bootstrapping/	'agents	Aaents	and	tasks

\ 2 mCn	Agonto	
\agSp	Agents	A 11
\agSpYU	$Agents(\mathcal{Y};\mathcal{U})$	All agents with given formats.
\agA	${\cal A}$	An agent
\agExp	expl	Agent's exploration phase
\agLearn	learn	Agent's learning phase
\agAct	act	Agent's action phase
\agAexp	$expl_{\mathcal{A}}$	Exploration phase for agent A .
\agAact	$act_\mathcal{A}$	Action phase for agent A .
\agAwtor	$WtoR_\mathcal{A}$	Map from the world to the result for the agent A .
\agAwtob	$WtoB_\mathcal{A}$	
\agAintermediate	$intermediate_\mathcal{A}$	
\agSucAG	$success_\mathcal{A}^\mathcal{G}$	Success set for the agent \mathcal{A} and goal \mathcal{G} .
\agRep	m	Agent representation
\agRepSp	\mathfrak{M}	Agent's model space
\agNuis	$\mathrm{G}_{\mathcal{A}}$	
\agNuisComp	G_{A}^{\perp}	Complement of $G_{\mathcal{A}}$.
\agNuisObs	$G_{\mathcal{J}}^{\mathcal{G}}$	
\agNuisCmd	$\mathrm{G}^{\widehat{\mathcal{U}}}_{A}$	
\agbbClass	C_A^{\sim}	
\agbbClCore	C_A^0	
\agGoal	$egin{array}{c} \mathrm{G}_{\mathcal{A}} \ \mathrm{G}_{\mathcal{A}}^{\downarrow} \ \mathrm{G}_{\mathcal{A}}^{\circlearrowleft} \ \mathrm{G}_{\mathcal{A}}^{\circlearrowleft} \ \mathrm{G}_{\mathcal{A}}^{\circlearrowleft} \ \mathcal{C}_{\mathcal{A}} \ \mathcal{C}_{\mathcal{A}}^{\circlearrowleft} \ \mathcal{G}_{\mathcal{A}}^{\circlearrowleft} \ \mathcal{G}_{\mathcal{A}}^{} \ \mathcal{G}_{\mathcal{A}}^{\circlearrowleft} \ G$	The agent's goal (a subset of $StocProcesses(\mathcal{Y} \times \mathcal{U}))$

articles/bds BDS report

articles

\BDSnk	BDS(n;k)	
\BDSSk	$CBDS(\mathcal{S};k)$	
bgBDSfamily	BDS	Family of BDS sensors
bgCBDSfamily	CBDS	Family of BDS sensors
\bds	BDS	Bilinear dynamics system
\BDS	BDS	
\cbds	CBDS	Continuous-space bilinear dynamics system
\CBDS	CBDS	
$\operatorname{\mathtt{igwedge}}$		omitted sum
$\backslash \mathtt{omsumb} \{ \ldots, \ldots \}$		omitted sum (two arguments)
\TT	Т	Learned tensor
\TTe	Т	?
\TP	P	
\TPe	P	
\TU	U	Learned tensor
\TUe	U	Learned tensor
\TM	M	Bilinear tensor in BDS dynamics
\TMe	M	Bilinear tensor in BDS dynamics
\TN	N	Bilinear tensor in BDS dynamics
\TNe	N	Bilinear tensor in BDS dynamics
\Tcov	Р	Covariance of y .
\Tcove	Р	Covariance of y .

\Tucov	Q	Covariance of y .
\Tucove	Q	Covariance of y .
\discInt	\dot{T}	Discretization interval
\nearavg	$\overline{\mu}$	Average nearness
(<i>r</i> -	
articles/bgds $BGDS\ r$	eport	
\bgds	BGDS	Bilinear gradient dynamics system
\BGDS	BGDS	
\bgCmd	$oldsymbol{u}$	commands
\bgCmdH	$\boldsymbol{u}^{\mathbb{T}}$	commands history
\bgCmdSp	U	commands space
\bgWorld	W	World
\bgWorldSp	\mathcal{W}	World space
		$W \in \mathcal{D}(\mathbb{T}, \mathcal{U}, \mathcal{Y})$
		<pre>\$\bgWorld \in \bgRSSp(\bgTime, \bgCmdSp,</pre>
		\bgObsSp)\$
\bgAgent	agent	Agent
\bgAgentEx	learn	Agent exploration
\bgAgentAc	act	Agent action
\bgAgentRep	r	Agent representation
\bgAgentRepSp	$\mathcal R$	Agent representation space
\bgAgentSp	Agents	Agent action
\bgCmdTr	g	Transformation of the commands
\bgCmdTrSp	$G^{\mathcal{U}}$	
\bg0bsTr	$\overset{\circ}{h}$	Transformation of the observations
\bg0bsTrSp	$G^{\mathcal{Y}}$	
\bgSamplingGroup	Sampling	Groups of sampling operations
\bgCalibration	Calib	Calibration operation
\bgBDSagent	A_{BDS}	The BDS agent
\bgBGDSagent	A_{BGDS}	The BGDS agent The BGDS agent
\bgPopCode	pop	Popoulation code
\bgRankCode	rankcode	Rank code
\bgRangeFamily	RF	Family of range-finders models
\bgFields	C	ranniy of range iniders models
\bgCmdConstraints	$\Omega_{m{u}}$	
\bgPopK	ψ	
/pgr obix	Ψ	
articles/bgds/old BG	DS report	
state	\overline{x}	Generic underlying state.
\stateSp	\mathfrak{X}	Generic underlying state space.
\detecte	d	Detector
$\sum_{i=1}^{n} s_i = 1$		Quantity with mean normalized.
\dist	σ	Distance to obstacle
distn	σ^*	Distance to obstacle, mean normalized.
rfnl	β	Nonlinear function in range-finder tensors.
\near	$\overset{r}{\mu}$	Nearness
\lum	$\stackrel{r}{y}$	Luminance
\lumn	y^*	Luminance, mean normalized
\sptran	$\stackrel{g}{\ell}$	Sensor pose (translation)
\sprot	$\ell_{ heta}$	Sensor pose (rotation)
\slvel	$oldsymbol{v^s}$	Sensor linear velocity (when off axis)
/~~~~	~	(mion on wait)

\savel	ω^s	Sensor angular velocity (when off axis)
\TX	X	Generic metric
\TXe	X	Generic metric
\OS	S	$S = s \times \nabla$
\convf	\widetilde{f}_*	Indicates the convolution with a kernel f .
\my	$\stackrel{j}{m}$	Metric on the tangent space of $y(s)$.
		server of the things of g(s).
\bgBGDSfamily	BGDS	Family of BGDS sensors
\BGDSsk	$BGDS(\mathcal{S};k)$	
\focal	F	Pinhole camera focal length.
\traindist	$p_{ m T}$	Training distribution.
\trainsym	$Sym(p_{\mathrm{T}})$	Symmetry group of $p_{\rm T}$.
	- J (F 1)	
articles/bgds/logical (Gradient dynamics	
\obslsp	Z	Observation logical space
\obsl	z	Observations in logical space
\obsle	z	Observation logical space element
\xtos	φ	Mapping between S and Z .
\jac	J	Jacobian of φ
\jace	J	An element of the Jacobian of φ .
\mz	μ	Metric on the tangent space of $z(x)$.
\mmu	M	Metric for the commands u .
articles/bgds/logical/g	grads Gradient dynamics	
Tzgd	L	z gradient dynamics
Tzgde	L	z gradient dynamics (element)
Tzgl	M	z gradient learned tensor
Tzgle	M	z gradient learned tensor (element)
Tzgcov	S	z gradient covariance
Tzgcove	S	z gradient covariance (element)
Tzad	E	Affine part of dynamics.
Tzade	E	Affine part of dynamics (element)
Tzal	F	Learned affine part of dynamics.
\Tzale	F	Learned affine part of dynamics (element)
articles/bgds/tensors I	G G	y gradient dynamics
\Tygd \Tygde	G	y gradient dynamics y gradient dynamics (element)
	H	y gradient dynamics (element) y gradient learned tensor
\Tygl	H	y gradient learned tensor (element)
\Tygle	R	y gradient covariance
\Tygcov \Tygcove	R	y gradient covariance y gradient covariance (element)
\Tyad	В	Affine part of dynamics.
	В	Affine part of dynamics. Affine part of dynamics (element)
\Tyade		Learned affine part of dynamics.
\Tyal	C C	Learned affine part of dynamics. Learned affine part of dynamics (element)
\Tyale	C	Dearned annie part or dynamics (element)
articles/bgds/models/de	eprecated Definition of r	$andom\ models$
\bgTime	T	Time axis
\bgRS	$\overset{\cdot \cdot \cdot}{D}$	Random model
\bgRSSp	D	All models
/ OI		

