Linearni modeli za klasifikaciju

Logistička regresija Perceptron Praktična razmatranja

Klasifikacija

Y uzima kao vrednost jednu od konačno mnogo diskretnih kategorija

Binarna:

"Pozitivna klasa" y = +1"Negativna klasa" y = -1

Višekategorijska:

$$y \in \{1, 2, \dots, C\}$$

Iris versicolor

Iris virginica

Možemo li primeniti linearnu regresiju?

• Linearna regresija može da "nauči" funkcije koje imaju realni izlaz $y=f(x)\in\mathbb{R}$

• U slučaju binarnih varijabli klase možemo obeležiti sa $y \in \{-1, +1\}$, a $\{-1, +1\} \in \mathbb{R}$

• Dakle, možemo primeniti linearnu regresiju da odredimo θ tako da je $\theta^T x_n \approx y_n$, gde $y_n \in \{-1, +1\}$

Možemo li primeniti linearnu regresiju?

Možemo li primeniti linearnu regresiju?

$$y = sign(\theta^T x)$$

Linearni klasifikator

Primer: Klasifikacija recenzija restorana na pozitivne i negativne

Linearan klasifikator

- Svakoj reči iz recenzija dodeljijemo težinski koeficijent
- Koeficijent izražava koliko pozitivnog/negativnog uticaja ima data reč
- Treniranje modela: određivanje koeficijenata $\boldsymbol{\theta}$ na osnovu trening skupa

Linearni klasifikator

Izlaz je težinska suma ulaza

Jednostavan linearan klasifikator

Score(x) =težinska suma broja pojave reči u rečenici

$$x_1 = 1$$

 $x_2 = count("awesome")$
 $x_3 = count(awful)$
 $x_4 = count("good")$
...

ako je
$$Score(x) > 0$$
:

$$\hat{y} = 1$$

u suprotnom:

$$\hat{y} = 0$$

$$\hat{y}^{(i)} = sign\left(score\left(x^{(i)}\right)\right)$$

$$score(x^{(i)}) = \sum_{d=1}^{D} \theta_d x_d^{(i)} = \theta x^{(i)}$$

Linearan klasifikator

Reč	$oldsymbol{ heta}$
good	1.0
great	1.2
awsome	1.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0
•••	•••

Ulaz $x^{(i)}$:

Sushi was great, the food was <u>awsome</u>,
But the service was <u>terrible</u>.

$$\theta^T x^{(i)} = 1.2 + 1.7 - 2.1$$

= 0.8 > 0

$$\implies \hat{y}^{(i)} = 1$$

Granica odluke

Reč	θ
awesome	1.0
awful	-1.5

Score(x)= 1.0 · count(awsome) - 1.5 · count(awful)

Sushi was <u>awesome</u>, the food was <u>awsome</u>, but the service was <u>awful</u>.

Granica odluke

- U slučaju da imamo D obeležja sa ne-nula koeficijentima, granica odluke bi bila hiperravan
- Npr. za *D*=3:

Efekat koeficijenata na granicu odluke

 $score(x) = 1.0 \cdot count(awsome) - 1.5 \cdot count(awful)$

Efekat koeficijenata na granicu odluke

 $score(x) = 2.0 + 1.0 \cdot count(awsome) - 1.5 \cdot count(awful)$

Efekat koeficijenata na granicu odluke

 $score(x) = 2.0 + 1.0 \cdot count(awsome) - 3.0 \cdot count(awful)$

Verovatnoće klasa

- Prilikom klasifikacije nećemo predviđati samo $\hat{y}=1$ ili $\hat{y}=0$
- Klasifikator će nam kao izlaz dati procenu verovatnoće $P(y^{(i)}=1|x^{(i)})$
- Estimacija $P(y^{(i)} = 1 | x^{(i)})$ pobojšava interpretabilnost modela govori koliko smo sigurni u datu predikciju

ako je
$$P(y^{(i)}=1|x^{(i)})>0.5$$
: $\hat{y}=1$ u suprotnom: $\hat{y}=0$

Generalized linear models (GLM)

$$\begin{array}{c|c}
-\infty & score(x^{(i)}) = \theta x^{(i)} & \infty \\
\hline
\hat{y}^{(i)} = 0 & \hat{y}^{(i)} = 1 \\
P(y^{(i)} = 1 | x^{(i)}) = 0 & P(y^{(i)} = 1 | x^{(i)}) = 1 \\
score(x^{(i)}) = 0 & P(y^{(i)} = 1 | x^{(i)}) = 0.5
\end{array}$$

Definisacemo link function g:

$$h_{\theta}(x) = P(y = 1|x^{(i)}, \theta) = g(\theta x^{(i)})$$

Ovakav model se zove Generalized Linear Model (GLM)

Da li je $h_{\theta}(x)$ stvarna verovatnoća?

- Da li $h_{\theta}(x)$ možemo tretirati kao *stvarnu* verovatnoću $P(y^{(i)}=1|x^{(i)})$?
- Podaci nam ne govore ništa o verovatnoći dobijamo (x, y) sa binarnim y koje može da sadrži šum:

$$P(y|x) = \begin{cases} f(x) & \text{za } y = +1\\ 1 - f(x) & \text{za } y = -1 \end{cases}$$

- Ono što mi pokušavamo da naučimo je f(x), bez obzira na to što nam je poznato samo y (generisano od strane f(x))
- Zato o h(x) možemo zaista razmišljati kao o stvarnoj verovatnoći ne samo da je u opsegu [0,1] već primeri koji su nam dati imaju suštinsku probabilističku interpretaciju