

Features

- High resolution module, 3 Pa
- Supply voltage: 1.8V to 5.5V
- \bullet Operating range: 100 to 2000 mbar, -40 to +85 $^{\circ}\mathrm{C}$
- Integrated digital pressure sensor (24 bit ADC)
- Excellent long term stability
- Standby current<0.1μA @ 25°C
- No external components (Internal oscillator)
- High-speed I²C digital output interface
- Size: 6.8 x 6.4 x 3.2 mm

Applications

- Water Proof Pressure Measurement
- Adventure and Sports Equipment

Descriptions

The DA17-02BA-W04 employs a MEMS pressure sensor with an I²C interface to provide accurate temperature, pressure data. The sensor pressure and temperature outputs are digitized by a high resolution 24-bit ADC. Data compensation is integrated internally to save the effort of the external host MCU system. Easy command-based data acquisition interface and programmable interrupt control is available. Pressure output can be resolved with output in fractions of Pascal. Package is surface mount with a stainless steel cap and is RoHS compliant

Sensor Performances (VDD = 3.0 V)				
Pressure	Min	Тур	Max	Unit
Range	100		2000	mbar
ADC		24		bit
Resolution		3		Pa
Accuracy@25°C (600 to 2000 mbar)	-0.2%		+0.2%	%F.S
Accuracy@ 0°C to 50°C (300 to 2000mbar)	-0.4%		+0.4%	%F.S
Response time@ OSR=1024		2.5		ms
Long term stability		±0.1%		%F.S/yr

1. Block Diagram

Figure 1: Functional Block Diagram

2. Electrical Specifications

2.1 Pressureand Temperature Characteristics

Table1: Pressure Output Characteristics @ VDD = 3.0V, T = 25°C unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Pressure Range	P _{FS}	Full Accuracy	300		2000	mbar
Extended Pressure Range	P _{ext}	Linear Range of ADC	100		2000	mbar
Absolute Accuracy		at 25°C, 600 to 2000 mbar	-0.2%		+0.2%	%F.S
Absolute Accuracy		at 050°C, 3002000 mbar	-0.4%		+0.4%	/01.3
Resolution RMS				3		Pa
Long Term Drift		After a period of 1 year		±0.1%		%F.S/yr

- (1) The long-term stability is measured with non-soldered devices.
- (2) Reflow soldering impact ±1.5 mbar.
- (3) Recovering time after reflow (Time to recover at least 80% of the reflow impact) 5 days.

Table2: Temperature Output Characteristics @ VDD = 3.0V, T = 25°C unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operation Temperature Range	ТОР		-40	25	85	°C
Temperature Absolute Accuracy		25°C	-0.8	0.5	+0.8	°C
Tanananatuna Alaasiuta Aasunaa		0°C to +50°C	-2	1	+2	°C
Temperature Absolute Accuracy		-40°C to + 85°C	-2.5	1	+2.5	°C
Temperature Resolution of Output Data				1/256		°C

DA17-02BA-W04 PRESSURE SENSOR

2.2 Electrical Characteristics

Table3: DC Characteristics @VDD=3.0 V, T=25 $^{\circ}$ C unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operation Supply Voltage	V _{DD}		1.8	3.0	5.5	V
Operation Temperature	ТОР		-40		85	$^{\circ}$
Supply Current@25°C on	I _{BDD} _pgaoff	PGA off(Gain<=2)		0.9		mA
during conversion	I _{BDD} _pgaon	PGA on (Gain>=4)		1.5		mA
Conversion time	Тс	OSR 4096 2048 1024(1) 512 256		6.34 3.78 2.5 1.86 1.54		ms
Supply current (1 sample per sec.)	Idd	OSR 4096 2048 1024(1) 512 256		5.75 3.45 2.3 1.8 1.4		uA
Standby Supply Current	IDDSTB	At 25℃			0.1	μΑ
Serial Data Clock Frequency	fsclk	I ² C protocol, pull- up resistor of 4k7~10k		100	400	kHz
Digital Input High Voltage	VIH		0.8			٧
Digital Input Low Voltage	VIL				0.2	V
Digital Output High Voltage	Voн	IO = 0.5 mA	0.9			V
Digital Output Low Voltage	VOL	IO = 0.5 mA			0.1	V
Input Capacitance	CIN			4.7		pF

⁽¹⁾ Standard Product. Could be customized.

