CORRIGÉ : MATRICES DONT LES VALEURS PROPRES SONT SUR LA DIAGONALE (CCP MP 2008)

I. EXEMPLES

1. a) Le polynôme caractéristique de $M(\alpha)$ est

$$\chi_{M(\alpha)} = \begin{vmatrix} 1 - X & -1 & \alpha \\ 0 & 2 - X & -\& \\ 1 & 1 & 2 - \alpha - X \end{vmatrix} \xrightarrow{C_1 \leftarrow C_1 - C_2} \begin{vmatrix} 2 - X & -1 & \alpha \\ -2 + X & 2 - X & -\alpha \\ 0 & 1 & 2 - \alpha - X \end{vmatrix}$$
$$= (2 - X) \begin{vmatrix} 1 & -1 & \alpha \\ -1 & 2 - X & -\alpha \\ 0 & 1 & 2 - \alpha \end{vmatrix} \xrightarrow{L_2 \leftarrow L_2 + L_1} (2 - X) \begin{vmatrix} 1 & -1 & \alpha \\ 0 & 1 - X & 0 \\ 0 & 1 & 2 - \alpha - X \end{vmatrix}$$
$$= (2 - X) \begin{vmatrix} 1 - X & 0 \\ 1 & 2 - \alpha - X \end{vmatrix} = (2 - X)(1 - X)((2 - \alpha) - X)$$

Les racines de $\chi_{M(\alpha)}$, c'est-à-dire les valeurs propres de $M(\alpha)$, sont bien les éléments diagonaux de

Pour tout α , la matrice $M(\alpha)$ est une matrice à diagonale propre.

- **b)** Si $\alpha \neq 0$ et $\alpha \neq 1$ alors les valeurs propres de $M(\alpha)$ sont deux à deux distinctes, $M(\alpha)$ est diagonalisable.
 - Si $\alpha=0$ les valeurs propres sont 1 de multiplicité 1 et 2 de multiplicité 2.

$$\operatorname{rg}(M(0)-2I_3)=\operatorname{rg}\begin{pmatrix} -1 & -1 & 0\\ 0 & 0 & 0\\ 1 & 1 & 0 \end{pmatrix}=1$$
, la dimension de $E_2=\operatorname{Ker}(M(0)-2I_3)$ est donc 2 et $M(0)$ est diagonalisable.

– Si $\alpha=1$ les valeurs propres sont 1 de multiplicité 2 et 2 de multiplicité 1.

$$\operatorname{rg}(M(1)-I_3)=\operatorname{rg}\begin{pmatrix}0&-1&1\\0&1&-1\\0&1&1\end{pmatrix}=2$$
, la dimension de E_1 est donc 1 et $M(0)$ n'est pas diagonalisable.

En conclusion:

 $M(\alpha) \mbox{ est diagonalisable si et seulement si }\alpha\neq 1.$ 2. Un calcul rapide donne $\chi_A=-X^3-X$. χ_A n'est pas scindé sur $\mathbb R$ donc

la matrice
$$A$$
 n'est pas à diagonale propre.

3. * Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. $\chi_A = X^2 - (a+d)X + (ad-bc)$.

La matrice A est à diagonale propre si et seulement si $\chi_A = (a-X)(d-X)$, c'est à dire si et seulement si bc = 0.

 \mathcal{E}_2 est donc l'ensemble des matrices triangulaires.

* L'application qui à toute matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ associe le réel bc est continue (polynomiale); \mathcal{E}_2 est l'image réciproque de $\{0\}$, qui est une partie fermée de \mathbb{R} , par cette application donc, d'après un célèbre théorème du cours :

 \mathcal{E}_2 est donc une partie fermée de $\mathcal{M}_2(\mathbb{R})$.

