COMP9318: Data Warehousing and Data Mining

L6: Association Rule Mining —

Problem definition and preliminaries

What Is Association Mining?

- Association rule mining:
 - Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
 - Frequent pattern: pattern (set of items, sequence, etc.)
 that occurs frequently in a database [AIS93]
- Motivation: finding regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?

Why Is Frequent Pattern or Assoiciation Mining an Essential Task in Data Mining?

- Foundation for many essential data mining tasks
 - Association, correlation, causality
 - Sequential patterns, temporal or cyclic association, partial periodicity, spatial and multimedia association
 - Associative classification, cluster analysis, iceberg cube, fascicles (semantic data compression)
- Broad applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - **Web log** (click stream) **analysis**, DNA sequence analysis, etc. c.f., google's spelling suggestion

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought
10	{ A, B, C }
20	{ A, C }
30	{ A, D }
40	{ B, E, F }

- Itemset $X = \{x_1, ..., x_k\}$
 - **Shorthand**: x₁ x₂ ... x_k
- Find all the rules X→Y with min confidence and support
 - support, *s*, probability that a transaction contains *X*∪*Y*
 - confidence, c, conditional probability that a transaction having X also contains Y.

Let
$$min_support = 50\%$$
,

 $min_conf = 70\%$: frequent itemset

 $sup(AC) = 2$ association rule

 $A \rightarrow C$ (50%, 66.7%)

 $C \rightarrow A$ (50%, 100%)

Mining Association Rules—an Example

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

Min. support 50% Min. confidence 50%

Frequent pattern	Support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

For rule $A \rightarrow C$:

support = support($\{A\} \cup \{C\}$) = 50% confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

major computation challenge: calculate the support of itemsets

← The *frequent itemset mining* problem

 Algorithms for scalable mining of (single-dimensional Boolean) association rules in transactional databases

Association Rule Mining Algorithms

Candidate Generation & Verification

- Naïve algorithm
 - Enumerate all possible itemsets and check their support against min_sup
 - Generate all association rules and check their confidence against min_conf
- The Apriori property
 - Apriori Algorithm
 - FP-growth Algorithm

All Candidate Itemsets for {A, B, C, D, E}

Apriori Property

- A frequent (used to be called large) itemset is an itemset whose support is ≥ min_sup.
- Apriori property (downward closure): any subsets of a frequent itemset are also frequent itemsets
- Aka the anti-monotone property of support

"any supersets of an infrequent itemset are also infrequent itemsets"

Illustrating Apriori Principle

Apriori: A Candidate Generation-and-test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Algorithm [Agrawal & Srikant 1994]
 - 1. $C_k \leftarrow$ Perform level-wise candidate generation (from singleton itemsets)
 - 2. $L_k \leftarrow Verify C_k against L_k$
 - 3. $C_{k+1} \leftarrow generated from L_k$
 - 4. Goto 2 if C_{k+1} is not empty

The Apriori Algorithm

Pseudo-code:

```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k !=\varnothing; k++) do begin
     C_{k+1} = candidates generated from L_k;
     for each transaction t in database do begin
          increment the count of all candidates in C_{k+1}
          that are contained in t
     end
     L_{k+1} = candidates in C_{k+1} with min support
end
return \bigcup_{k} L_{k};
```

The Apriori Algorithm—An Example

minsup = 50%**Itemset** sup **Itemset** sup Database TDB 2 {A} L_1 {A} 2 C_1 Tid **Items** {B} {B} 3 10 A, C, D {C} {C} 1st scan B, C, E 20 {D} {E} 3 A, B, C, E 30 3 {E} B, E 40 Itemset sup **Itemset** {A, B} 2nd scan [temset sup {A, B} 2 {A, C} 2 {A, C} {A, C} {A, E} {B, C} 2 {A, E} {B, C} 2 {B, E} 3 {B, C} {B, E} {C, E} 2 {C, E} {B, E} 2 {C, E} **Itemset** 3rd scan sup {B, C, E} $\{B, C, E\}$ 2

Important Details of Apriori

- 1. How to generate candidates?
 - Step 1: self-joining L_k (what's the join condition? why?)
 - Step 2: pruning
- 2. How to count supports of candidates?

