In [52]: import pandas as pd
 df_titanic=pd.read_csv(r"C:\Users\HP\Downloads\titanic.csv")
 df_titanic

Out[52]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs., John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53,1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30,0000	Ъ42	\$
	888	889	0	3	Johnston, Miss. Catherine Helen Carrie	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	C
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

```
In [53]: import matplotlib.pyplot as plt
   class1=df_titanic[df_titanic['Pclass']==1]['Age'].dropna()

In [54]: class2=df_titanic[df_titanic['Pclass']==2]['Age'].dropna()

In [55]: class3=df_titanic[df_titanic['Pclass']==3]['Age'].dropna()

In [56]: l1=[class1,class2,class3]
   plt.boxplot(l1,labels=["Class1","Class2","Class2"])
```

```
Out[56]: {'whiskers': [<matplotlib.lines.Line2D at 0x1ef9f33d330>,
           <matplotlib.lines.Line2D at 0x1ef9f33d5d0>,
           <matplotlib.lines.Line2D at 0x1ef9f13c6d0>,
           <matplotlib.lines.Line2D at 0x1ef9f33e1a0>,
           <matplotlib.lines.Line2D at 0x1ef9f33f160>,
           <matplotlib.lines.Line2D at 0x1ef9f33f400>],
           caps': [<matplotlib.lines.Line2D at 0x1ef9f33d870>,
           <matplotlib.lines.Line2D at 0x1ef9f33db10>,
           <matplotlib.lines.Line2D at 0x1ef9f33e440>,
           <matplotlib.lines.Line2D at 0x1ef9f33e6e0>,
           <matplotlib.lines.Line2D at 0x1ef9f33f6a0>,
           <matplotlib.lines.Line2D at 0x1ef9f33f940>],
           boxes': [<matplotlib.lines.Line2D at 0x1ef9f33d090>,
           <matplotlib.lines.Line2D at 0x1ef9f104cd0>,
           <matplotlib.lines.Line2D at 0x1ef9f33eec0>],
          'medians': [<matplotlib.lines.Line2D at 0x1ef9f33ddb0>,
           <matplotlib.lines.Line2D at 0x1ef9f33e980>,
           <matplotlib.lines.Line2D at 0x1ef9f33fbe0>],
          'fliers': [<matplotlib.lines.Line2D at 0x1ef9f33e050>,
           <matplotlib.lines.Line2D at 0x1ef9f33ec20>,
           <matplotlib.lines.Line2D at 0x1ef9f33fe80>],
          'means': []}
```


In [57]: df_titanic.rename(columns={"Sex":"Gender"},inplace=True)
df_titanic

Out[57]:		Passengerld	Survived	Pclass	Name	Gender	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs., John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71,2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53,1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
									•••				
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	Ъ42	S
	888	889	0	3	Johnston, Miss. Catherine Helen Carrie	female	NaN	1	2	W./C. 6607	23.4500	NaN	\$
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

Out[58]:		Passengerld	Survived	Pclass	Name	Gender	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs., John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53,1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500	NaN	S
	886	887	0	2	Montvila, Rev. Juozas	0	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	1	19.0	0	0	112053	30.0000	Ъ42	S
	888	889	0	3	Johnston, Miss. Catherine Helen Carrie	1	NaN	1	2	W./C. 6607	23.4500	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	0	26.0	0	0	111369	30.0000	C148	С
	890	891	0	3	Dooley, Mr. Patrick	0	32.0	0	0	370376	7.7500	NaN	Q

891 rows \times 12 columns

```
In [59]: m=(df_titanic['Age']<25) & (df_titanic['Gender']==1)</pre>
```

In [60]: df_titanic[m]

Out[60]:		Passengerld	Survived	Pclass	Name	Gender	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	1	14.0	1	0	237736	30.0708	NaN	С
	10	11	1	3	Sandstrom, Miss. Marguerite Rut	1	4.0	1	1	PP 9549	16.7000	G6	S
	14	15	0	3	Vestrom, Miss. Hulda Amanda Adolfina	1	14.0	0	0	350406	7.8542	NaN	S
	22	23	1	3	McGowan, Miss. Anna Annie	1	15.0	0	0	330923	8.0292	NaN	Q
	24	25	0	3	Palsson, Miss. Torborg Danira	1	8.0	3	1	349909	21,0750	NaN	S
	855	856	1	3	Aks, Mrs. Sam (Leah Rosen)	1	18.0	0	1	392091	9.3500	NaN	S
	858	859	1	3	Baclini, Mrs. Solomon (Latifa Qurban)	1	24.0	0	3	2666	19.2583	NaN	С
	875	876	1	3	Najib, Miss. Adele Kiamie "Jane"	1	15.0	0	0	2667	7.2250	NaN	С
	882	883	0	3	Dahlberg, Miss. Gerda Ulrika	1	22.0	0	0	7552	10,5167	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	1	19.0	0	0	112053	30,0000	Ъ42	S

```
In [61]: #number of males survived
    a=(df_titanic['Survived']==1) & (df_titanic['Gender']==1)
    print(len(df_titanic[a]))
    df_titanic[a]
```

Out[61]:		Passengerld	Survived	Pclass	Name	Gender	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	1	2	1	1	Cumings, Mrs., John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71,2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	\$
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53,1000	C123	\$
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	1	27.0	0	2	347742	11,1333	NaN	S
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	1	14.0	1	0	237736	30,0708	NaN	С
	874	875	1	2	Abelson, Mrs. Samuel (Hannah Wizosky)	1	28.0	1	0	P/PP 3381	24.0000	NaN	С
	875	876	1	3	Najib, Miss. Adele Kiamie "Jane"	1	15.0	0	0	2667	7.2250	NaN	С
	879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	1	56.0	0	1	11767	83.1583	C50	С
	880	881	1	2	Shelley, Mrs. William (Imanita Parrish Hall)	1	25.0	0	1	230433	26,0000	NaN	\$
	887	888	1	1	Graham, Miss. Margaret Edith	1	19.0	0	0	112053	30.0000	Ъ42	\$

```
In [62]: b=(df_titanic['Survived']==1) & (df_titanic['Gender']==0)
```

In [63]: #number of males survived

b=(df_titanic['Survived']==1) & (df_titanic['Gender']==0)

print(len(df_titanic[b]))

df_titanic[b]

109

Out[63]:

	Passengerld	Survived	Pclass	Name	Gender	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
17	18	1	2	Williams, Mr. Charles Eugene	0	NaN	0	0	244373	13.0000	NaN	S
21	22	1	2	Beesley, Mr. Lawrence	0	34.0	0	0	248698	13.0000	D56	S
23	24	1	1	Sloper, Mr. William Thompson	0	28.0	0	0	113788	35.5000	A6	S
36	37	1	3	Mamee, Mr. Hanna	0	NaN	0	0	2677	7.2292	NaN	С
55	56	1	1	Woolner, Mr. Hugh	0	NaN	0	0	19947	35.5000	C52	S
838	839	1	3	Chip, Mr. Chang	0	32.0	0	0	1601	56.4958	NaN	S
839	840	1	1	Marechal, Mr. Pierre	0	NaN	0	0	11774	29.7000	C47	C
857	858	1	1	Daly, Mr. Peter Denis	0	51.0	0	0	113055	26.5500	E17	S
869	870	1	3	Johnson, Master. Harold Theodor	0	4.0	1	1	347742	11,1333	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	0	26.0	0	0	111369	30.0000	C148	С

```
In [64]: embarked_survived_count = df_titanic.groupby(['Embarked','Survived']).size()
    embarked_survived_count.plot(kind='bar',stacked=True)
    plt.title('Count of Survivors and Non-Survivors for each Embarked Port')
    plt.xlabel('Embarked Port')
    plt.ylabel('Count')
    plt.xticks(rotation=0)
    plt.legend(['Non-Survivors','Survivors'])
    plt.show()
```

