Kleene closure

operation is perfomed on a single language Repetation

Say, L, or $L^1 = \{a, abc, ba\}$, on $\Sigma = \{a,b,c\}$

 $L^3 = \{a, abc, ba\}. L^2$

.

But, $L^0 = \{\epsilon\}$

Kleene closure of L, $L^* = \{\epsilon, L^1, L^2, L^3, \ldots\}$

$$\Sigma = \{0,1\} \text{ at more}$$

THE CHE CLOSE

Say, L, or $L^1 = \{a, abc, ba\}$, on $\Sigma = \{a,b,c\}$

$$L=\{a, abc, ba\} L=L(1)$$

$$=\{a, abc, ba\} L=L(1)$$

L= = \aaa, aabc, aba,
abca, abcaba,
baaba, baba,

Two time options are available

Say, L, or $L^1 = \{a, abc, ba\}$, on $\Sigma = \{a,b,c\}$ a / abc / ba operation will be performed on one language **Closure= Repetation** Traverse through the loop only once All possible combinations