PATENT ABSTRACTS OF JAPAN

8

(11)Publication number:

09-129778

(43)Date of publication of application: 16.05.1997

(51)Int.Cl.

H01L 23/12 H01L 23/50

(21)Application number: 07-308437

(71)Applicant:

NGK SPARK PLUG CO LTD

(22)Date of filing:

31.10.1995

(72)Inventor:

KIMURA YUKIHIRO

HIRANO SATOSHI

(54) PGA TYPE ELECTRONIC COMPONENT MOUNTING BOARD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a high density circuit interconnection having a multiple pin structure formed thereon not by inserting pins into a board like a ceramic board but by connecting the pins with a plastic PGA board while contacting each other without lowering pin junction strength.

SOLUTION: Nail head pins 4 are connected to pin connection pads 3 on the surface 2 of a board through head portions 5 of the pins 4 by solder. A pin fixing plate 6 comprising through holes 8 arranged corresponding to the pins 4, capable of passing axial parts of the pins 4 therethrough and capable of engaging with the head portions 5 of the pins 4, is bonded to the principal surface 2 of the substrate 1 by passing the axial parts of the pins 4 through the through holes 8 and by engaging the head portions 5 of the pins 4 with the through holes 8. The pins 4 are not inserted into the substrate. Pin junction strength is ensured by engaging the head portions 5 with the through holes 8 of the pin fixing plate 6.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-129778

(43)公開日 平成9年(1997)5月16日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ		技術表示箇所
H01L 23/12			H01L	23/12	P
23/50				23/50	P

		審査請求	未請求 請求項の数4 FD (全 7 頁)		
(21)出贖番号	特顯平7-308437	(71)出顧人	000004547 日本特殊陶業株式会社		
(22)出願日	平成7年(1995)10月31日	愛知県名古屋市瑞穂区高辻町14番18号			
		(72)発明者	木村 幸弘		
			名古屋市瑞穂区高辻町14番18号 日本特殊		
			陶業株式会社内		
		(72)発明者	平野前		
			名古屋市瑞穂区高辻町14番18号 日本特殊		
			陶業株式会社内		
		(74)代理人	弁理士 加藤 和久		

(54) 【発明の名称】 PGA型電子部品用基板

(57)【要約】

プラスチックタイプのPGA基板で、セラミ 【課題】 ックタイプのように基板内にピンを挿入して立設せず、 接合強度を低下させずピンを基板に当接状態で接合し、 回路配線の高密度化、多ピン化を図る。

【解決手段】 基板1の主面2のピンの接合用のバッド 3にネイルヘッド型をなすピン4を頭部5を介して半田 付け等により接合する。そして、ピン4の配置に対応す ると共にピン4の軸部を貫通可能でありかつその頭部5 を係合可能に形成されてなる貫通孔8を備えたピン固定 板6を、その貫通孔8にピン4の軸部を通しかつピンの 頭部5を係合させて基板1の主面2に接着する。ピンは 基板内に挿入状態にならず、またピンの接合強度は、ピ ン固定板6の貫通孔8に頭部5を係合させることで確保 される。

【特許請求の範囲】

【請求項1】 ブラスチック製基板の主面に、入出力端 子用のピンの接合用のパッドが複数形成され、該パッド に、頭部がネイルヘッド型をなす前記ピンがその頭部を 介して電気的導通を保持されており、そして、該ピンの 配置に対応すると共に該ピンの軸部を貫通可能でありか つその頭部を係合可能に形成されてなる貫通孔を備えた ピン固定板が、その貫通孔に前記ピンの軸部を通しかつ 該ピンの頭部を係合させて前記プラスチック製基板の主 面に接着されていることを特徴とするPGA型電子部品 10 用基板。

【請求項2】 前記パッドと前記ピンの頭部との間にお ける電気的導通が、半田付け若しくは導電性接着剤によ る接着によって保持されている請求項1記載のPGA型 電子部品用基板。

