Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
 - Kernel PCA
 - Isomap

PCA

- PCA: Principle Component Analysis (closely related to SVD).
- PCA finds a linear projection of high dimensional data into a lower dimensional subspace such as:
 - o The variance retained is maximized.
 - The least square reconstruction error is minimized.

Some PCA/SVD applications

- LSI: Latent Semantic Indexing.
- ➤ Kleinberg/Hits algorithm (compute hubs and authority scores for nodes).
- Google/PageRank algorithm (random walk with restart).
- ➤ Image compression (eigen faces)
- ➤ Data visualization (by projecting the data on 2D).

PCA

PCA steps: transform an $N \times d$ matrix X into an $N \times m$ matrix Y:

- Centralized the data (subtract the mean).
- Calculate the $d \times d$ covariance matrix: $C = \frac{1}{N-1} X^T X$ (different notation from tutorial!!!)

$$C_{i,j} = \frac{1}{N-1} \sum_{q=1}^{N} X_{q,i} X_{q,j}$$

- o $C_{i,i}$ (diagonal) is the variance of variable i.
- o $C_{i,j}$ (off-diagonal) is the covariance between variables i and j.
- Calculate the eigenvectors of the covariance matrix (orthonormal).
- Select *m* eigenvectors that correspond to the largest *m* eigenvalues to be the new basis.

Eigenvectors

• If A is a square matrix, a non-zero vector \mathbf{v} is an eigenvector of A if there is a scalar λ (eigenvalue) such that

$$Av = \lambda v$$

• Example:
$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

• If we think of the squared matrix as a transformation matrix, then multiply it with the eigenvector do not change its direction.

What are the eigenvectors of the identity matrix?

X: the data matrix with N=11 objects and d=2 dimensions.

> Step 1: subtract the mean and calculate the covariance matrix C.

$$C = \begin{pmatrix} 0.716 & 0.615 \\ 0.615 & 0.616 \end{pmatrix}$$

➤ Step 2: Calculate the eigenvectors and eigenvalues of the covariance matrix:

$$\lambda_1 \approx 1.28, \ v_1 \approx [-0.677 \ -0.735]^T, \ \lambda_2 \approx 0.49, \ v_2 \approx [-0.735 \ 0.677]^T$$

Notice that v_1 and v_2 are orthonormal:

$$|\mathbf{v}_1| = 1$$

 $|\mathbf{v}_2| = 1$
 $|\mathbf{v}_1| \cdot |\mathbf{v}_2| = 0$

> Step 3: project the data

Let $V = [v_1, ... v_m]$ is $d \times m$ matrix where the columns v_i are the eigenvectors corresponding to the largest m eigenvalues

The projected data: Y = X V is $N \times m$ matrix.

If m=d (more precisely rank(X)), then there is no loss of information!

> Step 3: project the data

$$\lambda_1 \approx 1.28, \ v_1 \approx [-0.677 \ -0.735]^T, \ \lambda_2 \approx 0.49, \ v_2 \approx [-0.735 \ 0.677]^T$$

The eigenvector with the highest eigenvalue is the **principle component** of the data.

if we are allowed to pick only one dimension, the principle component is the best direction (retain the maximum variance).

Our PC is $v_1 \approx [-0.677 -0.735]^T$

> Step 3: project the data

If we select the first PC and reconstruct the data, this is what we get:

We lost variance along the other component (lossy compression!)

Useful properties

The covariance matrix is always symmetric

$$C^T = (\frac{1}{N-1}X^TX)^T = \frac{1}{N-1}X^TX^{T^T} = C$$

• The principal components of *X* are orthonormal

$$v_i^T v_j = \begin{cases} 1 & if \ i = j \\ 0 & if \ i \neq j \end{cases}$$

• $V=[v_1, ... v_m]$, then $V^T = V^{-1}$, i.e $V^T V = I$

Useful properties

Theorem 1: if square $d \times d$ matrix S is a real and symmetric matrix $(S=S^T)$ then

$$S = V \Lambda V^T$$

Where $V = [v_1, ... v_d]$ are the eigenvectors of S and $\Lambda = diag(\lambda_1, ... \lambda_d)$ are the eigenvalues.

