Corps en chute guidé par un rail

Etude d'un système solide ponctuel M de coordonnées (x, y) dans le plan en chute guidé sur un rail modélisé par une fonction C^2 sur le lieu d'évolution du système. $(\vec{g} = -g\vec{e_v})$

- I. Equation du mouvement dans le plan sur un rail modélisé par $\Gamma: x \to y = \Gamma(x)$
- 1. Résolution par approche énergétique : $\frac{dE_m}{dt} = \mathbf{0}$

Energie potentielle:

$$E_p = m g \Gamma(x)$$

Energie cinétique:

$$E_c = \frac{1}{2}mv^2$$

Vitesse (absolue) avec $y = \Gamma(x)$:

$$v = \frac{dx}{dt}\overrightarrow{e_x} + \frac{dy}{dt}\overrightarrow{e_y} = \frac{dx}{dt}\overrightarrow{e_x} + \frac{d}{dt}(\Gamma'(x))\overrightarrow{e_y} = \frac{dx}{dt}[\overrightarrow{e_x} + \Gamma'(x)\overrightarrow{e_y}]$$
$$v^2 = \left(\frac{dx}{dt}\right)^2 [1 + \Gamma'^2(x)]$$

Accélération:

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} \sqrt{1 + {\Gamma'}^2(x)} + \left(\frac{dx}{dt}\right)^2 \frac{{\Gamma''}(x){\Gamma'}(x)}{\sqrt{1 + {\Gamma'}^2(x)}}$$

Energie mécanique :

$$E_m = E_p + E_c = m g \Gamma(x) + \frac{1}{2} m \left(\frac{dx}{dt}\right)^2 [1 + {\Gamma'}^2(x)]$$

Conservation de l'énergie mécanique $\frac{dE_m}{dt} = 0$:

$$\frac{d}{dt}E_m = m g \frac{d}{dt} (\Gamma(x)) + mva = 0$$

$$mg\frac{dx}{dt}\Gamma'(x) + m\frac{d^2x}{dt^2}\frac{dx}{dt}\left(1 + {\Gamma'}^2(x)\right) + m\left(\frac{dx}{dt}\right)^3\Gamma''(x)\Gamma'(x) = 0$$

Relation différentielle x(t), $\Gamma(x(t))$:

$$\ddot{x}\left(1+{\Gamma'}^{2}(x)\right)+\dot{x}^{2}\Gamma''(x)\Gamma'(x)+g\Gamma'(x)=0$$

Forme alternative:

$$\ddot{x}\left(\Gamma'(x) + \frac{1}{\Gamma'(x)}\right) + \dot{x}^2\Gamma''(x) = -g$$

2. Résolution par approche dynamique : $m\overrightarrow{A(G,\Sigma/0)} = R(\overline{\Sigma/\Sigma})$

Vitesse (vectorielle):

$$\vec{v} = \frac{dx}{dt} \left[\overrightarrow{e_x} + \Gamma'(x) \overrightarrow{e_y} \right]$$

Accélération:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2x}{dt^2} \left[\vec{e_x} + \Gamma'(x) \vec{e_y} \right] + \left(\frac{dx}{dt} \right)^2 \Gamma''(x) \vec{e_y}$$

Inventaire des actions mécaniques s'appliquant au solide Σ :

- Poids : $\vec{P} = -mg\vec{e_v}$

- Réaction du support : $\vec{R} = R[-\sin\alpha \, \overrightarrow{e_x} + \cos\alpha \, \overrightarrow{e_y}]$

Avec $\tan \alpha = \frac{d\Gamma}{dx} = \Gamma'(x)$, pente de la rampe de chute

Equilibre dynamique:

$$m\vec{a} = \vec{R} + \vec{P}$$

Cette relation projetée selon $\overrightarrow{e_x}$ et $\overrightarrow{e_y}$ donne deux équations :

$$\begin{cases} \frac{d^2x}{dt^2} = -\frac{R}{m}\sin\alpha\\ \frac{d^2x}{dt^2}\Gamma'(x) + \left(\frac{dx}{dt}\right)^2\Gamma''(x) = \frac{R}{m}\cos\alpha - g \end{cases}$$

En neutralisant la résultante R :

$$-\ddot{x}\frac{\cos\alpha}{\sin\alpha} = \ddot{x}\Gamma'(x) + \dot{x}^2\Gamma''(x) + g$$

Par $\Gamma'(x) = \frac{\sin \alpha(x)}{\cos \alpha(x)}$, où α est l'angle de la pente de Γ on obtient les mêmes équations :

$$\ddot{x}\left(1+{\Gamma'}^2(x)\right)+\Gamma'(x)[\,\dot{x}^2\Gamma''(x)+g]=0$$

Forme alternative:

$$\ddot{x}\left(\Gamma'(x) + \frac{1}{\Gamma'(x)}\right) + \dot{x}^2\Gamma''(x) = -g$$

