The EHZ-capacity of polytopes is NP-hard

Karla Leipold Joint work with Frank Vallentin Universität zu Köln

17.06.2025

Welcome to Symplectic Geometry!

A sympletic space is \mathbb{R}^{2n} equipped with an antisymmetric bilinear form:

$$\omega(u,v) = u^T \underbrace{\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}}_{:=I} v \text{ for all } u,v \in \mathbb{R}^{2n}.$$

Gromov's Non-Squeezing Theorem

Gromov's Non-Squeezing Theorem

Symplectic capacities are important invariants!

EHZ Capacity of Simplices

Let $P \subset \mathbb{R}^{2n}$ be a simplex denoted by

$$P = P(B, \mathbf{e}) = \{x \in \mathbb{R}^{2n} : Bx \le \mathbf{e}\} \quad \text{for} \quad B \in \mathbb{R}^{(2n+1)\times(2n)}, \ \mathbf{e} \in \mathbb{R}^{2n+1}.$$

Theorem (Haim-Kislev (2019))

The EHZ capacity of a simplex can be computed by

$$c_{\text{EHZ}}(P(B, \mathbf{e})) = \frac{(2n+1)^2}{2} \left(\max \left\{ \sum_{1 \le j < i \le 2n+1} (P_{\sigma}^{\mathsf{T}} W P_{\sigma})_{ij} : \sigma \in \mathfrak{S}_{2n+1} \right\} \right)^{-1}$$

for $W = BJB^{\mathsf{T}}$ and where P_{σ} is the permutation matrix corresponding to the permutation $\sigma \in \mathfrak{S}_{2n+1}$.

Theorem (Vallentin, L. (2024))
Computing the EHZ capacity of polytopes is NP-hard.

We want to prove that problem \mathcal{A} is NP-hard.

1 Find a suitable NP-hard problem \mathcal{B} .

We want to prove that problem \mathcal{A} is NP-hard.

- 1 Find a suitable NP-hard problem \mathcal{B} .
- 2 Construct a polynomial time reduction from problem \mathcal{B} to \mathcal{A} .

We want to prove that problem A is NP-hard.

- 1 Find a suitable NP-hard problem \mathcal{B} .
- **2** Construct a polynomial time reduction from problem \mathcal{B} to \mathcal{A} .
- **3** Meaning, find a polynomial way to decide \mathcal{B} by deciding \mathcal{A} .

We want to prove that problem \mathcal{A} is NP-hard.

- 1 Find a suitable NP-hard problem \mathcal{B} .
- 2 Construct a polynomial time reduction from problem \mathcal{B} to \mathcal{A} .
- **3** Meaning, find a polynomial way to decide \mathcal{B} by deciding \mathcal{A} .
- 4 If \mathcal{A} would not be NP-hard, \mathcal{B} could not be NP-hard.

We want to prove that problem \mathcal{A} is NP-hard.

- **1** Find a suitable NP-hard problem \mathcal{B} .
- 2 Construct a polynomial time reduction from problem \mathcal{B} to \mathcal{A} .
- **3** Meaning, find a polynomial way to decide \mathcal{B} by deciding \mathcal{A} .
- 4 If \mathcal{A} would not be NP-hard, \mathcal{B} could not be NP-hard.
- 6 Contradiction!

Maximum Acyclic Subgraph and Feedback Arc Set

Let D = (V, A) be a directed graph.

Maximum Acyclic Subgraph and Feedback Arc Set

Let D = (V, A) be a directed graph.

The Maximum Acyclic Subgraph problem (MAS) is:

$$|\mathsf{MAS}| = \max_{A' \subset A} \{|A'| : D(V, A') \text{ is acyclic}\}$$

Maximum Acyclic Subgraph and Feedback Arc Set

$$|\mathsf{MAS}| = \max_{A' \subset A} \{|A'| : D(V, A') \text{ is acyclic}\}$$

$$|\mathsf{FAS}| = \min_{\bar{A} \subset A} \big\{ |\bar{A}| : D(V, A \setminus \bar{A}) \text{ is acyclic} \big\}$$

Bipartite Tournaments

Definition

A **bipartite tournament** is a directed complete bipartite graph $D = (U \cup V, A)$ without multiple arcs.

