SBML Model Report

Model name: "Hui2014 - Age-related changes in articular cartilage"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Carole Proctor² at December fifth 2014 at 5:02 p. m. and last time modified at April eighth 2016 at 5:51 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	4
species types	0	species	65
events	0	constraints	0
reactions	117	function definitions	0
global parameters	113	unit definitions	1
rules	0	initial assignments	0

Model Notes

Hui2014 - Age-related changes in articular cartilage

This model is described in the article:Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilageWang Hui1, David A Young1, Andrew D Rowan1, Xin Xu2, Tim E Cawston1, Carole J Proctor1,3Annals of the Rheumatic Diseases

¹EMBL-EBI, viji@ebi.ac.uk

²Newcastle University, carole.proctor@ncl.ac.uk

Abstract:

Objective: To use a computational approach to investigate the cellular and extracellular matrix changes that occur with age in the knee joints of mice. Methods: Knee joints from an inbred C57/BL1/6 (ICRFa) mouse colony were harvested at 330?months of age. Sections were stained with H&E, Safranin-O, Picro-sirius red and antibodies to matrix metalloproteinase-13 (MMP-13), nitrotyrosine, LC-3B, Bcl-2, and cleaved type II collagen used for immunohistochemistry. Based on this and other data from the literature, a computer simulation model was built using the Systems Biology Markup Language using an iterative approach of data analysis and modelling. Individual parameters were subsequently altered to assess their effect on the model. Results: A progressive loss of cartilage matrix occurred with age. Nitrotyrosine, MMP-13 and anaplastic lymphoma kinase (ALK1) staining in cartilage increased with age with a concomitant decrease in LC-3B and Bcl-2. Stochastic simulations from the computational model showed a good agreement with these data, once transforming growth factor-? signalling via ALK1/ALK5 receptors was included. Oxidative stress and the interleukin 1 pathway were identified as key factors in driving the cartilage breakdown associated with ageing. Conclusions: A progressive loss of cartilage matrix and cellularity occurs with age. This is accompanied with increased levels of oxidative stress, apoptosis and MMP-13 and a decrease in chondrocyte autophagy. These changes explain the marked predisposition of joints to develop osteoarthritis with age. Computational modelling provides useful insights into the underlying mechanisms involved in age-related changes in musculoskeletal tissues.

This model is hosted on BioModels Database and identified by: BIOMD000000560.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition item

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains four compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
cell			3	1	litre		
nucleus			3	1	litre		
membrane			3	1	litre	$ \overline{\mathbf{Z}} $	
ecm			3	1	litre	$ \overline{\mathbf{Z}} $	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

3.2 Compartment nucleus

This is a three dimensional compartment with a constant size of one litre.

3.3 Compartment membrane

This is a three dimensional compartment with a constant size of one litre.

3.4 Compartment ecm

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains 65 species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
AcanmRNA		cell	item		
ADAMTS5		cell	item		
AGEprod		cell	item		
Alk1		cell	item		
Alk1_Alk5		cell	item		
Alk5		cell	item		\Box
Alk5_dimer		cell	item		
Bax		cell	item		
Bax_Bcl2		cell	item		\Box
Bax_Bcl2_Beclin		cell	item		\Box
Bax_Bcl2_Beclin_I		cell	item		\Box
Bc12		cell	item		\Box
Bcl2_Beclin		cell	item		\Box
Bcl2_Beclin_I		cell	item		\Box
Beclin		cell	item		\Box
${\tt Beclin_I}$		cell	item		\Box
${\tt Caspase_A}$		cell	item		\Box
${\tt Caspase_I}$		cell	item		\Box
Col2mRNA		cell	item		\Box
DamP		cell	item		\Box
IkB		cell	item		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
TI-D NEI-D		aall	itam		
•					
					\mathbf{Z}
_					
-					
•					
•					
			item		
			item		\Box
Smad4		cell	item		\Box
Smad7		cell	item		\Box
SOD		cell	item		
Sox9		cell	item	\Box	\Box
	IkB_NFkB IL1 Lys_A Lys_I MMP13 MMP2 NatP NFkB NFkB_P p38 p38_P proMMP13 proMMP2 RAGE ROS Runx2_A Runx2_I Smad1 Smad1_P Smad1_P Smad1_P Smad2_P Smad2_P Smad2_P Smad4 Smad4 Smad7 SOD	IkB_NFkB IL1 Lys_A Lys_I MMP13 MMP2 NatP NFkB NFkB_P p38 p38_P proMMP13 proMMP2 RAGE ROS Runx2_A Runx2_I Smad1 Smad1_P Smad1_P_Smad4 Smad2 Smad2_P Smad4 Smad4 Smad7 SOD	IkB_NFkB cell IL1 cell Lys_A cell Lys_I cell MMP13 cell MMP2 cell NskB cell NFkB cell NFkB-P cell p38 cell p38.P cell proMMP13 cell proMMP2 cell RAGE cell RUnx2_A cell Runx2_I cell Smad1 cell Smad2 P cell Smad2_P Cell cell Smad2_P Smad4 cell Smad7 cell Smad7 cell SoD cell	IRB_NFkB cell item IL1 cell item Lys_A cell item Lys_I cell item MMP13 cell item MMP2 cell item NFKB cell item NFKB_P cell item NFKB_P cell item p38 cell item p38 P cell item proMMP13 cell item proMMP2 cell item RAGE cell item ROS cell item Runx2_A cell item Smad1 cell item Smad2 P cell item Smad1_P.Smad4 cell item Smad2_P cell item Smad4 cell item Smad7 cell item Smd7 cell item	IkB.NFkB cell item ⊟ Lys.A cell item ⊟ Lys.I cell item ⊟ MMP13 cell item ⊟ MMP2 cell item ⊟ NstP cell item ⊟ NFkB cell item ⊟ NFkB-P cell item ⊟ p38.P cell item ⊟ p70MP13 cell item ⊟ pr0MP2 cell item ⊟ ROS cell item ⊟ RUN2.A cell item ⊟ Runx2.I cell item ⊟ Smad1 P cell item ⊟ Smad2.P cell item ⊟ Smad2.P cell item ⊟ Smad4 cell item ⊟ Smad7 cell item ⊟ Smod7 cell item ⊟ Smod7 cell item ⊟<

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Sox9_A		cell	item		
Sox9mRNA		cell	item		
${\tt Tgfb_A}$		cell	item	\Box	
Tgfb_Alk1_Alk5		cell	item		
Tgfb_Alk1_Alk5- _Smad7		cell	item		
_smad/ Tgfb_Alk5_dimer		cell	item		
Tgfb_Alk5_dimer-		cell	item		
$_{\mathtt{Smad7}}$					
AggFrag		ecm	item		
Aggrecan		ecm	item		
Aggrecan-		ecm	item		
$_{ extsf{L}} ext{Collagen2}$					
ColFrag		ecm	item		
Collagen2		ecm	item		
Integrin		ecm	item		
${\sf Tgfb}_{\sf -I}$		ecm	item		
Sink		cell	item		
Source		cell	item		
${\tt IntegrinCount}$		ecm	item		

5 Parameters

This model contains 113 global parameters.

Table 4: Properties of each parameter.

	e 4: Properties of each paran		
Id Name	SBO Value	Unit	Constant
kactCasp	10^{-7}		\mathbf{Z}
kactCaspBecI	$8.3 \cdot 10^{-7}$		
kactCaspp38	$8 \cdot 10^{-7}$		
${\tt kactIntegrin}$	$4 \cdot 10^{-7}$		
kactLys	10^{-8}		
kactMMP13	10^{-4}		
kactMMP2	10^{-7}		
kactNFkB	10^{-4}		
kactRAGE	0.001		
kactRunx2	0.001		
kactSox9	$5 \cdot 10^{-6}$		
${\tt kactTgfbIntegrin}$	0.001		
kactTgfbMMP2	10^{-7}		\square
kbinAggrecanCollagen2	10^{-4}		\square
kbinAlk1Alk5	$5 \cdot 10^{-5}$		\square
kbinBaxBcl2	1.670		
kbinBaxToBcl2Bec	$1.67 \cdot 10^{-4}$		
kbinBcl2Beclin	$7.5 \cdot 10^{-5}$		
kbinBecToBaxBc12	$1.67 \cdot 10^{-5}$		
kbinSmad1Smad4	$5 \cdot 10^{-5}$		
kbinSmad2Smad4	10^{-4}		
kbinSmad7Alk1	0.500		
kbinSmad7Alk5	$2\cdot 10^{-5}$		$ \overline{\mathbf{Z}} $
kbinTgfbAlk1	$2 \cdot 10^{-5}$		
kbinTgfbAlk5	$3 \cdot 10^{-5}$		
kdamLys	$5 \cdot 10^{-6}$		
kdamNatP	$8 \cdot 10^{-6}$		
kdedimerAlk5	0.001		
${\tt kdegAcanmRNA}$	$9 \cdot 10^{-6}$		
kdegADAMTS5	$5 \cdot 10^{-5}$		
${\tt kdegAggrecan}$	10^{-9}		\mathbf{Z}
kdegAlk1	$1.2 \cdot 10^{-8}$		\square
kdegAlk5	$4 \cdot 10^{-7}$		\square
kdegBc12	$1.67 \cdot 10^{-4}$		
kdegBc12Casp	0.002		
kdegBc12ROS	0.002		
kdegCol2mRNA	$1.07 \cdot 10^{-5}$		

Id	Name	SBO	Value	Unit	Constant
kdegColla	gen		10^{-8}		\square
kdegDamP			$4 \cdot 10^{-5}$		$\overline{\mathbf{Z}}$
kdegIkB			10^{-6}		$\overline{\mathbf{Z}}$
kdegIL1			0.005		$\overline{\mathbf{Z}}$
kdegMMP13			$6.4 \cdot 10^{-6}$		$\overline{\mathbf{Z}}$
kdegMMP2			$6.4 \cdot 10^{-6}$		$\overline{\mathbf{Z}}$
kdegSmad7			0.005		$\overline{\mathbf{Z}}$
kdegSmad7	Alk1		$5 \cdot 10^{-6}$		$\overline{\mathbf{Z}}$
kdegSmad7	Alk5		10^{-5}		$\overline{\mathbf{Z}}$
kdegSOD			0.001		$\overline{\mathbf{Z}}$
kdegSox9			$4.8 \cdot 10^{-5}$		$\overline{\mathbf{Z}}$
kdegSox9m	RNA		10^{-4}		$\overline{\mathbf{Z}}$
kdegTgfb			0.006		$\overline{\mathbf{Z}}$
kdephosNF	kB		0.010		$\overline{\mathbf{Z}}$
kdephosp3			0.010		$\overline{\mathbf{Z}}$
kdephosSm	ad1		$5 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
kdephosSm	ad1Smad7		$6 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
kdephosSm	ad2		0.006		$\overline{\mathbf{Z}}$
kdimerAlk	5		$2 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
kgenROS			$5 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
kgenROSby	DamP		10^{-4}		$ \overline{\mathbf{Z}} $
kgenROSby	p38		10^{-4}		$ \overline{\checkmark} $
kgenROSby	RAGE		$4 \cdot 10^{-4}$		
kinactBec			$5 \cdot 10^{-10}$		$ \overline{\checkmark} $
kinactBec	Casp		10^{-8}		$ \overline{\checkmark} $
kinactCas	р		$3 \cdot 10^{-4}$		$ \overline{\checkmark} $
kinactCas	pBcl2		$3 \cdot 10^{-4}$		
kinactInt	egrin		$5 \cdot 10^{-4}$		
kinactNFk	В		0.100		
kinactRAG	E		0.001		
kinactRun	x2		$5 \cdot 10^{-4}$		$ \overline{\mathbf{Z}} $
kinactSox	9		0.002		$ \overline{\checkmark} $
kinactTgf	b		0.050		
kinhibLys			$7 \cdot 10^{-6}$		
kphosNFkB			0.001		
kphosp38			10^{-7}		$\overline{\mathbf{Z}}$
kphosp38R	0S		10^{-4}		
kphosSmad	1		$2 \cdot 10^{-5}$		$\overline{\mathbf{Z}}$
kphosSmad	2		$4 \cdot 10^{-5}$		$\overline{\mathbf{Z}}$
kprodAGE			10^{-6}		$\overline{\mathbf{Z}}$
krelAlk1A	1k5		0.010		$\overline{\mathbf{Z}}$
krelBaxBc	12		0.002		$\overline{\mathbb{Z}}$

Id Name	SBO Value	Unit Consta	ınt
krelBaxBcl2Bec	0.002	Ø	
krelBcl2Beclin	$5 \cdot 10^{-4}$	$\overline{\checkmark}$	
krelBecBaxBcl2	0.017	$\overline{\mathbf{Z}}$	
krelSmad1Smad4	0.017	$\overline{\mathscr{A}}$	
krelSmad2Smad4	0.017	$ \overline{\mathscr{L}} $	
krelSmad7Alk1	0.001	$ \overline{\mathscr{L}} $	
krelSmad7Alk5	10^{-6}	$ \overline{\mathbf{Z}} $	
krelTgfbAlk1	10^{-6}	\square	
krelTgfbAlk5	10^{-6}	\square	
kremROS	$3.83 \cdot 10^{-4}$	\square	
kremROSbySOD	10^{-4}	\square	
ksynAcanmRNA	0.000	\square	
ksynAcanmRNASox9A	$4.6 \cdot 10^{-6}$	\square	
ksynADAMTS5	$5 \cdot 10^{-4}$	\square	
ksynAggrecan	10^{-6}	\square	
ksynAlk1	$5 \cdot 10^{-6}$	\square	
ksynAlk5	$5 \cdot 10^{-6}$	\square	
ksynBcl2	0.002	\square	
ksynCol2	10^{-7}	\square	
ksynCol2mRNA	0.000	\square	
ksynCol2mRNASmad	10^{-6}	\square	
ksynCol2mRNASox9A	10^{-6}	\square	
ksynIkB	0.001	\square	
ksynIL1	0.005	\square	
ksynMMP13	$3.2 \cdot 10^{-5}$	\square	
ksynMMP13Runx2	$1.5 \cdot 10^{-6}$	\square	
ksynMMP2	$5 \cdot 10^{-6}$	\square	
ksynNatP	0.000	\square	
ksynRAGE	10^{-4}	\square	
ksynSmad7	10^{-5}		
ksynSOD	0.002		
ksynSox9	$4.8 \cdot 10^{-4}$		
ksynSox9mRNA	10^{-5}		
ksynSox9mRNASox9A	$5 \cdot 10^{-6}$		

6 Reactions

This model contains 117 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id Name	Reaction Equation SBO
1	CaspaseActivation	$Caspase_I + Bax \xrightarrow{Caspase_I, Bax} Caspase_A + Bax$
2	${\tt CaspaseActivationByBeclin-}_{_{\tt I}}$	$\begin{array}{c} Caspase_I + Beclin_I \xrightarrow{Caspase_I, Beclin_I} Caspase_A + \\ Beclin_I \end{array}$
3	CaspaseActivationBy- _p38	Caspase_I + p38_P $\xrightarrow{\text{Caspase_I}, p38_P}$ Caspase_A + p38_P
4	CaspaseInactivation1	$Caspase_A \xrightarrow{Caspase_A} Caspase_I$
5	InhibitCaspase2	Caspase_A + Bcl2_Beclin $\xrightarrow{\text{Caspase_A, Bcl2_Beclin}}$ Caspase_I + Bcl2_Beclin
6	InhibitCaspase3	Caspase_A + Bcl2 $\xrightarrow{\text{Caspase_A, Bcl2}}$ Caspase_I + Bcl2
7	ActivateLysosome	$Lys_I + Beclin \xrightarrow{Lys_I, Beclin} Lys_A + Beclin$
8	InhibitLysosome	$Lys_A \xrightarrow{Lys_A} Lys_I$
9	Bc12Synthesis	Source $\xrightarrow{\text{Source}}$ Bcl2
10	Bc12Degradation	$Bcl2 \xrightarrow{Bcl2} Sink$
11	Bc12DegradationStressInduced	$Bcl2 + ROS \xrightarrow{Bcl2, ROS} Sink + ROS$
12	Bc12DegradationCaspaseInduced	$\begin{array}{ccc} Bcl2 & + & Caspase_A \xrightarrow{Bcl2, \ Caspase_A} Sink & + \\ Caspase_A & & \end{array}$

