Machine Learning

Bias-Variance Tradeoff

Alberto Maria Metelli and Francesco Trovò

Bias-Variance Dilemma

Known Process

To explicitly analyze the **variance** and the **bias** of a model we need to know the process generating the data:

$$t = \underbrace{f(x)}_{\text{deterministic}} + \underbrace{\varepsilon}_{\text{noise}} \qquad f(x) = 1 + \frac{1}{2}x + \frac{1}{10}x^2$$

- the input are x uniformly distributed in [0, 5], i.e., p(x) = Uni([0, 5])
- the noise ε distribution p(t|x) has $\mathbb{E}[\varepsilon|x] = 0$ and $\mathbb{V}[\varepsilon|x] = \sigma^2 = 0.7^2$

Known Process

To explicitly analyze the **variance** and the **bias** of a model we need to know the process generating the data:

$$t = \underbrace{f(x)}_{\text{deterministic}} + \underbrace{\varepsilon}_{\text{noise}}$$
 $f(x) = 1 + \frac{1}{2}x + \frac{1}{10}x^2$

- the input are x uniformly distributed in [0, 5], i.e., p(x) = Uni([0, 5])
- the noise ε distribution p(t|x) has $\mathbb{E}[\varepsilon|x] = 0$ and $\mathbb{V}[\varepsilon|x] = \sigma^2 = 0.7^2$

Known Process

To explicitly analyze the **variance** and the **bias** of a model we need to know the process generating the data:

$$t = \underbrace{f(x)}_{\text{deterministic}} + \underbrace{\varepsilon}_{\text{noise}}$$
 $f(x) = 1 + \frac{1}{2}x + \frac{1}{10}x^2$

- the input are x uniformly distributed in [0, 5], i.e., p(x) = Uni([0, 5])
- the noise ε distribution p(t|x) has $\mathbb{E}[\varepsilon|x] = 0$ and $\mathbb{V}\operatorname{ar}[\varepsilon|x] = \sigma^2 = 0.7^2$

Two-Model Dilemma

• Assume to approach the learning problem (we do not know the true model) using either one of the two following models:

$$\mathcal{H}_1: \qquad \qquad y(x) = a + bx \qquad \qquad \text{linear}$$
 $\mathcal{H}_2: \qquad \qquad y(x) = a + bx + cx^2 \qquad \qquad \text{quadratic}$

- Hence, $\mathcal{H}_1 \subset \mathcal{H}_2$
- They can be both regarded as **linear models**: $y(x) = \mathbf{w}^{\top} \phi(x)$ with:

$$\mathcal{H}_1:$$
 $\phi(x) = (1, x)^{\top}$ and $\mathbf{w} = (a, b)^{\top}$ $\mathcal{H}_2:$ $\phi(x) = (1, x, x^2)^{\top}$ and $\mathbf{w} = (a, b, c)^{\top}$

Two-Model Dilemma

• Assume to approach the learning problem (we do not know the true model) using either one of the two following models:

$$\mathcal{H}_1: \qquad \qquad y(x) = a + bx$$
 linear

$$\mathcal{H}_2: \qquad \qquad y(x) = a + bx + cx^2 \qquad \qquad \text{quadratic}$$

- Hence, $\mathcal{H}_1 \subset \mathcal{H}_2$
- They can be both regarded as **linear models**: $y(x) = \mathbf{w}^{\top} \phi(x)$ with:

$$\mathcal{H}_1:$$
 $\phi(x) = (1, x)^{\top}$ and $\mathbf{w} = (a, b)^{\top}$
 $\mathcal{H}_2:$ $\phi(x) = (1, x, x^2)^{\top}$ and $\mathbf{w} = (a, b, c)^{\top}$

Two-Model Dilemma

• Assume to approach the learning problem (we do not know the true model) using either one of the two following models:

$$\mathcal{H}_1: \qquad \qquad y(x) = a + bx \qquad \qquad \text{linear}$$
 $\mathcal{H}_2: \qquad \qquad y(x) = a + bx + cx^2 \qquad \qquad \text{quadratic}$

