Ptr	Truth	0Q	6Q	12Q	18Q	24Q	30Q
			Piecewise 1	Linear, Inversion	Filter, ME 0%		
φ_p	100	$144.7 \\ (121.3, 157.2) \\ [43.9]$	$153.2 \\ (131.2, 169.4) \\ [53.9]$	$163.2 \\ (140.8, 185.9) \\ [66.1]$	$ \begin{array}{c} 171.1 \\ (154.2, 201.2) \\ [75.9] \end{array} $	181.5 (165.5, 204.1) [83.8]	182.3 (168.2, 198.6) [83.8]
h	0.8	$0.640 \\ (0.611, 0.675) \\ [0.160]$	$0.640 \\ (0.606, 0.676) \\ [0.161]$	$0.633 \\ (0.595, 0.668) \\ [0.169]$	$0.637 \\ (0.611, 0.673) \\ [0.167]$	$0.633 \\ (0.586, 0.669) \\ [0.169]$	$0.628 \\ (0.596, 0.672) \\ [0.172]$
$ ho_s$	0.8	$0.762 \\ (0.727, 0.807) \\ [0.043]$	$0.774 \\ (0.730, 0.811) \\ [0.034]$	$0.806 \\ (0.754, 0.835) \\ [0.023]$	$0.815 \\ (0.784, 0.848) \\ [0.027]$	$0.820 \\ (0.798, 0.849) \\ [0.026]$	$0.822 \\ (0.784, 0.857) \\ [0.028]$
$ ho_i$	0.8	$0.756 \\ (0.714, 0.791) \\ [0.049]$	$0.756 \\ (0.708, 0.798) \\ [0.054]$	$0.759 \\ (0.726, 0.785) \\ [0.044]$	$0.761 \\ (0.682, 0.799) \\ [0.051]$	$0.762 \\ (0.725, 0.808) \\ [0.046]$	$0.764 \\ (0.733, 0.808) \\ [0.041]$
σ_g	0.0050	$0.0051 \\ (0.0044, 0.0058) \\ [0.0005]$	$0.0053 \\ (0.0047, 0.0068) \\ [0.0006]$	$0.0056 \\ (0.0047, 0.0066) \\ [0.0010]$	$0.0057 \\ (0.0051, 0.0079) \\ [0.0012]$	$0.0058 \\ (0.0051, 0.0074) \\ [0.0012]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.0011]$
σ_s	0.0050	$0.0050 \\ (0.0042, 0.0063) \\ [0.0007]$	$0.0050 \\ (0.0041, 0.0063) \\ [0.0007]$	$0.0048 \\ (0.0038, 0.0058) \\ [0.0007]$	$0.0047 \\ (0.0031, 0.0058) \\ [0.0009]$	$0.0045 \\ (0.0037, 0.0053) \\ [0.0007]$	$0.0045 \\ (0.0036, 0.0056) \\ [0.0007]$
σ_i	0.0020	$0.0020 \\ (0.0018, 0.0023) \\ [0.0002]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.0001]$	$0.0021 \\ (0.0018, 0.0022) \\ [0.0001]$	$0.0020 \\ (0.0018, 0.0024) \\ [0.0002]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.0002]$	$0.0020 \\ (0.0019, 0.0024) \\ [0.0002]$
ϕ_{π}	2.0	$\begin{array}{c} 2.024 \\ (1.844, 2.177) \\ [0.116] \end{array}$	$1.950 \\ (1.770, 2.154) \\ [0.139]$	$\begin{array}{c} 2.011 \\ (1.783, 2.164) \\ [0.117] \end{array}$	$ \begin{array}{c} 1.973 \\ (1.734, 2.229) \\ [0.151] \end{array} $	$ \begin{array}{c} 1.948 \\ (1.689, 2.189) \\ [0.162] \end{array} $	$ \begin{array}{c} 1.948 \\ (1.778, 2.140) \\ [0.126] \end{array} $
ϕ_y	0.5	$0.325 \\ (0.175, 0.473) \\ [0.204]$	$0.335 \\ (0.170, 0.528) \\ [0.184]$	$0.388 \\ (0.235, 0.558) \\ [0.148]$	$0.364 \\ (0.197, 0.522) \\ [0.176]$	$0.404 \\ (0.210, 0.624) \\ [0.143]$	$0.437 \\ (0.279, 0.611) \\ [0.124]$
$\sum_{\mathbf{N}}$		[1.527]	[1.633]	[1.706]	[2.013]	[1.982]	[1.907]
$\frac{N}{}$		50	50	50	50	50	50
			Glob	al, Particle Filter,	ME 5%		
φ_p	100	$152.7 \\ (134.1, 165.8) \\ [52.0]$	$160.6 \\ (143.0, 179.2) \\ [61.9]$	$170.7 \\ (153.9, 190.6) \\ [72.6]$	$180.3 \\ (161.0, 201.5) \\ [81.5]$	$186.5 \\ (162.6, 203.3) \\ [87.1]$	187.6 (174.4, 202.6) [89.0]
h	0.8	$0.662 \\ (0.620, 0.695) \\ [0.141]$	$0.662 \\ (0.611, 0.710) \\ [0.139]$	$0.670 \\ (0.619, 0.701) \\ [0.135]$	$0.678 \\ (0.631, 0.706) \\ [0.129]$	$0.684 \\ (0.636, 0.715) \\ [0.121]$	$0.678 \\ (0.644, 0.716) \\ [0.125]$
$ ho_s$	0.8	$0.758 \\ (0.717, 0.797) \\ [0.050]$	$0.773 \\ (0.741, 0.807) \\ [0.035]$	$0.794 \\ (0.752, 0.824) \\ [0.023]$	$0.801 \\ (0.768, 0.840) \\ [0.025]$	$0.806 \\ (0.778, 0.839) \\ [0.017]$	$0.807 \\ (0.782, 0.843) \\ [0.021]$
$ ho_i$	0.8	$0.783 \\ (0.752, 0.823) \\ [0.026]$	$0.797 \\ (0.747, 0.824) \\ [0.031]$	$0.795 \\ (0.767, 0.825) \\ [0.019]$	$0.808 \\ (0.759, 0.830) \\ [0.023]$	$0.807 \\ (0.760, 0.842) \\ [0.025]$	$0.803 \\ (0.754, 0.839) \\ [0.025]$
