Tabellenverzeichnis

4.1	Häufig verwendete Äquivalenzen von booleschen Ausdrücken	67
4.2	Nachweis eines Distributivgesetzes in Beispiel 4.4	68
4.3	Eine Wahrheitstabelle für Beispiel 4.7	70
4.4	Berechnungszeit für Lösungsmengen von Formeln erster Ordnung	102
5.1	Einige deterministische Komplexitätsklassen	106
7.1	Einschränkungen der (3,2)-CSP-Instanz aus Abb. 7.2	174
7.2	Einschränkungen der $(2,3)$ -CSP-Instanz I' aus Abb. 7.4, in denen	
	die Originalvariable Paul vorkommt	179
7.3	Arbeitsfaktoren der Lemmata 7.25 bis 7.35, 7.38, 7.42 und 7.44	218
8.1	Vom naiven TSP-Algorithmus inspizierte Rundreisen	233
8.2	MIN TSP-Algorithmus: Berechnung von $f(S,i)$ für $ S = 2 \dots$	235
8.3	MIN TSP-Algorithmus: Berechnung von $f(S, i)$ für $ S = 3 \dots$	236
8.4	MIN TSP-Algorithmus: Berechnung von $f(S, i)$ für $ S = 4$	237
11.1	Cliquenweite-2-Ausdrücke und die definierten 2-markierten Graphen	286

Abbildungsverzeichnis

1.1	Ein Graph zur Darstellung einer Zimmerbelegung	1
1.2	Eine mögliche Zimmeraufteilung, die Konflikte vermeidet	2
3.1	Beispiel für einen gezeichneten Graphen	19
3.2	Ein gerichteter Graph mit sechs Knoten und sieben gerichteten Kanten	21
3.3	Zwei unterschiedlich dargestellte isomorphe Graphen	21
3.4	Ein Graph, ein Teilgraph und ein induzierter Teilgraph	22
3.5	Zwei Wege und eine Schleife	23
3.6	Beispielgraph mit fünf Knoten und sieben Kanten	25
3.7	Ein Baum	27
3.8	Ein gerichteter Baum mit Bottom-up-Reihenfolge der Knoten	28
3.9	Clique, Knotenüberdeckung, unabhängige und dominierende Menge	29
3.10	Zwei vollständige Graphen, K_4 und K_6	29
3.11	Ein dreifärbbarer Graph	30
	Ein Graph G und der zugehörige Komplementgraph \overline{G}	31
	Drei vollständig bipartite Graphen und ein vollständig tripartiter Graph	31
	Die Kreise C_3 , C_4 und C_6	32
3.15	Zwei Gittergraphen, $G_{3,3}$ und $G_{2,4}$	32
3.16	Eine topologische Knotenordnung für einen Graphen	34
	Eine Tiefensuche mit DFS-Nummer und DFS-End-Nummer	37
3.18	Eine Breitensuche mit BFS-Nummer und Distanz zum Startknoten	38
3.19	Ein Graph mit zwei starken Zusammenhangskomponenten	40
3.20	Eine Tiefensuche für zwei starke Zusammenhangskomponenten	41
3.21	Eine Tiefensuche, die drei zweifache Zusammenhangskomponenten,	
	drei Trennungspunkte und eine Brücke bestimmt	43
3.22	Ein maximales Matching und ein größtes Matching	46
3.23	Ein Graph, gebildet aus einem Matching und einem größten Matching	47
3.24	Eine Suche nach einem alternierenden Weg	48
3.25	Eine zusammengefasste Blüte	49
3.26	Partition in drei unabhängige Mengen	53
3.27	Partition in drei Cliquen	54

3 28	Ein Graph G und der zugehörige Kantengraph $L(G)$	55
	Sitzplan der Klasse 8c: eine dominierende Menge	57
	Ein Graph mit domatischer Zahl drei	58
	Ein Graph für die Rundreise eines Händlers	59
3.31	Em Graph for the Rundreise emes franctiers	3)
4.1	Graph G_{φ} und der verdichtete Graph G'_{φ}	75
4.2	Ein boolescher Schaltkreis	77
4.3	Inklusionen zwischen FO ₁ , FO ₂ , MSO ₁ , MSO ₂ , SO ₁ und SO ₂	96
	initiationen zwisenen i og, i oz, ivio og, ivio og, i una soz	,,
5.1	Ein induzierter Teilgraph des Graphen aus Abb. 1.1	109
5.2	Partitionen in zwei nicht leere Teilmengen	110
5.3	Partitionen in drei nicht leere Teilmengen	111
5.4	Nichtdeterministischer Rateprozess mit deterministischer Verifikation	114
5.5	Ein nichtdeterministischer Berechnungsbaum	116
5.6	NP-Algorithmus für Dreifärbbarkeit	117
5.7	Reduktion von NAE-3-SAT auf 3-FÄRBBARKEIT	122
5.8	Graph G_{φ} ist wegen $\varphi \notin \text{NAE-3-SAT}$ nicht dreifärbbar	124
5.9	Graph $G_{\varphi'}$ ist wegen $\varphi' \in \text{NAE-3-SAT}$ dreifärbbar	124
5.10	Suchbaum für <i>p</i> -KNOTENÜBERDECKUNG in einem Gittergraphen	134
5.11	Ein boolescher Schaltkreis mit fünf Eingängen und einem Ausgang.	138
J.11	Em boolesener semantiers mit fam Emgangen und emem Ausgang.	150
7.1	Der Graph aus Abb. 1.1 mit umbenannten Knoten	169
7.2	Eine (3,2)-CSP-Instanz zum Graphen aus Abb. 7.1	175
7.3	Eine Lösung der (3,2)-CSP-Instanz aus Abb. 7.2	175
7.4	Eine Färbung der Variablen der (2,3)-CSP-Instanz aus Beispiel 7.11	178
7.5	(3,2)-CSP-Instanz <i>N</i> zur Illustration von Lemma 7.13	180
7.6	(3,2)-CSP-Instanz M , die aus N gemäß Lemma $7.13.1$ entsteht	181
7.7	(3,2)-CSP-Instanz L , die aus M gemäß Lemma $7.13.2$ entsteht	182
7.8	(3,2)-CSP-Instanz K , die aus L gemäß Lemma $7.13.3$ entsteht	183
7.9	(3,2)-CSP-Instanz J , die aus K gemäß Lemma $7.13.4$ entsteht	184
7.10	(3,2)-CSP-Instanz I, die aus J gemäß Lemma 7.13.5 entsteht	185
7.11	(3,2)-CSP-Instanz <i>I</i> im Beweis von Lemma 7.19	186
7.12	Vier modifizierte (3,2)-CSP-Instanzen	187
7.13	(3,2)-CSP-Instanz I für Beispiel 7.20	188
7.14	Gemäß Abb. 7.12(a) modifizierte (3,2)-CSP-Instanz	189
7.15	(3,2)-CSP-Instanz nach Entfernung von Paul	190
7.16	(3,2)-CSP-Instanz nach Entfernung von Max	190
7.17		192
	Transformation einer isolierten Einschränkung	
	Transformation einer baumelnden Einschränkung	197
	Erste Transformation im Beweis von Lemma 7.30	200
	Zweite Transformation im Beweis von Lemma 7.30	200
	Ein Zyklus von Implikationen im Beweis von Lemma 7.30	201
	Zwei Fälle im Beweis von Lemma 7.33	204
	Reduzierte Instanzen im zweiten Fall im Reweis von Lemma 7 33	204

