Teoria dei Giochi e delle Decisioni – Prova del 16 Febbraio 2010

Cognome, Nome, Numero di Matricola, email:

Esercizio 1 Considerate una popolazione di n cittadini interessati a un servizio pubblico, dove n è un numero pari e maggiore di 10). Il servizio verrà erogato se e solo più di $\frac{n}{2}$ cittadini pagano un costo di attivazione del servizio; si osservi che: 1) il servizio non viene erogato se i cittadini che pagano il costo di attivazione sono esattamente $\frac{n}{2}$ (o meno); 2) qualora il servizio venga erogato, esso viene erogato a tutti i cittadini, indipendentemente dal fatto che il cittadino abbia pagato il costo di attivazione o meno; 3) qualora il servizio non venga erogato, il costo di attivazione non viene rimborsato ai cittadini che lo hanno pagato.

Ciascun cittadino attribuisce una utilità pari a 1 all'erogazione del servizio (e, naturalmente, una utilità pari a 0 alla mancata erogazione). Inoltre, per ciascun cittadino, il costo di attivazione del servizio è inversamente proporzionale al numero di cittadini disposti a pagare: in particolare, esso è pari a $\frac{5}{k}$, dove k è proprio il numero di cittadini che pagano (naturalmente, il costo di attivazione è zero per un cittadino che non paga).

- 1.1 Indicare gli equilibri di Nash del gioco, se esistono (non è richiesto di giustificare la risposta).
- **1.2** Indicare le strategie debolmente e strettamente dominanti per ciascun giocatore, se esistono (non è richiesto di giustificare la risposta).
- **1.3** Indicare i punti di ottimo debole secondo Pareto, se esistono (non è richiesto di giustificare la risposta).
- **1.4** Indicare le strategie conservative per ciascun giocatore, se esistono (non è richiesto di giustificare la risposta).

Soluzione: 1.1 Gli equilibri di Nash del gioco sono i seguenti: il punto in cui ogni cittadino decide di non pagare l'attivazione del servizio, e tutti i punti in cui la cardinalità dell'insieme dei cittadini che paga l'attivazione del servizio è pari a $\frac{n}{2} + 1$.

- **1.2** Non esistono strategie debolmente o strettamente dominanti.
- **1.3** Sono ottimi deboli secondo Pareto tutti i punti in cui la cardinalità dell'insieme dei cittadini che paga l'attivazione del servizio è maggiore o uguale a $\frac{n}{2} + 1$.
 - 1.4 La strategia conservativa per ciascun giocatore è non pagare per l'attivazione del servizio.

Esercizio 2 Considera il seguente gioco. Tu e il tuo avversario potete scegliere un intero tra 1 e 8. Sia *x* il numero che scegli tu e *y* il numero scelto dal tuo avversario.

- Se $x \ge 2y$, vinci un euro;
- Se $y \ge 2x$, perdi un euro;
- Se $\frac{y}{2} < x < y$, vinci un euro;
- Se $\frac{x}{2} < y < x$, perdi un euro;
- Se x = y, c'è un pareggio.

Formula il problema di programmazione lineare, scrivendo la matrice di payoff in forma di *costo*, che consente di calcolare il valore del gioco (non è richiesto di risovere tale programma). Dire quindi quali tra le seguenti strategie è conservativa per il primo giocatore, giustificando la risposta:

•
$$\xi_1^i = \frac{1}{8}, \forall i = 1, \dots, 8$$

•
$$\xi_1^1 = \xi_1^2 = \xi_1^3 = \frac{1}{3}; \xi_1^i = 0, \forall i = 4, \dots, 8$$

•
$$\xi_1^4 = \xi_1^8 = \frac{1}{2}, \xi_1^i = 0, \forall i \in \{1, 2, 3, 5, 6, 7\}$$

(al solito indichiamo con $\xi_1 = (\xi_1^i, \dots, \xi_1^8)$ il vettore stocastico associato alle 8 possibili strategie pure del primo giocatore).

