

IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A wireless apparatus comprising:
 - a forward error correction (FEC) coder to encode digital data using a low density parity check (LDPC) code, said FEC coder including:
 - a computer readable storage medium storing at least a first portion of a parity check matrix, wherein ~~said parity check matrix is substantially as described in Appendix A and~~ said first portion of said parity check matrix includes at least half of said parity check matrix;
 - a matrix multiplication unit to multiply input data by a transpose of said first portion of said parity check matrix to generate modified data;
 - a differential encoder to differentially encode said modified data to generate coded data; and
 - a concatenation unit to concatenate the input data and the coded data to form a code word; and
 - a wireless transmitter to transmit a wireless signal that includes said code word; wherein said parity check matrix, in list file form, is substantially as follows:

2000 400

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS

Page 3
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>143 225 316 323</u>	<u>111 162 190 227</u>	<u>73 221 295 362</u>	<u>67 127 132 136</u>
<u>92 140 191 358</u>	<u>189 272 288 302</u>	<u>75 97 242 279</u>	<u>146 264 321 323</u>
<u>69 315 329 343</u>	<u>14 49 147 334</u>	<u>32 197 244 313</u>	<u>210 275 319 346</u>
<u>6 121 205 284</u>	<u>33 53 213 238</u>	<u>245 248 276 296</u>	<u>57 160 252 261</u>
<u>58 66 254 337</u>	<u>53 219 368 379</u>	<u>59 230 322 347</u>	<u>26 54 170 197</u>
<u>1 47 178 395</u>	<u>126 149 188 339</u>	<u>17 246 291 364</u>	<u>120 218 229 341</u>
<u>129 151 212 228</u>	<u>108 118 182 393</u>	<u>125 157 227 390</u>	<u>44 53 124 323</u>
<u>66 146 243 265</u>	<u>0 37 160 295</u>	<u>122 205 279 348</u>	<u>0 113 315 358</u>
<u>22 140 157 180</u>	<u>158 200 335 356</u>	<u>61 298 340 380</u>	<u>110 144 246 298</u>
<u>120 208 313 321</u>	<u>11 20 229 397</u>	<u>12 31 256 328</u>	<u>89 91 99 346</u>
<u>290 350 370 382</u>	<u>77 86 212 250</u>	<u>119 163 178 217</u>	<u>21 32 216 393</u>
<u>56 94 184 215</u>	<u>79 193 262 336</u>	<u>61 129 185 200</u>	<u>37 170 209 342</u>
<u>84 119 337 344</u>	<u>43 104 125 376</u>	<u>34 38 104 295</u>	<u>49 58 357 399</u>
<u>2 156 244 398</u>	<u>55 114 134 293</u>	<u>119 289 349 377</u>	<u>18 23 31 373</u>
<u>9 106 200 336</u>	<u>240 283 299 333</u>	<u>50 314 322 367</u>	<u>159 172 195 366</u>
<u>22 37 150 270</u>	<u>0 24 57 100</u>	<u>28 48 248 382</u>	<u>213 335 337 378</u>
<u>3 110 326 367</u>	<u>46 84 322 341</u>	<u>32 41 128 201</u>	<u>1 103 159 277</u>
<u>235 276 290 335</u>	<u>5 43 45 221</u>	<u>91 115 220 368</u>	<u>96 159 209 387</u>
<u>82 187 193 297</u>	<u>29 217 274 301</u>	<u>45 151 196 265</u>	<u>102 165 234 378</u>
<u>43 183 297 379</u>	<u>81 93 116 278</u>	<u>152 190 198 317</u>	<u>173 245 356 376</u>
<u>194 239 243 293</u>	<u>93 174 213 231</u>	<u>157 212 242 275</u>	<u>57 230 240 314</u>
<u>90 144 228 350</u>	<u>64 201 251 385</u>	<u>2 40 249 283</u>	<u>1 89 153 166</u>
<u>170 206 321 395</u>	<u>76 134 278 370</u>	<u>195 280 299 345</u>	<u>25 32 264 342</u>
<u>72 138 254 300</u>	<u>71 93 182 398</u>	<u>142 151 220 395</u>	<u>265 276 321 324</u>
<u>25 196 201 279</u>	<u>38 174 250 377</u>	<u>70 121 252 382</u>	<u>57 211 274 360</u>
<u>56 59 362 379</u>	<u>19 116 357 372</u>	<u>52 244 279 297</u>	<u>12 291 311 348</u>
<u>28 121 170 277</u>	<u>81 91 164 307</u>	<u>22 131 256 349</u>	<u>34 220 258 282</u>
<u>61 273 351 386</u>	<u>180 186 241 251</u>	<u>47 52 339 346</u>	<u>52 58 109 379</u>
<u>71 76 232 328</u>	<u>239 254 331 342</u>	<u>50 288 342 388</u>	<u>116 248 337 369</u>
<u>62 109 190 201</u>	<u>107 149 250 295</u>	<u>26 87 247 283</u>	<u>87 146 183 278</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 5
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>42 96 318 361</u>	<u>160 243 290 373</u>	<u>93 147 255 312</u>	<u>139 251 364 381</u>
<u>32 176 312 361</u>	<u>39 217 262 324</u>	<u>92 112 259 388</u>	<u>42 118 178 194</u>
<u>69 258 310 389</u>	<u>19 185 312 389</u>	<u>9 18 61 308</u>	<u>73 100 198 286</u>
<u>1 84 182 300</u>	<u>211 271 277 291</u>	<u>3 137 139 257</u>	<u>68 249 292 376</u>
<u>45 124 161 396</u>	<u>19 148 155 324</u>	<u>165 217 345 354</u>	<u>13 216 221 256</u>
<u>15 76 99 101</u>	<u>24 94 124 314</u>	<u>78 134 263 280</u>	<u>127 138 177 398</u>
<u>62 248 354 375</u>	<u>3 85 193 349</u>	<u>186 213 227 303</u>	<u>20 69 239 264</u>
<u>78 258 262 311</u>	<u>68 175 202 253</u>	<u>68 194 294 346</u>	<u>3 126 132 163</u>
<u>181 265 364 368</u>	<u>139 160 337 377</u>	<u>35 225 284 312</u>	<u>66 88 169 271</u>
<u>60 168 227 254</u>	<u>21 224 249 398</u>	<u>117 188 340 346</u>	<u>88 197 201 387</u>
<u>162 231 270 377</u>	<u>113 122 206 327</u>	<u>258 299 306 331</u>	<u>1 51 135 149</u>
<u>14 102 139 158</u>	<u>7 10 156 245</u>	<u>83 194 207 349</u>	<u>257 294 331 356</u>
<u>28 79 155 318</u>	<u>140 182 192 235</u>	<u>43 141 175 329</u>	<u>204 260 288 294</u>
<u>28 40 63 236</u>	<u>161 291 324 387</u>	<u>0 68 170 262</u>	<u>45 144 185 383</u>
<u>163 181 258 279</u>	<u>31 232 237 350</u>	<u>25 36 153 309</u>	<u>173 310 329 362</u>
<u>158 176 273 334</u>	<u>30 184 235 387</u>	<u>57 62 273 323</u>	<u>15 165 305 348</u>
<u>80 236 256 380</u>	<u>136 226 269 327</u>	<u>7 19 75 264</u>	<u>27 66 85 182</u>
<u>74 156 214 358</u>	<u>4 93 136 167</u>	<u>21 254 259 366</u>	<u>47 235 238 246</u>
<u>176 229 251 283</u>	<u>47 148 309 348</u>	<u>8 97 156 172</u>	<u>230 276 293 367</u>
<u>19 104 114 162</u>	<u>73 225 252 290</u>	<u>9 185 313 330</u>	<u>118 150 267 324</u>
<u>141 284 291 358</u>	<u>44 213 361 386</u>	<u>55 219 253 393</u>	<u>68 82 309 398</u>
<u>77 123 157 361</u>	<u>79 319 361 381</u>	<u>86 120 185 233</u>	<u>72 154 226 231</u>
<u>141 154 215 338</u>	<u>74 251 339 356</u>	<u>41 136 191 242</u>	<u>76 135 151 384</u>
<u>55 294 296 298</u>	<u>100 105 246 293</u>	<u>194 265 303 393</u>	<u>39 48 80 309</u>
<u>80 109 272 364</u>	<u>68 101 191 285</u>	<u>256 285 310 399</u>	<u>0 178 305 353</u>
<u>43 206 287 363</u>	<u>32 103 323 355</u>	<u>103 247 275 378</u>	<u>88 136 196 321</u>
<u>81 175 206 261</u>	<u>122 188 228 305</u>	<u>115 218 225 285</u>	<u>37 95 222 300</u>
<u>31 94 275 317</u>	<u>6 77 291 397</u>	<u>98 196 217 328</u>	<u>23 343 358 369</u>
<u>10 123 141 279</u>	<u>70 76 259 276</u>	<u>177 267 306 350</u>	<u>195 252 303 349</u>
<u>44 64 157 270</u>	<u>72 270 335 348</u>	<u>82 299 320 395</u>	<u>9 81 102 317</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>20 219 285 316</u>	<u>11 81 110 360</u>	<u>76 116 140 238</u>	<u>8 18 136 152</u>
<u>219 281 304 354</u>	<u>10 50 357 393</u>	<u>189 298 326 381</u>	<u>110 240 245 334</u>
<u>33 121 319 351</u>	<u>35 89 248 252</u>	<u>235 317 320 333</u>	<u>225 255 278 310</u>
<u>21 157 191 260</u>	<u>6 55 319 345</u>	<u>127 301 348 376</u>	<u>63 168 170 303</u>
<u>0 88 303 307</u>	<u>107 116 223 271</u>	<u>51 286 309 377</u>	<u>8 17 255 314</u>
<u>13 23 62 268</u>	<u>168 240 261 384</u>	<u>17 70 139 187</u>	<u>28 92 98 200</u>
<u>13 173 279 320</u>	<u>54 204 295 351</u>	<u>54 180 184 344</u>	<u>112 201 244 392</u>
<u>117 189 253 392</u>	<u>3 51 146 299</u>	<u>85 311 318 327</u>	<u>134 216 344 383</u>
<u>32 40 57 350</u>	<u>74 184 307 361</u>	<u>263 312 364 369</u>	<u>21 97 115 396</u>
<u>57 123 148 368</u>	<u>9 202 272 387</u>	<u>97 149 198 336</u>	<u>28 69 120 380</u>
<u>18 96 164 326</u>	<u>106 198 281 329</u>	<u>31 141 151 285</u>	<u>34 259 267 314</u>
<u>84 103 107 359</u>	<u>36 105 225 236</u>	<u>72 163 187 311</u>	<u>55 72 87 223</u>
<u>92 338 350 355</u>	<u>90 139 183 299</u>	<u>24 54 249 297</u>	<u>43 180 185 252</u>
<u>16 70 242 338</u>	<u>152 160 292 354</u>	<u>64 143 322 360</u>	<u>23 113 133 277</u>
<u>20 74 141 179</u>	<u>11 115 227 236</u>	<u>53 73 122 256</u>	<u>258 285 347 350</u>
<u>159 246 248 365</u>	<u>152 202 211 373</u>	<u>100 138 214 226</u>	<u>246 253 318 399</u>
<u>207 292 387 399</u>	<u>4 173 346 374</u>	<u>265 348 373 378</u>	<u>12 78 90 369</u>
<u>38 148 303 347</u>	<u>132 197 238 279</u>	<u>42 62 113 174</u>	<u>17 93 96 102</u>
<u>68 113 296 389</u>	<u>16 94 150 222</u>	<u>29 313 349 358</u>	<u>109 162 318 360</u>
<u>12 257 286 325</u>	<u>241 344 375 386</u>	<u>154 179 217 268</u>	<u>22 83 151 290</u>
<u>50 287 294 327</u>	<u>31 121 161 231</u>	<u>164 289 380 392</u>	<u>141 191 240 266</u>
<u>149 259 356 367</u>	<u>9 33 197 350</u>	<u>109 165 236 312</u>	<u>25 90 138 390</u>
<u>3 12 178 309</u>	<u>87 197 233 312</u>	<u>92 141 193 238</u>	<u>81 113 265 382</u>
<u>63 92 166 368</u>	<u>100 111 129 368</u>	<u>190 243 267 275</u>	<u>88 142 210 283</u>
<u>97 190 199 363</u>	<u>184 278 289 346</u>	<u>95 143 203 393</u>	<u>10 40 43 140</u>
<u>13 86 92 308</u>	<u>76 177 227 356</u>	<u>130 213 264 308</u>	<u>2 195 268 328</u>
<u>132 141 221 322</u>	<u>11 132 246 314</u>	<u>102 133 217 226</u>	<u>117 240 257 374</u>
<u>213 257 348 396</u>	<u>46 93 103 309</u>	<u>69 88 116 295</u>	<u>298 332 350 365</u>
<u>91 147 294 325</u>	<u>20 33 64 196</u>	<u>108 217 273 322</u>	<u>60 122 240 313</u>
<u>14 27 48 222</u>	<u>111 134 194 204</u>	<u>26 287 306 343</u>	<u>157 215 274 397</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 7
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>11 41 164 274</u>	<u>69 134 200 366</u>	<u>70 129 283 385</u>	<u>41 45 60 99</u>
<u>67 76 92 104</u>	<u>179 324 366 386</u>	<u>18 79 296 345</u>	<u>182 197 276 331</u>
<u>19 192 305 344</u>	<u>72 82 188 192</u>	<u>14 25 34 52</u>	<u>40 257 262 322</u>
<u>23 35 125 224</u>	<u>100 120 189 375</u>	<u>31 88 212 226</u>	<u>148 208 332 352</u>
<u>152 163 352 385</u>	<u>244 252 318 329</u>	<u>26 53 123 165</u>	<u>127 159 253 290</u>
<u>40 161 165 329</u>	<u>3 105 116 203</u>	<u>101 108 248 328</u>	<u>273 289 325 341</u>
<u>113 215 245 378</u>	<u>280 282 288 365</u>	<u>49 115 190 395</u>	<u>95 145 231 297</u>
<u>80 168 262 382</u>	<u>38 196 330 369</u>	<u>23 119 139 282</u>	<u>70 110 225 313</u>
<u>81 136 165 239</u>	<u>20 31 113 381</u>	<u>27 206 209 324</u>	<u>50 112 166 302</u>
<u>2 42 248 323</u>	<u>56 173 205 390</u>	<u>203 221 332 356</u>	<u>68 97 128 218</u>
<u>111 127 157 330</u>	<u>2 30 165 366</u>	<u>181 190 288 379</u>	<u>90 264 269 280</u>
<u>79 125 239 341</u>	<u>41 75 169 302</u>	<u>38 73 249 368</u>	<u>22 132 258 368</u>
<u>147 172 187 397</u>	<u>210 271 330 334</u>	<u>45 49 264 394</u>	<u>65 124 129 325</u>
<u>230 245 277 352</u>	<u>60 109 199 348</u>	<u>89 112 218 316</u>	<u>95 105 111 385</u>
<u>49 202 350 381</u>	<u>27 89 214 388</u>	<u>144 186 297 343</u>	<u>109 233 250 302</u>
<u>34 56 167 242</u>	<u>77 79 83 289</u>	<u>152 177 233 237</u>	<u>8 33 80 318</u>
<u>36 58 61 83</u>	<u>119 236 323 383</u>	<u>74 171 223 334</u>	<u>51 253 281 288</u>
<u>107 110 133 251</u>	<u>1 44 271 372</u>	<u>4 16 44 89</u>	<u>209 237 346 391</u>
<u>100 245 295 330</u>	<u>25 42 104 215</u>	<u>103 165 177 358</u>	<u>12 198 221 269</u>
<u>16 71 175 397</u>	<u>144 153 357 362</u>	<u>53 217 342 383</u>	<u>9 141 229 306</u>
<u>106 206 229 236</u>	<u>133 153 273 383</u>	<u>58 88 126 370</u>	<u>0 114 219 300</u>
<u>177 308 371 387</u>	<u>152 174 269 355</u>	<u>4 214 243 383</u>	<u>242 289 318 335</u>
<u>89 122 207 362</u>	<u>107 193 210 320</u>	<u>5 96 155 354</u>	<u>41 90 163 215</u>
<u>3 166 190 305</u>	<u>194 298 317 331</u>	<u>7 61 214 237</u>	<u>65 80 99 167</u>
<u>155 171 289 336</u>	<u>22 112 139 222</u>	<u>90 241 261 367</u>	<u>269 296 303 356</u>
<u>34 37 293 301</u>	<u>147 152 221 365</u>	<u>39 161 202 206</u>	<u>45 106 232 346</u>
<u>143 189 255 338</u>	<u>20 48 130 353</u>	<u>101 132 135 250</u>	<u>86 195 293 391</u>
<u>38 75 137 166</u>	<u>58 100 125 172</u>	<u>117 191 213 352</u>	<u>140 193 245 321</u>
<u>62 92 124 366</u>	<u>79 181 242 313</u>	<u>132 233 270 303</u>	<u>88 150 183 380</u>
<u>73 83 105 136</u>	<u>174 254 304 321</u>	<u>16 251 266 370</u>	<u>230 253 315 373</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>53 184 258 263</u>	<u>47 82 117 126</u>	<u>111 306 363 373</u>	<u>87 120 206 267</u>
<u>17 79 261 286</u>	<u>86 100 337 379</u>	<u>174 256 368 381</u>	<u>67 116 188 349</u>
<u>94 293 302 397</u>	<u>299 347 372 375</u>	<u>18 104 115 317</u>	<u>63 232 338 365</u>
<u>170 218 358 376</u>	<u>150 156 299 302</u>	<u>102 115 140 394</u>	<u>178 272 327 392</u>
<u>61 246 287 292</u>	<u>145 252 294 377</u>	<u>91 96 128 327</u>	<u>19 35 204 386</u>
<u>61 162 245 303</u>	<u>155 218 250 392</u>	<u>97 99 300 385</u>	<u>194 235 289 345</u>
<u>25 286 333 355</u>	<u>131 172 250 278</u>	<u>40 150 229 316</u>	<u>29 50 154 315</u>
<u>159 241 263 354</u>	<u>17 64 107 195</u>	<u>124 315 322 359</u>	<u>22 47 353 387</u>
<u>134 186 305 327</u>	<u>26 55 142 181</u>	<u>21 221 286 301</u>	<u>0 137 143 167</u>
<u>33 38 283 301</u>	<u>106 181 327 342</u>	<u>27 88 147 216</u>	<u>21 162 195 339</u>
<u>17 44 159 398</u>	<u>101 103 340 368</u>	<u>10 124 128 309</u>	<u>24 225 233 338</u>
<u>108 167 174 374</u>	<u>44 196 198 280</u>	<u>57 131 209 296</u>	<u>177 225 232 281</u>
<u>90 105 172 257</u>	<u>39 148 192 385</u>	<u>230 237 264 371</u>	<u>77 149 241 310</u>
<u>93 165 180 353</u>	<u>37 130 182 207</u>	<u>28 118 231 283</u>	<u>319 325 363 374</u>
<u>137 289 296 386</u>	<u>57 242 262 316</u>	<u>5 114 230 309</u>	<u>77 251 308 379</u>
<u>241 273 276 359</u>	<u>20 171 259 396</u>	<u>122 189 204 251</u>	<u>183 203 290 330</u>
<u>44 94 211 286</u>	<u>257 288 338 361</u>	<u>74 151 203 218</u>	<u>158 246 275 352</u>
<u>166 184 204 226</u>	<u>12 290 362 367</u>	<u>69 270 288 359</u>	<u>78 99 210 238</u>
<u>98 281 357 389</u>	<u>153 236 304 330</u>	<u>22 49 291 383</u>	<u>222 271 380 393</u>
<u>41 107 187 298</u>	<u>12 144 261 329</u>	<u>80 90 174 249</u>	<u>79 107 201 351</u>
<u>19 47 379 399</u>	<u>33 92 106 173</u>	<u>182 310 314 318</u>	<u>66 90 275 287</u>
<u>1 16 272 296</u>	<u>68 89 159 308</u>	<u>115 254 336 399</u>	<u>65 219 247 398</u>
<u>107 203 283 322</u>	<u>9 23 41 301</u>	<u>42 63 135 343</u>	<u>16 203 207 237</u>
<u>77 245 266 390</u>	<u>109 160 278 387</u>	<u>46 232 385 391</u>	<u>101 216 333 357</u>
<u>29 166 345 364</u>	<u>138 235 241 356</u>	<u>24 27 171 183</u>	<u>2 39 326 373</u>
<u>61 229 356 361</u>	<u>225 256 321 332</u>	<u>237 293 322 352</u>	<u>51 151 305 341</u>
<u>70 105 229 250</u>	<u>32 42 253 275</u>	<u>81 90 223 363</u>	<u>6 25 30 130</u>
<u>268 334 344 368</u>	<u>95 199 219 225</u>	<u>71 85 128 380</u>	<u>2 91 146 227</u>
<u>78 82 283 393</u>	<u>116 328 345 395</u>	<u>159 309 314 334</u>	<u>46 141 273 298</u>
<u>7 299 327 334</u>	<u>128 159 161 207</u>	<u>17 117 315 379</u>	<u>157 331 374 385</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Page 9

