Operadores Puntuales e Histogramas de Imágenes

Juliana Gambini

17 de julio de 2010

Organización

Dominio espacial

- Métodos en el dominio espacial
 - Aumento del Contraste
 - Umbralización
 - negativos de Imágenes
 - Compresión del rango Dinámico
- - En la forma discreta

Utilidades

- Mejorar la calidad visual de una imagen.
- Proveer información estadística sobre la imagen.
- Corregir defectos.
- Analizar el contenido.

Operaciones Puntuales

Dominio espacial

f y g dos imágenes.

$$f: V \longrightarrow W$$

$$g:V\longrightarrow W$$

$$V \subset Z^2$$

 $W \subseteq [0, \dots, L-1]$

L es la cantidad de niveles de gris.

Operadores Puntuales

r y s los niveles de gris de f y g respectivamente:

$$f(x,y)=r$$

$$g(x,y)=s$$

f: Imagen de Entrada

g: Imagen de Salida

$$T: W \longrightarrow W$$

$$f(x,y) \rightarrow T \rightarrow g(x,y)$$
 Luego $s = T(r)$

Aumento del contraste

Se oscurece la imagen para lo valores de $r \le r_1$ y les da luz a los valores de $r \ge r_2$.

Figura: Transformación que modifica el contraste de la imagen

Dominio espacial

00000000

La Transformación

$$T(r) = \begin{cases} f_1(r) & \text{si } 0 \le r \le r_1 \\ f_2(r) & \text{si } r_1 < r \le r_2 \\ f_3(r) & \text{si } r \ge r_2 \end{cases}$$
 (1)

siendo $r_1 < r_2$.

Dominio espacial

Umbralización

La Imagen de salida es binaria.

Figura: Transformación de umbralización

00000000 Umbralización

Dominio espacial

Transformación

$$T(r) = \begin{cases} 0 & \text{si } r \le u \\ 255 & \text{en otro caso} \end{cases}$$
 (2)

Dominio espacial 00000000 Umbralización

Ejemplo

- (a) Imagen Original
- (b) Umbral u = 140 (c) Umbral u = 200

Dominio espacial

00000000

Negativos de Imágenes

Figura: Transformación que realiza el negativo de la imagen

$$T(r) = -r + L - 1 \tag{3}$$

Negativo de la Imagen

Negativo de la Imagen Color

Compresión del rango dinámico

$$T(r) = c * log(1+r) \tag{4}$$

Ecualización del Histograma

tal que T(0) = c * log(1) = 0 y c * log(1 + R) = L - 1, luego debe ser

$$c = \frac{L-1}{\log(1+R)} \tag{5}$$

Organización

- 1 Métodos en el dominio espacia
 - Aumento del Contraste
 - Umbralización
 - negativos de Imágenes
 - Compresión del rango Dinámico
- 2 Histogramas
- 3 Ecualización del Histograma
 - En la forma discreta
- 4 Ejercicios

Por qué estudiar el Histograma?

Histogramas

Es la base para el desarrollo de numerosas técnicas de procesamiento de imágenes:

- Realce de imágenes
- Provee estadísticas de la imagen
- Segmentación: determinación de umbrales para binarización
- Herramienta fácil de implementar
- Modificación global de los niveles de gris de la imagen.

Histogramas de Imagen

Es la frecuencia relativa de los niveles de gris presentes en la Imagen

$$h_i = \frac{n_i}{NM} \tag{6}$$

Ecualización del Histograma

 n_i : cantidad de ocurrencias del nivel de gris iNM: Cantidad total de pixels de la imagen.

El histograma de la imagen nos da una idea de cómo es la imagen

- (a) Histograma correspondiente a una (b) Histograma correspondiente a una imagen oscura
 - imagen con mucho brillo

Organización

- Métodos en el dominio espacia
 - Aumento del Contraste
 - Umbralización
 - negativos de Imágenes
 - Compresión del rango Dinámico
- 2 Histogramas
- 3 Ecualización del Histograma
 - En la forma discreta
- 4 Ejercicios

Ecualización del Histograma

El efecto de ecualizar el histograma de una imagen es producir una distribución uniforme de los niveles de gris.

