Solar Energy Production Forecasting

Matthew Echols, Chris Olen, Abhishek Chaturvedi, Targoon Siripanichpong

Background & Objectives

- Once cost prohibitive, solar power generation has seen explosive growth over the past few years and is quickly becoming one of the key energy producers in certain parts of the country
- Understanding the patterns and drivers of solar energy production will help illuminate opportunities in this growing industry and leverage this crucial tool in the fight against climate change

Dataset

Solar Energy Production

The monthly U.S. production of solar energy in trillions of British Thermal Units (Btu).

Data was gathered from the U.S. Energy Information Administration.

GDP

The monthly U.S. GDP in billions of dollars.

This is a measure of macroeconomic growth, which may be correlated to overall energy production and demand.

CPI of Gas

The Consumer Price Index for gasoline used by households in all forms (e.g heating).

This is a measure of how costly key alternative sources of energy to solar are for households.

Crude Oil Price

The weighted price of crude oil per barrel (across Dubai, Brent, and WTI producers).

This is a measure of how costly key alternative sources of energy to solar are for companies.

Silicon Production and Price

The production of silicon in tons and the price of silicon in dollars per ton.

This is a measure of effects on solar how costly a key energy production input of solar panels is.

Cloud Cover

The cloud cover over key locations for solar energy production measured in %..

This is a measure of environmental effects on solar energy production.

Naive Cross-Sectional Approach

Residuals clearly indicate **autocorrelation** and **seasonality** - not something that can be removed using other cross-sectional modeling techniques.

Series Decomposition

Box-Cox Transformation

Box-Cox Transformation: Lambda = -0.019

Autocorrelation and Non-Stationarity

Differencing and Seasonality

Model Validation Process

Evaluation Metrics: MSE & MAE

Baseline Model: ARIMA(0,1,0)

Exponential Smoothing (A,Ad,A)

Residual Autocorrelation

$$y_{t} = (l_{t-1} + 0.85b_{t-1} + s_{t-m})(1 + \epsilon_{t})$$

$$l_{t} = (l_{t-1} + 0.85b_{t-1} + 0.612(l_{t-1} + 0.85b_{t-1} + s_{t-m})(\epsilon_{t})$$

$$b_{t} = (0.85b_{t-1} + 0.155(l_{t-1} + 0.85b_{t-1} + s_{t-m})(\epsilon_{t})$$

$$s_{t} = s_{t-m} + 0.191l_{t-1} + 0.85b_{t-1} + s_{t-m})(\epsilon_{t})$$

```
[,1] [,2] [,3]
[1,] 0.1342 -0.0639 -0.035
[2,] 0.2645 -0.0472 -0.103
[3,] 0.3808 -0.0877 -0.079
```

sARIMA: Parameter Selection

- ACF and PACF suggest ARIMA(1,1,1)(1,1,1)[12]
- Insignificant coefficients on fit models suggest seasonal ARMA(0,1) instead of (1,1)
- EACF on differenced series additionally suggests ARMA(0,1) and ARMA(2,1)
- Finally, significant PACF spikes at lag 4 led us to try ARIMA(4,1,1)(0,1,1)[12] with AR order 2 and 3

coefficients dropped

sigma^2 estimated as 0.0009593: log likelihood=689.01 AIC=-1368.02 AICc=-1367.83 BIC=-1348.95

sARIMA: Parameter Selection (Continued)

- The two models with the lowest AICc scores AND Box-Ljung test p-values that did not reject the null hypothesis at the .01 level are:
- 1. ARIMA(0,1,1)(0,1,1)[12]
- 2. ARIMA(0,1,2)(0,1,1)[12] (provided by Auto Arima)

ARIMA (0,1,1)(0,1,1)[12]

Residual Autocorrelation

$$y_t = (1 + -0.2384e_{t-1})(1 + -0.6214e_{t-12})$$

ARIMA (0,1,2)(0,1,1)[12] - Auto Arima

$$y_t = (1 + -0.2262e_{t-1} + -0.1053e_{t-2})(1 + -0.6104e_{t-12})$$

TBATS (0, {2,1}, 1, {<12,5>})

