A 仕様

2400 仕様

ソース仕様1

電圧プログラミング確度(ローカルセンスまたはリモートセンス)

レンジ	プログラミング 分解能	確度(1 年) 23℃±5℃ 読取り値の± % + ポルト	雑音 (ピークピーク) 0.1Hz-10Hz
200.000 mV	5 μV	0.02% + 600 µV	5 μV
2.00000 V	50 μV	0.02% + 600 μV	50 μV
20.0000 V	500 μV	0.02% + 2.4 mV	500 μV
200.000 V	5 mV	0.02% + 24 mV	5mV

温度係数 (0°-18℃と 28°-50℃):+ (0.15×確度仕様) /℃

最大出力電力:22W(4象限ソースまたはシンク動作)

ソース/シンクリミット: $\pm 21V@ \pm 1.05A$, $\pm 210V@ \pm 105mA$

電圧変動率:ライン側:レンジの 0.01% 負荷側:レンジの 0.1%+100µV

雜音 10Hz-1MHz (p-p):10mV

過電圧保護:ユーザの選択による値、許容範囲 5%、工場出荷時デフォルト値 = 40V ロ

電流リミット:単一値で設定した両極電流リミット (コンプライアンス)。最小はレンジの 0.1%

オーバシュート:<0.1% (フルスケールステップ、抵抗性負荷、10mA レンジ)

電流プログラミング確度(ローカルセンスまたはリモートセンス)

	レンジ	プログラミング 分解能	確度(1年) 23℃±5℃ 読取り値の± %+ポルト	雑音 (ピークピーク) 0.1Hz-10Hz	
-	1.00000 μA	50 pA	0.035% + 600pA	5 pA	
	10.0000 µA	500 pA	0.033% + 2nA	50 pA	
	100.000 µA	5 nA	0.031% + 20nA	500 pA	
	1.00000 mA	50 nA	0.034% + 200nA	5 nA	
	10.0000 mA	500 nA	0.045% + 2μΑ		
	100.000 mA	5 μA	0.066% + 20µA		
	1.00000 A	² 50 μΛ	0.27 % + 900µA		

温度係数(0°-18℃と28°-50℃):+(0.15×確度仕様)/℃

最大出力電力:22W(4象限ソースまたはシンク動作)

ソース/シンクリミット:± 105mA@210V, ± 1.05A@21V

電流変動率:ライン側:レンジの0.01%

負荷側:レンジの 0.1%+100pA

電圧リミット:単一値で設定した両極電圧リミット(コンプライアンス)。最小はレンジの 0.1%

オーバシュート:通常は<0.1% (1mA ステップ、RL = 10k Ω、20V レンジ)

- 1 仕様は 105mA 以下の連続出力電流に対して有効。>1 分の期間にわたって 105mA を越える連続動作については、105mA を超過する電流について 10%/35mA で確度を下げてください。
- 2 30℃までは負荷にかかわらず全出力動作(1A)。周囲温度 30℃以上の場合は、35mA/℃の割合で軽減し、35mA/Ω負荷の割合で比例配分してください。

- 電流シンクとして使用する場合は、23℃で 10W(外部電力)まで。23℃以上は、1W/℃の割合で軽減してください。

3 シンクモードの場合は、1 μ A から 100mA までのレンジについては、確度は(± 0.1%+ オフセット)。1A レンジの場合は、確度は± (1%+オフセット) です。

ソース追加仕様

過渡応答時間:負荷の階段状変動のあと、出力が仕様値に回復するまで最小 30μs

コマンド処理時間::SOURce:VOLTage!CURRent<nrf>コマンドの受信のあと、出力が変化を開始するまでに必要な最大時間

オートレンジ ON:10ms オートレンジ OFF:7ms

出力安定時間:コマンドを処理したあと、最終値の 0.1% に達するのに必要な最大安定時間:最小 30µs

出力スルーレート:0.5V/μs、200V レンジ、100mA コンプライアンス。0.08V/μs、0.2V、2V、20V レンジ、100mA コンプライアンス。 DC 浮動電圧:出力は、シャーシ接地から± 250V の範囲で浮動させることができます。

リモートセンス:負荷リード線当たり IV の降下まで。

コンプライアンス確度:基礎仕様にレンジの0.1%を加えてください。

過大温度保護:内部センス方式温度過負荷保護装置が、ユニットを待機モードに入れます。

レンジ変更オーバシュート:完全抵抗 100k Ω負荷へのオーバシュート、帯域幅 10Hz から 1MHz、隣接レンジ、スムースモード:(100mV)が通常、20V/200V レンジ境界

最小コンプライアンス値:レンジの0.1%

メジャー仕様

電圧測定確度(ローカルセンスまたはリモートセンス)

レンジ	最大分解能	入力抵抗	確度(23℃±5℃) 1年±(読取り値の%+ポルト)	
200.000 mV	lμV	>10GΩ	0.012% + 300 μV	
2.00000 V	10 μV	>10GΩ	0.012% + 300 μV	
20.0000 V	100 μV	>10GΩ	0.015% + 1 mV	
200,000 V	ł mV	>10GΩ	0.015% + 10 mV	
温度係数(0°	-18℃および28	℃-50℃):± (0.15×確度仕様)/℃	

電流測定確度(ローカルセンスまたはリモートセンス)

レンジ	最大分解能	電圧負担	確度(23し±30) 1年±(読取り値の%+アンペア)	
1.00000 µA	10 pA	< 1mV	0.029% + 300 pA	
10.0000 μA	100 pA	< 1mV	0.027% + 700 pA	
100.000 µA	l nA	< 1mV	0.025% + 6 nA	
1.00000 mA	10 nA	< lmV	0.027% + 60 nA	
10.0000 mA	100 nA	< 1mV	0.035% + 600 nA	
100.000 mA	lμA	< 1mV	0.055% + 6 μA	
1.00000 A	10 μΑ	< 1mV	0.22 % + 570 μA	
	-			

温度係数 (0°-18℃および 28℃-50℃):± (0.15×確度仕様)/℃

抵抗測定確度(4線リモートセンス) ソース I モード、自動抵抗測定

ノース1モート、	日别他机则化	デフォルト	通常確度(23℃±5℃)	改良確度(23℃± 5℃)
レンジ	最大分解能	試験電流	1年土(読取り値の %+オーム)	1年土(読取り値の%+オーム)
<2.00000 Ω	1 μΩ	_	ソース[確度 + メジャーV確度	メジャー1確度 + メジャーV確度
20,0000 Ω	100 μΩ	100 mA	$0.098\% + 0.003 \Omega$	$0.073\% + 0.003 \Omega$
200.000 Ω	$1~\mathrm{m}\Omega$	10 mA	$0.077\% + 0.03 \Omega$	$0.053\% + 0.03 \Omega$
2.00000 kΩ	$10~\mathrm{m}\Omega$	1 mA	$0.066\% + 0.3 \Omega$	$0.045\% + 0.3 \Omega$
20.0000 $k\Omega$	$100~\mathrm{m}\Omega$	100 μΑ	$0.063\% + 3 \Omega$	$0.043\% + 3 \Omega$
200.000 kΩ]Ω	10 µA	0.065% + 30 Ω	0.046% + 30 Ω
$2.00000\mathrm{M}\Omega$	10 Ω	IμA	0.11% + 300 Ω	$0.049\% + 300 \Omega$
$20.0000\mathrm{M}\Omega$	100 Ω	1 μΛ	0.11% + 1 kΩ	$0.052\% + 1 k\Omega$
200.000 M Ω	1 kΩ	100 nA	0.97% + 10 kΩ	$0.3 \% + 10 \text{ k}\Omega$
>200.000 MΩ	1 ΜΩ	_	ソース I確度 + メジャー V確度	メジャーI薩度 +メジャーV確度

温度係数 (0°-18℃および 28℃-50℃):

- ± (0.15×確度仕様) /℃
- ソースIモード、手動抵抗測定:全不確実性=Iソース確度+Vメジャー確度(4線リモートセンス)。
- ソース V モード:全不確実性= V ソース確度 +1 メジャー確度(4 線リモートセンス)
- 6線抵抗測定モード:能動オームガードとガードセンスを使用すれば可能。最大ガード出力電流:50mA (1A レンジを除く)。 確度は負荷依存性です。計算公式については、取扱説明書を参照してください。

ガード出力インピーダンス:抵抗測定モードで0.1Ω

- 1 速度=通常 (1PLC)
- 2 ゼロ設定が適切であれば、確度は2線または4線モードにも適用されます。
- 3 4線モード
- 4 手動抵抗測定モードに限られます。
- 5 ソースリードバックは使用可能

システム速度

測定1

最大レンジ変更速度:75/秒

最大メジャーオートレンジ時間:40ms (固定ソース)²

スイープ動作読取り速度 (読取り数/秒)、60Hz の場合 (50Hz)

