1 Seminar nr. 4. Funcții. Funcții injective, surjective, bijective

- 1. Fie $a, b \in \mathbb{R}$, $a \neq 0$. Să se arate ca funcția polinomială reală de gradul întâi $f : \mathbb{R} \to \mathbb{R}$, f(x) = ax + b, este bijectivă și să se determine funcția inversă.
- 2. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$.
 - (a) să se arate că funcția NU este nici injectivă, nici surjectivă;
 - (b) să se arate că funcția $g = f|_{[0,+\infty)}$, este injectivă;
 - (c) Este g surjectivă?
 - (d) să se determine $f(\mathbb{R})$ şi $g(\mathbb{R})$;
 - (e) pentru $a, b \in \mathbb{R}$ să se determine f([a, b]);
 - (f) să se arate că funcția $\tilde{g}:[0,+\infty)\to g(\mathbb{R})$ este bijectivă și să se determine inversa.
- 3. Fie $a, b \in \mathbb{R}$, $a \neq 0$. Să se arate că funcția polinomială reală $f : \mathbb{R} \to \mathbb{R}$, $f(x) = ax^3 + b$, este bijectivă și să se determine funcția inversă.
- 4. Fie a>0. Să se arate că funcția polinomială reală $f:\mathbb{R}\to\mathbb{R},\ f(x)=ax^3+x+b$, este bijectivă.

Rezolvare $\forall x, y \in \mathbb{R}$ se arată că din f(x) = f(y) se obţine x = y. Avem $ax^3 + x + b = ay^3 + y + b$, de unde $(x - y)(ax^2 + axy + ay^2 + 1) = 0$; de aici x = y deoarece $ax^2 + axy + ay^2 + 1 = ax^2 + axy + \frac{1}{4}y^2 + \frac{3}{4}y^2 + 1 = a(x + y/2)^2 + \frac{3}{4}y^2 + 1 > 0$.

- 5. Fie $a,b,c,d\in\mathbb{R}$ cu $c\neq 0$. Să se arate că dacă $ad-bc\neq 0$, funcția reală $f:\mathbb{R}\setminus\{-\frac{d}{c}\}\to\mathbb{R}\setminus\{\frac{a}{c}\},\ f(x)=\frac{ax+b}{cx+d}$, este bijectivă și să se calculeze funcția inversă.
- 6. Fie $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1. Să se determine imaginea următoarelor mulțimi prin funcția f:
 - a) A = [0, 1]; b) A = [1, 2); c) $A = [0, +\infty);$ d) $A = \mathbb{R}.$

Răspuns a) Avem f([0,1]) = [1,3], ceea ce se poate observa din graficul funcției. Din definiție $f(A) = \{y \in \mathbb{R} \mid \exists x \in A, f(x) = y\}; f([0,1]) = \{y \in \mathbb{R} \mid \exists x \in [0,1], f(x) = y\}; 0 \le x \le 1$, atunci $0 \le 2x \le 2$, de unde $1 \le 2x + 1 \le 3$.

- b) f([1,2)) = [3,5); c) $f([0,+\infty)) = [1,+\infty)$; d) $f(\mathbb{R}) = \mathbb{R}$.
- 7. Să se determine Im(f), imaginea funcției $f: \mathbb{R} \to \mathbb{R}$ în următoarele cazuri:

a)
$$f(x) = \frac{x}{x^2 + x + 1}$$
; b) $f(x) = \frac{2x}{x^2 + 1}$; c) $f(x) = \frac{x}{x^2 - x + 1}$.

Rezolvare a) Din definiție $f(\mathbb{R}) = Imf = \{y \in \mathbb{R} \mid \exists x \in \mathbb{R}, f(x) = y\};$ $\frac{x}{x^2+x+1} = y$, de unde $x^2y + x(y-1) + y = 0$, pentru ca să existe $x \in \mathbb{R}$ (deci ecuația să aibă soluție) atunci $\Delta \geq 0$, deci $(y-1)^2 - 4y^2 \geq 0$, adică $(y+1) \cdot (3y-1) \leq 0$, pentru care $y \in [-1,1/3] = f(\mathbb{R})$.

