Many Local Maxima and Modeling Beetle Data

HW 4 of STAT 5361 Statistical Computing

Biju Wang* 09/26/2018

1 Many Local Maxima

1.1

The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} \frac{1 - \cos(X_i - \theta)}{2\pi}$$

Thus, the log likelihood fucntion is

$$l(\theta) = \sum_{i=1}^{n} \log[1 - \cos(X_i - \theta)] - n \log 2\pi$$

The following plot is the curve of log likelihood function

Figure 1: Log Likelihood Function vs. θ

^{*}bijuwang@uconn.edu

1.2

$$E(X|\theta) = \int_0^{2\pi} x \frac{1 - \cos(x - \theta)}{2\pi} dx$$

$$= \frac{1}{2\pi} \left[\int_0^{2\pi} x dx - \int_0^{2\pi} x \cos(x - \theta) dx \right]$$

$$= \frac{1}{2\pi} \left(2\pi^2 + 2\pi \sin \theta \right)$$

$$= \pi + \sin \theta$$

Let $E(X|\theta)$ equal sample mean \bar{X}_n

$$\pi + \sin \theta = \bar{X}_n$$

we could obtain the method-of-moments estimator of θ is $\tilde{\theta}_n = 0.095$ or 3.046.

1.3

The first derivative is

$$l'(\theta) = \sum_{i=1}^{n} \frac{-\sin(X_i - \theta)}{1 - \cos(X_i - \theta)}$$

The second derivative is

$$l''(\theta) = \sum_{i=1}^{n} \frac{1}{\cos(X_i - \theta) - 1}$$

```
sample \leftarrow c(3.91, 4.85, 2.28, 4.06, 3.70, 4.04, 5.46, 3.53, 2.28, 1.96,
       2.53, 3.88, 2.22, 3.47, 4.82, 2.46, 2.99, 2.54, 0.52)
dev1_log_sum <- function(x){</pre>
  dev1_log_sum <- 0
  for (i in 1:length(sample)) {
    dev1_log_sum \leftarrow dev1_log_sum - sin(sample[i] - x)/(1 - cos(sample[i] - x))
  dev1_log_sum
}
dev2_log_sum <- function(x){</pre>
  dev2_log_sum <- 0</pre>
  for (i in 1:length(sample)) {
    dev2_log_sum \leftarrow dev2_log_sum + 1/(cos(sample[i] - x) - 1)
  dev2_log_sum
newton.raphson <- function(init, fun, fun.dev, maxiter = 100, tol = .Machine$double.eps^0.2){
  x <- init
  for (i in 1:maxiter) {
    x1 \leftarrow x -fun(x)/fun.dev(x)
    if(abs(x1 - x) < tol) break
    x <- x1
  if(i == maxiter)
```

Table 1: Initial Values and Roots

Initial Values	0.0953941	3.046199
Roots	0.0031182	3.170715

1.4

The outcomes are in the following table

Table 2: Initial Values and Roots

```
Initial Values -2.700000 2.700000
Roots -2.668858 2.848415
```

