Project 1 Phase 2 Optimization-Based Minimum Snap Trajectory Generation

⊙ 状态 ELEC 5660

proj1phase2.zip

TONG, Zhe

ztongae@connect.ust.hk

20945220

2025/03/06

This project uses **quadratic programming (QP)** to create smooth robot paths by minimizing "snap" (the 4th derivative of position)

Methodology

- 1. Goal: Minimize snap across trajectory segments while ensuring waypoints are met.
- 2. Constraints:
 - Waypoints must align (position continuity).
 - Velocity/acceleration continuity improves smoothness.
- 3. **Solver**: MATLAB's quadprog was used to solve the QP problem.

Results & Analysis

Figure U with 5 points

Figure A with 6 points

Figure V with 3 points

Trajectory Smoothness Metrics

	path 1	path 2	path 3 Figure U with 12 points	path 4 Figure U with 5 points	path 5 Figure A with 6 points	path 6 Figure V with 3 points
RMSE Position(m)	0.048489	0.060332	0.089376	0.055922	0.041884	0.12563
RMSE Velocity(m/s)	0.099429	0.087944	0.13083	0.12132	0.067342	0.17402
RMSE Yaw(deg)	2.844	3.3837	2.4143	2.6306	3.2048	2.2512

Future Improvements

- Time optimization: Adjust segment timing dynamically for better efficiency.
- Faster solvers: Use lightweight tools like OSQP for real-time applications
- Obstacle avoidance: Add constraints for real-world safety.