

CERTIFICATE OF MAILING (37 CFR 1.8a)

JFW /63.2.

I hereby certify that this paper (along with any paper referred to as being transmitted therewith) is being deposited with the United States Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Patricia S. Rocha-Tramaloni
(Print Name)

Date: April 23, 2007

~~—(Signature)~~

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Group No.: 1632

Johannes Auer, et al.

Serial No.: 10/591,045

Filed: August 29, 2006

For: METHOD FOR THE RECOMBINANT EXPRESSION OF AN N-TERMINAL FRAGMENT OF HEPATOCYTE GROWTH FACTOR

TRANSMITTAL OF CERTIFIED COPY

April 23, 2007

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

Attached please find the certified copy of the foreign application from which priority is claimed for this case.

<u>Country</u>	<u>Application No.</u>	<u>Filing Date</u>
Europe	04004951.2	March 3, 2004

Respectfully submitted,

Patricia S. Rocha-Tramaloni
Attorney for Applicant
Reg. No. 31,054
Hoffmann-La Roche Inc.
340 Kingsland Street
Nutley, New Jersey 07110
Phone: (973) 235-2441

PSR-T/bah
Enclosures
154680

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

04004951.2

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office
Le Président de l'Office européen des brevets
p.o.

R C van Dijk

Anmeldung Nr:
Application no.: 04004951.2
Demande no:

Anmelde tag:
Date of filing: 03.03.04
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

F.HOFFMANN-LA ROCHE AG

4070 Basel
SUISSE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Method for the recombinant expression of an N-terminal fragment of hepatocyte growth factor

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

C07K14/00

Am Anmelde tag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PL PT RO SE SI SK TR LI

03. März 2004
~~2008~~ EP-SR

**Method for the recombinant expression of an N-terminal fragment
of hepatocyte growth factor**

The invention relates to a method for the recombinant expression of a N-terminal four kringle-containing fragment of hepatocyte growth factor.

Background of the Invention

5 Hepatocyte growth factor (HGF/SF) is a polypeptide identified and purified by Nakamura, T., et al., Biochem. Biophys. Res. Commun. 22 (1984) 1450-1459. It was further found that hepatocyte growth factor is identical to scatter factor (SF), Weidner, K.M., et al., Proc. Natl. Acad. Sci. USA 88 (1991) 7001-7005. HGF is a glycoprotein involved in the development of a number of cellular phenotypes
10 including proliferation, mitogenesis, formation of branching tubules and, in the case of tumor cells, invasion and metastasis. For a status review, see Stuart, K.A., et al., Int. J. Exp. Pathol. 81 (2000) 17-30.

Both rat HGF and human HGF have been sequenced and cloned (Miyazawa, K. et al., Biochem. Biophys. Res. Comm. 163 (1989) 967-973; Nakamura, T., et al., Nature 342 (1989) 440-443; Seki, T., et al., Biochem. and Biophys. Res. Comm. 172 (1990) 321-327; Tashiro, K., et al., Proc. Natl. Acad. Sci. USA 87 (1990) 3200-3204; Okajima, A., et al., Eur. J. Biochem. 193 (1990) 375-381).

HGF is a protein with high similarity to human plasminogen (38% amino acid sequence identity). HGF and plasminogen are both synthesized as a single chain
20 polypeptide which is proteolytically processed to a disulfide-linked heterodimer. HGF contains an N-terminal domain four consecutive kringle domains and a carboxyterminal protease-like domain. Different truncated HGF variants have been described. NK1 is the shortest HGF variant described. NK1 contains amino acids 32-210 and is truncated after the first kringle domain (Lokker, N.A., and Godowski, P.J., J. Biol. Chem. 268 (1993) 17145-17150). NK2 consists of the N-terminal amino acid terminus and kringle 1 and kringle 2 and is the naturally occurring product of an alternatively spliced HGF mRNA (Chan, A.M., et al., Science 254 (1991) 1382-1385). Further HGF variants containing parts of the heavy chain of HGF (amino acids 1-494, containing the alpha-subunit of HGF from amino acids 1-463) are
25 described by Lokker, N.A., EMBO J. 11 (1992) 2503-2510.
30

It was further found that an HGF/SF fragment, termed NK4, consisting of the N-terminal hairpin domain and the four kringle domains of HGF/SF has pharmacological properties that are completely different from those of HGF/SF, and is an antagonist to the influence of HGF/SF on the motility and the invasion of
5 colon cancer cells, and is, in addition, an angiogenesis inhibitor that suppresses tumor growth and metastasis (Parr, C., et al., Int. J. Cancer 85 (2000) 563-570; Kuba, K., et al., Cancer Res. 60 (2000) 6737-6743; Date, K., et al., FEBS Lett. 420 (1997) 1-6; Date, K., et al., Oncogene 17 (1989) 3045-3054).

