Rational Number

Concepts

Introduction

Natural Numbers: All counting Number are called natural number.

Example: 1, 2, 3, 4, 5,etc.

- > It is denoted by Capital Letter 'N'.
- > Smallest Natural Number is 1
- Largest Natural Number is infinite

Whole Number: All Counting Number together with zero are called whole number.

Example: 0, 1, 2, 3, 4, 5,.....etc.

It is denoted by 'W'.

Largest Whole Number is infinite.

Smallest Whole Number is O

Note: All-natural number is a whole number but all whole number is not natural number.

Integers: All positive, negative and zero are called integers.

Example: -3, -2, -1, 0, 1, 2, 3, etc.

- > It is denoted by 'I' OR Z
- > Largest integer is infinite.
- > Smallest integers are infinite.
- > Positive integer {1, 2, 3, 4, 5,.....up to infinite}
- > Negative Integer { -1, -2, -3, -4, -5up to infinite}

Note: 0 is neither Positive and nor negative.

Rational Number: Those number is the form $\frac{p}{q}$, where $q \neq 0$ are called Rational number.

Example:
$$\frac{1}{2}$$
, $\frac{4}{5}$, $\frac{11}{13}$, 0, 3,etc.

Natural Number: $N = (1, 2, 3, 4, 5, 6, \dots up to \infty)$

Whole Number: $W = (0, 1, 2, 3, 4, 5, 6, \dots up to \infty)$

All are Rational Number

Standard Form of a Rational Number: Those number said to be in its Standard form or Simplest form or lowest terms if its numerator and denominator have no common factors other then one.

Example: $\frac{20}{25}$

Rational Numbers on the Number Line: The set of Positives, O and negative integers can be grouped on a number line.

Numbers decrease as we move right to left

Numbers increase as we move left to right

YouTube Channel: Harsh Academy

Absolute Value: The Absolute value of a rational number without any regard to its Sign.

- > Its Symbol is 11
- \succ The absolute value of 0 is 0.

Examples: The absolute values of $\frac{-10}{15}$ and $\frac{8}{6}$

Comparing and Ordering Rational Numbers

Method 1: By Using a number line

- \clubsuit If $\frac{p}{q}$ lies to the right of $\frac{r}{s}$. Then $\frac{p}{q} > \frac{r}{s}$
- \clubsuit If $\frac{p}{q}$ lies to the left of $\frac{r}{s}$. Then $\frac{p}{q} < \frac{r}{s}$
- ❖ All Rational numbers lying to the right of 0 are Positive
- All Rational Numbers lying to the left of O negative
- A positive rational number is always greater than a negative rational number.

Method 2. By Making Their Denominators Same and them Compare the Numerators.

Example: Comparing $\frac{2}{5}$ and $\frac{5}{7}$

Method 3. By Changing into Decimals

Example: Compare $\frac{3}{7}$ and $\frac{11}{21}$

Method 4. By Using Cross Product Rule

If ps > qr then $\frac{p}{q} > \frac{r}{s}$

If ps < qr then $\frac{p}{q} < \frac{r}{s}$

Example: Compare $\frac{3}{10}$ and $\frac{1}{-4}$

Math's Alert: Before Applying Cross Product rule, Make the Denominators Positive if not So.

Self Practice 1A

1. Write the absolute value of each of the following.

$$[a] \frac{-3}{2}$$

$$[b] \frac{-5}{-9}$$

$$\left[\mathbf{c}\right]\frac{7}{-8}$$

$$[d] \frac{5}{7}$$

2. Arrange the following rational numbers in ascending order:

$$\left[\mathtt{a} \right] \frac{17}{25} \, , \frac{17}{13} \, , \frac{17}{19} \, , \frac{17}{27}$$

$$[b] \frac{5}{6}, \frac{4}{6}, \frac{1}{6}, \frac{9}{6}$$

3. Arrange the following rational numbers in descending Order:

$$[a]$$
 $\frac{4}{5}$, $\frac{5}{5}$, $\frac{1}{5}$, $\frac{4}{5}$

$$[b] \frac{4}{8}, \frac{4}{1}, \frac{4}{3}, \frac{4}{5}$$

4. Write two rational numbers equivalent to each of the following rational numbers

[a]
$$\frac{3}{5}$$

$$[b] \frac{-7}{9}$$

$$[c]\frac{5}{11}$$

[b]
$$\frac{-7}{9}$$
 [c] $\frac{5}{11}$ [d] $\frac{13}{-15}$

5. Write the Standard form of following rational numbers [a] $\frac{4}{40}$ [b] $\frac{125}{400}$ [c] $\frac{22}{121}$ [d] $\frac{-54}{17}$

