SIGN LANGUAGE RECOGNITION USING MACHINE LEARNING AND ACCURACY ANALYSIS

A Project Report in Partial Fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE ENGINEERING

Submitted by

G Kiran Kumar	318126510139	
E V M Prateek	318126510138	
Shaik R Mahammad Azharuddin	318126510174	

Under the guidance of

Dr. V USHA BALA (ASSISTANT PROFESSOR)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES (UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with 'A' Grade) Sangivalasa, bheemili mandal, visakhapatnam dist.(A.P) 2018-2022

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES(UGC AUTONOMOUS)

(Affiliated to AU, Approved by AICTE and Accredited by NBA & NAACwith 'A' Grade)

Sangivalasa, bheemili mandal, Visakhapatnam dist. (A.P)

BONAFIDE CERTIFICATE

This is to certify that the project report entitled "SIGN LANGUAGE RECOGNITION USING MACHINE LEARNING AND ACCURACY ANALYSIS" submitted by G Kiran Kumar(318126510139), EVM Prateek(318126510138) and Shaik R Mahammad Azharuddin(318126510174) in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Computer Science and Engineering of Anil Neerukonda Institute of Technology and Sciences (A), Visakhapatnam is a record of bonafide work carried out under my guidance and supervision.

Head of the Department
Dr. R.SIVARANJANI
Professor
Department of CSE
ANITS

Project Guide
Dr. V Usha Bala
Assistant Professor
Department of CSE
ANITS

DECLARATION

We, G Kiran Kumar, Shaik R Mahammad Azharuddin, EVM Prateek of final semester B.Tech., in the department of Computer Science and Engineering from ANITS, Visakhapatnam, hereby declare that the project work entitled SIGN LANGUAGE RECOGNITION USING MACHINE LEARNING AND ACCURACY ANALYSIS is carried out by us and submitted in partial fulfillment of the requirements for the award of Bachelor of Technology in Computer Science Engineering, under Anil Neerukonda Institute of Technology & Sciences(A) during the academic year 2018-2022 and has not been submitted to any other university for the award of any kind of degree.

G Kiran Kumar 318126510139 E V M Prateek 318126510138 Shaik R Mahammad Azharuddin 318126510174

ACKNOWLEDGMENT

We would like to express our deep gratitude to our project guide **Dr.VARANASI USHA BALA**, Assistant Professor, Department of Computer Science and Engineering, ANITS, for her guidance with unsurpassed knowledge and immense encouragement. We are grateful to **Dr.R.Sivaranjani**, Head of the Department, Computer Science and Engineering, for providing us with the required facilities for the completion of the project work.

We are very much thankful to the **Principal and Management, ANITS, Sangivalasa,** for their encouragement and cooperation to carry out this work. We express our thanks to all **teaching faculty** of the Department of CSE, whose suggestions during reviews helped us in accomplishment of our project. We would like to thank **all non-teaching staff** of the Department of CSE, ANITS for providing great assistance in the completion of our project.

We would like to thank our parents, friends, and classmates for their encouragement throughout our project period. We thank everyone for supporting us directly or indirectly in completing this project successfully.

G Kiran Kumar	318126510139	
E V M Prateek	318126510138	
Shaik R Mahammad Azharuddin	318126510174	

ABSTRACT

Communication is the key for any human being and for the small percentage of people who have a hearing problem (deaf and dumb community). The only way for them to communicate is to use sign language. Sign language is a combination of hand movements, Facial expressions and body gestures. There is no problem for the mute people to communicate among themselves, but normal people have no interest in learning sign-language which is a barrier of communication between people. The main objective of this model is to use machine learning and deep learning techniques to solve this problem which is to make a fully functional, feasible, reliable and easy to use. The biggest disadvantage of the existing system is that it can only recognize alphabets and numbers related to gestures but not complete words which are used in real life. Our proposed work takes the image/video input and uses the trained machine learning model to predict the signs and gestures in sign-language. We tried to recognize not only gestures but also signs which are relatively hard and unique to recognize. We generate English words corresponding to the signs shown by the user and the generated words can be further used to form proper English sentences. The above mentioned procedure can be used to train the proposed work in order to identify signs of any sign language.

Key words: sign language, facial expressions, signs, gestures, hand movements, body gestures, hand gestures, image and video gesture recognition.

