

Measurement of Time-Dependent \mathcal{CP} Asymmetries in $B^0 \rightarrow D^{(*)\pm} D^\mp$ Decays

- B. Aubert,¹ R. Barate,¹ D. Boutigny,¹ F. Couderc,¹ Y. Karyotakis,¹ J. P. Lees,¹ V. Poireau,¹ V. Tisserand,¹
 A. Zghiche,¹ E. Grauges,² A. Palano,³ M. Pappagallo,³ A. Pompili,³ J. C. Chen,⁴ N. D. Qi,⁴ G. Rong,⁴ P. Wang,⁴
 Y. S. Zhu,⁴ G. Eigen,⁵ I. Ofte,⁵ B. Stugu,⁵ G. S. Abrams,⁶ M. Battaglia,⁶ A. W. Borgland,⁶ A. B. Breon,⁶
 D. N. Brown,⁶ J. Button-Shafer,⁶ R. N. Cahn,⁶ E. Charles,⁶ C. T. Day,⁶ M. S. Gill,⁶ A. V. Gritsan,⁶ Y. Groysman,⁶
 R. G. Jacobsen,⁶ R. W. Kadel,⁶ J. Kadyk,⁶ L. T. Kerth,⁶ Yu. G. Kolomensky,⁶ G. Kukartsev,⁶ G. Lynch,⁶
 L. M. Mir,⁶ P. J. Oddone,⁶ T. J. Orimoto,⁶ M. Pripstein,⁶ N. A. Roe,⁶ M. T. Ronan,⁶ W. A. Wenzel,⁶ M. Barrett,⁷
 K. E. Ford,⁷ T. J. Harrison,⁷ A. J. Hart,⁷ C. M. Hawkes,⁷ S. E. Morgan,⁷ A. T. Watson,⁷ M. Fritsch,⁸ K. Goetzen,⁸
 T. Held,⁸ H. Koch,⁸ B. Lewandowski,⁸ M. Pelizaeus,⁸ K. Peters,⁸ T. Schroeder,⁸ M. Steinke,⁸ J. T. Boyd,⁹
 J. P. Burke,⁹ N. Chevalier,⁹ W. N. Cottingham,⁹ M. P. Kelly,⁹ T. Cuhadar-Donszelmann,¹⁰ C. Hearty,¹⁰
 N. S. Knecht,¹⁰ T. S. Mattison,¹⁰ J. A. McKenna,¹⁰ A. Khan,¹¹ P. Kyberd,¹¹ L. Teodorescu,¹¹ A. E. Blinov,¹²
 V. E. Blinov,¹² A. D. Bukin,¹² V. P. Druzhinin,¹² V. B. Golubev,¹² E. A. Kravchenko,¹² A. P. Onuchin,¹²
 S. I. Serednyakov,¹² Yu. I. Skovpen,¹² E. P. Solodov,¹² A. N. Yushkov,¹² D. Best,¹³ M. Bondioli,¹³ M. Bruinsma,¹³
 M. Chao,¹³ I. Eschrich,¹³ D. Kirkby,¹³ A. J. Lankford,¹³ M. Mandelkern,¹³ R. K. Mommsen,¹³ W. Roethel,¹³
 D. P. Stoker,¹³ C. Buchanan,¹⁴ B. L. Hartfiel,¹⁴ A. J. R. Weinstein,¹⁴ S. D. Foulkes,¹⁵ J. W. Gary,¹⁵ O. Long,¹⁵
 B. C. Shen,¹⁵ K. Wang,¹⁵ L. Zhang,¹⁵ D. del Re,¹⁶ H. K. Hadavand,¹⁶ E. J. Hill,¹⁶ D. B. MacFarlane,¹⁶
 H. P. Paar,¹⁶ S. Rahatlou,¹⁶ V. Sharma,¹⁶ J. W. Berryhill,¹⁷ C. Campagnari,¹⁷ A. Cunha,¹⁷ B. Dahmes,¹⁷
 T. M. Hong,¹⁷ A. Lu,¹⁷ M. A. Mazur,¹⁷ J. D. Richman,¹⁷ W. Verkerke,¹⁷ T. W. Beck,¹⁸ A. M. Eisner,¹⁸
 C. J. Flacco,¹⁸ C. A. Heusch,¹⁸ J. Kroseberg,¹⁸ W. S. Lockman,¹⁸ G. Nesom,¹⁸ T. Schalk,¹⁸ B. A. Schumm,¹⁸
 A. Seiden,¹⁸ P. Spradlin,¹⁸ D. C. Williams,¹⁸ M. G. Wilson,¹⁸ J. Albert,¹⁹ E. Chen,¹⁹ G. P. Dubois-Felsmann,¹⁹
 A. Dvoretskii,¹⁹ D. G. Hitlin,¹⁹ I. Narsky,¹⁹ T. Piatenko,¹⁹ F. C. Porter,¹⁹ A. Ryd,¹⁹ A. Samuel,¹⁹ R. Andreassen,²⁰
 S. Jayatilleke,²⁰ G. Mancinelli,²⁰ B. T. Meadows,²⁰ M. D. Sokoloff,²⁰ F. Blanc,²¹ P. Bloom,²¹ S. Chen,²¹
 W. T. Ford,²¹ U. Nauenberg,²¹ A. Olivas,²¹ P. Rankin,²¹ W. O. Ruddick,²¹ J. G. Smith,²¹ K. A. Ulmer,²¹
 S. R. Wagner,²¹ J. Zhang,²¹ A. Chen,²² E. A. Eckhart,²² A. Soffer,²² W. H. Toki,²² R. J. Wilson,²² Q. Zeng,²²