Count of Survivors and Non-Survivors for each Embarked Port

In [65]: import seaborn as sns
 tips=sns.load_dataset('tips')
 tips

0 1	F C F T	
DIT	1651	
O U L	1001	1

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

```
In [66]: #----> distplot
         #It will take only one column
         plt.figure(figsize=(5,5))
         sns.distplot(tips['total_bill'],bins=100) #kde=True by default -->kde is ι
         C:\Users\HP\AppData\Local\Temp\ipykernel_19832\1281462628.py:6: UserWarnin
         g:
         `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
         Please adapt your code to use either `displot` (a figure-level function wit
         similar flexibility) or `histplot` (an axes-level function for histograms).
         For a guide to updating your code to use the new functions, please see
         https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
           sns.distplot(tips['total_bill'],bins=100) #kde=True by default -->kde i
         s used for graph
         <Axes: xlabel='total_bill', ylabel='Density'>
```

Out[66]:

sns.distplot(tips['total_bill'],bins=100,kde=False) In [67]:

C:\Users\HP\AppData\Local\Temp\ipykernel_19832\3888612417.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(tips['total_bill'],bins=100,kde=False)

Out[67]: <Axes: xlabel='total_bill'>

In [68]: sns.distplot(tips['total_bill'],bins=100,kde=True,hist=False)

C:\Users\HP\AppData\Local\Temp\ipykernel_19832\951507828.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(tips['total_bill'],bins=100,kde=True,hist=False)

<Axes: xlabel='total_bill', ylabel='Density'>

Out[68]:


```
sns.distplot(tips['total_bill'],bins=100,hist=True,color='purple')
In [69]:
         C:\Users\HP\AppData\Local\Temp\ipykernel_19832\3206045060.py:1: UserWarnin
         g:
         `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
         Please adapt your code to use either `displot` (a figure-level function wit
         similar flexibility) or `histplot` (an axes-level function for histograms).
         For a guide to updating your code to use the new functions, please see
         https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
           sns.distplot(tips['total_bill'],bins=100,hist=True,color='purple')
         <Axes: xlabel='total_bill', ylabel='Density'>
```

Out[69]:


```
In [70]: #jointplot()
sns.jointplot(x='total_bill',y='tip',data=tips,kind='hex')
```

Out[70]: <seaborn.axisgrid.JointGrid at 0x1ef9f73add0>

In [71]: sns.jointplot(x='total_bill',y='tip',data=tips,kind='reg')

Out[71]: <seaborn.axisgrid.JointGrid at 0x1ef9f852f20>

In [72]: sns.jointplot(x='total_bill',y='tip',data=tips,kind='resid')

Out[72]: <seaborn.axisgrid.JointGrid at 0x1ef9fe46d40>

In [73]: sns.jointplot(x='total_bill',y='tip',data=tips,kind='kde')

Out[73]: <seaborn.axisgrid.JointGrid at 0x1ef9fe47f10>

In [74]: sns.jointplot(x='total_bill',y='tip',data=tips,kind='hist')

Out[74]: <seaborn.axisgrid.JointGrid at 0x1ef9f87fdc0>

In [75]: sns.jointplot(x='total_bill',y='tip',data=tips,kind='scatter')

Out[75]: <seaborn.axisgrid.JointGrid at 0x1efa1a96e30>

In [76]: sns.pairplot(tips,hue="sex")

Out[76]: <seaborn.axisgrid.PairGrid at 0x1efa1ac4c70>

In [77]: sns.pairplot(tips,hue="smoker",palette='coolwarm')

Out[77]: <seaborn.axisgrid.PairGrid at 0x1ef9f7ebf10>

In [78]: #logistic regression

Logistic regression is a statitical method used to model the relationship
#a binary dependent variable and one or more independent variables

#in logistic regression, the dependent variabl is a binary, meaning it can or
#on two values, labelled as 0 or 1

#The dependent variables can be either continous or categorical

In [79]: import numpy as np
 from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_s

In [80]: y_pred=np.array([0.3,0.6,0.8,0.2,0.4,0.9,0.1,0.7,0.5,0.6])
y_true=np.array([0,1,1,0,0,1,0,1,1,1])

In [81]: #Accuracy
 #Accuracy measures the percentage of correctly classified instance of all in
 #instances out of all instance
 accuracy=accuracy_score(y_true,np.round(y_pred))
 accuracy