II. Simulation informatique, ODE sous forme

L'équation du mouvement $(x, \Gamma(x))$ sous forme canonique en paramètre de position x est la suivante :

$$\ddot{x}\left(1+{\Gamma'}^2(x)\right)+\Gamma'(x)[\dot{x}^2\Gamma''(x)+g]=0$$

C'est équation différentielle du premier ordre non-linéaire. C'est une ODE (Ordinary Differential Equation) que l'on peut écrire sous la forme suivante pour une résolution numérique :

$$\ddot{x} = -\Gamma'(x) \frac{\left[\dot{x}^2 \Gamma''(x) + g\right]}{1 + {\Gamma'}^2(x)}$$

Expression de la vitesse :

$$v = \frac{dx}{dt}\sqrt{1 + \Gamma'^2(x)}$$

- III. Prise en compte d'un frottement : $\vec{F} = -\mu \vec{v}$
- 1. Par la méthode énergétique :

$$d\left[\frac{1}{2}mv^{2} + mgy\right] = -w_{\vec{F}} = -\mu\vec{v}.\vec{dl} = -\mu\vec{v}^{2}dt = \mathcal{P}_{\vec{F}}dt$$

D'où:

$$mg\frac{dx}{dt}\Gamma'(x) + m\frac{d^2x}{dt^2}\frac{dx}{dt}\left(1 + {\Gamma'}^2(x)\right) + m\left(\frac{dx}{dt}\right)^3\Gamma''(x)\Gamma'(x) = -\frac{\mu}{m}\left(\frac{dx}{dt}\right)^2\left[1 + {\Gamma'}^2(x)\right]$$

Enfin

$$\ddot{x}\left(1+{\Gamma'}^2(x)\right)+\dot{x}\frac{\mu}{m}\left[1+{\Gamma'}^2(x)\right]+\dot{x}^2\Gamma''(x)\Gamma'(x)+g\Gamma'(x)=0$$

2. Par la méthode dynamique :

Nouvelle force s'appliquant au système : $\vec{F} = -\mu \vec{v} = -\mu \frac{dx}{dt} [\overrightarrow{e_x} + \Gamma'(x) \overrightarrow{e_y}]$

Projection de $m\vec{a} = \vec{R} + \vec{P} + \vec{F}$ sur $\overrightarrow{e_x}$ et $\overrightarrow{e_y}$.

$$\begin{cases} \frac{d^2x}{dt^2} = -\frac{R}{m}\sin\alpha - \frac{\mu}{m}\frac{dx}{dt} \\ \frac{d^2x}{dt^2}\Gamma'(x) + \left(\frac{dx}{dt}\right)^2\Gamma''(x) = \frac{R}{m}\cos\alpha - \frac{\mu}{m}\frac{dx}{dt}\Gamma'(x) - g \end{cases}$$

En neutralisant la résultante R :

$$-\ddot{x}\frac{\cos\alpha}{\sin\alpha} - \mu \frac{dx}{dt}\frac{\cos\alpha}{\sin\alpha} = \ddot{x}\Gamma'(x) + \dot{x}^2\Gamma''(x) + g + \frac{\mu}{m}\frac{dx}{dt}\Gamma'(x)$$

D'où:

$$\ddot{x}\left(1+{\Gamma'}^2(x)\right)+\dot{x}\frac{\mu}{m}\left[1+{\Gamma'}^2(x)\right]+\dot{x}^2\Gamma''(x)\Gamma'(x)+g\Gamma'(x)=0$$

Nouvelle expression canonique :

$$\ddot{x} + \frac{\mu}{m}\dot{x} + \Gamma'(x)\frac{[\dot{x}^2\Gamma''(x) + g]}{1 + {\Gamma'}^2(x)} = 0$$

Nouvelle expression intégrable :

$$\ddot{x} = -\frac{\mu}{m}\dot{x} - \Gamma'(x)\frac{[\dot{x}^2\Gamma''(x) + g]}{1 + {\Gamma'}^2(x)}$$

