Package 'multiscale'

July 17, 2020

Type Package

Version 0.0.0.9000 **Date** 2020-05-04

Title Multiscale Inference for Nonparametric Time Trends

Description This package performs a multiscale analysis of a nonparametric	
regression with time series errors or nonparametric regressions. In case	
of one regression, it is possible to detect where the trend function is	
increasing or decreasing. In case of multiple regression, the test identifies	
regions where the trend functions are different from each other. See	
Khismatullina and Vogt (2019) and Khismatullina and Vogt (2020)	
for more information and theory.	
License GPL (>= 2)	
Imports Rcpp (>= 1.0.4)	
LinkingTo Rcpp	
RoxygenNote 7.1.0	
Encoding UTF-8	
Suggests knitr,	
rmarkdown	
VignetteBuilder knitr	
Depends R (>= 2.10)	
200000000000000000000000000000000000000	
D tanias de aumente de	
R topics documented:	
multiscale-package	 . 2
compute_minimal_intervals	
compute_quantiles	 . 3
compute_statistics	
construct_grid	
construct_weekly_grid	
covid	
estimate_lrv	
multiscale_test	
plot_sizer_map	
select_order	
temperature	 . 11
Index	13
1	

multiscale-package

Multiscale Inference for Nonparametric Time Trends

Description

This package performs a multiscale analysis of a single nonparametric time trends (Khismatullina and Vogt (2019)) or multiple nonparametric time trends (Khismatullina and Vogt (2020)).

In case of a single nonparametric regression, the multiscale method to test qualitative hypotheses about the nonparametric time trend m in the model $Y_t = m(t/T) + \epsilon_t$ with time series errors ϵ_t is provided. The method was first proposed in Khismatullina and Vogt (2019). It allows to test for shape properties (areas of monotonic decrease or increase) of the trend m.

This method require an estimator of the long-run error variance $\sigma^2 = \sum_{l=-\infty}^{\infty} Cov(\epsilon_0, \epsilon_l)$. Hence, the package also provides the difference-based estimator for the case that the errors belong to the class of $AR(\infty)$ processes. The estimator was also proposed in Khismatullina and Vogt (2019).

In case of multiple nonparametric regressions, we provide the multiscale method to test qualitative hypotheses about the nonparametric time trends in the context of epidemic modelling. Specifically, we assume that the we observe a sample of the count data $\{\mathcal{X}_i = \{X_{it} : 1 \leq 1 \leq T\}\}$, where X_{it} are quasi-Poisson distributed with time-varying intensity parameter $\lambda_i(t/T)$. The multiscale method allows to test whether intenisty parameters are different or not, and if they are, it detects with a prespicified significance level the regions where these differences most probably occur. The method was introduced in Khismatullina and Vogt (2020) and can be used for comparing the rates of infection of COVID-19 across countries.

References

Khismatullina M., Vogt M. Multiscale inference and long-run variance estimation in non-parametric regression with time series errors //Journal of the Royal Statistical Society: Series B (Statistical Methodology). - 2019.

Khismatullina M., Vogt M. Simultaneous statistical inference for epidemic trends //???. - 2020.

See Also

https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12347

compute_minimal_intervals

Computes the set of minimal intervals as described in Duembgen (2002)

Description

Given a set of intervals, this function computes the corresponding subset of minimal intervals which are defined as follows. For a given set of intervals \mathcal{K} , all intervals $\mathcal{I}_k \in \mathcal{K}$ such that \mathcal{K} does not contain a proper subset of \mathcal{I}_k are called minimal.

This function is needed for illustrative purposes. The set of all the intervals where our test rejects the null hypothesis may be quite large, hence, we would like to focus our attention on the smaller subset, for which we are still able to make simultaneous confidence intervals. This subset is the subset of minimal intervals, and it helps us to to precisely locate the intervals of further interest.

More details can be found in Duembgen (2002) and Khismatullina and Vogt (2019, 2020)

compute_quantiles 3

Usage

```
compute_minimal_intervals(dataset)
```

Arguments

dataset

Set of the intervals. It needs to contain the following columns: "startpoint" - left end of the interval; "endpoint" - right end of the interval.

