ANDRESSA FARIA DIEGO NUNES FELIPE RODRIGUES SEBASTIÃO NETO

TRABALHO DE ALGORITMOS GENÉTICOS

Trabalho para obtenção de nota parcial, referente a disciplina de Sistemas Especialistas do professor Roberto Rocha.

:

UNIVERSIDADE DO VALE DO SAPUCAÍ POUSO ALEGRE – MG 2015

SUMÁRIO

Introdu	ução	3
2	CONTEXTO	4
3	CONSTRUÇÃO DO SOFTWARE	5
3.1	Criação inicial da população	5
3.2	Função de Avaliação	5
3.3	Métodos de seleção	
3.4	Elitismo	
3.5	Cruzamento e mutação	6
3.6	Diagrama de Classes	
4	RESULTADOS	8

INTRODUÇÃO

Neste trabalho será apresentada uma possível solução para uma empresa fictícia, a fim de otimizar a sua produção, combinando as habilidades dos profissionais com as máquinas a serem operadas. No decorrer deste trabalho serão mostrados maiores detalhes sobre o problema no qual este trabalho visa auxiliar.

2 CONTEXTO

Este trabalho consiste em desenvolver uma solução para uma empresa fictícia, a qual possui um determinado número de equipamentos para a produção de seu produto e uma quantidade equivalente de profissionais que desempenham habilidades pertinentes para a operação de cada máquina. Desta forma, é possível ter pessoas que possuam habilidades semelhantes, podendo operar a mesma máquina, neste caso, será preciso levar em consideração alguns fatores extras a fim de oferecer uma possibilidade de resolução satisfatória para esta situação. Tendo esses paradigmas como base, iniciou-se o desenvolvimento.

3 CONSTRUÇÃO DO SOFTWARE

O trabalho teve início com a definição do escopo do problema. A primeira restrição indica que o número de operadores deva ser igual ou maior que o número de máquinas disponíveis. Portanto, foram definido quatro tipos de máquinas. Os equipamentos do tipo 1 produzem 100 peças por hora, enquanto as ferramentas do tipo 2 produzem 200 peças em uma hora. Já as do tipo 3 fazem 300 peças por hora e as do tipo 4 criam 400 peças em uma hora de trabalho. A empresa possui oito equipamentos representados pela letra M, sendo assim, M1 é do tipo 1, M2 é do tipo 1, M3 tipo 2, M4 tipo 2, M5 tipo 3, M6 do tipo 3, M7 tipo 4 e M8 tipo 4. Cada operário possui uma determinada habilidade para cada máquina. A H0 significa que o funcionário não possui habilidade alguma em determinado equipamento. H1 implica que o trabalhador possui 40 por cento de habilidade, considerado regular. A terceira habilidade é o H2, onde o profissional é considerado bom, pois produz 80 por cento da produção da máquina. Por fim, o H3 determina que o operário produz 120 por cento, sendo considerado ótimo.

3.1 Criação inicial da população

Na classe denominada *ProductionIndividual* é feita a criação da população inicial, por meio dos métodos *getChromosomeList*, que busca os funcionários e suas habilidades para cada tipo de máquina e o método *mountChromosomeListToIndividual(chromosomeList)*, responsável por gerar o indivíduo de maneira aleatória, passando a lista de funcionários recebida por meio do método anterior . Essa população é criada tomando o cuidado de não se deixar repetir o mesmo funcionário para mais de uma máquina ou vice versa.

3.2 Função de Avaliação

Após a criação da população inicial, esta é então submetida a um processo de avaliação. Posterior a criação é feita a classificação, que consiste em calcular o valor dos indivíduos que compõem a população atual, realizada pelo método *calculateValue()*, presente na classe *ProductionIndividual*. A classificação também realiza a ordenação dos indivíduos de acordo com o seu resultado, desta forma os melhores são apresentados no inicio desta lista. O processo

de avaliação, também conhecido como função de aptidão, efetua o seu calculo com base na porcentagem de habilidade do individuo em relação a maquina a ser operada pelo mesmo.

3.3 Métodos de seleção

O método de seleção utilizado neste trabalho foi o método por classificação. A Seleção por Classificação primeiro classifica a população e então atribui a cada cromossomo um valor de adequação determinado pela sua classificação. O pior terá adequação igual a 1, o segundo pior 2 e assim por diante de forma que o melhor terá adequação igual a N (número de cromossomas na população).

3.4 Elitismo

Quando é criado uma nova população por cruzamento e mutação, geralmente há uma grande chance de perder os melhores cromossomos.

Elitismo é o nome do método que primeiro copia os melhores cromossomos (ou alguns poucos melhores cromossomos) para a nova população. O resto da população foi construída por Classificação. O elitismo pode aumentar rapidamente o desempenho do Algoritmo, pois previne a perda da melhor solução já encontrada.

3.5 Cruzamento e mutação

O cruzamento é realizado por meio de permutação onde o ponto de cruzamento único é selecionado e a permutação é copiada até no do primeiro pai até o ponto de cruzamento, daí o outro pai é rastreado e se o número ainda não estiver na descendência, é adicionado.

3.6 Diagrama de Classes

A seguir é apresentado o diagrama de classes correspondente ao desenvolvimento deste trabalho.

Figura 1 – Diagrama de Classes. Fonte: Elaborado pelos autores.

4 RESULTADOS

Neste capítulo são apresentados e discutidos os resultados obtidos por esta pesquisa e desenvolvimento do software.

A Figura a seguir apresenta os tipos de máquinas, a sua descrição e a quantidade referente a sua produção.

Tipos de máquinas (T):

Código	Descrição	Peças por hora
1	Tipo 1	100
2	Tipo 2	200
3	Tipo 3	300
4	Tipo 4	400

Figura 2 – Tipos de máquinas contendo o tempo de produção. Fonte: Elaborado pelos autores.

A seguir são apresentados os tipos de máquinas e os seus tipos.

Máquinas (M):

Código	Descrição	Tipo de máquina
1	Máquina 1	1
2	Máquina 2	1
3	Máquina 3	2
4	Máquina 4	2
5	Máquina 5	3.
6	Máquina <u>6</u>	3.
I	Máquina 7	4
8	Máquina <u>8</u>	4.

Figura 3 – Tipos de máquinas. Fonte: Elaborado pelos autores.

A seguir é apresentada uma figura que demonstra a habilidade que cada funcionário pode ter.

Habilidades (H):

Código	Descrição	Habilidade
0	Não possui habilidade	0%
1	Regular	40%
2	Bom	80%
3	Ótimo	120%

Figura 4 – Tabela de Habilidades. **Fonte:** Elaborado pelos autores.

A seguir é apresentada uma figura que demonstra a listagem de funcionários e suas habilidades em relação a cada máquina.

Funcionários (F):

Matrícula	Nome	Habilidades
100	Carlos	H0 para T1 - H1 para T2 H2 para T4 - H3 para T1
101	Henrique	H0 para T2 H1 para T4 H2 para T1 H3 para T3
102	Vanessa	H0 para T3 H1 para T1 H2 para T2 H3 para T4
103	Maria	H0 para T1 - H1 para T2 H2 para T4 - H3 para T3
104	Robson	H0 para T2 - H1 para T3 H2 para T1 - H3 para T4
105	Sônia	H0 para T3 - H1 para T1 H2 para T4 - H3 para T2
106	Marcelo	H0 para T1 - H1 para T3 H2 para T4 - H3 para T2
107	Rodrigo	H0 para T4 - H1 para T3 H2 para T2 - H3 para T1
108	Júlia	H0 para T3 - H1 para T2 H2 para T1 - H3 para T4
109	Jéferson	H0 para T1 H1 para T4 H2 para T2 H3 para T3

Figura 5 – Lista de Funcionários. Fonte: Elaborado pelos autores.

Os resultados trazem somente as melhores gerações geradas na execução do algoritmo. O primeiro teste foi realizado com 100 gerações e 10 populações para cada geração. Os resultados são demonstrados na figura 6.

1º geração - 2160 peças/hora

Matrícula funcionário	Nome funcionário	Código máquina	Nome máquina
103	Maria	5	Máquina 5
105	Sônia	3	Máquina 3
109	Jéferson	6	Máquina 6
102	Vanessa	7	Máquina 7
100	Carlos	2	Máquina 2
104	Robson	4	Máquina 4
108	Júlia	8	Máquina 8
107	Rodrigo	1	Máquina 1

Figura 6 – Primeiro Teste. Fonte: Elaborado pelos autores.

O segundo teste foi realizado com 1000 gerações e 40 populações para cada geração. Os resultados são demonstrados na figura 7.

1º geração - 1960 peças/hora

Matrícula funcionário	Nome funcionário	Código máquina	Nome máquina
108	Júlia	7	Máquina 7
109	Jéferson	5	Máquina 5
104	Robson	4	Máquina 4
106	Marcelo	3	Máquina 3
107	Rodrigo	1	Máquina 1
103	Maria	6	Máquina 6
100	Carlos	8	Máquina 8
101	Henrique	2	Máquina 2

Figura 7 – Primeiro Teste. Fonte: Elaborado pelos autores.

O terceiro teste foi realizado com 10000 gerações e 80 populações para cada geração. Os resultados são demonstrados na figura 8.

1º geração - 1880 peças/hora

Matrícula funcionário	Nome funcionário	Código máquina	Nome máquina
107	Rodrigo	2	Máquina 2
108	Júlia	4	Máquina 4
104	Robson	8	Máquina 8
106	Marcelo	3	Máquina 3
105	Sônia	6	Máquina 6
102	Vanessa	7	Máquina 7
100	Carlos	1	Máquina 1
103	Maria	5	Máquina 5

Figura 8 – Primeiro Teste. Fonte: Elaborado pelos autores.

O quarto teste foi realizado com 100000 gerações e 120 populações para cada geração. Os resultados são demonstrados na figura 9.

1º geração - 1880 peças/hora

Matrícula funcionário	Nome funcionário	Código máquina	Nome máquina
107	Rodrigo	2	Máquina 2
108	Júlia	4	Máquina 4
104	Robson	8	Máquina 8
106	Marcelo	3	Máquina 3
105	Sônia	6	Máquina 6
102	Vanessa	7	Máquina 7
100	Carlos	1	Máquina 1
103	Maria	5	Máquina 5

Figura 9 – Primeiro Teste. **Fonte:** Elaborado pelos autores.