	メジャー	ソース - メジャー
速度 NPLC/トリガ起点	メモリヘ GPIBへ	メモリヘ GPIB ヘ
ファースト 0.01 / 内部	2125 (2010) 1000 (1000)	1825 (1735) 900 (900)
0.01 / 外部	1275 (1225) 910 (920)	1150 (1115) 830 (835)
ミディアム 0.10 / 内部	510 (435) 510 (435)	480 (420) 480 (420)
0.10 / 外部	440 (385) 440 (385)	425 (370) 425 (370)
ノーマル 1.00 / 内部	59 (49) 59 (49)	58 (48) 58 (48)
1.00 / 外部	57 (48) 57 (48)	57 (47) 57 (47)
	ソース - メジャー4	
	ソース - メジャー⁴ 合格/不合格試験	ソース - メモリ 4
速度 NPLC/トリガ起点		ソース・メモリ⁴ メモリへ_GPIBへ
速度 NPLC/トリガ起点 ファースト 0.01 / 内部	合格/不合格試験	
	合格/不合格試験 メモリヘ GPIBへ	メモリヘ GPIBへ
ファースト 0.01 / 内部	合格/不合格試験 メモリへ GPIBへ 1000 (990) 760 (760)	メモリヘ GPIBへ 260 (260) 260 (260)
ファースト 0.01 / 内部 0.01 / 外部	合格/不合格試験 メモリへ GPIBへ 1000 (990) 760 (760) 940 (910) 710 (710)	メモリへ GPIBへ 260 (260) 260 (260) 255 (250) 255 (250)
ファースト 0.01 / 内部 0.01 / 外部 ミディアム 0.10 / 内部	合格/不合格試験 メモリへ GPIBへ 1000 (990) 760 (760) 940 (910) 710 (710) 400 (355) 400 (355)	メモリへ GPIBへ 260 (260) 260 (260) 255 (250) 255 (250) 200 (200) 200 (200)

単一読取り動作読取り速度(読取り数/秒)、60Hzの場合(50Hz)5

速度 NPLC/トリガ起点	メジャー GPIB へ	ソース - メ ジャー・ GPIB へ	ソース - メジャー 合格 / 不合格試験 ** GPIB へ
ファースト 0.01 / 内部	200 (200)	72 (70)	70 (70)
ミディアム 0.10 / 内部	160 (150)	65 (60)	60 (59)
ノーマル 1.00 / 内部	46 (40)	32 (30)	30 (29)
コンポーネントハンドラインタ	マフェース時間 ^{4,7}		ソース - メジャー
速度 NPLC/トリガ起点	メジャー合格/不合格試験	ソース合格/不合格試験	合格/不合格試験8
ファースト 0.01 / 外部	0.9 ms (0.95 ms)	0.5 ms (0.5 ms)	3.9 ms (4.0 ms)
ミディアム 0.10 / 外部	2.5 ms (2.75 ms)	0.5 ms (0.5 ms)	5.3 ms (5.75 ms)
7 一 元 1 1 00 / 外部	17.5 ms (20.75 ms)	0.5 ms (0.5 ms)	20.5 ms (24 ms)

- 1 電圧または電流測定に適用する読取り速度。オートゼロオフ、オートレンジオフ、フィルタオフ、ディスプレイオフ、トリガディレイ = 0、2 進読取り値フォーマット。
- 2 純抵抗負荷。1μA と 10μA<65ms
- 3 1000点スイープの特性は、ソースを固定レンジに置いた場合のものです。
- 4 合格/不合格試験は、1つの上部リミットと1つの下部数式リミットを使用して実行。
- 5 トリガモードはアイドル状態、ディスプレイはオフ。
- 6 測定を行う前にソースを新しいレベルで再プログラムする時間を含む。
- 7 START OF TEST 信号の下降エッジから END OF TEST 信号の下降エッジまでの時間
- 8 :SOURce:VOLTage!CURRent:TRIGgered<nrf> コマンドのコマンド処理時間を含まない。

一般事項

雑音除去

	NPLC	NMRR	CMRR	
ファースト	0.01	_	80 dB	
ミディアム	0.1	_	80 dB	
ノーマル	1	60 dB	120 dB '	

負荷インピーダンス:通常 20,000pF 台まで安定

コモンモード電圧:250VDC

コモンモード隔離:>10°Ω、<1000pF

オーバレンジ:ソース+メジャーレンジの105%

入/出力端子とセンス端子との間の最大電圧降下:5 ボルト

最大センスリード線抵抗:定格確度で 1k Ω

センス入力インピーダンス:>I0¹⁰Ω

ソース出力モード:

固定 DC レベル

メモリリスト(混合機能)

ステア (線形および対数)

ソースメモリリスト:最大100点

メモリバッファ:読取り値 5,000 個 @5 1/2 桁 (2,500 点バッファ 2 個)。選択した測定値とタイムスタンプを含む。リチウム電池によるバッ

クアップ。

プログラム性:IEEB-488 (SCPI-1995.0)、RS-232、工場出荷時デフォルトに加えてユーザ定義による 5 種類の電源投入状態、および*RST

デジタルインタフェース:

安全インターロック:アクティブロー入力

ハンドラインタフェース:試験開始、試験終了、カテゴリビット3個、+5V@300mA電源

デジタル I/O: トリガ入力 1 個、TTL/ リレードライブ出力 4 個(33V@500mA シンク、ダイオードはクランプ状態)。 電源:88V から 264Vrms、50-60Hz(電源投入時に自動的に検出)

保証:1 年

EMC:欧州連合指令 89/336/EEC(CE 表示要求事項)、FCC 第 15 部 B 分類、CTSPR11、IEC801-2、IEC801-3、IEC801-4 に 適合

振動:MIL-T-28800E 形式 III 分類 5

ウオームアップ:定格確度まで1時間

寸法:高さ 98mm ×幅 213mm ×奥行き 370mm(3 1/2 インチ× 8 3/8 インチ× 14 9/16 インチ)。ベンチ設定の場合:高さ 104mm ×幅 238mm ×奥行き 370mm(4 1/8 インチ× 9 3/8 インチ× 14 9/16 インチ)

重量:3.21kg(7.08 ポンド)

環境:

動作:0°-50℃、相対湿度(R.H.)70%、35℃まで。35°-50℃の場合は3%R.H./℃の割合で湿度を軽減してください。保管:-25℃から65℃

1 電流レンジのうち最低の2レンジを除く。これらのレンジに対しては90dB

仕様書は予告なく変更することがあります。

2410 仕様

ソース仕様1

電圧プログラミング確度 (リモートセンス)

レンジ	プログラミング 分解能	確度(1年) 23℃±5℃ 読取り値の±%+ボルト	雑音 (ビークピーク) 0.1Hz-10Hz
200.000 mV	5 μV	0.02% + 600 μV	10 μV
2.00000 V	50 μV	$0.02\% + 600 \mu V$	50 μV
20.0000 V	500 μV	$0.02\% + 2.4 \mathrm{mV}$	5mV
1000.00 V	50 mV	0.02% + 100 mV	20 mV

温度係数 (0℃- 18℃と 28℃ -50 ℃): +-(0.15 x 確度仕様)/℃

最大出力電力:22W (4象限ソースまたはシンク動作)

ソース/シンクリミット

電圧変動率:ライン側:レンジの 0.01%、負荷側:レンジの 0.01%+1mV

雑音 10Hz - 1MHz (p-p): 代表的な値 20mV 抵抗性負荷

過電圧保護:ユーザの選択による値、許容範囲 5%、工場出荷時デフォルト値 =40V

電流リミット:単一値で設定した両極電流リミット(コンプライアンス)。最小はレンジの0.1%

オーバシュート:代表的な値 <0.1% (フルスケールステップ、抵抗性負荷、2mA レンジ)

電流プログラミング確度 (ローカルセンスまたはリモートセンス)

レンジ	プログラミング 分解能	確度(1年) 23℃±5℃ 読取り値の± %+ボルト	雑音 (ピークピーク) 0.1Hz-10Hz
1.00000 µA	50 pA	0.035% + 600pA	5 pA
10.0000 μΑ	500 pA	0.033% + 2nA	50 pA
100.000 µA	5 nA	0.031% + 20nA	500 pA
1.00000 mA	50 nA	0.034% + 200nA	5 nA
20.0000 mA	500 nA	$0.045\% + 4\mu A$	200 nA
100.000 mA	5 µA	0.066% + 20µA	1 μΑ
1.00000 A	² 50 µA	$0.27 \% + 900 \mu A$	100 μΑ

温度係数 (0℃-18℃と28℃ -50℃): +-(0.15 x 確度仕様)/℃

最大出力電力:22W (4 象限ソースまたはシンク動作)

ソース/シンクリミット

電流変動率:ライン側:レンジの0.01%、負荷側:レンジの0.01%+1nA

電圧リミット:単一値で設定した両極電圧リミット (コンプライアンス)。最小はレンジの 0.1%

オーバシュート:代表的な値 <0.1% (1mA ステップ、RL=10k Ω、20V レンジ)

