5. feladatsor: Számelmélet

Pozitív osztók száma, legnagyobb közös osztó és legkisebb közös többszörös kiszámítása a kanonikus alakból

1. Írjuk fel a következő számokat kanonikus alakban, majd határozzuk meg pozitív osztóik számát:

- a) 9
- b) 7
- c) 45
- d) 360
- e) 13882
- f) 355218

2. Az alábbi példákban határozzuk meg (a, b) és [a, b] értékét a kanonikus alak segítségével:

a)
$$a = 245, b = -378$$

b)
$$a = -147, b = 514$$

c)
$$a = 713, b = 276$$

Euler-féle φ -függvény, Euler-Fermat tétel és alkalmazásai

3. Számoljuk ki $\varphi(n)$ értékét n = 1, 2, 3, 4, 10, 24, 96, 100 esetén!

4. Bizonyítsuk be, hogy

- a) $n^6 1$ osztható 7-tel, ha (n, 7) = 1;
- b) $n^{12} 1$ osztható 7-tel, ha (n, 7) = 1;
- c) $n^{6k} 1$ osztható 7-tel ha (n,7) = 1.

5. Bizonyítsuk be, hogy bármely egész x-re $x^7 \equiv x \mod 42$.

6. Határozzuk meg 3¹⁰⁰³ utolsó három számjegyét.

7. Állapítsuk meg, hogy 173¹⁶³ milyen maradékot ad 17-tel osztva.

8. Határozzuk meg (a tizes számrendszerben felírt) 143^{143} utolsó három jegyét hármas alapú számrendszerben.

9. Milyen maradékot ad 103-mal osztva a következő szám: $205^{206^{207}}$?

10. Határozzuk meg a $37^{39^{42}}$ szám utolsó két számjegyét.

11. Mi lesz $17^{3^{2013}}$ utolsó két számjegye nyolcas számrendszerben?

12. Mi a $11^{2013^{26}}$ utolsó két jegye 10-es számrendszerben?

13. Milyen maradékot ad

- a) 323^{149} -nek a 63-mal;
- b) 423^{173} -nak az 52-vel;
- c) 495^{173} -nak a 98-cal;

d) 457^{101} -nek a 90-nel való osztáskor?

14. Bizonyítsuk be, hogy $n^{13} - n$ minden n egészre osztható a 2, 3, 5, 7 és 13 számokkal.

- 15. Oldjuk meg az alábbi kongruenciákat az Euler-Fermat tétel segítségével:
- a) $21x \equiv 14 \mod 35$; b) $172x \equiv 6 \mod 62$; c) $3x \equiv 8 \mod 13$; d) $12x \equiv 9 \mod 18$ való osztáskor?
- **16.** Mutassuk meg, hogy $a^{1729} \equiv a \mod 1729$, habár az 1729 mégsem prím.

További feladatok

- 17. Legyenek p = 29 és q = 31 és legyen most n = pq = az RSA-eljárásban használt modulus (a nyilvános kulcs modolusa).
 - a) Válasszunk egy alkalmas e értéket a nyilvános kulcs kitevőjéül.
 - b) A fenti (n, e) (nyilvános) kulcsot alkalmazva titkosítsuk a 134 üzenetet az RSA-algoritmussal.
 - c) Határozzuk meg a d (titkos) kulcs (egy megfelelő) értékét.
 - d) Fejtsük meg a 219 üzenetet.
- 18. Írjunk programot, mely egy adott p prím esetén keres egy generátort modulo p, továbbá mely legenerálja az adott generátorhoz tartozó diszkrét logaritmus táblázatot!