NK4 is prepared according to the state of the art (Date, K., et al., FEBS Lett. 420
10 (1997) 1-6) by recombinant expression of HGF cDNA in CHO cells and subsequent digestion with pancreatic elastase. Two other isoforms of HGF (NK1 and NK2) encoding the N-terminal domain and kringle 1, and the N-terminal domain and kringles 1 and 2, respectively, were produced in E.coli (Stahl, S.J., Biochem. J. 326 (1997) 763-772). However, this method results only in about an amount of HGF-
15 derived proteins which is about 10-20% of the total protein.

Summary of the Invention

The invention provides a method for the production of the alpha-chain of HGF or a fragment thereof (NK polypeptide) by expression of a nucleic acid encoding said
20 NK polypeptide in a microbial host cell, isolation of inclusion bodies containing said NK polypeptide in denatured form, solubilization of the inclusion bodies and naturation of the denatured NK polypeptide, characterized in that in said nucleic acid at least one of the codons of amino acids selected from the group consisting of codons at positions 33, 35 and 36 is CGT.

Amino acid (aa) and codon numbering is according to the sequence shown in
25 Swiss-Prot P14210, wherein aa (amino acid) 1-31 denotes signal sequence, aa 32-494 denotes alpha chain, aa 128-206 kringle 1, aa 211-288 kringle 2, aa 305-383 krinlge 3 and aa391-469 kringle 4.

Surprisingly it was found, that modification of at least one of the codons of the
30 DNA sequence of positions 33, 35 and 36 (codon 33 and 36 encode arginine, numbering according to M73239) results in an increase of the expression yield of about 100% or more. It is further preferred that the codon for amino acid 32 is

changed from encoding Gln to encoding Ser in order to improve splitting off N-terminal methionine.

NK polypeptides according to the invention consist of aa 32-494 or a N-terminal fragment thereof (always beginning with aa32), preferably fragment aa 32-478, the 5 smallest fragment being aa 32-207. All NK polypeptides according to the invention show activity in a scatter assay according to Example 4.

The invention further provides a nucleic acid encoding an NK polypeptide consisting of aa 32-494 or an N-terminal fragment thereof, beginning with aa 32, 10 preferably fragments aa 32-x, wherein x is a number between 207 and 478, and x is preferably 207 or 478, characterized in that at least one of the codons of amino acids selected from the group consisting of codons at positions 33, 35 and 36 is CGT. Preferably, all codons at positions 33, 35 and 36 are CGT.

In a preferred embodiment of the invention aa 32 is changed from glutamine to serine to improve homogeneity of the protein (cleavage of N-terminal 15 methionine).

It is further preferred to introduce two translational stop codons (TAA, TAG and/or TGA) at the end of the nucleic acid encoding the NK polypeptide in order to stop the translation at a position equivalent to the end of desired polypeptide.

20 Detailed Description of the Invention

Human HGF is a disulfide-linked heterodimer, which can be cleaved in an α -subunit of 463 amino acids and a β -subunit of 234 amino acids, by cleavage 25 between amino acids R494 and V495. The N-terminus of the α -chain is preceded by 31 amino acids started with a methionine group. This segment includes a signal sequence of 31 amino acids. The α -chain starts at amino acid 32 and contains four kringle domains. The so-called "hairpin domain" consists of amino acids 70-96. The kringle 1 domain consists of amino acids 128-206. The kringle 2 domain consists of amino acids 211-288, the kringle 3 domain consists of amino acids 305-383, and the 30 kringle 4 domain consists of amino acids 391-469 of the α -chain, approximately. There exist variations of these sequences, essentially not affecting the biological

properties of NK polypeptides (especially not affecting its activities antagonistic to HGF and its antiangiogenic activities), which variations are described, for example, in WO 93/23541. Also the length of NK polypeptides can vary within a few amino acids as long as its biological properties are not affected.

