Al Tester Interview Questions & Structure

Interview Structure (90-120 minutes)

- 1. **Introduction & Background** (10 minutes)
- 2. Fundamental Al Concepts (20 minutes)
- 3. **Testing Methodologies** (25 minutes)
- 4. **Technical Deep Dive** (25 minutes)
- 5. **Scenario-Based Questions** (20 minutes)
- 6. Ethics & Bias (15 minutes)
- 7. **Questions from Candidate** (5 minutes)

Category 1: Fundamental AI Concepts

Question 1: What is the difference between supervised and unsupervised learning?

Classic Al	GenAl
Answer: Supervised learning uses labeled training	Answer: In GenAl, supervised learning is used for tasks like
data to learn input-output mappings (e.g.,	fine-tuning models on specific datasets (e.g., instruction-
classification, regression). Unsupervised learning	following). Unsupervised learning is fundamental to
finds patterns in unlabeled data (e.g., clustering,	foundation models trained on vast unlabeled text/image data
dimensionality reduction).	to learn representations.
4	•

Question 2: How would you explain overfitting and how to detect it?

Classic Al	GenAl
Answer: Overfitting occurs when a model performs	Answer: In GenAI, overfitting manifests as models
well on training data but poorly on new data.	memorizing training data rather than generalizing. Detection
Detection methods include validation curves, cross-	includes perplexity metrics, human evaluation, and checking
validation, and monitoring training vs. validation loss.	for verbatim reproduction of training examples. Solutions
Solutions include regularization, dropout, and more	include diverse training data, regularization techniques, and
training data.	careful fine-tuning.
4	

Question 3: What are the key differences between traditional ML and deep learning?

Classic Al	GenAl
Answer: Traditional ML uses handcrafted features with simpler algorithms (SVM, decision trees). Deep learning automatically learns hierarchical features through neural networks with multiple layers. Deep learning requires more data and computational power but can handle complex patterns.	Answer: GenAl builds on deep learning principles but focuses on generative capabilities. It uses transformer architectures, attention mechanisms, and massive scale. Unlike traditional ML's predictive focus, GenAl creates new content and handles multimodal tasks.
4	•

Category 2: Testing Methodologies

Question 4: How would you design a test suite for an Al model?

Classic Al	GenAl
Answer: Include unit tests for data preprocessing, integration tests for model pipeline, performance tests (accuracy, precision, recall), robustness tests (adversarial examples), and regression tests for model updates. Use train/validation/test splits and cross-validation.	Answer: Test suite includes functional tests (output quality, coherence), safety tests (harmful content detection), robustness tests (prompt injection, jailbreaking), performance tests (latency, throughput), and bias evaluation. Include human evaluation and automated metrics like BLEU, ROUGE.
•	•

Question 5: What metrics would you use to evaluate model performance?

Classic AI	GenAl
Answer: Classification: accuracy, precision, recall, F1-	Answer: Text generation: BLEU, ROUGE, perplexity, human
score, AUC-ROC. Regression: MSE, RMSE, MAE, R ² .	evaluation scores. Image generation: FID, IS, CLIP score.
Also consider confusion matrices, learning curves,	General: coherence, relevance, factual accuracy, safety scores.
and domain-specific metrics.	Include both automated metrics and human judgment.
4	•

Question 6: How would you test for edge cases and corner cases?

Classic Al	GenAl
Answer: Create boundary value tests, null/empty	Answer: Test with unusual prompts, multilingual inputs,
inputs, outlier data, adversarial examples, and stress	edge case scenarios, prompt injection attempts, and
tests with extreme values. Use synthetic data	boundary conditions. Include adversarial prompting, context
generation and mutation testing. Test with data	length limits, and uncommon use cases. Test model behavior
outside training distribution.	with conflicting instructions.
4	•

Category 3: Technical Deep Dive

Question 7: Explain the concept of attention mechanisms.

Classic Al	GenAl
Answer: Attention allows models to focus on relevant	Answer: Self-attention in transformers is fundamental to
parts of input data, originally developed for sequence-to-	GenAl. It allows models to relate different positions in a
sequence tasks. It creates weighted connections between	sequence, enabling better understanding of context and
input and output elements, solving the bottleneck	long-range dependencies. Multi-head attention provides
problem of fixed-size representations.	multiple representation subspaces.
4	•

Question 8: What is transfer learning and when would you use it?

