DIM0436

8. Conjuntos, relações e funções

Richard Bonichon

20140814

Sumário

- Conjuntos
- 2 Funções
- Relações
- 4 Conjuntos ordenados

- Conjuntos
- 2 Funções
- Relações
- 4 Conjuntos ordenados

Definição

Definição (Conjunto)

- Um conjunto e qualquer coleção bem definida de objetos.
- Se A é um conjunto, objetos de A são os elementos / membros
- $x \in A = x$ elemento de A.

Exemplos

- N: naturais
- ullet \mathbb{Z} : inteiros
- ullet \mathbb{Q} : racionais

Operadores de conjuntos

União

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Interseção

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Diferença

- $A \setminus B = \{x | x \in A \land x \notin B\}$
- ullet também notado $ar{B}$, o complemento de B em A

Diagramas de Venn representam de maneira gráfica esses operadores.

Representação

Em extensão

- $\{0, 2, 4, 6, 8, 10\}$
- $\{0, 2, 4, 6, ..., 2n\}$

Em compreensão

- $\{\sqrt{2}, -\sqrt{2}\} = \{x \in \mathbb{R} \mid x^2 = 2\}$

Extensão

$$\mathbb{Q} = \{ m/n \mid m, n \in \mathbb{Z}, n \neq 0 \}$$

Diagramas de Venn

Conjunto vazio

•
$$\emptyset = \{x \in \mathbb{R} \mid x^2 < 0\}$$

•
$$\emptyset = \{x \in \mathbb{N} \mid 1 < x < 2\}$$

•
$$\emptyset = \{x | x \neq x\}$$

- $\emptyset \neq \{\emptyset\}$
- $\emptyset \in \{\emptyset\}$

Subconjunto

Subconjunto

 $A \subseteq B$ se todo elemento de A pertence a B.

Conjunto de partes

O conjunto de partes de A é o conjunto de todos os subconjuntos de A (notado $\mathcal{P}(A)$).

Exercícios

- Mostre que $A \subseteq B \iff \mathcal{P}(A) \subseteq \mathcal{P}(B)$
- Mostre por indução que um conjunto com n elementos tem 2^n subconjuntos.
- Seja $A = \{o, t, f, s, e, n\}$. Dê uma definição alternativa de A.

Teoremas

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$A \cap (B \cap C) = (A \cap B) \cap C)$$

$$A \cap B = B \cap A$$

$$\bullet$$
 $A \cup \overline{A} = U$

$$\overline{\overline{A}} = A$$

Intervalos

Intervalo fechado

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

Intervalo aberto

$$(a, b) =]a, b[= \{x \in \mathbb{R} \mid a < x < b\}]$$

Exercício

Mostre que a interseção de dois intervalos é um intervalo. É a mesma coisa para uniões?

Produto Cartesiano

Par ordenado

- O par ordenado de objetos matemáticos cuja ordem de ocorrência desses objetos é significante.
- Os pares (a, b) e (x, y) sse a = x e b = y

Produto Cartesiano

$$A \times B = \{(a, b) \mid a \in A \land a \in B\}$$

Teoremas

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

Exercício

Mostre que $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$ não pode ser a identidade.

Problemas

Problema inicial

Considere um hotel hipotético com infinitos quartos, todos ocupados - isto é, todos os quartos contêm um hóspede. Suponha que um novo hóspede chega e gostaria de se acomodar no hotel. Como o gerente pode fazer ?

Problema segundo

A próxima noite, os quartos ficam todos ocupados. Um número infinito de hóspedes chegam sem reservações. Como o gerente pode fazer ?

Contradição

Seja
$$R = \{x \mid x \neq x\}.$$

Mostre que a hipótese que R é bem definido leva a uma contradição.

Famílias indexadas

Usos

- $\mathcal{A} = \{A_i \mid i \in I\}$
- $A = \bigcup_{i \in I} A_i = \{ a \mid \exists i \in I, a \in A_i \}$

- Conjuntos
- Punções
- Relações
- 4 Conjuntos ordenados

Características

Domínio e contradomínio

Se $f: A \rightarrow B$

- A é o domínio
- B é o contradomínio

Números de valores

Uma função produz no máximo um valor (exatamente um valor).

Bijetividade

Injetividade

- $\forall a, b \in A, a \neq b \Rightarrow f(a) \neq f(b)$
- $\forall a, b \in A, f(a) = f(b) \Rightarrow a = b$

Sobrejetividade

 $\forall b \in B, \exists a \in A, f(a) = b$

Bijetividade

Uma função é bijetiva/bijetora se ela é injetiva e sobrejetiva/sobrejetora.

Exercícios

- **1** Seja $f: A \to B$ uma função injetora. Mostre que $\forall C, D \subseteq A$
 - $f[C \cap D] = f[C] \cap f[D]$
 - $f[C \setminus D] = f[C] \setminus f[D]$
- A composição de funções injetoras é injetora e a composição de funções sobrejetoras é sobrejetora.

Outros elementos

Composição

$$g \circ f(x) = g(f(x))$$

Inversa

Seja $f:A\to B.$ f é inversível se $\exists g:B\to A$ tal que

$$f(a) = b \iff g(b) = a$$

_

Exercício

Mostre que f é inversível sse f é uma bijeção.

