数理统计学习笔记 大作业(一)完成指导

慕弋云子

December 4, 2020

关于学习笔记的常规内容,可见本文 GitHub Repo 的地址,在这里你可以找到之前或之后的内容,不会迷路: www.github.com/Muyiyunzi/ShuLiTongJi_BUAA

本文旨在帮助大家事半功倍地完成大作业的相关内容,对于个中原理,我们可以不求甚解(孙老师的八字方针原话:点到为止,独立完成),虽然百度上有一些之前学长学姐的作业,但是毕竟是付费的,大家还得照猫画虎、邯郸学步,排个版也会花费不少的功夫。

于是,我在 GitHub Repo 中上传了.docx 的文件,大家可以借此省去排版的功夫,照着这篇文档,也可以"傻瓜式"地快速完成这份大作业。

孙老师的原话是,"如果查重率到了七八十,那我可就得处理你了",所以我的理解是: 只要数据使用的不同,那些原理什么的抄一抄(注好引用),用软件跑一下得到结果自己分析分析,就一定不会被查。另外孙老师还说,要结构完整,敢下判断,所以说除了数据一定要自己找一下之外,剩下的就是按照这篇《完成指导》所给的图去索骥,只要结构完整,就绝对不会为难大家。

1 SPSS 的安装

这个大作业的主要目的是**让大家学习使用统计软件**。而 SPSS 这个软件易于破解,操作清晰,用于完成大作业简直再合适不过。作为一个六系学生我当然也想过用 Python,但想了想研究调库也得有段时间,还是不如 SPSS 一键生成来得方便。所以在此墙裂推荐大家使用 SPSS。

我所使用的软件版本是 25,各个版本的操作应该都是大同小异,由于我使用的是 Windows 系统,所以其他系统的童鞋就得自己找一下破解,并跳过本节的剩余内容了。在这里我贴一个 Windows 系统的度盘链接方便大家直接下载:提取码: beay。按照下面的指示完成安装和破解。

下载后双击运行.exe 文件即可,是否安装 Python 的补充文件、路径等可以自行随缘选择。安装完毕后,不要立即激活,然后将 crack.rar 解压,将 crack 目录下的 lservrc 文件替换到安装目录下。例如我 SPSS 的安装路径是 D:\SPSS\,那么就将文件复制到这个路径下并选择替换。

图 1: IBM SPSS 的安装界面

替换完毕后,可以选择使用搜索栏(或 Win+S)搜索 SPSS,或是在安装路径下打开 Stats.exe 即可运行 SPSS。

2 数据的选择、处理与查找

2.1 数据查找

这里主要推荐两个地方吧。一个是UCI Machine Learning Repository,这里面有很多用于机器学习的数据集。点进"View All Dataset"的链接中,左侧的 Default Task 框框中,有一个 Regression,大家可以自行选择数据。

图 2: UCI ML Repo 的 Regression Task 界面

再一个就是data fountain,在顶部菜单栏处点击数据集即可进行检索。这里面的数据标签大多是汉化过的,不过数据比较杂,可能会有很多非数值特征,使用起来大多需要处理(如何选择和处理见下面两小节)。不过好的是这里面的检索系统还是挺靠谱的,你可以在此检索一些想要的数据,也可以搜索像"价格"、"销售"之类的字眼,会更加利于回归任务。

基本上这两个 source 就可以让大家的数据不重样了。你可别小看这两个数据集,一个 Air Quality 就能有 9000 多条数据,你选个 100 条出来就差不多了,这要是也能有哪位兄弟能跟你选重样了,那可真是……

2.2 数据选择

有了数据源,就要学会如何选择,这样才能更好地完成大作业。在数据的选择上,我认为需要注意 两点。

一、数据一定要是**数值特征**,否则没法做回归。

举个例子,我想做笔记本电脑价格的多元线性回归,可以预见到,内存越大、频率越高对价格肯定是正增益的,屏幕分辨率越高、重量越轻、厚度越薄等因素肯定也是正增益的,这些数据都是**数值的**。这样回归出来的效果好吗?估计是不好的。就算好,也可能回归出来那个常量很大,因为影响电脑的主要因素在于 CPU、显卡这些指标,而像 i3、i5、i7,AMD 还是 Intel,6800XT 还是 3080,这些东西是很难以数值去表示的。如果你的数据集在这些数据上波动很大(比如你拿一个 i5 的 960 和一个 i9 的 3080 去比,就算他们内存一样、薄厚重量差不多,价位肯定也是天差地别,而你把这些因素忽略掉了),那么回归的效果肯定是不好的,遇到这种情况的话我给两条建议:

- 1. 放弃整个数据集,正所谓 there's plenty of fish in the sea,天涯何处无芳草嘛。
- 2. 放弃这项非数值特征,反正按照孙老师的说法,点到为止,回归出来线性程度不好就大胆拒绝,有结论就行。
- 3. 对这些非数值特征做数值化。比如 CPU 和 GPU 的型号可以对应地换成他们在某个 benchmark 上的评分,然后再去做回归即可,当然了,处理数据会有一些工作量,这就要看你的时间精力,以及对这项工作的喜爱程度了。
 - 二、数据要尽量有实际意义,一是方便你写论文,二也算是让自己做的东西有些意义。

这是一个数据量爆炸的时代,但并不一定所有数据都有用。比如我手头有近些年英国足球超级联赛的数据,我该怎么入手分析呢?也就是一个核心的问题:如何确定因变量,以及回归到底有什么用?这才是这个大作业需要把握的核心问题。

我认为,回归就是为了确定是不是线性关系,以及能够为将来的数据做出预测。

比如射门数对于进球数的贡献是不是线性增益?是我射门数越多进球概率就会越大,还是说呈指数性地,我就算射几十上百次也不一定进的了几个球,这是「确定线性关系」。

如果我做完回归后,得到了进球数与射门数、角球数、犯规数等诸多指标的线性拟合式,我作为一个教练是不是就可以更好地布置战术,比如犯规对进球数是正增益我就要多让球员犯规;我作为一个赌狗,是不是就可以更好地根据比赛数据预测比赛结果,进行相应地投注指导;我作为一个显卡爱好者,是不是就可以根据这些计算单元数量、吞吐量等指标来预测显卡"香不香",这些都是所谓「预测」。

带着这些目的,就可以更好地选择数据和选择相关变量,至于你要确定什么关系,要做何种预测,就是自己的事情了。

2.3 数据处理

这里的数据处理主要是针对于非数值特征而言的。我建议大家使用 excel 去处理数据,还是比较便捷的,使用一些基本的逻辑语句即可。在这里我以我自己的大作业为例,教大家一些简单的数据处理方法(如果不需要处理,或 excel 技巧高超,此节内容跳过即可)。

比如以下是我拿到的原始数据:

A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
1 Div	Date	HomeTear	AwayTeam FTH	HG	FTAG	FTR	HTHG	HTAG	HTR	Referee	HS	AS	HST	AST	HF	AF	HC /
2 E0	2009/8/15 0:00	Aston Villa	Wigan	0		2 A)	1 A	M Clattent	11	14	5		15	14	4
3 E0	2009/8/15 0:00	Blackburn	Man City	0		2 A	()	1 A	M Dean	17	8	9	į	12	(5
4 E0	2009/8/15 0:00	Bolton	Sunderland	0		1 A)	1 A	A Marriner	11	20	3	13	16	10) 4
5 E0	2009/8/15 0:00	Chelsea	Hull	2		1 H		l	1 D	A Wiley	26		12	3	13	15	12
6 E0	2009/8/15 0:00	Everton	Arsenal	1		6 A)	3 A	M Halsey	8	15	5	9	11	13	4
7 E0	2009/8/15 0:00	Portsmout	Fulham	0		1 A)	1 A	M Atkinsor	16	9	4	3	11	18	6
8 E0	2009/8/15 0:00	Stoke	Burnley	2		0 H		2	0 H	S Bennett	12	9	5		15	10	3
9 E0	2009/8/15 0:00	Wolves	West Ham	0		2 A)	1 A	C Foy	19	16	11	13	9		8
10 E0	2009/8/16 0:00	Man Unite	Birminghar	1		0 H		L	0 H	L Mason	26	6	17	4	13	1	13
11 E0	2009/8/16 0:00	Tottenham	Liverpool	2		1 H		L	0 H	P Dowd	17	6	11	3	14	16	6
12 E0	2009/8/18 0:00	Sunderland	Chelsea	1		3 A		L	0 H	S Bennett	4	20	3	(14	10	1
13 E0	2009/8/18 0:00	Wigan	Wolves	0		1 A)	1 A	M Jones	18	9	5	(8	21	. 4
14 EO	2009/8/19 0:00	Birmingha	Portsmout	1		0 H)	0 D	L Probert	9	9	5	4	11	20) 4
15 EO	2009/8/19 0:00	Burnley	Man Unite	1		0 H		l	0 H	A Wiley	8	18	2	9	8	12	2 1
16 E0	2009/8/19 0:00	Hull	Tottenham	1		5 A		L	3 A	C Foy	9	18	7	12	2 23	13	6
17 EO	2009/8/19 0:00	Liverpool	Stoke	4		0 H		2	0 H	P Walton	18	6	13	3	10	9	11
18 E0	2009/8/22 0:00	Arsenal	Portsmout	4		1 H		2	1 H	S Bennett	19	9	16	4	9	10	8 (
19 E0	2009/8/22 0:00	Birmingha	Stoke	0		0 D)	0 D	C Foy	8	13	6	3	8	13	3
20 E0	2009/8/22 0:00	Hull	Bolton	1		0 H)	0 D	M Jones	12	20	5	10	19	19	4
21 E0	2009/8/22 0:00	Man City	Wolves	1		0 H		L	0 H	L Mason	16	10		2	7	11	. 5
22 E0	2009/8/22 0:00	Sunderland	Blackburn	2		1 H		l	1 D	A Wiley	8	18	5	í	12	14	. 0
23 E0	2009/8/22 0:00	Wigan	Man Unite	0		5 A)	0 D	H Webb	16			13	3 11	8	3
24 E0	2009/8/23 0:00	Burnley	Everton	1		0 H		L	0 H	P Dowd	8	17	4	11	11	13	3
25 E0	2009/8/23 0:00	Fulham	Chelsea	0		2 A	()	1 A	A Marriner		12		4	11	10) 4
26 E0	2009/8/23 0:00	West Ham	Tottenham	1		2 A	()	0 D	M Clattent	17	17	8	10	13	11	. 4
27 E0	2009/8/24 0:00	Liverpool	Aston Villa	1		3 A	()	2 A	M Atkinson	21	7	12	4	15	11	10

图 3: 原始数据

原始的数据是从 data fountain 上获取的(去查了原始网站),是每轮比赛的对阵情况,以及对应的一些比赛数据。那么首先要做的就是去除冗余信息,比如每轮的对阵情况太过杂乱,要么我就单取出几轮,去分析整个联赛的情况;要么我就单独取出一支队伍,然后去考察这支队伍的情况。

这里我是通过查找操作,手工高亮出某支球队(Arsenal)的比赛数据(毕竟一个赛季也就 38 场,我觉得手工操作量不大)。然后将这些英文的特征对应原始网站提供的 notes.text(大部分数据集也都会提供类似的说明文件)汉化一下,并去除冗余信息后大概是这个样子:

1	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S
1 D	iv	Date	Time	HomeTear	AwayTeam	全场主队过	全场客队进	全场结果	半场主队证	半场客队过	半场结果	主裁判	主队射门数	客队射门	主队射正数	客队射正数	主队犯规数	字队犯规数:	主队角球 🔻
2 E	0	11/08/201	14:00	Newcastle	Arsenal	0	1	A	0	0	D	M Atkinsor	9	8	2	2	12	7	5
3 E	0	17/08/201	12:30	Arsenal	Burnley	2	1	H	1	1	D	M Dean	16	18	9	5	13	11	10
4 E	0	24/08/201	17:30	Liverpool	Arsenal	3	1	Н	1	0	Н	A Taylor	25	9	5	3	8	5	6
5 E	0	01/09/201	16:30	Arsenal	Tottenham	2	2	D	1	2	A	M Atkinsor	26	13	8	9	13	19	11
6 E	0	15/09/201	16:30	Watford	Arsenal	2	2	D	0	2	A	A Taylor	31	10	7	4	14	4	7
7 E	0	22/09/201	16:30	Arsenal	Aston Villa	3	2	Н	0	1	A	J Moss	21	14	6	9	13	15	9
8 E	0	30/09/201	20:00	Man Unite	Arsenal	1	1	D	1	0	Н	K Friend	16	10	4	5	18	13	8
9 E	0	06/10/201	14:00	Arsenal	Bournemo	1	0	H	1	0	H	M Atkinsor	12	10	2	2	12	6	14
10 E	0	21/10/201	20:00	Sheffield U	Arsenal	1	0	Н	1	0	Н	M Dean	8	9	2	3	10	12	7
11 E	0	27/10/201	16:30	Arsenal	Crystal Pala	2	2	D	2	1	H	M Atkinsor	15	10	6	4	18	9	12
12 E	0	02/11/201	15:00	Arsenal	Wolves	1	1	D	1	0	H	M Oliver	10	25	4	8	6	15	8
13 E	0	09/11/201	17:30	Leicester	Arsenal	2	0	Н	0	0	D	C Kavanag	19	8	7	1	10	10	5
14 E	0	23/11/201	15:00	Arsenal	Southamp	2	2	D	1	1	D	S Attwell	12	21	. 5	6	13	19	6
15 E	0	01/12/201	14:00	Norwich	Arsenal	2	2	D	2	1	Н	P Tierney	15	16	8	7	8	10	7
16 E	0	05/12/201	20:15	Arsenal	Brighton	1	2	A	0	1	A	G Scott	12	20	5	9	10	11	9
17 E	0	09/12/201	20:00	West Ham	Arsenal	1	3	A	1	0	H	M Dean	11	10	4	3	12	6	4
18 E	0	15/12/201	16:30	Arsenal	Man City	0	3	A	0	3	A	P Tierney	6	14	1	7	9	24	3
19 E	0	21/12/201	12:30	Everton	Arsenal	0	0	D	0	0	D	K Friend	9	6	0	2	10	11	5
20 E	0	26/12/201	15:00	Bournemo	Arsenal	1	1	D	1	0	H	S Attwell	12	17	4	2	5	13	8
21 E	0	29/12/201	14:00	Arsenal	Chelsea	1	2		1	0		C Pawson	7	13	2	4	13	19	2
22 E	0	01/01/202	20:00	Arsenal	Man Unite	2	0	Н	2	0	H	C Kavanag	10	10	4	4	11	15	1
23 E	0	11/01/202	12:30	Crystal Pal	Arsenal	1	1	D	0	1	A	P Tierney	6	7	3	4	14	22	1
24 E	0	18/01/202	15:00	Arsenal	Sheffield U	1	1	D	1	0	H	M Dean	11	12	4	4	9	13	4
25 E	0	21/01/202	20:15	Chelsea	Arsenal	2	2	D	1	0	Н	S Attwell	19	2	8	2	11	6	17
26 E	0	02/02/202	14:00	Burnley	Arsenal	0	0		0	0		C Kavanag		13		2	8	11	5
27 E	0	16/02/202	16:30	Arsenal	Newcastle	4	0	Н	0	0	D	L Mason	15	10	7	2	15	9	5

图 4: 初步去除后

根据我作为一个足球狗的先验知识,客场作战肯定影响很大,我不想放弃掉这一信息,所以就单开了一栏表示是否客场。这里我将这个非数值特征二值化了——虽然武断了些,但也有好处:如果我们将客场以1表示,主场以0表示,那么最后分析出来的那个系数就应该是直接增益!倘若我的因变量是胜率,那么最后就能直接回归出,如果是客场就可以直接带来多少的胜率增加/减少,这是非常直观的。

这里可以使用 Excel 中的 IF 逻辑判断。选中某一个块,在其上输入判断语句:

其中 IF 语句的第一个分量表示判断条件,第二个分量为判断为真时此块的 value,第三个分量为判断为假时的 value(多说一句,所以这其实是个三目表达式啊),这里 E2 表示 E 列的第二个块,在我的数据中表示客场的球队。

=IF(E2='	=IF(E2="Arsenal",1,0)													
U	V	W	X	Υ	Z	AA	AB	AC	AD					
:队黄牌数	客队黄牌数	主队红牌数	客队红牌数	AvgH	AvgD	AvgA	是否客场							
1	3	0	0	4.49	3.82	1.79	=IF(E2="Ars	enal",1,0)						
2	1	0	0	1.33	5.49	9.48	IF(logical_	est , [value_if_true	e], [value_if_false])					
1	1	0	0	1.5	4.76	6.09								
3	5	0	0	2.38	3.63	2.9								
3	3	0	0	3.64	3.74	2.01								