Example of Candidate-generation

- L_3 ={abc, abd, acd, ace, bcd}
- Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
 - acde is removed because ade is not in L_3
- C₄={abcd}

Generating Candidates in SQL

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}

```
insert into C_k select p.item_1, p.item_2, ..., p.item_{k-1}, q.item_{k-1} from L_{k-1} p, L_{k-1} q where p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
```

Step 2: pruning

```
for all itemsets c in C_k do
for all (k-1)-subsets s of c do
if (s is not in L_{k-1}) then delete c from C_k
```

Derive rules from frequent itemsets

- Frequent itemsets != association rules
- One more step is required to find association rules
- For each frequent itemset X,
 For each proper nonempty subset A of X,
 - Let B = X A
 - \bullet A \rightarrow B is an association rule if
 - Confidence (A → B) ≥ min_conf,
 where support (A → B) = support (AB), and
 confidence (A → B) = support (AB) / support (A)

Example – deriving rules from frequent itemsets

- Suppose 234 is frequent, with supp=50%
 - Proper nonempty subsets: 23, 24, 34, 2, 3, 4, with supp=50%, 50%, 75%, 75%, 75%, 75% respectively
 - These generate these association rules:

```
23 => 4, confidence=100%
```

= (N* 50%)/(N*75%)

• All rules have support = 50%

Q: is there any optimization (e.g., pruning) for this step?

Deriving rules

- To recap, in order to obtain A → B, we need to have Support(AB) and Support(A)
- This step is not as time-consuming as frequent itemsets generation
 - Why?
- It's also easy to speedup using techniques such as parallel processing.
 - How?
- Do we really need candidate generation for deriving association rules?
 - Frequent-Pattern Growth (FP-Tree)

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100 • # of Candidates: $\binom{100}{1} + \binom{100}{2} + \ldots + \binom{100}{100} = 2^{100} - 1$
- Bottleneck: candidate-generation-and-test

Can we avoid candidate generation altogether?

FP-growth

	<u>J</u> ava	<u>L</u> isp	<u>S</u> cheme	<u>P</u> ython	<u>R</u> uby
Alice	X				X
Bob				X	X
Charlie	X			X	X
Dora		X	X		
		minsu	p = 1		

Apriori:

- $L1 = \{J, L, S, P, R\}$
- $C2 = all the ({}^{5}_{2}) combinations$
 - Most of C2 do not contribute to the result
 - There is no way to tell because

	<u>J</u> ava	<u>L</u> isp	<u>S</u> cheme	<u>P</u> ython	<u>R</u> uby
Alice	X				X
Bob				X	X
Charlie	X			X	X
Dora		X	X		

Ideas:

- Keep the support set for each frequent itemset
- DFS

J → ???

Only need to look at support set for J

	<u>J</u> ava	<u>L</u> isp	<u>S</u> cheme	<u>P</u> ython	<u>R</u> uby
Alice	X				X
Bob				X	X
Charlie	X			X	X
Dora		X	X		

Ideas:

- Keep the support set for each frequent itemset
- DFS

Notations and Invariants

- CondiditionalDB:
 - DB|p = {t ∈ DB | t contains itemset p}
 - DB = DB | Ø (i.e., conditioned on nothing)
 - Shorthand: $DB|px = DB|(p \cup x)$
- SupportSet($p \cup x$, DB) = SupportSet(x, DB|p)
 - $\{x \mid x \mod 6 = 0 \land x \in [100]\} = \{x \mid x \mod 3 = 0 \land x \in even([100])\}$
- A FP-tree is equivalent to a DB|p
 - One can be converted to another
 - Next, we illustrate the alg using conditionalDB

FP-tree Essential Idea /1

Recursive algorithm again!

