Diego Jafet Garza Segovia - Regresión logística y validación cruzada

Dentro del siguiente documento, se trabajara con una base de datos sobre el cancer de mama, el cual se puede importar desde sklearn.datasets. Adicionalmente se requerira importar la libreria de pandas (pd)

Para mayor entendimiento de esta base de datos, y ver si requiere de alguna modificacion, se imprimira las dimensiones del data frame, el tipo y nombre de sus variables, y las primeras 5 filas de datos.

```
In [2]: import pandas as pd
from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
print("Dimensiones del data frame: ", df.shape)
print("\nTipo y nombre de datos: \n", df.dtypes)
df["target"] = data.target
print("\n", df.head())
```

Dimensiones del data frame: (569, 30)

Tipo y nombre d	e datos:						
mean radius		float64					
mean texture		loat64					
mean perimeter		loat64					
mean area		loat64					
mean smoothness		loat64					
mean compactnes		loat64					
mean concavity		loat64					
mean concave po		loat64					
mean symmetry		loat64					
mean fractal di		loat64					
radius error		loat64					
texture error		loat64					
perimeter error		loat64					
area error		loat64					
smoothness erro		loat64					
compactness err		loat64					
concavity error		loat64					
concave points		loat64					
symmetry error		loat64					
fractal dimensi		loat64					
worst radius		loat64					
worst texture	f	loat64					
worst perimeter	f	loat64					
worst area		loat64					
worst smoothnes	s f	loat64					
worst compactne	ss f	loat64					
worst concavity	f	loat64					
worst concave p	oints f	loat64					
worst symmetry	f	loat64					
worst fractal d	imension f	loat64					
dtype: object							
mean radius	mean texture	e mean	perimeter	mean area	mean	smoothness	\
0 17.99	10.38		122.80	1001.0		0.11840	
1 20.57	17.77		132.90	1326.0		0.08474	
2 19.69	21.25		130.00	1203.0		0.10960	
3 11.42	20.38		77.58	386.1		0.14250	
4 20.29	14.34		135.10	1297.0		0.10030	
mean compact	ness mean cor	ncavity	mean conc	ave points	mean	symmetry \	
0 0.2	7760	0.3001		0.14710		0.2419	
1 0.0	7864	0.0869		0.07017		0.1812	
2 0.1	5990	0.1974		0.12790		0.2069	
3 0.2	8390	0.2414		0.10520		0.2597	
4 0.1	3280	0.1980		0.10430		0.1809	
mean fractal	dimension	wors	st texture	worst peri	meter	worst area	\
0	0.07871		17.33	1	84.60	2019.0	
1	0.05667		23.41	1	58.80	1956.0	
2	0.05999		25.53	1	52.50	1709.0	
3	0.09744		26.50		98.87	567.7	
4	0.05883		16.67	1	52.20	1575.0	

```
worst smoothness worst compactness worst concavity worst concave points \
         0.1622
                         0.6656 0.7119
                                                          0.2654
         0.1238
                          0.1866
                                       0.2416
1
                                                          0.1860
2
         0.1444
                         0.4245
                                      0.4504
                                                          0.2430
3
          0.2098
                         0.8663
                                      0.6869
                                                          0.2575
4
          0.1374
                         0.2050
                                        0.4000
                                                          0.1625
  worst symmetry worst fractal dimension target
        0.4601
                            0.11890
0
        0.2750
                            0.08902
                                        0
1
2
        0.3613
                           0.08758
                                        0
3
        0.6638
                           0.17300
                                      0
        0.2364
                            0.07678
```

[5 rows x 31 columns]

Segun la base de datos, se puede ver que no parece tener variables categoricas ni huecos aparentes, por lo que no se requieren hacer modificaciones y esta listo para analizar.

Particularmente, la variable de interes sera "target", el cual es binario donde 1 representa que tiene cancer de mama, mientras que 0 representan los que no.

Ahora, se dividiran los datos en datos de entrenamiento y de prueba con una relacion del 80% y 20% de manera aleatoria. Para poder realizar esto se debera importar la funcion train_test_split de sklearn.model_selection.

