Numerical Analysis Qualifying Exam Spring 1997

- 1. In some computers, division 1/a is done by using Newton's method. The operation becomes finding the root of the function f(x) = a 1/x. Consider Newton's method for this function, write down the Newton's iteration for it (the operation only involves addition, subtraction and multiplication).
 - (a) Introducing the scaled residual $r_n = 1 ax_n$, find the relation of r_{n+1} and r_n .
 - (b) Find the condition that guarantees the convergence.
 - (c) Using the results, find

$$\prod_{n=0}^{\infty} (1 + r^{2^n}), \text{ where } |r| < 1$$

(Hint: Let $r = r_0$, write x_n in terms of x_0 and r_0)

- 2. Suppose $S_{na}(x)$, $S_{cl}(x)$ are the natural cubic spline interpolant and clamped cubic spline interpolant respectively for a function f(x) with knots t_0, t_1, \ldots, t_n . That is, they both are cubic spline interpolating f(x) at $a = t_0 < t_1 < \cdots < t_n = b$, besides $S''_{na}(t_0) = 0$, $S''_{na}(t_n) = 0$; $S'_{cl}(t_0) = f'(t_0)$, $S'_{cl}(t_n) = f'(t_n)$. Which of the two splines has a smaller $\int_a^b [S''(t)]^2 dt$? Justify your answer.
- **3.** Construct a polynomial f(x) with suitable degree such that $f[x_0, x_1, \ldots, x_n, x] = x^r$, where r is a natural number, $x_0 < x_1 < \cdots < x_n$ are real numbers, and $f[x_0, x_1, \ldots, x_n, x]$ is the Newton divided difference. (Hint: consider the error formula of an interpolation polynomial in terms of the divided difference)
- 4. Prove the following theorem for Gaussian quadrature:

Let $I(f) = \int_a^b f(x)w(x)dx$, where w(x) is a positive weight function, be approximated by a quadrature formula $I_n(f) = \sum_{i=1}^n A_i f(x_i)$. Then the quadrature formula $I_n(f)$ has a maximum degree of precision of 2n-1. This is attained if and only if x_1, x_2, \ldots, x_n are the zeros of $p_n(x)$, the nth orthogonal polynomial, with the inner product

$$(f,g) = \int_{a}^{b} f(x)g(x)w(x)dx.$$

(Hint: consider the form of $f[x_1, x_2, \dots, x_n, x]$)

- **5.** Can a matrix of $m \times n$ has a right inverse and a left inverse that are not equal? Justify your answer.
- **6.** Given a linear system Ax = b where $A \in C^{m \times n}, x \in C^{n \times 1}$, and $b \in C^{m \times 1}$. The system may have no solution (inconsistent) or have a unique solution, or have non-unique solutions. The **minimal solution** of the system is defined as follows:

let

$$\rho = \inf\{ \| Ax - b \|_2 : x \in \mathbb{C}^n \}$$

Then the *minimal solution* is the element of least norm in the set $K = \{x : || Ax - b ||_2 = \rho\}$. Prove the theorem: The minimal solution of the equation Ax = b is given by

$$x = A^+b$$

where A^+ is the pseudoinverse of A, defined as $A^+ = Q^*D^+P^*$, if the singular-value decomposition of A is A = PDQ, where P is an $m \times m$ unitary matrix, D is an $m \times n$ diagonal matrix, Q is an $n \times n$ unitary matrix, D^+ is an $n \times m$ diagonal matrix, P^* is the Hermitian transpose of P and

$$D = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & & \sigma_r & & \\ & & & 0 & & \\ & & & & 0 \end{bmatrix}, \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0, r \le \min(m, n),$$

$$D^+ = \begin{bmatrix} \sigma_1^{-1} & & & & \\ & \sigma_2^{-1} & & & \\ & & & \sigma_r^{-1} & & \\ & & & & 0 & \\ & & & & & 0 \end{bmatrix}.$$

(Hint: start from the expression of ρ)

7. Find explicitly (i.e., find the numerical value of every entry of) the iterative matrix in the Gauss-Seidel iterative method for solving a linear system Ax = b when

8. Consider a matrix A that does not have any zero off-diagonal entry. Prove that if an eigenvalue λ of A lies on the boundary of the union of the Gershgorin Circles of the matrix A, then the circumference of every Gershgorin Circle passes through λ . (Hint: consider the proof of the Gershgorin theorem: consider the eigenvector corresponding to λ , and the component x_k of the eigenvector which has the maximum magnitude, then consider other components)