$11a_{180} \ (K11a_{180})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{44} + u^{43} + \dots + u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{44} + u^{43} + \dots + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{8} - 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{10} + 5u^{8} - 8u^{6} + 3u^{4} + u^{2} + 1 \\ u^{10} - 4u^{8} + 5u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{17} + 8u^{15} - 25u^{13} + 36u^{11} - 19u^{9} - 4u^{7} + 2u^{5} + 4u^{3} - u \\ u^{17} - 7u^{15} + 19u^{13} - 24u^{11} + 13u^{9} - 2u^{7} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{31} - 14u^{29} + \dots + 4u^{5} + 8u^{3} \\ u^{33} - 15u^{31} + \dots + 4u^{5} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{24} - 11u^{22} + \dots + 2u^{2} + 1 \\ -u^{24} + 10u^{22} + \dots + 8u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{24} - 11u^{22} + \dots + 2u^{2} + 1 \\ -u^{24} + 10u^{22} + \dots + 8u^{6} - 4u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{42} + 76u^{40} + \cdots 8u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{44} + u^{43} + \dots + u^2 + 1$
c_2	$u^{44} + 25u^{43} + \dots + 2u + 1$
c_3, c_7, c_8	$u^{44} - u^{43} + \dots + 16u + 5$
<i>c</i> ₄	$u^{44} - 3u^{43} + \dots - 8u + 3$
c_5, c_9, c_{10}	$u^{44} + u^{43} + \dots + u^2 + 1$
c_{11}	$u^{44} - 11u^{43} + \dots - 12u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{44} + 25y^{43} + \dots + 2y + 1$
c_2	$y^{44} - 11y^{43} + \dots + 6y + 1$
c_3, c_7, c_8	$y^{44} - 47y^{43} + \dots - 726y + 25$
<i>c</i> ₄	$y^{44} + 5y^{43} + \dots - 70y + 9$
c_5, c_9, c_{10}	$y^{44} - 39y^{43} + \dots + 2y + 1$
c_{11}	$y^{44} + y^{43} + \dots + 62y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.907981 + 0.307169I	-7.95121 + 4.48081I	-3.24122 - 4.16997I
u = 0.907981 - 0.307169I	-7.95121 - 4.48081I	-3.24122 + 4.16997I
u = -0.864630 + 0.288338I	-4.16526 + 0.15305I	0.227540 + 0.929725I
u = -0.864630 - 0.288338I	-4.16526 - 0.15305I	0.227540 - 0.929725I
u = 0.842517 + 0.328770I	-7.81717 - 4.88382I	-2.90557 + 2.15624I
u = 0.842517 - 0.328770I	-7.81717 + 4.88382I	-2.90557 - 2.15624I
u = -1.170600 + 0.135808I	-0.38378 - 3.13770I	-2.56284 + 4.58087I
u = -1.170600 - 0.135808I	-0.38378 + 3.13770I	-2.56284 - 4.58087I
u = 0.238444 + 0.753257I	-9.78827 + 8.91254I	-5.51225 - 6.86117I
u = 0.238444 - 0.753257I	-9.78827 - 8.91254I	-5.51225 + 6.86117I
u = 0.211452 + 0.753740I	-10.14920 - 0.50010I	-6.30668 - 0.52370I
u = 0.211452 - 0.753740I	-10.14920 + 0.50010I	-6.30668 + 0.52370I
u = -0.226339 + 0.743021I	-6.22083 - 4.06637I	-2.60237 + 3.83342I
u = -0.226339 - 0.743021I	-6.22083 + 4.06637I	-2.60237 - 3.83342I
u = 1.27909	2.59443	3.57300
u = -0.265421 + 0.637640I	-1.64111 - 5.49885I	-2.09355 + 9.09752I
u = -0.265421 - 0.637640I	-1.64111 + 5.49885I	-2.09355 - 9.09752I
u = 1.333120 + 0.238788I	1.11897 + 2.94236I	0
u = 1.333120 - 0.238788I	1.11897 - 2.94236I	0
u = -0.111488 + 0.635085I	-3.42148 + 0.21799I	-7.97736 + 0.39083I
u = -0.111488 - 0.635085I	-3.42148 - 0.21799I	-7.97736 - 0.39083I
u = 1.38005	2.50705	0
u = 0.244204 + 0.558196I	0.06888 + 1.57750I	1.83089 - 4.70926I
u = 0.244204 - 0.558196I	0.06888 - 1.57750I	1.83089 + 4.70926I
u = 1.390480 + 0.143509I	5.13647 - 0.61365I	0
u = 1.390480 - 0.143509I	5.13647 + 0.61365I	0
u = -1.389040 + 0.181909I	5.88050 - 3.43976I	0
u = -1.389040 - 0.181909I	5.88050 + 3.43976I	0
u = -1.388080 + 0.226393I	5.26596 - 4.49438I	0
u = -1.388080 - 0.226393I	5.26596 + 4.49438I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.38262 + 0.30594I	-5.09640 - 3.33447I	0
u = -1.38262 - 0.30594I	-5.09640 + 3.33447I	0
u = -1.41982 + 0.02499I	-0.91602 + 4.40703I	0
u = -1.41982 - 0.02499I	-0.91602 - 4.40703I	0
u = 1.39798 + 0.25008I	3.65546 + 8.74389I	0
u = 1.39798 - 0.25008I	3.65546 - 8.74389I	0
u = 1.39053 + 0.29925I	-1.08580 + 7.84259I	0
u = 1.39053 - 0.29925I	-1.08580 - 7.84259I	0
u = -1.39749 + 0.30388I	-4.58845 - 12.74280I	0
u = -1.39749 - 0.30388I	-4.58845 + 12.74280I	0
u = -0.474413 + 0.286577I	-0.48387 + 2.27983I	1.28247 - 3.09777I
u = -0.474413 - 0.286577I	-0.48387 - 2.27983I	1.28247 + 3.09777I
u = 0.303652 + 0.417609I	0.553397 + 1.129410I	4.11708 - 5.53577I
u = 0.303652 - 0.417609I	0.553397 - 1.129410I	4.11708 + 5.53577I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{44} + u^{43} + \dots + u^2 + 1$
c_2	$u^{44} + 25u^{43} + \dots + 2u + 1$
c_3, c_7, c_8	$u^{44} - u^{43} + \dots + 16u + 5$
<i>c</i> ₄	$u^{44} - 3u^{43} + \dots - 8u + 3$
c_5, c_9, c_{10}	$u^{44} + u^{43} + \dots + u^2 + 1$
c_{11}	$u^{44} - 11u^{43} + \dots - 12u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{44} + 25y^{43} + \dots + 2y + 1$
c_2	$y^{44} - 11y^{43} + \dots + 6y + 1$
c_3, c_7, c_8	$y^{44} - 47y^{43} + \dots - 726y + 25$
<i>c</i> ₄	$y^{44} + 5y^{43} + \dots - 70y + 9$
c_5, c_9, c_{10}	$y^{44} - 39y^{43} + \dots + 2y + 1$
c_{11}	$y^{44} + y^{43} + \dots + 62y + 1$