МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования "Национальный Исследовательский Университет Итмо" Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

ЛАБОРАТОРНАЯ РАБОТА №2

"Синтез помехоустойчивого кода"
по дисциплине
"Информатика"
вариант №77

Выполнил:

Студент группы Р3119

Бардин Петр Алексеевич

Преподаватель:

Рыбаков Степан Дмитриевич

Санкт-Петербург

Содержание

Задание	2
Основные этапы вычисления	3
Задание 1	3
Задание 2	3
Задание 3	4
Задание 4	4
Задание 5	5
Задание 6	6
Задание 7	7
Задание 8	7
Вывод	8
Библиография	

- 1. Выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 2. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчете в виде изображения.
- 3. Показать, исходя из выбранных вариантов сообщений, имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение
- 4. Выбрать 1 полученное сообщение в виде последовательности 11-символьного кода
- 5. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчете в виде изображения
- 6. Показать, исходя из выбранного варианта сообщений, имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение
- 7. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 8. Написать программу на любом языке программирования, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

#77

№	Задание №	Код
1	59	0 0 1 0 1 0 0
2	96	1101110
3	21	0 1 1 1 0 0 1
4	10	1010000
5	76	001110011000100

Задание №7:

$$(59 + 96 + 21 + 10 + 76) * 4 = 1048$$

Основные этапы вычисления

Исходный код программы размещен в системе контроля версий Git на сервисе Github. https://github.com/BardinPetr/itmo-labs/tree/main/informatics/year 1/lab 2

Задание 1

Схема декодирования классического кода Хэмминга (7;4) изображена на рисунке 1.

Рис. 1 - Декодер кода Хэмминга (7;4)

Задание 2

Исходное сообщение А=00101002

Количество бит: информационных - 4, коррекции - 3

Биты коррекции: A_0 , A_1 , A_3

Биты информации: А2, А4, А5, А6

Синдром S

$$S_0 = A_0 \oplus A_2 \oplus A_4 \oplus A_6 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$S_1 = A_1 \oplus A_2 \oplus A_5 \oplus A_6 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$S_2 = A_3 \oplus A_4 \oplus A_5 \oplus A_6 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

 $110_2 = 6$

Ошибка в бите 5: 0 вместо 1

Исправленное сообщение $B = 0010110_2$

Содержание сообщения: $I = B_2 \ B_4 \ B_5 \ B_6 = 1110_2$

Исходное сообщение А=11011102

Количество бит: информационных - 4, коррекции - 3

Νō 2 3 4 5 Т ľΊ іı i5 i6 ľο **1** 3 i4 Α 1 0 1 1 1 0 1 Sο Χ Χ Χ Χ S 1 Χ Χ Χ Χ S 2 Χ Χ Χ Χ

Биты коррекции: A_0, A_1, A_3

Биты информации: A_2 , A_4 , A_5 , A_6

Синдром S

 $S_0 = A_0 \oplus A_2 \oplus A_4 \oplus A_6 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$

 $S_1 = A_1 \oplus A_2 \oplus A_5 \oplus A_6 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$

 $S_2 = A_3 \oplus A_4 \oplus A_5 \oplus A_6 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

 $100_2 = 4$

Ошибка в бите 3: 1 вместо 0

Исправленное сообщение $B = 1100110_2$

Содержание сообщения: $I = B_2 B_4 B_5 B_6 = 0110_2$

Задание 4

Исходное сообщение А=01110012

Количество бит: информационных - 4, коррекции - 3

Νō 0 2 5 3 4 Τ **1** 3 i 4 i 5 i6 ľο і́г Α 0 1 1 1 0 Χ Χ Χ Sο Χ S₁ Χ Χ Χ Χ S 2 Χ Χ Χ Χ

Биты коррекции: Ао, А1, А3

Биты информации: A_2 , A_4 , A_5 , A_6

Синдром S

 $S_0 = A_0 \oplus A_2 \oplus A_4 \oplus A_6 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$

 $S_1 = A_1 \oplus A_2 \oplus A_5 \oplus A_6 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

 $S_2 = A_3 \oplus A_4 \oplus A_5 \oplus A_6 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$

