

# Ramsey A. Data Science Employment Status



## Major Research Question:

— What is the current status of Data Science?

#### Other Questions:

- What are the key educational backgrounds of the current Data Scientists and Data Analysts?
- What are the key programming languages? Do they really increase the chances of employment?
- Who switch career into Data Science or Data Analysis? Why?
- What are the chances of female data scientist/analyst to find a job?
- What are the key features of Canada's D.S market, and how is it different?

#### Open Questions:

- Am I learning the right thing?
- Is Metro Bluffing?



# The Statistical Methodology:

## Logistic regression (GLM) Method

- The binary logistic model is used to estimate the probability of a binary response (Dependent Variable) based on one or more predictor (or independent) variables (features).
- It allows one to say that the presence of a risk factor increases the odds of a given outcome by a specific factor. The model itself simply models probability of output in terms of input.
- The normal (z) distribution is a continuous distribution, which means that between any two data values we could (at least in theory) find another data value.
- Binomial distribution is discrete, not continuous. In other words, it is NOT possible to find a data value between any two data values.

# **Project Data**

- Kaggle's survey (2017-2018) to establish a comprehensive view of the state of data science and machine learning. The data set contains 16,000 responses and covering who is working with data, what's happening at the cutting edge of machine learning across industries, and how new data scientists can best break into the field.
- Data subset was created including the following variables:
  - 'Gender', 'Country', 'Age', 'Employment', 'Student\_Status',
     'Code\_Writer', 'Career\_Switcher', 'Current\_Job\_Title',
     'Language\_Recommendation', 'Time\_Spent\_Studying', 'Education',
     'Field\_of\_Education'
- A Canadian Data set was sliced to compare Canada to the International Market.

# Python Methodology

Stage One: Data Cleaning & Manipulation

#### **Libraries & Packages used:**

import numpy as np

import pandas as pd

import os

import matplotlib.pyplot as plt

import statsmodels.api as sm

Import statsmodels.formula.api as smf

import seaborn as sns

- Browsing & Selecting Relevant Variables
- Data Cleaning and Conversion : to suit the statistical methodology
  - 1. Binning:

 $G_bins = [0,1,2,3,4]$ 

2. Grouping & Labeling:

G labels = {"Non-binary, genderqueer, or gender non-conforming": 0, "A different identity": 1, "Female": 2, "Male": 3}

3. Re-Categorizing & Coding:

Data\_Scientist['Gender\_Cat'] = coding(Data\_Scientist['Gender'], {"Non-binary, genderqueer, or gender non-conforming": 0, "A different identity": 1, "Female": 2, "Male": 3})

4. <u>Cleaning & Manipulation</u>:

Data\_Scientist['Gender\_Cat'] = Data\_Scientist['Gender\_Cat'].fillna(0)

python

5. Reframing & restructuring:

Data\_Scientist['Gender\_Labeled'] = pd.cut(Data\_Scientist.Gender\_Cat, G\_bins, labels = G\_labels, right=False)

#### • Stage 2: plotting the variables: Descriptive Statistics

(Examples on Original Data Vs. Coded/Categorized)





### • Stage 2: plotting the variables





### Stage 2: plotting the variables



### Stage 2: plotting the variables





### Stage 2: plotting the variables







# Python Methodology

Stage 3: Running Statistical Tests, Scatters, and Boxplots



• Stage 3: Running Statistical Tests, Scatters, and Boxplots





### **Canada Results**



## **Python Regression Models**

#### **OLS Model: International**

Dep. Variable: Employment\_Cat R-squared: 0.953 Model: Adj. R-squared: 0.953 0LS Method: Least Squares F-statistic: 1.318e+04 Sun, 23 Sep 2018 Prob (F-statistic): 0.00 Date: Time: 11:27:57 Log-Likelihood: 16394. No. Observations: 16183 -3.274e+04 AIC: Df Residuals: 16157 BIC: -3.254e+04 Df Model:

Df Model: 25 Covariance Type: nonrobust

|                                                              | coef       | std err | t        | P> t  | [0.025    | 0.975] |
|--------------------------------------------------------------|------------|---------|----------|-------|-----------|--------|
| Intercept                                                    | 0.8874     | 0.010   | 88.858   | 0.000 | 0.868     | 0.907  |
| Field of Education Labeled[T.Social Science]                 | -0.0028    | 0.004   | -0.771   | 0.441 | -0.010    | 0.004  |
| Field of Education Labeled[T.Natural Science]                | 0.0006     | 0.002   | 0.255    | 0.799 | -0.004    | 0.005  |
| Field_of_Education_Labeled[T.Engineering]                    | -6.975e-05 | 0.003   | -0.027   | 0.978 | -0.005    | 0.005  |
| <pre>Field_of_Education_Labeled[T.Computer Science/IT]</pre> | 0.0023     | 0.002   | 1.027    | 0.305 | -0.002    | 0.007  |
| Education_Labeled[T.Some College]                            | 0.0641     | 0.004   | 16.439   | 0.000 | 0.056     | 0.072  |
| Education_Labeled[T.Bachelor]                                | 0.0614     | 0.003   | 17.556   | 0.000 | 0.055     | 0.068  |
| Education_Labeled[T.Master]                                  | 0.0602     | 0.004   | 17.137   | 0.000 | 0.053     | 0.067  |
| Education_Labeled[T.PH.D]                                    | 0.0605     | 0.004   | 15.440   | 0.000 | 0.053     | 0.068  |
| Gender_Labeled[T.A different identity]                       | 0.0284     | 0.012   | 2.327    | 0.020 | 0.004     | 0.052  |
| <pre>Gender_Labeled[T.Female]</pre>                          | 0.0040     | 0.010   | 0.419    | 0.675 | -0.015    | 0.023  |
| Gender_Labeled[T.Male]                                       | 0.0038     | 0.010   | 0.401    | 0.688 | -0.015    | 0.022  |
| Age_group[T.25-34]                                           | -0.0089    | 0.002   | -4.731   | 0.000 | -0.013    | -0.005 |
| Age_group[T.35-44]                                           | -0.0090    | 0.002   | -3.925   | 0.000 | -0.014    | -0.005 |
| Age_group[T.45-65]                                           | 0.0161     | 0.003   | 6.019    | 0.000 | 0.011     | 0.021  |
| Student_Labeled[T.Student]                                   | 0.0345     | 0.003   | 10.153   | 0.000 | 0.028     | 0.041  |
| StudyTime_PerWeek_Labeled[T.2 - 10 hours]                    | 0.0265     | 0.003   | 9.715    | 0.000 | 0.021     | 0.032  |
| StudyTime_PerWeek_Labeled[T.11 - 39 hours]                   | 0.0330     | 0.004   | 8.683    | 0.000 | 0.026     | 0.040  |
| StudyTime_PerWeek_Labeled[T.40+]                             | 0.0409     | 0.007   | 5.721    | 0.000 | 0.027     | 0.055  |
| Language_Recommendation_Labeled[T.SAS]                       | 0.0163     | 0.010   | 1.688    | 0.091 | -0.003    | 0.035  |
| Language_Recommendation_Labeled[T.SQL]                       | 0.0074     | 0.005   | 1.564    | 0.118 | -0.002    | 0.017  |
| Language_Recommendation_Labeled[T.R]                         | 0.0043     | 0.002   | 1.954    | 0.051 | -1.27e-05 | 0.009  |
| Language_Recommendation_Labeled[T.Python]                    | 0.0046     | 0.002   | 2.648    | 0.008 | 0.001     | 0.008  |
| Code_Writer_Labeled[T.Code Writer]                           | -0.9448    | 0.003   | -357.098 | 0.000 | -0.950    | -0.940 |
| Career_Switcher_Labeled[T.Not A Switcher]                    | -0.8797    | 0.005   | -192.766 | 0.000 | -0.889    | -0.871 |
| Career_Switcher_Labeled[T.Switcher]                          | -0.9602    | 0.003   | -353.065 | 0.000 | -0.966    | -0.955 |

