第九章 BIOS和DOS中断

- DOS 和 BIOS 功能调用
- 键盘I/0
- 显示器I/0
- 打印机I/0

本章目标

◆ 理解DOS/BIOS功能调用概念

◆ 學握DOS/BIOS功能调用程序设 计方法

BIOS简介

- ◆ 固化在ROM中的基本输入输出系统BIOS (Basic Input / Output system)
 - 地址空间: FE000H-FFFFFH. 8KB
 - 包含
 - ullet主要的I/0设备处理和接口控制程序
 - I/0设备硬件中断处理程序
 - ◆ I/0设备软件中断调用处理程序
 - 许多常用的系统例行程序
 - 系统加电自检、引导装入等功能模块
 - 一般以中断处理程序的形式存在、被调用
- ◆ 例如: 软件中断调用
 - 显示输出: 10H号中断处理程序
 - 打印输出: 17H号中断处理程序
 - 键盘输入: 16H号中断处理程序

BIOS功能调用

附录5 P611: BIOS软件中断功能调用

■ 显示器: INT 10H

■ 磁 盘: INT 13H

■ 串行口: INT 14H

■ 鍵 盘: INT 16H

■ 打印机: INT 17H

■ 引导装入: INT 19H

■ 鼠 标: INT 33H

DOS简介

◆ 磁盘操作系统DOS (Disk Operating System) 建立在BIOS基础上的PC机操作系统

◆ 组成:

- IBMBIO. COM: I/O设备处理程序, 完成设备到内存或内存到外设数据传送
 - 例如: DOS调用BIOS显示输出程序完成显示输出, 调用BIOS打印输出程序完成打印输出,调用 BIOS键盘输入程序完成键盘输入等
- IBMDOS. COM: 作业管理与监控、文件管理程序、设备处理程序
 - 设备管理与监控:通过IBMBIO.COM 形成一个或 多个BIOS调用

DOS系统功能调用

附录4 P605: DOS系统功能调用 INT 21H

- AH=1 键盘输入并回显
- AH=2 显示字符输出
- AH=9 显示字符串输出
- AH=0AH 键盘输入到缓冲区
- AH=4CH 带返回码终止

应用程序、DOS、BIOS和外设接口 之间的关系

- ◆ DOS和BIOS都提供某些相同的功能。 但它们之 间的层次关系是不同的
 - ◆ BIOS直接建立在硬件的 基础上
 - ◆ DOS建立在BIOS的基础 上。通过BIOS控制硬件

应用程序、DOS、BIOS 和硬件接口间的关系7/57

应用程序、DOS、BIOS和外设接口 之间的关系

- ◆ DOS、BIOS和硬件接口都为应用程序提供 完成输入输出的功能,而且随着层次的加 深访问外部设备的能力越强
- ◆ 从应用程序的编写角度出发,随着层次的加深,应用程序的编写难度和复杂度大大增加

应用程序、DOS、BIOS和外设接口 之间的关系

- ◆ 编写应用程序推荐调用 I/0的顺序如下:
 - DOS--> BIOS--> 直接外设接口访问
 - 通常 I/0操作应该首先选择调用 DOS提供的系统功能, 完成输入输出, 这样实现容易, 而且对硬件的依赖性最少, 程序可移植性好
 - 通过BIOS, DOS屏蔽了底层硬件的差异
 - 如果DOS不提供某种服务或者不能使用DOS的场合可考虑BIOS调用
 - 应用程序也可以直接操纵外设接口来控制外设, 从而获得最高效率,但编程复杂性最高

DOS和BIOS功能调用方法

- ◆ 采用软件中断的方式实现功能调用
- ◆ 应用程序在进行中断调用时应明确
 - 1. 中断类型号
 - 2. 功能号: 功能号→AH; 子功能号→AL
 - 3. 入口参数:通过寄存器提供专门的调用参数
- ◆ 应用程序调用时步骤如下:
 - 1、将调用所需的入口参数装入指定的寄存器
 - 2、如需功能号: AH←功能号
 - 3、如無子功能号: AL←子功能号
 - 4、按中断号调用DOS或BIOS中断: INT n
 - 5、检查返回参数是否正确等

- ◆ 为什么DOS和BIOS功能调用使用中断方式实现调用? (站在系统设计员的角度)
 - 系统设计简单、高效: BIOS的功能调用也是调用BIOS 中的基本硬件和异常等中断处理程序。中断调用方式与硬件中断处理程序转入方式统一,系统设计方便
 - 不必设置中断入口和子程序调用两种程序等
 - 用户编程方便、可移植性好: DOS的功能调用实质上是调用DOS中的扩展硬件等中断处理程序,中断调用方式与中断处理程序转入方式统一,使用透明,应用程序编写独立、方便
 - 应用程序不必关心低层功能处理程序入口. 现场保存情况等
 - 程序编写独立, 可移植性好