 E. Feltresi,²³ A. Hauke,²³ B. Spaan,²³ D. Altenburg,²⁴ T. Brandt,²⁴ J. Brose,²⁴ M. Dickopp,²⁴ V. Klose,²⁴
 H. M. Lacker,²⁴ R. Nogowski,²⁴ S. Otto,²⁴ A. Petzold,²⁴ G. Schott,²⁴ J. Schubert,²⁴ K. R. Schubert,²⁴
 R. Schwierz,²⁴ J. E. Sundermann,²⁴ D. Bernard,²⁵ G. R. Bonneauaud,²⁵ P. Grenier,²⁵ S. Schrenk,²⁵ Ch. Thiebaux,²⁵
 G. Vasileiadis,²⁵ M. Verderi,²⁵ D. J. Bard,²⁶ P. J. Clark,²⁶ W. Gradl,²⁶ F. Muheim,²⁶ S. Playfer,²⁶ Y. Xie,²⁶
 M. Andreotti,²⁷ V. Azzolini,²⁷ D. Bettoni,²⁷ C. Bozzi,²⁷ R. Calabrese,²⁷ G. Cibinetto,²⁷ E. Luppi,²⁷ M. Negrini,²⁷
 L. Piemontese,²⁷ F. Anulli,²⁸ R. Baldini-Ferroli,²⁸ A. Calcaterra,²⁸ R. de Sangro,²⁸ G. Finocchiaro,²⁸ P. Patteri,²⁸
 I. M. Peruzzi,²⁸ M. Piccolo,²⁸ A. Zallo,²⁸ A. Buzzo,²⁹ R. Capra,²⁹ R. Contri,²⁹ M. Lo Vetere,²⁹ M. Macri,²⁹
 M. R. Monge,²⁹ S. Passaggio,²⁹ C. Patrignani,²⁹ E. Robutti,²⁹ A. Santroni,²⁹ S. Tosi,²⁹ S. Bailey,³⁰
 G. Brandenburg,³⁰ K. S. Chaisanguanthum,³⁰ M. Morii,³⁰ E. Won,³⁰ R. S. Dubitzky,³¹ U. Langenegger,³¹
 J. Marks,³¹ S. Schenk,³¹ U. Uwer,³¹ W. Bhimji,³² D. A. Bowerman,³² P. D. Dauncey,³² U. Egede,³² R. L. Flack,³²
 J. R. Gaillard,³² G. W. Morton,³² J. A. Nash,³² M. B. Nikolich,³² G. P. Taylor,³² M. J. Charles,³³ W. F. Mader,³³
 U. Mallik,³³ A. K. Mohapatra,³³ J. Cochran,³⁴ H. B. Crawley,³⁴ V. Eyges,³⁴ W. T. Meyer,³⁴ S. Prell,³⁴
 E. I. Rosenberg,³⁴ A. E. Rubin,³⁴ J. Yi,³⁴ N. Arnaud,³⁵ M. Davier,³⁵ X. Giroux,³⁵ G. Grosdidier,³⁵ A. Höcker,³⁵
 F. Le Diberder,³⁵ V. Lepeltier,³⁵ A. M. Lutz,³⁵ A. Oyanguren,³⁵ T. C. Petersen,³⁵ M. Pierini,³⁵ S. Plaszczynski,³⁵
 S. Rodier,³⁵ P. Roudeau,³⁵ M. H. Schune,³⁵ A. Stocchi,³⁵ G. Wormser,³⁵ C. H. Cheng,³⁶ D. J. Lange,³⁶
 M. C. Simani,³⁶ D. M. Wright,³⁶ A. J. Bevan,³⁷ C. A. Chavez,³⁷ J. P. Coleman,³⁷ I. J. Forster,³⁷ J. R. Fry,³⁷
 E. Gabathuler,³⁷ R. Gamet,³⁷ K. A. George,³⁷ D. E. Hutchcroft,³⁷ R. J. Parry,³⁷ D. J. Payne,³⁷ K. C. Schofield,³⁷
 C. Touramanis,³⁷ C. M. Cormack,³⁸ F. Di Lodovico,³⁸ R. Sacco,³⁸ C. L. Brown,³⁹ G. Cowan,³⁹ H. U. Flaecher,³⁹
 M. G. Green,³⁹ D. A. Hopkins,³⁹ P. S. Jackson,³⁹ T. R. McMahon,³⁹ S. Ricciardi,³⁹ F. Salvatore,³⁹ D. Brown,⁴⁰
 C. L. Davis,⁴⁰ J. Allison,⁴¹ N. R. Barlow,⁴¹ R. J. Barlow,⁴¹ M. C. Hodgkinson,⁴¹ G. D. Lafferty,⁴¹ M. T. Naisbit,⁴¹
 J. C. Williams,⁴¹ C. Chen,⁴² A. Farbin,⁴² W. D. Hulsbergen,⁴² A. Jawahery,⁴² D. Kovalskyi,⁴² C. K. Lae,⁴²
 V. Lillard,⁴² D. A. Roberts,⁴² G. Simi,⁴² G. Blaylock,⁴³ C. Dallapiccola,⁴³ S. S. Hertzbach,⁴³ R. Kofler,⁴³
 V. B. Koptchev,⁴³ X. Li,⁴³ T. B. Moore,⁴³ S. Saremi,⁴³ H. Staengle,⁴³ S. Willocq,⁴³ R. Cowan,⁴⁴ K. Koeneke,⁴⁴

G. Sciolla,⁴⁴ S. J. Sekula,⁴⁴ F. Taylor,⁴⁴ R. K. Yamamoto,⁴⁴ H. Kim,⁴⁵ P. M. Patel,⁴⁵ S. H. Robertson,⁴⁵ A. Lazzaro,⁴⁶ V. Lombardo,⁴⁶ F. Palombo,⁴⁶ J. M. Bauer,⁴⁷ L. Cremaldi,⁴⁷ V. Eschenburg,⁴⁷ R. Godang,⁴⁷ R. Kroeger,⁴⁷ J. Reidy,⁴⁷ D. A. Sanders,⁴⁷ D. J. Summers,⁴⁷ H. W. Zhao,⁴⁷ S. Brunet,⁴⁸ D. Côté,⁴⁸ P. Taras,⁴⁸ B. Viaud,⁴⁸ H. Nicholson,⁴⁹ N. Cavallo,^{50,*} G. De Nardo,⁵⁰ F. Fabozzi,^{50,*} C. Gatto,⁵⁰ L. Lista,⁵⁰ D. Monorchio,⁵⁰ P. Paolucci,⁵⁰ D. Piccolo,⁵⁰ C. Sciacca,⁵⁰ M. Baak,⁵¹ H. Bulten,⁵¹ G. Raven,⁵¹ H. L. Snoek,⁵¹ L. Wilden,⁵¹ C. P. Jessop,⁵² J. M. LoSecco,⁵² T. Allmendinger,⁵³ G. Benelli,⁵³ K. K. Gan,⁵³ K. Honscheid,⁵³ D. Hufnagel,⁵³ P. D. Jackson,⁵³ H. Kagan,⁵³ R. Kass,⁵³ T. Pulliam,⁵³ A. M. Rahimi,⁵³ R. Ter-Antonyan,⁵³ Q. K. Wong,⁵³ J. Brau,⁵⁴ R. Frey,⁵⁴ O. Igonkina,⁵⁴ M. Lu,⁵⁴ C. T. Potter,⁵⁴ N. B. Sinev,⁵⁴ D. Strom,⁵⁴ E. Torrence,⁵⁴ F. Colecchia,⁵⁵ A. Dorigo,⁵⁵ F. Galeazzi,⁵⁵ M. Margoni,⁵⁵ M. Morandin,⁵⁵ M. Posocco,⁵⁵ M. Rotondo,⁵⁵ F. Simonetto,⁵⁵ R. Stroili,⁵⁵ C. Voci,⁵⁵ M. Benayoun,⁵⁶ H. Briand,⁵⁶ J. Chauveau,⁵⁶ P. David,⁵⁶ L. Del Buono,⁵⁶ Ch. de la Vaissière,⁵⁶ O. Hamon,⁵⁶ M. J. J. John,⁵⁶ Ph. Leruste,⁵⁶ J. Malclès,⁵⁶ J. Ocariz,⁵⁶ L. Roos,⁵⁶ G. Therin,⁵⁶ P. K. Behera,⁵⁷ L. Gladney,⁵⁷ Q. H. Guo,⁵⁷ J. Panetta,⁵⁷ M. Biasini,⁵⁸ R. Covarelli,⁵⁸ S. Pacetti,⁵⁸ M. Pioppi,⁵⁸ C. Angelini,⁵⁹ G. Batignani,⁵⁹ S. Bettarini,⁵⁹ F. Bucci,⁵⁹ G. Calderini,⁵⁹ M. Carpinelli,⁵⁹ R. Cenci,⁵⁹ F. Forti,⁵⁹ M. A. Giorgi,⁵⁹ A. Lusiani,⁵⁹ G. Marchiori,⁵⁹ M. Morganti,⁵⁹ N. Neri,⁵⁹ E. Paoloni,⁵⁹ M. Rama,⁵⁹ G. Rizzo,⁵⁹ J. Walsh,⁵⁹ M. Haire,⁶⁰ D. Judd,⁶⁰ K. Paick,⁶⁰ D. E. Wagoner,⁶⁰ J. Biesiada,⁶¹ N. Danielson,⁶¹ P. Elmer,⁶¹ Y. P. Lau,⁶¹ C. Lu,⁶¹ J. Olsen,⁶¹ A. J. S. Smith,⁶¹ A. V. Telnov,⁶¹ F. Bellini,⁶² G. Cavoto,⁶² A. D'Orazio,⁶² E. Di Marco,⁶² R. Faccini,⁶² F. Ferrarotto,⁶² F. Ferroni,⁶² M. Gaspero,⁶² L. Li Gioi,⁶² M. A. Mazzoni,⁶² S. Morganti,⁶² G. Piredda,⁶² F. Polci,⁶² F. Safai Tehrani,⁶² C. Voena,⁶² H. Schröder,⁶³ G. Wagner,⁶³ R. Waldi,⁶³ T. Adye,⁶⁴ N. De Groot,⁶⁴ B. Franek,⁶⁴ G. P. Gopal,⁶⁴ E. O. Olaiya,⁶⁴ F. F. Wilson,⁶⁴ R. Aleksan,⁶⁵ S. Emery,⁶⁵ A. Gaidot,⁶⁵ S. F. Ganzhur,⁶⁵ P.