UNIVERSIDAD DE SAN CARLOS DE GUATEMALA CENTRO UNIVERSITARIO DE OCCIDENTE DIVISIÓN DE CIENCIAS DE LA INGENIERÍA LENGUAJES FORMALES Y DE PROGRAMACIÓN

Practica1 Analizador Léxico

Por:

Elvis Lizandro Aguilar Tax

201930304

Procedimiento Teórico Práctico

1. Creación de la expresión regular que describa el patrón de cada token.

-- Identificador: (I/)[(d/)|(I/)]*

donde I/ puede ser cualquier letra

-- Número Entero: (d/)+

donde d/ puede ser cualquier dígito

--Número Decimal: (d/)+(.)(d/)+

-- Puntuación: (P/)

donde P/ = $\{;|,|.|:\}$, uno de estos signos de puntuación

-- Agrupacion: (g/)

donde g/ = {(|) | { | } | [|]}, signos de agrupación

-- Operador: (O/)

donde O/ = {+ | - | * | / | % }, signo operador

2. Gramática Regular

Identificador

 $(I/)[(d/)|(I/)]^* ---> \{Q,S0,\Sigma,F,\partial\}$

a. Conjunto de estados autómata

$$---> Q = {S0,S1,S2}$$

---> S0

c. Alfabeto Σ

$$---> \Sigma = \{[a-z],[0-9]\}$$

d. Estado de aceptación F

$$---> F = {S1,S2}$$

e. Función de transición ∂ (delta)

	1/	d/
S0	S1	error
S1	S1	S2
S2	S1	S2

3. AFD

Número Entero

$$(d/)+ \longrightarrow \{Q,S0,\Sigma,F,\partial\}$$

a. Conjunto de estados autómata

$$---> Q = {S0,S1}$$

b. Estado inicial

---> S0

c. Alfabeto Σ

$$---> \Sigma = \{[0-9]\}$$

d. Estado de aceptación F

$$---> F = {S1}$$

e. Función de transición ∂ (delta)

	d/
S0	S1
S1	S1

3. AFD

Número Decimal

$$(d/)+(.)(d/)+ \longrightarrow \{Q,S0,\Sigma,F,\partial\}$$

a. Conjunto de estados autómata

$$---> Q = \{S0,S1,S2,S3\}$$

b. Estado inicial

---> S0

c. Alfabeto Σ

$$---> \Sigma = \{[0-9], "."\}$$

d. Estado de aceptación F

$$---> F = {S3}$$

e. Función de transición ∂ (delta)

	d/	"."
S0	S1	ERROR
S1	S1	S2
S2	S3	ERROR
S3	S3	ERROR

Signo de Puntuación

$$(P/)---> \{Q,S0,\Sigma,F,\partial\}$$

a. Conjunto de estados autómata

$$---> Q = {S0,S1}$$

b. Estado inicial

---> S0

c. Alfabeto Σ

d. Estado de aceptación F

$$---> F = {S1}$$

e. Función de transición ∂ (delta)

	P/
S0	S1
S1	S1

Signo de Agrupación

$$(g/) \longrightarrow \{Q,S0,\Sigma,F,\partial\}$$

a. Conjunto de estados autómata

$$---> Q = {S0,S1}$$

b. Estado inicial

---> S0

c. Alfabeto Σ

---->
$$\Sigma = \{"(", ")", "[", "]", "\{", "\}"\}$$

3. AFD

3. AFD

3. AFD

d. Estado de aceptación F

e. Función de transición ∂ (delta)

	g/
S0	S1
S1	S1

Signo de Agrupación

(O/)
$$\longrightarrow$$
 {Q,S0, Σ ,F, ∂ }

a. Conjunto de estados autómata

$$---> Q = {S0,S1}$$

b. Estado inicial

c. Alfabeto Σ

---->
$$\Sigma = \{+ \mid - \mid * \mid / \mid \% \}$$

d. Estado de aceptación F

$$---> F = {S1}$$

e. Función de transición ∂ (delta)

	O/
S0	S1
S1	S1

3. AFD

4. ADF que reconoce cada token (unión)

Tabla de transiciones del AFD

Matriz de Transición						
	1/	d/	•	P/	g/	0/
S0	S1	S3	error	S6	S7	S8
S1	S1	S2	error	error	error	error
S2	S1	S2	error	error	error	error
S3	error	S3	S4	error	error	error
S4	error	S5	error	error	error	error
S5	error	S5	error	error	error	error
S6	error	error	error	error	error	error
S7	error	error	error	error	error	error
S8	error	error	error	error	error	error

5. Anexos

Solución de expresión regular al autómata determinista de cada token.

FT	е	1/	d/	
S0	S1=A	T(A,I/)= S2	T(A,d/)=	
S2	S3,S4,S9=B	T(B,l/)=S5	T(B,d/)=S6	
S5	S7,S9,S2=C	T(C,l/)=	T(C,d/)=	
S6	S7,S9,S2=C			
Razona	miento cambi			
A=S0	por lo tanto la matriz resultante es igual			
B=S1			1/	d/
C=S2		S0	S1	error
		S1	S1	S2
		S2	S1	S2

2. (d/)+ ---- método de thomson

3. (d/)+(.)(d/)+

Nota: los operadores, agrupación y puntuación son pequeños y es absurdo hacer el trabajo por método, como se puede notar en el 2 solo de quita un e por los tanto es en vano el procedimiento