II. TEST DANS LE CAS n=3

4. * Une matrice est inversible si et seulement si 0 n'en est pas valeur propre (cf. cours); dans le cas d'une MDP on obtient donc

Une matrice à diagonale propre est inversible si et seulement si ses éléments diagonaux sont tous non nuls

* Il suffit de prendre une matrice triangulaire, non diagonale et inversible : par exemple (juste parce que l'énoncé demande le calcul!) :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ alors } A^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ sont toutes deux des MDP.}$$

5. Soit $A = (a_{ij})$ une matrice de $\mathcal{M}_3(\mathbb{R})$. A est une matrice à diagonale propre si et seulement si son polynôme caractéristique est égal à $(a_{11} - X)(a_{22} - X)(a_{33} - X)$.

En développant simplement ces deux polynômes et en identifiant leurs coefficients on trouve que

```
A est une matrice à diagonale propre si et seulement si \det A = \prod_{i=1}^3 a_{ii} et a_{12}a_{21} + a_{13}a_{31} + a_{23}a_{32} = 0
```

6. a) Version Maple:

b) puis le calcul:

true

false

 $MDP(A^{(-1)});$

true

Au final, on trouve:

Les matrices à diagonale propre sont
$$A_1$$
, A_3 , A_4 , A_5 , A_6 et A_8

c) Dans la liste précédente, seules A_1 et A_4 sont des MDP ainsi que leurs inverses; cela permet de conjecturer qu'une condition serait :

$$a_{12}a_{21} = a_{13}a_{31} = a_{23}a_{32} = 0$$

d) * Cette condition n'est cependant pas *nécessaire*; en effet, si l'on considère $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$ on

obtient grâce à Maple,
$$A^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ -1/2 & 1/2 & 1 \\ -1/2 & -1/2 & 1 \end{pmatrix}$$
 et :

true

B := 1/A; MDP(B);

true

- * De même, la condition $a_{12}a_{21}=0$ ou $a_{13}a_{31}=0$ ou $a_{23}a_{32}=0$ n'est, elle, pas suffisante comme le montre l'exemple de la matrice A_3 , qui est inversible et MDP mais pas son inverse!
- * Bref, tout ce que l'on peut démontrer, c'est :

Si A est inversible et MDP et si
$$a_{12}a_{21} = a_{13}a_{31} = a_{23}a_{32} = 0$$
, alors A^{-1} est aussi MDP.

 $D\'{e}monstration:$

- Le cas d'une matrice triangulaire est immédiat.
- Il suffit donc d'examiner le cas de matrices de la forme $A = \begin{pmatrix} \alpha & a & b \\ 0 & \beta & 0 \\ 0 & c & \gamma \end{pmatrix}$, avec $\alpha\beta\gamma \neq 0$ (il y a d'autres formes, mais la démonstration est similaire).

Il suffit alors simplement de calculer A^{-1} et de vérifier que c'est bien une MDP; et Maple fait cela très bien...

On trouve
$$A^{-1} = \begin{pmatrix} \alpha^{-1} & -\frac{-cb + \alpha\gamma}{\alpha\beta\gamma} & -\frac{b}{\alpha\gamma} \\ 0 & \beta^{-1} & 0 \\ 0 & -\frac{c}{\beta\gamma} & \gamma^{-1} \end{pmatrix}$$
.

III. EXEMPLES DE MATRICES PAR BLOCS

7. Soit $M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$. On note r et s les dimensions des matrices carrées A et C.

$$\text{Alors } \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = \begin{bmatrix} I_r & 0 \\ 0 & C \end{bmatrix} \times \begin{bmatrix} A & B \\ 0 & I_s \end{bmatrix}.$$

En développant r fois par rapport à la première colonne, on montre que

$$\det \begin{bmatrix} I_r & 0 \\ 0 & C \end{bmatrix} = \det C$$

et en développant s fois par rapport à la dernière ligne, on montre que

$$\det \begin{bmatrix} A & B \\ 0 & I_s \end{bmatrix} = \det A.$$

On a donc bien $\det M = \det A \det C$.

8. a) * Si $M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$ est une matrice par blocs de $\mathcal{M}_n(\mathbb{R})$, et si les matrices A et C sont des matrices carrées d'ordre r et s à diagonale propre, alors M est une matrice à diagonale propre. En effet, d'après la question précédente,

$$\chi_M = \det \begin{bmatrix} A - XI_r & B \\ 0 & C - XI_s \end{bmatrix} = \det(A - XI_r) \det(C - XI_s) = \chi_A \chi_C.$$

Les matrices A et C étant à diagonale propre, leurs valeurs propres sont leurs éléments diagonaux, et les valeurs propres de M étant la réunion de celles de A et de B sont donc aussi ses éléments diagonaux.

* On prend alors par exemple A = (1) (matrice à diagonale propre car triangulaire), B = (111) et $C = A_5$ (définie à la question 6, matrice à diagonale propre dont tous les termes sont non nuls)

On obtient
$$M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & -2 & 3 & 6 \end{pmatrix}$$
.

M est à diagonale propre et contient bien treize réels non nuls.

b) Soit $M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$ une matrice par blocs de $\mathcal{M}_4(\mathbb{R})$ où les matrices A, B et C sont des matrices de $\mathcal{M}_2(\mathbb{R})$ qui ne contiennent aucun terme nul. De même qu'en a), $\chi_M = \chi_A \chi_C$.

Posons
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $C = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$.

Si a ou d est valeur propre de A, alors χ_A est scindé et $\operatorname{tr} A = a + d$, les valeurs propres de A sont alors a et d, la matrice A est alors à diagonale propre et d'après la question 3. c'est une matrice triangulaire ce qui est impossible car la matrice A ne contient aucun terme nul.

De même pour B.

Donc, les valeurs propres de A sont e et h et les valeurs propres de C sont a et d.

On en déduit $\chi_A = (X - e)(X - h)$ et $\chi_C = (X - a)(X - d)$.

En développant ces polynômes et en identifiant leurs coefficients, on obtient les relations : $\left\{ \begin{array}{l} a+d=e+h \\ ad-bc=eh \\ eh-gf=ad \end{array} \right.$

Il suffit de trouver des réels a, b, c, d, e, f, g et h tous non nuls vérifiant ces équations et de prer une matrice B quelconque ne contenant aucun terme nul.

Par exemple :
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$.

On obtient :
$$M = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -2 & -1 \end{pmatrix}$$
.

IV. QUELQUES PROPRIETES

9. On note $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$.

Les valeurs propres de A sont a_{11} , a_{22} ... a_{nn} , puisque A est une MDP.

Les valeurs propres de $aA+bI_n$ sont alors $a.a_{11}+b,\ a.a_{22}+b$... $a.a_{nn}+b,$ puisque si $V\in\mathcal{M}_{n,1}(\mathbb{R})$ non nul est tel que $AV = \lambda V$, on a $(aA + bI_n)V = (a\lambda + b)V$.

Ce sont les termes diagonaux de $aA + bI_n$,

$$aA + bI_n$$
 est donc une matrice à diagonale propre.

Les termes diagonaux et les valeurs propres d'une matrice et de sa transposée sont les mêmes, et $^{t}(aA+bI_{n})=a^{t}A+bI_{n},$

$$a^t A + b I_n$$
 est donc une matrice à diagonale propre.

10. Soit $A \in \mathcal{E}_n$.

Pour $p \in \mathbb{N}^*$, on pose $U_p = A - \frac{1}{p}I_n$.

D'après la question précédente, \dot{U}_p est une matrice à diagonale propre.

D'autre part, $\det U_p = \chi_A\left(\frac{1}{p}\right)$ est nul si et seulement si $d^{\frac{1}{p}}$ est valeur propre de A. U_p est donc inversible sauf pour un nombre fini de valeurs de p.

Il existe donc un entier p_0 tel que la suite $(U_p)_{p\geqslant p_0}$ soit une suite d'éléments de G_n . Cette suite converge vers A lorsque $p \to +\infty$. Toute matrice de \mathcal{E}_n est donc limite d'une suite de matrices de G_n , ce qui revient à dire, d'après la caractérisation séquentielle de l'adhérence, que l'adhérence de G_n est \mathcal{E}_n ou

$$G_n$$
 est dense dans \mathcal{E}_n .

 $\boxed{G_n \text{ est dense dans } \mathcal{E}_n.}$ 11. a) Par exemple, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est une matrice réelle symétrique donc elle est diagonalisable et aussi trigonalisable. sable, mais d'après la question 3., elle n'est pas à diagonale propre.

Une matrice trigonalisable n'est pas nécessairement à diagonale propre.

b) Par définition, le polynôme caractéristique d'une matrice à diagonale propre est scindé, une telle matrice est donc trigonalisable.

Une matrice à diagonale propre est trigonalisable

c) Soit $A \in \mathcal{M}_n(\mathbb{R})$

Si A est semblable à une matrice B à diagonale propre, alors $\chi_A = \chi_B$ et χ_B est scindé dans $\mathbb{R}[X]$, donc χ_A est scindé dans $\mathbb{R}[X]$.

Si χ_A est scindé, alors A est semblable à une matrice triangulaire supérieure, or toute matrice triangulaire est à diagonale propre donc A est semblable à une matrice à diagonale propre.

A est semblable à une matrice à diagonale propre si et seulement si χ_A est scindé.

12. * Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$.

Comme toute matrice triangulaire est à diagonale propre, il suffit d'écrire A comme une somme de deux matrices triangulaires, par exemple

$$A = \begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} + \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{pmatrix}.$$

* Pour tout $n \geq 2$ il existe une matrice de $\mathcal{M}_n(\mathbb{R})$ qui n'est pas à diagonale propre, par exemple la

matrice
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & \ddots & 0 \end{pmatrix}$$
 (je vous laisse le soin de vérifier que cette matrice n'est pas une MDP).

Cette matrice s'écrit comme somme de deux matrices à diagonale propre, donc

$$\mathcal{E}_n$$
 n'est pas un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

V. MATRICES SYMÉTRIQUES ET MATRICES ANTISYMÉTRIQUES

- 13. $\operatorname{tr}(^t AA) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$ (la démonstration est dans le cours sur les espaces préhilbertiens réels; à savoir
- 14. a) A est une matrice réelle et symétrique donc il existe une matrice orthogonale P et une matrice diagonale D telles que $A = PD^tP$.

 $\operatorname{tr}({}^{t}AA) = \operatorname{tr}(PD^{t}PPD^{t}P) = \operatorname{tr}(PDD^{t}P) = \operatorname{tr}(PDD^{t}P) = \operatorname{tr}(D^{2}) \text{ (car } PD^{2t}P \text{ semblable à } D^{2} \text{ et deux } PD^{2t}P \text{ semblable a } D^{2} \text{ et deux } PD^{2t}P \text{ semblable a } D^{2} \text{ et deux } PD^{2t}P \text{ semblable a } D^{2} \text{ et deux } D^{2} = \operatorname{tr}(D^{2}) =$ matrices semblables ont la même trace.)

Or
$$\operatorname{tr}({}^{t}AA) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$$
 et $\operatorname{tr}(D^{2}) = \sum_{i=1}^{n} \lambda_{i}^{2}$, donc

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2}.$$

b) Si de plus A est une matrice à diagonale propre, alors les valeurs propres de A sont a_{11} , a_{22} ... a_{nn} .

Donc
$$\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 = \sum_{i=1}^n a_{ii}^2$$
 et $\sum_{i=1}^n \sum_{\substack{j=1\\ i\neq i}}^n a_{ij}^2 = 0$, la matrice A est une matrice diagonale.

Réciproquement, toute matrice diagonale est à diagonale propre.

Les matrices symétriques réelles à diagonale propre sont donc les matrices diagonales.

15. a) A est antisymétrique, donc tous ses éléments diagonaux sont nuls et comme elle est à diagonale propre, son polynôme caractéristique est scindé et toutes ses valeurs propres sont nulles. On a donc $\chi_A(X) = (-1)^n X^n$ et par le théorème de Cayley-Hamilton

$$A^{n} = 0.$$

$$(^{t}AA)^{n} = (-AA)^{n} = (-1)^{n}A^{2n} = 0.$$

$$(^{t}AA)^{n} = 0.$$

b) ^tAA est une matrice réelle symétrique donc elle est diagonalisable. $({}^tAA)^n = 0$ donc toutes les valeurs propres de tAA sont nulles. On en déduit

$$^t AA = 0$$
.

 $\boxed{tAA=0.}$ c) De ce qui précède, on déduit que $\operatorname{tr}(tAA)=0$ donc $\sum_{i=1}^n\sum_{i=1}^na_{ij}^2=0$.

A est donc la matrice nulle.

VI. DIMENSION MAXIMALE D'UN ESPACE VECTORIEL INCLUS DANS \mathcal{E}_n

16. Si $A = \sum_{i,j} a_{i,j} E_{i,j}$ est antisymétrique, on a $A = \sum_{1 \leq i < j \leq n} a_{i,j} (E_{i,j} - E_{j,i})$, donc la famille $\{E_{i,j} - E_{j,i}, 1 \leq i < j \leq n\}$ est génératrice de A_n .

Il est facile de vérifier qu'elle est libre; c'est donc une base de \mathcal{A}_n ; son cardinal est le nombre de couples (i,j) tels que $1 \le i < j \le n$ c'est-à-dire $\binom{n}{2}$ et finalement

$$\dim \mathcal{A}_n = \frac{n(n-1)}{2}.$$

(tout cela est dans le cours...)

17. Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ tel que l'on ait $F \subset \mathcal{E}_n$.

De la question 15., on déduit $F \cap \mathcal{A}_n = \{0\}$.

Donc, d'après la formule de Grassmann, $\dim F + \dim A_n = \dim(F + A_n) \leq \dim \mathcal{M}_n(\mathbb{R}) = n^2$.

On en déduit dim $F \leq n^2 - \dim A_n = n^2 - \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$

$$\dim F \leqslant \frac{n(n+1)}{2}.$$

De plus, le sous-espace vectoriel des matrices triangulaires supérieures est de dimension exactement $\frac{n(n+1)}{2}$ et il est inclus dans \mathcal{E}_n , donc :

La dimension maximale d'un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$ est donc $\frac{n(n+1)}{2}$.

18. On prend pour F l'ensemble des matrices M de la forme $M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$ avec $A \in \mathcal{M}_1(\mathbb{R})$, $B \in \mathcal{M}_{1,n-1}(\mathbb{R})$ et $C \in \mathcal{M}_{n-1}(\mathbb{R})$ triangulaire inférieure, soit M de la forme :

$$M = \begin{pmatrix} m_{11} & m_{12} & \cdots & \cdots & m_{1n} \\ 0 & m_{22} & 0 & \cdots & 0 \\ \vdots & m_{32} & m_{33} & \ddots & \vdots \\ \vdots & \vdots & & \ddots & 0 \\ 0 & m_{n2} & \cdots & \cdots & m_{nn} \end{pmatrix}.$$

L'ensemble de ces matrices est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de dimension $\frac{n(n+1)}{2}$ qui n'est pas constitué uniquement de matrices triangulaires.

Les matrices A et C sont à diagonale propre et d'après ce que l'on a vu dans la question 8., on en déduit que M est à diagonale propre et que donc $F \subset \mathcal{E}_n$.

On a trouvé un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$, de dimension maximale mais tel que F ne soit pas constitué uniquement de matrices triangulaires.