MAT389 Fall 2013, Problem Set 2

Curves in \mathbb{C}

2.1 Show that every line in \mathbb{C} can be expressed in the form

$$\beta z + \overline{\beta z} + \gamma = 0$$

for some $\beta \in \mathbb{C}^{\times}$ and $\gamma \in \mathbb{R}$. Why is the condition $\beta \neq 0$ necessary?

Hint: recall that every line in \mathbb{C} can be expressed as the set of solutions of a linear equation of the form px+qy+r=0 with p,q not simultaneously zero. What should the relationship between p,q,r on the one hand, and β,γ on the other, be?

Write z = x + yi, and $\beta = a + bi$. Then

$$\beta z + \overline{\beta z} + \gamma = 0 \iff (a+bi)(x+yi) + (a-bi)(x-yi) + \gamma = 0$$
$$\iff (ax-by) + (ax-by) + (bx+ay)i + (-bx-ay)i + \gamma = 0$$
$$\iff (2a)x + (-2b)y + \gamma = 0.$$

Hence, if we set $\gamma = r$ and $\beta = (p - iq)/2$, then the line px + qy + r = 0 is the set of solutions to $\beta z + \overline{\beta z} + \gamma = 0$.

2.2 Consider the lines

$$L_1 = \left\{ z \in \mathbb{C} \mid \beta_1 z + \overline{\beta_1 z} + \gamma_1 = 0 \right\}, \qquad L_2 = \left\{ z \in \mathbb{C} \mid \beta_2 z + \overline{\beta_2 z} + \gamma_2 = 0 \right\}$$

where $\beta_1, \beta_2 \in \mathbb{C}^{\times}$ and $\gamma_1, \gamma_2 \in \mathbb{R}$. Prove that L_1 and L_2 are orthogonal if and only if $\operatorname{Re}(\beta_1\overline{\beta_2}) = 0$.

The direction vectors of the lines L_1 and L_2 are given by $\langle \operatorname{Im} \beta_1, \operatorname{Re} \beta_1 \rangle$ and $\langle \operatorname{Im} \beta_2, \operatorname{Re} \beta_2 \rangle$, respectively. The lines are orthogonal if and only if the dot product of their direction vectors vanishes:

$$0 = \langle \operatorname{Im} \beta_1, \operatorname{Re} \beta_1 \rangle \cdot \langle \operatorname{Im} \beta_2, \operatorname{Re} \beta_2 \rangle = \operatorname{Im} \beta_1 \operatorname{Im} \beta_2 + \operatorname{Re} \beta_1 \operatorname{Re} \beta_2 = \operatorname{Re}(\beta_1 \overline{\beta_2})$$

2.3 Let $\alpha, \beta \in \mathbb{C}$ distinct. Give a geometric argument to show that $|z - \alpha| = |z - \beta|$ is a line.

The equation $|z-\alpha| = |z-\beta|$ describes the set of points that are equidistant to α and β —namely, the perpendicular bisector to the line segment joining α and β .

2.4 Show that every circle in \mathbb{C} can be expressed in the form

$$\alpha z \overline{z} + \beta z + \overline{\beta} \overline{z} + \gamma = 0$$

for some $\alpha \in \mathbb{R}^{\times}$, $\beta \in \mathbb{C}^{\times}$ and $\gamma \in \mathbb{R}$ satisfying $|\beta|^2 > \alpha \gamma$. Why are the conditions $\alpha \neq 0$ and $|\beta|^2 > \alpha \gamma$ necessary?

Hint: recall that every circle in \mathbb{C} can be expressed as the set of solutions of a quadratic equation of the form $m(x^2+y^2)+px+qy+r=0$ with $m\neq 0$. What should the relationship between m, p, q, r on the one hand, and α, β, γ on the other, be?

Write z = x + yi, and $\beta = a + bi$. Then

$$\alpha z\overline{z} + \beta z + \overline{\beta z} + \gamma = 0 \iff \alpha(x^2 + y^2) + (2ax - 2by) + \gamma = 0.$$

Setting $\alpha=m,\,p=2a,\,q=-2b,\,\gamma=r,$ it follows that the circle $m(x^2+y^2)+px+qy+r=0$ is the set of solutions to $\alpha z\overline{z}+\beta z+\overline{\beta z}+\gamma=0$. Completing squares, we see that $\alpha z\overline{z}+\beta z+\overline{\beta z}+\gamma=0$ is equivalent to

$$\left(x + \frac{a}{\alpha}\right)^2 + \left(y - \frac{b}{\alpha}\right)^2 = \frac{|\beta|^2}{\alpha^2} - \frac{\gamma}{\alpha},$$

so the quantity on the right hand side of this equation must be non-negative for solutions to exist: if $|\beta|^2 = \gamma \alpha$, there is exactly one solution, while for $|\beta|^2 > \gamma \alpha$ we obtain an actual circle. On other hand, if $\alpha = 0$, the equation in the statement describes a line (see Problem 2.1).

