Introduction to Semantic Web Lecture 2: XML

Dr. Knarig Arabshian
Knarig.arabshian@hofstra.edu

Review from Last class

Ontology

- Knowledge Representation using Ontologies
- Definition:
 - Wikipedia: is a formal representation of knowledge as a set of concepts within a domain, and the relationships between those concepts. It is used to reason about the entities within that domain, and may be used to describe the domain.
 - Webopedia: computer-based resources that represent agreed domain semantics...relatively generic knowledge that can be reused by different kinds of applications or tasks.
 - Gruber: A formal, explicit specification of a shared conceptualization

Ontology

Example Restaurant Ontology

Ontology

Classification

- owl:Thing
- Cuisine
 - American
 - Asian
 - Chinese
 - Japanese
 - Korean
 - Mediterranean
- Restaurant
 - - JapaneseRestaurant
 - KoreanRestaurant
 - QueryRestaurant ≡ ChineseRestaurant

Since Chinese cuisine has non-disjoint siblings
Japanese and Korean then also conclude that these are *similar* to Chinese

Conclude that QueryRestaurant is equivalent to ChineseRestaurant

Ontologies and Relational Databases

Similarities

- Both use a model to identify common classes and properties
- ER model can be seen as a simple hierarchical ontology

Differences

- Ontologies are broader in scope (rules, incomplete knowledge)
- Ontologies provide a way for automated reasoning to occur in order to discover new relationships between entities

Discussion: How to build a model?

- Categorizing books
- Think about the different ways they can be classified
- Create a hierarchical classification for it
- Put as much information as needed

Quest for Semantics

Three main goals of the Semantic Web:

- Building models: quest for describing the world in abstract terms to allow for an easier understanding of complex reality
- Computing with knowledge: constructing reasoning machines that can draw meaningful conclusions from encoded knowledge
- Exchanging Information: the transmission of complex information resources among computers that allows us to distribute, interlink, and reconcile knowledge on a global scale

Building Models

- Model: simplified description of certain aspects of reality, use for understanding, structuring, or predicting parts of the real world
- History of scientific modeling
 - Plato (429-347BC)
 - What is reality?
 - Which things can be said to exist?
 - What is the true nature of things?
 - First major contribution to philosophical field of ontology
- Ontology in computer science
 - Description of knowledge about a domain of interest, the core of which
 is a machine-processable specification with a formally defined meaning

Building Models

- Taxonomy: hierarchical classification
 - Linnaean taxonomy: classifies all life forms
 - WHO's International Classification of Diseases
 - Dewey Decimal Classification: ordering books in a library
- Non-hierarchical classifications
 - Periodic table of chemical elements
 - Thesaurus

Calculating with Knowledge

Syllogism:

All A are B.

All B are C.

All A are C.

Domain-independent rules provide template-like ways for inferring knowledge

Calculating with Knowledge

- Goal of AI: build machines exhibiting human intelligence
- Amount of knowledge for basic AI applications is overwhelming. Transforming human knowledge to machineprocessable form is difficult
- Inference techniques became too slow for medium or largescale tasks
- Consequently: research focused on restricted domains
 - Expert systems, rule-based systems for highly structured areas

Exchanging Information

Internet

- Packet-switching developed by Baran, Davies and Kleinrock
- Splitting transmission into small "packets" and transmitted individually
- ARPANET first packet-switching network in 1969

Applications

- E-mail, Usenet
- HTML, HTTP
- Wikis, blogs, social networks, tagging

Syntax vs Semantics

- Communication
 - Different modes of communication (speech, writing, smoke signals)
- Sharing data can be broken down into two problems
 - Syntactic sharing problem
 - Finding a common medium for communication
 - Semantic sharing problem
 - Finding a mutual encoding of concepts within a common medium

XML

XML

- A markup language that defines a set of rules for encoding documents in a format which is both humanreadable and machine-readable.
- Defined by the W3C
- The design goals of XML
 - Emphasize simplicity, generality and usability across the Internet.
 - Focuses on documents, but is widely used for the representation of arbitrary data structures such as those used in web services.
 - You invent your own tags when to describe the data
 - Complementary to HTML
 - HTML is for displaying data
 - XML is for describing data

