Sistem Bilangan dalam Komputer

Outline

1 Sistem bilangan dalam komputer

2 Representasi data di komputer

Sistem bilangan dalam komputer

1 Sistem bilangan dalam komputer

Representasi data di komputer

Mengapa biner?

- Perintah dalam bahasa mesin dikodekan dalam format biner (binary).
- Sistem biner: bilangan berbasis 2
 - Posisi digit menandakan pangkat dari 2
 - Digit yang dipakai hanya 0 dan 1
- Bandingkan dengan sistem desimal!
 - Digit yang dipakai: 0,1,2,3,4,5,6,7,8,9
 - Posisi digit menandakan pangkat dari 10
- Mengapa pakai sistem biner?
 - Mudah dan murah diimplementasikan (via transistor dalam sirkuit elektronik)
 - 0/1, false/true, low voltage/high voltage, etc
 - Handal (reliable) jika hanya butuh dua macam digit

Contoh ekspansi desimal

 Bilangan terdiri dari serangkaian digit, masing-masing dengan sebuah bobot (weight).

- Bilangan desimal memiliki basis (base) atau radix 10.
- Bobot: pangkat dari basis.

 Nilai bilangannya diperoleh dengan cara: kalikan tiap digit dengan bobotnya, lalu jumlahkan.

$$(5 \times 10^2) + (3 \times 10^1) + (7 \times 10^0) + (2 \times 10^{-1}) + (1 \times 10^{-2}) + (4 \times 10^{-3}) = 537.214$$

Bentuk umum representasi berbasis posisi

 Bilangan D dalam basis/radix R ditulis dalam bentuk serangkaian digit, yakni:

$$D = d_{m-1}d_{m-2}...d_1d_0.d_{-1}d_{-2}...d_{-n}$$

di mana setiap $d_{m-1},...,d_0,d_{-1},...,d_{-n}$ adalah digit yang diijinkan untuk radix R.

- Contoh: untuk desimal, radix R = 10. Digit yang diizinkan: 0,1,...,9.
- Contoh: untuk representasi biner, radix R = 2, dan digit yang diizinkan: 0,1.
- Nilai D jika dinyatakan dalam desimal adalah:

$$D = \sum_{i=-n}^{m-1} d_i R^i$$

Representasi biner

- Representasi biner menggunakan radix 2, sehingga bobot yang dipakai adalah pangkat dari 2.
- Contoh: untuk bilangan biner 1101.01

Secara umum, representasi biner berbentuk:

$$b_{m-1}b_{m-2}...b_{1}b_{0}.b_{-1}b_{-2}...b_{-n}$$

- setiap $b_{m-1},...,b_0,b_{-1},...,b_{-n}$ bernilai 0 atau 1
- bit b_{m-1} (yang bobotnya terbesar) disebut most significant bit (MSB)
- bit b-n (yang bobotnya terkecil) disebut least significant bit (LSB)

Konversi biner ke desimal

Nilai desimal dari bilangan biner 1101.01 adalah

$$(1 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0}) + (0 \times 2^{-1})$$

$$+ (1 \times 2^{-2})$$

$$= 8 + 4 + 0 + 1 + 0 + 0.25$$

$$= 13.25$$

Secara umum, jika bilangan biner B berbentuk

$$b_{m-1}b_{m-2}...b_{1}b_{0}.b_{-1}b_{-2}...b_{-n}$$

maka, nilai desimalnya:

$$B = \sum_{i=-n}^{m-1} b_i \times 2^i$$

Pangkat dari 2

$$2^{0} = 1$$
 $2^{1} = 2$ $2^{2} = 4$ $2^{3} = 8$
 $2^{4} = 16$ $2^{5} = 32$ $2^{6} = 64$ $2^{7} = 128$
 $2^{8} = 256$ $2^{9} = 512$ $2^{10} = 1024$ $2^{11} = 2048$
 $2^{12} = 4096$ $2^{13} = 8192$ $2^{14} = 16384$ $2^{15} = 32768$

$$2^{-1} = 0.5$$
 $2^{-2} = 0.25$ $2^{-3} = 0.125$ $2^{-4} = 0.0625$ $2^{-5} = 0.03125$ $2^{-6} = 0.015625$

Mari dicoba!

Ubah bilangan-bilangan dalam representasi biner berikut menjadi representasi desimal.

