YonseiESC 2020 SPRING

FINAL PROJECT

1조 곽현지 서경덕 손동규 유은영 정규형

목차

추가 EDA

- 1) 변수 추가 및 수정
- 2) Outlier handling
- 3) NA imputation

Modeling

- 1) Over Sampling
- 2) 최종 모델 선정

결과 및 해석

1. 추가 EDA

1) 변수 추가 및 수정: 21번 변수

- Attribute 21: Sales(n) / Sales(n-1) => 매출액 증가율
- 1차 EDA: NA가 많아서 삭제하기로 결정
- 하지만 NA값이 대부분 부도기업에서 발견되어 "신생기업"을 나타내는 변수 로 바꿀 수 있다고 판단
- 신생기업의 경우 n-1년도 매출 정보가 존재하지 않음

⇒ 신생기업: 1, 기존기업:0

	부도수	부도율
신생	33	0.0051
기존	79	0.2188

1. 추가 EDA

2) 변수 추가 및 수정 - 변수 추가

① X55: Working Capital -> X66: 순운전자본회전기일

: 여러 기업을 비교해야하는 경우 단일 항목은 의미 없음

: 기업의 활동성 지표인 '순운전자본회전기일' 로 교체

② X65: Ebit 대 매출액

: 다른 변수들간 correlation이 높아 사용하지 않음.

2) 변수 추가 및 수정

수익성

: 기업의 경영성과를 측정하는 비율.

: 자산 이용의 효율성, 이익창출능력 등에 대한 평가지표로 활용

- X1: 총자산 이익률
- X13, X39

안전성

: 자산 & 자본의 관계 비율.

: 단기채무지불능력 경기대응 능력을 측정하는 지표로 활용

• X4: 유동비율

• X6: 유보율

• X51: 단기부채비율

• X5, 15, 26

활동성

: 자산 & 자본의 회전율.

: 기업에 투하된 자본이 얼마나 활발하게 운용되었는가를 나타내는 비율.

• X9: 총자산회전율

• X44: 최권회전일수(역수)

• X47: 재고자산전환일(역수)

• X66: 순운전자본회전기일

• X20

3) Outlier handling

- 1) Multivariate outlier detection 방식
- 2) Local Outlier Factor(LOF)
- 3) Isolation Forest

4) NA imputation for 'test set'

- Sales. Short-term liabilites=0인 경우
- Inventory = 0인 경우 (409개) (X45, X60)
- Fixed asset, current asset=0인 경우 (160~200개) (X28, X53, X54, X64)

```
> score(bankrupt1)
[1] 0.2222222
> score(bankrupt)
[1] 0.3809524
```

- Liabilities 계열이 0인 경우 (X4, X12, X17)
- KNN method (X24, X27, X32, X40, X41, X46, X51, X61)

1) Over Sampling

- Imbalanced data의 경우 정확도가 높아도 재현율이 낮음.
- F1 score가 낮은 문제 해결을 위한 Over sampling: 'SMOTE'

SMOTE?

▼

SMOTE (Synthetic Minority Over-sampling Technique)

: SMOTE는 데이터의 개수가 적은 클래스의 표본을 가져온 뒤 임의의 값을 추가하여 새로운 샘플을 만들어 데이터에 추가하는 오버 샘플링 방식으로 동작

1) Over Sampling

- Imbalanced data의 경우 정확도가 높아도 재현율이 낮음.
- F1 score가 낮은 문제 해결을 위한 Over sampling: 'SMOTE'

```
lda = LDA().fit(X train, y train)
print('LDA Test :', f1_score(y_test, lda.predict(X_test), pos_label=1, average='binary'))
confusion_matrix(y_test, lda.predict(X_test))
LDA Test : 0.411214953271028
array([[1817, 10],
      [ 53, 22]])
for i in range(5):
  sm = SMOTE(sampling_strategy=(i+1)/10, random_state=2020)
  X_sm, y_sm = sm.fit_resample(X_train, y_train)
  X_sm = pd.DataFrame(X_sm, columns = bank.columns[0:18])
  lda_sm = LDA().fit(X_sm, y_sm)
  print('LDA Test w/ sampling strategy', (i+1)/10, ":", f1_score(y_test, lda_sm.predict(X_test), pos_label=1, average='binary'))
  print(confusion matrix(y test, lda sm.predict(X test)))
LDA Test w/ sampling strategy 0.1 : 0.4036697247706422
[[1815 12]
 [ 53 22]]
LDA Test w/ sampling strategy 0.2 : 0.39999999999999997
[[1814 13]
[ 53 22]]
LDA Test w/ sampling strategy 0.3 : 0.3893805309734513
[[1811 16]
[ 53 22]]
LDA Test w/ sampling strategy 0.4 : 0.41025641025641024
[[1809 18]
[ 51 24]]
LDA Test w/ sampling strategy 0.5 : 0.4033613445378151
[[1807 20]
[ 51 24]]
```