5 NK1 consists of aa 32 to 206-210 of the HGF/SF α -chain, NK2 consists of aa32 to 288-305 and NK4 is composed of aa 32 to 447 (resp.469-494). Further NK polypeptides encoded by the nucleic acids according to the invention and which can be produced recombinantly according to the invention are described in WO 93/23541 and are e.g. 32-207, 32-303, or 32-384. NK polypeptides have the in vivo biological activity of causing inhibition of tumor growth, angiogenesis and/or metastasis.

10 The NK polypeptides can be produced by recombinant means in prokaryotes. For expression in prokaryotic host cells, the nucleic acid is integrated into a suitable expression vector, according to methods familiar to a person skilled in the art. Such an expression vector preferably contains a regulatable/inducible promoter. The recombinant vector is then introduced for the expression into a suitable host cell such as, e.g., E. coli and the transformed cell is cultured under conditions which allow expression of the heterologous gene. After fermentation inclusion bodies containing denatured NK polypeptide are isolated.

15 20 Escherichia, Salmonella, Streptomyces or Bacillus are for example suitable as prokaryotic host organisms. For the production of NK polypeptides prokaryotes are transformed in the usual manner with the vector which contains the DNA according to the invention and encoding a NK polypeptide and subsequently fermented in the usual manner. However expression yield in E. coli using the original DNA sequence of a NK polypeptide (GenBank M73239) is very low.

25 Inclusion bodies are found in the cytoplasm as the gene to be expressed does not contain a signal sequence. These inclusion bodies are separated from other cell components, for example by centrifugation after cell lysis.

30 The inclusion bodies were solubilized by adding a denaturing agent like 6 M guanidinium hydrochloride or 8 M urea at pH 7-9 in phosphate buffer (preferably in a concentration of 0.1 – 1.0 M, e.g. 0.4 M) preferably in the presence of DTT

(Dithio-1,4-threitol). The solubilisate is diluted in phosphate buffer pH 7-9 in the presence of GSH/GSSG (preferably 2-20 mM, glutathion) and a denaturing agent in a non denaturing concentration (e.g. 2M guanidinium hydrochloride or 4 M urea) or preferably instead of guanidinium hydrochloride or urea, arginine in a concentration of about 0.3 to 1.0 M, preferably in a concentration of about 0.7M. Renaturation is performed preferably at a temperature of about 4 C and for about 5 48 to 160 hours.

According to the state of the art the use of Tris buffer during solubilization and 10 renaturation leads to a considerable amount (of about 50%) of side-products which are identified by the inventors as consisting mainly of GSH-modified NK polypeptides. To the contrary, it was surprisingly found that the use of potassium phosphate buffer in a pH range between 7 and 9, preferably between pH 8 and 9, leads to a considerable improvement in yield and purity of NK polypeptides.

After renaturation is terminated the solution was dialyzed preferably against 15 phosphate buffer pH 7-9 (preferably in a concentration of 0.1 – 1.0 M, e.g. 0.3 M) for at least 24 hours, preferably for 24 – 120 hours.

NK polypeptides can be purified after recombinant production and renaturation of 20 the water insoluble denatured polypeptide (inclusion bodies) according to the method of the invention preferably by chromatographic methods, e.g. by affinity chromatography, hydrophobic interaction chromatography, immunoprecipitation, gel filtration, ion exchange chromatography, chromatofocussing, isoelectric focussing, selective precipitation, electrophoresis, or the like. It is preferred to purify NK polypeptides by hydrophobic interaction chromatography, preferably at 25 pH 7-9, in the presence of phosphate buffer and/or by the use of butyl- or phenyl sepharose.

The following examples, references, figure and sequence listing are provided to aid the understanding of the present invention, the true scope of which is set forth in the appended claims. It is understood that modifications can be made in the procedures set forth without departing from the spirit of the invention.

Description of the Figure:

Figure 1: SDS-Gel (10% NuPAGE-SDS, 5µl per lane, numbering from left to right) of NK4 protein in biomass and isolated inclusion bodies (IB).

