CISC 1003 - EXPLORING ROBOTICS

ROBOT DECISION MAKING

CISC1003

- Robot can 'learn' the world using their sensors
- Sensors return data in number format

- The robot can answer 'yes' or 'no' questions
- Example:
 - Is the touch sensor bumped?
 - Is the audio level in the room above 50%?
- This ability is based on a special logic
 - Called 'Boolean logic'

- Programmers can give the robot its decisionmaking capability
 - By combining the numbers provided by the sensor with robot ability to answer questions
- This requires the following:
 - Robot is programmed to ask questions
 - Act one way if the answer is 'yes'
 - and another if the answer is 'no'

 Boolean operators are used when asking the questions, such as:

```
'less then','more than',== "equal to"etc.
```

- Example: We want the robot to stop moving before it runs into a wall
 - Use the feedback from an ultrasonic sensor
 - Use 'less than' operator
 - with a certain distance threshold
 - E.g., 10 inch
- This will result in a program that moves the robot until it detects an obstacle
 - Within the distance specified (10 inch)

- How does the program work?
- The robot moves forward
- It repeatedly asks the questions:
 - "Am I 10 inch away from anything?"
- If the answer is no, the robot continues moving forward
 - If the answer is 'yes', it stops

Conditional Statements

- The parts of the program where the robot choose an action
 - Depending on a certain condition
 - Typically expressed as Boolean values

Boolean Expressions

- boolean expression: A logical statement that results in a boolean value
 - either be True or False
- Boolean values are expressed by:
 - True
 - Can also be expressed by the number 1 and 'Yes' value
 - False
 - Can also be expressed by the number 0 and 'No' value

Boolean Algebra Operations

- There are three basic operations:
 - AND operation
 - OR operation
 - NOT operation

Boolean Algebra Operations

There are three basic operations:

Truth Tables

A	$\neg A$
True	False
False	True

A	В	A∩B (AND)	A∪B (OR)
True	True	True	True
True	False	False	True
False	True	False	True
False	False	False	False

- Operators are used in order of precedence
 - To change order, use brackets for operations that should be done first

Operator	Symbol	Precedence
NOT	' (or) ¬	Highest
AND	. (or) ∧	Middle
OR	+ (or) ∨	Lowest

- Example:
 - $\neg 0 \cup 1 = ?$
 - $-\neg (0 \cup 1) = ?$

- Example:
 - $-0 \cup 1 = 1 \cup 1 = ?$
 - $-\neg (0 \cup 1) = \neg 1 = ?$

- Example:
 - $-0 \cup 1 = 1 \cup 1 = 1$
 - $-\neg (0 \cup 1) = \neg 1 = 0$

Summary

- We can create conditional statements
 - by combining sensor output and Boolean operators
- This allows the robot to make decisions

How a robot thinks

- What kinds of questions can a robot ask?
 - "yes" or "no" questions
 - Questions that have only two possible answers
- What can a robot do with the answer to the question?
 - Use the answers to choose between two different actions
 - E.g., move forward or stop