【請求項3】 前記ピン固定板が、前記プラスチック製 基板の主面に、プリプレグを接着剤として接着されてい る請求項1又は2記載のPGA型電子部品用基板。

【請求項4】 前記パッドと前記ピンの頭部との間にお ける電気的導通が、前記プラスチック製基板の主面と前 20 記ピン固定板との間に介在されて前記バッドと前記ピン の頭部との間において局所的に加圧された異方導電性接 着シートの圧縮変形によって保持されると共に、前記ピ ン固定板が前記プラスチック製基板の主面に該異方導電 性接着シートを接着剤として接着されている請求項1記 載のPGA型電子部品用基板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、PGA(ピン・グ リッド・アレイ) 型電子部品用基板に関し、詳しくは、 プラスチック製基板の主面に入出力端子用のピンが立設 状に多数の設けられたPGA型電子部品用基板(以下、 PGA型基板、若しくは、単に基板ともいう)に関す る。

[0002]

【従来の技術】PGA型基板は、入出力端子を平面的に 取り出せるため、端子数が増大してもバッケージの外径 寸法を大きくすることなく、比較的、十分な端子間ピッ チを確保できることなどから広く用いられている。この 基板は、アルミナなどのセラミックからなるセラミック タイプのものと、ガラスーエポキシ樹脂複合板などを積 層してなるプラスチックタイプのものとに大別される。 【0003】とのうち、セラミックタイプのPGA型基 板は多層化が容易であり、上下層間の配線を結合するビ アホールも容易に形成することができる。また、入出力 端子用のピン(以下、単にピンともいう)も、基板の主 面に形成された同ピンの接合用のバッドに、頭部がネイ ルヘッド型をなすピンをその頭部の端面を突き当ててロ ー付けすることにより容易に、しかも高強度に接合でき る。

【0004】とれに対して、プラスチックタイプのPG A型基板は、片面に銅板を張り付けた銅張り樹脂板(ガ ラス-エポキシ樹脂複合板など)をレジスト塗布やエッ チング等して銅配線パターンを形成したり、樹脂板に穿 孔し、その孔壁面にメッキにより銅を形成等したものを エポキシ接着剤により積層することにより製造される。 ところで、プラスチックタイプのものは基板の耐熱性が 低いため、セラミックタイプのように、ピンをロー付け することはできず、比較的融点の低い半田付け接合にな る。しかし、ネイルヘッド型の頭部を持つピンをその頭 部を基板のパッドに当接状にして半田付けしただけで は、実用上、接着(接合)強度が不十分である。また、 このものでは基板とパッド (銅箔または銅メッキ) との 密着強度も1~2kgf/mm'と低い。こうしたこと から、従来一般のプラスチックタイプのPGA型基板で は、基板に貫通孔を形成し、その内壁面に銅メッキ等で 電気的導通をとって、その貫通孔にピンを貫通状に挿入 (圧入) し、或いはその後さらに半田含浸をしてビンを 基板に固定する構造とされていた。

[0005]

【発明が解決しようとする課題】上記のように従来のプ ラスチックタイプのPGA型基板では、その構造上、ビ ンを固定するための貫通孔が設けられていることより、 ピンのある部分の上下にわたって回路配線を形成できな いことから、その分、回路(配線)の密度が低くなって しまうといった問題があった。また、ピンがあるために 回路の引き回しも困難となることから、多ピン化ないし ピンの高密度化の要求に十分応えられないといった問題 があった。また、ピンを通して固定する孔を貫通孔とす 30 ることなく基板の途中までとし、その孔にピンを嵌入す る構造のものもあるが(特開平4-105351号)、 その場合には強度が不十分となりやすく、また、ピンが 途中まで入り込んでいる分、回路の引き回しが妨げられ てしまう。

