Fluxos e Algoritmos

Análise de Sistemas e Requisitos de Software II

Aula 10

Allan Rodrigo Leite

Diagramas de Sequência

- Especificam um processo completo do sistema
 - Interação externa entre ator e sistema
 - Interação interna entre os objetos do sistema
- Orientados a casos de uso
 - Em geral cada caso de uso pode ser representado por um diagrama de sequência
 - Não enfatizam comportamento interno dos métodos
 - Foco no fluxo de informação e delegação das operações e consultas

Fluxos e Algoritmos

- Diagrama de sequência não é indicado para modelar com mais detalhes os aspectos comportamentais de processos
 - Em geral fluxos complexos com muitos desvios e repetições dificultam a visualização
- Diagrama de atividades oferece uma visão mais detalhada sobre fluxos e processos
 - Representam melhor sequências estruturadas de ações

- Diagrama de atividades é utilizado para modelar aspectos comportamentais de processos
 - Este diagrama sofreu mudanças significativas desde a UML 1.0
 - Inicialmente o diagrama era considerado como uma variação do Diagrama de Estados
 - A partir da UML 2.0 tornou-se um diagrama independente
- Complementa a visão do diagrama de sequência pois descreve detalhadamente os passos de um método ou algoritmo específico

- Possui semelhança a fluxograma tradicional, porém suportam outros recursos como:
 - Partições
 - Nós de decisão
 - Região de interrupção
 - Pontos de extensão
 - Noção de objetos
 - Eventos temporais

- Possui quatro elementos obrigatórios:
 - Estado inicial
 - Ação
 - Fluxo de controle
 - Estado final

Atividade

- Representa um comportamento do sistema
- Pode ser decomposto em ações e sub-atividades

Ação

- Representa um passo de uma atividade que não pode ser decomposto
- Possui uma entrada e uma saída
- Pode apresentar pré-condições e pós-condições

- Ação (cont.)
 - Somente é iniciada a ação quando todas as condições de entrada sejam satisfeitas

- Sub-atividade
 - Representa um conjunto de ações dentro de uma atividade
 - Geralmente representam a execução de uma atividade de maneira atômica
 - Em um fluxo no diagrama de atividades, uma sub-atividade é vista como uma ação
 - Também conhecida como CallBehaviorAction

Evento

- Representam mudanças de estado que implica no início de outra ação
- Eventos são geralmente acionados por intermédio atores, fluxos ou ações temporais
- Corresponde a um tipo especial de ação chamada AcceptEventAction
 - Porém, o início da ação não é disparada pela ação anterior

- Evento (cont.)
 - Evento acionado por algum ator ou fluxo
 - O acionamento é ocasionado por um Signal Action
 - Evento acionado por tempo
 - Evento temporal que ocorre em uma frequencia prédefinida

Objetos

- É possível representar o fluxo de informações acontecendo ao longo de um processo
- Isto é realizado definindo explicitamente os objetos requeridos durante um processo ou parte dele
- Também é possível destacar os objetos de entrada e saída de uma ação ou até mesmo de um processo

- Nós de controle
 - Representam o controle de fluxo de uma atividade
 - Os possíveis controles de um diagrama de atividades são:
 - Nós de decisão
 - Nós de merge
 - Nós de bifurcação (fork)
 - Nós de junção (join)
 - Nó de início e fim de atividade e fim de fluxo

Decisão ou Merge Fork ou Join Início Fim Fim de fluxo

- Nós de decisão
 - Existe apenas uma ligação de entrada no losango
 - Indica um desvio de fluxo de acordo com as condições de guarda das ligações de saída
 - Deve possuir uma ligação de entrada e pelo menos duas ligações de saída, indicando fluxos diferentes
 - Representa um IF/CASE

- Nós de merge
 - Existe apenas uma ligação de saída no losango
 - Indica a convergência de diferentes fluxos em um único fluxo
 - Deve possuir pelo menos duas ligações de entrada de fluxos diferentes e apenas uma ligação de saída

- Nós de bifurcação (fork)
 - Oferece a execução de ações ou sub-atividades de forma paralela
 - Ou seja, o nó de fork indica a bifurcação das ações em processos paralelos
 - Todas as ações após um nó de fork devem ocorrer paralelamente
 - Não confundir com o nó de decisão

- Nós de junção (join)
 - Oferece controle para sincronização de ações ou sub-atividades
 - Ou seja, um nó de junção indica um ponto de sincronização entre fluxos paralelos
 - Apenas será prosseguido no fluxo caso todas as ações paralelas de entrada estejam concluídas
 - Não confundir com o nó de merge

- Nós de início ou fim de atividade
 - Indica o início ou fim de atividade
 - Pode existir mais de um fim, porém, recomenda-se um único início e fim

- Nó de fim de fluxo
 - Indica o fim de um fluxo paralelo
 - O fluxo paralelo acaba, porém, existem outras ações no processo que devem ser executadas

- Interrupções e regiões de interrupção
 - Conceitos introduzidos no diagrama de atividade a partir da UML 2.0
 - Indicam as ações que podem lançar algum tipo de exceção (interrupção) e qual ação irá tratá-la (região de interrupção)

- Pontos de extensão
 - Utilizado para melhorar a visualização do diagrama
 - Deve ser utilizado o elemento chamado conector, definindo um identificador do ponto de extensão

Partições

- Indica quem é o responsável por realizar determinadas ações em uma atividade
- Estabelece o papel de um ator dentro de uma atividade
- Uma atividade pode apresentar vários responsáveis, considerando inclusive uma hierarquia sobre eles

	Partição 1	Partição 2
Partição 3		
Partição 4		

Fluxos e Algoritmos

Análise de Sistemas e Requisitos de Software II

Aula 10

Allan Rodrigo Leite