Credibility Dynamics and Disinflation Plans

Rumen Kostadinov NYU Francisco Roldán NYU

July 2019

MOTIVATION

- · Macro models: expectations of future policy determine current outcomes
- · Policy is typically set assuming commitment or discretion
- · Governments actively attempt to influence beliefs about future policy
 - · Forward guidance, inflation targets, fiscal rules
- This paper: rational-expectations theory of government credibility
 - Insights from reputation models

 ▶ Kreps-Wi
- Application in a (modern) Barro-Gordon setup

1

MOTIVATION

- · Macro models: expectations of future policy determine current outcomes
- · Policy is typically set assuming commitment or discretion
- · Governments actively attempt to influence beliefs about future policy
 - · Forward guidance, inflation targets, fiscal rules
- · This paper: rational-expectations theory of government credibility
 - Insights from reputation models
- · Application in a (modern) Barro-Gordon setup

1

OUTLINE

- What is reputation?
 - · Private sector posterior belief that the government is committed to a particular plan
- Given a plan [Continuation equilibrium]
 - Larger departures are easier to detect
 - Crucial feature: noise partially masks government's current choice
 - · 'More time-inconsistent' plans have a more negative average drift of reputation
- Planner anticipates credibility dynamics of plans [Equilibrium

Planner chooses a . In application, gradual disinflation back-loaded plan . No real inertia, but good for incentives

Consider the limit when initial reputation vanishes to zero

OUTLINE

- What is reputation?
 - · Private sector posterior belief that the government is committed to a particular plan
- Given a plan [Continuation equilibrium]
 - · Larger departures are easier to detect
 - · Crucial feature: noise partially masks government's current choice
 - · 'More time-inconsistent' plans have a more negative average drift of reputation
- Planner anticipates credibility dynamics of plans [Equilibrium

Consider the limit when initial reputation vanishes to zero

OUTLINE

- What is reputation?
 - · Private sector posterior belief that the government is committed to a particular plan
- Given a plan [Continuation equilibrium]
 - · Larger departures are easier to detect
 - · Crucial feature: noise partially masks government's current choice
 - · 'More time-inconsistent' plans have a more negative average drift of reputation
- Planner anticipates credibility dynamics of plans [Equilibrium

	Main result
Planner chooses a back-loaded plan	In application, gradual disinflationNo real inertia, but good for incentives

· Consider the limit when initial reputation vanishes to zero

OUR WANT OPERATOR

• Goodfriend and King (2005) describe the Volcker disinflation

LITERATURE

- Sustainable plans anything goes from Kydland and Prescott (1977), Chari and Kehoe (1990), Phelan and Stacchetti (2001)
- Reputation without noise zero inflation at onset

 Milgrom and Roberts (1982), Kreps and Wilson (1982), Barro (1986), Backus and Driffill (1985),

 Barro and Gordon (1986), Sleet and Yeltekin (2007)
- Preference uncertainty with noise announcements irrelevant Cukierman and Meltzer (1986), Faust and Svensson (2001), Phelan (2006), etc
- · Reputation with noise

Commitment: Lu (2013), Lu, King, and Pastén (2008, 2016) Static plans: Faingold and Sannikov (2011)

ROADMAP

- Model
- · Continuation equilibria conditional on a plan
- Plans
- Conclusion

FRAMEWORK

- A government dislikes inflation and output away from a target $y^* > 0$

$$L_t = \mathbb{E}_t \left[\sum_{s=0}^{\infty} \beta^s \left((y^* - y_{t+s})^2 + \gamma \pi_{t+s}^2 \right) \right]$$

· A Phillips curve relates output to current and expected future inflation

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right]$$

- The government controls inflation only imperfectly (through g_t)

$$\pi_t = g_t + \epsilon_t$$

with $\epsilon_t \stackrel{iid}{\sim} F_{\epsilon}$

REPUTATION

- · The government can be rational or one of many 'behavioral' types
 - Behavioral types $c \in C$
 - Type c is committed to an inflation plan $\{a_t\}_{t=0}^{\infty}$
 - For simplicity let all plans have $a_{t+1} = \phi_{c}(a_{t})$ [Finding the state is an art]
- Behavioral types have (total) probability z
 - \cdot Conditional on behavioral, probability u over $\mathcal C$
- Private sector knows z and ν
 - Does inference over the government's type
 - Uses announcement and inflation choices

REPUTATION

- The government can be rational or one of many 'behavioral' types
 - Behavioral types $c \in C$
 - Type c is committed to an inflation plan $\{a_t\}_{t=0}^{\infty}$
 - For simplicity let all plans have $a_{t+1} = \phi_c(a_t)$ [Finding the state is an art]
- Behavioral types have (total) probability z
 - \cdot Conditional on behavioral, probability u over $\mathcal C$
- Private sector knows z and ν
 - Does inference over the government's type
 - · Uses announcement and inflation choices

