

(Inverse) Trigonometric Functions and Identities

0	$\sin \theta = \frac{\mathcal{O}}{\mathcal{H}} = \frac{e^{i\theta} - e^{-i\theta}}{2i}$
posite	$\cos \theta = \frac{A}{H} = \frac{e^{i\theta} + e^{-i\theta}}{2}$
(D	$\tan\theta = \frac{\mathcal{O}}{\mathcal{A}} = \frac{e^{i\theta} - e^{-i\theta}}{i(e^{i\theta} + e^{-i\theta})}$

Reciprocal	Pythagorean
$\csc\theta = 1/\sin\theta$	$\sin^2\theta + \cos^2\theta = 1$
$\sec\theta = 1/\cos\theta$	$\sec^2\theta - \tan^2\theta = 1$
$\cot\theta=1/\tan\theta$	$\csc^2\theta - \cot^2\theta = 1$

Even/Odd Identities

$\sin\left(-\theta\right) = -\sin\theta$	$\csc\left(-\theta\right) = -\csc\theta$
$\cos\left(-\theta\right) = \cos\theta$	$\sec\left(-\theta\right) = \sec\theta$
$\tan\left(-\theta\right) = -\tan\theta$	$\cot\left(-\theta\right) = -\cot\theta$

Double Angle Identities

$$\sin(2\theta) = 2\sin\theta\cos\theta \qquad \tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

Angle Sum/Difference and Product-to-Sum

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

Inverse Function	Domain	Range
$y = \arcsin x = \sin^{-1} x$	[-1, 1]	$[-\pi/2,\pi/2]$
$y = \arccos x = \cos^{-1} x$	[-1, 1]	$[0,\pi]$
$y = \arctan x = \tan^{-1} x$	$(-\infty,\infty)$	$(-\pi/2,\pi/2)$
$y = \operatorname{arccsc} x = \operatorname{csc}^{-1} x$	$ x \ge 1$	$[-\pi/2,\pi/2] - \{0\}$
$y = \operatorname{arcsec} x = \operatorname{sec}^{-1} x$	$ x \ge 1$	$[0,\pi] - \{\pi/2\}$
$y = \operatorname{arccot} x = \cot^{-1} x$	$[-\infty,\infty]$	$(0,\pi)$

Complex Numbers

Cartesian form:	$z = x + iy = \operatorname{Re}(z) + i\operatorname{Im}(z)$
Conjugate	$\bar{z} = x - iy$
Polar form:	$z = r(\cos\theta + i\sin\theta) = r\angle\theta$
Modulus	$r = z = \sqrt{x^2 + y^2}$
$\operatorname{Arg}(z)$	$\theta = \arctan\left(\frac{y}{x}\right), \ \theta \in (-\pi, \pi]$
Exponential form:	$z = re^{i\theta}, \qquad e^{i\theta} = \cos\theta + i\sin\theta$
De Moivre's:	$z^n = r^n \angle (n\theta)$
n^{th} roots: w	$k = r^{\frac{1}{n}} \angle \left(\frac{\theta + 2k\pi}{n}\right), k = 0, \cdots, n - 1$
$z_1 z_2 = r_1 r_2 \angle (\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle (\theta_1 - \theta_2)$

(Inverse) Hyperbolic Functions & Identities

$$\sinh x = \frac{e^{x} - e^{-x}}{2} \qquad \operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^{x} - e^{-x}}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2} \qquad \operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^{x} + e^{-x}}$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \qquad \coth x = \frac{\cosh x}{\sinh x} = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$

Square Formulas

$\cosh^2 x - \sinh^2 x = 1$	$\sinh^2 x = \frac{1}{2}(\cosh 2x - 1)$
$\operatorname{sech}^2 x + \tanh^2 x = 1$	$\cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$
$\coth^2 x - \operatorname{csch}^2 x = 1$	

Even/Odd Identities

$\sinh\left(-x\right) = -\sinh x$	$\operatorname{csch}(-x) = -\operatorname{csch} x$
$\cosh\left(-x\right) = \cosh x$	$\operatorname{sech}\left(-x\right) = \operatorname{sech}x$
$\tanh\left(-x\right) = -\tanh x$	$\coth\left(-x\right) = -\coth x$