Out[81]: 0.9

In [82]: # Precision # Precision measured the proportion of true positive prediction out of all p

```
#precision=true positive/all positive
         precision=precision_score(y_true,np.round(y_pred))
         precision
         1.0
Out[82]:
In [83]: #Recall
         # Recall measures the proportion of true positive prediction out of all actu
          #recall=true positive/actual positive
          recall=recall_score(y_true,np.round(y_pred))
          recall
         0.833333333333334
Out[83]:
In [84]: #f1_score
         #IT is the mean of precision and recall
         f1=f1_score(y_true,np.round(y_pred))
         0.9090909090909091
Out[84]:
In [85]: #Confusion matrix
          #It is a table gives the performance of a classification model
          #It shows true positive,true negative ,false positive,false negative
         matrix=confusion_matrix(y_true,np.round(y_pred))
         matrix
         array([[4, 0],
Out[85]:
                [1, 5]], dtype=int64)
In [86]: # Eg:1
          #Logistic regression
         from sklearn.datasets import load_iris
         from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy_score
          from sklearn.model_selection import train_test_split
         iris=load_iris()
In [87]:
          iris
```

```
{'data': array([[5.1, 3.5, 1.4, 0.2],
Out[87]:
                  [4.9, 3., 1.4, 0.2],
                  [4.7, 3.2, 1.3, 0.2],
                  [4.6, 3.1, 1.5, 0.2],
                  [5. , 3.6, 1.4, 0.2],
                  [5.4, 3.9, 1.7, 0.4],
                  [4.6, 3.4, 1.4, 0.3],
                  [5. , 3.4, 1.5, 0.2], [4.4, 2.9, 1.4, 0.2],
                  [4.9, 3.1, 1.5, 0.1],
                  [5.4, 3.7, 1.5, 0.2],
                  [4.8, 3.4, 1.6, 0.2],
                  [4.8, 3., 1.4, 0.1],
                  [4.3, 3., 1.1, 0.1],
                  [5.8, 4., 1.2, 0.2],
                  [5.7, 4.4, 1.5, 0.4],
                  [5.4, 3.9, 1.3, 0.4],
                  [5.1, 3.5, 1.4, 0.3],
                  [5.7, 3.8, 1.7, 0.3],
                  [5.1, 3.8, 1.5, 0.3],
                  [5.4, 3.4, 1.7, 0.2],
                  [5.1, 3.7, 1.5, 0.4],
                  [4.6, 3.6, 1., 0.2],
                  [5.1, 3.3, 1.7, 0.5],
                  [4.8, 3.4, 1.9, 0.2],
                  [5. , 3. , 1.6, 0.2],
                  [5., 3.4, 1.6, 0.4],
                  [5.2, 3.5, 1.5, 0.2],
                  [5.2, 3.4, 1.4, 0.2],
                  [4.7, 3.2, 1.6, 0.2],
                  [4.8, 3.1, 1.6, 0.2],
                  [5.4, 3.4, 1.5, 0.4],
                  [5.2, 4.1, 1.5, 0.1],
                  [5.5, 4.2, 1.4, 0.2],
                  [4.9, 3.1, 1.5, 0.2],
                  [5., 3.2, 1.2, 0.2],
                  [5.5, 3.5, 1.3, 0.2],
                  [4.9, 3.6, 1.4, 0.1],
                  [4.4, 3., 1.3, 0.2],
                  [5.1, 3.4, 1.5, 0.2],
                  [5., 3.5, 1.3, 0.3],
                  [4.5, 2.3, 1.3, 0.3],
                  [4.4, 3.2, 1.3, 0.2],
                  [5. , 3.5, 1.6, 0.6],
                  [5.1, 3.8, 1.9, 0.4],
                  [4.8, 3., 1.4, 0.3],
                  [5.1, 3.8, 1.6, 0.2],
                  [4.6, 3.2, 1.4, 0.2],
                  [5.3, 3.7, 1.5, 0.2],
                  [5., 3.3, 1.4, 0.2],
                  [7. , 3.2, 4.7, 1.4],
                  [6.4, 3.2, 4.5, 1.5],
                  [6.9, 3.1, 4.9, 1.5],
                  [5.5, 2.3, 4. , 1.3],
                  [6.5, 2.8, 4.6, 1.5],
                  [5.7, 2.8, 4.5, 1.3],
                  [6.3, 3.3, 4.7, 1.6],
                  [4.9, 2.4, 3.3, 1.],
                  [6.6, 2.9, 4.6, 1.3],
                  [5.2, 2.7, 3.9, 1.4],
                  [5. , 2. , 3.5, 1. ],
                  [5.9, 3., 4.2, 1.5],
                  [6., 2.2, 4., 1.],
                  [6.1, 2.9, 4.7, 1.4],
```

```
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3., 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3., 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3., 5., 1.7],
[6., 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3., 4.5, 1.5],
[6., 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4., 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3., 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5., 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3., 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6., 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3., 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3., 5.8, 2.2],
[7.6, 3., 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2.],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3., 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3., 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2.],
[7.7, 2.8, 6.7, 2.],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6., 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3., 4.9, 1.8],
```

```
[6.4, 2.8, 5.6, 2.1],
      [7.2, 3., 5.8, 1.6],
      [7.4, 2.8, 6.1, 1.9],
      [7.9, 3.8, 6.4, 2.],
      [6.4, 2.8, 5.6, 2.2],
      [6.3, 2.8, 5.1, 1.5],
      [6.1, 2.6, 5.6, 1.4],
      [7.7, 3., 6.1, 2.3],
      [6.3, 3.4, 5.6, 2.4],
      [6.4, 3.1, 5.5, 1.8],
      [6., 3., 4.8, 1.8],
      [6.9, 3.1, 5.4, 2.1],
      [6.7, 3.1, 5.6, 2.4],
      [6.9, 3.1, 5.1, 2.3],
      [5.8, 2.7, 5.1, 1.9],
      [6.8, 3.2, 5.9, 2.3],
      [6.7, 3.3, 5.7, 2.5],
      [6.7, 3., 5.2, 2.3],
      [6.3, 2.5, 5. , 1.9],
      [6.5, 3., 5.2, 2.],
      [6.2, 3.4, 5.4, 2.3],
      [5.9, 3., 5.1, 1.8]
 0, 0, 0,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
      'frame': None,
 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U1
 'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n------\n
\n**Data Set Characteristics:**\n\n
                               :Number of Instances: 150 (50 in eac
                   :Number of Attributes: 4 numeric, predictive attri
h of three classes)\n
butes and the class\n
                    :Attribute Information:\n
                                              - sepal length in
         sepal width in cm\n
                                 - petal length in cm\n
tal width in cm\n
                   - class:\n
                                         - Iris-Setosa\n
- Iris-Versicolour\n
                            - Iris-Virginica\n
:Summary Statistics:\n\n
                      ______
======\n
                           Min Max Mean SD
                                              Class Correlation
    \n
                                                         sepa
l length: 4.3 7.9 5.84 0.83 0.7826\n
                                       sepal width:
                                                     2.0 4.4
3.05 0.43 -0.4194\n petal length: 1.0 6.9 3.76 1.76
                                                       0.9490
(high!)\n petal width:
                     0.1 2.5 1.20 0.76 0.9565 (high!)\n
==============\n\n
                                                     :Missing
                     :Class Distribution: 33.3% for each of 3 classe
Attribute Values: None\n
     :Creator: R.A. Fisher\n :Donor: Michael Marshall (MARSHALL%PLU@i
o.arc.nasa.gov)\n :Date: July, 1988\n\nThe famous Iris database, first u
sed by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note th
at it\'s the same as in R, but not as in the UCI\nMachine Learning Reposito
ry, which has two wrong data points.\n\nThis is perhaps the best known data
base to be found in the\npattern recognition literature. Fisher\'s paper i
s a classic in the field and\nis referenced frequently to this day. (See D
uda & Hart, for example.) The\ndata set contains 3 classes of 50 instances
each, where each class refers to a\ntype of iris plant. One class is linea
rly separable from the other 2; the\nlatter are NOT linearly separable from
each other.\n\n.. topic:: References\n\n - Fisher, R.A. "The use of multi
ple measurements in taxonomic problems"\n
                                   Annual Eugenics, 7, Part II,
179-188 (1936); also in "Contributions to\n Mathematical Statistics" (J
ohn Wiley, NY, 1950).\n - Duda, R.O., & Hart, P.E. (1973) Pattern Classif
ication and Scene Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471
-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Ne
```

```
Structure and Classification Rule for Recogn
ighborhood: A New System\n
                                Environments". IEEE Transactions on Patte
ition in Partially Exposed\n
                             Intelligence, Vol. PAMI-2, No. 1, 67-71.\n
rn Analysis and Machine\n
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transaction
       on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC
Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II\n
                                                         conceptual cluste
ring system finds 3 classes in the data.\n
                                           - Many, many more ...',
 'feature_names': ['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)'],
 'filename': 'iris.csv',
 'data_module': 'sklearn.datasets.data'}
```

```
In [88]:
         import pandas as pd
```

iris_df=pd.DataFrame(data=iris.data,columns=iris.feature_names) iris_df['target']=iris.target iris_df['target_names']=iris.target_names[iris.target] iris_df

Out[88]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	target_names
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa
145	6.7	3.0	5.2	2.3	2	virginica
146	6.3	2.5	5.0	1.9	2	virginica
147	6.5	3.0	5.2	2.0	2	virginica
148	6.2	3.4	5.4	2.3	2	virginica
149	5.9	3.0	5.1	1.8	2	virginica

