Оглавление

1.	Мера в N — мерном пространстве. Кратныи интеграл	3
2.	Двойной интеграл и его свойства	4
	Вычисление двойного интеграла. Формула Дирихле	
	Тройной интеграл и его вычисление	
5.	Замена переменной в двойном интеграле	8
	Якобиан в полярных, цилиндрических и сферических координатах.	
	Площадь поверхности	
	Криволинейный интеграл 1 рода и его свойства. Вычисление	
9.	Криволинейный интеграл 2 рода и его свойства. Вычисление	12
	.Независимость криволинейного интегрирования от	контура
	интегрирования	
	. Формула Грина для односвязной и многосвязной областей	
	. Следствия из формулы Грина	
	. Несобственные двойные интегралы. Интеграл Пуассона	
	. Поверхностные интегралы 1 и 2 рода	
15.	.Скалярные и векторные поля. Свойства дивергенции, ротора, гр	
	Оператор Набла	
16.	.Поток векторного поля. Дивергенция. Соленоидальные поля.	
	Гаусса-Остроградского	19
17.	. Циркуляция векторного поля. Потенциальные поля. Ротор.	Формула
	Стокса	20
18.	. Числовой ряд. Необходимое условие сходимости ряда. Гармониче	ский ряд.
	Критерий Коши	21
	. Признаки сравнения знакоположительных рядов	
	. Признак Даламбера	
21.	. Радикальный признак Коши	23
	. Интегральный признак Коши	
23.	. Признак Лейбница для знакочередующихся рядов	24
24.	. Абсолютно и условно сходящиеся ряды и их свойства	25
25.	.Понятие равномерной сходимости ряда. Признак Вейерштрасса.	Свойства
	равномерно сходящихся рядов	26
26.	. Степенные ряды. Теорема Абеля	27
27.	. Ряды Тейлора и Маклорена. Остаточный член	29
28.	. Разложения элементарных функций	30
29.	. Ряды с комплексными членами. Теорема Абеля	31
30.	. Ряд Фурье по ортогональной системе функций. Многочлен Фурье .	32

31.Тригонометрические многочлены и ряды. Формула Фурье-Эйлера. Я	дро
Дирихле	33
32. Основные теоремы о сходимости рядов Фурье	35
33. Свойства коэффициентов Фурье	35
34.Ряды Фурье в комплексной форме	37
35.Равномерная сходимость рядов Фурье. Сходимость рядов Фурье	«E
среднем»	37
36. Равенство Парсеваля	38
37.Преобразования Фурье	38
38. Комплексная форма интеграла Фурье	39

1. Мера в N – мерном пространстве. Кратный интеграл

Объем (мера) в n-мерном пространстве

Рассмотрим пространство \mathbb{R}^n . Точка в таком пространстве будет характеризоваться набором координат $x=(x_1,x_2,...,x_n)\in\mathbb{R}^n$. Введем понятие n-мерного куба: $Q=\left\{x\in\mathbb{R}^n\ \middle| \left|x_i-x_i^{(0)}\right|\leq a>0; i=1...n\in N\right\}$. Это куб со стороной 2a. Определим его объем как $\mu Q\stackrel{\mathrm{def}}{=} (2a)^n$.

Разобьем \mathbb{R}^n на кубы ранга k: $Q = Q_{m_1,m_2,\dots,m_n} = \left\{x \in \mathbb{R}^n \left| \frac{m_i}{10^k} \le x_i \le \frac{m_i+1}{10^k} ; i = 1 \dots n \in \mathbb{N}; m_i \in Z\right\}$. Множество всех кубов ранга k обозначим как T_k , т.е. $\mathbb{R}^n = \bigcup_{Q \in T_k} Q$. Тогда, объем каждого такого кубика будет равен $\mu Q \stackrel{\text{def}}{=} 10^{-kn}$.

Пусть есть некое тело, состоящее из кубиков ранга k: $S = \bigcup_j Q_j$. Сложив их, получим $\mu S \stackrel{\text{def}}{=} \sum_j \mu Q_j$. Отсюда мера $\mu S < +\infty$, если сумма конечна, и $\mu S = +\infty$, если сумма бесконечна. По определению мера пустого множества равна нулю.

<u>Свойство:</u> Пусть S_1 ⊂ S_2 , тогда $\mu S_1 \leq \mu S_2$.

Пусть X — некое множество $X \subset \mathbb{R}^n$ (на рисунке синим). Обозначим множество всех кубов ранга k, содержащихся в X (на рисунке зеленым), как $s_k(X)$, т.е. $s_k = \bigcup_{\substack{Q \in T_k \\ Q \subset X}} Q$. А множество

всех кубов ранга k, пересекающихся с X (на рисунке сиреневым), обозначим как $S_k(X)$, т.е. $S_k(X) = \bigcup_{\substack{Q \in T_k \\ Q \cap X \neq 0}} Q$. При

изменении размеров кубов можно заметить следующие закономерности: $s_{k-1}(X) \subset s_k(X)$ и $S_{k-1}(X) \supset S_k(X)$, причем $s_k(X) \subset X \subset S_k(X)$, а точнее говоря, $s_0(X) \subset s_1(X) \subset \cdots \subset s_k(X) \subset X \subset S_k(X) \subset \cdots \subset S_1(X) \subset S_0(X)$. Для мер этих кубов можно провести аналогичные рассуждения: $\mu s_0(X) \leq \mu s_1(X) \leq \cdots \leq \mu s_k(X) \leq \mu S_k(X) \leq \mu S_1(X) \leq \mu S_0(X)$. Левая часть последовательности монотонно убывает и ограничена снизу, аналогично правая часть монотонно возрастает и ограничена сверху, а значит существуют пределы $\lim_{k \to +\infty} \mu s_k(X) = \mu_* X$ и $\lim_{k \to +\infty} \mu S_k(x) = \mu^* X$, которые носят названия нижней и верхней меры

 $k \to +\infty$ называется измеримым (\mathbb{R}^2 – квадрируемым, \mathbb{R}^3 - кубируемым), если верхняя и нижняя меры в пределе совпадают $\mu_* X = \mu^* X$. Если $\mu X = 0$, то множество $\mu_* X = 0$, то множество $\mu_* X = 0$.

Замечание: Если $\mu^* X = 0$, то и $\mu_* X = 0$, и множество X измеримо меры 0.

<u>Замечание:</u> Если множество X ограничено, то $\mu^*X < +\infty$ и $\mu_*X < +\infty$, но при этом множество может быть неизмеримым (они могут не совпадать).

<u>Замечание:</u> Если $X \subset \mathbb{R}^{n-1}$ и функция $y = f(x_1, x_2, ..., x_{n-1})$ непрерывна в X, тогда мера графика $\Gamma_f\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | (x_1, x_2, ..., x_{n-1}) \in X, x_n = f(x_1, x_2, ..., x_{n-1})\}$ равна нулю.

<u>Замечание:</u> Пусть множество X измеримо, а множество $\bar{X} = X \cup \partial X$ будет включать в себя множество X и его границу (являться замкнутым множеством), тогда множество \bar{X} будет также измеримо, и их меры будут совпадать.

Кратные интегралы

Пусть множество $X \subset \mathbb{R}^n$ измеримо. Введем конечную систему $\tau = \{X_i\}_{i=1}^{\tau}$ непустых измеримых множеств X_i . Тогда τ будет называться разбиением множества X, если:

- 1) Мера пересечения двух любых таких множеств $\mu(X_i \cap X_j) = 0$.
- 2) $\bigcup_{i=1}^{i_{\tau}} X_i = X$.

Диаметром некоторого множества называется наибольшее расстояние между двумя точками данного множества $diam\ X = \sup \rho(x,y),\ x,y \in X.$ Мелкостью разбиения $\tau = \{X_j\}_{j=1}^{j_\tau}$ называют число $|\tau| \stackrel{\mathrm{def}}{=} \max diam\ X_j$.

Давайте построим кратный интеграл. Внутри каждого разбиения возьмем точку $\xi^{(j)} \in X_j$, вычислим в ней значение функции f (заданной на X), умножим на меру этого множества и просуммируем: $\sigma_{\tau} = \sigma_{\tau} \big(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_{\tau})} \big) \stackrel{\text{def}}{=} \sum_{j=1}^{j_{\tau}} f \big(\xi^{(j)} \big) \mu X_j$. Эта сумма называется суммой Римана функции f, соответствующей разбиению τ .

Функция f называется интегрируемой по Риману на множестве X, если существует предел последовательности интегральной суммы Римана при мелкости $|\tau| \to 0$, не зависящей от разбиения τ и от выбора точек i,j.

Интеграл обозначается как $\int_X f dx = \int_X f(x_1,x_2,...,x_n) dx_1 dx_2 ... dx_n$. По определению кратный интеграл есть предел $\int_X f dx \stackrel{\text{def}}{=} \lim_{|\tau| \to 0} \sigma_\tau \big(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)} \big).$ Запишем то же самое определение другим образом. Если для любого сколь угодно малого числа $\varepsilon > 0$ существует $\delta > 0$ такая, что для любого разбиения τ множества X мелкость $|\tau| < \delta$ и при любом выборе $\xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)}$ предел (интеграл) отличается от суммы Римана по модулю меньше, чем на ε : $\left| \int_X f dx - \sigma_\tau \big(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)} \big) \right| < \varepsilon$.

2. Двойной интеграл и его свойства

Двойной интеграл

Пусть есть область $D \in \mathbb{R}^2$ и пусть в этой области определены непрерывная

функция $f(x,y) \geq 0$ и разбиение $\tau = \{X_j\}_{j=1}^{j_\tau}$. Тогда существует двойной интеграл $\iint_D f(x,y) dx dy = \lim_{|\tau| \to 0} \sigma_{\tau} \left(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)}\right)$. Величина $\sigma_{\tau} = \sum_{j=1}^{j_\tau} f\left(\xi^{(j)}\right) \mu X_j$ будет являться объемом ступенчатого тела, μX_j – площадью основной ступени, а $f\left(\xi^{(j)}\right)$ – высотой ступени. Тогда величина $V = \lim_{|\tau| \to 0} \sigma_{\tau} \left(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)}\right) = \chi$

 $\iint_D f(x,y)dxdy = \iint_D f(x,y)d\mu$ будет являться объемом тела, ограниченного функцией f над множеством D.

Свойства двойного интеграла

- 1) $\iint_D \big(f(x,y)+g(x,y)\big)d\mu=\iint_D f(x,y)d\mu+\iint_D g(x,y)d\mu \ (f$ и g непрерывны на D).
 - 2) $\iint_D cf(x,y)d\mu = c\iint_D f(x,y)d\mu.$

 $s_{\tau} \leq \sigma_{\tau} \leq S_{\tau}$.

- 3) Если $f \geq 0$ на D, то $\iint_D f(x,y) d\mu \geq 0$.
- 4) Пусть множество D есть объединение двух измеримых областей, мера пересечения которых равна нулю $D=X_1\cup X_2, \mu(X_1\cap X_2)=0$, тогда $\iint_D f(x,y)d\mu=\iint_{X_1} f(x,y)d\mu+\iint_{X_2} f(x,y)d\mu.$
- 5) Теорема 1 (об оценке интеграла). Пусть S площадь компактной области D и пусть функция f задана (и непрерывна) на D. Тогда на этой области функция достигает своего минимума и максимума: $m = \min_{(x,y) \in D} f(x,y)$, $M = \max_{(x,y) \in D} f(x,y)$ и выполняется неравенство $mS \leq \iint_D f(x,y) d\mu \leq MS$.

Доказательство. Рассмотрим $M-f(x,y)\geq 0$ на D. Тогда $\iint_D \big(M-f(x,y)\big)d\mu\geq 0$, а, значит, по первому свойству, $\iint_S Md\mu\geq \iint_D f(x,y)d\mu$. По определению левая часть равна MS, откуда получаем $\iint_D f(x,y)d\mu\leq MS$. Аналогичные рассуждения можно провести и для левой части исходного неравенства. Доказано.

<u>Замечание.</u> Если выполняется неравенство $h(x,y) \leq f(x,y) \leq g(x,y)$ для непрерывных функций в D, то $\iint_D h(x,y) d\mu \leq \iint_D f(x,y) d\mu \leq \iint_D g(x,y) d\mu$.

3. Вычисление двойного интеграла. Формула Дирихле Существование двойного интеграла

Для взятия двойного интеграла необходимо разбивать область на части: $\tau = \{X_j\}_{j=1}^{j_\tau}$ — разбиение $D \in \mathbb{R}^2$, f(x,y) задана на D. Введем $m_j = \inf_{(x,y) \in X_j} f(x,y)$, $M_j = \sup_{(x,y) \in X_j} f(x,y)$. $\inf f(x,y)$ и $\sup f(x,y)$ используются вместо минимума и максимума $(x,y) \in X_j$ потому, что множество открытое, и максимум или минимум могут и не достигаться. Можно составить следующие суммы: $s_\tau = \sum_{j=1}^{j_\tau} m_j \mu X_j$, $S_\tau = \sum_{j=1}^{j_\tau} M_j \mu X_j$, которые будут называться нижней и верхней суммой Дарбу соответственно. Очевидно, что

Теорема 2. Для того, чтобы функция, ограниченная на измеримом множестве D, была интегрируемая по Риману, необходимо и достаточно, чтобы $\lim_{|\tau|\to 0} (S_{\tau}-s_{\tau})=0$. При этом $\iint_D f d\mu=\lim_{|\tau|\to 0} S_{\tau}=\lim_{|\tau|\to 0} s_{\tau}$.

<u>Замечание.</u> Пусть f(x,y) непрерывна на \overline{D} (ограниченная D), тогда существует $\iint_{D} f(x,y) d\mu$.

Вычисление двойного интеграла в случае,

когда D — прямоугольная область

Пусть есть область $D=\{(x,y)\in\mathbb{R}^2|a\leq x\leq b;c\leq y\leq d\}$. Построим сечение тела плоскостью x=c, площадь которого обозначим как $g(x)=\int_c^d f(x,y)dy$.

Теорема 3. Если функция f(x,y) интегрируема на D и для любого $x \in [a;b]$ функция f(x,y) интегрируема по y, то функция g(x) интегрируема на [a;b] и $\iint_D f(x,y) dx dy = \int_a^b dx \int_c^d f(x,y) dy$.

Замечание. Для $\int_a^b dx \int_c^d f(x,y) dy$ правый интеграл называется внутренним, а левый – повторным.

3амечание. Аналогичная теорема верна и для случая $\iint_D f(x,y) dx dy = \int_c^d dy \int_a^b f(x,y) dx.$

Доказательство. Пусть $ilde{ au}_1$ и au_2 – разбиения отрезков [a;b] и [c;d]соответственно: $\{ [y_{j-1}; y_j] \}_{j=1}^{j_{ au_2}}; c = y_0 < y_1 < \dots < y_{j_{ au_2}} = d.$ Возьмем прямые произведения этих отрезков: $au= au_1 imes au_2=\{X_{ij}\}_{\substack{j au_2\\j=1\\j=1}}^{i au_1}=\{[x_{i-1};x_i] imes[y_{j-1};y_j]\}_{\substack{j au_2\\j=1\\j=1}}^{i au_1}$. Обозначим $m_{ij}=\inf_{(x,y)\in X_{ij}}f(x,y)$; $m_i=\inf_{x\in[x_{i-1};x_i]}g(x)$; $M_i=\sup_{x\in[x_{i-1};x_i]}g(x)$. Для любой точки $(x,y)\in X_{ij}$ выполняется неравенство $m_{ij}\leq f(x,y)\leq M_{ij}$. Проинтегрировав от y_{j-1} до y_j , получим неравенство $m_{ij}\Delta y_j \leq \int_{y_{j-1}}^{y_j} f(x,y) dy \leq$ $M_{ij}\Delta y_{j}$, которое будет выполняться для любого $x\in [x_{i-1};x_{i}]$. Просуммируем: $\sum_{j=1}^{j_{ au_2}} m_{ij} \Delta y_j \leq \sum_{j=1}^{j_{ au_2}} \int_{y_{j-1}}^{y_j} f(x,y) dy \leq \sum_{j=1}^{j_{ au_2}} M_{ij} \Delta y_j.$ Тогда $\sum_{j=1}^{j_{ au_2}} m_{ij} \Delta y_j \leq m_i \leq M_i \leq M_i$ $\sum_{j=1}^{j_{ au_2}} M_{ij} \Delta y_j$. Домножим на Δx_i и просуммируем по i: $\sum_{i=1}^{i_{ au_1}} \sum_{j=1}^{j_{ au_2}} m_{ij} \Delta y_j \Delta x_i \leq 1$ $\sum_{i=1}^{i_{\tau_1}} m_i \Delta x_i \leq \sum_{i=1}^{i_{\tau_1}} M_i \Delta x_i \leq \sum_{i=1}^{i_{\tau_1}} \sum_{j=1}^{j_{\tau_2}} M_{ij} \Delta y_j \, \Delta x_i. \, \text{Заметим, что последнее неравенство аналогично другому: } \inf_{(x,y) \in X_{ij}} f(x,y) \leq \inf_{x \in [x_{i-1};x_i]} g(x) \leq \sup_{x \in [x_{i-1};x_i]} g(x) \leq \sup_{(x,y) \in X_{ij}} f(x,y)$ или $s_{ au}^f \leq s_{ au_1}^g \leq S_{ au_1}^g \leq S_{ au}^f$.Пусть f(x,y) интегрируема на D. Тогда для любого $\varepsilon>0$ существует $\delta>0$ такое, что для любого $au:| au|<\delta; \left|S_{ au}^f-s_{ au}^f\right|<arepsilon.$ Возьмем $| au_1|<$ $\frac{\delta}{\sqrt{2}}$; $| au_2|<rac{\delta}{\sqrt{2}}$. Тогда $\max_i \Delta x_i <rac{\delta}{\sqrt{2}}$; $\max_i \Delta y_j <rac{\delta}{\sqrt{2}}$, a $| au|=\max_{i.i}\sqrt{(\Delta x_i)^2+\left(\Delta y_j
ight)^2}<\delta$, откуда $\left|S^f_{ au}-s^f_{ au}
ight|<arepsilon$, и, следовательно, $\left|S^g_{ au_1}-s^g_{ au_1}
ight|<arepsilon$,. Тогда g(x) интегрируема на [c;d], и $s_{ au}^f \leq \int_a^b g(x) dx \leq S_{ au}^f$. Но $s_{ au}^f \leq \iint_D f(x,y) dx dy \leq S_{ au}^f$. Выходит, что $\left|\iint_D f(x,y)dxdy - \int_a^b g(x)dx\right| < arepsilon$, откуда следует, что они совпадают. Доказано.

