Classification metrics

ACCURACY:-

- It depends on the problem we are solving is determines how much accuracy is good.
- -(Number of correct Prediction)/(Total Number of prediction)
- Imbalanced dataset gives not well accuracy i.e. it is misleading.

Confusion metrics:-

	predicted (1)	(0)
Actual(1)	True Positive	False Negative
(0)	False Positive	True Negative

Type 1 error:-

- number of false positive is type 1 error.

Type 2 error:-

-number of false negative is type 2 error.

precision:-

- From predicted positive how many are actual positive.
- TP/(TP+FP)

Recall:-

- From actual positive how many model caught positive.
- TP/(TP+FN)

F1-Score:-

- It is harmonic mean of precision and recall.
- -2*Precision*Recall/(Precision+Recall)
- Harmonic mean always penalize model if there is low precision or recall.
- Simple mean or average calculate middle value.

Multiclass Precision and Recall:-

- in binary we focus on only positive or 1 for precision and recall.

cat dog rabbit total cat 25 5 10 40 Actual dog 0 30 4 34 rabbit 4 10 20 34				Predicted		
Actual dog 0 30 4 34 rabbit 4 10 20 34			cat	dog	rabbit	total
rabbit 4 10 20 34		cat	25	5	10	40
	Actual	dog	0	30	4	34
total 20 45 24		rabbit	4	10	20	34
lotai 29 45 54		total	29	45	34	

```
- For Precision of every class :-
               - Precision of Cat = $(Actual Cat) /(Predicted Cat)$ =
$25/29$
               - Precision of Dog= $(Actual Dog) /(Predicted Dog)$ =
$30/45$
               - Precision of Rabbit= $(Actual Rabbit) /(Predicted Rabbit)$
= $20/34$
               - Macro Precision=Average of all precision
               - Weighted Precision=$Sum of all((Total of class/All class
total)*Precision of that class)$
        - For Recall of every class :-
               - Recall of Cat = $(Predicted Cat) /(Actual Cat)$ = $25/40$
               - Recall of Dog= $(Predicted Dog) /(Actual Dog)$ = $30/34$
               - Recall of Rabbit= $(Predicted Rabbit) /(Actual Rabbit)$ =
$20/34$
               - Macro Recall=Average of all Recall
               - Weighted Recall=$Sumofall ((Total of class/All class
```

- Weighted Recall=\$Sumofall ((Total of class/All class total)*Recall of that class)\$