Proof:

$$SV = V\Lambda$$

 $[S \ v_1 \ \dots \ S \ v_d] = [\lambda_1 . v_1 \ \dots \ \lambda_d . v_d]$: the definition of eigenvectors.

$$S = V \wedge V^{-1}$$

 $S = V \Lambda V^T$ because V is orthonormal $V^{-1} = V^T$

Useful properties

The projected data: Y = X V

The covariance matrix of Y is

$$C_{Y} = \frac{1}{N-1} Y^{T} Y = \frac{1}{N-1} V^{T} X^{T} X V = V^{T} C_{X} V$$

$$= V^{T} V \Lambda V^{T} V \quad \text{because the covariance matrix } C_{X} \text{ is symmetric}$$

$$= V^{-1} V \Lambda V^{-1} V \quad \text{because } V \text{ is orthonormal}$$

$$= \Lambda$$

After the transformation, the covariance matrix becomes diagonal!

PCA (derivation)

• Find the direction for which the variance is maximized:

$$v_1 = argmax_{v_1} var(Xv_1)$$

Subject to: $v_1^T v_1 = 1$

• Rewrite in terms of the covariance matrix:

$$var(Xv_1) = \frac{1}{N-1}(Xv_1)^T(Xv_1) = v_1^T \frac{1}{N-1}X^TX v_1 = v_1^TC v_1$$

Solve via constrained optimization:

$$L(v_1, \lambda_1) = v_1^T C v_1 + \lambda_1 (1 - v_1^T v_1)$$

PCA (derivation)

Constrained optimization:

$$L(v_1, \lambda_1) = v_1^T C v_1 + \lambda_1 (1 - v_1^T v_1)$$

Gradient with respect to v₁:

$$\frac{dL(v_1, \lambda_1)}{dv_1} = 2Cv_1 - 2\lambda_1 v_1 \Rightarrow Cv_1 = \lambda_1 v_1$$

This is the eigenvector problem!

• Multiply by v_1^T :

$$\lambda_1 = v_1^T C v_1$$

The projection variance is the eigenvalue

PCA

Unsupervised: maybe bad for classification!

Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
 - Kernel PCA
 - Isomap

SVD

Any $N \times d$ matrix X can be uniquely expressed as:

- r is the rank of the matrix X (# of linearly independent columns/rows).
- U is a column-orthonormal $N \times r$ matrix.
- Σ is a diagonal $r \times r$ matrix where the singular values σ_i are sorted in descending order.
- V is a column-orthonormal $d \times r$ matrix.

SVD example

The rank of this matrix r=2 because we have 2 types of documents (CS and Medical documents), i.e. 2 concepts.

U: document-to-concept similarity matrix

V: term-to-concept similarity matrix.

Example: $U_{1,1}$ is the weight of CS concept in document d_1 , σ_1 is the strength of the CS concept, $V_{1,1}$ is the weight of 'data' in the CS concept. $V_{1,2}=0$ means 'data' has zero similarity with the 2nd concept (Medical). What does $U_{4,1}$ means?

PCA and SVD relation

Theorem: Let $X = U \Sigma V^T$ be the SVD of an $N \times d$ matrix X and $C = \frac{1}{N-1} X^T X$ be the $d \times d$ covariance matrix. The eigenvectors of C are the same as the right singular vectors of X.

Proof:

$$X^T X = V \Sigma U^T U \Sigma V^T = V \Sigma \Sigma V^T = V \Sigma^2 V^T$$

$$C = V \frac{\Sigma^2}{N-1} V^T$$

But C is symmetric, hence $C = V \Lambda V^T$ (according to theorem1).

Therefore, the eigenvectors of the covariance matrix are the same as matrix V (right singular vectors) and the eigenvalues of C can be computed from the singular values $\lambda_i = \frac{{\sigma_i}^2}{N-1}$

Summary for PCA and SVD

Objective: project an $N \times d$ data matrix X using the largest m principal components $V = [v_1, ... v_m]$.