Classic AI	GenAl
Answer: Transfer learning uses pre-trained models as	Answer: Transfer learning is core to GenAl through
starting points for new tasks, especially useful with	foundation models. Pre-trained models like GPT, BERT are
limited data. Common approaches include feature	fine-tuned for specific tasks. Includes techniques like few-
extraction and fine-tuning. Effective when source and	shot learning, prompt engineering, and parameter-efficient
target domains are related.	fine-tuning (LoRA, adapters).
4	•

Question 9: How would you handle data quality issues in Al systems?

Classic Al	GenAl
Answer: Implement data validation pipelines, outlier	Answer: Focus on training data quality, content filtering,
detection, duplicate removal, and consistency checks. Use	deduplication at scale, and bias detection. Implement
data profiling, automated quality monitoring, and	safety filters, toxicity detection, and factual accuracy
establish data governance processes. Handle missing	checks. Monitor for data leakage and privacy concerns in
values and feature engineering.	large datasets.
4	•

Category 4: Scenario-Based Questions

Question 10: A model performs well in testing but fails in production. How would you investigate?

Classic Al	GenAl
Answer: Check for data drift, feature distribution changes,	Answer: Investigate prompt distribution changes,
infrastructure issues, or training/production environment	context length issues, safety filter interactions, or
mismatches. Implement monitoring, logging, and gradual	latency problems. Check for jailbreaking attempts,
rollout strategies. Analyze prediction confidence and error	unexpected user patterns, or content policy violations.
patterns.	Monitor generation quality and user satisfaction.
◀	•

Question 11: How would you test an AI system for bias?

Classic Al	GenAl
Answer: Use fairness metrics (demographic parity,	Answer: Test outputs across different demographic groups,
equalized odds), analyze performance across	cultural contexts, and languages. Check for stereotypical
different demographic groups, check for historical	representations, unfair treatment of protected groups, and
bias in training data, and implement bias detection	cultural biases. Use automated bias detection tools and
tools. Test with synthetic diverse datasets.	human evaluation from diverse perspectives.
4	•

Question 12: Describe how you would implement A/B testing for AI models.

Classic AI	GenAl
Answer: Split traffic between model versions, define success metrics, ensure statistical significance, and control for confounding variables. Monitor performance metrics, user behavior, and business outcomes. Implement gradual rollout and rollback capabilities.	Answer: Similar approach but consider generation quality, user engagement, safety metrics, and computational costs. Test different model sizes, prompting strategies, or finetuning approaches. Monitor for harmful outputs and user satisfaction in addition to performance metrics.
4	•

Category 5: Ethics & Bias

Question 13: What are the main ethical concerns in AI testing?

Classic Al	GenAl
Answer: Bias in training data and algorithms, privacy	Answer: Additional concerns include misinformation
concerns, transparency and explainability, fairness	generation, deepfakes, copyright infringement, job
across different groups, and accountability for	displacement, and potential for harmful content creation.
decisions. Need for diverse testing teams and inclusive	Need for content filtering, safety alignment, and responsible
design processes.	deployment practices.
4	•

Question 14: How would you ensure AI safety in your testing process?

Classic Al	GenAl
Answer: Implement robust validation processes, test	Answer: Include red team testing, safety alignment
for adversarial attacks, ensure human oversight,	evaluation, harmful content detection, and robustness against
establish clear failure modes, and maintain audit	prompt injection. Implement constitutional AI principles,
trails. Regular security assessments and compliance	human feedback integration, and continuous monitoring for
with regulations.	emerging safety issues.
4	•

Extended Technical Questions

Question 15: Explain different types of RAG architectures and their testing considerations.

Classic Al	GenAl
Answer: N/A - RAG is specific to GenAl. For classic Al, similar concept would be information retrieval systems combined with traditional ML models, tested for retrieval precision/recall and model accuracy separately.	Answer: Naive RAG: Simple retrieve-then-generate. Advanced RAG: Pre-retrieval (query rewriting), retrieval (hybrid search), post-retrieval (re-ranking). Modular RAG: Flexible components. Testing: Evaluate retrieval quality (relevance, coverage), generation quality (faithfulness, coherence), and end-to-end performance.
4	

Question 16: What is chunking in RAG and how would you test different chunking strategies?

