Diskrete Strukturen (WS 2024-25) - Halbserie 10

10.1

Gegeben sei der folgende **Verband** (P_4, \preceq_4) , dargestellt als Hasse-Diagramm:

- 1. Geben Sie die Menge aller Komplemente
 - (a) von 1,
 - (b) von 4,
 - (c) von 7 an.
- 2. Ist (P_4, \leq_4) eine **Boolesche Algebra**? Begründen Sie Ihre Antwort.

 $10.2 ag{3}$

Gegeben seien die folgenden Verbände, dargestellt als Hasse-Diagramm:

Zeigen Sie mit Hilfe von Theorem 9.3.3, dass sie nicht distributiv sind. Geben Sie dafür jeweils eine Unterstruktur an, die zu M_3 oder N_5 isomorph ist.

10.3

Wir definieren für jedes $n \in \mathbb{N}$ die Menge der natürlichen Teiler von n

$$T_n = \{ t \in \mathbb{N} \colon t \mid n \}.$$

Geben Sie für die Menge $M = \{1, 2, 3\}$ einen **Isomorphismus** φ von $(T_{2023}, |)$ nach $(\mathcal{P}(M) \setminus \{\{3\}, \{1, 3\}\}, \subseteq)$ an.

10.4 Gegeben seien die folgenden Ordnungsrelationen, dargestellt als Hasse-Diagramm:

Sind die entsprechenden teilweise geordneten Mengen $(M_5, R_5), (M_6, R_6), (M_7, R_7)$ und (M_8, R_8) Boolesche Algebren? Begründen Sie Ihre Antwort.

10.5 Sei (M, \preceq) eine **Boolesche Algebra** und $x, y \in M$. Beweisen Sie:

Wenn $x \leq y$, dann $y^c \leq x^c$.

10.6 Sei (M, \preceq) eine Boolesche Algebra und $x, y \in M$. Zeigen Sie dass es gilt $(x \wedge y)^c = x^c \vee y^c$.