AGH, WIET	ELEMENTY ELEKTRONICZNE – LABORATORIUM	Kierunek: EiT
Nr ćwiczenia:	Temat:	Ocena:
6	Parametry małosygnałowe tranzystora bipolarnego	
Data wykonania:	Imię i nazwisko:	
24.05.2023	 Dawid Makowski Miłosz Mynarczuk 	

Badany tranzystor BC550

1.

Użyty wzór na współczynnik wzmocnienia prądowego:

$$\beta = \frac{I_C}{I_B}$$

$$\begin{split} I_c &= 25,\!21 \text{ A} \\ I_b &= 0,\!0892 \text{ mA} \\ \beta &= 25,\!21 \text{ / } 0,\!0892 = \textbf{\underline{282,623}} \end{split}$$

Wzór na współczynnik wzmocnienia h21e:

$$h_{21e} = \frac{i_c}{i_b} = \frac{\frac{u_{ce}}{R_C}}{\frac{u_{we} - u_{be}}{R_B}} = \frac{R_B}{R_C} \frac{u_{ce}}{u_{we} - u_{be}}$$

$$\begin{aligned} R_b &= 10000\Omega \\ R_c &= 40\Omega \end{aligned}$$

f [Hz]	H21
1000	269,7095
2000	267,1162
5000	267,1162
10000	264,5228
20000	261,9295
50000	259,3361
100000	259,3361
200000	252,1186
500000	188,7967
1000000	116,3265
2000000	69,38776
5000000	30,61224
9000000	18,07229

Obliczyliśmy wartość β jako maksymalne h21e, a następnie znaleźliśmy punkt na osi OX, który odpowiadał częstotliwości granicznej, gdzie nastąpił spadek o 3 dB. Wykorzystując zależności między tymi parametrami, obliczyliśmy częstotliwość przenoszenia.

$$\beta_{0}_{-3dB} = \frac{\beta_0}{\sqrt{2}}$$

$$\frac{1}{\beta_0} = \frac{f_\beta}{f_T} \quad \to \quad f_T = \beta_0 f_\beta$$

	Wyniki:
fβ	980 kHz
f T	184,191MHz

2.

Dla f = 1kHz, obliczanie wartości małosygnałowej impedancji wejściowej h11e tranzystora bipolarnego:

$$h_{11e} = \frac{u_{be}}{i_{be}} = \frac{u_{be}}{\frac{u_{we} - u_{be}}{R_B}}$$

$$R_b=40\;\Omega$$

$$h_{11e} = 580,91 \ \Omega$$

3.

Dla f = 1kHz

Wartość transkonduktancji:

$$g_m = \frac{i_c}{u_{be}} = \frac{\frac{u_{ce}}{R_C}}{u_{be}} = \frac{1}{R_C} \frac{u_{ce}}{u_{be}}$$

$$g_m = 0.464 \text{ S}$$

Współczynnik emisji:

$$g_m = \frac{I_C}{n_E U_T}$$
 -----> $n_e = Ic / g_m * U_t$

$$n_e = 2,104$$

Rezystancja dynamiczna złącza baza-emiter:

$$r_{b'e} = \frac{n_E U_T}{I_B}$$

$$r_{b'e} = 608,72 \ \Omega$$

Rezystancja rozproszone bazy:

$$r_{bb'} = h_{11e} - r_{b'e}$$

$$r_{b'b} = -339,018 \Omega$$

4.

$$h_{22e} = \frac{i_c}{u_{ce}} = \frac{\frac{u_{we} - u_{ce}}{R_{C2}}}{u_{ce}}$$

$$h_{22e} = 0,00139 \text{ S}$$

5.

$$u_{ce} = u_{we} \frac{C_{b'c}}{C_{b'c} + C_3}$$

Pojemności sond: 16pF

Kondensator cd110: pojemność 10 µF

Po przekształceniu wzoru wychodzi 11,987704918 μF

$$C_{bc} = C3*U_{ce}/(U_{we}-U_{ce})$$

6.

$$g_{b'e} = \frac{I_C}{\beta_0 n_E U_T} = \frac{g_m}{\beta_0}$$

$$g_m = 0.464 \text{ S}$$

$$\beta_0 = 282,623$$

$$g_{be} = 0.0016418 \text{ S}$$

Zmierzone parametry			
h ₁₁	580,91 Ω		
h_{12}			
h_{21}	282,623		
h_{22}	0,00139 S		