Rademacher の定理

竹田航太

2022年7月6日

Lipschitz 関数の微分可能性についての結果.

1 記号

- \mathbb{R}^n 上のユークリッドノルムを $\|\cdot\|$ と書く.
- Lebesgue 測度を m, Lebesgue 外測度を m* と書く.

2 1 変数

Definition 2.1 (Vitali 被覆). $E \subset \mathbb{R}$ とおく,正の長さをもつ区間の集合族 \mathcal{I} について以下が成り立つとき, \mathcal{I} は E の Vitali 被覆という. $\forall x \in E, \forall \epsilon > 0$, $\exists I \in \mathcal{I}$ s.t. $x \in I$ かつ $|I| < \epsilon$.

Lemma 2.2 (Vitali の被覆定理). $E \subset \mathbb{R}$, $m^*(E) < \infty$ とし, \mathcal{I} を E の Vitali 被覆とする. このとき, 高々可算で互いに素な区間の列 $I_1, \dots, \in \mathcal{I}$ が存在して次が成り立つ.

$$m^*(E\setminus \cup_{j=1}^\infty I_j)=0.$$

Theorem 2.3 (Lebesgue の定理). $f:[a,b]\to\mathbb{R}$ を単調増加関数とする. このとき, f はほとんど至るところ微分可能でその導関数 f' は可積分である. さらに, 以下の不等式が任意の $a\leq \alpha \leq \beta \leq b$ に対して成り立つ.

$$\int_{\alpha}^{\beta} f'(x)dx \le f(\beta) - f(\alpha).$$

証明には Vitali の被覆定理を使う.

Definition 2.4 (有界変動関数 (Bounded Variation: BV)). $f:[a,b] \to \mathbb{R}$ の全変動を

$$T[a, b] = \sup_{\Delta} \sum_{j=1}^{N} |f(x_j) - f(x_{j-1})|$$

で定める. ただし、 $\Delta: a=x_0 < x_1 < \cdots < x_N=b$ は任意の [a,b] の分割を表す. 全変動 $T[a,b]<\infty$ のとき、f を [a,b] 上の有界変動関数という.

Definition 2.5 (絶対連続関数 (Absolute Continuous: AC)). $f:[a,b] \to \mathbb{R}$ が絶対連続とは以下が成り立つことを言う. $\forall \epsilon > 0$ に対して $\exists \delta > 0$ s.t. $\forall n \in \mathbb{N}$ で任意の互いに素な区間 $[x_1,y_1],\ldots,[x_n,y_n]$ について

$$\sum_{j=1}^{n} |x_j - y_j| < \delta \Rightarrow \sum_{j=1}^{n} |f(x_j) - f(y_j)| < \epsilon.$$

が成り立つ.

Definition 2.6 (Lipschitz 関数 (Lip)). $f:[a,b]\to\mathbb{R}$ はある L>0 が存在して以下を満たすとき L-Lipschitz と呼ばれる.

$$|f(x) - f(y)| \le L|x - y|, \quad \forall x, y \in [a, b].$$

より一般に、 $\Omega \subset \mathbb{R}^n$ として、 $f: \Omega \to R^m$ が L-Lipschitz とは以下が成り立つことを言う.

$$||f(x) - f(y)|| \le L||x - y||, \quad \forall x, y \in \Omega.$$

Lemma 2.7 (Lip, AC, BV の関係). $Lip \Rightarrow AC \Rightarrow BV$.

Theorem 2.8 (有界変動関数の特徴づけ). 有界変動関数は単調関数の差で書ける.

Theorem 2.9 (絶対連続関数の特徴づけ). F が [a,b] 上で絶対連続 \Leftrightarrow ある [a,b] 上の可積分関数 f が存在して、以下が成り立つ.

$$F(x) = F(a) + \int_{a}^{x} f(t)dt.$$

3 多変数

Theorem 3.1 (Rademacher の定理). $\Omega \subset \mathbb{R}^n$ を開集合, $f: \Omega \to \mathbb{R}^m$ を Lipschitz 関数とする. このとき, f は Ω 上ほとんど至るところで微分可能. つまり, ほとんどの $x \in \Omega$ に対して, ある線型写像 $L: \mathbb{R}^n \to \mathbb{R}^m$ が存在して

$$\lim_{\|y\| \to 0} \frac{\|f(x+y) - f(x) - L(y)\|}{\|y\|} = 0$$

が成り立つ.*1

^{*1} このとき, L = Df(x) と表す.

参考文献

- $[1]\,$ JUHA HEINONEN. Lectures on lipschitz analysis.
- [2] 谷島賢二. 新版 ルベーグ積分と関数解析. 朝倉書店, 2015.