

# Systèmes d'équations linéaires

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

\* très facile \*\* facile \*\*\* difficulté moyenne \*\*\*\* difficile \*\*\*\* très difficile I : Incontournable T : pour travailler et mémoriser le cours

# **Exercice 1**

Résoudre (en discutant en fonction des différents paramètres) les systèmes suivants :

1) 
$$\begin{cases} 2x + 3y + z = 4 \\ -x + my + 2z = 5 \\ 7x + 3y + (m - 5)z = 7 \end{cases}$$
4) 
$$\begin{cases} x + 2y + 3z + mt = m - 1 \\ 2x + y + mz + 3t = 1 \\ 3x + my + z + 2t = 0 \\ mx + 3y + 2z + t = 0 \end{cases}$$
7) 
$$\begin{cases} (b + c)^2 x + b^2 y + c^2 z = 1 \\ a^2 x + (c + a)^2 y + c^2 z = 1 \\ a^2 x + b^2 y + (a + b)^2 z = 1 \end{cases}$$
9) 
$$\begin{cases} x + y + z = 0 \\ ax + by + cz = 2 \\ a^2 x + b^2 y + c^2 z = 3 \end{cases}$$
 (où a,

2) 
$$\begin{cases} 2x + my + z = 3m \\ x - (2m+1)y + 2z = 4 \\ 5x - y + 4z = 3m - 2 \end{cases}$$
3) 
$$\begin{cases} x + y + z + t = 3 \\ x + my + z - mt = m + 2 \\ mx - y - mz - t = -1 \end{cases}$$
5) 
$$\begin{cases} mx + y + z = m + 2 \\ -x - y + mz = m - 2 \\ -mx + y + mz = -m \\ x - y - mz = m - 4 \end{cases}$$
6) 
$$\begin{cases} x + y + z + t = 3 \\ x + my + z - mt = m + 2 \\ mx - y - mz - t = -1 \end{cases}$$
6) 
$$\begin{cases} x + y + z = 1 \\ ax + by + cz = m \\ \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = \frac{1}{m} \end{cases}$$
8) 
$$\begin{cases} ax + by + cz = p \\ cx + ay + bz = q \\ bx + cy + az = r \end{cases}$$

$$(mx - y - mz - t = -1)$$

$$\begin{cases} x + y + z = 1 \\ ax + by + cz = m \\ \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = \frac{1}{m} \end{cases}$$

(où a, b, et c sont les racines de l'équation

 $t^3 - t + 1 = 0$ ).

Correction ▼

[005375]

#### **Exercice 2**

Donner une base du sous-espace vectoriel de  $\mathbb{R}^5$  défini par :

$$\begin{cases} x_1 + 2x_2 - x_3 + 3x_4 + x_5 = 0 \\ x_2 + x_3 - 2x_4 + 2x_5 = 0 \\ 2x_1 + x_2 - 5x_3 - 4x_5 = 0 \end{cases}.$$

Correction ▼ [005376]

### Exercice 3

Dans le plan, on donne n points  $A_1, \ldots, A_n$ . Existe-t-il n points  $M_1, \ldots, M_n$  tels que  $A_1$  soit le milieu de  $[M_1, M_2]$ ,  $A_2$  soit le milieu de  $[M_2, M_3], ..., A_{n-1}$  soit le milieu de  $[M_{n-1}, M_n]$  et  $A_n$  soit le milieu de  $[M_n, M_1]$ .

Correction ▼ [005377]

# **Exercice 4**

Résoudre le système :  $x_1 + x_2 = 0$ ,  $x_{k-1} + x_k + x_{k+1} = 0$  pour  $k = 2, ..., n-1, x_{n-1} + x_n = 0$ .

Correction ▼ [005378]

# **Exercice 5**

Soit E un ensemble contenant au moins n éléments et  $(f_1, f_2..., f_n)$  un n-uplet de fonctions de E dans  $\mathbb{C}$ . Montrer que les propositions suivantes sont équivalentes :

- 1. la famille  $(f_1,...,f_n)$  est libre;
- 2. il existe n éléments  $a_1, a_2, ..., a_n$  dans E tels que  $\det(f_i(a_j))_{1 \le i,j \le n} \ne 0$ .

Correction ▼ [005379]

### Exercice 6

Déteminer l'inverse de  $A = (a_{i,j})$  telle que  $a_{i,i+1} = a_{i,i-1} = 1$  et  $a_{i,j} = 0$  sinon.

Correction ▼ [005380]

### Exercice 7

Soient  $a_1,...,a_n,b_1,...,b_n$  2n nombres complexes deux à deux distincts tels que les sommes  $a_i+b_j$  soient toutes non nulles. Résoudre le système  $\sum_{j=1}^n \frac{x_j}{a_i+b_j} = 1$ , pour tout i=1,...,n (en utilisant la décomposition en éléments simples de  $R = \sum_{j=1}^n \frac{x_j}{X+b_j}$ ).

Correction ▼ [005381]





#### Correction de l'exercice 1 A

m est un paramètre réel

1.  $\det S = 2(m(m-5)-6) + (3(m-5)-3) + 7(6-m) = 2m^2 - 14m + 12 = 2(m-1)(m-6)$ . Le système est de CRAMER si et seulement si  $m \in \{1,6\}$ . Si  $m \notin \{1,6\}$ , les formules de CRAMER fournissent alors :

$$x = \frac{1}{2(m-1)(m-6)} \begin{vmatrix} 4 & 3 & 1 \\ 5 & m & 2 \\ 7 & 3 & m-5 \end{vmatrix} = \frac{2(m-6)(2m-9)}{2(m-1)(m-6)} = \frac{2m-9}{m-1}$$

$$y = \frac{1}{2(m-1)(m-6)} \begin{vmatrix} 2 & 4 & 1 \\ -1 & 5 & 2 \\ 7 & 7 & m-5 \end{vmatrix} = \frac{14(m-6)}{2(m-1)(m-6)} = \frac{7}{m-1}$$

$$z = \frac{1}{2(m-1)(m-6)} \begin{vmatrix} 2 & 3 & 4 \\ -1 & m & 5 \\ 7 & 3 & m7 \end{vmatrix} = \frac{-14(m-6)}{2(m-1)(m-6)} = -\frac{7}{m-1}$$

Si  $m \in \{1,6\}$ ,  $\det S = 0$ . Un déterminant principal est  $\begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 5 \neq 0$ . On peut choisir les deux premières équations comme équations principales et x et z comme inconnues principales. Le système des deux premières équations équivaut à  $\begin{cases} x = \frac{3+(m-6)y}{5} \\ z = \frac{14-(2m+3)y}{5} \end{cases}$ .

La dernière équation fournit alors une condition nécessaire et suffisante de compatibilité (les termes en y disparaissent automatiquement pour  $m \in \{1,6\}$  et donc pas la peine de les calculer).

$$7x + 2y + (m-5)z = 7 \Leftrightarrow 7\frac{3 + (m-6)y}{5} + 3y + (m-5)\frac{14 - (2m+3)y}{5} = 7 \Leftrightarrow 21 + 14(m-5) - 35 = 0$$
$$\Leftrightarrow 14(m-6) = 0 \Leftrightarrow m = 6.$$

Si m=1, le système n'a pas de solution et si m=6, l'ensemble des solutions est  $\{(\frac{3}{5},y,-\frac{y}{5}),\ y\in\mathbb{R}\}$ .

$$5x - y + 4z = 3m - 2 \Leftrightarrow 5\frac{6m - 4 - (4m + 1)y}{3} - y + 4\frac{-3m + 8 + (5m + 2)y}{3} = 3m - 2$$
$$\Leftrightarrow 5(6m - 4) + 4(-3m + 8) - 3(3m - 2) = 0 \Leftrightarrow 9(m + 2) = 0 \Leftrightarrow m = -2.$$

Si  $m \neq -2$ , le système n'a pas de solution. Si m = -2, l'ensemble des solutions est  $\{(\frac{-16+7y}{3}, y, \frac{14-8y}{3}), y \in \mathbb{R}\}$ .

3. 
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & m & 1 \\ m & -1 & -m \end{vmatrix} = -2m^2 + 2m = -2m(m-1)$$
. Le système est de CRAMER en  $x$ ,  $y$  et  $z$  si et seulement si  $m \in \{0,1\}$ .

Si  $m \notin \{0,1\}$ , les formules de CRAMER fournissent :

$$x = \frac{1}{-2m(m-1)} \begin{vmatrix} 3-t & 1 & 1 \\ m+2+mt & m & 1 \\ -1+t & -1 & -m \end{vmatrix} = \frac{(2m^2-2m)t+(-2m^2+2m)}{-2m(m-1)} = -t+1$$

$$y = \frac{1}{-2m(m-1)} \begin{vmatrix} 1 & 3-t & 1 \\ 1 & m+2+mt & 1 \\ m & -1+t & -m \end{vmatrix} = \frac{(-2m^2-2m)+(-2m^2+2m)}{-2m(m-1)} = \frac{m+1}{m-1}t+1$$

$$z = \frac{1}{-2m(m-1)} \begin{vmatrix} 1 & 1 & 3-t \\ 1 & m & m+2+mt \\ m & -1 & -1+t \end{vmatrix} = \frac{(2m^2+2m)t+(-2m^2+2m)}{-2m(m-1)} = -\frac{m+1}{m-1}t+1.$$

Dans ce cas, l'ensemble des solutions est  $\{(-t+1,\frac{m+1}{m-1}t+1,-\frac{m+1}{m-1}t+1,t),\,t\in\mathbb{R}\}.$ 

Si m = 0, le système s'écrit  $\begin{cases} x + y + z + t = 3 \\ x + z = 2 \\ y + t = -1 \end{cases} \Leftrightarrow \begin{cases} z = 2 - x \\ t = -1 - y \end{cases}$ . Dans ce cas, l'ensemble des solutions est  $\{(x, y, 2, y, 1, y, 2, y,$ tions est  $\{(x, y, 2-x, 1-y), (x, y) \in \mathbb{R}^2\}$ 

