Machine Learning - B Lectures 5

Week 5: VC Analysis of SVM

Amartya Sanyal

University of Copenhagen

Last Time: VC Generalization Bound

$$\begin{split} \mathbb{P}\left(\exists h \in \mathcal{H} : L(h) \geq \widehat{L}(h,S) + \varepsilon\right) \leq 2 \cdot \mathbb{P}\left(\exists h \in \mathcal{H} : \widehat{L}(h,S') - \widehat{L}(h,S) \geq \frac{\varepsilon}{2}\right) \\ \leq 2 \cdot m_{\mathcal{H}}(2n) \cdot e^{-\frac{n\varepsilon^2}{8}} = \delta \end{split}$$

Breakdown:

Selection: Union bound over $m_{\mathcal{H}}(2n)$ "bags of errors"

Concentration: Hoeffding bound for deviation in one bag

Theorem (Restated):

$$\mathbb{P}\left(\exists h \in \mathcal{H} : L(h) \geq \widehat{L}(h,S) + \sqrt{\frac{8\ln\left(\frac{2m_{\mathcal{H}}(2n)}{\delta}\right)}{n}}\right) \leq \delta$$

Bounding $m_{\mathcal{H}}(n)$ — Shattering

• **Definition:** x_1, \ldots, x_n are *shattered* by \mathcal{H} if

$$|\Pi_{\mathcal{H}}(x_1,\ldots,x_n)|=2^n$$

- That is, \mathcal{H} can realize **all** 2^n possible binary labelings of x_1, \ldots, x_n .
- Example: Homogeneous linear classifiers in \mathbb{R}^2

Not shattered

Vapnik-Chervonenkis (VC) Dimension

Definition: VC-dimension

$$d_{\mathrm{VC}}(\mathcal{H}) = \max \left\{ n : m_{\mathcal{H}}(n) = 2^{n} \right\}$$

Not shattered

To show $d_{\rm VC}(\mathcal{H})=d$, we need:

 $d_{
m VC}(\mathcal{H}) \geq d$ (construct a shattered set of size d) $d_{
m VC}(\mathcal{H}) \leq d$ (prove no set of size d+1 can be shattered)

Always require both directions to prove equality. **Example: Linear separators in** \mathbb{R}^d

$$d_{
m VC} = egin{cases} d & ext{Homogeneous Linear Classifier} \ d+1 & ext{Non-homogeneous Linear Classifier} \end{cases}$$

VC lower bound

• If $d_{\rm VC}(\mathcal{H})=\infty$, then for any n there exists a distribution p(x,y), such that

$$\mathbb{P}\left(\exists h \in \mathcal{H} : L(h) - \widehat{L}(h,S) \geq \frac{1}{8}\right) \geq \frac{1}{8}.$$

• Proof idea: construct the same lower bound as for a finite \mathcal{H} in ML-A based on 2n points shattered by \mathcal{H} .

Message: if the VC-dimension of \mathcal{H} is infinite, we cannot learn with \mathcal{H} .

VC Generalization Bound

• Last time:
$$\mathbb{P}\left(\exists h \in \mathcal{H} : L(h) - \widehat{L}(h, S) \geq \sqrt{\frac{8 \ln\left(\frac{2 m_{\mathcal{H}}(2n)}{\delta}\right)}{n}}\right) \leq \delta.$$

- $\bullet \ \, \mathsf{Theorem} \,\, \big(\mathsf{Today}\big) \!\!: \,\, m_{\mathcal{H}} \big(n \big) \underbrace{\leq}_{\mathit{Step1}} \sum_{i=0}^{d_{\mathrm{VC}}(\mathcal{H})} \binom{n}{i} \underbrace{\leq}_{\mathit{Step2}} n^{d_{\mathrm{VC}}(\mathcal{H})} + 1.$
- Corollary:

$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) - \widehat{L}(h, S) \geq \sqrt{\frac{8 \ln\left(\frac{(2n)^{d_{\text{VC}}(\mathcal{H})} + 1}{\delta}\right)}{n}}\right) \leq \delta.$$

- If $d_{\rm VC}(\mathcal{H}) \ll n$, then with high probability $\widehat{L}(h,S)$ is close to L(h) for all $h \in \mathcal{H}$ and we can learn.
- ullet In particular, if $d_{
 m VC} \ll rac{n}{\log n}$, then we can learn linear classifiers in \mathbb{R}^d .