Alternativ, din studiul variației funcției f, se obțin punctele critice -1, 1 care dau punctele de minim f(-1) și respectiv de maxim f(1) = 1/3; (vezi WA).

- b) Se poate proceda similar, însă direct $-1 \le \frac{2x}{x^2+1} \le 1$; cu observația că marginile sunt atinse pentru x=-1 respectiv x=1 deci $f(\mathbb{R})=[-1,1]$.
- c) ca și la pct. a) $\Delta \ge 0$, deci $(y+1)^2 4y^2 \ge 0$, adică $(y-1) \cdot (3y+1) \le 0$, pentru care $y \in [-1/3, 1] = f(\mathbb{R})$.
- 8. Fie $a, b \in \mathbb{C}$, $a \neq 0$. Să se arate că funcția polinomială complexă de gradul întâi $f: \mathbb{C} \to \mathbb{C}$, f(z) = az + b, este bijectivă și să se determine funcția inversă.
- 9. Fie $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^2$.
 - (a) să se arate că funcția NU este injectivă, dar este surjectivă;
 - (b) să se determine imaginea unei drepte paralele cu axa Ox prin f;
 - (c) să se determine imaginea unei drepte paralele cu axa Oy prin f.

Rezolvare Se cere imaginea prin funcția f a multimilor de forma

$$A = \{z \in \mathbb{C} \mid \operatorname{Re} z = a\}, a \in \mathbb{R} \text{ si } B = \{z \in \mathbb{C} \mid \operatorname{Im} z = b\}, b \in \mathbb{R}.$$

Pentru z = x + iy, $x, y \in \mathbb{R}$ avem

$$w = f(z) = x^2 - y^2 + 2xyi = u + iv, u, v \in \mathbb{R}$$

cu $u = \operatorname{Re} f = x^2 - y^2$ iar $v = \operatorname{Im} f = 2xy$.

Fie $b \in \mathbb{R}$ fixat. Pentru $z \in B$ avem y = b de unde $u = x^2 - b^2$ şi v = 2xb. Eliminăm variabila x. Pentru $b \neq 0$ avem x = v/(2b) de unde găsim curba (locul geometric dat de perechea (u, v))

$$u = v^2/(4b^2) - b^2$$

reprezentând o parabolă (fig. 1). Dacă b=0 atunci v=0 și $u=x^2,\,x\in\mathbb{R}.$

Analog pentru mulţimea A. Fie $a \in \mathbb{R}$ fixat. Pentru $z \in A$ avem x = a de unde $u = a^2 - y^2$ şi v = 2ay. Eliminăm variabila y. Pentru $a \neq 0$ avem y = v/(2a) de unde găsim curba

$$u = a^2 - v^2/(4a^2)$$

reprezentând o parabolă (fig. 2). Dacă a=0 atunci v=0 și $u=-y^2,\,y\in\mathbb{R}.$

Dreptele reprezentate prin mulţimile A şi B sunt perpendiculare. Uşor se poate observa că tangentele în punctul de intersecţie a două parabole f(A) şi f(B) sunt tangente. O funcţie care păstrează unghiurile dintre două curbe se numeşte **conformă**.

Figura 1: $f(z) = z^2$

Figura 2: $f(z) = z^2$

10. Fie $a, b, c, d \in \mathbb{C}$ cu $c \neq 0$. Să se arate că dacă $ad - bc \neq 0$, funcția

$$f: \mathbb{C} \setminus \left\{-\frac{d}{c}\right\} \to \mathbb{C} \setminus \left\{\frac{a}{c}\right\}, \ f(z) = \frac{az+b}{cz+d}$$

este bijectivă și să se calculeze funcția inversă.

