Perspective Correction

CS418 Computer Graphics
John C. Hart

Texture Mapping

Interpolation

• Rasterization interpolates texture coordinates (s,t) defined at vertices to provide texture coordinates at each fragment

Interpolation

- Rasterization
 interpolates texture
 coordinates (s,t) defined
 at vertices to provide
 texture coordinates at
 each fragment
- Interpolation is NOT LINEAR

Receding Sidewalk

Texture Coordinates

Sidewalk Seams

Linear Interpolation

Perspective Correct

Perspective Correction

$$y_{\text{canvas}} = y/w = y/(-z/d)$$

$$y_{\text{front}} = -1/(-z_{\text{front}}), \quad y_{\text{half}} = -1/(-z_{\text{half}}), \quad y_{\text{back}} = -1/(-z_{\text{back}})$$

(vertical positions vary by interpolating denominator)

Perspective Correction

• Clip coordinate vertex attributes:

• Window coordinate vertex attributes:

- Window vertices at (x/w, y/w)
- Rasterization linearly interpolates (s/w, t/w, 1/w) from vertex attribute values to find fragment values
- Divide *per-fragment* by 1/w to get perspective correct interpolated texture coordinates (s,t)

$$y_{\text{canvas}} = y/(-z/d) = y/w$$

$$z = -1$$
$$y = -1$$

$$w = 1$$
$$t = 0$$