Bipartite Tournaments

Definition

A **bipartite tournament** is a directed complete bipartite graph $D = (U \cup V, A)$ without multiple arcs.

Theorem (Guo, Hüffner, Moser (2007))

Feedback arc set in bipartite tournaments is NP-complete.

Bipartite Tournaments

Definition

A **bipartite tournament** is a directed complete bipartite graph $D = (U \cup V, A)$ without multiple arcs.

Theorem (Guo, Hüffner, Moser (2007))

Feedback arc set in bipartite tournaments is NP-complete.

From Bipartite Tournament to Simplices

From Bipartite Tournament to Simplices

Let $D = (U \cup V, A)$ be a complete bipartite tournament with n = |U| and m = |V|, where we assume $n \ge m$.

From Bipartite Tournament to Simplices

Let $D = (U \cup V, A)$ be a complete bipartite tournament with n = |U| and m = |V|, where we assume $n \ge m$.

$$S_{ij} = \begin{cases} 1 & \text{if } (u_i, v_j) \in A, \\ -1 & \text{if } (v_j, u_i) \in A, \\ 0 & \text{otherwise.} \end{cases}$$

$$B \in \mathbb{Z}^{(2n+1) \times (2n)}$$
 by

$$B = \begin{bmatrix} I_n & 0 \\ 0 & S \\ -\mathbf{e}^\mathsf{T} & -\mathbf{e}^\mathsf{T} S \end{bmatrix},$$

$$P = P(B, \mathbf{e}) = \{x \in \mathbb{R}^{2n} : Bx \le \mathbf{e}\}\$$

$$s_1 = (1, -1, 0)$$

$$s_2 = (-1, 1, 0)$$

$$s_3 = (1, 1, 0)$$

The EHZ Capacity of this Simplex

$$W = BJB^T$$
 is of the form

$$W = \begin{bmatrix} 0 & S^{\mathsf{T}} & -S^{\mathsf{T}}\mathbf{e} \\ -S & 0 & S\mathbf{e} \\ \mathbf{e}^{\mathsf{T}}S & -\mathbf{e}^{\mathsf{T}}S^{\mathsf{T}} & 0 \end{bmatrix}.$$

The EHZ Capacity of this Simplex

 $W = BJB^T$ is of the form

$$W = \begin{bmatrix} 0 & S^{\mathsf{T}} & -S^{\mathsf{T}}\mathbf{e} \\ -S & 0 & S\mathbf{e} \\ \mathbf{e}^{\mathsf{T}}S & -\mathbf{e}^{\mathsf{T}}S^{\mathsf{T}} & 0 \end{bmatrix}.$$

The main computational task in the EHZ capacity is:

$$\max\bigg\{\sum_{1\leq j< i\leq 2n+1}(P_\sigma^\mathsf{T} W P_\sigma)_{ij}\ :\ \sigma\in\mathfrak{S}_{2n+1}\bigg\}.$$

Helpful Properties of this Construction

/	0	0 0 0	0	1	0	1	0	1
	0	0	0	0	1	1	0	
	0	0	0	0	0	0	0	
	0	1	0	0	0	0	0	-
	1	0	0	0	0	0	0	
	0	1 0 0	0	0	0	0	2	
(1	1	0	0	0	0	0	_

Matrix Representation and Graph

Define matrix M: $M_{ij} = \max\{0, W_{ij}\}$. Then $W = M - M^T$. From M as an adjacency matrix we obtain a new graph $\tilde{D} = (\tilde{V}, \tilde{A})$:

Eulerian Graphs

A directed graph *D* is Eulerian if and only if:

- For every pair of vertices u, v, there is a path from u to v (i.e., D is strongly connected).
- The **indegree** of every vertex equals its **outdegree**.

Eulerian Graphs

A directed graph *D* is Eulerian if and only if:

- For every pair of vertices u, v, there is a path from u to v (i.e., D is strongly connected).
- The **indegree** of every vertex equals its **outdegree**.

