题	号	 $\stackrel{\rightharpoonup}{\rightharpoonup}$	三	四	五.	总	分
得	分						
4 11							

得分 评阅人 一、选择题 (共 5 小题,每小题 2 分,共 10 分)
1.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - \cos(x^2 + y^2)}{x^2 y^2 (x^2 + y^2)}$$
 ()

(A) 等于 0 (B) 等于 +∞ (C) 等于 1 (D) $-\infty$ 2. 若非零向量 \vec{a} , \vec{b} 满足 $\left| \vec{a} - \vec{b} \right| = \left| \vec{a} + \vec{b} \right|$,则必有 ().

- (A) $\vec{a} \vec{b} = \vec{0}$; (B) $\vec{a} + \vec{b} = \vec{0}$; (C) $\vec{a} \cdot \vec{b} = 0$; (D) $\vec{a} \vec{b} = \vec{a} + \vec{b}$

3. 若数项级数 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 均收敛,且 $a_n \le c_n \le b_n$ $(n=1,2,\cdots)$,则(

(A) $\lim_{n\to\infty} c_n \neq 0$; (B) $\sum_{n=0}^{\infty} c_n$ 收敛; (C) $\sum_{n=0}^{\infty} c_n$ 发散; (D) $\sum_{n=0}^{\infty} c_n$ 的敛散性不确定。

4. $\sum_{n=1}^{\infty} (-1)^n \sin \frac{a}{n} (a > 0)$,则该级数(

(A) $n \to \infty$ 时一般项不逼近于 0; (B) 绝对收敛; (C) 发散; (D) 条件收敛。

5. 己知 $f(x) = \int_0^{3x} f(\frac{t}{3}) dt + 3x - 3$,则 f(x) = ().

(A) $1+ce^{3x}$; (B) $-1+ce^{3x}$; (C) $-1+ce^{-3x}$; (D) $1+ce^{-3x}$.

得分	评阅人

2. 函数 z = z(x,y) 由方程 $z = \int_{xy}^{z} f(t)dt$ 确定,其中 f(x) 可导,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$

3. $\int_{(3,1)}^{(3,1)} \frac{y}{x^2} dx - \frac{1}{x} dy = \underline{\hspace{1cm}}$

- 4. Σ 是由平面 x+y+z=1 与坐标面所围成的四面体的表面,则 $\iint_{\Sigma} xyz \, dS =$ ____
- 5. 幂级数 $\sum_{n=0}^{\infty} \frac{(x+2)^n}{2^n \cdot n}$ 的收敛域为_____

得分	评阅人

- 1. 求微分方程 $y'' + 2y' + 5y = \sin 2x$ 的通解。
- 2. 求与两平面 x-4z=3 和 2x-y-5z=1 的交线平行,且过点 (-3,2,5) 的直线方程
- 3. 设 $z = f(x + \frac{1}{y}, y + \frac{1}{x})$,且f(u, v)具有连续的二阶偏导数,求 $\frac{z}{x}$, $\frac{z}{x}$, $\frac{z}{x}$
- 4. 计算二重积分 $\iint_D (\sqrt{x^2+y^2}+y) d\sigma$,其中 D 是由圆 $x^2+y^2=4$, $(x+1)^2+y^2=1$ 所围成的平面区域.
- 5. 计算 $\oint_L \sqrt{x^2 + y^2} ds$, 其中L是圆周 $x^2 + y^2 = ax(a > 0)$ 。
- 6. 计算 $\iint\limits_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$, 其中 Σ 是 $x^2 + y^2 + z^2 = a^2$ 外侧。
- 7. 在 xoy 平面上存在温度场 $T = 4x^2 + 9y^2$, $P(9,4), Q(-3,4-\sqrt{3})$ 。
 - (1) 求在点P沿方向 \overrightarrow{PQ} 的温度变化率。
 - (2) 在什么方向上,点P的温度变化率取得最大值?最大值是多少?
- 8. 求幂级数 $1+\frac{x}{2!}+\frac{x^2}{3!}+...+\frac{x^{n-1}}{n!}+...$ 的和函数。

9. 把 $f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 1, & 0 \le x < \pi \end{cases}$ 展开成傅里叶级数; f(x) 的傅里叶级数在 x = 0 处收敛 于何值?

