A single qubit

Ryuhei Mori

Tokyo Institute of Technology

A single bit

Let
$$u := \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

- Set of states = $\{\omega \in \mathbb{R}^2 \mid \omega \in C_{\geq 0}, \langle u, \omega \rangle = 1\}.$
- Set of binary measurements = $\{e \in \mathbb{R}^2 \mid e \in C_{\geq 0}, u e \in C_{\geq 0}\}.$

A single qubit

Let
$$u:=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
 and $\langle e,\omega \rangle:=\mathsf{Tr}(e\omega).$

- Set of states = $\{\omega \in V \mid \omega \in C_{\succeq 0}, \langle u, \omega \rangle = 1\}.$
- Set of binary measurements = $\{e \in V \mid e \in C_{\succ 0}, u e \in C_{\succ 0}\}.$

A single qubit

A qubit can be represented by

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$

for
$$[r_X \ r_Y \ r_Z] \in \mathbb{R}^3$$
 satisfying $r_X^2 + r_Y^2 + r_Z^2 \le 1$.

• A qubit can be represented by a point $[r_X \ r_Y \ r_Z]$ in a three-dimensional sphere of radius 1.

The Bloch sphere

Complex space and Hermitian operator

- \mathcal{X} : A finite-dimensional inner product space on \mathbb{C} .
- $\mathcal{L}(\mathcal{X})$: A set of linear operators on \mathcal{X} .

For $A \in \mathcal{L}(\mathcal{X})$, an adjoint map A^{\dagger} of A is a unique operator satisfying

$$\langle v, Aw \rangle = \langle A^{\dagger}v, w \rangle$$

for any $v, w \in \mathcal{X}$. $H \in \mathcal{L}(\mathcal{X})$ is Hermitian if and only if $H^{\dagger} = H$.

• $\mathcal{H}(\mathcal{X})$: A set of Hermitian operators on \mathcal{X} .

 $\mathcal{L}(\mathcal{X})$ and $\mathcal{H}(\mathcal{X})$ are often regarded as inner product space on \mathbb{C} and \mathbb{R} , respectively for the Hilbert–Schmidt inner product $\langle A,B\rangle=\operatorname{Tr}(A^{\dagger}B)$.

Spectral decomposition theorem

Definition (Normal operator)

 $A \in \mathcal{L}(\mathcal{X})$ is said to be normal if $AA^{\dagger} = A^{\dagger}A$.

Hermitian matrix $(H^{\dagger} = H)$ and unitary matrix $(UU^{\dagger} = I)$ are normal.

Theorem (Spectral decomposition theorem)

 $A \in \mathcal{L}(\mathbb{C}^n)$ is normal if and only if there exist orthonormal basis $\{|\psi_j\rangle\}$ of \mathbb{C}^n and complex numbers $\{\lambda_j\}$ such that

$$A = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}|.$$

Pauli matrices

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -i \end{bmatrix} \begin{bmatrix} 1 & i \end{bmatrix}$$

Braket notation

$$\begin{aligned} |0\rangle &:= \begin{bmatrix} 1\\0 \end{bmatrix}, & |1\rangle &:= \begin{bmatrix} 0\\1 \end{bmatrix} \\ |+\rangle &:= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), & |-\rangle &:= \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}, & = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix} \end{aligned}$$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

for
$$|\alpha|^2 + |\beta|^2 = 1$$
.

$$\langle \psi | = |\psi \rangle^{\dagger} = \alpha^* \langle 0 | + \beta^* \langle 1 | = \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix}$$

Pauli matrices in braket notation

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \ket{0} \bra{0} - \ket{1} \bra{1}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \ket{+} \bra{+} - \ket{-} \bra{-}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -i \end{bmatrix} \begin{bmatrix} 1 & i \end{bmatrix}$$

Special states

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$
$$r_X^2 + r_Y^2 + r_Z^2 \le 1.$$

Coordinate	State
[0 0 0]	$\frac{1}{2}I$
[1 0 0]	$\frac{1}{2}(I+X)=\ket{+}\bra{+}$
[-1 0 0]	$\frac{1}{2}(I-X)=\ket{-}\bra{-}$
[0 0 1]	$\frac{1}{2}(I+Z)=\ket{0}\bra{0}$
[0 0 -1]	$rac{1}{2}(I-Z)=\ket{1}ra{1}$

Special states in the Bloch sphere

Pure states are rank-1 density operators

 ρ is a pure state

$$\stackrel{\mathsf{def}}{\Longleftrightarrow} \ \rho \neq p \rho_1 + (1-p) \rho_2 \quad \forall p \in (0,1) \ \mathsf{and} \ \mathsf{states} \ \rho_1 \neq \rho_2.$$

Lemma

A quantum state ρ is a pure state if and only if ρ is rank-1.