Double Angle Identities

$\sinh 2x = 2\sinh x \cosh x$	$\cosh 2x = \cosh^2 x + \sinh^2 x$
$\tanh 2x = \frac{2\tanh x}{1 + \tanh^2 x}$	$= 2\cosh^2 x - 1$ $= 2\sinh^2 x + 1$

Angle Sum/Difference and others

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$

$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$$

$$\sinh^2 x - \sinh^2 y = \sinh(x + y) \sinh(x - y)$$

Inverse Function	Domain	Range
$y = \operatorname{arcsinh} x = \ln(x + \sqrt{x^2 + 1})$	$(-\infty,\infty)$	$(-\infty,\infty)$
$y = \operatorname{arccosh} x = \ln\left(x + \sqrt{x^2 - 1}\right)$	$[1,\infty)$	$[0,\infty)$
$y = \operatorname{arctanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$	(-1, 1)	$(-\infty,\infty)$
$y = \operatorname{arccsch} x = \ln\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1}\right)$	$(-\infty,0)\cup$ $(0,\infty)$	$(-\infty,0)\cup$ $(0,\infty)$
$y = \operatorname{arcsech} x = \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right)$	(0, 1]	$[0,\infty)$
$y = \operatorname{arccoth} x = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$	$(-\infty,1)\cup$ $(1,\infty)$	$(-\infty,0)\cup (0,\infty)$

Derivatives & Integrals

(Inverse) Trigonometric Functions

$\frac{d}{dx}\sin x = \cos x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}\cos x = -\sin x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}\tan x = \sec^2 x$	$\int \tan x dx = \ln \sec x + C$
$\frac{d}{dx}\csc x = -\csc x \cot x$	$\int \csc x dx = \ln \csc x - \cot x + C$
$\frac{d}{dx}\sec x = \sec x \tan x$	$\int \sec x dx = \ln \sec x + \tan x + C$
$\frac{dx}{dx}\cot x = -\csc^2 x$	$\int \cot x dx = \ln \sin x + C$
	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + C$
$\frac{d}{dx}\arccos x = \frac{-1}{\sqrt{1-x^2}}$	
$\frac{d}{dx}\arctan x = \frac{1}{1+x^2}$	$\int \frac{dx}{a^2 + x^2} = \frac{1}{a}\arctan\left(\frac{x}{a}\right) + C$
$\frac{d}{dx}\operatorname{arccsc} x = \frac{-1}{x\sqrt{x^2 - 1}}$	
$\frac{d}{dx}\operatorname{arcsec} x = \frac{1}{x\sqrt{x^2 - 1}}$	$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\operatorname{arcsec}\left(\frac{x}{a}\right) + C$
$\frac{d}{dx}\operatorname{arccot} x = \frac{-1}{1+x^2}$	

