Esercitazione N.1: Misure di tensione, corrente, tempi, frequenza.

Gruppo xx Mario Rossi, Anna Bianchi [non dimenticate i nomi]

5 ottobre 2015

1 Scopo e strumentazione

L'esercitazione ha lo scopo di impratichirsi con la strumentazione e le tecniche di misura. Abbiamo utilizzato sia il multimetro digitale sia il tester analogico.

2 Misure di tensione e corrente

2.b Partitore Abbiamo montato il circuito in Fig. 1 con i valori di resistenza misurati con il multimetro digitale: $R_1=1.12\pm0.01k\Omega$ e $R_2=0.95\pm0.01k\Omega$. L'errore è stato stimato usando le indicazioni del manuale del multimetro (0.8% + 1 cifra). Dall'analisi del circuito ci aspettiamo che $V_{\rm OUT}/V_{\rm IN}=\frac{1}{1+R_1/R_2}=0.459\pm0.003$.

[Nota sul calcolo di questo errore: l'errore relativo sul rapporto delle resistenze è 1.4%. Poichè il rapporto è circa 1, l'errore assoluto è 0.014. Quando sommo 1 (numero puro) l'errore assoluto rimane lo stesso ma quello relativo diventa 0.014/2=0.7%. Facendo l'inverso l'errore relativo rimane lo stesso, per cui l'errore finale sul rapporto è 0.7% * 0.459=0.003]

Variando $V_{\rm IN}$ tra 0 e 10V abbiamo ottenuto i dati riportati in Tabella 1 e Figura 1.

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
1.01	0.01	0.465	0.005	0.460	0.006
2.02	0.02	0.93	0.01	0.460	0.006
2.99	0.03	1.35	0.01	0.452	0.006
3.95	0.04	1.83	0.02	0.463	0.006
5.01	0.05	2.27	0.02	0.453	0.006
7.50	0.08	3.4	0.03	0.453	0.006
10.02	0.10	4.55	0.05	0.454	0.006

Tabella 1: Partitore di tensione con resistenze da circa 1k. Tutte le tensioni in V.

Come ci si aspettava la relazione tra tensione di ingresso ed uscita è lineare. Il rapporto VOUT/VIN è da confrontare con il valore aspettato indicato sopra.

[Volendo si può fare la media pesata dei valori misurati]

Figura 1: Partitore di tensione.

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
1.01	0.01	0.43	0.004	0.426	0.006
2.02	0.02	0.87	0.01	0.431	0.006
2.99	0.03	1.26	0.01	0.421	0.006
3.95	0.04	1.68665	0.02	0.427	0.006
5.01	0.05	2.13927	0.02	0.427	0.006
7.5	0.08	3.2025	0.03	0.427	0.006
10.02	0.10	4.27854	0.04	0.427	0.006

Tabella 2: Partitore di tensione. Tutte le tensioni in V.

Figura 2: Partitore di tensione con resistenze da circa 1M.

2.c Partitore con resitenze più grandi Montando di nuovo il partitore con le resistenze $R_1 = 3.80 \pm 0.04 M\Omega$ e $R_2 = 3.95 \pm 0.04 M\Omega$ si osservano i nuovi dati in Tabella 2 e Figura 2

Si osserva come valore del rapporto misurato con le resistenze da 4 $M\Omega$ si discosti da quanto atteso $V_{\rm OUT}/V_{\rm IN} = \frac{1}{1+R_1/R_2} = 0.510 \pm 0.003$. La ragione della discrepanza è da ricercarsi nella impedenza di ingresso del tester.

2.d Resistenza di ingresso del tester Usando il modello mostrato nella scheda si ottiene

$$\frac{R_1}{R_T} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2})$$

L'errore sul secondo membro è: 1.4% sul primo termine, 0.7% sul secondo termine. Entrambi i termini sono circa 2, per cui l'errore totale è $0.03 \oplus 0.015 = 0.035$, dominato dalla misura di tensione. Quindi se $R_T > R_1/0.035$ non abbiamo nessuna sensibilità sperimentale. Nel primo caso risulta un numero compatibile con 0: usando VIN = 5V abbiamo $R_1/R_T = 0.027 \pm 0.035$. Nel secondo caso risulta invece $R_1/R_T = 0.38 \pm 0.035$ cioè $R_T = 10 \pm 0.9 M\Omega$.

2.1 Partitore di corrente: 2.e

Si monta il circuito indicato con i valori di resistenza misurati con il multimetro digitale: $R_3 = 105 \pm 2k\Omega$, $R_1 = 550 \pm 5\Omega$, $R_2 = 230 \pm 3\Omega$. Si fissa la tensione dell'alimentatore a $V_{IN} = 10.2 \pm 0.1V$ e si utilizza il tester digitale per misurare alternativamente la corrente nel ramo 1 e nel ramo 2, sostitendo il ramo non sotto misura con un cortocircuito.

[NOTA BENE: nelle misure di corrente è importante prima fare le connessioni e poi accendere l'alimentatore, per cui bisogna sempre spegnere l'alimentatore prima di modificare le connessioni.]

Si ottengono le seguenti misure: $I1 = xx \pm y\mu$ A, $I2 = xx \pm y\mu$ A. Si ripetono le misure utilizzando il tester analogico, e si ottengono i seguenti valori: $I1 = xx \pm y\mu$ A, $I2 = xx \pm y\mu$ A. Ci si aspetterebbe che il rapporto tra le correnti sia $I1/I2 = R2/R1 = 0.418 \pm 0.006$ e che la somma delle correnti sia $I1 + I2 = I_{TOT} \equiv V_{IN}/R3 = 97 \pm 2\mu$ A, considerando che l'approssimazione $I_{TOT} = V_{IN}/R3$ vale quando R3 >>altre resistenze in gioco, ed è certamente verificata in questo circuito. Tuttavia si nota che i valori effettivamente misurati con il tester analogico ed il tester digitale si discostano da tali valori:

strumento	I1 (μA)	$\sigma(I1) (\mu A)$	I2 (μA)	$\sigma(I2) (\mu A)$	I1/I2	$\sigma(I1/I2)$	I1+I2	$\sigma(I1+I2)$
Analogico	XX	XX	XX	XX	XX	xx	XX	XX
Digitale	XX	XX	XX	XX	XX	xx	XX	xx

La discrepanza nasce dalla resistenza interna dell'amperometro che altera la resistenza lungo ciascun ramo quando viene inserito. Detta R_A la resistenza dell'amperometro, questa viene sommata alternativamente ad R1 oppure R2, per cui $I1/I2 = (R2 + R_A)/(R1 + R_A)$ e $I1 + I2 = I_{TOT} \cdot (R1 + R2)/(R1 + R2 + R_A)$. Si può quindi stimare

$$R_A = (R1 + R2) \left(\frac{I_{TOT}}{I1 + I2} - 1 \right)$$

3 Uso dell'oscilloscopio

Misure di tensione

Impedenza di ingresso dell'oscilloscopio

- 4 Misure di frequenza e tempo
- 5 Trigger dell'oscilloscopio
- 6 Conclusioni e commenti finali

Di questa esperienza non abbiamo capito molto, però è stato divertente far saltare i fusibili.