BIOS:机器不同,硬件配置不同,BIOS具体程序实现等不同 DOS:功能子程序每次装入位置不同;类型/版本不同实现不同

■ 最主要的原因是低层BIOS和DOS的修改(处理程序的入口地址改变)对上层应用透明,应用程序不变,可移植性好

9.1 键盘1/0

- ◆ 主板上:
 - 键盘接口芯片: 8255可编程序外围接口芯片
 - 键盘中断允许:8259中屏蔽寄存器(21H端口)第1位=0

打印机 软盘

- ◆ 键盘上:
 - 键 按16*8矩阵排列
 - 由Intel 8048单片机控制对键盘扫描
- ◆ 键盘硬件中断:如果有键按下,且中断也允许
 - 向CPU发中断,由BIOS中的键盘外设中断程序处理,转换成字符码。并将字符码和扫描码存储在内存缓冲区中
- ◆ 键盘软件中断: 应用程序可以使用DOS和BIOS软件中断调用获得存储在内存缓冲区中的字符码和扫描码
- ◆ 键盘<u>软件中断</u>和键盘<u>硬件中断</u>在BIOS中由不同的中断处理程序完成,功能不同

9.1.1 字符码与扫描码

- ◆ 从键盘输入端口60H读取一个字节, 其低7位是扫描码 (01H-53H, 见表9.3)
- ◆ 每个键的扫描码有两个: 通码(键按下,0)、断码(键放开,1)
- ◆ BIOS键盘中断处理程序将扫描码转换为字符码
 - ASCII码,或0 (非ASCII码键,如功能键)
- ◆ 转换成的字符码和扫描码存储在内存的键盘缓冲 区KB BUFFER中

0040:0001A BUFF_HEAD DW ?

0040:0001C BUFF_TAIL DW ?

0040:0001E KEY_BUFFER DW 16 DUP(?)

0040:0003E KEY_BUFFER_END LABEL WORD

缓冲区是先进先 出的循环队列

9.1.2 BIOS键盘中断

表9.4	BI0S键盘中断	(INT '	16H)

AH	功能	返回参数
0	从键盘读一字符	AL=字符码
		AH=扫描码
1	检测键盘缓冲区	如ZF=0
		AL=字符码
		AH=扫描码
		如ZF=1,缓冲区空
2	取键盘状态字	AL=键盘状态字

这里读键盘字符是从内存的键盘缓冲区中读取

如何判断不具有ASCII码的功能键动与否?

◆ 用 INT 16H, AH=2 读键盘状态字

这里读键盘字符是从内存的键盘缓冲区中读取

9.1.3 DOS键盘功能调用

功能更强大使用更方便

使用功能1时, 如果按下 Ctrl_C或 Ctrl_Break, DOS在返回前直 接结束程序

АН	功 能	调用参数	返回参数
1	从键盘输入一个字符并回显在屏幕上		AL=字符
6	读键盘字符	DL=OFFH	若有字符可取,
			AL=字符
			ZF=O
			若无字符可取,
			AL=OZ
			F=1
7	从键盘输入一个字符,不回显		
8	从键盘输入一个字符,不回显,		AL=字
	检测Ctrl_Break		AL=字符
A	输入字符到缓冲区		
В	读键盘状态		
С	清除键盘缓冲区 ,		
	并调用一种键盘功能	DS:DX=缓冲区首址	AL=OFFH有键入
			AL=00无键入
		AL=键盘功能号	
		(1,6,7,8或A)	

◆注意:调用DOS或BIOS从内存的键盘缓冲 区中读取键盘按键字符后,相应的键盘字 符就会从内存的键盘缓冲区中清除掉。

例1 从键盘读一个字符

: BIOS调用完成从键盘读一个字符

MOV AH, 0

INT 16H

;字符码 →AL, 扫描码 →AH

	表9.4 BIUS键盘	t中断(INI 16H)
AH	功能	返回参数

从键盘读一字符

AL=字符码 AH=扫描码

; DOS调用完成从键盘读一个字符

MOV AH, 7

INT 21H

:字符码 →AL

表 9.5 DOS 键盘操作(INT 21H)

AH	功能	调用参数	返回参数
7	从键盘输入一个字符,不回显		AL=字符码

例2. 先清除键盘缓冲区, 然后再从键盘读一个字符

; BIOS调用

REPT: MOV AH, 1

INT 16H

JZ SKIP

MOV AH, 0

INT 16H

JMP REPT

SKIP: MOV AH, 0

INT 16H

表 9.4 BIOS 键盘中断(INT 16H)

AH	功能	返回参数
0	从键盘读一字符	AL=字符码
		AH=扫描码
1	读键盘缓冲区的字符	如 ZF=0
		AL=字符码
		AH=扫描码
		如 ZF=1 ,缓冲区空
2	取键盘状态字	AL=键盘状态字
		<u> </u>

; 判缓冲区空?

,为空,转移

,从键盘缓冲区取一个字符码

;继续判断

; 等待键盘输入新的字符码

; DOS调用

REPT:

MOV AH, 0BH

INT 21H CMP AL, 0

JZ SKIP

MOV AH, 7

INT 21H

JMP REPT

SKIP:

MOV AH, 7 INT 21H

或者如下调用:

MOV AL, 7 MOV AH, 0CH INT 21H ;参看P605

; 判有无输入?