(Inverse) Hyperbolic Functions

$\frac{d}{dx}\sinh x = \cosh x \qquad \qquad \int \sinh x dx = \cosh x + C$
$\frac{d}{dx}\cosh x = \sinh x \qquad \qquad \int \cosh x dx = \sinh x + C$
$\frac{d}{dx}\tanh x = \operatorname{sech}^{2} x \qquad \int \tanh x dx = \ln(\cosh x) + C$
$\frac{d}{dx}\operatorname{csch} x = -\operatorname{csch} x \operatorname{coth} x \int \operatorname{csch} x dx = \ln \tanh \frac{x}{2} + C$
$\frac{d}{dx}\operatorname{sech} x = -\operatorname{sech} x \tanh x \int \operatorname{sech} x dx = \tan^{-1} \sinh x + C$
$\frac{d}{dx}\coth x = -\operatorname{csch}^2 x \qquad \qquad \int \coth x dx = \ln \sinh x + C$
$\int \operatorname{sech}^2 x dx = \tanh x + C$
$\frac{d}{dx}\operatorname{arcsinh} x = \frac{1}{\sqrt{1+x^2}} \int \frac{dx}{\sqrt{a^2+x^2}} = \operatorname{arcsinh}\left(\frac{x}{a}\right) + C$
$\frac{d}{d} \operatorname{arccosh} x = \frac{1}{1 + C}$ $\frac{d}{dx} \operatorname{arccosh} x = \frac{1}{1 + C}$
$\frac{d}{dx}\operatorname{arccosh} x = \frac{1}{\sqrt{x^2 - 1}} \int \frac{dx}{\sqrt{x^2 - a^2}} = \operatorname{arccosh}\left(\frac{x}{a}\right) + C$ $= \ln x + \sqrt{x^2 - a^2} + C$
d 1 $\int dr$ 1 $ r+a $
$\frac{d}{dx}\operatorname{arctanh} x = \frac{1}{1 - x^2} \qquad \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{x + a}{x - a} \right + C$
$\frac{d}{dx}\operatorname{arccsch} x = \frac{-1}{ x \sqrt{x^2 + 1}} \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$
$\frac{d}{dx}\operatorname{arcsech} x = \frac{-1}{\sqrt{1-x^2}}\int \frac{dx}{x\sqrt{a^2-x^2}} = \frac{-1}{a}\operatorname{arcsech}\left(\frac{x}{a}\right) + C$
$= \frac{-1}{a} \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right + C$
$\frac{d}{dx}\operatorname{arccoth} x = \frac{1}{1 - x^2}$

Derivatives & Integrals (cont.)

Differentiation Integration

Differentiation Integration
$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \int u\,dv = uv - \int v\,du$$

$$\frac{d}{dx}(uv) = vu' + uv' \qquad \int_a^b f(u(x))\frac{du}{dx}dx = \int_{u(a)}^{u(b)} f(u)\,du$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2} \qquad \int (f(x))^n f'(x)\,dx = \frac{(f(x))^{n+1}}{n+1} + C$$

$$\frac{d}{dx}(f(x))^n = n(f(x))^{n-1}f'(x)$$

$$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)} \qquad \int e^{f(x)}\,dx = \frac{e^{f(x)}}{f'(x)} + C$$

$$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)} \qquad \int \frac{f'(x)}{f(x)}\,dx = \ln|f(x)| + C$$

$$\frac{d}{dx}a^{f(x)} = a^{f(x)}f'(x)\ln a$$

Term in partial fractions Denominator Factor(s) decomposition

x-a	$\frac{A}{x-a}$
$(x - a)^2$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$
$x^2 + ax + b$	$\frac{Ax+B}{x^2+ax+b}$

Limit

	D.11.E	
	Unbounded	$f(a) = \frac{b}{0} \neq 0$
)	Different one-sided limits	$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$
	Oscillatory	$ \lim_{x \to a} \sin(x) $

Limit Laws & Standard Limits		
+	$\lim_{x \to a} (f(x) + g(x))$	$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
×	$\lim_{x \to a} (cf(x)) = c(x)$	$\lim_{x \to a} f(x), \qquad c \in \mathbb{R}$
÷	$\lim_{x \to a} (f(x)g(X)) = \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} f(x)}$	$= (\lim_{x \to a} f(x))(\lim_{x \to a} g(x))$ $\lim_{x \to a} f(x)$ $\lim_{x \to a} g(x) \neq 0$
f(g(x))	$\lim_{x \to a} (f(g(x))) = 0$	$f(\lim_{x \to a} g(x))$
$\lim_{x \to \infty} \frac{1}{n^p} = 0$	(p > 0)	$\lim_{x \to \infty} \frac{n^p}{a_n^n} = 0 (a > 1, \forall p)$
$\lim_{x \to \infty} r^n = 0$		$\lim_{x \to \infty} \frac{a^n}{n!} = 0 (\forall a)$
$\lim_{x \to \infty} a^{\frac{1}{n}} = 1$	(a > 0)	$\lim_{n \to \infty} \frac{\ln(n)}{n^p} = 0 (p > 0)$
$\lim_{x \to \infty} n^{\frac{1}{n}} = 1$		$\lim_{x \to \infty} \left(1 + \frac{a}{n} \right)^n = e^a (\forall a)$
L'Hôpital I	Rule	$\lim_{x \to \infty} \left(1 + \frac{a}{n} \right)^n = e^a (\forall a)$ $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Indeterminate forms