1.5

```
options(digits = 6)
init <- seq(-pi, pi, length = 200)
res <- data.frame(init = init, root = rep(NA, length(init)))
for (i in 1:length(init)) {
   res$root[i] <- newton.raphson(init[i], dev1_log_sum, dev2_log_sum)$root
}</pre>
```

```
res <- round(res, 5)
res_trans <- t(as.matrix(res))</pre>
rownames(res_trans) <- c("Initial Values", "Roots")</pre>
library("pander")
library("ggplot2")
pander(res_trans, split.table = 120, style = 'rmarkdown', caption = "Initial Values and Roots")
                           Table 3: Initial Values and Roots (continued below)
      Initial Values
                        -3.142
                                 -3.11
                                         -3.078
                                                  -3.047
                                                          -3.015
                                                                   -2.984
                                                                            -2.952
                                                                                    -2.921
                                                                                             -2.889
                        -3.112
                                 -3.112
                                                          -3.112
                                                                            -3.112
                                                                                    -3.112
           Roots
                                         -3.112
                                                  -3.112
                                                                   -3.112
                                                                                             -3.112
                                     Table 4: Table continues below
      Initial Values
                        -2.857
                                 -2.826
                                         -2.794
                                                          -2.731
                                                                    -2.7
                                                                                    -2.636
                                                                                             -2.605
                                                  -2.763
                                                                            -2.668
           Roots
                        -3.112
                                 -3.112
                                         -2.787
                                                  -2.787
                                                           -2.669
                                                                   -2.669
                                                                            -2.669
                                                                                    -2.669
                                                                                             -2.669
                                     Table 5: Table continues below
      Initial Values
                        -2.573
                                -2.542
                                          -2.51
                                                  -2.479
                                                          -2.447
                                                                   -2.415
                                                                            -2.384
                                                                                    -2.352
                                                                                             -2.321
                                                                                    -2.298
           Roots
                        -2.509
                                 -2.509
                                         -2.509
                                                  -2.509
                                                          -2.509
                                                                   -2.509
                                                                            -2.388
                                                                                             -2.298
                                     Table 6: Table continues below
      Initial Values
                        -2.289
                                -2.258
                                         -2.226
                                                  -2.194
                                                          -2.163
                                                                   -2.131
                                                                             -2.1
                                                                                    -2.068
                                                                                             -2.037
           Roots
                        -2.298
                                 -2.298
                                         -2.232
                                                  -1.663
                                                          -1.663
                                                                   -1.663
                                                                            -1.663
                                                                                    -1.663
                                                                                             -1.663
                                     Table 7: Table continues below
      Initial Values
                                -1.973
                                                                                    -1.784
                                                                                             -1.752
                        -2.005
                                         -1.942
                                                   -1.91
                                                          -1.879
                                                                   -1.847
                                                                            -1.815
           Roots
                        -1.663
                                -1.663
                                         -1.663
                                                  -1.663
                                                          -1.663
                                                                   -1.663
                                                                            -1.663
                                                                                    -1.663
                                                                                             -1.663
                                     Table 8: Table continues below
      Initial Values
                        -1.721
                                -1.689
                                         -1.658
                                                  -1.626
                                                          -1.594
                                                                   -1.563
                                                                            -1.531
                                                                                     -1.5
                                                                                             -1.468
           Roots
                        -1.663
                                 -1.663
                                         -1.663
                                                  -1.663
                                                          -1.663
                                                                   -1.663
                                                                            -1.663
                                                                                    -1.663
                                                                                            -1.663
```

Table 9: Table continues below

Initial Values	-1.437	-1.405	-1.373	-1.342	-1.31	-1.279	-1.247	-1.216	-1.184
Roots	-1.448	-0.9544	-0.9544	-0.9544	-0.9544	-0.9544	-0.9544	-0.9544	-0.9544

		Г	Table 10:	Гable cont	inues belo	OW			
Initial Values Roots	-1.152 -0.9544	-1.121 -0.9544	-1.089 -0.9544	-1.058 -0.9544	-1.026 -0.9544	-0.9946 -0.9544	-0.963 -0.9544	-0.9314 -0.9544	-0.8999 -0.9544
		ŗ	Гable 11:	Table con	tinues bel	ow			
Initial Values Roots	-0.8683 -0.9544	-0.8367 -0.9544	-0.8051 0.00312	-0.7736 0.00312	-0.742 0.00312	-0.7104 0.00312			
		,	Γable 12:	Table con	tinues bel	.ow			
Initial Values Roots	-0.5841 0.00312	-0.5525 0.00312	-0.521 0.00312	-0.4894 0.00312	-0.4578 0.00312	-0.4263 0.00312			
		Γ	Table 13:	Fable cont	inues belo	ow			
Initial Value Roots	es -0.299 0.003								07893 00312
		Γ	Table 14:	Fable cont	inues belo	ow			
Initial Value Roots	es -0.047 0.003								0.1737
		Т	Table 15:	Гable cont	inues belo	OW			
	0.2052 0.00312	0.2368 0.00312	0.2684 0.00312	0.2999 0.00312	0.3315 0.00312	0.3631 0.00312	0.3947 0.00312	0.4263 0.00312	
		Γ	Table 16:	Гable cont	inues belo	OW			
Initial Value Roots	es 0.489 0.003				0.6157 0.8126	0.6473 0.8126			0.742 0.8126
		Γ	Table 17:	Table cont	inues belo	ow			
Initial Valu Roots	es 0.773 0.812		0.8367 0.8126	0.8683 0.8126	0.8999 0.8126	0.9314 0.8126			1.026 0.8126
		Γ	Table 18:	Гable cont	inues belo	ow			
Initial Valu	es 1.058		1.121	1.152	1.184	1.216		1.279	1.31

