Preliminary

April 9, 2019

Contents

1	logi	\mathbf{c}	2
	1.1	and	2
	1.2	or	2
	1.3	imply	3
	1.4	iff	3
	1.5	not	3
	1.6	any	3
	1.7	exist	3
2	\mathbf{set}	and class	3
	2.1	class	3
	2.2	set	3
	2.3	axiom of extensionality	3
	2.4	axiom of class formation	3
	2.5	axiom of operation	4
	2.6	power axiom	4
	2.7	subclass	4
	2.8	empty set	4
	2.9	family of set	4
	2.10	disjoint set	4
3	Fun	ction	4
	3.1	preliminary for funcion	4
	3.2	f and g injective $\rightarrow gf$ is injective $\dots \dots \dots$	4
	3.3	$f: A \to B$ and $g: B \to C$ surjective $\to gf$ is surjective	4
	3.4	gf injective $\rightarrow f$ is injective	1
	3.5	gf surjective $\rightarrow g$ is surjective $\dots \dots \dots \dots \dots$	1.5

	Integer				
	4.1	Theorem for gcd			
		4.1.1 proof:			
	Axiom of choice				
	5.1	axiom of choice			
	5.2	zorn's lemma			
	5.3	ordinal number			
		5.3.1 Definition of the ordinal number			
	5.4	exercise 1 (p14)			
	5.5	exercise 2 (p15)			
	5.6	exercise 3 (p15)			
	5.7	exercise 4 (p15)			
		5.7.1 proof:			
	5.8	exercise 5 (P15)			
	5.9	exercise 6 (P15)			
	5.10	exercise 7 (P15)			
		5.10.1 A is well-ordered			
		$5.10.2~A$ is a linearly ordered set $\ldots \ldots \ldots \ldots \ldots$			
,	Care	dinal numbers			
	6.1	If A is a set and $P(A)$ its power set, then $ A < P(A) \dots$			
		6.1.1 proof			
	6.2	ordered by extension (p18)			
	6.3	Exercise 1 (P21)			
	6.4	Exercise 2 (P21)			
	6.5	Exercise 3 (P21)			
	6.6	Exercise 4, 5, 6, 7, 8 (P21)			
	6.7	Exercise 9 (P21)			
 -	log	${ m gic}$			
	Ì				
	Ì	gic nd			
L L.1	Ì				
L . 1	Ì				

1.3 imply

 \rightarrow

1.4 iff

 \iff

1.5 not

 \neg

1.6 any

A

1.7 exist

 \exists

2 set and class

2.1 class

a class is a collection A of objects such that given any object x, it is possible to determine whether or not x is a member of A.

2.2 set

a class A is defined to be a set iff exists a class B and $A \in B$.

2.3 axiom of extensionality

$$[x \in A \iff x \in B] \to A = B$$

2.4 axiom of class formation

for any statements P(y) in the first-order predicate calculus involving a variable y, there exists a class A such that $x \in A$ if and only if x is a set and the statement P(x). we denote this class A by $\{x|P(x)\}$.

2.5 axiom of operation

for union, intersection, functions, relations, Cartesian products, if one of these operation is performed on a set, then the result is also a set.

2.6 power axiom

for all set A, the class P(A) of all subsets of A is itself a set. P(A) is called the power set of A.

2.7 subclass

A, B are classes, then $A \subset B \iff (\forall x \in A)x \in A \to x \in B$ A is a subclass of B. if B is a set, then A is a subset.

2.8 empty set

Ø

2.9 family of set

a family of sets indexed by I is a collection of sets A_i .

2.10 disjoint set

 $A \cap B = \emptyset$.

3 Function

3.1 preliminary for funcion

@page[3]

3.2 f and q injective $\rightarrow qf$ is injective

proof:
$$x \neq y \rightarrow f(x) \neq f(y) \rightarrow g(f(x)) \neq g(f(y))$$

3.3 $f: A \to B$ and $g: B \to C$ surjective $\to gf$ is surjective

proof:
$$f(A) = f(B) \rightarrow g(f(A)) = g(B) = C$$
.