XML- eXtensible Markup Language

Basic idea: adding additional information or structure to (unstructured) text

- to annotate text means to add a note by way of comment or explanation
- usually done by way of tags:

```
<tag-name> ... Text ... </tag-name>
```

[opening tag] [closing tag]

Markup Languages

In HTML

```
<h2>Relationship force-mass</h2>
<i> F = M × a </i>  → display formula
```

In XML

```
<equation>
<meaning>Relationship force-mass</meaning>
<leftside> F </leftside>
<rightside> M × a </rightside> → describe formula
</equation>
```

HTML vs XML

- HTML tags are fixed and define how content is displayed (color, lists ...)
- XML tags not fixed but are defined by users to describe content

HTML vs XML

 Most prominent example: HTML Annotations used for encoding display information

<i>This book</i> has the title FOST.

Browser shows: This book has the title FOST.

Same idea can be used for content description:

<book>This book</book> has the title

<title>FOST</title>.

The XML Language

An XML document consists of

- a prolog
- a number of elements

Prolog of an XML Document

The prolog consists of an XML declaration

<?xml version="1.0"
encoding="UTF-16"?>

XML Elements

- The "things" the XML document talks about
 - E.g. books, authors, publishers
- An element consists of:
 - an opening tag
 - the content
 - a closing tag

<lecturer>David Billington/lecturer>

XML Elements

- Tag names can be chosen almost freely
- The first character must be a letter, an underscore, or a colon
- No name may begin with the string "xml" in any combination of cases
 - E.g. "Xml", "xML"

Content of XML Elements

Content may be text, or other elements, or nothing

```
<lecturer>
     <name>David Billington</name>
     <phone> +61 - 7 - 3875 507 </phone>
</lecturer>
```

- If there is no content, then the element is called empty; it is abbreviated as follows:
 - <lecturer/> or <lecturer></lecturer>

XML Attributes

- An empty element is not necessarily meaningless
 - It may have some properties in terms of attributes
- An attribute is a name-value pair inside the opening tag of an element

<lecturer name="David Billington"
phone="+61 - 7 - 3875 507"/>

XML Attributes: An Example

```
<order orderNo="23456" customer="John
Smith"
    date="October 15, 2002">
        <item itemNo="a528" quantity="1"/>
        <item itemNo="c817" quantity="3"/>
</order>
```

The Same Example without Attributes

```
<order>
  <orderNo>23456</orderNo>
  <customer>John Smith</customer>
  <date>October 15, 2002</date>
  <item>
      <itemNo>a528</itemNo>
      <quantity>1</quantity>
  </item>
  <item>
      <itemNo>c817</itemNo>
      <quantity>3</quantity>
      </item>
</order>
```

XML Elements vs Attributes

- Attributes can be replaced by elements
- When to use elements and when attributes is a matter of taste
- But attributes cannot be nested

Well-Formed XML Documents

- Syntactically correct documents
- Some syntactic rules:
 - Only one outermost element (called root element)
 - Each element contains an opening and a corresponding closing tag
 - Tags may not overlap
 - <author><name>Lee Hong</author></name>
 - Attributes within an element have unique names
 - Element and tag names must be permissible

XML Tags

```
Can be nested
<lecture>
   <title> CSC143 </title>
   <lecturer>
      <title> Dr. </title>
      <firstname>Knarig </firstName>
      <lastname> Arabshian </lastName>
   </lecturer>
</lecture>
```

Tree Structure

```
<lecture>
 <title> Intro To SW </title>
 <lecturer>
  <title> Dr. </title>
  <firstname>Knarig
   </firstName>
  <lastname> Arabshian </lastName>
 </lecturer>
</lecture>
```


The Tree Model of XML Docs

- The tree representation of an XML document is an ordered labeled tree:
 - There is exactly one root
 - There are no cycles
 - Each non-root node has exactly one parent
 - Each node has a label.
 - The order of elements is important
 - ... but the order of attributes is not important

XML Schema

- Significantly richer language for defining the structure of XML documents
- Syntax is based on XML itself
 - not necessary to write separate tools
- Reuse and refinement of schemas
 - Expand or delete already existent schemas
- Sophisticated set of data types

