

Obrázek 1: Konstrukce, kdy žádný z bodů neleží na kratším oblouku AB

Obrázek 2: Konstrukce, kdy bod E leží na jednom z kratších oblouků AB

Je zřejmé, že podle věty ss
s jsou trojúhelníky BAX a ABY shodné, z čehož vyplývá, že $|\angle AXB| = |\angle BYA|$.
 A protože tyto úhly jsou středové, nad spojnicí AB budou obvodové úhly u obou kružnic stejně velký.

Pokud dokážeme, že úhlopříčky CD a EF jsou osy daného čtyřúhelníku, dokážeme, že čtyřúhelníky CEDF je kosočtverec, což je rovnoběžník. Abychom dokázali, že tyto úhlopříčky jsou osami, dokážeme, že trojúhelníky DCB a EFA jsou rovnoramenné se základnami DC a EF. Toto snadno dokážeme pomocí obvodových úhlů.

Nejprve začneme s případem na obrázku 1, kde je konstrukce, kdy žádný z bodů neleží na kratším oblouku AB. Tehdy protože středové úhly spojnice AB k obou kružnicím jsou stejné, pak díky tomu platí, že $|\angle ACB| = |\angle BDA| = |\angle AEB| = |\angle BFA|$, čímž jsme dokázali, že tedy trojúhelníky DCB a EFA jsou rovnoramenné, jak jsme chtěli dokázat.

V případě na obrázku 2, máme jeden z bodů na kratším oblouku AB, zde BÚNO bod E. Pro trojúhelník DCB je dúkaz stejný jako v minulém případě, ale u druhého trojúhelníku není úhel $\angle BEA$ roven úhlu $\angle AEF$, ale jedná se o vnější úhel vůči tomuto úhlu. A protože obvodový úhel $\angle BEA$ se nachází na kratším oblouku,

platí $|\angle BEA| = 180^{\circ} - |\angle BFA|$. Z toho je zřejmé, že $|\angle AEF| = |\angle BFA| = |\angle EFA|$, tím pádem jsme dokázali to samé jako v minulém případě.

A protože osy tohoto čtyřúhelníku prochází body A a B, žádný jiný případ nastat nemůže (např. že by na kratším oblouku byly dva body čtyřúhelníku), čímž jsme dokázali tvrzení ze zadání. Q. E. D.