Exploratory Mediation Analysis with Many Potential Mediators

Erik-Jan van Kesteren Daniel Oberski

Utrecht University, Netherlands Department of Methodology & Statistics

Outline

Exploratory Mediation

Current options

Coordinate-wise mediation filter

Implementation

Simulation

Conclusion

Exploratory Mediation

Q: When is M a mediator?

MacKinnon et al. (2002):

- 1. Causal steps: $\alpha \& \beta$
- 2. Difference in coefficients: $\tau \tau | M$
- 3. Product of coefficients: $\alpha \times \beta$

VanderWeele (2015, p. 46): "Also take into account $X \cdot M$ interaction!"

Theory-based decision functions using data from X, M, Y:

$$\mathcal{D} \colon \{ \boldsymbol{x}, \boldsymbol{m}, \boldsymbol{y} \} \mapsto \{0, 1\}$$

(0 = not mediator, 1 = mediator)

Many Mediators

Q: When is *Gene*_i a mediator?

Many Mediators

Preacher and Hayes (2008):

- 1. Fit the full Structural Equation Model with all M \Rightarrow estimates take all mediators into account
- 2. Perform \mathcal{D} using the estimated parameters

 $\mathcal{D}(oldsymbol{x},oldsymbol{m}^{(i)},oldsymbol{y})$ conditional on $M_{ ext{-}i}$

Many Mediators

With many mediators (p > n) SEM is unavailable!

Current options

Three options

- Filter
- XMed
- HIMA

Filter

The filter method: p single mediator models

for (i in 1:p) $\mathcal{D}(m{x},m{m}^{(i)},m{y})$

Filter

Good

- Simple
- Quick
- Flexible

Bad

 Assumes uncorrelated mediators: won't work if mediation only visible conditionally

XMed

Jacobucci et al. (2016): We can now penalise SEM parameters

$$F_{\text{regsem}} = F_{\text{ML}} + \lambda P(\cdot)$$

Serang et al. (2017): We can use this to select mediators! Put a lasso penalty on α and β

The XMed method

XMed

Good

- "Full" SEM
- Does not assume uncorrelated mediators
- Regularisation is hip

Bad

- Find M for which α OR β but we want α AND β .
- Implementation does not handle high-dimensional data.

HIMA

Three-step sequential combination of the above (Zhang et al., 2016):

- 1. Filter the top $\frac{2n}{\log n}$ M variables based on the β coefficients
- 2. Estimate remaining β coefficients with sparsity
- 3. For remaining M variables, perform $\mathcal{D}_{\mathsf{causal}\,\mathsf{steps}}$

HIMA

Good

- Very fast implementation
- Promising performance
- Regularisation is hip

Bad

- Very focused on $M \to Y$
- Fixed $\mathcal{D}_{\text{causal steps}}$

Illustrative simulations

Our contribution:

 $\mathcal{D}(oldsymbol{x},oldsymbol{m}^{(i)},oldsymbol{y})$ conditional on $M_{ ext{-}i}$

Insight from regularisation literature (Hastie et al., 2015):

conditional parameter == parameter estimated on residual

```
1 sel \leftarrow rep(0, p)
3 while (!convergence) {
    for (i in 1:p) {
      r \times \leftarrow \times - M[, sel] \%*\% beta x sel
  r_y \leftarrow y - M[, sel] \%*\% beta_y_sel
       sel[i] \leftarrow decisionFunction(r x, M[, i], r y)
```

for each mediator perform the decision function throw it out if 0 Coordinate-wise
Mediation
Filter

conditional on the other selected mediators

repeat until convergence

Good

- Uses theoretically relevant ${\mathcal D}$
- Does not assume uncorrelated mediators

Bad

Nonconvergence
 ⇒ weak learner

Nonconvergence

Aggregating the weak learner:

- Multiple random starts (parallel processing)
 ⇒ empirical selection probability
- Randomly order variables within iterations
- Consider only \sqrt{p} variables at each step
- Early stopping
- Convergence after > 1 unchanged iteration


```
> result
Algorithm converged.
variables selected: 2
number of starts: 10000
```

```
Top 10:
   SelectionRate Selected
M.21
M.30
M.14
```


Simulation

Illustrative simulations

High-Dimensional Simulation

Method	TPR	FPR	PPV
CMF	.55	.005	.52
Filter	.22	.002	.52
HIMA	.06	.009	.03

Conclusion

Conclusion

- New algorithmic method for exploratory mediation analysis
- Flexible choice of \mathcal{D}
- Conditional on $M_{\text{-}i}$
- Performs at benchmark-level (including in boundary cases)
- · Works for high-dimensional data
- Implemented in R package cmfilter

e.vankesteren1@uu.nl

@ejvankesteren

github.com/vankesteren

References

- Guyon, I. and Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. *Journal of Machine Learning Research (JMLR)*, 3(3):1157–1182.
- Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, Boca Raton.
- Jacobucci, R., Grimm, K. J., and McArdle, J. J. (2016). Regularized Structural Equation Modeling. Structural Equation Modeling, 23(4):555–566.
- MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., and Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. *Psychological methods*, 7(1):83–104.
- Preacher, K. J. and Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. *Behavior Research Methods*, 40(3):879–891.
- Serang, S., Jacobucci, R., Brimhall, K. C., and Grimm, K. J. (2017). Exploratory Mediation Analysis via Regularization. *Structural Equation Modeling*, 24(5):733–744.
- VanderWeele, T. J. (2015). Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press, New York.
- Zhang, H., Zheng, Y., Zhang, Z., Gao, T., Joyce, B., Yoon, G., Zhang, W., Schwartz, J., Just, A., Colicino, E., Vokonas, P., Zhao, L., Lv, J., Baccarelli, A., Hou, L., and Liu, L. (2016). Estimating and testing high-dimensional mediation effects in epigenetic studies. *Bioinformatics*, 32(20):3150–3154.

Weak mediation

Strong mediation

Conditional-only

Method	M1	M2
SEM	100	100
Filter	100	
XMed	100	100
HIMA	100	100
CMF	100	100

Noise in α paths

Method	TPR	FPR
SEM	100	
Filter	100	17
XMed	77	
HIMA	100	
CMF	100	

Noise in β paths

Method	TPR	FPR
SEM	100	
Filter	100	
XMed	100	
HIMA		
CMF	100	

Everything combined

Method	M1	M2	FPR	PPV
SEM	1	1		1
Filter	1		0.02	0.27
XMed	1	1	0.1	0.77
HIMA	1	1		1
CMF	1	1		1