$\frac{0}{0}, \frac{\infty}{\infty}$	Fatoring/dividing by the highest power
$\infty \times 0$	Rearranging to $\frac{f(x)}{g(x)}$
$\infty - \infty$	Rearranging into a single fraction
$0^0, \infty^0, 1^\infty$	Taking a logarithm

Integrand Expression	Trigonometric Identity	Trigonometric substitution	Hyperbolic Identity	Hyperbolic substitution
$1-x^2$	$1 - \sin^2 \theta = \cos^2 \theta$	$x = \sin \theta, \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$	$1 - \tanh^2 \theta = \operatorname{sech}^2 \theta$	$x = \tanh \theta$
$1 + x^2$	$1 + \tan^2 \theta = \sec^2 \theta$	$x = \tan \theta, \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$1 + \sinh^2 \theta = \cosh^2 \theta$	$x = \sinh \theta$
$x^{2} - 1$	$\sec^2\theta - 1 = \tan^2\theta$	$x = \sec \theta, \theta \in \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$	$\cosh^2\theta - 1 = \sinh^2\theta$	$x = \cosh \theta, \theta \ge 0$

Series Test	Series	Converges if	Diverges if	Comments
Divergence Test	$\sum_{n=1}^{\infty} a_n$	n/a	$\lim_{n \to \infty} a_n \neq 0$	should be the first test used. Inconclusive if $\lim_{t\to 0} t = 0$.
P-Series Test	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	$p \le 1$	harmonic series when $p = 1$. Useful for comparison tests.
Integral Test	$\sum_{n=1}^{\infty} a_n = f(x)$	$\int_{1}^{\infty} f(x) dx$ converges	$\int_{1}^{\infty} f(x) dx$ diverges	f(x) must be continuous, positive, and decreasing.
Direct Comparison Test	$\sum_{n=1}^{\infty} a_n$	$0 \le a_n \le b_n, \sum_{n=1}^{\infty} b_n$ converges	$0 \le b_n \le a_n, \sum_{n=1}^{\infty} b_n$ diverges	find a larger series to show convergence, find a smaller series to show divergence.
Alternating Series Test	$\sum_{n=1}^{\infty} (-1)^{n+1} b_n$	$b_n > 0 \forall n,$ $\lim_{n \to \infty} b_n = 0,$ $b_{n+1} \le b_n$	n/a	series must be decreasing
Ratio Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1$	test fails if $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1.$

Polynomial Approximation and Taylor Series

Linear $L(x) \approx f(a) + f'(a)(x - a)$

Quadratic $Q(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$

Taylor Series $T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$

 $= Q(x) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$

Maclaurin Series M(x) = T(x) where a = 0

First Order Differential Equations (DEs)

Separable DEs	$\frac{dy}{dx} = F(x)G(y)$
1 Conservato m'a and w'a	1 $du = F(m)$

1. Separate x's and y's $\frac{1}{G(y)} dy = F(x) dx$

2. Integrate both sides $\int \frac{1}{G(y)} dy = \int F(x) dx + C$

Non-trivial solutions $y = h(x) \qquad \qquad \text{If } |y| = h(x), \ y = \pm h(x).$ If $y = \pm e^C h(x), \ y = Ah(x)$

Trivial solutions y = C

Linear DEs

y' + P(x)y = Q(x)

Check constant sols f(C) = 0

1. Calculate $I(x) = e^{\int P(x) dx}$

2. Multiply I(x) to DE (I(x)y)' = I(x)Q(x)

3. Integrate both sides $I(x)y = \int I(x)Q(x) dx + C$

4. Divide I(x) both sides $y = \frac{1}{I(x)} \left(\int I(x)Q(x) dx + C \right)$

Second Order Differential Equations (DEs)

Homogeneous Eqs ay'' + by' + cy = 0

1. Write down auxiliary eq $a\lambda^2 + b\lambda + c = 0$

2. Solve for λ $\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

3. Depending on the roots

(i) $b^2 - 4ac > 0$ $y = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$ Two real roots λ_1, λ_2