; 为空, 转移

; 从键盘缓冲区取走一个字符

;继续判断

	表 9. 5	DOS 键盘操	作(INT 21H)	
AH	功能		调用参数	返回参数
1	从键盘输入一个字符,	并回显		AL=字符码
6	读键盘字符	DL	=0FFH	若有字符可取: AL=字符码 ZF=0 若有字符可取: AL=0 ZF=1
7	从键盘输入一个字符,	不回显		AL=字符码
8	从键盘输入一个字符, 检测 Ctrl_Break	不回显,		AL=字符码
Α	输入字符到缓冲区	DS	S:DX=缓冲区首址	参见图 9.3
В	读键盘状态			AL=0FFH 有键入 AL=00 无键入
С	清除键盘缓冲区, 并调用一种键盘功能		_=键盘功能号 〔1,6,7,8,A〕	

例3. 显示按键, 在检测到所 按下的CTRL键后结束运行

- ◆ 调用16H号中断的2号功能
 - 取得键盘状态字节
 - 判断是否按下了CTRL键
 - 若按下CTRL键则结束运行;
 - 否则显示按键
- ◆ 汇编语言源程序如下:

```
KB_FLAG
                             ;建立堆栈段
       segment stack
sseg
       dw
               200 dup (?)
               word
        label
tos
                                                                         └─1=按下右移键Right Shift
       ends
sseg
                                                                         -1=按下左移體Left Shift
                     : 定义变换键ctrl判断字
ctrl=00000100b
                             ; 建立代码段
                                                                        -1=按下控制键Ctrl
cseg
       segment
       assume cs:cseg, ss:sseg
                                                                      -1=按下交替键Alt
               far
begin
       proc
                                                                    —1-Scoll Lock状态已变换
               sp, offset tos ; 初始化堆栈指针
       mov
                                                                  -1=Num Lock状态已变换
       mov
               ax, sseg
                                                                 1=Caps Lock状态已变换
               ss, ax
       mov
                  ; 压入返回DOS地址
       push
               ds
                                                              -1=Insert状态已变换
       mov
               ax, 0
       push
               ax
                                                                  图 9.2 键盘状态字节
                             ; 取 KB FLAG
start:
               ah, 2
       mov
       int
               16h
                             : 判断是ctrl键吗?
       test
               al, ctrl
                             : 是ctrl键, 结束运行
               finish
       jnz
               ah, 1
        mov
               16h
       int
                             ; 缓冲区空, 无键可读, 转移到
       jΖ
               start
               dl, al
                             : 显示
       mov
               ah, 2
       mov
               21h
       int
               ah, 0
       mov
               16h
       int
                             :继续下一轮
       jmp
               start
                                                     \mathbf{AH}
finish: ret
begin
       endp
       ends
cseg
                                                     1
```

begin

end

		Market Control of the
١	tart	
3	表 9.4 BIOS 键盘 ^p	中断(INT 16H)
	功能	返回参数
	从键盘读一字符	AL=字符码
		AH=扫描码
	读键盘缓冲区的字符	如ZF=0
		AL=字符码
		AH=扫描码
		如 ZF=1,缓冲区空
	取键盘状态字	AL=键盘状态字

BIOS Keyboard Support Functions

Function#	Input	Output	Description
(AH)	Parameters	Parameters	-
0		a1- ASCII character	Read character. Reads next available character from the
		ah- scan code	system's type ahead buffer. Wait for a keystroke if the
			buffer is empty.
1		ZF- Set if no key.	Checks to see if a character is available in the type ahead
		ZF- Clear if key	buffer. Sets the zero flag if not key is available, clears the
		available.	zero flag if a key is available. If there is an available key,
		a1- ASCII code	this function returns the ASCII and scan code value in ax.
		ah- scan code	The value in ax is undefined if no key is available.
2		al- shift flags	Returns the current status of the shift flags in al. The shift
			flags are defined as follows:
			bit 7: Insert toggle
			bit 6: Capslock toggle
			bit 5: Numlock toggle
			bit 4: Scroll lock toggle
			bit 3: Alt key is down
			bit 2: Ctrl key is down
			bit 1: Left shift key is down
			bit 0: Right shift key is down
			on v. right shift key is down

如何从键盘直接读扫描码?

l. 查询方式:

- 给8259的21H端口送控制命令。 关掉键盘中断允许位
- 通过键盘接口. 编写查询程序

中断方式:

- 主程序中, 修改向量表中键盘 00024H 硬件中断向量指向自己的中断 处理程序
- 编写中断程序,读键盘扫描码, 按自己需要进行处理后放到一 个自定义内存缓冲区
- 主程序中,从自定义内存缓冲 区读键盘相关数据进行处理

00004H

IP 类型0中断处理 程序入口地址 IP 类型1中断处理 程序入口地址 CS

单步

除法错

类型9中断处理 IP 程序入口地址

键盘

003FCH

003FFH

类型0中断处理 IΡ 程序入口地址

INTn

注意关/开中断、中断向量保存/恢复等要适时、正确

想读读自己机器的<u>BIOS键盘软中断</u>程序吗? (BIOS键盘中断INT 16H)

- 1、计算BIOS键盘中断向量地址 16H*4=0058H
 - 2、看中断向量表,获得中断程序入口

3、反汇编,读程序

内存的键盘缓冲区KB_BUFFER:

0040:0001A BUFF_HEAD DW?

