Fizyka 3.1

Wyznaczanie gęstości ciał stałych

Nr ćwiczenia: 100a

Data wykonania ćwiczenia: 07.03.2024r Data oddania sprawozdania: 13.03.2024r

1 Wstęp

Celem zadania jest wyznacznie gęstości dwóch elementów poprzez pomiar ich wymiarów fizycznych, obliczenie objętości i zmierzeniu ich mas. Ćwiczenie ma za zadanie zapoznać eksperymentatorów z metodologią przeprowadzania pomiarów wielkości fizycznych oraz analizy niepewności.

Wykorzystane przyrządy pomiarowe:

- Suwmiarka (błąd pomiarowy 0.05 [mm])
- Mikrometr (błąd pomiarowy 0.01 [mm])
- Waga (błąd pomiarowy 0.01 [g])
- Cylinder miarowy (błąd pomiarowy 1 [ml])

Przebieg doświadczenia:

Za pomocą suwmiarki oraz mikrometru zmierzono kolejne wymiary elementów (tulei oraz wałka). Pozwoliło to na wyznaczenie ich objętości przy użyciu poniższych wzorów:

$$V = \pi L(R^2 - r^2)$$
$$V = \sum_{n=1}^{5} (l_n \pi r_n^2) - l_x \pi r_x^2$$

V - objętość elementu,

 $L/l_n/l_x$ - kolejne pomiary długości,

 $R/r/r_n/r_x$ - kolejne pomiary promienia,

Wymiary tulei

Wymiary wałka

Następnie został wykonany pomiar masy za pomocą wagi laboratoryjnej. Na podstawie uzyskanych danych można wyznaczyć gęstość elementów za pomocą wzoru:

$$\rho = \frac{m}{V}$$

 ρ - gęstość elementu,

m - masa elementu,

 ${\cal V}$ - objętość elementu,

2 Dane

2.1 Pomiary tulei

Masa[g]	L[mm]	S[mm]	s[mm]	V[ml]
8.71	36	16.02	11.1	4
	36.1	16.05	11.7	
	36.1	16.01	11.8	
	36	16.02	11.6	
	36.1	16.04	11.7	

2.2 Pomiary wałka

Masa[g]	L1[mm]	L2[mm]	L3[mm]	L4[mm]	L5[mm]	Lx[mm]
64.85	22.1	8.7	13.9	11.3	14.05	3
	22	8.65	13.8	11.25	14.2	3.1
	22.2	8.7	13.8	11.3	14.15	3.05
	22.05	8.6	13.9	11.25	14.2	3.15
	22.15	8.6	13.85	11.1	14.1	3.1

S1[mm]	S2[mm]	S3[mm]	S4[mm]	S5[mm]	Sx[mm]	V[ml]
23.64	18.07	23.7	18.32	14.76	8.95	23
23.65	18.08	23.69	18.32	14.76	9	
23.65	18.09	23.7	18.33	14.77	8.95	
23.65	18.07	23.69	18.33	14.77	9	
23.66	18.08	23.69	18.32	14.78	8.8	

3 Obliczenia

3.1 Tuleja

Niepewność pomiarową przyrządów pomiarowych (niepewność standardowa typu B) obliczamy ze wzoru:

$$u_b(\Delta) = \sqrt{\sum_{i=1}^n \frac{(\Delta_i)^2}{3}}$$

 Δ_i - kolejne błędy pomiarowe np: przyrządu, obserwatora,
odczytu wartości tablicowych itd, Przykładowo dla niepewności pomiarowej mikrometra:

$$u_b(\Delta_m) = \sqrt{\frac{(0.01[mm])^2}{3}} = 0.00577350...[mm] \approx 0.0058[mm]$$

