Best Available Copy

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

06025898

PUBLICATION DATE

01-02-94

APPLICATION DATE

07-07-92

APPLICATION NUMBER

04179712

APPLICANT:

TOYOTA MOTOR CORP;

INVENTOR

FUWA YOSHIO;

INT.CL.

C25D 15/02 C23C 18/52 F16C 33/12

TITLE

SLIDING MEMBER

ABSTRACT :

PURPOSE: To obtain a sliding member, such as pinion shaft, excellent in wear resistance

and seizure resistance and minimal in wear of a mating material.

CONSTITUTION: Composite plating where ceramic grains of ≤1µm grain size-are dispersed, by 2-6% in Ni-xP (where x=4 to 7%) or Ni-xP-yCo (where x=4 to 7% and y=15 to 35%) is formed on the surface of the sliding part of a base material. Because the alloy layer itself of the composite plating layer has wear resistance and the wear resistance of the plating layer is further improved by the grains dispersed in the form of eutectoid, seizure load can be increased without causing wear to a mating material.

COPYRIGHT: (C)1994, JPO& Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-25898

(43)公開日 平成6年(1994)2月1日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
C 2 5 D 1	15/02	J			
C 2 3 C 1	18/52	Α			
F16C 3	3/12	Z	6814-3 J		

審査請求 未請求 請求項の数2(全 9 頁)

(21)出願番号	特願平4-179712	(71)出願人 000003207
		トヨタ自動車株式会社
(22)出願日	平成4年(1992)7月7日	愛知県豊田市トヨタ町 1 番地
		(72)発明者 加藤 愼治
		愛知県豊田市トヨタ町1番地 トヨタ自動
		車株式会社内
		(72)発明者 不破 良雄
		愛知県豊田市トヨタ町1番地 トヨタ自重
		車株式会社内
		(74)代理人 弁理士 大川 宏

(54)【発明の名称】 摺動部材

(57)【要約】

【目的】 耐摩耗性および耐焼付性に優れ、かつ相手材の摩耗の少ないピニオンシャフト等の摺動部材。

【構成】 基材の摺動部表面にNi-xP(x=4~7%)またはNi-xP-yCo(x=4~7%、y=15~35%)と、粒径が1 μ m以下のセラミックス粒子を2~6%分散させた複合メッキを形成したものであって、複合めっき層の合金層自体が耐摩耗性を有すると共に、共析した分散粒子によりさらにめっき層の耐摩耗性が向上し、相手材を摩耗させずに焼付荷重を増大することができた。

【特許請求の範囲】

. .

【請求項1】 基材の摺動部表面にNi-xP(x=4 \sim 7%)と、粒径が 1μ m以下のセラミック粒子を $2\sim$ 6%分散させた複合メッキを形成したことを特徴とする摺動部材。

【請求項2】 基材の摺動部表面にNiーxPーyCo $(x=4\sim7\%, y=15\sim35\%)$ と、粒径が 1μ m 以下のセラミック粒子を $2\sim6\%$ 分散させた複合めっきを形成したことを特徴とする摺動部材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は自動車の差動装置に使用されるピニオンシャフト等の摺動部材に関する。

[0002]

【従来の技術】車両の差動装置のピニオンギヤは、リングギヤに固定されたデフケース内で、ピニオンシャフトに軸支され、トルクを両側のサイドギヤに伝達しているが、車両が旋回するときは、ピニオンギヤが自転することにより、左右輪の回転数差を調整する。そのため、ピニオンギヤとピニオンシャフトとは摺動面を有する。

【0003】従来、この摺動部材であるピニオンシャフトには、基材として機械構造用低合金鋼であるSCr415HまたはSСМ420Hを用い、基材がSCr415Hである場合は、浸炭浸窒処理をし、焼入焼もどしした後研磨し、SСМ420Hの場合は、浸炭浸窒焼入焼もどしして研磨した後、さらにタフトライド処理を施すか、あるいは膜厚10μm前後の無電解Ni-Pめっきを施し、330℃で1時間の時効処理を施していた。

