$\tt CGCAGAAACTCGCGGCGGCAGTCTTGTTCCGTACATAATCTTGGTCTGCAATAATGGGAGAAGCTCTGAAGTACAGTATCATGGAC$ MGEALKYSIMD TCAGTAAGATCGGTAGTTTTCAAAGAATCCGAAAATCTAGAAGGTTCTTGCACTAAAATCGAGGGCTACGACTTCAATAAAGGCCGT SVRSVVFKESENLEGSCTKIEGYDFNKGV TAACTATGCTGAGCTGATCAAGTCCATGGTTTCCACTGGTTTCCAAGCATCTAATCTTGGTGACGCCATTGCAATTGTTAATCAAA N Y A E L I K S M V S T G F Q A S N L G D A I A I V N Q TGCTAGATTGGAGGCTTTCACATGAGCTGCCCACGGAGGATTGCAGTGAAGAAGAAGAAGATGTTGCATACAGAGAGTCGGTAACC M L D W R L S H E L P T E D C S E E E R D V A Y R E S V T TGCAAAATCTTCTTGGGGTTCACTTCAAACCTTGTTTCTTCTTGTTTAGAGACACTGTCCGCTACCTTGTTCAGCACCGGATGGT C K I F L G F T S N L V S S G V R D T V R Y L V Q H R M V TGATGTTGTGGTTACTACAGCTGGTGGTATTGAAGAGGGTCTCATAAAGTGCCTCGCACCAACCTACAAGGGGGGACTTCTCTTTAC D V V V T T A G G I E E D L I K C L A P T Y K G D F S L CTGGAGCTTCTCTACGATCGAAAGGATTGAACCGTATTGGTAACTTATTGGTTCCTAATGACAACTACTGCAAATTTGAGAATTCG P G A S L R S K G L N R I G N L L V P N D N Y C K F E N W ATCATCCCAGTTTTTGACCAAATGTATGAGGAGCAGATTAATGAGAAGGTTCTATGGACACCATCTAAAGTCATTGCTCGTCTGGG I I P V F D Q M Y E E Q I N E K V L W T P S K V I A R L G K E I N D E T S Y L Y W A Y K N R I P V F C P G L T D G CACTTGGTGACATGCTATACTTCCATTCTTTCAAAAAGGGTGATCCAGATAATCCAGATCTTAATCCTGGTCTAGTCATAGACATT S L G D M L Y F H S F K K G D P D N P D L N P G L V I D I GTAGGAGATATTAGGGCCATGAATGGTGAAGCTGTCCATGCTGGTTTGAGGAAGACAGGAATGATTATACTGGGTGGAGGGCTGCC V G D I R A M N G E A V H A G L R K T G M I I L G G G L P TAAGCACCATGTTTGCAATGCCAATATGATGCGCAATGGTGCAGATTTTGCCGTCTTCATTAACACCGCACAAGAGTTTGATGGTA K H H V C N A N M M R N G A D F A V F I N T A Q E F D G GTGACTCTGGTGCCCGTCCTGATGAAGCTGTATCATGGGGAAAGATACGTGGTGCTGCCAAGACTGTGAAGGTGCATTGTGATGCA S D S G A R P D E A V S W G K I R G G A K T V K V H C D A ACCATTGCATTTCCCATATTAGTAGCTGAGACATTTGCAGCTAAGAGTAAGGAATTCTCCCAGATAAGGTGCCAAGTTTGAACATT TIAFPILVAETFAAKSKEFSQIRCQV GAGGAAGCTGTCCTTCCGACCACACATATGAATTGCTAGCTTTTGAAGCCAACTTGCTAGTGTGCAGCACCATTTATTCTGCAAAA CCATGTTATTTAGTTCTCTTCCTCTTCGAAAGTGAAGAGCTTAGATGTTCATAGGTTTTGAATTATGTTGGAGGTTGGTGATAACT GACTAGTCCTCTTACCATATAGATAATGTTATCCTTGTACTATGAGATTTTGGGTGTGTTTGATACCAAGGAAAAATGTTTATTTGG

