MTH211A: Theory of Statistics

Problem set 3

Part I: Completeness and Ancillarity

- 1. Show that the following families are not complete:
 - (a) Poisson distribution with parameter θ , where $\theta \in \{0, 1\}$.
 - (b) The family of distribution of (\bar{X}, S_n^2) , when $\{X_1, \dots, X_n\}$ is a random sample from normal distribution with mean θ and θ^2 .
 - (c) Uniform distribution supported on $(-\theta, \theta)$ where $\theta > 0$.

[Hint: To show a distribution is not complete, you need to find a function g such that $E_{\theta}(g(T)) = 0$, but P(g(T) = 0) < 1.]

- 2. Find a complete-sufficient statistic for θ (or $\theta = (\theta_1, \theta_2)^{\top}$) when X_1, \dots, X_n are random samples from each of the following distributions:
 - (a) X has the pdf $f_X(x) = 2x\theta^{-1}$, with $0 < x < \theta$ and $\theta > 0$.
 - (b) X has the pdf $f_X(x) = e^{(x-\theta)} \exp[-\exp\{-(x-\theta)\}]$, with $x \in \mathbb{R}$ and $\theta \in \mathbb{R}$.
 - (c) The distribution of $X_{(1)}$ when X is distributed as location exponential family (see PS2) with parameter θ .
 - (d) Inverse Gaussian distribution with parameters (θ_1, θ_2) (see PS2).
- 3. For a Normal(μ, σ^2) population with σ^2 known, show that \bar{X} and S_n^2 are independent, where S_n^2 is the sample variance.
- 4. The random variable X takes 3 values 0, 1, 2 according to one of the following distributions:

	P(X=0)	P(X=1)	P(X=0)	Range of p
Distribution 1	p	3p	(1 - 4p)	(0, 0.25)
Distribution 2	p	p^2	$(1 - p - p^2)$	(0, 0.50)

In each case determine if the family of distributions is complete.

- 5. Let X_1, \ldots, X_n be n random samples from some distribution with mean μ and finite variance σ^2 .
 - (a) Show that both $T_1 = (X_1 X_2)^2/2$ and $T_2 = S_n^{\star 2}$ are unbiased for σ^2 .
 - (b) Show that both X_1 and \bar{X}_n are unbiased estimators of μ . Is the statistic $T(\mathbf{X}) = E(X_1 \mid \bar{X}_n = \bar{x})$ unbiased for μ ?
- 6. Let Y_1 and Y_2 be two independent unbiased estimators of θ . Assume that variance of Y_1 is twice the variance of Y_2 . Find the constants k_1 and k_2 so that $k_1Y_1 + k_2Y_2$ is an unbiased estimator of θ with smallest possible variance for such a linear combinations.

7. Consider a random sample X_1, \ldots, X_n which belongs to a location-scale family of the form

$$X_i = \theta_1 + \theta_2 W_i, \quad i = 1, \dots, n,$$

where W_i s are iid with the common pdf (or pmf) f_W , free of (θ_1, θ_2) .

- (a) What property should a statistic $S(\cdot)$ would satisfy so that it becomes ancillary for both θ_1 and θ_2 ?
- (b) Using part (a), show that for a random sample of size n from Normal (μ, σ^2) , the distribution of $S_i(\mathbf{X}) = (X_i \bar{X})/S_n$ is independent of \bar{X}_n .
- 8. Let X_1, \ldots, X_n be a random sample from Exponential(θ) distribution. Show that the statistics

$$T_1(\mathbf{X}) = \frac{X_1 + X_2}{\sum_{i=1}^n X_i}$$
 and $T_2(\mathbf{X}) = \sum_{i=1}^n X_i$

are independent.

9. Show that Y = |X| is a complete sufficient statistic for $\theta > 0$, where X is a random sample (n = 1) from a Uniform $(-\theta, \theta)$ distribution, $\theta > 0$. Further, show that Y is independent of Z = sign(X).