Proof.

Let the spectral decomposition of ρ be

$$\rho = \sum_{j} \lambda_{j} \left| \psi_{j} \right\rangle \left\langle \psi_{j} \right|$$

where $\lambda_j \geq 0$ and $\sum_j \lambda_j = 1$. If ρ is not rank-1, ρ is a convex combination of quantum states $(|\psi_i\rangle \langle \psi_i|)_i$.

Assume $\rho = |\varphi\rangle \langle \varphi|$ and $\rho = p_1\rho_1 + p_2\rho_2$. $\operatorname{Tr}(\sigma |\varphi\rangle \langle \varphi|) = 1$ if and only if $\sigma = |\varphi\rangle \langle \varphi|$ since $\operatorname{Tr}(\sigma |\varphi\rangle \langle \varphi|) = \langle \varphi| \sigma |\varphi\rangle = \sum_j \lambda_j |\langle \psi_j| \varphi\rangle|^2$. Then, $\operatorname{Tr}((p_1\rho_1 + p_2\rho_2) |\varphi\rangle \langle \varphi|) = 1$ implies that $\operatorname{Tr}(\rho_1 |\varphi\rangle \langle \varphi|) = \operatorname{Tr}(\rho_2 |\varphi\rangle \langle \varphi|) = 1$, and hence $\rho_1 = \rho_2 = \rho$.

Pure states and state vector

Pure state $|\psi\rangle \langle \psi|$ can be represented by a state vector $|\psi\rangle \in \mathbb{C}^n$ with $\langle \psi|\psi\rangle = 1$.

$$|\psi\rangle$$
 and $|\varphi\rangle:=\mathrm{e}^{i\theta}\,|\psi\rangle$ represent the same state since $|\psi\rangle\,\langle\psi|=|\varphi\rangle\,\langle\varphi|.$

A state that is not pure state is called a mixed state.

 ρ is called a density matrix.

Inner product of pure states

- ρ is a qubit pure state with a coordinate $[r_X r_Y r_Z]$.
- σ is a qubit pure state with a coordinate $[-r_X r_Y r_Z]$.

$$\operatorname{Tr}(\rho\sigma) = \operatorname{Tr}(\rho(I-\rho)) = \operatorname{Tr}(\rho) - \operatorname{Tr}(\rho^2) = 1 - 1 = 0$$

- $\rho = |\psi\rangle\langle\psi|$.
- $\sigma = |\varphi\rangle\langle\varphi|$.

$$\operatorname{Tr}(\rho\sigma) = \operatorname{Tr}(|\psi\rangle \langle \psi| |\varphi\rangle \langle \varphi|) = \langle \psi|\varphi\rangle \operatorname{Tr}(|\psi\rangle \langle \varphi|)$$
$$= \langle \psi|\varphi\rangle \langle \varphi|\psi\rangle = |\langle \psi|\varphi\rangle|^{2}$$

Single qubit measurement

Set of measurements =
$$\{(e_1,\ldots,e_k)\mid e_1+\cdots+e_k=I,e_j\in C_{\succeq 0}\$$

 $i=1,2,\ldots,k,\ k=1,2,\ldots\}$

If $e_i e_j = \delta_{i,j} e_i$, the measurement is called an orthogonal measurement.

If $|0\rangle\langle 0|$ is measured by $(|0\rangle\langle 0|, |1\rangle\langle 1|)$, the output is 0 with probability $\text{Tr}(|0\rangle\langle 0||0\rangle\langle 0|) = |\langle 0|0\rangle|^2 = 1$.

If $|+\rangle \langle +|$ is measured by ($|0\rangle \langle 0|, |1\rangle \langle 1|$), the output is 0 with probability $\text{Tr}(|0\rangle \langle 0| |+\rangle \langle +|) = |\langle 0|+\rangle|^2 = 1/2$.

If $|\psi\rangle\langle\psi|$ is measured by $(|\varphi_0\rangle\langle\varphi_0|, |\varphi_1\rangle\langle\varphi_1|)$, the output is 0 with probability $\text{Tr}(|\varphi_0\rangle\langle\varphi_0||\psi\rangle\langle\psi|) = |\langle\varphi_0|\psi\rangle|^2$.

Unitary operation

For unitary operation U, let us consider

$$\rho \mapsto U \rho U^{\dagger}$$
.

It is easy to see that

- $Tr(U\rho U^{\dagger}) = 1$ (Trace-preserving)
- $U\rho U^{\dagger} \succeq 0$ (Positive)

A pure state $|\psi\rangle$ is mapped to a pure state $U|\psi\rangle$.

U and $e^{i\theta}U$ are physically equivalent.

Single qubit quantum channel

Since real vector space spanned by 2x2 Hermitian matrices is 4-dimensional, any linear map Φ on the linear space is represented by 4x4 real matrix. Let $\sigma_0 = I$, $\sigma_1 = X$, $\sigma_2 = Y$, $\sigma_3 = Z$, and $\mathbf{a} \cdot \sigma_0^3 := \sum_{i=0}^3 a_i \sigma_i$.

$$\Phi\left(\mathbf{a}\cdot\sigma_{0}^{3}\right)=\left(\mathbf{T}\mathbf{a}\right)\cdot\sigma_{0}^{3}$$
 where

$$T_{i,j} = \frac{1}{2} \operatorname{Tr}(\sigma_i \Phi(\sigma_j)).$$

From the trace-preserving property, i.e., $Tr(\Phi(\sigma)) = Tr(\sigma)$,

$$\mathsf{T}_{0,j} = rac{1}{2}\mathsf{Tr}(\sigma_0\Phi(\sigma_j)) = rac{1}{2}\mathsf{Tr}(\sigma_j) = \delta_{0,j}$$

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ t_1 & M_{11} & M_{12} & M_{13} \\ t_2 & M_{21} & M_{22} & M_{23} \\ t_3 & M_{31} & M_{32} & M_{33} \end{bmatrix}$$

$$\frac{I + \mathbf{r} \cdot \sigma_1^3}{2} \stackrel{\Phi}{\longmapsto} \frac{I + (M\mathbf{r} + \mathbf{t}) \cdot \sigma_1^3}{2}$$

Matrix representation of unitary channel

Unitary channel is unital, i.e., $\Phi(I) = UIU^{\dagger} = I$.

$$T_{i,0} = \frac{1}{2} \mathsf{Tr}(\sigma_i \Phi(I)) = \frac{1}{2} \mathsf{Tr}(\sigma_i) = \delta_{i,0}$$

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & M_{11} & M_{12} & M_{13} \\ 0 & M_{21} & M_{22} & M_{23} \\ 0 & M_{31} & M_{32} & M_{33} \end{bmatrix}$$

Trace-preserving unital linear map $\Phi \colon \mathcal{H}(\mathcal{X}) \to \mathcal{H}(\mathcal{X})$ is represented by the 3×3 real matrix M.

$$\frac{I + \mathbf{r} \cdot \sigma_1^3}{2} \xrightarrow{\Phi} \frac{I + (M\mathbf{r}) \cdot \sigma_1^3}{2}$$

Examples of unitary operations

- The identity matrix 1.
- Pauli matrices X, Y and Z.
- Hadamard matrix $H := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

• Product UV of unitary operators U and V.

Multiplications of Pauli matrices

For any unitary matrices U and V, UV is also unitary matrix.

- XY = iZ
- YZ = iX
- ZX = iY

Pauli matrices X on the Bloch sphere

$$\rho = \frac{1}{2} \left(I + r_X X + r_Y Y + r_Z Z \right)$$

$$X\rho X^{\dagger} = X\rho X = \frac{1}{2} \left(X^2 + r_X X^3 + r_Y XYX + r_Z XZX \right)$$
$$= \frac{1}{2} \left(I + r_X X - r_Y Y - r_Z Z \right)$$

$$[r_X \ r_Y \ r_Z] \stackrel{X}{\longmapsto} [r_X \ -r_Y \ -r_Z]$$

$$\pi$$
-rotation with respect to X axis. $M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Similarly, Y and Z corresponds to π -rotation with respect to Y and Z axes, respectively.

Hadamard matrix

Hadamard matrix H is unitary and Hermitian.

$$\begin{aligned} H := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} &= |+\rangle \langle 0| + |-\rangle \langle 1| \\ &= |0\rangle \langle +| + |1\rangle \langle -| \\ &|0\rangle \,, \, |1\rangle \stackrel{H}{\longleftrightarrow} |+\rangle \,, \, |-\rangle \end{aligned}$$

$$HXH = H(|+\rangle \langle +|-|-\rangle \langle -|)H$$
$$= |0\rangle \langle 0| - |1\rangle \langle 1| = Z$$

Similarly,
$$HZH = X$$
.
 $HYH = H(iXZ)H = iHXHHZH = iZX = -Y$

Hadamard matrix on the Bloch sphere

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$

$$H\rho H^{\dagger} = H\rho H = \frac{1}{2} (H^2 + r_X HXH + r_Y HYH + r_Z HZH)$$

$$= \frac{1}{2} (I + r_X Z - r_Y Y + r_Z X)$$

$$[r_X r_Y r_Z] \stackrel{H}{\longmapsto} [r_Z - r_Y r_X]$$

$$M = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Rotation matrice for the Z axis

$$R_{Z}(\theta) := \cos \frac{\theta}{2} I - i \sin \frac{\theta}{2} Z$$

$$R_{Z}(\theta)^{\dagger} = \cos \frac{\theta}{2} I + i \sin \frac{\theta}{2} Z = R_{Z}(-\theta)$$

$$R_{Z}(\theta) R_{Z}(\tau) = \left(\cos \frac{\theta}{2} I - i \sin \frac{\theta}{2} Z\right) \left(\cos \frac{\tau}{2} I - i \sin \frac{\tau}{2} Z\right)$$

$$R_{Z}(\theta)R_{Z}(\tau) = \left(\cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Z\right)\left(\cos\frac{\tau}{2}I - i\sin\frac{\tau}{2}Z\right)$$
$$= \left(\cos\frac{\theta}{2}\cos\frac{\tau}{2} - \sin\frac{\theta}{2}\sin\frac{\tau}{2}\right)I - i\left(\cos\frac{\theta}{2}\sin\frac{\tau}{2} + \sin\frac{\theta}{2}\cos\frac{\tau}{2}\right)Z$$

$$=\cos\frac{\theta+\tau}{2}I-i\sin\frac{\theta+\tau}{2}Z=R_Z(\theta+\tau)$$

$$R_Z(\theta)R_Z(\theta)^{\dagger} = R_Z(\theta)R_Z(-\theta) = R_Z(\theta-\theta) = R_Z(0) = I$$

$$R_Z(\theta)X = XR_Z(-\theta), \quad R_Z(\theta)Y = YR_Z(-\theta), \quad R_Z(\theta)Z = ZR_Z(\theta)$$

$$M = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

General unitary matrix

$$\langle UAU^{\dagger}, UBU^{\dagger} \rangle = Tr(UAU^{\dagger}UBU^{\dagger}) = Tr(AB) = \langle A, B \rangle.$$

$$\langle UAU^{\dagger}, UBU^{\dagger} \rangle = \left\langle \frac{I + (M\mathbf{a}) \cdot \sigma_{1}^{3}}{2}, \frac{I + (M\mathbf{b}) \cdot \sigma_{1}^{3}}{2} \right\rangle = \frac{1}{2} (1 + \langle M\mathbf{a}, M\mathbf{b} \rangle)$$
$$\langle A, B \rangle = \left\langle \frac{I + \mathbf{a} \cdot \sigma_{1}^{3}}{2}, \frac{I + \mathbf{b} \cdot \sigma_{1}^{3}}{2} \right\rangle = \frac{1}{2} (1 + \langle \mathbf{a}, \mathbf{b} \rangle)$$

 $\langle M\mathbf{a}, M\mathbf{b} \rangle = \langle \mathbf{a}, \mathbf{b} \rangle$ implies that M is an orthogonal matrix.

Since for a unitary matrix U with det(U) = 1,

$$U = \sum_{i} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}| = VR_{Z}(\theta)V^{\dagger}.$$

$$M_U = M_V M_{R_z(\theta)} M_V^{-1}$$

$$\det(M_U) = \det(M_V) \det(M_{R_Z(\theta)}) \det(M_V^{-1}) = \det(M_{R_Z(\theta)}) = 1.$$

Conversely, any 3×3 orthogonal matrix M with $\det(M) = 1$ corresponds to some unitary channel $\rho \mapsto U \rho U^{\dagger}$. Such matrix is a rotation matrix.

Assignments

- **1** Express $(a_XX + a_YY + a_ZZ)^2$ as a linear combination of I, X, Y, Z for $a_X, a_Y, a_Z \in \mathbb{C}$.
- **2** For a real unit vector $\mathbf{v} := \begin{bmatrix} v_X & v_Y & v_Z \end{bmatrix}$, let

$$R_{\mathbf{v}}(\theta) := \cos \frac{\theta}{2} I - i \sin \frac{\theta}{2} (v_X X + v_Y Y + v_Z Z).$$

Show that $R_{\mathbf{v}}(\theta)R_{\mathbf{v}}(\tau) = R_{\mathbf{v}}(\theta + \tau)$ for any $\theta, \tau \in \mathbb{R}$. Show also that $R_{\mathbf{v}}(\theta)$ is a unitary matrix.

- 3 Show two pure states ρ_0 , ρ_1 that are invariant by $R_{\mathbf{v}}(\theta)$ for any $\theta \in \mathbb{R}$, i.e., $R_{\mathbf{v}}(\theta)\rho_i R_{\mathbf{v}}(\theta)^{\dagger} = \rho_i$, as linear combinations of I, X, Y and Z.
- **4** [Advanced] Show that for any unitary matrix U with $\det(U) = 1$, there exists a real three-dimensional unit vector \mathbf{v} and $\theta \in \mathbb{R}$, such that $U = R_{\mathbf{v}}(\theta)$.