Conjunto contável/enumerável

Definição :B_{block}

- Um conjunto A é contável se existe um função injetora $f:A\to\mathbb{N}$ (card(A)=|A| da o número de elementos de A)
- Se f for também sobrejetora, A é infinito contável.

Exercícios

- $\textbf{ 0} \ \, \mathsf{Mostre} \ \, \mathsf{que} \ \, \mathbb{Z} \ \, \mathsf{\acute{e}} \ \, \mathsf{infinito} \ \, \mathsf{contável} \ \, . \\$
- **2** Mostre que $\mathbb{N} \times \mathbb{N}$ é infinito contável/enumerável.

Ponto fixo

Definição

Um ponto fixo de uma função $f: A \rightarrow A$ é um valor a tal que:

$$f(a) = a$$

Observação

Um ponto fixo pode ser visto como:

- um ponto de equilíbrio de uma função
- um ponto de convergência de uma função

- Conjuntos
- 2 Funções
- Relações
- 4 Conjuntos ordenados

Relação binária

Relação como conjunto

- $\hat{R} = \{(a, b) \in A \times B \mid R(a, b)\}$
- $\hat{R} \subseteq A \times B$

Reflexividade

- $\forall a \in A, (a, a) \in R$
- \forall a \in A, aRa

Simetria

- \forall a,b \in A, (a, b) \in R \Rightarrow (b, a) \in R
- ullet \forall a,b \in A, aRb \Rightarrow bRa

Transitividade

- \forall a,b,c \in A, (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R
- \forall a,b,c \in A, aRb \land bRc \Rightarrow aRc

Relação de equivalência

Definição

Uma relação R em um conjunto A é uma relação de equivalência se ela é:

reflexiva

Classe de equivalência

Seja R uma relação de equivalência em um conjunto A. Para qualquer $a \in A$, a classe de equivalência de a é

$$[a] = \{b \in A \mid R(a,b)\}$$

Relação de equivalência

Definição

Uma relação R em um conjunto A é uma relação de equivalência se ela é:

- reflexiva
- simétrica

Classe de equivalência

Seja R uma relação de equivalência em um conjunto A. Para qualquer $a \in A$, a classe de equivalência de a é

$$[a] = \{b \in A \mid R(a,b)\}$$

Relação de equivalência

Definição

Uma relação R em um conjunto A é uma relação de equivalência se ela é:

- reflexiva
- simétrica
- transitiva

Classe de equivalência

Seja R uma relação de equivalência em um conjunto A. Para qualquer $a \in A$, a classe de equivalência de a é

$$[a] = \{b \in A \mid R(a,b)\}$$

Exercício

Seja R uma relação de equivalência em um conjunto A. Mostre que

- $\forall a, b \in A, R(a, b) \iff [a] = [b]$
- O Dadas duas classes de equivalência, elas são ou iguais ou disjuntas.

Relação bem-fundada

Definição

Seja R uma relação binária em A. R é bem-fundada se

- $\forall B \subseteq A, B \neq \emptyset, \exists b \in B, \exists a \in B, R(a, b)$
- não existe uma sequência infinita $(a_n) \in A$ tal que $\forall n, R(a_{n+1}, a_n)$

Partição

Definição

Uma partição de um conjunto A é uma coleção \mathcal{F} de subconjuntos de A dois a dois disjuntos (i.e. $\forall B, C \in \mathcal{F}, B \neq C, B \cap C = \emptyset$) tal que

• $A = \bigcup \mathcal{F}$

Exercício

Mostre que a coleção das classes de equivalência de um conjunto A é uma partição de ${\cal A}$

Teorema (Relação de equivalência)

$$R(a,b) \iff (\exists B \in \mathcal{F}), a,b \in B$$

Então R é uma relação de equivalência em A. As classes de equivalência de R são precisamente os conjuntos na partição de \mathbb{F} .

Funções como relações

Definição

Seja $f: A \rightarrow B$

$$\hat{f} = \{(a,b) \in A \times B | f(a) = b\}$$

Propriedade adicional

$$\forall a \in A, \exists! b \in B, (a, b) \in \hat{f}$$

- Conjuntos
- Punções
- Relações
- 4 Conjuntos ordenados

Ordem parcial

Uma relação binária é uma ordem parcial \leq no conjunto A se ela é

reflexiva

Ordem parcial estrita

Uma ordem parcial estrita < é uma relação binária

Ordem parcial

Uma relação binária é uma ordem parcial \leq no conjunto A se ela é

- reflexiva
- transitiva

Ordem parcial estrita

Uma ordem parcial estrita < é uma relação binária

Ordem parcial

Uma relação binária é uma ordem parcial \leq no conjunto A se ela é

- reflexiva
- transitiva
- 3 antissimétrica $\forall a, b \in A, a \leq b \land b \leq a \Rightarrow a = b$

