Vectors Difficulty: Medium

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 1

Time allowed: 82 minutes

Score: /71

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980) ASSEMBLED BY AS

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

On the grid, draw the image of $\begin{pmatrix} 6 \\ -5 \end{pmatrix}$,

(i) triangle T after translation by the vector

[2]

(ii) triangle T after rotation through 90° anticlockwise with centre (4, 10),

[2]

(iii) triangle T after enlargement with scale factor $\frac{1}{2}$, centre (10,0).

(a) Draw the image when triangle A is reflected in the line x = 1. [2]

 $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$.

(b) Draw the image when triangle A is translated by the vector [2]

(c) Draw the image when triangle A is enlarged by scale factor 2 with centre (4, 5). [2]

(d) Describe fully the **single** transformation that maps triangle A onto triangle B. [3]

Head to <u>savemyexams.co.uk</u> for more awesome resources

(a)

On the grid, draw the image of

(i) shape A after a reflection in the line x = 1,

[2]

(ii) shape A after an enlargement with scale factor -2, centre (0, 1),

[2]

(iii) shape A after the transformation represented by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

[3]

(b) Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.

[3]

- (a) Describe fully the **single** transformation that maps
 - (i) shape A onto shape B,

[3]

(ii) shape A onto shape C,

[2]

(iii) shape A onto shape D.

[3]

(b) Find the 2×2 matrix that represents the transformation in **part** (a)(iii).

[2]

(c) On the grid, draw the image of shape A after a translation by the vector $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$. [2] $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

(d) Describe fully the **single** transformation represented by the matrix

- (a) On the grid, draw the image of
 - (i) triangle T after a translation by the vector $\begin{pmatrix} -4\\4 \end{pmatrix}$, [2]
 - (ii) triangle T after a reflection in the line y = -1. [2]
- (b) Describe fully the **single** transformation that maps triangle T onto triangle U. [3]
- (c) (i) Describe fully the **single** transformation that maps triangle T onto triangle W. [2]
 - (ii) Find the 2×2 matrix that represents the transformation in **part** (c)(i). [2]

Head to <u>savemyexams.co.uk</u> for more awesome resources

- (a) On the grid, draw the image of
 - (i) triangle T after a reflection in the line x = -1,

[2]

(ii) triangle T after a rotation through 180° about (0,0).

[2]

- (b) Describe fully the **single** transformation that maps
 - (i) triangle T onto triangle U,

[2]

(ii) triangle T onto triangle V.

[3]

- (a) Describe fully the **single** transformation that maps
 - (i) flag A onto flag B,

[3]

(ii) $\operatorname{flag} A$ onto $\operatorname{flag} C$.

[3]

(b) Draw the image of flag A after a translation by the vector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

[2]

(c) Draw the image of flag A after a reflection in the line x = 1.

[2]

(d) Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Vectors Difficulty: Medium

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 2

Time allowed: 109 minutes

Score: /95

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

- (a) Draw the image when triangle A is reflected in the line x = 0. [1]
- (b) Draw the image when triangle A is rotated through 90° anticlockwise about (-4,0). [2]
- (c) (i) Describe fully the **single** transformation that maps triangle A onto triangle B. [3]
 - (ii) Complete the following statement.

Area of triangle A: Area of triangle $B = \dots$ [2]

(d) Write down the matrix that represents a stretch, factor 4 with the y-axis invariant. [2]

(e) (i) On the grid, draw the image of triangle A after the transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. [3]

(ii) Describe fully this **single** transformation. [3]

(iii) Find the inverse of the matrix $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. [2]

(a) Draw the reflection of shape Q in the line x = -1.

(b) (i) Draw the enlargement of shape Q, centre (0, 0), scale factor -2. [2]

(ii) Find the 2×2 matrix that represents an enlargement, centre (0, 0), scale factor -2.

(c)	(i)	Draw the stretch of shape Q , factor 2, x -axis invariant.	[2]
	(ii)	Find the 2×2 matrix that represents a stretch, factor 2, x-axis invariant.	[2]
	(iii)	Find the inverse of the matrix in part (c)(ii).	[2]
	(111)	That the inverse of the matrix in part (e)(ii).	[2]
	(iv)	Describe fully the single transformation represented by the matrix in part(c)(iii) .	[3]

Head to savemyexams.co.uk for more awesome resources

- (a) Describe fully the **single** transformation that maps shape Q onto shape R. [3]
- **(b)** (i) Draw the image when shape Q is translated by the vector $\begin{pmatrix} 5 \\ 4 \end{pmatrix}$. [2]
 - (ii) Draw the image when shape Q is reflected in the line x = 2. [2]
 - (iii) Draw the image when shape Q is stretched, factor 3, x-axis invariant. [2]
 - (iv) Find the 2×2 matrix that represents a stretch of factor 3, x-axis invariant. [2]
- (c) Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. [2]

(i) Describe fully the **single** transformation which maps shape P onto shape Q. [2]

(ii) On the grid above, draw the image of shape P after reflection in the line y = -1. [2]

On the grid above, draw the image of shape P under the transformation represented by the

(b)

(i) Describe fully the **single** transformation which maps shape M onto shape L.

(ii) On the grid above, draw the image of shape M after enlargement by scale factor 2, centre (5,0).

[3]

(a) (i) Draw the image of shape A after a stretch, factor 3, x-axis invariant.

