Total No. of Questions: 6 Total No. of Printed Pages:2

Enrollment No.....

Faculty of Science End Sem (Odd) Examination Dec-2017 BC3CO04 Physics-I

Programme: B.Sc.(CS) Branch/Specialisation: Computer Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 (N	(ICQs)	should be written	in full instead of	fonly a, b, c or d.		
Q.1	i.	The gradient of a scalar field Φ is :]	
		(a) A scalar		(b) A vector		
		(c) Either a scala	ar or a vector	(d) None of these	e	
	ii.	If $\vec{A} \times \vec{B} = 0$, the angle between \vec{A} and \vec{B} is:]
		(a) 0°	(b) 90°	(c) 60°	(d) 30°	
	iii.	A uniform rotating frame of reference is:]
		(a) Inertial frame		(b) Non-inertial frame		
		(c) Accelerated frame		(d) None of these		
	iv.	Gravitational potential energy is always:]
		(a) Positive		(b) Zero		
		(c) Positive or n	egative	(d) Negative		
	v. The property of liquid which opposes the relative motion b					1
		different layers is called the:				
		(a) Viscosity		(b) Elasticity		
		(c) Surface tension (d) None of these				
	vi.	The theoretical value of Poisson's ratio lies in between]	
				(c) $+0.5$ and -0.5		
	vii.	At mean position of a body executing simple harmonic motion, the				
		velocity will be:				
		(a) Zero		(c) Maximum	(d) Infinite	
	viii.	The S. I. unit of moment of inertia is:				
		(a) Kg	(b) $Kg \times m$		(d) m	
	ix.	The correct transformations relating the two inertial frames are:				1
		(a) Lorentz	(b) Galilean	(c) Newtonian	(d) None of these	

	х.	The expression for the kinetic energy of a particle moving with relativistic velocity v is: (a) mc^2 (b) $\frac{1}{2}mv^2$ (c) m_0c^2 (d) $mc^2 - m_0c^2$	1			
Q.2	i. ii.		2			
	iii.	State and prove Green's theorem.				
OR	iv.	-	5			
Q.3	i.		3			
		molecule (H ₂). The mass of hydrogen atom is 1.7×10^{-27} Kg.				
	ii.		7			
OR	iii.	field due to a uniform solid sphere at a point outside the shell. Write down the equation of motion and derive them by graphically. Also sketch acceleration-time, velocity-time and position –time graph for uniform motion.				
Q.4	i.	What is a venturimeter? Obtain an expression for the volume of liquid flowing out per second from it.	4			
	ii.		6			
		surface tension of water by rise in capillary tube.				
OR	iii.	Establish the relation $Y = 3K(1 - 2\sigma)$.	6			
Q.5	i.	Explain the moment of inertia and radius of gyration?	4			
	ii.	Determine the moment of inertia of a uniform solid cylinder.	6			
OR	iii.	What is a simple harmonic oscillator? Show that a simple harmonic oscillator executes motion as $x = a \sin(\omega t + \phi)$, where a and ϕ are constant.	6			
Q.6	i.	Calculate the kinetic energy of an electron having velocity 0.8c?	2			
	ii.	What is meant by length contraction at relativistic speeds?	3			
	iii.	Deduce transformation relations of relativistic velocity.	5			

[2]

P.T.O.

OR

iv.

Derive the Einstein's energy mass relation.

BC3CO04 Physics-I

Marking Scheme

Q.1	i.	(b) A vector		1
	ii.	(a) 0°		1
	iii.	(b) Non-inertial frame		1
	iv.	(d) Negative		1
	v.	(a) Viscosity		1
	vi.	(b) $+0.5$ and -1		1
	vii.	(c) Maximum		1
	viii.	(c) $\text{Kg} \times \text{m}^2$		1
	ix.	(a) Lorentz		1
	х.	(d) $mc^2 - m_0c^2$		1
Q.2	i.	Definition of Scalar and Vector 1 mark for each		2
Q.2	1.	(1 mark * 2 =	- 2 morks)	2
	ii.	•	- 2 mai KS)	3
	11.	$ \vec{A} + \vec{B} = \vec{A} - \vec{B} $		3
		$ \vec{A} + \vec{B} ^2 = \vec{A} - \vec{B} ^2$		
		(A + B) (A + B) = (A - B) (A - B)	(1 mark)	
		A.A + A.B + B.A + B.B = A.A - A.B - B.A - B.B $A^2 + 2A.B + B^2 = A^2 - 2A.B + B^2$	(1 monts)	
		$A + 2 A \cdot B + B = A - 2 A \cdot B + B$ $4 A \cdot B = 0$	(1 mark)	
		A.B =0	(1 mark)	
		Hence A and B are mutually perpendicular.	(1 1111111)	
	iii.	State and prove Green's theorem.		5
		Statement	(1 mark)	
		Complete proof	(4 marks)	
OR	iv.	State and prove Gauss's divergence theorem.		5
		Statement	(1 mark)	
		Complete proof	(4 marks)	
Q.3	i.	Definition of reduced mass with formula	(1.5 marks)	3
		Numerical 8.5 x 10 ⁻²⁸ Kg	(1.5 marks)	
	ii.	Derivation upto $dV = -4\pi G\rho x^2/r dx$	(3 marks)	7
		$V_{r>a} = -GM/r$	(2 marks)	
		$I_{r>a} = -GM / r^2$	(2 marks)	
OR	iii.	The equation of motion	(4 marks)	7
		Sketch of each 1 mark (1 mark * 3 =	3 marks)	

Q.4	i.	Definition	(1 mark)	4
		Derivation	(3 marks)	
	ii.	Definition of Surface tension	(2 marks)	6
		Capillary rise method	(4 marks)	
OR	iii.	Value of α , β , σ 1 mark each (1 mark * 3 = 3 marks)		
		Value of e	(1 mark)	
		Bulk Modulus K	(2 marks)	
Q.5	i.	Definition of moment of inertia	(2 marks)	4
		Definition of radius of gyration	(2 marks)	
	ii.	Solution must contain		6
		Figure	(1 mark)	
		Moment of Inertia formula		
		For axis passing through centre	(3 marks)	
		And about geometrical axis	(2 marks)	
OR	iii.	Formation of differential equation	(2 marks)	6
		Solution of second order differential equati	on(4 marks)	
Q.6	i.	$K = (m - m_0)c^2$	(2 marks)	2
		$K = 5.49 \times 10^{-14}$ joule		
	ii.	Figure	(1 mark)	3
		Explanation	(1 mark)	
		Result formula	(1 mark)	
	iii.	Deduce transformation relations of relativis	stic velocity.	5
		Inverse Lorentz transformation	(1 mark)	
	Equation of u_x , u_y , u_z 1 mark each (1 mark * 3 = 3 marks)			
		realtion with speed of light	(1 mark)	
OR	iv.	Derive the Einstein's energy mass relation.		5
		$dK = c^2 dm$	(3 marks)	
		$E = mc^2$	(2 marks)	