0040:0001C BUFF_TAIL DW?

0040:0001E KEY_BUFFER DW 16 DUP(?)

0040:0003E KEY_BUFFER_END LABEL WORD

–u 0210:09	7c4		
0210:09C4	1E	PUSH	DS
0210:09C5	53	PUSH	BX
0210:09C6	BB4000	MOU	BX,0040
0210:09C9	8EDB	MOU	DS , BX
0210:09CB	80FC10	CMP	AH,10
0210:09CE	E8E8FD	CALL	07B9
0210:09D1	7203	JB	09D6
0210:09D3	E9 E000	JMP	ØAB6
0210:09D6	ØAE4	OR	AH,AH
0210:09D8	743E	JZ	ØA18
0210:09DA	FECC	DEC	AH
0210:09DC	7474	JZ	0A52
0210:09DE	FECC	DEC	AH
0210:09E0	7411	JZ	09F3
0210:09E2	FECC	DEC	AH
	•	•	· · · · · · · · · · · · · · · · · · ·

如何读DOS或BIOS中的中断程序?

(进一步学习汇编和微机接口原理的方法)

找相关文档, 或者按如下方式:

- 1. Debug中寻找中断程序入口地址
 - 如BIOS中的键盘硬件中断程序入口
 - Debug中显示中断向量(键盘中断向量地址09H*4=0024H)

2. Debug中反汇编中断程序

9.2 显示1/0

9.2.1 显示器简介

- (1) 显示属性
 - 屏幕上显示的字符取决于字符码及字符显示属性
- (2) 显示缓冲区
 - 显示适配卡带有显示存储器,用于存放屏幕上显示文本的代码及属性或图形信息
 - 显示存储器作为系统存储器的一部分, 可用访问普通内存的方法访问显示存储器
 - 显示屏幕是"存储器映像"
 - 直接存取显示存储器内容进行显示的方法称为直接写屏

■在单色显示时,字符显示属性定义了闪烁、 反向和高克度等显示特性

■ 在彩色显示时,色和背景色

闪烁		背景			Ħ	景	
BL	`R	G	В	1	R	G	В
7	6	5	4	3	2	1	0

表 9.7 16 种颜色的组合

超色

IRGB

IPCR

	原色	IRGB	灰色	IKGB	原巴	IKGB	BRC	INGD
	黑	0000	灰	1000	紅	0100	浅红	1100
每个显示字符占 2个存储单元	蓝	0 0 0 1	浅蓝	1001	品红	0101	浅品红	1101
	绿	0010	浅绿	1010	棕	0110	黄	1110
	#	0011	浅青	1011	灰白	0111	白	1111

◆ 25*80的单色显示文本方式下

在屏幕上显示字符

- 屏幕可有2000个字符位置,显存容量需要 $4000B \approx 4KB$
- 如果显存有16KB容量, 可保存4屏幕的字符数据, 即4页数据
- ◆ 可根据显示位置的行列值算出显示存储区的地址
- ◆ 屏幕上某一字符在显存中的偏移地址

Char_offset=page_offset+((row*width)+column)*byte

ASCII B000, 0000 0001 属性 注意: 各种适配器的显示存储 0002 ASCII 器(显存)的启始地址不同 0003 属性 ASCII 0004 属性 0旁至79列 0005 可以用指令直接将 行至 要显示的字符和属 24 性写入显示存储区 OF 9C ASCIL 的相应单元,实现 oF 9D 属性

ASCII

居性

oF9E

oF9F

9.2.2 BIOS显示中断

◆ 显示器BIOS中断调用(INT 10H)

显示器BIOS程序提供功能如下:

设置显示模式

设置光标类型、设置光标位置、读光标位置

读取光标位置处的字符和属性

将字符和属性写到光标位置处

选择当前显示页

向上滚屏、向下滚屏

AH	功能	调用参数	返回参数 / 注释
1	置光标类型	(CH) _{2~3} = 光标开始行 (CL) _{2~3} = 光标结束行	
2	置光标位置	BH = 页号 DH = fi	
3	读光标位置	DI. = 列 BH = 页号	CH = 光标开始行 CL = 光标结束行 DH = 行
			DR = 1] DL = 列
4 5	置显示页 选择活动显示页	AL = 显示页号	
6	屏幕初始化改上卷	AL = 上卷行数	
_		AL = 0 全屏幕为空白 BH = 卷入行属性 CH - 左上角行号 CL = 左上角列号 DH = 右下角行号 DL - 右下角列号 AL = 下卷行数	对某个窗 口操作
7	屏幕初始化或下卷	AL = 「を行数 AL = 0全屏幕为空白	HINTE
		BII = 卷入行属性 CH = 左上角行号 CL = 左上角列号 DH = 右下角行号 DL = 右下角列号	
8	读光标位置的	BH = 显示页	AH = 属性 AL = 字符
9	属性和字符 在光标位置显示 字符及其属性	BH = 显示页 AL = 字符 BL = 属性 CX = 字符重复次数	Als = J. H.
A	在光标位置 只显示字符	BH = 显示页 AL = 字符 CX = 字符重复次数	
E	显示字符 (光标前移)	AL - 字符 BL = 前景色	光标跟随字符移动
13	显示字符串	ES:BP = 串地址 CX = 串长度 DH.DL = 起始行列 BH = 页号	
		AI、= 0.BL = 属性 串:Char.charchar	光标返回起始位置
INT	10H	Al. = 1.Bl. = 属性 串:Char.charchar	光标跟随移动
		AL = 2 串:Char.attrchar.attr	光标返回起始位置
兴 质是	对显示存储区的操作	AL = 3 \$: Char.attrchar.attr	光标跟随串移动

INT 10H (ah=01h)

- ◆ AH = 01h CH = Scan Row Start, CL = Scan Row End
- ◆ Normally a character cell has 8 scan lines, 0-7. So, CX=0607h is a normal underline cursor, CX=0007h is a full-block cursor. If bit 5 of CH is set, that often means "Hide cursor". So CX=2607h is an invisible cursor.
- Some video cards have 16 scan lines, 00h-0Fh.
- Some video cards don't use bit 5 of CH. With these, make Start>End (e.g. CX=0706h)

例如: 窗口初始化或字符上卷

屏幕初始化或上卷

屏幕初始化或下卷

行向上移位

AL = 上卷行数

AL = 0 全屏幕为空白

BH = 卷入行属性 CH = 左上角行号

CL = 左上角列号 DH = 右下角行号

DL = 右下角列号 AL = 下卷行数

AL = 0 全屏幕为空白 BH = 卷入行属性

CH = 左上角行号 CL = 左上角列号

DH = 右下角行号 DL = 右下角列号

- ◆ AL>0时,要上卷的行数
 - 窗口上卷时,低端的行由空行代替, 属性由BH决定
 - 上卷时移出窗口的行不能恢复
- ◆ AL=0时, 全窗口为空白
- ◆ BH=空白区域的视频属性
- ◆ CH, CL=窗口左上角的行列位置
- ◆ DH, DL=窗口右下角的行列位置

显示器BIOS中断应用举例

例1、 在当前光标位置处显示5个字符U (UUUUU), 但不移动光标

■9号子功能调用

9	在光标位置显示	BH = 显示页
	在光标位置显示 字符及其属性	BH = 显示页 AL = 字符
		BL = 属性
		BL = 属性 CX = 字符重复次数

■ 指令序列如下:

MOV	BH , 0	;显示页号,第0页
MOV	AL, 'U'	;显示字符的代码
MOV	BL, 4EH	;显示字符的属性,红底黄字
MOV	CX, 5	;字符重复次数
MOV	AH, 9	$;$ 显示 $\mathrm{I}/0$ 中断程序的功能号
INT	10H	;中断调用指令

例2、 清屏并把光标设置在左上角

◆ 在窗口滚屏时,如果滚屏行数为0,就表示清除整个窗口。 设屏幕为25*80,先清除屏幕,然后把光标设定到左上角

;清屏

```
mov ah, 6
mov al, 0
mov bh, 7;黑低白字
mov cx, 0
mov dh, 24
mov d1, 79
```

6	屏幕初始化或上卷	AL = 上卷行数
		AL = 0 全屏幕为空白
		BH = 卷人行属性
		CH - 左上角行号
		CL = 左上角列号
		DH = 右下角行号
		DL - 右下角列号

;光标设置在左上角

int 10h

mov dx, 0 mov ah, 2 int 10h

2	置光标位置	BH = 页号
		DH = 行
	* ·	DL = 列

例3、 编制一程序。要求:在干净的屏幕上开一窗口(红底黄字),左上角坐标(06H,14H),右下角坐标(14H,2EH);在窗口内显示:

MAIN MENU

Edit Save Print Quit

程序清单

; 开设空白窗口的宏定义

clrscr macro lu, rd, fb ; lu=左上角坐标, rd=右下角坐标

;fb=前景色和背景色

ax, 0600h mov cx, lu mov dx, rd mov bh, fb mov int 10h endm

屏幕初始化或上卷 AL = 上卷行数 AL = 0 全屏幕为空白 BH = 卷入行属性 CH - 左上角行号 CL = 左上角列号 DH = 右下角行号

设置光标的宏定义 cursor macro row, col ; row=行号, col=列号 **bh**, **0** mov

dh, row mov dl, col mov ah, 2 mov int 10h endm

BH = 页号置光标位置 DH = 7

DL - 右下角列号

; 定义数据段

dseg segment

;每个字符串以'\$'结束利于判断

d1 db 'MAIN MENU', 0dh, 0ah, '\$'

db '(1) Edit',0dh,0ah,'\$'

db '(2) Save',0dh,0ah,'\$'

db '(3) Print',0dh,0ah,'\$'

db '(4) Quit',0dh,0ah,'\$'

dseg ends

9.2.3 DOS显示功能调用

- DOS显示功能调用中断为 INT21H
- ◆ INT 21H显示操作

AH	功 能	调用参数
2	显示一个字符(检查Ctrl-Break)	DL=字符, 光标跟随字符移动
6	显示一个字符(不检查Ctrl-Break)	DL=字符, 光标跟随字符移动
9	显示字符串	DS:DX=串地址, 串必须以 \$ 结束,光 标跟随串移动

