Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Репозиторий на Github

Содержание

1	Вст	упление	2
2	Фундированные множества		2
	2.1	Свойства, эквивалентные фундированности	3
	2.2	Непосредственно следующие элементы	4
	2.3	Предельные элементы	5
	2.4	Сложение и умножение Фундированных множеств и ВУМов	5
3	Орд	иналы	7

Короче, как-то будем сдавать какой-то экзамен. Очень сложно, ничего не понятно

1 Вступление

Вот у нас были натуральные числа:

$$0 = \emptyset$$

$$1 = \{\emptyset\}$$

$$2 = \{\emptyset, \{\emptyset\}\} = \{0, 1\}$$

$$\vdots$$

$$n + 1 = \{0, 1, 2, \dots n\}$$

Вопрос: что будет в бесконечности?

$$\omega = \{0, 1, 2, \dots\}$$

$$\omega + 1 = \{0, 1, 2, \dots, \omega\}$$

$$\omega + 2 = \{0, 1, 2, \dots, \omega, \omega + 1\}$$

$$\vdots$$

$$2\omega = \dots$$

$$2\omega + 1 = \dots$$

$$\vdots$$

$$3\omega = \dots$$

$$\vdots$$

$$\omega \cdot \omega = \dots$$

Таким образом, получаем различные многочлены от ω , если продолжать этот абсурд, то получится ω^{ω} , потом получится $\omega^{\omega^{\dots^{\dots^{\omega}}}}$ и короче всякое такое.

2 Фундированные множества

Определение 2.1. Пусть S — ЧУМ. Тогда S называется Фундированным, если $\forall A \subset S \exists \min A$

Пример (Фундированные).

- 1. \mathbb{N}, \leqslant
- $2. \mathbb{N}, |$
- 3. $\{a,b\}^*, \sqsubseteq$

Пример (Не фундированные).

- 1. \mathbb{Z}, \leqslant
- $2. \mathbb{N}, \geqslant$
- 3. $[0,1], \leq$
- 4. $\{a,b\}^*, \leq_{lex}$

2.1 Свойства, эквивалентные фундированности

1. (БС) Невозможность бесконечного спуска

$$\nexists a_1 > a_2 > a_3 \dots$$

2. (Ст) Стабилизация

$$\forall a_1 \geqslant a_2 \geqslant a_3 \cdots \Rightarrow \exists k : \forall n > k(a_k = a_n)$$

3. (ТИ) Трансфинитная индукция

$$\forall x (\forall y < x \ \varphi(y) \to \varphi(x)) \Rightarrow \forall z \varphi(z)$$

Теорема 2.1. Свойства Фундированность, БС, Ст, ТИ эквивалентны.

Доказательство.

- 1. ¬Ф ⇒ ¬БС. Пусть $A \neq \emptyset$, ∄ min A. Тогда $\forall a_1 \in A \exists a_2 \in A : a_2 < a_1$. Используя аксиому выбора (выбирая по одному элементу из оставшихся), получается бесконечную убывающую последовательность.
- 2. $\neg \Phi \Leftarrow \neg BC$. Тогда существует $a_1 > a_2 > a_3 \dots$ Рассмотрим это множество, в нем не будет минимального элемента.
- 3. $\neg BC \Rightarrow \neg Cт$. Тогда существует $a_1 > a_2 > a_3 \dots$ Заметим, что для это последовательности неверна стабилизация.
- 4. $\neg BC \Leftarrow \neg Cт$. Рассмотрим последовательность, которая не стабилизируется. Тогда $\forall n \exists k : a_n > a_k$. Тогда \exists бесконечная убывающая цепочка.
- 5. $\neg \Phi \Rightarrow \neg \text{TИ}$. $A \neq \emptyset$ множество без минимального элемента, $\varphi(x) \Leftrightarrow x \notin A \Rightarrow \varphi(x) \not\equiv 1$.

$$\forall y < x \ y \notin A \Rightarrow x \notin A$$

Утверждение вверу верно, т.к. $\forall y < x (y \notin A, x \in A) \Rightarrow x = \min A$.

6. $\neg \Phi \leftarrow \neg T$ И. Тогда для некоторго φ верно, что

$$\forall x (\forall y < x \ \varphi(y) \to \varphi(x))$$

Но

$$\neg \forall z \varphi(z)(1)$$

Пусть $A = \{z | \varphi(z) = 0\}$. Причем A непусто, т.к. (1). Тогда рассмотрим минимальный элемент в A и получим противоречие с определением ТИ.