FreqItemsets(DB|p): / itemsets) are

easy task, as only items (not itemsets) are needed

all frequent itemsets in DB|p belong to one of the following categories:

X = FindLocallyFrequentItems(DB|p)

```
output \{(x p) \mid x \in X\}
```

- Foreach x in X
 - $DB^*|px = GetConditionalDB^+(DB^*|p, x)$

obtained via recursion

patterns ~ ★px_i

patterns ~ ★px₁

patterns ~ ★px₂

patterns ~ x_ip

patterns ~ ★px_n

FreqItemsets(DB*|px)

DB|J

	<u>J</u> ava	<u>L</u> isp	<u>S</u> cheme	<u>P</u> ython	<u>R</u> uby
Alice	X				X
Charlie	X			X	X
		minsu	o = 1		

- FreqItemsets(DB|J):
 - {P, R} ← FindLocallyFrequentItems(DB|J)
 - Output {JP, JR}
 - Get DB*|JP; FreqItemsets(DB*|JP)
 - Get DB*|JR; FreqItemsets(DB*|JR)
 - // Guaranteed no other frequent itemset in DB|J

FP-tree Essential Idea /2

- FreqItemsets(DB|p):
 - If boundary condition, then ...
 - X = FindLocallyFrequentItems(DB|p)
 - [optional] DB*|p = PruneDB(DB|p, X) output { (x p) | x ∈ X }
 - Foreach x in X
 - DB*|px = GetConditionalDB+(DB*|p, x)
 - [optional] if DB*|px is degenerated, then powerset(DB*|px)
 - FreqItemsets(DB*|px)

Also output each item in X (appended with the conditional pattern)

Remove items not in X; potentially reduce # of transactions (\varnothing or dup). Improves the efficiency.

Also gets rid of items already processed before x → avoid duplicates

Lv 1 Recursion

 \bullet minsup = 3

FCADGIMP

ABCFLMO

BFHJOW

BCKSP

AFCELPMN

DB

 $X = \{F, C, A, B, M, P\}$

FCAMP

FCABM

FCAMP

DB*

FB

CBP

Output: F, C, A, B, M, P

FCAMP

CBP

FCAMP

DB*|M (sans P)

DB*|P

DB*|B (sans MP)

DB*|A (sans BMP)

DB*|C (sans ABMP)

DB*|F (sans CABMP)

FCA

FCA

FCA

Lv 2 Recursion on DB*|P

Lv 2 Recursion on DB* A (sans ...)

 \bullet minsup = 3

Which is actually FullDB*|CA

Further recursion (output: FCA)

Output: FA, CA

boundary case

Different Example:Lv 2 Recursion on DB*|P

Output: FAP

 $X = \{F\}$

F

 $X = \{F, C, A\}$

Output: FP, CP, AP

I will give you back the FP-tree

- An FP-tree tree of DB consists of:
 - A fixed order among items in DB
 - A prefix, threaded tree of sorted transactions in DB
 - Header table: (item, freq, ptr)
- When used in the algorithm, the input DB is always pruned (c.f., PruneDB())
 - Remove infequent items
 - Remove infrequent items in every transaction

FP-tree Example

minsup = 3

TID	Items bought (ord	ered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$

TID	Items bought (ord	ered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

<u>TID</u>	frequent items	
100	$\{f, c, a, m, p\}$	
200	$\{f, c, a, b, m\}$	
300	{f, b}	
400	$\{c, b, p\}$	
500	$\{f, c, a, m, p\}$	

c : 3

b's conditional pattern base

f	С	a	:	1	
f			:	1	
	С		:	1	

2 2 1

Item	freq	head
f	4	
С	4	
а	3	
b	3	

STOP

FP-Growth vs. Apriori: Scalability With the Support Threshold

Why Is FP-Growth the Winner?

- Divide-and-conquer:
 - decompose both the mining task and DB according to the frequent patterns obtained so far
 - leads to focused search of smaller databases
- Other factors
 - no candidate generation, no candidate test
 - compressed database: FP-tree structure
 - no repeated scan of entire database
 - basic ops—counting local freq items and building sub FP-tree, no pattern search and matching