Cop 6

REGRESION CORRE LACIÓN

1) Se realize un estudio pera estable cer una ecuación mediante la cuel se puede utilizer la concentración de cobro de una preza(X) par predecir el porcentaje de niquel de la misma (Y). Se entre jeson al azer los sig. detos de la prezas faloricados en una misma planta de rank el mes pasado:

T	X	1,4	1,5	8,5	9	9	11	13	124	14,5	16	17	18	20	23
	Y	30	25	31,5	27,5	39,5	38	43	49	55	48,5	51	645	63	68

a) Grafical sobre el diagrame a dispossión la rech de lagresión yseix for un per ordenado deservado y un residuo

God segs.

15,85 2,26

del enunando (talda)

b) Verificar orafica y analíticamente que la recte de regresión pasa por el punto (x,) ~

c) Indicor, a pertir de la salida de compos todase los perdinatos estimados para el comodelo y el 90 de vorials. de y que la gra explicar x a través de la recta de regresión (lo hice en a) Y= a+ bx

Ahora lo hago anali ramante: -> seguim calcula dora: a = 15,8525 b = 2,6226

B1 = 2,6226

R2 = 83,56%

② En una plante quinnica, se sospeetra que le cont. de vapor utiliza da pot mes (Y en miles de lubras) estorrelacionade con la temperatura ambiente promedio del mismo mes (X en °F). La sig tabla proserta, pora tado un año, el uso del vapor y la temperatura del mes correspondiente.

X	21	24	32	47	SO	59	68	74	62	So	41	30
Y	240	220	320	325	280	230	200	275	270	250	200	270

Shapero-Wills (modificado)

a) Indicar les lupôtesis a les bar para responder a la sos pedra de la plante qui mica indicando el estadistro de contraste y su destribución

Ho: P=0 vs H1: P +0 T.

T. Vior at to bayo Ho

b) Indices si se satisfacen los se puestos para realizar este proclese (pera el test de straparo Wilkes o thezer un nivel del 0.10), y, en coso afirmativo, realizarle y concluir en el contexto del problema con un nivel aut 0,08

var.	m	media	D.E.	w*	p (ul)
X	12	46,50	(7,34	0,93	95413
Y	17	25667	41,25	0,92	0.4005

Ho: la muestre es normal us Hi: la muestre no es normal Redrayo Ho si pualor & d = 0,10 3 Se quiere estudior la asociación lineal entre consumo duaris de Sal y tensión orterial. A une serie de voluntarios se les interroga sobre dons de sol en su dieta y se mude si multainec mende su tensión arterial. Los dobs estén en la toda:

ensión art. 100 98 110 110 112 12	nsumo sel	1.8	2.2	35	4,0	4,3	5
	nsin art.	100	98	110	110	112	120

m=6

) = BO+BX

y = 60 + 61 x = - 86,37 + 6,33 x

Si se sobre que ambas romados trenen deste. Normal conjunte,

a) de le doservación aul diagramme de dispersión ¿ le perece razonable testear la hipó tens de asociación lineal? Justificar

Se deserve que une reete podrie definir la trayectorie no teniondo mudos residuos. Pora mi, se re que es emal

b) ¿ qué lest corres pondersa aplicar en coso apri mativo?

Si fuese ahimativo, soria: Ho

Ho: P=0 15 H1: P +0

T= 25 N to bajo Ho

12 de la companya della companya della companya de la companya della companya del

c) Establicar las hipó desis, un ducar estadistres de contrasto, la región civolica y la accisión al 5%

4=0,08 7 = 0,025 7 t4,0025 = 2,776

Rechazo to si Hobs/> 24,0.025

£4,0,025

Signin calculodoic: $C = 0.966 \rightarrow + dos = \frac{2 \times 0.9666}{\sqrt{100.9666^2}} = 7.5462 > 2.176$

la regresión es estados tramente

de nieve (X) en le cuenca del Quin Normal.	rio Solo	lo af	Suchers So solo	de al	bril	ma	jumi	el contemido de agua o en pulgados (Y) en voriables treven distr.
Shapiro Wilks								
	X	23,1	328 31,8	32	30,4	24	37,5	24,2
	Y		16,7 18,2	17	16,3	10,5	23,1	12,4
		Volvak	see on me	dio d.e	2 U)# Þ	rober	
						94 0,	1 2	
			-					
a) Agrester of model	o do rogno	escon (real si	mple	al	n do	tos e	interpreter to wefunts
7 = Bo +B) X		, = bo :	+ b,	X	colu	u bodora	2 9 = -6,68+0,75 x
bo es e								
								es para este modelo?
Redrago H	tho:	es n	osmal	vs f	÷ 1+	no 10,	es n 6941	ormal 0.10 sansface > X p supposts
d) testeur la sig	n fico ceó	n del	modelo (ion w	isol			
	2.671		=0 V5					
d=0.05 + = -0,0	15 +							Dalle 11 attack
n = 8	1 -	5/	~ ~ ~	m-5	bo	As 1	40	Rachazo Ub sittobs/tmz
61 = 0,75			1514					
) m-2 =	(128	3,93 - 16	6,41 ² 22,14).	<u>) </u>	0,71	on - S=0,843
Tobs = 00	13/-		13,26	\				s -> Rechargo Ho
U ,0°				1	1.1	1+		17 - 8. 17 -
t6,0.025 =				/('	1200	100	6,0,08	, astadisticamente

