CS2105

An Awesome Introduction to Computer Networks

Lecture 8: The Link Layer, Part I

© CS2105

Application

Transport

Network

Link

Physical

You are here

Lectures 8&9: The Link Layer

After the next 2 classes, you are expected to understand:

- the role of link layer and the services it could provide.
- how parity and CRC scheme work.
- different methods for accessing shared medium.
- how ARP allows a host to discover the MAC addresses of other nodes in the same subnet.
- the role of switches in interconnecting subnets in a LAN.

L9

Lecture 8: Roadmap

- 6.1 Introduction to the Link Layer
- 6.2 Error Detection and Correction
- **6.3** Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks

Kurose Textbook, Chapter 6 (Some slides are taken from the book)

Link Layer: Introduction (1/2)

- Network layer provides communication service between any two hosts.
- An IP datagram may travel through multiple routers and links before it reaches destination.

Link Layer: Introduction (2/2)

- Link layer sends datagram between adjacent nodes (hosts or routers) over a single link.
 - IP datagrams are encapsulated in link-layer frames for transmission.
 - Different link-layer protocols may be used on different links.
 - each protocol may provide a different set of services.

Routing: Big Picture

DHCP protocol provides:

- IP address, e.g., 192.168.0.x/24
- Subnet mask, e.g., 255.255.255.0
- IP of DNS server
- IP of Default Gateway (e.g.: 192.168.0.1)

Which link/path to choose?

Intra-AS routing

- RIP, OSPF protocols
- Distributed algo.
- Build routing table

Possible Link Layer Services (1/2)

Framing

 Encapsulate datagram into frame, adding header and trailer.

Link access control

When multiple nodes share a single link, need to coordinate which nodes can send frames at a certain point of time.

humans at a cocktail party (shared air)

Possible Link Layer Services (2/2)

Reliable delivery

 Seldom used on low bit-error link (e.g., fibre) but often used on error-prone links (e.g., wireless link).

Error detection

- Errors are usually caused by signal attenuation or noise.
- Receiver detects presence of errors.
 - may signal sender for retransmission or simply drops frame

Error correction

 Receiver identifies and corrects bit error(s) without resorting to retransmission.

Link Layer Implementation

- Link layer is implemented in "adapter" (aka NIC) or on a chip.
 - E.g., Ethernet card/chipset, 802.11 card
- Adapters are semi-autonomous, implementing both link & physical layers.

Lectures 8&9: Roadmap

- **6.1** Introduction to the Link Layer
- 6.2 Error Detection and Correction
 - 6.2.1 Parity Checks
 - 6.2.3 Cyclic Redundancy Check (CRC)
- 6.3 Multiple Access Links and Protocols
- 6.4 Switched Local Area Networks

Error Detection and Correction

- Popular error detection schemes:
 - Checksum (used in TCP/UDP/IP)
 - Parity Checking
 - CRC (commonly used in link layer)
- Error detection schemes are not 100% reliable!
 - may miss some errors, but rarely.
 - larger error detection and correction (EDC) field yields better detection (and even correction).

Parity Checking

Single bit parity

 can <u>detect</u> single bit errors in data.

This will fail when 2 bits flip
- since their effects will be cancelled out

2d bit parity has a much higher overhead in terms of space
- requires 9 more extra bits for the same 15 bit data
as compared to single bit parity only needing 1

Two-dimensional bit parity

- can <u>detect and correct</u>
 single bit errors in data.
- can <u>detect</u> any two-bit error in data.

No errors

Cyclic Redundancy Check (CRC)

- Powerful error-detection coding that is widely used in practice (e.g., Ethernet, Wi-Fi)
 - D: data bits, viewed as a binary number.
 - G: generator of r + 1 bits, agreed by sender and receiver beforehand.
 - R: will generate CRC of r bits.

Example: r = 3

R

Cyclic Redundancy Check (CRC)

- CRC calculation is done in bit-wise XOR operation without carry or borrow.
- ❖ Sender sends (D, R)
 101110011
- * Receiver knows G, divides (D, R) by G.
 - If non-zero remainder: error is detected!

Example: r = 3

Lectures 8&9: Roadmap

- **6.1** Introduction to the Link Layer
- 6.2 Error Detection and Correction
- 6.3 Multiple Access Links and Protocols
 - 6.3.1 Channel Partitioning Protocols
 - 6.3.2 Random Access Protocols
 - 6.3.3 Taking-Turns Protocols
- 6.4 Switched Local Area Networks

Two Types of Network Links

- Type 1: point-to-point link
 - A sender and a receiver connected by a dedicated link
 - Example protocols: Point-to-Point Protocol (PPP),
 Serial Line Internet Protocol (SLIP)
 - No need for multiple access control

A host connects to router through a dedicated link

A point-to-point link between Ethernet switch and a host

Two Types of Network Links

- Type 2: broadcast link (shared medium)
 - Multiple nodes connected to a shared broadcast channel.
 - When a node transmits a frame, the channel broadcasts the frame and each other node receives a copy.

802.11 Wi-Fi

Satellite

Ethernet with bus topology

Multiple Access Protocols

- In a broadcast channel, if two or more nodes transmit simultaneously
 - Every node receives multiple frames at the same time
 - → frames *collide* at nodes and none would be correctly read.