(ii) Write down the matrix representing a stretch, factor 3, x-axis invariant. [2]

(b) (i) Describe fully the **single** transformation which maps shape A onto shape B. [3]

(ii) Write down the matrix representing the transformation which maps shape A onto shape B.

[2]

(a) Calculate the magnitude of the vector $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$. [2]

(b)

(i) The points *P* and *R* are marked on the grid above.

$$\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$
. Draw the vector \overrightarrow{PQ} on the grid above. [1]

(ii) Draw the image of vector \overrightarrow{PQ} after rotation by 90° anticlockwise about R. [2]

(c)
$$\overrightarrow{DE} = 2\mathbf{a} + \mathbf{b}$$
 and $\overrightarrow{DC} = 3\mathbf{b} - \mathbf{a}$.

Find \overrightarrow{CE} in terms of **a** and **b**. Write your answer in its simplest form. [2]

(d)
$$\overrightarrow{OV} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$
 and $\overrightarrow{OV} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$.

Write \overrightarrow{TV} as a column vector.

[2]

(e)

NOT TO SCALE

 $\overrightarrow{AB} = \mathbf{b}$ and $\overrightarrow{AC} = \mathbf{c}$.

(i) Find \overrightarrow{CB} in terms of **b** and **c**.

[1]

(ii) X divides CB in the ratio 1:3. M is the midpoint of AB.

Find \overrightarrow{MX} in terms of **b** and **c**. Show all your working and write your answer in its simplest form.

[4]

(a)

- (i) Draw the translation of triangle X by the vector $\begin{pmatrix} -11 \\ -1 \end{pmatrix}$. [2]
- (ii) Draw the enlargement of triangle Y with centre (-6, -4) and scale factor $\frac{1}{2}$ [2]

(b)

Describe fully the **single** transformation that maps

(i) triangle X onto triangle Z,

[2]

(ii) triangle X onto triangle Y,

[3]

(iii) triangle X onto triangle W.

[3]

(c) Find the matrix that represents the transformation in part (b)(iii).

Vectors Difficulty: Medium

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 3

Time allowed: 110 minutes

Score: /96

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	А	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

- (a) Draw the translation of triangle P by $\binom{5}{3}$. [2]
- (b) Draw the reflection of triangle P in the line x = 6.
- (c) (i) Describe fully the **single** transformation that maps triangle P onto triangle Q.
 - (ii) Find the 2 by 2 matrix which represents the transformation in **part(c)(i)**.
- (d) (i) Draw the stretch of triangle P with scale factor 3 and the x-axis as the invariant line. [2]
 - (ii) Find the 2 by 2 matrix which represents a stretch, scale factor 3 and x-axis invariant. [2]

(a) Describe fully the **single** transformation which maps

(i) triangle A onto triangle B, [2]

(ii) triangle A onto triangle C, [3]

(iii) triangle A onto triangle D. [3]

(b) Draw the image of

(i) triangle B after a translation of
$$\begin{pmatrix} -5\\2 \end{pmatrix}$$
, [2]

(ii) triangle *B* after a transformation by the matrix
$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
. [3]

(c) Describe fully the **single** transformation represented by the matrix
$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
. [3]

Triangles T and A are drawn on the grid above.

- (a) Describe fully the single transformation that maps triangle T onto triangle A. [2]
- (b) (i) Draw the image of triangle T after a rotation of 90° anticlockwise about the point (0,0). Label the image B.
 - (ii) Draw the image of triangle T after a reflection in the line x + y = 0. Label the image C.
 - (iii) Draw the image of triangle T after an enlargement with centre (4, 5) and scale factor 1.5.Label the image D.[2]

(c)	(i) Triangle T	has its vertices	at co-ordinates	(2, 1)	. (6, 1) and (6.	3)
(~)	(i) I i i a i gi c	mas its vertices	at co oraniates	(2, 1)	, (0, 1) una (0,	٠,

Transform triangle T by the matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Draw this image on the grid and label it E.

[3]

(ii) Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. [3]

(d) Write down the matrix that transforms triangle B onto triangle T.

- (a) Draw the reflection of shape P in the line y = x. [2]
- (b) Draw the translation of shape P by the vector $\begin{pmatrix} -2\\1 \end{pmatrix}$. [2]
- (c) (i) Describe fully the **single** transformation that maps shape P onto shape W. [3]
 - (ii) Find the 2 by 2 matrix which represents this transformation. [2]
- (d) Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. [3]

(a) On the grid above, draw the image of

(i) shape A after translation by the vector
$$\begin{pmatrix} -3 \\ -2 \end{pmatrix}$$
,

(ii) shape A after reflection in the line
$$x = -1$$
. [2]

[2]

(b) Describe fully the **single** transformation which maps

(i) shape
$$A$$
 onto shape B , [3]

(ii) shape
$$A$$
 onto shape C .

(c) Find the matrix representing the transformation which maps shape A onto shape B. [2]

(d) Describe fully the **single** transformation represented by the matrix
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
. [3]

- (a) (i) Draw the reflection of shape X in the x-axis. Label the image Y. [2]
 - (ii) Draw the rotation of **shape Y**, 90° clockwise about (0, 0). Label the image Z. [2]
 - (iii) Describe fully the **single** transformation that maps shape Z onto shape X. [2]
- (b) (i) Draw the enlargement of shape X, centre (0, 0), scale factor $\frac{1}{2}$. [2]
 - (ii) Find the matrix which represents an enlargement, centre (0, 0), scale factor $\frac{1}{2}$. [2]
- (c) (i) Draw the shear of **shape** X with the x-axis invariant and shear factor -1. [2]
 - (ii) Find the matrix which represents a shear with the x-axis invariant and shear factor -1. [2]

(a)

- (i) Draw the image when triangle A is reflected in the line y = 0. Label the image B.
- (ii) Draw the image when triangle *A* is rotated through 90 anticlockwise about the origin.