Value

Subset of minimal intervals

Examples

```
startpoint <- c(0, 0.5, 1)
endpoint <- c(2, 2, 2)
dataset <- data.frame(startpoint, endpoint)
minimal_ints <- compute_minimal_intervals(dataset)</pre>
```

compute_quantiles

Computes quantiles of the gaussian multiscale statistics.

Description

Quantiles from the gaussian version of the test statistics which are used to approximate the critical values for the multiscale test.

Usage

```
compute_quantiles(
  t_len,
  n_ts = 1,
  grid = NULL,
  ijset = NULL,
  sigma = 1,
  deriv_order = 0,
  sim_runs = 1000,
  probs = seq(0.5, 0.995, by = 0.005)
)
```

Arguments

t_len Sample size.

n_ts Number of time series analyzed. Default is 1.

grid Grid of location-bandwidth points as produced by the function construct_grid or construct_weekly_grid, list with the elements 'gset', 'bws', 'gtype'. If not provided, then the defalt grid is produced and used. For the construction of the

default grid, see construct_grid.

4 compute_statistics

ijset	A matrix of integers. In case of multiple time series, we need to know which pairwise comparisons to perform. This matrix consists of all pairs of indices (i,j) that we want to compare. If not provided, then all possible pairwise comparison are performed.
sigma	Value of $\sqrt{\sigma^2}$. In case of n_ts = 1, σ^2 denotes the long-run error variance, and in case of n_ts > 1, σ^2 denotes the overdispersion parameter. If not given, then the default is 1.
deriv_order	In case of a single time series analysed, this parameter denotes the order of the derivative of the trend function that is being estimated. Default is 0.
sim_runs	Number of simulation runs to produce quantiles. Default is 1000.
probs	A numeric vector of probability levels $(1-\alpha)$ for which the quantiles are computed. Default is $(0.5, 0.505, 0.51, \dots, 0.995)$.

Value

Matrix with 2 rows where the first row contains the vector of probabilities (probs) and the second contains corresponding quantiles of the gaussian statistics distribution.

Examples

```
compute_quantiles(100)
```

compute_statistics

Calculates the value of the test statistics both for single time series analysis and multiple time series analysis.

Description

Calculates the value of the test statistics both for single time series analysis and multiple time series analysis.

Usage

```
compute_statistics(
  data,
  sigma,
  n_ts = 1,
  grid = NULL,
  ijset = NULL,
  deriv_order = 0
)
```

Arguments

data	Vector (in case of $n_ts = 1$) or matrix (in case of $n_ts > 1$) that contains (a number of) time series that needs to be analyzed. In the latter case, each column of the
	matrix must contain one time series.
sigma	The estimator of the square root of the long-run variance σ in case of n_ts = 1, or the estimator of the overdispersion parameter σ in case of n_ts > 1.
n_ts	Number of time series analysed. Default is 1.

construct_grid 5

grid Grid of location-bandwidth points as produced by the functions construct_grid

or construct_weekly_grid, it is a list with the elements 'gset', 'bws', 'gtype'. If not provided, then the defalt grid is used. For the construction of the default

grid, see construct_grid.

ijset In case of multiple time series (n_ts > 1), we need to know which pairs of time

series to compare. This matrix consists of all pairs of indices (i,j) that we want to compare. If not provided, then all possible pairwise comparison are

performed.

deriv_order In case of a single time series, this denotes the order of the derivative of the trend

that we estimate. Default is 0.

Value

In case of $n_ts = 1$, the function returns a list with the following elements:

stat Value of the multiscale statistics.

gset_with_vals A matrix that contains the values of the normalised kernel averages for each pair

of location-bandwidth with the corresponding location and bandwidth.

In case of $n_ts > 1$, the function returns a list with the following elements:

stat Value of the multiscale statistics.

stat_pairwise Matrix of the values of the pairwise statistics.

ijset The matrix that consists of all pairs of indices (i, j) that we compared. The order

of these pairs corresponds to the order in the list gset_with_vals.

gset_with_vals A list of matrices, each matrix corresponding to a specific pairwise comparison.