\bgRSinput	a	Input signal
\bgRSinputSp	$\mathcal A$	
\bgRSinputH	$\boldsymbol{a}^{\mathbb{T}}$	History of input signal
\bgRSoutput	\boldsymbol{b}	
\bgRSoutputH	$\boldsymbol{b}^{\mathbb{T}}$	History of output signal
\bgRSoutputSp	\mathfrak{B}	
\bgRSinputTr	$oldsymbol{g}$	
\bgRSinputTrSp	$\mathrm{G}^{\mathcal{A}}$	
\bgRSoutputTr	h	
\bgRSoutputTrSp	$\mathrm{G}^{\mathcal{B}}$	
\bg0bs	\boldsymbol{y}	observations
\bg0bsH	$\boldsymbol{y}^{\mathbb{T}}$	observations history
\bg0bsSp	y	observation space

articles/camera Camera paper

articles/camera Cumera	paper	
\rank	order	
\place	place	
\ff	f	Distance to similarity function
\Sany	\mathfrak{M}	Generic hypersphere
\targetSp	\mathfrak{M}	Target manifold
\Ssubset	M	A subset of \mathcal{M} XXX
\infr	infr	Informative radius
\ffr	infr(f)	Informative radius of f
$ackslash ext{distradius}$	rad	Radius of a distribution
\distdiam	diam	Diameter of a distribution
\hausdorff	hausdorff	Hausdorff distance
\kimberley	kim	Kimberley value
\errproc	$e_{ m pr}$	Procrustes score
\isoError	$e_{\sf iso}$	
\symError	e_{sym}	
\relError	e_{r}	
$\backslash \texttt{scaledRelError}$	$e_{\sf sr}$	
\angcorr	$ ho_{ heta}$	
\spearperf	$ ho_{ m sp}$	Spearman performance measure
\spearperfn	$ ho_{ m sp}^*$	Normalized Spearman performance measure
\dirset	S	Set of directions
\dirmat	\mathbf{S}	Directions stacked in a matrix
\matX	\mathbf{X}	
\matI	I	
arot	\mathbf{X}	
cosmat	\mathbf{C}	
cosmatij	C_{ij}	
distmat	D	
distmatij	D_{ij}	
simmat	Y	Similarity matrix
simmatij	\mathbf{Y}_{ij}	
simmatii	\mathbf{Y}_{ii}	
\simmatkl	Y_{kl}	
algorparam	$\frac{\gamma}{2}$	
shannon	Н	
\fov	FOV	field of view

\SKalgo	SK	Shepard-Kruscall algorithm
\SBSEw	SKv + w	An extension to the SK algorithm
\SBSE	SKv	An extension to the SK algorithm (without warping)
articles/dds DDS reg	nart	
\ddsres	•	Resolution of the sensor in a DDS.
\ddsies \ddsarea	$ ho \ \mathcal{S} $	Area of the manifold S .
\ddsbound	$d_{ m max}$	Bound on the maximum diffeomorphism in a DDS.
\DDS	$a_{ m max}$ DDS	Bound on the maximum unicomorphism in a bbs.
\dds	DDS	
\ddsl	DDS	
\DDSsu	$DDSL$ $DDS(\mathcal{S};\mathcal{U})$	
\DDSLsvu	$DDSL(\mathcal{S},\mathcal{V};\mathcal{U})$	
\bgDDSfamily	DDSL $(\mathcal{O}, \mathcal{V}, \alpha)$	
\bgDDS1amily \bgDDSLfamily	DDSL	
\diffeoURL	???	Model
\cmdAlphabet	U	Model
\ncmdwords	u U	Number of commands words.
\obsspD	$d^{\mathcal{S}}$	Metric on \mathcal{S} .
\diffId	$\operatorname{Id}_\mathcal{S}$	Identity diffeomorphisms.
\diffU	Γ	Uncertainty of estimated diffeomorphism.
\diffDist	d^{Diff}	Distance between two diffeomorphism.
\cmdDist	$\mathcal{D}_{\mathrm{cmd}}$	Distance between two commands.
\cmdDist	$\mathcal{A}_{\mathrm{cmd}}$	Anti-distance between two commands.
\images	$\mathbb{F}(\mathcal{S})$	min-distance between two commands.
\obspsV	\mathcal{V}	viewport
\ddsfov	Ÿ	viewport
\obspsVunpred	$\gamma_{\overline{ m pr}}$	undpredictable part
\obsps\unpred	$\gamma_{ m pr}$	predictable part
\obspsVunpredt	$\overline{\mathcal{V}_t^{\overline{\mathrm{pr}}}}$	undpredictable part at time t
\obsps\unpredt	$\stackrel{\scriptstyle v_t}{\scriptstyle {\mathcal V}_t^{ m pr}}$	predictable part at time t
\ddsctod	${}^{ m v}{}_t$ C_TO_DIFF	predictable part at time t
\ddsctod \ddsste		State of a DDS (element)
\ddsste \ddsst	$egin{array}{c} x \ oldsymbol{x} \end{array}$	State of a DDS (element) State of a DDS
\dasst	\boldsymbol{x}	State of a DDS
articles/deepdyn <i>Lea</i>	arning of latent/deep dyna	mics
\ldmap	γ	Map from latent state to instantaneous dynamics
\hclass	${\cal H}$	Hidden class
\iclass	${\cal M}$	Instantnaeous class
articles/despl Paral	lel learning naper	
	ver rearring paper	
\desplStats	Stats	
\desplistats \desplistats	IStats	
\desplibata \desplibata	Data	
\desp1IData	IData	
\desplibata \desplModels	Models	
\desplimodels \desplimodels	IModels	
\desplinedels \desplinedels	learn	
\despliearn \desplilearn	ilearn	
/200bitionin		

\desplfilter filter \desplfmodel fm \desplistats istats \desplglue glue \desplmglue mglue \desplstats stats \desplmerge merge \desplInter Interval Ι \patternA Slice - Stats - Merge\patternB Split - Stats - GlueFilter-Learn-Glue\patternC \patternD Recursive-LearnA2\proto \slicelen slicelen \njobslearn n_{learn} \njobsmerge $n_{\rm merge}$ \njobstotal $n_{\rm jobs}$

articles/compmake Compmake

\Compmake Compmake parmake sgemake

articles/dptr1 Technical report for diffeoplanning

articles/dptr1/spaces spaces

SetImages

Ulm \SetUImages \genericdist{...,...} \genericudist{...,...} \obsstart $oldsymbol{y}_{ ext{start}}$ \obsgoal $oldsymbol{y}_\circ$ \SetPlans Plans Plans \planSp RedPlans reduced plans \redplans \plan a generic plan p\plang true plan p_{\circ} The solution found \planf p^{\star} Ø \zeroplan Scalar uncertainty \obsu \boldsymbol{z} \obsue Scalar uncertainty z\sarea Aarea around pixel s \dd Generic diffeomorphisms φ \dde Generic diffeomorphisms φ \ddu its uncertaint γ \ddue its uncertaint γ \udiffSp **UDiff**

