Sprawozdanie nr. 1

1.tytuł CA, Ising, Creutz i regresja jednowymiarowa analiza

Hubert Król

2. Wstęp

a) Cel ćwiczenia

W sprawozdaniu przedstawię wykresy oraz wnioski Czasowego Rozkładu Energii układu, Czasowego Rozkładu Magnetyzacji oraz Czasowego Rozkładu Energii Demona potrzebne do policzenia stosunku magnetyzacji od temperatury m(T)

b) Niezbędne podstawy teoretyczne

Model Isinga:

"Model Isinga opisany jest za pomocą układu dyskretnych zmiennych (spinów), które przyjmują wartości +1 lub –1 zlokalizowane na każdym węźle sieci. Energia oddziaływania pary spinów przyjmuje jedną z dwóch wartości zależną od ich wzajemnej orientacji (zgodnej lub przeciwnej)." (https://pl.wikipedia.org/wiki/Model Isinga)

Metoda Demona Creutza:

zaliczana jest do metod mikro kanonicznych, czyli działających przy z góry ustalonym stanie energetycznym. W metodach z tej rodziny zakłada się stałość energii w czasie całego kursu. Jeśli weźmiemy pod uwagę to kryterium, metodę demona można zaliczyć do mikro kanonicznych jedynie dla dużych układów. Rozpoczynamy od wyboru stanu początkowego (o ustalonej energii): generujemy macierz spinów o znakach +1 i -1 (Model Isinga) i obliczamy jej energię ze wzoru:

 $E=-J\Sigma ijsisj$

J – stała odziaływania

SiSj – spiny

Energia układu w konfiguracji ferromagnetycznej:

 $Emin=-N\cdot D$

N – liczba wszystkich spinów w układzie

D - wymiar układu

Każdy ze spinów jest powiązany ze swoimi sąsiadami, co pozwala na obliczane energii zmiany, która nastąpi po przestawieniu konkretnego spinu.

1	Górny	1	1
Lewy	Base	Prawy	1
1	Dolny	1	1
1	1	1	1

Energie lokalną oblicza się w następujący sposób:

EL = -Base*(Górny + Dolny + Lewy + Prawy)

3. Wymagania techniczne

Algorytm został opracowany na

- Anaconda Navigator (anaconda 3) Spyder (Python3.9)
- Windows 10

4. Przedstawienie Wyników

Na samym początku warto zobaczyć, jak wygląda rozkład energii demona w kolejnych krokach czasowych.

Dane doświadczalne:

a) Badamy rozkład energii:

Poniżej: Rozkład energii demona w kolejnych krokach czasowych (Energia początkowa = 8000 Rozmiar 100x100)

b) Badamy rozkład magnetyzacji:

Poniżej: Rozkład magnetyzacji w kolejnych krokach czasowych (Energia początkowa = 8000 Rozmiar 100x100)

c) Badamy rozkład Energii układu:

Poniżej: Rozkład Energii układu w kolejnych krokach czasowych (Energia początkowa = 8000 Rozmiar 100x100)

Poniżej: Rozkłady w kolejnych krokach czasowych (Energia początkowa = 7500 Rozmiar 100x100)

(Pomimo prób nie udało mi się wyliczyć Temperatury aby osiągnąć coś na wzór wykresu omawianego na ćwiczeniach i zrobić wykres m(T))

5. Podsumowanie

W sprawozdaniu przedstawiłem jak wygląda przebieg średniej magnetyzacji w algorytmie Creutza działającym na modelu Isinga. Zebrałem dane przebiegu energii demona i magnetyzacji w kolejnych krokach czasowych. Analizując wykresy i posługując się informacjami uzyskanymi podczas przygotowywania danych wysunąłem następujące wnioski:

- 1. Magnetyzacja układu maleje wraz z kolejnymi krokami czasowymi.
- 2. Energia układu rośnie wraz z kolejnymi krokami czasowymi tyle ile energii.
- 3. Energia demona maleje wraz z kolejnymi krokami czasowymi.
- 4. Im większa energia startowa demona, tym rozkład jest "szerszy".

6. Literatura

- wikipedia.org

Opracowanie: Hubert Król