Grafy a grafové algoritmy. Formalizace základních grafových pojmů, reprezentace grafů. Souvislost grafu, barevnost, rovinné grafy. Algoritmy (včetně složitosti a základní myšlenky důkazů korektnosti): prohledávání grafu do šířky a do hloubky, nejkratší vzdálenosti, kostry, toky v sítích.

1 ZÁKLADNÉ GRAFOVÉ POJMY

- Neorientovaný graf: G = (V, E) kde $E \subseteq \mathcal{P}(V)$ a $x \in E \implies |x| = 2$.
- Orientovaný graf: G = (V, E) kde $E \subseteq V \times V$.
- Kružnica C_n (n hrán, n vrcholov), Cesta P_n (n hrán, n+1 vrcholov), Úplný graf K_n ($(\frac{n}{2})$ hrán, n vrcholov), Úplný bipartitný graf $K_{m,n}$ (m+n vrcholov, $m \cdot n$ hrán).
- Stupeň vrchola $d_G(v) = |\{\{u,v\} \mid \{u,v\} \in E(G)\}|.$
- Izomorfizmus grafov G a H je zobrazenie $f:V(G)\to V(H)$ t.ž. $\{u,v\}\in E(G)\iff \{f(u),f(v)\}\in E(H).$ Píšeme $G\simeq H.$
- Nezávislá množina: $X \subseteq V(G)$ t.ž. pre žiadne $u, v \in X$ nie je $\{u, v\} \in E$. Vrcholové pokrytie: Množina vrcholov taká, že všetky hrany končia/začínajú v množine. Dominujúca množina: každý vrchol má aspoň jednoho súseda v množine.
- Komponenta súvislosti: $X \subseteq G(V)$ t.ž. pre všetky $u, v \in X$ je $\{u, v\} \in E*$ (tranzitívny uzáver). V orientovaných grafoch silná/slabá súvislosť.
- Graf je súvislý ak je tvorený práve jednou komponentou (všetci vedia ísť všade).
- Reprezečntácia grafov: Matica susednosti, Incidenčná matica, Zoznam hrán, Implicitne.
- Ofarbenie grafu je funkcia $c(v): V \to \mathbb{N}$ t.ž. $\{u, v\} \in E$ tak $c(u) \neq c(v)$.
- Farebnosť grafu $\chi(G)$ je najmenšie k také, že exisuje c t.ž. $c(v) \leq k$ pre všetky v.
- $Erd\ddot{o}s$: Pre ľubovoľné c, r existuje graf s farebnosťou aspoň c a najmenšou kružnicou väčšou ako r.
- NP-úplné problémy: 3-farebnosť, Nezávislá množina (veľkosti aspoň k), Vrcholové pokrytie (veľkosti najviac k), Dominujúca množina (veľkosti najviac k), Hamiltonovský cyklus/cesta.
- Rovinný graf je t.ž. sa dá nakresliť do roviny bez pretínajúcich sa hrán. Stenami takéhoto zakreslenia sú topologicky súvislé oblasti (oddelené hranami). Existuje lineárny algoritmus na určenie rovinnosti grafu.
- Duálny graf: Steny nahradíme vrcholmi. Hrany vytvoríme podľa dotýkajúcich sa stien.

- Euler: Nech G je planárny graf ktorý má f stien. Potom |V| + f |E| = 2.
- Kuratowski: Graf je rovinný práve vtedy, keď neobsahuje podrozdelenie K_5 alebo $K_{3,3}$ ako podgrafy.

2 Grafové Algoritmy

- BFS/DFS: vrchol init, navštívený, spracovaný (hrany sú vo fronte), hrana init, spracovaná. Preorder, Postorder.
- Najkratšie cesty (O one-to-one, M many-to-many):
 - (O) DAG a neohodnotený graf: BFS. Čas: $\mathcal{O}(V+E)$ Priestor: $\mathcal{O}(V+E)$.
 - (O) Dijkstra: Zober najbližší nespracovaný a spracuj ho tak, že aktualizuješ vzdialenosť objavených vrcholov. Vždy si pamätaj odkiaľ sa naposledy znižovala vzdialenosť, aby si vedel zrekonštruovať cestu. Čas: $\mathcal{O}(E+V\cdot log(V))$ Priestor: $\mathcal{O}(V+E)$
 - (M) Floyd-Warshall: V k-tej iterácií napočítam cesty ktoré používajú prvých k vrcholov. Čas: $\mathcal{O}(V^3)$ Priestor: $\mathcal{O}(V^2)$

• Toky v sieťach:

- Ford-Fulkerson: Vytvorím reziduálnu sieť a v nej hľadám zlepšujúcu cestu.
- Edmonds-Karp: V reziduálnom grafe hľadám najkratšiu zlepšujúcu cestu.
- Ďalšie vylepšenia...

• Minimálne kostry:

- Kostra: minimálny súvislý podgraf.
- Hladový: Hrany od najmenšej po najväčšiu. Ak som vytvoril cyklus, nepridávam hranu (je najväčšia na cykle).
- Jarník/Prim: Začnem z vrcholu a pridávam vždy najmenšiu border hranu.
- Borůvka: Pridávam globálne najmenšiu hranu do nepokrytého vrchola.

• TODO dokazy a zlozitost