Problem. Consider a points B and C, lying inside the given angle ASD, such that $\angle BSA = \angle CSD$. Lines BD and AC meet at Q and lines AB and CD meet at P. It turns out, that quadrilateral BPCQ has inscribed circle ω . Prove that center I of ω lies on the angle bisector of angle $\angle ASD$. (Author – Nikita Kolesnikov)

Solution.

Let me remind you, that there exists an ellipse \mathcal{P} with focuses A and D, passing through points B and C. It's easy to see, that tangents to ellipse \mathcal{P} at points B and C are the angle bisectors of angles $\angle PBQ$ and $\angle QCP$ respectively. (it can be obtainted by applying optical property of ellipse to these tangents)

Let ℓ be the angle bisector of angle $\angle ASD$. So it suffices to prove, that tangents to \mathcal{P} at B and at C intersect on ℓ .

