Лекция 3 Обучение с подкреплением

Никита Юдин, iudin.ne@phystech.edu

Московский физико-технический институт Физтех-школа прикладной математики и информатики

21 февраля 2024

- Ввели понятие Q- и V- функции, с помощью котороых ввели частичный порядок на политиках.
- V-функция средняя награда по политике π , если агент начинает действовать в момент времени t из состояния s.
- Q-функция то же, что V функция, только теперь из состояния $s_t = s$ обязательно сначала совершается действие $a_t = a$.

• Поняли, что знать Q^{π} -функцию очень важно, ведь мы можем изменить нашу политику так, что политика не ухудшится, а в лучшем случае станет лучше:

$$\hat{\pi}(s) = \underset{a}{\operatorname{arg \, max}} \, Q^{\pi}(s, a) \implies \hat{\pi} \geqslant \pi.$$

• Поняли, что, если такое улучшение для всех *s* политику уже не изменяет, то эта политика оптимальна:

$$\pi^*(s) = \underset{a}{\operatorname{arg max}} Q^*(s, a).$$

• Найти Q— и V— функции помогают выведенные рекуррентные формулы на эти функции и на их оптимальные аналоги — уравнения Беллмана:

$$egin{aligned} V^{\pi}(s) &= \mathbb{E}_{\pi(a|s)} \left[Q^{\pi}(s,a)
ight]; \ Q^{\pi}(s,a) &= r(s,a) + \gamma \mathbb{E}_{p(s'|s,a)} \left[V^{\pi}(s')
ight]; \ V^{*}(s) &= \max_{a \in A} \left\{ Q^{*}(s,a)
ight\}; \ Q^{*}(s,a) &= r(s,a) + \gamma \mathbb{E}_{p(s'|s,a)} \left[V^{*}(s')
ight]. \end{aligned}$$

- Если о MDP задаче нам известно p(s'|s,a), r(s,a), а также S и A конечны, то решение уравнения Беллмана для V-функции:
 - Есть СЛАУ, $V^{\pi} = U + \gamma P V^{\pi} =: F(V^{\pi}).$
 - Решается методом простой итерации, так как оператор Беллмана $F(V^{\pi})$ сжимающий с коэффициентом γ , Такой метод решения называется *Policy Evaluation*.
- Если о MDP задаче нам известно p(s'|s,a), r(s,a), а также S и A конечны, то решение уравнения Беллмана для оптимальной V^* -функции:
 - Сводится к задаче линейного программирования, откуда будет следовать существование оптимальной детерминированной политики.

Policy Evaluation / Policy Iteration / Value Iteration

- Policy Evaluation оценивает V-функцию для текущей политики. Останавливается, когда V-функция меняется мало.
- Policy Iteration оценивает V-функцию для фиксированной политики (с помощью Policy Evaluation), а затем улучшает политику. Останавливается, когда политика перестает меняться.
- Value Iteration частный случай Policy Iteration: шаг оценки V-функции и изменения политики «схлопнут» в один без непосредственного вычисления политики. Получение самой политики — отдельный шаг.

Недостатки

Для применения этих алгоритмов нужно знать о среде слишком много! При этом сама среда должна быть не очень большой!

Различные подходы

Постановка задачи

Как уже было изложено выше — на практике очень часто мы не знаем как устроена среда, то есть нам неизвестны p(s'|s,a) и r(s,a), поэтому от этого предположения мы отказываемся, но оставляем $|S| \ll \infty$ и $|A| \ll \infty$.

Идея 1: Model-based RL

Давайте сведем задачу к решенной: будем аппроксимировать модель и применять уже известные методы.

Идея 2: Model-free RL

Давайте сразу учить политику без обучения среды.

7 / 28

Model-based RL

Плюсы

 Задача аппроксимация среды может быть сведена к классическому supervised learning: отправляем в среду агента и обучаемся на данных полученных от него.

Минусы

• Переход к supervised learning почти никогда не работает, поскольку задача получается слишком сложная и нужно подбирать агента, который будет ее исследовать.

Model-free RL

Плюсы

- Учить среду не нужно.
- Оказывается, чтобы свести предыдущие алгоритмы к новой задаче, не обязательно учить среду.

Минусы

 Нельзя свести к обучению с учителем, поскольку для этого нет набора данных.

Model-free RL

Модификации алгоритмов

В Policy Iteration и Value Iteration обычно учат V-функцию, поскольку она занимает меньше памяти, однако ничего не мешает сразу начать учить Q-функцию, а потом менять по ней политику.

Замечание

Однако, чтобы выучить Q-функцию в алгоритмах выше, всё равно необходимо знать среду:

$$Q^{\pi_k}(s,a) = r(s,a) + \gamma \underline{\mathbb{E}_{s'}} \mathbb{E}_{a'} Q^{\pi_k}(s',a').$$

Чтобы решить данную проблему, придется считать Q-функицю методом Монте-Карло по определению.

