

COEN 316 - Computer Architecture and Design

Department of Electrical and Computer Engineering

Assignment 3, Winter 2023

Due: April. 10, 2023

In this assignment, you will answer the following questions. Write your answer in the exact place:

Your Information:

First Name: Samson

Last Name: Kaller

Student ID: 40136815

Grade:

Question 1 Grade

1. Assume you examine how pipelining affects the clock cycle time of the processor. Problems in this exercise assume that individual stages of the datapath have the following latencies:

	<u> </u>		<u> </u>		
IF	ID	EX	MEM	WB	
250ps	350ps	150ps	300ps	200ps	

Also, assume that instructions executed by the processor are broken down as follows:

ALU	BEQ	LW	SW
45%	20%	20%	15%

a- What is the clock cycle time in a pipelined and non-pipelined processor?

a) PIPELINES:

-> COMPLETES 1 INSTRUCTION PER CLOCK CYCLE, WITH 5 INSTRUCTION STACES (PARALLEL).

20

→ Instruction stages must be same length (use the Max).

NON- PIPELINED:

- -> NOT ALL INSTRUCTIONS USE ALL STAGES.
- -> CLOCK CYCLE TIME MUST COVER WORST CASE:
 LOAD INSTRUCTION (ALL STRAKES)
- -> CLOOK CYCLE TIME IS SUM OF STAGES FOR LOAD

$$t_{CLN} = t_{EF} + t_{Jb} + t_{EX} + t_{MEM} + t_{WB}$$

$$= 250 + 350 + 150 + 300 + 200 \implies t_{CLN} = 1250 ps = 1.25 ns$$

b- What is the total latency of an LW instruction in a pipelined and non-pipelined processor?

b) PIPELINED:

-> ALL STAGES ARE SAME CENCIH: MAX LENGTH tib = 350 ps

-> ALL INSTRUCTIONS GO THROUGH ALL 5 STAGES

LW LATENCY
$$t = 5.350 ps = 1.75 ns$$

PITELINED LW LATENCY

NOW-PIPELINED:

> LW JUSTRUCTION USES ALL S STACES

Question 2 Grade

50

The instruction "addi" can be executed using the single-cycle data path without modification. Answer the following questions:

a- What are the values of all control signals needed to execute this instruction on the single-cycle data path? (Note FIGURE 4.22 in the textbook)

Input/output	Signal name	addi	
Inputs	Op5	0	
	OpY	0	
	290	1	Ladd: Opcode = 8 HEX = 0010003
	0p &	0	
	Opl	0	
	Op0	0	
Output	Regust	0	-> DEST IS RE
	ALUSTO	1	-> SRC IS SIGN-EXT IMM.
	Mentores	0	→ ALU OUT IS INPUT TO RECFILE
	ResWrite		→ WRITE RESULT TO RECEILE
	MemRead	X	-) DON'T CARE ABOUT MEN. DARA
	MenWrite	0	-> DO NOT WELLE TO WEN
	Branch	0	-> No BRANCHING
	ALUOPI	0	ALUOP = 00 TS ADD
	ALUOPO	0	S TOOP - OU IS HOV

The outputs were determined using the data on the following page...

Instruction opcode	ALUOp	Instruction operation	Funct field	Desired ALU action	ALU control input
LW	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
Branch equal	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
R-type	10	subtract	100010	subtract	0110
R-type	10	AND	100100	AND	0000
R-type	10	OR	100101	OR	0001
R-type	10	set on less than	101010	set on less than	0111

LIKE LW/SW, WE WANT ALUOP TO BE OO.

Using ALUOP = 10 will cause the Lower 6 15 ths of immly to be interpret as "func" INPUT TO ALU COUTROL. WE DO NOT WANT THIS.

b- Modify the following main control unit to allow for the implementation of this instruction.

Modified circuit on next page...

* NOTE THAT THIS COVERS ONLY THE ADDITION OF THE OLD I INSTRUCTION.

FOR ADDITIONAL MODIFICATIONS, ADDITIONAL MODIFICATIONS NUST BE NAME.

Question 3 Grade

Divide (1010)2 by (0011)2 using an optimized divider algorithm assuming all values are unsigned numbers. Use the table below to show the steps performed and give the values of the quotient and the remainder in the space provided in binary. You may add additional rows to the table as needed.

30

Step	comment	divisor	Α
	initialization	00011	00000 1010
1			

<u>4372</u>	Comment	DIVISOR	<u>A</u>
ð	TUITIALIZATION	00011	0 00 00 10 10
1.1	Shart	00011	0 00 01 01 00
1.2	SU B	00011	1 1110 01 00
1.3	RESTORE, A. = O	00011	0 00 01 01 00
2.1	SHIFT	00011	0 00 10 10 00
7.7	SUB	0 00 11	11111000
3.3	RESIDITE, A.= O	00011	0 60 10 10 00
3.1	Shift	00011	001010000
37	SUB	00011	000100000
33	A. = 1	00011	0 00 10 0007
4.1	Suzet	0 00 11	001000010
4.2	SUB	0 00 11	000010010
4.3	A.= I	0 90 11	0 00 01 00 11

QUOTIENT: 0011

REMAINDER: COOL

REMAINDER QUOTIENT

0+3=31/3 /

Grading Policy:

The assignment score is out of 100 points.

Here are some aspects that may lead to points deduction:

- The answers are missing.
- Missing steps.
- Inappropriate data to answer your question.
- Do your best to include exhaustive details, the final answer alone is not enough to get points.
- Collaborate on the individual assignment.