3.4 gf injective $\rightarrow f$ is injective

proof: assume f is not injective, then $(\exists x)(\exists y)f(x) = f(y)$. so g(f(x)) = g(f(y)). so gf is not injective, contradiction.

3.5 gf surjective $\rightarrow g$ is surjective

proof: assume g is not surjective, then it is easy to see that gf is not surjective, contradiction.

4 Integer

4.1 Theorem for gcd

If a_1, a_2, \dots, a_n are integers, not all 0, then (a_1, a_2, \dots, a_n) exists. Furthermore, there are integers k_1, k_2, \dots, k_n such that:

$$(a_1, a_2, \cdots, a_n) = k_1 a_1 + k_2 a_2 + \cdots + k_n a_n$$

.

4.1.1 proof:

Let $S = \{x_1a_1 + x_2a_2 + \cdots + x_na_n | x_i \in \mathbb{Z}, \sum_i x_ia_i > 0\}$. It is easy to see that $S \neq \emptyset$. Let $c = \sum_i x_ia_i$ be the least number in S. We claim that:

- 1. $c|a_i$ for $1 \le i \le n$.
- 2. $d \in \mathbb{Z}$ and $d|a_1$ for $1 \leq i \leq n \rightarrow d|c$.

Then c is obviously a gcd for $\{a_i\}$.

- claim 1: $c|a_i$ for $1 \leq i \leq n$. Assume $\exists o$ such that $c \nmid a_o$. Then, $\exists q, k$ such that $a_o = q \sum_i x_i a_i + k$. $a_o q \sum_i x_i a_i = k > 0$. $(1 qx_o)a_o + \sum_{i \neq o} x_i a_i = k > 0 \Rightarrow k \in S$. And because k < c, we get a contradiction. \square
- claim 2: $d \in \mathbb{Z}$ and $d|a_1$ for $1 \leq i \leq n \to d|c$. $\forall d$ that devided $\{a_i\}$, we have $a_i = k_i d, i = 1, 2, \dots, n$. Then $c = \sum_i x_i a_i = \sum_i x_i k_i d = d \sum_i x_i k_i$. So d|c. \square

5 Axiom of choice

5.1 axiom of choice

The product of family of nonempty sets indexed by a nonempty set is nonempty.

5.2 zorn's lemma

If A is a nonempty partially ordered set such that every chain in A has upper bound in A, then A contains a maximal element. zorn's lemma wiki

5.3 ordinal number

the number of all the ordinal's is more than the number of element in any sets.

5.3.1 Definition of the ordinal number

- 1. 0
- 2. $\{\emptyset\}$
- 3. $\{\emptyset, \{\emptyset\}\}$
- 4. $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$
- $5. \cdots$

according to the definition of the ordinal number. if there is a set M which contains all the ordinal numbers, then we have $M \in M$, this is a paradox for a sets. I think things like $M \in M$ may happen on proper class. here on stackexchange is a discussion for this issue.

5.4 exercise 1 (p14)

- for all subset $\{a,b\} \subset P(S)$. the g.l.b. is $a \cap b$. the l.u.b. is $a \cup b$. and the unique maximal element is S.
- $\{a \leq b, c \leq d\}$. the sub set $\{a, c\}$ do not have lower bound or upper bound.
- partially set $\{a \leq b, c \leq d\}$ has no maximal elements. partially set $\{a \leq b, c \leq d, a \leq d, c \leq b\}$ has maximal elements b, d.

5.5 exercise 2 (p15)

A is a complte lattice \Rightarrow there is a g.l.b. and l.u.b. for $A \in A$. from the antisymmetric property of A, we know that A has a unique maximal element and a unique minimal element. we denote the maximal element of A by m. then it is easy to see that m = f(m).

5.6 exercise 3 (p15)

$$\underbrace{\frac{1}{1}}_{2}, \underbrace{\frac{1}{2}, \frac{2}{1}}_{3}, \underbrace{\frac{3}{3}, \frac{2}{2}, \frac{3}{1}}_{4}, \dots$$

5.7 exercise 4 (p15)

we need to prove that: the axiom of choice \iff every set S has a choice function.

