实验四存储器与显示控制器

2019.4.18

实验内容

- 1. 控制画笔在800x600分辨率的显示器上随意涂画,画笔的颜色12位(红r绿g蓝b各4位),绘画区域位于屏幕正中部,大小为256x256
 - 画笔位置(x, y): x = y = 0 ~ 255, 复位时 (128, 128)
 - 移动画笔(dir): 上/下/左/右按钮
 - 画笔颜色(rgb): 12位开关设置
 - 绘画状态(draw): 1-是, 0-否;
 处于绘画状态时,移动画笔同时绘制颜色,否则仅移动画笔

	0	1	 254	255
0	(0,0)	(0,1)	(0,254)	(0,255)
1	(1,0)	(1,1)	(1,254)	(1,255)
2				
:				
254				
255				(255, 255)

实验内容 (续1)

- VRAM: 视频存储器,存储256x256个像素的 颜色信息,采用简单双端口存储器实现
 - paddr, pdata, we: 地址、数据、写使能,用于绘画的同步写端口
 - vaddr, vdata: 地址、数据,用于显示的异步读端口

实验内容 (续2)

- PCU: Paint Control Unit, 绘画控制单元, 修改VRAM中像素信息
 - 通过12个拨动开关设置像素颜色 (rgb)
 - 通过上/下/左/右(dir)按钮开关,移动画笔位置(x, y)
 - · 直角移动:单一按钮按下一次,x或y增加或减小1
 - · 对角移动:两按钮同时按下一次,x和y同时加或减1
 - · 连续移动:按钮按下超过t秒后,等效为s速率的连续 点击,直至松开(调试时确定合适的t和s取值)
 - 绘画 (draw=1) 时,依据 rgb 和 (x, y),通过写端口 (paddr, pdata, we) 修改VRAM像素信息

实验内容 (续3)

- DCU: Display Control Unit,显示控制单元,显示VRAM中像素信息
 - 通过读端口(vaddr, vdata)取出VRAM信息并显示
 - vrgb, hs, vs:显示器接口信号
 显示模式:分辨率800x600,刷新频率72Hz,像素时钟频率50MHz
 - VRAM中的1个像素对应显示屏上1个像素
 - 在屏幕上显示十字光标,指示画笔当前位置 (x, y)

显示接口信号

 RGB: 像素点颜色信号, 红/绿/蓝各4位

· HSYNC: 水平同步信号, 也称行同步

· VSYNC: 垂直同步信号, 也称列/场/帧同步

Pin 1: Red Pin 5: GND
Pin 2: Grn Pin 6: Red GND
Pin 3: Blue Pin 7: Grn GND
Pin 13: HS Pin 8: Blu GND
Pin 14: VS Pin 10: Sync GND

显示原理

• 参考文档:

Nexys4 DDR FPGA Board Reference Manual

(Nexys4-DDR_rm.pdf)

显示区域和定时参数

显示定时参数

- HBP(horizontal back porch):表示从水平同步信号开始到一行的有效数据开始之间的PCLK的个数,对应驱动中的left_margin;
- HFP(horizontal front porth):表示一行的有效数据结束到下一个水平同步信号开始之间的PCLK的个数,对应驱动中的right_margin;
- HSPW(horizontal sync pulse width):表示水平同步信号的宽度,以PCLK为单位计算,对应驱动中的hsync_len;
- VBP(vertical back porch):表示在一帧图像开始时,垂直同步信号以后的无效的行数,对应驱动中的upper_margin;
- VFB(vertical front porch):表示在一帧图像结束后,垂直同步信号以前的无效的行数,对应驱动中的lower_margin;
- VSPW(vertical sync pulse width):表示垂直同步脉冲的宽度,以行数为单位计算,对应驱动中的vsync_len;

显示器分辨率

标屏	分辨率	宽屏	分辨率
QVGA	320×240	WQVGA	400×240
VGA	640×480	WVGA	800×480
SVGA	800×600	WSVGA	1024×600
XGA	1024×768	WXGA	1280×720/1280×768/1280×800
XGA+	1152×864	WXGA+	1366×768
SXGA	1280×1024/1280×960	WSXGA	1440×900
SXGA+	1400×1050	WSXGA+	1680×1050
UXGA	1600×1200	WUXGA	1920×1200
QXGA	2048×1536	WQXGA	2560×1600

显示标准定时参数

分辨率	像元频 率 (兆 赫兹)	每行像	行同步 (消隐) 脉冲开 始时钟 周期	行同步 (消隐) 脉冲结 束时钟 周期	每行时 钟周期 数	每帧图 象行数	帧同步 脉冲开 始扫描 行数	帧同步 脉冲结 束扫描 行数	每帧扫 描行数
640x480@60	25.2	640	656	752	800	480	490	492	525
640x480@72	31.5	640	664	704	832	480	489	491	520
640x480@75	31.5	640	656	720	840	480	481	484	500
640x480@85	36.0	640	696	752	832	480	481	484	509
800x600@56	36.0	800	824	896	1024	600	601	603	625
800x600@72	50.0	800	856	976	1040	600	637	643	666
800x600@75	49.5	800	816	896	1056	600	601	604	625
800x600@85	56.3	800	832	896	1048	600	601	604	631
800x600@60	40.0	800	840	968	1056	600	601	605	628

SVGA显示定时参数

• 800x600 @72Hz,50MHz像素时钟(pclk)

存储器IP实例化

- Flow Navigator >> Project Manager >> IP Catalog
 - Memories & Storage Elements >> RAMs & ROMs >> Distributed Memory Generator
 - 或者 Basic Elements >> Memory Elements >> Distributed Memory Generator
 - Memory config >> Memory Type: Simple Dual Port RAM
 - RST & Initialization >> Load COE File

同步写端口: a (地址), d (数据), we (写使能), clk

异步读端口: dpra (地址), dpo (数据)

存储器IP实例化 (续)

- Project Manager display >> Sources >> IP Sources
 - IP >> dist_mem_gen_0 >>Instantiation Template >> dist_mem_gen_0.veo

COE文件格式

An example COE file:

```
; Sample Initialization file for a 32x16 distributed ROM memory_initialization_radix = 16; memory_initialization_vector =
```

23f4 0721 11ff ABe1 0001 1 0A 0

23f4 0721 11ff ABe1 0001 1 0A 0

23f4 721 11ff ABe1 0001 1 A 0

23f4 721 11ff ABe1 0001 1 A 0;

逗号或空格分隔 每项数据 (不允 许为负数)

实验要求和检查

- 完成实验内容1的逻辑设计和下载测试
 - 加分选项:实现PCU的画笔对角和连续移动处理, DCU的十字光标显示功能
- 查看电路性能和资源使用情况
- 检查仿真结果是否正确
- 检查下载测试是否正确
- 检查代码设计,代码是否独立完成

实验报告

- 内容包括但不限于:逻辑设计、核心代码、仿真/ 下载结果、结果分析、实验总结、意见/建议等, 附设计和仿真代码
- 实验检查后一周内提交实验报告
 - ftp://202.38.79.134/ 相应文件夹
 - 文件名格式: Labn_学号_姓名_vi.pdf (其中,n表示 第n次实验,vi表示第i版本,不满足该格式的视为未提 交实验报告)
- 严禁抄袭,否则作零分处理

The End