Вычисление двойного интеграла повторным

интегрированием по произвольной области

Теорема 4. Пусть $\varphi_1(x) \le \varphi_2(x)$ на [a;b], задана область $D = \{(x,y)|a \le x \le b; \varphi_1(x) \le y \le \varphi_2(x)\}$ – компакт, квадрируема и f(x,y) интегрируема по Риману на

D. Тогда $g(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy$ интегрируема на [a;b] и $\iint_D f(x,y) dx dy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy.$

<u>Замечание.</u> Аналогичная теорема имеет место и в случае области $D = \{(x,y)|c\leq y\leq d; \psi_1(y)\leq x\leq \psi_2(y)\}$. Тогда $\iint_D f(x,y)dxdy = \int_c^d dy \int_{\psi_1(y)}^{\psi_2(y)} f(x,y)dx$.

3амечание. Если область имеет сложную форму, то ее можно разбить на области, интегралы которых можно вычислить через $_{ au}$

повторные.

Замечание. $\iint_D 1 dx dy = S_D = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} 1 dy = \int_a^b \left(\varphi_2(x) - \varphi_1(x) \right) dx.$

Формула Дирихле

 $\int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) dy = \int_{c}^{d} dy \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y) dx.$ Для области $D = \{(x,y) | a \leq x \leq b; a \leq y \leq x\}$ справедливо равенство $\int_{a}^{b} dx \int_{a}^{x} f(x,y) dy = \int_{a}^{b} dy \int_{y}^{b} f(x,y) dx.$

4. Тройной интеграл и его вычисление

Пусть есть некоторая область $\Omega \in \mathbb{R}^3$ и пусть в области Ω задана функция

f(x,y,z). D — проекция Ω на XoY. Пусть Ω обладает свойством, что любая прямая, параллельная осям координат, пересекает Ω не более, чем в двух точках. L — линия, которая проектируется на область D. Ω разбиваем на элементарные объемы $\tau = \{X_j\}_{j=1}^{j_\tau}$, причем X_j имеет объем μX_j . Тройной интеграл по определению $\iiint_{\Omega} f(x,y,z) dx dy dz = \lim_{|\tau| \to 0} \sum_{j=1}^{j_\tau} f(P_j) \mu X_j$, где $P_j \in X_j$. Если предел в правой части существует и не зависит от

разбиения au и выбора точек P_j , то тогда существует тройной интеграл.

Вычисление тройного интеграла

Для каждой точки $M_j \in D$ считаем $z = \chi_1(x,y)$ — нижняя граница Ω и $z = \chi_2(x,y)$ — верхняя граница Ω . Если ввести функцию $F(x,y) = \int_{\chi_1(x,y)}^{\chi_2(x,y)} f(x,y,z) dz$, то тройной интеграл можно представить в виде $\iiint_{\Omega} f(x,y,z) dx dy dz = \iint_{D} F(x,y) dx dy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} dy \int_{\chi_1(x,y)}^{\chi_2(x,y)} f(x,y,z) dz$.

<u>Замечание.</u> Если область сложная, то ее всегда можно разбить на области, для которых любая прямая, параллельная осям координат, пересекает границу области не более, чем в 2 точках.

5. Замена переменной в двойном интеграле

Преобразование плоских областей

Пусть даны две плоскости XoY и $\xi o\eta$ и две области D и Δ . Область Δ является прообразом D, т.е. каждой точке из одной области ставится в соответствие ровно одна точка из другой области (взаимно-однозначное). Возьмем точки $p_0(x_0,y_0)$ и

 $\pi_o(\xi_0,\eta_0)$. Если мы зафиксируем значения ξ_0 и η_0 , $n_{o}(\zeta_{0},\eta_{0})$. ЕСЛИ МЫ ЗАФИКСИРУЕМ ЗНАЧЕНИЯ ζ_{0} И η_{0} , то $\xi(x,y)=\xi_{0}$ и $\eta(x,y)=\eta_{0}$ в области D будут отображением прямых $\xi=\xi_{0}$ и $\eta=\eta_{0}$ в области Δ , то есть $(*)\begin{cases} x=x(\xi,\eta)\\ y=y(\xi,\eta) \end{cases}$ — взаимно-однозначное отображение Δ в D, а $\{\xi=\xi(x,y)\\ \eta=\eta(x,y) \}$ — обратное (*). Линии $\{\xi(x,y)=\xi_{0}\\ \eta(x,y)=\eta_{0} \}$ носят название координатных линий в D (криволинейные коор

координаты).

Преобразование разбиений

В плоскости $\xi o\eta$ возьмем прямоугольную область (разбиение) и ее

 $\begin{cases} x = x(\xi, \eta) \\ y = y(\xi, \eta) \end{cases}$ в плоскости $X \circ Y$. отображение Координаты прямоугольника в $\xi o \eta$: $\pi_1(\xi;\eta)$; $\pi_2(\xi+d\xi;\eta)$; $\pi_3(\xi+d\xi;\eta+d\eta)$; $\pi_4(\xi;\eta+d\eta)$. Координаты в $\chi o \gamma$: $p_1(x_1;y_1)$; $p_2(x_2;y_2)$; $p_3(x_3;y_3)$; $p_4(x_4;y_4)$.

Выразим точки $p_1, \dots p_4$ через точки $\pi_1, \dots \pi_4$: $\begin{cases} x_1 = x(\xi;\eta) \\ y_1 = y(\xi;\eta) \end{cases}$ $\begin{cases} x_2 = x(\xi+d\xi;\eta) \\ y_2 = y(\xi+d\xi;\eta) \end{cases}$ $\begin{cases} x_3 = x(\xi+d\xi;\eta+d\eta) \\ y_3 = y(\xi+d\xi;\eta+d\eta) \end{cases}$ $\begin{cases} x_4 = x(\xi;\eta+d\eta) \\ y_4 = y(\xi;\eta+d\eta) \end{cases}$ Пусть $x(\xi,\eta)$ и $y(\xi,\eta)$ — непрерывно-дифференцируемые функции. Тогда

$$\begin{cases} x_1 = x(\xi; \eta) \\ y_1 = y(\xi; \eta) \end{cases}, \qquad \begin{cases} x_2 = x(\xi; \eta) + \frac{\partial x}{\partial \xi} d\xi + \alpha_2 \\ y_2 = y(\xi; \eta) + \frac{\partial y}{\partial \eta} d\eta + \beta_2 \end{cases}, \qquad \begin{cases} x_3 = x(\xi; \eta) + \frac{\partial x}{\partial \xi} d\xi + \frac{\partial x}{\partial \eta} d\eta + \alpha_3 \\ y_3 = y(\xi; \eta) + \frac{\partial y}{\partial \xi} d\xi + \frac{\partial y}{\partial \eta} d\eta + \beta_3 \end{cases},$$

 $\begin{cases} x_4=x(\xi;\eta)+\frac{\partial x}{\partial \eta}d\eta+\alpha_4\\ y_4=y(\xi;\eta)+\frac{\partial y}{\partial \eta}d\eta+\beta_4 \end{cases}$ где α_n и β_n – бесконечно малые более высокого порядка малости, чем $\partial \xi$ и $\partial \eta$.

Рассмотрим проекции сторон $p_1p_2p_3p_4$: $p_1p_2{}_{oX}=x_2-x_1=rac{\partial x}{\partial \xi}d\xi+lpha_2$; $p_1p_2{}_{oY}=$ $y_2-y_1=rac{\partial y}{\partial \xi}d\xi+eta_2$. Аналогичным образом вычислим остальные проекции.

Пусть
$$\Delta \sigma$$
 — площадь $p_1p_2p_3p_4$. $\Delta \sigma \sim 2S_\Delta p_1p_2p_4 = \begin{vmatrix} x_2-x_1 & x_4-x_1 \\ y_2-y_1 & y_4-y_1 \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial \xi} d\xi & \frac{\partial x}{\partial \eta} d\eta \\ \frac{\partial y}{\partial \xi} d\xi & \frac{\partial y}{\partial \eta} d\eta \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} d\eta \end{vmatrix} d\xi d\eta$. Последний определитель называется якобианом

преобразования
$$\begin{cases} x = x(\xi, \eta) \\ y = y(\xi, \eta) \end{cases}$$
 и обозначается $\mathcal{I}(\xi, \eta; x, y) = \begin{vmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{vmatrix}$.

Если рассмотреть отношение площадей
$$\frac{\Delta \sigma}{d\xi d\eta} \xrightarrow[\pi_1\pi_2\pi_3\pi_4\to\pi_1]{\begin{bmatrix} \frac{\partial x}{\partial\xi} & \frac{\partial x}{\partial\eta} \\ \frac{\partial y}{\partial\xi} & \frac{\partial y}{\partial\eta} \end{bmatrix}}$$
.

<u>Замечание.</u> Определитель положителен, если обход точек сохраняется, и отрицательный, если не сохраняется.

Формула замены переменной в двойном интеграле

Модель якобиана преобразования характеризует искажение площади. Рассмотрим $\iint_D f(x,y) dx dy = \lim_{|\tau| \to 0} \sum_{i=1}^{i_\tau} f(P_i) \Delta \sigma_i = \lim_{|\tau'| \to 0} \sum_{i=1}^{i_\tau} f \big(x(\pi_i); y(\pi_i) \big) *$

$$\begin{vmatrix} \left| \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \right| \\ \left| \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \right| \end{vmatrix} * d\xi d\eta = \iint_{\Delta} \ f \big(x(\xi, \eta); y(\xi, \eta) \big) | \mathcal{I}(\xi, \eta; x, y) | d\xi d\eta, \ \text{где} \ \tau' \ \text{- разбиение} \ \Delta,$$

которое порождает au – разбиение D, $\Delta \sigma_i = \mu X_i$.

<u>Пример.</u> Двойной интеграл в полярных координатах. $\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$ – формула перехода к полярным координатам. Пусть Δ – в полярных координатах, тогда D – в декартовых. Якобиан тогда равен $\mathcal{I} = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} = \rho$. Получаем $\iint_D f(x,y) dx dy = \iint_{\Delta} f(\rho \cos \varphi \, ; \rho \sin \varphi) \rho d\rho d\varphi$.

6. Якобиан в полярных, цилиндрических и сферических координатах В полярных координатах – смотри конец предыдущего билета.

Замена переменной в тройном интеграле.

Цилиндрические и сферические координаты

Пусть $egin{cases} x = \varphi(u,t,w) \ y = \psi(u,t,w). \end{cases}$ Область Ω' в плоскости (u,t,w) переходит в Ω в $z = \chi(u,t,w)$

плоскости (x,y,z), т.е. $\iiint_{\Omega} f(x,y,z) dx dy dz = \iiint_{\Omega}, f(\varphi(u,t,w);\psi;\chi) |\mathcal{I}| du dt dw$. Цилиндрические координаты отличаются от полярных только добавлением

третьего измерения $\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$. Тогда $\mathcal{I}(u,t,w;x,y,z) = z = \xi$

$$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial t} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial t} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial t} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial \xi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial \xi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi & 0 \\ \sin \varphi & \rho \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} = \rho.$$

Отсюда $\iiint_{\Omega} f(x,y,z) dx dy dz = \iiint_{\Omega'} f (x(\rho,\varphi,\xi);y(\rho,\varphi,\xi);z(\rho,\varphi,\xi)) \rho d\rho d\varphi d\xi.$

Для сферических координат точке M(x,y,z) будем сопоставлять три переменные

$$(\rho, \varphi, \theta)$$
 (CM. PUCYHOK):
$$\begin{cases} x = \rho \sin \theta \cos \varphi \\ y = \rho \sin \theta \sin \varphi, \\ x = \rho \cos \theta \end{cases}$$

 $\begin{cases} 0 \leq \varphi < 2\pi \\ 0 \leq \rho < +\infty. \end{cases}$ Обратным преобразованием в $0 \leq \theta \leq \pi$

данном случае является
$$\begin{cases} \rho = \sqrt{x^2 + y^2 + z^2} \\ \tan \varphi = \frac{y}{x} \end{cases}.$$

$$\tan \theta = \frac{\sqrt{x^2 + y^2}}{z}$$

Якобианом преобразования будет являться
$$\mathcal{I}(\rho, \varphi, \theta; x, y, z) = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial \theta} \end{vmatrix} =$$

$$\begin{vmatrix} \cos \varphi \sin \theta & -\rho \sin \varphi \sin \theta & \rho \cos \varphi \cos \theta \\ \sin \varphi \sin \theta & \rho \cos \varphi \sin \theta & \rho \sin \varphi \cos \theta \\ \cos \theta & 0 & -\rho \sin \theta \end{vmatrix} = \rho^2 \sin \theta. \text{ Отсюда } \iiint_{\Omega} f(x,y,z) dx dy dz =$$

$$\iiint_{\Omega'} f \Big(x(\rho,\varphi,\theta); y(\rho,\varphi,\theta); z(\rho,\varphi,\theta) \Big) \rho^2 \sin \theta \, d\rho d\varphi d\theta.$$

7. Площадь поверхности

Пусть в $D \in \mathbb{R}^2$ задана непрерывная дифференцируемая функция z = f(x, y). Пусть k – поверхность, которая проектируется на область D.

Площадь поверхности k измеряется пределом, к которому стремится площадь многогранника, описанного около поверхности при неограниченном увеличении числа его граней и при стремлении к нулю наибольшего из диаметров этих граней.

Описанный многогранник задает разбиение области D. Пусть $P_0(x_0,y_0)$ и $M_0(x_0,y_0,f(x_0,y_0))$ проекция точки M_0 и точка касания $z_0 = f(x_0, y_0)$. Тогда уравнение касательной плоскости будет выглядеть образом: $z - z_0 = f_x'(x, y)(x - x_0) +$ следующим $f_{\nu}'(x,y)(y-y_0)$. Обозначим площадь каждой грани как dq, а площадь ее проекции как $d\sigma$. Тогда $d\sigma=dq\cos\gamma$, где γ — угол между нормалью \vec{n} в точке M_0 и осью Oz. Координаты этого вектора нормали будут совпадать с координатами вектора градиента: $\vec{n} ig(-f_x'(x_0, y_0); -f_y'(x_0, y_0); 1 ig)$, так как мы рассматриваем

внешнюю нормаль. Единичный вектор нормали к поверхности тогда будет равен:

$$\vec{n}\left(-\frac{f_x'(x_0,y_0)}{\sqrt{1+{f_x'}^2(x_0,y_0)+{f_y'}^2(x_0,y_0)}};-\frac{f_y'(x_0,y_0)}{\sqrt{1+{f_x'}^2(x_0,y_0)+{f_y'}^2(x_0,y_0)}};\frac{1}{\sqrt{1+{f_x'}^2(x_0,y_0)+{f_y'}^2(x_0,y_0)}}\right)$$
 соs γ будет тогда равен $\frac{1}{\sqrt{1+{f_x'}^2(x_0,y_0)+{f_y'}^2(x_0,y_0)}}$. Тогда $dq=\frac{d\sigma}{\cos\gamma}=$

 $\sqrt{1+{f_x'}^2(x_0,y_0)+{f_y'}^2}(x_0,y_0)d\sigma$. Теперь можно выразить площадь поверхности как $\dot{S}_{ ext{пов}} = \lim_{\max diam(q_k) o 0} \sum_{k=1}^n \Delta q_k$, где q_k – грань, $\Delta q_k = dq_k$ – ее площадь, n – число в наше выражение разбиений. Подставим $\lim_{\max diam(q_k) o 0} \sum_{k=1}^n \Delta \sigma_k \sqrt{1 + {f_\chi'}^2 + {f_y'}^2}$. При большом количестве разбиений можно интегральной сумме $S_{ ext{пов}} = \iint_D \sqrt{1 + {f_x'}^2 + {f_y'}^2} d\sigma =$ перейти к $\iint_D \sqrt{1 + f_x^{\prime 2} + f_y^{\prime 2}} dx dy.$

Замечание: Сложную фигуру можно разбить на части, каждую из которых можно однозначно спроектировать на какую-либо координатную плоскость.

