Sociología

Estadística MUY aplicada

Teresa Villagarcía

¿Para qué sirve la estadística?

Estudiaremos

- Formas eficaces de obtener información de los datos: medir.
- Muchos análisis gráficos
- Usaremos ordenadores: Statgraphics
- CASOS REALES QUE habrá que analizar por equipos
- Software disponible en el mercado: Statgraphics, S, R,SPSS, SAS....

Índice de la primera parte

- > Tipos de datos
- Análisis gráficos
- > Medidas resumen numéricas
- > Tablas

Tipos de datos:

- Datos cualitativos
- Datos cuantitativos
 - Datos transversales
 - Datos temporales

Datos Cualitativos: (No son números)

- Sexo de una persona
- Nacionalidad
- > Estado civil
- > Hoteles: céntrico o extrarradio
- ¿Datos de todo tipo?.....

Datos Cuantitativos

- > Altura de una persona
- > Peso
- > Ingresos
- > Hotel: Número de habitaciones.
- > ¿Datos de todo tipo?.....

Datos transversales:

Se obtienen de muchos individuos en el mismo instante de tiempo o en tiempos equivalentes.

Típico de encuestas

- > Número de trabajadores en 45 hoteles
- Altura de 200 personas
- Ingresos de 3000 familias
- ¿Datos de todo tipo?.....

Datos temporales:

Evolución de una variable en el tiempo

- Evolución de la inflación en España desde 1980
- Evolución de las ventas de la empresa desde hace 5 años
- Evolución de la calidad percibida por nuestros clientes.
- > ¿...?

Vamos a estudiar cómo se representan gráficamente

- Datos cuantitativos
 - Transversales: Histograma, Box plot.
 - Temporales: Gráfico de la serie
- Datos cualitativos
 - Transversales: Tarta, Barras
 - Análisis de Pareto
 - Temporales: Gráfico de la serie

Datos cuantitativos transversales: Alturas de 117 alumnos míos:

180 178 192 180 162 183 168 160 182 172 163 163 182 179 174 182 178 159 57 17 170 180 189 180 193 164 173 172 175 175 165 180 173 165 163 169 162 169 178 163 184 172 169 176 164 178 187 181 199 190 169 179 184 187 175 176 179 161 178 178 169 179 175 177 169 175 178 177 184 180 175 175 184 156 173 192 186 180 169 171 172 180 193 182 185 177 170 173 192 166 173

Hacemos un histograma

(Bueeeno lo hace el ordenador que para eso está)

¿Cómo ha hecho el ordenador el histograma?

- Calcula el valor mínimo y máximo observado
- 2. Divide ese rango en una serie de clases
- Cuenta cuantas personas hay en cada una de esas clases
- Calcula la proporción de observaciones en cada clase
- 5. Y.....lo dibuja.

Aprender a ver histogramas:

Aprender a ver histogramas:

Satisfacción con los profesores (de 1 a 5). Encuesta en Ingeniería técnica mecánica

Aprender a ver histogramas:

Satisfacción con los profesores. Encuesta en Ingeniería técnica mecánica

Primer Curso

Tercer Curso

Aprender a ver histogramas: Distribuciones bimodales

Aprender a ver histogramas: Índice de satisfacción de dos empresas

Diagrama de tallo y hojas

Para hacer a mano en un momento de necesidad

Un gráfico fantástico: El diagrama de caja: Box-plot

- 1. Se construye una caja que contiene el 50% central de los datos
 - 2. Se dibuja la mediana
 - 3. Se dibujan dos líneas hasta los puntos de corte (que calcula el ordenador)
 - 4. Se dibujan los puntos que quedan fuera: Puntos atípicos

Interpretar Box-plots por sexo

Consumo de los automóviles vendidos en Estados Unidos desde 1978 a 1981 por origen

Consumo de los automóviles vendidos en Estados Unidos por origen separando por años.

Satisfacción prácticas: Ing. Técnica mecánica

Hay que identificar esas asignaturas complicadas.

Satisfacción prácticas: Ing. Industrial

Hay que identificar esas asignaturas complicadas.

