Carlos A. Aznarán Laos Franss Cruz Ordoñez Junior Micha Velasque Gabriel Quiróz Gómez Davis S. García Fernández

Relación de recurrencia

Ecuaciones en diferencias y análisis en escalas de tiempo

21 de junio del 2019

Facultad de Ciencias

Universidad Nacional de Ingeniería

La presente monografía está dedicada a mis profesores y estudiantes de la Facultad de Ciencias.	

Prólogo Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, aculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam acus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. Nulla malesuada portitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa. Rímac, junio 2019 El profesor del curso

ino de los temas más importantes dentro del Análisis Matemático son las sucesiones, es decir, funciones ayo dominio y contradominio es el conjunto de los números naturales N y el de los números reales R, sepectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrena", donde cualquier término se determina en función de al menos uno de los términos precedentes, en célebre libro [10, ver pág. 404] de Leonardo de Pisa¹ se da la solución al siguiente problema de cría de onejos: "Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un odelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su elación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones neales empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. (Carlos Aznarán Laos Franss Cruz Ordoñez	Prefacio	
ayo dominio y contradominio es el conjunto de los números naturales N y el de los números reales R, espectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrena", donde cualquier término se determina en función de al menos uno de los términos precedentes, en célebre libro [10, ver pág. 404] de Leonardo de Pisa¹ se da la solución al siguiente problema de cría de onejos: "Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un lodelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su elación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones en elas empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. Carlos Aznarán Laos Franss Cruz Ordoñez		
ayo dominio y contradominio es el conjunto de los números naturales N y el de los números reales R, espectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrena", donde cualquier término se determina en función de al menos uno de los términos precedentes, en célebre libro [10, ver pág. 404] de Leonardo de Pisa¹ se da la solución al siguiente problema de cría de onejos: "Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un lodelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su elación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones en elas empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. Carlos Aznarán Laos Franss Cruz Ordoñez		
ayo dominio y contradominio es el conjunto de los números naturales N y el de los números reales R, sspectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrena", donde cualquier término se determina en función de al menos uno de los términos precedentes, en célebre libro [10, ver pág. 404] de Leonardo de Pisa¹ se da la solución al siguiente problema de cría de onejos: "Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un todelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su elación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones en elas empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. Carlos Aznarán Laos Franss Cruz Ordoñez		
ayo dominio y contradominio es el conjunto de los números naturales N y el de los números reales R, sspectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrena", donde cualquier término se determina en función de al menos uno de los términos precedentes, en célebre libro [10, ver pág. 404] de Leonardo de Pisa¹ se da la solución al siguiente problema de cría de onejos: "Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un todelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su deación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones neales empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. Carlos Aznarán Laos Franss Cruz Ordoñez		
ayo dominio y contradominio es el conjunto de los números naturales N y el de los números reales R, sspectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrena", donde cualquier término se determina en función de al menos uno de los términos precedentes, en célebre libro [10, ver pág. 404] de Leonardo de Pisa¹ se da la solución al siguiente problema de cría de onejos: "Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un todelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su elación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones en elas empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. Carlos Aznarán Laos Franss Cruz Ordoñez		
ayo dominio y contradominio es el conjunto de los números naturales N y el de los números reales R, spectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrena", donde cualquier término se determina en función de al menos uno de los términos precedentes, en célebre libro [10, ver pág. 404] de Leonardo de Pisa¹ se da la solución al siguiente problema de cría de onejos: "Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un todelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su deación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones neales empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. Carlos Aznarán Laos Franss Cruz Ordoñez		
ayo dominio y contradominio es el conjunto de los números naturales N y el de los números reales R, spectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrena", donde cualquier término se determina en función de al menos uno de los términos precedentes, en célebre libro [10, ver pág. 404] de Leonardo de Pisa¹ se da la solución al siguiente problema de cría de onejos: "Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un todelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su deación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones neales empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. Carlos Aznarán Laos Franss Cruz Ordoñez		
año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja". ste ejemplo famoso es conocido como la sucesión de Fibonacci. Viendo esto, hemos concebido un nodelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su elación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones neales empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. úmac, Carlos Aznarán Laos Franss Cruz Ordoñez	nyo dominio y contradominio es el conjunto de los números espectivamente. En el presente trabajo nos enfocaremos en a", donde cualquier término se determina en función de al célebre libro [10, ver pág. 404] de <i>Leonardo de Pisa</i> ¹ se da	s naturales \mathbb{N} y el de los números reales \mathbb{R} , nada menos que las "relaciones de recurrenmenos uno de los términos precedentes, en
nodelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su elación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones neales empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de latemática en la Universidad Nacional de Ingeniería. **Carlos Aznarán Laos Franss Cruz Ordoñez** **Imac,** **Carlos Aznarán Laos Franss Cruz Ordoñez** **Transs Cruz Ordoñ	año han acontecido a partir del par inicial, de acuerdo a su naturale	
nnio 2019 Franss Cruz Ordoñez	odelo matemático basado en sucesiones recursivas, dande clación con las ecuaciones en diferencias y otras aplicación neales empleando nuestros conocimientos adquiridos en	o su definición, algunos otros ejemplos, su ones como resolver sistemas de ecuaciones
nnio 2019 Franss Cruz Ordoñez	ímac,	Carlos Aznarán Laos
Fibonogi		
- Fibonossi		
- Fibonossi		
Fibonossi		
Fibonossi		
Fibonossi		
Fibonossi		
	Fibonacci	

Alcance de la monografía

El ánimo de la monografía es dar una introducción matemática al modelamiento, análisis y técnicas de simulación para interacciones. Dado que el campo de las posibles aplicaciones es enorme y las diferentes aplicaciones aportarán diferentes desafíos que requieren de técnicas adecuadas, centraremos nuestra atención en los problemas que involucran un acoplamiento muy fuerte entre los dos subproblemas discreto y continuo.

La monografía está dividida en tres partes. En la primera parte, comenzaremos introduciendo las definiciones básicas de las relaciones de recurrencia y dar una visión general de las diferentes propiedades utilizadas para describir los métodos de Euler y Runge–Kutta. Para estos modelos y ecuaciones, desarrollaremos una teoría matemática fundamental que nos dará respuestas sobre la existencia, unicidad y regularidad de las soluciones. Dada la comprensión suficiente de los dos subproblemas, podremos abordar modelos acoplados para las relaciones de recurrencias. Ambos problemas se acoplan mediante la escalas de tiempo.

La primera parte de este libro también cubrirá una introducción a las ecuaciones en diferencias y el método para la discretización temporal de ecuaciones diferenciales ordinarias. Comenzaremos a reunir los elementos esenciales que son necesarios para manejar el problema X. Luego, prestamos atención a las necesidades especiales de los problemas de interacción de la estructura del fluido.

En la segunda parte de la monografía, describimos dos modelos numéricos específicos para la realización de problemas de interacción de X. Esta parte se centra en las formulaciones Y, donde ambos subproblemas están fuertemente vinculados y tratados como un único conjunto común de ecuaciones. Obtendremos una formulación matemática que cubrirá el problema de las recurrencias discretas, las ecuaciones en diferencias finitas y el cálculo clásico. Se consideran dos enfoques diferentes: En primer lugar, describimos el enfoque de la derivada discreta, una técnica bien establecida por George Boole para modelar las interacciones oferta-demanda que permiten esquemas de discretización muy precisos. En segundo lugar, presentamos la formulación completamente Runge-Kutta, un nuevo enfoque de modelado que puede cubrir una amplia gama de problemas de aplicación diferentes. Para estos dos enfoques, introduciremos detalles sobre la discretización en el espacio y tiempo. Además, describiremos técnicas avanzadas para la solución de los sistemas algebraicos resultantes. La compleja estructura de los problemas de interacción de la estructura de fluido acoplado combina las dificultades de los problemas de flujo con las de estructuras elásticas. Los sistemas de ecuaciones resultantes son enormes, carecen de estructura deseable (como la simetría) e incorporan un acoplamiento muy rígido. Finalmente, discutiremos algunos temas avanzados relacionados con el tratamiento numérico eficiente de problemas de sistema de ecuaciones dinámica en cálculo fraccionario. Con la ayuda del análisis de sensibilidad de los problemas acoplados, podremos diseñar estimadores de error orientados a objetivos que ayudarán a reducir significativamente los costos computacionales para grandes simulaciones. Además, estas técnicas pueden aplicarse para resolver problemas simples de optimización con X.

Agradecimientos Nos gustaría expresar el agradecimiento especial al maestro Manuel Toribio Cangana, así como a nuestro profesor Benito Ostos, que nos brindó la excelente oportunidad de elaborar esta monografía sobre el tema relaciones de recurrencia, quien también nos ayudó en la organización del mismo. Estamos muy agradecidos con ellos. En segundo lugar, ambién nos gustaría agradecer a nuestros padres y amigos que nos ayudaron a terminar este proyecto en un tiempo limitado.				
mos haciendo este proyecto no solo por las notas sino también para expandir nuestro conocimiento.				

Alcance de la monografía

Contenido Parte I Fundamentos Introducción..... Relación de recurrencia 1.3 Recurrencias Lineales con coeficientes constantes 1.4 1.5 1.6.2 1.6.3 Parte II Realización numérica 2 Método de Euler 2.1 2.2 2.3 Parte III Aplicaciones 3.2

Contenido xi

Algunos	códigos Python adicionales	53
A.1	Interés compuesto	53
A.2	Números de Fibonacci	53
	Método de Runge-Kutta	
	Escala de tiempo	53
7 1	Liseata de dempo	
Índice		54

Acrónimos	
CAS Sistema Computarizado Algebraico	
CAS Sistema Computarizado Algebraico RE Relación de recurrencia	

Parte I		
	Fundamentos	

En la primera parte de la monografía presentaremos los conceptos fundamentales para modelar y simular los problemas de las ecuaciones en diferencias, a veces, mal llamado <i>relaciones de recurrencias</i> . En el capítulo 1 presentaremos los modelos fundamentales y las ecuaciones en diferencias. Discutiremos la relación de <i>Ackermann</i>	

Capítulo 1

Introducción

Resumen. En este capítulo introducimos las relaciones de recurrencia. Estas son *ecuaciones* que definen de *manera recursiva*, a través de funciones adecuadas, los términos aparecen en una sucesión real o compleja. La primera sección trata algunos ejemplos bien conocidos que muestran cómo estas relaciones pueden surgir en la vida real, por ejemplo, el problema de la Torre de Hanói o el problema de Flavio Josefo. Luego, dedicamos una gran parte del capítulo a las ecuaciones en diferencias, es decir, Δx_n , donde f es una función de valor real: en este contexto, los métodos más estudiados son el de Euler y Runge-Kutta. Estudiamos a fondo el caso que pueden ser usados para resolver ecuaciones diferenciales ordinarias. La última parte del capítulo está dedicada al célebre teorema del Polinomio minimal, que afirma que la raíz de un implica la solución: así le damos al estudiante el sabor de un sistema dinámico, esa noción no se desarrolla explícitamente en la monografía.

1.1 Relación de recurrencia

En esta sección presentamos a nuestros lectores las nociones básicas subyacentes de las relaciones de recurrencia, así como varios ejemplos de tales relaciones. Una relación de recurrencia es una familia numerable de ecuaciones que definen sucesiones en modo recursivo. Aquellas sucesiones que así surgen se llaman *soluciones de la recurrencia*, dependiendo de uno o más *valores iniciales*: cada término que sigue al valor inicial en tales sucesiones es definida como una función de los términos anteriores.

Ejemplo 1.1 (Relaciones de recurrencias real)

1. El sistema de ecuaciones con coeficientes reales en la colección infinita de incógnitas $x_0, x_1, \ldots, x_n, \ldots$

$$\begin{cases} x_1 &= 3x_0 \\ x_2 &= 3x_1 \\ \vdots &= \vdots \\ x_{n+1} &= 3x_n \\ \vdots &= \vdots \end{cases}$$

podría indicarse más concisamente por $x_{n+1} = 3x_n, n \ge 0$, es una relación de recurrencia. La sucesión $(3^n)_{n\ge 0}$ es una solución de la recurrencia dada con valor inicial $x_0 = 1$. Es fácil de convencerse a uno mismo que en general, para cualquier número real $c \in \mathbb{R}$, la sucesión $(c3^n)_{n\ge 0}$ es la única solución de la recurrencia con el valor inicial $x_0 = c$.

1.1 Relación de recurrencia 4

2. Con el cuidado adecuado es fácil verificar que la sucesión real

$$x_0 = 1, x_1 = 1, x_2 = 2, x_3 = 2, x_4 = 4, \dots, x_7 = 4, \dots, x_{2^m} = 2^m, \dots$$

es la solución de la relación de recurrencia con coeficientes reales

$$x_n = \begin{cases} 2x_{n/2}, & \text{si } n \ge 2 \text{ es par,} \\ x_{n-1}, & \text{si } n \text{ es impar,} \end{cases}$$

con el *valor inicial* $x_0 = 1$.

3. La sucesión real

$$x_0 = 2, x_1 = 1, x_2 = 2^{1/2}, x_3 = 1, \dots, x_{2m-1} = 1, x_{2m} = 2^{1/2^m}, \dots$$

es la solución de la relación de recurrencia con coeficientes reales

$$x_n = \sqrt{x_n - 2}, \quad n \ge 2,$$

y los valores iniciales $x_0 = 2$ y $x_1 = 1$.

La pregunta que ahora surge naturalmente es la de definir relaciones generales de recurrencia. Buscamos exponer de manera rigurosa lo que acabamos de inferior de los ejemplos anteriores.

Definición 1.1 (Relación de recurrencia) Una **relación de recurrencia** en las incógnitas x_i , $i \in \mathbb{N}$, es una familia de ecuaciones

$$x_n = f_n(x_0, \dots, x_{n-1}), \quad n \ge r,$$

donde $r \in \mathbb{N}_{\geq 1}$, y $(f_n)_{n>r}$ son funciones

$$f_n: D_n \to \mathbb{R}, \quad D_n \subseteq \mathbb{R}^n, \quad \text{o} \quad f_n: D_n \to \mathbb{C}, \quad D_n \subseteq \mathbb{C}^n.$$

Dependiendo del caso encontrado, las llamaremos **recurrencias reales** o **recurrencias complejas**. Las incógnitas x_0, \ldots, x_{r-1} son llamadas **libres**. Su número r es el **orden** de la relación.

Al reemplazar n por n + r, la relación de recurrencia de orden r

$$x_n = f_n(x_0, \ldots, x_{n-1}), \quad n \ge r,$$

puede también escribirse como

$$x_{n+r} = f_{n+r}(x_0, \dots, x_{n+r-1}), \quad n \ge 0.$$

Definición 1.2 (Solución de una recurrencia) Una sucesión $(a_n)_n$ es una **solución** de la relación de recurrencia de orden r

$$x_n = f_n(x_0, \dots, x_{n-1}), \quad n \ge r,$$
 (1.1)

 $con f_n: D_n \to \mathbb{R}, D_n \in \mathbb{R}^n$, sii

$$(a_0, \ldots, a_{n-1}) \in D_n, \quad a_n = f_n(a_0, a_1, \ldots, a_{n-1}) \quad \forall n \ge r.$$

La sucesión (a_0, \ldots, a_{r-1}) de valores asignados para las r incógnitas libres es llamada la r-sucesión de **valor inicial** o de las **condiciones iniciales** de la solución. Definimos la **solución general real** (respectivamente **compleja**) de la sucesión como la familia de todas las soluciones con elementos que pertenece a \mathbb{R} (respectivamente en \mathbb{C}).

Ejemplo 1.2 Considere la relación de recurrencia de primer orden definida por

$$x_n = \frac{1}{x_{n-1} - 1}, \quad n \ge 1.$$

La 1-sucesión $(2) \in D_0$ no es una sucesión de valor inicial de una solución, en efecto, 2 pertenece al dominio de $f_0(x) = \frac{1}{x-1}$, pero $(2, f_0(x=2)) = (2, 1)$ no pertenece al dominio de $f_1(x_0, x_1) = \frac{1}{x-1}$. En cambio, la 1-sucesión (3) es una sucesión de valor inicial de la solución (sucesión)

$$(a_n)_n := \left\{3, \frac{1}{2}, -2, -\frac{1}{3}, -\frac{3}{4}, -\frac{4}{7}, -\frac{7}{1}, \ldots\right\}.$$

Note que para $n \ge 2$ uno tiene $a_n < 0$ y así $a_{n+1} = \frac{1}{a_{n-1}} < 0$ es distinto de 1.

Ejemplo 1.3 (Forma alternativa de la relación de recurrencia) En muchas ocasiones una relación de recurrencia de orden r involucra solo los últimos r términos y es de la forma

$$x_n = g_n(x_{n-r}, \ldots, x_{n-1}), \quad n \ge r,$$

donde $(g_n)_{n\geq r}$ son las funciones definidas en un subconjunto E_n de \mathbb{R}^r o \mathbb{C}^r . Este último es de hecho una relación de recurrencia: es suficiente para establecer $f_n(x_0,\ldots,x_{n-1}):=g_n(x_{n-r},\ldots,x_{n-1})$ para $(x_0,\ldots,x_{n-1})\in D_n:=\mathbb{R}^{n-r}\times E_n$ (o $\mathbb{C}^{n-r}\times E_n$) a fin de cumplir los requerimientos de la definición (1.1).

