```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

→ Pandas

- 1. read_csv()
- 2. head()
- 3. tail()
- 4. isnull()
- 5. sum()
- 6. describe()

df = pd.read_csv('Real estate.csv')

df.head()

₽

÷		No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
	0	1	2012.917	32.0	84.87882	10	24.98298	121.54024	37.9
	1	2	2012.917	19.5	306.59470	9	24.98034	121.53951	42.2
	2	3	2013.583	13.3	561.98450	5	24.98746	121.54391	47.3
	3	4	2013.500	13.3	561.98450	5	24.98746	121.54391	54.8

df.tail()

	No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
40	9 410	2013.000	13.7	4082.01500	0	24.94155	121.50381	15.4
4	10 411	2012.667	5.6	90.45606	9	24.97433	121.54310	50.0
4	11 412	2013.250	18.8	390.96960	7	24.97923	121.53986	40.6
4	12 413	2013.000	8.1	104.81010	5	24.96674	121.54067	52.5
4	I3 414	2013.500	6.5	90.45606	9	24.97433	121.54310	63.9

df.isnull().sum()

No	0
X1 transaction date	0
X2 house age	0
X3 distance to the nearest MRT station	0
X4 number of convenience stores	0
X5 latitude	0
X6 longitude	0
Y house price of unit area	0
dtype: int64	

df.describe()

	No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
count	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000
mean	207.500000	2013.148971	17.712560	1083.885689	4.094203	24.969030	121.533361	37.980193
std	119.655756	0.281967	11.392485	1262.109595	2.945562	0.012410	0.015347	13.606488
min	1 በበበበበበ	2012 667000	U UUUUUU	23 382840	0 000000	2 <u>4</u> 032070	121 473530	7 600000

Numpy

```
1. argmax()
   2. sort()
   3. median()
   4. mean()
   5. average()
   6. std()
np.argmax(df['No'])
     413
a=df['X1 transaction date']
np.sort(a)
print(a.head(10))
print(a.tail(10))
          2012.917
          2012.917
     1
          2013.583
     2
     3
          2013.500
          2012.833
     5
          2012.667
     6
          2012.667
          2013.417
     8
          2013.500
          2013.417
     Name: X1 transaction date, dtype: float64
           2013.333
     405
           2012.667
     406
           2013.167
     407
            2013.000
     408
           2013.417
            2013.000
     409
     410
            2012.667
     411
           2013.250
            2013.000
     412
     413
           2013.500
     Name: X1 transaction date, dtype: float64
print('Median of a is :',np.median(a))
print('Mean of a is :',np.mean(a))
print('Average of a is :',np.average(a))
print('Standard Deviation of a is :',np.std(a))
     Median of a is : 2013.167
     Mean of a is : 2013.1489710144926
     Average of a is : 2013.1489710144926
     Standard Deviation of a is : 0.2816264942288487
```

→ scikitlearn

- 1. train_test_split
- 2. LinearRegression()
- 3. r2_score()
- 4. fit()
- 5. predict()

```
X=df.drop(['Y house price of unit area'], axis=1)
y=df['Y house price of unit area']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=42)
X\_test.shape
      (83, 7)
X_train.shape
      (331, 7)
reg = LinearRegression()
reg.fit(X_train, y_train)
      ▼ LinearRegression
      LinearRegression()
y_pred = reg.predict(X_test)
reg.coef_
     array([-5.61695287e-03, 5.40743502e+00, -2.67827999e-01, -4.81543315e-03, 1.08114445e+00, 2.26048799e+02, -3.01254914e+01])
reg.intercept_
      -12824.256569928497
r2_score(y_test, y_pred)
     0.6745228670350882
```

→ Matplotlib

- 1. bar()
- 2. pie()
- 3. plot()
- 4. show()
- 5. scatter()

```
x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt.bar(x,y)
plt.show()
```

```
py = np.array([35, 25, 25, 15])
plt.pie(y)
plt.show()
```



```
xpoints = np.array([0, 6])
ypoints = np.array([0, 250])
plt.plot(xpoints, ypoints)
plt.show()
```



```
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
plt.scatter(x, y)
plt.show()
```


Colab paid products - Cancel contracts here