

# تشخیص احساسات در متن

مدرس: **استاد الیاس عرب** 

دانشجو: اهير نوروزي هير فضل اله

#### مقدمه

این پروژه برای طبقهبندی احساساتی که در دادههای متنی بیان میشوند با استفاده از یادگیری ماشین طراحی شده است. از تکنیکهای پردازش زبان طبیعی استفاده میکند و رابط کاربری سادهای را برای کاربران فراهم میکند تا متن خود را وارد کرده و احساس تشخیص داده شده به همراه درصد اطمینان آن را مشاهده کنند. هدف اصلی ایجاد سیستمی مقیاسپذیر و قابل اعتماد برای تشخیص احساسات است.

# ویژگیهای کلیدی

- پیاده سازی شده با استفاده از الگوریتم Logistic Regression
  - بهره گیری از ویژگی های استخراج TF-IDF
    - تشخیص احساسات احتمالی در آینده
- پشتیبانی از انواع احساسات مختلف مانند خشم، شادی، غم و ...
  - وب ایلیکیشن مبتنی بر Streamlit برای تعامل با کاربران
- نهایش احتمال پیشبینیها با نمودارهای ستونی با استفاده از Altair
  - توانایی آموزش مدل با داده های جدید

# ساختار پروژه

```
1. Emotion-Detection
2.
   - app.py
                                     نقطه شروع يروژه //
3.
     – data
4.
         - emotion_dataset.csv
                                     مجموعه داده برای آموزش //
     - lib
5.
        — main.py
                                     // Streamlit برنامه اصلی
6.
                                     توابع كار با مدّل //
        model_operation.py
        train_model.py
8.
                                     آموزش مدل //
     - requirements.txt
                                     نیازمندی های پروژه //
```

#### نصب

#### پیش نیاز

- Python 3.8+
  - Pip ●

## نصب وابستگی ها

برای نصب ابتدا باید یک environment ایجاد کنید:

python3 -m venv /path/to/virtual/environment

سیس دستور زیر را برای فعال کردن venv اجرا کنید:

source /path/to/virtual/environment

حال دستور زیر را برای نصب وابستگی ها اجرا کنید:

1. pip install -r requirements.txt

### استفاده

## مرحله اول: آموزش مدل

مدل را با استفاده از دستور آموزش دهید:

python3 /lib/train\_model.py

با اجرای این دستور، مدل در پوشه models تولید میشود

## مرحله دوم: اجرای برنامه

حال زهان آن رسیده که برنامه را اجرا کنیم. دستور زیر را وارد کنید:

streamlit run app.py

با اجرای این دستور برنامه در مرورگر وب پیشفرض شما باز خواهد شد. میتوانید متن وارد کنید و احساس پیشبینی شده به همراه درصد اطمینان و نمودار احتمالات را مشاهده کنید .

## جزئیات پیادہ سازی

Train\_model.py: این اسکریپت یک مدل رگرسیون لجستیک ( مدل خطی است که از یک تابع لجستیک (تابع سیگموید) برای پیشبینی احتمال استفاده میکند ) را روی دادههای متنی با برچسبهای احساسی آموزش میدهد. از وکتورایزر Term Frequency-Inverse ) TF-IDF برای استخراج ویژگیها استفاده میکند و مجموعه داده را به مجموعههای آموزشی و آزمایشی تقسیم میکند. مدل و وکتورایزر با استفاده از joblib برای استفاده بعدی ذخیره میشوند.

model\_operation.py **: یک ماژول کمکی برای مدیریت پیشبینیها و احتمالات مدل. مدل از** پیشآموزشدیده و وکتورایزر برای انجام پیشبینیها بارگذاری میشود.

#### توابع کلیدی:

- now\_emotion : احساس متن ورودی را پیشبینی میکند.
- future\_emotion : توزیع احتمالات برای تمام احساسات را بازمیگرداند.

app.py : برنامه اصلی است که رابط کاربری زیبایی را برای کاربران فراهم میآورد تا متن خود را وارد کرده و پیشبینیها را مشاهده کنند. از توابع ماژولار model\_operation.py برای پیشبینی و احتمالات استفاده میکند.

#### ويژگىھا:

- main.py : **مدیریت تعاملات کاربر، پیش بینیها و بصریسازی در فایل** main.py
  - ایموجیها تجربه کاربری را با نمایش بصری هر احساس بهبود می بخشند.



# نتايج

در آزمایشات انجامشده، مدل توانست دقت کلی ۹۰٪ را در تشخیص احساسات از دادههای متنی به دست آورد. عملکرد مدل بر اساس چندین معیار ارزیابی شد :

| مقدار       | معيار                   |
|-------------|-------------------------|
| 90%         | <b>دقت</b> (Accuracy)   |
| <b>ዓ</b> ዮ% | دقت پیشبینی (Precision) |
| 90%         | F1 امتياز               |

## نتيجەگيرى

این پروژه نشان داد که مدلهای یادگیری ماشین با استفاده از دادههای متنی و تکنیکهای پردازش زبان طبیعی میتوانند با دقت بالایی احساسات را تشخیص دهند. استفاده از رگرسیون لجستیک و ویژگیهای استخراجشده توسط TF-IDF ، ترکیب موثری برای این کار بود. با این حال، محدودیتهایی نیز وجود دارد:

- دقت مدل به کیفیت دادههای آموزشی وابسته است.
- احساسات پیچیده تر همکن است به مدلهای پیشرفته تری نیاز داشته باشند.

در آینده، میتوان این پروژه را با استفاده از مدلهای پیشرفتهتر مانند BERT بهبود بخشید و قابلیت تشخیص احساسات در زبانهای مختلف را به آن اضافه کرد.

## تقدير و تشكر

تشکر ویژه از جامعه متنباز و توسعه دهندگان کتابخانههایی مانند Streamlit ، Scikit-learn و Altair که این پروژه را ممکن کردند.



- 1. Scikit-learn: Documentation and Tutorials <a href="https://scikit-learn.org">https://scikit-learn.org</a>
- 2. Streamlit: Open-source app framework <a href="https://streamlit.io">https://streamlit.io</a>
- 3. Altair: Declarative Visualization in Python https://altair-viz.github.io
- 4. TF-IDF Theory: Understanding Text Vectorization https://en.wikipedia.org/wiki/Tf-idf