Fast Flux Service Networks

Carlos Martínez-Cagnazzo
LACNIC XII
Ciudad de Panamá
Mayo de 2009

Plan de la Presentación

- Anatomía de un mensaje de phishing
- DNS
 - TTL, Round Robin
- Anatomía de un phishing
- Fast Flux
- Conclusiones / Referencias

Un mensaje de *phishing* típico

http://ip-216-69-165-83.ip.secureserver.net/cgi-script/temp/login.htm

Un mensaje de *phishing* típico

- Para que el phishing "funcione" hacen falta:
 - Un sistema comprometido donde alojar las páginas web que simulan al sitio "real"
 - Una forma de direccionar (nombre o IP), para dirigir a los usuarios al mismo
 - En general, las IPs de los sistemas mas frecuentemente comprometidos son variables, por hacen falta nombres para enmascarar esto
 - El **nombre** a usar debería "parecer" genuino
 - Un agente de recolección de datos
 - Drop-boxes o similar

DNS (I)

- DNS: Domain Name System
- Propósito básico:
 - Traducir números IP en nombres textuales mas amigables para los usuarios "humanos" de la red
- Propósitos adicionales:
 - Soporte a diferentes servicios a dar sobre la red (directorio de servicios)
 - Ejemplo: Correo electrónico
 - Sub-delegaciones de nombres
 - Zonas, autoridad
 - Resolución reversa
 - Reverso: correspondencia nombre -> número IP

DNS (II)

DNS (III)

Estructura de los nombres de dominio:

- Comentarios:
 - Los niveles del árbol reflejan las delegaciones
 - El root del árbol presente de forma implícita
 - No hay restricciones a la cantidad de niveles
 - Los niveles superiores "<u>delegan</u>" hacia los inferiores

DNS Round Robin

- Técnica empleada para:
 - Balanceo de carga
 - Tolerancia a fallas
- Concepto:
 - Una consulta por un nombre devuelve varios registros
 - El servidor DNS permuta el orden de estos registros en respuestas siguientes

Problemas:

- Falta de feedback de servicios a DNS
- Tiempo de reacción limitado por TTL de los registros

Time-to-Live

- Cada consulta al DNS es "costosa"
 - Consulta a servidores remotos
 - Consultas recursiva
- Los resultados se almacenan en caché local
- ¿Por cuánto tiempo?
 Time-to-Live
- Típicamente
 - 86400 segundos (1 día)

El "Problema" (para el atacante)

Bloqueos

- Un sitio de phishing o similar, "tradicional" es muy sencillo de bloquear una vez detectado
 - Basta con eliminar el sistema comprometido que aloja las páginas fraudulentas
- La distribución de software en la Botnet también puede ser bloqueada de manera completa si se detecta el sistema central
- Los administradores de redes en general toman acciones inmediatas contra sitios de phishing y similares bloqueándolos
- ¿Como puedo dotar de alta disponibilidad a mi botnet?

La "Solución" (para la misma...)

- Eliminar los puntos únicos de falla
 - Web Server
 - · Sistema comprometido donde se aloja el phishing
 - Resolución de nombres
 - · a donde se apunta el phishing
- Fast Flux Service Networks
- Modos
 - Single flux: Servidor web
 - Servidor web distribuido, no ya un único sistema
 - Registros "A" en round robin
 - Double flux: Resolución de nombres
 - Resolución de nombres distribuída
 - Registros "NS" variables

Anatomía de una *FFSN*

Acceso web "normal"

Etapas

 Consulta al DNS por "A" de

www.google.com

- 2. Envía pedido HTTP al servidor web
- 3. Obtiene la página buscada

Anatomía de una FFSN: Tipos

Single Flux

- Múltiples servidores web
 - Alojados en sistemas comprometidos (botnets)
- Servidores DNS limitados
 - Alojados en proveedores de DNS "usuales"
 - Deben permitir configurar dinámicamente registros "A" con TTLs pequeños

Double Flux

- Múltiples servidores web
- Múltiples servidores DNS
 - Proveedor de DNS debe además permitir la configuración dinámica de registros "NS"

Anatomía de una FFSN: Single Flux

- ¿En que se diferencia del caso normal?
 - Múltiples registros "A" devueltos por el DNS
 - TTLs muy pequeños
 - Los "servidores" son en general computadores personales comprometidos
 - Registros "A" van cambiando con el tiempo
- Servidores DNS similares al caso "normal"
 - Pocos registros
 - Asociados a un proveedor

- Observaciones
 - Contenido entregado desde un sitio central
 - Facilita gestión

Anatomía de una FFSN: Double Flux

 El double flux agrega "redundancia" a la resolución de nombres

> En este caso, también los registros "NS" del dominio asociado están alojados en bots y varían

Detección de FFSNs

- Holz et al [1] proponen un criterio de scoring para detectar FFSNs
- Posibles parámetros:
 - nA: el número de registros "A" devuelto por la consulta
 - nNS: el número de registros "NS" devueltos por la consulta
 - nASN: el número de sistemas autónomos diferentes representados en los registros "A"

