STALGCM NOTES FOR LE2 §

By: Roemer Caliboso

Special Thanks to Anthony Baybayon and Kenneth Go and PTS

IMPORTANT REMINDERS:

Reminders for STALGCM Exams:

- TLDR: FOLLOW INSTRUCTIONS
- **DONT** FORGET TO PUT START STATE
- **DONT** FORGET TO PUT START STATE
- **DONT** FORGET TO PUT FINAL STATE
- **DONT** FORGET TO PUT FINAL STATE
- DONT EXCEED STATE LIMIT OR PRODUCTION RULES OR NONTERMINAL
- DONT FORGET TO CONVERT NFA TO DFA WHEN NECESSARY IN CLOSURES
- ONLY 1 FINAL STATE AND 1 START STATE IN PDA
- INFORMAL PROOF CAN BE USED FOR PUMPING LEMMA
- DON'T POP AND PUSH IN THE SAME TRANSITION IN PDA
- NO λ ALLOWED OTHER THAN THE START SYMBOL (Σ)
- ALWAYS START WITH (for all $p \in \mathbb{Z}^+$) and END WITH (therefore L is not regular) for PUMPING LEMMA PROOF
- PDA STRING CAN ONLY BE ACCEPTED IF EMPTY STACK (LAST READ IS Z) AND IF INPUT IS EXHAUSTED
- Σ CANNOT BE USED IN PRODUCTION
- MARCH 12, 2025 | 1:00PM 3:00PM
- BRING LARGE TEST BOOKLET
- 5 ITEMS, 70 POINTS TOTAL

NOTE THAT SOME OF THESE REMINDERS ARE SPECIFIC TO SR AUSTIN:)

if were wrong,,,,, sorry

" $\mathcal{H}ello...?$ Delta? ...Where are you? ϕ " - A. Fernandez (2025)

[1] Closure Properties of Regular Languages

Recap on Regular Languages

- A regular language is a set of strings that can be defined by a regular expression.
- A regular language is "regular" if it can be modeled by a DFA.or its equivalents.

Closure Operations

- A set S is closed under a binary operation \oplus if and only if applying it on two elements in S produces a result that is still an element of S. That is $(A, B \in S)$, $(A \oplus B) \in S$.
 - Extension to unary: A set S is closed under the unary operator f if $A \in S$, $f(A) \in S$.
- Operations on Regular Languages that are Closed:
 - Complement of a Language \overline{L}
 - Union $L_1 \cup L_2$
 - Intersection $L_1 \cap L_2$
 - Difference $L_1 L_2$
 - Concatenation $L_1 \cdot L_2$
 - Kleene Closure L^*
 - Reversal of a Language L^R

NOTE: The procedures here take into account that you have a DFA that describes your language.

1. Complement \overline{L}

• If L is a language \overline{L} is the language accepting all strings rejected by L and rejecting all strings accepted by L. Formal Procedure:

Given a machine $M=(Q,\Sigma,\delta,q_I,F)$ be the DFA that recognizes a language L.

 \overline{M} is the machine that recognizes \overline{L} where:

$$M = (Q, \Sigma, \delta, q_I, F') \text{ where } F' = Q - F.$$

Informal Procedure:

Turn all final states into non-final states, and all non-final states to be final.

Given the language $L = \left\{ \omega \in 0, 1 \mid \omega = 1 \left(01 \cup 1 (0 \cup 1)^* \right) \right\}$

Example:

2. Union \cup , Intersection \cap , Difference -

Computation of $L_1 \cup L_2$, $L_1 \cap L_2$, or $L_1 - L_2$ have

Product Machine:

$$M_1$$
 and M_2

$$M_1 = (Q_1, \Sigma, \delta_1, q_{I1}, F_1)$$

$$M_2 = (Q_2, \Sigma, \delta_2, q_{I2}, F_2)$$

$$M_P = M_1 \times M_2 = (Q, \Sigma, \delta, q_I, F)$$

$$Q = Q_1 \times Q_2$$

$$\delta : Q \times \Sigma \mapsto Q$$

$$\forall q_1 \forall q_2 \forall s (\delta(q_1,q_2),s) = (\delta_1(q_1,s),\delta_2(q_2,s)), q_1 \in Q_1, q_2 \in Q_2, s \in \Sigma$$

$$q_I = (q_{I1}, q_{I2})$$

F varies

Note that this definition may not necessarily provide a connected or reduced machine.