Si 
$$m = 1$$
, le système s'écrit 
$$\begin{cases} x + y + z + t = 3 \\ x + y + z - t = 3 \\ x - y - z - t = -1 \end{cases} \Leftrightarrow \begin{cases} t = 0 \\ x + y + z = 3 \\ x - y - z = -1 \end{cases} \Leftrightarrow \begin{cases} t = 0 \\ z = 1 \\ z = 2 - y \end{cases}$$
. Dans ce cas,

l'ensemble de solutions est  $\{(1, y, 2 - y, 0),$ 

4.

$$\det(S) = \begin{vmatrix} 1 & 2 & 3 & m \\ 2 & 1 & m & 3 \\ 3 & m & 1 & 2 \\ m & 3 & 2 & 1 \end{vmatrix} = \begin{vmatrix} m+6 & 2 & 3 & m \\ m+6 & 1 & m & 3 \\ m+6 & m & 1 & 2 \\ m+6 & 3 & 2 & 1 \end{vmatrix} = (m+6) \begin{vmatrix} 1 & 2 & 3 & m \\ 1 & 1 & m & 3 \\ 1 & m & 1 & 2 \\ 1 & 3 & 2 & 1 \end{vmatrix}$$

$$= (m+6) \begin{vmatrix} 1 & 2 & 3 & m \\ 0 & -1 & m-3 & 3-m \\ 0 & m-2 & -2 & 2-m \\ 0 & 1 & -1 & 1-m \end{vmatrix} = (m+6) \begin{vmatrix} -1 & m-3 & 3-m \\ m-2 & -2 & 2-m \\ 1 & -1 & 1-m \end{vmatrix}$$

$$= (m+6) \begin{vmatrix} -1 & m-3 & 0 \\ m-2 & -2 & -m \\ 1 & -1 & -m \end{vmatrix} = -m(m+6) \begin{vmatrix} -1 & m-3 & 0 \\ m-2 & -2 & 1 \\ 1 & -1 & 1 \end{vmatrix}$$

$$= -m(m+6) \begin{vmatrix} -1 & m-3 & 0 \\ m-3 & -1 & 0 \\ 1 & -1 & 1 \end{vmatrix} = -m(m+6) \begin{vmatrix} -1 & m-3 \\ m-3 & -1 \end{vmatrix} = m(m-2)(m-4)(m+6).$$

Le système est de CRAMER si et seulement si  $m \notin \{0, 2, 4, -6\}$ . Dans ce cas :

$$m(m-2)(m-4)(m+6)x = \begin{vmatrix} m-1 & 2 & 3 & m \\ 1 & 1 & m & 3 \\ 0 & m & 1 & 2 \\ 0 & 3 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 2-(m-1) & 3-m(m-1) & m-3(m-1) \\ 1 & 1 & m & 3 \\ 0 & m & 1 & 2 \\ 0 & 3 & 2 & 1 \end{vmatrix}$$
$$= -\begin{vmatrix} 3-m & -m^2+m+3 & -2m+3 \\ m & 1 & 2 \\ 3 & 2 & 1 \end{vmatrix} = -\begin{vmatrix} 5m-6 & -m^2+5m-3 & -2m+3 \\ m-6 & -3 & 2 \\ 0 & 0 & 1 \end{vmatrix}$$
$$= -[-3(5m-6) - (m-6)(-m^2+5m-3)]$$
$$= -m^3 + 11m^2 - 18m = -m(m-2)(m-9).$$

et 
$$x = -\frac{m-9}{(m-4)(m+6)}$$
.

$$m(m-2)(m-4)(m+6)y = \begin{vmatrix} 1 & m-1 & 3 & m \\ 2 & 1 & m & 3 \\ 3 & 0 & 1 & 2 \\ m & 0 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -2m+3 & 0 & -m^2+m+3 & -2m+3 \\ 2 & 1 & m & 3 \\ 3 & 0 & 1 & 2 \\ m & 0 & 2 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} -2m+3 & -m^2+m+3 & -2m+3 \\ 3 & 1 & 2 \\ m & 2 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 3m^2-5m-6 & -m^2+m+3 & 2m^2-4m-3 \\ 0 & 1 & 0 \\ m-6 & 2 & -3 \end{vmatrix}$$

$$= -3(3m^2-5m-6) - (m-6)(2m^2-4m-3)$$

$$= -2m^3+7m^2-6m = -m(2m-3)(m-2)$$

et  $y = -\frac{2m-3}{(m-4)(m-6)}$ 

$$m(m-2)(m-4)(m+6)z = \begin{vmatrix} 1 & 2 & m-1 & m \\ 2 & 1 & 1 & 3 \\ 3 & m & 0 & 2 \\ m & 3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} -2m+3 & -m+3 & 0 & -2m+3 \\ 2 & 1 & 1 & 3 \\ 3 & m & 0 & 2 \\ m & 3 & 0 & 1 \end{vmatrix}$$

$$= -\begin{vmatrix} -2m+3 & -m+3 & -2m+3 \\ 3 & m & 2 \\ m & 3 & 1 \end{vmatrix}$$

$$= -(-2m+3)(m-6) + 3(5m-6) - m(2m^2 - 5m+6) = -2m^3 + 7m^2 - 6m$$

$$= -m(2m-3)(m-2),$$

et  $z = -\frac{2m-3}{(m-4)(m-6)}$ .