1.2 Ecuación en diferencias

Aquí es conveniente representar cualquier sucesión de números reales $(a_n)_n$ como la función $f: \mathbb{N} \to \mathbb{R}$ definido por:

$$f(n) = a_n, \quad \forall n \in \mathbb{N}.$$

Dadas dos funciones $f, g: \mathbb{N} \to \mathbb{R}$ y $r \in \mathbb{R}$ consideremos las funciones:

$$(f+g)(n) = f(n) + g(n), \quad y \quad (rf)(n) = rf(n) \quad \forall n \in \mathbb{N}.$$

Dotado de estas operaciones, el conjunto de funciones de $\mathbb{N} \to \mathbb{R}$ es un \mathbb{R} -espacio vectorial de funciones. También consideraremos la función:

$$(fg)(n) = f(n)g(n) \forall k \in \mathbb{N}.$$

Un mapa lineal del espacio de funciones de \mathbb{N} a \mathbb{R} en sí mismo es un operador.

Definición 1.3 (Operador identidad y operador de cambio) Consideramos el espacio de funciones de $\mathbb{N} \to \mathbb{R}$. Para cada función $f: \mathbb{N} \to \mathbb{R}$ el operador identidad y el operador de cambio θ están definidos:

$$\mathbb{I}(f) = f$$
 y $\theta(f)(n) = f(n+1)$ $\forall n \in \mathbb{N}$.

Uno verifica inmediatamente que la identidad y el operador de cambio son de hecho lineales.

Proposición 1.1 (Linealidad de la identidad y el operador de cambio) Sean las funciones $f, g: \mathbb{N} \to \mathbb{N}$ $y \in \mathbb{R}$. Luego tenemos:

1.
$$\mathbb{I}(f+g)(n) = \mathbb{I}(f)(n) + \mathbb{I}(g)(n)$$
.
2. $\mathbb{I}(cf)(n) = c\mathbb{I}(f)(n) y \theta(cf)(n) = c\theta(f)(n)$.

Prueba Sea $n \in \mathbb{N}$, luego:

$$\theta(f+g)(n) = (f+g)(n+1) = f(n+1) + g(n+1) = \theta(f)(n) + \theta(g)(n).$$

$$\theta(cf)(n) = (cf)(n+1) = cf(n+1) = c\theta(f)(n).$$

Se verifica la linealidad de I inmediatamente.

Para cualquier operador T, será conveniente un ligero abuso de notación, para escribir Tf(n) en lugar de T(f)(n). Además en algunos casos, por ejemplo cuando f depende de otros parámetros, uno escribe $T_n f(n)$ en lugar de Tf(n) para evitar la ambigüedad. Así, por ejemplo, denotada por $\mathbb{I}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}$ la función definida por $\mathbb{I}_{\mathbb{N}}(n) = n$ para cada $n \in \mathbb{N}$ escribiremos $\theta n = n + 1$ en lugar de $\theta(\mathbb{I}_{\mathbb{N}})(n) = n + 1$. Análogamente $\theta n^2 = (n + 1)^2$, $\theta_n n^a = (n + 1)^a$ y $\theta_n a^n = a^{n+1}$ para cada $a \in \mathbb{R}$.

Para las funciones de valor real de una variable de número natural ahora introducimos el análogo de la derivada habitual para funciones de valor real de una variable real:

Definición 1.4 (Operador de cambio) El operador diferencia es el operador \triangle que a cada función $f: \mathbb{N} \to \mathbb{R}$ asigna la función $\triangle f: \mathbb{N} \to \mathbb{R}$, definido de la siguiente manera:

$$\triangle f(n) = f(n+1) - f(n), \quad \forall n \in \mathbb{N}.$$

Observación 1.1 Usando el operador de cambio, uno tiene $\Delta = \theta - \mathbb{I}$, es decir:

$$\Delta f = \theta f - f, \quad \forall f : \mathbb{N} \to \mathbb{R}.$$

Claramente, para cada función $f: \mathbb{N} \to \mathbb{R}$, uno tiene:

$$\Delta f(k) = \frac{f(k+1) - f(k)}{1},$$

entonces $\Delta f: \mathbb{N} \to \mathbb{R}$ es una función que mide el cociente de diferencia de f sobre el intervalo más pequeño posible de números naturales, es decir, un intervalo de longitud uno. En este sentido, el operador diferencia constituye el análogo discreto de la noción de derivada para funciones de una variable real. En lo que sigue, el lector tendrá ocasión para anotar analogías y contrastes entre estas dos nociones.

Al igual que la derivada, el operador de diferencia es lineal: de hecho, es una diferencia de dos operadores lineales.

Proposición 1.2 (Linealidad de la diferencia) Sean $f, g: \mathbb{N} \to \mathbb{R}$ y $c \in \mathbb{R}$. Luego uno tiene:

1.
$$\triangle (f + g) = \triangle f + \triangle g$$
.
2. $\triangle (cf) = c \triangle f$.

Prueba Como $\triangle = \theta - \mathbb{I}$ se obtiene:

1.
$$\triangle (f+g) = (\theta - \mathbb{I})(f+g) = \theta (f+g) - \mathbb{I}(f+g) = \theta(f) - f + \theta(g) - g = \triangle(f) - \triangle(g) - 2$$

2. $\triangle (cf) = (\theta - \mathbb{I})(cf) = \theta (cf) - \mathbb{I}(cf) = c\theta(f) - cf = c(\theta - \mathbb{I})(f) = c \triangle(f)$.

Ahora vemos cómo el operador de diferencia actúa en algunas funciones simples con dominio IN.

Ejemplo 1.4

1. Funciones constantes: al igual que en el caso de la derivada de una constante. Funciona con dominios en \mathbb{R} , aquí también tenemos que la diferencia de una función constante (con dominio \mathbb{N}) es igual a la función cero: de hecho, si $f(n) = c \in \mathbb{R}$ por cada $n \in \mathbb{N}$, entonces

$$\triangle f(k) = f(k+1) - f(k) = c - c = 0.$$

2. Función de identidad en los números naturales: al igual que en el caso continuo, la diferencia de la función de identidad $I_{\mathbb{N}}: \mathbb{N} \to \mathbb{N}$ es la función constante n=1 para todo $n \in \mathbb{N}$. De hecho,

$$\triangle I_{\mathbb{N}}(n) = I_{\mathbb{N}}(n+1) - 1 = n+1-n = 1.$$

Ejemplo 1.5 Los operadores de cambio y diferencia conmutan. Más explícitamente, uno tiene

$$\triangle \circ \theta = \theta \circ \triangle.$$

Prueba De hecho, para cada $n \in \mathbb{N}$ y cada función $f: \mathbb{N} \to \mathbb{R}$ uno tiene

$$\Delta (\theta f)(n) = \theta f(n+1) - \theta f(n) = f(n+2) - f(n+1),$$

mientras

$$\theta\left(\Delta f\right)(n) = \Delta f\left(n+1\right) = f(n+2) - f(n+1).$$

Por lo tanto, uno tiene $\triangle (\theta f) = \theta (\triangle f)(n)$.

La fórmula para la diferencia de un producto se parece a la del derivado de un producto, excepto la introducción del operador de turno:

Proposición 1.3 (Diferencia de un producto) Si $f, g: \mathbb{N} \to \mathbb{R}$, luego

$$\Delta (fg) = \Delta f \theta g + f \Delta g.$$

Observación 1.2 Cabe destacar el hecho evidente de que a pesar de la aparente falta de simetría, uno tiene $\Delta(fg) = \Delta(gf)$.

Prueba

$$\Delta (f(n)g(n)) = f(n+1)g(n+1) - f(n)g(n)$$

$$= f(n+1)g(n+1) - f(n)g(n+1) + f(n)(n+1) - f(n)g(n)$$

$$= (f(n+1) - f(n))g(n+1) + f(n)g(n+1) - g(n)$$

$$= \Delta f(n)\theta g(n) + f(n) \Delta g(n).$$

Una ecuación en diferencias es una expresión de la forma:

$$G(n, f(n), f(n+1), \dots, f(n+k)) = 0, \forall n \in \mathbb{Z}$$

donde f es una función definida en \mathbb{Z} .

Si después de simplificar esta expresión quedan los términos $f(n + k_1)$ y $f(n + k_2)$ como el mayor y el menor, respectivamente. Se dice que la ecuación es de orden $k = k_1 - k_2$.

Ejemplo 1.6 (Ecuación en diferencias de orden 3) La ecuación dada por

$$5f(n+4) - 4f(n+2) + f(n+1) + (n-2)^3 = 0$$

es de orden 4 - 1 = 3.

Una ecuación en diferencias de orden k se dice que es *lineal* si puede expresarse de la forma:

$$p_0(n) f(n+k) + p_1(n) f(0+k-1) + \cdots + p_k(n) f(n) = g(n),$$

donde los coeficientes p_i son funciones definidas en \mathbb{Z} .

El caso más sencillo es cuando los coeficientes son constantes $p_i(n) = a_i$:

$$a_0 f(n+k) + a_1 f(n+k-1) + \cdots + a_k f(n) = g(n).$$

La ecuación en diferencias se dice que es *homogénea* en el caso que g(n) = 0, y completa en el caso contrario.

Teorema 1.1 Dada la ecuación en diferencias lineal de coeficientes constantes y de orden K:

$$a_0 f(n+k) + a_1 f(n+k-1) + \dots + a_k f(n) = g(n)$$

el problema de hallar una función definida \mathbb{Z} , que verifique la ecuación, y tales que en los k enteros consecutivos $n_0, n_0 + 1, \ldots, n_0 + k - 1$ tome los valores dados $c_0, c_1, \ldots, c_{k-1}$, tiene solución única.

Teorema 1.2 Dada una ecuación en diferencias lineal homogénea de coeficientes constantes y de orden k. Si una solución f es nula en k enteros consecutivos, entonces f es idénticamente nula.

Teorema 1.3 Toda combinación lineal de soluciones de una ecuación en diferencias lineal homogénea de coeficientes constantes y de orden k es también solución de dicha ecuación.

Definición 1.5 (Solución de una ecuación en diferencias homogénea) Sea la ecuación en diferencias lineal homogénea de coeficientes constantes y de orden *k*.

$$a_0 f(n+k) + a_1 f(n+k-1) + \dots + a_k f(n) = 0, \quad \forall k \in \mathbb{Z}.$$

Buscaremos soluciones del tipo $f(n) = r^n$. Entonces,

$$r^{n}(a_{0}r^{k} + a_{1}r^{k-1} + \dots + a_{k}) = 0 \implies r^{n}(a_{0}r^{k} + a_{1}r^{k-1} + \dots + a_{k}) = 0.$$

Por tanto, r es raíz de la **ecuación característica**

$$(a_0r^k + a_1r^{k-1} + \dots + a_k) = 0.$$

El estudio de la solución dependería de si las raíces de la ecuación característica son simples o múltiples.

Ejemplo 1.7 Hallar la solución de

$$f(n+2) - 4f(n+1) + 3f(n) = 0 \quad \forall n \in \mathbb{Z}, \quad f(0) = 0, \quad f(1) = 1.$$

La ecuación característica es

$$r^2 - 4r + 3 = 0 \rightarrow r_1 = 3$$
, $r_2 = 1$.

Por lo tanto:

$$f(n) = c_1 3^n + c_2 1^n = c_1 3^n + c_2$$

Por otra parte:

$$\begin{cases}
f(0) = c_1 + c_2 = 0 \\
f(1) = 3c_1 + c_2 = 1
\end{cases} \longrightarrow c_1 = \frac{1}{2}, \quad c_2 = -\frac{1}{2}.$$

De donde

$$f(n) = \frac{1}{2} \cdot 3^n - \frac{1}{2} = \frac{3^n - 1}{2}.$$

1.3 Recurrencias Lineales con coeficientes constantes

Una relación de recurrencia lineal de orden r con coeficientes constantes es una recurrencia del tipo:

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \forall n \ge r,$$
 (1.2)

donde c_0, c_1, \ldots, c_r son constantes reales o complejas, con c_0 y c_r ambos diferentes de cero y $(h_n)_{n \ge r}$ es una sucesión de números reales o complejos llamado sucesión de términos no homogéneos de la recurrencia. La recurrencia es llamada homogénea si la sucesión de términos no homogéneos es una sucesión nula, no homogénea si $h \ne 0$ para algún n. La relación de recurrencia:

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = 0, \forall n > r,$$
 (1.3)

es llamada la recurrencia homogénea asociada, o la parte homogénea de la recurrencia (1.2). Como nosotros ya hemos notado, la recurrencia:

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \forall n \ge r,$$

puede ser escrito equivalentemente como

$$c_0 x_{n+r} + c_1 x_{n+(r-1)} + \dots + c_r x_n = h_{n+r}, \forall n > 0.$$

Se puede utilizar cualquiera de las formas presentadas.

Observación 1.3 Cada r-secuencia de valores asignados a las r incógnitas desconocidas de la relación de recurrencia

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \forall n \ge r,$$

determina de forma única una solución. Al resolver una relación de recurrencia lineal, el siguiente principio es fundamental importancia.

Proposición 1.4 (**Principio de superposición**) Sean $(u_n)_n$, $(V_n)_n$ respectivamente las soluciones de las relaciones de recurrencia lineal.

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \quad n \ge r$$

y

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = k_n, \quad n \ge r,$$

con partes homogéneas iguales y secuencias de términos no homogéneos $(h_n)_n$ y $(k_n)_n$. Para cualquier par de constantes A y B, la sucesión $(Av_n + Bv_n)_n$ es una solución de la relación de recurrencia.

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = Ah_n + Bk_n$$
.

La solución general de la relación de recurrencia

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \quad n \ge r.$$
 (1.4)

Prueba

1. Uno tiene fácilmente

$$c_0(Au_n + Bv_n) + c_1(Au_{n-1} + Bv_{n-1}) + \dots + c_r(Au_{n-r} + Bv_{n-r}) =$$

$$= A(c_0u_n + c_1u_{n-1} + \dots + c_ru_{n-r}) + B(c_0v_n + c_1v_{n-i} + \dots + c_rv_{n-r})$$

$$= Ah_n + Bk_n.$$

2. Sea $(u_n)_n$ una solución particular de (1.4). Por el punto previo nosotros conocemos que $(v_n)_n = (u_n)_n + (v_n - u_n)_n$ es una solución de (1.4) si y solo si $v_n - u_n$ es una solución de la recurrencia homogénea asociada. Por lo tanto cada solución de (1.4) es obtenida añadiendo una solución de la recurrencia homogénea asociada para $(u_n)_n$.

1.4 Relación de recurrencia lineal con homogénea con coeficientes constantes

La sucesión nula es una solución de cualquier relación de recurrencia lineal. La estructura de la solución general de una relación de recurrencia lineal homogénea corresponde a la estructura de la solución general de un sistema de ecuaciones lineales homogéneas.

Proposición 1.5 (**Teorema principal**) Considere la relación de recurrencia lineal homogénea de orden r:

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = 0, \quad n \ge r \quad (c_0 c_r \ne 0)$$
 (1.5)

- 1. Cualquier combinación lineal de soluciones de (1.5) es de nuevo una solución de (1.5).
- 2. Existe r soluciones de (1.5) tal que cualquier otra solución de (1.5) puede ser expresado únicamente como su combinación lineal.

Prueba

- 1. Esto sigue inmediatamente por el "Principio de Superposición".
- 2. Para todo $i \in \{0, ..., r-1\}$ sea $(u_n^i)_n$ la solución de (1.5) con r-sucesión de valores iniciales iguales a 0 para índices $j \neq i$, iguales a 1 en índices i, es decir:

$$u_i^i = 0 \text{ si } j \neq i, \quad u_i^i = 1 \quad j \in \{0, \dots, r-1\}.$$

Consideramos ahora alguna solución $(a_n)_n$ de (1.5); la combinación lineal

$$a_0(u_n^0)_n + a_1(u_n^1)_n + \dots + a_{r-1}(u_n^{r-1})_n,$$

es una solución de (1.5) con secuencia de datos iniciales (a_0, \ldots, a_{r-1}) . Ya que la sucesión de valores iniciales determinan la solución de una relación de recurrencia, uno tiene

$$(a_n)_n = a_0 (u_n^0)_n + a_1 (u_n^1)_n + \dots + a_{r-1} (u_n^{r-1})_n.$$

Definición 1.6 (Polinomio característico) Definimos el *polinomio característico* de una relación de recurrencia con coeficientes constantes de orden *r* de la siguiente manera:

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \quad n \ge r (c_0 c_r \ne 0),$$

para el polinomio de grado r:

$$P(X) := c_0 X^r + c_1 X^{r-1} + \dots + c_r.$$

Cada polinomio de grado r tiene exactamente r raíces complejas contando con su multiplicidad. Vemos ahora que la sucesión de las potencias naturales de una determinada raíz del polinomio característico de una relación de recurrencia lineal es una solución de la correspondiente relación homogénea.