2.3 Absolute Maximum Rating

Table 4: Absolute Maximum Rating

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Overpressure	РМА				10	bar
Supply Voltage	VDD		-0.3		5.5	V
Interface Voltage	VIF		-0.3		VDD+0.3	V
Storage Temperature Range	TSTG		-40		125	$^{\circ}$
Maximum Soldering Temperature	TMS	40 second maximum			250	°C
ESD Rating		Human body model	-2		+2	kV
Latch-up Current		At 85℃	-100		100	mA

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

3. Function Descriptions

3.1 General Description

The DA17-02BA-W04 is a highly integrated 24-bit sensor conditioner for applications of high precision low frequency measurement such as pressure transducer, weight scale. It can provide fully calibration for the sensor inherent temperature drift and non-linearity with multiple temperature sensing methods supported. The chip incorporates an in-amp, a buffer and a 24-bit sigma delta modulator followed by a calibration DSP. With wide gain and OSR range, the sensor could be suitable for variance sensors. One-time-programmable fuses are used to store the calibration coefficients for on-chip calibration calculations. IIC interfaces are supported for serial communication. The fully-compensated values can be read out via the I²C interface by external MCU.

3.2 Factory Calibration

Every sensor is individually factory calibrated for sensitivity and offset for both of the temperature and pressure measurements, further calibrations are not necessary to be done by the user. The OTP registers are used to store the configurations and calibration coefficients for the sensor.

3.3 SensorOutputConversion

For each pressure measurement, customer used to send a conversion command to the sensor, read back the conversion data from the normal register to be stored from 0x06 to 0x0a, the pressure data is stored from 0x06 to 0x08, the highest bit is sign bit, the low 5bits are decimal part, unit: Pa, the temperature data is stored from 0x09 to 0x0a, the highest bit is sign bit, the low 8bits are decimal part(1/256), unit: °C. All the data are sent starting from the MSB.

4. High-Speed I²C Digital Output Interface

The I^2C interface is fully compatible to the official I^2C protocol specification.

4.1 I²C Specification

Table5: I²C Slave Timing Values

_				I ² C		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Clock frequency	f _{BsclB}				400	kHz
SCL low pulse	t _{BLOWB}		1.3			μs
SCL high pulse	tвніднв		0.6			μs
SDA setup time	t _{BSUDATB}		0.1			μs
SDA hold time	t _{BHDDATB}		0.0			μs
Setup Time for a repeated start condition	t _{BSUSTAB}		0.6			μs
Hold time for a start condition	t _{BHDSTAB}		0.6			μs
Setup Time for a stop condition	t _{BSUSTOB}		0.6			μs
Time before a new transmission can start	t _{BBUFB}		1.3			μs

Figure 2: I²C Timing Diagram

The I²C interface protocol has special bus signal conditions. Start (S), stop (P) and binary data conditions are shown below. At start condition, SCL is high and SDA has a falling edge. Then the slave address is sent. After the 7 address bits, the direction control bit R/W selects the read or write operation. When a slave device recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle.

At stop condition, SCL is also high, but SDA has a rising edge. Data must be held stable at SDA when SCL is high. Data can change value at SDA only when SCL is low.

4.2 I²C Device Address

The I²C device address is shown below. The LSB of the device address is corresponding to address 0XDA (write) and 0XDB (read).

A7	A6	A5	A4	А3	A2	A1	W/R
1	1	0	1	1	0	SDO/ADDR	0/1

4.3 I²CProtocol

4.3.1 P_Config

Register=0XA6

Config_Data:

Add	ress	Description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	default
0xA	6	P_CONFIG	RW						OSR_P<2	2:0>		ОТР

OSR_P: set the over sampling ratio of the sensor signal conversion channel. 000:1024X, 001:2048X, 010:4096X, 011:8192X, 100:256X, 101:512X, 110: 16384X, 111:32768X.

