Zip-Tries: Simple Dynamic Data Structures for Strings

David Eppstein, Ofek Gila, Michael T. Goodrich, and Ryuto Kitagawa

University of California, Irvine

ACDA, 2025

- 1912 / 1959 / 1960 Trie (Thue, de la Braindais, Fredkin) [3, 5]
 - Query time: $\Theta(k)$

- 1912 / 1959 / 1960 Trie (Thue, de la Braindais, Fredkin) [3, 5]
 - Query time: $\Theta(k)$
- 1968 Compressed trie / radix tree (Morrison, Gwehenberger) [8]
 - Query time: O(k)

- 1912 / 1959 / 1960 Trie (Thue, de la Braindais, Fredkin) [3, 5]
 - Query time: $\Theta(k)$
- 1968 Compressed trie / radix tree (Morrison, Gwehenberger) [8]
 - Query time: $\mathcal{O}(k)$
- 2010+ Dynamic z-fast tries, packed compact tries, etc. [1, 10]
 - Query time: $O(k/w + \log k)$

- 1912 / 1959 / 1960 Trie (Thue, de la Braindais, Fredkin) [3, 5]
 - Query time: $\Theta(k)$
- 1968 Compressed trie / radix tree (Morrison, Gwehenberger) [8]
 - Query time: $\mathcal{O}(k)$
- 2010+ Dynamic z-fast tries, packed compact tries, etc. [1, 10]
 - Query time: $O(k/w + \log k)$
 - Very fast, very complex

- 1912 / 1959 / 1960 Trie (Thue, de la Braindais, Fredkin) [3, 5]
 - Query time: $\Theta(k)$
- 1968 Compressed trie / radix tree (Morrison, Gwehenberger) [8]
 - Query time: $\mathcal{O}(k)$
- 2010+ Dynamic z-fast tries, packed compact tries, etc. [1, 10]
 - Query time: $O(k/w + \log k)$
 - Very fast, very complex
 - Lots of branching, $\mathcal{O}(k/w)$

- Meanwhile...
- 1989 Skip list (Pugh) [9]

- Meanwhile...
- 1989 Skip list (Pugh) [9]
- 2018 Zip tree (Tarjan, Levy, Timmel) [11]
 - Flat-out better than skip lists
 - Only $\mathcal{O}(\log \log n)$ bits metadata per node

- Meanwhile...
- 1989 Skip list (Pugh) [9]
- 2018 Zip tree (Tarjan, Levy, Timmel) [11]
 - Flat-out better than skip lists
 - Only $\mathcal{O}(\log \log n)$ bits metadata per node
- 2023 Zip-zip tree (Gila, Goodrich, Tarjan) [6]
 - Flat-out better than zip trees

- Meanwhile...
- 1989 Skip list (Pugh) [9]
- 2018 Zip tree (Tarjan, Levy, Timmel) [11]
 - Flat-out better than skip lists
 - Only $\mathcal{O}(\log \log n)$ bits metadata per node
- 2023 Zip-zip tree (Gila, Goodrich, Tarjan) [6]
 - Flat-out better than zip trees
- ✓ Simple, practical, and efficient

- Meanwhile...
- 1989 Skip list (Pugh) [9]
- 2018 Zip tree (Tarjan, Levy, Timmel) [11]
 - Flat-out better than skip lists
 - Only $\mathcal{O}(\log \log n)$ bits metadata per node
- 2023 Zip-zip tree (Gila, Goodrich, Tarjan) [6]
 - Flat-out better than zip trees
- ✓ Simple, practical, and efficient

- Meanwhile...
- 1989 Skip list (Pugh) [9]
- 2018 Zip tree (Tarjan, Levy, Timmel) [11]
 - Flat-out better than skip lists
 - Only $\mathcal{O}(\log \log n)$ bits metadata per node
- 2023 Zip-zip tree (Gila, Goodrich, Tarjan) [6]
 - Flat-out better than zip trees
- Simple, practical, and efficient
- \checkmark Low, $\mathcal{O}(\log n)$ branching...
- 21 String keys? (2,20)(3,13)29 (1,26)(1,49)(1,38)(0,33) (-8) 16 (0,2)(0.31)(0,21)(1,1)-19 22 52 (0,1)(0.46)(0,23)(0,13)

12

(3,31)

• Many structures for 1D keys...