For each state and for each transition, the state travelled to is the union of the states travelled to in the original machine.

The final state/s of each machine varies based on the operation.

	0	1
AD	0	
AE		
\rightarrow AF		
AG		
BD		
BE		
$_{ m BF}$		
BG		
CD		
CE		
CF		
CG		

	0	1
AD	BE	BG
AE		
\rightarrow AF		
AG		
BD		
BE	\overline{AG}	CE
BF		
$_{\mathrm{BG}}$		
CD		
CE		
CF		
CG		

	0	1			0	1
\rightarrow A*	В	В		D^* E^* $\to F$ G^*	Е	G
\mathbf{B} \mathbf{C}^*	A	\mathbf{C}		E^*	G	E
C^*	С	A		\rightarrow F	D	D
L	1			G^*	F	Ε
L_2						

	0	1
AD	В	В
AE	В	В
$\to \mathrm{AF}$	В	В
\overline{AG}	В	В
BD	A	\mathbf{C}
BE	A	\mathbf{C}
BF	A	\mathbf{C}
$_{\mathrm{BG}}$	A	\mathbf{C}
CD	\mathbf{C}	A
CE	\mathbf{C}	A
CF	\mathbf{C}	A
CG	С	Α

	0	1
AD	BE	$_{\mathrm{BG}}$
AE	BG	BE
$\to \mathrm{AF}$	BD	BD
\overline{AG}	BF	BE
BD	AE	CG
BE	\overline{AG}	CE
$_{ m BF}$	AD	CD
$_{\mathrm{BG}}$	AF	CE
CD	CE	AG
CE	CG	AE
CF	CD	AD
$\overline{\text{CG}}$	CF	AE

For difference $(L_1 - L_2)$,

Final states:

All states containing a final state

in L_1 but not containing a final state L_2

	0	1
AD	BE	$_{\mathrm{BG}}$
AE	BG	BE
$\to AF^*$	BD	BD
\overline{AG}	BF	BE
BD	AE	CG
BE	\overline{AG}	CE
BF	AD	CD
$_{\mathrm{BG}}$	AF	CE
CD	CE	AG
CE	CG	AE
CF^*	CD	AD
$\overline{\text{CG}}$	CF	AE

For union $(L_1 \cup L_2)$,

Final states:

Final states in EITHER L_1 OR L_2

	0	1
AD^*	BE	$_{\mathrm{BG}}$
AE^*	$_{\mathrm{BG}}$	BE
$\to AF^*$	BD	BD
AG^*	BF	BE
BD^*	AE	CG
BE^*	\overline{AG}	CE
BF	AD	CD
BG^*	AF	CE
CD^*	CE	\overline{AG}
CE^*	CG	AE
CF^*	CD	AD
CG^*	CF	AE

For intersection $(L_1 \cap L_2)$,

0BE

BG

BD

BF

AE

AG

AD

AF

CG

CD

CF

Final states:

Final states in BOTH L_1 AND L_2

BG

BE

BD

BE

CGCE

CD

CE

AE

AD

AE

CE AG

			L IIICII DOCCOC
	0	1	
AD^*	BE	$_{\mathrm{BG}}$	AD^*
AE^*	$_{\mathrm{BG}}$	BE	AE^*
$\rightarrow AF^*$	BD	BD	\rightarrow AF
AG^*	BF	BE	AG^*
BD^*	AE	CG	$_{ m BD}$
BE^*	\overline{AG}	CE	$_{ m BE}$
BF	AD	CD	BF
BG^*	AF	CE	$_{ m BG}$
CD^*	CE	AG	CD^*
CE^*	CG	AE	CE^*
CF^*	CD	AD	CF
CG^*	CF	AE	CG^*

L_1				
	0	1		
\rightarrow A*	В	Е		
В	Α	C		
C^*	С	Α		

L_2				
	0	1		
D^*	Ε	G		
E^*	G	Ε		
\rightarrow F	D	D		
G^*	F	Ε		

3. Concatenation $L_1 \cdot L_2$

The concatenation $L_1 \cdot L_2$ is regular.

