Mathematical Writing and Typesetting in LATEX

Hao Zhu

Department of Computer Science University of Freiburg

July 11, 2025

About this talk

- guidelines for mathematical writing and typesetting in LATEX
- useful in general for writing papers; can be very useful if math statements and proofs are included
- list some geneal rules that I am trying to follow, specific to optimization field
- accompanied with a note which is more formal than the slides
- covers both the LATEX source as well as the output, *i.e.*, the PDF, which is intended to be read alongside its own source
- all material available at https://github.com/nrgrp/math_latex_slides

 the material was originally developed by Boyd et al. [BRP14] as guidelines for a course report

Outline

General rules for mathematical typesetting

Mathematical notation and jargon

Some useful references

some famous guidelines for mathematical writing:

- [Hal70]: Halmos, How to write mathematics
- [KLR89]: Knuth et al., Mathematical Writing

many respectable books follow similar rules, like

- [BV04]: Boyd and Vandenberghe, Convex Optimization
- [CT91]: Cover and Thomas, *Elements of Information Theory*
- [HTF01]: Hastie et al., The Elements of Statistical Learning
- [Sip01]: Sipser, Introduction to the Theory of Computation
- [CSRL01]: Cormen et al., Introduction to Algorithms
- [Rud76]: Rudin, Principles of Mathematical Analysis
- [Eva10]: Evans, Partial Differential Equations
- [Knu73]: Knuth, The Art of Computer Programming, Volume I: Fundamental Algorithms

Precision of mathmatical statements

the sentence

"Let x^* be the solution to the optimization problem." implicitly asserts that the solution is unique

• if the solution is not unique or need not be unique, write "Let x^* be a solution to the optimization problem."

- similarly, do not refer to "solving" an expression, as this is meaningless
- we can solve an equation or set of equations, evaluate an expression or function, or check that an equation or inequality holds

Punctuation in equations

- an equation is part of a sentence, so we may need to include a comma or a period at the end of an equation, whether or not inline or display math style is used
- an example for using a comma:

We next discuss how to solve the problem

minimize
$$(1/2)||Ax - b||_2^2$$
,

where $x \in \mathbf{R}^n$ is the optimization variable.

• an example for using a period:

The objective function $f: \mathbf{R}^n \to \mathbf{R}$ is given by

$$f(x) = (1/2)||Ax - b||_2^2, \quad x \in \mathbf{R}^n.$$

• an example where no punctuation is needed:

The set

$$E = \{ q \in \mathbf{R} \mid q > 0, \ q^2 < 2 \}$$

has a supremum in \mathbf{R} .

Symbols in sentences

don't start a sentence with a symbol since this hurts readability:

Bad: f is smooth.

Good: The function f is smooth.

Bad: $x^n - a$ has n distinct zeros.

Good: The polynomial $x^n - a$ has n distinct zeros.

• use words to separate symbols in different formulas if it might confuse the reader visually or in the actual meaning of the sentence:

Bad: The sequences $x_1, x_2, \ldots, y_1, y_2, \ldots$ are Cauchy.

OK: The sequences x_1, x_2, \ldots , and y_1, y_2, \ldots , are Cauchy.

Good: The sequences (x_i) and (y_i) are Cauchy.

OK: The image of S under f, $f(S) = \{x \mid x \in S\}$, is convex.

Good: The image of S under f, given by $f(S) = \{x \mid x \in S\}$, is convex.

• do not insert superfluous words if the meaning is clear:

Good: Consider the function f + g + h, where $f: \mathbf{R}^n \to \mathbf{R}$, $g: \mathbf{R}^m \to \mathbf{R}$, and $h: \mathbf{R}^p \to \mathbf{S}^n$ are closed proper convex.

English in math mode

- mathematical symbols should be typeset in math mode: write Ax = b, not Ax = b
- subscripts or superscripts that derive from English (or any human language) should not be italicized, for example, write $f_{\rm best}$, not f_{best}
- the exception is subscripts based on a single letter: refer to a point that is the center of some set as x_c , not x_c
- similarly, use commands for special functions: use $\sin(x)$, $\log(x)$, and $\exp(x)$, not $\sin(x)$, $\log(x)$, or $\exp(x)$

- a really heinous example would be the following:
 - Consider the problem

$$minimize \quad f(Ax-b)$$

where x is the optimization variable and A and b are problem data.

Spacing

- a blank line ends a paragraph, so we shouldn't leave a blank line between an equation and the following text unless intending the equation to end the paragraph
- for example, in the LATEX source, write:

```
The image of SS under f, \[
f(S) = \{ f(x) \mid x \mid S \}, \}
is convex.
```

inserting extra blank lines before \[or after \] will result in bad typesetting

• the following is fine, since a new paragraph is called for:

```
The image of SS under f is defined as [f(S) = \{ f(x) \mid x \mid S \}.
```

We now turn to a different topic.