σ_g	0.0050	$0.0032 \\ (0.0023, 0.0039) \\ [0.0018]$	$0.0031 \\ (0.0023, 0.0041) \\ [0.0019]$	$0.0034 \\ (0.0024, 0.0044) \\ [0.0017]$	$0.0037 \\ (0.0027, 0.0049) \\ [0.0014]$	$\begin{array}{c} 0.0038 \\ (0.0027, 0.0047) \\ [0.0014] \end{array}$	$0.0040 \\ (0.0030, 0.0052) \\ [0.0012]$
σ_s	0.0050	$0.0051 \\ (0.0040, 0.0066) \\ [0.0007]$	0.0050 (0.0042, 0.0068) [0.0007]	0.0050 (0.0040, 0.0060) [0.0007]	$0.0052 \\ (0.0034, 0.0064) \\ [0.0009]$	$\begin{array}{c} 0.0051 \\ (0.0040, 0.0062) \\ [0.0006] \end{array}$	$0.0051 \\ (0.0040, 0.0062) \\ [0.0007]$
σ_i	0.0020	$0.0017 \\ (0.0014, 0.0020) \\ [0.0003]$	$0.0017 \\ (0.0014, 0.0019) \\ [0.0004]$	0.0016 (0.0013, 0.0019) [0.0004]	$0.0016 \\ (0.0013, 0.0019) \\ [0.0005]$	$0.0016 \\ (0.0012, 0.0018) \\ [0.0005]$	$ \begin{array}{c} 0.0015 \\ (0.0013, 0.0019) \\ [0.0005] \end{array} $
ϕ_{π}	2.0	$ \begin{array}{c} 2.048 \\ (1.865, 2.191) \\ [0.128] \end{array} $	$ \begin{array}{c} 2.075 \\ (1.869, 2.245) \\ [0.144] \end{array} $	$\begin{array}{c} 2.119 \\ (1.941, 2.324) \\ [0.165] \end{array}$	2.124 (1.902, 2.409) [0.190]	$ \begin{array}{c} 2.116 \\ (1.844, 2.302) \\ [0.162] \end{array} $	2.118 (1.939, 2.307) [0.173]
ϕ_y	0.5	$0.332 \\ (0.213, 0.544) \\ [0.180]$	$0.382 \\ (0.221, 0.620) \\ [0.154]$	$0.403 \\ (0.271, 0.613) \\ [0.135]$	$0.399 \\ (0.258, 0.532) \\ [0.136]$	$0.398 \\ (0.271, 0.586) \\ [0.131]$	$0.404 \\ (0.279, 0.627) \\ [0.141]$
Σ		[1.897]	[1.964]	[1.988]	[2.116]	[2.070]	[2.080]
N		50	50	48	50	36	49

Table 1: Median, (5%, 95%) credible sets and [RMSE] of the mean posterior estimated parameters for N datasets. Σ is the sum of the normalized RMSE.

Ptr	Truth	0Q	6Q	12Q	18Q	24Q	30Q
			Level L	inear, Kalman Fil	ter, ME 5%		
φ_p	100	$154.0 \\ (133.4, 165.9) \\ [52.2]$	$160.9 \\ (142.1, 179.5) \\ [62.2]$	171.8 (153.1, 198.9) [76.0]	184.3 (163.1, 208.7) [84.1]	$193.3 \\ (172.6, 211.0) \\ [91.7]$	191.2 (174.7, 204.3) [92.0]
h	0.8	$0.662 \\ (0.618, 0.692) \\ [0.142]$	$0.660 \\ (0.608, 0.708) \\ [0.141]$	$0.671 \\ (0.617, 0.713) \\ [0.135]$	$0.670 \\ (0.625, 0.705) \\ [0.133]$	$0.677 \\ (0.636, 0.710) \\ [0.128]$	$0.668 \\ (0.629, 0.702) \\ [0.135]$
$ ho_s$	0.8	$0.762 \\ (0.716, 0.802) \\ [0.047]$	$0.780 \\ (0.739, 0.813) \\ [0.031]$	$0.800 \\ (0.753, 0.826) \\ [0.022]$	$0.807 \\ (0.779, 0.846) \\ [0.027]$	$0.821 \\ (0.792, 0.848) \\ [0.027]$	$0.823 \\ (0.784, 0.856) \\ [0.032]$
$ ho_i$	0.8	$0.785 \\ (0.752, 0.823) \\ [0.025]$	$0.801 \\ (0.745, 0.830) \\ [0.029]$	$0.812 \\ (0.777, 0.841) \\ [0.023]$	$0.824 \\ (0.779, 0.862) \\ [0.036]$	$0.831 \\ (0.801, 0.878) \\ [0.042]$	$0.844 \\ (0.800, 0.876) \\ [0.046]$
σ_g	0.0050	$ \begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ [0.0018] \end{array} $	$0.0032 \\ (0.0025, 0.0041) \\ [0.0018]$	$0.0036 \\ (0.0027, 0.0045) \\ [0.0015]$	$\begin{array}{c} 0.0040 \\ (0.0029, 0.0052) \\ [0.0012] \end{array}$	$\begin{array}{c} 0.0042 \\ (0.0030, 0.0054) \\ [0.0011] \end{array}$	$\begin{array}{c} 0.0043 \\ (0.0030, 0.0057) \\ [0.0010] \end{array}$
σ_s	0.0050	$0.0052 \\ (0.0040, 0.0066) \\ [0.0008]$	$0.0051 \\ (0.0041, 0.0068) \\ [0.0007]$	$0.0052 \\ (0.0041, 0.0062) \\ [0.0007]$	$0.0049 \\ (0.0033, 0.0063) \\ [0.0009]$	$0.0047 \\ (0.0039, 0.0059) \\ [0.0006]$	$0.0047 \\ (0.0037, 0.0061) \\ [0.0007]$
σ_i	0.0020	$0.0017 \\ (0.0015, 0.0020) \\ [0.0003]$	$0.0016 \\ (0.0014, 0.0019) \\ [0.0004]$	$0.0017 \\ (0.0014, 0.0020) \\ [0.0003]$	$ \begin{array}{c} 0.0016 \\ (0.0012, 0.0019) \\ [0.0004] \end{array} $	$\begin{array}{c} 0.0017 \\ (0.0014, 0.0020) \\ [0.0004] \end{array}$	$0.0016 \\ (0.0014, 0.0019) \\ [0.0004]$