Ordem parcial estrita

Uma ordem parcial estrita < é uma relação binária

Ordem parcial

Uma relação binária é uma ordem parcial \leq no conjunto A se ela é

- reflexiva
- transitiva
- 3 antissimétrica $\forall a, b \in A, a \leq b \land b \leq a \Rightarrow a = b$

Ordem parcial estrita

Uma ordem parcial estrita < é uma relação binária

1 antirreflexiva $\forall a \in A, a \nleq a$

Ordens

Ordem parcial

Uma relação binária é uma ordem parcial \leq no conjunto A se ela é

- reflexiva
- transitiva
- 3 antissimétrica $\forall a, b \in A, a \leq b \land b \leq a \Rightarrow a = b$

Ordem parcial estrita

Uma ordem parcial estrita < é uma relação binária

- **1** antirreflexiva $\forall a \in A, a \nleq a$
- transitiva

Ordens

Ordem parcial

Uma relação binária é uma ordem parcial \leq no conjunto A se ela é

- reflexiva
- transitiva
- 3 antissimétrica $\forall a, b \in A, a \leq b \land b \leq a \Rightarrow a = b$

Ordem parcial estrita

Uma ordem parcial estrita < é uma relação binária

- **1** antirreflexiva $\forall a \in A, a \nleq a$
- transitiva
- $\textbf{ 3} \ \text{assimétrica} \ \forall a,b \in A, a < b \Rightarrow b \not < a$

Ordem total

Ordem total

Uma ordem é total se

$$\forall a, b \in A, a \leq b \lor b \leq a$$

Exemplo

- Inclusão é uma ordem parcial, i.e. para todo conjunto A,\subset é uma ordem parcial em $\mathcal{P}(A)$.)
- É total sse $card(A) \leq 1$

Ordem lexicográfica

Sejam:

- $m, n \in \mathbb{N}$,
- $a_i, b_i \in (A, <_A),$
- $a, b \in A^*$

$$a = a_1...a_n < b_1...b_m = b$$
 se

- $\exists k \leq min(m, n), \forall i < k, a_i =_A b_i \land a_k <_A b_k$, ou
- $n \le m \land \forall i \le n, a_i =_{\mathcal{A}} b_i$ (i.e. a é um prefixo de b)

Conjunto parcialmente ordenado (poset)

Dado um conjunto parcialmente ordenado (A, \leq)

Majorante

 $a \in A$ é um majorante de $B \subseteq A$ se $\forall b \in B, b \leqq a$

• 10, 12, 13 são majorantes de]0, 10[

Elemento maximal

a é um elemento maximal de A sse $\forall b \in A, a \leq b \Rightarrow a = b$

• A é o elemento maximal de $\mathcal{P}(A)$

Supremo

M é um supremo de $B\subseteq A$ se $\forall a\in A, M\leqq a\iff \forall b\in Bb\leqq a$

• 10 é o supremo de]0,10[

Reticulado

Definição

Um reticulado A é um poset tal que todo par $(a, b) \in A$ tem um supremo é um ínfimo.

Vocabulário particular

- A operação join de a e b $(a \land b = sup(\{a,b\}))$ define o supremo de (a,b)
- A operação meet de a e b $(a \lor b = inf(\{a,b\}))$ define o ínfimo de (a,b)

Exemplo

- Seja $A \neq \emptyset$, $(\mathcal{P}(A), \subseteq)$ é um reticulado
 - o supremo é a união dos conjuntos
 - o ínfimo é a interseção
- Qualquer conjunto totalmente ordenado define um reticulado

Axiomas dos reticulados

Seja $a, b, c \in (A, \vee, \wedge)$

- $a \lor b = b \lor a$
- $a \wedge b = b \wedge a$
- $a \lor (b \lor c) = (a \lor b) \lor c$
- $a \wedge (b \wedge c) = (a \wedge b) \wedge c$
- $a \lor (a \land b) = a$
- $a \wedge (a \vee b) = a$
- $a \lor a = a$
- $a \wedge a = a$

Exercícios

Seja (A, \vee, \wedge) um reticulado não vazio.

- ② Defina \leq tal que $a \leq b$ se $a \vee b = b$. Mostre que \leq é uma relação de ordem.

Reticulado completo

Definição

Um reticulado (A, \vee, \wedge) é completo se $\forall B \subseteq A, \bigvee B$ e $\bigwedge B$ existem.

Teorema (Knaster-Tarski)

- Seja (A, \lor, \land) um reticulado completo é $f: A \to A$ uma função crescente.
- O conjunto de pontos fixos de f em A não é vazio e é um reticulado completo.
- f tem um menor é um maior ponto fixo em A

Resumo

- Conjuntos
- 2 Funções
- Relações
- 4 Conjuntos ordenados

Referências

- K.J. Devlin, Sets, functions, and logic: an introduction to abstract mathematics, Chapman & Hall mathematics, Chapman & Hall, 2003.
- B.A. Davey and H.A. Priestley, *Introduction to lattices and order*, Cambridge mathematical text books, Cambridge University Press, 2002.
 - Y. Moschovakis, *Notes on set theory*, Springer Undergraduate Texts in Mathematics and Technology, Springer, 2006.

Perguntas?

http://dimap.ufrn.br/~richard/dim0436