MAT – 112: Calculus I and Modeling Quotient Rule

Thomas R. Cameron

February 14, 2018

Instructions

Write out your own proof of the quotient rule using the outline below. Fill in the blanks and follow the prompts given.

Quotient Rule. Let f and g be functions that are differentiable at x, where $g(x) \neq 0$, then

$$\frac{d}{dx}\left(\frac{f}{g}\right)(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

Proof. Note that

$$\begin{split} \frac{d}{dx}\left(\frac{f}{g}\right)(x) &= \lim_{h \to 0} \frac{\left(\frac{f}{g}\right)(x+h) - \left(\frac{f}{g}\right)(x)}{h} \\ &= \lim_{h \to 0} \frac{\left(\frac{f(x+h)}{g(x+h)}\right) - \left(\frac{f(x)}{g(x)}\right)}{h} \\ &= \lim_{h \to 0} \frac{g(x)f(x+h) - f(x)g(x+h)}{h(g(x)g(x+h)} \quad \text{(Justify)} \\ &= \lim_{h \to 0} \frac{g(x)f(x+h) - g(x)f(x) + g(x)f(x) - f(x)g(x+h)}{hg(x)g(x+h)} \quad \text{(Justify)} \\ &= \frac{1}{h \to 0} \frac{g(x)\lim_{h \to 0} \frac{f(x+h) - f(x)}{hg(x)g(x+h)} - \lim_{h \to 0} f(x)\lim_{h \to 0} \frac{g(x+h) - g(x)}{hg(x)g(x+h)} \quad \text{(Justify)} \\ &= \lim_{h \to 0} \frac{1}{g(x)g(x+h)} \left(g(x)\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - f(x)\lim_{h \to 0} \frac{g(x+h) - g(x)}{h}\right) \quad \text{(Justify)} \\ &= \frac{1}{[g(x)]^2} \left(g(x)f^{'}(x) - f(x)g^{'}(x)\right) \\ &= \frac{f^{'}(x)g(x) - f(x)g^{'}(x)}{[g(x)]^2}. \end{split}$$