[0004]

【発明が解決しようとする課題】しかしながら、前記の 膜厚 10μ m程度の無電解Ni-Pめっき層は、耐摩耗性が充分でないために、耐久試験を行うと、Ni-Pめっき膜が磨滅し、基材が露出する。基材が露出した状態では基材の耐焼付き性が劣るため、厳しい条件では焼付きを発生し摩耗量が大となることがある。

【0005】また、ピニオンシャフトの摺動面は、油膜厚さを調整するために、摺動面の両端においてめっき膜厚を薄くすることが好ましいが、無電解Ni-Pめっきは基材に対して均一膜厚となる特性があり、めっき層の膜厚をピニオンシャフトの円周方向で調節することが不可能である。

【0006】さらに、無電解Ni-PめっきはP含有量が $9\sim12\%$ と高く、皮膜が脆い性質となっているため、高面圧下の条件で試験をおこなうと、層内破壊を起こすことがある。

【0007】本発明は車両の差動装置のピニオンシャフト等の摺動部材の摺動面に施される硬質めっき等の表面 改質層の前記のごとき問題点を解決するためになされた ものであって、従来のめっき層よりも耐摩耗性および耐 焼付性に優れ、かつ相手材を摩耗させない摺動部材を提 供することを目的とする。

[0008]

【課題を解決するための手段】発明者等は無電解Ni一PめっきがP含有量が9~12%と高く、皮膜が脆いことに鑑み、めっき層のP含有量について検討を重ねた。また同時にめっき層に耐摩耗性の粒子を共析させる複合めっき層とすることが有利であると考え、耐摩耗性粒子の性状についても研究を進めた。その結果、めっき層のP含有量を4~7%低減すると共に平均粒径1μm以下のセラミックス粒子を共析させた複合めっき層とすることにより、著しく耐摩耗性が向上することを見出して本発明を完成した。

【0009】本発明の摺動部材は、基材の摺動部表面に Ni-xP(x=4~7%) またはNi-xP-yCo (x=4~7%、y=15~35%) と、粒径が $1\mu m$ 以下のセラミックス粒子を $2\sim6$ %分散させた複合メッキを形成したことを要旨とする。

【0010】Ni-P複合めっき層あるいはNi-Co-P複合めっき層は、化学めっきまたは電気めっきのいずれで形成しても良い。形成された複合めっき層は $330\sim350$ で1時間程度の時効処理を施し、MHV900以上の硬さとすることが必要である。複合めっき層の厚さは特に制約はないが、必要な耐摩耗性を確保するためには、 $2\sim20\mu$ mとすることが好ましい。

【0011】セラミックスとしては、耐摩耗性のある硬質なものであれば良いが、例えば炭化珪素、窒化珪素、サイアロン、ジルコニア、CBN、TiC等を用いることができる。セラミックス粒子の粒径は 1μ m以下であって、形状は角部の曲率半径が 0.15μ m以上あることが好ましい。

[0012]

【作用】本発明の摺動部材は、基材の摺動部表面にNi-xP($x=4\sim7\%$)またはNi-xP-yCo($x=4\sim7\%$ 、 $y=15\sim35\%$)と、粒径が 1μ m以下のセラミックス粒子を $2\sim6\%$ 分散させた複合メッキを形成したので、複合めっき層の合金層自体が耐摩耗性を有すると共に、共析した分散粒子によりさらにめっき層の耐摩耗性が向上し、相手材を摩耗させずに焼付荷重を増大する。