$$\left[a\right]\frac{4}{40}$$

$$[b] \frac{125}{400}$$

$$[c] \frac{22}{121}$$

[d]
$$\frac{-54}{17}$$

6. Compare.

$$[a] \frac{3}{10} \dots \frac{5}{12}$$

[a]
$$\frac{3}{10}$$
 $\frac{5}{12}$ [b] $\frac{3}{15}$ $\frac{6}{-15}$ [c] $\frac{24}{48}$ $\frac{30}{60}$ [d] $\frac{2}{5}$ $\frac{2}{5}$

$$[c] \frac{24}{48} \dots \frac{30}{60}$$

$$[d] \frac{2}{5} \dots \frac{2}{5}$$

Operations on Rational Numbers

Case 1: Adding Like Rational Numbers

Rule: To add rational numbers with same denominator, add the numerator keep the denominator same.

$$\left[\frac{N}{D} + \frac{N}{D} = \frac{N+N}{D} \left(D \neq 0 \right) \right] \left[\frac{P}{Q} + \frac{R}{Q} = \frac{P+Q}{Q} \left(Q \neq 0 \right) \right]$$
 Example: $\frac{4}{5} + \frac{2}{5}$

Case 2: Adding Unlike Rational Number

Algorithm Step 1 Find least Common Denominator (LCD). Its also Known as LCM.

Step 2
$$\frac{P}{Q} + \frac{R}{S} = \frac{P \times \{LCM \text{ of } (Q \text{ and } S) \div Q\} + R \times \{LCM \text{ of } (Q \text{ and } S) \div S\}}{LCM \text{ of } (Q \text{ and } S)}$$

Example
$$1\frac{5}{-7} + \frac{2}{3}$$

Case 1: Subtract Like Rational Numbers

Rule: To Subtract rational numbers with same denominator, Subtract the numerator keep the denominator same.

$$\left[\begin{array}{c} \frac{N}{D} - \frac{N}{D} = \frac{N-N}{D} \text{ (D } \neq \text{ 0)} \right] \left[\begin{array}{c} \frac{P}{Q} - \frac{R}{Q} = \frac{P-Q}{Q} \text{ (Q } \neq \text{ 0)} \right] \end{array}$$

Example $\frac{6}{7} - \frac{3}{7}$

Case 2: Subtract Unlike Rational Number

Algorithm Step 1 Find least Common Denominator (LCD). It's also Known as LCM.

$$\text{Step 2} \ \frac{P}{Q} - \frac{R}{S} = \frac{P \ X \ \{LCM \ of \ (Q \ and \ S) \div Q\} - R \ X \ \{LCM \ of \ (Q \ and \ S) \div S\}}{LCM \ of \ (Q \ and \ S)}$$

Example $\frac{3}{7} - \frac{1}{3}$

Self Practice 18

1. Find the Sum of the following Rational Numbers

[a]
$$\frac{7}{25} + \frac{11}{25}$$

[a]
$$\frac{7}{25} + \frac{11}{25}$$
 [b] $5\frac{2}{7} + 3\frac{3}{7}$ [c] $\frac{7}{18} + \frac{5}{6}$ [d] $\frac{7}{9} + \frac{1}{6}$

$$[c]\frac{7}{18} + \frac{5}{6}$$

$$[d] \frac{7}{9} + \frac{1}{6}$$

2. Find the difference of the following Numbers

[a]
$$9 - 11\frac{4}{7}$$

[b]
$$8\frac{4}{11}$$
 - 9

$$\left[c \right] \frac{5}{-7} + \frac{3}{4}$$

[a]
$$9 - 11\frac{4}{7}$$
 [b] $8\frac{4}{11} - 9$ [c] $\frac{5}{-7} + \frac{3}{4}$ [d] $5\frac{3}{15} - 3\frac{13}{30}$