articles/dptr1/structure Diffeo structure

\dscommute commute \dsinverse inverse

```
\dssame
                                    same
\dsvoid
                                    void
\SOtwo
                                    SO(2)
articles/dptr1/simplification\ plan\ reduce
\plantodiff
                                    p_to_d
\protect\
                                    p_to_d
\pd
                                    p_to_d
\planreduce
                                    PlanReduce
                                    noutoforder
                                                                     TODO
\noutoforder
articles/dptr1/distances
                                    \frac{d_{L_1}^{\operatorname{Diff}(\mathcal{S})}}{d_{L_1}^{\operatorname{UDiff}(\mathcal{S})}}
\frac{d_{L_1}^{\operatorname{Diff}(\mathcal{S})}}{d_{L_1}^{\mathcal{S}}}
\dDiffLone
\dUDiffLone
dobsps
\dImL{...}
                                    \begin{array}{c} d_{L_1}^{\rm lm} \\ d_{L_2}^{\rm lm} \end{array}
\dImLone
\dImLtwo
\dImN{\dots}
\dImD{...}
\cmdOrd
                                     \prec
\algoname{...}
\gnbc
                                    GNB
\bnbc
                                    BNB
\bngc
                                    BNG
\bntc
                                    BNT
\gebc
                                    GEB
\bebc
                                    BEB
                                    BEG
\begc
                                    BET
\betc
\betcb
                                    BETc
\plansarea
                                     P_{\text{near}}
                                    cover
\algocover
\algoplanreduce
                                     planreduce
                                    bidirectional-search
\algobidirectional
                                     Dubin's car
\dubinsys
\orbitsys
                                    Orbit camera \\
\markit{...}
\markA
\markB
                                    ‡
                                    8
\markC
\distthres
                                    c
\btrue
                                    true
\bfalse
                                    false
\botherwise
                                    otherwise
cmdleft
                                    oldsymbol{u}_{left}
\cmdright
                                    oldsymbol{u}_{right}
\cmdup
                                    oldsymbol{u}_{top}
\cmddown
                                    oldsymbol{u}_{down}
\imvis
                                    vis
                                                                     Visibility
```

 v_0

\minvis

$\backslash \mathtt{maxdis}$	d_g	goal threshold		
\impred	pred	Image prediction		
\plA	RLrl			
	1 neuromorphic control	Clip up to some boundary		
\maxu	b	Cup up to some boundary		
\clipu				
, _	sat_b			
\gain \settime	κ T			
\controllerLast	$\overset{^{\mathrm{II}}}{\mathrm{C1}}$	Uses last event		
\controllerTI	C1	Time integrale		
\controllerTS	C2 C3	time integrale time smoothed		
\controllerTN	C3 C4	Time neural		
Controllerin	C4	Time neural		
articles/optcam opt	imal sensor			
\ds	Δ_s	Spatial sampling		
\dt	Δ_t	Temporal sampling		
\db	Δ_b	Brightness threshold		
dvsth	Δ_b°	Threshold		
\camexp	$\mathbf{E}\mathbf{X}$	Exposure		
\mseps	MSE_{ps}	periodic sampling		
\mseeb	MSE_{eb}^{PS}	MSE event based		
bwps	$\mathrm{BW}_{\mathrm{ps}}$	bandwidth periodic sampling		
\bweb	$\mathrm{BW}_\mathrm{eb}^\mathrm{ps}$	bandwidth event based		
\ori	α			
articles/estgroups Estimation with symmetries				
articles/estgroups		C+-+-		
\esSt	$oldsymbol{x}$	State		
\esStDim	n	Dimension of state space		
\esStSp	\mathcal{X}_{r}	State space		
\esStDist	$\mu^{\mathfrak{X}}_{m{x}}$	Prior for state		
articles/estgroups,	observations Observ	vations		
\es0bs	y	Observations		
\esObsDim	m	Observations dimensions		
\es0bsSp	y	Observations space		
\es0bsMap	$\overset{\circ}{h}$	Observation map		
, ±		y = nh(x)		
		\$\esObs = \esNuis \esObsMap(\esSt)\$		
		, , , , , , , , , , , , , , , , , , , ,		
articles/estgroups/nuisances Nuisances				
\esNuis	n	Nuisance		
\esNuisSp	N	Nuisance group		
$\backslash esNuisDist$	$\mu_{m{n}}^{ ext{N}}$	Nuisance distribution		
orticles/ostrace-	articles/estgroups/estimators Estimators, risks and performances			
\esEst		rs, risks and performances Estimator		
\esEstSp	$rac{m}{\mathcal{M}}$	Estimator Set		
/esrs mh	JYL	Patimator act		

\esRiskSp	3	Risk space
		Risk distribution for given estimator
\esRiskDistPO	\prec	Partial order defining preference on distributions.
\esProb	$\overset{\preceq}{\mathcal{P}}$	Estimation problem
(r · · · · · · · · · · · · · · · · · · ·
articles/estgroups/s	ymmetries Symmetries	in the problem
\esStAb	α	Abstract state
\esStAbSp	$\mathcal A$	Abstract space
\esRep	arphi	Representation
		$\varphi: x \mapsto \alpha.$
		<pre>\$\esRep: \esSt \mapsto \esStAb\$.</pre>
\esStSym	A	Group of symmetries of the state
\es0bsSym	В	Group of symmetries of the observation
\esRiskSym	С	Group of symmetries of the risk function
\esPOSym	D	Group of symmetries acting on the partial order
\esProbSym	${\mathcal S}$	Tuple of symmetries
articles/1509-gcmdp		
\dprobsp	DP	
\dprob	dp	Design problem
\cdprobsp	CDP	D 4 11
\cdprob	cdp	Design problem
\dpseries	series	
\dppar	par	
\dploop	loop	
	7 C	
articles/groupspectromysHom	HomMaps	
	-	Induced homomorphisms.
\gsImage	$egin{array}{l} { m Image} \\ { m EqSet} \end{array}$	Fixed points of a function.
\gsEqs \gsGA	GrAct	If the function is the action of a group.
\gsGAsym	GIACT	Used to specify that a function can be expressed as a group action.
\gsSym	$_{ m Sym}^{\scriptscriptstyle }$	Set of symmetries
\gsStrongCan	SCan	Strong canonization operator
\gsWeakCan	WCan	Weak canonization operator
\gsEquiCan	BCan	Bold canonization operator
\gsEndoCan	MCan	Mild canonization operator
\gsUnCan	UCan	Unstructured canonization operator
\gsNuis	Sample	Onsol devaled canonization operation
\regular	regular	
\unstr	~	Unstructured symbol.
\jokFunc	*	Joker function
\zerFunc	0	Zero function
Zerrane	O	Zero runction
articles/groupspectr	al/defs <i>Group spectra</i>	l properties
\gsdContravariant	$\xrightarrow{-1}$	Contravariance
\gsdInvariant	$\xrightarrow{0}$	Invariance
10	$\stackrel{-}{{\longrightarrow}}$	
\gsdEquivariant	<i>→</i>	Equivariance
\gsdIntroduces		Nuisance introduced
		0

