Equivalence Hierarchy

Moonzoo Kim
School of Computing
KAIST

Outline

- Equivalence semantics and SW design
- Preliminary
- Hierarchy Diagram
- Trace-based Semantics
 - ♣Trace EQ
 - Complete Trace EQ
 - **♣**Failure EQ
- Branching-based Semantics
 - **♣** Simulation EQ
 - Bisimulation EQ

Equivalence Preserving Refinement and SW Design

- Design can start with a very abstract specification, representing the requirements
- Then, using equivalence-preserving transformations, this specification can be gradually refined into an implementationoriented specification.
- Maintenance may require to replace some components with others, while maintaining the same system behavior (congruence property)

Model-driven SW Design Framework

Semantic Mapping

An example of small language

- **♣**Syntax
 - F := 0 | 1 | F + 1 | 1 + F
 - Ex. 0, 0+1+1, 1+0+1, but not 0+0
- Possible semantics
 - 1 + 1 == 1 + 1 + 0 ?
 - Yes (interpreting formula as a natural #),

•
$$[1 + 1]_{N1} = 2$$
, $[1 + 1 + 0]_{N1} = 2 \rightarrow 1 + 1 =_{N1} 1 + 1 + 0$

- No (interpreting formula as string),
 - $[1+1]_S = "1+1", [1+1+0]_S = "1+1+0" \rightarrow 1+1! =_S 1+1+0$
- No (interpreting formula as a natural # of string length)

•
$$[1 + 1]_{N2} = 3$$
, $[1 + 1 + 0]_{N2} = 5 \rightarrow 1 + 1! =_{N2} 1 + 1 + 0$

Semantic Mapping (cont.)

Mathematical Domain

Relation between (Equivalence) Semantics

$$0+1=_{EO}1+2$$

 $1+1=_{EO}2+2$

$$0+1!=_{NA}1+2$$

 $P =_{NA} Q -> P =_{EO} Q$ but not vice versa Therefore, $=_{EO} <=_{NA}$

Labeled Transition System

Process Theory

- A process represents behavior of a system
- ♣ Two main activities of process theory are modeling and verification
 - The semantics of equalities is required to verify system
 - Determine which semantics is suitable for which applications

Labeled Transition System (LTS)

- **Act**: a set of actions which process performs
- **♣** LTS: (*P*,→)
 - Where P is a set of processes and →⊆ P x Act x P
- In this presentation, we deal with only finitely branching, concrete, sequential processes

Useful notations

- Equivalence notation for each semantics
 - =_T, =_{CT}, =_F, =_R, =_{FT}, =_{RT},=_S,=_{RS},=_B
 - I(p) is {a ∈ *Act* | ∃q. p -a->q}

Trace v.s. Complete Trace

- Trace semantics (T)
 - $\sigma \in Act^*$ is a *trace* of a process p if there is a process q s.t. $p \sigma > p$
 - \blacksquare T(p) is a set of traces of a process p
- Complete trace semantics (CT)

 - \blacksquare CT(p) is a set of complete traces of a process p
 - $= p =_{CT} q$ iff T(p) = T(q) and CT(p) = CT(q)
 - ♣ Note that CT(p) = CT(q) does not imply T(p) = T(q)

$$\blacksquare$$
 =_T < =_{CT}

 $= p =_{CT} q$ implies $p =_{T} q$, but not vice versa

Counter Example 1

Failure Semantics

- Failure Semantics (F)
 - + < σ ,X> ∈ Act^* x ② (Act) is a failure pair of p if \exists q s.t. p $-\sigma$ -> q and $I(q) \cap X = ∅$
 - + F(p) is a set of failure pairs of p
 - $+p =_F q \text{ iff } F(p) = F(q)$
- =_{CT} < =_F
 - $+p =_{\mathsf{F}} q \text{ implies } p =_{\mathsf{CT}} q$
 - $\sigma \in CT(p)$ iff $\langle \sigma, Act \rangle \in F(p)$
 - $\sigma \in T(p)$ iff $\langle \sigma, X \rangle \in F(p)$ for some X s.t. X $\cap I(q) = \emptyset$ Where $p \sigma \gamma q$
 - not vice versa

Counter Example 2

$$p = CT q$$

- Left CT(p)={coin.cola, coin.juice}
- Left CT(q)={coin.cola, coin.juice}

- \P {<\coin,\{coin,\cola\}>\} \in F(p)
- ♣ {<coin,{coin,cola}>} ∉ F(q)

Simulation Semantics

- The set F_s of simulation formulas over Act is defined inductively by
 - **♣** *True* ∈ F_s
 - \clubsuit If $\Phi, \Psi \in F_s$ then $\Phi \land \Psi \in F_s$
 - ♣ If Φ ∈ F_s and a∈ Act, then a.Φ ∈ F_s
- The satisfaction relation $\models \subseteq P \times F_s$ is defined inductively by
 - $+p \models True \text{ for all } p \in P$
 - $+p \models \Phi \land \Psi \text{ if } p \models \Phi \text{ and } p \models \Psi$

=_T < =_S

$$\blacksquare =_{\mathsf{T}} < =_{\mathsf{S}}$$

- $p =_{S} q \text{ implies } p =_{T} q$
 - $=_T < =_S$ by $\sigma \in T(p)$ iff σ . True $\in S(p)$
- not vice versa

- $\blacksquare p \neq_{S} q$
 - \P S(p)= {True, coin.True, coin.cola.True, coin.juice.True, ..., coin.cola.True \land coin.juice.True}

Simulation v.s. Bisimulation

- A simulation is a binary relation R on processes satisfying for a ∈ Act
 - \blacksquare If pRq and p-a->p', then $\exists q':q-a->q'$ and p'Rq'
- $p =_{S} q$ iff there exist simulation relations R_1 and R_2 such that pR_1q and qR_2p
- A bisimulation is a binary relation R on processes satisfying for a ∈ Act
 - \blacksquare If pRq and p-a->p', then $\exists q':q-a->q'$ and p'Rq'
 - \blacksquare If pRq and q-a->q', then $\exists p':p$ -a->p' and p'Rq'
- $P =_B q$ if there exists a bisimulation R with pRq

Counter Example 3

$$p =_B q$$

$$p =_s q$$

$$p \neq B q$$

$$p =_s q$$

