Color

- Trichromacy
- Spectral matching curves
- CIE XYZ color system
- xy-chromaticity diagram
- Color gamut
- Color temperature
- Color balancing algorithms

Color: visible range of the electromagnetic spectrum

[Newton, 1666]

Source: Gonzalez+Woods, Figs. 6.1, 6.2

Absorption of light in the cones of the human retina

Source: Gonzalez+Woods, Fig. 6.3

Three-receptor model of color perception

- Different spectra can map into the same tristimulus values and hence look identical ("metamers")
- Three numbers suffice to represent any color

Color matching

- Suppose 3 primary light sources with spectra $P_k(\lambda)$, k=1,2,3
- How to choose β_k , k=1,2,3, such that desired tristimulus values $(\alpha_R, \alpha_G, \alpha_B)$ result ?

$$\alpha_{i} = \int_{\lambda} S_{i}(\lambda) \Big[\beta_{1} P_{1}(\lambda) + \beta_{2} P_{2}(\lambda) + \beta_{3} P_{3}(\lambda) \Big]$$

$$= \beta_{1} \cdot K_{i,1} + \beta_{2} \cdot K_{i,2} + \beta_{3} \cdot K_{i,3} \quad \text{with } K_{i,j} = \int_{\lambda} S_{i}(\lambda) P_{j}(\lambda) d\lambda$$

Color matching is linear ("Grassman's Laws")

Additive vs. subtractive color mixing

Spectral matching curves

- Experiment:

 Match monochromatic
 light with 3
 monochromatic
 primaries
- "Negative intensity": color is added to test color
- CIE (Commision Internationale de L'Eclairage), 1931:
 Spectral RGB primaries (scaled, such that R_λ=G_λ=B_λ matches spectrally flat white).

Luminous efficiency curve

- Experiment:

 Match the brightness of a monochromatic light with a white reference light
- Links photometric to radiometric quantities

CIE 1931 XYZ color system

Properties:

- All positive spectral matching curves
- Y corresponds to luminance
- Equal energy white: X=Y=Z
- Virtual primaries

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} .490 & .310 & .200 \\ .177 & .813 & .011 \\ .000 & .010 & .990 \end{pmatrix} \begin{pmatrix} R_{\lambda} \\ G_{\lambda} \\ B_{\lambda} \end{pmatrix}$$

Color gamut and chromaticity

Inaccuracy for color matches

Just noticable chromaticity differences (10X enlarged)

[MacAdam, 1942]

Color gamut

NTSC phosphors

R: x=0.67, y=0.33

G: x=0.21, y=0.71

B: x=0.14, y=0.08

Reference white:

x=0.31, y=0.32

Illuminant C

White at different color temperatures

Blackbody radiation

Color balancing

- Effect of different illuminants can be cancelled only in the spectral domain (impractical)
- Color balancing in 3-d color space is practical approximation
- Color constancy in human visual system: gain control in cone space LMS [von Kries, 1902]
- Von Kries hypothesis applied to image acquisition devices (cameras, scanners)

- Which color space is best?
- How to determine k_L , k_M , k_S automatically?

Color balancing (cont.)

Von Kries hypothesis

$$\begin{pmatrix} L' \\ M' \\ S' \end{pmatrix} = \begin{pmatrix} k_L & 0 & 0 \\ 0 & k_M & 0 \\ 0 & 0 & k_S \end{pmatrix} \begin{pmatrix} L \\ M \\ S \end{pmatrix}$$

If illumination (or a patch of white in the scene) is known, calculate

$$k_L = \frac{L_{desired}}{L_{actual}}; \quad k_M = \frac{M_{desired}}{M_{actual}}; \quad k_S = \frac{S_{desired}}{S_{actual}}$$

Color balancing with unknown illumination

Gray-world

$$\sum_{image} k_L L = \sum_{image} k_M M = \sum_{image} k_S S$$

- Apply gray-world algorithm to a subset of pixels
 - Exclude saturated colors
 - Bright pixels only
- Scale-by-max algorithm
 - Determine max(L), max(M), max(S) separately in each channel
 - Scale each channel by its max
 - Sensitive to saturation

Color balancing example

Original

Scale-by-max color balancing

Color balancing example

Original Lena

Scale-by-max color balancing

