Laboratorium Podstawy Informatyki

Metody dostępu do danych

Autor: Jonatan Dragon,

Informatyka, sem. 2, gr. 6

Prowadzący: dr inż. Ewa Płuciennik-Psota

Zad. 1 Przygotować zbiory z danymi testowymi.

	24 - 000	04 - 000	07 - 000	0 - 270	44 - 000
A100.dat:	31 : 668	64 : 233	97 : 838	2:378	11 : 603
0:173	32 : 910	65 : 609	98 : 819	3:530	12 : 518
1:701	33 : 776 34 : 59	66 : 689 67 : 142	99 : 548	4:684	13 : 276
2:364				5:671	14 : 889
3:933	35 : 837	68 : 304	500 1 .	6:152	15 : 816
4:980	36 : 823	69 : 962	B20.dat:	7:895	16 : 700
5 : 155	37 : 868	70 : 555	0:946	8:612	17 : 311
6:582	38 : 147	71 : 559	1:726	9:930	18 : 409
7 : 100	39 : 366	72 : 726	2:522	10 : 154	19 : 680
8 : 864	40 : 696	73 : 285	3:233	11:461	20:70
9:83	41 : 288	74 : 859	4:643	12 : 227	21 : 177
10 : 160	42 : 32	75 : 690	5 : 149	13 : 23	22 : 542
11 : 568	43 : 273	76 : 250	6 : 866	14 : 61	23 : 987
	44 : 299	77 : 214	7:643	15 : 27	24 : 982
12:643	45 : 993	78 : 956	8:299	16 : 376	25 : 301
13:905	46 : 778	79 : 931	9 : 848	17 : 116	26 : 465
14 : 549	47 : 950	80 : 663	10 : 284	18 : 163	27 : 585
15 : 142	48 : 747	81 : 516	11 : 910	19 : 126	28 : 155
16:848	49 : 101	82 : 565	12 : 946		29 : 500
17 : 534	50 : 436	83 : 19	13 : 864		30 : 139
18:382	51 : 779	84 : 149	14 : 233	D31.dat:	
19:78	52 : 284	85 : 313	14 . 233 15 : 864		
20:935	53 : 254	86 : 62	16 : 696	0:848	E5.dat:
21 : 897	54 : 90	87 : 458	17 : 696	1:612	
22 : 260	55 : 266	88 : 81		2:457	0:501
23 : 925	56 : 634	89 : 492	18 : 848	3:411	1 : 518
24 : 193	57 : 810	90 : 741	19 : 299	4:50	2:50
25 : 896	58 : 980	91 : 749		5 : 928	3:982
26 : 736	59 : 604	92 : 866	620 1.1	6 : 728	4 : 501
27 : 429	60 : 522	93 : 361	C20.dat:	7:27	
28 : 946	61 : 894	94 : 269	0:599	8 : 501	
29 : 859	62 : 946	95 : 601	1 : 139	9:426	
30 : 762	63 : 855	96 : 694	100	10 : 367	

Zad. 2 Wyszukiwanie sekwencyjne

Wyszukiwanie sekwencyjne	B20.dat	C20.dat
Dane nie posortowane	Min = 9, Max = 93, średnio 41,8	Min = 100, Max = 100, średnio 100
Dane posortowane	Min = 14, Max = 93, średnio 57,5	Min = 100, Max = 100, średnio 100

Powyżej przedstawiłem wyniki otrzymane przy wyszukiwaniu sekwencyjnym zbiorów danych B20 i C20 w zbiorze A100. W przypadku danych B20 posortowanie elementów spowodowało zwiększenie średniej ilości zapytań, co oznacza, że po posortowaniu dane B20 są bliżej maksymalnych wartości A100. Ze względu na brak danych C20 w zbiorze A100 ilość zapytań wyniosła ilości przeszukiwanych danych.

Zad. 3 Wyszukiwanie metodą podziałów dychotomicznych

B20.dat	C20.dat
Min = 3, Max = 7, średnio 6,1	Min = 6, Max = 7, średnio 6,85

W stosunku do metody sekwencyjnej w przypadku podziałów dychotomicznych można zaobserwować znaczny spadek liczby zapytań. Wadą tej metody jest konieczność posortowania danych przed wyszukiwaniem.

