Tarea Método de Punto Fijo

Angel Caceres Licona

June 7, 2020

1 Considerar la función $e^x + x^2 - x - 4...$

1.1 Construya tresdiferentes funciones de iteracion.

Consideremos primero $g(x) = e^x + x^2 - 4$

Gráfica de la primer g(x)

La derivada de esta función es:

 $g'(x) = -e^x - 2x$ y tenemos que |g'(x)| < 1 para $x \in (-0.74, 0)$

Al hacer las iteraciones obtenemos lo siguiente:

n	g(x)
1	-0.281718171541
2	-3.16614858154
3	6.06666252367
4	464.043421299
5	3.40014339901e + 201

Que no converge a la raíz buscada.

Probamos con una segunda $g(x) = \log(-x^2 + x + 4)$ Su derivada es $g'(x) \frac{1-2x}{-x^2 + x + 4}$ Y tenemos que |g'(x)| < 1 no tiene soluciones reales. Iteramos y obtenemos lo siguiente:

n	g(x)
1	1.38629436112
2	1.24256321468
3	1.30795433512
4	1.28015848727
5	1.29235524303
6	1.2870741686
7	1.28837503694
8	1.28880963902
9	1.2886207127
10	1.28870285824
1	

Que parece estar convergiendo muy lentamente. $\,$

```
Escogemos una tercera g(x)=\frac{-e^x+x+4}{x} Tenemos que g'(x)=-\frac{e^x(x-1)+4}{x^2} y que |g'(x)|<1x\in(-1.88751,0)
```

Iteramos y obtenemos lo siguiente

n	g(x)
1	2.28171817154
2	-1.53909222227
3	-1.45951746429
4	-1.58143648714
5	-1.39928735729
6	-1.68224194147
7	-1.26723832134
8	-1.93424818125
9	-0.993263918688
10	-2.65424944943

que tampoco converge.

2 Código del programa

```
from math import *

def gx(x):
    return -exp(x) -x**2 +4

def puntofijo(a,tol, n = 20):

    i = 1
    b = gx(a)
    tramo = abs(b-a)
    while(tramo>=tol and i<=n):
    print "Elupuntoufijouesu",b,"udespuesudeu",i,"uiteraciones"</pre>
```

3 Repetir el ejercicio con $x^3 - x^2 - 10x + 7$

Primero graficamos en el intervalo (0,1)

Probamos la primer $g(x) = \frac{x^3 - x^2 + 7}{10}$ y obtenemos

n	g(x)
1	0.6991
2	0.685293789027
3	0.685220528459

que convergió rápido.

Probamos la segunda $g(x) = \frac{x^3 - 10x + 7}{x}$ y obtenemos

n	g(x)
1	60.01
2	3591.31674723
3	12897545.9809
2	1.66346692328e + 14
2	2.76712220485e + 28
2	7.65696529659e + 56
2	5.86291175531e + 113

que no converge.

Probamos con una tercera $g(x) = \sqrt{x^3 - 10x + 7}$ y obtenemos que el programa truena por intentar calcular una raíz de un numero negativo.

4 Repetir el ejercicio con $f(x) = 1.05 - 1.04x + \log(x)$

Primero graficamos en el intervalo (1,2)

Probamos la primer $g(x) = \frac{1.05 + \log(x)}{1.04}$ y obtenemos

n	g(x)
1	1.00961538462
2	1.01881677982
3	1.02754032132
2	1.03573837382
2	1.04337940099
2	1.05044698962
2	1.05693824807
1	

que converge lentamente. Probamos una segunda $g(x)=e^{-1.05+1.04x}$ y obtenemos lo siguiente:

n	g(x)
1	0.990049833749
2	0.979857454096
3	0.969525746926
2	0.959163984704
2	0.948883303392
2	0.938791973795
2	0.928990889263

5 Clasifique las funciones por rapidez de convergencia...

n	$g_1(x)$	$g_2(x)$	$g_3(x)$	$g_4(x)$
1	2.64575131106	diverge rápido	2.1573526803	1.50747491667
2	2.31392495318		2.12927784776	1.80533262168
3	2.085113115356	•	2.10345737732	1.89833372223
4	1.96790027706	•	2.05854241047	1.91158621947
5	1.92672978417	•	2.03934932642	1.91281576256
6	1.9160343453	•	2.02221852111	1.91292134565
7	1.9136073772		2.0070346352	
8	1.91307744943	•	1.99366482238	
9	1.91296277044	•	1.98196454838	
10	1.91293800204	•	1.9717832322	
11		•	1.9629693429	
12		•	1.95537469059	
13		•	1.94885778226	
14		•	1.94328622775	
15		•	1.93853826786	
16	•	•	1.9345035497	•
17		•	1.93108329847	

Entonces vemos que la que converge mas rápido es $g(x) = x - \frac{x^3 - 7}{12}$