 Label the image *C*. [2]
- (iii) Describe fully the **single** transformation which maps triangle B onto triangle C.

[2]

[2]

- (b) Rotation through 90° anticlockwise about the origin is represented by the matrix $\mathbf{M} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
 - (i) Find \mathbf{M}^{-1} , the inverse of matrix \mathbf{M} . [2]

(ii) Describe fully the **single** transformation represented by the matrix \mathbf{M}^{-1} . [2]

Vectors Difficulty: Medium

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 4

Time allowed: 92 minutes

Score: /80

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4	
>95%	87%	80%	69%	58%	46%	

Question 1

(a)

The points A (5, 3), B (1, -4) and C (-4, -2) are shown in the diagram.

(i) Write \overrightarrow{CA} as a column vector.

[1]

(ii) Find $\overrightarrow{CA} - \overrightarrow{CB}$ as a single column vector.

[2]

(iii) Complete the following statement.

[1]

(iv) Calculate $|\overrightarrow{CA}|$.

(b)

ABCD is a trapezium with DC parallel to AB and DC = $\frac{1}{2}$ AB.

M is the midpoint of BC.

$$\overrightarrow{AD} = \mathbf{t}$$
 and $\overrightarrow{DC} = \mathbf{u}$.

Find the following vectors in terms of t and / or u.

Give each answer in its simplest form.

(i)
$$\overrightarrow{AB}$$

(ii)
$$\overrightarrow{BM}$$
 [2]

(iii)
$$\overrightarrow{AM}$$
 [2]

(a) On the grid, draw the enlargement of the triangle T, centre (0, 0), scale factor $\frac{1}{2}$. [2]

(b) The matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ represents a transformation.

(i) Calculate the matrix product $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 8 & 8 & 2 \\ 4 & 8 & 8 \end{pmatrix}$. [2]

- (ii) On the grid, draw the image of the triangle *T* under this transformation. [2]
- (iii) Describe fully this **single** transformation. [2]
- (c) Describe fully the **single** transformation which maps
 - (i) triangle T onto triangle P, [2]
 - (ii) triangle T onto triangle Q. [3]

(d) Find the 2 by 2 matrix which represents the transformation in **part** (c)(ii). [2]

Head to savemyexams.co.uk for more awesome resources

(a)
$$\mathbf{p} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$.

- (i) Find, as a single column vector, $\mathbf{p} + 2\mathbf{q}$.
- (ii) Calculate the value of $|\mathbf{p} + 2\mathbf{q}|$. [2]

[2]

In the diagram, CM = MV and OL = 2LV. O is the origin. $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OV} = \mathbf{v}$.

Find, in terms of c and v, in their simplest forms

- (i) \overrightarrow{CM} , [2]
- (ii) the position vector of M, [2]
- (iii) \overrightarrow{ML} .

(a) On the grid, draw

- (i) the translation of triangle T by the vector $\begin{pmatrix} -7 \\ 3 \end{pmatrix}$, [2]
- (ii) the rotation of triangle T about (0, 0), through 90° clockwise. [2]

(b) Describe fully the **single** transformation that maps

- (i) triangle T onto triangle U, [2]
- (ii) triangle T onto triangle V. [3]

(c)	Find the 2 by 2 matrix which represents the transformation that maps				
	(i)	triangle T onto triangle U ,	[2]		
	(··)		[2]		
	(11)	triangle T onto triangle V ,	[2]		
	(iii)	triangle V onto triangle T .	[1]		

(a) Draw the reflection of triangle T in the line y = 6.

Label the image A. [2]

(b) Draw the translation of triangle T by the vector $\begin{pmatrix} -4 \\ 6 \end{pmatrix}$.

Label the image B.

(c) Describe fully the single transformation which maps triangle B onto triangle T .	[2]
(d) (i) Describe fully the single transformation which maps triangle T onto triangle P .	[3]
(ii) Complete the following statement.	[1]
(e) (i) Describe fully the single transformation which maps triangle T onto triangle Q .	[3]
(ii) Find the 2 by 2 matrix which represents the transformation mapping triangle <i>T</i> onto <i>Q</i> .	triangle

Head to <u>savemyexams.co.uk</u> for more awesome resources

- (a) Describe fully the **single** transformation which maps
 - (i) triangle T onto triangle U,

(ii) triangle T onto triangle V, [3]

[2]

	(iii) triangle T onto triangle W ,	[3]
	(iv) triangle U onto triangle X .	[3]
b)	Find the matrix representing the transformation which maps (i) triangle U onto triangle V ,	[2]
	(ii) triangle U onto triangle X .	[2]

Vectors Difficulty: Medium

Question Paper 5

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 5

Time allowed: 85 minutes

Score: /74

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4	
>95%	87%	80%	69%	58%	46%	

Answer the whole of this question on a sheet of graph paper.

(a) Draw x and y axes from 0 to 12 using a scale of 1 cm to 1 unit on each axis.

[1]

(b) Draw and label triangle T with vertices (8, 6), (6, 10) and (10, 12).