$$m(m-2)(m-4)(m+6)t = \begin{vmatrix} 1 & 2 & 3 & m-1 \\ 2 & 1 & m & 1 \\ 3 & m & 1 & 0 \\ m & 3 & 2 & 0 \end{vmatrix} = \begin{vmatrix} -2m+3 & -m+3 & -m^2+m+3 & 0 \\ 2 & 1 & m & 1 \\ 3 & m & 1 & 0 \\ m & 3 & 2 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -2m+3 & -m+3 & -m^2+m+3 \\ 3 & m & 1 \\ m & 3 & 2 \end{vmatrix}$$
$$= (-2m+3)(2m-3) - 3(3m^2 - 5m - 3) + m(m^3 - m^2 - 4m + 3)$$
$$= m^4 - m^3 - 17m^2 + 30m = m(m-2)(m^2+m-15)$$

et  $t = \frac{m^2 + m - 15}{(m-4)(m-6)}$ . Si m = 0, le système s'écrit

$$\begin{cases} x + 2y + 3z = -1 \\ 2x + y + 3t = 1 \\ 3x + z + 2t = 0 \\ 3y + 2z + t = 0 \end{cases} \Leftrightarrow \begin{cases} x + y + z + t = (E_1 + E_2) \\ 2x + y + 3t = 1 \\ x + y + z + t = 0(E_3 + E_4) \end{cases} \Leftrightarrow \begin{cases} t = -x - y - z \\ -x - 2y - 3z = 1 \\ -x + 2y + z = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} z = x - 2y \\ -x - 2y - 3(x - 2y) = 1 \\ t = -x - y - z \end{cases} \Leftrightarrow \begin{cases} y = x + \frac{1}{4}z = -x - \frac{1}{2} \\ t = -x + \frac{1}{4} \end{cases}$$

D'où l'ensemble de solutions :  $\{(x, x + \frac{1}{4}, -x - \frac{1}{4}; -x + \frac{1}{2}), x \in \mathbb{R}\}.$ 

Si m=2, on obtient pour ensemble de solutions :  $\{(x, -x-\frac{5}{8}, x+\frac{1}{2}; -x-\frac{1}{8}), x \in \mathbb{R}\}.$ 

Si m = 4 ou m = -6, on voit en résolvant que le système est incompatible.

5. 
$$\begin{vmatrix} m & 1 & 1 \\ -1 & -1 & m \\ 1 & -1 & -m \end{vmatrix} = m(2m) + (-m+1) + (m+1) = 2(m^2+1) \neq 0$$
 (*m* désignant un paramètre réel).

Le système formé des équations 1, 2 et 4 est donc de CRAMER. Les formules de CRAMER fournissent alors:

$$x = \frac{2m^2 - m - 1}{m^2 + 1}$$
,  $y = 3 - m$  et  $z = \frac{3m - 1}{m^2 + 1}$ 

La troisième équation fournit alors une condition nécessaire et suffisante de compatibilité :

$$-m\frac{2m^2 - m - 1}{m^2 + 1} + 3 - m + m\frac{3m - 1}{m^2 + 1} = -m$$

$$\Leftrightarrow -m(2m^2 - m - 1) + (3 - m)(m^2 + 1) + m(3m - 1) = -m(m^2 + 1)$$

$$\Leftrightarrow -2m^3 + 7m^2 + 3 = 0$$

Le système est compatible si et seulement si m est l'une des trois racines de l'équation  $-2X^3 + 7X^2 + 3 =$ 

6. 
$$\det S = \frac{1}{abc} \begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ 1 & 1 & 1 \end{vmatrix} = \frac{1}{abc} \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \frac{\operatorname{Van}(a,b,c)}{abc}.$$

Si a, b et c sont deux à deux distincts, le système est de CRAMER. On obtient :

$$x = \frac{abc}{mbc} \frac{\operatorname{Van}(m, b, c)}{\operatorname{Van}(a, b, c)} = \frac{a(b-m)(c-m)}{m(b-a)(c-a)},$$

puis, par symétrie des rôles,  $y=\frac{b(a-m)(c-m)}{m(a-b)(c-b)}$  et  $z=\frac{c(a-m)(b-m)}{m(a-c)(b-c)}$  Si  $a=b\neq c$  (ou  $a=c\neq b$  ou  $b=c\neq a$ ), le système s'écrit :

$$\begin{cases} x+y=1-z \\ ax+ay+cz=m \\ \frac{1}{a}x+\frac{1}{a}y+\frac{1}{c}z=\frac{1}{m} \end{cases} \Leftrightarrow \begin{cases} x+y=1-z \\ a(1-z)+cz=m \\ \frac{1}{a}(1-z)+\frac{1}{c}z=\frac{1}{m} \end{cases} \Leftrightarrow \begin{cases} x+y=1-z \\ z=\frac{m-a}{c-a} \\ (\frac{1}{c}-\frac{1}{a})\frac{m-a}{c-a}=\frac{1}{m}-\frac{1}{a} \end{cases}.$$

Le système est compatible si et seulement si (m-a)(m-c)=0 ou encore (m=a ou m=c). Dans ce cas, l'ensemble des solutions est :  $\{(x, \frac{m-c}{a-c} - x; \frac{m-a}{c-a}), x \in \mathbb{R}\}.$ 

Si a=b=c, le système s'écrit :  $x+y+z=1=\frac{m}{a}=\frac{a}{m}$ . Le système est compatible si et seulement si m=a=b=c et dans ce cas l'ensemble des solutions est :  $\{(x,y,1-x-y),\ (x,y)\in\mathbb{R}^2\}$ .

