Deep Residual Learning for Image Recognition

Author: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

(accepted to CVPR 2016)

Presenter: Hyeongseok Son

The deeper, the better

- The deeper network can cover more complex problems
 - Receptive field size ↑
 - Non-linearity 个
- However, training the deeper network is more difficult because of vanishing/exploding gradients problem

Deep Neural Network

- Escape from few layers
 - ReLU for solving gradient vanishing problem
 - Dropout ...

Deep Neural Network

- Escape from 10 layers
 - Normalized initialization
 - Intermediate normalization layers

Deep Neural Network

- Escape from 100 layers
 - Residual network

Plain Network

- Plain nets: stacking 3x3 conv layers
- 56-layer net has higher training error and test error than 20-layers net

Plain Network

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

- Naïve solution
 - If extra layers are an identity mapping, then a training errors does not increase

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning For Linage Recognition". arXiv 2015.

- Deeper networks also maintain the tendency of results
 - Features in same level will be almost same
 - An amount of changes is fixed
 - Adding layers makes smaller differences
 - Optimal mappings are closer to an identity

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Linage Recognition". arXiv 2015...

- Plain block
 - Difficult to make identity mapping because of multiple non-linear layers

- Residual block
 - If identity were optimal, easy to set weights as 0
 - If optimal mapping is closer to identity, easier to find small fluctuations

-> Appropriate for treating perturbation as keeping a base information

Difference between an original image and a changed image

Deeper ResNets have lower training error

- Residual block
 - Very simple
 - Parameter-free

A naïve residual block

"bottleneck" residual block (for ResNet-50/101/152)

- Shortcuts connections
 - Identity shortcuts

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

Projection shortcuts

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

Network Design

- Basic design (VGG-style)
 - All 3x3 conv (almost)
 - Spatial size/2 => #filters x2
 - Batch normalization
 - Simple design, just deep
- Other remarks
 - No max pooling (almost)
 - No hidden fc
 - No dropout

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Network Design

- ResNet-152
 - Use bottlenecks
 - ResNet-152(11.3 billion FLOPs) has lower complexity than VGG-16/19 nets (15.3/19.6 billion FLOPs)

Results

- Deep Resnets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

Results

- Deep Resnets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

Results

- 1st places in all five main tracks in "ILSVRC & COCO 2015 Competitions"
 - ImageNet Classification
 - ImageNet Detection
 - ImageNet Localization
 - COCO Detection
 - COCO Segmentation

Quantitative Results

ImageNet Classification

Result

Performances increase absolutely

task	2nd-place winner	MSRA	margin (relative)
ImageNet Localization (top-5 error)	12.0	9.0	27%
ImageNet Detection (mAP@.5)	53.6 abso 8.5% l	olute 62.1	16%
COCO Detection (mAP@.5:.95)	33.5	37.3	11%
COCO Segmentation (mAP@.5:.95)	25.1	28.2	12%

- Based on ResNet-101
- Existing techniques can use residual networks or features from it

Qualitative Result

- Object detection
 - Faster R-CNN + ResNet

Qualitative Results

Instance Segmentation

Exploring over 1000 layers

- Test 1202 layers
 - Training is finished
 - Training error is similar
 - Testing error is high because of over fitting

Conclusion

- Deeper networks are better expectably
- ResNet is very simple
- We should use it from now on

Reference

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.
- Slides of Deep Residual Learning @ ILSVRC & COCO 2015 competitions

Thank You