12	N⁰	Id Name	Reaction Equation SBO
	13	Bax_Bcl2Binding	$Bax + Bcl2 \xrightarrow{Bax, Bcl2} Bax_Bcl2$
	14	Bax_Bcl2Release	$Bax_Bcl2 \xrightarrow{Bax_Bcl2} Bax + Bcl2$
	15	Bcl2- _BeclinBinding	$Bcl2 + Beclin \xrightarrow{Bcl2, Beclin} Bcl2_Beclin$
	16	Bcl2- _BeclinRelease	$Bcl2_Beclin \xrightarrow{Bcl2_Beclin} Bcl2 + Beclin$
I	17	Bcl2_Beclin_I- _Binding	$Bcl2 + Beclin_I \xrightarrow{Bcl2, Beclin_I} Bcl2_Beclin_I$
Produced by SBML2laT⊨X	18	Bcl2_Beclin_I- _Release	$Bcl2_Beclin_I \xrightarrow{Bcl2_Beclin_I} Bcl2 + Beclin_I$
d by	19	BeclinInactivation	$\operatorname{Beclin} \xrightarrow{\operatorname{Beclin}} \operatorname{Beclin} I$
	20	BeclinInactivationByCaspase	$\begin{array}{c} Beclin + Caspase_A \xrightarrow{Beclin, Caspase_A} Beclin_I + \\ Caspase_A \end{array}$
ATEX	21	BeclinBindingToBax- _Bcl2	Beclin+Bax_Bcl2 Beclin, Bax_Bcl2 Beclin Bax_Bcl2 Beclin
	22	BeclinIBindingToBax- _Bc12	Beclin_I+Bax_Bcl2 Beclin_I, Bax_Bcl2 Beclin_I Bax_Bcl2_Beclin_I
	23	BaxBindingToBcl2- _Beclin	$Bax + Bcl2_Beclin \xrightarrow{Bax, Bcl2_Beclin} Bax_Bcl2_Beclin$
	24	BaxBindingToBcl2- _BeclinI	$Bax + Bcl2_Beclin_I \xrightarrow{Bax, Bcl2_Beclin_I} Bax_Bcl2_Beclin_I$
	25	BaxDissociationBax_Bcl2Beclin	$\begin{array}{c} Bax_Bcl2_Beclin \xrightarrow{Bax_Bcl2_Beclin} Bax & + \\ Bcl2_Beclin & \end{array}$

N⁰	Id Name	Reaction Equation SBO
26	BaxDissociationBax_Bcl2Beclin_I	Bax_Bcl2_Beclin_I \(\frac{\text{Bax}_Bcl2_Beclin_I}{\text{Bcl2}_Beclin_I} \) Bax + Bcl2_Beclin_I
27	BeclinDissociation- _Bax_Bc12- _Beclin	$\begin{array}{c} \text{Bax_Bcl2_Beclin} \xrightarrow{\text{Bax_Bcl2_Beclin}} \text{Beclin} & + \\ \text{Bax_Bcl2} & \end{array}$
28	Beclin_IDissociationBax_Bcl2Beclin	Bax_Bcl2_Beclin_I Bax_Bcl2_Beclin_I + Bax_Bcl2
29	ROS_generation	Source $\xrightarrow{\text{Source}} \text{ROS}$
30	ROS_removal	$ROS \xrightarrow{ROS} Sink$
31	Protein_Damage- _by_ROS	$NatP + ROS \xrightarrow{NatP, ROS} DamP + ROS$
32	Removal_DamP- _by_Autophagy	$DamP + Lys_A \xrightarrow{DamP, Lys_A} Lys_A$
33	Production_of- _AGEproducts	Source $\xrightarrow{\text{Source}}$ AGEprod
34	RAGE_activation	$AGEprod \xrightarrow{AGEprod} AGEprod + RAGE$
35	ROS_production- _by_RAGE	$RAGE \xrightarrow{RAGE} RAGE + ROS$
36	IkB- _degradation- _via_ROS	$ROS + IkB_NFkB \xrightarrow{ROS, IkB_NFkB} ROS + NFkB$

14	N⁰	Id	Name	Reaction Equation	SBO
	37	IkB- _degradation-		$IL1 + IkB_NFkB \xrightarrow{IL1, IkB_NFkB} IL1 + NFkB$	
		_via_IL1			
	38	NFkB-		$NFkB + IkB \xrightarrow{NFkB, IkB} IkB_NFkB$	
		$_$ inactivation		PACE.	
	39	RAGE-		$RAGE \xrightarrow{RAGE} Sink$	
		$_$ inactivation			
	40	RAGE-		$NFkB_P \xrightarrow{NFkB_P} NFkB_P + RAGE$	
Pr($_$ upregulation-			
npo		_byNFkB		NELD D	
ced	41	${\tt IL1_production}$		$NFkB_P \xrightarrow{NFkB_P} NFkB_P + IL1$	
Produced by SBML216TEX	42	${ m IL1_degradation}$		$IL1 \xrightarrow{IL1} Sink$	
BML	43	${\tt IkB_production}$		$NFkB_P \xrightarrow{NFkB_P} NFkB_P + IkB$	
	44	MMP13-		$IL1 \xrightarrow{IL1} IL1 + proMMP13$	
Ψ.		$_\mathtt{production}$		•	
	45	MMP13_removal		$MMP13 \xrightarrow{MMP13} Sink$	
	46	MMP2_production		$IL1 \xrightarrow{IL1} IL1 + proMMP2$	
	47	$\mathtt{MMP}_\mathtt{activation}$		$proMMP2 \xrightarrow{proMMP2} MMP2$	
	48	MMP2-		$MMP2 \xrightarrow{MMP2} Sink$	
		$_{ extsf{ iny degradation}}$			
	49	ADAMTS5-		$IL1 \xrightarrow{IL1} IL1 + ADAMTS5$	
		$_\mathtt{production}$			
	50	ADAMTS5_removal		ADAMTS5 $\xrightarrow{\text{ADAMTS5}}$ Sink	

$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO		
51	Aggrecan- _degradation		ADAMTS5 + AggFrag			
52	Collagen- _degradation		Collagen2+MMP13 Collagen2, MI ColFrag	$\xrightarrow{\text{MP13}} \text{MMP13} +$		
53	ROS_production- _by_DamP		$DamP \xrightarrow{DamP} DamP + ROS$			
54	Protein- _synthesis		Source $\xrightarrow{\text{Source}}$ NatP			
55	${\tt SOD_synthesis}$		$NFkB_P \xrightarrow{NFkB_P} NFkB_P + SOD$			
56	${\tt SOD_degradation}$		$SOD \xrightarrow{SOD} Sink$			
57	ROS_removal_by- _SOD		$ROS + SOD \xrightarrow{SOD, ROS} SOD$			
58	p38- _phosphorylation		$p38 + IL1 \xrightarrow{p38, IL1} p38_P + IL1$			
59	p38- _phosphorylation _via_ROS	-	$p38 + ROS \xrightarrow{p38, ROS} p38_P + ROS$			
60	p38- _dephosphorylati	on	$p38_P \xrightarrow{p38_P} p38$			
61	NFkB_activation		$NFkB + p38_P \xrightarrow{NFkB, p38_P} NFkB$	_P + p38_P		
62	NFkB- _dephosphorylati	on	$NFkB_P \xrightarrow{NFkB_P} NFkB$			

No	Id Name	Reaction Equation SBO	
63	ROS_production-	$p38.P \xrightarrow{p38.P} p38.P + ROS$	
03	_by_p38_P	p301 / p301 / R05	
6.4	• •	$Lys_A + ROS \xrightarrow{Lys_A, ROS} Lys_I + ROS$	
64	Lysosome-	$Lys_A + ROS \xrightarrow{\bullet} Lys_I + ROS$	
	_damage_by_ROS	Carraca	
65	${\tt IntegrinActivationBy Mechanical Stress}$	Source $\xrightarrow{\text{Source}}$ Integrin + IntegrinCount	
66	IntegrinInactivation	Integrin	
67	Alk5Synthesis	Source $\xrightarrow{\text{Source}}$ Alk5	
68	TgfbActivationByIntegrin	$Tgfb_I + Integrin \xrightarrow{Tgfb_I, Integrin} Tgfb_A + Integrin$	
69	TgfbActivationByMMP2	$Tgfb_I + MMP2 \xrightarrow{Tgfb_I, MMP2} Tgfb_A + MMP2$	
70	TgfbInactivation	$Tgfb_A \xrightarrow{Tgfb_A} Tgfb_I$	
71	Alk5Dimerisation	$2 \text{ Alk5} \xrightarrow{\text{Alk5}} \text{Alk5_dimer}$	
72	Alk5Dedimerisation	Alk5_dimer $\xrightarrow{\text{Alk5_dimer}}$ 2 Alk5	
73	Alk1Alk5Binding	$Alk1 + Alk5 \xrightarrow{Alk1, Alk5} Alk1_Alk5$	
74	Alk1Alk5Release	Alk1_Alk5 $\xrightarrow{\text{Alk1}_Alk5}$ Alk1 + Alk5	
75	TgfbReceptorBindingAlk5	$Tgfb_A + Alk5_dimer \xrightarrow{Tgfb_A, Alk5_dimer} Tgfb_Alk5_dimer$	er
76	TgfbReceptorRelease	$Tgfb_Alk5_dimer \xrightarrow{Tgfb_Alk5_dimer} Tgfb_A +$	
		Alk5_dimer	
77	Tgfb_Alk5-	Tgfb_Alk5_dimer +	
	_BindingSmad7	Smad7 $\xrightarrow{\text{Tgfb_Alk5_dimer, Smad7}}$ Tgfb_Alk5_dimer_Smad7	
78	Tgfb_Alk5-	$Tgfb_Alk5_dimer_Smad7 \xrightarrow{Tgfb_Alk5_dimer_Smad7} Tgfb_Al$	lk5_dir
	_Smad7Release	Smad7	

N⁰	Id Name	Reaction Equation	SBO
79 Alk5-		$Tgfb_Alk5_dimer_Smad7 = \frac{Tgfb_Alk5_dim}{Tgfb_Alk5_dim}$	er_Smad7
1)	_Smad7Degradation	1 g10-2 NK3-diffici _Sifiad/	7 1g10_1
80	TgfbReceptorBindingAlk1	Tgfb_A+Alk1_Alk5	
81	TgfbAlk1Release	$\begin{array}{c} Tgfb_Alk1_Alk5 \xrightarrow{Tgfb_Alk1_Alk5} Tgfb_Alk1_Alk5 \end{array}$ $Alk1_Alk5$	A +
82	Smad2Phosphorylation	Tgfb_Alk5_dimer	+
		$Smad2 \xrightarrow{Tgfb_Alk5_dimer, Smad2} Tgfb_A$ $Smad2_P$.lk5_dimer+
83	Smad2Smad4Binding	$Smad2_P + Smad4 \xrightarrow{Smad2_P, Smad4} Smad2_P + Smad4 \xrightarrow{Smad2_P, Smad4} Smad4 \xrightarrow{Smad2_P, Smad4} Smad4 \xrightarrow{Smad4_P, Smad4_P} Smad4 \xrightarrow{Smad4_P, Smad4_P, Smad4_P} Smad4_P \xrightarrow{Smad4_P, Smad4_P} Smad4_P \xrightarrow{Smad4_P} Smad4_P $	ad2_P_Smad4
84	Smad2PSmad4Release	Smad2_P_Smad4 Smad2_P_Smad4 Smad4	2_P +
85	Smad2DephosphorylationNuc	$Smad2_P \xrightarrow{Smad2_P} Smad2$	
86	Smad7Synthesis	Smad2_P_Smad4 Smad2_P_Smad4 Smad	2_P_Smad4+
87	Sox9Activation	Smad7 Smad2_P_Smad4	+
		$Sox9 \xrightarrow{Smad2.P_Smad4, Sox9} Smad2.P_S$	Smad4 +
		Sox9_A	
88	Sox9Inactivation	$Sox9_A \xrightarrow{Sox9_A} Sox9$	
89	Sox9BasalTranscription	Source $\xrightarrow{\text{Source}} \text{Sox9mRNA}$	
90	Sox9EnhancedTranscription	$Sox9_A \xrightarrow{Sox9_A} Sox9_A + Sox9mRNA$	
91	Sox9mRNA-	$Sox9mRNA \xrightarrow{Sox9mRNA} Sink$	
	Degradation		
92	Sox9Translation	Sox9mRNA $\xrightarrow{Sox9mRNA}$ Sox9mRNA +	Sox9

18	Nº	Id Name	Reaction Equation SBC	O
	93	Sox9Degradation	$Sox9 \xrightarrow{Sox9} Sink$	
	94	Collagen2EnhancedTranscriptionBySox9	$Sox9_A \xrightarrow{Sox9_A} Sox9_A + Col2mRNA$	
	95	Collagen2TranscriptionBySmad2Smad4	$Smad2_P_Smad4 \xrightarrow{Smad2_P_Smad4} Smad2_P_Smad4 + Col2mRNA$	
	96	Col2mRNADegradation	$Col2mRNA \xrightarrow{Col2mRNA} Sink$	
	97	Collagen2Translation	$Col2mRNA \xrightarrow{Col2mRNA} Col2mRNA + Collagen2$	
P	98 AggrecanEnhancedTranscription		$Sox9_A \xrightarrow{Sox9_A} Sox9_A + AcanmRNA$	
Produced by SBML2 ^{leT} EX	99	AcanmRNADegradation	$AcanmRNA \xrightarrow{AcanmRNA} Sink$	
d by	100	AggrecanTranslation	$AcanmRNA \xrightarrow{AcanmRNA} AcanmRNA + Aggrecan$	
SBM	101	AggrecanCollagen2Binding	$Aggrecan + Collagen2 \xrightarrow{Aggrecan, Collagen2} Aggrecan_Co$	ollagen2
K ^{alak}	102	Runx2- _InhibitionBySmad2	$Runx2_A + Smad2_P_Smad4 \xrightarrow{Runx2_A, Smad2_P_Smad4} Smad2_P_Smad4$	Runx2_I-
	103	Alk5Degradation	Alk5 $\xrightarrow{\text{Alk5}}$ Sink	
	104	Smad1Activation	Tgfb_Alk1_Alk5 +	
			$Smad1 \xrightarrow{Tgfb_Alk1_Alk5, Smad1} Tgfb_Alk1_Alk5 + Smad1_P$	
	105	Smad1Dephosphorylation	$Smad1_P \xrightarrow{Smad1_P} Smad1$	
	106	Smad1DephosphorylationViaSmad7	$Smad1_P + Smad7 \xrightarrow{Smad1_P, Smad7} Smad1 + Smad7$	
	107	Smad1Smad4Binding	$Smad1_P + Smad4 \xrightarrow{Smad1_P, Smad4} Smad1_P_Smad4$	

N₀	Id Name	Reaction Equation SBO
108	Smad1Smad4Release	$Smad1_P_Smad4 \xrightarrow{Smad1_P_Smad4} Smad1_P + Smad4$
109	Runx2ActivationBySmad1	$Runx2_I + Smad1_P_Smad4 \xrightarrow{Runx2_I, Smad1_P_Smad4} Runx2_A + Smad1_P_Smad4$
110	MMP13InductionByRunx2	$Runx2_A \xrightarrow{Runx2_A} proMMP13 + Runx2_A$
111	Alk1Synthesis	Source $\xrightarrow{\text{Source}}$ Alk1
112	Alk1Degradation	Alk1 $\xrightarrow{\text{Alk 1}}$ Sink
113 114	MMP13Activation Tgfb_Alk1_Alk5BindingSmad7	$\begin{array}{c} \text{proMMP13} \xrightarrow{\text{proMMP13}} \text{MMP13} \\ \text{Tgfb_Alk1_Alk5} & + \\ \text{Smad7} \xrightarrow{\text{Tgfb_Alk1_Alk5}, \text{Smad7}} \text{Tgfb_Alk1_Alk5_Smad7} \end{array}$
115	Tgfb_Alk1_Alk5- _Smad7Release	$ \begin{array}{c} Tgfb_Alk1_Alk5_Smad7 Tgfb_Alk1_Alk5_Smad7 \\ Smad7 \end{array} \\$
116	Alk1Smad7Degradation	$Tgfb_Alk1_Alk5_Smad7 \xrightarrow{Tgfb_Alk1_Alk5_Smad7} Tgfb_I$
117	Smad7Degradation	Smad7 $\xrightarrow{\text{Smad7}}$ Sink

6.1 Reaction CaspaseActivation

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Caspase_I + Bax \xrightarrow{Caspase_I, Bax} Caspase_A + Bax$$
 (1)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
Caspase_I		
Bax		

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
$Caspase_I$		
Bax		

Products

Table 8: Properties of each product.

Id	Name	SBO
Caspase_A Bax		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{kactCasp} \cdot \text{Caspase_I} \cdot \text{Bax} \tag{2}$$

6.2 Reaction CaspaseActivationByBeclin_I

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

Caspase
$$I + Beclin I \xrightarrow{Caspase I, Beclin I} Caspase A + Beclin I$$
 (3)

Reactants

Table 9: Properties of each reactant.

