INSERTION SORT, MERGE SORT & RECURRENCES

Juan Mendivelso

CONTENTS

- 1. Insertion Sort
- 2. Merge Sort
- 3. Recurrences

1. INSERTION SORT

SORTING PROBLEM

Input: A sequence of *n* numbers $\langle a_1, a_2, \dots, a_n \rangle$.

Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

INSERTION SORT ON CARDS

INSERTION SORT EXAMPLE

INSERTION SORT PSEUDOCODE

```
INSERTION-SORT (A)
   for j = 2 to A. length
       key = A[j]
       // Insert A[j] into the sorted sequence A[1...j-1].
       i = j - 1
       while i > 0 and A[i] > key
           A[i + 1] = A[i]
           i = i - 1
       A[i+1] = key
```

INSERTION SORT PSEUDOCODE

INSERTION-SORT (A)

```
for j = 2 to A.length
   key = A[j]
    // Insert A[j] into the sorted sequence A[1...j-1].
    i = j - 1
    while i > 0 and A[i] > key
        A[i+1] = A[i]
        i = i - 1
   A[i+1] = key (a)
                                                                          4 5 6
                                           (b) 2
                                                                   (c)
                    (d)
                                            (e)
                                                                    (f)
```

LOOP INVARIANT

INSERTION-SORT (A)

for j = 2 to A.length

key = A[j]

// Insert A[j] into the sorted sequence A[1...j-1].

i = j - 1

while i > 0 and A[i] > key

A[i+1] = A[i]

order.

At the start of each iteration of the **for** loop of lines 1–8, the subarray

A[1...j-1] consists of the elements originally in A[1...j-1], but in sorted

LOOP INVARIANT

INSERTION-SORT (A)

for j = 2 to A. length

key = A[j]

// Insert A[j] into the sorted sequence A[1...j-1].

$$4 i = j - 1$$

while i > 0 and A[i] > key

A[i+1] = A[i]

$$i = i - 1$$

$$i = i - 1$$

$$A[i + 1] = key$$
 (a)

At the start of each iteration of the **for** loop of lines 1–8, the subarray A[1...j-1] consists of the elements originally in A[1...j-1], but in sorted order.

SPACE REQUIRED

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2  key = A[j]

3  // Insert A[j] into the sorted sequence A[1 ... j - 1].

4  i = j - 1

5  while i > 0 and A[i] > key

6  A[i + 1] = A[i]

7  i = i - 1

8  A[i + 1] = key
```

SPACE REQUIRED

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i] • \Theta(1)

7 i = i-1

8 A[i+1] = key
```

