

Doc. Version	0.2
Total Page	20
Date	2009/07/01

Product Specification 5" COLOR TFT-LCD MODULE

MODEL NAME: A050FW01 V7

< >Preliminary Specification>Final Specification

©2009 AU Optronics All Rights Reserved. DO NOT COPY

Note: The content of this specification is subject to change.

0.2

Page:

2/20

Record of Revision

Version	Revise Date	Page	Content
0.0	2009/02/02		First draft
		5	1. Update FPC Pin Assignment
0.1	2009/04/07	6	2. Update Electrical Characteristics
0.1	2009/04/07	8	3. Update Suggested Application Circuit
		10	4. Power On/Off Sequence
0.2	2009/07/01	19	Change location of label
			0,

0.2 3/20

Page:

Contents

A. PHYSICAL SPECIFICATIONS	<u>4</u>
	_
B. ELECTRICAL SPECIFICATIONS	<u>5</u>
1. FPC PIN ASSIGNMENT	5
2. ABSOLUTE MAXIMUM RATINGS	7
C. ELECTRICAL CHARACTERISTICS	7
1. TFT- LCD Typical Operation Condition	7
2. BACKLIGHT DRIVING CONDITIONS	7
3. SUGGESTED APPLICATION CIRCUIT	8
3.1 SUGGESTED APPLICATION CIRCUIT	8
4. AC TIMING	9
4.1 TIMING DIAGRAM	9
4.2 TIMING CONDITION	9
5. Power On/Off Sequence	10
D. OPTICAL SPECIFICATION	12
E. TOUCH SCREEN PANEL SPECIFICATIONS	14
1. FPC PIN ASSIGNMENT	14
2. ELECTRICAL CHARACTERISTICS	
3. Mechanical Characteristics	
4. LIFE TEST CONDITION	15
5. ATTENTION	16
F. RELIABILITY TEST ITEMS:	17
G. PACKING FORM	18
H OUTLINE DRAWING:	19

Page: 4/20

A. Physical specifications

NO.	Item	Specification	Remark
1	Display Resolution (dot)	480RGB (H) X 272 (V)	
2	Active Area (mm)	109.44 (H) X 62.016 (V)	
3	Screen Size (inch)	4.95" (Diagonal)	
4	Dot Pitch (mm)	0.228 (H) X 0.228 (V)	
5	Color Configuration	R. G. B. Stripe	Note 1
6	Color Depth	16.7M Colors	Note 2
7	Overall Dimension (mm)	120.7 (H) X 75.8 (V) X 4.31 (T)	Note 3
8	Weight (g)	78.6 (Typical)	1 D. M.
9	Display Mode	Normally White	
10	Gray Level Inversion	6 O'clock	

Note 1: Below figure shows dot stripe arrangement.

Note 2: Full color display depends on 8-bit data signal (pin 5~28).

Note 3: Not include FPC. Refer to next page to get further information

0.2 5/20

Page:

B. Electrical Specifications

1. FPC Pin Assignment

Connector: FH12-50S-0.5SH

Pin No.	Symbol	Туре	Description	Remark			
1	GND	PI	Ground				
2	GND	PI	Ground				
3	VDD	PI	Power supply				
4	VDD	PI	Power supply	. 1			
5	R0	I	Red data (LSB)				
6	R1	I	Red data				
7	R2	I	Red data				
8	R3	I	Red data				
9	R4	I	Red data				
10	R5	I	Red data				
11	R6	I	Red data				
12	R7	1	Red data (MSB)				
13	G0	I	Green data (LSB)				
14	G1	I	Green data				
15	G2	I	Green data				
16	G3		Green data				
17	G4	1	Green data				
18	G5	I	Green data				
19	G6		Green data				
20	G7		Green data (MSB)				
21	В0	7	Blue data (LSB)				
22	B1	» I	Blue data				
23	B2	_	Blue data				
24	B3	_	Blue data				
25	B4	_	Blue data				
26	B5	I	Blue data				
27	B6	I	Blue data				
28	B7	I	Blue data (MSB)				
29	GND	PI	Ground				
30	DCLK	1	Pixel clock	Note 2			
31	DISP	ı	DISP : 'L' → Display OFF	Note 2			
01	וטוט	1	DISP: 'H' \rightarrow Display ON				