- Hence, $\mathcal{H}_1 \subset \mathcal{H}_2$
- They can be both regarded as **linear models**: $y(x) = \mathbf{w}^{\top} \phi(x)$ with:

$$\mathcal{H}_1:$$
 $\phi(x) = (1, x)^{\top}$ and $\mathbf{w} = (a, b)^{\top}$
 $\mathcal{H}_2:$ $\phi(x) = (1, x, x^2)^{\top}$ and $\mathbf{w} = (a, b, c)^{\top}$

Assumption: we know p(x,t)

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- **Population** risk minimization (PRM):

$$y^* \in \arg\min_{y \in \mathcal{H}} \mathbb{E}_{t,x}[(t - y(x))^2] = \int p(x,t)(t - y(x))^2 dx dt$$

$$\stackrel{t=f(x)+\varepsilon}{=} \int p(x)(f(x) - y(x))^2 dx$$

Assumption: we know p(x,t)

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- **Population** risk minimization (PRM):

$$y^* \in \arg\min_{y \in \mathcal{H}} \mathbb{E}_{t,x}[(t - y(x))^2] = \int p(x,t)(t - y(x))^2 dx dt$$

$$\stackrel{t = f(x) + \varepsilon}{=} \int p(x)(f(x) - y(x))^2 dx$$

Assumption: we know p(x,t)

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- Population risk minimization (PRM):

$$y^* \in \arg\min_{y \in \mathcal{H}} \mathbb{E}_{t,x}[(t - y(x))^2] = \int p(x,t)(t - y(x))^2 dx dt$$

$$\stackrel{t = f(x) + \varepsilon}{=} \int p(x)(f(x) - y(x))^2 dx$$

Assumption: we know p(x,t)

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- **Population** risk minimization (PRM):

$$y^* \in \arg\min_{y \in \mathcal{H}} \mathbb{E}_{t,x}[(t - y(x))^2] = \int p(x,t)(t - y(x))^2 dx dt$$

$$\stackrel{t = f(x) + \varepsilon}{=} \int p(x)(f(x) - y(x))^2 dx$$

Assumption: we know p(x,t)

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- **Population** risk minimization (PRM):

$$y^* \in \arg\min_{y \in \mathcal{H}} \mathbb{E}_{t,x}[(t - y(x))^2] = \int p(x,t)(t - y(x))^2 dx dt$$

$$\stackrel{t = f(x) + \varepsilon}{=} \int p(x)(f(x) - y(x))^2 dx$$

If the real model is known we can compute the optimal model for the two hypothesis space:

$$\mathcal{H}_1: \qquad \arg\min_{(a,b)\in\mathbb{R}^2} \int_0^5 \frac{1}{5} (f(x) - a - bx)^2 \, \mathrm{d}x = \left(\frac{7}{12}, 1\right)^{\top}$$

$$\mathcal{H}_2: \qquad \arg\min_{(a,b,c)\in\mathbb{R}^3} \int_0^5 \frac{1}{5} (f(x) - a - bx - cx^2)^2 \, \mathrm{d}x = \left(1, \frac{1}{2}, \frac{1}{10}\right)^{\top}$$

Assumption: we do not know p(x,t) but we have a training dataset $\mathcal{D} = \{(x_n,t_n)\}_{n=1}^N$ i.i.d. from p

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- **Empirical** risk minimization (ERM):

$$\widehat{y} \in \arg\min_{y \in \mathcal{H}} \frac{1}{N} \sum_{n=1}^{N} (t_n - y(x_n))^2$$

 \hat{y} is a **random variable** depending on the dataset \mathcal{D} !

Assumption: we do not know p(x,t) but we have a training dataset $\mathcal{D} = \{(x_n,t_n)\}_{n=1}^N$ i.i.d. from p

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- **Empirical** risk minimization (ERM):

$$\widehat{y} \in \arg\min_{y \in \mathcal{H}} \frac{1}{N} \sum_{n=1}^{N} (t_n - y(x_n))^2$$

 \hat{y} is a **random variable** depending on the dataset \mathcal{D} !

