Universidade do Minho

Exame de
Lógica EI

Lic. Eng. Informática Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

1. Considere o conjunto G, de fórmulas do Cálculo Proposicional, definido indutivamente pelas seguintes regras:

$$\frac{\varphi \in G}{p_n \in G} \ n \quad (n \in \mathbb{N}_0) \qquad \frac{\varphi \in G}{(\neg \varphi \to p_0) \in G} \ r_1 \qquad \frac{\varphi \in G \quad \psi \in G}{(\varphi \lor \psi) \in G} \ r_2$$

- (a) Construa a árvore de formação da fórmula $\sigma = (\neg((\neg p_1 \to p_0) \lor p_0) \to p_0)$ de G.
- (b) Defina, por recursão estrutural em G, a função $f:G\to\mathbb{N}_0$ que a cada $\varphi\in G$ faz corresponder o número de ocorrências de variáveis proposicionais em φ .
- (c) Sendo σ a fórmula da alínea (a), calcule $f(\sigma)$ usando a definição recursiva de f da alínea (b).
- (d) Enuncie o Princípio de Indução Estrutural para G.
- (e) Prove, por indução estrutural em G, que $f(\varphi) \neq 0$ para toda a fórmula $\varphi \in G$.
- 2. Apresente uma forma normal conjuntiva e uma forma normal disjuntiva logicamente equivalentes à fórmula do Cálculo Proposicional $\neg (p_1 \to p_0) \lor (p_0 \land p_1)$.
- 3. Diga se são verdadeiras ou falsas as seguintes afirmações.
 - (a) Para quaisquer $\varphi, \psi, \theta \in \mathcal{F}^{CP}$, se $\varphi \models \psi \to \theta$ e θ é uma contradição, então $\{\varphi, \psi\}$ é inconsistente.
 - (b) Para quaisquer $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$, se $\Gamma \models \varphi$ e Γ é consistente, então φ é uma tautologia.
 - (c) Para quaisquer $\varphi, \psi \in \mathcal{F}^{CP}, \varphi \leftrightarrow \psi \not\vdash \varphi \lor \psi$.
- 4. Construa uma derivação em DNP mostrando que $(p_1 \to p_2) \to \neg p_1 \vdash \neg (p_1 \land p_2)$.
- 5. Seja L o tipo de linguagem $(\{f, +\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(f) = \mathcal{N}(P) = 1$ e $\mathcal{N}(+) = \mathcal{N}(<) = 2$. Seja ainda $E = (\mathbb{Z}, \overline{})$ a L-estrutura tal que:

- (a) Das seguintes palavras sobre \mathcal{A}_L , apresente árvores de formação das que pertencem a \mathcal{T}_L ou \mathcal{F}_L , e indique (sem justificar) quais as que não pertencem a nenhum desses conjuntos.
 - (i) $f(f(f(x_1+x_2)))$ (ii) $f(f(f(x_1+x_2))) < x_1 + (x_1+x_1)$ (iii) $\forall_{x_2} f(x_2)$
- (b) Considere a L-fórmula $\sigma = \exists_{x_2} (x_0 < f(x_2)) \lor \forall_{x_1} (x_1 < x_0 + x_2)$. Calcule LIV (σ) e indique L-termos t e t' tais que x_0 seja substituível por t mas não seja substituível por t' em σ .
- (c) Indique, sem justificar, uma L-fórmula que represente a afirmação "O simétrico da soma de quaisquer dois números inteiros positivos não é positivo".
- (d) Diga (justificando) se cada uma das seguintes L-fórmulas é válida em E e se é universalmente válida.
 - (i) $\exists_{x_0} (f(f(x_0)) < x_0)$ (ii) $\forall_{x_0} (P(x_0) \to (x_0 < x_0 + x_0))$
- (e) Seja Γ o conjunto constituído pelas duas fórmulas da alínea (d). Indique (justificando) se $\Gamma \models \exists_{x_0} (f(f(x_0)) < x_0 + x_0)$.

Cotações	1.	2.	3.	4.	5.
	1,25+1,5+1+1+1,5	1,5	1,5+1,5+1,5	1,5	1,25+1+1+2+1