$K ext{-Theory for Motives, Automorphic Forms, and} \ L ext{-Functions}$

Alien Mathematicians

Contents

1	Int	roduction	2		
2	Algebraic K -theory for Motives, Automorphic Forms, and L -Functions				
			2		
	2.1	Preliminaries on Algebraic K-Theory	2		
	2.2	Algebraic K-theory of Motives	2		
	2.3	Algebraic K-theory of Automorphic Forms	2		
	2.4	Algebraic K -theory of L -functions	3		
3	_	Topological K -theory for Motives, Automorphic Forms, and L -			
	Fun	actions	3		
	3.1	Preliminaries on Topological K -Theory	3		
	3.2	Topological K -theory of Motives	3		
	3.3	Topological K-theory of Automorphic Forms	3		
	3.4	Topological K -theory of L -functions	3		
4	Motivic K-theory for Motives, Automorphic Forms, and L-				
		actions	3		
	4.1	Preliminaries on Motivic K -theory	3		
	4.2	Motivic K -theory of Motives	4		
	4.3	Motivic K -theory of Automorphic Forms	4		
	4.4	Motivic K -theory of L -functions	4		
	4.4	Motivic M-theory of L-functions	4		
5	Equivariant K -theory for Motives, Automorphic Forms, and L -				
	Fun	actions	4		
	5.1	Preliminaries on Equivariant K -theory	4		
	5.2	Equivariant K -theory of Motives	4		
	5.3	Equivariant K -theory of Automorphic Forms	4		
	5.4	Equivariant K -theory of L -functions	5		
6	Tw	isted K-theory for Motives, Automorphic Forms, and L-			
		actions	5		
	6.1	Preliminaries on Twisted K -theory	5		

6.2	Twisted K-theory of Motives	5
6.3	Twisted K -theory of Automorphic Forms	5
6.4	Twisted K -theory of L -functions	5

1 Introduction

In this document, we rigorously develop various forms of K-theory (algebraic, topological, motivic, equivariant, and twisted) for important mathematical objects: motives M, automorphic forms A, and L-functions L. We aim to systematically study the relationships between these K-theories and these objects, focusing on their algebraic, topological, and deeper structures.

2 Algebraic *K*-theory for Motives, Automorphic Forms, and *L*-Functions

2.1 Preliminaries on Algebraic K-Theory

We begin by recalling the basic setup of algebraic K-theory. Let X be a smooth projective variety over a field k. We define the K-groups $K_n(X)$ using the following construction:

 $K_0(X) = \text{Grothendieck group of vector bundles on } X.$

$$K_n(X) = \pi_n(BGL(X)^+).$$

2.2 Algebraic K-theory of Motives

Let M be a motive over a field k. We can associate to M a variety X and define the algebraic K-groups $K_n(M)$ as:

$$K_n(M) = K_n(X),$$

where X is the variety associated to M. This allows us to study motivic K-theory as a natural extension of algebraic K-theory.

2.3 Algebraic K-theory of Automorphic Forms

Let A be an automorphic form associated with a group G. We can define the K-theory of A by considering the moduli space of automorphic forms, denoted by \mathcal{M}_A , and define:

$$K_n(A) = K_n(\mathcal{M}_A).$$

This gives us a way to explore the algebraic K-theory of automorphic forms.

2.4 Algebraic K-theory of L-functions

For an L-function L, we define its K-theory by associating L with a related variety or motive. Let \mathcal{M}_L be the moduli space associated with the L-function. Then, we define:

$$K_n(L) = K_n(\mathcal{M}_L).$$

3 Topological *K*-theory for Motives, Automorphic Forms, and *L*-Functions

3.1 Preliminaries on Topological K-Theory

Topological K-theory is a cohomology theory based on vector bundles over topological spaces. For a topological space X, we define K-groups as:

 $K^{0}(X) =$ Grothendieck group of vector bundles over X.