Arabidopsis DeoxyHypusine Synthase (DHS) Predicted Sequence

Figure 2A sigtD=5 = NT GAACTCCCAAAACCCTCTACTACTACACTTTCAGATCCAAGGAAATCAATTTTGTCATTCGAGCAACATGG

EDDRVFSSVHSTVFKESESLEGK GATAAAATCGAAGGATACGATTTCAATCAAGGAGTAGATTACCCAAAGCTTATGCGATCCATGCTCACCAC K I E G Y D F N Q G V D Y P K L M R G F Q A S N L G E A I D V V N Q M

CAAAAATAAAAATTCCTTCTTTTTGTTTTCCTTTGTTTTGGGTGAATTAGTAATGACAAAGAGTTTGAATT E F

TGTATTGAAGCTAGATTGGAGACTGGCTGATGAAACTACAGTAGCTGAAGACTGTAGTGAAGAGGAGAAGA V L K L D W R L A D E T T V A E D C S ATCCATCGTTTAGAGAGTCTGTCAAGTGTAAAATCTTTCTAGGTTTCACTTCAAATCTTGTTTCATCTGGT SFRESVKCKIFLGFTSNL V R D T I R Y L V QHH

TTATAGATGTTAAAATTTTCGAGCTTTAGTTTTGATTTCAATGGTTTTTCTGCAGGTTGATGTTATAGTCA

CGACAACTGGTGGTGTTGAGGAAGATCTCATAAAATGCCTTGCACCTACATTTAAAGGTGATTTCTCTCTA TTTGGVEEDLIKCLAP CCTGGAGCTTATTTAAGGTCAAAGGGATTGAACCGAATTGGGAATTTGCTGGTTCCTAATGATAACTACTG PGAYLRSKGLNRIGNLLVPNDNY CAAGTTTGAGGATTGGATCATTCCCATCTTTGACGAGATGTTGAAGGAACAGAAGAAGAGGTATTGCTTT K F E D W I I P I F D E M L K E Q K

TCTTGCATCATTGACTTCGTTGGTGAATCCTTCTTTCTCTGGTTTTTCCTTGTAGAATGTGTTGTGGACTC

CTTCTAAACTGTTAGCACGGCTGGGAAAAGAAATCAACAATGAGAGTTCATACCTTTATTGGGCATACAAG P S K L L A R L G K E I N N E S SYLY **GT**ATCCAAAATTTTAACCTTTTTAGTTTTTTAATCATCCTGTGAGGAACTCGGGGATTTAAATTTTCCGCT TCTTGTGGTGTTTGT**AG**ATGAATATTCCAGTATTCTGCCCAGGGTTAACAGATGGCTCTCTTGGGGATATG

IPVFCP G CTGTATTTTCACTCTTTTCGTACCTCTGGCCTCATCATCGATGTAGTACAAGGTACTTCTTTTACTCAATA YFHSFRTSGLI IDVV

AGTCAGTGTGATAAATATTCCTGCTACATCTAGTGCAGGAATATTGTAACTAGTAGTGCATTGTAGCTTTT CCAATTCAGCAACGGACTTTACTGTAAGTTGATATCTAAAGGTTCAAACGGGAGCTAGGAGAATAGCATAG GGGCATTCTGATTTAGGTTTGGGGCACTGGGTTAAGAGTTAGAGAATAATAATCTTGTTAGTTGTTTATCA AACTCTTTGATGGTTAGTCTCTTGGTAATTTGAATTTTATCACAGTGTTTATGGTCTTTGAACCAGTTAAT GTTTTATGAACAGATATCAGAGCTATGAACGGCGAAGCTGTCCATGCAAATCCTAAAAAGACAGGGATGAT