[a]
$$2\frac{3}{4} + \frac{11}{7} + \frac{9}{14}$$

[b]
$$5\frac{7}{9} - 2\frac{3}{27} - \frac{7}{18}$$

Simplify
[a]
$$2\frac{3}{4} + \frac{11}{7} + \frac{9}{14}$$
 [b] $5\frac{7}{9} - 2\frac{3}{27} - \frac{7}{18}$ [c] $5\frac{5}{13}$ $2\frac{7}{13} - 3\frac{11}{13}$

Multiplying Rational Number

If $\frac{P}{Q}$ and $\frac{R}{S}$ (Q, $S \neq D$) are two rational numbers,

then
$$\frac{P}{Q} \times \frac{R}{S} = \frac{PR}{QS} = \frac{Product\ of\ Numerators}{Product\ of\ Denominators}$$

$$(+) x (+) = (+)$$

$$(-) \times (-) = (+)$$

$$(+) \times (-) = (-)$$

Keep in Mind

$$(-) \times (+) = (-)$$

Note: Product of Same Signs is Positive and Product of diff Signs is Negative.

Examples 1.
$$\frac{3}{4} \times \frac{1}{5}$$
 2. $\frac{3}{-7} \times \frac{-3}{11}$ 3. $\frac{5}{9} \times \frac{-6}{4}$ 4. $-2 \cdot \frac{1}{3} \times \frac{3}{5}$

$$2.\frac{3}{-7} \times \frac{-3}{11}$$

3.
$$\frac{5}{9} \times \frac{-6}{4}$$

$$4.-2\frac{1}{3}\times\frac{3}{5}$$

Dividing Rational Number

If $\frac{P}{Q}$ and $\frac{R}{S}$ (Q, S \neq D) are two rational numbers,

then
$$\frac{P}{Q} \div \frac{R}{S} = \frac{PS}{QR} = \frac{Product\ of\ Numerators}{Product\ of\ Denominators}$$

Keep in Mind

$$(+) \div (+) = (+)$$
 $(-) \div (-) = (+)$
 $(+) \div (-) = (-)$
 $(-) \div (+) = (-)$

Examples 1.10 ÷ 2 2.
$$\frac{-1}{2}$$
 ÷ $\frac{4}{-6}$ 3. $\frac{3}{2}$ ÷ $\frac{6}{-8}$ 4. $\frac{-7}{9}$ ÷ $\frac{14}{3}$

$$7.\frac{-1}{2} \div \frac{4}{-6}$$

3.
$$\frac{3}{2} \div \frac{6}{-8}$$

4.
$$\frac{-7}{9} \div \frac{14}{3}$$

Self Practice 1C

1. Multiply

$$[a] \frac{3}{27} \times \frac{81}{27}$$

$$[b] \frac{-24}{49} \times \frac{42}{36}$$

(a)
$$\frac{3}{27} \times \frac{81}{27}$$
 (b) $\frac{-24}{49} \times \frac{42}{36}$ (c) $2\frac{1}{9}$ by $\frac{-27}{57}$ (d) $\frac{8}{-9} \times \frac{-7}{-16}$

$$[d] \frac{8}{-9} \times \frac{-7}{-16}$$

2. Divide

[a] 1 by
$$\frac{1}{3}$$

[b]
$$0 \text{ by } \frac{-3}{5}$$

[a] 1 by
$$\frac{1}{3}$$
 [b] 0 by $\frac{-3}{5}$ [c] $\frac{-7}{4}$ by -6 [d] $\frac{2}{3} \div \frac{12}{18}$

$$[d] \frac{2}{3} \div \frac{12}{18}$$

3. Simplify

$$[a] \frac{3}{11} \times \frac{-5}{6} \times \left(-\frac{22}{9}\right) \times \left(-\frac{9}{5}\right)$$

$$[a] \frac{3}{11} \times \frac{-5}{6} \times \left(-\frac{22}{9}\right) \times \left(-\frac{9}{5}\right)$$
 $[b] \left(\frac{3}{2} \times \frac{1}{6}\right) + \left(\frac{5}{3} \times \frac{7}{2}\right) - \left(\frac{13}{8} \times \frac{4}{6}\right)$