-F. Giraud,⁶⁵ G. Graziani,⁶⁵ G. Hamel de Monchenault,⁶⁵ W. Kozanecki,⁶⁵ M. Legendre,⁶⁵ G. W. London,⁶⁵ B. Mayer,⁶⁵ G. Vasseur,⁶⁵ Ch. Yèche,⁶⁵ M. Zito,⁶⁵ M. V. Purohit,⁶⁶ A. W. Weidemann,⁶⁶ J. R. Wilson,⁶⁶ F. X. Yumiceva,⁶⁶ T. Abe,⁶⁷ M. T. Allen,⁶⁷ D. Aston,⁶⁷ R. Bartoldus,⁶⁷ N. Berger,⁶⁷ A. M. Boyarski,⁶⁷ O. L. Buchmueller,⁶⁷ R. Claus,⁶⁷ M. R. Convery,⁶⁷ M. Cristinziani,⁶⁷ J. C. Dingfelder,⁶⁷ D. Dong,⁶⁷ J. Dorfan,⁶⁷ D. Dujmic,⁶⁷ W. Dunwoodie,⁶⁷ S. Fan,⁶⁷ R. C. Field,⁶⁷ T. Glanzman,⁶⁷ S. J. Gowdy,⁶⁷ T. Hadig,⁶⁷ V. Halyo,⁶⁷ C. Hast,⁶⁷ T. Hryna'ova,⁶⁷ W. R. Innes,⁶⁷ M. H. Kelsey,⁶⁷ P. Kim,⁶⁷ M. L. Kocian,⁶⁷ D. W. G. S. Leith,⁶⁷ J. Libby,⁶⁷ S. Luitz,⁶⁷ V. Luth,⁶⁷ H. L. Lynch,⁶⁷ H. Marsiske,⁶⁷ R. Messner,⁶⁷ D. R. Muller,⁶⁷ C. P. O'Grady,⁶⁷ V. E. Ozcan,⁶⁷ A. Perazzo,⁶⁷ M. Perl,⁶⁷ B. N. Ratcliff,⁶⁷ A. Roodman,⁶⁷ A. A. Salnikov,⁶⁷ R. H. Schindler,⁶⁷ J. Schwiening,⁶⁷ A. Snyder,⁶⁷ J. Stelzer,⁶⁷ J. Strube,^{54,67} D. Su,⁶⁷ M. K. Sullivan,⁶⁷ K. Suzuki,⁶⁷ S. Swain,⁶⁷ J. M. Thompson,⁶⁷ J. Va'vra,⁶⁷ M. Weaver,⁶⁷ W. J. Wisniewski,⁶⁷ M. Wittgen,⁶⁷ D. H. Wright,⁶⁷ A. K. Yarritu,⁶⁷ K. Yi,⁶⁷ C. C. Young,⁶⁷ P. R. Burchat,⁶⁸ A. J. Edwards,⁶⁸ S. A. Majewski,⁶⁸ B. A. Petersen,⁶⁸ C. Roat,⁶⁸ M. Ahmed,⁶⁹ S. Ahmed,⁶⁹ M. S. Alam,⁶⁹ J. A. Ernst,⁶⁹ M. A. Saeed,⁶⁹ M. Saleem,⁶⁹ F. R. Wappeler,⁶⁹ S. B. Zain,⁶⁹ W. Bugg,⁷⁰ M. Krishnamurthy,⁷⁰ S. M. Spanier,⁷⁰ R. Eckmann,⁷¹ J. L. Ritchie,⁷¹ A. Satpathy,⁷¹ R. F. Schwitters,⁷¹ J. M. Izen,⁷² I. Kitayama,⁷² X. C. Lou,⁷² S. Ye,⁷² F. Bianchi,⁷³ M. Bona,⁷³ F. Gallo,⁷³ D. Gamba,⁷³ M. Bomben,⁷⁴ L. Bosisio,⁷⁴ C. Cartaro,⁷⁴ F. Cossutti,⁷⁴ G. Della Ricca,⁷⁴ S. Dittongo,⁷⁴ S. Grancagnolo,⁷⁴ L. Lanceri,⁷⁴ P. Poropat,^{74,†} L. Vitale,⁷⁴ F. Martinez-Vidal,⁷⁵ R. S. Panvini,^{76,†} Sw. Banerjee,⁷⁷ B. Bhuyan,⁷⁷ C. M. Brown,⁷⁷ D. Fortin,⁷⁷ K. Hamano,⁷⁷ R. Kowalewski,⁷⁷ J. M. Roney,⁷⁷ R. J. Sobie,⁷⁷ J. J. Back,⁷⁸ P. F. Harrison,⁷⁸ T. E. Latham,⁷⁸ G. B. Mohanty,⁷⁸ H. R. Band,⁷⁹ X. Chen,⁷⁹ B. Cheng,⁷⁹ S. Dasu,⁷⁹ M. Datta,⁷⁹ A. M. Eichenbaum,⁷⁹ K. T. Flood,⁷⁹ M. Graham,⁷⁹ J. J. Hollar,⁷⁹ J. R. Johnson,⁷⁹ P. E. Kutter,⁷⁹ H. Li,⁷⁹ R. Liu,⁷⁹ B. Mellado,⁷⁹ A. Mihalyi,⁷⁹ Y. Pan,⁷⁹ R. Prepost,⁷⁹ P. Tan,⁷⁹ J. H. von Wimmersperg-Toeller,⁷⁹ J. Wu,⁷⁹ S. L. Wu,⁷⁹ Z. Yu,⁷⁹ M. G. Greene,⁸⁰ and H. Neal⁸⁰

