2048-word x 8-bit High Speed CMOS Static RAM

FEATURES

Single 5V Supply

High speed: Fast Access Time 120ns/150ns/200ns (max.)

• Low Power Standby and Low Power Operation

Standby:

100μW (typ.)

10μW (typ.) (L-version)

Operation:

200mW (typ.)

175mW (typ.) (L-version)

Completely Static RAM: No clock or Timing Strobe Required
 Directly TTL Compatible: All Input and Output

• Pin Out Compatible with Standard 16K EPROM/MASK ROM

• Equal Access and Cycle Time

• Capability of Battery Back Up Operation (L-version)

MORDERING INFORMATION

Type No.	Access Time	Package
HM6116P-2 HM6116P-3 HM6116P-4	120ns 150ns 200ns	600mil 24pin
HM6116LP-2 HM6116LP-3 HM6116LP-4	120 ns 150 ns 200 ns	Plastic DÎP
HM6116FP-2 HM6116FP-3 HM6114FP-4	120 ns 150 ns 200 ns	24pin Plastic SOP
HM6116LFP-2 HM6116LFP-3 HM6116LFP-4	120 ns 150 ns 200 ns	24pin riastic 50r

BFUNCTIONAL BLOCK DIAGRAM

PIN ARRANGEMENT

Note) This device is not available for new application.

MABSOLUTE MAXIMUM RATINGS

ltem	Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss	V r	-0.5°1 to +7.0	V
Operating Temperature	T.,.	0 to +70	* C
Storage Temperature	T.,,	-55 to +125	<u>.c</u>
Storage Temperature Under Bias	T.,	-10 to +85	. C
Power Dissipation	Pr	1.0	W

Note) *1. -3.5V for pulse width ≨50ns

STRUTH TABLE

<u>CS</u>	ŌĒ	WE	Mode	Vcc Current	1/0 Pin	Ref. Cycle
Н	×	×	Not Selected	Isu, Isu	High Z	
L	L	Н	Read	Icc	Dout	Read Cycle (1)~(3)
1.	Н	L	Write	Icc	Din	Write Cycle (1)
	L	L	Write	Icc	Din	Write Cycle (2)

TRECOMMENDED DC OPERATING CONDITIONS (Ta-0 to +70°C)

Îtem	Symbol	min	typ	max	Unit	
	Vcc	4.5	5.0	5.5	v	
Supply Voltage	Vss	0	0	0	v	
Input Voltage	V _{IH}	2.2	3.5	6.0	V	
	VIL	-0.3*1	_	0.8	V	

Note) *1. -3.0V for pulse width≤50ns.

DC AND OPERATING CHARACTERISTICS ($Vcc = 5V \pm 10\%$, Vss = 0V, Ta = 0 to $+70^{\circ}C$)

		I_{LI} $V_{CC} = 5.5$ V, $V_{IN} = V_{SS}$ to V_{CC} $-$ $CS = V_{IH}$ or $OE = V_{IH}$, $-$ $V_{I/O} = V_{SS}$ to V_{CC} $-$ I_{CC} $CS = V_{IL}$, $I_{I/O} = 0$ mA $-$ $I_{CC1} = 0$ $I_{I/O} = 0$ mA $-$	- 1	HM6116-2		Н	M6116-3/	-4	Unit
Item	Symbol	Test Conditions	min	typ*1	max	min	typ*1	max	Oint
					10	_	_	10	μA
Input Leakage Current	ILI	$V_{CC} = 5.5$ V, $V_{IN} = V_{SS}$ to V_{CC}	_	- 1	2*3		_	2*3	μΑ
		$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH},$	_	_	10	_		10	μA
Output Leakage Current	ILO	$V_{1/0} = V_{SS}$ to V_{CC}		-	2*3	-		2*3	μn
			-	40	80	_	35	70	mA
Operating Power Supply	perating Power Supply urrent Icc1*2	$CS = V_{IL}, I_{I/O} = 0 \text{mA}$		35*3	70 * 3	-	30*3	60*3	IIIA
Current		$V_{IH} = 3.5 \text{V}, \ V_{IL} = 0.6 \text{V},$		35	_	_	30	-	mA
Curem	I_{CC1}^{*2} $V_{IH} = 3.5 \text{V}, V_{IL} = 0.6 \text{V}, $	_	_	25*3					
		Min qualo duty = 100%		40	80	-	35	70	mA.
Average Operating Current	Icc 2			35*3	70*3	_	30 * 3	60 * 3	ША
	 		-	5	15		5	15	mA.
Standby Power Supply	Isa	$CS = V_{IH}$	_	4*3	12*3		4*3	12*3	IIII
Current	$I_{CC1}^{\bullet 2} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	0.02	2	μA				
Carrene	IsBi	$0.2V \text{ or } V_{CC} - 0.2V \leq V_{IN}$	s to Vcc $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	μA					
	verage Operating Current Icc: IsB IsB Vol	IoL=4mA	-	1 -	0.4	_			V
Output Voltage	Vol	$I_{OL} = 2.1 \text{mA}$	-		-	-	_	0.4	V
Output Foliage	Voн	$I_{OH} = -1.0 \text{mA}$	2.4	T -		2.4	_	max 10 2*3 10 2*3 70 60*3 70 60*3 15 12*3 2 50*3	V

Notes) $*1. Vcc = 5V, Ta = 25^{\circ}C$

* 2. Reference Only

*3. This characteristics are guaranteed only for L-version.

