Tesis

Una tesis

$Elio\ Campitelli$

2017-09-08

Índice

1.	Introducción	2
	1.1. Motivación	2
	1.2. Conceptos básicos	2
	1.3. Antecedentes	2
	1.4. Hipótesis	2
	1.5. Métodos	2
	1.6. Fuentes de datos	2
	1.7. Modelo SPEEDY	2
2.	Climatología observada	2
	2.1. Campos medios y anomalías	2
	2.1.1. Altura geopotencial	2
	2.1.2. Viento zonal:	6
	2.1.3. Temperatura	10
	2.1.4. Viento meridional?	12
	2.1.5. Gradiente meridional de vorticidad absoluta	15
	2.2. Ondas Quasiestacionarias	15
	2.3. Creación del índice	18
	2.4. Antecedentes	18
	2.5. Índice propio	18
	2.6. Análisis dinámica de septiembre	18
	2.7. Fuentes de actividad de onda	18
	2.8. Fuentes de variabilidad interna	18
	2.9. Fuentes externas	18
3.	Experimentos	18
	3.1. Validación SPEEDY	18
	3.2. Comparación	18
	3.3. Cosas inesperadas	19
4.	Conclusiones	19
5.	Agradecimientos	19
Re	eferencias	19

Por ahora esto es un outline y no mucho más.

Numerar las cosas. Figuras relevantes para cada sección.

1. Introducción

1.1. Motivación

Algo más substancioso que "me interesa la gran escala y el clima de altas latitudes" :P

- Efectos en nuestra región.
- Analogía con estudios en el hemisferio norte.

1.2. Conceptos básicos

- Ondas cuasiestacionarias
- Fluos de activdiad de onda

1.3. Antecedentes

• Quintanar y Mechoso, Raphael, et. al.

1.4. Hipótesis

¿Tengo una?

1.5. Métodos

Descripción de los experimentos.

1.6. Fuentes de datos

1.7. Modelo SPEEDY

2. Climatología observada

2.1. Campos medios y anomalías.

2.1.1. Altura geopotencial

Campo medio:

Cosas para ver:

Estructura dominantemente zonal. Zona de jet, variación de intensidad estacional. Vórtice polar en invierno/primavera.

Anomalías

Cosas para ver:

Estructura de onda 1. Ciclo estacional de la amplitud. Baroclinicidad.

Propuesta: unir ambos mapas

Complementa la figura anterior.

Desvío estándar por círculo de latitud:

Cosas para ver:

Latitud de mayor actividad de onda. Máximo en octubre en 300 hPa. Más adelante, se hace la misma figura pero con el desvío estándar asociado a cada número de onda.

2.1.2. Viento zonal:

Campo medio:

Cosas para ver:

Jet polar en invierno y primavera en niveles altos (< 100 hPa). Jest subtropical en niveles "medios".

Cosas para ver: Extensión y localización vertical de los jets.

Anomalía zonal

Cosas para ver (ambos):

2.1.3. Temperatura

Cosas para ver:

Gradiente muy pequeño en 200 hPa. Gradiente inverso en estratósfera. Núcleo cálido en $\sim 50^\circ$ (que se va a ver mejor en la anomalía zonal). Temperaturas frías en altas y bajas latitudes pero relativamente cálidas en $\sim 50^\circ$ en 100 hPa.

-85-80-75-70-65-60-55-50-45-40-35-30-25-20-15-10 -5 0 5 10 15 20 25

Cosas para ver:

Coincidencia entre la onda estacionaria 1 en gh y de t (en primavera).

Propuesta: combinar mapa de T y T^*

2.1.4. Viento meridional?

Campos medios.

Cosas para ver: No mucha actividad salvo por la onda 1 en niveles altos (consistente con la onda 1 de geopotenical). Corte meridional (v medio zonal):

Cosas para ver:

Dipolo entre niveles bajos y altos que alterna entre invierno y verano (parte convergente en superficie y divergente en altura de la ITCZ que se mueve hacia el hemisferio de verano). En altas latitudes, en superficie hay máximos de viento del sur debido a los vientos catabáticos de la antártida.

2.1.5. Gradiente meridional de vorticidad absoluta

Gradiente meridional de vorticiad absoluta

-4e-143e-142e-141e-110e+001e-112e-113e-114e-115e-116e-117e-118e-119e-11

Cosas para ver:

Máximos asociado con los flancos del jet. Zona "prohibida" en 200 y 300 hPa.

2.2. Ondas Quasiestacionarias

■ Fourier

Cosas para ver: Estructura. Zona donde onda 3 explica más que la onda 1 (zona marcada en negro)

- Onda 1 a 4.
- Amplitud, r2, etc...

- Fase.
- Wavelets
- Comparación.

Venajas y desventajas. Justificaicón de decisión.

2.3. Creación del índice

2.4. Antecedentes

Breve comentario sobre los índices usados en otros lados. Discutir ventajas y debilidades.

- Amplitud
- Fase (impacto en SA)

De todo eso, motiva decisión del índice.

2.5. Índice propio

- Niveles elegidos
- Promedio vs.máximo
- Composiciones de campos y flujos.
- Decisión del índice.

2.6. Análisis dinámica de septiembre

2.7. Fuentes de actividad de onda

2.8. Fuentes de variabilidad interna

(Discusión escrita más de papers), Pero nos concentramos en la fuente externa.

2.9. Fuentes externas

Campos de correlación con SST y OLR, principalmente ¿Discusión de otros forzantes?

3. Experimentos

3.1. Validación SPEEDY

- Comparación campos medios.
- Validación de las corridas experimentales (mostrar que es constante lo que tiene que ser consante)

3.2. Comparación

Comparación entre corridas y ncep.

3.3. Cosas inesperadas...

- **?**?
- protif!

4. Conclusiones

5. Agradecimientos

Referencias

Vera, C., Silvestri, G., Barros, V., & Carril, A. (2004). Differences in El Niño response over the Southern Hemisphere. Journal of Climate, 17(9), 1741-1753. https://doi.org/10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2