2.5 Prove that the equation

$$\left| \frac{z - \alpha}{z - \beta} \right| = \lambda, \qquad \alpha, \beta, \in \mathbb{C}, \lambda \in \mathbb{R}_{>0}$$

describes either a circle or a line in \mathbb{C} .

Hint: consider the Möbius transformation $z \mapsto (z - \alpha)/(z - \beta)$.

Let $S = \{z \in \mathbb{C} \mid |z| = \lambda\}$. Clearly S is the circle of radius λ . Let T be the Möbius transformation $z \mapsto (z - \alpha)/(z - \beta)$. Consider the set $S' = T^{-1}(S)$, which is described by the equation in the statement. Since T is a Möbius transformation, so is T^{-1} , so S' is a circle or a line.

2.6 Let $\alpha, \beta \in \mathbb{C}$ distinct, and let $\lambda \in \mathbb{R}_{>0}$ such that $\lambda > |\alpha - \beta|$. What geometric figure is described by the equation $|z - \alpha| + |z - \beta| = \lambda$? What goes wrong if $\lambda \leq |\alpha - \beta|$?

Geometrically, $|z - \alpha| + |z - \beta| = \gamma$ means that the sum of the distance from z to α and that from z to β is the constant γ . The locus of such points is an ellipse with foci α and β , and major axis of length λ . Since $|\alpha - \beta| \le |z - \alpha| + |z - \beta|$, if $\lambda < |\alpha - \beta|$, there are no solutions, while, if $\lambda = |\alpha - \beta|$, the only solutions are the points on the line segment from α to β .

2.7 Let $\alpha, \beta \in \mathbb{C}$ distinct, and let $\lambda \in \mathbb{R}^{\times}$. What geometric figure is described by the equation $|z - \alpha| - |z - \beta| = \lambda$? What happens when $\lambda = 0$?

The geometric figure described by the equation in the statement is one of the two branches of the hyperbola with foci α and β . If $\lambda = 0$, it degenerates into a line (see Problem 2.3).

Circles in Σ

Recall that the Riemann sphere is defined as the set

$$\Sigma = \{(a, b, c) \in \mathbb{R}^3 \mid a^2 + b^2 + c^2 = 1\}$$

Let P be the plane defined by

$$P = \{(a, b, c) \in \mathbb{R}^3 \mid Aa + Bb + Cc = D\}$$

2.8 Show that P passes through the North pole, N = (0,0,1), if and only if C = D.

P passes through the North pole if and only if the point (0,0,1) satisfies the defining equation Aa + Bb + Cc = D, i.e., if and only if C = D.

- **2.9** Prove that $P \cap \Sigma \neq \emptyset$ if and only if $A^2 + B^2 + C^2 \geq D^2$ as follows:
 - 1. Convince yourself that $P \cap \Sigma \neq \emptyset$ if and only if the point of P closest to the origin —call it p— satisfies $d(0,p) \leq 1$, where d is the usual, Euclidean distance in \mathbb{R}^3 and $0 \in \mathbb{R}^3$ means the origin.

Hint: a picture should suffice.

2. Show that

$$d(0,p) = \sqrt{\frac{D^2}{A^2 + B^2 + C^2}}$$

Hint: recall from multivariable calculus that the vector $\langle A, B, C \rangle$ is normal to P, and that, in fact, $p = (\lambda A, \lambda B, \lambda C)$ for the appropriate value of λ .

Notice that $P \cap \Sigma$ consists of a single point (p, in fact) if and only if $A^2 + B^2 + C^2 = D^2$. Hence, if $A^2 + B^2 + C^2 > D^2$, then $P \cap \Sigma$ is an actual circle in Σ (that is, its radius is strictly positive).

1. If d(0,p)=1, then P and Σ intersect only at p. If d(0,p)>1, P and Σ do not intersect, by the definition of p as the closest point to Σ . If d(0,p)<1, it is visually clear that P and Σ intersect, and that they do so in more than one point.

