

A comparison of QCluster and ISONCLUST

Clustering of short-read synthetic sequences

Alberto Schiabel

Outline

- Present QCluster and ISONCLUST
- Describe the synthetic datasets used for the experiments
- Introduce the metrics chosen for cluster analysis
- Describe the experimental setup
- Explain the results
- On singletons and trivial clusters
- Suggest possible improvements
- Final considerations

QCluster and ISONCLUST: Common Points

The similarities between QCluster and ISONCLUST are:

- They perform strict partitioning clustering
- They leverage FASTQ quality values (*)
- They compute or exploit *a-priori* probabilities
- They're both based on k-mer statistics
- They let the user specify the size of k-mers

(*) Up to 70% of **FASTQ** files are metadata and quality metrics, rather than sequenced nucleotides

QCluster

- Developed in GNU C++ at the University of Padova (2015)
- Based on afcluster, which uses K-Means (Lloyd)
 - Approximated and non-deterministic
 - It requires the number of clusters as an input
 - It allows executing multiple runs, returning just the best result
- It introduces a new D_2 distance based on FASTQ quality values
- It supports multiple distance metrics: L_2 , χ^2 , D_2^{*q} , \dots
- It does not require alignments
- It uses quality value redistribution under the i.i.d. model
- ullet It normalizes and centralizes the k-mer counts using AWP or AQP prior probability estimators

Paper: Clustering of reads with alignment-free measures and quality values

Authors: Matteo Comin, Andrea Leoni and Michele Schimd

ISONCLUST

- Developed in Python3 at Pennsylvania State University (2019)
- ullet It doesn't support distance metrics, it's based on the concept of minimizers
- Uses a greedy clustering approach
 - Sorts s.t. longer sequences with higher quality values come first
 - One of the reads is fixed as representative of its cluster
 - $\circ \ orall \ k ext{-mer}\ x$, H(x) returns all representatives that have x as minimizer
 - \circ Clusters together candidates that share at least one minimizer with a given read, on the basis of *a-priori* probabilities over a sliding window w
 - Alignment-free in principle, but falls back to Smith-Waterman
- No possibility to specify the desired number of clusters
- It supports batch-parallelism

Paper: De novo clustering of long-read transcriptome data using a greedy, quality-value based algorithm

Authors: Kristoffer Sahlin and Paul Medvedev

Goals of the experiment

Choosing a subset of configuration parameters for QCluster and ISONCLUST, we:

- Selected 100 distinct *originating* sequences the human cDNA assembly GRCh38.p13 to generate 10000, 20000, and 50000 simulated sequences with fixed read lengths (100 and 700bp)
- ullet Used QCluster and ISONCLUST to cluster simulated reads according to their originating sequences, for every simulated dataset
 - The ground truth number of clusters is 100
- Repeated the process for every option in the range of the selected configuration parameters
- Showed that the clustering results are better than random partitions

Datasets (1/2)

Genome assembly contains ~250000 sequences of very different and unbalanced sizes

- 1. We should select sufficiently large sequences of length $l \geq 1000$
- 2. The size differences between sequences should be negligible
- 3. We should have a sufficiently large pool of sequences that satisfy (1) and (2)

Datasets (1/2)

Genome assembly contains ~250000 sequences of very different and unbalanced sizes

- 1. We should select sufficiently large sequences of length $l \geq 1000$
- 2. The size differences between sequences should be negligible
- 3. We should have a sufficiently large pool of sequences that satisfy (1) and (2)

Datasets (1/2)

Genome assembly contains ~250000 sequences of very different and unbalanced sizes

- 1. We should select sufficiently large sequences of length $l \geq 1000$
- 2. The size differences between sequences should be negligible
- 3. We should have a sufficiently large pool of sequences that satisfy (1) and (2)

$$rac{length(s_j)-length(s_i)}{\sigma}>lpha=0.0005$$

	$ P_i $	$\mathrm{length}_{\mathrm{min}}$	$\mathrm{length}_{\mathrm{max}}$	Gap
P_1	237799	41	4748	4707
P_2	1254	4750	4951	201
P_3	1107	5481	5572	91
P_4	927	5165	5204	39

Datasets (2/2)

Starting from the 100 originating sequences, we created 6 synthetic datasets using SimLoRD with:

- Number n of sequences: 10000, 20000, 50000
- Fixed sequence length fl: 100, 700

E.g., we called the synthetic dataset with 10000 sequences of length 700 as n-10000-f1-700.

