MTH1102D Calcul II

Chapitre 10, section 5: Le théorème de flux-divergence

Énoncé du théorème de flux-divergence

Introduction

• Énoncé du théorème de flux-divergence.

Énoncé du théorème de flux-divergence

Théorème de flux-divergence

Soit S une surface fermée lisse par morceaux orientée positivement (vers l'extérieur) et E la région de l'espace délimitée par S. Si \vec{F} est un champ vectoriel ayant des dérivées partieles continues dans un voisinage de S alors

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{E} \operatorname{div} \vec{F} dV.$$

- L'intégrale de gauche est une intégrale de surface qui calcule le flux de \vec{F} à travers S.
- L'intégrale de droite est l'intégrale triple de la fonctions scalaire div \vec{F} sur E.

Énoncé du théorème de flux-divergence

Théorème de flux-divergence généralisé

Soit S_1 et S_2 des surfaces fermées lisses par morceaux telles que S_2 est entièrement contenue àl'intérieur de S_1 . Les surfaces sont orientée telle que sur la figure. Soit E la région de l'espace comprise entre S_1 et S_2 et $S_1 \cup S_2$. Si \vec{F} est un champ vectoriel ayant des dérivées partieles continues dans un voisinage de S alors

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{E} \operatorname{div} \vec{F} dV.$$

Résumé

- Énoncé du théorème de flux-divergence.
- Généralisation à une région compris entre deux surfaces
 « concentriques ».