Ejercicio

Serie Fibonacci (Comparación)

Integrantes del equipo

César Mauricio Arellano Velásquez

Profesor

César Arturo Ángeles Ruiz

Materia

Taller de Desarrollo de Aplicaciones

Introducción

La sucesión de Fibonacci es una sucesión definida por **recurrencia**. Esto significa que para calcular un término de la sucesión se necesitan los términos que le preceden.

Se proporcionan los dos primeros términos: a0=0 y a1=1. Los siguientes se calculan con la siguiente fórmula:

$$a_{n+1} = a_{n-1} + a_n, \quad n \ge 1$$

Definición del problema

El objetivo del programa era realizar dos programas que construyeran la serie fibonacci, uno de forma recursiva y otro de manera iterativa; esto para comparar cuál método era el más eficiente respecto a su tiempo de ejecución, ciclo por ciclo o llamada por llamada.

Pseudocódigo Iterativo

#define clock() -> función que retorna tiempo actual. CLOCKS_PER_SEC #define función que retorna tiempo en segundos. principal(){ Imprimir("Serie Fibonacci"); Imprimir("Escribe el rango de iteraciones:"); Leer(rango); Fibonacci(rango); Fibonacci(rango){ Archivo AbrirArchivo("grafica.txt",Modo Escritura); Start = clock(); num=0; num2=1; res=1;

Pseudocódigo Recursivo

```
#define clock() -> función que
retorna tiempo actual.
           CLOCKS_PER_SEC
#define
función que retorna tiempo en
segundos.
principal(){
 Start = clock();
   Imprimir( "Introduce rango de
números fibonacci a imprimir: ");
 Leer(numero);
 Fibonacci(0,1, numero, Start,1);
Fibonacci(penultimo,
                       ultimo,
                                  n,
Inicio, i)
                  Archivo
                                  =
AbrirArchivo("grafica2.txt","Modo
adjuntar")
 Imprimir(ultimo);
```

```
desde i=0; hasta i<rango; i++{
                                           Si(i>=10){
      res = num+num2;
                                           ImprimirEnArchivo(Archivo,i);
      num = num2;
                                           Fin = clock();
      num2 = res:
                                                    Time
                                                                    (Fin-Inicio)
                                          /CLOCKS_PER_SEC;
      Si (i>=9){
                                           ImprimirEnArchivo(Archivo,Time);
ImprimirEnArchivo(Archivo,i+1);
      End = clock();
                                           Si (n>1){
                          (End-Start)
      Time
                                                 actual = penultimo + ultimo;
/CLOCKS_PER_SEC;
                                                 n=n-1;
ImprimirEnArchivo(Archivo,Time);
                                          Fibonacci(ultimo,actual,n,Inicio,i+1);
      }
                                           }
                                          }
 CerrarArchivo(Archivo);
```

Gráfica Iterativo Vs Recursivo

Conclusión

Opino que el método recursivo consume más tiempo de ejecución en comparación con el iterativo debido a que las llamadas a las función consumen un cierto espacio en la memoria por la generación de variables nuevas.