Sin embargo, para poder mantener una proporcion equitativa tanto en los datos de entrenamiento como prueba, se debe de agregar el parametro "stratify = df.target) al hacer la separacion.

```
In [3]: from sklearn.model_selection import train_test_split

xEntre, xPrueba, yEntre, yPrueba = train_test_split(df.drop(columns = "target"), df

print("Original:\n", df.target.value_counts(normalize = True))
print("\nEntrenamiento:\n", yEntre.value_counts(normalize = True))
print("\nPrueba:\n", yPrueba.value_counts(normalize = True))
```

```
Original:
target

1  0.627417
0  0.372583

Name: proportion, dtype: float64

Entrenamiento:
target
1  0.626374
0  0.373626

Name: proportion, dtype: float64

Prueba:
target
1  0.631579
0  0.368421

Name: proportion, dtype: float64
```

Se puede ver que en los resultados de las proporciones de 1's y 0's en los tres tipos de datos son equitativas, con un valor aproximado de 0.62 y de 0.37 respectivamente. Esto nos permite adecuadamente entrenar un modelo sin correr el riesgo de que el modelo de entrenamiento unicamente se base en una mayoria de 1's o 0's.

Ahora, se medira la exactitud de un modelo de regresion logistica utilizando la tecnica de validacion cruzada de K-Folds. Para esto se debera importar las funciones de LogisticRegression, KFold y cross_val_score de sklearn.linear_model y de sklearn.model_selection respectivamente. Se utilizara una regresion logistica y no lineal o de otro tipo debido a la naturaleza del tipo de dato de "target".

Para disminuir la cantidad del tiempo de procesamiento y poder realizar todas las iteraciones que puedan haber, se utilizara en la funcion de LogisticRegression los parametros penalty = 12, y max_iter = 10000.

Con el mismo proposito de disminuir la cantidad de procesamiento por realizar, se utilizaran n_s plits = 5, significando unicamente 5 folds (modelos).

```
In [4]: from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import KFold, cross_val_score
    import numpy as np

modelo = LogisticRegression(penalty = "12", class_weight = "balanced", max_iter = 1

kf = KFold(n_splits = 5, shuffle = True)
    scores = cross_val_score(modelo, xEntre, yEntre, cv = kf, scoring = "accuracy")

print("Exactitud por modelo:", scores)
    print("Exactitud promedio:", np.mean(scores))
```

Exactitud por modelo: [0.94505495 0.94505495 0.94505495 0.96703297 0.92307692] Exactitud promedio: 0.945054945054945 En los resultados pasados, podemos ver que cada uno de los folds tiene una exactitud mayor a 0.90, lo cual significa que en promedio se genera un modelo que es capaz de consistentemente obtener las respuestas correctas. Viendo esto, hace sentido que la exactitud promedio de los modelos sea igual a 0.94.

Sabiendo esto, podemos ahora entrenar un modelo de regresion logistica con la seguridad de que se generara un modelo con una exactitud de calidad. Adicionalmente, se generara una matriz de confusion y se calculara la exactitud, sensibilidad y la especificidad para el modelo. En total, se generaran 3 modelos con distintos umbrales, 0.3, 0.5 y 0.7. Es decir, el modelo evaluara la probabilidad de que sea 1 a partir de 0.3 como 1 (o 0.5 / 0.7 respectivamente).

Para esto se debera importar las funciones confusion_matriz y ConfusionMatrixDisplay (cmd) de sklearn.metrics

```
In [8]: from sklearn.metrics import confusion_matrix
        from sklearn.metrics import ConfusionMatrixDisplay as cmd
        import matplotlib.pyplot as plt
        modelo.fit(xEntre, yEntre)
        yGorrito = modelo.predict_proba(xPrueba)[:, 1]
        umbrales = [0.3, 0.5, 0.7]
        for u in umbrales:
            print("Umbral", u)
            pred = (yGorrito >= u)
            cm = confusion_matrix(yPrueba, pred)
            cmd(confusion_matrix = cm, display_labels = modelo.classes_).plot(xticks_rotati
            plt.show()
            tn, fp, fn, tp = cm.ravel()
            acc = (tp + tn) / (tp + tn + fp + fn)
            sensibilidad = tp / (tp + fn)
            especificidad = tn / (tn + fp)
            print("Exactitud:", acc)
            print("Sensibilidad:", sensibilidad)
            print("Especificidad:", especificidad)
            print()
```

Umbral 0.3

Exactitud: 0.9736842105263158 Sensibilidad: 0.986111111111111112 Especificidad: 0.9523809523809523

Umbral 0.5

Exactitud: 0.9649122807017544 Sensibilidad: 0.9722222222222 Especificidad: 0.9523809523809523

Umbral 0.7

Exactitud: 0.956140350877193 Sensibilidad: 0.9583333333333334 Especificidad: 0.9523809523809523

Se pueden ver tres resultados distintos, ya que aunque cada uno de los modelos tienen una exactitud aproximada de 0.95, la sensibilidad del modelo con el umbral de 0.3 es el mas alto y este va disminuyendo conforme el umbral crece, mientras que para la especificidad es alreves.