Bounding the growth function

Sauer-Shelah lemma

Lemma

If $d_{\rm VC}(\mathcal{H})=d<\infty$, then for all n,

$$m_{\mathcal{H}}(n) \leq \sum_{i=0}^d \binom{n}{i} \leq n^d + 1.$$

Otherwise, if $d_{VC}(\mathcal{H}) = \infty$, then $m_{\mathcal{H}}(n) = 2^n$.

- This shows a phase transition: infinite VC ⇒ exponential growth; finite VC ⇒ polynomial growth.
- Plug this into the VC-generalization bound

$$\mathbb{P}(\exists h: L(h) - \widehat{L}(h) \geq \varepsilon) \leq 2 m_{\mathcal{H}}(2n) e^{-n\varepsilon^2/8}$$

Achieves convergence whenever $d_{\rm VC} < \infty$.

Proof of Step 1: Recap Pascal's identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

$$\underbrace{\circ \circ \cdots \circ}_{n \text{ choose } k} = \underbrace{\circ \circ \ldots \circ}_{n-1 \text{ choose } k-1} + \underbrace{\circ \ldots \circ}_{n-1 \text{ choose } k}$$

- Red circle: the distinguished "last" element.
- Left term: include that element, then choose k-1 of the remaining n-1.
- Right term: *exclude* it, choose all k from the remaining n-1.

Proof of Step 1: Defining B(n, d) and its recursion

- B(n, d): number of labelings of n points that avoid shattering any (d+1)-subset.
- Splitting on whether the forbidden shattered set includes point a specific point or not gives

$$B(n, d) \leq B(n-1, d-1) + B(n-1, d).$$

Proof of Step 1: Completing by induction

Claim

For all $n \ge 0$ and $d \ge -1$,

$$B(n,d) \leq \sum_{i=0}^{d} {n \choose i},$$

- Base cases:
 - n = 0: B(0, d) = 1, and $\sum_{i=0}^{d} {0 \choose i} = {0 \choose 0} = 1$.
 - d = -1: B(n, -1) = 0, and $\sum_{i=0}^{-1} {n \choose i} = 0$.
- We know $B(n, d) \le B(n 1, d 1) + B(n 1, d)$
- Inductive step: assume true for (n-1, d-1) and (n-1, d). Then

$$B(n,d) \le \sum_{i=0}^{d-1} {n-1 \choose i} + \sum_{i=0}^{d} {n-1 \choose i} = \sum_{i=0}^{d} {n \choose i} \le n^d + 1$$

Second last equality follows from Pascal's identity. Last inequality is exercise.

Mid-Summary

• Last time:
$$\mathbb{P}\left(\exists h \in \mathcal{H} : L(h) - \widehat{L}(h, S) \geq \sqrt{\frac{8 \ln\left(\frac{2m_{\mathcal{H}}(2n)}{\delta}\right)}{n}}\right) \leq \delta.$$

- Today: $m_{\mathcal{H}}(n) \leq \sum_{i=0}^{d_{\mathrm{VC}}(\mathcal{H})} \binom{n}{i} \leq n^{d_{\mathrm{VC}}(\mathcal{H})} + 1$.
- Together:

$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) - \widehat{L}(h, S) \geq \sqrt{\frac{8 \ln\left(\frac{(2n)^{d_{\text{VC}}(\mathcal{H})} + 1}{\delta}\right)}{n}}\right) \leq \delta.$$

- For linear classifiers in \mathbb{R}^d :
 - Homogeneous: $d_{\mathrm{VC}}(\mathcal{H}) = d$.
 - Non-homogeneous: $d_{\mathrm{VC}}(\mathcal{H}) = d+1$.
 - If $d \ll \frac{n}{\ln n}$, then $\widehat{L}(h, S)$ reliably estimates L(h) for all $h \in \mathcal{H}$.
- If $d_{VC}(\mathcal{H}) = \infty$, we can build a lower bound showing $\widehat{L}(h, S)$ does not converge to L(h) for every h.

