Sri Lanka Institute of Information Technology

Status Document 02 2024

GROUP ID: R24-059

Bandara A M S S
IT21103322
Information Technology

DECLARATION

We declare that this is our own work and this project report does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or Institute of higher learning and to the best of our knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Name	Student ID	Signature
Fernando W.P.A.M	IT21078378	

Signature of the Supervisor (Mr. Nelum Chathuranga)

Date

......11/09/2024.....

Table of Contents

Table of Contents	i
Table of Figures	
System diagram	
Progress	3
Team Communication	9
Teams Channel	9
Teams Calls with the Research Team	10
WhatsApp Group Creation & meetings	17
Online Calls with Supervisor	23
External supervisor meetings	30
Teams' meetings with supervisor	36
Project Timeline	39
Work Break-Down	41

Figure 1 -System diagram	5
Figure 1 -System diagram	5
Figure 2 Implementation of frontend	6
Figure 3 Implementation of backend	6
Figure 4 connect to drive	
Figure 5 import libraries	
Figure 6 Data Preprocessing image data	
Figure 7 train and test data	
Figure 8 image analysis	
Figure 9 Combine Features and Build the CNN Model	o
Figure 10 prediction accuracy	
Figure 11 download the trained model	10 10
Figure 12	
Figure 13	
Figure 14 data visualization	
Figure 15 visulization.	
Figure 16	
Figure 17 teams channel creation	
Figure 18 teams channel creation	
Figure 19 teams calls overview	
Figure 20 teams call	
Figure 21 teams call with group members	
Figure 22 teams call with supervisor	.22
Figure 23 teams call with group members	.22
Figure 24 commiuncationwith supervisor	.17
Figure 25 whatsapp group creation	.18
Figure 26 whtsap call sample 1	
Figure 27 whtsapp call sample2	
Figure 28 whtsapp group call	
Figure 29 whtsapp call sample2	
Figure 30 group creation with supervisor	
Figure 31 discusson with supervisor	
Figure 32 discusson with supervisor	
Figure 33 discusson with supervisor	
Figure 34 supervisor advising	.28
Figure 35 discusson	.29
Figure 36 discussion with supervisor	.30
Figure 37 call with supervisor	.31
Figure 38 call with external supervisor	.32
Figure 39 discuss information with CRI officer	.33
Figure 40 call with CRI officer	.34
Figure 41 meetup with supervisor	.35
Figure 42 meeting with group members	.35
Figure 43 meet with CRI officer	
Figure 44 CRI Lunuwila	
Figure 45 CRI lab	
Figure 46 physical meet up with external supervisor	
Figure 47 teams meeting with supervisor1	
Figure 48 teams meeting with supervisor2	
Figure 49 teams meeting with supervisor3	
Figure 50 teams meeting with supervisor 4	
Figure 51 teams meeting with supervisor5	
Figure 52 teams meeting with supervisor6	

Figure 53 gantt chart	43
Figure 53 gantt chart	
Figure 53 gantt chart	
Figure 53 gantt chart	
Figure 54 Work Break-Down Structure	43
Figure 54 Work Break-Down Structure	
Figure 54 Work Break-Down Structure	
Figure 54 Work Break-Down Structure	
Figure 54 Work Break-Down Structure	43

System diagram

Figure 1 -System diagram

Figure 2 -System diagram

Component: live coconut oil quality measuring feature

Progress

Implementation of frontend

```
| Deposer | Depo
```

Figure 3 Implementation of frontend

Implementation of backend

```
| Delication | Del
```

Figure 4 Implementation of backend

Cnn model

```
Oil_quality_classification_with_features.ipynb ☆
File Edit View Insert Runtime Tools Help Last edited on September 9

+ Code + Text

I from google.colab import drive drive.mount('/content/drive')

The Mounted at /content/drive

[] import os data_dir = '/content/drive/MyDrive/oil_quality/'
```

Figure 5 connect to drive

```
[] import cv2
  import numpy as np
  import tensorflow as tf
  from tensorflow.keras import layers, models
  from sklearn.model_selection import train_test_split
  from sklearn.preprocessing import LabelEncoder
  import matplotlib.pyplot as plt
```

Figure 6 import libraries

```
[ ] def load_images_and_labels(data_dir):
    images = []
    labels = []
    for label in ['A', 'B', 'C']:
        label_dir = os.path.join(data_dir, label)
        for image_name in os.listdir(label_dir):
            img_path = os.path.join(label_dir, image_name)
            img = cv2.imread(img_path)
            img = cv2.resize(img, (224, 224)) # Resize for uniformity
            images.append(img)
            labels.append(label)
        return np.array(images), np.array(labels)

images, labels = load_images_and_labels(data_dir)

[ ] le = LabelEncoder()
    labels = le.fit_transform(labels)
```

