Otimização não linear

Isabel Espírito Santo

Departamento de Produção e Sistemas

Escola de Engenharia

Universidade do Minho

iapinho@dps.uminho.pt

Formulação de um problema sem restrições

$$\min_{x \in \mathbb{R}^n} f(x) \tag{1}$$

• Se
$$n = 1 \Longrightarrow \left[\begin{array}{c} \text{problema unidimensional} \\ x \text{ \'e escalar} \end{array} \right.$$

• Se
$$n > 1 \Longrightarrow \begin{bmatrix} & & & \\ & x_1 & & \\ & x_2 & & \\ & \vdots & & \\ & x_n & & \end{bmatrix}$$
 é vetor de dimensão n

f(x) - função objetivo

$$\min_{x \in \mathbb{R}^2} f(x) \equiv 3x_1^2 - x_2^2 + x_1^3$$

Ponto sela em (0,0)

$$\min_{x \in \mathbb{R}^2} f(x) \equiv 3x_1^2 - 4x_1x_2 - 4x_2^2$$

Ponto sela em (0,0)

Notação

Vetor gradiente da função f(x) - $x \in \mathbb{R}^n$ -

$$\nabla f\left(x\right) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \text{ vector de } \mathbb{R}^n$$

Matriz Hessiana da função f(x)

$$\nabla^2 f\left(x\right) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} \text{ matriz }$$
 simétrica de $n \times n$

Condições de otimalidade

Assume-se f(x) continuamente diferenciável até à 2^a ordem.

```
Condição necessária (e suficiente) de 1^a ordem:
Se x^* é uma solução do problema (1) então \nabla f\left(x^*\right)=0;
(Se \nabla f\left(x^*\right)=0 então x^* é candidato a minimizante);
```

Nota: A condição $\nabla f\left(x\right)=0$ define os <u>pontos estacionários</u> de f:

```
minimizante - exemplo 5
maximizante - exemplo 6
ponto sela - exemplos 7 e 8
```

Condições de otimalidade

Condição necessária de 2^a ordem:

Se x^* é uma solução do problema (1) que satisfaz a condição de 1^a ordem, então $\nabla^2 f(x^*)$ é semi-definida positiva.

Condição suficiente de 2^a ordem:

Se x^* é um ponto que verifica a condição de 1^a ordem e se $\nabla^2 f(x^*)$ é definida positiva, então x^* é um **minimizante local** forte de (1).

Condições de otimalidade

Assumindo $\nabla f(x^*) = 0$:

- as condições necessária e <u>suficiente</u> de 2^a ordem para um maximizante são respetivamente
 - $\nabla^2 f(x^*)$ é semi-definida negativa
 - $\nabla^2 f(x^*)$ é definida negativa
- se $\nabla^2 f(x^*)$ é <u>indefinida</u>, então x^* é ponto sela (ou de descanso).

Conclusão

Seja x^* um ponto para o qual $\nabla f(x^*) = 0$ e $\nabla^2 f(x^*) \neq$ matriz nula:

- Se $\nabla^2 f(x^*)$ é definida positiva então x^* é minimizante
- Se $\nabla^2 f(x^*)$ é definida negativa então x^* é maximizante
- Se $\nabla^2 f(x^*)$ é semi-definida positiva então x^* é minimizante ou ponto sela
- Se ∇²f (x*) é semi-definida negativa então x* é maximizante ou ponto sela
- Se $\nabla^2 f(x^*)$ é indefinida então x^* é ponto sela.