

Would A Generalized Wi-Fi-based Fall Detection System be Possible?

66

Falling is among the most fatal kinds of incident the elderly face in their everyday life. (Rubenstein et al. 2006)

Background

Wearable sensor approaches

- Developed since the early 90s (Lord and Colvin 1991)
- Commercially available
- Limitations:
 - The elders are reluctant to wearing devices.
 (Steele et al. 2009)

Wearable sensor approaches

- Developed since the early 90s (Lord and Colvin 1991)
- Commercially available
- Limitations:
 - The elders are reluctant to wearing devices.
 (Steele et al. 2009)
 - The always-on-body requirement is not always applicable (e.g. when changing clothes or taking a shower)

Wearable sensor approaches

Vision-based approaches

- On-trend (Lapierre et al. 2018)
- High accuracy
- Limitations:
 - Not effective in obtrusive scenarios

Vision-based approaches

- On-trend (Lapierre et al. 2018)
- High accuracy
- Limitations:
 - Not effective in obtrusive scenarios
 - Privacy concerns: malicious intends

... And no one gonna put a camera inside the bathroom...

Right?

Vision-based approaches

Channel State Information

- Formed by recording the response of receiving antennas in a Multiple Input Multiple Output (MIMO) wireless configuration.
- The received signals characterizes
 the environment they pass through.

Channel State Information

Related Works

Related Works

Manual Feature Engineering

The performance of state-of-the-art manual feature engineering methods

Manual Feature Engineering

• Pros:

- Robust across domains
- Lightweight machine learning models

Cons:

- Not very high performance compare to deep learning models
- Many elements (e.g. the number of PCs used) are empirically chosen.
- Reproduced results are not completely consistent with reported results.

The performance of deep learning models in Wi-Fi-based fall detection

Deep Learning

• Pros:

- High performance
- No need for signal processing techniques
- Easy to reproduce

• Cons:

- Heavyweight
- Performance would drop in unseen environments

Deep Learning

Something from us

Our work

Objective

Objective

Looking for a generalized deep learning model for Wi-Fi-based fall detection in untrained domains.

Dataset

- A 4GB dataset from Stanford University
- 7 classes of activities
 - Lie down
 - Fall
 - Walk
 - Run
 - Jump
 - Sit down
 - Stand up
- No specific environment label

- A 2GB FallDeFi dataset from Cork Institute of Technology, Ireland
- 7 classes of activities
 - Fall: 4 subclasses with 5 orientations
 - Walk
 - Jump
 - Bend pick
 - Sit down: 2 subclasses
 - Stand up: 2 subclasses
 - Random events
- 5 environments

Domain Generalization via Data Augmentation

 The distance of new data points is controllable via a hyperparameter gamma.

- The concept is to generate hard data points from a fictitious distribution.
- The fictitious distribution is not random but optimized for the given data.

Domain Generalization via Data Augmentation

- The concept is to generate hard data points from a fictitious distribution.
- The fictitious distribution is not random but optimized for the given data.

- The distance of new data points is controllable via a hyperparameter gamma.
- Generated data is used along the original data to train the classifier.
- We use a small 6-layer ConvNet for our evaluation on the FallDeFi dataset.

Experiments

Results

- **Test 0:** Train and test on 3 environments.
- **Test 1:** Train on 3 environments, test on 2 environments.
- **Test 2:** Train on 4 environments, test on 1 environments.

• **Test 3:** Train on 1 environment, test on 4 environments (with 3 different *gamma* values)

The evaluation of the ADA method on CSI data

Something from us

Preliminaries and Future Works

Preliminaries and Future Works

Preliminaries

The latent space of CNNs is not good enough for generalizing time series data.

Preliminaries and Future
Works

Preliminaries

CNNs are not particularly suitable for working with time series.

Future Works

We need to try ADA with models that work better with time series:

- Recurrent Neural Networks
- Hierarchical Attention Networks

Preliminaries and Future Works

Future Works

We will incorporate signal processing techniques to see if that help in generalizing deep learning models

Future Works

We will also experiment with different parameters for ADA:

- Different values of gamma
- Different numbers of source domains

Preliminaries and Future Works

Future Works

We might also experiment with different generalization methods, especially ones employing feature augmentation.

Thank You