Table of Contents

TITLE PAGE N	О.
ABSTRACT	
LIST OF FIGURES	
LIST OF TABLES	
1. INTRODUCTION	1
1.1 SIGN LANGUAGE	1
1.2 SIGN LANGUAGE AND HAND GESTURE RECOGNITION	1
1.3 IMAGE PROCESSING	2
1.4 MOTIVATION	4
1.5 PROBLEM STATEMENT	4
1.6 ORGANIZATION OF THESIS	5
2. LITERATURE SURVEY	6
2.1 INTRODUCTION	6
2.1.1 TENSORFLOW	6
2.1.2 OPENCV	6
2.1.3 KERAS	9
2.1.4 NUMPY	10
2.1.5 MACHINE LEARNING	11
2.1.6 NEURAL NETWORKS	12
2.1.7 CONVOLUTIONAL NEURAL NETWORKS	16

	2.1.8 LONG SHORT TERM MEMORY	17
	2.1.9 Scikit-image	19
	2.1.10 Mediapipe	20
3.	PROBLEM ANALYSIS	21
	3.1 EXISTING SYSTEM	21
	3.1.1 SENSOR GLOVES	21
	3.1.2 SOFTWARE ALGORITHMS	21
	3.1.3 BACKGROUND STUDY	22
	3.2 PROPOSED SYSTEM	24
	3.2.1 SYSTEM ARCHITECTURE	25
	3.2.2 IMPORTANCE OF FACIAL EXPRESSIONS	26
4.	SOFTWARE REQUIREMENTS SPECIFICATION	27
	4.1 HARDWARE REQUIREMENTS	27
	4.2 SOFTWARE REQUIREMENTS	27
	4.3 DESCRIPTION OF SOFTWARE	27
	4.3.1 PYTHON	27
	4.3.2 ANACONDA	28
	4.4 FUNCTIONAL REQUIREMENTS	28
	4.5 NON-FUNCTIONAL REQUIREMENTS	29

	5.1 SEGMENTED MODEL	30
	5.2 TRAINING MODULE	31
	5.3 PREPROCESSING	33
	5.4 DATASETS USED FOR TRAINING	34
	5.5 ALGORITHM	36
	5.6 SEGMENTATION	36
	5.7 CLASSIFICATION	37
6.	DESIGN	41
	6.1 DATA FLOW DIAGRAM	41
	6.2 UML DIAGRAMS	43
	6.2.1 USE CASE DIAGRAM	43
	6.2.2 CLASS DIAGRAM	45
	6.2.3 SEQUENCE DIAGRAM	46
	6.2.4 STATE CHART	47
7.	IMPLEMENTATION	49
	7.1 PREPROCESSING	49
	7.1.1 RESIZING THE IMAGES	49
	7.1.2 FLIPPING THE IMAGES IN DATASET	49
	7.1.3 EXTRACTION OF LANDMARKS	49
	7.2 ALGORITHM ARCHITECTURE	50
	7.2.1 CNN-Architecture	50
	7.2.2 LSTM-Architecture	51
	7.3 TRAINING AND RECOGNITION	52

8.	EXPERIMENTAL ANALYSIS AND RESULTS	55
	8.1 CODE	55
	8.2 SCREENSHOTS OF RESULTS	73
9.	TESTING	76
10	.CONCLUSION AND FUTURE SCOPE	79
11	.REFERENCES	80

LIST OF FIGURES

Figure no.	Name of the Figure	Page no.
Fig 1.3.1	Phases of pattern recognition	3
Fig 2.1.7.1	Layers involved in CNN	17
Fig 2.1.8.1	Long short term memory	17
Fig 2.1.8.2	Long short term memory equations	18
Fig 3.1.1.1	Sensor gloves	21
Fig 3.1.2.1	Software algorithms	22
Fig 3.2.1.1	System architecture	25
Fig 3.2.2.1	Importance of facial expression	26
Fig 5.2.1	Confusion matrix	32
Fig 5.2.2	Accuracy based on confusion matrix	33
Fig 5.4.1	Classes used for training the model	34
Fig 5.4.2	Sample pictures of training data	35
Fig 5.4.3	Training data given for sign Indian	35
Fig 5.7.1	Formula for convolution operation	38
Fig 6.1.1	Dataflow diagram for sign language recognition	42
Fig 6.2.1.1	Use case diagram	44
Fig 6.2.2.1	Class diagram of sign language recognition system	45
Fig 6.2.3.1	Sequence diagram of sign language recognition system	46

Fig 6.2.4.1	State chart diagram of sign language recognition system	48
Fig 7.1.2.1	Augmentation of the dataset	49
Fig 7.1.3.1	Landmarks in a single frame	50
Fig 7.2.1.1	CNN Architecture	51
Fig 7.2.2.1	LSTM Architecture	52
Fig 8.2.1	Test images for test the model	73
Fig 8.2.2	Results for corresponding test images	73
Fig 8.2.3	Realtime alphabet recognition from video	73
Fig 8.2.4	Landmarks detected by mediapipe and making of dataset	74
Fig 8.2.5	Real time sign recognition with accuracy	74
Fig 8.2.6	Face emotion recognition results	74
Fig 8.2.7	Confusion matrix for LSTM	75
Fig 8.2.8	Accuracy graphs obtained on training (Dense)	75
Fig 8.2.9	Accuracy graphs (SVM)	75

LIST OF TABLES

Table no.	Name of the Table	Page no.
Table 5.1.1	Decomposed system workflow	30
Table 9.1	Verification of test cases	78