5.7.1 proof:

 \Rightarrow : we could construct a product on $P(S) \setminus \emptyset$. from axiom of choice, the result of this product is not empty. So, $\exists f \in \prod_{A \in S} A$ and we have $f(A) \in A$. obviously, f is the choice function for S. \Leftarrow : Let $\{A_i | i \in I\}$ be any family, such that $(\forall i)A_i \neq \emptyset$. every set $S \neq \emptyset$ has a choice function $\Rightarrow (\forall i)A_i$ has a choice function f_i . from these choice function f_i , we could then construct another function φ , by defining $\varphi(i) = f_i(A_i)$. it is quite clear that $\varphi \in \prod_{i \in I} A_i$, which is a nonempty set.

5.8 exercise 5 (P15)

 $(\forall x \in R)(x,0)$ is the maximal element in S. thus, S has infinitely many maximal elements.

5.9 exercise 6 (P15)

from exercise 4, we know that $(\forall i)A_i$ has a choice function f, mapping all the subsets B of A_i to an element in B. once we have the function f, we could simplify enumerate $f(A_i)$ over all the elements in A_i ...

5.10 exercise 7 (P15)

There are only 2 cases in which one element $a \in A$ does not have an immediate successor:

- 1. $\{x \in A | a < x\} = \emptyset$.
- 2. $\{x \in A | a < x\}$ does not have a least element.

5.10.1 A is well-ordered

under this condition, only the first case could happen. assume that we have 2 elements a, b in A that has no immediate successor. however, A is well-ordered, so there must be a least element in $\{a, b\}$. assuming that the least element is a, we will find that the set $\{x \in A | a < x\}$ is not empty. which means that a has a immediate successor in A, which is a contradiction.

5.10.2 A is a linearly ordered set

 $\{10, \dots, -1, 0, 1, 2, 3, 4, 5\}$. we set that $10 \le \dots \le -1 \le 0 \le 2 \le 3 \le 4 \le 5$. then, 10, 5 are 2 elements with no immediate successor.

6 Cardinal numbers

6.1 If A is a set and P(A) its power set, then |A| < |P(A)|

6.1.1 proof

to finish the proof, we claim that:

- 1. $|A| \leq |P(A)|$
- 2. $|A| \neq |P(A)|$

we prove them one by one.

- 1. $|A| \leq |P(A)|$: define a map $f: A \to P(A)$ as $a \mapsto \{a\}$. this map is obviously a injection. so $|A| \leq |P(A)|$.
- 2. $|A| \neq |P(A)|$: to prove this, we only need to prove that: $[(\forall)f: A \rightarrow P(A)] \rightarrow f$ is not surjective. for any function f, we define a set $B = \{a \in A | a \notin f(a)\}$. it is easy to see that by definition, $B \subset A$. so, if f is surjective, then $(\exists)x \in A \land x \mapsto B$. then we could get $x \in B \land x \notin B$, which is a contradiction.

- 6.2 ordered by extension (p18)
- 6.3 Exercise 1 (P21)
 - 1. (a) omit
 - 2. (b) (a) \Rightarrow (b)
 - 3. (c) omit
- 6.4 Exercise 2 (P21)
 - 1. Assume that we have a infinit set $A = \{a_0, a_1, a_2, \dots\}$. Then we could build a bijection $f: A \to A \{a_0\}$ by setting $f(a_i) = a_{i+1}, i \in N$. It is easy to see that $A \{a_0\} \subset A$.
 - 2. \Leftarrow : could be easily got from (1). \Rightarrow : could be got from 1.(1).
- 6.5 Exercise 3 (P21)
 - 1. we could build a bijection $f: Z \to N$ by setting:

$$f(x) = \begin{cases} 0, & x = 0 \\ -x * 2, & x < 0 \\ x * 2 + 1, & x > 0 \end{cases}$$

- 2. omit.
- 6.6 Exercise 4, 5, 6, 7, 8 (P21)

omit.

6.7 Exercise 9 (P21)