Proposición 1.6 (Raíz del polinomio característico) Sea $\lambda \in \mathbb{C}$. La sucesión $(\lambda^n)_n$ de las potencias de λ es una solución de la relación de recurrencia lineal homogénea

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = 0, \quad n \le r \quad (c_0 c_r \ne 0),$$
 (1.6)

sii λ es una raíz de este polinomio característico.

Prueba Dado que $c_r \neq 0$, las raíces del polinomio característico deben ser necesariamente no nulas. Sustituyendo los valores de la sucesión $(\lambda^n)_n$ en la recurrencia, uno tiene

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = 0,$$

y dividiendo por $\lambda^{n-r} \neq 0$

$$c_0\lambda^r + c_1\lambda^{r-1} + \dots + c_r = 0.$$

Por lo tanto, la sucesión $(\lambda^n)_n$ es una solución de (1.6) sii λ es una raíz del polinomio $c_0X^r + c_1X^{r-1} + \cdots + c_r$.

En general, no es fácil encontrar las raíces de un polinomio de grado mayor que dos, aunque uno puede siempre usar un adecuado CAS. El siguiente criterio simple, sin embargo, muestra cómo encontrar las raíces racionales de un polinomio con coeficientes enteros.

Proposición 1.7 (Las raíces racionales de un polinomio con coeficientes enteros) Sea $P(X) = c_0 X^r + c_1 X^{r-1} + \cdots + c_r$ un polinomio con coeficientes enteros $c_0 \dots c_r \in \mathbb{Z}$, con $c_0 \neq 0$. Si la fracción $\frac{a}{b}$ con $a, b \in \mathbb{Z}$ con mod = 1 es una raíz de P(X), luego $a \mid c_r y b \mid c_0$. En particular, si $c_0 = \pm 1$ las raíces racionales del polinomio P(X) son enteros que dividen a c_r .

Prueba Dado $c_0 \left(\frac{a}{b}\right)^r + c_1 \left(\frac{a}{b}\right)^{r-1} + \dots + c_{r-1} \left(\frac{a}{b}\right) + c_r = 0$, multiplicado por b^r obtenemos:

$$c_0 a^r + c_1 a^{r-1} b + \dots + c_{r-1} a b^{r-1} + c_r b^r = 0.$$

Como $a \mid c_0 a^r + c_1 a^{r-1} b + \dots + c_{r-1} a b^{r-1}$, luego tiene que dividir también $c_r b^r$, y por lo tanto, al no tener a y b factores comunes, $a \mid c_r$. Análogamente $b \mid c_0 a^r$ y por lo tanto divide a c_0 .

Ejemplo 1.8 (Polinomio característico) La recurrencia homogénea de segundo orden:

$$x_n = 2x_{n-1} - 2x_{n-2}, \quad n \ge 2,$$

tiene polinomio característico $X^2 - 2X + 2$ cuyas raíces son $\lambda_1 = 1 - i$ y $\lambda_2 = 1 + i$. Las sucesiones $((1-i)^n)_n$ y $((1+i)^n)_n$ son las soluciones bases de la recurrencia. La solución general compleja de la recurrencia es:

$$x_n = A_1(1-i)^n + A_2(1+i)^n, \quad n \ge 0,$$

con la variante de A_1 y A_2 entre los números complejos. Veamos la solución real general. Uno tiene:

$$\lambda_1 = 1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = \sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) - i \sin \left(\frac{\pi}{4} \right) \right)$$

$$\lambda_2 = 1 + i = \overline{\lambda_1} = \sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) - i \operatorname{sen} \left(\frac{\pi}{4} \right) \right).$$

Luego, las sucesiones $(2^{n/2}\cos(\frac{n\pi}{4}))_n$ y $(2^{n/2}\sin(\frac{n\pi}{4}))_n$ son las soluciones base reales de la recurrencia. Por lo tanto, la solución general real de la recurrencia es:

$$x_n = A_1 2^{n/2} \cos\left(\frac{n\pi}{4}\right) + A_2 2^{n/2} \sin\left(\frac{n\pi}{4}\right), \quad n \ge 0,$$

con la variación de A_1 y A_2 entre los números reales.

1.4.1 Algunos modelos de recurrencias lineales

Ahora damos una serie de ejemplos que ilustran cómo reducir la solución de un problema en el que la búsqueda de las soluciones de una relación de recurrencia apropiada.

Ejemplo 1.9 (**Número de Catalan**) El número de Catalan (C_n) es igual al número de rutas de la esquina inferior izquierda de una rejilla cuadrada de $n \times n$ a la esquina superior derecha si estamos restringidos a viajar solo a la derecha o hacia arriba y si se permite tocar pero no pasar arriba de la diagonal entre la esquina inferior izquierda y la superior derecha. Tal ruta recibe el nombre de *ruta buena*. Se da una relación de recurrencia para los números de Catalan. Las rutas buenas se dividen en clases con base en la primera vez que tocan la diagonal después de salir de la esquina inferior derecha. Por ejemplo, la ruta en la figura toca la diagonal primero en el punto (3, 3). Las rutas que tocan la diagonal primero en el punto (k, k) se consideran construidas por un proceso de dos pasos:

- 1. Primero, se construye la parte de (0,0) a (k,k).
- 2. Segundo, se construye la parte de (k, k) a (n, n). Una buena ruta siempre sale de (0, 0) moviéndose hacia la derecha a (1, 0) y siempre llega a (k, k) moviéndose hacia arriba desde (k, k 1).
- 3. Los movimientos de (1,0) a (k,k-1) dan una ruta buena en la rejilla de $(k-1)\times(k-1)$ con esquina en (1,0), (1,k-1), (k,k-1) y (k,0). En la figura, se marcaron los puntos (1,0) y (k,k-1), k=3, con rombos, y se aisló la subrejilla de $(k-1)\times(k-1)$. Así, hay C_{k-1} rutas de (0,0) a (k,k) que tocan primero a la diagonal en (k,k).
- 4. La parte de (k,k) a (n,n) es una buena ruta en la rejilla de $(n-k) \times (n-k)$ con esquinas en (k,k),(k,n),(n,n) y (n,k) (vea la figura). Hay C_{n-1} rutas de este tipo. Por el principio de la multiplicación, hay $C_{k-1}C_{n-k}$ rutas buenas en una rejilla de $n \times n$ que tocan primero la diagonal en (k,k). Las rutas buenas que tocan por primera vez en $(k',k'),k\neq k'$. Entonces se utiliza el principio de la suma a fin de obtener una relación de recurrencia para el número total de rutas buenas en una rejilla de $n \times n$:

$$C_n = \sum_{k=1}^{n} C_{k-1} C_{n-k}.$$

Fig. 1.1 Retículo de tamaño (k, k).

Ejemplo 1.10 (La escalera) Un niño decide escalar una escalera con $n \ge 1$ de tal manera que cada paso que él despeja uno o dos de los pasos de la escalera Encuentre la relación de recurrencia que sirva para calcular el número de diferentes maneras posibles de escalar la escalera.

Usamos la variable desconocida x_n para denotar el número de maneras en las cuales el niño puede escalar la escalera de $n \ge 1$ pasos. Es fácil de observar que $x_1 = 1$ y $x_2 = 2$ (dos pasos cada uno de longitud uno, o un paso de longitud dos escalones). Ahora sea $n \ge 3$: si con el primer paso el niño mueve solo el primer escalón; existen claramente x_{n-1} posibles maneras de escalar los que quedan. Si en cambio con el primer lugar, se suben dos peldaños de escalera. Resolver una ecuación de recurrencia significa encontrar una sucesión que satisfaga las ecuaciones de recurrencias. Encontrar una "solución general" significa hallar una fórmula que describa todas las soluciones posibles (todas las sucesiones posibles que satisfacen la ecuación). Veamos el siguiente ejemplo:

Ejemplo 1.11 Considere que T_n satisface la siguiente ecuación para todo $n \in \mathbb{N}$, n > 1:

$$T_n = 2T_{n-1} + 1.$$

La ecuación de recurrencia T_n indica cómo continúa la sucesión pero no nos dice como empieza tal.

- Si $T_1 = 1$, se tiene T = (1, 7, 3, 15, 31, ...).
- Si $T_2 = 1$, se tiene T = (2, 5, 11, 23, 47, ...).
- Si $T_4 = 1$, se tiene T = (4, 9, 19, 39, 79, ...).
- Si $T_{-1} = 1$, se tiene T = (-1, -1, -1, 1 1, -1, ...).

¿Existe alguna fórmula para cada una de estas sucesiones? ¿Existe una fórmula en términos de n y T_1 que describa todos los términos de la sucesión? ¿Existe una posible solución para T_n ? Para poder responder este tipo de problemas, veamos un poco más de ecuaciones con recurrencia.

1.5 Ejemplos definidos por ecuaciones de recurrencia

Ejemplo 1.12 (Parejas desordenadas) Imagina una fiesta donde las parejas llegan juntas, pero al final de la noche, cada persona se va con una nueva pareja. Para cada $n \in P$, digamos que D_n es el número de diferentes formas en que las parejas pueden ser "desordenadas", es decir, reorganizadas en parejas, por lo que ni uno está emparejado con la persona con la que llegaron.

Para los valores:

- $D_1 = 0$, una pareja no puede ser desordenada.
- $D_2 = 1$, existe una y solo una manera de "desordenar" una pareja.
- $D_3 = 2$, si las parejas llegan como Aa, Bb, Cc, entonces A estaría emparejado con b o c. Si A esta emparejado con b, b debe estar emparejado con a(y no c) y b con b. Si b esta emparejado con b, b no debe estar emparejado con b0 y b1 con b2.

¿Qué tan grandes son D_4 , D_5 y D_{10} ? ¿Cómo podemos calcularlos? ¿Existe alguna expresión cerrada para obtener todos los términos de la?

Vamos a desarrollar una estrategia para contar los desajustes cuando $n \le 4$. Supongamos que hay n mujeres $A_1, A_2, A_3, \ldots, A_n$, y cada A_j llega con el hombre a_j .

La mujer A_1 puede ser "re-emparejada" con cualquiera de los n-1 hombres restantes a_2 o a_3 o . . . o a_n . Digamos que está emparejada con a_k , donde $2 \le k \le n$ y ahora consideremos a'_k pareja original de la mujer A_k : ella podría tomar a_1 o ella podría rechazar a_1 y tomar a alguien más.

Si A_1 es pareja con a_k y A_k es pareja con a_1 , entonces n-2 parejas dejaron para desordenar, y eso puede hacerse exactamente de D_{n-2} maneras diferentes.

Ahora para cada uno de los n-1 hombres que A_1 podría elegir, hay $\{D_{n-2} + D_{n-1}\}$ diferentes formas de completar el trastorno. Por lo tanto, cuando $n \ge 4$ tenemos:

$$D_n = (n-1)\{D_{n-2} + D_{n-1}\}$$
(1.7)

Usando la ecuación (1.7) las evaluaciones para n=1 y n=2 verifican la igualdad, ahora evaluemos D_n para cualquier valor de n, con $n \in \mathbb{N}$

$$D_{3} = (3-1)\{D_{2} + D_{1}\} = 2(1+8) = 2.$$

$$D_{4} = (4-1)\{D_{3} + D_{2}\} = 3(2+1) = 9.$$

$$D_{5} = (5-1)\{D_{4} + D_{3}\} = 4(9+2) = 44.$$

$$D_{6} = (6-1)\{D_{5} + D_{4}\} = 5(44+9) = 265.$$

$$D_{7} = (7-1)\{D_{6} + D_{5}\} = 6(265+44) = 1854.$$

$$D_{8} = (8-1)\{D_{7} + D_{6}\} = 7(1854+265) = 14833.$$

$$D_{9} = (9-1)\{D_{8} + D_{7}\} = 8(14833+1854) = 133496.$$

$$D_{10} = (10-1)\{D_{9} + D_{8}\} = 9(133496+14833) = 1334961.$$

La sucesión en P definido por $S_n = A \times n!$ donde A es un número real satisface la ecuación de recurrencia (1.7). Si $n \ge 3$ se tiene:

$$(n-1) \{S_{n-2} + S_{n-1}\} = (n-1) \{A(n-2)! + A(n-1)! \}$$

$$= (n-1)A(n-2)! \{1 + (n-1)\}$$

$$= A(n-1)(n-2)! \{n\}$$

$$= A \times n!$$

$$= S_n.$$

¿Es válida la fórmula para n=1 o n=2? ¿Existe algún número real tal que $D_n=A(n!)$ cuando n=1 o n=2? No, porque si $0=D_1=A(1!)$, entonces A debe ser igual a 0, y si $1=D_2=A(2!)$, se tiene que A debería tomar el valor de $\frac{1}{2}$. Sin embargo, podemos usar esta fórmula para probar que D_n es acotado.

Teorema 1.4 Para todo $n \geq 2$, $(\frac{1}{3}) n! \leq D_n \leq (\frac{1}{2}) n!$.

Prueba Primero considere la tabla de valores: Por inducción fuerte en matemática sobre n.

Paso 1 Si n = 2, se tiene $(\frac{1}{3}) n! = \frac{2}{3} < 1 = D_n = (\frac{1}{2}) n!$ y n = 3, se tiene $(\frac{1}{3}) n! = \frac{6}{3} = 2 = D_n < 3 = (\frac{1}{2}) n!$.

Paso 2 Supongamos que $\exists k \geq 3$ tal que si $2 \leq n \leq k$, se tiene $\left(\frac{1}{3}\right) n! \leq D_n \leq \left(\frac{1}{2}\right) n!$.

Paso 3 Si n = k + 1, se tiene $n \ge 4$ y $D_n = (n - 1)[D_{n-2} + D_{n-1}]$ cuando $2 \le n - 2 < n - 1 \le k$. Así, $D_n \le (n-1)\{(1/3)[n-2]! + (1/3)[n-1]!\} = (1/3)n!$, y $D_n \le (n-1)\{(1/2)[n-2]! + (1/2)[n-1]!\} = (1/2)n!$.

n	$\left(\frac{1}{3}\right)n!$	D_n	$\left(\frac{1}{2}\right)n!$
1	$\frac{1}{3}$	0	$\frac{1}{2}$
2	$\frac{2}{3}$	1	$1 = \frac{2}{2}$
3	$\frac{6}{3} = 2$	2	$3 = \frac{6}{2}$
4	$\frac{24}{3} = 8$	9	$12 = \frac{24}{2}$
5	$\frac{120}{3} = 40$	44	$60 = \frac{120}{2}$
6	$\frac{720}{3} = 240$	265	$360 = \frac{720}{2}$

La mejor fórmula para $\mathbf{D_n}$ que sabemos utiliza la función de "entero más cercano". Para cualquier número real x, sea $\lceil x \rceil$ que denote *el entero más cercano a x* se define de la siguiente manera:

- Si x es escrito como n+f donde n es el entero $\lfloor x \rfloor$, y f es una fracción donde $0 \le f < 1$.
- Si $0 \le f < \frac{1}{2}$, entonces $\lceil x \rfloor = n$.
- Si $\frac{1}{2} \le f < 1$, entonces $\lceil x \rceil = n + 1$.

¿Es $\lceil x \rfloor = \lfloor x + \frac{1}{2} \rfloor$? Así que $\lceil 3.29 \rfloor = 3$, $\lceil -3.78 \rfloor = -4$. Entonces $D_n = \lceil (n!)/e \rfloor$ cuando e = 2.71828182844... es la base del logaritmo natural. Note que (n!)/e nunca es igual a $\lceil (n!)/e \rfloor + \frac{1}{2}$.

n	D_n	(n!)/e
1	0	0.367879441
2	1	0.735758882
3	2	2.207276647
4	9	8.829106588
5	44	44.14553294
6	265	264.8731976
7	1854	1854.112384
8	14833	14832.89907
9	133496	133496.0916
10	1334961	1334960.916

Hay otra fórmula (mucho menos compacta) para D_n dado en los ejercicios, junto con un resumen de la prueba de que $D_n = \lceil (n!)/e \rfloor$.

Ejemplo 1.13 (**Números de Ackermann**) En la década de 1920's, el lógico y matemático alemán, Wilhelm Ackermann (18961962), inventó una función muy curiosa, $A: P \times P \rightarrow P$ que define recursivamente usando "tres reglas":

Regla 1 A(1, n) = 2 para n = 1, 2, ...

Regla 2 A(m, 1) = 2m para m = 2, 3, ...

Regla 3 Cuando m > 1 y n > 1 se tiene A(m, n) = A(A(m-1, n), n-1).

Entonces,

$$A(2,2) = A(A(2-1,2), 2-1)$$
 regla 3
= $A(A(1,2), 1)$
= $A(2,1)$ regla 1
= $2(2)$ regla 2
= 4 .

