1. Consider the mechanism of three rigid bodies shown. X-Y-Z are axes fixed to the ground reference frame. Body 1 rotates with respect to ground at the rates ω_a and $\dot{\omega}_a$. Body 2 (bent rod) rotates at the rates ω_{β} and $\dot{\omega}_{\beta}$, with respect to body 1. Body 3 (disc) spins at the rates ω_{γ} and $\dot{\omega}_{\gamma}$, with respect to body 2. Find the angular velocities and angular accelerations of all three bodies with respect to the ground. (15 points)

2. The position of the stylus tip A is controlled by the robot shown. In the position shown the stylus moves at a speed u=(3t+5) m/s relative to the solenoid BC. At the same time, arm CD rotates at the constant rate $\omega_2=4 \text{rad/s}$ with respect to component DEG. Knowing that the entire robot rotates about the X axis at the constant rate $\omega_1=2 \text{rad/s}$, determine the expressions for (a) the velocity of A, (b) the acceleration of A at the time instant t=0 (as shown in the figure). (35 points)

Scanned by CamScanner

3. Two wheels each with radius 0.5 m roll without slipping on the horizontal surface. Knowing that Point D has a velocity of $V_D = 1.5$ m/s and acceleration of $a_D = 12$ m/s² to the right, determine the angular velocity and angular acceleration of the <u>right wheel</u> at the given instant. At this instant, AD is perpendicular to the ground and DB is parallel to the ground. (50 Points)

Useful formulae: [May all be used directly without derivation] 1 A/F = A/m + Wmx A

②
$$\overrightarrow{\nabla}_{P/F} = \overrightarrow{\nabla}_{A/F} + \overrightarrow{\omega}_{m/F} \times \overrightarrow{\pi}_{PA} + \overrightarrow{\nabla}_{P/m}$$

③ $\overrightarrow{\alpha}_{P/F} = \overrightarrow{\alpha}_{A/F} + \dot{\overrightarrow{\omega}}_{m/F} \times \overrightarrow{\pi}_{PA} + \overrightarrow{\omega}_{m/F} \times (\overrightarrow{\omega}_{m/F} \times \overrightarrow{\pi}_{PA})$
 $+ 2\overrightarrow{\omega}_{m/F} \times \overrightarrow{\nabla}_{P/m}$
 $+ \overrightarrow{\alpha}_{P/m}$

(4)
$$\vec{\omega}_{3/1} = \vec{\omega}_{3/2} + \vec{\omega}_{2/1}$$

(5)
$$\vec{\omega}_{3/1} = \vec{\omega}_{3/2} + \vec{\omega}_{2/1} + \vec{\omega}_{2/1} \times \vec{\omega}_{3/2}$$

@ For a cylinder nolling on ground without slipping,