5 lane 1: standard
 lane 2: biomass
 lane 3: supernant after centrifugation
 lane 4: supernant after further centrifugation
 lane 5: IB preparation
10 lane 6: IB preparation after wash

Description of the Sequences:

SEQ ID NO:1 Amino acid sequence and DNA sequence encoding the α-chain of HGF, original sequence according to GenBank M73239 (without signal sequence)

SEQ ID NO:2 Protein sequence of the α-chain of HGF

SEQ ID NO:3 Amino acid sequence and DNA sequence encoding NK4 according to the invention (amino acid sequence including N-terminal methionine, DNA sequence including two stop codons)

20 **SEQ ID NO:4** Protein sequence of NK4

Example 1

Recombinant expression of NK polypeptides

The NK4 polypeptide consisting of amino acid position 32 to 478 of HGF was used for cloning and recombinant expression in Escherichia coli. The original DNA sequence used as source of DNA was described (database identifier "gb:M73239").
25 PCR was performed in order to amplify and concurrently modify the DNA coding for NK4 (SEQ ID NO: 1). All methods were performed under standard conditions.

In comparison to the original DNA sequence of NK4, the following modifications were introduced:

- Elimination of the eukaryotic signal peptide sequence and fusion of the ATG start codon next to amino acid position 32 of NK4
- 5 - exchange of amino acid position 32 (position 2 in SEQ ID NO:2) from Gln to Ser in order to improve homogeneity of the protein product (Met-free)
- modification of the DNA sequence of the codons of amino acids at position 33 (AGG to CGT), 35 (AGA to CGT), and 36 (AGA to CGT) in order to improve gene expression in E.coli.
- 10 - modification of the DNA sequence of codons at position 477 (ATA to ATC) and 478 (GTC to GTT) in order to facilitate insertion of PCR product into the vector
- introduction of two translational stop codons at positions 479 (TAA) and 480 (TAG), in order to stop the translation at a position equivalent to the end of
- 15 NK4 protein domain.

The PCR-amplified DNA fragment was treated with restriction endonucleases NdeI and BanII and was ligated to the modified pQE vector (Qiagen) (elimination of His-tag as well as DHFR coding region), which was appropriately treated with NdeI and BanII. The elements of expression plasmid pQE-NK4-Ser (plasmid size 4447 bp) are T5 promotor/lac operator element, NK4 coding region, lambda to transcriptional termination region, *rnb* T1 transcriptional termination region, ColE1 origin of replication and β-lactamase coding sequence.

The ligation reaction was used to transform E.coli competent cells, e.g. E. coli strain C600 harbouring expression helper plasmid pUBS520 (EP 0 373 365). E.coli colonies were isolated and were characterized with respect to restriction and sequence analysis of their plamsids. The selection of clones was done by analysis of the NK4 protein content after cultivation of recombinant cells in LB medium in the presence of appropriate antibiotics and after induction of the gene expression by addition of IPTG (1mM). The protein pattern of cell lysates were compared by PAGE. The recombinant E.coli clone showing the highest proportion of NK4 protein was selected for the production process. Fermentation was performed under standard conditions and inclusion bodies were isolated. Yield: 130 g/l net weight of cells with 30%-40% NK4 of total protein.

NK1 and NK2 can be produced recombinantly in an analogous manner.

Example 2

Solubilization and renaturation

Inclusion bodies were dissolved over night in a buffer containing 6 M guanidinium hydrochloride, 0.1 M potassium phosphate pH 8.5 (by titration with 10 M KOH), 1 mM EDTA, 0.01 mM DTT. The concentration of the dissolved protein was determined by Biuret assay and finally adjusted to a concentration of 25 mg total protein/ml at room temperature.

This NK-solubilisate was diluted to a concentration of 0.4 mg/ml in a buffer containing 0.7 M arginine, 0.1 M potassium phosphate pH 8.5 (by titration with conc. HCl), 10 mM GSH, 5 mM GSSG and 1 mM EDTA. This renaturation assay was incubated between 2 and 8 days at 4°C. After obtaining the maximal renaturation efficacy, the renaturation assay of 15 l volume was concentrated to 3 l using a tangential flow filtration unit (MW cut off: 10 kDa, Sartorius). It was subsequently dialyzed against 3 times 50 l buffer containing 0.3 M potassium phosphate at pH 8.0 for at least 3 x 24 hours, optimally for 5 days in total.

