

The carbon cycle in ACCESS-ESM1

Model description and Pre-Industrial Simulation

Rachel Law, T. Ziehn, R. Matear, L. Stevens, A. Lenton, Y.P. Wang, D. Bi, H. Yan 19 May 2015

OCEANS AND ATMOSPHERE FLAGSHIP www.csiro.au

ACCESS-ESM1

- ACCESS1.4
 - UM7.3 (~GA1.0)
 - MOM4p1
 - CABLE2.2.3

ACCESS-ESM1

- CICE4.1
- OASIS-MCT

- CABLE2.2.3 with I casacnp=.TRUE., icycle=3 (CNP)
- WOMBAT for ocean carbon
- Pre-industrial simulations
 - DEF default, prescribed leaf area index, standard ocean carbon parameters
 - 1000 years
 - ProgLAI prognostic leaf area index
 - 1000 years
 - Slight warming of climate (TAS 14.59±0.11 compared to 14.22±0.10°C)
 - AltOCN alternate ocean carbon parameters (and numerically stable WOMBAT)
 - 500 years

Land flux equilibration

Land flux and carbon pools - ProgLAI

Land carbon flux distribution and LAI

Zonal mean – land only Black – GPP Blue – plant respiration Red – soil respiration

Interannual variability

	DEF	ProgLAI
GPP	1.17	1.87
Leaf Resp	0.26	0.75
Plant Resp	0.17	0.27
Soil Resp	0.27	0.32
NEE	1.40	1.21

NEE standard deviation (gCm⁻²y⁻¹)

Climate drivers for interannual variability

Correlation between annual land carbon flux to the atmosphere and precipitation surface air temperature

Ocean carbon flux equilibration

Assessment against surface observations

Taylor diagram comparing modelled and observed annual mean climatologies:
Correlation
Normalised standard deviation
Normalised bias (colour)

Air-sea flux distribution and seasonality

Interannual variability

Interannual variability (2xSD) of air-sea CO₂ flux from DEF simulation

Units: mmol m⁻² day⁻¹

Conclusions

- Simulations are generally realistic
- Improvements to target
 - Land carbon conservation when low rainfall makes sustaining vegetation difficult
 - Land carbon fluxes may be over sensitive to climate (moisture) variability
 - Excessive uptake of alkalinity in surface water → outgassing carbon
 - Underestimated export of particulate organic carbon → too much phosphate
- Carbon cycle impacted by physical model biases
 - Low rainfall biases (e.g. Indian monsoon)
 - Cold tongue bias, surface salinity biases
- Law et al., 'The carbon cycle in the Australian Climate and Earth System Simulator (ACCESS-ESM1). 1. Model description and pre-industrial simulation', to be submitted to Geosci. Model. Dev. (possible ACCESS special issue)

Thank you

Earth System Modelling Rachel Law Principal Research Scientist

t +61 3 9239 4427

e rachel.law@csiro.au