【0006】本発明は、このような問題点に鑑みてなさ れたもので、ブラスチックタイプの基板のもつ優れた特 性(低抵抗配線、低誘電率絶縁体、低コスト性など)を 生かしつつ、セラミックタイプの基板のように基板内に ピンを挿入することなく、しかも接合強度の低下を招く 40 ことなくピンを接合することのできる構造を実現するこ とで、基板内に形成される回路配線の密度を高くすると 共に多ピン化ないしピンの高密度化の要求に十分応える ことのできるPGA型電子部品用基板を提供することを その目的とする。

[0007]

【課題を解決するための手段】上記の目的を達成するた め、本発明の請求項1記載のPGA型電子部品用基板 は、プラスチック製基板の主面に、入出力端子用のピン の接合用のパッドが複数形成され、該バッドに、頭部が 50 ネイルヘッド型をなす前記ピンがその頭部を介して電気 10

3

的導通を保持されており、そして、該ビンの配置に対応 すると共に該ビンの軸部を貫通可能でありかつその頭部 を係合可能に形成されてなる貫通孔を備えたビン固定板 が、その貫通孔に前記ビンの軸部を通しかつ該ビンの頭 部を係合させて前記プラスチック製基板の主面に接着 (固着)されていることを特徴とする。

【0008】前記手段において、前記パッドと前記ピンの頭部との間における電気的導通は、半田付け若しくは 導電性接着剤による接着で保持するとよいが、とれに限 定されるものではない。また、これらの手段において は、前記ピン固定板を、前記プラスチック製基板の主面 に、プリブレグ(Prepreg)を接着剤として接着しても よい。

【0009】このような本発明の構成によれば、バッドと前記ピンの頭部との間における電気的導通は、半田付け若しくは導電性接着剤による接着などで保持される一方、ピン固定板は基板の主面に接着されていると共に、ピンの頭部がそのピン固定板の貫通孔に係合されているために、ピンに軸方向に引張り力が作用した際には抜け止め作用をなし、さらにその係合がある分、横方向(ピンの軸半径方向)に外力を受けても抗することができるなど、ピンは基板に当接状に接合されているにもかかわらず、高い接合強度を備えている。

【0010】さらに、上記請求項1記載の手段においては、前記パッドと前記ピンの頭部との間における電気的導通を、前記プラスチック製基板の主面と前記ピン固定板との間に介在されて前記パッドと前記ピンの頭部との間において局所的に加圧された異方導電性接着シートの圧縮変形によって保持すると共に、前記ピン固定板を前記プラスチック製基板の主面に該異方導電性接着シートを接着剤として接着してもよい。

【0011】なお、ピン固定板は、所定の電気絶縁性、強度、耐熱性を保持するものであればよく、例えば、ガラスBT(ビスマレイミドートリアジン)レジン、ガラスポリイミド、ガラスフェノール樹脂、ガラスBCBが例示される。そして、こうした複合材においては、ガラス(繊維)に代えて紙や有機繊維を用いることもできる。なお、ピン固定板は、その材質や基板の平面形状(大きさ)などを考慮し、適宜の厚さで、適宜の平面形状に設計すればよい。また、ピンの軸部が貫通する貫通孔は、その軸部を貫通させることができかつピンの頭部を係合可能に形成されていればよく、円形孔など適宜の孔形状とすることができる。

[0012]

【発明の実施の形態】

第1 形態例

図1ないし図4を参照して本発明の実施の第1形態例を 説明する。図1中、1は、平面視、略矩形をなす、ガラ スエポキシ樹脂などからなるPGA型電子部品用基板 (パッケージ本体)であって、その一主面(図1下面) 2には、入出力端子用のビンの接合用のバッド(以下、単にバッドともいう)3が多数形成されており、このバッド3は、図示はしないが基板1の断面内に形成された回路配線を介して、搭載されるICチップとワイヤボンディングにより接続されるよう形成されている。そして、このバッド3には、ネイルヘッド型をなすビン4がその頭部5の端面5aを当接して半田付けされており、この半田(層)10を介してバッド3とビン4との電気的導通が保持されている。

