UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2012/2 Terceira avaliação

1	2	3	4	Total	

Nome:	Cartão:	

Regras a observar:

- Seja sucinto porém completo.
- Justifique todo procedimento usado.
- Use notação matemática consistente.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Deixe claro o uso de ítens tabelados.
- Devolva o caderno de questões preenchido ao final da prova.
- Não é permitido destacar folhas nem usar folhas adicionais.

Formulário:

1.
$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

2.
$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

3.
$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

4.
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

5.
$$sen(\alpha + \beta) = sen(\alpha)cos(\beta) + cos(\alpha)sen(\beta)$$

Nota \ Oitava	1	2	3	4	5	6	7
Dó	32,7	65,4	130,8	261,6	523,3	1047	2093
Dó#	34,6	69,3	138,6	277,2	554,4	1109	2217
Ré	36,7	73,4	146,8	293,7	587,3	1175	2349
Ré#	38,9	77,8	155,6	311,1	622,3	1245	2489
Mi	41,2	82,4	164,8	329,6	659,3	1319	2637
Fá	43,7	87,3	174,6	349,2	698,5	1397	2794
Fá#	46,2	92,5	185,0	370,0	740,0	1480	2960
Sol	49,0	98,0	196,0	392,0	784,0	1568	3136
Sol#	51,9	103,8	207,7	415,3	830,6	1661	3322
Lá	55	110	220	440	880	1760	3520
Lá#	58,3	116,5	233,1	466,2	932,3	1865	3729
Si	61,7	123,5	246,9	493,9	987,8	1976	3951

- Questão 1 (2.0) Esboce o diagrama de amplitudes do espectro dos seguintes sinais, explicando se o espectro é discreto ou contínuo. Indique nos gráficos, eixos e valores notáveis.

 - a) (0.5) f(t) = sen(3t) + 1b) (0.5) $g(t) = \sum_{n=0}^{\infty} \frac{1}{2^n} \cos(nt)$ c) (1.0) $h(t) = \frac{2}{t^2+1}$

 \bullet Questão 2 (3.0) Encontre a forma trigonométrica da Série de Fourier da função

$$f(t) = |\operatorname{sen}(t)|$$

e, depois, calcule a Transformada de Fourier do pacote de onda dado por

$$g(t) = |\sin(t)|e^{-t^2/4}.$$

• Questão 3 (2.5) O diagrama de amplitudes do espectro do registro do som de um instrumento musical é dado abaixo:

- a) (0.5) Obtenha o valor de $\int_{-\infty}^{\infty} f(t)dt$. b) (1.0) Esboce o diagrama de amplitudes do espectro de -4f(2t).
- c) (1.0) Esboce o diagrama de amplitudes do espectro de f'(t).

 \bullet Questão 4 (2.5) Resolva a seguinte equação diferencial parcial usando a técnica das Transformadas de Fourier:

$$\begin{cases} \frac{\partial}{\partial t}u(x,t) + \alpha u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t), & -\infty < x < \infty, \quad t > 0\\ u(x,0) = \delta(x - x_0), & -\infty < x < \infty \end{cases}$$