

FIG. 1

METHOD AND SYSTEM FOR PATTERN MATCHING HAVING HOLISTIC TWIG JOINS Nicolas Bruno, et al. ATT-106AUS

2/21

Fla.2A Fla.23

METHOD AND SYSTEM FOR PATTERN MATCHING HAVING HOLISTIC TWIG JOINS Nicolas Bruno, et al. ATT-106AUS

3/21

ATT-106AUS

4/21

```
Algorithm PathStack(q)
01 while \neg \operatorname{end}(q)
02 q_{min} = \operatorname{getMinSource}(q)
03 for q_i in \operatorname{subtreeModes}(q) // \operatorname{clean stacks}
04 while (\neg \operatorname{empty}(S_{q_i}) \land \operatorname{topB}(S_{q_i}) < \operatorname{nextL}(T_{q_{min}}))
05 \operatorname{pop}(S_{q_i})
06 \operatorname{moveStreamToStack}(T_{q_{min}}, S_{q_{min}}, \operatorname{pointer} \operatorname{to} \operatorname{top}(S_{\operatorname{parent}(q_{min})}))
07 if (\operatorname{isLeaf}(q_{min}))
08 \operatorname{showSolutions}(S_{q_{min}}, 1)
09 \operatorname{pop}(S_{q_{min}})
Function \operatorname{end}(q)
\operatorname{return} \forall q_i \in \operatorname{subtreeModes}(q) : \operatorname{isLeaf}(q_i) \Rightarrow \operatorname{eof}(T_{q_i})
\operatorname{is minimal}
Procedure \operatorname{moveStreamToStack}(T_q, S_q, p)
01 \operatorname{push}(S_{q_1}(\operatorname{next}(T_q), p))
02 \operatorname{advance}(T_q)
```

PathStack


```
Procedure showSolutions(SN,SP)

// Assume, for simplicity, that the stacks of the query

// nodes from the root to the current leaf node we

// are interested in can be accessed as S[1],...,S[n].

// Also assume that we have a global array index[1..n]

// of pointers to the stack elements.

// index[i] represents the position in the i'th stack that

// we are interested in for the current solution, where

// the bottom of each stack has position 1.

// Mark we are interested in position SP of stack SN.

01 index[SN] = SP

02 if (SN == 1) // we are in the root

03 // output solutions from the stacks

04 output (S[n].index[n],...,S[1].index[1])

05 else // recursive call

06 for i = 1 to S[SN].index[SN].pointer_to_parent

07 showSolutions(SN - 1,i)
```

Procedure showSolutions

FlG 5

METHOD AND SYSTEM FOR PATTERN MATCHING HAVING HOLISTIC TWIG JOINS Nicolas Bruno, et al. ATT-106AUS

7/21

	Case 1	Case 2	Case 3	Case 4
Property	X.R <y.l< td=""><td>X.L<y.l X.R>Y.R</y.l </td><td>X.L>Y.L X.R<y.r< td=""><td>X.L>Y.R</td></y.r<></td></y.l<>	X.L <y.l X.R>Y.R</y.l 	X.L>Y.L X.R <y.r< td=""><td>X.L>Y.R</td></y.r<>	X.L>Y.R
Segments	•X• v	<u> </u>	×.	, X
	* Root	g Root	• Root	• Floot
Tree				*

Cases for PathStack and TwigStack

FlG. 6

```
Algorithm PathMPMJ(q)
01 while (\neg \operatorname{eof}(T_q) \land (\operatorname{isRoot}(q) \lor \operatorname{nextL}(q) < \operatorname{nextR}(\operatorname{parent}(q))))
02 for (q_i \in \operatorname{subtreeWodes}(q)) // advance descendants
03 while (\operatorname{nextL}(q_i) < \operatorname{nextL}(\operatorname{parent}(q_i)))
04 advance(T_{q_i})
05 PushMark(T_{q_i})
06 if (\operatorname{isLeaf}(q)) // solution in the streams' heads outputSolution()
07 else PathMPMJ(child(q))
08 advance(T_q)
09 for (q_i \in \operatorname{subtreeWodes}(q)) // backtrack descendants
10 PopMark(T_{q_i})
```

