

INDUSTRIAL PLACEMENT WORK DIARY

Academic Year: 2022/2023

20 February – 11 June 2023

Student's Name:	Hanlin Cai				
Student ID (MU/FZU):	20122161 / 832002117				
Module Code / Name:	EE382 (EE388FZ)				
Programme:	Robotics and Intelligent Devices				
Company & Address:	Fujian Huading Intelligent Manufacturing Technology Co. LTD				
	Building 44, Zone C, Fuzhou Software Park, Software Avenue				
	Fuzhou City, Fujian Province, China				

THE INDUSTRIAL PLACEMENT WORK DIARY MUST BE UPDATED WEEKLY BY THE END OF EACH WEEK IN MOODLE AS A SINGLE DOCUMENT.

Week	Day / Date	Activity / Portfolio				
	Mon 20/2/2023	Supervised by Prof. Zhezhuang Xu, I participate in the Mathematical Contest in Modeling (MCM 2023), which is a highly acclaimed contests for international undergraduates. During this competition, I cooperate with Yufei Wu and Wenxuan Luo. Our team once won the First Prize in China Undergraduate Mathematical Contest in Modeling. Besides, the MCM contest lasts for five days. And in the first day, we decided to choose the Topic B (Reimagine Maasai Mara), which is a discrete problem . Based on the problem background, we have comprehensively reviewed the related research and resource. Finally, I finished to write the part of Introduction and Literature Review of our competition paper. For details, our final paper can be accessed here: https://caihanlin.com/mypaper/modeling/202302COMAP.pdf				
1	Tue 21/2/2023	The MCM Problem B required us to resolve four objective , hence we have made a suitable time schedule in advance. On Tuesday, we build our model I (Human-land Relationship Coupling Analysis) to address the objective of human-land interaction analysis and area classification. The following Figure 1 illustrates the classification of the Maasai Mara area. $ \begin{array}{cccccccccccccccccccccccccccccccccc$				
	Wed 22/2/2023	On Day 3, we firstly propose a four-layer strategy evaluation model based on the AHP method to evaluate and rank the policies. The following Figure 2 shows the structure of the strategy evaluation model. Human-Land Relationship Human Society Subsystem Land Resource Subsystem Flanting Tourist Vegetation Development Strategy Evaluation Model BD EQ EB DI Second, we present the multi-objective optimization model to quantify the economic and ecological impact of the optimal combination of the strategies and policies. Finally, we utilized our proposed model to test a representative grid in the MMNR area. The simulation results verify the effectiveness and rationality of our model.				

Thu 23/2/2023 On Day 4, considering to resolve the Objective III, we design a long-term trend prediction model to project and assess the long-term ecological and economic situation in the MMNR area based on the optimal management strategies. First, we quantify the reflection of trend using the change of animal numbers and resident economic incomes. Second, we propose the specific expression of the Logistic Equation, maximum environmental capacity and resident economic incomes. Third, based on mathematical definitions, we design a Python program for our trend prediction models. Finally, we obtain and present twelve 100-year prediction results referring to twelve different sets of parameter configurations. On the last day, we firstly design a two-page non-technical report for the Kenyan Tourism and Wildlife Committee (Objective IV). After finishing the first version of main body. I begin to write the conclusion

On the last day, we firstly design a two-page **non-technical report** for the Kenyan Tourism and Wildlife Committee (Objective IV). After finishing the first version of main body, I begin to write the conclusion and summary. Also, I draw a 'fantastic' figure to show the overview of our works, as follows:

Fri 24/2/2023

Ultimately, I review and polish the whole paper under the guidance of Prof. Xu, and we upload the final manuscript to the COMAP committee.

