Graduation Work

B3 Suzuki Takahiro

please ask a question loudly and slowly

Presentation flow-

Presentation flow-

☐ Research theme

Automatic diagnosis of glioma

- **□** Why this theme?
- Fear of cancer
- Interest in machine learning

- Why glioma?
- Clearness of presence
- > Findability of MRI datasets

□ What glioma?

- Kind of malignant brain tumor
- Canceration of glial cells

- How archive "automatic diagnosis"?
- By Deep Learning
 - VGG16
 - Original CNN
- By Classical Machine Learning
 - SVM
 - RandomForest
 - Gradient Boosting

□ Study flow

1. Predict sex

Learn how to Machine Learning

2. Detect glioma

Pursue detection rate

Predict sex Detect glioma

Presentation flow-

Library for Deep Learning

■ Library for Deep Learning

□ What PyTorch?

Deep Learning framework

■ What PyTorch character?

Make GPU available more easily

Based on "Define by Run" policy

□ Why PyTorch?

Receive advice from Mr. Nakamura easily

More flexible than other framework

have a easy-to-understand book

☐ How use PyTorch?

1. Pre-processing, post-processing

2. Creating Dataset

3. Creating DataLoader

4. Creating a network model

5. Definition of forward

6. Definition of loss function

7. Setting the optimization method

8. Implementation of learning and verification

9. Infer with test data

Momentum

- Method of optimization for updating parameters
- Consider not only the direction of the gradient but also that of momentum

AdaGrad

- Method of optimization for updating parameters
- > At first learn "strongly", and then learn "weakly"
- > Adjusting the learning rate adaptively for each parameter

$$h \leftarrow h + \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$$

$$W \leftarrow W - \eta \, \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

□ Adam

- Method of optimization for updating parameters
- Naively, hybrid method of Momentum and AdaGrad

■ Softmax function

$$y_i = \frac{e^{x_i}}{\sum_{j=1}^N e^{x_j}}$$

- $0 < y_i < 1$
- $y_1 + \cdots + y_n = 1$

Cross entropy error function

$$E = \sum_{k=1}^{\infty} -t_k \log y_k$$

$$t = [t_1 \ t_2 \ \cdot \ \cdot \ t_k \ \cdot \ \cdot \] : one - hot label$$

$$y = [y_1 \ y_2 \ \cdot \ \cdot \ y_k \ \cdot \ \cdot \] : output of network$$

Dataset

1. IXI Dataset

- IXI : Information eXtraction from Images
- https://brain-development.org/ixi-dataset/

2. LGG-1p19qDeletion from TCIA (Simply call this dataset TCIA)

- TCIA: The Cancer Image Archive
- https://www.cancerimagingarchive.net/

Dataset detail

	State	Size	Attached Label
IXI	Normal	585	Weight, Height, Age, Sex, etc.
TCIA	Glioma	159	Grade(悪性度), Weight, Age, Sex, etc.

Presentation flow-

■ Step1- Predicts sex

- Dataset
 - IXI dataset only

- Step1- Predicts sex
 - What problems?
- 1. MRI data is a three-dimensional image
- → MRI data has spatial information
- → Machine Learning method (not deep)
 requires one-dimensional data(probably ...)
- → Adopt Deep Learning method(3D CNN) only
- 2. Deep Learning needs a lot of time and memory
- ightarrow I have temporal and memory constraints
- → Use small size data type and shallow structure

- Step1- Predicts sex
 - Why problems?
- 1. MRI data is a three-dimensional image
- → MRI data has spatial information
- Machine Learning method (not deep) requires one-dimensional data(probably ...)
- → Adopt Deep Learning method(3D CNN) only
- Deep Learning needs a lot of time and memory
- → I have temporal and memory constraints
- → Use small size data type and shallow structure

- Step1- Predicts sex
 - ☐ How resolve problems?
- 1. MRI data is a three-dimensional image
- → MRI data has spatial information
- → Machine Learning method (not deep)
 requires one-dimensional data(probably ...)
- → Adopt Deep Learning method(3D CNN) only
- 1. Deep Learning needs a lot of time and memory
- → I have temporal and memory constraints
- → Use small size data type and shallow structure

- ☐ Step1- Predicts sex
 - Method

- Original 3D CNN
 - Call this CNN "3D ConvNet"

- 2. Original 3D CNN -version 2-
 - Call this CNN "3D ConvNet v2"

☐ Step1- Predicts sex

Method Detail(3D ConvNet)

- Step1- Predicts sex
 - Method Detail(3D ConvNet v2)

Presentation flow-

Result

□ Step1 - Predicts sex

☐ 3D ConvNet○ 50 epoch

Result

☐ Step1 - Predicts sex

3D ConvNet v2100 epoch

Presentation flow-

- Step2 Detect glioma
 - Dataset

- Step2 Detect glioma
 - Confirmation Definition of MRI coordinate system -

- Step2 Detect glioma
 - What problems?
- 1. TCIA images have lower size in z-axis direction than IXI
- → Must input same shape data to CNN
- → Must compress IXI images in some way
- → Give up using IXI images
- 2. Each TCIA image have diverse number of z-axis image
- → Must input same shape data to CNN
- ← The location of glioma differs in each patient
- Must manually reduce the number of image
- → Use 2D-images along z-axis from TCIA

What?

Why?

How?