ϕ_{π}	2.0	$\begin{array}{c} 2.056 \\ (1.877, 2.201) \\ [0.123] \end{array}$	$ \begin{array}{c} 1.994 \\ (1.720, 2.210) \\ [0.147] \end{array} $	$1.886 \\ (1.667, 2.092) \\ [0.166]$	$ \begin{array}{c} 1.831 \\ (1.612, 2.086) \\ [0.228] \end{array} $	$1.695 \\ (1.526, 1.927) \\ [0.310]$	$ \begin{array}{c} 1.740 \\ (1.520, 1.917) \\ [0.299] \end{array} $
ϕ_y	0.5	$0.339 \\ (0.220, 0.533) \\ [0.177]$	$0.341 \\ (0.201, 0.556) \\ [0.178]$	$0.329 \\ (0.142, 0.537) \\ [0.210]$	$0.298 \\ (0.181, 0.493) \\ [0.215]$	$0.296 \\ (0.195, 0.459) \\ [0.211]$	$0.306 \\ (0.166, 0.464) \\ [0.199]$
$\sum_{\mathbf{N}}$		[1.882]	[2.012]	[2.109]	[2.267]	[2.275]	[2.279]
$\frac{N}{}$		50	50	50	50	50	50
			Glob	al, Particle Filter,	ME 5%		
φ_p	100	$152.7 \\ (134.1, 165.8) \\ [52.0]$	$160.6 \\ (143.0, 179.2) \\ [61.9]$	$170.7 \\ (153.9, 190.6) \\ [72.6]$	$180.3 \\ (161.0, 201.5) \\ [81.5]$	$186.5 \\ (162.6, 203.3) \\ [87.1]$	$ \begin{array}{c} 187.6 \\ (174.4, 202.6) \\ [89.0] \end{array} $
h	0.8	$0.662 \\ (0.620, 0.695) \\ [0.141]$	$0.662 \\ (0.611, 0.710) \\ [0.139]$	$0.670 \\ (0.619, 0.701) \\ [0.135]$	$0.678 \\ (0.631, 0.706) \\ [0.129]$	$0.684 \\ (0.636, 0.715) \\ [0.121]$	$0.678 \\ (0.644, 0.716) \\ [0.125]$
$ ho_s$	0.8	$0.758 \\ (0.717, 0.797) \\ [0.050]$	$0.773 \\ (0.741, 0.807) \\ [0.035]$	$0.794 \\ (0.752, 0.824) \\ [0.023]$	$0.801 \\ (0.768, 0.840) \\ [0.025]$	$0.806 \\ (0.778, 0.839) \\ [0.017]$	$0.807 \\ (0.782, 0.843) \\ [0.021]$
$ ho_i$	0.8	$0.783 \\ (0.752, 0.823) \\ [0.026]$	$0.797 \\ (0.747, 0.824) \\ [0.031]$	$0.795 \\ (0.767, 0.825) \\ [0.019]$	$0.808 \\ (0.759, 0.830) \\ [0.023]$	$0.807 \\ (0.760, 0.842) \\ [0.025]$	$0.803 \\ (0.754, 0.839) \\ [0.025]$
σ_g	0.0050	$\begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ [0.0018] \end{array}$	$0.0031 \\ (0.0023, 0.0041) \\ [0.0019]$	$\begin{array}{c} 0.0034 \\ (0.0024, 0.0044) \\ [0.0017] \end{array}$	$\begin{array}{c} 0.0037 \\ (0.0027, 0.0049) \\ [0.0014] \end{array}$	$\begin{array}{c} 0.0038 \\ (0.0027, 0.0047) \\ [0.0014] \end{array}$	$0.0040 \\ (0.0030, 0.0052) \\ [0.0012]$
σ_s	0.0050	$0.0051 \\ (0.0040, 0.0066) \\ [0.0007]$	$0.0050 \\ (0.0042, 0.0068) \\ [0.0007]$	$\begin{array}{c} 0.0050 \\ (0.0040, 0.0060) \\ [0.0007] \end{array}$	$0.0052 \\ (0.0034, 0.0064) \\ [0.0009]$	$\begin{array}{c} 0.0051 \\ (0.0040, 0.0062) \\ [0.0006] \end{array}$	$0.0051 \\ (0.0040, 0.0062) \\ [0.0007]$
σ_i	0.0020	$0.0017 \\ (0.0014, 0.0020) \\ [0.0003]$	$0.0017 \\ (0.0014, 0.0019) \\ [0.0004]$	$0.0016 \\ (0.0013, 0.0019) \\ [0.0004]$	$0.0016 \\ (0.0013, 0.0019) \\ [0.0005]$	$0.0016 \\ (0.0012, 0.0018) \\ [0.0005]$	$0.0015 \\ (0.0013, 0.0019) \\ [0.0005]$
ϕ_{π}	2.0	$\begin{array}{c} 2.048 \\ (1.865, 2.191) \\ [0.128] \end{array}$	$\begin{array}{c} 2.075 \\ (1.869, 2.245) \\ [0.144] \end{array}$	$\begin{array}{c} 2.119 \\ (1.941, 2.324) \\ [0.165] \end{array}$	$ \begin{array}{c} 2.124 \\ (1.902, 2.409) \\ [0.190] \end{array} $	$\begin{array}{c} 2.116 \\ (1.844, 2.302) \\ [0.162] \end{array}$	$\begin{array}{c} 2.118 \\ (1.939, 2.307) \\ [0.173] \end{array}$
ϕ_y	0.5	$0.332 \\ (0.213, 0.544) \\ [0.180]$	$0.382 \\ (0.221, 0.620) \\ [0.154]$	$0.403 \\ (0.271, 0.613) \\ [0.135]$	$0.399 \\ (0.258, 0.532) \\ [0.136]$	$0.398 \\ (0.271, 0.586) \\ [0.131]$	$0.404 \\ (0.279, 0.627) \\ [0.141]$
\sum		[1.897]	[1.964]	[1.988]	[2.116]	[2.070]	[2.080]
N		50	50	48	50	36	49

Table 2: Median, (5%, 95%) credible sets and [RMSE] of the mean posterior estimated parameters for N datasets. Σ is the sum of the normalized RMSE.

