

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: <u>www.cqa-cert.com</u>

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

RF Exposure Evaluation Report

Report No.: CQASZ20180500081E-03

Applicant: TECH-AUDIO CO., LTD

Address of Applicant: NO.3, TungShih li, Ping Cheng Tao Yuan, Taiwan.

Manufacturer: Atlantic Technology

Address of Manufacturer: 343 Vanderbilt Avenue, Norwood, MA 02062-5060

Factory: Xiamen Tech-Sound CO.,Ltd

Address of Factory: NO.170, Ji Yin Road, Tong An District, Xiamen, China.

Equipment Under Test (EUT):

Product: Streaming Amp

Model No.: STA-200
Brand Name: N/A

 FCC ID:
 2AABM-STA200

 Standards:
 47 CFR Part 1.1307

47 CFR Part 1.1310

KDB447498D01 General RF Exposure Guidance v06

Date of Test: 2018-05-30 to 2018-06-20

Date of Issue: 2018-06-20

Test Result: PASS*

Tested By:

Reviewed By: Wen Zhou

(Qwen Zhou)

Approved By:

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: CQASZ20180500081E-03

2 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20180500081E-03	Rev.01	Initial report	2018-06-20

Report No.: CQASZ20180500081E-03

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
	4 GENERAL INFORMATION	
4		
	4.1 CLIENT INFORMATION	4
	4.2 GENERAL DESCRIPTION OF EUT	4
	4.3 GENERAL DESCRIPTION OF BT	4
	4.4 GENERAL DESCRIPTION OF SKAA	4
5	5 RF EXPOSURE EVALUATION	5
•	5.1 RF Exposure Compliance Requirement	
	5.1 RF EXPOSURE COMPLIANCE REQUIREMENT	5
	5.1.1 Limits	5
	5.1.2 Test Procedure	
	5.7 LL3 HUT REHYDOSUDE HVALHATION	- 6

Report No.: CQASZ20180500081E-03

4 General Information

4.1 Client Information

Applicant:	TECH-AUDIO CO., LTD
Address of Applicant:	NO.3, TungShih li, Ping Cheng Tao Yuan, Taiwan.
Manufacturer:	Atlantic Technology
Address of Manufacturer:	343 Vanderbilt Avenue, Norwood, MA 02062-5060
Factory:	Xiamen Tech-Sound CO., Ltd
Address of Factory:	NO.170, Ji Yin Road, Tong An District, Xiamen, China.

4.2 General Description of EUT

Product Name:	Streaming Amp
Model No.:	STA-200
Trade Mark:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
Sample Type:	Mobile production
Power Supply:	120V/60Hz

4.3 General Description of BT

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Test Software of EUT:	Blue test 3 (manufacturer declare)
Antenna Type:	PCB antenna
Antenna Gain:	4dBi

4.4 General Description of SKAA

Operation Frequency:	2403.5MHz~2477.3MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	FSK
Number of Channel:	49
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Mobile production
Test Software of EUT:	SKAA (manufacturer declare)
Antenna Type:	Integral antenna
Antenna Gain:	3.3dBi

Report No.: CQASZ20180500081E-03

5 RF Exposure Evaluation

5.1 RF Exposure Compliance Requirement

5.1.1 Limits

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

Table 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)			
(A) Lim	(A) Limits for Occupational/Controlled Exposures						
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6			
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure				
0.3–1.34 1.34–30 30–300 300–1500 1500–100,000	614 824/f 27.5	1.63 2.19/f 0.073	*(100) *(180/f²) 0.2 f/1500 1.0	30 30 30 30 30 30			

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*Pi*R^2)$

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

5.1.2 Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

Report No.: CQASZ20180500081E-03

5.2 1.1.3 EUT RF Exposure Evaluation

1) For BT

Antenna Gain: 4dBi

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.51 in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance:

Measurement Data

Weasurement Data						
	GFSK mode					
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power			
	(dBm)	(dBm)	(dBm)	(mW)		
Lowest(2402MHz)	-0.26	-1.3±1	-0.3	0.933		
Middle(2441MHz)	1.45	1.0±1	2.0	1.585		
Highest(2480MHz)	1.67	1.0±1	2.0	1.585		
	π/4DQPS	SK mode				
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Power		
	(dBm)	(dBm)	(dBm)	(mW)		
Lowest(2402MHz)	-2.30	-1.3±1	-0.3	0.933		
Middle(2441MHz)	0.64	1.0±1	2.0	1.585		
Highest(2480MHz)	0.96	1.0±1	2.0	1.585		
	8DPSK	mode				
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Power		
	(dBm)	(dBm)	(dBm)	(mW)		
Lowest(2402MHz)	-1.63	-1.3±1	-0.3	0.933		
Middle(2441MHz)	0.86	1.0±1	2.0	1.585		
Highest(2480MHz)	1.07	1.0±1	2.0	1.585		

The worst case:

Maximum tune-up Power (mW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm²)	Limit	Result
1.585	4	0.0008	1.0	PASS

Note: 1) Refer to report No. CQASZ20180500081E-01 for EUT test Max Conducted Peak Output Power value.

2) $Pd = (Pout*G)/(4*Pi*R^2)=(1.585*2.51)/(4*3.1416*20^2)=0.0008$

Report No.: CQASZ20180500081E-03

2) For SKAA

Antenna Gain: 4dBi

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.51 in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance:

Measurement Data

Micasarciniciti Data					
GFSK mode					
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Power	
	(dBm)	(dBm)	(dBm)	(mW)	
Lowest(2403.5MHz)	12.62	12±1	13	19.953	
Middle(2438.9MHz)	12.68	12±1	13	19.953	
Highest(2477.3MHz)	12.60	12±1	13	19.953	

The worst case:

Maximum tune-up Power (mW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm²)	Limit	Result
19.953	4	0.01	1.0	PASS

Note: 1) Refer to report No. CQASZ20180500081E-02 for EUT test Max Conducted Peak Output Power value.

2) $Pd = (Pout*G)/(4*Pi*R^2)=(13*2.51)/(4*3.1416*20^2)=0.01$