a public key) but very
 difficult to reverse (decrypt using a public key).
- Bad example. The public key is the number k. We encrypt a number a as $a \cdot k$. The adversary can divide by k...

Public-key Cryptography

- Eve has the public key and the encrypted message.
- We need an action that is easy to do (encrypt using a public key) but very difficult to reverse (decrypt using a public key).

Prime factorization

We consider the set of integers

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$$

- The expression " $a \in \mathbb{Z}$ " means that a is in the set \mathbb{Z} .
- For example, we have

$$1 \in \mathbb{Z}$$
,

$$1 \in \mathbb{Z}$$
, $10^2 \in \mathbb{Z}$.

On the other hand

$$0.3 \notin \mathbb{Z}$$
, $\sqrt{2} \notin \mathbb{Z}$.

Division

- Given two integers $a, b \in \mathbb{Z}$, we say that adivides b (or a|b) if there exists $s \in \mathbb{Z}$ such that b = sa.
- True or false:

$$3|12 \checkmark 12|3$$

 $3|-15 \checkmark -3|3 \checkmark$
 $-7|0 \checkmark 0|-7$ *****
 $0|0 \checkmark$

- Claim. If a|b an b|c then a|c.
- Proof.
 - There exists $s \in \mathbb{Z}$ such that b = as.
 - There exists $t \in \mathbb{Z}$ such that c = bt.
 - Therefore, c = ast.
 - Setting r = st, we have c = ar.

Our Second Proof

- Claim. If a|b and b|a then $a = \pm b$.
- Proof.
 - There exists $s \in \mathbb{Z}$ such that a = sb.
 - There exists $t \in \mathbb{Z}$ such that b = ta.
 - That is, a = sta.
 - st = 1 so either s = t = 1 or s = t = -1.

- A *natural number* is an integer that is non-negative. The set of natural numbers: $\mathbb{N} = \{0,1,2,3,...\}$.
- A number of $\mathbb{N} \setminus \{0,1\}$ is said to be *prime* if its only positive divisors are one at itself.

Proof by Induction

- Claim (Prime decomposition). Every natural number $n \ge 2$ is either a prime or a product of primes.
- Proof.
 - Induction basis: The claim holds for 2.
 - Induction step: Assume that the claim holds for every natural number smaller than n.
 - \circ If n is a prime, the claim holds for n.
 - \circ Otherwise, we can write n = ab.
 - By the induction hypothesis, both a and b are either primes or a product of primes.
 - \circ Thus, n is a product of primes.

- Claim. There exist infinitely many prime numbers.
 - Proof. Assume, for contradiction, that there exists a finite set of primes

$$P = \{p_1, p_2, p_3, ..., p_n\}.$$

- The number $p_1p_2 \cdots p_n + 1$ is not prime, since it is not in P.
- The number $p_1p_2 \cdots p_n + 1$ is prime, since it cannot be divided by any of the primes of P.
- Contradiction! So there must be infinitely many primes!

More Division Properties

- Claim. Given two numbers $a, b \in \mathbb{N}$, there are unique $q, r \in \mathbb{N}$ such that r < b and a = qb + r.
- We say that q and r are the quotient and the remainder of dividing a with b.
- We write $r = a \mod b$.
- Proof by algorithm!

- Input. Two numbers $a, b \in \mathbb{N}$.
- Output. Two number $q, r \in \mathbb{N}$ such that a = qb + r and r < b.
- $q \leftarrow 0$ and $n \leftarrow a$.
- While $n \ge b$:

$$\circ$$
 $n \leftarrow n - b$.

$$q \leftarrow q + 1$$
.

•
$$r \leftarrow n$$

$$a = 12$$
 $b = 5$
 $q = 0$ $n = 12$ $r = ?$
 $q = 1$ $n = 7$ $r = ?$
 $q = 2$ $n = 2$ $r = ?$
 $r = 2$

Greatest Common Divisor

- We say that d is a **common divisor** of a and b (where $a, b, d \in \mathbb{N}$) if $d \mid a$ and $d \mid b$.
- The greatest common divisor of a and b, denoted GCD(a, b), is a common divisor c of a and b, such that
 - If d|a and d|b then $d \le c$.
 - Equivalently, if d|a and d|b then d|c.

- What is GCD(18,42)? 6
- What is GCD(50,100)? **50**
- What is GCD(6364800, 1491534000)?

• GCD(
$$2^7 \cdot 3^2 \cdot 5^2 \cdot 13 \cdot 17, 2^4 \cdot 3^7 \cdot 5^3 \cdot 11 \cdot 31$$
)?
= $2^4 \cdot 3^2 \cdot 5^2 = 3600$.

 What can we do when dealing with numbers that are too large to factor?

GCD Property

- Claim. If a = bq + r then GCD(a, b) = GCD(b, r)
- Example.

$$66 = 21 \cdot 3 + 3$$

$$GCD(66,21) = GCD(21,3) = 3.$$

- Find $q_1, r_1 \in \mathbb{Z}$ such that $a = q_1b + r_1$.
- Since $GCD(a, b) = GCD(b, r_1)$, it suffices to compute the latter.
- Find $q_2, r_2 \in \mathbb{Z}$ such that $b = q_2r_1 + r_2$.
- Since $GCD(b, r_1) = GCD(r_1, r_2)$, it suffices to compute the latter.
- 0 ...
- Continue until obtaining a zero remainder (then the divider is the required GCD).

The Euclidean Algorithm

- Input. Two numbers $a, b \in \mathbb{N}$.
- Output. GCD(a, b).
- $r \leftarrow a \mod b$.
- While $r \neq 0$:
 - $\circ a \leftarrow b$.
 - \circ *b* ← *r*.
 - ∘ $r \leftarrow a \mod b$.
- Output *b*.

$$a = 78$$
 $b = 45$

$$a = 78$$
 $b = 45$ $r = 33$
 $a = 45$ $b = 33$ $r = 12$
 $a = 33$ $b = 12$ $r = 9$
 $a = 12$ $b = 9$ $r = 3$
 $a = 9$ $b = 3$ $r = 0$

- Claim. If a = bq + r then GCD(a, b) = GCD(b, r)
- Proof.
 - Since r = a bq, every common divisor of a and b is also a divisor of r. Thus, GCD(a,b)|GCD(b,r)
 - Since a = bq + r, every common divisor of b and r is also a common divisor of a. Thus, GCD(b,r)|GCD(a,b).

The End

The Voynich manuscript:

