Submisson2

Ethan Zhang

2024-08-07

R Markdown

```
#define a theme for all plots
New_theme <- theme(</pre>
  panel.border = element_blank(),
  panel.grid.major = element_blank(),
  panel.grid.minor = element_blank(),
  # Set plot background
  plot.background = element_rect(fill = "white"),
  panel.background = element_blank(),
  legend.background = element_rect(fill = 'snow2'),
  legend.text = element_text(color = "black", size = 8),
  legend.title = element_text(color = "black", face = "bold", size = 8),
  legend.key = element_rect(fill = "snow2",color = "snow2"),
  legend.box.background = element_rect(color = "black"),
  ##make the title center
  plot.title = element_text(hjust = 0.5, size = 13, face = "bold"),
  plot.subtitle = element_text(hjust = 0.5, size = 12, face = "italic"),
  title = element_text(color = "black"),
  axis.line = element_line(color = "black"),
 axis.text = element_text(color = "black"),
  legend.position = 'right'
```

```
new_gene <-
   read.csv(
    "/Users/zhyihan/Documents/Dartmouth Life/courses/QBS 103-Data Science/final project/QBS103_GSE15710
)
ser_m <-
   read.csv(
    "/Users/zhyihan/Documents/Dartmouth Life/courses/QBS 103-Data Science/final project/QBS103_GSE15710
)

new_gene_long <-
   new_gene %>% gather(
   key = participant_id,
   value = expression,
   COVID_01_39y_male_NonIcU:NONCOVID_26_36y_male_ICU
)
```

```
new_data <- merge(ser_m, new_gene_long, by = "participant_id")</pre>
# Define the function
###replace the variable in our submission 1 as the variable names in our function now
###input data frame df; a list of gene: genes; continous variable: cont; two categorical varialbes: cat
gene_plots <- function(df, genes, cont, cate1, cate2) {</pre>
  df[[cont]] <- as.numeric(as.character(df[[cont]]))</pre>
  for (gene in genes) {
    new_data2 <- df %>%
      filter(X == gene) %>%
      select(participant id,
             Х,
             expression,
             cont,
             cate1,
             cate2) %>%
      drop_na()
    ####Histogram for gene expression
      ggplot(new_data2, aes_string(x = "expression")) + geom_histogram(
        bins = 30,
        fill = "darkgreen",
        color = "black",
       alpha = 0.8
      ) + labs(
        title = paste0("Distribution of Gene ", gene, " Expression"),
        x = "Gene Expression Level",
        y = "Frequency"
      ) + New_theme
    scatter_plot <- ggplot(new_data2,</pre>
                           aes_string(x = cont, y = "expression", color = "expression")) +
      geom_point(size = 2) +
        title = pasteO("Relationship Between ", gene, " Expression and ", cont),
        subtitle = paste0(
          "A scatterplot of gene expression levels across different ",
          cont
        y = 'Gene Expression',
        x = 'Age',
       color = 'Gene Expr.'
      scale_color_gradient(low = "springgreen2", high = "tomato1") + New_theme +
      scale_x_continuous(breaks = seq(
        min(new_data2[[cont]], na.rm = TRUE),
        max(new_data2[[cont]], na.rm = TRUE),
        by = 10
      ))
```

```
####Boxplot of gene expression separated by both categorical covariates
    new_scat <-
      ggplot(new_data2,
             aes_string(x = cate2, y = "expression", fill = cate1)) +
      geom_boxplot() +
     New_theme +
     labs(
       title = paste0(
          "Distribution of Gene Expression (",
         ") by ICU Status and Sex"
       subtitle = "Boxplots showing variation in gene expression across ICU status and sex",
       x = "ICU Status",
       y = "Gene Expression Level",
       fill = "Sex"
      )+scale_fill_manual(values = c('royalblue3', 'orange2', 'pink2'))
    print(hist)
    print(scatter_plot)
   print(new_scat)
 }
}
gene_plots(new_data, list("ABCA1", "AATF", "A2M"), "age", "sex", "icu_status") %>% suppressWarnings()
```

Distribution of Gene ABCA1 Expression

Relationship Between ABCA1 Expression and age

A scatterplot of gene expression levels across different age

Distribution of Gene Expression (ABCA1) by ICU Status and Sex

Boxplots showing variation in gene expression across ICU status and sex

Relationship Between AATF Expression and age

A scatterplot of gene expression levels across different age

Distribution of Gene Expression (AATF) by ICU Status and Sex

Boxplots showing variation in gene expression across ICU status and sex

Relationship Between A2M Expression and age

A scatterplot of gene expression levels across different age

Distribution of Gene Expression (A2M) by ICU Status and Sex

Boxplots showing variation in gene expression across ICU status and sex