Ecualización del Histograma

La manipulación del histograma se basa en controlar la función de densidad de probabilidad de los niveles de gris a través de su función de transformación.

r niveles de gris de la imagen de entrada s niveles de gris de la imagen de salida.

 $r \sim F_{\rm r}(r)$ cualquiera.

Se desea que s = T(r) tenga distribución $U_{[0,L-1]}$. O,

$$s = F_{s}(s) \tag{7}$$

Si T es monótona creciente e inyectiva, entonces:

$$s = F_s(s) = P(s \le s) = P(T(r) \le s) = P(r \le T^{-1}(s))$$
 (8)

$$= F_{r}(T^{-1}(s)) = F_{r}(r)$$
 (9)

Ecualización del Histograma

$$s = F_{\mathbf{r}}(r) \tag{10}$$

Efectivamente s tiene distribución uniforme:

$$F_{\mathbf{s}}(s) = P(\mathbf{s} \le s) = P(T(\mathbf{r}) \le s) = P(F_{\mathbf{r}}(r) \le s)$$
 (11)

$$= P(\mathbf{r} \le F_{\mathbf{r}}^{-1}s) = F_{\mathbf{r}}(F_{\mathbf{r}}^{-1}s) = s$$
 (12)

Y por lo tanto s resulta una variable aleatoria uniforme.

En la forma discreta

Definimos:

$$s_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{n}$$
 (13)

Ecualización del Histograma

donde, r_k es el k-ésimo nivel de gris que varía en el intervalo [0, L-1].

 n_i es el número de pixels de la imagen con nivel de gris r_i . n es el número total de pixels de la imagen.

 $\frac{n_j}{n}$ es la frecuencia relativa del j-ésimo nivel de gris.

En la forma discreta

De la definición de s_k tenemos que $s_{min} \leq s_k \leq 1$ y nosotros necesitamos $s_k \in [0, L-1]$, entonces aplicamos la siguiente transformación:

$$\widehat{s_k} = int\left[\frac{s_k - s_{min}}{1 - s_{min}} + 0.5\right] \tag{14}$$

Ecualización del Histograma

00000

00000

Dominio espacial En la forma discreta

Ecualización del Histogramas: Ejemplos

(n) Imagen Original

(ñ) Histograma

Ecualización del Histogramas: Ejemplos

(o) Ecualización

(p) Histograma

Dominio espacial En la forma discreta

Ecualización del Histogramas: Ejemplos

(q) Imagen original

(r) Imagen Ecualizada

Organización

- Métodos en el dominio espacia
 - Aumento del Contraste
 - Umbralización
 - negativos de Imágenes
 - Compresión del rango Dinámico
- 2 Histogramas
- 3 Ecualización del Histograma
 - En la forma discreta
- 4 Ejercicios

Ejercicios

Dominio espacial

Implementar las siguientes funciones:

- Suma, resta y producto de Imágenes.
- 2 Producto de una imagen por un escalar.
- **3** Compresión del rango dinámico: Sean r el nivel de gris de la imagen de entrada y s el nivel de gris de la imágen de salida, tal que s = f(r), $r \in [0, R]$. Entonces la función de compresión del rango dinámico es f(r) = c * log(r + 1) eligiendo c de manera que $f(r) \in [0, 255]$.

Ejercicios

- Implementar una función que devuelva el negativo de una imagen.
- 2 Implementar una función que devuelva el histograma de niveles de gris de una imagen.
- Examinando el histograma del Ejercicio 2, implementar una función que devuelva una imagen que tenga aumento del contraste.
- Implementar una función que aplique un umbral a una imagen, devolviendo una imagen binaria.
- Implementar una función que resuelva la ecualización del histograma.
- Aplicar la ecualización del histograma por segunda vez a la misma imagen. Observar el resultado y dar una explicación de lo sucedido.