Matrices: Sum and Products

Colby Community College

Matrix Revisited by Randall Munroe is licensed under CC BY-NC 2.5

Matrix

A matrix is a rectangular array of elements or entries (numbers or functions) arranged in rows (horizontal) and columns (vertical).

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

The **order** of *A* is $m \times n$. If m = n, we call the matrix **square**.

Matrix

A matrix is a rectangular array of elements or entries (numbers or functions) arranged in rows (horizontal) and columns (vertical).

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

The **order** of *A* is $m \times n$. If m = n, we call the matrix **square**.

Equal Matrices

Two matrices of the same order are **equal** if their corresponding entries are equal. If matrices $A = [a_{ij}]$ and $B = [a_{ij}]$ are both $m \times n$, then

$$A = B \Leftrightarrow a_{ij} = b_{ij}, \quad 1 \le i \le m, \ 1 \le j \le n$$

Special Matrices

• The $m \times n$ zero matrix, denoted $\mathbf{0}_{mn}$, has all its entries equal to zero.

Special Matrices

- The $m \times n$ zero matrix, denoted $\mathbf{0}_{mn}$, has all its entries equal to zero.
- A diagonal matrix is:

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}$$

Special Matrices

- The $m \times n$ **zero matrix**, denoted $\mathbf{0}_{mn}$, has all its entries equal to zero.
- A diagonal matrix is:

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}$$

• The $n \times n$ identity matrix, denoted I_n is:

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matrix Addition

Two matrices of the same order are added (or subtracted) by adding (or subtracting) corresponding entries and recording the results in a matrix of the same size. Using matrix notation, if $A = [a_{ij}]$ and $B = [b_{ij}]$ are both $m \times n$.

$$A + B = [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

 $A - B = [a_{ij}] - [b_{ij}] = [a_{ij} - b_{ij}]$

Matrix Addition

Two matrices of the same order are added (or subtracted) by adding (or subtracting) corresponding entries and recording the results in a matrix of the same size. Using matrix notation, if $A = [a_{ij}]$ and $B = [b_{ij}]$ are both $m \times n$.

$$A + B = [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

 $A - B = [a_{ij}] - [b_{ij}] = [a_{ij} - b_{ij}]$

Multiplication by a Scalar

To find the product of a matrix and a scalar (a complex number), multiply each entry of the matrix by that number. This is called **multiplication by** a scalar. Using matrix notation, if $A = [a_{ii}]$, then

$$c \cdot A = [c \cdot a_{ii}] = [a_{ii} \cdot c] = A \cdot c$$

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

(Commutativity)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

- A + B = B + A
- A + (B + C) = (A + B) + C

 $({\sf Commutativity})$

(Associativity)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(kA) = (ck)A$$

 $({\sf Commutativity})$

(Associativity)

(Associativity)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(kA) = (ck)A$$

•
$$A + 0 = A$$

(Commutativity)

(Associativity)

(Associativity)

(Zero Element)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(kA) = (ck)A$$

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

(Commutativity)

(Associativity)

(Associativity)

(Zero Element)

(Inverse Element)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(kA) = (ck)A$$

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

$$c(A+B)=cA+cB$$

(Commutativity)

(Associativity)

(Associativity)

(Zero Element)
(Inverse Element)

(Dietributivity)

(Distributivity)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(kA) = (ck)A$$

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

•
$$c(A+B)=cA+cB$$

$$\bullet (c+k)A = cA + kA$$

(Commutativity)

(Associativity)

(Associativity)

(Zero Element)

(Inverse Element)

(Distributivity)

(Distributivity)

Vectors (are just tiny matrices)

A vector $\vec{\boldsymbol{v}}=< v_1,\ldots,v_n>$ can be represented by either by a $1\times n$ row matrix, or a $n\times 1$ column matrix.

Vectors (are just tiny matrices)

A vector $\vec{\mathbf{v}} = \langle v_1, \dots, v_n \rangle$ can be represented by either by a $1 \times n$ row matrix, or a $n \times 1$ column matrix.

Vector addition and Scalar Multiplication

Let

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

be vectors in \mathbb{R}^n and c be any scalar. Then, we have:

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix} \quad \text{and} \quad c \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c \cdot x_1 \\ \vdots \\ c \cdot x_n \end{bmatrix}$$

Properties of Vector Addition and Multiplication

For vectors $\vec{\boldsymbol{u}}$, $\vec{\boldsymbol{v}}$, and $\vec{\boldsymbol{w}}$ in \mathbb{R}^n and scalars c and k.

