Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

1. (currently amended) A position sense interface for a micro-mechanical element,

comprising:

a substrate;

at least one proof mass, said at least one proof mass including a first proof mass having a first

section electrically isolated from a second section;

at least a first and a second electrically decoupled sense capacitors, each of said first and second

eapacitors capacitor comprising at least a first independent terminal on said first section of said first proof

mass and a second independent terminal on said substrate, said second capacitor comprising at least a first

independent terminal on said second section of said first proof mass and a second independent terminal

on said substrate; and

position detection circuitry comprising a differential charge integrator with input-sensed, output

driven feedback.

2. (original) The position sense interface of claim 1 wherein said integrator includes an

operational amplifier having an input and an output, and an input sensing, output driving feedback circuit.

3. (original) The position sense interface of claim 1 wherein said position detection circuitry

operates over a first non-overlapping time period and a second non-overlapping time period.

4. (original) The position sense interface of claim 2 wherein the feedback is common mode.

5. (original) The position sense interface of claim 2 wherein the differential charge integrator

senses common mode.

6. (original) The position sense interface of claim 2 wherein the feedback is time

multiplexed.

-2-

- 7. (original) The position sense interface of claim 2 wherein the feedback is frequency multiplexed.
 - 8. (original) The position sense interface of claim 2 wherein the feedback is continuous-time.
 - 9. (cancelled)
 - 10. (cancelled)
- 11. (original) The position sense interface of claim 1 further including a compensating charge on each said sense capacitor.
 - 12. (cancelled)
- 13. (original) The position sense interface of claim 1 further including a first and a second reference capacitor.
- 14. (original) The position sense interface of claim 13 wherein said first and said second reference capacitor are substantially equal.
- 15. (original) The position sense interface of claim 13 further including at least one binary weighted capacitor array in parallel with at least one reference capacitor.
- 16. (original) The position sense interface of claim 13 wherein a charge is applied to said position detection circuitry by a changing voltage applied to said reference capacitors.
- 17. (previously presented) The interface of claim 1, wherein at least one of said sense capacitors is formed as part of a micromechanical structure formed in or on said substrate; and said position detection circuitry is formed in and on said substrate, and includes an operational

amplifier and a negative feedback circuit.

18. (previously presented) The interface of claim 17 wherein said negative feedback circuit is

an input-sensing, output driving feedback circuit.

19. (currently amended) The interface of claim 17 wherein said micromechanical structure

further includes a first proof mass and a second proof mass.

20. (cancelled)

21. (currently amended) The interface of elaim 20 claim 19 wherein said first and second

sense capacitors are coupled in said feedback circuit.

22. (cancelled)

23. (cancelled)

24. (previously presented) The interface of claim 17 wherein said operational amplifier

includes at least a first input, and a first signal applied to said feedback circuit places said operational

amplifier in unity gain feedback during a first non-overlapping time period.

25. (previously presented) The interface of claim 17 wherein a second signal to said feedback

circuit places said operational amplifier in a charge integration mode during a second non-overlapping

time period.

26. (withdrawn) A position sense interface, comprising:

an input-sensed, output-driven common mode feedback loop; and

a differential operational amplifier having an input.

27. (withdrawn) The position sense interface of claim 26 further including a negative

- 4 -

feedback loop responsive to a differential input at the input of said differential operational amplifier.

28. (withdrawn) The position sense interface of claim 26 further including sense capacitors

in said feedback loop.

29. (withdrawn) The position sense interface of claim 28 wherein said sense capacitors are

formed by at least one proof mass.

30. (withdrawn) The position sense interface of claim 28 further including reference

capacitors.

31. (withdrawn) The position sense interface of claim 28 further including feedback

coupling capacitors.

32. (withdrawn) The position sense interface of claim 28 further including feedforward

capacitors

33. (withdrawn) The position sense interface of claim 28 further including unity gain

feedback switches.

34. (withdrawn) The position sense interface of claim 33 wherein said operational

amplifier includes at least a first input, and a first signal applied to said unity gain feedback switches

places said operational amplifier in unity gain feedback during a first non-overlapping time period.

35. (withdrawn) The position sense interface of claim 34 further including output zeroing

switches, wherein a second signal to said output zeroing switches places said operational amplifier in

charge integration mode during a second non-overlapping time period.

36. (withdrawn) The position sense interface of claim 28 further including output zeroing

switches.

- 5 -

37. (withdrawn) The position sense interface of claim 26 wherein said feedback loop operates over two recurring, non-overlapping time periods.

38. (withdrawn) The position sense interface of claim 28 wherein said feedback loop operates over two recurring, non-overlapping time periods and during said second time period, substantially equal charge is applied to sense capacitors.

39. (withdrawn) A micromechanical structure including a position sensing interface coupled to the micromechanical structure, comprising:

a substrate;

at least one proof mass connected to said substrate;

first and second sense capacitors formed by terminals located on said at least one proof mass and said substrate.;

an operational amplifier; and

an input sensed, output driven, common mode feedback loop having an output,

wherein said common mode feedback loop is coupled to said operational amplifier and said first and second sense capacitors.

40. (withdrawn) The microelectromechanical structure of claim 39 wherein said output is representative of acceleration applied to the micromechanical structure.

41. (withdrawn) The microelectromechanical structure of claim 39 wherein said microelectromechanical structure comprises an accelerometer.

42. (withdrawn) A microelectromechanical structure comprising:

a substrate;

a suspension;

at least one proof mass connected to said substrate by said suspension;

a first terminal attached to said proof mass;

a second terminal attached to said proof mass, and electrically isolated from said first

terminal;

a third terminal attached to said substrate; and

a fourth terminal attached to said substrate;

wherein said first terminal and said third terminal form electrodes of a first capacitor, and

said second and said fourth terminals form electrodes of a second capacitor.

43. (withdrawn) The microelectromechanical structure of claim 42 wherein said first and

second terminals are mechanically attached to said proof-mass, and electrically isolated from each other

by at least one dielectrically-lined isolation trench.

44. (withdrawn)The microelectromechanical structure of claim 42 wherein said suspension

comprises an electrical connection to said first terminal.

45. (withdrawn) The microelectromechanical structure of claim 42 wherein said suspension

further comprises:

a first conductive beam; and

a second conductive beam;

wherein said first conductive beam is electrically connected to said first terminal and second

conductive beam is electrically connected to said second terminal.

46. (withdrawn) The microelectromechanical structure of claim 42 wherein said proof-

mass is formed of silicon.

47. (new) A position sense interface for a micro-mechanical element, comprising:

a substrate;

at least one proof mass;

at least a first and a second electrically decoupled sense capacitors, each of said first and second

capacitors comprising at least a first independent terminal on said at least one proof mass and a second

independent terminal on said substrate; and

-7-

position detection circuitry comprising a differential charge integrator with input-sensed, output driven frequency multiplexed feedback.