2. Let p' be the point on P such that $\overrightarrow{0p'}$ is orthogonal to P. We claim that p=p'. If not, the line segment 0p is the hypotenuse of the right-angled triangle $\triangle 0pp'$, so d(0,p') < d(0,p), contradicting the definition of p. Hence, p=p'.

Since $\overrightarrow{0p}$ is orthogonal to P, it is parallel to the normal vector to P. Hence, $\overrightarrow{0p} = \lambda \langle A, B, C \rangle$ for some $\lambda \in \mathbb{R}$. Since p lies on P, λ must satisfy $A(\lambda A) + B(\lambda B) + C(\lambda C) = D$, so

$$\lambda = \frac{D}{A^2 + B^2 + C^2} \quad \Longrightarrow \quad d(0, p)^2 = \|\overrightarrow{0p}\|^2 = |\lambda|^2 (A^2 + B^2 + C^2) = \frac{D^2}{A^2 + B^2 + C^2}.$$

The stereographic projection

Remember that stereographic projection establishes a bijection between the Riemann sphere Σ and the extended complex plane $\hat{\mathbb{C}}$ as follows:

$$\Sigma \xrightarrow{\pi} \hat{\mathbb{C}} \qquad \hat{\mathbb{C}} \xrightarrow{\varphi} \Sigma$$

$$(a,b,c) \longmapsto \frac{a+ib}{1-c} \qquad z = x+iy \longmapsto \left(\frac{2x}{x^2+y^2+1}, \frac{2y}{x^2+y^2+1}, \frac{x^2+y^2-1}{x^2+y^2+1}\right)$$

$$N = (0,0,1) \longmapsto \infty \qquad \infty \longmapsto N = (0,0,1)$$

2.10 Using stereographic projection, we can transport maps $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$ to maps $\Sigma \to \Sigma$. Describe geometrically the self-map of the Riemann sphere obtained from inversion $z \mapsto 1/z$ on the extended complex plane.

Hint: remember that $1/z = \overline{z}/|z|^2$. Calculate the inverse of (a+ib)/(1-c) and judiciously use the equation defining the Riemann sphere to simplify the result. The geometric interpretation arises easily from that.

If
$$z = (a + ib)/(1 - c)$$
, then

$$|z|^2 = z\bar{z} = \frac{a+ib}{1-c} \frac{a-ib}{1-c} = \frac{a^2+b^2}{(1-c)^2} = \frac{1-c^2}{(1-c)^2} = \frac{1+c}{1-c}$$

and

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2} = \frac{a - ib}{1 - c} \frac{1 - c}{1 + c} = \frac{a - ib}{1 + c}$$

Thus the transformation $z \mapsto 1/z$ takes

$$\Sigma \ni (a, b, c) \mapsto (a, -b, -c) \in \Sigma$$

That is, inversion on the complex plane corresponds to the composition of two reflections on the Riemann sphere: one with respect to the ac-plane (switching the sign of b) and another one with respect to the ab-plane (which corresponds to switching the sign of c).

Möbius transformations

2.11 Show that any Möbius transformation of the form

$$T(z) = e^{i\theta} \frac{z - z_0}{z - \overline{z_0}}, \qquad \theta \in \mathbb{R}, \quad \text{Im } z_0 \neq 0$$

sends the real line to the circle of radius 1. In other words, |T(z)| = 1 whenever Im z = 0.

If Im z = 0, then $z = \overline{z}$ and $\overline{z - z_0} = \overline{z} - \overline{z_0} = z - \overline{z_0}$. Since the modulus of a complex number is the same as that of its complex-conjugate, we have

$$|z - z_0| = |\overline{z - z_0}| = |z - \overline{z_0}| \implies \left| \frac{z - z_0}{z - \overline{z_0}} \right| = 1$$

Since $|e^{i\theta}| = 1$, it follows that |T(z)| = 1 whenever Im z = 0.

The condition Im $z_0 \neq 0$ ensures that T is not constant. Indeed, if Im $z_0 = 0$, then $z - z_0 = z - \overline{z_0}$ (for any value of z!), and so $T(z) = e^{i\theta}$.

2.12 Find a Möbius transformation $\mathbb{D} \to \mathbb{D}$ that takes 1/2 to 1/3.

Hint: recall that the Möbius transformations preserving the unit disc $\mathbb D$ take the form

$$T(z) = e^{i\theta} \frac{z + \alpha}{\overline{\alpha}z + 1}$$

for some $\theta \in \mathbb{R}$ and $\alpha \in \mathbb{C}$ satisfying $|\alpha| < 1$.

