7.7				Utech							
Invigilato	r's Su	gnature :	• • • • • •								
CS/B.TECH(CHE)(N)/SEM-5/CHE-502/2012-13											
2012											
CHEMICAL REACTION ENGINEERING											
Time Allo	tted :	3 Hours		Full Marks: 70							
	The	e figures in the margin ir	ndica	te full marks.							
Candidates are required to give their answers in their own words											
as far as practicable.											
		GROUP -	A								
		(Multiple Choice Typ	e Qu	estions)							
1. Cho	ose tł	ne correct alternatives fo	or an	y ten of the following:							
				10 × 1 = 10							
i)	The	dimensions of rate con	stant	for reaction $A \rightarrow B$ are							
	(litre	/gmole)/min. The react	ion o	rder is							
	a)	one	b)	two							
	c)	three	d)	zero.							
ii)	Arrh	enius equation shows	the	variation of							
	with	temperature.									
	a)	Reaction rate	b)	Rate constant							
	c)	Energy of activation	d)	Frequency factor.							
5116(N)				[Turn over							

- a) activation energy
- b) equilibrium constant
- c) heat of reaction
- d) none of these.
- iv) For the reaction $SO_2 + \frac{1}{2}O_2 = SO_3$ carried out in presence of V_2O_5 catalyst, the reaction
 - a) is considered as homogeneous
 - b) is considered as heterogeneous
 - c) may be either homogeneous or heterogeneous
 - d) none of these.
- v) The units of frequency factor in Arrhenius equation
 - a) is same as that of the rate constant
 - b) is different from the units of the rate constant
 - c) is unit less
 - d) none of these.
- vi) Which of the following is a characteristic of an elementary reaction?
 - The molecularity and order of the reaction is the same
 - b) The reaction rate constant is zero
 - c) The rate of the reaction is constant
 - d) The order of the reaction is always 1.

5116(N)

CS/B.TECH(CHE)(N)/SEM-5/CHE

- For any reaction, we may write conversion function of
 - a) time

- b) temperature
- concentration c)
- d) all of these.
- viii) For reaction under pore diffusion regime, the reaction rate
 - varies directly with catalyst particle size a)
 - varies inversely with catalyst particle size b)
 - is independent of catalyst particle size c)
 - none of these.
- Under strong pore diffusion regime an n th order ix) reaction behaves like a
- $\frac{(n+1)}{2}$ order reaction b) $\frac{(n-1)}{2}$ order reaction
 - zero order reaction c)
- d) n th order reaction.
- What will be the conversion, if we use a single PFR x) volume V instead of N number of PFR connected in series combination with a total volume of V?
 - a) Less

b) Equal

c) More

- d) None of these.
- Unreacted core model represents the reaction involving xi)
 - a) combustion of coal
 - b) roasting of sulfide ores
 - carbon disulphide manufacturing c)
 - none of these. d)

5116(N)

3

[Turn over

- xii) For an autocatalytic reactor, for conversion up to the maximum rate, the suitable reactor set up is
 - a) CSTR

- b) PFR
- c) recycle reactor
- d) CSTR followed by PFR.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following

 $3 \times 5 = 15$

- 2. At 500 K the rate of a bimolecular reaction is ten times the rate at 400 K. Find the activation energy of this reaction:
 - a) From Arrhenius' law
 - b) From Collision theory.
- 3. Write any *two* of the following:

 $2 \times 2\frac{1}{2}$

- i) Space time and Space volume
- ii) Significance of Residence Time Distribution
- iii) Derive the mathematical expression for rate constant of *n* th order reaction
- iv) Limitations of shrinking core model.
- 4. Derive the expression of rate of a 2nd order irreversible biomolecular reaction $(A + B \rightarrow R)$.
- 5. Prove that for a second order irreversible bimolecular reaction $A+B\to {\rm Products},\ \ln(M-X_A)/M(1-X_A)=C_{A0}(M-1)Kt$ where $M=C_{B0}/C_{A0}, M\ne 1$ (Symbols have their usual meaning).
- 6. Find the first order rate constant for the disappearance of A in the gas reaction $2A \rightarrow R$ if, on holding the pressure constant, the volume of the reaction mixture is starting with 80% A decreases by 20% in 3 min.

5116(N)

4

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Obtain the half-life period for a first order isothermal constant volume reaction.
 - b) A reaction $A \rightarrow P$ is carried out in batch reactor at different initial concentrations. Half-life for each run is noted. Calculate order of reaction and the rate constant from the half-life data given in table below:

C_{A0} (kmol/m ³)	10	18.5	30
t _{1/2} (s)	100.0	54·0	33.3

- c) For the reaction in series $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ carried out in a batch reactor. Prove that slowest step is the rate determining step. 3 + 8 + 4
- 8. a) The primary reaction occurring in homogeneous decomposition of nitrous oxide is found to be $N_2O \to N_2 + \tfrac{1}{2}O_2 \text{ with rate } -r_{H_2O} = K_1[N_2O]^2/1 + K_2[N_2O].$

Derive a mechanism to explain this observed rate.

5116(N) 5 Turn over

© Uledh

b) The aqueous reaction $A \rightarrow R + S$ proceeds as follows,

	Thomas (y 8 xon bidge 2nd Explore						
Time,	0	36	65	100	160	8	
min							
C_A mol/litre	0.1823	0.1453	0.1216	0.1025	0.0795	0.0494	

 $C_{A0}=0\cdot 1823 \quad \text{mol/lit}, \quad C_{R0}=0 \;, \quad C_{S0}=55 \quad \text{mol/lit},$ $M=C_{R0} \,/\, C_{A0} \, \text{Derive the rate equation to represent the}$ reaction. 7+8

- 9. a) Deduce the performance equation of a recycle reactor.
 - b) At 600K, the gas phase reaction $C_2H_4 + Br_2 \stackrel{k_1}{\rightleftharpoons} C_2H_4Br_2$ has rate constant $k_1 = 500$ litre/mol.hr and $k_2 = 0 \cdot 032 \, \mathrm{hr}^{-1}$.

If a plug flow reactor is to be fed $600\,\mathrm{m}^3/\mathrm{hr}$ of gas containing 60% Br₂ , 30% C₂H₄ and 10% inerts by volume at $600\mathrm{K}$ and 1.5 atm compute the volume of reactor vessel required to obtain 60% of the maximum conversion. 5+10

5116(N)

- 10. a) After 8 min in a batch reactor, reactant ($C_{A0} = 1 \text{ mol/lit}$) is 80% converted, after 18 min conversion is 90%. Find the rate equation to represent this reaction.
 - b) At 649° C phosphine (PH₃) decomposes as follows: $4PH_{3} \longrightarrow P_{4}(g) + 6H_{2}; -r_{PHOS} = (10hr^{-1})C_{PH_{3}}.$ What size of plug flow reactor operating at 649° C and $4\cdot 6$ atm pressure is needed for 75 per cent conversion of 10 mol/ltr of feed contain 50 per cent phosphine (PH₃) and rest inert. Feed rate is $1\cdot 86$ kg mol/hr. Determine the size of PFR. 5+10
- 11. a) What is the expression for 'Dispersion number'? What will be its value for PFT and MFR?
 - b) For reactions other than first order, knowledge of the RTD is not sufficient to predict conversion. What is the other parameter? Why first order reaction need not this parameter?
 - c) Write down the names of different models of a real reactor according to the number of adjustable parameters that are extracted from RTD data. 5+5+5

=========

5116(N) 7 Turn over