Geometrie

Einführung zu Mannigfaltigkeiten und Komplexer Analysis

Contents

1.	Kurzrepetition Topologie	1
2.	Topologische Mannigfaltikeiten	3
3.	Glatte Mannigfaltigkeiten	5
Ref	erences	6

1. Kurzrepetition Topologie

Definition 1.1. Seit X eine Menge. Eine Topologie auf X ist eine Familie τ von Teilmengen von X, welche Folgendes erfüllen:

- (1) X und \emptyset sind in τ enthalten,
- (2) die Vereiningung jeder Familie von Elementen in τ ist wieder in τ enthalten,
- (3) jeder Schnitt von endlich vielen Elementen in τ ist wieder in τ enthalten.

Die Elemente in τ nennt man offene Mengen. Ein topologischer Raum ist ein paar (X, τ) , wo τ eine Topologie auf X ist. Wenn $U \in \tau$, dann nennt man $X \setminus U$ abgeschlossen.

Eine Teilmenge von X nennt man abgeschlossen, wenn sie das Komplement einer offenen Teilmenge von X ist.

Example 1.2. (1) $\tau = \{X, \emptyset\}$ ist die triviale Topologie auf einer Menge X.

- (2) Wenn τ die Potenzmenge von X ist, dann nennt man τ die diskrete Topologie. Dann ist jedes $x \in X$ offen und abgeschlossen.
- (3) $X = \mathbb{R}^n$, τ is ist die Familie der Mengen $U \subset X$, so dass für jedes $x \in U$ gibt es ein $\varepsilon > 0$, so dass $B_{\varepsilon}(x) \subset U$.
- (4) Sei (X, d) ein metrischer Raum. Die Familie τ_d folgender Mengen ist die von d induzierte Topologie auf $X: U \subset X$ und für jedes $x \in U$ gibt es $\varepsilon > 0$, so dass $\{y \in X \mid d(x, y) < \varepsilon\} \subset U$.
- (5) $X = \mathbb{Z}$, τ die Familie der endlichen Mengen in \mathbb{Z} und \mathbb{Z} is *keine* Topologie, weil die Vereiningung aller endlichen Teilmengen von \mathbb{Z} , welche nicht 0 enthalten nicht endlich ist und nicht \mathbb{Z} ist.
- (6) Seien $(X, \tau), (Y, \tau')$ topologische Räume. Wir definieren die *Produkttopologie* auf $X \times Y$ wie folgt: eine offene Menge in $X \times Y$ is eine (beliebiege) Vereiningung endlicher Schnitte von Mengen $U \times V$ ist, wobei $U \subset X, V \subset Y$ offen.
- (7) Die Euklidische Topologie auf \mathbb{R}^n ist die Produkttopologie der Euklidischen Topologie auf \mathbb{R} (Übung).
- (8) Sei $Y \subset X$ eine Teilmenge. Die induzierte Topologie auf Y is wie folgt definiert: eine Menge $U \subset Y$ is offen, wenn es $V \subset X$ offen gibt, so dass $U = Y \cap V$.

Definition 1.3. Sei (X, τ) ein topologischer Raum.

(1) Sei $x \in X$. Eine Umgebung von x ist eine Teilmenge $V \subset X$, welche eine offene Menge U enthält, so dass $x \in U$.

- (2) Eine Basis von τ ist eine Familie \mathcal{B} von offenen Mengen von X, so dass jede offene Teilmenge von X eine Vereinigung von Elementen aus \mathcal{B} ist.
- **Example 1.4.** (1) (X, d) ein metrischer Raum. Dann ist die Familie der offenen Kugeln eine Basis für τ_d .
 - (2) Seien (X, τ) , (Y, τ') ein topologischer Raum. Dann ist $\mathcal{B} = \{ \cap_{i=1}^n U_i \times V_i \mid U_i \subset X, V_i \subset Y \text{ offen}, n \geqslant 1 \}$ eine Basis der Produkttopologie auf $X \times Y$.

Wenn \mathcal{B}' (resp. \mathcal{B}'') eine Basis von τ (resp. τ') ist, dann ist $\{ \cap_{i=1}^n U_i \times V_i \mid U_i \in \mathcal{B}', V_i \in \mathcal{B}'', n \geq 1 \}$ eine Basis der Produkttopologie auf $X \times Y$.

Definition 1.5. Sei (X, τ) ein topologischer Raum.

