Another note on equality in DPI for the BS relative entropy

Anna Jenčová

November 6, 2024

1 Equality conditions in QRE and BS-RE

Let \mathcal{T} be a channel and let ρ, σ be states, σ invertible. According to [? ?], we have the following equivalen conditions for equality in DPI.

QRE	BS-RE
$\sigma^{1/2} \mathcal{T}^* (\mathcal{T}(\sigma)^{-1/2} \mathcal{T}(\rho) \mathcal{T}(\sigma)^{1/2}) \sigma^{1/2} = \rho$	$\sigma \mathcal{T}^*(\mathcal{T}(\sigma)^{-1}\mathcal{T}(\rho)) = \rho$
	$\sigma \mathcal{T}^*(\mathcal{T}(\sigma)^{-1}\mathcal{T}(\rho)^2\mathcal{T}(\sigma)^{-1})\sigma = \rho^2$
$\operatorname{Tr} \mathcal{T}(\rho)^{1/2} \mathcal{T}(\sigma)^{1/2} = \operatorname{Tr} \rho^{1/2} \sigma^{1/2}$	$\operatorname{Tr} \mathcal{T}(\rho)^2 \mathcal{T}(\sigma)^{-1} = \operatorname{Tr} \rho^2 \sigma^{-1}$
$\mathcal{T}^*(\mathcal{T}(\sigma)^{-1/2}\mathcal{T}(\rho)\mathcal{T}(\sigma)^{1/2}) = \sigma^{-1/2}\rho\sigma^{-1/2}$	$\mathcal{T}(\rho)\mathcal{T}(\sigma)^{-1}\mathcal{T}(\rho) = \rho\sigma^{-1}\rho$
$\sigma^{-1/2}\rho\sigma^{-1}\in\mathcal{F}_{(\mathcal{T}_{\sigma}\circ\mathcal{T})^*}$	$\sigma^{-1/2} ho\sigma^{-1/2}\in\mathcal{M}_{\mathcal{T}_{\sigma}^*}$
$\sigma^{it-1/2}\rho\sigma^{-it-1/2} \in \mathcal{M}_{\mathcal{T}_{\sigma}^*}, \forall t \in \mathbb{R}$	

Proposition 1. Assume that ρ_{ABC} is such that ρ_{AB} is invertible. Put $\eta_{AB} = \rho_B^{-1/2} \rho_{AB} \rho_B^{-1}$, $\eta_{BC} = \rho_B^{-1/2} \rho_{BC} \rho_B^{-1/2}$. The following are equivalent.

- (i) ρ_{ABC} is a BS-QMC.
- (ii) $\rho_{ABC} = \rho_{AB}\rho_B^{-1}\rho_{BC}$.
- (iii) η_{AB} and η_{BC} commute, and $\rho_{ABC} = \rho_B^{1/2} \eta_{AB} \eta_{BC} \rho_B^{1/2}$.
- (iv) There is a decomposition and a unitary $U_B: \mathcal{H}_B \to \bigoplus_n \mathcal{H}_{B_L^n} \otimes \mathcal{H}_{B_R^N}$ such that

$$\rho_{ABC} = \rho_B^{1/2} U_B^* \left(\bigoplus_n \eta_{AB_L^n} \otimes \eta_{B_R^n C} \right) U_B \rho_B^{1/2}$$

for some $\eta_{AB_L^n} \in B(\mathcal{H}_{AB_L^n})^+$, $\eta_{B_R^nC} \in B(\mathcal{H}_{B_R^nC})^+$.

Moreover, a BS-QMC ρ_{ABC} is a QMC if and only if $\rho_B^{it}\eta_{AB}\rho_B^{-it}$ commutes with η_{BC} for all $t \in \mathbb{R}$.

Proof. The equivalence (i) \iff (ii) was proved in []. If (ii) holds, then clearly $\rho_{ABC} =$ $\rho_B^{1/2}\eta_{AB}\eta_{BC}\rho_B^{1/2}=\rho_{ABC}^*$. Since ρ_B is invertible, $[\eta_{AB},\eta_{BC}]=0$.

Assume (iii). Then η_{BC} commutes with all elements of the form

$$\eta_{AB}^{1/2} X_A \eta_{AB}^{1/2}, \qquad X_A \in B(\mathcal{H}_A).$$

Let $\Gamma(X_A) = \eta_{AB}^{1/2} X_A \eta_{AB}^{1/2}$, then η_{BC} must be in the commutant of $(\Gamma(B(\mathcal{H}_A)))$ in $B(\mathcal{H}_{ABC})$, which is equal to $\Gamma(B(\mathcal{H}_A))' \otimes B(\mathcal{H}_C)$. Since Γ defines a completely positive map $B(\mathcal{H}_A) \to B(\mathcal{H}_{AB})$, it follows by the Arveson commutant lifting theorem [?, 1.3.1] that any element $T_{AB} \in \Gamma(B(\mathcal{H}_A))'$ must commute with η_{AB} and be of the form $T_{AB} = I_A \otimes T_B$. Put

$$\mathcal{B} := \{ T_B \in B(\mathcal{H}_B), \ T_B \text{ commutes with } \eta_{AB} \}, \tag{1}$$

then \mathcal{B} is a *-subalgebra in $B(\mathcal{H}_B)$ and we must have $\eta_{BC} \in \mathcal{B} \otimes B(\mathcal{H}_C)$. It is also clear from the definition of \mathcal{B} that $\eta_{AB} \in (I_A \otimes \mathcal{B})' = B(\mathcal{H}_A) \otimes \mathcal{B}'$.