Id	Name	SBO
Caspase_I Beclin_I		

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
Caspase_I		
Beclin_I		

Products

Table 11: Properties of each product.

Id	Name	SBO
Caspase_A		
${\tt Beclin_I}$		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{kactCaspBecI} \cdot \text{Caspase_I} \cdot \text{Beclin_I}$$
 (4)

6.3 Reaction CaspaseActivationBy_p38

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

Caspase_I + p38_P
$$\xrightarrow{\text{Caspase}_I, p38_P}$$
 Caspase_A + p38_P (5)

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
Caspase_I		
p38_P		

Modifiers

Table 13: Properties of each modifier.

Id	Name	SBO
Caspase_I		
p38_P		

Products

Table 14: Properties of each product.

Id	Name	SBO
Caspase_A		
p38_P		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{kactCaspp38} \cdot \text{Caspase_I} \cdot \text{p38_P}$$
 (6)

6.4 Reaction CaspaseInactivation1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Caspase_A \xrightarrow{Caspase_A} Caspase_I$$
 (7)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
Caspase_A		

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
Caspase_A		

Product

Table 17: Properties of each product.

Id	Name	SBO
Caspase_I		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{kinactCasp} \cdot \text{Caspase_A}$$
 (8)

6.5 Reaction InhibitCaspase2

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

Caspase_A + Bcl2_Beclin
$$\xrightarrow{\text{Caspase_A, Bcl2_Beclin}}$$
 Caspase_I + Bcl2_Beclin (9)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
Caspase_A Bcl2_Beclin		

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
Caspase_A		
Bcl2_Beclin		

Products

Table 20: Properties of each product.

Id	Name	SBO
Caspase_I		
Bcl2_Beclin		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{kinactCaspBcl2} \cdot \text{Caspase_A} \cdot \text{Bcl2_Beclin}$$
 (10)

6.6 Reaction InhibitCaspase3

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Caspase_A + Bcl2 \xrightarrow{Caspase_A, Bcl2} Caspase_I + Bcl2$$
 (11)

Reactants

Table 21: Properties of each reactant.

Id	Name	SBO
Caspase_A		
Bc12		

Modifiers

Table 22: Properties of each modifier.

Id	Name	SBO
Caspase_A		
Bc12		

Products

Table 23: Properties of each product.

Id	Name	SBO
Caspase_I		
Bcl2		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{kinactCaspBcl2} \cdot \text{Caspase_A} \cdot \text{Bcl2}$$
 (12)

6.7 Reaction ActivateLysosome

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Lys_I + Beclin \xrightarrow{Lys_I, Beclin} Lys_A + Beclin$$
 (13)

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
Lys_I		
Beclin		

Modifiers

Table 25: Properties of each modifier.

Id	Name	SBO
Lys_I		
Beclin		

Products

Table 26: Properties of each product.

Id	Name	SBO
Lys_A		
Beclin		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{kactLys} \cdot \text{Lys} \cdot I \cdot \text{Beclin}$$
 (14)

6.8 Reaction InhibitLysosome

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Lys_A \xrightarrow{Lys_A} Lys_I$$
 (15)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
Lys_A		

Modifier

Table 28: Properties of each modifier.

Id	Name	SBO
Lys_A		

Product

Table 29: Properties of each product.

Id	Name	SBO
Lys_I		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{kinhibLys} \cdot \text{Lys}_A$$
 (16)

6.9 Reaction Bcl2Synthesis

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Source
$$\xrightarrow{\text{Source}}$$
 Bcl2 (17)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
Source		

Modifier

Table 31: Properties of each modifier.

Id	Name	SBO
Source		

Product

Table 32: Properties of each product.

Id	Name	SBO
Bc12		

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{ksynBcl2} \cdot \text{Source}$$
 (18)

6.10 Reaction Bcl2Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Bcl2 \xrightarrow{Bcl2} Sink \tag{19}$$

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
Bc12		

Modifier

Table 34: Properties of each modifier.

Id	Name	SBO
Rc12		

Id	Name	SBO

Product

Table 35: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{kdegBcl2} \cdot \text{Bcl2} \tag{20}$$

6.11 Reaction Bcl2DegradationStressInduced

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Bcl2 + ROS \xrightarrow{Bcl2, ROS} Sink + ROS$$
 (21)

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
Bc12		
ROS		

Modifiers

Table 37: Properties of each modifier.

Id	Name	SBO
Bc12		
ROS		

Products

Table 38: Properties of each product.

Id	Name	SBO
Sink		
ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = kdegBcl2ROS \cdot Bcl2 \cdot ROS$$
 (22)

6.12 Reaction Bcl2DegradationCaspaseInduced

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Bcl2 + Caspase_A \xrightarrow{Bcl2, Caspase_A} Sink + Caspase_A$$
 (23)

Reactants

Table 39: Properties of each reactant.

Id	Name	SBO
Bc12		
${\tt Caspase_A}$		

Modifiers

Table 40: Properties of each modifier.

Id	Name	SBO
Bc12		
${\tt Caspase_A}$		

Products

Table 41: Properties of each product.

Id	Name	SBO
Sink		
${\tt Caspase_A}$		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = kdegBcl2Casp \cdot Bcl2 \cdot Caspase_A$$
 (24)

6.13 Reaction Bax_Bcl2Binding

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Bax + Bcl2 \xrightarrow{Bax, Bcl2} Bax_Bcl2$$
 (25)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
Bax		
Bcl2		

Modifiers

Table 43: Properties of each modifier.

Id	Name	SBO
Bax		
Bcl2		

Product

Table 44: Properties of each product.

Id	Name	SBO
Bax_Bc12		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = kbinBaxBcl2 \cdot Bax \cdot Bcl2 \tag{26}$$

6.14 Reaction Bax_Bcl2Release

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Bax_Bcl2 \xrightarrow{Bax_Bcl2} Bax + Bcl2$$
 (27)

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
Bax_Bc12		

Modifier

Table 46: Properties of each modifier.

Id	Name	SBO
Bax_Bc12		

Products

Table 47: Properties of each product.

Id	Name	SBO
Bax Bcl2		

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{krelBaxBcl2} \cdot \text{Bax_Bcl2} \tag{28}$$

6.15 Reaction Bcl2_BeclinBinding

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Bcl2 + Beclin \xrightarrow{Bcl2, Beclin} Bcl2_Beclin$$
 (29)

Reactants

Table 48: Properties of each reactant.

Id	Name	SBO
Bcl2		
Beclin		

Modifiers

Table 49: Properties of each modifier.

Id	Name	SBO
Bcl2		
Beclin		

Product

Table 50: Properties of each product.

Id	Name	SBO
Bcl2_Beclin		

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{kbinBcl2Beclin} \cdot \text{Bcl2} \cdot \text{Beclin}$$
 (30)

6.16 Reaction Bcl2_BeclinRelease

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

Bcl2_Beclin
$$\xrightarrow{Bcl2_Beclin}$$
 Bcl2 + Beclin (31)

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
Bcl2_Beclin		

Modifier

Table 52: Properties of each modifier.

Id	Name	SBO
Bcl2_Beclin		

Products

Table 53: Properties of each product.

Id	Name	SBO
Bc12		
Beclin		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{krelBcl2Beclin} \cdot \text{Bcl2_Beclin}$$
 (32)

6.17 Reaction Bcl2_Beclin_I_Binding

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Bcl2 + Beclin_I \xrightarrow{Bcl2, Beclin_I} Bcl2_Beclin_I$$
 (33)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
Bc12		
${\tt Beclin_I}$		

Modifiers

Table 55: Properties of each modifier.

Id	Name	SBO
Bcl2		
${\tt Beclin_I}$		

Product

Table 56: Properties of each product.

		1
Id	Name	SBO
Bcl2_Beclin_I		

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{kbinBcl2Beclin} \cdot \text{Bcl2} \cdot \text{Beclin} \cdot \text{I}$$
 (34)

6.18 Reaction Bcl2_Beclin_I_Release

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Bcl2_Beclin_I \xrightarrow{Bcl2_Beclin_I} Bcl2 + Beclin_I$$
 (35)

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
$Bcl2_Beclin_I$		

Modifier

Table 58: Properties of each modifier.

Id	Name	SBO
Bcl2_Beclin_I		

Products

Table 59: Properties of each product.

Id	Name	SBO
Bc12		
${\tt Beclin_I}$		

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{krelBcl2Beclin} \cdot \text{Bcl2_Beclin_I}$$
 (36)

6.19 Reaction BeclinInactivation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Beclin \xrightarrow{Beclin} Beclin I \tag{37}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
Beclin		

Modifier

Table 61: Properties of each modifier.

Id	Name	SBO
Beclin		

Product

Table 62: Properties of each product.

Id	Name	SBO
Beclin_I		

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{kinactBec} \cdot \text{Beclin}$$
 (38)

6.20 Reaction BeclinInactivationByCaspase

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Beclin + Caspase_A \xrightarrow{Beclin, Caspase_A} Beclin_I + Caspase_A$$
 (39)

Reactants

Table 63: Properties of each reactant.

Id	Name	SBO
Beclin		
Caspase_A		

Table 64: Properties of each modifier.

Id	Name	SBO
Beclin		
${\tt Caspase_A}$		

Table 65: Properties of each product.

Id	Name	SBO
Beclin_I		
${\tt Caspase_A}$		

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{kinactBecCasp} \cdot \text{Beclin} \cdot \text{Caspase_A}$$
 (40)

6.21 Reaction BeclinBindingToBax_Bcl2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Beclin + Bax_Bcl2 \xrightarrow{Beclin, Bax_Bcl2} Bax_Bcl2_Beclin$$
 (41)

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Beclin		
Bax_Bc12		

Table 67: Properties of each modifier.

Id	Name	SBO
Beclin		
Bax_Bc12		

Table 68: Properties of each product.

Id	Name	SBO
Bax_Bcl2_Beclin		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{kbinBecToBaxBcl2} \cdot \text{Beclin} \cdot \text{Bax_Bcl2}$$
 (42)

6.22 Reaction BeclinIBindingToBax_Bcl2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Beclin_I + Bax_Bcl2 \xrightarrow{Beclin_I, Bax_Bcl2} Bax_Bcl2_Beclin_I$$
 (43)

Reactants

Table 69: Properties of each reactant.

Id	Name	SBO
Beclin_I		
Bax_Bc12		

Table 70: Properties of each modifier.

Id	Name	SBO
Beclin_I		

Id	Name	SBO
Bax_Bcl2		

Table 71: Properties of each product

Tuble 71. Hoperties o	r caem pr	ouuct.
Id	Name	SBO
Bax_Bcl2_Beclin_I		

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{kbinBecToBaxBcl2} \cdot \text{Beclin_I} \cdot \text{Bax_Bcl2}$$
 (44)

6.23 Reaction BaxBindingToBcl2_Beclin

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Bax + Bcl2_Beclin \xrightarrow{Bax, Bcl2_Beclin} Bax_Bcl2_Beclin$$
 (45)

Reactants

Table 72: Properties of each reactant.

Id	Name	SBO
Bax		
Bcl2_Beclin		

Table 73: Properties of each modifier.

Id	Name	SBO
Bax Bcl2_Beclin		

Table 74: Properties of each product.

Tuble 71: Troperties of each product:		
Id	Name	SBO
Bax_Bcl2_Beclin		

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{kbinBaxToBcl2Bec} \cdot \text{Bax} \cdot \text{Bcl2_Beclin}$$
 (46)

6.24 Reaction BaxBindingToBcl2_BeclinI

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Bax + Bcl2_Beclin_I \xrightarrow{Bax, Bcl2_Beclin_I} Bax_Bcl2_Beclin_I$$
 (47)

Reactants

Table 75: Properties of each reactant.

Id	Name	SBO
Bax		
Bcl2_Beclin_I		

Modifiers

Table 76: Properties of each modifier.

Id	Name	SBO
Bax Bcl2_Beclin_I		

Product

Table 77: Properties	of each p	product.
14	Nome	SPO

Bax Bcl2 Beclin I	Pay Rela P	oclin T	

Derived unit contains undeclared units

$$v_{24} = \text{kbinBaxToBcl2Bec} \cdot \text{Bax} \cdot \text{Bcl2_Beclin_I}$$
 (48)

6.25 Reaction BaxDissociation_Bax_Bcl2_Beclin

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Bax_Bcl2_Beclin \xrightarrow{Bax_Bcl2_Beclin} Bax + Bcl2_Beclin$$
 (49)

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
Bax_Bcl2_Beclin		

Modifier

Table 79: Properties of each modifier.

Id	Name	SBO
Bax_Bcl2_Beclin		

Products

Table 80: Properties of each product.

Id	Name	SBO
Bax		
Bcl2_Beclin		

Derived unit contains undeclared units

$$v_{25} = \text{krelBaxBcl2Bec} \cdot \text{Bax_Bcl2_Beclin}$$
 (50)

6.26 Reaction BaxDissociation_Bax_Bcl2_Beclin_I

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Bax_Bcl2_Beclin_I \xrightarrow{Bax_Bcl2_Beclin_I} Bax + Bcl2_Beclin_I$$
 (51)

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
Bax_Bcl2_Beclin_I		

Modifier

Table 82: Properties of each modifier.

Id	Name	SBO
Bax_Bcl2_Beclin_I		

Products

Table 83: Properties of each product.

Id	Name	SBO
Bax		
$Bc12_Beclin_I$		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{krelBaxBcl2Bec} \cdot \text{Bax_Bcl2_Beclin_I}$$
 (52)

6.27 Reaction BeclinDissociation_Bax_Bcl2_Beclin

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Bax_Bcl2_Beclin \xrightarrow{Bax_Bcl2_Beclin} Beclin + Bax_Bcl2$$
 (53)

Reactant

Table 84: Properties of each reactant.

Id Name SBO

Bax_Bcl2_Beclin

Modifier

Table 85: Properties of each modifier.

Id	Name	SBO
Bax_Bcl2_Beclin		

Products

Table 86: Properties of each product.

Id	Name	SBO
Beclin		
Bax_Bc12		

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{krelBecBaxBcl2} \cdot \text{Bax_Bcl2_Beclin}$$
 (54)

6.28 Reaction Beclin_I_Dissociation_Bax_Bcl2_Beclin

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Bax_Bcl2_Beclin_I \xrightarrow{Bax_Bcl2_Beclin_I} Beclin_I + Bax_Bcl2$$
 (55)

Reactant

Table 87: Properties of each reactant.

THOIC STATES OF		
Id	Name	SBO
Bax_Bcl2_Beclin_I		

Modifier

Table 88: Properties of each modifier.

Id	Name	SBO
Bax_Bcl2_Beclin_I		

Products

Table 89: Properties of each product.

Id	Name	SBO
Beclin_I		
Bax_Bc12		

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{krelBecBaxBcl2} \cdot \text{Bax_Bcl2_Beclin_I}$$
 (56)

6.29 Reaction ROS_generation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Source
$$\xrightarrow{\text{Source}} \text{ROS}$$
 (57)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
Source		

Modifier

Table 91: Properties of each modifier.

Id	Name	SBO
Source		_

Product

Table 92: Properties of each product.

Id	Name	SBO
ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{kgenROS} \cdot \text{Source}$$
 (58)

6.30 Reaction ROS_removal

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$ROS \xrightarrow{ROS} Sink \tag{59}$$

Reactant

Table 93: Properties of each reactant.

Id	Name	SBO
ROS		

Modifier

Table 94: Properties of each modifier.

Id	Name	SBO
ROS		

Product

Table 95: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{kremROS} \cdot \text{ROS}$$
 (60)

6.31 Reaction Protein_Damage_by_ROS

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$NatP + ROS \xrightarrow{NatP, ROS} DamP + ROS$$
 (61)

Reactants

Table 96: Properties of each reactant.

Id	Name	SBO
NatP ROS		

Table 97: Properties of each modifier.

Id	Name	SBO
NatP		
ROS		

Table 98: Properties of each product.

Id	Name	SBO
DamP		
ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \frac{\text{kdamNatP} \cdot \text{NatP} \cdot \text{ROS}}{10 + \text{ROS}}$$
 (62)

6.32 Reaction Removal_DamP_by_Autophagy

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$DamP + Lys_A \xrightarrow{DamP, Lys_A} Lys_A$$
 (63)

Reactants

Table 99: Properties of each reactant.

Id	Name	SBO
DamP		
${\tt Lys_A}$		

Table 100: Properties of each modifier.

Id	Name	SBO
DamP		
Lys_A		

Table 101: Properties of each product.