Margin-based analysis of SVMs

SVM (hard margin):

Fat loss:

$$\min_{w,b} \frac{1}{2} ||w||^2 \quad \text{s.t.} \quad \forall i : \ y_i(w^\top x_i + b) \ge 1. \quad \ell_{\text{FAT}}(h_{w,b}(x), y) = \begin{cases} 0, & y(w^\top x + b) \ge 1, \\ 1, & \text{otherwise.} \end{cases}$$

$$\operatorname{dist}(h_{w,b},x) = \frac{y(w^{\top}x+b)}{\|w\|} \geq \frac{1}{\|w\|}, \qquad \widehat{L}_{\operatorname{FAT}}(h_{w,b},S) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\operatorname{FAT}}(h_{w,b}(X_{i}), Y_{i}),$$
$$\gamma = \frac{1}{\|w\|} \text{ (margin)}.$$
$$L_{\operatorname{FAT}}(h_{w,b}) = \mathbb{E}[\ell_{\operatorname{FAT}}(h_{w,b}(X), Y)].$$

Fat-shattering

- $\mathcal{H}_{\gamma} = \{h_{w,b} : ||w|| \le 1/\gamma\}$
- **Definition:** A set $\{x_1, \ldots, x_n\}$ is *fat-shattered* by \mathcal{H}_{γ} if for every labeling $(y_1, \ldots, y_n) \in \{0, 1\}^n$ there exists $h_{w,b} \in \mathcal{H}_{\gamma}$ such that

$$y_i(w^\top x_i + b) \ge 1 \quad \forall i.$$

- Fat-shattering dimension $d_{\text{FAT}}(\mathcal{H}_{\gamma})$ is the largest n for which some set of n points in the unit ball ($||x|| \le 1$) can be fat-shattered.
- Minimizing $\frac{1}{2}||w||^2$ pushes for large γ , hence small d_{FAT} .

small
$$\gamma$$
: $d_{FAT} = 3$

large
$$\gamma$$
: $d_{FAT} = 2$

Fat generalization bound

Theorem (Similar to VC & Occam's razor):

$$\mathbb{P}\left(\exists \, h_{w,b} \in \mathcal{H}_{\gamma} : L_{\text{FAT}}(h_{w,b}) - \widehat{L}_{\text{FAT}}(h_{w,b}, S) \, \geq \, \sqrt{\frac{8}{n} \, \ln\left(\frac{2\left((2n)^{d_{\text{FAT}}(\mathcal{H}_{\gamma})} + 1\right)}{\delta}\right)}\right) \\ \leq \, \delta.$$

Theorem (Will not prove in class): If $\mathcal{X} = \{x : ||x|| \le 1\}$, then

$$d_{ ext{FAT}}(\mathcal{H}_{\gamma}) \ \leq \ \left\lfloor rac{1}{\gamma^2}
ight
floor + 1.$$

Note that $d_{\rm FAT}$ depends on the "margin" γ of the resulting hypothesis Change Indexes to reflect sequence of classes of decreasing margin

$$j = \left| \frac{1}{\gamma^2} \right|, \quad \mathcal{H}_j = \{h_{w,b} : \|w\| \le \sqrt{j}\} = \mathcal{H}_{\gamma=1/\sqrt{j}}, \quad d_{\mathrm{FAT}}(\mathcal{H}_j) = j+1.$$

Margin based generalisation bound

Theorem (FAT Generalisation Bound)

With probability at least $1 - \delta$, every $h_{w,b} \in \mathcal{H}$ satisfies

$$L(h_{w,b}) \ \leq \ \widehat{L}_{\mathrm{FAT}}(h_{w,b},S) \ + \ \sqrt{\frac{8 \ \ln \left(\frac{2 \left((2n)^d \mathrm{FAT}(\mathcal{H}_{\gamma})_{+1}\right)}{\delta}\right)}{n}}.$$

