SAMPLE DSA PAPER

MCQ: 50 Marks (25 MCQs) Structured Essay: 50 Marks

<Highlighted sections will not be covered in GROUP B examination> Time: 03Hrs

Date:

Answer All Questions

	: Multiple Choice Questions. Select the ed at the end of the MCQ question set.	e appropriate answer. Answer sheet is (50 mark)					
1.	Two main measures for the efficiency of	f an algorithm are					
	a. Processor and memoryc. Time and spacee. None of the above	b. Complexity and capacityd. Data and space					
2.	The searching technique that takes O (1	1) time to find a data is					
	a. Insertion to unordered arrayc. Deletion in unordered arraye. None of the above	b. Insertion to ordered arrayd. Deletion in ordered array					
3. You have to sort a list L consisting of a sorted list followed by a few "random" elements. Which of the following sorting methods would be especially suitable such a task?							
	a. Bubble Sortc. Insertion Sorte. Selection Sort	b. Quick Sort d. Merge Sort					
4.	Let the following circular queue can accordillowing data	commodate maximum six elements with the					
	front = 2 queue =;	rear = 4 L, M, N,,					
	What will happen after ADD O operation takes place?						
	 a. front = 2 rear = 5 c. front = 3 rear = 5 e. front = 3 rear = 6 	 b. front = 2 rear = 4 d. front = 3 rear = 4 					
5.	The quick sort algorithm exploit	design technique					

6.	Which	data structure is	used for impler	menting recur	sion?		
	c.	Stack list Linear Queue			Queue Linked List		
7.	Linked	lists are best sui	ted				
	a.	for relatively pe collections of d		b.	for the size of the data in the structuchanging		
		for fixed size m Cannot be apply above situation	y to any of the	d.	For all the above	situations	
8.	Each no	ode in a linked li	st has two pairs	s of	and		
	c.	Link field and information field Data field and information field None of the above			Link field and Next field Address field and link field		
9. Which of the following name does not relate to stacks?							
	c.	LIFO FIFO None of the abo	ove		FILO PUSH-DOWN		
10. In a queue, the initial values of front pointer f rare pointer r should be and respectively.							
	c.	0 and 1 0 and -1 None of the abo	ove	b. d.	1 and 0 -1 and 0		
)1	a	b	С	d	e	
			-				

a. Divide & Conquer

Greedy Snow Ball b. Dynamic Programmingd. Backtracking

02	a	b	С	d	e
03	a	b	С	d	e
04	a	b	С	d	e
05	a	b	С	d	e
06	a	b	С	d	e
07	a	b	С	d	e
08	a	b	С	d	e
09	a	b	С	d	e
10	a	b	С	d	e

Part B: Structured Essay Questions.

(50Mark)

01.

- a. Why Stacks are called "LIFO" structures and Queues are called "FIFO" structures.
 Explain the complexities in terms of Big O notations. If required, make a graphical representation.
- b. Briefly explain the concept of "Linked List" data structure. (4 mark)
- c. Suppose an initially empty queue Q has performed a total of 32 enqueue operations,
 10 front operations and 15 dequeue operations. What would be the current size of the queue? (No of elements in the current queue)
- d. Derive the push/pop function and enqueue/dequeue operations (8 mark)

02.

- a. Using an appropriate array example, explain how main searching algorithms can be performed.
 (8 mark)
- b. Briefly explain where you may apply above searching algorithms and describe their complexities in terms of big O notation. (6 mark)
- c. Consider the following code block identify the problems with the code and resolve the problems. (6 mark)

```
int binarySearch(int array[], int size, int value)
{
 int first = 0, last,middle, position;
 boolean found = false;
 while (found && first <= last)
  {
   middle = (first + last) / 2;
   if (array[middle] = value)
    {
     found = true;
     position = middle;
   else if (array[middle] > value)
     last = middle + 1;
   else
     first = middle - 1;
  }
 return position;
}
```

03.

a. Consider the following list of words:

apple, tree, car, dog, yellow, frog, gun, harp

- I. Alphabetize the above list using an insertion sort. Show your work. (6 mark)
- II. Alphabetize the above list using a bubble sort. Show your work. How many complete passes are necessary for the bubble sort to ensure the list is sorted?(6 mark)
- III. Alphabetize the above list using a merge sort. Show your work. (6 mark)
- a. The insertion sort runs in linear time on an array already sorted. How does it perform it on an array that is sorted in reverse order?

Hint: Consider only on performance no coding required. (2 mark)

a.	Draw a tree of your own and identify the followings.					
	I.	Root				
	II.	Siblings				
	III.	Edge				
	IV.	Leaf Node				
b.	Insert	t the values 3, 2, 1, 4, 5, 6, 7, 16, 15 and 14 in that order into	a binary			
	searcl	h tree. Clearly show the intermediate steps.	(6 mark)			
c.	For th	e above developed graph derive the below traversing output.	(6 mark)			
	In or	der, Pre order and Post order output.				
d.	Descr	ibe a situation where you can apply binary tree concept.	(4 mark)			
	End of Paper					