IV. Exemples de simulation par modélisation $M(x, \Gamma(x))$

1. Parabole inversée :

Durée simulation : t=2.5~s, $x_0=0~m$, $\mu=0$

$$\Gamma(x) = (1 - x)^2$$

$$\Gamma'(x) = 2(x-1)$$

$$\Gamma''(x) = 2$$

2. Cercle inversé:

Durée simulation : t=3.5~s, $x_0=0.001~m(\rightarrow 0)$, $\mu=0$

$$\Gamma(x) = 1 - \sqrt{1 - (x - 1)^2}$$

$$\Gamma'(x) = \frac{x-1}{\sqrt{1-(x-1)^2}}$$

$$\Gamma''(x) = \frac{-x^2 + (x-1)^2 + 2x - 2}{x\sqrt{1 - (x-1)^2}(x-2)}$$

3. Exponentiel

Simulation
$$t = 1.5$$
, $x_0 = 0$, $\mu = 0.5$, $p = 1$

$$\Gamma(x) = e^{-px}$$

$$\Gamma'(x) = -pe^{-px}$$

$$\Gamma''(x) = p^2 e^{-px}$$

4. Sinus

Simulation
$$t = 3$$
, $x_0 = 0$, $\mu = 0$

$$\Gamma(x) = e^{-px}$$

$$\Gamma'(x) = -ne^{-px}$$

$$\Gamma'(x) = -pe^{-px}$$

$$\Gamma''(x) = p^2e^{-px}$$

5. Hyperbole (fonction inverse)

Simulation
$$t=2$$
, $x_0=0$, $\mu=0.5$

$$\Gamma(x) = \frac{1}{x+1}$$

$$\Gamma'(x) = -\frac{1}{(x+1)^2}$$

$$\Gamma''(x) = \frac{2}{(x+1)^3}$$

Corps en chute libre

V. Equation différentielle du mouvement en y avec $x = \Lambda(y)$ (méthode énergétique, idem avec la méthode dynamique) :

Vitesse:

$$\vec{v} = \frac{dx}{dt} \vec{e_x} + \frac{dy}{dt} \vec{e_y} = \frac{dy}{dt} \left[\Lambda'(y) \vec{e_x} + \vec{e_y} \right]$$

Vitesse absolue:

$$v^2 = \left(\frac{dy}{dt}\right)^2 \left[1 + {\Lambda'}^2(y)\right]$$

Accélération absolue :

$$a = \frac{d^2y}{dt^2}\sqrt{1 + \Lambda'^2(y)} + \left(\frac{dy}{dt}\right)^2 \frac{\Lambda'(y)\Lambda''(y)}{\sqrt{1 + \Lambda'^2(y)}}$$

Energie mécanique :

$$\frac{dE_m}{dt} = mg\frac{dy}{dt} + mva = -\mu v^2$$

Equation différentielle canonique en y :

$$\ddot{y} + \frac{\mu}{m}\dot{y} + \dot{y}^2 \frac{\Lambda'(y)\Lambda''(y)}{1 + \Lambda'^2(y)} + g \frac{1}{1 + \Lambda'^2(y)} = 0$$

VI. Etude des similitudes des équations disjointes :

$$\forall t \in \mathcal{R} \begin{cases} x(t) = \Gamma(y(t)) \\ y(t) = \Lambda(x(t)) \end{cases} \rightarrow \begin{cases} x = \Gamma(y) \\ y = \Lambda(x) \end{cases}$$

D'où : $\Gamma(\Lambda(x)) = \operatorname{Id}_x \operatorname{et} \Lambda(\Gamma(y)) = \operatorname{Id}_y$:

Mise en confrontation des équations :

$$\begin{cases} \ddot{x} + \frac{\mu}{m}\dot{x} + \dot{x}^2 \frac{\Gamma'(x)\Gamma''(x)}{1 + {\Gamma'}^2(x)} + g \frac{\Gamma'(x)}{1 + {\Gamma'}^2(x)} = 0\\ \ddot{y} + \frac{\mu}{m}\dot{y} + \dot{y}^2 \frac{\Lambda'(y)\Lambda''(y)}{1 + {\Lambda'}^2(y)} + g \frac{1}{1 + {\Lambda'}^2(y)} = 0 \end{cases}$$

VII. Formulation mixte dans le plan, courbe paramétrée avec frottements :

On considère une courbe paramétrée dans le plan, avec p comme paramètre :

$$\begin{cases} x = \lambda(p) \\ y = \gamma(p) \end{cases}$$

Vitesse:

$$\vec{v} = \frac{dx}{dt} \vec{e_x} + \frac{dy}{dt} \vec{e_y} = \frac{dp}{dt} \left[\lambda'(p) \vec{e_x} + \gamma'(p) \vec{e_y} \right]$$

Vitesse absolue:

$$v^{2} = \left(\frac{dp}{dt}\right)^{2} \left[\lambda'^{2}(p) + \gamma'^{2}(p)\right]$$
$$v = \frac{dp}{dt} \sqrt{\lambda'^{2}(p) + \gamma'^{2}(p)}$$

Accélération:

$$a = \frac{d^2p}{dt^2} \sqrt{\lambda'^2(p) + \gamma'^2(p)} + \left(\frac{dp}{dt}\right)^2 \frac{\lambda''(p)\lambda'(p) + \gamma''(p)\gamma'(p)}{\sqrt{\lambda'^2(p) + \gamma'^2(p)}}$$

Energie mécanique :

$$\frac{dE_m}{dt} = mg\frac{dy}{dt} + mva = -\mu v^2$$

$$g\frac{dp}{dt}\gamma'(p) + \frac{dp}{dt}\frac{d^{2}p}{dt^{2}}\left[\lambda^{'2}(p) + \gamma^{'2}(p)\right] + \left(\frac{dp}{dt}\right)^{3}\left[\lambda^{''}(p)\lambda^{'}(p) + \gamma^{''}(p)\gamma^{'}(p)\right] = -\frac{\mu}{m}\left(\frac{dp}{dt}\right)^{2}\left[\lambda^{'2}(p) + \gamma^{'2}(p)\right]$$

Equation du mouvement :

$$\ddot{p} + \frac{\mu}{m}\dot{p} + \dot{p}^2 \frac{\lambda''(p)\lambda'(p) + \gamma''(p)\gamma'(p)}{\lambda'^2(p) + \gamma'^2(p)} + g \frac{\gamma'(p)}{\lambda'^2(p) + \gamma'^2(p)} = 0$$

Vérification de l'équation paramétrique :

En reprenant les modèles précédents :

$$\begin{cases} x = p \\ y = \Gamma(x) = \gamma(p) \end{cases} \quad \text{ou} \quad \begin{cases} x = \Lambda(p) = \lambda(y) \\ y = p \end{cases}$$

On retrouve les équations suivant x et y précédentes

Forme de l'équation différentielle :

On peut poser : $\varphi = \frac{1}{2}$

$$\xi(p) = \lambda'^{2}(p) + \gamma'^{2}(p) \qquad \qquad \psi(p) = \frac{1}{2\xi(p)} \frac{d \, \xi(p)}{dp} = \frac{1}{\xi(p)} [\lambda''(p)\lambda'(p) + \gamma''(p)\gamma'(p)]$$

D'où la réécriture de l'équation :

$$\ddot{p} + \varphi \dot{p} + \psi(p)\dot{p}^2 + g\frac{\gamma'(p)}{\xi(p)} = 0$$

Conclusion:

Equation du mouvement sur courbe paramétrée avec p:t o p(t)

Position : M(x, y)

$$\begin{cases} x = \lambda(p) \\ y = \gamma(p) \end{cases}$$

Variable définie :

$$\xi(p) = \lambda'^{2}(p) + \gamma'^{2}(p)$$

$$\ddot{p} + \frac{\mu}{m}\dot{p} + \frac{1}{2\xi(p)}\frac{d\xi(p)}{dp}\dot{p}^2 + g\frac{1}{\xi(p)}\frac{d\gamma(p)}{dp} = 0$$

Vitesse:

$$\vec{v} = \frac{dp}{dt} \left[\lambda'(p) \overrightarrow{e_x} + \gamma'(p) \overrightarrow{e_y} \right]$$

$$v = \frac{dp}{dt} \sqrt{\xi(p)}$$

Accélération:

$$a = \frac{d^2p}{dt^2}\sqrt{\xi(p)} + \left(\frac{dp}{dt}\right)^2 \frac{1}{2\sqrt{\xi(p)}} \frac{d\xi(p)}{dp}$$

Formulation simplifiée :

Equation du mouvement sur courbe paramétrée avec $p: t \to p(t)$

Position : $M(x, y) = (\lambda, \gamma)$

Variable définie : $\xi = \lambda'^2 + \gamma'^2$

Equation du mouvement :

$$\ddot{p} + \frac{\mu}{m}\dot{p} + \frac{\xi'}{2\xi}\dot{p}^2 + g\frac{\gamma'}{\xi} = 0$$

Distance parcourue:

$$D(p) = \int_0^p \sqrt{dx^2 + dy^2}$$

Or $dx = d(x(p)) = d(\lambda(p)) = \lambda'(p)dp$ et $dy = \gamma'(p)dp$, d'où :

$$D(t) = \int_0^p \sqrt{\lambda'^2(p) + \gamma'^2(p)} dp = \int_0^{p(t)} \sqrt{\xi(p)} dp = \int_0^t \frac{dp}{dt} \sqrt{\xi(p)} dt = \int_0^t v dt$$

Etude du plan incliné :

GeoGebra Classique

Equation de la courbe :

$$p^2 = x^2 + y^2$$
$$a = \tan \alpha = \frac{y}{x}$$

On a donc, on pose $\check{a} = \sqrt{1 + a^2}$:

$$\begin{cases} \lambda(p) = \frac{p}{\breve{a}} \\ \gamma(p) = \frac{ap}{\breve{a}} \end{cases}$$

Equation différentielle du mouvement : $\xi(p)=\frac{1+a}{\breve{a}^2}=\frac{1+a}{1+a^2}$

On a donc:

$$\ddot{p} + g \frac{a (1+a)}{\ddot{a}^3} = 0$$

Cas particuliers:

$\alpha = 0$	a = 0	$\lambda = p$	$\ddot{p}=0$
		$\gamma = 0$	
$\alpha = \frac{\pi}{4}$	a = 1	$\lambda = p/\sqrt{2}$ $\gamma = p/\sqrt{2}$	$\ddot{p} = -g/\sqrt{2}$
4		$\gamma = p/\sqrt{2}$	
$\alpha = \frac{\pi}{}$	$a = +\infty$	$\lambda = 0$	$\ddot{p} = -g$
$\alpha = \frac{1}{2}$		$\gamma = p$	-

Etude fonctionnel de l'équation du mouvement :

Reformulation : $\mathcal{A}(p) = \frac{1}{2\xi(p)} \frac{d\xi(p)}{dp}$, $\mathcal{B}(p) = -g \frac{1}{\xi(p)} \frac{d\gamma(p)}{dp}$, on obtient donc :

(C)
$$\ddot{p} + \mathcal{A}(p) \times \dot{p}^2 = \mathcal{B}(p)$$

Analyse globale:

L'équation (\mathcal{C}) est linéaire si et seulement si :

$$\begin{cases} \mathcal{A} = 0 \\ \mathcal{B} = cte \end{cases} \Leftrightarrow \begin{cases} \xi' = 0 \\ \xi = K\gamma' \end{cases} \Leftrightarrow \xi = K\gamma' = cte \Leftrightarrow \begin{cases} \gamma' = L \\ \xi = KL = cte \end{cases} \Leftrightarrow \begin{cases} \gamma' = L \\ \lambda'^2 + L^2 = cte \end{cases} \Leftrightarrow \begin{cases} \gamma' = L \\ \lambda' = M \end{cases}$$

C'est-à-dire que le guide de chute est un plan incliné.

Analyse annexe, si on considère une équation différentielle du type :

$$\dot{u} + Au^2 = B$$

La mise sous forme différentielle permet de résoudre l'équa diff :

$$\frac{du}{B - Au^2} = dt$$

Avec A = A(u) et B = B(u), on pourra écrire : $t - t_0 = \mathcal{H}(u)$

Et possiblement déterminer $u = \mathcal{H}^{-1}(t - t_0)$

Cependant dans cette étude A et B dépendant forcément de $\int u$ et non et u, d'où cette remarque « annexe ».

Analyse des équations différentiels du type (C):

Coeff constants a = A et B = 0:

$$\ddot{p} + a\dot{p}^2 = 0$$

$$\Rightarrow \frac{d\dot{p}}{\dot{p}^2} = -adt$$

$$\Rightarrow \frac{1}{\dot{p}} - \frac{1}{\dot{p}_0} = a(t - t_0)$$

$$\Rightarrow \dot{p} = \frac{1}{\frac{1}{\dot{p}_0} + a(t - t_0)} = \frac{1}{at + C}$$

Un coeff variable $a(p) = \mathcal{A}$ et $\mathcal{B} = 0$:

$$\ddot{p} + a(p)\dot{p}^2 = 0$$

Coeff constants a = A et b = B:

$$\ddot{p} + a\dot{p}^2 = b$$

Equation différentielle du type, $u=\dot{p}$:

$$\dot{u} + au^2 = b$$

On pose $r = \sqrt{\frac{b}{a}}$:

$$\Rightarrow \dot{u} + a(u+r)(u-r) = 0$$

Forme différentielle:

$$\frac{du}{(u+r)(u-r)} = -adt$$

Intégration entre u_0 et u et entre t_0 et t, décomposition simple :

$$-\frac{1}{2r} \int_{u_0}^{u} \left[\frac{1}{u+r} - \frac{1}{u-r} \right] du = -a(t-t_0)$$

D'où:

$$\ln\left(\frac{u-r}{u+r}\frac{u_0+r}{u_0-r}\right) = -2ra(t-t_0)$$

$$\Rightarrow \frac{u-r}{u+r} = \frac{u_0-r}{u_0+r} \exp\left(-2ra(t-t_0)\right) = Q(t)$$

$$\Rightarrow u = r\frac{1+Q}{1-Q}$$

D'où l'expression finale de u solution de l'équation différentielle :

$$u(t) = r \frac{1 + \frac{u_0 - r}{u_0 + r} \exp(-2ra(t - t_0))}{1 - \frac{u_0 - r}{u_0 + r} \exp(-2ra(t - t_0))}$$

Que l'on peut mettre sous la forme :

$$u(t) = r \left[1 + 2 \frac{(u_0 - r) \exp(-2ra(t - t_0))}{u_0 + r - (u_0 - r) \exp(-2ra(t - t_0))} \right]$$

Exemple pour a = 1, v = 1, $u_0 = 0$, $t_0 = 0$:

$$u_p(t) = \frac{1 - e^{-2t}}{1 + e^{-2t}} = 1 - 2\frac{e^{-2t}}{1 + e^{-2t}}$$

Analyse de \mathcal{A} :

Comme $\mathcal{A}(p) = \frac{1}{2\xi(p)} \frac{d\xi(p)}{dp} = \frac{\dot{\lambda}\ddot{\lambda} + \dot{\gamma}\ddot{\gamma}}{\dot{\lambda}^2 + \dot{\gamma}^2}$, si on considère une courbe à direction unique (vers x croissant), on peut poser :

$$\begin{cases} x = \lambda(p) = p \\ y = \gamma(p) = \gamma(x) \end{cases}$$

On obtient donc la forme simplifiée de \mathcal{A} :

$$\mathcal{A}(p) = \frac{\dot{\gamma}\ddot{\gamma}}{1 + \dot{\gamma}^2}$$

Avec $\mathcal{A} = a$ constant on pourra effectuer une analyse simplifier :

$$\Rightarrow \dot{\gamma}\ddot{\gamma} = a(1 + \dot{\gamma}^2)$$

On pose $u = \dot{\gamma}$:

$$\Rightarrow u \frac{du}{dx} = a[1 + u^2]$$

$$\Rightarrow \frac{u}{1 + u^2} du = adx$$

$$\Rightarrow \frac{1}{2} \ln \left(\frac{1 + u^2}{1 + u_0^2} \right) = a(x - x_0)$$

$$\Rightarrow u = \sqrt{(1 + u_0^2) e^{2a(x - x_0)} - 1}$$

$$\Rightarrow \lambda = \int_{x_0}^x u dx = \int_{x_0}^x \sqrt{(1 + u_0^2) e^{2a(x - x_0)} - 1} dx$$