Serial Number: 10/815,133

Dkt: P19060/1000-0037

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>172 223 237 258</u>	<u>79 89 131 254</u>	<u>43 77 113 143</u>	<u>102 160 180 258</u>
<u>15 93 128 250</u>	<u>61 74 304 382</u>	<u>125 149 196 218</u>	<u>164 197 311 398</u>
<u>94 261 312 341</u>	<u>30 70 168 253</u>	<u>83 147 183 279</u>	<u>75 119 186 254</u>
<u>167 186 202 372</u>	<u>64 156 306 332</u>	<u>62 145 180 397</u>	<u>6 15 65 396</u>
<u>8 29 355 393</u>	<u>162 197 255 275</u>	<u>84 280 331 360</u>	<u>30 108 341 399</u>
<u>36 126 155 373</u>	<u>33 71 91 112</u>	<u>114 190 281 359</u>	<u>217 276 326 347</u>
<u>145 195 227 333</u>	<u>13 132 247 391</u>	<u>69 129 168 187</u>	<u>160 237 274 285</u>
<u>45 206 344 369</u>	<u>22 208 226 392</u>	<u>119 144 180 249</u>	<u>173 248 262 348</u>
<u>8 166 301 397</u>	<u>56 60 158 164</u>	<u>7 47 218 308</u>	<u>52 65 218 351</u>
<u>11 47 141 184</u>	<u>20 105 120 199</u>	<u>217 251 269 390</u>	<u>135 140 253 366</u>
<u>7 112 256 377</u>	<u>133 232 236 341</u>	<u>189 200 275 372</u>	<u>5 81 176 260</u>
<u>108 300 310 312</u>	<u>90 107 293 370</u>	<u>157 218 296 363</u>	<u>58 215 326 364</u>
<u>208 218 364 378</u>	<u>17 32 254 263</u>	<u>52 110 151 319</u>	<u>76 87 102 315</u>
<u>53 114 278 291</u>	<u>8 173 238 266</u>	<u>30 131 153 174</u>	<u>98 131 259 332</u>
<u>131 138 201 365</u>	<u>30 167 169 391</u>	<u>28 32 182 198</u>	<u>15 30 35 55</u>
<u>225 279 371 378</u>	<u>43 213 328 362</u>	<u>56 263 316 328</u>	<u>0 122 269 346</u>
<u>122 275 376 395</u>	<u>73 231 244 282</u>	<u>87 168 275 343</u>	<u>38 162 311 373</u>
<u>169 217 239 357</u>	<u>71 221 245 253</u>	<u>24 31 131 148</u>	<u>143 313 329 340</u>
<u>18 65 128 288</u>	<u>215 225 258 335</u>	<u>166 203 208 231</u>	<u>80 260 316 348</u>
<u>6 62 86 198</u>	<u>46 87 263 384</u>	<u>126 170 224 369</u>	<u>44 158 220 292</u>
<u>37 80 119 211</u>	<u>81 96 282 338</u>	<u>20 78 193 213</u>	<u>117 241 295 363</u>
<u>0 46 139 339</u>	<u>192 222 306 353</u>	<u>123 180 253 323</u>	<u>187 321 355 378</u>
<u>0 30 216 306</u>	<u>8 115 292 305</u>	<u>208 229 271 386</u>	<u>167 226 281 351</u>
<u>82 152 277 367</u>	<u>36 170 186 260</u>	<u>1 52 116 383</u>	<u>0 200 309 384</u>
<u>23 178 350 366</u>	<u>10 85 212 300</u>	<u>13 55 71 106</u>	<u>36 171 193 328</u>
<u>121 212 243 384</u>	<u>5 129 198 365</u>	<u>7 306 347 364</u>	<u>107 178 228 240</u>
<u>257 284 326 382</u>	<u>19 107 153 308</u>	<u>145 163 197 228</u>	<u>80 146 156 375</u>
<u>57 138 311 343</u>	<u>10 57 98 215</u>	<u>66 97 212 320</u>	<u>75 90 290 312</u>
<u>295 318 322 377</u>	<u>181 211 228 339</u>	<u>133 176 282 305</u>	<u>20 55 131 215</u>
<u>78 343 373 377</u>	<u>62 89 163 295</u>	<u>22 187 205 372</u>	<u>99 127 231 344</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 10
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>156 176 301 313</u>	<u>54 108 270 279</u>	<u>96 172 181 218</u>	<u>69 241 268 274</u>
<u>41 146 247 290</u>	<u>23 82 144 396</u>	<u>17 124 154 373</u>	<u>158 324 371 399</u>
<u>49 52 61 76</u>	<u>78 93 95 275</u>	<u>87 285 306 376</u>	<u>62 232 264 373</u>
<u>24 74 310 326</u>	<u>145 169 211 278</u>	<u>83 163 173 299</u>	<u>103 106 146 344</u>
<u>56 196 212 332</u>	<u>29 163 300 320</u>	<u>65 87 245 333</u>	<u>134 268 295 398</u>
<u>76 205 335 385</u>	<u>33 147 219 391</u>	<u>161 267 284 293</u>	<u>120 220 250 354</u>
<u>75 101 209 349</u>	<u>199 214 265 280</u>	<u>1 29 54 379</u>	<u>115 208 355 398</u>
<u>28 172 242 294</u>	<u>62 133 156 219</u>	<u>141 170 183 232</u>	<u>74 190 343 352</u>
<u>18 71 267 297</u>	<u>31 34 72 115</u>	<u>5 40 167 238</u>	<u>258 325 332 371</u>
<u>84 115 233 384</u>	<u>246 260 267 286</u>	<u>15 44 95 239</u>	<u>14 256 347 353</u>
<u>63 139 216 325</u>	<u>7 266 309 337</u>	<u>13 75 152 188</u>	<u>24 33 122 234</u>
<u>23 64 310 348</u>	<u>24 69 142 394</u>	<u>216 224 305 331</u>	<u>98 272 300 342</u>
<u>63 130 188 352</u>	<u>98 138 228 351</u>	<u>29 93 197 381</u>	<u>210 221 268 337</u>
<u>23 45 160 165</u>	<u>72 181 336 355</u>	<u>21 222 282 284</u>	<u>8 94 154 347</u>
<u>42 114 382 399</u>	<u>12 47 160 172</u>	<u>175 193 361 372</u>	<u>195 285 321 327</u>
<u>25 207 339 365</u>	<u>84 178 230 343</u>	<u>54 69 298 308</u>	<u>12 51 54 354</u>
<u>16 334 374 398</u>	<u>80 238 321 376</u>	<u>93 169 209 328</u>	<u>16 41 149 389</u>
<u>86 251 274 277</u>	<u>170 213 331 367</u>	<u>39 59 334 391</u>	<u>55 66 206 297</u>
<u>157 166 297 316</u>	<u>12 136 274 326</u>	<u>108 254 340 376</u>	<u>129 202 214 285</u>
<u>171 200 230 265</u>	<u>13 51 96 147</u>	<u>141 246 264 388</u>	<u>73 96 104 310</u>
<u>34 107 325 364</u>	<u>23 264 334 346</u>	<u>96 267 362 392</u>	<u>55 200 270 318</u>
<u>71 220 227 330</u>	<u>29 122 183 356</u>	<u>131 234 291 330</u>	<u>58 120 150 217</u>
<u>177 263 277 344</u>	<u>78 287 330 349</u>	<u>4 168 220 235</u>	<u>58 279 339 397</u>
<u>75 138 262 293</u>	<u>42 69 131 198</u>	<u>130 195 216 367</u>	<u>60 180 247 308</u>
<u>189 300 366 377</u>	<u>36 43 189 216</u>	<u>108 148 290 302</u>	<u>48 127 213 356</u>
<u>147 175 296 320</u>	<u>44 142 195 344</u>	<u>85 214 362 395</u>	<u>62 128 291 329</u>
<u>2 51 145 208</u>	<u>40 147 260 330</u>	<u>48 100 118 346</u>	<u>26 35 127 323</u>
<u>126 271 310 351</u>	<u>125 325 379 387</u>	<u>91 104 355 358</u>	<u>77 144 286 296</u>
<u>144 197 277 360</u>	<u>90 111 126 301</u>	<u>176 342 351 390</u>	<u>10 47 192 259</u>
<u>28 35 115 289</u>	<u>113 177 226 273</u>	<u>6 45 123 126</u>	<u>122 196 210 329</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 11
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>63 162 235 268</u>	<u>26 95 121 163</u>	<u>143 157 307 395</u>	<u>148 188 256 304</u>
<u>25 45 218 310</u>	<u>30 54 178 315</u>	<u>36 77 116 340</u>	<u>171 189 266 341</u>
<u>67 336 354 393</u>	<u>136 301 341 365</u>	<u>3 98 101 125</u>	<u>94 108 244 288</u>
<u>16 278 347 381</u>	<u>21 59 265 299</u>	<u>39 151 364 377</u>	<u>16 42 200 250</u>
<u>14 39 209 395</u>	<u>111 154 282 297</u>	<u>194 227 231 267</u>	<u>2 64 193 399</u>
<u>21 55 85 304</u>	<u>6 74 290 349</u>	<u>59 200 206 389</u>	<u>129 172 276 379</u>
<u>128 135 194 325</u>	<u>121 142 174 236</u>	<u>21 106 287 389</u>	<u>26 176 234 319</u>
<u>116 159 258 341</u>	<u>108 129 152 261</u>	<u>33 268 340 387</u>	<u>118 135 205 312</u>
<u>125 132 210.219</u>	<u>152 164 205 377</u>	<u>140 150 395 398</u>	<u>115 176 290 359</u>
<u>60 67 150 203</u>	<u>144 281 332 335</u>	<u>88 352 360 367</u>	<u>9 143 188 374</u>
<u>18 60 167 328</u>	<u>92 244 315 326</u>	<u>55 91 145 168</u>	<u>96 186 247 353</u>
<u>55 112 179 381</u>	<u>66 128 170 221</u>	<u>126 130 181 323</u>	<u>30 72 320 388</u>
<u>288 317 324 389</u>	<u>21 109 174 397</u>	<u>34 120 227 316</u>	<u>17 137 186 193</u>
<u>43 320 334 382</u>	<u>5 154 201 239</u>	<u>237 337 355 394</u>	<u>34 229 265 284</u>
<u>5 29 145 281</u>	<u>80 183 261 293</u>	<u>34 186 219 313</u>	<u>129 207 282 287</u>
<u>25 124 232 345</u>	<u>18 143 335 392</u>	<u>280 330 340 375</u>	<u>68 118 275 305</u>
<u>11 119 339 359</u>	<u>13 139 155 230</u>	<u>76 230 354 378</u>	<u>153 172 249 307</u>
<u>5 36 231 316</u>	<u>145 156 300 327</u>	<u>5 178 293 297</u>	<u>106 179 212 378</u>
<u>15 138 354 389</u>	<u>118 153 171 366</u>	<u>142 223 234 381</u>	<u>22 48 105 347</u>
<u>25 82 136 180</u>	<u>15 152 331 364</u>	<u>48 239 260 399</u>	<u>98 137 346 379</u>
<u>20 103 167 266</u>	<u>161 171 307 317</u>	<u>58 270 336 360</u>	<u>41 98 165 232</u>
<u>112 292 359 371</u>	<u>49 56 127 185</u>	<u>24 123 271 347</u>	<u>54 63 99 123</u>
<u>184 201 240 328</u>	<u>104 168 283 305</u>	<u>12 76 137 280</u>	<u>81 213 315 394</u>
<u>77 160 307 339</u>	<u>199 202 343 399</u>	<u>107 226 302 367</u>	<u>38 66 87 191</u>
<u>74 147 280 389</u>	<u>15 164 192 273</u>	<u>175 186 208 366</u>	<u>71 121 294 396</u>
<u>127 149 358 387</u>	<u>62 199 222 228</u>	<u>65 183 369 376</u>	<u>109 200 345 375</u>
<u>50 59 117 185</u>	<u>67 94 166 256</u>	<u>60 169 292 350</u>	<u>33 70 217 266</u>
<u>11 189 212 220</u>	<u>85 227 250 321</u>	<u>44 169 240 362</u>	<u>11 111 210 240</u>
<u>123 135 226 372</u>	<u>91 121 295 324</u>	<u>146 187 293 319</u>	<u>261 271 290 396</u>
<u>83 86 149 386</u>	<u>3 16 308 340</u>	<u>198 219 343 380</u>	<u>190 225 298 369</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 12
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>16 140 227 352</u>	<u>99 257 359 389</u>	<u>4 79 232 370</u>	<u>5 224 263 358</u>
<u>118 183 262 383</u>	<u>124 295 372 397</u>	<u>21 75 158 347</u>	<u>197 199 247 382</u>
<u>17 218 260 350</u>	<u>12 43 117 356</u>	<u>331 341 343 386</u>	<u>18 228 332 344</u>
<u>50 56 278 351</u>	<u>65 117 136 354</u>	<u>0 103 163 270</u>	<u>16 26 57 68</u>
<u>15 36 150 280</u>	<u>39 67 191 212</u>	<u>7 95 171 326</u>	<u>2 158 259 384</u>
<u>18 107 151 176</u>	<u>80 166 176 358</u>	<u>16 24 49 133</u>	<u>128 181 371 398</u>
<u>22 188 244 337</u>	<u>99 208 353 361</u>	<u>58 242 363 390</u>	<u>98 179 247 319</u>
<u>72 186 302 350</u>	<u>32 46 104 222</u>	<u>8 236 254 290</u>	<u>41 71 138 326</u>
<u>65 145 221 239</u>	<u>4 25 72 203</u>	<u>50 83 140 370</u>	<u>175 244 301 317</u>
<u>52 117 331 393</u>	<u>2 124 130 262</u>	<u>233 258 340 364</u>	<u>81 145 226 371</u>
<u>7 37 265 285</u>	<u>28 113 210 232</u>	<u>63 289 292 313</u>	<u>125 202 226 309</u>
<u>56 283 338 382</u>	<u>66 77 158 268</u>	<u>231 245 336 342</u>	<u>115 169 276 298</u>
<u>78 217 337 351</u>	<u>61 98 202 330</u>	<u>35 38 246 299</u>	<u>192 268 296 391</u>
<u>6 247 249 370</u>	<u>47 67 181 247</u>	<u>104 246 249 281</u>	<u>31 167 220 223</u>
<u>1 161 241 255</u>	<u>51 204 209 307</u>	<u>161 248 285 325</u>	<u>39 241 358 382</u>
<u>101 166 183 220</u>	<u>125 198 289 301</u>	<u>13 21 192 220</u>	<u>67 112 159 236</u>
<u>99 198 326 335</u>	<u>136 214 216 263</u>	<u>82 89 200 209</u>	<u>71 180 208 266</u>
<u>105 234 340 384</u>	<u>97 270 314 338</u>	<u>8 264 313 368</u>	<u>59 143 248 394</u>
<u>60 233 242 397</u>	<u>78 127 215 226</u>	<u>11 26 242 286</u>	<u>99 128 223 388</u>
<u>207 215 223 293</u>	<u>27 242 348 357</u>	<u>37 248 303 388</u>	<u>6 192 221 351</u>
<u>233 279 351 380</u>	<u>94 181 191 363</u>	<u>64 187 324 392</u>	<u>129 238 257 378</u>
<u>83 106 188 311</u>	<u>7 91 93 348</u>	<u>209 216 230 243</u>	<u>29 192 252 392</u>
<u>97 185 361 392</u>	<u>60 193 267 333</u>	<u>73 241 250 260</u>	<u>6 110 177 269</u>
<u>14 26 72 304</u>	<u>185 237 272 381</u>	<u>181 187 235 239</u>	<u>29 79 205 241</u>
<u>51 162 194 387</u>	<u>15 52 166 225</u>	<u>63 193 300 329</u>	<u>233 246 325 331</u>
<u>94 245 273 287</u>	<u>27 100 126 275</u>	<u>291 332 354 396</u>	<u>11 211 321 384</u>
<u>26 177 205 314</u>	<u>70 96 163 333</u>	<u>19 103 260 383</u>	<u>144 282 337 386</u>
<u>14 92 385 389</u>	<u>11 175 273 282</u>	<u>5 303 328 375</u>	<u>33 79 327 385</u>
<u>111 211 366 390</u>	<u>14 212 392 398</u>	<u>131 237 298 384</u>	<u>30 110 179 321</u>
<u>27 71 110 327</u>	<u>91 105 300 382</u>	<u>103 183 281 286</u>	<u>86 133 234 284</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>54 58 72 289</u>	<u>66 102 195 207</u>	<u>138 190 248 283</u>	<u>43 161 250 322</u>
<u>22 145 269 373</u>	<u>97 243 272 301</u>	<u>78 97 139 144</u>	<u>7 168 182 185</u>
<u>81 172 211 381</u>	<u>92 128 156 304</u>	<u>177 180 244 272</u>	<u>15 45 189 286</u>
<u>59 246 252 255</u>	<u>68 313 385 390</u>	<u>44 123 243 287</u>	<u>191 205 301 305</u>
<u>34 113 207 286</u>	<u>13 32 49 271</u>	<u>122 211 304 388</u>	<u>155 235 282 299</u>
<u>69 100 222 231</u>	<u>4 80 123 277</u>	<u>70 117 278 332</u>	<u>40 114 194 372</u>
<u>14 150 387 396</u>	<u>89 135 243 375</u>	<u>31 85 343 394</u>	<u>249 263 323 372</u>
<u>17 73 228 248</u>	<u>88 372 381 388</u>	<u>47 133 244 312</u>	<u>36 214 252 380</u>
<u>29 193 232 259</u>	<u>66 108 222 274</u>	<u>20 144 299 368</u>	<u>176 201 258 373</u>
<u>40 148 359 374</u>	<u>28 59 164 167</u>	<u>25 84 335 395</u>	<u>102 208 340 379</u>
<u>38 281 316 327</u>	<u>201 204 313 324</u>	<u>102 199 213 283</u>	<u>85 161 240 262</u>
<u>70 87 100 395</u>	<u>73 311 388 397</u>	<u>64 164 169 224</u>	<u>5 17 199 339</u>
<u>26 231 295 369</u>	<u>109 186 243 261</u>	<u>50 152 224 276</u>	<u>150 230 306 341</u>
<u>214 234 269 288</u>	<u>116 125 276 398</u>	<u>42 184 390 398</u>	<u>46 123 204 318</u>
<u>77 154 320 365</u>	<u>58 185 287 293</u>	<u>1 73 349 396</u>	<u>71 130 143 271</u>
<u>27 76 86 155</u>	<u>40 203 279 314</u>	<u>238 317 354 385</u>	<u>208 268 365 396</u>
<u>65 139 175 240</u>	<u>46 50 86 255</u>	<u>46 70 296 379</u>	<u>257 263 336 395</u>
<u>33 130 223 286</u>	<u>23 48 109 120</u>	<u>156 247 278 334</u>	<u>218 267 334 360</u>
<u>215 271 317 344</u>	<u>236 297 325 333</u>	<u>130 235 319 390</u>	<u>53 74 255 302</u>
<u>8 47 113 153</u>	<u>123 155 320 384</u>	<u>0 108 120 213</u>	<u>104 175 302 311</u>
<u>194 233 361 377</u>	<u>36 67 169 274</u>	<u>11 93 146 235</u>	<u>228 338 360 369</u>
<u>88 202 284 394</u>	<u>54 102 191 239</u>	<u>96 255 374 376</u>	<u>8 35 112 394</u>
<u>29 118 285 380</u>	<u>8 109 198 391</u>	<u>85 146 204 366</u>	<u>39 130 336 365</u>
<u>96 154 312 383</u>	<u>143 176 238 370</u>	<u>146 254 365 391</u>	<u>13 170 198 378</u>
<u>19 250 318 359</u>	<u>39 41 105 208</u>	<u>114 148 151 373</u>	<u>56 156 162 181</u>
<u>32 282 289 334</u>	<u>126 197 342 357</u>	<u>60 121 145 343</u>	<u>47 95 104 272</u>
<u>56 272 294 303</u>	<u>9 40 191 384</u>	<u>112 195 277 296</u>	<u>9 291 333 362</u>
<u>10 68 72 210</u>	<u>51 148 207 270</u>	<u>29 302 310 334</u>	<u>121 128 193 322</u>
<u>184 261 382 386</u>	<u>49 114 243 360</u>	<u>38 156 251 280</u>	<u>159 276 311 392</u>
<u>202 204 315 342</u>	<u>60 87 303 370</u>	<u>130 209 249 266</u>	<u>15 42 105 267</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>4 23 202 388</u>	<u>14 53 98 269</u>	<u>42 130 307 331</u>	<u>173 216 220 247</u>
<u>23 61 260 307</u>	<u>179 207 236 269</u>	<u>25 190 224 282</u>	<u>246 306 375 384</u>
<u>42 124 355 380</u>	<u>10 163 205 369</u>	<u>57 238 375 393</u>	<u>75 160 187 263</u>
<u>124 259 374 386</u>	<u>31 92 162 396</u>	<u>5 158 186 355</u>	<u>171 236 329 389</u>
<u>136 140 207 317</u>	<u>85 268 314 345</u>	<u>83 110 385 399</u>	<u>58 178 196 380</u>
<u>9 278 280 325</u>	<u>1 31 249 319</u>	<u>48 154 166 308</u>	<u>171 203 256 370</u>
<u>4 19 59 360</u>	<u>35 56 281 333</u>	<u>2 75 288 340</u>	<u>5 134 277 330</u>
<u>21 79 94 356</u>	<u>137 199 223 376</u>	<u>86 223 248 264</u>	<u>110 153 320 336</u>
<u>26 158 345 353</u>	<u>52 320 338 362</u>	<u>67 135 158 350</u>	<u>24 93 369 383</u>
<u>95 172 261 374</u>	<u>65 224 307 390</u>	<u>80 133 345 351</u>	<u>35 100 244 361</u>
<u>27 119 364 373</u>	<u>146 310 346 384</u>	<u>51 195 265 335</u>	<u>327 345 369 396</u>
<u>35 245 335 374</u>	<u>101 138 193 307</u>	<u>63 117 159 196</u>	<u>27 37 185 277</u>
<u>139 162 184 228</u>	<u>234 314 342 394</u>	<u>13 16 37 143</u>	<u>257 259 321 362</u>
<u>53 84 214 363</u>	<u>19 109 127 214</u>	<u>70 95 306 391</u>	<u>23 253 280 370</u>
<u>17 153 242 386</u>	<u>40 80 132 196</u>	<u>178 187 249 316</u>	<u>13 44 99 224</u>
<u>30 137 274 313</u>	<u>183 213 229 249</u>	<u>37 52 162 307</u>	<u>57 69 114 224</u>
<u>68 169 256 369</u>	<u>105 228 232 238</u>	<u>173 211 237 344</u>	<u>70 154 185 352</u>
<u>30 119 206 394</u>	<u>64 278 290 357</u>	<u>41 114 210 233</u>	<u>34 269 338 367</u>
<u>224 325 365 380</u>	<u>20 116 173 251</u>	<u>102 202 287 354</u>	<u>77 170 234 326</u>
<u>50 178 188 274</u>	<u>97 261 308 393</u>	<u>136 185 223 303</u>	<u>138 171 192 269</u>
<u>2 56 169 225</u>	<u>20 100 146 165</u>	<u>86 265 287 355</u>	<u>173 192 284 371</u>
<u>43 75 167 296</u>	<u>67 84 164 376</u>	<u>11 66 131 255</u>	<u>68 155 164 353</u>
<u>28 131 274 304</u>	<u>155 260 300 352</u>	<u>124 147 319 392</u>	<u>4 22 201 212</u>
<u>107 263 309 385</u>	<u>116 118 147 233</u>	<u>46 67 152 380</u>	<u>206 234 259 270</u>
<u>101 238 310 395</u>	<u>61 174 328 371</u>	<u>64 82 111 312</u>	<u>35 168 176 389</u>
<u>35 58 238 345</u>	<u>30 60 155 368</u>	<u>78 123 264 317</u>	<u>103 162 351 370</u>
<u>43 61 106 391</u>	<u>39 142 169 232</u>	<u>24 45 85 295</u>	<u>49 59 102 212</u>
<u>86 113 161 390</u>	<u>54 76 318 358</u>	<u>118 141 244 255</u>	<u>155 192 270 287</u>
<u>35 316 329 376</u>	<u>196 341 352 391</u>	<u>17 164 229 252</u>	<u>4 81 95 119</u>
<u>37 161 224 306</u>	<u>61 63 333 350</u>	<u>27 132 134 179</u>	<u>135 138 200 301</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 15
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>11 32 294 357</u>	<u>4 199 234 308</u>	<u>122 125 185 324</u>	<u>45 82 120 133</u>
<u>10 73 84 173</u>	<u>76 139 192 332</u>	<u>58 294 318 365</u>	<u>6 42 195 295</u>
<u>25 48 97 145</u>	<u>1 252 322 331</u>	<u>84 210 216 235</u>	<u>171 201 344 377</u>
<u>7 223 280 366</u>	<u>89 217 352 378</u>	<u>54 142 147 355</u>	<u>94 179 205 344</u>
<u>83 137 247 276</u>	<u>83 156 175 211</u>	<u>73 91 174 353</u>	<u>32 144 219 315</u>
<u>31 56 117 325</u>	<u>75 132 341 364</u>	<u>15 48 292 323</u>	<u>226 257 333 386</u>
<u>211 281 307 358</u>	<u>78 106 204 272</u>	<u>4 62 67 126</u>	<u>24 102 182 375</u>
<u>49 118 211 372</u>	<u>65 159 214 284</u>	<u>109 129 191 203</u>	<u>49 86 123 175</u>
<u>70 179 221 371</u>	<u>141 161 342 353</u>	<u>143 154 168 205</u>	<u>62 151 266 298</u>
<u>38 260 266 388</u>	<u>336 375 381 397</u>	<u>24 75 127 304</u>	<u>272 323 339 367</u>
<u>142 222 253 335</u>	<u>143 260 291 302</u>	<u>34 142 182 363</u>	<u>99 160 273 330</u>
<u>83 88 180 363</u>	<u>84 298 339 375</u>	<u>10 198 303 308</u>	<u>194 274 324 368</u>
<u>153 371 374 393</u>	<u>219 234 357 374</u>	<u>146 258 273 361</u>	<u>51 127 158 191</u>
<u>142 161 286 312</u>	<u>0 118 292 328</u>	<u>113 132 220 359</u>	<u>2 98 164 393</u>
<u>34 111 221 243</u>	<u>19 119 226 387</u>	<u>39 179 252 274</u>	<u>90 108 149 315</u>
<u>40 66 91 391</u>	<u>115 167 294 319</u>	<u>6 176 199 318</u>	<u>8 122 129 299</u>
<u>55 120 165 209</u>	<u>53 222 233 236</u>	<u>33 55 95 124</u>	<u>8 48 64 210</u>
<u>4 28 46 292</u>	<u>18 52 63 182</u>	<u>134 228 283 329</u>	<u>56 106 207 240</u>
<u>149 222 244 357</u>	<u>79 102 148 311</u>	<u>75 175 339 371</u>	<u>48 87 212 340</u>
<u>190 339 362 364</u>	<u>140 270 351 369</u>	<u>78 89 202 322</u>	<u>38 231 288 394</u>
<u>10 67 187 338</u>	<u>91 255 289 389</u>	<u>85 197 310 390</u>	<u>137 353 378 393</u>
<u>2 132 168 263</u>	<u>163 285 330 338</u>	<u>59 112 305 323</u>	<u>119 150 272 355</u>
<u>9 63 294 305</u>	<u>237 251 312 359</u>	<u>154 163 287 305</u>	<u>64 92 190 291</u>
<u>26 60 148 224</u>	<u>39 186 288 301</u>	<u>83 195 206 264</u>	<u>4 51 121 215</u>
<u>59 157 188 224</u>	<u>29 188 211 367</u>	<u>45 209 255 311</u>	<u>119 171 229 253</u>
<u>139 220 320 349</u>	<u>269 298 391 397</u>	<u>54 182 261 302</u>	<u>65 357 363 370</u>
<u>69 202 336 385</u>	<u>85 95 292 307</u>	<u>128 190 241 384</u>	<u>83 172 197 280</u>
<u>20 92 313 331</u>	<u>72 150 266 314</u>	<u>7 48 66 82</u>	<u>27 131 360 396</u>
<u>44 79 316 392</u>	<u>101 199 253 359</u>	<u>173 315 372 382</u>	<u>77 136 150 309</u>
<u>104 177 254 335</u>	<u>18 41 259 368</u>	<u>41 49 117 320</u>	<u>3 121 179 230</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 16
Dkt: P19060/1000-0037Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>10 104 152 326</u>	<u>73 171 273 345</u>	<u>114 241 271 315</u>	<u>0 98 291 388</u>
<u>64 134 178 182</u>	<u>68 140 200 363</u>	<u>96 179 249 302</u>	<u>32 259 287 333</u>
<u>214 300 353 386</u>	<u>38 111 233 358</u>	<u>7 9 170 394</u>	<u>184 314 389 397</u>
<u>110 254 268 346</u>	<u>157 289 328 372</u>	<u>46 284 308 388</u>	<u>101 189 296 383</u>
<u>272 304 337 347</u>	<u>160 188 284 327</u>	<u>104 158 332 362</u>	<u>126 160 235 240</u>
<u>37 165 235 262</u>	<u>137 304 349 374</u>	<u>109 153 189 370</u>	<u>111 120 212 288</u>
<u>1 36 234 297</u>	<u>140 168 204 341</u>	<u>14 110 338 381</u>	<u>10 174 209 291</u>
<u>69 281 347 371</u>	<u>132 223 298 336</u>	<u>101 142 257 376</u>	<u>112 114 186 239</u>
<u>59 264 271 348</u>	<u>71 114 184 200</u>	<u>93 129 359 394</u>	<u>164 179 304 346</u>
<u>175 255 277 357</u>	<u>60 135 323 399</u>	<u>133 137 142 314</u>	<u>90 127 252 284</u>
<u>51 97 374 399</u>	<u>9 38 179 245</u>	<u>187 215 269 294</u>	<u>53 173 282 333</u>
<u>108 223 317 360</u>	<u>114 157 229 366</u>	<u>116 121 300 363</u>	<u>82 87 98 354</u>
<u>82 125 216 228</u>	<u>229 297 323 342</u>	<u>57 251 267 386</u>	<u>77 106 138 345</u>
<u>134 154 172 317</u>	<u>24 36 89 106</u>	<u>14 126 335 379</u>	<u>74 329 360 366</u>
<u>49 65 74 157</u>	<u>101 134 140 381</u>	<u>31 133 250 268</u>	<u>167 322 332 395</u>
<u>3 112 266 356</u>	<u>50 148 194 257</u>	<u>9 183 241 342</u>	<u>52 88 276 294</u>
<u>81 204 254 262</u>	<u>1 222 340 378</u>	<u>37 164 279 324</u>	<u>47 199 299 391</u>
<u>3 113 263 332</u>	<u>67 155 220 365</u>	<u>118 130 187 270</u>	<u>3 219 275 297</u>
<u>100 151 205 240</u>	<u>15 156 210 262</u>	<u>135 169 182 319</u>	<u>3 30 375 378</u>
<u>95 125 180 303</u>	<u>53 125 134 231</u>	<u>6 149 204 220</u>	<u>110 134 158 282</u>
<u>234 292 306 352</u>	<u>192 337 357 360</u>	<u>63 150 214 259</u>	<u>151 188 359 388</u>
<u>149 227 349 355</u>	<u>170 203 216 266</u>	<u>19 65 348 388</u>	<u>191 199 304 333</u>
<u>111 142 267 321</u>	<u>2 71 74 362</u>	<u>15 46 151 383</u>	<u>42 191 274 383</u>
<u>27 203 228 361</u>	<u>40 97 101 356</u>	<u>22 160 227 230</u>	<u>51 99 384 394</u>
<u>52 277 309 390</u>	<u>54 117 145 201</u>	<u>124 166 279 317</u>	<u>146 343 367 376</u>
<u>33 57 284 302</u>	<u>34 81 147 326</u>	<u>45 130 237 361</u>	<u>153 247 284 375</u>
<u>35 50 66 219</u>	<u>5 121 256 311</u>	<u>6 189 316 347</u>	<u>36 133 204 243</u>
<u>22 27 149 215</u>	<u>14 176 272 383</u>	<u>74 135 142 311</u>	<u>110 224 265 277</u>
<u>13 28 84 206</u>	<u>283 297 340 396</u>	<u>85 153 177 222</u>	<u>86 129 319 371</u>
<u>59 108 337 349</u>	<u>7 36 307 320</u>	<u>120 154 210 237</u>	<u>103 127 201 336</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 17
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>39 50 247 256</u>	<u>133 205 239 387</u>	<u>20 21</u>	<u>50 51</u>
<u>119 165 230 370</u>	<u>174 206 285 292</u>	<u>21 22</u>	<u>51 52</u>
<u>21 82 248 311</u>	<u>14 43 99 137</u>	<u>22 23</u>	<u>52 53</u>
<u>84 137 239 315</u>	<u>87 111 371 377</u>	<u>23 24</u>	<u>53 54</u>
<u>1 155 239 268</u>	<u>73 137 177 261</u>	<u>24 25</u>	<u>54 55</u>
<u>265 278 329 342</u>	<u>10 105 184 352</u>	<u>25 26</u>	<u>55 56</u>
<u>18 118 234 242</u>	<u>126 286 347 390</u>	<u>26 27</u>	<u>56 57</u>
<u>135 189 337 353</u>	<u>72 91 148 196</u>	<u>27 28</u>	<u>57 58</u>
<u>18 28 123 159</u>	<u>12 162 292 363</u>	<u>28 29</u>	<u>58 59</u>
<u>26 44 88 267</u>	<u>6 112 273 399</u>	<u>29 30</u>	<u>59 60</u>
<u>12 50 103 251</u>	<u>0 1</u>	<u>30 31</u>	<u>60 61</u>
<u>144 242 244 372</u>	<u>1 2</u>	<u>31 32</u>	<u>61 62</u>
<u>53 181 221 229</u>	<u>2 3</u>	<u>32 33</u>	<u>62 63</u>
<u>46 89 180 281</u>	<u>3 4</u>	<u>33 34</u>	<u>63 64</u>
<u>3 53 285 382</u>	<u>4 5</u>	<u>34 35</u>	<u>64 65</u>
<u>175 184 205 209</u>	<u>5 6</u>	<u>35 36</u>	<u>65 66</u>
<u>94 208 276 349</u>	<u>6 7</u>	<u>36 37</u>	<u>66 67</u>
<u>14 37 131 266</u>	<u>7 8</u>	<u>37 38</u>	<u>67 68</u>
<u>135 227 367 392</u>	<u>8 9</u>	<u>38 39</u>	<u>68 69</u>
<u>13 59 103 207</u>	<u>9 10</u>	<u>39 40</u>	<u>69 70</u>
<u>48 78 84 243</u>	<u>10 11</u>	<u>40 41</u>	<u>70 71</u>
<u>94 252 262 306</u>	<u>11 12</u>	<u>41 42</u>	<u>71 72</u>
<u>168 316 324 380</u>	<u>12 13</u>	<u>42 43</u>	<u>72 73</u>
<u>196 255 260 394</u>	<u>13 14</u>	<u>43 44</u>	<u>73 74</u>
<u>11 105 178 243</u>	<u>14 15</u>	<u>44 45</u>	<u>74 75</u>
<u>19 122 177 339</u>	<u>15 16</u>	<u>45 46</u>	<u>75 76</u>
<u>64 203 304 319</u>	<u>16 17</u>	<u>46 47</u>	<u>76 77</u>
<u>12 174 194 208</u>	<u>17 18</u>	<u>47 48</u>	<u>77 78</u>
<u>46 52 271 377</u>	<u>18 19</u>	<u>48 49</u>	<u>78 79</u>
<u>62 149 169 353</u>	<u>19 20</u>	<u>49 50</u>	<u>79 80</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Page 18

Serial Number: 10/815,133

Dkt: P19060/1000-0037

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>80 81</u>	<u>110 111</u>	<u>140 141</u>	<u>170 171</u>
<u>81 82</u>	<u>111 112</u>	<u>141 142</u>	<u>171 172</u>
<u>82 83</u>	<u>112 113</u>	<u>142 143</u>	<u>172 173</u>
<u>83 84</u>	<u>113 114</u>	<u>143 144</u>	<u>173 174</u>
<u>84 85</u>	<u>114 115</u>	<u>144 145</u>	<u>174 175</u>
<u>85 86</u>	<u>115 116</u>	<u>145 146</u>	<u>175 176</u>
<u>86 87</u>	<u>116 117</u>	<u>146 147</u>	<u>176 177</u>
<u>87 88</u>	<u>117 118</u>	<u>147 148</u>	<u>177 178</u>
<u>88 89</u>	<u>118 119</u>	<u>148 149</u>	<u>178 179</u>
<u>89 90</u>	<u>119 120</u>	<u>149 150</u>	<u>179 180</u>
<u>90 91</u>	<u>120 121</u>	<u>150 151</u>	<u>180 181</u>
<u>91 92</u>	<u>121 122</u>	<u>151 152</u>	<u>181 182</u>
<u>92 93</u>	<u>122 123</u>	<u>152 153</u>	<u>182 183</u>
<u>93 94</u>	<u>123 124</u>	<u>153 154</u>	<u>183 184</u>
<u>94 95</u>	<u>124 125</u>	<u>154 155</u>	<u>184 185</u>
<u>95 96</u>	<u>125 126</u>	<u>155 156</u>	<u>185 186</u>
<u>96 97</u>	<u>126 127</u>	<u>156 157</u>	<u>186 187</u>
<u>97 98</u>	<u>127 128</u>	<u>157 158</u>	<u>187 188</u>
<u>98 99</u>	<u>128 129</u>	<u>158 159</u>	<u>188 189</u>
<u>99 100</u>	<u>129 130</u>	<u>159 160</u>	<u>189 190</u>
<u>100 101</u>	<u>130 131</u>	<u>160 161</u>	<u>190 191</u>
<u>101 102</u>	<u>131 132</u>	<u>161 162</u>	<u>191 192</u>
<u>102 103</u>	<u>132 133</u>	<u>162 163</u>	<u>192 193</u>
<u>103 104</u>	<u>133 134</u>	<u>163 164</u>	<u>193 194</u>
<u>104 105</u>	<u>134 135</u>	<u>164 165</u>	<u>194 195</u>
<u>105 106</u>	<u>135 136</u>	<u>165 166</u>	<u>195 196</u>
<u>106 107</u>	<u>136 137</u>	<u>166 167</u>	<u>196 197</u>
<u>107 108</u>	<u>137 138</u>	<u>167 168</u>	<u>197 198</u>
<u>108 109</u>	<u>138 139</u>	<u>168 169</u>	<u>198 199</u>
<u>109 110</u>	<u>139 140</u>	<u>169 170</u>	<u>199 200</u>

