

Processes for Requirements Engineering

- Importance of Requirements Engineering
- Activities and processes
- Terminology

The Importance of RE in SWE

- Software is complex
 - It is invisible and abstract
 - It is highly modifiable since no fabrication step is involved
- Our society increasingly relies on all types of software
 - Information Systems
 - Software supports organisational work, e.g., payroll, customer records, accounting, ...
 - Software includes databases, standard applications as well as Internet applications
 - Embedded Systems
 - Software controls complex hardware systems, e.g., aircrafts, cars, industrial plants, cash machines, lifts, ...
 - In a decade, 60% of the value of a car will be in its software

Early Modelling and Analysis is Important

RE is a technical activity employing computer sciences

- Modelling and analysis techniques
 - Semi-formal techniques are widely used today
 - E.g., Unified Modelling Language (UML) and Object-Oriented Analysis (OOA)
 - Formal techniques not yet widely adopted in practice
 - E.g., Software Cost Reduction (SCR)
- Systems analysis
 - As used in the information systems world
- Systems theory and practice
 - Relevant in the whole-system context

"The cost of good requirements gathering and systems analysis is minor compared to the cost of poor requirements." [Robertson 1999]

Early Modelling and Analysis is Not Enough

- There is a need to
 - Communicate requirements to everyone
 - Seek agreement from all stakeholders
 - Understand the context of the system
 - Understand the context of the development process
 - Keep up-to-date as the requirements evolve
- RE involves many non-technical disciplines...

Non-Technical Disciplines of RE

- Cognitive psychology helps in understanding people's difficulties by describing their needs
 - Domain experts often have tacit knowledge that is not amenable to introspection
 - Cognitive psychologists are able to model the users' understanding of user interfaces and/or user behaviour (e.g. HTA, GOMS, ACT-R)
- Anthropology provides methods for observing human activities, including techniques for analysing collaborative work and team interaction (e.g. Ethnography, ethnomethodology)
- Sociology presents an understanding of the political and cultural changes caused by computerisation
- Linguistics analyses can improve understandability and avoid ambiguity

Requirements Need a Process

- The development of requirements
 - Involves two or more individuals ...
 - ... co-operating to reach agreement
 - Consumes resources
- A process is needed to do this efficiently
 - Requirements engineering

The RE process:

- Who are the participants?
- In which activities do they engage?
- Which process is followed to coordinate the activities?

An RE Model

Adapted from Sommerville 2005 & Van Vliet, 2008

A more detailed version ...

Another view of the Process

...recognizes the traditional view of the RE process

Inputs and Outputs of the RE Process

What is the problem with these models?

- They do not a bad job of telling you what the outputs are – but they don't really explain the process very clearly
- They all tell you how requirements engineering happens from a very high level
- But what does it actually mean to do requirements engineering?

Two different domains

Input – then derive requirements

A General Model of an RE Stage

Ideal Situation

Real World Situation

Requirements Elicitation

Requirements Elicitation

- What it is:
 - Collecting information to identify problems and opportunities
 - Finding out information about the software to built, including
 - The application domain
 - The environment in which it will be used
- Why it is hard:
 - Thin spread of domain knowledge, tacit knowledge
 - Limited observability
 - Training in techniques for elicitation
 - Poor tool support for elicitation process
- What techniques are used:
 - Interviews
 - Rapid Application Development (RAD) workshops
 - Scenario-based methods

Requirements Analysis

Requirements Analysis

- What it is:
 - Building models of requirements that are amenable to evaluation of its properties
 - Identifying conflicts between requirements (stakeholders)
- Why it is hard:
 - Formally modelling natural language requirements is an art form
 - Many requirements conflict, especially when many stakeholders are involved
- What techniques are used:
 - (Diagrammatic) modelling languages, e.g., UML (Unified Modelling Language), SCR (Software Cost Reduction) tables, ...