 Δ_m - bład pomiarowy mikrometra,

Niepewność statystyczna (niepewność standardowa typu A) wielu pomiarów wyliczamy ze wzoru:

$$u_a(x) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \hat{x})^2}{n(n-1)}}$$

 x_i - kolejne pomiary danej wielkości,

 \hat{x} - średnia z wszystkich pomiarów,

n - liczba pomiarów,

Przykładowo dla niepewności pomiaru długości L tulei:

$$u_a(L) = \sqrt{\frac{(36 - 36.6)^2 + (36 - 36.6)^2 + (36.1 - 36.6)^2 + (36.1 - 36.6)^2 + (36.1 - 36.6)^2}{20}} = 0.024494897...[mm] \approx 0.025[mm]$$

Niepewność całkowita wyraża się wzorem:

$$u_c(x) = \sqrt{u_a^2(x) + u_b^2(x)}$$

Na przykładzie niepewności całkowitej długości L:

$$u_c(L) = \sqrt{0.025^2 + 0.029^2} \approx 0.038[mm]$$

Objętość tulei wyraża się wzorem:

$$V = \pi L(R^2 - r^2)$$

 ${\cal V}$ - objętość wałka,

L - Średni pomiar długości,

R - Średni pomiar promienia zewnętrznego,

r - Średni pomiar promienia wewnętrznego,

Podstawiając dane:

$$V = 36.06\pi(8.014^2 - 5.79^2) = 3476.12275[mm^3] \approx 3.48[ml]$$

Niepewność pomiarowa objętości tulei wyraża się wzorem:

$$\begin{split} u(V) &= \sqrt{\left(\frac{\partial V}{\partial L}\right)^2 u_c^2(L) + \left(\frac{\partial V}{\partial r}\right)^2 u_c^2(r) + \left(\frac{\partial V}{\partial R}\right)^2 u_c^2(R)} = \\ &= \sqrt{\left(\pi(R^2 - r^2)\right)^2 u_c^2(L) + \left(-2Lr\pi\right)^2 u_c^2(r) + \left(2LR\pi\right)^2 u_c^2(R)} \end{split}$$

Po podstawieniu danych otrzymujemy wynik:

$$u(V) = 82.06148[mm^3] \approx 0.082[ml]$$

Gęstość tulei wyraża się wzorem:

$$\rho = \frac{m}{V}$$

Po podstawieniu danych otrzymujemy wynik:

$$\rho = 0.0025056... \left[\frac{g}{mm^3}\right] \approx 0.0025 \left[\frac{g}{mm^3}\right] = 2500 \left[\frac{kg}{m^3}\right]$$

Niepewność pomiarowa gęstości tulei:

$$\begin{split} u(\rho) &= \sqrt{\left(\frac{\partial \rho}{\partial m}\right)^2 u_b^2(m) + \left(\frac{\partial \rho}{\partial V}\right)^2 u^2(V)} = \sqrt{\left(\frac{1}{V}\right)^2 u_b^2(m) + \left(\frac{m}{V^2}\right)^2 u^2(V)} = \\ &= \sqrt{\left(\frac{1}{3476}\right)^2 0.0058^2 + \left(\frac{8.71}{3476^2}\right)^2 124^2} = 0.00146552 [\frac{g}{mm^3}] = \\ &= 0,0000894038 [\frac{g}{mm^3}] \approx 0.000089 [\frac{g}{mm^3}] = 89 [\frac{kg}{m^3}] \end{split}$$

3.2 Wałek

Objętość wałka dana jest wzorem:

$$V = \sum_{n=1}^{5} (l_n \pi r_n^2) - l_x \pi r_x^2$$

V - objętość wałka,

 l_n/l_x - kolejne pomiary długości,

 r_n/r_x - kolejne pomiary promienia,

Podstawiając dane otrzymujemy:

$$V = 23 \ 228.28[mm^3] \approx 23.23[ml]$$

Niepewność pomiarowa objętości wałka wyraża się wzorem:

$$u(V) = \sqrt{\sum_{n=1}^{5} \left(\frac{\partial V}{\partial l_n}\right)^2 u_c^2(l_n) + \sum_{n=1}^{5} \left(\frac{\partial V}{\partial r_n}\right)^2 u_c^2(r_n) + \left(\frac{\partial V}{\partial l_x}\right)^2 u_c^2(l_x) + \left(\frac{\partial V}{\partial r_x}\right)^2 u_c^2(r_x)} = \sqrt{\sum_{n=1}^{5} \left(\pi r_n^2\right)^2 u_c^2(r_n) + \sum_{n=1}^{5} \left(l_n \pi\right)^2 u_c^2(l_n) + \left(\pi r_x^2\right)^2 u_c^2(r_x) + \left(l_x \pi\right)^2 u_c^2(l_x)}$$

