Finite Volume Methods for Hyperbolic Problems

Multidimensional Hyperbolic Problems

- Derivation of conservation law
- Hyperbolicity
- Advection
- Gas dynamics and acoustics
- Shear waves

$$\frac{d}{dt}\iint_{\Omega}q(x,y,t)\,dx\,dy=\text{net flux across }\partial\Omega.$$

Net flux is determined by integrating the flux of q normal to $\partial\Omega$ around this boundary.

$$\frac{d}{dt}\iint_{\Omega}q(x,y,t)\,dx\,dy=\text{net flux across }\partial\Omega.$$

Net flux is determined by integrating the flux of q normal to $\partial\Omega$ around this boundary.

 $f(q)= {
m flux} \ {
m of} \ q$ in the x-direction, $g(q)= {
m flux} \ {
m of} \ q$ in the y-direction, (both per unit length in orthog direction, per unit time),

$$\vec{f}(q) = (f(q), \, g(q))$$

$$\frac{d}{dt}\iint_{\Omega}q(x,y,t)\,dx\,dy=\text{net flux across }\partial\Omega.$$

Net flux is determined by integrating the flux of q normal to $\partial\Omega$ around this boundary.

f(q) = flux of q in the x-direction,

g(q) = flux of q in the y-direction,

(both per unit length in orthog direction, per unit time),

$$\vec{f}(q) = (f(q), g(q))$$

 $\vec{n}(s) = (n^x(s), n^y(s))$ outward-pointing unit normal (x(s), y(s)).

Flux at (x(s), y(s)) in the direction $\vec{n}(s)$:

$$\vec{n}(s) \cdot \vec{f}(q(x(s), y(s))) = f(q)n^x(s) + g(q)n^y(s),$$

$$\frac{d}{dt} \iint_{\Omega} q(x, y, t) \, dx \, dy = - \int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) \, ds.$$

$$\frac{d}{dt} \iint_{\Omega} q(x, y, t) \, dx \, dy = - \int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) \, ds.$$

If q is smooth: divergence theorem \implies

$$\frac{d}{dt} \iint_{\Omega} q(x, y, t) dx dy = -\iint_{\Omega} \vec{\nabla} \cdot \vec{f}(q) dx dy,$$

where the divergence of \vec{f} is

$$\vec{\nabla} \cdot \vec{f}(q) = f(q)_x + g(q)_y.$$

$$\frac{d}{dt} \iint_{\Omega} q(x, y, t) \, dx \, dy = - \int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) \, ds.$$

If q is smooth: divergence theorem \implies

$$\frac{d}{dt} \iint_{\Omega} q(x, y, t) \, dx \, dy = - \iint_{\Omega} \vec{\nabla} \cdot \vec{f}(q) \, dx \, dy,$$

where the divergence of \vec{f} is

$$\vec{\nabla} \cdot \vec{f}(q) = f(q)_x + g(q)_y.$$

This leads to

$$\iint_{\Omega} \left[q_t + \vec{\nabla} \cdot \vec{f}(q) \right] dx dy = 0.$$

$$\frac{d}{dt} \iint_{\Omega} q(x, y, t) \, dx \, dy = - \int_{\partial \Omega} \vec{n} \cdot \vec{f}(q) \, ds.$$

If q is smooth: divergence theorem \implies

$$\frac{d}{dt} \iint_{\Omega} q(x, y, t) \, dx \, dy = - \iint_{\Omega} \vec{\nabla} \cdot \vec{f}(q) \, dx \, dy,$$

where the divergence of \vec{f} is

$$\vec{\nabla} \cdot \vec{f}(q) = f(q)_x + g(q)_y.$$

This leads to

$$\iint_{\Omega} \left[q_t + \vec{\nabla} \cdot \vec{f}(q) \right] dx dy = 0.$$

True for any
$$\Omega \implies q_t + \vec{\nabla} \cdot \vec{f}(q) = 0$$
. (PDE form)

General conservation law: $q_t + f(q)_x + g(q)_y = 0$

Quasi-linear form: $q_t + f'(q)q_x + g'(q)q_y = 0$

General conservation law: $q_t + f(q)_x + g(q)_y = 0$

Quasi-linear form: $q_t + f'(q)q_x + g'(q)q_y = 0$

Constant coefficient linear system: $q_t + Aq_x + Bq_y = 0$

where $q \in \mathbb{R}^m, \ f(q) = Aq, \ g(q) = Bq \ \text{and} \ A, B \in \mathbb{R}^{m \times m}.$