Определение 2.2. Вполне упорядоченное множество — Линейная упорядоченность + Фундированность

Пример.

$$\mathbb{N}, \leqslant$$
 ω $\{1-\frac{1}{n}|n\in\mathbb{N}_{+}\}\}$ ω $\{1-\frac{1}{n}|n\in\mathbb{N}_{+}\}\}\cup\{2-\frac{1}{n}|n\in\mathbb{N}_{+}\}\}$ $\omega\cdot 2$ $\{k-\frac{1}{n}|k,n\in\mathbb{N}_{+}\}\}$ ω^{2} $\{1-\frac{1}{n}-\frac{1}{m}|m,n\in\mathbb{N}_{+}\}\}$ ω^{2} $\{1-\frac{1}{n}-\frac{1}{m}-\frac{1}{k}|m,n,k\in\mathbb{N}_{+}\}\}$ ω^{3} $\{1-\frac{1}{n_{1}}-\frac{1}{n_{2}}-\cdots-\frac{1}{n_{k}}|k$ — произвольное $\}$ не фундированное $\{k-\frac{1}{n_{1}}-\frac{1}{n_{2}}-\cdots-\frac{1}{n_{k}}|k$ — произвольное $\}$ ω^{ω}

Определение 2.3. Пусть S — ВУМ. Тогда $K \subset S$ называется начальным отрезком, если $\forall x, y ((x \in K \land y < x) \to y \in K)$

Эквивалентные свойства:

$$\forall x \in K \forall y \notin Kx < y$$
$$\forall x, y ((x \notin K \land y > x) \to y \notin K)$$

2.2 Непосредственно следующие элементы

Утверждение 2.1. $S-BYM, x \in S, x-$ не наибольший в $S \Rightarrow \exists ! y (y>x \land \neg \exists zy>z>x).$

Доказательство.
$$\exists$$
 — из Фундированности, $y = \min\{t \in S | t > x\}$

Определение 2.4. y из предыдущего утверждения называется непосредственно следующим элементом после x и обозначается x+1.

Замечание.

$$[0, a] = [0, a + 1)$$

Теорема 2.2. K — начальный отрезок $S \Rightarrow K = S \lor K = [0, a)$

Доказательство. Если K=S, то победили, иначе рассматриваем $a=\min(S\setminus K).$ Докажем, что K=[0,a).

- 1. $K \subset [0,a)$: Если $x \in K, x > a$, то $a \in K$, но $a \in S \setminus K$
- 2. $K \supset [0,a)$: Если $x < a, x \notin K$, то $a \ne \min(S \setminus K)$ противоречие.

Пример.

- 1. S
- 2. $[0, \alpha] = \{x | x \leq \alpha\}$
- 3. $[0, \alpha) = \{x | x < \alpha\}$

2.3 Предельные элементы

Определение 2.5. z назывется предельным элементом, если $\nexists y(z=y+1)$.

или

Определение 2.6. z назывется предельным элементом, если

$$\forall y < z \exists t \in (y,z)$$

Теорема 2.3.
$$S-BУM, x \in S \Rightarrow \exists l \in S, k \in \mathbb{N} : x = l + k = l + \underbrace{1+1+\cdots+1}_{k}$$

2.4 Сложение и умножение Фундированных множеств и ВУМов

Сложение и умножение определены так же, как и для ЧУМов.

- 2. A, B BУM, тогда u A + B тоже.
- 3. $A, B \phi$ ундированные, тогда и $A \cdot B m$ оже.
- 4. A, B BУM, тогда и $A \cdot B$ тоже.

Доказательство. $C \subset A \sqcup B$:

- 1. (a) $C \cap A \neq \varnothing \Rightarrow \min(C \cap A)$ существует, т.к. A фундированное
 - (b) $C \cap B \neq \emptyset \Rightarrow \min(C \cap B)$ существует, т.к. B фундированное
- 2. Подмножество ЛУМа ЛУМ, поэтому победили по (1).

Замечание. Любое подмножество ВУМ — тоже ВУМ

Замечание. Множество предельных элемнтов ВУМа — ВУМ

Замечание. Между любыми двумя предельными элементами бесконечно много других

Замечание. Элементы между соседними предельными элементами образуют множество, $\approxeq \omega$

Теорема 2.5 (О структуре ВУМ). S-BУM, тогда $\exists L-$ тоже BУM, конечное множество K, такие, что $S \cong \omega \cdot L + K$

Теорема 2.6 (О трансфинитной рекурсии). Пусть задано рекурсивное правило:

$$F: f|_{[0,x)} \mapsto f(x) \in R$$

Тогда $\exists ! f: S \to R, m.ч. \forall x f(x) = F(f|_{[0,x)})$

Доказательство.

Единственность. Пусть f, g-2 подходящие функции.

$$\{x|f(x)\neq g(x)\}\neq\varnothing\Rightarrow\exists m=\min\{x|f(x)\neq g(x)\}\Rightarrow f|_{[0,m)}=g|_{[0,m)}$$

Но тогда $f(m) = F(f|_{[0,m)}) = F(g|_{[0,m)}) = g(m)$, противоречие.