Version: 0.2 Page: 6/20

Pin No.	Symbol	Туре	Description	Remark
20	VDC SEL		VDC_SEL:'L' →External VDC	
32	VDC_SEL	1	VDC_SEL:NC →Internal VDC	
33	NC		None Connect	
34	DE	I	Data Enable	Note 2
35	U/D	- 1	Shift Up or Down Control	Note 3
36	VDC	PI/PO	5V Power supply or none connect	Note 4
37	GND	PI	Ground	
38	GND	PI	Ground	4
39	TP_R	0	Touch Panel Right Signal	
40	TP_B	0	Touch Panel Bottom Signal	77 3
41	TP_L	0	Touch Panel Left Signal	
42	TP_U	0	Touch Panel Up Signal	
43	NC		None Connect	
44	NC		None Connect	
45	NC		None Connect	
46	VLED-	PI	LED cathode	
47	VLED+	PI	LED anode	
48	GND	PI	Ground	
49	GND	PI	Ground	
50	GND	PI	Ground	

Note 1: I: Input; O: Output; PI: Power input; PO: Power output.

Note 2: For correct power on sequence please refer to section 5 "Power On/Off Sequence"

Note 3: U/D="H" displays up to down and left to right. U/D="L" displays down to up and right to left.

Note 4: VDC pin input 5V When VDC_SEL='L';VDC pin none connect when VDC_SEL='NC' plese refer to section 5 "Suggested Application Circuit"

Page: 7/20

2. Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remark
Power voltage	Vdd	-0.3	4.5	V	Note 1
Power voltage	VDC	-0.3	5.2	V	Note 2
Input signal voltage	Vi	-0.3	Vdd+ 0.3	V	

Note 1: Functional operation should be restricted under normal ambient temperature.

Note 2: External VDC When VDC SEL='L'.

C. Electrical Characteristics

The following items are measured under stable condition and suggested application circuit.

1. TFT- LCD Typical Operation Condition

			A V 1			
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Power supply	Vdd	3.1	3.3	3.5	V	
Power supply	VDC	4.9	5.0	5.1	V	Note 1
Input high voltage	Vh	0.7*Vdd	- (Vdd	V	
Input low voltage	VI	0		0.3*Vdd		
Vertical cycle	f _V	-	59.94	-	Hz	
Horizontal cycle	f _H	- (17.14	-	kHz	
Dot Frequency	f _{DCLK}	A	9.0	15.0	MHz	

Note 1: External VDC When VDC SEL='L'.

2. Backlight Driving Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
LED Current		-	20	-	mA	single serial
LED Voltage	V_{L}	-	23.1	-	V	single serial
LED Life Time	LL	-	-	-	Hr	Note 2, 3

Note 1: LED backlight is 14 LEDs.

Note 2 :Define "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25°C and LED current = 20mA.

Note 3: If it uses larger LED current IL more than 20mA, it maybe decreases the LED lifetime.

Page: 8/20

3. Suggested Application Circuit

3.1 Suggested Application Circuit for external VDC

NOTE: Resisters = 120ohm

3.2 Suggested Application Circuit for internal VDC

NOTE: Resisters = 120ohm

Page: 9/20

0.2

4. AC Timing

4.1 Timing Diagram

4.1.1 Vertical Timing of Input

4.1.2 Horizontal Timing of Input

4.2 Timing Condition

4.2.1. Timing Parameters

PARAMETER	Symbol	Min	Тур	Max	Unit		
Clock cycle	1/tc	-	9	15	MHz		
Horizontal cycle	1/fh	-	17.14	-	KHz		
Vertical cycle	1/fv	-	59.94	-	Hz		
	Horizon	tal Signal					
Horizontal cycle *1	th	-	525	-	DCLK		
Horizontal display period	thd	-	480	-	DCLK		
Horizontal blank	thb	-	45	-	DCLK		
	Vertical Signal						
Vertical cycle	tv	-	286	-	Η		
Vertical display period	tvd	-	272	-	Ι		
Vertical blank	tvb	-	14	-	Ι		

