Black Hole

Given integers n, a, b and M, calculate the value $\sum_{k=0}^{n} k^a b^k$ modulo M.

Input Format

The first line contains the number of test cases T.

Each of the next T lines contains four space-separated integers n, a, b and M.

Output Format

For each test case output one integer: the value of the sum.

Note In this problem we take $0^0=1$

Constraints

$$1 \le T \le 6^6 + 6$$

$$0 \leq n \leq 10^{18}$$

$$0 \le a \le 777$$

$$0 < |b| < 10^{18}$$

$$1 \le M \le 10^9$$

The sum of all a in one test file doesn't exceed 1000

Sample input

Sample Output

```
6
4
0
288
288
```

Explanation

$$0^{1} \times 1^{0} + 1^{1} \times 1^{1} + 2^{1} \times 1^{2} + 3^{1} \times 1^{3} = 0 + 1 + 2 + 3 = 6$$

$$0^{0} \times 1^{0} + 1^{0} \times 1^{1} + 2^{0} \times 1^{2} + 3^{0} \times 1^{3} = 1 + 1 + 1 + 1 = 4$$

$$0^{1} \times 0^{0} + 1^{1} \times 0^{1} + 2^{1} \times 0^{2} + 3^{1} \times 0^{3} = 0 + 0 + 0 + 0 = 0$$