高等线性代数 2

第二十一讲 酉变换

主要内容: 酉矩阵

酉变换

酉相似与可酉对角化

二〇二四年春

1. 回顾: 复内积空间

定义 1

设 V 是复线性空间, 设 (-,-) : $V \times V \to \mathbb{C}$ 是一个映射. 若对任意 $\alpha, \beta, \gamma \in V$ 及 $c \in \mathbb{C}$, 都有

- (1) $(\beta, \alpha) = \overline{(\alpha, \beta)};$
- (2) $(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$;
- (3) $(c\boldsymbol{\alpha}, \boldsymbol{\beta}) = c(\boldsymbol{\alpha}, \boldsymbol{\beta});$
- (4) $(\alpha, \alpha) \ge 0$, 等号成立当且仅当 $\alpha = 0$.

则称 V是一个复内积空间. 由 (1)(3) 可知, $(\alpha, c\beta) = \overline{c}(\alpha, \beta)$. 有限维的复内积空间称为酉空间.

2. 度量矩阵

第十五讲中定义了 Hermite 型和 Hermite 矩阵, 这是实对称阵的推广. 一个复矩阵 H 如果满足 $\overline{H}^T = H$, 则称为 Hermite 矩阵. 若 H 是 Hermite 矩阵, 且对任意非零复向量 α , $\overline{\alpha}^T H \alpha > 0$, 则称 H 是正定 Hermite 矩阵.

设 V 是 n 维酉空间且 $\{\alpha_1, \cdots, \alpha_n\}$ 是 V 的一组基, 则下述矩阵

$$G = \begin{pmatrix} (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1) & (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) & \cdots & (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_n) \\ (\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1) & (\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2) & \cdots & (\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_n) \\ \vdots & \vdots & \ddots & \vdots \\ (\boldsymbol{\alpha}_n, \boldsymbol{\alpha}_1) & (\boldsymbol{\alpha}_n, \boldsymbol{\alpha}_2) & \cdots & (\boldsymbol{\alpha}_n, \boldsymbol{\alpha}_n) \end{pmatrix}$$

是 V在这组基下的度量矩阵. 易知 G 是一个正定 Hermite 矩阵.

3. 向量的长度和夹角

(1) 酉空间中一个向量 α 的长度 (或范数) 也定义为

$$||\pmb{lpha}||=(\pmb{lpha},\pmb{lpha})^{rac{1}{2}}.$$

- (2) 两个向量 α, β 满足 $(\alpha, \beta) = 0$ 时, 称 α 与 β 正交或互相垂直, 记为 $\alpha \perp \beta$.
- (3) 酉空间中 Cauchy-Schwarz 不等式, 三角不等式, 贝塞尔不等式同样成立.
- (4) 因为酉空间中内积 (α, β) 一般是复数, 非零向量 α, β 的夹角 θ 的余弦定义为

$$\cos \theta = \frac{|(\boldsymbol{\alpha}, \boldsymbol{\beta})|}{||\boldsymbol{\alpha}|| \cdot ||\boldsymbol{\beta}||}.$$

因此和欧氏空间情形不同, 这里 θ 的取值范围是 $[0,\frac{\pi}{2}]$.

4. Gram-Schmidt 正交化

- (1) 酉空间 V 中两两正交的非零向量组是线性无关的;
- (2) n 维酉空间 V 中两两正交的非零向量的个数 $\leq n$, 且任意 n 个两两正交的非零向量构成 V 的一组基, 称为 V 的正交基;
- (3) 设 $\{\alpha_1, \dots, \alpha_n\}$ 是酉空间 V 的一组正交基. 若 α_i 都是单位向量,则称它为 V 的一组标准正交基. V 的一组基是标准正交基当且仅当 V 在这组基下的度量矩阵是单位阵.
- (4) Gram-Schmidt 正交化方法同样适用. 任意 n 维酉空间都有标准正交基.

