MODEL BUILDING

ADDING DENSE LAYER

Date	04 November 2022
Team ID	PNT2022TMID13480
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library import keras from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2, rotation_range=180,zoom_range=0.2,horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/train_set', target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

```
x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/test_set', target_size=(128,128),batch_size=32, class_mode='binary') Found 121 images belonging to 2 classes.
```

```
Import model building libraries
#To define Linear initialisation import
Sequential from keras.models import
Sequential #To add layers import Dense
from keras.layers import Dense
#To create Convolution kernel import
Convolution2D from keras.layers import
Convolution2D
#import Maxpooling layer from
keras.layers import MaxPooling2D
#import flatten layer from keras.layers import
Flatten import warnings
warnings.filterwarnings('ignore')
Initializing the model model=Sequential()
Add CNN Layer
model.add(Convolution2D(32, (3,3),input_shape=(128,128,3),activation='relu'))
#add maxpooling layer model.add(MaxPooling2D(pool_size=(2,2)))
#add flatten layer model.add(Flatten())
Add Dense Layer
#add hidden layer
model.add(Dense(150,activation='relu'))
#add output layer
```

model.add(Dense(1,activation='sigmoid'))