Part II: UMVUE

10. Let X follows some distribution with p.m.f. as follows:

$$f_X(-1;\theta) = \theta$$
, $f_X(x;\theta) = \theta^x (1-\theta)^2$, $x = 0, 1, ..., \text{ and } f_X(x;\theta) = 0$ otherwise, $0 < \theta < 1$.

Show that T is an unbiased estimator of 0 (based on a sample X) iff T(x) = -xT(-1) for each $x = 0, 1, \ldots$

- 11. Show that if T_j is the UMVUE of $g_j(\theta)$ for j = 1, ..., k, then $\sum_{j=1}^k c_j T_j$ is the UMVUE of $\sum_{j=1}^k c_j g_j(\theta)$ for real constants $c_1, ..., c_k$.
- 12. Let X_1, \ldots, X_n be i.i.d. samples from the following distributions. In each case, find the UMVUE of θ .
 - (a) Bernoulli(p), where (i) $\theta = p(1-p)$, (ii) $\theta = P(X_1 + \ldots + X_5 = k)$, and k is a positive integer less than or equal to 5, (iii) $\theta = p + (1-p)e^2$.
 - (b) Uniform $(0, \alpha)$ and $\theta = \alpha^k$ where k is an integer bigger than -n.
 - (c) Location scale Exponential (μ, σ) with p.d.f.

$$f_{\mathbf{X}}(x; \mu, \sigma) = \begin{cases} \sigma^{-1} \exp\{-\sigma^{-1}(x - \mu)\} & x > \mu, \\ 0 & \text{otherwise}, \end{cases}$$

and (i) $\theta = \mu$ when σ is known, (ii) $\theta = \sigma$ when μ is known, (iii) $\theta = \mu$ when σ is unknown, (iv) $\theta = \sigma$ when μ is unknown.

[Hint: For the part (iii) and (iv), use the fact that $\mathbf{T}(\mathbf{X}) = (X_{(1)}, \sum_{i=1}^{n} X_i)$ is complete-sufficient for (μ, σ)]

- (d) Normal (μ, σ^2) , (i) $\theta = \exp\{2\mu\}$ when σ^2 is known, (ii) $\theta = \mu^2$, (iii) $\theta = \sigma^p$, where p > 0.
- (e) Negative Binomial(r, p) distribution with p.m.f.

$$f_X(x) = \begin{cases} \binom{x+r-1}{r-1} p^r (1-p)^x, & x = 0, 1, \dots, \\ 0 & \text{otherwise,} \end{cases}$$

and $\theta = p^{-2}$ when r is known.

- 13. Let X_1, \ldots, X_n be a random sample from $Normal(\theta, \theta^2)$ distribution. Show that \bar{X}_n can not be the UMVUE of θ .
- 14. Let X_1, \ldots, X_n be independent samples from a Gaussian polynomial regression model such that $X_i \sim N(\alpha t_i + \beta t_i^2, 1)$ where $t_i, i = 1, \ldots, n$ are known constants. Find UMVUE of α and β .
- 15. Let Y_i , i = 1, ..., n be the order statistics of a random sample of size n = 2m + 1 from Uniform $(0, \theta)$ distribution. Show that, $T = 2Y_m$ is an unbiased estimator of θ . Find the UMVUE of θ by Rao-Blackwellizing T.
- 16. Let W_1, \ldots, W_k be unbiased estimators of a parameter θ with known variances $\text{var}(W_i) = \sigma_i^2$, $i = 1, \ldots, k$. Find the best unbiased estimator of θ of the form $\sum_{i=1}^k a_i W_i$.
- 17. Suppose that when the radius of a circle is measured, a random error is made, which is modeled as $N(0, \sigma^2)$. If n repeated independent measurements are made, then find an unbiased estimator of area of the circle. Is it the UMVUE?
- 18. For a random sample of size n from the Poisson(λ) distribution, find $E\left(S_n^{\star 2} \mid \bar{X}_n\right)$.
- 19. Consider a random sample of size n from the Binomial(m, p) distribution, where m is known. Find the UMVUE of $p(1-p)^{m-1}$.
- 20. Consider the Normal(μ, σ^2) distribution.
 - (a) Among the estimators S_n^2 and $S_n^{\star 2}$ of σ^2 , which one has a lower MSE?
 - (b) Among the estimators S_n^2 and $S_n^{\star 2}$ of σ^2 , which is the UMVUE? Why?
 - (c) Find the value of c > 0 for which the class of estimators $S_c(\mathbf{X}) = c \sum_{i=1}^n (X_i \bar{X})^2$ has the lowest MSE.

