

Art of Problem Solving 1994 Balkan MO

Balkan MO 1994

_	May 10th
1	An acute angle XAY and a point P inside the angle are given. Construct (using a ruler and a compass) a line that passes through P and intersects the rays AX and AY at B and C such that the area of the triangle ABC equals AP^2 .
	Greece
2	Let n be an integer. Prove that the polynomial $f(x)$ has at most one zero, where
	$f(x) = x^4 - 1994x^3 + (1993 + n)x^2 - 11x + n.$
	Greece
3	Let a_1, a_2, \ldots, a_n be a permutation of the numbers $1, 2, \ldots, n$, with $n \geq 2$. Determine the largest possible value of the sum
	$S(n) = a_2 - a_1 + a_3 - a_2 + \dots + a_n - a_{n-1} .$
	Romania
4	Find the smallest number $n \geq 5$ for which there can exist a set of n people, such that any two people who are acquainted have no common acquaintances, and any two people who are not acquainted have exactly two common acquaintances. Bulgaria

Contributors: Valentin Vornicu