Roll no. - 58

Nome- Gaurar Bhandari U Roll no. - 2016747 Sec- F ID- 20021182

 $Q_1) T(n) = 3T(n/2) + n^2$ $c = log_3$ c = 1.584 $n^c = n^{1.584}$ $f(n) = n^2$ Here, $f(n) > n^c$ $T(n) = \theta(n^2)$

92) $T(n) = 4T(n/2) + n^2$ $c = log_2 4$ c = 2 $n^c = n^2$ $f'' = n^2$ Here, $f'' = n^c$ $T(n) = O(n^2 log n)$ $C = log_2 1$ $C = log_2 1$ C =

 $T(n) = \theta(2^n)$

Tutorial - 4 4. $T(n) = 2^n T(n/2) + n^n$ c = log_2" f"= n" More, f = nc $T(n) = \Theta(n^n, \log(n))$ 5. T(n) = 16T(n/4) + nc = log, (4) $n^{c} = n^{2}$ f(n) = nn° > fn $T(n) = \theta(n^2)$ 6. T(n) = 2T(n/2) + nlogn. C = log_2 n = n $f(n) = n \log n$ Here, f(n) = n°

 $T(n) = \theta(n, \log n)$

7.
$$T(n) = 2T(n/2) + n/\log n$$

$$c = \log_2 2$$

$$c = 1$$

$$n^c = n$$

$$f(n) = n/\log n$$

$$n^c > f(n)$$
Here, $T(n) = \theta(n)$

8.
$$T(n) = 2T(n/4) + n^{0.51}$$
 $c = \log_4 2$
 $c = 0.5$
 $n^c = 0.5$
 $f^n = n^{0.51}$
 $f(n) > n^c$
 $T(n) = \theta(n^{0.51})$

9.
$$T(n) = 0.5T(n/2) + 1/n$$
 $c = \log_2 0.5$
 $c = -1$
 $n^c = n^{-1} = 1/n$
 $f(n) = 1/n$
 $f(n) = n^c$
 $T(n) = \theta(1/n)$

10.
$$T(n) = 16T(n/4) + n!$$
 $c = log_4 16$
 $c = 2$
 $n^c = n^2$
 $f(n) = n!$
 $f(n) > n^c$
 $T(n) = \theta(n!)$

11.
$$T(n) = 4T(n/2) + \log n$$

$$c = \log_2 4$$

$$c = 2$$

$$n' = n^2$$

$$f(n) = \log n$$

$$n' = f(n)$$

$$T(n) = \theta(n^2)$$

12.
$$T(n) = \sqrt{n} T(n/2) + \log n$$
.
 $c = \log_2(n)^{\nu_2}$
 $c = \frac{1}{2} \log n$
 $n^c = n^{\nu_2 \log n}$
 $f(n) = \log n$
 $f(n) = n^c$
 $T(n) = \theta(\log n)$

13.
$$T(n) = 3T(n/2) + n$$

$$c = \log_2 3$$

$$c = 0.581$$

$$n^c = n^{0.581}$$

$$l^n = n$$

$$n^c > f(n)$$

14.
$$T(n) = 3T(n/3) + \sqrt{3}$$

$$c = \log_3 3$$

$$c = 1$$

$$n^c = n$$

$$f^n = \sqrt{n}$$

$$r^c = f^n$$

$$T(n) = \theta(n)$$

T(n) = 0 (no. 581)

15.
$$T(n) = 4T(n/2) + Cn$$

$$c = \log_2 4$$

$$c = 2$$

$$n^c = n^2$$

$$f(n) = Cn$$

$$n^c > f(n)$$

$$T(n) = \theta(n^2)$$

16.
$$T(n)=3T(n/4)+n\log n$$

$$c=\log_4 3$$

$$c=0.792$$

$$n^c=n^{0.792}$$

$$f^n=n\log n$$

$$f^n>n^c$$

$$T(n)=\theta(n\log n)$$

17.
$$T(n) = 3T(n/3) + n/2$$
 $c = \log_3 3$
 $c = 1$
 $n^c = n$
 $f(n) = n/2$
 $n^c > f(n)$
 $T(n) = \theta(n)$

18.
$$T(n) = 6T(n/3) + n^2 \log n$$
 $c = \log_3 6$
 $c = 1.6309$
 $n^c = n^{1.63}$
 $f'' = n^2 \log n$
 $f'' > n^c$
 $T(n) = \theta(n^2 \log n)$

$$n^c = n^2$$

$$n^c > f^n$$

$$T(n) = \theta(n^2)$$

20.
$$T(n) = 64T(n/8)-n^2.\log n$$

$$n^c = n^2$$

$$f^n = -n^2 \cdot \log n$$

$$f(n) > n^c$$

$$T(n) = \theta(n^2 \log n)$$

21.
$$T(n) = 7T(n/3) + n^2$$

$$f(n) > n^{c}$$

$$T(n) = \theta(n^{2})$$

22.
$$T(n) = T(n/2) + n(2 - \cos n)$$

$$c = \log_2 1$$

$$c = 0$$

$$f^n = n (2 - \cos n)$$

$$T(n) = \theta(n(2-\cosh))$$