Detección de FFSNs (2)

Otros criterios:

- Nombres reversos de las IPs devueltas en la consulta pertenecientes a redes de clientes ADSL, dialup o similares
- Variaciones temporales nA o nNS
 - Respuesta a eliminaciones de nodos
- TTLs en los registros pequeños

Software

- FFDetect
 - Biblioteca Java, Universidad de Wellington, Open Source
- ffdetect.pl
 - Script Perl, CSIRT Antel, Open Source

Ejemplo de una *FFSN* detectada

Dominio "81dns.ru" (salida de dig 81dns.ru)

;; ANSWER SECTION:				
81dns.ru.	600	IN	А	61.64.210.29
81dns.ru.	600	IN	А	61.224.132.13
81dns.ru.	600	IN	А	68.200.93.27
81dns.ru.	600	IN	А	69.14.27.151
81dns.ru.	600	IN	А	70.196.175.168
81dns.ru.	600	IN	А	71.234.239.212
81dns.ru.	600	IN	А	81.202.211.11
81dns.ru.	600	IN	А	85.90.9.24
81dns.ru.	600	IN	А	85.225.209.183
81dns.ru.	600	IN	А	89.36.58.189
81dns.ru.	600	IN	А	99.149.197.114
81dns.ru.	600	IN	А	124.125.176.244
81dns.ru.	600	IN	А	210.97.124.66
81dns.ru.	600	IN	A	220.129.81.51
;; AUTHORITY SECTION:				
81dns.ru.	345586	IN	NS	ns1.81dns.ru.
81dns.ru.	345586	IN	NS	ns2.81dns.ru.
81dns.ru.	345586	IN	NS	ns3.81dns.ru.

Ejemplo de una FFSN detectada (2)

Reversos de "81dns.ru" (Registros "A")

```
61-64-210-29-adsl-tpe.dynamic.so-net.net.tw.
29.210.64.61
13.132.224.61
               PTR 61-224-132-13.dynamic.hinet.net.
27.93.200.68
               PTR 27-93.200-68.tampabay.res.rr.com.
151.27.14.69
               PTR d14-69-151-27.try.wideopenwest.com.
168.175.196.70 PTR 168.sub-70-196-175.myvzw.com.
212.239.234.71 PTR c-71-234-239-212.hsd1.ct.comcast.net.
11.211.202.81
               PTR 81.202.211.11.dyn.user.ono.com.
                   24.9.90.85.lully.cust.dynamic.gepowernet.ch.
24.9.90.85
183.209.225.85 PTR c-b7d1e155.82-6-64736c12.cust.bredbandsbolaget.se.
               PTR adsl-99-149-197-114.dsl.chcgil.sbcglobal.net
114.197.149.99
               PTR 220-129-81-51.dynamic.hinet.net.
51.81.129.220
```

Conclusiones

Las FFSNs:

- Dan redundancia y estabilidad a redes para entrega de contenido dudoso
 - Phishings y otros fraudes
 - Venta de productos famacéuticos, etc.
- Proveen de una capa adicional de anonimización a quienes operan estas redes
 - Difícilmente se puedan hallar logs en los PCs comprometidos (bots) que actúan de servidores web
- Desde el punto de vista del ISP se debe ser cauteloso con las herramientas de gestión de DNS automatizadas de las que se proveen a los clientes
- Hace falta más investigación
 - Formas de detectar y de eliminar

Referencias

- [1] Holz T., Gorecki C., Rieck K. and Freiling F. C.
 "Measuring and Detecting Fast-Flux Service Networks":
 https://pi1.informatik.uni-mannheim.de/filepool/research/publications/fast-flux-ndss08.pdf
- [2] Know Your Enemy: Fast Flux Service Networks: <u>http://www.honeynet.org/papers/ff/fast-flux.html</u>
- [3] SSAC Advisory 025: SSAC Advisory on Fast Flux Hosting and DNS: http://www.icann.org/en/committees/security/sac025.pdf
- [4] Nazario J., Holz T. "As the Net Churns: Fast Flux Service Networks Observations"; MALWARE'08: http://honeyblog.org/junkyard/paper/fastflux-malware08.pdf

Referencias

• [5] ATLAS from Arbor Networks, Fast Flux Summary Report:

http://atlas.arbor.net/summary/fastflux

¡Muchas gracias por su atención!

¡Muchas gracias por su atención!

¡Muchas gracias por su atención!

Amenazas en la Web

- Algunas amenazas...
 - Envío de correo electrónico no solicitado (spam)
 - Ataques de denegación de servicio distribuidos
 - Phishing
 - Instalación de "adware"
 - "Sniffing" de tráfico
 - "Keylogging"
 - Guardar las "teclas" pulsadas por el usuario y enviar esa información al "bot herder"
 - "Click Fraud"
 - Generación de clicks fraudulentos a herramientas de promoción en Internet (Google, Yahoo)
- En general [el atacante] necesita alguna infraestructura
 - Páginas de log in; agentes de recolección de datos; envíos de correo masivos

Amenazas en la Web

