# 强化学习基础

# 目录

- 1. Q-learning
- 2. Sarsa
- 3. 实验任务及报告提交要求

Q-learning 算法是一种 value-based 的强化学习算法,Q即为Q(s,a),就是在某一时刻的state状态下,采取动作action能够获得收益的期望,环境根据agent的动作反馈相应的reward奖励,所以算法的主要思想就是将state和action构建一张Q\_table表存储Q值,然后根据Q值选取能够获得最大收益的动作。

Q-learning是基于off-policy时序差分法,而且使用贝尔曼方程可以对马尔科夫过程求解最优策略。

- 1. Initialize Q-values (Q(s,a)) arbitrarily for all state-action pairs.
- 2. For life or until learning is stopped...
- 3. Choose an action (a) in the current world state (s) based on current Q-value estimates  $(Q(s,\cdot))$ .
- 4. Take the action (a) and observe the outcome state (s') and reward (r).
- 5. Update  $Q(s,a) := Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') Q(s,a)\right]$

#### 实例:

如图是一个迷宫游戏,agent小老鼠最开始在(0,0)位置,分别在(0,1),(0,2),(1,0),(1,1),(1,2)处可获得+1,0,+2,-10,+10的奖励值。当agent位于(1,1),(1,2)时,游戏结束。Agent的动作有四个,分别时上下左右。



|                | + | $\rightarrow$ | 1 | $\downarrow$ |
|----------------|---|---------------|---|--------------|
| Start          | 0 | 0             | 0 | 0            |
| Small cheese   | 0 | 0             | 0 | 0            |
| Nothing        | 0 | 0             | 0 | 0            |
| 2 small cheese | 0 | 0             | 0 | 0            |
| Death          | 0 | 0             | 0 | 0            |
| Big cheese     | 0 | 0             | 0 | 0            |

#### 实例:

Q-learning根据 $\epsilon - greedy$ 选择动作:以 $\epsilon$ 的概率随机选择动作

,以 $1 - \epsilon$ 的概率贪心的(greedy)选择动作



|                | <b>←</b> | $\rightarrow$ | <b>↑</b> | $\downarrow$ |
|----------------|----------|---------------|----------|--------------|
| Start          | 0        | 0             | 0        | 0            |
| Small cheese   | 0        | 0             | 0        | 0            |
| Nothing        | 0        | 0             | 0        | 0            |
| 2 small cheese | 0        | 0             | 0        | 0            |
| Death          | 0        | 0             | 0        | 0            |
| Big cheese     | 0        | 0             | 0        | 0            |

We move at random (for instance, right) glosdn.net/zhm2229

#### 实例:

#### Q-learning使用贝尔曼方程更新:



|   |                     | $\leftarrow$ | $\rightarrow$ | <b>↑</b>             | $\rightarrow$     |
|---|---------------------|--------------|---------------|----------------------|-------------------|
| 1 | Start               | 0            | 0.1           | 0                    | 0                 |
|   | Small <u>cheese</u> | 0            | 0             | 0                    | 0                 |
|   | Nothing             | 0            | 0             | 0                    | 0                 |
|   | 2 small cheese      | 0            | 0             | 0                    | 0                 |
|   | Death               | 0            | 0             | 0                    | 0                 |
|   | Big cheese          | 0            | 0             | O<br>ros://blog.csdr | 0<br>1.net/z0m222 |

 $\gamma = 0.9, \alpha = 0.$ 

6

#### 实例:

Agent在每个step的时候都会用上面的方法迭代更新一次Q-table

,直到Q-table不再更新,或者到达游戏设置的结束局数。



#### 2.Sarsa

和Q-learning类似,两者的区别在于:更新Q表的时候,选择的策略不同。Sarsa更新Q表的策略与选择动作策略一致,均采用 $\epsilon - greedy$ 。而Q-learning更新Q表采用greedy策略,选择动作采用 $\epsilon - greedy$ 。

```
Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy) Repeat (for each step of episode):

Take action A, observe R, S' and parallel parallel
```

```
Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]
S \leftarrow S';
until S is terminal
```

# 3 实验任务及报告提交要求

#### 实验任务

□ 在给定迷宫环境中实现Q-learning和Sarsa算法。

#### 报告提交要求

- □ 提交一个压缩包。压缩包命名为: "学号\_姓名\_作业编号",例如: 20220525\_张三\_实验10。
- □ 压缩包包含三部分: code文件夹和实验报告pdf文件
  - □ Code文件夹: 存放实验代码
  - □ Pdf文件格式参考发的模板
- □ 如果需要提交新版本,则在压缩包后面加\_v1等。如"学号\_姓名\_作业编号\_v1.zip",以此类推。
- □ 截止日期: 2022年6月15日23点59分
- □ 提交邮箱: zhangyc8@mail2.sysu.edu.cn