DIRAMNGEAVHANPKKTGM AATCCTTGGAGGGGGCTTGCCAAAGCACCACATATGTAATGCCAATATGATGCGCAATGGTGCAGATTACG I L G G G L P K H H I C N A N M M R N G A D Y CTGTATTTATAACACCGGGCAAGAATTTGATGGGAGCGACTCGGGTGCACGCCCTGATGAAGCCGTGTCT TGQEF D G S D S G A R TGGGGTAAAATTAGGGGTTCTGCTAAAACCGTTAAGGTCTGCTTTTTAATTTCTTCACATCCTAATTTATA WGKIRGSAKTVKVCFL ISSHPNL TCTCACTCAGTGGTTTTGAGTACATATTTAATATTGGATCATTCTTGCAGGTATACTGTGATGCTACCATA

GCCTTCCCATTGTTGGTTGCAGAAACATTTGCCACAAAGAGAGACCAAACCTGTGAGTCTAAGACTTAAGA ACTGACTGGTCGTTTTTGGCCATGGATTCTTAAAGATCGTTGCTTTTTTGATTTTTACACTGGAGTGACCATAT AACACTCCACATTGATGTGGCTGTGACGCGAATTGTCTTCTTGCGAATTGTACTTTAGTTTCTCTCAACCT AAAATGATTTGCAGATTGTGTTTTCGTTTAAAACACAAGAGTCTTGTAGTCAATAATCCTTTGCCTTATAA AATTATTCAGTTCCAACAACACATTGTGATTCTGTGACAAGTCTCCCGTTGCCTATGTTCACTTCTCTGCG

Figure 2B

MEDDRVFSSVHSTVFKESESLEGKCDKIEGYDFNQGVDYPKLMRSMLTTGFQASNLGEAIDVVNQMFEFVLKLDWRLADETTV AEDCSEEEKNPSFRESVKCKIFLGFTSNLVSSGVRDTIRYLVQHHMVDVIVTTTGGVEEDLIKCLAPTFKGDFSLPGAYLRSK GLNRIGNLLVPNDNYCKFEDWIIPIFDEMLKEQKEENVLWTPSKLLARLGKEINNESSYLYWAYKMNIPVFCPGLTDGSLGDM LYFHSFRTSGLIIDVVQDIRAMNGEAVHANPKKTGMIILGGGLPKHHICNANMMRNGADYAVFINTGQEFDGSDSGARPDEAV SWGKIRGSAKTVKVCFLISSHPNLYLTQWF

Figure 2C

GGTGGTGTTGAGGAAGATCTCATAAAATGCCTTGCACCTACATTTAAAGGTGATTTCTCTCTACCTGGAGCTTATTTAAG
GTCAAAGGGATTGAACCGAATTGGGAATTTGCTGGTTCCTAATGATAACTACTGCAAGTTTGAGGATTGGATCATTCCCA
TCTTTGACGAGATGTTGAAGGAACAGAAAGAAGAAGATGTGTTGTGGACTCCTTCTAAACTGTTAGCACGGCTGGGAAAA
GAAATCAACAATGAGAGTTCATACCTTTATTGGGCATACAAGATGAATATTCCAGTATTCTGCCCAGGGTTAACAGATGG
CTCTCTTAGGGATATGCTGTATTTTCACTCTTTTCGTACCTCTGGCCTCATCATCGATGTAGTACAAGATATCAGAGCTA
TGAACGGCGAAGCTGTCCATGCAAATCCTAAAAAGACAGGGATGATAATCCTTGGAGGGGGGCTTGCCAAAGCACCACATA
TGTAATGCCAATATGATGCGCAATGGTGCAGATTACGCTGTATTTATAAACACCCGGGCAAGAATTTGATGGGAGCGACTC
GGGTGCACGCCCTGATGAAGC

Figure 2D

GGVEEDLIKCLAPTFKGDFSLPGAYLRSKGLNRIGNLLVPNDNYCKFEDWIIPIFDEMLKEQKEENVLWTPSKLLARLGKEIN NESSYLYWAYKMNIPVFCPGLTDGSLRDMLYFHSFRTSGLIIDVVQDIRAMNGEAVHANPKKTGMIILGGGLPKHHICNANMM RNGADYAVFINTGQEFDGSDSGARPDE

Figure 3

Human, Arabidopsis, Tomato, Yeast, Neurospora(Fungi), and Multiple DHS Sequence Alignments of Methanococcus(Archaeobacteria)

Figure 4

Southern Analysis of DHS

Northern Analysis of DHS on **Tomato Flowers**

Blossom

Bud

and Senescence

Northern

Northern Analysis of DHS on Developmental Stages of Tomato Fruit

Ripe Breaker Pink (red)

Northern Blot

Northern Analysis of DHS - 2M Sorbitol treated Tomato Leaves

Northern

Northern Analysis of DHS Tomato Leaf Chilling Effects

Northern Analysis of WT AT Aging Leaves

Figure 11

Northern Analysis of Canation Petal (In Situ)DHS

Figure 12

Tomato eif5A

Figure 13

GAAGAGCAGATTAACGCCGTTAAGGATGTTGGTACCAAGAAT**TAG**TTATGTCATGGCAGC GAAAGTGGAAACACCAAGGATGACCTCAGGCTTCCCACCGATGAAAATCTGCTGAAGCAG GTTAAAGATGGGTTCCAGGAAGGAAAGGATCTTGTGGTGTCTGTTATGTCTGCGATGGGC ACTTCAAAAACTGGAAAACACGGACATGCTAAATGTCACTTTGTGGCAATTGACATTTTT AATGGAAAGAAACTGGAAGATATCGTTCCGTCCTCCCACAATTGTGATGTGCCACATGTT AACCGTACCGACTATCAGCTGATTGATATCTCTGAAGATGGTTTTGTCTCACTTCTTACT CATTTTGAGTCAAAGGCAGATGCTGGTGCCTCAAAAACTTTCCCACAGCAAGCTGGAACC ATCCGTAAGAATGGTTACATCGTTATCAAAGGCCGTCCCTGCAAGGTTGTTGAGGTCTCC ტ **>** 回 Н Н 덜 Ø ρι 闰 K V V OI Н н ល Ω æ O) A Z ល > Д ບ Ē 闰 ပ Ī×ι Z ŋ Ē മ Ħ S H Д Ω H H **4** ပ 闰 × Д O ĸ ß ß н Н ტ Ø H K L E D I V P ĸ ¥ TDYQLIDI Ω > Ω 4 KDDL н (J) Ü O > Н Ħ 闰 Q I N A V Α × Oi × U O H [4 (U z U H Z ĸ V K D ល ŋ 闰

764 bps, not including Poly(A) tail; 160 amino acids

ATAATCACTGCCAAAGCTTTAAGACATTATCATATCCTAATGTGGTACTTTGATATCACT

CTAGAGAAAGTATTGGCTTTTGACAGCACAGTTGAACTATGTGAAAATTCTAC

Carnation - F5A

GGGAGAAGAGCAGATCTGCGCCGTCAAGGACGTTAGTGGTGGCAAG<u>TAG</u>A AGGATGATCTGAAGCTTCCTGCTGATGAGGCCCTTGTGAAGCAGATGAAG CACAATTGTGATGTTCCACATGTCAACCGTGTCGACTACCAGCTGCTTGA CCATTGACATTTTCAACGGCAAGAAGCTGGAAGATATTGTCCCCTCATCC TATCACTGAAGATGGCTTTGTTAGTCTGCTGACTGACAGTGGTGACACCA CTCTTTTACATCAATCGAAAAAAATTAGGGTTCTTATTTAGAGTGAGA GGCGAAAAATCGAACG<u>ATG</u>TCGGACGACGATCACCATTTCGAGTCATCGG CCGACGCCGGAGCATCCAAGACTTACCCTCAACAAGCTGGTACAATCCGC AAGAGCGGTCACATCATCAAAAATCGcCCtTGCAAGGtGGTTGAGGT TTCTACCTCCAAGACTGGCAAGCACGGTCATGCCAAATGTCACTTTGTTG HNCDVPHVNRVDYQLLD STSKTGKHGHAKCHFVA K S G H I V I K N R P C K V V E V D D L K L P A D E A L V K Q M K SKTYPQQAGTIR EGFEAGKDLILSVMCA SDDDHHFES G E E Q I C A V K D V S G G K IDIFNGKKEBDIVP