Classic Al	GenAl
Answer: N/A - Chunking is RAG-specific. In	Answer: Chunking: Splitting documents into manageable pieces.
classic Al, similar concept is feature	Strategies: Fixed-size, sentence-based, semantic, recursive. Chunk
segmentation or data preprocessing,	overlap: Prevents information loss at boundaries. Testing: Evaluate
tested for information preservation and	retrieval accuracy, information completeness, context preservation. Test
model performance impact.	different chunk sizes (256, 512, 1024 tokens) and overlap percentages
model performance impact.	(10-20%).
◀	•

Question 17: Compare different fine-tuning approaches and their testing requirements.

Classic Al	GenAl
Answer: Transfer learning approaches: feature	Answer: Full fine-tuning: Update all parameters. Parameter-
extraction (freeze base layers), fine-tuning (adjust all	efficient: LoRA, adapters, prefix tuning. Instruction tuning:
layers), progressive unfreezing. Test for catastrophic	Task-specific formatting. RLHF : Human preference alignment.
forgetting, domain adaptation effectiveness, and	Testing: Evaluate task performance, general capability
computational efficiency.	retention, computational cost, and training stability.
4	•

Question 18: Explain the pre-training process and how you would validate it.

Classic Al	GenAl
Answer: Pre-training involves unsupervised feature	Answer: Pre-training: Large-scale unsupervised learning on
learning on large datasets (e.g., autoencoders,	diverse text/multimodal data. Validation : Perplexity metrics,
word2vec). Validation includes representation	downstream task evaluation, scaling laws verification, data
quality, downstream task performance, and	quality assessment, training stability monitoring, and emergent
computational efficiency.	capability evaluation.
4	•

Question 19: What are the key hyperparameters and how would you test their impact?

Classic Al	GenAl
Answer: Learning rate, regularization strength, batch	Answer: Learning rate, batch size, sequence length,
size, network architecture, optimizer choice. Testing :	temperature (randomness in generation), top-p/top-k
Grid search, random search, Bayesian optimization.	sampling, attention heads, model depth. Testing : Systematic
Monitor training curves, validation performance, and	hyperparameter sweeps, generation quality assessment, and
generalization gaps.	computational cost analysis.
4	•

Question 20: What is temperature in language models and how would you test its effects?

Classic Al	GenAl
Answer: N/A - Temperature is specific to	Answer: Temperature: Controls randomness in token selection.
generative models. In classic AI, similar concept	Low (0.1-0.3): deterministic, focused. High (0.8-1.0): creative,
is confidence thresholding or prediction	diverse. Testing : Evaluate output diversity, coherence, factual
uncertainty, tested for calibration and decision	accuracy, and user preference across temperature ranges. Test
boundaries.	consistency and controllability.
4	•

Question 21: Describe different neural network architectures and their testing considerations.

Classic Al	GenAl
Answer: CNNs: Convolution, pooling, fully connected	Answer: Transformers: Multi-head attention, feed-
layers. RNNs : LSTM, GRU for sequences. Testing : Layer-	forward networks, normalization layers. Testing : Attention
wise activation analysis, gradient flow, architecture-	pattern analysis, layer-wise representation quality, scaling
specific metrics (receptive field for CNNs, memory	behavior, and emergent capabilities at different model
retention for RNNs).	sizes.
4	•

Question 22: How would you test different machine learning algorithms for a classification task?

Classic AI	GenAl
Answer: Algorithms: SVM, Random Forest, Gradient	Answer: Algorithms: Fine-tuned transformers, few-shot
Boosting, Neural Networks. Testing : Cross-validation,	learning, prompt-based classification. Testing : Compare
precision-recall curves, ROC analysis, feature importance,	with traditional ML baselines, evaluate prompt sensitivity,
computational complexity, interpretability assessment.	few-shot performance, computational efficiency, and
Compare performance across different data distributions.	consistency across different prompt formulations.
4	•

Question 23: What evaluation frameworks would you use for model assessment?

Classic Al	GenAl
Answer: Frameworks: scikit-learn metrics, MLflow, Weights & Biases, TensorBoard. Evaluation: Automated metrics, statistical significance testing, cross-validation, holdout testing, and benchmark datasets (UCI, Kaggle).	Answer: Frameworks: HuggingFace Evaluate, LangChain evaluation, OpenAl Evals, BIG-bench, HELM. Evaluation: Automated metrics (BLEU, ROUGE), human evaluation platforms, safety benchmarks, and domain-specific evaluations.
4	•

Question 24: How would you implement continuous evaluation and monitoring?

