Number of printed page /s _1_

Er. No..... Academic Year: 2023-24

Semester V (B.Tech.)

Jaypee University of Engineering & Technology, Guna

18B14PH542- Nano Science

Maximum duration: 1:30 Hour

Maximum Marks: 25

			S

- 1. There are total 5 questions. Marks are indicated against each question.
- 2. Write relevant answers only.
- Do not write anything on question paper except enrollment number.
- Symbols used have their usual meaning.

			Marks	COs
Q1.		Obtain energy eigen value and eigen function by solving Schrodinger	[5]	[CO2]
Q2.		steady state equation for a particle in a box of width 'L'. Discuss the Kronig-Penney model and derive the relation	[5]	[CO3]
Q3.		$P'\frac{\sin \alpha a}{\alpha a} + \cos \beta b = \cos ka$ Provide graphical solution to the given equation.	[5]	[CO3]
04	a).	$\left(\frac{mV_0b\ a}{\hbar^2}\right)\frac{\sin aa}{aa} + \cos \beta b = \cos ka$. Draw clean and neat diagram. Calculate the packing factor for the FCC structure.	[3]	[CO1]
Q4.	a) b)	Prove that C ₅ rotation axis doesn't exist.	[2]	[CO1]
25	a)	Calculate the density of state for 3D structure.	[3]	[CO2]
***************************************	b)	Normalized the wave function $\Psi = A \sin \frac{n\pi x}{L}$ and determine the constant	nt [2]	[CO2]
		'A'.		