

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10074624 A

(43) Date of publication of application: 17 . 03 . 98

(51) Int. CI	H01F 17/00	•	
(21) Application	number: 08249034	(71) Applicant:	IKEDA TAKESHI
(22) Date of filing	g: 30 . 08 . 96	(72) Inventor:	IKEDA TAKESHI OKAMOTO AKIRA

(54) INDUCTOR ELEMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an inductor element in which the generation of an eddy current and a parasitic capacitance can be reduced.

SOLUTION: An inductance element is composed of spiral-formed floating conductor 2 formed on a substrate 3 and an inductor conductor 1 which will be opposingly arranged on the floating conductor 2 through an insulating layer. Prescrived voltage is applied to the inductor conductor 1, and the floating conductor 2 is brought into a floating state. As above-mentioned, as the floating conductor 2 is interposed between the inductor conductor 1 and the substrate 3, the eddy current generated on substrate surface and the stray capacitance generated between the substrate 3 and the inductor conductor 1 can be reduced.

COPYRIGHT: (C)1998,JPO

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-74624

(43)公開日 平成10年(1998) 3月17日

(51) Int.Cl.6

識別記号 庁内整理番号 FΙ

技術表示箇所

H01F 17/00

H01F 17/00

Α

審査請求 未請求 請求項の数6 FD (全 6 頁)

(21)出願番号

特願平8-249034

(22)出願日

平成8年(1996)8月30日

(71)出願人 390026192

池田 毅

東京都大田区山王 2 - 5 - 6 - 213

(72)発明者 池田 毅

東京都大田区山王2丁目5番6-213

(72)発明者 岡本 明

埼玉県上尾市緑丘4丁目7-17

(74)代理人 弁理士 雨貝 正彦

(54)【発明の名称】 インダクタ素子

(57)【要約】

【課題】 渦電流と寄生容量の発生を低減できるインダ クタ素子を提供する。

【解決手段】 本発明のインダクタ素子は、基板3上に 形成された渦巻き形状のフローティング導体2と、その 上面に絶縁層5を介して対向配置されるインダクタ導体 1とを含んで構成される。インダクタ導体1には所定の 電圧が印加され、フローティング導体2はフローティン グ状態にされる。このように、インダクタ導体1と基板 3との間にフローティング導体2を介在させるため、基 板表面に発生される渦電流や、基板3とインダクタ導体 1との間に発生される浮遊容量を低減することができ る。

Express Mail #EL778 107613 US

【特許請求の範囲】

【請求項1】 基板上に形成される渦巻き形状のインダ クタ導体と、

前記インダクタ導体と略同一の形状を有し、前記インダ クタ導体の下面側に絶縁層を介して対向配置され、フロ ーティング構造で形成されるフローティング導体とを備 えることを特徴とするインダクタ素子。

【請求項2】 基板上に形成される渦巻き形状のインダ クタ導体と、

前記インダクタ導体の下面側に絶縁層を介して形成さ 10 れ、少なくとも一部分が前記インダクタ導体と対向配置 され、フローティング構造で形成されるフローティング 導体とを備えることを特徴とするインダクタ素子。

【請求項3】 請求項1または2において、

前記フローティング導体は、所定形状の溝によって複数 の領域に分割されることを特徴とするインダクタ素子。

【請求項4】 請求項3において、

一端が前記インダクタ導体に接続される電極引き出し部 を備え、

記電極引き出し部が前記基板上に2層で形成されるよう に、前記電極引き出し部あるいは前記インダクタ導体の 一部を前記溝の内部に形成することを特徴とするインダ クタ素子。

【請求項5】 請求項1または2において、

基板上に形成される渦巻き形状のインダクタ導体と、 前記インダクタ導体の下面側に絶縁層を介して形成さ れ、少なくとも一部分が前記インダクタ導体と対向配置 され、フローティング構造で形成されるフローティング 導体と、

前記フローティング導体と分離して形成され、前記イン ダクタ導体に導通される電極引き出し部とを備えること を特徴とするインダクタ素子。

【請求項6】 請求項1~4のいずれかにおいて、 前記インダクタ導体および前記フローティング導体の少 なくとも一方は、各周回部分が八角に折れ曲がった渦巻 き形状で形成されることを特徴とするインダクタ素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、渦巻き形状のパタ 40 ーンを用いて形成されるインダクタ素子に関する。

[0002]

【従来の技術および発明が解決しようとする課題】半導 体基板上に薄膜形成技術を利用して渦巻き形状のパター ンを形成し、このパターンをインダクタ素子として利用 する半導体回路が知られている。

【0003】図11はこの種のインダクタ素子から発生 される磁束を説明する図である。同図に示す渦巻き形状 のインダクタ素子101に所定の電流が流れると、同図 の矢印で示すように半導体基板102の表面に垂直な方 50 示すフローティング導体2をずらして図示しているが、

