Homework Assignment 7

Matthew Tiger

November 4, 2015

Problem 9.1. For the following problems for 9.1, suppose a function $f : [a, b] \to \mathbb{R}$ is only known at distinct sites $x = [x_1, x_2, \dots, x_n]$ where $x_i \in [a, b]$, for $i = 1, 2, \dots n$. Let $p_n(f, t)$ be the Lagrange interpolating polynomial at these sites.

Problem 9.1.1. Show that the basic quadrature $J(f) := \int_a^b p_n(f,t) dt$ satisfies $J(f) = \sum_{j=1}^n w_j f(x_j)$ where the weights w_j depend on the Lagrange basis.

Solution. Note the Lagrange interpolating polynomial of f through the nodes x_1, x_2, \ldots, x_n is given by

$$p_n(f,t) = \sum_{j=1}^n f(x_j) \prod_{\substack{i=1\\i\neq j}} \frac{t - x_i}{x_j - x_i}.$$

If $J(f) := \int_a^b p_n(f,t)$, then, using this definition of the Lagrange interpolating polynomial, it is clear that

$$J(f) = \int_{a}^{b} p_{n}(f, t) dt = \int_{a}^{b} \left[\sum_{j=1}^{n} f(x_{j}) \prod_{\substack{i=1\\i \neq j}} \frac{t - x_{i}}{x_{j} - x_{i}} \right] dt$$
$$= \sum_{j=1}^{n} \left[\int_{a}^{b} \prod_{\substack{i=1\\i \neq j}} \frac{t - x_{i}}{x_{j} - x_{i}} dt \right] f(x_{j}) = \sum_{j=1}^{n} w_{j} f(x_{j}).$$

Thus, J(f) is of the form $\sum_{j=1}^{n} w_j f(x_j)$ where w_j depends on the Lagrange basis $l_j(t) = \prod_{\substack{i=1\\i\neq j}} \frac{t-x_i}{x_j-x_i}$.

Problem 9.1.2. Show that J(f) has degree of precision at least n-1.

Solution. Let q(t) be a polynomial of degree n-1. Then,

$$q(t) = \sum_{j=1}^{n} q(x_i) \prod_{\substack{i=1\\i\neq j}} \frac{t - x_i}{x_j - x_i},$$

i.e. the Lagrange interpolating polynomial of q through the nodes $x_1, x_2, \dots x_n$ is q itself. Hence, the exact integral of q, $I(q) = \int_a^b q(t) dt$, satisfies

$$I(q) = \int_{a}^{b} q(t) dt = \int_{a}^{b} \sum_{j=1}^{n} q(x_{j}) \prod_{\substack{i=1\\i\neq j}} \frac{t - x_{i}}{x_{j} - x_{i}} dt$$
$$= \sum_{j=1}^{n} \left[\int_{a}^{b} \prod_{\substack{i=1\\i\neq j}} \frac{t - x_{i}}{x_{j} - x_{i}} dt \right] q(x_{j}) = J(q).$$

Since q is a polynomial of degree n-1 and I(q)=J(q), we know that J(f) has degree of precision at least n-1.

Problem 9.1.3. Show that if $f \in C^n[a,b]$, then the truncation error can be bounded in terms of the nodal polynomial as follows:

$$|R(f)| \le \frac{1}{n!} \max_{t \in [a,b]} |f^{(n)}(t)| \int_a^b |\Pi_n(t)| dt$$

Solution. Let $f \in C^n([a,b])$. Note the truncation error is given by R(f) = I(f) - J(f). Since $f \in C^n([a,b])$ and the Lagrange interpolating polynomial p_n satisfies $p_n(f,x_i) = f(x_i)$ for i = 1, 2, ..., n, there is a point ξ_x in the smallest interval containing [a,b] and every x_i such that

$$R(f) = I(f) - J(f) = \int_{a}^{b} f(t) dt - \int_{a}^{b} p_{n}(f, t) dt = \frac{1}{n!} \int_{a}^{b} f^{(n)}(\xi_{x}) \Pi_{n}(t) dt$$

where $\Pi_n(t)$ is the nodal polynomial $\Pi_n(t) = \prod_{j=1}^n (t - x_j)$. From this identity, it is clear that

$$|R(f)| = \left| \frac{1}{n!} \int_a^b f^{(n)}(\xi_x) \Pi_n(t) dt \right|$$

$$\leq \frac{1}{n!} |f^{(n)}(\xi_x)| \int_a^b \Pi_n(t) dt$$

$$\leq \frac{1}{n!} \max_{t \in [a,b]} |f^{(n)}(t)| \int_a^b \Pi_n(t) dt$$

since $|f^{(n)}(\xi_x)| \leq \max_{t \in [a,b]} |f^{(n)}(t)|$ as $\xi_x \in [a,b]$ and we are done.

Problem 9.3.1. In the following, for a function $f:[a,b] \to \mathbb{R}$, f_i is shorthand for $f(x_i)$, with $x_i = a + (i-1)(b-a)/(n-1)$. For n = 4, consider **Simpson's 3/8 rule**

$$J_{S38}(f) = \frac{b-a}{8}(f_1 + 3f_2 + 3f_3 + f_4).$$

Choose the interval [0, 1]. Find the exact degree of precision. The error is given by $R_{S38}(f) = c_{S38}f^{(4)}(\xi)$. Find c_{S38} using MATLAB and a polynomial for f.