8. Криволинейный интеграл 1 рода и его свойства. Вычисление

Пусть L – кусочно-гладкая кривая, которая представляется как $\vec{r}(t)$ = (x(t);y(t);z(t)), где $t\in [\alpha;\beta]$, и каждый кусок которой имеет производную. Пусть L является дугой AB. Разобьем ее на nчастей $[\alpha; \beta]$ так, что $t_0 = \alpha < t_1 < \dots < t_{n-1} < t_n = \beta$, $\vec{r}(t_0) =$ $\overrightarrow{OA}, \vec{r}(t_n) = \overrightarrow{OB}$, а $\vec{r}(t_i)$ – точки деления дуги AB. Пусть на Lзадана функция f(x,y,z). Для каждого промежутка $\Delta S_i = |\vec{r_i}|$ – длина промежутка, или звена ломаной, вписанной в кривую. На каждом промежутке возьмем точку $P_i(\xi_i, \eta_i, \zeta_i)$,

принадлежащую куску i ломаной. В каждой такой точке

посчитаем значение функции, умножим на длину звена i и составим сумму для всех звеньев: $I_n = \sum_{n=1}^{\infty} f(P_i) \Delta S_i$.

По определению, интегралом первого рода от функции f по кривой Lназывается предел последовательности интегральных сумм I_n при условии, что $\max \Delta S_i \to 0$ и не зависит от выбора точек P_i на кривой и характера разбиения кривой на отрезки. $\int_L f(x,y,z)dS \equiv \lim_{n \to \infty} \sum_{n=1}^{\infty} f(P_i) \Delta S_i = \int_{\cup AB} f(x,y,z)dS$.

<u>Замечание:</u> Иногда интеграл 1 рода называется интегралом по длине.

Свойства криволинейных интегралов 1 рода

1) Линейность

a.
$$\int_L cfdS = c \int_L fdS$$
.

b.
$$\int_{L} (f+g)dS = \int_{L} fdS + \int_{L} gdS$$
.

- 2) $\int_{L} \ dS = S_{n}$ длина дуги L. 3) Интеграл не зависит от ориентации кривой.
- 4) Пусть $L=L_1 \cup L_2$ и L_1 , L_2 имеют только одну общую точку. Тогда $\int_L \ f dS =$ $\int_{L_1} f dS + \int_{L_2} f dS.$

Вычисление криволинейных интегралов 1 рода

Пусть
$$L = egin{cases} x = x(t) \\ y = y(t), t \in [lpha; eta], \vec{r}(lpha) = \overrightarrow{OA}, \vec{r}(eta) = \overrightarrow{OB}. \end{cases}$$
 Тогда $dS = z(t)$

 $\sqrt{x'^2(t) + y'^2(t) + z'^2(t)} dt$. Криволинейный интеграл вычисляется $\int_L f(x,y,z)dS = \int_{lpha}^{eta} fig(x(t),y(t),z(t)ig)\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}dt.$ В случае кривой y=g(x) на плоскости: $dS = \sqrt{1 + g'^2(x)} dx$, $\int_L f(x,y) dS = \int_A^B f(x,g(x)) \sqrt{1 + g'^2(x)} dx$.

9. Криволинейный интеграл 2 рода и его свойства. Вычисление

Пусть L – кусочно-гладкая кривая, которая представляется как $ec{r}(t)=$ ig(x(t);y(t);z(t)ig), где $t\in [lpha;eta]$, и каждый кусок которой имеет производную. Пусть Lявляется дугой AB. Разобьем кривую на n частей так, что точки деления будут: A=

 $A_0;A_1;\dots;A_{n-1};A_n=B.$ На каждой дуге выберем точку $P_i(\xi_i,\eta_i,\zeta_i)$. Для каждой дуги $A_{i-1}A_i$ обозначим $\Delta x_i = x_i - 1$ x_{i-1} как ее проекцию на ось $\mathcal{O}x$. Пусть на L задана функция f(x,y,z). В каждой точке P_i посчитаем значение функции и умножим на проекцию Δx_i длины звена и составим сумму для всех звеньев: $\sum_{n=1}^{\infty} f(P_i) \Delta S_i$.

По определению, интеграл второго рода от функции fпо кривой L по переменной x называется предел последовательности интегральных сумм I_n при условии,

что $\max \Delta S_i \to 0$ и не зависит от выбора точек P_i на кривой и характера разбиения кривой на отрезки. $\int_L f(x,y,z)dx \equiv \lim_{n \to \infty} \sum_{n=1}^\infty f(P_i) \Delta x_i = \int_{\cup AB} f(x,y,z)dx$. При

смене ориентации знак криволинейного интеграла второго рода меняется на

противоположный. Аналогичным образом выводятся криволинейные интегралы второго рода по проекции на другую координатную ось.

Пусть на L задана вектор-функция $\vec{A}=(f,g,h)$. Тогда $J=\int_L \ f(x,y,z)dx +$ $\int_{L} g(x,y,z)dy + \int_{L} h(x,y,z)dz = \int_{L} (fdx + gdy + hdz) = \int_{L} \vec{A}d\vec{r}.$

Пример: Работа силы по кривой $A = \int_{I} \vec{F} d\vec{r}$.

Свойства криволинейных интегралов 2 рода

- 1) $\int_{\cup BA} \vec{A} d\vec{r} = -\int_{\cup AB} \vec{A} d\vec{r}$
- 2) Линейность
 - a. $\int_L c\vec{A}d\vec{r} = c\int_r \vec{A}d\vec{r}$.
 - b. $\int_{L} (\overrightarrow{A_1} + \overrightarrow{A_2}) d\vec{r} = \int_{L} \overrightarrow{A_1} d\vec{r} + \int_{L} \overrightarrow{A_2} d\vec{r}$.
- 3) Пусть $L=L_1 \cup L_2$ и L_1 , L_2 имеют только одну общую точку. Тогда $\int_L \ f dS =$ $\int_{L_1} f dS + \int_{L_2} f dS.$
- 4) Пусть D область, ∂D ее граница ($D \in \mathbb{R}^2$). Пусть $D = D_1 \cup D_2$, $\mu(D_1 \cap D_2) =$ 0. Пусть \vec{A} непрерывна в D. Тогда $\oint_{\partial D} \vec{A} d\vec{r} = \oint_{\partial D_1} \vec{A} d\vec{r} + \oint_{\partial D_2} \vec{A} d\vec{r}$.

<u>Доказательство.</u> D_1 : $\oint_{\partial D_1} \vec{A} d\vec{r} = \int_{\cup ABC} \vec{A} d\vec{r} + \int_{\cup CA} \vec{A} d\vec{r}$, D_2 : $\oint_{\partial D_2} \vec{A} d\vec{r} = \int_{\cup CEA} \vec{A} d\vec{r} + \int_{\cup CA} \vec{A} d\vec{r}$ $\int_{\cup AC} \vec{A} d\vec{r}$. Тогда $\oint_{\partial D_1} \vec{A} d\vec{r} + \oint_{\partial D_2} \vec{A} d\vec{r} = \int_{\cup ABC} \vec{A} d\vec{r} + \int_{\cup CEA} \vec{A} d\vec{r} = \oint_{\partial D} \vec{A} d\vec{r}$. **Замечание.** Это свойство обобщается на любое количество разбиений

области D.

Вычисление криволинейных интегралов 2 рода

 $\int_L \, ec{A} dec{r} = \int_L \, (f dx + g dy + h dz).$ Пусть кривая L задается параметрически: =y=y(t) , $t\in [lpha;eta]$, x,y,z — дифференцируемые функции. Тогда координаты точек z=z(t)будут $A(x(\alpha);y(\alpha);z(\alpha)),B(x(\beta);y(\beta);z(\beta)).$ Обозначим M(x(t);y(t);z(t)), лежащую произвольно на кривой L в промежутке $[\alpha;\beta]$. Обозначим длину дуги AM как S(t). Тогда dS=S'(t)dt. Вектор касательной к кривой L будет выражаться как $\frac{d\vec{r}(t)}{dt}$. Длина касательного вектора будет равна $\left| \frac{d\vec{r}(t)}{dt} \right| = S'(t)$ (корень квадратный из суммы квадратов). Тогда единичный вектор касательной можно будет выразить как $\frac{d\vec{r}(t)}{s'(t)} = \frac{d\vec{r}(t)}{ds}$. У этого вектора есть

косинусы $\frac{dx}{dS} = \lim_{\Delta S \to 0} \frac{\Delta x}{\Delta S} = \cos \alpha$, $\frac{dy}{dS} = \lim_{\Delta S \to 0} \frac{\Delta y}{\Delta S} = \cos \beta$, $\frac{dz}{dS} = \lim_{\Delta S \to 0} \frac{\Delta z}{\Delta S} = \cos \beta$ направляющие $\cos \gamma$. Отсюда можно выразить $dx = \cos \alpha \, dS$, $dy = \cos \beta \, dS$, $dz = \cos \gamma \, dS$. Подставив интеграл, получим $\int_L \vec{A} d\vec{r} = \int_L (f(x,y,z) dx + g(x,y,z) dy +$ $h(x,y,z)dz)=\int_{L}\ (f(x,y,z)\coslpha+g(x,y,z)\coseta+h(x,y,z)\cos\gamma)dS.$ Тем самым мы свели интеграл второго рода к интегралу первого рода. В параметрическом виде интеграл можно записать в форме $\int_{\alpha}^{\beta} \Big(f \big(x(t), y(t), z(t) \big) x'(t) + g \big(x(t), y(t), z(t) \big) y'(t) + h \big(x(t), y(t), z(t) \big) z'(t) \Big) dt.$

В случае кривой L график функции $y=y(x), x\in [a;b]$ на плоскости интеграл принимает вид $\int_L (f(x,y,z)dx+g(x,y,z)dy)=\int_a^b \left(f\big(x,y(x)\big)+g\big(x,y(x)\big)y'(x)\right)dx.$

10. Независимость криволинейного интегрирования от контура интегрирования

Пусть дуга $L \in \mathbb{R}^2$. Вычислим интеграл $\int_L (xdy-ydx)$.

1)
$$L: y = x^2$$
, $(0; 0) \to (1; 1)$. $\int_L (xdy - ydx) = \int_0^1 (2x^2 - x^2) dx = \frac{1}{3}$.

2)
$$L: y = x^3, (0; 0) \to (1; 1). \int_L (xdy - ydx) = \int_0^1 (3x^3 - x^3) dx = \frac{1}{2}.$$

Если провести те же расчет для интеграла $\int_L (xdy+ydx)$, то выяснится, что в первом и втором случае интегралы равны. Необходимо понять, какие необходимы условия, чтобы криволинейный интеграл 2 рода не зависел от пути интегрирования, а зависел только от начальной и конечной точки.

<u>Теорема 5.</u> Для независимости криволинейного интеграла 2 рода $\int_{(P_0)}^{(P)} (P(x,y)dx + Q(x,y)dy)$ от контура интегрирования необходимо достаточно, чтобы Pdx + Qdy = dU, т.е. $P = \frac{dU}{dx}$, $Q = \frac{dU}{dy}$, Q(x,y) = qx

Доказательство. Пусть кривая L задается параметрически: $L = \begin{cases} x = x(t) \\ y = y(t) \end{cases}$, $t \in [\alpha; \beta]$, x, y — дифференцируемые функции. L связывает точки P_0 и P. $\int_{(P_0)}^{(P)} (P(x, y) dx + Q(x, y) dy) = \int_{\alpha}^{\beta} \left(P(x, y) x'(t) + Q(x, y) y'(t) \right) dt = \int_{\alpha}^{\beta} \left(\frac{d U}{d t} \right) dt = \int_{\alpha}^{\beta} U'(t) dt = U(\beta) - U(\alpha) = U(P) - U(P_0)$, откуда следует что интеграл не зависит от пути интегрирования.

<u>Теорема 6.</u> Для выполнения P(x,y)dx+Q(x,y)dy=dU необходимо и достаточно, чтобы $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}.$

Доказательство. Если P(x,y)dx+Q(x,y)dy – полный дифференциал, то $P=\frac{\partial U}{\partial x}$, $Q=\frac{\partial U}{\partial y}$. $\frac{\partial^2 U}{\partial x\partial y}=\frac{\partial^2 U}{\partial y\partial x}$, откуда и вытекает требуемое.

Замечание. P(x,y)dx + Q(x,y)dy = dU тогда и только тогда, когда $\phi P(x,y)dx + Q(x,y)dy = 0$.

Замечание. Пусть есть $\vec{A}(P;Q;R)$. Тогда $\int_{(P_0)}^{(P)} (P(x,y)dx + Q(x,y)dy + R(x,y,z)dz)$ не зависит от пути интегрирования тогда и только тогда, когда $rot\ \vec{A}=$

$$\begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \vec{l} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) + \vec{j} \left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z} \right) + \vec{k} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial Y} \right) = 0, \text{ т.е. тогда, когда} \begin{cases} \frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z} \\ \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z} \\ \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial Y} \end{cases}$$

11. Формула Грина для односвязной и многосвязной областей

Вывод формулы Грина для односвязной области

Пусть на плоскости \mathbb{R}^2 задана односвязная область D такая, что любая прямая, параллельная осям координат, пересекает границу этой области не более, чем в двух точках. Обозначим как ∂D ее границу. Тогда область D можно определить двумя способами:

$$D = \{(x, y) | a \le x \le b; \varphi_1(x) \le y \le \varphi_2(x)\}$$

$$D = \{(x, y) | c \le y \le d; \psi_1(x) \le y \le \psi_2(x)\}$$

Будем обходить контур в положительном направлении.

Теорема 7. Пусть D — элементарная область. Функции P(x,y),Q(x,y) непрерывны вместе со своими производными $\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$ на замыкании \overline{D} (область вместе с ее границей). Тогда выполняется равенство $\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} P dx + Q dy.$ Эта формула называется формулой Грина. Она связывает криволинейный интеграл и двойной интеграл.

Доказательство. Рассмотрим $\iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} \frac{\partial P}{\partial y} dy = \int_{a}^{b} \left(P \big(x, \varphi_{2}(x) \big) - P \big(x, \varphi_{1}(x) \big) \right) dx = \int_{\mathsf{UNPM}} P(x, y) dx - \int_{\mathsf{UNQM}} P(x, y) dx = \int_{\mathsf{UNPM}} P(x, y) dx + \int_{\mathsf{UMQN}} P(x, y) dx = - \oint_{\partial D} P dx.$ Аналогичным образом выводится и для функции Q.

<u>Замечание.</u> Если область односвязная, но не является элементарной, то ее всегда можно разбить на элементарные области.

Формула Грина для многосвязной области

<u>Теорема 8.</u> Пусть D-n-связная область. Функции P(x,y), Q(x,y) непрерывны вместе со своими производными $\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}$ на замыкании \overline{D} . Тогда для этой области

выполняется формула Грина на условии $\partial D = \Gamma^+ \cup \Gamma_1^- \cup \Gamma_2^- \cup ... \cup \Gamma_n^-$.

Доказательство. Не умоляя общности, рассмотрим трехсвязную область. Сделаем разрезы AB,SE. Тогда $\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\cup KNA} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) + \int_{\cup AB} (Pdx + Qdy) + \int_{\cup BIS} (Pdx + Qdy) + \int_{\cup SE} (Pdx + Qdy) + \int_{\cup SE} (Pdx + Qdy) + \int_{\cup SIB} (Pdx + Qdy) + \int_{\cup BA} (Pdx + Qdy) + \int_{\cup AB} (Pdx + Qd$

12. Следствия из формулы Грина

- 1) Пусть D односвязная область, ∂D ее граница. Пусть для нее справедлива формула Грина. Пусть $P=-y, Q=x, \frac{\partial P}{\partial y}=-1, \frac{\partial Q}{\partial x}=1$. Тогда $\iint_D \ 2dxdy = \oint_{\partial D} -ydx + xdy$. Тогда $S_D=\frac{1}{2}\oint_{\partial D} -ydx + xdy$.
- 2) Если в D выполняется $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, то $\oint_{\partial D} P dx + Q dy = 0$.
- 3) Пусть $Q=\frac{du}{dx}$, $P=-\frac{du}{dy}$. Тогда $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\frac{\partial^2 U}{\partial x^2}+\frac{\partial^2 U}{\partial y^2}=\Delta U$ оператор Лапласа (лапласиан). В этом случае формула Грина привет вид $\iint_D \left(\frac{\partial^2 U}{\partial x^2}+\frac{\partial^2 U}{\partial y^2}\right)dxdy=\oint_{\partial D}-\frac{du}{dy}dx+\frac{du}{dx}dy=\oint_{\partial D}-\frac{du}{dy}\cos(\vec{\tau};Ox)\,dS+\frac{du}{dx}\cos(\vec{\tau};Oy)\,dS=\oint_{\partial D}\frac{du}{dy}\sin(\vec{n};Ox)\,dS+\frac{du}{dx}\cos(\vec{n};Ox)\,dS=\oint_{\partial D}\frac{\partial U}{\partial n}dS$ производная по направлению, где \vec{n} нормаль, $\vec{\tau}$ касательная. Переходы косинусов к синусам сделаны с помощью $(\vec{\tau};Ox)=(\vec{n};Ox)+\frac{\pi}{2}$.

Пример. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Тогда $S = \frac{1}{2} \oint_{\partial D} -y dx + x dy = \frac{1}{2} \int_0^{2\pi} (ab \sin^2 t + ab \cos^2 t) dt = \pi ab$.

13. Несобственные двойные интегралы. Интеграл Пуассона

Пусть D — неограниченная область в \mathbb{R}^2 , пусть z = f(x,y) непрерывна в D. Рассмотрим ограниченную область $B \in D$. Составим двойной интеграл по ней: $I(B) = \iint_{\mathbb{R}^n} f(x,y) dx dy$. Будем произвольно расширять область B до области D.

