

2N4003K

N-Channel Enhancement Mode Power MOSFET

Features:

- * Low Gate Voltage Threshold Vgs(th) to Facilitate Drive Circuit Design.
- * Low Gate Charge for Fast Switching.
- * ESD Protected Gate.
- * Minimum Breakdown Voltage Rating of 30V.

Application:

- * Level Shifters
- * Level Switches
- * Low Side Load Switches
- * Portable Applications

DRAIN CURRENT 0.5 AMPERES DRAIN SOUCE VOLTAGE 30 VOLTAGE

Maximum Ratings(T_A=25℃ Unless Otherwise Specified)

Rating	3	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	30	V		
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current ¹ , Steady State	I-	0.5	Δ.		
	(T _A =85°C)	I _D	0.37	A	
Power Dissipation ¹ ,Steady State		P _D	0.69	W	
Continuous Drain Current ¹ ,t<10s	(T _A =25°C)	1-	0.56	А	
	(T _A =85°C)	I _D	0.40		
Power Dissipation ¹ ,t<5s		P _D	0.83	W	
Pulsed Drain Current		I _{DM}	1.7	А	
Maximum Junction-ambient	,Steady State ¹ ,t<10s ¹ ,Steady State ²	R _{ÐJA}	180 150 300	°C/W	
Operating Junction Temperature Range		TJ	+150	°C	
Storage Temperature Range		T _{stg}	-55~+150	°C	
Source Current (Body Diode)		Is	1.0	Α	
Lead Temperature for Soldering Purposes	(1/8" from case 10s)	TL	260	°C	

Note: 1. Surface—mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

Device Marking

2N4003K = TR8

^{2.} Surface—mounted on FR4 board using the minimum recommended pad size.

Electrical Characteristics(T_A=25°C Unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
----------------	--------	-----	-----	-----	------	--

Static

Drain-Source Breakdown Voltage V_{GS} =0, I_D =100 μ A	V _{(BR)DSS}	30	-	-	V
Gate-Source Threshold Voltage ³ $V_{DS} = V_{GS}, I_D = 250 \mu A$	V _{GS(Th)}	0.8	-	1.6	V
Gate-Source Leakage Current $V_{GS} = \pm 10V$	I _{GSS}	-	-	±1.0	μΑ
Zero Gate Voltage Drain Current ($T_J = 25^{\circ}C$) $V_{DS} = 30V, V_{GS} = 0$	I _{DSS}	-	-	1	μΑ
Drain-Source On-Resistance ³ $V_{GS}=2.5V,I_{D}=10mA$ $V_{GS}=4.0V,I_{D}=10mA$	R _{DS(on)}	-	1.5 1.0	2.0 1.5	Ω
Forward Transconductance ³ V_{DS} =3.0 V , I_{D} =10 m A	9 _{fs}	-	0.33	-	S

Dynamic

Input Capacitance V _{GS} =0V, V _{DS} =5.0V, f=1.0MHz	Ciss	-	21	-	
Output Capacitance V_{GS} =0V, V_{DS} =5.0V, f=1.0MHz	Coss	-	19.7	-	pF
Reverse Transfer Capacitance V _{GS} =0V, V _{DS} =5.0V, f=1.0MHz	Crss	-	8.1	-	

Switching

Turn-on Delay Time ⁴ V_{GS} =4.5V, V_{DD} =5.0V, I_D =0.1A, R_G =50 Ω	t _d (on)	-	16.7	-	
Rise Time ⁴ V_{GS} =4.5V, V_{DD} =5.0V, I_D =0.1A, R_G =50 Ω	tr	-	47.9	-	ns
Turn-off Delay Time ⁴ V_{GS} =4.5V, V_{DD} =5.0V, I_D =0.1A, R_G =50 Ω	t _d (off)	-	65.1	-	113
Fall Time ⁴ V_{GS} =4.5V, V_{DD} =5.0V, I_D =0.1A, R_G =50 Ω	tf	-	64.2	-	
Total Gate Charge V_{GS} =5.0V, V_{DS} =24V, I_{D} =0.1A	Qg	-	1.15	-	
Threshold Gate Charge V_{GS} =5.0V, V_{DS} =24V, I_{D} =0.1A	Q _{g(TH)}	-	0.15	-	nC
Gate-Source Charge V_{GS} =5.0V, V_{DS} =24V, I_{D} =0.1A	Q _{gs}	-	0.32	-	
Gate-Drain Change V_{GS} =5.0V, V_{DS} =24V, I_{D} =0.1A	Q _{gd}	-	0.23	-	

Source-Drain Diode Characteristics

Forward On Voltage $V_{GS} = 0V$, $I_S = 10mA$	T _J = 25°C T _J = 125°C	V _{SD}	-	0.65 0.45	0.7	V
Reverse Recovery Time $V_{GS} = 0V$, $I_S = 10$ mA, dls/dt=8A/ μ s		t _{rr}	-	14	-	nS

Note : 3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

^{4.} Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25 °C unless otherwise noted)

1.6 $V_{DS} \ge 10 \text{ V}$ $T_{J} = -55 ^{\circ}\text{C}$ $T_{J} = 25 ^{\circ}\text{C}$ $T_{J} = 125 ^{\circ}\text{C}$ $T_{J} = 125 ^{\circ}\text{C}$ V_{GS} , GATE TO SOURCE VOLTAGE (V)

Figure 1. On Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On Resistance vs. Gate to Source Voltage

Figure 4. On Resistance vs. Drain Current and Temperature

Figure 5. On Resistance Variation with Temperature

Figure 6. Drain to Source Leakage Current vs. Voltage

Figure 7. Capacitance Variation

Figure 8. Gate to Source & Drain to Source Voltage vs. Total Charge

Figure 9. Diode Forward Voltage vs. Current

SOT-23 Outline Dimension

Unit:mm

SOT-23				
Dim	Min	Max		
A	0.35	0.51		
В	1.19	1.40		
C	2.10	3.00		
D	0.85	1.05		
E	0.46	1.00		
G	1.70	2.10		
H	2.70	3.10		
J	0.01	0.13		
K	0.89	1.10		
L	0.30	0.61		
M	0.076	0.25		