- 110112
- 1011012
- 1011.0112

Konversi desimal ke biner

- Bagi bagian bulat desimal (di depan dot/koma) dengan 2 berulang-ulang hingga hasil bagi atau quotient-nya 0. Lalu kumpulkan sisa bagi (remainder) mulai dari hasil bagi yang terakhir.
- Untuk bagian pecahan (di belakang dot/koma), kalikan bagian pecahan tersebut dengan 2 sampai jadi 0 di belakang koma. Lalu kumpulkan bagian bulat dari hasil perkalian tersebut dari depan.

Contoh: desimal 162.375

```
162/2 = 81 \text{ rem } 0 \sim b_0 = 0 \qquad \uparrow \qquad 0.375 \times 2 = 0.75 \sim b_{-1} = 0 \qquad \downarrow
81/2 = 40 \text{ rem } 1 \sim b_1 = 1 \qquad \uparrow \qquad 0.75 \times 2 = 1.5 \sim b_{-2} = 1 \qquad \downarrow
40/2 = 20 \text{ rem } 0 \sim b_2 = 0 \qquad \uparrow \qquad 0.5 \times 2 = 1.0 \sim b_{-3} = 1 \qquad \downarrow
20/2 = 10 \text{ rem } 0 \sim b_3 = 0 \qquad \uparrow
10/2 = 5 \text{ rem } 0 \sim b_4 = 0 \qquad \uparrow
5/2 = 2 \text{ rem } 1 \sim b_5 = 1 \qquad \uparrow
2/2 = 1 \text{ rem } 0 \sim b_6 = 0 \qquad \uparrow
1/2 = 0 \text{ rem } 1 \sim b_7 = 1 \qquad \uparrow
```

Jadi
$$162.37510 = (b7b6b5b4b3b2b1b0.b-1b-2b-3)2 = 10100010.0112$$

Mari coba!

Ubah bilangan-bilangan desimal berikut ke dalam representasi biner.

- 17
- 127.75
- 0.625

Mengapa proses konversinya benar?

- Teknik yang dideskripsikan sebelumnya dapat diterapkan untuk konversi desimal ke representasi basis berapa saja.
- Perhatikan konversi 162.375 dari desimal ke desimal:

$$162/10 = 16 \text{ rem } 2$$

 $16/10 = 1 \text{ rem } 6$
 $1/10 = 0 \text{ rem } 1$

kumpulkan sisa bagi dari "bawah" diperoleh 162

- Setiap operasi pembagian membuang digit paling kanan (yang menjadi sisa bagi). Quotient-nya merupakan digit-digit yang tersisa.
- Demikian pula, untuk mengkonversi bagian pecahan, setiap perkalian membuang digit paling kiri (bagian bulat). Bagian pecahan (fraction) dari hasilnya mewakili digit-digit yang tersisa.

$$0.375 \times 10 = 3.75$$

 $0.75 \times 10 = 7.50$
 $0.50 \times 10 = 5.00$

Hexadecimal

- Notasi biner paaaaaanjang.
- Heksadesimal bisa dipakai untuk menyederhanakan notasi biner.
- Radix = 16
- Digit yang dipakai: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (boleh huruf kecil).
- Contohnya digunakan untuk mendeskripsikan IPv6 addresses atau 24-bit colors.
 - IPv6: FE80:0000:0000:0000:0202:B3FF:FE1E:8329
 - Merah: #FF0000

Menyingkat biner dengan hexadecimal

Biner	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Ε
1111	F
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1100 1101 1110

- Konversi biner ke hex: ambil 4 bit dari dot/koma, konversi sesuai tabel, tambahkan 0 di ujung jika perlu.
- Konversi hex ke biner: konversi tiap digit dengan 4 bit sesuai tabel.

	Biner	Hex
	10110100	B4
	101.101	5.A
1001100001	.00110101	261.35
10	010011100	?
	10.10111	?

Contoh penggunaan hex di Python/Java

- Unicode character values
 - Contoh: "\u03B1" adalah karakter α
- Hexadecimal integer biasanya ditulis dengan awalan 0x
 - Contoh: 0xFACE21
- Basis kadang ditulis sebagai subscript: 7A₁₆, 99₁₆

Base 8 - Octal

- Representasi octal menggunakan 8 digits:
 - Radix = 8
 - Digits: 0,1,2,3,4,5,6,7
- Banyak digunakan di awal sejarah komputer, sekarang masih muncul misalnya di file access permissions untuk sistem Unix.