Note that

$$T_{\alpha}: z \mapsto \frac{z+\alpha}{\overline{\alpha}z+1}$$

sends $0 \mapsto \alpha$ and $-\alpha \mapsto 0$. Hence, $T_{-1/2}$ sends $1/2 \mapsto 0$, and $T_{1/3}$ sends $0 \mapsto 1/3$. The composition $T_{1/3} \circ T_{-1/2}$ preserves the unit disk, \mathbb{D} , and sends 1/2 to 1/3. The explicit computation yields

$$(T_{1/3} \circ T_{-1/2})(z) = \frac{1 - 5z}{z - 5}$$

2.13 Find a Möbius transformation $\mathbb{D} \to \mathbb{H}$ that takes the origin to the point 3 + 2i.

Hint: first, use the Möbius transformation

$$z \mapsto \frac{z+i}{iz+1}$$

to take $\mathbb D$ into $\mathbb H$ —and the origin to i. Then find the appropriate Möbius transformation $\mathbb H \to \mathbb H$ that takes $i \mapsto 3+2i$. Recall that the Möbius transformation preserving the upper half-plane $\mathbb H$ are always of the form

$$T(z) = \frac{az+b}{cz+d},$$
 $a, b, c, d \in \mathbb{R},$ $ad-bc > 0$

Let T_1 be the Möbius transformation $z \mapsto \frac{z+i}{iz+1}$, sending \mathbb{D} onto \mathbb{H} and 0 to i. Let T_2 be the Möbius transformation $z \mapsto 2z + i$. Then T_2 preserves \mathbb{H} , and $T_2(i) = 3 + 2i$. Hence, the Möbius transformation

$$T(z) = (T_2 \circ T_1)(z) = \frac{(2+3i)z + (3+i)}{iz+1}$$

sends \mathbb{D} onto \mathbb{H} and maps 0 to 3+2i.

2.14 We saw in class that

$$T: z \mapsto \frac{z - z_1}{z_2 - z_1} \frac{z_2 - z_3}{z - z_3}$$

is the unique Möbius transformation that takes $z_1 \mapsto 0, z_2 \mapsto 1, z_3 \mapsto \infty$. Similarly,

$$U: w \mapsto \frac{w - w_1}{w_2 - w_1} \frac{w_2 - w_3}{w - w_3}$$

is the unique Möbius transformation that takes $w_1 \mapsto 0, w_2 \mapsto 1, w_3 \mapsto \infty$. If follows that $U^{-1} \circ T$ is the unique Möbius transformation that takes $z_1 \mapsto w_1, z_2 \mapsto w_2, z_3 \mapsto w_3$. It is easy to compute the latter explicitly by isolating w in the equation

$$U(w) = T(z) \iff \frac{w - w_1}{w_2 - w_1} \frac{w_2 - w_3}{w - w_3} = \frac{z - z_1}{z_2 - z_1} \frac{z_2 - z_3}{z - z_3}$$

Use this line of reasoning to find the unique Möbius transformation taking $-i \mapsto -1$, $1 \mapsto 0$, $i \mapsto 1$.

Let $z_1 = -i$, $z_2 = 1$, $z_3 = i$, and $w_1 = -1$, $w_2 = 0$, $w_3 = 1$, and define T and U as above. Explicitly,

$$T(z) = \frac{z+i}{1+i} \frac{1-i}{z-i} = \frac{1-iz}{z-i}$$
, and $U(w) = \frac{w+1}{0+1} \frac{0-1}{w-1} = \frac{w+1}{1-w}$.

Then

$$U(w) = T(z) \quad \iff \quad \frac{w+1}{1-w} = \frac{1-iz}{z-i} \quad \iff \quad w = i\,\frac{1-z}{1+z}.$$

Topology in the complex plane

- **2.15** For each of the choices of S below, do the following:
 - 1. classify all the points of \mathbb{C} according to whether they are interior, exterior or boundary points of S;
 - 2. decide whether S is open, closed, both open and closed, or neither open nor closed;
 - 3. decide whether S is connected;
 - 4. decide whether S is simply-connected;
 - 5. decide whether S is bounded.
 - (i) $S = \{ z \in \mathbb{C}^{\times} \mid 0 < \operatorname{Arg} z < \pi/2 \};$
 - (ii) $S = \{z \in \mathbb{C} \mid |z| \ge |z 4|\};$
 - (iii) $S = \{z \in \mathbb{C} \mid 0 < |z z_0| < \delta\}$, where $z_0 \in \mathbb{C}$ and $\delta \in \mathbb{R}_{>0}$;
 - (iv) $S = \{z \in \mathbb{C} \mid \text{Re}(z^2) > 0\} \cup \{0\};$
 - (v) $S = \mathbb{C}$.
 - 1. (i) The interior of S is S itself, the open first quadrant. The boundary consists of the rays from 0 along the positive real axis and the positive imaginary axis, including the origin. The rest of the points of \mathbb{C} are exterior.
 - (ii) S is the set of points which are at least as far from 0 as they are from 4 —that is,

