INTRODUCTION
REPLICATION AND COMPARISON
RESULTS COMPARISON AND CONCLUSION

REPLICATION OF "EDUCATIONAL EXPANSION AND ITS HETEROGENEOUS RETURNS FOR WAGE WORKERS" BY MICHAEL GEBEL AND FRIEDHELM PFEIFFER

Luisa Hammer and Marcelo Avila

22 Nov 2018

Theoretical Framework Econometric Approach

Introduction

THEORETICAL FRAMEWORK

OUTLINE

Summary of Gebel and Pfeiffer (2010)

- basic idea: examine evolution of returns to education in West German labour market.
- Focus on change in returns to education over time as a consequence to education expansion in Germany.
- methodology:
 - Wooldrigdge's (2004) conditional mean independence
 - Garen's (1984) control function approach, that requires an exclusion restriction
 - as well as OLS
- data: SOEP 1984-2006

BACKGROUND INFORMATION I

Increase in educational attainment

FIGURE 1: Source: SOEP 1984-2016, own estimations.

BACKGROUND INFORMATION II

How can educational expansion affect the returns to education?

- Standard theory: an increase of labor supply of high-skilled workers should decrease the returns to education
- High-educated workers with higher unobserved motivation / ability which positively affects wages
- If more less talented are accepted to higher education, this should decrease the average productivity levels of higher educated workers
 -> overall effect not clear

Problems in the estimation of returns to education

- unobserved characteristics leading to selection bias:
 - higher ability and motivation to stay longer in education.
 - select jobs with higher expected returns.

ECONOMETRIC APPROACH

EMPIRICAL FRAMEWORK (DERIVATION) I

The study is based on the **correlated random coefficient model** (Wooldridge, 2004) specified as:

$$ln Y_i = a_i + b_i S_i$$

with
$$a_i = a'X_i + \varepsilon_{ai}$$
, and $b_i = b'X_i + \varepsilon_{bi}$

where $\ln Y_i$: log of wages and S_i years of schooling of individual i

- The model has, therefore, an individual-specific intercept a_i and slope b_i dependent on observables X_i and unobservables ε_{ai} and ε_{bi} .
- Do not assume that b_i and S_i are independent -> Individuals with higher expected benefits from education are more likely to remain longer in education -> b_i may be correlated with S_i indicating positive self-selection.

EMPIRICAL FRAMEWORK (DERIVATION) II

 focus: estimate average partial effect (APE), which is the return per additional year of education for a randomly chosen individual (or averaged across the population)

$$E(\partial \ln Y/\partial S) = E(b_i) = \beta$$

In case of homogeneous returns to education the wage equation reduces to:

$$\ln Y_i = a'X_i + \bar{b}S_i + \varepsilon_{ai}$$

- Unobserved heterogeneity may only affect the intercept of the wage equation.
- lacksquare still potential endogeneity if $arepsilon_{ai}$ correlates with S_i

EMPIRICAL FRAMEWORK (INTUITION) I

FIGURE 2: Simple OLS

EMPIRICAL FRAMEWORK (INTUITION) II

 $\operatorname{Figure}\ 3$: Multiple OLS with homogeneous return to Educ

EMPIRICAL FRAMEWORK (INTUITION) III

FIGURE 4: Correlated Random Coefficient Model

DISTINCTION TO CONVENTIONAL METHODS

- OLS
 - ability and "background" bias
- IV Methods:
 - suitable if assume homogeneous returns to education.
 - if education is correlated with unobserved individual heterogeneity, IV methods may fail to identity APE.
 - alternative: Local Average Treatment Effect if interested in effect of educational policy reforms.

CONDITIONAL MEAN INDEPENDENCE

According to Wooldridge (2004, pg.7), APE is identified by:

$$E(\ln Y_i \mid a_i, b_i, S_i, X_i,) = E(\ln Y_i \mid a_i, b_i, S_i) = a_i + b_i S_i \qquad (A.1)$$

$$E(S_i \mid a_i, b_i, X_i) = E(S_i \mid X_i) \text{ and } Var(S_i \mid a_i, b_i, X_i) = Var(S_i \mid X_i) \qquad (A_i \mid A_i, b_i, X_i) = Var(A_i \mid X_i) \qquad (A_i \mid X_i) = Var(A_i \mid X_i) \qquad (A_i \mid X_i) = Var(A_i \mid X_i) \qquad (A_i$$

- **I** X_i should be "good predictors"" of treatment S_i (Wooldridge 2004, pg.7).
- (A.1): Redundancy of X_i given a_i and b_i and S_i .
- (A.2): In the first two conditional moments of S_i , a_i and b_i are redundant -> "Staying longer in Education is determined by X covariates".