(The BABAR Collaboration)

¹Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France

²IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain

³Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

⁴Institute of High Energy Physics, Beijing 100039, China

⁵University of Bergen, Inst. of Physics, N-5007 Bergen, Norway

⁶Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

⁷University of Birmingham, Birmingham, B15 2TT, United Kingdom

⁸Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

⁹University of Bristol, Bristol BS8 1TL, United Kingdom

¹⁰University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

¹¹Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

¹²Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

¹³University of California at Irvine, Irvine, California 92697, USA

- ¹⁴University of California at Los Angeles, Los Angeles, California 90024, USA
¹⁵University of California at Riverside, Riverside, California 92521, USA
¹⁶University of California at San Diego, La Jolla, California 92093, USA
¹⁷University of California at Santa Barbara, Santa Barbara, California 93106, USA
¹⁸University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
¹⁹California Institute of Technology, Pasadena, California 91125, USA
²⁰University of Cincinnati, Cincinnati, Ohio 45221, USA
²¹University of Colorado, Boulder, Colorado 80309, USA
²²Colorado State University, Fort Collins, Colorado 80523, USA
²³Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
²⁴Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
²⁵Ecole Polytechnique, LLR, F-91128 Palaiseau, France
²⁶University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
²⁷Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
²⁸Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
²⁹Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
³⁰Harvard University, Cambridge, Massachusetts 02138, USA
³¹Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
³²Imperial College London, London, SW7 2AZ, United Kingdom
³³University of Iowa, Iowa City, Iowa 52242, USA
³⁴Iowa State University, Ames, Iowa 50011-3160, USA
³⁵Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
³⁶Lawrence Livermore National Laboratory, Livermore, California 94550, USA
³⁷University of Liverpool, Liverpool L69 7ZE, United Kingdom
³⁸Queen Mary, University of London, E1 4NS, United Kingdom
³⁹University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
⁴⁰University of Louisville, Louisville, Kentucky 40292, USA
⁴¹University of Manchester, Manchester M13 9PL, United Kingdom
⁴²University of Maryland, College Park, Maryland 20742, USA
⁴³University of Massachusetts, Amherst, Massachusetts 01003, USA
⁴⁴Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
⁴⁵McGill University, Montréal, Quebec, Canada H3A 2T8
⁴⁶Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
⁴⁷University of Mississippi, University, Mississippi 38677, USA
⁴⁸Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
⁴⁹Mount Holyoke College, South Hadley, Massachusetts 01075, USA
⁵⁰Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
⁵¹NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
⁵²University of Notre Dame, Notre Dame, Indiana 46556, USA
⁵³Ohio State University, Columbus, Ohio 43210, USA
⁵⁴University of Oregon, Eugene, Oregon 97403, USA
⁵⁵Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
⁵⁶Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
⁵⁷University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
⁵⁸Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
⁵⁹Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
⁶⁰Prairie View A&M University, Prairie View, Texas 77446, USA
⁶¹Princeton University, Princeton, New Jersey 08544, USA
⁶²Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
⁶³Universität Rostock, D-18051 Rostock, Germany
⁶⁴Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
⁶⁵DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
⁶⁶University of South Carolina, Columbia, South Carolina 29208, USA
⁶⁷Stanford Linear Accelerator Center, Stanford, California 94309, USA
⁶⁸Stanford University, Stanford, California 94305-4060, USA
⁶⁹State University of New York, Albany, New York 12222, USA
⁷⁰University of Tennessee, Knoxville, Tennessee 37996, USA
⁷¹University of Texas at Austin, Austin, Texas 78712, USA
⁷²University of Texas at Dallas, Richardson, Texas 75083, USA
⁷³Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
⁷⁴Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
⁷⁵IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
⁷⁶Vanderbilt University, Nashville, Tennessee 37235, USA
⁷⁷University of Victoria, Victoria, British Columbia, Canada V8W 3P6

⁷⁸Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

⁷⁹University of Wisconsin, Madison, Wisconsin 53706, USA

⁸⁰Yale University, New Haven, Connecticut 06511, USA

(Dated: February 7, 2008)

We present a first measurement of CP asymmetries in neutral B decays to D^+D^- , and updated CP asymmetry measurements in decays to $D^{*+}D^-$ and $D^{*-}D^+$. We use fully-reconstructed decays collected in a data sample of $(232 \pm 3) \times 10^6$ $\Upsilon(4S) \rightarrow B\bar{B}$ events in the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We determine the time-dependent asymmetry parameters to be $S_{D^{*+}D^-} = -0.54 \pm 0.35 \pm 0.07$, $C_{D^{*+}D^-} = 0.09 \pm 0.25 \pm 0.06$, $S_{D^{*-}D^+} = -0.29 \pm 0.33 \pm 0.07$, $C_{D^{*-}D^+} = 0.17 \pm 0.24 \pm 0.04$, $S_{D^+D^-} = -0.29 \pm 0.63 \pm 0.06$, and $C_{D^+D^-} = 0.11 \pm 0.35 \pm 0.06$, where in each case the first error is statistical and the second error is systematic.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

Charge-parity (CP) violation is described in the Standard Model (SM) by a single irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix V [1]. The B -meson system provides an excellent probe for testing the completeness of the CKM mechanism in a variety of CP asymmetries [2]. Measurements of CP violation in $B^0 \rightarrow (c\bar{c})K^{0(*)}$ decays [3] by the BABAR [4] and Belle [5] collaborations have precisely determined the parameter $\sin 2\beta$, where β is $\arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$. The current world average of $\sin 2\beta = 0.726 \pm 0.037$ is in good agreement with the range implied by other measurements in the context of the SM [6], providing evidence that the CKM mechanism is the main source of CP violation in the quark sector.

Decays of B^0 mesons to pairs of charged $D^{(*)}$ mesons can also be used to determine $\sin 2\beta$. These decays proceed to leading order via a tree-level color-allowed $b \rightarrow c\bar{c}d$ transition. The presence of a gluonic penguin contribution with a different weak phase is expected to change the magnitude of the CP asymmetry by not more than a few percent [7]. However, additional contributions from non-SM processes may lead to shifts as large as $\Delta\beta \approx 0.6$ in some models [8]. Interference between SM penguin and tree amplitudes can additionally provide some sensitivity to the angle $\gamma = \arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*]$ [9].