 Omnibus:
 7400.296
 Durbin-Watson:
 2.033

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 6963311.305

 Open (JB):
 0.000
 Darah (JB):
 0.000

## **Python Regression Models**

#### OLS Model: Canada

Adj. R-squared: Model: OLS 0.909 Method: Least Squares F-statistic: 170.7 Sun, 23 Sep 2018 Prob (F-statistic): 1.87e-195 Date: Time: 11:32:36 Log-Likelihood: 302.89 No. Observations: 424 AIC: -553.8 Df Residuals: 398 BIC: -448.5

Df Model: 25 Covariance Type: nonrobust

|                                                              | coef    | std err | t      | P> t  | [0.025 | 0.975] |
|--------------------------------------------------------------|---------|---------|--------|-------|--------|--------|
| Tubunant                                                     | 0 1776  |         | 1 264  | 0.170 |        | 0.434  |
| Intercept                                                    | 0.1776  | 0.130   | 1.364  | 0.173 | -0.078 | 0.434  |
| Field_of_Education_Labeled[T.Social Science]                 | 0.0086  | 0.028   | 0.311  | 0.756 | -0.046 | 0.063  |
| Field_of_Education_Labeled[T.Natural Science]                | -0.0180 | 0.020   | -0.897 | 0.370 | -0.057 | 0.021  |
| Field_of_Education_Labeled[T.Engineering]                    | 0.0008  | 0.022   | 0.036  | 0.971 | -0.042 | 0.044  |
| <pre>Field_of_Education_Labeled[T.Computer Science/IT]</pre> | 0.0055  | 0.020   | 0.275  | 0.783 | -0.034 | 0.045  |
| Education_Labeled[T.Some College]                            | -0.1128 | 0.036   | -3.105 | 0.002 | -0.184 | -0.041 |
| Education_Labeled[T.Bachelor]                                | -0.1074 | 0.033   | -3.270 | 0.001 | -0.172 | -0.043 |
| Education_Labeled[T.Master]                                  | -0.1299 | 0.033   | -3.968 | 0.000 | -0.194 | -0.066 |
| Education_Labeled[T.PH.D]                                    | -0.1193 | 0.035   | -3.388 | 0.001 | -0.189 | -0.050 |
| Gender_Labeled[T.A different identity]                       | -0.0281 | 0.141   | -0.199 | 0.842 | -0.305 | 0.249  |
| Gender_Labeled[T.Female]                                     | 0.0188  | 0.126   | 0.148  | 0.882 | -0.230 | 0.267  |
| Gender_Labeled[T.Male]                                       | -0.0032 | 0.126   | -0.026 | 0.980 | -0.250 | 0.244  |
| Age_group[T.25-34]                                           | 0.0291  | 0.018   | 1.586  | 0.114 | -0.007 | 0.065  |
| Age_group[T.35-44]                                           | 0.0322  | 0.019   | 1.665  | 0.097 | -0.006 | 0.070  |
| Age_group[T.45-65]                                           | -0.0239 | 0.021   | -1.155 | 0.249 | -0.065 | 0.017  |
| Student_Labeled[T.Student]                                   | -0.0289 | 0.031   | -0.927 | 0.355 | -0.090 | 0.032  |
| StudyTime_PerWeek_Labeled[T.2 - 10 hours]                    | -0.0454 | 0.026   | -1.773 | 0.077 | -0.096 | 0.005  |
| StudyTime_PerWeek_Labeled[T.11 - 39 hours]                   | -0.0479 | 0.035   | -1.353 | 0.177 | -0.118 | 0.022  |
| StudyTime_PerWeek_Labeled[T.40+]                             | -0.0461 | 0.061   | -0.753 | 0.452 | -0.166 | 0.074  |
| Language_Recommendation_Labeled[T.SAS]                       | 0.0285  | 0.064   | 0.448  | 0.654 | -0.096 | 0.153  |
| Language Recommendation Labeled[T.SQL]                       | -0.1090 | 0.046   | -2.378 | 0.018 | -0.199 | -0.019 |
| Language Recommendation Labeled[T.R]                         | 0.0032  | 0.020   | 0.157  | 0.876 | -0.037 | 0.043  |
| Language_Recommendation_Labeled[T.Python]                    | -0.0097 | 0.015   | -0.629 | 0.530 | -0.040 | 0.021  |
| Code_Writer_Labeled[T.Code Writer]                           | 0.9211  | 0.025   | 36.803 | 0.000 | 0.872  | 0.970  |
| Career_Switcher_Labeled[T.Not A Switcher]                    | 0.7834  | 0.039   | 20.284 | 0.000 | 0.707  | 0.859  |
| Career_Switcher_Labeled[T.Switcher]                          | 0.9531  | 0.025   | 37.873 | 0.000 | 0.904  | 1.003  |