- (1) (X, τ) ist kompakt, wenn es für jede Überdeckung $X = \bigcup_{i \in I} U_i$ von offenen Mengen in $X i_1, \ldots, i_n \in I$ gibt, so dass $X = U_{i_1} \cup \cdots \cup U_{i_n}$.
- (2) (X, τ) ist *Hausdorff*, wenn es für jede $x, y \in X$ zwei disjunkte Umgebungen $U, V \in X$ gibt, so dass $x \in U$ und $y \in V$.
- (3) (X, τ) erfüllt das zweite Abzählbarkeitsaxiom (is second-countable), wenn τ eine abzählbare Basis hat.
- **Example 1.6.** (1) Die diskrete Topologie auf einer Menge X ist Hausdorff aber nicht kompakt (ausser X is endlich).
 - (2) Die triviale Topologie ist kompakt aber nicht Hausdorff.
 - (3) Abgeschlossene beschränkte Mengen in einem Metrischen Raum sind kompakt.
 - (4) Jeder Metrische Raum (X, d) ist Haudroff und hat eine abzählbare Basis. Wenn X nicht beschränkt ist, ist X nicht kompakt.
 - (5) Die diskrete Topologie auf \mathbb{R} hat keine abzählbare Basis.
- **Lemma 1.7.** Sei (X, τ) ein Topologischer Raum und $Y \subset X$ eine Teilmenge mit der induzierten Topologie. Wenn X Hausdorff ist, dann ist Y Hausdorff. Wenn X das 2. Abzählbarkeitsaxiom erfüllt, dann tut dies auch Y.

Proof. Topologievorlesung

Definition 1.8. Seien $(X, \tau), (Y, \tau')$ topologische Räume und $f: X \longrightarrow Y$ eine Abbildung. Sei \mathcal{B} eine Basis von τ' . Wir sagen, dass f stetig ist, wenn das Urbild jeder offenen Menge in Y wieder offen ist.

Equivalent, und praktischer in der Anwendung

Lemma 1.9. Seien $(X, \tau), (Y, \tau')$ topologische Räume und $f: X \longrightarrow Y$ eine Abbildung. Sei \mathcal{B} eine Basis von τ' . Dann ist f stetig genau dann, wenn $\forall x \in X$ und $\forall V \in \mathcal{B}'$ mit $f(x) \in V$, die Menge $f^{-1}(V)$ eine Umgebung von x ist.

Proof. Topologievorlesung.

Example 1.10. Sei Y = X.

- (1) Wenn $\tau = \{X, \emptyset\}$ und $\tau' = \mathcal{P}(X)$, dann ist die Identität nicht stetig
- (2) Wenn $\tau = \mathcal{P}(X)$ und $\tau' = \{X, \emptyset\}$, dann ist die Identität stetig.

Seien $(X, \tau), (Y, \tau')$ topologische Räume und betrachte die Produkttopologie auf $X \times Y$. Dann sind beide Projektionen $p_X \colon X \times Y \longrightarrow X$ und $p_Y \colon X \times Y \longrightarrow Y$ stetig. In der Tat, wenn $U \subset X$ offen, dann ist $p_X^{-1}(U) = U \times Y$ und wenn $V \subset Y$ offen, dann ist $p_X^{-1}(V) = X \times V$.

Example 1.11. Wir betrachten \mathbb{R}^n , \mathbb{R} mit der Euklidischen Topologie. Sei $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ eine Abbildung. Dann ist Stetigkeit im analytischen Sinne equivalent zur Stetigkeit im

topologischen Sinne. Nämlich:

$$\forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{sd} \; \forall x_1 \in X \; \text{sd} \; d(x_0, x_1) < \delta \; \text{gilt} \; d(f(x_0), f(x_1)) < \varepsilon$$

$$\iff \forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{sd} \; \forall x_1 \in B_\delta(x_0) \subset X \; \text{gilt} \; f(x_1) \in B_\varepsilon(f(x_0))$$

$$\iff \forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{sd} \; f(B_\delta(x_0)) \subset B_\varepsilon(f(x_0))$$

$$\iff \forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{sd} \; B_\delta(x_0) \subset f^{-1}(B_\varepsilon(f(x_0)))$$

$$\iff \forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \text{ist} \; f^{-1}(B_\varepsilon(f(x_0))) \; \text{eine Umgebung von} \; x_0$$

Definition 1.12. Seien $(X, \tau), (Y, \tau')$ topologische Räume und $f: X \longrightarrow Y$ eine Abbildung. Wir sagen, dass f ein $Hom\"{o}omorphismus$ ist, wenn f bijektiv und sowohl f als auch f^{-1} stetig sind. Wir sagen, dass X und Y homeomorph sind.