7.

$$\det S = \begin{vmatrix} (b+c)^2 & b^2 & c^2 \\ a^2 & (a+c)^2 & c^2 \\ a^2 & b^2 & (a+b)^2 \end{vmatrix} = \begin{vmatrix} (b+c)^2 & b^2 & c^2 \\ a^2 - (b+c)^2 & (a+c)^2 - b^2 & 0 \\ 0 & b^2 - (a+c)^2 & (a+b)^2 - c^2 \end{vmatrix}$$

$$= (a+b+c)^2 \begin{vmatrix} (b+c)^2 & b^2 & c^2 \\ a-b-c & a+c-b & 0 \\ 0 & b-a-c & a+b-c \end{vmatrix} = (a+b+c)^2 \begin{vmatrix} 2bc & b^2 & c^2 \\ -2c & a+c-b & 0 \\ -2(b-c) & b-a-c & a+b-c \end{vmatrix}$$

$$= 2(a+b+c)^2 (c^2(-c(b-a-c)+(b-c)(a+c-b))+(a+b-c)(bc(a+c-b)+b^2c))$$

$$= 2(a+b+c)^2 (c^2b(a-b+c)+(a+b-c)bc(a+c))$$

$$= 2bc(a+b+c)^2 (a^2+ab+ac) = 2abc(a+b+c)^3.$$

Si  $abc(a+b+c) \neq 0$ , le système est de CRAMER et on obtient après calcul :

$$x = \frac{(a-b+c)(a+b-c)}{2abc(a+b+c)}, \ y = \frac{(a-b-c)(a+b-c)}{2abc(a+b+c)} \text{ et } z = \frac{(a-b+c)(a-b-c)}{2abc(a+b+c)}.$$

Si a = 0 (ou b = 0 ou c = 0), le système s'écrit :

$$\begin{cases} (b+c)^2 x + b^2 y + c^2 z = 1 \\ c^2 (y+z) = 1 \\ b^2 (y+z) = 1 \end{cases}.$$

Donc,

Si  $((a=0 \text{ et } b^2 \neq c^2) \text{ ou } (b=0 \text{ et } a^2 \neq c^2) \text{ ou } (c=0 \text{ et } a^2 \neq b^2))$ , le système n'a pas de solution.

Si a=0 et  $b=c\neq 0$ , l'ensemble des solutions est  $\{(0,y,-\frac{y}{b^2}),\,y\in\mathbb{R}\}$  (résultats analogues pour les cas (b=0) et  $a=c\neq 0$ ) et (c=0) et  $a=b\neq 0$ )).

Si a = b = c = 0, il n'y a pas de solution.

Si a=0 et  $c=-b\neq 0$ , l'ensemble des solutions est  $\{(x,y-\frac{y}{b^2}),\ (x,y)\in\mathbb{R}^2\}$  (résultats analogues pour (b=0 et  $c=-a\neq 0)$  et (c=0 et  $b=-a\neq 0)$ .

Si  $abc \neq 0$  et a+b+c=0, le système équivaut à l'équation  $a^2x+b^2y+c^2z=1$ . L'ensemble des solutions est  $\{(x,y,\frac{1-a^2x-b^2y}{c^2}),\ (x,y)\in\mathbb{R}^2\}$ .

8.

$$\det S = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & a & b \\ 1 & c & a \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & a-b & b-c \\ 0 & c-b & a-c \end{vmatrix}$$
$$= (a+b+c)((a-b)(a-c)+(b-c)^2) = (a+b+c)(a^2+b^2+c^2-ab-ac-bc)$$
$$= (a+b+c)(a+jb+j^2c)(a+j^2b+jc)$$

Si  $\det S \neq 0$ , les formules de CRAMER fournissent :

$$x \det S = \begin{vmatrix} p & b & c \\ q & a & b \\ r & c & a \end{vmatrix} = p(a^2 - bc) + q(c^2 - ab) + r(b^2 - ac).$$

Je n'ai pas envie de finir.

