Definición 1.1

Una función que satisface el principio de superposición se dice que es entonces una función lineal. La propiedad de superposición se puede definir mediante dos propiedades.

1.-
$$f(x_1 + x_2) = f(x_1) + f(x_2) \to \text{Aditividad}$$

2.- $f(\alpha x_1) = \alpha f(x_1) \to \text{Homogeneidad}$

Nota: Si una función no cumple con estas propiedades, decimos entonces que es una función no lineal.

Definición 1.2

Un sistema de ecuaciones no lineales es un conjunto de su forma.

$$fi(x_1, x_2, x_3, \dots, x_n) = 0$$

 $f_2(x_1, x_2, x_3, \dots, x_n) = 0$
 \dots
 $f_n(x_1, x_2, x_3, \dots, x_n) = 0$

donde la función f_1 se puede ver como un "mapeo" del vector $(x_1, x_2, x_3, \ldots, x_n)$ de \mathbb{R}^n a \mathbb{R} . Este sistema de n ecuaciones no lineales en n variables también puede tener la forma:

$$f(x_1, x_2, x_3, \dots, x_n) = (f_1(x_1, x_2, x_3, \dots, x_n), f_2(x_1, x_2, x_3, \dots, x_n), \dots, f_n(x_1, x_2, x_3, \dots, x_n))$$

Si se utiliza notación vectorial para representar las variables x_1, x_2, \ldots, x_n entonces el sistema asume la forma

$$F(\overrightarrow{x} = 0)$$

Definición 1.3

Una solución de un sistema de ecuaciones/funciones $f_1, f_2, f_3, f_4, \ldots, f_n$ de n funciones en n variables es un punto $(x_1, x_2, x_3, \ldots, x_n) \in \mathbb{R}^n$ tal que

$$f_1(a_1, a_2, a_3, \dots, a_n) = f_2(a_1, a_2, a_3, \dots, a_n) = \dots = f_n(a_1, a_2, a_3, \dots, a_n) = 0$$

Nota: Debido a que los sistemas no lineales no se comportan tan bien como los lineales al momento de encontrar un modo para su solución, se usarán procedimientos llamados *métodos iterativos*.

Definición 1.4

Un método iterativo es un procedimiento que se repite una y otra vez para encontrar la raíz de una ecuación o la solución de un sistema de ecuaciones.

Definición 1.5

Decimos que una sucesión converge si tiene límite. En temas anteriores cuando se ha ocupado de estudiar procedimientos de resolución aproximada de ecuaciones de la forma:

$$f(x) = 0$$

continuemoas con la misma tarea, pero con un enfoue diferente; es decir con ecuaciones del tipo:

$$q(x) = x$$

Lleva poco tiempo darse cuenta de que las expresiones anteriores son de alguna forma equivalentes, ciertamente dada la ecuación f(x) = 0 y una solución suya p existe, entonces una función g (y más de una) tal que la ecuación x = g(x) tiene a p por solución, es decir, p = g(p). Y de forma contraria, si p es una solución de x = g(x) entonces p es un cero de la función definida mediante:

$$f(x) = x - g(x)$$

Notas Personales

No importa la diferencia de las funciones, la cantidad, o su complejidad; si gráficamente hay un punto en el que convergan, sabemos que g(x) = x, lo que significa que siempre vamos a tener el mismo valor en dado punto. Queremos construir el método iterativo que nos permita llegar al punto de convergencia.

Definición 1.6

Sea

$$F: \mathbb{D} \subset \mathbb{R} \to \mathbb{R}$$
. Si $F(\overrightarrow{p}) = \overrightarrow{p}$

para algún $\overrightarrow{p} \in D$, entonces \overrightarrow{p} se dice que es un punto fijo de F.

Definición 1.7

Sea

$$G:D\subset\mathbb{R}^n\to\mathbb{R}^n$$

es contractivo o lipschitana en un conjunto $D_o \subset D$, si existe una ocnstante $\alpha < 1$ tal que

$$||G(\overrightarrow{x}) - G(\overrightarrow{y})|| \le \alpha ||\overrightarrow{x} - \overrightarrow{y}|| \forall \overrightarrow{x}, \overrightarrow{y} \in D$$

Nota

En el espacio vectorial de dimensión n la distancia

$$p(\overrightarrow{x}, \overrightarrow{y}) = ||\overrightarrow{x} - \overrightarrow{y}||$$

puede ser la norma $-\infty$, la norma euclidiana o cualquier otra norma. Es decir

$$p(\overrightarrow{x}, \overrightarrow{y}) = p(\overrightarrow{x}, \overrightarrow{y}) = \max|x_i - y_i|p_1(\overrightarrow{x}, \overrightarrow{y}) = \sum_{i=1}^n |x_i - y_i|p_2(\overrightarrow{x}, \overrightarrow{y}) = \sum_{i=1}^n \{(x_i - y_i)^2\}^{1/2}$$