BEHAVIORAL TYPES

- What is the set C?
 - \cdots and associated possible ϕ_c functions
- Consider $\{a_t\}_t$ paths characterized by
 - · Starting point ao
 - Decay rate ω
 - Asymptote \(\chi \)

$$a_t = \chi + (a_0 - \chi)e^{-\omega t}$$
$$\phi(a) = \chi + e^{-\omega}(a - \chi)$$

BEHAVIORAL TYPES

• What is the set C?

- \cdots and associated possible ϕ_c functions
- Consider $\{a_t\}_t$ paths characterized by
 - · Starting point ao
 - Decay rate ω
 - Asymptote χ

$$a_t = \chi + (a_0 - \chi)e^{-\omega t}$$

$$\phi(a) = \chi + e^{-\omega}(a - \chi)$$

GAMEPLAY

- At t = 0, inflation targets are announced
 - Type $\mathbf{c} \in \mathcal{C}$ says \mathbf{c}
 - Rational type strategizes announces r possibly $\in \mathcal{C}$
- At time t ≥ o, the government sets inflation
 - Behavioral type c ∈ C implements g_t = a^c_t
 - Rational type acts strategically chooses $a_t \le a_t^c$

GAMEPLAY

- At t = 0, inflation targets are announced
 - Type $c \in C$ says c
 - Rational type strategizes announces r possibly $\in \mathcal{C}$
- At time t ≥ o, the government sets inflation
 - Behavioral type c ∈ C implements g_t = a_t^c
 - Rational type acts strategically chooses $a_t \leq a^c$

GAMEPLAY

- At t = 0, inflation targets are announced
 - Type $c \in C$ says c
 - · Rational type **strategizes** announces r possibly $\in \mathcal{C}$
- At time $t \ge 0$, the government sets inflation
 - Behavioral type $c \in C$ implements $g_t = a_t^c$
 - · Rational type acts strategically

chooses $g_t \leq a_t^c$

CONTINUATION EQUILIBRIA CONDITIONAL ON A PLAN

REPUTATION AND OUTCOMES

· Output is determined by **beliefs** $\mathbb{E}_t [\pi_{t+1}]$ and **actual inflation** $\pi_t = g_t + \epsilon_t$

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right] = \kappa y_t + \beta \mathbb{E}_t \left[\mathbb{1}_c a_{t+1}^c + (1 - \mathbb{1}_c) g_{t+1}^* \right]$$

Private sector solves a signal extraction problem to update beliefs

$$\mathbb{P}\left(c \mid \pi_{t}, \mathcal{F}_{t-1}\right) = \frac{\mathbb{P}\left(c \mid \mathcal{F}_{t-1}\right) \cdot f_{\epsilon}(\epsilon_{t} \mid c)}{\mathbb{P}\left(c \mid \mathcal{F}_{t-1}\right) \cdot f_{\epsilon}(\epsilon_{t} \mid c) + (1 - \mathbb{P}\left(c \mid \mathcal{F}_{t-1}\right)\right) \cdot f_{\epsilon}(\epsilon_{t} \mid r)}$$

REPUTATION AND OUTCOMES

· Output is determined by **beliefs** $\mathbb{E}_t [\pi_{t+1}]$ and **actual inflation** $\pi_t = g_t + \epsilon_t$

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right] = \kappa y_t + \beta \mathbb{E}_t \left[\mathbb{1}_c a_{t+1}^c + (1 - \mathbb{1}_c) g_{t+1}^* \right]$$

Private sector solves a signal extraction problem to update beliefs

$$\mathbb{P}\left(c \mid \pi_{t}, \mathcal{F}_{t-1}\right) = \frac{\mathbb{P}\left(c \mid \mathcal{F}_{t-1}\right) \cdot f_{\epsilon}(\pi_{t} - a_{t}^{c} \mid c)}{\mathbb{P}\left(c \mid \mathcal{F}_{t-1}\right) \cdot f_{\epsilon}(\pi_{t} - a_{t}^{c} \mid c) + (1 - \mathbb{P}\left(c \mid \mathcal{F}_{t-1}\right)) \cdot f_{\epsilon}(\pi_{t} - g_{t} \mid r)}$$

