convex optimization P69~P70

Remind that we want to solve the problem:

$$\max_{\alpha \geqslant 0} \inf_{\mathbf{x}} f(\mathbf{x}) + \alpha g(\mathbf{x})$$

We must solve the inner problem first then solve the outer problem.

Follow the steps below and the problem solved.

(1) Fixing $\alpha(>=0)$, then modify x to find $f(x^*) = t^*$, $g(x^*) = u^*$ minimizing the dual(α). In geometric interpretation, it means that we fix the slope of the line then search the t^* , u^* . (in this picture, (t^*, u^*) is the point of contact of the line and the figure)

(2) Fixing t*, u* found in step (1), then modify α to maximize the hole problem. In geometric interpretation, the value of dual(α) is the point of contact of the line and g(x) = 0. (See point 2 in page 70, if you have questions) We finally find the α shown in the picture to maximize the hole problem.

Notice that in step (2), the range of α must not change the value of t and u* found in step (1), so we can't find an α like the red line shows.

If we use such α , then t^* , u^* will be changed in the first step, and the hole problem changed. (like the picture shows)

A briefer explanation is that the α that we can choose in step (2) are bounded by the result of step (1)(the inner problem), although there is only one constrain that ($\alpha \ge 0$) in the beginning.