

Strain and Force sensors

SENSOR SYSTEMS

Federica Villa federica.villa@polimi.it

- Strain Gauges
- Piezoelectric force sensors

BeeP: 12 – Strain Gages

Basics of mechanics

Force => elangation => cross section becomes thiner

Stress:
$$\sigma = \frac{F}{WH} \left(Pa = \frac{N}{m^2} \right)$$

Stress:
$$\sigma = \frac{F}{WH} \left(Pa = \frac{N}{m^2} \right)$$
Strain:
$$\varepsilon = \frac{\Delta L}{L} \left(a.u. \ typically \ \mu \varepsilon \right)$$

Young modulus:
$$E = \frac{\sigma}{\varepsilon} \left(Pa = \frac{N}{m^2} \right)$$

Poisson ratio:
$$v = -\frac{\frac{dW}{W}}{\frac{dL}{L}} = -\frac{\frac{dH}{H}}{\frac{dL}{L}} (a.u.)$$

$$R = \rho \cdot \frac{L}{A} = \rho \cdot \frac{L}{WH}$$

Tension:

L increases

A decreases (necking)

→ R increases

Compression:

L decreases

A increases

→ R decreases

Bonded strain gage

Materials with piezo-resistive effect:
$$\frac{d\rho}{\rho} = \beta \cdot \sigma = \beta \cdot E \cdot \varepsilon = \beta \cdot E \cdot \frac{dL}{L}$$

Sensibility of the strain gauge:

$$G = \frac{dR/R}{\varepsilon} = \frac{dR/R}{dL/L}$$

$$R = \rho \cdot \frac{L}{WH}$$

$$\Rightarrow \quad \frac{dR}{R} = \frac{dL}{L} - \frac{dW}{W} - \frac{dH}{H} + \frac{d\rho}{\rho}$$

In piezo-resistive materials:

$$\frac{dR}{R} = \frac{dL}{L} + \nu \frac{dL}{L} + \nu \frac{dL}{L} + \beta E \frac{dL}{L}$$

$$\frac{dR}{R} = (1 + 2\nu + \beta E) \frac{dL}{L}$$

$$\rightarrow G = 1 + 2v + \beta E$$

Examples of gauge factors

Material	Gage Factor (GF)	
	Low Strain	High Strain
Copper	2.6	2.2
Constantan*	2.1	1.9
Nickel	-12	2.7
Platinum	6.1	2.4
Silver	2.9	2.4
40% gold/palladium	0.9	1.9
Semiconductor**	~100	~600

^{*} similar to "Ferry" and "Advance" and "Copel" alloys.

** semiconductor gage factors depend highly on the level and kind of doping used.

Carrier:

- flexible
- electrical insulation

Fabrication → photolithography

- photoresist deposition (positive or negative)
- exposure to light
- etching
- photoresist removal

Quarter-bridge strain gauge circuit with temperature compensation

Two orthogonal strain gauges are used to compensate the temperature variations

STRAIN GAGES MOUNTED TO BEAM

Configuration	Notes
	Must use dummy gage in an adjacent arm (2 or 4) to achieve temperature compensation
1 3	Rejects bending strain but not temperature compensated; must add dummy gages in arms 2 & 4 to compensate for temperature.
	Temperature compensated but sensitive to bending strains
3 4	Best: compensates for temperature and rejects bending strain.

Applications

Railroad maintenance

- Smart bridges
- Wind tunnels

- High precision robotic for medical applications
- Bathroom scales

•

BeeP: 13 – Piezoelectric sensors

Piezoelectric Effect in Quartz

= electric charge that accumulates in certain solid materials (e.g. crystals, ceramics, and biological matter) in response to applied mechanical stress.

Or opposite phenomena: voltage → displacement

Charge Model

$$I(t) = \frac{dQ(t)}{dt}$$

$$I(s) = s \cdot Q(s)$$

Voltage Model

$$V(t) = \frac{dQ(t)}{dt} \cdot R_p \cdot \left(1 - e^{-t/(R_p C_p)}\right)$$

$$V(s) = s \cdot Q(s) \cdot \frac{Rp}{1 + sC_pR_p}$$

Piezoelectric sensors are **not suited for DC applications** because the electrical charge produced decays due to the internal impedance of the sensor and the input impedance of the conditioning circuits.

$$V = \frac{Q}{C_p}$$

$$\tau = C_p \cdot R_p$$

Considering also stray capacitances:

$$V = \frac{Q}{Cp + C_{stray}}$$

→ Stray capacitance are not under control!

$$G = \frac{Cp + C_C}{C_f}$$

V_{out} depends only on the small and well controlled C_f

Working frequencies: $f_L < f < f_R$ (f_R = resonance frequency)

Applications

- Force measurements
 (e.g., force platform for rehabilitation or sport)
- Energy harvesting

(converting the available energy from the environment from sources such as ambient temperature, vibration or air flow)

- Ultrasonic technology

 (both actuator and sensor,
 e.g. proximity, detection of gas bubbles)
- Actuators
 (pumping and dosing, production of homogeneous aerosol)

