Dynamic programming: Floyd-Warshall Algorithm

CPCS٣٢٤ PROJECT PHASE ONE

Contents

Introduction

Algorithms is a step-by-step procedure to solve problems.

Dynamic Programming is one of the most powerful design techniques it is mainly used for solving optimization problems. especially, when the subproblems are not independent, but **how does it work?**

It works as a **Bottom-up approach** where it solves all possible sub-problems and then combines them to achieve the best solutions for bigger problems so that it can be re-used whenever needed.

one of the dynamic programming algorithms is Floyd-Warshall algorithm, the main idea behind this algorithm is finding the **shortest path** between all the pairs of vertices in a direct and indirect weighted graph, keeping in mind that it does not work for the graphs with negative cycles.

run:

CPCS324 - Project(Phase one) - Floyd-Warshall Algorithm

>>> The Given Weight Matrix:

D(0):

•									
0	10	00	00	∞	5	00	00	∞	00
00	0	3	00	3	∞	∞	∞	∞	00
00	∞	0	4	∞	∞	∞	5	∞	00
00	∞	00	0	∞	∞	∞	∞	4	00
00	∞	4	00	0	∞	2	∞	∞	00
00	3	00	00	∞	0	∞	∞	∞	2
00	00	00	7	∞	∞	0	∞	∞	00
00	00	00	4	∞	∞	∞	0	3	00
00	00	00	00	∞	∞	∞	∞	0	00
00	6	∞	00	∞	∞	8	∞	∞	0

On the k^{th} iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among 1,..,k as intermediate, using the equation:

$$D^{k}[i,j] = \min\{D^{k-1}[i,j], D^{k-1}[i,k] + D^{k-1}[k,j]\}$$

- Comparing it with the index
- If the index is larger, it will change
 Otherwise, it remains the same.

The red highlight () refers to the changed number.

Take the 1^{st} row and 1^{st} column from D(0) then use the equation to calculate D(1)

>>> The All Pairs Shortest path by Floyd's Algorithm:

D(1):									
0	10	oo	00	∞	5	00	00	∞	∞
00	0	3	00	3	00	00	00	00	00
00	00	0	4	00	00	00	5	∞	00
00	00	00	0	00	00	00	00	4	00
00	00	4	00	0	00	2	00	∞	00
00	3	00	00	∞	0	00	00	∞	2
∞	00	00	7	00	00	0	00	∞	∞
∞	00	00	4	00	00	00	0	3	∞
∞	00	00	00	00	∞	00	00	0	∞
∞	6	00	00	∞	∞	8	00	∞	0

Take the 2^{nd} row and 2^{nd} column from D(1) then use the equation to calculate D(2)

D(2):									
0	10	13	00	13	5	∞	00	∞	∞
∞	0	3	00	3	∞	∞	00	∞	∞
∞	00	0	4	00	00	00	5	00	00
∞	∞	00	0	∞	∞	∞	00	4	00
∞	∞	4	00	0	∞	2	00	∞	00
∞	3	6	00	6	0	∞	∞	∞	2
∞	∞	00	7	∞	∞	0	00	∞	œ
∞	∞	00	4	∞	∞	∞	0	3	œ
∞	∞	00	00	∞	∞	∞	∞	0	œ
00	6	9	00	9	∞	8	∞	∞	0

Take the 3^{rd} row and 3^{rd} column from D(2) then use the equation to calculate D(3)

D(3):	}								
0	10	13	17	13	5	00	18	∞	∞
∞	0	3	7	3	00	00	8	00	∞
∞	00	0	4	00	00	00	5	00	00
∞	00	00	0	00	00	00	00	4	∞
∞	∞	4	8	0	00	2	9	∞	∞
∞	3	6	10	6	0	00	11	00	2
∞	00	00	7	00	∞	0	∞	00	∞
∞	∞	œ	4	00	00	œ	0	3	∞
∞	00	00	00	00	00	00	∞	0	∞
∞	6	9	13	9	00	8	14	00	0

Take the 4th row and 4th column from D(3) then use the equation to calculate D(4)

D(4):								
0	10	13	17	13	5	00	18	21	00
∞	0	3	7	3	∞	00	8	11	00
∞	∞	0	4	00	∞	00	5	8	00
∞	∞	00	0	00	00	∞	∞	4	00
00	∞	4	8	0	00	2	9	12	00
∞	3	6	10	6	0	00	11	14	2
∞	∞	00	7	00	∞	0	00	11	00
∞	∞	00	4	00	∞	00	0	3	∞
∞	∞	00	00	00	00	00	00	0	00
∞	6	9	13	9	00	8	14	17	0

Take the 5^{th} row and 5^{th} column from D(4) then use the equation to calculate D(5)

