14-AMALIY MASHG'ULOT. HISOBLASH JARAYONLARIGA ALGORITMLAR TUZISH

Mavzuni o'rganish uchun ko'rsatmalar:

Algoritm va algoritmlash

Algoritmlarni ifodalash usullari:

Qishloq xo'jaligi masalalarining: chiziqli, tarmoqlanuvchi va takrorlanuvchi hisoblash algoritmlarni tasvirlash usullari

Algoritm va algoritmlash

Algoritm – qaralayotgan masalani yechish uchun bajarilishi lozim boʻlgan amallar ketma-ketligini paqidagi aniq qoidalardir. Demak, biror masalani yechish uchun kerak boʻladigan aniq koʻrsatmalar, buyruqlar, amallar ketma-ketligi uning alogritmini ifodalaydi.

Algoritm deganda - biror maqsadga erishishga yoki qandaydir masalani yechishga qaratilgan buyruqlarning aniq, tushunarli, chekli hamda toʻliq tizimi, aniq natijaga olib keladigan amallarning cheklangan ketma-ketligi tushuniladi.

Algoritmlar uchta asosiy: **bir qiymatlilik** (qoidalarning aniq va tushunarli boʻlishi); **ommaviylik** (algortm bilan bitta aniq masalani emas, balki butun bir masallar sinfini yechish mumkinligi); **natijaviylik** (chekli sondagi hisoblashlardan soʻng aniq natijaga ega boʻlinishi)) kabi shartlarga asoslangan boʻladi.

Algoritm inson yoki avtomatik vosita – formal **ijrochi** tomonidan bajarish uchun mo'ljallangan bo'lishi mumkin.

Ijrochining vazifasi – mavjud algoritmning aniq bajarishdan iborat boʻladi. Formal ijrochiga esa algoritmning tub mohiyatini toʻliq anglab yetish talabi qoʻyilmaydi va uni tushunmasligi ham mumkin. Masalan, kir yuvish – avtomat mashinasi, suvga poroshok solinmasa ham, oʻziga qoʻyilgan vazifani soʻzsiz bajaraveradi.

Informatikada kompyuter algoritmning universal ijrochisi boʻlib hisoblanadi.

Algoritmlarni ifodalash usullari:

- 1) soʻz orqali;
- 2) formulalar yordamida;
- 3) jadval koʻrinishda;
- 4) grafik (blok-sxema) shaklida; 5)dastur shaklida.

Algoritmlarni soʻzli, blok-sxemali va dasturlash tilida ifodalanishi qarab chiqamiz. Algoritmning blok-sxemasida geometrik figuralar ishlatiladi va ular - jarayon, yechish, modifikatsiya, kiritish-chiqarish, shartlarni tekshirish, hujjatni chop etish kabi belgilardan iborat boʻladi. Algoritmning blok sxema

koʻrinishida tasvirlashda: **ellips** (algoritmni boshlanishi va tugashi); **parallelogramm** (ma'lumotlarni kiritish va chiqarish); **toʻgʻri** t**oʻrtburchak** (ma'lumotlar ustida koʻrsatilgan amallarni bajarish); **romb** (masala shartlarni tekshirish), **aylana** (bogʻlovchi) kabi geometrik figiralardan, bu figuralar ketma-ketligini birlashtirish uchun strelkali chiziqlardan foydalaniladi.

1-rasm

Qishloq xo'jaligi masalalarining: chiziqli, tarmoqlanuvchi va takrorlanuvchi hisoblash algoritmlarni tasvirlash

usullari

Chiziqli algoritmlarda asosan hech qanday shart tekshirilmaydi va jarayonlar tartib bilan ketma - ket bajariladi. Demak, chiziqli algoritmlar sodda hisoblashlar yoki amallar ketma – ketligini ifodalaydi.

Chiziqli algoritm masalalarini yechishni bloksxemasini umumiy koʻrinishi 2-rasmda keltirilgan.

1-misol. Pifagor teoremasi boʻyicha uchburchakning gipotenuzasini hisoblashni: a) soʻzli; b)

blok-sxemali algoritmni tuzing.

