Chapter 3 Electrical Characteristics

3.1 Test Condition

Unless otherwise specified and marked, all voltages are based on Vss.

All minimum and maximum values will be guaranteed under the worst ambient temperature, supply voltage and clock frequency. Typical values are based on room temperature 25° C and $V_{DD}=3.3$ V or 5V for design guidance.

Data obtained through comprehensive evaluation, design simulation or process characteristics will not be tested on the production line. On the basis of comprehensive evaluation, the minimum and maximum values are obtained through sample testing. Unless the special instructions are measured, the characteristic parameters are guaranteed by comprehensive evaluation or design.

Power supply scheme:

10uF 0.1uF V_{SS}

Figure 3-1 Typical circuit for conventional power supply

3.2 Absolute Maximum Ratings

Stresses at or above the absolute maximum ratings listed in the table below may cause permanent damage to the device.

Symbol	Description	Min.	Max.	Unit
T_{A}	Ambient temperature during operation	-40	85	°C
Ts	Ambient temperature during storage	-40	125	°C
V _{DD} -V _{SS}	External main supply voltage (VDD)	-0.3	5.5	V
V _{IN}	Input voltage on the I/O pin	V _{SS} -0.3	V _{DD} +0.3	V
$ \triangle V_{DD_x} $	Variations between different main power supply pins		50	mV
$ \triangle V_{SS_x} $	Variations between different ground pins		50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (HBM) of ordinary I/O pin	4	V	

Table 3-1 Absolute maximum ratings

$I_{ m VDD}$	Total current of all V _{DD} main power pins	100	mA
Ivss	Total current of all V _{SS} common ground pins	200	mA
т	Sink current on any I/O and control pin	30	
$ m I_{IO}$	Output current on any I/O and control pin	-30	
ī	XI pin of HSE	+/-4	mA
I _{INJ(PIN)}	Injected current on other pins	+/-4	
∑I _{INJ(PIN)}	Total injected current on all I/Os and control pins	+/-20	

3.3 Electrical Characteristics

3.3.1 Operating Conditions

Table 3-2 General operating conditions

Symbol	Parameter Condition		Min.	Max.	Unit
F _{HCLK}	Internal system bus frequency			48	MHz
Or F _{SYS}	Or microprocessor main frequency			40	IVITIZ
W	Standard operating voltage	ADC feature is not used	1.9	5.5	V
$V_{ m DD}$		Use the ADC feature	2.4	5.5	V
T_{A}	Ambient temperature		-40	85	°C
T_{J}	Junction temperature range		-40	105	°C

Table 3-3 Power-on and power-down conditions

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{DD} rising rate			0	∞	/\.7.7
$t_{ m VDD}$	V _{DD} falling rate		20	∞	us/V

3.3.2 Embedded Reset and Power Control Block Characteristics

Table 3-4 Reset and voltage monitor (For PDR, select high threshold gear)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	Duo anamanahla yashta aa	PLS[1:0] = 00 rising edge		1.86		V
$V_{PVD}^{(1)}$		PLS[1:0] = 00 falling edge		1.85		V
	detector level selection	PLS[1:0] = 01 rising edge		2.22		V

		PLS[1:0] = 01 falling edge		2.21		
		PLS[1:0] = 10 rising edge		2.42		V
		PLS[1:0] = 10 falling edge		2.4		V
		PLS[1:0] = 11 rising edge		2.64		V
		PLS[1:0] = 11 falling edge		2.59		V
V _{PVDhyst}	PVD hysteresis		5	20	6	mV
V	Power-on/power-down	Rising edge	1.6	1.76	1.96	V
V _{POR/PDR}	reset threshold	Falling edge	1.54	1.68	1.9	V
$V_{PDRhyst}$	PDR hysteresis		60	80	100	mV
	Power-on reset	RST_MODE[1:0] = 11		2		ms
t _{RSTTEMPO}	Other reset			300		us

Note: 1. Normal temperature test value.