Example 1.13. (1) Wenn Y = X und $\tau' = \tau$, dann ist die Identität ein Homöomorphisms.

- (2) $\mathbb{R}_{>0} \longrightarrow \mathbb{R}_{>0}$, $x \mapsto x^2$, ist ein Homöomorphismus.
- (3) $\mathbb{R} \longrightarrow \mathbb{R}_{>0}$, $x \mapsto e^x$ ist ein Homöomorphismus.

2. Topologische Mannigfaltikeiten

Mannigfaltigkeiten sind topologische Räume, die lokal aussehen wir \mathbb{R}^n .

Definition 2.1. Eine topologische Mannigfaltigkeit M (von dimension n) ist ein nicht-leerer Hausdorff topologischer Raum, welcher das zweite Abzählbarkeitsaxiom erfüllt, und so dass es für jeden Punkt $p \in M$ eine Umgebung $U \subset M$ gibt, welche homöomorph (in der induzierten Topologie) zu einer offenen Teilmenge von \mathbb{R}^n ist.

Wir sagen, dass n die dimension von M ist und schreiben $n = \dim M$.

Lemma 2.2. Sei M eine topologische Mannigfaltigkeit. Die Hausdorffbedingung impliziert: jede endliche Teilmenge ist abgeschlossen, Grenzwerte von konvergenten Folgen sind eindeutig.

Proof.	Topologievorlesung.	

Die Bedingung des 2. Abzählbarkeitsaxioms wird für sogenannte Zerlegung der Eins wichtig, welche

Lemma 2.3. Sei M eine topologische Mannigfaltigkeit und $U \subset M$ eine offene Menge. Dann ist U (mit der induzierten Topologie) eine Mannigfaltigkeit.

Proof. Nach Lemma 1.7, ist U Hausdorff und erfüllt das 2. Abzählbarkeitsaxiom. Sei $p \in U$ und $n = \dim M$. Dann gibt es eine offene Teilmenge $p \in V \subset M$, eine offene Teilmenge $\hat{V} \subset \mathbb{R}^n$ und einen Homöomorphismus $f \colon V \longrightarrow \hat{V}$. Dann ist $U \cap V \subset M$ offen und $f|_{U \cap V} \colon U \cap V \longrightarrow f(U \cap V) \subset \hat{V}$ ein Homöomorphismus.

Definition 2.4. Sei M eine n-dimensionale topologische Mannigfaltigkeit. Eine Karte von M ist ein Paar (U,φ) , wobei $U \subset M$ eine offene Teilmenge ist und $\varphi \colon U \longrightarrow \hat{U}$ ein Homöomorphismus von U zu einer offenen Menge $\varphi(U) = \hat{U} \subset \mathbb{R}^n$. Wir nennen U auch den Domain von (U,φ) .

Wenn $p \in U$, sagen wir, dass (U, φ) eine Koordinatenumgebung von p ist. Den Homöomorphismus φ nennt man Koordinatenabbildung. Wir können $\varphi(p) = (x_1(p), \dots, x_n(p) \text{ schreiben, und die } x_i \text{ nennt man } lokale Koordinaten von } U$. Wenn $\varphi(U)$ eine Kugel (bzw Würfel) ist, dann nennt man (U, φ) eine Koordinatenkugel (bzw -würfel).

Example 2.5. (1) $M = \mathbb{R}^n$

- (2) M eine abzählbare Vereinigung von Punkten, n = 0
- (3) $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ (Übungen)
- (4) $\mathbb{S}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 = 1\}$ (Übungen)
- (5) Graph: sei $U \subset \mathbb{R}^n$ offene Menge und $f: U \longrightarrow \mathbb{R}^k$ stetig. Sei

$$\Gamma(f) := \{(x, y) \mid \mathbb{R}^n \times \mathbb{R}^k \mid x \in U, y = f(x)\} \subset \mathbb{R}^k \times \mathbb{R}^n$$

mit der induzierten Topologie von $\mathbb{R}^k \times \mathbb{R}^n$. Die Projektion $p_1 \colon \Gamma(U) \longrightarrow U$ die Projektion auf U is stetig (da sie die Einschränkung der stetigen Projektion $\mathbb{R}^n \times \mathbb{R}^k \longrightarrow \mathbb{R}^n$ ist). p_1 hat ein Inverses, nämlich $q_1 \colon x \mapsto (x, f(x))$, und q_1 is stetig, weil f stetig ist. Also ist $\Gamma(f)$ eine topologische Mannigfaltigkeit.