Substitute $d_{\mathrm{FAT}}(\mathcal{H}_{\gamma}) \leq \left\lfloor \frac{1}{\gamma^2} \right\rfloor + 1 \leq \|w\|^2 + 1$ and choosing δ appropriately

Corollary (Choose δ_k)

$$\mathbb{P}\left(\exists h_{w,b} \in \mathcal{H}: \ L_{\text{FAT}}(h_{w,b}) - \widehat{L}_{\text{FAT}}(h_{w,b}, S) \ \geq \ \sqrt{\frac{8 \ \ln\left(2\left((2n)^{\|w\|^2+1}+1\right) \|w\|^2(\|w\|^2+1)/\delta\right)}{n}}\right) \ \leq \ \frac{\delta/\|w\|^2(\|w\|^2+1)}{n}$$

Margin based generalisation bound

Based on Occam's razor + VC, peel off a union bound over the "norm-layers" \mathcal{H}_{j} :

$$\mathbb{P}(\exists h_{w,b} \in \mathcal{H} : \dots) \leq \sum_{j=1}^{\infty} \mathbb{P} \left(\exists h_{w,b} \in \mathcal{H}_j : \mathcal{L}_{\text{FAT}}(h_{w,b}) - \widehat{\mathcal{L}}_{\text{FAT}}(h_{w,b}, S) \geq \sqrt{\frac{8 \ln \left(\frac{2\left((2n)^{j+1}+1\right)j(j+1)}{\delta}\right)}{n}} \right)$$

$$\leq \sum_{j=1}^{\infty} \frac{\delta}{j(j+1)} = \delta.$$

Theorem

With probability at least $1-\delta$, for every linear separator $h_{w,b}\in\mathcal{H}$ we have

$$L(h_{w,b}) \ \leq \ L_{\text{FAT}}(h_{w,b}) \ \leq \ \widehat{L}_{\text{FAT}}(h_{w,b},S) \ + \ \sqrt{\frac{8}{n}} \ \ln \left(\frac{2 \, (2n) \|w\|^2 + 1 \, + \, 1}{\delta} \ \times \ \|w\|^2 \, (\|w\|^2 + \, 1) \right).$$

Hard-margin vs. soft-margin SVM

Hard-margin SVM

$$\min_{w,b} \frac{1}{2} ||w||^2 \quad \text{s.t.} \quad y_i (w^\top x_i + b) \geq 1 \quad \forall i = 1, \dots, n.$$

Soft-margin SVM

$$\min_{w,b,\,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \quad \text{s.t.} \quad \begin{cases} y_i (w^\top x_i + b) \geq 1 - \xi_i, \\ \xi_i \geq 0, \end{cases} \qquad i = 1, \ldots, n.$$

 $y_i(w^Tx_i+b)$

Discussion

- Why optimize soft-margin SVM and not the bound?
 - Finding the exact minimizer of the FAT-bound is NP-hard.
- We find the global minimum of the hinge-loss objective, but the gap between $L_{\rm FAT}$ and $L_{\rm hinge}$ can be arbitrarily large.
- We obtain a solid generalization guarantee, yet we don't necessarily achieve the optimal classifier.
- Tuning the trade-off C:
 - Use the bound to guide ||w|| complexity.
 - Cross-validation to select *C*—only one parameter to tune!

Margins and Kernels

- We can use kernels to map data into higher-dimensional (even infinite-dimensional) feature spaces, e.g. the RBF kernel.
- For infinite-dimensional mappings, the "plain" VC bound

$$d_{\mathrm{VC}}(\widehat{\mathcal{H}}) \leq d+1$$

is vacuous (since $d = \infty$).

- The margin-based (fat-shattering) bound still applies in infinite dimensions, because it scales with ||w|| in feature space, provided
 - ||w|| remains controlled, and
 - ullet the input set ${\cal X}$ lies inside the unit ball of that feature space.
- Note: for true infinite-dimensional spaces one has

$$d_{\mathrm{FAT}}(\mathcal{H}) = \infty,$$

so why isn't this in conflict with the lower bound?