Skriftlig eksamen på Økonomistudiet Vinteren 2017 - 2018

MATEMATIK B

Torsdag den 15. februar 2018

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

1. årsprøve 2018 V-1B rx

Skriftlig eksamen i Matematik B Torsdag den 15. februar 2018

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \left(\begin{array}{ccc} s & 2 & 0 \\ 2 & s & 0 \\ 0 & 0 & 1 \end{array}\right).$$

- (1) Udregn determinanten for matricen A(s), og bestem de $s \in \mathbf{R}$, for hvilke A(s) er regulær.
- (2) Bestem de $s \in \mathbf{R}$ for hvilke, matricen A(s) er positiv definit.
- (3) Vis, at matricen A(s) ikke er negativ definit for noget $s \in \mathbf{R}$.
- (4) Bestem de $s \in \mathbf{R}$ for hvilke, matricen A(s) er positiv semidefinit.
- (5) Vis, at matricen A(s) ikke er negativ semidefinit for noget $s \in \mathbf{R}$.
- (6) Bestem de $s \in \mathbf{R}$ for hvilke, matricen A(s) er indefinit.
- (7) Bestem egenværdierne og de tilhørende egenrum for matricen A(2). Her er s=2.
- (8) Bestem en diagonalmatrix Dog en ortogonal matrix Q,så ligningen

$$D = Q^{-1}A(2)Q$$

er opfyldt.

Opgave 2. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x, y) \in \mathbf{R}^2 : f(x, y) = x^3y + y^3x + x^2y^2.$$

- (1) Vis, at funktionen f er homogen, og bestem homogenitetsgraden k.
- (2) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (4) Bestem værdimængden for funktionen f.

For ethvert v > 0 betragter vi den kompakte mængde

$$K(v) = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le v \land 0 \le y \le 1\}.$$

(5) Udregn integralet

$$I(v) = \int_{K(v)} f(x, y) d(x, y).$$

(6) Bestem grænseværdien

$$\lim_{v \to 0+} \frac{I(v)}{v \sin(2v)}.$$

Opgave 3. For ethvert $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ betragter vi differentialligningen

$$\frac{dx}{dt} + (\tan t)x = \sin t.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(0) = 1802$ er opfyldt.

Opgave 4. Lad $n \in \mathbb{N} \setminus \{1,2\}$, og lad a > 0 være valgt. Betragt mængden

$$U = \{1, 2, \dots, n, n+1\}$$

og den funktion $P:U\to {\bf R},$ som har forskriften

$$(\forall i \in \{1, 2, \dots, n\} : P(i) = a^{3i}) \land P(n+1) = \frac{a^{3n+3}}{1-a^3}.$$

- (1) Bestem a>0, så funktionen P er en sandsynlighedsfunktion på mængden U.
- (2) Bestem $n \in U,$ så $P(n+1) < \frac{1}{100}.$