Formulasi: $c^2=a^2+b^2$. Bu yerda a va b lar uchburchak katetlarini uzunligi, c - uchburchak gipotenuzasi.

a) soʻzli algoritmi:

- 1)boshlanishi;
- 2)uchburchakning a va b katetlarini qiymatlari kiritilsin;
- 3) uchburchak gipotenuzasi $c^2=a^2+b^2$ formula bilan hisoblansin;
 - 4)hisoblash natijasi c ni qiymati chiqarilsin; 5) hisoblash tugatilsin. Tamom.
 - **b) blok-sxemali algoritmi:** 3-rasmda keltirilgan.

2-misol. Fermer xoʻjaligida paxta ishlab chiqarish harajatlari **X** soʻmni va daromad sumdan iborat boʻlsa, **F** foyda va **R** rentabellik darajasini hisoblashni: a) soʻzli; b) blok-sxemali algoritmni tuzing.

Belgilashlar: X- harajatlar, ming so'm; **D**- daromad, ming so'm; **F** – foyda, ming so'm; **R**-rentabellik,%.

Formulasi: 1) foyda F = D - X; 2) Rentabellik darajasi R = (F/X) * 100%. *a*) soʻzli algoritmi:

- 1) boshlanishi;
- 2) X- harajatlar va D daromad (ming so'm) so'mmalari kiritilsin;
- 3) Foyda $\mathbf{F} = \mathbf{D} \mathbf{X}$ formula bilan hisoblansin;
- 4) Rentabellik darajasi \mathbf{R} =(\mathbf{F} / \mathbf{X})*100% formula bilan hisoblansin; 5) Hisoblash natijasi \mathbf{F} va \mathbf{R} ni qiymatlari chiqarilsin; 6) Hisoblash tugatilsin. Tamom.
- b) blok-sxemali algoritmi: 4-rasmda keltirilgan.

Dasturlash tilida funksiyalarni ifodalanishi

Nº	Funksiya	Paskalda	Mazmuni
1.	Y = x	Y:=abs(x)	x – ning absolyut qiymati
2.	$Y = \chi^2$	Y:=sqr(x)	x ni kvadrat darajaga koʻtarish
3.	$Y = \chi^{1/2}$	Y:=sqrt(x)	x –ning kvadrat ildizi
4.	Y=sinx,	<i>Y:=sin(x)</i>	sinus x
5.	Y = cosx	Y := cos(x)	kosinus x
6	Y = arctnx	Y:=arctan(x)	arktangens x
7.	Y = tnx	<i>Y:=tan(x)</i>	tangens x

8.	Y = lnx	Y:=ln(x)	natural logrifm x,
9.	$Y = e^x$	Y := exp(x)	x ning eksponetasi

Paskal dasturlash tilida darajali funksiyalarni yozilishi

Paskal tilida darajaga koʻtarish amali yoʻq, shuning uchun, bu amalni bajarishda logarifmlash qoidasidan foydalanamiz.

Buning uchun $Y=a^n$, a>0 koʻrsatkichli funksiyadan foydalanamiz. Berilgan tenglikni ikkala tomonini logarifmlaymiz, $InY=Ina^n$, logarifm xossasiga koʻra InY=nIna boʻladi. Bu tenglikdan "Y" ni aniqlaymiz: $Y=e^{nIna}$.

Demak, quyidagi tenglik oʻrinli boʻladi: $a^n = e^{n \ln a}$ [1].

Bu tenglik Paskal tilida quyidagicha yoziladi: **Y:=exp(n*ln(a))** [2].

Funksiyalarni Paskal dasturash tilida yozishga misollar keltiramiz.

Quyidagi funksiyalarni Paskal dasturlash tilida yozing. 3—14 misollar

3-misol. Y= $\sin^3 x$. Berilgan funksiyani [1] formula koʻrinishida yozib olamiz.

Bu yerda: $a = \sin x$, n = 3 ni [1] ga qo'yamiz: $Y = e^{3\ln\sin x}$.

Paskal tilida yozilishi: $Y:= \exp(3*\ln(\sin(x)));$

4- misol. Y= $\sin^{2/3}2x+1$). Berilgan funksiyani [1] koʻrinishida yozib olamiz.

Bu yerda: $a = \sin x$, n = 2/3 ni[1] ga qo'yamiz: $Y = e^{(2/3)\ln\sin(2x+1)}$.

