Quadratic residue of -1

Learning Objectives. By the end of class, students will be able to:

- Prove ??
- Classify when -1 is a quadratic residue modulo an odd prime.

Reading None

Proof of Euler's Criterion

We will prove ??.

Theorem 1 (Euler's Criterion). Let p be an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$. Then

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$$

Proof Let p be an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$. If there exists $b \in \mathbb{Z}$ such that $b^2 \equiv a \pmod{p}$, then $\left(\frac{a}{p}\right) = 1$ by definition. Note that

$$a^{(p-1)/2} \equiv (b^2)(p-1)/2 \equiv b^{p-1} \equiv 1 \pmod{p}$$

by ??. Thus
$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$$
.

If a is a quadratic nonresidue modulo p, consider the reduced residue system $\{1,2,\ldots,p-1\}$. For each element c of the list, there exists a unique element d, also on the list, such that $cd \equiv a \pmod{p}$ by Theorem 2.6 since (a,p)=1. Since a is a quadratic nonresidue by assumption, $c \not\equiv d \pmod{p}$. Thus, there are $\frac{p-1}{2}$ pairs c,d where $cd \equiv a \pmod{p}$. Thus,

$$-1 \equiv (p-1)! \equiv a^{(p-1)/2} \pmod{p}$$

by ??. Since a is a quadratic nonresidue modulo p, $\left(\frac{a}{p}\right) = -1 \equiv a^{(p-1)/2} \pmod{p}$.

Remark 1. Some sources define $\left(\frac{a}{p}\right) = 0$ when $p \mid a$. In this case, Let p be an odd prime and $a \in \mathbb{Z}$. If $p \mid a$, then $a^{(p-1)/2} \equiv 0^{(p-1)/2} \equiv 0 \equiv \left(\frac{a}{p}\right) \pmod{p}$.

When is -1 a quadratic residue?

Theorem 2 (Theorem 4.6). Let p be an odd prime number. Then

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & p \equiv 1 \pmod{4} \\ -1, & p \equiv 3 \pmod{4} \end{cases}.$$

Learning outcomes:

Author(s): Claire Merriman

Proof Let p be an odd prime number. Then from $\ref{eq:proof}$, $\left(\frac{-1}{p}\right) \equiv (-1)^{(p-1)/2} \pmod{p}$. Since both values are ± 1 , we can say $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$.

If $p \equiv 1 \pmod{4}$, then there exists $k \in \mathbb{Z}$ such that p = 4k + 1. Thus, $\frac{p-1}{2} = 2k$ and

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2} = (-1)^{2k} = 1.$$

If $p \equiv 3 \pmod 4$, then there exists $k \in \mathbb{Z}$ such that p = 4k + 3. Thus, $\frac{p-1}{2} = 2k + 1$ and

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2} = (-1)^{2k+1} = -1.$$