ECAPACITANCE $(f-1MHz, Ta-25^{\circ}C)$

Item	Symbol	Test Conditions	typ	max	Unit
Input Capacitance	С.,	V0V	3	5	pF
Input/Output Capacitance	C ₁ ,0	V _{t>0} = 0 V	5	7	pF

Note) This parameter is sampled and not 100% tested.

EAC CHARACTERISTICS (V_{cc} - 5V \pm 10%, T_a - 0 to +70°C)

• AC TEST CONDITIONS

Input Pulse Levels: 0.8 to 2.4V Input Rise and Fall Times: 10 ns

Input and Output Timing Reference Levels: 1,5V

Output Load: 1TTL Gate and C_L (100pF) (including scope and jig)

● READ CYCLE

Item		HM6116-2		HM6116-3		HM6116-4			
item	Symbol	min	max	min	max	min	max	Unit	
Read Cycle Time	tac	120	_	150	_	200	_	ns	
Address Access Time	LAA	_	120	_	150	_	200	ns	
Chip Select Access Time	lacs	_	120	_	150	_	200	ns	
Chip Selection to Output in Low Z	lcLz	10	_	15	_	15	-	ns	
Output Enable to Output Valid	los		80	-	100		120	ns	
Output Enable to Output in Low Z	l _{OL} z	10	_	15	_	15		ns	
Chip Deselection to Output in High Z	tenz	0	40	0	50	0	60	ns	
Chip Disable to Output in High Z	ionz	0	40	0	50	0	60	ns	
Output Hold from Address Change	ton	10		15		15	_	ns	

• WRITE CYCLE

lt		HM6	116-2	HM6116-3		HM6116-4		Unit	
Îtem	Symbol	min	max	min	max	min	max	Unit	
Write Cycle Time	twc	120		150		200		ns	
Chip Selection to End of Write	tew	70	Γ	90	-	120		ns	
Address Valid to End of Write	LAW	105	_	120	_	140		ns	
Address Set Up Time	las	20		20	_	20		ns	
Write Pulse Width	lwp	70	<u> </u>	90	_	120	_	ns	
Write Recovery Time	LWR	5	I -	10		10		ns	
Output Disable to Output in High Z	tonz	0	40	0	50	0	60	ns	
Write to Output in High Z	twaz	0	50	0	60	0	60	ns	
Data to Write Time Overlap	tow	35		40	_	60	_	ns	
Data Hold from Write Time	LOH	5	_	10	T -	10		ns	
Output Active from End of Write	low	5	_	10	_	10		ns	

MITIMING WAVEFORM

● READ CYCLE (1)(1)

@HITACHI

● READ CYCLE (2)(1)(2)(4)

● READ CYCLE (3) (1)(3)(4)

- NOTES: 1. WE is High for Read Cycle.
 2. Device is continuously selected, $\overline{CS} = V_{IL}$.
 3. Address Valid prior to or coincident with \overline{CS} transition Low.
 4. $\overline{OE} = V_{IL}$.

• WRITE CYCLE(1)

● WRITE CYCLE (2)(5)

- NOTES: 1. A write occurs during the overlap (t_{WP}) of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$.

 2. t_{WR} is measured from the earlier of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high to the end of write cycle.
 - 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
 - 4. If the CS low transition occurs simultaneously with the WE low transitions or after the WE transition, output remain in a high impedance state.

 - 5. OE is continuously low. (OE = V_{IL})
 6. D_{out} is the same phase of write data of this write cycle.
 7. D_{out} is the read data of next address.
 8. If CS is Low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.

BLOW VCC DATA RETENTION CHARACTERISTICS (Ta=0 to +70°C)

This characteristics are guaranteed only for L-version.

Item Symbol Test Conditions			min	typ	max	Unit
Vcc for Data Retention	VDA	$\overline{CS} \ge V_{CC} - 0.2V$, $V_{} \ge V_{CC} - 0.2V$ or $V_{} \le 0.2V$	2.0	_	_	v
Data Retention Current	Iccon*1	$V_{CC} = 3.0 \text{ V}, \overline{\text{CS}} \ge 2.8 \text{ V}, V_{IH} \ge 2.8 \text{ V} \text{ or } \text{OV} \le V_{IN} \le 0.2 \text{ V}$		-	30	μA
Chip Deselect to Data Retention Time	tcox	6 8 4 4	0	_		ns
Operation Recovery Time	l a	See Retention Waveform	Inc*2	_		ns

Notes) #1. 10µA max at Ta=0°C to +40°C, VIL min = -0.3V

* 2. tac = Read Cycle Time.

●Low Vcc Data Retention Waveform