Aumenta el interés: Ing. Industrial

Hay que identificar esas asignaturas complicadas

Aumenta el interés: Admón empresas

Hay que identificar esas asignaturas complicadas

Vamos a estudiar cómo se representan gráficamente

- Datos cuantitativos
 - Transversales: Histograma, Box plot.
 - Temporales: Gráfico de la serie
- Datos cualitativos
 - Transversales: Tarta, Barras
 - Análisis de Pareto
 - Temporales: Gráfico de la serie

Vamos a estudiar cómo se representan gráficamente

- Datos cuantitativos
 - Transversales: Histograma, Box plot.
 - Temporales: Gráfico de la serie
- Datos cualitativos
 - Transversales: Tarta, Barras
 - Análisis de Pareto
 - Temporales: Gráfico de la serie

Datos cualitativos: Bar chart

Encuesta de satisfacción de clientes:

- Muy satisfechos
- Bastante satisfechos
- Medianamente satisfechos
- Descontentos

¿Diferencia con el histograma?

Datos cualitativos: Bar chart

Nivel de estudios de 75 personas:

- 1 Analfabeto
- 2 Sin estudios
- 3 Primarios
- 4 Secundarios
- 5 Medios
- 6 Estudios superiores

Datos cualitativos transversales: Pie chart

Datos cualitativos transversales: Pie chart

Datos cualitativos transversales : Pie chart

Datos cualitativos: Análisis de Pareto

- Muy apropiado para estudiar causas de problemas.
- Suele haber algunas causas que se repiten mucho.
- Varias causas son responsables de un importante número de problemas

Estamos estudiando las reclamaciones en un servicio de autobuses urbanos

Datos cualitativos: Análisis de Pareto

Causa de la Queja	Número de quejas
Retrasos	21
Masificación	12
Parada lejos	3
Frenazos	3
Otras	4

Vamos a estudiar cómo se representan gráficamente

- Datos cuantitativos
 - Transversales: Histograma, Box plot
 - Temporales: Gráfico de la serie
- Datos cualitativos
 - Transversales: Tarta, Barras
 - Análisis de Pareto
 - Temporales: Gráfico de la serie

Series temporales:

- Datos de evolución de variables en el tiempo:
 - Periodicidad: Frecuencia de recogida de datos. Anual, mensual
 - 2. Tendencia: Si aumenta o disminuye con el tiempo
 - 3. Variabilidad-Volatilidad: Su variación (grosor)
 - 4. Ciclo estacional Se observa un ciclo ligado al momento del año en que se ha recogido el dato

Periodicidad mensual- Ciclo estacional

Periodicidad mensual- Tendencia- Ciclo estacional

¿Tiene tendencia?

Mortalidad Española por edades e infantil en la UE desde 1975

Fuente de datos: INE. <u>www.ine.es</u> INEBASE

Mortalidad española. Número de personas Por edades desde Enero de 1980. Datos mensuales Jóvenes: de 5 a 9 y de 20 a 24 años

Personas mayores: 70 a 75 y 80 a 85

Mortalidad infantil en la UE

- > Fuente: INE.
- Muertos por 1000 nacidos
- > Desde 1975

Mortalidad por 1000 nacidos UE

Variables

- E Espania
- × FR Francia
- IT Italia
- + PT Portugal
- * UK Reino U
- CH Suiza
- D Alemania

Vamos a estudiar cómo se representan gráficamente

- Datos cuantitativos
 - Transversales: Histograma, Box plot.
 - Temporales: Gráfico de la serie
- Datos cualitativos
 - Transversales: Tarta, Barras
 - Análisis de Pareto
 - Temporales: Gráfico de la serie

