Adaptive Multi-Source Causal Inference from Observational Data

Thanh Vinh Vo¹

Pengfei Wei ²

Trong Nghia Hoang ³

Tze-Yun Leong ¹

 $^{\rm 1}$ National University of Singapore $^{\rm 2}$ AI Lab Speech & Audio Bytedance, Singapore $^{\rm 3}$ Washington State University

CIKM 2022, Atlanta, Georgia, USA

Outline

- 1 Motivation
- 2 Causal quantities of interest
- 3 AdaTRANS: the proposed method
- 4 Experimental evaluation
- 5 Summary: limitations and future work

Why do we need causal inference?

■ Effect of a 'new medicine' on 'blood pressure' of patients.

Why do we need causal inference?

- Effect of a 'new medicine' on 'blood pressure' of patients.
- Effect of 'air quality' on 'asthma attack'.
- Effect of 'smoking' on 'cancer'.
- Effect of 'coronary heart disease' on 'mortality'.
- Effect of 'fertilizer' on 'crop yield'.

Typical regression would give a biased estimand because of confounders.

Two approaches to estimate causal effects:

- Randomized control trial
- Inference from observational data
 - Potential outcomes framework (PO) (Rubin, 1974, 1975, 1976, 1977, 1978; Rosenbaum & Rubin, 1983)
 - Structural causal model (SCM) (Pearl, 1995, 2000)

Problem:

- Observational data in a specific population might be **scarce**.
- For example:
 - Vaccination data of the elder in a country might be scarce and much less than the younger.

■ Estimate causal effects in a target population with scarce data observation

Sufficient data observations Scar

Combining data might lead to poor causal estimands.

		Observed confounder	Latent confounder	$\begin{array}{c} \text{With} \\ \text{transfer} \end{array}$	Randomized data
Without transfer	Louizos et al. (2017) Madras et al. (2019) Hill (2011) Shalit et al. (2017) Künzel et al. (2019) (to name a few)	000	0		
With transfer	Bareinboim & Pearl (2014) Bareinboim & Pearl (2016) Aglietti et al. (2020)			000	•
	AdaTRANS (proposed method)		•	•	

Causal quantities of interest

- t: target population
- $S = \{s_1, s_2, ..., s_m\}$: collection of source populations
- y^{d} : the outcome
- w^{d} : the treatment
- \mathbf{z}^{d} : the latent confounder
- \mathbf{x}^{d} : the covariate

Causal quantities of interest

- **t**: target population
- \blacksquare $S = \{\mathsf{s}_1, \mathsf{s}_2, ..., \mathsf{s}_m\}$: collection of source populations
- y^{d} : the outcome
- w^{d} : the treatment
- \mathbf{z}^{d} : the latent confounder
- \mathbf{x}^{d} : the covariate

We estimate

$$\begin{split} &\mathbf{ite}(x) = E[y^{\mathbf{t}}|\mathrm{do}(w^{\mathbf{t}}=1), \mathbf{x}^{\mathbf{t}}=x] - E[y^{\mathbf{t}}|\mathrm{do}(w^{\mathbf{t}}=0), \mathbf{x}^{\mathbf{t}}=x] \\ &\mathbf{ate} = E_X[\mathbf{ite}(X)] \end{split}$$

Expectation of the outcome given intervention on w_i^t : $E[y_i^t|do(w_i^t), \mathbf{x}_i^t]$

Expectation of the outcome given intervention on w_i^{t} : $E[y_i^{\mathsf{t}}|\mathrm{do}(w_i^{\mathsf{t}}),\mathbf{x}_i^{\mathsf{t}}]$

Backdoor adjustment $p(y_i^{\mathsf{t}}|\mathrm{do}(w_i^{\mathsf{t}}), \mathbf{x}_i^{\mathsf{t}}) = \int p(y_i^{\mathsf{t}}|w_i^{\mathsf{t}}, \mathbf{z}_i^{\mathsf{t}}) \, p(\mathbf{z}_i^{\mathsf{t}}|\mathbf{x}_i^{\mathsf{t}}) \, d\mathbf{z}_i^{\mathsf{t}}$

The transfer kernel function

$$\kappa_c(\mathbf{v}_i^{\mathsf{d}_1}, \mathbf{v}_j^{\mathsf{d}_2}) = \begin{cases} \lambda^{(\mathsf{d}_1, \mathsf{d}_2)} k_c(\mathbf{v}_i^{\mathsf{d}_1}, \mathbf{v}_j^{\mathsf{d}_2}), & \text{if } \mathsf{d}_1 \neq \mathsf{d}_2, \\ k_c(\mathbf{v}_i^{\mathsf{d}_1}, \mathbf{v}_j^{\mathsf{d}_2}), & \text{otherwise.} \end{cases}$$

The transfer factor $\lambda^{(d_1,d_2)}$ is learned.

