6장. 확률변수의 극한(Limiting Distribution)

Large sample size properties

Sometimes, the probability distribution for a statistic, \overline{X} , is hard to describe for small size n. But we can say something for "large" n.

정의. 확률수렴 (Convergence in Probability)

A sequence of r.v. X_1, X_2, \cdots converges in probability to a r.v. X if, for every $\varepsilon > 0$,

$$\underset{n\to\infty}{\lim}P(|X_n-X|\,\geq\,\varepsilon)=0\ \ \text{or}\ \ \underset{n\to\infty}{\lim}P\left(|X_n-X|\,<\,\varepsilon\,\right)=1.$$

Notation: $X_n \xrightarrow{p} X$

6.1 대수의 법칙

Thm 6.1 (Law of large numbers : 대수의 법칙)

Let X_1, X_2, \cdots be i.i.d random variables with mean μ and variance $\sigma^2 < \infty$.

Let
$$\overline{X}_n = \sum_{i=1}^n X_i/n$$
 then for every $\varepsilon > 0$, $\lim_{n \to \infty} P(|\overline{X}_n - \mu| > \varepsilon) = 0$.

i.e., \overline{X}_n converges in probability to μ .

Proof) Recall. Chebyshev's inequality (Thm 4.6)

Use Chebyshev's inequality.

i.e.,
$$P(|\overline{X_n} - \mu| \ge \varepsilon) = P((\overline{X_n} - \mu)^2 \ge \varepsilon^2) \le \frac{E(\overline{X_n} - \mu)^2}{\varepsilon^2} = \frac{Var(\overline{X_n})}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \to 0$$
 as $n \to \infty$.

Example (Consistency of S^2)

$$E(S^2) = \sigma^2$$

Does $S^2 \to \sigma^2$ in probability ??

Same proof works if $Var(S^2) \rightarrow 0$.

6.2 분포수렴

Def 6.1 분포수렴 (Converges in Distribution)

 X_1,X_2,\cdots converges in distn to a r.v. X if $F_{X_n}(x)\to F_X(x)$ as $n\to\infty$ at all x where $F_X(x)$ is continuous.

(i.e.,
$$F_{X_n}(x) = P(X_n \le x) \rightarrow P(X \le x) = F_X(x)$$
)

Notation: $X_n \xrightarrow{d} X$, or $X_n \to X$ in dist.

Example

Let $Y_n \sim \operatorname{Beta}(1 + \frac{1}{n}, 1)$, $Y \sim \operatorname{Beta}(1, 1)$; i.e., Uniform r.v.

Then,

$$F_{Y_n}(y) = \int_0^y \frac{\Gamma(2+\frac{1}{n})}{\Gamma(1+\frac{1}{n})\Gamma(1)} u^{(1+\frac{1}{n}-1)} du = \int_0^y (1+\frac{1}{n}) u^{\frac{1}{n}} du = y^{1+\frac{1}{n}}$$

$$=> F_{Y_n}(y) = \begin{cases} 0, & y \leq 0 \\ y^{1+\frac{1}{n}}, & 0 < y < 1 \\ 1, & 1 \leq y \end{cases}$$

$$\& \qquad F_{Y}\left(y\right) = \begin{cases} 0, & y \leq 0 \\ y, & 0 < y < 1 \\ 1, & 1 \leq y \end{cases}$$

Therefore $F_{Y_n}(y) \to F_Y(y)$ at all y where $F_Y(y)$ is continuous.

$$\therefore Y_n \xrightarrow{d} Y.$$

Ex 6.1 Let $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} U(0, \theta)$. What is the limiting distribution of $X_{(n)}$?

$$\begin{split} F_{X_{(n)}}(x) &= P(X_{(n)} \leq x) = P(X_1 \leq x, X_2 \leq x, \cdots, X_n \leq x) \\ &= \left(\frac{x}{\theta}\right)^n, \ 0 \leq x \leq \theta. \end{split}$$

Then,
$$\lim_{n\to\infty} F_{X_{(n)}}(x) = \begin{cases} 0 & x<\theta \\ 1 & x\geq\theta \end{cases}$$

$$\begin{array}{l} \text{Let } X \! = \! \theta. \text{ Then, } F_{\!X}\!(x) \! = \! \begin{cases} 0 & x < \theta \\ & \text{i.e., } \quad F_{\!X_{\!(n)}}\!(x) \! \to \! F_{\!X}\!(x). \\ \\ 1 & x \geq \theta \end{cases} \\ \\ \therefore X_{\!(n)} \xrightarrow{d} \!\!\!\!\! X, \quad i.e., \ X_{\!(n)} \xrightarrow{d} \!\!\!\!\! \theta. \ \& \ X_{\!(n)} \xrightarrow{p} \!\!\!\!\!\! \theta. \end{array}$$

Ex 6.2 Let $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} U(0, \theta)$.