向、すなわち半導体基板102を貫通する方向に磁束が 発生する。この方向の磁束は、渦電流や浮遊容量の発生 原因となり、半導体基板102上に形成された他の半導 体素子の動作に悪影響を与えるおそれがある。

【0004】本発明は、このような点に鑑みて創作され たものであり、その目的は渦電流と浮遊容量の発生を従 来よりも低減することができるインダクタ素子を提供す ることにある。

[0005]

【課題を解決するための手段】上述した課題を解決する ために、請求項1のインダクタ素子は、略同一形状のイ ンダクタ導体とフローティング導体を絶縁層を挟んで基 板上に形成し、フローティング導体をフローティング構 造にする。すなわち、インダクタ導体と基板との間にフ ローティング導体を介在させることにより、基板表面に 発生される渦電流や、インダクタ導体と基板表面との間 に発生される浮遊容量を低減することができる。

【0006】請求項2のインダクタ素子は、フローティ ング導体の少なくとも一部分をインダクタ導体に対向配 前記インダクタ導体、前記フローティング導体および前 20 置する。この場合も、渦電流や浮遊容量の発生が低減さ れる。

> 【0007】請求項3のインダクタ素子は、フローティ ング導体を分割構造にする。

> 【0008】請求項4のインダクタ素子は、フローティ ング導体を分割する溝を設け、この溝の内部に電極引き 出し部を形成し、この電極引き出し部をインダクタ導体 と導通させる。これにより、インダクタ素子は2層メタ ル構造になる。

【0009】請求項5のインダクタ素子は、インダクタ 30 導体とフローティング導体を絶縁層を挟んで基板上に形 成し、インダクタ導体に導通される電極引き出し部をフ ローティング導体と分離して形成する。これにより、イ ンダクタ素子は3層メタル構造になる。

【0010】請求項6のインダクタ素子は、インダクタ 導体とフローティング導体の少なくとも一方の形状を渦 巻き形状にし、かつ渦巻きの各周回部分を八角に折り曲 げる。八角に折り曲げることによりマスクの製造が容易 になる。

[0011]

【発明の実施の形態】以下、本発明を適用したインダク タンス素子について、図面を参照しながら具体的に説明

【0012】 [第1の実施形態] 図1は基板上に形成さ れた本実施形態のインダクタンス素子の概略を示す平面 図、図2はインダクタンス素子の構造を簡略化して示し た図である。本実施形態のインダクタ素子は、ほぼ同一 形状のインダクタ導体1とフローティング導体2とを、 後述する絶縁層の上下両面に対向配置した構造を有して いる。図1では、実線で示すインダクタ導体1と点線で 実際にはインダクタ導体1とフローティング導体2は図2に示すように重なるように形成されている。

【0013】インダクタ導体1の両端には、基板3上に 形成された不図示の半導体回路が接続され、この半導体 回路の作用によりインダクタ導体1に所定の電流が流れ る。一方、フローティング導体2は、インダクタ導体1 等の電圧変化の影響を受けないようにフローティング構 造で形成されている。

【0014】インダクタ導体1とフローティング導体2はいずれも渦巻き形状で形成され、渦巻きの各周回部分は八角に折り曲げられている。このように、インダクタ導体1やフローティング導体2の形状を八角形にする理由は、八角以上の多角形や円形にする場合に比べてマスクの製造が容易なためであり、一方、八角未満の多角形にすると、インダクタ素子の電気的特性が悪くなるためである。

【0016】なお、基板3上には、インダクタ素子の他に、トランジスタ・ダイオード等の能動素子や、抵抗・コンデンサ等の受動素子が実装されるが、図1では、説明を簡単にするためにインダクタ素子のみを示している。

【0017】図3は図1のA-A線の拡大断面図である。同図に示すように、基板3の表面に絶縁性の非磁性 30体膜4が形成され、その上面の一部に渦巻き状のフローティング導体2が形成される。また、非磁性体膜4とフローティング導体2の上面に絶縁層5が形成され、その上面には渦巻き状のインダクタ導体1が形成される。

【0018】一方、図4 (a) は図1のB-B線の拡大 断面図である。同図に示すように、インダクタ導体1の 下面側の構造は図3と共通する。インダクタ導体1の一端には電極引き出し部1aが接続されており、この電極 引き出し部1aは絶縁層6を挟んでインダクタ導体1の 上面に形成されている。この電極引き出し部1aは不図 40 示の他の半導体回路に接続される。

【0019】このように、図1に示すインダクタ素子は、絶縁層5の上下両面に渦巻き形状のインダクタ導体1とフローティング導体2を対向配置した構造になっており、インダクタ導体1と基板3とが間隔を隔てて形成されるため、基板表面に発生される渦電流や、基板表面との間に発生される浮遊容量を低減できる。