Part III: CRLB

- 21. Let X_1, \ldots, X_n are i.i.d. samples from the following distribution. Find the Cramér Rao lower bound of variance of the estimators $T(\mathbf{X})$:
 - (a) Gamma (α, β) and $T(\mathbf{X}) = \bar{X}_n$, when α is known.
 - (b) Normal (μ, σ^2) and (i) $T(\mathbf{X}) = n^{-1} \sum_{i=1}^n |X_i \bar{X}_n|$ when μ is known, (ii) $T(\mathbf{X}) = \bar{X}_n^2 \sigma^2/n$ when σ is known.
- 22. Show that for a scale family with scale parameter θ the Fisher information is of the form c/θ^2 . Further, show that the Fisher information of $\xi = \log(\theta)$ is free of θ .
- 23. Let X_1, \ldots, X_n be an i.i.d. sample from the following distributions. In each case, find the Fisher information matrix, $\mathbf{I}_n(\boldsymbol{\theta})$, for the parameter $\boldsymbol{\theta}$:
 - (a) $Gamma(\alpha, \beta)$ and $\theta = (\alpha, \beta)$.
 - (b) Normal (μ, σ^2) and $\boldsymbol{\theta} = (\alpha, \beta)$.

Note: The Fisher information matrix for a vector valued parameter $\boldsymbol{\theta}$ is defined as

$$\mathbf{I}_{n}(\boldsymbol{\theta}) = E\left[\left(\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\mathbf{X}}(\mathbf{X}; \boldsymbol{\theta}) \right) \left(\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\mathbf{X}}(\mathbf{X}; \boldsymbol{\theta}) \right)^{\top} \right] = -E\left[\left(\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}} \log f_{\mathbf{X}}(\mathbf{X}; \boldsymbol{\theta}) \right) \right] \right]$$

(c) From the above definition of $\mathbf{I}_n(\boldsymbol{\theta})$ show that, when X_1, \ldots, X_n are i.i.d., then $\mathbf{I}_n(\boldsymbol{\theta}) = n\mathbf{I}_1(\boldsymbol{\theta})$, where $\mathbf{I}_1(\boldsymbol{\theta})$ is the Fisher information matrix for one sample.

24. Let X_1, \ldots, X_n be a random sample from $Gamma(\alpha, \beta)$ distribution with α known, and $T = \sum_{i=1}^n X_i$. Show that

$$E\left(X_{(1)}\mid T\right) = T\frac{E\left(X_{(1)}\right)}{E\left(T\right)}.$$

- 25. Let X_1, \ldots, X_n be a random sample from $Normal(0, \theta)$ distribution.
 - (a) Find UMVUE of $\sqrt{\theta}$.
 - (b) Is the UMVUE an efficient estimator of $\sqrt{\theta}$?
- 26. Let $X \sim \text{Beta}(\alpha, 2)$ distribution, show that

$$E(\log X) = \frac{\Gamma'(\alpha+2)}{\Gamma(\alpha+2)} - \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}, \quad \text{where } \Gamma'(u) = \frac{\partial}{\partial u}\Gamma(u).$$