

lauantai, 8. heinäkuuta 2023

**Tehtävä 1.** Määritä kaikki yhdistetyt luvut n>1, jotka toteuttavat seuraavan ehdon: jos  $d_1,d_2,\ldots,d_k$  ovat luvun n kaikki positiiviset tekijät, missä  $1=d_1< d_2<\cdots< d_k=n$ , niin silloin  $d_i$  jakaa luvun  $d_{i+1}+d_{i+2}$  kaikilla  $1\leqslant i\leqslant k-2$ .

**Tehtävä 2.** Olkoon ABC teräväkulmainen kolmio, jossa AB < AC. Olkoon  $\Omega$  kolmion ABC ympärysympyrä. Olkoon S keskipiste ympyrän  $\Omega$  sillä kaarella CB, joka sisältää pisteen A. Pisteen A kautta kulkeva normaali sivulle BC leikkaa suoran BS pisteessä D ja ympyrän  $\Omega$  uudestaan pisteessä  $E \neq A$ . Pisteen D kautta kulkeva ja suoran BC kanssa yhdensuuntainen suora leikkaa suoran BE pisteessä L. Olkoon  $\omega$  kolmion BDL ympärysympyrä. Ympyrä  $\omega$  leikkaa ympyrän  $\Omega$  uudestaan pisteessä  $P \neq B$ .

Osoita, että pisteen P kautta kulkeva tangentti ympyrälle  $\omega$  leikkaa suoran BS kulman  $\angle BAC$  kulmanpuolittajalla.

**Tehtävä 3.** Määritä jokaiselle kokonaisluvulle  $k \ge 2$  kaikki äärettömät positiivisten kokonaislukujen lukujonot  $a_1, a_2, \ldots$ , joilla on seuraava ominaisuus: on olemassa polynomi P muotoa  $P(x) = x^k + c_{k-1}x^{k-1} + \cdots + c_1x + c_0$ , missä  $c_0, c_1, \ldots, c_{k-1}$  ovat epänegatiivisia kokonaislukuja, joka toteuttaa

$$P(a_n) = a_{n+1} a_{n+2} \cdots a_{n+k}$$

kaikille kokonaisluvuille  $n \ge 1$ .



sunnuntai, 9. heinäkuuta 2023

**Tehtävä 4.** Olkoon  $x_1, x_2, \ldots, x_{2023}$  pareittain erillisiä reaalilukuja, joilla

$$a_n = \sqrt{(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right)}$$

on kokonaisluku kaikilla  $n=1,2,\ldots,2023$ . Osoita, että  $a_{2023}\geqslant 3034$ .

**Tehtävä 5.** Olkoon n positiivinen kokonaisluku. Japanilainen kolmio koostuu  $1+2+\cdots+n$  ympyrästä aseteltuna tasasivuisen kolmion muotoon niin, että jokaiselle  $i=1,2,\ldots,n$  ylhäältä päin i:nnes rivi sisältää tasan i ympyrää, joista tasan yksi on punainen. Ninjapolku japanilaisessa kolmiossa on n ympyrän jono, joka alkaa ylimmältä riviltä, kulkee toistuvasti ympyrästä yhteen sen alla olevasta kahdesta ympyrästä ja päättyy alimmalle riville. Ohessa on esimerkki japanilaisesta kolmiosta, jossa n=6, ja siinä olevasta kaksi punaista ympyrää sisältävästä ninjapolusta.



Määritä luvun n suhteen suurin k, jolla jokaisessa japanilaisessa kolmiossa on ainakin k punaista ympyrää sisältävä ninjapolku.

**Tehtävä 6.** Olkoon ABC tasasivuinen kolmio. Olkoon  $A_1, B_1, C_1$  kolmion ABC sisäpisteitä, joilla  $BA_1 = A_1C, \, CB_1 = B_1A, \, AC_1 = C_1B$  ja

$$\angle BA_1C + \angle CB_1A + \angle AC_1B = 480^\circ.$$

Suorat  $BC_1$  ja  $CB_1$  leikkaavat pisteessä  $A_2$ , suorat  $CA_1$  ja  $AC_1$  leikkaavat pisteessä  $B_2$  ja suorat  $AB_1$  ja  $BA_1$  leikkaavat pisteessä  $C_2$ .

Osoita, että jos kolmio  $A_1B_1C_1$  on epäsäännöllinen, niin kolmioiden  $AA_1A_2$ ,  $BB_1B_2$  ja  $CC_1C_2$  ympärysympyrät kulkevat kahden yhteisen pisteen kautta.

(Huomautus: epäsäännöllinen kolmio on sellainen kolmio, jossa mitkään kaksi sivua eivät ole saman pituisia.)

Language: Finnish

Aika: 4 tuntia ja 30 minuuttia.

Jokainen tehtävä on 7 pisteen arvoinen.