Ptr	Truth	0Q	6Q	12Q	18Q	24Q	30Q
			Piecewise	Linear, Inversion	Filter, ME 0%		
$\overline{\varphi_p}$	100	144.7 (121.3, 157.2) [43.9]	153.2 (131.2, 169.4) [53.9]	163.2 (140.8, 185.9) [66.1]	171.1 (154.2, 201.2) [75.9]	181.5 (165.5, 204.1) [83.8]	182.3 (168.2, 198.6) [83.8]
h	0.8	$0.640 \\ (0.611, 0.675) \\ [0.160]$	$0.640 \\ (0.606, 0.676) \\ [0.161]$	$0.633 \\ (0.595, 0.668) \\ [0.169]$	$0.637 \\ (0.611, 0.673) \\ [0.167]$	$0.633 \\ (0.586, 0.669) \\ [0.169]$	$0.628 \\ (0.596, 0.672) \\ [0.172]$
ρ_s	0.8	$0.762 \\ (0.727, 0.807) \\ [0.043]$	$0.774 \\ (0.730, 0.811) \\ [0.034]$	$0.806 \\ (0.754, 0.835) \\ [0.023]$	$0.815 \\ (0.784, 0.848) \\ [0.027]$	$0.820 \\ (0.798, 0.849) \\ [0.026]$	$0.822 \\ (0.784, 0.857) \\ [0.028]$
$ ho_i$	0.8	$0.756 \\ (0.714, 0.791) \\ [0.049]$	$0.756 \\ (0.708, 0.798) \\ [0.054]$	$0.759 \\ (0.726, 0.785) \\ [0.044]$	$0.761 \\ (0.682, 0.799) \\ [0.051]$	$0.762 \\ (0.725, 0.808) \\ [0.046]$	$0.764 \\ (0.733, 0.808) \\ [0.041]$
σ_g	0.0050	$0.0051 \\ (0.0044, 0.0058) \\ [0.0005]$	$0.0053 \\ (0.0047, 0.0068) \\ [0.0006]$	$0.0056 \\ (0.0047, 0.0066) \\ [0.0010]$	$0.0057 \\ (0.0051, 0.0079) \\ [0.0012]$	$0.0058 \\ (0.0051, 0.0074) \\ [0.0012]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.0011]$
σ_s	0.0050	$0.0050 \\ (0.0042, 0.0063) \\ [0.0007]$	$0.0050 \\ (0.0041, 0.0063) \\ [0.0007]$	$0.0048 \\ (0.0038, 0.0058) \\ [0.0007]$	$0.0047 \\ (0.0031, 0.0058) \\ [0.0009]$	$\begin{array}{c} 0.0045 \\ (0.0037, 0.0053) \\ [0.0007] \end{array}$	$0.0045 \\ (0.0036, 0.0056) \\ [0.0007]$
σ_i	0.0020	$\begin{array}{c} 0.0020 \\ (0.0018, 0.0023) \\ [0.0002] \end{array}$	$\begin{array}{c} 0.0020 \\ (0.0018, 0.0023) \\ [0.0001] \end{array}$	$\begin{array}{c} 0.0021 \\ (0.0018, 0.0022) \\ [0.0001] \end{array}$	$\begin{array}{c} 0.0020 \\ (0.0018, 0.0024) \\ [0.0002] \end{array}$	$\begin{array}{c} 0.0020 \\ (0.0018, 0.0023) \\ [0.0002] \end{array}$	$0.0020 \\ (0.0019, 0.0024) \\ [0.0002]$
ϕ_{π}	2.0	$\begin{array}{c} 2.024\\ (1.844, 2.177)\\ [0.116] \end{array}$	$ \begin{array}{c} 1.950 \\ (1.770, 2.154) \\ [0.139] \end{array} $	$ \begin{array}{c} 2.011 \\ (1.783, 2.164) \\ [0.117] \end{array} $	$ \begin{array}{c} 1.973 \\ (1.734, 2.229) \\ [0.151] \end{array} $	$ \begin{array}{c} 1.948 \\ (1.689, 2.189) \\ [0.162] \end{array} $	$ \begin{array}{c} 1.948 \\ (1.778, 2.140) \\ [0.126] \end{array} $
ϕ_y	0.5	$0.325 \\ (0.175, 0.473) \\ [0.204]$	$0.335 \\ (0.170, 0.528) \\ [0.184]$	$0.388 \\ (0.235, 0.558) \\ [0.148]$	$0.364 \\ (0.197, 0.522) \\ [0.176]$	$0.404 \\ (0.210, 0.624) \\ [0.143]$	$0.437 \\ (0.279, 0.611) \\ [0.124]$
$\sum_{\mathbf{A}^T}$		[1.527]	[1.633]	[1.706]	[2.013]	[1.982]	[1.907]
$\frac{N}{}$		50	50	50	50	50	50
				inear, Kalman Fil	•		
φ_p	100	$144.7 \\ (125.9, 157.7) \\ [44.2]$	$153.1 \\ (134.5, 168.5) \\ [54.4]$	$ \begin{array}{c} 164.2 \\ (147.3, 196.3) \\ [68.9] \end{array} $	$ \begin{array}{c} 175.1 \\ (157.3, 205.0) \\ [78.8] \end{array} $	184.5 (165.2, 204.9) [87.3]	184.4 (168.4, 201.2) [87.5]
h	0.8	$0.641 \\ (0.612, 0.676) \\ [0.159]$	$0.640 \\ (0.604, 0.684) \\ [0.160]$	$0.640 \\ (0.602, 0.674) \\ [0.164]$	$0.641 \\ (0.616, 0.672) \\ [0.161]$	$0.636 \\ (0.596, 0.672) \\ [0.164]$	$0.631 \\ (0.596, 0.672) \\ [0.171]$
$ ho_s$	0.8	$0.761 \\ (0.720, 0.800) \\ [0.047]$	$0.777 \\ (0.737, 0.804) \\ [0.034]$	$0.797 \\ (0.758, 0.830) \\ [0.021]$	$0.808 \\ (0.763, 0.843) \\ [0.023]$	$0.818 \\ (0.795, 0.848) \\ [0.026]$	$0.825 \\ (0.795, 0.851) \\ [0.029]$
$ ho_i$	0.8	$0.759 \\ (0.727, 0.788) \\ [0.045]$	$0.769 \\ (0.715, 0.802) \\ [0.043]$	$0.779 \\ (0.751, 0.809) \\ [0.029]$	$0.789 \\ (0.737, 0.840) \\ [0.028]$	$0.789 \\ (0.766, 0.847) \\ [0.025]$	$0.809 \\ (0.766, 0.852) \\ [0.027]$
