Summer 2022: Data Analysis Homework II Due: TBA Submit through Canvas

Instructions: Provided solutions to these questions using this template. Include graphics with your solutions. Put all code an appendix to this homework. Use the *verbatim* command to leave code unchanged.

1. Suppose that a shipping company models the weight of packages with the PDF

$$f(x) = \frac{70}{69X^2} \qquad 1 < x < 70.$$

a) Verify f(x) is a proper density.

Solution:

By inspection, we see $f(x) \ge 0$ for all $x \in (0,1)$. Now we must show the density integrates to unity. Note that

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} \frac{70}{69x^{2}} dx$$
$$= 1$$

b) Get the CDF of X.

Solution:

$$P(X \ge x) = F(x) = \int_0^x f(t)dx$$
$$F(x) = \int_1^x \frac{70}{69t^2}$$
$$= \frac{70}{69} \left[1 - \frac{1}{x} \right]$$

c) Find the chance a randomly selected package weights at least 20 pounds. Solution:

$$P(X \ge 20)$$

$$P(X \ge 20) = 1 - P(X \le 20)$$

$$= 1 - F(20)$$

$$= 1 - \frac{70}{69} \left[1 - \frac{1}{x} \right]$$

$$= 1 - \frac{70}{69} \left[1 - \frac{1}{20} \right]$$

d) Get μ Solution:

$$= \int_0^\infty x f(x) dx$$

$$= \int_0^\infty x \frac{70}{69x^2} dx$$

$$= \frac{70}{69} \int_0^{70} \frac{1}{x} dx$$

$$= \frac{70}{69} \left[\ln(x) \right]_{x=1}^{70}$$

$$= \frac{70}{69} \left[\ln(70) - \ln(1) \right]$$

$$= 4.31$$

e) If shipping cost is \$5 per pound, get E[shipping cost per package]. Solution:

To calculate the average price of a package we multiply \$5 by 4.31.

$$\$5 \times 4.31 = \$21.55$$

- 2. Make plots of the normal PDF when
- a) $\mu = 5 \text{ and } \sigma^2 = 1.$

Solution:

Normal mean 5, sd 1

Figure 1: Mean = 5, Variance = 1

b) $\mu = 1$ and $\sigma^2 = 5$. Solution:

Normal mean 1, sd 5

Figure 2: Mean = 1, Variance = 5

c) $\mu = 0$ and $\sigma^2 = 1$. Solution:

Normal mean 0, sd 1

Figure 3: Mean = 0, Variance = 1

d) $\mu = 0$ and $\sigma^2 = 0.1$. Solution:

Normal mean 0, sd .1

Figure 4: Mean = 0, Variance = .1

Extra Credit

Let $\Gamma(\alpha) := \int_0^\infty x^{\alpha-1} e^{-x} dx$ for $\alpha > 0$. Show that $\Gamma(1/2) = \sqrt{\pi}$.