In this Letter we present a first measurement of CP asymmetries in the decay $B^0 \rightarrow D^+D^-$ and improved measurements of CP asymmetries in $B^0 \rightarrow D^{*+}D^-$ and $B^0 \rightarrow D^{*-}D^+$ decays [10, 11]. The results are based on an analysis of $(232 \pm 3) \times 10^6$ $\Upsilon(4S) \rightarrow B\bar{B}$ decays recorded by the BABAR detector [12] at the PEP-II e^+e^- collider.

The selection of $B^0 \rightarrow D^{*+}D^-$ candidates is similar to that of our previous analysis [10]. We reconstruct D^{*+} in its decay to $D^0\pi^+$, where the D^0 is reconstructed in one of four final states: $K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$, or $K_s^0\pi^+\pi^-$. The D^- is reconstructed in the final states $K^+\pi^-\pi^-$ or $K_s^0\pi^-$. The K_s^0 candidates are reconstructed from $\pi^+\pi^-$ pairs within 15 MeV/ c^2 of the nominal K_s^0 mass [13]. The π^0 candidates are reconstructed as photon pairs with an invariant mass between 115 and 150 MeV/ c^2 ; each photon must have en-

ergy above 30 MeV in the laboratory frame and the sum of the photon energies must exceed 200 MeV. We require the D^0 and D^\pm candidates to have reconstructed invariant masses within 20 MeV/ c^2 of their respective nominal masses, except for D^0 decays with a π^0 daughter, which must be within 35 MeV/ c^2 of the nominal D^0 mass. The $B^0 \rightarrow D^+D^-$ candidates are reconstructed solely through the decay of $D^\mp \rightarrow K^\pm\pi^\mp\pi^\mp$. Charged kaons are required to be incompatible with a pion hypothesis on the basis of measurements of particle identification quantities.

To reduce background from continuum events ($e^+e^- \rightarrow q\bar{q}$, $q = u, d, s, c$) is reduced, we exploit the contrast between the spherical topology of $B\bar{B}$ events and the more jet-like nature of continuum events. We require the ratio of the second-to-zeroth order Fox-Wolfram moments [14] to be less than 0.6 . We also use a Fisher discriminant, constructed as an optimized linear combination of 11 event shape variables [15]: the momentum flow in nine concentric cones around the thrust axis of the reconstructed B^0 candidate, the angle between that thrust axis and the beam axis, and the angle between the line-of-flight of the B^0 candidate and the beam axis. The Fisher discriminant selection requirement increases the signal significance by 2% in the case of $B^0 \rightarrow D^{*\pm}D^\mp$ and 9% in the case of $B^0 \rightarrow D^+D^-$.

For each candidate, we construct a likelihood variable $\mathcal{L}_{\text{mass}}$ from the differences between the reconstructed masses and the nominal masses of the D^{*+} , D^+ , and D^0 candidates [10]. The $\mathcal{L}_{\text{mass}}$ variable is the product of the likelihood functions for the three candidate types. The likelihood for D^+ and D^0 is parametrized with a single Gaussian function, while the mass difference $m_{D^{*+}} - m_{D^0}$ is parameterized as the sum of two Gaussian functions. The computed value of $\mathcal{L}_{\text{mass}}$ and the difference ΔE between measured energy of the B^0 candidate in the center-of-mass frame and half the center-of-mass energy, $\Delta E \equiv E_B^* - (\sqrt{s}/2)$, are used to reduce the combinatoric background. Maximum allowed values for both $-\ln \mathcal{L}_{\text{mass}}$ and $|\Delta E|$ are set for each individual final state separately, optimized using a Monte Carlo simulation [16] to obtain the highest expected signal sig-

FIG. 1: Distribution of m_{ES} for (a) $\bar{B}^0 \rightarrow D^{*+}D^-$, (b) $\bar{B}^0 \rightarrow D^{*-}D^+$ and (c) $\bar{B}^0 \rightarrow D^+D^-$ candidates. The shaded areas represent the contributions from background events. The dashed and solid curves describing the background and signal plus background distributions respectively are explained in the text.

nificance.

The technique for measuring the CP asymmetries is analogous to previous *BABAR* measurements described in detail elsewhere [17]. After the reconstruction of a $B^0 \rightarrow D^{(*)\pm}D^\mp$ candidate B_{CP} , we assign the remaining tracks in the event to the other B meson B_{tag} . We compute a proper time difference Δt and its estimated uncertainty $\sigma_{\Delta t}$ from the reconstructed decay vertices of B_{CP} and B_{tag} . The tracks assigned to B_{tag} are used to determine the B_{tag} flavor and thus the flavor of the B_{CP} meson at $\Delta t = 0$ [18]. Events are classified in one of six tag categories and must have an estimated probability w of assigning the wrong flavor to B_{tag} less than 45%.

Taking into account the uncertainty in the vertex position and tag flavor, the observed Δt distribution for $B^0 \rightarrow D^{(*)\pm}D^\mp$ signal events $F_\pm^{CP}(\Delta t)$ is described by:

$$F_\pm^{CP}(\Delta t) = \frac{e^{-|\Delta t'|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 \pm (1 - 2w)[S_f \sin(\Delta m_d \Delta t') - C_f \cos(\Delta m_d \Delta t')] \right\} \otimes R(\Delta t - \Delta t'; \sigma_{\Delta t}), \quad (1)$$

where the difference between the observed and true decay time differences $\Delta t - \Delta t'$ is described by the empirical resolution function $R(\Delta t - \Delta t'; \sigma_{\Delta t})$. This function is parametrized as the sum of three Gaussians, a ‘core’ and a ‘tail’ Gaussian, each with a width and mean proportional to $\sigma_{\Delta t}$, and an outlier Gaussian centered at zero with a width of 8 ps. The values of the B^0 lifetime τ_{B^0} and the B^0 - \bar{B}^0 oscillation frequency Δm_d are fixed to (1.536 ± 0.014) ps and (0.502 ± 0.007) ps $^{-1}$ respectively [13]. We determine S_f and C_f separately for D^+D^- , $D^{*+}D^-$, and $D^{*-}\bar{D}^+$. If only tree-graph contributions are present, we expect $S_{D^+D^-} = -\sin 2\beta; C_{D^+D^-} = 0$, and $C_{D^{*+}D^-} = -C_{D^{*-}\bar{D}^+}$. Additionally, under these conditions we have $S_{D^{*+}D^-} =$

