Machine Learning 101 PyCon 2015

Kyle Kastner
LISA / MILA
Université de Montréal

Follow along!

https://github.com/kastnerkyle/PyCon2015

What is Machine Learning?

Automation

Data Analysis

Applications

- Speech processing
 - Speech to text, text to speech
- Image processing
 - Self driving cars
- Natural Language Processing
 - Automatic translation
- Advertising
 - Click Through Rate (CTR) (talk @ 12!)
- Recommendations
 - Amazon, Yelp, Netflix...

A dog is standing on a hardwood floor.

Automation Spectrum

Handcrafted Rules

- if elif elif elif
- DON'T TOUCH code •
- Magic constants

Statistics

- linear models
- p values
- MCMC sampling

Machine Learning

- K-means
- SVM
- Bayesian stats Random Forests Recurrent net
 - - Convolutional net

Deep Learning

- Neural networks
- Autoencoders

A Test

Regression

Learning Functions

```
def recommend movies(seen movies, ratings):
    return best unseen movies
def french to english(french text):
    return english translation
def what is in this image(image):
    return text
```

Mathematically: y = f(x) or more precisely $y = f(x|\theta)$

Train/Valid/Test

- Split current data
- Evaluate
- Typical split
 - 80% training
 - o 20% validation
- Testing data answers unknown
- Want systems to work on new data!
- This approach simulates new data

What should I use?

- I recommend one of two packages
 - Anaconda, from Continuum.io
 - Canopy, from *Enthought*
- Both excellent!

Anaconda: https://store.continuum.
io/cshop/anaconda/

Enthought: https://store.enthought.com/

Examples

List of Resources

- Google Python Class https://developers.google.com/edu/python/?csw=1
- Numpy tutorial http://wiki.scipy.org/Tentative_NumPy_Tutorial
- Numpy to Matlab table http://wiki.scipy.org/Tentative_NumPy_Tutorial
- scikit-learn documentation http://scikit-learn.org/stable/tutorial/index.html
- scikit-learn tutorial slides https://github.com/ogrisel/parallel_ml_tutorial
- more tutorial slides https://github.com/jakevdp/sklearn_pycon2015/
- Coursera ML course (octave/Matlab) https://www.coursera.org/learn/machine-learning
- Stanford UFLDL http://ufldl.stanford.edu/wiki/index.php/UFLDL Tutorial
- Ian Goodfellow's Intro to Theano https://github.com/goodfeli/theano_exercises
- Theano notebooks http://nbviewer.ipython.
 org/github/jaberg/IPythonTheanoTutorials/tree/master/ipynb/
- Theano Deep Learning Tutorial http://deeplearning.net/tutorial/
- Machine Learning for Vision http://www.iro.umontreal.ca/~memisevr/teaching/ift6268_2015/index.html
- Representation Learning https://ift6266h15.wordpress.com/
- Coursera NN course https://www.coursera.org/course/neuralnets

https://github.com/kastnerkyle/PyCon2015

Thank You!

References

[1] Taken from Wikipedia

http://en.wikipedia.org/wiki/File:EM_Spectrum_Properties_edit.svg

[2] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio.

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

http://arxiv.org/abs/1502.03044

[3] J. Chorowski, D. Bahdanau, K. Cho, Y. Bengio.

End-to-end Continuous Speech Recognition using Attention-based Recurrent Neural Networks http://arxiv.org/abs/1412.1602

[4] J. Elson, J. Douceur, J. Howell, J. Saul. <u>Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization</u>. In Proceedings of 14th ACM Conference on Computer and Communications Security (CCS), Association for Computing Machinery, Inc., Oct. 2007

[5] G. Hinton, P. Dayan, M. Revow. Modelling the Manifolds of Images of Handwritten Digits.

http://www.cs.toronto.edu/~fritz/absps/manifold.pdf