σ_g	0.0050	$0.0050 \\ (0.0043, 0.0054) \\ [0.0004]$	$\begin{array}{c} 0.0051 \\ (0.0045, 0.0058) \\ [0.0004] \end{array}$	$0.0055 \\ (0.0048, 0.0067) \\ [0.0008]$	$0.0057 \\ (0.0051, 0.0067) \\ [0.0009]$	$0.0059 \\ (0.0049, 0.0071) \\ [0.0012]$	$0.0059 \\ (0.0051, 0.0068) \\ [0.0011]$
σ_s	0.0050	$0.0050 \\ (0.0043, 0.0064) \\ [0.0007]$	$0.0050 \\ (0.0042, 0.0062) \\ [0.0007]$	$\begin{array}{c} 0.0049 \\ (0.0040, 0.0058) \\ [0.0006] \end{array}$	$0.0048 \\ (0.0035, 0.0059) \\ [0.0007]$	$\begin{array}{c} 0.0044 \\ (0.0038, 0.0053) \\ [0.0007] \end{array}$	$0.0045 \\ (0.0036, 0.0052) \\ [0.0008]$
σ_i	0.0020	$\begin{array}{c} 0.0020 \\ (0.0018, 0.0022) \\ [0.0001] \end{array}$	$\begin{array}{c} 0.0020 \\ (0.0018, 0.0022) \\ [0.0001] \end{array}$	$\begin{array}{c} 0.0020 \\ (0.0018, 0.0023) \\ [0.0002] \end{array}$	$\begin{array}{c} 0.0020 \\ (0.0016, 0.0022) \\ [0.0002] \end{array}$	$\begin{array}{c} 0.0020 \\ (0.0017, 0.0022) \\ [0.0002] \end{array}$	$ \begin{array}{c} 0.0019 \\ (0.0017, 0.0022) \\ [0.0002] \end{array} $
ϕ_{π}	2.0	$\begin{array}{c} 2.023 \\ (1.843, 2.157) \\ [0.112] \end{array}$	$ \begin{array}{c} 1.949 \\ (1.712, 2.164) \\ [0.146] \end{array} $	$ \begin{array}{c} 1.848 \\ (1.600, 2.076) \\ [0.197] \end{array} $	$ \begin{array}{c} 1.777 \\ (1.505, 2.040) \\ [0.275] \end{array} $	$\begin{array}{c} 1.642 \\ (1.419, 1.917) \\ [0.377] \end{array}$	$ \begin{array}{c} 1.676 \\ (1.458, 1.880) \\ [0.342] \end{array} $
ϕ_y	0.5	$0.330 \\ (0.182, 0.483) \\ [0.198]$	$0.318 \\ (0.197, 0.526) \\ [0.203]$	$0.284 \\ (0.110, 0.480) \\ [0.241]$	$0.257 \\ (0.138, 0.429) \\ [0.256]$	$0.240 \\ (0.147, 0.372) \\ [0.258]$	$0.271 \\ (0.170, 0.434) \\ [0.233]$
\sum		[1.491]	[1.616]	[1.885]	[2.100]	[2.303]	[2.236]
N		50	50	50	50	50	50

Table 3: Median, (5%, 95%) credible sets and [RMSE] of the mean posterior estimated parameters for N datasets. Σ is the sum of the normalized RMSE.

Ptr	Truth	0Q	6Q	12Q	18Q	24Q	30Q
		No i	misspecification,	Piecewise Linear,	Inversion Filter,	ME 0%	
φ_p	100	$93.9 \\ (81.1, 108.3) \\ [10.6]$	$96.2 \\ (81.7, 115.2) \\ [11.5]$	98.9 $(88.2, 116.9)$ $[9.5]$	$107.7 \\ (92.7, 119.5) \\ [11.4]$	$108.6 \\ (90.4, 123.5) \\ [13.7]$	$ \begin{array}{c} 110.2 \\ (95.4, 125.0) \\ [14.8] \end{array} $
h	0.8	0.792 (0.754, 0.816) [0.019]	$ \begin{array}{c} 0.793 \\ (0.761, 0.825) \\ [0.021] \end{array} $	$ \begin{array}{c} 0.793 \\ (0.765, 0.821) \\ [0.018] \end{array} $	$ \begin{array}{c} 0.792 \\ (0.760, 0.825) \\ [0.020] \end{array} $	0.798 (0.765, 0.816) [0.016]	$0.794 \\ (0.770, 0.820) \\ [0.017]$
$ ho_s$	0.8	0.808 (0.757, 0.849) [0.030]	0.811 (0.773, 0.855) [0.027]	$ \begin{array}{c} 0.820 \\ (0.756, 0.861) \\ [0.035] \end{array} $	0.829 (0.787, 0.863) [0.037]	$0.833 \\ (0.796, 0.862) \\ [0.037]$	$0.835 \\ (0.798, 0.874) \\ [0.045]$
$ ho_i$	0.8	$0.795 \\ (0.766, 0.822) \\ [0.018]$	$0.797 \\ (0.752, 0.821) \\ [0.023]$	$0.791 \\ (0.754, 0.818) \\ [0.023]$	$0.796 \\ (0.766, 0.825) \\ [0.019]$	$0.791 \\ (0.762, 0.827) \\ [0.022]$	$0.790 \\ (0.737, 0.819) \\ [0.026]$
σ_g	0.0050	0.0050 (0.0044, 0.0056) [0.0004]	0.0049 (0.0043, 0.0060) [0.0005]	$ \begin{array}{c} 0.0050 \\ (0.0043, 0.0059) \\ \hline [0.0005] \end{array} $	0.0050 (0.0044, 0.0060) [0.0004]	$ \begin{array}{c} 0.0051 \\ (0.0041, 0.0058) \\ \hline [0.0005] \end{array} $	0.0051 (0.0043, 0.0061) [0.0006]