$-X \sin(2\beta + \delta)$ and $S_{D^{*-}\bar{D}^+} = -X \sin(2\beta - \delta)$, with $X = \sqrt{1 - C_{D^{*-}\bar{D}^+}^2}$ and where δ is the difference of the strong phases for $B^0 \rightarrow D^{*+}D^-$ and $B^0 \rightarrow D^{*-}D^+$. If the magnitudes of the amplitudes for $B^0 \rightarrow D^{*+}D^-$ and $B^0 \rightarrow D^{*-}D^+$ are equal [7], then $C_{D^{*+}D^-} = C_{D^{*-}\bar{D}^+} = 0$. To determine the values of w for each of the tag categories and to increase the precision on the resolution function parameters, we simultaneously fit to a large sample B_{flav} of reconstructed B^0 decays to the flavor eigenstates $D^{(*)-}h^+(h^+ = \pi^+, \rho^+, \text{ and } a_1^+)$ and $J/\psi K^{*0}(K^{*0} \rightarrow K^+\pi^-)$ [17].

The beam-energy substituted mass $m_{\text{ES}} \equiv [(s/2 + \vec{p}_i \cdot \vec{p}_B)^2/E_i^2 - \vec{p}_B^2]^{1/2}$, where the initial total e^+e^- four-momentum (E_i, \vec{p}_i) and the B momentum \vec{p}_B are defined in the laboratory frame, is used to determine the composition of the reconstructed $D^{(*)\pm}D^\mp$ samples. We use only the region $m_{\text{ES}} > 5.2$ GeV/ c^2 , which includes a large sideband of pure background events. These events are included in order to determine the properties of combinatoric background present in the signal region. Backgrounds are incorporated with empirical descriptions of their Δt spectra. The backgrounds include prompt decays (associated with background from continuum events), and non-prompt decays with a Δt description similar to Eq. 1. Both components are convolved with a resolution function distinct from that of the signal, parametrized as the sum of two Gaussians. Based on Monte Carlo studies we expect a significant flavor asymmetry in the non-prompt background of the $B^0 \rightarrow D^{*\pm}D^\mp$ samples, because the $D^{*\pm}$ candidate is usually a true $D^{*\pm}$ while the D^\pm is more often incorrectly reconstructed. This flavor asymmetry is parametrized via values of C_f and S_f of the non-prompt background that are allowed to vary in the fit.

The Δt and m_{ES} distributions are fit simultaneously. The m_{ES} distribution, shown in Fig. 1, allows a deter-

mination of a signal probability for each event. In signal events, the values of m_{ES} accumulate near the nominal B^0 mass with a resolution of approximately $2.6 \text{ MeV}/c^2$. The fitted m_{ES} shapes consist of a Gaussian distribution for the signal and an ARGUS function [20] for the combinatoric background. The total number of selected candidates N_{cand} and the signal yield N_{sig} are shown in Table I. From detailed Monte Carlo simulations of generic B decays, we expect some background events to peak in the m_{ES} signal region due to cross-feed from other decay modes. The fraction of events in the signal Gaussian due to this peaking background is estimated to be $(7.0 \pm 6.2)\%$ for $B^0 \rightarrow D^{*\pm}D^\mp$ and $(13.6 \pm 6.2)\%$ for $B^0 \rightarrow D^+D^-$.

Sample	N_{cand}	N_{sig}	purity
$(\bar{B}^0 \rightarrow D^{*-}D^+)$	993	126 ± 16	0.49 ± 0.03
$(\bar{B}^0 \rightarrow D^{*+}D^-)$	1038	145 ± 16	0.49 ± 0.03
$(\bar{B}^0 \rightarrow D^+D^-)$	538	54 ± 11	0.37 ± 0.06

TABLE I: Candidates, signal yield and purity for each of the samples. The purity is defined as the fraction of signal events $N_{\text{sig}}/N_{\text{cand}}$ in the region $m_{\text{ES}} > 5.27 \text{ GeV}/c^2$.

The increase in statistics since our last measurement [10] for $B^0 \rightarrow D^{*\pm}D^\mp$ has allowed some refinements in the analysis. These include an improved treatment of signal probabilities as determined from the m_{ES} spectrum, and additional floating parameters for the description of the background of the CP sample. We have also improved the event reconstruction, candidate selection, and tag-flavor determination. The present effective tagging efficiency $Q = 30.5\%$ [18], a relative increase of 5% over the algorithm previously used.

We perform separate fits for each of the three CP samples. There are in total 54 floating parameters describing the Δt distributions. These are C_f and S_f for signal (2) and background (2), the average mistag fractions w_i and the differences Δw_i between B^0 and \bar{B}^0 mistag fractions for each tag category i (12), parameters for the signal Δt resolution (7), parameters for background Δt distribution (4) and resolution (3) of the B_{flav} and CP samples, and values for w_i and Δw_i for the prompt (12) and non-prompt (12) background of the B_{flav} sample.

