1.primary data type

- 1.integers/real number
- 2.float/double(the difference between these two is they have different numerical digit)
- 3.Char
- 4.boolean

2.abstract data structures

1.2D array

int[][]twoD= new int[4][5];

2.Stack

Last in, first out

All about enqueue and dequeue

3 stack methods:

Method name	Brief description	Example: OPS, a stack of integers	Comment
push()	Push an Item onto the stack	OPS.push(42)	Adds an element that contains the argument, whether it is a value, String, object, etc. to the top of the stack.
pop()	Pop an item off the stack	NUM = OPS.pop()	Removes and returns the item on the top of the stack.
is⊵mpty()	Test: stack contains no elements	if OPS.isEmpty() then	Returns TRUE if the stack does not contain any elements.

3. Queue

First in, first out

3 queue methods:

Method name	Brief description	Example: WAIT, a queue of Strings	Comment
enqueue ()	Put an item into the end of the queue	WAIT.enqueue("Mary")	Adds an element that contains the argument, whether it is a value, String, object, etc. to the end of the queue.
dequeue()	Remove an item from front of the queue	CLIENT = WAIT.dequeue()	Removes and returns the item at the front of the queue.
isEmpty()	Test: queue contains no elements	if WAIT.isEmpty() then	Returns TRUE if the queue does not contain any elements.

4.Linked list

- 1.A linked list is a linear collection of self-referential structures, called nodes, connected by pointer links.
 - 2.A linked list is accessed by keeping a pointer to the first node of the list.
 - 3. This pointer to the first node of a list is typically named head.
 - 4. Subsequent nodes are accessed via a link pointer member that is stored in each node.

5.Tree

a binary tree is either empty (represented by a null pointer), or is made of a single node, where the left and right pointers (recursive definition ahead) each point to a binary tree.

Recursion:

1.a method where the solution to a problem depends on solutions to smaller instance of the same problem.

2.a method that call itself(with a stopping condition)

recursion

- 1.low efficiency
- 2. easy to go out of bound

iteration

- 1.high efficiency
- 2.complicate code

Arrays in general:

```
int[]num={3,11,9,74,8,2,18,71,43,10};
int[]nu=new int[]{3,11,9};
```