9. Soit  $P = X^3 - X - 1$ . P et  $P' = 3X^2 - 1$  n'ont pas de racines communes dans  $\mathbb{C}$  car  $\frac{1}{\sqrt{3}}$  et  $-\frac{1}{\sqrt{3}}$  ne sont pas racines de P et donc les racines de P sont simples ou encore, a, b et c sont deux à deux distincts. Ainsi,  $\det S = \operatorname{Van}(a,b,c) \neq 0$  et le système est de CRAMER.

$$(b-a)(c-a)(c-b)x = \begin{vmatrix} 0 & 1 & 1 \\ 2 & b & c \\ 3 & b^2 & c^2 \end{vmatrix} = -2(c^2-b^2) + 3(c-b) = (c-b)(3-2(b+c)) = (c-b)(3+2a),$$

(car 
$$a + b + c = 0$$
) et  $x = \frac{3+2a}{(b-a)(c-a)}$ .

$$(b-a)(c-a)(c-b)y = \begin{vmatrix} 1 & 0 & 1 \\ a & 2 & c \\ a^2 & 3 & c^2 \end{vmatrix} = 2(c^2-a^2) - 3(c-a) = (c-a)(2(a+c)-3) = -(c-a)(3+2b),$$

et 
$$y = -\frac{3+2b}{(b-a)(c-a)}$$

$$(b-a)(c-a)(c-b)z = \begin{vmatrix} 1 & 1 & 0 \\ a & b & 2 \\ a^2 & b^2 & 3 \end{vmatrix} = -2(b^2 - a^2) + 3(b-a) = (b-a)(3+2c),$$

et  $z = \frac{3+2c}{(c-a)(c-b)}$  (difficile d'aller plus loin).

# Correction de l'exercice 2 A

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 2 & 1 & 0 \end{vmatrix} = 2 + 2(-7) = -12 \neq 0$$
 et le sytème est de CRAMER en  $x_1, x_2$  et  $x_4$ . On note aussi que le système

est homogène de rang 3 et donc que l'ensemble des solutions F est un sous-espace vectoriel de  $\mathbb{R}^5$  de dimension 5-3=2.

$$\begin{cases} x_1 + 2x_2 - x_3 + 3x_4 + x_5 = 0 \\ x_2 + x_3 - 2x_4 + 2x_5 = 0 \\ 2x_1 + x_2 - 5x_3 - 4x_5 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 + 2x_2 + 3x_4 = x_3 - x_5 \\ x_2 - 2x_4 = -x_3 - 2x_5 \\ 2x_1 + x_2 = 5x_3 + 4x_5 \end{cases} \Leftrightarrow \begin{cases} x_2 = -2x_1 + 5x_3 + 4x_5 \\ x_4 = \frac{1}{2}((-2x_1 + 5x_3 + 4x_5) + x_3 + 2x_5) \\ x_1 + 2x_2 + 3x_4 = x_3 - x_5 \end{cases}$$
$$\Leftrightarrow \begin{cases} x_2 = -2x_1 + 5x_3 + 4x_5 \\ x_4 = -x_1 + 3x_3 + 3x_5 \\ x_1 + 2(-2x_1 + 5x_3 + 4x_5) + 3(-x_1 + 3x_3 + 3x_5) = x_3 - x_5 \end{cases}$$
$$\Leftrightarrow \begin{cases} x_1 = 3x_3 + 3x_5x_2 = -x_3 - 2x_5 \\ x_4 = 0 \end{cases}$$

L'ensemble des solutions est  $F = \{(3x_3 + 3x_5, -x_3 - 2x_5, x_3, 0, x_5), (x_3, x_5) \in \mathbb{R}^2\} = \text{Vect}(e_1, e_2)$  où  $e_1 = (3, -1, 1, 0, 0)$  et  $e_2 = (3, -2, 0, 0, 1)$  et, puisque dimF = 2, une base de F est  $(e_1, e_2)$ .

### Correction de l'exercice 3 A

Si  $z_k$  est l'affixe complexe de  $M_k$  et  $a_k$  est l'affixe complexe de  $A_k$ , le problème posé équivaut au système :

$$\forall k \in \{1, ..., n-1\}, z_k + z_{k+1} = 2a_k \text{ et } z_n + z_1 = 2a_n.$$

Le déterminant de ce système vaut :

$$\begin{vmatrix} 1 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \dots & 0 & 1 \end{vmatrix} = 1.1^{n-1} + (-1)^{n+1}.1^{n-1} \text{ (en développant suivant la première colonne)}$$
 
$$= 1 + (-1)^{n+1}.$$

Si *n* est impair,  $\det S = 2 \neq 0$  et le système admet une et une seule solution.

On obtient  $z_2 = 2a_1 - z_1$ ,  $z_3 = 2a_2 - 2a_1 + z_1$ ,...,  $z_n = 2a_{n-1} - 2a_{n-2} + ... + 2a_2 - 2a_1 + z_1$  et enfin :

$$2a_{n-1} - 2a_{n-2} + \dots + 2a_2 - 2a_1 + z_1 + z_1 = 2a_n,$$

et donc  $z_1 = a_1 - a_2 + ... - a_{n-1} + a_n$  puis  $z_2 = a_1 + a_2 - a_3 + ... + a_{n-1} - a_n$  puis  $z_3 = -a_1 + a_2 + a_3 - a_4 ... + a_n$  ... puis  $z_n = -a_1 + a_2 - a_3 + ... + a_{n-1} + a_n$ .

Si n est pair,  $\det S = 0$  mais le mineur formé des n-1 premières lignes et n-1 dernières colonnes est non nul. Donc, le système est de rang n-1, les n-1 premières équations et n-1 dernières inconnues peuvent être choisies pour équations et inconnues principales.