2.1 Dire quindi se il gioco ammette un equilibrio di Nash *puro*, giustificando sinteticamente la risposta.

Soluzione: La matrice dei payoff in forma di costo per il primo giocatore è la seguente

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 0 & -1 & -1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 0 & -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 & 0 & -1 & -1 & -1 \\ -1 & -1 & -1 & 1 & 1 & 0 & -1 & -1 \\ -1 & -1 & -1 & 1 & 1 & 1 & 0 & -1 \\ -1 & -1 & -1 & -1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Se indichiamo con c_{ij} l'elemento alla riga i e la colonna j di tale matrice, il problema di programmazione lineare che è necessario risolvere per determinare il valore del gioco, può essere scritto come:

 $\min z$

$$z \ge \sum_{i=1}^{8} c_{ij} \xi_1^i \quad j = 1, \dots, 8$$
$$\xi_1^i \ge 0 \quad i = 1, \dots, 8$$
$$\sum_{i=1}^{8} \xi_1^i = 1$$

Osserviamo preliminarmente che la matrice dei payoff è anti-simmetrica, quindi il valore del gioco deve essere zero, cioé $z^* = 0$.

- $\xi_1^i = \frac{1}{8}, \forall i = 1, ..., 8$ non è un equilibrio di Nash, perché se andiamo a sostituire tale vettore nella formulazione otteniamo $z = \frac{3}{8} \neq 0$.
- $\xi_1^1 = \xi_1^2 = \xi_1^3 = \frac{1}{3}; \xi_1^i = 0, \forall i = 4,...,8$ non è un equilibrio di Nash, perché se andiamo a sostituire tale vettore nella formulazione otteniamo $z = 1 \neq 0$.
- $\xi_1^4 = \xi_1^8 = \frac{1}{2}, \xi_1^i = 0, \forall i \in \{1, 2, 3, 5, 6, 8\}$ non è un equilibrio di Nash, perché se andiamo a sostituire tale vettore nella formulazione otteniamo $z = \frac{1}{2} \neq 0$.
- **2.1** Il gioco non ammette un equilibrio di Nash puro perché andando a sostituire nella formulazione precedente un qualunque vettore ξ corrispondente ad una strategia pura ottengo sempre $z = 1 \neq 0$.

Esercizio 3 Consideriamo la produzione di un certo bene da parte di due agenti A e B in un mercato ad utilità trasferibile. L'agente A (risp. B) dispone di un vettore di risorse $w_A = (w_A^1, w_A^2) = (8,3)$ (risp. $w_B = (w_B^1, w_B^2) = (4,6)$) e di una funzione di produzione $f_1(w_A) = 2w_A^1 + 4w_A^2$ (risp. $f_2(w_B) = 6w_B^1 + 2w_B^2$).

Formalizzare la situazione descritta come un gioco in cui i due cooperino per la produzione del bene. Fornire inoltre un'imputazione nel nucleo di tale gioco. Giustificare le risposte.

Soluzione: Per formalizzare la situazione descritta come un gioco cooperativo (N, v) dobbiamo definire la funzione v. In particolare le funzioni di produzione di ciascun giocatore rappresentano rispettivamente $v(\{A\}) = 8 \cdot 2 + 4 \cdot 3 = 28$ e $v(\{B\}) = 4 \cdot 6 + 6 \cdot 2 = 36$. Per determinare il valore $v(\{A, B\})$ dobbiamo risolvere il seguente problema di programmazione lineare:

$$\max 2z_A^1 + 4z_A^2 + 6z_B^1 + 2z_B^2$$

$$z_A^1 + z_B^1 = 12$$

$$z_A^2 + z_B^2 = 9$$

$$z_A^1, z_A^2, z_R^1, z_R^2 \ge 0$$

Utilizziamo le due equazioni per sostituire le quantità $z_B^1 = 12 - z_A^1$ e $z_B^2 = 9 - z_A^2$. Possiamo così ottenere il seguente problema in due sole variabili

