Progetto di Analisi Avanzata degli Algoritmi

Studio Empirico sul Problema del Subset Sum

Autore: Carmine Citro

Data di Generazione: 04/12/2024

Indice

Sezione	Pagina
Introduzione	1
Analisi Statistica	3
Analisi della Varianza e Distribuzione	5
Analisi dell'Efficienza degli Algoritmi	7
Conclusione	10

Introduzione

Questo report presenta uno studio empirico sul problema del Subset Sum, con un'analisi dettagliata delle prestazioni di vari algoritmi su istanze numeriche dense e sparse. Il Subset Sum rappresenta un problema centrale nella teoria della complessità computazionale, con applicazioni rilevanti in numerosi contesti pratici, tra cui crittografia, pianificazione e ottimizzazione.

Analisi Statistica

Algoritmo: Dynamic Programming

Totale delle Istanze	9
Numero di Sottoinsiemi Trovati	10
Dimensione Media dell'Insieme	42.33333333333333
Valore Medio del Target	3751.444444444443
Tempo Medio di Esecuzione (s)	0.0014987999999887967

Algoritmo: Meet In The Middle

Totale delle Istanze	7
Numero di Sottoinsiemi Trovati	5
Dimensione Media dell'Insieme	39.285714285714285
Valore Medio del Target	3394.285714285714
Tempo Medio di Esecuzione (s)	71.82387474285711

Algoritmo: Backtracking

Totale delle Istanze	8
Numero di Sottoinsiemi Trovati	9
Dimensione Media dell'Insieme	46.875
Valore Medio del Target	4220.0
Tempo Medio di Esecuzione (s)	0.001341987500008912

Figura 1: Visualizzazione Grafica delle Statistiche Rilevate

Analisi della Varianza e Distribuzione

Algoritmo: Dynamic Programming

Varianza: 0.000004803269

Deviazione standard: 0.002191636195

Distribuzione della Varianza per Dynamic Programming 6 Dynamic Programming 5 4 Frequenza 3 2 1 0.002 0.000 0.001 0.003 0.004 0.005 0.006 0.007 Complessità (T.E.)

Figura: Distribuzione della Varianza per Dynamic Programming

Algoritmo: Meet In The Middle

Varianza: 11167.244169880023

Deviazione standard: 105.675182374482

Distribuzione della Varianza per Meet In The Middle 3.0 Meet In The Middle 2.5 2.0 Frequenza 1.5 1.0 0.5 0.0 Ó 50 100 250 150 200 300 Complessità (T.E.)

Figura: Distribuzione della Varianza per Meet In The Middle

Algoritmo: Backtracking

Varianza: 0.000004031891

Deviazione standard: 0.002007956953

Distribuzione della Varianza per Backtracking

Figura: Distribuzione della Varianza per Backtracking

Analisi dell'Efficienza degli Algoritmi

In questa sezione analizziamo le prestazioni degli algoritmi tramite istanze numeriche dense e sparse.

Classifica Algoritmi per Istanze Dense

Posizione	Algoritmo	Tempo Medio (s)
1	Backtracking	0.000042719048
2	Dynamic Programming	0.000192181818
3	Meet In The Middle	4.358916438095

Classifica Algoritmi per Istanze Sparse

Posizione	Algoritmo	Tempo Medio (s)
1	Backtracking	0.000074066667
2	Dynamic Programming	0.001302223810
3	Meet In The Middle	55.922395942857

Distribuzione dei Tempi di Esecuzione per Algoritmo e Tipo di Istanze

Figura 1: Distribuzione dei Tempi di Esecuzione

Conclusione

In conclusione, lo studio ha evidenziato come l'efficacia degli algoritmi per il problema del Subset Sum vari significativamente a seconda della tipologia dell'istanza analizzata. Le istanze numeriche dense e sparse hanno dimostrato comportamenti diversi in termini di

Progetto Algoritmi Avanzati

tempi di esecuzione e complessità computazionale. Questi risultati sottolineano l'importanza di una scelta accurata dell'algoritmo in base alle caratteristiche specifiche del problema affrontato, al fine di ottimizzare le risorse computazionali e migliorare l'efficienza.