$$\begin{array}{c} A \\ E \\ O \end{array} \begin{array}{c} A \\ E \\ O \end{array} \begin{array}{c} C \\ C \\ O \end{array} \begin{array}{c} C \\ C \end{array} \begin{array}{c} C \\ C \\ C \end{array} \begin{array}{c} C \\ C \end{array}$$

| Inputs                                  |                |              |                |                                | O  | etpuls |                              | ADARTER I. I. C.                 |               |  |
|-----------------------------------------|----------------|--------------|----------------|--------------------------------|----|--------|------------------------------|----------------------------------|---------------|--|
| A                                       | B              | C            | 0              | E                              | A' | A'+B   | (A'+B)C                      | DE                               | F= (A'+B)C+DE |  |
| 000000000000000000000000000000000000000 | 00000000000000 | 000000000000 | 00000000000000 | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- |    |        | 00 00 0000 000 0 0 0 0 0 0 0 | 000-000-000-000-000-000-000-000- | 000           |  |

•

| 12                                      | E                |              |                | James                            | City |              | topic 31             |                                     |       | 74101      |                       |                                 |                 |
|-----------------------------------------|------------------|--------------|----------------|----------------------------------|------|--------------|----------------------|-------------------------------------|-------|------------|-----------------------|---------------------------------|-----------------|
| In                                      | puts             |              |                |                                  | (    | Sulpi        | uls                  |                                     |       | J190 (6-1) | 16 - WinV             |                                 |                 |
| A                                       | В                | C            | 0              | E                                | θ,   | c',          | 0,                   | ВС                                  | B,+C, | D'+BC      | CB4C')A               | E(D'+BC)                        | F               |
| 000000000000000000000000000000000000000 | 0000000000000000 | 000000000000 | 00000000000000 | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- |      | 000000000000 | 00 00 00 00 00 00 00 | 00000000000000000000000000000000000 |       | 0000000000 | 000000000000000000000 | 0-000-000-0-0-0-0-000-000-00-0- | 0-000-000-000-0 |

Components Required ->
Sl. No. Name of the Components Specification Quantity

1 7400 IC 2 input NAND Gate 2
2 7410 IC 3 input NAND Gate 3
4 Universal Trainer Kit — 1
4 Connecting Wires 23 SWG As required

Observation ->

For Obj. 1 -> F = A'+BC+BCD

| 10     | Inp | uls |   | Theoretical Output | Pradical | Outputs |
|--------|-----|-----|---|--------------------|----------|---------|
| A      | B   | C   | 0 | F=A'+BC+BCD        | 0 1      |         |
| 0      | 0   | 0   | 0 | 1 0 1              | 1 10     |         |
| 0      | 0   | 0   | 1 | 1 0 3              |          |         |
| 00     | 0   | 1   | 0 | o i o o            | 110      |         |
| 0      | 0   | 10  | 1 | 1 0 1 /            | 0 0      |         |
| 0      | i   | 0   | 0 | 9 1/1              | 0 0      | 10      |
| 000000 | !   | 0   | - |                    | 5 6      | 11      |
| 0      | 1   | 1   | 0 | 1 1 0 1            | 111      | 0 0     |
| 1      | 00  | 0   | 0 | 001                | 0        | 10      |
| 12     | 0   | 0   | 1 | 0                  | 0        | 0 1     |
|        | 0   |     | 0 | 0                  | 0        | 1 1     |
| 1      |     | 0   | 6 | 0                  | 00       | 00      |
|        |     | 0   | Ī | 0                  | 0        | 10      |
|        | 1   | 1   | 0 | 9 9                |          | 0.1     |
|        | 1   | 1   | 1 | 1 0                | 1 1      | 0 0     |

For Obj. 2 -> F = CA'+B)C+DE

| -                                       | Inpu     | ls .         | 00              | Loil                               | Theoretical Output. | Practical Outputs |
|-----------------------------------------|----------|--------------|-----------------|------------------------------------|---------------------|-------------------|
| A                                       | B        | C            | 0               | E                                  | F= (A'+B)C+DE       |                   |
| 000000000000000000000000000000000000000 | 00000000 | 000000000000 | 000000000000000 | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | 1=(A+6)C+De         | 000000            |

For Obj. 3 → F=(B'+C') A+ E (D'+BC)

| 1 | Inputs          |                   |               |                |                                          | Theoretical Output  | Practical Output |
|---|-----------------|-------------------|---------------|----------------|------------------------------------------|---------------------|------------------|
|   | A               | B                 | C             | 0              | E                                        | F=(B'+C')A+E(D'+BC) |                  |
|   | 000000000000000 | 00000000000000000 | 0000000000000 | 00000000000000 | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | 0-000-000-000-0     | 0-000-000-000-0  |

Conclusion ->

This experiments implements Boolean functions using logic gates. Some basics of logic gates (NAND) in sum of product representation of equations of their implementation using logic gate and 7410 IC, 3 input NAND gate is also used.

## I. OBJECTIVE:

- 1. Implement the Boolean function given below using two-level NAND-gate circuit. F = A' + BC + BCD
- 2. Implement the following Boolean function using two-input NAND-gates F = (A' + B) C + DE
- Consider the Boolean function given below:
   F = (B' + C') A + E (D' + BC)
   Implement the function using minimum number of NAND gates.

## II. PRE-LAB

For Obj. 1:

- a. Draw the circuit diagram for the function F.
- b. Obtain the truth table for all input combinations.

For Obj. 2:

- a. Draw the circuit diagram for the function F.
- b. Obtain the truth table for all input combinations

For Obj. 3:

- a. Draw the circuit diagram for the function F.
- b. Obtain the truth table for all input combinations

## III. LAB:

Components Required:

S. No Name of the Component Specification Quantity

Observation:

Conclusion:

## IV. POST LAB:

- 1. Draw a circuit for the following Boolean function using NAND-gates F=AC+AD+B'D
- 2. Simplify the following Boolean expression and Draw the circuit using NAND gates. F= BC'D' + ABC' + AC'D + AB'D + A'BD'.



