Data Mining 2 Assignment

CBA BATCH 12

Submission Instructions

□ Т	The date of submission is 21st March 11:55 PM. All submissions must be on LMS.
П	his assignment carries 50% of the overall module weight.
□ Y	ou will submit 2 files: a) .IPYNB Jupyter notebook and b) word/pdf document.
	There are a total of 8 questions and 4 datasets for the entire DMG 2 assignment. For the first 6 questions, you could esubmit the files or do it again freshly in the same .IPYNB file with all the 8 questions.
П	The code and subsequent analysis will be done entirely on a single jupyter notebook in Python 3.
□ Y	ou <i>may</i> use whichever library you deem appropriate.
	ou must set.seed equal to your PGID before you begin answering the questions. This will ensure each person will have their own unique train test-split.
	ou must ensure the code output is visible and the analysis is done in the markdown cells of jupyter notebook. Insure the question number is clearly visible
	Apart from the final answers, you will also be submitting a word/pdf document containing the code, igures, and analysis for all the problems.
Z	ip folders or any other file format will <i>not</i> be considered for evaluation.

Datasets

- ☐ ISIR dataset
 - ☐ 4 numeric features,
 - ☐ 3 classes,
 - ☐ 50 examples per class...
- MUSHROOM dataset
 - ☐ 20+ categorical features,
 - 2 classes
- MNIST dataset
 - ☐ 10 classes, 28 x 28 features,
 - ☐ Already comes with training and test splits as well
- NEWSGROUP20 dataset
 - ☐ 20 classes, Bag-of-Words datasets

P1: IRIS - HIERARCHICAL FISHER

- Two classes in IRIS are more "similar" to each other. Find which ones using scatter plots. Lets say class 1 and class 2.
- Lets create a "meta-class" combining class 1 and class 2 (or whichever are the two most similar classes). Lets call it class 4.
- ☐ Create the first Fisher projection by trying to discriminate class 3 (the different class) from class 4 (the meta-class).
 - ☐ Do this on **training** data only
- Create the second Fisher projection by trying to discriminate class 1 from class 2 (the original two similar classes).
 - ☐ Do this on **training** data only
- Now project the entire data in these two projections and color code the class points.
 - ☐ Do this on **test** data only.
- Comment on what you observed and did.

P2: MUSHROOM information gain

- □ Take the MUSHROOM **training** data. There are 20+ features and 2 classes. We want to find the BEST feature using the three purity measures: Accuracy, Gini Index, and Entropy.
- ☐ For each feature, partition the data into k regions where k is the number of values the feature can take.
- ☐ Measure the Information gain due to each feature. Generate a table with the following columns:
 - ☐ Feature_name
 - Accuracy
 - ☐ GINI index
 - ☐ 1- Entropy (NOTE: Use log_k for a feature with k values)
- □ Plot accuracy vs. 1 Entropy scatter plot where each point is a feature.

P3: MUSHROOM NB/DT

- Build Naïve Bayes and Decision Tree classifiers on the MUSHROOM training dataset.
 - ☐ In Naïve Bayes classifier plot the value of lambda (x-axis) for Laplacian smoothing against training and test set accuracy.
 - \Box Lambda = 0, 1, 2, ..., 50
- ☐ For decision tree classifier plot the SizeThreshold (x-axis) against training and test set accuracy.
 - \square SizeThreshold =4, 8, 12, 16, 20, ..., 64.
- ☐ Find the best values of lambda and SizeThreshold where the test set accuracies starts to decrease.
- Compare those accuracies across the two classifiers.

P4: MNIST Bayesian

- ☐ Take the MNIST dataset. Lets call it D0 dataset
- ☐ Do a **9 dimensional PCA projection**. Lets call it D1 dataset
- ☐ Do a **9 dimensional FISHER projection**. Lets call it D2 dataset
- □ Build a Bayesian classifier on□ D1 (single Gaussian per class)
- ☐ Diagonal Covariance matrix (i.e.set non-diagonals to zero)
- ☐ Full Covariance matrix
- ☐ Build a Bayesian classifier on D2 (single Gaussian per class)
 - Diagonal Covariance
 - Full covariance
- Compare the test accuracies of the four classifiers and comment.

P5: MNIST - kNN / Parzen window

- ☐ Take the two datasets D1 and D2 from P4.
- Build k-Nearest neighbors classifier with:
 - \square K = 1, 3, 5, 7, 9, 11, 13, 15, 17
 - ☐ Plot training and test accuracy with these values of k on x axis
- ☐ Build Parzen window classifier with:
 - □ Sigma =0.1, 0.2, 0.3, ..., 3.0
 - ☐ Plot training and test accuracies with these values of sigma.
- Do both on D1 and D2 datasets.
- ☐ Comment on the optimal k and optimal sigma and compare those classifiers across D1 and D2 and see which one has highest test accuracy.

P6: News group Text Classifier

- ☐ Build a Naïve Bayes Classifier on Newsgroup dataset
- DICTIONARY:
 - ☐ Compute the document frequency of all words (how many documents each word occurred in)
 - ☐ Sort this in descending order of document frequency
 - ☐ Pick the top 5000 and 10000 words as the dictionary.
- ☐ Learn P(w|c) for all words and classes
- Apply Laplacian smoothing of 30
- Compute the training and test set accuracy of the model.

P7: Pair-wise Classifier Features

- For all pairs of classes in MNIST data
- Compute the Fisher Discriminant for that pair of classes
- This is again a D dimensional vector where each dimension corresponds to a pixel.
- Convert the D-dimensional vector into an image scale it and draw the image
- Comment on how Fisher discriminant for a few pairs of classes is learning to "focus" on different pixels in the image.

P8: Binary Hierarchical Classifier

- Build a Bottom-up-Binary Hierarchical Classifier (Use MNIST dataset)
- Use Linear SVM to build each of the pair-wise classifiers
- Merge two classes that give the highest training error
- Draw the entire tree that was discovered automatically
- For each node in the tree write the training and test accuracies.