(ii) $b^2 - 4ac = 0$ $y = Ae^{\lambda x} + Bxe^{\lambda x}$ One real root λ

(iii) $b^2 - 4ac < 0$ $y = Ae^{\alpha x} \sin \beta x + Be^{\alpha x} \cos \beta x$ Two complex roots $\alpha \pm i\beta$

Non-homogeneous Eqs ay'' + by' + cy = f(x)

1. Solve for y_h ay'' + by' + cy = 0

2. Write down a trial y_p Check f(x) and f'(x) If terms in trial y_p appear in y_h , include an extra x.

3. Determine derivatives of y_p y'_p , y''_p

4. Subs y_p, y'_p, y''_p into the DE, solve for unknown coeffs.

5. Write down the general sol $y = y_h + y_p$

Initial value problems (IVP): Conditions specified at the same value, usually the lower boundary of the domain.

Boundary value problems (BVP): Conditions specified at the extremes (boundaries) value of the domain.

Identity matrix I_n : A square $n \times n$ matrix, where every entry on the main diagonal is equal to 1.

Transpose matrix A^T : $[A^T]_{m \times n} = [A]_{n \times m}$

E.g.
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Gaussian Elimination

- 1. Set up an augmented matrix $[A|\mathbf{b}]$
- 2. Perform elementary row operations:
 - (i) Swapping two rows,
 - (ii) Multiplying a row by a nonzero number,
 - (iii) Adding a multiple of one row to another row
- 3. Using the above operations until a matrix transformed into an upper triangular matrix or in row echelon form, ie
 - (i) The leading entry in each row is to the right of the leading entry in the row above
 - (ii) All rows having only zero entries are at the bottom

For example,
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Gauss-Jordan Elimination

- 4. Using row operations until all the leading entries are 1 and zeros elsewhere (in reduced row echelon form)
- 5. Solution depends on
 - (i) $\operatorname{rank}(A) = \operatorname{rank}([A|\mathbf{b}]) = n$ Unique solution
 - (ii) $\operatorname{rank}(A) \neq \operatorname{rank}([A|\mathbf{b}])$
- No solution
- (iii) $rank(A) = rank([A|\mathbf{b}]) = r < n$ Infinite solutions

Assign n-r parameter(s) to the non-leading variable(s)

rank(A) = the number of non-zero rows in row echelon formor the number of linearly independent rows trace(A) = the sum of main diagonal entries

Determinants
$$\det(A_{2\times 2}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \text{ad-bc}$$

$$\det(A_{3\times 3}) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ h & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Cofactor expansions along i^{th} row or j^{th} column

$$\det(A_{n\times n}) = \sum_{j=1}^{n} a_{ij}C_{ij}, \ n > 2$$

 $C_{ij} = (-1)^{i+j} M_{ij}$, M_{ij} is the determinant of the submatrix obtained by deleting the i^{th} row and the j^{th} column

- 1. If A has a row or a column of zeros, det(A) = 0
- 2. Multiply a row by k to get A', then det(A') = k det(A)
- 3. Swap any two rows to get A', then det(A') = -det(A)
- 4. Add a multiple of one row to another, det(A') = det(A)
- 5. If one row is scalar multiple of another, det(A) = 0
- 6. $\det(A^T) = \det(A)$
- 7. $\det(kA) = k^n \det(A)$
- 8. $\det(AB) = \det(A)\det(B)$ 9. $\det(A^{-1}) = 1/\det(A)$
- 10. If A is a triangular matrix, $det(A) = \prod_{i=1}^{n} a_{ii}$

Matrix inverses

If det(A) = 0not invertible & singular

If $det(A) \neq 0$ invertible & non-singular such that:

$$AA^{-1} = I \text{ and } A^{-1}A = I$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \implies A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

For $A_{n\times n}$, compute A^{-1} using Gaussian elimination:

- 1. Set up an augmented matrix [A|I]
- 2. Perform row operations to convert the LHS into I, which causes the RHS to become A^{-1} , ie $[I|A^{-1}]$

