Permit Number 49137

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	Source	Aiı	r Contaminant	<u>Emissio</u>	n Rates *
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY**
C-5	Clark Compressor BA6 (§ (1,200-horsepower)	ō) VOC	CO NO _x 1.14	11.23 59.02 4.98	49.20 258.52
	(6)	NO _x VOC	CO 21.14 1.14	7.92 92.61 4.98	34.73
C-6	Clark Compressor BA6 (5 (1,200-horsepower)	5) VOC	CO NO _x 1.14	11.23 59.02 4.98	49.20 258.52
	(6)	NO _x VOC	CO 21.14 1.14	7.92 92.61 4.98	34.73
C-7	Clark Compressor BA6 (5 (1,200-horsepower)	ō) VOC	CO NO _x 1.14	11.23 59.02 4.98	49.20 258.52
	(6)	NO _x VOC	CO 21.14 1.14	7.92 92.61 4.98	34.73
C-8	Clark Compressor BA6 (1,200-horsepower)	VOC	CO NO _x 1.14	11.23 59.02 4.98	49.20 258.52
C-9	Clark Compressor HBA6 (1,320-horsepower)	VOC	CO NO _x 1.25	17.88 54.17 5.48	78.32 237.25

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant		Emission Rates *	
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY**
					_
C-10	Clark Compressor HBA6 (1,320-horsepower)	VOC	CO NO _x 1.25	17.88 54.17 5.48	78.32 237.25
C-11	Clark Compressor HBA6 (1,320-horsepower)	VOC	CO NO _x 1.25	17.88 54.17 5.48	78.32 237.25
C-20	Clark Compressor HRAT6 (1,100-horsepower)	6 VOC	CO NO _x 1.04	10.59 35.01 4.57	46.38 153.35
C-21	Clark Compressor HRAT((1,100-horsepower)	6 VOC	CO NO _x 1.04	10.59 35.01 4.57	46.38 153.35
C-22	Clark Compressor HRAT((1,100-horsepower)	6 VOC	CO NO _x 1.04	10.59 35.01 4.57	46.38 153.35
C-23	Clark Compressor HRAT((1,100-horsepower)	o VOC	CO NO _x 1.04	10.59 35.01 4.57	46.38 153.35
F-2	Flare	NO _x SO ₂ VOC	CO 0.03 0.01 0.16	0.19 0.15 0.01 0.04	0.83
F-4	Flare	NO _x SO ₂ VOC	CO 0.03 0.01 0.16	0.19 0.15 0.01 0.04	0.83

AIR CONTAMINANTS DATA

Source	Air	Contaminant	Emission F	Rates *
Name (2)		Name (3)	lb/hr	TPY**
		_		
Fire Water Pump		CO	0.19	0.84
(876 hours per calendar ye	ear)	NO_x	0.89	3.91
Р	PM_{10}	0.06	0.28	
S	SO_2	0.06	0.26	
V	OC/	0.07	0.31	
Process Fugitives (4)		H ₂ S	0.16	0.71
V	OC/	1.30	5.85	
Wastewater Pond Fugitives	6	H ₂ S	0.08	0.36
V	/OC	0.10	0.44	
Wastewater Pond Fugitives	6	H ₂ S	0.20	0.89
V	OC/	0.25	1.10	
Wastewater Pond Fugitives	3	H ₂ S	0.62	3.32
V	OC/	0.76	2.70	
	Process Fugitives (4) Wastewater Pond Fugitives Wastewater Pond Fugitives Wastewater Pond Fugitives	Fire Water Pump (876 hours per calendar year) PM10 SO2 VOC Process Fugitives (4) VOC Wastewater Pond Fugitives VOC Wastewater Pond Fugitives VOC Wastewater Pond Fugitives	Name (2) Fire Water Pump (876 hours per calendar year) NO _x PM ₁₀ SO ₂ 0.06 VOC 0.07 Process Fugitives (4) VOC 1.30 Wastewater Pond Fugitives VOC 0.10 Wastewater Pond Fugitives VOC 0.25 Wastewater Pond Fugitives H ₂ S VOC 0.25	Name (2) Name (3) lb/hr Fire Water Pump (876 hours per calendar year) CO 0.19 0.89 0.89 0.06 0.28 0.06 0.28 0.06 0.26 0.07 0.31 Process Fugitives (4) VOC 0.07 0.31 Process Fugitives (4) VOC 0.30

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) CO carbon monoxide
 - H₂S hydrogen sulfide
 - NO_x total oxides of nitrogen
 - PM₁₀ particulate matter less than 10 microns
 - SO₂ sulfur dioxide
 - VOC volatile organic compounds as defined in the Title 30 Texas Administrative Code § 101.1
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- (5) Emission controls prior to the engine retrofit.
- (6) Emission controls after the engine retrofit.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

<u>24</u> Hrs/day <u>7</u> Days/week <u>52</u> Weeks/year

^{**} Compliance with annual emission limits is based on a rolling 12-month period.

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**

Dated	