Datasets (2/2)

Starting from the 100 originating sequences, we created 6 synthetic datasets using SimLoRD with:

- Number *n* of sequences: 10000, 20000, 50000
- Fixed sequence length fl: 100, 700

E.g., we called the synthetic dataset with 10000 sequences of length 700 as n-10000-f1-700.

SimLoRD generated two files:

• A simulated.fastq file that contains the actual simulated long reads with the read error qualities

• A simulated.sam file that contains the alignment reference for the corresponding fastq file.

We kept the default SimLoRD error probabilities:

$$prob_{ins}=11\% \hspace{1cm} prob_{del}=4\% \hspace{1cm} prob_{sub}=1\%$$

$$prob_{del}=4\%$$

$$prob_{sub}=1\%$$

The greater the similarity within a cluster and the greater the difference between clusters, the better the clustering quality.

The greater the similarity within a cluster and the greater the difference between clusters, the better the clustering quality.

- Homogeneity: best when each cluster contains only members of a single class
- Completeness: best when all members of a given class are assigned to the same cluster
- **V-Measure**: harmonic mean between Homogeneity and Completeness
- **Purity**: extent to which a cluster contains only elements from a single class

The greater the similarity within a cluster and the greater the difference between clusters, the better the clustering quality.

- Homogeneity: best when each cluster contains only members of a single class
- Completeness: best when all members of a given class are assigned to the same cluster
- **V-Measure**: harmonic mean between Homogeneity and Completeness
- **Purity**: extent to which a cluster contains only elements from a single class
- Adjusted Mutual Information: information-theoretical interpretation adjusted for chance
- Adjusted Rand Index: measure of similarity between two clusterings adjusted for chance

The greater the similarity within a cluster and the greater the difference between clusters, the better the clustering quality.

- **Homogeneity**: best when each cluster contains only members of a single class
- Completeness: best when all members of a given class are assigned to the same cluster
- **V-Measure**: harmonic mean between Homogeneity and Completeness
- **Purity**: extent to which a cluster contains only elements from a single class
- Adjusted Mutual Information: information-theoretical interpretation adjusted for chance
- Adjusted Rand Index: measure of similarity between two clusterings adjusted for chance

We distinguished clustering types:

- ullet Trivial: a cluster contains just 5 or less sequences
- Singleton: a cluster contains a single sequence
- The relevant clusters are non-trivial

Experimental Setup (1/3): Steps

Step 1: Save the clustering results in CSV/TSV files for each simulated dataset:

- ullet Compute a baseline random clustering. Time: $\mathcal{O}(n)$, $n \in \{10000, 20000, 50000\}$
- Run QCluster fixing the desired number of clusters (-c 100), varying the k-mer length (-k) in the $[4,\ 9]$ range and using either the L_2 , χ^2 , or D_2^{*q} distances. We didn't use random seeds, we kept a single K-Means run and used the default AWP estimator.
- Run ISONCLUST varying the k-mer length (--k) in the [4, 11] range and using either 20 or 50 as window size (--w). We leveraged batch parallelism on two CPUs.