Informal Procedure:

- 1. Assume all states are disjoint.
- 2. All final states in L_1 and L_2 become rejecting.
- 3. Add a new final state q_F .
- 4. Add a λ transition from each final state of M_1 to the start state of M_2 .
- 5. Add a λ transition from each final state of M_2 to the start state of q_F .
- 6. [OPTIONAL] Convert to DFA (this is optional because λ NFAs are equivalent to some DFAs)

Kleene Closure L^{\star} is regular.

Informal Procedure:

- 1. Add a new final state q_F . This becomes the an initial and final state.
- 2. Add a λ transition from q_F to the initial state of L. The original initial state does not become initial anymore.
- 3. Add a λ transition from each final state of L to q_F . The original accepting states become non-accepting.
- 4. [OPTIONAL] Convert to DFA (this is optional because λ NFAs are equivalent to some DFAs)

L

Add a new final state q_F . This becomes the an initial and final state.

Add a λ - transition from q_F to the initial state of L. The original initial state does not become initial anymore.

Add a λ - transition from each final state of L to q_F . The original accepting states become non-accepting.

5. Reverse L^R

The reverse of a machine L^R is regular.

Informal Procedure:

- 1. All initial states become final and all final states become initial states. (A state that is both final and initial remains final and initial)
- 2. Reverse the direction of all transitions. (Given L has $\delta(a,s)=b$, L^R will have $\delta(b,s)=a$).

All initial states become final and all final states become initial states.

Reverse the direction of all transitions.

I. Consider the following DFAs:

L_1		
	0	1
$\rightarrow A$	A	B
B^*	B	A

L_2		
	0	1
$\rightarrow C$	E	C
D^*	D	E
E^*	D	C

L_3		
	0	1
$\rightarrow F^*$	G	F
G	F	G

Find the following:

$$\overline{\left[\left(L_1 \cup L_3\right) - L_2^R\right]}^*$$

$$\overline{\left[(L_1 \cup L_3) - L_2^R \right]^* }$$

$$(L_1 \cup L_3)$$

	0	1
$\rightarrow AF$	AG	BF
AG	AF	
BF^*	BG	AF
BG^*	BF	AG

$$\begin{array}{c|cc}
\left(L_{2}^{R}\right) & & \\
\hline
C^{*} & C, E \\
 \rightarrow D & D, E \\
 \rightarrow E & C & D
\end{array}$$

$$\begin{array}{c|cccc} \left(L_2^R\right) & \left(L_2^R\right) \\ \hline & 0 & 1 & & 0 \\ \hline \rightarrow DE & CDE & D & & \rightarrow H & I \\ CDE^* & CDE & CDE & & I^* & I \\ D & DE & X & & D & H \\ X & X & X & X & X & X \end{array}$$

$$(L_1 \cup L_3) - L_2^R$$

	0	1
$\rightarrow AFH$	AGI	BFD
AFI	AGI	BFI
AFD	AGH	BFX
AFX	AGX	BFX
AGH	AFI	BGD
AGI	AFI	BGI
AGD	AFH	BGX
AGX	AFX	BGX
BFH^*	BGI	AFD
BFI	BGI	AFI
BFD^*	BGH	AFX
BFX^*	BGX	AFX
BGH^*	BFI	AGD
BGI	BFI	AGI
BGD^*	BFH	AGX
BGX^*	BFX	AGX

$$\begin{array}{c|cccc} \hline (L_1 \cup L_3) - L_2^R \\ \hline & 0 & 1 \\ \hline \rightarrow AFH^* & AGI & BFD \\ AFI^* & AGI & BFI \\ AFD^* & AGH & BFX \\ AFX^* & AGX & BFX \\ AGH^* & AFI & BGD \\ AGI^* & AFI & BGI \\ AGO^* & AFH & BGX \\ AGX^* & AFX & BGX \\ BFH & BGI & AFD \\ BFI^* & BGI & AFI \\ BFD & BGH & AFX \\ BFX & BGX & AFX \\ BGH & BFI & AGD \\ BGI^* & BFI & AGI \\ BGD & BFH & AGX \\ BGX & BFX & AGX \\ \hline \end{array}$$

[2] Pumping Lemma

The pumping lemma for regular languages states the following:

If L is a language.

(L is regular language)
$$\to \exists p \forall \omega (|\omega| \ge p \to \exists x \exists y \exists z (\omega = xyz \land |xy| \le p \land |y| > 0 \land xy^*z \in L)), p \in Z^+, \omega \in L$$

If L is a regular language.

Translation:

There exists a positive integer p, where for ANY string ω , if ω is AT LEAST p symbols long, there exists a splitting of ω into xyz WHERE:

x is the string that leads to the pumping string y y is the pumping string. (MUST BE NONEMPTY) z is the set of symbols that lead it to an accepting state

 $|xy| \le p$ The concatenation of x and y does not exceed p in length)

|y| > 0 The pumping string is not empty.

 $xy^*z \in L$ Pumping the string y (or repeating it 0 to many times) still leads it to be a member of L.

The contrapositive of the pumping lemma can be used to show that a language is NOT regular. Note that we cannot use the contrapositive to prove that a language IS regular just that its not.

$$\forall p \exists \omega (|\omega| \geq p \land \forall x \forall y \forall z \big((\omega = xyz \land |xy| \leq p \land |y| > 0) \rightarrow xy^*z \notin L \big) \rightarrow \big(L \text{ is NOT a regular language} \big), p \in Z^+, \omega \in L$$

Translation:

For all positive integers p, there will exist a counterexample ω where REGARDLESS of how you divide ω into $\omega = xyz$:

 $|xy| \le p$ The concatenation of x and y does not exceed p in length)

|y| > 0 The pumping string is not empty.

 $xy^*z \in L$ Pumping the string y (or repeating it 0 to many times) may lead to a string L

Prove
$$L = \{\omega \in \{0,1\}^* \mid \omega = 0^n 1^n$$
, where $n \ge 1\}$ is non regular.

Our strategy is MAINLY to get counterexample where we can isolate the pumping string into $|xy| \leq p$.

INFORMAL:

We first need to find a ω that will always break if we pump the symbol:

For all positive integers p, we generate $0^p 1^p \in L$ (THIS LINE IS IMPORTANT) Because $|xy| \le p$, we will always pump 1 to p 0s.

Doing this may lead to strings in the form of $0^{kp}1^p$ where $k \in \mathbb{Z}$ (formality)

This will lead to pumping strings of 0 that will cause there to be more 0s than 1s leading to a string not in L.

Therefore L is not a regular language.

(THIS LINE IS IMPORTANT)

FORMAL:

For all $p \in Z^+$ we can generate a string $0^p 1^p \in L$.

Let:

$$x = 0^{\alpha}$$

$$y = 0^{(p-\alpha)}$$

$$z = 1^p$$
 where $\alpha < p$

In this case
$$xy^*z$$
 will generate $L'=\left\{\omega\in\{0,1\}^*\mid\omega=0^{kp-(k-1)\alpha}1^p,k\geq0\right\}^1$.

Since it is not true $kp - (k-1)\alpha = p$ for all choices of p, L is not a regular language.

Note the pattern¹: (no need to put this in the exam)

Given
$$xyz$$
: $x = 0^{\alpha}$, $y = 0^{p-\alpha}$, z

$$n=0, 0^{\alpha}z$$

$$n = 1, \ 0^{\alpha} 0^{(p-\alpha)} z = 0^p z$$

$$n = 2$$
, $0^{\alpha}0^{2(p-\alpha)}z = 0^{2p-\alpha}z$

$$n=3, \ 0^{\alpha}0^{3(p-\alpha)}z=0^{3p-2\alpha}z$$

$$n = k, = 0^{kp - (k-1)\alpha} z$$

Example: Prove that the following languages are not regular.

1.
$$L = \{ \omega \in \{0, 1\}^* \mid \omega = 0^{2n} 1^n, \text{ where } n \ge 1 \}$$

INFORMAL:

For all positive integers p, we generate $0^p0^p1^p \in L$

Because $|xy| \le p$, we will always pump 1 to p 0s. (

Doing this may lead to strings in the form of $0^{kp}0^p1^p$ where $k\in\mathbb{Z}$

This will lead to pumping strings of 0 that will cause that will violate $0^{2n}1^n$, $n \ge 1$ leading to a string not in L.

Therefore L is not a regular language.

FORMAL:

For any positive integer p we can generate the string $0^p0^p1^p \in L$:

Let:

$$x = 0^{\alpha}$$

$$y = 0^{p - \alpha}$$

$$z = 0^p 1^p$$

Where $p > \alpha$:

In this case, xy^*z will generate $L'=\left\{\omega\in\{0,1\}^*\mid \omega=0^{kp-(k-1)\alpha}0^p1^p, k\geq 0\right\}$.

It is not true that $kp - (k-1)\alpha = p$ for all $k \ge 0$.

So the language generated by the expression is non-regular.

2.
$$L = \{\omega \in \{0,1\}^* \mid \omega = 0^{2n}1^n, \text{ where } n \geq 1\} \ 0^m 1^{m+n} 0^n \ m, n > 0$$

INFORMAL:

For all positive integers p, we generate $0^p 1^{p+1} 0 \in L$

Because $|xy| \leq p$, we will always pump 1 to p 0s.

Doing this may lead to strings in the form of $0^{kp}1^{p+1}0$ where $k \in \mathbb{Z}$

This will lead to pumping strings of 0 that will cause that will violate $0^m 1^{m+n} 0^n$ $m, n \ge 1$ where the number of 0s are not equal to the number of 1s. This leads to strings not in L.

Therefore L is not a regular language.

FORMAL

For any positive integer p we can generate the string $0^p 1^{p+1} 0$:

Let:

$$(0^p 1^{p+1} 0)$$

$$x = 0^{\alpha}$$

$$y = 0^{p-\alpha}$$

$$z = 1^{p+1}0$$

Where $p > \alpha$:

In this case, xy^*z will generate $L'=\left\{\omega\in\{0,1\}^*\mid\omega=0^{kp-(k-1)\alpha}1^{p+1}0,k\geq0\right\}$.

It is not true that $(kp-(k-1)\alpha)+1=p+1$ for all $k\geq 0$.

So the language generated by the expression is non-regular.

3.
$$L = \left\{ \omega \in \left\{0,1\right\}^* \mid \omega = 0^n 1^m, \text{where } n > m \right\}$$

INFORMAL:

For all positive integers p, we generate $0^p 1^{p-1} \in L$

Because $|xy| \le p$, we will always pump 1 to p 0s.

Doing this may lead to strings in the form of $0^{kp}1^{p+1}0$ where $k \in \mathbb{Z}$

This will lead to pumping strings of 0 0 times that will cause that will violate $0^n 1^m$, where n > m where the number of 0s are less than or equal to the number of 1s. This leads to strings not in L.

Therefore L is not a regular language.

FORMAL

For any positive integer p we can generate the string $0^p 1^{p-1} \in L$:

Let:

$$(0^p 1^{p-1}),$$

$$x = 0^{\alpha}$$

$$y = 0^{p-\alpha}$$

$$z = 1^{p-1}$$

Where $p > \alpha$ and $\alpha \ge 0$:

In this case, xy^*z will generate $L'=\left\{\omega\in\{0,1\}^*\mid \omega=0^{kp-(k-1)\alpha}1^{p-1}, k\geq 0\right\}$.

It is not true that $kp-(k-1)\alpha>p-1$ for all $k\geq 0$, because when $k=0,\,\alpha>p-1$ but p>a.

So the language generated by the expression is non-regular.

[3] Pushdown Automata

A pushdown accepter (PDA) is defined a 7 - tuple:

 $M = (Q, \Sigma, \Gamma, \delta, q_I, z_I, q_F)$

- ullet Q -- finite set of states
- Σ finite input alphabet
- Γ finite stack alphabet
- $\delta: Q \times \Sigma_{\lambda} \times \Gamma \mapsto \mathcal{P}(Q \times \Gamma_{\lambda})$ is the transition function
- q_I initial state, $q_I \in Q$
- z_I initial stack symbol, $z_I \in \Gamma$
- q_F final state, $q_F \in Q$

The OVERALL state of a machine is $Q \times \Gamma^*$ where we a state and the contents of stack ϕ . PDAs are non-deterministic.

Note that for a machine to successfully read, ALL input must have been read as well symbol at the bottom of the stack Z.

 $q_F = q_2$

Examples:

a.

$$L = \left\{ \omega \in \{0, 1\}^* \mid \omega = 0^n 1^m, \ 1 \le n \le m \right\}$$

Accepted: 0011, 011, 00011111, 011

Rejected: $0, 1, 01, 0011, 001, \lambda$

c.

$$L = \left\{\omega = \left\{a, b, c\right\}^* \mid \omega = a^i b^j c^k, i + k = j \lor i = j + k\right\}$$

Accepted: aaabbbbc, aabb, aaaaabcccc

Rejected: aaabbbbc, aaaaabbcc

e.
$$L = \{ \omega \in \{0, 1\}^* \mid \omega = 0^n 1^m, 1 \le n \le m \le 2n \}$$

Accepted: 01, 0011, 00011111, 000011111

Rejected: 0011111111, λ , 1, 0, 0111

b.

$$L = \left\{ \omega \in \{a, b, c\}^* \mid \omega = a^i b^j c^k, k = i + j, \ (i, j \ge 0) \ \right\}$$

 ${\it Accepted: 0011, 011, 00011111, 011}$

Rejected: $0, 1, 01, 0011, 001, \lambda$

d.
$$L = \left\{ \omega \in \{0,1\}^* \mid N_0(\omega) = N_1(\omega) \right\}$$

(Same no. of 0s and 1s)

Accepted: 010101, 0000111011, 10, λ Rejected: 1110, 00, 10011, 00011

f.
$$L = \{ \omega \mid \omega = (0 \cup 1)^*, \ \omega \text{ is a palindrome} \}$$

Accepted: λ , 101, 10001, 010010, 00000000, 1111

Rejected: 110, 10, 010101010

h.
$$L = \{ \omega \in \{a, b, c, d\}^* | \omega = a^n b^m c^m d^{2n} \}$$

Accepted: aadddd, aabcdddd, λ , abbccdd

Rejected: addd, bcddd, abccdd

i.
$$\left\{ \omega \in \left\{ 0,1 \right\}^* | \ \omega = \left[1(00)^*1 \right]^n \left(0^*1^* \right)^n, \ n \ge 0 \right\}$$

 $\ \, \text{Accepted: } 111111010,\, 10000110000110010,\, 1001,\,\,\, 11$

Rejected: 1111010101, 101, 0101, 100101

[4] Context-Free Grammar

A context free grammar is a 4-tuple:

 $G = (N, T, P, \Sigma)$ where:

- N- finite set of nonterminals
- T finite set of terminals
- \bullet P- finite set of productions

$$P \subset (N \cup \{\Sigma\}) \times (N \cup T)^*$$

Each production can be written as $\alpha \to \beta$, $\alpha \in N \cup \{\Sigma\}$, $\beta \in (N \cup P)^*$

$$\alpha \to \beta, \alpha \in N \cup \{\Sigma\}, \beta \in (N \cup T)^*$$

Note that only $\Sigma \to \lambda$ is allowed to have λ on the right hand side.

• Σ — start symbol

Production: Rule that can be used to expand a sentence

Nonterminal Symbol: Is something that can be expanded using a production rule (CAPITAL)

Terminal Symbol: Is something that cannot be expanded using a production rule (lowercase)

A string of nonterminals is called a sentential form.

A sentence that consists entirely of terminal symbols is called a sentence.

Example:

a.
$$L = \left\{\omega \in \{0,1\}^* \mid \omega = 0^n 1^m, \ 1 \le n \le m\right\}$$

$$\sum \to A$$
 $A \to 0A1 \mid 01 \mid A1$
b.
$$L = \left\{\omega \in \{a,b,c\}^* \mid \omega = a^i b^j c^k, k = i+j, \ (i,j \ge 0)\right\}$$

$$\sum \to A \mid \lambda$$
 $A \to aAc \mid B \mid ac$
 $B \to bBc \mid bc$
c.
$$L = \left\{\omega = \{a,b,c\}^* \mid \omega = a^i b^j c^k, i+k = j \lor i = j+k\right\}$$

$$\sum \to A \mid G \mid \lambda$$
 $(i+k=j)$
 $A \to BC \mid B \mid C$
 $B \to aBb \mid ab$
 $C \to bCc \mid bc$

$$(i=j+k)$$
 $G \to aGc \mid ac \mid H$
 $H \to aHb \mid ab$
d. $L = \left\{\omega \in \{0,1\}^* \mid N_0(\omega) = N_1(\omega)\right\}$ (Same no. of 0s and 1s)
$$\sum \to A \mid \lambda$$
 $A \to 0A1 \mid 1A0 \mid 01 \mid 10$
e. $L = \left\{\omega \in \{0,1\}^* \mid \omega = 0^n 1^m, 1 \le n \le m \le 2n\right\}$

$$\sum \to A$$
 $A \to 0A1 \mid 0A11 \mid 01 \mid 011$
f. $L = \left\{\omega \mid \omega = (0,1)^*, \ \omega \text{ is a palindrome}\right\}$

$$\sum \to A \mid \lambda$$
 $A \to 0A0 \mid 1A1 \mid 1 \mid 0 \mid 11 \mid 00$
g. $L = \left\{\omega \text{ is balanced parenthesis}\right\} (\lambda \text{ is accepted})$

$$\sum \to A \mid \lambda$$
 $A \to AA \mid (A) \mid ()$
h. $L = \left\{\omega \in \{a,b,c,d\}^* \mid \omega = a^n b^m c^m d^{2n}\right\}$

$$\sum \to A \mid \lambda$$
 $A \to aAdd \mid add \mid B$
 $B \to bBc \mid bc$

i. $L = \{ \omega \in \{0, 1\}^* \mid \omega = 0^n 1^m, n \neq m \}$ $\Sigma \to A \mid B$ $A \rightarrow 0 \mid 0A1 \mid 0A$ $B \rightarrow 1 \mid 0B1 \mid B1$ A, 0A1, 001 B, 0B1, 00B11 j. $L = \left\{ \omega \in \{a, b, c\}^* \mid \omega = a^n b^n c b^m a^m \wedge n, m \ge 0 \right\}$ $A \rightarrow BcC \mid Bc \mid c \mid cC$ $B \rightarrow aBb \mid ab$ $C \rightarrow bCa \mid ba$ k. $L = \left\{ \omega \in \left\{ a, b, c \right\}^* \mid \omega = a^i b^j c^k, 2i = j + k \lor i = 3j \right\}$ $\Sigma \to A \mid G \mid \lambda$ (2i = j + k) $A \rightarrow aAcc \mid acc \mid B \mid aBbc \mid abc$ $B \rightarrow aBbb \mid abb$ (i = 3i) $G \rightarrow HI \mid H \mid I$ $H \rightarrow aaaHb \mid aaab$ $I \rightarrow Ic \mid c$ l. $L = \left\{ \omega \in \{0, 1\}^* | \omega = \left[1(00)^* 1\right]^n \left(0^* 1^*\right)^n, \ n \ge 0 \right\}$ (14 productions, 5 non-terminals) $\Sigma \to A \mid \lambda$ $A \to BAD \mid BD \mid BA \mid B$ $B \rightarrow 1C1 \mid 11$ $C \rightarrow 00 \mid 00C$ $D \rightarrow 0D \mid 0 \mid D1 \mid 1$