σ_s	0.0050	$0.0049 \\ (0.0039, 0.0060) \\ [0.0008]$	$0.0050 \\ (0.0043, 0.0062) \\ [0.0006]$	$0.0049 \\ (0.0040, 0.0071) \\ [0.0009]$	$0.0046 \\ (0.0038, 0.0059) \\ [0.0008]$	$0.0047 \\ (0.0039, 0.0058) \\ [0.0007]$	$0.0047 \\ (0.0034, 0.0058) \\ [0.0008]$
σ_i	0.0020	$0.0020 \\ (0.0017, 0.0022) \\ [0.0001]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.0001]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.0001]$	$\begin{array}{c} 0.0020 \\ (0.0017, 0.0023) \\ [0.0002] \end{array}$	$ \begin{array}{c} 0.0021 \\ (0.0018, 0.0023) \\ [0.0002] \end{array} $	$0.0020 \\ (0.0016, 0.0022) \\ [0.0002]$
ϕ_{π}	2.0	$1.966 \\ (1.743, 2.143) \\ [0.128]$	$ \begin{array}{c} 1.942 \\ (1.592, 2.162) \\ [0.175] \end{array} $	$ \begin{array}{c} 1.941 \\ (1.710, 2.143) \\ [0.146] \end{array} $	$ \begin{array}{c} 1.887 \\ (1.646, 2.083) \\ [0.170] \end{array} $	$1.875 \\ (1.612, 2.070) \\ [0.193]$	$ \begin{array}{c} 1.812 \\ (1.579, 2.060) \\ [0.246] \end{array} $
ϕ_y	0.5	$0.463 \\ (0.299, 0.628) \\ [0.105]$	$0.504 \\ (0.328, 0.650) \\ [0.100]$	$0.528 \\ (0.350, 0.727) \\ [0.122]$	$0.548 \\ (0.390, 0.750) \\ [0.119]$	$0.539 \\ (0.372, 0.720) \\ [0.124]$	$0.517 \\ (0.312, 0.730) \\ [0.114]$
\sum		[0.780]	[0.796]	[0.859]	[0.859]	[0.890]	[0.986]
N		50	50	50	50	50	50
		N	lo misspecificatio	n, Level Linear, F	Kalman Filter, ME	E 0%	
φ_p	100	$92.7 \\ (82.0, 107.9) \\ [10.9]$	$96.5 \\ (80.7, 116.1) \\ [11.8]$	$104.2 \\ (83.9, 121.7) \\ [11.8]$	$ \begin{array}{c} 110.2 \\ (92.1, 125.1) \\ [14.0] \end{array} $	$ \begin{array}{c} 112.2 \\ (94.4, 131.7) \\ [17.5] \end{array} $	$121.6 \\ (100.9, 136.9) \\ [22.7]$
h	0.8	$0.793 \\ (0.753, 0.817) \\ [0.019]$	$0.793 \\ (0.761, 0.824) \\ [0.021]$	$0.793 \\ (0.763, 0.821) \\ [0.018]$	$0.794 \\ (0.754, 0.822) \\ [0.020]$	$0.795 \\ (0.767, 0.817) \\ [0.016]$	$0.792 \\ (0.769, 0.815) \\ [0.016]$
$ ho_s$	0.8	$0.808 \\ (0.755, 0.836) \\ [0.029]$	$0.810 \\ (0.774, 0.853) \\ [0.027]$	$0.827 \\ (0.763, 0.866) \\ [0.038]$	$0.835 \\ (0.798, 0.874) \\ [0.041]$	$0.841 \\ (0.809, 0.869) \\ [0.046]$	$0.852 \\ (0.813, 0.883) \\ [0.058]$
$ ho_i$	0.8	$0.795 \\ (0.764, 0.821) \\ [0.018]$	$0.808 \\ (0.767, 0.830) \\ [0.019]$	$0.813 \\ (0.771, 0.841) \\ [0.023]$	$0.820 \\ (0.796, 0.853) \\ [0.027]$	$0.829 \\ (0.804, 0.865) \\ [0.037]$	$0.834 \\ (0.805, 0.863) \\ [0.040]$
σ_g	0.0050	$0.0049 \\ (0.0044, 0.0056) \\ [0.0004]$	$0.0048 \\ (0.0042, 0.0060) \\ [0.0005]$	$0.0050 \\ (0.0042, 0.0058) \\ [0.0005]$	$0.0050 \\ (0.0043, 0.0056) \\ [0.0004]$	$0.0050 \\ (0.0041, 0.0057) \\ [0.0004]$	$0.0050 \\ (0.0041, 0.0057) \\ [0.0005]$
σ_s	0.0050	$0.0050 \\ (0.0039, 0.0060) \\ [0.0008]$	$0.0049 \\ (0.0041, 0.0061) \\ [0.0006]$	$0.0047 \\ (0.0038, 0.0066) \\ [0.0009]$	$0.0046 \\ (0.0037, 0.0061) \\ [0.0008]$	$0.0044 \\ (0.0037, 0.0054) \\ [0.0008]$	$0.0043 \\ (0.0031, 0.0051) \\ [0.0010]$
σ_i	0.0020		0.0019 (0.0018, 0.0022) [0.0001]		0.0019 (0.0017, 0.0021) [0.0002]	$0.0020 \\ (0.0017, 0.0021) \\ [0.0002]$	$0.0019 \\ (0.0016, 0.0021) \\ [0.0002]$
ϕ_{π}	2.0	$ \begin{array}{c} 1.954 \\ (1.714, 2.167) \\ [0.133] \end{array} $	$ \begin{array}{c} 1.936 \\ (1.661, 2.131) \\ [0.156] \end{array} $	1.890 (1.652, 2.089) [0.186]	1.775 (1.578, 2.007) [0.273]	1.709 (1.584, 1.915) [0.301]	1.610 (1.422, 1.844) [0.408]
ϕ_y	0.5	$0.465 \\ (0.323, 0.632) \\ [0.107]$	$0.486 \\ (0.312, 0.657) \\ [0.105]$	0.504 (0.330, 0.655) [0.102]	0.489 (0.388, 0.679) [0.099]	$0.487 \\ (0.321, 0.624) \\ [0.098]$	$0.470 \\ (0.317, 0.657) \\ [0.103]$
Σ		[0.779]	[0.781]	[0.845]	[0.919]	[0.970]	[1.184]
N		50	50	50	50	50	50

Table 4: Median, (5%, 95%) credible sets and [RMSE] of the mean posterior estimated parameters for N datasets. Σ is the sum of the normalized RMSE.