- (6) Ein endlich dimensionaler Vektorraum über \mathbb{R} (Übungen).
- (7) Das Produkt $M_1 \times \cdots \times M_k$ von topologischen Mannigfaltigkeiten M_1, \ldots, M_k ist wieder eine topologische Mannigfaltigkeit.

Sein (X,d) ein metrischer Raum. Dann ist $A\subset X$ relativ kompakt (oder präkompakt) wenn \overline{A} kompakt in X ist.

Lemma 2.6. Jede topologische Mannigfaltigkeit hat eine abzählbare Basis von präkompakten Koordinatenkugeln, und sie ist überdeckt von abzählbar vielen präkompakten Koordinatenkugeln.

Proof. Sei M eine Mannigfaltigkeit. Jeder Punkt $p \in M$ ist in einer Koordinatenumgebung (U_p, φ_p) enthalten. Die Menge $\varphi_p(U_p) \subset \mathbb{R}^n$ hat eine abzählbare Basis von präkompakten offenen Kugeln, nämlich die abzählbare Familie der Kugeln $B_r(x), x \in \mathbb{Q}^n \cap \varphi_p(U_p), r \in \mathbb{Q}_{>0}$, so dass $B_s(x) \subset \varphi_p(U)$ mit s > r. Jeder solche Ball ist präkompakt in $\varphi_p(U_p)$. Da M das zweite Abzählbarkeitsaxiom erfüllt, hat M eine Überdeckung von abzählbar vielen Koordinatenumgebungen (U_p, φ_p) . Daher bilden die Urbilder der offenen Kugeln $B_r(x)$ eine abzählbare Basis für die Topologie von M. Sei $V \subset U_p$ das Urbild einer solchen Kugel. Weil φ_p ein homöomorphismus ist, ist der Abschluss von V in U_p (bzgl der induzierten Topologie auf U_p) kompakt. Da M Hausdorff ist, ist V in M abgeschlossen. Also ist der Abschluss von V in M gleich dem Abschluss von V in U_i . Es folgt, dass V auch in M präkompakt ist.

Ein topologischer Raum (X, τ) ist lokal kompakt, wenn es für jeden Punkt $p \in X$ eine Umgebung U gibt und eine kompakte Menge $K \subset X$, so dass $p \in U \subset K$. Man nennt K eine kompakte Umgebung von p.

Lemma 2.7. Jede Mannigfaltigkeit ist lokal kompakt.

Proof. Nach Lemma 2.6 hat jede Mannigfaltigkeit eine Basis aus präkompakten Mengen. Also hat jeder Punkt eine präkompakte Umgebung und daher auch eine kompakte Umgebung (den Abschluss der präkompakten Umgebung).

Definition 2.8. Sei X ein topologischer Raum und $\mathcal{U} := \{U_{\alpha}\}_{{\alpha} \in A}$ eine Familie von Teilmengen von M. Wir nennen \mathcal{U} lokal endlich, wenn es für jeden Punkt $x \in X$ eine Umgebung gibt, welche nur endlich viele U_{α} nicht-leer schneidet.

Lemma 2.9. Sei X ein topologischer Raum und $\mathcal{X} = \{X_{\alpha}\}_{{\alpha} \in A}$ eine lokal endliche Familie von Teilmengen von X. Dann ist $\{\overline{X_{\alpha}}\}_{{\alpha} \in A}$ lokal endlich und $\overline{\cup_{\alpha} X_{\alpha}} = \cup_{\alpha} \overline{X_{\alpha}}$.

Proposition 2.10. Sei M eine Mannigfaltigkeit und $U := \{U_{\alpha}\}_{{\alpha} \in A}$ irgendeine eine offene Überdeckung von M. Dann hat M es eine lokal endliche offene Überdeckung $\mathcal{V} := \{V_{\beta}\}_{{\beta} \in B}$, so dass $\forall {\beta} \in B$ es ${\alpha} \in A$ gibt mit $V_{\beta} \subset U_{\alpha}$.

