ug - 30 Note Title 30-08-2012 Division — Restoring

Non-restoring.

funsigned? Glow operation)  $11/3 = 3 \times 3 + 2$ 71 → Dividend (D) 3 -> Divisor (N) 3 -> Quotient (Q) 2 -> Remainder (R)





Start:

$$R_2 = \text{Dividend}$$
 $R_1 = 00 \cdots 0$ 

Repeat n times.

3) If 
$$R_1 < 0$$

$$R_1 += N$$

$$2SB(R_2) = 0$$

$$ElSE$$

$$2SB(R_2) = 1$$

4) R. (Remainder) R2 (Quotient)

0001 0110 - 11 [1100] 0101 100 (3) Time Complexity:  $\{ \mathcal{N} \times \log(n) \}$ 10010 1001 0101 1001 0010 0011

Restoring + Simple

Algo. + same as basic version of division

- slow (nlog(n))

- every iteration (worst case 1 sub + 1 ADD)

[Restore original value of sub tract fails]

Non-restoring algorithm [n log(n)]

+ does not restore original value

How does it work.

| In the restoring algorithm, consider iteration (i)                        |
|---------------------------------------------------------------------------|
| R1 R2 quotient bits                                                       |
|                                                                           |
| fort of the dividend                                                      |
| lest after repeated subtractions.                                         |
|                                                                           |
| For the purposes of analysis let us ignore the quotient bits  R1 R215-1-1 |
| $R_1$ $R_2 \leftarrow i \rightarrow i$                                    |
|                                                                           |
| One large binary number.                                                  |

 $R, R_2 \leftrightarrow \sqrt{\times 2^i}$ 

Restoring algo.

 $\forall x 2^i - \forall x 2^i > 0$ 

R<sub>1</sub> R<sub>2</sub>

I

 $\bigvee \times 2^i - \bigvee \times 2^n > 0$ 

 $new(R_1R_2) \leftarrow \sqrt{\times 2^i - N \times 2^n}$ 

Non-restoring algo does the same

(I) Vx2' - Nx2" <0

Rest: new  $(R, R_2) \leftarrow \forall x 2^i$ 

Non-Rest: new (R, R2) + Vx2i - Nx2n

```
iteration (i+i) (case II)
                         Rest: R_1R_2 \leftarrow \sqrt{\times 2^{i+1}}

Non-rest: R_1R_2 \leftarrow \sqrt{\times 2^{i+1}} - N\times 2^{m+1}
 Rest: Subtract again
new (R,R2) \( \langle \langle \nu \chi^{\tau_{+1}} - N \times \chi^{\tau_{+1}} \)
                                                          case (I) and case (I)
    \frac{2-\text{Rest}}{\text{new }(R,R_2)} \leftarrow \text{old }(R,R_3) + N \times 3^n 
= V \times 2^{l+l} - N \times 2^{n+l} + N \times 2^n
= [V \times 2^{l+l} - N \times 2^n] \times 
Case I (Sub traction successful)
(R_1R_2) \text{ some for yest}
and non-yest
120 \times l + nns
Won-Rest
                                                                                                                                  convergence
                                                                                                        algorithms)
```

```
It is possible in iteration (i+1)

Case II (subtraction not successful)
```

```
subtraction successful: rest == non-rest
          mathematical induction]
Some foint:

If subtraction is successful (resto. algo).
             The fartial dividend (R, R)
same for both algos.
 you reach the end without a successful subtract:
```

 $R = R_1 + N$ Remainder.

In the last slep, we will have a number of the form:  $\left\{ \sqrt{\times 2^n - N \times 2^{n+1}} \right\}$ + Nx 22  $= (\vee \times 2^n - \vee \times 2^n)$ Leave it as an enercise 1
Prove that this is
actually the remainder.

```
R. / K2
Start
        R2 - Dividend
Refeat n times.
         1) left shift RIR2
        2) If (R, <0)
R,+= N
Else
                  R1 -= N
      3) IF (R_1 \in O) LSB(R_2) \leftarrow O ELSE LSB(R_2) \leftarrow 1
4) IF (R1 <0)
         R, += N
  Result:
              R. - Romainder R2 - Quotient
```

7/3 -3:1101 0000 0111 100 0000 1111 (-3) + 11010000 11001 (R, 20) - ---11101 1110 0001 001 (2) 0010 1100  $R_1 < 0$   $R_1 = 11$   $R_1 = 0001$  $= 3 \times Q + R$   $(2) \quad (1)$ Romainder

Clasm1: You put 1 in the quotient off (R, >,0) at the end of the iteration. Claim 2:
The rest and non-rest algorithms converge Only When you flut a 1 in the quotient or [R, > 0] at the end of an iteration Conceptual View.

restoring algo.
non-restoring algo-Non-restoring is a (trucky) algorithm [not very easy to understand] take a look in the notes.