Midterm?

```
a. :)
b.
c. :|
d.
```

Demo: Mixing Acids and Bases

We start with 35 mL of a 0.010 M solution of acetic acid (CH_3COOH). The pK_a of acetic acid is 4.74 – what is the expected pH of this solution?

Solution W: 0.01 M CH_3COOH (aq) pH ~3.4

- b) Increase slightly (<1 pH unit)
- c) Not change (± 0.1 pH unit)
- d) Decrease slightly (<1 pH unit)
- e) Decrease dramatically (>1 pH unit)

Demo: Adding Strong Acid to a Weak Acid

We start with 35 mL of a 0.010 M solution of acetic acid (CH₃COOH). We add 0.5 mmol of HCl. The pK_a of acetic acid is 4.74 – what is the expected pH of this solution?

Solution W: 0.01 M CH_3COOH (aq) pH ~3.4

Add 20 mmol CH₃COO⁻

When the acetate is added, the pH will:

- a) Increase dramatically (>1 pH unit)
- b) Increase slightly (<1 pH unit)
- c) Not change (± 0.1 pH unit)
- d) Decrease slightly (<1 pH unit)
- e) Decrease dramatically (>1 pH unit)

Demo: Mixing Weak Acid and its Conjugate Base

We start with 35 mL of a 0.010 M solution of acetic acid (CH₃COOH). We add 20 mmol of CH₃COOH. The pK_a of acetic acid is 4.74 - what is the expected pH of this solution?

Demo: Mixing Strong Acid and its Conjugate Base

When the Cl⁻ is added, the pH will:

- a. Increase dramatically (>1 pH unit)
- b. Increase slightly (<1 pH unit)
- c. Not change (± 0.1 pH unit)
- d. Decrease slightly (<1 pH unit)
- e. Decrease dramatically (>1 pH unit)

Demo: Acid into Water

RO water pH:

Add 0.5 mmol HCl

When the HCl is added, the pH will:

- b. Increase slightly (<1 pH unit)
- c. Not change (± 0.1 pH unit)
- d. Decrease slightly (<1 pH unit)
- e. Decrease dramatically (>1 pH unit)

Solution B: $0.01 \text{ M CH}_3\text{COOH (aq)}$ and $^{\circ}0.24 \text{ M CH}_3\text{COO}^{-}$ (aq)

Add 0.5 mmol HCl

When the HCl is added, the pH will:

- b) Increase slightly (<1 pH unit)
- c) Not change (± 0.1 pH unit)
- d) Decrease slightly (<1 pH unit)
- e) Decrease dramatically (>1 pH unit)

We start with 35 mL of a solution containing 0.35 mmol of CH_3COOH and 18 mmol of CH_3COO^- . We then add 0.5 mmol of HCl. The pK_a of acetic acid is 4.74 – what is the expected pH of this solution?

Solution H: 0.01 M HCl (aq) pH ~2

Add 0.5 mmol HCl

When the HCl is added, the pH will:

- a. Increase dramatically (>1 pH unit)
- b. Increase slightly (<1 pH unit)
- c. Not change (± 0.1 pH unit)
- d. Decrease slightly (<1 pH unit)
- e. Decrease dramatically (>1 pH unit)

Demo: Base into Weak Acid

Solution W: 0.01 M CH₃COOH (aq)

Add 0.5 mmol OH⁻

When the OH⁻ is added, the pH will:

- a) Increase dramatically (>1 pH unit)
- b) Increase slightly (<1 pH unit)
- c) Not change (± 0.1 pH unit)
- d) Decrease slightly (<1 pH unit)
- e) Decrease dramatically (>1 pH unit)

Demo: Base into Weak Acid

We start with 35 mL of a 0.010 M solution of acetic acid (CH₃COOH). We add 0.5 mmol of NaOH. The pK_a of acetic acid is 4.74 – what is the expected pH of this solution?

Demo: Base into Conjugate Pair Mixture

Solution B: $0.01 \text{ M CH}_3\text{COOH (aq)}$ and $^{\circ}0.24 \text{ M CH}_3\text{COO}^{-}$ (aq)

When the OH⁻ is added, the pH will:

- a) Increase dramatically (>1 pH unit)
- b) Increase slightly (<1 pH unit)
- c) Not change (± 0.1 pH unit)
- d) Decrease slightly (<1 pH unit)
- e) Decrease dramatically (>1 pH unit)

How much 6.0 M HCl would I have to add in order to change the pH by 1 unit?

Buffers

A solution that contains both components of a conjugate acid-base pair is called a **buffer**.

Because these solutions contain both a weak acid and a weak base, the pH will not change significantly on addition of a small amount of strong acid or base.

In order for a system to act as a buffer, the equilibrium concentration of the weak acid/base components must be approximately the same as the initial concentrations of these components. (i.e. K_a is small compared to the concentrations)

Therefore, if we know that a solution is behaving as a buffer, we can say (assuming a HA/A generic system):

$$K_a = \frac{[A^-][H_3O^+]}{[HA]}$$

Taking the —log of both sides:

This is the **Hendersen-Hasselbach (HH) Equation**.