Paper Reading Seminar

Yan Wang

August 30, 2012

Kernel descriptors for visual recognition

- ▶ Problem: a distance metric for various visual features
 - Orientation histogram (HoG, SIFT)
 - Color
 - Texture (binary patterns)
- Efficiency

- Orientation histogram
 - ▶ Input: orientation histogram of two patches *P*, *Q*

$$K_{\mathsf{grad}}(P,Q) = \sum_{z \in P} \sum_{z' \in Q} \tilde{m}(z) \tilde{m}(z') k_o(\tilde{\theta}(z), \tilde{\theta}(z')) k_\rho(z,z')$$

- $\tilde{m}(z)\tilde{m}(z')$: magnitude of the gradient as weights
- ▶ k_o , k_p are Gaussian kernels, $k_p(z, z') = \exp(-\gamma_p ||z - z'||^2)$
- $\tilde{\theta}(z) = [\cos(\theta(z)), \sin(\theta(z))]$. L2 distance \Rightarrow difference of gradient orientations
- \triangleright k_p measures the differences of pixel positions (for SIFT)

Color

$$K_{\text{color}}(P,Q) = \sum_{z \in P} \sum_{z' \in Q} k_c(c(z),c(z')) k_p(z,z')$$

Shape

$$K_{\mathsf{shape}}(P,Q) = \sum_{z \in P} \sum_{z' \in Q} \tilde{s}(z) \tilde{s}(z') k_b(b(z),b(z')) k_p(z,z')$$

$$\tilde{s}(z) = s(z)/\sqrt{\sum_{z \in P} s(z)^2 + \epsilon_s}$$

▶ s(z): standard derivation of pixel values in the 3 × 3 pixels neighborhood

163	155	124		1	1	0
168	139	187	\rightarrow	1		1
171	135	130		1	0	0

b(z): binary pattern of the neighborhood

Learning compact features

- Kernel $k(x, y) = \psi(x)^T \psi(y)$
- ▶ Project to a low dimension space given bases $H = [\psi(z_1), \psi(z_2), ..., \psi(z_D)]$
- Compute the coefficients with close form solution

$$v_{\scriptscriptstyle X}^* = \arg\min_{v_{\scriptscriptstyle X}} \lVert \psi(x) - H v_{\scriptscriptstyle X} \rVert^2$$

$$\mathbf{v}_{\mathbf{x}}^* = (\mathbf{H}^{\mathsf{T}}\mathbf{H})^{-1}(\mathbf{H}^{\mathsf{T}}\psi(\mathbf{x}))$$

 Approximate the kernel distance with the projection coefficient as the feature map

Learning compact features

- ▶ How to get the basis?
 - Uniform dense sampling (like LSH?) from the support region (feature space)
 - Effective

RGB-(D) Scene Labeling: Features and Algorithms

▶ Problem: indoor scene, optical photo + depth image ⇒ pixel-wise label

► Evaluation: NYU Depth Dataset (13 categories), Stanford Background Dataset (8 categories, no depth info), Mean AP.

Intuition

- ▶ Kernel Descriptor + Efficient Matching Kernel: pixel level features in different domains ⇒ superpixel level feature
- Segmentation tree: different scales of superpixel
- Contextual refinement

- Segmentation trees
 - ▶ gPb: local + global contrast cues ⇒ pixel-level probability-of-boundary map
 - Extend to depth frames
 - ► Linear fusion for RGB-D frames

$$\mathsf{gPb}_{\mathsf{rgbd}} = (1 - \alpha) \cdot \mathsf{gPb}_{\mathsf{rgb}} + \alpha \cdot \mathsf{gPb}_{\mathsf{d}}$$

- Feature design
 - Gradient, color, local binary pattern, depth gradient, spin/surface normal, KPCA/self-similarity

- Kernel descriptors
 - ► Intuition: pixel features ⇒ superpixel

$$F_{ ext{grad}}^t = \sum_{z \in Z} \tilde{m}_z k_o(\tilde{\theta}_z, p_i) k_s(z, q_j)$$

 (p_i, q_j) are randomly sampled from the superpixel)

▶ Use image gradient + spin/normal

- Classification
 - Efficient Match Kernel for fixed-length features on superpixels
 - Linear SVM
 - ▶ Normalize on superpixel area (A_s)

$$A_s/(\sum_{q\in Q_c}A_q)^p$$

- Segmentation tree
 - ▶ Different level (t) of segmentation tree ⇔ different scale of superpixels
 - ► Tree(s) = $\{f_{t,c}(s_t)\}, t, c$

- Segmentation tree
 - Accumulate features along paths for better accuracy

- Superpixel MRF with gPb
 - ▶ Data term: $-f_{c,t}$
 - Smoothing term

$$V_{s,r} = \beta \exp(-\gamma \cdot \mathsf{gPb}_{\mathsf{rgbd}}(s,r))$$

► Solve with graph-cut