图 5: IF 语句的使用

如果一切顺利的话,就会输出 1 或者 0,接下来要做的就是大家在 Excel 中都会的,将鼠标指针放到块的右下角,变成加号后按住左键往下拉,就可以神奇地自动逐行生成判断了。由此,我们便完成了将一个非数值特征二值化的操作。

此后还有一些对数据的运算,基本就是在 Excel 中敲公式了,如果不会敲公式的话,可以去查阅我的大作业以及文件夹中的.xlsx 文件,在此不再赘述。

再就是尽量选一些数字大的东西去回归(比如胜率能用 50% 就不用 0.5),这样回归出来的系数不至于太难看。就像我也放弃了进球数作为因变量,而是用博彩胜率这样一个阈值更大的数据作为因变量。由此我们便得到了最终的数据:

_ A	В	C	D	E	F	G	H	1	J	K	L	M
1 场次	是否客场	阿森纳射门数	阿森纳射正数	阿森纳犯规数	阿森纳角球数	阿森纳黄牌数	阿森纳红牌数	阿森纳获胜概率	阿森纳打平概率	阿森纳不败概率	阿森纳输球概率	获胜概率 (百分之)
2	1	1 8	3 2	2 7	3	3	3 (0.445	0.378	0.823	0.177	44.455
3	2	0 16	5 9	13	10	2	2 (0.582	0.337	0.918	0.082	58.160
4	3	1 9	9 3	5	4	1	1 (0.121	0.385	0.507	0.493	12.146
5	4	0 26	5 8	13	11	3	3 (0.325	0.407	0.733	0.267	32.548
6	5	1 10) 4	4	1		3 (0.388	0.398	0.786	0.214	38.765
7	6	0 21	. 6	13	9		5 1	0.542	0.355	0.897	0.103	54.236
8	7	1 10) 5	13	7	2	2 (0.266	0.398	0.663	0.337	26.577
9	8	0 12	2 2	12	14		1 (0.510	0.379	0.889	0.111	50.992
LO	9	1 9	9 3	12	12	4	4 (0.404	0.395	0.799	0.201	40.417
11	10	0 15	5 6	18	12	2	2 (0.515	0.367	0.882	0.118	51.467
12	11	0 10) 4	6	8	() (0.455	0.371	0.826	0.174	45.455
13	12	1 8	3 1	10	4	1	1 (0.212	0.403	0.614	0.386	21.193
14	13	0 12	2 5	13	6	6	5 (0.513	0.372	0.885	0.115	51.292
15	14	1 16	5 7	10	12		1 (0.409	0.417	0.825	0.175	40.869
16	15	0 12	2	10	9		3 (0.481	0.376	0.857	0.143	48.089
17	16	1 10) 3	6	3	() (0.364	0.426	0.790	0.210	36.373
18	17	0 6	5 1	. 9	3		1 (0.113	0.416	0.529	0.471	11.319
19	18	1 6	5 2	2 11	4	3	3 (0.259	0.418	0.677	0.323	25.947
20	19	1 17	7 2	13	3	4	4 (0.374	0.411	0.785	0.215	37.393
21	20	0 7	7 2	13	2		5 (0.263	0.417	0.680	0.320	26.286
22	21	0 10) 2	11	1	2	2 (0.296	0.412	0.708	0.292	29.558
23	22	1 7	7 2	22	4		3 1	0.424	0.391	0.815	0.185	42.366
24	23	0 11	. 4	9	4		1 (0.450	0.364	0.814	0.186	44.960
25	24	1 2	2 2	2 6	5		1 1	0.167	0.380	0.547	0.453	16.731
26	25	1 13	3 2	11	7	3	3 (0.403	0.380	0.783	0.217	40.323
.7	26	0 15	5 7	15	5	2	2 (0.561	0.335	0.896	0.104	56.145
18	27	0 9) 4	12	6	() (0.392	0.388	0.780	0.220	39.159
9	28	0 9) 2	11	6		1 (0.494	0.373	0.867	0.133	49.360
10	29	1 3	3 (1 1	0.090	0.368	0.458	0.542	9.024
1	30	1 13	3 6	8	7	1	1 (0.345	0.383	0.728	0.272	34.545
32	31	1 10		14	6		2 (0.301	0.396	0.697	0.303	30.137