Example 3

Purification

Purification was performed by Heparin-Sepharose chromatography.

Buffer conditions:

Buffer A: 50 mM Tris pH 8.0

Buffer B: 50 mM Tris pH 8.0, 2 M NaCl

Gradient: 5-25% buffer B, 2 column volumes
 25-55% buffer B, 16 column volumes
 55-100% buffer B, 0.7 column volumes
 100% buffer B, 2 column volumes

To the eluted material 1 M ammonium sulfate in 0.1 M potassium phosphate pH 8.0 was added and incubated at 4°C overnight. The sample was centrifuged and the

supernatant was loaded on a Phenyl Sepharose column (150 ml). The column was washed with 1 column volume 1 M ammonium sulfate, 50 mM potassium phosphate pH 8.0.

Elution conditions:

5 Buffer A: 1 M ammonium sulfate, 50 mM potassium phosphate pH 8.0
Buffer B: 50 mM potassium phosphate pH 8.0, 40 % ethylene glycol
0-100 % buffer B, 20 column volumes

Example 4

10 Determination of activity

a) Scatter assay

MDCK cells were subconfluently grown in tissue culture plates. Cells were treated with HGF (10 ng/ml) or with combinations of HGF and NK4. In these experiments the HGF-induced cell scattering was inhibited by the addition of a 10 to 1000-fold molar excess of NK4 at least for 90% and more, showing the functional activity.
15

b) Proliferation assay

Inhibition of the mitogenic activity of HGF by NK4 was determined by measuring DNA synthesis of adult rat hepatocytes in primary culture as described in Nakamura et al. (1989). In these experiments the HGF-induced cell proliferation was inhibited by the addition of a 10 to 1000-fold molar excess of NK4 at least for 90% and more, showing the functional activity.
20

c) Invasion assay

In this assay the invasive potential of tumor cells is analyzed. The assay was done essentially as described in Albini, A., et al., Cancer Res. 47 (1987) 3239-3245, using HT115 cells. Again, HGF-induced (10 ng/ml) cell invasion could be inhibited by a 10 to 1000-fold molar excess of NK4 at least for 90% and more, showing the functional activity.
25

Example 5

Activity in vivo

Model: Lewis Lung Carcinoma nude mouse tumor model
1 x 10⁶ Lewis Lung Carcinoma cells were s.c. implanted into male
nude mice (BALB/c nu/nu).

5 Treatment: After 4 days, one application daily of pegylated NK4 over a period of
2-4 weeks

Dose: 1000 µg/mouse/day
300 µg/mouse/day
10 100 µg/mouse/day
placebo

Result: Treatment with NK4 shows a dose dependent suppression of
primary tumor growth and metastasis, whereas no effect is seen in
placebo treated groups.

15

List of References

Albini, A., et al., *Cancer Res.* 47 (1987) 3239-3245
Chan, A.M., et al., *Science* 254 (1991) 1382-1385
Date, K., et al., *FEBS Lett.* 420 (1997) 1-6
5 Date, K., et al., *Oncogene* 17 (1989) 3045-3054
EP 0 373 365
Kuba, K., et al., *Cancer Res.* 60 (2000) 6737-6743
Lokker, N.A., and Godowski, P.J., *J. Biol. Chem.* 268 (1993) 17145-17150
Lokker, N.A., *EMBO J.* 11 (1992) 2503-2510
10 Miyazawa, K. et al., *Biochem. Biophys. Res. Comm.* 163 (1989) 967-973
Nakamura, T., et al., *Biochem. Biophys. Res. Commun.* 22 (1984) 1450-1459
Nakamura, T., et al., *Nature* 342 (1989) 440-443
Okajima, A., et al., *Eur. J. Biochem.* 193 (1990) 375-381
Parr, C., et al., *Int. J. Cancer* 85 (2000) 563-570
15 Seki, T., et al., *Biochem. and Biophys. Res. Comm.* 172 (1990) 321-327
Stahl, S.J., *Biochem. J.* 326 (1997) 763-772
Stuart, K.A., et al., *Int. J. Exp. Pathol.* 81 (2000) 17-30
Tashiro, K., et al., *Proc. Natl. Acad. Sci. USA* 87 (1990) 3200-3204
Weidner, K.M., et al., *Proc. Natl. Acad. Sci. USA* 88 (1991) 7001-7005
20 WO 93/23541

