## Academia Sabatina de Jóvenes Talento

# Colinealidad y Concurrencia Clase #13

Encuentro: 29 Nivel: 5

Curso: Colinealidad y Concurrencia

Semestre: II

Fecha: 4 de noviembre de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

#### Contenido: Clase práctica #7

En esta séptima clase práctica se presentan las soluciones de los 20 problemas de Concurrencia y Colinealidad.

### 1. Problemas propuestos

**Problema 1.1.** Sea D el pie de altura desde A en el triángulo  $\triangle ABC$  y M, N puntos en los lados CA y AB talque las rectas BM y CN se intersecan en AD. Probar que AD es bisectriz del ángulo  $\angle MDN$ .

**Pista.** Sea T la intersección de AD y MN, probar que  $\frac{TM}{TN} = \frac{DM}{DN}$ . Considerar aplicar el teorema de la bisectriz generalizada al triángulo  $\triangle ABC$  y La ley de los senos a los triángulos  $\triangle BDN$  y  $\triangle CDM$ . Utilizar la propiedad  $\sin(90^{\circ} - \alpha) = \cos(\alpha)$  y luego probar que  $\tan(\angle MDA) = \tan(\angle NDA)$ .



Figura 1: Problema 1.

**Solución**. Sea T la intersección de AD con MN. Por el teorema de la bisectriz generalizada, tenemos que

$$\frac{TM}{TN} = \frac{AM}{AN} \cdot \frac{\sin(DAC)}{\sin(DAB)}.$$

También, por el teorema de la bisectriz generaliza, podemos decir que

$$\frac{DC}{DB} = \frac{AC}{AB} \cdot \frac{\sin(DAC)}{\sin(DAB)}.$$

Por consiguiente, tenemos que

$$\frac{TM}{TN} = \frac{AM}{AN} \cdot \frac{DC}{DB} \cdot \frac{AB}{AC} = \frac{AM}{AN} \cdot \frac{DC}{DB} \cdot \frac{\sin(C)}{\sin(B)},$$

donde la última ecuación se deduce por la ley de lo Senos aplicado al triángulo  $\triangle ABC$ . Por otro lado, por la misma ley de los Senos, aplicada a los triángulos  $\triangle BDN$  y  $\triangle CDM$ , temos que

$$DM = CM \cdot \frac{\sin(C)}{\sin(CDM)} = CM \cdot \frac{\sin(C)}{\sin(90^{\circ} - MDA)} = CM \cdot \frac{\sin(C)}{\cos(MDA)},$$

y análogamente

$$DN = BN \cdot \frac{\sin(B)}{\cos NDA};$$

entonces,

$$\frac{DM}{DN} = \frac{CM}{BN} \cdot \frac{\sin(C)}{\sin(B)} \cdot \frac{\cos(NDA)}{\cos(MDA)}.$$

Pero las rectas AD, BM, CN son concurrentes, por lo que por el teorema de Ceva sabemos que

$$\frac{DB}{DC} \cdot \frac{MC}{MA} \cdot \frac{NA}{NB} = 1, \text{ es decir } \frac{DC}{DB} \cdot \frac{AM}{AN} = \frac{CM}{BN}.$$

Por consiguiente, tenemos que

$$\frac{TM}{TN} = \frac{CM}{BN} \cdot \frac{\sin(C)}{\sin(B)} = \frac{DM}{DN} \cdot \frac{\cos(MDA)}{\cos(NDA)}.$$

Pero, por el teorema de la bisectriz generalizada nos da que

$$\frac{TM}{TN} = \frac{DM}{DN} \cdot \frac{\sin(MDA)}{\sin(NDA)};$$

de este modo  $\tan{(MDA)} = \tan{(NDA)}$ , y entonces los angulos  $\angle{MDA} = \angle{NDA}$  son iguales, como se afirma.

**Problema 1.2.** Sea  $\triangle ABC$  un triángulo con incentro I. Sea  $\Gamma$  un círculo centrado en I con radio mayor al inradio. Sean  $X_1$  la intersección de  $\Gamma$  con AB más cercana a B;  $X_2$  y  $X_3$  las intersecciones de  $\Gamma$  con BC donde  $X_2$  es más cercana a B; y  $X_4$  la intersección de  $\Gamma$  con CA más cercana a C. Sea K la intersección de  $X_1X_2$  con  $X_3X_4$ . Probar que AK biseca  $X_2X_3$ .

