Towards improving the Database of Local Fields

David P. Roberts University of Minnesota, Morris

November 12, 2021

Two-paragraph summary

The p-adic field section of the LMFDB tabulates degree n extensions of \mathbb{Q}_p , including for all $n \leq 15$ and $p \leq 199$. For example, always up to isomorphism, there are 795 nonic extensions K/\mathbb{Q}_3 and 1823 octic extensions K/\mathbb{Q}_2 . Interesting invariants include *visible slopes*, *hidden slopes*, and *Galois groups*.

The main framework for improvement is to focus first on visible slopes. Here there is a strong general theory valid for general K/F, not just the case $F = \mathbb{Q}_p$. It centers on Krasner-Monge near-canonical polynomials for totally ramified extensions K/F. These polynomials let one collect all extensions of a given F with given visible slopes into a single parameterized family, and the dependence on F is mild. The family structure then facilitates the investigation of hidden slopes and Galois groups.

Overview

- 1. Introduction, including a tour of the database.
- 2. The ramification invariant I of an extension K/F, as captured in the totally wild degree p^w case by

heights
$$\langle h_1, \dots, h_w \rangle$$
, slopes $[s_1, \dots, s_w]$, or rams (r_1, \dots, r_w) .

- 3. The set \mathcal{I} of possible ramification invariants.
- 4. From ramification invariants to pictures.
- 5. From pictures to near-canonical polynomials.
- 6. Hidden slopes and Galois groups in two sample families.

1.1. Notation for classifyng extensions

Let $n \in \mathbb{Z}_{\geq 1}$ and let F be a field. An important problem is to describe the set F(n) of isomorphism classes of separable field extensions K/F of degree n.

Let G run over conjugacy classes of transitive subgroups of S_n . Then Galois theory gives a natural decomposition

$$F(n) = \coprod_G F(G)$$
.

One would like to describe each F(G) individually.

Now let F be a p-adic field, i.e. a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((t))$, with uniformizer $\pi \in \Pi \subset \mathcal{O} \subset F$ as usual. Then every K/F has a discriminant ideal Π^c , giving

$$F(n) = \prod_{G} \prod_{G} F(G, c).$$

The sets F(G,c) are finite and one would like to describe them individually.

1.2. Overview of the 795 nonic 3-adic fields

There are 81 nonzero $|\mathbb{Q}_3(G,c)|$ with 22 Galois groups G and 16 discriminant exponents c involved. On the table, groups G are sorted first by the number of cubic subfields: ≥ 2 , 1, and then 0. In the third column, $A = \operatorname{Aut}(K/\mathbb{Q}_3)$ is the centralizer of the Galois group G.

G	G	A	0	9	10	12	13	15	16	18	19	20	21	22	23	24	25	26
9	9 <i>T</i> 2	9				1												
18	9 <i>T</i> 4	3		2		1		6, 3	3		9							
18	9 <i>T</i> 5									1								
36	9 <i>T</i> 8					1		2		3	3							
9	9 <i>T</i> 1	9	1			2								9				
18	9 <i>T</i> 3									1				1				3
27	9 <i>T</i> 6	3				2								6				İ
27	9 <i>T</i> 7	3				1			3 6									
54	9 <i>T</i> 10									11				8				24
54	9 <i>T</i> 11					2			1	8				9				
54	9 <i>T</i> 12	3									9		27					
54	9 <i>T</i> 13			2		1		2		3 9	3		9					
81	9 <i>T</i> 17	3				9				9				18				
108	9 <i>T</i> 18						2	4		3	12		18	9				
162	9 <i>T</i> 20	3					6	12		9	45			27			81	
162	9 <i>T</i> 21											27				27		54
162	9 <i>T</i> 22			6		3		6					9	9	27			
324	9 <i>T</i> 24								6	12	9	27	9		27	27	27	
36	979					1			1									
72	9 <i>T</i> 14				1					3								
72	9 <i>T</i> 16				1					3								
144	9 <i>T</i> 19			2		2	2	6	2		6							

Bold=Unramified

Italic=partially ramified

Regular=totally ramified

1.3. Tour of the p-adic section of the LMFDB

As said earlier, the LMFDB currently contains the sets $\mathbb{Q}_p(n)$ for all $p \leq 199$ and all $n \leq 15$, with information on each field K. E.g., the field K labeled 3.9.21.20 is defined by $x^9 + 12x^6 + 18x^4 + 3$.