[1]

- (c) Triangle T is reflected in the line y = x.
 - (i) Draw the image of triangle *T*. Label this image *P*.

[2]

(ii) Write down the matrix which represents this reflection.

[2]

(d) A transformation is represented by the matrix

- [2]
- (i) Draw the image of triangle T under this transformation. Label this image Q.

(ii) Describe fully this single transformation.

[3]

(e) Triangle T is stretched with the y-axis invariant and a stretch factor of

[2]

Draw the image of triangle T. Label this image R.

- (a) Draw and label x and y axes from -6 to 6, using a scale of 1 cm to 1 unit.
- [1]

(b) Draw triangle ABC with A(2,1), B(3,3) and C(5,1).

[1]

(c) Draw the reflection of triangle ABC in the line y = x. Label this $A_1B_1C_1$.

[2]

- (d) Rotate **triangle** $A_1B_1C_1$ about (0,0) through 90° anti-clockwise. Label this $A_2B_2C_2$.
- [2]
- (e) Describe fully the single transformation which maps triangle ABC onto triangle $A_2B_2C_2$.
- [2]

- (f) A transformation is represented by the matrix $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$.
 - (i) Draw the image of triangle ABC under this transformation. Label this $A_3B_3C_3$.
- [3]

- (ii) Describe fully the single transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$.
- [2]

- (iii) Find the matrix which represents the transformation that maps triangle $A_3B_3C_3$ onto triangle ABC.
- [2]

Transformation T is translation by the vector $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Transformation M is reflection in the line y = x.

(a) The point A has co-ordinates (2, 1).

Find the co-ordinates of

(i)
$$T(A)$$
, [1]

(ii)
$$MT(A)$$
. [2]

- (b) Find the 2 by 2 matrix \mathbf{M} , which represents the transformation \mathbf{M} . [2]
- (c) Show that, for any value of k, the point Q(k-2, k-3) maps onto a point on the line y=x following the transformation TM(Q).
- (d) Find \mathbf{M}^{-1} , the inverse of the matrix \mathbf{M} . [2]
- (e) N is the matrix such that $N + \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$.
 - (i) Write down the matrix **N**. [2]

(ii) Describe completely the **single** transformation represented by N. [3]

Answer the whole of this question on one sheet of graph paper.

- (a) Draw and label x and y axes from -8 to +8, using a scale of 1 cm to 1 unit on each axis.
- (b) Draw and label triangle ABC with A(2, 2), B(5, 2) and C(5, 4).

[1]

- (c) On your grid:
 - (i) translate **triangle** ABC by the vector $\begin{pmatrix} 3 \\ -9 \end{pmatrix}$ and label this image $A_1B_1C_1$; [2]
 - (ii) reflect **triangle** ABC in the line x = -I and label this image $A_2B_2C_2$; [2]
 - (iii) rotate **triangle** ABC by 180° about (0, 0) and label this image $A_3B_3C_3$. [2]
- (d) A stretch is represented by the matrix $\begin{pmatrix} 1.5 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (i) Draw the image of **triangle** ABC under this transformation. Label this image $A_4B_4C_4$. [3]

(ii) Work out the inverse of the matrix $\begin{pmatrix} 1.5 & 0 \\ 0 & 1 \end{pmatrix}$. [2]

(iii) Describe **fully** the single transformation represented by this inverse. [3]

A star is made up of a regular hexagon, centre X, surrounded by 6 equilateral triangles. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Write the following vectors in terms of **a** and/or **b**, giving your answers in their simplest form.

- (i) \overrightarrow{OS} , [1]
- (ii) \overrightarrow{AB} , [1]
- (iii) \overrightarrow{CD} ,
- (iv) \overrightarrow{OR} , [2]
- (v) \overrightarrow{CF} .
- (b) When $|\mathbf{a}| = 5$, write down the value of
 - $(i) | \mathbf{b} |,$
 - (ii) $|\mathbf{a} \mathbf{b}|$.
- (c) Describe fully a single transformation which maps
 - (i) triangle OBA onto triangle OQS, [2]
 - (ii) triangle OBA onto triangle RDE, with O mapped onto R and B mapped onto D. [2]
- (d) (i) How many lines of symmetry does the starhave? [1]
 - (ii) When triangle OQS is rotated clockwise about X, it lies on triangle PRT, with O on P. Write down the angle of rotation. [1]

Vectors Difficulty: Hard

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 1

Time allowed: 69 minutes

Score: /60

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

In the diagram, O is the origin and P lies on AB such that AP : PB = 3 : 4. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(i) Find \overrightarrow{OP} , in terms of **a** and **b**, in its simplest form. [3]

(ii) The line OP is extended to C such that $\overrightarrow{OC} = mOP$ and $BC = k\mathbf{a}$. Find the value of m and the value of k.

- (a) (i) Draw the image of triangle A after reflection in the line x = 4. [2]
 - (ii) Draw the image of triangle A after rotation of 90° anticlockwise about (0,0). [2]
 - (iii) Draw the image of triangle A after translation by the vector $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$. [2]
- (b) Describe fully the **single** transformation that maps triangle A onto triangle B. [3]

Head to <u>savemyexams.co.uk</u> for more awesome resources

(a) Describe fully the **single** transformation that maps shape A onto

(i) shape B, [2]

(ii) shape C.