Assumption: we do not know p(x,t) but we have a training dataset $\mathcal{D} = \{(x_n,t_n)\}_{n=1}^N$ i.i.d. from p

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- Empirical risk minimization (ERM):

$$\widehat{y} \in \arg\min_{y \in \mathcal{H}} \frac{1}{N} \sum_{n=1}^{N} (t_n - y(x_n))^2$$

 \hat{y} is a **random variable** depending on the dataset \mathcal{D} !

Assumption: we do not know p(x,t) but we have a training dataset $\mathcal{D} = \{(x_n,t_n)\}_{n=1}^N$ i.i.d. from p

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- **Empirical** risk minimization (ERM):

$$\widehat{y} \in \arg\min_{y \in \mathcal{H}} \frac{1}{N} \sum_{n=1}^{N} (t_n - y(x_n))^2$$

 \widehat{y} is a **random variable** depending on the dataset \mathcal{D} !

Assumption: we do not know p(x,t) but we have a training dataset $\mathcal{D} = \{(x_n,t_n)\}_{n=1}^N$ i.i.d. from p

- Hypothesis space: $y(x) \in \mathcal{H}$
- Loss function: squared loss function $(t y(x))^2$
- **Empirical** risk minimization (ERM):

$$\widehat{y} \in \arg\min_{y \in \mathcal{H}} \frac{1}{N} \sum_{n=1}^{N} (t_n - y(x_n))^2$$

 \widehat{y} is a **random variable** depending on the dataset $\mathcal{D}!$

Visualizing the Fitting

Optimal Parameters and Realized Parameters

The blue \times is the best model in \mathcal{H}_2 and the red \circ is the best model in $\mathcal{H}_1 \to PRM$ The + are the optimal parameters for two realizations of the dataset $\mathcal{D}(N=1000) \rightarrow \text{ERM}$

Visualization of Bias and Variance

If we repeat the ERM for multiple times (generation of 100 independent dataset) with different number of samples (N=100 on the left and N=10000 on the right)

- $t = f(x) + \epsilon$ where $\mathbb{E}[\epsilon|x] = 0$ and $\mathbb{V}\mathrm{ar}[\epsilon|x] = \sigma^2$
- $\widehat{y}(x)$ is the **empirical risk minimizer** over the training dataset \mathcal{D}
- x is a **fixed** (unseen point)

$$\underbrace{\mathbb{E}_{\mathcal{D},t}[(t-\widehat{y}(x))^2]}_{\text{error}} = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\mathbb{V}\text{ar}_{\mathcal{D}}[\widehat{y}(x)]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathcal{D}}[f(x)-\widehat{y}(x)]^2}_{\text{bias}^2}$$

- Error in expectation taken w.r.t. the training dataset \mathcal{D} and the target t
- Irreducible error
- Variance reduces with the number of samples $N = |\mathcal{D}|$
- Bias depends on the hypothesis space \mathcal{H}

- $t = f(x) + \epsilon$ where $\mathbb{E}[\epsilon|x] = 0$ and $\mathbb{V}\mathrm{ar}[\epsilon|x] = \sigma^2$
- $\widehat{y}(x)$ is the **empirical risk minimizer** over the training dataset \mathcal{D}
- x is a **fixed** (unseen point)

$$\underbrace{\mathbb{E}_{\mathcal{D},t}[(t-\widehat{y}(x))^2]}_{\text{error}} = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\mathbb{V}\mathrm{ar}_{\mathcal{D}}[\widehat{y}(x)]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathcal{D}}[f(x)-\widehat{y}(x)]^2}_{\text{bias}^2}$$

- Error in expectation taken w.r.t. the training dataset \mathcal{D} and the target t
- Irreducible error
- Variance reduces with the number of samples $N = |\mathcal{D}|$
- Bias depends on the hypothesis space \mathcal{H}

- $t = f(x) + \epsilon$ where $\mathbb{E}[\epsilon|x] = 0$ and $\mathbb{V}\mathrm{ar}[\epsilon|x] = \sigma^2$
- $\widehat{y}(x)$ is the **empirical risk minimizer** over the training dataset \mathcal{D}
- x is a **fixed** (unseen point)

$$\underbrace{\mathbb{E}_{\mathcal{D},t}[(t-\widehat{y}(x))^2]}_{\text{error}} = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\mathbb{V}\mathrm{ar}_{\mathcal{D}}[\widehat{y}(x)]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathcal{D}}[f(x)-\widehat{y}(x)]^2}_{\text{bias}^2}$$

- Error in expectation taken w.r.t. the training dataset \mathcal{D} and the target t
- Irreducible error
- Variance reduces with the number of samples $N = |\mathcal{D}|$
- Bias depends on the hypothesis space \mathcal{H}

- $t = f(x) + \epsilon$ where $\mathbb{E}[\epsilon|x] = 0$ and $\mathbb{V}\mathrm{ar}[\epsilon|x] = \sigma^2$
- ullet $\widehat{y}(x)$ is the **empirical risk minimizer** over the training dataset \mathcal{D}
- x is a **fixed** (unseen point)

$$\underbrace{\mathbb{E}_{\mathcal{D},t}[(t-\widehat{y}(x))^2]}_{\text{error}} = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\mathbb{V}\text{ar}_{\mathcal{D}}[\widehat{y}(x)]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathcal{D}}[f(x)-\widehat{y}(x)]^2}_{\text{bias}^2}$$

- Error in expectation taken w.r.t. the training dataset \mathcal{D} and the target t
- Irreducible error
- Variance reduces with the number of samples $N = |\mathcal{D}|$
- Bias depends on the hypothesis space \mathcal{H}

- $t = f(x) + \epsilon$ where $\mathbb{E}[\epsilon|x] = 0$ and $\mathbb{V}\mathrm{ar}[\epsilon|x] = \sigma^2$
- $\widehat{y}(x)$ is the **empirical risk minimizer** over the training dataset \mathcal{D}
- x is a **fixed** (unseen point)

$$\underbrace{\mathbb{E}_{\mathcal{D},t}[(t-\widehat{y}(x))^2]}_{\text{error}} = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\mathbb{V}\text{ar}_{\mathcal{D}}[\widehat{y}(x)]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathcal{D}}[f(x)-\widehat{y}(x)]^2}_{\text{bias}^2}$$

- Error in expectation taken w.r.t. the training dataset \mathcal{D} and the target t
- Irreducible error
- Variance reduces with the number of samples $N = |\mathcal{D}|$
- **Bias** depends on the hypothesis space \mathcal{H}

- $t = f(x) + \epsilon$ where $\mathbb{E}[\epsilon|x] = 0$ and $\mathbb{V}ar[\epsilon|x] = \sigma^2$
- $\widehat{y}(x)$ is the **empirical risk minimizer** over the training dataset \mathcal{D}
- x is a **fixed** (unseen point)

$$\underbrace{\mathbb{E}_{\mathcal{D},t}[(t-\widehat{y}(x))^2]}_{\text{error}} = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\mathbb{V}\text{ar}_{\mathcal{D}}[\widehat{y}(x)]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathcal{D}}[f(x)-\widehat{y}(x)]^2}_{\text{bias}^2}$$

- Error in expectation taken w.r.t. the training dataset \mathcal{D} and the target t
- Irreducible error
- Variance reduces with the number of samples $N = |\mathcal{D}|$
- Bias depends on the hypothesis space \mathcal{H}

- $t = f(x) + \epsilon$ where $\mathbb{E}[\epsilon|x] = 0$ and $\mathbb{V}ar[\epsilon|x] = \sigma^2$
- $\widehat{y}(x)$ is the **empirical risk minimizer** over the training dataset \mathcal{D}
- x is a **fixed** (unseen point)

$$\underbrace{\mathbb{E}_{\mathcal{D},t}[(t-\widehat{y}(x))^2]}_{\text{error}} = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\mathbb{V}\text{ar}_{\mathcal{D}}[\widehat{y}(x)]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathcal{D}}[f(x)-\widehat{y}(x)]^2}_{\text{bias}^2}$$

- Error in expectation taken w.r.t. the training dataset \mathcal{D} and the target t
- Irreducible error
- Variance reduces with the number of samples $N = |\mathcal{D}|$
- **Bias** depends on the hypothesis space \mathcal{H}

Computation of Bias and Variance

Linear error: 0.46867 Linear bias: 0.03613

Linear variance: 0.00011514

Linear sigma: 0.43242 Quadratic error: 0.42146 Quadratic bias: 1.412e-06

Ouadratic variance: 0.00014674

Quadratic sigma: 0.42131

All the considerations holds on average, therefore there might be realizations for which the Bias and Variance of different models might not be coherent with what we saw.