Summary: In brief, I take part in the 2023 Mathematical Contest in Modeling (MCM) in the first week. Advised by Prof. Xu, we present a paper called Reshape the Crowning Glory of Maasai Mara. Since the MCM contest only lasts for **five days**, it is impossible for our paper to be comprehensive and perfect. Therefore, I plan to further improve and refine our paper in the following weeks. Finally, our final paper can be accessed here: https://caihanlin.com/mypaper/modeling/202302COMAP.pdf

Week	Day / Date	Activity / Portfolio					
	Mon 27/2/2023	In this week, we are required to finish the Intern Proposal of Industrial Placement (IP). Therefore, firstly I have a face-to-face talk with my supervisor. And based on the suggestions given by Prof. Xu, I choose the research topic of Exploring Multiple IoT Security Attacks with Machine Learning Based Schemes. Then, I take the most of time to read the related paper. Also, I begin to write the Literature Review of my IP proposal. For details, my IP proposal can be accessed here: https://caihanlin.com/mypaper/IP/Proposal.pdf					
		In Day 2, I continue to review the existing research works and write the part of Related Literature. Based on the reference, I obtain that many papers have proposed various ML-based methods to prevent specific IoT attacks and improve IoT security. For instance, the Q-learning schemes proposed by Xiao, et al. performed well in the face of both spoofing and jamming attacks. While the SVM schemes proposed by Ozay, et al. could effectively identify and defend against intrusion and spoofing attacks. And the following Table shows the Summary of my reviewing works.					
		Attacks	Security Schemes	ML Methods	Performance		
		Spoofing	Authentication	Q-learning ^[8]	Average loss rate		
			Authentication	$SVM^{[9]}$	Classification accuracy		
	Tue 28/2/2023		Authentication	$DNN^{[10]}$	False alarm rate		
2	28/2/2023		Authentication	dFW ^[11]	Misdetection rate		
		DoS	Secure IoT offloading	$MLP^{[12]}$	Detection accuracy		
			Access Control	MCA ^[13]	Root mean error		
			Flow Detection	NFS ^[3]	Storage efficiency		
		Intrusion	Access Control	Naive Bayes ^[14]	False alarm rate		
			Access Control	SVM ^[9]	Classification accuracy		
		Sybil	Dual Identity	THC-RPL ^[4]	Power consumption		
		Jamming	Secure IoT offloading	Q-learning ^[8]	Energy consumption		
		Note that my literature exploring is heavily based on the Review Paper published by Xiao, et al in 2020.					
	Wed						
	1/3/2022	Through in-deep literature review, I find that most of the solutions proposed by existing studies can address specific security attacks but cannot to define more patterns for detecting dynamic multiple attacks . Therefore, it is feasible for us to design a hybrid defense scheme to resolve this challenge. And it may lead to the potential publication opportunities and positive contributions.					

	organize the workflow and develop the research schedule. To advance my research scientifically and effectively, I developed a specific research schedule as follows: Industrial Placement Schedule Project Load: Zhezhange Xu, Hanlin Cai							
	WBS	Task ▼ Priorit	y Resource	Start	Finish	Duration Don	e % Complete	
Thu	▶ 1 In-depth literature m				Fri 24-Feb-23	12	60%	
Ina	▶ 1.1 Go through the ad	vanced paper NORMAL			Tue 21-Feb-23	8	80%	
	1.2 Repeat the experi		FZU, Hanlin C		Thu 23-Feb-23	4	60%	
2/2/2022		of existing methods HIGH			Fri 24-Feb-23	0	40%	
2/3/2023	2 Redesign some advance	d ML algorithms NOSIAI Ferent security modelsd LOW	FZU, Hanlin C		Wed 29-Mar-23 Fri 31-Mar-23	24 16	20%	
	4 Comprehensive experim				Mon 24-Apr-23	23	2%	
	4.1 Collect the data	NORWAL			Thu 20-Apr-23	14	5%	
	4.2 Contrast various		FZU, Hanlin C		Mon 24-Apr-23	9	2%	
		nt on the experiments HIGH			Mon 24-Apr-23	0	0%	
	▶ 5 Report writing and re			Thu 04-May-23	Wed 24-May-23	21	0%	
	▶ 6 Final demo slides per	pared for the research defence NORMAL	Hanlin Cai	Sat 20-May-23	Sun 28-May-23	9	0%	
	7 Final research report	revision and submission HIGH	Hanlin Cai	Tue 30-May-23	Mon 12-Jun-23	14	0%	
	In Day 5, after analysing the research background and existing gaps, in order to address the research problem systematically, I have divided it into the specific research questions listed in the following table.							
	Question	c research questio	118 11816	Objective	ownig	aute.		
	RQ1 of current l specific sec	of current IoT systems and the principles of specific security attacks, such as spoofing,			To understand different security requirements, challenges, and need to secure IoT systems from hostile and massive attacks.			
Fri 3/3/2023	RQ2 scheme and for prevent	What is machine learning based security scheme and the state-of-the-art algorithms for preventing specific IoT attacks, such as spoofing attacks and DoS attacks?		To identify vastly adopted and dependable ML-based methods by existing research to protect IoT systems from specific attacks.				
	RQ3 combine the security me	What is multiple IoT attacks and how can we combine the advantages of various ML-based security methods to defend against multiple IoT attacks?		To analyze the complicated security attacks in the real-operating environment of the IoT systems and integrate the most advanced defense schemes to improve the security.				
	Besides, today Based on the v	I have an online r	_	•	•			