4.3.2 T_Config

Register=0XA7

Config_Data:

Address	Description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	default
0xA7	T_CONFIG	RW						OSR_T<2:0	 >		ОТР

DA17-02BA-W04 PRESSURE SENSOR

OSR_T: set the over sampling ratio of the sensor signal conversion channel. 000:1024X, 001:2048X, 010:4096X, 011:8192X, 100:256X, 101:512X, 110: 16384X, 111:32768X.

4.3.3 Send Command From master to slave S Start A ACK From slave to master P Stop N NACK S SlaveAddr O A ComReg A CommandData A P

ComReg=0x30

CommandData:

Addres	Description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bi	Bit1	Bit0	default
S								t2			
0x30	CMD	RW	Sleep_	time<3:0>			Sco	Mea	surement_	_ctrl<2:0>	ОТР

Sleep_time<3:0>:0000:0ms, 0001:62.5ms,0010:125ms... 1111: 1s, only active during sleep mode conversion. **Measurement_control<1:0>:** 010b: indicate a combined conversion (once temperature conversion immediately followed by once sensor signal conversion).

Sco: 1, Start of conversion, automatically come back to 0 after conversion ends (except sleep mode conversion).

4.3.4 Read Status

	From master to slave				S	Sta	rt		A ACK			
	From slave to master				Р	Sto	р		N	NACK		
s	SlaveAddr 0 A StatusReg				Α	s	SlaveAddr	1	Α	Status	Α	Р

StatusReg=0x02

Status:

Address	Description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x02	Status	R						1'b0		DRDY

DRDY: 1, indicates once conversion complete, and the output data is ready for reading.

4.3.5 Read the Pressure & Temperature Values From master to slave ACK Start From slave to master NACK Stop SlaveAddr 0 Α ComReg Α Read T&P Delay x ms waiting for conversion complete SlaveAddr 0 StatusReg S SlaveAddr Status TempData TempData PressReg PressData PressData 0 S SlaveAddr 1 A SlaveAddr Send Read commond Read Status Judgement Status Read Pressure & Temperature Data Xms: OSR 1024X dl ms 2*2.5 //1*2.5 OSR_2048X_dl_ms 2*3.78 //1*3.78 OSR_4096X_dl_ms 2*6.34 //1*6.34 OSR_8192X_dl_ms 2*11.46 //1*11.46 OSR_256X_dl_ms 2*1.54 //1*1.54 OSR 512X dl ms 2*1.86 //1*1.86 OSR_16384X_dl_ms 2*21.7 //1*21.7 OSR_32768X_dl_ms 2*42.18 //1*42.18 Pressure = PressData[23:0]/32;//Pa 2 bar product If (TempData[15:0]&0x8000)//temperature<0 { Temperature1 = (0x8000 - TempData[15:0]&0x7fff)/256;// Integral part $^{\circ}$ C Temperature2 = ((0x8000 - TempData[15:0]&0x7fff)&0xff)*100/256;// decimal part °C} Else //temperature>0 { Temperature1 = TempData[15:0]/256; // Integral part [°]C Temperature2 = (TempData[15:0]&0xff)*100/256; // decimal part $^{\circ}$ C }

5. Application Circuit

Figure 4: Application Circuit

6. Package Outlines and Configuration

Figure 5: Package Outlines

Pin	Name	Туре	Function
1	GND	G	Power Ground
2	VDD	Р	Positive supply voltage
3	NC		Not connect
4	NC		Not connect
5	SDA	I/O	Serial data input/output
6	SCL	I	Serial data clock

Figure 6: Pin Configuration

7. Recommended Pad Layout

Figure 7: Pad layout

8. Shipping Package

- a) Tube
- b) Tape & Reel

ITEM	W	A0	B0	K0	K1	P	F	E	D0	D1	P0	P2	T
DIM	16.0	6.80	7.20	3.50	0.00	12.0	7.50	1.75	1.5	0	4.0	2.0	0.35
TOLE	±0.3	±0.1	±0.1	±0.1	±0.1	±0.1	±0.1	±0.1	+0.1 -0.0	min	±0.1	±0.1	±0.05