0.8126

0.8126

0.8126

0.8126

0.8126

0.8126

0.8126

Roots

0.8126

0.8126

Table 19: Table continues below

Initial Values	1.342	1.373	1.405	1.437	1.468	1.5	1.531	1.563	1.594
Roots	0.8126	0.8126	0.8126	0.8126	0.8126	0.8126	0.8126	0.8126	0.8126

Table 20: Table continues below

Initial Values	1.626	1.658	1.689	1.721	1.752	1.784	1.815	1.847	1.879
Roots	0.8126	0.8126	0.8126	0.8126	0.8126	0.8126	0.8126	0.8126	0.8126

Table 21: Table continues below

Initial Values	1.91	1.942	1.973	2.005	2.037	2.068	2.1	2.131	2.163	2.194
Roots	0.8126	0.8126	2.007	2.007	2.007	2.007	2.007	2.007	2.007	2.007

Table 22: Table continues below

Initial Values	2.226	2.258	2.289	2.321	2.352	2.384	2.415	2.447	2.479	2.51	2.542
Roots	2.237	2.237	2.375	2.375	2.375	2.375	2.375	2.375	2.488	2.488	2.848

Table 23: Table continues below

Initial Values	2.573	2.605	2.636	2.668	2.7	2.731	2.763	2.794	2.826	2.857	2.889
\mathbf{Roots}	2.848	2.848	2.848	2.848	2.848	2.848	2.848	2.848	2.848	2.848	2.848

Initial Values	2.921	2.952	2.984	3.015	3.047	3.078	3.11	3.142
Roots	2.848	2.848	2.848	3.171	3.171	3.171	3.171	3.171

```
ggplot(res, aes(x = init, y = root)) + geom_point() +
scale_x_continuous(breaks = round(seq(min(res$init), max(res$init), by = 1),1)) +
labs(x = "Initial Values", y = "Roots from Newton-Raphson") +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Scatter Plot of Roots vs. Initial Values")
```

Scatter Plot of Roots vs. Initial Values

Figure 2: Scatter Plot of Roots vs. Initial Values

```
table <- as.data.frame(table(res[,2]))
table <- t(as.matrix(table))
table <- rbind(table, cumsum(table[2,]))
rownames(table) <- c("Roots", "Amount", "Cumulative Amount")
pander(table, split.table = 120, style = 'rmarkdown', caption = "Roots, Amount and Cumulative Amount")</pre>
```

Table 25: Roots, Amount and Cumulative Amount (continued below)

Roots	-3.11247	-2.78656	-2.66886	-2.50936	-2.38826	-2.29793	-2.29792	-2.23219
${\bf Amount}$	11	2	5	6	1	3	1	1
Cumulative Amount	11	13	18	24	25	28	29	30

Table 26: Table continues below

Roots	-1.66271	-1.4475	-0.95441	-0.9544	0.00312	0.81264	2.00722	2.237
${f Amount}$	24	1	14	5	42	46	8	1
Cumulative Amount	54	55	69	74	116	162	170	171

Roots	2.23701	2.37471	2.48845	2.84842	3.17071
${f Amount}$	1	6	2	15	5
Cumulative Amount	172	178	180	195	200

From the table above, we can partition the 200 initial points into 21 separate groups with each group corresponding to a separate unique outcome of the optimization. According to order number of initial values, the 21 groups are

[1, 11]	[12, 13]	[14, 18]	[19, 24]	[25, 25]	[26, 28]
[29, 29]	[30, 30]	[31, 54]	[55, 55]	[56, 69]	[70, 74]
[75, 116]	[117, 162]	[163, 170]	[171, 171]	[172, 172]	[173, 178]
[179, 180]	[181, 195]	[196, 200]			

