CSCE 465 Computer & Network Security

Instructor: Abner Mendoza

Authentication (I)

User Authentication

Roadmap

Basic concept

- Password authentication
- The S/Key Protocol
- Biometrics
- Authentication hardware

Authentication

- Authentication is the process of reliably verifying certain information.
- Examples
 - User authentication
 - Allow a user (supplicant) to prove his/her identity to another entity (verifier, e.g., a system, a device).
 - Message authentication
 - Verify that a message has not been altered without proper authorization.
- A related concept
 - identification

Identification

- Identification is a process through which one ascertains the identity of another person or entity.
- Authentication and identification are different.
 - Identification requires that the verifier check the information presented against all the entities it knows about,
 - Authentication requires that the information be checked for a single, previously identified, entity.
 - Identification must, by definition, uniquely identify a given entity,
 - Authentication does not necessarily require uniqueness.

User Authentication Can Be Based On...

- What the user knows
 - passwords, personal information, a key, a credit card number, etc.
- Where the user is or can be reached
 - email address, IP address, ...
- Physical characteristics of the user
 - fingerprints, voiceprint, signature dynamics, iris pattern, DNA, etc.
- What the user has in their possession
 - smart card, (physical) key, USB token, ...
- Which of the above is best? Best in what way?

Password-based authentication

- Use a secret quantity (the password) that the prover states to prove he/she knows it.
- Threat: password guessing/dictionary attack

Address-Based User Authentication

- Associates identity with network address or email address
 - assume the identity of the source can be inferred based on the network address from which packets arrive
 - used by many web services
- Several early OS functions and tools worked this way
 - Berkeley rtools (rsh, rlogin, etc)
 - /etc/hosts.equiv file
 - List of computers
 - Per user .rhosts file
 - List of <computer, account>
- Benefits?
- Threat?
 - Spoof of network address
 - Not authentication of source addresses

Crypto-Based Authentication

- Basic idea: user performs a requested cryptographic operation on a value (a challenge) that the verifier supplies
- Usually based on (reduced to) the knowledge of a key (secret key or private key)
- Examples: RSA, zero knowledge proofs, ...
- We'll look at such protocols in more detail later

Password Authentication

Password-Based User Authentication

- User demonstrates knowledge of a secret value to authenticate
 - most common method of user authentication

Threats to password-based authentication?

Some Issues for Password Systems

- A password should be easy to remember but hard to guess
 - that's difficult to achieve!
- Some questions
 - what makes a good password?
 - where is the password stored, and in what form?
 - how is knowledge of the password verified?

Password Storage

- Storing unencrypted passwords in a file is high risk
 - compromising the file system compromises all the stored passwords
- Better idea: use the password to compute a oneway function (e.g., a hash, an encryption), and store the output of the one-way function
- When user inputs the requested password...
 - 1. compute its one-way function
 - 2. compare with the stored value

Attacks on Passwords

- Suppose passwords could be up to 9 characters long
- This would produce 10¹⁸ possible passwords; 320,000 years to try them all at 10 million a second!
- Unfortunately, not all passwords are equally likely to be used

Example of a Study

- In a sample of over 3000 passwords:
 - 500 were easily guessed versions of dictionary words or first name / last name
 - 86% of passwords were easily guessed

Length in	1	2	3	4	5	6
characters						
Number of	15	72	464	477	706	605
passwords						(lower
						case only)

Common Password Choices

- Pet names
- Common names
- Common words
- Dates
- Variations of above (backwards, append a few digits, etc.)

Dictionary Attacks

- Attack 1 (online):
 - Create a dictionary of common words and names and their simple transformations
 - Use these to guess the password

Dictionary

Dictionary Attacks (Cont'd)

Attack 2 (offline):

Dictionary

- Usually F is public and so is the password file
 - In Unix, F is crypt, and the password file is /etc/passwd.
- Compute F(word) for each word in the dictionary
- A match gives the password

Password file

Dictionary Attacks (Cont'd)

- Attack 3 (offline):
 - To speed up search, pre-compute F(dictionary)
 - A simple look up gives the password

Password Salt

- To make the dictionary attack a bit more difficult
- Salt is a n-bit number between 0 and 2ⁿ
- Derived from, for example, the system clock and the process identifier

Password Salt (Cont'd)

Storing the passwords

Password file

Password Salt (Cont'd)

Verifying the passwords

Password file

Does Password Salt Help?

- Attack 1?
 - Without Salt
 - With Salt

Dictionary

Does Password Salt Help?

- Attack 2?
 - Without Salt
 - With Salt

Dictionary

Password file

Does Password Salt Help?

- Attack 3?
 - Without Salt
 - With Salt

Example: Unix Passwords

- Keyed password hashes are stored, with twocharacter (16 bit) salt prepended
 - password file is publicly readable
- Users with identical passwords but different salt values will have different hash values

Password Guidelines For Users

- 1. Initial passwords are system-generated, have to be changed by user on first login
- 2. User must change passwords periodically
- 3. Passwords vulnerable to a dictionary attack are rejected
- 4. User should not use same password on multiple sites
- 5. etc. etc.