XML Schema

An XML schema is an element with an opening tag like

<schema "http://www.w3.org/2000/10/
 XMLSchema"
 version="1.0">

- Structure of schema elements
 - Element and attribute types using data types

Element Types

- <element name="email"/>
- <element name="head" minOccurs="1"
 maxOccurs="1"/>
- <element name="to" minOccurs="1"/>

Cardinality constraints:

- minOccurs="x" (default value 1)
- maxOccurs="x" (default value 1)

Attribute Types

- <attribute name="id" type="ID" use="required"/>
- < attribute name="speaks" type="Language" use="default" value="en"/>
- Existence: use="x", where x may be optional or required
- Default value: use="x" value="...", where x may be default or fixed

Data Types

- There is a variety of built-in data types
 - Numerical data types: integer, Short etc.
 - String types: string, ID, IDREF, CDATA etc.
 - Date and time data types: time, month etc.
- There are also user-defined data types
 - simple data types, which cannot use elements or attributes
 - complex data types, which can use these

Data Types

- Complex data types are defined from already existing data types by defining some attributes (if any) and using:
 - sequence, a sequence of existing data type elements (order is important)
 - all, a collection of elements that must appear (order is not important)
 - choice, a collection of elements, of which one will be chosen

A Data Type Example

Meaning: an element in an XML document that is declared to be of type lecturerType may have a title attribute; it may also include any number of firstname elements and must include exactly one lastname element

Data Type Extension

Already existing data types can be extended by new elements or attributes. Example:

Resulting Data Type

```
<complexType name="extendedLecturerType">
    <sequence>
       <element name="firstname" type="string"</pre>
           minOccurs="0" maxOccurs="unbounded"/>
       <element name="lastname" type="string"/>
       <element name="email" type="string"</pre>
           minOccurs="0" maxOccurs="1"/>
    </sequence>
    <attribute name="title" type="string" use="optional"/>
    <attribute name="rank" type="string" use="required"/>
</complexType>
```

Data Type Extension

- A hierarchical relationship exists between the original and the extended type
 - Instances of the extended type are also instances of the original type
 - They may contain additional information, but neither less information, nor information of the wrong type

Data Type Restriction

- An existing data type may be restricted by adding constraints on certain values
- Restriction is not the opposite from extension
 - Restriction is not achieved by deleting elements or attributes
- The following hierarchical relationship still holds:
 - Instances of the restricted type are also instances of the original type
 - They satisfy at least the constraints of the original type

Example of Data Type Restriction

Restriction of Simple Data Types

Data Type Restriction: Enumeration

```
<simpleType name="dayOfWeek">
       <restriction base="string">
           <enumeration value="Mon"/>
           <enumeration value="Tue"/>
           <enumeration value="Wed"/>
           <enumeration value="Thu"/>
           <enumeration value="Fri"/>
           <enumeration value="Sat"/>
           <enumeration value="Sun"/>
       </restriction>
</simpleType>
```

XML Schema: The Email Example

```
<element name="email" type="emailType"/>
<complexType name="emailType">
   <sequence>
      <element name="head" type="headType"/>
      <element name="body" type="bodyType"/>
   </sequence>
</complexType>
```

XML Schema: The Email Example

XML Schema: The Email Example

Similar for bodyType

Namespaces

- An XML document may use more than one schema
- Since each structuring document was developed independently, name clashes may appear
- The solution is to use a different prefix for each schema
 - prefix:name

An Example

<vu:instructors xmlns:vu="http://www.vu.com/empDTD"</pre>

xmlns:gu="http://www.gu.au/empDTD"

xmlns:uky="http://www.uky.edu/empDTD">

<uky:faculty uky:title="assistant professor"</pre>

uky:name="John Smith"

uky:department="Computer Science"/>

<gu:academicStaff gu:title="lecturer"</pre>

gu:name="Mate Jones"

gu:school="Information Technology"/>

</vu:instructors>

Namespace Declarations

- Namespaces are declared within an element and can be used in that element and any of its children (elements and attributes)
- A namespace declaration has the form:
 - xmlns:prefix="location"
 - location is the address of the schema
- If a prefix is not specified: xmlns="location" then the location is used by default

Reading Assignment

- Berners-Lee, Hendler, Lassila, The Semantic Web, Scientific American, May 2001
 - http://kill.devc.at/system/files/scientific-american_0.pdf
- FSWT: Chapter 1 and Appendix A (XML)