

SIR model

Ссылки по теме

<u>Коротко на habr</u>

<u>Подробно на Wikipedia</u>

<u>Поиграться в симулятор эпидемии</u>

<u>Функция Ламберта для вычислений</u>

Модель SIR — это простая модель эпидемии инфекционного заболевания большой популяции, разработанная Кермаком и МакКендриком. Будем предполагать, что популяция состоит из трех типов особей, которые обозначаются буквами S, I и R. Все это функции времени t, и они изменяются в соответствии с системой дифференциальных уравнений.

S — число **уязвимых** людей (англ. susceptibles), которые не инфицированы, но могут заразиться.

I — это количество инфицированных людей (англ. infectives). Эти люди болеют заболеванием и/или могут передавать его уязвимым людям.

R — количество **нулевых** особей (англ. *removed*). У них может быть болезнь, а может и не быть, но они не могут заразиться и не могут передать болезнь другим. У них может быть естественный иммунитет, или полученный иммунитет после болезни, или у них может быть болезнь, но они не способны ее передать (например, потому что они

могли быть помещены в изолятор), или они могли умереть. Математическая модель не делает различий между этими вариантами.

Модель, которую мы рассмотрим, предполагает достаточно короткий временной масштаб, чтобы рождениями и смертями (кроме смертей от этой болезни) можно было пренебречь.

Модель SIR

Будем считать, что в нашей модели в каждый момент времени каждый индивид контактирует с одним случайным индивидом в популяции.

Новые инфекции возникают в результате контакта между инфицированными и восприимчивыми людьми. В этой модели скорость возникновения новых инфицированных является некоторой положительной константой β , где β — вероятность заражения при контакте уязвимого и инфицированного человека. При возникновении новой инфекции зараженный индивид переходит из класса уязвимых в класс инфицированных. В нашей простой модели нет другого способа, которым люди могут войти или выйти из уязвимого класса, поэтому у нас есть наше первое дифференциальное уравнение:

$$\frac{d}{dt}S = -\beta I$$

скорость изменения количества уязвимых зависит только от количетва инфицированных, так же S строго убывает

Другой процесс, который может произойти, заключается в том, что инфицированные люди могут войти в нулевой класс с вероятностью γ . Таким образом, у нас есть два других дифференциальных уравнения:

$$\frac{d}{dt}R = \gamma I$$

скорость изменения количества нулевых зависит только от количетва инфицированных, они все время растут

$$rac{d}{dt}I = eta IS - \gamma I$$

скорость изменения количества инфицированных зависит только от них самих и количетва уязвимых, уязвимые становятся инфицированными

Некоторые вещи, на которые стоит обратить внимание:

Общая численность населения:

$$N = S + I + R$$

N постоянна, потому что:

$$rac{d}{dt}S + rac{d}{dt}I + rac{d}{dt}R = -eta IS + (eta IS - \gamma I) + \gamma I = 0$$

Для удобства выберем единицу населения так, чтобы общая численность населения составляла 1.

Если I=0, т. е. нет инфицированных, правые части всех трех уравнений равны 0, так что ничего не меняется. Чтобы сделать дело интересным, мы должны начать с некоторых инфекций, то есть I(0)>0.

Зачем нам все это?

Вот некоторые из вопросов, на которые мы хотели бы ответить:

Предположим, мы начнем с популяции, состоящей почти из всех уязвимых людей, плюс небольшое количество инфицированных. Значительно ли увеличится число инфицированных, что приведет к эпидемии, или болезнь исчезнет?

Если предположить, что эпидемия есть сейчас, чем она закончится? Останутся ли еще уязвимые, когда все закончится?

Как долго продлится эпидемия?

Первая проба

Прежде чем проводить какой-либо анализ, давайте попробуем провести некоторое численное моделирование. Выберем произвольные значения для параметров γ и β , начальные значения S, I и R в момент времени 0 и время окончания моделирования. На графике процесс будет отображаться для S(t) зеленым, I(t) красным и R(t) черным цветами.

