Трансформация урацила в поле тепловых нейтронов

частный случай исследования нуклеозидов

На текущий момент на рынке компанией Alfa Aesar представлены 86 соединений нуклеозидов. Урацил входит в состав РНК - поэтому интересен для биологов

Вид связи	D ₀		
	ккал	эВ	
C ₂ +	126±15		5,5
C ₂	144±3		6,3
C ₂ -	187±10		8,1
CH+	93,8±0,5		4,1
CH-	110±7		4,8
CO+	192,9±0,1		8,4
CN-	239±1,5		10,4
N_2	201,4±0,2		8,8
NH-	85±5		3,7

Граничная энергия нейтронов – не более 3,7 эВ чтобы не разрывать связи нейтронами

На тепловых нейтронах возможны различные ядерные реакции элементов нуклеозидов - C,N,O

$$\begin{array}{c|c}
O \\
C \\
H - C \\
N - H \\
C = O
\end{array}$$

$$\begin{array}{c|c} & & & \\ & & & \\$$

. . .

. . .

$$\begin{array}{c|c}
O \\
H \\
C \\
N \\
H
\end{array}$$

$$\begin{array}{c|c}
H \\
C \\
O \\
N \\
H
\end{array}$$

...

Практическое применение

Возможное объяснение зарождения жизни

Если обратить процесс распада урацила при N->O, то получится его синтез при O->N

Возможный инструмент редактирования нуклеиновых кислот

Встраиваемся в цепочку, с нестабильным изотопом, изотоп распадается, меняются химические свойства - цепочка рвется

Другой вариант - меняем энергию нейтронов, трансформируемся, а в нужный момент - "отрезаем" кислородом (N->O)

Объем исследований

Этап I - для чистого урацила и урацилов

- 1) Измерить сечения урацилов
- 2) Подобрать качественные химические реакции на каждую трансформацию
- 3) Исследовать вероятности протекания реакций и их кинетику

Этап II - для урацила как элемента РНК

- 1) Определить перспективные структуры для редактирования РНК методом:
 - 1) распада изотопа
 - 2) резонансного облучения
- 2) Проверить гипотезу синтеза урацила в потоке тепловых нейтронов
 - 1) при успехе проверить подобный процесс на других нуклеозидах
 - 2) при неуспехе экспериментально найти условия успешного протекания реакции

Материалы

Урацил

A15570 Uracil

Доступные урацилы для качественных реакций

H50287 1,3-Dimethyluracil-5-

carboxaldehyde

L19664 1,3-Dimethyluracil

H61919 4-Thiouracil

L01996 5,6-Dihydro-5-methyluracil

L02292 5,6-Dihydro-6-methyluracil

L01918 5,6-Dihydrouracil

44378 5-Acetyluracil

L04452 5-Aminouracil

A14799 5-Bromouracil

44639 5-(Chloromethyl)uracil

L08490 5-Cyanouracil

L10861 5-Ethyluracil

L01682 5-(Hydroxymethyl)uracil

B25173 5-lodo-1,3-dimethyluracil

A18994 5-Iodouracil

H55913 5-Nitro-6-methyluracil

A12448 5-Nitrouracil

L16196 5-(Trifluoromethyl)uracil

44379 5-Vinyluracil

B25448 6-Amino-1-methyluracil

L03332 6-Aminouracil

B21985 6-(Chloromethyl)uracil

L01875 6-Chlorouracil

H51694 6-(Diethoxymethyl)uracil

B24191 6-Methyluracil

44467 6-(Trifluoromethyl)uracil

H26507 Ethyl uracil-5-carboxylate

L16407 O,O'-Bis(trimethylsilyl)-5-fluorouracil

H27219 Uracil-5-boronic acid

H51098 Uracil-5-carboxaldehyde

H50469 Uracil-6-carboxaldehyde

monohydrate