Id	Name	SBO
Lys_A		

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = kdegDamP \cdot DamP \cdot Lys_A$$
 (64)

6.33 Reaction Production_of_AGEproducts

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Source
$$\xrightarrow{\text{Source}}$$
 AGEprod (65)

Reactant

Table 102: Properties of each reactant.

Id	Name	SBO
Source		

Table 103: Properties of each modifier.

Id	Name	SBO
Source		

Table 104: Properties of each product.

Id	Name	SBO
AGEprod		

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{kprodAGE} \cdot \text{Source}$$
 (66)

6.34 Reaction RAGE_activation

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$AGEprod \xrightarrow{AGEprod} AGEprod + RAGE$$
 (67)

Reactant

Table 105: Properties of each reactant.

Id	Name	SBO
AGEprod		

Modifier

Table 106: Properties of each modifier.

Id	Name	SBO
AGEprod		

Products

Table 107: Properties of each product.

Id	Name	SBO
AGEprod		

Id	Name	SBO
RAGE		

Derived unit contains undeclared units

$$v_{34} = \text{kactRAGE} \cdot \text{AGEprod} \tag{68}$$

6.35 Reaction ROS_production_by_RAGE

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$RAGE \xrightarrow{RAGE} RAGE + ROS \tag{69}$$

Reactant

Table 108: Properties of each reactant.

Id	Name	SBO
RAGE		

Modifier

Table 109: Properties of each modifier.

Id	Name	SBO
RAGE		

Products

Table 110: Properties of each product.

Id	Name	SBO
RAGE		
ROS		

Derived unit contains undeclared units

$$v_{35} = \text{kgenROSbyRAGE} \cdot \text{RAGE} \tag{70}$$

6.36 Reaction IkB_degradation_via_ROS

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$ROS + IkB_NFkB \xrightarrow{ROS, IkB_NFkB} ROS + NFkB$$
 (71)

Reactants

Table 111: Properties of each reactant.

Id	Name	SBO
ROS		
IkB_NFkB		

Modifiers

Table 112: Properties of each modifier.

Id	Name	SBO
ROS		
${\tt IkB_NFkB}$		

Products

Table 113: Properties of each product.

Id	Name	SBO
ROS		
NFkB		

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{kdegIkB} \cdot \text{ROS} \cdot \text{IkB_NFkB}$$
 (72)

6.37 Reaction IkB_degradation_via_IL1

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$IL1 + IkB_NFkB \xrightarrow{IL1, IkB_NFkB} IL1 + NFkB$$
 (73)

Reactants

Table 114: Properties of each reactant.

Id	Name	SBO
IL1		
IkB_NFkB		

Modifiers

Table 115: Properties of each modifier.

Id	Name	SBO
IL1		
IkB_NFkB		

Products

Table 116: Properties of each product.

Id	Name	SBO
IL1		
NFkB		

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{kdegIkB} \cdot \text{IL1} \cdot \text{IkB_NFkB} \tag{74}$$

6.38 Reaction NFkB_inactivation

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$NFkB + IkB \xrightarrow{NFkB, IkB} IkB_NFkB$$
 (75)

Reactants

Table 117: Properties of each reactant.

Id	Name	SBO
NFkB		
IkB		

Modifiers

Table 118: Properties of each modifier.

Id	Name	SBO
NFkB IkB		

Product

Table 119: Properties of each product.

Id	Name	SBO
IkB_NFkB		

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{kinactNFkB} \cdot \text{NFkB} \cdot \text{IkB}$$
 (76)

6.39 Reaction RAGE_inactivation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$RAGE \xrightarrow{RAGE} Sink \tag{77}$$

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
RAGE		

Modifier

Table 121: Properties of each modifier.

Id	Name	SBO
RAGE		

Product

Table 122: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{kinactRAGE} \cdot \text{RAGE}$$
 (78)

6.40 Reaction RAGE_upregulation_byNFkB

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$NFkB_P \xrightarrow{NFkB_P} NFkB_P + RAGE$$
 (79)

Reactant

Table 123: Properties of each reactant.

Id	Name	SBO
NFkB_P		

Modifier

Table 124: Properties of each modifier.

Id	Name	SBO
NFkB_P		

Products

Table 125: Properties of each product.

Id	Name	SBO
NFkB_P		
RAGE		

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = ksynRAGE \cdot NFkB_P$$
 (80)

6.41 Reaction IL1_production

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$NFkB_P \xrightarrow{NFkB_P} NFkB_P + IL1$$
 (81)

Reactant

Table 126: Properties of each reactant.

Id	Name	SBO
NFkB_P		

Modifier

Table 127: Properties of each modifier.

Id	Name	SBO
NFkB_P		

Products

Table 128: Properties of each product.

Id	Name	SBO
NFkB_P		
IL1		

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{ksynIL1} \cdot \text{NFkB} \cdot \text{P} \tag{82}$$

6.42 Reaction IL1_degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$IL1 \xrightarrow{IL1} Sink \tag{83}$$

Reactant

Table 129: Properties of each reactant.

Id	Name	SBO
IL1		

Table 130: Properties of each modifier.

Id	Name	SBO
IL1		

Table 131: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{kdegIL1} \cdot \text{IL1} \tag{84}$$

6.43 Reaction IkB_production

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$NFkB_{P} \xrightarrow{NFkB_{P}} NFkB_{P} + IkB$$
 (85)

Reactant

Table 132: Properties of each reactant.

Id	Name	SBO
NFkB_P		

Table 133: Properties of each modifier.

Id	Name	SBO
NFkB_P		

Table 134: Properties of each product.

Id	Name	SBO
NFkB_P		
IkB		

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{ksynIkB} \cdot \text{NFkB}_{-}\text{P}$$
 (86)

6.44 Reaction MMP13_production

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$IL1 \xrightarrow{IL1} IL1 + proMMP13$$
 (87)

Reactant

Table 135: Properties of each reactant.

Id	Name	SBO
IL1		

Modifier

Table 136: Properties of each modifier.

Id	Name	SBO
IL1		

Products

Table 137: Properties of each product.

Id	Name	SBO
IL1		
proMMP13		

Derived unit contains undeclared units

$$v_{44} = \text{ksynMMP13} \cdot \text{IL1} \tag{88}$$

6.45 Reaction MMP13_removal

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$MMP13 \xrightarrow{MMP13} Sink$$
 (89)

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
MMP13		

Modifier

Table 139: Properties of each modifier.

Id	Name	SBO
MMP13		

Product

Table 140: Properties of each product.

Id	Name	SBO
Sink		

Derived unit contains undeclared units

$$v_{45} = kdegMMP13 \cdot MMP13 \tag{90}$$

6.46 Reaction MMP2_production

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$IL1 \xrightarrow{IL1} IL1 + proMMP2$$
 (91)

Reactant

Table 141: Properties of each reactant.

Id	Name	SBO
IL1		

Modifier

Table 142: Properties of each modifier.

Id	Name	SBO
IL1		

Products

Table 143: Properties of each product.

Id	Name	SBO
IL1		
proMMP2		

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{ksynMMP2} \cdot \text{IL1} \tag{92}$$

6.47 Reaction MMP_activation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$proMMP2 \xrightarrow{proMMP2} MMP2 \tag{93}$$

Reactant

Table 144: Properties of each reactant.

Id	Name	SBO
proMMP2		

Modifier

Table 145: Properties of each modifier.

Id	Name	SBO
proMMP2		

Product

Table 146: Properties of each product.

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = \text{kactMMP2} \cdot \text{proMMP2}$$
 (94)

6.48 Reaction MMP2_degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$MMP2 \xrightarrow{MMP2} Sink \tag{95}$$

Reactant

Table 147: Properties of each reactant.

Id	Name	SBO
MMP2		

Modifier

Table 148: Properties of each modifier.

Id	Name	SBO
MMP2		

Product

Table 149: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = kdegMMP2 \cdot MMP2 \tag{96}$$

6.49 Reaction ADAMTS5_production

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$IL1 \xrightarrow{IL1} IL1 + ADAMTS5$$
 (97)

Reactant

Table 150: Properties of each reactant.

Id	Name	SBO
IL1		

Modifier

Table 151: Properties of each modifier.

Id	Name	SBO
IL1		

Products

Table 152: Properties of each product.

Id	Name	SBO
IL1		
ADAMTS5		

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = \text{ksynADAMTS5} \cdot \text{IL1}$$
 (98)

6.50 Reaction ADAMTS5_removal

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

ADAMTS5
$$\xrightarrow{\text{ADAMTS5}}$$
 Sink (99)

Reactant

Table 153: Properties of each reactant.

Id	Name	SBO
ADAMTS5		

Table 154: Properties of each modifier.

Id	Name	SBO
ADAMTS5		

Table 155: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{kdegADAMTS5} \cdot \text{ADAMTS5}$$
 (100)

6.51 Reaction Aggrecan_degradation

This is an irreversible reaction of two reactants forming three products influenced by two modifiers.

Reaction equation

$$Aggrecan_Collagen2 + ADAMTS5 \xrightarrow{Aggrecan_Collagen2, ADAMTS5} Collagen2 + ADAMTS5 + AggFrag \tag{101}$$

Reactants

Table 156: Properties of each reactant.

Id	Name	SBO
Aggrecan_Collagen2 ADAMTS5		

Table 157: Properties	of each modifier.
-----------------------	-------------------

Table 137. Properties of each mounter.		
Id	Name	SBO
Aggrecan_Collagen2 ADAMTS5		

Table 158: Properties of each product.

Id	Name	SBO
Collagen2		
ADAMTS5		
AggFrag		

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{kdegAggrecan} \cdot \text{Aggrecan_Collagen2} \cdot \text{ADAMTS5}$$
 (102)

6.52 Reaction Collagen_degradation

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Collagen2 + MMP13 \xrightarrow{Collagen2, MMP13} MMP13 + ColFrag$$
 (103)

Reactants

Table 159: Properties of each reactant.

Id	Name	SBO
Collagen2		
MMP13		

Table 160: Properties of each modifier.

Id	Name	SBO
Collagen2		
MMP13		

Table 161: Properties of each product.

Id	Name	SBO
MMP13		
ColFrag		

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \text{kdegCollagen} \cdot \text{Collagen2} \cdot \text{MMP13}$$
 (104)

6.53 Reaction ROS_production_by_DamP

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$DamP \xrightarrow{DamP} DamP + ROS \tag{105}$$

Reactant

Table 162: Properties of each reactant.

Id	Name	SBO
DamP		

Table 163: Properties of each modifier.

Id	Name	SBO
DamP		

Table 164: Properties of each product.

Id	Name	SBO
DamP		
ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = kgenROSbyDamP \cdot DamP$$
 (106)

6.54 Reaction Protein_synthesis

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Source
$$\xrightarrow{\text{Source}}$$
 NatP (107)

Reactant

Table 165: Properties of each reactant.

Id	Name	SBO
Source		

Modifier

Table 166: Properties of each modifier.

Id	Name	SBO
Source		

Product

Table 167: Properties of each product.

Id	Name	SBO
NatP		

Derived unit contains undeclared units

$$v_{54} = \text{ksynNatP} \cdot \text{Source}$$
 (108)

6.55 Reaction SOD_synthesis

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$NFkB_P \xrightarrow{NFkB_P} NFkB_P + SOD$$
 (109)

Reactant

Table 168: Properties of each reactant.

Id	Name	SBO
$NFkB_P$		

Modifier

Table 169: Properties of each modifier.

Id	Name	SBO
NFkB_P		

Products

Table 170: Properties of each product.

Id	Name	SBO
NFkB_P SOD		

Derived unit contains undeclared units

$$v_{55} = \text{ksynSOD} \cdot \text{NFkB}_{-}P \tag{110}$$

6.56 Reaction SOD_degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$SOD \xrightarrow{SOD} Sink \tag{111}$$

Reactant

Table 171: Properties of each reactant.

Id	Name	SBO
SOD		

Modifier

Table 172: Properties of each modifier.

Id	Name	SBO
SOD		

Product

Table 173: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{kdegSOD} \cdot \text{SOD}$$
 (112)

6.57 Reaction ROS_removal_by_SOD

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$ROS + SOD \xrightarrow{SOD, ROS} SOD$$
 (113)

Reactants

Table 174: Properties of each reactant.

Id	Name	SBO
ROS		
SOD		

Modifiers

Table 175: Properties of each modifier.

Id	Name	SBO
SOD		
ROS		

Product

Table 176: Properties of each product.

Id	Name	SBO
SOD		

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = \text{kremROSbySOD} \cdot \text{SOD} \cdot \text{ROS}$$
 (114)

6.58 Reaction p38_phosphorylation

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$p38 + IL1 \xrightarrow{p38, IL1} p38 - P + IL1$$
 (115)

Reactants

Table 177: Properties of each reactant.

Modifiers

Table 178: Properties of each modifier.

Products

Table 179: Properties of each product.

Id	Name	SBO
p38_P IL1		

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = \text{kphosp38} \cdot \text{p38} \cdot \text{IL1} \tag{116}$$

6.59 Reaction p38_phosphorylation_via_ROS

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$p38 + ROS \xrightarrow{p38, ROS} p38 P + ROS$$
 (117)

Reactants

Table 180: Properties of each reactant.

Id	Name	SBO
p38 ROS		

Modifiers

Table 181: Properties of each modifier.

Id	Name	SBO
p38		
ROS		

Products

Table 182: Properties of each product.

Id	Name	SBO
p38_P ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{kphosp38ROS} \cdot \text{p38} \cdot \text{ROS} \tag{118}$$

6.60 Reaction p38_dephosphorylation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$p38.P \xrightarrow{p38.P} p38 \tag{119}$$

Table 183: Properties of each reactant.

Id	Name	SBO
p38_P		

Modifier

Table 184: Properties of each modifier.

Id	Name	SBO
p38_P		

Product

Table 185: Properties of each product.

Id	Name	SBO
p38		

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{kdephosp38} \cdot \text{p38}_\text{P} \tag{120}$$

6.61 Reaction NFkB_activation

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$NFkB + p38_P \xrightarrow{NFkB, p38_P} NFkB_P + p38_P$$
 (121)

Table 186: Properties of each reactant.

Id	Name	SBO
NFkB		
p38_P		

Modifiers

Table 187: Properties of each modifier.

Id	Name	SBO
NFkB		
p38_P		

Products

Table 188: Properties of each product.

Id	Name	SBO
NFkB_P		
p38_P		

Kinetic Law

Derived unit contains undeclared units

$$v_{61} = \text{kphosNFkB} \cdot \text{NFkB} \cdot \text{p38_P}$$
 (122)

6.62 Reaction NFkB_dephosphorylation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$NFkB_P \xrightarrow{NFkB_P} NFkB$$
 (123)

Reactant

Table 189: Properties of each reactant.

Id	Name	SBO
NFkB_P		

Modifier

Table 190: Properties of each modifier.

Id	Name	SBO
NFkB_P		

Product

Table 191: Properties of each product.

Id	Name	SBO
NFkB		

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = kdephosNFkB \cdot NFkB_P$$
 (124)

6.63 Reaction ROS_production_by_p38_P

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$p38_P \xrightarrow{p38_P} p38_P + ROS$$
 (125)

Reactant

Table 192: Properties of each reactant.

Id	Name	SBO
p38_P		

Modifier

Table 193: Properties of each modifier.

Id	Name	SBO
p38_P		

Products

Table 194: Properties of each product.

Id	Name	SBO
p38_P ROS		

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = \text{kgenROSbyp38} \cdot \text{p38}_{-}\text{P} \tag{126}$$

6.64 Reaction Lysosome_damage_by_ROS

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Lys_A + ROS \xrightarrow{Lys_A, ROS} Lys_I + ROS$$
 (127)

Reactants

Table 195: Properties of each reactant.

Id	Name	SBO
Lys_A ROS		

Modifiers

Table 196: Properties of each modifier.

Name	SBO
	Name

Products

Table 197: Properties of each product.

Id	Name	SBO
Lys_I ROS		

Derived unit contains undeclared units

$$v_{64} = \frac{\text{kdamLys} \cdot \text{Lys_A} \cdot \text{ROS}}{10 + \text{ROS}}$$
 (128)

6.65 Reaction IntegrinActivationByMechanicalStress

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

Source
$$\xrightarrow{\text{Source}}$$
 Integrin + IntegrinCount (129)

Reactant

Table 198: Properties of each reactant.

Id	Name	SBO
Source		

Modifier

Table 199: Properties of each modifier.

Id	Name	SBO
Source		

Products

Table 200: Properties of each product.