【0013】一方、このピン4の頭部5の下面5bに係 合するようにして、薄板状のピン固定板6が後述するよ うに接着剤(層)7により基板1の主面2に接着されて いる。すなわち、本例では、ピン4の配置に対応する所 定の配置で、所定の内径をもつ多数の貫通孔8を備えた ピン固定板6(以下、単に固定板ともいう)が、その貫 通孔8にピン4の軸部4aを貫通させて基板1の一主面 2に接着剤7により接着されている。ただし、本例にお ける固定板6は、基板1の一主面2よりやや小さめの四 角に形成されたガラスエポキシ樹脂製の薄板であり、貫 通孔8の内径(直径)はピン4の軸部4aの外径D1 (0.45mm)より大きくかつピン4の頭部5の外径 D2(O.7mm)より小さく形成されており、本例で は0.5mmに設定されている。しかして、本例では、 頭部5が設計上片側0.1mm係合するよう設定されて いる。

【0014】なお、本例に用いたピン4は、その頭部5 の近傍の軸部4 aの外径が貫通孔8の孔径よりやや大き く膨拡されており、ピン4が固定板6の貫通孔8に圧入 された際、その膨拡部4bが貫通孔8の壁面に食付いて 固定されるようになっている(図2参照)。しかして、 ピン4の頭部5の下面(頭部の鍔部)5bが、貫通孔8 の周縁面8 aに係合され、さらにその頭部5の周囲は、 充填・固化した接着剤7で埋められており、ピン4を保 持すると共に、固定板6を基板1に接着している。な お、固定板6には、本例ではピン4の貫通孔8とは別 に、接着剤7の充填孔9が多数、設けられている。 【0015】ここで図1及び図2に示した本例の一製法 を図3及び図4を参照して説明する。まず、基板1の一 主面2に形成された所定の大きさの多数のパッド3,3 に半田クリーム (例えばSn/Pb=90/10) 10 を所定量(所定厚さ)印刷する。一方、上記の固定板 (樹脂板) 6を別途、用意し、その所定の貫通孔8にピ ン4をその頭部5が係合するまでプレスにより一括して 圧入する(図3参照)。次いで、ビン4が圧入されたと の固定板6を、図4に示したように、各ピン4の頭部5 の端面5aが基板1の各バッド3に対面するように位置 決めして当接させる。そして、所定温度(200~30 0°C)下で例えば30秒間加熱して半田クリーム10を リフローし、冷却固化させる。この結果、ピン4はパッ 50 ド3に半田付けされ、電気的導通が保持される。

導通が保持されていればよいととから、これらに代え て、導電性(樹脂)接着剤をパッド上、或いは、ピンの

【0016】そして、この半田付け後には、基板1の主 面2と固定板6との間に微小な間隙kが生じるが、この 間隙 k には、基板 1 及び固定板 6 の外縁部の隙間或いは 固定板6に形成した充填孔9より、接着剤としてエポキ シ樹脂などの熱硬化性樹脂系接着剤を注入(圧入)、充 填する。との充填の際には、基板1の外縁部や別の充填 孔9から余剰の樹脂がでるまで充填する。しかる後、所 定温度下で所定時間(例えば常温で24時間程度、或い は150℃で5時間程度)加熱して接着剤を硬化させ、 基板1の主面2に固定板6を接着する。

【0017】かくして、図1及び図2のように形成され るが、この固定板6の接着により、ピン4の頭部5の外 周近傍が接着剤7により固められると共にピン4の頭部 5の下面5 bが貫通孔8の周縁面8 a に係合することか ら、半田付けのみでは不十分なピンの接合強度も高く保 持される。因みに、ピンの引張り試験によれば、半田付 けのみの場合には、2~3 kg f 程度でピンの頭部の端 面(半田付け部)がパッドから分離したが、本例の場合 にはそのような分離を生ずることなく、ピンは8 kgf 以上で軸部の途中で切断された。