Konversi antara biner dan octal

- Konversi biner ke hex: ambil 3 bit dari dot/koma, konversi sesuai tabel, tambahkan 0 diujung jika perlu.
- Konversi hex ke biner: konversi tiap digit dengan 3 bit sesuai tabel.

Desimal	Biner	Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7
55	110111	67
?	?	765
?	?	7.432

Konversi hexadecimal, biner, octal

- 9FB₁₆ = (.....)₂
- 4.C8A₁₆ = (.....)₈
- 330₁₀ = (.....)₈

Jumlah bit menentukan rentang bilangan yang dapat direpresentasikan.

- 2 bit ~ min: 0₁₀, max: 3₁₀
- 4 bit ~ min: 0₁₀, max: 1₅₁₀
- 8 bit ~ min: 0₁₀, max:

Jumlah bit menentukan rentang bilangan yang dapat direpresentasikan.

- 2 bit ~ min: 0₁₀, max: 3₁₀
- 4 bit ~ min: 0₁₀, max: 1₅₁₀
- 8 bit ~ min: 0₁₀, max: 255₁₀
- 16 bit ~ min: 0₁₀, max:

Jumlah bit menentukan rentang bilangan yang dapat direpresentasikan.

- 2 bit ~ min: 0₁₀, max: 3₁₀
- 4 bit ~ min: 0₁₀, max: 1₅₁₀
- 8 bit ~ min: 0₁₀, max: 255₁₀
- 16 bit \sim min: 0₁₀, max: $2^{16} 1 = 65535_{10}$
- *n* bit ∼ min: 0₁₀, max:

Jumlah bit menentukan rentang bilangan yang dapat direpresentasikan.

- 2 bit ~ min: 0₁₀, max: 3₁₀
- 4 bit ~ min: 0₁₀, max: 1₅₁₀
- 8 bit ~ min: 0₁₀, max: 255₁₀
- 16 bit \sim min: 0_{10} , max: $2^{16} 1 = 65535_{10}$
- $n \text{ bit } \sim \text{ min: } 0_{10}, \text{ max: } 2^n 1_{(10)}$

Bilangan negatif dalam representasi biner

- Untuk mengakomodasi bilangan negatif,
 n bit tidak merepresentasikan 0 s.d. 2ⁿ 1
- Tapi, *n* bit merepresentasikan $-(2^{n-1})$ s.d. $+(2^{n-1}-1)$
- Alternatif representasi
 - Signed-and-magnitude
 - Gunakan 1 bit (biasanya di posisi MSB) sebagai tanda
 0 ~ positif
 1 ~ negatif
 - One's complement (silakan baca sendiri di e.g., Wikipedia)
 - Two's complement
- Dengan representasi bilangan negatif, kita bisa melakukan pengurangan (subtraction) dengan operasi penjumlahan (addition).
 - A B = A + (-B)

Two's complement

- Digunakan di banyak komputer modern, karena lebih mudah diimplementasikan di hardware.
- Mengubah bilangan biner ke two's complement-nya:
 - Ubah semua bit 1 jadi 0 dan semua 0 jadi 1.
 - Jumlahkan dengan 1 ke hasilnya.
- Jumlah digit yang disediakan harus diperhatikan.
- Buang carry (lebihan dalam operasi) jika ada.

Notes:

- Nilai $2^n 1$ dalam sistem biner menjadi n buah bit 1. Contoh: $2^5 1 = 111112$
- Untuk bilangan biner B yang terdiri n bit, (2ⁿ 1) B adalah komplemen dari B. Contoh: komplemen (5-bit) dari 10001₂ adalah (2⁵ 1) 10001₂ = 01110₂.
- Two's complement dari B adalah 1 + komplemen dari B, atau (2ⁿ - 1) - B + 1. Jadi, two's complement dari 10001 adalah 1 + 01110 = 01111.

Contoh

Jumlah digit = 8

X	I wo's complement dari X
01001101	?
00000000	?
10000000	?

Two's complement sebagai representasi negatif biner

- Negatif dari bilangan biner B adalah two's complement dari B.
- Sign bit = 1 berarti negatif, sign bit = 0 berarti positif.
 - Sign bit terletak di sebelah kiri MSB.