150 rows × 6 columns

In [89]: # seperate dependent variable and independent variable

x=iris.data Х

```
array([[5.1, 3.5, 1.4, 0.2],
Out[89]:
                 [4.9, 3., 1.4, 0.2],
                 [4.7, 3.2, 1.3, 0.2],
                 [4.6, 3.1, 1.5, 0.2],
                 [5., 3.6, 1.4, 0.2],
                 [5.4, 3.9, 1.7, 0.4],
                 [4.6, 3.4, 1.4, 0.3],
                 [5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.1],
                 [5.4, 3.7, 1.5, 0.2],
                 [4.8, 3.4, 1.6, 0.2],
                 [4.8, 3., 1.4, 0.1],
                 [4.3, 3., 1.1, 0.1],
                 [5.8, 4., 1.2, 0.2],
                 [5.7, 4.4, 1.5, 0.4],
                 [5.4, 3.9, 1.3, 0.4],
                 [5.1, 3.5, 1.4, 0.3],
                 [5.7, 3.8, 1.7, 0.3],
                 [5.1, 3.8, 1.5, 0.3],
                 [5.4, 3.4, 1.7, 0.2],
                 [5.1, 3.7, 1.5, 0.4],
                 [4.6, 3.6, 1., 0.2],
                 [5.1, 3.3, 1.7, 0.5],
                 [4.8, 3.4, 1.9, 0.2],
                 [5. , 3. , 1.6, 0.2],
                 [5., 3.4, 1.6, 0.4],
                 [5.2, 3.5, 1.5, 0.2],
                 [5.2, 3.4, 1.4, 0.2],
                 [4.7, 3.2, 1.6, 0.2],
                 [4.8, 3.1, 1.6, 0.2],
                 [5.4, 3.4, 1.5, 0.4],
                 [5.2, 4.1, 1.5, 0.1],
                 [5.5, 4.2, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.2],
                 [5., 3.2, 1.2, 0.2],
                 [5.5, 3.5, 1.3, 0.2],
                 [4.9, 3.6, 1.4, 0.1],
                 [4.4, 3., 1.3, 0.2],
                 [5.1, 3.4, 1.5, 0.2],
                 [5., 3.5, 1.3, 0.3],
                 [4.5, 2.3, 1.3, 0.3],
                 [4.4, 3.2, 1.3, 0.2],
                 [5., 3.5, 1.6, 0.6],
                 [5.1, 3.8, 1.9, 0.4],
                 [4.8, 3. , 1.4, 0.3],
                 [5.1, 3.8, 1.6, 0.2],
                 [4.6, 3.2, 1.4, 0.2],
                 [5.3, 3.7, 1.5, 0.2],
                 [5., 3.3, 1.4, 0.2],
                 [7. , 3.2, 4.7, 1.4],
                 [6.4, 3.2, 4.5, 1.5],
                 [6.9, 3.1, 4.9, 1.5],
                 [5.5, 2.3, 4. , 1.3],
                 [6.5, 2.8, 4.6, 1.5],
                 [5.7, 2.8, 4.5, 1.3],
                 [6.3, 3.3, 4.7, 1.6],
                 [4.9, 2.4, 3.3, 1.],
                 [6.6, 2.9, 4.6, 1.3],
                 [5.2, 2.7, 3.9, 1.4],
                 [5., 2., 3.5, 1.],
                 [5.9, 3., 4.2, 1.5],
                 [6., 2.2, 4., 1.],
                 [6.1, 2.9, 4.7, 1.4],
```

```
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3., 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3., 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3., 5., 1.7],
[6., 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3., 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3., 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3., 4.6, 1.4],
[5.8, 2.6, 4., 1.2],
[5., 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3., 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3., 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3., 5.8, 2.2],
[7.6, 3., 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2.],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3., 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6., 2.2, 5., 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2.],
[7.7, 2.8, 6.7, 2.],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6., 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3., 4.9, 1.8],
```

```
[7.2, 3., 5.8, 1.6],
            [7.4, 2.8, 6.1, 1.9],
            [7.9, 3.8, 6.4, 2.],
            [6.4, 2.8, 5.6, 2.2],
            [6.3, 2.8, 5.1, 1.5],
            [6.1, 2.6, 5.6, 1.4],
            [7.7, 3., 6.1, 2.3],
            [6.3, 3.4, 5.6, 2.4],
            [6.4, 3.1, 5.5, 1.8],
            [6., 3., 4.8, 1.8],
            [6.9, 3.1, 5.4, 2.1],
            [6.7, 3.1, 5.6, 2.4],
            [6.9, 3.1, 5.1, 2.3],
            [5.8, 2.7, 5.1, 1.9],
            [6.8, 3.2, 5.9, 2.3],
            [6.7, 3.3, 5.7, 2.5],
            [6.7, 3., 5.2, 2.3],
            [6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
            [6.2, 3.4, 5.4, 2.3],
            [5.9, 3., 5.1, 1.8]])
In [90]:
      y=iris.target
      Out[90]:
            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
            In [91]:
       x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_stat
       x_train.shape
In [92]:
       (120, 4)
Out[92]:
       x_test.shape
In [93]:
       (30, 4)
Out[93]:
       clf=LogisticRegression()
In [94]:
       clf
Out[94]:
      LogisticRegression
      LogisticRegression()
In [95]: # To train the algorithm
       clf.fit(x_train,y_train)
Out[95]:
      LogisticRegression
      LogisticRegression()
In [96]:
      y_pred=clf.predict(x_test)
       y_pred
```

[6.4, 2.8, 5.6, 2.1],

```
Out[96]: array([0, 0, 0, 2, 1, 2, 1, 1, 2, 0, 2, 0, 0, 2, 2, 1, 1, 1, 0, 2, 1, 0,
                  1, 1, 1, 1, 1, 2, 0, 0])
In [97]:
           accuracy=accuracy_score(y_test,y_pred)
           accuracy
           1.0
Out[97]:
In [98]:
           import pandas as pd
           df_1=pd.read_csv(r"C:\Users\HP\Desktop\d1.csv")
           df_1
In [99]:
               Gender
                     Height
                         Weight
Out[99]:
                Male
                       174
                             96
                                  4
                Male
                       189
                             87
                                  2
               Female
                       185
                             110
                                  4
                       195
                            104
                                  3
               Female
                Male
                                  3
           495
               Female
                      150
                                  5
           496
               Female
                       184
                             121
                                  4
                                  5
           497
               Female
                       141
                            136
                                  5
           498
                Male
                       150
                            95
           499
                Male
                      173
                                  5
          500 rows × 4 columns
In [100... g=(df_1['Gender']).value_counts()
                       255
            Female
Out[100]:
                       245
           Name: Gender, dtype: int64
           g.Male
In [101...
            245
Out[101]:
           g.Female
In [102...
            255
Out[102]:
          df_1['Gender']=df_1['Gender'].map({'Male':0,'Female':1})
In [103...
In [104...
           df_1
```

Out[104]:		Gender	Height	Weight	Index
	0	0	174	96	4
	1	0	189	87	2
	2	1	185	110	4
	3	1	195	104	3
	4	0	149	61	3
	495	1	150	153	5
	496	1	184	121	4
	497	1	141	136	5
	498	0	150	95	5
	499	0	173	131	5

Out[105]:

	Height	Weight	Index	Gender_1
0	174	96	4	0
1	189	87	2	0
2	185	110	4	1
3	195	104	3	1
4	149	61	3	0
495	150	153	5	1
496	184	121	4	1
497	141	136	5	1
498	150	95	5	0
499	173	131	5	0

500 rows × 4 columns

```
In [106...
import seaborn as sns
#df=sns.load_dataset()
sns.barplot(y = 'Height',x ='Index',data=data)
```

Out[106]: <Axes: xlabel='Index', ylabel='Height'>

In [107... sns.barplot(y = 'Weight',x ='Index',data=data)

Out[107]: <Axes: xlabel='Index', ylabel='Weight'>

Out[108]:		Height	Weight	Index	Gender_1
	0	174	96	4	0
	1	189	87	2	0
	2	185	110	4	1
	3	195	104	3	1
	4	149	61	3	0
	495	150	153	5	1
	496	184	121	4	1
	497	141	136	5	1
	498	150	95	5	0
	499	173	131	5	0
	500 r	ows × 4	columns		
T . 5400		41		T I .	

```
In [109... x=data.drop("Index",axis=1)
```

Out[110]:

In [110... x

	Height	Weight	Gender_1
0	174	96	0
1	189	87	0
2	185	110	1
3	195	104	1
4	149	61	0
495	150	153	1
496	184	121	1
497	141	136	1
498	150	95	0
499	173	131	0

500 rows × 3 columns

```
y=data['Index']
In [111...
In [112...
                   4
Out[112]:
                   2
           2
                   4
           3
                   3
           4
                   3
           495
                   5
           496
                   4
                   5
           497
                   5
           498
           499
```

