Bounded Functions and Sequences & Limits

Cliff Sun

April 17, 2024

Proposition 0.1. The sum of any two bounded functions on the same domain D is bounded.

Proof. Suppose that $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ are bounded. Then $|f(x)| \leq M$ and $|g(x)| \leq N$ for all $x \in D$. We then add them together

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le M + N$$
 (1)

Thus the function sum of both f(x) and g(x) is bounded.

Definition 0.2. A sequence of numbers is a function from $f: \mathbb{N} \to \mathbb{R}$

Note:

- 1. All sequences are infinite
- 2. We write x_1, x_2, \cdots instead of $f(1), f(2), \cdots$
- 3. The sequences as a whole is denoted as $(x_n)_{n=1}^{\infty}$ or (x_n) for short.
- 4. An example would be $x_n = n$ or $(n)_{n=1}^{\infty} = (1, 2, 3, \cdots)$

Boundedness, sup/inf all apply to sequences, in particular to the $\text{Im}(f) = \{x_n : x \in \mathbb{N}\}$

Definition 0.3. Let (x_n) be a sequence and $x \in \mathbb{R}$:

- 1. We say that $\lim_{n\to\infty} x_n = x$ if there exists some $\epsilon > 0$, there exists some $M \in \mathbb{N}$ such that for all $n \geq M$ such that $|x_n n| < \epsilon$
- 2. A sequence converges if $\lim_{n\to\infty} x_n = x$ for some x, other it diverges.

Suppose that $x_n = \frac{\sin(n)}{n}$, claim is that it converges to 0.

Proof. Let $\epsilon > 0$ be arbitrary, let $n \geq M$ be arbitrary, we must prove that

$$\left|\frac{\sin(n)}{n}\right| < \epsilon \tag{2}$$

We choose $M = \frac{1}{\epsilon} + 1$, and using the fact that

$$\left|\frac{\sin(n)}{n}\right| \le \frac{1}{n} \tag{3}$$

We can prove this.

Proposition 0.4. If (x_n) is a convergent sequence, then it is bounded.

Proof. Let (x_n) be a covergent sequence, we claim that it is bounded. In other words, there exists some $B \in \mathbb{R}$ such that

$$|x_n| \le B \quad \forall n \in \mathbb{N} \tag{4}$$

Let $\epsilon = 1$ since this a convergent sequence, we see that there exists some $M \in \mathbb{R}$ such that for all $n \geq M$,

$$|x_n - x| < 1 \tag{5}$$

We see that

$$|x_n| = |(x_n - x) + x| \tag{6}$$

$$\leq |x_n - x| + |x| \tag{7}$$

$$<1+|x|\tag{8}$$

We now know that all x_n are bounded between this value, except for x_1, x_2, x_3, \ldots . Then we say that

$$B = \max(1 + |x|, |x_1|, |x_2|, |x_3|, \dots, |x_{M-1}|)$$
(9)

Proposition 0.5. A sequence can have, at most, 1 limit.

Proof. Suppose that (x_n) is a sequence such that $x_n \to x$ and $x_n \to y$, then we claim that x = y. To do this, let $\epsilon > 0$ be arbitrary, we claim that $|x - y| < \epsilon$. Plugging in $\frac{\epsilon}{2}$ to the definition, we see that there exists some M_1 , there exists some $M_1 \in \mathbb{N}$ such that for all $n \geq M_1$, we have that

$$|x_n - x| < \frac{\epsilon}{2} \tag{10}$$

Similary, we have that for some $M_2 \in \mathbb{N}$, we have that

$$|x_n - x| < \frac{\epsilon}{2} \tag{11}$$

Choose $n = \max(M_1, M_2)$, then $n \ge M_1$ and $n \ge M_2$. Then,

$$|x - y| = |(x_n - y) - (x_n - x)| \le |x_n - y| + |x_n - x| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (12)