Neural Computation

25. September 2023

Module team

Jinming Duan j.duan@bham.ac.uk (Module lead)

Alex Krull a.f.f.krull@bham.ac.uk

Kashif Rajpoot k.m.rajpoot@bham.ac.uk (for Dubai)

Module structure

- In-person-sessions
 - Mondays 12noon and Thursdays 1pm
 - Carefull, rooms change
- Videos
 - Released weekly
 - Watch them until Thursday
- Excercises
 - Released weekly
 - Python and PDFs

Module plan

Week	Date	Topic	Edgbaston lecturer	Dubai lecturer	CA	Exam
1	25 th Sep	Introduction and Linear Models	Alex	Kashif		
2	2 nd Oct	Gradient Descent Methods and Linear Classification	Jinming	Kashif		
3	9 th Oct	MLP and Backpropagation	Alex	Kashif		
4	16 th Oct	Convolutional Neural Networks	Jinming	Kashif		
5	23 rd Oct	Auto-encoders (AEs)	Jinming	Kashif		
6	30 th Oct	Consolidation week, assessment and Q/A	Alex	Kashif	CA1 (10%)	
7	6 th Nov	Variational AEs	Jinming	Kashif		
8	13 th Nov	Generative Adversarial Networks	Jinming	Kashif		
9	20 th Nov	Recurrent Neural Networks	Jinming	Kashif		
10	27 th Nov	Transformers	Alex	Kashif		
11	4 th Dec	Diffusion Models	Alex	Kashif	CA2 (10%)	

May/June 2024

Final exam (80%)

Contact us:

Office hours

• See Canvas

Alex Krull:

Every Friday 1pm-2pm in

Room UG 37

- Teams
 - See Canvas

Artificial Intelligence

Machine Learning

Neural Computation (Deep Learning)

Linear Regression

Expert Systems

BACKWARD CHAINING

GOAL: Make \$20.00

RULE: If the lawn is shaggy and the car is dirty and you mow the lawn and wash the car, then Dad will give you \$20.00

*** The inference engine will test each rule or ask the user for additional information.

AlphaGo

First 99 moves

Moves 100-186 (149 at 131, 150 at 130)

DALL-E-2

Types of machine learning

What is machine learning?

- Definition by Tom Mitchell (1997)
 - An algorithm is said to learn from
 <u>Experience E</u> with respect to some class of <u>Tasks T</u> and <u>Performance Measure P</u>, if its Performance P at Task in T improves with Experience E
- Toy block building
 - E: knowledge of physical world
 - T: building a tower with toy block
 - P: how tall the tower is

Classification (T)

Performance (P)?

Construct a function

$$f: \mathbb{R}^d \mapsto \{1, \dots, k\}$$

such that if an object with features $x \in \mathbb{R}^d$ belongs to a class $y \in \{1, ..., k\}$ then

$$f(\mathbf{x}) = y$$

Experience(E)

$$D = \{(x^1, y^1), (x^2, y^2), ..., (x^n, y^n)\}$$
where $x \in \mathbb{R}^d$ and $y \in \{1, ..., k\}$

Regression (T)

Predict a numerical output given some input, i.e., a function

$$f: \mathbb{R}^d \mapsto \mathbb{R}$$

- Example: house price prediction
 - Input: House information (living size, lot size, location, # floors)
 - Output: Price

Experience(E)

$$D = \{(x^1, y^1), (x^2, y^2), ..., (x^n, y^n)\}$$

where $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$

Performance (P)?

Performance (P)

(Loss function)

- For classification, accuracy is a common performance measure
 - Proportion of correctly classified examples (typically reported as a percentage)

- For regression, residual is a common performance measure
 - e.g., mean of sum of square of differences

Learning is adjusting parameters

Underfitting and overfitting

- Loosely speaking, we say a model underfits when
 - training performance is poor
- We say a model overfits when
 - training performance is good but
 - test performance is poor

How to prevent:

- Overfitting
- Underfitting?