- (b) Draw the image of shape A after rotation through 90° anticlockwise about the point (3, -1). [2]
- (c) Draw the image of shape A after reflection in y = 1. [2]

(a) Describe fully the **single** transformation that maps

(i) shape P onto shape Q,

[3]

(ii) shape P onto shape R,

[2]

(iii) shape P onto shape S.

[3]

(b) (i) Draw the reflection of **shape** S in the line y = x.

[2]

(a)
$$\mathbf{m} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 $\mathbf{n} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

(i) Work out $2\mathbf{m} - 3\mathbf{n}$.

(ii) Calculate $2\mathbf{m} - 3\mathbf{n}$. [2]

[2]

(b) (i)

A

NOT TO SCALE

In the diagram, O is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point M lies on AB such that AM : MB = 3 : 2.

Find, in terms of a and b, in its simplest form

(a) \overrightarrow{AB} , [1]

(b) \overrightarrow{AM} , [1]

	(c) the position vector of M .	[2]
(ii)	OM is extended to the point C . The position vector of C is $\mathbf{a} + k\mathbf{b}$.	
	Find the value of k .	[1]

Head to <u>savemyexams.co.uk</u> for more awesome resources

NOT TO SCALE

OPQR is a rectangle and O is the origin.

M is the midpoint of RQ and PT: TQ = 2:1.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OR} = \mathbf{r}$.

(a) Find, in terms of \mathbf{p} and/or \mathbf{r} , in its simplest form

(i)
$$\overrightarrow{MQ}$$
, [1]

(ii)
$$MT$$
,

(iii)
$$\overrightarrow{OT}$$
.

(b) RQ and OT are extended to meet at U.

Find the position vector of U in terms of \mathbf{p} and \mathbf{r} . Give your answer in its simplest form. [2]

(c)
$$\overrightarrow{MT} = \begin{pmatrix} 2k \\ -k \end{pmatrix}$$
 and $|\overrightarrow{MT}| = \sqrt{180}$.

Find the positive value of k.

[3]

Head to <u>savemyexams.co.uk</u> for more awesome resources

O is the origin and OPQRST is a regular hexagon.

$$\overrightarrow{OP} = \mathbf{x}$$
 and $\overrightarrow{OT} = \mathbf{y}$.

(a) Write down, in terms of x and/or y, in its simplest form,

(i)
$$\overrightarrow{QR}$$
, [1]

$$\overrightarrow{PQ}$$
, [1]

(iii) the position vector of
$$S$$
. [2]

(b) The line SR is extended to G so that SR : RG = 2 : 1.

Find
$$\overrightarrow{GQ}$$
, in terms of x and y, in its simplest form. [2]

(c) M is the midpoint of OP.

(i) Find
$$MG$$
, in terms of \mathbf{x} and \mathbf{y} , in its simplest form. [2]

(ii) H is a point on TQ such that TH: HQ = 3:1.

Use vectors to show that
$$H$$
 lies on MG . [2]

Vectors Difficulty: Hard

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 2

Time allowed: 74 minutes

Score: /64

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

Question 1

 $\overrightarrow{BC} = \mathbf{a}$ and $\overrightarrow{AC} = \mathbf{b}$.

(a) Find \overrightarrow{AB} in terms of **a** and **b**.

[1]

(b) M is the midpoint of BC.

X divides \overrightarrow{AB} in the ratio 1:4.

Find \overrightarrow{XM} in terms of **a** and **b**.

Show all your working and write your answer in its simplest form.

[4]

- (a) Draw the image of
 - (i) shape A after a translation by $\binom{-1}{3}$, [2]
 - (ii) shape A after a rotation through 180° about the point (0,0), [2]
 - (iii) shape A after the transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. [3]
- (b) Describe fully the **single** transformation that maps shape A onto shape B. [3]

(c) Find the matrix which represents the transformation that maps shape A onto shape C. [2]

In the diagram, O is the origin and $\overrightarrow{OA} = 6\mathbf{a}$, $\overrightarrow{OB} = 9\mathbf{b}$ and $\overrightarrow{OC} = 3\mathbf{c}$. The point P lies on AB such that $\overrightarrow{AP} = 3\mathbf{b} - 2\mathbf{a}$. The point Q lies on BC such that $\overrightarrow{BQ} = 2\mathbf{c} - 6\mathbf{b}$.

(a) Find, in terms of **b** and **c**, the position vector of *Q*. Give your answer in its simplest form.

[2]

(b) Find, in terms of a and c, in its simplest form

(i)
$$\overrightarrow{AC}$$
,

(ii)
$$\overrightarrow{PQ}$$
.

(c) Explain what your answers in **part** (b) tell you about *PQ* and *AC*. [2]

(a) Describe fully the **single** transformation that maps triangle A onto triangle B.

[3]

(b)	On the	grid,	draw	the	image	of
-----	--------	-------	------	-----	-------	----

(i) triangle A after a reflection in the line x = -3,

[2]

(ii) triangle A after a rotation about the origin through 270° anticlockwise,

[2]

(iii) triangle A after a translation by the vector $\begin{pmatrix} -1 \\ -5 \end{pmatrix}$.

[2]

(c) \boldsymbol{M} is the matrix that represents the transformation in $part\,(b)(ii).$

[2]

(i) Find M.

[2]

(ii) Describe fully the **single** transformation represented by \mathbf{M}^{-1} , the inverse of \mathbf{M} .

