ITP20002-01 Discrete Mathematics

Course Overview

28 Aug, 2018

Class

- 58 students (130+ in Prof. Kun Lee's classes)
- Instructor: Shin Hong hongshin@handong.edu
- Teaching assistant: Hansol Choe hansolchoe@handong.edu

Course Objectives

- To equip with foundations of all CS studies
 - how to read, write, and discuss scientific facts
 - how to count and enumerate objects
 - how to reason scientific facts with discrete structures (e.g., sets, relations, permutations, graphs, trees)
- To understand the fundamental ideas to solve computing problems in real world

Syllabus

https://github.com/hongshin/DiscreteMath

- Class settings
- Topics and Learning Materials
- Activities: meeting, team activities, tests
- Policies

Topics

- 9+ chapters from DM&A (3.5 meetings per chapter)
 - Ch. I. the foundation: logic and proofs
 - Ch.2. set, functions, sequences, sums, and matrices
 - Ch.3. algorithms
 - Ch.4. induction and recursion
 - Ch.6. counting
 - Ch.7. probability
 - Ch.9. relations
 - Ch. 10. graphs
 - Ch.II. trees

Schedule (tentative)

08-28	Course overview	10-23 Ch. 6: Counting
08-31	Ch. I: Logic	10-26 Ch. 6: Counting
09-04	Ch. I: Logic	10-30 Ch. 7: Probability
09-07	Ch. I: Logic	II-02 Ch. 7: Probability
09-11	Ch. I: Proof	II-06 Ch. 7: Probability
09-14	Ch. I: Proof	I I-09 Ch. 9: Relation
09-18	Ch. 2: Set, function	II-I3 Ch. 9: Relation
09-21	Ch. 2: Sum, Matrices	II-16 Ch. 9: Relation
09-25	(No class: Chooseok)	11-20 Ch. 10: Graphs
09-28	Ch. 3: Algorithm	11-23 Ch. 10: Graphs
10-02	Ch. 3: Algorithm	11-27 Ch. 10: Graphs
10-05	Ch. 4: Induction	II-30 Ch. II: Trees
10-09	(No class: Hangul)	I2-04 Ch. II: Trees
10-12	Ch. 4: Induction	12-07 Special topics
10-16	Midterm: 7PM	12-11 Final exam (TBD)
10-19	(No class)	12-14

Study Guideline

- Read, read, read textbook
 - read regularly
 - never move on once you find a unknown word/sentence
 - use your hands to repeat examples
 - memorize definitions
 - peruse stories in boxes
 - never expect that all materials will be covered at the meeting
- Solve exercise problems by yourself
 - read the problem sentence carefully
 - write down an answer completely, and never stop at a middle
 - do have a group study
- Try best to involve in collaborative think (i.e., discuss) at meetings
 - participate or loss the time

Team

- Each team consists of 5-6 students
- 3 teams a semester: turnover at 1/3 and 2/3 points
 - First team will be announced the Friday meeting this weak
- Activities
 - Seat together at the meetings
 - Programming projects (total 3 times)
 - Homework: solve text exercises together with the team
 - Collaborative quiz (total 3 to 5 times)
 - Each student takes a quiz individually
 - Each member of a team can achieve extra points
 (≤20%) if their average exceeds given challenge bars

Individual Project

Case Study

- Write a paper on modeling a real world phenomena (or problem) with the discrete math covered in the class
- The paper should be in at least 4 pages in single column A4
- The content should be a genuine result of the student's work
- Grading policy: (A : B : C) = (40-60:% 30-40%: 0-30%)

Grading

- Weights
 - meeting attendance: 5%
 - discussion contribution: 5% (+3%)
 - midterm: 25%
 - final exam: 30%
 - quizzes: 15%
 - programming projects: 15%
 - assignment: 5%
- Proportion: (A : B : C-F) = (0-30% : 40-60% : 15-30%)

Extra Point

- Read one of the recommended books thoroughly, and then summarize the book, and discuss your thoughts on the topics (new idea, opinion, critique, etc.)
 - you can use Korean version in reading
 - no double account of the same book with the Java assignment ©
- You should give your genuine ideas that associate the book with the discrete math and your studies in computer science
- Submission
 - Deadline: 21 Dec
 - At least 3 pages (single column in A4)
- Credit: Up to +3 pt in the final grading

Recommended Books

- 컴퓨터 과학이 여는 세상, 이광근 (Korean only)
- 역사 속의 소프트웨어 오류, 김종하 (Korean only)
- Programming Pearls, 2/e, John Bentley (생각하는 프로그래밍)
- Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science and Everyday Life (링크: 21세기를 지배하는 네트워크 과학)
- The Emperor's New Mind, Roger Penrose (황제의 새마음, 상/하)
- Gödel 's Proof, Ernest Nagel et al., (괴델의 증명)
- Gödel, Escher, Bach: An Eternal Golden Braid, Douglas Hofstadter (괴델, 에셔, 바흐: 영원한 황금 노끈)

Policies

https://github.com/hongshin/DiscreteMath/blob/master/policy.md

- Communication
- Checking meeting attendance
- Failure

Ground Rules

- A student should read textbooks
- A meeting is to support proactive learning of students
- A student is expected to spend at least 5 hours per week by himself/herself to follow-up a 3 credit class
 - excluding the time for the meetings and for doing homework
- Finding and understanding the obligations of an assignment is a crucial part of the assignment
- Each student must follow up all parts of the team work
 - each member may take a part, and must study all aspects