- 不能有控制码的ASCII码
- 检查Ctrl-Break:
- 显示字符串中: 串必须以\$结束; 如果希望光标能自动换行, 在字符串结束符\$前 加回车和换行的ASCII码

40 /57

AH	功能	调用参数		
9	显示字符串	DS:DX=串地址 串必须以\$结束,光标跟随串移动		

例1、显示一串字符

;字符串的数据定义

CR EQU ODH

LF EQU OAH

TAB EQU 09H

MESSAGE DB TAB, 'The sort operation is finished.'

DB CR, LF, '\$'

;显示字符串的指令

MOV AH, 09H

MOV DX, SEG MESSAGE

MOV DS, DX

MOV DX, OFFSET MESSAGE

INT 21H

9.3 打印机

◆打印机 I/0中断

■ DOS中断调用 INT 21H

■ BIOS中断调用 INT 17H

表 9.11 打印机 I/O 中断

INT	АН	功能	调用参数	返回参数
21 H	5	打印一个字符	DL = 字符	
17H	0	打印一个字符	AL = 字符	AH = 状态字节
		并回送状态字节	DX = 打印机号	7
17H	1	初始化打印机	DX = 打印机号	AH = 状态字节
and the second of the second o		回送状态字节		
17H	1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	回送状态字节	DX = 打印机号	AH = 状态字节

- ◆ 主机输出给打印机的信息包括两类:
 - ■字符码 (ASCII)
 - 完成一定特定动作的控制码或功能码

表9.12 打印机常用的标准控制字符

功能码	十进制	十六进制	功能含义
		(ASCII 码)	
SP	08	08	空格
HT	09	09	水平制表(Tab)
LF	10	OA	换行
VT	11	OB	垂直制表(Tab)
FF	12	OC	换页
CR	13	OD	回车

• 水平制表: 仅当打印机有此功能,并被置成打印机Tab状态时才能实现 否则,不执行此命令,或打印多个空格代替Tab Tab相当于8个字符宽度

许多打印机不认识TAB字符(09H),这时程序就要检查TAB字符,若输出的字符是TAB,就要插入空格,把当前光标位置移到8,16,24,…字符位置上

INT	AH	功能	调用参数	返回参数
21 H	5	打印一个字符	DL = 字符	

9.3.1 dos打印功能

- ◆ 打印一个字符: INT 21H, AH=5, DL=字符
- ◆ 如果需要回车、换行等打印机控制功能, 必须 由汇编程序送出回车、换行等控制码给DOS

TEXT	DB			everybody	!', 0	DH,	OAH	, OAH	
COUNT	EQU	\$-TEXT				OCI	ш.		
•••••							11:	沃火	
	MOV	CX, C	OUNT			0D	H:	换页 回车	
	MOV	BX, 0				0A	H:	换行	
NEXT:	MOV	AH, 5							
	MOV	DL, T	EXT [BX]					
	INT	21H			DO	ct	一口	了 打 打 打	异
	INC	BX			DU	D 1.	JH	小小广东	术

NEXT

动测试打印机状态

9.3.2 BIOS打印功能

- BIOS提供的打印I/O程序中断号为17H
- 系统可连接多台打印机,用打印机号选择打印机,打印机号为0,1,2

INT	AH	功能	调用参数	返回参数
17H	0	打印一个字符	AL = 字符	AH = 状态字节
		并回送状态字节	DX = 打印机号	
17H	1	初始化打印机	DX = 打印机号	AH = 状态字节
		回送状态字节		
17H	2	回送状态字节	DX = 打印机号	AH = 状态字节

INT	АН	功能	调用参数	返回参数
17H	0	打印一个字符	AL = 字符	AH = 状态字节
		并回送状态字节	DX = 打印机号	

例1、将AL中的字符输出到打印机

MOV AH, 0

MOV AL, CHAR

MOV DX, 0

INT 17H

例2、将键盘接收到的字符显示在显示器上,并由打印机输出,当键盘上按下shift键即退出程序。

```
; 定义堆栈段
         segment stack
sseg
         dw 100 dup(?)
         label word
tos
         ends
sseg
; 定义代码段
                                                  能
                                                功
                                                                      调用参数
                                    AH
cseg
        segment
                                       显示一个字符(检查 Ctrl-Break)
                                                             DL=字符,
                                                                    光标跟随字符移动
        assume cs:cseg, ss:sseg
key_prt
                 far
        proc
        mov
                 ax, sseg
                 ss. ax
        mov
                                                KB_FLAG
                 sp, offset tos ; 设置堆栈指针
        mov
        call
                 cls
                          : 调用清屏子程序
                 ah, 2
         mov
                                                               1=按下右移键Right Shift
                 dl, 0ah
        mov
                                                              =按下左移键Left Shift
                          : 光标指向下一行
                 21h
        int
key_ch:
                                                                AL=键盘状态字节
                                       取键盘状态字节
                 ah,2
        mov
        int
                 16h
                            取变换键状态
                 al,03h
                            有shift按下吗?字节的低两位为 l_shift + r_shift的状态
         test
```

有shift键按下则转移到程序结束

47 /57

endprog

jnz

ah,1 mov int 16h jz key_ch mov

; 判断键盘有键可读吗?

