Задание на шестую неделю.

№1

Построим по вероятностной машине Тьюринга M, принимающей язык $L \in RP$, недетерминированную MT M_1 , из каждой вершины которой выходят все соответствующие возможные пути (без вероятности их выбора), тогда при ее прохождение вероятность угадать правильный путь равна соответствующей вероятности. Тогда если, $x \in \bar{L}$ (т. е. M(x) = 0), то в M_1 не существует путя ведущего к финальному состоянию, и значит $M_1(x) = 0 = M(x)$. Если $x \in \bar{L}$ (т. е. $P(M(x) = 1) \geq 0.5$, то из построения хотя бы половина возможных путей ведет к финальному состоянию, значит один такой путь точно найдется, $\Rightarrow M_1(x) = 1. \Rightarrow M_1$ является MT для того же языка $L. \Rightarrow L \in NP$, т. к. принимается недетерминированной $MT. \Rightarrow RP \subseteq NP$.

№2

Обозначим кол-во простых чисел меньших n за $\Phi(n)$. C семинара:

$$k \le \frac{n}{\ln n} \ln 2$$

$$0.99 \frac{n}{\ln n} \le \Phi(n) \le 1,01 \frac{n}{\ln n}$$

Тогда на интеравале [n, 2n]:

$$\Phi([n,2n]) \ge 1,98 \frac{\ln n}{\ln n + \ln 2} - 1,01 \frac{n}{\ln n}$$

Значит, вероятность выбрать одно из чисел p_1, \ldots, p_k из $P \cap [n; 2n]$:

$$P_{osh} = \frac{k}{\Phi(n,2n)} \le \frac{\ln 2}{1,98 \frac{\ln n}{\ln n + \ln 2} - 1,01} \longrightarrow \frac{\ln 2}{0,97} < \frac{3}{4}$$

Значит при достаточно больших п ошибка не превосходит п. Оценим необходимое п для выполнения условия:

$$\ln n \ge \frac{\ln 2}{\frac{1.98}{\frac{4}{3} \ln 2 + 1.01} - 1} < 30$$

 \Rightarrow Условие выполняется при $n \geq e^{30} pprox 2^{43} pprox 1$ Тбайт.

а) Пусть в графе есть минимальный разрез из k ребер. Тогда вероятность того, что случайно выбранное ребро окажется одним из этих ребер: $P=\frac{k}{|E|}$. Если в графе есть вершина со степенью < k, то тогда взяв ее за первое множество, а оставшиеся вершины за второе, получим разрез графа из < k ребер. Противоречие, т. к. минимальный разрез из k ребер. Значит, все вершины имеют степень $\geq k$. $\Rightarrow |E| \geq \frac{k|V|}{2}$.

$$\Rightarrow P = \frac{k}{|E|} \le \frac{k}{\frac{k|V|}{2}} = \frac{2}{|V|}$$

б) Из первого пункта вероятность того, что на первом шаге не будет убрано ребро из минимального разреза: $P(S_1) = 1 - \frac{2}{n}$. Аналогично, на втором шаге: $P(S_2|S_1) = 1 - \frac{2}{n-1}$. На k-ом $P(S_k|S_1 \cap S_2 \dots S_{k-1}) = 1 - \frac{2}{n-k+1}$. Всего шагов будет n-2. Тогда, вероятность того, что на всех шагах не было вытащено ребро из минимального разреза:

$$P = P(S_1 \cap S_2 \dots \cap S_{n-2}) \ge P(S_1)P(S_2|S_1) \dots P(S_{n-2}|S_1 \cap S_2 \dots S_{n-3}) \ge$$

$$\geq (1-\frac{2}{n})\dots(1-\frac{2}{n-(n-2)+1})=2\frac{(n-2)!}{n!}=\frac{2}{n(n-1)}.$$

в) Из предыдущего пункта, вероятность «неуспеха» $P(ns) = \le (1-\frac{2}{n(n-1)}) \le (1-\frac{2}{n^2})$. Вероятность того, что «неуспех» повторится n^2 раз:

$$P(ns^{n^2}) = P(ns)^{n^2} \le (1 - \frac{2}{n^2})^{n^2} \le exp^{-2} \le 0.14.$$

 \Rightarrow Вероятность нахождения минимального разреза: P = 1 – P(ns^{n^2}) \geq 0.85.