$$S = \{ z \in \mathbb{C} \mid \operatorname{Re} z \ge 2 \}.$$

Hence, the interior of S is $\{z \in \mathbb{C} \mid \operatorname{Re} z \geq 2\}$, the exterior is $\{z \in \mathbb{C} \mid \operatorname{Re} z < 2\}$, and the boundary is $\{z \in \mathbb{C} \mid \operatorname{Re} z = 2\}$.

- (iii) S is the open disk of radius δ and centre z_0 , minus the point z_0 . All points of S are interior. The boundary is the union of the one-point set $\{z_0\}$ with the circle $\{z \in \mathbb{C} \mid |z z_0| = \delta\}$. The exterior is the complex plane minus the closed disk $\{z \in \mathbb{C} \mid |z z_0| \leq \delta\}$.
- (iv) S is the set of points in the open first quadrant that lie below the line y = x, plus the origin. In other words, it is the open wedge in the first quadrant formed by the lines y = x and y = 0, plus the origin. The interior is the open wedge itself; the boundary consists of the two rays emanating from 0 in the direction of 1, and 1 + i, respectively, including the origin. The rest of the complex plane makes up the exterior of S.
- (v) The interior of S is the whole of S. Consequently, the boundary and exterior are empty.
- 2. (i), (iii) and (v) are open. (ii) and (v) are closed. (iv) is neither open nor closed. Note that (v) is both open and closed.
- 3. (i)-(v) are all connected.
- 4. (i), (ii), (iv) and (v) are simply connected.
- 5. Only (iii) is bounded.

- **2.16** Find the accumulation points of each of the following subsets of \mathbb{C} :
 - (i) $S = \{i^n \mid n \in \mathbb{N}\};$
 - (ii) $S = \{i^n/n \mid n \in \mathbb{N}\};$
 - (iii) $S = \{z \in \mathbb{C}^{\times} \mid 0 \le \operatorname{Arg} z < \pi/2\};$
 - (iv) $S = \{(-1)^n (1+i)(n-1)/n \mid n \in \mathbb{N}\}.$

The accumulation points are:

- (i) \emptyset , (ii) $\{0\}$, (iii) $\{z \in \mathbb{C}^{\times} \mid 0 \le \operatorname{Arg} z \le \pi/2\} \cup \{0\}$, (iv) $\{\pm(1+i)\}$.
- **2.17** Prove that the *interior* of a subset $S \subset \mathbb{C}$,

$$\mathring{S} = \{ z \in S \mid z \text{ is an interior point of } S \},$$

is open, and that, in fact, it is the biggest open subset of \mathbb{C} contained in S.

Let x be an interior point of S. By definition, there is a neighborhood $D_{\epsilon}(x)$ of x completely contained in S. We need to show that there is likewise a neighborhoof of x which is a subset of \mathring{S} . We claim that $D_{\epsilon/2}(x)$ is such a neighborhood: if $y \in D_{\epsilon/2}(x)$, then $D_{\epsilon/2}(y) \subset D_{\epsilon}(x) \subset S$, so in fact $y \in \mathring{S}$. We have shown that $D_{\epsilon/2}(x) \subset \mathring{S}$, so \mathring{S} is open.

Now suppose that $U \subset S$ is open. Let $x \in U$. Then there is an open neighborhoof $D_{\epsilon}(x) \subset U \subset S$, so $x \in \mathring{S}$. This shows that $U \subset \mathring{S}$, and so \mathring{S} is the largest open subset contained in S.

2.18 Prove that the *closure* of a subset $S \subset \mathbb{C}$,

$$\overline{S} = \{z \in S \mid z \text{ is an interior or boundary point of } S\} = \mathring{S} \cup \partial S = S \cup \partial S$$

is closed, and that, in fact, it is the smallest closed subset of \mathbb{C} containing S.

Note: here ∂S denotes the boundary of S.