Id	Name	SBO
Integrin		

Id	Name	SBO
IntegrinCount		

Derived unit contains undeclared units

$$v_{65} = \text{kactIntegrin} \cdot \text{Source}$$
 (130)

6.66 Reaction IntegrinInactivation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Integrin \xrightarrow{Integrin} Sink$$
 (131)

Reactant

Table 201: Properties of each reactant.

Id	Name	SBO
Integrin		

Modifier

Table 202: Properties of each modifier.

Id	Name	SBO
Integrin		

Product

Table 203: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = \text{kinactIntegrin} \cdot \text{Integrin}$$
 (132)

6.67 Reaction Alk5Synthesis

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Source
$$\xrightarrow{\text{Source}}$$
 Alk5 (133)

Reactant

Table 204: Properties of each reactant.

Id	Name	SBO
Source		

Modifier

Table 205: Properties of each modifier.

Id	Name	SBO
Source		

Product

Table 206: Properties of each product.

Id	Name	SBO
Alk5		

Kinetic Law

Derived unit contains undeclared units

$$v_{67} = \text{ksynAlk5} \cdot \text{Source}$$
 (134)

6.68 Reaction TgfbActivationByIntegrin

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Tgfb_I + Integrin \xrightarrow{Tgfb_I, Integrin} Tgfb_A + Integrin$$
 (135)

Reactants

Table 207: Properties of each reactant.

Id	Name	SBO
Tgfb_I		
Integrin		

Modifiers

Table 208: Properties of each modifier.

Id	Name	SBO
Tgfb_I		
Integrin		

Products

Table 209: Properties of each product.

Id	Name	SBO
Tgfb_A		
Integrin		

Kinetic Law

Derived unit contains undeclared units

$$v_{68} = \text{kactTgfbIntegrin} \cdot \text{Tgfb} \cdot \text{Integrin}$$
 (136)

6.69 Reaction TgfbActivationByMMP2

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Tgfb_I + MMP2 \xrightarrow{Tgfb_I, MMP2} Tgfb_A + MMP2$$
 (137)

Reactants

Table 210: Properties of each reactant.

Id	Name	SBO
Tgfb_I MMP2		

Modifiers

Table 211: Properties of each modifier.

Id	Name	SBO
Tgfb_I MMP2		

Products

Table 212: Properties of each product.

Id	Name	SBO
Tgfb_A MMP2		

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{kactTgfbMMP2} \cdot \text{Tgfb_I} \cdot \text{MMP2}$$
 (138)

6.70 Reaction TgfbInactivation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Tgfb_A \xrightarrow{Tgfb_A} Tgfb_I$$
 (139)

Table 213: Properties of each reactant.

Id	Name	SBO
Tgfb_A		

Modifier

Table 214: Properties of each modifier.

Id	Name	SBO
Tgfb_A		

Product

Table 215: Properties of each product.

Id	Name	SBO
Tgfb_I		

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{kinactTgfb} \cdot \text{Tgfb_A}$$
 (140)

6.71 Reaction Alk5Dimerisation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$2 \text{Alk5} \xrightarrow{\text{Alk5}} \text{Alk5_dimer}$$
 (141)

Table 216: Properties of each reactant.

Id	Name	SBO
Alk5		

Modifier

Table 217: Properties of each modifier.

Id	Name	SBO
Alk5		

Product

Table 218: Properties of each product.

Id	Name	SBO
Alk5_dimer		

Kinetic Law

Derived unit contains undeclared units

$$v_{71} = \text{kdimerAlk5} \cdot \text{Alk5} \cdot (\text{Alk5} - 1) \cdot 0.5 \tag{142}$$

6.72 Reaction Alk5Dedimerisation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Alk5_dimer
$$\xrightarrow{\text{Alk5_dimer}} 2 \text{ Alk5}$$
 (143)

Reactant

Table 219: Properties of each reactant.

Id	Name	SBO
Alk5_dimer		

Modifier

Table 220: Properties of each modifier.

Id	Name	SBO
Alk5 dimer		

Id	Name	SBO

Product

Table 221: Properties of each product.

Id	Name	SBO
Alk5		

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = \text{kdedimerAlk5} \cdot \text{Alk5_dimer}$$
 (144)

6.73 Reaction Alk1Alk5Binding

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Alk1 + Alk5 \xrightarrow{Alk1, Alk5} Alk1_Alk5$$
 (145)

Reactants

Table 222: Properties of each reactant.

Id	Name	SBO
Alk1		
Alk5		

Modifiers

Table 223: Properties of each modifier.

Id	Name	SBO
Alk1		
Alk5		

Product

Table 224: Properties of each product.

Id	Name	SBO
Alk1_Alk5		

Derived unit contains undeclared units

$$v_{73} = kbinAlk1Alk5 \cdot Alk1 \cdot Alk5 \tag{146}$$

6.74 Reaction Alk1Alk5Release

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Alk1_Alk5 \xrightarrow{Alk1_Alk5} Alk1 + Alk5$$
 (147)

Reactant

Table 225: Properties of each reactant.

Id	Name	SBO
Alk1_Alk5		

Modifier

Table 226: Properties of each modifier.

Id	Name	SBO
Alk1_Alk5		

Products

Table 227: Properties of each product.

Id	Name	SBO
Alk1		
Alk5		

Derived unit contains undeclared units

$$v_{74} = \text{krelAlk1Alk5} \cdot \text{Alk1_Alk5} \tag{148}$$

6.75 Reaction TgfbReceptorBindingAlk5

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Tgfb_A + Alk5_dimer \xrightarrow{Tgfb_A, Alk5_dimer} Tgfb_Alk5_dimer \qquad (149)$$

Reactants

Table 228: Properties of each reactant.

Id	Name	SBO
Tgfb_A		
$Alk5_dimer$		

Modifiers

Table 229: Properties of each modifier.

Id	Name	SBO
Tgfb_A Alk5_dimer		

Product

Table 230: Properties of each product.

Id	Name	SBO
Tgfb_Alk5_dimer		

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = \text{kbinTgfbAlk5} \cdot \text{Tgfb_A} \cdot \text{Alk5_dimer}$$
 (150)

6.76 Reaction TgfbReceptorRelease

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Tgfb_Alk5_dimer \xrightarrow{Tgfb_Alk5_dimer} Tgfb_A + Alk5_dimer \tag{151}$$

Reactant

Table 231: Properties of each reactant.

Id	Name	SBO
Tgfb_Alk5_dimer		

Modifier

Table 232: Properties of each modifier.

Id	Name	SBO
Tgfb_Alk5_dimer		

Products

Table 233: Properties of each product.

Id	Name	SBO
Tgfb_A		
Alk5_dimer		

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = \text{krelTgfbAlk5} \cdot \text{Tgfb_Alk5_dimer}$$
 (152)

6.77 Reaction Tgfb_Alk5_BindingSmad7

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Tgfb_Alk5_dimer + Smad7 \xrightarrow{Tgfb_Alk5_dimer, Smad7} Tgfb_Alk5_dimer_Smad7 \tag{153}$$

Reactants

Table 234: Properties of each reactant.

Id	Name	SBO
Tgfb_Alk5_dimer Smad7		

Modifiers

Table 235: Properties of each modifier.

Id	Name	SBO
Tgfb_Alk5_dimer Smad7		

Product

Table 236: Properties of each product.

	1	
Id	Name	SBO
Tgfb_Alk5_dimer_Smad7		

Kinetic Law

Derived unit contains undeclared units

$$v_{77} = \text{kbinSmad7Alk5} \cdot \text{Tgfb_Alk5_dimer} \cdot \text{Smad7}$$
 (154)

6.78 Reaction Tgfb_Alk5_Smad7Release

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Tgfb_Alk5_dimer_Smad7 \xrightarrow{Tgfb_Alk5_dimer_Smad7} Tgfb_Alk5_dimer + Smad7 \tag{155}$$

Reactant

Table 237: Properties of each reactant.

Tuble 237: 1 toperties of each reactant:		
Id	Name	SBO
Tgfb_Alk5_dimer_Smad7		

Modifier

Table 238: Properties of each modifier.

Id	Name	SBO
Tgfb_Alk5_dimer_Smad7		

Products

Table 239: Properties of each product.

Id	Name	SBO
Tgfb_Alk5_dimer		
Smad7		

Kinetic Law

Derived unit contains undeclared units

$$v_{78} = \text{krelSmad7Alk5} \cdot \text{Tgfb_Alk5_dimer_Smad7}$$
 (156)

6.79 Reaction Alk5_Smad7Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Tgfb_Alk5_dimer_Smad7 \xrightarrow{Tgfb_Alk5_dimer_Smad7} Tgfb_I$$
 (157)

	Table 240:	Properties	of each	reactant.
--	------------	-------------------	---------	-----------

Table 240. Properties of each feactain.		
Id	Name	SBO
Tgfb_Alk5_dimer_Smad7		

Modifier

Table 241: Properties of each modifier.

Tueste Z : I : I Trepetities est e		
Id	Name	SBO
Tgfb_Alk5_dimer_Smad7		

Product

Table 242: Properties of each product.

Id	Name	SBO
Tgfb_I		

Kinetic Law

Derived unit contains undeclared units

$$v_{79} = \text{kdegSmad7Alk5} \cdot \text{Tgfb_Alk5_dimer_Smad7}$$
 (158)

6.80 Reaction TgfbReceptorBindingAlk1

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Tgfb_A + Alk1_Alk5 \xrightarrow{Tgfb_A, Alk1_Alk5} Tgfb_Alk1_Alk5$$
 (159)

Table 243: Properties of each reactant.

Id	Name	SBO
Tgfb_A		
Alk1_Alk5		

Modifiers

Table 244: Properties of each modifier.

Id	Name	SBO
Tgfb_A		
$Alk1_Alk5$		

Product

Table 245: Properties of each product.

Id	Name	SBO
Tgfb_Alk1_Alk5		

Kinetic Law

Derived unit contains undeclared units

$$v_{80} = kbinTgfbAlk1 \cdot Tgfb_A \cdot Alk1_Alk5$$
 (160)

6.81 Reaction TgfbAlk1Release

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Tgfb_Alk1_Alk5 \xrightarrow{Tgfb_Alk1_Alk5} Tgfb_A + Alk1_Alk5 \tag{161}$$

Reactant

Table 246: Properties of each reactant.

Id	Name	SBO
Tgfb_Alk1_Alk5		

Modifier

Table 247: Properties of each modifier.

Id	Name	SBO
Tgfb_Alk1_Alk5		

Products

Table 248: Properties of each product.

Id	Name	SBO
Tgfb_A		
Alk1_Alk5		

Kinetic Law

Derived unit contains undeclared units

$$v_{81} = \text{krelTgfbAlk1} \cdot \text{Tgfb_Alk1_Alk5}$$
 (162)

6.82 Reaction Smad2Phosphorylation

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Tgfb_Alk5_dimer + Smad2 \xrightarrow{Tgfb_Alk5_dimer, Smad2} Tgfb_Alk5_dimer + Smad2_P \qquad (163)$$

Reactants

Table 249: Properties of each reactant.

Id	Name	SBO
Tgfb_Alk5_dimer Smad2		

Modifiers

Table 250: Properties of each modifier.

Id	Name	SBO
Tgfb_Alk5_dimer Smad2		

Products

Table 251: Properties of each product.

Id	Name	SBO
Tgfb_Alk5_dimer		
Smad2_P		

Kinetic Law

Derived unit contains undeclared units

$$v_{82} = \text{kphosSmad2} \cdot \text{Tgfb_Alk5_dimer} \cdot \text{Smad2}$$
 (164)

6.83 Reaction Smad2Smad4Binding

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Smad2_P + Smad4 \xrightarrow{Smad2_P, Smad4} Smad2_P_Smad4$$
 (165)

Reactants

Table 252: Properties of each reactant.

Id	Name	SBO
Smad2_P Smad4		

Modifiers

Table 253: Properties of each modifier.

Id	Name	SBO
Smad2_P		
Smad4		

Product

Table 254: Properties of each product.

Id	Name	SBO
Smad2_P_Smad4		

Kinetic Law

Derived unit contains undeclared units

$$v_{83} = \text{kbinSmad2Smad4} \cdot \text{Smad2.P} \cdot \text{Smad4}$$
 (166)

6.84 Reaction Smad2PSmad4Release

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Smad2_P_Smad4 \xrightarrow{Smad2_P_Smad4} Smad2_P + Smad4$$
 (167)

Reactant

Table 255: Properties of each reactant.

Id	Name	SBO
Smad2_P_Smad4		

Modifier

Table 256: Properties of each modifier.

Id	Name	SBO
Smad2_P_Smad4		

Products

Table 257: Properties of each product.

Id	Name	SBO
Smad2_P		
Smad4		

Kinetic Law

Derived unit contains undeclared units

$$v_{84} = \text{krelSmad2Smad4} \cdot \text{Smad2_P_Smad4}$$
 (168)

6.85 Reaction Smad2DephosphorylationNuc

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Smad2_P \xrightarrow{Smad2_P} Smad2$$
 (169)

Reactant

Table 258: Properties of each reactant.

Id	Name	SBO
$Smad2_P$		

Modifier

Table 259: Properties of each modifier.

Id	Name	SBO
Smad2_P		

Product

Table 260: Properties of each product.

Id	Name	SBO
Smad2		

Derived unit contains undeclared units

$$v_{85} = \text{kdephosSmad2} \cdot \text{Smad2} \cdot \text{P}$$
 (170)

6.86 Reaction Smad7Synthesis

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Smad2_P_Smad4 \xrightarrow{Smad2_P_Smad4} Smad2_P_Smad4 + Smad7$$
 (171)

Reactant

Table 261: Properties of each reactant.

Id	Name	SBO
Smad2_P_Smad4		

Modifier

Table 262: Properties of each modifier.

Id	Name	SBO
Smad2_P_Smad4		

Products

Table 263: Properties of each product.

Id	Name	SBO
Smad2_P_Smad4 Smad7		

Derived unit contains undeclared units

$$v_{86} = \text{ksynSmad7} \cdot \text{Smad2_P_Smad4}$$
 (172)

6.87 Reaction Sox9Activation

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Smad2_P_Smad4 + Sox9 \xrightarrow{Smad2_P_Smad4}, Sox9 \xrightarrow{Smad2_P_Smad4} + Sox9_A \tag{173}$$

Reactants

Table 264: Properties of each reactant.

Name	SBO
	Name

Modifiers

Table 265: Properties of each modifier.

Id	Name	SBO
Smad2_P_Smad4		
Sox9		

Products

Table 266: Properties of each product.

Id	Name	SBO
Smad2_P_Smad4		
$Sox9_A$		

Kinetic Law

Derived unit contains undeclared units

$$v_{87} = \text{kactSox}9 \cdot \text{Smad2_P_Smad4} \cdot \text{Sox}9 \tag{174}$$

6.88 Reaction Sox9Inactivation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Sox9_A \xrightarrow{Sox9_A} Sox9$$
 (175)

Reactant

Table 267: Properties of each reactant.

Id	Name	SBO
Sox9_A		

Modifier

Table 268: Properties of each modifier.

Id	Name	SBO
Sox9_A		

Product

Table 269: Properties of each product.

Id	Name	SBO
Sox9		

Kinetic Law

Derived unit contains undeclared units

$$v_{88} = \text{kinactSox9} \cdot \text{Sox9} \cdot \text{A}$$
 (176)

6.89 Reaction Sox9BasalTranscription

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Source
$$\xrightarrow{\text{Source}}$$
 Sox9mRNA (177)

Reactant

Table 270: Properties of each reactant.

Id	Name	SBO
Source		

Modifier

Table 271: Properties of each modifier.

Id	Name	SBO
Source		

Product

Table 272: Properties of each product.

Id	Name	SBO
Sox9mRNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = \text{ksynSox9mRNA} \cdot \text{Source}$$
 (178)

6.90 Reaction Sox9EnhancedTranscription

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Sox9_A \xrightarrow{Sox9_A} Sox9_A + Sox9mRNA$$
 (179)

Table 273: Properties of each reactant.

Id	Name	SBO
Sox9_A		

Modifier

Table 274: Properties of each modifier.

Id	Name	SBO
Sox9_A		

Products

Table 275: Properties of each product.

Id	Name	SBO
Sox9_A		
Sox9mRNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{90} = \text{ksynSox9mRNASox9A} \cdot \text{Sox9_A} \tag{180}$$

6.91 Reaction Sox9mRNA_Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Sox9mRNA \xrightarrow{Sox9mRNA} Sink$$
 (181)

Table 276: Properties of each reactant.

Id	Name	SBO
Sox9mRNA		

Modifier

Table 277: Properties of each modifier.

Id	Name	SBO
Sox9mRNA		

Product

Table 278: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{91} = kdegSox9mRNA \cdot Sox9mRNA$$
 (182)

6.92 Reaction Sox9Translation

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Sox9mRNA \xrightarrow{Sox9mRNA} Sox9mRNA + Sox9$$
 (183)

Reactant

Table 279: Properties of each reactant.

