Numerical method for optimal strategies for impulse control of piecewise deterministic Markov

PROCESS

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹ and Régis Sabbadin ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France
²John Curtin School of Medical Research, The Australian National University,
Canberra, ACT, Australia
³Univ Toulouse, INRAE-MIAT. Toulouse, France

Ianuary 17th 2025

PIECEWISE DETERMINISTIC MARKOV PROCESS (PDMP)

DEFINITION

Move randomly from one deterministic regime to another.

The process $X = (X_t)_{t \ge 0}$ is defined on the state space E by 3 local characteristics.

LOCAL CHARACTERISTICS

- Flow Φ (deterministic motion of the process)
- Jump Intensity λ (occurrence of random jumps)
- Markov Kernel Q (post-jump localisation)

IMPULSE CONTROL FOR PDMP

Example

Select new starting point for the process at interventions to minimize a cost function.

IMPULSE CONTROL FOR PDMP

Definition

STRATEGY

$$\mathcal{S} = (\tau_n, R_n)_{n \geq 1}$$

- τ_n intervention dates
- R_n new positions after intervention

$$J^{S}(x) = E_{x}^{S} \left[\int_{0}^{\infty} e^{-\alpha s} \underbrace{f(X_{s})}_{\text{running cost}} ds + \sum e^{-\alpha \tau_{i}} \underbrace{c(X_{\tau_{i}}, X_{\tau_{i}+})}_{\text{intervention cost}} \right]$$

$$V(x) = \inf_{S \in \mathbb{S}} J^{S}(x)$$
Value function

RESOLUTION

ϵ -optimal Strategy

$$V(S_{\epsilon}, x) \leq V(x) + \epsilon$$

Challenges:

- Numerical
- Mathematical

CONCLUSION

Numerical method:

- Get ϵ -optimal strategy
- Convergence guarantee

Limits:

- Process fully observed (including jump dates)
- Process fully known

PERSPECTIVES

Ongoing work

Solve partially observed PDMP with a partially known model using Deep Reinforcement Learning Algorithm.

LIMITS

Neural network resolution methods are difficult to interpret and the cost function is complicated to calibrate.

Current work

With this method, we aim to:

- Easily test multiple cost functions.
- Compare the resulting strategies and choose the best one based on various objectives.

SUMMARY

REFERENCES

- COSTA, O. L. V. et M. H. A. DAVIS (1989). "Impulse control of piecewise-deterministic processes". en. In: Mathematics of Control, Signals, and Systems 2.3, p. 187-206. ISSN: 0932-4194, 1435-568X. DOI: 10.1007/BF02551384.
- LUSCHGY, Harald et Gilles PAGÈS (2023).

 Marginal and Functional Quantization of Stochastic Processes. Cham, Switzerland:
 Springer Nature Switzerland. ISBN: 978-3-031-45464-6.
- SAPORTA, Benoîte de, F DUFOUR et al. (2012). "Optimal stopping for the predictive maintenance of a structure subject to corrosion". en. In:

 Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 226.2, p. 169-181. ISSN: 1748-006X, 1748-0078. DOI: 10.1177/1748006X11413681.
- SAPORTA, Benoîte de, François Dufour et Alizée GEERAERT (2017). "Optimal strategies for impulse control of piecewise deterministic Markov processes". en. In: Automatica 77, p. 219-229. ISSN: 00051098. DOI: 10.1016/j.automatica.2016.11.039.