Classic Al	GenAl
Answer: Monitoring: Model performance drift, data	Answer: Monitoring: Generation quality, safety metrics,
drift detection, prediction confidence, A/B testing	user satisfaction, computational costs. Tools : LangSmith,
infrastructure. Tools : MLflow, Kubeflow, custom	Weights & Biases, custom evaluation pipelines. Metrics :
dashboards. Metrics : Accuracy trends, inference	Coherence scores, toxicity detection, factual accuracy, user
latency, resource utilization.	feedback integration.
4	•

Question 25: Explain different types of attention mechanisms and their testing implications.

Classic Al	GenAl
Answer: Attention: Additive, multiplicative, self-	Answer: Multi-head attention: Parallel attention
attention. Testing : Attention weight visualization,	computations. Sparse attention : Efficient long sequences.
alignment quality, computational efficiency, gradient	Cross-attention: Multi-modal alignment. Testing: Attention
flow analysis. Validate attention focuses on relevant	pattern analysis, head importance evaluation, scaling
input regions.	efficiency, and interpretability assessment.
4	•

Question 26: How would you test for model robustness and adversarial attacks?

Classic AI	GenAl
Answer: Attacks: FGSM, PGD, C&W attacks. Testing:	Answer: Attacks: Prompt injection, jailbreaking, adversarial
Adversarial example generation, robustness metrics,	prompts. Testing : Red team exercises, robustness
certified defenses evaluation. Test with noise injection,	benchmarks, safety evaluations, alignment assessments.
input perturbations, and edge cases.	Test with manipulated inputs and edge case scenarios.
4	>

Question 27: What are the key considerations for testing multimodal AI systems?

Classic AI	GenAl
Answer: Modalities: Vision + text, audio + text.	Answer: Modalities: Vision-language models, audio-text
Testing: Cross-modal consistency, alignment	systems. Testing : Cross-modal understanding, generation
quality, missing modality handling, computational	quality, modality switching, alignment accuracy, and
efficiency across modalities.	consistency across different input combinations.
4	•

Question 28: How would you evaluate the interpretability and explainability of Al models?

Classic Al	GenAl
Answer: Methods: Feature importance, SHAP values,	Answer: Methods: Attention visualization, probe studies,
LIME, gradient-based explanations. Testing : Explanation	mechanistic interpretability, chain-of-thought prompting.
consistency, human-interpretability studies, faithfulness	Testing : Explanation quality, reasoning consistency, factual
to model behavior, and stability across similar inputs.	grounding, and alignment with human understanding.
■	•

Advanced Technical Questions

Question 29: Explain the difference between fine-tuning and prompt engineering.

GenAl Answer: Fine-tuning modifies model weights through training on specific datasets, requiring computational resources and technical expertise. Prompt engineering optimizes input instructions

without changing the model, offering faster iteration but potentially less consistent results.

Question 30: What is RLHF and why is it important?

GenAl Answer: Reinforcement Learning from Human Feedback trains models to align with human preferences and values. It's crucial for creating helpful, harmless, and honest Al systems by incorporating human judgment into the training process.

Question 31: How would you test for hallucinations in language models?

GenAl Answer: Compare outputs against verified knowledge bases, use fact-checking APIs, implement confidence scoring, test with questions having known answers, and use human evaluation for subjective content. Monitor for consistency across similar prompts.

Question 32: What are the different types of neural network layers and their testing considerations?

Classic Al	GenAl
Answer: Layers: Dense/FC, Convolutional, Pooling,	Answer: Layers: Embedding, Multi-head attention, Feed-
Dropout, Batch Norm, Activation. Testing : Layer-wise	forward, Layer normalization, Positional encoding.
gradient analysis, activation distributions, weight	Testing : Attention pattern analysis, layer-wise
initialization impact, layer ablation studies, and	representation quality, normalization effectiveness, and
computational profiling.	scaling behavior.
▲	•

Question 33: How would you test different optimization algorithms?

Classic Al	GenAl
Answer: Optimizers: SGD, Adam, RMSprop, AdaGrad.	Answer: Optimizers: AdamW, Lion, Adafactor for large
Testing : Convergence speed, final performance, stability,	models. Testing : Training stability, memory efficiency,
hyperparameter sensitivity, computational overhead. Plot	convergence in large-scale settings, learning rate
loss curves and learning rate schedules.	scheduling effectiveness, and gradient clipping behavior.
4	•

Question 34: What are the key differences between batch, mini-batch, and online learning?