Bias-Variance Tradeoff

Model Selection Problem

In real scenarios, we do not know the real model, so we should **select** the correct one among a set of models.

Consider the possible solutions for a regression problem:

- Hypothesis space: $y(x; \mathbf{w}) = f(x, \mathbf{w}) = \sum_{k=0}^{o} x^k w_k$
- Loss function: $\frac{1}{N} \sum_{(x,t) \in \mathcal{D}} (y(x_n; \mathbf{w}) t_n)^2$ on a dataset \mathcal{D}
- Optimization method: Least Square (LS)

The order *o* and other parameters which should be chosen before performing the training phase are usually addressed as *hyperparameters*

Limits of Using the Training error

Why?

• The quality of a (fixed) model w is represented by the **expected MSE**:

$$MSE(\mathbf{w}) := \mathbb{E}_{\mathbf{x},t}[(y(\mathbf{x};\mathbf{w}) - t)^2]$$

• We **train** on $\mathcal{D}_{\text{train}}$ with $N = |\mathcal{D}_{\text{train}}|$ by minimizing the **empirical MSE** (i.e., empirical risk minimization):

$$\widehat{\mathbf{w}} \in \arg\min_{\mathbf{w} \in \mathbb{R}^{o+1}} \widehat{\mathrm{MSE}}_{\mathrm{train}}(\mathbf{w}) := \frac{1}{N} \sum_{(\mathbf{x}, t) \in \mathcal{D}_{\mathrm{train}}} (y(\mathbf{x}; \mathbf{w}) - t)^2$$

- ullet $\widehat{\mathbf{w}}$ is statistically dependent on $\mathcal{D}_{ ext{train}}$
- $MSE_{train}(\widehat{\mathbf{w}})$ is not a good estimate of $MSE(\widehat{\mathbf{w}})$
- MSE_{train}(ŵ) cannot be used for evaluating the performance of y(·; ŵ) nor for selecting among different models

Why?

• The quality of a (fixed) model w is represented by the **expected MSE**:

$$MSE(\mathbf{w}) := \mathbb{E}_{\mathbf{x},t}[(y(\mathbf{x};\mathbf{w}) - t)^2]$$

• We train on $\mathcal{D}_{\text{train}}$ with $N = |\mathcal{D}_{\text{train}}|$ by minimizing the **empirical MSE** (i.e., empirical risk minimization):

$$\widehat{\mathbf{w}} \in \arg\min_{\mathbf{w} \in \mathbb{R}^{o+1}} \widehat{\mathsf{MSE}}_{\mathsf{train}}(\mathbf{w}) := \frac{1}{N} \sum_{(\mathbf{x}, t) \in \mathcal{D}_{\mathsf{train}}} (y(\mathbf{x}; \mathbf{w}) - t)^2$$

- $\widehat{\mathbf{w}}$ is statistically dependent on $\mathcal{D}_{\text{train}}$
- $MSE_{train}(\widehat{\mathbf{w}})$ is not a good estimate of $MSE(\widehat{\mathbf{w}})$
- $\widehat{\text{MSE}}_{\text{train}}(\widehat{\mathbf{w}})$ cannot be used for **evaluating** the performance of $y(\cdot; \widehat{\mathbf{w}})$ nor for **selecting** among different models

Why?