• Many structures for 1D keys... k-D keys?

- Many structures for 1D keys...k-D keys?
- Naively: $\mathcal{O}(\mathcal{B}(n))$ search $\to \mathcal{O}(k \times \mathcal{B}(n))$

- Many structures for 1D keys... k-D keys?
- Naively: $\mathcal{O}(\mathcal{B}(n))$ search $o \mathcal{O}(k \times \mathcal{B}(n))$
- Grossi and Italiano [7] (2002), $\mathcal{O}(k + \mathcal{B}(n))$

- Many structures for 1D keys... k-D keys?
- Naively: $\mathcal{O}(\mathcal{B}(n))$ search $o \mathcal{O}(k \times \mathcal{B}(n))$
- Grossi and Italiano [7] (2002), $\mathcal{O}(k + \mathcal{B}(n))$
 - Pointers to lexical predecessor and successor

- Many structures for 1D keys... k-D keys?
- Naively: $\mathcal{O}(\mathcal{B}(n))$ search $\to \mathcal{O}(k \times \mathcal{B}(n))$
- Grossi and Italiano [7] (2002), $\mathcal{O}(k + \mathcal{B}(n))$
 - Pointers to lexical predecessor and successor
 - Longest Common Prefix (LCP)

• Avoid unnecessary comparisons, $\mathcal{O}(k + \mathcal{B}(n))$

- Avoid unnecessary comparisons, $\mathcal{O}(k + \mathcal{B}(n))$
- ▼ Not 'best' in theory

- Avoid unnecessary comparisons, $\mathcal{O}(k + \mathcal{B}(n))$
- ▼ Not 'best' in theory
- ✓ Simple, practical, & efficient [2]

- Avoid unnecessary comparisons, $\mathcal{O}(k + \mathcal{B}(n))$
- Not 'best' in theory
- ✓ Simple, practical, & efficient [2]
- \checkmark Branching can be low, $\mathcal{O}(\log n)$ or $\mathcal{O}\left(\frac{\log n}{\log\log n}\right)$ [4]

- Avoid unnecessary comparisons, $\mathcal{O}(k + \mathcal{B}(n))$
- ▼ Not 'best' in theory
- ✓ Simple, practical, & efficient [2]
- $\stackrel{\checkmark}{\square}$ Branching can be low, $\mathcal{O}(\log n)$ or $\mathcal{O}\left(\frac{\log n}{\log\log n}\right)$ [4]
 - Parallel comparisons?

- Best way to find LCP?
- k = |s| = 38

- # computations: 0
- # branching: 0

- Best way to find LCP?
- k = |s| = 38

- # computations: 0
- # branching: 0

- Best way to find LCP?
- k = |s| = 38

- # computations: 1
- # branching: 0

- Best way to find LCP?
- k = |s| = 38

- # computations: 2
- # branching: 0

- Best way to find LCP?
- k = |s| = 38

- # computations: 3
- # branching: 0

- Best way to find LCP?
- k = |s| = 38

- # computations: 4
- # branching: 0

- Best way to find LCP?
- k = |s| = 38

- # computations: 5
- # branching: 0

- Best way to find LCP?
- k = |s| = 38

- # computations: 6
- # branching: 0

- Best way to find LCP?
- k = |s| = 38

- # computations: 6
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTA}\mathbf{GCTACAACGAGCTGGTCAGTAACGAGCTGGG}$

- Best way to find LCP?
- k = |s| = 38

- # computations: 7
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGGu = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG}$

- Best way to find LCP?
- k = |s| = 38

- # computations: 8
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTACv = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 9
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGGu = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCT}$ ACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 10
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTA}_{\square} CAACGAGCTGGTCAGTAACGAGCTGGG$

- Best way to find LCP?
- k = |s| = 38

- # computations: 11
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTAC}$ AACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 12
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACA}$ ACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 13
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG}$