3.3.3 Embedded Reference Voltage

Table 3-5 Embedded reference voltage

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{REFINT}	Internal reference voltage	$T_A = -40$ °C~85°C		1.2		V
Ts_vrefint	ADC sampling time when reading the internal reference voltage	Slow sampling is recommended.	3		240	1/f _{ADC}

3.3.4 Supply Current Characteristics

Current consumption is a comprehensive index of a variety of parameters and factors. These parameters and factors include operating voltage, ambient temperature, I/O pin load, the software configuration of the product, the operating frequency, flip rate of the I/O pin, the location of the program in memory and the executed code, etc. The current consumption measurement method is as follows:

Figure 3-2 Current consumption measurement

The microcontroller is in the following conditions:

In the case of room temperature $V_{DD} = 3.3 \text{V}$ or 5V, during the test: all I/O ports are configured with pull-down input,

HSI = 24MHz (calibrated), and the bit LDO_MODE of register PWR_CTLR is 10. Enable or disable the power consumption of all peripheral clocks.

Table 3-6-1 Typical current consumption in Run mode, data processing code runs from the internal Flash ($V_{DD} = 3.3V$)

			Condition		Ty		
Symbol	Parameter	HSI/HSE	HSI_LP	F _{HCLK}	All peripherals	All peripherals	Unit
			_		enabled	disabled	
		Runs on the		$F_{HCLK} = 48MHz$	3.82	3.00	
		high-speed	X	$F_{HCLK} = 24MHz$	2.73	2.36	
		external clock		$F_{HCLK} = 16MHz$	2.24	2.03	
		(HSE)		$F_{HCLK} = 8MHz$	2.00	1.88	
		$(HSE_SI = 01,$		F _{HCLK} =	1.26	1.24	
	Supply	$HSE_LP = 1$)		750KHz	1.20	1.24	
$I_{DD}^{(1)}$	current in			$F_{HCLK} = 48MHz$	3.43	2.58	mA
	Run mode	D 41.		F _{HCLK} = 24MHz	2.35	1.97	
		Runs on the	0	$F_{HCLK} = 16MHz$	1.86	1.64	
		high-speed	U	$F_{HCLK} = 8MHz$	1.63	1.51	
		internal RC oscillator (HSI)		F _{HCLK} =	0.00	0.97	
				750KHz	0.89	0.87	
			1	$F_{HCLK} = 40 \text{KHz}$	0.55	0.55	

Note: The above are measured parameters.

Table 3-6-2 Typical current consumption in Run mode, data processing code runs from the internal Flash ($V_{DD} = 5V$)

			Condition			Тур.		
Symbol	Parameter			Г	All peripherals	All peripherals	Unit	
		HSI/HSE	HSI_LP	F _{HCLK}	enabled	disabled		
	Supply	Runs on the		$F_{HCLK} = 48MHz$	3.85	3.01		
$I_{DD}^{(1)}$	current in	high-speed	X	$F_{HCLK} = 24MHz$	2.76	2.39	mA	
	Run mode	external clock		$F_{HCLK} = 16MHz$	2.26	2.05		

(HSE) (HSE_SI		$F_{HCLK} = 8MHz$	2.02	1.91	
= 01, HSE_LP = 1)		$F_{HCLK} = 750KHz$	1.28	1.27	
		F _{HCLK} = 48MHz	3.46	2.59	
	F _{HCLK} = 24MHz	2.38	1.98		
Runs on the high-	0	F _{HCLK} = 16MHz	1.89	1.65	
speed internal RC	U	$F_{HCLK} = 8MHz$	1.68	1.52	
oscillator (HSI)		$F_{HCLK} = 750KHz$	0.90	0.87	
	1	$F_{HCLK} = 40KHz$	0.56	0.56	

Note: The above are measured parameters.