VIII. Etude d'une chute guidée sur la courbe paramétrée :

1. Courbe sinusoïdale x, y

$$\begin{cases} x(t) = \lambda(t) = \cos(t) \\ y(t) = \gamma(t) = \sin(3t) \end{cases}$$

ts:

$$\xi(t) = \lambda'^{2}(t) + \gamma'^{2}(t) = \sin^{2}(t) + 9\cos^{2}(3t)$$

$$\psi(t) = \frac{1}{2\xi(t)} \frac{d\xi(t)}{dt} = \frac{\cos(t)\sin(t) + 27\sin(3t)\cos(3t)}{\sin^{2}(t) + 9\cos^{2}(3t)}$$

$$\frac{1}{\xi(t)} \frac{d\gamma(t)}{dt} = \frac{3\cos(3t)}{\sin^{2}(t) + 9\cos^{2}(3t)}$$

Equation intégrable :

$$\ddot{p} = -\frac{\mu}{m}\dot{p} - \frac{\cos(p)\sin(p) + 27\sin(3p)\cos(3p)}{\sin^2(p) + 9\cos^2(3p)}\dot{p}^2 - g\frac{3\cos(3p)}{\sin^2(p) + 9\cos^2(3p)}$$

Résultats: (temps = 5s, 2000points, frottements = 0, p0 = pi/6, vp0 = -1, m=1kg)

Résultats: (temps = 5s, 2000points, frottements = 0.02, p0 = pi/6, vp0 = -2, m=1kg)

2. Sinus à amplitude de croissance linéaire :

Temps: 10s, points: 1000

$$\begin{cases} x(t) = \lambda(t) = t \sin(t) \\ y(t) = \gamma(t) = t \end{cases}$$

3. Strophoïde de Newton

$$\begin{cases} x(t) = \lambda(t) = (1 - \sin t) \tan t \\ y(t) = \gamma(t) = -\sin t \end{cases}$$

$$\begin{cases} \lambda'(t) = -\cos t \tan t + (1 - \sin t)(\tan^2 t + 1) \\ \gamma'(t) = -\cos t \end{cases}$$

$$\begin{cases} \lambda''(t) = \sin t \tan t - 2\cos t (1 + \tan^2 t) + 2(1 - \sin t) \tan t (1 + \tan^2 t) \\ \gamma''(t) = \sin t \end{cases}$$

4. Isochrone de Leibniz:

Le système en chute guidée possède une vitesse verticale constante v_s

L'équation de la trajectoire est :

$$x^2 = -\frac{8}{9} \frac{g}{v_s^2} y^3$$

Courbe:

Preuve:

On considère un corps de masse m de vitesse initiale v_s , on néglige tout frottement. L'équation de conservation de l'énergie mécanique donne :

$$\frac{1}{2}mv_s^2 = \frac{1}{2}mv^2 + mgy \implies v_0^2 = v^2 + 2gy$$

En explicitant la vitesse :

$$v^2 = \dot{x}^2 + \dot{y}^2$$

D'où:

$$\dot{x}^2 = -\dot{y}^2 - 2gy + v_s^2$$

On souhaite que $\dot{y}=-v_s$ et $y(t)=-v_st+y_0$, on peut choisir $y_0=0$ par translation de l'origine sur l'axe vertical.

D'où:

$$\dot{x}^2 = -2gy = 2gv_0t$$

On obtient le système décrivant le mouvement :

$$\begin{cases} y = -v_s t \\ \dot{x} = \sqrt{2gv_s t} \end{cases} \rightarrow \begin{cases} y = -v_s t \\ x = \frac{2}{3}\sqrt{2gv_s t^3} \end{cases}$$

La vitesse verticale sera donc constante et égale à v_s

On obtient finalement la courbe permettant cette trajectoire :

$$x^2 = -\frac{8}{9} \frac{g}{v_s^2} y^3$$

$$\Leftrightarrow y = -\frac{1}{2} \left[9 \frac{v_s^2}{g} x^2 \right]^{\frac{1}{3}}$$

Simulation informatique:

On utilise la paramétrisation suivante :

$$\begin{cases} x = \lambda(p) = \Lambda(p) = \frac{2\sqrt{2g}}{3v_s} p^{\frac{3}{2}} \\ y = \gamma(p) = -p \end{cases}$$