RUNNING TIME

• t_i:number of times line 5 is executed for of j

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

GENERAL CASE

 t_j:number of times line 5 is executed for of j

```
INSERTION-SORT (A)
                                                   times
                                           cost
   for j = 2 to A. length
                                                  n
                                           C_1
  key = A[j]
                                                  n-1
                                           C_2
     // Insert A[j] into the sorted
          sequence A[1...j-1].
                                             n-1
                                          c_4 \qquad n-1
     i = j - 1
                                          c_5 \qquad \sum_{i=2}^n t_i
     while i > 0 and A[i] > key
                                          c_6 \qquad \sum_{i=2}^{n} (t_i - 1)
         A[i+1] = A[i]
                                          c_7 \qquad \sum_{i=2}^n (t_i - 1)
  i = i - 1
    A[i+1] = kev
                                                  n - 1
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

BEST CASE

INSERTION-SORT (A)times cost for j = 2 to A.length C_1 n-1key = A[j] C_2 // Insert A[j] into the sorted sequence A[1 ... j - 1]. n-1 $c_4 \qquad n-1$ i = j - 1 $c_5 \qquad \sum_{i=2}^n t_i$ **while** i > 0 and A[i] > key $c_6 \qquad \sum_{j=2}^{n} (t_j - 1)$ A[i+1] = A[i] $c_7 \qquad \sum_{i=2}^n (t_i - 1)$ i = i - 1A[i+1] = kevn-1

• t_j:number of times line 5 is executed for of j

•
$$t_j=1$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

WORST CASE

INSERTION-SORT (A)1 for j = 2 to A. length 2 key = A[j]3 // Insert A[j] into the sorted sequence A[1 ... j - 1]. 4 i = j - 15 while i > 0 and A[i] > key6 A[i + 1] = A[i]7 i = i - 18 A[i + 1] = key

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
and
$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

• t_j:number of times line 5 is executed for of j

•
$$t_j = j$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right).$$

16

times

n-1

n-1

n-1

 $c_6 \qquad \sum_{j=2}^{n} (t_j - 1)$

 $c_7 \qquad \sum_{i=2}^n (t_i - 1)$

n - 1

 $\sum_{i=2}^{n} t_{i}$

cost

 C_1

 C_2

AVERAGE CASE

INSERTION-SORT (A)

- 1 **for** j = 2 **to** A.length
- 2 key = A[j]
- Insert A[j] into the sorted sequence A[1...j-1].
- 4 i = j 1
- 5 **while** i > 0 and A[i] > key
- A[i+1] = A[i]
- i = i 1
- 8 A[i+1] = key

cost times

- c_1 n
- $c_2 \qquad n-1$
- 0 n-1
- $c_4 \qquad n-1$
- $c_5 \qquad \sum_{j=2}^n t_j$
- $c_6 \qquad \sum_{j=2}^n (t_j 1)$
- $c_7 \qquad \sum_{j=2}^{n} (t_j 1)$
- $c_8 \qquad n-1$

• t_j:number of times line 5 is executed for of j

•
$$t_j = j/2$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

$$T(n) = ???$$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
and

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

ASYMPTOTIC ANALYSIS

- Let T(n) denote the running time of Insertion Sort.
- Fill the following table by determining, in each cell, which Δ in $\{\theta,\Omega,O,\omega,o\}$ will make the expression $T(n)=\Delta(f(n))$ true.

Case/ f(n)	Δ(1)	Δ(n)	Δ(n²)	Δ(n³)
Best Case				
Worst Case				
Average Case				
General Case				

18

ASYMPTOTIC ANALYSIS

- Let T(n) denote the running time of Insertion Sort.
- Fill the following table by determining, in each cell, which Δ in $\{\theta,\Omega,O,\omega,o\}$ will make the expression $T(n)=\Delta(f(n))$ true.

Case/ f(n)	Δ(1)	Δ(n)	Δ(n²)	Δ(n³)
Best Case				
Worst Case				
Average Case				
General Case				

ANALYSIS OF ALGORITHMS

• What is the complexity of the following algorithm in the best, worst and general case?

```
Misterio1(n){
    for i=1 to n{
        k = i
        while k > 1{
        k=k/2
        }
    }
}
```

ANALYSIS OF ALGORITHMS

• What is the complexity of the following algorithm in the best, worst and general case?

```
Misterio2(n){
    for i=2 to n{
        InsertionSort(A,i)
    }
}
```

2. MERGE SORT

Divide & Conquer

- **Divide** the problem into subproblems.
- Conquer the subproblems by solving them recursively.
- **Combine** the solution of such problems to get the solution of the original problem.

Divide & Conquer in Merge Sort

- **Divide** the array to sort into two subarrays.
- Conquer by sorting such subarrays recursively.
- Combine such sorted subarrays into a sorted array by using the Merge procedure.

```
MERGE-SORT (A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, q+1, r)

5 MERGE (A, p, q, r)
```

Example of Merge Sort

- Let's consider the array 5,2,4,7,1,3,2,6
- **Divide** p=1, r=8, q=4. The subarrays are 5,2,4,7 and 1,3,2,6.
- Conquer those subarrays recursively: 2,4,5,7 and 1,2,3,6
- Combine such sorted subarrays
 Merge procedure.

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p + r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q + 1, r)

5 MERGE(A, p, q, r)
```

Example of Merge

$$A = \begin{bmatrix} 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ ... & 2 & 4 & 5 & 7 & 1 & 2 & 3 & 6 & ... \\ \hline k \\ L & 2 & 3 & 4 & 5 \\ \hline i & & & & & & \\ \hline I & 2 & 3 & 4 & 5 \\ \hline i & & & & & \\ \hline I & 2 & 3 & 6 & \infty \\ \hline I & & & & & \\ \hline I &$$