Метод Монте-Карло

Оценка *Q*-функции

Насэмплируем достаточное количество траекторий по политике и усредним по ним значения Q-функции:

$$Q^{\pi}(s,a) pprox rac{1}{M} \sum_{i=1}^{M} R(au_i),$$

где τ_i — одна из траекторий по политике π .

Замечание

Такой алгоритм будет несмещенной оценкой Q-функции, однако будет иметь очень большую дисперсию: в случае, если и среда и политика не детерминированы, то оценка есть сумма большого числа случайных величин и чем длиннее траектория, тем больше дисперсия.

Алгоритм Монте-Карло

Схема алгоритма

- 1) Инициализируем произвольную политику π .
- 2) В цикле по k:
 - 2.1) сэмплируем несколько траекторий при фиксированной политике π .
 - 2.2) Оцениваем $Q^{\pi}(s,a)$, используя Монте-Карло.
 - 2.3) Обновляем политику $\pi(s) \leftarrow \arg\max_a Q^{\pi}(s,a)$.

Недостатки алгоритма Монте-Карло

Недостатки

- Обновить Q-функцию нельзя, пока эпизод не сыгран до конца (не подходит для бесконечных игр).
- Не пользуемся MDP (потому что отказались от уравнения Беллмана).
- За конечное время точное значение *Q*-функции теперь не посчитать.
- Высокая дисперсия алгоритма.
- В данном виде алгоритм каждую новую итерацию цикла заново пересчитывает оценки *Q*-функции, выбрасывая старую оценку.

Модификация алгоритма Монте-Карло

Онлайн алгоритм

$$m_k := \frac{1}{k} \sum_{i=1}^k x_i = \frac{k-1}{k} m_{k-1} + \frac{1}{k} x_k = \left[\alpha_k := \frac{1}{k}\right] =$$

$$= \underbrace{\left(1 - \alpha_k\right) m_{k-1} + \alpha_k x_k}_{\text{exp. smoothing}} = \underbrace{m_{k-1} + \alpha_k (x_k - m_{k-1})}_{\approx \text{ stoch. grad. desc.}}$$

<u>За</u>мечание

Последнее равенство есть оптимизация $MSE\ Loss'a$. В оптимизации часто шаг обучения берут не только равным $\frac{1}{L}$.

Модификация алгоритма Монте-Карло

Теорема

 $m_k \xrightarrow[w.\ p.\ 1]{k \to \infty} \mathbb{E} x$, если $\mathbb{E} x^2 < +\infty$ и шаг обучения удовлетворяет

условиям Робинса-Монро (Robbins-Monro conditions):

$$\alpha_k \in [0,1], \ k \in \mathbb{N}, \ \sum_{k=1}^{+\infty} \alpha_k = +\infty, \ \sum_{k=1}^{+\infty} \alpha_k^2 < +\infty.$$

Замечание

В применении в RL для сходимости метода Монте-Карло в условие теоремы необходимо добавить условие на политику: $\forall s, a \implies \pi(a|s) > 0$, которое обеспечивает гарантировнное посещение агентом всех состояний среды (об этом подробнее в конце лекции).

Temporal Difference

Идея

$$Q^{\pi}(s,a) = \mathbb{E}_{s'} \underbrace{\left[r(s,a) + \gamma \mathbb{E}_{a'} Q^{\pi}(s',a') \right]}_{f(s',x)} =$$

$$= \mathbb{E}_{s'} \mathbb{E}_{a'} \underbrace{\left[r(s,a) + \gamma Q^{\pi}(s',a') \right]}_{f(s',a',x)}.$$

Теперь, чтобы обновить Q-функцию для (s, a) нам нужен только переход (s, a, r, s', a'):

$$y := r + \gamma Q^{\pi}(s', a');$$

$$Q^{\pi}(s, a) \leftarrow (1 - \alpha_k)Q^{\pi}(s, a) + \alpha_k y.$$

Temporal Difference

Перепишем полученное

Для перехода (s, a, r, s', a'):

$$Q_{k+1}^{\pi}(s, a) \leftarrow Q_k^{\pi}(s, a) + \alpha_k \underbrace{\left(\overbrace{r + \gamma Q_k^{\pi}(s', a')}^{\text{Bellman target}} - Q_k^{\pi}(s, a)\right)}_{\text{temporal difference}},$$

где s,a — фиксированы, $s'\sim p(s'|s,a)$ — случайная величина от взаимодействия со средой, $a'\sim \pi(a'|s')$ — случайная величина из нашего алгоритма.

Сравнение работы алгоритмов

Сравнение работы алгоритмов

$$Q_{k+1}^{\pi}(s,a) \leftarrow Q_k^{\pi}(s,a) + \alpha_k(y(s,a) - Q_k^{\pi}(s,a))$$

Temporal Difference

- $y(s, a) := r + \gamma Q_{\nu}^{\pi}(s', a')$
- Обновление происходит после каждого шага.
- Медленное распространение награды (посещает по паре состояний).

Monte Carlo

- $y(s,a) := r + \gamma r' + \gamma r'' + \dots$
- Обновление происходит в конце эпизода.
- Быстрое распространение награды (посещает несколько состояний в эпизоде разом).