Zad. 4 Eksperymenty z drzewami binarnymi

Wyszukiwanie w drzewach binarnych	E5.dat
Bez wyważenia	Min = 4, Max = 6, średnio 4,6
Dokładnie wyważone	Min = 4, Max = 5, średnio 4,4

Średnia liczba wyszukań jak i ich maksymalna liczba, dla drzew wyważonych, jest nieznacznie mniejsza w porównaniu do drzew dokładnie wyważonych.

Zad. 5 Dokładnie wyważone drzewo binarne

1: 500	8: 50	15: 982	22: 426	29: 848
2: 301	9: 177	16: 27	23: 465	30: 928
3: 700	10: 367	17: 70	24: 501	31: 987
4: 139	11: 457	18: 155	25: 542	
5: 411	12: 518	19: 276	26: 603	
6: 585	13: 612	20: 311	27: 680	
7: 889	14: 816	21: 409	28: 728	

Zad. 6 Wyszukiwanie w B - drzewach

Rozmiar strony	B20.dat	C20.dat
	Dostępy do pamięci: Min = 3, Max = 8, średnio 5,45	Dostępy do pamięci: Min = 5, Max = 8, średnio 6,75
4	Dostępy do dysku: Min = 2, Max = 4, średnio 3,55	Dostępy do dysku: Min = 4, Max = 4, średnio 4
8	Dostępy do pamięci: Min = 4, Max = 7, średnio 5,85 Dostępy do dysku: Min = 2, Max = 3, średnio 2,8	Dostępy do pamięci: Min = 5, Max = 8, średnio 6,6 Dostępy do dysku: Min = 3, Max = 3, średnio 3
16	Dostępy do pamięci: Min = 2, Max = 3, średnio 2,6 Min = 2, Max = 7, średnio 5,2 Dostępy do dysku: Min = 1, Max = 2, średnio 1,8	Dostępy do pamięci: Min = 6, Max = 8, średnio 6,8 Dostępy do dysku: Min = 2, Max = 2, średnio 2
32	Dostępy do pamięci: Min = 1, Max = 7, średnio 5,85 Dostępy do dysku: Min = 1, Max = 2, średnio 1,9	Dostępy do pamięci: Min = 6, Max = 7, średnio 6,7 Dostępy do dysku: Min = 2, Max = 2, średnio 2
64	Dostępy do pamięci: Min = 2, Max = 7, średnio 4,75 Dostępy do dysku: Min = 2, Max = 2, średnio 2	Dostępy do pamięci: Min = 6, Max = 7, średnio 6,75. Dostępy do dysku: Min = 2, Max = 2, średnio 2
128	Dostępy do pamięci: Min = 3, Max = 7, średnio 5,85 Dostępy do dysku: Min = 1, Max = 1, średnio 1	Dostępy do pamięci: Min = 6, Max = 7, średnio 6,8 Dostępy do dysku: Min = 1, Max = 1, średnio 1

Dla wszystkich rozmiarów strony, średnie wartości ilości dostępu do pamięci są podobne. Można więc wywnioskować, że rozmiar strony nie wpływa znacząco na tę wartość. Wyszukiwanie danych B20, które zawierają się w zbiorze A100, jak i wyszukiwanie danych C20 wydaje się najoptymalniejsze pod względem wykorzystania dysku dla rozmiaru strony równego 128. W tym wypadku tylko raz odczytujemy dane z dysku. Na podstawie tych informacji możemy stwierdzić, że wyszukiwanie w B-drzewach jest o znacznie wydajniejsze niż wyszukiwanie sekwencyjne.