4. The product of two number is 15. If one of the numbers is -10, find the other.

Properties of Operations on Rational Numbers

Closure Property

Operation	Formula		Remarks
Addition	A + B = C	R. No+R. No = R. No	Rational Number
Sum of any two	Example	Example	are Closed Under
Rational numbers is	2 + 4 = 6	$\frac{3}{5} + \frac{1}{5} = \frac{4}{5}$	Addition.
a Rational Number		5 5 5	
Subtraction	A - B = C	R. No - R. No = R. No	Rational Number
Difference of any			are Closed Under
two Rational	2 - 4 = - 2	$\left \frac{3}{5} - \frac{1}{5} \right = \frac{2}{5}$	Subtraction
numbers is a		5 5 5	
Rational Number			
Multiplication	A X B = C	R. No x R. No = R. No	Rational Number
Product of any two			are Closed Under
Rational numbers is	2 x 4 = 8	$\frac{3}{5} \times \frac{1}{5} = \frac{3}{25}$	Multiplication
a Rational Number		5 5 25	
Division	A÷B≠C	R. No ÷ R. No ≠ R. No	Rational Number
Division of two			are Not Closed
Rational numbers is	$4 \div 2 = 2$	$\frac{3}{5} \div \frac{1}{5} = \frac{3}{1}$	Under Division
not always a			
Rational Number			

	Kational Number are Closed Under Yes/No		
Summary: Closure Property	Addition	a + b = c	Yes
	Subtraction	a - b = c	Yes
	Multiplication	a x b = c	Yes
	Division	a ÷ b = c	NO

Try These

Fill in the blanks in the following table

MALLIDEL.2	Pinzen nunet.			
	Addition	Subtraction	Multiplication	Division
Rational Numbers	YES	YES		No
Integers		YES		No
Whole Numbers	••••		YES	
Natural Numbers		NO	*****	••••

Naresh Sir

Harsh Academy

YouTube Channel: Harsh Academy

Commutativity Property

Operation	Formula	Examples	Remarks
Addition	A + B = B + A	3 + 4 = 4 + 3	Addition is
			Commutative
Subtraction	$A - B \neq B - A$	$3 - 4 \neq 4 - 3$	Subtraction is not
			Commutative
Multiplication	A X B = B X A	3 X 4 = 4 X 3	Multiplication is
			Commutative
Division	$A \div B \neq B \div A$	$3 \div 4 \neq 4 \div 3$	Division is not
			Commutative

Try These

Associativity Property

Operation	Formula	Examples	Remarks
Addition	(A + B) + C = A + (B + C)	(2+3) + 5 = 2 + (3 + 5)	Addition is
			associative
Subtraction	$(A - B)-C \neq A+ (B + C)$	$(2-3) - 5 \neq 2 - (3 - 5)$	Subtraction is
			not associative
Multiplication	$(A \times B) \times C = A \times (B \times C)$	$(2x3) \times 5 = 2 \times (3 \times 5)$	Multiplication is
			associative
Division	$(A \div B) \div C = A \div (B \div C)$	$(2 \div 3) \div 5 \neq 2 \div (3 \div 5)$	Division is not
			associative

Complete the following table
Numbers Associative for

Naresh Sir Harsh Academy YouTube Channel: Harsh Academy

Try These

	Addition	Subtraction	Multiplication	Division
Rational Numbers		****		No
Integers			Yes	
Whole Numbers	YES		••••	
Natural Numbers		No		

Distributivity Property

Operation	Formula	Examples
Addition	A(B+C) = AB + BC	3(4+2) = 12 + 6
Subtraction	A(B-C) = AB - BC	3(4-2) = 12 - 6

Property of Zero (Additive Identity): The Sum of any rational number a and o is the rational number itself

$$A + \Box = A$$

Example:
$$3 + 0 = 3$$
 $\frac{2}{3} + 0 = \frac{2}{3}$

Property of One (Multiplicative identity): the Product of any rational number and 1 is the rational number itself. i.e. $a \times 1 = 1 \times a = a$

Example: 1.
$$4 \times 1 = 1 \times 4 = 4$$
 Example 2. $\frac{1}{2} \times 1 = 1 \times \frac{1}{2} = \frac{1}{2}$

Additive Inverse (Negative of a Number): For any rational number a, a + (-a) = (-a) + a = 0. The rational number (-a) is the additive inverse of (a)

Example
$$3 + (-3) = -3 + 3 = 0$$

Multiplicative inverse or Reciprocal of a Number

If a is any non – zero rational number and a $x \frac{1}{a} = \frac{1}{a}x$ a = 1, then $\frac{1}{a}$ is called the reciprocal or Multiplicative inverse of a.