Omnibus: 296.334 Durbin-Watson: 1.994

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 32137.207

 Skew:
 -2.085
 Prob(JB):
 0.00

 Kurtosis:
 45.446
 Cond. No.
 75.9

## **Python Regression Models**

#### GLM Model: Canada

#### Generalized Linear Model Regression Results

Employment\_Cat Dep. Variable: No. Observations: 424 Model: GLM Df Residuals: 398 Model Family: Binomial Df Model: 25 Link Function: logit Scale: 1.0000 Log-Likelihood: Method: IRLS nan Sun, 23 Sep 2018 Date: Deviance: nan Time: 11:43:06 Pearson chi2: 16.0 No. Iterations: 100 Covariance Type: nonrobust

|                                                   |           |          | =======   |       |           |          |
|---------------------------------------------------|-----------|----------|-----------|-------|-----------|----------|
|                                                   | coef      | std err  | Z         | P> z  | [0.025    | 0.975]   |
|                                                   |           |          |           |       |           |          |
| Intercept                                         | -166.4406 | 6.95e+07 | -2.4e-06  | 1.000 | -1.36e+08 | 1.36e+08 |
| Field_of_Education_Labeled[T.Social Science]      | 0.4852    | 1.42e+07 | 3.41e-08  | 1.000 | -2.79e+07 | 2.79e+07 |
| Field_of_Education_Labeled[T.Natural Science]     | -66.4493  | 9.55e+06 | -6.96e-06 | 1.000 | -1.87e+07 | 1.87e+07 |
| Field_of_Education_Labeled[T.Engineering]         | 1.5665    | 1.14e+07 | 1.37e-07  | 1.000 | -2.24e+07 | 2.24e+07 |
| Field of Education Labeled[T.Computer Science/IT] | 1.5764    | 1.06e+07 | 1.49e-07  | 1.000 | -2.07e+07 | 2.07e+07 |
| Education Labeled[T.Some College]                 | -98.1794  | 1.73e+07 | -5.69e-06 | 1.000 | -3.38e+07 | 3.38e+07 |
| Education Labeled[T.Bachelor]                     | -101.6872 | 1.51e+07 | -6.73e-06 | 1.000 | -2.96e+07 | 2.96e+07 |
| Education Labeled[T.Master]                       | -166.4213 | 1.49e+07 | -1.12e-05 | 1.000 | -2.92e+07 | 2.92e+07 |
| Education_Labeled[T.PH.D]                         | -132.2648 | 1.57e+07 | -8.41e-06 | 1.000 | -3.08e+07 | 3.08e+07 |
| <pre>Gender_Labeled[T.A different identity]</pre> | 33.0635   | 7.69e+07 | 4.3e-07   | 1.000 | -1.51e+08 | 1.51e+08 |
| Gender Labeled[T.Female]                          | 133.2902  | 6.9e+07  | 1.93e-06  | 1.000 | -1.35e+08 | 1.35e+08 |
| Gender_Labeled[T.Male]                            | 131.4642  | 6.86e+07 | 1.92e-06  | 1.000 | -1.34e+08 | 1.34e+08 |
| Age group[T.25-34]                                | 68.1588   | 8.31e+06 | 8.2e-06   | 1.000 | -1.63e+07 | 1.63e+07 |
| Age_group[T.35-44]                                | 69.1317   | 9.32e+06 | 7.42e-06  | 1.000 | -1.83e+07 | 1.83e+07 |
| Age_group[T.45-65]                                | -65.3287  | 8.28e+06 | -7.89e-06 | 1.000 | -1.62e+07 | 1.62e+07 |
| Student Labeled[T.Student]                        | -3.5095   | 1.66e+07 | -2.12e-07 | 1.000 | -3.24e+07 | 3.24e+07 |
| StudyTime_PerWeek_Labeled[T.2 - 10 hours]         | -0.8517   | 1.3e+07  | -6.57e-08 | 1.000 | -2.54e+07 | 2.54e+07 |
| StudyTime_PerWeek_Labeled[T.11 - 39 hours]        | 29.2432   | 1.86e+07 | 1.57e-06  | 1.000 | -3.65e+07 | 3.65e+07 |
| StudyTime PerWeek Labeled[T.40+]                  | 91.0618   | 3.32e+07 | 2.74e-06  | 1.000 | -6.51e+07 | 6.51e+07 |
| Language_Recommendation_Labeled[T.SAS]            | 2.4983    | 3.46e+07 | 7.22e-08  | 1.000 | -6.79e+07 | 6.79e+07 |
| Language_Recommendation_Labeled[T.SQL]            | -33.2025  | 1.38e+07 | -2.41e-06 | 1.000 | -2.7e+07  | 2.7e+07  |
| Language_Recommendation_Labeled[T.R]              | 33.5419   | 1.04e+07 | 3.23e-06  | 1.000 | -2.04e+07 | 2.04e+07 |
| Language Recommendation Labeled[T.Python]         | -32.4392  | 7.85e+06 | -4.13e-06 | 1.000 | -1.54e+07 | 1.54e+07 |
| Code Writer Labeled[T.Code Writer]                | 333.2502  | 1.18e+07 | 2.82e-05  | 1.000 | -2.31e+07 | 2.31e+07 |
| Career_Switcher_Labeled[T.Not A Switcher]         | 102.3846  | 1.08e+07 | 9.49e-06  | 1.000 | -2.11e+07 | 2.11e+07 |
| Career_Switcher_Labeled[T.Switcher]               | 400.9001  | 1.29e+07 | 3.12e-05  | 1.000 | -2.52e+07 | 2.52e+07 |
|                                                   |           |          |           |       |           |          |

## **Using Models to Predict**

```
In [684]: model =
sm.OLS(Data Scientist['Employment Cat'],
Data Scientist['Gender Cat']).fit()
     ...: predictions =
model.predict(Data_Scientist['Gender_Cat'])
     ...: model.summary()
     ...: print(predictions.head(10))
     0.000000
     0.145468
     0.218203
     0.218203
     0.218203
     0.218203
     0.218203
     0.145468
     0.145468
     0.218203
dtype: float64
```

```
In [686]: model = sm.OLS(Data Scientist['Employment Cat'],
Data Scientist['Language Recommendation Cat']).fit()
     ...: predictions =
model.predict(Data_Scientist['Language_Recommendation Cat'])
     ...: model.summary()
     ...: print(predictions.head(10))
     0.000000
     0.276806
     0.207605
     0.276806
     0.276806
5
     0.276806
     0.207605
     0.138403
     0.276806
     0.276806
dtype: float64
```

```
In [687]: model = sm.OLS(Data Scientist['Employment Cat'],
Data Scientist['Education Cat']).fit()
     ...: predictions =
model.predict(Data Scientist['Education Cat'])
     ...: model.summary()
     ...: print(predictions.head(10))
     0.129915
     0.194873
     0.194873
    0.194873
     0.259831
     0.259831
     0.194873
     0.129915
     0.129915
     0.129915
dtype: float64
```



# **Key Findings**

- Surprisingly, Canada's market for Data Science and Analysis <u>does</u>
   <u>not require formal education</u>, but perhaps more professional
   designations. This is unlike the international market that requires
   formal education with tendency to require more Master's
   degrees.
- There is a slight <u>increase in tendency for hiring female D.S</u> (although insignificant).
- Surprisingly, Canadian market appeals more to R and SAS than the International market appealing to python.
- The international market most fitted age groups is (45-65), while Canada's age group is (25-44).
- There is a <u>positive association</u> between career switching and job employment.
- Social Science is the least to be hired internationally, and natural science is the least in Canada.