2) 최종 모델 선정 - f1 score 비교

<NA deleted ver.>

```
| score_logit = []
  for train_index, test_index in cv.split(X_scaled, y):
   X_train, X_test = X_scaled.iloc[train_index, :], X_scaled.iloc[test_index, :]
   y_train, y_test = y.iloc[train_index], y.iloc[test_index]
   Logit = LR(solver='sag', max_iter=10000, multi_class='auto').fit(X_train, y_train)
    score_logit.append(f1_score(y_test, Logit.predict(X_test), pos_label=1, average='binary'))
  print(np.mean(score logit))
  0.4093003441471685
| score_lda = []
  for train_index, test_index in cv.split(X, y):
   X_train, X_test = X.iloc[train_index, :], X.iloc[test_index, :]
   y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    Ida = LDA().fit(X_train, y_train)
    score_Ida.append(f1_score(y_test, Ida.predict(X_test), pos_Iabel=1, average='binary'))
  print(np.mean(score_Ida))
  0.41222446804576457
```

<NA imputed ver.>

```
score_logit = []
for train_index, test_index in cv.split(X_scaled, y): # StandarfScaling 적용
 X_train, X_test = X_scaled.iloc[train_index, :], X_scaled.iloc[test_index, :]
 y_train, y_test = y.iloc[train_index], y.iloc[test_index]
 Logit = LR(solver='sag', max iter=10000, multiclass='auto').fit(X_train, y_train)
 score_logit.append(f1_score(y_test, Logit.predict(X_test), pos_label=1, average='binary'))
print(np.mean(score_logit))
0.32776221471027384
score_lda = []
for train_index, test_index in cv.split(X, y):
 X_train, X_test = X.iloc[train_index, :], X.iloc[test_index, :]
 y_train, y_test = y.iloc[train_index], y.iloc[test_index]
  Ida = LDA().fit(X train, v train)
 score_Ida.append(f1_score(y_test, Ida.predict(X_test), pos_label=1, average='binary'))
print(np.mean(score_Ida))
0.33021407495028343
```

	NA deleted	NA imputed
Logistic	0.409	0.238
LDA	0.412	0.330
Adaboost	0.326	0.301
Random Forest	0.393	0.312
Gradient Boost	0.406	0.151
Decision Tree	0.288	0.277

2) 최종 모델 선정 - Test set 비율

	정상	부도	비율			
Logistic	2893	44	65.75 : 1			
LDA	2888	49	58.94:1			
Adaboost	2873	2873 64				
Random Forest	Adaboost와 동일					
Decision tree	2781	156	17.83 : 1			

정상기업으로 분류하는 비율이 너무 높음!!

Train set 비율과 제일 비슷하게 분류 But, f1 score가 너무 낮아 단독 사용 불가

2) 최종 모델 선정 - Voting Classifier

Adaboost, Randomforest, Decision tree

=> Soft voting classifier 사용

	정상	부도	비율
Voting Classifier	2790	147	18.98 : 1

```
from sklearn.ensemble import VotingClassifier
vc = VotingClassifier(estimators=[('abc', abc), ('rf', rf), ('dc', dc)], voting='soft').fit(X, y)
vc_predict = vc.predict(bank_test)
np.sum(vc_predict==0)
```

2790

3. 결과 및 해석

자료의 한계1: 재무정보 중 성장성의 부재

[성장성]

기업의 경쟁력과 미래의 수익창출능력의 지표

총자산 증가율(Growth rate of total assets)

기업에 투하된 총자산이 얼마나 증가하였는가를 나타내는 비율로서 기업의 전체적인 성장성을 측정하는 지표이다.

■ 총자산 증가율 = <u>당기말 총자산</u> x 100 - 1

유형자산 증가율(Growth rate of tangible assets)

토지, 건물, 기계장치 등 유형자산에 대한 투자가 어느정도 이루어졌는가를 보여주는 지표.

■ 유형자산 증가율 <u>당기말 유형자산</u> x 100 - 1

유동자산 증가율(Growth rate of current assets)

기업의 경상적인 영업활동을 위하여 소유하는 유동자산이 얼마만큼 늘어났는가를 나타내는 지표이다.

■ 유동자산 증가율 <u>당기말 유동자산</u> x 100 - 1

3. 결과 및 해석

2) 자료의 한계2: 기업의 비재무정보 부재

[기업 신용평가모형에서 활용되어 온 데이터 항목]

	구분			주요 데이터 항목				
	기업	재무정보		• 재무제표(재무상태표, 손익계산서, 현금흐름표) • 재무지표(성장성, 활동성, 수익성, 유동성 등의 지표)				
	기급 내부 요인			 평가자의 주관적인 판단에 의한 정성적 위험요소를 계량화(경영위험, 영업위험, 산업위험 등) 기업 개황, 경영자 능력, 업력, 회사규모 등 				
정형 데이터	기업 외부 요인	비재무 정보	금융시장 정보	 주가, 거래량, 종합주가지수, 변동성지수, 시가총액, 주가 관련 비율 등 회사채 가격, 채권 관련 비율 등 				
			거시경제 지표	GDP, 산업생산지수, 설비가동률, 생산능력지수 등 경기변동 및 기업 생산성 판단 지표 기업경기실사지수 등 경기전망에 대한 심리 지수 금리, 환율 등 거시경제 관련 정보				
비정형	데이터	뉴스, SNS 등의 텍스트 정보		• 뉴스나 SNS 등에서 추출한 기업 관련 키워드 정보				

- 실제 기업의 신용평가 모형에 사용되는 정보는 재무정보에 국한되지 않음
- 비재무정보 뿐만 아니라 미디어 관련 정보도 매우 중요!

		\bigcirc	ŞА			
		Q	X			