For any subalgebra $\mathcal{B} \subseteq B(\mathcal{H}_B)$, there is a decomposition and a unitary U_B as in (iv) such that

$$\mathcal{B} = U_B \left(\bigoplus_n I_{B_L^n} \otimes B(\mathcal{H}_{B_R^n}) \right) U_B^*, \qquad \mathcal{B}' = U_B \left(\bigoplus_n B(\mathcal{H}_{B_L^n}) \otimes I_{B_R^n} \right) U_B^*.$$

Since

$$\eta_{BC} \in (\mathcal{B} \otimes B(\mathcal{H}_C))^+ = U_B^* \left(\bigoplus_n I_{B_I^n} \otimes B(\mathcal{H}_{B_B^n C})^+ \right) U_B,$$

we must have $\eta_{BC} = U_B^* \left(\bigoplus_n I_{B_L^n} \otimes \eta_{B_R^n C} \right) U_B$ for some $\eta_{B_R^n C} \in B(\mathcal{H}_{B_R^n C})^+$. Similarly, $\eta_{AB} = 0$ $U_B^* \left(\bigoplus_n \eta_{AB_L^n} \otimes I_{B_R^n} \right) U_B$ for some $\eta_{AB_L^n} \in B(\mathcal{H}_{AB_L^n})^+$. The statement (iv) now follows from $\rho_{ABC} =$ $ho_B^{1/2} \eta_{AB} \eta_{BC}
ho_B^{1/2}$

Suppose (iv) holds, then from

$$I_B = \operatorname{Tr}_{AC} \rho_B^{-1/2} \rho_{ABC} \rho_B^{-1/2} = U_B^* \left(\bigoplus_n \eta_{B_L^n} \otimes \eta_{B_R^n} \right) U_B$$

we infer that $\eta_{B_L^n} = I_{B_L^n}$ and $\eta_{B_R^n} = I_{B_R^n}$. It follows that $\rho_{AB} = \rho_B^{1/2} U_B^* \left(\bigoplus_n \eta_{AB_L^n} \otimes I_{B_R^n} \right) U_B \rho_B^{1/2}$ and similarly $\rho_{BC} = \rho_B^{1/2} U_B^* \left(\bigoplus_n I_{B_L^n} \otimes \eta_{B_R^n C} \right) U_B \rho_B^{1/2}$. The condition (ii) is immediate from this. Assume now that ρ_{ABC} is a QMC. By [?], there is a decomposition and unitary $U_B : \mathcal{H}_B \to \mathcal{H}_B$

 $\bigoplus_n \mathcal{H}_{B_L^n} \otimes \mathcal{H}_{B_R^n}$, such that

$$\rho_{ABC} = U_B^* \left(\bigoplus_n p_n \rho_{AB_r^n} \otimes \rho_{B_r^n C} \right) U_B, \tag{2}$$

where $\rho_{AB_L^n} \in B(\mathcal{H}_{AB_L^n})$ and $\rho_{B_R^nC} \in B(\mathcal{H}_{B_R^nC})$ are states and $\{p_n\}_n$ is a probability distribution. It follows from this that

$$\rho_B = U_B^* \left(\bigoplus_n p_n \rho_{B_L^n} \otimes \rho_{B_R^n} \right) U_B, \tag{3}$$

and $\eta_{AB} = U_B^* \left(\bigoplus_n \rho_{B_L^n}^{-1/2} \rho_{AB_L^n} \rho_{B_R^n}^{-1/2} \otimes I_{B_R^n} \right) U_B$, $\eta_{BC} = U_B^* \left(\bigoplus_n I_{B_L^n} \otimes \rho_{B_R^n}^{-1/2} \rho_{B_R^n} \rho_{B_R^n}^{-1/2} \rho_{B_R^n} \rho_{B_R^n}^{-1/2} \right) U_B$. clear from this that ρ_{ABC} is a BS-QMC and that $\rho_B^{it}\eta_{AB}\rho_B^{-it}$ commutes with η_{BC} for all $t \in \mathbb{R}$.

For the converse, note that the condition implies that $\eta_{BC} \in \mathcal{B} \otimes B(\mathcal{H}_C)$, where

$$\tilde{\mathcal{B}} := \{ T_B \in B(\mathcal{H}_B), \ T_B \text{ commutes with } \rho_B^{it} \eta_{AB} \rho_B^{-it}, \ \forall t \}.$$

Then $\tilde{\mathcal{B}}$ is a subalgebra invariant under $\rho_B^{it} \cdot \rho_B^{-it}$. It also follows that $\eta_{AB} \in B(\mathcal{H}_A) \otimes \tilde{\mathcal{B}}'$, where the commutant $\tilde{\mathcal{B}}'$ is also invariant under $\rho_B^{it} \cdot \rho_B^{-it}$. Assume that $\tilde{\mathcal{B}}$ has a decomposition as in $(\ref{eq:commutator})$, then ρ_{ABC} has the form given in the statement (iv), but the invariance condition implies that ρ_B has the form (1). It follows that ρ_{ABC} has the form (??), so that it sis a QMC.