Table 3-7-1 Typical current consumption in Sleep mode, data processing code runs from internal Flash or SRAM ($V_{DD} = 3.3V$)

			Condition	3.3 ()		Тур		
Symbol	Parameter	HSI/HSE	HSI_LP	F _{HCLK}		All peripherals enabled	All peripherals disabled	Unit
				F _{HCLK} 48MHz	=	2.51	1.62	
	Supply current in	Runs on the high-speed		F _{HCLK} 24MHz	=	1.78	1.37	
	Sleep mode (In this case,	external clock (HSE)	X	F _{HCLK}		1.67	1.37	
$I_{DD}^{(1)}$	peripheral power	$(HSE_SI = 01,$ $HSE_LP = 1)$		F _{HCLK} 8MHz		1.39	1.25	mA
	supply and clock are			F _{HCLK} 750KHz	=	1.19	1.19	
	maintained)	Runs on the high-speed	0	F _{HCLK} 48MHz	=	2.11	1.24	
		internal RC		F _{HCLK}	=	1.40	0.99	

	oscillator (HSI)		24MHz				
			F _{HCLK}	=	1.29	0.99	
			16MHz		1.29	0.99	
			F _{HCLK}	=	1.01	0.87	
			8MHz		1.01	0.87	
			F _{HCLK}	=	0.82	0.01	
			750KHz		0.82	0.81	
		1	F _{HCLK}	=	0.55	0.55	
		1	40KHz		0.33	0.55	

Note: The above are measured parameters.

Table 3-7-2 Typical current consumption in Sleep mode, data processing code runs from internal Flash or SRAM $(V_{DD} = 5V)$

			Condition) — 3 v)		Туј	р.	
Symbol	Parameter	HSI/HSE	HSI_LP	F _{HCLK}		All peripherals enabled	All peripherals disabled	Unit
			-	F _{HCLK} 48MHz	=	2.54	1.65	
	Supply current in	Runs on the high-speed		F _{HCLK} 24MHz	=	1.81	1.40	
	Sleep mode (In this	external clock (HSE)	X	F _{HCLK}	=	1.70	1.40	
$I_{DD}^{(1)}$	case,	(HSE_SI = 01, HSE_LP = 1)		F _{HCLK} 8MHz	=	1.42	1.27	mA
	power supply and			F _{HCLK} 750KHz	=	1.22	1.22	
	clock are maintained)	Runs on the high-speed	0	F _{HCLK} 48MHz	=	2.12	1.25	
		internal RC oscillator (HSI)	0	F _{HCLK} 24MHz	=	1.42	1.00	•

		F _{HCLK}	=	1.30	0.99	
		16MHz		1.50	0.55	
		F_{HCLK}	=	1.02	0.97	
		8MHz		1.02	0.87	
		F_{HCLK}	=	0.02	0.01	
		750KHz		0.82	0.81	
	1	F _{HCLK}	=	0.50	0.55	
	1	40KHz		0.56	0.55	

Note: The above are measured parameters.

Table 3-8 Typical current consumption in Standby mode

			Condition			
Symbol	Parameter	Independent watchdog	LSI	V_{DD}	Тур.	Unit
		P. 11		3.3V	9.69	
		Enable	Disable	5V	10.14	
	G 1	Enable .	Enable	3.3V	9.72	
	Supply current in		Eliable	5V	10.20	
I_{DD}	current in Standby mode	D:1-1-	D:1-1-	3.3V	9.22	uA
	Standby mode	Disable	Disable	5V	9.68	
			F., -1.1.	3.3V	9.67	
		Disable Enable		5V	10.14	

Note: The above are measured parameters.

3.3.5 External Clock Source Characteristics

Table 3-9 From external high-speed clock

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{HSE_ext}	External clock frequency		3	24	32	MHz
V _{HSEH} ⁽¹⁾	XI input pin high level voltage		$0.8 \mathrm{V}_\mathrm{DD}$		V_{DD}	V
V _{HSEL} ⁽¹⁾	XI input pin low-level voltage		0		$0.2 V_{\mathrm{DD}}$	V

C _{in(HSE)}	XI input capacitance		5		pF
DuCy _(HSE)	Duty cycle	40	50	60	%
$I_{\rm L}$	XI input leakage current			±1	uA

Note: 1. Failure to meet this condition may cause level recognition error.