 ${\tt PathMPMJ}$

```
Algorithm TwigStack(q)
      // Phase 1
Oi while -end(q)
02 qact = getHext(q)
       qact = getmext(y)
if (¬isRoot(qact))
  cleanStack(parent(qact), nextL(qact))
if (isRoot(qact) ∨ ¬empty(Sparent(qact)))
04
05
            cleanStack(qact, next(qact))
06
07
            moveStreamToStack(T_{qact}, S_{qact}, pointer to
                                                          top(Sparent(quet)))
80
             if (isLeaf(qact))
                showSolutionsWithBlocking(S_{q_{act}},1)
09
         pop(S_{qact})
else advance(T_{qact})
10
11
      // Phase 2
12 mergeAllPathSolutions()
Function getWext(q)
O1 if (isLeaf(q)) return q
O2 for q; in children(q)
03 n_i = get I ext(q_i)
04 if (n_i \neq q_i) return n_i
05 n_{min} = \min_{x \in T_i} rotath n_i

05 n_{min} = \min_{x \in T_i} \operatorname{nextL}(T_{n_i})

06 n_{max} = \max_{x \in T_i} \operatorname{nextL}(T_{n_i})

07 while (\operatorname{nextR}(T_q) < \operatorname{nextL}(T_{n_{max}}))
08 advance(T_q)
09 if (\text{nextL}(T_q) < \text{nextL}(T_{n_{min}})) return q
10 else return nmin
Procedure cleanStack(S, actL)
01 while (\neg empty(S) \land (topR(S) < actL))
02 pop(S)
```

TwigStack

10/21

ATT-106AUS

11/21

```
Algorithm TwigStackXB(q)
Of while \neg end(q)
02 q_{act} = getWext(q)

(03) if (isPlainValue(T_{q_{act}}))

04 if (¬isRoot(q_{act}))
05
              cleanStack(parent(qact), next(qact))
            if (isRoot(q_{act}) \lor \neg empty(S_{parent(q_{act})}))
              cleanStack(qact, next(qact))
07
              moveStreamToStack(T_{q_{act}}, S_{q_{act}}, pointer to top(S_{parent(q_{act})}))
80
09
              if (isLeaf(qact))
                 showSolutionsWithBlocking(S_{q_{act}}, 1)
10
17 mergeAllPathSolutions()
Function getText(q)
O1 if (isLeaf(q)) return q
O2 for q; in children(q)
03 n_i = getWext(q_i)
(04) if (q_i \neq n_i \vee \neg isPlainValue(T_{n_i})) return n_i
O5 n_{min} = \min \arg n_i \quad \operatorname{nextL}(T_{n_i})
O6 n_{max} = \max \arg n_i \quad \operatorname{nextL}(T_{n_i})
O7 while (\operatorname{nextR}(T_q) < \operatorname{nextL}(T_{n_{max}}))
08 advance(T_q)
09 if (\text{nextL}(T_q) < \text{nextL}(T_{n_{min}})) return q
10 else return nmin
Procedure cleanStack(S, actL)
O1 while (\neg empty(S) \land (topR(S) < actL))
O2 pop(S)
```

TwigStackXB

F/G. 9

12/21

AG. 11

FlG. 12A

F1G. 12B

(a) Execution time

(b) Number of elements read PathStack versus PathMPMJ for the unfolded DBLP data set

FIG. 13A

FlG 13B

METHOD AND SYSTEM FOR PATTERN MATCHING HAVING HOLISTIC TWIG JOINS Nicolas Bruno, et al. ATT-106AUS

17/21

FlG. 14A FLG. 14B FLG. 14C

Fla. 15A

FIG15B FIG15C

Fla 16A

F16 16B

FIG 16C

(a) Execution time

ion time (b) Number of partial solutions
PathStack versus TwigStack on a real data set

FlG. 17A

FlG 1713

FIG. 18A FIG. 18C