<u>200 201</u>	<u>230 231</u>	<u>260 261</u>	<u>290 291</u>
<u>201 202</u>	<u>231 232</u>	<u>261 262</u>	<u>291 292</u>
<u>202 203</u>	<u>232 233</u>	<u>262 263</u>	<u>292 293</u>
<u>203 204</u>	<u>233 234</u>	<u>263 264</u>	<u>293 294</u>
<u>204 205</u>	<u>234 235</u>	<u>264 265</u>	<u>294 295</u>
<u>205 206</u>	<u>235 236</u>	<u>265 266</u>	<u>295 296</u>
<u>206 207</u>	<u>236 237</u>	<u>266 267</u>	<u>296 297</u>
<u>207 208</u>	<u>237 238</u>	<u>267 268</u>	<u>297 298</u>
<u>208 209</u>	<u>238 239</u>	<u>268 269</u>	<u>298 299</u>
<u>209 210</u>	<u>239 240</u>	<u>269 270</u>	<u>299 300</u>
<u>210 211</u>	<u>240 241</u>	<u>270 271</u>	<u>300 301</u>
<u>211 212</u>	<u>241 242</u>	<u>271 272</u>	<u>301 302</u>
<u>212 213</u>	<u>242 243</u>	<u>272 273</u>	<u>302 303</u>
<u>213 214</u>	<u>243 244</u>	<u>273 274</u>	<u>303 304</u>
<u>214 215</u>	<u>244 245</u>	<u>274 275</u>	<u>304 305</u>
<u>215 216</u>	<u>245 246</u>	<u>275 276</u>	<u>305 306</u>
<u>216 217</u>	<u>246 247</u>	<u>276 277</u>	<u>306 307</u>
<u>217 218</u>	<u>247 248</u>	<u>277 278</u>	<u>307 308</u>
<u>218 219</u>	<u>248 249</u>	<u>278 279</u>	<u>308 309</u>
<u>219 220</u>	<u>249 250</u>	<u>279 280</u>	<u>309 310</u>
<u>220 221</u>	<u>250 251</u>	<u>280 281</u>	<u>310 311</u>
<u>221 222</u>	<u>251 252</u>	<u>281 282</u>	<u>311 312</u>
<u>222 223</u>	<u>252 253</u>	<u>282 283</u>	<u>312 313</u>
<u>223 224</u>	<u>253 254</u>	<u>283 284</u>	<u>313 314</u>
<u>224 225</u>	<u>254 255</u>	<u>284 285</u>	<u>314 315</u>
<u>225 226</u>	<u>255 256</u>	<u>285 286</u>	<u>315 316</u>
<u>226 227</u>	<u>256 257</u>	<u>286 287</u>	<u>316 317</u>
<u>227 228</u>	<u>257 258</u>	<u>287 288</u>	<u>317 318</u>
<u>228 229</u>	<u>258 259</u>	<u>288 289</u>	<u>318 319</u>
<u>229 230</u>	<u>259 260</u>	<u>289 290</u>	<u>319 320</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>320 321</u>	<u>340 341</u>	<u>360 361</u>	<u>380 381</u>
<u>321 322</u>	<u>341 342</u>	<u>361 362</u>	<u>381 382</u>
<u>322 323</u>	<u>342 343</u>	<u>362 363</u>	<u>382 383</u>
<u>323 324</u>	<u>343 344</u>	<u>363 364</u>	<u>383 384</u>
<u>324 325</u>	<u>344 345</u>	<u>364 365</u>	<u>384 385</u>
<u>325 326</u>	<u>345 346</u>	<u>365 366</u>	<u>385 386</u>
<u>326 327</u>	<u>346 347</u>	<u>366 367</u>	<u>386 387</u>
<u>327 328</u>	<u>347 348</u>	<u>367 368</u>	<u>387 388</u>
<u>328 329</u>	<u>348 349</u>	<u>368 369</u>	<u>388 389</u>
<u>329 330</u>	<u>349 350</u>	<u>369 370</u>	<u>389 390</u>
<u>330 331</u>	<u>350 351</u>	<u>370 371</u>	<u>390 391</u>
<u>331 332</u>	<u>351 352</u>	<u>371 372</u>	<u>391 392</u>
<u>332 333</u>	<u>352 353</u>	<u>372 373</u>	<u>392 393</u>
<u>333 334</u>	<u>353 354</u>	<u>373 374</u>	<u>393 394</u>
<u>334 335</u>	<u>354 355</u>	<u>374 375</u>	<u>394 395</u>
<u>335 336</u>	<u>355 356</u>	<u>375 376</u>	<u>395 396</u>
<u>336 337</u>	<u>356 357</u>	<u>376 377</u>	<u>396 397</u>
<u>337 338</u>	<u>357 358</u>	<u>377 378</u>	<u>397 398</u>
<u>338 339</u>	<u>358 359</u>	<u>378 379</u>	<u>398 399</u>
<u>339 340</u>	<u>359 360</u>	<u>379 380</u>	<u>399.</u>

2. (Original) The wireless apparatus of claim 1, wherein:

said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.

3. (Original) The wireless apparatus of claim 1, further comprising:

a mapper, between said FEC coder and said wireless transmitter, to map said code word based on a predetermined modulation scheme; and

an inverse discrete Fourier transform unit to convert mapped data from a frequency domain representation to a time domain representation.

4. (Previously Presented) The wireless apparatus of claim 1, wherein:
said first portion of said parity check matrix is a portion that includes columns of said parity check matrix having a column weight of 4.
5. (Canceled)
6. (Previously Presented) The wireless apparatus of claim 1, wherein:
said first portion of said parity check matrix includes said entire parity check matrix.
- 7.-9. (Canceled)
10. (Previously Presented) The wireless apparatus of claim 1, wherein:
said LDPC code is a (2000, 1600) LDPC code.
11. (Original) The wireless apparatus of claim 1, wherein:
said wireless apparatus is a wireless user device for use in a wireless network.
12. (Original) The wireless apparatus of claim 1, wherein:
said wireless apparatus is a wireless access point.
13. (Original) The wireless apparatus of claim 1, wherein:
said wireless apparatus is a wireless network interface module.
14. (Original) The wireless apparatus of claim 1, wherein:
said wireless apparatus is an integrated circuit.
15. (Currently Amended) A computer implemented method comprising:
accessing a computer readable storage medium storing a representation of at least a first portion of a parity check matrix, wherein said ~~parity check matrix is substantially as described in Appendix A and said first portion of said parity check matrix includes at least half of said parity~~

check matrix;

matrix multiplying input data by a transpose of said first portion of said parity check matrix;

processing a result of said matrix multiplication using differential encoding to generate coded data;

concatenating said input data and said coded data to form a code word; and

generating and transmitting a wireless signal that includes said code word;

wherein said parity check matrix, in list file form, is substantially as follows:

2000 400

<u>143</u>	<u>225</u>	<u>316</u>	<u>323</u>	<u>290</u>	<u>350</u>	<u>370</u>	<u>382</u>	<u>194</u>	<u>239</u>	<u>243</u>	<u>293</u>	<u>111</u>	<u>162</u>	<u>190</u>	<u>227</u>
<u>92</u>	<u>140</u>	<u>191</u>	<u>358</u>	<u>56</u>	<u>94</u>	<u>184</u>	<u>215</u>	<u>90</u>	<u>144</u>	<u>228</u>	<u>350</u>	<u>189</u>	<u>272</u>	<u>288</u>	<u>302</u>
<u>69</u>	<u>315</u>	<u>329</u>	<u>343</u>	<u>84</u>	<u>119</u>	<u>337</u>	<u>344</u>	<u>170</u>	<u>206</u>	<u>321</u>	<u>395</u>	<u>14</u>	<u>49</u>	<u>147</u>	<u>334</u>
<u>6</u>	<u>121</u>	<u>205</u>	<u>284</u>	<u>2</u>	<u>156</u>	<u>244</u>	<u>398</u>	<u>72</u>	<u>138</u>	<u>254</u>	<u>300</u>	<u>33</u>	<u>53</u>	<u>213</u>	<u>238</u>
<u>58</u>	<u>66</u>	<u>254</u>	<u>337</u>	<u>9</u>	<u>106</u>	<u>200</u>	<u>336</u>	<u>25</u>	<u>196</u>	<u>201</u>	<u>279</u>	<u>53</u>	<u>219</u>	<u>368</u>	<u>379</u>
<u>1</u>	<u>47</u>	<u>178</u>	<u>395</u>	<u>22</u>	<u>37</u>	<u>150</u>	<u>270</u>	<u>56</u>	<u>59</u>	<u>362</u>	<u>379</u>	<u>126</u>	<u>149</u>	<u>188</u>	<u>339</u>
<u>129</u>	<u>151</u>	<u>212</u>	<u>228</u>	<u>3</u>	<u>110</u>	<u>326</u>	<u>367</u>	<u>28</u>	<u>121</u>	<u>170</u>	<u>277</u>	<u>108</u>	<u>118</u>	<u>182</u>	<u>393</u>
<u>66</u>	<u>146</u>	<u>243</u>	<u>265</u>	<u>235</u>	<u>276</u>	<u>290</u>	<u>335</u>	<u>61</u>	<u>273</u>	<u>351</u>	<u>386</u>	<u>0</u>	<u>37</u>	<u>160</u>	<u>295</u>
<u>22</u>	<u>140</u>	<u>157</u>	<u>180</u>	<u>82</u>	<u>187</u>	<u>193</u>	<u>297</u>	<u>71</u>	<u>76</u>	<u>232</u>	<u>328</u>	<u>158</u>	<u>200</u>	<u>335</u>	<u>356</u>
<u>120</u>	<u>208</u>	<u>313</u>	<u>321</u>	<u>43</u>	<u>183</u>	<u>297</u>	<u>379</u>	<u>62</u>	<u>109</u>	<u>190</u>	<u>201</u>	<u>11</u>	<u>20</u>	<u>229</u>	<u>397</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 24
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>77 86 212 250</u>	<u>119 163 178 217</u>	<u>21 32 216 393</u>	<u>162 231 270 377</u>
<u>79 193 262 336</u>	<u>61 129 185 200</u>	<u>37 170 209 342</u>	<u>14 102 139 158</u>
<u>43 104 125 376</u>	<u>34 38 104 295</u>	<u>49 58 357 399</u>	<u>28 79 155 318</u>
<u>55 114 134 293</u>	<u>119 289 349 377</u>	<u>18 23 31 373</u>	<u>28 40 63 236</u>
<u>240 283 299 333</u>	<u>50 314 322 367</u>	<u>159 172 195 366</u>	<u>163 181 258 279</u>
<u>0 24 57 100</u>	<u>28 48 248 382</u>	<u>213 335 337 378</u>	<u>158 176 273 334</u>
<u>46 84 322 341</u>	<u>32 41 128 201</u>	<u>1 103 159 277</u>	<u>80 236 256 380</u>
<u>5 43 45 221</u>	<u>91 115 220 368</u>	<u>96 159 209 387</u>	<u>74 156 214 358</u>
<u>29 217 274 301</u>	<u>45 151 196 265</u>	<u>102 165 234 378</u>	<u>176 229 251 283</u>
<u>81 93 116 278</u>	<u>152 190 198 317</u>	<u>173 245 356 376</u>	<u>19 104 114 162</u>
<u>93 174 213 231</u>	<u>157 212 242 275</u>	<u>57 230 240 314</u>	<u>141 284 291 358</u>
<u>64 201 251 385</u>	<u>2 40 249 283</u>	<u>1 89 153 166</u>	<u>77 123 157 361</u>
<u>76 134 278 370</u>	<u>195 280 299 345</u>	<u>25 32 264 342</u>	<u>141 154 215 338</u>
<u>71 93 182 398</u>	<u>142 151 220 395</u>	<u>265 276 321 324</u>	<u>55 294 296 298</u>
<u>38 174 250 377</u>	<u>70 121 252 382</u>	<u>57 211 274 360</u>	<u>80 109 272 364</u>
<u>19 116 357 372</u>	<u>52 244 279 297</u>	<u>12 291 311 348</u>	<u>43 206 287 363</u>
<u>81 91 164 307</u>	<u>22 131 256 349</u>	<u>34 220 258 282</u>	<u>81 175 206 261</u>
<u>180 186 241 251</u>	<u>47 52 339 346</u>	<u>52 58 109 379</u>	<u>31 94 275 317</u>
<u>239 254 331 342</u>	<u>50 288 342 388</u>	<u>116 248 337 369</u>	<u>10 123 141 279</u>
<u>107 149 250 295</u>	<u>26 87 247 283</u>	<u>87 146 183 278</u>	<u>44 64 157 270</u>
<u>73 221 295 362</u>	<u>67 127 132 136</u>	<u>42 96 318 361</u>	<u>160 243 290 373</u>
<u>75 97 242 279</u>	<u>146 264 321 323</u>	<u>32 176 312 361</u>	<u>39 217 262 324</u>
<u>32 197 244 313</u>	<u>210 275 319 346</u>	<u>69 258 310 389</u>	<u>19 185 312 389</u>
<u>245 248 276 296</u>	<u>57 160 252 261</u>	<u>1 84 182 300</u>	<u>211 271 277 291</u>
<u>59 230 322 347</u>	<u>26 54 170 197</u>	<u>45 124 161 396</u>	<u>19 148 155 324</u>
<u>17 246 291 364</u>	<u>120 218 229 341</u>	<u>15 76 99 101</u>	<u>24 94 124 314</u>
<u>125 157 227 390</u>	<u>44 53 124 323</u>	<u>62 248 354 375</u>	<u>3 85 193 349</u>
<u>122 205 279 348</u>	<u>0 113 315 358</u>	<u>78 258 262 311</u>	<u>68 175 202 253</u>
<u>61 298 340 380</u>	<u>110 144 246 298</u>	<u>181 265 364 368</u>	<u>139 160 337 377</u>
<u>12 31 256 328</u>	<u>89 91 99 346</u>	<u>60 168 227 254</u>	<u>21 224 249 398</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>113 122 206 327</u>	<u>258 299 306 331</u>	<u>1 51 135 149</u>	<u>18 96 164 326</u>
<u>7 10 156 245</u>	<u>83 194 207 349</u>	<u>257 294 331 356</u>	<u>84 103 107 359</u>
<u>140 182 192 235</u>	<u>43 141 175 329</u>	<u>204 260 288 294</u>	<u>92 338 350 355</u>
<u>161 291 324 387</u>	<u>0 68 170 262</u>	<u>45 144 185 383</u>	<u>16 70 242 338</u>
<u>31 232 237 350</u>	<u>25 36 153 309</u>	<u>173 310 329 362</u>	<u>20 74 141 179</u>
<u>30 184 235 387</u>	<u>57 62 273 323</u>	<u>15 165 305 348</u>	<u>159 246 248 365</u>
<u>136 226 269 327</u>	<u>7 19 75 264</u>	<u>27 66 85 182</u>	<u>207 292 387 399</u>
<u>4 93 136 167</u>	<u>21 254 259 366</u>	<u>47 235 238 246</u>	<u>38 148 303 347</u>
<u>47 148 309 348</u>	<u>8 97 156 172</u>	<u>230 276 293 367</u>	<u>68 113 296 389</u>
<u>73 225 252 290</u>	<u>9 185 313 330</u>	<u>118 150 267 324</u>	<u>12 257 286 325</u>
<u>44 213 361 386</u>	<u>55 219 253 393</u>	<u>68 82 309 398</u>	<u>50 287 294 327</u>
<u>79 319 361 381</u>	<u>86 120 185 233</u>	<u>72 154 226 231</u>	<u>149 259 356 367</u>
<u>74 251 339 356</u>	<u>41 136 191 242</u>	<u>76 135 151 384</u>	<u>3 12 178 309</u>
<u>100 105 246 293</u>	<u>194 265 303 393</u>	<u>39 48 80 309</u>	<u>63 92 166 368</u>
<u>68 101 191 285</u>	<u>256 285 310 399</u>	<u>0 178 305 353</u>	<u>97 190 199 363</u>
<u>32 103 323 355</u>	<u>103 247 275 378</u>	<u>88 136 196 321</u>	<u>13 86 92 308</u>
<u>122 188 228 305</u>	<u>115 218 225 285</u>	<u>37 95 222 300</u>	<u>132 141 221 322</u>
<u>6 77 291 397</u>	<u>98 196 217 328</u>	<u>23 343 358 369</u>	<u>213 257 348 396</u>
<u>70 76 259 276</u>	<u>177 267 306 350</u>	<u>195 252 303 349</u>	<u>91 147 294 325</u>
<u>72 270 335 348</u>	<u>82 299 320 395</u>	<u>9 81 102 317</u>	<u>14 27 48 222</u>
<u>93 147 255 312</u>	<u>139 251 364 381</u>	<u>20 219 285 316</u>	<u>11 81 110 360</u>
<u>92 112 259 388</u>	<u>42 118 178 194</u>	<u>219 281 304 354</u>	<u>10 50 357 393</u>
<u>9 18 61 308</u>	<u>73 100 198 286</u>	<u>33 121 319 351</u>	<u>35 89 248 252</u>
<u>3 137 139 257</u>	<u>68 249 292 376</u>	<u>21 157 191 260</u>	<u>6 55 319 345</u>
<u>165 217 345 354</u>	<u>13 216 221 256</u>	<u>0 88 303 307</u>	<u>107 116 223 271</u>
<u>78 134 263 280</u>	<u>127 138 177 398</u>	<u>13 23 62 268</u>	<u>168 240 261 384</u>
<u>186 213 227 303</u>	<u>20 69 239 264</u>	<u>13 173 279 320</u>	<u>54 204 295 351</u>
<u>68 194 294 346</u>	<u>3 126 132 163</u>	<u>117 189 253 392</u>	<u>3 51 146 299</u>
<u>35 225 284 312</u>	<u>66 88 169 271</u>	<u>32 40 57 350</u>	<u>74 184 307 361</u>
<u>117 188 340 346</u>	<u>88 197 201 387</u>	<u>57 123 148 368</u>	<u>9 202 272 387</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 26
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>106 198 281 329</u>	<u>31 141 151 285</u>	<u>34 259 267 314</u>	<u>111 127 157 330</u>
<u>36 105 225 236</u>	<u>72 163 187 311</u>	<u>55 72 87 223</u>	<u>79 125 239 341</u>
<u>90 139 183 299</u>	<u>24 54 249 297</u>	<u>43 180 185 252</u>	<u>147 172 187 397</u>
<u>152 160 292 354</u>	<u>64 143 322 360</u>	<u>23 113 133 277</u>	<u>230 245 277 352</u>
<u>11 115 227 236</u>	<u>53 73 122 256</u>	<u>258 285 347 350</u>	<u>49 202 350 381</u>
<u>152 202 211 373</u>	<u>100 138 214 226</u>	<u>246 253 318 399</u>	<u>34 56 167 242</u>
<u>4 173 346 374</u>	<u>265 348 373 378</u>	<u>12 78 90 369</u>	<u>36 58 61 83</u>
<u>132 197 238 279</u>	<u>42 62 113 174</u>	<u>17 93 96 102</u>	<u>107 110 133 251</u>
<u>16 94 150 222</u>	<u>29 313 349 358</u>	<u>109 162 318 360</u>	<u>100 245 295 330</u>
<u>241 344 375 386</u>	<u>154 179 217 268</u>	<u>22 83 151 290</u>	<u>16 71 175 397</u>
<u>31 121 161 231</u>	<u>164 289 380 392</u>	<u>141 191 240 266</u>	<u>106 206 229 236</u>
<u>9 33 197 350</u>	<u>109 165 236 312</u>	<u>25 90 138 390</u>	<u>177 308 371 387</u>
<u>87 197 233 312</u>	<u>92 141 193 238</u>	<u>81 113 265 382</u>	<u>89 122 207 362</u>
<u>100 111 129 368</u>	<u>190 243 267 275</u>	<u>88 142 210 283</u>	<u>3 166 190 305</u>
<u>184 278 289 346</u>	<u>95 143 203 393</u>	<u>10 40 43 140</u>	<u>155 171 289 336</u>
<u>76 177 227 356</u>	<u>130 213 264 308</u>	<u>2 195 268 328</u>	<u>34 37 293 301</u>
<u>11 132 246 314</u>	<u>102 133 217 226</u>	<u>117 240 257 374</u>	<u>143 189 255 338</u>
<u>46 93 103 309</u>	<u>69 88 116 295</u>	<u>298 332 350 365</u>	<u>38 75 137 166</u>
<u>20 33 64 196</u>	<u>108 217 273 322</u>	<u>60 122 240 313</u>	<u>62 92 124 366</u>
<u>111 134 194 204</u>	<u>26 287 306 343</u>	<u>157 215 274 397</u>	<u>73 83 105 136</u>
<u>76 116 140 238</u>	<u>8 18 136 152</u>	<u>11 41 164 274</u>	<u>69 134 200 366</u>
<u>189 298 326 381</u>	<u>110 240 245 334</u>	<u>67 76 92 104</u>	<u>179 324 366 386</u>
<u>235 317 320 333</u>	<u>225 255 278 310</u>	<u>19 192 305 344</u>	<u>72 82 188 192</u>
<u>127 301 348 376</u>	<u>63 168 170 303</u>	<u>23 35 125 224</u>	<u>100 120 189 375</u>
<u>51 286 309 377</u>	<u>8 17 255 314</u>	<u>152 163 352 385</u>	<u>244 252 318 329</u>
<u>17 70 139 187</u>	<u>28 92 98 200</u>	<u>40 161 165 329</u>	<u>3 105 116 203</u>
<u>54 180 184 344</u>	<u>112 201 244 392</u>	<u>113 215 245 378</u>	<u>280 282 288 365</u>
<u>85 311 318 327</u>	<u>134 216 344 383</u>	<u>80 168 262 382</u>	<u>38 196 330 369</u>
<u>263 312 364 369</u>	<u>21 97 115 396</u>	<u>81 136 165 239</u>	<u>20 31 113 381</u>
<u>97 149 198 336</u>	<u>28 69 120 380</u>	<u>2 42 248 323</u>	<u>56 173 205 390</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>2 30 165 366</u>	<u>181 190 288 379</u>	<u>90 264 269 280</u>	<u>17 44 159 398</u>
<u>41 75 169 302</u>	<u>38 73 249 368</u>	<u>22 132 258 368</u>	<u>108 167 174 374</u>
<u>210 271 330 334</u>	<u>45 49 264 394</u>	<u>65 124 129 325</u>	<u>90 105 172 257</u>
<u>60 109 199 348</u>	<u>89 112 218 316</u>	<u>95 105 111 385</u>	<u>93 165 180 353</u>
<u>27 89 214 388</u>	<u>144 186 297 343</u>	<u>109 233 250 302</u>	<u>137 289 296 386</u>
<u>77 79 83 289</u>	<u>152 177 233 237</u>	<u>8 33 80 318</u>	<u>241 273 276 359</u>
<u>119 236 323 383</u>	<u>74 171 223 334</u>	<u>51 253 281 288</u>	<u>44 94 211 286</u>
<u>1 44 271 372</u>	<u>4 16 44 89</u>	<u>209 237 346 391</u>	<u>166 184 204 226</u>
<u>25 42 104 215</u>	<u>103 165 177 358</u>	<u>12 198 221 269</u>	<u>98 281 357 389</u>
<u>144 153 357 362</u>	<u>53 217 342 383</u>	<u>9 141 229 306</u>	<u>41 107 187 298</u>
<u>133 153 273 383</u>	<u>58 88 126 370</u>	<u>0 114 219 300</u>	<u>19 47 379 399</u>
<u>152 174 269 355</u>	<u>4 214 243 383</u>	<u>242 289 318 335</u>	<u>1 16 272 296</u>
<u>107 193 210 320</u>	<u>5 96 155 354</u>	<u>41 90 163 215</u>	<u>107 203 283 322</u>
<u>194 298 317 331</u>	<u>7 61 214 237</u>	<u>65 80 99 167</u>	<u>77 245 266 390</u>
<u>22 112 139 222</u>	<u>90 241 261 367</u>	<u>269 296 303 356</u>	<u>29 166 345 364</u>
<u>147 152 221 365</u>	<u>39 161 202 206</u>	<u>45 106 232 346</u>	<u>61 229 356 361</u>
<u>20 48 130 353</u>	<u>101 132 135 250</u>	<u>86 195 293 391</u>	<u>70 105 229 250</u>
<u>58 100 125 172</u>	<u>117 191 213 352</u>	<u>140 193 245 321</u>	<u>268 334 344 368</u>
<u>79 181 242 313</u>	<u>132 233 270 303</u>	<u>88 150 183 380</u>	<u>78 82 283 393</u>
<u>174 254 304 321</u>	<u>16 251 266 370</u>	<u>230 253 315 373</u>	<u>7 299 327 334</u>
<u>70 129 283 385</u>	<u>41 45 60 99</u>	<u>53 184 258 263</u>	<u>47 82 117 126</u>
<u>18 79 296 345</u>	<u>182 197 276 331</u>	<u>17 79 261 286</u>	<u>86 100 337 379</u>
<u>14 25 34 52</u>	<u>40 257 262 322</u>	<u>94 293 302 397</u>	<u>299 347 372 375</u>
<u>31 88 212 226</u>	<u>148 208 332 352</u>	<u>170 218 358 376</u>	<u>150 156 299 302</u>
<u>26 53 123 165</u>	<u>127 159 253 290</u>	<u>61 246 287 292</u>	<u>145 252 294 377</u>
<u>101 108 248 328</u>	<u>273 289 325 341</u>	<u>61 162 245 303</u>	<u>155 218 250 392</u>
<u>49 115 190 395</u>	<u>95 145 231 297</u>	<u>25 286 333 355</u>	<u>131 172 250 278</u>
<u>23 119 139 282</u>	<u>70 110 225 313</u>	<u>159 241 263 354</u>	<u>17 64 107 195</u>
<u>27 206 209 324</u>	<u>50 112 166 302</u>	<u>134 186 305 327</u>	<u>26 55 142 181</u>
<u>203 221 332 356</u>	<u>68 97 128 218</u>	<u>33 38 283 301</u>	<u>106 181 327 342</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 28
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>101 103 340 368</u>	<u>10 124 128 309</u>	<u>24 225 233 338</u>	<u>7 112 256 377</u>
<u>44 196 198 280</u>	<u>57 131 209 296</u>	<u>177 225 232 281</u>	<u>108 300 310 312</u>
<u>39 148 192 385</u>	<u>230 237 264 371</u>	<u>77 149 241 310</u>	<u>208 218 364 378</u>
<u>37 130 182 207</u>	<u>28 118 231 283</u>	<u>319 325 363 374</u>	<u>53 114 278 291</u>
<u>57 242 262 316</u>	<u>5 114 230 309</u>	<u>77 251 308 379</u>	<u>131 138 201 365</u>
<u>20 171 259 396</u>	<u>122 189 204 251</u>	<u>183 203 290 330</u>	<u>225 279 371 378</u>
<u>257 288 338 361</u>	<u>74 151 203 218</u>	<u>158 246 275 352</u>	<u>122 275 376 395</u>
<u>12 290 362 367</u>	<u>69 270 288 359</u>	<u>78 99 210 238</u>	<u>169 217 239 357</u>
<u>153 236 304 330</u>	<u>22 49 291 383</u>	<u>222 271 380 393</u>	<u>18 65 128 288</u>
<u>12 144 261 329</u>	<u>80 90 174 249</u>	<u>79 107 201 351</u>	<u>6 62 86 198</u>
<u>33 92 106 173</u>	<u>182 310 314 318</u>	<u>66 90 275 287</u>	<u>37 80 119 211</u>
<u>68 89 159 308</u>	<u>115 254 336 399</u>	<u>65 219 247 398</u>	<u>0 46 139 339</u>
<u>9 23 41 301</u>	<u>42 63 135 343</u>	<u>16 203 207 237</u>	<u>0 30 216 306</u>
<u>109 160 278 387</u>	<u>46 232 385 391</u>	<u>101 216 333 357</u>	<u>82 152 277 367</u>
<u>138 235 241 356</u>	<u>24 27 171 183</u>	<u>2 39 326 373</u>	<u>23 178 350 366</u>
<u>225 256 321 332</u>	<u>237 293 322 352</u>	<u>51 151 305 341</u>	<u>121 212 243 384</u>
<u>32 42 253 275</u>	<u>81 90 223 363</u>	<u>6 25 30 130</u>	<u>257 284 326 382</u>
<u>95 199 219 225</u>	<u>71 85 128 380</u>	<u>2 91 146 227</u>	<u>57 138 311 343</u>
<u>116 328 345 395</u>	<u>159 309 314 334</u>	<u>46 141 273 298</u>	<u>295 318 322 377</u>
<u>128 159 161 207</u>	<u>17 117 315 379</u>	<u>157 331 374 385</u>	<u>78 343 373 377</u>
<u>111 306 363 373</u>	<u>87 120 206 267</u>	<u>172 223 237 258</u>	<u>79 89 131 254</u>
<u>174 256 368 381</u>	<u>67 116 188 349</u>	<u>15 93 128 250</u>	<u>61 74 304 382</u>
<u>18 104 115 317</u>	<u>63 232 338 365</u>	<u>94 261 312 341</u>	<u>30 70 168 253</u>
<u>102 115 140 394</u>	<u>178 272 327 392</u>	<u>167 186 202 372</u>	<u>64 156 306 332</u>
<u>91 96 128 327</u>	<u>19 35 204 386</u>	<u>8 29 355 393</u>	<u>162 197 255 275</u>
<u>97 99 300 385</u>	<u>194 235 289 345</u>	<u>36 126 155 373</u>	<u>33 71 91 112</u>
<u>40 150 229 316</u>	<u>29 50 154 315</u>	<u>145 195 227 333</u>	<u>13 132 247 391</u>
<u>124 315 322 359</u>	<u>22 47 353 387</u>	<u>45 206 344 369</u>	<u>22 208 226 392</u>
<u>21 221 286 301</u>	<u>0 137 143 167</u>	<u>8 166 301 397</u>	<u>56 60 158 164</u>
<u>27 88 147 216</u>	<u>21 162 195 339</u>	<u>11 47 141 184</u>	<u>20 105 120 199</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 29
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>133 232 236 341</u>	<u>189 200 275 372</u>	<u>5 81 176 260</u>	<u>63 139 216 325</u>
<u>90 107 293 370</u>	<u>157 218 296 363</u>	<u>58 215 326 364</u>	<u>23 64 310 348</u>
<u>17 32 254 263</u>	<u>52 110 151 319</u>	<u>76 87 102 315</u>	<u>63 130 188 352</u>
<u>8 173 238 266</u>	<u>30 131 153 174</u>	<u>98 131 259 332</u>	<u>23 45 160 165</u>
<u>30 167 169 391</u>	<u>28 32 182 198</u>	<u>15 30 35 55</u>	<u>42 114 382 399</u>
<u>43 213 328 362</u>	<u>56 263 316 328</u>	<u>0 122 269 346</u>	<u>25 207 339 365</u>
<u>73 231 244 282</u>	<u>87 168 275 343</u>	<u>38 162 311 373</u>	<u>16 334 374 398</u>
<u>71 221 245 253</u>	<u>24 31 131 148</u>	<u>143 313 329 340</u>	<u>86 251 274 277</u>
<u>215 225 258 335</u>	<u>166 203 208 231</u>	<u>80 260 316 348</u>	<u>157 166 297 316</u>
<u>46 87 263 384</u>	<u>126 170 224 369</u>	<u>44 158 220 292</u>	<u>171 200 230 265</u>
<u>81 96 282 338</u>	<u>20 78 193 213</u>	<u>117 241 295 363</u>	<u>34 107 325 364</u>
<u>192 222 306 353</u>	<u>123 180 253 323</u>	<u>187 321 355 378</u>	<u>71 220 227 330</u>
<u>8 115 292 305</u>	<u>208 229 271 386</u>	<u>167 226 281 351</u>	<u>177 263 277 344</u>
<u>36 170 186 260</u>	<u>1 52 116 383</u>	<u>0 200 309 384</u>	<u>75 138 262 293</u>
<u>10 85 212 300</u>	<u>13 55 71 106</u>	<u>36 171 193 328</u>	<u>189 300 366 377</u>
<u>5 129 198 365</u>	<u>7 306 347 364</u>	<u>107 178 228 240</u>	<u>147 175 296 320</u>
<u>19 107 153 308</u>	<u>145 163 197 228</u>	<u>80 146 156 375</u>	<u>2 51 145 208</u>
<u>10 57 98 215</u>	<u>66 97 212 320</u>	<u>75 90 290 312</u>	<u>126 271 310 351</u>
<u>181 211 228 339</u>	<u>133 176 282 305</u>	<u>20 55 131 215</u>	<u>144 197 277 360</u>
<u>62 89 163 295</u>	<u>22 187 205 372</u>	<u>99 127 231 344</u>	<u>28 35 115 289</u>
<u>43 77 113 143</u>	<u>102 160 180 258</u>	<u>156 176 301 313</u>	<u>54 108 270 279</u>
<u>125 149 196 218</u>	<u>164 197 311 398</u>	<u>41 146 247 290</u>	<u>23 82 144 396</u>
<u>83 147 183 279</u>	<u>75 119 186 254</u>	<u>49 52 61 76</u>	<u>78 93 95 275</u>
<u>62 145 180 397</u>	<u>6 15 65 396</u>	<u>24 74 310 326</u>	<u>145 169 211 278</u>
<u>84 280 331 360</u>	<u>30 108 341 399</u>	<u>56 196 212 332</u>	<u>29 163 300 320</u>
<u>114 190 281 359</u>	<u>217 276 326 347</u>	<u>76 205 335 385</u>	<u>33 147 219 391</u>
<u>69 129 168 187</u>	<u>160 237 274 285</u>	<u>75 101 209 349</u>	<u>199 214 265 280</u>
<u>119 144 180 249</u>	<u>173 248 262 348</u>	<u>28 172 242 294</u>	<u>62 133 156 219</u>
<u>7 47 218 308</u>	<u>52 65 218 351</u>	<u>18 71 267 297</u>	<u>31 34 72 115</u>
<u>217 251 269 390</u>	<u>135 140 253 366</u>	<u>84 115 233 384</u>	<u>246 260 267 286</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>7 266 309 337</u>	<u>13 75 152 188</u>	<u>24 33 122 234</u>	<u>18 60 167 328</u>
<u>24 69 142 394</u>	<u>216 224 305 331</u>	<u>98 272 300 342</u>	<u>55 112 179 381</u>
<u>98 138 228 351</u>	<u>29 93 197 381</u>	<u>210 221 268 337</u>	<u>288 317 324 389</u>
<u>72 181 336 355</u>	<u>21 222 282 284</u>	<u>8 94 154 347</u>	<u>43 320 334 382</u>
<u>12 47 160 172</u>	<u>175 193 361 372</u>	<u>195 285 321 327</u>	<u>5 29 145 281</u>
<u>84 178 230 343</u>	<u>54 69 298 308</u>	<u>12 51 54 354</u>	<u>25 124 232 345</u>
<u>80 238 321 376</u>	<u>93 169 209 328</u>	<u>16 41 149 389</u>	<u>11 119 339 359</u>
<u>170 213 331 367</u>	<u>39 59 334 391</u>	<u>55 66 206 297</u>	<u>5 36 231 316</u>
<u>12 136 274 326</u>	<u>108 254 340 376</u>	<u>129 202 214 285</u>	<u>15 138 354 389</u>
<u>13 51 96 147</u>	<u>141 246 264 388</u>	<u>73 96 104 310</u>	<u>25 82 136 180</u>
<u>23 264 334 346</u>	<u>96 267 362 392</u>	<u>55 200 270 318</u>	<u>20 103 167 266</u>
<u>29 122 183 356</u>	<u>131 234 291 330</u>	<u>58 120 150 217</u>	<u>112 292 359 371</u>
<u>78 287 330 349</u>	<u>4 168 220 235</u>	<u>58 279 339 397</u>	<u>184 201 240 328</u>
<u>42 69 131 198</u>	<u>130 195 216 367</u>	<u>60 180 247 308</u>	<u>77 160 307 339</u>
<u>36 43 189 216</u>	<u>108 148 290 302</u>	<u>48 127 213 356</u>	<u>74 147 280 389</u>
<u>44 142 195 344</u>	<u>85 214 362 395</u>	<u>62 128 291 329</u>	<u>127 149 358 387</u>
<u>40 147 260 330</u>	<u>48 100 118 346</u>	<u>26 35 127 323</u>	<u>50 59 117 185</u>
<u>125 325 379 387</u>	<u>91 104 355 358</u>	<u>77 144 286 296</u>	<u>11 189 212 220</u>
<u>90 111 126 301</u>	<u>176 342 351 390</u>	<u>10 47 192 259</u>	<u>123 135 226 372</u>
<u>113 177 226 273</u>	<u>6 45 123 126</u>	<u>122 196 210 329</u>	<u>83 86 149 386</u>
<u>96 172 181 218</u>	<u>69 241 268 274</u>	<u>63 162 235 268</u>	<u>26 95 121 163</u>
<u>17 124 154 373</u>	<u>158 324 371 399</u>	<u>25 45 218 310</u>	<u>30 54 178 315</u>
<u>87 285 306 376</u>	<u>62 232 264 373</u>	<u>67 336 354 393</u>	<u>136 301 341 365</u>
<u>83 163 173 299</u>	<u>103 106 146 344</u>	<u>16 278 347 381</u>	<u>21 59 265 299</u>
<u>65 87 245 333</u>	<u>134 268 295 398</u>	<u>14 39 209 395</u>	<u>111 154 282 297</u>
<u>161 267 284 293</u>	<u>120 220 250 354</u>	<u>21 55 85 304</u>	<u>6 74 290 349</u>
<u>1 29 54 379</u>	<u>115 208 355 398</u>	<u>128 135 194 325</u>	<u>121 142 174 236</u>
<u>141 170 183 232</u>	<u>74 190 343 352</u>	<u>116 159 258 341</u>	<u>108 129 152 261</u>
<u>5 40 167 238</u>	<u>258 325 332 371</u>	<u>125 132 210 219</u>	<u>152 164 205 377</u>
<u>15 44 95 239</u>	<u>14 256 347 353</u>	<u>60 67 150 203</u>	<u>144 281 332 335</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 31
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>92 244 315 326</u>	<u>55 91 145 168</u>	<u>96 186 247 353</u>	<u>7 37 265 285</u>
<u>66 128 170 221</u>	<u>126 130 181 323</u>	<u>30 72 320 388</u>	<u>56 283 338 382</u>
<u>21 109 174 397</u>	<u>34 120 227 316</u>	<u>17 137 186 193</u>	<u>78 217 337 351</u>
<u>5 154 201 239</u>	<u>237 337 355 394</u>	<u>34 229 265 284</u>	<u>6 247 249 370</u>
<u>80 183 261 293</u>	<u>34 186 219 313</u>	<u>129 207 282 287</u>	<u>1 161 241 255</u>
<u>18 143 335 392</u>	<u>280 330 340 375</u>	<u>68 118 275 305</u>	<u>101 166 183 220</u>
<u>13 139 155 230</u>	<u>76 230 354 378</u>	<u>153 172 249 307</u>	<u>99 198 326 335</u>
<u>145 156 300 327</u>	<u>5 178 293 297</u>	<u>106 179 212 378</u>	<u>105 234 340 384</u>
<u>118 153 171 366</u>	<u>142 223 234 381</u>	<u>22 48 105 347</u>	<u>60 233 242 397</u>
<u>15 152 331 364</u>	<u>48 239 260 399</u>	<u>98 137 346 379</u>	<u>207 215 223 293</u>
<u>161 171 307 317</u>	<u>58 270 336 360</u>	<u>41 98 165 232</u>	<u>233 279 351 380</u>
<u>49 56 127 185</u>	<u>24 123 271 347</u>	<u>54 63 99 123</u>	<u>83 106 188 311</u>
<u>104 168 283 305</u>	<u>12 76 137 280</u>	<u>81 213 315 394</u>	<u>97 185 361 392</u>
<u>199 202 343 399</u>	<u>107 226 302 367</u>	<u>38 66 87 191</u>	<u>14 26 72 304</u>
<u>15 164 192 273</u>	<u>175 186 208 366</u>	<u>71 121 294 396</u>	<u>51 162 194 387</u>
<u>62 199 222 228</u>	<u>65 183 369 376</u>	<u>109 200 345 375</u>	<u>94 245 273 287</u>
<u>67 94 166 256</u>	<u>60 169 292 350</u>	<u>33 70 217 266</u>	<u>26 177 205 314</u>
<u>85 227 250 321</u>	<u>44 169 240 362</u>	<u>11 111 210 240</u>	<u>14 92 385 389</u>
<u>91 121 295 324</u>	<u>146 187 293 319</u>	<u>261 271 290 396</u>	<u>111 211 366 390</u>
<u>3 16 308 340</u>	<u>198 219 343 380</u>	<u>190 225 298 369</u>	<u>27 71 110 327</u>
<u>143 157 307 395</u>	<u>148 188 256 304</u>	<u>16 140 227 352</u>	<u>99 257 359 389</u>
<u>36 77 116 340</u>	<u>171 189 266 341</u>	<u>118 183 262 383</u>	<u>124 295 372 397</u>
<u>3 98 101 125</u>	<u>94 108 244 288</u>	<u>17 218 260 350</u>	<u>12 43 117 356</u>
<u>39 151 364 377</u>	<u>16 42 200 250</u>	<u>50 56 278 351</u>	<u>65 117 136 354</u>
<u>194 227 231 267</u>	<u>2 64 193 399</u>	<u>15 36 150 280</u>	<u>39 67 191 212</u>
<u>59 200 206 389</u>	<u>129 172 276 379</u>	<u>18 107 151 176</u>	<u>80 166 176 358</u>
<u>21 106 287 389</u>	<u>26 176 234 319</u>	<u>22 188 244 337</u>	<u>99 208 353 361</u>
<u>33 268 340 387</u>	<u>118 135 205 312</u>	<u>72 186 302 350</u>	<u>32 46 104 222</u>
<u>140 150 395 398</u>	<u>115 176 290 359</u>	<u>65 145 221 239</u>	<u>4 25 72 203</u>
<u>88 352 360 367</u>	<u>9 143 188 374</u>	<u>52 117 331 393</u>	<u>2 124 130 262</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>28 113 210 232</u>	<u>63 289 292 313</u>	<u>125 202 226 309</u>	<u>38 281 316 327</u>
<u>66 77 158 268</u>	<u>231 245 336 342</u>	<u>115 169 276 298</u>	<u>70 87 100 395</u>
<u>61 98 202 330</u>	<u>35 38 246 299</u>	<u>192 268 296 391</u>	<u>26 231 295 369</u>
<u>47 67 181 247</u>	<u>104 246 249 281</u>	<u>31 167 220 223</u>	<u>214 234 269 288</u>
<u>51 204 209 307</u>	<u>161 248 285 325</u>	<u>39 241 358 382</u>	<u>77 154 320 365</u>
<u>125 198 289 301</u>	<u>13 21 192 220</u>	<u>67 112 159 236</u>	<u>27 76 86 155</u>
<u>136 214 216 263</u>	<u>82 89 200 209</u>	<u>71 180 208 266</u>	<u>65 139 175 240</u>
<u>97 270 314 338</u>	<u>8 264 313 368</u>	<u>59 143 248 394</u>	<u>33 130 223 286</u>
<u>78 127 215 226</u>	<u>11 26 242 286</u>	<u>99 128 223 388</u>	<u>215 271 317 344</u>
<u>27 242 348 357</u>	<u>37 248 303 388</u>	<u>6 192 221 351</u>	<u>8 47 113 153</u>
<u>94 181 191 363</u>	<u>64 187 324 392</u>	<u>129 238 257 378</u>	<u>194 233 361 377</u>
<u>7 91 93 348</u>	<u>209 216 230 243</u>	<u>29 192 252 392</u>	<u>88 202 284 394</u>
<u>60 193 267 333</u>	<u>73 241 250 260</u>	<u>6 110 177 269</u>	<u>29 118 285 380</u>
<u>185 237 272 381</u>	<u>181 187 235 239</u>	<u>29 79 205 241</u>	<u>96 154 312 383</u>
<u>15 52 166 225</u>	<u>63 193 300 329</u>	<u>233 246 325 331</u>	<u>19 250 318 359</u>
<u>27 100 126 275</u>	<u>291 332 354 396</u>	<u>11 211 321 384</u>	<u>32 282 289 334</u>
<u>70 96 163 333</u>	<u>19 103 260 383</u>	<u>144 282 337 386</u>	<u>56 272 294 303</u>
<u>11 175 273 282</u>	<u>5 303 328 375</u>	<u>33 79 327 385</u>	<u>10 68 72 210</u>
<u>14 212 392 398</u>	<u>131 237 298 384</u>	<u>30 110 179 321</u>	<u>184 261 382 386</u>
<u>91 105 300 382</u>	<u>103 183 281 286</u>	<u>86 133 234 284</u>	<u>202 204 315 342</u>
<u>4 79 232 370</u>	<u>5 224 263 358</u>	<u>54 58 72 289</u>	<u>66 102 195 207</u>
<u>21 75 158 347</u>	<u>197 199 247 382</u>	<u>22 145 269 373</u>	<u>97 243 272 301</u>
<u>331 341 343 386</u>	<u>18 228 332 344</u>	<u>81 172 211 381</u>	<u>92 128 156 304</u>
<u>0 103 163 270</u>	<u>16 26 57 68</u>	<u>59 246 252 255</u>	<u>68 313 385 390</u>
<u>7 95 171 326</u>	<u>2 158 259 384</u>	<u>34 113 207 286</u>	<u>13 32 49 271</u>
<u>16 24 49 133</u>	<u>128 181 371 398</u>	<u>69 100 222 231</u>	<u>4 80 123 277</u>
<u>58 242 363 390</u>	<u>98 179 247 319</u>	<u>14 150 387 396</u>	<u>89 135 243 375</u>
<u>8 236 254 290</u>	<u>41 71 138 326</u>	<u>17 73 228 248</u>	<u>88 372 381 388</u>
<u>50 83 140 370</u>	<u>175 244 301 317</u>	<u>29 193 232 259</u>	<u>66 108 222 274</u>
<u>233 258 340 364</u>	<u>81 145 226 371</u>	<u>40 148 359 374</u>	<u>28 59 164 167</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 33
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>201 204 313 324</u>	<u>102 199 213 283</u>	<u>85 161 240 262</u>	<u>27 119 364 373</u>
<u>73 311 388 397</u>	<u>64 164 169 224</u>	<u>5 17 199 339</u>	<u>35 245 335 374</u>
<u>109 186 243 261</u>	<u>50 152 224 276</u>	<u>150 230 306 341</u>	<u>139 162 184 228</u>
<u>116 125 276 398</u>	<u>42 184 390 398</u>	<u>46 123 204 318</u>	<u>53 84 214 363</u>
<u>58 185 287 293</u>	<u>1 73 349 396</u>	<u>71 130 143 271</u>	<u>17 153 242 386</u>
<u>40 203 279 314</u>	<u>238 317 354 385</u>	<u>208 268 365 396</u>	<u>30 137 274 313</u>
<u>46 50 86 255</u>	<u>46 70 296 379</u>	<u>257 263 336 395</u>	<u>68 169 256 369</u>
<u>23 48 109 120</u>	<u>156 247 278 334</u>	<u>218 267 334 360</u>	<u>30 119 206 394</u>
<u>236 297 325 333</u>	<u>130 235 319 390</u>	<u>53 74 255 302</u>	<u>224 325 365 380</u>
<u>123 155 320 384</u>	<u>0 108 120 213</u>	<u>104 175 302 311</u>	<u>50 178 188 274</u>
<u>36 67 169 274</u>	<u>11 93 146 235</u>	<u>228 338 360 369</u>	<u>2 56 169 225</u>
<u>54 102 191 239</u>	<u>96 255 374 376</u>	<u>8 35 112 394</u>	<u>43 75 167 296</u>
<u>8 109 198 391</u>	<u>85 146 204 366</u>	<u>39 130 336 365</u>	<u>28 131 274 304</u>
<u>143 176 238 370</u>	<u>146 254 365 391</u>	<u>13 170 198 378</u>	<u>107 263 309 385</u>
<u>39 41 105 208</u>	<u>114 148 151 373</u>	<u>56 156 162 181</u>	<u>101 238 310 395</u>
<u>126 197 342 357</u>	<u>60 121 145 343</u>	<u>47 95 104 272</u>	<u>35 58 238 345</u>
<u>9 40 191 384</u>	<u>112 195 277 296</u>	<u>9 291 333 362</u>	<u>43 61 106 391</u>
<u>51 148 207 270</u>	<u>29 302 310 334</u>	<u>121 128 193 322</u>	<u>86 113 161 390</u>
<u>49 114 243 360</u>	<u>38 156 251 280</u>	<u>159 276 311 392</u>	<u>35 316 329 376</u>
<u>60 87 303 370</u>	<u>130 209 249 266</u>	<u>15 42 105 267</u>	<u>37 161 224 306</u>
<u>138 190 248 283</u>	<u>43 161 250 322</u>	<u>4 23 202 388</u>	<u>14 53 98 269</u>
<u>78 97 139 144</u>	<u>7 168 182 185</u>	<u>23 61 260 307</u>	<u>179 207 236 269</u>
<u>177 180 244 272</u>	<u>15 45 189 286</u>	<u>42 124 355 380</u>	<u>10 163 205 369</u>
<u>44 123 243 287</u>	<u>191 205 301 305</u>	<u>124 259 374 386</u>	<u>31 92 162 396</u>
<u>122 211 304 388</u>	<u>155 235 282 299</u>	<u>136 140 207 317</u>	<u>85 268 314 345</u>
<u>70 117 278 332</u>	<u>40 114 194 372</u>	<u>9 278 280 325</u>	<u>1 31 249 319</u>
<u>31 85 343 394</u>	<u>249 263 323 372</u>	<u>4 19 59 360</u>	<u>35 56 281 333</u>
<u>47 133 244 312</u>	<u>36 214 252 380</u>	<u>21 79 94 356</u>	<u>137 199 223 376</u>
<u>20 144 299 368</u>	<u>176 201 258 373</u>	<u>26 158 345 353</u>	<u>52 320 338 362</u>
<u>25 84 335 395</u>	<u>102 208 340 379</u>	<u>95 172 261 374</u>	<u>65 224 307 390</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 34
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>146 310 346 384</u>	<u>51 195 265 335</u>	<u>327 345 369 396</u>	<u>142 222 253 335</u>
<u>101 138 193 307</u>	<u>63 117 159 196</u>	<u>27 37 185 277</u>	<u>83 88 180 363</u>
<u>234 314 342 394</u>	<u>13 16 37 143</u>	<u>257 259 321 362</u>	<u>153 371 374 393</u>
<u>19 109 127 214</u>	<u>70 95 306 391</u>	<u>23 253 280 370</u>	<u>142 161 286 312</u>
<u>40 80 132 196</u>	<u>178 187 249 316</u>	<u>13 44 99 224</u>	<u>34 111 221 243</u>
<u>183 213 229 249</u>	<u>37 52 162 307</u>	<u>57 69 114 224</u>	<u>40 66 91 391</u>
<u>105 228 232 238</u>	<u>173 211 237 344</u>	<u>70 154 185 352</u>	<u>55 120 165 209</u>
<u>64 278 290 357</u>	<u>41 114 210 233</u>	<u>34 269 338 367</u>	<u>4 28 46 292</u>
<u>20 116 173 251</u>	<u>102 202 287 354</u>	<u>77 170 234 326</u>	<u>149 222 244 357</u>
<u>97 261 308 393</u>	<u>136 185 223 303</u>	<u>138 171 192 269</u>	<u>190 339 362 364</u>
<u>20 100 146 165</u>	<u>86 265 287 355</u>	<u>173 192 284 371</u>	<u>10 67 187 338</u>
<u>67 84 164 376</u>	<u>11 66 131 255</u>	<u>68 155 164 353</u>	<u>2 132 168 263</u>
<u>155 260 300 352</u>	<u>124 147 319 392</u>	<u>4 22 201 212</u>	<u>9 63 294 305</u>
<u>116 118 147 233</u>	<u>46 67 152 380</u>	<u>206 234 259 270</u>	<u>26 60 148 224</u>
<u>61 174 328 371</u>	<u>64 82 111 312</u>	<u>35 168 176 389</u>	<u>59 157 188 224</u>
<u>30 60 155 368</u>	<u>78 123 264 317</u>	<u>103 162 351 370</u>	<u>139 220 320 349</u>
<u>39 142 169 232</u>	<u>24 45 85 295</u>	<u>49 59 102 212</u>	<u>69 202 336 385</u>
<u>54 76 318 358</u>	<u>118 141 244 255</u>	<u>155 192 270 287</u>	<u>20 92 313 331</u>
<u>196 341 352 391</u>	<u>17 164 229 252</u>	<u>4 81 95 119</u>	<u>44 79 316 392</u>
<u>61 63 333 350</u>	<u>27 132 134 179</u>	<u>135 138 200 301</u>	<u>104 177 254 335</u>
<u>42 130 307 331</u>	<u>173 216 220 247</u>	<u>11 32 294 357</u>	<u>4 199 234 308</u>
<u>25 190 224 282</u>	<u>246 306 375 384</u>	<u>10 73 84 173</u>	<u>76 139 192 332</u>
<u>57 238 375 393</u>	<u>75 160 187 263</u>	<u>25 48 97 145</u>	<u>1 252 322 331</u>
<u>5 158 186 355</u>	<u>171 236 329 389</u>	<u>7 223 280 366</u>	<u>89 217 352 378</u>
<u>83 110 385 399</u>	<u>58 178 196 380</u>	<u>83 137 247 276</u>	<u>83 156 175 211</u>
<u>48 154 166 308</u>	<u>171 203 256 370</u>	<u>31 56 117 325</u>	<u>75 132 341 364</u>
<u>2 75 288 340</u>	<u>5 134 277 330</u>	<u>211 281 307 358</u>	<u>78 106 204 272</u>
<u>86 223 248 264</u>	<u>110 153 320 336</u>	<u>49 118 211 372</u>	<u>65 159 214 284</u>
<u>67 135 158 350</u>	<u>24 93 369 383</u>	<u>70 179 221 371</u>	<u>141 161 342 353</u>
<u>80 133 345 351</u>	<u>35 100 244 361</u>	<u>38 260 266 388</u>	<u>336 375 381 397</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Page 35