5. 酉矩阵

定义 2

一个 n 阶复方阵 U 若满足 $\overline{U}^T U = U \overline{U}^T = I_n$, 则称为一个酉矩阵.

一个 n 阶实矩阵是酉矩阵当且仅当它是正交矩阵.

定理1

设 V是一个 n 维酉空间. 则 V的两组标准正交基的过渡矩阵是酉矩阵. 反之, 设 $\{\alpha_1,\cdots,\alpha_n\}$ 是 V的一组标准正交基, U是一个酉矩阵. 若 V中的向量组 β_1,\cdots,β_n 满足

$$(\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_n)=(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n)\,U,$$

则 $\{\beta_1, \dots, \beta_n\}$ 也是 V的一组标准正交基.

6. UR 分解

- (1) 酉矩阵的逆矩阵 (即共轭转置) 也是酉矩阵;
- (2) 两个酉矩阵的乘积仍是一个酉矩阵;
- (3) 酉矩阵的行列式的模等于 1, 且它的所有特征值的模也为 1.
- (4) n 阶复方阵 U 是酉矩阵 \Leftrightarrow 它的列向量组 $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ 是 \mathbb{C}^n 的一组标准正交基.

定理 2

设 A 是一个 n 阶复方阵. 则 A 可分解为 A = UR, 其中 U 是一个 n 阶酉矩阵, R 是一个 n 阶复上三角阵且主对角线元素均大于等于零. 若 A 可逆, 则上述分解是唯一的.

7. 例题 1

例 1: 设 $A, B \neq n$ 阶实方阵, 则 $A + iB \neq - n$ 阶复方阵. 证明:

- (1) A + iB 是 Hermite 矩阵当且仅当 $\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$ 是实对称阵.
- (2) A + iB 是酉矩阵当且仅当 $\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$ 是正交矩阵.
- (3) 求可逆阵 P 使得 $\begin{pmatrix} A+iB & 0 \\ 0 & A-iB \end{pmatrix} = P^{-1} \begin{pmatrix} A & -B \\ B & A \end{pmatrix} P$.

8. 例题 1 解

$$\overline{H}^T = \overline{A + iB}^T = A^T - iB^T.$$

(1)
$$\overline{H}^T = H \Leftrightarrow A^T = A \perp B B^T = -B \Leftrightarrow M^T = M.$$

(2)
$$\overline{H}^T H = I_n \Leftrightarrow \begin{cases} A^T A + B^T B = I_n \\ A^T B - B^T A = 0 \end{cases} \Leftrightarrow M^T M = I_{2n}.$$

(3) 由观察可得

$$\begin{pmatrix} I_n & iI_n \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \begin{pmatrix} I_n & -iI_n \\ 0 & I_n \end{pmatrix} = \begin{pmatrix} A+iB & 0 \\ B & A-iB \end{pmatrix}.$$

9. 例题 1 解续

再设
$$Q = \begin{pmatrix} I_n & 0 \\ aI_n & I_n \end{pmatrix}$$
, 计算

$$Q^{-1}\begin{pmatrix} A+iB & 0 \\ B & A-iB \end{pmatrix}Q = \begin{pmatrix} A+iB & 0 \\ C & A-iB \end{pmatrix},$$

其中 C = B + a(A - iB) - a(A + iB). 令 $a = \frac{-i}{2}$. 则 C = 0. 于 是, 令

$$P = \begin{pmatrix} I_n & -iI_n \\ 0 & I_n \end{pmatrix} \begin{pmatrix} I_n & 0 \\ \frac{-i}{2}I_n & I_n \end{pmatrix} = \begin{pmatrix} \frac{1}{2}I_n & -iI_n \\ \frac{-i}{2}I_n & I_n \end{pmatrix}.$$

则
$$P^{-1}MP = \begin{pmatrix} A+iB & 0\\ 0 & A-iB \end{pmatrix}$$
.