03. März 2004

Patent Claims

1. A nucleic acid encoding the α -chain of hepatocyte growth factor or an N-terminal fragment thereof, characterized in that in said nucleic acid at least one of the codons of amino acids selected from the group consisting of codons at positions 33, 35 and 36 is CGT.
5
2. A nucleic acid according to claim 1, characterized in that the codons of amino acids at positions 33, 35 and 36 are CGT.
3. Method for the production of α -chain of hepatocyte growth factor or an N-terminal fragment thereof (NK polypeptide) by expression of a nucleic acid encoding said NK polypeptide in a microbial host cell, isolating of inclusion bodies containing said NK polypeptide in denatured form, solubilization of the inclusion bodies and naturation of the denatured NK polypeptide, characterized in that in said nucleic acid at least one of the codons of amino acids selected from the group consisting of codons at positions 33, 35 and 36 is CGT.
10
4. Method according to claim 3, characterized in that the codons of amino acids at positions 33, 35 and 36 are CGT.
15

Abstract

EPO - Munich
51
03. März 2004

5

A method for the production of α -chain of hepatocyte growth factor or an N-terminal fragment thereof (NK polypeptide) by expression of a nucleic acid encoding said NK polypeptide in a microbial host cell, isolating of inclusion bodies containing said NK polypeptide in denatured form, solubilization of the inclusion bodies and naturation of the denatured NK polypeptide, which is characterized in that in said nucleic acid at least one of the codons of amino acids selected from the group consisting of codons at positions 33, 35 and 36 is CGT, results in an improved expression yield.

SEQUENCE LISTING

03. März 2004

<110> F. Hoffmann-La Roche AG
<120> Method for the recombinant expression of an N-terminal fragment
of hepatocyte growth factor
<130> 22388
<160> 4
<170> PatentIn version 3.2
<210> 1
<211> 1389
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)...(1389)
<223> DNA sequence encoding the alpha-chain of hepatocyte growth factor
(HGF)

<400> 1
caa agg aaa aga aga aat aca att cat gaa ttc aaa aaa tca gca aag 48
Gln Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys
1 5 10 15
act acc cta atc aaa ata gat cca gca ctg aag ata aaa acc aaa aaa 96
Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys
20 25 30
gtg aat act gca gac caa tgt gct aat aga tgt act agg aat aaa gga 144
Val Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly
35 40 45
ctt cca ttc act tgc aag gct ttt gtt ttt gat aaa gca aga aaa caa 192
Leu Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln
50 55 60
tgc ctc tgg ttc ccc ttc aat agc atg tca agt gga gtg aaa aaa gaa 240
Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu
65 70 75 80
ttt ggc cat gaa ttt gac ctc tat gaa aac aaa gac tac att aga aac 288
Phe Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn
85 90 95
tgc atc att ggt aaa gga cgc agc tac aag gga aca gta tct atc act 336
Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr
100 105 110
aag agt ggc atc aaa tgt cag ccc tgg agt tcc atg ata cca cac gaa 384
Lys Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu
115 120 125

cac agc ttt ttg cct tcg agc tat cg ^g ggt aaa gac cta cag gaa aac His Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn 130 135 140	432
tac tgt cga aat cct cga ggg gaa gaa ggg gga ccc tgg tgt ttc aca Tyr Cys Arg Asn Pro Arg Gly Glu Gly Pro Trp Cys Phe Thr 145 150 155 160	480
agc aat cca gag gta cgc tac gaa gtc tgt gac att cct cag tgt tca Ser Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser 165 170 175	528
gaa gtt gaa tgc atg acc tgc aat ggg gag agt tat cga ggt ctc atg Glu Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met 180 185 190	576
gat cat aca gaa tca ggc aag att tgt cag cgc tgg gat cat cag aca Asp His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln Thr 195 200 205	624
cca cac cgg cac aaa ttc ttg cct gaa aga tat ccc gac aag ggc ttt Pro His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe 210 215 220	672
gat gat aat tat tgc cgc aat ccc gat ggc cag ccg agg cca tgg tgc Asp Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys 225 230 235 240	720
tat act ctt gac cct cac acc cgc tgg gag tac tgt gca att aaa aca Tyr Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala Ile Lys Thr 245 250 255	768
tgc gct gac aat act atg aat gac act gat gtt cct ttg gaa aca act Cys Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr Thr 260 265 270	816
gaa tgc atc caa ggt caa gga gaa ggc tac agg ggc act gtc aat acc Glu Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Val Asn Thr 275 280 285	864
att tgg aat gga att cca tgt cag cgt tgg gat tct cag tat cct cac Ile Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro His 290 295 300	912
gag cat gac atg act cct gaa aat ttc aag tgc aag gac cta cga gaa Glu His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu 305 310 315 320	960
aat tac tgc cga aat cca gat ggg tct gaa tca ccc tgg tgt ttt acc Asn Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr 325 330 335	1008
act gat cca aac atc cga gtt ggc tac tgc tcc caa att cca aac tgt Thr Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys 340 345 350	1056