Optimal subset of estimators Risk function

 \mathfrak{M}^{\star}

\esEstSpOpt \esRisk

	\gsdUnstructured	$\stackrel{\sim}{\longrightarrow}$	Unstructured result		
	articles/invariances Invariances				
-	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Dual of a representation nuisance		
	\brel	\leq_B	Simulation partial order		
	\bsim	\sim_B	Simulation relation		
	,				
_	$articles/jbds \ Symbols \ int$				
	\veh	B	A vehicle body		
	\vehBody	B	A vehicle body		
	\vehKin	K	Vehicle kinematics		
	\vehSensPos	r	Sensor relative pose		
	\vehSensFun	ψ	Function that defines an exteroceptive sensor		
	\env	e	Environment		
	\envSp	${\cal E}$	Environment space		
	\envo	\mathcal{O}	Obstacles in the environment		
	\envt	\mathcal{T}	Texture (function on $\partial \mathcal{O}$)		
	\envf	\mathcal{F}	Field sensed by field sampler		
	\envob	$\partial \mathcal{O}$	Obstacles boundaries		
	\obspsDiff	$\mathcal{S}^{ ext{dif}}$			
	obspsNotDiff	$\mathcal{S}^{\overline{ ext{dif}}}$			
	\sic	VS	ideal camera		
	\sir	RF	ideal range finder		
	\sif	FS	ideal field sampler		
	\sicV	$\mathrm{VS}(\mathcal{V})$	ideal camera with viewport		
	\sirV	$\mathrm{RF}(\mathcal{V})$	ideal range finder with viewport		
	\sifV	FS(V)	ideal field sampler with viewport		
			Zero order hold		
	(2011()		Zero order nord		
	articles/jbds/misc <i>Used</i>	in proofs for JBDS			
_	\ygneig	N	A neighborhoood of y_{\circ} .		
_	articles/jbds/robots				
	allrobots	Robots	The set of all robots		
	\vehRob	ISV	Idealized Simple Vehicles		
	\vehRobNuis	IŜV	Vehicle robots with nuisances		
	\robVeh	ISV			
_	articles/optbody Optimal	design of body and mind			
	AMA	<u>A</u>			
	MB	В			
	\MC	C			
	MG	G			
	\MH	H			
	\ML	L			
	\MQ	\mathbf{Q}			
	MP	P			
	MS	\mathbf{S}			
	MSigma	Σ			
	VMV	V			
	$\backslash MW$	\mathbf{W}			

\SP	$P_{ m s}$	Sensing power
AP	$P_{ m a}$	Actuation power
\SE	E	Stored energy
\ER	r	Trajectory efficiency ratio
\HP	Θ	Heading precision
\np	n	Number of pixels
, ,		•
articles/1508-rafc Func		
funsp	\mathcal{F}	Function space
\funleq	$\leq_{\mathcal{F}}$	Function space
\fun	f	Function
\funtop	$ op_{\mathfrak{F}}$	
\funbot	$\perp_{\mathcal{F}}$	
\imp	i	Implementation
\impsp	J	Implementation space
\exc	exec	Executation exec : $\mathfrak{I} \to \mathfrak{F}$
\eval	eval	Evaluation eval : $\mathfrak{I} \to \mathfrak{R}$
\paramsp	\mathcal{P}	Parameter space
res	r	Resources
resleq	$\leq_{\mathcal{R}}$	
restop	$ op_{\mathcal{R}}$	
resbot	$\perp_{\mathcal{R}}$	
ressp	\mathcal{R}	Resources space
resspleq	$\leq_{\mathcal{R}}$	•
\tressp	$\mathfrak{T}(\mathfrak{R})$	Trade-off space
\trof	τ̈́	Trade-off space
\tres	T	1
\tresleq	$\leq_{\mathfrak{T}}$	Trade-off space
\trleq	_ , <_	Trade-off space
\Res	$rac{\leq_{\mathfrak{T}}}{S}$	
\Resa	\tilde{S}_1	
\Resb	S_2	
resa	r_1	
resb	r_2	
Ressp	$\mathcal{P}(\mathcal{R})$	
Resleq	$\leq_{\mathcal{P}(\mathcal{R})}$	
\rtoapp	Ψ	
/I odapp	1	
articles/1508-ragh Reso	urce Allocation problem	
\clatency	latency	
cperiod	period	
articles/1508-ragh/rgra		
\rN	rN	A resource graph's vertices
\rE	rE	A resource graph's edges
\rG	rG	A resource graph
rGsp	RG	Space of resource graphs
\rn	rn	A resource node
rnops	rn.capacity	A resource's capacity
rntype	rn.type	A resource's type
\rntypes	RTypes	A resource's type

\rnA	rn_1	
\rnAops	$rn_1.capacity$	
\rnB	rn_2	
\rdot{rnBops}	$rn_2.capacity$	
\re	re	A resource edge
\relink	re.link	A resource
relatency	re.latency	
rebandwidth	re.bandwidth	
\reA	re_1	
\reB	re_2	
reAlatency	$re_1.latency$	
\reAbandwidth	$re_1.bandwidth$	
reBbandwidth	$re_2.bandwidth$	
reiint	re.int1	Output interface (first node)
reoint	re.int2	Input interface (second node)
1		•
articles/1508-ra	gh/cgraph Computation Graph	
\cG	cG	A computation graph
\cGsp	CG	Computation graph spaces
\cGleq	≤cg	Order on computation graphs
\cN	cN	A cgraph's vertices
\cE	cE	A cgraph's edges
\cn	cn	A computation node
\cnA	cn ₁	r
\cnB	cn ₂	
cnops	cn.ops	A computation node's ops
\dotops	.ops	Tr comparation node is opti
\cnAops	$cn_1.ops$	
\cnBops	$cn_2.ops$	
\cce	ce	A computation edge
\ceA	ce ₁	A computation edge
\ceB	Ce_2	A computation edge
\dotsize	.size	11 comparation cage
\cesize	ce.size	Signal size (bytes)
\ceAsize	ce ₁ .size	Signal size (by ves)
\ceBsize	ce ₂ .size	
(0020120	662.5126	
articles/1508-ra	gh/links Physical links	
\PL	PLinks	Physical links
\pl	pl	Physical link
\pplA	pl₁	plA conflicts
\plAlatency	pl ₁ .latency	phr commons
\plAbandwidth	pl ₁ .bandwidth	
\platency	pl.latency	
\plbandwidth	pl.bandwidth	
/LTAMICA TOUT	phoanawiath	
articles/1508-ra	gh/allocations Allocations	
\as	as	An assignment
$\backslash \mathtt{asm}$	as.m	The momomorphism
$\backslash \mathtt{asmn}$	$as.m_N$	
$\backslash \mathtt{asme}$	$as.m_E$	

\asmni	$as.m_N^{-1}$	
\asmei	$\operatorname{as.m}_E^{\overset{N}{-}1}$	
\asmi	$\operatorname{as.m}^{E_1}$	The right inverse of the momomorphism
\asla	as. $lpha$	The link allocation
\asca	as. eta	The computation allocation
\ctdelay	delay	Continuous-time delay
\ctsample	sample	Continuous-time sample
\rtof	arphi	-
\ftor	\dot{h}	
\Rcomp	$\overline{\mathbb{R}}^+$	
\dpvars	$\overline{\mathcal{V}}$	
\benchmark	benchmark	
\deploy	deploy	
\utypes	U	Universe of types
\app	арр	<i>V</i> 1
\appsp	Apps	
\ghom	h	
\ghomv	h_V	
\ghome	h_E	
\ghomsp	Hom	Homomorphism space of two gaphs
		Hom(cG, rG)
		\$\ghomsp(\cG,\rG)\$
\mydash	_	
\rgcmd	driver-cmd	
\rgobs	driver-obs	
\cgcmd	output	
\cgobs	input	
articles/soattotheory $S_{\mathcal{U}}$	ymbols used by Soatto	
\scene	ξ	scene
\representation	$\hat{\xi}$	representation
\minrep	ξ ξ ξ	minimal representation
\feature	$\overset{\circ}{\phi}$	feature
\maxinv	ϕ^{\wedge}	maximal invariant feature
\suffstat	ϕ^{\vee}	maximal invariant feature
\image	\mathcal{I}	image
\addnoise	n	additive noise
\imagoform	h	image formation function

\representation	$\hat{\xi}$	representation
\minrep	$\hat{\xi}^ee$	minimal representation
\feature	ϕ	feature
\maxinv	ϕ^{\wedge}	maximal invariant feature
\suffstat	ϕ^{\vee}	maximal invariant feature
\image	${\cal I}$	image
$\backslash {\tt addnoise}$	n	additive noise
\imageform	h	image formation function
\groupnuis	g	nuisance which have the structure of a group
\othernuis	u	other non-invertible nuisance
\lightfield	${\cal L}$	all possible images generated by a scene
\complex	H	Complexity measure
\actinfo	${\cal H}$	Actionable information
\covdet	ψ	Covariant detector

articles/soattotheory/mseerep *msee report*

Domain sampling operator (subset)
Domain sampling operator (subset)
Value Discretization operator (subset)
Smoothing operator (kernel)
Censoring operator (field of view)

