

基于铌酸锂薄膜波导的时间-能量复用双光子纠缠产生

谢臻达、蔡鑫伦、龚彦晓、胡小鹏、祝世宁 南京大学固体微结构国家重点实验室 中山大学光电材料与技术国家重点实验室

slab.nju.edu.cn

基于铌酸锂薄膜波导的时间-能量复用双光子纠缠产生

谢臻达、蔡鑫伦、龚彦晓、胡小鹏、祝世宁 南京大学固体微结构国家重点实验室 中山大学光电材料与技术国家重点实验室

slab.nju.edu.cn

背景介绍

将红宝石 694 nm 激光聚焦到石英晶体上产生 347 nm 紫外光, 但效率很低。

(Peter Franken et al. 1961)

$$I_{2\sigma} = \beta I_{\sigma} \sin c^{2} \left(\frac{\Delta kL}{2} \right), \qquad k = \frac{2\pi \circ n}{\lambda}$$

$$\begin{cases} \Delta \omega = \omega_{2} - 2\omega_{1} = 0 \\ \Delta k = k_{2} - 2k_{1} = 0 \end{cases}$$

$$n_{s}(2\omega) = n_{s}(\omega)$$

P.D.Maker et al., PRL 1962

准相位匹配和光学超晶格

HVSICAL BEVIEW

VOLUME 127, NUMBER &

医软件中毒 超 放在 九

Interactions between Light Waves in a Nonlinear Dielectric*

A. Assertsono, N. Bistonnesono, J. Discount Lees P. S. Passonar of Engineering and Applied Physics, Harmon University, Cambridge, Misses

 $\Delta \omega = \omega_0 - 2\omega_1 = 0$ $= k_1 - 2k_1 \quad G_m = 0$ $\Lambda = \frac{1}{2(n_{\text{lin}} - n_{\text{lin}})}$ $G_{\rm m}=2\pi\,{\rm m}\,\Lambda$

J. Mater. Sci. 17, 1663 (1982). 1 Appl Phys 77 5481 (1905) Appl Phys Lett 68, 2781 (1995) Science 1"8, 843 (100")

光学超晶格中的光子态调控

自发参量下转换 (SPDC)

Phys. Rev. Lett. 101, 233601 (2008) Nat. Commun. 2, 429 (2011) Phys. Rev. Lett. 111, 023603 (2013)

高效 (Photon-efficient) 量子编码——高维时间-能量纠缠

C. Reimer et al. Science 351, 1176 (2016)
 M. Kues et al. Nature 546,622 (2017)
 C.Reimer et al. Nat. Phys. 15,148 (2019)

铌酸锂有源光量子芯片

LiNbO ₃ 微结构量子芯	片 V.S.	SOI 量子芯片
	LiNbO,	501
输入功率 (mW)	0.039	15
操作频率	electro-optic ~40 GHz	heating - kHz
片上光子产率Hz nm mW	1.1×10 ²	2.7×10 ⁻¹
尺寸 (mm)	10	5.2
纠缠光子频率范围	任意设计 演示108nm调谐	受相位匹配限制, 演示9.6nm 调谐

新的发展——铌酸锂薄膜芯片

高速、低功耗电光调制器

高效率信频

光頻稳产生

米级证时线

C Wang et al. Nature **562**, 101 (2018) M He et al. Nat. photon. **13**, 359 (2019) C Wang et al. Optica **5**, 1438 (2018).

V He et al. Optica 6 1138 (2019)

J.N. Zhou et al. Chinese Phys. Lett. 37, 084201 (2020)

LNOI波导设计

LNOI波导加工

LNOI波导加工

倍频共聚焦显微镜监控极化技术

占空比: ~50%

倍频测试

	波特长度	否型比	61一化信贷货单	
			定测值	实价值/理论值
的损人学	4mm	35%	2600% (W 1081)	-60%
(# 15 ft)				
南田大学	Curtores	- 50%	30619(W.cm).	>804
课题创				

差频测试

SPDC光谱

相位匹配带宽超过130nm 时间-能量复用 (>100通道DWDM)

验装置

频率关联测量

Franson干涉

频率复用Franson干涉测量

光子产率: 2.34×10¹¹ Hz/mW

提高3个量级以上 夏用维度: 9 (100+) 干涉可见度: > 97%

初步展示了高码率的铌酸锂薄膜光源 及其色散调控能力。

展望

铌酸锂基有源光量子芯片

