

Progetto di Simulazione Multi-body

Dimensionamento di un meccanismo articolato per lo spostamento di oggetti

Prompt del progetto

Sono fissati i parametri:

- massa del pacco M
- coefficiente di attrito tra pacco e piano di scorrimento f_{cou}
- la velocità di rotazione della manovella CB ω
- La corsa del pattino E: H
- La posizione del pacco rispetto al punto morto inferiore del pattino in relazione alla corsa totale

Analisi cinematica

Sono indicate a fianco le maglie utilizzate per l'analisi cinematica.

Per praticità sono stati determinati i punti F e G.

Dato l'andamento della posizione angolare della manovella, si ricavano le posizioni degli altri membri.

Analisi cinematica

Si riporta il sistema di equazioni impostato in Matlab per la risoluzione della configurazione cinematica.

$$\begin{cases} z_1\cosarphi_1 + z_2\cosarphi_2 + z_3\cosarphi_3 + z_4\cosarphi_4 = 0 \ z_1\sinarphi_1 + z_2\sinarphi_2 + z_3\sinarphi_3 + z_4\sinarphi_4 = 0 \ z_3\cosarphi_3 + z_4\cosarphi_4 + z_5\cosarphi_5 + z_6\cosarphi_6 + z_7 - z_9 = 0 \ z_3\sinarphi_3 + z_4\sinarphi_4 + z_5\sinarphi_5 + z_6\sinarphi_6 - z_8 = 0 \end{cases}$$

L'errore introdotto è trascurabile

Analisi cinematica

Si ottengono così i parametri descrittivi della cinematica del pattino E.

La corsa non risulta sufficiente per i vincoli di progetto, si decide quindi di modificare la lunghezza della manovella CB affinché la corsa del pacco soddisfi i requisiti.

Ottimizzazione cinematismo

Per ottenere il risultato desiderato si è modificata la lunghezza del membro CB moltiplicandola per il rapporto tra la corsa desiderata e quella attuale iterativamente fino ad un errore inferiore alla precisione di progetto.

Animazione del cinematismo

Si riporta
l'animazione del
cinematismo
ottenuta
graficando
quanto ottenuto
dalla risoluzione
delle equazioni
di chiusura

Analisi dinamica

Applicando il principio dei lavori virtuali si determina la coppia da applicare alla manovella CB per equilibrare la forza resistente applicata sul pattino E. La forza resistente applicata al pattino è somma dell'inerzia del pattino, della forza di attrito dinamico e della forza dell'urto

Analisi dinamica

Gran parte della coppia è dovuto all'urto con il pacco, modellato come una forza costante durante il contatto (stimato 0,1s) pari alla quantità di moto del pacco alla fine dell'urto divisa per la sua durata.

Analisi con metodo di Newton

Applicando le 3 equazioni di Newton per i moti piani è possibile ricavare un sistema di equazioni lineari per la determinazione delle reazioni vincolari scambiate sulle coppie rotoidali

Analisi con metodo di Newton

Si riporta il sistema matriciale usato per determinare le componenti delle reazioni vincolari scambiate alle coppie rotoidali

Per il dimensionamento si è scelto un coefficiente di sicurezza di 1.2, per compensare eventuali difetti e ottenere masse ridotte.

Si assume che il dispositivo è sito in un contesto in cui eventuali rotture non possano arrecare danno a cose o persone nelle vicinanze.

Per il materiale si è optato per un acciaio al carbonio C45 bonificato, comunemente impiegato in applicazioni in cui è richiesta tenacità e resistenza.

Caratteristica	Valore				
Nome	Acciaio al carbonio C45				
Densità	7870 Kg/m^3				
Modulo elastico	220 GPa				
Tensione di snervamento	660 MPa				

Per la sezione invece si sono scelti gli scatolati rettangolari, dato che le sollecitazioni a cui sono sottoposti giacciono esclusivamente sul piano XY

L'andamento del momento flettente lungo il membro CB permette di dimensionarlo valutando esclusivamente la coppia massima esercita alla manovella

Per quanto riguarda i membri BA e DE, questi sono collegati a delle coppie rotoidali e supposti privi di massa. Per tale ragione sono sollecitati esclusivamente a trazione e compressione.