The likelihood fits yield the following results:

$$\begin{aligned} S_{D^{*+}D^-} &= -0.54 \pm 0.35(\text{stat.}) \pm 0.07(\text{syst.}), \\ C_{D^{*+}D^-} &= 0.09 \pm 0.25(\text{stat.}) \pm 0.06(\text{syst.}), \\ S_{D^{*-}D^+} &= -0.29 \pm 0.33(\text{stat.}) \pm 0.07(\text{syst.}), \\ C_{D^{*-}D^+} &= 0.17 \pm 0.24(\text{stat.}) \pm 0.04(\text{syst.}), \\ S_{D^+D^-} &= -0.29 \pm 0.63(\text{stat.}) \pm 0.06(\text{syst.}), \\ C_{D^+D^-} &= 0.11 \pm 0.35(\text{stat.}) \pm 0.06(\text{syst.}). \end{aligned}$$

Projections of the fit onto Δt for the three different CP samples are shown in Fig. 2, together with the raw

CP asymmetry

$$A_{CP}^{\text{raw}}(\Delta t) \equiv \frac{N_+(\Delta t) - N_-(\Delta t)}{N_+(\Delta t) + N_-(\Delta t)}, \quad (2)$$

where $N_+(\Delta t)$ ($N_-(\Delta t)$) is the number of $B^0 \rightarrow D^{(*)\pm}D^\mp$ events with a B^0 (\bar{B}^0) tag.

The systematic uncertainties on S_f and C_f are separately evaluated for each of the decay modes. The dominant systematic uncertainty is the precision to which we are able to ascertain, using a Monte Carlo simulation, that the measurement method is unbiased (giving systematic uncertainties in the range 0.03-0.06). Other important uncertainties are due to the amount of peaking background and its potential CP asymmetry (0.01-0.02); assumptions on the Δt resolution function (0.01-0.03); and potential differences between the mistag fractions for the B_{flav} and B_{CP} samples (0.01-0.02). Further sources of systematic uncertainty include the shape of the m_{ES} distribution, detector misalignment, uncertainty in the beam energies, and the possible interference between the suppressed $\bar{b} \rightarrow \bar{u}cd$ amplitude with the favored $b \rightarrow c\bar{u}d$ amplitude for some tag-side decays [21]. The total systematic uncertainty is considerably smaller than in our previous measurement (0.10-0.14), primarily due to fewer assumptions about the background of the CP sample.

In summary, we have performed a first measurement of CP asymmetries in the decay $B^0 \rightarrow D^+D^-$. We have also updated our CP asymmetry measurements in $B^0 \rightarrow D^{*+}D^-$ and $B^0 \rightarrow D^{*-}D^+$, superseding our previously published results [10]. The measured values are consistent with $S_f = -\sin 2\beta$ and $C_f = 0$, expected in the SM for a tree-level-dominated transition with equal rates for $B^0 \rightarrow D^{*+}D^-$ and $B^0 \rightarrow D^{*-}D^+$. Since the dominant uncertainties are statistical, we anticipate improved precision with data collected in the future.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support *BABAR*. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università della Basilicata, Potenza, Italy

† Deceased

[1] N. Cabibbo, Phys. Rev. Lett. **10**, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. **49**, 652 (1973).

FIG. 2: Distribution of Δt and fit projections for $(\bar{B}^0) \rightarrow D^{*+}D^-$ (left), $(\bar{B}^0) \rightarrow D^{*-}D^+$ (middle) and $(\bar{B}^0) \rightarrow D^+D^-$ (right) candidates in the signal region $m_{ES} > 5.27$ GeV/c^2 with a B^0 tag (a) or a \bar{B}^0 tag (b). The time-dependent CP asymmetry is also shown (c). The shaded areas represent the contributions from background events.

- [2] A.B. Carter and A.I. Sanda, Phys. Rev. D **23**, 1567 (1981); I.I. Bigi and A.I. Sanda, Nucl. Phys. B **193**, 85 (1981).
- [3] Charge conjugate reactions are included implicitly unless otherwise noted.
- [4] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **89**, 201802 (2002).
- [5] Belle Collaboration, K. Abe *et al.*, Phys. Rev. D **66**, 071102 (2002).
- [6] J. Charles *et al.* hep-ph/0406184;
M. Bona *et al.* hep-ph/0501199.
- [7] Z.Z. Xing, Phys. Rev. D **61**, 14010 (2000).
- [8] Y. Grossman and M. Worah, Phys. Lett. B **395**, 241 (1997).
- [9] A. Datta and D. London, Phys. Lett. B **584**, 81 (2004);
J. Albert, A. Datta, and D. London, Phys. Lett. B **605**, 335 (2005).
- [10] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **90**, 221801 (2003).
- [11] Belle Collaboration, T. Aushev *et al.*, Phys. Rev. Lett. **93**, 201802 (2004).
- [12] BABAR Collaboration, B. Aubert *et al.*, Nucl. Instr. Methods Phys. Res., Sect. A **479**, 1 (2002).
- [13] Particle Data Group, S. Eidelman *et al.*, Phys. Lett. B **592**, 1 (2004).
- [14] G.C. Fox and S. Wolfram, Phys. Rev. Lett. **41**, 1581 (1978).
- [15] CLEO Collaboration, D. Asner *et al.*, Phys. Rev. D **53**, 1039 (1996).
- [16] GEANT4 Collaboration, S. Agostinelli *et al.*, Nucl. Instr. Methods Phys. Res., Sect. C **A 506**, 250 (2003).
- [17] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. D **66**, 032003 (2002).
- [18] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. **94**, 161803 (2005).
- [19] M. Gronau, Phys. Lett. B **233**, 479 (1989).
- [20] ARGUS Collaboration, H. Albrecht *et al.*, Z. Phys. C **48**, 543 (1990).
- [21] O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D **68**, 034010 (2003).