What is the limiting distribution of $Y_n = n(\theta - X_{(n)})$?

Sol.

Fill out by yourself

Thm 6.2 (Convergence of mgf implies convergence in distribution)

Let the mgfs of X_1, X_2, \cdots be $M_1(t), M_2(t), \cdots$, respectively,

and M(x) be the mgf of X.

If $\lim_{n\to\infty} M_n(t) \to M(t)$ for all t, then $X_n \xrightarrow{d} X$.

Ex 6.3 Let $X_n \sim \operatorname{Poisson}(\lambda_n)$ and $\lambda_n \to \infty$.

What is the limiting distribution of $Z_n = \frac{X_n - E(X_n)}{\sqrt{Var(X_n)}} = \frac{X_n - \lambda_n}{\sqrt{\lambda_n}}$?

Sol. Use convergence of mgf

$$\begin{split} M_{Z_n}(t) &= E(e^{tZ_n}) = E\left[e^{t\left(\frac{X_n - \lambda_n}{\sqrt{\lambda_n}}\right)}\right] \\ &= E\left(e^{-t\sqrt{\lambda_n} + \frac{t}{\sqrt{\lambda_n}}X_n}\right) \\ &= e^{-t\sqrt{\lambda_n}} E\left(e^{\frac{t}{\sqrt{\lambda_n}}X_n}\right) \\ &= e^{-t\sqrt{\lambda_n}} M_{X_n}\left(\frac{t}{\sqrt{\lambda_n}}\right) \\ &= e^{-t\sqrt{\lambda_n}} M_{X_n}\left(\frac{t}{\sqrt{\lambda_n}}\right) \\ &= e^{-t\sqrt{\lambda_n}} e^{\lambda_n \left(e^{\frac{t}{\sqrt{\lambda_n}}} - 1\right)} \\ &= e^{-t\sqrt{\lambda_n} + \lambda_n \left(e^{\frac{t}{\sqrt{\lambda_n}}} - 1\right)} \\ &= e^{-t\sqrt{\lambda_n} + \lambda_n \left(1 + \frac{t}{\sqrt{\lambda_n}} + \frac{1}{2}\left(\frac{t}{\sqrt{\lambda_n}}\right)^2 + \sum_{k=3}^{\infty} \frac{1}{k!}\left(\frac{t}{\sqrt{\lambda_n}}\right)^k - 1\right)} \\ &= e^{\frac{t^2}{2} + \sum_{k=3}^{\infty} \frac{1}{k!} \frac{t^k}{\lambda_n^{k/2 - 1}}} \\ &\to e^{\frac{t^2}{2}} \text{ as } n \to \infty. : \text{mgf of } N(0, 1) \end{split}$$

 $\therefore Z_n \xrightarrow{d} X, X \sim N(0,1)$

Ex 6.4 Read

6.3 중심극한정리 (Central Limit Theorem)

Thm 6.3 (Central Limit Theorem: CLT)

 $X_1,X_2,\,\cdots,X_n \ \sim \ \text{mean}\ \mu \ \text{and variance}\ \sigma^2, \quad 0<\sigma^2<\infty.$

Let
$$S_n = \sum_{i=1}^n X_i$$
, $\overline{X_n} = \sum_{i=1}^n X_i / n$. Then,

$$Z_n = \frac{S_n - n\mu}{\sqrt{n}\sigma} = \frac{(\overline{X_n} - \mu)}{\sigma/\sqrt{n}} \xrightarrow{d} N(0, 1)$$

That is, for any $x, -\infty < x < \infty$,

$$\lim_{n \to \infty} P(\frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du = P(Z \le x)$$

Proof.

Note: m.g.f. of $N(\mu, \sigma^2)$ is $e^{\mu t + \frac{1}{2}\sigma^2 t^2}$.

Recall: If $M_{Y_n}(t) \rightarrow M_Y(t)$, then $Y_n \xrightarrow{d} Y$.

We will assume m.g.f of X_i exists and show that

the m.g.f of $\frac{(\overline{X_n} - \mu)}{\sigma/\sqrt{n}}$ converges to $e^{t^2/2}$ as $n \to \infty$.

Define $Y_i = \frac{X_i - \mu}{\sigma}$ and $M_Y(t)$ denoted m.g.f of Y

$$=>~Z_n=\frac{\overline{X_n}-\mu}{\sigma/\sqrt{n}}=\frac{\sqrt{n}\sum_{i=1}^n(X_i-\mu)}{\sigma n}=\frac{\sum_{i=1}^nY_i}{\sqrt{n}}$$

Then,
$$M_{Z_n}(t) = M_{\frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i}(t) = M_{\sum_{i=1}^n Y_i}(t) = \left[M_Y(\frac{t}{\sqrt{n}})\right]^n$$
.

