

Adversarial Attacks on Neural Network Policies

Sandy Huang¹, Nicolas Papernot², Ian Goodfellow³, Yan Duan^{1,3}, Pieter Abbeel^{1,3}

¹UC Berkeley, ²Penn State, ³OpenAI

in 8-bit image space

OpenAI

Motivation

Adversarial example: small worst-case perturbation that forces a machine learning model to mishandle an input

• exists for image classification [1] and in the real world [2]

Key finding: Adversaries can degrade test-time behavior of policies trained with reinforcement learning, even when they do not have access to the policies

Threat Model

white-box adversary: $\theta' = \theta$

black-box adversary:

- adversary trains its own policy $\pi_{\theta'}$ for the task
- requires transferability: can adversarial ex. designed to fool one policy also fool others trained for the same task?
- challenging because training data drawn from different distributions:

Dormant Adversarial Examples

We introduce dormant attacks (on recurrent policies):

Examples of Adversarial Perturbations

Crafting Adversarial Examples for Policies

Optimal perturbation η , given loss J(x): argmax $J(x + \eta)$

$$J(\theta, x, y) = -\sum_{i} y_i \log \pi_{\theta}(x)_i = -\log \underset{i}{\operatorname{argmax}} \pi_{\theta}(x)_i$$

Fast gradient sign method (FGSM) [3] computes the optimal η for the linear approximation of J(x)

Original version of FGSM constrains $\|\eta\|_{\infty}$ Instead, we might want to constrain sparsity / magnitude

$$\eta = \begin{cases} \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y)) & \text{for } \|\eta\|_{\infty} \leq \epsilon \\ \epsilon \sqrt{d} \frac{\nabla_x J(\theta, x, y)}{\|\nabla_x J(\theta, x, y)\|_2} & \text{for } \|\eta\|_2 \leq \|\epsilon \mathbf{1}_d\|_2 \\ \\ \operatorname{maximally perturb dimensions with budget } \epsilon d \\ \\ \operatorname{for } \|\eta\|_1 \leq \|\epsilon \mathbf{1}_d\|_1 \end{cases}$$

fully-trained

 $\pi_{\theta} \rightarrow \widetilde{a}_{t}$

possibly

recurrent

- Across all games, adversarial perturbations significantly decrease performance, even for small ϵ
- Policies trained with DQN tend to be more vulnerable

Black-Box Adversary x-axis: $\epsilon \in [0, 0.008]$ Pong ℓ_{∞} Type of transfer: algorithm policy

• ℓ_1 -norm is particularly transferable, even across training algorithms

Crafting Dormant Adversarial Examples

 $J(\theta, x_t + \eta, y_t)$ argmax

 $d_i(\eta; \theta, x_{0:t}) = 0 \text{ for } i = 0, \dots, k-1,$ $d_k(\eta; \theta, x_{0:t}) = 1, \|\eta\| \le \epsilon$

Optimize with dual ascent:
$$\eta^{(j)} = -\epsilon \left(\sum_{i=0}^{k-1} \lambda_i^{(j)} \operatorname{sign}(\nabla_x J(\theta, x_{t+i}, y_{t+i})) \right) \\ + \epsilon \lambda_k^{(j)} \operatorname{sign}(\nabla_x J(\theta, x_{t+k}, y_{t+k})).$$

$$\lambda_i^{(j+1)} = \lambda_i^{(j)} + \alpha^{(j)} d_i(\eta^{(j)}; \theta, x_{0:t}) \text{ for } i = 0, \dots, k$$

Task: Navigate I-maze [4]

go to red goal go to blue goal in VizDoom [5]

dormant adversarial examples computed through dual-ascent (k = 7) yellow marker: green marker: action at t+k: turn right

ℓ_∞ -norm unscaled η adversarial input action at t+k:

Dormant Adversary

turn left

turn left

turn right turn right turn left

[1] Szegedy et al. Intriguing properties of neural networks. ICLR 2014 [2] Kurakin et al. Adversarial examples in the physical world. arXiv 2016.

[3] Goodfellow et al. Explaining and harnessing adversarial examples. ICLR 2015. [4] Oh et al. Control of memory, active perception, and action in Minecraft. ICML 2016.

[5] Kempka et al. ViZDoom. arXiv 2016.