- 1 仕様は 20V で 105mA 以下、1000V で 2mA 以下の連続出力電流に対して有効。>1 分の期間にわたって 105mA を越える連続動作の場合は、105mA 以上については 10%/35mA、1000V では 2mA 以上について 10%/600 μ A の割合で確度を下げてください。
- 2 30degree C までは負荷にかかわらず全出力動作 (IA)。周囲温度 30degree C 以上の場合は、35mA/degree C の割合で軽減し、35mA/Ω 負荷の割合で比例配分してください。4線モード。
- 電流シンクとして使用する場合は、23degree Cで IOW (外部電力) まで。23degree C以上は、IW/degree Cの割合で軽減してください。
 3 シンクチードの場合は、Imigoroa から 100mA までのレンジについては、確度は (+D 5%+オフセット)、IA レンジの場合は、確度は
- 3 シンクモードの場合は、1micoroAから100mAまでのレンジについては、確度は(+0.5%+オフセット)。1Aレンジの場合は、確度は +(1.5%+オフセット*3)です。

ソース追加仕様

過渡応答時間:負荷の階段状変動のあと、出力が仕様値に回復するまで、代表的な値で30 μ

コマンド処理時間: :SOURce:VOLTage!CURRent<nrf> コマンド受信のあと、出力が変化を開始するまでに必要な最大時間 オートレンジ ON: 10ms オートレンジ OFF:

出力安定時間: コマンドを処理したあと、最終値の 0.1% に達するのに必要な最大安定時間: 代表的な値として 100 μ 出力スルーレート: $500 \text{mV}/\mu$ 、1000 V レンジ、コンプライアンス 20 mA。 $150 \text{mV}/\mu$ 、20 V レンジ、コンプライアンス 100 mA。 $55 \text{mV}/\mu$ 、20 V レンジ、コンプライアンス 100 mA。

DC 浮動電圧: 出力はシャーシ接地から +-250V の範囲で浮動させることができます。

リモートセンス: 両方のリードを合わせて 1V の降下まで。

コンプライアンス確度: 基礎仕様にレンジの0.1%を加えてください。

過大温度保護: 内部センス方式温度過負荷保護装置が、ユニットを待機モードに入れます。

レンジ変更オーバシュート: 純抵抗性 100k Ω負荷へのオーバシュート、帯域幅 10Hz から 1MHz、隣接レンジ、100mV が通常、20V/1000V レンジの境界を除く。

最小コンプライアンス値: レンジの 0.1%

メジャー仕様1,2

電圧測定確度 (リモートセンス)

レンジ	· 最大分解能	入力抵抗	確度(23℃±5℃) 1年±(読取り値の % + ポルト)
200.000 mV	1 μV	>10GΩ	0.012% + 300 μV
2.00000 V	10 μV	>10GΩ	$0.012\% + 300 \mu V$
20.0000 V	100 µV	>10GΩ	0.015% + 1 mV
1000.00 V	10 mV	>10GΩ	0.015% + 50 mV

温度係数 (0℃ - 18℃と 28 ℃-50℃): +-0.1x 確度仕様 /℃

雷流測定確度 (ローカルセンスまたはリモートセンス)

レンジ	最大分解能	電圧負担	確度(23℃±5℃) 1年±(読取り値の %+ アンペア)
1.00000 μΛ	10 pA	< 1mV	0.029% + 300 pA
10.0000 µA	100 pA	< 1mV	0.027% + 700 pA
100.000 µA	1 nA	< lmV	0.025% + 6 nA
1.00000 mA	10 nA	< lmV	0.027% + 60 nA
20.0000 mA	100 nA	< 1mV	$0.035\% + 1.2 \mu A$
100.000 mA	1 μΑ	< lmV	0.055% + 6 μA
1.00000 A	10 μΑ	< 1mV	$0.22 \% + 570 \mu A$

温度係数 (0℃ - 18℃C と 28℃ -50℃): +-0.1x 確度仕様 /℃

抵抗測定確度 (4線リモートセンス)

ソース [モード、自動抵抗測定

レンジ	最大分解能	デフォルト 試験電流	通常確度(23℃±5℃) 1 年±(読取り値の % + オーム) メジャーV確度	改良確度(23℃± 5℃) 1 年± (読取り値の % + オーム) メジャー1確度
<2.00000 Ω 4	1 μΩ		Source I _{ACC} + Measure V _{ACC}	Measure I _{ACC} + Measure V _{ACC}
20.0000 Ω	100 μΩ	100 mA	0.098% + 0.003 Ω	0.073% + 0.001 Ω
20.0000 Ω	100 μΩ	100 mA	$0.11\% + 0.006 \Omega$	$0.08\% + 0.006 \Omega$
200.000 Ω	$1~\mathrm{m}\Omega$	10 mA	0.09% + 0.12 Ω	$0.06\% + 0.06 \Omega$
2.00000 k Ω	$10 \text{ m}\Omega$	l mA	$0.08\% + 0.6 \Omega$	0.05% + 0.6 Ω
20.0000 kΩ	$100~\mathrm{m}\Omega$	100 μA	0.07% + 6 Ω	0.05% + 6 Ω
200.000 kΩ	1 Ω	10 µA	0.07% + 60 Ω	0.05% + 60 Ω
$2.00000~\mathrm{M}\Omega$	10 Ω	1 μΑ	0.12% + 600 Ω	0.08% + 600 Ω
$20.0000\mathrm{M}\Omega$	100 Ω	1 µA	0.12% + 2400 Ω	$0.08\% + 2400 \Omega$
200.000 MΩ	1 kΩ	100 nA	0.66% + 24 kΩ	$0.4 \% + 24 \text{ k}\Omega$
$>200.000 \mathrm{M}\Omega^{-4}$	1 ΜΩ		Source I _{ACC} + Measure V _{ACC}	Measure I _{ACC} + Measure V _{ACC}

温度係数 (0℃ - 18℃C と 28℃ -50℃): +-0.1x 確度仕様 /℃

ソース [モード、手動抵抗測定: 全不確実性 =I ソース確度 +V メジャー確度 (4 線リモートセンス)。

6線抵抗測定モード: 能動オームガードとガードセンスを使用すれば可能。代表的なガード出力電流: 40mA (1A と 1000V レンジを除く)。確度は負荷依存性です。計算公式については、マニュアルを参照してください。 ガード出力インピーダンス: 抵抗測定モードで 0.1 Ω

- 1 速度=通常(1 PLC)
- 2 ZERO設定が適切であれば、確度は2線または4線モードにも適用されます。
- 3 4線モード
- 4 手動抵抗測定モードに限られます。
- 5 ソースリードバックは使用可能。

システム速度

測定

最大レンジ変更速度: 70/秒

最大メジャーオートレンジ時間: (固定ソース)

スイープ動作読み取り速度 (読み取り数/秒)、60Hz の場合 (50Hz)。

速度	NPLC/ トリガ起点	メジャー メモリヘ GPIBへ	ソース-メジャー メモリヘ GPIBへ	ソース - メジャー 合格 / 不合格試験 ⁴ メモリヘ GPIB へ	ソース・メモリ ⁴ メモリへ GPIBへ
ファースト	0.01 / 内部	2125(2010) 1000(1000)	1675 (1590) 900 (900)	1000 (990) 760 (760)	200 (185) 200(185)
	0.01 / 外部	1250(1210) 910 (920)	1080 (1035) 830 (835)	940 (910) 710 (710)	195 (180) 195(180)
ミディアム	0.10 / 内部	510 (435) 510 (435)	475 (410) 475 (410)	400 (355) 400 (355)	155 (140) 155(140)
	0.10 / 外部	440 (380) 440 (380)	415 (365) 415 (365)	390 (345) 390 (345)	150 (135) 150(135)
ノーマル	1.00 / 内部	59 (49) 59 (49)	58 (48) 58 (48)	57 (48) 57 (48)	46 (39) 46 (39)
	1.00 / 外部	57 (48) 57 (48)	57 (47) 57 (47)	56 (47) 56 (47)	46 (39) 46 (39)

単一読み取り動作読み取り速度 (読み取り数/秒)、60Hz の場合 (50Hz)。

_ 速度	NPLC/トリガ起点	メジャー GPIB へ	ソース - メ ジャー ⁵ GPIB へ	ソース - メジャー 合格 / 不合格試験 ⁴⁵ GPIB へ
ファースト	0.01 / 内部 0.10 / 内部	200 (200) 160 (150)	65 (65) 60 (60)	65 (65) 60 (58)
ミディアム ノーマル	1.00 / 内部	46 (40)	31 (28)	30 (28)

コンポーネントハンドラインタフェース時間46

速度	NPLC/トリガ起点	メジャー合格/不合格試験	ソース合格/不合格試験	ソース - メジャー 合格 / 不合格試験 ⁷
ファース	ト 0.01 / 外部	0.96 ms (1.07 ms)	0.5 ms (0.5 ms)	4.0 ms (4.0 ms)
ミディア	ム 0.10 / 外部	2.5 ms (2.8 ms)	0.5 ms (0.5 ms)	5.5 ms (5.75 ms)
ノーマル	/ 1.00 / 外部	17.5 ms (20.85 ms)	0.5 ms (0.5 ms)	20.5 ms (24 ms)