The order of the list is determined by ijset. Each matrix contains the values of the normalisedkernel averages for each pair of location-bandwidth with the

corresponding location and bandwidth.

construct_grid Computes the location-bandwidth grid for the multiscale test.

Description

Computes the location-bandwidth grid for the multiscale test.

Usage

```
construct_grid(t, u_grid = NULL, h_grid = NULL, deletions = NULL)
```

Arguments

t Sample size.

u_grid Vector of location points in the unit interval [0, 1]. If NULL, a default grid is

used.

h_grid Vector of bandwidths, each bandwidth is supposed to lie in (0, 0.5). If NULL, a

default grid is used.

deletions Logical vector of the length len(u.grid) * len(h.grid). Each element is either

TRUE, which means that the corresponding location-bandwidth point (u,h) is NOT deleted from the grid, or FALSE, which means that the corresponding location-bandwidth point (u,h) IS deleted from the grid. Default is NULL in

which case nothing is deleted. See vignette for the use.

Value

A list with the following elements:

gset Matrix of location-bandwidth points (u, h) that remains after deletions, the i-th

row gset[i,] corresponds to the i-th point (u, h).

bws Vector of bandwidths (after deletions).

lens Vector of length = length(bws), lens[i] gives the number of locations in the grid

for the i-th bandwidth level.

gtype Type of grid that is used, either 'default' or 'non-default'.

gset_full Matrix of all location-bandwidth pairs (u, h) including deleted ones. pos_full Logical vector indicating which points (u, h) have been deleted.

Examples

construct_weekly_grid Computes the location-bandwidth weekly grid for the multiscale test.

Description

Computes the location-bandwidth weekly grid for the multiscale test.

Usage

```
construct_weekly_grid(t, min_len = 7, nmbr_of_wks = 4)
```

Arguments

t Sample size.

min_len Minimal length of the interval considered. The grid then consists of intervals

with lengths min_len, 2 * min_len, 3 * min_len, ... Default is 7, i.e. a week.

nmbr_of_wks Number that determines the longest intervals in the grid: the length of this inter-

val is calculated then as min_len * nmbr_of_wks. Default is 4.

Value

A list with the following elements:

gset Matrix of location-bandwidth points (u, h) the i-th row gset[i,] corresponds to

the i-th point (u, h).

bws Vector of bandwidths.

lens Vector of length = length(bws), lens[i] gives the number of locations in the grid

for the i-th bandwidth level.

gtype Type of grid that is used, always 'default'. gset_full Matrix of all location-bandwidth pairs (u, h).

covid 7

Examples

```
construct_weekly_grid(100)
construct_weekly_grid(100, min_len = 7, nmbr_of_wks = 2)
```

covid

Number of daily new cases of infections of COVID-19 per country.

Description

Data on the geographic distribution of COVID-19 cases worldwide (© ECDC [2005-2019])

Usage

covid

Format

A matrix with 99 rows and 41 columns. Each column corresponds to one coutnry, with the name of the country (denoted by three letter) being the name of the column.

Details

Each entry in the dataset denotes the number of new cases of infection per day and per country. In order to make the data comparable across countries, we take the day of the 100th confirmed case in each country as the starting date t = 1. This way of "normalizing" the data is common practice (Cohen and Kupferschmidt (2020)).

Source

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-co

estimate_lrv

Computes estimator of the long-run variance of the error terms.

Description

A difference based estimator for the coefficients and long-run variance in case of a nonparametric regression model are AR(p).

Specifically, we assume that we observe Y(t) that satisfy the following equation:

$$Y(t) = m(t/T) + \epsilon_t$$
.

Here, $m(\cdot)$ is an unknown function, and the errors ϵ_t are AR(p) with p known. Specifically, we ler $\{\epsilon_t\}$ be a process of the form

$$\epsilon_t = \sum_{j=1}^p a_j \epsilon_{t-j} + \eta_t,$$

where a_1, a_2, \dots, a_p are unknown coefficients and η_t are i.i.d.\ with $E[\eta_t] = 0$ and $E[\eta_t^2] = \nu^2$.