• The quality of a (fixed) model w is represented by the **expected MSE**:

$$MSE(\mathbf{w}) := \mathbb{E}_{\mathbf{x},t}[(y(\mathbf{x};\mathbf{w}) - t)^2]$$

• We train on $\mathcal{D}_{\text{train}}$ with $N = |\mathcal{D}_{\text{train}}|$ by minimizing the **empirical MSE** (i.e., empirical risk minimization):

$$\widehat{\mathbf{w}} \in \arg\min_{\mathbf{w} \in \mathbb{R}^{o+1}} \widehat{\mathsf{MSE}}_{\mathsf{train}}(\mathbf{w}) := \frac{1}{N} \sum_{(\mathbf{x}, t) \in \mathcal{D}_{\mathsf{train}}} (y(\mathbf{x}; \mathbf{w}) - t)^2$$

- $\widehat{\mathbf{w}}$ is statistically dependent on $\mathcal{D}_{\text{train}}$
- $MSE_{train}(\widehat{\mathbf{w}})$ is not a good estimate of $MSE(\widehat{\mathbf{w}})$
- $\widehat{\text{MSE}}_{\text{train}}(\widehat{\mathbf{w}})$ cannot be used for **evaluating** the performance of $y(\cdot; \widehat{\mathbf{w}})$ nor for **selecting** among different models

Why?

• The quality of a (fixed) model w is represented by the **expected MSE**:

$$MSE(\mathbf{w}) := \mathbb{E}_{\mathbf{x},t}[(y(\mathbf{x};\mathbf{w}) - t)^2]$$

• We train on $\mathcal{D}_{\text{train}}$ with $N = |\mathcal{D}_{\text{train}}|$ by minimizing the **empirical MSE** (i.e., empirical risk minimization):

$$\widehat{\mathbf{w}} \in \arg\min_{\mathbf{w} \in \mathbb{R}^{o+1}} \widehat{\mathsf{MSE}}_{\mathsf{train}}(\mathbf{w}) := \frac{1}{N} \sum_{(\mathbf{x}, t) \in \mathcal{D}_{\mathsf{train}}} (y(\mathbf{x}; \mathbf{w}) - t)^2$$

- $\widehat{\mathbf{w}}$ is statistically dependent on $\mathcal{D}_{\text{train}}$
- $\widehat{MSE}_{train}(\widehat{\mathbf{w}})$ is not a good estimate of $MSE(\widehat{\mathbf{w}})$
- MSE_{train}($\widehat{\mathbf{w}}$) cannot be used for **evaluating** the performance of $y(\cdot; \widehat{\mathbf{w}})$ nor for **selecting** among different models

Why?

• The quality of a (fixed) model w is represented by the **expected MSE**:

$$MSE(\mathbf{w}) := \mathbb{E}_{\mathbf{x},t}[(y(\mathbf{x};\mathbf{w}) - t)^2]$$

• We train on $\mathcal{D}_{\text{train}}$ with $N = |\mathcal{D}_{\text{train}}|$ by minimizing the **empirical MSE** (i.e., empirical risk minimization):

$$\widehat{\mathbf{w}} \in \arg\min_{\mathbf{w} \in \mathbb{R}^{o+1}} \widehat{\mathsf{MSE}}_{\mathsf{train}}(\mathbf{w}) := \frac{1}{N} \sum_{(\mathbf{x}, t) \in \mathcal{D}_{\mathsf{train}}} (y(\mathbf{x}; \mathbf{w}) - t)^2$$

- $\widehat{\mathbf{w}}$ is statistically dependent on $\mathcal{D}_{\text{train}}$
- $\widehat{MSE}_{train}(\widehat{\mathbf{w}})$ is not a good estimate of $MSE(\widehat{\mathbf{w}})$
- $\widehat{\text{MSE}}_{\text{train}}(\widehat{\mathbf{w}})$ cannot be used for **evaluating** the performance of $y(\cdot; \widehat{\mathbf{w}})$ nor for **selecting** among different models

Limits of Using the Training error

- Training set \mathcal{D}_{train} , i.e., the data we will use to **learn** the model parameters
- Validation set $\mathcal{D}_{\text{vali}}$, i.e., the data we will use to **select** the model
- Test set $\mathcal{D}_{\text{test}}$, i.e., the data we will use to **evaluate** the performance of our model

Usually, we use a split proportional to 50%-25%-25% for the three sets

- Training set \mathcal{D}_{train} , i.e., the data we will use to **learn** the model parameters
- Validation set \mathcal{D}_{vali} , i.e., the data we will use to **select** the model
- Test set $\mathcal{D}_{\text{test}}$, i.e., the data we will use to **evaluate** the performance of our model Usually, we use a split proportional to 50%-25%-25% for the three sets