11. Fie $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$. Să se determine $f^{-1}(2), f^{-1}(-1), f^{-1}([1, 4])$. Obs. Se definește contraimaginea unui punct printr-o funcție $f: X \to Y$

$$f^{-1}(y) = \{x \in X : f(x) = y\}$$

respectiv contraimaginea printr-o funcție a unei mulțimi

$$f^{-1}(B) = \{x \in X : f(x) \in B\}, B \subseteq Y.$$

vezi și exercițiile 29, 30, 31 pag. 13, Cap.III, Năstăsescu,... Culegere de probleme de algebră, Ed. Rotech Pro, 1997.

12. Fie X, Y două mulțimi nevide și $f: X \to Y$. Să se arate că

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2),$$

pentru orice $B_1, B_2 \subseteq Y$.

13. Fie X, Y două mulțimi nevide și $f: X \to Y$. Să se arate că

$$f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i),$$

pentru orice $B_i \subseteq Y$, $i \in I$, I multime de indici oarecare. Să se arate că

$$f(\bigcup_{i\in I} A_i) \subseteq \bigcup_{i\in I} f(A_i),$$

pentru orice $A_i \subseteq X$.

14. Fie X,Y două mulțimi nevide și $f:X\to Y$. Să se arate că

a)
$$f(f^{-1}(B)) \subseteq B$$
, $B \subseteq Y$; b) $A \subseteq f^{-1}(f(A))$, $A \subseteq X$.

- 15. Fie X,Y două mulțimi nevide și $f:X\to Y$. Să se arate că următoarele afirmații sunt echivalente:
 - a) f este injectivă;
 - b) $A = f^{-1}(f(A))$, pentru orice $A \subseteq X$.
 - c) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$, pentru orice $A_1, A_2 \subseteq X$;
 - d) pentru orice $A_1, A_2 \subseteq X$ din $A_1 \cap A_2 \neq \emptyset$ avem $f(A_1) \cap f(A_2) = \emptyset$;
 - e) $f(X \setminus A) \subseteq Y \setminus f(A)$, pentru orice $A \subseteq X$.

Rezolvare Arătăm a) \iff c);

 \Longrightarrow în general, pentru orice $A_1, A_2 \subseteq X$; $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$, folosind definiția. Pentru incluziunea inversă, fie $y \in f(A_1) \cap f(A_2)$, adică $y \in f(A_1)$ și $y \in f(A_2)$, de unde există $x_1 \in A_1$ pentru care $y = f(x_1)$ și există $x_2 \in A_2$ pentru care $y = f(x_2)$. De aici $y = f(x_1) = f(x_2)$, iar din injectivitate $x_1 = x_2 \in A_1 \cap A_2$, astfel că $y \in f(A_1 \cap A_2)$.

" \(\infty\) " fie $x, y \in X$ şi f(x) = f(y); alegem $A_1 = \{x\}$ şi $A_2 = \{y\}$. Presupunem prin absurd că f nu ar fi injectivă, deci $x \neq y$, adică $A_1 \cap A_2 \emptyset$; folosind egalitatea dată $\emptyset = f(\emptyset) = f(A_1 \cap A_2) = f(A_1) \cap f(A_2) = \{f(x)\}$, contradicție.

se relaţionează a) şi d). d) implică a); fie $x \neq y$ şi se arată că $f(x) \neq f(y)$; se aleg $A_1 = \{x\}$ şi $A_2 = \{y\}$ care sunt disjuncte; de unde $f(A_1)$ şi $f(A_2)$ sunt disjuncte. Invers, fie acum A_1, A_2 disjuncte şi trebuie arătat că $f(A_1) \cap f(A_2) = \emptyset$; pp. că ar aexista $y \in f(A_1) \cap f(A_2)$, deci $y \in f(A_1)$ şi $y \in f(A_2)$, deci ar exista $x_1 \in A_1$ cu f(x) = y şi $x_2 \in A_2$ pentru care $y = f(x_2)$, de unde în baza injectivităţii se ajunge că $x \in A_1 \cap A_2$ ceea ce este contradicţie.