- $\lambda^{(\mathsf{d}_1,\mathsf{d}_2)} = 0$: no transfer
- $\lambda^{(\mathsf{d}_1,\mathsf{d}_2)} = 1$: fully transfer
- $0 < \lambda^{(\mathsf{d}_1,\mathsf{d}_2)} < 1$: partially transfer

The aims of experiments

- We study the performance when the sources' distributions and the target's distributions are similar/different.
- We illustrate the performance when the similarity of sources and target slowly changes.

Datasets

- Synthetic data
 - Simulate based on a ground truth causal graph.

$$\begin{split} \mathbf{z}_i^{\mathbf{d}} &\sim \mathsf{N}(\mathbf{0}, \sigma_z^2 \mathbf{I}_2), \\ x_{ij}^{\mathbf{d}} &\sim \mathsf{Bern}(\varphi(a_{0j} + (\mathbf{z}_i^{\mathbf{d}})^{\top} \boldsymbol{a}_{1j})), \\ w_i^{\mathbf{d}} &\sim \mathsf{Bern}(\varphi(b_0 + (\mathbf{z}_i^{\mathbf{d}})^{\top} \boldsymbol{b}_1^{\mathbf{d}})), \\ y_i^{\mathbf{d}}(0) &\sim \mathsf{N}(\zeta(c_0 + (\mathbf{z}_i^{\mathbf{d}})^{\top} \boldsymbol{c}_1^{\mathbf{d}}), \sigma_y^2), \\ y_i^{\mathbf{d}}(1) &\sim \mathsf{N}(\zeta(d_0 + (\mathbf{z}_i^{\mathbf{d}})^{\top} \boldsymbol{d}_1^{\mathbf{d}}), \sigma_y^2). \end{split}$$

- We keep $\mathbf{x}_i^{\mathsf{d}}$, w_i^{d} and either $y_i^{\mathsf{d}}(0)$ or $y_i^{\mathsf{d}}(1)$ as observed data.
- \circ b_1^{d} , c_1^{d} , d_1^{d} are set differently on each population d.

Datasets

- Twins data
 - Study the impact of twins' weight (treatment) on their mortality (outcome).
 - o Source data: 1594 entries, Target data: 457 entries

Evaluation metrics

■ Precision in estimation of heterogeneous effects (PEHE) (Hill, 2011)

$$\varepsilon_{\text{PEHE}} = E \left[\left(\underbrace{(y_1 - y_0)}_{\text{True ITE}} - \underbrace{(\hat{y}_1 - \hat{y}_0)}_{\text{Estimated ITE}} \right)^2 \right]$$

■ Absolute error

$$\varepsilon_{\text{ATE}} = \left| \underbrace{E(y_1 - y_0)}_{\text{True ATE}} - \underbrace{E(\hat{y}_1 - \hat{y}_0)}_{\text{Estimated ATE}} \right|$$

The importance of adaptively causal transfer

$$\begin{aligned} & \boldsymbol{b}_{1}^{\mathsf{t}} = [1.1, 1.7]^{\top}, & \boldsymbol{c}_{1}^{\mathsf{t}} = [1.5, 1.8]^{\top}, & \boldsymbol{d}_{1}^{\mathsf{t}} = [1.5, 2.8]^{\top}, \\ & \boldsymbol{b}_{1}^{\mathsf{s}} = \boldsymbol{b}_{1}^{\mathsf{t}} + \boldsymbol{\Delta}^{\mathsf{s}} [1, 1]^{\top}, & \boldsymbol{c}_{1}^{\mathsf{s}} = \boldsymbol{c}_{1}^{\mathsf{t}} + \boldsymbol{\Delta}^{\mathsf{s}} [1, 1]^{\top}, & \boldsymbol{d}_{1}^{\mathsf{s}} = \boldsymbol{d}_{1}^{\mathsf{t}} + \boldsymbol{\Delta}^{\mathsf{s}} [1, 1]^{\top}, \end{aligned}$$

We vary $\Delta^{s} \in \{0.0, 0.5, 1.0, 1.5, 2.0\}$ to obtain different instances of the source data.