General conservation law: $q_t + f(q)_x + g(q)_y = 0$

Quasi-linear form: $q_t + f'(q)q_x + g'(q)q_y = 0$

Constant coefficient linear system: $q_t + Aq_x + Bq_y = 0$

where $q \in \mathbb{R}^m, \ f(q) = Aq, \ g(q) = Bq \ \text{and} \ A, B \in \mathbb{R}^{m \times m}.$

Advection equation: $q_t + uq_x + vq_y = 0$

General conservation law: $q_t + f(q)_x + g(q)_y = 0$

Quasi-linear form: $q_t + f'(q)q_x + g'(q)q_y = 0$

Constant coefficient linear system: $q_t + Aq_x + Bq_y = 0$

where $q \in \mathbb{R}^m, \ f(q) = Aq, \ g(q) = Bq \ \text{and} \ A, B \in \mathbb{R}^{m \times m}.$

Advection equation: $q_t + uq_x + vq_y = 0$

Hyperbolic if $\cos(\theta)f'(q) + \sin(\theta)g'(q)$ is diagonalizable with real eigenvalues, for all angles θ .

General conservation law: $q_t + f(q)_x + g(q)_y = 0$

Quasi-linear form: $q_t + f'(q)q_x + g'(q)q_y = 0$

Constant coefficient linear system: $q_t + Aq_x + Bq_y = 0$

where $q \in \mathbb{R}^m, \ f(q) = Aq, \ g(q) = Bq \ \text{and} \ A, B \in \mathbb{R}^{m \times m}.$

Advection equation: $q_t + uq_x + vq_y = 0$

Hyperbolic if $\cos(\theta)f'(q) + \sin(\theta)g'(q)$ is diagonalizable with real eigenvalues, for all angles θ .

Then plane wave propagating in any direction satisfies 1D hyperbolic equation.

Plane wave solutions

Suppose

$$q(x, y, t) = \breve{q}(x \cos \theta + y \sin \theta, t)$$
$$= \breve{q}(\xi, t).$$

Plane wave solutions

Suppose

$$q(x, y, t) = \breve{q}(x \cos \theta + y \sin \theta, t)$$
$$= \breve{q}(\xi, t).$$

Then:

$$q_x(x, y, t) = \cos \theta \, \ddot{q}_{\xi}(\xi, t)$$
$$q_y(x, y, t) = \sin \theta \, \ddot{q}_{\xi}(\xi, t)$$

so

$$q_t + Aq_x + Bq_y = \breve{q}_t + (A\cos\theta + B\sin\theta)\breve{q}_{\xi}$$

and the 2d problem reduces to the 1d hyperbolic equation

$$\breve{q}_t(\xi, t) + (A\cos\theta + B\sin\theta)\breve{q}_{\xi}(\xi, t) = 0.$$

Advection in 2 dimensions

Constant coefficient: $q_t + uq_x + vq_y = 0$

In this case solution for arbitrary initial data is easy:

$$q(x, y, t) = q(x - ut, y - vt, 0).$$

Data simply shifts at constant velocity (u,v) in x-y plane.

Advection in 2 dimensions

Constant coefficient: $q_t + uq_x + vq_y = 0$

In this case solution for arbitrary initial data is easy:

$$q(x, y, t) = q(x - ut, y - vt, 0).$$

Data simply shifts at constant velocity (u, v) in x-y plane.

Variable coefficient:

Conservation form: $q_t + (u(x, y, t)q)_x + (v(x, y, t)q)_y = 0$

Advective form (color eqn): $q_t + u(x, y, t)q_x + v(x, y, t)q_y = 0$

Advection in 2 dimensions

Constant coefficient: $q_t + uq_x + vq_y = 0$

In this case solution for arbitrary initial data is easy:

$$q(x, y, t) = q(x - ut, y - vt, 0).$$

Data simply shifts at constant velocity (u, v) in x-y plane.

Variable coefficient:

Conservation form: $q_t + (u(x, y, t)q)_x + (v(x, y, t)q)_y = 0$

Advective form (color eqn): $q_t + u(x, y, t)q_x + v(x, y, t)q_y = 0$

Equivalent only if flow is divergence-free (incompressible):

$$\nabla \cdot \vec{u} = u_x(x, y, t) + v_y(x, y, t) = 0 \qquad \forall t \ge 0.$$

```
\begin{array}{l} \rho(x,y,t)=\text{mass density}\\ \rho(x,y,t)u(x,y,t)=x\text{-momentum density}\\ \rho(x,y,t)v(x,y,t)=y\text{-momentum density} \end{array}
```

```
\begin{array}{l} \rho(x,y,t)=\text{mass density}\\ \rho(x,y,t)u(x,y,t)=x\text{-momentum density}\\ \rho(x,y,t)v(x,y,t)=y\text{-momentum density} \end{array}
```

If pressure $= P(\rho)$, e.g. isothermal or isentropic:

$$\rho_t + (\rho u)_x + (\rho v)_y = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = 0$$
$$(\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = 0$$

 $\begin{array}{l} \rho(x,y,t)=\text{mass density}\\ \rho(x,y,t)u(x,y,t)=x\text{-momentum density}\\ \rho(x,y,t)v(x,y,t)=y\text{-momentum density} \end{array}$

If pressure $= P(\rho)$, e.g. isothermal or isentropic:

$$\rho_t + (\rho u)_x + (\rho v)_y = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = 0$$
$$(\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = 0$$

For any θ , the matrix $f'(q)\cos\theta + g'(q)\sin\theta$ has eigenvalues

$$\breve{u}-c,\ \breve{u},\ \breve{u}+c$$

where $c = \sqrt{P'(\rho)}$ and $\breve{u} = u \cos \theta + v \sin \theta$.

 $\begin{array}{l} \rho(x,y,t)=\text{mass density}\\ \rho(x,y,t)u(x,y,t)=x\text{-momentum density}\\ \rho(x,y,t)v(x,y,t)=y\text{-momentum density} \end{array}$

If pressure $= P(\rho)$, e.g. isothermal or isentropic:

$$\rho_t + (\rho u)_x + (\rho v)_y = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = 0$$
$$(\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = 0$$

Full Euler equations: 1 more equation for Energy

For any θ , the matrix $f'(q)\cos\theta + g'(q)\sin\theta$ has eigenvalues

$$\breve{u}-c,\ \breve{u},\ \breve{u}+c$$
 Euler: another wave with $\lambda=\breve{u}$

where
$$c = \sqrt{P'(\rho)}$$
 and $\breve{u} = u \cos \theta + v \sin \theta$.

Solution of plane wave Riemann problem in 2D

Jump in v from v_ℓ to v_r propagates with the contact discontinuity

Linearize about $u=0,\ v=0$ and p= perturbation in pressure:

$$p_t + K_0(u_x + v_y) = 0$$
$$\rho_0 u_t + p_x = 0$$
$$\rho_0 v_t + p_y = 0$$

Note: pressure responds to compression or expansion and so p_t is proportional to divergence of velocity.

Second and third equations are F = ma.

Linearize about $u=0,\ v=0$ and p= perturbation in pressure:

$$p_t + K_0(u_x + v_y) = 0$$
$$\rho_0 u_t + p_x = 0$$
$$\rho_0 v_t + p_y = 0$$

Note: pressure responds to compression or expansion and so p_t is proportional to divergence of velocity.

Second and third equations are F = ma.

Gives hyperbolic system $q_t + Aq_x + Bq_y = 0$ with

$$q = \begin{bmatrix} p \\ u \\ v \end{bmatrix}, \qquad A = \begin{bmatrix} 0 & K_0 & 0 \\ 1/\rho_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & K_0 \\ 0 & 0 & 0 \\ 1/\rho_0 & 0 & 0 \end{bmatrix}.$$

$$q = \begin{bmatrix} p \\ u \\ v \end{bmatrix}, \qquad A = \begin{bmatrix} 0 & K_0 & 0 \\ 1/\rho_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & K_0 \\ 0 & 0 & 0 \\ 1/\rho_0 & 0 & 0 \end{bmatrix}.$$

Plane waves:

$$A\cos\theta + B\sin\theta = \begin{bmatrix} 0 & K_0\cos\theta & K_0\sin\theta \\ \cos\theta/\rho_0 & 0 & 0 \\ \sin\theta/\rho_0 & 0 & 0 \end{bmatrix}.$$

$$q = \begin{bmatrix} p \\ u \\ v \end{bmatrix}, \qquad A = \begin{bmatrix} 0 & K_0 & 0 \\ 1/\rho_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & K_0 \\ 0 & 0 & 0 \\ 1/\rho_0 & 0 & 0 \end{bmatrix}.$$

Plane waves:

$$A\cos\theta + B\sin\theta = \begin{bmatrix} 0 & K_0\cos\theta & K_0\sin\theta \\ \cos\theta/\rho_0 & 0 & 0 \\ \sin\theta/\rho_0 & 0 & 0 \end{bmatrix}.$$

Eigenvalues:
$$\lambda^1 = -c_0$$
, $\lambda^2 = 0$, $\lambda^3 = +c_0$

where $c_0 = \sqrt{K_0/\rho_0}$ is independent of angle θ .

Isotropic: sound propagates at same speed in any direction.

$$q = \begin{bmatrix} p \\ u \\ v \end{bmatrix}, \qquad A = \begin{bmatrix} 0 & K_0 & 0 \\ 1/\rho_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & K_0 \\ 0 & 0 & 0 \\ 1/\rho_0 & 0 & 0 \end{bmatrix}.$$

Plane waves:

$$A\cos\theta + B\sin\theta = \begin{bmatrix} 0 & K_0\cos\theta & K_0\sin\theta \\ \cos\theta/\rho_0 & 0 & 0 \\ \sin\theta/\rho_0 & 0 & 0 \end{bmatrix}.$$

Eigenvalues:
$$\lambda^1 = -c_0$$
, $\lambda^2 = 0$, $\lambda^3 = +c_0$

where $c_0 = \sqrt{K_0/\rho_0}$ is independent of angle θ .

Isotropic: sound propagates at same speed in any direction.

Note: Zero wave speed for "shear wave" with variation only in velocity in direction $(-\sin\theta, \cos\theta)$.

Can we diagonalize system $q_t + Aq_x + Bq_y = 0$ to decouple?

Can we diagonalize system $q_t + Aq_x + Bq_y = 0$ to decouple?

Only if *A* and *B* have the same eigenvectors!

If
$$A=R\Lambda R^{-1}$$
 and $B=RMR^{-1}$, then let $w=R^{-1}q$ and

$$w_t + \Lambda w_x + M w_y = 0$$

Can we diagonalize system $q_t + Aq_x + Bq_y = 0$ to decouple?

Only if A and B have the same eigenvectors!

If
$$A=R\Lambda R^{-1}$$
 and $B=RMR^{-1}$, then let $w=R^{-1}q$ and

$$w_t + \Lambda w_x + M w_y = 0$$

In this case, decouples into scalar advection equation for each component of w:

$$w_t^p + \lambda^p w_x^p + \mu^p w_y^p = 0 \implies w^p(x, y, t) = w^p(x - \lambda^p t, y - \mu^p t, 0).$$

Note: In this case information propagates only in a finite number of directions (λ^p, μ^p) for $p = 1, \ldots, m$.

Can we diagonalize system $q_t + Aq_x + Bq_y = 0$ to decouple?

Only if *A* and *B* have the same eigenvectors!

If
$$A=R\Lambda R^{-1}$$
 and $B=RMR^{-1}$, then let $w=R^{-1}q$ and

$$w_t + \Lambda w_x + M w_y = 0$$

In this case, decouples into scalar advection equation for each component of w:

$$w_t^p + \lambda^p w_x^p + \mu^p w_y^p = 0 \implies w^p(x, y, t) = w^p(x - \lambda^p t, y - \mu^p t, 0).$$

Note: In this case information propagates only in a finite number of directions (λ^p, μ^p) for $p=1, \ldots, m$.

This is not true for most coupled systems, e.g. acoustics.

$$p_t + K_0(u_x + v_y) = 0$$
$$\rho_0 u_t + p_x = 0$$
$$\rho_0 v_t + p_y = 0$$

$$A = \begin{bmatrix} 0 & K_0 & 0 \\ 1/\rho_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad R^x = \begin{bmatrix} -Z_0 & 0 & Z_0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Solving $q_t + Aq_x = 0$ gives pressure waves in (p, u).

$$p_t + K_0(u_x + v_y) = 0$$
$$\rho_0 u_t + p_x = 0$$
$$\rho_0 v_t + p_y = 0$$

$$A = \begin{bmatrix} 0 & K_0 & 0 \\ 1/\rho_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad R^x = \begin{bmatrix} -Z_0 & 0 & Z_0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Solving $q_t + Aq_x = 0$ gives pressure waves in (p, u).

$$B = \begin{bmatrix} 0 & 0 & K_0 \\ 0 & 0 & 0 \\ 1/\rho_0 & 0 & 0 \end{bmatrix} \qquad R^y = \begin{bmatrix} -Z_0 & 0 & Z_0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Solving $q_t + Bq_y = 0$ gives pressure waves in (p, v).