Name: Index, Length: 500, dtype: int64

In []:	
In []:	
In [113	x.shape
Out [1131 ·	(500, 3)
ouc[115].	
In [114	y.shape
	(500.)
Out[114]:	(300,)
In []:	
TII [].	
In [115	y train
TII [112"	<u> </u>

```
array([[6.5, 3., 5.8, 2.2],
Out[115]:
                  [5.5, 2.5, 4., 1.3],
                  [6.5, 3., 5.5, 1.8],
                  [5.8, 2.7, 3.9, 1.2],
                  [6.8, 3., 5.5, 2.1],
                  [5.7, 2.8, 4.5, 1.3],
                  [6.7, 3.1, 4.7, 1.5],
                  [5.9, 3., 4.2, 1.5],
                  [5.6, 2.7, 4.2, 1.3],
                  [7.7, 3., 6.1, 2.3],
                  [5.1, 3.7, 1.5, 0.4],
                  [4.6, 3.6, 1., 0.2],
                  [4.7, 3.2, 1.6, 0.2],
                  [6.7, 3., 5., 1.7],
                  [5.6, 3., 4.5, 1.5],
                  [4.3, 3., 1.1, 0.1],
                  [7.1, 3., 5.9, 2.1],
                  [5.8, 2.7, 4.1, 1.],
                  [4.9, 3.1, 1.5, 0.2],
[5.1, 2.5, 3. , 1.1],
                  [5.6, 2.5, 3.9, 1.1],
                  [5.1, 3.3, 1.7, 0.5],
                  [5.8, 2.7, 5.1, 1.9],
                  [5. , 3.6, 1.4, 0.2],
                  [4.9, 2.4, 3.3, 1.],
                  [6.7, 2.5, 5.8, 1.8],
                  [5.8, 2.6, 4., 1.2],
                  [4.9, 3.6, 1.4, 0.1],
                  [5.1, 3.4, 1.5, 0.2],
                  [6.1, 3., 4.6, 1.4],
                  [4.6, 3.4, 1.4, 0.3],
                  [6.4, 3.2, 4.5, 1.5],
                  [7.7, 2.6, 6.9, 2.3],
                  [6.3, 3.4, 5.6, 2.4],
                  [5.4, 3., 4.5, 1.5],
                  [5.8, 4., 1.2, 0.2],
                  [6. , 2.9, 4.5, 1.5],
                  [4.6, 3.1, 1.5, 0.2],
                  [5.8, 2.7, 5.1, 1.9],
                  [6.9, 3.2, 5.7, 2.3],
                  [6. , 3.4, 4.5, 1.6],
                  [6.2, 3.4, 5.4, 2.3],
                  [6.6, 2.9, 4.6, 1.3],
                  [6.3, 3.3, 6., 2.5],
                  [4.7, 3.2, 1.3, 0.2],
                  [4.8, 3., 1.4, 0.3],
                  [4.9, 3.1, 1.5, 0.1],
                  [6.5, 2.8, 4.6, 1.5],
                  [4.6, 3.2, 1.4, 0.2],
                  [5.1, 3.8, 1.6, 0.2],
                  [5. , 3.4, 1.6, 0.4],
                  [7.4, 2.8, 6.1, 1.9],
                  [5.2, 3.5, 1.5, 0.2],
                  [5.4, 3.4, 1.7, 0.2],
                  [6., 3., 4.8, 1.8],
                  [6.2, 2.8, 4.8, 1.8],
                  [4.8, 3.1, 1.6, 0.2],
                  [5. , 3.2, 1.2, 0.2],
                  [7.2, 3.2, 6. , 1.8],
                  [7.2, 3.6, 6.1, 2.5],
                  [5.7, 2.5, 5. , 2. ],
                  [4.8, 3.4, 1.9, 0.2],
                  [5.7, 2.6, 3.5, 1.],
                  [6.8, 3.2, 5.9, 2.3],
```

```
[5.1, 3.5, 1.4, 0.3],
[4.8, 3., 1.4, 0.1],
[6., 2.2, 5., 1.5],
[6.4, 2.8, 5.6, 2.1],
[5.7, 4.4, 1.5, 0.4],
[6.1, 2.8, 4. , 1.3],
[5.7, 3.8, 1.7, 0.3],
[4.9, 2.5, 4.5, 1.7],
[7.7, 3.8, 6.7, 2.2],
[4.4, 3., 1.3, 0.2],
[6.3, 2.9, 5.6, 1.8],
[6.3, 3.3, 4.7, 1.6],
[6.9, 3.1, 4.9, 1.5],
[6.7, 3.3, 5.7, 2.1],
[5. , 3.4, 1.5, 0.2],
[6.9, 3.1, 5.4, 2.1],
[5.2, 3.4, 1.4, 0.2],
[5.7, 2.8, 4.1, 1.3],
[6.3, 2.8, 5.1, 1.5],
[5.5, 3.5, 1.3, 0.2],
[6., 2.2, 4., 1.],
[4.4, 2.9, 1.4, 0.2],
[6.7, 3.1, 5.6, 2.4],
[6.1, 2.8, 4.7, 1.2],
[7.6, 3., 6.6, 2.1],
[5.1, 3.5, 1.4, 0.2],
[6.7, 3.3, 5.7, 2.5],
[7.3, 2.9, 6.3, 1.8],
[5.9, 3., 5.1, 1.8],
[6.8, 2.8, 4.8, 1.4],
[5.4, 3.7, 1.5, 0.2],
[5.1, 3.8, 1.5, 0.3],
[5.6, 2.8, 4.9, 2.],
[6.3, 2.5, 4.9, 1.5],
[5.1, 3.8, 1.9, 0.4],
[5.2, 2.7, 3.9, 1.4],
[7.9, 3.8, 6.4, 2.],
[6.4, 3.2, 5.3, 2.3],
[6.4, 2.7, 5.3, 1.9],
[6., 2.7, 5.1, 1.6],
[5. , 3.3, 1.4, 0.2],
[6.9, 3.1, 5.1, 2.3],
[5.4, 3.9, 1.7, 0.4],
[6.5, 3.2, 5.1, 2.],
[5., 2., 3.5, 1.],
[6.7, 3., 5.2, 2.3],
[6.4, 2.8, 5.6, 2.2],
[5., 3.5, 1.3, 0.3],
[6.4, 3.1, 5.5, 1.8],
[6.6, 3., 4.4, 1.4],
[6.3, 2.3, 4.4, 1.3],
[6.1, 2.9, 4.7, 1.4],
[5.9, 3.2, 4.8, 1.8],
[5.5, 2.4, 3.7, 1. ],
[4.8, 3.4, 1.6, 0.2],
[5.7, 3., 4.2, 1.2]])
```

```
Out[116]: array([[5.5, 4.2, 1.4, 0.2],
                  [5.4, 3.9, 1.3, 0.4],
                  [5., 3.5, 1.6, 0.6],
                  [7.2, 3., 5.8, 1.6],
                  [7., 3.2, 4.7, 1.4],
                  [6.3, 2.7, 4.9, 1.8],
                  [6.2, 2.2, 4.5, 1.5],
                  [5.5, 2.3, 4. , 1.3],
                  [6.3, 2.5, 5., 1.9],
                  [4.9, 3., 1.4, 0.2],
                  [6.5, 3., 5.2, 2.],
                  [5.2, 4.1, 1.5, 0.1],
                  [5.4, 3.4, 1.5, 0.4],
                  [7.7, 2.8, 6.7, 2.],
                  [6.1, 3., 4.9, 1.8],
                  [6.4, 2.9, 4.3, 1.3],
                  [5.6, 3., 4.1, 1.3],
                  [5.7, 2.9, 4.2, 1.3],
                  [4.4, 3.2, 1.3, 0.2],
                  [6.1, 2.6, 5.6, 1.4],
                  [5.5, 2.4, 3.8, 1.1],
                  [5.3, 3.7, 1.5, 0.2],
                  [5.5, 2.6, 4.4, 1.2],
                  [6.7, 3.1, 4.4, 1.4],
                  [6.2, 2.9, 4.3, 1.3],
                  [5.6, 2.9, 3.6, 1.3],
                  [5., 2.3, 3.3, 1.],
                  [5.8, 2.8, 5.1, 2.4],
                  [5. , 3. , 1.6, 0.2],
                  [4.5, 2.3, 1.3, 0.3]])
In [117... y_train
          array([2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0,
Out[1171:
                  2,\ 0,\ 1,\ 2,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 2,\ 2,\ 1,\ 0,\ 1,\ 0,\ 2,\ 2,\ 1,\ 2,\ 1,\ 2,
                  0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 1, 2, 0, 0,
                  2, 2, 0, 1, 0, 2, 2, 0, 2, 1, 1, 2, 0, 2, 0, 1, 2, 0, 1, 0, 2, 1,
                  2, 0, 2, 2, 2, 1, 0, 0, 2, 1, 0, 1, 2, 2, 2, 1, 0, 2, 0, 2, 1, 2,
                  2, 0, 2, 1, 1, 1, 1, 1, 0, 1])
         y_test
In [118...
          array([0, 0, 0, 2, 1, 2, 1, 1, 2, 0, 2, 0, 0, 2, 2, 1, 1, 1, 0, 2, 1, 0,
                  1, 1, 1, 1, 1, 2, 0, 0])
          y_test.shape
In [119...
Out[119]: (30,)
          from sklearn.model_selection import train_test_split
In [120...
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_stat
In [121...
          from sklearn.linear_model import LogisticRegression
          log_model=LogisticRegression()
         log_model
In [122...
Out[122]: • LogisticRegression
          LogisticRegression()
```

```
log_model.fit(x_train,y_train)
         C:\Users\HP\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:4
         58: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
           n_iter_i = _check_optimize_result(
Out[123]: LogisticRegression
          LogisticRegression()
In [124... pred=log_model.predict(x_test)
In [125...
         pred
          array([5, 4, 5, 2, 3, 3, 1, 4, 5, 4, 5, 3, 5, 3, 5, 2, 5, 5, 4, 5, 4, 5,
Out[125]:
                 4, 5, 2, 4, 3, 4, 5, 2, 5, 4, 4, 5, 4, 5, 0, 2, 5, 4, 3, 5, 4, 5,
                 5, 5, 4, 2, 1, 3, 5, 5, 5, 4, 2, 2, 2, 5, 4, 5, 3, 3, 5, 5, 3, 5,
                 4, 4, 4, 5, 5, 4, 5, 5, 1, 4, 3, 3, 5, 2, 2, 2, 5, 3, 5, 5, 5, 5,
                 5, 2, 3, 5, 2, 4, 4, 0, 4, 5, 5, 5, 2, 4, 4, 5, 2, 3, 5, 5, 1, 1,
                 5, 4, 5, 3, 5, 5, 5, 2, 4, 4, 5, 4, 5, 4, 5, 5, 1, 4, 2, 5, 1,
                 5, 4, 3, 5, 5, 5, 3, 5, 5, 4, 3, 5, 1, 5, 2, 4, 5, 5], dtype=int64)
In [126... | from sklearn.metrics import accuracy_score
          accuracy_score(y_test,pred)
          0.7666666666666667
Out[126]:
In [127... # Linear Regression
          # Data:
                                                               Y(Sales in Thousand)
          #X(Week)
          #____
          # 1
                                                                         1.2
          # 2
                                                                         1.8
          # 3
                                                                         2.5
          # 4
                                                                         3.2
          # 5
                                                                         3.8
          # Linear Regression formula -->y=a0+a1*x
          \# a1 -->((meanof(x*y)) - (meanof(x)*meanof(y)))/meanof(x^2)-(meanof(x)^2)
          \# a0 \longrightarrow mean(y) - a1*meanof(x)
                                                      x^{\Lambda}2
                                                                        X*Y
                             X
                                         У
          #
                             1
                                         1.2
                                                     1
                                                                        1.2
          #
                             2
                                         1.8
                                                      4
                                                                        3.6
          #
                            3
                                         2.5
                                                      9
                                                                        7.5
          #
                             4
                                         3.2
                                                     16
                                                                        12.8
          #
                             5
                                         3.8
                                                      25
                                                                        19.0
```