Además

$$A(2,3) = A(A(2-1,3), 3-1)$$
 regla 3
= $A(A(1,3), 2)$
= $A(2,2)$ regla 1
= 4.

De hecho, si A(2, k) = 4, para algún $k \ge 2$, entonces

$$A(2, k + 1) = A(A(2 - 1, k + 1), (k + 1) - 1)$$
 regla 3
= $A(A(1, k + 1), k)$
= $A(2, k)$ regla 1
= 4.

Así, tenemos por inducción matemática $A(2, n) = 4, \forall n \ge 1$.

Hasta ahora la tabla de los números de Ackermann se ve así:

Observamos que la segunda fila es de puro 4s. ¿Pero cómo es la segunda columna? Si $A(k, 2) = 2^k$ para algunos $k \ge 2$ se tiene

$$A(k,2) = 2^k = A(A([k+1], 2-1))$$
 regla 3
= $A(A(k,2), 1)$
= $A(2^k, 1)$
= $2(2^k)$ regla 2
= 2^{k+1} .

Además,

$$A(2,3) = A(A(2-1,3), 3-1)$$
 regla 3
= $A(A(1,3), 2)$
= $A(2,2)$ regla 1
= 4.

Así, se tiene $\forall m \geq 1 : A(m,2) = 2^m$. Ahora, ¿como son los otros valores?

$$A(3,3) = A(A(3-1,3), 3-1)$$
 regla 3
= $A(A(2,3), 2)$
= $A(4,2)$ segunda fila
= 2^4 segunda columna
= 16 .

$$A(4,3) = A(A(4-1,3),3-1)$$
 regla 3
= $A(A(3,3),2)$
= $A(16,2)$ encima
= 2^{16} segunda columna
= 65536 .

$$A(3,4) = A(A(3-1,3), 4-1)$$
 regla 3
= $A(A(2,4),3)$
= $A(4,3)$ segunda fila
= 65536.

¿Cual es el valor de A(4,4)? ¿Podría ejecutar un programa recursivo simple para evaluar A(4,4)?

$$A(5,3) = A(A(5-1,3), 3-1)$$
 regla 3
= $A(A(4,3), 2)$
= $A(65536, 2)$
= 2^{65536} . segunda columna
= n grande aproximadamente 20000 dígitos en base 10.

Hasta ahora tenemos:

¿Cómo continúa la tercera columna? Sea 2 ↑ denota el valor de "Torre" de k 2's, definida recursivamente por

$$2 \uparrow 1 = 2$$
, y para $k \ge 1$, $2 \uparrow [k+1] = 2^{2 \uparrow k}$

Pero este es un número tan grande que nunca podría escribirse en dígitos decimales, incluso utilizando todo el papel del mundo, Su valor nunca podría ser calculado. Ahora nos preguntamos ¿Los números Ackermann son "computables"? Por otro lado, supongamos que las sucesiones que encontramos, incluso aquellas definidas por ecuaciones de recurrencia, serán fáciles para entender y tratar.

1.6 Resolución de ecuaciones de recurrencia lineal de primer orden

Una ecuación de recurrencia lineal de primer orden relaciona entradas consecutivas en una secuencia por una ecuación de la forma:

$$S_{n+1} = aS_n + c$$
 para todo n en el dominio de S . (1.8)

Una solución general es una descripción algebraica de todas estas secuencias de soluciones. Si S es cualquier secuencia en \mathbb{N} que satisface la ecuación anterior, entonces denotando S_0 por I, tenemos:

$$S_1 = aS_0 + c = aI + c$$

$$S_2 = aS_1 + c = a[aI + c] + c = a^2I + ac + c$$

$$S_3 = aS_2 + c = a[a^2I + ac + c] + c = a^3I + a^2c + ac + c$$

Entonces podríamos decir que

$$S_n = a^n I + a^{n-1}c + a^{n-2}c + \dots + ac + c \quad \text{para } \forall n \in \mathbb{N}.$$
 (1.9)

Podemos demostrarlo por *inducción matemática* para cualquier $n \in \mathbb{N}$, $S_k = a^n I + a^{n-1}c + a^{n-2}c + \cdots + ac + c$, entonces:

$$S_{k+1} = aS_k + c$$

$$S_{k+1} = a \left[a^k I + a^{k-1}c + a^{k-2}c + \dots + ac + c \right] + c$$

$$S_{k+1} = a^{k+1}I + a^kc + a^{k-1}c + \dots + a^2c + ac + c$$

Por lo tanto, (1.9) es correcto. Por lo tanto, si S es cualquier secuencia en \mathbb{N} que satisface (1.8), entonces para $\forall n \in \mathbb{P}$.

- Si a = 1, entonces $S_n = 1^n I + 1^{n-1} c + 1^{n-2} + \dots + 1c + c = I + nc$.
- Y si $a \neq 1$, se tiene

$$S_n = a^n I + a^{n-1}c + a^{n-2}c + \dots + ac + c$$

$$= a^n I + c \frac{1 - a^n}{1 - a} = a^n I + \frac{c}{1 - a} - a^n \frac{c}{1 - a}$$

$$= a^n \left[1 - \frac{c}{1 - a} \right] + \frac{c}{1 - a}$$

Por lo tanto, la solución general a la ecuación de recurrencia es

$$S_{n+1} = aS_n + c \quad \forall n \in \mathbb{N}.$$

Se da en dos partes:

Si
$$a = 1$$
, $S_n = S_0 + nc \forall n \in \mathbb{N}$
Si $a \neq 1 = S_n = a^n \left[S_0 - \frac{c}{1-a} \right] + \frac{c}{1-a} \forall n \in \mathbb{N}$.

1.6.1 Las torres de Hanói

Cuenta la leyenda que los monjes de un monasterio de la ciudad Hanói medían el tiempo que faltaba para la llegada del "fin del mundo" con el siguiente procedimiento:

"Se dispone de tres agujas de diamante, en una de las cuales se apilan 64 discos de oro distintos, ordenados según el tamaño de sus diámetros. En cada segundo mueven un disco de una aguja a otra, y su tarea finalizará (y con ella el mundo) cuando logren transportar todos los discos a la otra aguja. Pero, atención!, a lo largo del proceso no se puede colocar un disco sobre otro de diámetro más pequeño.".

Como la preparación para el "fin del mundo" supondrá sin duda un notable ajetreo, vamos a estimar el tiempo del cuál dispondremos. Por ello, replanteamos el problema en general:

"Tenemos n discos y llamamos a_n al mínimo número de movimientos necesario para transportar los n discos desde una aguja a otra.".

Por ejemplo, si $a_1 = 1$, nos basta con un movimiento para pasar el disco a otra aguja. El cálculo de a_2 requiere ya un pequeño argumento: podemos, por ejemplo, pasar el disco pequeño a otra aguja, luego el grande a la tercera, para finalmente pasar el pequeño a esta tercera aguja, como en la figura 1.2 Como

Fig. 1.2 Proceso exitoso para dos discos.

en dos movimientos no se puede hacer, concluimos que la descrita es la mejor estrategia posible, y que, por tanto, $a_2 = 3$. Si partimos de tres discos, podemos pasar los dos menores a una segunda aguja (con el procedimiento anterior, de tres movimientos), luego pasar el mayor a la tercera aguja, para finalmente llevar los dos discos menores sobre ese disco mayor (de nuevo tres movimientos). En total, 7 movimientos. Aunque ahora no está claro si se puede hacer el trasvase con menos.

El procedimiento esbozado en el caso n=3 se puede generalizar: si tenemos n discos, pasamos n-1 a una segunda aguja, luego el mayor disco a la aguja final y, por último, pasamos los n-1 discos a esa tercera aguja. Es un algoritmo recursivo: el procedimiento para mover n discos se apoya, dos veces, en el (ya conocido) método para mover n-1. Se deduce entonces que el número mínimo de movimientos para transportar n discos cumple que

$$a_n \le 2a_{n-1} + 1, \quad \forall n \ge 2$$
 (1.10)

porque con $2a_{n-1} + 1$ movimientos lo sabemos hacer. Observe que no es una ecuación de recurrencia, sino una desigualdad. Para comprobar que, en realidad, la relación se cumple en la igualdad. Deduciríamos así que la estrategia de movimientos es la mejor posible. Esto requiere un argumento extra.

Veamos: Si tenemos n discos, en algún momento tendremos que mover el disco mayor, para lo que necesitaremos haber llevado el resto de los discos a otra aguja, pues debe quedar una aguja libre. Esto requiere, como mínimo a_{n-1} movimientos. Una vez movido el disco grande a una aguja, tendremos que mover los restantes n-1 discos sobre él, y esto exige, al menos, otros a_{n-1} movimientos (sea cual sea la estrategia que empleemos). Así que

$$a_n \ge 2a_{n-1} + 1, \quad \forall n \ge 2.$$
 (1.11)

Reuniendo las condiciones (1.10) y (1.11), ya podemos afirmar que

$$a_n = 2a_{n-1} + 1, \quad \forall n \ge 2.$$
 (1.12)

La condición inicial ya la hemos visto, es $a_1 = 1$. La resolvemos por simple aplicación repetida de la regla de recurrencia:

$$a_n = 2a_{n-1} + 1 = 2(2a_{n-2} + 1) + 1 = 2^2a_{n-2} + 2 + 1 = 2^2(2a_{n-3} + 1) + 2 + 1$$

$$a_n = 2^3a_{n-3} + 2^2 + 2 + 1 = 2^3(2a_{n-4} + 1) + 2 + 1 = 2^4a_{n-4} + 2^3 + 2^2 + 2 + 1$$

$$a_n = 2^{n-1}a_1 + 2^{n-2} + 2^{n-3} + \dots + 2 + 1 = \sum_{k=1}^{n} 2^{k-1} = \frac{1-2^n}{1-2} = 2^n - 1.$$

En el caso de n = 64 deducimos que el fin del mundo llegará dentro de $a_{64} = 2^{64} - 1$ segundos, esto es, imás de medio billón de años! Parece que, después de todo, la profecía de los monjes de Hanói no debería ser una de nuestras mayores preocupaciones.

Ejemplo 1.14 Recurrencia del número de movimientos en la Torre de Hanói La ecuación de recurrencia para el número de movimientos en las Torres de Hanói es una ecuación de recurrencia lineal de primer orden:

$$T_n = 2T_{n-1} + 1$$
.

Sea a=2 y c=1, entonces $\frac{c}{1-a}=\frac{1}{1-2}=-1$, y cualquier secuencia T que satisfaga la RE está dado por la fórmula:

$$T_n = 2^n [T_0 - (-1)] + (-1)$$

 $T_n = 2^n [T_0 + 1] - 1$

Asumiendo que T tiene el dominio \mathbb{Z} y que denota T_0 la condición inicial, vimos al principio de este capítulo varias soluciones particulares:

Si
$$T_0 = 0$$
, entonces $T = (0, 1, 3, 7, 15, 31, ...)$ $T_n = 2^n[0+1] - 1 = 2^n - 1$.
Si $T_0 = 2$, entonces $T = (4, 9, 19, 39, 79, 159, ...)$ $T_n = 2^n[2+1] - 1 = 3 \times 2^n - 1$.
Si $T_0 = 4$, entonces $T = (2, 5, 11, 23, 47, 95, ...)$ $T_n = 2^n[4+1] - 1 = 5 \times 2^n - 1$.
Si $T_0 = -1$, entonces $T = (-1, -1, -1, -1, -1, ...)$ $T_n = 2^n[-1+1] - 1 = -1$.

1.6.2 Los tres piratas naufragados

Un barco pirata es naufragado en una tormenta en la noche. Tres de los piratas sobreviven y se encuentran en una playa la mañana después de la tormenta. Aceptan cooperar para asegurar su supervivencia. Ellos divisan a un mono en la selva cerca de la playa y pasan todo ese primer día recogiendo una gran pila de cocos y luego se van a dormir exhaustos. Pero ellos son piratas. El primero duerme bien, preocupado por su parte de los cocos; despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones, y se va a dormir profundamente. El segundo pirata duerme bien, preocupado por su parte de los cocos; se

despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones, y se va a dormir profundamente.

El tercero también duerme bien, preocupado por su parte de los cocos; despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones juntos, y se va a dormir profundamente.

A la mañana siguiente, todos se despiertan y ven una pila algo más pequeña de cocos que se dividen en 3 montones iguales, pero encontrar uno sobrante que tiran en el arbusto para el mono. ¿Cuántos cocos recolectaron el primer día?

Sea S_j el tamaño de la pila después del pirata j^{4h} y sea S_0 el número que recogieron en el primer día. Entonces

$$S_0 = 3x + 1$$
 para algún número entero x y $S_1 = 2x$,

$$S_1 = 3y + 1$$
 para algún número entero y y $S_2 = 2y$,

$$S_2 = 3z + 1$$
 para algún número enteroz y $S_3 = 2z$,

$$S_3 = 3w + 1$$
 para algún número entero w .

¿Hay una ecuación de recurrencia aquí?

$$S_1 = 2x$$
 donde $x = (S_0 - 1)/3$, entonces $S_1 = (2/3)S_0 - (2/3)$

$$S_2 = 2y$$
 donde $y = (S_1 - 1)/3$, entonces $S_2 = (2/3)S_1 - (2/3)$

$$S_3 = 2z$$
 donde $z = (S_2 - 1)/3$, entonces $S_3 = (2/3)S_2 - (2/3)$.

La ecuación de recurrencia satisfecha por los primeros $S'_i s$ es

$$S_{i+1} = (2/3)S_i - (2/3).$$
 (1.13)

Si ahora tenemos $S_4 = (2/3)S_3 - (2/3)$, entonces $S_4 = 2[S_3 - 1]/3 = 2w$ para algún número entero w. Queremos saber qué valor (o valores) de S_0 producirá un número entero par para S_4 cuando aplicamos el RE (1). En (1), a = 2/3 y c = -2/3, entonces c/(1-a) = -2, y así la solución general de (1) es

$$S_n = \left(\frac{2}{3}\right)^n [S_0 + 2] - 2.$$

Por lo tanto, $S_4 = (2/3)^4 [S_0 + 2] - 2 = (16/81)[S_0 + 2] - 2$.

S₄ será un número entero

 $\Leftrightarrow S_4 + 2$ es (un aún) el número entero

 $\Leftrightarrow 81 \mid [S_0 + 2]$

 \Leftrightarrow $[S_0 + 2] = 81k$ para algún número entero k

 $\Leftrightarrow S_0 = 81k - 2$ para algún número entero k.

 S_0 debe ser un número entero positivo, pero hay un número infinito de respuestas posibles:

$$79 \lor 160 \lor 241 \lor 322 \lor \cdots$$

Necesitamos más información para determinar S_0 . Si nos hubieran dicho que el primer día los piratas recolectaron entre 200 y 300 cocos, ahora podríamos decir "el número que recogieron el primer día fue exactamente 241".

y

1.6.3 Interés compuesto

Supongamos que se le ofrecen dos planes de ahorro para la jubilación. En el plan A, empiezas con \$1,000, y cada año (en el aniversario del plan), te pagan un 11% de interés simple, y agregas \$1,000. En el plan B, empiezas con \$100, y cada mes, te pagan una-duodécima parte del 10% de interés simple (anual), y agregas \$100. ¿Qué plan será más grande después de 40 años?. ¿Podemos aplicar una ecuación de recurrencia? Considere el plan A y deje que S_n denote el número de dólares en el plan después de (exactamente) n años de operación. Entonces $S_0 = \$1,000$ y

$$S_{n+1} = S_n + \text{ interés sobre } S_n + \$1000$$

 $S_{n+1} = S_n + 11\% \text{ de } S_n + \1000
 $S_{n+1} = S_n(1 + 0.11) + \$1000.$

En esta RE, a = 1.11, c = 1000, entonces $\frac{c}{1-a} = \frac{1000}{-0.11}$ y

$$S_n = (1.11)^n \left[1000 - \frac{1000}{-0.11} \right] + \frac{1000}{+0.11}$$
$$S_n = (1.11)^n \left[\frac{1110}{+0.11} \right] - \frac{1000}{+0.11}$$

Por lo tanto,

$$S_{40} = (1.11)^{40}(10090.090909...) - (-9090.909090...)$$

$$S_{40} = (65.000867...)(10090.090909...) - (9090.909090...)$$

$$S_{40} = 655917.842... - (9090.909090...)$$

$$S_{40} \approx $646826.$$

¿Puede ser cierto? Pusiste \$40000 y sacaste mayor que \$600000 en intereses. Ahora considere el plan B y sea T_n denota el número de dólares en el plan después de (exactamente) n meses de funcionamiento. Entonces $T_0 = \$100$ y

$$T_{n+1} = T_n + \text{ interés sobre } T_n + \$100$$

 $T_{n+1} = T_n + \left(\frac{1}{2}\right) \text{ de } 10\% \text{ de } T_n + \100
 $T_{n+1} = T_n \left[1 + \frac{0.1}{12}\right] \100

En esta RE, a = 12.1/12, c = 100, entonces $\frac{c}{1-a} = \frac{100}{-0.1/12} = -12000$ y

$$T_n = \left(\frac{12.1}{12}\right)^n [100 + 12000] - 12000.$$

De ahí, después 40×12 meses,

$$T_{480} = \left(\frac{12.1}{12}\right)^{480} (12100) - (12000)$$

$$T_{480} = (1.008333...)^{480} (12100) - (12000)$$

$$T_{480} = (53.700663...) (12100) - (12000)$$

$$T_{480} = 649778.0234... - (12000)$$

$$T_{480} \approx $637778.$$

Por lo tanto, el plan A tiene un valor ligeramente mayor después de 40 años.