790 bps, 160 amino acids

TCGAGAACATTCTGAACCTTATATGTTGAATTGATGGTGCTTAGTTTGTT TTGGAAATCTCTTTGCAATTAAGTTGTACCAAATCAATGGATGTAATGTC TTGAATTTGTTTTATTTTTGTTTTGATGTTTTGCTGtGATTGCATTATGCA

AGCTTTTGATGAATCCAATACTACGCGGTGCAGTTGAAGCAATAGTAATC

Arabi dopsis F5A

CTGTTACCAAAAATCTGTACCGCAAAATCCTCGTCGAAGCTCGCTGCTGCAACCAAGTC

TGAGGTTTCAACCTCGAAGATGCATGGTCATGTAAATGTCATTTTGTAGCTAT EVSTREVAR TCCTCATGTCAACCGTACTGATTATCAGCTGATTGACATTTCTGAAGATGGATATGTCAG TTTGTTGACTGATAACGGTAGTACCAAGGATGACCTTAAAGCTCCCTAATGATGACACTCT GCTCCAACAGATCAAGAGT**GGGTTTGATGAAAGAAAGA**TCTAGTGGTGAGTGTAATGTC AGCTATGGGAGAGGAACAGATCAATGCTCTTAAGGACATCGGTCCCAAG**TGA**GACTAACA CGACGAGGAGCATCACTTTGAGTCCAGTGACGCCGGAGCGTCCAAAAACCTACCCTCAACA AGCTGGAACCATCCGTAAGAATGGTTACATCGTCATC**AAAAATCGTCCCTGCAAGGT**TGT LLTDNGSTKDDLKLPNDDTL A G T I R K N G Y I V I K N R P C K V V PHVNRTDYQLIDISEDGYV LQQIKSGFDDGKDLVVSVM H F E S S D A G A S K T Y P A M G E E Q I N A L K D I G P K EVSTSKTGKHGHAK DIFTSKKLEDIVPS

AAGCCTCCCCTTTGTTATGAGATTCTTCTTCTTGTAGGCTTCCATTACTCGTCGGAGA TTATCTTGTTTTTGGGTTACTCCTATTTTGGATATTTTAAACTTTTTGTTAATAATGCCATC TTCTTCAACCTTTTCCTTTCTAGATGGTTTTTTATACTTCTTCT

754 bps, not including Poly(A) tail; 158 amino acids

Figure 16

Figure 17

Figure 18

Figure 19

Wild-Type

3.1 Weeks

Figure 21

4.6 Weeks

Figure 22

Figure 23

6.1 Weeks

Seed Volume of Transgenic antisense-3'DHS plants anti-3'DHS # 5-5 anti-3'DHS # 8-2 Seed Volume anti-3'DHS # 1-1 AVG. WT 0 200 1400 ₁ 400 800 009 1200 1000

Plant Line

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Arabidopsis 3'-end DHS for antisense

Nucleotide and derived amino acid sequence
TGCACGCCTGATGAAGCTGTGTCTTGGGGTAAAATTAGGGGTTCTGCTAAAACCGTTAAGGTCTGCTTTT
ARPDEAVSWGKIRGSAKTVKVCF