- 1. zero mean the columns of X.
- 2. Apply PCA or SVD to find the principle components of X.

PCA:

- I. Calculate the covariance matrix $C = \frac{1}{N-1}X^TX$.
- II. V corresponds to the eigenvectors of C.

SVD:

- I. Calculate the SVD of $X=U \Sigma V^{T}$.
- II. V corresponds to the right singular vectors.
- 3. Project the data in an m dimensional space: Y = X V

Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
 - Kernel PCA
 - Isomap

MDS

- Multi-Dimensional Scaling [Cox and Cox, 1994].
- MDS give points in a low dimensional space such that the Euclidean distances between them best approximate the original distance matrix.

Given distance matrix

$$\Delta := \begin{pmatrix} \delta_{1,1} & \delta_{1,2} & \cdots & \delta_{1,I} \\ \delta_{2,1} & \delta_{2,2} & \cdots & \delta_{2,I} \\ \vdots & \vdots & & \vdots \\ \delta_{I,1} & \delta_{I,2} & \cdots & \delta_{I,I} \end{pmatrix}.$$

Map input points x_i to z_i such as $||z_i - z_i|| \approx \delta_{i,j}$

- Classical MDS: the norm || . || is the Euclidean distance.
- Distances → inner products (Gram matrix) → embedding
 There is a formula to obtain Gram matrix G from distance matrix Δ.

MDS example

Given pairwise distances between different cities (Δ matrix), plot the cities on a 2D plane (recover location)!!

PCA and MDS relation

- Preserve Euclidean distances = retaining the maximum variance.
- Classical MDS is equivalent to PCA when the distances in the input space are the Euclidean distance.
- PCA uses the $d \times d$ covariance matrix: $C = \frac{1}{N-1}X^TX$
- MDS uses the $N \times N$ Gram (inner product) matrix: $G = X X^T$
- If we have only a distance matrix (we don't know the points in the original space), we cannot perform PCA!
- Both PCA and MDS are invariant to space rotation!

Kernel PCA

- Kernel PCA [Scholkopf et al. 1998] performs nonlinear projection.
- Given input $(x_1, ... x_N)$, kernel PCA computes the principal components in the feature space $(\varphi(x_1), ... \varphi(x_N))$.
- Avoid explicitly constructing the covariance matrix in feature space.
- The kernel trick: formulate the problem in terms of the kernel function $k(x, x') = \varphi(x) \cdot \varphi(x')$ without explicitly doing the mapping.
- Kernel PCA is non-linear version of MDS use Gram matrix in the feature space (a.k.a Kernel matrix) instead of Gram matrix in the input space.

Kernel PCA

Original space

A non-linear feature space

Isomap

- Isomap [Tenenbaum et al. 2000] tries to preserve the distances along the data Manifold (Geodesic distance).
- Cannot compute Geodesic distances without knowing the Manifold!

Blue: true manifold distance, red: approximated shortest path distance

• Approximate the Geodesic distance by the shortest path in the adjacency graph

Isomap

• Construct the neighborhood graph (connect only k-nearest neighbors): the edge weight is the Euclidean distance.

- Estimate the pairwise Geodesic distances by the shortest path (use Dijkstra algorithm).
- Feed the distance matrix to MDS.

Isomap

• Euclidean distances between outputs match the geodesic distances between inputs on the Manifold from which they are sampled.

Related Feature Extraction Techniques

Linear projections:

- Probabilistic PCA [Tipping and Bishop 1999]
- Independent Component Analysis (ICA) [Comon, 1994]
- Random Projections

Nonlinear projection (manifold learning):

- Locally Linear Embedding (LLE) [Roweis and Saul, 2000]
- Laplacian Eigenmaps [Belkin and Niyogi, 2003]
- Hessian Eigenmaps [Donoho and Grimes, 2003]
- Maximum Variance Unfolding [Weinberger and Saul, 2005]