Transformada de Laplace

Eduardo Páz Putti

Sumário

- Introdução
- Definição
- Propriedades das Transformadas
- Transformadas Notaveis
- Transformadas Inversas
- Função Heaviside
- Translação das Transformadas
- Função Delta de Dirac
- Convoluções
- EDO
- Referências

Introdução

Para Alexandre Motta (2009, p.38): "Equação Diferencial é uma equação que contém as derivadas ou diferenciais de uma ou mais variáveis dependentes, em relação a uma ou mais variáveis independentes, é chamada de equação diferencial. "Exemplos:

$$(e^{-y} + 1)sen(x)dx = (1 + cos(x))dy y(0) = 0$$

$$\frac{dy}{dx} = \frac{xy + 3x - y - 3}{xy - 2x + 4y - 8}$$

$$e^{x}yy' = e^{-y} + e^{-2x-y}$$

Introdução

Para Alexandre Motta (2009, p.39): "Havendo uma só variável independente, as derivadas são ordinárias e a equação é denominada equação diferencial ordinária, [...] . Havendo duas ou mais variáveis independentes, as derivadas são parciais e a equação é denominada equação diferencial parcial, [...]."

(E.D.O.)
$$(y")^{2} + 4y = 0$$

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$

Introdução

Figura 1: Solução de Equação Diferencial

Fonte: Ulysses Sodré (2003)

Definição

Seja f : [0,∞)→ℝ uma função. A transformada de laplace de f, é dada pela função:

$$\mathscr{L}\left\{f\left(t\right)\right\} = \int_{0}^{\infty} f\left(t\right)e^{-st}dt$$

Para todo s ≥ 0 tal que a integral converja.

Definição

A Transformada de Laplace depende de s, é representada por uma letra maiúscula F = F(s), ao passo que a função original que passou pela transformação depende de t é representada por uma letra minúscula f = f(t).

$$\mathcal{L}[f(t)] = F(s)$$

Definição

Exemplo 1: Dada a função f(x) = 1,

$$L(1) = \int_0^\infty e^{-st} dt = \lim_{b \to \infty} \int_0^b e^{-st} dt.$$

Tomando u = -st, temos du = -sdt. Logo,

$$L(1) = \lim_{b \to \infty} \int_0^b e^u \left(\frac{-du}{s} \right) = \lim_{b \to \infty} \left[-\frac{1}{s} e^u \right] \Big|_0^b = \lim_{b \to \infty} \left(\frac{-1}{s} e^{-sb} + \frac{1}{s} \right) = \frac{1}{s}$$

Desde que s > 0

Propriedades das Transformadas

Tabela 1: Propriedade das Transformadas

1	a f(t) + b g(t)	a F(s) + b G(s)		
2	e ^{at} f(t)	F(s - a)		
3	$f(t - a) H(t - a), com a \ge 0$	e ^{-as} F(s)		
4	f'(t)	sF(s)-f(0)		
5	f"(t)	$s^2F(s)-sf(0)-f'(0)$		
	f ⁽ⁿ⁾ (t)	$s^{n}F(s) - s^{n-1}f(0) f^{(n-1)}(0)$		
6	$\int_0^t f(u) du$	$\frac{F(s)}{s}$		
7	t ⁿ f(t)	$(-1)^n \frac{d^n F}{ds^n}(s)$		
8	$f(t) = f(t + T), \forall t = 0$	$\frac{\int_0^T e^{-st} f(t)dt}{1 - e^{-sT}}$		
9	$\int_0^t f(u) g(t-u) du$	F(s) . G(s)		
		300		

Fonte: omatematico.com (2005)

Transformações Notáveis

Tabela 2: Transformações Notáveis

N	função	$\mathcal{L}[f]$	N	função	$\mathcal{L}[f]$	Condição
01	$u(t) \equiv 1$	1/s	02	t	$1/s^2$	s > 0
03	t^2	$2/s^{3}$	04	t^n	$n!/s^{n+1}$	s > 0
05	$e^{at}, a \in \mathbb{R}$	$\frac{1}{s-a}$	06	$e^{at}, a \in \mathbb{C}$	$\frac{1}{z-a}$	$\operatorname{Re}(z-a) > 0$
07	$\cos(at)$	$\frac{s}{s^2+a^2}$	08	$\sin(at)$	$\frac{a}{s^2+a^2}$	s > 0
09	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	10	$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	s > a
11	$\cosh(at)$	$\frac{s}{s^2-a^2}$	12	$\sinh(at)$	$\frac{a}{s^2 - a^2}$	s > a
13	$t\cos(at)$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$	14	$t\sin(at)$	$\frac{2as}{(s^2+a^2)^2}$	s > 0

Fonte: Ulysses Sodré (2003)

Transformações Notáveis

Exemplo 2: Resolva a transformada de Laplace abaixo:

$$L\left\{2t^3+t\right\}$$

Usando a propriedade de linearidade da transformada de Laplace,

$$=2L\left\{t^3\right\}+L\left\{t\right\}$$

Aplicando as transformações notáveis,

$$= 2 \cdot \frac{6}{s^4} + \frac{1}{s^2} = \frac{12}{s^4} + \frac{1}{s^2}$$

Transformadas Inversas

Dada uma f(t) como a Transformada Inversa de Laplace de F(s) que denotaremops por $f(t) = L^{-1}[F(s)]$:

$$f(t) = L^{-1}[F(s)].$$

Transformadas Inversas

Exemplo 3: Transformada Inversa

$$L^{-1}\left[\frac{1}{s^3}\right]$$

$$= \frac{1}{2!}L^{-1}\left[\frac{2!}{s^3}\right] = \frac{1}{2!}t^2 = \frac{t^2}{2}$$

Transformadas Inversas com Frações Parciais

Exemplo 4: Transformada Inversa com Frações Parciais

$$F(s) = \frac{s+3}{s^2 - 3s + 2}$$

Aplicando Frações Parciais,

$$F(s) = \frac{s+3}{s^2 - 3s + 2} = \frac{A}{s-1} + \frac{B}{s-2} = \frac{A(s-2) + B(s-1)}{(s-1)(s-2)}.$$

Da igualdade

$$\frac{s+3}{(s-1)(s-2)} = \frac{A(s-2) + B(s-1)}{(s-1)(s-2)},$$

Transformadas Inversas com Frações Parciais

temos

$$s + 3 = A(s - 2) + B(s - 1),$$

De onde, obtemos A = -4 e B = 5. Portanto,

$$F(s) = \frac{-4}{s-1} + \frac{5}{s-2}$$

$$L^{-1}[F(s)] = -4L^{-1} \left[\frac{1}{s-1} \right] + 5L^{-1} \left[\frac{1}{s-2} \right]$$

$$= -4e^t + 5e^{2t}$$

Função de Heaviside

Figura 1: Função Heaviside

Fonte: Lutosa (2017)

Função de Heaviside

A Função H (t-a) definida por:

$$H(t-a) = \begin{cases} 0, & se \quad 0 \le t < a \\ 1, & se \quad t \ge a \end{cases}$$

De tal forma que:

$$H(t-a) = \frac{e^{-sa}}{s}, \ s > 0$$

Função de Heaviside

Exemplo 5: Determine H(t - 2):

$$L\{H(t-c)\} = \frac{e^{-cs}}{s}, c > 0$$

$$=\frac{e^{-2s}}{s}$$

(Primeiro Teorema do Deslocamento). Seja a uma constante real. Se a Transformada de Laplace da função $f:[0,\infty)\to\mathbb{R}$ é F(s) para s>c, então a Transformada de Laplace da função $g(t) = e^{at}$ f(t) é G(s) = F(s-a) para s-a>c

$$\int_0^\infty e^{-(s-a)t} f(t)dt = F(s-a)$$

Exemplo 6: Resolva a Transformada abaixo:

$$L\left\{5e^{4t}t^2\right\}$$

Utilizando a propriedade da multiplicação da transformada,

$$=5L\left\{e^{4t}t^2\right\}$$

Calculando a transformada da função t^2,

$$L\left\{t^2\right\} = \frac{2}{s^3}$$

Trasladando a função,

$$L\left\{e^{4t}t^{2}\right\} = \frac{2}{(s-4)^{3}}$$

Portanto,

$$L\left\{5e^{4t}t^2\right\} = 5 \cdot \frac{2}{(s-4)^3} = \frac{10}{(s-4)^3}$$

(Segundo Teorema do Deslocamento). Seja a uma constante positiva. Se a Transformada de Laplace da função f : [0,∞)→ℝ é F(s) para s>c, então a Transformada de Laplace da função:

$$g(t) = f(t - a)H(t - a)$$

$$\acute{e} G(s) = e^{-sa} F(s).$$

Exemplo 7: Dada a função,

$$f(t) = \begin{cases} 0, & se & 0 \le t < 3 \\ (t-3)^2, & se & t \ge 3. \end{cases}$$

Escrevendo na forma compacta,

$$f(t) = (t-3)^2 H(t-3).$$

Aplicando o Segundo Teorema do Deslocamento,

$$F(s) = e^{-3s}L[t^2] = e^{-3s}\frac{2!}{s^3} = \frac{2e^{-3s}}{s^3}.$$

Exemplo 8: Resolva a operação abaixo:

$$L^{-1}\left[\frac{e^{\frac{-\pi s}{3}}}{s^2+4}\right]$$

temos que a = π / 3 e

$$f(t) = L^{-1} \left[\frac{1}{s^2 + 4} \right] = \frac{1}{2} L^{-1} \left[\frac{2}{s^2 + 4} \right] = \frac{1}{2} \operatorname{sen}(2t).$$

Portanto,

$$L^{-1} \left[\frac{e^{\frac{-\pi s}{3}}}{s^2 + 4} \right] = \frac{1}{2} \operatorname{sen} 2 \left(t - \frac{\pi}{3} \right) H \left(t - \frac{\pi}{3} \right).$$

Função delta de Dirac

Figura 2: Função impulso unitário ou delta de Dirac

Fonte: D.A.V. Tonidandel (2015)

Função delta de Dirac

Propriedades da função delta de Dirac

$$\delta(t-a) = \begin{cases} \infty, & \text{se} \quad t = a \\ 0, & \text{se} \quad t \neq a; \end{cases}$$
$$\int_0^\infty \delta(t-a)dt = 1.$$

Função delta de Dirac

Se a > 0, então a Transformada de Laplace para a função delta de Dirac é dada por:

$$L[\delta(t-a)] = e^{-sa}.$$

Convolução

Sejam f e g funções contínuas por partes em [0,∞). Então,

$$(f * g)(t) = \int_0^t f(\rho)g(t - \rho)d\rho$$

A convolução de duas funções f e g é comutativa, ou seja, f * g = g * f.

Convolução

Exemplo 9: Encontre a Transformada de Laplace da função abaixo:

$$f(t) = \int_0^t e^{-\rho} \cos(\rho) d\rho.$$

Observe que f(t) = (g*f)(t), onde $g(t) = e^-t$.cos(t) e h(t)=1. Logo, pelo Teorema da Convolução,

$$L[f] = L[g * h] = L[g] \cdot L[h]$$

$$= L[e^{-t}cos(t)] \cdot L[1]$$

$$= \frac{s+1}{(s+1)^2 + 1} \cdot \frac{1}{s}$$

$$= \frac{s+1}{s[(s+1)^2 + 1]}.$$

Seja f(t) continua por partes [0,∞) e de ordem exponencial. Se f for periódica de período T, então

$$L[f(t)] = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt.$$

Exemplo 10: Obter a Transformada de Laplace para a Função Onda Dente de Serra representada na Figura 3:

Figura 3: Função Onda Dente de Serra

Fonte: Lutosa (2017)

$$L[f(t)] = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt.$$

Observe que f(t) = at/b, 0≤t<b e f(b+t) =f(t) para todo t > 0. Como a função é periódica de período T = b, podemos usar o Teorema de Transformada de uma Função Periódica para que:

$$F(s) = \frac{1}{1 - e^{-sb}} \int_0^b e^{-st} \frac{at}{b} dt = \left[\frac{a}{b(1 - e^{-sb})} \right] \int_0^b e^{-st} t dt.$$

Fazendo $u = t e dv = e^{-st} dt$, obtemos du = dt e

$$v = \int e^{-st} dt = \frac{-e^{-st}}{s}.$$

Assim,

$$F(s) = \left[\frac{a}{b(1 - e^{-sb})}\right] \cdot \left[t \cdot \left(\frac{-e^{-st}}{s}\right)\Big|_0^b - \int_0^b \left(\frac{-e^{-st}}{s}\right) dt\right]$$

$$= \left[\frac{a}{b(1 - e^{-sb})}\right] \cdot \left[\frac{-be^{-sb}}{s} + \left(\frac{-e^{-st}}{s^2}\right)\Big|_0^b\right]$$

$$= \left[\frac{a}{b(1 - e^{-sb})}\right] \cdot \left[\frac{-be^{-sb}}{s} + \frac{-e^{-sb}}{s^2} + \frac{1}{s^2}\right]$$

$$= \left[\frac{a}{b(1 - e^{-sb})}\right] \cdot \left[\frac{-be^{-sb}}{s} + \frac{1 - e^{-sb}}{s^2}\right]$$

$$= \frac{-ae^{-sb}}{s(1 - e^{-sb})} + \frac{a}{bs^2}$$

$$= \frac{-a}{s(e^{sb} - 1)} + \frac{a}{bs^2}$$

$$= \frac{a}{s} \left[\frac{1}{bs} - \frac{1}{e^{sb} - 1}\right].$$

EDO

Exemplo 11: Resolva a equação diferencial, sujeito a condição inicial y(0)=0:

$$y'(t) - 3y(t) = \delta(t - 2)$$

Aplicando a Transformada de Laplace

$$L[y'(t)] - 3L[y(t)] = L[\delta(t-2)]$$

$$sY(s) - y(0) - 3Y(s) = e^{-2s}$$

$$\Leftrightarrow (s-3)Y(s) = e^{-2s}$$

$$\Leftrightarrow Y(s) = \frac{e^{-2s}}{s-3}.$$

EDO

Aplicando a Transformada Inversa,

$$L^{-1}[Y(s)] = L^{-1} \left[\frac{e^{-2s}}{s-3} \right]$$

 $\Rightarrow y(t) = e^{3(t-2)}H(t-2).$

EDO

Exemplo 12: Resolva a equação diferencial : f''(t) - 5f'(t) + 4f(t) = 7H(t), sujeito a condição inicial f(0) = 0 e f'(0) = 0.

Muito obrigado a todos pela atenção.

E-mails para contato:

eduardo.p2005@aluno.ifsc.edu.br

Referências

LUTOSA, José Ivelton Siqueira. A Transformada de Laplace e Algumas Aplicações.

Orientador: Uberlandio Batista Severo. Tese (Mestrado - PROFMAT) - UFPB/CCEN, João Pessoa, 2017.

Sodré, Ulysses. Transformadas de Laplace. Disponível

em:<<u>https://www.uel.br/projetos/matessencial/superior/pdfs/laplace.pdf</u>>. Acesso em: 18 de jun. 2023.

TabelaLaplaceEDEQ. Disponível

em:<<u>https://omatematico.com/downloads/TabelaLaplace.pdf</u>>. Acesso em: 26 de jun. 2023.

A Função Delta Revisitada: De Heaviside a Dirac. Disponível

em:<<u>https://www.scielo.br/j/rbef/a/SR4zZjrbJ7zX8b8rc4g4wmw/?lang=pt</u>>. Acesso em: 28 de jun. 2023.

Referências

MOTTA, Alexandre. Equações Diferenciais Introdução. 1. ed. Florianópolis: IF-SC,

p. Disponível em:

https://www.ifsc.edu.br/documents/30701/523474/EDO final alexandre.pdf/44b850eb-

75ab-3b9d-9a9d-e6beab79a9e3>. Acesso em: 28 jun. 2023.