- **24.** G is the intersection of the medians of $\triangle XYZ$. Complete the following statements. (Hint: Use Theorem 10-4 on page 387.)
 - a. $\frac{XG}{XM} = \frac{?}{}$ b. $\frac{GM}{GX} = \frac{?}{}$
 - c. What dilation maps X to M?
 - **d.** What is the image under this dilation of Y? of Z?
- **25.** $D_{O,k}$ maps \overline{PQ} to $\overline{P'Q'}$.
 - a. Show that the slopes of \overline{PO} and $\overline{P'O'}$ are equal.
 - **b.** Part (a) proves that \overline{PO} and $\overline{P'O'}$ are $\frac{?}{?}$.
- 26. Use the distance formula to show that $P'Q' = |k|\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = |k| \cdot PQ.$

- 27. A dilation with center (a, b) and scale factor k maps A(3, 4) to A'(1, 8), and B(3, 2) to B'(1, 2). Find the coordinates of the center (a, b) and the value of k.
- 28. Prove Theorem 14-5 using the coordinate definition of a dilation, $D_{0,k}:(x, y) \to (kx, ky)$. (Hint: Let A, B, and C have coordinates (p, q), (r, s), and (t, u) respectively.)

Self-Test 1

- 1. Define an isometry.
- 2. If f(x) = 3x 7, find the image of 2 and the preimage of 2.
- 3. If $T:(x, y) \to (x + 1, y 2)$, find the image and preimage of the origin.
- 4. Find the image of (3, 5) when reflected in each line.
 - a. the x-axis

b. the y-axis

- c. the line y = x.
- **5.** A dilation with scale factor 3 maps $\triangle ABC$ to $\triangle A'B'C'$. Which of the following are true?
 - a. $\overline{AB} \parallel \overline{A'B'}$

b. $\frac{A'B'}{AB} = 3$

c. $\frac{\text{area of } \triangle A'B'C'}{\text{area of } \triangle ABC} = 3$

6. Give two other names for the rotation \mathcal{R}_{0} = 30.

Complete. R_x and R_y denote reflections in the x- and y-axes, respectively.

- 7. $R_{\nu}:A \rightarrow \frac{?}{}$
- 8. $R_x:B\to \frac{?}{}$
- 9. $R_x:\overline{DC}\to \frac{?}{}$
- 10. $R_v: \frac{?}{OA} \rightarrow \overline{OA}$
- 11. $H_0: K \to \frac{?}{}$
- 12. $H_o: \frac{?}{CO} \rightarrow \overline{CO}$
- **13.** $\mathcal{R}_{O, 90}$ maps M to $\frac{?}{}$. **14.** $\mathcal{R}_{O, -90}$ maps $\triangle MCO$ to $\triangle \frac{?}{}$. **15.** $D_{O, 2}$ maps P to $\frac{?}{}$. **16.** $D_{M, -\frac{1}{2}}$ maps B to $\frac{?}{}$.

- 17. A translation that maps A to L maps N to $\frac{?}{}$.
- 18. The glide reflection in \overrightarrow{BD} that maps K to M maps N to $\frac{?}{}$

