Lecture 11

Huang Ziheng

November 28, 2017

1 Deep Learning

- (I) Neural Networks(CNN,RNN)
- (2) Optimization
- (3) Generalization (Test error \approx Training error)

For example, why CNN + SGD \mapsto Image has a small training error.

Loss surface, $l(w, S) \sim \text{empirical loss}$ and $l(w, P_D) \sim \text{true loss}$

If random draw w then by Chernoff Bound they are similar. But the dimension of parameters is far more then the sample size so there exist many w that will make them far different.

No-bad local minimize: Suppose all the local minimization are global minimization.

$\mathbf{2}$ Online Learning

Online Learning with Expert Advice Alg: Weighted Majority Vote:

For t=1,2...T, every expert i \in [N] makes a prediction $\tilde{y}_{t,i}$ Adversarial gives the ground truth y_t where $\tilde{y}_{t,i}, y_t \in 0, 1$ Loss $|\tilde{y}_{t,i} - y_t|$ for each expert i at time t.

Now at time t, alg makes a prediction \tilde{y}_t , Loss for the alg: $\sum_{t=1}^T |\tilde{y}_t - y_t| \approx \min_{i \in [N]} \sum_{t=1}^T |\tilde{y}_{t,i} - y_t|$

Alg(WM) Parameter $\beta \in (0,1)$

Initialize $w_{1,i} = 1, i \in [N]$

For t=1,2...T

① Majority Vote $\tilde{y}_t = 1$ if $\sum_{y_{i,t}=0} w_{i,t} < \sum_{y_{i,t}=1} w_{i,t}$ ② If $\tilde{y}_t = y_t$ then $w_{t+1,i} \leftarrow w_{t,i}$ Else $w_{t+1,i} \leftarrow \beta w_{t,i}$ for all i such that $\tilde{y}_{t,i} \neq y_t$ Thm: Let $L_T = \sum_{t=1}^T |\tilde{y}_{t,t} - y_t|, m_T^{(i)} = \sum_{t=1}^T |\tilde{y}_{t,i} - y_t|, m_T^* = \min_{i \in [N]} m_T^{(i)}$ Then $L_T \leq \frac{\ln \frac{1}{\beta}}{\ln \frac{2}{1+\beta}} m_T^* + \frac{\ln N}{\ln \frac{2}{1+\beta}}$ Proof: Potential Function Method

W_t := $\sum_{i=1}^{N} w_{t,i}$ Now when $\tilde{y}_t \neq y_t$ (Alg makes wrong prediction) then $W_{t+1} \leq (\frac{1+\beta}{2})W_t$ then $W_T \leq \frac{1+\beta}{2})^{L_T}N$ And $W_T \geq w_{T,i} = \beta^{m_T^{(i)}} \ \forall i$

Randomized Weighted Majority Vote Alg Parameter $beta \in (\frac{1}{2}, 1)$

Initialize $w_{1,i} = 1$ For t=1,2...T

- ① Randomized majority vote according to $\frac{w_{t,i}}{\sum_{i} w_{t,i}}$
- ② The same, $w_{t+1,i} \leftarrow \beta w_{t,i} \ \forall i \ s.t. \ \tilde{y}_{t,i} \neq y_t$ Define expected loss $L_T = \sum_{t=1}^T \sum_{i=1}^N \frac{w_{t,i}}{\sum_i w_{t,i'}} |\tilde{y}_{t,i} y_t|$

Thm: For $\beta \in (\frac{1}{2}, 1)$ we have: $L_T \leq (2 - \beta)m_T^* + \frac{\ln N}{1 - \beta}$

Assume T is known, let $\beta = 1 - \sqrt{\frac{\ln N}{T}}$ then we have $L_T \leq m_T^* + 2\sqrt{T * \ln N}$

and then $\frac{L_T}{T} \leq \frac{m_T^*}{T} + O(\sqrt{\frac{\ln N}{T}})$ (Homework 1: This thm)

Now for online learning T is usually unknown so we use Doubling Trick to solve it: we can guess a T first, then if we want to continue then we double T. It is easy to prove that with this trick we can get a similar result.

3 Von-Neurnann Minmax Thm

 $\min_{p} \max_{q} p^{T} M q = \max_{q} \min_{p} p^{T} M q$

Proof of Von-Neurnann Minmax Thm:

Repeated Game, zero-sum matrix game.

Each row is an expert, row player combines experts and chooses p_t . Column player is the adversarial, chooses q_t . Now at time t, expert i suffers loss $(Mq_t)_i$ and row player loss $p_t^T M q_t$. Alg: Initialize $p_1 = (\frac{1}{N}, ..., \frac{1}{N}), \beta \in (\frac{1}{2}, 1)$ For t=1,2,...,T we want to make $q_t = max_q p_t^T M q$

- ① Row player chooses p_t
- ② Column player chooses q_t (q_t can depend on p_t)
- ③ Row player observes the loss of each row (Mq_t) ④ $p_{t+1}(i) = p_t(i)\beta_i^{Mq_t}/z_t$ where z_t is a normalization factor $s.t. \sum p_{t+1}(i) = 1$ Assume $M_{ij} \in [0,1]$

$$\sum_{t=1}^{T} p_t^T M q_t \le (2 - \beta) \min_i (\sum_{t=1}^{T} M q_t)_i + \frac{\ln N}{1 - \beta}$$

$$\frac{1}{T} \sum_{t=1}^{T} p_t^T M q_t \le \frac{1}{T} \min_i (\sum_{t=1}^{T} M q_t)_i + O(\sqrt{\frac{\ln N}{T}})$$

Where the left side is $\min_{p} \max_{q} p^{T} M q$ while the one of the right side is another so...

Unsupervised Learning 4

Clustering. K-cluster.