Grado en Ingeniería de Sonido e Imagen

Notación:

• $\widehat{S}_{\mathrm{MMSE}}$: Estimador de mínimo error cuadrático medio.

 \hat{S}_{MAD} : Estimador de mínimo error absoluto medio.

1. Las variables aleatorias X_1 , X_2 y X_3 se distribuyen conjuntamente según la función de densidad de probabilidad:

$$p_{X_1, X_2, X_3}(x_1, x_2, x_3) = G\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \middle| \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1.75 & 1.25 & 1 \\ 1.25 & 1 & 0.5 \\ 1 & 0.5 & 1 \end{bmatrix} \right)$$

(a) Determine el estimador de mínimo error cuadrático medio de X_1 a la vista de X_2 y X_3 , $\widehat{X}_{1 \text{MMSE}}(X_2, X_3)$.

(b) ¿Es el estimador $\widehat{X}_{1\text{MMSE}}(X_2, X_3)$ insesgado?

(c) En lugar de tener acceso a X_2 y X_3 , solo se puede observar X_4 , y se sabe además que $X_4 = X_2 + X_3$. Determine el estimador de mínimo error cuadrático medio de X_1 a la vista de X_4 , $\widehat{X}_{1 \text{MMSE}}(X_4)$.

Solution:

(a)
$$\widehat{X}_{1\text{MMSE}}(X_2, X_3) = X_2 + \frac{X_3}{2}$$

(b) $\widehat{X}_{1\text{MMSE}}(X_2, X_3)$ es insesgado

(c)
$$\hat{X}_{1\text{MMSE}}(X_4) = \frac{3}{4} \cdot X_4$$

2. Las variables aleatorias S y X están relacionadas a través de la siguiente función de densidad de probabilidad conjunta:

$$p_{S,X}(s,x) = \theta x^{\theta-1}$$
 $x \le s \le x+1$ $0 \le x \le 1$

donde θ es un parámetro determinista, de valor desconocido, tal que $0 < \theta \le 1$.

(a) Determine $p_{S|X}(s|x)$.

(b) Obtenga el estimador de error cuadrático medio mínimo de S a la vista de X, $\widehat{S}_{\mathrm{MMSE}}$.

(c) Determine el estimador de mínimo error absoluto medio de S a la vista de $X,\,\widehat{S}_{\mathrm{MAD}}.$

Solution:

(a)
$$p(s|x) = 1$$
 $x \le s \le x + 1$

(b)
$$\widehat{S}_{\text{MMSE}} = 1 + \frac{X}{2}$$

(c)
$$\hat{S}_{MAD} = 1 + \frac{X}{2}$$