Example of Merge

Merge

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4 for i = 1 to n_1
       L[i] = A[p+i-1]
   for j = 1 to n_2
     R[j] = A[q+j]
   L[n_1+1]=\infty
   R[n_2+1]=\infty
10 i = 1
    j = 1
    for k = p to r
        if L[i] \leq R[j]
13
14
            A[k] = L[i]
15
           i = i + 1
     else A[k] = R[j]
16
17
            j = j + 1
```


Loop Invariant

```
MERGE(A, p, q, r)
1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4 for i = 1 to n_1
     L[i] = A[p+i-1]
6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
   j = 1
   for k = p to r
13
        if L[i] \leq R[j]
           A[k] = L[i]
15
           i = i + 1
    else A[k] = R[j]
16
            j = j + 1
```


At the start of each iteration of the **for** loop of lines 12–17, the subarray A[p..k-1] contains the k-p smallest elements of $L[1..n_1+1]$ and $R[1..n_2+1]$, in sorted order. Moreover, L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.

Loop Invariant

```
MERGE(A, p, q, r)
1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4 for i = 1 to n_1
     L[i] = A[p+i-1]
6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
   j = 1
   for k = p to r
13
        if L[i] \leq R[j]
           A[k] = L[i]
15
          i = i + 1
    else A[k] = R[j]
16
            j = j + 1
```


At the start of each iteration of the **for** loop of lines 12–17, the subarray A[p..k-1] contains the k-p smallest elements of $L[1..n_1+1]$ and $R[1..n_2+1]$, in sorted order. Moreover, L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.

 Initialization, Maintenance, Termination?

Space Complexity

```
MERGE(A, p, q, r)
1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4 for i = 1 to n_1
    L[i] = A[p+i-1]
6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
11 j = 1
   for k = p to r
       if L[i] \leq R[j]
           A[k] = L[i]
15
       i = i + 1
    else A[k] = R[j]
16
            j = j + 1
```


- Space complexity of Merge?
- In-place?

Space Complexity

```
MERGE(A, p, q, r)
1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4 for i = 1 to n_1
    L[i] = A[p+i-1]
6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
   j = 1
   for k = p to r
13
       if L[i] \leq R[j]
           A[k] = L[i]
15
       i = i + 1
    else A[k] = R[j]
16
            j = j + 1
```


- Space complexity of Merge?
 - Θ(n)
- In-place?
 - No

Time Complexity

```
MERGE(A, p, q, r)
1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4 for i = 1 to n_1
    L[i] = A[p+i-1]
6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
11 j = 1
   for k = p to r
       if L[i] \leq R[j]
           A[k] = L[i]
15
       i = i + 1
    else A[k] = R[j]
16
            j = j + 1
```


- Best case?
- Wort case?
- General Case?

Time Complexity

```
MERGE(A, p, q, r)
1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
4 for i = 1 to n_1
    L[i] = A[p+i-1]
6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
   j = 1
   for k = p to r
        if L[i] \leq R[j]
13
           A[k] = L[i]
15
          i = i + 1
    else A[k] = R[j]
16
            j = j + 1
```


- Best case?
 - Θ(n)
- Wort case?
 - Θ(n)
- General Case?
 - Θ(n)

Back to the Merge Sort Example

MERGE-SORT(A, p, r)

```
1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

Running Time of Merge Sort

How can we calculate it?

MERGE-SORT
$$(A, p, r)$$

1 **if** $p < r$
2 $q = \lfloor (p + r)/2 \rfloor$
3 MERGE-SORT (A, p, q)
4 MERGE-SORT $(A, q + 1, r)$
5 MERGE (A, p, q, r)

3. Recurrences

Recurrence

- Useful to calculate the complexity of an algorithm with recursive calls.
- The time for a length-n problem, T(n), is expressed in terms of the time of such problem for smaller inputs.
- For instance, for Divide & Conquer algorithms, the recurrence is:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise}. \end{cases}$$

- The division can have overlapping subproblems.
 - Example: n=18, a=5, b=3

More on Recurrences

- Every recurrence has a definition for the base case, but it is often omitted.
- It's not necessarily defining even partitions.
- It doesn't even have to be a fraction of the input.
- We can have inequalities of recurrences too.
- We often omit floors and ceilings.

