NPTEL MOOC, JAN-FEB 2015 Week 6, Module 3

DESIGN AND ANALYSIS OF ALGORITHMS

Greedy algorithms: Interval scheduling

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Greedy Algorithms

- * Need to make a sequence of choices to achieve a global optimum
- * At each stage, make the next choice based on some local criterion
 - * Drastically reduces space to search for solutions
- * Never go back and revise an earlier decision
- * How to prove that local choices achieve global optimum?

Examples so far

Dijkstra's algorithm

- * Local rule: Freeze the distance of nearest unburnt vertex
- * Global optimum:

 Distance assigned to each vertex is shortest distance from source

Examples so far

Prim's algorithm

- * Local rule:
 Add to the spanning tree the nearest vertex not yet in the tree
- * Global optimum:
 Final spanning tree constructed is a minimum cost spanning tree

Examples so far

Kruskal's algorithm

- * Local rule:

 Add to the current set of edges the next smallest edge that does not form a cycle
- * Global optimum:

 Edges collected form a minimum cost spanning tree

- * CMI has a special video classroom for delivering online lectures
- * Different teachers want to book the classroom the slot for each instructor i starts at s(i) and finishes at f(i)
- * Slots may overlap, so not all bookings can be honoured
- * Choose a subset of bookings to maximize the number of teachers who get to use the room

Greedy approach

- * Pick the next booking to allot based on a local strategy
- * Remove all bookings that overlap with this slot
- * Argue that this sequence of bookings will maximize the number of teachers who get to use the room

Greedy strategy 1

- * Choose the booking whose start time is earliest
- * Counterexample

bookings

time

Greedy strategy 2

- * Choose the booking whose interval is shortest
- * Counterexample

Greedy strategy 3

- * Choose the booking that overlaps with minimum number of other bookings
- * Counterexample

Greedy strategy 4

- * Choose the booking that whose finish time is earliest
- * Counterexample?
- * Proof of correctness?

The algorithm

- * B is the set of bookings
- * A is the set of accepted bookings, initially empty
- * While B is not empty
 - * Pick b in B with smallest finishing time
 - * Add b to A
 - * Remove from B all bookings that overlap with b

Correctness

- * Our algorithm produces a solution A
- * Let O be any optimal allocation of bookings
- * A and O need not be identical
 - * Can have multiple allocations of same size
- * Instead, just show that |A| = |O| same size

Greedy allocation stays ahead

- * Let $A = i_1, i_2, ..., i_k$
 - * Assume sorted: $f(i_1) \le s(i_2)$, $f(i_2) \le s(i_3)$, ...
- * Let $O = j_1, j_2, ..., j_m$
 - * Again, assume sorted: $f(j_1) \le s(j_2)$, $f(j_2) \le s(j_3)$, ...
- * To show that k = m

Greedy allocation stays ahead

Claim: For each $r \le k$, $f(i_r) \le f(j_r)$

* Our greedy solution "stays ahead" of O

Proof: By induction on r

* r = 1: our algorithm chooses booking i₁ with earliest overall finish time

Greedy allocation stays ahead

- * r > 1: Assume, by induction that $f(i_{r-1}) \le f(j_{r-1})$
- * Then, it must be the case that f(ir) ≤ f(jr)
- * If not, algorithm would choose jr rather than ir

Greedy allocation is optimal

- * Suppose m > k
- * We know that $f(i_k) \leq f(j_k)$
- * Consider booking jk+1 in O
 - * Greedy algorithm terminates when B is empty
 - * Since $f(i_k) \le f(j_k) \le s(j_{k+1})$, this booking is compatible with $A = i_1, i_2, ..., i_k$
 - * After selecting ik, B still contains jk+1. Contradiction!

Implementation, complexity

- * Initially, sort the n bookings by finish time, O(n log n)
 - * Bookings are renumbered 1,2,...,n in this order
- * Set up an array ST[1..n] so that ST[i] = s(i)
- * Start with booking 1
- * After choosing booking j, scan ST[j+1], ST[j+2], ... and choose first k such that ST[k] > f(j)
- * Second phase is O(n), so O(n log n) overall