PSALTer results panel

$$S = \iiint (\rho \, \varphi + \, h^{\alpha \beta} \, \mathcal{T}_{\alpha \beta} + \frac{1}{2} \, \alpha_{2} \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{8} \, \alpha_{1} \, (24 \, (1+\varphi) \, \partial_{\alpha} \partial^{\alpha} \varphi - 8 \, \partial_{\alpha} h^{\beta}_{\beta} \, \partial^{\alpha} \varphi + 8 \, \partial^{\alpha} \varphi \, \partial_{\beta} h^{\alpha}_{\alpha} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha \beta} + 4 \, \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} - 2 \, \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\lambda} h^{\beta}_{\beta} - 2 \, \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\lambda} h^{\beta}_{\beta} - 2 \, \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\lambda} h^{\beta}_{\beta} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha \beta} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\lambda} h^{\beta}_{\beta} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha \beta} \, \partial_{\alpha} h^{\alpha \beta} \, \partial_{\alpha} h^{\alpha \beta}_{\beta} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha \beta}_{\beta} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha \beta}_{\alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\beta} h^{\beta}_{\alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\lambda} h^{\beta}_{\beta} - 4 \, \partial_{\lambda} \partial_{\beta} h^{\alpha}_{\alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\alpha} h^{\beta}_{\beta} - 4 \, \partial_{\alpha} h^{\alpha \beta}_{\beta} \, \partial_{\alpha} h^{\beta}_{\beta} - 4 \, \partial_{\alpha} h^{\alpha \beta}_{\beta} \, \partial_{\alpha} h^{\beta}_{\beta} - 4 \, \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\alpha} h^{\beta}_{\beta} - 4 \, \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\alpha} h^{\beta}_{\beta} - 4 \, \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\alpha} h^{\beta}_{\beta} - 4 \, \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\alpha} h^{\beta}_{\beta} - 4 \, \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\alpha} h^{\alpha}_$$

Wave operator

Saturated propagator

Source constraints

	Spin-parity form	Covariant form	Multiplicities
	$0^+\mathcal{T}^\perp == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
	$\frac{1}{2}\mathcal{T}^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
	Fotal expected gauge generators:		4

Massive spectrum

Massless spectrum

Unitarity conditions

(Demonstrably impossible)