Estimator for β and GLM

The **APE** can be estimated by:

$$\hat{\beta} = \frac{1}{N} \sum_{i=1}^{N} \left(\left(S_i - \hat{E}(S_i \mid X_i) \ln Y_i \right) \middle/ \hat{Var}(S_i \mid X_i) \right)$$

$$E(S_i \mid X_i) = e^{\gamma X_i} \quad \text{and} \quad Var(S_i \mid X_i) = \sigma^2 e^{\gamma X_i}$$

Where σ^2 can be consistently estimated by the mean of squared Pearson residuals and standard errors are bootstrapped.

CONTROL FUNCTION APPROACH I

- Based on proposition by Garen (1984).
- CF approach can identify APE in heterogeneous returns while standard IV approach may not.
- Similar to Heckman two-step estimator.
- Models schooling choice explicitly in first step

First stage: modelling schooling choice

$$S_i = c'X_i + dZ_i + v_i$$
 with $E(v_i \mid Z_i, X_i) = 0$

where:

- lacksquare X_i and Z_i influence the educational decision.
- $ullet v_i$: Error term incorporating unobserved determinants of education choice.
- $\blacksquare Z_i$: Exclusion restriction (instrument).

CONTROL FUNCTION APPROACH II

- $lackbox{v}_i,\, arepsilon_{ai}$ and $arepsilon_{bi}$ are normally distributed with zero means and positive variances, that are possibly correlated
- $lackbox{ }v_i$ is positive if an individual acquires higher education than expected conditional on observed characteristics

Second stage: augmented wage equation

$$\ln Y_i = a_i + \beta S_i + \gamma_1 v_i + \gamma_2 V_i S_i + w_i$$

where:

- lacksquare γ_1 and γ_2 are the control functions

 - $\label{eq:gamma_2} \quad \ \bullet \quad \gamma_2 = cov(\varepsilon_{bi}, v_i)/var(v_i)$
- \blacksquare $E(w_i \mid X_i, S_i, v_i) = 0$ (as shown in Heckman / Robb, 1985)

CONTROL FUNCTION APPROACH III

Interpretation of the coefficients of the control functions

- γ_1 measures the effect of those unobserved factors that led to overor under-achievement in education on the wage
 - Thus, if γ_1 is positive, the unobserved factors affect schooling and wages positively
- - Positive coefficient would indicate that those with unexpected educational "over-achievement" tend to earn higher wages

REPLICATION AND COMPARISON

REPLICATION AND COMPARISON

CODES

```
*** GLM regression with Poisson distribution
glm school sex age age sq rural edu f occ f edu m, ///
    family(poisson) link(log)
*** Predict conditional mean and extract pearson residuals
predict condMean, mu
predict res pears, pearson
*** Calculate residual
gen resid = school - condMean
*** Estimate sigma^2
egen sigma_sq_pears = mean(res_pears^2)
*** generate APE
egen bCMI = mean((resid*lnw)/ (sigma_sq_pears*condMean))
```

CODES

```
*** Generalized linear regression model with Poisson distribution
quietly glm school sex age age_sq rural edu_f occ_f edu_m, family(poisson) link(log)

*** Predict conditional mean on observable characteristics x
   (expected value of school) and pearson residuals
predict condMean, mu
predict res_pears, pearson

*** Calculate resid as difference between prediction & observed school
gen resid = school - condMean

*** Estimate sigma_sq
egen sigma_sq_pears = mean(res_pears^2)
egen bCMI = mean((resid*lnw)/ (sigma_sq_pears*condMean))
```

CODES

- * First stage: Estimate the reduced form of schooling, i.e. regr * on all exogeneous variables including the instrument (siblings
- reg school sex age age sq rural edu f edu m occ f sibl if syear=
- * Obtain the residuals predict v`n', res
- * Second stage: Estimate the structural equation and include th
- * the reduced form as an additional regressor qui: reg lnw school sex age age_sq rural edu_f edu_m ///
- occ_f v`n' c.v`n'#c.school if syear==`n' // exclude instrume

