The distribution function of a random variable X is a function that assigns, for every point, the probability accumulated up to the above mentioned value. That is:

$$F(X) = p(X \le X)$$

For example, we will compute the distribution function of the random variable *X*, resulting from throwing a perfect dice.

The following table shows the values of F(x):

F(x)

	` '
x < 1	0
$1 \le x < 2$	1
	6
$2 \le x < 3$	2
	- 6
3 ≤ <i>x</i> < 4	3
	6
4 ≤ <i>x</i> < 5	4
	6
5 ≤ <i>x</i> < 6	5
	- 6
<i>x</i> ≤ 6	1

be 1.

This turns out to be quite intuitive, since the

The value of the function distribution in $-\infty$ will always be 0, while the value in $+\infty$ will always

 ∞ is zero, and the probability that it is less than $+\infty$ is 1 (since it is always less or equal to $+\infty$).

probability that the value of x is smaller than -

5,2 is the same as that of lower than 5,3 or 5,9.