№8(2)

(iv) Из 5в) чтобы найти минимальный разрез с вероятностью ϵ необходимо совершить $k=\frac{1}{2}\log\frac{1}{1-\epsilon}n^2$ итераций:

$$P(ns^k) = P(ns)^k \le (1 - \frac{2}{n^2})^k \le \exp^{-2 \cdot \frac{1}{2} \log \frac{1}{1 - \epsilon}} \le 1 - \epsilon.$$

Покажем, что $2SAT \in P$.

Пусть дано x. Построим, соответствующий ему ориентированный граф G(x). Вершины это все переменные из формулы и противоположные им литералы. Для каждого дизъюнкта вида $(a \lor b) = (\bar{a} \to b \land \bar{b} \to a)$ проведем ребра $(\bar{a},b),(\bar{b},a)$. Если в полученном графе для какой-то переменной x есть путь из \bar{x} в x и из x в \bar{x} , то значит из исходной формулы следует $\bar{x} \to x_{k_1} \to \dots x$, и $x \to x_{m_1} \to \dots \bar{x}$. Но эти два выражения не могут быть верны одновременно не при каких x. \Rightarrow искомая формула невыполнима.

Если в графе нет ни одного такого цикла, содержащего x и \bar{x} , тогда возьмем произвольную переменную x и \bar{x} , если есть ребро (x,\bar{x}) , то присвоим x=0, иначе x=1. Пусть для определенности x=1, тогда ту же операцию повторяем для всех вершин, соединенных c ней, пока все вершины не закончатся. Т. к. пути $x_k \bar{x_k} x_k$ нет, то в процессе не может возникнуть противоречий. Таким образом, получим набор переменных \bar{x} , который из построения является выполнимым. \Rightarrow За полиномиальное время можно свести задачу к задаче проверки наличия цикла c x_k и $\bar{x_k}$ в графе G.

Проверить для каждой из n вершины, есть ли путь из x_n в $\bar{x_n}$, и наоборот, можно за $O(n^2)$, запустив обход в глубину из вершины x_n и проверив зайдет ли он в вершину $\bar{x_n}$. Таким образом, вся задача решается за полиномиальное время.

Алгоритм случайных блужданий для решения 2SAT, разобранный на семинаре, доказывает, что $2SAT \in RP$.

№3

а) Обозначим за ВРР $_{\varepsilon}$ и ВРР $_{\varepsilon}$ классы с константой $\varepsilon < \varepsilon < 1/2$. Очевидно, что ВРР $_{\varepsilon} \subseteq$ ВРР $_{\varepsilon}$. Покажем, что ВРР $_{\varepsilon} \subseteq$ ВРР $_{\varepsilon}$: Возьмем к независимых вероятностных МТ для ВРР $_{\varepsilon}$, и будем определять результат по большинству полученных результатов. Тогда с увеличение к вероятность ошибки падает (при этом время увеличивается полиномиально) и при достаточно больших к станет не превосходить ε . Значит, если задача принадлежит ВРР $_{\varepsilon}$, то она принадлежит и ВРР $_{\varepsilon}$. \Rightarrow ВРР $_{\varepsilon} \subset$ ВРР $_{\varepsilon}$.

$$\Rightarrow$$
 BPP_{\varepsilon} = BPP_{\varepsilon} = BPP.

