Review: exists. Lim f(ath)-f(a) (if exists)
Lim f(ath)-f(a) (if exists)

Lim f(ath)-f(a) (if exists) = rate of change of f at x=a. a ath differentiable on I (=) fix) is differentiable at each point in I. 2. f is differentiable at x=a => f(x) is continuous at x=a. ((imf(x)=f(a)) 3. The derivative of f(x): $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ fia) = lim tath)-fia) (if exists). fia) is the derivative of differentiable at $x=a \in f'(a)$ exists.

Some other notations for
$$f'(x)$$
:

 $y = f(x)$.

 $f'(x) = y' = \frac{d}{dx}y = \frac{d}{dx}f = Dy = Df$

we present

 $f'(x) = y' = \frac{d}{dx}y = \frac{d}{dx}f = Dy = Df$

where $f(x) = f(x)$ is the sequence of the constant number sing.

(We can also write $\frac{dy}{dx}$ and $\frac{df}{dx}$).

 $f'(a) = y' \Big|_{x=a} = \frac{dy}{dx} \Big|_{x=a} = Df$
 $f'(x) = y' \Big|_{x=a} = \frac{dy}{dx} \Big|_{x=a} = Df$

The can use $f'(x) = f'(x) = f'(x) = f'(x)$

We can use $f'(x) = f'(x) = f'(x) = f'(x)$

We can use $f'(x) = f'(x) = f'(x) = f'(x)$

We can use $f'(x) = f'(x) = f'(x) = f'(x)$

We can use $f'(x) = f'(x) = f'(x) = f'(x)$

The derivative of the constant number $f'(x) = f'(x)$

where $f'(x) = f'(x) = f'(x)$

we derivative of the constant number $f'(x) = f'(x)$

the devivortive of sinx of x=a

Computation of derivatives
also called "compute the derivative by first principle"

(. compute the derivative by definition:
$$\frac{dy}{dx} = f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(1) $f(x) = C$. (C is a constant), $f(x) = 0$.

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0$$

(2) $f(x) = x^n$, (n is a positive integer).

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{(x+h)^n + x^n}{h} = \lim_{h \to 0} \frac{(x+h)^n + (x+h)^n + x^n}{h} = \lim_{h \to 0} \frac{(x+h)^n + x^n}{h} = \lim_{h \to 0}$$

 $f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^{n} - x^{n}}{h} = \lim_{h \to 0} \frac{(x+h) - x^{n}}{h} = \lim_{h \to 0} \frac{(x+h) - x^{n}}{h}$ $= \lim_{h \to 0} (\chi + h)^{n+1} + (\chi + h) \cdot \chi + \dots + \chi^{n+1} = \chi^{n+1} + \chi^{n-2} + \chi^{n+1} + \chi^{n+1} = \eta - \chi^{n+1}$ If f(x) = x, then f(x) = 1.

If $f(x) = \chi^2$, then $f(x) = 2\chi$. If fix) = x', then fix) = 3.x'.

(3)
$$f(x) = \int x$$
. $f(x) = \frac{1}{2\sqrt{x}}$.

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{(\sqrt{x+h} + \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h}$$

$$= \lim_{h \to 0} \frac{x+h-x}{\sqrt{x}(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

(4). $f(x) = \sin x$. $f(x) = \cos x$. Recall the addition formula: $\sin(a+b) = \sin a \cdot \cosh + \cos a \cdot \sinh b$

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cdot \cosh + \cos x \cdot \sinh - \sin x}{h}$$

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin x \cdot \cosh + \cos x \cdot \sinh - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} \cdot \frac{\cosh + \dim \cos x}{h} \cdot \frac{\sinh h}{h}$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} \cdot \frac{\cosh h}{h} + \lim_{h \to 0} \frac{\cosh x}{h} \cdot \frac{\sinh h}{h}$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} \cdot \frac{\sinh h}{h} \cdot \frac{\sinh$$

$$= \sin x \cdot 0 + \cos x \cdot 1 = \cos x. \qquad = 1 \cdot 0 = 0.$$
(5). $f(x) = \cos x$. $f(x) = -\sin x$ (using the similar method).

2. Pales of differentiation Suppose that
$$f$$
 and g are differentiable.

() $(f+g)'(x) = f'(x) + g'(x)$ (2) $(c+f)'(x) = c + f(x)$. (c is a constant).

(3) $(f+g)'(x) = f'(x) + f(x) + g(x+h) - f(x) + g(x+h) - f(x)$ (f is a constant).

(4) f in f

Example 1:
$$f(x) = \frac{1}{x^n} = x^{-n}$$
. (n is a positive integer).

$$f(x) = \frac{(1)! \cdot x^n - 1 \cdot (x^n)!}{(x^n)^2} = \frac{-n \cdot x^{n+1}}{x^{2n}} = (-n) \cdot x$$

In general, $f(x) = x^n$, (n is an integer) \Rightarrow $f(x) = n \cdot x^{n+1}$.
Example 2: $f(x) = f(x) = f(x) = \frac{sin x}{con x}$. $f(x) = \frac{sin x}{con x} = \frac{sin x}{con x}$. $f(x) = \frac{sin x}{con x} = \frac{sin x}{c$

3. The Chain rule -> compute the derivative of composite functions.

Suppose 9 is differentiable at X and f is differentiable at 91x).

Then the composite function fog = f(g(x)) is differentiable at x.

and $(f \circ g)'(x) = f'(g(x)) \times g'(x)$.

rate of change of rete of change rate of change f(g(x)) at χ of f at $g(\chi)$ of g at χ .

Another statement: If y = f(u), and u = g(x)

then
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
.

Notice: $y = f(u) = f(g(x)) = (f \circ g)(x)$ $\frac{dy}{dx} = (f \circ g)'(x) = (f(g(x)))'$ $\frac{dy}{dx} = f'(u) = f'(g(x))$. $\frac{du}{dx} = g'(x)$.

the derivative of figin) at x. The Chain rule: (f(g(x)) $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{dy}{dx}. \qquad y = f(u), \quad u = g(x).$ Example: $y = (2x^2 + 3x)^3 = f(g(x))$ $y = f(u) = u^3$. $u = g(x) = 2x^2 + 3x$. $f(u) = 3u^2 \qquad g(x) = 4x + 3.$ $(f(g(x)))' = f'(g(x)) \cdot g(x) = 3 \cdot g(x) \cdot g(x) = 3(2x^{2}+3x)^{2} \cdot (4x+3).$ 3: $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3u^2 \cdot (4x+3) = 3(2x^2 + 3x)^2 \cdot (4x+3)$ Example z. $y = f(x) = x^{\frac{1}{2}}$. (pand q are two integers). Our aim is to compute $\frac{dy}{dx}$. Let $h(x) = y^2 = x^p$ $h(x) = x^{p} \Rightarrow \frac{dh}{dx} = \frac{d(x^{t})}{dx} = p \cdot x^{p}$ By the chain rule, we have $\frac{dh}{dx} = \frac{dh}{dy} \cdot \frac{dy}{dx} = 9 \cdot y^{27} \cdot \frac{dy}{dx}$ $f(x) = \chi^n$ (n is a roticul number) $\Rightarrow f(x) = n \cdot \chi^{n+1}$ In general, $f(x) = (g(x))^n$ (n is a rotical number) $\Rightarrow f(x) = h \cdot (g(x))^{n-1} \cdot g(x)$

(consider f(u)= u", u=g(x).).