【0013】本発明において、複合めっき層のP含有量を $4\sim7%$ に限定したのは、Pは時効処理によってNi $_3$ P、 Co_3 Pの形に結晶化し硬さを向上して耐摩耗性が得られるが、P含有量が4%未満であると硬さがMHV900を下回ることになり必要な耐摩耗性が得られなくなるからである。P含有量が7%を越えると、硬さおよび耐摩耗性はより良好となるが、皮膜が脆い性質となるために、高面圧での試験で層内破壊を起こす。これによる皮膜からの脱落粒子がアブレシブ作用を伴い皮膜をつぎつぎに破壊・摩耗させるため結果として摩耗大となる。

【0014】また、セラミック粒子の分散量を2~6%にしたのは、セラミック粒子の分散によって耐摩耗性が向上しているわけで、分散量が2%未満であると充分な耐摩耗性向上の効果が得られないからであり、分散量が6%を越えると耐摩耗性向上の効果は大きくなるが、皮膜内におけるセラミック粒子間距離が著しく短くなるために、高面圧での試験で層内破壊を起こし前記と同様の不具合が生ずるからである。

4 . B . A . B

【0015】セラミック粒子の粒径を 1μ m以下としたのは、粒径が 1μ mを越えると耐摩耗性は向上するが、アブレシブ作用により相手材の摩耗を増大させるからである。また、膜厚に対し粒径が比較的大きいために、皮膜の表面あらさが大きくなる。表面あらさが大きいと、油膜を破断する割合が大きいために、焼付荷重は低下することとなる。また、粒子の角部の曲率半径が0.15 μ m以下になると、相手攻撃性が増し、相手材の摩耗が大きくなるため、角部の曲率半径を0.15 μ mとすることが好ましい。

【0016】また、本発明において複合めっき層をNiベースの皮膜としたのは、Feベースでは相手材(ピニオンギヤ)との同種材同志の組み合わせとなるために、耐焼付性が劣るからであり、他にCoベースがあるが、Coは産出量も少なく入手不安があり、耐焼付性もNiベースよりは劣ると共に耐摩耗性もNiベースよりも劣るので好ましくないからである。NiベースにCoを15~30%添加すると、Ni₃PとCo₃Pの適度な複合組織となるため、より一層耐焼付性が高くなる。

【0017】膜厚を $2\sim20\mu$ mとしたのは、膜厚が 2μ mより下回ると耐摩耗性は優れていてもその膜厚で寿命を全うすることはできず、磨滅することになるので、耐久性が不足する。また、膜厚が 20μ mを越えると、表面あらさが大きくなり油膜破断が起きて耐焼付性が低下する。

【0018】複合めっき層の膜厚は、図2に示すように 摺動部の両端部で薄くすることが好ましいが、その理由 はピニオンシャフトとピニオンギヤとは、リングギヤに よりかきあげられたギヤ油がピニオンシャフトの中央に 付着し、これが遠心力で両端に向かって流れ、2面幅の 部分から入り込むギヤ油により自然給油され潤滑してい る。従って、ギヤ油が摺動面間にうまく入り込んでくれ るか否かは入口部の形状いかんにかかっており、摺動部 の両端部で薄くすることにより好ましい結果が得られる からである。なお、複合めっき層を摺動部の両端部で薄 く形成するには、摺動部に電気めっきする際の電極の大 きさを適度に調整することによって容易に得られる。

[0019]

【実施例】本発明の実施例を比較例および従来例と比較 して説明し、本発明の効果を明らかにする。

(実施例1) 基材としてSCM420Hを用い試験片を

【0020】なお、表1~表3において、番号1~20は本発明の実施例であるが、番号21~34は比較例であって、番号21および27はセラミック粒子の角部の曲率半径が1.5μm以下の比較例、番号22、33および34はNi合金中のP含有量が4%以下である比較例、番号23および31はセラミック粒子の共析量が2%以下である比較例、番号25、26、28および29はセラミック粒子の粒径が1μm以上である比較例、番号25および30はセラミック粒子の共析量が6%以上である比較例、番号32はNi合金中のP含有量が7%以上である比較例、番号24はセラミック粒子がアルミナである比較例、番号24はセラミック粒子がアルミナである比較例である。