Expand $M_Y(\frac{t}{\sqrt{n}})$ in a Taylor's series about "0"

Note (Taylor's expansion):

Taylor's expansion of function f(x) at x = a

$$\Rightarrow f(x) = f(a) + \frac{f^{(1)}(a)}{1!}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \cdots$$

When a = 0,

$$f(x) = f(0) + \frac{f^{(1)}(0)}{1!}(x-0) + \frac{f^{(2)}(0)}{2!}(x-0)^2 + \cdots$$

$$\begin{split} M_Y & \left(\frac{t}{\sqrt{n}} \right) = \sum_{k=0}^{\infty} M_Y^{(k)}(0) \frac{(t/\sqrt{n})^k}{k!} \\ M_Y(0) &= E(e^{0Y}) = 1 \\ M_Y^{(1)}(0) &= E(Y) = E(\frac{X - \mu}{\sigma}) = 0 \\ M_Y^{(2)}(0) &= E(Y^2) = Var\left(Y\right) = \frac{1}{\sigma^2} Var\left(X\right) = \frac{1}{\sigma^2} \sigma^2 = 1 \\ &= > M_Y(\frac{t}{\sqrt{n}}) = 1 + \frac{(t/\sqrt{n})^2}{2} + R_Y(t/\sqrt{n}) \end{split}$$

Note that

$$\lim_{n\to\infty}\frac{R_Y(t/\sqrt{n}\,)}{(t/\sqrt{n}\,)^2}=0.\quad => \lim_{n\to\infty}nR_Y(\frac{t}{\sqrt{n}}\,)=0.$$

$$\begin{split} \therefore & \lim_{n \to \infty} (M_Y(t/\sqrt{n}))^n \ = \lim_{n \to \infty} \ [1 + \frac{(t/\sqrt{n})^2}{2} + R_Y(\frac{t}{\sqrt{n}})]^n \\ & = \lim_{n \to \infty} \ [1 + \frac{1}{n} (\frac{t^2}{2} + nR_Y(\frac{t}{\sqrt{n}})]^n \\ & = e^{t^2/2} \quad : mgf \quad of \quad N(0,1) \end{split}$$

Here, we use the fact that

$$\underset{n\to\infty}{\lim}a_n=a\text{ 2 m},\text{ }\underset{n\to\infty}{\lim}\left(1+\frac{a_n}{n}\right)=e^a.$$

Meaning of the CLT (Important):

Read text p.153

$$=> \frac{S_n}{n} = \overline{X_n}, \quad \frac{\overline{X_n} - p}{\sqrt{p(1-p)/n}} \quad \stackrel{d}{\longrightarrow} \ N(0,1)$$

Normal approximation to binomial

 $Y \sim Bin(n,p)$ is approximated by N(np,np(1-p))Approximation is good if n is large, p is not close to "0" or "1". $(np \ge 5 \& n(1-p) \ge 5)$

Ref. Continuity correction (연속성 수정)

When we use CLT, a continuity correction is needed for discrete distn. If $Y \sim Bin(n, p)$ & n is large enough, Φ : cdf of N(0, 1)

$$P(Y \le k) \approx \Phi\left(\frac{k + 0.5 - np}{\sqrt{np(1-p)}}\right)$$

$$P(Y < k) \approx \Phi \left(\frac{k - 0.5 - np}{\sqrt{np(1-p)}} \right)$$

Dept. of Statistics - 22 - Kee-Hoon Kang

Ex 6.5 : X ~ Bin (100, 0.5)일 때, P(X≥60)의 근사값? Sol.

$$P(X \ge 60) = 1 - P(X < 60) = 1 - P\left(\frac{X - 0.5 - 50}{\sqrt{25}} \le \frac{60 - 0.5 - 50}{\sqrt{25}}\right)$$
$$= \Phi\left(\frac{60 - 0.5 - 50}{\sqrt{25}}\right)$$

Example : $X_1, X_2, \cdots, X_{25} \stackrel{iid}{\sim} Bin(5, 0.4)$ 일 때,

$$P(1 \le \overline{X} \le 2.5) = P(\frac{1-2}{\sqrt{6/5}/\sqrt{25}} \le \frac{\overline{X}-2}{\sqrt{6/5}/\sqrt{25}} \le \frac{2.5-2}{\sqrt{6/5}/\sqrt{25}})$$
$$\approx P(-4.56 \le Z \le 2.28) = 0.9887$$