(Justifique las respuestas)

Cuestión 1 (3 puntos)

Dados los siguientes lenguajes:

$$L_{1} = \{ax : x \in \{a, b\}^{*}\}$$

$$L_{2} = \{yb : y \in \{a, b\}^{*}\}$$

$$L_{3} = \{x \in \{a, b\}^{*} : aa \in Seg(x) \lor bb \in Seg(x)\}$$

$$L_{4} = \{ab\}^{+}$$

(a) Enuncie las primeras cinco palabras en orden canónico de L_4

Solución:

ab,abab,ababab,abababab,abababab

(b) Describa el lenguaje resultado de la operación $L_1 \cap L_2$

Solución:

La intersección de L_1 y L_2 resulta en el lenguaje que contiene las palabras que comienzan por a y acaban en b, esto es:

$$L_1 \cap L_2 = \{axb : x \in \{a, b\}^*\}$$

(c) ¿Es cierto que $(L_1 \cap L_2) - L_3 = L_4$?

Solución:

La operación $(L_1 \cap L_2) - L_3$ supone eliminar del lenguaje de palabras que comienzan por a y acaban en b $(L_1 \cap L_2)$ las palabras tales que no contienen los segmentos aa y bb. En efecto, la descripción de este lenguaje coincide con el lenguaje L_4 .

(d) Describa el lenguaje resultado de la operación $(ab)^{-1}L_1$

Solución:

Nótese que cualquier palabra predecida de ab da como resultado una palabra del lenguaje L_1 , por lo tanto, $(ab)^{-1}L_1 = \Sigma^*$.

Cuestión 2 (3 puntos)

Proporcione un AFD para los siguientes lenguajes:

(a) $L = \{x \in \{a, b\}^* : |x|_a = 1 \land |x|_b \ge 1\}$

(b) Lenguaje de palabras sobre el alfabeto $\Sigma = \{0,1\}$ que empiezan por 0 y contienen exáctamente un 1

Cuestión 3 $(2\frac{1}{2} \text{ puntos})$

Dado el siguiente autómata finito:

(a) Calcule la λ -clausura de cada estado del autómata

Solución:

 $\lambda - clausura(q_0) = \{q_0, q_2, q_3\}$ $\lambda - clausura(q_1) = \{q_1\}$ $\lambda - clausura(q_2) = \{q_0, q_2, q_3\}$ $\lambda - clausura(q_3) = \{q_0, q_2, q_3\}$

(b) Obtenga un AFD equivalente

Cuestión 4 $(1\frac{1}{2} \text{ puntos})$

¿Es regular el lenguaje $L = \{a^n b^m : n \neq m\}$

Solución:

Sea la familia infinita de palabras de la forma $\{a^i:i\geq 0\}$. Tomando un par cualquiera de palabras de la familia $u=a^n$ y $v=a^m$, donde $n\neq m$, puede verse que existe $w=b^n$ tal que:

$$a^n b^n \not\in L$$

 $a^m b^n \in L$

con lo que puede concluirse que L no es regular.