	Abbildungsverzeichnis	311
7.26 7.27 7.28 7.29 7.30 7.31 7.32	Drei Fälle im Beweis von Lemma 7.35. Die zwei möglichen kleinen Dreierkomponenten mit acht Paaren Fallunterscheidung für den Zeugen einer großen Dreierkomponente . Drei gute Dreierkomponenten und acht kleine Zweierkomponenten . Ein nicht perfektes Matching in einem bipartiten Graphen . Deterministischer Algorithmus für (3,2)-CSP bzw. (4,2)-CSP . Rekursionsbaum des deterministischen CSP-Algorithmus . Transformation einer uneingeschränkten Kante . Algorithmus für Kanten-3-Färbbarkeit .	
8.1 8.2	Eine TSP-Instanz Ein Graph für Übung 8.14	
9.1 9.2 9.3 9.4 9.5	Zwei Bäume	250 252
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	Ein Graph für Beispiel 10.4 . Eine Baumdekomposition (\mathcal{X},T) der Weite 2 . Eine Wegdekomposition (\mathcal{X},T) der Weite 3 . Zum Beweis von Lemma 10.11 Ein serienparalleler Graph Zwei serienparallele Graphen Serielle Kombination serienparalleler Graphen Parallele Kombination serienparalleler Graphen Drei Halingraphen Eine schöne Baumdekomposition für Knoten mit mehr als	261 261 264 268 268 268 269
	einem Kind	272
11.2	Ein Cliquenweite-2-Ausdrucksbaum für den Graphen G_6 Ein Beispiel zur Datenstruktur für p^* -cw-Unabhängige Menge Ein Beispiel zur Datenstruktur für p^* -cw-Partition in Unabhängige Mengen	289 296 301

Literaturverzeichnis

- [ACG⁺03] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, M. Marchetti-Spaccamela, and M. Protasi. *Complexity and Approximation*. Springer-Verlag, second edition, 2003.
- [ACP87] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal of Algebraic and Discrete Methods, 8(2):277–284, 1987.
- [Ada79] D. Adams. The Hitchhiker's Guide to the Galaxy. Pan Books, 1979.
- [AH77a] K. Appel and W. Haken. Every planar map is 4-colorable 1: Discharging. *Illinois J. Math*, 21:429–490, 1977.
- [AH77b] K. Appel and W. Haken. Every planar map is 4-colorable 2: Reducibility. *Illinois J. Math*, 21:491–567, 1977.
- [AK97] N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable graphs. SIAM Journal on Computing, 26(6):1733–1748, 1997.
- [ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. *Journal of Algorithms*, 12(2):308–340, 1991.
- [AP89] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial *k*-trees. *Discrete Applied Mathematics*, 23:11–24, 1989.
- [Arn85] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability A survey. *BIT*, 25:2–23, 1985.
- [Bac94] P. Bachmann. Analytische Zahlentheorie, volume 2. Teubner, 1894.
- [BC93] D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice Hall, 1993.
- [BDG90] J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity II. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1990.
- [BDG95] J. Balcázar, J. Díaz, and J. Gabarró. *Structural Complexity I*. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, second edition, 1995.
- [BDLM05] A. Brandstädt, F. Dragan, H. Le, and R. Mosca. New graph classes of bounded clique width. *Theory of Computing Systems*, 38(5):623–645, 2005.
- [BE95] R. Beigel and D. Eppstein. 3-coloring in time $\mathcal{O}(1.3446^n)$: A no-MIS algorithm. In *Proceedings of the 36th IEEE Symposium on Foundations of Computer Science*, pages 444–452. IEEE Computer Society Press, October 1995.
- [BE05] R. Beigel and D. Eppstein. 3-coloring in time $\mathcal{O}(1.3289^n)$. Journal of Algorithms, 54(2):168–204, 2005.
- [Bel57] R. Bellman, editor. *Dynamic Programming*. Cambridge University Press, 1957.

- [BELL06] A. Brandstädt, J. Engelfriet, H. Le, and V. Lozin. Clique-width for four-vertex forbidden subgraphs. *Theory of Computing Systems*, 39(4):561–590, 2006.
- [BH06] A. Björklund and T. Husfeldt. Inclusion-exclusion algorithms for counting set partitions. In *Proceedings of the 47th IEEE Symposium on Foundations of Computer Science*, pages 575–582. IEEE Computer Society Press, October 2006.
- [BJG09] J. Bang-Jensen and G. Gutin. Digraphs. Theory, Algorithms and Applications. Springer-Verlag, 2009.
- [BK97] A. Blum and D. Karger. An $\tilde{\mathcal{O}}(n^{3/14})$ -coloring algorithm for 3-colorable graphs. *Information Processing Letters*, 61(1):49–53, 1997.
- [BK08] H. Bodlaender and A. Koster. Combinatorial optimization on graphs of bounded tree-width. *Computer Journal*, 51(3):255–269, 2008.
- [BLS99] A. Brandstädt, V. Le, and J. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, 1999.
- [BM93] H. Bodlaender and R. Möhring. The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics, 6(2):181–188, 1993.
- [Bod86] H. Bodlaender. Classes of graphs with bounded treewidth. Technical Report RUU-CS-86-22, Universiteit Utrecht, 1986.
- [Bod88] H. Bodlaender. Planar graphs with bounded treewidth. Technical Report RUU-CS-88-14, Universiteit Utrecht, 1988.
- [Bod96] H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.
- [Bod98] H. Bodlaender. A partial *k*-arboretum of graphs with bounded treewidth. *Theoretical Computer Science*, 209:1–45, 1998.
- [Büc60] J. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.
- [BXTV09] B. Bui-Xuan, J. Telle, and M. Vatshelle. Boolean-width of graphs. In Proceedings of the 4th International Workshop on Parameterized and Exact Computation, pages 61–74. Springer-Verlag Lecture Notes in Computer Science #5917, September 2009.
- [Bys02] J. Byskov. Chromatic number in time $\mathcal{O}(2.4023^n)$ using maximal independent sets. Technical Report RS-02-45, Center for Basic Research in Computer Science (BRICS), December 2002.
- [Cai96] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. *Information Processing Letters*, 58:171–176, 1996.
- [Cai08] L. Cai. Parameterized complexity of cardinality constrained optimization problems. *Computer Journal*, 51(1):102–121, 2008.
- [CHL+00] D. Corneil, M. Habib, J. Lanlignel, B. Reed, and U. Rotics. Polynomial time recognition of clique-width at most three graphs. In *Proceedings of the 9th La*tin American Symposium on Theoretical Informatics, pages 126–134. Springer-Verlag Lecture Notes in Computer Science #1776, April 2000.
- [Chl02] J. Chlebikova. Partial *k*-trees with maximum chromatic number. *Discrete Mathematics*, 259(1–3):269–276, 2002.
- [CKX06] J. Chen, I. Kanj, and G. Xia. Improved parameterized upper bounds for vertex cover. In Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Science, pages 238–249. Springer-Verlag Lecture Notes in Computer Science #4162, August/September 2006.
- [CLRS09] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. *Introduction to Algorithms*. MIT Press and McGraw-Hill, third edition, 2009.