Существование. По трансфинитной индукции докажем сущесвование $f|_{[0,x)}$, соответствующее F.

$$\forall y < x \exists f|_{[0,y)} \Rightarrow \exists f|_{[0,x)}$$

- (a) $x = w + 1 \Rightarrow \exists f|_{[0,w)}, f(w) = F(f|_{[0,w)})$
- (b) x предельное

$$y < x \Rightarrow \exists z : y < z < x$$

$$z < x \Rightarrow \exists f : [0, z) \to R$$

Так и доопределяем f(y) (если разные z дают разные значения, то противоречие аналогично с доказательством единственности). То есть $\forall y < x$ задано $f(y) \Rightarrow f$ задано на [0, x).

По трансфинитной индукции получили, что $\forall x \varphi(x)$. Теперь нужно сделать последний переход ко всему множеству (Π pum. от автора: мы научились делать ее на начальных отрезках \Rightarrow для "самых больших элементов" потенциально могут быть проблемы, т.к. начальные отрезки — полуинтервалы. Их мы и будем чинить последним переходом). Если в множестве есть наибольший элемент, то доопределяем так же, как и в случае а) (Важно: наибольший элемент может быть предельным). Если наибольшего элемента нет, то доопределяем значение, как в пункте б).

Теорема 2.7 (Обобщенная теорема о трансфинитной рекурсии). F может быть частично определена, тогда f определена на начальном отрезке.

Доказательство. Добавим значение $f(x) = \bot$, если функция f не определена в точке x. Тогда по теореме о Трансфинитной рекурсии, $\exists! f: S \to R \cup \{\bot\}$.

Теорема 2.8 (О сравнимости ВУМов). Любые два ВУМа либо изоморфны, либо один из них изоморфен начальному отрезку другого.

Доказательство. Строим $f: S \to T$, заданное правилом $F(f|_{[0,x)}) = \min(T \setminus f([0,x)))$. По обобщенной теореме о трансфинитной рекурсии, $\exists ! f$, соответствующая F. Есть два случая:

- 1. f определена на S. $Im_f = \begin{bmatrix} T \\ [0,t) \end{bmatrix}$. Тогда иначе $\exists t_1 < t_2 : t_1, t_2 \notin Im_f$.
- 2. f определена на $[0,s) \Rightarrow Im_f = T$, иначе доопределим f(s)

Утверждение 2.2. S - BYM, $s \in S \Rightarrow s \ncong [0, s)$

Доказательство. Иначе \exists монотонная $g: S \to [0, s) \Rightarrow$ т.к. $g(s) \geqslant s$ (нетрудно доказать) $\Rightarrow g(s) \notin [0, s)$, противоречие.

Следствие. Из $S \cong T, S \cong [0, t), T \cong [0, s)$ выполнено ровно 1 утверждение

3 Ординалы

Определение 3.1. S — транзитивно, если $y \in S, x \in y \Rightarrow x \in S$.

Пример. \varnothing , $\{\varnothing\}$ и все элементы \mathbb{N}

Пример. $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}$

Определение 3.2. Ординал — транзитивное множество, любой элемент которого — транзитивен.

Неформально — порядковый тип (отношение эквивалентности на всех множествах)

Утверждение 3.1. $\alpha - opдинал$, тогда $\beta \subset \alpha - mоже$.

Доказательство. β — транзитивно, т.к. β — элемент ординала. $\gamma \in \beta \Rightarrow$ по транизитивности $\alpha \Rightarrow \gamma \in \alpha \Rightarrow \gamma$ — транзитивно.

Утверждение 3.2. $\alpha - opdunan \Rightarrow \alpha \cup \{\alpha\} - opdunan$.

Доказательство.

$$\beta \in \alpha \cup \{\alpha\} \Rightarrow \beta \in \alpha \vee \beta = \alpha$$

В обоих случаях, β транзитивно. Теперь рассмотрим $\gamma \in \beta$.

$$\beta \in \alpha \Rightarrow \gamma \in \alpha$$

$$\beta = \alpha \Rightarrow \gamma \in \alpha$$

Т.к. α — транзитивно, то и γ — тоже.

Утверждение 3.3. Объединение любого множества ординалов — ординал.

Доказательство.

$$\alpha = \bigcup_{i \in I} \alpha_i$$

$$\gamma \in \beta, \beta \in \alpha \Rightarrow \gamma \in \beta, \beta \in \alpha_i \Rightarrow \beta, \gamma \in \alpha_i$$

 $\Rightarrow \beta, \gamma$ транзитивны

Утверждение 3.4. Ординал — ВУМ с отношением \in (как строгого порядка)

 \square оказательство.

Теорема 3.1. Любой ординал — ВУМ, с отношением порядка \in , при этом отношение "быть начальным отрезком" — тот же порядок. Подмножества являющиеся ординалами — тоьлко начальные отрезки. То есть \in , "быть начальным отрезком" — один и тот же порядок, называемый ординальным