Back to Merge Sort Running Time

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

```
Merge-Sort(A, p, r)
```

```
1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

Solution of Recurrences

- The recursion tree.
- The substitution method.
- The master method.

The recursion tree method on Divide & Conquer algorithms

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise}. \end{cases}$$

- Draw a tree where the root is the cost of the independent (not recursive) cost of the original problem (of size n), i.e D(n)+C(n).
- The number of branches of each node is the number of subproblems in the recursion, i.e. **a**.
- The size of a child problem is the size of its parent divided by **b**.

The recursion tree method on Divide & Conquer algorithms

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise}. \end{cases}$$

1. Draw a tree where

- the root is the cost of the independent (not recursive) cost of the original problem (of size n), i.e D(n)+C(n).
- The number of branches of each node is the number of subproblems in the recursion, i.e. **a**.
- The size of a child problem is the size of its parent divided by b.

The recursion tree method on Divide & Conquer algorithms

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise}. \end{cases}$$

- 2. Find the following information about level i of the tree:
 - size of a subproblem
 - cost of a subproblem
 - number of subproblems
 - total cost
- 3. Find in which level the leaves (base case) are.
- 4. Find the recursive cost and the base case cost.
- 5. Choose the one that is larger.

Recursion Tree for Merge Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

$$T(n)$$
 cn cn cn $T(n/2)$ $T(n/2)$ $cn/2$ $cn/2$ $cn/2$ $cn/2$ $cn/2$ $cn/4$ cn

Presentation made by Juan Mendivelso. Contents and figures extracted from the book: Introduction to Algorithms, Third Edition. Cormen, Leiserson, Rivests and Stein. The MIT Press. 2009.

45

Recursion Tree for Merge Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

Find the following information about level i of the tree:

- size of a subproblem
- cost of a subproblem
- number of subproblems
- total cost

Find in which level the leaves (base case) are.

Recursion Tree for Merge Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

Recursive Cost?

Base case cost?

Solution?

Examples

- T(n) = 3T(n/4) + cn
- $T(n) = 3T(n/4) + cn^2$.
- T(n) = T(n/3) + T(2n/3) + cn.

Substitution Method

- Guess a solution T(n) = f(n) and prove it inductively.
- Assume that such solution holds for the subproblems established by the recurrence.
- Use such assumptions in the definition of the recurrence to prove it holds for n as well.

The Substitution Method for Merge Sort Recurrence

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

- Guess: $T(n) = O(n \lg n)$.
- Prove that $T(n) \le cn \lg n$.
- Assume that

$$T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$$

Recursive proof:

$$T(n) \leq 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$$

$$\leq cn \lg(n/2) + n$$

$$= cn \lg n - cn \lg 2 + n$$

$$= cn \lg n - cn + n$$

$$\leq cn \lg n,$$

The Substitution Method for Merge Sort Recurrence

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

- Guess: T(n) = O (n lg n).
- Prove that $T(n) \le cn \lg n$.
- Assume that

$$T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$$

Proving boundary conditions:

- For the sake of argument, assume that T(1) = 1.
- $T(1) = 1 \le c(1) \lg (1)$ fails.
- $T(2) = 2T(1) + 2 = 4 \le c(2) \lg (2) = 2c$.
- $T(3) = 2T(1) + 3 = 5 \le c(3) \lg (3) = 3c \lg 3$
- Note that for $c \ge 2$, $n_0=2$, $T(n) \le cn \lg n$ for all $n \ge n_0$.