 $I(B) = \iint_B f(x,y) dx dy$. Будем произвольно расширять область B до области D. Если существует $A = \lim_{B \to D} I(B)$, который не зависит от характера расширения, то этот предел и называется несобственным двойным интегралом. Если этот предел конечен, то говорят о сходимости несобственного двойного интеграла. Если не существует или бесконечен – о расходимости, или несуществовании.

Рассмотрим интеграл $\int_{-\infty}^{+\infty} e^{-x^2} dx$. Составим двойной несобственный интеграл $J = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-x^2} dx \, dy = \lim_{B \to \mathbb{R}^2} \iint_B e^{-x^2-y^2} dx dy$, где B — круг радиуса r. Получаем $\lim_{r \to \infty} \iint_{x^2+y^2 \le r^2} e^{-x^2-y^2} dx dy = \lim_{r \to \infty} \int_0^{2\pi} d\varphi \int_0^r e^{-\rho^2} \rho d\rho = \lim_{r \to \infty} -2\pi \frac{1}{2} e^{-\rho^2} \Big|_0^r = \lim_{r \to \infty} \pi \left(-e^{-r^2} + 1 \right) = \pi$. Отсюда $J = \left(\int_{-\infty}^{+\infty} e^{-x^2} dx \right)^2 = \pi$, значит $J = \sqrt{\pi}$.

14. Поверхностные интегралы 1 и 2 рода

Поверхностные интегралы 1 рода

(интегралы по площади поверхности)

Пусть на области $D \in \mathbb{R}^2$ определена непрерывная дифференцируемая функция z = g(x,y), задающая поверхность K. Пусть задан описанный многогранник $Q = \bigcup_{i=1}^n q_i$ и точка M_i касания грани q_i поверхности. Пусть на K задана функция f(x,y,z). Тогда можно составить интегральную сумму $I_n = \sum_{i=1}^n f(M_i) \mu q_i$. Если устремить количество разбиений к бесконечности и максимальный диаметр каждой грани к нулю, и если существует соответствующий предел, который не зависит от характера разбиения и выбора точек M_i , то этот предел будет называться поверхностным интегралом первого рода

по поверхности K.

$$\iint_K f(x, y, z) dq = \lim_{\substack{n \to \infty \\ \max diam \ a \to 0}} f(M_i) \mu q_i.$$

Для вычисления такого интеграла спроектируем на D многогранник Q. Тогда q_i спроектируется на σ_i , $\Delta\sigma_i$ – площадь σ_i . Тогда $\mu q_i = \frac{\Delta\sigma_i}{\cos\gamma_i}$, где γ_i – угол между нормалью к поверхности в точке касания и положительным направлением оси Oz. Тогда $\mu q_i = \frac{\Delta\sigma_i}{\sqrt{{g_x'}^2(P_i) + {g_y'}^2(P_i) + 1}}$, где P_i – проекция M_i на D. Получаем формулу

вычисления поверхностного интеграла 1 рода: $\iint_K f(x,y,z)dq = \iint_D f(x,y,g(x,y)) \sqrt{{g_x'}^2(P_i) + {g_y'}^2(P_i) + 1} dx dy.$

Поверхностные интегралы 2 рода

(интегралы по координатам)

Ориентация поверхности производится с помощью нормали. Поверхностный интеграл называется ориентированным, если указано направление нормали при условии, что направление нормали меняется непрерывно вместе с точкой поверхности, к которой проведена нормаль. Существуют также неориентированные поверхности (лист Мебиуса).

Пусть на области $D\in\mathbb{R}^2$ определена непрерывная дифференцируемая функция z=g(x,y), задающая поверхность K. Пусть задан описанный многогранник $Q=\bigcup_{i=1}^n q_i$ и точка M_i касания грани q_i поверхности. Спроектируем на D многогранник Q. Тогда q_i спроектируется на σ_i , $\Delta\sigma_i$ — площадь σ_i . Тогда $\mu q_i=\frac{\Delta\sigma_i}{\cos\gamma_i}$, где γ_i — угол между нормалью к поверхности в точке касания и положительным направлением оси Oz. Если угол острый, то $\Delta\sigma_i=\mu\sigma_i$, если тупой, то $\Delta\sigma_i=-\mu\sigma_i$. Пусть на K задана функция f(x,y,z). Тогда можно составить интегральную сумму $I_n=\sum_{i=1}^n f(M_i)\Delta\sigma_i$. Если устремить количество разбиений к бесконечности и максимальный диаметр каждой грани к нулю, и если существует соответствующий предел, который не зависит от характера разбиения и выбора точек M_i , то этот предел будет называться поверхностным интегралом второго

рода по поверхности K. $\iint_K f(x,y,z) dx dy \equiv \lim_{\substack{n \to \infty \\ \max diam}} \sum_{i=1}^n f(M_i) \Delta \sigma_i$. Если проектировать на другие координатные оси, то получим $\iint_K f(x,y,z) dx dz$, $\iint_K f(x,y,z) dy dz$.

Связь с интегралом первого рода

Пусть $\alpha(M), \beta(M), \gamma(M)$ — направляющие косинусы вектора нормали. Тогда $\iint_K f(x,y,z) dx dy = \iint_K f(x,y,z) \cos \gamma \, dq$. Аналогичным образом можно составить и выражения для проектирования на другие координатные оси.

Свойства интегралов по координатам

- 1) При смене ориентации поверхностный интеграл меняет знак.
- 2) Аддитивность.
- 3) Пусть на K заданы $P(x,y,z), Q(x,y,z), R(x,y,z), \vec{a}=(P;Q;R)$. Тогда $d\vec{q}=(\cos\alpha\,dq;\cos\beta\,dq;\cos\gamma\,dq), \iint_K (Pdydz+Qdxdz+Rdxdy)=\iint_K (P\cos\alpha+Q\cos\beta+R\cos\gamma)=\iint_K \vec{a}d\vec{q}$.

15. Скалярные и векторные поля. Свойства дивергенции, ротора, градиента. Оператор Набла

Скалярные и векторные поля. Оператор Набла

Пусть в \mathbb{R}^3 задана область Ω , в которой задана непрерывная дифференцируемая функция U(x,y,z). В этом случае будем говорить, что в Ω задано скалярное поле.

Пусть в Ω заданы непрерывные дифференцируемые функции $A_x(x,y,z), A_y(x,y,z), A_z(x,y,z)$. В этом случае будем говорить, что в Ω задано векторное поле $\vec{A} = A_x \vec{\iota} + A_y \vec{j} + A_z \vec{k}$.

Векторная линия R(t) – линия $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$, направление которой в каждой точке совпадает с направлением \vec{A} , т.е. можно составить дифференциальное уравнение в векторном виде:

$$\frac{d\vec{r}}{dt} = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k} \parallel \vec{A}, \frac{A_x}{x'} = \frac{A_y}{y'} = \frac{A_z}{z'}, \frac{A_x}{dx} = \frac{A_y}{dy} = \frac{A_z}{dz}$$

Если в области Ω задано скалярное поле U(x,y,z), то $grad\ U(x,y,z)=\frac{\partial U}{\partial x}\vec{\iota}+\frac{\partial U}{\partial y}\vec{\jmath}+\frac{\partial U}{\partial z}\vec{k}$ — задает векторное поле, а $\nabla=\vec{\iota}\frac{\partial}{\partial x}+\vec{\jmath}\frac{\partial}{\partial y}+\vec{k}\frac{\partial}{\partial z}$ — оператор Набла. $\nabla U=grad\ U$.

Соотношения между div, rot, grad

 $rot\ grad\ U=0, div\ rot\ \vec{A}=0, div\ grad\ U=\Delta U=rac{\partial^2 U}{\partial x^2}+rac{\partial^2 U}{\partial y^2}+rac{\partial^2 U}{\partial z^2}$ — оператор Лапласа, $grad\ div\ \vec{A}=\nabla(\nabla\vec{A}), rot\ rot\ \vec{A}=grad\ div\ \vec{A}-\Delta\vec{A}.$

16. Поток векторного поля. Дивергенция. Соленоидальные поля. Формула Гаусса-Остроградского

Поток векторного поля. Дивергенция. Соленоидальные поля

Пусть задано векторное поле \vec{A} в Ω , которое проходит через поверхность $S \in \Omega$. Пусть точка $P \in S$, \vec{n} — единичный вектор нормали к поверхности S в точке P. Элемент поверхности обозначим как dS. Тогда $h = \vec{A}\vec{n}$ — высота цилиндра с основанием dS, $\vec{A}\vec{n}dS$ — объем жидкости, прошедшего через dS в единицу времени. Тогда величину $\Pi = \iint_S A_n dS$ называют потоком вектора \vec{A} через поверхность S. Если координаты вектора нормали заданы

направляющими косинусами $\vec{n}(\cos \alpha;\cos \beta;\cos \gamma)$, то интеграл по площади поверхности можно свести к интегралу по координатам $\Pi = \iint_S A_x \cos \alpha \, dS + A_y \cos \beta \, dS + A_z \cos \gamma \, dS = \iint_S A_x dy dz + A_y dx dz + A_z dx dy$. Также поток можно выразить через тройной интеграл по теореме Гаусса-Остроградского, если поверхность S замкнутая: $\Pi = \iiint_\Omega \left(\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}\right) dx dy dz$. Величину $div \ \vec{A} \equiv \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$ называют дивергенцией поля \vec{A} . Дивергенцию можно также выразить через оператор Набла, как скалярное произведение $div \ \vec{A} = \nabla \vec{A}$. С помощью данной формулы можно переписать формулу Гаусса-Остроградского в дифференциальной форме: $\oiint_S A_n dS = \iiint_\Omega \left(\nabla \vec{A}\right) dx dy dz = \iiint_\Omega div \ \vec{A} \, dx dy dz$. Если поверхность S начать стягивать в точку P, то $\iiint_\Omega div \ \vec{A} \, dx dy dz = V \, div \ \vec{A}(P')$, где $P' \in \Omega$. Если будем стягивать S в точку P, то и $P' \to P$. Тогда получим $div \ \vec{A}(P) = \lim_{S \to P} \frac{\oint_S A_n dS}{V}$. V – объем области Ω .

Дивергенция характеризует относительное расширение объема жидкости в окрестности точки P. Если $div \vec{A} = 0$, то и поток через поверхность равен нулю. Поля, у которых дивергенция равна нулю, называют соленоидальными, или бездивергентными. Дивергенция характеризует наличие вход/выход жидкости в точке.

Формула Гаусса-Остроградского

Связывает поверхностный интеграл с тройным. Пусть в \mathbb{R}^3 задана область Ω , а K – граница этой области. Тогда $\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \oiint_{K} \; P dy dz + Q dx dz + R dx dy$, причем интегрирование ведется по внешней нормали.

Замечание. Пусть P=x, Q=y, R=z. Тогда $\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=3$. Тогда объем тела, ограниченного Ω , вычисляется по формуле $V=\frac{1}{3}\oint_K xdydz+ydxdz+zdxdy$.

17. Циркуляция векторного поля. Потенциальные поля. Ротор. Формула Стокса

Циркуляция векторного поля. Потенциальные поля

Пусть в Ω задано векторное поле \vec{A} и некая кривая L, заданная параметрически $L : \begin{cases} x = x(t) \\ y = y(t), t \in [lpha; eta]. \end{cases}$ Пусть на кривой есть точка P. Обозначим z = z(t)

элемент дуги кривой как dS. Пусть A_{τ} – проекция \vec{A} на касательную $\vec{\tau}$ к L в каждой точке. Тогда $A_{\tau} = \vec{A}\vec{\tau}$, если вектор касательной единичный, и $A_{\tau} = \frac{\vec{A}\frac{d\vec{\tau}}{dt}}{\left|\frac{d\vec{\tau}}{dt}\right|} = \frac{A_x x' + A_y y' + A_z z'}{\sqrt{x'^2 + y'^2 + z'^2}}$. Если возьмем величину $d\mathbf{II} = A_{\tau}dS$ – количество жидкости, сосредоточенное на дуге dS. Проинтегрировав, получим циркуляцию вектора \vec{A} по контуру L. $\mathbf{II} = \oint_L A_{\tau}dS$. Циркуляцию можно выразить не только через криволинейный интеграл 1 рода, но и через криволинейный интеграл 2 рода: $\mathbf{II} = \oint_L \frac{A_x x' + A_y y' + A_z z'}{\sqrt{x'^2 + y'^2 + z'^2}} \sqrt{x'^2 + y'^2 + z'^2} dt = \int_{\alpha}^{\beta} \left(A_x x' + A_y y' + A_z z'\right) dt = \oint_L A_x dx + A_y dy + A_z dz$. Также циркуляцию можно выразить через двойной интеграл по формуле Стокса: $\mathbf{II} = \oint_L A_x dx + A_y dy + A_z dz = \oint_L \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \cos \alpha \, dq + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \cos \beta \, dq + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \cos \gamma \, dq = \oint_L \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) dy dz + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) dx dz + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) dx dy$.

Величина, равная
$$rot$$
 $\vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \vec{i} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \vec{j} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \vec{k} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$

называется ротором вектора \vec{A} . Если координаты вектора нормали заданы направляющими косинусами $\vec{n}(\cos\alpha;\cos\beta;\cos\gamma)$, то $\mathbf{I}\mathbf{I}=\oint_L A_x dx + A_y dy + A_z dz = \iint_S (rot \vec{A}) \vec{n} dq$. При стягивании поверхности S в точку P получим $(rot \vec{A})_n = \lim_{S \to P} \frac{\mathbf{I}\mathbf{I}}{S}$.

Если $rot\ \vec{A}=0$ d Ω , то такое поле называется потенциальным, или безвихревым. Следовательно, $\oint_L\ A_x dx + A_y dy + A_z dz = \oint_L\ dU = 0, A_x = \frac{\partial U}{\partial x}$, $A_y = \frac{\partial U}{\partial y}$, $A_z = \frac{\partial U}{\partial z}$ и $\int_{P_0}^P A_\tau ds = U(P) - U(P_0)$. Тогда $\vec{A}=grad\ U$.

Формула Стокса

Пусть K – поверхность $z=z(x,y),\ L$ – граница поверхности (кривая в пространстве). Тогда от поверхностного интеграла 2 рода можно перейти к криволинейному интегралу 2 рода: $\left(\frac{\partial Q}{\partial z}\right) dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy = \oint_{L} Pdx + \frac{\partial Q}{\partial x} dy = 0$ Qdy+Rdz — обобщение формулы Грина, формула Стокса. Обход контура выбирается по правилу правой руки.

Замечание. В случае \mathbb{R}^2 формула переходит в формулу Грина.

3амечание. Пусть K — замкнутая ориентированная поверхность. Тогда $Qdy + Rdz + \oint_{-L} Pdx + Qdy + Rdz = 0.$

Замечание. Пусть
$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}$$
, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. Тогда $\oint_L P dx + Q dy + R dz = 0$.

18. Числовой ряд. Необходимое условие сходимости ряда. Гармонический ряд. Критерий Коши.

Основные определения

Бесконечная сумма членов последовательности вида $\{a_n\}_{n=1}^\infty$ называется рядом $\sum_{n=1}^{\infty}a_n=a_1+a_2+\cdots+a_n+\cdots$. Последовательность вида $\{S_n\}:S_1=a_1$, $S_2=a_1$ $a_1 + a_2, S_3 = \cdots$ называется последовательностью частичных сумм. Если эта последовательность не имеет предела, то ряд называется расходящимся, или не имеющим суммы, и сходящимся, если имеет.

<u>Теорема 1.</u> Если ряд сходится $\left(\lim_{n\to\infty}S_n=0\right)$, то общий член этого ряда стремится к нулю.

Доказательство. $a_n = S_n - S_{n-1}$, $S_n \to S$, $S_{n-1} \to S$. Следовательно, $a_n \to 0$.

<u>Замечание.</u> Необходимое условие сходимости ряда является достаточным условием его расходимости.

Замечание. Если общий член ряда стремится к нулю, то это еще не значит, что ряд сходится.

Свойства сходящихся рядов

- 1) Если $\sum_{n=1}^\infty a_n$ сходится, то для любого $\lambda \in R$ ряд $\sum_{n=1}^\infty \lambda a_n$ сходится, и если
- $\sum_{n=1}^{\infty}a_n=S$, то $\sum_{n=1}^{\infty}\lambda a_n=\lambda S$. 2) Если $\sum_{n=1}^{\infty}a_n=A$ и $\sum_{n=1}^{\infty}b_n=B$ сходятся, то сходится и ряд $\sum_{n=1}^{\infty}a_n+b_n=B$ A+B.
- 3) Если у сходящегося ряда отбросить или приписать конечное число членов, то сходимость ряда не изменится.

 ${\color{red} {f 3ameчahue.}} \sum_{k=n+1}^{\infty} a_k$ – остаток (хвост) ряда.

Гармонический ряд

Гармонический ряд $\sum_{n=1}^{\infty}\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots$ — расходящийся, несмотря на то, что $\lim_{n\to\infty}\frac{1}{n}=0$. Второй замечательный предел: $\left(1+\frac{1}{n}\right)^n\uparrow e$. Следовательно, $\left(1+\frac{1}{n}\right)^n< e$, $n\ln\left(1+\frac{1}{n}\right)<1$, $\ln\frac{n+1}{n}<\frac{1}{n}$. Если выписать члены данного ряда, получим: $\ln 2-\ln 1<1$, $\ln 3-\ln 2<\frac{1}{2}$, ..., $\ln(n+1)-\ln n<\frac{1}{n}$. Если расписать сумму ряда, сократятся многие члены, останется только $\ln(n+1)<1+\frac{1}{2}+\cdots+\frac{1}{n}$. Но $\lim_{n\to\infty}\ln(n+1)=\infty$. Тогда ряд расходится по определению.

