Final Exam

1.a.

The discount factor is the weight at which future income is devalued when calculating its present value. In this case, a discount factor of 0.95 means that the value of 1 dollar of income 1 period into the future is 95 cents.

1.b.

$$r = \frac{1}{d} - 1 = \frac{1}{19} \approx 0.05263157895...$$

1.c.

$$\begin{split} NPV_X &= \sum_{x \in X} \frac{x_{\text{value}}}{(1-r)^{x_{\text{period}}}} \\ NPV_{\text{op}} &= \$15.2635 \\ NPV_{\text{ac}} &= \$12.2635 \end{split}$$

I'd rather be an ophthalmologist.

1.d.

$$IRR_X = \sqrt[1ength(X)]{rac{\sum_{x \in X} x_{\text{value}}}{NPV_X}} - 1$$

$$IRR_{\text{op}} = 2\sqrt[4]{rac{2250}{30527}} - 1 \approx 0.04208847665...$$

This value is less than the interest rate.

1.e.

$$NPV_{\rm op} = \$1.792$$
$$NPV_{\rm ac} = \$6.32$$

The inverse is now true. I'd rather be an accountant.

2.a.

Taste.

2.b.

Taste. (Key word, the physician only "believes" this is the case and does not have statistical evidence.)

2.c.

Statistical.

2.d.

Taste. (Again, this is belief. However, in this case, giving *more* attention to a group instead of less because of a discriminatory practice is not considered to be racist by the wider public. It is, under the strictest definition, racism, but I doubt people would complain about receiving extra attention from their doctor for free.)

3.a.

$$H = \frac{10}{10^2} = 0.1$$

3.b.

$$H = 9\left(\frac{1}{90}\right)^2 + \left(\frac{9}{10}\right)^2 = \frac{73}{90} = 0.8\overline{1}$$

Increases in H represent a decrease in competition.

3.c.

The largest value is 1; this occurs when market share is completely held by a single company. In other words, when there is a monopoly.

3.d.

In the case of the market with the 1 large firm and 9 smaller firms, a single firm taking an 11th of the market share will increase competition. The value in this case is:

$$H = 9\left(\frac{1}{90} \cdot \frac{10}{11}\right)^2 + \left(\frac{9}{10} \cdot \frac{10}{11}\right)^2 + \left(\frac{1}{11}\right)^2 = \frac{739}{1089} \approx 0.6786042241...$$

... which is less than the previous value, thus having more competition.

3.e.

$$H = \lim_{n \to \infty} n \left(\frac{1}{n}\right)^2 = \lim_{n \to \infty} \frac{1}{n} = 0$$

4.a.

$$1 \cdot 6 \text{yr} = q \cdot 10 \text{yr} \rightarrow q = \frac{3}{5}$$

4.b.

$$B = 0.7 \cdot (70 - 20) - 0.6 \cdot (70 - 20) = 5$$

$$C = \$10,000$$

$$ICER = \frac{C}{B} = \$2,000$$

4.c.

$$QALY_{20} = 5 \rightarrow B_{20} = 5 \cdot \$5,000 = \$25,000 > \$10,000$$

 $QALY_{60} = 1 \rightarrow B_{60} = 1 \cdot \$5,000 = \$5,000 < \$10,000$
 $QALY_{69} = 0.1 \rightarrow B_{69} = 0.1 \cdot \$5,000 = \$500 < \$10,000$

At the cost of \$10,000, it is worth it for the 20-year-old but neither the 60 nor 69-year-old.

4.d.

$$$25,000 > $1,000$$

 $$5,000 > $1,000$
 $$500 < $1,000$

At the cost of \$1,000, it is worth it for the 20 and 60-year-old, but still not the 69-year-old.

5.a.

If a worker were to work any number of hours in the interval $(L_1, L_2]$, they could earn the same or more value for performing less work. They will always prefer that, and so all values of labor in that interval result in a utility which falls below other achievable input values of L.

5.b.

For *most* workers, it is less than.

5.c.

It would shrink. The higher point given by L_1 would fall, and thus the value of L_2 would meet the line at a point closer to L_1 .

5.d.

As discussed in **5.a.**, The values at or below L_1 (at an equivalent value) are always preferable to any value given from labor in the interval $(L_1, L_2]$, which includes the value at L_2 . This is because they could work less for the same value.

5.e.

It would expand the region. It is already the case that $(L_1, L_2]$ is unfavorable, but adding an extra inventive to that only adds to the pile. Take a point some small distance above L_2 , say $L_2 + \varepsilon$; this value would have a higher return to utility from the pay gained from working, but it would also come with the marginal disutility of ε . The exact values of these will depend on some derivatives at the points, but in the end the disutility of ε more units of labor will overpower the utility of extra income for small values of ε .

5.f.

5.g.

Any utility curve which meets the line at a point in the interval $(L_1, L_2]$ will pass through the line some place below the value L_1 . This means that there must be some higher indifference curve which also meets the line.

5.h.

Figure 1: image

As we can see in this figure, the increase in the income threshold has incentivised workers at L_1 to work somewhere in the interval (L_1, L_2) .