图 6: 最终数据

其中打平、不败、输球这三栏数据我是做备用的,如果胜率做因变量的效果不好,可以换这些试试。

3 使用 SPSS 完成回归任务

将最终数据存好在.xls/.xlsx 文档之后,便可以导入 SPSS 完成回归任务了。这里有许多细节需要注意,我在这里先给出完整的操作,再补充解释。

1. 导入数据,可以通过欢迎页的打开导入,也可以通过菜单栏的文件-> 打开-> 数据打开,只是注意要在文件类型处选择 excel 表格,才能找到你的数据。

图 7: 导入数据

- 2. 点击打开后会弹出一个对话框。如果工作表有多个 sheet,选择你使用数据的那个 sheet;然后默认会有三个 tick,第二个 tick"用于确定······"建议反选掉,虽然选上好像也没啥事儿。然后点击确定。
- 3. 这时应该会看到数据被导入。在菜单栏选择:分析->回归->线性,会弹出一个对话框,此时将因变量选中,点击添加按钮添加到因变量区域,再选中自变量,然后添加到自变量区域,如下图所示。 友情提示,这里选中自变量的时候可以巧用 shift 或者 ctrl 操作,不用一个个点。

图 8: 选择变量

- 4. 将方法从默认的「输入」改成「步进」,这样就是逐步回归法了。
- 5. 随后点击「图」按钮,勾选标准化残差图区域中的两个框框,这东西用于分析数据的正态性。

图 9: 「图」按钮对话框

6. 继续后点击「选项」按钮,"使用 F 的概率"那一条中,可以自己设置进入和除去值。一般来讲 0.05 和 0.10 的组合都得不出啥结论,可以调成 0.2+0.25 或是 0.4+0.5 的组合分别看看效果,都试试。

图 10: 「选项」按钮对话框

- 7. 其余选项都默认不要管, 然后确定, 即可生成各个表格。
- 8. 接下来要做的就是把这些表格对应地替换报告模板中的表格即可。

这里稍微对分析结果进行解释一下。

- 1. 输入/除去的变量中,表示了在你设置的这个 F 值组合中,按照显著性的程度,步进获得的变量。也就是说表格中越靠上的变量显著性越小(置信度越高)。另外就是,通常来讲是没有除去变量的。
- 2. 根据输入/除去的变量顺序,因为其逐步性,可以分别得到几个模型,这些模型都记录在了模型摘要表中。
- 3. ANOVA 不用太在意,照搬即可,一般就看最后那个显著性一栏,不太离谱就行。
- 4. 系数表比较重要,你最终会选择其中一个模型作为最优模型(你看着选,毕竟点到为止,有结构就行),那么最终多元回归的表达式就应该是 $y = b + \sum c_i x_i$ 的形式,这里的 c_i 就都在这张表里了。你的报告里也应该有对应的完整表达式。
- 5. 系数表的显著性其实比较重要,一般来讲要小于 0.05 才算是比较能接受模型,但是你也得多点变量嘛,所以这里可以睁一只眼闭一只眼。
- 6. 排出的变量这张表没啥好说的,我认为不用贴;参差统计和后面的两个正态性的图都要贴上去,这可是老师点名要的图。

4 完成报告

这一部分相信大家可以照葫芦画瓢完成,应该没什么太多要说的。至于报告各部分的内容,韦老师和孙老师班的要求略有差异,但我认为我这样对于两个班的要求来讲应该都是 ok 的,大家还是要把重心放在学习知识和考试上,大作业这种东西,大家体验体验就是了哈哈哈。

格式方面,我在上传的.docx 报告文件中也调整了样式库,大家如果需要自行加标题的话记得选样式、敲公式的话记得选公式样式然后使用制表位,参考文献换行会自动生成编号,最后也别忘了更新目录。

内容方面,大家在替换表格的时候可以从 SPSS 中复制,然后粘贴的时候选择保留源格式,然后选中后设置居中及边框全满,大概看起来会好看些吧。总之这些大家随意吧,原理的那些死的东西也都不用

改,涉及数据和分析的活的东西要自己写一写,大概就是这样,如有任何问题欢迎在 GitHub 上提 Issue ,我会随缘解答。