Stepwise imputation up to sequence level and resource allocation

Martina Franz

Overview

- Part 1: Plan imputation strategy
 - Direct or step-wise imputation
 - Handel duplicate samples
 - Impute up to sequence level
- Part 2: Resource allocation and slurm profiling
 - Factors impact on resource demand
 - Resource allocation
 - Slurm profiling
- Summary

Part 1: Plan imputation strategy

Scenario:

- Genotype data on 3 panels (partially overlapping):
 - Panel 1
 - Panel 2
 - Panel 3
- Aim: Impute panels 2 and 3 up to panel 1
 - Check panel overlap
 - Filter for unique samples

Reference panel 1

$$X X X X - X X - X - X - X X X$$

Study panel 2

$$X - X - X - - - - X X - X - X - X X$$

Study panel 3

$$X X - - X - X - - - X - X - - - x -$$

X : genotype available at that position

- : no genotype available at that position

Reference panel 1

$$X X X X - X X - X - X - X X X$$

Study panel 2

$$X - X - X - - - - X X - X - X - X X$$

Study panel 3

$$X X - - X - X - - - X - X - - - x -$$

Overlap study panel with reference panel:

5 position

4 positions

Number of samples:

Reference panel 1

$$X \times X \times X - X \times - - X - - X - X \times X$$

95

Unique sample (no overlap with reference):

Study panel 2

$$X - X - X - - - - X X - X - X - X X$$

139

136

Study panel 3

$$X X - - X - X - - - X - X - - - x -$$

118

74

Questions to ask:

- Overlap study panels with reference panel

Number of samples:

Reference panel 1	X X X X - X X X X - X X X	95	Unique sample (no overlap with reference):
Study panel 2	X - X - X X X - X - X - X X	139	136
Study panel 3	X X X - X X - X x -	118	74

Questions to ask:

- Overlap study panels with reference panel
- Overlap study panels amongst one another
 - Case: multiple samples impute from different panels are wanted -> no further test needed

Num	her	of	sami	nles:
ITMIII		O.	Juili	PICJ.

Reference panel 1	X X X X - X X - X - X - X X X	95	Unique sample (no overlap with reference):
Study panel 2	X - X - X X X - X - X - X X	139	136
Study panel 3	X X X - X X - X x -	118	74

Questions to ask:

- Overlap study panels with reference panel
- Overlap study panels amongst one another
 - Case: only unique samples imputed to panel 1 -> create panel ranking list

• Example create panel hierarchy:

1. Panel 1 keep all samples

2. Panel 3 keep samples not present on panel 1

3. Panel 2 keep samples not present on panel 1 and 3

Subset samples according to panel hierarchy

Workflow unique samples only

- 1. Create panel hierarchy
- 2. Subset samples according to panel hierarchy
- 3. Create references from panel 1
- 4. Impute panel 3 to reference panel 1 => panel3_impTo_panel1
- 5. Impute panel 2 to reference panel 1 => panel2_impTo_panel1
- 6. Merge panel_1, panel3_impTo_panel1, panel2_impTo_panel1
 - => all_panel1

Workflow unique samples only

- Create panel hierarchy
- 2. Subset samples according to panel hierarchy
- 3. Create references from panel 1
- 4. Impute panel 3 to reference panel 1 => panel3_impTo_panel1
 - 1. Mask poorly imputed variants, e.g. set variants to missing for DR2<0.9
- 5. Impute panel 2 to reference panel 1 => panel2_impTo_panel1
 - 1. Mask poorly imputed variants, e.g. set variants to missing for DR2<0.9
- 6. Merge panel_1, panel3_impTo_panel1, panel2_impTo_panel1
 - => all_panel1

Workflow unique samples + high quality imputed

Reference panel 1

Study panel 2

Study panel 3

$$X - X - X - - - X X - X - X - X X$$

Overlap study panel with reference panel:

1 position

5 positions

Step-wise imputation:

Study panel 2

Test: - create reference from panel 3

- impute panel 2 -> panel 3 -> panel 1

Workflow unique samples + high quality imputed

- 1. Create panel hierarchy
- 2. Subset samples according to panel hierarchy
- 3. Create references from panel 1 and panel 3
- Impute panel 2 to reference panel 3 => panel2_impTo_panel3
 Mask poorly imputed variants, e.g. set variants to missing for DR2<0.9
- 5. Merge panel2_impTo_panel3 with panel 3 => all_panel3
- 6. Impute all_panel3 to panel 1 => all_panel3_impTo_panel1
 1. Mask poorly imputed variants, e.g. set variants to missing for DR2<0.9
- 7. Merge panel_1, all_panel3_impTo_panel1

Workflow step-wise imputation

Part 1: Plan imputation strategy up to seq level

Scenario:

- Sequence data SeqD
- Genotype data on 3 panels:
 - Panel A (high density)
 - Panel B (low density)
 - Panel C (low density)
- Aim: Impute panels A-C up to sequence level
 - Check panel overlap
 - Filter for unique samples

Stepwise imputation up to sequence level

Stepwise imputation up to sequence level

Questions?

