Prepared by Abhishek Kumar

https://bit.ly/AKSLinkedIn (https://bit.ly/AKSLinkedIn)

.....

•

Part 1

-

Given a table 'vendor_spend' containing vendon spend data.

TABLE: VENDOR_SPEND

vendor-id	Name	contract_sign_dt	total_spend
1	schmendor	2018-09-01	34,324
2	Parts_r_us	2018-09-03	23,455
3	vendor_King	2018-10-11	77,654
4	Mathews	2018-08-21	23,334
Б	victo91	2018-08-13	94,843
6	Burger_man	2018-10-29	23,444

White a SQL Query to Show top 50% of vendors as denoted by total_spend.

Data Preparation

```
In [5]: 1 vendor_spend.shape
2 vendor_spend
```

Out[5]: (6, 4)

Out[5]:

	vendor_id	name	contract_sign_dt	total_spend
0	1	Schmendor	2018-09-01	34324
1	2	Parts_r_us	2018-09-03	23455
2	3	Vendor_king	2018-10-11	77654
3	4	Mathews	2018-08-21	23334
4	5	Victor	2018-08-13	94843
5	6	Burger_man	2018-10-29	23444

Python Implementation

```
In [6]: 1 vendor_spend[vendor_spend.total_spend>np.median(vendor_spend.total_spend)]
```

Out[6]:

	vendor_id	name	contract_sign_dt	total_spend
0	1	Schmendor	2018-09-01	34324
2	3	Vendor_king	2018-10-11	77654
4	5	Victor	2018-08-13	94843

SQL Implementation

```
In [9]: 1 # Passing the query to vauld db for execution
2 
3 result = pd.read_sql(query,conn)
4 result
```

Out[9]:

	vendor_id	name	contract_sign_dt	total_spend
0	1	Schmendor	2018-09-01 00:00:00	34324
1	3	Vendor_king	2018-10-11 00:00:00	77654
2	5	Victor	2018-08-13 00:00:00	94843

 \boldsymbol{Result} - Vendor 1, 3 and 5 are the top 50% spender

```
In [ ]: 1
```

Question 2

The table contains information about the temperature on a certain day.

TBL: WEATHER

id	record_d+	temperature
1	2015-01-01	10
2	2015-01-02	25
3	2015-01-03	20
4	2015-01-04	30

with higher temperatures compared to its previous dates (yesterday).

OUTPUT:

In 2015-01-02, the temperature was higher than the previous day (10-725)

In 2015-01-04, the temperature

was higher than the previous day (20->30)

Data Preparation

```
In [11]: 1 weather.shape weather
```

Out[11]: (6, 3)

Out[11]:

	id	record_dt	temperature
0	1	2015-01-01	10
1	2	2015-01-02	25
2	3	2015-01-03	20
3	4	2015-01-04	30
4	5	2015-01-05	28
5	6	2018-01-06	27

Python Implementation

Out[12]:

```
id
1 2
```

3 4

SQL Implementation

```
In [14]:
           1 # Query prepartion
           2 query = '''
              select id
           5 from (select *, lag(temperature) over (order by record_dt) as prev_temp from weather) as lag
           6 where temperature > prev temp
           8
             1.1.1
           9
           1 # Passing the query to vauld db for execution
In [15]:
           3 result = pd.read_sql(query,conn)
           4 result
Out[15]:
             id
          0 2
         Result - The days with ID value 2 and 4 have higher temperatures than their previous days respectively.
         Part 2
         Question
```

Imagine there are 10 marketing campaigns by influencers and 10 paid ads campaigns running live. You have 2 main source tables -> **sessions** and **conversions**, you need to attribute each marketing campaign (by using UTM parameters) to 1) how many users it helped convert and 2) how many touch points it takes a user to get converted

Feel free to use any attribution modelling logic as possible and explain the logic, the code and the final output table you will arrive using these base raw tables to explain the same for the marketing team.

Bonus if you can also add ad spend data & show ROI at the end, but not required. Just the logic/explanation will also do.

Sessions

SESSI ON_ID	CUSTOM ER_ID	STARTED_ AT	ENDED_AT	UTM_SO URCE	UTM_ME DIUM	UTM_CAM PAIGN
1	2956	2020-02-01 12:55:16	2020-02-01 12:55:47	facebook _ads	paid_soci al	xyz
2	4	2020-02-02 13:06:47	2020-02-02 13:18:56	facebook _ads	paid_soci al	freeshippin g
3	1170	2020-02-03 12:15:00	2020-02-03 12:15:19	youtube1	social_vi deo	inf1

Conversions

CUSTOMER_ID	CONVERTED_AT
1170	2020-02-03 14:20:08
2014	2020-02-04 4:30:21
2265	2020-02-04 9:43:35

Data Preparation

Out[16]:

	Session_Id	Customer_Id	Started_At	Ended_At	UTM_Source	UTM_Medium	UTM_Campaign
0	1	2956	2020-02-01 12:55:16	2020-02-01 12:55:47	facebook_ads	paid_social	xyz
1	2	4	2020-02-02 13:06:47	2020-02-02 13:18:56	facebook_ads	paid_social	freeshipping
2	3	1170	2020-02-03 12:15:00	2020-02-03 12:15:19	insta	social_video	freeshipping
3	4	1170	2020-02-03 12:21:00	2020-02-03 12:25:19	youtube	social_video	inf1
4	5	2014	2020-02-04 04:20:21	2020-02-04 04:36:21	facebook_ads	paid_social	freeshipping
5	6	1170	2020-02-05 12:13:00	2020-02-05 12:15:54	youtube	social_video	inf1

```
In [17]:
           1 conversions = pd.read excel('./one.xlsx', sheet name='conversions')
           2 conversions['converted_at'] = pd.to_datetime(conversions.converted_at)
           3 conversions['customer id'] = conversions.customer id.astype('int')
           4 conversions
Out[17]:
             customer_id
                             converted_at
                   2014 2020-02-04 04:30:21
                  2265 2020-02-04 09:43:35
          2
                  1170 2020-02-05 12:15:19
In [18]:
           1 # Creating the sessions and conversions table in vauld database
           2 sessions.to sql('sessions',conn,if exists='replace',index=False)
           3 conversions.to sql('conversions',conn,if exists='replace',index=False)
In [19]:
           1 # user defined function to execute query
           2 def run(query, conn=conn):
                  # Passing the guery to vauld db for execution
                 result = pd.read sql(query,conn)
                  return result
```

SQL Implementation

```
In [21]: 1 run(query)
```

Out[21]:

	Session_ld	Customer_ld	Started_At	Ended_At	UTM_Source	UTM_Medium	UTM_Campaign	flag
0	1	2956	2020-02-01 12:55:16	2020-02-01 12:55:47	facebook_ads	paid_social	xyz	0
1	2	4	2020-02-02 13:06:47	2020-02-02 13:18:56	facebook_ads	paid_social	freeshipping	0
2	3	1170	2020-02-03 12:15:00	2020-02-03 12:15:19	insta	social_video	freeshipping	0
3	4	1170	2020-02-03 12:21:00	2020-02-03 12:25:19	youtube	social_video	inf1	0
4	5	2014	2020-02-04 04:20:21	2020-02-04 04:36:21	facebook_ads	paid_social	freeshipping	1
5	6	1170	2020-02-05 12:13:00	2020-02-05 12:15:54	youtube	social_video	inf1	1

Question 1 - how many users it helped convert

```
In [23]: 1 run(query)
```

Out[23]:

	UTM_Campaign	targeted_customer_count	conversion_count	conversion_pct
0	freeshipping	3	1	33
1	inf1	1	1	100
2	xyz	1	0	0

In [25]: 1 run(query)

Out[25]:

	UTM_Medium	targeted_customer_count	conversion_count	conversion_pct
0	paid_social	3	1	33
1	social_video	1	1	100

In [27]: 1 run(query)

Out[27]:

	O I WI_Source	targeted_customer_count	conversion_count	conversion_pct
0	facebook_ads	3	1	33
1	insta	1	0	0
2	youtube	1	1	100

```
In [29]: 1 run(query)
```

Out[29]:

	UTM_Campaign	UTM_Medium	UTM_Source	targeted_customer_count	conversion_count	conversion_pct
0	freeshipping	paid_social	facebook_ads	2	1	50
1	freeshipping	social_video	insta	1	0	0
2	inf1	social_video	youtube	1	1	100
3	xyz	paid_social	facebook_ads	1	0	0

- Result Based on the Last Interaction Attribution Model, the last touchpoint is provided the conversion credit
- The above result shows the conversion percentage for different sources and mediums for each campaign
- Youtube through Social video is 100% performant

```
In [ ]: 1
```

Question 2 - how many touch points it takes a user to get converted

1 run(query) In [31]: Out[31]: customer_id count_touch_point 1170 3 0 2014 2265 Result - The customers listed with their touch-points till conversion In []: Part 3

A crypto company is working on a new feature for adding a binance smart chain (bep-20) along with existing networks that it supports like BTC, ERC-20 for all users. We will allow all deposits and withdrawals for many new tokens using this new bep-20 network.

Given engineering constraints, we can't AB test it before release.

How would you analyze the impact and effectiveness of this new feature 1 week post the release? What changes will you make for future releases based on your learnings?

Note: This question is vague intentionally, please use your own imagination, assumptions and build your own metrics, KPIs here we only want to understand your thought process and product approach here

Expected Data Model

- 1. Customer-Transaction Relationship
 - customer_id, tran_id
- 2. Transactions
 - tran_id, token, tran_amt, tran_type, network
- Consider transactions only after the launch

Descriptive stats to find performance of the new network

At the end of Week 1

- 1. %ge of transactions (in terms of frequency and Amount) across different network
- 2. %ge of bep-20 transactions (in terms of frequency and Amount) across different transaction_type
- 3. %ge of customers using bep-20 out of customers who did a transaction
- 4. %ge of Re-activated customers for this week comparing to previous 2-3 weeks
- 5. %ge increase in Total transaction (frequency and volume) for this week comparing to previous 2-3 weeks

Daily based

- 1. Plot Daily transactions (in terms of Frequency and Total Volume) in a line chart for different networks
- 2. Analyze any impact (decrease/increase) on daily churn rates for this week compared to previous 2-3 weeks

What changes will you make for future releases based on your learnings?

• If there is no significant increase in TOTAL VOLUMES/Transacting CUSTOMERs, then a customer survey or general market data can be analysed before coming up with a feature., given the constraints in the question.

In []:

1