- (a) On the grid,
 - (i) draw the image of shape A after a translation by the vector $\begin{pmatrix} -5 \\ -4 \end{pmatrix}$, [2]
 - (ii) draw the image of shape A after a rotation through 90° clockwise about the origin. [2]
- (b) (i) On the grid, draw the image of shape A after the transformation represented by the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (ii) Describe fully the **single** transformation represented by the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. [3]

(a)
$$\overrightarrow{PQ} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

(i) P is the point (-2, 3).

Work out the co-ordinates of Q. [1]

(ii) Work out $|\overrightarrow{PQ}|$, the magnitude of \overrightarrow{PQ} . [2]

(b)

OACB is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}.$$

 $\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}.$ $AN: NB = 2:3 \text{ and } AY = \frac{2}{5}AC.$

(i) Write each of the following in terms of **a** and/or **b**. Give your answers in their simplest form.

(a)
$$\overrightarrow{ON}$$

[2]

(b)
$$\overrightarrow{NY}$$

[2]

(ii) Write down two conclusions you can make about the line segments NY and BC.

[2]

(a)

(i) Write down the position vector of A.

[1]

(ii) Find $|\overrightarrow{AB}|$, the magnitude of \overrightarrow{AB} .

[2]

(b)

- O is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.
- OP is extended to R so that OP = PR.
- OQ is extended to S so that OQ = QS.

Г17

(i) Write down \overrightarrow{RQ} in terms of \mathbf{p} and \mathbf{q} .

[1]

- (ii) PS and RQ intersect at M and RM = 2MQ.
 - Use vectors to find the ratio *PM* : *PS*, showing all your working.

[4]

Vectors Difficulty: Hard

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 3

Time allowed: 106 minutes

Score: /92

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

(a)

(i) Draw the reflection of triangle T in the line y = 5.

[2]

(ii) Draw the rotation of triangle T about the point (4, 2) through 180° .

- [2]
- (iii) Describe fully the **single** transformation that maps triangle T onto triangle U.
- [3]

(iv) Find the 2×2 matrix which represents the transformation in **part** (a)(iii).

In the pentagon OPQRS, OP is parallel to RQ and OS is parallel to PQ. PQ = 2OS and OP = 2RQ. O is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OS} = \mathbf{s}$.

Find, in terms of \mathbf{p} and \mathbf{s} , in their simplest form,

(i) the position vector of
$$Q$$
, [2]

(ii)
$$\overrightarrow{SR}$$
. [2]

Head to <u>savemyexams.co.uk</u> for more awesome resources

- (a) Describe fully the single transformation that maps triangle A onto
 - (i) triangle B,

[2]

(ii) triangle C,

[2]

(iii) triangle D.

[3]

(b)	On	the grid, draw	
	(i)	the rotation of triangle A about $(6,0)$ through 90° clockwise,	[2]
	(ii)	the enlargement of triangle A by scale factor -2 with centre $(0, -1)$,	[2]
	(iii)	the shear of triangle A by shear factor -2 with the y -axis invariant.	[2]
(c)]	Find	the matrix that represents the transformation in part (b)(iii) .	[2]

(a) The co-ordinates	of P are (-4)	1) and the co-	ordinates	of Ω are	(8 14)

(i) Find the gradient of the line PQ.

[2]

(ii) Find the equation of the line PQ.

[2]

(iii) Write \overrightarrow{PQ} as a column vector.

[1]

(iv) Find the magnitude of \overrightarrow{PQ} .

[2]

(b)

In the diagram, $\overrightarrow{OA} = 4\mathbf{a}$ and $\overrightarrow{OB} = 3\mathbf{b}$.

R lies on AB such that $\overrightarrow{OR} = \frac{1}{5}(12\mathbf{a} + 6\mathbf{b})$.

T is the point such that $\overrightarrow{BT} = \frac{3}{2}\overrightarrow{OA}$.

(i) Find the following in terms of a and b, giving each answer in its simplest form.

(a)
$$\overrightarrow{AB}$$

(b)
$$\overrightarrow{AR}$$
 [2]

(c)
$$\overrightarrow{OT}$$

The points of it and it are in a straight line occurse in

(iii) Triangle *OAR* and triangle *TBR* are similar.

Find the value of
$$\frac{\text{area of triangle } TBR}{\text{area of triangle } OAR}$$
. [2]

(a)
$$\mathbf{a} = \begin{pmatrix} -2\\3 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 2\\-7 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} -10\\21 \end{pmatrix}$

(i) Find
$$2a + b$$
. [1]

(iii)
$$m\mathbf{a} + n\mathbf{b} = \mathbf{c}$$

Find the values of *m* and *n*.

Show all your working.

[6]

(b)

In the diagram, OX:XP = 3:2 and OY:YQ = 3:2. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.

(i) Write
$$\overrightarrow{PQ}$$
 in terms of **p** and **q**.

[1]

(ii) Write
$$\overrightarrow{XY}$$
 in terms of **p** and **q**.

[1]

[3]

The lines XY and PQ are

The triangles OXY and OPQ are

The ratio of the area of triangle *OXY* to the area of triangle *OPQ* is

Head to savemyexams.co.uk for more awesome resources

- (a) Describe fully
 - (i) the **single** transformation which maps triangle P onto triangle Q,
 - (ii) the **single** transformation which maps triangle Q onto triangle R, [3]
 - (iii) the **single** transformation which maps triangle R onto triangle P. [3]

[3]

(b) On the	grid,	draw	the	image	of
------------	-------	------	-----	-------	----

(i) **triangle P** after translation b $\begin{pmatrix} -4 \\ -5 \end{pmatrix}$, [2]

(ii) **triangle P** after reflection in the line x = -1. [2]

(c) (i) On the grid, draw the image of **triangle P** after a stretch, scale factor 2 and the y-axis as the invariant line. [2]

(ii) Find the matrix which represents this stretch. [2]

(a) P is the point (2, 5) and $\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Write down the co-ordinates of Q.