Requirements Specification

Requirements Specification

■ What it is:

- Description of what users need to be able to do with the system
- Description of what the system must do for the stakeholders involved.
- Description of the qualities that the system user/ system functionality must have.

Why is it hard?

- Correctness in specification is a hard problem.
- Completeness is impossible to check.

What techniques are used?

- Requirements matrices
- Template guided requirements

Requirements Negotiation

Requirements Negotiation

■ What it is:

 When stakeholders have conflicting requirements, "getting to yes" can be a challenge

Why is it hard?

- Negotiations require deep understanding of the domain and the stakeholders.
- Negotiations require identification of real requirements vs. "fake requirements".
- Some conflicts may never be resolved.

What techniques are used?

- Consensus building
- Majority rule
- Appeal to Authority

Requirements Validation

Requirements Validation

- What it is:
 - Checking the requirements documents to make sure that the right system is built
- Why it is hard:
 - There is no other formal document to check requirements documents against
 - Getting the requirements wrong can be very costly
- What techniques are used:
 - Informal techniques: Reviews, inspections, walkthroughs
 - Semi-formal techniques: Prototyping, animation
 - Formal techniques: Formal Methods [see FMS module]

Requirements Documentation

Requirements Documentation

What it is:

- Requirements Documentation is often the one time to record valuable information (frequently as the basis of a legal contract)
- Requirements documents are the key for communicating requirements

Why it is hard:

- Requirements documents need to be communicated across (contractual & language) boundaries
- What techniques are used:
 - Employing a requirements engineer to facilitate the process and to avoid common errors
 - Controlled natural language
 - Automatic generation

Process Maturity

- Maturity of a company's RE process can be classified on the basis of the Capability Maturity Model
- Levels of maturity:
 - 1. Initial
 - Ad hoc
 - Requirements problems are common
 - 2. Repeatable
 - Standardised requirements engineering
 - Fewer requirements problems
 - 3. Defined
 - Process defined based on best practice
 - Process improvement in place

[Sommerville and Sawyer 1997]

Recognise the Diversity of Software Projects

- Requirements for large embedded systems are quite different from those for small information systems
 - Complex/Simple, long time-scale, budget
- Requirements for interactive technologies are different than those for non-interactive systems
 - More/less knowledge of user goals required; less/ more autonomy in the system;
- Since the problems are diverse, so will be the solutions
 - Different approaches to requirements elicitation
 - Different approaches to requirements analysis
 - Formal methods, MDA, UCD
 - Different distances between requirements and software

An Idealistic RE Domain Model

Types of RE Projects

Where to move within the domain model in practice depends on:

- Source of requirements
 - Customer driven specific software for a specific customer type
 - Market driven software to be sold in the market
 - Hybrid specific customer first, market software eventually
 - User driven specific software for a group of users
- Nature of the product
 - One-off (`bespoke') vs. packaged (`shrink wrapped')
 - Single system vs. product family (`product line')
 - New system vs. upgrade from existing system

Some Clarification on Terminology

- A notation is a representation scheme/language for expressing things, e.g., dataflow diagrams, the UML
- A technique prescribes how to perform a particular activity, and how to describe a product of that activity in a particular notation, e.g., use case diagramming
- A method provides a technical description for how to perform a collection of activities, e.g., the Rational Unified Process™
- A process model is an abstract, organised description for how to conduct a collection of activities, focusing on resource usage and dependencies between activities
- A process is an enactment of a process model, describing the behaviour of one or more agents and their management of resources; a process transforms inputs to outputs

Be aware that different textbooks may employ different terminology!

Summary

- Requirements are the basis for ensuring that we are constructing the "right" (desired) system
- Requirements documents/specifications are needed to obtain agreement about what a system should do, and to which quality
- Requirements engineering is the task of creating agreed requirements documents/specifications
- Requirements engineering has many aspects: to elicit, represent, record, analyse, manage, ...

Reading

Hull et al. (2011) Chapter 2