The degree n of any field factors as utp^w with u and t its unramified and tamely ramified parts. There are w wild slopes $\hat{s}_1 \leq \cdots \leq \hat{s}_w$, as introduced in the next section. The "slope content" of our example (not directly given in the LMFDB) is $[\hat{s}_1, \hat{s}_2]_t^u = [2, \frac{17}{6}]_1^1 = [2, \frac{17}{6}]$.

The LMFDB does however always gives the much-harder-to-calculate slope content of the Galois closure L. In our example $G=9\,T24$ has $324=2^23^4$ elements and the slope content of L is

$$\left[\frac{3}{2}, 2, \frac{5}{2}, \frac{17}{6}\right]_{2}^{2}$$

At this level, the wild slopes are breaks in the Artin upper numbering of the ramification filtration on G. They consist of the wild slopes already **visible** in K, and also some more *hidden* slopes.

2.1. The canonical filtration of a p-adic extension

Any $K/F \in F(n)$ has a canonical filtration obtained by climbing from F to K via suitable minimally ramified subextensions. To focus on the main phenomena, we henceforth restrict to u = t = 1 so $n = p^w$.

As we'll see, for any 2-adic field F, the picture arises from many octic extensions K/F, e.g. from 32 in the case $F=\mathbb{Q}_2$. The filtration takes the form

$$F = K_0 \subset K_1 \subset K_2 \subset K_3 = K$$

with each $[K_i : K_{i-1}] = 2$.

The numerical invariants are captured in three equivalent ways:

heights
$$\langle h_1, h_2, h_3 \rangle = \langle 1, 5, 15 \rangle$$
, slopes $[s_1, s_2, s_3] = [1, 2, \frac{5}{2}]$, or rams $(r_1, r_2, r_3) = (1, 3, 5)$.

We switch to focusing on wild ramification only, writing

$$\mathsf{cond}(\mathcal{K}_i/\mathcal{K}_j) = c(\mathcal{K}_i/\mathcal{K}_j) - \mathsf{deg}(\mathcal{K}_i/\mathcal{K}_j) + 1.$$

The definitions are then $h_i = \operatorname{cond}(K_i/K_0)$ and $r_i = \operatorname{cond}(K_i/K_{i-1})$. Accordingly, we also switch from the website's Artin-Fontaine slopes \hat{s}_i to the Serre-Swan slopes \hat{s}_i via $\hat{s}_i = \hat{s}_i + 1$.

When the canonical filtration has fewer than w steps we keep a uniform notation that refers to nonexistent fields:

Here the filtration is $F=K_0\subset K_1\subset K_2\subset K_3=K$. The invariants are

re
$$I = \langle 1, \frac{17}{3}, 15 \rangle = \left[1, \frac{7}{3}, \frac{7}{3}\right] = \left(1, \frac{11}{3}, \frac{11}{3}\right).$$

When K_i is nonexistent, h_i is no longer forced to be integral. Similarly too, a ram r_j repeated ρ times is now only forced to have a denominator dividing $P_{\rho}(p) := p^{\rho-1} + p^{\rho-2} + \cdots + p + 1$.