On a alors:

$$\xi(p) = 1 + \Lambda'^{2}(p) = 1 + \frac{2g}{v_{s}^{2}}p$$

$$\frac{d\xi(p)}{dp} = \frac{2g}{v_{s}^{2}}$$

Equation différentielle du mouvement sans frottements ($\mu = 0$):

$$\ddot{p} + \frac{g}{v_s^2 + 2gp}(\dot{p}^2 - v_s^2) = 0$$

Synthèse de la modélisation :

Equation du mouvement pour un objet en chute guidée sur l'isochrone de Leibniz :

$$\ddot{p} + \frac{g}{v_s^2 + 2gp}(\dot{p}^2 - v_s^2) = 0$$

Avec la paramétrisation suivante :

$$\begin{cases} x = \lambda(p) = \frac{2\sqrt{2g}}{3v_s} p^{\frac{3}{2}} \\ y = \gamma(p) = -p \end{cases}$$

Vitesse verticale stable du système : v_s

La vitesse initiale du solide est égale (au signe près) à sa vitesse verticale initiale (avec $p_0 = p(t=0) = p(0) = 0$:

$$v_y(0) = \vec{v} \cdot \overrightarrow{e_y} = \frac{dp}{dt}(0)\gamma'(p(0)) = \frac{v(0)}{\sqrt{\xi(p_0)}}\gamma'(p_0) = -v(0)$$

Résultats pour une courbe de Leibniz de vitesse verticale stable de $v_s=2m/s$

Pour une vitesse verticale (adaptée) de $v(t=0)=v_s=-v_y=2m/s$ on obtient les résultats suivants :

On observe que la vitesse verticale v_y est constante égale à -2m/s égale à l'opposé de la vitesse paramétrique v_p .

Cependant la vitesse horizontale v_x augmente, l'augmentation de l'énergie cinétique du solide se traduit par l'augmentation de la vitesse horizontale uniquement.

Pour une vitesse verticale initiale différente (au signe près) de la vitesse verticale stable : $v(t=0)=-v_y\neq v_s=2m/s$, par exemple v(t=0)=6m/s.

On observe ici que la vitesse verticale se restabilise très rapidement autour de la vitesse verticale stable de la courbe $v_s = -2m/s$.

Identification d'un nouveau type d'équation différentielle (étude dans équations diff non lin à convergence)

$$\mathcal{L}_z : \ddot{y} + \psi(y)(\dot{y}^2 - v^2) = 0$$

L'évolution du paramètre $\psi(p)=\frac{g}{v_s^2+2gp}$ dans le temps part de $\psi(0)=\frac{g}{v_s^2}\cong 2.45m^{-1}$ et tend vers 0 pour $t\to +\infty$. En sachant que p est presque proportionnel t en se rapprochant de l'état stable

IX. Formulation mixte dans l'espace

On considère une courbe paramétrée dans le plan, avec p comme paramètre ($\vec{g}=-g\vec{e_v}$):

$$\begin{cases} x = \lambda(p) \\ y = \gamma(p) \\ z = \sigma(p) \end{cases}$$

Vitesse:

$$\vec{v} = \frac{dx}{dt} \overrightarrow{e_x} + \frac{dy}{dt} \overrightarrow{e_y} + \frac{dz}{dt} \overrightarrow{e_z} = \frac{dp}{dt} \left[\lambda'(p) \overrightarrow{e_x} + \gamma'(p) \overrightarrow{e_y} + \sigma'(p) \overrightarrow{e_z} \right]$$

Vitesse absolue :

$$v^{2} = \left(\frac{dp}{dt}\right)^{2} \left[\lambda'^{2}(p) + \gamma'^{2}(p) + \sigma'^{2}(p)\right]$$
$$v = \frac{dp}{dt} \sqrt{\lambda'^{2}(p) + \gamma'^{2}(p) + \sigma'^{2}(p)}$$

Redéfinition de $\xi(p)$:

$$\xi(p) = \lambda'^{2}(p) + \gamma'^{2}(p) + \sigma'^{2}(p)$$

En effectuant les mêmes calculs que dans le plan, on obtient les mêmes équations finales avec cette redéfinition de ξ précédente.

Position : M(x, y, z)

$$\begin{cases} x = \lambda(p) \\ y = \gamma(p) \\ z = \sigma(p) \end{cases}$$

Variable définie :

$$\xi(p) = \lambda'^2(p) + \gamma'^2(p) + \sigma'^2(p)$$

Vitesse:

$$\vec{v} = \frac{dp}{dt} \left[\lambda'(p) \overrightarrow{e_x} + \gamma'(p) \overrightarrow{e_y} + \sigma'(p) \overrightarrow{e_z} \right]$$
$$v = \frac{dp}{dt} \sqrt{\xi(p)}$$

Détermination d'une courbe paramétrée en fonction de la trajectoire :

De l'équation du mouvement (sans frottements) : $\ddot{p} + \frac{\xi'}{2\xi}\dot{p}^2 + \frac{g\gamma'}{\xi} = 0$ pour un paramétrage $\begin{cases} x = \lambda(p) \\ y = \gamma(p) \end{cases}$, on souhaite déterminer la courbe paramétrée qui permettrait d'obtenir une trajectoire x(t) ou y(t) souhaitée.