In our case, the graph \tilde{D} is Eulerian.

$$W = \begin{pmatrix} 0 & 0 & 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 & 2 \\ \hline 1 & 1 & 0 & 0 & 0 & -2 & 0 \end{pmatrix}$$

Maximizing over an Antisymmetric Matrix

• For any permutation matrix P_{σ} , with $\sigma \in \mathfrak{S}_{2n+1}$, we have

$$P_{\sigma}^{\mathsf{T}}WP_{\sigma} = P_{\sigma}^{\mathsf{T}}(M-M^{\mathsf{T}})P_{\sigma} = 2P_{\sigma}^{\mathsf{T}}MP_{\sigma} - P_{\sigma}^{\mathsf{T}}(M+M^{\mathsf{T}})P_{\sigma}.$$

Maximizing over an Antisymmetric Matrix

• For any permutation matrix P_{σ} , with $\sigma \in \mathfrak{S}_{2n+1}$, we have

$$P_{\sigma}^{\mathsf{T}}WP_{\sigma} = P_{\sigma}^{\mathsf{T}}(M-M^{\mathsf{T}})P_{\sigma} = 2P_{\sigma}^{\mathsf{T}}MP_{\sigma} - P_{\sigma}^{\mathsf{T}}(M+M^{\mathsf{T}})P_{\sigma}.$$

• The sum of the entries of the lower triangular part of $\Delta := P_{\sigma}^{\mathsf{T}} (M + M^{\mathsf{T}}) P_{\sigma}$ is independent of the permutation σ .

Maximizing over an Antisymmetric Matrix

• For any permutation matrix P_{σ} , with $\sigma \in \mathfrak{S}_{2n+1}$, we have

$$P_{\sigma}^{\mathsf{T}}WP_{\sigma} = P_{\sigma}^{\mathsf{T}}(M-M^{\mathsf{T}})P_{\sigma} = 2P_{\sigma}^{\mathsf{T}}MP_{\sigma} - P_{\sigma}^{\mathsf{T}}(M+M^{\mathsf{T}})P_{\sigma}.$$

• The sum of the entries of the lower triangular part of $\Delta := P_{\sigma}^{\mathsf{T}} (M + M^{\mathsf{T}}) P_{\sigma}$ is independent of the permutation σ .

$$\max_{\sigma \in \mathfrak{S}} \bigg\{ \sum_{1 \leq j < i \leq 2n+1} (P_{\sigma}^{\mathsf{T}} W P_{\sigma})_{ij} \bigg\} = 2 \max_{\sigma \in \mathfrak{S}} \bigg\{ \sum_{1 \leq j < i \leq 2n+1} (P_{\sigma}^{\mathsf{T}} M P_{\sigma})_{ij} \bigg\} - \Delta.$$

MAS with the Adjacency Matrix

The maximization problem

$$\max \left\{ \sum_{1 \leq j < i \leq 2n+1} (P_{\sigma}^{\mathsf{T}} M P_{\sigma})_{ij} \ : \ \sigma \in \mathfrak{S}_{2n+1} \right\}$$

determines a maximum acyclic subgraph in \tilde{D} .

Upper Triangles and Ayclic Graphs

	<i>x</i> ₄	<i>x</i> ₂	<i>X</i> ₅	x_1	0 1 0 1 0 0 0	<i>X</i> ₇	<i>X</i> ₃
X ₄	0	1	0	0	0	0	0
<i>X</i> ₂	0	0	1	0	1	0	0
<i>X</i> ₅	0	0	0	1	0	0	0
x_1	1	0	0	0	1	0	0
<i>x</i> ₆	0	0	0	0	0	2	0
<i>X</i> ₇	0	1	0	1	0	0	0
<i>X</i> ₃	0	0	0	0	0	0	0

• The matrix M defined by $M_{ij} = \max\{0, W_{ij}\}$ is an adjacency matrix of an auxiliary directed graph \tilde{D} .

- The matrix M defined by $M_{ij} = \max\{0, W_{ij}\}$ is an adjacency matrix of an auxiliary directed graph \tilde{D} .
- It is Eulerian by construction.

- The matrix M defined by $M_{ij} = \max\{0, W_{ij}\}$ is an adjacency matrix of an auxiliary directed graph \tilde{D} .
- It is Eulerian by construction.
- Max over W is equivalent to Max over M.