Set-up

- We use the same sample: West Germans (not foreign-born or self-employed) between 25 and 60 years who work full-time
- We have less observations than Gebel and Pfeiffer (2010) per survey year after we delete all observations with missing values
- Yet, we extend the observation period until 2016
- Three estimation methods: OLS, CMI CF
- control variables: age and age squared, gender, father's education, mother's education, father's occupation, rural or urban household, number of siblings (as instrument)

RESULTS COMPARISON AND CONCLUSION

RESULTS CONCLUSION

RESULTS

ESTIMATED RETURNS ON EDUCATION

- Estimates from OLS and CMI are similar, yet, CMI produces lower estimates which points to a positive self-selection bias
- Generally, CF estimates are much more volatile and less precise

Differences between replicated and original estimations - Our OLS estimates are on average larger than those of Gebel and Pfeiffer (2010) by 0.004 percentage points - Our CMI estimates are on average larger than those of Gebel and Pfeiffer (2010) by 0.002 percentage points (first years lower, than larger) - Our CF estimates are on average significantly larger by 0.032 percentage points, though the divergence gets smaller from 2000 onwards

CONTROL FUNCTION ESTIMATES I

Instrumental variable in first stage

- Number of siblings is significant at the 0.1% level for all years
- As expected, the number of siblings has a negative impact on the years of schooling (the estimates range between -0.13 and -0.23)
- We would assume that the instrument does not directly affect the error term in the wage equation

Coefficients of the control functions

- $\ \ \, \gamma_1$ is negative for majority of years, yet very small and insignificant in all years
 - Gebel and Pfeiffer (2010) estimate a positive coefficient in the 1980s and 1990s - but also insignificant
- \blacksquare γ_2 is negative and close to zero for most years
 - Indicates that those with unexpectedly high education have lower returns to education

CONTROL FUNCTION ESTIMATES II

- Similarly, they are only slightly significant in the 1980s, and stronger significant in the early 2000s
- The estimates are very similar to those of Gebel and Pfeiffer (2010)
- that both coefficients are (mostly) negative hints that educational expansion caused more â less ableâ to achieve higher education

Divergences between replication and Gebel and Pfeiffer (2010)

- sample not the same
- large variance of CF approach

RESULTS COMPARISON I

FIGURE 5: Replication results: Comparison between OLS, CMI and CF

RESULTS COMPARISON II

FIGURE 6: Original Results (GP 2010, pg.30)

RESULTS COMPARISON III

FIGURE 7: Replication results: APE by gender (CMI approach)

RESULTS COMPARISON IV

FIGURE 8: Original Results (GP 2010, pg.34

RESULTS: CONTROL FUNCTION (REPLICATION)

TABLE 1: Summary of Control Function estimates (replication)

	First	Stage	Second Stage					
	IV: Nr. of Siblings		v_{i}			$v_i S_i$		
year	coef.	s.e.	coef.	s.e.	р	coef.	s.e.	р
1984	-0.163	0.035	-0.019	0.036	0.601	-0.003	0.001	0.027
1985	-0.191	0.036	0.005	0.030	0.864	-0.003	0.001	0.024
1986	-0.129	0.034	-0.039	0.041	0.344	-0.001	0.001	0.681
1987	-0.133	0.033	-0.064	0.039	0.105	-0.002	0.001	0.141
1988	-0.150	0.034	-0.031	0.034	0.365	-0.003	0.001	0.038
1989	-0.153	0.033	0.018	0.033	0.590	-0.002	0.001	0.056
1990	-0.164	0.032	-0.027	0.032	0.404	-0.001	0.001	0.341
1991	-0.167	0.033	0.014	0.034	0.685	-0.002	0.001	0.152
1992	-0.178	0.032	-0.007	0.030	0.808	-0.001	0.001	0.298
1993	-0.162	0.033	-0.033	0.033	0.311	-0.001	0.001	0.264
1994	-0.176	0.034	-0.035	0.029	0.233	-0.001	0.001	0.225
1995	-0.172	0.036	-0.026	0.032	0.422	-0.002	0.001	0.077
1996	-0.195	0.037	-0.015	0.031	0.624	-0.003	0.001	0.058
1997	-0.214	0.038	-0.030	0.027	0.268	-0.002	0.001	0.225

RESULTS CONCLUSION

Conclusion

Pro's and Con's of estimation methods

- CMI
 - no analytical standard errors
- CF
 - requires further distributional assumptions on error terms
 - valid and relevant "instrument"

THE END I