Содержание

1	Обзор					
2	Автоматизация проектирования					
	2.1		льность			
	2.2		ая новизна			
	2.3	Статьи и конференции				
	2.4	Генерация RTL-описания				
		2.4.1	Описание подхода			
		2.4.2	Средства парсинга кода (lex, yacc)			
		2.4.3	Масштабирование кода			
		2.4.4	GUI	4		
3. 3. 3.	\mathbf{Bep}	Верификация				
	3.1	В.1 Актуальность		,		
	3.2	.2 Научная новизна				
	3.3	Статьи и конференции				
	3.4	Тестовое окружение				
		3.4.1	Создание универсального тестового окружение	,		
		3.4.2	Создание модели	,		
		3.4.3	Сбор статистики	(
			3.4.3.1 Метрики	(
			3.4.3.2 Создание средства для визуализации	(
4	C I-	_		,		
4	Сеть-на-кристалле					
	4.1	Вирту	альные каналы			
Л	итера	атура		8		

Обзор

Автоматизация проектирования

2.1 Актуальность

С увеличением количества интегрируемых IP-блоков в системах-на-кристалле (СнК), повышаются требования к узлам, отвечающим за их межсоединение. Специфика разработки блоков межсоединения более подробно в главе 1.

Необходимость создания параметризированного по количеству как ведомых (slave), так и ведущих (master) портов межсоединения повлекла за собой работу по созданию средств для генерации RTL-описания.

2.2 Научная новизна

Генерация выходного RTL-описания IP-блоков по заданным параметрам реализована у многих вендоров. У большинства из них этот процесс заключается в создании RTL-описания в соответсвии со специфическим синтаксисом, расширяющим стандартный язык описания аппаратуры (например, Synopsys CoreBuilder или открытый проект CONfigurable NEtwork Creation Tool [1]). Такой подход является зависимым от конкретного вендора и может быть применен только для IP-блоков той фирмы, которая занимается их разработкой совместно с разработкой средств для генерации.

Также вопросом реализации автоматизии процесса создания конфигурируемых IP-блоков занимались и независимые от вендоров команды (например, CoreTML framework). При этом решая проблему зависимости от поставщика IP-блоков, они не снимают все ограничения с процесса генерации. Так, в основе решения задачи сохраняется необходимость написание RTL-кода согласно со специфическим синтаксисом, что привязывает описание к конкретному программному средству генерации.

Подход, который предложен в данной работе, решает сформулированные проблемы:

- 1. Зависимость от вендора.
- 2. Зависимость от средств генерации.

2.3 Статьи и конференции

На конференции в МФТИ был мой доклад на эту тему.

2.4 Генерация RTL-описания

- 2.4.1 Описание подхода
- 2.4.2 Средства парсинга кода (lex, yacc)
- 2.4.3 Масштабирование кода

Написано на языке до.

2.4.4 GUI

Рис. 2.1: GUI.

Верификация

Достаточно большая работа была проведена за последний год в данном направлении из-за актуальности практического применения результатов данной работы на фирме. А именно была поставлена задача верификации всех коммутаторов как разарботанных сво-ими силами, так и покупных. Соответственно и результаты здесь более практичны, чем научны. Но без платформы для верификации невозможно было получить остальные выводы в работе.

3.1 Актуальность

Затраты (временные и ресурсные) на верификацию в процессе разработки на сегодняшний день постоянно растут относительно затрат на создание RTL-описания. Роль коммутаторов в СнК возрастает [более подробно в главе 1].

Тема создания тестового окружения на языке SystemVerilog срдествами библиотеки UVM с использованием библиотеки SystemC для реализации модели проектируемого блока является актуальной и важной в современном подходе к проектированию.

3.2 Научная новизна

3.3 Статьи и конференции

Есть статья в журнале "Вопросы радиоэлектроники", написанная совместно с Путрей Ф.М. на эту тему.

3.4 Тестовое окружение

3.4.1 Создание универсального тестового окружение

Есть презентация на фирме на тему создания и использования универсального тестового окружения.

3.4.2 Создание модели

Модель написана на языке SystemC. Сейчас реализована простая модель. Есть необходимость ее доработки для более точного и аккуратного анализа.

3.4.3 Сбор статистики

3.4.3.1 Метрики

3.4.3.2 Создание средства для визуализации

Написано на языке программирования python с использованием библиотеки Matplotlib.

Сеть-на-кристалле

Вопрос больше проработан теоретически, чем на практике. Есть много направлений работы по конкрентной реализации сети-на-кристалле. Сейчас почти завершена реализации платформы (средства генерации, тестовое окружение, модель) для проведения экспериментов.

4.1 Виртуальные каналы

Литература

[1] Papamichael M.K. CONfigurable NEtwork Creation Tool. 2013. March. URL: http://users.ece.cmu.edu/mpapamic/connect/.