

TD - Semantics and Verification

X- Duality and Ultrafilter Extension Friday 1st April 2022

TA: Ralph Sarkis ralph.sarkis@ens-lyon.fr

Duality

For a fixed set Act, recall that $\mathfrak{L}(\mathsf{HML})$ is the set of HML-formulas, it is a boolean algebra with the order $\varphi \leq \psi \Leftrightarrow \varphi \to \psi \equiv \top$ and the syntactically evident operations. Moreover, we let

- $\alpha \in \text{Act}$, the functions $[\alpha] : \mathfrak{L}(\mathsf{HML}) \to \mathfrak{L}(\mathsf{HML})$ and $\langle \alpha \rangle : \mathfrak{L}(\mathsf{HML}) \to \mathfrak{L}(\mathsf{HML})$ are defined by
 - $[\alpha](\phi) = [\alpha]\phi$
 - $-\langle \alpha \rangle (\phi) = \langle \alpha \rangle \phi$
- for $TS = (S, Act, \rightarrow, I, AP, L)$, the functions $[[\alpha]]$ and $[(\alpha)]$ are defined by
 - $\llbracket [\alpha] \rrbracket (A) = \{ s \in S \mid \forall s' \in \operatorname{Succ}^{\alpha}(s), s' \in A \}$
 - $[\![\langle \alpha \rangle]\!](A) = \{ s \in S \mid \exists s' \in \operatorname{Succ}^{\alpha}(s), s' \in A \}$

For two Boolean algebras B and B' and a function $f: B \to B'$, the **dual** of f is the function $f^{\partial}: B \to B'$ defined by $f^{\partial}(b) = \neg' f(\neg b)$.

Exercise 1.

- 1. Consider a transition system $TS = (S, Act, \rightarrow, I, AP, L)$ and $\alpha \in Act$. Show that:
 - $\llbracket [\alpha] \rrbracket = \llbracket \langle \alpha \rangle \rrbracket^{\partial}$
 - $[\![\langle \alpha \rangle]\!] = [\![\alpha]\!]^{\partial}$
- 2. Let $\alpha \in Act$. Show that:
 - $[\alpha] = \langle \alpha \rangle^{\partial}$
 - $\langle \alpha \rangle = [\alpha]^{\partial}$

Exercise 2.

Let B and B' be two Boolean algebras and $f: B \to B'$. Show that:

- 1. $f^{\partial^{\partial}} = f$
- 2. If f is map of join (resp. meet) semilattices, then f^{∂} is map of meet (resp. join) semilattices.
- 3. If f is a map of lattices, then $f^{\partial} = f$.

Ultrafilter extension

Recall that:

- for a BAO $B^+ = (B, (f_\alpha)_{\alpha \in Act})$, the ultrafilter frame $\mathfrak{U}f(B^+)$ is defined as
 - the states are the ultrafilter over B, and
 - given \mathcal{F}, \mathcal{H} two ultrafilters, $\mathcal{F} \xrightarrow{\alpha} \mathcal{H}$ iff $\forall b \in B, b \in \mathcal{H} \Rightarrow f_{\alpha}(b) \in \mathcal{F}$.
- for a set X, we define the function $\pi: X \to \mathfrak{U}f(X)$ by $\pi(x) = \{A \in \mathcal{P}(X) \mid x \in A\}$. When X is finite, all ultrafilters are principal, so π is a bijection between X and $\mathfrak{U}f(X)$.
- for a $TS = (S, Act, \rightarrow, I, AP, L)$, the ultrafilter extension $\mathfrak{U}f(TS)$ is the transition system where
 - the states are the ultrafilters $\mathfrak{U}f(S)$ on S
 - $-\mathcal{F} \xrightarrow{\alpha} \mathcal{H} \text{ iff } [\![\langle \alpha \rangle]\!](A) \in \mathcal{F} \text{ whenever } A \in \mathcal{H}$
 - $-a \in L_{\mathfrak{U}f}(\mathcal{F}) \text{ iff } \{s \in S \mid a \in L(s)\} \in \mathcal{F}$
 - the inital states are $\{\pi(s) \mid s \in I\}$

Exercise 3.

Consider a BAO $B^+ = (B, (f_\alpha)_{\alpha \in Act})$. Show that in the ultrafilter frame $\mathfrak{U}f(B^+)$, we have

$$\mathcal{F} \xrightarrow{\alpha} \mathcal{H} \text{ iff } \forall b \in B, f_{\alpha}^{\partial}(b) \in \mathcal{F} \Rightarrow b \in \mathcal{H}$$

Exercise 4.

Consider a $TS = (S, Act, \rightarrow, I, AP, L)$. Show that:

- 1. Given $s \in S$ and $a \in AP$, $a \in L(s)$ iff $a \in L_{\mathfrak{U}f}(\pi(s))$.
- 2. Show that

$$\mathcal{F} \xrightarrow{\alpha} \mathcal{H} \text{ iff } \llbracket [\alpha] \rrbracket (A) \in \mathcal{F} \Rightarrow A \in \mathcal{H}$$

3. Given $s, s' \in S$ and $\alpha \in Act$, $s \xrightarrow{\alpha} s'$ in TS iff $\pi(s) \xrightarrow{\alpha} \pi(s')$ in $\mathfrak{U}f(TS)$.