AE 370 — Homework #4

1. A piece of mathematical magic: generating orthogonal polynomial basis functions

A hugely powerful tool in applied mathematics is the Gram-Schmidt process, which enables an orthogonal basis to be generated using a recursive procedure. That is, the resulting basis defined by the functions $\{\phi_0, \phi_1, \dots, \phi_n\}$ satisfies $(\phi_i, \phi_j) = 0$ for $i \neq j$. When dealing with \mathcal{P}_n (the space of all polynomials of degree n or less), the recursion relation can be written as:

$$\phi_0 = \frac{\hat{\phi_0}}{\sqrt{\left(\hat{\phi_0}, \hat{\phi_0}\right)}}, \text{ where } \hat{\phi_0} = \frac{1}{(1, 1)}$$
 (1)

$$\phi_1 = \frac{\hat{\phi_1}}{\sqrt{(\hat{\phi_1}, \hat{\phi_1})}}, \quad \text{where } \hat{\phi_1} = x - \frac{(x, 1)}{(1, 1)}$$
 (2)

$$\phi_k = \frac{\hat{\phi_k}}{\sqrt{\left(\hat{\phi_k}, \hat{\phi_k}\right)}}, \quad \text{where } \hat{\phi_k} = x\phi_{k-1} - \frac{(x\phi_{k-1}, \phi_{k-1})}{(\phi_{k-1}, \phi_{k-1})}\phi_{k-1} - \frac{(x\phi_{k-1}, \phi_{k-2})}{(\phi_{k-2}, \phi_{k-2})}\phi_{k-2}, \quad k \ge 2$$
 (3)

where (\cdot, \cdot) is an appropriately defined inner product.

- (a) Show that ϕ_0 and ϕ_1 are orthogonal
- (b) Show that ϕ_2 is orthogonal to both ϕ_0 and ϕ_1
- (c) Using these facts, show that ϕ_k is orthogonal to ϕ_j for $j \neq k$.
- (d) What is (ϕ_i, ϕ_i) for i = 0, ..., n?
- 2. Re-re-visiting Runge's problem. We will approximate $f(x) = \frac{1}{1+x^2}$ over the interval $-5 \le x \le 5$. This time, as opposed to interpolating f(x) at specified points, we will compute the best least-squares approximation to f(x) onto \mathcal{P}_n (the space of all polynomials of degree n or less).
 - (a) Recall that we showed that the least-squares approximation problem could be written as a linear system Gc = b. Re-derive the result by representing the function and basis functions symbolically as f(x) and $\{\phi_0, \ldots, \phi_n\}$, respectively. You may leave your results in terms of a generic inner product. Do **not** assume the basis is orthogonal for this part of the problem.
 - (b) Assuming you use a basis constructed using the recursion procedure from problem 1, what does G look like for this choice of basis? Again, don't plug in for the basis functions yet, just write G symbolically in terms of a generic inner product.
 - (c) Solve the problem Gc = b for n = [5, 10, 25, 50] using the basis described using the recursion relation in problem 1. Also provide plots of f(x) and $p_n(x)$ (the best least-squares polynomial approximation to f(x)) for each value of n. Use the inner product defined by $(f,g) = \int_{-5}^{5} f(x)g(x)dx$ in your computations. You may evaluate all inner products numerically using the trapz command in Matlab (be sure to use enough points in the interval to get an accurate approximation!)
 - (d) Does your solution suffer from the same issues as global polynomial interpolants on uniformly spaced points?