1.7 Resolución de ecuaciones de recurrencia lineal de segundo orden

Una ecuación de recurrencia lineal de segundo orden relaciona entradas consecutivas en una secuencia por una ecuación de la forma

$$S_{n+2} = aS_{n+1} + bS_n + c \quad \forall n \text{ en el dominio de } S. \tag{1.14}$$

Pero vamos a asumir que el dominio de S es \mathbb{N} . Supongamos también que $ab \neq 0$, de lo contrario, $S_n = c$ para $\forall n \in \{2...\}$, y las soluciones de $(\ref{eq:supon})$ no son muy interesantes.

Observación 1.4 La ecuación de recurrencia de primer orden es solo un caso especial de la ecuación de recurrencia de segundo orden (??) cuando b = 0.

Cuando c=0, se dice que la RE es **homogénea** (todos los términos lucen igual a una constante multiplicada por una sucesión).

Observación 1.5 La ecuación de recurrencia de Fibonacci es homogénea.

Vamos a restringir también nuestra atención (por el momento) a una lineal de segundo orden, la ecuación de recurrencia homogénea

$$S_{n+2} = aS_{n+1} + bS_n \text{ para } \forall n \in \mathbb{N}. \tag{1.15}$$

Tal como hicimos para la ecuación de la recurrencia de Fibonacci, supongamos que existe una secuencia geométrica, $S_n = r^n$, que satisface (1.15). Si lo hubiera, entonces

$$r^{n+2} = ar^{n+1} + br^n \quad \forall n \in \mathbb{N}.$$

Cuando n=0,

$$r^2 = ar + b$$
.

La "ecuación característica" de (1.15) es $x^2 - ax - b = 0$, cuyas "raíces" son

$$r = \frac{-(-a) \pm \sqrt{(-a)^2 - 4()(-b)}}{2(1)} = \frac{a \pm \sqrt{a^2 + 4b}}{2}.$$

Sean $\Delta = \sqrt{a^2 + 4b}$, $r_1 = \frac{a + \Delta}{2}$, y $r_2 = \frac{a - \Delta}{2}$, entonces $r_1 + r_2 = a$, $r_1 \times r_2 = -b$, y $r_1 - r_2 = \Delta$. Tanto r_1 como r_2 satisfacen la ecuación $x^2 = ax + b$, y son las únicas soluciones.

Ejemplo 1.15 Si $S_{n+2} = 10S_{n+1} - 21S_n$ para $\forall n \in \mathbb{N}$, la ecuación característica es $x^2 - 10x + 21 = 0$ o (x - 7)(x - 3) = 0.

Aquí a = 10, b = -21, $a^2 + 4b = 100 - 84 = 16$, $\Delta = 4$, entonces $r_1 = 7$ y $r_2 = 3$.

Ejemplo 1.16 Si $S_{n+2} = 3S_{n+1} - 2S_n$ para $\forall n \in \mathbb{N}$, la ecuación característica es $x^2 - 3x + 2 = 0$ o (x-2)(x-1) = 0.

Aquí, a = 3, b = -2, $a^2 + 4b = 9 - 8 = 1$, $\Delta = 1$, entonces $r_1 = 2$ y $r_2 = 1$.

Ejemplo 1.17 Si $S_{n+2} = 2S_{n+1} - S_n$ para $\forall n \in \mathbb{N}$, la ecuación característica es $x^2 - 2x + 1 = 0$ o (x-1)(x-1) = 0.

Aquí, a = 2, b = -1, $a^2 + 4b = 4 - 4 = 0$, $\Delta = 0$, entonces $r_1 = 1$ y $r_2 = 1$.

¿Pero qué hay de una fórmula que da la solución general?

Teorema 1.5 La solución general de la RE homogénea (1.15) es

$$S_n = A(r_1)^n + B(r_2)^n,$$
 $si r_1 \neq r_2 \ (\Delta \neq 0)$

$$S_n = A(r)^n + Bn(r)^n$$
, $si r_1 = r_2 = r (\Delta = 0)$.

Prueba Supongamos que T es cualquier solución particular de la RE homogénea. Nos ocupamos de los dos casos por separado.

Caso 1 Si $\Delta \neq 0$, entonces las dos raíces son distintas (pero pueden ser números "complejos"). Encontraremos valores para A y B, luego probaremos que $T_n = A(r_1)^n + B(r_2)^n$ para $\forall n \in \mathbb{N}$. Mostraremos que $A(r_1)^n + B(r_2)^n$ inicia correctamente para valores especialmente elegidos de A y B, y luego mostraremos que $A(r_1)^n + B(r_2)^n$ continúa correctamente.

Vamos a resolver las ecuaciones (para A y B) que garantizaría $T_n = A(r_1)^n + B(r_2)^n$, entonces n = 0 y n = 1. Si

$$T_0 = A(r_1)^0 + B(r_2)^0 = A + B (1.16)$$

y

$$T_1 = A(r_1)^1 + B(r_2)^1 = A(r_1) + B(r_2),$$
 (1.17)

entonces $(r_1)T_0 = A(r_1) + B(r_1)$. multiplicamos (??) por r_1 y $T_1 = A(r_1) + B(r_2)$ // (2) otra vez restamos, obtenemos $(r_1)T_0 - T_1 = B(r_1 - r_2) = B\Delta$ // $r_1 - r_2 = \Delta \neq 0$ entonces $B = \frac{(r_1)T_0 - T_1}{\Delta}$. Tenemos, $A = T_0 - B = \frac{\Delta T_0}{\Delta} - \frac{(r_1)T_0 - T_1}{\Delta} = \frac{-(r_2)T_0 + T_1}{\Delta}$. No importa cómo comience la sucesión T (no importa cuáles sean los valores para T_0 y T_1). Hay números únicos A y B tales que $T_n = A(r_1)^n + B(r_2)^n$ para n = 0 y 1. Continuando la prueba por la inducción matemática que $T_n = A(r_1)^n + B(r_2)^n$ para $\forall n \in \mathbb{N}$.

Paso 1 Si n = 0 o n = 1, entonces $T_n = A(r_1)^n + B(r_2)^n$, por nuestra "opción" A y B.

Paso 2 Asuma que $\exists k \geq 1$ tal que si $0 \leq n \leq k$, entonces $T_n = A(r_1)^n + B(r_2)^n$.

Paso 3 Si n = k + 1, entonces $n \ge 2$ entonces, porque T satisface la RE homogénea (3).

1 Una prueba 25

$$\begin{split} T_{k+1} &= aT_k + bT_{k-1} \\ T_{k+1} &= a\left[A(r_1)^k + B(r_2)^k\right] + b\left[A(r_1)^{k-1} + B(r_2)^{k-1}\right] \text{por el paso 2} \\ T_{k+1} &= \left[aA(r_1)^k + bA(r_1)^{k-1}\right] + \left[aB(r_2)^k + bB(r_2)^{k-1}\right] \\ T_{k+1} &= A(r_1)^{k-1}[a(r_1) + b] + B(r_2)^{k-1}[a(r_2) + n] \\ T_{k+1} &= A(r_1)^{k+1} + B(r_2)^{k+1} \end{split}$$

Así, si $r_1 \neq r_2$, $T_n = A(r_1)^n + B(r_2)^n$ para $\forall n \in \mathbb{N}$.

Ejemplo 1.18 Si $S_{n+2} = 10S_{n+1} - 21S_n$ para $\forall n \in \mathbb{N}$, entonces $r_1 = 7$ y $r_2 = 3$. Tenemos, la solución general de la RE es $S_n = A7^n + B3^n$.

Ejemplo 1.19 Si $S_{n+2}=3S_{n+1}-2S_n$ para $\forall n\in\mathbb{N}$, entonces $r_1=2$ y $r_2=1$. Tenemos, la solución general de la RE es $S_n=A2^n+B1^n=A2^n+B$.

Caso 2 Si $\Delta=0$, entonces las raíces son (ambos) iguales a r donde r=a/2. También, $b=-a^2/4=-r^2$. Si a eran 0, entonces b=0, pero asumimos que no tanto a y b son 0. De ahí, $r\neq 0$. Vamos a resolver las ecuaciones (para A y B) que garantizarían $T_n=A(r)^n+nB(r)^n$ cuando n=0 y n=1. Si

$$T_0 = A(r)^0 + 0B(r)^0 = A (1.18)$$

y

$$T_1 = A(r)^1 + 1B(r)^1 = Ar + Br (1.19)$$

entonces $A = T_0$ y $B = (T_1 - Ar)/r$. No importa cómo comience la sucesión T (no importa cuáles sean los valores para T_0 y T_1). Hay números únicos A y B tales que $T_n = A(r)^n + B(r)^n$ para n = 0 y 1. Continuando la prueba por la inducción matemática que $T_n = A(r)^n + B(r)^n$ para $\forall n \in \mathbb{N}$.

Paso 1 Si n = 0 o n = 1, entonces $T_n = A(r)^n + B(r)^n$, por nuestra "opción" A y B.

Paso 2 Asuma que $\exists k \geq 1$ tal que si $0 \leq n \leq k$, entonces $T_n = A(r)^n + B(r)^n$.

Paso 3 Si n = k + 1, entonces $n \ge 2$ entonces, porque T satisface la RE homogénea (3).

$$\begin{split} T_{k+1} &= aT_k + bT_{k-1} \\ T_{k+1} &= a[A(r)^k + kB(r)^k] + b[A(r)^{k-1} + (k-1)B(r)^{k-1}]// \text{ por el paso 2} \\ T_{k+1} &= [aAr^k + bAr^{k-1}] + [akBr^k + b(k-1)Br^{k-1}] \\ T_{k+1} &= Ar^{k-1}[ar + b] + Br^{k-1}[akr + b(k-1)] \\ T_{k+1} &= Ar^{k-1}[r^2] + Br^{k-1}[k(r^2) + r^2]//r^2 = ar + b \\ T_{k+1} &= Ar^{k+1} + Br^{k-1}[k(r^2) + r^2]// - b = r^2 \\ T_{k+1} &= Ar^{k+1} + (k+1)Br^{k+1} \end{split}$$

Así, si $r_1 = r_2 = r$, $T_n = A(r)^n + nB(r)^n$ para $\forall n \in \mathbb{N}$.

use

1 Una prueba 26

Please do not use quotation marks when quoting texts! Simply use the quotation environment – it will automatically be rendered in the preferred layout.

Fig. 1.31

Paragraph Heading

For typesetting numbered lists we recommend to use the enumerate environment – it will automatically render Springer's preferred layout.

Fig. 1.4 Costo de producción proporcional a la raíz cuadrada de la tasa de producción.

Run-in Heading Boldface Version

1 Una prueba 27

Fig. 1.5 Please write your figure caption here

 Tabla 1.1 Please write your table caption here

Classes	Subclass	Length	Action Mechanism	
Translation	mRNA	24–26	Histone and DNA Modification	Table foot note (with
superscript)				

Run-in Heading Boldface and Italic Version

Run-in Heading Displayed Version

If you want to list definitions or the like we recommend to use the Springer-enhanced description environment – it will automatically render Springer's preferred layout.

If you want to emphasize complete paragraphs of texts we recommend to use the newly defined Springer class option graybox and the newly defined environment svgraybox. This will produce a 15 percent screened box 'behind' your text.

If you want to emphasize complete paragraphs of texts we recommend to use the newly defined Springer class option and environment svgraybox. This will produce a 15 percent screened box 'behind' your text.

Paragraph Heading

Cabeza de remolque

If you want to emphasize complete paragraphs of texts in an Trailer Head we recommend to use \begin{trailer}{Trailer Head} ... \end{trailer}

? Preguntas

If you want to emphasize complete paragraphs of texts in an Questions we recommend to use \begin{question}{Questions} 1 Una prueba 28

```
...
\end{question}

> Importante
```

If you want to emphasize complete paragraphs of texts in an Important we recommend to use

```
\begin{important}{Important}
...
\end{important}
```

! Atención

```
If you want to emphasize complete paragraphs of texts in an Attention we recommend to use 
\begin{warning}{Attention}
...
\end{warning}
```

Código de programa

```
If you want to emphasize complete paragraphs of texts in an Program Code we recommend to use \begin{programcode}{Program Code} \begin{verbatim}...\end{verbatim} \end{programcode}
```

Consejos

```
If you want to emphasize complete paragraphs of texts in an Tips we recommend to use 
\begin{tips}{Tips}
...
```

Visión general

\end{tips}

```
If you want to emphasize complete paragraphs of texts in an Overview we recommend to use 
\begin{overview}{Overview}
...
\end{overview}
```

1 Una prueba 29

Background Information

If you want to emphasize complete paragraphs of texts in an Background Information we recommend to use

```
\begin{backgroundinformation}{Background Information}
...
\end{backgroundinformation}
```

Legal Text

```
If you want to emphasize complete paragraphs of texts in an Legal Text we recommend to use
  \begin{legaltext}{Legal Text}
  ...
  \end{legaltext}
```

Apéndice

Problemas

1.1 A given problem or Excercise is described here. The problem is described here. The problem is described here.

Parte II
Realización numérica

	1
La segunda parte de la monografía se dedica a las realizaciones prácticas de problemas. Combina- emos las consideraciones teóricas sobre diferentes modelos y ecuaciones con las técnicas. Al principio	
resentamos modelos alternativos para problemas de interacción. En el capítulo 3 estudiamos la formunición variacional. Este modelo debe ser considerado como la técnica más avanzada. Damos detalles en la construcción de Segundo, la formulación en citare ducida en el capítulo 4. Este puedo enforma el capítulo 4.	
onstrucción de . Segundo, la formulación es introducida en el capítulo 4. Este nuevo enfoque alternativo s adecuado para problemas con. Nuevamente, presentamos las herramientas necesarias de discretización	
simulación. El capítulo 5 se ocupa de las herramientas para la solución de los problemas algebraicos que urgen de la discretización. En ambos casos, tenemos que lidiar con problemas muy grandes, no lineales.	
inalmente, el capítulo 6 introduce el concepto de tiempo de escala para la reducción de la dimensión de os esquemas discretos que nos permitirá reducir significativamente la complejidad de los sistemas.	

Capítulo 2

Método de Euler

Resumen. En este capítulo introducimos un tipo de funciones llamadas que pueden ser usados para aproximar otras funciones más generales

2.1 Ecuación diferencial ordinaria lineal

Una aplicación inmediata del método de las diferencias finitas para aproximar derivada es la solución aproximada de los problemas de valor inicial para ecuaciones diferenciales ordinarias. El uso de la forma general de tal problema es

$$y' = f[t, y], \quad y(t_0) = y_0,$$
 (2.1)

donde f es la función desconocida de t e y, y t_0 y y_0 son los valores dados. El objetivo en la solución de este problema es encontrar la función y como una función de t, en el curso usual en ecuaciones diferenciales ordinarias, el estudiante aprende un número de técnicas para resolver analíticamente (2.1), basado sobre la asunción de cualquier número de formas especiales para f. Aquí usaremos una de nuestras aproximaciones de la derivada para construir un método para aproximadamente resolver (2.1).

Usamos para remplazar la derivada en (2.1):

$$\frac{y\left(t+h\right)-y\left(t\right)}{h}=f\left(t,y\left(t\right)\right)+\frac{1}{2}hy''\left(t_{h}\right),$$

el cual puede ser simplificado cuidadosamente hasta

$$y(t + h) = y(t) + hf(t, y(t)) + \frac{1}{2}h^2y''(t_h).$$

Esto sugire el siguiente método numérico:

ter.tex to style the

various
elements
of
your
chap-

- 1. Defina una sucesión de t valores (llamado una malla) de acuerdo con $t_n = t_0 + nh$, donde h es el parámetro fijado (llamado el espacio de la malla o tamaño de la grilla), encontraremos este tipo de cosa con frecuencia en tópicos posteriores.
- 2. Calcule los valores y_n a partir de y_0 y los t valores de la malla, de acuerdo con

$$y_{n+1} = y_n + hf(t_n, y_n). (2.2)$$

Note que esto se sigue depor el término de error y ajustando la notación cuidadosamente.

La ecuación (2.2) define lo que es conocido como el *método de Euler* para resolver (aproximadamente) los problemas de valor inicial para ecuaciones diferenciales ordinarias. La figura X muestra qué está ocurriendo geométricamente.

Ejemplo 2.1 Considere el problema de valor inicial

$$y' = -y + \sin t$$
, $y(0) = 1$.

