09 - Adresace v internetu IPv4, cesta datagramu sítí

MAC adresa

- · Media Access Control
- jedinečný identifikátor síťového zařízení
 - používá ho více vrstev z OSI/ISO
- · je přiřazena síťové kartě při výrobě
- u starších karet v EEPROM paměti (nelze měnit), u moderních již lze změnit
- má 48 bitů, 2 verze zápisu:
 - tři skupiny čtyř hexadecimálních čísel (standard)
 - př.: 0123.4567.89ab
 - šest skupin dvou hexadecimálních čísel (častější)
 - **př.:** 01:23:45:67:89:ab

IP adresa

- · číslo, které jednoznačně identifikuje síťové rozhraní v síti
- · používá protokol IP
- adresa je buď přiřazena staticky, nebo získána z poolu DHCP
- IP adresy se dělí do tříd podle prvního bajtu:

Třída	1. bajt	Maska	Metoda + použití	
А	0 - 127	255.0.0.0	unicast, velké sítě	
В	128 - 191	255.255.0.0	unicast, střední sítě	
С	192 - 223	255.255.255.0	unicast, malé sítě	
D	224 - 239	255.255.255.255	multicast	
Е	240 - 255		rezerva, experimentální adresy	

Rezervované adresy

- 224.0.0.0 239.255.255 multicasting
- 240.0.0.0 247.255.255.255 experimentální účely
- 127.0.0.0 a 127.0.0.1 loopback, testování software (síťový software, lokální server)
- 10.x.x.x lokální komunikace po soukromé síti
- 255.255.255 broadcast adresa

Privátní IP adresy

- · neveřejné adresy
- třídy adres A, B, C
- pouze v lokální síti, nejsou dostupné z Internetu

Veřejné IP adresy

- jedinečná adresa, která označuje počítač na Internetu
- za veřejnou adresou se může skrývat celá lokální síť
 - toto umožňuje NAT
- pro připojení na Internet potřebujeme veřejnou adresu
- tyto adresy přiřazuje IANA (Internet Assigned Numbers Authority)

ARP protokol

- · Address Resolution Protocol
- pomocný protokol sítí TCP/IP
- zabezpečuje přiřazení IP adres k příslušným MAC adresám (L2)
 - uchovává si tabulku
- v případě, že nezná zařízení s příslušnou adresou, vyšle broadcast, počká na odpověď a zapíše si ho do tabulky
 - broadcast se nazývá ARP request
 - o odpoví jen nositel příslušené IP adresy
 - o jako odpověď posílá svou MAC adresu
 - výsledná MAC adresa se ukládá v ARP tabulce

Subnetting (podsíťování)

- rozdělení jedné síťové adresy na více menších
- používá se např. ve firmách, kde je potřeba logicky rozdělit adresy
- pouze na lokální úrovni
- dělí se na:
 - VLSM (Variable Length Subnet Mask)
 - většinou pro adresy třídy C
 - podsítě mají různou velikost podle potřeby
 - počet podsítí lze vyjádřit jako 2^x
 - x = počet jedniček v masce
 - velikost sítě se nastavuje na nejbližší velikost, do které se počet hostů vejde
 - Konstatní velikost podsítě
 - o podsítě mají stejnou velikost
 - maska se sníží o určitou velikost
 - ta se poté rozdělí rovnoměrně na stejné díly

Porty

· port naslouchá

1 - 1023

- · Well known (dobře známé) porty
- vyhrazené, pro typicky používané aplikace

Číslo portu	Služba
20	FTP (data)
21	FTP (příkazy)
22	SSH
23	Telnet
53	DNS
67	DHCP (server)
68	DHCP (klient)
80	HTTP
143	IMAP
443	HTTPS
666	hra Doom

1024 - 49151

- Registrované porty
- jejich použití se musí registrovat u ICANN

49152 - 65535

- Soukromé a dynamické porty
- pro soukromé využití
- nejsou pevně přiděleny žádné službě

Značení portů

- fyzické porty switche se značí:
 - typem
 - FastEthernet, GigabitEthernet
 - číslem portu
 - [slot]/[port] nebo [stack]/[slot]/[port]
- · příklady značení:
 - FastEthernet0/1
 - 100Mbit/s, slot č. 0, port č. 1
 - GigabitEternet1/0/1
 - 1Gbit/s, stack č. 1, slot č. 0, port č. 1

Komunikace a přenos dat

- serverová aplikace poslouchá na lokálním portu, čeká na požadavek o připojení
- klientská aplikace si vyžádá připojení
- porty se vzájemně propojí
- na obou stranách vzniká Socket
 - koncový bod připojení
- do Socketu se zapouzdří informace o spojení
- server port zůstává otevřený a přijímá další žádosti