- Best way to find LCP?
- k = |s| = 38

- # computations: 14
- # branching: 1

 $s = \mathbf{GGCTAGCTACAAC} \mathsf{GAGCTGGGCAGCAGCTAGTAGGG}$

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAAC}$ GAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 15
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACG}$ AGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 16
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGA}\mathbf{GCTGGTCAGTAACGAGCTGGG}$

- Best way to find LCP?
- k = |s| = 38

- # computations: 17
- # branching: 1

 $s = \mathbf{GGCTAGCTACAACGAG}$ CTGGGCAGCAGCTAGTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGCTGGGCTGGG}$

- Best way to find LCP?
- k = |s| = 38

- # computations: 18
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGC} \mathsf{TGGTCAGTAACGAGCTGGG}$

- Best way to find LCP?
- k = |s| = 38

- # computations: 19
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGCT}$ GGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 20
- # branching: 1

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGCTGGG}$

- Best way to find LCP?
- k = |s| = 38

- # computations: 21
- # branching: 1

 $s = \mathbf{GGCTAGCTACAACGAGCTGG}$ CAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGCTGG}$ TCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 23
- # branching: 1

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGCTGGT}^{\mathsf{T}} \mathsf{CAGTAACGAGCTGGG}$

- Best way to find LCP?
- k = |s| = 38

- # computations: 23
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 23
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 24
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 25
- # branching: 2

 $s = \mathbf{GGCTAGCTACAACGAGCTGGGCA}$ CAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 26
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 27
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 28
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 29
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 30
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 31
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 32
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 33
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

 $v = \mathbf{GGCTAGCTACAACGAGCTGGT}$ CAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 34
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 35
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 36
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 37
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 38
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 39
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 40
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

• # computations = k + # branching

- Best way to find LCP?
- k = |s| = 38

- # computations: 40
- # branching: 2

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG
u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 40
- # branching: 2
- # computations = k + # branching
- \checkmark # computations = $\mathcal{O}(k + \# \text{ branching})$

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

Naive Parallel LCP

- Best way to find LCP?
- k = |s| = 38

- # computations: 0
- # branching: 0
- # steps: 0

$$s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG$$

 $u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC$

Naive Parallel LCP

- Best way to find LCP?
- k = |s| = 38

- # computations: 33
- # branching: 0
- # steps: 1

$$s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG$$
 $u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC$
33

Naive Parallel LCP

- Best way to find LCP?
- k = |s| = 38

- # computations: 33
- # branching: 1
- # steps: 1

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG
```

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 64
- # branching: 1
- # steps: 2

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
```

31

- Best way to find LCP?
- k = |s| = 38

- # computations: 64
- # branching: 2
- # steps: 2

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG
u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG
```

- Best way to find LCP?
- k = |s| = 38

- # computations: 82
- # branching: 2
- # steps: 3

18

- Best way to find LCP?
- k = |s| = 38

- # computations: 82
- # branching: 2
- # steps: 3

$$\checkmark$$
 # steps = # branching + 1 = # comparisons

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

18
```

- Best way to find LCP?
- k = |s| = 38

- # computations: 82
- # branching: 2
- # steps: 3

$$\checkmark$$
 # steps = # branching + 1 = # comparisons

☐ # computations?

18

- Best way to find LCP?
- k = |s| = 38

- # computations: 82
- # branching: 2
- # steps: 3

$$\checkmark$$
 # steps = # branching + 1 = # comparisons

18

- Best way to find LCP?
- k = |s| = 38

- # computations: 0
- # branching: 0
- # steps: 0
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$

$$s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG$$

 $u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC$

- Best way to find LCP?
- k = |s| = 38

- # computations: 13
- # branching: 0
- # steps: 1
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$

$$s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG$$
 $u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC$
13

- Best way to find LCP?
- k = |s| = 38

- # computations: 13
- # branching: 1
- # steps: 1
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$