Step 2: Collect the relevant quality metrics and statistics for each clustering results

Step 3: Aggregate, analyse and visualise the relationships between the varying clustering software parameters and the collected metrics

Experimental Setup (2/3): Data collection

- Scripts and Python modules to run QCluster, ISONCLUST and redirect their result to **TSV** files. They have two columns: read ID and assigned cluster ID
- Files are stored in a hierarchy on folders based on dataset name and parameter combination
- For each experiment, clustering metrics and statistics are stored along with software parameters
 - 3 single-row CSV files are produced for overall, trivial, and singleton clusters
 - A single-row CSV file is produced for overall, trivial, and singletong number of clusters

Experimental Setup (3/3): Data visualization

- Distinguish between clustering type (trivial / non-trivial)
- "Orthogonal" approach:
 - \circ Use the range of two variables in the x and y axes
 - \circ Discriminate by color according to a third variable, hue
 - Fix the other parameters, or compute on the average of the other parameters

Examples:

- Observe clustering metric as the k-mer length varies, discriminating by dataset
- ullet Observe clustering metric as the number of sequences in the dataset varies, discriminating by read length, fixing a specific k
- ullet Observe *clustering metric* as the read length varies, discriminating by QCluster's distance measure, fixing a specific k and dataset size

clusters: QCluster (non-trivial)

		Rea	Read length=100			Read length=700		
\boldsymbol{k}	Distance	N = 10000	N =20000	N=50000	N = 10000	N =20000	N =50000	
	# clusters			# clusters				
	D_2^{*q}	98	98	100	100	99	100	
4	L_2	100	99	100	99	100	100	
	X^2	98	100	99	99	100	100	
	D_2^{*q}	44	62	78	99	100	100	
5	L_2	46	67	96	98	100	100	
	X^2	34	65	93	99	100	100	
	D_2^{*q}	3	21	84	97	100	100	
6	L_2	16	27	85	96	99	100	
	X^2	6	34	88	98	100	100	
	D_2^{*q}	7	15	86	96	99	100	
7	L_2	6	23	0	96	100	100	
	X^2	8	25	0	93	100	100	
	D_2^{*q}	4	0	0	92	0	0	
8	L_2	5	0	0	92	0	0	
	X^2	7	0	0	95	0	0	

Table 5 QCluster: Number of non-trivial clusters. Highest results are in bold.

clusters: ISONCLUST (n-50000-fl-100, w=50)

clusters: ISONCLUST (n-50000-fl-700, w=50)

Metrics: QCluster (all clusters)

Metrics: ISONCLUST (n-50000-fl-100, all clusters)

Metrics: ISONCLUST (n-50000-fl-100, no singleton)

Key Takeways

- ullet QCluster is better when the number of clusters is known and the k-mer length is small
 - \circ Shorter reads create denser non-trivial clusters with $D_2^{st q}$ distance
 - $\circ~D_2^{*q}$ consumes less memory than L_2 and χ^2 , but the difference between distances isn't significant for short-reads when using AWP
 - We expect better results in practice via multiple runs of K-Means
 - Too slow and memory-intensive!
- ullet ISONCLUST is not well suited for very short reads, but scales extremely well to k-mer lengths
 - \circ For larger reads, no clear winner between the two chosen window sizes, k is not that influent after $k \geq 6$
 - Too many clusters and singletons, but the non-trivial ones contain sibling sequences with high probability
 - Fast and reasonable memory consumption

Personal Suggestions

For QCluster:

- Make the software portable (it does not compile on Windows)
- Provide parallel and possibly distributed support with k-means | |
- Add documentation to encourage open-source contributions to tackle the memory issues

For ISONCLUST:

- Give the possibility to provide the number of desired clusters
- Lock the third-party dependencies' versions to ensure reproducible builds
- Give more instructions on how to precompute probabilities for k-mer lengths outside of the $\left[4,31\right]$ range

For both:

- Provide some structured documentation of the design from the software engineering perspective
- Be explicit about the well-known "gotchas"

Third-party tools used

- Docker
- Pandas
- Seaborn
- SimLoRD
- BioPython
- PySAM
- Scikit-Learn

Deliverables

Open-source Repository

The Python 3 project for our experiments is available on Github at the following link:

https://github.com/jkomyno/bioalgo-QCluster-vs-isONclust

Report

The written report for this project is available in the same repository, at <u>this link</u>. The report also contains the references used to complete this project.

Thank you for your attention

Questions?