gat atg tca cat gga caa gat tgt tat cgt ggg aat ggc aaa aat tat Asp Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr 355 360 365	1104	
atg ggc aac tta tcc caa aca aga tct gga cta aca tgt tca atg tgg Met Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met Trp 370 375 380	1152	
gac aag aac atg gaa gac tta cat cgt cat atc ttc tgg gaa cca gat Asp Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro Asp 385 390 395 400	1200	
gca agt aag ctg aat gag aat tac tgc cga aat cca gat gat gat gct Ala Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Asp Ala 405 410 415	1248	
cat gga ccc tgg tgc tac acg gga aat cca ctc att cct tgg gat tat His Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr 420 425 430	1296	
tgc cct att tct cgt tgt gaa ggt gat acc aca cct aca ata gtc aat Cys Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val Asn 435 440 445	1344	
tta gac cat ccc gta ata tct tgt gcc aaa acg aaa caa ttg cga Leu Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys Gln Leu Arg 450 455 460	1389	
<210> 2		
<211> 463		
<212> PRT		
<213> Homo sapiens		
<400> 2		
Gln Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys 1 5 10 15		
Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys 20 25 30		
Val Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly 35 40 45		
Leu Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln 50 55 60		
Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu 65 70 75 80		

Phe Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn
85 90 95

Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr
100 105 110

Lys Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu
115 120 125

His Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn
130 135 140

Tyr Cys Arg Asn Pro Arg Gly Glu Glu Gly Pro Trp Cys Phe Thr
145 150 155 160

Ser Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser
165 170 175

Glu Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met
180 185 190

Asp His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln Thr
195 200 205

Pro His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe
210 215 220

Asp Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys
225 230 235 240

Tyr Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala Ile Lys Thr
245 250 255

Cys Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr Thr
260 265 270

Glu Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Val Asn Thr
275 280 285

Ile Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro His
290 295 300

Glu His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu
305 310 315 320

Asn Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr
325 330 335

Thr Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys
340 345 350

Asp Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr
355 360 365

Met Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met Trp
370 375 380

Asp Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro Asp
385 390 395 400

Ala Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Asp Ala
405 410 415

His Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr
420 425 430

Cys Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val Asn
435 440 445

Leu Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys Gln Leu Arg
450 455 460

<210> 3
<211> 1350
<212> DNA
<213> Artificial

<220>
<223> dna coding for NK4

<220>
<221> CDS
<222> (1)..(1350)

<400> 3
atg tct cgt aaa cgt cgt aat act att cat gaa ttc aaa aaa tca gca
Met Ser Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala
1 5 10 15