得分	评阅人

四、证明题(共1小题,共8分)

一、BCBDB

$$\equiv x = 0$$
 $\frac{yf(xy)}{f(z)-1}$ $-\frac{8}{3}$ $\frac{\sqrt{3}}{120}$ $[-4,0)$

三、1. 解: 齐次通解为 $y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x)$

非奇特解 $y^* = \frac{1}{17}\cos 2x - \frac{4}{17}\sin 2x$

非奇通解 $Y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x) - \frac{4}{17} \cos 2x + \frac{1}{17} \sin 2x$

2. 解: 所求直线的方向向量可取为

$$\vec{s} = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} i & j & k \\ 1 & 0 & -4 \\ 2 & -1 & -5 \end{vmatrix} = (-4, -3, -1)$$

利用点向式可得方程 $\frac{x+3}{4} = \frac{y-2}{3} = \frac{z-5}{1}$

3. **AP**:
$$\frac{\partial z}{\partial x} = f_1 - \frac{1}{x^2} f_2$$

$$\frac{z}{x y} = \frac{z}{y} \frac{z}{x} = \frac{z}{y} f_1 - \frac{1}{x^2} f_2$$

$$= f_{11} - \frac{1}{y^2} f_{12} 1 \frac{1}{x^2} - f_{21} \frac{1}{y^2} + f_{22} 1$$

$$= -\frac{1}{y^2} f_{11} + f_{12} + \frac{1}{x^2 y^2} f_{21} - \frac{1}{x^2} f_{22}$$

$$= -\frac{1}{y^2} f_{11} + \left| 1 + \frac{1}{x^2 y^2} \right| f_{12} - \frac{1}{x^2} f_{22}$$

4. **解** 画出积分区域 D.

注意到区域 D关于 x 轴对称, y 是奇函数, 所以 $\iint_{D} y d\sigma = 0$.

设大圆 $x^2 + y^2 = 4$ 所围区域为 D_1 ,小圆 $,(x+1)^2 + y^2 = 1$ 所围区域为 D_2 .则

$$\iint\limits_{D} (\sqrt{x^2 + y^2} + y) d\sigma = \iint\limits_{D} \sqrt{x^2 + y^2} d\sigma$$

$$= \iint_{D_1} \sqrt{x^2 + y^2} d\sigma - \iint_{D_2} \sqrt{x^2 + y^2} d\sigma = \int_0^{2\pi} d\theta \int_0^2 r^2 dr - \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} d\theta \int_0^{-2\cos\theta} r^2 dr = \frac{16}{3}\pi - \frac{32}{9}$$

5. 解法 1:
$$L$$
的参数方程:
$$\begin{cases} x = \frac{a}{2} + \frac{a}{2}\cos\theta \\ y = \frac{a}{2}\sin\theta \end{cases}$$
 $, 0 \le \theta \le 2\pi, ds = \frac{a}{2}d\theta$

$$\oint \sqrt{x^2 + y^2} ds = \int_0^{2\pi} \sqrt{a \cdot \frac{a}{2} (1 + \cos \theta)} \cdot \frac{a}{2} d\theta = \frac{a^2}{2} \int_0^{2\pi} \left| \cos \frac{\theta}{2} \right| d\theta = 2a^2$$

解法 2: L 的极坐标方程: $r = a\cos\theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, ds = \sqrt{r^2 + r'^2}d\theta = ad\theta$

$$\oint_{L} \sqrt{x^{2} + y^{2}} ds = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r \cdot ad\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} a^{2} \cos\theta d\theta = 2a^{2}$$

6. **解法 1:** 记 Σ_1 是上半球面上侧, Σ_2 是下半球面下侧

$$\iint_{\Sigma} z^{3} dx dy = \iint_{\Sigma_{1}} z^{3} dx dy + \iint_{\Sigma_{2}} z^{3} dx dy = \iint_{D_{xy}} \left(\sqrt{a^{2} - x^{2} - y^{2}} \right)^{3} dx dy - \iint_{D_{xy}} \left(-\sqrt{a^{2} - x^{2} - y^{2}} \right)^{3} dx dy$$

$$=2\iint\limits_{D_{xy}}\left(\sqrt{a^2-x^2-y^2}\right)^3dxdy=\int_0^{2\pi}d\theta\int_0^a\left(a^2-r^2\right)^{\frac{3}{2}}rdr=\frac{4}{5}\pi a^5.$$