Serial Number: 10/815,133

Dkt: P19060/1000-0037

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>143 260 291 302</u>	<u>34 142 182 363</u>	<u>99 160 273 330</u>	<u>51 97 374 399</u>
<u>84 298 339 375</u>	<u>10 198 303 308</u>	<u>194 274 324 368</u>	<u>108 223 317 360</u>
<u>219 234 357 374</u>	<u>146 258 273 361</u>	<u>51 127 158 191</u>	<u>82 125 216 228</u>
<u>0 118 292 328</u>	<u>113 132 220 359</u>	<u>2 98 164 393</u>	<u>134 154 172 317</u>
<u>19 119 226 387</u>	<u>39 179 252 274</u>	<u>90 108 149 315</u>	<u>49 65 74 157</u>
<u>115 167 294 319</u>	<u>6 176 199 318</u>	<u>8 122 129 299</u>	<u>3 112 266 356</u>
<u>53 222 233 236</u>	<u>33 55 95 124</u>	<u>8 48 64 210</u>	<u>81 204 254 262</u>
<u>18 52 63 182</u>	<u>134 228 283 329</u>	<u>56 106 207 240</u>	<u>3 113 263 332</u>
<u>79 102 148 311</u>	<u>75 175 339 371</u>	<u>48 87 212 340</u>	<u>100 151 205 240</u>
<u>140 270 351 369</u>	<u>78 89 202 322</u>	<u>38 231 288 394</u>	<u>95 125 180 303</u>
<u>91 255 289 389</u>	<u>85 197 310 390</u>	<u>137 353 378 393</u>	<u>234 292 306 352</u>
<u>163 285 330 338</u>	<u>59 112 305 323</u>	<u>119 150 272 355</u>	<u>149 227 349 355</u>
<u>237 251 312 359</u>	<u>154 163 287 305</u>	<u>64 92 190 291</u>	<u>111 142 267 321</u>
<u>39 186 288 301</u>	<u>83 195 206 264</u>	<u>4 51 121 215</u>	<u>27 203 228 361</u>
<u>29 188 211 367</u>	<u>45 209 255 311</u>	<u>119 171 229 253</u>	<u>52 277 309 390</u>
<u>269 298 391 397</u>	<u>54 182 261 302</u>	<u>65 357 363 370</u>	<u>33 57 284 302</u>
<u>85 95 292 307</u>	<u>128 190 241 384</u>	<u>83 172 197 280</u>	<u>35 50 66 219</u>
<u>72 150 266 314</u>	<u>7 48 66 82</u>	<u>27 131 360 396</u>	<u>22 27 149 215</u>
<u>101 199 253 359</u>	<u>173 315 372 382</u>	<u>77 136 150 309</u>	<u>13 28 84 206</u>
<u>18 41 259 368</u>	<u>41 49 117 320</u>	<u>3 121 179 230</u>	<u>59 108 337 349</u>
<u>122 125 185 324</u>	<u>45 82 120 133</u>	<u>10 104 152 326</u>	<u>73 171 273 345</u>
<u>58 294 318 365</u>	<u>6 42 195 295</u>	<u>64 134 178 182</u>	<u>68 140 200 363</u>
<u>84 210 216 235</u>	<u>171 201 344 377</u>	<u>214 300 353 386</u>	<u>38 111 233 358</u>
<u>54 142 147 355</u>	<u>94 179 205 344</u>	<u>110 254 268 346</u>	<u>157 289 328 372</u>
<u>73 91 174 353</u>	<u>32 144 219 315</u>	<u>272 304 337 347</u>	<u>160 188 284 327</u>
<u>15 48 292 323</u>	<u>226 257 333 386</u>	<u>37 165 235 262</u>	<u>137 304 349 374</u>
<u>4 62 67 126</u>	<u>24 102 182 375</u>	<u>1 36 234 297</u>	<u>140 168 204 341</u>
<u>109 129 191 203</u>	<u>49 86 123 175</u>	<u>69 281 347 371</u>	<u>132 223 298 336</u>
<u>143 154 168 205</u>	<u>62 151 266 298</u>	<u>59 264 271 348</u>	<u>71 114 184 200</u>
<u>24 75 127 304</u>	<u>272 323 339 367</u>	<u>175 255 277 357</u>	<u>60 135 323 399</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>9 38 179 245</u>	<u>187 215 269 294</u>	<u>53 173 282 333</u>	<u>12 50 103 251</u>
<u>114 157 229 366</u>	<u>116 121 300 363</u>	<u>82 87 98 354</u>	<u>144 242 244 372</u>
<u>229 297 323 342</u>	<u>57 251 267 386</u>	<u>77 106 138 345</u>	<u>53 181 221 229</u>
<u>24 36 89 106</u>	<u>14 126 335 379</u>	<u>74 329 360 366</u>	<u>46 89 180 281</u>
<u>101 134 140 381</u>	<u>31 133 250 268</u>	<u>167 322 332 395</u>	<u>3 53 285 382</u>
<u>50 148 194 257</u>	<u>9 183 241 342</u>	<u>52 88 276 294</u>	<u>175 184 205 209</u>
<u>1 222 340 378</u>	<u>37 164 279 324</u>	<u>47 199 299 391</u>	<u>94 208 276 349</u>
<u>67 155 220 365</u>	<u>118 130 187 270</u>	<u>3 219 275 297</u>	<u>14 37 131 266</u>
<u>15 156 210 262</u>	<u>135 169 182 319</u>	<u>3 30 375 378</u>	<u>135 227 367 392</u>
<u>53 125 134 231</u>	<u>6 149 204 220</u>	<u>110 134 158 282</u>	<u>13 59 103 207</u>
<u>192 337 357 360</u>	<u>63 150 214 259</u>	<u>151 188 359 388</u>	<u>48 78 84 243</u>
<u>170 203 216 266</u>	<u>19 65 348 388</u>	<u>191 199 304 333</u>	<u>94 252 262 306</u>
<u>2 71 74 362</u>	<u>15 46 151 383</u>	<u>42 191 274 383</u>	<u>168 316 324 380</u>
<u>40 97 101 356</u>	<u>22 160 227 230</u>	<u>51 99 384 394</u>	<u>196 255 260 394</u>
<u>54 117 145 201</u>	<u>124 166 279 317</u>	<u>146 343 367 376</u>	<u>11 105 178 243</u>
<u>34 81 147 326</u>	<u>45 130 237 361</u>	<u>153 247 284 375</u>	<u>19 122 177 339</u>
<u>5 121 256 311</u>	<u>6 189 316 347</u>	<u>36 133 204 243</u>	<u>64 203 304 319</u>
<u>14 176 272 383</u>	<u>74 135 142 311</u>	<u>110 224 265 277</u>	<u>12 174 194 208</u>
<u>283 297 340 396</u>	<u>85 153 177 222</u>	<u>86 129 319 371</u>	<u>46 52 271 377</u>
<u>7 36 307 320</u>	<u>120 154 210 237</u>	<u>103 127 201 336</u>	<u>62 149 169 353</u>
<u>114 241 271 315</u>	<u>0 98 291 388</u>	<u>39 50 247 256</u>	<u>133 205 239 387</u>
<u>96 179 249 302</u>	<u>32 259 287 333</u>	<u>119 165 230 370</u>	<u>174 206 285 292</u>
<u>7 9 170 394</u>	<u>184 314 389 397</u>	<u>21 82 248 311</u>	<u>14 43 99 137</u>
<u>46 284 308 388</u>	<u>101 189 296 383</u>	<u>84 137 239 315</u>	<u>87 111 371 377</u>
<u>104 158 332 362</u>	<u>126 160 235 240</u>	<u>1 155 239 268</u>	<u>73 137 177 261</u>
<u>109 153 189 370</u>	<u>111 120 212 288</u>	<u>265 278 329 342</u>	<u>10 105 184 352</u>
<u>14 110 338 381</u>	<u>10 174 209 291</u>	<u>18 118 234 242</u>	<u>126 286 347 390</u>
<u>101 142 257 376</u>	<u>112 114 186 239</u>	<u>135 189 337 353</u>	<u>72 91 148 196</u>
<u>93 129 359 394</u>	<u>164 179 304 346</u>	<u>18 28 123 159</u>	<u>12 162 292 363</u>
<u>133 137 142 314</u>	<u>90 127 252 284</u>	<u>26 44 88 267</u>	<u>6 112 273 399</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 37

Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>0 1</u>	<u>30 31</u>	<u>60 61</u>	<u>90 91</u>
<u>1 2</u>	<u>31 32</u>	<u>61 62</u>	<u>91 92</u>
<u>2 3</u>	<u>32 33</u>	<u>62 63</u>	<u>92 93</u>
<u>3 4</u>	<u>33 34</u>	<u>63 64</u>	<u>93 94</u>
<u>4 5</u>	<u>34 35</u>	<u>64 65</u>	<u>94 95</u>
<u>5 6</u>	<u>35 36</u>	<u>65 66</u>	<u>95 96</u>
<u>6 7</u>	<u>36 37</u>	<u>66 67</u>	<u>96 97</u>
<u>7 8</u>	<u>37 38</u>	<u>67 68</u>	<u>97 98</u>
<u>8 9</u>	<u>38 39</u>	<u>68 69</u>	<u>98 99</u>
<u>9 10</u>	<u>39 40</u>	<u>69 70</u>	<u>99 100</u>
<u>10 11</u>	<u>40 41</u>	<u>70 71</u>	<u>100 101</u>
<u>11 12</u>	<u>41 42</u>	<u>71 72</u>	<u>101 102</u>
<u>12 13</u>	<u>42 43</u>	<u>72 73</u>	<u>102 103</u>
<u>13 14</u>	<u>43 44</u>	<u>73 74</u>	<u>103 104</u>
<u>14 15</u>	<u>44 45</u>	<u>74 75</u>	<u>104 105</u>
<u>15 16</u>	<u>45 46</u>	<u>75 76</u>	<u>105 106</u>
<u>16 17</u>	<u>46 47</u>	<u>76 77</u>	<u>106 107</u>
<u>17 18</u>	<u>47 48</u>	<u>77 78</u>	<u>107 108</u>
<u>18 19</u>	<u>48 49</u>	<u>78 79</u>	<u>108 109</u>
<u>19 20</u>	<u>49 50</u>	<u>79 80</u>	<u>109 110</u>
<u>20 21</u>	<u>50 51</u>	<u>80 81</u>	<u>110 111</u>
<u>21 22</u>	<u>51 52</u>	<u>81 82</u>	<u>111 112</u>
<u>22 23</u>	<u>52 53</u>	<u>82 83</u>	<u>112 113</u>
<u>23 24</u>	<u>53 54</u>	<u>83 84</u>	<u>113 114</u>
<u>24 25</u>	<u>54 55</u>	<u>84 85</u>	<u>114 115</u>
<u>25 26</u>	<u>55 56</u>	<u>85 86</u>	<u>115 116</u>
<u>26 27</u>	<u>56 57</u>	<u>86 87</u>	<u>116 117</u>
<u>27 28</u>	<u>57 58</u>	<u>87 88</u>	<u>117 118</u>
<u>28 29</u>	<u>58 59</u>	<u>88 89</u>	<u>118 119</u>
<u>29 30</u>	<u>59 60</u>	<u>89 90</u>	<u>119 120</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Page 38

Serial Number: 10/815,133

Dkt: P19060/1000-0037

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>120 121</u>	<u>150 151</u>	<u>180 181</u>	<u>210 211</u>
<u>121 122</u>	<u>151 152</u>	<u>181 182</u>	<u>211 212</u>
<u>122 123</u>	<u>152 153</u>	<u>182 183</u>	<u>212 213</u>
<u>123 124</u>	<u>153 154</u>	<u>183 184</u>	<u>213 214</u>
<u>124 125</u>	<u>154 155</u>	<u>184 185</u>	<u>214 215</u>
<u>125 126</u>	<u>155 156</u>	<u>185 186</u>	<u>215 216</u>
<u>126 127</u>	<u>156 157</u>	<u>186 187</u>	<u>216 217</u>
<u>127 128</u>	<u>157 158</u>	<u>187 188</u>	<u>217 218</u>
<u>128 129</u>	<u>158 159</u>	<u>188 189</u>	<u>218 219</u>
<u>129 130</u>	<u>159 160</u>	<u>189 190</u>	<u>219 220</u>
<u>130 131</u>	<u>160 161</u>	<u>190 191</u>	<u>220 221</u>
<u>131 132</u>	<u>161 162</u>	<u>191 192</u>	<u>221 222</u>
<u>132 133</u>	<u>162 163</u>	<u>192 193</u>	<u>222 223</u>
<u>133 134</u>	<u>163 164</u>	<u>193 194</u>	<u>223 224</u>
<u>134 135</u>	<u>164 165</u>	<u>194 195</u>	<u>224 225</u>
<u>135 136</u>	<u>165 166</u>	<u>195 196</u>	<u>225 226</u>
<u>136 137</u>	<u>166 167</u>	<u>196 197</u>	<u>226 227</u>
<u>137 138</u>	<u>167 168</u>	<u>197 198</u>	<u>227 228</u>
<u>138 139</u>	<u>168 169</u>	<u>198 199</u>	<u>228 229</u>
<u>139 140</u>	<u>169 170</u>	<u>199 200</u>	<u>229 230</u>
<u>140 141</u>	<u>170 171</u>	<u>200 201</u>	<u>230 231</u>
<u>141 142</u>	<u>171 172</u>	<u>201 202</u>	<u>231 232</u>
<u>142 143</u>	<u>172 173</u>	<u>202 203</u>	<u>232 233</u>
<u>143 144</u>	<u>173 174</u>	<u>203 204</u>	<u>233 234</u>
<u>144 145</u>	<u>174 175</u>	<u>204 205</u>	<u>234 235</u>
<u>145 146</u>	<u>175 176</u>	<u>205 206</u>	<u>235 236</u>
<u>146 147</u>	<u>176 177</u>	<u>206 207</u>	<u>236 237</u>
<u>147 148</u>	<u>177 178</u>	<u>207 208</u>	<u>237 238</u>
<u>148 149</u>	<u>178 179</u>	<u>208 209</u>	<u>238 239</u>
<u>149 150</u>	<u>179 180</u>	<u>209 210</u>	<u>239 240</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>240 241</u>	<u>270 271</u>	<u>300 301</u>	<u>330 331</u>
<u>241 242</u>	<u>271 272</u>	<u>301 302</u>	<u>331 332</u>
<u>242 243</u>	<u>272 273</u>	<u>302 303</u>	<u>332 333</u>
<u>243 244</u>	<u>273 274</u>	<u>303 304</u>	<u>333 334</u>
<u>244 245</u>	<u>274 275</u>	<u>304 305</u>	<u>334 335</u>
<u>245 246</u>	<u>275 276</u>	<u>305 306</u>	<u>335 336</u>
<u>246 247</u>	<u>276 277</u>	<u>306 307</u>	<u>336 337</u>
<u>247 248</u>	<u>277 278</u>	<u>307 308</u>	<u>337 338</u>
<u>248 249</u>	<u>278 279</u>	<u>308 309</u>	<u>338 339</u>
<u>249 250</u>	<u>279 280</u>	<u>309 310</u>	<u>339 340</u>
<u>250 251</u>	<u>280 281</u>	<u>310 311</u>	<u>340 341</u>
<u>251 252</u>	<u>281 282</u>	<u>311 312</u>	<u>341 342</u>
<u>252 253</u>	<u>282 283</u>	<u>312 313</u>	<u>342 343</u>
<u>253 254</u>	<u>283 284</u>	<u>313 314</u>	<u>343 344</u>
<u>254 255</u>	<u>284 285</u>	<u>314 315</u>	<u>344 345</u>
<u>255 256</u>	<u>285 286</u>	<u>315 316</u>	<u>345 346</u>
<u>256 257</u>	<u>286 287</u>	<u>316 317</u>	<u>346 347</u>
<u>257 258</u>	<u>287 288</u>	<u>317 318</u>	<u>347 348</u>
<u>258 259</u>	<u>288 289</u>	<u>318 319</u>	<u>348 349</u>
<u>259 260</u>	<u>289 290</u>	<u>319 320</u>	<u>349 350</u>
<u>260 261</u>	<u>290 291</u>	<u>320 321</u>	<u>350 351</u>
<u>261 262</u>	<u>291 292</u>	<u>321 322</u>	<u>351 352</u>
<u>262 263</u>	<u>292 293</u>	<u>322 323</u>	<u>352 353</u>
<u>263 264</u>	<u>293 294</u>	<u>323 324</u>	<u>353 354</u>
<u>264 265</u>	<u>294 295</u>	<u>324 325</u>	<u>354 355</u>
<u>265 266</u>	<u>295 296</u>	<u>325 326</u>	<u>355 356</u>
<u>266 267</u>	<u>296 297</u>	<u>326 327</u>	<u>356 357</u>
<u>267 268</u>	<u>297 298</u>	<u>327 328</u>	<u>357 358</u>
<u>268 269</u>	<u>298 299</u>	<u>328 329</u>	<u>358 359</u>
<u>269 270</u>	<u>299 300</u>	<u>329 330</u>	<u>359 360</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>360 361</u>	<u>370 371</u>	<u>380 381</u>	<u>390 391</u>
<u>361 362</u>	<u>371 372</u>	<u>381 382</u>	<u>391 392</u>
<u>362 363</u>	<u>372 373</u>	<u>382 383</u>	<u>392 393</u>
<u>363 364</u>	<u>373 374</u>	<u>383 384</u>	<u>393 394</u>
<u>364 365</u>	<u>374 375</u>	<u>384 385</u>	<u>394 395</u>
<u>365 366</u>	<u>375 376</u>	<u>385 386</u>	<u>395 396</u>
<u>366 367</u>	<u>376 377</u>	<u>386 387</u>	<u>396 397</u>
<u>367 368</u>	<u>377 378</u>	<u>387 388</u>	<u>397 398</u>
<u>368 369</u>	<u>378 379</u>	<u>388 389</u>	<u>398 399</u>
<u>369 370</u>	<u>379 380</u>	<u>389 390</u>	<u>399.</u>

16. (Original) The method of claim 15, wherein:
said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.
17. (Canceled)
18. (Previously Presented) The method of claim 15, wherein:
said first portion of said parity check matrix is a portion that includes columns of said parity check matrix having a column weight of 4.
19. (Canceled)
20. (Previously Presented) The method of claim 15, wherein:
said parity check matrix defines a (2000, 1600) LDPC code.
21. (Original) The method of claim 15, wherein:
generating and transmitting a wireless signal includes mapping said code word into modulation symbols and processing said modulation symbols using an inverse discrete Fourier transform.

22.-29. (Canceled)

30. (Currently Amended) A system comprising:

a forward error correction (FEC) coder to encode digital data using a low density parity check (LDPC) code, said FEC coder including:

a computer readable storage medium storing at least a first portion of a parity check matrix, wherein ~~said parity check matrix is substantially as described in Appendix A~~ and said first portion of said parity check matrix includes at least half of said parity check matrix;

a matrix multiplication unit to multiply input data by a transpose of said first portion of said parity check matrix to generate modified data;

a differential encoder to differentially encode said modified data to generate coded data; and

a concatenation unit to concatenate the input data and the coded data to form a code word;

a wireless transmitter to transmit a wireless signal that includes said code word; and

at least one dipole antenna coupled to said wireless transmitter to facilitate transmission of said wireless signal;

wherein said parity check matrix, in list file form, is substantially as follows:

2000 400

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

Page 42
Dkt: P19060/1000-0037

<u>143 225 316 323</u>	<u>62 109 190 201</u>	<u>239 254 331 342</u>	<u>47 52 339 346</u>
<u>92 140 191 358</u>	<u>111 162 190 227</u>	<u>107 149 250 295</u>	<u>50 288 342 388</u>
<u>69 315 329 343</u>	<u>189 272 288 302</u>	<u>73 221 295 362</u>	<u>26 87 247 283</u>
<u>6 121 205 284</u>	<u>14 49 147 334</u>	<u>75 97 242 279</u>	<u>67 127 132 136</u>
<u>58 66 254 337</u>	<u>33 53 213 238</u>	<u>32 197 244 313</u>	<u>146 264 321 323</u>
<u>1 47 178 395</u>	<u>53 219 368 379</u>	<u>245 248 276 296</u>	<u>210 275 319 346</u>
<u>129 151 212 228</u>	<u>126 149 188 339</u>	<u>59 230 322 347</u>	<u>57 160 252 261</u>
<u>66 146 243 265</u>	<u>108 118 182 393</u>	<u>17 246 291 364</u>	<u>26 54 170 197</u>
<u>22 140 157 180</u>	<u>0 37 160 295</u>	<u>125 157 227 390</u>	<u>120 218 229 341</u>
<u>120 208 313 321</u>	<u>158 200 335 356</u>	<u>122 205 279 348</u>	<u>44 53 124 323</u>
<u>290 350 370 382</u>	<u>11 20 229 397</u>	<u>61 298 340 380</u>	<u>0 113 315 358</u>
<u>56 94 184 215</u>	<u>77 86 212 250</u>	<u>12 31 256 328</u>	<u>110 144 246 298</u>
<u>84 119 337 344</u>	<u>79 193 262 336</u>	<u>119 163 178 217</u>	<u>89 91 99 346</u>
<u>2 156 244 398</u>	<u>43 104 125 376</u>	<u>61 129 185 200</u>	<u>21 32 216 393</u>
<u>9 106 200 336</u>	<u>55 114 134 293</u>	<u>34 38 104 295</u>	<u>37 170 209 342</u>
<u>22 37 150 270</u>	<u>240 283 299 333</u>	<u>119 289 349 377</u>	<u>49 58 357 399</u>
<u>3 110 326 367</u>	<u>0 24 57 100</u>	<u>50 314 322 367</u>	<u>18 23 31 373</u>
<u>235 276 290 335</u>	<u>46 84 322 341</u>	<u>28 48 248 382</u>	<u>159 172 195 366</u>
<u>82 187 193 297</u>	<u>5 43 45 221</u>	<u>32 41 128 201</u>	<u>213 335 337 378</u>
<u>43 183 297 379</u>	<u>29 217 274 301</u>	<u>91 115 220 368</u>	<u>1 103 159 277</u>
<u>194 239 243 293</u>	<u>81 93 116 278</u>	<u>45 151 196 265</u>	<u>96 159 209 387</u>
<u>90 144 228 350</u>	<u>93 174 213 231</u>	<u>152 190 198 317</u>	<u>102 165 234 378</u>
<u>170 206 321 395</u>	<u>64 201 251 385</u>	<u>157 212 242 275</u>	<u>173 245 356 376</u>
<u>72 138 254 300</u>	<u>76 134 278 370</u>	<u>2 40 249 283</u>	<u>57 230 240 314</u>
<u>25 196 201 279</u>	<u>71 93 182 398</u>	<u>195 280 299 345</u>	<u>1 89 153 166</u>
<u>56 59 362 379</u>	<u>38 174 250 377</u>	<u>142 151 220 395</u>	<u>25 32 264 342</u>
<u>28 121 170 277</u>	<u>19 116 357 372</u>	<u>70 121 252 382</u>	<u>265 276 321 324</u>
<u>61 273 351 386</u>	<u>81 91 164 307</u>	<u>52 244 279 297</u>	<u>57 211 274 360</u>
<u>71 76 232 328</u>	<u>180 186 241 251</u>	<u>22 131 256 349</u>	<u>12 291 311 348</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 44
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>34 220 258 282</u>	<u>81 175 206 261</u>	<u>122 188 228 305</u>	<u>115 218 225 285</u>
<u>52 58 109 379</u>	<u>31 94 275 317</u>	<u>6 77 291 397</u>	<u>98 196 217 328</u>
<u>116 248 337 369</u>	<u>10 123 141 279</u>	<u>70 76 259 276</u>	<u>177 267 306 350</u>
<u>87 146 183 278</u>	<u>44 64 157 270</u>	<u>72 270 335 348</u>	<u>82 299 320 395</u>
<u>42 96 318 361</u>	<u>160 243 290 373</u>	<u>93 147 255 312</u>	<u>139 251 364 381</u>
<u>32 176 312 361</u>	<u>39 217 262 324</u>	<u>92 112 259 388</u>	<u>42 118 178 194</u>
<u>69 258 310 389</u>	<u>19 185 312 389</u>	<u>9 18 61 308</u>	<u>73 100 198 286</u>
<u>1 84 182 300</u>	<u>211 271 277 291</u>	<u>3 137 139 257</u>	<u>68 249 292 376</u>
<u>45 124 161 396</u>	<u>19 148 155 324</u>	<u>165 217 345 354</u>	<u>13 216 221 256</u>
<u>15 76 99 101</u>	<u>24 94 124 314</u>	<u>78 134 263 280</u>	<u>127 138 177 398</u>
<u>62 248 354 375</u>	<u>3 85 193 349</u>	<u>186 213 227 303</u>	<u>20 69 239 264</u>
<u>78 258 262 311</u>	<u>68 175 202 253</u>	<u>68 194 294 346</u>	<u>3 126 132 163</u>
<u>181 265 364 368</u>	<u>139 160 337 377</u>	<u>35 225 284 312</u>	<u>66 88 169 271</u>
<u>60 168 227 254</u>	<u>21 224 249 398</u>	<u>117 188 340 346</u>	<u>88 197 201 387</u>
<u>162 231 270 377</u>	<u>113 122 206 327</u>	<u>258 299 306 331</u>	<u>1 51 135 149</u>
<u>14 102 139 158</u>	<u>7 10 156 245</u>	<u>83 194 207 349</u>	<u>257 294 331 356</u>
<u>28 79 155 318</u>	<u>140 182 192 235</u>	<u>43 141 175 329</u>	<u>204 260 288 294</u>
<u>28 40 63 236</u>	<u>161 291 324 387</u>	<u>0 68 170 262</u>	<u>45 144 185 383</u>
<u>163 181 258 279</u>	<u>31 232 237 350</u>	<u>25 36 153 309</u>	<u>173 310 329 362</u>
<u>158 176 273 334</u>	<u>30 184 235 387</u>	<u>57 62 273 323</u>	<u>15 165 305 348</u>
<u>80 236 256 380</u>	<u>136 226 269 327</u>	<u>7 19 75 264</u>	<u>27 66 85 182</u>
<u>74 156 214 358</u>	<u>4 93 136 167</u>	<u>21 254 259 366</u>	<u>47 235 238 246</u>
<u>176 229 251 283</u>	<u>47 148 309 348</u>	<u>8 97 156 172</u>	<u>230 276 293 367</u>
<u>19 104 114 162</u>	<u>73 225 252 290</u>	<u>9 185 313 330</u>	<u>118 150 267 324</u>
<u>141 284 291 358</u>	<u>44 213 361 386</u>	<u>55 219 253 393</u>	<u>68 82 309 398</u>
<u>77 123 157 361</u>	<u>79 319 361 381</u>	<u>86 120 185 233</u>	<u>72 154 226 231</u>
<u>141 154 215 338</u>	<u>74 251 339 356</u>	<u>41 136 191 242</u>	<u>76 135 151 384</u>
<u>55 294 296 298</u>	<u>100 105 246 293</u>	<u>194 265 303 393</u>	<u>39 48 80 309</u>
<u>80 109 272 364</u>	<u>68 101 191 285</u>	<u>256 285 310 399</u>	<u>0 178 305 353</u>
<u>43 206 287 363</u>	<u>32 103 323 355</u>	<u>103 247 275 378</u>	<u>88 136 196 321</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>37 95 222 300</u>	<u>132 141 221 322</u>	<u>11 132 246 314</u>	<u>102 133 217 226</u>
<u>23 343 358 369</u>	<u>213 257 348 396</u>	<u>46 93 103 309</u>	<u>69 88 116 295</u>
<u>195 252 303 349</u>	<u>91 147 294 325</u>	<u>20 33 64 196</u>	<u>108 217 273 322</u>
<u>9 81 102 317</u>	<u>14 27 48 222</u>	<u>111 134 194 204</u>	<u>26 287 306 343</u>
<u>20 219 285 316</u>	<u>11 81 110 360</u>	<u>76 116 140 238</u>	<u>8 18 136 152</u>
<u>219 281 304 354</u>	<u>10 50 357 393</u>	<u>189 298 326 381</u>	<u>110 240 245 334</u>
<u>33 121 319 351</u>	<u>35 89 248 252</u>	<u>235 317 320 333</u>	<u>225 255 278 310</u>
<u>21 157 191 260</u>	<u>6 55 319 345</u>	<u>127 301 348 376</u>	<u>63 168 170 303</u>
<u>0 88 303 307</u>	<u>107 116 223 271</u>	<u>51 286 309 377</u>	<u>8 17 255 314</u>
<u>13 23 62 268</u>	<u>168 240 261 384</u>	<u>17 70 139 187</u>	<u>28 92 98 200</u>
<u>13 173 279 320</u>	<u>54 204 295 351</u>	<u>54 180 184 344</u>	<u>112 201 244 392</u>
<u>117 189 253 392</u>	<u>3 51 146 299</u>	<u>85 311 318 327</u>	<u>134 216 344 383</u>
<u>32 40 57 350</u>	<u>74 184 307 361</u>	<u>263 312 364 369</u>	<u>21 97 115 396</u>
<u>57 123 148 368</u>	<u>9 202 272 387</u>	<u>97 149 198 336</u>	<u>28 69 120 380</u>
<u>18 96 164 326</u>	<u>106 198 281 329</u>	<u>31 141 151 285</u>	<u>34 259 267 314</u>
<u>84 103 107 359</u>	<u>36 105 225 236</u>	<u>72 163 187 311</u>	<u>55 72 87 223</u>
<u>92 338 350 355</u>	<u>90 139 183 299</u>	<u>24 54 249 297</u>	<u>43 180 185 252</u>
<u>16 70 242 338</u>	<u>152 160 292 354</u>	<u>64 143 322 360</u>	<u>23 113 133 277</u>
<u>20 74 141 179</u>	<u>11 115 227 236</u>	<u>53 73 122 256</u>	<u>258 285 347 350</u>
<u>159 246 248 365</u>	<u>152 202 211 373</u>	<u>100 138 214 226</u>	<u>246 253 318 399</u>
<u>207 292 387 399</u>	<u>4 173 346 374</u>	<u>265 348 373 378</u>	<u>12 78 90 369</u>
<u>38 148 303 347</u>	<u>132 197 238 279</u>	<u>42 62 113 174</u>	<u>17 93 96 102</u>
<u>68 113 296 389</u>	<u>16 94 150 222</u>	<u>29 313 349 358</u>	<u>109 162 318 360</u>
<u>12 257 286 325</u>	<u>241 344 375 386</u>	<u>154 179 217 268</u>	<u>22 83 151 290</u>
<u>50 287 294 327</u>	<u>31 121 161 231</u>	<u>164 289 380 392</u>	<u>141 191 240 266</u>
<u>149 259 356 367</u>	<u>9 33 197 350</u>	<u>109 165 236 312</u>	<u>25 90 138 390</u>
<u>3 12 178 309</u>	<u>87 197 233 312</u>	<u>92 141 193 238</u>	<u>81 113 265 382</u>
<u>63 92 166 368</u>	<u>100 111 129 368</u>	<u>190 243 267 275</u>	<u>88 142 210 283</u>
<u>97 190 199 363</u>	<u>184 278 289 346</u>	<u>95 143 203 393</u>	<u>10 40 43 140</u>
<u>13 86 92 308</u>	<u>76 177 227 356</u>	<u>130 213 264 308</u>	<u>2 195 268 328</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>117 240 257 374</u>	<u>143 189 255 338</u>	<u>20 48 130 353</u>	<u>101 132 135 250</u>
<u>298 332 350 365</u>	<u>38 75 137 166</u>	<u>58 100 125 172</u>	<u>117 191 213 352</u>
<u>60 122 240 313</u>	<u>62 92 124 366</u>	<u>79 181 242 313</u>	<u>132 233 270 303</u>
<u>157 215 274 397</u>	<u>73 83 105 136</u>	<u>174 254 304 321</u>	<u>16 251 266 370</u>
<u>11 41 164 274</u>	<u>69 134 200 366</u>	<u>70 129 283 385</u>	<u>41 45 60 99</u>
<u>67 76 92 104</u>	<u>179 324 366 386</u>	<u>18 79 296 345</u>	<u>182 197 276 331</u>
<u>19 192 305 344</u>	<u>72 82 188 192</u>	<u>14 25 34 52</u>	<u>40 257 262 322</u>
<u>23 35 125 224</u>	<u>100 120 189 375</u>	<u>31 88 212 226</u>	<u>148 208 332 352</u>
<u>152 163 352 385</u>	<u>244 252 318 329</u>	<u>26 53 123 165</u>	<u>127 159 253 290</u>
<u>40 161 165 329</u>	<u>3 105 116 203</u>	<u>101 108 248 328</u>	<u>273 289 325 341</u>
<u>113 215 245 378</u>	<u>280 282 288 365</u>	<u>49 115 190 395</u>	<u>95 145 231 297</u>
<u>80 168 262 382</u>	<u>38 196 330 369</u>	<u>23 119 139 282</u>	<u>70 110 225 313</u>
<u>81 136 165 239</u>	<u>20 31 113 381</u>	<u>27 206 209 324</u>	<u>50 112 166 302</u>
<u>2 42 248 323</u>	<u>56 173 205 390</u>	<u>203 221 332 356</u>	<u>68 97 128 218</u>
<u>111 127 157 330</u>	<u>2 30 165 366</u>	<u>181 190 288 379</u>	<u>90 264 269 280</u>
<u>79 125 239 341</u>	<u>41 75 169 302</u>	<u>38 73 249 368</u>	<u>22 132 258 368</u>
<u>147 172 187 397</u>	<u>210 271 330 334</u>	<u>45 49 264 394</u>	<u>65 124 129 325</u>
<u>230 245 277 352</u>	<u>60 109 199 348</u>	<u>89 112 218 316</u>	<u>95 105 111 385</u>
<u>49 202 350 381</u>	<u>27 89 214 388</u>	<u>144 186 297 343</u>	<u>109 233 250 302</u>
<u>34 56 167 242</u>	<u>77 79 83 289</u>	<u>152 177 233 237</u>	<u>8 33 80 318</u>
<u>36 58 61 83</u>	<u>119 236 323 383</u>	<u>74 171 223 334</u>	<u>51 253 281 288</u>
<u>107 110 133 251</u>	<u>1 44 271 372</u>	<u>4 16 44 89</u>	<u>209 237 346 391</u>
<u>100 245 295 330</u>	<u>25 42 104 215</u>	<u>103 165 177 358</u>	<u>12 198 221 269</u>
<u>16 71 175 397</u>	<u>144 153 357 362</u>	<u>53 217 342 383</u>	<u>9 141 229 306</u>
<u>106 206 229 236</u>	<u>133 153 273 383</u>	<u>58 88 126 370</u>	<u>0 114 219 300</u>
<u>177 308 371 387</u>	<u>152 174 269 355</u>	<u>4 214 243 383</u>	<u>242 289 318 335</u>
<u>89 122 207 362</u>	<u>107 193 210 320</u>	<u>5 96 155 354</u>	<u>41 90 163 215</u>
<u>3 166 190 305</u>	<u>194 298 317 331</u>	<u>7 61 214 237</u>	<u>65 80 99 167</u>
<u>155 171 289 336</u>	<u>22 112 139 222</u>	<u>90 241 261 367</u>	<u>269 296 303 356</u>
<u>34 37 293 301</u>	<u>147 152 221 365</u>	<u>39 161 202 206</u>	<u>45 106 232 346</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>86 195 293 391</u>	<u>70 105 229 250</u>	<u>32 42 253 275</u>	<u>81 90 223 363</u>
<u>140 193 245 321</u>	<u>268 334 344 368</u>	<u>95 199 219 225</u>	<u>71 85 128 380</u>
<u>88 150 183 380</u>	<u>78 82 283 393</u>	<u>116 328 345 395</u>	<u>159 309 314 334</u>
<u>230 253 315 373</u>	<u>7 299 327 334</u>	<u>128 159 161 207</u>	<u>17 117 315 379</u>
<u>53 184 258 263</u>	<u>47 82 117 126</u>	<u>111 306 363 373</u>	<u>87 120 206 267</u>
<u>17 79 261 286</u>	<u>86 100 337 379</u>	<u>174 256 368 381</u>	<u>67 116 188 349</u>
<u>94 293 302 397</u>	<u>299 347 372 375</u>	<u>18 104 115 317</u>	<u>63 232 338 365</u>
<u>170 218 358 376</u>	<u>150 156 299 302</u>	<u>102 115 140 394</u>	<u>178 272 327 392</u>
<u>61 246 287 292</u>	<u>145 252 294 377</u>	<u>91 96 128 327</u>	<u>19 35 204 386</u>
<u>61 162 245 303</u>	<u>155 218 250 392</u>	<u>97 99 300 385</u>	<u>194 235 289 345</u>
<u>25 286 333 355</u>	<u>131 172 250 278</u>	<u>40 150 229 316</u>	<u>29 50 154 315</u>
<u>159 241 263 354</u>	<u>17 64 107 195</u>	<u>124 315 322 359</u>	<u>22 47 353 387</u>
<u>134 186 305 327</u>	<u>26 55 142 181</u>	<u>21 221 286 301</u>	<u>0 137 143 167</u>
<u>33 38 283 301</u>	<u>106 181 327 342</u>	<u>27 88 147 216</u>	<u>21 162 195 339</u>
<u>17 44 159 398</u>	<u>101 103 340 368</u>	<u>10 124 128 309</u>	<u>24 225 233 338</u>
<u>108 167 174 374</u>	<u>44 196 198 280</u>	<u>57 131 209 296</u>	<u>177 225 232 281</u>
<u>90 105 172 257</u>	<u>39 148 192 385</u>	<u>230 237 264 371</u>	<u>77 149 241 310</u>
<u>93 165 180 353</u>	<u>37 130 182 207</u>	<u>28 118 231 283</u>	<u>319 325 363 374</u>
<u>137 289 296 386</u>	<u>57 242 262 316</u>	<u>5 114 230 309</u>	<u>77 251 308 379</u>
<u>241 273 276 359</u>	<u>20 171 259 396</u>	<u>122 189 204 251</u>	<u>183 203 290 330</u>
<u>44 94 211 286</u>	<u>257 288 338 361</u>	<u>74 151 203 218</u>	<u>158 246 275 352</u>
<u>166 184 204 226</u>	<u>12 290 362 367</u>	<u>69 270 288 359</u>	<u>78 99 210 238</u>
<u>98 281 357 389</u>	<u>153 236 304 330</u>	<u>22 49 291 383</u>	<u>222 271 380 393</u>
<u>41 107 187 298</u>	<u>12 144 261 329</u>	<u>80 90 174 249</u>	<u>79 107 201 351</u>
<u>19 47 379 399</u>	<u>33 92 106 173</u>	<u>182 310 314 318</u>	<u>66 90 275 287</u>
<u>1 16 272 296</u>	<u>68 89 159 308</u>	<u>115 254 336 399</u>	<u>65 219 247 398</u>
<u>107 203 283 322</u>	<u>9 23 41 301</u>	<u>42 63 135 343</u>	<u>16 203 207 237</u>
<u>77 245 266 390</u>	<u>109 160 278 387</u>	<u>46 232 385 391</u>	<u>101 216 333 357</u>
<u>29 166 345 364</u>	<u>138 235 241 356</u>	<u>24 27 171 183</u>	<u>2 39 326 373</u>
<u>61 229 356 361</u>	<u>225 256 321 332</u>	<u>237 293 322 352</u>	<u>51 151 305 341</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>6 25 30 130</u>	<u>257 284 326 382</u>	<u>19 107 153 308</u>	<u>145 163 197 228</u>
<u>2 91 146 227</u>	<u>57 138 311 343</u>	<u>10 57 98 215</u>	<u>66 97 212 320</u>
<u>46 141 273 298</u>	<u>295 318 322 377</u>	<u>181 211 228 339</u>	<u>133 176 282 305</u>
<u>157 331 374 385</u>	<u>78 343 373 377</u>	<u>62 89 163 295</u>	<u>22 187 205 372</u>
<u>172 223 237 258</u>	<u>79 89 131 254</u>	<u>43 77 113 143</u>	<u>102 160 180 258</u>
<u>15 93 128 250</u>	<u>61 74 304 382</u>	<u>125 149 196 218</u>	<u>164 197 311 398</u>
<u>94 261 312 341</u>	<u>30 70 168 253</u>	<u>83 147 183 279</u>	<u>75 119 186 254</u>
<u>167 186 202 372</u>	<u>64 156 306 332</u>	<u>62 145 180 397</u>	<u>6 15 65 396</u>
<u>8 29 355 393</u>	<u>162 197 255 275</u>	<u>84 280 331 360</u>	<u>30 108 341 399</u>
<u>36 126 155 373</u>	<u>33 71 91 112</u>	<u>114 190 281 359</u>	<u>217 276 326 347</u>
<u>145 195 227 333</u>	<u>13 132 247 391</u>	<u>69 129 168 187</u>	<u>160 237 274 285</u>
<u>45 206 344 369</u>	<u>22 208 226 392</u>	<u>119 144 180 249</u>	<u>173 248 262 348</u>
<u>8 166 301 397</u>	<u>56 60 158 164</u>	<u>7 47 218 308</u>	<u>52 65 218 351</u>
<u>11 47 141 184</u>	<u>20 105 120 199</u>	<u>217 251 269 390</u>	<u>135 140 253 366</u>
<u>7 112 256 377</u>	<u>133 232 236 341</u>	<u>189 200 275 372</u>	<u>5 81 176 260</u>
<u>108 300 310 312</u>	<u>90 107 293 370</u>	<u>157 218 296 363</u>	<u>58 215 326 364</u>
<u>208 218 364 378</u>	<u>17 32 254 263</u>	<u>52 110 151 319</u>	<u>76 87 102 315</u>
<u>53 114 278 291</u>	<u>8 173 238 266</u>	<u>30 131 153 174</u>	<u>98 131 259 332</u>
<u>131 138 201 365</u>	<u>30 167 169 391</u>	<u>28 32 182 198</u>	<u>15 30 35 55</u>
<u>225 279 371 378</u>	<u>43 213 328 362</u>	<u>56 263 316 328</u>	<u>0 122 269 346</u>
<u>122 275 376 395</u>	<u>73 231 244 282</u>	<u>87 168 275 343</u>	<u>38 162 311 373</u>
<u>169 217 239 357</u>	<u>71 221 245 253</u>	<u>24 31 131 148</u>	<u>143 313 329 340</u>
<u>18 65 128 288</u>	<u>215 225 258 335</u>	<u>166 203 208 231</u>	<u>80 260 316 348</u>
<u>6 62 86 198</u>	<u>46 87 263 384</u>	<u>126 170 224 369</u>	<u>44 158 220 292</u>
<u>37 80 119 211</u>	<u>81 96 282 338</u>	<u>20 78 193 213</u>	<u>117 241 295 363</u>
<u>0 46 139 339</u>	<u>192 222 306 353</u>	<u>123 180 253 323</u>	<u>187 321 355 378</u>
<u>0 30 216 306</u>	<u>8 115 292 305</u>	<u>208 229 271 386</u>	<u>167 226 281 351</u>
<u>82 152 277 367</u>	<u>36 170 186 260</u>	<u>1 52 116 383</u>	<u>0 200 309 384</u>
<u>23 178 350 366</u>	<u>10 85 212 300</u>	<u>13 55 71 106</u>	<u>36 171 193 328</u>
<u>121 212 243 384</u>	<u>5 129 198 365</u>	<u>7 306 347 364</u>	<u>107 178 228 240</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>80 146 156 375</u>	<u>2 51 145 208</u>	<u>40 147 260 330</u>	<u>48 100 118 346</u>
<u>75 90 290 312</u>	<u>126 271 310 351</u>	<u>125 325 379 387</u>	<u>91 104 355 358</u>
<u>20 55 131 215</u>	<u>144 197 277 360</u>	<u>90 111 126 301</u>	<u>176 342 351 390</u>
<u>99 127 231 344</u>	<u>28 35 115 289</u>	<u>113 177 226 273</u>	<u>6 45 123 126</u>
<u>156 176 301 313</u>	<u>54 108 270 279</u>	<u>96 172 181 218</u>	<u>69 241 268 274</u>
<u>41 146 247 290</u>	<u>23 82 144 396</u>	<u>17 124 154 373</u>	<u>158 324 371 399</u>
<u>49 52 61 76</u>	<u>78 93 95 275</u>	<u>87 285 306 376</u>	<u>62 232 264 373</u>
<u>24 74 310 326</u>	<u>145 169 211 278</u>	<u>83 163 173 299</u>	<u>103 106 146 344</u>
<u>56 196 212 332</u>	<u>29 163 300 320</u>	<u>65 87 245 333</u>	<u>134 268 295 398</u>
<u>76 205 335 385</u>	<u>33 147 219 391</u>	<u>161 267 284 293</u>	<u>120 220 250 354</u>
<u>75 101 209 349</u>	<u>199 214 265 280</u>	<u>1 29 54 379</u>	<u>115 208 355 398</u>
<u>28 172 242 294</u>	<u>62 133 156 219</u>	<u>141 170 183 232</u>	<u>74 190 343 352</u>
<u>18 71 267 297</u>	<u>31 34 72 115</u>	<u>5 40 167 238</u>	<u>258 325 332 371</u>
<u>84 115 233 384</u>	<u>246 260 267 286</u>	<u>15 44 95 239</u>	<u>14 256 347 353</u>
<u>63 139 216 325</u>	<u>7 266 309 337</u>	<u>13 75 152 188</u>	<u>24 33 122 234</u>
<u>23 64 310 348</u>	<u>24 69 142 394</u>	<u>216 224 305 331</u>	<u>98 272 300 342</u>
<u>63 130 188 352</u>	<u>98 138 228 351</u>	<u>29 93 197 381</u>	<u>210 221 268 337</u>
<u>23 45 160 165</u>	<u>72 181 336 355</u>	<u>21 222 282 284</u>	<u>8 94 154 347</u>
<u>42 114 382 399</u>	<u>12 47 160 172</u>	<u>175 193 361 372</u>	<u>195 285 321 327</u>
<u>25 207 339 365</u>	<u>84 178 230 343</u>	<u>54 69 298 308</u>	<u>12 51 54 354</u>
<u>16 334 374 398</u>	<u>80 238 321 376</u>	<u>93 169 209 328</u>	<u>16 41 149 389</u>
<u>86 251 274 277</u>	<u>170 213 331 367</u>	<u>39 59 334 391</u>	<u>55 66 206 297</u>
<u>157 166 297 316</u>	<u>12 136 274 326</u>	<u>108 254 340 376</u>	<u>129 202 214 285</u>
<u>171 200 230 265</u>	<u>13 51 96 147</u>	<u>141 246 264 388</u>	<u>73 96 104 310</u>
<u>34 107 325 364</u>	<u>23 264 334 346</u>	<u>96 267 362 392</u>	<u>55 200 270 318</u>
<u>71 220 227 330</u>	<u>29 122 183 356</u>	<u>131 234 291 330</u>	<u>58 120 150 217</u>
<u>177 263 277 344</u>	<u>78 287 330 349</u>	<u>4 168 220 235</u>	<u>58 279 339 397</u>
<u>75 138 262 293</u>	<u>42 69 131 198</u>	<u>130 195 216 367</u>	<u>60 180 247 308</u>
<u>189 300 366 377</u>	<u>36 43 189 216</u>	<u>108 148 290 302</u>	<u>48 127 213 356</u>
<u>147 175 296 320</u>	<u>44 142 195 344</u>	<u>85 214 362 395</u>	<u>62 128 291 329</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**Page 50**
Dkt: P19060/1000-0037

<u>26 35 127 323</u>	<u>50 59 117 185</u>	<u>67 94 166 256</u>	<u>60 169 292 350</u>
<u>77 144 286 296</u>	<u>11 189 212 220</u>	<u>85 227 250 321</u>	<u>44 169 240 362</u>
<u>10 47 192 259</u>	<u>123 135 226 372</u>	<u>91 121 295 324</u>	<u>146 187 293 319</u>
<u>122 196 210 329</u>	<u>83 86 149 386</u>	<u>3 16 308 340</u>	<u>198 219 343 380</u>
<u>63 162 235 268</u>	<u>26 95 121 163</u>	<u>143 157 307 395</u>	<u>148 188 256 304</u>
<u>25 45 218 310</u>	<u>30 54 178 315</u>	<u>36 77 116 340</u>	<u>171 189 266 341</u>
<u>67 336 354 393</u>	<u>136 301 341 365</u>	<u>3 98 101 125</u>	<u>94 108 244 288</u>
<u>16 278 347 381</u>	<u>21 59 265 299</u>	<u>39 151 364 377</u>	<u>16 42 200 250</u>
<u>14 39 209 395</u>	<u>111 154 282 297</u>	<u>194 227 231 267</u>	<u>2 64 193 399</u>
<u>21 55 85 304</u>	<u>6 74 290 349</u>	<u>59 200 206 389</u>	<u>129 172 276 379</u>
<u>128 135 194 325</u>	<u>121 142 174 236</u>	<u>21 106 287 389</u>	<u>26 176 234 319</u>
<u>116 159 258 341</u>	<u>108 129 152 261</u>	<u>33 268 340 387</u>	<u>118 135 205 312</u>
<u>125 132 210 219</u>	<u>152 164 205 377</u>	<u>140 150 395 398</u>	<u>115 176 290 359</u>
<u>60 67 150 203</u>	<u>144 281 332 335</u>	<u>88 352 360 367</u>	<u>9 143 188 374</u>
<u>18 60 167 328</u>	<u>92 244 315 326</u>	<u>55 91 145 168</u>	<u>96 186 247 353</u>
<u>55 112 179 381</u>	<u>66 128 170 221</u>	<u>126 130 181 323</u>	<u>30 72 320 388</u>
<u>288 317 324 389</u>	<u>21 109 174 397</u>	<u>34 120 227 316</u>	<u>17 137 186 193</u>
<u>43 320 334 382</u>	<u>5 154 201 239</u>	<u>237 337 355 394</u>	<u>34 229 265 284</u>
<u>5 29 145 281</u>	<u>80 183 261 293</u>	<u>34 186 219 313</u>	<u>129 207 282 287</u>
<u>25 124 232 345</u>	<u>18 143 335 392</u>	<u>280 330 340 375</u>	<u>68 118 275 305</u>
<u>11 119 339 359</u>	<u>13 139 155 230</u>	<u>76 230 354 378</u>	<u>153 172 249 307</u>
<u>5 36 231 316</u>	<u>145 156 300 327</u>	<u>5 178 293 297</u>	<u>106 179 212 378</u>
<u>15 138 354 389</u>	<u>118 153 171 366</u>	<u>142 223 234 381</u>	<u>22 48 105 347</u>
<u>25 82 136 180</u>	<u>15 152 331 364</u>	<u>48 239 260 399</u>	<u>98 137 346 379</u>
<u>20 103 167 266</u>	<u>161 171 307 317</u>	<u>58 270 336 360</u>	<u>41 98 165 232</u>
<u>112 292 359 371</u>	<u>49 56 127 185</u>	<u>24 123 271 347</u>	<u>54 63 99 123</u>
<u>184 201 240 328</u>	<u>104 168 283 305</u>	<u>12 76 137 280</u>	<u>81 213 315 394</u>
<u>77 160 307 339</u>	<u>199 202 343 399</u>	<u>107 226 302 367</u>	<u>38 66 87 191</u>
<u>74 147 280 389</u>	<u>15 164 192 273</u>	<u>175 186 208 366</u>	<u>71 121 294 396</u>
<u>127 149 358 387</u>	<u>62 199 222 228</u>	<u>65 183 369 376</u>	<u>109 200 345 375</u>

<u>33 70 217 266</u>	<u>26 177 205 314</u>	<u>70 96 163 333</u>	<u>19 103 260 383</u>
<u>11 111 210 240</u>	<u>14 92 385 389</u>	<u>11 175 273 282</u>	<u>5 303 328 375</u>
<u>261 271 290 396</u>	<u>111 211 366 390</u>	<u>14 212 392 398</u>	<u>131 237 298 384</u>
<u>190 225 298 369</u>	<u>27 71 110 327</u>	<u>91 105 300 382</u>	<u>103 183 281 286</u>
<u>16 140 227 352</u>	<u>99 257 359 389</u>	<u>4 79 232 370</u>	<u>5 224 263 358</u>
<u>118 183 262 383</u>	<u>124 295 372 397</u>	<u>21 75 158 347</u>	<u>197 199 247 382</u>
<u>17 218 260 350</u>	<u>12 43 117 356</u>	<u>331 341 343 386</u>	<u>18 228 332 344</u>
<u>50 56 278 351</u>	<u>65 117 136 354</u>	<u>0 103 163 270</u>	<u>16 26 57 68</u>
<u>15 36 150 280</u>	<u>39 67 191 212</u>	<u>7 95 171 326</u>	<u>2 158 259 384</u>
<u>18 107 151 176</u>	<u>80 166 176 358</u>	<u>16 24 49 133</u>	<u>128 181 371 398</u>
<u>22 188 244 337</u>	<u>99 208 353 361</u>	<u>58 242 363 390</u>	<u>98 179 247 319</u>
<u>72 186 302 350</u>	<u>32 46 104 222</u>	<u>8 236 254 290</u>	<u>41 71 138 326</u>
<u>65 145 221 239</u>	<u>4 25 72 203</u>	<u>50 83 140 370</u>	<u>175 244 301 317</u>
<u>52 117 331 393</u>	<u>2 124 130 262</u>	<u>233 258 340 364</u>	<u>81 145 226 371</u>
<u>7 37 265 285</u>	<u>28 113 210 232</u>	<u>63 289 292 313</u>	<u>125 202 226 309</u>
<u>56 283 338 382</u>	<u>66 77 158 268</u>	<u>231 245 336 342</u>	<u>115 169 276 298</u>
<u>78 217 337 351</u>	<u>61 98 202 330</u>	<u>35 38 246 299</u>	<u>192 268 296 391</u>
<u>6 247 249 370</u>	<u>47 67 181 247</u>	<u>104 246 249 281</u>	<u>31 167 220 223</u>
<u>1 161 241 255</u>	<u>51 204 209 307</u>	<u>161 248 285 325</u>	<u>39 241 358 382</u>
<u>101 166 183 220</u>	<u>125 198 289 301</u>	<u>13 21 192 220</u>	<u>67 112 159 236</u>
<u>99 198 326 335</u>	<u>136 214 216 263</u>	<u>82 89 200 209</u>	<u>71 180 208 266</u>
<u>105 234 340 384</u>	<u>97 270 314 338</u>	<u>8 264 313 368</u>	<u>59 143 248 394</u>
<u>60 233 242 397</u>	<u>78 127 215 226</u>	<u>11 26 242 286</u>	<u>99 128 223 388</u>
<u>207 215 223 293</u>	<u>27 242 348 357</u>	<u>37 248 303 388</u>	<u>6 192 221 351</u>
<u>233 279 351 380</u>	<u>94 181 191 363</u>	<u>64 187 324 392</u>	<u>129 238 257 378</u>
<u>83 106 188 311</u>	<u>7 91 93 348</u>	<u>209 216 230 243</u>	<u>29 192 252 392</u>
<u>97 185 361 392</u>	<u>60 193 267 333</u>	<u>73 241 250 260</u>	<u>6 110 177 269</u>
<u>14 26 72 304</u>	<u>185 237 272 381</u>	<u>181 187 235 239</u>	<u>29 79 205 241</u>
<u>51 162 194 387</u>	<u>15 52 166 225</u>	<u>63 193 300 329</u>	<u>233 246 325 331</u>
<u>94 245 273 287</u>	<u>27 100 126 275</u>	<u>291 332 354 396</u>	<u>11 211 321 384</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 52
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>144 282 337 386</u>	<u>56 272 294 303</u>	<u>9 40 191 384</u>	<u>112 195 277 296</u>
<u>33 79 327 385</u>	<u>10 68 72 210</u>	<u>51 148 207 270</u>	<u>29 302 310 334</u>
<u>30 110 179 321</u>	<u>184 261 382 386</u>	<u>49 114 243 360</u>	<u>38 156 251 280</u>
<u>86 133 234 284</u>	<u>202 204 315 342</u>	<u>60 87 303 370</u>	<u>130 209 249 266</u>
<u>54 58 72 289</u>	<u>66 102 195 207</u>	<u>138 190 248 283</u>	<u>43 161 250 322</u>
<u>22 145 269 373</u>	<u>97 243 272 301</u>	<u>78 97 139 144</u>	<u>7 168 182 185</u>
<u>81 172 211 381</u>	<u>92 128 156 304</u>	<u>177 180 244 272</u>	<u>15 45 189 286</u>
<u>59 246 252 255</u>	<u>68 313 385 390</u>	<u>44 123 243 287</u>	<u>191 205 301 305</u>
<u>34 113 207 286</u>	<u>13 32 49 271</u>	<u>122 211 304 388</u>	<u>155 235 282 299</u>
<u>69 100 222 231</u>	<u>4 80 123 277</u>	<u>70 117 278 332</u>	<u>40 114 194 372</u>
<u>14 150 387 396</u>	<u>89 135 243 375</u>	<u>31 85 343 394</u>	<u>249 263 323 372</u>
<u>17 73 228 248</u>	<u>88 372 381 388</u>	<u>47 133 244 312</u>	<u>36 214 252 380</u>
<u>29 193 232 259</u>	<u>66 108 222 274</u>	<u>20 144 299 368</u>	<u>176 201 258 373</u>
<u>40 148 359 374</u>	<u>28 59 164 167</u>	<u>25 84 335 395</u>	<u>102 208 340 379</u>
<u>38 281 316 327</u>	<u>201 204 313 324</u>	<u>102 199 213 283</u>	<u>85 161 240 262</u>
<u>70 87 100 395</u>	<u>73 311 388 397</u>	<u>64 164 169 224</u>	<u>5 17 199 339</u>
<u>26 231 295 369</u>	<u>109 186 243 261</u>	<u>50 152 224 276</u>	<u>150 230 306 341</u>
<u>214 234 269 288</u>	<u>116 125 276 398</u>	<u>42 184 390 398</u>	<u>46 123 204 318</u>
<u>77 154 320 365</u>	<u>58 185 287 293</u>	<u>1 73 349 396</u>	<u>71 130 143 271</u>
<u>27 76 86 155</u>	<u>40 203 279 314</u>	<u>238 317 354 385</u>	<u>208 268 365 396</u>
<u>65 139 175 240</u>	<u>46 50 86 255</u>	<u>46 70 296 379</u>	<u>257 263 336 395</u>
<u>33 130 223 286</u>	<u>23 48 109 120</u>	<u>156 247 278 334</u>	<u>218 267 334 360</u>
<u>215 271 317 344</u>	<u>236 297 325 333</u>	<u>130 235 319 390</u>	<u>53 74 255 302</u>
<u>8 47 113 153</u>	<u>123 155 320 384</u>	<u>0 108 120 213</u>	<u>104 175 302 311</u>
<u>194 233 361 377</u>	<u>36 67 169 274</u>	<u>11 93 146 235</u>	<u>228 338 360 369</u>
<u>88 202 284 394</u>	<u>54 102 191 239</u>	<u>96 255 374 376</u>	<u>8 35 112 394</u>
<u>29 118 285 380</u>	<u>8 109 198 391</u>	<u>85 146 204 366</u>	<u>39 130 336 365</u>
<u>96 154 312 383</u>	<u>143 176 238 370</u>	<u>146 254 365 391</u>	<u>13 170 198 378</u>
<u>19 250 318 359</u>	<u>39 41 105 208</u>	<u>114 148 151 373</u>	<u>56 156 162 181</u>
<u>32 282 289 334</u>	<u>126 197 342 357</u>	<u>60 121 145 343</u>	<u>47 95 104 272</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>9 291 333 362</u>	<u>43 61 106 391</u>	<u>39 142 169 232</u>	<u>24 45 85 295</u>
<u>121 128 193 322</u>	<u>86 113 161 390</u>	<u>54 76 318 358</u>	<u>118 141 244 255</u>
<u>159 276 311 392</u>	<u>35 316 329 376</u>	<u>196 341 352 391</u>	<u>17 164 229 252</u>
<u>15 42 105 267</u>	<u>37 161 224 306</u>	<u>61 63 333 350</u>	<u>27 132 134 179</u>
<u>4 23 202 388</u>	<u>14 53 98 269</u>	<u>42 130 307 331</u>	<u>173 216 220 247</u>
<u>23 61 260 307</u>	<u>179 207 236 269</u>	<u>25 190 224 282</u>	<u>246 306 375 384</u>
<u>42 124 355 380</u>	<u>10 163 205 369</u>	<u>57 238 375 393</u>	<u>75 160 187 263</u>
<u>124 259 374 386</u>	<u>31 92 162 396</u>	<u>5 158 186 355</u>	<u>171 236 329 389</u>
<u>136 140 207 317</u>	<u>85 268 314 345</u>	<u>83 110 385 399</u>	<u>58 178 196 380</u>
<u>9 278 280 325</u>	<u>1 31 249 319</u>	<u>48 154 166 308</u>	<u>171 203 256 370</u>
<u>4 19 59 360</u>	<u>35 56 281 333</u>	<u>2 75 288 340</u>	<u>5 134 277 330</u>
<u>21 79 94 356</u>	<u>137 199 223 376</u>	<u>86 223 248 264</u>	<u>110 153 320 336</u>
<u>26 158 345 353</u>	<u>52 320 338 362</u>	<u>67 135 158 350</u>	<u>24 93 369 383</u>
<u>95 172 261 374</u>	<u>65 224 307 390</u>	<u>80 133 345 351</u>	<u>35 100 244 361</u>
<u>27 119 364 373</u>	<u>146 310 346 384</u>	<u>51 195 265 335</u>	<u>327 345 369 396</u>
<u>35 245 335 374</u>	<u>101 138 193 307</u>	<u>63 117 159 196</u>	<u>27 37 185 277</u>
<u>139 162 184 228</u>	<u>234 314 342 394</u>	<u>13 16 37 143</u>	<u>257 259 321 362</u>
<u>53 84 214 363</u>	<u>19 109 127 214</u>	<u>70 95 306 391</u>	<u>23 253 280 370</u>
<u>17 153 242 386</u>	<u>40 80 132 196</u>	<u>178 187 249 316</u>	<u>13 44 99 224</u>
<u>30 137 274 313</u>	<u>183 213 229 249</u>	<u>37 52 162 307</u>	<u>57 69 114 224</u>
<u>68 169 256 369</u>	<u>105 228 232 238</u>	<u>173 211 237 344</u>	<u>70 154 185 352</u>
<u>30 119 206 394</u>	<u>64 278 290 357</u>	<u>41 114 210 233</u>	<u>34 269 338 367</u>
<u>224 325 365 380</u>	<u>20 116 173 251</u>	<u>102 202 287 354</u>	<u>77 170 234 326</u>
<u>50 178 188 274</u>	<u>97 261 308 393</u>	<u>136 185 223 303</u>	<u>138 171 192 269</u>
<u>2 56 169 225</u>	<u>20 100 146 165</u>	<u>86 265 287 355</u>	<u>173 192 284 371</u>
<u>43 75 167 296</u>	<u>67 84 164 376</u>	<u>11 66 131 255</u>	<u>68 155 164 353</u>
<u>28 131 274 304</u>	<u>155 260 300 352</u>	<u>124 147 319 392</u>	<u>4 22 201 212</u>
<u>107 263 309 385</u>	<u>116 118 147 233</u>	<u>46 67 152 380</u>	<u>206 234 259 270</u>
<u>101 238 310 395</u>	<u>61 174 328 371</u>	<u>64 82 111 312</u>	<u>35 168 176 389</u>
<u>35 58 238 345</u>	<u>30 60 155 368</u>	<u>78 123 264 317</u>	<u>103 162 351 370</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>49 59 102 212</u>	<u>69 202 336 385</u>	<u>85 95 292 307</u>	<u>128 190 241 384</u>
<u>155 192 270 287</u>	<u>20 92 313 331</u>	<u>72 150 266 314</u>	<u>7 48 66 82</u>
<u>4 81 95 119</u>	<u>44 79 316 392</u>	<u>101 199 253 359</u>	<u>173 315 372 382</u>
<u>135 138 200 301</u>	<u>104 177 254 335</u>	<u>18 41 259 368</u>	<u>41 49 117 320</u>
<u>11 32 294 357</u>	<u>4 199 234 308</u>	<u>122 125 185 324</u>	<u>45 82 120 133</u>
<u>10 73 84 173</u>	<u>76 139 192 332</u>	<u>58 294 318 365</u>	<u>6 42 195 295</u>
<u>25 48 97 145</u>	<u>1 252 322 331</u>	<u>84 210 216 235</u>	<u>171 201 344 377</u>
<u>7 223 280 366</u>	<u>89 217 352 378</u>	<u>54 142 147 355</u>	<u>94 179 205 344</u>
<u>83 137 247 276</u>	<u>83 156 175 211</u>	<u>73 91 174 353</u>	<u>32 144 219 315</u>
<u>31 56 117 325</u>	<u>75 132 341 364</u>	<u>15 48 292 323</u>	<u>226 257 333 386</u>
<u>211 281 307 358</u>	<u>78 106 204 272</u>	<u>4 62 67 126</u>	<u>24 102 182 375</u>
<u>49 118 211 372</u>	<u>65 159 214 284</u>	<u>109 129 191 203</u>	<u>49 86 123 175</u>
<u>70 179 221 371</u>	<u>141 161 342 353</u>	<u>143 154 168 205</u>	<u>62 151 266 298</u>
<u>38 260 266 388</u>	<u>336 375 381 397</u>	<u>24 75 127 304</u>	<u>272 323 339 367</u>
<u>142 222 253 335</u>	<u>143 260 291 302</u>	<u>34 142 182 363</u>	<u>99 160 273 330</u>
<u>83 88 180 363</u>	<u>84 298 339 375</u>	<u>10 198 303 308</u>	<u>194 274 324 368</u>
<u>153 371 374 393</u>	<u>219 234 357 374</u>	<u>146 258 273 361</u>	<u>51 127 158 191</u>
<u>142 161 286 312</u>	<u>0 118 292 328</u>	<u>113 132 220 359</u>	<u>2 98 164 393</u>
<u>34 111 221 243</u>	<u>19 119 226 387</u>	<u>39 179 252 274</u>	<u>90 108 149 315</u>
<u>40 66 91 391</u>	<u>115 167 294 319</u>	<u>6 176 199 318</u>	<u>8 122 129 299</u>
<u>55 120 165 209</u>	<u>53 222 233 236</u>	<u>33 55 95 124</u>	<u>8 48 64 210</u>
<u>4 28 46 292</u>	<u>18 52 63 182</u>	<u>134 228 283 329</u>	<u>56 106 207 240</u>
<u>149 222 244 357</u>	<u>79 102 148 311</u>	<u>75 175 339 371</u>	<u>48 87 212 340</u>
<u>190 339 362 364</u>	<u>140 270 351 369</u>	<u>78 89 202 322</u>	<u>38 231 288 394</u>
<u>10 67 187 338</u>	<u>91 255 289 389</u>	<u>85 197 310 390</u>	<u>137 353 378 393</u>
<u>2 132 168 263</u>	<u>163 285 330 338</u>	<u>59 112 305 323</u>	<u>119 150 272 355</u>
<u>9 63 294 305</u>	<u>237 251 312 359</u>	<u>154 163 287 305</u>	<u>64 92 190 291</u>
<u>26 60 148 224</u>	<u>39 186 288 301</u>	<u>83 195 206 264</u>	<u>4 51 121 215</u>
<u>59 157 188 224</u>	<u>29 188 211 367</u>	<u>45 209 255 311</u>	<u>119 171 229 253</u>
<u>139 220 320 349</u>	<u>269 298 391 397</u>	<u>54 182 261 302</u>	<u>65 357 363 370</u>