- [CLSB81] D. Corneil, H. Lerchs, and L. Stewart-Burlingham. Complement reducible graphs. *Discrete Applied Mathematics*, 3:163–174, 1981.
- [CM87] J. Cai and G. Meyer. Graph minimal uncolorability is D^P-complete. *SIAM Journal on Computing*, 16(2):259–277, 1987.
- [CM08] J. Chen and J. Meng. On parameterized intractability: Hardness and completeness. *Computer Journal*, 51(1):39–59, 2008.
- [CMR00] B. Courcelle, J. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. *Theory of Computing Systems*, 33(2):125–150, 2000.
- [CO00] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101:77–114, 2000.
- [Cob64] A. Cobham. The intrinsic computational difficulty of functions. In Proceedings of the 1964 International Congress for Logic Methodology and Philosophy of Science, pages 24–30. North Holland, 1964.
- [Coo71] S. Cook. The complexity of theorem-proving procedures. In *Proceedings of the 3rd ACM Symposium on Theory of Computing*, pages 151–158. ACM Press, 1971.
- [Cou] B. Courcelle. Graph Structure and Monadic Second-Order Logic. Encyclopedia of Mathematics and its Applications. Cambridge University Press. To appear.
- [Cou92] B. Courcelle. The monadic second-order logic of graphs III: Tree-decompositions, minor and complexity issues. *Informatique Théorique et Applications*, 26:257–286, 1992.
- [CPS85] D. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs. SIAM Journal on Computing, 14(4):926–934, 1985.
- [CR05] D. Corneil and U. Rotics. On the relationship between clique-width and treewidth. SIAM Journal on Computing, 4:825–847, 2005.
- [CRST06] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. *Annals of Mathematics*, 164:51–229, 2006.
- [DF92] R. Downey and M. Fellows. Fixed parameter tractability and completeness. *Congressus Numerantium*, 87:161–187, 1992.
- [DF95] R. Downey and M. Fellows. Fixed-parameter tractability and completeness I: Basic results. *SIAM Journal on Computing*, 24(4):873–921, 1995.
- [DF99] R. Downey and M. Fellows. *Parameterized Complexity*. Springer-Verlag, 1999.
- [Die06] R. Diestel. *Graphentheorie*. Springer-Verlag, 2006.
- [Edm65] J. Edmonds. Paths, trees and flowers. *Canadian Journal of Mathematics*, 17:449–467, 1965.
- [EGW01] W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In Proceedings of the 27th International Workshop on Graph-Theoretic Concepts in Computer Science, pages 117–128. Springer-Verlag Lecture Notes in Computer Science #2204, June 2001.
- [EGW03] W. Espelage, F. Gurski, and E. Wanke. Deciding clique-width for graphs of bounded tree-width. *Journal of Graph Algorithms and Applications*, 7(2):141– 180, 2003.
- [Epp01] D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In *Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 329–337. Society for Industrial and Applied Mathematics, January 2001.
- [Epp03] D. Eppstein. Small maximal independent sets and faster exact graph coloring. *Journal of Graph Algorithms and Applications*, 7(2):131–140, 2003.

- [Epp04] D. Eppstein. Quasiconvex analysis of backtracking algorithms. In *Proceedings* of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 788–797. Society for Industrial and Applied Mathematics, January 2004.
- [Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. Karp, editor, *Complexity of Computation*, volume 7, pages 43–73.
 Proceedings of the SIAM-AMS Symposium in Applied Mathematics, 1974.
- [FG06] J. Flum and M. Grohe. *Parameterized Complexity Theory*. EATCS Texts in Theoretical Computer Science. Springer-Verlag, 2006.
- [FGK05] F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination A case study. In *Proceedings of the 32nd International Colloquium on Automata, Languages, and Programming*, pages 191–203, July 2005.
- [FGLS09] F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurabh. Clique-width: On the price of generality. In *Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 825–834. Society for Industrial and Applied Mathematics, January 2009.
- [FGPS05] F. Fomin, F. Grandoni, A. Pyatkin, and A. Stepanov. Bounding the number of minimal dominating sets: A measure and conquer approach. In *Proceedings* of the 16th International Symposium on Algorithms and Computation, pages 573–582, December 2005.
- [FGPS08] F. Fomin, F. Grandoni, A. Pyatkin, and A. Stepanov. Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Transactions on Algorithms, 5(1), 2008.
- [FKTV08] F. Fomin, D. Kratsch, I. Todinca, and Y. Villanger. Exact algorithms for treewidth and minimum fill-in. SIAM Journal on Computing, 38(3):1058–1079, 2008.
- [FRRS06] M. Fellows, F. Rosamond, U. Rotics, and S. Szeider. Clique-width minimization is NP-hard. In *Proceedings of the 38th ACM Symposium on Theory of Computing*, pages 354–362. ACM Press, May 2006.
- [Gal59] T. Gallai. Über extreme Punkt- und Kantenmengen. Ann. Univ. Sci. Budapest, Eotyos Sect. Math., 2:133–138, 1959.
- [GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
- [GK03] M. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs with fixed clique-width. *Theoretical Computer Science*, 299(1–3):719–734, 2003.
- [GK04] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM Journal on Discrete Mathematics, 18(1):30–40, 2004.
- [GNT08] J. Gramm, A. Nickelsen, and T. Tantau. Fixed-parameter algorithms in phylogenetics. *Computer Journal*, 51(1):79–101, 2008.
- [GR00] M. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. *International Journal of Foundations of Computer Science*, 11(3):423–443, 2000.
- [GRW06] A. Große, J. Rothe, and G. Wechsung. On computing the smallest four-coloring of planar graphs and non-self-reducible sets in P. *Information Processing Letters*, 99(6):215–221, 2006.
- [GT83] H. Gabow and R. Tarjan. A linear-time algorithm for a special case of disjoint set union. In *Proceedings of the 15th ACM Symposium on Theory of Computing*, pages 246–251, April 1983.
- [Gup66] R. Gupta. The chromatic index and the degree of a graph. *Notices of the AMS*, 13:719, 1966.

- [GW00] F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without $K_{n,n}$. In *Proceedings of the 26th International Workshop on Graph-Theoretic Concepts in Computer Science*, pages 196–205. Springer-Verlag *Lecture Notes in Computer Science #1938*, June 2000.
- [GW05] F. Gurski and E. Wanke. On the relationship between NLC-width and linear NLC-width. *Theoretical Computer Science*, 347(1–2):76–89, 2005.
- [GW06] F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs. *Theoretical Computer Science*, 359(1–3):188–199, 2006.
- [GY08] G. Gutin and A. Yeo. Some parameterized problems on digraphs. Computer Journal, 51(3):363–371, 2008.
- [Hag00] T. Hagerup. Dynamic algorithms for graphs of bounded treewidth. *Algorithmica*, 27(3):292–315, 2000.
- [Hal76] R. Halin. S-functions for graphs. *Journal of Geometry*, 8:171–176, 1976.
- [HK62] M. Held and R. Karp. A dynamic programming approach to sequencing problems. SIAM Journal, 10:196–210, 1962.
- [HLS65] J. Hartmanis, P. Lewis, and R. Stearns. Classification of computations by time and memory requirements. In *Proceedings of the IFIP World Computer Congress* 65, pages 31–35. International Federation for Information Processing, Spartan Books, 1965.
- [HMU02] J. Hopcroft, R. Motwani, and J. Ullman. Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson Studium, second edition, 2002.
- [Hol81] I. Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10(4):718–720, 1981.
- [HOSG08] P. Hlinený, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond treewidth and their applications. *Computer Journal*, 51(3):326–362, 2008.
- [HS65] J. Hartmanis and R. Stearns. On the computational complexity of algorithms. *Transactions of the American Mathematical Society*, 117:285–306, 1965.
- [Imm98] N. Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer-Verlag, 1998.
- [INZ03] T. Ito, T. Nishizeki, and X. Zhou. Algorithms for multicolorings of partial k-trees. IEICE Transactions on Information and Systems, E86-D:191–200, 2003.
- [JPY88] D. Johnson, C. Papadimitriou, and M. Yannakakis. On generating all maximal independent sets. *Information Processing Letters*, 27(3):119–123, 1988.
- [Jun78] H. Jung. On a class of posets and the corresponding comparability graphs. Journal of Combinatorial Theory, Series B, 24:125–133, 1978.
- [Jun08] D. Jungnickel. *Graphs, Networks and Algorithms*. Springer-Verlag, 2008.
- [Kar72] R. Karp. Reducibilities among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of Computer Computations, pages 85–103, 1972.
- [KLM09] M. Kaminski, V. Lozin, and M. Milanic. Recent developments on graphs of bounded clique-width. *Discrete Applied Mathematics*, 157(12):2747–2761, 2009.
- [Klo94] T. Kloks. Treewidth: Computations and Approximations. Springer-Verlag Lecture Notes in Computer Science #842, 1994.
- [KLS00] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number. *Combinatorica*, 20(3):393–415, 2000.
- [Knu97] D. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1 of Computer Science and Information. Addison-Wesley, third edition, 1997.

- [Knu98a] D. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2 of Computer Science and Information. Addison-Wesley, third edition, 1998.
- [Knu98b] D. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3 of Computer Science and Information. Addison-Wesley, second edition, 1998.
- [KR03] D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed clique-width. *Discrete Applied Mathematics*, 126(2–3):197–221, 2003.
- [Kre88] M. Krentel. The complexity of optimization problems. *Journal of Computer and System Sciences*, 36:490–509, 1988.
- [KV91] S. Khuller and V. Vazirani. Planar graph coloring is not self-reducible, assuming P ≠ NP. Theoretical Computer Science, 88(1):183–189, 1991.
- [KZN00] M. Kashem, X. Zhou, and T. Nishizeki. Algorithms for generalized vertexrankings of partial k-trees. Theoretical Computer Science, 240(2):407–427, 2000.
- [Lan09] E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, 1909.
- [Law76] E. Lawler. A note on the complexity of the chromatic number problem. *Information Processing Letters*, 5(3):66–67, 1976.
- [Ler71] H. Lerchs. On cliques and kernels. Technical report, Department of Computer Science, University of Toronto, 1971.
- [Lev73] L. Levin. Universal sorting problems. Problemy Peredaci Informacii, 9:115–116, 1973. In Russian. English translation in Problems of Information Transmission, 9:265–266, 1973.
- [LR04] V. Lozin and D. Rautenbach. On the band-, tree-, and clique-width of graphs with bounded vertex degree. SIAM Journal on Discrete Mathematics, 18(1):195–206, 2004.
- [LSH65] P. Lewis, R. Stearns, and J. Hartmanis. Memory bounds for recognition of context-free and context-sensitive languages. In *Proceedings of the 6th IEEE* Symposium on Switching Circuit Theory and Logical Design, pages 191–202. IEEE Computer Society Press, October 1965.
- [Mar08] D. Marx. Parameterized complexity and approximation algorithms. *Computer Journal*, 51(1):60–78, 2008.
- [Men27] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96–115, 1927.
- [MM65] J. Moon and L. Moser. On cliques in graphs. *Israel Journal of Mathematics*, 3:23–28, 1965.
- [MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential space. In *Proceedings of the 13th IEEE Symposium on Switching and Automata Theory*, pages 125–129. IEEE Computer Society Press, October 1972.
- [MU10] H. Müller and R. Urner. On a disparity between relative cliquewidth and relative NLC-width. *Discrete Applied Mathematics*, 158(7):828–840, 2010.
- [MV80] S. Micali and V. Vazirani. An $\mathcal{O}(\sqrt{|V|} \cdot |E|)$ algorithm for finding maximum matching in general graphs. In *Proceedings of the 21st IEEE Symposium on Foundations of Computer Science*, pages 17–27. IEEE Computer Society Press, October 1980.
- [Nie06] R. Niedermeier. *Invitation to Fixed-Parameter Algorithms*. Oxford University Press, 2006.
- [OS06] S. Oum and P. Seymour. Approximating clique-width and branch-width. *Journal of Combinatorial Theory, Series B*, 96(4):514–528, 2006.