Zad. 7 Wyszukiwanie w B* - drzewach

Rozmiar strony	B20.dat	C20.dat	
Strony	Dostępy do pamięci:	Dostępy do pamięci:	
	Min = 6, Max = 9, średnio 7,15.	Min = 5, Max = 8, średnio 6,5	
4	Dostępy do dysku:	Dostępy do dysku:	
	Min = 4, Max = 4, średnio 4	Min = 4, Max = 4, średnio 4	
	Dostępy do pamięci:	Dostępy do pamięci:	
8	Min = 5, Max = 7, średnio 6,55	Min = 5, Max = 8, średnio 6,8	
0	Dostępy do dysku:	Dostępy do dysku:	
	Min = 3, Max = 3, średnio 3	Min = 3, Max = 3, średnio 3	
	Dostępy do pamięci:	Dostępy do pamięci:	
16	Min = 4, Max = 7, średnio 5,75	Min = 6, Max = 7, średnio 6,4	
10	Dostępy do dysku:	Dostępy do dysku:	
	Min = 2, Max = 2, średnio 2	Min = 2, Max = 2, średnio 2	
	Dostępy do pamięci:	Dostępy do pamięci:	
32	Min = 4, Max = 7, średnio 5,4	Min = 6, Max = 7, średnio 6,5	
32	Dostępy do dysku:	Dostępy do dysku:	
	Min = 2, Max = 2, średnio 2	Min = 2, Max = 2, średnio 2	
	Dostępy do pamięci:	Dostępy do pamięci:	
64	Min = 2, Max = 7, średnio 4,75	Min = 6, Max = 7, średnio 6,65	
04	Dostępy do dysku:	Dostępy do dysku:	
	Min = 2, Max = 2, średnio 2	Min = 2, Max = 2, średnio 2	
	Dostępy do pamięci:	Dostępy do pamięci:	
128	Min = 3, Max = 7, średnio 5,85	Min = 6, Max = 7, średnio 6,8	
120	Dostępy do dysku:	Dostępy do dysku:	
	Min = 1, Max = 1, średnio 1	Min = 1, Max = 1, średnio 1	

Dla danych B20 wraz ze wzrostem rozmiaru strony zmniejsza się zarówno liczba dostępów do dysku, jak i do pamięci. W przypadku danych C20 teza ta jest prawidłowa tylko dla ilości dostępów do dysku. Najlepszym rozwiązaniem ponownie wydaje się być używanie dużego rozmiaru strony.

Zad. 8 Funkcja mieszająca

Wycięcie 3 cyfr klucza i normalizacja					
Funkcja rozwiązywania kolizji	Minimalny rozmiar	Rozmiar	Ilość kolizji		
	100	100	Min = 1, Max = 100, średnio 48,65		
Sondowanie liniowe z		150	Min = 1, Max = 100, średnio 48,65		
krokiem 1		250	Min = 1, Max = 100, średnio 48,65		
		300	Min = 1, Max = 100, średnio 48,65		
	100	100	Min = 1, Max = 100, średnio 48,65		
Sondowanie liniowe z		150	Min = 1, Max = 100, średnio 48,65		
krokiem 7		250	Min = 1, Max = 100, średnio 48,65		
		300	Min = 1, Max = 100, średnio 48,65		
	100	100	Min = 1, Max = 100, średnio 48,65		
Podwójne mieszanie		150	Min = 1, Max = 100, średnio 48,65		
zależne		250	Min = 1, Max = 100, średnio 48,65		
		300	Min = 1, Max = 100, średnio 48,65		
	250	250	Min = 1, Max = 171, średnio 66,37		
Podwójne mieszanie		400	Min = 1, Max = 123, średnio 53,76		
niezależne		500	Min = 1, Max = 125, średnio 54,41		
		700	Min = 1, Max = 128, średnio 53,75		

Na podstawie uzyskanych danych możemy zauważyć, że dla pierwszych trzech funkcji rozwiązywania kolizji, ilość kolizji jest taka sama, i średnio wynosi 48,65. Oznacza to, że w tym wypadku, sposób rozwiązywania kolizji nie wpływa na ich ilość. Inaczej jest w funkcji podwójnego mieszania niezależnego. Ilość kolizji, jak i rozmiar tablicy wzrasta.