Contoh untuk 4 bit

Decimal	Two's compl. bin.	Signed-magnitude bin.
-8	1000	-
-7	1001	1111
-6	1010	1110
-5	1011	1101
-4	1100	1100
-3	1101	1011
-2	1110	1010
-1	1111	1001
0	0000	1000 atau 0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111

Representa komputer

Penjumlahan dan pengurangan dengan two's complement

- Penjumlahan dilakukan seperti biasa asalkan tidak melebihi kapasitas (tidak overflow)
- Pengurangan dilakukan dengan menjumlahkan bilangan yang dikurangi (minuend) dengan two's complement dari bilangan pengurang (subtrahend)
 - Buang carry jika ada.

Contoh penjumlahan untuk 4 bit

```
0011 (carry) 0110 (carry)
0010 (+2) 0011 (+3) 0111 (+7)
0100 (+4) 0011 (+3) 0110 (+6)
======= + ======= + ======= +
0110 (+6) 0110 (+6) 1101 (-5) invalid!
1100 (carry)
1110 (-2)
1100 (-4)
======= +
1010 (-6)
```

Contoh pengurangan untuk 4 bit

Konversi biner two's complement ke desimal

- Sama caranya dengan konversi biner unsigned untuk semua bit kecuali sign bit.
- Untuk sign bit, bobotnya dinegatifkan sebelum dikalikan dengan bit-nya.

Contoh untuk 3 bit:

Unsigned:

$$1100_2 = (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 12_{10}$$

$$0100_2 = (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 4_{10}$$

· Signed (two's complement):

$$11002 = (1 \times -(2^3)) + (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = -4_{10}$$

$$01002 = (0 \times -(2^3)) + (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 4_{10}$$

- Kadang-kadang kita perlu "memperpanjang" representasi biner, misalnya dari 4 bit jadi 8 bit.
- Agar tidak kehilangan informasi sign bit, maka tambahan bit (padding) dilakukan di sebelah kiri sign bit dengan menduplikasi sign bit.
- Nilai bilangan tidak berubah.

- Kadang-kadang kita perlu "memperpanjang" representasi biner, misalnya dari 4 bit jadi 8 bit.
- Agar tidak kehilangan informasi sign bit, maka tambahan bit (padding) dilakukan di sebelah kiri sign bit dengan menduplikasi sign bit.
- Nilai bilangan tidak berubah.
- Contoh:
 - 4 bit: 0101 6 bit: 000101

- Kadang-kadang kita perlu "memperpanjang" representasi biner, misalnya dari 4 bit jadi 8 bit.
- Agar tidak kehilangan informasi sign bit, maka tambahan bit (padding) dilakukan di sebelah kiri sign bit dengan menduplikasi sign bit.
- Nilai bilangan tidak berubah.
- Contoh:
 - 4 bit: 0101 6 bit: 000101
 Nilainya sama-sama 510.

- Kadang-kadang kita perlu "memperpanjang" representasi biner, misalnya dari 4 bit jadi 8 bit.
- Agar tidak kehilangan informasi sign bit, maka tambahan bit (padding) dilakukan di sebelah kiri sign bit dengan menduplikasi sign bit.
- Nilai bilangan tidak berubah.
- Contoh:
 - 4 bit: 0101 6 bit: 000101
 Nilainya sama-sama 510.
 - 4 bit: 1100 6 bit: 111100

Sign extension

- Kadang-kadang kita perlu "memperpanjang" representasi biner, misalnya dari 4 bit jadi 8 bit.
- Agar tidak kehilangan informasi sign bit, maka tambahan bit (padding) dilakukan di sebelah kiri sign bit dengan menduplikasi sign bit.
- Nilai bilangan tidak berubah.
- Contoh:
 - 4 bit: 0101 6 bit: 000101
 Nilainya sama-sama 510.
- 4 bit: 1100 6 bit: 111100 (Vilstiayesammentyhitung two's complement dari 4 untuk panjang 6 bit.)

