Lecture 20 - Mar 18

Clustering Expectation-Maximization (EM) Algorithm

References

Data Mining and Machine Learning

Ch 13 - Representation-based Clustering

Elements of Statistical Learning

14.3.6 K-means

14.3.7 Gaussian Mixtures as Soft K-Means Clustering

AKA dota segmentation has a variety of goals.

All group or segment objects into "clusters" where points

unside are similar but different from points in other clusters

· Sometimes the goal is to find a notural hierarchy of clusters

. Also used for descriptive stotistics regarding whether or not there exist distinct subgroups with substantially different properties

A comparison of the clustering algorithms in scikit-learn

https://scikit-learn.org/stable/modules/clustering.html

Types: Combinatorial, Mexture modeling, mode seeking

work directly on
the observed John
a semes dota is an i.i.d.
comple from a population
described by a path
characterized by a
parameterized by a
parameterized model
falsen as a mixture
of amparent density
functions: each descript
one distant

Let $X \in \mathbb{R}^{n \times d}$ be a detaset of points $x_i \in \mathbb{R}^d$ Representative-based distering partitions X into k clusters...

C = {C1, ..., Ce}

For each cluster Ci, there exists a representative point that summerizes the cluster

Leg. the centroid (mean) Mi of points in Ci

 $M_i = \frac{1}{N_i} \sum_{x_j \in C_i} x_j$ where $N_i = |C_i|$

Two Common methods: K-means + Expectation-Maximization

(EM) algorithms

For a given clustering C, we need a scoring function to evolute it

The SSE scoring function 15

SSE(C) =
$$\sum_{i=1}^{k} \sum_{x_j \in C_i} ||x_j - m_i||^2$$

Sum over hetwer elister pk + cluster centroid

C* = arsmn { 55E(c)}

K-mens minimizes SSE via a greely iterative approach (risks reading local wh)

K-many initializes controlls randomly + iterates 2 steps of Assign points to necrest controld's cluster

(2) Compute controid as mean of points in each cluster

2 Compute Centroid as mean or port.	J (1) ()
Sho when centroids stop moving.	
Often, people on K-means several to	imes due to result (apt. 55E)
K-mean creates convex-shaped clusters.	
Abrillian 13.1	
land: X, K, Z often, sample uni	formly in
Pardanly initialize & Centrolas Mi, ,	·) Me - (-
While \$\frac{k}{2} \mu_i^t - \mu_i^{t-1} > \varepsilon: \text{Substanton}	carboids move dially in ekuletians
for $x_j \in X$: $i^* = ars_i^* in \{ x_j - M_i^{t-1} ^2 \}$ $C_i^* = C_i^* \cup \{x_j\}$	assism points to cluster with nevest centraid
for Ci € C	
$u_i^t = \frac{1}{n_i} \sum_{x_j \in C_i} x_j$	re-calculte controids with new dusters

Complete Page 7

Figure 13.1. K-means in one dimension.

K-Means in 2D