RATIONAL TYPE'S PROBLEM

Given an announcement c,

· The problem of the rational type is, given expectations g_c^{\star}

$$\mathcal{L}^{c}(p,a) = \min_{g} \mathbb{E}\left[(y^{*} - y)^{2} + \gamma \pi^{2} + \beta \mathcal{L}^{c}(p',\phi_{c}(a)) \right]$$
subject to $\pi = g + \epsilon$

$$\pi = \kappa y + \beta \left[p'\phi_{c}(a) + (1 - p')g_{c}^{*}(p',\phi_{c}(a)) \right]$$

$$p' = p + p(1 - p) \frac{f_{\epsilon}(a - \pi) - f_{\epsilon}(g_{c}^{*}(p,a) - \pi)}{pf_{\epsilon}(a - \pi) + (1 - p)f_{\epsilon}(g_{c}^{*}(p,a) - \pi)}$$

· Rational expectations requires g_c^{\star} to be the policy associated with \mathcal{L}^c

CONTINUATION EQUILIBRIUM

Definition

Given an announcement c, a continuation equilibrium is a pair (\mathcal{L}^c, g_c^*) such that

- \cdot \mathcal{L}^c is the rational type's value function at expectations g_c^\star
- \cdot g_c^\star is the policy function associated with \mathcal{L}^c

A FIRST LOOK AT DIFFERENT PLANS

Observation

• Plans $c \in \mathcal{C}$ are

$$c = (a_0, \chi, \omega)$$

• For $a, b \in \mathbb{R}$

$$(\mathcal{L}, g^*)$$
 is a continuation equilibrium for (a, χ, ω)

 (\mathcal{L}, g^*) is a continuation equilibrium for (b, χ, ω)

· Means $a\mapsto \mathcal{L}^c(p,a)$ compares the same plan at **different** times and **different** plans

RESULTS

- \mathcal{L} decreasing in p
- $\mathcal L$ convex-concave in p
- \mathcal{L} increasing in a for large p only

REPUTATION DYNAMICS

RESULTS

$$\frac{\partial y}{\partial \pi} = \frac{1}{\kappa} \left[1 - \beta \frac{\partial p'}{\partial \pi} \left(\phi_c(a) - g^*(p', \phi_c(a)) + (1 - p') \frac{\partial g^*(p', \phi_c(a))}{\partial p'} \right) \right]$$

- More inflation
 - 1. Increases output by 🗐
 - 2. Shifts inflation expectations from $\phi_c(a)$ towards $g^*(p',\phi_c(a))$
 - ... p' decreases with higher π when $g^*(p, a) > a$
 - 3. Shifts expectations of the rational type's future choice

$$\frac{\partial y}{\partial \pi} = \frac{1}{\kappa} \left[1 - \beta \frac{\partial p'}{\partial \pi} \left(\phi_c(a) - g^*(p', \phi_c(a)) + (1 - p') \frac{\partial g^*(p', \phi_c(a))}{\partial p'} \right) \right]$$

- More inflation
 - 1. Increases output by $\frac{1}{\kappa}$
 - 2. Shifts inflation expectations from $\phi_c(a)$ towards $g^*(p', \phi_c(a))$
 - ... p' decreases with higher π when $g^*(p, a) > a$
 - 3. Shifts expectations of the rational type's future choice

$$\frac{\partial y}{\partial \pi} = \frac{1}{\kappa} \left[1 - \beta \frac{\partial p'}{\partial \pi} \left(\phi_c(a) - g^*(p', \phi_c(a)) + (1 - p') \frac{\partial g^*(p', \phi_c(a))}{\partial p'} \right) \right]$$

- More inflation
 - 1. Increases output by $\frac{1}{\kappa}$
 - 2. Shifts inflation expectations from $\phi_c(a)$ towards $g^*(p', \phi_c(a))$
 - ... p' decreases with higher π when $g^*(p, a) > a$
 - 3. Shifts expectations of the rational type's future choice

$$\frac{\partial y}{\partial \pi} = \frac{1}{\kappa} \left[1 - \beta \frac{\partial p'}{\partial \pi} \left(\phi_c(a) - g^*(p', \phi_c(a)) + (1 - p') \frac{\partial g^*(p', \phi_c(a))}{\partial p'} \right) \right]$$

- More inflation
 - 1. Increases output by $\frac{1}{\kappa}$
 - 2. Shifts inflation expectations from $\phi_c(a)$ towards $g^*(p', \phi_c(a))$
 - ... p' decreases with higher π when $g^*(p, a) > a$
 - 3. Shifts expectations of the rational type's future choice

RESULTS

CONJECTURE

· Let π^N be the Nash equilibrium inflation of the stage game. Then

$$\forall c \in \mathcal{C}: \qquad g_c^{\star}(p,a) \leq \pi^N$$

· This makes us define the remaining credibility of a plan as

$$C(p,a;c) = \mathbb{E}\left[(1-\beta)\frac{\pi^N - \pi_t}{\pi^N - a} + \beta C(p_c'(p,a), \phi_c(a))\right]$$