Замечание. Ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, где $\alpha > 0$, называется обобщенным гармоническим рядом. Он расходится при $0 < \alpha \le 1$ и сходится $\alpha > 1$.

Критерий Коши сходимости ряда

extstyle ex

<u>Доказательство.</u> Критерий Коши сходимости ряда сводится к критерию Коши сходимости последовательности частичных сумм $(a_n + a_{n+1} + \cdots + a_{n+p} = S_{n+p} - S_n)$.

19. Признаки сравнения знакоположительных рядов

Ряды с положительными членами

Лемма о сходимости ряда с положительными членами

<u>Лемма.</u> Если последовательность S_n ряда ограничена, то ряд сходится.

Доказательство. $S_{n+1} = S_n + a_{n+1}$. Но $a_{n+1} > 0$. Следовательно, $S_n \uparrow$. Также, S_n ограничена сверху. Следовательно, существует предел $\lim_{n \to \infty} S_n$. А значит ряд сходится по определению.

Признаки сравнения

<u>Теорема 3 (Первый признак сравнения).</u> Пусть есть ряды с положительными членами $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$.

- 1) Если, начиная с некоторого места, $a_n \leq b_n$ и ряд $\sum_{n=0}^\infty b_n$ сходится, то и ряд $\sum_{n=0}^\infty a_n$ сходится.
- 2) Если, начиная с некоторого места, $a_n \leq b_n$ и ряд $\sum_{n=0}^{\infty} a_n$ расходится, то и ряд $\sum_{n=0}^{\infty} b_n$ расходится.

Доказательство.

- 1) Не умоляя общности, скажем, что для любого n выполняется $a_n \leq b_n$. Пусть $B_n = \sum_{k=0}^n b_k$; $A_n = \sum_{k=0}^n a_k$. Тогда $A_n \leq B_n$. Но B_n ограничена. Следовательно, A_n возрастает и ограничена. Следовательно, существует предел $\lim_{n \to \infty} A_n$. Следовательно, ряд сходится по определению.
- 2) От противного.

Теорема 4 (Второй признак сравнения). Пусть есть ряды с положительными членами $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, и, начиная с некоторого места, $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$.

- 1) Если сходится ряд с большим отношением, то сходится и ряд с меньшим.
- 2) Если расходится ряд с меньшим отношением, то расходится и ряд с большим.

<u>Доказательство.</u> Не умоляя общности, скажем, что для любого n выполняется $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. Распишем это для каждого $n: \frac{a_2}{a_1} \leq \frac{b_2}{b_1}, \frac{a_3}{a_2} \leq \frac{b_3}{b_2}, \dots, \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. Если мы перемножим все полученные неравенства, сократятся почти все члены, останется только $\frac{a_{n+1}}{a_1} \leq \frac{b_{n+1}}{b_1}$, откуда можно выразить $a_{n+1} \leq \frac{a_1b_{n+1}}{b_1} = \lambda b_{n+1}$. Применив теорему 3, доказательство очевидно.

Теорема 5. Пусть есть ряды с положительными членами $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, и, если существует предел $\lim_{n\to\infty} \frac{a_n}{b_n} = A>0$, то оба ряда либо одновременно сходятся, либо одновременно расходятся.

Доказательство. Пусть существует предел $\lim_{n \to \infty} \frac{a_n}{b_n} = A > 0$, то для любого $\varepsilon > 0$ существует такое N, что для любого n > N выполняется неравенство $\left| \frac{a_n}{b_n} - A \right| < \varepsilon$. Следовательно, $A - \varepsilon < \frac{a_n}{b_n} < A + \varepsilon$, откуда $a_n < (A + \varepsilon)b_n$. Получается, что по теореме 3 эти ряды ведут себя одинаково. Если A = 1, то они являются эквивалентными бесконечно малыми.

<u>Пример.</u> $\sum_{n=1}^{\infty} \sin \frac{1}{n} \sim \sum_{n=1}^{\infty} \frac{1}{n}$. Второй ряд расходится. Значит, исходный ряд расходится.

20. Признак Даламбера

 $\underline{\text{Теорема 6.}}$ Пусть есть ряд с положительными членами $\sum_{n=0}^{\infty}a_n$ и если существует предел $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$, то при l>1 ряд расходится, при l<1 ряд сходится, при l=1 неизвестно, требуется дополнительное исследование.

Доказательство. Пусть существует предел $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l$. Тогда для любого $\varepsilon>0$ существует такое N, что для любого n>N выполняется неравенство $\left|\frac{a_{n+1}}{a_n}-l\right|<\varepsilon$. Тогда $l-\varepsilon<\frac{a_{n+1}}{a_n}< l+\varepsilon$.

Пусть l<1. Тогда $l+\varepsilon=q<1$. Тогда $\frac{a_{n+1}}{a_n}< q$ и $\sum_{n=0}^{\infty}q^n$ сходится. Следовательно, по теореме 4 ряд сходится.

Пусть l>1. Тогда $l-\varepsilon=q>1$. Тогда $\frac{a_{n+1}}{a_n}>q$ и $\sum_{n=0}^{\infty}q^n$ расходится. Следовательно, по теореме 4 ряд расходится.

21. Радикальный признак Коши

Теорема 7. Если существует предел $\lim_{n \to \infty} \sqrt[n]{a_n} = l$, то при l > 1 ряд расходится, при l < 1 ряд сходится, при l = 1 требуется дополнительное исследование.

Доказательство. Пусть существует предел $\lim_{n \to \infty} \sqrt[n]{a_n} = l$. Тогда для любого $\varepsilon > 0$ существует такое N, что для любого n > N выполняется неравенство $\left| \sqrt[n]{a_n} - l \right| < \varepsilon$. Тогда $l - \varepsilon < \sqrt[n]{a_n} < l + \varepsilon$.

Пусть l<1. Тогда $l+\varepsilon=q<1$. Тогда $a_n< q^n$ и $\sum_{n=0}^\infty q^n$ сходится. Следовательно, по теореме 3 ряд сходится.

Пусть l>1. Тогда $l-\varepsilon=q>1$. Тогда $a_n>q^n$ и $\sum_{n=0}^\infty q^n$ расходится. Следовательно, по теореме 3 ряд расходится.

<u>Пример.</u> $\sum_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{n^2}}{2^n}$. Тогда $\frac{\sqrt{\left(1+\frac{1}{n}\right)^{n^2}}}{2^n} = \frac{\left(1+\frac{1}{n}\right)^n}{2^n} \uparrow \frac{e}{2} < 1$. Следовательно, интеграл сходится.

22. Интегральный признак Коши

Пусть есть ряд с положительными членами $\sum_{n=1}^{\infty} a_n$ и задана монотонно убывающая функция f(x) на $[1; +\infty)$ и $f(1) = a_1, f(n) = a_n$.

Теорема 8.

- 1) $\int_{1}^{+\infty} f(x)dx$ сходится тогда и только тогда, когда $\sum_{n=1}^{\infty} a_n$ сходится. 2) $\int_{1}^{+\infty} f(x)dx$ расходится тогда и только тогда, когда $\sum_{n=1}^{\infty} a_n$ расходится.

<u>Доказательство.</u> Площадь ступенчатой сумма ряда, площадь криволинейной трапеции – несобственный интеграл. Если ряд больше и сходится, то и интеграл тоже. С другой стороны, вписанный ряд (без первого члена) будет меньше криволинейной трапеции, и если сходится интеграл, то сходится и ряд.

предел $S_{n-1} = S_n - a_1$.

23. Признак Лейбница для знакочередующихся рядов

Знакочередующиеся ряды. Признак Лейбница

<u>Теорема 9 (Признак Лейбница).</u> Пусть есть ряд $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, $a_n>0$. Пусть a_n монотонно убывает до нуля. Тогда ряд $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ сходится и его сумма $S\leq$ a_1 не превосходит первого члена ряда.

Доказательство. Рассмотрим четную сумму $S_{2m} = (a_1 - a_2) + (a_3 - a_4) + \cdots +$ $(a_{2m-1}-a_{2m})$. В силу монотонности каждое из выражений в скобках положительно, отсюда следует, что S_{2m} монотонная возрастает. С другой стороны, если перегруппировать выражение как $S_{2m}=a_1-(a_2-a_3)-(a_4-a_5)-\cdots-a_{2m}$ то каждое выражение в скобках тоже будет положительным, и $S_{2m} \leq a_1.$ Получается, что S_{2m} возрастает и ограничена сверху. Следовательно, она имеет предел $\lim_{m\to\infty} S_{2m}=S$. Теперь рассмотрим нечетные суммы $S_{2m+1}=S_{2m}+a_{2m+1}$. $\lim_{m o \infty} a_{2m+1} = 0$. Значит существует и предел $\lim_{m o \infty} S_{2m+1} = S$ нечетных сумм. Получается, что исходная последовательность также имеет предел $\lim_{n \to \infty} S_n = S \le 1$ a_1 .

<u>Пример.</u> Ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ сходится (ряд Лейбница).

<u>Замечание.</u> Остаток знакочередующегося ряда обладает всеми его свойствами, например, его сумма по модулю не превосходит первого отброшенного члена $r_N = \sum_{n=N+1}^{\infty} (-1)^{n+1} a_n \xrightarrow[N \to \infty]{} r$, $r \leq |a_{N+1}|$. С помощью этого признака можно оценивать погрешность.

24. Абсолютно и условно сходящиеся ряды и их свойства

Абсолютная и условная сходимость

Пусть есть знакопеременный ряд $\sum_{n=1}^{\infty}a_n$. Рассмотрим знакоположительный ряд $\sum_{n=1}^{\infty}|a_n|$.

 $ag{Teopema}$ 10. Если ряд $\sum_{n=1}^{\infty} |a_n|$ сходится, то тогда сходится и знакочередующийся ряд $\sum_{n=1}^{\infty} a_n$.

Доказательство. Пусть ряд $\sum_{n=1}^{\infty}|a_n|$ сходится. Тогда по критерию Коши для любого $\varepsilon>0$ существует такое N, что для любого n>N и натурального p выполняется неравенство $|a_{n+1}|+|a_{n+2}|+\cdots+|a_{n+p}|<\varepsilon$. Тогда по критерию Коши ряд $\sum_{n=1}^{\infty}a_n$ сходится.

Если сходится основной ряд и ряд из абсолютных величин, то такой ряд называется абсолютно сходящимся. Если сходится только основной ряд, а ряд из абсолютных величин расходится, то ряд сходится условно.

Свойства абсолютно сходящихся рядов

- 1) В абсолютно сходящемся ряде можно поменять местами члены ряда любым образом, при этом при такой перестановке получается абсолютно сходящийся ряд с той же суммой.
- 2) Два абсолютно сходящихся ряда можно почленно складывать и вычитать. В результате получится ряд с суммой, равной сумме или разности сумм исходных рядов соответственно.
- 3) Рассмотрим абсолютно сходящиеся ряды $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}b_n$. Назовем произведение этих рядов другим рядом $\sum_{n=2}^{\infty}c_n=\sum_{n=1}^{\infty}a_n*\sum_{n=1}^{\infty}b_n$, т.е. $c_2=a_1b_1$; $c_3=a_1b_2+a_2b_1$; ... ; $c_n=a_1b_{n-1}+a_2b_{n-1}+\cdots+a_{n-1}b_1$. К тому же, если $\sum_{n=1}^{\infty}a_n=A$, $\sum_{n=1}^{\infty}b_n=B$, то $\sum_{n=2}^{\infty}c_n=A*B$.

Свойства условно сходящихся рядов

- 1) Пусть есть условно сходящийся ряд $\sum_{n=1}^{\infty} a_n$. Обозначим его положительные члены $\{a_k^+\} = a_1^+; a_2^+; ...; a_k^+$ и отрицательные $\{a_k^-\} = -a_1^-; -a_2^-; ...; -a_k^-$. Множества $\{a_k^+\}$ и $\{a_k^-\}$ бесконечны. Для пояснения последнего пойдем от противного: пусть множество $\{a_k^-\}$ конечно. Тогда можно рассмотреть хвост ряда, который содержит только положительные члены. Этот хвост будет хвостом сходящегося ряда, составленного из абсолютных величин, т.е. ряд сходится абсолютно. Противоречие. Значит, множество $\{a_k^-\}$ бесконечно. Аналогичные рассуждения можно провести и для множества $\{a_k^+\}$.
- 2) Ряды $\sum_{n=1}^{\infty} a_n^+$ и $\sum_{n=1}^{\infty} a_n^-$ расходятся. **Доказательство.** Пусть $S_n = \sum_{k=1}^{\infty} a_k$, $\widetilde{S_n} = \sum_{k=1}^{\infty} |a_k|$, $S_m^+ = \sum_{k=1}^m a_k^+$, $S_p^- = \sum_{k=1}^p a_k^-$, m+p=n. Получаем, что $S_n = S_m^+ - S_p^- \to S$; $\widetilde{S_n} = S_m^+ + S_p^- \to \infty$. Следовательно, $S_n + \widetilde{S_n} = 2S_m^+ \xrightarrow[m \to \infty]{} +\infty$. Получаем, что ряд из

положительных значений расходится. Аналогичные рассуждения можно провести и для ряда с отрицательными членами.

3) Теорема 11 (Римана). Пусть $S \in R$ (или $\pm \infty$). В условно сходящемся ряде можно так переставить члены, что его сумма будет равняться S. Идея доказательства. Рассмотрим число S. Так как ряд, составленный из положительных членов, расходится, то выполняется неравенство $a_1^+ + a_2^+ + \cdots + a_m^+ > S$. Потом наберем такое количество отрицательных членов, чтобы выполнялось неравенство $a_1^+ + a_2^+ + \cdots + a_m^+ - a_1^- - a_2^- - \cdots - a_p^- < S$. Так, постепенно набирая то положительные, то отрицательные члены,

25. Понятие равномерной сходимости ряда. Признак Вейерштрасса. Свойства равномерно сходящихся рядов

Функциональные ряды

сумма выражения начинает приближаться к числу S.

Основные определения

Ряд называется функциональным, если каждый член ряд есть некая функция от $x.\ u_1(x)+u_2(x)+\cdots+u_n(x)+\cdots=\sum_{n=1}^\infty u_n(x).$

Если при $x=x_0$ числовой ряд $\sum_{n=1}^{\infty}u_n(x_0)$ сходится, то x_0 – точка сходимости. Множество всех точек сходимости называется областью сходимости ряда. В области сходимости ряда можно определить сумму ряда как функцию $S(x)=\sum_{n=1}^{\infty}u_n(x)$. При этом S(x) можно записать в виде $S(x)=\sum_{k=1}^{n}u_k(x)+r_n(x)$, где $r_n(x)\sum_{k=n+1}^{\infty}u_k(x)$ – хвост ряда. В каждой точке области сходимости стремится к нулю $r_n(x) \xrightarrow[n \to \infty]{} 0$.

Пусть x_1 принадлежит области сходимости. Тогда для любого $\varepsilon>0$ существует такое N_1 , что для любого $n>N_1$ выполняется $|r_n(x_1)|<\varepsilon$.

Пусть x_2 принадлежит области сходимости. Тогда для любого $\varepsilon>0$ существует такое N_2 , что для любого $n>N_2$ выполняется $|r_n(x_2)|<\varepsilon$.

Можно сказать, что для любого конечного числа точек $x_1, x_2, ..., x_p$ из области сходимости существует такое $N = \max(N_1, N_2, ..., N_p)$ такое, что для любого n > N и $x_k, k = 1, ..., p$ из набора выполняется неравенство $|r_n(x_k)| < \varepsilon$.

Сходящийся функциональный ряд $\sum_{n=1}^{\infty}u_n(x)$ называется равномерно сходящимся в области U, если для любого $\varepsilon>0$ существует такое N, что для любого n>N и для любого $x\in U$ выполняется неравенство $|r_n(x)|<\varepsilon$.

Свойства равномерно сходящихся рядов

Ряд $\sum_{n=1}^{\infty}u_n(x)$ называется мажорируемым в некоторой области X, если существует такой ряд $\sum_{n=1}^{\infty}M_n$, $M_n\geq 0$, что для любого $x\in X$ выполняется неравенство $|u_1(x)|\leq M_1$; $|u_2(x)|\leq M_2$; ...; $|u_n(x)|\leq M_n$.

Теорема 12 (Признак Вейерштрасса равномерной сходимости ряда). Пусть ряд $\sum_{n=1}^{\infty} u_n(x)$ — мажорируемый в некоторой области E и мажорантный ряд $\sum_{n=1}^{\infty} M_n$ — сходящийся, то мажорируемый ряд сходится равномерно в E.

Доказательство. Ряд $\sum_{n=1}^{\infty} M_n$ сходится, следовательно, по критерию Коши для любого $\varepsilon>0$ существует такое N, что для любого n>N и для любого натурального p выполняется неравенство $\sum_{k=n+1}^{n+p} M_n < \frac{\varepsilon}{2}$. Следовательно, $M_{n+1}+\cdots+M_{n+p}>|u_{n+1}(x)|+|u_{n+2}(x)|+\cdots+|u_{n+p}(x)|$. Получается, что для любого $x\in E$

выполняется $|u_{n+1}(x)| + |u_{n+2}(x)| + \dots + \left|u_{n+p}(x)\right| < \frac{\varepsilon}{2}$, а при $p \to \infty$ для любого $x \in$ E выполняется $|r_n(x)| \leq \frac{\varepsilon}{2} < \varepsilon$. А так как $|u_{n+1}(x) + u_{n+2}(x) + \cdots + u_{n+p}(x)| \leq \varepsilon$ $|u_{n+1}(x)|+|u_{n+2}(x)|+\cdots+|u_{n+p}(x)|$, то получается, что $|u_{n+1}(x)+u_{n+2}(x)+\cdots+|u_{n+p}(x)|$ $|u_{n+p}(x)| \leq \frac{\varepsilon}{2} < \varepsilon$. Следовательно, ряд сходится равномерно по определению.

 ${\color{red} {\bf 3ameчahue.}}$ Мажорируемый ряд сходится на E не только равномерно, но и абсолютно.

Теорема 13. Равномерно сходящийся в области E ряд, составленный из непрерывных функций, представляет собой функцию, непрерывную в этой области. Без доказательства.

<u>Пример.</u> $\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \dots + \frac{\cos nx}{n^2} + \dots$. Для любого $x \in R$ выполняется $\left| \frac{\cos nx}{n^2} \right| < \infty$ $\frac{1}{n^2}$, а $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходящийся. Следовательно, $S(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ – непрерывная функция наR.

Теорема 14. Равномерно сходящийся ряд непрерывных функций можно интегрировать почленно. Пусть дано, что ряд $u_1(t)+u_2(t)+\cdots+u_n(t)+\cdots$ равномерно сходится на E и пусть для любого $n\,u_n(t)$ непрерывна в E и пусть f(t)= $\sum_{n=1}^\infty u_n(x)$. Тогда на любом промежутке $[a;x]\in E$ выполняется $\int_a^x f(t)dt=$ $\sum_{n=1}^{\infty}\int_{\sigma}^{x}u_{n}(t)dt$. Без доказательства.

 $\overset{\circ}{ extsf{T}}$ еорема 15. Пусть ряд дифференцируемых в E функций $u_1(t)+u_2(t)+\cdots+$ $u_n(t)+\cdots$ равномерно сходится в E и f(x) – его сумма, то $f'(x)=u_1'(x)+u_2'(x)+u_2'(x)$ $\cdots + u'_n(x)$. Без доказательства.

26. Степенные ряды. Теорема Абеля

Степенные ряды

Ряд вида $\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots$ называется степенным рядом. Ряд вида $\sum_{n=0}^{\infty}a_n(x-a)^n$ – тоже степенной, где a – центр ряда.

Теорема Абеля

Теорема 16 (Абеля о сходимости степенного ряда).

- 1) Пусть степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится в точке x_0 . Тогда для любого x
- такого, что $|x|<|x_0|$ ряд $\sum_{n=0}^\infty a_n x^n$ сходится. 2) Пусть степенной ряд $\sum_{n=0}^\infty a_n x^n$ расходится в точке x_1 . Тогда для любого xтакого, что $|x| > |x_1|$ ряд $\sum_{n=0}^{\infty} a_n x^n$ расходится.

Доказательство.

1) Пусть ряд $\sum_{n=0}^{\infty} a_n x_0^n$ сходится. Тогда его общий член стремится к нулю $\lim_{n o \infty} a_n x_0^n = 0$. Тогда существует такое M > 0, что для любого n выполняется $|a_n x_0^n| < M$. Рассмотрим ряд $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 \frac{x}{x_0} x_0 + a_2 \left(\frac{x}{x_0}\right)^2 x_0^2 + \cdots + a_n x_n^2$ $a_n \left(rac{x}{x_0}
ight)^n x_0^n + \cdots$. Теперь рассмотрим ряд, состоящий из абсолютных величин $|a_0|$ + $\left|\frac{x}{x_0}\right| |a_1x_0| + \left|\frac{x}{x_0}\right|^2 |a_2x_0^2| + \dots + \left|\frac{x}{x_0}\right|^n |a_nx_0^n| + \dots$ Все правые модули, как уже было сказано, меньше \emph{M} . Тогда этот ряд можно смажорировать так, что для любого \emph{n} будет выполняться $\left|\frac{x}{x_0}\right|^n |a_n x_0^n| < \left|\frac{x}{x_0}\right|^n M. \left|\frac{x}{x_0}\right|^n M$ – геометрическая прогрессия с q=

- $\left| \frac{x}{x_0} \right| < 1$. Тогда, по признаку сравнения ряд $\sum_{n=1}^{\infty} |a_n x^n|$ сходится абсолютно и, следовательно, сходится.
- 2) От противного. Если расходится в точке x_1 и сходится в точках $|x| > |x_1|$, то по первому пункту должен сойтись и в точке x_1 . Противоречие. Следовательно, расходится в точках $|x| > |x_1|$.

Радиус сходимости степенного ряда

Рассмотрим сходящийся в точке x_0 степенной ряд $\sum_{n=0}^{\infty} a_n x^n$. Тогда он сходится по теореме Абеля в любой точке $|x|<|x_0|$. По второй части теоремы Абеля, пусть ряд расходится в некоторой точке $|x_1|>|x_0|$. Тогда в любой точке $|x|>|x_1|$ ряд будет расходящимся. Теперь проверим на расходимость в точке $x_2=\frac{x_0+x_1}{2}$. Теперь отрезок с неизвестной сходимостью уменьшился в два раза. Так можно продолжать до бесконечности, постоянно уменьшая неизвестный отрезок. Можно перейти к пределу. Пусть существует предел $\lim_{k\to\infty}x_k=R$. Получаем, что для любого |x|< R ряд сходится, а для любого |x|>R ряд расходится. Число R называется радиусом сходимости степенного ряда, интервал (-R;R) — интервалом сходимости. Точки $x=\pm R$ необходимо проверять самостоятельно.

Замечание. Радиус сходимости можно ввести и для степенного ряда вида $\sum_{n=0}^{\infty} a_n (x-a)^n$. Его областью сходимости будет (a-R;a+R).

Правило определения радиуса сходимости

1) С использованием признака Даламбера.

 $extbf{Теорема 17.}$ Пусть существует предел $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = q$. Тогда $R = \frac{1}{q}$ (включая 0, если $q = +\infty$ и ∞ , если q = 0).

Доказательство. Пусть $u_n=|a_nx^n|$ и $u_0+u_1+u_2+\cdots+u_n$ — ряд, состоящий из абсолютных величин. Рассмотрим предел $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right||x|=q|x|$. По признаку Даламбера ряд сходится, если q|x|<1. Получаем, что $|x|<\frac{1}{q'}$ т.е. $R=\frac{1}{q}$.

2) С использованием радикального признака Коши.

<u>Теорема 18.</u> Пусть существует предел $\lim_{n\to\infty} \sqrt[n]{|a_n|} = q$. Тогда $R = \frac{1}{q}$ (включая 0, если $q = +\infty$ и ∞ , если q = 0).

<u>Доказательство.</u> Аналогично предыдущему доказательству, рассмотрим предел $\lim_{n \to \infty} \sqrt[n]{|a_n x^n|} = |x| \lim_{n \to \infty} \sqrt[n]{|a_n|} = q|x|$. По радикальному признаку Коши ряд сходится, если q|x| < 1. Получаем, что $|x| < \frac{1}{q}$, т.е. $R = \frac{1}{q}$.

Свойства степенных рядов

<u>Теорема</u> 19. Степенной ряд $\sum_{n=0}^{\infty} a_n x^n = S(x)$ представляет собой непрерывную функцию в интервале сходимости $[-R_1; R_1], R_1 < R$.

Доказательство. Для любого $x \in [-R_1; R_1]$ рассмотрим ряд $|a_0| + |a_1x| + |a_2x^2| + \cdots + |a_nx^n| + \cdots$. Для него имеем $|a_0| \le |a_0|, |a_1x| < |a_1|R, \ldots, |a_nx^n| < |a_n|R_1^n, \ldots$ Мажорирующий ряд $\sum_{n=0}^{\infty} |a_n|R_1^n$ сходится абсолютно, следовательно, по признаку Вейерштрасса ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится равномерно, следовательно, S(x) — непрерывная функция в $[-R_1; R_1]$.

Теорема 20. Для степенного ряда $\sum_{n=0}^{\infty}a_nx^n=S(x)$ можно почленно дифференцировать $S'(x)=\sum_{n=1}^{\infty}a_nnx^{n-1}$, интегрировать $\int_0^x S(t)dt=\sum_{n=0}^{\infty}a_n\frac{x^{n+1}}{n+1}$ на любом отрезке из области сходимости (потому что на нем он сходится равномерно), при этом полученные степенные ряды будут иметь тот же радиус сходимости $R=R_1=R_2$.

<u>Доказательство.</u> Покажем, что $R_1=R$. $R_1=\lim_{n\to\infty}\left|\frac{a_nn}{a_{n+1}(n+1)}\right|=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$. Аналогично $R_2=R$.

27. Ряды Тейлора и Маклорена. Остаточный член

Разложение функций в степенные ряды

Пусть ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ сходится к S(x) в области сходимости $(-R+x_0;x_0+R)$. Тогда ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ является разложением функции S(x) на этом интервале. Обратной задачей является нахождение разложения функции в ряд.

Ряды Тейлора и Маклорена

Пусть y=f(x) – дифференцируемая бесконечное число раз в точке x_0 и в ее окрестности. Пусть существует ее разложение в ряд такое, что его сумма равна f(x) и $f(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^n+\cdots$ Возьмем производную $f'(x)=a_1+2a_2(x-x_0)+3a_3(x-x_0)^2+\cdots+na_n(x-x_0)^{n-1}+\cdots$ Возьмем вторую производную $f''(x)=2a_2+3*2a_3(x-x_0)+4*3a_4(x-x_0)^2+\cdots+n(n-1)a_n(x-x_0)^{n-2}+\cdots$ Можно вывести закономерность: $f^{(n)}(x)=n!\,a_n+(n+1)n*\dots*2a_{n+1}(x-x_0)+\cdots$ Положим $x=x_0$. Тогда $f(x_0)=a_0,f'(x_0)=a_1,f''(x_0)=2a_2,f'''(x_0)=3*2a_3,\dots,f^{(n)}(x_0)=n!\,a_n$. Тогда можно записывать выражения для $f(x)\sim f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$. Данное выражение называется рядом Тейлора функции f(x) в точке x_0 .

<u>Замечание.</u> Если функция дифференцируема бесконечное число раз в точке, то ряд Тейлора всегда можно составить. Но этот ряд может и не сойтись к исходной функции.

Ежели мы берем дифференцируемую бесконечно число раз в точке $x_0=0$ и в ее окрестности функцию и раскладываем функцию в этой точке в ряд Тейлора, то данный ряд будет являться рядом Маклорена.

Теорема 20. Пусть f(x) дифференцируема бесконечное число раз в точке x_0 и ε — окрестности этой точки. Тогда для того, чтобы ряд Тейлора в этой точке сходился к исходной функции, необходимо и достаточно, чтобы остаточный член в формуле Тейлора стремился к нулю.

Доказательство. Запишем n членов ряда Тейлора $f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}=S_n(x)+R_n(x).$ Очевидно, что для того, чтобы $S_n(x)\to f(x)$, необходимо и достаточно, чтобы $R_n(x)\to 0$.

28. Разложения элементарных функций

1)
$$f(x)=e^x$$
. $f^{(n)}(x)=e^x$; $f^{(n)}(0)=1$. $e^x=1+\frac{1}{1!}x+\frac{1}{2!}x^2+\cdots+\frac{1}{n!}x^n$; $R=\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=\lim_{n\to\infty}\frac{(n+1)!}{n!}=\infty$. То есть разложение справедливо на всей числовой оси. $R_n(x)=\frac{e^{\xi}}{(n+1)!}x^{n+1} \underset{n\to\infty}{\longrightarrow} 0$.

2)
$$f(x) = \sin x$$
. $f^{(4k+1)}(0) = 1$; $f^{(4k+2)}(0) = 0$; $f^{(4k+3)}(0) = -1$; $f^{(4k)}(0) = 0$. $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$; $= \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{|x^{2n+1}|}{|x^{2n+3}|} \frac{(2n+3)!}{(2n+1)!} = \left\{\frac{1}{0}\right\} = \infty$. Можно показать, что $R_n(x) \to 0$.

Замечание. При любом $x \sin x$ – знакочередующийся ряд.

3)
$$f(x)=\cos x$$
. Аналогично синусу, $\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}-\cdots+$ $(-1)^n\frac{x^{2n}}{(2n)!}$. $R=\infty$; $R_n(x)\to 0$.

Замечание. В случае комплексной переменной z=x+iy имеем $e^z=e^{x+iy}=e^x(\cos y+i\sin y)$. Разложив функцию комплексной переменной в ряд, получим два ряда — действительный и мнимый.

4)
$$f(x)=(1+x)^m, m\in R.$$
 $f^{(n)}(x)=m(m-1)\dots(m-n+1)(1+x)^{m-n}; f^{(n)}(0)=m(m-1)\dots(m-n+1).$ $(1+x)^m=1+\frac{mx}{1!}+\frac{m(m-1)}{2!}x^2+\dots+\frac{m(m-1)\dots(m-n+1)}{n!}x^n+\dots$ Можно показать, что $R=1$, область сходимости $[-1;1].$

5)
$$f(x) = \ln(1+x)$$
. $f^{(n)}(x) = (-1)^{n+1} \frac{(n-1)!}{(x+1)^n}$; $f^{(n)}(0) = (n-1)! (-1)^{n+1}$. $\ln(1+x) = \frac{1*x}{1!} - \frac{1!x^2}{2!} + \frac{2!x^3}{3!} - \frac{3!x^4}{4!} + \dots + (-1)^{n+1} \frac{(n-1)!x^n}{n!} = x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n}$. При $x = 1$ получим ряд Лейбница. При $x = 1$ получим обобщенный гармонический расходящийся. Можно показать, что $R = 1$, область сходимости $(-1;1]$.

Очень долго сходится, для вычисления $\ln 2$ с точностью до 0.00001 надо вычислить 100000 членов.

Второй способ: $(\ln(1+x))' = \frac{1}{x+1} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$ Почленно интегрируя, получим $\ln(1+x) = x + \frac{x^2}{2} - \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots$

6) $f(x)=\arctan x$. $(\arctan x)'=\frac{1}{1+x^2}=1-x^2+x^4+\cdots+(-1)^nx^{2n}+\cdots$. Ряд сходится на интервале (-1;1). $f(x)-f(0)=\int_0^x (\arctan t)'dt=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots+(-1)^n\frac{x^{2n+1}}{2n+1}$. Пусть x=1. Тогда $f(x)-f(0)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots+(-1)^n\frac{x^{2n+1}}{2n+1}$. Отсюда $\pi=4\sum_{n=0}^\infty\frac{(-1)^n}{2n+1}$.

Применение рядов к приближенным вычислениям

Приближенные вычисления функций

Пусть f(x) бесконечно дифференцируема в окрестности точки A. Тогда ее можно разложить в ряд Тейлора в данной точке $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$. Очевидно, что для вычисления значения

функции с определенной точностью достаточно посчитать частичную сумму данного ряда. При этом погрешность можно оценивать двумя способами:

1) С помощью остаточного члена формулы Тейлора $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^n$.

2) По хвосту ряда
$$r_n(x) = \sum_{k=n+1}^{\infty} \frac{f^{(k)}(a)}{(n+1)!} (x-a)^k$$
.

<u>Замечание.</u> Вторая оценка удобна для знакочередующихся рядов.

Пример.
$$e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}.$$
 $R_n(1)=\frac{e^{\xi}(1-0)^{n+1}}{(n+1)!}<\frac{e^1}{(n+1)!}<\frac{3}{(n+1)!},\xi\in(0;1); r_n(1)=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots=\frac{1}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+2)(n+3)}+\cdots\right)<\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)!}+\frac{1}{(n+1)!}+\cdots\right)=\frac{1}{(n+1)!}\frac{1}{1-\frac{1}{n+1}}=\frac{n+1}{(n+1)!n}=\frac{1}{n!n}.$ Для вычисления e с точностью до 0.01 , то $r_n(1)<0.01$, т.е. $n=5$.

Как ускорить сходимость логарифма: рассмотрим разложение в ряд жения $\ln(1+x)-\ln(1-x)=2x+\frac{2x^3}{3}+\frac{2x^5}{5}+\cdots 2\frac{x^{2n+1}}{2n+1}$. Тогда $\ln\frac{1+x}{1-x}=$ $2\sum_{n=0}^{\infty}rac{x^{2n+1}}{2n+1}$. Для вычисления $\ln 2$ поимеем $x=rac{1}{3}$. Для достижения точности 0.00001необходимо вычислить всего 5 членов.

Приближенные вычисления интегралов

Пусть надо найти $\int_a^x f(t)dt = F(x)$. Изначально разложим f(x) в ряд Тейлора, при этом промежуток [a;x] должен попасть в область его сходимости. Тогда на этом промежутке мы можем его интегрировать, и посчитать частичную сумму проинтегрированного ряда. Для вычисления понадобится:

- 1) Разложить f(x) в ряд Тейлора
- 2) Ограничиться конечным числом членов.
- 3) Проинтегрировать почленно, оценить погрешность.