; 无键可读, 转去读键盘状态

ah,0 int 16h

; 读取键盘字符

push $\mathbf{a}\mathbf{x}$ dl,al mov

ah,2 : 显示所读的字符

mov 21h int

pop ax push ax

al,0dh cmp

: 是回车,加上换行符

jne nnn

mov dl,0ah

ah,2 mov

int 21h ; 换行符

显示一个字符(检查 Ctrl-Break) 2

0

ÁΗ

0

1

AH

17H

功能

从键盘读一字符

功 能

读键盘缓冲区的字符

调用参数 DL=字符, 光标跟随字符移动

返回参数

 $\Delta II ZF = 0$

AL=字符码

AH=扫描码

AL=字符码

AH=扫描码

如 ZF=1,缓冲区空

nnn:

; 打印键盘键入的字符

ah,0 mov dx,0mov 17h int pop $\mathbf{a}\mathbf{x}$

: 打印al中的字符

: 是回车,加上换行符

: 返回dos

打印一个字符 AL = 字符 AH = 状态字节 并回送状态字节 DX = 打印机号

al.0dh cmp key ch jne

al,0ah mov ah,0 mov dx,0mov

int 17h

key_ch jmp

endprog:

ah,4ch mov

21h int

key_prt endp

48 /57

;清屏子程序

cls

cls proc near
mov ax,0600h
mov cx,0
mov dx,184fh
mov bh,36h
int 10h
ret

6 屏幕初始化或上卷 AL = 上卷行数 AL = 0 全屏幕为空白 BH = 卷入行属性 CH = 左上角行号 CL = 左上角列号 DH = 右下角行号 DL = 右下角列号

cseg ends end key_prt

endp

9.4 BIOS中断举例

例1、 显示实时钟, 遇到按键时退出

- ◆ 系统加电期间,系统定时器初始化为每隔55毫秒发一次中断请求,每秒要调用约18.2次系统时钟中断处理程序
- ◆ 参看 "表9. 1BIOS中断类型---8259中断类型"
 - CPU在响应定时中断请求后转入08H号中断处理程序
 - BIOS提供的08H号中断处理程序中,有一条软中断指令"INT 1CH",而BIOS 的1CH号中断处理程序处只有一条中断返回指令(IRET),实际上并没有作任何工作
 - 这样安排的目的是为应用程序留下一个软接口,应用程序只要修改中断向量 表中1CH号中断向量,转向新的中断处理程序,就能实现某些周期性的工作
- ◆ 新的1CH号中断处理程序功能如下:
 - 清屏,利用1AH号中断处理程序的2号功能获取当前时间;
 - 在屏幕的右上角显示当前时间;
 - 记录调用该中断处理程序的次数,当计数满18次后(1秒钟到),更新显示时间
- ◆ 主程序的功能:
 - 保存原1CH号的中断向量;
 - 设置新的1CH号的中断向量;
 - 在主程序完成其他工作后,恢复原1CH号的中断向量

```
; 定义代码段
cseg segment
   assume cs:cseg, ds:cseg
start proc far
   push
        CS
        ds
   pop
   mov ax, 351ch
                         : 获取原1CH号的中断向量→ES:BX
   int 21h
   mov ds:word ptr old1c, bx
                         s ; 保存原1CH号中断向量
; 设置新1CH号中断向量
   mov ds:word ptr old1c+2, es
        dx, offset int1c
   mov
   mov ax, 251ch
   int 21h
 此后,每55毫秒就进入一次新的1CH号的中断处理程序
waitn: mov ah, 1
                         ; 查有无键按下
   int 16h
                         ; 转等待键按下
       waitn
   jz
         ah, 0
   mov
                         ; 读键盘
   int 16h
       dx, ds:old1c
   lds
         ax, 251ch
   mov
                         :恢复原1ch中断向量
       21h
   int
         ah, 4ch
   mov
                         ;返回dos
       21h
   int
start endp
```

;定义数据空间

old1c dd?

count dw 0

hhh db ?,?,':'

mmm db ?,?,':'

sss db ?,?,'\$'

;保存原中断向量

;调用1ch中断程序的次数

;保存:"时"

;保存:"分"

;保存:"秒"