Podstawiając dane otrzymujemy:

$$u(V) = 34.25533[mm^3] \approx 0.034[ml]$$

Pozostałe obliczenia analogicznie do obliczeń tulei.

4 Wyniki

4.1 Tuleja

	$\mathbf{M}[g]$	$\mathbf{L}[mm]$	$\mathbf{R}[mm]$	$\mathbf{r}[mm]$	$\mathbf{V}[ml]$
Wartość średnia	8.71000	36.06	8.014	5.79	4
Niepewność typu A		0.024	0.0037	0.062	
Niepewność typu B	0.00058	0.029	0.00058	0.029	0.58
Niepewność całkowita	0.00058	0.024	0.0037	0.062	0.58

$V[mm^3]$	$\mathbf{u}(\mathbf{V})[mm^3]$	$oldsymbol{ ho}[rac{kg}{m^3}]$	$\mathbf{u}(oldsymbol{ ho})[rac{kg}{m^3}]$
3476	82	2506	89

4.2 Wałek

	$\mathbf{M}[g]$	$\mathbf{L1}[mm]$	$\mathbf{L2}[mm]$	L3[mm]	L4[mm]	L5[mm]
Wartość średnia	64.85	22.1	8.65	13.85	11.24	14.14
Niepewność typu A		0.035	0.022	0.022	0.037	0.029
Niepewność typu B	0.0058	0.029	0.029	0.029	0.029	0.029
Niepewność całkowita	0.0058	0.046	0.037	0.037	0.047	0.041

$\mathbf{L}\mathbf{x}[mm]$	$\mathbf{R1}[mm]$	$\mathbf{R2}[mm]$	$\mathbf{R3}[mm]$	$\mathbf{R4}[mm]$	$\mathbf{R5}[mm]$	$\mathbf{R}\mathbf{x}[mm]$	$\mathbf{V}[ml]$
3.08	11.825	9.039	11.847	9.162	7.384	4.47	23
0.025	0.0032	0.0037	0.0024	0.0024	0.0037	0.037	
0.029	0.0058	0.0058	0.0058	0.0058	0.0058	0.0058	0.58
0.039	0.0066	0.0069	0.0063	0.0063	0.0069	0.037	0.58

$V[mm^3]$	$\mathbf{u}(\mathbf{V})[mm^3]$	$oldsymbol{ ho}[rac{kg}{m^3}]$	$\mathbf{u}(oldsymbol{ ho})[rac{kg}{m^3}]$
23228	35	2795.3	4.1

5 Wnioski

Z zmierzonych wartości udało się otrzymać następujące gęstości:

- Tuleja $2506 \pm 89 \left[\frac{kg}{m^3} \right]$
- Wałek 2795.3 $\pm 4.1 \left[\frac{kg}{m^3} \right]$

Porównując do wartości tablicowych gęstośc tuleji jest bliska gęstości aluminium podawanej na $2600[\frac{kg}{m^3}]$ gdy uwzględnimy niepewnosć obliczania gęstości. Jednak po analizie danych wejściowych regułą trzech sigm można zauważyć że jedna z wartości parametru s nie mieści się w kryterium jest to wiec bład gruby. Po usunięciu jej otrzymujemy wartość $2564 \pm 89[\frac{kg}{m^3}]$ co wpisuje się w zakres gęstości aluminium z większą dokładnością.

Gęstość wałka jest bardzo zbliżona do gęstości duraluminium którego gęstość wynosi $2800 \left[\frac{kg}{m^3}\right]$ co oznacza że pomiar został przeprowadzony bez większych błedów.