Figure 3-3 External high-frequency clock source circuit

Table 3-10 High-speed external clock generated from a crystal/ceramic resonator

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F_{XI}	Resonator frequency		3	24	32	MHz
R_{F}	Feedback resistor (no external)			250		kΩ
Cload	$\begin{tabular}{ll} Recommended & load \\ capacitance and corresponding \\ crystal series impedance R_S \\ \end{tabular}$	$R_S = 60\Omega^{(1)}$		20		pF
${ m I}_{ m HSE}$	HSE drive current	HSE_LP = 0, 20p load HSE_LP = 1, 20p load		0.91		mA
g_{m}	Oscillator transconductance	Startup		21		mA/V
t _{SU(HSE)}	Startup time	V _{DD} is stable		1.5(2)		ms

Note: 1. 25M crystal ESR is recommended not more than 80Ω , less than 25m can be appropriately relaxed.

Circuit reference design and requirements:

The load capacitance of the crystal is subject to the recommendation of the crystal manufacturer, generally $C_{L1} = C_{L2}$.

^{2.} Startup time refers to the time difference between when HSEON is turned on and when HSERDY is set.

Figure 3-4 Typical circuit of external 24M crystal

3.3.6 Internal Clock Source Characteristics

Table 3-11 Internal high-speed (HSI) RC oscillator characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Б	Francisco ex (after calibration)	HSI_LP = 0		24		MHz
F _{HSI}	Frequency (after calibration)	HSI_LP = 1	30	42	58	KHz
DuCy _{HSI}	Duty cycle		45	50	55	%
		$HSI_LP = 0,$	1.0		1 0	%
ACC _{HSI}	Accuracy of HSI oscillator (after	$TA = 0$ ° $C \sim 70$ ° C	-1.8		1.8	70
ACCHSI	calibration)	$HSI_LP = 0,$	-3		2.5	%
		TA = -40°C~85°C	-3		2.3	70
$t_{SU(HSI)}^{(1)}$	HSI oscillator startup			3	8	us
USU(HSI)\	stabilization time			3	0	us
Innavar	USI assillator nowar congression	HSI_LP = 0		200		,,,
I _{DD(HSI)}	HSI oscillator power consumption	HSI_LP = 1		8.5		uA

Note: 1. Register RCC_CTLR HSION is set to 1 and wait for HSIRDY to be set to 1.

Table 3-12 Internal low-speed (LSI) RC oscillator characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F_{LSI}	Frequency		90	128	172	KHz
DuCy _{LSI}	Duty cycle		45	50	55	%
t _{SU(LSI)} ⁽¹⁾	LSI oscillator startup stabilization time			30	100	us
I _{DD(LSI)} ⁽¹⁾	LSI oscillator power consumption			550		nA

Note: 1. Register RCC_CTLR LSION is set to 1 and wait for LSIRDY to be set to 1.

3.3.7 Wakeup Time from Low-power Mode

Table 3-13 Wakeup time from low-power mode⁽¹⁾

Symbol	Parameter	Condition	Тур.	Unit
twusleep	Wakeup from Sleep mode	Use HSI RC clock to wakeup	10	us
t _{WUSTDBY}	Wakeup from Standby mode	LDO stabilization time + HSI RC clock wake up	250	us

Note: The above are measured parameters.

3.3.8 Memory Characteristics

Table 3-14 Flash memory characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{prog_page}	Page (256 bytes) program time			1.5	2.0	ms
t _{erase_page}	Page (256 bytes) erase time			2.5	3.0	ms
t _{erase_sec}	Sector (1K bytes) erase time			2.7	3.3	ms

Table 3-15 Flash memory endurance and data retention

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
$N_{ ext{END}}$	Erase and write times	$T_A = 25$ °C	100K			Times
$t_{ m RET}$	Data retention period		10			Years