PLANS

PLANS

- For each $c \in C$, find $\mathcal{L}^{c}(p, a), g_{c}^{\star}(p, a)$.
- Generates big matrix $\mathcal{L}(p, a; \omega, \chi)$
- First pass: preferred plan at each p

PLANS

- For each $c \in C$, find $\mathcal{L}^{c}(p,a), g_{c}^{\star}(p,a)$.
- Generates big matrix $\mathcal{L}(p, a; \omega, \chi)$
- First pass: preferred plan at each p

WHAT PLAN TO CHOOSE?

- · Back to the initial announcement
- Ideally, if in equilibrium gov't announces type c with density $\mu(c)$,

$$p_0(c;z,\mu) = \frac{z\nu(c)}{z\nu(c) + (1-z)\mu(c)}$$

So study

$$\lim_{z\to 0} \min_{\mu} \int \mathcal{L}(p_0(a_0,\omega,\chi;z,\mu),a_0,\omega,\chi) d\mu$$

WHAT PLAN TO CHOOSE?

- · Back to the initial announcement
- Today, Kambe (1999): gov't announces type c and 'becomes' committed to c with exogenous $p_{\rm o}$ probability
 - Tractable: p_0 independent of c
- · So the limit we consider is

$$\lim_{p_{\circ}\to o} \min_{a_{\circ},\omega,\chi} \mathcal{L}(p_{\circ},a_{\circ},\omega,\chi)$$

WHAT PLAN TO CHOOSE?

- · Back to the initial announcement
- Today, Kambe (1999): gov't announces type c and 'becomes' committed to c with exogenous p_o probability
 - Tractable: p_0 independent of c
- · So the limit we consider is

$$\lim_{p_{o}\to o} \min_{a_{o},\omega,\chi} \mathcal{L}(p_{o},a_{o},\omega,\chi)$$

- Not entirely arbitrary
 - · For given p_0 , plans that minimize $\mathcal L$ should be played often

CREDIBILITY

SIMULATIONS

SIMULATIONS

CONCLUDING REMARKS

- Model of reputational dynamics and policy
 - · Simple environment
 - · Focus on low reputation limit
- · Credibility-dynamics concerns influence choice of policy
 - Tradeoff between literal promises and incentives
 - · Gradual plans boost reputation-building incentives for future decision-makers
- To do:
 - · Solve for complete distribution of mimicked types + take limit
 - · Thousand extensions

$$\mathcal{B}(p,\pi,a,g) = p + p(1-p)\frac{f_{\epsilon}(\pi-a) - f_{\epsilon}(\pi-g)}{pf_{\epsilon}(\pi-a) + (1-p)f_{\epsilon}(\pi-g)}$$

RESULTS

REPUTATION (KREPS AND WILSON, 1982; MILGROM AND ROBERTS, 1982)

Imagine an incumbent facing a sequence of potential entrants

- Each period, entrant decides entry, incumbents fights or accomodates
 - · Incumbent prefers entrant to stay out but prefers to accomodate if entry
- Fighting the first entrant doesn't affect the decision of following entrants
- Reputation as incomplete information
 - What if the incumbent could be behavioral and always produce q upon entry?
- Incentive for the rational incumbent to pretend to be behaviora
- · Independent of the 'objective' probability of behavioral

REPUTATION (KREPS AND WILSON, 1982; MILGROM AND ROBERTS, 1982)

Imagine an incumbent facing a sequence of potential entrants

- Each period, entrant decides entry, incumbents fights or accomodates
 - $\boldsymbol{\cdot}$ Incumbent prefers entrant to stay out but prefers to accomodate if entry
- · Fighting the first entrant doesn't affect the decision of following entrants
- Reputation as incomplete information
 - \cdot What if the incumbent could be behavioral and always produce q upon entry?
- Incentive for the rational incumbent to pretend to be behaviora
- Independent of the 'objective' probability of behavioral

REPUTATION (KREPS AND WILSON, 1982; MILGROM AND ROBERTS, 1982)

Imagine an incumbent facing a sequence of potential entrants

- Each period, entrant decides entry, incumbents fights or accomodates
 - Incumbent prefers entrant to stay out but prefers to accommodate if entry
- Fighting the first entrant doesn't affect the decision of following entrants
- Reputation as incomplete information
 - \cdot What if the incumbent could be behavioral and always produce q upon entry?
- Incentive for the rational incumbent to **pretend** to be behavioral
- · Independent of the 'objective' probability of behavioral