Classic Al	GenAl
Answer: Batch: Full dataset per update. Mini-batch:	Answer: Batch sizes: Impact on training stability,
Subset per update. Online : One sample per update.	gradient noise, memory requirements. Testing : Optimal
Testing : Convergence behavior, memory usage,	batch size for different model sizes, gradient
computational efficiency, and final model quality across	accumulation effects, and distributed training
different batch sizes.	considerations.
4	•

Question 35: How would you test feature engineering and selection techniques?

Classic Al	GenAl
Answer: Techniques: PCA, feature scaling, polynomial features, feature selection (univariate, RFE, LASSO). Testing: Dimensionality reduction quality, information preservation, computational efficiency, and downstream task performance.	Answer: Feature engineering: Tokenization strategies, vocabulary size, subword encoding. Testing: Tokenization quality, vocabulary coverage, out-of-vocabulary handling, and multilingual capabilities.
4	>

Question 36: What are ensemble methods and how would you test them?

Classic AI	GenAl
Answer: Methods: Bagging, Boosting, Stacking, Voting.	Answer: Ensemble approaches: Model averaging,
Testing : Individual model performance, diversity	mixture of experts, multi-model consensus. Testing :
metrics, ensemble improvement, computational cost,	Output diversity, consistency, computational overhead,
and bias-variance trade-off analysis.	and ensemble calibration for generation tasks.
4	•

Question 37: How would you test regularization techniques?

Classic AI	GenAl
Answer: Techniques: L1/L2 regularization, dropout, early	Answer: Techniques: Dropout, weight decay, gradient
stopping, data augmentation. Testing : Overfitting	clipping, label smoothing. Testing : Training stability,
prevention, generalization improvement, optimal	generalization to new domains, optimal regularization
regularization strength, and computational impact.	parameters, and impact on generation quality.
4	•

Question 38: What are the considerations for testing model compression techniques?

Classic Al	GenAl
Answer: Techniques: Pruning, quantization, knowledge	Answer: Techniques: Model pruning, quantization,
distillation. Testing : Compression ratio, performance	distillation for LLMs. Testing : Generation quality
degradation, inference speed, memory usage, and	preservation, inference latency, memory footprint, and
accuracy preservation across different compression levels.	capability retention across different compression ratios.
4	•

Question 39: How would you test different sampling strategies during inference?

Classic AI	GenAl
Answer: N/A - Sampling strategies are primarily for	Answer: Strategies: Greedy, beam search, nucleus (top-p),
generative models. In classic AI, similar concept is	top-k sampling. Testing : Output quality, diversity,
prediction confidence thresholding or ensemble	consistency, computational cost, and user preference across
prediction aggregation.	different sampling parameters.
▲	•

Question 40: What are the key considerations for testing distributed training?

Classic AI	GenAl
Answer: Approaches: Data parallelism, model	Answer: Approaches: Data parallelism, model parallelism,
parallelism. Testing : Scaling efficiency, communication	pipeline parallelism. Testing : Training stability, gradient
overhead, synchronization issues, gradient consistency,	synchronization, memory efficiency, scaling laws, and model
and final model quality compared to single-node	quality consistency across different distributed
training.	configurations.
4	•

Excellent Candidate (Senior Level)

- Demonstrates deep understanding of both classic AI and GenAI concepts
- Provides specific, actionable testing strategies
- Shows awareness of current challenges and solutions
- Discusses ethical considerations proactively
- Can design comprehensive test frameworks

Good Candidate (Mid Level)

- Solid understanding of fundamental concepts
- Can explain basic testing methodologies
- Aware of common pitfalls and solutions
- Shows interest in learning new approaches

• Can work with existing test frameworks

Needs Development (Junior Level)

- Basic knowledge of AI concepts
- Limited testing experience
- Requires guidance on methodology
- May focus on only one area (classic AI or GenAI)
- Can contribute to existing testing efforts with supervision

Follow-up Questions by Experience Level

For Senior Candidates:

- "How would you build a testing infrastructure for a GenAl system at scale?"
- "What are the unique challenges in testing multimodal AI systems?"
- "How do you balance automated testing with human evaluation?"

For Mid-level Candidates:

- "Walk me through how you would test a chatbot for customer service"
- "What tools and frameworks have you used for AI testing?"
- "How do you prioritize which tests to run first?"

For Junior Candidates:

- "What interests you most about AI testing?"
- "How would you approach learning about a new AI model?"
- "What do you think are the biggest challenges in AI testing?"