4. Déterminer la solution particulière f de l'équation différentielle (E) qui prend la valeur - $\frac{5}{6}$ en 0.

EXERCICE 5

On désigne par y une fonction de la variable réelle x, définie et dérivable sur $[0;+\infty]$ qui vérifie l'équation différentielle (E): $y'+y=2xe^{-x}$ où y' désigne la fonction dérivée de la fonction y.

- 1. Déterminer le réel a tel que la fonction $g(x) = ax^2e^{-x}$ soit solution de l'équation différentielle (E)
- 2. Déterminer les solutions, sur [0;+ ∞ [, de l'équation différentielle (E_0) : y'+y=0
- 3. En déduire l'ensemble des solutions de l'équation différentielle (E).
- 4. Déterminer la solution particulière f de l'équation différentielle (E) qui vérifie la condition initiale f(-1)=2e.