8 multiscale_test

This function produces an estimator $\hat{\sigma}^2$ of the long-run variance

$$\sigma^2 = \sum_{l=-\infty}^{\infty} cov(\epsilon_0, \epsilon_l)$$

of the error terms, as well as estimators $\widehat{a}_1, \dots, \widehat{a}_p$ of the coefficients a_1, a_2, \dots, a_p and an estimator $\widehat{\nu}^2$ of the innovation variance ν^2 .

The exact estimation procedure as well as description of the tuning parameters needed for this estimation can be found in Khismatullina and Vogt (2019).

Usage

```
estimate_lrv(data, q, r_bar, p)
```

Arguments

data A vector of $Y(1), Y(2), \dots, Y(T)$.

q, r_bar Tuning parameters.

p AR order of the error terms.

Value

A list with the following elements:

1rv Estimator of the long run variance of the error terms σ^2 .

ahat Vector of length p of estimated AR coefficients a_1, a_2, \ldots, a_p .

vareta Estimator of the variance of the innovation term ν^2 .

References

Khismatullina M., Vogt M. Multiscale inference and long-run variance estimation in non-parametric regression with time series errors //Journal of the Royal Statistical Society: Series B (Statistical Methodology). - 2019.

Description

Carries out the multiscale test given that the values the estimatates of long-run variance have already been computed.

multiscale_test 9

Usage

```
multiscale_test(
  data,
  sigma,
  n_ts = 1,
  grid = NULL,
  ijset = NULL,
  alpha = 0.05,
  sim_runs = 1000,
  deriv_order = 0
)
```

Arguments

data	Vector (in case of $n_t = 1$) or matrix (in case of $n_t > 1$) that contains (a number of) time series that needs to be analyzed. In the latter case, each column of the matrix must contain one time series.
sigma	The estimator of the square root of the long-run variance σ in case of n_ts = 1, or the estimator of the overdispersion parameter σ in case of n_ts > 1.
n_ts	Number of time series analysed. Default is 1.
grid	Grid of location-bandwidth points as produced by the functions <code>construct_grid</code> or <code>construct_weekly_grid</code> , it is a list with the elements 'gset', 'bws', 'gtype'. If not provided, then the defalt grid is used. For the construction of the default grid, see <code>construct_grid</code> .
ijset	In case of multiple time series (n_ts > 1), we need to know which pairs of time series to compare. This matrix consists of all pairs of indices (i, j) that we want to compare. If not provided, then all possible pairwise comparison are performed.
alpha	Significance level. Default is 0.05.
sim_runs	Number of simulation runs to produce quantiles. Default is 1000.
deriv_order	In case of a single time series, this denotes the order of the derivative of the trend that we estimate. Default is 0.

Value

In case of $n_ts = 1$, the function returns a list with the following elements:

statistics Value of the multiscale statistics.

test_matrix Matrix of the test results for the multiscale test defined in Khismatullina and Vogt (2019). The matrix is coded as follows:

- $test_{matrix}[i,j] = -1$: $test_{j}$ rejects the null for the j-th location u and the i-th bandwidth h and indicates a decrease in the trend;
- test_matrix[i,j] = 0: test does not reject the null for the j-th location u and the i-th bandwidth h;
- test_matrix[i,j] = 1: test rejects the null for the j-th location u and the i-th bandwidth h and indicates an increase in the trend;
- test_matrix[i,j] = 2: no test is carried out at j-th location u and i-th bandwidth h (because the point (u, h) is excluded from the grid as specified by the 'deletions' option in the function construct_grid)

10 plot_sizer_map

gset_with_vals A matrix that contains the values of the normalised kernel averages and test

results for each pair of location-bandwidth with the corresponding location and

bandwidth.

