Homework 3: Due Tuesday, May 28, at 11:59pm, on Gradescope

Definition: A sequence (a_n) of real numbers is eventually constant if there is $c \in \mathbb{R}$ and $N \in \mathbb{N}$ such that $a_n = c$ for all $n \geq N$.

- (1) Let (a_n) be a sequence in \mathbb{R} , and consider the bi-implication: " $\lim a_n = \infty \iff \lim \frac{1}{a_n} = 0$." For each direction of this implication, either prove that direction if it is true, or else give a counterexample if it is false.
- (2) Let (a_n) and (b_n) be sequences of real numbers. Prove that if $\lim a_n = 0$ and (b_n) is bounded, then $\lim a_n b_n = 0$.
- (3) Determine the limits (in $\mathbb{R} \cup \{\pm \infty\}$) of the following sequences, and prove your results:
 - (a) $\lim_{n \to \infty} \frac{2^n}{n!}$ (b) $\lim_{n \to \infty} \frac{n^n}{n!}$ (c) $\lim_{n \to \infty} b_n$, where $b_1 = 2$ and $b_{n+1} = \frac{b_n^2 + 2}{2b_n}$
- (4) Suppose A is a discrete² subset of \mathbb{R} , and let (a_n) be a convergent sequence of numbers in A. Prove that either (a_n) is eventually constant or $\lim a_n \notin A$.
- (5) For each positive integer M, let \mathbb{Q}_M be the set of all rational numbers m/n where $m, n \in \mathbb{Z}$ and $|m| \leq M$. Prove that for all $M \in \mathbb{N}$, every sequence of distinct numbers in \mathbb{Q}_M converges.
- (6) Let (a_n) and (b_n) be sequences of real numbers such that $a_n < b_n$ for all n.
 - (a) Show that if $\lim a_n = \infty$, then $\lim b_n = \infty$.
 - (b) Given an example to show that (a_n) and (b_n) could converge to the same real number.
- (7) Let (a_n) be a sequence of positive real numbers. Show that if $\lim \frac{a_{n+1}}{a_n} = L > 1$, then $\lim a_n = \infty$.
- (8) Find the lim sup and lim inf of the following sequences. (No justification is needed).
 - (a) $(a_n)_{n\geq 1}$, where $a_n = (-1)^{n+1} + \frac{(-1)^n}{n}$
 - (b) $(b_n)_{n\geq 1}$, where $b_n = \sin\frac{1}{n}$
 - (c) (c_n) , where $c: \mathbb{N} \to \mathbb{Q}$ is any bijection
 - (d) (d_n) , where $d_n = \ln n + \cos n$
- (9) Let $a, b \in \mathbb{R}$ with a < b. Find the limit of the sequence (s_n) defined recursively by $s_1 = a$, $s_2 = b$, and for all $n \in \mathbb{N}$,

$$s_{n+2} = \frac{s_n + s_{n+1}}{2}.$$

Prove your claim.

- (10) Give an example of a divergent sequence (a_n) in \mathbb{R} with a convergent subsequence such that all convergent subsequences of (a_n) converge to the same limit.
- (11) Let (a_n) and (b_n) be bounded sequences of positive real numbers.
 - (a) Show that $\limsup (a_n + b_n) \le \limsup (a_n) + \limsup (b_n)$.

²See HW 1 #11 for the definition of discrete.

- (b) Give an example to show that $\limsup (a_n + b_n)$ might not equal $\limsup (a_n) + \limsup (b_n)$.
- (c) Show that if (a_n) converges, then $\limsup (a_n + b_n) = \limsup (a_n) + \limsup (b_n)$.
- (12) Prove that there exists a sequence (a_n) in \mathbb{R} such that for every $r \in \mathbb{R}$ there is a subsequence of (a_n) that converges to r.
- (13) Determine whether the following sets are open, closed, both, or neither (no justification needed):
 - (a) $\{\frac{1}{n} : n \in \mathbb{N}\}$

 - (b) $\left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}$ (c) $\bigcup_{n \ge 1} \left[\frac{1}{n}, 3 \frac{1}{n}\right]$ (d) \mathbb{Z}

 - (e) Q
 - (f) $\bigcap_{n\geq 1} \left(-\frac{1}{n}, \frac{1}{n}\right)$
- (14) Either prove the following if it is true, or else give a counterexample if it is false: if $A \subseteq \mathbb{R}$ is closed and discrete, then there is $\epsilon > 0$ such that $|a-b| \geq \epsilon$ for every pair of distinct elements $a,b \in A$. [cf: HW 1, #11(b)]
- (15) Suppose the set $A \subseteq \mathbb{R}$ is infinite, bounded, and discrete. Prove that there is a convergent sequence in A whose limit is not in A.