Figure 7 Data Preprocessing image data

```
[ ] X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
```

Figure 8 train and test data

```
Color Analysis (Lab* Color Space Conversion)
[ ] def lab_color_analysis(img):
         lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
        1, a, b = cv2.split(lab)
        return np.mean(1), np.mean(a), np.mean(b)
     color_features = np.array([lab_color_analysis(img) for img in X_train])
Clarity Analysis (Edge Detection & Histogram)
[ ] def clarity_analysis(img):
         gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
         edges = cv2.Canny(gray, 100, 200)
        histogram = cv2.calcHist([edges], [0], None, [256], [0, 256])
        clarity_score = np.sum(histogram[128:]) # Focus on the high-end of the histogram
        return clarity_score
    clarity_scores = np.array([clarity_analysis(img) for img in X_train])
Impurity Detection (Image Segmentation)
[ ] def impurity_detection(img):
         gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
         _, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY_INV)
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        return len(contours) # Number of detected impurities
     impurity_counts = np.array([impurity_detection(img) for img in X_train])
```

Figure 9 image analysis

Figure 10 Combine Features and Build the CNN Model

```
🚁 /usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim
    super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Epoch 1/10
    16/16
                               · 76s 5s/step - accuracy: 0.5296 - loss: 348.9953 - val_accuracy: 1.0000 - val_loss: 3.0129e-06
    Epoch 2/10
    16/16
                               82s 5s/step - accuracy: 0.8803 - loss: 4.9466 - val_accuracy: 0.9612 - val_loss: 1.9083
    Epoch 3/10
                               66s 4s/step - accuracy: 0.9487 - loss: 4.4450 - val_accuracy: 1.0000 - val_loss: 0.0000e+00
    16/16
    16/16
                               - 69s 4s/step - accuracy: 0.9515 - loss: 5.8025 - val_accuracy: 0.9922 - val_loss: 0.6583
    16/16 -
                              - 66s 4s/step - accuracy: 0.9730 - loss: 5.3953 - val_accuracy: 0.9922 - val_loss: 2.4671
    16/16 -
                              - 86s 4s/step - accuracy: 0.9252 - loss: 13.2204 - val_accuracy: 0.6047 - val_loss: 18.7784
    16/16 -
                              - 83s 4s/step - accuracy: 0.8671 - loss: 5.9960 - val_accuracy: 1.0000 - val_loss: 0.0000e+00
    Epoch 8/10
    16/16 -
                              — <mark>76s 4</mark>s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00
    Epoch 9/10
    16/16 -
                              — 88s 4s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00
    Epoch 10/10
                             — 76s 4s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00
    16/16 -
    <keras.src.callbacks.history.History at 0x7c67e771e6e0>
```

Figure 11 prediction accuracy

Figure 12 download the trained model

Figure 13

```
coconut_quality_dataset.csv
      0.6,0.4,5,6
174
      0.41,0.81,3.1,C
175
      0.42,0.82,3.2,C
      0.43,0.83,3.3,C
176
177
      0.44,0.84,3.4,C
178
      0.45,0.85,3.5,C
179
      0.46,0.86,3.6,C
      0.47,0.87,3.7,C
181
      0.48,0.88,3.8,C
      0.49,0.89,3.9,C
      0.5,0.9,4,C
      0.51,0.91,4.1,C
184
185
      0.52,0.92,4.2,C
      0.53,0.93,4.3,C
      0.54,0.94,4.4,C
      0.55,0.95,4.5,C
      0.56,0.96,4.6,C
190
      0.57,0.97,4.7,C
191
      0.58,0.98,4.8,C
      0.59,0.99,4.9,C
192
193
      0.6,1,5,C
      0.211,0.231,2.101,B
194
195
      0.212,0.232,2.102,B
196
      0.213,0.233,2.103,B
197
      0.214,0.234,2.104,B
      0.215,0.235,2.105,B
198
      0.216,0.236,2.106,B
199
      0.217,0.237,2.107,B
      0.218,0.238,2.108,B
      0.219,0.239,2.109,B
      0.22,0.24,2.11,B
204
      0.221,0.241,2.111,B
      0.222,0.242,2.112,B
      0.223,0.243,2.113,B
```

Figure 14

Figure 15 data visualization

Figure 16 visulization.

