ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 6.11.5 **Туннелирование в полупроводниках.**

> Серебренников Даниил Группа Б02-826м

Цель работы: исследовать принцип действия туннельного диода, измерить его ВАХ и основные параметры.

1 Основные формулы

Расстояния от уровня Ферми до краев зон:

$$\xi = \mu_n - E_c,$$

$$\eta = \mu_p - E_v.$$

При достижении U_v ток через диод минимален, что соответсвуетсвует совпадению границ зоны проводимости E_c и валентной зоны E_v . Откуда можно оценить положение уровней Ферми:

$$eU_{\eta} \approx \xi + \eta \approx 2\xi \approx 2\eta$$
.

Напряжению U_p соответствует пик тока, при котором смещение энергетических зон должно быть одинаково. Это даёт возможность определить энергетический промежуток $E_{n\max}$ между уровнем Ферми и максимум плотности распределения электронов $n_{\max}(E)$, отсчитываемый от границы зоны проводимости:

$$eU_p \approx \xi - E_{n \max}$$
.

2 Экспериментальная установка

Для измерения основных параметров туннельного диода используется монтажная плата, на которой собраны три схемы для снятия ВАХ, схема для наблюдения ВАХ на экране осцил-лографа и схема генератора электро-магнитных колебаний в туннельном диоде.

$$I_{\rm A} = U_Y = \frac{R_1 + 2(R_2 + R_3)}{(R_1 + 2R_2)R_3}.$$

3 Экспериментальные данные

Масштаб по осям X и Y: 2B/дел.

Рис. 1: ВАХ туннельного диода.

Рис. 2: ВАХ диода.

Таблица 1: Результаты измерений.

Туннельный диод		Обычный диод	
V, мВ	I, мА	V, мВ	I, MA
10,0	1,72	1,5	-0,021
20,5	3,04	64,7	-0,004
32,4	4,03	76	0,11
350	$0,\!85$	121	0,06
373	0,74	181	0,16
400	$0,\!63$	210	0,24
432	0,99	239	0,32
447	1,33	280	0,47
464	1,93	292	0,52
488	3,78	325	0,66
493	4,47	355	0,8
2,30	0,40	389	0,98
3,00	$0,\!53$	406	1,07
4,00	0,70	468	1,46
5,30	0,93	473	1,49
8,00	1,38	584	2,31
265	1,50	609	2,52
37,0	$4,\!13$	622	2,62
32,8	4,05		
224	2,07		
330	1,04		
250	1,72		
378	0,71		

Погрешность измерений: \pm единица к последнему разряду.

4 Обработка результатов

Рис. 3: Зависимость концентрации от энергии.

$$eU_p = (0,05 \pm 0,01)$$
 B , $eU_v = (0,40 \pm 0,01)$ B , $eU_f = (0,50 \pm 0,01)$ B .

$$\xi = eU_v/2 = (0, 20 \pm 0, 01)$$
 B

$$E_{n \max} = \xi - eU_p = (0, 15 \pm 0, 02)$$
 \circ B

Параметры генератора: $0, 1 \, \text{M}\Gamma \text{ц} \le f \le 0, 2 \, \text{M}\Gamma \text{ц}, 97 \, \text{мB} \le A \le 242 \, \text{мB}.$

5 Обсуждение результатов и выводы

В ходе лабораторной работе была получена статическая вольт-амперная характеристика туннельного диода и на осциллографе. Оценили положение уровня Ферми и максимума распределения электронов в зоне проводимости полупроводника туннельного диода.