$ \setminus nuoccl{} $		Occlsions
\imform	I	
\contrast	f	
1		
articles/thesis Special	symbols for thesis	
\labelrefinement	ref	Indicates a refinement
\pchomeoR	$PieceHomeo(\mathbb{R})$	
$\langle dianode{} \rangle$		used in properties1.dot
$\langle \mathtt{dianodem}\{\dots \}$		
\bitZ		
\bit0	·	
\infbinstrings	$\{\Box, \boxdot\}^{\mathbb{N}}$	Set of infinite binary strings
\chineseClose	(nosummary)	The Chinese character corresponding to "close" or "near".
\twosignals	y^i,y^j	
twosignalsa	$y^i_{\ .}$	
twosignalsb	y^j .	
twosignalscolon	$y^i; y^j$	
\semrelorder	m	Order of a generic semantic relations
\infinit	$\frac{d}{a}$	Infinitesimal
\genericsemrel	\mathcal{R}	A generic semantic relation.
\gensemrelsym	$Sym(\mathcal{R})$	Symmetries of the semantic relation
\genericsimilarity	R	A generic similarity measure.
\obsecdf	c	CDF of one sensel
\cmdreverse	ρ	The map from a command to its reverse.
\cmdopt	u^\star	The optimal command
\cmdnop	u^{nop}	Command corresponding to "resting".
\rew	R	Reward function
\placeneig	Neighbors	
\genericrel	\sim	Generic relation
\notgenericrel	~	
articles/thesis/longex	ample Long example	
\CalibA	CalibA	
\CalibB	CalibB	
Smoothkernel	k	
\Smooth	$Smooth_k$	
BGDSAg	BGDSagent	
\BGDSAgS	BGDSagentS	
\DImagesU	$\mathfrak{D}(Im(\mathcal{S}); \mathfrak{U})$	
\DImagesR	$\mathcal{D}(Im(\mathcal{S}); \mathbb{R}^{n_{m{u}}})$	
\ABehavior	behavior	
\DImagesSphU	$\mathcal{D}(Im(\mathbb{S}^2);\mathcal{U})$	
hobs	$oldsymbol{x}$	
hobse	x	
\bound	M	
common Common symbols	to all papers	
common/abbreviations O	$ther\ abbrevations$	
\setA	A	
\setB	${\mathfrak B}$	
1		

\setC	C	
\setU	ü	
\setM	\mathfrak{M}	
\setY	y	
\setX	$\underset{\sim}{\mathfrak{X}}$	
\setZ	\mathcal{Z}	
\setS	S	
\grG	G	
\grH	H	
\grK	K	
\grN	N	
,0		
common/inv-abbreviati	ons	
\sqa	\overline{a}	
\sqae	a	
\sqb	\boldsymbol{b}	
\sqbe	$\stackrel{\circ}{b}$	
, -	-	
\sqc	<i>c</i>	
\sqce	c	
common/samonsma Aanon	1 mm a	
common/acronyms Acron	yms	
common/algebra Algebra		
ones	1	T1 // /
\idMat	I	Identity matrix
\matTrace	Tr	Trace of a matrix.
\angleFun	_	Angle function
, ,		
\flatten	vec	Matrix-to-vector rearrangement.
\flatten		Matrix-to-vector rearrangement.
\flatten common/basic Basic stuj	f	- -
\flatten common/basic Basic stuff \setfun	$f \Longrightarrow$	Symbol for set functions (one-to-many)
\flatten common/basic Basic stuj	f	Symbol for set functions (one-to-many) Field.
\flatten common/basic Basic stuff \setfun	$f \Longrightarrow$	Symbol for set functions (one-to-many)
\flatten common/basic Basic stuff \setfun	$f \Longrightarrow$	Symbol for set functions (one-to-many) Field.
\flatten common/basic Basic stuff \setfun	$f \Longrightarrow$	Symbol for set functions (one-to-many) Field. field($X, +, \times$) is an algebraic field. $\alpha = 1$ is an algebraic field. $\alpha = 1$ is an algebraic field.
\flatten common/basic Basic stuff \setfun	$f \Longrightarrow$	Symbol for set functions (one-to-many) Field.
\flatten common/basic Basic stug \setfun \algfield	$ec{f}$ $ ightharpoonup field$	Symbol for set functions (one-to-many) Field. field($X, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field.
\flatten common/basic Basic stug \setfun \algfield	$ec{f}$ $ ightharpoonup field$	$ \begin{array}{c} \text{Symbol for set functions (one-to-many)} \\ \text{Field.} \\ \text{field}(\mathcal{X},+,\times) \text{ is an algebraic field.} \\ \text{\$\algfield(\aset}\{X\},+,\text{times})\$ \text{ is an algebraic field.} \\ \text{A well ordered set.} \\ \end{array} $
\flatten common/basic Basic stug \setfun \algfield	$ec{f}$ $ ightharpoonup field$	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. \$\text{wellorder(\aset{X},\leq)}\$ is a well-ordered set.
\flatten common/basic Basic stug \setfun \algfield	$ec{f}$ $ ightharpoonup field$	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered
\flatten common/basic Basic stup \setfun \algfield \wellorder	<i>ਜੋ</i>	Symbol for set functions (one-to-many) Field.
\flatten common/basic Basic stup \setfun \algfield \wellorder	<i>ਜੋ</i>	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. Orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field.
\flatten common/basic Basic stup \setfun \algfield \wellorder	<i>ਜੋ</i>	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. Orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\condend{\text{orderedfield}(\aset{X},+,\times,\leq)\$ is a
\flatten common/basic Basic stug \setfun \algfield \wellorder \orderedfield	≕ field wellorder orderedfield	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. Orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\cdot\orderedfield(\aset{X},+,\times,\leq)\$ is a well-ordered field.
\flatten common/basic Basic stuff \setfun \algfield \wellorder \orderedfield \powerset	### ### #############################	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\condend{aset} \text{I},+\times,\leq)\$ is a well-ordered field. \$\condend{aset} \text{I},+,\times,\leq)\$ is a well-ordered field. Power set of a space
\flatten common/basic Basic stup \setfun \algfield \wellorder \orderedfield \powerset \supp	### size of the state of the s	Symbol for set functions (one-to-many) Field.
\flatten common/basic Basic stup \setfun \algfield \wellorder \orderedfield \powerset \supp \idFunc	### ### #############################	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\condent{orderedfield(\aset{X},+,\times,\leq)}\$ is a well-ordered field. Power set of a space Support of a set The identity function
\flatten common/basic Basic stup \setfun \algfield \wellorder \orderedfield \powerset \supp \idFunc \invFunc	### size of the content of the cont	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\cdot\orderedfield(\aset{X},+,\times,\leq)\$ is a well-ordered field. Power set of a space Support of a set The identity function Inverse function
\flatten common/basic Basic stug \setfun \algfield \wellorder \orderedfield \powerset \supp \idFunc \invFunc \funcComp	### field wellorder orderedfield powerset supp Id1 ○	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\cdot\orderedfield(\aset{X},+,\times,\leq)\$ is a well-ordered field. Power set of a space Support of a set The identity function Inverse function Function composition
\flatten common/basic Basic stug \setfun \algfield \wellorder \orderedfield \powerset \supp \idFunc \invFunc \funcComp \emptysequence	### field wellorder orderedfield powerset supp Id1 ○	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\cdot\orderedfield(\aset{X},+,\times,\leq)\$ is a well-ordered field. Power set of a space Support of a set The identity function Inverse function Function composition Empty sequence
\flatten common/basic Basic stup \setfun \algfield \wellorder \orderedfield \powerset \supp \idFunc \invFunc \funcComp \emptysequence \allFuncs	field wellorder orderedfield powerset supp Id1 o 0 Functions	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\condens{condensed} \text{ordered} \text{ines},\leq)\$ is a well-ordered field. Power set of a space Support of a set The identity function Inverse function Function composition Empty sequence All maps from a space to the other
\flatten common/basic Basic stup \setfun \algfield \wellorder \orderedfield \powerset \supp \idFunc \invFunc \funcComp \emptysequence \allFuncs \D	### field wellorder orderedfield powerset supp Id1 ○	Symbol for set functions (one-to-many) Field. field($\mathfrak{X},+,\times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathfrak{X},\leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. orderedfield($\mathfrak{X},+,\times,\leq$) is a well-ordered field. \$\arrow{\text{orderedfield(}(\aset{X},+,\times,\leq)\$ is a well-ordered field. Power set of a space Support of a set The identity function Inverse function Function composition Empty sequence All maps from a space to the other Used for integrals
\flatten common/basic Basic stup \setfun \algfield \wellorder \orderedfield \powerset \supp \idFunc \invFunc \funcComp \emptysequence \allFuncs	field wellorder orderedfield powerset supp Id1 o 0 Functions	Symbol for set functions (one-to-many) Field. field($\mathcal{X}, +, \times$) is an algebraic field. \$\algfield(\aset{X},+,\times)\$ is an algebraic field. A well ordered set. wellorder(\mathcal{X}, \leq) is a well-ordered set. \$\wellorder(\aset{X},\leq)\$ is a well-ordered set. A well ordered field. orderedfield($\mathcal{X}, +, \times, \leq$) is a well-ordered field. \$\condens{condensed} \text{ordered} \text{ines},\leq)\$ is a well-ordered field. Power set of a space Support of a set The identity function Inverse function Function composition Empty sequence All maps from a space to the other

