Магистратура ВШЭ. 4 сентября.

Определение 1. Пусть K — поле. Множество V с операциями сложения и умножения на элемент K называется векторным пространством над K, если для любых $u, v, w \in V$, $\alpha, \beta \in K$

- 1. (u+v)+w=u+(v+w) для любых $u,v,w\in V$;
- 2. существует $0 \in V$, такой что 0 + v = v + 0 = v для любого $v \in V$;
- 3. для любого $v \in V$ найдется $-v \in V$, такой что v + (-v) = (-v) + v = 0;
- 4. u + v = v + u для любых $u, v \in V$;
- 5. $\alpha(u+v) = \alpha u + \alpha v$ для любых $u, v \in V, \alpha \in K$;
- 6. $(\alpha + \beta)v = \alpha v + \beta v$ для любых $v \in V, \alpha, \beta \in K$;
- 7. $(\alpha\beta)v = \alpha(\beta v)$ для любых $v \in V, \alpha, \beta \in K$;
- 8. $1 \cdot v = v$ для любого $v \in V$;

Пример. \mathbb{R}^n – множество наборов из n вещественных чисел – векторное пространство над \mathbb{R} . Его можно (и часто удобно) отождествить с множеством матриц размера $n \times 1$ (столбцов) и записывать вместо (a_1, \ldots, a_n)

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

Определение 2. Пусть V – векторное пространство над полем K. Линейная комбинация векторов (т.е., элементов V) v_1, v_2, \ldots, v_n – это любое выражение вида

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n, \quad \alpha_i \in K$$

 v_1, v_2, \ldots, v_n называется линейно зависимыми, если существует их нетривиальная (т.е., такая, что не все α_i равны 0) линейная комбинация, равная $0 \in V$. Если такой линейной комбинации нет, v_1, v_2, \ldots, v_n называется линейно независимыми.

Множество всех линейных комбинаций v_1, v_2, \ldots, v_n называется их линейной оболочкой и обозначается $\langle v_1, v_2, \ldots, v_n \rangle$.

Задача 1. Поле \mathbb{R} можно рассмотреть как векторное пространство над \mathbb{Q} . Доказать, что в нем $1, \sqrt{2}, \sqrt{3}$ линейно независимы.

Задача 2. Являются ли линейно независимыми в \mathbb{R}^3

- a) (1,-1,2), (-1,0,3), (-4,-3,27);
- 6) (2,1,-3), (3,2,-5), (1,-1,1)?

Задача 3. Пусть $K=\mathbb{R},\ V=\mathbb{R}^3$ – т.е., тройки вещественных чисел, операции определяются обычным образом:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2),$$

 $\alpha(x, y, z) = (\alpha x, \alpha y, \alpha z).$

Найти общий вид вектора из пересечения $\langle v_1, v_2 \rangle$ и $\langle u_1, u_2 \rangle$, если $v_1 = (0, 2, -1)$, $v_2 = (1, -1, 1)$, $u_1 = (1, 1, 2)$, $u_2 = (1, 0, -1)$.

Определение 3. $\{v_1, v_2, \dots, v_n\}$ – множество образующих V, если $\langle v_1, v_2, \dots, v_n \rangle = V$. (Можно говорить и о бесконечных множествах образующих, но их мы обсуждать не будем.)

Линейно независимое множество образующих называется $\mathit{basucom}$. Все базисы векторного пространства V имеют равное число элементов, которое называется $\mathit{pasmephocmbo}$ пространства.

Т.е., пусть V конечномерно, (v_1, v_2, \ldots, v_n) – его базис. Тогда любой вектор $w \in V$ представляется в виде

$$w = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$$

 $(\lambda_1, \lambda_2, \dots, \lambda_n)$ называются координатами вектора w относительно базиса (v_1, v_2, \dots, v_n) .

Замечание. Здесь мы говорим о базисе как об упорядоченном наборе, а не просто множестве векторов (т.е., нам важна нумерация элементов). Чтобы подчеркнуть это, мы перечисляем элементы базиса в круглых скобках, а не в фигурных.

Задача 4. Дополнить пару векторов (1, 1, 0, 0) и (1, 1, 1, 1) до базиса пространства \mathbb{F}_2^4 .

Задача 5. В пространстве $M(2,\mathbb{R})$ (матрицы 2×2 с элементами из \mathbb{R}) укажите какойнибудь базис, содержащий матрицы $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ и $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Найдите координаты единичной матрицы в выбранном базисе.