Podział, składanie i dzielenie					
Funkcja rozwiązywania kolizji	Minimalny rozmiar	Rozmiar	Ilość kolizji		
		100	Min = 1, Max = 83, średnio 8,05		
Sondowanie liniowe z	100	115	Min = 1, Max = 27, średnio 3,34		
krokiem 1	100	150	Min = 1, Max = 10, średnio 1,55		
		250	Min = 1, Max = 3, średnio 1,16		
	100	100	Min = 1, Max = 98, średnio 7,72		
Sondowanie liniowe z		106	Min = 1, Max = 43, średnio 4,22		
krokiem 7		115	Min = 1, Max = 14, średnio 2,39		
		150	Min = 1, Max = 9, średnio 1,69		
	151	151	Min = 1, Max = 5, średnio 1,68		
Podwójne mieszanie		200	Min = 1, Max = 5, średnio 1,48		
zależne		300	Min = 1, Max = 7, średnio 1,36		
		400	Min = 1, Max = 4, średnio 1,12		
	106	106	Min = 1, Max = 16, średnio 2,39		
Podwójne mieszanie		126	Min = 1, Max = 10, średnio 1,86		
niezależne		156	Min = 1, Max = 8, średnio 1,46		
		250	Min = 1, Max = 4, średnio 1,2		

Funkcja mieszająca "Podział, składanie i dzielenie" znacznie zmniejsza ilość kolizji w porównaniu do poprzedniej metody. Dla pierwszych dwóch funkcji ilość kolizji gwałtownie maleje przy zwiększaniu rozmiaru tablicy.

Dzielenie przez rozmiar tablicy				
Funkcja rozwiązywania kolizji	Minimalny rozmiar	Rozmiar	llość kolizji	
	100	100	Min = 1, Max = 83, średnio 8,05	
Sondowanie liniowe z		105	Min = 1, Max = 32, średnio 2,67	
krokiem 1		115	Min = 1, Max = 27, średnio 3,34	
		150	Min = 1, Max = 10, średnio 1,55	
	100	100	Min = 1, Max = 98, średnio 7,72	
Sondowanie liniowe z		106	Min = 1, Max = 43, średnio 4,22	
krokiem 7		115	Min = 1, Max = 14, średnio 2,39	
		150	Min = 1, Max = 9, średnio 1,69	
	151	151	Min = 1, Max = 5, średnio 1,68	
Podwójne mieszanie		200	Min = 1, Max = 5, średnio 1,48	
zależne		250	Min = 1, Max = 5, średnio 1,4	
		300	Min = 1, Max = 7, średnio 1,36	
	106	106	Min = 1, Max = 16, średnio 2,39	
Podwójne mieszanie		150	Min = 1, Max = 10, średnio 1,61	
niezależne		200	Min = 1, Max = 5, średnio 1,28	
		300	Min = 1, Max = 3, średnio 1,17	

Funkcja mieszająca "Dzielenie przez rozmiar tablicy" nie różni się znacząco od poprzedniej metody. Dla pierwszej, drugiej i czwartej funkcji rozwiązywania kolizji zwiększenie rozmiaru tablicy powoduje gwałtowny spadek ilości kolizji.

Mieszanie Fibonacciego					
Funkcja rozwiązywania kolizji	Minimalny rozmiar	Rozmiar	Ilość kolizji		
		100	Min = 1, Max = 98, średnio 6,94		
Sondowanie liniowe z	100	105	Min = 1, Max = 72, średnio 5,18		
krokiem 1	100	115	Min = 1, Max = 52, średnio 3,04		
		150	Min = 1, Max = 9, średnio 1,49		
	100	100	Min = 1, Max = 98, średnio 5,73		
Sondowanie liniowe z		106	Min = 1, Max = 33, średnio 3,43		
krokiem 7		115	Min = 1, Max = 26, średnio 2,25		
		150	Min = 1, Max = 7, średnio 1,51		
	151	151	Min = 1, Max = 9, średnio 1,83		
Podwójne mieszanie		200	Min = 1, Max = 8, średnio 1,64		
zależne		300	Min = 1, Max = 7, średnio 1,29		
		400	Min = 1, Max = 4, średnio 1,23		
	100	106	Min = 1, Max = 18, średnio 2,69		
Podwójne mieszanie		150	Min = 1, Max = 4, średnio 1,39		
niezależne		200	Min = 1, Max = 4, średnio 1,28		
		300	Min = 1, Max = 3, średnio 1,07		

Funkcja mieszania Fibonacciego dla moich danych wydaje się być najlepsza. Występuje najmniej kolizji, a rozmiary tablicy pozostają prawie bez zmian.