Este tiene exactamente la solución $y(t) = \frac{3}{2}e^{-t} + \frac{1}{2}(\sin t - \cos t)$, encontrado al usar los tipos de métodos enseñados en un curso usual de EDO. Si aplicamos el método de Euler para esto, usando $h = \frac{1}{4}$, obtenemos los siguientes resultados.

Paso 1 Tenemos $h = \frac{1}{4}$, así $t_1 = h = \frac{1}{4}$ y y_0 es dado como 1. Entonces,

$$y_1 = y_0 + hf(t_0, y_0) = 1 + \frac{1}{4}(-1 + \sin 0) = \frac{3}{4}.$$

Así, y(1/4) ≈ 0.75 , y el error en esta aproximación es $e_1 = y(1/4) - y_1 = 0.8074469434 - 0.75 = 0.0574469434$.

Pbso 2 Tenemos $t_2 = 2h = \frac{1}{2}$ y $y_1 = 0.75$ del paso 1Entonces,

$$y_2 = y_1 + hf(t_1, y_1) = \frac{3}{4} + \frac{1}{4}\left(-\frac{3}{4} + \sin\frac{1}{4}\right) = 0.6243509898.$$

Así, $y[1/2] - y_2 = 0.710774779 - 0.6242509898 = 0.0863664881$.

Si en vez de usar $h = \frac{1}{8}$ y continuar el cálculo para t = 1, entonces mostramos la tabla.

El método para resolver numéricamente ecuaciones diferenciales que lleva su nombre fue aparentemente presentado en el periodo 1768–1769, en los volúmenes de su trabajo *Institutionum calculi integralis*. La base teórica para la convergencia de este método fue por Augustin Louis Cauchy en los mediados de 1800 y por Rudolf Lipschitz en los finales de 1800.

¹ Leonhard Euler (1707–1783) fue uno de los grandes matemáticos de la era pos Newton, el otro fue Carl Friedrich GauSS. Euler nació en Basilea, Suiza, y se educó en la Universidad de Basilea, el primero con un ojo siguiendo en la carrera de su padre como ministro Luterano. Con la asistencia de su tutor y su mentor Johann Bernoulli, sin embargo, él fue capaz de convencer a su pare a perseguir una carrera de matemáticas. En 1727, Euler ingresó a la Academia de Ciencias de San Petersburgo en Rusia, donde él estuvo hasta 1741, en su tiempo e ingreso a la Academia de Ciencias de Berlín por la invitación del rey de Prusia, Federico el grande. Después de algunas disputas con el monarca, Euler dejó Berlín en 1766 y regresó a San Petersburgo. Las contribuciones de Euler a las matemáticas son Él publicó una enorme cantidad de material, en una amplia variedad de áreas, incluyendo series infinitas, funciones especiales (un campo de estudio que él prácticamente inventó), teoría de números, variables complejas e hidrodinámicas. Su nombre es adjuntado a resultadosen matemáticas, desde la fórmula de Euler que relaciona las funciones trigonométricas para la exponencial compleja, hasta las ecuaciones diferenciales de Euler-Cauchy, hasta la fórmula de Euler que relaciona el número de caras, aristas y vértices en un poliedro. Su influencia en la notación se siente hasta el día de hoy por el uso de Σ para denotar sumas, cos y sin para el coseno y seno de un ángulo. Los trabajos recolectados de Euler, publicado entre 1911 y 1975 alcanza los 72 volúmenes!

Si dividimos el tamaño de la malla en la mitad, nuevamente, para $h=\frac{1}{16}$, entonces obtenemos los		
resultados en la Tabla X. Note que para $h = \frac{1}{8}$, el error máximo es dado por 4.425×10^{-2} , donde $h = \frac{1}{16}$		
este es dado por 2.140×10^{-2} . Esto sugiere (pero no prueba) que el método de Euler es $\mathcal{O}(h)$ preciso,		
algo que probaremos en $??$, donde tomamos un rango más amplio de estudio de los métodos numéricos		
para ecuaciones diferenciales. Esto es adecuado, pero no preciso preferimos un método que sea $\mathcal{O}(h^p)$		
preciso para $p \ge 2$.		
La figura X muestra la solución exacta (línea sólida), la solución aproximada calculado con $h=\frac{1}{8}$		
(denotada por asteriscos), y la solución aproximada calculada con $h = \frac{1}{16}$ (denotada por los signos más).		
Note que los signos más (aquellos valores calculados con una malla menor) aparece ser más precioso.		
Escribiendo el código de computadora para el método de Euler no es difícil. Si asumimos que h, el		
tamaño de la malla, es dado, junto con N , el número de pasos a tomar, entonces el código luciría algo	l I	
como el código dado en el algoritmo X		
	. 1	

Ahora nos concentraremos aquí con el problema de resolver ecuaciones diferenciales. numéricamente. Primero, nos concentramos en el llamado *problema de valor inicial* (PVI): Encuentre una función y(t) tal que

$$\frac{dy}{dt} = f(t, y(t)), \quad y(t_0) = y_0,$$

donde f es una función desconocida de dos variables, t_0 y y_0 son valores conocidos. Este es llamado el problema de valor inicial porque (como la notación sugiere) podemos ver el término independiente t como el tiempo, y la ecuación como el modelamiento de un proceso que mueve anteriormente desde algún tiempo inicial t_0 con estado inicial y_0 . (Muy frecuentemente, $t_0 = 0$.) La variable dependiente y, la función desconocida, podría ser una función escalar o, posiblemente, una función vectorial definida como

$$y(t) = (y_1(t), y_2(t), \dots, y_N(t))^T.$$

En ?? desarrollamos el método de Euler para aproximar soluciones de problemas de valor inicial. En este capítulo no solo revisaremos el método de Euler, sino también veremos métodos más sofisticados (y por lo tanto, esperamos más preciso) para resolver este tipo de problemas. Más adelante, atacaremos los problemas de valor de frontera, que puede ser escrito como

$$-\frac{d^2u}{dx^2} = F\left(x, u, \frac{du}{dx}\right), \quad a < x < b,$$

$$u(a) = g_0,$$

$$u(b) = g_1.$$

Aquí la función desconocida es u con variable independiente x, F es una función desconocida de tres variables, y g_0 y g son los datos iniciales conocidos. Muy frecuentemente el intervalo (a, b) = (0, 1).

En ambos casos queremos encontrar una función desconocida. Haremos esto aproximando los puntos individuales en la gráfica de la función. así como lo hicimos en ?? con el método de Euler para los problemas de valor inicial. Por lo tanto, esperaremos (en el caso del PVI) un conjunto de valores y_k tal que $y_k \approx y(t_k)$ para algún conjunto de puntos en la grilla t_k (conocido), o (en el caso del PVF) un conjunto de valores u_k tal que $u_k \approx u(u_k)$ para algún conjunto de puntos en la grilla (conocido) x_k . Note que esto significa que nuestra aproximación es solo definida en los puntos de la grilla, a menos podríamos usar los métodos de la aproximación del para construir soluciones que aproximen continuamente a las ecuaciones diferenciales, esto es algo que es frecuentemente hecho, y mostramos un ejemplo de este, donde usamos esplines para resolver problemas con dos valores de frontera.

En X, introducimos el método de los elementos finitos para PVF, el cual también usa la noción de expandir la aproximación como una combinación lineal de funciones simples.

En el revisamos esta idea (y extendemos esto para algunas ecuaciones en derivadas parciales EDP). Pero en este capítulo nos concentraremos en lo básico.

Debería notarse que la solución numérica de las ecuaciones diferenciales ordinarias (tanto los PVI o los PVF), es un área de investigación con mucha actividad. El lector es invitado a revisar la lista de referencias en el fin de este capítulo para un tratamiento más profundo de este material.

2.2 El problema de valor inicial

Considere la ecuación diferencial ordinaria

$$\frac{dy}{dt} = f(t, y(t)), \quad y(t_0) = y_0,$$
 (2.3)

donde f es una función desde \mathbb{R}^{N+1} en \mathbb{R}^N para algún N>0 (si N>1, entonces tenemos una ecuación escalar, caso contrario, una ecuación vectorial), t_0 es un valor escalar dado, frecuentemente tomado como $t_0=0$, y conocido como el *punto inicial* e y_0 es conocido como el vector en \mathbb{R}^N , conocido como el *valor inicial*. Queremos encontrar la función desconocida y(t), el cuál resuelve (2.3) en el sentido que

$$y'(t) - f(t, y(t)) = 0$$

para todo $t > t_0$, e $y(t_0) = y_0$.

Ejemplo 2.2 Considere el problema

$$y' = -2ty, \quad y(0) = 1.$$

Aquí f(t, y)

Las ecuaciones diferenciales surgen cuando tenemos información sobre la tasa de cambio de una cantidad, en lugar de la cantidad en sí.

Por ejemplo, sabemos que la tasa de descomposición de una sustancia radiactiva es proporcional a la masa m de la sustancia remanente en el tiempo t. Podemos escribir esto como una ecuación diferencial:

$$\frac{dm}{dt} = -km$$

donde k es una constante. Lo que realmente nos gustaría es una expresión para la masa m en el tiempo t. Usando las técnicas desarrolladas en este capítulo, encontraremos que la solución general a esta ecuación diferencial es $m = Ae^{-kt}$.

Las ecuaciones diferenciales tienen muchas aplicaciones en la ciencia, ingeniería y economía, y su estudio es una rama importante de las matemáticas. Para matemáticas Especializadas, consideramos solo una variedad limitada de ecuaciones diferenciales.

2.3 Una introducción a las ecuaciones diferenciales

Una ecuación diferencial contiene derivadas de una función o variable particular. Los siguientes son ejemplos de ecuaciones diferenciales:

$$\frac{dy}{dx} = \cos x, \quad \frac{d^2y}{dx^2} - 4\frac{dy}{dx} = 0, \quad \frac{dy}{dx} = \frac{y}{y+1}$$

La solución de una ecuación diferencial es una definición clara de la función o relación, sin ninguna de sus derivadas involucradas.

Por ejemplo, si $\frac{dy}{dx} = \cos x$, entonces $y = \int \cos x dx$ y así, $y = \sin x + c$.

Aquí $y = \sin x + c$ es la **solución general** de la ecuación diferencial $\frac{dy}{dx} = \cos x$.

Este ejemplo muestra las características principales de tales soluciones. Las soluciones de ecuaciones diferenciales son el resultado de una integral, y por lo tanto producen una familia de funciones.

Para obtener una **solución particular**, requerimos información adicional, que generalmente se proporciona como un par ordenado que pertenece a la función o relación. (Para las ecuaciones con segundas derivadas, necesitamos dos elementos de información).

2.3.1 Verificando una solución de una ecuación diferencial

Podemos verificar que una expresión particular es una solución de una ecuación diferencial por sustitución. Esto se demuestra en los siguientes ejemplos.

Usaremos la siguiente notación para indicar el valor de y para un valor de x dado:

$$y(0) = 3$$
 significará que cuando $x = 0, y = 3$.

Consideramos y como una función de x. Esta notación es útil en ecuaciones diferenciales.

Ejemplo 2.3 1. Verifique que $y = Ae^x - x - 1$ es una solución de la ecuación diferencial $\frac{dy}{dx} = x + y$. 2. Por lo tanto, encuentre la solución particular de la ecuación diferencial dado que y(0) = 3.

1. Sea
$$y = Ae^x - x - 1$$
. Necesitamos verificar que $\frac{dy}{dx} = x + y$.

LHS =
$$\frac{dy}{dx}$$

= $Ae^x - 1$
RHS = $x + y$
= $x + Ae^x - x - 1$
= $Ae^x - 1$

Por lo tanto LHS = RHS y así $y = Ae^x - x - 1$ es una solución de $\frac{dy}{dx} = x + y$. 2. y(0) = 3 significa y(0) = 3 significa que cuando x = 0, y = 3. Sustituyendo en la solución $y = Ae^x - x - 1$ verificado en a:

$$3 = Ae^{0} - 0 - 1$$
$$3 = A - 1$$
$$\therefore A = 4.$$

La solución particular es $y = 4e^x - x - 1$. 3 = Ae0 - 0 - 1 3 = A - 1 A = 4 La solución particular es y = 4e x - x - 1.

Ejemplo 2.4 Verifique que $y = e^{2x}$ es una solución de la ecuación diferencial $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$.

Sea $y=e^{2x}$, entonces $\frac{dy}{dx}=2e^{2x}$ y $\frac{d^2y}{dx^2}=3e^{2x}$. Ahora considere la ecuación diferencial:

LHS =
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y$$
=
$$4e^{2x} + 2e^{2x} - 6e^{2x}$$
 (de ariiba)
=
$$0$$
= RHS.

Ejemplo 2.5 Verigique que $y = ae^{2x} + be^{-3x}$ es una solución de la ecuación diferencial $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = \frac{dy}{dx}$

Sea $y = ae^{2x} + be^{-3x}$, entonces $\frac{dy}{dx} = 2ae^{2x} - 3be^{-3x}$ y $\frac{d^2y}{dx^2} = 4ae^{2x} + 9be^{-3x}$. Así,

LHS =
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y$$

= $(4ae^{2x} + 9be^{-3x}) + (2ae^{2x} - 3be^{-3x}) - 6(ae^{2x} + be^{-3x})$
= $4ae^{2x} + 9be^{-3x} + 2ae^{2x} - 3be^{-3x} - 6ae^{2x} - 6be^{-3x}$
= 0
= RHS.

Ejemplo 2.6 Encuentre las constantes a y b si $y = e^{4x} (2x + 1)$ es una solución de la ecuación diferencial

$$\frac{d^2y}{dx^2} - a\frac{dy}{dx} + by = 0.$$

Sea $y = e^{4x} (2x + 1)$, entonces

$$\frac{dy}{dx} = 4e^{4x} (2x + 1) + 2e^{4x}$$
$$= 2e^{4x} (4x + 2 + 1)$$
$$= 2e^{4x} (4x + 3)$$

$$\frac{d^2y}{dx^2} = 8e^{4x} (4x + 3) + 4 \times 2e^{4x}$$
$$= 8e^{4x} (4x + 3 + 1)$$
$$= 8e^{4x} (4x + 4)$$
$$= 32e^{4x} (x + 1).$$

Si $y = e^{4x} (2x + 1)$ es una solución de la ecuación diferencial, entonces

$$\frac{d^2y}{dx^2} - a\frac{dy}{dx} + by = 0,$$

es decir, $32e^{4x}(x+1)-2ae^{4x}(4x+3)+be^{4x}(2x+1)=0$. Podemos dividir por e^{4x} (ya que $e^{4x}>0$):

$$32x + 32 - 8ax - 6a + 2bx + b = 0$$

es decir,

$$(32 - 8a + 2b)x + (32 - 6a + b) = 0$$

Por lo tanto,

$$32 - 8a + 2b = 0 (2.4)$$

$$32 - 6a + b = 0 (2.5)$$

(2.6)

Multiplicando (2.5) por 2 y restando (2.4):

$$-32 + 4a = 0$$
.

Así, a = 8 y b = 16.

2.4 Ecuaciones diferenciales

Estas ecuaciones diferenciales son similares a las discutidas anteriormente, con la antidiferenciación siendo aplicado dos veces.

Sea $p = \frac{dy}{dx}$, entonces $\frac{d^2y}{dx^2x} = \frac{dp}{dx} = f(x)$. La técnica consiste en encontrar primero p como la solución de la ecuación diferencial $\frac{dp}{dx} = f(x)$ y luego sustituyendo p en $\frac{dy}{dx} = p$ y resolviendo esta ecuación diferencial.

Ejemplo 2.7

40

En esta sección discutimos un método para encontrar una solución aproximada a una ecuación diferencial. Esto se logra encontrando una sucesión finita de puntos $(x_0, y_0), (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ que se encuentran en una curva que se aproxima a la curva de solución de la ecuación diferencial dada.

2.4.1 Aproximación lineal a la curva

Para el diagrama, tenemos

$$\frac{f(x+h) - f(x)}{h} \approx f'(x) \text{ para un pequeño } h$$

Reordenando esta ecuación da

$$f(x + h) \approx f(x) + hf'(x)$$
.

Esto se muestra en el diagrama. La recta ℓ es tangente a y = f(x) en el punto con coordenadas (x, f(x)). Esto da una aproximación a la curva y = f(x) en que la coordenada y de B es una aproximación a la coordenada y de A en la gráfica de y = f(x).

2.4.2 El proceso general

Este proceso se puede repetir para generar un sucesión de puntos más larga. Comenzamos de nuevo del principio. Considere la ecuación diferencial

$$\frac{dy}{dx} = g(x) \quad \text{con} \quad y(x_0) = y_0.$$

Entonces $x_1 = x_0 + h$ y e1 $y_1 = y_0 + hg(x_0)$.

El proceso ahora se aplica repetidamente para aproximar el valor de la función en x_2, x_3, \dots

El resultado es:

$$x_2 = x_1 + h$$
 y $y_2 = y_1 + hg(x_1)$
 $x_3 = x_2 + h$ y $y_3 = y_2 + hg(x_2)$

y así.