- 1 電圧または電流測定に適用する読取り速度。オートゼロオフ、オートレンジオフ、フィルタオフ、ディスプレイオフ、トリガディレイ=0、ソースオートクリアオフ、2進読取り値フォーマット。
- 2 純抵抗負荷。1μA と 10μA レンジ <65ms
- 3 1000点スイープの特性は、ソースを固定レンジに置いた場合のものです。
- 4 合格/不合格試験は、1つの上部リミットと1つの下部数式リミットを使用して実行。
- 5 トリガモードはアイドル状態、ディスプレイはオフ。
- 6 測定を行う前にソースを新しいレベルで再プログラムする時間を含む。
- 7 START OF TEST 信号の下降エッジから END OF TEST 信号の下降エッジまでの時間
- 8 :SOURce:VOLTage!CURRent:TRIGgered<nrf>コマンドのコマンド処理時間を含まない。(訳注 A-5 参照)

一般事項

維音除去

	NPLC	NMRR	CMRR1
ファースト	0.01	_	80 dB
ミディアム	0.1	_	80 dB
ノーマル	1	60 dB	120 dB ²

負荷インピーダンス:通常 20,000pF 台まで安定

コモンモード電圧:250VDC

コモンモード隔離:>10°Ω、<1000pF

オーバレンジ:ソース+メジャーレンジの105%

入/出力端子とセンス端子との間の最大電圧降下:5 ボルト

最大センスリード線抵抗:定格確度で 50k Ω

センス入力インビーダンス:>1010Ω

ガードオフセット電圧: 代表的な値として 300μV

ソース出力モード:

固定 DC レベル

メモリリスト(混合機能)

ステア(線形および対数)

ソースメモリリスト:最大 100 点

メモリバッファ:読取り値 5,000 個 @5 1/2 桁 (2,500 点バッファ 2 個)。選択した測定値とタイムスタンプを含む。リチウム電池によるパックアップ。(バッテリ寿命は3年以上)

プログラム性:IEEE-488 (SCPI-1995.0)、RS-232、工場出荷時デフォルトに加えてユーザ定義による 5 種類の電源投入状態、および *RST

デジタルインタフェース:

安全インターロック:アクティブロー入力

ハンドラインタフェース:試験開始、試験終了、カテゴリピット3個、+5V@300mA電源

デジタル I/O:トリガ入力 I 個、TTL/リレードライブ出力 4 個(33V@500mA シンク、ダイオードはクランブ状態)。 電源:85 から 250VAC、50-60Hz(電源投入時に自動的に検出)

保証:1 年

EMC:欧州連合指令 89/33/EBC EN 55011、EN 50082-1、EN 61000-3-2、および EN 61000 に適合。FCC 第 15 部 B 分類に適合。

安全性: 欧州連合指令 73/23/EEC EN 61010、UL3111-1 に適合。

振動:MIL-T-28800E形式 III 分類 5

ウオームアップ:定格確度まで1時間

寸法:高さ x 幅 x 奥行き (インチ x インチ x インチ x インチ)。ベンチ設定の場合 (ハンドルおよび脚付き): 高さ 104mm × 幅 238mm × 奥行き 370mm (4 1/8 インチ× 9 3/8 インチ× 14 9/16 インチ)

重量:3.21kg(7.08 ポンド)

環境:0 - -50℃、35℃まで相対湿度 (R.H.) 70% (結露しないこと)。35 - 50 ℃の場合は 3%R.H./℃の割合で軽減してください。

動作:0°-50℃、相対湿度(R.H.)70%、35℃まで。35°-50℃の場合は3%R.H./℃の割合で湿度を軽減してください。 保管:-25℃から65℃

- 1)200mV から 20V のレンジ、すべての電流レンジ
- 2 電流レンジのうち最低の2レンジを除く。これらのレンジに対しては90dB、1kVレンジに対しては90dB@1PLC

仕様書は予告なく変更することがあります。

2420 仕様

ソース仕様

電圧プログラミング確度 (リモートセンス)

レンジ	プログラミング 分解能	確度(1年) 23℃±5℃ 読取り値の±%+ボルト	雑音 (ピークピーク) 0.1Hz-10Hz
200.000 mV	5 μV	0.02% + 600 μV	10 uV
2.00000 V	50 μV	0.02% + 600 μV	50 uV
20.0000 V	500 µV	0.02% + 2.4 mV	500 μV
60.0000 V	1.5 mV	0.02% + 7.2 mV	1500 μV

温度係数 (0℃ - 18℃と 28 ℃ -50 ℃); +-(0.15 x 確度仕様)/℃

最大出力電力:66W (4象限ソースまたはシンク動作)

ソース/シンクリミット: 電流と電圧について公称値の5%増し

電圧変動率:ライン側:レンジの0.01%、負荷側:レンジの0.01%+100 a V

雜音 10Hz - 1MHz (p-p): 最大 15mV 抵抗性負荷

過電圧保護:ユーザの選択による値、許容範囲 5%、工場出荷時デフォルト値=36V

電流りミット:単一値で設定した両極電流リミット (コンプライアンス)。最小はレンジの 0.1%

オーパシュート:代表的な値 <0.1% (フルスケールステップ、抵抗性負荷、10mA レンジ)

電流プログラミング確度 (ローカルセンスまたはリモートセンス)

レンジ	プログラミング 分解能	確度(1年) 23℃±5℃ 読取り値の± % + ボルト	雑音 (ピークピーク) 0.1Hz-10Hz
10.0000 µA	500 pA	0.033% + 2 nA	50 pA
100.000 µA	5 nA	0.031% + 20 nA	500 pA
$1.00000 \mathrm{mA}$	50 nA	0.034% + 200 nA	5 nA
10.0000 mA	500 nA	0.045% + 2 μA	50 nA
100.000 mA	5 pA	0.066% + 20 μA	500 nA
1.00000 A ²	50 µA	0.067% + 900 μA	50 μA
3.00000 A ²	150 µA	0.059% + 2.7mA	150 µA

温度係数 (0℃ - 18℃と 28 ℃ -50℃): +-(0.15 x 確度仕様)/℃

最大出力電力:22W (4 象限ソースまたはシンク動作)

ソース/シンクリミット

電流変動率:ライン側:レンジの0.01%、負荷側:レンジの0.01%+100pA

電圧リミット:単一値で設定した両極電圧リミット (コンプライアンス)。最小はレンジの 0.1%

オーバシュート:代表的な値 <0.1% (1mA ステップ、RL=10k Ω、20V レンジ)

- 1 仕様は105mA以下以下の連続出力電流に対して有効。1Aレンジで>1分の期間にわたって105mAを越える動作の場合は、105mA以上については10%/100mAの割合で確度を下げてください。3Aレンジで>1分の期間にわたって105mAを越える動作の場合は、105mA以上については10%/300mAの割合で確度を下げてください。
- 2 30℃までは負荷にかかわらず全出力動作。30℃以上の場合と電力シンク動作の場合、またはどちらかの場合は、ユーザマニュアルの電力方程式の項を参照してください。

ソース追加仕様

過渡応答時間:負荷の階段状変動のあと、出力が仕様値に回復するまで、代表的な値で 30 α。抵抗性負荷

コマンド処理時間: :SOURce:VOLTage!CURRent<arr>
コマンド受信のあと、出力が変化を開始するまでに必要な最大時間オートレンジ ON: 10ms オートレンジ OFF:

出力安定時間: コマンドを処理したあと、最終値の0.1% に達するのに必要な最大安定時間: 代表的な値として 100 μ 抵抗性負荷。10 μ A から 100mA レンジ

出力スルーレート: 0.14V/ μ、60V レンジ、コンプライアンス 100mA。0.08V/ μ、2V および 20V レンジ、コンプライアンス 100mA。

コモンモード電圧:

リモートセンス: 両方のリードを合わせて IV の降下まで。

コンプライアンス確度: ソースモードの場合、基礎仕様にレンジの0.1% を加えてください。シンクモードで $10~\mu$ A から 100mA レンジまでの場合、確度は+-(0.5%+オフセット*3)です。シンクモードで1A と3A レンジの場合、確度は+-(1.5%+オフセット*3)です。

過大温度保護: 内部センス方式温度過負荷保護装置が、ユニットを待機モードに入れます。

レンジ変更オーバシュート: 純抵抗性 100k Ω 負荷へのオーバシュート、帯域幅 10Hz から 1MHz、隣接レンジ、100mV が通常、20V/60V レンジの境界を除く。

最小コンプライアンス値: レンジの0.1%

メジャー仕様

電圧測定確度 (リモートセンス)

_		· \	,	,	確度(23℃±5℃)
	レンジ	最	大分解能	入力抵抗	1年±(読取り値の%+ポルト)
-	200.000	mV	IμV	>10GΩ	0.012% + 300 μV
	2.00000	V	10 µV	>10GΩ	$0.012\% + 300 \mu V$
	20.0000	V	100 μV	>10GΩ	0.015% + 1 mV
	60.0000	V	300 μV	>10GΩ	0.015% + 3 mV

電流測定確度 (ローカルセンスまたはリモートセンス)

