1 PS1-4

(a) **Problem:** Consider $\omega = \omega_0 \sin \left| \frac{ka_0}{2} \right|$ a phonon dispersion relation in 1D. Compute the resulting density of states.

We know that the density of states $\mathcal{D}(\omega)$ is the phase space density in momentum space that produces frequency ω under the dispersion relation. Thus, with s indexing the number of types of phonons,

$$\mathcal{D}(\omega) = \sum_{\alpha} \int \frac{1}{2\pi} \delta(\omega - \omega(k)) dk$$
 (1)

$$= \sum_{s} \int \frac{1}{2\pi} \frac{1}{\omega'(k_0)} \delta(k - k_0) dk$$
 (2)

where $\omega(k_0) = \omega$, or $k_0 = \frac{2}{a_0} \arcsin \frac{\omega}{\omega_0}$. Thus,

$$\omega'(k_0) = \frac{a_0 \omega_0}{2} \cos \left| \arcsin \frac{\omega}{\omega_0} \right| \tag{3}$$

$$=\frac{a_0\omega_0}{2}\sqrt{1-\frac{\omega^2}{\omega_0^2}}\tag{4}$$

$$=\frac{a_0}{2}\sqrt{\omega_0^2-\omega^2}\tag{5}$$

$$\mathcal{D}(\omega) = \sum_{s} \int \frac{1}{2\pi} \frac{2}{a_0} \left(\omega_0^2 - \omega^2\right)^{-1/2} \delta(k - k_0) \, \mathrm{d}k$$
 (6)

$$= \frac{2}{\pi a_0} \left(\omega_0^2 - \omega^2\right)^{-1/2} \tag{7}$$

(b) **Problem:** Consider now an arbitrary dispersion relation in three dimensions $\omega(\vec{k})$. Compute the dependence of the density of states near a maximum of ω .

Returning to our earlier expression

$$\mathcal{D}(\omega) = \sum_{s} \int \frac{1}{2\pi} \delta(\omega - \omega(\vec{k})) d\vec{k}$$
 (8)

Ignoring the \sum_s for now, we note that the δ function constrains us to a 2-dimensional subspace. What subspace? Let's expand $\omega(\vec{k})$ about its maximum

$$\omega(\vec{k}) = \omega_{\text{max}} - \sum_{i=1}^{3} a_i \xi_i^2 \tag{9}$$

for positive $a_i, \xi_i = k_i - k_{\text{max}}$. Then, the subspace of $d\vec{k}$ that we are constrained to is that satisfying

$$\omega - \omega_{\text{max}} + a_i \xi_i^2 = 0 \tag{10}$$

$$a_i \xi_i^2 = \Delta \omega \tag{11}$$

where we define $\Delta \omega > 0 = \omega_{\text{max}} - \omega$. This is clearly an ellipse; call the set of points satisfying (11) S_W , then (8) becomes

$$\mathcal{D}(\omega) = \sum_{s} \int \frac{1}{2\pi} \frac{1}{v_g} dS_{\omega}$$
 (12)

with $v_g = \frac{\mathrm{d}\omega(k)}{\mathrm{d}k}$ the normal derivative to S_ω , generalizing from the 1-D property $\delta(f(a)) = \frac{1}{f'(a_0)}\delta(a-a_0)$.

If we follow up to here, then let's switch to polar coordinates to evaluate the integral. S_{ω} becomes $r^2 d\theta d\phi$ and we obtain

$$\int \frac{\mathrm{d}S_{\omega}}{v_g} = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{r^2(\theta, \phi) \mathrm{d}\theta \mathrm{d}\phi}{v_g(\theta, \phi)}$$
(13)

But then it's clear that $r^2 \propto \Delta \omega$, since $r^2 = \sum_{i=1}^3 \xi_i^2$. At the same time, $v_g(\theta, \phi)$ is a linear combination

of the ξ_i and so scales like $\sqrt{\Delta\omega}$. Thus, the above integral scales like $\sqrt{\Delta\omega} = \sqrt{\omega_{\rm max} - \omega}$.

I know this ending is a bit shaky; can probably come up with something better by explicitly finding $r^2(\theta, \phi)$, which will depend on the a_i coefficients.

(c) **Problem:** Consider now a 2D dispersion relation. Compute \mathcal{D} near a saddle point of $\omega(\vec{k})$.

Following our above reasoning, we want to know what shape S_{ω} takes on. Near a saddle point in ω , a plane of constant ω forms a hyperbolic cross section. Thus, if we follow the same sort of dimensional analysis as before, we'd expect $S_{\omega} \propto r \propto \sqrt{\Delta \omega}$, and still $v_g \propto \sqrt{\Delta \omega}$ and obtain a constant dependence on $\Delta \omega$. This is indeed correct for \vec{k} near an extremum of ω , but not quite correct for a saddle point.

We err in our analysis because we can only consider a finitely large range of k, and with a hyperbolic cross section, a change in $\Delta\omega$ not only changes the S_w we are looking at but also the k at which we cut off our cross section. This should be a pretty small correction, but the correct dependence which is $\log \Delta\omega/\omega$ is also pretty small so I'm satisfied for now.