3.3.9 I/O Port Characteristics

Table 3-16 General-purpose I/O static characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
$ m V_{IH}$	Standard I/O pin, input high level		0.20*(V _{DD} -		V +0.2	V
V IH	voltage		2.7)+1.55		$V_{DD}+0.3$	v
V	Standard I/O pin, input low-level		-0.3		0.20*(V _{DD} -	$\left \begin{array}{c} V \end{array}\right $
$ m V_{IL}$	voltage		-0.3		2.7)+0.65	<u> </u>
$V_{ m hys}$	Schmitt trigger voltage hysteresis		150			mV
$ m I_{lkg}$	Input leakage current				1	uA
R_{PU}	Pull-up equivalent resistance		35	45	55	kΩ
R_{PD}	Pull-down equivalent resistance		35	45	55	kΩ
C _{IO}	I/O pin capacitance			5		pF

Output drive current characteristics

GPIO (General-Purpose Input/Output Port) can sink or output up to ± 8 mA current, and sink or output ± 20 mA current (not strictly to V_{OL}/V_{OH}). In user applications, the total driving current of all I/O pins cannot exceed the absolute maximum ratings given in Section 3.2:

Table 3-17 Output voltage characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
$ m V_{OL}$	Output low level, 8 pins input current	TTI nort I = 18m A		0.4	
W	Output high lavel 8 min output oumant	TTL port, $I_{IO} = +8mA$ $2.7V < V_{DD} < 5.5V$	V _{DD} -		V
$V_{ m OH}$	Output high level, 8 pin output current	2.7 V \ V DD \ 3.3 V	0.4		
$V_{ m OL}$	Output low level, 8 pins input current	CMOS port, I _{IO} = +8mA		0.4	V
$ m V_{OH}$	Output high level, 8 pin output current	2.7V< V _{DD} <5.5V	2.3		v
$ m V_{OL}$	Output low level, 8 pins input current	I - 120 A		1.3	
37	Output high lavel 8 min output oumant	$I_{IO} = +20 \text{mA}$	V _{DD} -		V
V _{OH}	Output high level, 8 pin output current	2.7V< V _{DD} <5.5V	1.3		

Note: The sum of current must not exceed the absolute maximum rating given in Section 3.2 of the table if more than one I/O pin is driven at the same time in the above conditions. When multiple I/O pins are driven at the same time, the current on the power supply/ground wire point is very large, which will cause the voltage drop so that the voltage of the internal I/O cannot reach the power supply voltage in the meter, resulting in the drive current less than the nominal value.

Table 3-18 Input/output AC characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
F _{max(IO)out}	Maximum frequency	$CL = 50pF, V_{DD} = 2.7-5.5V$		30	MHz
$t_{\rm f(IO)out}$	Output high to low fall time	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns
$t_{r(IO)out}$	Output low to high rise time	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns
	The EXTI controller detects the pulse		10		
$t_{ m EXTIpw}$	width of the external signal		10		ns

Note: Above parameters are guaranteed by design.

3.3.10 NRST Pin Characteristics

Table 3-19 External reset pin characteristics

		_				
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit

V _{IL(RST)}	RST input low-level voltage	-0.3		0.20*(V _{DD} - 2.7)+0.65	V
V _{IH(RST)}	RST input high-level voltage	0.20*(V _{DD} - 2.7)+1.55		V _{DD} +0.3	V
V _{hys(RST)}	NRST Schmitt Trigger voltage hysteresis	150			mV
R _{PU}	Pull-up equivalent resistance	35	45	55	kΩ
$V_{F(RST)}$	RST input can be filtered pulse width			100	ns
V _{NF(RST)}	RST input cannot be filtered pulse width	300			ns

Circuit reference design and requirements:

Figure 3-5 Typical circuit of external reset pin

Note: The capacitance in the figure is optional and can be used to filter out key jitter.