Ptr	Truth	Global-PF-ME 2%		Level Lin-	Level Lin-KF-ME 2%		PW-IF-ME 0%	
		0Q	30Q	0Q	30Q	0Q	30Q	
φ_p	100	$ \begin{array}{c} 152.0 \\ (128.0, 165.6) \\ [50.7] \end{array} $	190.6 (165.2, 206.1) [90.3]	152.4 (132.9, 165.3) [51.4]	194.2 (178.2, 209.1) [95.6]	144.7 (121.3, 157.2) [43.9]	182.3 (168.2, 198.6) [83.8]	
h	0.8	$0.650 \\ (0.616, 0.685) \\ [0.149]$	$0.667 \\ (0.642, 0.714) \\ [0.133]$	$0.657 \\ (0.620, 0.688) \\ [0.146]$	$0.656 \\ (0.622, 0.697) \\ [0.145]$	$0.640 \\ (0.611, 0.675) \\ [0.160]$	$0.628 \\ (0.596, 0.672) \\ [0.172]$	
$ ho_s$	0.8	$0.754 \\ (0.709, 0.802) \\ [0.053]$	$0.800 \\ (0.768, 0.851) \\ [0.023]$	$0.760 \\ (0.717, 0.798) \\ [0.047]$	$0.821 \\ (0.788, 0.853) \\ [0.029]$	$0.762 \\ (0.727, 0.807) \\ [0.043]$	$0.822 \\ (0.784, 0.857) \\ [0.028]$	
$ ho_i$	0.8	$0.765 \\ (0.728, 0.808) \\ [0.039]$	$0.785 \\ (0.751, 0.831) \\ [0.028]$	$0.770 \\ (0.734, 0.801) \\ [0.036]$	$0.828 \\ (0.778, 0.862) \\ [0.035]$	$0.756 \\ (0.714, 0.791) \\ [0.049]$	$0.764 \\ (0.733, 0.808) \\ [0.041]$	
σ_g	0.0050	$0.0038 \\ (0.0031, 0.0044) \\ [0.0013]$	$\begin{array}{c} 0.0040 \\ (0.0037, 0.0055) \\ [0.0010] \end{array}$	$0.0038 \\ (0.0031, 0.0043) \\ [0.0013]$	$\begin{array}{c} 0.0045 \\ (0.0036, 0.0058) \\ [0.0008] \end{array}$	$0.0051 \\ (0.0044, 0.0058) \\ [0.0005]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.0011]$	
σ_s	0.0050	$0.0051 \\ (0.0038, 0.0065) \\ [0.0008]$	$0.0052 \\ (0.0041, 0.0068) \\ [0.0009]$	$0.0052 \\ (0.0041, 0.0065) \\ [0.0008]$	$0.0048 \\ (0.0038, 0.0058) \\ [0.0007]$	$0.0050 \\ (0.0042, 0.0063) \\ [0.0007]$	$0.0045 \\ (0.0036, 0.0056) \\ [0.0007]$	
σ_i	0.0020	$0.0019 \\ (0.0016, 0.0021) \\ [0.0002]$	$0.0017 \\ (0.0016, 0.0019) \\ [0.0003]$	$0.0019 \\ (0.0017, 0.0021) \\ [0.0002]$	$\begin{array}{c} 0.0017 \\ (0.0016, 0.0020) \\ [0.0003] \end{array}$	$0.0020 \\ (0.0018, 0.0023) \\ [0.0002]$	$0.0020 \\ (0.0019, 0.0024) \\ [0.0002]$	
ϕ_{π}	2.0	$\begin{array}{c} 2.017 \\ (1.819, 2.174) \\ [0.134] \end{array}$	$\begin{array}{c} 2.201 \\ (1.965, 2.319) \\ [0.204] \end{array}$	$\begin{array}{c} 2.033 \\ (1.865, 2.171) \\ [0.116] \end{array}$	$ \begin{array}{c} 1.704 \\ (1.505, 1.906) \\ [0.323] \end{array} $	$\begin{array}{c} 2.024 \\ (1.844, 2.177) \\ [0.116] \end{array}$	$ \begin{array}{c} 1.948 \\ (1.778, 2.140) \\ [0.126] \end{array} $	
ϕ_y	0.5	$0.317 \\ (0.183, 0.440) \\ [0.204]$	$0.410 \\ (0.225, 0.761) \\ [0.175]$	$0.308 \\ (0.179, 0.485) \\ [0.203]$	$0.265 \\ (0.144, 0.394) \\ [0.241]$	$0.325 \\ (0.175, 0.473) \\ [0.204]$	$0.437 \\ (0.279, 0.611) \\ [0.124]$	
$\sum N$		[1.803] 37	[2.092] 12	[1.770] 50	[2.281] 50	[1.527] 50	[1.907] 50	
v		υı	14	50	50	50	50	

Table 5: Median, (5%, 95%) credible sets and [RMSE] of the mean posterior estimated parameters for N datasets. Σ is the sum of the normalized RMSE.

Ptr	Truth	Global-PF	F-ME 10%	Level Lin-k	KF-ME 10%	PW-IF-ME 0%	
		0Q	30Q	0Q	30Q	0Q	30Q
$\overline{arphi_p}$	100	149.0 (133.1, 160.3) [49.1]	188.0 (181.9, 194.1) [88.1]	151.5 (133.8, 162.8) [50.6]	185.0 (172.1, 202.0) [86.4]	144.7 (121.3, 157.2) [43.9]	182.3 (168.2, 198.6) [83.8]
h	0.8	$0.661 \\ (0.615, 0.688) \\ [0.143]$	$0.694 \\ (0.679, 0.708) \\ [0.107]$	$0.667 \\ (0.614, 0.694) \\ [0.139]$	$0.677 \\ (0.639, 0.712) \\ [0.125]$	$0.640 \\ (0.611, 0.675) \\ [0.160]$	$0.628 \\ (0.596, 0.672) \\ [0.172]$
$ ho_s$	0.8	$0.760 \\ (0.717, 0.791) \\ [0.049]$	$0.801 \\ (0.787, 0.823) \\ [0.014]$	$0.762 \\ (0.718, 0.798) \\ [0.046]$	$0.823 \\ (0.786, 0.859) \\ [0.035]$	$0.762 \\ (0.727, 0.807) \\ [0.043]$	$0.822 \\ (0.784, 0.857) \\ [0.028]$
$ ho_i$	0.8	$0.806 \\ (0.769, 0.838) \\ [0.022]$	$0.779 \\ (0.754, 0.802) \\ [0.028]$	$0.804 \\ (0.771, 0.836) \\ [0.021]$	$0.855 \ (0.817, 0.888) \ [0.057]$	$0.756 \\ (0.714, 0.791) \\ [0.049]$	$0.764 \\ (0.733, 0.808) \\ [0.041]$
σ_g	0.0050	$ \begin{array}{c} 0.0027 \\ (0.0018, 0.0036) \\ [0.0024] \end{array} $	$\begin{array}{c} 0.0045 \\ (0.0030, 0.0052) \\ [0.0011] \end{array}$	$0.0028 \\ (0.0020, 0.0036) \\ [0.0023]$	$\begin{array}{c} 0.0041 \\ (0.0025, 0.0057) \\ [0.0013] \end{array}$	$0.0051 \\ (0.0044, 0.0058) \\ [0.0005]$	$0.0059 \\ (0.0050, 0.0069) \\ [0.0011]$
σ_s	0.0050	$0.0049 \\ (0.0041, 0.0066) \\ [0.0007]$	$\begin{array}{c} 0.0051 \\ (0.0042, 0.0059) \\ [0.0006] \end{array}$	$0.0051 \\ (0.0041, 0.0064) \\ [0.0007]$	$\begin{array}{c} 0.0047 \\ (0.0035, 0.0060) \\ [0.0008] \end{array}$	$0.0050 \\ (0.0042, 0.0063) \\ [0.0007]$	$0.0045 \\ (0.0036, 0.0056) \\ [0.0007]$
σ_i	0.0020	$0.0016 \\ (0.0012, 0.0019) \\ [0.0005]$	$0.0013 \\ (0.0012, 0.0014) \\ [0.0007]$	$0.0016 \\ (0.0012, 0.0018) \\ [0.0005]$	$0.0015 \\ (0.0013, 0.0018) \\ [0.0005]$	$0.0020 \\ (0.0018, 0.0023) \\ [0.0002]$	$0.0020 \\ (0.0019, 0.0024) \\ [0.0002]$
ϕ_{π}	2.0	$\begin{array}{c} 2.075 \\ (1.890, 2.219) \\ [0.144] \end{array}$	$\begin{array}{c} 2.038 \\ (1.925, 2.127) \\ [0.082] \end{array}$	$\begin{array}{c} 2.071 \\ (1.901, 2.227) \\ [0.129] \end{array}$	$ \begin{array}{c} 1.753 \\ (1.574, 1.920) \\ [0.278] \end{array} $	$\begin{array}{c} 2.024 \\ (1.844, 2.177) \\ [0.116] \end{array}$	$ \begin{array}{c} 1.948 \\ (1.778, 2.140) \\ [0.126] \end{array} $
ϕ_y	0.5	$0.396 \\ (0.281, 0.583) \\ [0.131]$	$0.442 \\ (0.353, 0.481) \\ [0.085]$	$0.401 \\ (0.271, 0.583) \\ [0.133]$	$0.373 \\ (0.225, 0.554) \\ [0.147]$	$0.325 \\ (0.175, 0.473) \\ [0.204]$	$0.437 \\ (0.279, 0.611) \\ [0.124]$
$\sum_{\mathbf{N}}$		[1.959]	[1.959]	[1.935]	[2.247]	[1.527]	[1.907]
N		31	4	50	50	50	50

Table 6: Median, (5%, 95%) credible sets and [RMSE] of the mean posterior estimated parameters for N datasets. Σ is the sum of the normalized RMSE.