б) Пусть дан алгоритм, работающей за полином (за poly(n))в среднем с вероятностью ошибки 1/3. Преобразуем его в новый алгоритм следующим образом: как только время работы алгоритма превысило poly(n) (а это случается с вероятностью p<1) алгоритм определяет результат подбрасыванием монетки (т. е. выдает 1 или 0 с равной вероятностью). Тогда вероятность ошибки нового алгоритма:

$$p_{osh} = 1/3 \cdot (1-p) + p \cdot 1/2 < 1/2 \cdot (1-p) + p \cdot 1/2 = 1/2.$$

Таким образом, новый алгоритм работает за полиномиальное время с вероятностью ошибки < 1/2. Из пункта а) этот алгоритм попрежнему решает задачу класса BPP.

№4

(i) Пусть $b=(b_1,\ldots,b_n)$ и $a=(a_1,\ldots,a_n)$ два целочисленных вектора и $a\equiv b,$ а $x=(x_1,\ldots,x_n)^T,$ вектор описанный в условие. Оценим вероятность $P(a\cdot x=b\cdot x)$:

Т. к. $a{\equiv}b$, то $\exists i:a_i{\equiv}b_i$. Тогда заметим, что

$$a \cdot x = b \cdot x \Leftrightarrow (a_i - b_i)x_i = \sum_{j = i} (b_j - a_j)x_j \Leftrightarrow x_i = \frac{\sum_{j = i} (b_j - a_j)}{a_i - b_i}$$

 \Rightarrow x_i однозначно определяется оставшимися компонентами вектора x и векторами α и b. Но т. к. x_i генерируется рандомно, то вероятность того, что он окажется равным определенному значению: $P \le 1/N$. При умножении матриц S = AB и C на $x = (x_1, \dots, x_n)^T$, если $S \equiv C$ и Sx = Cx, то $\exists i : S_i \equiv C_i$, где C_i , S_i строки соответствующих матриц. Тогда,

$$\Rightarrow S_{\mathfrak{i}} \cdot x = (Sx)_{\mathfrak{i}} = (Cx)_{\mathfrak{i}} = C_{\mathfrak{i}} \cdot x.$$

А вероятность этого из вышесказанного P < 1/N.

- \Rightarrow Вероятность того, что ABx = Cx, но $AB \equiv C$: $P \leq \frac{1}{N}$. Таким образом, необходимо взять $N \geq \frac{1}{n}$.
- (iv) $(A(Bx)x) = (Cx)x \Leftrightarrow (ABx)^Tx = (Cx)^T$. А это равенство двух скалярных полиномов от $x^1, \dots x_n$ стпени два. \Rightarrow По лемме Шварца-Зиппеля вероятность ошибки: $P \le 2/N$. $\Rightarrow N > 2/p$.

Во втором случае, исходное равенство равносильно $(ABx)^T = (Cx)^Ty$ и вероятность его ошибки так же получается: P < 2/N.

№7

- (i), (ii) Сначала покажем (ii). Пусть колода равномерно перемешена, т. е. все перестановки равновероятны. После того как в нее вставили рандомно новую карту, все перестановки попрежнему должны быть равновероятны, иначе отсюда будет следовать, что вставление карты было зависимо от расстановки карт в колоде. Пользуясь (ii), докажем по индукции (i). Изначально под (n-1) одна карта и все перестановки очевидно равновероятны. Если на ком шаге под (n-1)ой картой равномерно перемешенная колода, то из (ii) после вставки новой карты она остается равновероятной.
- (iii) Пусть (n-1)ая карта в данный момент на ком снизу месте. Под нее вставят карту через одну итерацию с вероятностью $\frac{k}{n}$, через две с $\frac{k(n-k)}{n^2}$, и т. д. \Rightarrow Матожидание кол-ва итераций после которых под нее вставят одну карту:

$$E_k = \sum_{i=1}^{\infty} \frac{k(n-k)^{i-1}}{n^i} \cdot i = \frac{k}{n-k} \sum_{i=1}^{\infty} i \cdot (\frac{n-k}{n})^i = \frac{k}{n-k} \cdot \frac{\frac{n-k}{n}}{(1-\frac{n-k}{n})^2} = \frac{n}{k}.$$

Алгоритм завершит работу, когда $\mathfrak{n}-1$ карта пройдет все места снизу доверху и будет вставлена, значит матожидание кол-ва итераций цикла:

$$E = \sum_{k=2}^{n} E_k = n/2 + n/3 + \dots + n/n = n(\ln n + C) = \Theta(n \ln n)$$

Предпоследний переход получен по формуле Эйлера для частичной суммы гармонического ряда.

