COSC264 Introduction to Computer Networks and the Internet

Introduction to Network Applications, Web and HTTP

Dr. Barry Wu
Wireless Research Centre
University of Canterbury
barry.wu@canterbury.ac.nz

- Network applications
 - Network apps vs app. protocols
 - Application structure
- The Web
- HTTP

- Network applications
 - Network apps vs app. protocols
 - Application structure
- The Web
- HTTP

The most popular network applications

- The Web
 - Search engine
 - E-commerce
 - Banking
 - News
 - Online video
 - Blog
- Email

- Instant messaging
 - Text/pic/sound
 - Video call
- Video conferencing/gaming

Other applications

- telnet
- File transfer (ftp)
- News group
- P2P file sharing

What is a network application?

- Programs that run on different end systems and communicate with each other over the network;
 - Web browser program in the user's host;
 - Web server program in the web server host;

Network apps vs application protocols

 An application protocol is only one piece (a big one) of a network application.

Network app	Application protocol
Web (other pieces: HTML, web browsers, web servers)	HTTP (one piece of web, protocol)
Email	SMTP

Services an app needs

- Reliable data transfer
 - Email; instant messaging; file transfer, financial applications;
 - There are loss-tolerant applications though;
 o Multimedia applications

Bandwidth

- Rate
 - Internet telephony application
 - Many multimedia apps are bandwidthsensitive;
- Elastic apps
 - Not strict with bandwidth;
 - Email; file transfer;

Timing

- Tight timing constraints
 - Interactive real-time apps: Internet telephony, virtual environments, teleconferencing, multiplayer games;
 - End-to-end delay: < 100s of ms;

Services provided by the Internet transport layer

TCP	UDP
Connected-oriented service	Connectionless service
Reliable transport service	Unreliable data transfer service
Congestion control (NO guarantee of min transmission rate)	No congestion control
Flow control	No flow control
No guarantee of delay	No guarantee of timing

The Internet has been hosting time-sensitive applications for many years!

- Network applications
 - Network apps vs app. protocols
 - Application structure
- The Web
- HTTP

Application architectures

- Client-server
- Peer-to-peer (P2P)
- Hybrid of client-server and P2P

Client-server archicture

server:

- always-on host
- permanent IP address
- server farms for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses
- example: Gnutella

Highly scalable

But difficult to manage

Hybrid of client-server and P2P

Napster

- File transfer P2P
- File search centralized:
 - o Peers register content at central server
 - o Peers query same central server to locate content

Instant messaging

- Chatting between two users is P2P
- Presence detection/location centralized:
 - User registers its IP address with central server when it comes online
 - o User contacts central server to find IP addresses of buddies

- Network applications
 - Network apps vs app. protocols
 - Application structure
- The Web
- HTTP

The Web

 Until 1990s the Internet was mainly used by researchers, academics and university students.

Options may be specified at the command line, or to the command interpreter.

- Started by Tim Berners-Lee in 1989.
 - Telephone (1870s); radio (1920s)/TV (1930s);
 - Email and the Web;

- On-demand service!
- HTTP (HyperText Transfer Protocol) is at the heart of the Web.

- Network applications
 - Network apps vs app. protocols
 - Application structure
- The Web
- HTTP

- Network applications
 - Network apps vs app. protocols
 - Application structure
- The Web
- HTTP
 - Overview
 - Non-persistent HTTP and persistent HTTP
 - HTTP messages

HTTP overview

HTTP: hypertext transfer protocol

- Web's application layer protocol
- HTTP /1.0: RFC 1945
- HTTP /1.1: RFC 2068/2616/7230
- HTTP /2: RFC 7540
- HTTP /3: Introduced in 26 September 2019.

Web page

- Web page consists of objects
- Object can be HTML file, JPEG image, audio file,...
- Web page consists of base HTML-file which includes several referenced objects
- Each object is addressable by a URL
- Example URL:

client/server model

client: browser that requests, receives, "displays" Web objects *server:* Web server sends objects in response to requests

HTTP overview (continued)

Uses TCP:

- client initiates TCP connection (creates socket) to server,
 port 80
- server accepts TCP connection from client
- HTTP messages (applicationlayer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server)
- TCP connection closed

HTTP is "stateless"

server can work
 without maintaining
 any information about
 past client requests.

aside

Protocols that maintain "state" are complex!

- * past history (state) must be maintained
- * if server/client crashes, their views of "state" may be inconsistent, must be reconciled

HTTP connections

Nonpersistent HTTP

- At most one object is sent over a TCP connection.
- HTTP/1.0 uses nonpersistent HTTP

Persistent HTTP

- Multiple objects can be sent over single TCP connection between client and server.
- HTTP/1.1 uses persistent connections in default mode

References

- [KR3] James F. Kurose, Keith W. Ross, Computer networking: a top-down approach featuring the Internet, 3rd edition.
- [PD5] Larry L. Peterson, Bruce S. Davie, Computer networks: a systems approach, 5th edition
- [TW5] Andrew S. Tanenbaum, David J. Wetherall, Computer network, 5th edition
- [LHBi]Y-D. Lin, R-H. Hwang, F. Baker, Computer network: an open source approach, International edition

Acknowledgements

- All slides are developed based on slides from the following two sources:
 - Dr DongSeong Kim's slides for COSC264, University of Canterbury;
 - Prof Aleksandar Kuzmanovic's lecture notes for CS340, Northwestern University, https://users.cs.northwestern.edu/~akuzma/classes/CS340-w05/lecture notes.htm