Summary: In a word, this week I take most of my time to write the IP Proposal and read related research paper. An in-deep literature review has been conducted to analyse and compare the strength and weakness of existing works. Based on the review, I organize the research workflow and develop an experimental schedule. Finally, a research questions table is presented to illustrate the main challenge and objective in my future research. Again, my IP proposal can be accessed here: https://caihanlin.com/mypaper/IP/Proposal.pdf

Week	Day / Date	Activity / Portfolio					
	Mon 06/3/2023	In this week, I am going to further improve the Intern Proposal. I will focus on the part of research methodology, which includes testbed establishment, training datasets collection, learning model training and experimental results analysis. In Day 1, I have an online meeting with my supervisor and we detailly talk about the implementation of the experiments. Finally, I make a Week Plan to advance my works. For details, my latest IP proposal can be accessed here: https://caihanlin.com/mypaper/IP/Proposal.pdf					
3	Tue 07/3/2023	In Day 2, I firstly read some related paper and think about the merit and demerit of each methodology. According to an in-deep review paper by Xiao, et al, I select two different testbeds (FACT and Stratosphere Lab) and compare their similarity and difference. As shown in the following figure, the DoS detection pipeline is a suitable test framework for evaluating the accuracy and precision of various DoS classification algorithms, which would be useful to modify and improve the performance of classifiers. Stateless Features: 1					
	Wed 08/3/2023	As for Day 3, to begin with, I explore some Github and Gitee project to find some suitable tools for launching IoT attacks. I find that the Ostinato, EXPLIOT and Kali Linux are suggested to generate benign and malicious activities simultaneously. Also, Argus Tool can be utilized for feature extraction and forensic analysis. Finally, I use the Ostinato and Argus to simulate an attack scenario and extract the traffic data.					
	Thu 09/3/2023	In Day 4, today I am required to investigate some existing IoT attack datasets and analyze the respective features. Since IoT-related companies rarely release the primary data for the reasons of confidentiality laws and user privacy Restrictions. I select the following five secondary datasets (Bot-IoT, IoT-23, etc.) through the research paper. Dataset (Year) Benign Records Malicious Records Description					

In Day 5, after selecting suitable testbed template and training datasets, I am trying to do some **preliminary tests**. At first, I intend to utilize and integrate classical ML algorithms, such as Random Forest, Support Vector Machine and K-Nearest Neighbours. At present, I have carried out a preliminary test for these ML models and obtained some elementary results, as shown in the following Table.