Our composition productors de energia eléctrica esté interestate en desarre. Nor un modelo que relacione le demando màxima por hora (D, ou Kui) con el uso de le energia total al mes (U, en leuh) las variables se distribuyen en forma Normal bivariada Le sig table muestre los dotos obtenidos do una muestre de 11 clientes eligidos al asper entre los de este companía: X D 679 292 1012 493 582 156 997 2189 N87 2077 2078 0,44 0,56 0,79 2,7 3,64 9,5 6,88 5,34 6,85 a) Aguster al modelo de regressión liveal simple a los datos e indicar si el ajuste es adocuado con un nivel de significación del 196 Y= Bo+ BAX+E Reeta de regressión y= bo+bax bos - 0,28 9 = -0,88 +0,0041 x 61-90041 M=11 to: B1 = 0 vs #1 = B, +0 0=0,01 Tobs = b1 ~ tq bayo Ho . Rechazo Ho si tobs > tq,0.005 $S^2 = \left(S_{YY} - \frac{S_{XX}^2}{S_{XX}}\right) \cdot \frac{1}{m-7} = \left(95,64 - \frac{18717.98^2}{4558764.18}\right) \cdot \frac{1}{9} = 2.01 \Rightarrow S = 1.42$ T obs = 0,0041 . V4558764,18 = 6,1652 ta,0.005: 3,250 -> + obs > ta,0.005 -> Rechago Ho > el ajuste es significativo 6) Encontror un intervalo do predicción pera do = 900 km con un rivel al 9900. Interpretarlo e indicar la diferencia con un intervado de confiarza pera la media con el muomo volor de do 1 = -0,88 + 0,0041.90 = 2,81 = Yo , X = 1149,27 , x=0,99, 1C = [-2.04, 7.66] 1 Pr = [1.31, 4.30] c) Puede extimerse a pertil de exter doto el valor esperado de x para X = 156? No, paque x=156 está legos al recorrido dex

@ Se realizó en estudio pera estimor los diechos producidos en les personas delardo a la exporción al ruido, ocho personas participaran en este estudio. Se registraron los aumontos en la presión sonquinea del individuo y el muel do pre sus sonora, distribuido noi malmante, a que se sometieron. Los datos se expresen en le table, X: Nivel do Presión Somo 60 40 80 4 4: Sumerto pr. song. 1 Ex; = 642 Ex; 34 Ex; = 53030 Ex; 7: = 2983 a) Itallar la rect de regressión estimade calculadora 9 = bo + b, x 6- - 9,28 Y= BO+B. x+E 51 = 0,169 19 = -9,78+917× b) Hallor el coeficiente de determinación e interpreterto $\int_{-\infty}^{2} \frac{5^{2} \times 3}{5 \times 5} = \frac{254,5^{2}}{1509,5 \times 55,5}$ 15 = 0 77 El 77 % au la voriabilidad de Y queda explicado por la variabilidad de X at 10 von de le recte de regrossin

Une emprese de sorvicios ción de cierto tipo de viros emscurido desde que se ha rdenadoros (Y) que han re	2 des	lectado La los	on nuevo	o virus(X)	a número de
rdenodoros (Y) que hon re	queri	d w	Sevizus	de soto emin	me nondia
across (1) god non re	que i i	~ W	300000		
					,
	Ki		m(3:)		
	(S,SY		
	2	1,5	0,41		
	4	2,105	Ends-were work		
	S	5,05	1,62		
	8	16,2			
	(0	45,32	3,81		
		5857			
		375,8			
		1525640 2577000		M -12	
	140	USTAU	14,16	M=10	
9=-579816 + 108808x			9 =	= -0,714+0 e(-0,714+	0,64 K)
			la má	convenion	e
) the down by a language of	Mal man	m do			
) Estimor puntual nouse el	del ,	virus		(0)(0)	a compression
	- The second sec	1-24:0734()-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
170	15) =	11,4	186		
	0 - 0				
Cox	i en (A	D			
		+			
	-				
	-				
		1-1-1-			