Methods for solving systems of linear eqs

For systems of n eqs w/ n unknowns: $A\mathbf{x} = \mathbf{b}$, $\det(A) \neq 0$

- I. Using inverse $\mathbf{x} = A^{-1}\mathbf{b}$
- II. Cramer's rule $x_i = \frac{\det(A_i)}{\det(A)}, \quad i = 1, 2, ..., n$ (Replace i^{th} column with **b**)

Equations of lines and planes in space

* A line passing through pts $P(x_0, y_0, z_0), Q(x, y, z)$

 $\overrightarrow{PQ} = [x, y, z] - [x_0, y_0, z_0] = t v,$ Direction vector

 $[x, y, z] = [x_0, y_0, z_0] - t[a, b, c]$ For $\mathbf{v} = [a, b, c],$ Vector equation

 $\int x = x_0 + ta$ $\begin{cases} y = y_0 + tb \\ z = z_0 + tc \end{cases}$ Parametric equations

 $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$ Cartesian equation

 \star A **plane** passing through pts P, Q and R

 $u = \overrightarrow{PQ}, \quad v = \overline{PR}$ Direction vectors

any two direction vectors will do

 $\mathbf{r} = \mathbf{r_0} + t\mathbf{u} + s\mathbf{v}, \quad t, s \in \mathbb{R}$ Vector equation

 $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \overrightarrow{OP}, \text{ where } \mathbf{n} = \mathbf{u} \times \mathbf{v}$ Cartesian equation

Distance btw a plane and a point d =

Vector

$$\mathbf{u} = [u_1, u_2, u_3], \quad \mathbf{v} = [v_1, v_2, v_3]$$

Vector norms $||u|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

Unit vector $\hat{m{u}} = m{u} / ||m{u}||$

 $\mathbf{v} \stackrel{\mathbf{v}}{\sim} \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$ $= ||\mathbf{v}|| ||\mathbf{v}|| \cos \theta$ Dot product

Angle $\angle(u, v)$ $\cos \theta = (\boldsymbol{u} \cdot \boldsymbol{v}) / (||\boldsymbol{u}|| \, ||\boldsymbol{v}||)$

 $\begin{array}{c} \textbf{Scalar projection of} \\ \textbf{\textit{u} onto } \textbf{\textit{v}} \text{ (length of } \overrightarrow{OA}) \end{array}$ $p = \mathbf{u} \cdot \hat{\mathbf{v}} = ||\mathbf{u}|| \cos \theta$

Vector projection of $\mathbf{p} = p \, \hat{\mathbf{v}} = (\mathbf{u} \cdot \hat{\mathbf{v}}) \hat{\mathbf{v}}$ $\overset{\boldsymbol{u}}{\sim} \mathbf{onto} \overset{\boldsymbol{v}}{\sim} (\text{vector } \overrightarrow{OA})$

 $\mathbf{a} = [a_1, a_2, a_3], \quad \mathbf{b} = [b_1, b_2, b_3]$ Cross product in \mathbb{R}^3

 $n = a \times b = \text{normal vector perpendicular to both } a \text{ and } b$

 $\stackrel{\sim}{\text{If }} \mathbf{a} \times \mathbf{b} = \mathbf{0}, \quad \mathbf{a} \parallel \mathbf{b}.$ $||\boldsymbol{a} \times \boldsymbol{b}|| = ||\boldsymbol{a}|| \, ||\boldsymbol{b}|| \sin \theta$

$$\begin{vmatrix} \boldsymbol{a} \times \boldsymbol{b} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \overset{\sim}{a_1} & \overset{\sim}{a_2} & \overset{\sim}{a_3} \\ b_1 & b_2 & b_3 \end{vmatrix} = \boldsymbol{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \boldsymbol{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \boldsymbol{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = [a_2b_3 - a_3b_2, \ a_3b_1 - a_1b_3, \ a_1b_2 - a_2b_1]$$

Scalar triple product: the volume of parallelepiped

$$\overset{\bullet}{\sim} (\overset{\bullet}{\sim} \overset{\bullet}{\sim}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}
= a_1 (b_2 c_3 - b_3 c_2) - a_2 (b_1 c_3 - b_3 c_1) + a_3 (b_1 c_2 - b_2 c_1)$$