$$K^{1}(X) = \pi_{1}(BGL(X)^{+}).$$

3.2 Topological K-theory of Motives

Let M be a motive. We can define a topological space X_M associated with M, and study its topological K-theory:

$$K^{0}(M) = K^{0}(X_{M}), \quad K^{1}(M) = K^{1}(X_{M}).$$

3.3 Topological K-theory of Automorphic Forms

For automorphic forms A, we can associate a topological space X_A , such as a moduli space of automorphic forms. We define the topological K-groups as:

$$K^{0}(A) = K^{0}(X_{A}), \quad K^{1}(A) = K^{1}(X_{A}).$$

3.4 Topological K-theory of L-functions

Let L be an L-function. We define a topological space X_L associated with L, and compute the topological K-groups:

$$K^{0}(L) = K^{0}(X_{L}), \quad K^{1}(L) = K^{1}(X_{L}).$$

4 Motivic *K*-theory for Motives, Automorphic Forms, and *L*-Functions

4.1 Preliminaries on Motivic K-theory

Motivic K-theory is defined as a theory that extends algebraic K-theory to motives and related objects. Let X be a smooth projective variety, and let

 $\mathcal{M}(X)$ denote the category of motives. We define the motivic K-groups as:

$$K_{\text{mot}}^n(X) = \text{higher } K\text{-theory of motives.}$$

4.2 Motivic *K*-theory of Motives

Let M be a motive. We define its motivic K-groups by considering the motives associated with M:

$$K_{\text{mot}}^n(M) = K_{\text{mot}}^n(X_M),$$

where X_M is the variety associated with the motive M.

4.3 Motivic *K*-theory of Automorphic Forms

Let A be an automorphic form. We define the motivic K-theory of A by associating A with a moduli space of automorphic forms:

$$K_{\text{mot}}^n(A) = K_{\text{mot}}^n(X_A).$$

4.4 Motivic K-theory of L-functions

For an L-function L, we define its motivic K-theory as:

$$K_{\mathrm{mot}}^n(L) = K_{\mathrm{mot}}^n(X_L).$$

5 Equivariant *K*-theory for Motives, Automorphic Forms, and *L*-Functions

5.1 Preliminaries on Equivariant K-theory

Equivariant K-theory is a variant of K-theory where one considers group actions. Let G be a group acting on a space X. The equivariant K-groups are defined as:

 $K_G^0(X) =$ Grothendieck group of G-equivariant vector bundles.

5.2 Equivariant K-theory of Motives

For a motive M with a group action G, we define the equivariant K-theory as:

$$K_G^0(M) = K_G^0(X_M).$$

5.3 Equivariant *K*-theory of Automorphic Forms

Let A be an automorphic form with a group action G. We define the equivariant K-theory as:

$$K_G^0(A) = K_G^0(X_A).$$

5.4 Equivariant K-theory of L-functions

For an L-function L with a group action G, we define the equivariant K-theory as:

$$K_G^0(L) = K_G^0(X_L).$$

6 Twisted *K*-theory for Motives, Automorphic Forms, and *L*-Functions

6.1 Preliminaries on Twisted K-theory

Twisted K-theory arises when the vector bundles on a space X are twisted by a class in cohomology. Let $H^3(X,\mathbb{Z})$ be a class, and the twisted K-groups are defined as:

$$K_{\text{tw}}^0(X, H) = \text{twisted Grothendieck group.}$$

6.2 Twisted K-theory of Motives

For a motive M, we define the twisted K-theory as:

$$K_{\text{tw}}^{0}(M, H) = K_{\text{tw}}^{0}(X_{M}, H).$$

6.3 Twisted K-theory of Automorphic Forms

Let A be an automorphic form twisted by a class H. We define the twisted K-theory as:

$$K_{\operatorname{tw}}^0(A, H) = K_{\operatorname{tw}}^0(X_A, H).$$

6.4 Twisted K-theory of L-functions

For an L-function L, we define its twisted K-theory by:

$$K_{\rm tw}^0(L, H) = K_{\rm tw}^0(X_L, H).$$