In [123... #To train the DataSet

```
#sum:
                              12.5
                                           55
                                                             44.1
                  15
                  3
                              2.5
                                           11
                                                             8.82
#Average
#substitute in a1 -->>8.82-7.5/11-9 -->>1.32/2 -->>0.66
#a0 -->>2.5-0.66*3 -->>0.52
#Sales of 3rd week
#y -->>a0+(a1*x)
#y=0.54+(0.66*3)
#y=2.52
#The sales of the 7th week
#y=0.54+(0.66*7)
#y=5.17
```

In [128... df_3=pd.read_csv(r"C:\Users\HP\Desktop\salary.csv")

In [129... df_3

Out[129]:		Unnamed: 0	Years Experience	Salary
	0	0	1,2	39344
	1	1	1.4	46206
	2	2	1.6	37732
	3	3	2.1	43526
	4	4	2.3	39892
	5	5	3.0	56643
	6	6	3.1	60151
	7	7	3.3	54446
	8	8	3.3	64446
	9	9	3.8	57190
	10	10	4.0	63219
	11	11	4.1	55795
	12	12	4.1	56958
	13	13	4.2	57082
	14	14	4.6	61112
	15	15	5.0	67939
	16	16	5.2	66030
	17	17	5.4	83089
	18	18	6.0	81364
	19	19	6.1	93941
	20	20	6.9	91739
	21	21	7.2	98274
	22	22	8.0	101303
	23	23	8.3	113813
	24	24	8.8	109432
	25	25	9.1	105583
	26	26	9.6	116970
	27	27	9.7	112636
	28	28	10.4	122392
	29	29	10.6	121873

```
In [130... df_3.shape
```

Out[130]: (30, 3)

```
In [131... df_3.isnull().sum() #df_3.isnull().sum()
```

Out[131]: Unnamed: 0 0 YearsExperience 0 Salary 0

dtype: int64

In [132... df_3.isna().sum()