Пусть
$$eta=0.35;\ \gamma=0.17;\ T=150$$
 (время конца анализа); $S(0)=0.99;\ I(0)=0.01;\ R(0)=0.0$ тогда получим в $T=150$ значения : $S(T)=0.187;\ I(T)\approx 0;\ R(T)=0.813$

Уязвимые и инфицированные

Модель SIR представляет собой систему из трех дифференциальных уравнений с тремя неизвестными функциями. Мы это еще не изучали. Ну и ладно! Сведем дифференциальное уравнение с тремя неизвестными к уравнению с одним дифференциальным

уравнением. Идея состоит в том, чтобы рассматривать I как функцию, зависящую от S. В соответствии с правилом цепочки:

4

$$rac{dI}{dS} = rac{rac{dI}{dt}}{rac{dS}{dt}} = rac{eta IS - \gamma I}{-eta I} = rac{\gamma}{eta S} - 1$$

Поскольку правая сторона зависит только от S, а не от I, для решения этого дифференциального уравнения все, что нам нужно сделать, это интегрировать:

$$I = rac{\gamma}{eta} ln(S) - S + C$$

где C — произвольная константа. Значение C можно найти, использовав начальное условие в момент T=0:

$$C=I(0)-rac{\gamma}{eta}ln(S(0))-S(0)$$

Можем выбрать значения $\beta=0.5$ и $\gamma=0.36$. Построим функцию зависимости I от S для различных значений C:

Обратите внимание, что, поскольку формулы отличаются только аддитивной константой C, все эти кривые равны, только немного подняты или опущены. Математически кривые распространяются как на отрицательные значения I, так и на положительные,

но нам не надо на них смотреть, поэтому мы отсекаем их, когда смотрим I=0. Кривая при I=0 действительно состоит из точек «равновесия»: если I=0 в нашей модели ничего не произойдет. Если начнем с точки на одной из этих кривых с I>0, с течением времени вы перемещаетесь по кривой влево (потому что $\dfrac{dS}{dt}<0$), в конечном итоге приближаясь к I=0 некоторому положительному значению S. Это должно произойти, так как на любом из этих кривых:

$$\lim_{S o 0}I=\lim_{S o 0}\left(rac{\gamma}{eta}\ln(S)-S+C
ight)=-\infty$$

Таким образом, ответ на **вопрос** (2) заключается в том, что эпидемия закончится при $I \to 0$ и S с некоторым положительным значением: да, всегда должно оставаться несколько **уязвимых**.

Чтобы увидеть, сколько их останется, мы должны найти значение $S < S_0$, которое удовлетворяет уравнению:

$$rac{\gamma}{eta} \ln(S) - S + C = 0$$

Мы не можем решить это уравнение элементарными методами из-за наличия как S, так и ln(S), но его можно решить численными методами, которыми мы с вами прекрасно владеем, или с помощью специальной функции W, называемой функцией **Ламберта**:

$$rac{-rac{Ceta}{\gamma}}{\gamma W(-rac{eta e}{\gamma})}$$

Пусть
$$eta=0.35;\; \gamma=0.17;\; S(0)=0.99;\; I(0)=0.01$$
 тогда : $\lim_{t o\infty}S(t)\approx 0.187$

Для ответа на **вопрос** (1) обратите внимание, что $\frac{dI}{dt}<0$ выполняется, если $\frac{dI}{dS}>0$, что произойдет, если $\beta S<\gamma$. Если это верно в момент T=0, это остается верным при $T\to\infty$, потому что S уменьшается.

С другой стороны, если $\beta S > \gamma$, то $\frac{dI}{dt} > 0$ и таким образом эпидемия "взлетает": количество зараженных увеличивается до тех пор, пока S не уменьшится до значения $\frac{\gamma}{\beta}$. Мы можем сказать, что то, что определяет, "взлетит" ли эпидемия зависит от: новых инфекций (по темпам δIS) и удалению инфекций (по темпам γI). Если вы хотите предотвратить эпидемию, вам необходимо обеспечить $\beta S < \gamma$. Например, можно попробовать уменьшить S путем иммунизации некоторой части населения. Не нужно иммунизировать всех, достаточно, чтобы выполнялось $\beta S < \gamma$. Или можно попытаться уменьшить β поощряя мытье рук.

Как долго?

Теперь для **вопроса** (3) мы должны вернуться к дифференциальному уравнению, включающему время. Вставляя формулу для I как функцию, зависящую от S в дифференциальное уравнение $\frac{dS}{dt}$, получим

$$rac{dS}{dt} = -eta IS = -eta (rac{\gamma}{eta} \ln(S) - S + C)S =
onumber \ = -\gamma S \ln(S) + eta S^2 - eta CS$$

Решим дифуру:

$$\int_{S(0)}^{S(T)} rac{dS}{-\gamma S \ln(S) + eta S^2 - eta CS} = \int_0^T dt = T$$

К сожалению, мы не знаем первообразную для левой стороны. Возможно ее вообще не существует. Но можно использовать численные методы.

