LISTING OF CLAIMS:

This listing of claims will replace all prior versions of claims in the application:

1	1	•	(Withdrawn)	A magnetic head having an air bearing surface,	comprising:
---	---	---	-------------	--	-------------

- 2 a magnetoresistive sensor;
- 3 a magnetic, electrically conductive shield having a surface defining a plane and having
- 4 first and second lateral sides, formed in proximity to and electrically insulated
- 5 from said sensor,
- 6 first and second electrically conductive layers extending from said first and second sides
- of said shield, said first and second conductive layers being coplanar with and
- 8 electrically insulated from said shield;
- 9 a first electrical lead connected with said first electrically conductive layer; and
- 10 a second electrical lead connected with said second electrically conductive layer.
- 1 2. (Withdrawn) A magnetic head as recited in claim 1 wherein said at least one of
- 2 said first and second electrical circuits is electrically connected with said sensor.
- 1 3. (Withdrawn) A magnetic head as recited in claim 1 wherein said first and second
- 2 electrically conductive layers comprise the same material as said shield.
- 1 4. (Withdrawn) A magnetic head as recited in claim 1 further comprising first and
- 2 second electrically insulating gaps formed at said first and second sides of said
- 3 shield, said gaps electrically isolating said first and second electrically conductive
- 4 layers from said shield.
- 1 5. (Withdrawn) A magnetic head as recited in claim 1 wherein said sensor has a
- 2 surface defining a second plane and wherein said shield and said sensor are
- 3 parallel and non-coplanar.

1	6.	(Withdrawn) A magnetic head, comprising:
2		a magnetoresistive sensor;
3		a shield layer formed in proximity to said sensor, said shield comprising a soft
4		magnetic, electrically conductive material;
5		a layer of electrically conductive material adjacent to said shield;
6		a dielectric material disposed between said shield and said electrically conductive
7		material layer and electrically isolating said shield therefrom;
8		a first electrically conductive lead in electrical communication with said layer of
9		electrically conductive material; and
10		a second lead in electrical communication with said shield.
1	7.	(Withdrawn) A magnetic head as in claim 6, wherein said electrically conductive
2		layer is coplanar with said shield.
1	8.	(Withdrawn) A magnetic head as in claim 6, wherein said electrically conductive
2		layer is coplanar with said shield and comprises the same material as said shield.
1	9.	(Withdrawn) A magnetic head as in alaise 6
2	7.	(Withdrawn) A magnetic head as in claim 6, wherein said electrically conductive
-		layer is formed in a common manufacturing step with said shield.
1	10.	(Withdrawn) A magnetic head as in claim 6, wherein said shield is disposed
2		above said sensor.
1	11.	(Withdrawn) A magnetic head as in claim 6, wherein said shield is disposed
2		below said sensor,
1	12.	(Original) A method of manufacturing a magnetic head, comprising:
2		ng a layer of magnetic, electrically conductive material;
3		ng first and second electrically insulating gaps in said magnetic, electrically
4		conductive material layer said first and second gaps terminating substantially at a
5		predetermined lap stop location, said first and second gaps defining a central

6		portion and first and second laterally opposed outer portions of said magnetic,				
7	electrically conductive layer;					
8	form	forming a magnetoresistive sensor;				
9	form	ing a first electr	ically conductive lead connected with said first outer portion of said			
10			ctrically conductive layer;			
11	form	forming a second electrically conductive lead connected with said second outer portion of				
12			e, electrically conductive layer; and			
13	perfo	rming a lapping	operation until at least on of said first and second gaps is reached.			
1	13.	(Original)	A method as recited in claim 12 further comprising measuring an			
2		electrical resis	stance between said first and second leads until an increase in said			
3			icates that said lap stop location has been reached.			
1	14.	(Original)	A method as recited in claim 12 wherein a portion of said			
2		magnetic, elec	ctrically conductive material extending beyond said lap stop location			
3		is contiguous.				
1	15.	(Original)	A method as recited in claim 12 wherein said magnetic, electrically			
2		insulating mat	erial is formed before the formation of said sensor so as to be			
3		formed below	said sensor.			
1	6.	(Original)	A method as recited in claim 12 wherein said magnetic, electrically			
2		insulating mat	erial is formed after the formation of said sensor so as to be formed			
3		above said sen				
1	17.	(Original)	A method for constructing a magnetic head, comprising			
2		forming a mag	netoresistive sensor;			
3		forming a layer	r of magnetic, electrically conductive material having proximal and			
4		distal ends, and	first and second lateral side portions;			
5		providing a gap	o in said layer of magnetic, electrically conductive material, said			
5		gap terminating	g short of said proximal end and extending through said distal end;			

1		performing a lapping operation, said lapping operation initiating from said			
2		proximal end and proceeding toward said distal end;			
3					
4		conductive layer from said first lateral side portion to said second lateral side			
5		portion;			
6		ceasing lapping when said electrical resistance reaches a predetermined value.			
1	18.	(Original) A method as in claim 17 wherein said layer of magnetoresistive			
2		sensor is formed before the formation of said magnetic, electrically conductive			
3		layer.			
1	19.	(Original) A method as in claim 17, wherein said layer of magnetoresistive			
2		sensor is formed after the formation of said magnetic, electrically conductive			
3		layer.			
1	20.	(Original) A method as in claim 17, further comprising depositing a dielectric			
2		layer between said sensor and said magnetic electrically conductive material layer			
1	21.	(Withdrawn) A magnetic recording system, comprising:			
2		a housing;			
3		a motor connected with said housing;			
4		a spindle connected with said motor;			
5		a magnetic disk mounted on said spindle for rotation about its own axix;			
6		an actuator supported within said housing;			
7		a slider supported by said actuator for movement across a surface of said disk;			
8		a magnetic head formed on said slider, said magnetic head further comprising:			
9		a magnetoresistive sensor;			
10		a shield layer formed in proximity to said sensor, said shield comprising a			
11		soft magnetic, electrically conductive material;			
12		a layer of electrically conductive material adjacent to said shield;			

13		a dielectric material disposed between said shield and said electrically
14		conductive material layer and electrically isolating said shield
15		therefrom;
16		a first electrically conductive lead in electrical communication with said
17		layer of electrically conductive material; and
18		a second lead in electrical communication with said shield.
1	22.	(Withdrawn) A magnetic head, comprising:
2		a magnetic, electrically conductive shield;
3		a sensor formed above and electrically isolated from said shield;
4		first and second lap guides, electrically connected with said shield.
1	23.	(Withdrawn) A magnetic head as in claim 22, wherein said first and second lap
2		guides are coplanar with said sensor.
1	24.	(Withdrawn) A magnetic head as in claim 22 wherein said first and second lap
2		guides are comprise the same materials as said sensor.
1	25.	(Withdrawn) A magnetic head as in claim 22 wherein said first and second lap
2		guides are constructed in a common manufacturing step with said sensor.
1	26.	(Withdrawn) A magnetic head as in claim 22 further comprising first and second
2		vias, electrically connected said first and second lapping guides with said shield.
1	27.	(Withdrawn) A magnetic head as in claim 22 further comprising first and
2		second electrically conductive leads in electrical communication with said first
3		and second lon mides