【0020】なお、図1では、渦巻き形状のフローティ をそれぞれ表している。同図に示すように、フローティング導体2を基板3上に形成する例を説明したが、図5 ング導体22は、インダクタ導体21の一部と同じ形状に示すように複数に分割された構造のフローティング導 50 をしており、これら形状が同じ部分は絶縁層5を挟んで

体2′を基板3上に形成してもよい。

【0021】また、図1では渦巻きの周回数が3の例を示しているが、周回数は3に限定されず、図6(a)に示すようにほぼ1周でもよく、あるいは図6(b)に示すように1周未満でもよい。さらに、インダクタ導体1やフローティング導体2を構成する渦巻きパターンのパターン幅やパターン間隔は同じである必要はなく、パターン幅やパターン間隔がインダクタ導体1とフローティング導体2とで異なっていてもよい。

10 【0022】 [第2の実施形態] 第1の実施形態のイン ダクタ素子は、場所によって3層メタル構造になるのに 対し、以下に説明する第2の実施形態のインダクタ素子 は2層メタル構造のみで形成される点に特徴がある。

【0023】図7は第2の実施形態のインダクタ素子の 概略を示す平面図である。同図に示すように、第2の実 施形態のインダクタ素子は、いずれも渦巻き形状のイン ダクタ導体11とフローティング導体12とで構成され、フローティング導体12は、渦巻きの中心から外縁 に欠けて延びる溝Pによって複数の領域に分割されている。

【0024】図8(a)は図7のB′-B′線の拡大断面図、図8(b)は図7のC-C線の拡大断面図である。これらの図に示すように、インダクタ導体11の一端に接続された電極引き出し部11aの一部はフローティング導体12の溝Pの内部に形成されている。すなわち、電極引き出し部11aとフローティング導体12とを基板3上の同一高さに形成することにより、インダクタ素子の全体を2層メタル構造にすることができ、製造工程の簡略化が図れる。

【0025】一方、図9は第2の実施形態の変形例を示す図であり、図9(a)はインダクタ素子の概略を示す平面図、図9(b)は図9(a)のD-D線の拡大断面図である。図9(b)に示すようにインダクタ導体11′の一部は溝Pの内部に形成されており、溝Pの上方に電極引き出し部11′aが形成されている。この電極引き出し部11′aは、インダクタ導体11′と同一高さに形成されているため、インダクタ素子の全体を2層メタル構造にすることができる。

【0026】 (第3の実施形態) 第1の実施形態では、 の 絶縁層5の上面側のインダクタ導体1と下面側のインダクタ導体2とをほぼ同一形状にしているが、これらイン ダクタ導体の全長にわたって形状が同一である必要はな く、一部だけが一致していてもよい。

【0027】図10は第3の実施形態のインダクタ素子の概略を示す平面図である。同図において、実線は絶縁層5の上面側に形成されたインダクタ導体21、点線は絶縁層5の下面側に形成されたフローティング導体22をそれぞれ表している。同図に示すように、フローティング導体22は、インダクタ導体21の一部と同じ形状をしており、これら形状が同じ部分は絶縁層5を増んで

対向する位置に形成されている。

【0028】このように、インダクタ導体21とフロー ティング導体22の一部の形状だけが同一であっても部 分的な2層構造となるため、第1の実施形態と同様に、 渦電流と浮遊容量の発生を低減することができる。

[0029]

【発明の効果】以上詳細に説明したように、本発明によ れば、同一形状のインダクタ導体とフローティング導体 を絶縁層を挟んで対向配置した2層構造にするため、イ ンダクタ導体が基板から間隔を隔てて形成され、基板表 10 D-D線の拡大断面図である。 面に発生される渦電流や、インダクタ導体と基板表面と の間に発生される浮遊容量を低減することができる。

【図面の簡単な説明】

【図1】基板上に形成されたインダクタ素子の概略を示 す平面図である。

【図2】インダクタ素子の構造を簡略化して示した図で ある。

【図3】図1のA-A線の拡大断面図である。

【図4】図1のB-B線の拡大断面図である。

【図5】複数に分割された構造のフローティング導体を 20 5、6 絶縁層

有するインダクタ素子の概略を示す平面図である。

【図6】(a)は渦巻きの周回数がほぼ1周の例を示す 図、(b)は1周未満の例を示す図である。

【図7】第2の実施形態のインダクタ素子の概略を示す 平面図である。

【図8】 (a) は図7のB′-B′線の拡大断面図、

(b) は図7のC-C線の拡大断面図である。

【図9】第2の実施形態の変形例を示す図で、(a)は インダクタ素子の概略を示す平面図、(b)は(a)の

【図10】第3の実施形態のインダクタ素子の概略を示 す平面図である。

【図11】インダクタ素子から発生される磁束を説明す る図である。

【符号の説明】

- 1 インダクタ導体
- 2 フローティング導体
- 3 基板
- 4 非磁性体膜

【図1】

【図11】

[図2]

(図4) 【図3】

[図5]

【図6】

