II. Counting & Probability

Instructor: Yanlin Qi

Institute of Transportation Studies

Department of Statistics

University of California, Davis

Counting – Multiplication Rule

Linking Sample Space with Counting

How to know the number of possible outcomes in the Sample Space for a given random experiment?

Identifying Sample Space

Identify the sample space for a given random experiment

Figure 2-6 Tree diagram for different types of vehicles with 48 outcomes in the sample space.

Number of possible outsomes = $2 \times 2 \times 3 \times 4 = 48$

Multiplication Rule

- If an operation can be described as a sequence of k steps, and
 - ❖ If the number of ways of completing step 1 is n₁, and
 - ❖ If the number of ways of completing step 2 is n₂, and
 - ❖ If the number of ways of completing step 3 is n₃, and
 - ❖so forth

The total number of ways of completing the operation is

$$n_1 \times n_2 \times ... \times n_k$$

- Example:
 - If you have 2 hats and 3 shirts you can wear them in

$$3\times 2$$
 ways

Example 2: Multiplication Rule

- You are doing a diet and subscribe to a diet website. They send you 13 different recipes for soups, entrees, and desserts as follows:
 - 3 soups
 - 6 entrées
 - 4 desserts
- How many possible different meals could you have (exactly one for each type)?

```
Ans. Total = 3 \times 6 \times 4 = 72
```


Counting – Permutations and Combinations

Permutations & Combinations

Problems requiring Permutations and Combinations

Arranging Objects

- Calculating the number of ways to arrange any set where the arrangement creates different outcomes
 - books on a shelf, people in a line, letters in a word

Scheduling and Task Allocation

Assigning tasks, arranging schedules, or determining the order of operations

Statistical Design and Analysis

How many groups or orderings need to be considered while designing experiments?

Combinatorial Designs

How many ways can a network be tested by checking paths between pairs of nodes?

Permutations

Permutation

- Used to
 - count the Number of **ordered sequence** of the elements of a set, consider a set of elements as $S = \{a, b, c\}$
 - Number of ways to pick elements from a set
- A permutation of the elements is an ordered sequence of the elements
 - S= {abc, acb, bac, bca, cab, cba}
- The number of permutations of n different elements is

$$n!=n\times(n-1)\times(n-2)\times...\times2\times1$$

Note: 0!=1!=1

Example 1: Counting Possible Orders

You have 3 candies:

- one red
- one yellow
- one green

Pick 3, one candy at a time (How many **orders**?)

Formula

Number	First	Second	Third
1	red	yellow	green
2	red	green	yellow
3	yellow	red	green
4	yellow	green	red
5	green	red	yellow
6	green	yellow	red

$$3 \times 2 \times 1 = 6 = 3!$$

If there were 5 pieces of candy to be picked up:

The number of orders: $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

Example 1: Permutations

4 candies:

- 1 red
- 1 yellow
- 1 green
- 1 brown

Pick 2, one candy at a time (How many orders?)

Example 1: Permutations

You have 4 candies, one red, one yellow, one green and one brown Pick exactly 2, one candy at a time (How many orders?)

Number	First	Second
1	red	yellow
2	red	green
3	red	brown
4	yellow	red
5	yellow	green
6	yellow	brown
7	green	red
8	green	yellow
9	green	brown
10	brown	red
11	brown	yellow
12	brown	green

Permutations of Subsets!

Permutations on Subsets

The count of permutations of r-element subsets selected from a set of n different elements is:

$$P(n,r) = P_n^r \quad \text{(Call n permute r)}$$

$$= n \times (n-1) \times (n-2) \times \cdots \times (n-r+1)$$

$$= \frac{n!}{(n-r)!}$$

Example 5: How many four-letter words can be formed with letters A, B, C, D, E, and F?

Ans:

$$_{6}P_{4} = 6!/(6-4)! = 6 \times 5 \times 4 \times 3 \times 2 \times 1/(2 \times 1) = 6 \times 5 \times 4 \times 3 = 360$$

Example 1: Permutations

4 candies:

- 1 red
- 1 yellow
- 1 green
- 1 brown

Pick 2, one candy at a time (How many orders?)

