Toute fonction réelle convexe et dérivable est \mathcal{C}^1

Théorème. Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction convexe et dérivable sur I. Alors f est C^1 sur I.

Démonstration. On commence par un lemme qui explique que la seule chose qui peut rendre une fonction dérivable non C^1 en un point, c'est une absence de limite de la dérivée à gauche ou à droite de ce point.

Lemme. Soit $g:I\to\mathbb{R}$ dérivable en x_0 mais pas \mathcal{C}^1 en x_0 . Alors g' n'admet pas de limite à gauche, ou n'admet pas de limite à droite, en x_0 .

Preuve du lemme. Le fait que g' ne soit pas C^1 en x_0 signifie que :

- ou bien g' n'admet pas de limite à gauche ou n'admet pas de limite à droite en x_0 ,
- ou bien au moins l'une des limites à gauche ou à droite de g' en x_0 n'est pas égale à $g'(x_0)$.

Par le théorème de Darboux, g' vérifie le théorème des valeurs intermédiaires donc la deuxième alternative ne peut pas avoir lieu. \Box

La conclusion est maintenant immédiate, puisque f' est croissante et admet donc une limite à gauche et à droite en tout $x_0 \in I$.