common/sequences Seq		
sequences	Sequences	Set of sequences
contsequences	ContSequences	Set of continuous sequences
Aut	Aut	Automorphism group
\setminus contFuncs	Continuous	Continuous functions on some metric space
		Continuous (A) are all continuous functions on A .
		<pre>\$\contFuncs(\setA)\$ are all continuous functions</pre>
,		on \$\setA\$.
differFuncs	Differentiable	Differentiable functions
\partitions	partitions	
\mExp	mexp	Matrix exponential
\big0	\mathcal{O}	Big-O notation
\smallo	O	
$\mbox{metricon}\{\dots\}$		
definedas	≜	
\crossprod	×	cross-product
\gsDom	Domain	
\gsCod	Codomain	
$\setminus interCC\{\dots,\dots\}$		
$\setminus interCO\{\ldots,\ldots\}$		
$\setminus interOC\{\ldots,\ldots\}$		
$\setminus inter00\{\ldots,\ldots\}$	-	
\unitInterval	[0,1]	
/a . /a	. ,	
common/basic/logic I		T + 11 111
\logicAnd	^	Logic "and"
\logicOr	V	Logic "or"
\logicNot		Logic "not"
common/simplesets Si	mnle sets	
\reals	\mathbb{R}	Real numbers
\natnumbers	N	Natural numbers
\ratnumbers	Q	Rational numbers
\hreals	$*\mathbb{R}$	Hyper-real numbers
\nonNegReals	\mathbb{R}^+_ullet	Non negative reals
\posReals	\mathbb{R}_{\circ}^{+}	Strictly positive reals
\nzReals	$\mathbb{R}_{\circ}^{\circ}$	Nonzero reals
	Ü	
common/blackboxes Bl	ack boxes	
	To a second	A black box
\bbD	D	
		Inverse of a black box
		left inverse of a black box
	AUG :	right inverse of a black box
\alloutcomes	AllOutcomes	
\alloutputs	AllOutputs	All outputs of a given system
\bbDelay	Δ	The one-step delay system.
\vertblock	I	
\bbAccum	III	Accumulator system
\inLoop	Loop	Closes the loop around a system

\	LIC .	TD1 : 1
\idSys	ldSys Ɗ	The identity system Set of black boxes
\bbSp	D	
		$\mathcal{D}(\mathfrak{X}; \mathfrak{Y})$ are all the black boxes from \mathfrak{X} to \mathfrak{Y} .
		\$\bbSp(\setX;\setY)\$ are all the black boxes
\bbFM	\mathfrak{D}_{fm}	from \$\setX\$ to \$\setY\$. Systems with finite memory
\bbSpInv	⊅fm D*	Set of invertible systems
\bbSpinv \bbFMinv	$\mathfrak{D}^{\star}_{fm}$	Systems with finite memory and invertible
\bbSpIns	$\mathcal{D}_{ ext{fm}}^{ ext{fm}}$	Set of instantaneous systems
\bbSpDet	$\mathcal{D}_{ ext{det}}$	Deterministic systems
\bbSpInvIns	$\mathcal{D}^{\star}_{\mathrm{inst}}$	Set of invertible and instantaneous systems.
\DDDPIIIVIIIB	inst	$\mathcal{D}^*(\mathcal{A})$ is a subset of $\mathcal{D}(\mathcal{A};\mathcal{A})$
		\$\bbSpInv(\setA)\$ is a subset of
		\${\bbSp(\setA;\setA)}\$
\bbSpCore	\mathcal{D}°	Systems up to representation
(bbbpcc1c	D	Systems up to representation
common/blackboxes/abb		
\bbDinv	D^{-1}	
\bbDri	$oldsymbol{D}^R$	
\bbDli	\boldsymbol{D}^L	
\bbE	$oldsymbol{E}$	
\bbF	$oldsymbol{F}$	
\bbG	$oldsymbol{G}$	
\bbH	H	
\bbL	$oldsymbol{L}$	
\bbSpBA	$\mathcal{D}(\mathcal{B};\mathcal{A})$	to write
\bbSpAB	$\mathcal{D}(\mathcal{A};\mathcal{B})$	to write
common/blackboxes/dep		
\bb0p	⊕ C	Composition operation
\inSeries	Series	Series of two systems
\bbSpAny	\mathfrak{D}_*	Any of the following Discrete time
	\mathcal{D}^{c}	Continuous time
\bbSpCT	\mathcal{D}^{e}	Event-based
\bbSpEB	D^*	Event-based
common/boot Bootstrapp	ing symbols	
	servations and commands	
\world	m	The "world", an element of $\mathcal{D}(\mathcal{Y};\mathcal{U})$.
\obs	y	Observations vector.
\obse	y	Observations element.
\cmd	u	Commands vector.
\cmde	u	Commands element.
\nobs	$n_{oldsymbol{y}}$	Number of sensels
\ncmd	$n_{oldsymbol{u}}$	Number of actuators
\obsSp	y	Observation space
\cmdSp	$\frac{\mathcal{U}}{\mathcal{U}}$	Commands space $\frac{1}{2} \left(\frac{1}{2} \right)^{n_u}$
\cmdSph	$\overline{\overline{\mathcal{U}}}$	Domain of a single actuator $\mathcal{U} = \overline{\mathcal{U}}^{n_u}$.
\obsSph	\overline{y}	Domain of a single sensel $\mathcal{Y} = \overline{\mathcal{Y}}^{n_y}$.
ackslashobsSphd	$d^{\overline{\mathcal{Y}}}$	Metric on $d^{\overline{y}}$