Solution. Note that on the interval [0, 1],

$$J_{S38}(f) = \frac{b-a}{f_1 + 3f_2 + 3f_3 + f_4} = \frac{1}{8}(f(0) + 3f(1/3) + 3f(2/3) + f(1)).$$

To see that the exact degree of precision of this quadrature is 3, note that

$$I(x^3) = \int_0^1 x^3 dx = \frac{1}{4} = \frac{1}{8} \left((0)^3 + 3(1/3)^3 + 3(2/3)^3 + (1)^3 \right) = J_{S38}(x^3)$$

and similarly

$$I(x^{2}) = \int_{0}^{1} x^{2} dx = \frac{1}{3} = \frac{1}{8} \left((0)^{2} + 3(1/3)^{2} + 3(2/3)^{2} + (1)^{2} \right) = J_{S38}(x^{2})$$

$$I(x^{1}) = \int_{0}^{1} x^{1} dx = \frac{1}{2} = \frac{1}{8} \left((0)^{1} + 3(1/3)^{1} + 3(2/3)^{1} + (1)^{1} \right) = J_{S38}(x^{1})$$

$$I(x^{0}) = \int_{0}^{1} x^{0} dx = 1 = \frac{1}{8} \left((0)^{0} + 3(1/3)^{0} + 3(2/3)^{0} + (1)^{0} \right) = J_{S38}(x^{0})$$

but

$$I(x^4) = \int_0^1 x^4 dx = \frac{1}{5} \neq \frac{11}{54} = \frac{1}{8} \left((0)^4 + 3(1/3)^4 + 3(2/3)^4 + (1)^4 \right) = J_{S38}(x^4).$$

Since $I(x^i) = J_{S38}(x^i)$ for all $0 \le i \le 3$ the quadrature rule is the same as the integral for all polynomial of degree 3 or less, but $I(x^4) \ne J_{S38}(x^4)$, the exact degree of precision must be 3.

To find c_{S38} , choose $f(x) = x^4$. Then, as shown above, $I(x^4) = 1/5$ and $J_{S38} = 11/54$, so $R_{S38}(f) = I_{S38}(f) - J_{S38}(f) = -0.0037037 = c_{S38}f^{(4)}(\xi)$. Since $f^{(4)}(\xi) = 24$ for our choice of f, it follows that $c_{S38} = -0.00015432$.

Problem 9.4.1. Given two real numbers α_1 and α_2 and two values t_1, t_2 in [-1, 1]. For a function $f: [-1, 1] \to \mathbb{R}$, consider the basic quadrature $J_1(f) := \alpha_1 f(t_1) + \alpha_2 f(t_2)$ to approximate $\int_{-1}^{1} f(t) dt$ How do we choose the four numbers α_1, α_2, t_1 , and t_2 to obtain the maximum degree of precision?

Solution. For the quadrature $J_1(f)$ as defined in the problem, we have that

$$\int_{-1}^{1} t^{0} dt = 2 = \alpha_{1} f(t_{1}) + \alpha_{2} f(t_{2}) = \alpha_{1} + \alpha_{2}$$

$$\int_{-1}^{1} t^{1} dt = 0 = \alpha_{1} f(t_{1}) + \alpha_{2} f(t_{2}) = \alpha_{1} t_{1} + \alpha_{2} t_{2}$$

$$\int_{-1}^{1} t^{2} dt = \frac{2}{3} = \alpha_{1} f(t_{1}) + \alpha_{2} f(t_{2}) = \alpha_{1} t_{1}^{2} + \alpha_{2} t_{2}^{2}$$

$$\int_{-1}^{1} t^{3} dt = 0 = \alpha_{1} f(t_{1}) + \alpha_{2} f(t_{2}) = \alpha_{1} t_{1}^{3} + \alpha_{2} t_{2}^{3}.$$

This gives us a system of four equations in four unknowns. Solving the system yields the solution $\alpha_1 = \alpha_2 = 1$, and $t_1 = \frac{1}{\sqrt{3}}$ and $t_2 = -\frac{1}{\sqrt{3}}$.

Since the quadrature rule is such that $I(p) = J_1(p)$ for any polynomial of degree less than 4, by our own definition, this quadrature rule has maximal degree of precision 3 as the rule does not hold for polynomials of degree greater than or equal to 4.

Problem 9.4.2. Now we consider the quadrature $J_2(f) := \beta_1 f(-1) + \beta_2 f(0) + \beta_3 f(1)$. Compute the values of β_i to obtain degree of precision 2. Is 2 the maximum degree of precision?

Solution. To obtain degree of precision 2 for the quadrature $J_2(f)$, we make sure that $I(p) = J_2(p)$ for every polynomial p with degree less than 3. Doing so gives us the following system of equations in three unknowns

$$\int_{-1}^{1} t^{0} dt = 2 = \beta_{1} f(-1) + \beta_{2} f(0) + \beta_{3} f(1) = \beta_{1} + \beta_{2} + \beta_{3}$$

$$\int_{-1}^{1} t^{1} dt = 0 = \beta_{1} f(-1) + \beta_{2} f(0) + \beta_{3} f(1) = -\beta_{1} + \beta_{3}$$

$$\int_{-1}^{1} t^{2} dt = \frac{2}{3} = \beta_{1} f(-1) + \beta_{2} f(0) + \beta_{3} f(1) = \beta_{1} + \beta_{3}$$

The solution to this system is $\beta_1 = 1/3$, $\beta_2 = 4/3$, and $\beta_3 = 1/3$. Note that 2 is not the maximum degree of precision as the quadrature rule holds for polynomials of degree 3.