- The matrix M defined by $M_{ij} = \max\{0, W_{ij}\}$ is an adjacency matrix of an auxiliary directed graph \tilde{D} .
- It is Eulerian by construction.
- Max over W is equivalent to Max over M.
- Max over M gives us $MAS(\tilde{D})$.

How do we obtain a MAS on D?

How do we obtain a MAS on *D*?

Lemma (Perrot, Van-Pham (2015))

Let \tilde{D} be a directed Eulerian graph. Then: $MAS(D) = MAS(\tilde{D}) - |\delta^{\text{out}}(x_{2n+1})|$.

Conclusion Formula

$$\mathsf{MAS}(D) = \frac{1}{2} \left(\left\lfloor \frac{(2n+1)^2}{2c_{\mathsf{EHZ}}(P(\tilde{\mathcal{B}},\mathbf{e}))} + \frac{1}{2} \right\rfloor + \Delta \right) - \left| \delta^{\mathsf{out}}(x_{2n+1}) \right|.$$

Thank you for your attention!

Proof

$$\mathsf{MAS}(D) \cup \delta^{\mathrm{out}}(x_{2n+1}) = \mathsf{MAS}(\tilde{D}).$$

For the other direction:

 Let A' be a maximum acyclic subgraph of D
 and R be the set of vertices reachable from x_{2n+1} via walks in A'.

For the other direction:

- Let A' be a maximum acyclic subgraph of \tilde{D} and R be the set of vertices reachable from x_{2n+1} via walks in A'.
- Define:

$$A'' = (A' \setminus \delta^{\mathsf{in}}(R)) \cup \delta^{\mathsf{out}}(R)$$

For the other direction:

- Let A' be a maximum acyclic subgraph of \tilde{D} and R be the set of vertices reachable from x_{2n+1} via walks in A'.
- Define:

$$A'' = (A' \setminus \delta^{\mathsf{in}}(R)) \cup \delta^{\mathsf{out}}(R).$$

For the other direction:

- Let A' be a maximum acyclic subgraph of D
 and R be the set of vertices reachable from x_{2n+1} via walks in A'.
- Define:

$$A'' = (A' \setminus \delta^{\mathsf{in}}(R)) \cup \delta^{\mathsf{out}}(R)$$

• $\delta^{\text{out}}(R) \cap A' = \emptyset$, so:

$$|A''| \ge |A'| - |\delta^{\mathsf{in}}(R))| + |\delta^{\mathsf{out}}(R)|.$$

• Since \tilde{D} is Eulerian (ignoring isolated vertices):

$$|\delta^{\sf in}(R)| = |\delta^{\sf out}(R)|.$$

• Since \tilde{D} is Eulerian (ignoring isolated vertices):

$$|\delta^{\mathsf{in}}(R)| = |\delta^{\mathsf{out}}(R)|.$$

• Therefore:

$$|A''|=|A'|.$$

• Since \tilde{D} is Eulerian (ignoring isolated vertices):

$$|\delta^{\mathsf{in}}(R)| = |\delta^{\mathsf{out}}(R)|.$$

• Therefore:

$$|A''| = |A'|.$$

• A'' is a maximum acyclic subgraph of \tilde{D} and excludes incoming arcs to x_{2n+1} .

• Since \tilde{D} is Eulerian (ignoring isolated vertices):

$$|\delta^{\mathsf{in}}(R)| = |\delta^{\mathsf{out}}(R)|.$$

• Therefore:

$$|A''| = |A'|.$$

- A'' is a maximum acyclic subgraph of \tilde{D} and excludes incoming arcs to x_{2n+1} .
- Since A'' is also maximum, it must contain all arcs leaving x_{2n+1} .

• Since \tilde{D} is Eulerian (ignoring isolated vertices):

$$|\delta^{\sf in}(R)| = |\delta^{\sf out}(R)|.$$

• Therefore:

$$|A''|=|A'|.$$

- A" is a maximum acyclic subgraph of \tilde{D} and excludes incoming arcs to \tilde{X}_{2n+1}.
- Since A" is also maximum, it must contain all arcs leaving x_{2n+1}.
- Removing these arcs yields an acyclic subgraph of D of size:

$$|A'| - |\delta^{\text{out}}(x_{2n+1})|.$$