Of Demoster que le sume de audrados totales es quel a la adaix de le suma de ses audre des residuoles y la suma de audrados de regiesión; es decir:

$$\frac{2}{2} (Y_{i} - \hat{Y})^{2} = \frac{2}{2} (Y_{i} - \hat{Y}_{i})^{2} + \frac{2}{2} (\hat{Y}_{i} - \hat{Y})^{2}$$

$$\frac{2}{2} (Y_{i} - \hat{Y}_{i})^{2} + \frac{2}{2} [(Y_{i} - \hat{Y}_{i}) + (\hat{Y}_{i} - \hat{Y}_{i})^{2}]$$

$$= \frac{2}{2} [(Y_{i} - \hat{Y}_{i})^{2} + 2 (Y_{i} - \hat{Y}_{i})(\hat{Y}_{i} - \hat{Y}) + (\hat{Y}_{i} - \hat{Y})^{2}] = \frac{2}{2} [(Y_{i} - \hat{Y}_{i})^{2} + 2 \frac{2}{2} (Y_{i} - \hat{Y}_{i})(\hat{Y}_{i} - \hat{Y}) + \frac{2}{2} (\hat{Y}_{i} - \hat{Y})^{2}] = \frac{2}{2} [(Y_{i} - \hat{Y}_{i})^{2} + 2 \frac{2}{2} (Y_{i} - \hat{Y}_{i})(\hat{Y}_{i} - \hat{Y}) + \frac{2}{2} (\hat{Y}_{i} - \hat{Y})^{2}]$$

$$= \frac{2}{2} [(Y_{i} - \hat{Y}_{i})^{2} + 2 \frac{2}{2} (\hat{Y}_{i} - \hat{Y}_{i})(\hat{Y}_{i} - \hat{Y})^{2}]$$

$$= \frac{2}{2} [(Y_{i} - \hat{Y}_{i})^{2} + \frac{2}{2} (\hat{Y}_{i} - \hat{Y}_{i})^{2}]$$

· $\tilde{\Xi}(\tilde{Y}_{i}-\tilde{Y}_{i})(\tilde{Y}_{i}-\tilde{Y})=\tilde{\Xi}e_{i}(\tilde{Y}_{i}-\tilde{Y})\rightarrow constaerands que \tilde{Y}=bothi X_{i}$ Jenostesso que de ano

demostesso que de ano

(1) Con respecto a los resultados de un and lisis de regre sun lind simple ¿ aid de los girmaciones puede ser ciente? justificar.

- · SC TOTAL (SCERNOR + SCREES F SYY (SYY-SYY + SXX · R2 = -0,65 F, R2 >0 YRER abounds
- · S6 = -1,25 F 56>0
- tobs = 2,45 V

t dos=-2,45 → x = 0,01 Supongo m=30 (En vorjes es tideos se ha domos trado que los liquenes, organismos? compuestos par un alga y un hon co son guenos endicadores biológicos de contaminación all aire. Los Sus delos corres ponden a los varies bles X (deps si to as mitra tis en g | cm²) e Y (mitro geno en ol liquen, en do de poso se co X 905 0,1 0,11 0,12 0,31 0,37 0,42 0,58 0,68 0,68 0,73 0,85 0,92 0,88 1,04 9,48 955 948 95 958 9,52 1,02 0,86 986 a) Indicar el modelo estimado para estos detes por minimos cuadrados x enunado const: 0;37 , X = 0,97 Y = 0,37 + 0,97 X / b) Completor to pratores de los solidos e indicar la signi ficación al modelo Dalton: T - 3,69 -> tous 1 = 3,69 5,29 bt Mx = 3,69 -> x = 0,0018 m= 13 d,= 0,0036 toboz = 5,29 + +11, = 5,29 + = 0,00015 - dz= 0,0003 p valor 1 = 0,0036 p valor 2 = 0,0003 es significative c) Construir un IC. de murel 95% pera el valor esperado de nitros geno en el liquen pero un depósto de nitrato de 0,4 g /cm² X = 0,4 IC = [\hat{y}_0 -t 11,0025 SV \frac{1}{m} + \frac{(\times - \bar{x})^2}{Sxx}; \hat{y}_0 + \times \frac{1}{m},0025 SV \frac{1}{m} + \frac{(\times - \bar{x})^2}{Sxx} X = 0,455 YO (0,4) = 0,758 / IC = [0,63;0,88] TH, 0,025 = 2,201 / d-0,05 52 - (574 -52x8).1 = (1,4533 - 1,02852) 1 = 0,037 -> 15=0,193

12) En la sig. table se han registrado las sup. y lo pesos de ciertes prezas metalicas producidas por una malquina X Superhue 44,09 26,67 5472 36,04 38,97 61,4 42,06 47,6 45 43,04 56,8 63,11 68,7 41,8 34,3 31,2 a) Graficar el duagrama de dispossión aposimado de les os Superficie.
¿ Hoy al guna desar vación que le llame la atención? Paros 30 10 Pore con puntos muy dispossos, comparando a la mayor a con el de 61, que quede may alexal -> lo 60 obseria mon b) Estimor los coeficientes del modelo do regre seón unal utilizando toda le información disjonible Y = BO + BIX +E 9 = bo + bix -> 9 = 49,23 +0,027 X c) Calcular los residens i hay al guno que le parezca especial? (:= Y:- (bo+sixi) 11 = -0,44 13= -4,79 15= 14,93 17 = -6,29 rg=-16,68 (2= -3,24 14= 8,54 16: 21,13 (8= -13, 49 d) Eliminar la 60 doservación y repetir los aus items anterioras. 9 = 95,58 -1,138 x 1,=2,19 13=6,32 15 = 11,85 12 = -8,85 . 14 = 2,23 fg = -7,37 17 -5,95

tione meunt rango as a ferencias