Groups and linear algebra (SC220) Autumn 2018 In Sem -I Time: 1hr 30 min

	Name:
	Student I.D.:
Section 1. T	rue/False (2 pts. each)
Print "T" if or a counter exa	the statement is true, otherwise print "F". In either case give a justification ample.
F If G and	d H are cyclic groups then $G \times \mathbb{H}$ is also cyclic.
Counter	Example: $G = \mathbb{Z}_2$, $H = \mathbb{Z}_2$ are cyclic
byt	$G \times H = \mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic.
F D_6 (Grotations of	
	as an element r of order 6
T Z_{11}^* is a	
	{1,2,3,4,5,6,7,8,9,10} has order 10
Z" =	$\langle 27 \text{ since } \langle 27 = \{2,4,8,5,10,9,7,3,6,1\} = IIII$
The rer	mainder when 3^{47} is divided by 23 is 9 ermals little thm. $3^{23-1} \equiv 1 \mod 23$
322	$\equiv 1 \mod 23 \implies (3^{2^2})^2 \equiv 1^2 \mod 23 \implies 3^{44} \equiv 1 \mod 23$ $= 3^4 \mod 23 \equiv 27 \mod 23 \equiv 4 \mod 23$
T In Sale	$344^{+3} = 3^3 \mod 23 = 27 \mod 23 = \boxed{4 \mod 23}$ et $\sigma = (123)(34)$ then σ^{2018} is $(13)(24)$

$$6 = (123)(34) = (3412) = (1234)$$

$$|6| = 4 \Rightarrow 6^4 = e \Rightarrow (6^4)^{504} = 6^{2016} = e$$

$$\therefore 6^{2018} = 6^{2016+2} = 6^{2016} \cdot 6^2 = 6^2 = (1234)(1234)$$

$$= (13)(24)$$

 T In D_n the subgroup generated by r is a Normal subgroup.

 $|\langle r \gamma \rangle| = n$ Hence the number of cosets of $\langle r \gamma \rangle$ in Dn are |Dn| = 2. Hence left and right cosets on $|\nabla r \gamma| = n$ Hence left and right cosets on $|\nabla r \gamma| = n$ Hence $|\nabla r \gamma| =$

I2×I2 is abelian but not cyclic.

The matrices of type $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ with $a,b,d \in \mathbb{R},ad \neq 0$ form a subgroup of $GL_2(\mathbb{R})$ By Subgroup criterea $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, $\begin{pmatrix} \times & y \\ 0 & w \end{pmatrix} \in GL_2(\mathbb{R})$ S.t. $ad \neq 0$, $xw \neq 0$ then $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} \times & y \\ 0 & w \end{pmatrix}^{-1} = \stackrel{1}{\downarrow} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} w - y \\ 0 & x \end{pmatrix} = \begin{pmatrix} \frac{a}{\chi} & \frac{b\chi - ay}{\chi w} \\ 0 & \frac{d\chi}{\chi w} \end{pmatrix}$ and $ad \neq 0$ since $ad \neq 0$ form a subgroup of $GL_2(\mathbb{R})$ S.t.

Fine group $(\mathbb{Q}, +)$ is isomorphic to (\mathbb{Q}^+, \times) Suppose $(\mathbb{Q}, +)$ is isomorphic to (\mathbb{Q}^+, \times) be an isomorphism, then if $\Phi(a) = 2$ then $\Phi(a) = 2$ then $\Phi(a) = 2$ $\Phi(a) = \Phi(a) = \sqrt{2}$. Contradictor Bine $\sqrt{2}$ is not $\sqrt{2}$ is an even permutation.

Sgn $(\lambda 4 \beta^{-2} \chi) = Sgn(\lambda 4)$. Sgn (β^{-2}) . Sgn(λ)

But for any permutahun α , β α α and $\beta^{-2} = (\beta^{2})^{-1}$ is even \Rightarrow $Sgn(\lambda^{4}\beta^{-2} \chi)$ $= Sgn(\alpha)$ Hence if $Sgn(\lambda^{4}\beta^{-2} \chi)$ is even/odd \Leftrightarrow $Sgn(\alpha)$ is even/ood.

Section 2. Short Answer (10 pts each)

mapping

Answer all problems in as thorough detail as possible. (13)(24)

1. Prove that the subgroup of S_4 generated by (12) and (12)(34) is isomorphic to D_4 .

3

2. Let G be a group and |G| = pq where p and q are primes. Show that any proper subgroup of G is cyclic.

Proof:

- 1. By Lagrange's theorem the order of a subgroup divides the order of a group. Since |G| = pq the proper Subgroups of |G| are of order p or order q (Since p and q are p and q are p or order q
- 2. Also every group of prime order is cyclic. (Elements other than identify are generator). This is also a consequence of Lagranges thm.

Hence every subgroup of G where

|G| = pq is cyclic.

3. Let H and K be Normal subgroups of a group G such that $H \cap K = e$. Show that every element of H commutes with every element of K.

Proof: Since H & G and K & G

gng-1 & H & ge G and he H and

grg-1 & K & ge G and REK.

Consider $h, k \in H$ and $k \in K$ respectively

then $h \in h' \in K' = k' \in K'$ for some $k' \in K$ $k' \in K$ $k' \in K$ $k' \in K$ $k \in K$ $k' \in K$

Hence hkhik" E HNK

Since

HNK=e

hkhiki = e => hk = kh

Since h and k were chosen arbitrarily
we get hk = kh + he + an k e k

we get hk = kh + he + an k e k

: Every element of + commutes with every
element of K. 5

(6)

(4)