

Atualmente, há duas tecnologias de projeto de processadores:

Sistemas com conjunto de instruções complexo (Complex Instruction Set Computers - CISC)

Sistemas com conjunto de instruções reduzido (Reduced Instruction Set Computers – RISC)

A evolução acelerada da tecnologia de semicondutores, levou a indústria a criar processadores cada vez mais velozes e propiciou o surgimento de estudos para aperfeiçoar a arquitetura de computadores.

O aperfeiçoamento dessas tecnologias deram origem a um novo tipo de arquitetura, denominada RISC.

A arquitetura RISC se contrapõe a arquitetura até então predominante, denominada CISC.

Praticamente todos os processadores, desde os primeiros 8 bits (Intel 8080), Motorola 6800, Z-80, Intel 80486 (32-bits), minicomputadores e até os mainframes (computador de grande porte) tiveram sua arquitetura baseada nos processadores CISC.

CISC... grande quantidade de instruções, com variedade de modos de endereçamento e poucos registradores de dados na CPU.

CISC Processors	cessors RISC Processors	
IBM 370/168	MIPS R2000	
VAX 11/780	SUN SPARC	
Microvax II INTEL i860		
INTEL 80386	MOTOROLA 8800	
INTEL 80286	POWERPC 601	
Sun-3/75	IBM RS/6000	
PDP-11	MIPS R4000	

CISC VANTAGENS DESVANTAGENS Instruções mais complexas podem redundar em código-objeto Nem sempre menos instruções menor, menos instruções e acarretam em menos bits. reflexos nos custos. Por ser microprogramado, São microprogramados, trazem acarreta uma sobrecarga adicional mais flexibilidade ao projeto de de interpretação de cada máquinas. instrução. Muitas das instruções estão guardadas no próprio processador, o que facilita o Instruções diferentes levam trabalho dos programadores de quantidades diferentes de linguagem de máquina; período de clock para executar, o disponibilizando, assim, que pode tornar a máquina praticamente todas as instruções excessivamente lenta. que serão usadas em seus

programas.

A característica mais marcante dos sistemas RISC é possuir um conjunto reduzido de instruções.

A família SPARC da Sun possui 50 instruções. O Intel 80486 foi lançado com 147 instruções e o Pentium mais de 200. (Monteiro pag.431)

Com menor quantidade de instruções e todas elas com execução otimizada o sistema tem resultados com melhor desempenho, mesmo que menos instruções vão produzir programas mais longos.

Em sistemas RISC todas as instruções possuem o mesmo tamanho em bits, o que facilita a sua busca que é realizada em uma única operação

Enquanto em máquinas CISC a chamada de funções para movimentação de dados envolve leitura e escrita com a memória RAM, em máquinas com arquitetura RISC essas operações ocorrem no processador utilizando de um número maior de registradores.

A arquitetura RISC possibilita a colocação de um maior número de registradores na CPU, devido a redução dos circuitos necessários para decodificação e execução de instruções.

A característica mais relevante da arquitetura RISC é o uso altamente produtivo de pipeline.

Em função do formato simples e tamanho único (instruções do mesmo tamanho).

RISC **VANTAGENS** DESVANTAGENS Executam instruções mais rápido Menos instruções requerem que porque seu método de codificação mais instruções sejam

As instruções são executadas diretamente pelo Hardware e não por um programa.

usa menos bits, reduzindo o

tempo.

Falta de compatibilidade com versões anteriores.

executadas.

Máquinas RISC são mais baratas e Requer sistema de memória rápida mais rápidas do que as CISC.

Simplicidade do Hardware.

para alimentar suas instruções.

microarquitetura

microinstruções

A performance depende diretamente do código gerado pelo programador.

Quando temos estágios que executam instruções do mesmo tamanho e ao mesmo tempo, temos uma "linha de produção" equilibrada e produtiva, porque nenhum estágio tem que esperar o término do outro, todos trabalham na mesma "passada".

A conclusão final sobre as duas arquiteturas é que processadores híbridos são a melhor opção.

- projetos RISC se beneficiam com características CISC
- projetos CISC se beneficiam com características RISC (Stallings 5ª-pag.498)

Item	RISC	CISC
Acesso à memória	Load e Store	Qualquer Instrução
Registradores	Centenas	Dezenas
Operandos	Até 3	1 ou 2
Complexidade	No compilador	No código
Uso do pipeline	Intensamente	Moderadamente
Instruções	Poucas / simples / mesmo tamanho	Muitas / complexas / tamanhos variados
Frequências	Mais altas	Mais baixas
Programas	Grandes e complexos	Pequenos e simples
hardware	Barato e simples	Caro e complexo
Controle	Hardwired	Micro programação
СРІ	Um	Vários

- Processadores híbridos são essencialmente processadores CISC (para cuidar das instruções mais complexas) com núcleo RISC (para cuidar das instruções mais simples)
- Conversão de códigos de programas de uma arquitetura CISC para a arquitetura RISC leva a um aumento de código CPI:Ciclos por Instrução

Tabela Comparativa das Arquiteturas CISC E RISC

CARACTERISTICAS	CISC	RISC
INSTRUÇÕES POR CICLOS	Instruções complexas executadas em vários ciclos	Instruções simples executadas em um ciclo
ACESSO À MEMORIA	Qualquer instrução pode referenciar a memória	Apenas operações LOAD/STORE em memória
PIPELINE	Pouco ou nenhum pipeline	Uso Intenso de pipeline
EXECUÇÃO DAS INSTRUÇÕES	Instruções executadas pelo hardware	Instruções interpretadas pelo próprio programa
FORMATO DAS INSTRUÇÕES	Instruções com formato variável	Instruções com formato fixo
QUANTIDADE DE INSTRUÇÕES E MODOS DE ENDEREÇAMENTO	Varias instruções e modos de endereçamento	Poucas instruções e modos de endereçamento
COMPLEXIDADES DO SISTEMA	Complexidade está no microprograma	Complexidade está no compilador
REGISTRADORES	Conjunto de registradores único	Múltiplos conjuntos de registradores