Допустим, мы начнем с $I(0)=I_0$ (с некоторого небольшого положительного числа) и $S(0)=S_0$ с условием, что $\beta S>\gamma$. Таким образом:

$$C = I_0 - rac{\gamma}{eta} \ln(S_0) + S_0$$

Эпидемия "взлетит", а затем в конце концов исчезнет. Однако мы никогда не дойдем до I=0, просто подойдем к этому в пределе при $t\to\infty$. Так как же мы можем посчитать "конец" эпидемии? Допустим, все закончится, когда I вернется к значению I_0 . Это произойдет, когда $S=S_1$, где

$$I_0-C=rac{\gamma}{eta}\ln(S_1)-S_1=rac{\gamma}{eta}\ln(S_0)-S_0$$

Мы можем решить эту проблему для S_1 , снова используя функцию **Ламберта** W. Как только мы получим это значение, мы используем его в качестве верхней конечной точки в интеграле, чтобы найти продолжительность эпидемии T. Посчитаем:

при
$$eta=0,35;\; \gamma=0,17;\; S(0)=0.99;\; I(0)=0.01$$
 получим $Tpprox 63$

Зомби апокалипсис

Было рассмотрено множество вариантов этой базовой модели SIR. Один интересный случай, опубликованный в 2009 году Филиппом Мунцем, Иоаном Худеа, Джо Имадом и Робертом Дж. Смитом, является моделью зомби-апокалипсиса. В своей простейшей форме система дифференциальных уравнений имеет вид:

$$rac{dS}{dt} = -eta SZ \ rac{dZ}{dt} = (eta - lpha)SZ + \lambda R \ rac{dR}{dt} = lpha SZ - \lambda R \
ackspace{2mm}$$

Здесь S — уязвимые (обычные люди), Z — зомби, а R — мертвы (но не навсегда!). Столкновения между зомби и живыми людьми могут привести к тому, что человек станет зомби (отсюда $-\beta SZ$ в $\frac{dS}{dt}$ и βSZ в $\frac{dZ}{dt}$) или зомби станет мертвым (отсюда αSZ и $-\alpha SZ$).

Мертвые иногда спонтанно превращаются в зомби (отсюда λR и $-\lambda R$). Результат печален: если только S и R не начинаются с 0, все население должно превратиться в зомби при $t\to\infty$. Смоделируем:

Пусть
$$lpha=0.4;\ eta=0.1;\ \lambda=0.02;$$
 $S(0)=0.99;\ Z(0)=0.01;\ R(0)=0;\ T=100$

Помимо модели зомби-апокалипсиса существует еще множество моделей, которые отличаются наличием других групп людей: с инкубационным периодом, с разделением на смерть и выздоровление, без нулевой группы и так далее. Но все они основаны на модели SIR и системе дифференциальных уравнений.

Выводы

Ответы на наши вопросы еще раз:

Значительно ли увеличится число инфицированных, что приведет к эпидемии, или болезнь исчезнет?

Удивительно, но все зависит от значений β и γ .

Если $\beta S_0 < \gamma$, то при $t \to \infty$ получим $I \to 0$ и какое-то положительное значение S. Останутся живые не зараженные люди!

Если $eta S_0 > \gamma$, то люди будут заражаться быстрее, чем умирать

или выздоравливать. По итогу получим S o 0 при $t o \infty$. Останутся живые переболевшие люди.

Если предположить, что эпидемия есть сейчас, чем она закончится? Останутся ли еще уязвимые, когда все закончится?

Ответ вытекает из предыдущего вопроса. Можно считать, что эпидемия закончится при $I o I_0 o 0$. Получим S o 0, но в то же время S > 0.

Как долго продлится эпидемия?

Все опять зависит от значений β и γ . При большом β и маленьком γ все быстро заразятся и будут долго умирать или выздоравливать, значит эпидемия будет длиться дольше. При маленьком β и большом γ все заразившиеся быстро умрут или выздоровеют, а значит эпидемия быстро закончится.

Эту модель можно перенести и на Россию. За I(0) будем считать инфицированных, за R(0) привитых, все остальные — S(0). Коэффициент β — количество заболевающих в день, коэффициент γ — количество умерших и выздоровевших в день.

Можете побаловаться с моделью сами. Прививайтесь, носите маски и целуйтесь только с вакцинированными людьми!