/3

- ☐ Step2 Detect glioma
 - What problems?
- 1. TCIA images have lower size in z-axis direction than
- → Must input same shape data to CNN
- → Must compress |X| images in some way
- \rightarrow Give up using in images
- 2. Each TCIA image have diverse number of z-axis imag
- → Must input same shape data to CNN
- ← The location of glioma differs in each patient
- ← Must manually reduce the number of image

What? Why? How?

- Step2 Detect glioma
 - What problems?
- 1. TCIA images have lower size in z-axis direction tha
- → Must input same shape data to CNN
- → Must compress IXI images in some way
- → Give up using IXI images
- 2. Each TCIA image have diverse number of z-axis imag
- → Must input same shape data to CNN
- ← The location of glioma differs in each patient
- Must manually reduce the number of image
- → Use 2D-images along z-axis from TCIA

- ☐ Step2 Detect glioma
 - Mean of each label

label	mean	
0	normal control	
1	glioma	
2	black image	
3	unused image	

- Step2 Detect glioma
 - Example of each label

label: 0

label: 1

- Step2 Detect glioma
 - Example of each label

label: 2

label: 3

- Step2 Detect glioma
 - Dataset
 - Number of images on each label

label	number of images
0	5166
1	1868
2	731
3	222

- Step2 Detect glioma
 - □ Dataset
 - Add Gaussian noise to training data

- Step2 Detect glioma
 - Method
- 1. SVM(Support Vector Machine)
- 2. Random Forest
- 3. Gradient Boosting
- 4. VGG16(relearning based on fine tuning)
 - Original CNN
 - Call this CNN 2D ConvNet

- Step2 Detect glioma
 - ☐ Method Detail(SVM)

- Step2 Detect glioma
 - Method Detail(SVM)

- Step2 Detect glioma
 - Method Detail(Random Forest)

- Step2 Detect glioma
 - Method Detail(Gradient boosting)

- Step2 Detect glioma
 - Method Detail(VGG16)

- ☐ Step2 Detect glioma
 - ☐ Method Detail(Fine tuning)

- Method of building model using pre-trained network
 - → We have only to change the input and output layer

Retrain all parameters

- Step2 Detect glioma
 - Method Detail(2D ConvNet)

Presentation flow-

- Step2 Detect glioma
 - ☐ Comparison with each classical Machine Learning method

	Train score	Val score	Test score
Random Forest	99%	88%	89%
Gradient Boosting	96%	88%	87%
SVM	84%	81%	82%

☐ Step2 - Detect glioma

- □ VGG16
 - o 50 epoch

■ Step2 - Detect glioma

☐ 2D ConvNet

50 epoch

■ Step2 - Detect glioma

☐ 2D ConvNet

100 epoch

Presentation flow-

- **□** Step1 Predicts sex
 - ☐ Why can't predict sex accurately?
 - 3D ConvNet's input is only MRI data and label
 - → Volume of men's brain is larger than that of women's
 - → Volume of young people's brain is larger than that of elderly people's
 - → Input age data as well

- Step1 Predicts sex
 - ☐ Why can't predict sex accurately?
 - 3D ConvNet's input is only MRI data and label
 - → Volume of men's brain is larger than that of women's
 - → Volume of young people's brain is larger than that of elderly people's
 - → Input age data as well

- Step1 Predicts sex
 - ☐ Why can't predict sex accurately?
 - o 3D Conviners input is only MRI data and lat
 - → Volume of men's brain is larger than that of women's
 - → Volume of young people's brain is larger than that of elderly people's
 - → Input age data as well

- Step1 Predicts sex
 - ☐ Why can't predict sex accurately?
 - 3D ConvNet's input is only MRI data and labe
 - → Volume of men's brain is larger than that of women's
 - → Volume of young people's brain is larger than that of elderly people's
 - → Input age data as well

Step2 - Detect glioma

Why VGG16 can't surpass classical Machine Learning accuracy?

- Step2 Detect glioma
 - ☐ Why VGG16 can't surpass classical Machine Learning accuracy?
 - 1. I should have standardize input images
 - → VGG16 requires standardized inputs
 - ← I forgot it ...
 - → Standardize input images

- Step2 Detect glioma
 - ☐ Why VGG16 **can't** surpass classical Machine Learning accuracy?
 - 1. I should have standardize input images
 - → VGG16 requires standardized inputs
 - ← I forgot it ...
 - → Standardize input images

- ☐ Step2 Detect glioma
 - ☐ Why VGG16 can't surpass classical Machine Learning accuracy?
 - 2. Dataset I used and dataset used for pretraining is differ in characters
 - → Dataset I used is gray scale images
 - ← Dataset used for pretraining has RGB channel
 - → Dataset I used consists of brain image only
 - ← Dataset used for pretraining consists of daily images (I think ...)

What? Why?

How?

What?

Why?

How?

- Step2 Detect glioma
 - ☐ Why VGG16 can't surpass classical Machine Learning accuracy?
 - Dataset I used and dataset used for pretraining is differ in characters
 - → Dataset I used is gray scale images
 - ← Dataset used for pretraining has RGB channe
 - → Dataset I used consists of brain image only
 - Dataset used for pretraining consists of daily images (I think ...)
 - → Use another pre-trained model

Presentation flow-

Conclusion

□ About Machine Learning

- I can learn Machine Learning in detail
 - I don't feel like doing without such opportunity...
 - I wander I reduce what I don't know now
- I keenly realize the gap between theory and reality
 - Restriction of memory size, time, and data structure

■ About Automatic diagnosis

- In the case of glioma, high detection accuracy is achieved
 - This is a easy case, not hard case
 - I hope we're able to detect many kinds of illness easily