【0021】また,番号 $35\sim36$ は従来例であって、番号35は基材としてSCr15を用い浸炭焼入れしたもの、番号36は無電解Ni-Pめっき後350℃で1時間時効処理したものである。

【0022】これら実施例、比較例および従来例の試験 片について、焼付荷重、摩擦係数、摩耗深さおよび相手 材摩耗量、表面硬さおよびめっき表面あらさについて測定した。焼付荷重および摩擦係数は、機械試験所型摩擦 摩耗試験機を用い、上側円筒試験片はSCr415H浸炭焼入れしたものとし、下側平板試験片はSCr415H浸炭焼入れしたものとし、下側平板試験片はSCr415H浸炭焼入れしたものとし、下側平板試験片はSCr415H浸炭焼入れしたものとし、下側平板試験片はSCr415H浸炭焼入れしたものとし、下側平板試験片はSCr415H で SCr415H で S

【0023】摩耗深さ(μ m)および相手材の摩耗(mg)は、LFW-1摩耗試験機を用い、下側リング試験片をSUJ2焼入れ焼もどしHv720一定とし、上側ブロック試験片は表1~表3の各材料とし、下側リング試験片をすべり速度0.3 m/secで、供試油AFTに油浴した状態で回転させ、これに上側ブロック試験片を荷重60kgおよび180kgにて60分押し付けた時に、ブロック試験片に形成される円弧状摩耗痕の深さ(μ m)およびリング試験片の摩耗重量(mg)を測定したものである。得られた結果は表1~表3にまとめて示した。

[0024]

定したものである。

【表1】

[0025]

【表2】

爽	複合めっき層組成 (質量%)	城 個量外	9					- A	#FE#A	が無記録	理なり
5.7		・ミシネ	少粒子		怒竹櫃	摩擦係数	Tn)	n)		MHV	お問める
#	棚類	共5届 (%)	校径 (μm)	角配曲率 半径 μ m	(k g)		有理 59109	荷里 180kg	merc (m.g.)	1008	R 2 (µm)
10	整石城	4	0. 7	0.8	425	0,040	1. 7	3. 4	0.2	945	1~2
	温	2	0. 7	0.8	400	0.039	2. 3	4.6	0.3	900	1~2
	追	9	0.7	0.8	425	0:030	1.5	3.0	0.4	950	1.5~2
	追	4	1.0	0.8	400	0.041	1. 7	3. 5	0.2	9 4.5	1~2
	温	4	0.5	0.8	425	960 '0	2.0	4.0	0.2	935	1~2
	温	4	0. 7	0.15	400	070 '0	2.0	4.0	0.4	940	1~2
	温	4	0.7	0.3	400	860 '0	1. 9	3.8	0.3	940	1~2
	温	4	0. 7	9 .0	9 717	0, 035	1.8	3. 7	0.2	940	1~2
	聚四縣	4	0.9	0.10	300	360 T	1.8	3.6	4	930	2~3
	司	5	0.9	0. 2	0 2 2	20T TO	6	17	0.4	700	1~2
2.0	整化基	1	0.5	0. 2	275	0.098	8	1.5	0.5	910	0.7-L4
2.0	アルミナ	co.	0. 7	0. 2	300	980 0	5	11	0.5	950	1~2
	Common Common	面	10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	6届 本ラミック粒子 60 (4m) 10 愛化は素 4 0.7 同上 4 0.7 四 5 0.9 20 9 20 7ルミナ 5 0.7	本ラミック粒子 6日 種類 共析量 粒径 角部曲部 10 登化建株 4 0.7 0.8 同上 4 1.0 0.8 同上 4 0.7 0.8 同上 4 0.7 0.8 同上 4 0.7 0.8 同上 4 0.7 0.3 同上 4 0.7 0.3 関化は株 4 0.7 0.9 0.10 同上 4 0.7 0.9 0.10 関上 4 0.7 0.9 0.10 関上 5 0.9 0.10 20 20 0.9 0.10 20 7ルミナ 5 0.7 0.2 20 7ルミナ 5 0.7 0.2 20 7ルミナ 5 0.7 0.2	6日 セラミック粒子 株計価 株計価 株計価 株計価 株計価 株計価 株計価 株式 加 (20<	6 ABM 共行量 配径 角的曲 (kg) (kg) 有 10 壁化建株 4 0.7 0.8 4 2 5 0.040 1 10 壁化建株 4 0.7 0.8 4 2 5 0.040 1 同上 4 0.7 0.8 4 2 5 0.030 1 同上 4 0.7 0.8 4 2 5 0.036 2 同上 4 0.7 0.8 4 2 5 0.036 2 同上 4 0.7 0.8 4 2 5 0.036 2 同上 4 0.7 0.3 4 00 0.00 0.040 2 同上 4 0.7 0.3 4 00 0.00 0.03 1 同上 4 0.7 0.3 4 00 0.00 0.00 0.00 0.00 2 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 2 0.0	25 10 10 10 10 10 10 10 1	6届 報酬 技術量 角射曲率 (Am) (K g) 機材値 所面 体間 中間 中間 </td <td> 10 20 20 20 20 20 20 20</td>	10 20 20 20 20 20 20 20