**Pista.** Sean D, E y F a los puntos de tangecias del incírculo con BC, CA y AB, respectivamente. Demuestra que  $FX_1 = DX_2 = EX_4$ .

**Solución**. Sean D, E y F los puntos de tangencia del incírculo con BC, CA y AB, respectivamente.

Por Pitágoras  $X_2D = \sqrt{X_2I^2 - ID^2} = \sqrt{X_1I^2 - IF^2} = X_1F$ , y como BF = BD, entonces  $BX_1 = BX_2$ . De este modo  $X_1X_2||DE$ , y de manera análoga  $X_3X_4||DE$  y  $FE||X_1X_4$ .

Por lo tanto los triángulos  $\triangle DEF$  y  $\triangle X_1X_4K$  son homotéticos y las rectas  $X_1F$ ,  $X_4E$  y KD concurren en A, y dado que D es el punto medio de  $X_2X_3$  se demuestra el resultado pedido.

**Problema 1.3.** Sea ABCD un cuadrado y sea X un punto en lado BC. Sea Y un punto en la recta CD tal que BX = YD y D se encuentra entre C y Y. Demuestra que el punto medio de XY se encuetra sobre la diagonal BD.

**Pista.** Aplicar el teorema de Menelao a los triángulos  $\triangle BCD$  y  $\triangle XCY$ .

**Problema 1.4.** Sean  $\Gamma_1$  una circunferencia y P un punto fuera de  $\Gamma_1$ . Las rectas tangentes desde P a  $\Gamma_1$  tocan a la circunferencia en los puntos A y B. Considera M el punto medio del segmento PA y  $\Gamma_2$  la circunferencia que pasa por los puntos P, A y B. La recta BM interseca de nuevo a  $\Gamma_2$  en el punto C, la recta CA interseca de nuevo a  $\Gamma_1$  en el punto D, el segmento DB interseca de nuevo a  $\Gamma_2$  en el punto E y la recta PE interseca a  $\Gamma_1$  en el punto E (con E entre E y E). Muetra que las rectas E0 y E1 concurren.

Pista (Olimpiada Mexicana de Matemáticas, 2014). Probar que los triángulos  $\triangle BEF$  y  $\triangle PCA$  son homotéticos.



Figura 2: Problema 3.

**Solución**. Sea Q el segundo punto de intersección de BC y  $\Gamma_1$ . Como MA es tangente a  $\Gamma_1$ , notemos que

$$MQ \cdot MB = MA^2 = MA \cdot MP = MC \cdot MB$$

así que M también es punto medio de CQ. Siendo así, AQPC un paralelogramo. Luego, conseguimos

$$\angle CQA = \angle QCP = \angle BCP = \angle BAP = \angle PBA = 180^{\circ} - \angle ACP = \angle QACP = \angle ACP = ACP = \angle ACP = \angle ACP = \angle ACP = ACP =$$

de modo que QCA es isósceles en A, por lo que AQBD es un trapecio isóscels. Esto se traduce en BE||QA||PC. Además,  $\angle BEP = \angle BPC = \angle QAC = \angle BDC$ , por tanto QE||AD, así que forzosamente P,Q y E están alineados. Tomando en cuenta la definición de F, podemos inferir que EF||CA y que AQFD es un trapecio isósceles. Esto conlleva a que  $\angle BFQ = \angle BAQ = \angle PAC = \angle QPA$ , luego BF||PA.

En resumen, los lados correspondientes de  $\triangle BEF$  y  $\triangle PCA$  son paralelos, por lo que estos triángulos son homotéticos; por consiguiente, AF,CE y PB concurren en el centro de homotecia de estos triángulos.

**Problema 1.5.** Sea  $\Omega$  el circuncírculo del triángulo  $\triangle ABC$  y sea  $\omega_a$  la circunferencia tangente al segmento CA, segmento AB y  $\Omega$ . Se definen  $\omega_b$  y  $\omega_c$  de manera análoga. Sea A', B', C' los puntos de toque de  $\omega_a, \omega_b, \omega_c$  con  $\Omega$ , respectivamente. Probar que AA', BB', CC' concurren en la recta OI donde O e I son el cincuncentro y el incentro de  $\triangle ABC$ , respectivamente.