- $s = \mathbf{GGCTA}\mathbf{GCTACAACGAGCTGGGCAGCAGCTAGTAGGG}$
- u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
- v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 26
- # branching: 1
- # steps: 2
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
```

- Best way to find LCP?
- k = |s| = 38

- # computations: 39
- # branching: 1
- # steps: 3
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
```

13

- Best way to find LCP?
- k = |s| = 38

- # computations: 39
- # branching: 2
- # steps: 3
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$

- s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGu = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
- v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
- y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 52
- # branching: 2
- # steps: 4
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG
u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG
13
```

- Best way to find LCP?
- k = |s| = 38

- # computations: 57
- # branching: 2
- # steps: 5
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGGU = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG
```

- Best way to find LCP?
- k = |s| = 38

- # computations: 57
- # branching: 2
- # steps: 5
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$
- ☐ # steps?

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 57
- # branching: 2
- # steps: 5
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$
- \checkmark # steps? 2 × # comparisons = \checkmark (# branching)

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGGG
```

- Best way to find LCP?
- k = |s| = 38

- # computations: 57
- # branching: 2
- # steps: 5
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$
- \checkmark # steps? 2 × # comparisons = \bigcirc (# branching)
- ☐ # computations?

s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

- Best way to find LCP?
- k = |s| = 38

- # computations: 57
- # branching: 2
- # steps: 5
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$
- ✓ # steps? $2 \times \#$ comparisons = $\mathcal{O}(\# \text{ branching})$ ✓ # computations? $\frac{k}{\# \text{ comparisons}} \times \# \text{ steps} = \mathcal{O}(k)$

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG
```

- Best way to find LCP?
- k = |s| = 38

- # computations: 57
- # branching: 2
- # steps: 5
- Only compare $\frac{k}{\# \text{ comparisons}} = 13 \text{ characters?}$
- ✓ # steps? $2 \times \#$ comparisons = $\mathcal{O}(\# \text{ branching})$ ✓ # computations? $\frac{k}{\# \text{ comparisons}} \times \# \text{ steps} = \mathcal{O}(k)$
- What if LCP $\ll k$?
- s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 0
- # branching: 0
- # steps: 0
- Double and halve # compared characters

$$s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG$$

 $u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC$

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 1
- # branching: 0
- # steps: 1
- Double and halve # compared characters

$$s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG$$

 $u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC$

- Best way to find LCP?
- k = |s| = 38
- Should be *LCP-aware*

- # computations: 3
- # branching: 0
- # steps: 2
- Double and halve # compared characters

$$s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG$$

 $u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC$

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 7
- # branching: 1
- # steps: 3
- ullet Double and halve # compared characters

$$s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG$$

 $u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC$

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 7
- # branching: 1
- # steps: 3
- Double and halve # compared characters

```
s = \mathbf{GGCTA} \mathbf{GCTA} \mathbf{GAGCTGGGCAGCAGCTAGTAGTAGG}
u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
```

V = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 9
- # branching: 1
- # steps: 4
- \bullet Double and halve # compared characters

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
```

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 13
- # branching: 1
- # steps: 5
- Double and halve # compared characters

$$s = GGCTAGCTACA$$
ACGAGCTGGGCAGCAGCTAGTAGG $u = GGCTAACTACA$ ACGAGCTGGCGTTGTGAGCTAC $v = GGCTAGCTACA$ ACGAGCTGGTCAGTAACGAGCTGGG

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 21
- # branching: 1
- # steps: 6
- Double and halve # compared characters

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGGU = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
v = GGCTAGCTACAACGAGCTGGGTAACGAGCTGGG
```

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 37
- # branching: 2
- # steps: 7
- Double and halve # compared characters

```
s = GGCTAGCTACAACGAGCTGGGCAGCTAGTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
```

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 37
- # branching: 2
- # steps: 7
- Double and halve # compared characters

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG
```

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

y = **GGCTAGCTACAACGAGCTGG**GCAGCAGCTAGTAGTAGG

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 45
- # branching: 2
- # steps: 8
- Double and halve # compared characters

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG
```

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 55
- # branching: 3
- # steps: 9
- Double and halve # compared characters

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGGG

10
```

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 55
- # branching: 3
- # steps: 9
- Double and halve # compared characters
- ☐ # steps?

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG
```

