

Traficolligsoid wern k= MRm
2 milleur Radino
quad. Sleiduz, webbe mit R2 I = k = const.

P Elligsoider danstellt

Fine num Villar

Tine num Villar

Tine aim ni : x = R cora

g * R cor

g * R

= co² x w² Ixx + co² h w² Igg + co² y Izz + 2 cooq coop w² Ixg + 2 cooq coop w² Iyz

Vorlesung 22

$$E_{10} = \frac{1}{2} (\omega_{1}^{2} I_{0} + \omega_{0}^{2} I_{0} + \omega_{0}^{2} I_{0})$$

$$= \frac{L_{1}^{2}}{2I_{1}} + \frac{L_{0}^{2}}{2I_{0}} + \frac{L_{0}^{2}}{2I_{0}}$$

$$= \frac{L_{1}^{2}}{2I_{0}} + \frac{L_{0}^{2}}{2I_{0}} + \frac{L_{0}^{2}}{2I_{0}}$$

$$= \frac{L_{1}^{2}}{2I_{0}} + \frac{L_{0}^{2}}{2I_{0}} + \frac{L_{0}^{2}}{2I_{0}}$$

Konvention: Ta & Ib & Ie

Eulende Reideren:

Lalorseplen:
$$\frac{d\vec{L}}{dt} = \vec{0}$$

Um HAS: $\frac{d\vec{L}}{dt} = \frac{d\vec{L}}{dt} - (\vec{\omega} \times \vec{L})$
 $\vec{L}_2 \vec{0} = \frac{d\vec{L}}{dt} + (\vec{\omega} \times \vec{L})$
 $\vec{0}_4 = \vec{1}_4 \frac{d\omega_4}{dt} + (\vec{1}_5 - \vec{1}_5) \omega_6 \omega_5$
 $\vec{0}_6 = \vec{1}_5 \frac{d\omega_9}{dt} + (\vec{1}_9 - \vec{1}_5) \omega_9 \omega_9$
 $\vec{0}_6 = \vec{1}_5 \frac{d\omega_9}{dt} + (\vec{1}_9 - \vec{1}_5) \omega_9 \omega_9$
 $\vec{0}_6 = \vec{1}_5 \frac{d\omega_9}{dt} + (\vec{1}_9 - \vec{1}_5) \omega_9 \omega_9$

2, 15. Krifte freier symm. Kilisal

Ta = To + Te & 0 = 0

O = Wa + Lwb
O = Wb - Rug
O = Wc

Lasey: Wa = A and RH
Wb = A sic RH