Id	Name	SBO
Sox9mRNA		

Modifier

Table 280: Properties of each modifier.

Id	Name	SBO
Sovambna		

Id Name SBO

Products

Table 281: Properties of each product.

Id	Name	SBO
Sox9mRNA		
Sox9		

Kinetic Law

Derived unit contains undeclared units

$$v_{92} = \text{ksynSox}9 \cdot \text{Sox}9\text{mRNA} \tag{184}$$

6.93 Reaction Sox9Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Sox9 \xrightarrow{Sox9} Sink \tag{185}$$

Reactant

Table 282: Properties of each reactant.

Id	Name	SBO
Sox9		

Modifier

Table 283: Properties of each modifier.

Id	Name	SBO
Sox9		

Product

Table 284: Properties of each product.

Id	Name	SBO
Sink		

Derived unit contains undeclared units

$$v_{93} = kdegSox9 \cdot Sox9 \tag{186}$$

6.94 Reaction Collagen2EnhancedTranscriptionBySox9

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Sox9_A \xrightarrow{Sox9_A} Sox9_A + Col2mRNA$$
 (187)

Reactant

Table 285: Properties of each reactant.

Id	Name	SBO
Sox9_A		

Modifier

Table 286: Properties of each modifier.

Id	Name	SBO
Sox9_A		

Products

Table 287: Properties of each product.

Id	Name	SBO
Sox9_A		
Col2mRNA		

Derived unit contains undeclared units

$$v_{94} = \text{ksynCol2mRNASox9A} \cdot \text{Sox9_A} \tag{188}$$

6.95 Reaction Collagen2TranscriptionBySmad2Smad4

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Smad2_P_Smad4 \xrightarrow{Smad2_P_Smad4} Smad2_P_Smad4 + Col2mRNA$$
 (189)

Reactant

Table 288: Properties of each reactant.

Id	Name	SBO
Smad2_P_Smad4		

Modifier

Table 289: Properties of each modifier.

Id	Name	SBO
Smad2_P_Smad4		

Products

Table 290: Properties of each product.

Id	Name	SBO
Smad2_P_Smad4		
Col2mRNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{95} = \text{ksynCol2mRNASmad} \cdot \text{Smad2_P_Smad4}$$
 (190)

6.96 Reaction Col2mRNA_Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Col2mRNA \xrightarrow{Col2mRNA} Sink$$
 (191)

Reactant

Table 291: Properties of each reactant.

Id	Name	SBO
Col2mRNA		

Modifier

Table 292: Properties of each modifier.

Id	Name	SBO
Col2mRNA		

Product

Table 293: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{96} = \text{kdegCol2mRNA} \cdot \text{Col2mRNA} \tag{192}$$

6.97 Reaction Collagen2Translation

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Col2mRNA \xrightarrow{Col2mRNA} Col2mRNA + Collagen2$$
 (193)

Reactant

Table 294: Properties of each reactant.

Id	Name	SBO
Col2mRNA		

Modifier

Table 295: Properties of each modifier.

Id	Name	SBO
Col2mRNA		

Products

Table 296: Properties of each product.

Id	Name	SBO
Col2mRNA		
Collagen2		

Kinetic Law

Derived unit contains undeclared units

$$v_{97} = \text{ksynCol2} \cdot \text{Col2mRNA} \tag{194}$$

6.98 Reaction AggrecanEnhancedTranscription

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Sox9_A \xrightarrow{Sox9_A} Sox9_A + AcanmRNA$$
 (195)

Table 297: Properties of each reactant.

Id	Name	SBO
Sox9_A		

Modifier

Table 298: Properties of each modifier.

Id	Name	SBO
Sox9_A		

Products

Table 299: Properties of each product.

Id	Name	SBO
Sox9_A		
${\tt AcanmRNA}$		

Kinetic Law

Derived unit contains undeclared units

$$v_{98} = ksynAcanmRNASox9A \cdot Sox9_A$$
 (196)

6.99 Reaction AcanmRNA Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$AcanmRNA \xrightarrow{AcanmRNA} Sink$$
 (197)

Table 300: Properties of each reactant.

Id	Name	SBO
AcanmRNA		

Modifier

Table 301: Properties of each modifier.

Id	Name	SBO
AcanmRNA		

Product

Table 302: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{99} = \text{kdegAcanmRNA} \cdot \text{AcanmRNA}$$
 (198)

6.100 Reaction AggrecanTranslation

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$AcanmRNA \xrightarrow{AcanmRNA} AcanmRNA + Aggrecan$$
 (199)

Reactant

Table 303: Properties of each reactant.

Id	Name	SBO
AcanmRNA		

Modifier

Table 304: Properties of each modifier.

Id	Name	SBO
ΔcanmRNΔ		

Id	Name	SBO

Products

Table 305: Properties of each product.

Id	Name	SBO
AcanmRNA		
Aggrecan		

Kinetic Law

Derived unit contains undeclared units

$$v_{100} = \text{ksynAggrecan} \cdot \text{AcanmRNA}$$
 (200)

6.101 Reaction AggrecanCollagen2Binding

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Aggrecan + Collagen2 \xrightarrow{Aggrecan, Collagen2} Aggrecan_Collagen2$$
 (201)

Reactants

Table 306: Properties of each reactant.

Id	Name	SBO
Aggrecan Collagen2		

Modifiers

Table 307: Properties of each modifier.

Id	Name	SBO
Aggrecan		
Collagen2		

Product

Table 308: Properties of each product.

	1	
Id	Name	SBO
Aggrecan_Collagen2		

Kinetic Law

Derived unit contains undeclared units

$$v_{101} = \text{kbinAggrecanCollagen2} \cdot \text{Aggrecan} \cdot \text{Collagen2}$$
 (202)

6.102 Reaction Runx2_InhibitionBySmad2

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Runx2_A + Smad2_P_Smad4 \xrightarrow{Runx2_A, Smad2_P_Smad4} Runx2_I + Smad2_P_Smad4 \quad (203)$$

Reactants

Table 309: Properties of each reactant.

Id	Name	SBO
Runx2_A		
${\tt Smad2_P_Smad4}$		

Modifiers

Table 310: Properties of each modifier.

Id	Name	SBO
Runx2_A		
Smad2_P_Smad4		

Products

Table 311: Properties of each product.

Id	Name	SBO
Runx2_I		
$Smad2_P_Smad4$		

Derived unit contains undeclared units

$$v_{102} = \text{kinactRunx} 2 \cdot \text{Runx} 2 \cdot \text{A} \cdot \text{Smad} 2 \cdot \text{P} \cdot \text{Smad} 4$$
 (204)

6.103 Reaction Alk5Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Alk5
$$\xrightarrow{\text{Alk5}}$$
 Sink (205)

Reactant

Table 312: Properties of each reactant.

Id	Name	SBO
Alk5		

Modifier

Table 313: Properties of each modifier.

Id	Name	SBO
Alk5		

Product

Table 314: Properties of each product.

Id	Name	SBO
Sink		

Derived unit contains undeclared units

$$v_{103} = \text{kdegAlk5} \cdot \text{Alk5} \tag{206}$$

6.104 Reaction Smad1Activation

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Tgfb_Alk1_Alk5 + Smad1 \xrightarrow{Tgfb_Alk1_Alk5}, Smad1 \\ \longrightarrow Tgfb_Alk1_Alk5 + Smad1_P \qquad (207)$$

Reactants

Table 315: Properties of each reactant.

Id	Name	SBO
Tgfb_Alk1_Alk5 Smad1		

Modifiers

Table 316: Properties of each modifier.

Id	Name	SBO
Tgfb_Alk1_Alk5 Smad1		

Products

Table 317: Properties of each product.

Id	Name	SBO
Tgfb_Alk1_Alk5 Smad1_P		

Derived unit contains undeclared units

$$v_{104} = \text{kphosSmad1} \cdot \text{Tgfb_Alk1_Alk5} \cdot \text{Smad1}$$
 (208)

6.105 Reaction Smad1Dephosphorylation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Smad1_P \xrightarrow{Smad1_P} Smad1$$
 (209)

Reactant

Table 318: Properties of each reactant.

Id	Name	SBO
Smad1_P		

Modifier

Table 319: Properties of each modifier.

Id	Name	SBO
Smad1_P		

Product

Table 320: Properties of each product.

Id	Name	SBO
Smad1		

Kinetic Law

Derived unit contains undeclared units

$$v_{105} = \text{kdephosSmad1} \cdot \text{Smad1} \cdot \text{P}$$
 (210)

6.106 Reaction Smad1DephosphorylationViaSmad7

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Smad1_P + Smad7 \xrightarrow{Smad1_P, Smad7} Smad1 + Smad7$$
 (211)

Reactants

Table 321: Properties of each reactant.

Id	Name	SBO
Smad1_P		
Smad7		

Modifiers

Table 322: Properties of each modifier.

Id	Name	SBO
Smad1_P		
Smad7		

Products

Table 323: Properties of each product.

Id	Name	SBO
Smad1		
Smad7		

Kinetic Law

Derived unit contains undeclared units

$$v_{106} = \text{kdephosSmad1Smad7} \cdot \text{Smad1} \cdot \text{Smad7}$$
 (212)

6.107 Reaction Smad1Smad4Binding

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Smad1_P + Smad4 \xrightarrow{Smad1_P, Smad4} Smad1_P_Smad4$$
 (213)

Reactants

Table 324: Properties of each reactant.

Id	Name	SBO
Smad1_P		
Smad4		

Modifiers

Table 325: Properties of each modifier.

Id	Name	SBO
Smad1_P		
Smad4		

Product

Table 326: Properties of each product.

Id	Name	SBO
Smad1_P_Smad4		

Kinetic Law

Derived unit contains undeclared units

$$v_{107} = \text{kbinSmad1Smad4} \cdot \text{Smad1}_P \cdot \text{Smad4}$$
 (214)

6.108 Reaction Smad1Smad4Release

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Smad1_P_Smad4 \xrightarrow{Smad1_P_Smad4} Smad1_P + Smad4$$
 (215)

Reactant

Table 327: Properties of each reactant.

Id	Name	SBO
Smad1_P_Smad4		

Modifier

Table 328: Properties of each modifier.

Id	Name	SBO
Smad1_P_Smad4		

Products

Table 329: Properties of each product.

Id	Name	SBO
Smad1_P		
Smad4		

Kinetic Law

Derived unit contains undeclared units

$$v_{108} = \text{krelSmad1Smad4} \cdot \text{Smad1_P_Smad4}$$
 (216)

6.109 Reaction Runx2ActivationBySmad1

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$Runx2_I + Smad1_P_Smad4 \xrightarrow{Runx2_I, Smad1_P_Smad4} Runx2_A + Smad1_P_Smad4 \quad (217)$$

Reactants

Table 330: Properties of each reactant.

Id	Name	SBO
Runx2_I		
${\tt Smad1_P_Smad4}$		

Modifiers

Table 331: Properties of each modifier.

Id	Name	SBO
Runx2_I		
${\tt Smad1_P_Smad4}$		

Products

Table 332: Properties of each product.

Id	Name	SBO
Runx2_A		
${\tt Smad1_P_Smad4}$		

Kinetic Law

Derived unit contains undeclared units

$$v_{109} = kactRunx2 \cdot Runx2 \cdot Smad1 \cdot P \cdot Smad4$$
 (218)

6.110 Reaction MMP13InductionByRunx2

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Runx2_A \xrightarrow{Runx2_A} proMMP13 + Runx2_A$$
 (219)

Reactant

Table 333: Properties of each reactant.

Id	Name	SBO
Runx2_A		

Modifier

Table 334: Properties of each modifier.

Id	Name	SBO
Runx2_A		

Products

Table 335: Properties of each product.

Name	SBO
	Name

Kinetic Law

Derived unit contains undeclared units

$$v_{110} = \text{ksynMMP13Runx2} \cdot \text{Runx2} \cdot \text{A}$$
 (220)

6.111 Reaction Alk1Synthesis

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Source
$$\xrightarrow{\text{Source}}$$
 Alk1 (221)

Reactant

Table 336: Properties of each reactant.

Id	Name	SBO
Source		

Modifier

Table 337: Properties of each modifier.

Id	Name	SBO
Source		

Product

Table 338: Properties of each product.

Id	Name	SBO
Alk1		

Kinetic Law

Derived unit contains undeclared units

$$v_{111} = \text{ksynAlk1} \cdot \text{Source}$$
 (222)

6.112 Reaction Alk1Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Alk1 \xrightarrow{Alk1} Sink \tag{223}$$

Reactant

Table 339: Properties of each reactant.

Id	Name	SBO
Alk1		

Modifier

Table 340: Properties of each modifier.

Id	Name	SBO
Alk1		

Product

Table 341: Properties of each product.

Id	Name	SBO
Sink		

Id	Name	SBO

Derived unit contains undeclared units

$$v_{112} = kdegAlk1 \cdot Alk1 \tag{224}$$

6.113 Reaction MMP13Activation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$proMMP13 \xrightarrow{proMMP13} MMP13 \tag{225}$$

Reactant

Table 342: Properties of each reactant.

Id	Name	SBO
proMMP13		

Modifier

Table 343: Properties of each modifier.

Id	Name	SBO
proMMP13		

Product

Table 344: Properties of each product.

Id	Name	SBO
MMP13		

Kinetic Law

Derived unit contains undeclared units

$$v_{113} = \text{kactMMP13} \cdot \text{proMMP13} \tag{226}$$

6.114 Reaction Tgfb_Alk1_Alk5_BindingSmad7

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Reaction equation

$$Tgfb_Alk1_Alk5 + Smad7 \xrightarrow{Tgfb_Alk1_Alk5, Smad7} Tgfb_Alk1_Alk5_Smad7 \tag{227}$$

Reactants

Table 345: Properties of each reactant.

Id	Name	SBO
Tgfb_Alk1_Alk5 Smad7		

Modifiers

Table 346: Properties of each modifier.

Id	Name	SBO
Tgfb_Alk1_Alk5 Smad7		

Product

Table 347: Properties of each product.

Id	Name	SBO
Tgfb_Alk1_Alk5_Smad7		

Kinetic Law

Derived unit contains undeclared units

$$v_{114} = \text{kbinSmad7Alk1} \cdot \text{Tgfb_Alk1_Alk5} \cdot \text{Smad7}$$
 (228)

6.115 Reaction Tgfb_Alk1_Alk5_Smad7Release

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Reaction equation

$$Tgfb_Alk1_Alk5_Smad7 \xrightarrow{Tgfb_Alk1_Alk5_Smad7} Tgfb_Alk1_Alk5+Smad7 \tag{229}$$

Reactant

Table 348: Properties of each reactant.

Id Name SBO

Tgfb_Alk1_Alk5_Smad7

Modifier

Products

Kinetic Law

Derived unit contains undeclared units

$$v_{115} = \text{krelSmad7Alk1} \cdot \text{Tgfb_Alk1_Alk5_Smad7}$$
 (230)

6.116 Reaction Alk1_Smad7Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Tgfb_Alk1_Alk5_Smad7 \xrightarrow{Tgfb_Alk1_Alk5_Smad7} Tgfb_I \tag{231}$$

Reactant

Table 351: Properties of each reactant.

Id	Name	
Tgfb_Alk1_Alk5_Smad7		

Modifier

Table 352: Properties of each modifier.

Id	Name	SBO
Tgfb_Alk1_Alk5_Smad7		

Product

Table 353: Properties of each product.

Id	Name	SBO
$Tgfb_{-}I$		

Kinetic Law

Derived unit contains undeclared units

$$v_{116} = kdegSmad7Alk1 \cdot Tgfb_Alk1_Alk5_Smad7$$
 (232)

6.117 Reaction Smad7Degradation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Smad7 \xrightarrow{Smad7} Sink$$
 (233)

Reactant

Table 354: Properties of each reactant.

Id	Name	SBO
Smad7		

Modifier

Table 355: Properties of each modifier.

Id	Name	SBO
Smad7		

Product

Table 356: Properties of each product.