Example: The reciprocal of 7 is $\frac{1}{7}$

Self Practice 1D

1. Find the additive inverse of each of the following.

$$[a] \frac{-5}{9}$$

[a] $\frac{-5}{9}$ [b] $\frac{-3}{-2}$ [c] $\frac{5}{9}$

 $[d] \frac{7}{12}$

- 2. Write the Multiplicative inverse of each of the following.
 - (a) -5

- [b] $\frac{3}{7}$ [d] $\frac{-11}{-13}$ [d] -1 $\times \frac{-2}{7}$
- 3. Name the Property under Multiplication used in each of the following.

$$\left[f\right]\left(\frac{8}{15}X\left(\frac{-7}{18}\right)\right)+\left(\frac{8}{15}X\frac{-11}{18}\right)$$

Rational Number Between Two Rational Numbers

Note: There are infinitely many rational numbers between any two different rational numbers.

Case 1. To find 1 Rational Number between Two Given Rational Numbers.

First Method: Mid- Value Method

Let p and q be two rational numbers such that q>p. then $\frac{a+b}{2}$ is a rational number lying between p and q.

Example: Find the rational number between [a] 2 and 3 [b] $\frac{1}{4} + \frac{1}{2}$

Case 2. To find more than one rational number between two given rational numbers

Second Method: Gap Method

The n rational numbers between rational numbers a and b are

$$(a+1)\frac{b-a}{n+1}\,,\,(a+2)\frac{b-a}{n+1}\,,\,(a+3)\frac{b-a}{n+1},\,.....(a+n)\frac{b-a}{n+1}$$

Algorithm Step 1. Find the gap between the given rational number a and b (a < b)

$$Gap = b - a$$
.

Step 2. Divide this gap by (n + 1), if you have to find n rational numbers.

Step 3. Multiply $\frac{b-a}{n+1}$ by 1, 2, 3,.....until n, and add each product to a.

Example: Find three rational number between $\frac{1}{4}$ and $\frac{1}{2}$

Third Method: Common Denominator Method

Method: To find n rational numbers between two rational numbers a and b with like Denominators.

Then, we convert the given rational numbers into equivalent rational numbers by multiplying the Numerator and denominator by a suitable number (n + 1)

Example: Find five rational number between $\frac{3}{5}$ and $\frac{4}{5}$.

Self Practice 1E

- 1. Find a rational number between -2 and 6.
- 2. Find any four rational numbers less than 2.
- 3. Find two rational numbers between $\frac{1}{5}$ and $\frac{1}{2}$
- 4. Find ten rational numbers between $\frac{-1}{5}$ and $\frac{2}{4}$.

NCERT CORNER

Multiples Choice Questions (MCQs)					
1. If the rational number $\frac{a}{b}$ is positive, then which of the following must be true? (Cbse)					
[a] a > []	[b] b > 0	[c] ab > []	[d] a + b > 0		
2. The sum of multip	licative identity of a nur	nber and its additive ide	ntity is always (IMD)		
(a) D	[b] f	[c] -l	(d) itself		
3. Which of the following is a rational number? (IMD)					
[a] π	[b] O	[c] 2√5	[d] $\sqrt{7}$		
4. A rational Number lying between $\sqrt{2}$ and $\sqrt{3}$ is (IMO)					
(a) 1.5	[b] 1.7	[c] 1.414	(d) 1. 763		
5. Which of the follo	wing is true Statement?	(IMD)			
[a] Every real	number is always ratio	nal.			

(b) The Sum of tw	o irrational numbers	is an irrational numb	er.	
	(c) The Product of two irrational numbers is an irrational number.			
(d) Every real nur	nber is either rationa	al or irrational.		
6. The Sum of two number	ers is $\frac{-1}{3}$. if one of th	e numbers is $\frac{-12}{3}$, fir	nd the other. (IMO)	
[a] $\frac{-13}{3}$	$[b] \frac{-13}{6}$	$[c]\frac{11}{3}$	$\left[d\right]\frac{11}{-3}$	
7. What Should be Added	$ to \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5}\right) $	to get 3? (IMD)		
[a] $\frac{59}{30}$	[b] $\frac{59}{-30}$	[c] $\frac{3}{9}$	$[d] \frac{3}{5}$	
8. Divide the sum of $\frac{6}{1}$	$\frac{65}{12}$ and $\frac{12}{7}$ by their	difference. (IMO)		
$[a]\frac{77}{84}$	$[b]\frac{499}{84}$	$[c]\frac{599}{311}$	$[d]\frac{499}{311}$	
9. The Product of two	rational numbers	is $\frac{-8}{2}$. if one of the	e numbers is $\frac{-4}{15}$, find the	
other. (IMO)		(0	15	
[a] $\frac{32}{135}$	[b] $\frac{-3}{135}$	[c] $\frac{10}{3}$	$[d] \frac{3}{10}$	
10. The Multiplicative inverse of -2 $\frac{3}{7}$ is (IMD)				
[a] 17/7	[b] $\frac{7}{17}$	$[c]\frac{-7}{17}$	$[d] - \frac{17}{7}$	
Chapter Test				
Concepts Review				
1. Fill in blanks. [a] There are				
2. State the Propert	y Shown by the f	ollowing Numerica	al Statements.	