Other Password Attacks

Technical

- eavesdropping on traffic that may contain unencrypted passwords (especially keystroke logging)
- "Trojan horse" password entry programs
- man-in-the-middle network attack
- "Social"
 - careless password handling or sharing
 - phishing

The S/Key Protocol

(A.K.A. Lamport's Hash)

Using "Disposable" Passwords

- Simple idea: generate a long list of passwords, use each only one time
 - attacker gains little/no advantage by eavesdropping on password protocol, or cracking one password
- Disadvantages
 - storage overhead
 - users would have to memorize lots of passwords!
- Alternative: the S/Key protocol
 - based on use of one-way (e.g. hash) function

S/Key Password Generation

- 1. Alice selects a password **x**
- 2. Alice specifies *n*, the number of passwords to generate
- 3. Alice's computer then generates a sequence

of passwords

$$- x_1 = H(\mathbf{x})$$

$$- x_2 = H(x_1)$$

$$- x_n = H(x_{n-1})$$

Generation... (cont'd)

- 4. Alice communicates (securely) to a server the last value in the sequence: x_n
- Key feature: no one knowing x_i can easily find an x_{i-1} such that H(x_{i-1}) = x_i
 - only Alice possesses that information

Authentication Using S/Key

Assuming server is in possession of x_i...

Is dictionary attack still possible?

Limitations

- Value of *n* limits number of passwords
 - need to periodically regenerate a new chain of passwords
- Does not authenticate server! Example attack:
 - 1. real server sends *i* to fake server, which is masquerading as Alice
 - 2. fake server sends i to Alice, who responds with x_{i-1}
 - 3. fake server then presents x_{i-1} to real server

Biometrics

Biometrics

- Relies upon physical characteristics of people to authenticate them
- Desired qualities
 - 1. uniquely identifying
 - 2. very difficult to forge / mimic
 - 3. highly accurate, does not vary
 - 4. easy to scan or collect
 - 5. fast to measure / compare
 - 6. inexpensive to implement
- Which of these are concerns for passwords?

Assessment

- Convenient for users (e.g., you always have your fingerprints, never have to remember them), but...
 - potentially troubling sacrifice of private information
 - no technique yet has all the desired properties

Example Biometric Technologies

- Signature / penmanship / typing style
- Fingerprints
- Palm geometry
- Retina scan
- Iris scan
- Face recognition
- Voice recognition

The Scorecard From One Study

Biometrics	Univer- sality	Unique- ness	Perma- nence	Collect- ability	Perfor- mance	Accept- ability	Circum- vention
Face	Н	L	M	Н	L	Н	L
Fingerprint	M	Н	Н	M	Н	M	Н
Hand Geometry	M	М	M	Н	M	M	M
Keystroke Dynamics	L	L	L	M	L	M	М
Hand vein	M	M	M	М	M	M	Н
Iris	Н	Н	Н	М	Н	L	Н
Retina	Н	Н	M	L	Н	L	Н
Signature	L	L	L	Н	L	Н	L
Voice	M	L	L	M	L	Н	L
Facial Thermogram	Н	Н	L	Н	M	Н	Н
DNA H=High, M=Me	H dium, L=I	H .ow	Н	L	Н	L	L

Multifactor Authentication

- If one characteristic is pretty good, two or more characteristics should be better?
- Suppose true positive rate was AND of the two, and false positive rate was OR of the two...
 - TP = TP1 * TP2- FP = 1 - (1-FP1)*(1-FP2)
- Alternative: combine a biometric technique with passwords

Authentication Hardware (Tokens)

Tokens

- A token is a physical device that can be interfaced to the computer, and carries identifying information
- Types
 - passive tokens just store information
 - active tokens have processors and can perform cryptographic operations
- Examples
 - cards with magnetic strips
 - smart cards
 - USB storage devices
 - RFID tags

Design Issues for Tokens

- Cost
- Size
- Capabilities
- Robustness
- Resistance to tampering
- Usefulness if stolen / lost

An Example: Time Synchronized Tokens

- The token contains:
 - internal clock
 - display
 - a secret key
- Token computes a one-way function of current time+key, and displays that
 - this value changes about once per minute
- User reads this value and types it in to authenticate to the server
 - requires that server and token time stays synchronized

Another Example: Alladin eToken

API / standards	PKCS#11 v2.01, CAPI (Microsoft Crypto API), Siemens/Infineon APDU commands, PC/SC, X.509 v3 certificate storage, SSL v3, IPSec/IKE			
Security Algorithms	RSA 1024-bi	it / 2048-bit*, DES, 3DES, SHA1		
Power source	Battery, 5 ye	1:C. / : COMMICRORANGE? 21PJJKS47 BOB? COM		
LCD	6 characters	YOUR CUSTOMERS' SECRET IN TAXES? CLEAN ANTI-PHISHING SOLUTION OF THE PRISH OF THE P		
Data retention	10 years	YOUR CUSTOMERS' YOUR CUSTOMERS' DIGITALLY SIGNED TRANSACTIONS YOUR EMPLOYEE'S SECURE REMOTE ACCESS YOUR EMPLOYEE'S SECURE PASSWORD MANAGEMENT KEY YOUR SECURE EXTRANET ACCESS		
		YOUR LAPTOP SECURITY JULIA GREAT SEASICK? BLUETS		

Summary

- 1. Passwords are by far the most widely used form of authentication, despite numerous problems
- 2. Biometrics hold promise but are expensive, inconvenient, and compromise privacy
- Two factor authentication is commonly used for higher security
- 4. One-time passwords (S/Key) are attractive, especially if combined with hardware