El punto (x_n, y_n) se encuentra en el n-ésimo paso del proceso iterativo.

Este proceso iterativo se puede resumir de la siguiente manera.

Teorema 2.1 (Método de Euler) Si $\frac{dy}{dx} = g(x)$ con $x_0 = a$ e $y_0 = b$, entonces $x_{n+1} = x_n + h$ e $y_{n+1} = y_n + hg(x_n)$.

La precisión de esta fórmula, y el proceso asociado, se puede comparar con los valores Obtenido a través de la solución de la ecuación diferencial, donde se conoce el resultado.

2.5 Variantes del método de Euler

El método de Euler, por supuesto, no es el único ni el mejor esquema para aproximar soluciones a problemas de valor inicial, y lo que debemos hacer ahora es buscar otros métodos que podamos emplear. Varias ideas pueden ser consideradas basadas en algunas extensiones simples de una derivación del método de Euler

Nuestra tercera derivación del método de Euler, que también nos da un término restante, se basa en nuestros métodos de diferencia para la aproximación derivada

Comenzamos con la ecuación diferencial

$$y'(t) = f(t, y(t))$$

y reemplace la derivada con y reemplace la derivada con el cociente de diferencia simple derivado en Esto resulta

$$\frac{y\left(t+h\right)-y\left(t\right)}{h}=f\left(t,y\left(t\right)\right)+\frac{1}{2}hy''\left(\theta_{t,h}\right)$$

donde los subíndices en θ nos recuerdan que el valor depende tanto de t como de h. El método de Euler es entonces obtenido simplemente dejando caer el resto, y reemplazando t por t_n y y (t) con y_n , y así sucesivamente. Esta es la derivación que usamos en el

Esto plantea una pregunta obvia: ¿Qué sucede si utilizamos otras aproximaciones a la derivada? Por ejemplo, si usamos

$$y'(t) = \frac{y(t) - y(t - h)}{h} - \frac{1}{2}hy''(\theta),$$

entonces obtenemos el método de Euler hacia atrás:

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}), (2.7)$$

y si usamos

$$y'(t) = \frac{y(t+h) - y(t-h)}{2h} - \frac{1}{6}h^2y'''(\theta_{t,h})$$

obtenemos lo que comúnmente se conoce como el método del punto medio:

$$y_{n+1} = y_{n-1} + 2hf(t_n, y_n).$$

O, podríamos usar las aproximaciones derivadas basadas en la interpolación

$$y'(t) \approx \frac{1}{2h} \left(-y(t+2h) + 4y(t+h) - 3y(t) \right),$$

$$y'(t+2h) \approx \frac{1}{2h} \left(3y(t+2h) - 4y(t+h) + y(t) \right),$$

para obtener los dos métodos numéricos

$$y_{n+1} = 4y_n - 3y_{n-1} - 2hf(t_{n-1}, y_{n-1}),$$

$$y_{n+1} = \frac{4}{3}y_n - \frac{1}{3}y_{n-1} + \frac{2}{3}hf\left(t_{n+1}, y_{n+1}\right).$$

Finalmente, observamos que se puede derivar otro conjunto de métodos integrando la ecuación diferencial. Tenemos que la solución exacta satisface

$$y(t+h) = y(t) + \int_{t}^{t+h} f(s, y(s)) ds.$$
 (2.8)

Por lo tanto, podemos aplicar la regla del trapecio a (2.8) para obtener

$$y(t+h) = y(t) + \frac{1}{2}h[f(t+h,y(t+h)) + f(t,y(t))] - \frac{1}{2}h^3y'''(\theta_{t,h}). \tag{2.9}$$

donde $\theta_{t,h} \in [t, t+h]$ y recordamos al lector que

$$f(t, y(t)) = y'(t) \implies \frac{d^2}{dt^2} f(t, y(t)) = y'''(t).$$

Eliminar el resto de (2.9) conduce al método numérico (comúnmente llamado método trapezoidal, por obvias razones)

$$y_{n+1} = y_n + \frac{1}{2}hf\left(f\left(t_{n+1}, y_{n+1}\right) + f\left(t_n, y_n\right)\right)$$
 (2.10)

Alternativamente, podemos usar una aproximación de regla de punto medio para la integración (2.8). Esto lleva a

$$y(t + h) = y(t) + hf\left(t + \frac{1}{2}h, y\left(t + \frac{1}{2}h\right)\right) - \frac{1}{24}h^3y'''(\theta_{t,h}),$$

lo que sugiere el método numérico

$$y_{n+1} = y_n + hf(t_{n+1/2}, y_{n+1/2}),$$
 (2.11)

donde $t_{n+1/2} = t_n + \frac{1}{2}h$ y $y_{n+1/2} \approx y \left(t_n + \frac{1}{2}h\right)$. Esto es similar a ¿Qué pasa con estos métodos? ¿Alguno de ellos es bueno?

Varias observaciones se pueden hacer de inmediato. Los métodos (6.21), (6.22) y (6.23) todas se basan en aproximaciones derivadas que son $\mathcal{O}\left(h^2
ight)$, mientras que el método de Euler fue basado en una aproximación derivada que es solo $\mathcal{O}(h)$ (como lo es el método de Euler hacia atrás) (6.20)). Esto nos sugiere (pero no prueba, por supuesto) que (6.21), (6.22) y (6.23) debería ser más preciso que Euler (y Euler hacia atrás). Del mismo modo, los métodos (6.26) y (6.27) se basan en aproximaciones integrales que son más precisas.

Una segunda observación involucra el método del punto medio (6.21) y los dos métodos (6.22) y (6.23). Tenga en cuenta que aquí tenemos fórmulas para y_{n+1} en términos de y_n y_{n-1} . Estos no son métodos de un solo paso, son métodos de varios pasos, es decir, dependen de la información de más de un valor aproximado anterior de la función desconocida. ¿Cómo podemos en realidad implementar estos métodos? La ecuación diferencial solo nos da un único valor inicial, y_0 , necesitamos más para comenzar la recursión aquí.

Una tercera observación se refiere al método de Euler posterior y los métodos (6.26) y (6.23). Note que todas estas fórmulas involucran $f(t_{n+1}, y_{n+1})$. No podemos resolver explícitamente para el nuevo valor aproximado y_{n+1} , por lo que estos métodos (y otros similares) se llaman *implícitos*, mientras que los métodos como Euler, punto medio y (6.22) se llaman *explícitos*, porque define y_{n+1} explícitamente en términos de información de los pasos anteriores.

Nos gustaría abordar el tema de la precisión, al menos de manera experimental, pero no podemos incluso implementar varios de los métodos hasta que abordemos los otros problemas. De todos modos, eso será útil, en este punto, para introducir alguna terminología asociada con la precisión de Los diversos métodos.

Definición 2.1 (Orden de precisión) Si el error de truncamiento para un esquema numérico para la solución de problemas de valor inicial es $\mathcal{O}(h^k)$, entonces decimos que el método tiene un *orden de precisión k*.

2.6 Métodos de un solo paso: Runge-Kutta

La familia de métodos Runge-Kutta² es una de las familias más populares de solucionadores precisos para problemas de valor inicial. La derivación general puede llegar a ser muy complicada; Para evitar el ahogamiento en un mar de detalles y notaciones, resumiremos las ideas básicas utilizando el caso de segundo orden. Recuerde la formulación habitual de predictor-corrector del método trapezoidal:

$$\tilde{y}_{n+1} = y_n + hf(t_n, y_n),$$

 $y_{n+1} = y_n + \frac{1}{2}h[f(t_{n+1}, \tilde{y}_{n+1}) + f(t_n, y_n)].$

Podemos sustituir directamente el predictor en el corrector para escribir esto como una sola recursión:

$$y_{n+1} = y_n + \frac{1}{2}h\left[f\left(t_{n+1}, y_n + hf\left(t_n, y_n\right)\right) + f\left(t_n, y_n\right)\right]$$
(2.12)

Dado que la ecuación diferencial implica que f da valores de y', se sigue que podemos ver (2.12) como definiendo y_{n+1} de y_n avanzando a lo largo de una línea recta definida por el simple promedio de las dos pendientes $f(t_n, y_n)$ y $f(t_{n+1}, \overline{y})$, donde $\overline{y} = y_n + hf(t_n, y_n)$. Esta plantea la pregunta, por supuesto, de si un promedio diferente de dos pendientes podría o no producir un método más preciso. Para ello, consideramos el método más general.

$$y_{n+1} = y_n + c_1 h f(t_n, y_n) + c_2 h f(t_n + \alpha h, y_n + \beta h f(t_n, y_n)), \qquad (2.13)$$

donde c_1 , c_2 , α , β son parámetros aún no determinados. Queremos elegir estos para que la solución aproximada definida por (2.12) es lo más precisa posible y queremos hacer el error de truncamiento lo más pequeño posible, en términos de potencias de h. Por lo tanto, nos fijamos en la expresión

$$R = y(t+h) - y(t) - c_1 h f(t, y(t)) - c_2 h f(t+\alpha h, y(t)) + \beta h f(t, y(t)). \tag{2.14}$$

Para reducir esto de modo que podamos inferir los valores correctos de c_1 , c_2 , α y β que darán como resultado el residual más pequeña R, tendremos que usar el teorema de Taylor en dos variables, que indicamos aquí sin demostración:

$$F(x + h, y + \eta) = F(x, y) + hF_x(x, y) + \eta F_y(x, y) + \frac{1}{2} \left(h^2 F_{xx}(x, y) \right) + h\eta F_{xy}(x, y) + \eta^2 F_{yy}(x, y) + \mathcal{O}\left(h^3 + \eta^3 \right).$$

Martín Wilhelm Kutta (1867–1944) estudió en Breslavia y Múnich, además de un año pasado en Gran Bretaña en Cambridge. La mayor parte de su carrera profesional la pasó en Stuttgart. Sobre la base de la idea original de Runge (primera vez presentado en un artículo de 1894), Kutta publicó su versión de los métodos Runge-Kutta en 1901.

2.7 Análisis del método de Euler

En esta sección probaremos dos resultados que establecen la convergencia y la estimación de error para el método de Euler. En esta sección proporcionamos una gran cantidad de detalles para evitar entrar en tantos detalles con métodos más sofisticados que se derivarán más adelante. A lo largo de la sección nos ocupamos de la solución aproximada, a través del método de Euler, del problema del valor inicial

$$y' = f(t, y), \quad y(t_0) = y_0.$$

El primer teorema muestra que el método de Euler es, de hecho, de primer orden preciso.

Teorema 2.2 (Estimación del error del método de Euler) Sea f Lipschitz continua, con coeficiente K, g asuma que la solución $g \in C^2([t_0, T])$ para algún g g g Entonces

$$\max_{t_k \le T} |y(t_k) - y_k| \le C_0 |y(t_0) - y_0| + Ch ||y''||_{\infty, [t_0, T]},$$

donde

$$C_0 = e^{K(T - t_0)}$$

y

$$C = \frac{e^{K(t-t_0)-1}}{2K}.$$

Prueba El elemento clave en la prueba de este resultado es el hecho de que la solución exacta satisface la misma relación que la solución aproximada, excepto por la adición de un término restante. Así tenemos (de (6.13) y (6.14)),

$$y(t_{n+1}) = y(t_n) + hf(t_n, y(t_n)) + \frac{1}{2}h^2y''(\theta_n),$$

$$y_{n+1} = y_n + hf(t_n, y_n),$$

que restamos para obtener

$$y(t_{n+1}) - y_{n+1} = y(t_n) - y_n + hf(t_n, y(t_n)) - hf(t_n, y_n) + \frac{1}{2}h^2y''(\theta_n).$$

Tome valores absolutos y aplique la continuidad de Lipschitz de f para obtener

$$|y(t_{n+1}) - y_{n+1}| \le |y(t_n - y_n)| + Kh|y(t_n) - y_n| + \frac{1}{2}h^2|y''(\theta_n)|,$$

que escribimos como

$$e_{n+1} \leq \gamma e_n + R_n$$

donde $e_n = |y|(t_n - y_n)|$, $\gamma = 1 + Kh$ y $R_n = \frac{1}{2}h^2|y''(\theta_n)|$, para simplicidad de notación. Esta es una simple desigualdad recursiva, que podemos "resolver" de la siguiente manera. Tenemos

$$e_1 \le \gamma e_0 + R_0,$$

 $e_2 \le \gamma e_1 + R_1 \le \gamma^2 e_0 + \gamma R_0 + R_1,$
 $e_3 \le \gamma e_2 + R_2 \le \gamma^3 R_0$

Parte III
Aplicaciones

Capítulo 3

Bifurcación de la ecuación logística

Resumen. Muchas aplicaciones involucran problemas inversos. En esta sección,

3.1 Ecuación diferencial ordinaria lineal

En este capítulo introducimos algunos conceptos básicos concernientes al cálculo en una escala de tiempo. Una *escala de tiempo* es un subconjunto arbitrario no vacío de los números reales. Así,

$$\mathbb{R}$$
, \mathbb{Z} , \mathbb{N} , \mathbb{N}_0 ,

es decir, los números reales, los enteros, los números naturales, y los enteros no negativos son ejemplos de escala de tiempo, como son

$$[0,1] \cup [2,3]$$
, $[0,1] \cup \mathbb{N}$, el conjunto de Cantor,

mientras que

$$\mathbb{Q}$$
, $\mathbb{R} \setminus \mathbb{Q}$, \mathbb{C} , $(0,1)$,

los números racionales, los números irracionales, los números complejos y el intervalo abierto entro 0 y 1, *no* son escalas de tiempo. A lo largo de esta monografía denotaremos una escala de tiempo por el símbolo T. Asumiremos que una escala de tiempo T tiene la topología que hereda de los números reales con la topología estándar.

El cálculo de escala de tiempo fue iniciado por Stefan Hilger, a fin de crear una teoría que pueda unificar el análisis discreto y continuo. En efecto, abajo en la sección 1.2 introduciremos la derivada delta f^{Δ} para una función f definida sobre \mathbb{T} , y resulta que

- 1. $f^{\Delta} = f'$ es la derivada usual si $\mathbb{T} = \mathbb{R}$ y
- 2. $f^{\Delta} = \Delta f$ es el operador diferencia posterior usual si $\mathbb{T} = \mathbb{Z}$.

En esta sección introducimos las nociones básicas conectadas a las escalas de tiempo. Empezamos definiendo los operadores salto posterior y anterior.

Fig. 3.1 A plot created with PythonTeX

3.2 Introducción

Definición 3.1 (Escala de tiempo) Sea \mathbb{T} una escala de tiempo. Para $t \in \mathbb{T}$ definimos el *operador salto* posterior $\sigma: \mathbb{T} \to \mathbb{T}$ por

$$\sigma(t) := \inf \{ s \in \mathbb{T} : s > t \}$$
 para cualquier $t \in \mathbb{T}$,

mientras que el operador salto anterior $\rho: \mathbb{T} \to \mathbb{T}$ es definido por

$$\rho(t) := \sup \{ s \in \mathbb{T} : s < t \}$$
 para cualquier $t \in \mathbb{T}$.

$$\mu(t) := \sigma(t) - t$$
 para cualquier $t \in \mathbb{T}$.

3.3 Diferenciación

Ahora consideremos una función $f: \mathbb{T} \to \mathbb{R}$ y definir el llamado delta derivada (o Hilger) de f en un punto $t \in \mathbb{T}^{\kappa}$.

Definición 3.2 (Delta diferenciable) Asuma que $f: \mathbb{T} \to \mathbb{R}$ es una función y sea $t \in \mathbb{T}^{\kappa}$. Entonces definimos el número $f^{\Delta}(t)$ (siempre que este exista) con la propiedad que dado cualquier $\varepsilon > 0$, existe una vecindad U de t (es decir, $U = (t - \delta) \cap \mathbb{T}$ para algún $\delta > 0$) tal que

$$|f(\sigma(t))| - f(s) - f^{\Delta}(t)(\sigma(t) - s)| \le \varepsilon |\sigma(t) - s|$$
 para cualquier $s \in U$.

Llamamos $f^{\Delta}(t)$ la derivada delta (o Hilger) de f en t. Es más, diremos que f es delta (o Hilger) diferenciable (o en breve: diferenciable) en \mathbb{T}^{κ} siempre que $f^{\Delta}(t)$ exista para cualquier $t \in \mathbb{T}^{\kappa}$. La función $f^{\Delta}: \mathbb{T}^{\kappa} \to \mathbb{R}$ es entonces llamada la derivada (delta) de f sobre \mathbb{T}^{κ} .

Algunas relaciones sencillas y útiles en relación con la derivada delta se dan a continuación.