Part 2: Resource use

- Factors impacting on resource demand
- Resources allocation
- Slurm profiling

Main factors impacting on resource demand

- Population size of samples to impute
- Number of variants to impute
- Number of chromosomes to impute
- Window size
- Software used for imputation
 - Beagle: filetype of reference
 - Convert reference to bref3 format reduces memory requirement

Resource demand: population size and variants

- More samples take more RAM and compute time
 - If relationship is linear needs to get tested
- Resource demand does not necessarily increase linear with number of variants that get imputed
 - 'tricky regions' take up more compute time and RAM than 'easy regions'

Manage high resource demand

- Split population into chunks
 - Smaller demand of RAM per job
 - Shorter runtime per job
 - More jobs to run
 - Decrease required amount of RAM might enable use of less crowded partitions
 - Overall resource demand needs to get tested

Info on NESI slurm partitions:

https://support.nesi.org.nz/hc/en-gb/articles/360000204076-Mahuika-Slurm-Partitions

Split population

- **Important**: split samples randomly to prevent stratification by age, breed, region, ...
- Number of chunks to split depends on desired resource investment per job

Window size

- Window: specifies the cM length of each sliding window
 - beagle default value 40 cM (min. 1.1 times overlap)
- Overlap: specifies the cM overlap between sliding windows
 - beagle default value 2.0 cM

Impact of window size on phasing

Browning et al. 2021, Fig. 4

Decrease of window size can reduce memory demand

Run jobs and specify resources

• Submit slurm job(s) to run sub-setting, imputation, filtering, merging,

• • •

- Write slurm script, or
- Submit bash script to slurm work load manager
- Specify resources for slurm job
 - --mem: memory (RAM) per node
 - --time: maximum total run time
 - --cpus-per-task: number of processors per task (default 1)

Find good resource settings for slurm job

- Estimate potential resource demand based on prior experience
 - Allocate plenty of time so the job won't time out
 - Estimate amount of RAM the job will need
 - If the submitted job runs a program that allows for parallelisation (e.g. bcftools and beagle) then specify number of CPUs
- Check on consumed resources of job:
 - 'nn_seff JOBID'
- Adapt resource settings if job needs to run again + gain experience on what kind of job takes how much resources

Find good resource settings for slurm job

- Check on consumed resources by job:
 - 'nn_seff JOBID'

```
Cluster: mahuika
                             Job ID: 36980291
                            Array Job ID: 36980288_2
Job status:
                             State: COMPLETED
COMPLETED, FAILED,
                             Cores: 5
                             Tasks: 1
OUT OF MEMORY,
                            Nodes:
TIMEOUT
                                              8.3% 00:29:58 of 06:00:00 time limit
                             Job Wall-time:
                             CPU Efficiency: 124.9% 03:07:05 of 02:29:50 core-walltime
                             Mem Efficiency: 86.6% 51.98 GB of 60.00 GB
                            Cluster: mahuika
Job resource performance
                             Job ID: 36980292
                             Array Job ID: 36980288_3
                             State: COMPLETED
                             Cores: 5
                             Tasks: 1
                            Nodes: 1
                            Job Wall-time:
                                             14.8% 00:53:20 of 06:00:00 time limit
                            CPU Efficiency: 148.8% 06:36:54 of 04:26:40 core-walltime
                            Mem Efficiency: 86.7% 51.99 GB of 60.00 GB
```

Workflow finding resource settings

Specifying the number of CPUs

- If overhead for parallelisation gets to big run time might increase again when specifying more CPUs
- Run tests to find sweet spot where one gets a strong increased in run time before saturation effect sets in

Slurm profiling

Info on slurm profiling and access to plot script:

https://genomicsaotearoa.github.io/Workshop-Bash Scripting And HPC Job Scheduler/7 supplementary 2/ Or

https://support.nesi.org.nz/hc/en-gb/articles/360000810616-Slurm-Native-Profiling

To run profiling add:

'#SBATCH --profile task' to slurm script, or '--profile task' to sbatch command when submitting a bash script

• Summarize output:

'sh5util -j JOBID'

Generate profile plot:

'module purge; module load Python' 'python profile plot Jul2020.py job_JOBID.h5 '

Profiling example output 1

Profiling example output 2

Profiling example output 3

Summary resource allocation

- Decrease resource demand:
 - Lower window size
 - Split population into chunks (increases number of jobs to run)
- Resource allocation:
 - Single/seldom run job: manual testing
 - Repeatedly run job: slurm profiling
- Run testing on longest chromosome (most variants to impute) and/or most complicated to impute chromosome

Questions?