Representasi data di komputer

Sistem bilangan dalam komputer

2 Representasi data di komputer

Bits, Bytes, Words

- Bit: satu digit 0 atau 1
- Byte: 8 bit
- Word: standar satuan penyimpanan data di komputer.
 - Komputer 32-bit, 1 word = 32 bit = 4 byte
 - Komputer 64-bit, 1 word = 64 bit = 8 byte

Aproksimasi desimal dari biner

```
2^{10}=1024\approx 10^3=1000 \text{ (kilo)} 2^{20}=1,048,576\approx 10^6=1,000,000 \text{ (mega)} 2^{30}=1,073,741,824\approx 10^9=1,000,000,000 \text{ (giga)} 2^{40}=1,099,511,627,776\approx 10^{12}=1,000,000,000,000 \text{ (tera)} 2^{50}=1,125,899,906,842,624\approx 10^{15}=1,000,000,000,000,000 \text{ (peta)} 2^{60}\approx 10^{18} \text{ (exa)} 2^{70}\approx 10^{21} \text{ (zetta)}
```

Floating point

- Data semua berbentuk biner: tidak ada pecahan
- Pecahan, bilangan irrasional, dan bilangan real (= floats), diaproksimasi sebagai bilangan desimal dengan akurasi sampai sekian digit "di belakang koma"

Karakter/Huruf

- Huruf/karakter direpresentasikan (encoding) sebagai bilangan (biner).
- · Contoh: ASCII dan UTF-8 encodings.

Char	Dec	Char	Dec	Char	Dec	Char	Dec
NUL	0	SP	32	@	64	•	96
SOH	1	1	33	A	65	a	97
STX	2	"	34	В	66	Ъ	98
ETX	3	#	35	C	67	С	99
EOT	4	\$	36	D	68	d	100
ENQ	5	%	37	Е	69	е	101
ACK	6	&	38	F	70	f	102
BEL	7	1	39	G	71	g	103
BS	8	(40	H	72	h	104

Figure: Contoh UTF-8 Encoding [Table 0.3, Punch & Enbody, 2017].

Citra (Gambar) dan Audio (Suara)

- Data citra digital: matriks berisi kumpulan nilai warna (pixel)
 - Tiap pixel direpresentasikan sebagai suatu bilangan biner.

Citra (Gambar) dan Audio (Suara)

 Data audio digital: hasil sampling dari gelombang suara (yang bersifat analog)

Citra (Gambar) dan Audio (Suara)

 Data audio digital: hasil sampling dari gelombang suara (yang bersifat analog)

Berapa besar?

- 2 KB(ytes): satu halaman teks yang diketik
 - 10 KB: satu halaman ensiklopedia
- 50 KB: satu dokumen (terkompresi)
- · 100 KB: satu foto dalam resolusi rendah
- 1 MB: satu novel kecil
- 2 MB: satu foto resolusi tinggi
- 5 MB: seluruh karya Shakespeare atau satu video berdurasi 30 detik

1 GB: Satu truk pick-up berisi kertas dokumen, atau satu simfoni, atau

- 100 MB: satu rak buku sepanjang 1 meter
- 500 MB: satu keping CD-ROM
- satu film
- 20 GB: Seluruh karya Beethoven sebagai file audio
- 50 GB: Buku satu lantai perpustakaan
- 100 GB: kapasitas standar Blu-ray
- 1 TB: Seluruh data rontgen sebuah rumah sakit, atau 50 ribu pohon dijadikan kertas dan dicetak, atau data Earth Observation Satellite per hari di tahun 1998
- 2 TB: satu perpustakaan riset akademik
- 20 TB: total foto per bulan di Facebook
- 100 TB: seluruh data di US Library of Congress tahun 2009
- 530 TB: seluruh video di Youtube

1 Petabyte ≈ 1000 TB

- Google cluster: 4 PB RAM, memroses 20 PB data per hari
- World of Warcraft: butuh 1.3 PB untuk mengelola game-nya
- Jika punya storage 1 PB:
 - Jika baca 1 buku (1 MB) per hari selama 80 tahun, kita hanya butuh 30 GB
 - Jika ambil 100 foto resolusi tinggi (4 MB per foto) tiap hari selama 80 tahun, kita hanya butuh 30 TB
 - Jika mendengarkan audio MP3 (1 MB per menit) 24 jam per hari dan 7 hari seminggu selama 80 tahun, kita hanya butuh 42 TB
 - Jika menonton video dalam format DVD (2 GB per jam), maka 1 PB cukup untuk video berdurasi 500 ribu jam atau 57 tahun.

Exabyte & Zettabyte

- 5 Exabyte: seluruh kata yang pernah diucapkan manusia jika ditulis dalam format teks
- 5-8 Exabyte: besar lalu lintas data di Internet setiap bulan
- 500 EB: total konten digital sedunia tahun 2009
- 42 ZB: seluruh kata yang pernah diucapkan manusia sepanjang sejarah, dalam format 16 bit audio 16 KHz.