Datos especiales

Mortalidad por edades y sexo en España, Namibia, Afganistán y Francia

> Fuente OMS

Fichero

	Edad	Muertes Nam. H	Muertes Nam. Muj	Muertes Esp. Muj.	Muertes Esp. Hom	Afg. Hom. H	Afg. Muj. H
1	0	8568,71019	7790,24988	401,170012	493,422997	-1,64864527368	-1,74131769828
2	1	3912,44484	4107,31234	98,7814833	106,683515	-2,61238244887	-2,4104291345
3	5	846,644932	844,917404	58,6835066	103,190634	-3,8621068088	-3,65925851788
4	10	607,438922	595,769925	69,277617	100,701737	-4,44583326371	-4,09666184505
5	15	1401,76613	2566,52814	134,241022	306,698648	-4,31376853974	-3,75840703996
6	20	3539,26358	7223,45537	132,909449	464,127578	-3,88355314538	-3,36870357039
7	25	7997,76138	11521,0723	178,594326	536,556225	-3,42991110309	-3,25342327475
8	30	11676,4829	11779,1118	241,194616	746,40871	-3,15785081263	-3,21792377821
9	35	10561,505	8252,09356	341,77619	905,359915	-2,90140730618	-3,0483721584
10	40	8574,53286	5831,77448	514,966231	1159,0383	-2,67929351659	-3,07100187398
11	45	6870,26084	3988,70023	734,236283	1711,47067	-2,4852210192	-2,90567733291 5
12	50	5225,70922	3253,95203	1070,53235	2573,49593	-2,26603110547	-2,61564965928 5
13	55	3942,84009	2882,22982	1471,09577	3649,15817	-2,03507417224	-2,31226327588 4
14	60	4070,05564	3245,54025	2410,65046	5809,92519	-1,74339442398	-1,94037591124 4
15	65	4535,8508	4105,83566	3914,70783	8268,1462	-1,43793777995	-1,57197663079
16	70	5097,25668	5298,41787	6784,40154	11656,9745	-1,08724089869	-1,19106253498 2
17	75	5108,89624	5987,14219	11875,4926	15569,2711	-0,770242999578	-0,863698068283
18	80	4154,55779	5474,55505	18983,9284	18043,4616	-0,494502900528	-0,567854140161
19	85	2392,89566	3587,80105	22977,2191	15714,5998	-0,264567615063	-0,319352267181
20	90	749,552453	1319,21434	17381,7253	8459,99563	-0,165893947882	-0,201224170824
21	95	157,550154	321,563331	8380,40652	3102,57404	-0,0302067238975	-0,0528348820234
22							
23							
24							

¿Cómo representamos estos datos?

- Mediante un diagrama de barras
- > O de puntos

- Posición de la variable:
 - Media (No la explico por obvia)
 - Mediana (Observación del medio)
- > Dispersión o amplitud de la variable
 - Desviación típica: Mide la amplitud de los datos

Mediana (Observación del medio de los datos)

Representa estupendamente la ubicación de los datos. Es una medida con ventajas respecto a la media

Dispersión: mide la amplitud de los datos

Rango mide la amplitud de los datos

Dispersión: mide la amplitud de los datos

Rango mide la amplitud de los datos

Desviación típica mide la amplitud de los datos

¿Por qué la mediana es muy útil?

Está en el medio de los los datos

Dato malo

Muy grande

¿Por qué la mediana es muy útil?

Medidas analíticas para describir los datos

La media no siempre es una medida satisfactoria. Ejemplo

En un hotel se pregunta a los clientes por su valoración de:

- •Limpieza de la habitación
- •Rapidez en los trámites de entrada
 - •Iluminación del BAR

Las valoraciones para dos hoteles han sido:

Variable – Atributo de Calidad	Valor medio obtenido: 6 HOTEL 1	Valor medio obtenido: 6 HOTEL 2	
Limpieza Habitación	3	8	
Rapidez trámites entrada	5	7	
Iluminación BAR	10	3	1
-A HIII			
			7

¿Son todos los atributos de calidad igualmente importantes?

Si pensamos que la importancia es:

Limpieza habitación: 50%

> Recepción: 40%

> Iluminación del Bar: 10%

> HOTEL 1: $0.5 \times 3 + 0.4 \times 5 + 0.1 \times 10 = 4.5$

> HOTEL 2: $0.5 \times 8 + 0.4 \times 7 + 0.1 \times 3 = 7.1$

Relación entre dos variables

- Gráfico de dispersión
- Gráfico de dispersión múltiple
- > Correlaciones

Relación entre dos variables:

- Normalmente hay que analizar más de un aspecto de interés:
 - VARIAS VARIABLES.
- Gráfico de dispersión (Scatterplot) resulta muy útil.

Relación entre dos variables: PESO Y ALTURA

No hay relación entre dos variables:

¿Hay relación entre estas variables?

Para medir el grado de relación entre variables

- > Utilizamos la correlación.
- ➤ Varía entre -1 y +1

Interpretación de la correlación:

Interpretación de la correlación

- + Relación creciente: Si una variable aumenta, la otra también
- Relación decreciente: Si una variable aumenta, la otra disminuye

Interpretación de la correlación

Si la correlación es muy pequeña indica falta de relación entre las variables.

Dispersión múltiple

Cuando tenemos muchas vaiables hacer los gráficos de dos en dos es muy latoso

Los gráficos múltiples hacen de golpe todas los graficos:

Dispersión múltiple

Saca todos los gráficos de dispersión entre un grupo de variables

Para países del mundo en 1995