Out[132]: Unnamed: 0 0 YearsExperience 0 Salary 0

dtype: int64

```
In [133... x=df_3[['YearsExperience']]
In [134... y=df_3[['Salary']]
In [135... from sklearn.model_selection import train_test_split
In [136... x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_stat x_train,x_test,y_train,y_test
```

```
Out[136]: YearsExperience
                             1.4
            19
                             6.1
            22
                            8.0
            12
                            4.1
            5
                            3.0
            14
                            4.6
            0
                            1.2
            21
                            7.2
            4
                            2.3
            8
                            3.3
            13
                            4.2
            9
                            3.8
            15
                            5.0
            29
                           10.6
            23
                            8.3
            6
                            3.1
            17
                            5.4
            11
                            4.1,
                YearsExperience
            20
                             6.9
            24
                            8.8
            7
                            3.3
            18
                            6.0
            2
                             1.6
            27
                            9.7
            26
                            9.6
            16
                            5.2
            25
                            9.1
            28
                           10.4
            10
                            4.0
            3
                            2.1,
                Salary
            1
                46206
            19
                93941
            22
               101303
            12
                 56958
            5
                 56643
            14
                 61112
            0
                 39344
            21
                 98274
            4
                 39892
            8
                 64446
            13
                 57082
            9
                 57190
            15
                67939
            29
               121873
            23
               113813
                 60151
            6
            17
                 83089
            11
                 55795,
                Salary
            20
                91739
               109432
            24
            7
                 54446
            18
                 81364
            2
                37732
            27
               112636
            26
               116970
                66030
            16
            25
               105583
            28
               122392
            10
                63219
            3
                 43526)
```

```
from sklearn.linear_model import LinearRegression
In [273...
          model=LinearRegression()
          mode1
Out[273]: • LinearRegression
           LinearRegression()
          model.fit(x_test,y_test)
In [138...
Out[138]: • LinearRegression
           LinearRegression()
In [139... y_pred=model.predict(x_test)
          y_pred
Out[139]: array([[ 88594.87757335],
                   [106682.10850323],
                   [ 54324.33475883],
                   [ 80027.24186972],
                   [ 38141.02287419],
                   [115249.74420686],
                   [114297.78468424],
                   [ 72411.56568871],
                   [109537.98707111],
                   [121913.46086524],
                   [ 60988.05141721],
                   [ 42900.82048732]])
In [140...
          y_test
               Salary
Out[140]:
           20
               91739
           24 109432
            7
              54446
               81364
            18
              37732
              112636
              116970
           26
           16 66030
           25 105583
              122392
           28
            10
               63219
              43526
In [141...
          import numpy as np
           from sklearn.metrics import accuracy_score
          acc=accuracy_score(y_test,np.round(y_pred))
          acc
           0.0
Out[141]:
          inputdata=[[18]]
In [142...
          prediction=model.predict(inputdata)
```

```
prediction
         C:\Users\HP\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X
         does not have valid feature names, but LinearRegression was fitted with fea
          ture names
           warnings.warn(
          array([[194262.38458478]])
Out[142]:
In [143...
          from sklearn.metrics import mean_squared_error
          mse=mean_squared_error(y_test,y_pred)
In [144...
          mse
          7946009.255793135
Out[144]:
In [145...
          import seaborn as sns
          import matplotlib.pyplot as plt
          sns.lmplot(x='YearsExperience',y='Salary',data=df_3,scatter_kws={"color":"ye
          ax=plt.gca()
          sns.set_style("darkgrid")
          plt.gca().set_facecolor('black')
          ax.tick_params(axis='x',colors='blue')
          ax.tick_params(axis='y',colors='red')
```



```
import pandas as pd
df_4=pd.read_csv(r"C:\Users\HP\Desktop\student12.csv")
```

In [147... d1

df_4

Out[147]:		Hours Studied	Previous Scores	Extracurricular Activities	Sleep Hours	Sample Question Papers Practiced	Performance Index
	0	7	99	Yes	9	1	91
	1	4	82	No	4	2	65
	2	8	51	Yes	7	2	45
	3	5	52	Yes	5	2	36
	4	7	75	No	8	5	66
	9995	1	49	Yes	4	2	23
	9996	7	64	Yes	8	5	58
	9997	6	83	Yes	8	5	74
	9998	9	97	Yes	7	0	95
	9999	7	74	No	8	1	64

10000 rows × 6 columns

In [148... df_4.head()

Out[148]:

	Hours Studied	Previous Scores	Extracurricular Activities	Sleep Hours	Sample Question Papers Practiced	Performance Index
0	7	99	Yes	9	1	91
1	4	82	No	4	2	65
2	8	51	Yes	7	2	45
3	5	52	Yes	5	2	36
4	7	75	No	8	5	66

In [149... df_4.shape

Out[149]: (10000, 6)

In [150... df_4.describe()

Out[150]:

	Hours Studied	Previous Scores	Sleep Hours	Sample Question Papers Practiced	Performance Index
count	10000,000000	10000,000000	10000,000000	10000,000000	10000,000000
mean	4.992900	69.445700	6.530600	4.583300	55,224800
std	2.589309	17.343152	1.695863	2,867348	19.212558
min	1,000000	40,000000	4.000000	0.000000	10,000000
25%	3.000000	54,000000	5.000000	2.000000	40,000000
50%	5.000000	69.000000	7.000000	5.000000	55,000000
75%	7.000000	85,000000	8.000000	7.000000	71,000000
max	9,000000	99.000000	9.000000	9.000000	100,000000

In [151... df_4.isna().sum()

Out[151]:

Hours Studied 0
Previous Scores 0
Extracurricular Activities 0
Sleep Hours 0
Sample Question Papers Practiced 0
Performance Index 0
dtype: int64

```
duplicate_rows=df_4.duplicated()
           df_4[duplicate_rows]
In [153...
                 Hours Studied Previous Scores Extracurricular Activities Sleep Hours Sample Question Papers Practiced Performance Index
Out[153]:
              915
                                   52
                                                  No
                                                           5
                                                                                             48
             1477
                         7
                                                                                 8
                                                                                             54
                                   61
                                                  Yes
                                                           6
                         5
                                  99
                                                           7
                                                                                 5
             1601
                                                  No
                                                                                             89
             1786
                         2
                                   62
                                                  Yes
                                                           9
                                                                                 4
                                                                                             40
                         5
                                   87
                                                                                 7
             2026
                                                  Yes
                                                           6
                                                                                             74
                         4
                                                                                 3
                                                                                             71
             9644
                                   91
                                                  Yes
                                                            4
                         8
                                                           5
                                                                                 2
            9940
                                  95
                                                  No
                                                                                             90
            9954
                         6
                                  97
                                                  No
                                                           8
                                                                                 7
                                                                                             92
                                                            7
                                                                                 3
                                   41
                                                                                             12
            9966
                                                  No
                                  99
                                                           5
                                                                                 5
            9985
                         8
                                                  No
                                                                                             92
           127 rows × 6 columns
In [154...
           duplicate_rows.sum()
            127
Out[154]:
In [155...
           print("Before dropping duplicates:",df_4.shape)
           df_4.drop_duplicates(inplace=True)
           print("After dropping duplicates:",df_4.shape)
           Before dropping duplicates: (10000, 6)
           After dropping duplicates: (9873, 6)
           #Based on index value try to check the performance
In [156...
           response=df_4["Performance Index"]
           response.dtype
In [157...
            dtype('int64')
Out[157]:
In [158...
           import matplotlib.pyplot as plt
           plt.plot(response.index,response)
           plt.xlabel('Index')
           plt.ylabel('Performance Index')
            Text(0, 0.5, 'Performance Index')
Out[158]:
```

To check duplicate values

In [152...

In [159... sns.jointplot(x=response.index,y='Performance Index',data=df_4,kind='hex')

Out[159]: <seaborn.axisgrid.JointGrid at 0x1ef9264bf40>

In [160... sns.jointplot(x=response.index,y='Performance Index',data=df_4,kind='kde')

Out[160]: <seaborn.axisgrid.JointGrid at 0x1efa541bf40>

In [161... sns.jointplot(x=response.index,y='Performance Index',data=df_4,kind='reg')
Out[161]: <seaborn.axisgrid.JointGrid at 0x1efa694a4d0>

In [162... sns.violinplot(response)

Out[162]: <Axes: >


```
a6=(df_4['Performance Index']).min()
In [163...
          10
Out[163]:
In [164... (df_4['Performance Index']==a6).sum()
Out[164]: 1
          b6=(df_4['Performance Index']).max()
In [165...
          100
Out[165]:
In [166...
          (df_4['Performance Index']==b6).sum()
Out[166]:
In [172... #To get all the uniquee values
          df_4['Hours Studied'].unique()
          array([7, 4, 8, 5, 3, 6, 2, 1, 9], dtype=int64)
Out[172]:
In [173... df_4['Hours Studied'].value_counts()
```

```
1133
Out[173]:
                 1122
           7
                 1118
           3
                 1110
           9
                 1099
           2
                 1077
           8
                 1074
           4
                 1071
           5
                 1069
           Name: Hours Studied, dtype: int64
```

```
In [183... # TO know how many students studied in each hour
    x=df_4['Hours Studied']
sns.histplot(x,color='green',kde=True,)
```