Use the right commands

there are certain special commands in LATEX for notation that you otherwise might attempt to write in an ad-hoc manner, *e.g.*,

• norms:

Bad:
$$|x| | (\Rightarrow |x|)$$

Good: $|x| | (\Rightarrow |x|)$

set-builder and conditional probability notation:

Bad:
$$| (\implies \{x \in \mathbf{R} | x \ge 0 \})$$

Good: $\| (\implies \{x \in \mathbf{R} | x \ge 0 \}) \|$

• functions:

Bad:
$$: (\Longrightarrow f : \mathbf{R}^n \to \mathbf{R})$$

Good: $colon (\Longrightarrow f : \mathbf{R}^n \to \mathbf{R})$

 use \ldots (lower dots, ...) when the dots are surrounded by commas and \cdots (center dots, ...) when surrounded by other objects that have full height, as in

$$x_1, x_2, \dots, x_n$$
 and $x_1 + x_2 + \dots + x_n$

Outline

General rules for mathematical typesetting

Mathematical notation and jargon

General guidelines (noncontroversial)

- don't use the same notation for two different things, e.g., don't say " A_j for $1 \le j \le n$ " in one place and " A_i for $i = 1, \ldots, n$ " in another
- ullet it can be useful to choose names for indices so, e.g., i always varies from 1 to m and j always varies from 1 to n
- define all symbols before or near to where you use them
- ullet a symbol like f refers to a function, while f(x) refers to a function evaluated at a given point
 - avoid sloppy writing like "The function f(x) is convex."
 - 'anonymous' functions defined inline are an exception to this rule, as in "The function $x^2\cos x$ is a counterexample."
- try to use mnemonic notation, so x_c for a center point, c for a cost vector, S for a generic set, C for a convex set, B for a ball, and so on
- don't use symbols like \forall , \exists , and \Longrightarrow ; use the corresponding words; these symbols are usually appropriate only in formal logic

 don't assign symbols to concepts that you never refer to, or can easily refer to without the symbol:

Bad: Let X be a compact subset of a space Y. If f is a continuous real-valued function over X, it has a minimum over X.

Good: A continuous real-valued function has a minimum over a compact set.

similarly, do not say

"The solution x^* is unique."

if we never need to refer to x^{\star} again

• do not write 'arg min' (and 'arg max') since 'argmin' is a single mathematical operator (which is different from \liminf and \limsup)

Very Bad: Let
$$x = \arg\min_{u} \left(f(u) + \frac{1}{2} \|u - z\|_{2}^{2} \right)$$
.
Bad: Let $x = \arg\min_{u} \left(f(u) + \frac{1}{2} \|u - z\|_{2}^{2} \right)$.
Good: Let $x = \operatorname*{argmin}_{u} \left(f(u) + \frac{1}{2} \|u - z\|_{2}^{2} \right)$.

Symbols for some specific sets (controversial)

- it is common in analysis textbooks to use the bold face capital letters to represent some specific sets, *e.g.*,
 - N: the set of natural numbers
 - Q: the set of rational numbers
 - \mathbf{Z} : the set of integers
 - R: the set of real numbers
 - \mathbf{S}^n : the set of $n \times n$ symmetric matrices

the corresponding LATEX macro is \mathbf{} ('bf' stands for bold face)

- recent years, people start to accept the blackboard bold face capital letters instead, e.g., \mathbb{N} , \mathbb{Q} , \mathbb{Z} , \mathbb{R} , \mathbb{S}^n ; the corresponding LATEX macro is \mathbb{} ('bb' stands for blackboard bold)
- now we can choose to use either of them are as long as they are consistent in the same document; a bad example would be the following

Bad: The set

$$E = \{ q \in \mathbb{Q} \mid q > 0, \ q^2 < 2 \}$$

has no supremum in \mathbb{Q} , but has a supremum in \mathbb{R} .

Writing optimization problems (controversial)

Rockafellar wrote optimization problems around 70s in his famous *Convex Analysis* book [Roc70] as follows:

Consider the problem

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$

subject to $0 \le x \le 1$ (1)
 $||x||_2 \le 1$,

where $x \in \mathbf{R}^n$ is the optimization variable, and $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, and $\lambda > 0$ are problem data.

- the words 'minimize' and 'subject to' are considered as *key words* or *constructors* for instantiating an optimization problem
- it is always important to state which symbols refer to variables and which to problem data

sometimes for saving space, the problem (1) can be abbreviated as follows:

Consider the problem

min.
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$

s.t. $0 \le x \le 1$
 $||x||_2 \le 1$, (2)

where $x \in \mathbf{R}^n$ is the optimization variable, and $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, and $\lambda > 0$ are problem data.