Id	Name	SBO
Sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{117} = kdegSmad7 \cdot Smad7 \tag{234}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

7.1 Species AcanmRNA

Initial amount 0 item

This species takes part in six reactions (as a reactant in AcanmRNA_Degradation, AggrecanTranslation and as a product in AggrecanEnhancedTranscription, AggrecanTranslation and as a modifier in AcanmRNA_Degradation, AggrecanTranslation).

$$\frac{d}{dt}AcanmRNA = |v_{98}| + |v_{100}| - |v_{99}| - |v_{100}|$$
(235)

7.2 Species ADAMTS5

Initial amount 0 item

This species takes part in six reactions (as a reactant in ADAMTS5_removal, Aggrecan_degradation and as a product in ADAMTS5_production, Aggrecan_degradation and as a modifier in ADAMTS5_removal, Aggrecan_degradation).

$$\frac{d}{dt}ADAMTS5 = |v_{49}| + |v_{51}| - |v_{50}| - |v_{51}|$$
(236)

7.3 Species AGEprod

Initial amount 0 item

This species takes part in four reactions (as a reactant in RAGE_activation and as a product in Production_of_AGEproducts, RAGE_activation and as a modifier in RAGE_activation).

$$\frac{d}{dt}AGEprod = |v_{33}| + |v_{34}| - |v_{34}|$$
 (237)

7.4 Species Alk1

Initial amount 500 item

This species takes part in six reactions (as a reactant in Alk1Alk5Binding, Alk1Degradation and as a product in Alk1Alk5Release, Alk1Synthesis and as a modifier in Alk1Alk5Binding, Alk1Degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Alk1} = |v_{74}| + |v_{111}| - |v_{73}| - |v_{112}| \tag{238}$$

7.5 Species Alk1_Alk5

Initial amount 0 item

This species takes part in six reactions (as a reactant in Alk1Alk5Release, TgfbReceptorBindingAlk1 and as a product in Alk1Alk5Binding, TgfbAlk1Release and as a modifier in Alk1Alk5Release, TgfbReceptorBindingAlk1).

$$\frac{d}{dt}Alk1_Alk5 = |v_{73}| + |v_{81}| - |v_{74}| - |v_{80}|$$
(239)

7.6 Species Alk5

Initial amount 500 item

This species takes part in nine reactions (as a reactant in Alk5Dimerisation, Alk1Alk5Binding, Alk5Degradation and as a product in Alk5Synthesis, Alk5Dedimerisation, Alk1Alk5Release and as a modifier in Alk5Dimerisation, Alk1Alk5Binding, Alk5Degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Alk5} = |v_{67}| + 2|v_{72}| + |v_{74}| - 2|v_{71}| - |v_{73}| - |v_{103}| \tag{240}$$

7.7 Species Alk5_dimer

SBO:0000607 dimer

Initial amount 0 item

This species takes part in six reactions (as a reactant in Alk5Dedimerisation, TgfbReceptorBindingAlk5 and as a product in Alk5Dimerisation, TgfbReceptorRelease and as a modifier in Alk5Dedimerisation, TgfbReceptorBindingAlk5).

$$\frac{d}{dt}Alk5_dimer = |v_{71}| + |v_{76}| - |v_{72}| - |v_{75}|$$
(241)

7.8 Species Bax

Initial amount 0 item

This species takes part in twelve reactions (as a reactant in CaspaseActivation, Bax_Bcl2Binding, BaxBindingToBcl2_Beclin, BaxBindingToBcl2_BeclinI and as a product in CaspaseActivation, Bax_Bcl2Release, BaxDissociation_Bax_Bcl2_Beclin, BaxDissociation_Bax_Bcl2_Beclin_I and as a modifier in CaspaseActivation, Bax_Bcl2Binding, BaxBindingToBcl2_Beclin, BaxBindingToBcl2_BeclinI).

$$\frac{d}{dt}Bax = |v_1| + |v_{14}| + |v_{25}| + |v_{26}| - |v_1| - |v_{13}| - |v_{23}| - |v_{24}|$$
(242)

7.9 Species Bax_Bc12

Initial amount 90 item

This species takes part in nine reactions (as a reactant in Bax_Bcl2Release, BeclinBindingToBax_Bcl2, BeclinIBindingToBax_Bcl2 and as a product in Bax_Bcl2Binding, BeclinDissociation_Bax_Bcl2_Beclin, Beclin_I_Dissociation_Bax_Bcl2_Beclin and as a modifier in Bax_Bcl2Release, BeclinBindingToBax_Bcl2, BeclinIBindingToBax_Bcl2).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Bax_Bcl2} = |v_{13}| + |v_{27}| + |v_{28}| - |v_{14}| - |v_{21}| - |v_{22}|$$
(243)

7.10 Species Bax_Bcl2_Beclin

Initial amount 10 item

This species takes part in six reactions (as a reactant in BaxDissociation_Bax_Bcl2_Beclin, BeclinDissociation_Bax_Bcl2_Beclin and as a product in BeclinBindingToBax_Bcl2, BaxBindingToBcl2_Beclin and as a modifier in BaxDissociation_Bax_Bcl2_Beclin, BeclinDissociation_Bax_Bcl2_Beclin).

$$\frac{d}{dt} \text{Bax_Bcl2_Beclin} = |v_{21}| + |v_{23}| - |v_{25}| - |v_{27}|$$
 (244)

7.11 Species Bax_Bcl2_Beclin_I

Initial amount 0 item

This species takes part in six reactions (as a reactant in BaxDissociation_Bax_Bcl2_Beclin_I, Beclin_I_Dissociation_Bax_Bcl2_Beclin and as a product in BeclinIBindingToBax_Bcl2_BeclinI and as a modifier in BaxDissociation_Bax_Bcl2_Beclin_I, Beclin_I_Dissociation_Bax_Bcl2_Beclin).

$$\frac{d}{dt} \text{Bax_Bcl2_Beclin_I} = |v_{22}| + |v_{24}| - |v_{26}| - |v_{28}|$$
(245)

7.12 Species Bc12

Initial amount 30 item

This species takes part in 19 reactions (as a reactant in InhibitCaspase3, Bcl2Degradation, Bcl2DegradationStressInduced, Bcl2DegradationCaspaseInduced, Bax_Bcl2Binding, Bcl2_Beclin_I_Binding and as a product in InhibitCaspase3, Bcl2Synthesis, Bax_Bcl2Release, Bcl2_Beclin_I_Beclin_I_Release and as a modifier in InhibitCaspase3, Bcl2Degradation, Bcl2DegradationStressInduced, Bcl2DegradationCaspaseInduced, Bax_Bcl2Binding, Bcl2_Beclin_Binding, Bcl2_Beclin_I_Binding).

$$\frac{d}{dt}Bc12 = v_6 + v_9 + v_{14} + v_{16} + v_{18} - v_6 - v_{10} - v_{11} - v_{12} - v_{13} - v_{15} - v_{17}$$
 (246)

7.13 Species Bcl2_Beclin

Initial amount 25 item

This species takes part in nine reactions (as a reactant in InhibitCaspase2, Bcl2_BeclinRelease, BaxBindingToBcl2_Beclin and as a product in InhibitCaspase2, Bcl2_BeclinBinding, BaxDissociation_Bax_Bcl2_Beclin and as a modifier in InhibitCaspase2, Bcl2_BeclinRelease, BaxBindingToBcl2_Beclin).

$$\frac{d}{dt}Bcl2_Beclin = |v_5| + |v_{15}| + |v_{25}| - |v_5| - |v_{16}| - |v_{23}|$$
(247)

7.14 Species Bcl2_Beclin_I

Initial amount 0 item

This species takes part in six reactions (as a reactant in Bcl2_Beclin_I_Release, BaxBindingToBcl2_BeclinI and as a product in Bcl2_Beclin_I_Binding, BaxDissociation_Bax_Bcl2_Beclin_I and as a modifier in Bcl2_Beclin_I_Release, BaxBindingToBcl2_BeclinI).

$$\frac{d}{dt}Bcl2_Beclin_I = |v_{17}| + |v_{26}| - |v_{18}| - |v_{24}|$$
(248)

7.15 Species Beclin

Initial amount 75 item

This species takes part in 13 reactions (as a reactant in ActivateLysosome, Bc12_BeclinBinding, BeclinInactivation, BeclinInactivationByCaspase, BeclinBindingToBax_Bc12 and as a product in ActivateLysosome, Bc12_BeclinRelease, BeclinDissociation_Bax_Bc12_Beclin and as a modifier in ActivateLysosome, Bc12_BeclinBinding, BeclinInactivation, BeclinInactivationByCaspase, BeclinBindingToBax_Bc12).

$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Beclin} = |v_7| + |v_{16}| + |v_{27}| - |v_7| - |v_{15}| - |v_{19}| - |v_{20}| - |v_{21}|$$
(249)

7.16 Species Beclin_I

Initial amount 0 item

This species takes part in eleven reactions (as a reactant in CaspaseActivationByBeclin_I, Bcl2_Beclin_I_Binding, BeclinIBindingToBax_Bcl2 and as a product in CaspaseActivationByBeclin_I, Bcl2_Beclin_I_Release, BeclinInactivation, BeclinInactivationByCaspase, Beclin_I_Dissociation_Bax_Bcl2_Beclin and as a modifier in CaspaseActivationByBeclin_I, Bcl2_Beclin_I_Binding, BeclinIBindingToBax_Bcl2).

$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Beclin} \mathbf{I} = |v_2| + |v_{18}| + |v_{19}| + |v_{20}| + |v_{28}| - |v_2| - |v_{17}| - |v_{22}| \tag{250}$$

7.17 Species Caspase_A

Initial amount 0 item

This species takes part in 15 reactions (as a reactant in CaspaseInactivation1, InhibitCaspase2, InhibitCaspase3, Bcl2DegradationCaspaseInduced, BeclinInactivationByCaspase and as a product in CaspaseActivation, CaspaseActivationByBeclin_I, CaspaseActivationBy-_p38, Bcl2DegradationCaspaseInduced, BeclinInactivationByCaspase and as a modifier in CaspaseInactivation1, InhibitCaspase2, InhibitCaspase3, Bcl2DegradationCaspaseInduced, BeclinInactivationByCaspase).

$$\frac{d}{dt} Caspase_A = v_1 + v_2 + v_3 + v_{12} + v_{20} - v_4 - v_5 - v_6 - v_{12} - v_{20}$$
 (251)

7.18 Species Caspase_I

Initial amount 100 item

This species takes part in nine reactions (as a reactant in CaspaseActivation, CaspaseActivationByBeclin_I, CaspaseActivationBy_p38 and as a product in CaspaseInactivation1, InhibitCaspase2, InhibitCaspase3 and as a modifier in CaspaseActivation, CaspaseActivationByBeclin_I, CaspaseActivationBy_p38).

$$\frac{d}{dt} Caspase I = |v_4| + |v_5| + |v_6| - |v_1| - |v_2| - |v_3|$$
(252)

7.19 Species Col2mRNA

Initial amount 0 item

This species takes part in seven reactions (as a reactant in Col2mRNA_Degradation, Collagen2Translation and as a product in Collagen2EnhancedTranscriptionBySox9, Collagen2TranscriptionBySmad2Smad4, Collagen2Translation and as a modifier in Col2mRNA_Degradation, Collagen2Translation).

$$\frac{d}{dt}\text{Col2mRNA} = |v_{94} + v_{95}| + |v_{97}| - |v_{96}| - |v_{97}|$$
(253)

7.20 Species DamP

Initial amount 0 item

This species takes part in six reactions (as a reactant in Removal_DamP_by_Autophagy, ROS_production_by_DamP and as a product in Protein_Damage_by_ROS, ROS_production_by_DamP and as a modifier in Removal_DamP_by_Autophagy, ROS_production_by_DamP).

$$\frac{d}{dt}DamP = |v_{31}| + |v_{53}| - |v_{32}| - |v_{53}|$$
(254)

7.21 Species IkB

Initial amount 0 item

This species takes part in three reactions (as a reactant in NFkB_inactivation and as a product in IkB_production and as a modifier in NFkB_inactivation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IkB} = v_{43} - v_{38} \tag{255}$$

7.22 Species IkB_NFkB

Initial amount 100 item

This species takes part in five reactions (as a reactant in IkB_degradation_via_ROS, IkB_degradation_via_IL1 and as a product in NFkB_inactivation and as a modifier in IkB_degradation_via_ROS, IkB_degradation_via_IL1).

$$\frac{d}{dt}IkB_NFkB = |v_{38}| - |v_{36}| - |v_{37}|$$
 (256)

7.23 Species IL1

Initial amount 0 item

This species takes part in 18 reactions (as a reactant in IkB_degradation_via_IL1, IL1-_degradation, MMP13_production, MMP2_production, ADAMTS5_production, p38_phosphorylation and as a product in IkB_degradation_via_IL1, IL1_production, MMP13_production, MMP2-_production, ADAMTS5_production, p38_phosphorylation and as a modifier in IkB_degradation-_via_IL1, IL1_degradation, MMP13_production, MMP2_production, ADAMTS5_production, p38_phosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IL1} = v_{37} + v_{41} + v_{44} + v_{46} + v_{49} + v_{58} - v_{37} - v_{42} - v_{44} - v_{46} - v_{49} - v_{58}$$
(257)

7.24 Species Lys_A

Initial amount 40 item

This species takes part in eight reactions (as a reactant in InhibitLysosome, Removal_DamP_by_Autophagy, Lysosome_damage_by_ROS and as a product in ActivateLysosome, Removal_DamP_by_Autophagy and as a modifier in InhibitLysosome, Removal_DamP_by_Autophagy, Lysosome_damage_by_ROS).

$$\frac{d}{dt}Lys_A = |v_7| + |v_{32}| - |v_8| - |v_{32}| - |v_{64}|$$
(258)

7.25 Species Lys_I

Initial amount 360 item

This species takes part in four reactions (as a reactant in ActivateLysosome and as a product in InhibitLysosome, Lysosome_damage_by_ROS and as a modifier in ActivateLysosome).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Lys}_{-}\mathrm{I} = |v_8| + |v_{64}| - |v_7| \tag{259}$$

7.26 Species MMP13

Initial amount 0 item

This species takes part in six reactions (as a reactant in MMP13_removal, Collagen_degradation and as a product in Collagen_degradation, MMP13Activation and as a modifier in MMP13-removal, Collagen_degradation).

$$\frac{d}{dt}MMP13 = |v_{52}| + |v_{113}| - |v_{45}| - |v_{52}|$$
(260)

7.27 Species MMP2

Initial amount 0 item

This species takes part in six reactions (as a reactant in MMP2_degradation, TgfbActivationByMMP2 and as a product in MMP_activation, TgfbActivationByMMP2 and as a modifier in MMP2-_degradation, TgfbActivationByMMP2).

$$\frac{\mathrm{d}}{\mathrm{d}t} MMP2 = |v_{47}| + |v_{69}| - |v_{48}| - |v_{69}| \tag{261}$$

7.28 Species NatP

Initial amount 1500 item

This species takes part in three reactions (as a reactant in Protein_Damage_by_ROS and as a product in Protein_synthesis and as a modifier in Protein_Damage_by_ROS), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NatP} = 0\tag{262}$$

7.29 Species NFkB

Initial amount 0 item

This species takes part in seven reactions (as a reactant in NFkB_inactivation, NFkB_activation and as a product in IkB_degradation_via_ROS, IkB_degradation_via_IL1, NFkB_dephosphorylation and as a modifier in NFkB_inactivation, NFkB_activation).

$$\frac{d}{dt}NFkB = |v_{36}| + |v_{37}| + |v_{62}| - |v_{38}| - |v_{61}|$$
(263)

7.30 Species NFkB_P

Initial amount 0 item

This species takes part in 15 reactions (as a reactant in RAGE_upregulation_byNFkB, IL1_production, IkB_production, SOD_synthesis, NFkB_dephosphorylation and as a product in RAGE_upregulation_byNFkB, IL1_production, IkB_production, SOD_synthesis, NFkB_activation and as a modifier in RAGE_upregulation_byNFkB, IL1_production, IkB_production, SOD_synthesis, NFkB_dephosphorylation).

$$\frac{d}{dt}NFkB_{P} = v_{40} + v_{41} + v_{43} + v_{55} + v_{61} - v_{40} - v_{41} - v_{43} - v_{55} - v_{62}$$
 (264)

7.31 Species p38

Initial amount 100 item

This species takes part in five reactions (as a reactant in p38_phosphorylation, p38_phosphorylation-_via_ROS and as a product in p38_dephosphorylation and as a modifier in p38_phosphorylation, p38_phosphorylation_via_ROS).

$$\frac{\mathrm{d}}{\mathrm{d}t}p38 = |v_{60}| - |v_{58}| - |v_{59}| \tag{265}$$

7.32 Species p38_P

Initial amount 0 item

This species takes part in 13 reactions (as a reactant in CaspaseActivationBy_p38, p38-dephosphorylation, NFkB_activation, ROS_production_by_p38_P and as a product in CaspaseActivationBy_p38, p38_phosphorylation, p38_phosphorylation_via_ROS, NFkB_activation, ROS_production_by_p38_P and as a modifier in CaspaseActivationBy_p38, p38_dephosphorylation, NFkB_activation, ROS_production_by_p38_P).

