	1. The one step transition probabilities of a Markov chain with three states $(0, 1, 2)$ are given below:		
	$P_{00} = 0.2$, $P_{02} = 0.5$, $P_{10} = 0.1$, $P_{11} = 0.3$, $P_{21} = 0.4$, $P_{20} = 0.4$ (a) Construct the One step TPM based on the above given information.	[3]	
	(b) Calculate the steady state probabilities.	[5]	
	2. The time to failure of a television tube is estimated to be exponentially distributed with nean of 3 years. A company offers insurance on these tubes for the first 2 year of usage.		
	(a) On what percentage of policies will they have to pay a claim?(b) If they are ready to pay claim to 25% customers, what will be their warranty p	[3] eriod?	[3]
3. On each of 18 days, samples of 90 printed circuit boards are subjected to thermal cyclin that is, they are subjected to large changes in temperature, a procedure known to cause failures in boards with weak circuit connections. Of the boards tested, a total of 478 fail to work properly after the thermal cycling test.			
	(a) From this information, calculate the center line and control limits for a p chart.(b) The highest number of failures on a given day was 39 and the lowest number value.		[3]
,	Would either of these points indicate an out-of-control condition?		[3]
	4. Some uniform random numbers are given below: 0.17 0.29 0.42 0.68 0.82 (a) Using the above uniform random numbers generate and data numbers that falls	assa Nam	1
	(a) Using the above uniform random numbers, generate random numbers that following the above uniform random numbers, find the value of the following Mo		
	Integration: $\int_{1}^{8} (x^2 - 2x) dx$ [5]	nic Cai	10