**Pista.** Considerar el incírculo del triángulo  $\triangle ABC$  y considerar el exsimilicentro de este con  $\Omega$ . Luego, aplicar los teoremas de Monge y Monge D'Alembert.

**Problema 1.6.** Sea ABCD un trapezoide con AB > CD y AB||CD. Sean los puntos K, L sobre los segmentos AB, CD, respectivamente, tal que  $\frac{AK}{KB} = \frac{DL}{LC}$ . Suponga que existen los puntos P, Q en la recta KL que satisfacen  $\angle APB = \angle BCD$  y  $\angle CQD = \angle ABC$ . Probar que los puntos P, Q, B, C con concíclicos.

**Pista.** Considerar la intersección de AD con BC y analizar si existe alguno homotecia centrado en ese punto. Luego, por medio de angulo en cuadrilátero cíclicos llegar a lo pedido.

**Problema 1.7.** Los puntos P, Q y R están sobre los lados AB, BC y CA del triángulo acutángulo  $\triangle ABC$ , respectivamente. Si  $\angle BAQ = \angle CAQ$ ,  $QP \perp AB$ ,  $QR \perp AC$  y CP y BR se intersecan en S probar que  $AS \perp BC$ .

**Pista.** Aplicar Ceva al triángulo  $\triangle ABC$  con los puntos P, Q y R. Utilizar la definición del coseno.

**Problema 1.8.** Sea  $\triangle ABC$  un triángulo con circuncentro O y baricentro G. Sean A', B', C' las reflexiones de los puntos medios de BC, CA, AB con respecto a O, respectivamente. Probar que AA', BB', CC' y GO con concurrente.

**Pista.** Considere el ortocentro H, y demuestre que los triángulos  $\triangle ABH$  y  $\triangle A'B'O$  son homotéticos.

**Problema 1.9.** Un triángulo isósceles  $\triangle ABC$  tiene base AB y altura CD con BC = CA. Sean P un punto sobre CD, E la intersección de la recta AP con BC y F la intersección de la recta BP con CA. Suponga que los incírculos del triángulo  $\triangle ABP$  y del cuadrilátero PECF son congruentes. Demuestre que los incírculos de  $\triangle ADP$  y  $\triangle BCP$  son también congruentes.

**Pista.** Trazar la tangente común externa más cercana al punto A, y note que esta es paralela a CD. Considera ahora una homotecia de centro B.

**Problema 1.10.** Sea el triángulo  $\triangle ABC$  con AC = BC, sea P un punto dentro del triángulo tal que  $\angle PAB = \angle PBC$ . Si M es el punto medio de AB, entonce probar que  $\angle APM + \angle BPC = 180^{\circ}$ .

**Pista.** Probar que CA y CB son tangentes a circuncírculo del triángulo  $\triangle APB$ . Luego, usar la construción de simediana.

**Problema 1.11.** Sea P un punto en el plano del triángulo  $\triangle ABC$  y sea Q su conjugado isogonal respecto a  $\triangle ABC$ . Probar que

$$\frac{AP \cdot AQ}{AB \cdot AC} + \frac{BP \cdot BQ}{BA \cdot BC} + \frac{CP \cdot CQ}{CA \cdot CB} = 1.$$

**Pista** (Lista corta, IMO 1998). Considerar a X, Y, Z los pies de las proyecciones desde P hacía BC, CA, AB, respectivamente. Luego, utilizar áreas para lograr el resultado.

**Problema 1.12.** Sea el triángulo  $\triangle ABC$  y P un punto en su interior. Sea  $A_1$ ,  $B_1$  y  $C_1$  las intersecciones de AP, BP y CP con los lados BC, CA y AB, respectivamente. Considerando a X, Y y Z como la intersecciones de BC con  $B_1C_1$ , CA con  $C_1A_1$  y AB con  $A_1B_1$ , respectivamente. Probar que X, Y y Z son colineales.

**Pista.** Aplicar Menelao al triángulo  $\triangle ABC$  tres veces y multiplicar los resultados.

**Problema 1.13.** Sea el triángulo  $\triangle ABC$  con incentro I. Sean D, E, F puntos de tangecias de su circuncírculo con los lados BC, CA y AB, respectivamente. Probar que los circuncírculos de los triángulos  $\triangle AID$ ,  $\triangle BIE$  y  $\triangle CIF$  tiene dos puntos en común.

