

Layer 2 VPNs Overview

Types of Layer 2 VPN

» Point-to-Point

- Virtual Private Wire Service (VPWS)
 - Layer 2 Tunneling Protocol v3 (L2TPv3)
 - Any Transport over MPLS (AToM)

» Point-to-Multipoint

- Virtual Private LAN Service (VPLS)
- Hierarchical Virtual Private LAN Service (H-VPLS)

VPWS Overview

- What is Virtual Private Wire Service?
 - Point-to-point layer 2 overlay tunnel
 - E.g. EoMPLS, E-LINE, etc.
- » Provider does not does not participate in customer routing
 - Unlike MPLS L3VPN
- Can be encapsulated as either...
 - Layer 2 over IP (L2TPv3)
 - Layer 2 over MPLS (AToM)

L2TPv3 Overview

» What is L2TPv3?

Point-to-point layer 2 over IP tunnel

» Standards based

 RFC 3931 - Layer Two Tunneling Protocol - Version 3 (L2TPv3)

L2TPv3 Overview (cont.)

- » Payload agnostic
 - I.e. supports Ethernet, Frame Relay, ATM, HDLC, PPP over IP
- » Supports both same-to-same and same-todifferent (Interworking) payloads
 - Same-to-same tunnels
 - Ethernet to Ethernet, ATM to ATM, Frame Relay to Frame Relay, etc.
 - Interworking
 - Ethernet/ATM/Frame Relay/HDLC/PPP to Ethernet/ATM/Frame Relay/HDLC/PPP

AToM Overview

» What is AToM?

Point-to-point layer 2 over MPLS tunnel

» Standards based

- RFC 4906 Transport of Layer 2 Frames Over MPLS
- AKA "Draft Martini"

» Signaling through targeted LDP session

 PE's form multi-hop LDP session to exchange "pseudowire" (VPN) label

AToM Overview (cont.)

- » Payload agnostic
 - I.e. supports Ethernet, FR, ATM, HDLC, PPP over MPLS
- » Supports both same-to-same and same-todifferent (Interworking) payloads
 - Same-to-same tunnels
 - Ethernet to Ethernet, ATM to ATM, Frame Relay to Frame Relay, etc.
 - Interworking
 - Ethernet/ATM/Frame Relay/HDLC/PPP to Ethernet/ATM/Frame Relay/HDLC/PPP

VPLS Overview

» What is VPLS?

- Point-to-multipoint Ethernet over MPLS overlay tunnel
 - PE routers learn CE MAC addresses
 - Traffic is transparently bridged over MPLS core
 - CE routers think they are all attached to the same LAN
 - E.g. E-LAN

VPLS Signaling

- » Two Standards based methods
- » BGP
 - RFC 4761 Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling
- » LDP
 - RFC 4762 Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling
- » Both can work together
 - BGP for discovery
 - LDP for label allocation

H-VPLS

- With VPLS, PEs form a full mesh of tunnels
 - n*(n-1)/2 scaling problem
- » Hierarchical VPLS (H-VPLS) helps address this
 - User facing "U-PE" peers to CE
 - Network facing "N-PE" peers to U-PE and N-PE
 - Result is hub-and-spoke hierarchy
 - Split horizon must be selectively disabled

L2TPv3

VPLS

VPLS BGP Based Autodiscovery

H-VPLS

Hierarchical VPLS (H-VPLS)

- With VPLS, PEs form a full mesh of tunnels
 - n*(n-1)/2 scaling problem
- » Hierarchical VPLS (H-VPLS) helps address this
 - User facing "U-PE" peers to CE
 - Network facing "N-PE" peers to U-PE and N-PE
- » Result is hub-and-spoke hierarchy
 - i.e. "E-TREE"

Forwarding in H-VPLS

- In regular VPLS, all PEs are full mesh
 - Split horizon is needed to stop broadcast loops
 - Frames received in an xconnect cannot leave via another xconnect
- » In H-VPLS, split horizon must be selectively disabled
 - N-PE to U-PE, split horizon off
 - N-PE to N-PE, split horizon on
- Forwarding result is any-to-any with loop prevention
 - On N-PE, frames received from U-PE go to other U-PEs and N-PEs
 - On N-PE, frames received from N-PE only go to U-PEs