3.3.11 TIM Timer Characteristics

Table 3-20 TIMx characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
4	Timen reference alock		1		t _{TIMxCLK}
$t_{ m res(TIM)}$	Timer reference clock	$f_{TIMxCLK} = 48MHz$	20.8		ns
_	Timer external clock frequency on		0	f _{TIMxCLK} /	MHz
F_{EXT}	CH1 to CH4			2	
		$f_{\text{TIMxCLK}} = 48 \text{MHz}$	0	24	MHz

R_{esTIM}	Timer resolution			16	bit
	16-bit counter clock cycle when the		1	65536	t _{TIMxCLK}
tcounter	internal clock is selected	$f_{TIMxCLK} = 48MHz$	0.0208	1363	us
	M			65535	t _{TIMxCLK}
t _{MAX_COUNT}	Maximum possible count	$f_{TIMxCLK} = 48MHz$		1363	us

3.3.12 I2C Interface Characteristics

Figure 3-6 I2C bus timing diagram

Table 3-21 I2C interface characteristics

G 1 1	D	Standa	ard I2C	Fast	I2C	TT '4
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
$t_{w(SCKL)}$	SCL clock low-level time	4.7		1.2		us
$t_{\rm w(SCKH)}$	SCL clock high-level time	4.0		0.6		us
t _{SU(SDA)}	SDA data setup time	250		100		ns
$t_{h(SDA)}$	SDA data hold time	0		0	900	ns
$t_{r(\mathrm{SDA})}/t_{r(\mathrm{SCL})}$	SDA and SCL rise time		1000	20		ns
$t_{f(\mathrm{SDA})}/t_{f(\mathrm{SCL})}$	SDA and SCL fall time		300			ns
t _{h(STA)}	Start condition hold time	4.0		0.6		us
t _{SU(STA)}	Repeated start condition setup time	4.7		0.6		us
t _{SU(STO)}	Stop condition setup time	4.0		0.6		us
	Time from stop condition to start condition	4.7		1.2		
tw(STO:STA)	(bus free)	4.7		1.2		us
C _b	Capacitive load for each bus		400		400	pF

3.3.13 SPI Interface Characteristics

Figure 3-7 SPI timing diagram in Master mode

Figure 3-8 SPI timing diagram in Slave mode (CPHA = 0)

SCK Input

CPHA=1
CPOL=0
CPHA=1
CPOL=1

Figure 3-9 SPI timing diagram in Slave mode (CPHA = 1)

Table 3-22 SPI interface characteristics

Symbol	Parameter	C	Condition	Min.	Max.	Unit
C //	CDL 1 1 C	Master mod	le		24	MHz
$ m f_{SCK}/t_{SCK}$	SPI clock frequency	Slave mode	;		24	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI clock rise and fall time	Load capac	itance: C = 30pF		10	ns
t _{SU(NSS)}	NSS setup time	Slave mode	;	2t _{HCLK}		ns
$t_{h(NSS)}$	NSS hold time	Slave mode	;	2t _{HCLK}		ns
$t_{w(SCKH)}/t_{w(SCKL)}$	SCK high and low time	Master mode, $f_{HCLK} = 24MHz$, Prescaler factor = 4		70	97	ns
,		Master	HSRXEN = 0	15		
${ m t_{SU(MI)}}$	Data input setup time	mode	HSRXEN = 1	15-0.5t _{SCK}		ns
t _{SU(SI)}		Slave mode				ns
,		Master	HSRXEN = 0	-4		
$t_{ m h(MI)}$	Data input hold time	mode	HSRXEN = 1	0.5t _{SCK} -4		ns
$t_{h(SI)}$		Slave mode				ns
t _{a(SO)}	Data output access time	Slave mode, $f_{HCLK} = 20MHz$		0	1t _{HCLK}	ns
$t_{ m dis(SO)}$	Data output disable time	Slave mode		0	10	ns
$t_{ m V(SO)}$	Data output valid time	Slave mode	(After enable edge)		15	ns

$t_{V(MO)}$		Master mode (After enable edge)		5	ns
$t_{h(SO)}$	Data autaut hald time	Slave mode (After enable edge)	6		ns
t _{h(MO)}	Data output hold time	Master mode (After enable edge)	0		ns