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

•
$$\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$$

•
$$c(k\vec{\mathbf{v}}) = (ck)\vec{\mathbf{v}}$$

$$\vec{u} + \vec{0} = \vec{u}$$

$$\bullet \ \vec{\boldsymbol{u}} + (-\vec{\boldsymbol{u}}) = \vec{\boldsymbol{0}}$$

•
$$c(\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}}) = c\vec{\boldsymbol{u}} + c\vec{\boldsymbol{v}}$$

$$\bullet (c+k)\vec{\boldsymbol{u}} = c\vec{\boldsymbol{u}} + k\vec{\boldsymbol{u}}$$

(Commutativity)

(Associativity) (Associativity)

(Zero Element)

(Inverse Element)

(Distributivity)

(Distributivity)

Dot Product (also called the Scalar Product)

The **dot product** of a row vector \vec{x} and a column vector \vec{y} of equal length n is the result of adding the products of the corresponding entries as follows:

$$\vec{x} \cdot \vec{y} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$= x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

$$= \sum_{k=1}^n x_k \cdot y_k$$

Orthogonality

Two vectors \vec{x} and \vec{y} in \mathbb{R}^n are called **orthogonal** when:

$$\vec{\pmb{x}} \cdot \vec{\pmb{y}} = 0$$

Orthogonality

Two vectors \vec{x} and \vec{y} in \mathbb{R}^n are called **orthogonal** when:

$$\vec{x} \cdot \vec{y} = 0$$

Magnitude

For any vector \vec{v} in \mathbb{R}^n the **length**, or **magnitude**, of \vec{v} is a nonnegative scalar, denoted by $\|\vec{v}\|$ and defined to be

$$\|\vec{\mathbf{v}}\| = \sqrt{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}}$$

Orthogonality

Two vectors \vec{x} and \vec{y} in \mathbb{R}^n are called **orthogonal** when:

$$\vec{\pmb{x}} \cdot \vec{\pmb{y}} = 0$$

Magnitude

For any vector \vec{v} in \mathbb{R}^n the **length**, or **magnitude**, of \vec{v} is a nonnegative scalar, denoted by $\|\vec{v}\|$ and defined to be

$$\|\vec{\mathbf{v}}\| = \sqrt{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}}$$

Unit Vectors

Vectors of unit length are called unit vectors.

Matrix Product

The **matrix product** of a $m \times r$ matrix A and a $r \times n$ matrix B is denoted

$$C = A \cdot B = AB$$

where the ijth entry of C is the dot product of the ith row vector of A and the jth column vector of B:

$$c_{ij} = \begin{bmatrix} a_{i1} & a_{2j} & \cdots & a_{ir} \end{bmatrix} \cdot \begin{bmatrix} b_{1j} \\ \vdots \\ b_{rj} \end{bmatrix} = \sum_{k=1}^{r} a_{ik} b_{kj}$$

The matrix C has order $m \times n$.

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 3 & 1 \\
 2 & -4 \\
 -1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & -1 & 3 \\
 0 & 4 & 2
 \end{bmatrix}
 \begin{bmatrix}
 1 & -1 & 3 \\
 0 & 4 & 2
 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 3 \\
\hline
0 & 4 & 2
\end{bmatrix}
\begin{bmatrix}
-2 & 5 \\
\hline
6
\end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 3 \\
\hline
0 & 4 & 2
\end{bmatrix}
\begin{bmatrix}
-2 & 5 \\
6 & -16
\end{bmatrix}$$

Properties of Matrix Multiplication

• (AB)C = A(BC)

(Associativity)

• A(B+C)=AB+AC

(Distributivity)

 $\bullet (B+C)A = BA + CA$

(Distributivity)

Properties of Matrix Multiplication

$$\bullet \ (AB)C = A(BC)$$

(Associativity)

•
$$A(B+C) = AB + AC$$

 $(\mathsf{Distributivity})$

$$\bullet (B+C)A = BA + CA$$

(Distributivity)

Note

Commutativity is not present in the above list.

In general, matrix multiplication does not commute:

(Generally Noncommutative)

Properties of Matrix Multiplication

•
$$(AB)C = A(BC)$$

(Associativity)

•
$$A(B+C) = AB + AC$$

 $(\mathsf{Distributivity})$

•
$$(B+C)A = BA + CA$$

(Distributivity)

Note

Commutativity is not present in the above list.

In general, matrix multiplication does not commute:

AB ≠ BA

(Generally Noncommutative)

Properties of Identity Matrices

For a $m \times n$ matrix A:

•
$$A \cdot I_n = A$$
 and $I_m \cdot A = A$

•
$$A \cdot \mathbf{0}_n = \mathbf{0}_{mn}$$
 and $\mathbf{0}_m \cdot A = \mathbf{0}_{mn}$

For a matrix $A = [a_{ij}]$ the **transpose** of the $m \times n$ matrix A is defined as the $n \times m$ matrix:

$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

For a matrix $A = [a_{ij}]$ the **transpose** of the $m \times n$ matrix A is defined as the $n \times m$ matrix:

$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Example 2

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

For a matrix $A = [a_{ij}]$ the **transpose** of the $m \times n$ matrix A is defined as the $n \times m$ matrix:

$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Example 2

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

For a matrix $A = [a_{ij}]$ the **transpose** of the $m \times n$ matrix A is defined as the $n \times m$ matrix:

$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Example 2

$$\left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right]^{\mathsf{T}} = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right]$$

Example 3

$$\left[\begin{array}{ccc}1 & 2 & -1\\3 & 0 & 5\end{array}\right]^{\mathsf{T}} = \left[\begin{array}{ccc}\end{array}\right]$$

Transpose

For a matrix $A = [a_{ij}]$ the **transpose** of the $m \times n$ matrix A is defined as the $n \times m$ matrix:

$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Example 2

$$\left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right]^{\mathsf{T}} = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right]$$

$$\begin{bmatrix} \boxed{1 & 2 & -1 \\ 3 & 0 & 5 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Transpose

For a matrix $A = [a_{ij}]$ the **transpose** of the $m \times n$ matrix A is defined as the $n \times m$ matrix:

$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Example 2

$$\left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right]^{\mathsf{T}} = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right]$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 5 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ -1 & 5 \end{bmatrix}$$

Matrices can have functions as entries, not just real numbers.

$$A(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(t) & a_{m1}(t) & \cdots & a_{mn}(t) \end{bmatrix}$$

Matrices can have functions as entries, not just real numbers.

$$A(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(t) & a_{m1}(t) & \cdots & a_{mn}(t) \end{bmatrix}$$

Example 4

$$A(t) = \begin{bmatrix} t^2 & \sin(2t) & 5t - 1 \\ t^3 & \frac{1}{3t} & \ln(t + 1) \end{bmatrix}$$

Where,

$$A(1) =$$

Matrices can have functions as entries, not just real numbers.

$$A(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(t) & a_{m1}(t) & \cdots & a_{mn}(t) \end{bmatrix}$$

Example 4

$$A(t) = \begin{bmatrix} t^2 & \sin(2t) & 5t - 1 \\ t^3 & \frac{1}{3t} & \ln(t + 1) \end{bmatrix}$$

Where,

$$A(1) = egin{bmatrix} (1)^2 & \sin{(2(1))} & 5(1) - 1 \ (1)^3 & rac{1}{3(1)} & \ln{((1) + 1)} \end{bmatrix}$$

Matrices can have functions as entries, not just real numbers.

$$A(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(t) & a_{m1}(t) & \cdots & a_{mn}(t) \end{bmatrix}$$

Example 4

$$A(t) = \begin{bmatrix} t^2 & \sin(2t) & 5t - 1 \\ t^3 & \frac{1}{3t} & \ln(t + 1) \end{bmatrix}$$

Where,

$$A(1) = \begin{bmatrix} (1)^2 & \sin(2(1)) & 5(1) - 1 \\ (1)^3 & \frac{1}{3(1)} & \ln((1) + 1) \end{bmatrix} = \begin{bmatrix} 1 & \sin(2) & 4 \\ 1 & \frac{1}{3} & \ln(2) \end{bmatrix}$$

We say that a matrix is **continuous**, **piecewise continuous**, or **differentiable** if every element in the matrix has that property.

We say that a matrix is **continuous**, **piecewise continuous**, or **differentiable** if every element in the matrix has that property.

Derivative of a Matrix

For a differentiable matrix A, the derivative of A is defined as:

$$A'(t) = \frac{dA}{dt} = \begin{bmatrix} a'_{11}(t) & a'_{12}(t) & \cdots & a'_{1n}(t) \\ a'_{21}(t) & a'_{22}(t) & \cdots & a'_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a'_{m1}(t) & a'_{m1}(t) & \cdots & a'_{mn}(t) \end{bmatrix}$$

We say that a matrix is **continuous**, **piecewise continuous**, or **differentiable** if every element in the matrix has that property.

Derivative of a Matrix

For a differentiable matrix A, the derivative of A is defined as:

$$A'(t) = \frac{dA}{dt} = \begin{bmatrix} a'_{11}(t) & a'_{12}(t) & \cdots & a'_{1n}(t) \\ a'_{21}(t) & a'_{22}(t) & \cdots & a'_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a'_{m1}(t) & a'_{m1}(t) & \cdots & a'_{mn}(t) \end{bmatrix}$$

Matrix Differentiation Rules

For differentiable matrices A(t) and B(t) and scalar constant c.

•
$$(A(t) + B(t))' = A'(t) + B'(t)$$

•
$$(cA(t))\prime = cA'(t)$$

•
$$(A(t) \cdot B(t))' = A(t) \cdot B'(t) + A'(t) \cdot B(t)$$

$$g(t) = \begin{bmatrix} \ln t \\ -t^3 \\ \cos 2t \end{bmatrix}$$
 $g'(t) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

$$g(t) = egin{bmatrix} \ln t \ -t^3 \ \cos 2t \end{bmatrix} \qquad g'(t) = egin{bmatrix} rac{1}{t} \ \end{bmatrix}$$

$$g(t) = \begin{bmatrix} \ln t \\ -t^3 \\ \cos 2t \end{bmatrix}$$
 $g'(t) = \begin{bmatrix} \frac{1}{t} \\ -3t^2 \end{bmatrix}$

$$g(t) = \begin{bmatrix} \ln t \\ -t^3 \\ \cos 2t \end{bmatrix} \qquad g'(t) = \begin{bmatrix} \frac{1}{t} \\ -3t^2 \\ -2\sin 2t \end{bmatrix}$$

$$g(t) = \begin{bmatrix} \ln t \\ -t^3 \\ \cos 2t \end{bmatrix} \qquad g'(t) = \begin{bmatrix} \frac{1}{t} \\ -3t^2 \\ -2\sin 2t \end{bmatrix}$$

$$g(t) = \begin{bmatrix} \ln t \\ -t^3 \\ \cos 2t \end{bmatrix} \qquad g'(t) = \begin{bmatrix} \frac{1}{t} \\ -3t^2 \\ -2\sin 2t \end{bmatrix}$$

$$A(t) = \begin{bmatrix} e^t & t^2 \\ \sin t & 2t \end{bmatrix} \qquad A'(t) = \begin{bmatrix} e^t \\ \end{bmatrix}$$

$$g(t) = \begin{bmatrix} \ln t \\ -t^3 \\ \cos 2t \end{bmatrix} \qquad g'(t) = \begin{bmatrix} \frac{1}{t} \\ -3t^2 \\ -2\sin 2t \end{bmatrix}$$

$$A(t) = \begin{bmatrix} e^t & t^2 \\ \sin t & 2t \end{bmatrix} \qquad A'(t) = \begin{bmatrix} e^t & 2t \end{bmatrix}$$

$$g(t) = \begin{bmatrix} \ln t \\ -t^3 \\ \cos 2t \end{bmatrix} \qquad g'(t) = \begin{bmatrix} \frac{1}{t} \\ -3t^2 \\ -2\sin 2t \end{bmatrix}$$

$$A(t) = \begin{bmatrix} e^t & t^2 \\ \sin t & 2t \end{bmatrix} \qquad A'(t) = \begin{bmatrix} e^t & 2t \\ \cos t \end{bmatrix}$$

$$g(t) = \begin{bmatrix} \ln t \\ -t^3 \\ \cos 2t \end{bmatrix} \qquad g'(t) = \begin{bmatrix} \frac{1}{t} \\ -3t^2 \\ -2\sin 2t \end{bmatrix}$$

$$A(t) = \begin{bmatrix} e^t & t^2 \\ \sin t & 2t \end{bmatrix} \qquad A'(t) = \begin{bmatrix} e^t & 2t \\ \cos t & 2 \end{bmatrix}$$