Fri 10/3/2023

ML Model	Accuracy	Precision	Recall	F1-Score
SVM ^[9]	97.6%	94.9%	98.2%	96.5%
K-NN ^[23]	94.4%	92.0%	100%	96.0%
Random Forest ^[25]	99.2%	/	98.2%	/
GNB ^[23]	87.1%	/	90.7%	/
$SVM^{[24]} + dFW^{[11]}$	96.2%	95.2%	99.3%	97.2%
	$\frac{CI}{TI} \times 100\%$	$\frac{TP}{TP + FP}$	$\frac{TP}{TP + FN}$	$2 \times \frac{Precision \times Recall}{Precision + Recall}$

CI: Correctly classified intrusion; TI: Total number of inputs.

The Random Forest model got the best accuracy of 99.2%, and the combination of SVM and dFW models achieved the highest F1-Score of 97.2%, which represented the good balance between precision and recall.

Summary: In a nutshell, this week I take most of time to further improve my IP Proposal and design the part of **methodology and experiment**. Also, literature review has been conducted to analyse and compare the strength and weakness of related research. Referring to existing works, I select suitable IoT attack testbed and training dataset. Then, I do some preliminary tests and analyse the corresponding results. Finally, I have a face-to-face meeting with my tutor Mr. Jerry Qiu in the weekend and he give me some constructive advice. Again, my latest IP proposal can be accessed here: https://caihanlin.com/mypaper/IP/Proposal.pdf

TP: The number of true positives; FP: The number of false positives; FN: The number of false negatives

Week	Day / Date	Activity / Portfolio				
	Mon 13/3/2023	In this week, I am required to help my supervisor to draft the grant application. Therefore, in Day 1 , we have a face-to-face meeting to discuss the detailed tasks. My supervisor Prof. Xu gives me some related research paper and application forms. And I take the most of my time to read the materials and organize the related data. Moreover, because today is the lab open day, I show the sophomores around our laboratory.				
	Tue 14/3/2023	In Day 2, I take most of my time to read the China Industrial Internet Security Situation Report (2021), which is the state-of-the-art report for the industrial internet of things. And the report shows that in 2020, the 360 Security Capability Center intercepted a total of 782 million virus samples and 76.871 billion virus infections, a decrease of 10.46% compared to the same period in 2019 in terms of virus infection numbers.				
3	Wed 15/3/2023	As for Day 3, I begin to write the part of research objective (Grant), based on our research topics of the IIoT patrol system, I focus on investigating the current situation and development mode of industrial device inspections. Also, today I draw a flowchart to illustrate our proposed systems, as shown in the following figure. OpenIoT Web OpenIoT Web OpenIoT Web OpenIoT Web OpenIoT				
	Thu 16/3/2023	In Day 4, today I finish the part of the research objective, and start to write the part of research contents. And in this project, we focus on the advanced IoT inspection system, and the main research contents can be listed as follows: (1) Independently build a new IoT inspection system; (2) IoT Security Attack detection and prevention based on my system; (3) Using Kitex and Hertz distributed technology to upgrade the system. Additionally, in order to ensure the use, deployment and customization of the system by relevant enterprises and community customers, we will also design a set of user-friendly software prototypes and entry guides. Also, we will write detailed and thoughtful user manuals and technical documents, so as to reduce the difficulty coefficient of the secondary development of the system.				

In Day 5, after finishing the part of the research contents, today I am required to visualize our application path. Our IoT inspection system is considered to utilized in the field of new promoting industrial region and smart living communities. Therefore, I draw the corresponding figures to illustrate our technical route as follows:

➤ Route 1: solution for smart IoT factories (Chinese version)

Fri 17/3/2023

Route 2: solution for smart living communities (Chinese version)

Summary: In a word, this week I focus on writing the grant application under the guidance of my supervisor and tutor. White report reading and related paper review have been conducted to analyse and compare the competitive products in the market. Besides, this week I take many of my time to visualize the application path of our project. Finally, I have a face-to-face meeting with my tutor Mr. Haoran Zhang in the weekend and he show me his upcoming plan and give me some useful advice.