[1]

(b)

O is the origin and OABC is a parallelogram. M is the midpoint of AB.

$$\overrightarrow{OC} = \mathbf{c}$$
, $\overrightarrow{OA} = 3\mathbf{a}$ and $CE = \frac{1}{3}CB$.

OED is a straight line with OE:ED=2:1.

Find in terms of **a** and **c**, in their simplest forms

(i)
$$\overrightarrow{OB}$$
, [1]

(ii) the position vector of M, [2]

(iii)
$$\overrightarrow{OE}$$
, [1]

(iv)
$$\overrightarrow{CD}$$
.

(c) Write down two facts about the lines *CD* and *OB*. [2]

(a)

The points P and Q have co-ordinates (-3, 1) and (5, 2).

(i) Write \overrightarrow{PQ} as a column vector.

[1]

(ii)
$$\overrightarrow{QR} = 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Mark the point R on the grid.

[1]

(iii) Write down the position vector of the point P.

[1]

(b)

In the diagram,
$$\overrightarrow{OU} = \mathbf{u}$$
 and $\overrightarrow{OV} = \mathbf{v}$.
 K is on UV so that $\overrightarrow{UK} = \frac{2}{3} \overrightarrow{UV}$ and L is on OU so that $\overrightarrow{OL} = \frac{3}{4} \overrightarrow{OU}$.

M is the midpoint of KL.

Find the following in terms of \mathbf{u} and \mathbf{v} , giving your answers in their simplest form.

(i)
$$\overrightarrow{LK}$$

(ii)
$$\overrightarrow{OM}$$

Vectors Difficulty: Hard

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 4

Time allowed: 87 minutes

Score: /76

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	А	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

(a)

Draw the enlargement of triangle P with centre A and scale factor 2.

[2]

(b)

(i) Describe fully the **single** transformation which maps shape Q onto shape R.

[3]

(ii) Find the matrix which represents this transformation.

[2]

(c)

Describe fully the **single** transformation which maps shape S onto shape T.

[3]

Head to <u>savemyexams.co.uk</u> for more awesome resources

ABCD is a parallelogram.

L is the midpoint of \overline{DC} , M is the midpoint of BC and N is the midpoint of LM. $AB = \mathbf{p}$ and $AD = \mathbf{q}$.

(i) Find the following in terms of p and q, in their simplest form.

(a)
$$\overrightarrow{AC}$$

(b)
$$L\overline{M}$$
 [2]

(c)
$$\overrightarrow{AN}$$
 [2]

(ii) Explain why your answer for \overrightarrow{AN} shows that the point N lies on the line AC. [1]

EFG is a triangle.

HJ is parallel to FG.

Angle $FEG = 75^{\circ}$. Angle $EFG = 2x^{\circ}$ and angle $FGE = (x + 15)^{\circ}$.

(i) Find the value of
$$x$$
. [2]

Draw the images of the following transformations on the grid above.

(i) Translation of triangle A by the vector
$$\begin{pmatrix} 3 \\ -7 \end{pmatrix}$$
. Label the image B. [2]

(ii) Reflection of triangle
$$A$$
 in the line $x = 3$. Label the image C . [2]

(b) The area of triangle E is $k \times$ area of triangle A. Write down the value of k.

[1]

(c)

- (i) Draw the image of triangle F under the transformation represented by the matrix $\mathbf{M} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$. [3]
- (ii) Describe fully this single transformation.

[3]

(iii) Find \mathbf{M} , the inverse of the matrix \mathbf{M} .

[2]

The diagram shows triangles P, Q, R, S, T and U.

(a) Describe fully the **single** transformation which maps triangle

(i) T onto P ,	[2]
(ii) Q onto T ,	[2]
(iii) T onto R ,	[2]
(iv) T onto S ,	[3]
(v) U onto Q .	[3]
(b) Find the 2 by 2 matrix representing the transformation which maps triangle	
(i) T onto R ,	[2]
(ii) U onto Q .	[2]

OPQR is a parallelogram.

O is the origin.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OR} = \mathbf{r}$.

M is the mid-point of PQ and L is on OR such that OL:LR=2:1.

The line PL is extended to the point S.

(a) Find, in terms of **p** and **r**, in their simplest forms,

(i)
$$\overrightarrow{OQ}$$
, [1]

(ii)
$$\overrightarrow{PR}$$
,

(iii)
$$\overrightarrow{PL}$$
, [1]

(iv) the position vector of
$$M$$
. [1]

(b) *PLS* is a straight line and $PS = \frac{3}{2}PL$.

Find, in terms of \mathbf{p} and/or \mathbf{r} , in their simplest forms,

(i)
$$\overrightarrow{PS}$$
,

(ii)
$$\overrightarrow{QS}$$
. [2]

(c) What can you say about the points
$$Q$$
, R and S ?

OBCD is a rhombus with sides of 25 cm. The length of the diagonal *OC* is 14 cm.

(a) Show, **by calculation**, that the length of the diagonal *BD* is 48 cm.