10. 例题 2

例 2: 记 SU_n 是行列式值为 1 的 n 阶酉矩阵的集合. 现在考虑 SU_2 . 证明: SU_2 中任何一个元素可以写为以下形式

$$P = \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}, \quad z, w \in \mathbb{C}, \ z\overline{z} + w\overline{w} = 1.$$

证明: 设 $P = \begin{pmatrix} z & w \\ x & y \end{pmatrix} \in SU_2$. 则由 $\overline{P}^T = P^{-1}$ 以及 $\det P = 1$ 可

知

$$\begin{pmatrix} \overline{z} & \overline{x} \\ \overline{w} & \overline{y} \end{pmatrix} = \begin{pmatrix} y & -w \\ -x & z \end{pmatrix}.$$

于是 $y = \overline{z}$, $x = -\overline{w}$, 且 $\det P = z\overline{z} + w\overline{w} = 1$.

11. 例题 2 续

定义映射
$$h: SU_2 \to \mathbb{R}^4$$
 如下: 设 $P = \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} \in SU_2$. 记 $z = x_1 + ix_2, \ w = x_3 + ix_4$. 令

$$h(P) = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4.$$

则 h 是单射, 且 h 的像为 \mathbb{R}^4 中的单位球

$$S^3 = \{x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}.$$

由此建立了 SU_2 与 S^3 的一一对应.

12. 正交补与正交投影

- (1) 同样的可以定义酉空间 V的两个子空间 V_1, V_2 正交, 记为 $V_1 \perp V_2$. 设 V_1, \dots, V_s 是酉空间 V的子空间, 且两两正交. 则 $V_1 + \dots + V_s = V_1 \oplus \dots \oplus V_s = V_1 \perp \dots \perp V_s$.
- (2) 设 W 是酉空间 V 的一个子空间. 则 W 的正交补定义为

$$W^{\perp} = \{ \boldsymbol{\alpha} \in V \mid (\boldsymbol{\alpha}, W) = 0 \}.$$

- (3) 设 W 是酉空间 V 的一个子空间. 则
 - $(1) \quad V = W \oplus W^{\perp} \perp \perp (W^{\perp})^{\perp} = W;$
 - (2) W 的任意一组标准正交基可以扩充为 V 的一组标准正交基.
- (4) V 到子空间 W 的正交投影也同样可以定义.

13. 同构

定义 3

设 V_1 与 V_2 是两个酉空间. 如果线性映射 $\varphi:V_1 \to V_2$ 满足

$$(\varphi(\alpha), \varphi(\beta)) = (\alpha, \beta), \quad \alpha, \beta \in V_1,$$

则称 φ 保持内积. 若 φ 作为线性映射是一个同构, 则称酉空间 V_1 与 V_2 同构. 此时称 φ 是一个保距同构.

类似于欧氏空间, 我们有下面结论.

定理 3

两个酉空间同构当且仅当它们的维数相等. 因此, 任意 n 维酉空间都与 \mathbb{C}^n 同构 (带有标准内积).

14. 酉变换

定义 4

设 V是一个酉空间, φ 是 V上的一个线性变换. 如果 φ 保持内积, 则称 φ 是一个酉变换.

设 V 是一个酉空间. 则对任意 $\alpha, \beta \in V$, 有以下等式

$$(oldsymbol{lpha},oldsymbol{eta}) = rac{1}{4} ig(\|oldsymbol{lpha} + oldsymbol{eta} \|^2 - \|oldsymbol{lpha} - oldsymbol{eta} \|^2 + i \|oldsymbol{lpha} + ioldsymbol{eta} \|^2 - i \|oldsymbol{lpha} - ioldsymbol{eta} \|^2 ig).$$

命题 1

设 V是一个酉空间, φ 是 V上的一个线性变换. 则 φ 是酉变换 当且仅当 φ 保持范数.