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

<u>83 172 197 280</u>	<u>35 50 66 219</u>	<u>5 121 256 311</u>	<u>6 189 316 347</u>
<u>27 131 360 396</u>	<u>22 27 149 215</u>	<u>14 176 272 383</u>	<u>74 135 142 311</u>
<u>77 136 150 309</u>	<u>13 28 84 206</u>	<u>283 297 340 396</u>	<u>85 153 177 222</u>
<u>3 121 179 230</u>	<u>59 108 337 349</u>	<u>7 36 307 320</u>	<u>120 154 210 237</u>
<u>10 104 152 326</u>	<u>73 171 273 345</u>	<u>114 241 271 315</u>	<u>0 98 291 388</u>
<u>64 134 178 182</u>	<u>68 140 200 363</u>	<u>96 179 249 302</u>	<u>32 259 287 333</u>
<u>214 300 353 386</u>	<u>38 111 233 358</u>	<u>7 9 170 394</u>	<u>184 314 389 397</u>
<u>110 254 268 346</u>	<u>157 289 328 372</u>	<u>46 284 308 388</u>	<u>101 189 296 383</u>
<u>272 304 337 347</u>	<u>160 188 284 327</u>	<u>104 158 332 362</u>	<u>126 160 235 240</u>
<u>37 165 235 262</u>	<u>137 304 349 374</u>	<u>109 153 189 370</u>	<u>111 120 212 288</u>
<u>1 36 234 297</u>	<u>140 168 204 341</u>	<u>14 110 338 381</u>	<u>10 174 209 291</u>
<u>69 281 347 371</u>	<u>132 223 298 336</u>	<u>101 142 257 376</u>	<u>112 114 186 239</u>
<u>59 264 271 348</u>	<u>71 114 184 200</u>	<u>93 129 359 394</u>	<u>164 179 304 346</u>
<u>175 255 277 357</u>	<u>60 135 323 399</u>	<u>133 137 142 314</u>	<u>90 127 252 284</u>
<u>51 97 374 399</u>	<u>9 38 179 245</u>	<u>187 215 269 294</u>	<u>53 173 282 333</u>
<u>108 223 317 360</u>	<u>114 157 229 366</u>	<u>116 121 300 363</u>	<u>82 87 98 354</u>
<u>82 125 216 228</u>	<u>229 297 323 342</u>	<u>57 251 267 386</u>	<u>77 106 138 345</u>
<u>134 154 172 317</u>	<u>24 36 89 106</u>	<u>14 126 335 379</u>	<u>74 329 360 366</u>
<u>49 65 74 157</u>	<u>101 134 140 381</u>	<u>31 133 250 268</u>	<u>167 322 332 395</u>
<u>3 112 266 356</u>	<u>50 148 194 257</u>	<u>9 183 241 342</u>	<u>52 88 276 294</u>
<u>81 204 254 262</u>	<u>1 222 340 378</u>	<u>37 164 279 324</u>	<u>47 199 299 391</u>
<u>3 113 263 332</u>	<u>67 155 220 365</u>	<u>118 130 187 270</u>	<u>3 219 275 297</u>
<u>100 151 205 240</u>	<u>15 156 210 262</u>	<u>135 169 182 319</u>	<u>3 30 375 378</u>
<u>95 125 180 303</u>	<u>53 125 134 231</u>	<u>6 149 204 220</u>	<u>110 134 158 282</u>
<u>234 292 306 352</u>	<u>192 337 357 360</u>	<u>63 150 214 259</u>	<u>151 188 359 388</u>
<u>149 227 349 355</u>	<u>170 203 216 266</u>	<u>19 65 348 388</u>	<u>191 199 304 333</u>
<u>111 142 267 321</u>	<u>2 71 74 362</u>	<u>15 46 151 383</u>	<u>42 191 274 383</u>
<u>27 203 228 361</u>	<u>40 97 101 356</u>	<u>22 160 227 230</u>	<u>51 99 384 394</u>
<u>52 277 309 390</u>	<u>54 117 145 201</u>	<u>124 166 279 317</u>	<u>146 343 367 376</u>
<u>33 57 284 302</u>	<u>34 81 147 326</u>	<u>45 130 237 361</u>	<u>153 247 284 375</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 56
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

<u>36 133 204 243</u>	<u>64 203 304 319</u>	<u>16 17</u>	<u>46 47</u>
<u>110 224 265 277</u>	<u>12 174 194 208</u>	<u>17 18</u>	<u>47 48</u>
<u>86 129 319 371</u>	<u>46 52 271 377</u>	<u>18 19</u>	<u>48 49</u>
<u>103 127 201 336</u>	<u>62 149 169 353</u>	<u>19 20</u>	<u>49 50</u>
<u>39 50 247 256</u>	<u>133 205 239 387</u>	<u>20 21</u>	<u>50 51</u>
<u>119 165 230 370</u>	<u>174 206 285 292</u>	<u>21 22</u>	<u>51 52</u>
<u>21 82 248 311</u>	<u>14 43 99 137</u>	<u>22 23</u>	<u>52 53</u>
<u>84 137 239 315</u>	<u>87 111 371 377</u>	<u>23 24</u>	<u>53 54</u>
<u>1 155 239 268</u>	<u>73 137 177 261</u>	<u>24 25</u>	<u>54 55</u>
<u>265 278 329 342</u>	<u>10 105 184 352</u>	<u>25 26</u>	<u>55 56</u>
<u>18 118 234 242</u>	<u>126 286 347 390</u>	<u>26 27</u>	<u>56 57</u>
<u>135 189 337 353</u>	<u>72 91 148 196</u>	<u>27 28</u>	<u>57 58</u>
<u>18 28 123 159</u>	<u>12 162 292 363</u>	<u>28 29</u>	<u>58 59</u>
<u>26 44 88 267</u>	<u>6 112 273 399</u>	<u>29 30</u>	<u>59 60</u>
<u>12 50 103 251</u>	<u>0 1</u>	<u>30 31</u>	<u>60 61</u>
<u>144 242 244 372</u>	<u>1 2</u>	<u>31 32</u>	<u>61 62</u>
<u>53 181 221 229</u>	<u>2 3</u>	<u>32 33</u>	<u>62 63</u>
<u>46 89 180 281</u>	<u>3 4</u>	<u>33 34</u>	<u>63 64</u>
<u>3 53 285 382</u>	<u>4 5</u>	<u>34 35</u>	<u>64 65</u>
<u>175 184 205 209</u>	<u>5 6</u>	<u>35 36</u>	<u>65 66</u>
<u>94 208 276 349</u>	<u>6 7</u>	<u>36 37</u>	<u>66 67</u>
<u>14 37 131 266</u>	<u>7 8</u>	<u>37 38</u>	<u>67 68</u>
<u>135 227 367 392</u>	<u>8 9</u>	<u>38 39</u>	<u>68 69</u>
<u>13 59 103 207</u>	<u>9 10</u>	<u>39 40</u>	<u>69 70</u>
<u>48 78 84 243</u>	<u>10 11</u>	<u>40 41</u>	<u>70 71</u>
<u>94 252 262 306</u>	<u>11 12</u>	<u>41 42</u>	<u>71 72</u>
<u>168 316 324 380</u>	<u>12 13</u>	<u>42 43</u>	<u>72 73</u>
<u>196 255 260 394</u>	<u>13 14</u>	<u>43 44</u>	<u>73 74</u>
<u>11 105 178 243</u>	<u>14 15</u>	<u>44 45</u>	<u>74 75</u>
<u>19 122 177 339</u>	<u>15 16</u>	<u>45 46</u>	<u>75 76</u>

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEMPage 57
Dkt: P19060/1000-0037

<u>76 77</u>	<u>106 107</u>	<u>136 137</u>	<u>166 167</u>
<u>77 78</u>	<u>107 108</u>	<u>137 138</u>	<u>167 168</u>
<u>78 79</u>	<u>108 109</u>	<u>138 139</u>	<u>168 169</u>
<u>79 80</u>	<u>109 110</u>	<u>139 140</u>	<u>169 170</u>
<u>80 81</u>	<u>110 111</u>	<u>140 141</u>	<u>170 171</u>
<u>81 82</u>	<u>111 112</u>	<u>141 142</u>	<u>171 172</u>
<u>82 83</u>	<u>112 113</u>	<u>142 143</u>	<u>172 173</u>
<u>83 84</u>	<u>113 114</u>	<u>143 144</u>	<u>173 174</u>
<u>84 85</u>	<u>114 115</u>	<u>144 145</u>	<u>174 175</u>
<u>85 86</u>	<u>115 116</u>	<u>145 146</u>	<u>175 176</u>
<u>86 87</u>	<u>116 117</u>	<u>146 147</u>	<u>176 177</u>
<u>87 88</u>	<u>117 118</u>	<u>147 148</u>	<u>177 178</u>
<u>88 89</u>	<u>118 119</u>	<u>148 149</u>	<u>178 179</u>
<u>89 90</u>	<u>119 120</u>	<u>149 150</u>	<u>179 180</u>
<u>90 91</u>	<u>120 121</u>	<u>150 151</u>	<u>180 181</u>
<u>91 92</u>	<u>121 122</u>	<u>151 152</u>	<u>181 182</u>
<u>92 93</u>	<u>122 123</u>	<u>152 153</u>	<u>182 183</u>
<u>93 94</u>	<u>123 124</u>	<u>153 154</u>	<u>183 184</u>
<u>94 95</u>	<u>124 125</u>	<u>154 155</u>	<u>184 185</u>
<u>95 96</u>	<u>125 126</u>	<u>155 156</u>	<u>185 186</u>
<u>96 97</u>	<u>126 127</u>	<u>156 157</u>	<u>186 187</u>
<u>97 98</u>	<u>127 128</u>	<u>157 158</u>	<u>187 188</u>
<u>98 99</u>	<u>128 129</u>	<u>158 159</u>	<u>188 189</u>
<u>99 100</u>	<u>129 130</u>	<u>159 160</u>	<u>189 190</u>
<u>100 101</u>	<u>130 131</u>	<u>160 161</u>	<u>190 191</u>
<u>101 102</u>	<u>131 132</u>	<u>161 162</u>	<u>191 192</u>
<u>102 103</u>	<u>132 133</u>	<u>162 163</u>	<u>192 193</u>
<u>103 104</u>	<u>133 134</u>	<u>163 164</u>	<u>193 194</u>
<u>104 105</u>	<u>134 135</u>	<u>164 165</u>	<u>194 195</u>
<u>105 106</u>	<u>135 136</u>	<u>165 166</u>	<u>195 196</u>

<u>196 197</u>	<u>226 227</u>	<u>256 257</u>	<u>286 287</u>
<u>197 198</u>	<u>227 228</u>	<u>257 258</u>	<u>287 288</u>
<u>198 199</u>	<u>228 229</u>	<u>258 259</u>	<u>288 289</u>
<u>199 200</u>	<u>229 230</u>	<u>259 260</u>	<u>289 290</u>
<u>200 201</u>	<u>230 231</u>	<u>260 261</u>	<u>290 291</u>
<u>201 202</u>	<u>231 232</u>	<u>261 262</u>	<u>291 292</u>
<u>202 203</u>	<u>232 233</u>	<u>262 263</u>	<u>292 293</u>
<u>203 204</u>	<u>233 234</u>	<u>263 264</u>	<u>293 294</u>
<u>204 205</u>	<u>234 235</u>	<u>264 265</u>	<u>294 295</u>
<u>205 206</u>	<u>235 236</u>	<u>265 266</u>	<u>295 296</u>
<u>206 207</u>	<u>236 237</u>	<u>266 267</u>	<u>296 297</u>
<u>207 208</u>	<u>237 238</u>	<u>267 268</u>	<u>297 298</u>
<u>208 209</u>	<u>238 239</u>	<u>268 269</u>	<u>298 299</u>
<u>209 210</u>	<u>239 240</u>	<u>269 270</u>	<u>299 300</u>
<u>210 211</u>	<u>240 241</u>	<u>270 271</u>	<u>300 301</u>
<u>211 212</u>	<u>241 242</u>	<u>271 272</u>	<u>301 302</u>
<u>212 213</u>	<u>242 243</u>	<u>272 273</u>	<u>302 303</u>
<u>213 214</u>	<u>243 244</u>	<u>273 274</u>	<u>303 304</u>
<u>214 215</u>	<u>244 245</u>	<u>274 275</u>	<u>304 305</u>
<u>215 216</u>	<u>245 246</u>	<u>275 276</u>	<u>305 306</u>
<u>216 217</u>	<u>246 247</u>	<u>276 277</u>	<u>306 307</u>
<u>217 218</u>	<u>247 248</u>	<u>277 278</u>	<u>307 308</u>
<u>218 219</u>	<u>248 249</u>	<u>278 279</u>	<u>308 309</u>
<u>219 220</u>	<u>249 250</u>	<u>279 280</u>	<u>309 310</u>
<u>220 221</u>	<u>250 251</u>	<u>280 281</u>	<u>310 311</u>
<u>221 222</u>	<u>251 252</u>	<u>281 282</u>	<u>311 312</u>
<u>222 223</u>	<u>252 253</u>	<u>282 283</u>	<u>312 313</u>
<u>223 224</u>	<u>253 254</u>	<u>283 284</u>	<u>313 314</u>
<u>224 225</u>	<u>254 255</u>	<u>284 285</u>	<u>314 315</u>
<u>225 226</u>	<u>255 256</u>	<u>285 286</u>	<u>315 316</u>

<u>316 317</u>	<u>337 338</u>	<u>358 359</u>	<u>379 380</u>
<u>317 318</u>	<u>338 339</u>	<u>359 360</u>	<u>380 381</u>
<u>318 319</u>	<u>339 340</u>	<u>360 361</u>	<u>381 382</u>
<u>319 320</u>	<u>340 341</u>	<u>361 362</u>	<u>382 383</u>
<u>320 321</u>	<u>341 342</u>	<u>362 363</u>	<u>383 384</u>
<u>321 322</u>	<u>342 343</u>	<u>363 364</u>	<u>384 385</u>
<u>322 323</u>	<u>343 344</u>	<u>364 365</u>	<u>385 386</u>
<u>323 324</u>	<u>344 345</u>	<u>365 366</u>	<u>386 387</u>
<u>324 325</u>	<u>345 346</u>	<u>366 367</u>	<u>387 388</u>
<u>325 326</u>	<u>346 347</u>	<u>367 368</u>	<u>388 389</u>
<u>326 327</u>	<u>347 348</u>	<u>368 369</u>	<u>389 390</u>
<u>327 328</u>	<u>348 349</u>	<u>369 370</u>	<u>390 391</u>
<u>328 329</u>	<u>349 350</u>	<u>370 371</u>	<u>391 392</u>
<u>329 330</u>	<u>350 351</u>	<u>371 372</u>	<u>392 393</u>
<u>330 331</u>	<u>351 352</u>	<u>372 373</u>	<u>393 394</u>
<u>331 332</u>	<u>352 353</u>	<u>373 374</u>	<u>394 395</u>
<u>332 333</u>	<u>353 354</u>	<u>374 375</u>	<u>395 396</u>
<u>333 334</u>	<u>354 355</u>	<u>375 376</u>	<u>396 397</u>
<u>334 335</u>	<u>355 356</u>	<u>376 377</u>	<u>397 398</u>
<u>335 336</u>	<u>356 357</u>	<u>377 378</u>	<u>398 399</u>
<u>336 337</u>	<u>357 358</u>	<u>378 379</u>	<u>399.</u>

31. (Original) The system of claim 30, wherein:

said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.

32. (Previously Presented) The system of claim 30, wherein:

said first portion of said parity check matrix is a portion that includes columns of said parity check matrix having a column weight of 4.

33. (Canceled)

34. (Previously Presented) An article comprising a computer readable storage medium having instructions stored thereon that, when executed by a computing platform, operate to:

matrix multiply input data by a transpose of a first portion of a parity check matrix, wherein said first portion of said parity check matrix includes at least half of said parity check matrix;

process a result of said matrix multiplication using differential encoding to generate coded data;

concatenate said input data and said coded data to form a code word; and

generate and transmit a wireless signal that includes said code word;

wherein said parity check matrix, in list file form, is substantially as follows:

2000 400

TITLE: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

143 225 316 323	66 146 243 265	9 106 200 336	90 144 228 350
92 140 191 358	22 140 157 180	22 37 150 270	170 206 321 395
69 315 329 343	120 208 313 321	3 110 326 367	72 138 254 300
6 121 205 284	290 350 370 382	235 276 290 335	25 196 201 279
58 66 254 337	56 94 184 215	82 187 193 297	56 59 362 379
1 47 178 395	84 119 337 344	43 183 297 379	28 121 170 277
129 151 212 228	2 156 244 398	194 239 243 293	61 273 351 386

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION**Page 62**

Serial Number: 10/815,133

Dkt: P19060/1000-0037

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

71 76 232 328	239 254 331 342	50 288 342 388	116 248 337 369
62 109 190 201	107 149 250 295	26 87 247 283	87 146 183 278
111 162 190 227	73 221 295 362	67 127 132 136	42 96 318 361
189 272 288 302	75 97 242 279	146 264 321 323	32 176 312 361
14 49 147 334	32 197 244 313	210 275 319 346	69 258 310 389
33 53 213 238	245 248 276 296	57 160 252 261	1 84 182 300
53 219 368 379	59 230 322 347	26 54 170 197	45 124 161 396
126 149 188 339	17 246 291 364	120 218 229 341	15 76 99 101
108 118 182 393	125 157 227 390	44 53 124 323	62 248 354 375
0 37 160 295	122 205 279 348	0 113 315 358	78 258 262 311
158 200 335 356	61 298 340 380	110 144 246 298	181 265 364 368
11 20 229 397	12 31 256 328	89 91 99 346	60 168 227 254
77 86 212 250	119 163 178 217	21 32 216 393	162 231 270 377
79 193 262 336	61 129 185 200	37 170 209 342	14 102 139 158
43 104 125 376	34 38 104 295	49 58 357 399	28 79 155 318
55 114 134 293	119 289 349 377	18 23 31 373	28 40 63 236
240 283 299 333	50 314 322 367	159 172 195 366	163 181 258 279
0 24 57 100	28 48 248 382	213 335 337 378	158 176 273 334
46 84 322 341	32 41 128 201	1 103 159 277	80 236 256 380
5 43 45 221	91 115 220 368	96 159 209 387	74 156 214 358
29 217 274 301	45 151 196 265	102 165 234 378	176 229 251 283
81 93 116 278	152 190 198 317	173 245 356 376	19 104 114 162
93 174 213 231	157 212 242 275	57 230 240 314	141 284 291 358
64 201 251 385	2 40 249 283	1 89 153 166	77 123 157 361
76 134 278 370	195 280 299 345	25 32 264 342	141 154 215 338
71 93 182 398	142 151 220 395	265 276 321 324	55 294 296 298
38 174 250 377	70 121 252 382	57 211 274 360	80 109 272 364
19 116 357 372	52 244 279 297	12 291 311 348	43 206 287 363
81 91 164 307	22 131 256 349	34 220 258 282	81 175 206 261
180 186 241 251	47 52 339 346	52 58 109 379	31 94 275 317

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 63

Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

10 123 141 279	70 76 259 276	177 267 306 350	195 252 303 349
44 64 157 270	72 270 335 348	82 299 320 395	9 81 102 317
160 243 290 373	93 147 255 312	139 251 364 381	20 219 285 316
39 217 262 324	92 112 259 388	42 118 178 194	219 281 304 354
19 185 312 389	9 18 61 308	73 100 198 286	33 121 319 351
211 271 277 291	3 137 139 257	68 249 292 376	21 157 191 260
19 148 155 324	165 217 345 354	13 216 221 256	0 88 303 307
24 94 124 314	78 134 263 280	127 138 177 398	13 23 62 268
3 85 193 349	186 213 227 303	20 69 239 264	13 173 279 320
68 175 202 253	68 194 294 346	3 126 132 163	117 189 253 392
139 160 337 377	35 225 284 312	66 88 169 271	32 40 57 350
21 224 249 398	117 188 340 346	88 197 201 387	57 123 148 368
113 122 206 327	258 299 306 331	1 51 135 149	18 96 164 326
7 10 156 245	83 194 207 349	257 294 331 356	84 103 107 359
140 182 192 235	43 141 175 329	204 260 288 294	92 338 350 355
161 291 324 387	0 68 170 262	45 144 185 383	16 70 242 338
31 232 237 350	25 36 153 309	173 310 329 362	20 74 141 179
30 184 235 387	57 62 273 323	15 165 305 348	159 246 248 365
136 226 269 327	7 19 75 264	27 66 85 182	207 292 387 399
4 93 136 167	21 254 259 366	47 235 238 246	38 148 303 347
47 148 309 348	8 97 156 172	230 276 293 367	68 113 296 389
73 225 252 290	9 185 313 330	118 150 267 324	12 257 286 325
44 213 361 386	55 219 253 393	68 82 309 398	50 287 294 327
79 319 361 381	86 120 185 233	72 154 226 231	149 259 356 367
74 251 339 356	41 136 191 242	76 135 151 384	3 12 178 309
100 105 246 293	194 265 303 393	39 48 80 309	63 92 166 368
68 101 191 285	256 285 310 399	0 178 305 353	97 190 199 363
32 103 323 355	103 247 275 378	88 136 196 321	13 86 92 308
122 188 228 305	115 218 225 285	37 95 222 300	132 141 221 322
6 77 291 397	98 196 217 328	23 343 358 369	213 257 348 396

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 64
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

91 147 294 325	20 33 64 196	108 217 273 322	60 122 240 313
14 27 48 222	111 134 194 204	26 287 306 343	157 215 274 397
11 81 110 360	76 116 140 238	8 18 136 152	11 41 164 274
10 50 357 393	189 298 326 381	110 240 245 334	67 76 92 104
35 89 248 252	235 317 320 333	225 255 278 310	19 192 305 344
6 55 319 345	127 301 348 376	63 168 170 303	23 35 125 224
107 116 223 271	51 286 309 377	8 17 255 314	152 163 352 385
168 240 261 384	17 70 139 187	28 92 98 200	40 161 165 329
54 204 295 351	54 180 184 344	112 201 244 392	113 215 245 378
3 51 146 299	85 311 318 327	134 216 344 383	80 168 262 382
74 184 307 361	263 312 364 369	21 97 115 396	81 136 165 239
9 202 272 387	97 149 198 336	28 69 120 380	2 42 248 323
106 198 281 329	31 141 151 285	34 259 267 314	111 127 157 330
36 105 225 236	72 163 187 311	55 72 87 223	79 125 239 341
90 139 183 299	24 54 249 297	43 180 185 252	147 172 187 397
152 160 292 354	64 143 322 360	23 113 133 277	230 245 277 352
11 115 227 236	53 73 122 256	258 285 347 350	49 202 350 381
152 202 211 373	100 138 214 226	246 253 318 399	34 56 167 242
4 173 346 374	265 348 373 378	12 78 90 369	36 58 61 83
132 197 238 279	42 62 113 174	17 93 96 102	107 110 133 251
16 94 150 222	29 313 349 358	109 162 318 360	100 245 295 330
241 344 375 386	154 179 217 268	22 83 151 290	16 71 175 397
31 121 161 231	164 289 380 392	141 191 240 266	106 206 229 236
9 33 197 350	109 165 236 312	25 90 138 390	177 308 371 387
87 197 233 312	92 141 193 238	81 113 265 382	89 122 207 362
100 111 129 368	190 243 267 275	88 142 210 283	3 166 190 305
184 278 289 346	95 143 203 393	10 40 43 140	155 171 289 336
76 177 227 356	130 213 264 308	2 195 268 328	34 37 293 301
11 132 246 314	102 133 217 226	117 240 257 374	143 189 255 338
46 93 103 309	69 88 116 295	298 332 350 365	38 75 137 166

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

62 92 124 366	79 181 242 313	132 233 270 303	88 150 183 380
73 83 105 136	174 254 304 321	16 251 266 370	230 253 315 373
69 134 200 366	70 129 283 385	41 45 60 99	53 184 258 263
179 324 366 386	18 79 296 345	182 197 276 331	17 79 261 286
72 82 188 192	14 25 34 52	40 257 262 322	94 293 302 397
100 120 189 375	31 88 212 226	148 208 332 352	170 218 358 376
244 252 318 329	26 53 123 165	127 159 253 290	61 246 287 292
3 105 116 203	101 108 248 328	273 289 325 341	61 162 245 303
280 282 288 365	49 115 190 395	95 145 231 297	25 286 333 355
38 196 330 369	23 119 139 282	70 110 225 313	159 241 263 354
20 31 113 381	27 206 209 324	50 112 166 302	134 186 305 327
56 173 205 390	203 221 332 356	68 97 128 218	33 38 283 301
2 30 165 366	181 190 288 379	90 264 269 280	17 44 159 398
41 75 169 302	38 73 249 368	22 132 258 368	108 167 174 374
210 271 330 334	45 49 264 394	65 124 129 325	90 105 172 257
60 109 199 348	89 112 218 316	95 105 111 385	93 165 180 353
27 89 214 388	144 186 297 343	109 233 250 302	137 289 296 386
77 79 83 289	152 177 233 237	8 33 80 318	241 273 276 359
119 236 323 383	74 171 223 334	51 253 281 288	44 94 211 286
1 44 271 372	4 16 44 89	209 237 346 391	166 184 204 226
25 42 104 215	103 165 177 358	12 198 221 269	98 281 357 389
144 153 357 362	53 217 342 383	9 141 229 306	41 107 187 298
133 153 273 383	58 88 126 370	0 114 219 300	19 47 379 399
152 174 269 355	4 214 243 383	242 289 318 335	1 16 272 296
107 193 210 320	5 96 155 354	41 90 163 215	107 203 283 322
194 298 317 331	7 61 214 237	65 80 99 167	77 245 266 390
22 112 139 222	90 241 261 367	269 296 303 356	29 166 345 364
147 152 221 365	39 161 202 206	45 106 232 346	61 229 356 361
20 48 130 353	101 132 135 250	86 195 293 391	70 105 229 250
58 100 125 172	117 191 213 352	140 193 245 321	268 334 344 368

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

78 82 283 393	116 328 345 395	159 309 314 334	46 141 273 298
7 299 327 334	128 159 161 207	17 117 315 379	157 331 374 385
47 82 117 126	111 306 363 373	87 120 206 267	172 223 237 258
86 100 337 379	174 256 368 381	67 116 188 349	15 93 128 250
299 347 372 375	18 104 115 317	63 232 338 365	94 261 312 341
150 156 299 302	102 115 140 394	178 272 327 392	167 186 202 372
145 252 294 377	91 96 128 327	19 35 204 386	8 29 355 393
155 218 250 392	97 99 300 385	194 235 289 345	36 126 155 373
131 172 250 278	40 150 229 316	29 50 154 315	145 195 227 333
17 64 107 195	124 315 322 359	22 47 353 387	45 206 344 369
26 55 142 181	21 221 286 301	0 137 143 167	8 166 301 397
106 181 327 342	27 88 147 216	21 162 195 339	11 47 141 184
101 103 340 368	10 124 128 309	24 225 233 338	7 112 256 377
44 196 198 280	57 131 209 296	177 225 232 281	108 300 310 312
39 148 192 385	230 237 264 371	77 149 241 310	208 218 364 378
37 130 182 207	28 118 231 283	319 325 363 374	53 114 278 291
57 242 262 316	5 114 230 309	77 251 308 379	131 138 201 365
20 171 259 396	122 189 204 251	183 203 290 330	225 279 371 378
257 288 338 361	74 151 203 218	158 246 275 352	122 275 376 395
12 290 362 367	69 270 288 359	78 99 210 238	169 217 239 357
153 236 304 330	22 49 291 383	222 271 380 393	18 65 128 288
12 144 261 329	80 90 174 249	79 107 201 351	6 62 86 198
33 92 106 173	182 310 314 318	66 90 275 287	37 80 119 211
68 89 159 308	115 254 336 399	65 219 247 398	0 46 139 339
9 23 41 301	42 63 135 343	16 203 207 237	0 30 216 306
109 160 278 387	46 232 385 391	101 216 333 357	82 152 277 367
138 235 241 356	24 27 171 183	2 39 326 373	23 178 350 366
225 256 321 332	237 293 322 352	51 151 305 341	121 212 243 384
32 42 253 275	81 90 223 363	6 25 30 130	257 284 326 382
95 199 219 225	71 85 128 380	2 91 146 227	57 138 311 343

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 67
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

295 318 322 377	181 211 228 339	133 176 282 305	20 55 131 215
78 343 373 377	62 89 163 295	22 187 205 372	99 127 231 344
79 89 131 254	43 77 113 143	102 160 180 258	156 176 301 313
61 74 304 382	125 149 196 218	164 197 311 398	41 146 247 290
30 70 168 253	83 147 183 279	75 119 186 254	49 52 61 76
64 156 306 332	62 145 180 397	6 15 65 396	24 74 310 326
162 197 255 275	84 280 331 360	30 108 341 399	56 196 212 332
33 71 91 112	114 190 281 359	217 276 326 347	76 205 335 385
13 132 247 391	69 129 168 187	160 237 274 285	75 101 209 349
22 208 226 392	119 144 180 249	173 248 262 348	28 172 242 294
56 60 158 164	7 47 218 308	52 65 218 351	18 71 267 297
20 105 120 199	217 251 269 390	135 140 253 366	84 115 233 384
133 232 236 341	189 200 275 372	5 81 176 260	63 139 216 325
90 107 293 370	157 218 296 363	58 215 326 364	23 64 310 348
17 32 254 263	52 110 151 319	76 87 102 315	63 130 188 352
8 173 238 266	30 131 153 174	98 131 259 332	23 45 160 165
30 167 169 391	28 32 182 198	15 30 35 55	42 114 382 399
43 213 328 362	56 263 316 328	0 122 269 346	25 207 339 365
73 231 244 282	87 168 275 343	38 162 311 373	16 334 374 398
71 221 245 253	24 31 131 148	143 313 329 340	86 251 274 277
215 225 258 335	166 203 208 231	80 260 316 348	157 166 297 316
46 87 263 384	126 170 224 369	44 158 220 292	171 200 230 265
81 96 282 338	20 78 193 213	117 241 295 363	34 107 325 364
192 222 306 353	123 180 253 323	187 321 355 378	71 220 227 330
8 115 292 305	208 229 271 386	167 226 281 351	177 263 277 344
36 170 186 260	1 52 116 383	0 200 309 384	75 138 262 293
10 85 212 300	13 55 71 106	36 171 193 328	189 300 366 377
5 129 198 365	7 306 347 364	107 178 228 240	147 175 296 320
19 107 153 308	145 163 197 228	80 146 156 375	2 51 145 208
10 57 98 215	66 97 212 320	75 90 290 312	126 271 310 351

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 68
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

144 197 277 360	90 111 126 301	176 342 351 390	10 47 192 259
28 35 115 289	113 177 226 273	6 45 123 126	122 196 210 329
54 108 270 279	96 172 181 218	69 241 268 274	63 162 235 268
23 82 144 396	17 124 154 373	158 324 371 399	25 45 218 310
78 93 95 275	87 285 306 376	62 232 264 373	67 336 354 393
145 169 211 278	83 163 173 299	103 106 146 344	16 278 347 381
29 163 300 320	65 87 245 333	134 268 295 398	14 39 209 395
33 147 219 391	161 267 284 293	120 220 250 354	21 55 85 304
199 214 265 280	129 54 379 .	115 208 355 398	128 135 194 325
62 133 156 219	141 170 183 232	74 190 343 352	116 159 258 341
31 34 72 115	5 40 167 238	258 325 332 371	125 132 210 219
246 260 267 286	15 44 95 239	14 256 347 353	60 67 150 203
7 266 309 337	13 75 152 188	24 33 122 234	18 60 167 328
24 69 142 394	216 224 305 331	98 272 300 342	55 112 179 381
98 138 228 351	29 93 197 381	210 221 268 337	288 317 324 389
72 181 336 355	21 222 282 284	8 94 154 347	43 320 334 382
12 47 160 172	175 193 361 372	195 285 321 327	5 29 145 281
84 178 230 343	54 69 298 308	12 51 54 354	25 124 232 345
80 238 321 376	93 169 209 328	16 41 149 389	11 119 339 359
170 213 331 367	39 59 334 391	55 66 206 297	5 36 231 316
12 136 274 326	108 254 340 376	129 202 214 285	15 138 354 389
13 51 96 147	141 246 264 388	73 96 104 310	25 82 136 180
23 264 334 346	96 267 362 392	55 200 270 318	20 103 167 266
29 122 183 356	131 234 291 330	58 120 150 217	112 292 359 371
78 287 330 349	4 168 220 235	58 279 339 397	184 201 240 328
42 69 131 198	130 195 216 367	60 180 247 308	77 160 307 339
36 43 189 216	108 148 290 302	48 127 213 356	74 147 280 389
44 142 195 344	85 214 362 395	62 128 291 329	127 149 358 387
40 147 260 330	48 100 118 346	26 35 127 323	50 59 117 185
125 325 379 387	91 104 355 358	77 144 286 296	11 189 212 220

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Page 69

Serial Number: 10/815,133

Dkt: P19060/1000-0037

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

123 135 226 372	91 121 295 324	146 187 293 319	261 271 290 396
83 86 149 386	3 16 308 340	198 219 343 380	190 225 298 369
26 95 121 163	143 157 307 395	148 188 256 304	16 140 227 352
30 54 178 315	36 77 116 340	171 189 266 341	118 183 262 383
136 301 341 365	3 98 101 125	94 108 244 288	17 218 260 350
21 59 265 299	39 151 364 377	16 42 200 250	50 56 278 351
111 154 282 297	194 227 231 267	2 64 193 399	15 36 150 280
6 74 290 349	59 200 206 389	129 172 276 379	18 107 151 176
121 142 174 236	21 106 287 389	26 176 234 319	22 188 244 337
108 129 152 261	33 268 340 387	118 135 205 312	72 186 302 350
152 164 205 377	140 150 395 398	115 176 290 359	65 145 221 239
144 281 332 335	88 352 360 367	9 143 188 374	52 117 331 393
92 244 315 326	55 91 145 168	96 186 247 353	7 37 265 285
66 128 170 221	126 130 181 323	30 72 320 388	56 283 338 382
21 109 174 397	34 120 227 316	17 137 186 193	78 217 337 351
5 154 201 239	237 337 355 394	34 229 265 284	6 247 249 370
80 183 261 293	34 186 219 313	129 207 282 287	1 161 241 255
18 143 335 392	280 330 340 375	68 118 275 305	101 166 183 220
13 139 155 230	76 230 354 378	153 172 249 307	99 198 326 335
145 156 300 327	5 178 293 297	106 179 212 378	105 234 340 384
118 153 171 366	142 223 234 381	22 48 105 347	60 233 242 397
15 152 331 364	48 239 260 399	98 137 346 379	207 215 223 293
161 171 307 317	58 270 336 360	41 98 165 232	233 279 351 380
49 56 127 185	24 123 271 347	54 63 99 123	83 106 188 311
104 168 283 305	12 76 137 280	81 213 315 394	97 185 361 392
199 202 343 399	107 226 302 367	38 66 87 191	14 26 72 304
15 164 192 273	175 186 208 366	71 121 294 396	51 162 194 387
62 199 222 228	65 183 369 376	109 200 345 375	94 245 273 287
67 94 166 256	60 169 292 350	33 70 217 266	26 177 205 314
85 227 250 321	44 169 240 362	11 111 210 240	14 92 385 389

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION
Serial Number: 10/815,133
Filing Date: March 31, 2004

Page 70
Dkt: P19060/1000-0037

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

111 211 366 390	14 212 392 398	131 237 298 384	30 110 179 321
27 71 110 327	91 105 300 382	103 183 281 286	86 133 234 284
99 257 359 389	4 79 232 370	5 224 263 358	54 58 72 289
124 295 372 397	21 75 158 347	197 199 247 382	22 145 269 373
12 43 117 356	331 341 343 386	18 228 332 344	81 172 211 381
65 117 136 354	0 103 163 270	16 26 57 68	59 246 252 255
39 67 191 212	7 95 171 326	2 158 259 384	34 113 207 286
80 166 176 358	16 24 49 133	128 181 371 398	69 100 222 231
99 208 353 361	58 242 363 390	98 179 247 319	14 150 387 396
32 46 104 222	8 236 254 290	41 71 138 326	17 73 228 248
4 25 72 203	50 83 140 370	175 244 301 317	29 193 232 259
2 124 130 262	233 258 340 364	81 145 226 371	40 148 359 374
28 113 210 232	63 289 292 313	125 202 226 309	38 281 316 327
66 77 158 268	231 245 336 342	115 169 276 298	70 87 100 395
61 98 202 330	35 38 246 299	192 268 296 391	26 231 295 369
47 67 181 247	104 246 249 281	31 167 220 223	214 234 269 288
51 204 209 307	161 248 285 325	39 241 358 382	77 154 320 365
125 198 289 301	13 21 192 220	67 112 159 236	27 76 86 155
136 214 216 263	82 89 200 209	71 180 208 266	65 139 175 240
97 270 314 338	8 264 313 368	59 143 248 394	33 130 223 286
78 127 215 226	11 26 242 286	99 128 223 388	215 271 317 344
27 242 348 357	37 248 303 388	6 192 221 351	8 47 113 153
94 181 191 363	64 187 324 392	129 238 257 378	194 233 361 377
7 91 93 348	209 216 230 243	29 192 252 392	88 202 284 394
60 193 267 333	73 241 250 260	6 110 177 269	29 118 285 380
185 237 272 381	181 187 235 239	29 79 205 241	96 154 312 383
15 52 166 225	63 193 300 329	233 246 325 331	19 250 318 359
27 100 126 275	291 332 354 396	11 211 321 384	32 282 289 334
70 96 163 333	19 103 260 383	144 282 337 386	56 272 294 303
11 175 273 282	5 303 328 375	33 79 327 385	10 68 72 210

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 71
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

184 261 382 386	49 114 243 360	38 156 251 280	159 276 311 392
202 204 315 342	60 87 303 370	130 209 249 266	15 42 105 267
66 102 195 207	138 190 248 283	43 161 250 322	4 23 202 388
97 243 272 301	78 97 139 144	7 168 182 185	23 61 260 307
92 128 156 304	177 180 244 272	15 45 189 286	42 124 355 380
68 313 385 390	44 123 243 287	191 205 301 305	124 259 374 386
13 32 49 271	122 211 304 388	155 235 282 299	136 140 207 317
4 80 123 277	70 117 278 332	40 114 194 372	9 278 280 325
89 135 243 375	31 85 343 394	249 263 323 372	4 19 59 360
88 372 381 388	47 133 244 312	36 214 252 380	21 79 94 356
66 108 222 274	20 144 299 368	176 201 258 373	26 158 345 353
28 59 164 167	25 84 335 395	102 208 340 379	95 172 261 374
201 204 313 324	102 199 213 283	85 161 240 262	27 119 364 373
73 311 388 397	64 164 169 224	5 17 199 339	35 245 335 374
109 186 243 261	50 152 224 276	150 230 306 341	139 162 184 228
116 125 276 398	42 184 390 398	46 123 204 318	53 84 214 363
58 185 287 293	1 73 349 396	71 130 143 271	17 153 242 386
40 203 279 314	238 317 354 385	208 268 365 396	30 137 274 313
46 50 86 255	46 70 296 379	257 263 336 395	68 169 256 369
23 48 109 120	156 247 278 334	218 267 334 360	30 119 206 394
236 297 325 333	130 235 319 390	53 74 255 302	224 325 365 380
123 155 320 384	0 108 120 213	104 175 302 311	50 178 188 274
36 67 169 274	11 93 146 235	228 338 360 369	2 56 169 225
54 102 191 239	96 255 374 376	8 35 112 394	43 75 167 296
8 109 198 391	85 146 204 366	39 130 336 365	28 131 274 304
143 176 238 370	146 254 365 391	13 170 198 378	107 263 309 385
39 41 105 208	114 148 151 373	56 156 162 181	101 238 310 395
126 197 342 357	60 121 145 343	47 95 104 272	35 58 238 345
9 40 191 384	112 195 277 296	9 291 333 362	43 61 106 391
51 148 207 270	29 302 310 334	121 128 193 322	86 113 161 390

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

35 316 329 376	196 341 352 391	17 164 229 252	4 81 95 119
37 161 224 306	61 63 333 350	27 132 134 179	135 138 200 301
14 53 98 269	42 130 307 331	173 216 220 247	11 32 294 357
179 207 236 269	25 190 224 282	246 306 375 384	10 73 84 173
10 163 205 369	57 238 375 393	75 160 187 263	25 48 97 145
31 92 162 396	5 158 186 355	171 236 329 389	7 223 280 366
85 268 314 345	83 110 385 399	58 178 196 380	83 137 247 276
1 31 249 319	48 154 166 308	171 203 256 370	31 56 117 325
35 56 281 333	2 75 288 340	5 134 277 330	211 281 307 358
137 199 223 376	86 223 248 264	110 153 320 336	49 118 211 372
52 320 338 362	67 135 158 350	24 93 369 383	70 179 221 371
65 224 307 390	80 133 345 351	35 100 244 361	38 260 266 388
146 310 346 384	51 195 265 335	327 345 369 396	142 222 253 335
101 138 193 307	63 117 159 196	27 37 185 277	83 88 180 363
234 314 342 394	13 16 37 143	257 259 321 362	153 371 374 393
19 109 127 214	70 95 306 391	23 253 280 370	142 161 286 312
40 80 132 196	178 187 249 316	13 44 99 224	34 111 221 243
183 213 229 249	37 52 162 307	57 69 114 224	40 66 91 391
105 228 232 238	173 211 237 344	70 154 185 352	55 120 165 209
64 278 290 357	41 114 210 233	34 269 338 367	4 28 46 292
20 116 173 251	102 202 287 354	77 170 234 326	149 222 244 357
97 261 308 393	136 185 223 303	138 171 192 269	190 339 362 364
20 100 146 165	86 265 287 355	173 192 284 371	10 67 187 338
67 84 164 376	11 66 131 255	68 155 164 353	2 132 168 263
155 260 300 352	124 147 319 392	4 22 201 212	9 63 294 305
116 118 147 233	46 67 152 380	206 234 259 270	26 60 148 224
61 174 328 371	64 82 111 312	35 168 176 389	59 157 188 224
30 60 155 368	78 123 264 317	103 162 351 370	139 220 320 349
39 142 169 232	24 45 85 295	49 59 102 212	69 202 336 385
54 76 318 358	118 141 244 255	155 192 270 287	20 92 313 331

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 73
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

44 79 316 392	101 199 253 359	173 315 372 382	77 136 150 309
104 177 254 335	18 41 259 368	41 49 117 320	3 121 179 230
4 199 234 308	122 125 185 324	45 82 120 133	10 104 152 326
76 139 192 332	58 294 318 365	6 42 195 295	64 134 178 182
1 252 322 331	84 210 216 235	171 201 344 377	214 300 353 386
89 217 352 378	54 142 147 355	94 179 205 344	110 254 268 346
83 156 175 211	73 91 174 353	32 144 219 315	272 304 337 347
75 132 341 364	15 48 292 323	226 257 333 386	37 165 235 262
78 106 204 272	4 62 67 126	24 102 182 375	1 36 234 297
65 159 214 284	109 129 191 203	49 86 123 175	69 281 347 371
141 161 342 353	143 154 168 205	62 151 266 298	59 264 271 348
336 375 381 397	24 75 127 304	272 323 339 367	175 255 277 357
143 260 291 302	34 142 182 363	99 160 273 330	51 97 374 399
84 298 339 375	10 198 303 308	194 274 324 368	108 223 317 360
219 234 357 374	146 258 273 361	51 127 158 191	82 125 216 228
0 118 292 328	113 132 220 359	2 98 164 393	134 154 172 317
19 119 226 387	39 179 252 274	90 108 149 315	49 65 74 157
115 167 294 319	6 176 199 318	8 122 129 299	3 112 266 356
53 222 233 236	33 55 95 124	8 48 64 210	81 204 254 262
18 52 63 182	134 228 283 329	56 106 207 240	3 113 263 332
79 102 148 311	75 175 339 371	48 87 212 340	100 151 205 240
140 270 351 369	78 89 202 322	38 231 288 394	95 125 180 303
91 255 289 389	85 197 310 390	137 353 378 393	234 292 306 352
163 285 330 338	59 112 305 323	119 150 272 355	149 227 349 355
237 251 312 359	154 163 287 305	64 92 190 291	111 142 267 321
39 186 288 301	83 195 206 264	4 51 121 215	27 203 228 361
29 188 211 367	45 209 255 311	119 171 229 253	52 277 309 390
269 298 391 397	54 182 261 302	65 357 363 370	33 57 284 302
85 95 292 307	128 190 241 384	83 172 197 280	35 50 66 219
72 150 266 314	7 48 66 82	27 131 360 396	22 27 149 215

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Page 74

Serial Number: 10/815,133

Dkt: P19060/1000-0037

Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

13 28 84 206	283 297 340 396	85 153 177 222	86 129 319 371
59 108 337 349	7 36 307 320	120 154 210 237	103 127 201 336
73 171 273 345	114 241 271 315	0 98 291 388	39 50 247 256
68 140 200 363	96 179 249 302	32 259 287 333	119 165 230 370
38 111 233 358	7 9 170 394	184 314 389 397	21 82 248 311
157 289 328 372	46 284 308 388	101 189 296 383	84 137 239 315
160 188 284 327	104 158 332 362	126 160 235 240	1 155 239 268
137 304 349 374	109 153 189 370	111 120 212 288	265 278 329 342
140 168 204 341	14 110 338 381	10 174 209 291	18 118 234 242
132 223 298 336	101 142 257 376	112 114 186 239	135 189 337 353
71 114 184 200	93 129 359 394	164 179 304 346	18 28 123 159
60 135 323 399	133 137 142 314	90 127 252 284	26 44 88 267
9 38 179 245	187 215 269 294	53 173 282 333	12 50 103 251
114 157 229 366	116 121 300 363	82 87 98 354	144 242 244 372
229 297 323 342	57 251 267 386	77 106 138 345	53 181 221 229
24 36 89 106	14 126 335 379	74 329 360 366	46 89 180 281
101 134 140 381	31 133 250 268	167 322 332 395	3 53 285 382
50 148 194 257	9 183 241 342	52 88 276 294	175 184 205 209
1 222 340 378	37 164 279 324	47 199 299 391	94 208 276 349
67 155 220 365	118 130 187 270	3 219 275 297	14 37 131 266
15 156 210 262	135 169 182 319	3 30 375 378	135 227 367 392
53 125 134 231	6 149 204 220	110 134 158 282	13 59 103 207
192 337 357 360	63 150 214 259	151 188 359 388	48 78 84 243
170 203 216 266	19 65 348 388	191 199 304 333	94 252 262 306
2 71 74 362	15 46 151 383	42 191 274 383	168 316 324 380
40 97 101 356	22 160 227 230	51 99 384 394	196 255 260 394
54 117 145 201	124 166 279 317	146 343 367 376	11 105 178 243
34 81 147 326	45 130 237 361	153 247 284 375	19 122 177 339
5 121 256 311	6 189 316 347	36 133 204 243	64 203 304 319
14 176 272 383	74 135 142 311	110 224 265 277	12 174 194 208

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

46 52 271 377	18 19	48 49	78 79
62 149 169 353	19 20	49 50	79 80
133 205 239 387	20 21	50 51	80 81
174 206 285 292	21 22	51 52	81 82
14 43 99 137	22 23	52 53	82 83
87 111 371 377	23 24	53 54	83 84
73 137 177 261	24 25	54 55	84 85
10 105 184 352	25 26	55 56	85 86
126 286 347 390	26 27	56 57	86 87
72 91 148 196	27 28	57 58	87 88
12 162 292 363	28 29	58 59	88 89
6 112 273 399	29 30	59 60	89 90
0 1	30 31	60 61	90 91
1 2	31 32	61 62	91 92
2 3	32 33	62 63	92 93
3 4	33 34	63 64	93 94
4 5	34 35	64 65	94 95
5 6	35 36	65 66	95 96
6 7	36 37	66 67	96 97
7 8	37 38	67 68	97 98
8 9	38 39	68 69	98 99
9 10	39 40	69 70	99 100
10 11	40 41	70 71	100 101
11 12	41 42	71 72	101 102
12 13	42 43	72 73	102 103
13 14	43 44	73 74	103 104
14 15	44 45	74 75	104 105
15 16	45 46	75 76	105 106
16 17	46 47	76 77	106 107
17 18	47 48	77 78	107 108

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

108 109	138 139	168 169	198 199
109 110	139 140	169 170	199 200
110 111	140 141	170 171	200 201
111 112	141 142	171 172	201 202
112 113	142 143	172 173	202 203
113 114	143 144	173 174	203 204
114 115	144 145	174 175	204 205
115 116	145 146	175 176	205 206
116 117	146 147	176 177	206 207
117 118	147 148	177 178	207 208
118 119	148 149	178 179	208 209
119 120	149 150	179 180	209 210
120 121	150 151	180 181	210 211
121 122	151 152	181 182	211 212
122 123	152 153	182 183	212 213
123 124	153 154	183 184	213 214
124 125	154 155	184 185	214 215
125 126	155 156	185 186	215 216
126 127	156 157	186 187	216 217
127 128	157 158	187 188	217 218
128 129	158 159	188 189	218 219
129 130	159 160	189 190	219 220
130 131	160 161	190 191	220 221
131 132	161 162	191 192	221 222
132 133	162 163	192 193	222 223
133 134	163 164	193 194	223 224
134 135	164 165	194 195	224 225
135 136	165 166	195 196	225 226
136 137	166 167	196 197	226 227
137 138	167 168	197 198	227 228

AMENDMENT AND RESPONSE TO EX PARTE QUAYLE ACTION

Serial Number: 10/815,133

Filing Date: March 31, 2004

Page 77
Dkt: P19060/1000-0037**Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM**

228 229	258 259	288 289	318 319
229 230	259 260	289 290	319 320
230 231	260 261	290 291	320 321
231 232	261 262	291 292	321 322
232 233	262 263	292 293	322 323
233 234	263 264	293 294	323 324
234 235	264 265	294 295	324 325
235 236	265 266	295 296	325 326
236 237	266 267	296 297	326 327
237 238	267 268	297 298	327 328
238 239	268 269	298 299	328 329
239 240	269 270	299 300	329 330
240 241	270 271	300 301	330 331
241 242	271 272	301 302	331 332
242 243	272 273	302 303	332 333
243 244	273 274	303 304	333 334
244 245	274 275	304 305	334 335
245 246	275 276	305 306	335 336
246 247	276 277	306 307	336 337
247 248	277 278	307 308	337 338
248 249	278 279	308 309	338 339
249 250	279 280	309 310	339 340
250 251	280 281	310 311	340 341
251 252	281 282	311 312	341 342
252 253	282 283	312 313	342 343
253 254	283 284	313 314	343 344
254 255	284 285	314 315	344 345
255 256	285 286	315 316	345 346
256 257	286 287	316 317	346 347
257 258	287 288	317 318	347 348

Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

348 349	362 363	376 377	390 391
349 350	363 364	377 378	391 392
350 351	364 365	378 379	392 393
351 352	365 366	379 380	393 394
352 353	366 367	380 381	394 395
353 354	367 368	381 382	395 396
354 355	368 369	382 383	396 397
355 356	369 370	383 384	397 398
356 357	370 371	384 385	398 399
357 358	371 372	385 386	399.
358 359	372 373	386 387	
359 360	373 374	387 388	
360 361	374 375	388 389	
361 362	375 376	389 390	

35. (Original) The article of claim 34, wherein:
said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.
36. (Original) The article of claim 34, wherein said instructions, when executed by the computing platform, further operate to:
access a storage medium having at least a portion of said parity check matrix stored thereon before matrix multiplying.
37. (Previously Presented) The article of claim 34, wherein:
said first portion of said parity check matrix is a portion that includes columns of said parity check matrix having a column weight of 4.
38. (Previously Presented) The article of claim 34, wherein:
said parity check matrix defines a (2000, 1600) LDPC code.