Final Review

CS157A

Normalization

- Suppose we have a database consisting of the following attributes: R(B, O, I, S, Q, D)
- B Broker, O Office of a broker, I Investor, S Stock
- Q Quantity of stock owned by an investor, D Dividend paid by a stock.
- Assume that the following FDs: $I \rightarrow B$, $IS \rightarrow Q$, $B \rightarrow O$, $S \rightarrow D$.
- Find a key for the relation schema R = (B, O, I, S, Q, D).
 - I and S must be in any candidate key since they do not appear on the right of any FD. The question is whether they form a complete candidate key. And yes, IS → ISDBOQ. Hence, the only candidate key is IS.

Normalization

- Consider a relation R with attributes A, B, C, D, E and the set of functional dependencies A→CD, B→CE, E→B. We decompose into R1 = (A, B, E), R2 = (A, C, D). Show that this decomposition is a lossless-join decomposition.
- R1∩ R2 = A; and A is a Key in R2. this is a lossless-join decomposition
- Show that this decomposition is not a dependencypreserving decomposition.
- $F1 = \{E \rightarrow B\} F2 = \{A \rightarrow CD\}$
- **■** (F1 U F2)+≠ F+
- Not a dependency preserving decomposition. B->CE is lost.

- FD Equivalency
- Consider $F=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ and $G=\{C \rightarrow B, B \rightarrow A, A \rightarrow C\}$
- Are F and G equivalent?
- If F covers G
 - All FDs in G can be derived from F

G:
$$C \longrightarrow B$$
 $B \longrightarrow A$ $A \longrightarrow C$

$$C_F^+ = CA\underline{B}$$
 $B_F^+ = BC\underline{A}$ $A_F^+ = AB\underline{C}$

- If G covers F
 - All FDs in F can be derived from G

F:
$$A \rightarrow B$$
 $B \rightarrow C$ $C \rightarrow A$ $A_G^+ = AC\underline{B}$ $B_G^+ = BA\underline{C}$ $C_G^+ = CB\underline{A}$

• Therefore, $F \equiv G$

- Minimal Cover
- Consider $F=\{A \rightarrow D, BC \rightarrow AD, C \rightarrow B, E \rightarrow A, E \rightarrow D\}$
- Find Minimal cover of F?
- All FDs have singleton RHS
 - BC \rightarrow AD: Decompose to BC \rightarrow A, BC \rightarrow D
 - $F=\{A\longrightarrow D, BC\longrightarrow A, BC\longrightarrow D, C\longrightarrow B, E\longrightarrow A, E\longrightarrow D\}$
- Find extraneous attribute in LHS
 - Examine LHS of each FD that has 2 or more attributes.
 - BC → A
 - $B^+ = B$ $C^+ = CBAD$ (eliminate B)
 - BC → D
 - $B^+ = B$ $C^+ = CBAD$ (eliminate B)
 - $F = \{A \longrightarrow D, C \longrightarrow A, C \longrightarrow D, C \longrightarrow B, E \longrightarrow A, E \longrightarrow D\}$

- $F = \{A \rightarrow D, C \rightarrow A, C \rightarrow D, C \rightarrow B, E \rightarrow A, E \rightarrow D\}$
- Eliminate redundant FDs
 - Examine each FD one at a time, see if FD is needed, if not eliminate
 - A → D
 - Pretend this FD does not exist and see if we can determine D from A
 - A+ = A (Keep)
 - C → A
 - C+ = CDB (Keep)
 - \blacksquare C \longrightarrow D
 - C⁺ = CADB (includes D, eliminate)
 - **■** C → B
 - C⁺ = CAD (Keep)
 - E → A
 - E⁺ = ED (Keep)
 - E → D
 - E⁺ = EAD (eliminate)

$$F = \{A \longrightarrow D, C \longrightarrow A, C \longrightarrow B, E \longrightarrow A\}$$

- Minimal Cover
- Consider $F=\{A \rightarrow G, F \rightarrow DE, G \rightarrow DB, D \rightarrow C, E \rightarrow D\}$
- Find Minimal cover of F?
- All FDs have singleton RHS
 - F \rightarrow DE: Decompose to F \rightarrow D, F \rightarrow E
 - $G \longrightarrow DB$: Decompose to $G \longrightarrow D$, $G \longrightarrow B$
 - $F=\{A \longrightarrow G, F \longrightarrow D, F \longrightarrow E, G \longrightarrow D, G \longrightarrow B, D \longrightarrow C, E \longrightarrow D\}$
- Find extraneous attribute in LHS
 - None No LHS with 2 or more attributes

- $F=\{A \rightarrow G, F \rightarrow D, F \rightarrow E, G \rightarrow D, G \rightarrow B, D \rightarrow C, E \rightarrow D\}$
- Eliminate redundant FDs
 - \blacksquare A \longrightarrow G
 - A⁺ = A (Keep)
 - F → D
 - F⁺ = FED (eliminate)
 - F→E
 - F⁺ = F (Keep)
 - G → D
 - G⁺ = GB (Keep)
 - \blacksquare G \longrightarrow B
 - G⁺ = GDC (Keep)
 - D → C
 - D⁺ = D (Keep)
 - E → D

- $F=\{A\longrightarrow G, F\longrightarrow E, G\longrightarrow D, G\longrightarrow B, D\longrightarrow C, E\longrightarrow D\}$
- E⁺ = E (Keep)

- Minimal Cover
- Consider $F=\{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
- Find Minimal cover of F?
- All FDs have singleton RHS
 - A \longrightarrow BC: Decompose to A \longrightarrow B, A \longrightarrow C
 - $F=\{A\longrightarrow B, A\longrightarrow C, B\longrightarrow C, AB\longrightarrow C\}$
- Find extraneous attribute in LHS
 - AB → C
 - $A^+ = ABC$
 - $B^+ = BC$ (both A and B are extra)
 - $F=\{A \rightarrow B, A \rightarrow C, B \rightarrow C\}$

- $F=\{A \rightarrow B, A \rightarrow C, B \rightarrow C\}$
- Eliminate redundant FDs
 - A → B
 - A⁺ = AC (Keep)
 - A → C
 - A⁺ = AB<u>C</u> (eliminate)
 - B→C
 - B+ = B (Keep)

$$F=\{A \rightarrow B, B \rightarrow C\}$$

- R(A, B, C, D, E)
- Consider $F=\{A \longrightarrow BC, CD \longrightarrow E, B \longrightarrow D, E \longrightarrow A\}$
- List all Candidate Keys of R?
 - $A^+ = ABCDE$
 - \blacksquare B⁺ = BD
 - \blacksquare CD⁺ = ABCDE
 - E⁺ = ABCDE

Normalization

- R(A, B, C, D, E, F)
- Consider $F=\{BC \rightarrow A, AC \rightarrow DE, F \rightarrow E\}$
 - BCF⁺ = ABCDEFCK={BCF}
- Is R in 1NF? Yes
- Is R in 2NF? No
 - R is in 1NF
 - Every non-candidate key attribute is fully functionally dependent on a candidate key (no partial dependency)
- Is R in 3NF? No
- Is R in BCNF? No

- R(A, B, C, D, E)
- Consider F={ABC→DE, D→A}
- List all Candidate Keys?
 - \blacksquare BC⁺ = BC
 - \blacksquare ABC⁺ = ABCDE
 - DBC⁺ = ABCDE
 - EBC⁺ = EBC CK={ABC, DBC}
- Do a loss-less join decomposition into BCNF that preserves dependency or show such decomposition not possible?
 - ABC DE (LHS contains KEY OK)
 - D→A (LHS dosr NOT contain KEY decompose)
 - R-Y: (BCDE) <u>X</u>Y: (<u>D</u>A)
 - ABC→DE Lost in R

Normalization

- R(A, B, C, D)
- Consider $F=\{AB \rightarrow C, C \rightarrow D\}$
- List all Candidate Keys?
 - $AB^+ = ABCD$ $CK=\{AB\}$
- Is R in 3NF?
 - First check if R in 2NF? Yes
 - R in 1NF
 - Every non-candidate key attribute is fully functionally dependent on a candidate Key (no partial dependency)
 - If R is in 3NF? No C→ D (decompose)
 - R-Y: (ABC)
 - <u>X</u>Y: (<u>C</u>D)

Indexing

Consider the B+ tree index shown below

Indexing

Show the tree that would result from inserting a data entry with key 9 into this tree.

Indexing

Show the B+ tree that would result from deleting the data entry with key 8 from the original tree.

- Consider the following XML DTD
 - <!ELEMENT bib (entry*)>
 - <!ELEMENT entry (book | collection)>
 - <!ELEMENT book (author, title)>
 - <!ELEMENT collection (author, title, publisher?, article+)>
 - <!ELEMENT article (author, title)>
 - <!ATTLIST entry (year CDATA #REQUIRED)>
 - <!ELEMENT author (#PCDATA)>
 - <!ELEMENT title (#PCDATA)

Does the following XML fragment conform to the DTD above?

```
<bib>
      <entry>
                 <year>2008</year>
                           <collection>
                                      <author>A. Turing</author>
                                      <title>Tests in CS</title>
                           </collection>
     <book>
                <title>The Hunger Games</title>
                <author>Suzanne Collins</author>
      </book>
</bib>
```

- No, because:
 - year is an attribute, not an element
 - Collection must have at least one article (but publisher can be missing)
 - Author must precede title in book
 - There is no closing "entry" tag

Write down the XML schema for the following XML document?

```
1: <?xml version="1.0"?>
 2: <BookStore xmlns="http://www.books.org"</pre>
               xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 3:
               xsi:schemaLocation=
 4:
 5:
                               "http://www.books.org
 6:
                                BookStore.xsd">
 7:
            <Book>
 8:
                    <Title>My Life and Times</Title>
 9:
                    <Author>Paul McCartney</Author>
10:
                    <Date>1998
11:
                    <ISBN>1-56592-235-2</ISBN>
12:
                    <Publisher>McMillin Publishing</Publisher>
13:
            </Book>
14:
            <Book>
15:
                    <Title>Illusions The Adventures of a Reluctant Messiah</Title>
16:
                    <Author>Richard Bach</Author>
17:
                    <Date>1977</Date>
18:
                    <ISBN>0-440-34319-4</ISBN>
                    <Publisher>Dell Publishing Co.</Publisher>
19:
20:
            </Book>
21:
            <Book>
22:
                    <Title>The First and Last Freedom</Title>
23:
                    <Author>J. Krishnamurti</Author>
24:
                    <Date>1954</Date>
25:
                    <ISBN>0-06-064831-7</ISBN>
26:
                    <Publisher>Harper &amp; Row</Publisher>
27:
            </Book>
28: </BookStore>
```

```
1: <?xml version="1.0" encoding="UTF-8"?>
 2: <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                targetNamespace="http://www.books.org"
 3:
 4:
                xmlns="http://www.books.org"
 5:
                elementFormDefault="gualified">
 6:
        <xsd:element name="BookStore">
            <xsd:complexType>
 7:
 8:
                <xsd:sequence>
 9:
                    <xsd:element ref="Book" minOccurs="1" maxOccurs="unbounded"/>
                </xsd:sequence>
10:
            </xsd:complexType>
11:
12:
        </xsd:element>
        <xsd:element name="Book">
13:
14:
            <xsd:complexType>
15:
                <xsd:sequence>
16:
                    <xsd:element ref="Title" minOccurs="1" maxOccurs="1"/>
17:
                    <xsd:element ref="Author" minOccurs="1" maxOccurs="1"/>
18:
                    <xsd:element ref="Date" minOccurs="1" maxOccurs="1"/>
19:
                    <xsd:element ref="ISBN" minOccurs="1" maxOccurs="1"/>
20:
                    <xsd:element ref="Publisher" minOccurs="1" maxOccurs="1"/>
21:
                </xsd:sequence>
            </xsd:complexType>
22:
23:
        </xsd:element>
24:
        <xsd:element name="Title" type="xsd:string"/>
25:
        <xsd:element name="Author" type="xsd:string"/>
26:
        <xsd:element name="Date" type="xsd:string"/>
27:
        <xsd:element name="ISBN" type="xsd:string"/>
28:
        <xsd:element name="Publisher" type="xsd:string"/>
29: </xsd:schema>
30:
```

Transactions

Consider the following two transactions and schedule (time goes from left to right). Is this schedule conflict-serializable? Explain why or why not.

T1: R1(A), W1(A), R1(B), W1(B), C

T2: R2(A), R2(B), C

The schedule is not conflict-serializable because the precedence graph contains a cycle.

