

Description

Image

Caption

1. Bearing made of high carbon steel. © Granta Design 2. Drawing board clips made of high carbon steel. © Granta Design

The material

High carbon steels (0.5-1.7% carbon) harden when quenched - a quality that gives great control over properties. High carbon steels achieve hardness sufficient for them to be used as cutting tools, chisels and cables, and "piano wire" - the metal strings of pianos and violins.

Composition (summary)

Fe/0.7 - 1.7%C

General properties

Density	7.8e3	-	7.9e3	kg/m^3
Price	* 0.64	-	0.77	USD/kg
Date first used	1610			

Mechanical properties

Young's modulus	200	-	215	GPa
Shear modulus	77	-	84	GPa
Bulk modulus	155	-	175	GPa
Poisson's ratio	0.285	-	0.295	
Yield strength (elastic limit)	400	-	1.16e3	MPa
Tensile strength	550	-	1.64e3	MPa
Compressive strength	335	-	1.16e3	MPa
Elongation	7	-	30	% strain
Hardness - Vickers	160	-	650	HV
Fatigue strength at 10^7 cycles	* 281	-	606	MPa
Fracture toughness	27	-	92	MPa.m^0.5

Mechanical loss coefficient (tan delta)	* 3e-4 - 9.8e-4		
Thermal properties	1 00 0 1 10 0 7		
Melting point	1.29e3 - 1.48e3 °C		
Maximum service temperature	* 350 - 400 °C		
Minimum service temperature	* -73.233.2 °C		
Thermal conductor or insulator?	Good conductor		
Thermal conductivity		/m.℃	
Specific heat capacity		⟨g.℃	
Thermal expansion coefficient	11 - 13.5 μs	train/℃	
Electrical properties			
Electrical conductor or insulator?	Good conductor		
Electrical resistivity	17 - 20 μο	hm.cm	
Optical properties			
Transparency	Opaque		
Critical Materials Risk			
High critical material risk?	No		
Processability			
Castability	2 - 3		
Formability	4 - 5		
Machinability	3 - 4		
Weldability	2 - 4		
Solder/brazability	5		
·			
Durability: water and aqueous solution Water (fresh)	S Acceptable		
Water (resir)	Limited use		
Soils, acidic (peat)			
Soils, actoic (peat)	Acceptable	Acceptable	
Wine	Unacceptable	<u> </u>	
VVIII C	Onacceptable		
Durability: acids			
Acetic acid (10%)	Limited use		
Acetic acid (glacial)	Unacceptable		
Citric acid (10%)	Unacceptable		
Hydrochloric acid (10%)	Unacceptable		
		Unacceptable	
Hydrochloric acid (36%)	Unacceptable		

High carbon steel

Nitric acid (10%)	Unacceptable
Nitric acid (70%)	Unacceptable
Phosphoric acid (10%)	Unacceptable
Phosphoric acid (85%)	Unacceptable
Sulfuric acid (10%)	Unacceptable
Sulfuric acid (70%)	Limited use

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Acceptable

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Limited use
Acetone	Excellent
Ethyl alcohol (ethanol)	Acceptable
Ethylene glycol	Acceptable
Formaldehyde (40%)	Unacceptable
Glycerol	Excellent
Methyl alcohol (methanol)	Acceptable

Durability: halogens and gases

Chlorine gas (dry)	Acceptable
Fluorine (gas)	Excellent
O2 (oxygen gas)	Limited use
Sulfur dioxide (gas)	Acceptable

Darability. Dant City il Orinicitis	Dura	bilitv:	built en	vironments
-------------------------------------	------	---------	----------	------------

Industrial atmosphere	Limited use
Rural atmosphere	Acceptable
Marine atmosphere	Limited use
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability Non-flamm	nable
------------------------	-------

Durability: thermal environments

Tolerance to cryogenic temperatures	Unacceptable
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Unacceptable
Tolerance up to 450 C (842 F)	Acceptable
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable

Geo-economic data for principal component

Annual world production, principal component	2.3e9	tonne/yr
Reserves, principal component	1.6e11	tonne

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 25.3	-	28	MJ/kg
CO2 footprint, primary production	* 1.71	-	1.89	kg/kg
Water usage	* 43.5	-	48.1	l/kg
Eco-indicator 95	89			millipoints/kg
Eco-indicator 99	106			millipoints/kg

Material processing: energy

Casting energy	* 10.8	-	11.9	MJ/kg
Extrusion, foil rolling energy	* 6.3	-	6.96	MJ/kg
Rough rolling, forging energy	* 3.29	-	3.64	MJ/kg
Wire drawing energy	* 22.8	-	25.3	MJ/kg
Metal powder forming energy	* 33.8	-	40.9	MJ/kg
Vaporization energy	* 1.09e4	-	1.2e4	MJ/kg
Coarse machining energy (per unit wt removed)	* 0.926	-	1.02	MJ/kg
Fine machining energy (per unit wt removed)	* 4.99	-	5.51	MJ/kg
Grinding energy (per unit wt removed)	* 9.5	-	10.5	MJ/kg
Non-conventional machining energy (per unit wt removed	109	-	120	MJ/kg

Material processing: CO2 footprint

Casting CO2	* 0.807	-	0.892	kg/kg
Extrusion, foil rolling CO2	* 0.473	-	0.522	kg/kg
Rough rolling, forging CO2	* 0.247	-	0.273	kg/kg
Wire drawing CO2	* 1.71	-	1.89	kg/kg
Metal powder forming CO2	* 2.7	-	3.27	kg/kg
Vaporization CO2	* 815	-	901	kg/kg
Coarse machining CO2 (per unit wt removed)	* 0.0695	-	0.0768	kg/kg
Fine machining CO2 (per unit wt removed)	* 0.374	-	0.413	kg/kg
Grinding CO2 (per unit wt removed)	* 0.712	-	0.787	kg/kg
Non-conventional machining CO2 (per unit wt removed	8.15	-	9.01	kg/kg

Material recycling: energy, CO2 and recycle fraction

material recycling, energy, energy and recycle indenent		
Recycle	✓	
Embodied energy, recycling	* 7 - 7.73 MJ/kg	
CO2 footprint, recycling	* 0.55 - 0.608 kg/kg	
Recycle fraction in current supply	40 - 44 %	
Downcycle	✓	
Combust for energy recovery	×	
Landfill	✓	
Biodegrade	×	
Toxicity rating	Non-toxic	
A renewable resource?	×	

Environmental notes

The production energy of steel is comparatively low - per unit weight, about a half that of polymers; per unit volume, though, twice as much. Carbon steels are easy to recycle, and the energy to do so is small.

Supporting information

Design guidelines

Hardenability measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels).

Technical notes

The two standard classifications for steels, the AISI and the SAE standards, have now been merged. In the SAE-AISI system, each steel has a four-digit code. The first two digits indicate the major alloying elements. The second two give the amount of carbon, in hundredths of a percent. Thus the plain carbon steels have designations starting 10xx, 11xx, 12xx or 14xxx, depending on how much manganese, sulfur and phosphorus they contain. The common low-carbon steels have the designations 1015,1020, 1022, 1117,1118; the common medium carbon steels are 1030,1040, 1050, 1060, 1137, 1141, 1144 and 1340; the common high alloy steels are 1080and 1095. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

Phase diagram

Phase diagram description

High carbon steels are alloys of iron (Fe) with 0.7 - 1.7% carbon (C), for which this is the phase diagram.

Typical uses

Cutting tools, high performance bearings, cranks and shafts, springs, knives and scissors, rail track.

Links

Reference

ProcessUniverse

Producers