[0026]

【表3】

D	*		一碗	後合めっき層組成(質量%)	时 使配	Ç9				<u>\$</u>	+	######################################	十里出事	
₫	#	₩	合金組成		古がい	セラミック粒子		统州重	南級係款	(mm)	۳) ۱۲)	25 A		が と を が が が
\$	中	P. 68	C 08	1	# 計 88	(元子)	全部事件 *格/*EB	(k g)		荷 <u>館</u> 60kg	荷重 180kg	(mg)	1008	ς R z (μm)
	25	5. 0	25	聯化建業	7	2	0. 2	300	0.091	0.3	1.0	3	1030	2~3.5
	88	5.0	2.5	祖	က	7	0. 3	225	O, 102	0. 2	0.5	þ	975	3~5
	23	5.0		祖	4	0.7	0.12	275	0.100	1.8	5.0	0 •9	930	1.5-2.5
	83	5.0		祖	4	Þ	0.8	225	0. 102	0.5	1.0	4.0	.940	2~3
1	श	5.0		周上	4	1. 5	0.8	300	0.092	0.8	2.0	3.0	935	1.5-2.5
2	æ	5.0		刊出	7	0.7	8 .0	300	160 '0	0.3	20	3.9	1030	2~3.5
	31	5.0		山岡	1	0.7	8 '0	250	0.099	8	15	0.5	910	1~2
	æ	7. 5		刊画	Þ	0.7	8 .0	250	0.120	1. 6	25	വ	980	1~2
	æ	3. 5		軍	4	0.7	8 :0	275	0. 102	8	16	1	800	1~2
	34	1		重	4	0.7	0.8	250	00 100	10	18.5	0. 4	700	1~2
1742/15	RS			SCr 20漫越晚入れ	世級入れ			150	0.000	11	20.0	2. 5	700-800	1~2
\$ \$	æ	en:	· i N越	無 間解 NiーPめっき(P合有量9~1296)	(P 各有量 9	~1 2%		225	0. 105	1.0	18	0.5	900	0.5

【0027】表3の結果より、番号35および番号36の従来例は、焼付荷重が150kgおよび225kgと最も低く、摩耗深さも荷重60kgで10~11mg、荷重180kgで18~20mgと深く、摩擦係数も0.090~0.105と高かった。

【0028】また、表2および表3より、番号22、33および34のNi合金中のP含有量が4%以下である比較例は、焼付荷重が250~275kgと低く、摩耗深さも荷重60kgで8~10μm、荷重180kgで17~18μmと深く、摩擦係数も0.100~0.1

02と高かった。また、番号32のNi合金中のP含有量が7%以上である比較例は、高荷重において層内破壊を起こし、荷重180kgで摩耗深さが一気に25μmに達し、焼付荷重も250kgと低かった。

【0029】番号23および31のセラミック粒子の共析量が2%以下である比較例は、焼付荷重が $250\sim275$ kgと低く、摩耗深さも荷重60 kgで 8μ m、荷重180 kgで 15μ mと深く、耐摩耗性に劣った。番号25および30のセラミック粒子の共析量が7%以上である比較例は、焼付荷重は300 kgとやや高くなっ

たものの、高荷重において層内破壊を起こし、荷重180 kg で摩耗深さが一気に 20μ mに達し、相手材の摩耗量も $3\sim3$. 9mg と高かった。

4.4

【0030】番号25、26、28および29はセラミック粒子の粒径が1 μ m以上である比較例であるが、いずれも焼付荷重が225~300kgと好ましくなく、相手攻撃性も3~4mgと高かった。また、番号21および27のセラミック粒子の角部の曲率半径が1.5 μ m以下の比較例は、同様に相手攻撃性が高く、相手材の摩耗量が3~6mgであった。なお、番号24のセラミック粒子がアルミナである比較例は焼付荷重が300kgと低く、摩耗深さも荷重60kgで5mg、荷重180kgで11 μ mと深く、耐焼付性および耐摩耗性に劣った。

【0031】これに対して本発明例である番号 $1\sim20$ は、焼付荷重が $412.5\sim500$ kgであり、摩擦係数 $60.030\sim0.047$ であって、耐焼付性に優れ、摩耗梁さも荷重60kgで $0.8\sim2.3$ μ m、荷重180kgで $1.6\sim5.0$ μ mであって耐摩耗性に優り、相手材の摩耗量 $60.2\sim0.7$ mgであって相手攻撃性が低いことが判明し、本発明の効果が確認できた。

【0032】(実施例2)図1の側面図と、図2の図1のA-A線における断面図に示すピニオンシャフトの摺動面 a 1、 a 2、 a 3、 a 4 面に、図3の膜厚模式図に示すように皮膜厚さを両端部で薄くして膜厚10 μ mの複合めっき皮膜を形成した。なお、形成した複合めっき皮膜の合金成分は、Ni-25%Co-6%Pであっ

 τ 、セラミック粒子として粒径 $0.5\mu m$ の窒化珪素3%を共析させた。

【0033】膜厚は電気めっきの場合、電流密度の大きさに比例するため、図3の膜厚模式図に示すように皮膜厚さを両端部で薄くするために、図4のピニオンシャフトに電気めっき中の平面図および図5の側面図に示すように、ピニオンシャフト1の摺動面 a 1~a 4に対して電極2の大きさを適度に調節した。

【0034】なお、比較のために比較例として、図1および図2と同じピニオンシャフトの摺動面 a $1\sim$ a 4に、同じ組成の複合めっき皮膜を 10μ mの厚さで均一に形成した。また、従来例として同じピニオンシャフトの摺動面 a $1\sim$ a 4に、N i -P無電解めっき皮膜を均一に 20μ mの厚さで形成した。

【0035】得られた発明例、比較例および従来例のピニオンシャフトを用い、ピニオンギャとピニオンシャフトとのクリアランスを40 μ mとした場合の焼付発生時のリングギャトルク(kgf-m)およびピニオンシャフトの摩耗深さ(μ m)を測定し、得られた結果を表4にまとめて示した。なお、焼付発生時のリングギャトルクは、実車試験(2000cc級ターボ付ガソリン車)で1000rpm程度の差動を与えた走行条件において、リングギャトルクを5kgf-mづつ増大させていった時の焼付発生時のリングギャトルクを測定したものである。

[0036]

【表4】

区 分	ピニオンシャ フト材料	膜 厚 両端部膜厚	焼付発生時の トルク kg-m	実機耐久試験 摩耗深さµm
発明例	Ni-25Co-6P 3 %室化珪素	10μm 両端部薄い	170	4
比較例	同上	10μm 均一膜厚	135	6
従来例	Ni-P 無電解めっき	2 0 μm 均一膜厚	5 0	2 0

【0037】表4に示したように、ピニオンシャフトの 摺動部の両端部で複合めっき皮膜の膜厚を薄くした発明 例は、焼付発生時のリングギャトルクが最も高く、また 耐久試験後の摩耗量も低く、優れた結果の得られること が確認された。

【0038】 (実施例3) 次に、ピニオンシャフトの摺動部に施す複合めっきの最適膜厚を確認するため、実施例2で用いたと同じ形状のピニオンシャフトの摺動面 a 1~a4に、実施例2と同様に、合金成分がNi-25

 $\frac{\%Co-6\%P}{\%Co-6\%P}$ であって、セラミック粒子として粒径 0.5 μ mの窒化珪素 3%を共析させた複合めっき層を 10μ m、 20μ mおよび 23μ mの厚さでそれぞれ形成した。

【0039】得られたピニオンシャフトを用い、実施例 2と同一方法により、ピニオンギャとピニオンシャフト とのクリアランスを 40μ mとした場合の焼付発生時の リングギャトルク(kgf-m)およびピニオンシャフトの摩耗深さ(μ m)を測定し、得られた結果を表 5 に

番号	ピニオンシャ フト材料	膜 厚 両端部膜厚	焼付発生時の トルク kg-m	実機耐久試験 摩耗深さ μ m
1	Ni-25Co-6P 3 %窒化珪素	10μm 均一膜厚	135	6
2	同上	20μm 均一膜厚	135	7
3	同上	2 3 μm 均一膜厚	8 0	15

【0041】表5に元したように、複合めっき皮膜が 10μ m および 20μ m であるものは、焼付発生時のリングギヤトルクが135kg m であり、また耐久試験後の摩耗量も $6\sim7\mu$ m で、満足すべき結果が得られた。これに対して複合めっき皮膜が 23μ m のものは、めっき皮膜内に最大応力点が発生し、層内破壊が発生したため、焼付発生時のリングギヤトルクが80kg m と低下し、また耐久試験後の摩耗量も 15μ m に達した。なお、複合めっき皮膜が 1μ m のものについても同様の試験を行ったが、初期なじみ過程で母材の露出が起こり、リングギヤトルクが100kg m 程度で焼付が発生した。その結果、ピニオンシャフトの摺動面に形成する複合めっき皮膜の膜厚は $2\sim20\mu$ m とすることが好ましいことが確認された。

[0042]

【発明の効果】本発明の摺動部材は以上詳述したように、基材の摺動部表面に $Ni-xP(x=4\sim7\%)$ または $Ni-xP-yCo(x=4\sim7\%,y=15\sim35\%)$ と、粒径が 1μ m以下のセラミックス粒子を $2\sim$

6%分散させた複合メッキを形成したものであって、複合めっき層の合金層自体が耐摩耗性を有すると共に、共析した分散粒子によりさらにめっき層の耐摩耗性が向上し、相手材を摩耗させずに焼付荷重を増大することができた。

【図面の簡単な説明】

【図1】実施例で用いたピニオンシャフトの側面図である。

【図2】図1のA-A線における断面図である。

【図3】摺動面の円周と膜厚の関係を模式的に示す図で ある

【図4】ピニオンシャフトに電気めっき中の平面図であ ろ.

【図5】ピニオンシャフトに電気めっき中の側面図である。

【符号の説明】

1 ピニオンシャフト

2 電極

a 1~a 4 摺動面

【図1】 【図2】 【図3】 【図4】