$$\frac{d}{dt}p38P = v_3 + v_{58} + v_{59} + v_{61} + v_{63} - v_3 - v_{60} - v_{61} - v_{63}$$
 (266)

7.33 Species proMMP13

Initial amount 0 item

This species takes part in four reactions (as a reactant in MMP13Activation and as a product in MMP13_production, MMP13InductionByRunx2 and as a modifier in MMP13Activation).

$$\frac{d}{dt} \text{proMMP13} = |v_{44}| + |v_{110}| - |v_{113}| \tag{267}$$

7.34 Species proMMP2

Initial amount 0 item

This species takes part in three reactions (as a reactant in MMP_activation and as a product in MMP2_production and as a modifier in MMP_activation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{proMMP2} = v_{46} - v_{47} \tag{268}$$

7.35 Species RAGE

Initial amount 0 item

This species takes part in seven reactions (as a reactant in ROS_production_by_RAGE, RAGE_inactivation and as a product in RAGE_activation, ROS_production_by_RAGE, RAGE_upregulation_byNFkB and as a modifier in ROS_production_by_RAGE, RAGE_inactivation).

$$\frac{d}{dt}RAGE = v_{34} + v_{35} + v_{40} - v_{35} - v_{39}$$
 (269)

7.36 Species ROS

Initial amount 2 item

This species takes part in 23 reactions (as a reactant in Bc12DegradationStressInduced, ROS_removal, Protein_Damage_by_ROS, IkB_degradation_via_ROS, ROS_removal_by_SOD, p38_phosphorylation_via_ROS, Lysosome_damage_by_ROS and as a product in Bc12DegradationStressInduced ROS_generation, Protein_Damage_by_ROS, ROS_production_by_RAGE, IkB_degradation_via_ROS, ROS_production_by_DamP, p38_phosphorylation_via_ROS, ROS_production_by_p38_P, Lysosome_damage_by_ROS and as a modifier in Bc12DegradationStressInduced, ROS_removal, Protein_Damage_by_ROS, IkB_degradation_via_ROS, ROS_removal_by_SOD, p38_phosphorylation_via_ROS, Lysosome_damage_by_ROS).

$$\frac{d}{dt}ROS = v_{11} + v_{29} + v_{31} + v_{35} + v_{36} + v_{53} + v_{59} + v_{63} + v_{64} - v_{11} - v_{30} - v_{31} - v_{36} - v_{57} - v_{59} - v_{64}$$
(270)

7.37 Species Runx2_A

Initial amount 0 item

This species takes part in six reactions (as a reactant in Runx2_InhibitionBySmad2, MMP13InductionByRunx2 and as a product in Runx2ActivationBySmad1, MMP13InductionByRunx2 and as a modifier in Runx2_InhibitionBySmad2, MMP13InductionByRunx2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Runx2}_{-}\mathrm{A} = |v_{109}| + |v_{110}| - |v_{102}| - |v_{110}| \tag{271}$$

7.38 Species Runx2_I

Initial amount 100 item

This species takes part in three reactions (as a reactant in Runx2ActivationBySmad1 and as a product in Runx2_InhibitionBySmad2 and as a modifier in Runx2ActivationBySmad1).

$$\frac{d}{dt}Runx2_{-}I = v_{102} - v_{109}$$
 (272)

7.39 Species Smad1

Initial amount 600 item

This species takes part in four reactions (as a reactant in Smad1Activation and as a product in Smad1Dephosphorylation, Smad1DephosphorylationViaSmad7 and as a modifier in Smad1Activation).

$$\frac{d}{dt} \text{Smad1} = |v_{105}| + |v_{106}| - |v_{104}| \tag{273}$$

7.40 Species Smad1_P

Initial amount 0 item

This species takes part in eight reactions (as a reactant in Smad1Dephosphorylation, Smad1DephosphorylationV Smad1Smad4Binding and as a product in Smad1Activation, Smad1Smad4Release and as a modifier in Smad1Dephosphorylation, Smad1DephosphorylationViaSmad7, Smad1Smad4Binding).

$$\frac{d}{dt} \text{Smad1}_{P} = |v_{104}| + |v_{108}| - |v_{105}| - |v_{106}| - |v_{107}|$$
(274)

7.41 Species Smad1_P_Smad4

Initial amount 0 item

This species takes part in six reactions (as a reactant in Smad1Smad4Release, Runx2ActivationBySmad1 and as a product in Smad1Smad4Binding, Runx2ActivationBySmad1 and as a modifier in Smad1Smad4Release, Runx2ActivationBySmad1).

$$\frac{d}{dt} \text{Smad1}.\text{P}.\text{Smad4} = v_{107} + v_{109} - v_{108} - v_{109}$$
 (275)

7.42 Species Smad2

Initial amount 600 item

This species takes part in three reactions (as a reactant in Smad2Phosphorylation and as a product in Smad2DephosphorylationNuc and as a modifier in Smad2Phosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Smad2} = |v_{85}| - |v_{82}| \tag{276}$$

7.43 Species Smad2_P

Initial amount 0 item

This species takes part in six reactions (as a reactant in Smad2Smad4Binding, Smad2DephosphorylationNuc and as a product in Smad2Phosphorylation, Smad2PSmad4Release and as a modifier in Smad2Smad4Binding, Smad2DephosphorylationNuc).

$$\frac{d}{dt} \text{Smad2_P} = |v_{82}| + |v_{84}| - |v_{83}| - |v_{85}|$$
(277)

7.44 Species Smad2_P_Smad4

Initial amount 0 item

This species takes part in 15 reactions (as a reactant in Smad2PSmad4Release, Smad7Synthesis, Sox9Activation, Collagen2TranscriptionBySmad2Smad4, Runx2_InhibitionBySmad2 and as a product in Smad2Smad4Binding, Smad7Synthesis, Sox9Activation, Collagen2TranscriptionBySmad2Runx2_InhibitionBySmad2 and as a modifier in Smad2PSmad4Release, Smad7Synthesis, Sox9Activation, Collagen2TranscriptionBySmad2Smad4, Runx2_InhibitionBySmad2).

$$\frac{d}{dt} \text{Smad2_P_Smad4} = v_{83} + v_{86} + v_{87} + v_{95} + v_{102} - v_{84} - v_{86} - v_{87} - v_{95} - v_{102}$$
(278)

7.45 Species Smad4

Initial amount 600 item

This species takes part in six reactions (as a reactant in Smad2Smad4Binding, Smad1Smad4Binding and as a product in Smad2PSmad4Release, Smad1Smad4Release and as a modifier in Smad2Smad4Binding, Smad1Smad4Binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Smad4} = |v_{84}| + |v_{108}| - |v_{83}| - |v_{107}| \tag{279}$$

7.46 Species Smad7

Initial amount 0 item

This species takes part in twelve reactions (as a reactant in Tgfb_Alk5_BindingSmad7, Smad1Dephosphorylation Tgfb_Alk1_Alk5_BindingSmad7, Smad7Degradation and as a product in Tgfb_Alk5_Smad7Release, Smad7Synthesis, Smad1DephosphorylationViaSmad7, Tgfb_Alk1_Alk5_Smad7Release and as a modifier in Tgfb_Alk5_BindingSmad7, Smad1DephosphorylationViaSmad7, Tgfb-Alk1_Alk5_BindingSmad7, Smad7Degradation).

$$\frac{d}{dt} \text{Smad7} = |v_{78}| + |v_{86}| + |v_{106}| + |v_{115}| - |v_{77}| - |v_{106}| - |v_{114}| - |v_{117}|$$
(280)

7.47 Species SOD

Initial amount 2 item

This species takes part in six reactions (as a reactant in SOD_degradation, ROS_removal_by_SOD and as a product in SOD_synthesis, ROS_removal_by_SOD and as a modifier in SOD_degradation, ROS_removal_by_SOD).

$$\frac{d}{dt}SOD = |v_{55}| + |v_{57}| - |v_{56}| - |v_{57}|$$
(281)

7.48 Species Sox9

Initial amount 100 item

This species takes part in six reactions (as a reactant in Sox9Activation, Sox9Degradation and as a product in Sox9Inactivation, Sox9Translation and as a modifier in Sox9Activation, Sox9Degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Sox}9 = |v_{88}| + |v_{92}| - |v_{87}| - |v_{93}| \tag{282}$$

7.49 Species Sox9_A

Initial amount 0 item

This species takes part in twelve reactions (as a reactant in Sox9Inactivation, Sox9EnhancedTranscription, Collagen2EnhancedTranscriptionBySox9, AggrecanEnhancedTranscription and as a product in Sox9Activation, Sox9EnhancedTranscription, Collagen2EnhancedTranscriptionBySox9, AggrecanEnhancedTranscription and as a modifier in Sox9Inactivation, Sox9EnhancedTranscription, Collagen2EnhancedTranscriptionBySox9, AggrecanEnhancedTranscription).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Sox9}_{-}\mathrm{A} = |v_{87}| + |v_{90}| + |v_{94}| + |v_{98}| - |v_{88}| - |v_{90}| - |v_{94}| - |v_{98}| \tag{283}$$

7.50 Species Sox9mRNA

Initial amount 10 item

This species takes part in seven reactions (as a reactant in Sox9mRNA_Degradation, Sox9Translation and as a product in Sox9BasalTranscription, Sox9EnhancedTranscription, Sox9Translation and as a modifier in Sox9mRNA_Degradation, Sox9Translation).

$$\frac{d}{dt}Sox9mRNA = |v_{89}| + |v_{90}| + |v_{92}| - |v_{91}| - |v_{92}|$$
(284)

7.51 Species Tgfb_A

Initial amount 0 item

This species takes part in ten reactions (as a reactant in TgfbInactivation, TgfbReceptorBindingAlk5, TgfbReceptorBindingAlk1 and as a product in TgfbActivationByIntegrin, TgfbActivationByMMP2, TgfbReceptorRelease, TgfbAlk1Release and as a modifier in TgfbInactivation, TgfbReceptorBindingAlk1 TgfbReceptorBindingAlk1).

$$\frac{d}{dt} Tgfb_A = |v_{68}| + |v_{69}| + |v_{76}| + |v_{81}| - |v_{70}| - |v_{75}| - |v_{80}|$$
(285)

7.52 Species Tgfb_Alk1_Alk5

Initial amount 0 item

This species takes part in nine reactions (as a reactant in TgfbAlk1Release, Smad1Activation, Tgfb_Alk1_Alk5_BindingSmad7 and as a product in TgfbReceptorBindingAlk1, Smad1Activation, Tgfb_Alk1_Alk5_Smad7Release and as a modifier in TgfbAlk1Release, Smad1Activation, Tgfb_Alk1_Alk5_BindingSmad7).

$$\frac{d}{dt} Tgfb_Alk1_Alk5 = |v_{80}| + |v_{104}| + |v_{115}| - |v_{81}| - |v_{104}| - |v_{114}|$$
(286)

7.53 Species Tgfb_Alk1_Alk5_Smad7

Initial amount 0 item

This species takes part in five reactions (as a reactant in Tgfb_Alk1_Alk5_Smad7Release, Alk1_Smad7Degradation and as a product in Tgfb_Alk1_Alk5_BindingSmad7 and as a modifier in Tgfb_Alk1_Alk5_Smad7Release, Alk1_Smad7Degradation).

$$\frac{d}{dt} Tgfb_Alk1_Alk5_Smad7 = |v_{114}| - |v_{115}| - |v_{116}|$$
(287)

7.54 Species Tgfb_Alk5_dimer

Initial amount 0 item

This species takes part in nine reactions (as a reactant in TgfbReceptorRelease, Tgfb_Alk5-_BindingSmad7, Smad2Phosphorylation and as a product in TgfbReceptorBindingAlk5, Tgfb_Alk5_Smad7Release, Smad2Phosphorylation and as a modifier in TgfbReceptorRelease, Tgfb_Alk5_BindingSmad7, Smad2Phosphorylation).

$$\frac{d}{dt} Tgfb_Alk5_dimer = v_{75} + v_{78} + v_{82} - v_{76} - v_{77} - v_{82}$$
(288)

7.55 Species Tgfb_Alk5_dimer_Smad7

Initial amount 0 item

This species takes part in five reactions (as a reactant in Tgfb_Alk5_Smad7Release, Alk5_Smad7Degradation and as a product in Tgfb_Alk5_BindingSmad7 and as a modifier in Tgfb_Alk5_Smad7Release, Alk5_Smad7Degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Tgfb_Alk5_dimer_Smad7} = |v_{77}| - |v_{78}| - |v_{79}| \tag{289}$$

7.56 Species AggFrag

Initial amount 0 item

This species takes part in one reaction (as a product in Aggrecan_degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{AggFrag} = v_{51} \tag{290}$$

7.57 Species Aggrecan

Initial amount 0 item

This species takes part in three reactions (as a reactant in AggrecanCollagen2Binding and as a product in AggrecanTranslation and as a modifier in AggrecanCollagen2Binding).

$$\frac{\mathrm{d}}{\mathrm{d}t} Aggrecan = |v_{100}| - |v_{101}| \tag{291}$$

7.58 Species Aggrecan_Collagen2

Initial amount 1000 item

This species takes part in three reactions (as a reactant in Aggrecan_degradation and as a product in AggrecanCollagen2Binding and as a modifier in Aggrecan_degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Aggrecan_Collagen2} = |v_{101}| - |v_{51}| \tag{292}$$

7.59 Species ColFrag

Initial amount 0 item

This species takes part in one reaction (as a product in Collagen_degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ColFrag} = v_{52} \tag{293}$$

7.60 Species Collagen2

Initial amount 0 item

This species takes part in six reactions (as a reactant in Collagen_degradation, AggrecanCollagen2Binding and as a product in Aggrecan_degradation, Collagen2Translation and as a modifier in Collagen_degradation, AggrecanCollagen2Binding).

$$\frac{d}{dt} \text{Collagen2} = |v_{51}| + |v_{97}| - |v_{52}| - |v_{101}|$$
(294)

7.61 Species Integrin

Initial amount 0 item

This species takes part in six reactions (as a reactant in IntegrinInactivation, TgfbActivationByIntegrin and as a product in IntegrinActivationByMechanicalStress, TgfbActivationByIntegrin and as a modifier in IntegrinInactivation, TgfbActivationByIntegrin).

$$\frac{d}{dt}Integrin = v_{65} + v_{68} - v_{66} - v_{68}$$
 (295)

7.62 Species Tgfb_I

Initial amount 200 item

This species takes part in seven reactions (as a reactant in TgfbActivationByIntegrin, TgfbActivationByMMP2 and as a product in TgfbInactivation, Alk5_Smad7Degradation, Alk1_Smad7Degradation and as a modifier in TgfbActivationByIntegrin, TgfbActivationByMMP2).

$$\frac{d}{dt} Tgfb I = |v_{70}| + |v_{79}| + |v_{116}| - |v_{68}| - |v_{69}|$$
(296)

7.63 Species Sink

SBO:0000291 empty set

Initial amount 0 item

This species takes part in 18 reactions (as a product in Bcl2Degradation, Bcl2DegradationStressInduced, Bcl2DegradationCaspaseInduced, ROS_removal, RAGE_inactivation, IL1_degradation, MMP13_removal, MMP2_degradation, ADAMTS5_removal, SOD_degradation, IntegrinInactivation, Sox9mRNA_Degradation, Sox9Degradation, Col2mRNA_Degradation, AcanmRNA_Degradation, Alk5Degradation, Alk1Degradation, Smad7Degradation), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Sink} = 0\tag{297}$$

7.64 Species Source

SBO:0000291 empty set

Initial amount 1 item

This species takes part in 16 reactions (as a reactant in Bcl2Synthesis, ROS_generation, Production_of_AGEproducts, Protein_synthesis, IntegrinActivationByMechanicalStress, Alk5Synthesis, Sox9BasalTranscription, Alk1Synthesis and as a modifier in Bcl2Synthesis, ROS_generation, Production_of_AGEproducts, Protein_synthesis, IntegrinActivationByMechanicalS

Alk5Synthesis, Sox9BasalTranscription, Alk1Synthesis), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Source} = 0 \tag{298}$$

7.65 Species IntegrinCount

Initial amount 0 item

This species takes part in one reaction (as a product in IntegrinActivationByMechanicalStress).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IntegrinCount} = v_{65} \tag{299}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000291 empty set: Entity defined by the absence of any actual object. An empty set is often used to represent the source of a creation process or the result of a degradation process.

SBO:0000607 dimer: A macromolecular complex composed of two monomeric units, which may or may not be identical. Monomers are usually non-covalently bound

 $\mathfrak{BML2}^{a}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany