JAWABAN TUGAS KELOMPOK KE-2

MAT 1211 KALKULUS II SEMESTER GANJIL 2022/2023

Dosen:

Prof. Dr. Toni Bakhtiar S.Si., M.Sc.

KELOMPOK 05

No	Nama	NIM
1	Cahyani Dyah Rofiana	G1401211005
2	Farhan Abdillah Harahap	G1401211007
3	Syifa Khairunnisa	G1401211012
4	Akmal Basis Jatining Kusumah	G1401211036
5	Raziqizzan Putrandi	G1401211040
6	Reyzha Siva Dewi	G1401211074
7	Windi Gunawan	G1401211082
8	Hilmi Awfa Abrar	G1401211089
9	Yasmin Azzahra	G2401211100

IPB UNIVERSITY
2022

Lugas Relompok

1. a.
$$\int_{3}^{\infty} \frac{x}{\sqrt{16+x^{2}}} dx \rightarrow \lim_{q \to \infty} \int_{3}^{q} \frac{x}{\sqrt{16+x^{2}}}, \quad \text{misal } u = 16+x^{2} \rightarrow \frac{du}{dx} = 2x$$

$$= \lim_{n \to \infty} \int_{3}^{\alpha} \frac{1}{2\sqrt{u}} du$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{2\pi}^{16+q^{2}} \frac{du}{du}$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(u^{V_{L}} \cdot 2 \right)_{2\pi}^{16+q^{2}} = \frac{1}{2} \lim_{n \to \infty} 2\sqrt{16+a^{2}} - 2\sqrt{2\pi}$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(u^{V_{L}} \cdot 2 \right)_{2\pi}^{16+q^{2}} = \frac{1}{2} \lim_{n \to \infty} 2\sqrt{16+a^{2}} - 2\sqrt{2\pi}$$

b.
$$\int_{-\infty}^{\infty} \frac{x}{\sqrt{9+x^{2}}} dx$$

= $\lim_{n \to -\infty} \int_{0}^{\infty} \frac{x}{\sqrt{9+x^{2}}} dx + \lim_{b \to \infty} \int_{0}^{\frac{1}{2}} \frac{x}{\sqrt{9+x^{2}}} dx$

= $\lim_{n \to -\infty} \int_{0}^{0} \frac{x}{\sqrt{9+x^{2}}} dx + \lim_{b \to \infty} \int_{0}^{\frac{1}{2}} \frac{x}{\sqrt{9+x^{2}}} dx$

= $\lim_{n \to -\infty} \int_{0}^{0} \frac{1}{2} u^{-\frac{1}{2}} du + \lim_{b \to \infty} \int_{0}^{\frac{1}{2}} \frac{1}{2} u^{-\frac{1}{2}} du$

= $\lim_{n \to -\infty} \int_{0}^{0} \frac{1}{2} u^{-\frac{1}{2}} du + \lim_{b \to \infty} \int_{0}^{\frac{1}{2}} \frac{1}{2} u^{-\frac{1}{2}} du$

= $\lim_{n \to -\infty} \int_{0}^{\infty} \frac{1}{2} u^{-\frac{1}{2}} dx + \lim_{n \to -\infty} \int_{0}^{\frac{1}{2}} \frac{1}{2} u^{-\frac{1}{2}} dx$

= $\lim_{n \to -\infty} \int_{0}^{\infty} \frac{1}{2} u^{-\frac{1}{2}} dx + \lim_{n \to -\infty} \int_{0}^{\infty} \frac{1}{2} u^{-\frac{1}{2}} dx$

2. 9.
$$\int_{2}^{\infty} \frac{\ln \sqrt{x}}{x} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{\ln \sqrt{x}}{x} dx \rightarrow \text{misal}: t = \ln x \times 2 \rightarrow t = \ln (2)$$

$$= \lim_{b \to \infty} \int_{2}^{b} \frac{\ln x^{\frac{1}{2}}}{x} dx$$

$$= \lim_{b \to \infty} \int_{2}^{b} \frac{\ln x^{\frac{1}{2}}}{x} dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \frac{\ln x}{x} dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \frac{\ln x}{x} dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \frac{\ln x}{x} dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

$$= \lim_{b \to \infty} \int_{2}^{\ln x} \ln x dx$$

b.
$$\int_{-\infty}^{\infty} \frac{x}{(x^{k+q})} dx$$

• \(\lim_{n \to \infty} \int_{\sum \to \infty}^{\infty} \frac{1}{x^{k}} \dx \to \\ \lim_{n \to \infty}^{\infty} \frac{1}{x^{k}} \dx \\ \lim_{n \to \infty}^{\infty} \dx \\ \lim_{n \to \infty}^{\

b.
$$\int_{-\infty}^{\infty} \frac{x}{e^{ixi}} dx$$

$$= \int_{-\infty}^{\infty} \frac{x}{e^{ixi}} dx + \int_{0}^{\infty} \frac{x}{e^{ixi}} dx$$

$$= \lim_{A \to -\infty} \left(\int_{0}^{\infty} \frac{x}{e^{ixi}} dx \right) + \lim_{b \to \infty} \left(\int_{0}^{b} \frac{x}{e^{ixi}} dx \right)$$

$$= \lim_{A \to -\infty} \left(-1 - ae^{a} + e^{a} \right) + \lim_{b \to \infty} \left(-\frac{bii}{e^{ia}} + i \right)$$

$$= -1 + i$$

$$= 0 \quad \text{(Konvergen)}$$