To show that \overline{S} is closed, it is enough to show that if $x \notin \overline{S}$, then x is an exterior point of \overline{S} . Suppose $x \notin \overline{S}$. Then x is an exterior point of S, and there is a neighborhood $D_{\epsilon}(x)$ which is fully contained in S^c . We claim that $D_{\epsilon}(x)$ and ∂S must be disjoint. Suppose $y \in D_{\epsilon}(x)$. Since $D_{\epsilon}(x)$ is open, there is a smaller neighborhood $D_{\epsilon'}(y)$ that is a subset of $D_{\epsilon}(x)$. Since $D_{\epsilon}(x) \subset S^c$, it follows that $D_{\epsilon'}(y) \subset S^c$, so y cannot be in ∂S . This shows that $D_{\epsilon}(x)$ and ∂S are disjoint, so that x is not an accumulation point of \overline{S} and hence not an interior nor boundary point of \overline{S} .

Finally, if V is closed and $S \subset V$, then $\partial S \subset V$ as well: by definition every $x \in \partial S$ is an accumulation point of S, and therefore of V, so every $x \in \partial S$ is an element of V. Hence, $S \subset V$ and $\partial S \subset V$, so $\overline{S} \subset V$.

2.19 Show that the intersection of finitely many open subsets of $\mathbb C$ is open.

Hint: start by proving that the intersection of two open subsets of \mathbb{C} is open, and then apply induction.

Let us first prove that the intersection of two open sets is open. Let U, V be open sets. Let $x \in U \cap V$. Since $x \in U$, there are neighborhoods $D_{\epsilon_1}(x) \subset U$ and $D_{\epsilon_2}(x) \subset V$. Since

$$D_{\min(\epsilon_1,\epsilon_2)}(x) \subset U \cap V$$
,

it follows that $U \cap V$ is open.

Now suppose that the intersection of k open sets is open. Let U_1, \ldots, U_{k+1} be open sets. By hypothesis, $U_1 \cap U_2 \cap \cdots \cap U_k$ is open, so it follows that

$$U_1 \cap U_2 \cap \cdots \cap U_{k+1} = (U_1 \cap \cdots \cap U_k) \cap U_{k+1}$$

is open. Hence the intersection of any finite number open sets is open.

2.20 Show that the complement of an open subset of \mathbb{C} is closed, and viceversa. Use this and the previous problem to conclude that the union of finitely many closed subsets of \mathbb{C} is closed.

The first part is either trivial or easy, depending on the definition of a *closed* set. To make things interesting, use the definition that $S \subset \mathbb{C}$ is closed if it contains all of its accumulation points. Let U be open, and x be an accumulation point of U^c . Then every ϵ -neighborhood of x contains a point $y \in U^c$ different from x. Hence, no ϵ -neighborhood of x can be contained in U, so $x \notin U$. This proves that U^c is closed. Reversing the roles of U and U^c proves the converse.

Finally, if U_1, \ldots, U_n are closed sets, U_1^c, \ldots, U_n^c are hence open, so by Problem 2.19, $U_1^c \cap \ldots \cap U_n^c$ is also open. Therefore, $U_1 \cup \ldots \cup U_n = (U_1^c \cap \ldots \cup U_n^c)^c$ is closed.

2.21 Show that $\partial S = \overline{S} \cap \overline{S^c}$, and hence ∂S is closed.

First, note that $x \in \partial S$ means every open disk in x contains a point in S and S^c . This is the same definition as for the boundary of S^c , so it follows that $\partial S = \partial S^c$.

By Problem 2.18, $\overline{S} = \partial S \cup \mathring{S}$ and $\overline{S^c} = \partial S^c \cup \mathring{S}^c$. Hence,

$$\overline{S} \cap \overline{S^c} = (\partial S \cup \mathring{S}) \cap (\partial S^c \cup \mathring{S}^c) = (\partial S \cup \mathring{S}) \cap (\partial S \cup \mathring{S}^c)$$
$$= \partial S \cup (\mathring{S} \cap \mathring{S}^c) = \partial S \cup \emptyset = \partial S$$

In the last line, we have used that \mathring{S} and \mathring{S}^c are disjoint, since the first is the set of interior points of S and the second is the set of exterior points of S.

2.22 Consider the following family of open subsets of \mathbb{C} :

$$S_n = \left\{ z \in \mathbb{C} \mid |z| < 1 + \frac{1}{n} \right\}, \quad n \in \mathbb{N}$$

Is the intersection $S = \bigcap_{n \in \mathbb{N}} S_n$ open?

No, the intersection is the set $\{z\in\mathbb{C}\mid |z|\leq 1\}$, which is the closed unit disk.