Пример.
$$six = \int_0^x \frac{\sin x}{x} dx = \int_0^x \left(\frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}}{x}\right) dx = \int_0^x \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}\right) dx = x - \frac{x^3}{3!3} + \frac{x^5}{5!5} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!(2n+1)}.$$

29. Ряды с комплексными членами. Теорема Абеля

Ряды с комплексными членами

Числовые ряды

Рядом с комплексными членами называется выражение вида $u_1 + u_2 + \cdots +$ $u_n+\cdots$, где $u_n=a_n+ib_n$. Этот ряд сходится, если существует конечный предел частичных сумм $\lim_{n\to\infty}S_n$. Тогда $S_n=\sum_{k=1}^na_k+i\sum_{k=1}^nb_k=\sigma_n+i\tau_n$. Условия о конечном пределе частичных сумм необходимо и достаточно для того, чтобы существовали пределы $\lim_{n \to \infty} \sigma_n$; $\lim_{n \to \infty} \tau_n$. Таким образом, сходимость ряда с комплексными членами эквивалентна сходимости двух вещественных рядов.

Teopema 22. Если сходится ряд $\sum_{n=1}^{\infty} |u_n|$, то сходится и $\sum_{n=1}^{\infty} u_n$.

<u>Доказательство.</u> $|u_n| = \sqrt{a_n^2 + b_n^2}$. Получаем, что $|a_n| \le |u_n|$; $|b_n| \le |u_n|$. По признаку сходимости получаем, что если сходится $\sum_{n=1}^{\infty} |u_n|$, то сходятся абсолютно и ряды $\sum_{n=1}^\infty a_n$; $\sum_{n=1}^\infty b_n$. То есть сходится и ряд $\sum_{n=1}^\infty u_n$.

<u>Замечание.</u> Все свойства действительных абсолютно сходящихся рядов переносятся на комплексные абсолютно сходящиеся ряды.

Рассмотрим степенной комплексный ряд $c_0+c_1z+c_2z^2+\cdots+c_nz^n+\cdots$, z=x+iy, или в другой форме $c_0+c_1(z-z_0)+c_2(z-z_0)^2+\cdots+c_n(z-z_0)^n+\cdots$.

Теорема 23 (Абеля). Если степенной комплексный ряд сходится при $z=z_0$, то он абсолютно сходится и при любом z таком, что $|z|<|z_0|$. Если этот же ряд расходится в точке $z=z_1$, то он будет расходиться и в любой точке z такой, что $|z|>|z_0|$.

Доказательство.

- 1) Пусть ряд $\sum_{n=0}^\infty c_n z_0^n$ сходится. Тогда его общий член стремится к нулю $\lim_{n\to\infty}c_n z_0^n=0$. Тогда существует такое M>0, что для любого n выполняется $|c_n z_0^n|<$
- M. Рассмотрим ряд $\sum_{n=0}^{\infty}c_nz^n=c_0+c_1\frac{z}{z_0}z_0+c_2\left(\frac{z}{z_0}\right)^2z_0^2+\cdots+c_n\left(\frac{z}{z_0}\right)^nz_0^n+\cdots$ Теперь рассмотрим ряд, состоящий из абсолютных величин $|c_0|+\left|\frac{z}{z_0}\right||c_1z_0|+\left|\frac{z}{z_0}\right|^2|c_2z_0^2|+\cdots+\left|\frac{z}{z_0}\right|^n|c_nz_0^n|+\cdots$. Все правые модули, как уже было сказано, меньше M. Тогда этот ряд можно смажорировать так, что для любого n будет выполняться $\left|\frac{z}{z_0}\right|^n|c_nz_0^n|<\left|\frac{z}{z_0}\right|^nM.\left|\frac{z}{z_0}\right|^nM$ геометрическая прогрессия с $q=\left|\frac{z}{z_0}\right|<1$. Тогда, по признаку сравнения ряд $\sum_{n=1}^{\infty}|c_nz^n|$ сходится абсолютно и, следовательно, сходится.
- 2) От противного. Если расходится в при $z=z_1$ и сходится в при $|z|>|z_1|$, то по первому пункту должен сойтись и при $z=z_1$. Противоречие. Следовательно, расходится при $|z|>|z_1|$.

Замечание. Существует радиус сходимости степенного комплексного ряда такой, что при |z| < R ряд сходится, при |z| > R расходится, точки на окружности требуют дополнительной проверки. Радиус сходимости можно искать так же, как и для вещественных рядов: по признаку Даламбера.

<u>Замечание.</u> Можно вводить функции комплексной переменной через степенные ряды.

30. Ряд Фурье по ортогональной системе функций. Многочлен Фурье

Ортогональная система функций

Пусть есть последовательность функций $\{\varphi_n(x)\}$ и для любого n $\varphi_n(x)$ непрерывна на [a;b]. Система $\{\varphi_n(x)\}$ называется ортогональной на [a;b], если $\int_a^b \varphi_m(x)\varphi_n(x)dx=0, m\neq n$. По аналогии с ортогональными векторами, для которых условием ортогональности является нулевое скалярное произведение, только в нашем случае роль скалярного произведения выполняет интеграл. Интеграл берется, так как функции непрерывны.

Если в дополнение к предыдущему условию $\int_a^b \varphi_n^2(x) dx = 1$ для любого натурального n, то такая система функций называется ортонормированной. На [a;b].

Пример. Система $1,\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$ является ортогональной на $[-\pi;\pi]$. $\int_{-\pi}^{\pi} 1*\sin nx \, dx = -\frac{1}{n}\cos nx \, \Big|_{-\pi}^{\pi} = 0; \int_{-\pi}^{\pi} 1*\cos nx \, dx = \frac{1}{n}\sin nx \, \Big|_{-\pi}^{\pi} = \frac{2}{n}\sin \pi n = 0; \int_{-\pi}^{\pi}\sin nx *\cos mx \, dx = \frac{1}{2}\Big(\int_{-\pi}^{\pi}\sin(m+n)x \, dx + \int_{-\pi}^{\pi}\sin(m-n)x \, dx\Big) = 0.$

Пример. Система $\frac{1}{\sqrt{2\pi}}$, $\frac{1}{\sqrt{\pi}}\cos x$, $\frac{1}{\sqrt{\pi}}\sin x$, ..., $\frac{1}{\sqrt{\pi}}\cos nx$, $\frac{1}{\sqrt{\pi}}\sin nx$ является ортонормированной на $[-\pi;\pi]$. $\int_{-\pi}^{\pi}\frac{1}{2\pi}dx=\frac{1}{2}+\frac{1}{2}=1; \int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}\cos^2 nx\,dx=\frac{1}{\pi}\left(\frac{x}{2}+\frac{\sin 2nx}{4n}\right)\Big|_{-\pi}^{\pi}=\frac{1}{\pi}\left(\frac{\pi}{2}+\frac{\pi}{2}\right)=1; \int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}\sin^2 nx\,dx=\frac{1}{\pi}\left(\frac{x}{2}-\frac{\sin 2nx}{4n}\right)\Big|_{-\pi}^{\pi}=\frac{1}{\pi}\left(\frac{\pi}{2}+\frac{\pi}{2}\right)=1.$

<u>Замечание.</u> Система $\frac{1}{\sqrt{2l}}, \frac{1}{\sqrt{l}}\cos x, \frac{1}{\sqrt{l}}\sin x, ..., \frac{1}{\sqrt{l}}\cos nx, \frac{1}{\sqrt{l}}\sin nx$ является ортонормированной на [-l;l].

<u>Замечание.</u> Система $\frac{1}{2}$, $\cos x$, $\cos 2x$, ..., $\cos nx$ ортогональная на $[0;\pi]$.

<u>Замечание.</u> Система $L_0(x)=1,...,L_n(x)=rac{1}{2^nn!}rac{d^n}{dx^n}(x^2-1)^n$ ортогональная на [-1;1].

Ряд Фурье по ортогональной системе функций

Пусть f(x) непрерывна на [a;b] и $\{\varphi_n(x)\}$ – непрерывная на [a;b] ортогональная система функций. Пусть существуют такие a_k , что $f(x)=\sum_{k=1}^\infty a_k \varphi_k(x)$.

<u>Теорема 1.</u> Если ряд $\sum_{k=1}^{\infty} a_k \, \varphi_k(x)$ сходится равномерно, то $a_n = \frac{\int_a^b f(x) \varphi_n(x) dx}{\int_a^b \varphi_n^2(x) dx}$.

Доказательство. $f(x) = \sum_{k=1}^{\infty} a_k \varphi_k(x)$ домножим на $\varphi_n(x)$. Получаем $f(x)\varphi_n(x) = \sum_{k=1}^{\infty} a_k \varphi_n(x) \varphi_k(x)$. Так как ряд сходится равномерно, имеем право проинтегрировать. $\int_a^b f(x) \varphi_n(x) dx = \sum_{k=1}^{\infty} a_k \int_a^b \varphi_n(x) \varphi_k(x) dx = a_n \int_a^b \varphi_n(x) \varphi_k(x) dx$, откуда следует, что $\frac{\int_a^b f(x) \varphi_n(x) dx}{\int_a^b \varphi_n^2(x) dx}$.

 a_n называется коэффициентом Фурье функции f(x) по ортогональной системе $\{\varphi_n(x)\}$ на [a;b].

 $\frac{ \text{Пример.}}{l} \frac{1}{2}, \cos \frac{\pi x}{l}, \sin \frac{\pi x}{l}, ..., \cos \frac{\pi nx}{l}, \sin \frac{\pi nx}{l} - \text{ ортогональная система функций,}$ для которой $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l} \right); a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx; a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} dx; b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} dx. a_n, b_n - \text{формулы Эйлера-Фурье.}$

Многочлен Фурье смотри в следующем билете.

31. Тригонометрические многочлены и ряды. Формула Фурье-Эйлера. Ядро Дирихле

Ряд вида $a_0+a_1\cos x+b_1\sin x+\cdots+a_n\cos nx+b_n\sin nx$ называется тригонометрическим многочленом n — го порядка. При $n\to\infty$ получим тригонометрический ряд.

$$a_n\cos nx+b_n\sin nx=\sqrt{a_n^2+b_n^2}\left(rac{a_n}{\sqrt{a_n^2+b_n^2}}\cos nx+rac{b_n}{\sqrt{a_n^2+b_n^2}}\sin nx
ight)$$
; $\cos arphi_n=rac{b_n}{\sqrt{a_n^2+b_n^2}}$; $\sin arphi_n=rac{a_n}{\sqrt{a_n^2+b_n^2}}$, откуда получаем $a_n\cos nx+b_n\sin nx=A_n\sin (nx+arphi_n)$, $A_n=\sqrt{a_n^2+b_n^2}$. Удобно для сложения двух гармоник в одну со сдвигом фазы.

Получили упрощенную форму тригонометрического ряда $a_0+\sum_{n=1}^\infty A_n\sin(nx+\varphi_n).$

Пусть есть тригонометрический ряд $P_n(x) = a_0 + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$. Тогда для его имеем $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} P_n(x) dx$; $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} P_n(x) \cos kx \, dx$; $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} P_n(x) \sin kx \, dx$.

<u>Замечание.</u> Аналогично формулы верны в случае тригонометрического ряда.

Многочлены Фурье. Формула Фурье-Эйлера

Пусть f(x) непрерывна на $[-\pi;\pi]$. По формулам Фурье-Эйлера можно построить коэффициенты a_0,a_n,b_n . Тогда $f(x)\sim \frac{a_0}{2}+\sum_{n=1}^\infty a_n\cos nx+b_n\sin nx$. Будет ли сопоставленный ряд сходиться к f(x)?

Выражение вида $\Phi_n=\frac{a_0}{2}+\sum_{n=1}^\infty a_n\cos nx+b_n\sin nx$ называется многочленом Фурье функции f(x). Тогда для того, чтобы $f(x)=\Phi_n(x)+R_n(x)$ раскладывалась в ряд $\Phi_n(x)$, необходимо, чтобы $R_n(x)\to 0$ при $n\to\infty$ для любого x.

Распишем $\varphi_n(x) = \frac{1}{2} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt + \sum_{k=1}^n \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, dt \cos kx + \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt \sin kx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left(\frac{1}{2} + \sum_{k=1}^n \cos k(t-x) \right) dt = [t-x=u] = \Phi_n(x) = \frac{1}{\pi} \int_{-\pi-x}^{\pi-x} f(x+u) \left(\frac{1}{2} + \sum_{k=1}^n \cos ku \right) du.$ Оказывается, $\varphi_n(x)$ можно посчитать.

Лемма.
$$c(u) = \frac{1}{2} + \sum_{k=1}^{n} \cos ku = \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{1}{2}u}.$$

Доказательство.

$$\frac{\frac{2\sin\frac{1}{2}u}{2\sin\frac{1}{2}u}\left(\frac{1}{2} + \cos u + \cos 2u + \dots + \cos nu\right) =}{\frac{\sin\frac{1}{2}u + 2\sin\frac{1}{2}u\cos u + 2\sin\frac{1}{2}u\cos 2u + \dots + 2\sin\frac{1}{2}u\cos nu}{2\sin\frac{1}{2}u}} = \frac{\sin\frac{1}{2}u + \sin\frac{3}{2}u - \sin\frac{1}{2}u + \sin\frac{5}{2}u - \sin\frac{3}{2}u + \dots + \sin\left(n + \frac{1}{2}\right)u - \sin\left(n - \frac{1}{2}\right)u}{2\sin\frac{1}{2}u}}{2\sin\frac{1}{2}u}.$$

<u>Следствие.</u> $\Phi_n(x) = \int_{-\pi-x}^{\pi-x} f(x+u) \frac{\sin(n+\frac{1}{2})u}{2\sin\frac{1}{2}u} du.$

<u>Замечание.</u> Можно показать, что $\int_{-\pi-x}^{\pi-x} f(x+u) \frac{\sin\left(n+\frac{1}{2}\right)u}{2\sin\frac{1}{2}u} du = \int_{-\pi}^{\pi} f(x+u) \frac{\sin\left(n+\frac{1}{2}\right)u}{2\sin\frac{1}{2}u} du$, т.е. можно сдвигать как угодно влево и вправо. $\frac{\sin\left(n+\frac{1}{2}\right)u}{2\sin\frac{1}{2}u}$ называется ядром Дирихле.

<u>Лемма.</u> Пусть $\varphi(n)-2\pi$ — периодическая функция, тогда $\int_{-\pi+x}^{\pi-x}\varphi(u)du=\int_{-\pi}^{\pi}\varphi(u)du.$

Доказательство. $\int_{-\pi+x}^{\pi-x} \varphi(u) du = \int_{-\pi+x}^{-\pi} \varphi(u) du + \int_{-\pi}^{\pi} \varphi(u) du + \int_{\pi}^{\pi-x} \varphi(u) du = [u = t - 2\pi] = \int_{\pi-x}^{\pi} \varphi(t) dt + \int_{-\pi}^{\pi} \varphi(u) du + \int_{\pi}^{\pi-x} \varphi(u) du = \int_{-\pi}^{\pi} \varphi(u) du.$

Выражение $D_n(u)=rac{\sin\left(n+rac{1}{2}\right)u}{2\sinrac{1}{2}u}$ называется ядром Дирихле.

Оценим погрешность. Рассмотрим разность $R_n(x) = f(x) - \Phi_n(x) = f(x) - \Phi_n(x)$ $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+u) \frac{\sin(n+\frac{1}{2})u}{2\sin\frac{1}{2}u} du...$

Лемма.
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{1}{2}u} du = 1.$$

Доказательство.
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)u}{2\sin\frac{1}{2}u} du = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2} + \sum_{k=1}^{n} \cos ku\right) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} du = 1.$$

...Тогда имеем $R_n(x)=rac{1}{\pi}\int_{-\pi}^{\pi}ig(f(x)-f(x+u)ig)rac{\sin\left(n+rac{1}{2}\right)u}{2\sinrac{1}{2}u}du$. По этой формуле очень удобно высчитывать погрешность. А итоговой формулой будет $f(x) = \frac{a_0}{2} +$ $\sum_{k=1}^n a_k \cos kx + b_k \sin kx + R_n(x)$ — формула Фурье n — го порядка.

Замечание. Формула имеет более широкое применение, потому что для разложения необходимо лишь существования интегралов, а не производных вплоть до n-й.

32. Основные теоремы о сходимости рядов Фурье

<u>Замечание.</u> Ряд $\underset{n\to\infty}{\longrightarrow} f(x)$ тогда, когда $R_n(x)\to 0$. Будем считать, что f(x) – гладкая на [a;b], если она непрерывна на этом промежутке вместе со своей производной и f'(a) = f'(a+0) и f'(b) = f'(b-0). f(x) – кусочно – гладкая на [a;b], если этот промежуток можно разбить на конечное число промежутков, на которых f(x) гладкая. Можно показать, что у кусочно-гладкой функции особые точки это точки разрыва первого рода.

Теорема 2. Пусть f(x) – кусочно – гладкая в $[-\pi;\pi]$. Тогда в любой точке этого промежутка ряд Фурье сходится к f(x). В точках разрыва ряд сходится к $\frac{f(x_0+0)+f(x_0-0)}{2}$, а в граничных точках к $\frac{f(-\pi+0)+f(\pi-0)}{2}$.

Теорема 3 (Дирихле). Пусть f(x) имеет конечно число экстремумов на $[-\pi;\pi]$ и непрерывна, за исключением точек, в которых может быть разрыв первого рода. Тогда ряд Фурье сходится к f(x), а в точках разрыва к $\frac{f(x_0+0)+f(x_0-0)}{2}$, а в граничных точках к $\frac{f(-\pi+0)+f(\pi-0)}{2}$. Эта теорема более сильная, чем предыдущая.

