Mathematical Techniques for Computer Science Applications

CSCI-GA.1180-001

New York University, Fall 2016

Instructor: Margaret Wright, mhw@cs.nyu.edu Grader: Abhishek Nilesh Shah, ans556@nyu.edu

Homework Assignment 3

Assigned Monday 10 October 2016; due 11:59pm, Friday 21 October 2016

Whenever calculations are needed to solve a problem, those calculations must be submitted as part of the homework assignment.

Homework must be submitted electronically, by 11:59pm on the due date. Unless express permission has been given in advance by the instructor for a late homework submission, a 30% percent penalty will be deducted for each late day (or part of a late day).

Homework grades are based on the quality and clarity of your explanations and proofs.

Exercise 3.1. [Matrix norms.] Consider the matrix

$$A = \left(\begin{array}{cc} 1 & -2 \\ 1 & -1 \end{array}\right).$$

- (a) Give the value of $||A||_1$ and the value of $||A||_{\infty}$.
- (b) Find a 2-vector u such that $||u||_1 = 1$ and $||Au||_1 = ||A||_1$.
- (c) Find a 2-vector v such that $||v||_{\infty} = 1$ and $||Av||_{\infty} = ||A||_{\infty}$.

Exercise 3.2. Given a nonsingular matrix A and a vector b, let x denote the exact solution of Ax = b, and let $\|\cdot\|$ denote any subordinate norm. Consider a matrix A such that $\|A\| = 1$ and a vector b such that $\|b\| = 10^{-6}$. If $\|x\| = 1$, what do we know about cond(A) measured in the given norm? Explain.

Exercise 3.3. Note: numerical calculations (using the two-norm) will be needed to solve this problem.

Let

$$A = \begin{pmatrix} 0.625 & 0.4376 \\ 0.546 & 0.3823 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1.0626 \\ 0.9283 \end{pmatrix}.$$

- (a) Show that the exact solution x^* to Ax = b is $x^* = (1, 1)^T$.
- (b) Give the solution \widetilde{x} computed by executing the Matlab "backslash" command $A \setminus b$ (or the equivalent in octave or SciPy). Compute and print the vectors (i) $d = \widetilde{x} x^*$, (ii) $r^* = b Ax^*$, and (iii) $\widetilde{r} = b A\widetilde{x}$. Comment on the relative size of their norms.
- (c) Let \hat{x} be a potential solution of Ax = b, with residual $\hat{r} = b A\hat{x}$, and define E as the rank-one matrix

$$E = \frac{1}{\widehat{x}^T \widehat{x}} \, \widehat{r} \, \widehat{x}^T. \tag{1}$$

Show mathematically that the exact matrix E defined in (1) satisfies the relation

$$(A+E)\widehat{x}=b.$$

(d) Consider the specific vector \hat{x}

$$\widehat{x} = \left(\begin{array}{c} -27.678\\ 41.958 \end{array}\right).$$

Would you say that \hat{x} is close to x^* from (a)? Would you say that \hat{x} is close to \hat{x} from (b)? Explain.

- (e) Given the vector \hat{x} from (d), compute and print (i) its residual $\hat{r} = b A\hat{x}$, (ii) the matrix E from (1), and (iii) $||E||_2$. Would you describe $||E||_2$ as "small" or "large"? Explain.
- (f) Compute the solution \bar{x} to $(A+E)\bar{x}=b$, using the Matlab backslash command, and print \bar{x} .
- (g) Print $\|\bar{x} \hat{x}\|$. Based on this norm, is \bar{x} "close to" \hat{x} from part (d)? Explain why or why not.
- (h) Do you agree with the statement that \hat{x} is close to the exact solution of a system that is close to the original system? Explain why or why not.

Exercise 3.4.

- (a) Show that, if the square matrices B and C are nonsingular, then $\operatorname{cond}(BC) \leq \operatorname{cond}(B) \operatorname{cond}(C)$, where the condition number is measured in any of the "standard" matrix norms (one, two, or infinity).
- (b) Show that, measured in the matrix two-norm, $cond(A^T) = cond(A)$.
- (c) If cond is measured in the matrix one-norm (the maximum absolute column sum), is $cond(A^T)$ necessarily equal to cond(A)? Explain your answer, giving a specific example for illustration if your answer is "no".

Exercise 3.5. Consider the following matrix A and vector b:

$$A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}.$$

- (a) What is the rank of A?
- (b) Give a general form, expressed in terms of a single scalar, for any vector in the range of A.
- (c) Explain why the dimension of the null space of A^T is two, and display two linearly independent vectors z_1 and z_2 in the null space of A^T . Give a general form, expressed in terms of two scalars, for every vector z in $\text{null}(A^T)$, i.e., such that $A^Tz = 0$.
- (d) Given the particular vector b, find the specific vectors $b_R \in \text{range}(A)$ (i.e., the range-space component of b) and $b_N \in \text{null}(A^T)$ such that $b = b_R + b_N$.
- (e) What is the dimension of the null space of A? (Note: of A, not A^T .) What is the general form of any vector $q = (q_1, q_2)^T$ such that Aq = 0?
- (f) Find a specific two-vector $v = (\alpha_1, \alpha_2)^T$ such that $Av = b_R$, where b_R is the vector found in part (d). (In this part, give numbers for the components of vb.)
- (g) Consider a two-vector b_A defined as $b_A = v + q$, where $Av = b_R$ from part (d) and Aq = 0, and use this form to obtain two specific (different) instances of b_A (i.e., with numbers).