Logistic Regression

David Helmbold

University of California, Santa Cruz dph@soe.ucsc.edu

S'15. modified F'15, W'15

Logistic Regression learns parameter vector θ (or \mathbf{w})

Idea (inductive bias) behind 2-class Logistic Regression:

- two labels, so $y \in \{0,1\}$ (binary classification, not regression)
- discriminative models give $p(y = 1 \mid \mathbf{x}; \theta)$
- labels softly separated by hyperplane
- maximum confusion at hyperplane: when $\theta^{\mathsf{T}} \mathbf{x} = 0$ then $p(y = 1 \mid \mathbf{x}; \theta) = 1/2$
- use "add a dimension" trick to "shift" hyperplane off 0
- assume $p(y = 1 \mid \mathbf{x}; \theta)$ is some $g(\theta \cdot \mathbf{x})$

•
$$g(-\infty)=0$$

- $g(-\infty) = 0$
- $g(\infty) = 1$

- $g(-\infty) = 0$
- $g(\infty) = 1$
- g(0) = 1/2

- $g(-\infty) = 0$
- $g(\infty)=1$
- g(0) = 1/2
- confidence of label increases as move away from boundary, so $g(\theta^\intercal \mathbf{x})$ is monotonically increasing

- $g(-\infty) = 0$
- $g(\infty)=1$
- g(0) = 1/2
- confidence of label increases as move away from boundary, so $g(\theta^\intercal \mathbf{x})$ is monotonically increasing
- g(-a) = 1 g(a) (symmetry, implies g(0) = 1/2)

•
$$g(-\infty)=0$$

•
$$g(\infty) = 1$$

•
$$g(-a) = 1 - g(a)$$
 (symmetry, implies $g(0) = 1/2$)

$$\begin{split} & \overbrace{h_{\theta}(\mathbf{x})}^{y \text{ in Bishop}} = g(\theta \cdot \mathbf{x}) = \frac{1}{1 + \exp(-\theta \cdot \mathbf{x})} = \frac{\exp(\theta \cdot \mathbf{x})}{1 + \exp(\theta \cdot \mathbf{x})} \\ P(0 \mid \mathbf{x}; \theta) = 1 - h_{\theta}(\mathbf{x}) = \frac{\exp(-\theta \cdot \mathbf{x})}{1 + \exp(-\theta \cdot \mathbf{x})} = \frac{1}{1 + \exp(\theta \cdot \mathbf{x})} \end{split}$$

Derivative of g() simple: g'(a) = g(a)(1 - g(a))

$$L(\theta) = p(\vec{y} \mid X; \theta)$$

$$L(\theta) = p(\vec{y} \mid X; \theta)$$
$$= \prod_{i=1}^{m} p(y_i \mid \mathbf{x}_i; \theta)$$

$$L(\theta) = p(\vec{y} \mid X; \theta)$$

$$= \prod_{i=1}^{m} p(y_i \mid \mathbf{x}_i; \theta)$$

$$= \prod_{i=1}^{m} \underbrace{p(y = 1 \mid \mathbf{x}_i; \theta)^{y_i} p(y = 0 \mid \mathbf{x}_i; \theta)^{1-y_i}}_{\text{encodes if-test on } y}$$

$$L(\theta) = p(\vec{y} \mid X; \theta)$$

$$= \prod_{i=1}^{m} p(y_i \mid \mathbf{x}_i; \theta)$$

$$= \prod_{i=1}^{m} \underbrace{p(y = 1 \mid \mathbf{x}_i; \theta)^{y_i} p(y = 0 \mid \mathbf{x}_i; \theta)^{1-y_i}}_{\text{encodes if-test on } y}$$

$$= \prod_{i=1}^{m} h_{\theta}(\mathbf{x}_i)^{y_i} (1 - h_{\theta}(\mathbf{x}_i))^{1-y_i}$$

As before, log-likelihood easier:

$$\ell(\theta) = \log(L(\theta))$$

$$= \sum_{i=1}^{m} y_i \log(h_{\theta}(\mathbf{x}_i)) + (1 - y_i) \log(1 - h_{\theta}(\mathbf{x}_i))$$

Take derivatives for just one (\mathbf{x}_i, y_i) (some algebra, uses g'(a) = g(a)(1 - g(a))):

$$\frac{\partial}{\partial \theta_j} \ell(\theta) = \underbrace{(y_i - h_{\theta}(\mathbf{x}_i))}_{\text{prediction error}} x_{i,j}$$

Stochastic Gradient update on (\mathbf{x}_i, y_i) :

$$\theta_j := \theta_j + \alpha(y_i - h_{\theta}(\mathbf{x}_i))x_{i,j}$$
 (component j update)
 $\theta := \theta + \alpha(y_i - h_{\theta}(\mathbf{x}_i))\mathbf{x}_i$ (all components)

Looks similar to LMS update, but $h_{\theta}()$ is different $h_{\theta}()$ is different $h_{\theta}()$ is different $h_{\theta}()$

Second Order Methods

Red - function to maximize; Green - 1st order (linear) approx.; Blue - quadratic approximation

Second order Newton methods:

- Want to find maximum of some function F(z) (e.g. log-likelihood)
- Start with initial z₀
- Use quadratic approximation:

$$F(z_0 + \delta) \approx F(z_0) + \delta F'(z_0) + \delta^2 F''(z_0)/2$$

• Maximize approximation (set derivative w.r.t. δ to 0 and solve):

$$\delta = -F'(z_0)/F''(z_0)$$

- Newton-Raphson for multiple dimensions, also called Fisher scoring, or iteratively-reweighted-least-squares (for logistic regression)
- May converge faster, but stochastic gradient descent may learn quicker (Bottou)

SoftMax for Multi-class Logistic Regression

- Learn weights θ_k for each class $k \in \{1, 2, ..., K\}$
- Class-k-ness of instance \mathbf{x} is estimated by $\theta_k \cdot \mathbf{x}$
- Estimate $p(\text{Class} = k \mid \mathbf{x}; \theta_1, \dots, \theta_K)$ for instance \mathbf{x} with $\underline{\text{SoftMax}}$ function:

$$h_k(\mathbf{x}; \theta_1, \dots, \theta_K) = \frac{\exp(\theta_k \cdot \mathbf{x})}{\sum_{r=1}^K \exp(\theta_r \cdot \mathbf{x})}$$

• Want weights that maximize likelihood of the sample.

- Use one-of-K encoding for labels: make each label \mathbf{y}_i a K-vector with $y_{i,k} = 1$ if class = k (rest of y_i is 0).
- Likelihood of *m* labels in sample is:

$$L(\theta_1, \dots, \theta_K) = p(\mathbf{y}_i, \dots, \mathbf{y}_N \mid X; \theta_1, \dots, \theta_K)$$

$$= \prod_{i=1}^m p(y_i \mid \mathbf{x}_i; \theta_1, \dots, \theta_K)$$

$$= \prod_{i=1}^m \prod_{\substack{k=1 \ p(\mathsf{Class}|\mathbf{x}_i; \theta_1, \dots, \theta_K)}}^K h_k(\mathbf{x}_i)^{y_{i,k}}$$

• iterative methods maximize log likelihood (SGD, 2nd order)

 θ_K is redundant! $p(\text{class} = K \mid \mathbf{x}) = 1 - \sum_{k=1}^{K-1} p(\text{class} = k \mid \mathbf{x})$. In softmax:

$$h_{k}(\mathbf{x}; \theta_{1}, \dots, \theta_{K}) = \frac{\exp(\theta_{k} \cdot \mathbf{x})}{\sum_{r=1}^{K} \exp(\theta_{r} \cdot \mathbf{x})}$$

$$= \frac{\exp(\theta_{k} \cdot \mathbf{x}) / \exp(\theta_{K} \cdot \mathbf{x})}{\sum_{r=1}^{K} \exp(\theta_{r} \cdot \mathbf{x}) / \exp(\theta_{K} \cdot \mathbf{x})}$$

$$= \frac{\exp((\theta_{k} - \theta_{K}) \cdot \mathbf{x})}{\sum_{r=1}^{K} \exp((\theta_{r} - \theta_{K}) \cdot \mathbf{x})}$$

so can learn $\tilde{\theta}_k = \theta_k - \theta_K!$

With modified $\tilde{\theta}_1, \ldots, \tilde{\theta}_{K-1}$:

$$h_k(\mathbf{x}; \tilde{\theta}_1, \dots, \tilde{\theta}_{K-1}) = \begin{cases} \frac{\exp(\tilde{\theta}_k)}{1 + \sum_{r=1}^{K-1} \exp(\tilde{\theta}_r \cdot \mathbf{x})} & \text{if } k \leq K-1 \\ \frac{1}{1 + \sum_{r=1}^{K-1} \exp(\tilde{\theta}_r \cdot \mathbf{x})} & \text{if } k = K \end{cases}$$

Now looks more like 2-class case (see slide 5)

Can also learn $\tilde{\theta}_k$ directly.

Logistic Regression Summary

- Logistic regression learns weights for distribution on labels, $p(y=1|\mathbf{x},\theta)$
- ullet Can use gradient descent to learn heta
- Can threshold at $\theta \cdot \mathbf{x} = 0$ to get predictions
- Extends to multi-class with soft-max
- Bonus:
 - can overfit if data linearly separable
 - $\theta \cdot \mathbf{x}$ is the log odds, $\log \frac{p(y=1|\mathbf{x};\theta)}{p(y=0|\mathbf{x};\theta)}$

Comparison

Too soon for 142 - ignore

Too Seem for T12 lighters					
	Fisher	LDA	Perceptron	Logistic	Naive
				regression	Bayes
Model	LTU	$p(\mathbf{x} \mid y)$	LTU	$p(y \mid \mathbf{x})$	$p(\mathbf{x} \mid y)$
Data	numeric	numeric	numeric	numeric	mixed
Interpretable	yes	yes	yes	yes	somewhat
Missing vals?	?	no	no	no	yes
Outliers	bad	bad	fatal(*)	good	fair/poor
Irrelevant	bad	bad	bad	bad	a little
features					better
Monotone	no	no	no	no	rarely
transform					
Computation	good	good	good	good (-)	v. good