Overview SECTION [0101] - 1

This report describes the structural design of a solar canopy covering a residential patio located in the City of Larkspur, California. It includes the design of a concrete slab and stem wall, steel tube frame, and attachments of solar panels to the frame. The report is divided into the following divisions and subdivisions:

- [01] Loads
 - [01] Gravity
 - [02] Wind and Seismic
- [02] Frame
 - [01] Steel tubes
 - [02] Connections and clips
- [03] Foundation
 - [01] Slab
 - [02] Stem wall
- [04] References and Abbreviations
 - [01] Codes and Standards
 - [02] Abbreviations
 - [03] Symbols

Client:

Date:

Location:

Governing Codes SECTION [0101] - 2

Figure 1 Wind load 1 02 - F01

Figure 2 Wind load 2 02 - F02

The permit approval is under the jurisdiction of the City of Larkspur, California which adopted the 2019 California Building Code [CBC] and the 2019 California Residential Code [CRC] as the basis for permiting construction work. The canopy is designed for compliance with the requirements of the CBC.

Table 01 Standards 02 - T01

Category	Standard	Year
Loading	ASCE-7	2016
Concrete	ACI-318	2014
Wood-National Design Specifications	AWC-NDS	2018
Wood-Special Design Provisions for Wind and Seismic	AWC-SDPWS	2015
Wood Frame Construction Manual	AWC-WFCM	2018

Basic loads and load combinations are derived from the California Building and Residential Codes.

Table 02 Load Types 02 - T02

Sym	Load Effect	Notes
D	Dead load	See IBC 1606 and Chapter 3 of this publication
Е		See IBC 1613, ASCE/SEI 12.4.2 and Chapter 6 of
	earthquake-induced forces as defined in	this publication
	ASCE/SEI 12.4.2	

...continued on next page

Sym	Load Effect	Notes
Em	Maximum seismic load effect of horizontal and vertical forces as set forth in ASCE/SEI 12.4.3	See IBC 1613, ASCE/SEI 12.4.3 and Chapter 6 of this publication
Н	Load due to lateral earth pressures, ground water pressure or pressure of bulk materials	See IBC 1610 for soil lateral loads
L	Live load, except roof live load, including any permitted live load reduction	See IBC 1607 and Chapter 3 of this publication
Li	Roof live load including any permitted live load reduction	See IBC 1607 and Chapter 3 of this publication
R	Rain load	See IBC 1611 and Chapter 3 of this publication
W	Load due to wind pressure	See IBC 1609 and Chapter 5 of this publication

Table 03 Load Combinations

02 - T03

CBC 2019 reference	Equation
Equation 16-1	1.4(D +F)
Equation 16-2	1.2(D + F) + I.6(L + H) + 0.5(L
Equation 16-3	1.2(D + F) + l.6(Lr or S or R) + l.6H + (f1L or 0.5W)
Equation 16-4	1.2(D + F) + 1.0W + f1L +1.6H + 0.5(Lr or S or R)
Equation 16-5	1.2(D + F) + 1.0E + f1L + I.6H + f2S
Equation 16-6	0.9D+ I.0W+ I.6H
Equation 16-7	0.9(D + F) + 1.0E+ I.6H

Gravity Loads and Seismic Mass

SECTION [0101] - 3

Some filler text

Table 04 Roof unit dead loads

03 - T04

variable	value	[value]	description
ld1	2.0 psf	0.10 KPa	Urethane foam (4 inch thick)
ld2	1.0 psf	0.05 KPa	Three-ply roofing
ld3	5.0 psf	0.24 KPa	Doug Fir decking 2-in.
ld4	1.0 psf	0.05 KPa	Doug Fir beams 4x12 at 12 ft o.c.
			Total
roofdl1	9.0 psf	0.43 KPa	Total roof unit load