3.3.14 10-bit ADC Characteristics

Table 3-23 ADC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
W	S	$f_S < 1MHz$	2.4		5.5	V
$ m V_{DD}$	Supply voltage	$f_S = 3MHz$	4.5		5.5	V
T	ADC supply current	$f_S = 3MHz$		0.67		mA
$ m I_{DDA}$	(Without buffer)	$f_S = 1MHz$		0.21		mA
T	ADGL 65	ADC_LP = 0		0.68		mA
$I_{ m BUF}$	ADC buffer own current	ADC_LP = 1		0.13		mA
$f_{ m ADC}$	ADC clock frequency			16	48	MHz
f_S	Sampling rate		0.06		3	MHz
		$f_{ADC} = 16MHz$			900	KHz
$f_{ m TRIG}$	External trigger frequency	$f_{ADC} = 48MHz$			2.7	MHz
					18	1/f _{ADC}
V _{AIN}	Switching voltage range		0		V_{DD}	V
R _{AIN}	External input impedance				50	kΩ
R _{ADC}	Sampling switch resistance			0.6	1.5	kΩ
C_{ADC}	Internal sample and hold capacitance			4		pF
	a 17	$f_{ADC} = 16MHz$			6.25	us
$t_{ m CAL}$	Calibration time				100	1/f _{ADC}
		$f_{ADC} = 16MHz$			0.125	us
t_{Iat}	Injection trigger conversion delay	$f_{ADC} = 48MHz$			0.042	us
					2	1/f _{ADC}
t _{Iatr}	Conventional trigger conversion	$f_{ADC} = 16MHz$			0.125	us

	delay	$f_{ADC} = 48MHz$		0.042	us
				2	1/f _{ADC}
		$f_{ADC} = 16MHz$	0.218	14.97	us
	Compling time		3.5	239.5	1/f _{ADC}
t_{s}	Sampling time	$f_{ADC} = 48MHz$	0.073	0.739	us
			3.5	35.5	1/f _{ADC}
t _{STAB}	Power-on time			1	us
		$f_{ADC} = 16MHz$	1	15.75	us
	Total conversion time (including		16	252	1/f _{ADC}
$t_{ m CONV}$	sampling time)	$f_{ADC} = 48MHz$	0.33	1	us
			16	48	1/f _{ADC}

Note: Above parameters are guaranteed by design.

Formula: Maximum R_{AIN}

The above formula is used to determine the maximum external impedance so that the error can be less than 1/4 LSB. Where N = 12 (represents a 12-bit resolution).

Table 3-24-1 Maximum R_{AIN} when $f_{ADC} = 16MHz$

T _S (Cycle)	t _s (us)	Maximum $R_{AIN}(k\Omega)$
3.5	0.22	4
7.5	0.47	10
13.5	0.84	20
28.5	1.78	45
41.5	2.59	65
55.5	3.47	/
71.5	4.47	/
239.5	14.97	/

Table 3-24-2 Maximum R_{AIN} (High-speed) when $f_{ADC} = 48MHz$

is(cycle) is(us) maximum K _{AIN} (KS2)	T _S (Cycle)	t _S (us)	Maximum R _{AIN} (kΩ)
---	------------------------	---------------------	-------------------------------

3.5	0.073	1.5		
7.5	0.16	3		
11.5	0.24	5		
19.5	0.41	9		
35.5	0.74	17		
55.5	1.16	28		
71.5	1.49	37		
239.5	4.99	/		

Table 3-25 ADC error $(f_{ADC} = 16MHz, ADC_LP = 1)$

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ЕО	Offset error	$-R_{AIN} < 10k\Omega,$ $-V_{DD} = 5V$	±1		±2	
ED	Differential nonlinear error		±1		±2	LSB
EL	Integral nonlinear error		±1		±2	

Note: Above parameters are guaranteed by design.

 C_p represents the parasitic capacitance on the PCB and the pad (about 5pF), which may be related to the quality of the pad and PCB layout. A larger C_p value will reduce the conversion accuracy, the solution is to reduce the f_{ADC} value.

Figure 3-10 ADC typical connection diagram

Figure 3-11 Analog power supply and decoupling circuit reference