Table 28: Groups of Initial Values for the Same Root

2 Modeling Beetle Data

2.1 Least Square Method

The solution for the differential equation is not unique unless we give a initial condition which will determine N_0 . In the following solutions, we assume $N_0 = 2$. This is reasonable since at time 0 the population size is 2. We need to minimize

$$g(r,K) = \sum_{i=1}^{n} \left[N_i - \frac{2K}{2 + (K-2)e^{-rt_i}} \right]^2$$

We use Gauss-Newton approach to address this optimization problem, this is also the default method of the function nlxb in package nlmrt. The initial values for both K and r are 1. The roots and contor plot are below

```
beetles <- data.frame(</pre>
            = c(0, 8,
                        28, 41, 63, 69,
    days
                                               97, 117, 135, 154),
    beetles = c(2, 47, 192, 256, 768, 896, 1120, 896, 1184, 1024))
goal <- function(r, K){</pre>
  goal <- 0
  for (i in 1:nrow(beetles)) {
    goal <- goal + (beetles[i,2]-(2 * K)/(2 + (K - 2) * \exp(-r * beetles[i,1])))^2
library("ggplot2")
r < - seq(1, 2000, 0.1)
K \leftarrow seq(1, 2000, 0.1)
data \leftarrow data.frame(r = r, K = K)
data$z <- with(data, goal(r, K))</pre>
ggplot(data, aes(r, K, z))+ geom_point(aes(colour = z)) + stat_density2d() +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Contour Plot for the Objective Function")
```

Contour Plot for the Objective Function

Figure 3: Contour Plot for the Objective Function

2.2 MLE Method

Since we assume $\log N_t \sim N(\log f(t), \sigma^2)$, the likelihood function is

$$L(r, K, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\log N_i - \log \frac{2K}{2 + (K-2)\exp(-rt_i)})^2}{2\sigma^2}\right)$$

Thus, the log likelihood function is

$$l(r, K, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \sum_{i=1}^{n} \frac{(\log N_i - \log \frac{2K}{2 + (K-2) \exp(-rt_i)})^2}{2\sigma^2}$$

We would like to maximize the log likelihood function regarding to r, K, σ^2 . Since the objective function is very complex, directly using Newton-Raphson method is not appropriate. We instead use Quasi-Newton method, specifically, we use BFGS method in package optimx or optim. The point estimations and variance for it are shown below

```
library("optimx")
goal <- function(x){
  goal <- 0
  r <- x[1]
  K <- x[2]
  sigma2 <- x[3]
  for (i in 1:nrow(beetles)) {</pre>
```

```
goal <- goal - log(2 * pi * sigma2)/2 -
      (\log(\text{beetles}[i,2]) - \log((2 * K)/(2 + (K - 2) * \exp(-r * \text{beetles}[i,1]))))^2/(2 * \text{sigma2})
 }
 goal
}
BFGSmod <- optimx(c(800, 800, 70), fn = goal, gr = NULL, method = "BFGS", hessian = TRUE)
coef.BFGSmod <- coef(BFGSmod)</pre>
colnames(coef.BFGSmod) <- c("r", "K", "sigma^2")</pre>
BFGSmod
                p2
                             value fevals gevals niter convcode kkt1 kkt2
         р1
                       рЗ
## BFGS 800 833.359 31430.3 -60.9672
                                         16 15
                                                    NA
                                                                 O TRUE FALSE
        xtimes
## BFGS 0.022
coef.BFGSmod
                 K sigma^2
         r
## BFGS 800 833.359 31430.3
BFGSmod1 <- optim(c(800, 800, 70), fn = goal, gr = NULL, method = "BFGS", hessian = TRUE)
BFGSmod1$hessian
##
        [,1]
                     [,2]
                                   [,3]
## [1,]
          0 0.00000e+00 0.00000e+00
           0 -3.55271e-09 -3.55271e-09
## [2,]
## [3,]
           0 -3.55271e-09 -8.88178e-09
MASS::ginv(-BFGSmod1$hessian)
##
        [,1]
                   [,2]
                               [,3]
## [1,]
                                 0
        0
                      0
## [2,]
          0 469124961 -187649984
## [3,] 0 -187649984 187649984
```