2.2. Conversion formulas

The three ways of describing a ramification invariant I interrelate via

 $s_k \stackrel{1a}{=} \frac{h_k - h_{k-1}}{\phi(n^k)},$

$$h_k \stackrel{2a}{=} \sum_{j=1}^k \phi(p^j) s_j, \qquad h_k \stackrel{2b}{=} \sum_{j=1}^k p^{k-j} r_j,$$
$$s_k \stackrel{3}{=} \frac{r_k}{\phi(p^k)} + \sum_{j=1}^{k-1} \frac{r_j}{p^j},$$

1a captures the definition of slope as rise/run. 1b emphasizes that rams measure how
$$K_k$$
 is more ramified than say the algebra K_{k-1}^p . 2a and 2b are their inversions, each intuitive in their own right. $3 = 1a \circ 2b$ and $4 = 1b \circ 2a$ are less directly intuitive.

 $r_k \stackrel{1b}{=} h_k - ph_{k-1}, \quad r_k \stackrel{4}{=} \phi(p^k)s_k - \phi(p)\sum_{i=1}^{k-1}\phi(p^i)s_j.$

3.1. Allowed $r_1 = \cdots = r_\rho$ in one-step extensions

The set of r_1 arising in one-step degree p^{ρ} extensions of F is very simple and depends only on the ramification index $e = \operatorname{ord}_{\Pi}(p)!$

In the case of $e = \infty$, i.e. function fields, it is

$$\mathcal{R}_{
ho,\infty,
ho} = rac{\mathbb{Z}_{\geq 1} -
ho \mathbb{Z}_{\geq 1}}{P_
ho(
ho)} = rac{\mathbb{Z}_{\geq 1} -
ho \mathbb{Z}_{\geq 1}}{
ho^{
ho-1} +
ho^{
ho-2} + \cdots
ho + 1}.$$

In the case $e < \infty$, i.e. extensions of \mathbb{Q}_p , it is

$$\mathcal{R}_{p,e,\rho} = (\mathcal{R}_{p,\infty,\rho} \cap (0,pe)) \cup \left\{ \begin{array}{l} \{pe\} & \text{if } \rho = 1, \\ \{\} & \text{if } \rho > 1. \end{array} \right.$$

The conversion formulas are trivial in the one-step extension context, $s_1 = \frac{r_1}{\rho - 1}$ and $h_\rho = P_\rho(p) r_1$.

3.2. Example: One-step extensions for p = 2

From the previous slide for multiplicities $\rho=1$ and $\rho=2$,

The cutoff for e = 1 is indicated and so the corresponding sets are

$$\mathcal{R}_{2,1,1} = \{ 1, 2 \},$$

 $\mathcal{R}_{2,1,2} = \{ \frac{1}{3}, 1, \frac{5}{3} \}.$

Over \mathbb{Q}_2 , the quadratic fields for the rams 1 and 2 are respectively $\mathbb{Q}_2(\sqrt{d})$ for $d \in \{-1, -1*\}$ and $d \in \{2, 2*, -2, -2*\}$, with say *=5. The quartic fields appear on the LMFDB as

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline (r_1,r_2) = (1/3,1/3) & (r_1,r_2) = (1,1) & (r_1,r_2) = (5/3,5/3) \\\hline x^4 + 2x + 2 & [4/3,4/3]_3^2 & S_4 & x^4 + 2x^3 + 2x^2 + 2 & [2,2]^3 & A_4 \\ & & x^4 + 2x^3 & + 2 & [2,2]^2 & D_4 \\ & & & x^4 + 2x^3 & + 6 & [2,2]^2 & D_4 \\ \hline \end{array}$$

3.3. Occurring invariants I in general extensions

Fix a ground field F with $\operatorname{ord}_{\Pi}(p) = e$ and consider its totally ramified extensions of degree p^w .