On résout les n-1 premières équations constituant un sytème de CRAMER en  $z_2,...,z_n$ . On obtient

$$z_2 = 2a_1 - z_1$$
,  $z_3 = 2a_2 - 2a_1 + z_1$ , ...,  $z_n = 2a_{n-1} - 2a_{n-2} + ... - 2a_2 + 2a_1 - z_1$ .

La dernière équation fournit alors une condition nécessaire et suffisante de compatibilité :

$$2a_{n-1} - 2a_{n-2} + \dots - 2a_2 + 2a_1 - z_1 + z_1 = 2a_n \Leftrightarrow a_1 + a_3 \dots = a_2 + a_4 + \dots$$

Cette dernière condition se traduit géométriquement par le fait que les systèmes de points  $(A_1, A_3, ...)$  et  $(A_2, A_4, ...)$  ont même isobarycentre.

En résumé, si n est pair et si les systèmes de points  $(A_1, A_3, ...)$  et  $(A_2, A_4, ...)$  n'ont pas même isobarycentre, le problème n'a pas de solutions.

Si n est pair et si les systèmes de points  $(A_1, A_3, ...)$  et  $(A_2, A_4, ...)$  ont même isobarycentre, le problème a une infinité de solutions :  $M_1$  est un point quelconque puis on construit les symétriques successifs par rapport aux points  $A_1, A_2$  ...

#### Correction de l'exercice 4 A

Soit  $D_n$  le déterminant du système pour  $n \ge 3$ .

En développant ce déterminant suivant sa première colonne, on obtient la relation de récurrence :

$$\forall n > 5, D_n = D_{n-1} - D_{n-2},$$

ce qui fournit aisément par récurrence, en tenant compte de  $D_3 = D_4 = -1$ :

$$\forall k \geq 1, D_{3k} = D_{3k+1} = (-1)^k \text{ et } D_{3k+2} = 0.$$

Pour n élément de  $3\mathbb{N}^* \cup (1+3\mathbb{N}^*)$ , le système est de CRAMER et homogène et admet donc une et une seule solution à savoir la solution nulle.

Pour n = 3k + 2, puisque  $D_n = 0$  mais que le mineur de format n - 1 constitué des n - 1 premières lignes et colonnes est  $D_{n-1}$  et est donc non nul, le système est homogène de rang n - 1 et l'ensemble des solutions est un sous-espace vectoriel de  $\mathbb{R}^n$  de dimension 1. On trouve aisément  $\mathscr{S} = \{\lambda(1, -1, 0, 1, -1, 0, ..., 1, -1), ; \lambda \in \mathbb{R}\}$ .

## Correction de l'exercice 5

 $(1) \Rightarrow (2)$ . Montrons par récurrence sur  $n \ge 1$  que :  $(\forall (a_1,...,a_n) \in E^n / (\det(f_i(a_j))_{1 \le i,j \le n} = 0) \Rightarrow ((f_1,...,f_n)) \in E^n$  liée).

Pour n = 1,

$$(\forall a_1 \in E / \det(f_i(a_i))_{1 < i, j < 1} = 0) \Rightarrow (\forall a_1 / f_1(a_1) = 0) \Rightarrow (f_1 = 0) \Rightarrow (f_1) \text{ li\'ee.}$$

Soit  $n \ge 2$ . Supposons que  $(\forall (a_1, ..., a_{n-1}) \in E^{n-1} / \det(f_i(a_j))_{1 \le i,j \le n-1} = 0) \Rightarrow (f_1, ..., f_{n-1})$  liée.

Soient  $f_1,...,f_n$  n fonctions telles que  $\forall (a_1,...,a_n) \in E^n / \det(f_i(a_j))_{1 \le i,j \le n} = 0$ .

Si  $(f_1,...,f_{n-1})$  est liée alors  $(f_1,...,f_n)$  est liée en tant que sur famille d'une famille liée. Si  $(f_1,...,f_{n-1})$  est libre, par hypothèse de récurrence, il existe  $a_1,...,a_{n-1}$  n-1 éléments de E tels que  $\det(f_i(a_j))_{1 \le i,j \le n-1} \ne 0$ . Mais, par hypothèse, on a :

$$\forall x \in E, \det(f_i(a_1), ..., f_i(a_{n-1}), f_i(x))_{1 \le i \le n} = 0.$$

En développant ce déterminant suivant sa dernière colonne, on obtient une égalité du type  $\sum_{i=1}^{n} \lambda_i f_i(x) = 0$  où les  $\lambda_i$  sont indépendants de x ou encore une égalité du type  $\sum_{i=1}^{n} \lambda_i f_i = 0$  avec  $\lambda_n = \det(f_i(a_j))_{1 \le i,j \le n-1} \ne 0$  ce qui montre encore que  $(f_1,...,f_n)$  est liée.