Page: 10/20

5. Power On/Off Sequence

5.1 External VDC

A. The LCD apopts high voltage driver IC, so it could be permanently damaged under a wrong power on/off sequence. The suggested LCD power sequence is below:

Power on sequence: VDD→VDC→DCLK→DISP→ LED UNIT.

Power off sequence: LED UNIT→DISP →DCLK→ VDC—VDD.

B. Signals DCLK, DISP and DE must be pulled low at power on. Any power on glitches at these signal can cause abnormal display. Below is an example of DE signal demonstrating a signal glitch power on and a correct signal power on.

Page: 11/20

5.2 Internal VDC

A. The LCD apopts high voltage driver IC, so it could be permanently damaged under a wrong power on/off sequence. The suggested LCD power sequence is below:

Power on sequence: VDD→DCLK→DISP→ LED UNIT.

Power off sequence: LED UNIT→DISP →DCLK→ VDD.

B. Signals DCLK, DISP and DE must be pulled low at power on. Any power on glitches at these signal can cause abnormal display. Below is an example of DE signal demonstrating a signal glitch power on and a correct signal power on.

Page: 12/20

0.2

D. Optical specification

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time							
Rise	Tr	θ=0°	-	7	-	ms	Note 4
Fall	Tf	0=0	-	23	-	ms	
Contrast ratio	CR	At optimized viewing	-	300	-		Note 6, 7
Viewing Angle						A	
Тор			-	40	-		
Bottom		CR≧10	-	60	-	deg.	Note 8
Left			-	70	-	The	
Right			-	70			
Brightness	Y _L	θ=0°	350	400	4-	cd/m ²	Note 9
White Chromaticity	Х	θ=0°	0.26	0.31	0.36		
White Chromaticity	у	θ=0°	0.28	0.33	0.38		

Note 1: Measurement is in the dark room, optical ambient temperature =25°C, and backlight current IL=20 mA

Note 2: To be measured in the dark room.

Note 3:To be measured on the center area of panel with a field angle of 1 by Topcon luminance meter BM-7, after 10 minutes operation.

Note 4: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

- Note 5. From liquid crystal characteristics, response time will become slower and the color of panel will become darker when ambient temperature is below 25°C.
- Note 6. Definition of contrast ratio:

Contrastratio (CR)= Photo detector output when LCD is at "White" state

Photo detector output when LCD is at "Black" state

Note 7. White $Vi=Vi50 \mp 1.5V$

Black Vi=Vi50 ± 2.0V

"±" means that the analog input signal swings in phase with COM signal.

" \mp " means that the analog input signal swings out of phase with COM signal.

Vi50: The analog input voltage when transmission is 50%

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Page: 13/20

Note 8. Definition of viewing angle: refer to figure as below.

Note 9. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

0.2

Page:

14/20

E. Touch Screen Panel Specifications

1. FPC Pin Assignment

Pin No.	Symbol	I/O
1	TP_R	0
2	TP_B	0
3	TP_L	0
4	TP_U	0

2. Electrical Characteristics

Item		Min.	Max.	Unit	Remark
Rate DC Volt	age		7	V	
Resistance	X (Film)	550	1300	Ω	At connector
	Y (Glass)	100	700		
Linearity		-1.5%	1.5%	- 1	Note 1
Response T	ime	< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20	ms	
Insulation Resistance		20		ΜΩ	DC 25V

Note 1: Measurement condition of Linearity: difference between actual voltage & theoretical voltage is an error at any points. Linearity is the value max. error voltage divided by voltage difference on active area.