\obsSpd	$d^{\mathcal{Y}}$	Metric on d^{θ}			
common/boot/spatia	common/boot/spatialsensors Spatial sensors				
obssp	\mathcal{S}	Observation physical space.			
\obsps	$\mathcal S$	Observation physical space.			
\genimages	lm	Images on physical space S .			
\imps	$Im(\mathcal{S})$	Images on physical space \mathcal{S} .			
/Impo	III(C)	images on physical space O.			
common/boot/servo					
\obsgmark	0				
\obsg	\boldsymbol{y}_{\circ}	Goal observations.			
obsge	y_{\circ}	Goal observations (element).			
\obsgl	$oldsymbol{z}_{\circ}$	Goal observations (element).			
\obsgle	z_{o}	Goal observations (element).			
common/boot/abbrev	riations Abbreviations				
\bbSpYU	$\mathcal{D}(\mathcal{Y};\mathcal{U})$	to write			
\bbSpYXU	$\mathcal{D}(\mathcal{Y}; \mathcal{X}; \mathcal{U})$	to write			
\bbSpUY	$\mathcal{D}(\mathcal{U};\mathcal{Y})$	to write			
\bbSpInvY	D*(Y)	Representation nuisances on commands			
\bbSpInvU	$\mathcal{D}^{\star}(\mathcal{U})$	Representation nuisances on observations			
\bbSpInvYU	$\mathfrak{D}^{\star}(\mathfrak{Y};\mathfrak{U})$	Representation nuisances			
\bbSpInvUY	$\mathcal{D}^{\star}(\mathcal{U};\mathcal{Y})$	F			
\bbSpCoreYU	$\mathcal{D}^{\circ}(\mathcal{Y};\mathcal{U})$	Systems up to representation			
\bbbpcc1c1c	$\mathcal{D}^{-}(v, \alpha)$	Systems up to representation			
common/vehicles Th		A11 X7 1 · 1			
\veEnvironments	Environments	All Vehicles environments			
\veSensors	Sensors	all Vehicles sensors			
\veDynamics	Dynamics	all Vehicles dynamics			
\veVehicles	Vehicles				
common/vehicles/ma	h $todo$				
\veSce	S				
\veVeh	V				
\veMov	M				
\veAdd	Α				
\veJoi	J				
\vePar	Р	Parallel composition of sensors			
\veNcmd	U	1			
\veNobs	Y				
,					
	Miscellaneous expressions				
\etal	et al.				
\eg	e.g.,				
\etc	etc.				
\ie	i.e.,				
\viceversa	viceversa				
\vs	vs	Versus			
$\backslash adhoc$	adhoc				
apriori	apriori				

	,		
_	common/goodformulas Beta	ter formulas annotations	
			Explanation in formulas
			Highlight something in formulas (observations)
			Highlight something in formulas (commands)
	$\highC\{\dots\}$		both observations and commands
	common/yesorno Miscellane	eous functions for docume	ent formatting
-	\ns	J J	v O
	\tickYes	\checkmark	
	\tickNo	7	
	\NA	n/a	
	\coltickNo	7	
	\ves	\checkmark	
	\no	7	
	\onehalf	$\frac{1}{2}$	small one half
	\smP0	+1	Small plus one
	\smMO	-1	Small minus one (e.g. in smallmatrix)
	\ \tag{2.11}	-	Silver illine one (e.g. in silverille)
_	common/incomplete Incom	plete symbols	
	\towrite	to write	Marker for sections to write
	$\operatorname{placeholder}\{\ldots,\ldots\}$		A placeholder
	$ ag{tocite}{\dots}$		
	\citeboh	[xxx]	
	\citexxx	[xxx]	
	\xxx	???	
	\XXX	???	
	\notsure	(Not sure)	
	\dontlike	(Don't like this)	
	\notformal	(not formal)	
	$ackslash$ betterword $\{\dots\}$		
	\boh	???	incomplete
	\bn		bad notation, this should change later
	\checkbadformat		incomplete
	\prooftowritesomeday		
	\myrule{,}		
	\unitInverval	[0, 1]	
-	common/geometry Different		D:ff
	\diff	Diff	Diffeomorphism
			$Diff(\mathfrak{M})$ are the diffeomeorphisms from \mathfrak{M} to itself.
			\$\diff(\aset{M})\$ are the diffeomeorphisms from
	\	D:(f	\$\aset{M}\$ to itself.
	\diffPos	Diff ₊	Orientation-preserving diffeomorphism.
	\homeoPos	$Homeo_+$	Orientation-preserving homeomorphisms (of the real line)
			Diffeomorphisms with bounded curvature
	\diffVol	$Diff_{\mathrm{vol}}$	

Set of all homeomorphisms Isometries group $[som(\mathcal{M}) \text{ are all the isometries of } \mathcal{M}.$ $$\sometries(\aset\{M\})$ are all the isometries of $\aset\{M\}$.$

Homeo

Isom

 $\backslash \texttt{homeo}$

 $\backslash \mathtt{isometries}$

$\left\langle diffFix\left\{ \ldots \right\} \right\rangle$		Diffeomorphisms that fix a point
\conformalFuncs	Conformal	Conformal transformations
,		
common/geometry/man:	$\frac{1101ds\ Manifolds}{\mathbb{S}^1}$	Unit circle.
\Sone	\mathbb{S}^2	
\Stwo		Unit sphere.
\stwo	\mathbb{S}^2	Unit sphere
hypsp	H	
\hypspn	\mathbb{H}^n	
graphs <i>Graphs</i>		
\paths	paths	All paths in a graph
\walks	walks	All paths in a graph
\head	head	The paolis in a Staph
\tail	tail	
\nodes	nodes	nodes in a walk
,		edges in a walk
\edges	edges	edges in a wark
\sources	sources	(C)
		sources(cG)
\		<pre>\$\sources(\cG)\$</pre>
\sinks	sinks	
		sinks(cG)
		<pre>\$\sinks(\cG)\$</pre>
\predecessors	pred	predecessors of a node
		pred(cn)
		<pre>\$\predecessors(\cn)\$</pre>
\successors	succ	successors of a node
		pred(cn)
		<pre>\$\predecessors(\cn)\$</pre>
common/groups Group		*1
\gIdentity	e	Identity of a group
\tgroup	group	Group set with operations
		$group(G, \cdot)$ means G is a group under \cdot .
		<pre>\$\tgroup(\agroup{G},\cdot)\$ means \$\agroup{G}\$</pre>
		is a group under \$\cdot\$.
\haar	haar	Haar measure
		The Haar measure on \mathfrak{X} is haar ^X .
		The Haar measure on \hat{X} is \hat{X} .
common/groups/famous		
\idGroup	ld -	The trivial group with identity only.
\permutations	Perm	Set of permutation
		Stabilizer of a set
$\operatorname{\setminus functionsym}\{\dots\}$		Symmetries of a function
\allsubgroups	AllSubgroups	
$\setminus comgroup\{\dots\}$		Commutator sub group
\groupJoin	V	Group join
$\gcd\{\ldots\}$		Conjugation
\groupquotient		Group quotient
\groupsemidir	×	Semidirect product.

,		
\groupisom	\cong	Isomorphism
\issubgroup	\leq	Subgroup relation.
normalsub	◁	Normal subgroup relation
\actionsymbol	•	Group action.
$\setminus companionFuncs\{\ldots\}$		Companions functions
$ ag{transversalFuncs}$	}	Transversal functions
common/groups/matrix		
orthogroup	0	Orthogonal group.
\trangroup	T	Translation group
segroup	SE	Special Euclidean group.
Egroup	E	Euclidean group.
SLgroup	SL	Special linear group
Diaggroup	D	Diagonal matrices with non-zero elements.
\PMgroup	D_\pm	Diagonal matrices with ± 1 on the diagonal.
\Scalegroup	Sc	Multiples of the identity
\sogroup	SO	Special orthogonal group.
\soneggroup	SO^-	
\affgroup	Aff	Affine group
\affgrouppos	Aff_+	Affine group
\GL	GL	General linear group
\GLpos	GL_+	
\se	se	Special Euclidean algebra
\soalgebra	SO	
\sealgebra	se	Special Euclidean algebra
\S0three	SO(3)	Special orthogonal group (rotation matrices)
SEthree	SE(3)	Special Euclidean group
\SEtwo	$\widetilde{\operatorname{SE}(2)}$	Special Euclidean group
\SEthreeAlg	se(3)	
\SEtwoAlg	se(2)	
\SOthreeAlg	se(3)	
\SOtwoAlg	se(2)	
\setwo	$\widetilde{\mathrm{SE}(2)}$	
\sethree	SE(3)	
\sotwo	SO(2)	
\sothree	SO(3)	
(2332233	20(0)	
common/groups/simple	Very simple groups	
\mgroup	$(\mathbb{R}_{\circ}, \times)$	Multiplication group
\mposgroup	$(\mathbb{R}^+_{\circ}, \times)$	Positive multiplication group
\mpmgroup	$(\pm 1, \times)$	+1/-1 multiplication group
\addgroup	$(\mathbb{R},+)$	Addition group
/8F	(, ')	
common/groups/simple/	abb Abbreviations	
\addgroupn	$(\mathbb{R}^n,+)$	Addition group on \mathbb{R}^n
\affone	$Aff(\mathbb{R})$	Affine group 1D
\affonepos	$Aff_+(\mathbb{R})$	Affine group 1D
\affn	$Aff(\mathbb{R}^n)$	Affine group in n dimensions.
\affnpos	$Aff_+(\mathbb{R}^n)$	Affine transformations preserving orientations.
·	1 \ /	
basic		