Which transfer level is the most important?

Performance analysis: compare with the baselines (Lower is better)

Method	The error of ITE $(\sqrt{\varepsilon_{\text{PEHE}}})$			The error of ATE $(\varepsilon_{\text{ATE}})$			
	0-source	2-sources	4-sources	0-source	2-sources	4-sources	
$CEVAE_{stack}$	$3.1 \pm .30$	$4.6 \pm .39$	$4.8 \pm .40$	$1.7 \pm .29$	$2.8 \pm .30$	$2.5 \pm .26$	
$CFRNet_{stack}$	$4.6 \pm .51$	$8.9 \pm .50$	$6.0 \pm .19$	$1.6 \pm .41$	$6.1 \pm .48$	$4.0 \pm .17$	
$SITE_{stack}$	$6.0 \pm .98$	$8.9 \pm .61$	$7.5 \pm .60$	$3.3 \pm .67$	$6.4 \pm .79$	$5.0 \pm .76$	
$BART_{stack}$	$2.5 \pm .06$	$2.3 \pm .03$	$2.2 \pm .06$	$1.2 \pm .13$	$0.7 \pm .08$	$0.6 \pm .09$	
R-learner _{stack}	$3.0 \pm .27$	$2.2 \pm .11$	$1.8 \pm .09$	$1.4 \pm .35$	$1.2 \pm .17$	$1.0 \pm .10$	
X-learner _{stack}	$2.0 \pm .13$	$2.2 \pm .12$	$1.9 \pm .13$	$1.0 \pm .17$	$1.0 \pm .11$	$1.1 \pm .13$	
$\rm OrthoRF_{stack}$	$6.2 \pm .40$	$2.4 \pm .03$	$2.2 \pm .03$	$1.2 \pm .37$	$0.5 \pm .08$	$0.6 \pm .06$	
CEVAE _{1-hot}	_	$5.0 \pm .43$	3.3±.12	_	$3.1 \pm .42$	1.9±.23	
$CFRNet_{1-hot}$	_	$4.4 \pm .26$	$3.3 \pm .21$	_	$3.3 \pm .26$	$2.1 \pm .17$	
$SITE_{1-hot}$	_	$5.8 \pm .99$	$3.2 \pm .25$	_	$3.4 \pm .67$	$2.1 \pm .21$	
$BART_{1-hot}$	_	$2.3 \pm .03$	$2.2 \pm .04$	_	$0.7 \pm .10$	$0.4 \pm .10$	
R-learner _{1-hot}	_	$2.0 \pm .07$	$1.7 \pm .15$	_	$0.8 \pm .15$	$0.8 \pm .20$	
X-learner _{1-hot}		$1.9 \pm .12$	$1.8 \pm .10$		$0.7 \pm .13$	$0.6 \pm .12$	
$\rm OrthoRF_{1-hot}$	_	$5.5 \pm .30$	$4.1 \pm .16$	_	$3.9 \pm .22$	$2.6 \pm .17$	
AdaTRANS	1.6±.09	1.3±.03	1.3±.02	1.1±.13	0.2±.05	0.1±.03	

- The range of true ATE: (1.51, 1.87).
- The range of true ITE: (-5.69, 13.14).

- Twins data
 - Study the impact of twins' weight (treatment) on their mortality (outcome).
 - o Source data: 1594 entries, Target data: 457 entries

Summary

- We developed an adaptive method that estimates causal effects for a target population whose data is scarce.
- The proposed method required no prior information about the discrepancy about the source and target population.
- We assume that the source and the target share the same causal graph, but different structural equations.
- Limitations:
 - Causal effects in each population are identifiable.
 - $\circ\,$ The populations share similar causal graph & data features.
 - The confounders are independent and identically distributed.
- Future direction: allowing in the target population to be unidentifiable and have different set of data features.

Q & A

This research/project is supported by the National Research Foundation Singapore and DSO National Laboratories under the AI Singapore Programme (AISG Award No: AISG2-RP-2020-016).