$N_{9}8(1)$

Докажем теорему Татта: B графе G есть совершенное паросочетание \Leftrightarrow детерминант матрица $Tamma\ D(G)\equiv 0$.

$$D = \sum_{k=1}^{n!} (-1)^{y(k)} a_{1y_1(k)} \dots a_{ny_n(k)},$$

где $y_1(k),\ldots y_n(k)$ это k-ая перестановка п множества вершин $\{1,,n\}$. Поставим в соответствие каждому ненулевому произведению $P_k=(-1)^{y(k)}\alpha_{1y_1(k)}\ldots\alpha_{ny_n(k)}$ граф G_k , с п вершинами и ребрами между $(1,y_1(k)),\ (2,y_2(k)),$ и т. д. Получим граф, покрывающий все вершины исходного и в котором из каждой вершины выходит ровно одно ребро и входит одно. Этот граф разбивается на циклы. Если в какомнибудь G_k все циклы четной длины, то тогда легко разбить каждый цикл на совершенные паросочетания, а значит и весь граф G_k . Т. к. все ребра из графа G_k есть и в G, то это разбиение так же разбивает и исходный граф G на совершенные паросочетания.

Если в каждом из G_k есть цикл нечетной длины, то рассмотрим произвольный G_m , соответствующей P_m . Поменяем направление ребер во всех его нечетных циклах (суммарное число вершин в этих циклах 2t+1). Заметим, что полученный граф G_n так же принадлежит мн-ву графов вида G_k , при этом соответствующая G_n получается из G_m четным кол-вом перестановок: 2t, т. е. $(-1)^{y(m)}=(-1)^{y(n)}$. А т. к. в них различаются только напраления у начетного кол-во ребер, то нечетное кол-во множителей $a_{iy_i(n)}=-a_{iy_i(n)}. \Rightarrow P_m=-P_n$. Таким образом, все графы вида G_k , можно разбить на такие пары (они, очевидно не пересекаются). Т. к. в сумме произведения, соответсвующие оной паре, дают нуль, то и детерминант матрице будет равен нулю. $\Rightarrow D(G)\equiv 0 \Rightarrow$ в графе G есть совершенное паросочетание. Покажем в другую сторону:

Пусть в графе G есть совершенное паросочетание. Посчитаем $D=\sum_{k=1}^{n!}P_k$. Как было показано выше, слагаемые, соответствующие графам, где есть нечетные циклы, сокращаются друг с другом. Таким образом, в сумме остаются только слагаемые, соответствующие графам с четными циклами, которые можно разбить на совершенные паросочетания. Сумма таких P_k из построения не может равняться нулю. $\Rightarrow D(G)\equiv 0$.

$N_{9}8(2)$

(i) Обозначим асимптотику функции СТЯГИВАНИЕ(G,k), где n число вершин в G, за S(n,k). Тогда рекуррентная сложность для МИНИРАЗРЕЗ состоит из четырех реккурсивных вызовов, функции СТЯ-ИВАНИЯ и операция нахождения минимума (асимпттика которой равна кол-ву ребер, т. е. $\theta(n^2)$:

$$R(n) = 4R(n/2) + 4F(n, n/2) + \theta(n^2).$$

(ii) Алгоритм СТЯГИВАНИЕ выполняет операцию сложностью $\Theta(\mathfrak{n})$ $\mathfrak{n}-k$ раз. Значит сложность данной функции $\Theta(\mathfrak{n}(\mathfrak{n}-k))$. Тогда из предыдущего пункта:

$$R(n) = 4R(n/2) + \theta(n^2).$$

Из Мастер теоремы: $R(n) = \theta(n^2 \log n)$.