Spelling Correction: Edit Distance

Pawan Goyal

CSE, IITKGP

Week 2: Lecture 1

I am writing this email on behaf of ...

I am writing this email on behaf of ... The user typed 'behaf'.

Which are some close words?

I am writing this email on behaf of ...

The user typed 'behaf'.

Which are some close words?

- behalf
- behave
-

I am writing this email on behaf of ...

The user typed 'behaf'.

Which are some close words?

- behalf
- behave
-

Isolated word error correction

Pick the one that is closest to 'behaf'

I am writing this email on behaf of ...

The user typed 'behaf'.

Which are some close words?

- behalf
- behave
-

Isolated word error correction

- Pick the one that is closest to 'behaf'
- How to define 'closest'?

I am writing this email on behaf of ...

The user typed 'behaf'.

Which are some close words?

- behalf
- behave
-

Isolated word error correction

- Pick the one that is closest to 'behaf'
- How to define 'closest'?
- Need a distance metric

I am writing this email on behaf of ...

The user typed 'behaf'.

Which are some close words?

- behalf
- behave
-

Isolated word error correction

- Pick the one that is closest to 'behaf'
- How to define 'closest'?
- Need a distance metric
- The simplest metric: edit distance

Edit Distance

The minimum edit distance between two strings

Edit Distance

- The minimum edit distance between two strings
- Is the minimum number of editing operations

Edit Distance

- The minimum edit distance between two strings
- Is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution

Example

Edit distance from 'intention' to 'execution'

Example

Edit distance from 'intention' to 'execution'

- If each operation has a cost of 1 (Levenshtein)
 - Distance between these is 5

- If each operation has a cost of 1 (Levenshtein)
 - Distance between these is 5
- If substitution costs 2 (alternate version)
 - Distance between these is 8

Searching for a path (sequence of edits) from the *start string* to the *final string*:

Initial state: the word we are transforming

- Initial state: the word we are transforming
- Operators: insert, delete, substitute

- Initial state: the word we are transforming
- Operators: insert, delete, substitute
- Goal state: the word we are trying to get to

- Initial state: the word we are transforming
- Operators: insert, delete, substitute
- Goal state: the word we are trying to get to
- Path cost: what we want to minimize: the number of edits

- Initial state: the word we are transforming
- Operators: insert, delete, substitute
- Goal state: the word we are trying to get to
- Path cost: what we want to minimize: the number of edits

How to navigate?

• The space of all edit sequences is huge

How to navigate?

- The space of all edit sequences is huge
- Lot of distinct paths end up at the same state

How to navigate?

- The space of all edit sequences is huge
- Lot of distinct paths end up at the same state
- Don't have to keep track of all of them

How to navigate?

- The space of all edit sequences is huge
- Lot of distinct paths end up at the same state
- Don't have to keep track of all of them
- Keep track of the shortest path to each state

Defining Minimum Edit Distance Matrix

For two strings

- X of length n
- Y of length m

Defining Minimum Edit Distance Matrix

For two strings

- X of length n
- Y of length m

We define D(i,j)

- the edit distance between X[1..i] and Y[1..j]
- i.e., the first i characters of X and the first j characters of Y

Defining Minimum Edit Distance Matrix

For two strings

- X of length n
- Y of length m

We define D(i,j)

- the edit distance between X[1..i] and Y[1..j]
- i.e., the first i characters of X and the first j characters of Y

Thus, the edit distance between X and Y is D(n,m)

Dynamic Programming

• A tabular computation of D(n,m)

- A tabular computation of D(n,m)
- Solving problems by combining solutions to subproblems

- A tabular computation of D(n,m)
- Solving problems by combining solutions to subproblems
- Bottom-up

- A tabular computation of D(n,m)
- Solving problems by combining solutions to subproblems
- Bottom-up
 - Compute D(i,j) for small i,j

- A tabular computation of D(n,m)
- Solving problems by combining solutions to subproblems
- Bottom-up
 - Compute D(i,j) for small i,j
 - Compute larger D(i,j) based on previously computed smaller values

Computing Minimum Edit Distance

Dynamic Programming

- A tabular computation of D(n,m)
- Solving problems by combining solutions to subproblems
- Bottom-up
 - Compute D(i,j) for small i,j
 - Compute larger D(i,j) based on previously computed smaller values
 - Compute D(i,j) for all i and j till you get to D(n,m)

Dynamic Programming Algorithm

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}$$
Termination:

Termination:

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	C	U	Т	I	0	N

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

$$\begin{split} D(\textit{i,j}) = \min \quad \begin{cases} D(\textit{i-1,j}) + 1 \\ D(\textit{i,j-1}) + 1 \\ D(\textit{i-1,j-1}) + \\ 0; \ \ \textit{if} \ S_1(\textit{i}) \neq S_2(\textit{j}) \end{cases} \end{split}$$

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

• Computing edit distance may not be sufficient for some applications

- Computing edit distance may not be sufficient for some applications
 - We often need to align characters of the two strings to each other

- Computing edit distance may not be sufficient for some applications
 - We often need to align characters of the two strings to each other
- We do this by keeping a "backtrace"

- Computing edit distance may not be sufficient for some applications
 - We often need to align characters of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from

- Computing edit distance may not be sufficient for some applications
 - We often need to align characters of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,

- Computing edit distance may not be sufficient for some applications
 - We often need to align characters of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

N	9									
0	8									
т	7									
1	/									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	C	U	Т	I	0	N

$$D(i,j) = \min \left\{ \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \left[\begin{array}{c} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{array} \right. \right.$$

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4	3	4							
Т	3	4	5							
N	2	3	4							
I	1	2	3							
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

$$D(i,j) = \min \left\{ \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \left[\begin{array}{c} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{array} \right. \right.$$

Minimum Edit with Backtrace

n	9	↓8	∠ ←↓9	∠ ←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	∠8	
0	8	↓ 7	∠ ←↓8	∠←↓ 9	∠ ←↓ 10	∠←↓ 11	↓ 10	↓9	∠ 8	← 9	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	∠←↓ 9	∠←↓ 10	↓9	∠ 8	← 9	← 10	
t	6	↓ 5	∠←↓ 6	∠←J 7	∠←↓ 8	∠←↓ 9	∠ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓5	∠←↓ 6	∠←↓ 7	∠←↓ 8	∠ ←↓9	∠←↓ 10	∠←↓ 11	∠ 10	
e	4	∠3	← 4	∠ ← 5	← 6	← 7	← ↓ 8	∠ ←↓9	∠←↓ 10	↓9	
t	3	∠ 4	∠← ↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	∠ 7	←↓ 8	∠←↓ 9	↓8	
n	2	∠ ← ↓3	∠ - ↓4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	↓ 7	∠←↓ 8	Z 7	
i	1	∠←↓ 2	∠←↓3	∠←↓ 4	∠<↓ 5	∠<↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	С	u	t	i	0	n	

Adding Backtrace to Minimum Edit

Base conditions:

$$D(i,0) = i$$
 $D(0,j) = j$

Termination:

D(0,j) = j D(N,M) is distance

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i-1,j-1) + 2 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i-1,j-1) + 2 \\ D(i-1,j-1) + 2 \\ D(i-1,j-1) + 2 \end{cases}$$

$$D(i,j) = \min \begin{cases} D(i-1,j-1) + 1 \\ D(i-1,j-1) + 2 \\ D(i-1,$$

The distance matrix

The distance matrix

Every non-decreasing path from (0,0) to (M,N) corresponds to an alignment of two sequences.

The distance matrix

Every non-decreasing path from (0,0) to (M,N) corresponds to an alignment of two sequences.

An optimal alignment is composed of optimal sub-alignments.

Result of Backtrace

Time

Time

O(nm)

Space

Time	
O(nm)	
Space	
Space O(nm)	
Backtrace	

Time

O(nm)

Space

O(nm)

Backtrace

O(n+m)