Quadratic Arithmetic Programs

Compiling C to Circuits

- Compiler understands a subset of C
 - Global, function, block-scoped variables
 Static initializers
 - Arithmetic and bitwise operators
 Arrays, structs, pointers
 - Functions, conditionals, bounded loops
 Preprocessor syntax
- Outputs an *arithmetic* circuit with wire values $C_i \in \mathbb{F}_p$

Quadratic Programs

[GGPR - EuroCrypt 2013]

- An efficient encoding of computation
 - Lends itself well to cryptographic protocols
- Thm: Let C be an arithmetic circuit that computes F.
 There is a Quadratic Arithmetic Program (QAP) of size O(|C|) that computes F
 - ⇒ Can verify any poly-time (or even NP) function
- Related theorem for Boolean circuits and Quadratic Span Programs (QSPs)

Quadratic Arithmetic Program Intuition

$$C_3 * C_4 == C_5$$

$$(C_1 + C_2) * C_5 == C_6$$

$$(C_2 + C_3) * C_5 == C_6$$

$$(C_3 + C_4) * C_5 == C_6$$

$$(C_4 + C_2) * C_5 == C_6$$

$$(C_5 + C_5) * C_5 == C_6$$

$$(C_7 + C_2) * C_5 == C_6$$

$$(C_7 + C_2) * C_5 == C_6$$

Construct polynomials D(z) and P(z) that encode gate equations and wire values {C_i}

(c₁, ..., c_m) is a valid set of wire values iff: D(z) divides P(z)

$$\exists H(z) \colon H(z) \cdot D(z) == P(z)$$

$$\equiv$$

$$\forall r_i : D(r_i) == 0 \Rightarrow P(r_i) == 0$$

Crypto protocol checks divisibility at a random point, and hence cheaply checks correctness

Converting Arithmetic Circuit to QAPs

- Pick arbitrary root for each X: r_5 , r_6 from \mathbb{F}
- Define: $D(z) = (z r_5)(z r_6)$
- Define P(z) via three sets of polynomials: $\{v_1(z), ..., v_m(z)\}$ $\{w_1(z), ..., w_m(z)\}$ $\{y_1(z), ..., y_m(z)\}$

	z=r ₅	z=r ₆
v ₁ (z)	0	1
$v_2(z)$	0	1
v ₃ (z)	1	0
v ₄ (z)	0	0
v ₅ (z)	0	0
v ₆ (z)	0	0

Left Inputs

	r_5	r_6
w ₁ (z)	0	0
$w_2(z)$	0	0
$w_3(z)$	0	0
$w_4(z)$	1	0
$w_5(z)$	0	1
w ₆ (z)	0	0

Right Inputs

	r_5	r_6
y ₁ (z)	0	0
$y_2(z)$	0	0
y ₃ (z)	0	0
y ₄ (z)	0	0
y ₅ (z)	1	0
y ₆ (z)	0	1

Outputs

Why It Works

<u> </u>	x=r ₅	x=r ₆
v ₁ (z)	0	1
v ₂ (z)	0	1
v ₃ (z)	1	0
v ₄ (z)	0	0
v ₅ (z)	0	0
v ₆ (z)	0	0

	r ₅	r ₆
w ₁ (z)	0	0
$w_2(z)$	0	0
w ₃ (z)	0	0
$w_4(z)$	1	0
w ₅ (z)	0	1
w ₆ (z)	0	0

	r ₅	r ₆
y ₁ (z)	0	0
y ₂ (z)	0	0
y ₃ (z)	0	0
y ₄ (z)	0	0
y ₅ (z)	1	0
y ₆ (z)	0	1

• Define:

$$P(z) = (\sum c_i v_i(z))(\sum c_i w_i(z)) - (\sum c_i y_i(z))$$

• D(z) divides P(z) means:

$$\forall r_i : D(r_i) == 0 \Rightarrow P(r_i) == 0$$

$$D(r_5) = 0$$
 $P(r_5) = (c_3)(c_4) - (c_5)$

$$D(r_6) = 0$$
 $P(r_6) = (c_1 + c_2)(c_5) - (c_6)$

Pinocchio's Verification Pipeline

Cryptographic Protocol (simplified)

GenKeys(F) \longrightarrow EK_F, VK_F

Generate the QAP for F

Pick random s

Compute
$$EK_F = \{g^{v1(s)}, ..., g^{vm(s)}, g^{w1(s)}, ..., g^{wm(s)}, g^{vn(s)}, g^{vn(s)}\}$$

Compute $VK_F = \{g^{D(s)}\}\$

Prove(EK_F, x, y) $\longrightarrow \Pi_{v}$

Evaluate circuit. Get wire values c₁,...,c_m

Compute:
$$g^{v(s)} = \prod (g^{v_{-}i(s)})^{c_{-}i_{-}}$$

 $g^{w(s)} = \prod (g^{w_{-}i(s)})^{c_{-}i_{-}}$
 $g^{v(s)} = \prod (g^{v_{-}i(s)})^{c_{-}i_{-}}$

Find
$$H(z)$$
 s.t. $H(z)*D(z) = V(z)*W(z)-Y(z)$

Compute
$$g^{H(s)} = \prod (g^{s^*i})^{h_i}$$

Proof is
$$(g^{v(s)}, g^{w(s)}, g^{y(s)}, g^{H(s)})$$

$Verify(VK_F, x, y, \Pi_V) \longrightarrow \{Yes, No\}$

Check:
$$e(g^{v(s)}, g^{w(s)})/e(g^{y(s)}, g) = ?= e(g^{h(s)}, g^{D(s)})$$
 $= e(\cdot, \cdot)$ is a pairing: $e(g^a, g^b) = e(g, g)^{ab}$

$$e(\cdot, \cdot)$$
 is a pairing:
 $e(g^a, g^b) == e(g, g)^{ab}$