【0018】このように本例では、プラスチック製のP GAパッケージでありながら、ピン4を基板1に貫通状 ないし嵌入状にすることなく、当接状で接合したもので あることから、セラミックタイプのPGA型基板と同様 にその断面の内部に配線を引き回すことができるので、 それと同程度の配線の高密度化や多ピン化を図ることが できる。

【0019】なお、上記の構造のものは、ピンを固定板 に予め圧入しなくても製造できる(図5ないし図7参 照)。すなわち、所定の治具を用いるなどして、半田ク リーム10の塗布、形成されたパッド3に、まずピン4 をその頭部5の端面を当接し、立設状態に保持してリフ ローして接合しておく(図5参照)。そして、エポキシ 樹脂などの接着剤17をピン4の接合された基板1の主 面2側(図6上面)に塗布し、しかる後、図6に示した ように、固定板6をその貫通孔8にピン4を通して基板 1の主面2に被せ、図7に示したように固定板6を所定 の荷重Wで押さえ付け、その下で所定温度で所定時間加 熱することで接着剤 17を硬化させ、接着させればよ い。このような製法によれば、ビン4を接合(半田付 け)した際(図5の状態)には固定板がないことから、 フラックスの洗浄が容易となる。なお、この製法におい ては接着剤を固定板に塗布しておいてもよい。

【0020】また、上記製法ではピンの接合(半田付 け)のため、半田クリームを基板1のパッド3上に形成 したが、ピン4の頭部5の端面に半田クラッドを形成し ておいてもよい。なお、ピンの頭部とパッドとの接合は 電気的導通が保持されればよく、したがって、半田に代 えて、これとほぼ同一条件で融着できるAu-Snペー

頭部の端面に塗布してから接着してもよい。 【0021】導電性接着剤をパッドとピンとの電気的導 通の保持に用いれば、例えば150℃で1時間程度保持 することで接着できるが、固定板の接着剤は、その硬化 温度が導電性接着剤の耐熱温度よりも低いものを用い る。導電性接着剤を用いた場合には、半田付けなどと異 なりリフロー工程が不要となるため、製造が容易とな 10 る。なお、導電性接着剤を用いる場合でも、ピンを予め 固定板に圧入しておいて、バッドと接合(導通を保持) し、そして上記したのと同様に充填孔などから接着剤を 充填して接着してもよいし、ピンをパッドに接合 (導通 を保持)してから固定板を後で接着してもよい。すなわ

電性接着剤による接着に限定されるものではない。 【0022】さらに、上記構造のPGA型基板において は、固定板を基板に接着する接着手段(接着剤)に、ビ 20 ンの配置に対応する貫通孔(孔径がピンの頭部の径と略 同じもの)を備えたプリプレグ (ガラスクロス繊維など にエポキシ樹脂などを含浸させ半硬化してなる板)を用

いることもできる。

ち、本発明にかかるPGA型基板おけるピンとパッドと

は、電気的導通が保持されていればよく、半田付けや導

【0023】ととで、プリプレグを用いた場合の製法を 図8ないし図11を参照して説明する。その第1例は、 上記のようにしてまずピン4を基板1のパッド3に半田 付け或いは導電性接着剤10で接着する。次いで、図8 に示したように、所定の厚さ(例えば $50\sim100\mu$ m)でもって、固定板6と同様に、ピン4の配置に対応 する位置にピン4の頭部5の径と略同径の貫通孔28を 備えたプリプレグ27を、基板1と上記のような固定板 6との間に介在するようにし、かつプリプレグ27の貫 通孔28と固定板6の貫通孔8をピン4に合うように対 面させ、その下でピン4を通して固定板6を基板1の主 面2に張り合わせる(図9参照)。そして、所定温度 (150~200℃) 下で所定時間(1,5~2,5時 間)、所定の圧力(20~70kgf/cm゚)で加圧 し、プリプレグ27を硬化させる。このようにすること で、基板1と固定板6とがプリプレグ27を接着剤とし て接着され、ピン4はその頭部5が固定板6の貫通孔2 8の周縁面に係合した状態で固定される。なお、固定板 6の充填孔9は、真空プレスによる加圧接着によるとき は不要となる。