TAATTTCTTCACATCCTAATTTATATCTCACTCAGTGGTTTTGAGTACATATTTAATATTGGATCATTCTT L I S S H P N L Y L T Q W F

Nucleotide sequence

ARPDEAVSWGKIRGSAKTVKVCFLISSHPNLYLTQWF

Tomato 3'-end-Deoxyhupsine synthase used for antisense

Nucleotide and derived amino acid sequence
GGTGCTCGTCCTGATGAAGCTGTATCATGGGGAAAGATACGTGGTGCCAAGACTGTGAAGGTGCATTGTGATGCAAC
G A R P D E A V S W G K I R G G A K T V K V H C D A T

CATTGCATTTCCCATATTAGTAGCTGAGACATTTGCAGCTAAGAGTAAGGAATTCTCCCAGATAAGGTGCCAAGTTTGAA
I A F P I L V A E T F A A K S K E F S Q I R C Q V

Nucleotide sequence GGTGCTCGTCCTGATGAAGCTGTATCATGGGGAAAGATACGTGGTGGTGCCAAGACTGTGAAGGTGCATTGTGATGCAAC CATTGCATTTCCCATATTAGTAGCTGAGACATTTGCAGCTAAGAGTAAGGAATTC

600 bp Arabidopsis Deoxyhypusine Synthase Probe

Primer1 (underlined)

 ${\tt GGTGGTGTTGAGGAAGATC}{\tt TCATAAAATGCCTTGCACCTACATTTAAAGGTGATTTCTCTCTACCTGGAGC}$ TTATTTAAG A P Y L R GTCAAAGGGATTGAACCGAATTGGGAATTTGCTGGTTCCTAATGATAACTACTGCAAGTTTGAGGATTGGA TCATTCCCA V P D N TCTTTGACGAGATGTTGAAGGAACAGAAAGAAGAAGATGTGTTGTGGACTCCTTCTAAACTGTTAGCACGG **CTGGGAAAA** E N V K L G K GAAATCAACAATGAGAGTTCATACCTTTATTGGGCATACAAGATGAATATTCCAGTATTCTGCCCAGGGTT AACAGATGG A Y K M N T D G CTCTCTTAGGGATATGCTGTATTTTCACTCTTTTCGTACCTCTGGCCTCATCATCGATGTAGTACAAGATA **TCAGAGCTA** R Α TGAACGGCGAAGCTGTCCATGCAAATCCTAAAAAGACAGGGATGATAATCCTTGGAGGGGGCTTGCCAAAG CACCACATA K T G M H H I TGTAATGCCAATATGATGCGCAATGGTGCAGATTACGCTGTATTTATAAACACCGGGCAAGAATTTGATGG GAGCGACTC DYAV Ι R N G A S D S GGGTGCACGCCCTGATGAAGC GARPDE

Primer 2 (underlined)

483 bp Carnation Deoxyhypusine Synthase Probe

GAAGATCCATCAAGTGCCTTGCACCCACTTTCAAAGGCGATTTTGCCTTACCAGGAGCTCAATTACGCTCC TGAATCGAATTGGTAATCTGTTGGTTCCGAATGATAACTACTGTAAATTTGAGGATTGGATCATTCCAATT **TTAGATA** NDNYC P K AGATGTTGGAAGAGCAAATTTCAGAGAAAATCTTATGGACACCATCGAAGTTGATTGGTCGATTAGGAAGA EKIL ACGATGAGAGTTCATACCTTTACTGGGCCTTCAAGAACAATATTCCAGTATTTTGCCCAGGTTTAACAGAC K TCGGAGACATGCTATATTTTCATTCTTTTCGCAATCCGGGTTTAATCATCGATGTTGTGCAAGATATAAGA **GCAGTAA** ATGGCGAGGCTGTGCACGCAGCGCCTAGGAAAACAGGCATGATTATACTCGGTGGAGGGTTGCCTAAGCAC Α GCAACGCAAACATGATGAGAAATGGCGCCGATTATGCTGTTTTCATCAACACCG CNANMMRNGADYAVFINT

A full-length cDNA clone was obtained by screening a carnation senescing petal cDNA library with this probe.

Figure 40A

Blossom end rot

Normal