- [Oum08] S. Oum. Approximating rank-width and clique-width quickly. *ACM Transactions on Algorithms*, 5(1):1–20, 2008.
- [Pap84] C. Papadimitriou. On the complexity of unique solutions. *Journal of the ACM*, 31(2):392–400, 1984.
- [Pap94] C. Papadimitriou. *Computational Complexity*. Addison-Wesley, 1994.
- [PU59] M. Paull and S. Unger. Minimizing the number of states in incompletely specified state machines. *IRE Transactions on Electronic Computers*, EC-8:356–367, 1959.
- [PW89] A. Petford and D. Welsh. A randomised 3-colouring algorithm. *Discrete Mathematics*, 74(1–2):253–261, 1989.
- [Rao08] M. Rao. Clique-width of graphs defined by one-vertex extensions. *Discrete Mathematics*, 308(24):6157–6165, 2008.
- [Rob86] J. Robson. Algorithms for maximum independent sets. *Journal of Algorithms*, 7(3):425–440, 1986.
- [Rob01] J. Robson. Finding a maximum independent set in time $\mathcal{O}(2^{n/4})$. Technical Report TR 1251-01, LaBRI, Université Bordeaux I, 2001. Available on-line at http://dept-info.labri.fr/~robson/mis/techrep.html.
- [Ros67] A. Rosenberg. Real-time definable languages. *Journal of the ACM*, 14:645–662, 1967.
- [Ros74] D. Rose. On simple characterizations of *k*-trees. *Discrete Mathematics*, 7:317–322, 1974.
- [Rot00] J. Rothe. Heuristics versus completeness for graph coloring. Chicago Journal of Theoretical Computer Science, vol. 2000, article 1:1–16, February 2000.
- [Rot03] J. Rothe. Exact complexity of Exact-Four-Colorability. *Information Processing Letters*, 87(1):7–12, 2003.
- [Rot05] J. Rothe. Complexity Theory and Cryptology. An Introduction to Cryptocomplexity. EATCS Texts in Theoretical Computer Science. Springer-Verlag, 2005.
- [Rot08] J. Rothe. Komplexitätstheorie und Kryptologie. Eine Einführung in Kryptokomplexität. eXamen.Press. Springer-Verlag, 2008.
- [RR05] T. Riege and J. Rothe. An exact 2.9416ⁿ algorithm for the three domatic number problem. In *Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science*, pages 733–744. Springer-Verlag *Lecture Notes in Computer Science #3618*, August 2005.
- [RR06] T. Riege and J. Rothe. Improving deterministic and randomized exponential-time algorithms for the satisfiability, the colorability, and the domatic number problem. *Journal of Universal Computer Science*, 12(6):725–745, 2006.
- [RRSY07] T. Riege, J. Rothe, H. Spakowski, and M. Yamamoto. An improved exact algorithm for the domatic number problem. *Information Processing Letters*, 101(3):101–106, 2007.
- [RS83] N. Robertson and P. Seymour. Graph minors I. Excluding a forest. *Journal of Combinatorial Theory, Series B*, 35:39–61, 1983.
- [RS86] N. Robertson and P. Seymour. Graph minors II. Algorithmic aspects of tree width. *Journal of Algorithms*, 7:309–322, 1986.
- [RS91] N. Robertson and P. Seymour. Graph minors X. Obstructions to treedecompositions. *Journal of Combinatorial Theory, Series B*, 52:153–190, 1991.
- [RV76] R. Rivest and J. Vuillemin. On recognizing graph properties from adjacency matrices. *Theoretical Computer Science*, 3(3):371–384, 1976.
- [Sav70] W. Savitch. Relationships between nondeterministic and deterministic tape complexities. *Journal of Computer and System Sciences*, 4(2):177–192, 1970.

- [Sch78] T. Schaefer. The complexity of satisfiability problems. In *Proceedings of the 10th ACM Symposium on Theory of Computing*, pages 216–226. ACM Press, May 1978.
- [Sch93] I. Schiermeyer. Deciding 3-colourability in less than 𝒪(1.415ⁿ) steps. In *Proceedings of the 19th International Workshop on Graph-Theoretic Concepts in Computer Science*, pages 177–182. Springer-Verlag *Lecture Notes in Computer Science* #790, June 1993.
- [Sch96] I. Schiermeyer. Fast exact colouring algorithms. In *Tatra Mountains Mathematical Publications*, volume 9, pages 15–30, 1996.
- [Sch99] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, pages 410–414. IEEE Computer Society Press, October 1999.
- [Sch02] U. Schöning. A probabilistic algorithm for *k*-SAT based on limited local search and restart. *Algorithmica*, 32(4):615–623, 2002.
- [Sch05] U. Schöning. Algorithmics in exponential time. In *Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science*, pages 36–43.
 Springer-Verlag *Lecture Notes in Computer Science #3404*, February 2005.
- [SHL65] R. Stearns, J. Hartmanis, and P. Lewis. Hierarchies of memory limited computations. In *Proceedings of the 6th IEEE Symposium on Switching Circuit Theory and Logical Design*, pages 179–190. IEEE Computer Society Press, October 1965.
- [ST08] C. Sloper and J. Telle. An overview of techniques for designing parameterized algorithms. *Computer Journal*, 51(1):122–136, 2008.
- [Ste90] R. Stearns. Juris Hartmanis: The beginnings of computational complexity. In A. Selman, editor, *Complexity Theory Retrospective*, pages 1–18. Springer-Verlag, 1990.
- [Sto73] L. Stockmeyer. Planar 3-colorability is NP-complete. SIGACT News, 5(3):19–25, 1973.
- [Sto77] L. Stockmeyer. The polynomial-time hierarchy. *Theoretical Computer Science*, 3(1):1–22, 1977.
- [SU02a] M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy: Part I: A compendium. *SIGACT News*, 33(3):32–49, September 2002.
- [SU02b] M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy: Part II. *SIGACT News*, 33(4):22–36, December 2002.
- [Sum74] P. Sumner. Dacey graphs. *Journal of the Australian Mathematical Society*, 18:492–502, 1974.
- [TT77] R. Tarjan and A. Trojanowski. Finding a maximum independent set. *SIAM Journal on Computing*, 6(3):537–546, 1977.
- [Uma01] C. Umans. The minimum equivalent DNF problem and shortest implicants. *Journal of Computer and System Sciences*, 63(4):597–611, 2001.
- [Viz64] V. Vizing. On an estimate of the chromatic class of a p-graph. *Metody Diskret. Analiz.*, 3:9–17, 1964.
- [Vla95] R. Vlasie. Systematic generation of very hard cases for 3-colorability. In Proceedings of the 7th IEEE International Conference on Tools with Artificial Intelligence, pages 114–119. IEEE, August/September 1995.
- [Wag87] K. Wagner. More complicated questions about maxima and minima, and some closures of NP. *Theoretical Computer Science*, 51:53–80, 1987.
- [Wan94] E. Wanke. *k*-NLC graphs and polynomial algorithms. *Discrete Applied Mathematics*, 54:251–266, 1994.

- [Whi32] H. Whitney. Congruent graphs and the connectivity of graphs. *American Journal of Mathematics*, 54:150–168, 1932.
- [Woe03] G. Woeginger. Exact algorithms for NP-hard problems. In M. Jünger, G. Reinelt, and G. Rinaldi, editors, *Combinatorical Optimization: "Eureka, you shrink!"*, pages 185–207. Springer-Verlag *Lecture Notes in Computer Science* #2570, 2003.
- [Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy. *Theoretical Computer Science*, 3:23–33, 1977.
- [Yam05] M. Yamamoto. An improved $\tilde{\mathcal{O}}(1.234^m)$ -time deterministic algorithm for SAT. In *Proceedings of the 16th International Symposium on Algorithms and Computation*, pages 644–653. Springer-Verlag *Lecture Notes in Computer Science* #3827, December 2005.
- [ZFN00] X. Zhou, K. Fuse, and T. Nishizeki. A linear time algorithm for finding [g, f]colorings of partial k-trees. Algorithmica, 27(3):227–243, 2000.

