Procesos estocásticos (86.09)

- GaussianaMultivariable
- Transformación afín

Vector Aleatorio (VeA)

Propiedades de la matriz de covarianza

Matriz de Covarianza

$$C_{\mathbf{X}} = \mathbb{E}\left[(\mathbf{X} - \mu_{\mathbf{X}})(\mathbf{X} - \mu_{\mathbf{X}})^T \right] \in \mathbb{R}^{n \times n}$$

Propiedades de la matriz de covarianza:

- Simétrica $C_X = C_X^T$
 - \circ Autovectores ortonormales $\mathbf{p}_i \perp \mathbf{p}_i$
- Semidefinida positiva C_x ≥0
 - Autovalores positivos $\lambda_i \ge 0$
- Diagonalización:

$$Cx = P \wedge P^t$$

$$P = \left(\begin{array}{c|cc} & & & & & \\ & p_1 & p_2 & p_3 \dots & p_n \\ & & \downarrow & & \downarrow & & \\ \end{array}\right)$$

$$\wedge = \left(\begin{array}{ccccc} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & \dots & \lambda_n \end{array} \right)$$

Vector aleatorio gaussiano

Vector Aleatorio Gaussiano

$$\mathbf{X} \sim \mathcal{N}(\mu_{\mathbf{X}}, C_{\mathbf{X}})$$

$$\int \mathbb{E}[\mathbf{X}] = \mu_{\mathbf{X}} = \mathbb{E}\left[\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}\right] = \begin{bmatrix} \mathbb{E}[X_1] \\ \vdots \\ \mathbb{E}[X_n] \end{bmatrix} \in \mathbb{R}^n$$

$$C_{\mathbf{X}} = \mathbb{E}\left[(\mathbf{X} - \mu_{\mathbf{X}})(\mathbf{X} - \mu_{\mathbf{X}})^T \right] \in \mathbb{R}^{n \times n}$$

Función de densidad normal multivariada

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(C_{\mathbf{X}})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_{\mathbf{X}})^T C_{\mathbf{X}}^{-1}(\mathbf{x} - \mu_{\mathbf{X}})\right)$$

Transformación Afín

Transformación Afín

Ejercicio 1

Ejercicio 1Transformación afín

Sea un vector aleatorio $\mathbf{X} = [X_1 \ X_2 \ ... \ X_n]^T$, y una transformación lineal $\mathbf{Y} = A \ \mathbf{X} + \mathbf{b}$, donde $A \in \mathbb{R}^{m \times n}$ y $\mathbf{b} \in \mathbb{R}^m$, Demostrar que para el vector aleatorio resultante $\mathbf{Y} \in \mathbb{R}^m$ se cumple:

- 1. E[Y] = A E[X] + b
- $2. \quad C_{Y} = A C_{X} A^{T}$

Ejercicio 1Transformación afín

1)
$$\mathbf{Y} = A\mathbf{X} + \mathbf{b}$$

$$\mathbb{E}[\mathbf{Y}] = A\mathbb{E}[\mathbf{X}] + \mathbf{b}$$

$$\mu_Y = A\mu_X + \mathbf{b}$$

$$\mathbf{Y} - \mathbb{E}[\mathbf{Y}] = A (\mathbf{X} - \mathbb{E}[\mathbf{X}])$$

$$C_{\mathbf{Y}} = \mathbb{E} \left[(\mathbf{Y} - \mathbb{E}[\mathbf{Y}]) (\mathbf{Y} - \mathbb{E}[\mathbf{Y}])^{T} \right] =$$

$$= \mathbb{E} \left[A (\mathbf{X} - \mathbb{E}[\mathbf{X}]) \{ A (\mathbf{X} - \mathbb{E}[\mathbf{X}]) \}^{T} \right] =$$

$$= \mathbb{E} \left[A (\mathbf{X} - \mathbb{E}[\mathbf{X}]) (\mathbf{X} - \mathbb{E}[\mathbf{X}])^{T} A^{T} \right] =$$

$$= A \mathbb{E} \left[(\mathbf{X} - \mathbb{E}[\mathbf{X}]) (\mathbf{X} - \mathbb{E}[\mathbf{X}])^{T} \right] A^{T} =$$

$$= A C_{\mathbf{X}} A^{T}$$

Ejercicio 2

Ejercicio 2Transformación afín

Sea un vector aleatorio $\mathbf{X} = [X_1 \ X_2 \ ... \ X_n]^T$, de media $\boldsymbol{\mu_X}$ y covarianza $\mathbf{C_X} = \mathbf{P_X} \wedge_{\mathbf{X}} \mathbf{P_X}^T$. Para una transformación afín $\mathbf{Y} = A \ \mathbf{X} + \boldsymbol{b}$, donde $A \in \mathbb{R}^{m \times n}$ y $\boldsymbol{b} \in \mathbb{R}^m$, demostrar que si $A = P_X^T$ y $\mathbf{b} = -A\boldsymbol{\mu_X}$, el vector aleatorio resultante $\mathbf{Y} \in \mathbb{R}^m$ cumple:

- 1. $\mu_{Y} = 0$
- 2. $C_y = \wedge_x$ (matriz diagonal)

Ejercicio 2Transformación afín

1. Si se define: $\mathbf{b} = -A \mu_{\mathbf{X}}$

$$\mathbf{Y} = A (\mathbf{X} - \mu_{\mathbf{X}})$$

 $\mu_{\mathbf{Y}} = \mathbb{E} [A (\mathbf{X} - \mu_{\mathbf{X}})] = \mathbf{0}$

2. Si se define: $A = P_X^T$

$$\begin{split} C_{\mathbf{Y}} &= \mathbb{E}\left[\left(\mathbf{Y} - \mu_{\mathbf{Y}} \right) \left(\mathbf{Y} - \mu_{\mathbf{Y}} \right)^T \right] = \mathbb{E}\left[\mathbf{Y} \mathbf{Y}^T \right] \\ &= \mathbb{E}\left[A \left(\mathbf{X} - \mu_{\mathbf{X}} \right) \left(\mathbf{X} - \mu_{\mathbf{X}} \right)^T A^T \right] \\ &= A \, \mathbb{E}\left[\left(\mathbf{X} - \mu_{\mathbf{X}} \right) \left(\mathbf{X} - \mu_{\mathbf{X}} \right)^T \right] A^T \\ &= A \, C_{\mathbf{X}} \, A^T = A \, P_X \wedge_X P_X^{\ T} A^T = \wedge_X \\ & \text{Diagonal} \end{split}$$

Transformación Afín - Descorrelación y centrado

Buscamos generar un VeA Y, centrado (media nula) y descorrelacionada (covarianza diagonal) a partir de otra VeA X arbitrario mediante una transformación afín.

$$\mathbf{Y} = A \, \mathbf{X} + \mathbf{b}$$
 $A \in \mathbb{R}^{\mathrm{mxn}} \, \mathbf{y} \, \mathbf{b} \in \mathbb{R}^{\mathrm{m}}$ tal que $C_{\mathbf{X}} = P_{X} \wedge_{\mathbf{X}} P_{X}^{\mathrm{T}}$

Centrado

Si se define: $\mathbf{b} = -A \mu_{\mathbf{X}}$

Descorrelación

Si se define: $A = P_X^T$

Transformación Afín - Centrado, descorrelación y Normalización

Buscamos generar un VeA Z normal estándar (media nula y covarianza identidad) a partir de otro VeA X arbitrario mediante una transformación afín.

$$\mathbf{Z} = A \mathbf{X} + \mathbf{b}$$
 $A \in \mathbb{R}^{m \times n} \mathbf{y} \mathbf{b} \in \mathbb{R}^{m}$ tal que $C_{\mathbf{X}} = P_{\mathbf{X}} \wedge_{\mathbf{X}} P_{\mathbf{X}}^{\mathsf{T}}$

tal que
$$C_X = P_X \wedge_X P_X^T$$

Centrado

Descorrelación y normalización

Transformación Afín

Actividad 1

Actividad 1Transformación afín- Coloreado

Se quiere utilizar una transformación lineal $\mathbf{Y} = A \mathbf{Z} + \mathbf{b}$ que permita convertir un vector aleatorio normal estándar con parámetros $C_{\mathbf{z}}$ y $\mu_{\mathbf{z}}$ en otro vector con parámetros $C_{\mathbf{y}} = [0.7 \ 0.8 \ ; 0.8 \ 1.75]$ y $\mu_{\mathbf{y}} = [0.8 \ 1.0]^{\mathsf{T}}$.

- 1. Genere un vector normal estándar de dos componentes $\mathbf{Z} = [Z_1 \ Z_2]^{\mathsf{T}}$ de 2000 realizaciones con media nula $\boldsymbol{\mu}_{\mathsf{Z}} = 0$ y covarianza $C_{\mathsf{Z}} = I$ (identidad). Haga un gráfico de dispersión del vector \mathbf{Z} (Z_2 vs Z_1) superpuesta a las curvas de nivel de la densidad conjunta $f_{\mathsf{Z}}(\mathbf{z})$. Grafique también los histogramas de cada componente.
- 2. Suponiendo que la diagonalización de la covarianza de Y es $C_{\gamma} = P \wedge P^{T}$, utilice la transformación afín para obtener el vector aleatorio Y a partir de las muestras generadas de Z. Haga un gráfico de dispersión del vector Y (Y_{2} vs Y_{1}) superpuesta a las curvas de nivel de la densidad conjunta $f_{\gamma}(y)$. Grafique también los histogramas de cada componente.

Sugerencia: límites $-4 < Z_1 < 4$; $-4 < Z_2 < 4$; $-4 < Y_1 < 4$; $-4 < Y_2 < 6$

Actividad 1 Transformación afín- Coloreado

Actividad 2

Actividad 2Transformación Afín - Descorrelación y centrado

Genere un vector aleatorio normal de media $\mu_{\rm X}$ y covarianza ${\rm C}_{\rm X}$ (de acuerdo a las definiciones abajo indicadas). Luego aplique una transformación para generar un nuevo vector ${\bf Y}$ descorrelacionado y de media nula, con N=2000 muestras. Haga los gráficos de dispersión de ambos vectores (${\bf X}$ e ${\bf Y}$) superpuestos a las curvas de nivel de la densidad ${\bf f}_{\bf Y}({\bf y})$. También grafique los histogramas de cada componente.

$$C_X = \begin{bmatrix} 0.70 & 0.90 \\ 0.90 & 1.75 \end{bmatrix} \qquad \qquad \boldsymbol{\mu}_X = \begin{bmatrix} 0.80 \\ 1.0 \end{bmatrix}$$

Sugerencia: límites $-4 < X_1 < 4$; $-4 < X_2 < 4$; $-4 < Y_1 < 4$; $-4 < Y_2 < 4$

Actividad 2 Transformación Afín - Descorrelación y centrado

Actividad 3

Actividad 3 Transformación Afín - Descorrelación, centrado y normalización

- Para el VeA X de la actividad anterior, genere un vector aleatorio normal estándar W ~ N(0,I) con N=2000 muestras, aplicando la transformación W = AX+b, eligiendo A y b adecuados.
- 2. Estime la media y la matriz de covarianza de W y verifique si se aproximan a lo esperado (~ N(0,I)).
- 3. Haga los gráficos de dispersión del VeA **W** superpuesto a las curvas de nivel teóricas esperadas. También grafique los histogramas de ambas componentes de **W**.

Sugerencia: límites $-4 < X_1 < 6$; $-4 < X_2 < 6$; $-4 < W_1 < 4$; $-4 < W_2 < 4$

Actividad 3
Transformación Afín - Descorrelación, centrado y normalización

Actividad 4

Actividad 4Transformación Afín

- 1. Genere un VeA $\mathbf{X} \sim N(\boldsymbol{\mu}_{\mathbf{x}}, C_{\mathbf{x}})$ donde $C_{\mathbf{x}} = [0.7 \ 0.8 \ ; 0.8 \ 1.75] \ y \, \boldsymbol{\mu}_{\mathbf{x}} = [0.8 \ 1.0]^{\mathsf{T}}$.
- 2. Asumiendo que se dispone de un conjunto de N=2000 muestras del vector **X**, encuentre una transformación afín **Y** = A**X**+**b** tal que con las muestras de **X** se pueda generar un vector **Y** ~ $N(\mu_{Y}, C_{Y})$ con C_{Y} = [0.7 -0.6; -0.6 1.75] y μ_{Y} = [-0.5 1.5]^T.
- 3. Haga los gráficos de dispersión del VeA **X** e **Y** superpuestos a las curvas de nivel teóricas esperadas. También grafique los histogramas de ambas componentes para cada vector.

Sugerencia: límites $-4 < X_1 < 6$; $-4 < X_2 < 6$; $-4 < Y_1 < 4$; $-4 < Y_2 < 6$