

EGEC 281: Designing with VHDL Fall 2024

Lecture 9: Multiplexer

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton
Office Hours: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 894 4126 5483

Email: ramahto@fullerton.edu
Phone No: 657-278-7274

Multiplexers

Multiplexers (MUXs)

Used to direct one of 2ⁿ data inputs to a single output.

- n select lines needed to select one of 2ⁿ outputs
- MUX also known as data selector

2-to-1 MUX

2 to 1 Multiplexers are use to choose between 2 inputs (D_0, D_1) based on the selector input (S_0) . This can be thought of like the following truth function

S ₀	D_1	$\mathbf{D_0}$	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

VHDL Design for 2-to-1 Multiplexer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity comb10 is port (
     D1, D0, S0 : in std_logic;
     F : out std_logic
     );
end comb10;
architecture Boolean_function of comb10 is
begin
     F <= (D0 and not S0) or (D1 and S0);
end Boolean_function;</pre>
```

Active Low 2-to-1 Multiplexer and 4-to-1 MUX

G0	<i>S</i> 0	F
1	×	0
0	0	D0
0	1	<i>D</i> 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

VHDL Design for 4-to-1 Multiplexer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity comb11 is port (
     D3, D2, D1, D0, S1, S0, G : in std logic;
     F1, F2 : out std logic
     ) ;
end comb11;
architecture Boolean functions of comb11 is
begin
     F1 \le not G \text{ and } ((D0 \text{ and not } S0) \text{ or } (D1 \text{ and } S0));
     F2 \le (D0 \text{ and not } S1 \text{ and not } S0) \text{ or } (D1 \text{ and not } S1 \text{ and } S0) \text{ or }
              (D2 and S1 and not S0) or (D3 and S1 and S0);
end Boolean functions;
```


Multiplexers

8-to-1 MUX equation:

 $Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$

Logic Diagram for 8-to-1 MUX

Quad Multiplexer Used to Select Data For 4 Bit Bus

Control Variable A selects one of two 4-bit data words.

Technique 0:

Use compact minterm form of the function. Function does not need to be reduced.

- Connect the data inputs of the MUX to the function values
 Vcc for 1 and GND for 0.
- Connect select lines of MUX to the input variables.
- Need a 2ⁿ-to-1 MUX for any nvariable function.

$$F_1(X,Y,Z) = \Sigma m(1,2,5,7)$$

Technique 1:

 For n variables, use n-1 variables as inputs to select lines. Hence, we need a 2ⁿ⁻¹-to-1 MUX.

Example: Given $F_1(X,Y,Z) = \Sigma m(1,2,5,7)$, 3 variables so we need a 2²-to-1 MUX. Lets allocate X and Y to select lines, leaving Z for the Data Lines.

Technique 2 (MAP technique):

Given: $F_1(X,Y,Z) = \Sigma m(1,2,5,7)$

1.First row: list the inputs to MUX

Second row: list the minterms so that the unused variable is set

to zero

Third row: list the minterms so that the unused variable is set to

one.

		Mux Selector Variables				
	•	X'Y'	X'Y	XY'	XY	
row 1		I _o	I ₁	l ₂	I ₃	
row 1	Z' [m_0	m_1	m ₂	m ₃	
row 3	Z	m_4	m ₅	m_6	m ₇	
	Unused Variable					

Technique 2 (MAP technique):

2.If F = 1, circle that minterm.

Technique 2 (MAP technique):

3.If upper minterm in a column is circled then MUX line $I_i = Z'$.

If lower minterm in a column is circled then $I_i = Z$.

If both minterms in a column are circled then $I_i = 1$.

If neither minterm in a column is circled then $I_i = 0$.

$$I_0 = 0$$
, $I_1 = 1$, $I_2 = Z'$, $I_3 = Z$

Q&A