由关于坐标的轮换对称性 $\iint_{\Sigma} z^3 dx dy = \iint_{\Sigma} y^3 dx dz = \iint_{\Sigma} x^3 dz dy$,

故
$$\iint_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy = \frac{12}{5} \pi a^5.$$

解法 2: 由高斯公式
$$\iint_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy = \iiint_{\Sigma} 3(x^2 + y^2 + z^2) dx dy dz$$
$$= \int_0^{2\pi} d\theta \int_0^{\pi} d\phi \int_0^a r^4 \sin \phi = \frac{12}{5} \pi a^5$$

7. **解:** (1)
$$\overrightarrow{PQ} = (-12, -\sqrt{3}), \quad \overrightarrow{PQ}^0 = \left(-\frac{12}{\sqrt{147}}, -\frac{\sqrt{3}}{\sqrt{147}}\right)$$

$$\left. \frac{\partial T}{\partial \overrightarrow{PQ}} \right|_{P} = \left(\frac{\partial T}{\partial x} \cos \alpha + \frac{\partial T}{\partial y} \cos \beta \right)_{P} = 72 \times \left(-\frac{12}{\sqrt{147}} \right) + 72 \times \left(-\frac{\sqrt{3}}{\sqrt{147}} \right) = -\frac{72}{\sqrt{147}} \left(12 + \sqrt{3} \right),$$

(2) 梯度方向是温度变化率最大的方向。
$$gradT|_{P} = \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right)_{P} = (72,72)$$

温度变化率最大值为 $|gradT|_p = |(72,72)| = 72\sqrt{2}$

8. **解**: 收敛半径 $R = +\infty$,收敛域为 $(-\infty, +\infty)$

则
$$xS(x) = x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots = e^x - 1$$
, 面 $S(0) = 1$

故
$$S(x) = \begin{cases} 1, & x = 0 \\ \frac{e^x - 1}{x}, & x \neq 0 \end{cases}$$

9. **A.**:
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} dx = 1$$

$$a_n = \frac{1}{\pi} \int_0^{\pi} \cos nx dx = \frac{1}{n\pi} \sin nx \Big|_0^{\pi} = 0$$

$$b_n = \frac{1}{\pi} \int_0^{\pi} \sin nx dx = \frac{-1}{n\pi} \cos nx \Big|_0^{\pi} = \frac{1}{n\pi} \Big[1 - \left(-1 \right)^n \Big] = \begin{cases} 0, & n = 2m \\ \frac{2}{(2m+1)\pi}, & n = 2m+1 \end{cases}$$

故
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{(2n+1)\pi} \sin(2n+1)x$$

$$= \frac{1}{2} + 2\left(\frac{1}{3\pi}\sin 3x + \frac{1}{5\pi}\sin 5x + \frac{1}{7\pi}\sin 7x + \dots + \right), \left(-\pi < x < \pi, x \neq 0\right)$$

f(x) 的傅里叶级数在 x = 0 处收敛于 $\frac{1}{2}$ 。

四、证明: 这是在条件 $x_1 + x_2 + x_3 + ... + x_n = R$ 下,求 $x_1 x_2 x_3 ... x_n$ 最大值的条件极值问题。

作拉氏函数 $L(x_1,x_2,x_3,...,x_n) = x_1x_2x_3...x_n + \lambda(x_1+x_2+x_3+...+x_n-R)$ (4分)

$$\begin{cases} L'_{x_1} = x_2 x_3 \dots x_n + \lambda = 0 \\ L'_{x_2} = x_1 x_3 \dots x_n + \lambda = 0 \end{cases}$$

$$\begin{cases} L'_{x_1} = x_1 x_2 \dots x_{n-1} + \lambda = 0 \\ x_1 + x_2 + x_3 + \dots + x_n = R \end{cases}$$

$$-x_1x_2x_3...x_n = \lambda x_1 = \lambda x_2 = \lambda x_3 = ... = \lambda x_n$$

解此方程组得唯一驻点
$$x_1 = x_2 = x_3 = ... = x_n = \frac{R}{n}$$

由实际意义最大值存在 ,故最大值 $\frac{R^n}{n^n}$ (8分)