【0024】なお、この製法においては、プリプレグ2 7の他に固定板6を用いたが、プリプレグが基板側に接 合され硬化した際に、その貫通孔28をピンの頭部5の 径より小さくすることによりピンの頭部が係合し、それ によってピンの固定(接合強度)が保持できるようにし た場合には、別途独立の固定板は要しない。つまり、プ ストをバッドに塗布しておいてもよい。さらに、電気的 50 リプレグの接合、固化後にそれ自体が固定板となるから

である。

【0025】さて次に、プリプレグを用いた場合の第2 の製法を図10及び図11を参照して説明する。この方 法は、基板1のパッド3に予めピンを接合しておくこと なく、固定板6の貫通孔8にピン4を一括してその頭部 5まで挿入(圧入)しておく一方、ブリブレグ27に形 成されたピン用の貫通孔28には導電性接着剤30を充 填し或いは埋め込んでおく。そして、図11に示したよ うに、プリプレグ27を介し、ピン4を挿入してなる固 定板6を、そのピン4の頭部5がプリプレグの貫通孔に 10 充填された導電性接着剤30の部位とバッド3に対応す るようにして合わせる。そして、所定温度下、所定荷重 ₩で圧着してプリプレグ及び導電性接着剤を硬化させ る。すると、パッド3とピン4の頭部5との間が導電性 接着剤30で接着されて電気的導通が保持される。そし て、基板1の主面2と固定板6との間がプリプレグ27 で接着され、ピン4の頭部5が固定板6の貫通孔の周縁 面に係合して固定され、図9に示したのと同様の所望と する構造を得ることができる。

【0026】なお、プリプレグ27の貫通孔28の大き 20 さや埋め込んでおく導電性接着剤30の量などは、接着後において対面するパッド3とピン4とに、他との電気絶縁が確保された上で、電気的導通が保持されればよく、適宜に設定すればよい。したがって、プリプレグ27に設ける貫通孔28の大きさをピン頭部5の径よりも小さく、軸部の径よりも大きくして、前記したのと同様に用いてもよい。この場合には、プリプレグ27の材質や厚さを適当なものにすることによって、プリプレグ27が変形して硬化する。したがって、固定板6の貫通孔の周縁面8aとピンの頭部5とは、このプリプレグ2730を介して係合しつつ固定板6が基板1の主面2に接着される。

【0027】なお、上記した例においてはいずれも、パッド3とピン4とは、半田や導電性接着剤などで接合して電気的導通を保持したものを示したが、パッド3とピン4の頭部5とを密着せしめて両者の電気的導通を保持する一方、両者の接合強度はピン4の頭部5が固定板6に係合することにより得られるようにしてもよい。また、ピンの頭部5の端面5 a を粗面としたりローレットかけしたり、円錐状などの凹凸を設けると、導電性接着40剤30やパッド3との電気的導通を保持し易くなり好ましい。

【0028】第2形態例

次に、本発明に係る第2形態例を図12ないし図13を参照して説明する。本例は、プラスチック製基板1の主面2と固定板6との間に、圧力のかかった部位だけ上下に導通する一定厚さ(例えば15~25μm程度)の異方導電性接着シート37を介在させてパッド3とピン4の頭部5との間で電気的導通をとりつつ、基板1と固定板6とを接着してなるものである。