Aun asi, en promedio los tres valores de los tres modelos tienen un alto grado de similitud, significando que cualquiera de los tres modelos podria ser adecuado para su uso.

Para poder visualizar mejor estos datos se generara una Curva ROC con base a estos modelos, y debido a la naturaleza de la Curva ROC, tambien los de distintos umbrales. Para esto se requeriran las funciones roc_curve y roc_auc_score de sklearn.metrics

Adicionalmente se calculara el area bajo la curva generada.

```
In [13]: from sklearn.metrics import roc_curve, roc_auc_score
fpr, tpr, umbrales = roc_curve(yPrueba, yGorrito)
```

```
auc = roc_auc_score(yPrueba, yGorrito)

plt.plot(fpr, tpr, label=f"ROC (AUC = {auc:.3f})")
plt.xlabel("Falsos positivos")
plt.ylabel("Verdaderos positivos")
plt.title("Curva ROC")
plt.grid(True)
plt.show()

print("AUC:", auc)
```


AUC: 0.9963624338624338

En la gráfica resultante, podemos ver como el modelo pareciera estar compuesta por dos lineas rectas unidas por una curva pequeña, el cual es ideal ya que significa que independientemente de su sensibilidad / especificidad, seguira acertando correctamente en la gran mayoria de los casos. En este caso en particular, de un aproximado del 99.6%. El unico aspecto negativo que conlleva este valor, es la posibilidad de sobreajuste. Es decir, que el modelo ya no podria predecir adecuadamente los resultados de nuevos datos.

Para poder ver de manera mas particular como es que cada variable afecta en la salida, se generara una tabla de las variables y sus coeficientes respectivos. Para mayor facilidad de visualización y entendimiento, seran ordenados de mayor a menor.

```
In [14]: coef = modelo.coef_[0]
    tabla_coef = pd.DataFrame({
```

```
"Variable": xEntre.columns,
    "Coeficiente": coef,
})
print("\nCoeficientes del modelo logístico:")
display(tabla_coef.sort_values("Coeficiente", ascending = False))
```

Coeficientes del modelo logístico:

	Variable	Coeficiente
0	mean radius	1.101948
11	texture error	1.077086
20	worst radius	0.214612
1	mean texture	0.156474
15	compactness error	0.065077
3	mean area	0.016733
19	fractal dimension error	0.012531
12	perimeter error	0.000981
16	concavity error	-0.003548
23	worst area	-0.011691
14	smoothness error	-0.018552
9	mean fractal dimension	-0.024612
17	concave points error	-0.032669
18	symmetry error	-0.038970
29	worst fractal dimension	-0.082910
10	radius error	-0.095100
13	area error	-0.111485
2	mean perimeter	-0.162881
4	mean smoothness	-0.173205
22	worst perimeter	-0.187269
5	mean compactness	-0.222328
7	mean concave points	-0.260556
8	mean symmetry	-0.281116
24	worst smoothness	-0.320747
21	worst texture	-0.410759
6	mean concavity	-0.463868
27	worst concave points	-0.528932
25	worst compactness	-0.648704
28	worst symmetry	-0.712931
26	worst concavity	-1.190507

Dentro de los coeficientes resultantes, se puede ver que hay varios coeficientes con un valor aproximado a 0, como mean area (0.020931), compactness error (0.006029), y fractal dimension error (0.002393), los cuales son las variables que MENOS afectan el resultado final en si se predice si es 1 o 0.

Mientras tanto, las caracteristicas que MAS influyen en la generacion del cancer de mama son el mean radius (1.10), worst radius (0.77), y el perimeter error (0.61). Por el otro lado, las variables que disminuyen la probabilidad de que el tumor sea maligno son worst concave points (-0.47), worst compactness (-0.50), y el worst concavity (-1.10).

In []:	
In []: [