Сравнение работы алгоритмов

Temporal Difference

- Маленькая дисперсия.
- Смещенная оценка.

Monte Carlo

- Большая дисперсия.
- Несмещенная оценка.

Добавляем улучшение политики

Идея

Идея такая же как в Value Iteration — давайте улучшать нашу оценку Q-функции с помощью TD и тут же улучшать нашу политику:

$$\begin{aligned} Q_{k+1}^{\pi}(s, a) &\leftarrow Q_{k}^{\pi}(s, a) + \alpha_{k} \left(r + \gamma Q_{k}^{\pi}(s', a') - Q_{k}^{\pi}(s, a) \right) = \\ &= Q_{k}^{\pi}(s, a) + \alpha_{k} (r + \gamma Q_{k}^{\pi}(s', \pi_{k}(s')) - Q_{k}^{\pi}(s, a)) = \\ &= Q_{k}^{\pi}(s, a) + \alpha_{k} (r + \gamma Q_{k}^{\pi}(s', \arg \max_{a} Q_{k}^{\pi}(s, a)) - Q_{k}^{\pi}(s, a)) = \\ &= Q_{k}^{\pi}(s, a) + \alpha_{k} (r + \gamma \max_{a'} Q_{k}^{\pi}(s', a') - Q_{k}^{\pi}(s, a)). \end{aligned}$$

Сходимость Q-обучения

Теорема

Пусть в конечном MDP, где $Q_0^*(s,a)$ — произвольно, дан алгоритм Q-обучения вида:

$$egin{aligned} Q_{k+1}^*(s,a) &\leftarrow Q_k^*(s,a) + lpha_k(s,a) (r(s,a) + \\ &+ \gamma \max_{a'} Q_k^*(s'_{k,s,a},a') - Q_k^*(s,a)). \end{aligned}$$

Тогда, если $s'_{k,s,a}\sim p(s'|s,a)$ и с вер-ю $1\ \forall s,a\ \alpha_k(s,a)\in(0,1]$ удовлетворяет условиям Роббинса-Монро, то

$$Q_k^*(s,a) \xrightarrow[k\to\infty]{\text{w.p. 1}} Q^*(s,a).$$

Сходимость Q-обучения

Замечание

Эта теорема точно справедлива, если мы на каждой итерации обновляем Q-функцию для всех состояний и действий. Но на практике это не выполняется — мы обновляем Q-функию только в тех состояниях, которые видим. Однако оказывается, что, если каждое состояние мы можем посетить с положительной вероятностью, то эта теорема будет работать, что приводит нас к *Exploration/Exploitation trade off*.

Сходимость Q-обучения

Проблема

Жадная по Q-функции политика с большой вероятностью не посетит все возможные состояния среды (вероятность принять жадное действие равна 1, а остальные 0), поэтому сходимость весьма условна!

Решение

Если $\forall s,a \implies \pi(a|s)>0$, то гарантированно рано или поздно агент посетит все состояния. Этого можно достичь, например, тривиальной равномерной политикой, и теорема о сходимости будет работать.

Итого

Свойство $\forall s, a \implies \pi(a|s) > 0$ — отвечает за исследование среды, жадность — за решение задачи. Нужно найти баланс между двумя этими политиками.

€-жадное исследование среды

Идея метода

На каждом шаге агента с вероятностью $1-\varepsilon$ выбирается жадное действие, а с вероятностью ε — совершенно случайное действие. Для такой политики будет верно, что $\forall s,a \implies \pi(a|s)>0$, поэтому будет наблюдаться сходимость.

€-жадное исследование среды

Достоинство

Очень простой метод в реализации, применяется в RL повсеместно.

Недостаток

Очень плохо работает, идея очень наивная.

Схема алгоритма Q-обучения

Q-learning

- 1) Инициализируем $Q^*(s,a)$ произвольно.
- 2) Наблюдаем *s*₀.
- 3) В цикле по k = 0, 1, 2, ...:
 - 3.1) Выбираем действие $a_k \sim \varepsilon$ -greedy($Q^*(s_k, a)$).
 - 3.2) Наблюдаем r_k, s_{k+1} .
 - 3.3) Обновляем Q-функцию:

$$y = r_k + \gamma \max_{a_{k+1}} Q^*(s_{k+1}, a_{k+1});$$

 $Q^*(s_k, a_k) \leftarrow (1 - \alpha_k) Q^*(s_k, a_k) + \alpha_k y.$

Замечание

Такой алгоритм гарантированно сходится.

Буфер в алгоритме Q-обучения

Идея

На самом деле Q-обучение (в отличие от $Monte\ Carlo$ алгоритма) является off-policy алгоритмом (об этом позже), это означает в частности, что алгоритм может обучаться не только на своих дейсвиях в данный момент времени, но и на действиях экспертов или на своих же старых действиях, поэтому очень удобно добавить в алгоритм буфер, в который мы будем класть действия агента и их результаты, а потом во время дальнейшего обучения, будем случайно доучиваться на сэмплах из буфера.