Courbe plane avec paramétrage $y = \Gamma(x)$:

Courbe paramétrée par x=p et $y=\Gamma(p)=\Gamma(x)$ on souhaite obtenir une trajectoire x(t) en fonction du temps.

Or $\xi(p)=1+\Gamma'^2(p)$ et $\xi'(p)=2\Gamma''(p)\Gamma'(p)$, ainsi en réinjectant p(t)=x(t) dans l'équation différentielle du mouvement on obtient :

$$\ddot{x} + \frac{\Gamma'(x)\Gamma''(x)}{1 + \Gamma'^{2}(x)}\dot{x}^{2} + \frac{g\Gamma'(x)}{1 + \Gamma'^{2}(x)} = 0$$

D'où la forme intégrable (ODE) de l'équation :

$$\Gamma''(x) = -\frac{\ddot{x}\left[\frac{1}{\Gamma'(x)} + \Gamma'(x)\right] + g}{\dot{x}^2}$$

Avec x=x(t), l'intégration se fera selon la variable x à pas constant ainsi au pas suivant $x_{n+1}=x_n+p$, il faudra calculer le temps $t_{n+1}=x^{-1}(x_{n+1})$ et pour pouvoir calculer $\dot{x}_{n+1}=\frac{dx}{dt}(t_{n+1})$ et $\ddot{x}_{n+1}=\frac{d^2x}{dt^2}(t_{n+1})$.

MEMO

Le paramètre p dépend à tout moment du temps t, donc p=p(t)

SYMBOLE	NOM	EXEMPLE OU EXPRESSION	
$\overrightarrow{m{g}}$	Constante de pesanteur	$\vec{g} = -g\vec{e_{\nu}}$	
m	Masse constante	$\vec{P}=m\vec{g}$	
μ	Coefficient de frottement visqueux	$\vec{F} = -\mu \vec{v}$	
$\boldsymbol{E_c}$	Energie Cinétique	$E_c = \frac{1}{2}mv^2$	
$\boldsymbol{E}_{\boldsymbol{p}}$	Energie potentielle (ici de pesanteur)	$E_p = mgy$	
E_{m}	Energie mécanique	$E_m = E_c + E_p$	
$w_{\overrightarrow{F}}$	Travail élémentaire de la force de frottement	$\mathbf{w}_{\vec{F}} = \vec{F} . \overrightarrow{dl} = -\mu \vec{v}^2 dt$	
x	Position x du système	\uparrow Y Axe vertical : y	
y	Position y du système		
Z	Position z du système	X	
p	Paramètre de courbe	$M(x(p), y(p)): \begin{cases} x(p) = \lambda(p) \\ y(p) = \gamma(p) \end{cases}$ $M(x, y, z): \begin{cases} x(p) = \lambda(p) \\ y(p) = \gamma(p) \\ z(p) = \sigma(p) \end{cases}$	
DANS LE PL	DANS LE PLAN		
λ	Relation paramétrique $x \sim p$	$x(p) = \lambda(p)$	
Λ	Relation paramétrique $x \sim p$ quand $y = p$	$x(p) = \Lambda(p)$ et $y(p) = p$	
γ	Relation paramétrique $y \sim p$	$y(p) = \gamma(p)$	
Γ	Relation paramétrique $y \sim p$ quand $x = p$	$y(p) = \Gamma(p)$ et $x(p) = p$	
ξ	Coefficient de vitesse mixte	$\xi(p) = \lambda'^{2}(p) + \gamma'^{2}(p)$	
DANS L'ESP	PACE		
ξ	Coefficient de vitesse mixte	$\xi(p) = \lambda'^{2}(p) + \gamma'^{2}(p) + \sigma'^{2}(p)$	
EXPRESSIONS GENERALES DES GRANDEURS DYNAMIQUES			
$ec{m{v}}$	Vecteur vitesse	$\vec{v} = \frac{dp}{dt} \left[\lambda'(p) \overrightarrow{e_x} + \gamma'(p) \overrightarrow{e_y} + \sigma'(p) \overrightarrow{e_z} \right) \right]$	
v	Vitesse absolue	$v = \frac{dp}{dt}\sqrt{\xi(p)}$	
p	Vitesse paramétrique :	$\dot{p} = \frac{dp}{dt} = \frac{v}{\sqrt{sc}}$	
а	Accélération absolue	$a = \frac{d^2p}{dt^2} \sqrt{\xi(p)} + \left(\frac{dp}{dt}\right)^2 \frac{1}{2\sqrt{\xi(p)}} \frac{d\xi(p)}{dp}$	
ψ	Coefficient en \dot{p}^2 dans l'équation différentielle de la chute guidée	$\psi(p) = \frac{1}{2\xi(p)} \frac{d\xi(p)}{dp}$	