COMP 478 DD

Piyush Pokharkar

40120654

Assignment 1

Theoretical Questions

1)

Transform is Cumulative Distribution Function: $s = T(r) = (L-1) \int_{0}^{r} p_{r}(\omega) d\omega$

CDF of r:

$$T(r) = \int_{0}^{r} -2t + 2dt$$

= $|-t^{2} + 2t|$ from 0 to r
= $-r^{2} + 2r$

The transformation from r to z:

$$z = T(r) = -r^2 + 2r$$

2.a)

Histogram

<mark>2.b)</mark>

n = 256, L = 15 i)						
r _k (grey levels)	# of pixels (n _k)	$p_r(r_k) = n_k/n$	$s_{k} = (L-1)$ $\sum_{j=0}^{k} \frac{n_{j}}{n}$	s _k (grey levels integers)	n _{sk}	p _s (s _k)
0	1	0.00390625	0.05859375	0	1	0.00390625
1	9	0.03515625	0.5859375	1		
2	15	0.05859375	1.46484375	1	24	0.09375
3	45	0.17578125	4.1015625	4	45	0.17578125
4	93	0.36328125	9.55078125	10	93	0.36328125
5	50	0.1953125	12.48046875	12	50	0.1953125
6	23	0.08984375	13.828125	14	23	0.08984375
7	12	0.046875	14.53125	15		
8	7	0.02734375	14.94140625	15		
9	1	0.00390625	15	15		
10	0	0	15	15		
11	0	0	15	15		
12	0	0	15	15		
13	0	0	15	15		
14	0	0	15	15		
15	0	0	15	15	20	0.078125

2.c)

Histogram Equalized

3)

By performing the arithmetic operation f(x,y) - g(x,y) the resulting image will lower pixel intensity by c, so it will be darker. The histogram of f(x,y) - g(x,y) will shift to the left by c units, but it will still maintain its shape as the number of pixels will remain the same but will have lower values. Any pixels with value of c or lower will be cut from the histogram because they will have negative values.

Convert image to binary:

0000	0001	1000	0110
0010	0010	0001	0001
0001	1111	1110	1100
0011	0110	1001	1010

Bit Planes:

0	0	1	0
0	0	0	0
0	1	1	1
0	0	1	1

0	0	0	1
0	0	0	0
0	1	1	1
0	1	0	0

0	0	0	1
1	1	0	0
0	1	1	0
1	1	0	1

0	1	0	0
0	0	1	1
1	1	0	0
1	0	1	0

Programming Questions

```
pkg load image
pkg load statistics
%% Question 1
% Read the images
brain_mri = imread('brain-mri.png');
landscape = imread('landscape.png');
%% Question 2
% Calculate histograms
H1 = zeros(1, 256);
for i = 1:length(H1)
 H1(i) = sum(sum(brain_mri == i - 1));
endfor
subplot(2,2,1);
plot(H1);
title('brain-mri');
H2 = zeros(1, 256);
for i = 1:length(H2)
 H2(i) = sum(sum(landscape == i - 1));
endfor
subplot(2,2,2);
plot(H2);
title('landscape');
%% Question 3
% Calculate histograms using imhist
histo_brain_mri = imhist(brain_mri);
histo landscape = imhist(landscape);
subplot(2,2,3);
plot(histo brain mri);
title('brain-mri (imhist)');
subplot(2,2,4);
plot(histo_landscape);
title('landscape (imhist)');
```

% The histograms used by my program look similar to the ones using imhist

```
%% Question 4
% Calculate cumulative distribution function
cdf = cumsum(H1 / sum(H1));
% Perform equalization
equalized1 = cdf(double(brain mri)+1);
% Round
equalized1 = uint8(equalized1 * 255);
cdf = cumsum(H2 / sum(H2));
equalized2 = cdf(double(landscape)+1);
equalized2 = uint8(equalized2 * 255);
figure;
subplot(2,2,1);
imshow(equalized1);
title('brain-mri');
subplot(2,2,2);
imshow(equalized2);
title('landscape');
%% Question 5
% Histo Equalization using histeq
hist eq brain mri = histeq(brain mri);
hist_eq_landscape = histeq(landscape);
subplot(2,2,3);
imshow(hist_eq_brain_mri);
title('brain-mri (histeq)');
subplot(2,2,4);
imshow(hist_eq_landscape);
title('landscape (histeq)');
```

% The histogram-equalized images obtained using my program look similar to histeq