In case of $n_ts > 1$, the function returns a list with the following elements:

quant Quantile that was used for testing calculated from the gaussian distribution.stat

Value of the multiscale statistics.

statistics Value of the multiscale statistics.

stat_pairwise Matrix of the values of the pairwise statistics.

ijset The matrix that consists of all pairs of indices (i, j) that we compared. The order

of these pairs corresponds to the order in the list gset_with_vals.

gset_with_vals A list of matrices, each matrix corresponding to a specific pairwise comparison.

The order of the list is determined by ijset. Each matrix contains the values of the normalisedkernel averages for each pair of location-bandwidth with the

corresponding location and bandwidth.

plot_sizer_map

Plots SiZer map from the test results of the multiscale testing procedure.

Description

Plots SiZer map from the test results of the multiscale testing procedure.

Usage

```
plot_sizer_map(
  u_grid,
  h_grid,
  test_results,
  plot_title = NA,
  greyscale = FALSE,
  ...
)
```

Arguments

 u_grid Vector of location points in the unit interval [0, 1].

h_grid Vector of bandwidths from (0, 0.5).

test_results Matrix of test results created by multiscale_test.

plot_title Title of the plot. Default is NA and no title is written.

greyscale Whether SiZer map is plotted in grey scale. Default is FALSE.

. . . Any further options to be passed to the image function.

select_order 11

select_order	Calculates different information criterions for a single time series or multiple time series with $AR(p)$ errors based on the long-run variance estimator(s) for a range of tuning parameters and different orders p .
	estinator(s) for a range of taning parameters and aifferent orders p.

Description

This function fits AR(1), ... AR(9) models for all given time series and calculates different information criterions (FPE, AIC, AICC, SIC, HQ) for each of these fits. The result is the best fit in terms of minimizing the infromation criteria.

Usage

```
select\_order(data, q = NULL, r = 5:15)
```

Arguments

data	One or a number of time series in a matrix. Column names of the matrix should be reasonable
q	A vector of integers that consisits of different tuning parameters to analyse. If not supplied, q is taken to be $[2 \log T] : ([2\sqrt{T}] + 1)$.
r	A vector of integers that consists of different tuning parameters r_bar for estimate_lrv. If not supplied, $r = 5, \ldots, 15$.

Value

A list with a number of elements:

orders	A vector of chosen orders of length equal to the number of time series. For each time series the order is calculated as $\max(which.min(FPE),which.min(HQ))$
•••	Matrices with the orders that were selected (among $1, \dots, 9$) for each information criterion. One matrix for each time series.
temperature	Hadley Centre Central England Temperature (HadCET) dataset,
	Monthly Mean Central England Temperature (Degrees C)

Description

The CET dataset is the longest instrumental record of temperature in the world. It contains the mean monthly surface air temperatures (in degrees Celsius) from the year 1659 to the present. These monthly temperatures are representative of a roughly triangular area of the United Kingdom enclosed by Lancashire, London and Bristol. Manley (1953, 1974) compiled most of the monthly series, covering 1659 to 1973. These data were updated to 1991 by Parker et al (1992). It is now kept up to date by the Climate Data Monitoring section of the Hadley Centre, Met Office.

Usage

temperature

12 temperature

Format

A numeric vector of length 359.

Details

Since 1974 the data have been adjusted to allow for urban warming: currently a correction of -0.2 C is applied to mean temperatures. CET datasets are freely available for use under Open Government License.

Source

https://www.metoffice.gov.uk/hadobs/hadcet/

Index

```
* datasets
      covid, 7
      temperature, 11
\verb|compute_minimal_intervals|, 2
compute_quantiles, 3
compute_statistics, 4
{\tt construct\_grid}, \textit{3}, \textit{5}, \textit{5}, \textit{9}
{\tt construct\_weekly\_grid}, {\it 3}, {\it 5}, {\it 6}, {\it 9}
covid, 7
\texttt{estimate\_lrv}, \textcolor{red}{7}, \textcolor{red}{\textit{11}}
\verb|multiscale| (\verb|multiscale-package|), 2
multiscale-package, 2
multiscale_test, 8, 10
plot_sizer_map, 10
select_order, 11
temperature, \\ 11
```