Improving Language Understanding by Generative Pre-Training

Alec Radford, et al

OpenAI

2018

Abstract

- Large unlabeled text corpora
 - It could not be used for training
- · Solution to unlabeled data
 - Generative pre-training (Unsupervised)
 - Discriminative fine-tuning (Supervised)
- Experiment with benchmarks
 - We show effectiveness of our approach

Introduction

- Need for unsupervised NLP
 - Manually labeling data is time-consuming
- Challenge: What type of objectives are effective?
 - Translation[1], Predicting next word[2], etc.
 - Each works better for some tasks than others
- Challenge: How to Transfer the Learned Knowledge?
 - Changing architecture for each task
 - Complicated fine-tuning for each task
 - Adding auxiliary objectives
- [1] Bryan McCann et al. "Learned in translation: Contextualized word vectors". In: *Advances in neural information processing systems* 30 (2017).
- [2] Matthew E Peters et al. "Dissecting contextual word embeddings: Architecture and representation". In: arXiv preprint arXiv:1808.08949 (2018).

Introduction

- We suggest semi-supervised approach
 - Unsupervised Pre-training by predicting next word
 - Supervised Fine-tuning for specific task
- For our architecture, we use the Transformer
 - It outperforms others (RNNs, LSTMs)
- Experiment Four types of tasks
 - NLI, QA, Semantic Similarity, Text Classification
 - SOTA on 9 out of 12 benchmarks

Framework

- · Unsupervised pre-training
 - We uses decoder-only transformer [1]

$$-L_1(U) = \sum_i \log P(u_i|u_{i-k},\cdots,u_{i-1};\Theta)$$

- · Supervised fine-tuning
 - $-L_2(U) = \sum_{(x,y)} \log P(y|x^1,\cdots,x^m)$
 - $-L_3(U) = L_2(U) + \lambda * L_1(U)$
 - Auxiliary objective improves generalization

^[1] Peter J Liu et al. "Generating wikipedia by summarizing long sequences". In: arXiv preprint arXiv:1801.10198 (2018).

Framework

• Task-specific input transformations

Task	Datasets
Natural language inference	SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]
Question Answering	RACE [30], Story Cloze [40]
Sentence similarity	MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]
Classification	Stanford Sentiment Treebank-2 [54], CoLA [65]

- Pre-training
 - BooksCorpus dataset containing 7,000 books [1]
- · Model specifications
 - Decoder only transformer with 12 layers (unlike BERT)
 - Learned positional embedding instead of sinusoidal
 - Attention 12 heads and 768 dimension
- [1] Yukun Zhu. "Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books". In: arXiv preprint arXiv:1506.06724 (2015).

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	80.6	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

- Natural Language Inference
 - Given two sentences, determine their relationship
 - Entailment, Contradiction, Neutral
 - GPT outperformed previous SOTA on 4 out of 5
 - RTE is small dataset, making it harder to adapt

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	-	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	<u>60.2</u>	<u>50.3</u>	<u>53.3</u>
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

- · QA and commonsense reasoning
 - Story Cloze: Complete a multi-sentence story
 - RACE: Middle/High School Exams
 - GPT outperforms prior SOTA models
 - Transformer allows it to capture long-range dependencies

Method	Classification		Seman	GLUE		
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	-	-	-	-
TF-KLD [23]	-	-	86.0	-	-	-
ECNU (mixed ensemble) [60]	-	-	-	81.0	-	-
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	66.1 63.3	64.8 68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

- Semantic Similarity
 - Determining if two sentences express the same idea
 - SOTA results on 2 out of 3 datasets
- · Classification
 - CoLA: Is a sentence grammatical?
 - SST: Is a review positive or negative?

Analysis

- · Impact of number of layers transferred
 - Fine-tuning all layers may cause overfitting
 - However, full model transfer leads to best results

Analysis

- Zero-shot Behaviors (No supervised fine-tuning)
 - Performance improves throughout training
 - It means pre-training develops general reasoning abilities

Analysis

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

- Ablation studies
 - Without pre-training, there is massive performance drop
 - Without auxiliary objective, performance drop in larger dataset
 - Using LSTM, model struggles with long-term dependency

Conclusion

- Task-agnostic model
 - Previous models required task-specific architectures
 - GPT uses one model for multiple NLP tasks
- Unsupervised learning
 - NLP models relied heavily on supervised learning
 - GPT showed that pre-training on raw text boosts performance
- Trained on long-form contiguous text
 - Helps capture long-range dependencies in language
 - Provides world knowledge for solving downstream NLP tasks