$$\max -4z_A^1 + 2z_A^2 + 90$$

$$0 \le z_A^1 \le 12$$

$$0 \le z_A^2 \le 9$$

Possiamo risolvere il PL per via geometrica; osserviamo che i vertici del poliedro dei vincoli sono i punti (0,0) (12,0) (0,9) e (12,9). Se andiamo a valutare la funzione obiettivo nei quattro vertici otteniamo che il massimo è raggiunto nel punto (0,9) ed il valore ottimo è pari a 108. Ritornando quindi alla formulazione originaria del problema possiamo concludere che $v(\{A,B\}) = 108$ e la spartizione ottima delle risorse è $(z_A^1, z_A^2) = (0,9)$ e $(z_B^1, z_B^2) = (12,0)$. Per determinare un'imputazione del nucleo di questo gioco dobbiamo trovare due valori α_1 ed α_2 tali che:

$$\begin{aligned} &\alpha_1 \geq 28 \\ &\alpha_2 \geq 36 \\ &\alpha_1 + \alpha_2 = 108 \end{aligned}$$

Un'imputazione nel nucleo potrebbe quindi essere ad esempio $(\alpha_1, \alpha_2) = (50, 58)$.

Esercizio 4 Si consideri un gioco non cooperativo a due giocatori, in cui ciascun giocatore controlla un'unica variabile, che indichiamo, rispettivamente, con x_1 per il primo giocatore e x_2 per il secondo. L'insieme ammissibile del primo giocatore è $X_1 = \{x_1 \in \mathbb{R}\}$, quello del secondo giocatore è $X_2 = \{x_2 : -1 \le x_2 \le 6\}$. I payoff (in forma di costo) dei due giocatori sono rispettivamente $C_1(x_1, x_2) = \frac{1}{2}x_1^2 - 4x_1x_2 + 7x_1$ e $C_2(x_1, x_2) = \frac{1}{2}x_2^2 + 3x_1x_2 - 2x_2$.

- **4.1** Si può affermare *a priori*, ovvero senza calcolare le funzioni best response, l'esistenza di un equilibrio di Nash (giustificare brevemente la risposta)?
- **4.2** Individuare, per ciascun giocatore, la funzione best response. Individuare quindi gli equilibri di Nash, se essi esistono.

Soluzione

4.1 Non possiamo concludere a priori che il gioco ammette un equilibrio di Nash, poiché l'insieme X_1 non è compatto.

4.2 Per una data strategia $x_2 \in X_2$, per individuare la best response il primo giocatore deve risolvere il seguente problema non vincolato:

$$\min \frac{1}{2}x_1^2 - 4x_1x_2 + 7x_1$$

Analogamente, per una data strategia $x_1 \in X_1$, per individuare la best response il secondo giocatore deve risolvere il seguente problema:

$$\min \frac{1}{2}x_2^2 + 3x_1x_2 - 2x_2$$
$$-1 \le x_2 \le 6$$

Per determinare le funzioni best response e gli equilibri di Nash dobbiamo risolvere il sottoproblema di ciascun giocatore scritto precedentemente. In questo caso quindi le best response function sono date da

$$b_1(x_2) = 4x_2 - 7.$$
 $b_2(x_1) = \begin{cases} 6 & \text{se } x_1 \le -\frac{4}{3} \\ -3x_1 + 2 & \text{se } -\frac{4}{3} \le x_1 \le 1 \\ -1 & \text{se } x_1 \ge 1 \end{cases}$

Si può verificare graficamente o analiticamente che l'unico punto di intersezione delle best reponse function, quindi l'unico equilibrio di Nash è $(x_1, x_2)^N = \left(\frac{1}{13}, \frac{23}{13}\right)$.