数据是代码段的一部分,不提倡这种编程方 法!!!

```
;定义新的1CH号的中断处理程序
 int1c proc far
     cmp count, 0
   调用次数为"0"时(1秒钟到),显示系统时间
     jz
         next
          count ; 显示次数递减(第一次18-1)
     dec
     iret
= next:
           count, 18 ; 置计数次数初值
     mov
     sti
                        ; 保护现场
           ds
     push
     push
           es
     push
           ax
           bx
     push
     push
           CX
     push
           dx
           si
     push
           di
     push
           ah, 2
     mov
                         读实时时钟
     int
          1ah
                          时送al
           al, ch
     mov
     call
                          转换成ascii码
          ttasc
                 ptr hhh, ax ; 保存时
; 分转换
          word
     mov
           al, cl
     mov
     call
          ttasc
                 ptr mmm, ax
     mov
           word
                        ; 秒转换
           al, dh
     mov
     call
          ttasc
```

```
word ptr sss, ax
   mov
                ; 清屏
    call
         cls
          bh, 0
    mov
          dx, 0140h
    mov
          ah, 2
    mov
    int
         10h ; 设置光标(2,65)
    push
          CS
          ds
    pop
          dx, offset hhh
    mov
          ah, 9
    mov
                ,显示实时时钟
         21h
    int
          di
    pop
          si
    pop
          dx
    pop
          CX
    pop
         bx
    pop
    pop
          ax
          es
    pop
          ds
    pop
                  中断返回
    iret
int1c endp
```

```
;将AL中的BCD数据转换成ASCII码存入AX中
ttasc proc
   mov ah, al
         al, 0fh
   and
   shr
        ah, 4
         ax, 3030h
   add
   xchg ah, al
   ret
ttasc endp
;清屏子程序
cls proc
         ax, 0600h
   mov
         cx, 0
   mov
         dx, 184fh
   mov
         bh, 7
   mov
        10h
   int
   ret
cls
    endp
cseg ends
   end
         start
```

变量定义在程序代码段中

```
; 定义代码段
cseg segment
   assume cs:cseg
start proc far
   push cs
   pop ds
   mov ax, 351ch
                       ; 获取原1CH号的中断向量
   int 21h
   mov cs:word ptr old1c, bx
                             ;保存原1CH号中断向量
   mov cs:word ptr old1c+2, es
                      ;设置新1CH号中断向量
       dx, offset int1c
   mov ax, 251ch
   int 21h
;此后,每55毫秒就进入一次新的1CH号的中断处理程序
waitn: mov ah, 1
                       ; 查有无键按下
   int 16h
                       ; 转等待键按下
   jΖ
       waitn
   mov ah. 0
                       ; 读键盘
   int 16h
   lds dx, cs:old1c
   mov ax, 251ch
                       :恢复原1ch中断向量
   int 21h
   mov ah, 4ch
   int 21h
                       ; 返回dos
start endp
;定义数据空间
old1c dd
                  : 保存原中断向量
                  : 调用1ch中断程序的次数
count dw
         0
         ?,?,':'
                  ;保存:"时"
hhh
     db
         ?,?,':'
                  ;保存:"分"
mmm db
         ?,?,'$'
                  ;保存:"秒"
     db
```

```
:定义新的1CH号的中断处理程序
int1c proc far
   cmp count, 0
;调用次数为"0"时(1秒钟到),显示系统时间
        next
        count ; 显示次数递减 (第一次18-1)
   dec
   iret
next:
         count, 18 ; 置显示次数初值
   mov
   sti
                       : 保护现场
   push
   push
   push
   push
        bx
    push
        CX
         dx
    push
         si
    push
    push
        di
   mov
         ah, 2
   int 1ah
                      ,时送al
   mov
        al, ch
                       ; 转换成ascii码
   call ttasc
               ptr hhh, ax ; 保存时
   mov
         word
                      ;分转换
         al, cl
   mov
                                          ;将AL中的BCD数据转换成ASCII码存入AX中
   call ttasc
         word ptr mmm, ax
   mov
                                           ttasc proc
         al, dh
                       ;秒转换
   mov
                                              mov ah, al
   call
        ttasc
                                                   al, 0fh
                                              and
                                              shr
                                                   ah, 4
   mov
         word ptr sss, ax
                                                   ax, 3030h
    call
               ; 清屏
        cls
                                              xchg ah, al
    mov
         bh, 0
                                              ret
         dx, 0140h
    mov
                                           ttasc endp
         ah, 2
    mov
        10h ; 设置光标(2,65)
    int
                                           :清屏子程序
    push
         CS
                                              proc
    pop
         ds
                                                    ax, 0600h
                                              mov
         dx, offset hhh
    mov
                                                    cx, 0
                                              mov
         ah, 9
    mov
                                                    dx, 184fh
                                              mov
    int
        21h
               ; 显示实时时钟
                                                   bh, 7
                                              mov
         di
    pop
                                                  10h
                                              int
    pop
         si
                                              ret
         dx
    pop
                                           cls
                                               endp
    pop
         cx
                                           cseg ends
         bx
    pop
                                              end start
    pop
         ax
    pop
         es
    pop
         ds
               ,中断返回
    iret
int1c endp
```

作业

9.2 9.3 9.5 9.6