Si riportano i risultati del dimensionamento dei membri. Le sezioni coincidono e corrispondono alla sezione minima prevista nel catalogo. Questo è dovuto agli stress ridotti e al materiale particolarmente performante. Si potrebbero reiterare i calcoli scegliendo un materiale meno pregiato.

Membro	Sezione [mm]	Massa [Kg]
AO	30x15 Spessore: 1,5	0,222
СВ	20x10 Spessore: 2	0,061
ВА	20x10 Spessore: 1,5	0,194
AD	30x15 Spessore: 1,5	0,409
DE	20x10 Spessore: 1,5	0,255

Analisi dinamica 2

Avendo considerato finora i membri privi di massa si riesegue la valutazione della coppia necessaria considerando le nuove forze in gioco legate a massa e inerzia dei membri del cinematismo.

Analisi dinamica 2

Grazie alla ridotta massa dei membri e alla ridotta traslazione verticale delle bielle, la variazione della coppia richiesta è trascurabile nell'intorno dell'urto.

Nota la coppia da applicare alla manovella è possibile entrare nel catalogo dei riduttori con i dati relativi all'albero di uscita ed eseguire una prima analisi per il rapporto di trasmissione ideale.

Dato che la velocità dell'albero lento è pari a 70 rpm e le velocità nominali dei motori del catalogo considerato si attestano tra i 1500 e gli 8000 rpm, scegliamo tra i riduttori con rapporti di riduzione nel range compreso tra 20 e 100, quindi i riduttori a doppio stadio.

Si prendono i considerazione i riduttori proposti durante il corso. Eliminati i riduttori che non soddisfano i requisiti minimi di coppia e velocità, sia massimi che nominali, la scelta ricade sul riduttore che richiede una coppia minore al motore in ingresso:

Serie	HPD 180		
Rapporto di riduzione	1/28		
Coppia massima albero lento	1200 Nm		
Coppia nominale albero lento	1100 Nm		
Rendimento	95%		
Inerzia all'albero di ingresso	1e-3 Kg*m^2		

HPD 60	16	35	26	90	6000	4000	5	95	8'	6'	0,45	2000	2000	1,7 kg
	20	35	28	90	6000	4000	5	95	8'	6'	0,45	2000	2000	1,7 kg
	28	35	25	90	6000	4000	5	95	8'	6'	0.45	2000	2000	1,7 kg
	40	35	26	90	6000	4000	5	95	8'	6'	0.45	2000	2000	1,7 kg
	50	38	28	90	6000	4000	5	95	8'	6'	0,45	2000	2000	1,7 kg
	70	31	23	90	6000	4000	5	95	8'	6'	0,45	2000	2000	1,7 kg
	100	34	18	85	6000	5000	5	95	8'	6'	0,46	2000	2000	1,7 kg
HPD 75	16	75	63	190	6000	3000	8	95	8'	6'	0,76	2500	2500	3,2 kg
	20	79	63	190	6000	3000	8	95	8'	6'	0,76	2500	2500	3,2 kg
	28	75	63	190	6000	3000	8	95	8'	6'	0,71	2500	2500	3,2 kg
	40	79	60	190	6000	3000	8	95	8'	6'	0,7	2500	2500	3,2 kg
	50	75	63	190	6000	3000	8	95	8'	6'	0,68	2500	2500	3,2 kg
	70	79	65	190	6000	3000	8	95	8'	6'	0,68	2500	2500	3,2 kg
	100	64	45	150	6000	3500	8	95	8'	6'	0,66	2500	2500	3,2 kg
HPD 100	16	240	180	575	3000	2500	23	95	6'	4'	1,89	4000	4000	8 kg
	20	248	180	575	3000	2500	23	95	6'	4'	1,72	4000	4000	8 kg
	28	240	180	575	3000	2500	23	95	6'	4'	1,71	4000	4000	8 kg
	40	248	180	575	3000	2500	23	95	6'	4'	1,31	4000	4000	8 kg
	50	240	180	575	3000	2500	23	95	6'	4'	1,31	4000	4000	8 kg
	70	220	178	575	3000	2500	23	95	6'	4'	1,31	4000	4000	8 kg
	100	204	144	500	3000	3000	23	95	6'	4'	1,31	4000	4000	8 kg
HPD 140	16	460	375	1125	3000	2500	68	95	7'	4'	7,71	7500	7500	18 kg
	20	432	375	1125	3000	2500	68	95	7'	4'	7,23	7500	7500	18 kg
	28	460	375	1125	3000	2500	68	95	7"	4'	7,11	7500	7500	18 kg
	40	432	348	1050	3000	2500	68	95	7'	4'	5,7	7500	7500	18 kg
	50	460	375	1125	3000	2500	68	95	7'	4'	5,7	7500	7500	18 kg
	70	420	336	1050	3000	2500	68	95	7*	4'	5,3	7500	7500	18 kg
	100	400	330	1050	3000	2500	68	95	7'	4'	5,3	7500	7500	18 kg
HPD 180	16	1200	1100	2750	3000	2500	135	95	7'	3'	11,31	11000	11000	33 kg
	20	1200	1100	2750	3000	2500	135	95	7'	3'	10,7	11000	11000	33 kg
	28	1200	1100	2750	3000	2500	135	95	7'	3'	10,4	11000	11000	33 kg
	40	1200	1100	2750	3000	2500	135	95	7'	3'	8,71	11000	11000	33 kg
	50	1200	1100	2750	3000	2500	135	95	7'	3'	8,65	11000	11000	33 kg
	70	1100	1050	2750	3000	2500	135	95	7'	3'	8,65	11000	11000	33 kg
	100	900	690	2250	3000	2500	135	95	7'	3'	8,65	11000	11000	33 kg

Il primo blocco viene escluso dall'algoritmo a causa del parametro T2B.

Il secondo blocco soddisfa le condizioni riguardo T2B, ma non entro il coefficiente di sicurezza imposto.

Il terzo blocco è escluso a causa dell'influenza del fattore di servizio. Il quarto blocco è escluso a causa della ridotta velocità di ingresso nominale. Il motore scelto tra i rimanenti è quello che comporta una minore coppia richiesta al motore.

Considerando il contributo di forze di attrito e di inerzia, oltre alla coppia alla manovella, si ottiene la coppia richiesta al motore. Si riporta un confronto tra i punti di lavoro e la curva caratteristica.

Identificativo motore	9			
Coppia di stallo di picco	10,9 Nm			
Coppia alla massima velocità	1,25 Nm			
Coppia di stallo continua	4,8 Nm			
Coppia nominale	3,01 Nm			
Velocità nominale	5000 rpm			
Velocità massima	6000 rpm			

Dimensionamento della camma

Attraverso il metodo di sintesi cinematica è possibile ottenere una camma che garantisca un moto del pattino pari a quello analizzato finora. Si evince che il raggio della camma necessario per tale applicazioni è di 5,599 m.

Dimensionamento della camma

Il diametro elevato è dovuto ai limiti imposti sugli angoli di pressione, più stringente per quanto riguarda la fase di spinta.

Dimensionamento della camma

La camma, in acciaio C45, avrebbe una massa di 86x10^3 Kg e un'inerzia di 253x10^3 Kg*m^2 che richiederebbe 1,86 MJ per raggiungere i 70 rpm. Mantenendo lo stesso motore scelto si impiegherebbero 1180 s per raggiungere la velocità desiderata.

Simulazione in Adams

Si visualizza l'animazione ottenuta con Adams

Un'analisi migliore riguardo la coppia si avrebbe modellando opportunamente le forze di contatto tra handler, pacco e piano di lavoro.

Simulazione Simscape

Simulazione Simscape

Si visualizza l'animazione ottenuta con Simscape, la presenza del pacco è simulata modificando la massa del punto E attraverso un blocco funzione.

Simulazione Simscape

La curva di coppia è simile a quanto previsto. L'ampiezza ridotta è dovuta all'assenza di un blocco che modelli l'urto tra pattino e pacco.

Simulazione Adams della camma

UNIVERSITÀ DEGLI STUDI DI PADOVA