- Training set \mathcal{D}_{train} , i.e., the data we will use to **learn** the model parameters
- Validation set \mathcal{D}_{vali} , i.e., the data we will use to **select** the model
- Test set \mathcal{D}_{test} , i.e., the data we will use to **evaluate** the performance of our model

Usually, we use a split proportional to 50%-25%-25% for the three sets

- Training set \mathcal{D}_{train} , i.e., the data we will use to **learn** the model parameters
- Validation set \mathcal{D}_{vali} , i.e., the data we will use to **select** the model
- ullet Test set \mathcal{D}_{test} , i.e., the data we will use to **evaluate** the performance of our model

Usually, we use a split proportional to 50%-25%-25% for the three sets

Dataset Generated

Validation Results

LOO and Crossvalidation

This way we reduce the amount of samples we could use for training of 33%, which could compromise the analysis since the training has been performed with a significantly smaller dataset

Crossvalidation Results (K = 5)

Checking the Results

The data have been generated from the following model:

$$y = (0.5 - x)(5 - x)(x - 3) + \varepsilon$$

where $\varepsilon \sim \mathcal{N}(0, 1.5^2)$

The correct order is then o = 3 (4 in the graphs which considers also the constant term)

The procedure is correct on average, the realizations might return different orders than the correct one

Computational Times

Using different methods we have different time for the model selection:

```
Elapsed time is 0.016354 seconds. % Validation
Elapsed time is 0.431666 seconds. % Crossvalidation
Elapsed time is 4.308715 seconds. % LOO
```

Depending on the computational power available and the number of data we have we might choose different methods

Adjustment Techniques

- $C_p = \frac{1}{N}(RSS + 2d\tilde{\sigma})$ where d is the total number of parameters, $\tilde{\sigma}$ is an estimate of the variance of the noise ϵ
- $AIC = -2 \log L + 2d$ where L is the maximized value of the likelihood function for the estimated model
- $BIC = \frac{1}{N}(RSS + \log(N)d\tilde{\sigma})$ BIC replaces the $2d\tilde{\sigma}$ of C_p with $\log(N)d\tilde{\sigma}$ term. Since $\log N > 2$ for any n > 7, BIC selects smaller models
- Adjusted R^2 $R_{ad}^2 = 1 \frac{RSS/(N-d-1)}{TSS/(N-1)}$ where TSS is the total sum of squares. Differently from the other criteria, here a **large value** indicates a model with a **small test error**

Test Error Fluctuations

Consider the following scenario:

- N = 1000 data
- $N_{\mathrm{train}} = 800$ used to compute \widehat{w}
- $N_{\text{test}} = 200$

$$\widehat{\text{MSE}}_{\text{test}}(\widehat{\mathbf{w}}) = \frac{1}{N} \sum_{(\mathbf{x},t) \in \mathcal{D}_{\text{test}}} (y(\mathbf{x}; \mathbf{w}) - t)^2 \text{ is a point estimate, also subject to variance}$$

Bootstrap Confidence Intervals

- ullet Sample N data points from \mathcal{D}_{test} with replacement
- Do this M times, forming M resamples $\mathcal{D}_1, \ldots, \mathcal{D}_M$ of $\mathcal{D}_{\text{test}}$
- Compute MSE (or any other metric) on each resample: $\widehat{MSE}_1(\widehat{\mathbf{w}}), \dots, \widehat{MSE}_M(\widehat{\mathbf{w}})$
- Compute percentile intervals on $\widehat{MSE}_1(\widehat{\mathbf{w}}), \dots, \widehat{MSE}_M(\widehat{\mathbf{w}})$

Example: to build a 90% confidence interval, compute the 5-th and the 95-th percentiles.

You can say that the error test is within the two percentiles with 90% confidence.

N.B: A test dataset should be used *only once!*

If I reuse the same test data for K tests/confidence intervals, I must correct the significance level from α to α/K (Bonferroni correction)

