Course Code	Course Title	L	Т	Р	С
PMDS506L	3	0	0	3	
Pre-requisite	NIL	Sy	/llabu	s ver	sion
			1.	0	

Course Objectives

- 1. To understand the basic concepts of database, ER Modelling, normalization and query optimization.
- 2. To comprehend the concepts concurrency control, recovery and indexing.
- 3. To explore the concepts of NoSQL and main types of NoSQL databases.

Course Outcomes

At the end of the course, students will be able to:

- 1. Describe the concepts of database, construct entity-relationship (ER) model for the real world problems and transfer data model into database designs.
- 2. Analyze the fundamental concepts of normalization, transaction, concurrency control and recovery mechanisms.
- 3. Demonstrate the basic database storage structure and indexing techniques.
- 4. Organize the detailed architecture and primary benefits using NoSQL Databases.
- 5. Analyze the major types of NoSQL databases.

Module:1Database Systems Concepts and Data Modeling7 hoursBasic concepts of database systems- Entity Relationship Model - Structural
Constraints- Relational Model- Relational Model Constraints- Mapping ER model to
a Relational Schema and database integrity.The constraints of the constr

Module:2Database Design and Query Processing7 hoursGuidelinesfor Relational Schema- Functional Dependency- Normalization-TranslatingSQL Queries into Relational Algebra- Heuristic Query Optimization.

Module:3 Transaction Processing Concepts

6 hours

Introduction to transaction processing- Transaction and system concepts -Desirable properties of transactions- Characterizing schedules based on recoverability-Characterizing schedules based on serializability- Test for serializability.

Module:4Concurrency Control and Physical Database Design6 hoursLock-based protocols- Techniques for concurrency control- Recovery concepts- File

organization- and Indexing.

Module:5 NOSQL

6 hours

Database revolutions: First generation, second generation, third generation-Managing transactions and data integrity- ACID and BASE for reliable database transactions- Speeding performance by strategic use of RAM, SSD, and disk, Brewer's CAP theorem.

Module:6 | Key Value Data Stores

6 hours

Essential features of key value databases- Key-Value architecture- Designing structured values- Limitations of key-value databases - Design patterns for key-value databases and Case study for Key-Value databases.

Module:7 NOSQL Data Model

5 hours

Aggregate models- Document data model- Key- value data model- Columnar data model and Graph based data model.

Module:8	Contemporary Issues	2 hours

Total Lecture hours 45 hours

Text Book(s)							
1	Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems,						
	2015, 4th Edition, Tata McGraw Hill.						
Reference Book(s)							
1	Henry F Korth, Abraham Silberschatz, S. Sudharshan, Database System						
	Concepts, 2006, 5 th Edition, McGraw Hill.						
2	R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 2016, 7th						
	Edition, Addison Wesley.						
3	Guy Harrison, Next Generation database: NoSQL New SQL and Big Data, 2015,						
	1 st Edition, Apress.						
4	Daniel G. McCreary and Ann M. Kelly, Making Sense of NoSQL, 2013, Manning						
	publisher.						
Mode of Evaluation: CAT, Assignment, Quiz and FAT							
Re	commended by Board of Studies	15-02-2024					
Ар	proved by Academic Council	No. 73	Date	14-03-2024			
	•			14-03-2024			