EAIiIB	Piotr Morawiecki, Tymoteusz Paszun		Rok II	Grupa 3a	Zespół 6
Temat: Fale podłużne w ciałach stałych			Numer ćwiczenia: 29		
Data wykonania: Data oddania: Zwrot do poprawki: 8.11.2017r. 15.11.2017r.		Data oddania:	Data zaliczenia:	Ocena:	

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga dla różnych materiałów na bazie pomiarów prędkości rozchodzenia się fal dźwiękowych (podłóżnych) w prętach.

2 Wstęp teoretyczny

$$\lambda_i = \frac{2l}{i}$$

$$v_i = \lambda_i f$$

$$E = \rho v^2$$

3 Wykonanie ćwiczenia

- Pomiary wymiarów próbek badanych materiałów.
- Pomiary masy próbek badanych materiałów.
- Pomiary częstotliwości dźwieku wydawanego przez pręty po uderzeniu.

4 Wyniki pomiarów

4.1 Wymiary oraz masa próbek

Tablica 1: Pomiary masy i wymiarów próbek badanych materiałów

Materiał	Masa [g]	Wymiary [mm]	Objętość [mm³]	Gęstość $\left[\frac{kg}{m^3}\right]$
$\operatorname{mied} olimits$	66	d = 4,85, l = 385	7112,69	9279,19
stal	30,851	a = 14, 15, b = 14, 25, c = 19, 8	3992,42	7727,39
mosiadz	74	d=6, l=312	8821,59	8388,51
aluminium	24	d=5, l=442	8678,65	$2765,\!41$

4.2 Pręt miedziany

Zmierzona długość pręta miedzianego: $l=1802\,\mathrm{mm}$.

4.3 Pręt stalowy

Zmierzona długość pręta stalowego: $l=1802\,\mathrm{mm}.$

Tablica 2: Pomiary częstotliwości dla pręta miedzianego

Harmoniczna	${ m Czestotliwo}$ sć ${ m [Hz]}$	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1027,1+1031,8}{2} = 1029,45$	4,81	3604,00	3710,14
f_1	$\frac{2059,7+2062,1}{2} = 2060,90$	$2,\!35$	$1802,\!00$	3713,74
f_2	$\frac{3090,9+3094,4}{2} = 3092,65$	$3,\!53$	$1201,\!33$	3715,30
f_3	$\frac{4121,7+4125,2}{2} = 4123,45$	$3,\!53$	901,00	$3715,\!23$
f_4	$\frac{5154,0+5157,6}{2} = 5155,80$	3,53	720,80	3716,30
			Średnia:	3714,14

Tablica 3: Pomiary częstotliwości dla pręta stalowego

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1401,80+1407,70}{2} = 1404,75$	5,88	3604,00	5062,72
f_1	$\frac{2903,80+2907,40}{2} = 2905,60$	$3,\!53$	1802,00	$5235,\!89$
f_2	$\frac{4309,90+4314,60}{2} = 4312,25$	4,71	$1201,\!33$	5180,45
f_3	$\frac{5715,40+5719,00}{2} = 5717,20$	$3,\!53$	901,00	$5151,\!20$
f_4	$\frac{7123,30+7217,40}{2} = 7170,35$	94,12	720,80	$5168,\!38$
			Średnia:	5159,73

4.4 Pręt z mosiądzu

Zmierzona długość pręta wykonanego z mosiądzu: $l=998\,\mathrm{mm}.$

Tablica 4: Pomiary częstotliwości dla pręta z mosiądzu

Harmoniczna	${ m Cz}$ ęstotliwość ${ m [Hz]}$	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1679,80+1685,70}{2} = 1682,75$	5,88	1996,00	3358,77
f_1	$\frac{3463,20+3472,10}{2} = 3467,65$	8,82	998,00	3460,71
f_2	$\frac{5149,20+5161,00}{2} = 5155,10$	11,76	$665,\!33$	$3429,\!86$
f_3	$\frac{6837,50+6940,40}{2} = 6888,95$	$102,\!94$	499,00	3437,59
f_4	$\frac{8615,10+8629,80}{2} = 8622,45$	14,71	399,20	3442,08
			Średnia:	3425,80

4.5 Pręt aluminiowy

Zmierzona długość pręta wykonanego z aluminium: $l=1800\,\mathrm{mm}.$

Tablica 5: Pomiary częstotliwości dla pręta aluminiowego

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Pr ędkość fali $\left[rac{\mathrm{m}}{\mathrm{s}} ight]$
f_0	$\frac{2422,10+2439,70}{2} = 2430,90$	17,65	3600,00	8751,24
f_1	$\frac{4954,40+4972,10}{2} = 4963,25$	$17,\!65$	1800,00	8933,85
f_2	$\frac{7389,70+7407,40}{2} = 7398,55$	$17,\!65$	1200,00	8878,26
f_3	$\frac{9832,70+9926,80}{2} = 9879,75$	$94,\!12$	900,00	8891,78
f_4	$\frac{11415,00+11432,00}{2} = 11423,50$	$17,\!65$	450,00	8224,92 (wynik odstający)
			Średnia:	8863,78

5 Wykresy

6 Opracowanie wyników

- 6.1 Analiza błędów
- 6.2 Niepewności pomiarów
- 6.3 Ocena zgodności uzyskanych wyników

7 Wnioski