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 55
- # branching: 3
- # steps: 9
- Double and halve # compared characters

```
\checkmark # steps? \log \ell + 2 \times \# branching = \log \ell + \mathcal{O}(\# branching)
```

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG
u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG
```

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 55
- # branching: 3
- # steps: 9
- Double and halve # compared characters
- \checkmark # steps? $\log \ell + 2 \times \#$ branching = $\log \ell + \mathcal{O}(\#$ branching)
- ☐ # computations?
- s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG
- u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
- v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
- y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

- Best way to find LCP?
- k = |s| = 38
- Should be LCP-aware

- # computations: 55
- # branching: 3
- # steps: 9
- Double and halve # compared characters
- \checkmark # steps? $\log \ell + 2 \times \#$ branching = $\log \ell + \mathcal{O}(\#$ branching)
- \checkmark # computations? $2\ell + \#$ branching = $\mathcal{O}(\ell + \#$ branching)
- s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG
 u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC
 v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG
- y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG

LCP Overview

• Subsequent LCP calculations

Subsequent LCP calculations

Sequential:

Subsequent LCP calculations

Sequential:

Parallel:

```
! # computations (work): \mathcal{O}(k + \# \text{ branching})
! # steps (time): \mathcal{O}(\# \text{ branching})
```

Subsequent LCP calculations

Sequential:

Parallel:

• LCP-aware Parallel:

```
# computations (work): \mathcal{O}(\ell + \# \text{ branching})
# steps (time): \log \ell + \mathcal{O}(\# \text{ branching})
```

Subsequent LCP calculations

Sequential:

Parallel:

LCP-aware Parallel:

```
# computations (work): \mathcal{O}(\ell + \# \text{ branching})
# steps (time): \log \ell + \mathcal{O}(\# \text{ branching})
```

- Zip-trie: $\mathcal{O}(\log n)$ branching
- Parallel String B-Tree: $\mathcal{O}(\log_B n) = \mathcal{O}(\frac{\log n}{\log\log n})$ branching

- Requirement: LCP length *never* decreases
- How?