 $(2)\Rightarrow (1)$ . On suppose que  $\exists (a_1,...,a_n)\in E^n/\det(f_i(a_j))_{1\leq i,j\leq n}\neq 0)$ . Montrons que  $(f_1,...,f_n)$  est libre. Soit  $(\lambda_1,...,\lambda_n)\in\mathbb{C}^n$  tel que  $\sum_{i=1}^n\lambda_if_i=0$ . En particulier :  $\forall j\in\{1,...,n\},\ \sum_{i=1}^n\lambda_if_i(a_j)=0$ . Les n égalités précédentes fournissent un système d'équations linéaires en les  $\lambda_i$  à n inconnues, n équations, de déterminant non nul et homogène ou encore un système de CRAMER homogène dont on sait qu'il admet pour unique solution  $(\lambda_1,...,\lambda_n)=(0,...,0)$ . On a montré que  $(f_1,...,f_n)$  est libre.

## Correction de l'exercice 6 ▲

Soit  $A_n$  la matrice de l'énoncé.

En développant  $\det A_n$  suivant sa première colonne puis en développant le déterminant de format n-1 obtenu suivant sa première ligne, on obtient  $\det A_n = -\det A_{n-2}$  pour  $n \ge 3$ .

Par suite, pour  $p \ge 1$ ,  $\det A_{2p} = (-1)^{p-1} \det A_2 = (-1)^p \ne 0$  et pour  $p \ge 1$ ,  $A_{2p}$  est inversible.

On a aussi, pour  $p \ge 1$ ,  $\det A_{2p+1} = (-1)^{p-1} \det A_3 = 0$  et, pour  $p \ge 1$ ,  $A_{2p+1}$  n'est pas inversible. Finalement,  $A_n$  est inversible si et seulement si n est pair.

Dorénavant, on pose  $n = 2p \ (p \ge 1)$ .

Pour  $X = (x_i)_{1 \le i \le n}$  et  $Y = (y_i)_{1 \le i \le n}$  vecteurs colonnes donnés, on a :

$$AX = Y \Leftrightarrow \begin{cases} x_2 = y_1 \\ \forall i \in \{2, ..., 2p - 1\}, x_{i-1} + x_{i+1} = y_i \\ x_{2p-1} = y_{2p} \end{cases}.$$

Ce système se résoud en  $x_2 = y_1$  puis, par récurrence, pour  $k \le p$ ,  $x_{2k} = y_{2k-1} - y_{2k-3} + ... + (-1)^{k-1}y_1$  et aussi  $x_{2p-1} = y_{2p}$ , puis, par récurrence, pour  $k \le p$ ,  $x_{2k-1} = y_{2k} - y_{2k+2} + ... + (-1)^{p-k}y_{2p}$ . D'où l'inverse de A quand n = 8 par exemple:

# Correction de l'exercice 7 ▲

Soit  $(x_1,...,x_n) \in \mathbb{R}^n$  et  $F = \sum_{k=1}^n \frac{x_k}{X+b_k}$ . La fraction rationnelle F s'écrit, après réduction au même dénominateur :

$$F = \frac{P}{Q}$$
 où  $Q = \prod_{k=1}^{n} (X + b_k)$  et  $P$ est un polynôme de degré infèrieur ou égal à  $n - 1$ .

Maintenant,

$$(x_1,...,x_n)$$
 solution de  $(S) \Leftrightarrow \forall k \in \{1,...,n\}, F(a_k) = 1 \Leftrightarrow \forall k \in \{1,...,n\}, (Q-P)(a_k) = 0.$ 

Par suite, puisque les  $a_k$  sont deux à deux distincts, Q-P est divisible par  $\prod_{k=1}^n (X-a_k)$ . Mais, Q est unitaire de degré n et P est de degré infèrieur ou égal à n-1, et donc Q-P est unitaire de degré n ce qui montre que  $Q - P = \prod_{k=1}^{n} (X - a_k)$  ou encore que

$$P = \prod_{k=1}^{n} (X + b_k) - \prod_{k=1}^{n} (X - a_k).$$

 $P=\prod_{k=1}^n(X+b_k)-\prod_{k=1}^n(X-a_k).$  Réciproquement, si  $F=\frac{\prod_{k=1}^n(X+b_k)-\prod_{k=1}^n(X-a_k)}{\prod_{k=1}^n(X+b_k)}$ , alors  $\forall k\in\{1,...,n\},\ F(a_k)=1$ . En résumé,

$$(x_{1},...,x_{n}) \text{ solution de } (S) \Leftrightarrow \sum_{k=1}^{n} \frac{x_{k}}{X+b_{k}} = \frac{\prod_{k=1}^{n} (X+b_{k}) - \prod_{k=1}^{n} (X-a_{k})}{\prod_{k=1}^{n} (X+b_{k})}$$
$$\Leftrightarrow \forall i \in \{1,...,n\}, \ x_{i} = \lim_{x \to -b_{i}} (x+b_{i}) \frac{\prod_{k=1}^{n} (x+b_{k}) - \prod_{k=1}^{n} (x-a_{k})}{\prod_{k=1}^{n} (x+b_{k})}$$
$$\Leftrightarrow \forall i \in \{1,...,n\}, \ x_{i} = \frac{\prod_{k=1}^{n} (b_{i}+a_{k})}{\prod_{k=1}^{n} (b_{k}-b_{i})}$$