レンジ	最大分解能	電圧負担	確度(23℃±5℃) 1年±(読取り値の &+アンペア)
10.0000 μΑ	100 pA	< lmV	0.027% + 700 pA
100.000 μΑ	l nA	< 1 mV	0.025% + 6 nA
1.00000 mA	10 nA	< lmV	0.027% + 60 nA
10.0000 mA	100 nA	< lmV	0.035% + 600 nA
100,000 mA	lμA	< lmV	0.055% + 6 μA
1.00000 A	10 µA	< 1mV	0.060% + 570 µA
3.00000 A	30 µA	< 1 mV	0.052% + 1.71 mA

抵抗測定確度 (4線リモートセンス)

ソースTモード、自動抵抗測定

レンジ	最大分解能	デフォルト 試験電流	通常確度(23℃±5℃) 1年生(読取り値の%+オーム)	改良確度(23℃±5℃) 1年±(読取り値の %+オーム)
<0.20000 Ω	1 μΩ	,	Source Lace + Measure Vacc	Measure Lace + Measure Vace
2.00000 Ω	10 μΩ	1 A	$0.169\% + 0.0003$ Ω	$0.129\% \pm 0.0001 \Omega$
20,0000 Ω	100 μΩ	100 mA	$0.098\% + 0.003 \Omega$	0.073% + 0.001 Ω
200.000 Ω	$1~\mathrm{m}\Omega$	10 mA	$0.077\% + 0.03 \Omega$	$0.053\% + 0.01 \Omega$
2.00000 kΩ	$10~\mathrm{m}\Omega$	I mA	$0.066\% + 0.3 \Omega$	$0.045\% + 0.1 \Omega$
20,0000 kΩ	$100 \text{ m}\Omega$	100 µA	$0.063\% + 3 \Omega$	$0.043\% + 1 \Omega$
200.000 kΩ	1 Ω	10 µA	0.065% + 30 Ω	$0.046\% + 10 \Omega$
$2.00000~{\rm M}\Omega$	10 Ω	10 µA	0.068% ÷ 100 Ω	$0.049\% + 50 \Omega$
$20.0000 \text{M}\Omega$	100 Ω	1 µA	$0.249\% + 1 \text{ k}\Omega$	$0.112\% + 500 \Omega$
>20.0000 MΩ	1 kΩ	<u> </u>	Source Lec + Measure Vacc	Measure IACC + Measure VACC
			確度 傩及	確度 帷度

温度係数 (0°-18℃と 28°-50℃):+ (0.15×確度仕様)/℃

ソース I モード、手動抵抗測定: 全不確実性 =I ソース確度 +V メジャー確度 (4線リモートセンス)。

6 線抵抗測定モード: 能動オームガードとガードセンスを使用すれば可能。最大ガード出力電流: 50mA (IA と 3A レンジを除く)。確度は負荷依存性です。計算公式については、マニュアルを参照してください。 ガード出力インピーダンス: 抵抗測定モードで $0.1~\Omega$

- 1 速度=通常(1PLC)
- 2 ZERO設定が適切であれば、確度は2線または4線モードにも適用されます。
- 3 4線モード
- 4 手動抵抗測定モードに限られます。
- 5 ソースリードバックは使用可能。

システム速度

測定

最大レンジ変更速度: 65/秒

最大メジャーオートレンジ時間: (固定ソース)2

スイープ動作読み取り速度(読み取り数/秒)、60Hzの場合(50Hz)。

		<u>-</u>	, , -	ソース - メジャー	
		メジャー	ソース - メジャー	合格/不合格試験4	ソース - メモリ*
速度	NPLC/トリガ起点	メモリヘ GPIBへ	メモリヘ GPIBへ	メモリヘ GPIBへ	
ファースト	0.01 / 内部	2125(2010) 1000(1000)	1675 (1590) 900 (900)	1000 (990) 760 (760)	200 (185) 200(185)
	0.01 / 外部	1250(1210) 910 (920)	1080 (1035) 830 (835)	940 (910) 710 (710)	195 (180) 195'180)
ミディアム	0.10 / 内部	510 (435) 510 (435)	475 (410) 475 (410)	400 (355) 400 (355)	155 (140) 155(140)
() ()	0.10 / 外部	435 (380) 435 (380)	415 (365) 415 (365)	390 (345) 390 (345)	150 (135) 150(135)
ノーマル	1.00 / 内部	59 (49) 59 (49)	58 (48) 58 (48)	57 (48) 57 (48)	46 (39) 46 (39)
- 172	1.00 / 外部	57 (48) 57 (48)	57 (47) 57 (47)	56 (47) 56 (47)	46 (39) 46 (39)

単一読取り動作読取り速度(読取り数/秒)、60Hzの場合(50Hz)⁵

速度	NPLC/トリガ起点	メジャー GPIB へ	ソース - メジャー ⁶ GPIB へ	ソース - メジャー 合格 / 不合格試験 4.6 GPIB へ	
ファースト	0.01 / 内部	200 (200)	65 (65)	65 (65)	
ミディアム	0.10 / 内部	160 (150)	60 (60)	60 (58)	
ノーマル	1.00 / 内部	46 (40)	31 (28)	30 (28)	

コンポーネントハンドラインタフェース時間47

速度	NPLC/トリガ起点	メジャー合格/不合格試験	ソース合格/不合格試験	ソース - メジャー 合格/不合格試験 ⁷
ファース	ト 0.01 / 外部	0.96 ms (1.07 ms)	0,5 ms (0.5 ms)	4.0 ms (4.0 ms)
ミディア	4 0.10 / 外部	2.5 ms (2.8 ms)	0.5 ms (0.5 ms)	5.5 ms (5.75 ms)
ノーマル	1.00 / 外部	17.5 ms (20.85 ms)	0.5 ms (0.5 ms)	20.5 ms (24 ms)

- 1 電圧または電流測定に適用する読取り速度。オートゼロオフ、オートレンジオフ、フィルタオフ、ディスプレイオフ、トリガディレイ=0、ソースオートクリアオフ、2 進読取り値フォーマット。
- 2 純抵抗負荷。1μA と 10μA<65ms
- 3 1000点スイーブの特性は、ソースを固定レンジに置いた場合のものです。
- 4 合格/不合格試験は、1つの上部リミットと1つの下部数式リミットを使用して実行。
- 5 トリガモードはアイドル状態、ディスプレイはオフ。
- 6 測定を行う前にソースを新しいレベルで再プログラムする時間を含む。
- 7 START OF TEST 信号の下降エッジから END OF TEST 信号の下降エッジまでの時間
- 8 :SOURce: VOLTage | CURRent: TRIGgered コマンドのコマンド処理時間を含まない。

一般事項

雑音除去

	NPLC	NMRR	CMRR ¹
ファースト	0.01		80 d B
ミディアム	0.1		80 dB
ノーマル	1	60 dB	120 dB 1

貝何インヒータンス:通常 20,000pF 台まで安定

コモンモード電圧:250VDC

コモンモード隔離:>10°Ω、<1000pF

オーバレンジ:ソース+メジャーレンジの105%

入/出力端子とセンス端子との間の最大電圧降下:5ボルト

最大センスリード線抵抗:定格確度で 1M Ω

センス入力インピーダンス:>1010Ω

ガードオフセット電圧: 代表的な値として 300microV

ソース出力モード:

固定 DC レベル

メモリリスト(混合機能)

ステア(線形および対数)

ソースメモリリスト:最大100点

メモリバッファ:読取り値 5,000 個 @ 5 1/2 桁 (2,500 点バッファ 2 個)。選択した測定値とタイムスタンプを含む。リチウム 電池によるバックアップ。(バッテリ寿命は 3 年以上)

プログラム性:IEEE-488(SCPI-1995.0)、RS-232、工場出荷時デフォルトに加えてユーザ定義による 5 種類の電源投入状態、および *RST

デジタルインタフェース:

安全インターロック:アクティブロー入力

ハンドラインタフェース:試験開始、試験終了、カテゴリビット3個、+5V@300mA電源

デジタル I/O:トリガ入力 1 個、TTL/リレードライブ出力 4 個(33V@500mA シンク、ダイオードはクランプ状態)。 電源:90V から 250Vrms、50-60Hz、220VA

冷却: 強制空冷、可変速度

保証:1年

EMC:欧州連合指令 89/33/EEC EN 55011、EN 50082-1、EN 61000-3-2、および EN 61000 に適合。FCC 第 15 部 B 分類に適合。

振動:MIL-T-28800E形式 III 分類 5

安全性: 欧州連合指令 73/23/EEC EN 61010、UL3111-1 に適合。

ウオームアップ:定格確度まで1時間

寸法:高さ 98mm ×幅 213mm ×奥行き 370mm(3 1/2 インチ× 8 3/8 インチ× 14 9/16 インチ)。ベンチ設定の場合:高さ 104mm ×幅 238mm ×奥行き 370mm(4 1/8 インチ× 9 3/8 インチ× 14 9/16 インチ)

重量:3.21kg (7.08 ポンド)

環境:

動作:0°-50℃、相対湿度(R.H.)70%、35℃まで。35°-50℃の場合は3%R.H./℃の割合で湿度を軽減してください。 保管:-25℃から65℃

1 最低電流レンジを除く。このレンジに対しては90dB

仕様書は予告なく変更することがあります。

2430 仕様

ソース仕様1

電圧プログラミング確度 (リモートセンス)

