Untitled

October 14, 2022

```
[1]: # Load libs
     import os
     import PIL. Image
     import numpy as np
     import pandas as pd
     import seaborn
     import matplotlib.pyplot as plt
     from tensorflow.keras.preprocessing.image import ImageDataGenerator, __
      →img_to_array
     from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D,
      →Input, Rescaling
     from tensorflow.keras.losses import SparseCategoricalCrossentropy
     from tensorflow.keras.models import Model
     from tensorflow.keras.optimizers import Adam
     from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
     from tensorflow.keras.applications import MobileNetV3Small
```

2022-10-14 21:13:24.187679: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-10-14 21:13:24.244628: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-10-14 21:13:24.244646: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.

```
[3]: # Create a list of image pathes
images = []
for i, j, s in os.walk("."):
    print(i)
    for im in s:
        images.append(i+"/"+im)
```

```
./.ipynb_checkpoints
    ./data
    ./data/Sandal
    ./data/Boot
    ./data/Shoe
    ./mobnet
    ./mobnet/assets
    ./mobnet/variables
[4]: # Check number of imags
     len(images)
[4]: 15006
[5]: df = pd.DataFrame(
         data = {"paths": images[2:], "ctg": [p.split("/")[2] for p in images[2:]]},
     )
     df.head()
[5]:
                                  paths
                                            ctg
     0 ./data/Sandal/Sandal (3877).jpg Sandal
     1 ./data/Sandal/Sandal (3032).jpg Sandal
     2 ./data/Sandal/Sandal (1653).jpg Sandal
     3 ./data/Sandal/Sandal (1008).jpg Sandal
     4 ./data/Sandal/Sandal (2139).jpg Sandal
[6]: # Shuffle it
     df = df.sample(frac = 1).reset_index()
[7]: # Show some examples of imgs
     fig = plt.figure(figsize = (14, 9))
     for i in range(20):
         plt.subplot(5, 4, i+1)
         img = PIL.Image.open(df.loc[i, "paths"])
         plt.imshow(img)
         plt.axis("off")
         plt.title(df.loc[i, "ctg"])
         plt.rcParams["figure.facecolor"] = "white"
         img.close()
```



```
[8]: batch_size = 32
```

1 Image data augmentation

```
[9]: data_gen = ImageDataGenerator(
          zoom_range = [0.8, 1.3],
          width_shift_range = 0.2,
          horizontal_flip = True,
          rotation_range = 20,
          validation_split = 0.25
)
[10]: # create a train data generator
train_data = data_gen.flow_from_directory(
          "data"
```

```
# create a train data generator
train_data = data_gen.flow_from_directory(
    "data",
    target_size=(256, 256),
    batch_size = batch_size,
    shuffle = True,
    class_mode = "binary",
    subset = "training"
```

```
)
```

Found 11250 images belonging to 3 classes.

```
[11]: # create a validation data generator
val_data = data_gen.flow_from_directory(
    "data",
    target_size=(256, 256),
    batch_size = batch_size,
    shuffle = False,
    class_mode = "binary",
    subset = "validation"
)
```

Found 3750 images belonging to 3 classes.

```
[12]: def transfer_learn(premade):
    x = GlobalAveragePooling2D()(premade.output)
    x = Dense(1024, activation = "relu")(x)
    x = Dropout(0.2)(x)
    x = Dense(512, activation = "relu")(x)
    x = Dropout(0.2)(x)
    out = Dense(3, activation = "softmax")(x)
    return Model(inputs = premade.input, outputs = out)
```

```
[13]: # load pretrained mobilenet
mobilenet = MobileNetV3Small(
    include_top = False,
    input_shape = (256, 256, 3),
    weights = "imagenet"
)
mobilenet.trainable = False
```

WARNING:tensorflow: input_shape is undefined or non-square, or rows is not 224. Weights for input shape (224, 224) will be loaded as the default.

```
2022-10-14 21:13:27.941337: E
tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit:
CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE: forward compatibility was attempted
on non supported HW
2022-10-14 21:13:27.941386: I
tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA
diagnostic information for host: sady
2022-10-14 21:13:27.941395: I
tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: sady
2022-10-14 21:13:27.941520: I
```

```
2022-10-14 21:13:27.941551: I
     tensorflow/stream_executor/cuda/cuda_diagnostics.cc:204] kernel reported version
     is: 515.65.1
     2022-10-14 21:13:27.941560: E
     tensorflow/stream_executor/cuda/cuda_diagnostics.cc:313] kernel version 515.65.1
     does not match DSO version 515.76.0 -- cannot find working devices in this
     configuration
     2022-10-14 21:13:27.941952: I tensorflow/core/platform/cpu_feature_guard.cc:193]
     This TensorFlow binary is optimized with oneAPI Deep Neural Network Library
     (oneDNN) to use the following CPU instructions in performance-critical
     operations: AVX2 AVX512F AVX512_VNNI FMA
     To enable them in other operations, rebuild TensorFlow with the appropriate
     compiler flags.
[14]: # get our final model
     model1 = transfer_learn(mobilenet)
[15]: epochs = 100
[16]: model1.compile(
         optimizer = Adam(learning rate = 0.001),
         loss = SparseCategoricalCrossentropy(from_logits = False),
         metrics=["accuracy"]
[17]: callbacks = [EarlyStopping(monitor = "val_accuracy", patience = 2, min_delta = [
      →0.01),
                  ModelCheckpoint("mobnet", monitor = "val_accuracy")]
[18]: # Train it
     history = model1.fit(
         train_data,
         validation_data = val_data,
         batch_size = batch_size,
         epochs = epochs,
         callbacks = callbacks
     )
     Epoch 1/100
     0.9043
     WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op,
     _jit_compiled_convolution_op, _jit_compiled_convolution_op,
     _jit_compiled_convolution_op, _jit_compiled_convolution_op while saving (showing
     5 of 52). These functions will not be directly callable after loading.
     INFO:tensorflow:Assets written to: mobnet/assets
```

version is: 515.76.0

```
INFO:tensorflow:Assets written to: mobnet/assets
    accuracy: 0.9043 - val_loss: 0.1361 - val_accuracy: 0.9507
    Epoch 2/100
    0.9460
    WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op,
    _jit_compiled_convolution_op, _jit_compiled_convolution_op,
    _jit_compiled_convolution_op, _jit_compiled_convolution_op while saving (showing
    5 of 52). These functions will not be directly callable after loading.
    INFO:tensorflow:Assets written to: mobnet/assets
    INFO:tensorflow:Assets written to: mobnet/assets
    accuracy: 0.9460 - val_loss: 0.1315 - val_accuracy: 0.9475
    Epoch 3/100
    WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op,
    _jit_compiled_convolution_op, _jit_compiled_convolution_op,
    _jit_compiled_convolution_op, _jit_compiled_convolution_op while saving (showing
    5 of 52). These functions will not be directly callable after loading.
    INFO:tensorflow:Assets written to: mobnet/assets
    INFO:tensorflow:Assets written to: mobnet/assets
    352/352 [============ ] - 224s 636ms/step - loss: 0.1298 -
    accuracy: 0.9534 - val_loss: 0.1800 - val_accuracy: 0.9395
    1.1 Evaluate model
[19]: from sklearn.metrics import confusion_matrix, classification_report
[20]: y_pred = model1.predict(val_data, 32)
    y_pred = np.argmax(y_pred, axis = 1)
    y_pred
    [20]: array([0, 0, 0, ..., 2, 2, 2])
[21]: y_true = val_data.classes
    y_true
[21]: array([0, 0, 0, ..., 2, 2, 2], dtype=int32)
```

```
[22]: lbls = val_data.class_indices.keys()
[23]: cm = confusion_matrix(y_true, y_pred, normalize = "true")
[24]: cm
[24]: array([[0.8768, 0.0456, 0.0776],
             [0.0024, 0.972, 0.0256],
             [0.0016, 0.04 , 0.9584]])
[25]: lbls = val_data.class_indices.keys()
      seaborn.heatmap(cm, xticklabels = lbls, yticklabels=lbls)
      plt.show()
                                                                           - 0.8
                                                                           - 0.6
                                                                           - 0.4
                                                                           - 0.2
                                         Sandal
                                                           Shoe
                         Boot
[26]: val_data.class_indices
[26]: {'Boot': 0, 'Sandal': 1, 'Shoe': 2}
[27]: print(
          classification_report(y_true, y_pred, target_names = val_data.class_indices.
       ⇔keys())
```

	precision	recall	f1-score	support
Boot	1.00	0.88	0.93	1250
Sandal	0.92	0.97	0.94	1250
Shoe	0.90	0.96	0.93	1250
accuracy			0.94	3750
macro avg	0.94	0.94	0.94	3750
weighted avg	0.94	0.94	0.94	3750

[]: