

Fabiano Costa Teixeira

teixeira@icmc.usp.br

Roteiro

- Introdução ao Grid Computing
- Cases
- Construção de um Grid
 - Middlewares
- Modelos Econômicos
- Grid + TV Digital
- Conclusão

- Ciência evolui rapidamente
- A tecnologia precisa "reagir" em função da necessidade

O que é isso?????

HD 5MB do ano de 1956!!!

Pen Drive 16GB!!!!

- Problemas a serem resolvidos possuem complexidade crescente
- Necessidade de potência computacional cada vez maior
 - Simulações
 - Análises de dados
 - Modelos matemáticos
 - Entre outros

- Um supercomputador é um equipamento caro
- Muitos projetos de pesquisa não possuem recursos suficientes
- Em determinados casos um único supercomputador não é suficiente

Como resolver o problema????

Reunir esforços!!!!

- Dividir para conquistar!!!!
- Em grande parte dos casos, um problema complexo pode ser dividido em problemas menores
- Os problemas menores podem ser resolvidos de forma paralela

$$x = 1254^{53} + 98756 \times 65342 + 76547^{36}$$

$$w = 1254^{53}$$

$$y = 98756 \times 65342$$

$$x = w + y + z$$

Cluster

- Conjunto de computadores interligados por uma Lan
- Administração local
- Expansão depende de investimento
- Linguagens para desenvolvimento de aplicações paralelas (mpi e pvm, por exemplo)

Cluster

- Advento da Internet possibilitou a criação de um novo paradigma de computação distribuída
- Grid Computing surge em meados dos anos 90
- Computadores espalhados por todo o mundo podem compartilhar recursos

- Participantes:
 - Heterogêneos
 - Geograficamente distribuídos
 - Sob administrações independentes
- Formação de Organizações Virtuais
- Participantes podem fornecer e consumir recursos

- Os participantes de um Grid podem diversos tipos de recursos
 - Unidades de processamento
 - Discos
 - Clusters
 - Supercomputadores
 - Entre outros

- Exploração da existência de recursos computacionais ociosos
- Mesmo em uso, os recursos podem estar sendo sub-utilizados

Projeto Boinc

- Berkeley Open Infrastructure for Network Computing
- http://boinc.berkeley.edu/
- Plataforma que permite Computação Distribuída utilizando computadores de voluntários
- Abriga diferentes projetos
- Cada projeto possui sua própria infra-estrutura

Projeto Boinc

- Os voluntários definem os projetos que desejam fazer parte
- Informação da contribuição de cada país

Boinc: SETI@home

Boinc: Roseta@home

LHC – Large Hadron Collider

- Produção de cerca de 15 Petabytes de dados por ano
- 15 anos
- Estudo de 2004

 apontava a
 necessidade de
 100.000 unidades de
 processamento

LHC – Large Hadron Collider

Centro de computação do CERN provê menos de 20% da capacidade necessária

LHC Grid Computing

 Composto por 140 centros de computação distribuídos em 38 países

LHC@home

Construção de um Grid

- Muitos requisitos a serem considerados:
 - Escalonamento
 - Gerenciamento de execução
 - Segurança
 - Gerenciamento de dados
 - Serviços de Informações
- Implementar esses requisitos é uma tarefa complexa

Modelo de Camadas

Middlewares

- Middleware é uma camada de software que abstrai os requisitos básicos
- Oferece API's para o acesso às funcionalidades
- Programador mantém o foco na aplicação desejada

Padronização

- Característica que levou a Web ao estado atual
- Interoperabilidade entre implementações diferentes é interessante;
- Uso de Serviços Web

Padronização: OGSA

- Open Grid Services Architecture
- Um recurso compartilhado é representado por um Serviço Web: Serviço de Grade
- Os serviços devem possuir interfaces bem definidas
- A OGSA descreve a arquitetura utilizando uma macro-visão

Padronização: OGSI

- Open Grid Services Infrastructure;
- Descreve detalhadamente a estrutura esboçada pela OGSA

"Se comparado ao processo de construção de uma casa, a OGSA faz o papel de arquiteto e a OGSI de engenheiro"

Padronização: WSRF

- Web Services Resource Framework
- Com o tempo as especificações da OGSI precisaram ser aprimoradas
- Divisão da especificação em outras menores;
- Preservação do estado de um Serviço Web

Algumas Soluções Existentes

Globus Toolkit

- Ferramenta amplamente utilizada
- Abstrai diversos requisitos de um grid
- Curva de aprendizado grande

Globus Toolkit: Módulos

Globus Toolkit: Arquitetura do GRAM

OURGRID

- Projeto Brasileiro
- Universidade Federal de Campina Grande
- Bag of Tasks (Bot)

OURGRID: Principais Componentes

Modelos Econômicos

- Em uma Organização Virtual os participantes podem fornecer e consumir recursos;
- O comportamento egoísta dos participantes é um grande problema;
- Qualidade de Serviço (QoS) é uma questão importante;

Modelos Econômicos

- Na sociedade real o consumo e oferta de recursos são controlados
- Recursos melhores são mais caros
- Um equilíbrio entre a oferta e a demanda de um recurso é um cenário perfeito

Modelos Econômicos

- Diversos modelos podem ser adotados:
 - Mercado de produto
 - Oferta contrato
 - Leilão
 - Entre outros

Televisão Digital Interativa

- Televisão Digital teve suas primeiras transmissões no Brasil em dezembro/2007
- Melhor qualidade de áudio e vídeo
- Maior oferta de programação
- Interatividade

Televisão Digital Interativa

Arquitetura de Comunicação do Sistema de Televisão Digital

Grid de Terminais de Acesso da TV Digital

- Brasil tem, aproximadamente, 54 milhões de aparelhos de TV
- A médio prazo, um número considerável de unidades de processamento estará "invadindo" os lares brasileiros
- Internet tem se popularizado

Grid de Terminais de Acesso da TV Digital

Projeto de Doutorado

- Grid P2P para compartilhamento dos recursos ociosos dos terminais de acesso
- Utilização para fins científicos e de telespectadores

Grid de Terminais de Acesso da TV Digital

Conclusão

- Grid Computing pode contribuir para o aumento de soluções para as áreas da ciência e engenharia
- Tecnologia vem ganhando "fortes" aliados

 Pesquisas avançam para a popularização do paradigma

Perguntas???

Obrigado!!!!

teixeira@icmc.usp.br