- The base case of the proof doesn't need to be the base case of the recurrence.

Guessing correct solutions

- Use the solution given by the recursion tree. The substitution proof is necessary it the tree analysis was not accurate.
- Beyond that, there is not general strategy.
- Experience and creativity are required.
- Solutions to similar recurrences can often be used.
 - Example: T(n) = 2T(n/2+17) + cn.

Guessing correct solutions

- Another strategy: find evident upper and lower bounds and then refine them.
- For instance, for $T(n) = 2T(\lfloor n/2 \rfloor) + n$
 - It is clear that $T(n) = \Omega(n)$, so we can test $T(n) = O(n^2)$.
 - We can refine the solution between n and n² until we reach O(n lg n).

Subtracting a lower-order term.

- Sometimes the inductive proof does not work even though the guessed solution is right.
- Then, it is necessary to subtract a lower-order term.
- For instance, $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

$$T(n) \leq cn$$

$$T(n) \leq c \ln / 2 \rfloor + c \ln / 2 \rceil + 1$$

$$= cn + 1,$$

$$T(n) \leq cn - d$$

$$T(n) \leq c \ln / 2 \rfloor - d) + (c \ln / 2 \rceil - d) + 1$$

$$= cn - 2d + 1$$

$$< cn - d,$$

Avoid pitfalls

- The proof needs to be accurate.
- For example, $T(n) = 2T(\lfloor n/2 \rfloor) + n$

$$T(n) \le 2(c \lfloor n/2 \rfloor) + n$$

 $\le cn + n$
 $= O(n), \iff wrong!!$

Changing variables

$$T(n) = 2T \left(\left\lfloor \sqrt{n} \right\rfloor \right) + \lg n$$

$$T(2^m) = 2T(2^{m/2}) + m \qquad m = \lg n$$

$$S(m) = 2S(m/2) + m$$

$$S(m) = O(m \lg m)$$

$$T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n)$$

Example

- Prove the guesses provided by the recursion tree to
 - T(n) = 3T(n/4) + cn
 - $T(n) = 3T(n/4) + cn^2$.

Master Method

Provides a cookbook method for solving recurrences of the form

$$T(n) = aT(n/b) + f(n),$$

where $a \ge 1$ and b > 1 are positive constants and f(n) is an asymptotically positive function.

For short, f(n) and $n^{\log b}$ (a) are compared. The one that is polynomially bigger is the solution to the recurrence. If they are equal, the solution is $f(n)(\lg n)$.

Master Method

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Example of Case 1

$$T(n) = 9T(n/3) + n$$

$$a = 9, b = 3. f(n) = n$$

$$n^{\lg_b a} = n^{\lg_3 9} = n^2$$

$$f(n) = \mathcal{O}(n) = \mathcal{O}(n^{2-1}) = \mathcal{O}(n^{\lg_b a - \epsilon})$$

$$\epsilon = 1$$

$$T(n) = \theta(n^2)$$

Example of Case 2

$$T(n) = T(2n/3) + 1$$

$$a = 1, b = \frac{3}{2}, f(n) = 1$$

$$n^{\lg_b a} = n^{\lg_{\frac{3}{2}} 1} = n^0 = 1$$

$$f(n) = 1 = \theta(1) = \theta(n^{\lg_b a})$$

$$T(n) = \theta(\lg n)$$

Example of Case 3

$$T(n) = 3T(n/4) + n \lg n$$

 $a = 3, b = 4, f(n) = n \lg n$
 $n^{\lg_b a} = n^{\lg_4 3} = n^{0.793}, f(n) = \Omega(n) = \Omega(n^{\lg_4 3 + \epsilon}), \epsilon \simeq 0.207$

• Regularity test: $3f(n/4) \le cf(n)$

$$3f(n/4) \le cf(n)$$

$$3f(n/4) = 3\frac{n}{4}\lg(n/4)$$

$$= \frac{3}{4}n(\lg(n) - \lg(4))$$

$$= \frac{3}{4}n(\lg n - \frac{3}{2}n \le \frac{3}{4}n\lg n = \frac{3}{4}f(n))$$

$$\Rightarrow T(n) = \theta(n\lg n)$$

Presentation made by Juan Mendivelso. Contents and figures extracted from the book: Introduction to Algorithms, Third Edition. Cormen, Leiserson, Rivests and Stein. The MIT Press. 2009.

Cases not covered by the Master Method

$$T(n) = 2T(n/2) + n \lg n$$

$$a = 2, b = 2, f(n) = n \lg n$$

$$n^{\lg_2 2} \equiv n \quad f(n) = \Omega(n)\Omega(n^{\lg_b a})$$

$$\exists \epsilon > 0 : f(n) = \Omega(n^{1+\epsilon})?$$

BIBLIOGRAPHY

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms, Third Edition. The MIT Press. 2009.
- Images of the Master Method by Julio Cesar Lopez.