Table 05 Floor unit dead loads

03 - T05

variable	value	[value]	description
ld1	3.0 psf	0.14 KPa	3/4 in. hardwood flooring
ld2	2.0 psf	0.10 KPa	1/2 in. plywood subfloor
ld3	4.0 psf	0.19 KPa	2x10 joists at 16 in. o.c.
ld4	1.5 psf	0.07 KPa	fixtures
			Total
floordl1	10.5 psf	0.50 KPa	Total floor unit load

Table 06 Interior wall unit dead loads

03 - T06

variable	value	[value]	description
ld1	5.5 psf	0.26 KPa	5/8" sheet rock (2)
ld2	2 psf	0.10 KPa	2x4 studs at 16" o.c.
ld3	1.5 psf	0.07 KPa	fixtures
			Total
intwalldl1	9 psf	0.43 KPa	Total interior wall unit load

Table 07 Exterior wall unit dead loads

03 - T07

variable	value	[value]	description
ld1	2.0 psf	0.10 KPa	1/2 in plywood sheathing
ld2	2.0 psf	0.10 KPa	2x4 studs at 16 in o.c.
ld3	3.0 psf	0.14 KPa	5/8 in sheet rock
ld4	1.5 psf	0.07 KPa	fixtures
			Total
extwalldl1	8.5 psf	0.41 KPa	Total exterior wall unit load

Table 08 Areas

03 - T08

variable	value	[value]	description
arearf1	1700.00 sf	157.94 sM	roof area
areaflr1	1200.00 sf	111.48 sM	floor area
htwall1	9.00 ft	2.74 m	wall height
lenwall1	110.00 ft	33.53 m	interior wall length
lenwall2	155.00 ft	47.24 m	exterior wall length 2

Eq. 1 Roof weight

03 - E01

 $\mathrm{rfwt}_1 = \mathrm{arearf}_1 \cdot \mathrm{roofdl}_1$

 $15300.00 psf \cdot sf = 9.00 psf \cdot 1700.00 sf$

calc file: r0101.py

Eq. 2 Floor weight 03 - E02

$$flrwt_1 = areaflr_1 \cdot floordl_1$$

 $12600.00 \text{psf} \cdot \text{sf} = 10.50 \text{psf} \cdot 1200.00 \text{sf}$

Eq. 3 Partition weight

03 - E03

$$partwt_1 = htwall_1 \cdot intwalldl_1 \cdot lenwall_1$$

8910.00ft²·psf = htwall₁ · intwalldl₁ · 110.00ft

Eq. 4 Exterior wall weight

03 - E04

$$exwallwt_1 = extwalldl_1 \cdot htwall_1 \cdot lenwall_2$$

11857.50ft²·psf = extwalldl₁ · htwall₁ · 155.00ft

Eq. 5 Total building weight

03 - E05

$$totwt_1 = exwallwt_1 + flrwt_1 + partwt_1 + rfwt_1$$

 $48667.50 psf \cdot sf = 11857.50 ft^{2} \cdot psf + 8910.00 ft^{2} \cdot psf + 12600.00 psf \cdot sf + 15300.00 psf \cdot sf$

Table 09 Weights 03 - T09

variable	value	[value]	description [eq. number]
rfwt1	15.30 kip	68.06 KN	Roof weight [01]
flrwt1	12.60 kip	56.05 KN	Floor weight [02]
partwt1	8.91 kip	39.63 KN	Partition weight [03]
exwallwt1	11.86 kip	52.74 KN	Exterior wall weight [04]
totwt1	48.67 kip	216.48 KN	Total building weight [05]

Material Densities and Seismic Models

SECTION [0101] - 4

Because the T&G roof is relatively more flexible, the effective floor load for seismic models is calculated as the sum of the floor and all of the partition weight.

Eq. 6 Effective model floor load

04 - E06

$$eflrdl_1 = \frac{flrwt_1 + partwt_1}{areaflr_1}$$

$$17.93psf = \frac{8910.00ft^{2} \cdot psf + 12600.00psf \cdot sf}{1200.00sf}$$

Eq. 7 Effective model floor density

04 - E07

$$eflrdens_1 = \frac{eflrdl_1}{0.5 \cdot IN}$$