 $010_2 = 2$

Ошибка в бите 1: 1 вместо 0

Исправленное сообщение $B = 0011001_2$

Содержание сообщения: $I = B_2 B_4 B_5 B_6 = 1001_2$

Исходное сообщение А=10100002

Количество бит: информационных - 4, коррекции - 3

 N_{2} 0 1 2 3 4 5 6

 $T \quad r_0 \quad r_1 \quad i_2 \quad r_3 \quad i_4 \quad i_5 \quad i_6$

A 1 0 1 0 0 0 0

 $S_0 \quad X \qquad X \qquad X \qquad X$

 $S_1 \quad X \quad X \quad X \quad X$

 S_1 X X X X X X X

Биты коррекции: A_0, A_1, A_3

Биты информации: A_2, A_4, A_5, A_6

Синдром S

 $S_0 = A_0 \oplus A_2 \oplus A_4 \oplus A_6 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$

 $S_1 = A_1 \oplus A_2 \oplus A_5 \oplus A_6 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$

 $S_2 = A_3 \oplus A_4 \oplus A_5 \oplus A_6 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$

 $010_2 = 2$

Ошибка в бите 1: 0 вместо 1

Исправленное сообщение $B = 1110000_2$

Содержание сообщения: $I = B_2 B_4 B_5 B_6 = 1000_2$

Задание 6

Схема декодирования классического кода Хэмминга (15;11)

Исходное сообщение A=001110011000100₂

Количество бит: информационных - 11, коррекции - 4

Биты коррекции: A_0 , A_1 , A_3 , A_7

Биты информации: А2, А4, А5, А6, А8, А9, А10, А11, А12, А13, А14

Синдром S

$$S_0 = A_0 \oplus A_2 \oplus A_4 \oplus A_6 \oplus A_8 \oplus A_{10} \oplus A_{12} \oplus A_{14} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$S_1=A_1\oplus A_2\oplus A_5\oplus A_6\oplus A_9\oplus A_{10}\oplus A_{13}\oplus A_{14}=0\oplus 1\oplus 0\oplus 0\oplus 0\oplus 0\oplus 0\oplus 0\oplus 1=1$$

$$S_2 = A_3 \oplus A_4 \oplus A_5 \oplus A_6 \oplus A_{11} \oplus A_{12} \oplus A_{13} \oplus A_{14} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$S_3 = A_7 \oplus A_8 \oplus A_9 \oplus A_{10} \oplus A_{11} \oplus A_{12} \oplus A_{13} \oplus A_{14} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

 $1110_2 = 14$

Ошибка в бите 13: 0 вместо 1

Исправленное сообщение $B = 001110011000110_2$

Содержание сообщения: $I = B_2 \ B_4 \ B_5 \ B_6 \ B_8 \ B_9 \ B_{10} \ B_{11} \ B_{12} \ B_{13} \ B_{14} = 11001000110_2$

Задание 8

Количество информационных разрядов в сообщении і=1048

Пусть г - количество проверочных разрядов кода Хэмминга,

k - коэффициент избыточности

$$2^{r} \ge r + i + 1$$

 $2^{r} \ge 1049 \Rightarrow r \ge 11$
 $2^{11} > (1048 + 11 + 1) \Rightarrow r = 11$
 $k = \frac{r}{r+i} = \frac{11}{11+1048} \approx 0.0104$

Ответ: проверочных разрядов: 11,

коэффициент избыточности: 0.0104 = 1.04%

Вывод

В ходе выполнения работы были изучены помехоустойчивые коды, в частности особое внимание было уделено коду Хэмминга, его применение отработано на практике для сообщений с различной длиной и количеством бит коррекции, причем как ручным способом, так и при помощи написанного в ходе данной работы программного обеспечения. Полученные навыки крайне полезны на практике при выполнении как задач обеспечения целостности данных при хранении, так и при обмене информацией.

Библиография

- 1. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки: Пер. с англ. М.: Мир, 1976, 594 с.
- 2. Пенин П. Е., Филиппов Л. Н. Радиотехнические системы передачи информации. М.: Радио и Связь, 1984, 256 с.