0.2

Page:

15/20

3. Mechanical Characteristics

Item	Min.	Max.	Unit	Remark
Hardness of Surface	3		Н	JIS K-5400
Operation Force (Pen or Finger)		40	gf	Note 1, 2

Note 1: Within "guaranteed active area", but not on the edge and dot-spacer.

Note 2: Measurement condition of Operation Force: Within "guaranteed active area". Resistance, Insulation resistance, and operation force should be under 5.2 & 5.3 condition. When user pushes down on the film, resistance between X & Y axis must be equal or lower than $2k\Omega$. Below is test figure.

4. Life test Condition

	A 95. 1007			
Item	Min.	Max.	Unit	Remark
Notes Life	10 ⁵		times	Note 1, 2
Input Life	10 ⁶		times	Note 1, 3

Note 1: Notes Life test condition (by pen): Notes area for pen notes life test is 10×9 mm. Size of word is 7.5×6.75mm. Word is any A.B.C..... letter. Writing speed is 60mm/s. Center of each word is changed at random in notes area.

Note 2: Input Life test condition(by finger): By silicone rubber tapping at same point. Tapping Load is 200g, and tapping frequency is 5Hz.

Version: 0.2 Page: 16/20

5. Attention

- Please pay attention for below matters at mounting design of touch panel of LCD module.
- Do not design enclosure pressing the view area to prevent from miss input.
- Enclosure support must not touch with view area.
- Use elastic or non-conductive material to enclosure touch panel.
- Do not bond film of touch panel with enclosure.
- The touch panel edge is conductive. Do not touch it with any conductive part after mounting.
- If user wants to cleaning touch panel by air gun, pressure 2kg/cm2 below is suggested.
 Not to blow glass from FPC site to prevent FPC peeled off.

- Do not put a heavy shock or stress on touch panel and film surface. Ex. Don't lift the panel by film face with vacuum.
- Do not lift LCD module by FPC.
- Please use dry cloth or soft cloth with neutral detergent (after wring dry) or one with ethanol at cleaning. Do not use any organic solvent, acid or alkali liquor.
- Do not pile touch panel. Do not put heavy goods on touch panel.

Version: 0.2 Page: 17/20

F. Reliability test items:

No.	Test items	Conditions		Remark
1	High Temperature Storage	Ta= 85°C	168Hrs	Note 4
2	Low Temperature Storage	Ta= - 40°C	168Hrs	
3	High Ttemperature Operation	Tp= 80°C	168Hrs	
4	Low Temperature Operation	Ta= -30°C	168Hrs	
5	High Temperature & High	Tp= 60°C, 90% RH	168Hrs	Operation
6	Heat Shock	-20°C ~70°C /50 cycles 2Hrs/cycle		4
7	Electrostatic Discharge	±200V,200pF(0Ω), o terminal		
8	Vibration	Frequency range Stoke Sweep 2 hours for each dire Ta= 25°(The Manne C	Non-operation JIS C7021, A-10 condition A 2 hours for each direction of X,Y,Z (6 hours for total)
9	Mechanical Shock	100G - 6ms, ±X,±Y,±Z 3 times for each direction		Non-operation JIS C7021, A-7 condition C
10	Vibration (With Carton)	Random vibration: 0.015G ² /Hz from 5~200Hz –6dB/Octave from 200~500Hz		IEC 68-34
11	Drop (With Carton)	Height: 60 1 corner, 3 edges,		

Note 1: Ta: Ambient Temperature.

Note 2: Squarely inspect all LCD function before and after ambient environment test.

Note 3: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 4:There isn't display function NG issue occurred (ex. electrical \cdots) after high (85°C) and low (-40°C) temperature storage. But all the cosmetic specification is judged base on 168hrs reliability stress.

Version: 18/20 Page:

0.2

G. Packing Form

Page: 19/20

0.2

H. Outline Drawing:

Version: Page: 0.2 20/20

H. FPC Component Drawing:

For module mechanics design to reference. To avoid FPC component interfere with module mechanics design.

