# Syntax-based MT Evaluation with Expected Dependency Pair Match

Jeremy G. Kahn Mari Ostendorf UW (SSLI Lab)

> Brian Roark OHSU

#### Overview

#### **Expected Dependency Pair Match**

- Straightforward intuition
- Uses syntactic and lexical information
- Does well\* at predicting HTER

#### No:

- Synonym or paraphrase tables
- Dev-set tuning (much)
- Fuzzy approximations (except in the parser)

## **Building EDPM: the F measure**

- F-measure is intuitively appealing
  - Hard to game
  - Bag-of-words has easy intuition.
  - Multiple references? Match vs. any ref bag
- What's in the bag?
  - Words?
  - Word-sequences → n-grams

# Building DPM: Outsourcing adjacency

Why insist on adjacency? Ne ... pas skip-n-gram is perfectly good

But which non-adjacent n-grams?

"If only we had a tool for deciding which words in a sentence were related!"

- With dependency parse, we can F-measure
  - syntactically-local n-grams [Liu and Gildea]
  - Labeled dep-head links [Roark et al. SParseval]

Salutary side effect: heads "overcounted"

## Building EDPM: partial match

- Don't have to use whole link.
  - We have n outbound links (dependent→link→)
  - We have n-1 inbound links (→link→head)
  - (also n unigrams, n-1 bigrams)
- Prev. work with LFG dependencies [Owczarzak et al.] found that partial-link was better vs. human judgments

Note: still a single F-measure (all 4 subclasses have different signatures)

# Building EDPM: Mistrusting the parse

Parses are hidden, even on reference

- Use n-best lists on reference and hypothesis
- Use weighted counts (based on parser probabilities)
- Mistrust parser probabilities (flatten with γ)
  - $\gamma$ =0: uniform distribution,  $\gamma$ =1: no change

#### **EDPM:** to review

#### Free parameters:

- Which graph fragments?
  - Unigrams, bigrams, etc
  - head+inbound link
  - dependent+outbound link
  - dependent+link+head
  - dependent+head [no link!]
- Number of n-best parses to include
- γ parse confidence trustworthiness parameter

### Implementation

- Dependency forest extraction
  - Charniak parser in n-best mode
  - Head-finding table [tweaked with semantic heads]
  - Arc-labels from lowest-over-highest constituents
- The rest is in Perl

## **Experiments** [Chinese MTC]

#### Set up experiments against MTC judgments

Similar to Owczarzak 2007 experiments

Key results in r correlation vs fluency+adequacy:

- Full-link-alone F-measure ≈ BLEU-4, TER
- Improved by using partial rather than full links
- Using 1- and 2-grams ≈ inbound and outbound word+link (≫ BLEU and TER)
- Including 1g, 2g, inbound, outbound better still
- small jump from 1- to 50-best
- $\gamma$  = 0.25 is good setting.

## **Experiments [GALE 2.5]**

Compared EDPM measures (same settings) to TER, BLEU-4 on docs, sentences of GALE 2.5

Correlations between Δ(score) & ΔHTER

| Measure <i>m</i> | all-Arabic | all-Chinese |                             |
|------------------|------------|-------------|-----------------------------|
| TER              | 0.51       | 0.19        | 0.39                        |
| $BLEU_4$         | 0.40       | 0.19        | 0.32                        |
| EDPM             | 0.61       | 0.25        | 0.39<br>0.32<br><b>0.47</b> |

## Discussion and Future Work [1]

#### Internal weight tuning?

- Weight relative contribution of 1g, 2g, out-bound & inbound links.
- Introduces only 3 free parameters; no need for additional parsing when tuning.

Very different strategy from (e.g.) METEOR and TER. Combination approaches seem fertile

• Question: cross-correlation among metrics?

## Discussion and Future work [2]

#### Defers to [expensive!] parser for syntactic info

- Better labeling? Better parser
- New target language? New parser
- More candidates? Longer n-best lists

#### Cherry & Quirk (2008) discriminative parsing

vs. a better [Viterbi] parser?

#### L. Huang's [2008] packed forests

Better than longer n-best lists?