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Number	First	Second
1	red	yellow
2	red	green
3	red	brown
4	yellow	red
5	yellow	green
6	yellow	brown
7	green	red
8	green	yellow
9	green	brown
10	brown	red
11	brown	yellow
12	brown	green

$$_{4}P_{2} = \frac{4!}{(4-2)!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1} = 12$$

Permutations on Subsets

The number of permutations of **n** different elements is $\mathbf{n}! = \mathbf{n} \times (\mathbf{n}-1) \times (\mathbf{n}-2) \times ... \times 2 \times 1$

The number of permutations of subsets of r elements selected from a set of n different elements is:

$$P(n,r) = P_n^r = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$$

$$= \frac{n!}{(n-r)!}$$

Disregarding the arrangement of the remaining (n-r) elements

Permutation of Similar Objects

- ❖ The number of permutation of n objects in r different types, where $n = n_1 + n_2 + ... + n_r$
- which n_i is the number of objects in the ith type:

$$\frac{n!}{n_1! n_2! n_3! ... n_r!}$$

Example 9: How many words can we build with the letters of the word "Mississippi"?

Ans. M:1, I:4, S:4, and P:2
$$\frac{11!}{1!4!4!2!} = 34650$$

Only the order of different letters matters!

Combinations

Combination

How many subset of r elements can be selected form a set of n elements when order does not matter?

$$C(n,r) = nCr = C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Example 10: How many ways we can choose 4 student from a group of 9, To send to another session? $\binom{9}{4} = \frac{9!}{4!5!}$

Example 1: Combinations: Pick two pieces

Number	First	Second
1	red	yellow
2	red	green
3	red	brown
х	yellow	red
4	yellow	green
5	yellow	brown
x	green	red
x	green	yellow
6	green	brown
х	brown	red
х	brown	yellow
х	brown	green

$$_{n}C_{r}=\frac{n!}{(n-r)!\,r!}$$

$$_{4}C_{2} = \frac{4!}{(4-2)!2!} = \frac{4 \times 3 \times 2 \times 1}{(2 \times 1)(2 \times 1)} = 6$$

Example 3

- A group of 15 engineers is to be divided into three distinct project teams of 5 engineers each.
- In how many ways can this division be made?
- Combinations for each project
 - Projects A, B, C
 - For A, choose 5 from 15, order does not matter: $\binom{15}{5}$
 - For B, choose 5 from 15-5, order does not matter: $\binom{15}{5}$
 - * For C, choose 5 from 15-5-5, order does not matter: $\binom{5}{5}$

$$(5)_5 = \frac{5!}{5!(5-5)!} = 1$$
, only one possible choice

Any other solution method by treating them as permutation of similar objects?

Permutations of Similar Objects

- Example | Hospital Schedule
 - A hospital operating room needs to schedule **three knee** surgeries and **two hip** surgeries in a day. We denote a knee and hip surgery as k and h, respectively.
 - The number of possible sequences of three knee and two hip surgeries is

$$\frac{5!}{2! \ 3!} = 10$$

The 10 sequences are easily summarized:

```
{kkkhh, kkhkh, kkhhk, khkkh, khkkh, khkkh, hkkkh, hkkkh, hkkhk, hkkkh, hkkkh, hkkkk}
```


Counting Techniques - Review

Counting: Determine the number of possible outcomes in the sample space/various events

- Permutations and Combinations:
 - Advanced counting techniques
 - Permutations: Order matters (e.g., arranging books on a shelf).
 - Formula: $P(n,r) = \frac{n!}{(n-r)!}$
 - Combinations: Order does not matter (e.g., selecting a committee from a group).
 - Formula: $C(n,r) = \frac{n!}{r!(n-r)!}$

Probability

Probability

- Probability is used to quantify
 - the likelihood, or chance

that an outcome of

a random experiment will occur

- ❖ This is quantified by assigning a number from the interval [0,1] to the outcome (or a percentage from 0 to 100%).
 - Higher numbers indicate that the outcome is more likely than lower numbers.
 - A 0 indicates that an outcome will not occur.
 - A 1 indicates that an outcome will occur with certainty.