Naresh Sir

Harsh Academy

YouTube Channel: Harsh Academy

[a]
$$\frac{5}{7}$$
 x | = | x $\frac{5}{7}$ = $\frac{5}{7}$ [b] $\frac{11}{20}$ x $\frac{3}{7}$ = $\frac{3}{7}$ x $\frac{11}{20}$ [c] $\frac{-12}{17}$ x $\frac{17}{-12}$ = |

$$[d] \left(\frac{1}{4} \times \frac{1}{6}\right) \times \frac{1}{5} = \frac{1}{4} \times \left(\frac{1}{6} \times \frac{1}{5}\right) [e] \frac{3}{12} \times \frac{5}{9} = \frac{5}{36}$$

3. Multiple Choice Questions (MCQs)

[a] Which Number is greater than $\frac{-3}{4}$?

[a]
$$\frac{-5}{4}$$
 [b] $\frac{-1}{2}$ [c] -1

$$[b] \frac{-1}{2}$$

[b] Evaluate: $\left|\frac{-5}{7}\right| \div \left|\frac{5}{7}\right|$.

$$[c] \frac{-2}{49}$$

$$[d]\frac{49}{25}$$

[c] What is the product of $-5\frac{1}{3}$ and $3\frac{3}{4}$?

[a]
$$-15\frac{1}{4}$$
 [b] $15\frac{1}{4}$ [c] -20

[b]
$$15\frac{1}{4}$$

[d] How Many pieces of 13 $\frac{1}{5}$ cm length can be cut from a 330 cm long rod?

[e] The Additive inverse of $\frac{3}{7}$ is

$$[c] \frac{-4}{7}$$

[c]
$$\frac{-4}{7}$$
 [d] $\frac{-7}{4}$

4. Simplify

[a]
$$\frac{-4}{5} \times \frac{3}{7} \times \frac{15}{16} \times \left(\frac{-14}{9}\right)$$
 (NCERT) [b] $\left\{\frac{9}{16} \times \frac{4}{12}\right\} + \left\{\frac{9}{16} \times \frac{-3}{9}\right\}$ (NCERT)

$$\left[c \right] \frac{5}{6} + \left(\frac{-2}{5} \right) + \left(\frac{-2}{15} \right)$$

$$[c] \frac{5}{6} + (\frac{-2}{5}) + (\frac{-2}{15})$$
 $[d] (\frac{25}{8} \times \frac{2}{3}) - (\frac{3}{5} \times \frac{-10}{9})$

$$[e] \left(5 \times \frac{2}{15}\right) + \left(6 \times \frac{2}{9}\right)$$

- 5. What Should be added to $\frac{5}{7}$ so get $\frac{2}{-3}$.
- 6. By What number should we multiply $\frac{-8}{1.3}$ so that the product may be 24?

7. Find the five rational number between -2 and D. (NCERT)

8. Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$. (NCERT)

NCERT CORNER

Exercise 1.1

1. Name the property under multiplication used in each of the following

(i)
$$\frac{-4}{5}$$
 x | = | x $\frac{-4}{5}$ = $-\frac{4}{5}$ (ii) $-\frac{13}{17}$ x $\frac{-2}{7}$ = $\frac{-2}{7}$ x $-\frac{13}{17}$ (iii) $\frac{-19}{29}$ x $\frac{29}{-19}$ = |

2. Tell what property allows you to compute $\frac{1}{3}$ x (6 x $\frac{4}{3}$) as ($\frac{1}{3}$ x 6) x $\frac{4}{3}$.

3. he product of two rational numbers is always a