Ptr	Truth	Truth Global-PF-ME 2%		Global-P	F-ME 5%	Global-PF-ME 10%	
		0Q	30Q	0Q	30Q	0Q	30Q
$\overline{\varphi_p}$	100	151.8 (128.4, 165.6) [50.6]	190.8 (167.7, 207.0) [90.7]	$ \begin{array}{c} 152.7 \\ (134.1, 165.8) \\ \hline [52.0] \end{array} $	187.5 (174.6, 202.6) [88.9]	149.0 (133.1, 160.3) [49.1]	188.0 (181.9, 194.1) [88.1]
h	0.8	$0.653 \\ (0.616, 0.685) \\ [0.148]$	$0.666 \\ (0.642, 0.709) \\ [0.134]$	$0.662 \\ (0.620, 0.695) \\ [0.141]$	$0.677 \\ (0.644, 0.716) \\ [0.126]$	$0.661 \\ (0.615, 0.688) \\ [0.143]$	$0.694 \\ (0.679, 0.708) \\ [0.107]$
$ ho_s$	0.8	$0.755 \\ (0.709, 0.801) \\ [0.053]$	$0.800 \\ (0.773, 0.843) \\ [0.020]$	$0.758 \\ (0.717, 0.797) \\ [0.050]$	$0.808 \\ (0.782, 0.844) \\ [0.022]$	$0.760 \\ (0.717, 0.791) \\ [0.049]$	$0.801 \\ (0.787, 0.823) \\ [0.014]$
$ ho_i$	0.8	$0.766 \\ (0.728, 0.807) \\ [0.038]$	$0.788 \\ (0.742, 0.829) \\ [0.029]$	$0.783 \\ (0.752, 0.823) \\ [0.026]$	$0.804 \\ (0.754, 0.839) \\ [0.025]$	$0.806 \\ (0.769, 0.838) \\ [0.022]$	$0.779 \\ (0.754, 0.802) \\ [0.028]$
σ_g	0.0050	$0.0038 \\ (0.0031, 0.0044) \\ [0.0013]$	$0.0039 \\ (0.0034, 0.0052) \\ [0.0011]$	$ \begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ [0.0018] \end{array} $	$\begin{array}{c} 0.0040 \\ (0.0030, 0.0052) \\ [0.0012] \end{array}$	$\begin{array}{c} 0.0027 \\ (0.0018, 0.0036) \\ [0.0024] \end{array}$	$\begin{array}{c} 0.0045 \\ (0.0030, 0.0052) \\ [0.0011] \end{array}$
σ_s	0.0050	$0.0051 \\ (0.0038, 0.0065) \\ [0.0008]$	$0.0052 \\ (0.0042, 0.0068) \\ [0.0007]$	$\begin{array}{c} 0.0051 \\ (0.0040, 0.0066) \\ [0.0007] \end{array}$	$\begin{array}{c} 0.0051 \\ (0.0039, 0.0062) \\ [0.0007] \end{array}$	$0.0049 \\ (0.0041, 0.0066) \\ [0.0007]$	$\begin{array}{c} 0.0051 \\ (0.0042, 0.0059) \\ [0.0006] \end{array}$
σ_i	0.0020	$0.0019 \\ (0.0016, 0.0021) \\ [0.0002]$	$0.0017 \\ (0.0016, 0.0021) \\ [0.0003]$	$\begin{array}{c} 0.0017 \\ (0.0014, 0.0020) \\ [0.0003] \end{array}$	$0.0015 \\ (0.0013, 0.0019) \\ [0.0005]$	$0.0016 \\ (0.0012, 0.0019) \\ [0.0005]$	$0.0013 \\ (0.0012, 0.0014) \\ [0.0007]$
ϕ_{π}	2.0	$\begin{array}{c} 2.023 \\ (1.820, 2.174) \\ [0.133] \end{array}$	$\begin{array}{c} 2.138 \\ (1.997, 2.310) \\ [0.181] \end{array}$	$\begin{array}{c} 2.048 \\ (1.865, 2.191) \\ [0.128] \end{array}$	$\begin{array}{c} 2.119 \\ (1.939, 2.306) \\ [0.175] \end{array}$	$\begin{array}{c} 2.075 \\ (1.890, 2.219) \\ [0.144] \end{array}$	$\begin{array}{c} 2.038 \\ (1.925, 2.127) \\ [0.082] \end{array}$
ϕ_y	0.5	$0.319 \\ (0.183, 0.439) \\ [0.202]$	$0.376 \\ (0.227, 0.697) \\ [0.176]$	$0.332 \\ (0.213, 0.544) \\ [0.180]$	$0.403 \\ (0.279, 0.621) \\ [0.142]$	$0.396 \\ (0.281, 0.583) \\ [0.131]$	$0.442 \\ (0.353, 0.481) \\ [0.085]$
$\sum_{\mathbf{N}}$		[1.798]	[2.075]	[1.897]	[2.087]	[1.959]	[1.959]
N		38	19	50	50	31	4

Table 7: Median, (5%, 95%) credible sets and [RMSE] of the mean posterior estimated parameters for N datasets. Σ is the sum of the normalized RMSE.