33. Свойства коэффициентов Фурье

f(x)Пусть такова, существуют ЧТО интегралы $\int_{-\pi}^{\pi} f(x) dx$, $\int_{-\pi}^{\pi} f^2(x) dx$, причем не обязательно только с разрывами первого рода – это могут быть и несобственные интегралы. Тогда предел $\lim_{n \to \infty} a_n =$ $\lim_{n\to\infty}a_n=$ $\lim_{n\to\infty}\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\,dx=0\;\text{и}\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\,dx=0.$ Доказательство. Рассмотрим $\frac{1}{2\pi}\int_{-\pi}^{\pi}R_n^2(x)dx=\frac{1}{2\pi}\int_{-\pi}^{\pi}\left(f(x)-\Phi_n(x)\right)^2dx,\;\text{где}$

 $\Phi_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$. Продолжим раскладывать $\frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - f(x))^n dx$

 $\Phi_n(x)$) $^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \Phi_n(x) dx + \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_n^2(x) dx$. Теперь рассмотрим члены по-отдельности.

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \Phi_n(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left(\frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right) dx = \frac{a_0^2}{2} + \sum_{k=1}^{n} a_k \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx + b_k \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx = \frac{a_0^2}{2} + \sum_{k=1}^{n} a_k^2 + b_k^2.$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_n^2(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 dx + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 dx + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 dx + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 dx + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{a_0}{2} \right)^2 dx + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx \right)^2 dx + \sum_{k=1}^{n} a_$$

 $\sum_{k=1}^{n} (a_k^2 \cos^2 kx + b_k^2 \sin^2 kx) + 2 \left(\frac{a_0}{2} \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx) + \frac{a_0}{2} \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx) \right) + \frac{a_0}{2} \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx) + \frac{a_0}{2} \sum_{k$

$$\sum_{k=1}^{n} \sum_{j=1}^{n} a_k b_j \cos kx \sin jx + \sum_{k=1}^{n} \sum_{j=1}^{n; j \neq n} \left(a_k a_j \cos kx \cos jx + b_k b_j \sin kx \sin jx \right) \right) dx.$$

Красотень, не правда ли? На самом деле, все интегралы на полном периоде для синусов и косинусов в первой степени будут равны нулю, поэтому выражение примет вид $\frac{1}{2\pi}\int_{-\pi}^{\pi}\Phi_n^2(x)dx=\frac{a_0^2}{4}+\frac{1}{2\pi}\sum_{k=1}^n\int_{-\pi}^{\pi}\left(a_k^2\frac{1+\cos 2kx}{2}+b_k^2\frac{1-\cos 2kx}{2}\right)dx=\frac{a_0^2}{4}+\frac{1}{2}\sum_{k=1}^na_k^2+b_k^2.$ Так-то лучше.

Подставляем все в исходное выражение: $\frac{1}{2\pi}\int_{-\pi}^{\pi}R_n^2(x)dx=\frac{1}{2\pi}\int_{-\pi}^{\pi}f^2(x)dx-\frac{a_0^2}{2}-\sum_{k=1}^na_k^2+b_k^2+\frac{a_0^2}{4}+\frac{1}{2}\sum_{k=1}^na_k^2+b_k^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}f^2(x)dx-\frac{1}{2}\Big(\frac{a_0^2}{2}+\sum_{k=1}^na_k^2+b_k^2\Big)\geq 0.$ Это значит, что $\frac{a_0^2}{2}+\sum_{k=1}^na_k^2+b_k^2\leq \frac{1}{\pi}\int_{-\pi}^{\pi}f^2(x)dx.$ Получается, что при любом n ряд $\sum_{k=1}^na_k^2+b_k^2$ ограничен сверху, а значит он сходится, то есть общий член $a_k^2+b_k^2$ стремится к нулю, то есть $a_k\to 0$, $b_k\to 0$ одновременно при $k\to\infty$. Следствие. Для любых чисел A,B справедливо неравенство Коши $AB\leq$

<u>Следствие.</u> Для любых чисел A,B справедливо неравенство Коши $AB \leq \frac{1}{2}(A^2+B^2)$. Пусть $A=|a_n|, B=\frac{1}{n}$. Тогда имеем $\frac{|a_n|}{n}\leq \frac{1}{2}\Big(|a_n|^2+\frac{1}{n^2}\Big)$. $\sum_{n=1}^{\infty}|a_n|^2$, $\sum_{n=1}^{\infty}\frac{1}{n^2}$ – сходящиеся ряды. Следовательно, сходится и ряд $\sum_{n=1}^{\infty}\frac{1}{2}\Big(|a_n|^2+\frac{1}{n^2}\Big)$. По признаку сравнения сойдется и ряд $\sum_{n=1}^{\infty}\frac{|a_n|}{n}$. Значит, общий член стремится к нулю, $\frac{|a_n|}{n}\to 0$.

Разложение 2π – периодических функций

Пусть f(x) непрерывна на $[-\pi;\pi]$ и 2π — периодична. Тогда $f(x)=\frac{a_0}{2}+\sum_{k=1}^\infty a_k\cos kx+b_k\sin kx$, где $a_0=\frac{1}{\pi}\int_{-\pi}^\pi f(x)dx$; $a_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\cos kx\,dx$; $b_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\sin kx\,dx$.

<u>Замечание.</u> Можно интегрировать по любому промежутку длиной 2π .

В случае четной функции относительно центра промежутка $b_k=0; a_0=\frac{2}{\pi}\int_0^\pi f(x)\,dx; a_k=\frac{2}{\pi}\int_0^\pi f(x)\cos x\,dx; f(x)=\frac{a_0}{2}+\sum_{k=1}^\infty a_k\cos kx.$

В случае нечетной функции относительно центра промежутка $a_0=a_k=0; b_k=rac{2}{\pi}\int_0^\pi f(x)\sin x\,dx; f(x)=\sum_{k=1}^\infty b_k\sin kx.$

Разложение 2l – периодических функций

Пусть f(x) непрерывна на [-l;l] и 2l — периодична. Преобразуем функцию в 2π — периодическую $x=x'rac{l}{\pi}$, $x'\in[-\pi;\pi]$. Тогда $f\left(x'rac{l}{\pi}\right)$ — непрерывна на $[-\pi;\pi]$ и 2π

— периодична. Выполнив все подстановки, получим $a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$; $a_k = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi k x}{l} dx$; $b_k = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi k x}{l} dx$; $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{\pi k x}{l} + b_k \sin \frac{\pi k x}{l}$.

Пусть f(x) удовлетворяет а $[-\pi;\pi]$ теореме Дирихле. Тогда в точках непрерывности $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$. Но тогда вне заданного промежутка функция f(x) не будет определяться рядом, она будет повторяться периодически.

Замечание. Аналогично ведет себя и разложение на промежутке $[0; 2\pi]$.

34. Ряды Фурье в комплексной форме

Пусть f(x) непрерывна на $[-\pi;\pi]$. Для действительной переменной справедливо разложение $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$. Рассмотрим комплексный случай $c_n = a_n - ib_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos nx - i \sin nx) f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx$. Тогда для $a_n \cos kx + b_n \sin kx = Re \left((a_n - ib_n) (\cos nx + i \sin nx) \right) = Re \left(c_n e^{inx} \right) = \frac{1}{2} \left(c_n e^{inx} + \overline{c_n} e^{-inx} \right)$. Откуда получаем ряд Фурье в комплексной форме $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \frac{1}{2} \left(c_n e^{inx} + \overline{c_n} e^{-inx} \right)$; $\overline{c_n} = \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos nx + i \sin nx) f(x) dx = c_{-n}$. В результате имеем ряд Фурье в комплексной форме $f(x) = \frac{1}{2} \sum_{-\infty}^{+\infty} c_n e^{inx}$.

35. Равномерная сходимость рядов Фурье. Сходимость рядов Фурье «в среднем»

<u>Теорема 5.</u> Пусть f(x) непрерывна на $[-\pi;\pi]$ и имеет кусочно-гладкую производную, и $f(-\pi) = f(\pi)$. Тогда ряд Фурье сходится к f(x) равномерно.

Доказательство. Рассмотрим $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = [u = f(x); dv = \cos nx \, dx] = \frac{1}{\pi n} f(x) \sin nx \, \Big|_{-\pi}^{\pi} - \frac{1}{\pi n} \int_{-\pi}^{\pi} f'(x) \sin nx \, dx = -\frac{b'_n}{n}$, где b'_n – коэффициент Фурье для f'(x). Аналогично можно вывести $b_n = \frac{a'_n}{n}$. По следствию из теоремы 4 ряды $\sum_{n=1}^{\infty} \frac{|a'_n|}{n}$, $\sum_{n=1}^{\infty} \frac{|b'_n|}{n}$ сходятся, а следовательно сходятся и ряды $\sum_{n=1}^{\infty} |a_n|$, $\sum_{n=1}^{\infty} |b_n|$, а вместе с ними и ряд $\sum_{n=1}^{\infty} |a_n| + |b_n|$. Тогда для разложения Фурье имеем $|a_n \cos nx + b_n \sin nx| \le |a_n| + |b_n|$. По признаку Вейерштрасса ряд Фурье сходится абсолютно и равномерно.

Сходимость «в среднем»

Пусть F(x), $F_1(x)$ — функции, заданные на [a;b] и интегрируемы на нем вместе со своими квадратами. Рассмотрим $F_1(x)$ как приближение F(x), при этом отклонением будет $R(x) = F(x) - F_1(x)$. Охарактеризовать это отклонение можно следующими способами:

- 1) $\max_{[a;b]} |R(x)|$
- 2) по порядку малости R(x) при $x \to a(b)$.

3) $\Delta = \sqrt{\frac{1}{b-a}} \int_a^b R^2(x) dx$ — среднеквадратичное отклонение (квадраты площадей отклонений). Оно обобщает и дискретный случай $\Delta = \sqrt{\frac{1}{n} \sum_{i=1}^n (y(x_i) - y_1(x_i))^2}$.

Задача приближения в среднем: для F(x) – найти такое $F_1(x)$ в некотором классе функций, чтобы среднеквадратичное отклонение было минимальным.

<u>Теорема 6.</u> Среди тригонометрических многочленов n – го порядка

наилучшим приближением данной функции в смысле среднего квадратичного на $[-\pi;\pi]$ является многочлен Фурье данной функции, т.е. $\Delta_n = \sqrt{\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(f(x) - \left(\frac{\alpha_0}{2} + \sum_{k=1}^n \alpha_k \cos kx + \beta_k \sin kx \right) \right)^2 dx}$ минимально тогда, когда $\alpha_0 = a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$, $\alpha_k = a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$, $\beta_k = b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$.

Доказательство. Пусть $F_n(x)=\frac{\alpha_0}{2}+\sum_{k=1}^n\alpha_k\cos kx+\beta_k\sin kx$. Рассмотрим $\Delta_n^2=\frac{1}{2\pi}\int_{-\pi}^\pi f^2(x)dx-\left(\frac{1}{2}\alpha_0a_0+\sum_{k=1}^n\alpha_ka_k+\beta_kb_k\right)+\frac{1}{2}\left(\frac{\alpha_0^2}{2}+\sum_{k=1}^n\alpha_k^2+\beta_k^2\right)$. Для вывода этого выражения использовались те же преобразования, что и в теореме 4. Имеем $2\Delta_n^2=\frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx-\alpha_0a_0+\frac{1}{2}\alpha_0^2+\left(\frac{1}{2}a_0^2-\frac{1}{2}a_0^2\right)-\frac{1}{2}a_0^2-\frac{1}{2}a_0^2-2\sum_{k=1}^n\alpha_ka_k+\beta_kb_k+\sum_{k=1}^n\alpha_k^2+\beta_k^2+\left(\sum_{k=1}^na_k^2+b_k^2-\sum_{k=1}^na_k^2+b_k^2\right)=\frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx+\frac{1}{2}(\alpha_0-a_0)^2+\sum_{k=1}^n((\alpha_k-a_k)^2+(\beta_k-b_k)^2)-\frac{1}{2}a_0^2-\sum_{k=1}^na_k^2+b_k^2+M$, где $M=\frac{1}{2}(\alpha_0-a_0)^2+\sum_{k=1}^n((\alpha_k-a_k)^2+(\beta_k-b_k)^2)$. Нетрудно заметить, что $M\geq 0$, при этом $2\Delta_n^2$ будет минимально при минимальном значении M, т.е. тогда, когда $\alpha_0=a_0,\dots,\alpha_k=a_k$. Тогда выражение $2\Delta_n^2$ примет вид $2\Delta_n^2=\frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx-\frac{1}{2}a_0^2-\sum_{k=1}^na_k^2+b_k^2$.

36. Равенство Парсеваля

<u>Теорема 7 (Парсеваля).</u> Пусть f(x) – непрерывна и имеет кусочно-гладкую производную на $[-\pi;\pi]$ и $f(\pi)=f(-\pi)$. Тогда имеет место равенство $\frac{1}{\pi}\int_{-\pi}^{\pi}f^2(x)dx=\frac{a_0^2}{2}+\sum_{k=1}^{\infty}(a_k^2+b_k^2).$

Доказательство. Рассмотрим выведенное выражение $\Delta n^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} R_n^2(x) dx = \frac{1}{2} \left(-\frac{a_0^2}{2} - \sum_{k=1}^n (a_k^2 + b_k^2) + \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \right)$. Мы знаем, что $\Phi_n(x) \xrightarrow[n \to \infty]{} f(x)$ равномерно. Это значит, что для любого $\varepsilon > 0$ существует такое N, что для любого n > N и для любого $x \in [-\pi; \pi]$ выполняется $|R_n(x)| < \varepsilon$. Тогда выражение Δn^2 представить в виде $\Delta n^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} R_n^2(x) dx \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \varepsilon^2 dx = \varepsilon^2$, откуда следует $\Delta n < \varepsilon$, что соответствует $\lim_{n \to \infty} \Delta_n = 0$. Тогда имеем $\frac{1}{2} \left(-\frac{a_0^2}{2} - \sum_{k=1}^n (a_k^2 + b_k^2) + \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \right) = 0$ при $n \to \infty$, откуда и следует требуемое равенство.

37. Преобразования Фурье

Пусть f(x) определена на $(-\infty; +\infty)$ и абсолютно интегрируема на этом интервале, т.е. $\int_{-\infty}^{+\infty} |f(x)| dx < Q < +\infty$. И пусть она раскладывается в ряд Фурье на любом промежутке [-l; l] (удовлетворяет теореме Дирихле или предшествующей

ей), т.е. в точках непрерывности $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{\pi k}{l} x + b_k \sin \frac{\pi k}{l} x, \frac{a_0}{2} = \frac{1}{l} \int_{-l}^{l} f(t) dt, a_k = \frac{1}{l} \int_{-l}^{l} f(t) \cos \frac{\pi k}{l} t \, dt, b_k = \frac{1}{l} \int_{-l}^{l} f(t) \sin \frac{\pi k}{l} t \, dt.$ Тогда f(x) можно представить в виде $f(x) = \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{l} \sum_{k=1}^{\infty} \int_{-l}^{l} f(t) \left(\cos \frac{\pi k}{l} t \cos \frac{\pi k}{l} x + \frac{\pi k}{l} t \cos \frac{\pi k}{l} x + \frac{\pi k}{l} t \cos \frac{\pi k}{l} t \sin \frac{\pi k}{l} t \sin \frac{\pi k}{l} t \cos \frac{\pi$

Рассмотрим также функцию, которую будем называть производящей $F(\alpha) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(t) \cos \alpha t \, dt -$ косинус — преобразование Фурье, аналог $A(\alpha)$. Обратно восстанавливается как $f(x) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} F(\alpha) \cos \alpha t \, d\alpha$. Аналогичным образом определяется синус — преобразование $F(\alpha) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(t) \sin \alpha t \, dt \, \left(B(\alpha)\right), f(x) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} F(\alpha) \sin \alpha t \, d\alpha$.

38. Комплексная форма интеграла Фурье

Рассмотрим $A(\alpha)\cos\alpha x+B(\alpha)\sin\alpha x=A(\alpha)\frac{e^{i\alpha x}+e^{-i\alpha x}}{2}+B(\alpha)\frac{e^{i\alpha x}-e^{-i\alpha x}}{2}=\frac{(A(\alpha)-iB(\alpha))}{2}e^{i\alpha x}+\frac{(A(\alpha)+iB(\alpha))}{2}e^{-i\alpha x}=C(\alpha)e^{i\alpha x}+\overline{C(\alpha)}e^{-i\alpha x},$ где $C(\alpha)=\frac{(A(\alpha)-iB(\alpha))}{2}$, причем $\overline{C(\alpha)}=C(-\alpha)$. Применим это к любому интегралу, например: $\int_0^\lambda (A(\alpha)\cos\alpha x+B(\alpha)\sin\alpha x)d\alpha=\int_0^\lambda (c(\alpha)e^{i\alpha x}+c(-\alpha)e^{i(-\alpha x)})=\int_{-\lambda}^\lambda c(\alpha)e^{i\alpha x}d\alpha,$ откуда имеем $f(x)=\lim_{\lambda\to+\infty}\int_{-\lambda}^\lambda (A(\alpha)\cos\alpha x+B(\alpha)\sin\alpha x)d\alpha=\int_{-\infty}^\infty c(\alpha)e^{i\alpha x}d\alpha,$ где $C(\alpha)=\frac{(A(\alpha)-iB(\alpha))}{2}=\frac{1}{2}\left(\frac{1}{\pi}\int_{-\infty}^{+\infty}f(t)\cos\alpha t\,dt-\frac{i}{\pi}\int_{-\infty}^{+\infty}f(t)\sin\alpha t\,dt\right)=\frac{1}{2\pi}\int_{-\infty}^\infty f(t)e^{-i\alpha t}dt.$ Мы получили интеграл Фурье в комплексной форме.