Additional Practice Problems for the Final Exam

• The following set of practice problems has been provided to supplement the earlier set of practice problems that were released. Please see the instructions provided in that document.

Name____

Problem-1: T/F Questions. [3 points each] Answer *true* or *false* to each of the following. *No justification is required for your answer.*

- (a) [T/F] Consider a function, f(x), that is *strictly convex* on the interval [-2017, 2017]. Then $\frac{d^2}{dx^2}f(x) > 0$ for all $x \in [-2017, 2017]$.
- (b) [T/F] The gradient descent algorithm either diverges to $-\infty$ or converges to a local minimum or maximum.
- (c) [T/F] Given a function f that is has α -strong convexity and β -smoothness. Suppose we can show that f has $\frac{\alpha}{2}$ -strong convexity. Then we also expect for the gradient descent algorithm to converge faster.
- (d) [T/F] Suppose we would like to identify a local minima for a function f using the gradient descent algorithm. Picking the step size to equal the inverse Hessian will get to the local minima in a single step.

Problem-2: Distributed Coloring [20 points]

Consider an undirected graph G=(V,E) in which every vertex has degree at most Δ . Define a new graph G'=(V',E'), the *Cartesian product* of G with a clique of size $\Delta+1$. Specifically, V' is the set of pairs (v,i) for all vertices $v\in V$ and integers i with $0\leq i\leq \Delta$, and E' consists of two types of edges:

- (a) For each edge $\{u,v\} \in E$, there is an edge between (u,i) and (v,i) in E', for all $0 \le i \le \Delta$. (Thus, each index i forms a copy of G.)
- (b) For each vertex $v \in V$, there is an edge between (v, i) and (v, j) in E', for all $i \neq j$ with $0 \leq i, j \leq \Delta$. (Thus each v forms a $(\Delta + 1)$ -clique.)

Here is an example of this transformation with $\Delta = 3$:

Figure 2: The Cartesian product G' of G and a clique of size 4.

- (a) Let S be any *maximal* independent set of G' (i.e., adding any other vertex to S would violate independence). Prove that, for each vertex $v \in V$, S contains exactly one of the $\Delta + 1$ vertices in V' of the form (v, i).

 Hint: Use the Pigeonhole Principle.
- (b) Now consider a synchronous network of processes based on the graph G, where every vertex knows an upper bound Δ on the degree. Give a distributed algorithm to find a vertex $(\Delta+1)$ -coloring of G, i.e., a mapping from vertices in V to colors in $\{0,1,\ldots,\Delta\}$ such that adjacent vertices have distinct colors. The process associated with each vertex should output its color. Argue correctness. *Hint:* Combine part (a) with Luby's algorithm.
- (c) Analyze the expected time and communication costs for solving the coloring problem in this way, including the cost of Luby's algorithm.