#### Directly get dependency parse?

We really want dist. of likely heads, arcs for each word

## Thank you!

#### Conversations and comments from:

- My co-authors, Mari Ostendorf and Brian Roark
- Two anonymous reviewers
- Kevin Knight, Kevin Duh, Matt Snover, Michel Galley
- GALE team-members and Karolina Owczarzak

# Sparseval example [1]

|      |                   | dependency-pairs                                                           |  |  |
|------|-------------------|----------------------------------------------------------------------------|--|--|
|      | string            | (dependent, relation, head)                                                |  |  |
|      |                   | $\langle the, \overset{nmod}{\rightarrow}, dog \rangle$                    |  |  |
| hyp  | the red furry dog | $\langle red, \stackrel{nmod}{\longrightarrow}, dog \rangle$               |  |  |
| יואף |                   | $\langle furry, \overset{nmod}{\rightarrow}, dog \rangle$                  |  |  |
|      |                   | $\langle dog, \overset{\mathtt{ROOT}}{ ightarrow}, \mathtt{ROOT}  angle$   |  |  |
|      |                   | $\langle the, \overset{nmod}{\rightarrow}, dog \rangle$                    |  |  |
| ref  | the furry red dog | $\langle furry, \overset{nmod}{\longrightarrow}, dog \rangle$              |  |  |
| 161  |                   | $\langle red, \overset{nmod}{\rightarrow}, dog \rangle$                    |  |  |
|      |                   | $\langle dog, \overset{\mathtt{ROOT}}{\rightarrow}, \mathtt{ROOT} \rangle$ |  |  |

## Sparseval example [2]

|     | string                | dependency-pairs                                                             |
|-----|-----------------------|------------------------------------------------------------------------------|
|     |                       | $\langle White, \overset{n mod}{\rightarrow}, House \rangle$                 |
| hyp | White House spokesman | $\langle House, \overset{nmod}{\rightarrow}, spokesman \rangle$              |
|     |                       | $\langle spokesman, \overset{\mathtt{ROOT}}{\longrightarrow}, ROOT \rangle$  |
|     |                       | $\langle House, \overset{nmod}{\rightarrow}, spokesman \rangle$              |
| ref | House spokesman White | $\langle spokesman, \overset{nmod}{\rightarrow}, White \rangle$              |
|     |                       | $\langle White, \overset{\mathtt{ROOT}}{\rightarrow}, \mathtt{ROOT} \rangle$ |

## Extracting dependency trees



- Charniak PCFG with WSJ default training
- Head-finding with modified Charniak rules
- Arc-labels are Gov/MaxProj



## **Correlation improvements [MTC]**

| Measure                                | r      |                                                                                             |                  |
|----------------------------------------|--------|---------------------------------------------------------------------------------------------|------------------|
| $\mathrm{DPM}_{dl,lh}$ ( $\sim$ d_var) | 0.226  |                                                                                             |                  |
| 1+BLEU <sub>4</sub>                    | 0.218  | Measure                                                                                     | r                |
| $\mathrm{DPM}_{dlh}$ ( $\sim$ d)       | 0.185  | $\mathrm{DPM}_{1g,2g,dl,lh}$                                                                | 0.237            |
| TER                                    | -0.173 | $\mathrm{DPM}_{1g,dl,lh}$                                                                   | 0.234            |
|                                        | DI     | $\mathrm{PM}_{1g,2g} (\equiv \mathrm{bag	ext{-}of	ext{-}ngrams}(2)) \ \mathrm{DPM}_{dl,lh}$ | $0.227 \\ 0.226$ |
|                                        |        | $\mathrm{DPM}_{1g,dl,dlh}$                                                                  | 0.227            |
|                                        |        | $1+BLEU_4$                                                                                  | 0.218            |
|                                        |        | $\mathrm{DPM}_{dlh}$                                                                        | 0.185            |
|                                        |        | TER                                                                                         | -0.173           |

# GALE 2.5 by-genre document correlations with HTER

|                  | bc      | bn   | nw   | dw   |
|------------------|---------|------|------|------|
| Measure <i>m</i> | Arabic  |      |      |      |
| TER              | 0.59    | 0.24 | 0.22 | 0.26 |
| $BLEU_4$         | 0.50    | 0.10 | 0.30 | 0.31 |
| EDPM             | 0.80    | 0.10 | 0.31 | 0.33 |
|                  | Chinese |      |      |      |
| TER              | 0.06    | 0.13 | 0.35 | 0.14 |
| $BLEU_4$         | 0.01    | 0.22 | 0.36 | 0.07 |
| EDPM             | 0.14    | 0.30 | 0.37 | 0.16 |