Correctness

Éloi Perdereau

28 avril 2014

We define the bounding box BB(t) of the robots as the smallest enclosing rectangle (oriented with the grid's axes) which contains all robots at step t.

Proposition 0.1. When following the algorithm described above, the bounding box of the robots is monotonically non-inflating, i.e., $BB(t+1) \subseteq BB(t)$ for all t.

1 A single robot on the topmost row

We note r(k) the single robot in the topmost row of the bounding box at step t. If there are more than one robot, r is not defined.

Proposition 1.1. If r(k) exists and is at column i, then r(k-1) exist and is at column i-1, i or i+1.

Lemma 1.2. If r(k) exists and there are at least three robots in the space (it is not an end case), then for a constant c, either r(k+c) doesn't exist or there are only two cells left filled with robots in the space.

Démonstration. The graph of figure 1 is defined as follows:

- Nodes: Possible cases for a single robot (i, j) on the topmost row.
- Edge (u, v) if u can lead to v at t + 1 for any robot on row i.

We can see that there is a cycle from case 1.2.1 (call it a) to 1.2.3 (call it b). So theoretically the robot on the topmost row could cycle indefinitely. We show that this is not true:

The only cases where we pass through (a,b) are :

It is obvious that whenever the robot pass through one of the edges of the cycle at t, it can't pass through the other one at t+1.

Figure 1 – Single robot

2 More than one robot on the topmost row

Figure 2 – Persistent cases

Figure 3 - "Go-left" cases