Sach- und Autorenverzeichnis

[.], 83	$\Omega(\cdot)$, 14
$\frac{11}{\cdot}$, 30	
\Longrightarrow , 198	A
∪, 251	Abschluss unter $\leq_{\rm m}^{\rm p}$ -Reduktionen, 128
×, 251	Abschluss unter Turing-Reduktionen, 128
n	adjazent, 22
$\bigvee \varphi_i$, 68	Adjazenzliste, 25
$\stackrel{\cdot}{\underset{n}{=}} 1$	Adjazenzmatrix, 24
$\bigwedge^{n} \varphi_i$, 68	Algorithmus, 7
i=1	deterministischer, 8
∃, 82	FPT-, 132
∀, 82	nichtdeterministischer, 8
$[\cdot]$, 13, 87	randomisierter, 8
$ \cdot $, 14, 87	erwartete Zeit eines –n –, 179
≡, 67	XP-, 137
$\leq_{\mathrm{m}}^{\mathrm{fpt}}$, 139	Alon, N., 227
$\leq_{\rm m}^{\rm p}$, 118	äquivalente (a,b) -CSP-Instanzen, 180
$\{0,1\}^*, 10$	Äquivalenz, 67
$\alpha(\cdot)$, 51	Arbeitsfaktor, 193
$\gamma(\cdot)$, 57	Arnborg, S., 262, 283
Δ_i^p , 127	Artikulationspunkt, 41
$\theta(\cdot)$, 53	Ausgabegatter, 76
$\Theta(\cdot)$, 14	Ausgangsgrad, 22
Π_0^{FO} , 100	Aussagenlogik, 79
Π_0^{SO} , 100	_
Π_i^p , 127	B
Σ_0^{FO} , 100	Bachmann, P., 18
$\Sigma_0^{\rm SO}$, 100	Backtracking, 60
Σ_0^p , 100	Balcázar, J., 143
Σ_i^p , 127	Bang-Jensen, J., 64
$\tau(\cdot)$, 51	Baum, 26
$\chi'(\cdot)$, 54	k-, 270
$\chi(\cdot)$, 52	partieller, 270
$\omega(\cdot)$, 15, 51	gerichteter, 27

Baumdekomposition, 259	С
schöne, 271	$\mathscr{C}^{\mathscr{D}}$, 125
Weite einer, 259	€-hart, 118
Baumkante, 37	C-schwer, 118
Baumweite, 259	€-vollständig, 119
Beigel, R., 164–166, 176, 179, 180, 186,	C_k , 23
191, 192, 194, 196, 199, 203, 206, 208,	$C_rMSO, 97$
209, 212, 214, 218–220, 222–224,	Cai, L., 162
226, 227	$\operatorname{Card}_{p,q}(\cdot)$, 97
Bellman, R., 61, 64	Charakterisierung durch endliche Aus-
BFS-Nummer, 36	schlussmengen, 158
biliteral, 24	Charakterisierung durch
binomischer Lehrsatz, 168	Ausschlussmengen, 157
Björklund, A., 243	Chen, J., 162
Blüte, 48	Chlebikova, J., 276, 281
Blatt, 26, 288	chromatische Zahl, 52
Blum, A., 227	chromatischer Index, 54
Bodlaender, H., 262, 263, 283, 284	Chique 28
Boole, G., 65	Clique, 28
boolesche Dekomposition, 294	größte, 28
boolesche Funktion, 75	maximale, 28 Cliquenüberdeckungszahl, 53
<i>n</i> -stellige, 75	Cliquenweite, 287
binäre, 75	für knotenmarkierte Graphen, 285
unäre, 75	Cliquenweite-k-Ausdruck, 286
boolesche Konstante, 65	Cliquenweite- k -Ausdrucksbaum zu $\rho_{i \rightarrow j}(X)$
boolesche Variable, 65	bzw. $\eta_{i,j}(X)$, 288
boolesche Verknüpfung, 65	Cliquenweite- k -Ausdrucksbaum zu \bullet_i , 288
¬, 65	Cliquenweite- k -Ausdrucksbaum zu $X_1 \oplus X_2$,
V, 65	288
∧, 6 5	Cliquenzahl, 51
⇒, 67	CMSO, 97
⇔, 67	co€, 125
boolesche Weite, 294	Co-Baum, 252
boolescher Ausdruck, 66	Co-Graph, 32, 252
äquivalente –e Ausdrücke, 67	Cobham, A., 142
Größe eines –n –s, 71	Codierung, 10
Semantik eines –n –s, 66	coNP, 126
boolescher Schaltkreis, 76	Cook, S., 142
Größe eines –n –es, 76	Corneil, D., 254, 258, 262, 290, 292
Höhe eines –n –es, 139	Courcelle, B., 103, 283, 285, 289, 291, 304,
Bottom-up-Reihenfolge, 27	305 C : D 142
Bovet, D., 143	Crescenzi, P., 143
Brücke, 41	CW_k , 285
Brandstädt, A., 64, 306	D
Breitensuche, 36	$d(\cdot)$, 57
Bui-Xuan, B., 306	Díaz, J., 143
Byskov, J., 226	Dekomposition
2 3 0110 1, 01, 220	2 Chomposition

k-modulare, 294	Forget-Knoten, 271
deterministische Polynomialzeit, 105	Formel erster Ordnung, 82
DFS-End-Nummer, 36	atomare, 82
DFS-Nummer, 36	geschlossene, 82
Diestel, R., 64	Instanz für eine, 84
Disjunktion, 66	Lösung für eine, 84
disjunktive Normalform, 69	Lösungsmenge für eine, 82
Distanz, 23	offene, 82
DNF, 69	Semantik einer, 82
domatische Zahl, 57	Weite einer, 101
Dominierungszahl, 57	Formel zweiter Ordnung, 88
Downey, R., 143, 162	atomare, 88
Dreierkomponente, 208	Semantik einer, 89
große, 208	FPT, 132
Zeuge einer –n –, 209	Funktion, 86
gute, 208	•
kleine, 208	G
$DSPACE(\cdot), 106$	$G_{n,m}$, 32
$DTIME(\cdot)$, 106	Gabarró, J., 143
Durchlaufordnung, 36	Gallai, T., 51, 64, 298
dynamische Programmierung, 61	Garey, M., 142, 230
	Gatter, 76
E	¬-, 76
Edmonds, J., 50, 142	∨-, 76
Eingabegatter, 76	∧-, 76
Eingangsgrad, 22	x_{i} -, 76
Einschränkung, 173	false-, 76
baumelnde, 194	true -, 76
isolierte, 194	großes, 139
EMSO ₂ , 283	Gittergraph, 32
Entfernungsmatrix, 232	Golovach, P., 303, 305
Entscheidungsproblem, 98	Golumbic, M., 291
Eppstein, D., 164–166, 176, 179, 180, 186,	Gottlob, G., 306
191–194, 196, 199, 203, 206, 208,	Gramm, J., 162
209, 212, 214, 218–220, 222–224,	Grandoni, F., 239, 240, 243
226, 227	Graph, 20
Erfüllbarkeitsproblem, 71	bipartiter, 31
Espelage, W., 288, 292	disjunkte Summe von -en, 251
	disjunkte Vereinigung von –en, 251
F	distanzerhaltender, 291
Färbungszahl, 52	einfacher, 26
Farbklasse, 30	gerichteter, 20
Fellows, M., 143, 162, 291	Größe eines –en, 20
fest-Parameter-berechenbar, 132	invertierter, 40
Flum, J., 103, 143, 162	k-Modul eines –en, 294
FO, 82	k-färbbarer, 30
FO ₁ , 95	k-markierter, 285
FO ₂ , 95	$G \oplus J$, 285
Fomin, F., 239, 240, 243, 283, 303, 305	$G \times_S J$, 292