[3]

(b) Calculate, correct to the nearest degree,

(i) angle *BCD*,

(ii) angle *OBC*. [1]

(c) $\overrightarrow{DB} = 2\mathbf{p}$ and $\overrightarrow{OC} = 2\mathbf{q}$.

Find, in terms of \mathbf{p} and \mathbf{q} ,

(i) \overrightarrow{OB} ,

(ii) \overrightarrow{OD} .

(d) BE is parallel to OC and DCE is a straight line.

Find, in its simplest form, \overrightarrow{OE} in terms of **p** and **q**. [2]

(e) M is the mid-point of CE.

Find, in its simplest form, \overrightarrow{OM} in terms of **p** and **q**. [2]

(f) O is the origin of a co-ordinate grid. OC lies along the x-axis and $\mathbf{q} = \begin{pmatrix} 7 \\ 0 \end{pmatrix}$.

 $(\overrightarrow{DB}$ is vertical and $|\overrightarrow{DB}| = 48.$) Write down as column vectors

(i) **p**,

(ii) \overrightarrow{BC} .

(g) Write down the value of $|\overrightarrow{DE}|$. [1]

Vectors Difficulty: Hard

Question Paper 5

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 5

Time allowed: 90 minutes

Score: /78

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4	
>95%	87%	80%	69%	58%	46%	

(a)

OPMQ is a parallelogram and *O* is the origin.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OQ} = \mathbf{q}$.

L is on PQ so that PL: LQ = 2:1.

NOT TO SCALE

Find the following vectors in terms of \mathbf{p} and \mathbf{q} . Write your answers in their simplest form.

(i)
$$\overrightarrow{PQ}$$
, [1]

(ii)
$$\overrightarrow{PL}$$
, [1]

(iii)
$$\overline{ML}$$
, [2]

(iv) the position vector of
$$L$$
. [2]

(b) R is the point (1,2). It is translated onto the point S by the vector
$$\begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
.

(ii) Write down the vector which translates
$$S$$
 onto R . [1]

(c) The matrix
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 represents a **single** transformation.

(d) Find the matrix which represents a reflection in the line
$$y = x$$
. [2]

(a) Describe fully the single transformation which maps

- (i) triangle X onto triangle P, [2]
- (ii) triangle X onto triangle Q, [2]
- (iii) triangle X onto triangle R, [3]
- (iv) triangle X onto triangle S. [3]
- (b) Find the 2 by 2 matrix which represents the transformation that maps
 - (i) triangle X onto triangle Q, [2]
 - (ii) triangle X onto triangle S. [2]

Answer the whole of this question on a sheet of graph paper.

(a) Draw x- and y-axes from -8 to 8 using a scale of 1cm to 1 unit. Draw triangle ABC with A (2, 2), B (5, 2) and C (5, 4).

[2]

(b) Draw the image of triangle *ABC* under a translation of $\begin{pmatrix} -9\\3 \end{pmatrix}$. Label it $A_1B_1C_1$.

[2]

(c) Draw the image of triangle *ABC* under a reflection in the line y = -1. Label it $A_2B_2C_2$.

[2]

(d) Draw the image of triangle ABC under an enlargement, scale factor 2, centre (6,0). Label it $A_3B_3C_3$.

[2]

(e) The matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ represents a transformation.

[2]

(ii) Describe fully this single transformation.

[2]

(f) (i) Draw the image of triangle ABC under a stretch, factor 1.5, with the y-axis invariant. Label it $A_5B_5C_5$.

(i) Draw the image of triangle ABC under this transformation. Label it $A_4B_4C_4$.

[2]

(ii) Find the 2 by 2 matrix which represents this transformation.

[2]

- (a) Describe fully the single transformation which maps
 - (i) shape A onto shape B, [2]
 - (ii) shape B onto shape C, [2]
 - (iii) shape A onto shape D, [2]
 - (iv) shape B onto shape E, [2]
 - (v) shape B onto shape F, [2]
 - (vi) shape A onto shape G. [2]
- (b) A transformation is represented by the matrix $\begin{pmatrix} 0 1 \\ 1 & 0 \end{pmatrix}$

Which shape above is the image of shape A after this transformation? [2]

- (c) Find the 2 by 2 matrix representing the transformation which maps
 - (i) shape B onto shape D, [2]
 - (ii) shape A onto shape G.

Use one of the letters *A*, *B*, *C*, *D*, *E* or *F* to answer the following questions.

- Which triangle is T mapped onto by a translation? Write down the translation vector. [2]
- (ii) Which triangle is T mapped onto by a reflection? Write down the equation of the mirror line.[2]
- (iii) Which triangle is *T* mapped onto by a **rotation**? Write down the coordinates of the centre of rotation. [2]
- (iv) Which triangle is *T* mapped onto by a stretch with the *x*-axis invariant?Write down the scale factor of the stretch.[2]

(v)
$$\mathbf{M} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$
 Which triangle is T mapped onto by \mathbf{M} ?

Write down the name of this transformation.

[2]

(b)
$$\mathbf{P} = \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}$$
 $\mathbf{Q} = (-1 & -2), \quad \mathbf{R} = (1 & 2 & 3), \quad \mathbf{S} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}.$

Only some of the following matrix operations are possible with matrices P, Q, R and S above.

$$PQ$$
, QP , $P+Q$, PR , RS

Write down and calculate each matrix operation that is possible. [6]