DEEP LEARNING

REDES NEURAIS RECORRENTES

AULA 7

Eu sou Diego Dorgam

Alguma pergunta que você quer fazer?!

http://bit.ly/dl-unb7 https://t.me/DeepLearningUnB @diegodorgam

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz
- ✓ Se não entender, pergunte!
 - ✓ Se entender, explique!
- ✓ DIVIRTA-SE

O QUE APRENDEMOS NA AULA PASSADA?

- 1. Intuição
 - O que são CNNs
 - Convolution Operation
 - Pooling
 - Flattening
 - Full Connection
- 2. Prática
 - Reconhecimento de imagens

O QUE VAMOS APRENDER HOJE?

- 1. Intuição
 - Conceito de RNNs
 - Vanishing Gradient Problem
 - LSTMs and Variations
- 2. Prática
 - Building RNN

O QUE SÃO RNNS

Redes Neurais Recorrentes

	Supervisionado	Artificial Neural Networks	Regression & Classification
		Convolutional Neural Networks	Computer Vision
		Recurrent Neural Networks	Time Series Analysis
	Não Supervisionado	Self-Organizing Maps	Feature Detection
		Deep Boltzmann Machines	Recommendation Systems
		AutoEncoders	Recommendation Systems

A Sci-Fi Short Film Starring Thomas Middleditch

https://youtu.be/LY7x2Ihqjmc

A Sci-fi Short Film Starring David Hasselhoff

https://youtu.be/5qPgG98_CQ8

Redes Neurais Recorrentes

SEPP HOCHREITER

1991 SEPP HOCHREITER'S ANALYSIS OF FUNDAMENTAL PROBLEM OF DEEP LEARNING

http://people.idsia.ch/~juergen/fundamentaldeeplearningproblem.html

W_{rec}~ peq =

Vanishing

W_{rec}~ grande =

Exploding

TRANQUILO?

LSTMs

Long Short Term Memory

Chegou o momento!

Understanding LSTM Networks

Cristopher Olah (2015)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

Agora ficou claro...

PEEPHOLE CONNECTIONS

$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

COUPLED FORGET AND INPUT GATES

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

GATED RECURRENT UNIT

$$z_t = \sigma\left(W_z \cdot [h_{t-1}, x_t]\right)$$

$$r_t = \sigma\left(W_r \cdot [h_{t-1}, x_t]\right)$$

$$\tilde{h}_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

The Unreasonable Effectiveness of Recurrent Neural Networks

Andrej Karpathy (2015)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

			_		_															1			_								_																	_						
t	t	p	:	-	T	W	w	w		y	n	е	t	n	e	w	s		С	0	m		-		E	n	g	L	i	s	h	-	ı	a	n	g l	J a	g	е		w	е	b	s	i	t e		0	f		1	s	r	a e
t	p		1	1	w	W	W		b	а	С	a	h	е	t	s		С	0	m					х	g	1	13	s	h		ı	i	n	g	u i	9 6	1 6	s	a	i	г	s	i	t	0	O	f		t	s		a	e
	d		:	x	n	c		w	а	е	a			a	w	a	t	0	a	_	-	S		&	n	t	i	a	С	а	-	s	a	r	d	e e	9 1	h		0	a	n		t	b	5	а	n	f	a	n	r	е	f
m	w	-	2	0	p	i	i	i	s	0	е	s	s	i	s		1	е	r	n		c]	(d	С	е	е	n		е	р	е	s	a	a i	k	i		i	е	е	1	е	d	h,	i	r	t	h	r	а	0	n s
d	r		<	:	a	h	b	-	n	p	t	w	t		x	i		g	h	1	m	a)	Т	v	d	r	у	z	i		С	0	u	e	d I	5	u	:	t	h	a	-	0	0		t	u	١,	s	t	u	i	f
s		р	,	t	С	0	a	2	d	г	u	1	w	0	С	1		n	$\overline{}$	r]	p			1	v	a	0	d	,	,	е	у	t	c .	- 1	1	c	n	1 -	0	i	b	u	V	s]	b	b		i	m	s	u	t
g	e	s	t		n	e	w	s	p	a	p	e	r		•	•	1	1	Υ	e	d	П			h		Α	h	r	0	n	0	t i	h	1	1						H	e	b	r	e v	٧ -	1	а	n	g	u	a	g e
e		t		а	a	w	s	p	a	p	e	1	s	0]	[T	е	1		t			i		f	е	а	n	е	m	t	i	1	T.	1				[е	r	r	е	W S	1	е	n	9	u	a	g	
-	г		s	С	0	е		Г	е	n	a			i	Т	T	h	A	0	a	i	n	n	h		S	г	m	u	w]		е	у	П	5	8			1		i	n	е	i	a '	S	i	w	d	d	е		h s
u	s	• 22		s	е	t	1	g	0	r	Г	s		а	s	а	t	С	a	r	е	e	g		a	С	1	r	i	s	z	1	i	е		:	,	#	:	T	A	а	а	а	a	t	E	a	s	е	е	i	1	0 '
	-			t	u	a	е	٧	r	t	i	d	,	t	В	Α	m	S	u	S	у	u	t]]	A	s	a	0	i	g	s]]	,			:	s	M	В	0	1	0	u	s :	1	0	u	a	-	n	:	d
а	,	d	,	i	i	u	i	t	i	С	p]	(1	S	٧	Н	v	t	u	S	u	i	е	D	n	0	е		a	n	0			,]	:	{		C	C	u	Ĭ	b	0	h e	0	y	b	k	s	1	s	: 1
i	C	a	1	s	:			•		*	•		I	1	G	ı	0	b	•]					h	t	t	p	:	1	1	w	w	w .	ç	1	0	b	e	s		С	0	j	1	1]		b	u	s i
C	a	1					+		•	*		2	I	Т	а	a	b	а				P			(t	t-	P		1	1	w	w	w	t	0 1	1 0	b	a	1		С	0	m	u r	1	S	A			у	t	
		1	100	1200			I					100	100	1						16																										- 17								

PRÁTICA BUILDING RNN

Prevendo preços de ações

Preparar Dataset Treinar Avaliar

https://github.com/deeplearningunb/building-rnn

Dever de Casa...

Valendo nota =)

- 1. Checkout na branch com seu nome
- 2. Faça ajustes nos hyper parâmetros
- 3. TROQUE A LSTM POR UMA GRU
- 4. Commit do resultado (NA SUA BRANCH)

Dúvidas?

http://bit.ly/dl-unb7 https://t.me/DeepLearningUnB @diegodorgam

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by SlidesCarnival
- X Photographs by <u>Unsplash</u>