```
s = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGG

u = GGCTAACTACAACGAGCTGGCGTTGTGAGCTAC

v = GGCTAGCTACAACGAGCTGGTCAGTAACGAGCTGGG

y = GGCTAGCTACAACGAGCTGGGCAGCAGCTAGTAGTAGG
```

- Requirement: LCP length *never* decreases
- How? LCP length metadata & pointers

- Requirement: LCP length never decreases
- How? LCP length metadata & pointers
- Space usage?

- Requirement: LCP length never decreases
- How? LCP length metadata & pointers
- Space usage? $-\mathcal{O}(\log \max k) + \text{pointers}$

- Requirement: LCP length never decreases
- How? LCP length metadata & pointers
- Space usage? $-\mathcal{O}(\log \max k) + \text{pointers}$
- Zip trie: log log bits of metadata

- Requirement: LCP length *never* decreases
- How? LCP length metadata & pointers
- Space usage? $\mathcal{O}(\log \max k) \pm \text{pointers}$
- Zip trie: log log bits of metadata

- Zip tries require LCP length metadata
- Max LCP length is max $k \leftrightarrow \log(\max k)$ bits

- Zip tries require LCP length metadata
- Max LCP length is max $k \leftrightarrow \log(\max k)$ bits
- **Goal:** Use only $\mathcal{O}(\log \log(\max k))$ bits of metadata

- Zip tries require LCP length metadata
- Max LCP length is max $k \leftrightarrow \log(\max k)$ bits
- **Goal:** Use only $\mathcal{O}(\log\log(\max k))$ bits of metadata
- We can only represents $\mathcal{O}(\log(\max k))$ values!

- Zip tries require LCP length metadata
- Max LCP length is max $k \leftrightarrow \log(\max k)$ bits
- **Goal:** Use only $\mathcal{O}(\log \log(\max k))$ bits of metadata
- We can only represents $\mathcal{O}(\log(\max k))$ values!
- Which values to pick?

- Zip tries require LCP length metadata
- Max LCP length is max $k \leftrightarrow \log(\max k)$ bits
- **Goal:** Use only $\mathcal{O}(\log\log(\max k))$ bits of metadata
- We can only represents $\mathcal{O}(\log(\max k))$ values!
- Which values to pick? see paper!

Results

Lemma

A data structure, \mathcal{D}_S , spending $\mathcal{O}(\ell + A(n))$ time on comparisons using exact LCP lengths will spend at most $\mathcal{O}(\ell)$ additional time using approximate LCP lengths.

Theorem

Let ℓ be the length of the longest common prefix between a string key x of length k, and the stored keys in a parallel zip-trie, T. T can perform prefix search, predecessor/successor queries, and update operations on x in $\mathcal{O}(\log n)$ span and $\mathcal{O}(\frac{k}{\alpha} + \log n)$ work under the practical PRAM model, or alternatively in $\mathcal{O}(\log \frac{\ell}{\alpha} + \log n)$ span and $\mathcal{O}(\frac{\ell}{\alpha} + \log n)$ work.

• https://github.com/ofekih/ZipAndSkipTries

Results – Parallel String B-Tree

Theorem

By setting $B = \log n$, a parallel string B-tree can perform prefix search in $\mathcal{O}(\frac{\log n}{\log \log n})$ span and $\mathcal{O}(\frac{k}{\alpha} + \log^2 n)$ work in the practical CRCW PRAM model. Operations that return m keys can be done in the same span and in $\mathcal{O}(m)$ additional work.

Theorem

A parallel string B-tree can perform prefix search in $\mathcal{O}(\log_B n)$ I/O span and $\mathcal{O}(\frac{k}{\alpha B} + \log_B n)$ I/O work in the practical CRCW PEM model. Operations that return m keys can be done in the same span and in $\mathcal{O}(m/B)$ additional I/O work.

Open Problems

- Concurrent updates
- Compression techniques, e.g., DNA-specific
- Update operations in the string B-tree
- Reduce gap between RAM and PRAM work for string B-tree

References I

- D. Belazzougui, P. Boldi, and S. Vigna, *Dynamic z-fast tries*, in String Processing and Information Retrieval, E. Chavez and S. Lonardi, eds., Berlin, Heidelberg, 2010, Springer Berlin Heidelberg, pp. 159–172.
- P. CRESCENZI, R. GROSSI, AND G. F. ITALIANO, *Search data structures for skewed strings*, in International Workshop on Experimental and Efficient Algorithms, Springer, 2003, pp. 81–96.
- R. DE LA BRIANDAIS, File searching using variable length keys, in Papers Presented at the the March 3-5, 1959, Western Joint Computer Conference, IRE-AIEE-ACM '59 (Western), New York, NY, USA, Mar. 1959, Association for Computing Machinery, pp. 295–298.
- P. FERRAGINA AND R. GROSSI, The string b-tree: A new data structure for string search in external memory and its applications, Journal of the ACM (JACM), 46 (1999), pp. 236–280.

References II

- E. Fredkin, *Trie memory*, sep 1960.
- O. GILA, M. T. GOODRICH, AND R. E. TARJAN, Zip-zip Trees: Making Zip Trees More Balanced, Biased, Compact, or Persistent, May 2024.
- R. GROSSI AND G. F. ITALIANO, Efficient techniques for maintaining multidimensional keys in linked data structures, in Automata, Languages and Programming: 26th International Colloquium, ICALP'99 Prague, Czech Republic, July 11–15, 1999 Proceedings, Springer, 2002, pp. 372–381.
- D. R. MORRISON, Patricia—practical algorithm to retrieve information coded in alphanumeric, J. ACM, 15 (1968), p. 514–534.
- W. Pugh, Skip lists: A probabilistic alternative to balanced trees, Commun. ACM, 33 (1990), pp. 668–676.

References III

R. E. TARJAN, C. C. LEVY, AND S. TIMMEL, *Zip Trees*, ACM Trans. Algorithms, 17 (2021), pp. 1–12.

pp. 1785-1793.