Paskal tilida yozilishi: $Y:=\exp((2/3)*\ln(\sin(2*x+1)));$

5- misol. Y= 20⁸. Berilgan sonni [1] koʻrinishida yozib olamiz.

Bu yerda: a=20, n=8 ni[1] ga qoʻyamiz: $Y=e^{8\ln 20}$.

Paskal tilida yozilishi: Y:=exp(8*ln(20));

6- misol. Y= x^8 . Berilgan funksiyani [1] koʻrinishida yozib olamiz.

Bu yerda: a = x, n=8 larni [1] ga qoʻyamiz: $Y = e^{8\ln x}$.

Paskal tilida yozilishi: $Y := \exp(8*\ln(x))$,

Bu yerda $x^n = e^{n \ln x}$ yoki $x^n = 10^{n \ln x}$ formula ham qoʻllaniladi.

7- **misol.**Y= x^2+3x Sin x^2e^{3x} . Paskal dasturlash tilida yozilishi:

Y: = sqr(x) + 3*x*Sin(sqr(x))*exp(3*(x));

8- misol. $Y = |x^2 + 1| + 2,38e^{\cos 2x} + 32 \cdot 10^8 + 345 \cdot 10^{-14}$ Paskal dasturlash tilida yozilishi:

Y: = abs(sqr((x)+1))+2.38*exp(cos(2*x))+32E8+345E-14; 9- misol. Y= $lnx+ln|3x^2+2x+3.8|+ln(cose^x).$

Paskal dasturlash tilida yozilishi:

Y: = $\ln(x) + \ln(abs(3*sqr(x)+2*x+3.8)) + \ln(cos(exp(x)))$; **11-misol.**

$$y = \ln|x - 0.6z^2| + \frac{\sqrt{x+y}}{0.5} - tg^2x^3$$

Paskal dasturlash tilida yozilishi:

Y: = $\ln(abs(x-0.6*sqr(z))) + sqrt(x+y)/0.5 - sqr(tan(x^3))^2$;

11- misol.
$$y = tg^2 3x + \sqrt{x + 0.5|x|} + a \cdot \ell nx^3$$

Paskal dasturlash tilida yozilishi:

Y: = sqr(tan (3*x))+sqrt(x+0.5*abs(x))+a*ln(x*x*x); **12- misol**. Y= x^2 +3Cos2x+Sin x^2 ; Bu yerda x=10, x=5,9.

Paskal dasturlash tilida yozilishi. z=10; $\alpha=5,9$;

Y: = sqr(x)+3*Cos(2*z)+exp(a*a*a);

13- misol. $Y = \beta^2 + 3\cos 2\gamma + e^{3\beta}$

Paskal dasturlash tilida yozilishi. Oʻzgaruvchilarni quyidagicha belgilab olamiz α – alfa, β -betta, γ -gamma.

Y: = sqr(betta)+3*Cos(2*gamma)+exp(betta* betta* betta* betta); **14- misol**. $Y=x_1+3Cos3x^2+5x^3$.

Paskal dasturlash tilida yozilishi. Y: = $x_1+3*Cos(3*x^2)+5*x*x*x$;

Tarmoqlanuvchi algoritmlar.

Tarmoqlanuvchi algoritm - u oʻzida kamida bitta shartni saqlaydi va kompyuter uni tekshirish natijasida ikkita mumkin boʻlgan shartlardan birini bajarishni ta'minlaydigan algoritmdir.

15-misol. Ikkiga tarmoqlanuvchi funksiyani hisoblashning a) soʻzli; b) bloksxemali algoritmni tuzing.

Y= $2x^2+1$, agar x < 2 bo'lsa Y= $-x^2+3x+2$, agar $x \ge 2$ bo'lsa a) so'zli algoritmi:

- 1) boshlanishi;
- 2) x ni qiymatini kiriting;
- 3) agar x < 2 bo'lsa $Y=2x^2+1$ funksiya hisoblansin;
- 4) agar $x \ge 2$ bo'lsa $Y=-x^2+3x+2$ funksiya hisoblansin; 5) hisoblash natijasi Y ni qiymati chiqarilsin; 6) hisoblash tugatilsin. Tamom.
 - b) blok-sxemali algoritmi: 5-rasmda keltirilgan.