• $_{i}$, 285, 292 • $_{R}(G)$, 293 $\eta_{i,j}(G)$, 286 $\rho_{i \to j}(G)$, 286 k-partiter, 31 Komponente in einem –en, 39 kubischer, 33	Implikation, 67 Implikation zwischen Färbungen, 198 Infimum, 11 Introduce-Knoten, 271 inzident, 22 Inzidenzgraph, 97
Modul eines –en, 294 perfekter, 55 serienparalleler, 268 tripartiter, 31 ungerichteter, 20 verdichteter, 44 vollständig k partiter, 31	J Johnson, D., 142, 230 Join-Knoten, 271 Jung, H., 258 Jungnickel, D., 64
vollständig k-partiter, 31 vollständiger, 28 Grapheigenschaft, 156	K K _n , 28
monotone, 25	Kahale, N., 227 Kaminski, M., 306
nicht triviale, 24 vererbbare, 157	Kante, 20
Graphisomorphie, 20	eingeschränkte, 221
Graphklasse, 32	freie, 45
Abschluss einer, 33	gebundene, 45
Graphparameter, 32	gerichtete, 20
Grohe, M., 103, 143, 162	Startknoten einer –n –, 20
Große, A., 143	Zielknoten einer –n –, 20
Gupta, R., 54, 64	multiple, 26
Gurski, F., 288, 290, 292	ungerichtete, 20
Guruswami, V., 227	Endknoten einer –n –, 20
Gutin, G., 64, 162	Kanteneinfügeknoten, 288
	Kantenfärbungszahl, 54
Н	Kantengraph, 54
Habib, M., 292	Kantenordnung
Halin, S., 283	topologische, 35
Halingraph, 268	Karger, D., 227
Halteproblem, 8	Karp, R., 142, 238, 242
Hamilton-Kreis, 32	Khanna, S., 227
Hamilton-Weg, 32	Khuller, S., 142
Hartmanis, J., 142	Klausel, 69
Held, M., 238, 242	Kloks, T., 271
Hlinený, P., 306 Horn, A., 69	KNF, 69 Knoten, 20
Horn-Klausel, 69	freier, 45
Husfeldt, T., 243	gebundener, 45
Hypergraph, 26	innerer, 26
Hyperkante, 26	Kind eines –s, 27
11) portanto, 20	Knotenüberdeckung, 28
I	kleinste, 29
Immerman, N., 103	minimale, 29
Implikant, 69	Knotenüberdeckungszahl, 51
•	

Knotengrad, 22 maximaler, 22	unabhängige, 28 größte, 28
minimaler, 22	maximale, 28
Knotenordnung	Mengenvariable, 92
topologische, 33	Meyer, A., 142
Komplementgraph, 30	Milanic, M., 306
Konjunktion, 66	Minimum, 11
konjunktive Normalform, 69	modulare Weite, 294
Konstruktionsproblem, 64	monadische Logik zweiter Ordnung, 92
Koster, A., 284	MSO, 92
Kratsch, D., 243, 283	MSO ₁ , 95
Kreis, 23	MSO_2 , 95
einfacher, 23	Multimenge, 300
Krentel, M., 142, 143	5 /
	N
L	$N(\cdot)$, 22, 239
Lagergren, J., 283	$N[\cdot], 239$
Landau, E., 18	N, 10
Lanlignel, J., 292	\mathbb{N}^+ , 10
Lawler, E., 61, 64, 164, 167, 226	Nachbarschaft, 22
Le, V., 64	geschlossene –
Lerchs, H., 258	einer Knotenmenge, 239
Levin, L., 142	eines Knotens, 239
Lewis, P., 142	offene –
LinEMSO ₁ , 304	einer Knotenmenge, 239
Linial, N., 227	eines Knotens, 22, 239
Literal, 68	Nachfolger, 27
positives, 68	Negation, 66
Lokshtanov, D., 303, 305	nichtdeterministische Polynomialzeit, 114
Lozin, V., 306	Nickelsen, A., 162
	Niedermeier, R., 143, 162
M	NLC_k , 292
Möhring, R., 263	NLC-Weite eines Graphen, 293
Müller, H., 306	NLC-Weite eines markierten Graphen, 293
Makowsky, J., 304	Normalform für Cliquenweite-Ausdrücke,
Marx, D., 162	288
Matching, 45	NP, 114
größtes, 45	NP-hart, 119
maximales, 45	NP-vollständig, 119
perfektes, 45	stark, 230
Maximum, 11	
Measure and Conquer, 243	0
Meng, J., 162	$o(\cdot)$, 15
Menge	$\mathscr{O}(\cdot)$, 12
dominierende, 28	$\tilde{\mathscr{O}}(\cdot)$, 14
kleinste, 29	Olariu, S., 285, 289, 291, 305
minimale, 29	Optimierungsproblem, 62
Kardinalität einer, 20	Orakel-Turingmaschine, 125
Partition einer, 52	Orakelmenge, 125

Oum \$ 202 206	$Opt(\alpha)$ 00
Oum, S., 292, 306	$OPT(\varphi)$, 99
P	Opt _φ , 99 p-3-Hitting Set, 154
P. 105	_
P ^{NP} , 126	<i>p</i> -Baumweite, 262 <i>p</i> -Chordal Graph Completition,
P_k , 22	<i>p</i> -Chordal Graph Completition,
Papadimitriou, C., 142	
Perl, Y., 254	p-CLIQUE, 136
Petford, A., 227	p-CLIQUENWEITE, 292
PH, 127	p-deg-Unabhängige Menge, 131
Platzkomplexität, 12	<i>p</i> -Dominierende Menge, 137
Best-case-, 12	p - \mathscr{E} -Graphmodifikation, 159
Worst-case-, 12	p-Gerade Menge, 162
Polynomialzeit-Hierarchie, 127	p-Knotenüberdeckung, 131, 148
Prädikatenlogik, 79	p - $K_{t,t}$ -Teilgraph, 162
Problem	<i>p</i> -Minimum Fill In, 161
2-HITTING SET, 154	<i>p</i> -Partition in unabhängige
2-HITTING SET, 154 2-HS, 154	Mengen, 135
3-Färbbarkeit, 135	<i>p</i> -SAT, 132
3-HITTING SET, 154	<i>p</i> -Unabhängige Menge, 136
3-HS, 154	<i>p</i> -Wegweite, 262
BAUMWEITE, 262	p-Weighted Sat (t,h) , 140
BIN PACKING, 230	p^* -cw-Clique, 299
CLIQUENWEITE, 291	p^* -cw-Gewichtete Unabhängige
CLIQUE, 51	Menge, 299
$Con(\varphi)$, 99	p^* -cw-Hamilton-Kreis, 305
Con_{ϕ} , 99	p^* -cw-Kantendominierende
Constraint Satisfaction, 172	Mengen, 305
CSP, 172	p^* -cw-Knotenüberdeckung, 298
(a,b)-CSP, 173	p^* -cw-Partition in Cliquen, 303
DOMATISCHE ZAHL, 58	p^* -cw-Partition in unabhängige
2-DNP, 238	Mengen, 300
3-DNP, 238	p^* -cw-Unabhängige Menge, 295
Dominierende Menge, 56	p^* -tw-Clique, 278
$DEC(\varphi)$, 99	p^* -tw-Gewichtete Unabhängige
Dec_{φ} , 98	Menge, 278
&-Graphmodifikation, 158	p^* -tw-Hamilton-Kreis, 283
EINGESCHRÄNKTE KANTEN-3-FÄRB-	p^* -tw-Knotenüberdeckung, 277
BARKEIT, 221	p^* -tw-Partition in Cliquen, 282
INDEPENDENT SET, 51	p^* -tw-Partition in unabhängige
k-Färbbarkeit, 52	Mengen, 279
KANTEN-3-FÄRBBARKEIT, 221	p^* -tw-Unabhängige Menge, 274
Kantenfärbbarkeit, 54	$PAR(\varphi)$, 99
Knotenüberdeckung, 51	PAR_{ϕ} , 99
Log Knotenüberdeckung, 134	parametrisiertes, 131
Matching-, 45	PARTITION, 230
MAXIMUM MATCHING, 45	PARTITION IN CLIQUEN, 53
Min-4-Färbbarkeit für planare	PARTITION IN DREI UNABHÄNGIGE
GRAPHEN, 127	Mengen, 135
	,