basic/partialorders P	artial orders	
\pset	P	Power set (latenative to powerset
\subto	s.t.	Subject to in math
lfp	lfp	Least fixed point
\prefixed	prefixed	prefixed points
\CPOs	CPOs	
\CPO	CPO	
upsets	upsets	
\ _	•	The upper sets of P are $upsets(P)$
		The upper sets of P are \$\upsets(P)\$
\antichains	antichains	
(The antichains sets of P are $antichains(P)$
		The antichains sets of P are \$\antichains(P)\$
		110 dilviordini 0000 01 1 dil 0 \$ (dilviordinatio (1) \$
common/probability Pro		
\setminus uniformdist	Uniform	Uniform distribution
$\backslash \mathtt{measure support}$	Support	Support of a probability measure
\processes	StocProcesses	Set of stochastic processes
\setminus conditional	Conditional	Conditional distribution
		Conditional $(\mathcal{B}; \mathcal{A})$ is the set of conditional distribu-
		tions
		<pre>\$\conditional(\setB;\setA)\$ is the set of</pre>
		conditional distributions
\finaldist	Final	Stationary distribution of a stochastic process.
$\mbox{\tt measureSp}$	meas	Measure space.
		$meas(\mathcal{X}, \Sigma, \mu)$ is a measure space.
		<pre>\$\measureSp(\aset{X},\Sigma,\mu)\$ is a measure</pre>
		space.
\probSp	prob	Probability space.
		$prob(\mathcal{X}, \Sigma, \mu)$ is a probability space.
		<pre>\$\probSp(\aset{X},\Sigma,\mu)\$ is a probability</pre>
		space.
\measures	Measures	Set of probability measures on a set.
		Try $\mu^{\mathcal{X}} \in Measures(\mathcal{X})$
		<pre>Try \$\mu{\aset{X}} \in \measures(\aset{X})\$</pre>
\dirac	δ	
common/robotics Roboti	cs	
obsip	m	Inner product bilinear form.
\obsosp	O	Observation output space.
\dummySensel	s	
\pose	q	Robot pose $q = (t, \mathbf{R}) \in \mathcal{Q} \subset SE(3)$.
posesp	Q	Pose space, subgroup of $SE(3)$.
\posespAlg	q	Pose space algebra.
\setminus confspace	Q	Robot configuration space
\pos	t	Position in the world frame.
\posEl	t	Position in the world frame (element)
rotm	\mathbf{R}	Rotation matrix representing orientation in the world frame.
rotme	R	Element of rotation matrix

\lvel	$oldsymbol{v}$	Linear velocity
lvele	v	Linear velocity (element)
avel	ω	Angular velocity (as vector)
avele	ω	Angular velocity (element)
avels	ω	Angular velocity in 2D (scalar)
\avelse	$\hat{oldsymbol{\omega}}$	Angular velocity (as skew-symmetric matrix)
\njoints	n_{j}	Number of joints in a robot
\attitude	\mathbf{R}	- · · · · · · · · · · · · · · · · · · ·
\position	t	
\F	-	
common/robotics/field	smapler Field samplers	
\field	\mathcal{F}	Field sampled by the field sensor.
\fieldpos	$oldsymbol{z}$	Generic position in the world.
\fieldpose	\overline{z}	Generic position in the world.
\worldSp	~ Maps	deneric position in the world.
/worldsb	iviaps	
common/robotics/old D	Penrecated	
\wshape	s	
\wpose	p	
\worldsp	Maps .	
\wshapesp	Shapes	
/wanapeap	Shapes	
common/robotics/maps	New stuff	
\mshape	<u>s</u>	Map shape.
\mpose	p	Map pose.
\mshapesp	Shapes	Shape space.
\mapsp	Maps	Maps set Maps = Shapes \times SE(3).
/mapsp	Μαρσ	$\text{Maps Set Waps} = \text{Shapes} \times \text{Sh}(s)$.
common/statistics Misc	$c\ statistics$	
\stddev	std	Standard deviation
\var	var	Variance
/ex	\mathbb{E}	Expected value
\corr	corr	Expected value
COA	COV	covariance
\spearcorr		Spearman correlation between two variables
\mutualinf	spear ${\mathcal I}$	Mutual information
,		
\entr	${\cal H} \ {\cal V}$	Entropy Variation of information
\varinf		Variation of information
\varinfn	\mathcal{V}_1	Normalized variation of information
$\operatorname{pushedforward}\{\ldots\}$		Pushed forward notation
\distributedAs	~	Distributed as
	+ : C+:	
common/statistics/sor		
\order	order	Order (or rank) of the elements of a vector.
\sorted	sorted	Sorted version of a vector
differ	differ	
\sortedSeq	sortedSeq	
\ rropleaget adCag		
\weaksortedSeq	weaksortedSeq	
,	weaksortedSeq	
common/systems Dynama	weaksortedSeq	Continuous-time time-invariant systems.

\DTI	DTI	Discrete-time time-invariant systems.
\DDTI	DDTI	Deterministic discrete-time time-invariant systems.
\DCTI	CDTI	Deterministic continuous-time time-invariant systems.
\DFSTI	DFSTI	Discrete-time finite-state-space time-invariant systems.
\CFSTI		Continuous-time finite-state-space time-invariant systems.
\DFSTIGO	CFSTI	Discrete-time finite-state-space time-invariant systems.
,	DFSTIGO	- · · · · · · · · · · · · · · · · · · ·
\CLTI	CLTI	Continuous-time linear time-invariant systems
\CLTIG	CLTIG	Continuous-time linear time-invariant systems with Gaussian noise.
\DLTI	DLTI	Discrete-time linear time-invariant systems
\DSMPLTI	DSMPLTI	Discrete-time stable minimum-phase linear time-invariant systems
\DLTIG	DLTIG	Discrete-time linear time-invariant systems with Gaussian noise.
laptrans	\mathcal{L}	Laplace transform
\impulseresp	ImpulseResp	Impulse response of a system
\transferfunc	TF	Transfer function
Otypography Basic type	ography	
		All acronyms; good for text as well as math mode. Use lower case.
	Tensors and tensor elements	
		Tensor
$\texttt{Tel}\{\dots\}$		Tensor element
$\backslash \mathtt{Te}\{\dots\}$		
Otvpographv/matrices	Matrices and matrix element	ts
		A matrix
		The elements of a matrix
Otypography/sets Sets	3	
$\ag{aset}{\ldots}$		A set
$\langle agroup\{\dots \}$		Fonts for a set which is a group.
		A set X , a group X , G ,
		A set \$\aset{X}\$, a group \$\agroup{X}\$,
		\$\agroup{G}\$, \dots
$\aggreen $		Formatting for sequences
		Formatting for one element in a sequence
\dummyIndices		·
Otypography/misc Eve	rything else	
$\mathtt{\aword}\{\ldots\}$		How words should look like in formulas.
		Consider the operator scale,
		Consider the operator $\alpha \$
$\operatorname{\mathtt{vmath}}\{\dots\}$		How words should appear in math mode.
$\setminus codefunc{\dots}$		Code functions
		The function select
		The function \codefunc{select}
$\space{swpackage}{\dots}$		Name of software packages
		The package Procgraph, ZMQ, Unix.
		The package \swpackage{Procgraph},
		\swpackage{ZMQ}, \swpackage{Unix} .