D(5):									
0	10	13	17	13	5	15	18	21	∞
∞	0	3	7	3	00	5	8	11	∞
∞	00	0	4	∞	00	00	5	8	∞
∞	00	∞	0	∞	00	∞	∞	4	∞
∞	00	4	8	0	00	2	9	12	∞
∞	3	6	10	6	0	8	11	14	2
∞	00	∞	7	∞	00	0	∞	11	∞
∞	00	00	4	∞	00	00	0	3	∞
∞	00	∞	∞	∞	00	∞	∞	0	∞
∞	6	9	13	9	00	8	14	17	0

Take the 6th row and 6th column from D(5) then use the equation to calculate D(6)

D(6)	:								
0	8	11	15	11	5	13	16	19	7
00	0	3	7	3	00	5	8	11	∞
00	∞	0	4	00	00	00	5	8	∞
00	∞	∞	0	00	00	00	00	4	∞
∞	∞	4	8	0	∞	2	9	12	∞
∞	3	6	10	6	0	8	11	14	2
00	00	00	7	00	00	0	00	11	00
00	∞	∞	4	00	∞	00	0	3	∞
00	∞	∞	00	00	∞	00	00	0	∞
∞	6	9	13	9	∞	8	14	17	0

Take the 7^{th} row and 7^{th} column from D(6) then use the equation to calculate D(7)

D (7):								
0	8	11	15	11	5	13	16	19	7
00	0	3	7	3	∞	5	8	11	00
∞	00	0	4	00	00	∞	5	8	00
∞	00	00	0	∞	∞	∞	00	4	00
∞	00	4	8	0	∞	2	9	12	00
∞	3	6	10	6	0	8	11	14	2
∞	∞	∞	7	00	∞	0	00	11	00
00	00	00	4	00	00	00	0	3	00
∞	00	00	00	00	∞	∞	00	0	00
∞	6	9	13	9	00	8	14	17	0

Take the 8^{th} row and 8^{th} column from D(7) then use the equation to calculate D(8)

D(8):									
0	8	11	15	11	5	13	16	19	7
00	0	3	7	3	∞	5	8	11	∞
∞	00	0	4	∞	∞	œ	5	8	∞
∞	∞	∞	0	∞	∞	œ	∞	4	∞
00	00	4	8	0	∞	2	9	12	∞
00	3	6	10	6	0	8	11	14	2
00	œ	∞	7	∞	∞	0	∞	11	∞
∞	œ	œ	4	∞	∞	œ	0	3	∞
00	00	00	00	00	00	00	00	0	00
∞	6	9	13	9	∞	8	14	17	0

Take the 9th row and 9th column from D(8) then use the equation to calculate D(9)

D(9	9):								
0	8	11	15	11	5	13	16	19	7
00	0	3	7	3	00	5	8	11	00
00	∞	0	4	∞	00	∞	5	8	00
00	∞	∞	0	∞	00	∞	00	4	00
00	∞	4	8	0	00	2	9	12	00
œ	3	6	10	6	0	8	11	14	2
00	∞	∞	7	00	00	0	00	11	00
00	00	00	4	∞	00	∞	0	3	00
00	∞	00	∞	∞	00	∞	00	0	00
00	6	9	13	9	00	8	14	17	0

Take the 10th row and 10th column from D(9) then use the equation to calculate D(10) and it is the final result

```
   D(10):

   0
   8
   11
   15
   11
   5
   13
   16
   19
   7

   ∞
   0
   3
   7
   3
   ∞
   5
   8
   11
   ∞

   ∞
   ∞
   ∞
   0
   ∞
   ∞
   ∞
   5
   8
   ∞

   ∞
   ∞
   ∞
   0
   ∞
   ∞
   ∞
   5
   8
   ∞

   ∞
   ∞
   ∞
   0
   ∞
   ∞
   ∞
   4
   ∞

   ∞
   ∞
   4
   8
   0
   ∞
   2
   9
   12
   ∞

   ∞
   3
   6
   10
   6
   0
   8
   11
   14
   2

   ∞
   ∞
   ∞
   ∞
   ∞
   0
   ∞
   11
   ∞

   ∞
   ∞
   ∞
   ∞
   ∞
   ∞
   0
   ∞
   0
   ∞

   ∞
   ∞
   ∞
   ∞
   ∞
   ∞
   ∞
   0
   ∞
   0
   ∞

   ∞
   ∞
   ∞
   ∞
   ∞
   ∞</
```

BUILD SUCCESSFUL (total time: 0 seconds)

Difficulties faced during the phase design

The difficulties that faced us during this project phase are:

- Coding a new concept and implementing it, we overcame it by researching and investigating more on it.
- Tracing the matrix due to its large size which made it a little bit complex to trace
- Meeting in-person due to COVID-19, we overcame it by staying in contact regularly with online meetings, we used screen sharing and annotation to enable everyone to stay focused and learn everything we needed to.

Conclusion

we used **Floyd-Warshall algorithm** that uses dynamic programming to get the optimized solution.

However, we had a brief discussion about **dynamic programming** and the main purpose of Floyd-Warshall algorithm which is finding the shortest path between all the pairs of vertices in a direct and indirect weighted graph.

