Calcul Second degré Dérivation locale Dérivation Globale Suites numériques Application du produit scalaire

Automatismes en premiére 2021/2022

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

18 octobre 2021

- Calcul
- 2 Second degré
- 3 Dérivation locale
- 4 Dérivation Globale
- 5 Suites numériques
- 6 Application du produit scalaire

Automatisme 1 thème : Fractions

Réduire au même dénominateur et simplifier les expressions suivantes définies pour l'indéterminée x ou n.

•
$$\frac{1}{n} - \frac{1}{n+1}$$

•
$$\frac{1}{n-4} - n$$

$$\bullet \ \frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n}$$

$$\bullet \ \frac{1}{x} + \frac{x+2}{x^2-4} + \frac{2}{x^2-2x}$$

Automatisme 2 thème : Factoriser

Soit a un réel.

- Factoriser $a^4 16$
- Factoriser $a^2 1 + 3a 3$ par a 1
- Factoriser $2a^2 + 5a + 2$ par a + 2
- Factoriser $a^2 + a 2$
- Factoriser $a^2 + a 6$

- Calcul
- Second degré
- 3 Dérivation locale
- 4 Dérivation Globale
- Suites numériques
- 6 Application du produit scalaire

Automatisme 3 thème : second degré

Pour chacun des trinômes suivants déterminer le signe de son discriminant sans le calculer.

- f_1 définie sur \mathbb{R} par $f_1(x) = x^2 + 100$
- f_2 définie sur \mathbb{R} par $f_2(x) = (x 100)^2$
- f_3 définie sur \mathbb{R} par $f_3(x) = (x+100)^2$
- f_4 définie sur \mathbb{R} par $f_4(x) = x^2 100$

- Calcul
- 2 Second degré
- 3 Dérivation locale
- 4 Dérivation Globale
- 5 Suites numériques
- 6 Application du produit scalaire

Automatisme 4 thème : dérivation locale

Soit f la fonction définie sur $]-\infty$; 0[par $f(x) = \frac{1}{x}$.

- Soit un réel a < 0 et un réel $h \neq 0$ tel que a + h < 0, démontrer que $\frac{f(a+h)-f(a)}{h} = \frac{-h}{(a+h)a}$.
- En déduire que f est dérivable en tout réel a < 0 et déterminer l'expression de f'(a).
- Déterminer une équation de la tangente à la courbe de f au point d'abscisse -2.

- Calcul
- 2 Second degré
- 3 Dérivation locale
- Dérivation Globale
- Suites numériques
- 6 Application du produit scalaire

Automatisme 5 thème : dérivation

Déterminer une expression de la fonction dérivée pour la fonction f dérivable sur l'intervalle I.

•
$$f: x \mapsto \frac{x^3-1}{5x^2+1}$$
 sur \mathbb{R} ;

•
$$f: x \mapsto x^2 \sqrt{x} \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto (8-3x)^7 \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto 4x - \frac{1}{x-3} \text{ sur }]3; +\infty[.$$

Automatisme 6 thème : dérivation

Soit f une fonction dérivable sur [-8; 6] dont on donne le tableau de variation ci-dessous.

X	-8	-5	2	3	6
f(x)	4 —	→ 0	→ -1 -	→ 0	

- Dresser le tableau de signes de la fonction dérivée f' de f sur l'intervalle [-8; 6].
- ② Dresser le tableau de variations d'une fonction F dérivable sur l'intervalle [-8; 6] et dont la dérivée est f.

Automatisme 7 thème : dérivation

Déterminer une expression de la fonction dérivée pour la fonction f dérivable sur l'intervalle I.

•
$$f: x \mapsto \sqrt{3x+1} \text{ sur }]-\frac{1}{3}; +\infty[;$$

•
$$f: x \mapsto (5x-3)\sqrt{x} \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto (605x - 3)^{607} \text{ sur } \mathbb{R};$$

•
$$f: x \mapsto \frac{1}{3} - \frac{2}{3-x} \text{ sur }]3; +\infty[.$$

- Calcul
- 2 Second degré
- 3 Dérivation locale
- 4 Dérivation Globale
- 5 Suites numériques
- 6 Application du produit scalaire

Automatisme 8 thème : suites

- Soit la suite (u_n) définie pour tout entier naturel n par $u_n = n^2 n$. Calculer u_4 et u_7 .
- Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = 4$ et $u_{n+1} = 2u_n 1$. Calculer u_1 , u_2 et u_3 .
- Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = 1$ et $u_n = u_{n-1} n + 1$. Calculer u_1 , u_2 et u_3 .

Automatisme 9 thème : suites

```
#On définit la suite (Un) par Un=f(n)
def f(n):
   if n==0:
     return 1
   else:
     return 1/n**2
# n**2 signifie le carré de n
```

Interpréteur en ligne :

https://repl.it/@Reformelycee/suite-explicite.

- $u_0 = 1$ Vrai ou Faux?
- $u_1 = 0.5 \text{ Vrai ou Faux}$?
- $u_{50} = 0,0004$ Vrai ou Faux?
- La suite n'est pas définie en 0. Vrai ou Faux?

- Calcul
- 2 Second degré
- 3 Dérivation locale
- 4 Dérivation Globale
- Suites numériques
- 6 Application du produit scalaire

Automatisme 10 thème : Application du produit scalaire

On se place dans un repère orthonormé. Dans chacun des cas suivants, dire si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.

$$\mathbf{a}. \overrightarrow{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

$$\mathbf{b}. \overrightarrow{u} \begin{pmatrix} -5 \\ 2 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 6 \\ 15 \end{pmatrix}$$

c.
$$\vec{u} \begin{pmatrix} \sqrt{10} \\ -2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \sqrt{2} \\ \sqrt{5} \end{pmatrix}$

Automatisme 11 thème : Application du produit scalaire

Dans le repère orthonormé ci-dessous, les points A, B, C et D ont des coordonnées entières.

Les droites (AB) et (CD)sont-elles perpendiculaires ?

Automatisme 12 thème : Application du produit scalaire

Soit
$$ABC$$
 un triangle tel que $AB = 4$, $AC = 5$ et $\widehat{BAC} = 60^{\circ}$.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \dots$$

Automatisme 13 thème : Application du produit scalaire

QCM une seule réponse exacte

ABCD est un rectangle de centre O tel que AB = 4 et AD = 2.

$$\overrightarrow{CO} \cdot \overrightarrow{AB}$$
 vaut :

(a) 8

$$(c) - 4\sqrt{5}$$

Automatisme 14 thème : Application du produit scalaire

VRAI ou FAUX

ABCD est un carré de centre O et de côté 1. Indiquer si les égalités suivantes sont vraies ou fausses.

$$\overrightarrow{BD} = 0$$

$$\overrightarrow{AC} \cdot \overrightarrow{AD} = 1$$

Automatisme 15 thème : Application du produit scalaire

Calculer la valeur exacte de la longueur *BC*.

Automatisme 16 thème : Application du produit scalaire

QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant $\overrightarrow{AB} \cdot \overrightarrow{BM} = 0$:

- (a) est une droite;
- **(b)** est un cercle;
- (c) n'est ni une droite ni un cercle.

Automatisme 17 thème : Application du produit scalaire

QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$:

- a est une droite;
- **b** est un cercle;
- c n'est ni une droite ni un cercle.