Out[183]: <Axes: xlabel='Hours Studied', ylabel='Count'>

In [196... sns.barplot(x='Hours Studied',y='Performance Index',data=df_4)

Out[196]: <Axes: xlabel='Hours Studied', ylabel='Performance Index'>


```
In [215... a9=(df_4['Extracurricular Activities']=='Yes').sum()
a9
Out[215]: 4887

In [214... b9=(df_4['Extracurricular Activities']=='No').sum()
b9
Out[214]: 4986

In [251... sns.histplot(df_4['Extracurricular Activities'])
Out[251]: <Axes: xlabel='Extracurricular Activities', ylabel='Count'>
```



```
df_4.columns
In [241...
          Index(['Hours Studied', 'Previous Scores', 'Extracurricular Activities',
Out[241]:
                  'Sleep Hours', 'Sample Question Papers Practiced', 'Performance Inde
          x'],
                 dtype='object')
         df_4=replace.
 In [ ]:
         y=df_4['Performance Index']
In [320...
In [321...
                   91
Out[321]:
           1
                   65
           2
                   45
           3
                   36
                   66
           9995
                   23
           9996
                   58
           9997
                   74
           9998
                   95
          9999
                   64
          Name: Performance Index, Length: 9873, dtype: int64
In [346... x=df_4[['Hours Studied', 'Previous Scores', 'Extracurricular Activities','S]
          Χ
```

Out[346]:		Hours Studied	Previous Scores	Extracurricular Activities	Sleep Hours	Sample Question Papers Practiced
	0	7	99	1	9	1
	1	4	82	0	4	2
	2	8	51	1	7	2
	3	5	52	1	5	2
	4	7	75	0	8	5
	9995	1	49	1	4	2
	9996	7	64	1	8	5
	9997	6	83	1	8	5
	9998	9	97	1	7	0
	9999	7	74	0	8	1

10000 rows **×** 5 columns

In [347... df_4['Extracurricular Activities']=df_4['Extracurricular Activities'].map({'
#df_4['Extracurricular Activities']=df_4['Extracurricular Activities'].apply

In [348... df_4

Out[348]:

	Hours Studied	Previous Scores	Extracurricular Activities	Sleep Hours	Sample Question Papers Practiced	Performance Index
0	7	99	NaN	9	1	91
1	4	82	NaN	4	2	65
2	8	51	NaN	7	2	45
3	5	52	NaN	5	2	36
4	7	75	NaN	8	5	66
9995	1	49	NaN	4	2	23
9996	7	64	NaN	8	5	58
9997	6	83	NaN	8	5	74
9998	9	97	NaN	7	0	95
9999	7	74	NaN	8	1	64

10000 rows **×** 6 columns

In [349... sns.histplot(df_4['Extracurricular Activities'])

Out[349]: <Axes: xlabel='Extracurricular Activities', ylabel='Count'>

In [350	df_4.head()											
Out[350]:		Hours Studied	Previous Scores	Extracurricular Activities	Sleep Hours	Sample Question Papers Practiced	Performance Index					
	0	7	99	NaN	9	1	91					
	1	4	82	NaN	4	2	65					
	2	8	51	NaN	7	2	45					
	3	5	52	NaN	5	2	36					
	4	7	75	NaN	8	5	66					

```
y=df_4['Performance Index']
In [383...
In [384...
                    91
Out[384]:
           1
                    65
           2
                    45
           3
                    36
           4
                    66
           9995
                    23
           9996
                    58
           9997
                    74
                    95
           9998
           9999
                    64
           Name: Performance Index, Length: 10000, dtype: int64
```

In [385... from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_stat
 from sklearn.linear_model import LinearRegression
 model=LinearRegression()

In [386... model

```
Out[386]: • LinearRegression
          LinearRegression()
          model.fit(x_train,y_train)
In [387...
Out[387]: • LinearRegression
          LinearRegression()
In [392...
          y_pred=model.predict(x_test)
In [393...
          y_pred
          array([44.39182655, 96.13564305, 30.57978946, ..., 31.23011643,
Out[3931:
                  67.75874112, 28.10993149])
In [394...
          from sklearn.metrics import accuracy_score
          acc=accuracy_score(y_test,np.round(y_pred))
          acc
          0.2015
Out[394]:
In [395...
         data=[[8,85,1,6,6]]
          prediction=model.predict(data)
          prediction
          C:\Users\HP\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X
          does not have valid feature names, but LinearRegression was fitted with fea
          ture names
           warnings.warn(
          array([79.94425089])
Out[395]:
In [396...
          # Instead of linear regression
          # Ridge
          from sklearn.linear_model import Ridge
          clf=Ridge()
          clf.fit(x_train,y_train)
Out[396]:
          ▼ Ridge
          Ridge()
          y_pred=clf.predict(x_test)
In [397...
          y_pred
In [398...
          array([44.39197551, 96.13511347, 30.5798681 , ..., 31.23037878,
Out[398]:
                  67.75871088, 28.11000109])
In [401...
          clf.score(x_test,y_test)
          0.9888235045787498
Out[4011:
In [402...
          clf.score(x_train,y_train)
```

df 5.isna()

In [423...

Out[423]:		male	age	education	currentSmoker	cigsPerDay	ЪРMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	1
	0	False	False	False	False	False	False	False	False	False	False	False	False	Fo
	1	False	False	False	False	False	False	False	False	False	False	False	False	Fo
	2	False	False	False	False	False	False	False	False	False	False	False	False	Fo
	3	False	False	False	False	False	False	False	False	False	False	False	False	Fo
	4	False	False	False	False	False	False	False	False	False	False	False	False	Fo
	4233	False	False	False	False	False	False	False	False	False	False	False	False	Fo
	4234	False	False	False	False	False	False	False	False	False	False	False	False	Fo
	4235	False	False	False	False	False	True	False	False	False	False	False	False	Fo
	4236	False	False	False	False	False	False	False	False	False	False	False	False	Fo
	4237	False	False	False	False	False	False	False	False	False	False	False	False	Fo

4238 rows × 16 columns

In [424... df_5.fillna('zero')

	۵5	• •		(20.0	,									
Out[424]:		male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	dia BP	2
	0	1	39	4.0	0	0.0	0.0	0	0	0	195.0	106.0	70.0	26.
	1	0	46	2.0	0	0.0	0.0	0	0	0	250.0	121,0	81.0	28.
	2	1	48	1.0	1	20.0	0.0	0	0	0	245.0	127.5	0.08	25.
	3	0	61	3.0	1	30.0	0.0	0	1	0	225.0	150.0	95.0	28.
	4	0	46	3.0	1	23.0	0.0	0	0	0	285.0	130.0	84.0	2
	4233	1	50	1.0	1	1.0	0.0	0	1	0	313.0	179.0	92.0	25.
	4234	1	51	3.0	1	43.0	0.0	0	0	0	207.0	126.5	0.08	19
	4235	0	48	2.0	1	20.0	zero	0	0	0	248.0	131.0	72.0	2:
	4236	0	44	1.0	1	15.0	0.0	0	0	0	210.0	126.5	87.0	19
	4237	0	52	2.0	0	0.0	0.0	0	0	0	269.0	133.5	83.0	21.

4238 rows \times 16 columns

```
In [429... (df_5['age']).max()
Out[429]: 70
In [430... (df_5['age']).min()
Out[430]: 32
In [440... len((df_5[df_5['currentSmoker']==1]))
Out[440]: 2094
```

```
In []:
```