Regresyonlar

Fuat Can Beylunioğlu

December 21, 2017

Giriș

- Regresyon bir bağımlı değişkenin Y_i ile bağımsız değişken X_i ya da değişkenlerle X arasındaki ilişkiyi ölçer.
- Bu ilişki tek yönlüdür, yani Yi'nin Xi'deki değişikliklerden nasıl etkilendiği üzerine bir modeldir.
- Model lineerdir, yani ilişkiyi hata terimlerini dışarıda bırakarak doğrusal olarak modellemeyi hedefler.
- Temel regresyon denklemi şu şekildedir:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \tag{1}$$

▶ Burada ϵ_i 'nin tamamen rassal olduğu varsayılmaktadır. Matematiksel olarak ifade etmek gerekirse $\epsilon_i \sim N(0, \sigma^2)$ olmalıdır. Aksi taktirde denklem taraflı (biased) olacaktır.

Regresyon: Ev Fiyatı Örneği

Örneğin ev fiyatının, evin m² genişliği ile ilişkili olduğunu varsayalım. Bu durumda evin teorik değeri aşağıdaki gibidir:

$$\mathsf{HP}_i = \beta_0 + \beta_1 \mathsf{sqft}_i + \epsilon_i \tag{2}$$

$\beta_0 = 100000, \beta_1 = 1000$

Regresyon: Ev Fiyatı Orneği

▶ Örneğin ev fiyatını, evin m² genişliği ile tahmin eden aşağıdaki modeli ele alalım:

$$\mathsf{HP}_i = \beta_0 + \beta_1 \mathsf{sqft}_i \tag{3}$$

- $eta_0 = 100000$ ve $eta_1 = 1000$ olduğu durumda, modele göre evin baz değerinin 100000 olduğu ve her bir m^2 'lik artışın evin değerine 1000TL değer eklediği söylenebilir.
- ▶ Yukarıdaki model regresyon çizgisinin formülüdür, ϵ_i terimi yazılmaz.

En İyi Modeli Oluşturmak

► En iyi model hata terimlerinin karelerin toplamının (RSS) hesaplanması ile oluşturulur:

$$RSS = \sum_{i=1}^{N} \left(Y_i - \hat{Y}_i \right)^2 \tag{4}$$

- RSS'i minimize eden parametre kümesi (β_i) matematiksel olarak en iyi model(best fit)dir.
- Ancak örneklem kümesi ile elde edilen modelin popülasyon için de geçerli olabilmesi için belli varsayımları sağlaması gerekir.

Çoklu Regression (Multiple Regression)

Çoklu regresyon aşağıdaki formulle gösterilir:

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \dots + \beta_n X_{nt} + \epsilon_t$$
 (5)

Ayrıca:

$$Y_t = \beta_0 + \sum_{i=1}^{N} \beta_t X_t + \epsilon_t \tag{6}$$

ya da matrix formunda:

$$Y = X\beta + \epsilon \tag{7}$$

olarak gösterilir.

Regresyonun Varsayımları

- Normality: ϵ_i 'lerin dağılımı $N(0, \sigma^2)$ olmalı,
- ▶ Homoskedasticity: Her bir x_i için σ^2 sabit olmalı,
- No serial autocorrelation: Her bir ϵ_i 'nin bir diğeri ile arasında korelasyon olmamalı.
- No multicolinearity: Çoklu regresyon için X_{ij} ve X_{ik} arası korelasyon olmamalı.

Modelin Açıklayıcılığı

- ▶ Bir modelin kuvvetini ölçen başlıca istatistikler:
 - $ightharpoonup R^2$ ve Adjusted R^2
 - ▶ t-test, F-test
 - ► AIC, BIC

Modelin Açıklayıcılığı, R²

Lineer Olmayan İlişkiler

- Bazı durumlarda iki değer arasında lineer dışı ilişki söz konusu olur.
- Bu regresyon varsayımlarının sağlanamamasına neden olacaktır.
- Analizden önce iki değer arasında öncelikle scatter plot yapılması bu açıdan önemlidir.
- Bu gibi durumlarda değerlerden biri ya da ikisinin log değeri alınabilir. Log değerler veriler arasındaki açıklıkları düşürerek normal dağılıma yakınsamalarını sağlayabilir, öte yandan heteroskedasticity sorununu da çözebilir.
- ▶ Sorun çözülmediği taktirde polinom modellere başvurulabilir.

K-NN Regressions

- Lineer olmayan regresyonlardan biri de k-NN regresyonlardır.
- Arkasında yatan motivasyon, yeni bir değer için tahmin istendiğinde, veri setinde ona en yakın değeri vermektir.
- Başarısı lineer ve polinom modele göre yüksektir.
- Ancak çoklu modeller ile ilgili çok fazla çalışma bulunmamaktadır.

Verinin Yapısı

Lineer Model için R kodları

Lineer model
Modelin özet istatistikleri
Hesaplanan katsayılar
Hesaplanan katsayılar için güven aralıkları
Her bir gözlem için modelin hesapladığı değerler
Hesaplanan değer ile gerçekleşen arasındaki farklar
AIC değeri
BIC değeri
Modelin başarısı hakkında grafikler
Modeli kullanarak yeni değerler için tahmin

Kaynakça I

- Kabacoff, Robert I, R in Action, 2010.
- Dalpiaz, David https://daviddalpiaz.github.io/r4sl/k-nearest-neighbors.html, 2017.