Partition in unabhängige Kanten- mengen, 54 Partition in unabhängige Mengen,	Reduzierbarkeit $\leq_{\rm m}^{\rm fpt}$ -, 139 $\leq_{\rm m}^{\rm p}$ -, 118
52	metrische, 143
SAT, 71	parametrisierte, 139
2-SAT, 72	Turing-
3-SAT, 71	polynomialzeit-beschränkte, 126
HORN-SAT, 72	reduzierte $(a,2)$ -CSP-Instanz, 186
NAE-3-SAT, 121	Reed, B., 292
NAE-SAT, 241	Relation, 86
Not-All-Equal-3-SAT, 121	relationale boolesche Struktur, 85
ODD-MAX-SAT, 127	relationale Graphenstruktur, 87
Satisfiability, 71	relationale Graphenstruktur vom Typ II, 95
2-Satisfiability, 72	relationale Nachfolgerstruktur, 80
3-Satisfiability, 71	relationale Struktur, 80
HORN-SATISFIABILITY, 72	Definitionsmenge von –n –en, 80
Search(φ), 99	Größe einer –n –, 98
$Search_{\varphi}$, 99	isomorphe – –en, 81
Tautology, 126	relationale Vorgängerstruktur, 81
Traveling Salesperson, 59	relationale Wortstruktur, 86
TSP, 59	Relationsvariable, 88
Δ -TSP, 242	relative Berechnung, 125
MIN TSP, 62	Riege, T., 226, 240, 243
SEARCH TSP, 62	Rivest, R., 24
Unabhängige Menge, 50	Robertson, N., 56, 259, 260, 283
Unique Optimal Traveling	Robson, J., 226
SALESPERSON PROBLEM, 126	Rosamond, F., 291
Vertex Cover, 51	Rose, D., 283
Wegweite, 262	Rothe, J., 143, 226, 227, 240, 243
Problemkern, 148	Rotics, U., 290–292, 304
Größe des –s, 148	Rumpelstilzchen, 114
Problemkernreduktion, 148	2
von Buss, 149	S
Proskurowski, A., 262	Safra, S., 227
Pseudo-Polynomialzeit, 229	Saurabh, S., 303, 305
Pyatkin, A., 239, 240, 243	Schöning, U., 226, 227, 243
	Schaefer, M., 142
Q	Schaefer, T., 142
Querkante, 37	Scheibe <i>k</i> -te, 135
R	Schiermeyer, I., 227
\mathbb{R} , 10	Schleife, 22
$\mathbb{R}_{\geq 0}$, 10	Seese, D., 283, 306
$\mathbb{R}_{>0}$, 10	Seymour, P., 56, 259, 260, 283, 306
Rückwärtskante, 37	Signatur, 80
Rangdekomposition, 293	Slopper, C., 162
Rangweite, 293	SO, 89
Rao, M., 306	SO ₁ , 95
Rautenbach, D., 306	$SO_2, 95$

Spakowski, H., 240, 243	Variablenbelegung, 66
Spinrad, J., 64	Vatshelle, M., 306
Stabilitätszahl, 51	Vazirani, V., 142
Stearns, R., 142	Vereinigungsknoten, 288
Steinerbaum, 100	Verzweigungsdekomposition, 270
Steinerknoten, 100	Weite einer, 270
Stepanov, A., 239, 240, 243	Verzweigungsweite, 270
Stern, 31	Villanger, Y., 283
Stewart, L., 254	Vizing, V., 54, 64
Stewart, E., 251 Stewart-Burlingham, L., 258	Vlasie, R., 227
Stirling, J., 111	, ,
Stirling-Zahl zweiter Art, 111	Vokabular, 80
Stockmeyer, L., 142, 143	Vorgänger, 27
Suchbaum, 133	Vorwärtskante, 37
*	Vuillemin, J., 24
Größe eines –s, 133	
Suchproblem, 62	\mathbf{W}
Sumner, P., 258	W[t], 140
Supremum, 11	W[t]-hart, 141
symmetrische Differenz, 47	W[t]-vollständig, 141
Szeider, S., 291	W-Hierarchie, 140
	Wagner, K., 142, 227
T	Wahrheitstabelle, 67
Tantau, T., 162	Wahrheitswert
Tasche, 259	
Tautologie, 126	false, 65
Teile-und-herrsche-Strategie, 61	true, 65
Teilgraph, 21	Wald, 26
induzierter, 21	gerichteter, 27
verbotener, 157	Wanke, E., 288, 290, 292, 305
Telle, J., 162, 306	Wechsung, G., 143
Thomas, R., 56	Weft, 139
Tiefensuche, 36	Weg, 22
Tiefensuche-Wald, 37	alternierender, 46
Todinca, I., 283	einfacher, 23
transitiver Abschluss, 43	gerichteter, 22
Trennungspunkt, 41	Startknoten eines –n –s, 23
Turingmaschine, 8	Zielknoten eines –n –s, 23
Turnigmaschine, o	knotendisjunkte –e, 23
U	Länge eines –s, 22
_	ungerichteter, 22
Umans, C., 142	Endknoten eines –n –s, 23
Ummarkierungsknoten, 288	Wegdekomposition, 260
unabhängige Kantenmenge, 54	
Unabhängigkeitszahl, 51	Wegweite, 260
Urner, R., 306	Welsh, D., 227
	Whitney, H., 64
V	Woeginger, G., 226, 243
Variable	Wrathall, C., 142
freie, 82	Wurzel, 27
gebundene, 82	Wurzelbaum, 27

 \mathbf{X} Worst-case-, 11 XP, 137 Zertifikat, 115 Zeuge, 115 zusammenhängend, 24 Yamamoto, M., 240, 242, 243 k-fach, 24 Yeo, A., 162 schwach, 24 stark, 24 \mathbf{Z} Zusammenhangskomponente Zählproblem, 64 starke, 74 Zahl Zweierkomponente, 212 Absolutbetrag einer, 32 große, 212 Zeitkomplexität, 11 Best-case-, 11 kleine, 212