Teorema 3.1 Asuma que $f: \mathbb{T} \to \mathbb{R}$ es una función y sea $t \in \mathbb{T}^k$. Entonces tenemos lo siguiente:

- 1. Si f es diferenciable en \mathbb{T} , entonces f es continua en t.
- 2. Si f es continua en t y t es dispersa a la derecha, entonces f es diferenciable en t con

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)}.$$

3. Si t es densa a la derecha, entonces f es diferenciable en t sii el límite

$$\lim_{s \to t} \frac{f(t) - f(s)}{t - s}$$

existe como un número finito. En este caso

$$f^{\Delta}(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s}.$$

4. Si f es diferenciable en t, entonces

$$f(\sigma(t)) = f(t) + \mu(t) f^{\Delta}(t).$$

Ejercicio 3.1 Muestre que si $\mathbb{T} = q^{\mathbb{N}_0} := \{q^n : n \in \mathbb{N}_0\}, q > 1$, entonces

$$(\log t)^{\Delta} = \frac{\log q}{q-1} \cdot \frac{1}{t}.$$

Ejemplo 3.1 Nuevamente consideremos los dos casos $\mathbb{T} = \mathbb{R}$ y $\mathbb{T} = \mathbb{Z}$.

1. Si $\mathbb{T} = \mathbb{R}$, entonces el Teorema 1.3 resulta que $f: \mathbb{R} \to \mathbb{R}$ es delta diferenciable en $t \in \mathbb{R}$ sii

$$f'(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s}$$
 existe,

es decir, sii f es diferenciable (en el sentido clásico) en t. En este caso tenemos entonces

$$f^{\Delta}(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s} = f'(t)$$

por el Teorema 1.3 (iii).

2. Si $\mathbb{T} = \mathbb{Z}$, entonces el Teorema 1.3 (ii) resulta que $f: \mathbb{Z} \to \mathbb{R}$ es delta diferenciable en $t \in \mathbb{Z}$ con

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)} = \frac{f(t+1) - f(t)}{1} = f(t+1) - f(t) = \Delta f(t),$$

donde Δ es el *operador diferencia posterior* usual definida por la última ecuación de arriba.

A continuación, nos gustaría poder encontrar las derivadas de sumas, productos, y cocientes de funciones diferenciables. Esto es posible de acuerdo con el siguiente teorema:

Teorema 3.2 Asuma que $f, g: \mathbb{T} \to \mathbb{R}$ son diferenciables en $t \in \mathbb{T}^{\kappa}$. Entonces

1. La suma de $f + g: \mathbb{T} \to \mathbb{R}$ es diferenciable en a con

$$(f+g)^{\Delta}(t) = f^{\Delta}(t) + g^{\Delta}(t).$$

2. Para cualquier constante α , $\alpha f: \mathbb{T} \to \mathbb{R}$ es diferenciable en t con

$$(\alpha f)^{\Delta}(t) = f^{\Delta}(t) + g^{\Delta}(t).$$

3. El producto $fg: \mathbb{T} \to \mathbb{R}$ es diferenciable en t con

$$(fg)^{\Delta}(t) = f^{\Delta}(t) g(t) + f(\sigma(t)) g^{\Delta}(t) = f(t) g^{\Delta}(t) + f^{\Delta}(t) g(\sigma(t)).$$

4. Si f(t) $f(\sigma(t)) \neq 0$, entonces $\frac{1}{f}$ es diferenciable en t con

$$\left(\frac{1}{f}\right)^{\Delta}(t) = -\frac{f^{\Delta}(t)}{f(t) f(\sigma(t))}.$$

5. Si g(t) $g(\sigma(t)) \neq 0$, entonces $\frac{f}{g}$ es diferenciable en t y

$$\left(\frac{f}{g}\right)^{\Delta}(t) = \frac{f^{\Delta}(t) g(t) - f(t) g^{\Delta}(t)}{g(t) g(\sigma(t))}.$$

Prueba Asuma que f y g son delta diferenciables en $t \in \mathbb{T}^{\kappa}$.

1. Sea $\varepsilon > 0$. Entonces, existen vecindades U_1 y U_2 de t con

$$\left| f\left(\sigma\left(t\right)\right) - f\left(s\right) - f^{\Delta}\left(t\right)\left(\sigma\left(t\right) - s\right) \right| \leq \frac{\varepsilon}{2} \left|\sigma\left(t\right) - s\right| \quad \text{para todo} \quad s \in U_1$$

y

$$\left|g\left(\sigma\left(t\right)\right)-g\left(s\right)-g^{\Delta}\left(t\right)\left(\sigma\left(t\right)-s\right)\right|\leq\frac{\varepsilon}{2}\left|\sigma\left(t\right)-s\right|\quad\text{para todo}\quad s\in U_{2}.$$

Sea $U = U_1 \cap U_2$. Entonces tenemos para todo $s \in U$

$$= +$$

Por lo tanto, f + g es diferenciable en $t y ()^{\Delta}$

Ejercicios

3.1 Sucesión contractiva Una sucesión $\{x_n\}$ se dice que **contractiva** si \exists alguna constante c, $0 < c < 1 \ni \forall n \in \mathbb{N}, |x_{n+2} - x_{n+1}| \le c|x_{n+1} - x_n|$. Pruebe que una sucesión contractiva debe ser una sucesión de Cauchy, y por lo tanto converge.

Solución 3.1 Supongo que $\{x_n\}$ es contractiva con constante de contracción $c \in (0, 1)$ tal que $\forall n \in \mathbb{N}$:

$$|x_{n+2} - x_{n+1}| \le c|x_{n+1} - x_n| \le c^2|x_n - x_{n-1}| \le \cdots c^n|x_2 - x_1|. \tag{3.1}$$

Pero, pero en (1.2) cuando $n \to \infty$, se tiene que $c^n \to 0$ ya que $c \in (0, 1)$. Sea $\varepsilon > 0$ y escogiendo $\tilde{n} \in \mathbb{N}$ apropiado de modo que

$$\frac{e^{\tilde{n}}}{1-c} < \frac{\varepsilon}{|x_1 - x_2|}.$$

Para $m, n \geq n_0$, podemos escribir

$$|x_n - x_m| = |x_n - x_{n-1} + x_{n-1} - x_{n-2} + x_{n-2} - \dots - x_{m+1} + x_{m+1} - x_m|.$$

Y aplicando la desigualdad triangular en (??) se tiene

$$|x_n - x_m| \le |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_m|.$$

Pero, aplicando la cadena de desigualdades, se obtiene

$$|x_n - x_m| \le c^{n-1}|x_1 - x_2| + c^{n-3}|x_1 - x_2| + \dots + c^{m-1}|x_1 - x_2|$$

$$|x_n - x_m| \le |x_1 - x_2|c^{m-1}\frac{1 - c^{n-m}}{1 - c}$$

$$|x_n - x_m| \le |x_1 - x_2|\frac{e^{m-1}}{1 - c}$$

Pero, empleando el \tilde{n} :

$$|x_n - x_m| \le |x_1 - x_2| \frac{c^{\tilde{n}} - 1}{1 - c}$$

$$|x_n - x_m| \le \left| \frac{\varepsilon}{|x_1 - x_2|} \right| |x_n - x_m| \le \varepsilon.$$

Por lo tanto, cualquier sucesión $\{x_n\}$ contractiva es de Cauchy, en consecuencia, $\{x_n\}$ es convergente.

3.2 Media aritmética recursiva Sea $a \neq b$ números reales arbitrarios, y defina la sucesión $\{x_n\}$ por

$$x_1 = a, x_2 = b, \ y \ \forall n \in \mathbb{N}, x_{n+2} = \frac{x_{n+1} + x_n}{2}.$$

Esto es, cada nuevo término está iniciando con el tercero que es el promedio de los dos términos previos.

- 1. Pruebe que $\{x_n\}$ converge probando que este es una sucesión constructiva.
- 2. Pruebe que $\forall n \in \mathbb{N}, x_{n+1} + \frac{1}{2}x_n = b + \frac{1}{2}a$.
- 3. Use 2 y el álgebra de límites para encontrar que $\lim_{n\to\infty} x_n$. ¿Está sorprendido por la respuesta? Note que si usted intercambia a y b la respuesta podría ser diferente.

Solución 3.2 1.

- 2.
- 3.

3.3 Media aritmética ponderada recursiva Sean $a \neq b$ dos números reales arbitrarios, sea 0 < t < 1, y defina la sucesión $\{x_n\}$ por

$$x_1 = a, x_2 = b, \ z \ \forall n \in \mathbb{N}, x_{n+2} = tx_n + (1-t)x_{n+1}.$$

Esto es, cada nuevo término que inicia con el tercero que es el promedio ponderado de los términos previos. Geométricamente, x_{n+2} es un punto en el intervalo entre x_n y x_{n+1} que corta el intervalo en dos segmentos cuyas longitudes están en la proporción t a 1-t. Pruebe que $\{x_n\}$ es contractiva, y encuentre su límite.

Solución 3.3

3.4 Aplicación contractiva Sean a < b e I = [a, b]. Una función $f: I \to I$ se dice que es una **contracción** si $\exists c \ni 0 < c < 1$ y $\forall x, y \in I$, $|f(x) - f(y)| \le c|x - y|$. Pruebe que una aplicación contractiva debe tener por lo menos un "punto fijo", $x \in I \ni f(x) = x$. También pruebe que f no puede tener más de un punto fijo en I.

Solución 3.4

- 3.5 Números de Fibonacci La sucesión de Fibonacci consiste de los números de Fibonacci, 1, 1, 2, 3, 5, $8, 13, 21, \ldots, y$ está definido recursivamente por $f_1 = 1, f_2 = 1, y \forall n \ge 2, f_{n+2} = f_{n+1} + f_n$. Cada nuevo término después del segundo es la suma de los dos términos previos. Muchos resultados interesantes han sido probados acerca de los números de Fibonacci-lo suficiente para llenar un libro entero. Deberemos concentrarnos aquí con la sucesión de proporciones de los sucesivos números de Fibonacci. Empezamos definiendo la sucesión por $r_n = \frac{f_{n+1}}{f_n}$.
 - 1. Desarrolle una tabla que muestre los primeros diez términos de $\{r_n\}$. En la basa de esta tabla, conjeture las respuestas a las siguientes preguntas. $\chi\{r_n\}$ es convergente? ¿Es monótona? ¿Eventualmente monótona? ¿Puede encontrar una subsucesión estrictamente creciente? ¿Una subsucesión estrictamente decreciente? (No se requieren demostraciones).
 - 2. Pruebe que $\forall n \in \mathbb{N}, r_{n+1} = 1 + \frac{1}{r_n}$.
 - 3. Pruebe que $\forall n \ge 2, \frac{3}{2} < r_n < 2$.
 - 4. Pruebe que $\{r_n\}$ es "contractiva", y por lo tanto es una sucesión de Cauchy.
 - 5. Encuentre $\lim_{n\to\infty} r_n$. [Tome nota de este límite; este reaparecerá.]
- 6. La ecuación cuadrática $x^2-x-1=0$ tiene dos soluciones, $\alpha=\frac{1+\sqrt{5}}{2}$ y $\beta=\frac{1-\sqrt{5}}{2}$. Muestre que $\alpha+\beta=1, \alpha^2=a+1, y$ $\beta^2=\beta+1, y$ desde estos hechos muestre que $\forall n\in\mathbb{N}, \alpha^{n+2}=\alpha^{n+1}+\alpha^n$ y $\beta^{n+2}=\beta^{n+1}+\beta^n$.
- 7. $\forall n \in \mathbb{N}$, defina $u_n = \frac{\alpha^n \beta^n}{\alpha \beta}$, donde α y β están definidos en ??. Pruebe que $u_1 = 1$, $u_2 = 1$, y $\forall n \geq 2$, $u_{n+2} = u_{n+1} + u_n$. Por lo tanto, $\{u_n\}$ debe ser la sucesión de Fibonacci. Tenemos encontrado una fórmula para los números de Fibonacci: $f_n = u_n$.
- 8. Significado geométrico de α . Considere un rectángulo cuyo ancho α y largo a+b son así proporcionados que cuando un cuadrado de lado a es removido, como se muestra aquí, el rectángulo restante tiene ancho y longitud en la misma proporción. Esto es, $\frac{a+b}{a} = \frac{a}{b}$. Los matemáticos de la Grecia clásica llamaron esta proporción $R = \frac{a}{b}$ la "**Proporción áurea**" y cualquier rectángulo con lados en la proporción un "rectángulo áureo". Ellos consideraron esto como la más estéticamente agradable de todos los rectángulos, y se usó esto frecuentemente en su arte y arquitectura. Pruebe algebraicamente que $R=\alpha$, definida en $\ref{eq:arriba}$ arriba.
- 9. Pruebe que $\forall n \geq 2, \forall n \geq 2, f_{n+1}f_{n-1} (f_n)^2 = (-1)^n$. 10. Pruebe que $\forall n \in \mathbb{N}, r_{n+1} r_n = \frac{(-1)^{n+1}}{f_n f_{n+1}}$.
- 11. Use ?? para probar que $\{r_{2n}\}$ es estrictamente decreciente y $\{r_{2n+1}\}$ es estrictamente creciente.

Solución 3.5

3.6 Sea $a \ge 1$. Defina la sucesión $\{x_n\}$ por $x_1 = a$, y $x_{n+1} = a + \frac{1}{x_m}$. Pruebe que $\forall n \ge 2$, $a + \frac{1}{2a} \le x_n \le 2a$, y use este resultado para probar que x_n es contractiva. Encuentre $\lim_{n \to \infty} x_n$.

Solución 3.6

3.7 Sea a > 1. Defina la sucesión $\{x_n\}$ por $x_1 = a$ y $x_n = \frac{1}{a + x_n}$. Pruebe que $\forall n \in \mathbb{N}, \frac{1}{2a} \le x_n \le a$, y use este resultado para probar que $\{x_n\}$ es contractiva. Encuentre el $\lim_{n \to \infty} x_n$. Compare este límite con el ejercicio anterior.

Solución 3.7

Referencias bibliográficas 52

Referencias bibliográficas

1. Agarwal, R., Bohner, M., O'Regan, D., Peterson, A.: Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics 141(1), 1–26 (2002). Dynamic Equations on Time Scales

- Benkhettou, N., Brito da Cruz, A.M.C., F.M. Torres, D.: A fractional calculus on arbitrary time scales: Fractional
 differentiation and fractional integration. Signal Processing 107, 230–237 (2015). Special Issue on ad hoc microphone
 arrays and wireless acoustic sensor networks Special Issue on Fractional Signal Processing and Applications
- 3. Denlinger, C.: Elements of real analysis. Jones & Bartlett Learning (2011)
- 4. Gillis, J.: The statistics of derangement—A survey. Journal of Statistical Physics pp. 575–578 (1990). Given a finite set X of elements, divided into disjoint subsets, we define a derangement of X as a permutation which leaves none of the elements in their original subsets. The probability of a random permutation being a derangement is discussed, particularly its asymptotic value as the cardinality of X and the number of subsets tend, under certain conditions, to infinity. Finally, the problem is extended to studying the number of elements which are transferred by a general permutation to a subset other than their initial one.
- Hilger, S.: Analysis on Measure Chains A Unified Approach to Continuous and Discrete Calculus. Results in Mathematics 18(1), 18–56 (1990)
- Jenkyns, T., Stephenson, B.: Fundamentals of Discrete Math for Computer Science: A Problem-Solving Primer, second edn. Undergraduate Topics in Computer Science. Springer International Publishing AG, part of Springer Nature (2018)
- Langtangen, H.P.: A primer on scientific programming with Python. Texts in Computational Science and Engineering. Springer Heidelberg Dordrecht London New York (2016)
- 8. Langtangen, H.P., Linge, S.: Finite Difference Computing with PDEs: A Modern Software Approach, *Texts in Computational Science and Engineering*, vol. 16, first edn. Springer International Publishing (2017)
- 9. Mariconda, C., Tonolo, A.: Discrete calculus, *UNITEXT La Matematica per il 3+2*, vol. 103. Springer International Publishing (2016). DOI 10.1007/978-3-319-03038-8
- Sigler, L.: Fibonaccis Liber Abaci: a translation into modern English of Leonardo Pisanos book of calculation. Springer Science & Business Media (2003)
- Zhao, D., Li, T.: On conformable delta fractional calculus on time scales. Journal of Mathematics and Computer Science pp. 324–335 (2016)

12.	pp. 324–333 (2016) Zill, D.G.: A first course in differential equations with modeling applications, tenth edn. Cengage Learning (2013)	
	Zin, 2101111 instruction in directional equations with modeling approximations, terms congage Zentining (2010)	

Apéndice A	
Algunos códigos Python adicionales	
All's well that ends well	
A.1 Interés compuesto	
A.2 Números de Fibonacci	
A.3 Método de Runge–Kutta	
A.4 Escala de tiempo	

Índice Ackermann Relación de recurrencia número, 15 compleja, 4 definición, 4 orden, 4 Ecuación en diferencias polinomio característico, 11 definición, 5 raíz, 11 homogénea, 8 real, 4 lineal, 8 solución, 4 Ecuación logística, 46 Sucesión Interés compuesto, 22 contractiva, 49 media aritmética, 50 Método de Euler, 32 media aritmética ponderada, 50Principio de superposición, 9 Torres de Hanói, 19