Regression with ARIMA Residuals


```
Call:
lm(formula = EnergyProduction ~ GDP + weighted crude oil price +
    cloudCover, data = solar[1:348, ])
Residuals:
    Min
            10 Median
-18.034 -7.299 -0.943
                        5.831 45.061
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        -2.456e+01 2.486e+00 -9.878
                                                       <2e-16 ***
weighted crude oil price -2.724e-01 2.463e-02 -11.064
                                                       <2e-16 ***
cloudCover
                         4.184e+00 3.316e+00
                                              1.262
                                                       0.208
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.651 on 344 degrees of freedom
Multiple R-squared: 0.5847, Adjusted R-squared: 0.5811
F-statistic: 161.4 on 3 and 344 DF, p-value: < 2.2e-16
```

Regression with ARIMA Residuals

Linear Model Residuals with first-order & seasonal differencing

Regression with ARIMA Residuals

ARIMA(2,1,2)(1,1,1)[12]

Regression with ARIMA Errors (Naive)

Regression with ARIMA Errors (Smart)

Prophet

Model Development

- Seasonality Type
 - Additive
 - Multiplicative
- Univariate vs Multivariate Models

Recurrent Neural Network

Model Development

- Model Hyperparameters
 - Number of lags
 - Number of layers
 - Number of nodes/layers
- Compiler
 - Objective function: MSE
 - Optimizer: adam
- Regularizations
 - Dropouts

Layer (type)	Output Shape	Param #		
lstm_3 (LSTM)	(None, 36, 50)	10400		
lstm_4 (LSTM)	(None, 50)	20200		
dense_4 (Dense)	(None, 32)	1632		
dropout_3 (Dropout)	(None, 32)	0		
dense_5 (Dense)	(None, 12)	396		

Total params: 32,628 Trainable params: 32,628 Non-trainable params: 0 Solar Production Projection (Thousand MWH) from 1989 to 2018

Time Index

Model Comparisons

Metrics	Random Walk - ARIMA (0,1,0)	ARIMA (0,1,1)(0,1, 1)[12]	Auto - ARIMA (0,1,2)(0,1, 1)[12]	ETS	TBATS	Regression with ARIMA Residuals (Smart)	Regression with ARIMA Residuals (Naive)	Prophet (Univ.)	Prophet (Mult.)	RNN
Avg. Cross Validation MSE	92.345	6.504	6.378	17.962	11.15	-	-	2.731	2.528	-
Avg. Cross Validation MAE	5.593	1.404	1.402	2.166	1.765	-	-	2.428	2.168	-
Forecast MSE	1335.065	48.324	54.273	172.31	101.132	58.300	30.336	12.279	10.296	23.239
Forecast MAE	30.5103	5.629	5.908	11.488	8.509	6.0672	4.607	11.032	7.805	4.188

Model Selection and Observations

- We select Multivariate Prophet as the best performing model.
 - Multivariate Prophet has the best ability to account for outliers in the data as evidenced by the minimal distance between its MSE and MAE scores
 - Multivariate Prophet's forecast errors are the lowest, on average
- State Space models struggle in particular with modeling outliers (see: MSE scores)
- There is not enough complex seasonality in the models to required TBATS

Future Work

- We note that in many of our models, we see a rise in the residuals during the last three to four years; as a result, we propose exploration of an intervention model and/or modeling the past ten years separately in order to more closely evaluate recent signals
- We also propose the addition of predictors to capture the energy output of competitor power sources (e.g. wind, hydroelectric, coal, natural gas)
- We propose the application of Bayesian Structural Time Series as an additional approach, given the success of Prophet (a Bayesian-based model)

Appendix

Predictor Collinearity

- Most predictors are clearly highly correlated with one another
- For this reason, we only selected a subset of predictors when developing any cross-sectional model we developed in our project.

Prophet (2012-)

Prophet