	1.3/21	プログラミング	確度(1 年) 23℃±5℃ 読取り値の± % + ポルト	雑音 (ピークピーク) 0.1Hz-10Hz	
	レンジ	分解能	説取り直のエ%+ホルド	0.1H2-1UH2	
•	200.000 m	V 5 μV	0.02% + 600 μV	10 μV	
	2.00000	V 50 μV	0.02% + 600 μV	Vى 50	
	20.0000	V 500 μV	0.02% + 2.4 mV	500 μV	
	100.000	V 2.5 mV	0.02% + 12 mV	2.5 mV	

温度係数(0°-18℃と 28°-50℃):+(0.15×確度仕様)/℃

最大出力電力:22W(4象限ソースまたはシンク動作)

ソース/シンクリミット:電流と電圧について公称値の5%増し

電圧変動率:ライン側:レンジの 0.01% 負荷側:レンジの 0.1%+100uV

雜音 10Hz-1MHz (p-p):最大50mV、抵抗性負荷

過電圧保護:ユーザの選択による値、許容範囲 5%、工場出荷時デフォルト値=NONE

電流リミット:単一値で設定した両極電流リミット (コンプライアンス)。最小はレンジの 0.1%

オーバシュート:<0.1%(フルスケールステップ、抵抗性負荷、10mA レンジ)

電流プログラミング確度(ローカルセンスまたはリモートセンス)

		= = =	
レンジ	プログラミング 分解能	確度(1年) 23℃±5℃ 読取り値の±%+ボルト	雑音 (ビークビーク) 0.1Hz-10Hz
10.0000 µA	500 pA	0,033% + 2 nA	50 pA
100.000 μA	ô nA	0,031% + 20 nA	500 pA
1.00000 mA	50 nA	0.034% + 200 nA	5 nA
10.0000 mA	500 nA	0.045% + 2 μA	50 nA
100.000 mA	5 µA	0.066% + 20 μA	500 nA
1.00000 A ²	50 μA	0.067% + 900 μA	100 μΑ
3.00000 A ²	// 500 µА	0.059% + 2.8 mA	300 μA
10.0000 A ³	500 µA	0.089% + 5.9 mA	300 μA

温度係数 (0°-18℃と28°-50℃):+(0.15×確度仕様)/℃

最大出力電力:110W (4 象限ソースまたはシンク動作、DC モード)、1100W (4 象限ソースまたはシンク動作、パルスモード)

ソース / シンクリミット: ± 105mA@210V, ± 1.05A@21V, +-10.5A@105V2.5ms パルス

電流変動率:ライン側:レンジの0.01%

負荷側:レンジの 0.1%+100pA

電圧リミット:単一値で設定した両極電圧リミット(コンプライアンス)。最小はレンジの 0.1%

オーバシュート:通常は<0.1% (1mAステップ、 $RL = 10k \Omega$ 、20V レンジ)

ソース追加仕様

過渡応答時間:負荷の階段状変動のあと、出力が仕様値に回復するまで、代表的な値で30 μ。抵抗性負荷

コマンド処理時間: :SOURce:VOLTage!CURRent<nrf>コマンド受信のあと、出力が変化を開始するまでに必要な最大時間オートレンジ ON: 10ms オートレンジ OFF:

出力安定時間: コマンドを処理したあと、最終値の 0.1% に達するのに必要な最大安定時間: 代表的な値として $100~\mu$ 。抵抗性負荷。 $10~\mu$ A から 100mA のレンジ、1V ステップ

出力スルーレート: 0.25V/ μ +-30%、100V レンジ、コンプライアンス 100mA。0.08V/ μ +-30%、20V レンジ、コンプライアンス 100mA。

コモンモード電圧: 250VDC

リモートセンス: 両方のリードを合わせて 1V の降下まで。

コンプライアンス確度: ソースモードの場合、基礎仕様にレンジの0.1% を加えてください。シンクモードの場合は、 $10~\mu$ A から 100mA のレンジでは、確度は +-(0.5% + オフセット *3)。シンクモードで 1A と 3A のレンジでは、確度は +-(1.5% + オフセット *3)。

過大温度保護: 内部センス方式温度過負荷保護装置が、ユニットを待機モードに入れます。

レンジ変更オーバシュート: 純抵抗 100k Ω 負荷へのオーバシュート、帯域幅 10Hz から 1MHz、隣接レンジ、100mV が通常、20V/1000V レンジの境界を除く。

最小コンプライアンス値: レンジの0.1%

追加パルスモードソース仕様

最大デューティサイクル:8%、ハードウェアによる制約、10A レンジのみ。ほかのレンジはすべて100%。

最大パルス幅: 上昇エッジの90% から下降エッジの90% までの時間 5ms、10A レンジでは 2.5ms

最小パルス幅: 300 μ、メジャーなし

最小パルス分解能: 代表的な値として 40 μ、最大 100 μ、システムジッタによって制約される。

ソース確度: 安定時間とソースレンジ仕様によって決まる。

出力安定時間、0.1%

代表的な値 800 μ の場合 ソース $= 10A.10 \Omega$ まで、電圧スルーレートによって制約される。

代表的な値 500μ の場合 ソース I=10A,1 Ω まで、電圧スルーレートによって制約される。

出力スルーレート: 電圧 (10 Ω負荷):

100V レンジで 0.25V/ μ +-30%

20V $\nu \nu \vec{\nu}$, 10A $\nu \nu \vec{\nu}$ \vec{v} 0.08V/ μ +-30%

電圧 (0 Ω負荷):

00V レンジで 0.25V/ μ +-30%

20V レンジ、10A レンジで 0.08V/ # +-30%

- 1 住様は05mA以下の連続出力電流に対して有効。>1分の期間にわたって1Aレンジで105mA以上で動作を行う場合は、105mA以上では、10%/100mAの割合で確度を下げてください。>1分の期間にわたって3Aレンジで105mA以上で動作を行う場合は、105mA以上では、10%/300mAの割合で確度を下げてください。
- 2 30℃までは負荷に関わらず全出力動作。30degree C以上での動作と電力シンク動作、またはどちらかを行う場合は、ユーザマニュアルの電力方程式の部を参照してください。電源ライン電圧が95V未満の場合は、1Aレンジでは最大電流を0.85Aに、3Aレンジでは2.5Aに制限してください。
- 3 パルスモードでは 10A レンジのみ。2.5ms のパルス幅に限定。最大8% のデューティサイクル。

メジャー仕様 1,2,7

電圧測定確度 (リモートセンス)

確度(23℃±5℃) 最大分解能 入力抵抗 1年士(読取り値の%+ボルト) レンジ >10 GΩ 0.012% + 300 µV 200.000 mV $1 \mu V$ >10 GΩ 2.00000 V 10 uV $0.012\% + 300 \mu V$ 20.0000 V 100 uV >10 GΩ 0.015% + 1 mV 500 μV >10 GΩ 0.015% + 5 mV 100,000 V

温度係数 (0℃- 18℃と 28℃ ~50 ℃): +-0.1x 確度仕様 /℃

電流測定確度 (ローカルセンスまたはリモートセンス)

レンジ	最大分解能	電圧負担	確度(23℃±5℃) 1年±(読取り値の多+アンペア)
10.0000 µА	100 pA	< lmV	0.027% + 700 pA
100.000 μA	l nA	< 1mV	0.025% + 6 nA
1.00000 mA	10 nA	< 1mV	0.027% + 60 nA
10,0000 mA	100 nA	< lmV	0.035% + 600 nA
100.000 mA	1 μΑ	< 1mV	0.055% + 6 µA
1.00000 A	10 μΑ	< 1mV	0.060% + 570 µA
3.00000 A/	30 μΑ	< 1mV	0.052% + 1.71 mA
10,0000 A ⁶	30 μΑ	< lmV	0.082% + 1.71 mA

温度係数 (0℃-18℃と28℃-50℃): +-0.1x 確度仕様/℃

抵抗測定確度 (4線リモートセンス)

ソースIモード、自動抵抗測定

レンジ	_	最大分解能	デフォルト 試験電流	通常確度(23℃±5℃) 1年±(読取り値の %+オーム)	改良確度(23℃±5℃) 1年±(読取り値の %+オーム)
< 0.20000	Ω 1	1 μΩ		パース[確度 メジャーV確度	メジャー1確度 メジャーV篠度
2.00000	Ω	10 μΩ	1 A	$0.169\% + 0.0003$ Ω	$0.129\% + 0.0001 \Omega$
20.0000	Ω	100 μΩ	100 mA	$0.098\% + 0.003 \Omega$	0.073% + 0.001 Ω
200.000	Ω	$1~\mathrm{m}\Omega$	10 mA	$0.077\% + 0.03 \Omega$	0.053% + 0.01 Ω
2.00000	kΩ	10 mΩ	1mA	0.066% + 0.3 Ω	0.045% + 0.1 Ω
20.0000	kΩ	100 mΩ	100 μΑ	0.063% + 3 Ω	0.043% + 1 Ω
200.000	kΩ	1 Ω	10 μA	$0.065\% + 30 \Omega$	0.046% + 10 Q
2.00000	MΩ	10 Ω	10 μΑ	0.068% + 100 ♀	0.049% + 50 ♀
20.0000	МΩ	100 Ω	1 μΑ	$0.249\% + 1 \text{ k}\Omega$	0.112% + 500 Ω
>20.0000	MΩ ⁴	1 kΩ		ソース IACC 確度 + メジャー VACC 確度	メジャー IACC 確度 + メジャー VACC 確度

温度係数 (0 ℃- 18℃と 28℃-50℃): +-0.1x 確度仕様 /℃

ソース 1モード、手動抵抗測定: 全不確実性 =I ソース確度 +V メジャー確度 (4線リモートセンス)。

6線抵抗測定モード: 能動オームガードとガードセンスを使用すれば可能。代表的なガード出力電流: 40mA (1Aと 1000V レンジを除く)。確度は負荷依存性です。計算公式については、マニュアルを参照してください。最大ガード出力電流: 50mA (1A レンジと 3A レンジを除く)。確度は負荷依存性です。計算式についてはマニュアルを参照してください。 ガード出力インピーダンス: 抵抗測定モードで 0.10HM

- 1 速度=通常 (1 PLC)。0.1PLC については、オフセット仕様にレンジの0.005% を加えてください。200mV、1A レンジを除き、0.05% を加えてください。3A/10A レンジの場合は、1.5mA を加えてください。0.01PLC については、オフセット仕様にレンジの0.05% を加えてください。200mV、1A レンジを除き、0.5% を加えてください。3A/10A レンジの場合は、15mA を加えてください。
- 2 ZERO 設定が適切であれば、確度は2線または4線モードにも適用されます。
- 3 4線モード
- 4 手動抵抗測定モードに限られます。
- 5 ソースリードバックは使用可能。
- 6 パルスモードでは 10A レンジのみ
- 7 パルスモードでは 0.1PLC の測定に限定されます。

システム速度

測定

最大レンジ変更速度: 65/秒

最大メジャーオートレンジ時間: (固定ソース)2

スイープ動作読み取り速度 (読み取り数/秒)、60Hz の場合 (50Hz)。

^	速度	NPLC/ トリガ起点		メジャー リヘ GF		, ,		ス・メジ・ ヘ GP		
7	アースト	0.01 / 内部	2080	(2030)	1210	(1210)	1550	(1515)	1010	(1010)
		0.01 / 外部	1250	(1200)	1090	(1050)	1030	(990)	920	(920)
3	ディアム	0.10 / 内部	505	(433)	505	(433)	465	(405)	465	(405)
		0.10 / 外部	435	(300)	435	(380)	405	(360)	405	(360)
	ノーマル	1.00 / 内部	59	(49)	59	(49)	58	(48)	58	(48)
		1.00 / 外部	57	(48)	57	(48)	57	(48)	57	(48)

速度	NPLC/トリガ起点	合格	く- メジ・ /不合格 !へ GP	試験		ソース メモリイ	・メモリ \ GPII		
ファースト	0.01 /内部	930	(900)	840	(840)	163	(162)	163	(162)
	0.01 /外部	860	(830)	780	(780)	161	(160)	161	(160)
ミディアム	0.10 /内部	390	(343)	390	(343)	132	(126)	132	(126)
	0.10 /外部	375	(333)	375	(333)	130	(125)	130	(125)
ノーマル	1.00 /内部	57	(47)	57	(47)	44	(38)	44	(38)
, ,,,	1.00 /女具書8	56	(47)	56	(47)	44	(38)	44	(38)

単一読み取り動作読み取り速度 (読み取り数/秒)、60Hz の場合 (50Hz)

速度	NPLC/トリガ起点	メジャー GPIB へ	ソース - メ ジャー ⁶ GPIB へ	ソース - メジャー 合格 / 不合格試験 ^{4,6} GPIB へ
ファース	· 0.01 / 内部	256 (256)	83 (83)	83 (83)
ミディアム	· 0.10 / 内部	181 (166)	73 (70)	73 (70)
ノーマル	1.00 / 内部	49 (42)	35 (31)	34 (30)

コンポーネントハンドラインタフェース時間46

速度	NPLC/ F 1	ガ起点	メジャー合格/不合格	各試験 ソース合格/不合格詞	ソース - メジャー 式験 合格/不合格試験 8
ファースト	0.01 / 5	小部	1.01 ms (1.08 ms)	0.5 ms (0.5 ms)	5.3 ms (5.3 ms)
ミディアム	0.10 / 5	小部	2.5 ms (2.9 ms)	0.5 ms (0.5 ms)	6.7 ms (7.1 ms)
ノーマル	1. 0 0 / 5	小部	17.5 ms {20.9 ms}	0.5 ms (0.5 ms)	21.7 ms (25.0 ms)

- 1 電圧または電流測定に適用する読取り速度。オートゼロオフ、オートレンジオフ、フィルタオフ、ディスプレイオフ、トリガディレイ = 0、ソースオートクリアオフ、2 進読取り値フォーマット。
- 2 純抵抗負荷。IμA と 10μA<65ms
- 3 1000点スイープの特性は、ソースを固定レンジに置いた場合のものです。
- 4 合格/不合格試験は、1つの上部リミットと1つの下部数式リミットを使用して実行。
- 6 測定を行う前にソースを新しいレベルで再プログラムする時間を含む。
- 7 START OF TEST 信号の下降エッジから END OF TEST 信号の下降エッジまでの時間
- 8 :SOURce:VOLTage!CURRent:TRIGgered<nrf>コマンドのコマンド処理時間を含まない。

一般事項

雑音除去

	NPLC	NMRR	CMRR ¹
ファースト	0.01		80 dB
ミディアム	0.1	_	80 dB
ノーマル	1	60 dB	120 dB ¹

1 最低電流レンジを除く。このレンジに対しては90dB

負荷インピーダンス:通常 20,000pF 台まで安定

コモンモード電圧:250VDC、最大3.15Aに外部的に制限されます。

コモンモード隔離:>10°Ω、<1000pF

オーバレンジ:ソース+メジャーレンジの105%

入/出力端子とセンス端子との間の最大電圧降下:5 ボルト

ソース/メジャー端子定格:設置カテゴリ【

最大センスリード線抵抗:定格確度で1kΩ

センス入力インピーダンス:>10¹⁰ Ω

ガードオフセット電圧: 代表値として 500microV

ソース出力モード: パルスメモリリスト (混合機能)

固定 DC レベル ステア (線形および対数)

ソースメモリリスト:最大100点

メモリバッファ:読取り値 5,000 個 @5 1/2 桁(2,500 点バッファ 2 個)。選択した測定値とタイムスタンプを含む。リチウム電池によるバックアップ。(バッテリ寿命3 年以上)

プログラム性:IBEE-488 (SCPI-1995.0)、RS-232、工場出荷時デフォルトに加えてユーザ定義による 5 種類の電源投入状態、および*RST

デジタルインタフェース:

安全インターロック:アクティブロー入力

ハンドラインタフェース:試験開始、試験終了、カテゴリビット3個、+5V@300mA電源

デジタル I/O:トリガ入力 1 個、TTL/リレードライブ出力 4 個(33V@500mA シンク、ダイオードはクランプ状態)。 電源:100V から 240Vrms、、50-60Hz(電源投入時に自動的に検出)

冷却: 強制空冷、可変速度

保証:1年

EMC:欧州連合指令 89/33/EEC EN 55010、EN 50082-1、EN 61000-3-2、およびEN 61000-3-3 に適合。FCC 第 15 部 B 分類に適合。

安全性: 欧州連合指令 73/23/EEC EN 61010-1 に適合。

振動:MIL-T-28800E 形式 III 分類 5

ウオームアップ:定格確度まで1時間

寸法:高さ98mm×幅213mm×奥行き370mm(31/2インチ×83/8インチ×149/16インチ)。ベンチ設定の場合:高さ104mm×幅238mm×奥行き370mm(41/8インチ×93/8インチ×149/16インチ)

重量:3.21kg(7.08 ポンド)

環境:

動作:0°-50℃、相対湿度(R.H.)70%、35℃まで。35°-50℃の場合は3%R.H./℃の割合で湿度を軽減してください。 保管:-25℃から65℃

仕様書は予告なく変更することがあります。

確度計算

下記の項目では、センスファンクションとソースファンクションについての確度の計算方法を 解説します。

メジャー確度

測定確度は次のようにして計算します。

確度=±(読取り値の%+オフセット)

実際の読取り値リミットを計算する例として、20V レンジで10V を測定する場合を想定します。1年メジャー電圧確度仕様から、次のようにして読取り値の誤差範囲を計算することができます。

確度

= ± (読取り値の%+オフセット)

 $= \pm [(0.015\% \times 10V) + 1mV]$

 $= \pm (1.5 \text{mV} + 1 \text{mV})$

 $=\pm 2.5 \text{mV}$

したがって、実際の読取り値の範囲は $10V \pm 2.5 \text{mV}$ すなわち 9.9975 から 10.0025 V となります。 DC 電流測定計算もこれとまったく同じ方法で行い、関連する仕様、レンジ、入力信号値を使用します。

ソース確度

ソース確度も上記と同じように計算しますが、ここではソース仕様を使用することだけが異なります。実際のソース出力リミットを計算する例として、ImA ソースレンジで 0.7mA を測定する場合を想定します。ソース電流 1 年確度仕様から、次のようにして読取り値の誤差範囲を計算することができます。

確度

 $=\pm$ (出力の 0.034% + オフセット 200nA)

 $= \pm [(0.034\% \times 0.7 \text{mA}) + 200 \text{nA}]$

 $= \pm (238nA + 200nA)$

 $= \pm 438 \text{nA}$

この場合は、実際の電流出力範囲は $0.7 \text{mA} \pm 438 \text{nA}$ すなわち 0.69956 mA から 0.70044 mA となります。

ソース - ディレイ - メジャー(SDM)サイクルのタイミング

タイミングに関する下記の情報は、ソース・メータがトリガリンクを経由して外部的にトリガ されている場合のものです。

事例 I から IV までについては、出力オートオフ機能が使用可能 (:SOURce1:CLEar:AUTO ON) になっているものとし、ソース設定値は、毎回トリガされる SDM サイクルごとに変化します。この説明は、線形、対数、カスタムスイープに適用されます。上記のほかに、この説明は「トリガソース」機能 (:SOURce1:VOLTage:TRIGger または SOURce1:CURRent:TRIGger) を使用する用途にも適用されます。この説明は、メモリスイープ (:SOURce1:MEMory) には適用されません。

事例 Vと VI の場合は、出力オートオフ機能が使用禁止 (:SOURcel:CLEar:AUTO OFF) になっているものとし、ソース設定値は、毎回トリガされる SDM サイクルについて同じままです。この設定では、スタティックソースは、どの SDM サイクルも、オン状態を維持します。

定義

トリガ待ち時間

トリガ待ち時間とは、外部トリガイベントが発生した時点から、ソース・メータが該当するアクションを起こす時点までの時間です。この時間は、外部トリガがトリガモデルのトリガレイヤーで検出された時点から、トリガディレイが始まる時点までの時間です。

トリガディレイ

トリガディレイとは、外部イベントが検出された時点から、ソース設定が始まる時点までの時間です。これはユーザプログラマブルディレイの一つで、0000.0000 秒から 999.9999 秒の間で設定可能です。

ソース設定

これはソース DAC を設定するのに必要な時間です。以下の解説では、ソース値が変化しても、レンジと極性は変化しないものとします。

ソースディレイ

これはソース設定と、最初の A/D 変換の開始との間の時間です。このプログラマブルディレイの代表的な使用例は、測定開始に先立ちソースを安定させる場合です。Auto-Delay が使用可能状態になっていると、ユーザブログラマブルソースディレイに 100 μ sec が追加されます。ユーザプログラマブルディレイは、0000.0000 秒から 999.9999 秒の間で設定可能です。

A/D 変換

これは指定した A/D 変換器の相を測定するのに必要な時間です。一般に、電圧または電流の読み取り値を生成するには、3種類の A/D 相が必要になります。これらの相は、多くの場合、「信号」相、「基準」相、「基準ゼロ」相と呼ばれます。「信号」相は入力信号を測定します。「基準」相と「基準ゼロ」相は、ソース・メータ内部の精密電圧基準と結びついています。これら3種類の相すべてを測定することにより、読み取り値に対するゼロドリフトを少なくすることができます。A/D 変換時間は、0.01 電源サイクルを分解能としてプログラムすることができます。

オートゼロが使用可能であれば、ソース・メータがトリガされるごとにこれら3種類の相がす べて測定されます。オートゼロが使用禁止であれば、「信号」相だけが測定されます。したがっ て、速度が速くなると、長期ゼロドリフトが犠牲になります。

ファームウェアオーバヘッド

これは A/D 通信、読み取り値校正、および SDM サイクルを実行する上で必要な、上記以外の 動作と関係のある時間です。この時間は、以下のタイミングダイアグラムでは表示されません。

タイミングダイアグラム

事例 I: オートゼロを使用可能にして、単一機能を測定する。

図 A-1

事例 1 のタイミングダイアグラム

トリガ待ち	トリガ	ソース設定	ソース	A/D 変換 (電流	A/D 変換	A/D 変換 (基準
時間	ディレイ		ディレイ	信号相)	(基準相)	ゼロ相)
			ソー	スオン時間		

トリガイベント ソースオン状態

ソースオフ状態

トリガ待ち時間:

最大 225µsec

ソース設定:

最大 50µsec

A/D 変換:

[NPLC 設定値 x(1/電源周波数)]+185

ファームウェアオーバヘッド: 1.8msec ソースVの場合

2.15msec ソースIの場合

ソースオン時間 = ソース設定 + ソースディレイ +(3xA/D 変換)+ ファームウェアオーバヘッド

例:

ソースディレイ =225μsec

NPLC 設定值=0.01PLC

電源周波数=60Hz

ソースオン時間

 $=50\mu sec + 0 + [(3x0.01x1/60) + 185\mu sec] + 1.6msec$

=2.9msec ソース V の場合 =3.25msec ソースIの場合

事例 Ⅱ: オートゼロを使用可能にして、2つの機能を測定する。

図 A-2

事例Ⅱのタイミングダイアグラム

トリガ待ち時間	トリガ ディレイ	ソース設定	ソース ディレイ		A/D 変換 (電流信号相)	A/D 変換 (基準相)	A/D変換 (基準 ゼロ相)
					,		
 トリガイベント	 ソー	スオン状態		ソースオ	ン時間		 ソースオフ#

トリガ待ち時間:

最大 225μsec

ソース設定:

最大 225usec

A/D 変換:

[NPLC 設定値 x(1/電源周波数)]+185µsec

ファームウェアオーバヘッド: 2.3msec ソース V の場合

2.65msec ソースIの場合

ソースオン時間=ソース設定+ソースディレイ+(4xA/D変換)+ファームウェアオーバヘッド

例:

ソースディレイ =0μsec

NPLC 設定値 =0.06PLC 電源周波数 =60Hz

ソースオン時間 =50µsec + 0 + [(4x0.06x1/60) + 185µsec] + 2.6msec

=7.1msec ソース V の場合 =7.45msec ソース I の場合

事例 III: オートゼロを使用禁止にして、1 つの機能を測定する。

図 A-3

事例 III のタイミングダイアグラム

トリガイベント

ソースオン状態

ソースオフ状態

トリガ待ち時間:

最大 225µsec

ソース設定:

最大 50usec

A/D 変換:

[NPLC 設定値 x(1/電源周波数)]+185

ファームウェアオーバヘッド: 2.3msec ソース V の場合

2.65msec ソース I の場合

ソースオン時間=ソース設定+ソースディレイ+(3xA/D変換)+ファームウェアオーバヘッド

例:

ソースディレイ =0usec

NPLC 設定値 =0.08PLC 電源周波数 =60Hz

ソースオン時間

 $=50\mu sec + 0 + [(0.08x1/60) + 185\mu sec] + 40\mu sec$

=1.85msec ソース V の場合

=2.2msec ソースIの場合

事例 IV: オートゼロを使用禁止にして、すべての測定を使用禁止にする。

図 A-4

事例 IV のタイミングダイアグラム

トリガイベント

ソースオン状態

ソースオフ状態

トリガ待ち時間:

最大 225usec

ソース設定:

最大 50usec

ファームウェアオーバヘッド: 310μsec ソース V の場合

590usec ソース I の場合

ソースオン時間 = ソース設定 + ソースディレイ +(3xA/D 変換)+ ファームウェアオーバヘッド

例:

ソースディレイ =0μsec

ソースオン時間 $=50 \mu sec + 0 + 125 \mu sec$

=360µsecc ソース V の場合

=640µsec ソースIの場合

事例 V と VI: 1 つの機能を測定、出力オートオフを使用禁止、ソース設定値の変更な し。

図 A-5

事例 V のタイミングダイアグラム

トリガ待ち	トリガ	A/D 変換	A/D 変換	A/D 変換 (基準
時間	ディレイ	(信号相)	(基準相)	ゼロ相)
		ースオン状態	1	

トリガイベント

オートゼロ:

使用可能

トリガ待ち時間: 最大 500 µsec

図 A-6

事例 VI のタイミングダイアグラム

トリガ待ち、時間	トリガ ディレイ	A/D 変換 (信号相)
	ノースオン状態	3

トリガイベント

オートゼロ:

使用禁止

トリガ待ち時間: 最大 100 μsec

出力がオン状態になると、ソースはただちにオン状態となり、ソースがオフ状態にされるまで、 オン状態を継続します。上記2つのタイミングダイアグラムに示すように、スタティックソー スは、すべての測定サイクルごとにオン状態に留まります。SDM サイクルのソース - ディレイ 部分は省略されます。トリガディレイをゼロに設定した場合は、トリガディレイ時間は、トリ ガイベントが発生する時点から、ソース・メータが A/D 変換を開始する時点までの時間となり ます。