8

【0029】本形態例のものは、ビン4を貫通してなる固定板6をそのビン4の頭部5と、基板1のパッド3とを対面させるようにして位置決めし、その間に異方導電性接着シート37を介在させる(図13参照)。そして、基板1の主面2と固定板6との間において所定の温度下、所定時間、所定の荷重(圧縮力)Wを加え(例えば、150℃~200℃、20秒、1~3Mpa)、基板1と固定板6とを圧着することで得ることができる。本例では、ビン4の頭部5の厚さとパッド3の厚さのある分、異方導電性接着シート37はこの部位において局所的に強く加圧されて圧縮変形を起こすことから、パッド3とビン4とは同接着シート37中の導電粒子を介して電気的導通が得られる一方、パッド3及びピンの頭部5のない部位は相対的に大きな圧力を受けないことからあるかい部位は相対的に大きな圧力を受けないことから絶縁されて接着層としてのみ機能する。

【0030】本例では、電気的導通の保持と、基板1に対する固定板6の接着とが、半田付け工程を要することなく、異方導電性接着シート37のみですむことから、構造の簡素化を図ることができる。

0 [0031]

【発明の効果】本発明によれば、プラスチックタイプの基板のもつ優れた特性(低抵抗配線、低誘電率絶縁体、低コスト性など)を生かしつつ、セラミックタイプの基板のように基板内にピンを挿入することなく、しかも接合強度の低下を招くことなくピンを接合することのできる構造を実現できる。したがって、プラスチックタイプのPGA型電子部品用基板でありながら、基板内に形成される回路配線の密度を高くでき、多ピン化ないしピンの高密度化を図ることができる。

30 【図面の簡単な説明】

【図1】本発明に係るPGA型電子部品用基板の実施の 第1形態例を示す中央縦断正面図。

【図2】図1の要部拡大断面図。

【図3】図1のPGA型電子部品用基板の製造過程の説明図であって、ピンをピン固定板に圧入して基板のバッドに対面させる中央縦断正面図。

【図4】図3に示す工程の後、ピンの頭部を基板のバッドに半田付けした状態の中央縦断正面図。

【図5】図1のPGA型電子部品用基板の別の製法の説明図であって、ピンをその頭部を介して基板のパッドに 半田付けした状態の中央縦断正面図。

【図6】図5に示す工程の後、接着剤を基板の主面側に 塗布し、固定板をその貫通孔にピンを通して基板の主面 に被せる状態を説明する中央縦断正面図。

【図7】図6に示す工程において、固定板を基板の主面 に接着した状態の中央縦断正面図。

【図8】ピン固定板を基板に接着する接着手段にプリプレグ用いた場合の製法を説明する図であって、ピンを基板のパッドに接着し、プリプレグを基板と固定板との間の介在させて位置合わせしている状態の中央縦断正面

図。

【図9】図8に示す工程の後、ピン固定板を基板に接着 した状態の中央縦断正面図。

9

【図10】ピン固定板を基板に接着する接着手段にブリプレグ用いた場合の別の製法を説明する図であって、ピンを圧入したピン固定板をブリブレグを介して基板と対面状態にしている状態の中央縦断正面図。

【図11】図10に示す工程の後、ビンを圧入したビン 固定板を基板に当接させた状態の中央縦断正面図。

【図12】本発明に係るPGA型電子部品用基板の実施 10 の第2形態例を示すものであって、ビンとパッドとの電気的導通の保持及びビン固定板を基板に接着する接着手段に異方導電性接着シートを用いたものの中央縦断正面図。

【図13】図12のPGA型電子部品用基板の製造過程*

【図1】

*の説明図であって、ピンを圧入したピン固定板とバッド との間に異方導電性接着シートを介在させている状態の 中央縦断正面図。

【符号の説明】

- 1 プラスチック製基板
- 2 基板の主面
- 3 パッド
- 4 入出力端子用のピン
- 4a 入出力端子用のピンの軸部
- 5 入出力端子用のピンの頭部
- 6 ピン固定板
- 7,17 接着剤
- 8 ピン固定板の貫通孔
- 27 プリプレグ (接着剤)
- 37 異方導電性接着シート (接着剤)

【図2】

【図3】

[図5]

[図4]

【図13】