Dynamic Mechanism-Design

Michael Füg und Philip Zilke

25. Februar 2016

Einleitung

2 Dynamische private Informationen

3 Dynamische Allokationen

Aufbau des Vortrages

Die Hauptansätze:

- Dynamische private Informationen und statische Allokationen
- Dynamische Allokationen und statische private Informationen

Modelrahmen

Modellrahmen ist Zwei-Personen Spiel:

- Verkäufer
 - Verkauft unteilbares Gut
 - Slegt Mechanismus Γ fest
- Käufer
 - Bewertet Gut durch $\theta > 0$
 - $oldsymbol{ heta}$ erst nach Aktzeptieren des Mechanismus Γ bekannt
 - Erhält aber vorher Signal τ , welches mit θ korreliert ist

Mathemtische Modellierung

Sei im Folgenden für das Signal au

- Kommulierte Verteilung $G(\tau)$
- Positive Dichte $g(\tau)$
- Trägermenge $[\underline{\tau}, \bar{\tau}]$

Sei im Folgenden für die Bewertung θ

- Kommulierte Verteilung $F(\theta \mid \tau)$
- Korrespondierende Dichte $f(\theta \mid \tau)$
- Trägermenge $[\underline{\theta}, \bar{\theta}]$ mit $0 \leq \underline{\theta} < \bar{\theta}$ für alle $\tau \in [\underline{\tau}, \bar{\tau}]$

Annahmen

Wir setzen im Folgenden voraus, dass

- Trägermenge von $F(\theta \mid \tau)$ ist $[\underline{\theta}, \overline{\theta}]$ für alle $\tau \in [\tau, \overline{\tau}], 0 \leq \theta < \overline{\theta}$
- Trägermenge von $F(\theta \mid \tau)$ unabhängig von τ
- $f(\theta \mid \tau) > 0$ für alle $\tau \in [\underline{\tau}, \overline{\tau}]$ und $\theta \in [\underline{\theta}, \overline{\theta}]$
- $F(\theta \mid \tau)$ und $f(\theta \mid \tau)$ sind stetig differenzierbar in τ
- Für die Familie $F(\cdot \mid \tau)$ mit $\tau \in [\tau, \bar{\tau}]$ gilt

$$\delta F(\theta \mid \tau)/\delta \tau < 0 \text{ für alle } \theta \in [\underline{\theta}, \overline{\theta}]$$
 (FOSD)

Dynamischer direkter Mechanismus

Definition

Ein dynamischer direkter Mechanismus besteht aus den beiden Funktionen

$$q: [\underline{\tau}, \overline{\tau}] \times [\underline{\theta}, \overline{\theta}] \to [0, 1]$$
 und $t: [\underline{\tau}, \overline{\tau}] \times [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$.

Zwei wesentliche Hauptänderungen:

- Verwende nun das kartesische Produkt $[\underline{\tau}, \bar{\tau}] \times [\underline{\theta}, \bar{\theta}]$
- 2

Ein-Personen-Entscheidungsproblem

Optimale Entscheidung ist das Paar $\sigma = (\sigma_1, \sigma_2)$ mit

- $\sigma_1: [\underline{\tau}, \bar{\tau}] \to [\underline{\tau}, \bar{\tau}]$ (Report ex ante Typ τ)
- $\sigma_2 : [\underline{\tau}, \overline{\tau}] \times [\underline{\theta}, \overline{\theta}] \times [\underline{\tau}, \overline{\tau}] \to [\underline{\theta}, \overline{\theta}]$ (Report ex post Typ θ)

Proposition

Für jeden dynamischen Mechanismus Γ und jede optimale Käuferstrategie σ in Γ gibt es einen direkten Mechanismus Γ' und eine optimale Käuferstrategie $\sigma = (\sigma'_1, \sigma'_2)$ so dass gilt:

i) Die Strategie σ genügt

$$\sigma_1'(\tau) = \tau \ \forall \tau \in [\underline{\tau}, \overline{\tau}] \quad \textit{und} \quad \sigma_2'(\tau, \theta, \tau) = \theta \ \forall \theta \in [\underline{\theta}, \overline{\theta}], \tau \in [\underline{\tau}, \overline{\tau}]$$

ii) Wenn der Käufer seine optimale Strategie spielt, dann ist für alle $(\tau,\theta)\in [\underline{\theta},\bar{\theta}]\times [\underline{\tau},\bar{\tau}]$ die Wahrscheinlichkeit $q(\tau,\theta)$ und die Auszahlung $t(\tau,\theta)$ unter Γ' identisch mit der Wahrscheinlichkeit eines Kaufes und der erwarteten Auszahlung unter Γ .

. . .

. . .