Constantin Lazari, Marco Wettstein

11. November 2012

- 1. Gegeben ist die folgende Formel: $F_1 = ((a_1 \vee \neg a_2) \Rightarrow a_3) \Leftrightarrow \neg(\neg a_3 \wedge a_1)$
 - (a) Bestimmen Sie den Wahrheitswert von F_1 für alle Belegungen (der Variablen a_1, a_2 und a_3).

Lösung:										
				$I_1 = ((a_1 \vee \neg a_2) \Rightarrow a_3)$			$= \neg (\neg a_3 \land $			
				$H_1 =$		$H_2 =$			$F_1 =$	
a_1	a_2	a_3	$\neg a_2$	$a_1 \vee \neg a_2$	$H_1 \Rightarrow a_3$	$\neg a_3$	$\neg a_3 \wedge a_1$	$\neg H_2$	$I_1 \Leftrightarrow I_2$	
w	w	$\mid w \mid$	f	w	w	f	f	w	w	
w	$\mid w \mid$	$\mid f \mid$	f	w	f	w	w	f	w	
w	f	$\mid w \mid$	w	w	w	f	f	w	w	
w	f	$\mid f \mid$	w	w	f	w	w	f	w	
f	w	$\mid w \mid$	f	f	w	f	f	w	w	
f	w	$\mid f \mid$	f	f	w	w	f	w	w	
f	f	$\mid w \mid$	w	w	w	f	f	w	w	
f	\int	$\mid f \mid$	w	w	f	w	f	w	f	
	-		•	•					•	

(b) Ist entscheidbar, ob F_1 erfüllbar ist? (Antwort bitte kurz begründen)

Lösung:

Ja, denn mit Hilfe einer Wahrheitstabelle lässt sich für jede Zustandskombination der Variablen feststellen, ob die Aussage wahr oder falsch ist.

(c) Ist F_1 erfüllbar? (Antwort bitte kurz begründen)

Lösung:

Ja, denn Erfühlbarkeit bedeutet, dass es mindestens eine Kombinationen von Eingabe-Parametern (Variablen) gibt, welche die Aussage wahr macht. Dies ist in der Aufgabe bei 7 von 8 Fällen erfüllt.

2. Beweisen Sie die "De-Morganschen Regeln" (mit Hilfe von Wertetabellen):

(a)
$$\neg (F_1 \lor F_2) \equiv (\neg F_1 \land \neg F_2)$$

Lösung:								
				Linker Teil			Rechter Teil	
	F_1	F_2	$(F_1 \vee F_2)$	$\neg(F_1 \lor F_2)$	$\neg F_1$	$\neg F_2$	$(\neg F_1 \wedge \neg F_2)$	
	w	w	w	f	f	f	f	
	w	f	f	w	f	w	w	
	f	$\mid w \mid$	f	w	w	f	w	
	f	f	f	w	w	w	w	

In den Spalten "Linker Teil" und "Rechter Teil" stehen in der gleichen Zeile immer die gleichen Werte, was diese "De-Morgansche Regel" beweist.

3. Gegeben ist die folgende Formel:

$$F_2 = ((a_1 \Rightarrow a_2) \Rightarrow \neg a_3) \vee \neg a_2$$

(a) Geben Sie eine DNF zu F_2 an.

Lösung:

$$F_2 = ((a_1 \Rightarrow a_2) \Rightarrow \neg a_3) \vee \neg a_2$$

$$(a_1 \Rightarrow a_2) \Leftrightarrow \neg a_1 \vee a_2$$

$$((\neg a_1 \vee a_2) \Rightarrow \neg a_3) \Leftrightarrow (\neg (\neg a_1 \vee a_2)) \vee \neg a_3)$$

$$\Leftrightarrow \neg (a_2 \vee \neg a_1) \vee \neg a_3$$

$$\neg (a_2 \vee \neg a_1) \Leftrightarrow \neg a_2 \wedge \neg \neg a_1$$

$$\Leftrightarrow \neg a_2 \wedge a_1$$

$$((\neg a_2 \wedge a_1) \vee \neg a_3) \vee \neg a_2 \Leftrightarrow (\neg a_2 \wedge a_1) \vee \neg a_3 \vee \neg a_2$$

$$\Leftrightarrow \neg a_2 \wedge \neg a_3$$

Die Disjunktive Normal Form ist:

$$F_2 = ((a_1 \Rightarrow a_2) \Rightarrow \neg a_3) \vee \neg a_2 \Leftrightarrow \neg a_2 \wedge \neg a_3$$

(b) Geben Sie eine KDNF zu F_2 an.

Lösung:

Bei der kanonischen disjunktiven Normalform müssen alle Variablen vorkommen:

a_1	a_2	a_3	$\neg a_2$	$(a_1 \wedge \neg a_2)$	$\neg a_3$	$\mid F_2 \mid$	Ausdruck
\overline{w}	w	w	f	f	f	f	
w	w	$\mid f \mid$	$\mid f \mid$	f	w	$\mid w \mid$	$a_1 \wedge a_2 \wedge \neg a_3$
w	f	w	w	w	f	$\mid w \mid$	$a_1 \wedge \neg a_2 \wedge a_3$
w	f	$\mid f \mid$	w	w	w	$\mid w \mid$	$a_1 \wedge \neg a_2 \wedge \neg a_3$
f	w	w	f	f	f	f	
f	w	f	f	f	w	$\mid w \mid$	$\neg a_1 \wedge a_2 \wedge \neg a_3$
f	f	$\mid w \mid$	w	f	f	$\mid w \mid$	$\neg a_1 \wedge \neg a_2 \wedge a_3$
f	f	f	w	f	w	$\mid w \mid$	$\neg a_1 \wedge \neg a_2 \wedge \neg a_3$

Als KDNF:

$$F_2: (a_1 \wedge a_2 \wedge \neg a_3) \vee (a_1 \wedge \neg a_2 \wedge a_3) \vee (a_1 \wedge \neg a_2 \wedge \neg a_3) \\ \vee (\neg a_1 \wedge a_2 \wedge \neg a_3) \vee (\neg a_1 \wedge \neg a_2 \wedge a_3) \vee (\neg a_1 \wedge \neg a_2 \wedge \neg a_3)$$