International Rectifier

6TQ... 6TQ...S

SCHOTTKY RECTIFIER

6 Amp

 $I_{F(AV)} = 6Amp$ $V_R = 35 \text{ to } 45V$

Major Ratings and Characteristics

Characteristics	6TQ	Units
I _{F(AV)} Rectangular waveform	6	А
V _{RRM} range	35 to 45	٧
I _{FSM} @tp=5 µs sine	690	Α
V _F @6 Apk, T _J = 125°C	0.53	V
T _J range	-55 to 175	°C

Description/Features

The 6TQ Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 175° C T_J operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

6TQ... Series

Bulletin PD-20283 rev. A 05/02

Voltage Ratings

Part number	6TQ035	6TQ040	6TQ045
V _R Max. DC Reverse Voltage (V)	0.5	40	45
V _{RWM} Max. Working Peak Reverse Voltage (V)	35	40	45

Absolute Maximum Ratings

	Parameters	6TQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current *See Fig. 5	6	А	50% duty cycle @ T _C = 164° C, rectangular wave forn	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	690	_	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current * See Fig. 7	140	Α	10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	8	mJ	T _J =25 °C, I _{AS} =1.20 Amps, L=11.10 mH	
I _{AR}	Repetitive Avalanche Current	1.20	Α	Current decaying linearly to zero in 1 µsec	
				Frequency limited by T_J max. V_{μ}	_λ =1.5xV _R typical

Electrical Specifications

	Parameters	6TQ	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.60	V	@ 6A	T = 25 °C
	* See Fig. 1	0.73	V	@ 12A	T _J = 25 °C
		0.53	V	@ 6A	T = 125 °C
		0.64	V	@ 12A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current (1)	0.8	mA	T _J = 25 °C	V = rated V
	* See Fig. 2	7	mA	T _J = 125 °C	V _R = rated V _R
V _{F(TO)}	Threshold Voltage	0.35	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance	18.23	mΩ		
C _T	Max. Junction Capacitance	400	pF	$V_R = 5V_{DC}$, (test signal range 100Khz to 1Mhz) 25 °C	
L _S	Typical Series Inductance	8.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/ µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters		6TQ	Units	Conditions
T _J	Max. Junction Temperature	Range	-55 to 175	°C	
T _{stg}	Max. Storage Temperature I	Range	-55 to 175	°C	
R _{thJC}	Max. Thermal Resistance Juto Case	ınction	2.2	°C/W	DCoperation *See Fig. 4
R _{thCS}	CS Typical Thermal Resistance,		0.50	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		2(0.07)	g(oz.)	
Т	Mounting Torque	Min.	6(5)	Kg-cm	
		Max.	12(10)	(lbf-in)	

Bulletin PD-20283 rev. A 05/02

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance $\, Z_{thJC} \,$ Characteristics

Bulletin PD-20283 rev. A 05/02

D = 0.20
D = 0.25
D = 0.33
D = 0.50
D = 0.75

RMS Limit

RMS Limit

1

Average Forward Current - I F(AV) (A)

Fig. 5-Maximum Allowable Case Temperature Vs. Average Forward Current

Fig. 6-Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current

 $\begin{aligned} \textbf{(2)} \;\; &\text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} \cdot (\text{Pd} + \text{Pd}_{\text{REV}}) \textbf{x} \, \textbf{R}_{\text{thJC}}; \\ &\text{Pd} = \text{Forward Power Loss} = \textbf{I}_{\text{F(AV)}} \textbf{x} \, \textbf{V}_{\text{FM}} \textcircled{@} (\textbf{I}_{\text{F(AV)}} / \textbf{D}) \;\; (\text{see Fig. 6}); \\ &\text{Pd}_{\text{REV}} = \text{Inverse Power Loss} = \textbf{V}_{\text{R1}} \textbf{x} \, \textbf{I}_{\text{R}} (\textbf{1} - \textbf{D}); \, \textbf{I}_{\text{R}} \textcircled{@} \, \textbf{V}_{\text{R1}} = 80\% \, \text{rated} \, \textbf{V}_{\text{R}} \end{aligned}$

Outline Table

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 05/02