The redshift of XRP 030528 or from GRB to XRF to XRR

Arne Rau, M. Salvato, J. Greiner (MPE)

X-ray Flashes - prompt

- BeppoSAX WFC (Heise et al. 2001)
- similar to LGRBs except E_{peak}
- HETE-2 observer frame classification: $log(S_x(2\text{--}30\ keV)\ /\ S_\gamma(30\text{--}400\ keV))\ (Sakamoto\ et\ al.\ 2004)$

X-ray Flashes - late

- XRFs/XRRs/LGRBs form continuum
- X-ray, optical, radio afterglows
- underlying supernova (Fynbo et al. 2003, Soderberg et al. 2005)
- late type host galaxies (e.g. Bloom et al. 2003)

(Fynbo et al. 2003)

X-ray Flashes - models

- high baryon loading in the ejecta (e.g. Dermer et al. 1999)
- low contrast between the bulk Lorentz factors of colliding relativistic shells (Barraud et al. 2005)
- off-axis bursts (e.g. Yamazaki et al. 2002)
- high redshift (e.g. Heise et al. 2001)

Distance Scale is important:

```
XRF 020903: z=0.251 (Soderberg et al. 2004)
```

XRF 030429: z=2.66 (Jakobsson et al. 2005)

```
011030 (<3.5); 020427 (<2.3); 030723 (<2.3); 040701 (0.2146 ??)
```

XRF GRB 030528

Host Galaxy - Photometry

$$V = 21.9 \pm 0.2$$

$$R = 22.0 \pm 0.2$$

$$I = 21.3 \pm 0.3$$

$$J = 20.8 \pm 0.1$$

$$H < 20.3$$

$$K = 19.9 \pm 0.7$$

SED consistent with late type galaxy at z<4

VLT/FORS2 LSS (2 hrs 300V April/May05)

030528 in the rest frame


```
030528: E_{\text{peak,obs}} = 32\pm5 \text{ keV} \Rightarrow E_{\text{peak,rest}} = 57\pm9 \text{ keV}
\log(S_x/S_y)_{\text{obs}} = 0.04 \Rightarrow \log(S_x/S_y)_{\text{rest}} = -0.17
XRF_{\text{obs}} \Rightarrow XRR_{\text{rest}}
030429: XRF_{\text{obs}} \Rightarrow XRR/GRB_{\text{rest}}
020903: XRF_{\text{obs}} \Rightarrow XRF_{\text{rest}}
```

Summary

- z=0.782
- observer frame XRF \Rightarrow rest frame XRR
- rest frame classification scheme required
- host properties (AR et al. 2005, A&A accepted)
- Do we expect also short XRFs?

Host Properties

- metallicity from emission lines: $R_{23} = log(([OIII] + [OII])/H_{\beta})$ 0.1<Z<0.6
- absolute magnitudes

	M _{AB} [mag]	L/L_*
U	-20.5 ± 0.1	1.2 ± 0.2
В	-20.7 ± 0.1	0.5 ± 0.1
R	-21.1 ± 0.1	0.35 ± 0.05
J	-21.4 ± 0.1	0.25 ± 0.05
K_{s}	-21.6 ± 0.1	0.17 ± 0.05

- stellar mass: $9\cdot10^9~M_{sun}$ (Brinchman & Ellis 2000) to $2\cdot10^{10}~M_{sun}$ (Bell et al. 2005)
- size: ~11 kpc

Star Formation

[OII]: SFR(M_s yr⁻¹) =
$$1.4 \pm 0.4 \cdot 10^{-41}$$
L_[OII] (Kennicut 1998)
SFR(M_s yr⁻¹) = $8.4 \pm 0.4 \cdot 10^{-41}$ L_[OII] (Rosa-Gonzalez 2002)

UV:
$$SFR(M_s yr^{-1}) = 1.4 \pm 0.4 \cdot 10^{-28} L_{v,UV}$$
 (Kennicut 1998)
 $SFR(M_s yr^{-1}) = 6.4 \pm 0.4 \cdot 10^{-28} L_{v,UV}$ (Rosa-Gonzalez 2002)

		SFR	SSFR	SFR
		$[M_s yr^{-1}]$	$[M_s yr^{-1}]$	$[M_{\rm s} \ {\rm yr}^{-1} \ M_{\rm s}^{-1}]$
[OII]	K98	6 ± 2	12 ± 3	2·10-10
	RG02	37 ± 4	74 ± 6	12·10 ⁻¹⁰
UV	K98	4 ± 1	8 ± 2	1.10-10
	RG02	17 ± 3	34 ± 4	5.10-10

Energetics

 $E_{iso,\gamma} = 2.0 \pm 0.7 \times 10^{52} \text{ erg } (2-400 \text{keV})$

(Ghirlanda et al. 2004)