Задача 6. Найти базис пространства \mathbb{R}^3 , в котором векторы x, y, z имеют координатные столбцы [x], [y], [z].

$$x = (0, -1, -1), \quad y = (2, -4, 3), \quad z = (6, -6, 5),$$

 $[x] = (1, 1, 1)^T, \quad [y] = (2, 3, 2)^T, \quad [z] = (5, 6, 4)^T$

Определение 4. Прямое произведение $U \times V$ векторных пространств U и V над полем K– это множество пар (u, v), где $u \in U$, $v \in V$, с операциями

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2);$$

 $\alpha(u, v) = (\alpha u, \alpha v),$

которые превращают его также в векторное пространство над K.

Аналогично определяется прямое произведение n векторных пространств $V_1, \ldots V_n$.

Задача 7. Докажите, что размерность $U \times V$ равна m+n.

Определение 5. $U \subseteq V$ называется подпространством V (обозначение: $U \leqslant V$), если

- 1) $u_1 + u_2 \in U$ для любых $u_1, u_2 \in U$;
- 2) $\lambda u \in U$ для любых $u \in U, \lambda \in K$;

Задача 8. Пусть $V_1, V_2 \leq V$. Докажите, что если $V_1 \cup V_2 \leq V$, то $V_1 \leq V_2$ или $V_2 \leq V_1$.

Задача 9. Выяснить, является ли подмножество U пространства V = K[t] его подпространством, и в случае положительного ответа найти какой-нибудь его базис:

- a) $U = \{f | f''' = 0\};$
- 6) $U = \{f | f(1) = 0\};$
- B) $U = \{f | f(0) = 1\};$
- $\Gamma) U = \{ f | f(0) + f(1) = 0 \}.$

Задача 10. Найдите размерность пространства:

- а) кососимметричных матриц (т. е., таких, что $A = A^T$) размера $n \times n$;
- 6) $K[x_1, \ldots, x_n]_{\leq k} = \{ f \in K[x_1, \ldots, x_n] \mid \deg f \leq k \};$
- в) матриц, коммутирующих с e_{12} (e_{ij} матрица с единицей на позиции (i,j) и нулями на остальных).

Задача 11. Пусть $V = \{ f \in K[x] \mid \deg f \le n \}$.

- а) Покажите, что любой набор многочленов $p_0(x), p_1(x), \ldots, p_n(x)$, такой, что $\deg p_i(x) = i$, является базисом V.
- б) Пусть даны различные элементы $\lambda_0,\dots,\lambda_n\in K$. Покажите, что набор многочленов $p_i(x) = \prod_{i \neq i} (x - \lambda_i)$ является базисом V.

Задача 12. Пусть

$$A = \begin{pmatrix} 3 & 5 & -4 & 2 \\ 2 & 4 & -6 & 3 \\ 11 & 17 & -8 & 4 \end{pmatrix}$$

Найдите базис пространства решений однородного уравнения Ax = 0.

Задача 13. Покажите, что множество решений уравнения $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$, имеет размерность n-1 над K. Покажите, что все подпространства размерности n-1 в K^n имеют такой вид.

Задача 14. Найти базис пересечения и суммы подпространств $U = \langle u_1, u_2, u_3 \rangle$, $V = \langle v_1, v_2, v_3 \rangle$ в \mathbb{R}^4 , если

$$u_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ u_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 0 \\ 3 \\ -1 \\ 1 \end{pmatrix}.$$

Задача 15. Пусть $v_1, v_2, \ldots, v_n \in V$,

$$D(v_1, v_2, \dots, v_n) = \{(\lambda_1, \dots, \lambda_n) \in K^n | \lambda_1 v_1 + \dots + \lambda_n v_n = 0 \}$$

Доказать, что:

- a) $D(v_1, v_2, ..., v_n) \leq K^n$;
- б) $D(v_1, v_2, \dots, v_n) = K^n$ тогда и только тогда, когда $v_1 = \dots = v_n = 0$;
- B) dim $D(v_1, v_2, ..., v_n)$ + dim $(\langle v_1, v_2, ..., v_n \rangle) = n$.

Задача 16. Пусть V_1, V_2, V_3 – подпространства W. Покажите, что число $\dim(V_i + V_j) \cap V_k + \dim V_i \cap V_j$ одинаково для любой (i,j,k) — перестановки на множестве $\{1,2,3\}$.

Задача 17. Пусть $V = \mathbb{F}_2^n$, $U \leqslant V$, $\dim(U) = m$ (в теории информации такое U называется двоичным линейным (n,m)-кодом, а его элементы – кодовыми словами). Доказать, что в двоичном линейном коде:

- а) (1 балл) либо все кодовые слова имеют четный вес Хэмминга, либо ровно половина кодовых слов имеет четный вес, а вторая половина – нечетный (весом Хэмминга называется число ненулевых компонент вектора);
- б) (1 балл) либо все кодовые слова начинаются с 0, либо ровно половина кодовых слов начинается с 0, а вторая половина с 1.