• note the period after 'min', which says that 'min.' is the shorthand for 'minimize', instead of the min operator which is *only* defined for a finite set as

$$\min\{x_1,\ldots,x_n\}=x_k$$
 such that $x_k\leq x_i$ for all $i=1,\ldots,n$

more recently, people often integrate the sentence for specifying the variable and data into the definition of the problem, e.g., for the problem (1) and (2):

Consider the problems

$$\begin{array}{lll} \underset{x \in \mathbf{R}^n}{\text{minimize}} & (1/2)\|Ax - b\|_2^2 + \lambda \|x\|_1 & & \underset{x \in \mathbf{R}^n}{\text{min.}} & (1/2)\|Ax - b\|_2^2 + \lambda \|x\|_1 \\ \text{subject to} & 0 \leq x \leq \mathbf{1} & \text{and} & \text{s.t.} & 0 \leq x \leq \mathbf{1} \\ & \|x\|_2 \leq 1 & \|x\|_2 \leq 1. \end{array}$$

while avoiding the period after 'min.' for writing optimization problems is extremely widely accepted by people in various fields, I personally consider it to be sloppy math:

Let $f, g: \mathbf{R}^n \to \mathbf{R}$, and consider the problem

$$\min_{x \in \mathbf{R}^n} \quad \min\{f(x), g(x)\}$$
s.t. $0 \le x \le 1$.

- in the above example, two different meanings are assigned to the three ASCII letters 'min':
 - the first 'min' is the key word for instantiating a minimization problem
 - the second 'min' is the operator of taking the smallest element of a finite set
- the LATEX package optidef can be very useful in writing optimization problems in this style, especially when handling lots of constraints

Outline

General rules for mathematical typesetting

Mathematical notation and jargon

Miscellaneous comments

Sentence-ending periods

- LATEX assumes all periods followed by a space are sentence-ending periods
- tell it otherwise when that is not the case
- for example:

```
Bad:
```

Let x_1, x_2, \ldots, x_n be i.i.d. normal random variables. \implies Let x_1, x_2, \ldots, x_n be i.i.d. normal random variables.

Good:

Let x_1, x_2, \ldots, x_n be i.i.d.\ normal random variables. x_1, x_2, \ldots, x_n be i.i.d. normal random variables.

Commas

• know when commas should appear inside or outside math environments:

Bad: Note that \$a,b,\$ and \$c\$ are nonnegative.

 \implies Note that a, b, and c are nonnegative.

Good: Note that \$a\$, \$b\$, and \$c\$ are nonnegative.

 \implies Note that a, b, and c are nonnegative.

Bad:

We conclude that x_1 , x_2 , \det , x_n are decreasing.

 \implies We conclude that x_1, x_2, \ldots, x_n are decreasing.

Good: We conclude that x_1, x_2, \ldots, x_n is decreasing.

 \implies We conclude that x_1, x_2, \ldots, x_n is decreasing.

Quotes

• use '' and '''', instead of '' and "" to type quotes, so that the left and right quote symbols are rendered correctly

Bad: "This is a bad example containing 'quotes' in a sentence".

Good: "The 'quotes' in this sentence is good now."

Dialects

- be aware when writing in mathematical dialect, e.g., in statistics, machine learning, signal processing, control, vision, information theory, and so on
- unless the intended audience is only from this one field, try to avoid using dialect
- try to write in such a way that a general reader with a good understanding of basic mathematics can understand what we are saying

- ullet use standard variable notation unless otherwise needed: x for variables, A for matrices, and so on
- a bad example would be to use

$$\Xi \beta = \chi$$

for a system of linear equations, unless it is really needed

No rule is absolute

• break any of these rules rather than write anything nasty

A bad example

• if you are interested in reading a really bad example document where almost all the rules mentioned before are violated, I can send you my master's thesis and the corresponding LATEX source code

Reference I

- [BRP14] S. Boyd, E. K. Ryu, and N. Parikh. LaTeX style guide for EE 364B. https: //web.stanford.edu/class/ee364b/latex_templates/template_notes.pdf, 2014.
- [BV04] S. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- [CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. *Introduction to Algorithms*. McGraw-Hill Higher Education, 2nd edition, 2001.
- [CT91] T. M. Cover and J. A. Thomas. *Elements of Information Theory*. Wiley-Interscience, 1991.
- [Eva10] L. C. Evans. Partial Differential Equations. American Mathematical Society, 2010.
- [Hal70] P. R. Halmos. How to write mathematics. L'Enseignement Mathématique, 16:123–152, 1970.
- [HTF01] T. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*. Springer, 2001.
- [KLR89] D. E. Knuth, T. Larrabee, and P. M. Roberts. Mathematical Writing, volume 14 of MAA notes. Mathematical Association of America, 1989.

Reference II

- [Knu73] D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms. Addison-Wesley, 2nd edition, 1973.
- [Roc70] R. T. Rockafellar. *Convex Analysis*. Princeton University Press, 1970.
- [Rud76] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill Book Co., third edition, 1976.
- [Sip01] M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2001.