Example

A student working at the trader joe's conducted a visual inspection on a lot of bananas that was received last night. The student compiled the information about the number of defects found on each banana and created the following table:

Number of defects	Proportion of products
0	0.40
1	0.20
2	0.15
3	0.10
4	0.05
5 or more	0.10

- If one banana is selected randomly, what is the probability that it has no defects?
 - What is the probability that is has three or more defects

More Formal Concepts

Axioms of Probability

- Probability of event is a number that is assigned to each member of a collection of events from a random experiment that satisfies the following properties:
- \bullet If S is the sample space, and E is any event:
 - P(S) = 1
 - **⋄** 0 ≤ P(E) ≤ 1
 - For two events E_1 and E_2 with $E_1 \cap E_2 = \emptyset$ $P(E_1 \cup E_2) = P(E_1) + P(E_2)$
- Axioms imply that:
 - $P(\emptyset) = 0$
 - ❖ P(E') = 1 P(E)
 - \Leftrightarrow if $E_1 \subseteq E_2$ then $P(E_1) \leq P(E_2)$

Example

- $S = \{a, b, c, d, e\}$
- *Events: $A = \{a, b, \underline{c}\}$ and $B = \{\underline{c}, d, e\}$
- Determine:
 - P(A)
 - P(B)
 - P(A')
 - $P(A \cap B)$
 - $P(A \cup B)$

Exercise 2-50

- $S = \{a, b, c, d, e\}$ (all outcomes are equally likely)
- $A = \{a, b, c\} \text{ and } B = \{c, d, e\}$
- Determine:

$$P(A) \qquad \qquad \mathbf{0.60}$$

$$P(B)$$
 0.60

$$P(A \cap B)$$
 0.20

$$P(A \cup B)$$
 $P(A) + P(B) = 0.60 + 0.60 = 1.20$?!?

$$P(A) + P(B) - P(A \cap B) = 0.60 + 0.60 - 0.20 =$$

1.00

Addition Rules

Probability of A or B

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Note that "A or B" includes:
 - 1) Event A occurs but Event B does not
 - 2) Event A does not occur but Event B does
 - 3) Both Events A and B occur

Addition Rules

Probability of a union:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Then, if two events are mutually exclusive:

$$P(A \cup B) = P(A) + P(B)$$

For three or more events:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$$
$$-P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

If a collection of events is such that, for all pairs:

$$E_i \cap E_i = \emptyset$$
 then:

$$P(E_1 \cup E_2 \cup ... \cup E_k) = P(E_1) + P(E_2) + P(E_k)$$

Other sets rules

Complement

$$(E')' = E$$

Distributive law for set operations

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

DeMorgan's laws

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

For any events A and B

$$P(B) = P(A' \cap B) + P(A \cap B)$$

Example

- ❖ If P(A) = 0.2, P(B) = 0.3, and $P(A \cap B) = 0.1$, determine:
 - P(A')
 - $P(A \cup B)$
 - $P(A' \cap B)$
 - $P(A \cap B')$
 - $P[(A \cup B)']$
 - $P(A' \cup B)$

Example

•• If P(A) = 0.2, P(B) = 0.3, and $P(A \cap B) = 0.1$, determine:

$$1 - P(A) = 1 - 0.2 = 0.8$$

$$P(A \cup B)$$

$$P(A \cup B)$$
 $P(A) + P(B) - P(A \cap B) = 0.2 + 0.3 - 0.1 = 0.4$

$$P(A' \cap B)$$

$$P(B)=P(A'\cap B)+P(A\cap B) \rightarrow P(A'\cap B) = 0.3-0.1 = 0.2$$

$$P(A \cap B')$$

$$P(A \cap B')$$
 $P(A) = P(A \cap B) + P(A \cap B') \rightarrow P(A \cap B') = 0.2 - 0.1 = 0.1$

$$P[(A \cup B)']$$

$$P[(A \cup B)'] \quad 1 - P(A \cup B) = 1 - 0.4 = 0.6$$

$$P(A' \cup B)$$

$$P(A') + P(B) - P(A' \cap B) = 0.8 + 0.2 - 0.1 = 0.9$$

Probability – Independent & Non-independent Events

Independent Events

- Events A and B are independent if the probability of event B happening is unaffected by whether event A happens
- Event A = {a fair coin comes up heads on the first toss} and
- Are independent events

If events A and B are independent, then

Probability of A and B

 $P(A \text{ and } B) = P(AB) = P(A) \times P(B)$

Only they are **INDEPENDENT!**

Coin Examples

- 1. Flip a coin twice,
 - What is the probability of a Head in the First Flip Or the Second Flip?
- 2. Toss a die and flip a coin
 - What is the probability that you get a 6 or a head?
- 3. Toss a die three times
 - What is the probability that you get at least one 6?

Non-Independent Events

- Event A = {It will rain tomorrow in Houston}
- Event B = {It will rain tomorrow in Galveston}
- Since Houston and Galveston are less than 50 miles apart, Events A and B are dependent
- When it rains in Houston, it will most likely rain in Galveston too.

Non-Independent!! Conditional probabilities!!