15. 性质

定理 4

设 V是一个酉空间, φ 是 V的一个线性变换. 则下列命题等价:

- (1) φ 是一个酉变换;
- (2) φ 将 V的标准正交基映为标准正交基;
- (3) φ 在 V 的标准正交基的表示矩阵是酉矩阵.
- (1) *V*上的酉变换都是同构. 而且, 两个酉变换的乘积是酉变换; 酉变换的逆变换还是酉变换.
- (2) *V* 上的酉变换的特征值的模等于 1, 并且属于不同特征值的 特征向量彼此正交.
- (3) 若 $W \neq V$ 上酉变换 φ 的不变子空间, 则 W^{\perp} 也是 φ 的不变子空间.

16. 定理

定理 5

设 φ 是 n 维酉空间 V上的一个酉变换. 则存在 V的一组标准正交基使得 φ 在这组基下的表示矩阵是对角阵, 且其主对角线元素的模均为 1.

证明: 对 V 的维数 n 用数学归纳法. 当 n=1 时, 结论显然成立. 现在设 $n \geq 2$, 并假设结论对 n-1 维酉空间上的酉变换都成立. 设 φ 是 n 维酉空间 V 上的一个酉变换. 令 λ_1 是 φ 的一个特征 值. 则 λ_1 的模是 1. 设 α_1 是 φ 的一个属于特征值 λ_1 的特征向量. 不妨取 α_1 是单位向量. 显然一维子空间 $W = \operatorname{span}(\alpha_1)$ 是 φ 的不变子空间.

17. 定理证明

因此, W^{\perp} 也是 φ 的不变子空间且

$$V = W \oplus W^{\perp} = W \perp W^{\perp}.$$

并且, φ 在 W^{\perp} 的限制

$$\varphi|_{\operatorname{W}^\perp}:\operatorname{W}^\perp\longrightarrow\operatorname{W}^\perp$$

也是一个酉变换. 由于 dim $W^{\perp} = n - 1$, 根据归纳假设可知, 存在 W^{\perp} 的一组标准正交基 $\{\alpha_2, \dots, \alpha_n\}$ 使得 $\varphi|_{W^{\perp}}$ 在这组基下的表示矩阵为 diag $(\lambda_2, \dots, \lambda_n)$, 其中 $\lambda_2, \dots, \lambda_n$ 的模均为 1. 于是 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 是 V 的一组标准正交基, 并且 φ 在这组基下的表示矩阵是对角阵 diag $(\lambda_1, \lambda_2, \dots, \lambda_n)$.

18. 可酉对角化

定义 5

设 φ 是酉空间 V 的一个线性变换. 如果存在 V 的一组标准正交基使得 φ 在这组基下的矩阵是对角阵, 则称 φ 是可酉对角化的.

上述定理说明, 酉变换总是可酉对角化的. 但欧氏空间上的正交变换不一定可以正交对角化.

定义 6

设 A, B 是两个 n 阶复方阵. 若存在 n 阶酉矩阵 U 使得

$$B = \overline{U}^T A U = U^{-1} A U,$$

则称 B 与 A 酉相似. 若 A 酉相似于一个对角阵, 则称 A 是可酉对角化的.

19. 可酉对角化续

易知, n 阶复方阵的酉相似是一个等价关系. 而且, 酉空间上一个 线性变换在不同标准正交基下的表示矩阵是酉相似的.

推论 1

任意 n 阶酉矩阵 A 均酉相似于一个复对角阵

$$\operatorname{diag}(e^{i\theta_1}, \dots, e^{i\theta_n}), \quad \not\exists \ \ \theta_1, \dots, \theta_n \in \mathbb{R}.$$

上述推论表明, 酉矩阵总可以酉对角化. 类似于实对称阵可正交对角化, 下一讲我们将证明 Hermite 矩阵也可酉对角化.

问题: 一个复方阵可酉对角化的充要条件是什么?