Mehr noch, wenn \mathcal{B} eine Basis der Topologie von M ist, dann gibt es eine offene Überdeckung \mathcal{V} wie oben, welche abzählbar ist, so dass $V_{\beta} \in \mathcal{B} \ \forall \beta \in \mathcal{B}$.

Proof. Wir bemerken, dass die zweite Aussage stärker als die erste ist. Es reicht also, nur die zweite zu zeigen. Sei $\{K_j\}_{j=1}^{\infty}$ eine Überdeckung von M von kompakten Mengen K_j , so dass $K_j \subset \operatorname{Int} K_{j+1}$ for alle $j \geq 1$; sie existiert, weil M Haudroff und lokal kompakt ist und das zweite Abzählbarkeitsaxiom erfüllt [1, Prop A.60]. Für jedes j, sei $V_j := K_{j+1} \setminus \operatorname{Int} K_j$ und $W_j := \operatorname{Int} K_{j+2} \setminus K_{j-1}$ (wobei $K_j := \emptyset$ für j < 1). Dann ist V_j kompakt, W_j ist offen und $V_j \subset W_j$. Da \mathcal{B} eine Basis der Topologie von M ist, gibt es $B_x \in \mathcal{B}$ mit $x \in B_x \subset W_j$. Die Familie $\{B_x\}_{x \in V_j}$ ist eine offene Überdeckung von V_j . Da V_j kompakt ist, hat diese Überdeckung eine endliche Teilüberdeckung $\{B_{x_{k,j}}\}_{k=1}^{N_j}$. Die Vereinigung $\cup_{k,j} B_{x_{k,j}}$ ist eine abzählbare Überdeckung von M und $B_{x_{k,j}} \subset W_j \ \forall j$. Wir bemerken, dass $W_j \cap W_i = \emptyset$, ausser $j-2 \leq i \leq j+2$:

Es folgt, dass es für jeden Punkt $x \in M$ eine Umgebung gibt, die in nur endlich vielen $B_{x_{k,j}}$ enthalten ist.

3. Glatte Mannigfaltigkeiten

Definition 3.1. Seien $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ offene Mengen und $F: U \longrightarrow V$ eine Abbildung. Wir nennen F glatt, wenn jede Komponente von $F = (F_1, \dots, F_m)$ stetige partielle Ableitungen jeder Ordnung hat. Wir sagen auch, dass F C^{∞} ist.

Wenn F zusätzlich bijektiv ist und F^{-1} glatt, nennen wir F ein Diffeomorphismus.

Wir bemerken, dass glatte Abbildungen stetig sind und Diffeomorphismen sind im Speziellen Homöomorphismen.

Definition 3.2. Sei M eine topologische Mannigfaltigkeitund $(U, \varphi), (V, \varphi)$ Koordinatenumgebungen auf M, so dass $U \cap V \neq \emptyset$.

(1) Wir nennen $\psi \circ \varphi^{-1} : \varphi(U \cap V) \longrightarrow \psi(U \cap V)$ einen Kartenwechsel.

Da φ, ψ homöomorphismen sind, ist $\psi \circ \varphi^{-1}$ auch ein Homöomorphismus.

- (2) Wir sagen, (U, φ) , (V, φ) sind glatt kompatibel, wenn entweder $U \cap V = \emptyset$ oder $\psi \circ \varphi^{-1}$ glatt ist.
- (3) Ein Atlas von M ist eine Familie von Karten, deren Domain M überdecken. Ein Atlas is glatt, wenn jedes Paar von Karten glatt kompatibel sind. In diesem falle, auch der Kartenwechsel $\varphi \circ \psi^{-1}$ glatt und daher ist $\psi \circ \varphi^{-1}$ ein Diffeomorphismus.
- (4) Ein glatter Atlas \mathcal{A} ist *maximal*, wenn er in keinem anderen glatten Atlas enthalten ist (i.e. jede Karte, die glatt kompatibel mit jeder Karte in \mathcal{A} ist, ist schon in \mathcal{A} enthalten).

Wir sagen, dass M eine glatte Struktur hat, wenn sie einen glatten Atlas hat. Eine glatte Mannigfaltigkeitist ein paar (M, \mathcal{A}) , wo \mathcal{A} ein maximaler Atlas ist. Meistens lassen schreiben wir M anstatt (M, \mathcal{A}) .

REFERENCES

[1] JOHN M. LEE: Intoduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218, Springer, 2nd Edition. 2

Universität Basel

Email address: susanna.zimmermann@unibas.ch