aag act acc cta atc aaa ata gat cca gca ctg aag ata aaa acc aaa Lys Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys 20 25 30	96
aaa gtg aat act gca gac caa tgt gct aat aga tgt act agg aat aaa Lys Val Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys 35 40 45	144
gga ctt cca ttc act tgc aag gct ttt gtt ttt gat aaa gca aga aaa Gly Leu Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys 50 55 60	192
caa tgc ctc tgg ttc ccc ttc aat agc atg tca agt gga gtg aaa aaa Gln Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys 65 70 75 80	240
gaa ttt ggc cat gaa ttt gac ctc tat gaa aac aaa gac tac att aga Glu Phe Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg 85 90 95	288
aac tgc atc att ggt aaa gga cgc agc tac aag gga aca gta tct atc Asn Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile 100 105 110	336
act aag agt ggc atc aaa tgt cag ccc tgg agt tcc atg ata cca cac Thr Lys Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His 115 120 125	384
gaa cac agc ttt ttg cct tcg agc tat cgg ggt aaa gac cta cag gaa Glu His Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu 130 135 140	432
aac tac tgt cga aat cct cga ggg gaa gaa ggg gga ccc tgg tgt ttc Asn Tyr Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro Trp Cys Phe 145 150 155 160	480
aca agc aat cca gag gta cgc tac gaa gtc tgt gac att cct cag tgt Thr Ser Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys 165 170 175	528
tca gaa gtt gaa tgc atg acc tgc aat ggg gag agt tat cga ggt ctc Ser Glu Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu 180 185 190	576
atg gat cat aca gaa tca ggc aag att tgt cag cgc tgg gat cat cag Met Asp His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln 195 200 205	624
aca cca cac cgg cac aaa ttc ttg cct gaa aga tat ccc gac aag ggc Thr Pro His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly 210 215 220	672
ttt gat gat aat tat tgc cgc aat ccc gat ggc cag ccg agg cca tgg Phe Asp Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp 225 230 235 240	720

tgc tat act ctt gac cct cac acc cgc tgg gag tac tgt gca att aaa Cys Tyr Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala Ile Lys 245 250 255	768
aca tgc gct gac aat act atg aat gac act gat gtt cct ttg gaa aca Thr Cys Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr 260 265 270	816
act gaa tgc atc caa ggt caa gga gaa ggc tac agg ggc act gtc aat Thr Glu Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Val Asn 275 280 285	864
acc att tgg aat gga att cca tgt cag cgt tgg gat tct cag tat cct Thr Ile Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro 290 295 300	912
cac gag cat gac atg act cct gaa aat ttc aag tgc aag gac cta cga His Glu His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg 305 310 315 320	960
gaa aat tac tgc cga aat cca gat ggg tct gaa tca ccc tgg tgt ttt Glu Asn Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe 325 330 335	1008
acc act gat cca aac atc cga gtt ggc tac tgc tcc caa att cca aac Thr Thr Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn 340 345 350	1056
tgt gat atg tca .cat gga caa gat tgt tat cgt ggg aat ggc aaa aat Cys Asp Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn 355 360 365	1104
tat atg ggc aac tta tcc caa aca aga tct gga cta aca tgt tca atg Tyr Met Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met 370 375 380	1152
tgg gac aag aac atg gaa gac tta cat cgt cat atc ttc tgg gaa cca Trp Asp Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro 385 390 395 400	1200
gat gca agt aag ctg aat gag aat tac tgc cga aat cca gat gat gat Asp Ala Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Asp 405 410 415	1248
gct cat gga ccc tgg tgc tac acg gga aat cca ctc att cct tgg gat Ala His Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp 420 425 430	1296
tat tgc cct att tct cgt tgt gaa ggt gat acc aca cct aca atc gtt Tyr Cys Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val 435 440 445	1344
taa tag	1350

<210> 4
<211> 448
<212> PRT

<213> Artificial

<220>

<223> protein sequence of NK4

<400> 4

Met Ser Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala
1 5 10 15

Lys Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys
20 25 30

Lys Val Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys
35 40 45

Gly Leu Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys
50 55 60

Gln Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys
65 70 75 80

Glu Phe Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg
85 90 95

Asn Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile
100 105 110

Thr Lys Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His
115 120 125

Glu His Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu
130 135 140

Asn Tyr Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro Trp Cys Phe
145 150 155 160

Thr Ser Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys
165 170 175

Ser Glu Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu
180 185 190

Met Asp His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln
195 200 205

Thr Pro His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly
210 215 220

Phe Asp Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp
225 230 235 240

Cys Tyr Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala Ile Lys
245 250 255

Thr Cys Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr
260 265 270

Thr Glu Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Val Asn
275 280 285

Thr Ile Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro
290 295 300

His Glu His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg
305 310 315 320

Glu Asn Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe
325 330 335

Thr Thr Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn
340 345 350

Cys Asp Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn
355 360 365

Tyr Met Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met
370 375 380

Trp Asp Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro
385 390 395 400

Asp Ala Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Asp
405 410 415

Ala His Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp
420 425 430

- 10 -

Tyr Cys Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val
435 440 445

EPO - Munich
51
03. März 2004

Fig. 1

