

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

تشكيل تصوير

Image Formation

حسگر تصویر

• می توان از چندین حسگر نوری استفاده نمود

- حسگر خطی

- حسگر آرایهای

نمونهبرداری و کوانتیزاسیون

- خروجی اغلب حسگرها یک ولتاژ پیوسته است
- باید شکل موج پیوسته را به دیجیتال تبدیل کنیم
 - نمونهبرداری: گسستهسازی حوزه مکان
 - کوانتیزاسیون: گسستهسازی مقادیر دامنه

نمونهبرداری و کوانتیزاسیون

ثبت تصوير ديجيتال

Filter Power in Sensing material Housing Voltage waveform out

ثبت تصویر دیجیتال

- با دو جزء مشخص می شود: f(x,y) •
- میزان روشنایی منبع نوری که به صحنه تابیده شده است
- میزان روشنایی که توسط اشیاء موجود در صحنه منعکس میشود

$$f(x,y) = i(x,y)r(x,y)$$

$$0 \le i(x, y) < \infty$$

$$0 \le r(x, y) \le 1$$

$$0 \le f(x, y) < \infty$$

r	شىء
0.01	مخمل سیاه
0.65	فولاد
0.80	ديوار سفيد
0.90	نقره
0.93	برف

L_{min}	\leq	f	(x,	<i>y</i>)	\leq	L_{max}
-----------	--------	---	-----	------------	--------	-----------

$i(lm/m^2)$	محيط
> 90,000	روز آفتابی
< 10,000	روز ابری
≈ 0.1	شب مهتابی
≈ 1,000	دفتر اداری

$$10 \le f(x,y) \le 1000$$

Shutter سرعت

• سرعت دریچه مدت زمانی است که دریچه دوربین باز است و نور را بر روی حسگر دوربین قرار میدهد

Quicker Shutter Speed

Longer Shutter Speed

Filter — Sensing material Housing — Voltage waveform out

Shutter سرعت

Shutter سرعت

Shutter سرعت

فریم بر ثانیه (FPS)

• تعداد تصاویری که در یک ثانیه توسط دوربین ثبت میشود

طراحی دوربین

- فرض کنید یک فیلم را مقابل یک شیئ قرار دهیم
 - آیا تصویر درستی ثبت میشود؟
 - تصویر تاری ثبت خواهد شد

طراحی دوربین

- فرض کنید یک فیلم را مقابل یک شیئ قرار دهیم
- باید مانعی (دریچهای) در مقابل حسگرها قرار دهیم تا هر کدام نسبت به بخشی از فضا حساس باشند

مدل دوربین Pinhole

• ساده ترین دستگاهی است که یک تصویر از صحنه سه بعدی روی یک صفحه دو بعدی تشکیل میدهد

perspective projection:

$$x = f\frac{X}{Z} \qquad y = f\frac{Y}{Z}$$

ا: فاصله کانونیf

اثر اندازه دریچه

- دریچه بزرگ
- نور منعکس شده در بخش بیشتری از تصویر اثر می گذارد
 - تصویر تار خواهد بود
 - دریچه کوچک
- تار شدن را کاهش میدهد اما مقدار نور وارد شده به دوربین را کم میکند
 - همچنین باعث پراکندگی نور میشود

اثر اندازه دریچه

0.15 mm

0.07 mm

شكست نور

• خم شدن یا شکست موج هنگامی که وارد مادهای با سرعت متفاوت میشود

لنز

خواص لنز نازک (ایدهآل)

- اشعههای نوری که از مرکز لنز عبور میکنند منحرف نمیشوند
 - میزان انحراف با دور شدن از مرکز لنز بیشتر میشود
 - تمام خطوط موازی به یک نقطه همگرا میشوند

معادلات لنز نازک

فرض کنید یک شیئ در فاصله u از لنز قرار دارد ullet

$$\frac{y}{Y} = \frac{v}{u}$$

$$\frac{y}{Y} = \frac{v - f}{f}$$

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

معادلات لنز نازک

- تنها اشعههای نوری نقاطی که در فاصله u از لنز باشند در صفحهای به فاصله v از لنز همگرا (متمرکز) می شوند
 - نقاط با فاصلههای دیگر دچار تاری خواهند شد

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$