**Pista.** Probar que los centros de los círculos son colineales. Sean  $O_1, O_2, O_3$  lo centros de los circuncírculos de los triángulos en cuestión, considerar la reflexión de I con respecto a estos centros.

**Problema 1.14.** Sea BCXY un rectángulo construido fuera del triángulo  $\triangle ABC$ . Sea D pie de altura desde A hacía BC y sean U y V los puntos de intersección de DY con AB y DX con AC, respectivamente. Probar que UV||BC.

Pista. Aplicar el teorema de Desargues en una de sus versiones degeneradas.

**Problema 1.15.** Sea el triángulo  $\triangle ABC$  con AB < AC, el punto H denota el ortocentro. Los puntos  $A_1$  y  $B_1$  son pies de alturas desde A y B, respectivamente. El punto D es la reflexión de C respecto al punto  $A_1$ . Si  $E = AC \cap DH$ ,  $F = DH \cap A_1B_1$  y  $G = AF \cap BH$ , probar que las rectas CH, EG y AD concurren.

Pista. Aplicar el teorema de Desargues.

**Problema 1.16.** Las circunferencias  $C_1$  y  $C_2$  son tangentes externamente. Las rectas tangentes desde  $O_1$  hacia  $C_2$  la tocan en A y B; mientras que las rectas tangentes desde  $O_2$  hacia  $C_1$  la tocan en C y D, respectivamente. Sean  $E = O_1A \cap O_2C$  y  $F = O_1B \cap O_2D$ . Demostrar que EF,  $O_1O_2$ , AD y BC concurren.

Pista. Aplicar el teorema de Pascal.

**Problema 1.17.** Sea el triángulo  $\triangle ABC$ , y sean los puntos  $B_1$ ,  $C_1$  sobre los lados CA y AB respectivamente. Sea  $\Gamma$  el incírculo del  $\triangle ABC$  y sean E y F los puntos de tangencias de  $\Gamma$  con los mismos lados CA y AB, respectivamente. Además, se dibujan las tangentes desde  $B_1$  y  $C_1$  a  $\triangle ABC$  y se toma los puntos de tangecias Z y Y, respectivamente. Probar que las rectas  $B_1C_1$ , EF y YZ son concurrentes.

Pista. Aplicar el teorema de Pascal en dos hexágonos degenerados.

**Problema 1.18.** Sea el triángulo  $\triangle ABC$  y sea P un punto en el interior del triángulo pedal  $\triangle DEF$ . Suponga que las rectas DE y DF son perpendiculares. Probar que si Q es el conjugado isogonal de P con respecto al triángulo  $\triangle ABC$ , entonces Q es el ortocentro del triángulo  $\triangle AEF$ .

**Pista.** Considerar las reflexiones A', B', C' de P con respecto a BC, CA, AB, respectivamente. Luego, probar que Q es punto medio de B'C'.

**Problema 1.19.** Sea  $\triangle ABC$  un triángulo cualquiera y D, E y F puntos cualesquiera sobre las rectas BC, CA y AB tal que las rectas AD, BE y CF concurren. La paralela a AB por E interseca a la recta DF en el punto Q, la paralela a AB por D interseca a EF en T. Probar que la rectas CF, DE y QT son concurrentes.

**Pista.** Por conveniencia, considerar dibujar los puntos D, E, F en el interior de los segmentos BC, CA, AB. Aplicar varias veces el teorema de Ceva y el teorema de la bisectriz generalizada.

**Problema 1.20.** El punto D está sobre el lado AB del triángulo  $\triangle ABC$ . Sea  $\omega_1$  y  $\Omega_1$ ,  $\omega_2$  y  $\Omega_2$  los incírculos y los excírculos (tangentes al segmento AB) de los triángulos  $\triangle ACD$  y  $\triangle BCD$ , respectivamente. Probar que las tangentes externas comunes a  $\omega_1$  y  $\omega_2$ ,  $\Omega_1$  y  $\Omega_2$  se intersecan en AB.

Pista. Considerar los centro de los círculos en cuestión y luego aplicar el teorema de Desargues.

Nota: los problemas no están ordenados por orden de dificultad.

#### En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com