Figure 17

Test Cases

Test Case 1 to Verify Image Upload for Coconut Oil Quality Classification

Test Case Id	1
Test Case	Verify Image Upload
Test Scenario	Verify whether the uploaded image is
	successfully processed for quality
	classification
Input	Coconut oil sample images
Expected Output	1. 200 status code should be displayed
	2. The image should be processed and a
	prediction returned
Actual Result	1. 200 status code displayed
	2. Image processed and quality prediction
	returned
Status (Pass/Fail)	Pass

Test Case 2 to Classify Coconut Oil Quality Using Image Input (CNN Model)

Test Case Id	2
Test Case	Classification of Coconut Oil Quality
Test Scenario	Testing images of coconut oil to classify and
	determine quality using the CNN model
Precondition	The coconut oil quality model must be
	trained and deployed
Input	Coconut oil sample images
Expected Output	High accuracy (prediction of 'Good',
Expected Output	'Medium', or 'Bad' quality)
Actual Result	Classification result with appropriate quality
	level
Status (Pass/Fail)	
	Pass

Test Case 3 to Classify Coconut Oil Quality Using Parameter Input (Decision Tree)

Test Case Id	3
Test Case	Classification of Coconut Oil Quality Using
	Parameters
Test Scenario	Testing coconut oil quality by providing

	Moisture, FFA, and POV parameters
Precondition	Coconut oil quality prediction model trained
	and deployed
Input	Parameters: Moisture, Free Fatty Acid
	(FFA), Peroxide Value (POV)
Expected Output	Accurate classification of the coconut oil
	quality ('Grade A', 'Grade B', 'Grade C')
Actual Result	Quality prediction returned as 'Grade A',
	'Grade B', or 'Grade C'
Status (Pass/Fail)	Pass

Test Case to 4 Generate a Report for Coconut Oil Quality Predictions

Test Case Id	04
Test Case	Generate a Report for Oil Quality
	Predictions
Test Scenario	Testing the functionality to generate a PDF
	report based on past predictions
Precondition	Past oil quality prediction data stored
Input	Request for PDF generation
Expected Output	1. PDF report generated successfully
	2. Report contains data about previous
	predictions
Actual Result	PDF generated with accurate prediction data
Status (Pass/Fail)	
	Pass

UI

Team Communication

The team chose Microsoft Teams as their primary communication channel, forming a dedicated Team with all four group members. We also used Zoom to communicate with supervisors, provide updates, and receive comments on the project's progress.

.

Teams Channel

Figure 18 teams channel creation

Figure 19 teams channel creation

Teams Calls with the Research Team

Figure 20 teams calls overview

Figure 21 teams call

Figure 22 teams call with group members

Figure 24 teams call with group members

Figure 23 teams call with supervisor

Figure 25 commiuncationwith supervisor

Figure 26 whatsapp group creation

Figure 27 whtsap call sample 1

Figure 28 whtsapp call sample2

Figure 29 whtsapp group call

Figure 30 whtsapp call sample2

Online Calls with Supervisor

Figure 31 group creation with supervisor

Figure 32 discusson with supervisor

Figure 33 discusson with supervisor

Figure 34 discusson with supervisor

Figure 35 supervisor advising

Figure 36 discusson

Figure 37 discussion with supervisor

Figure 38 call with supervisor

External supervisor meetings

Figure 39 call with external supervisor

Figure 40 discuss information with CRI officer

Figure 41 call with CRI officer

Figure 42 meetup with supervisor

Figure 43 meeting with group members

Figure 44 meet with CRI officer

Figure 45 CRI Lunuwila

Figure 46 CRI lab

Figure 47 physical meet up with external supervisor

Teams' meetings with supervisor

Figure 48 teams meeting with supervisor1

Figure 49 teams meeting with supervisor2

Figure 50 teams meeting with supervisor3

Figure 51 teams meeting with supervisor 4

Figure 52 teams meeting with supervisor5

Figure 53 teams meeting with supervisor6

Project Timeline

A Gantt chart is a visual aid for project management that is used to display a project's chronology. It shows the beginning and ending dates of all project components, including tasks, milestones, and stages, along with the dependencies between them.

Figure 54 gantt chart

Figure 55 gantt chart

Figure 56 gantt chart

Figure 57 gantt chart

Work Break-Down

A project is broken down into smaller, easier-to-manage components using a hierarchical process called a work breakdown structure, or WBS. It facilitates project planning, execution, and control by breaking the project up into distinct deliverables and work packages.

Figure 58 Work Break-Down Structure

Figure 59 Work Break-Down Structure

Figure 60 Work Break-Down Structure

Figure 61 Work Break-Down Structure