Multiple Access Protocol

- distributed algorithm that determines how nodes share channel, i.e. when a node can transmit.
- However, coordination about channel sharing must use channel itself!
 - no out-of-band channel signaling

Multiple Access Protocols

Multiple access protocols can be categorized into three broad classes:

Channel partitioning

- divide channel into fixed, smaller "pieces" (e.g., time slots, frequency).
- allocate piece to node for exclusive use.

"Taking turns"

nodes take turns to transmit.

Random Access

- channel is not divided, collisions are possible.
- "recover" from collisions.

Channel Partitioning Protocols

- TDMA (time division multiple access)
 - Access to channel in "rounds".
 - Each node gets fixed length slot (length = frame transmission time) in each round.
 - Unused slots go idle.
 - Example: 6 nodes sharing a link, 1, 3, 4 have frames, slots 2, 5, 6 are idle.

Channel Partitioning Protocols

- FDMA (frequency division multiple access)
 - Channel spectrum is divided into frequency bands.
 - Each node is assigned a fixed frequency band.
 - Unused transmission time in frequency bands go idle.
 - Example: 6 nodes, 1, 3, 4 have frames, frequency bands 2, 5, 6 are idle.

Multiple Access Protocols

- Multiple access protocols can be categorized into three broad classes:
 - Channel partitioning
 - · divide channel into fixed, smaller "pieces" (e.g., time slots, frequency).
 - allocate piece to node for exclusive use.
 - "Taking turns"
 - · nodes take turns to transmit.
 - Random Access
 - channel is not divided, collisions are possible.
 - "recover" from collisions.

"Taking Turns" Protocols

Polling:

- master node "invites" slave nodes to transmit in turn.
- concerns:
 - polling overhead
 - single point of failure (master node)

"Taking Turns" Protocols

Token passing:

- control token is passed from one node to next sequentially.
- concerns:
 - token overhead
 - Fingle point of failure (token)

Multiple Access Protocols

- Multiple access protocols can be categorized into three broad classes:
 - Channel partitioning
 - divide channel into smaller "pieces" (e.g., time slots, frequency).
 - allocate piece to node for exclusive use.
 - "Taking turns"
 - nodes take turns to transmit.

Random Access

- channel is not divided, collisions are possible.
- "recover" from collisions.

Random Access Protocols

- When node has packet to send
 - no a priori coordination among nodes
 - two or more transmitting nodes → "collision"
- Random access protocols specify:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- We will skip the mathematical formulas on the efficiency of random access protocols.

Slotted ALOHA

Assumptions:

- All frames are of equal size.
- Time is divided into slots of equal length (length = time to transmit 1 frame).
- Iodes start to transmit only at the beginning of a slot.

Operations:

- Listens to the channel while transmitting (collision detection).
- if collision happens: node
 retransmits a frame in each
 subsequent slot with probability
 puntil success.

A Little Side Note

Q: Why is it called ALOHA?

- A: The ALOHAnet, also known as the ALOHA System, or simply ALOHA, was a pioneering computer networking system developed – maybe you can guess it – at the University of Hawaii.
- Norman Abramson was the leader of the team.
- The idea was to use a radio network to connect Oahu and the other Hawaiian islands together. ALOHA made use of one, shared, inbound channel, and thus requiring a novel multiple access protocol.

Pure (unslotted) ALOHA

- Even simpler: no slot, no synchronization
 - When there is a fresh frame: transmit immediately
 - Chance of collision increases:
 - frame sent at t_0 collides with other frames sent in $(t_0 1, t_0 + 1)$

Carrier Sense Multiple Access

- CSMA (carrier sense multiple access)
 - Sense the channel before transmission:
 - · if channel is sensed idle, transmit frame
 - if channel sensed busy, defer transmission
- Human analogy: don't interrupt others!
- Q: Will collision ever happen in CSMA?
 - collisions may still exist, e.g., when two nodes sense the channel idle at the same time and both start transmission.

CSMA Collisions

- Collisions can still occur:
 - propagation delay means two nodes may not hear each other's transmission immediately.

CSMA/CD (Collision Detection)

CSMA/CD

- Carrier sensing & deferral as in CSMA
- When collision is detected, transmission is aborted (reducing channel wastage).
- Retransmit after a random amount of time.
 - An example algorithm will be given in the next lecture
- CSMA/CD is the underlying method of the early Ethernet, invented by Bob Metcalfe.

Minimum Frame Size

- What if the frame size is too small?
 - Collision happens but may not be detected by sending nodes.
 - · No retransmission!

 For example, Ethernet requires a minimum frame size of 64 bytes.

A Little Side Note

- Q: Why was early Ethernet using CSMA/CD? Nowadays Ethernet is mostly point-to-point, e.g., directly from a computer to a switch, so no need for multiple access.
- * A: What we use today is called switched Ethernet. Switches are cheap and we connect every computer in a star-topology to a switch. RG-8
- In the early days, Ethernet was using a shared coaxial cable. Computers were connected to this one, long cable with vampire taps ©.

AUI Connector

to NIC

CSMA/CA (Collision Avoidance)

 Collision detection is easy in wired LANs, but difficult in wireless LANs. For example,

- * 802.11 (Wi-Fi) uses CSMA/CA protocol instead.
 - Receiver needs to return ACK if a frame is received OK.

Lecture 8: Summary

Channel partitioning

- Divide channel by time, used in GSM
- Divide channel by frequency, commonly used in radio, satellite systems

Taking turns

- polling from central site, used in Bluetooth
- token passing, used in FDDI and token ring

Random access

- CSMA/CD used in Ethernet
- CSMA/CA used in 802.11 Wi-Fi