1 極限の復習

1.1 数列

復習です.

$$(1) \lim_{n \to \infty} (n^2 - n)$$

(2)
$$\lim_{n \to \infty} \frac{3n+1}{2n-100}$$

(3)
$$\lim_{n \to \infty} \frac{n^2 + 3n - 10}{3 + 4n + 5n^2}$$

(4)
$$\lim_{n \to \infty} \frac{\sqrt{3n^2 + 1}}{\sqrt{n^2 + 1} + \sqrt{n}}$$

$$(5) \lim_{n \to \infty} \frac{2}{n - \sqrt{n^2 + n}}$$

(6)
$$\lim_{n \to \infty} (\sqrt{n-2} - \sqrt{n})$$

$$(7) \lim_{n \to \infty} (3^n - 2^n)$$

$$(10) \ a_1 = 2, a_{n+1} = \frac{3}{2} a_n + 1 \ \text{で定められる数列} \ a_n \ の極限を求めよ.$$

(8)
$$\lim_{n \to \infty} \frac{3^n + 5^n}{2^n - 5^n}$$

(11) 数列
$$a_n = 3\left(\left(\frac{1}{2}\right)^n + 1\right), b_n = 3$$
 があり、もう一つの数列 c_n が、任意の自然数 n で $b_n < c_n < a_n$ を満たしているとする.数列 c_n の極限を求めよ.

(9)
$$\lim_{n \to \infty} \frac{3^{n+1} + 2^{n+1} + 5^{n+1}}{5^n + 3^n + 2^n}$$

- $(12) 無限級数 \sum_{n=1}^{\infty} \frac{1}{n(n+2)} \ \text{の収束, 発散を調べ, 収束する場合は} \ \left| \ (13) \ 無限級数 \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+2}} \ \text{の収束, 発散を調べ, 収束する場合はその和を求めよ.} \right|$

2 関数の極限

2.1 そもそも極限とは

 $\lim_{x \to a} f(x) = b$ の意味を説明せよ.

2.2 練習問題

次の極限を求めよ.

(1)
$$\lim_{x \to 1} (2x+1)(x-1)$$

(2)
$$\lim_{x \to 0} \frac{2x+1}{x-5}$$

$$(3) \lim_{x \to -1} \sqrt{1 - 2x}$$

$$(4) \lim_{x \to \frac{\pi}{2}} \sin x$$

$$(5) \lim_{x \to 4} \log_2 x$$

2.3 さまざまな極限

次の問いに答えよ.

$$(1) \,\, 極限 \lim_{x \to 4} \frac{x^2 - 16}{x - 4} \,\, を求めよ.$$

2.4 練習

極限を求めよ.

(1)
$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{2} - \frac{1}{2+x} \right)$$

(2)
$$\lim_{x \to 0} \frac{\sqrt{x+9} - 3}{x}$$

$$(2)$$
 $y=\frac{x^2-16}{x-4}$ のグラフを描き、上の問題の意味を説明せよ.

(3)
$$\lim_{x\to 0} \frac{1}{x^2}$$

(4)
$$\lim_{x \to -2} \frac{-3}{(x+2)^2}$$

$$f(x) = \frac{x^2 + x}{|x|}$$

の極限について考える. (0 に近づける)

2.6 練習

極限を求めよ.

$$(1) \lim_{x \to +0} \frac{|x|}{x}$$

$$(2) \lim_{x \to -0} \frac{|x|}{x}$$

(3)
$$\lim_{x \to 1+0} \frac{x^2 - 1}{|x - 1|}$$

(4)
$$\lim_{x \to 1-0} \frac{x^2 - 1}{|x - 1|}$$

$$(5) \lim_{x \to +0} \frac{1}{x}$$

$$(6) \lim_{x \to -0} \frac{1}{x}$$

3 色々な関数の極限

3.1 指数対数

考え方は同じ.

3.2 練習

 $(1) \lim_{x \to \infty} 3^x$

 $(2) \lim_{x \to -\infty} (0.3)^x$

 $(3) \lim_{x \to +0} \log_2 x$

 $(4) \lim_{x \to \infty} \log_3 x$

 $(5) \lim_{x \to \infty} 2^{-x}$

 $(6) \lim_{x \to \infty} \log_3 \frac{3x+1}{9x-9}$

3.3 三角関数

3.4 グラフで考える

- (1) $x \to \infty$ での $\sin x, \cos x$ の極限はどうなるか.
- 3.5 色々な問題 (1) $\lim_{x\to\infty}\sin\frac{1}{x}$

(2) $\lim_{x \to \infty} \tan \frac{1}{x}$

(2) $x \to \frac{\pi}{2}$ での $\tan x$ の極限はどうなるか.

 $(3) \lim_{x \to 0} x \cos \frac{1}{x}$

 $(4) \lim_{x \to \infty} \frac{\sin x}{x}$

$$3.6$$
 $\frac{\sin x}{x}$ の極限

$$3.7 練習$$

$$(1) \lim_{x \to 0} \frac{\sin 3x}{x}$$

$$(2) \lim_{x \to 0} \frac{\sin 3x}{\sin 2x}$$

$$(3) \lim_{x \to 0} \frac{\tan x}{x}$$

$$(4) \lim_{x \to 0} \frac{\cos x - 1}{x}$$

4	関数(の連続	14

4.1 思考

(1) 定義域内すべてのxで連続なグラフをいくつか描いてみよ.

(2) 不連続な点をもつグラフをいくつか描いてみよ.

4.2 連続について

4.3 不連続について

4.4 中間値の定理 閉区間で連続な関数は、以下の性質を持つ.	4.5 練習 (1) 方程式 $x - \cos x = 0$ は, $0 < x < \pi$ の範囲に少なくとも 1 つ	
閉区間で連続な関数は、その区間で最大値および最小値を持つ.	の実数解を持つことを示せ.	
また、以下も成立。中間値の定理		
このことから, 次も成立する.	(2) 方程式 $2^x - 3x = 0$ は, $3 < x < 4$ の範囲に少なくとも 1 つの実数解を持つことを示せ.	