ESALO

Other Machine Learning Models III João F. Serrajordia R. de Mello

Preparations

- Open R
- Import libraries
- Something to take your notes

Agenda

CRISP-DM

Source: https://www.the-modeling-agency.com/crisp-dm.pdf

Ensemble

An ensemble is any combination of existing models. The main types are:

Bagging

Boosting

Stacking

Bootstrap – aggregation (bagging)

Bagging with trees is the famous Random Forest

Boosting

• Boosting methods are sequential models that try to improve the error of the previous model

- We divide the base into sub-samples k
- For each sub-sample:
 - We remove the sub-sample as validation
 - We train the model with the remaining observations
 - We use this model to classify the removed sub-sample
 - We evaluate the metrics of the model's performance
- We calculate the average of the metrics of the model's performance

They are very similar to classification trees

Regression trees

The criterion of impurity is what changes.

$$SQE = \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2$$

Regression trees

Valores observados vs esperados

Dado: - Esperado - Observado

Predictive and classification problems

What is the efficacy of a vaccine?

Will the customer pay the loan?

How much oil is in the well?

Will the customer buy my product?

What is the person doing?

How green is this vehicle?

Classification reguin Cabral de Melo 339.652.318-0. Eduardo Aparecido Eduardo Aparecido

Algorithms classification

Supervised

- Regression
- GLM
- GLMM
- Support vector machines
- Naive Bayes
- K-nearest neighbors
- Neural Networks
- Decision Trees

Unsupervised

- K-Means
- Hierarchical methods
- Gaussian Mixture
- DBScan
- Mini-Batch-K-Means

We are here!

Algorithms classification

Continuous response

- Regression
- GLM
- GLMM
- Support vector machines
- K-nearest neighbors
- Neural Networks
- Regression Trees

Discrete response

- Logistic Regression
- Classification trees
- Neural Networks
- GLM
- GLMM

We are here!

Algorithms classification

Machine Learning Methods

- **Decision Trees**
- Bagging
- **Boosting**
- K-NN
- **Neural Networks**
- **Support Vector Machines**

Machine Learning **Statistics Methods**

- Regression
- GLM
- **GLMM**
- **ANOVA**

We are here!

Biological Example

• Roundworm: 302 neurons

Human Neural Network

• *Homo sapiens*: 100.000.000 neurons

Where do they live?

Artificial Neural Networks have been very successful in problems with little structured data such as images, audios, texts, and videos.

McCulloch-Pitts Neurons

Activation Functions

Perceptron

OCR – Optical Character Recognition

Let's think about a very simple version of the problem. Digits of an old clock have a very simple structure.

OCR – Optical Character Recognition

There are 7 basic regions, which can be active or inactive, and they define a digit.

For example, if only regions 1, 3 and 6 are activated, we have the number 7.

Rosenblatt's Perceptron

- The Rosenblatt's Perceptron (~1950-1960) has this idea, but only with a general purpose
- it was built to perform OCF (optical character recognition)
- For this, it maps regions of an image as "activate" and "inactive"
- Each unit is a McCullogh-Pitt's neuron

Linear Perceptron

• It has the same structure as a linear regression with the activation function indicated.

Eduardo Aparecia

Limitations of linear perceptron

 Linear perceptron only captures linear standards

Multilayer Perceptron

- It has intermediate "hidden" layers
- It captures nonlinear standards
- It can make use of the parallel processing of GPUs
- It is not "interpretable" as regression

Loss Functions

Continuous Variables SQE

$$SQE = \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2$$

Binary Variables Cross-Entropy

$$L = y_i log(\widehat{y}_i) + (1 - y_i) log(1 - \widehat{y}_i)$$

Artificial Neural Networks

Deep learning with R - Abhijit Ghatak, ed. Springer, 2019

Fig. 2.3 A representation of a neural network with four input features, two hidden layers with three nodes each, and an output layer

MBAUSP ESALQ

Initial treatment of data

Neural Network on MNIST

We have $784 \times 10 = 7.840$ parameters with only one layer!

652.318-04 784

3blue1brown - https://www.youtube.com/watch?v=aircAruvnKk

Gradient Descent

It is the most popular algorithm to train artificial neural networks since it presents some characteristics:

- It can change the estimates with small subsets of points to each iteration (in the limit of 1 only point)
- It does not depend on the inversion of the matrix
- It works with a very large database
- It can be processed in parallel with GPU
- It allows to interrupt the algorithm to a certain point, or to continue later or in another similar problem (transfer learning)

Gradient Descent in Networks

Figure 2.12 Gradient descent down a 2D loss surface (two learnable parameters)

Deep learning with python – François Chollet

Gradient descent Eduardo Aparecido Sereguli.

1.8 Gradient Descent

Fig. 1.4 Gradient descent: Rolling down to the minima by updating the weights by the gradient of the loss function

Fig. 1.5 A contour plot showing the cost contours of a sigmoid activation neural network and the cost minimization steps using the gradient descent optimization function

Vehicle consumption prediction

- Engine's size
- Fuel.
- Number of cylinders
- Brand
- Power of the engine
- Traction

Processers

- Distance between transistors: 14 nm
- Strand of human hair: 80.000 nm
- Gold atom diameter: 0.3 nm

Processing with GPU

L2 Regularization

Continuous Variables SQE

sion
$$SQE = \sum_{i=1}^{N} (y_i - \hat{y_i})^2 + \lambda \sum_{i=1}^{N} \beta_i^2$$

Binary Variables *Cross-Entropy*

$$L = \sum y_i log(\widehat{y}_i) + \lambda \sum \beta_i^2$$

Recognition of human activity with the smartphone

Conclusions

- Neural Networks are the introduction to Deep Learning (which is a very promising field)
- They are powerful and flexible
- They require special computational power (GPU / TPU)
- They are famous in less structured data (e.g. images, audios)

That's it for today ;)

<u>linkedin.com/in/joao-serrajordia</u>