Break up this set of extensions according to their multiplicity vector $m=(m_1,\ldots,m_k)$. Let $M_i=\sum_{j=1}^i m_j$. Let $\mathcal{I}_{p,e,m}$ be the set of occurring invariants I. Then necessarily $\mathcal{I}_{p,e,m}$ is in

$$\widehat{\mathcal{I}}_{p,e,m} = \{(\overbrace{r(1),\ldots,r(1)}^{m_1},\ldots,\overbrace{r(k),\ldots,r(k)}^{m_k}) : r(i) \in \mathcal{R}_{p,ep^{M_{i-1}},m_i}\}.$$

The index gymnastics hide a simple Cartesian product! E.g. $\widehat{\mathcal{I}}_{p,e,(3,2)}$ consists of 5-tuples $(r_1, r_1, r_1, r_4, r_4)$ with $(r_1, r_4) \in \mathcal{R}_{p,e,3} \times \mathcal{R}_{p,p^3e,2}$.

The set $\mathcal{I}_{p,e,m}$ is then the subset of $\widehat{\mathcal{I}}_{p,e,m}$ such that the list of rams $r(1),\ldots,r(k)$, or equivalently the list of slopes $s(1),\ldots,s(k)$, is strictly increasing. The elementary nature of $\mathcal{I}_{p,e,w}=\coprod_m \mathcal{I}_{p,e,m}$ is illustrated by the next slide by $\mathcal{I}_{3,1,2}=\mathcal{I}_{3,1,(1,1)}\coprod \mathcal{I}_{3,1,(2)}$.

3.4. Invariants for tot. ram. nonic 3-adic fields

rams (r_1, r_2) and slopes $[\hat{s}_1, \hat{s}_2]$ with m = (1, 1) before m = (2):

[2.375, 2.375]

2

6

6

6

6

12 12 18 6

The Cartesian structure of $\widehat{\mathcal{I}}_{3,1,(1,1)}$ is visible in rams as $\{1,2,3\} \times \{1,2,\ 4,5,\ 7,8,9\}$, but obscured in slopes.

(2.75, 2.75)

The Cartesian structure on the (1,1) part is still visible in the total masses to the right, where K/F has mass $|1/\operatorname{Aut}(K/F)|$.

4.1. From an invariant *I* to its picture

An invariant I = h = s = r for degree p^w extensions determines a picture in the window $[0, p^w] \times [0, \hat{s}_w]$. For example

$$I = \langle 11, 62, 252 \rangle = [5.5, 8.5, 10.\overline{5}] = (11, 29, 66)$$

determines

(The points in the *u*-column will give constraints on the coefficient t_u of the x^u terms in Eisenstein polynomials.)

Q. Can you guess the recipe for passing from I to the picture?

4.2. The recipe for drawing the I-picture, part 1

There are w closed bands. The top edge of the i^{th} band B_i goes from $(0,\hat{s}_i)$ to (p^w,s_j) . All drawn points (u,v) are integral and, besides (0,1) and $(p^w,0)$, occur only in the bands. Write $u'=u/p^w$. Then an integral point $(u,v)\in B_i$ is drawn iff its u' has exact denominator p^i or it's on the boundary. It is drawn solidly iff the first condition holds. There is always a unique point on the lower edge, drawn as \circ or \bullet . There is at most one point on the upper edge, drawn as \circ .

4.3. The recipe for drawing the I-picture, part 2

Define the scaled heights and scaled rams via $h'_i = h_i/p^i$ and $r'_i = r_i/p$, and indicate these variants by double delimiters. So the current example becomes

The $i^{\text{th}} \circ \text{or} \bullet$ is at $(u'_i, v_i) = (\langle h'_i \rangle, \lceil h'_i \rceil)$ so that e.g. the first \bullet comes from $3\frac{2}{3}$ and is at $(u'_1, v_1) = (\frac{2}{3}, 4)$. Equivalently, the lower edge of B_i goes through (p^w, h'_i) . Also, B_i contains exactly $\lfloor r'_i \rfloor \bullet$'s, and then also a \bullet iff r'_i is nonintegral.

5.1. The Krasner-Monge parametrized polynomial

Index a point (u, v) by the integer $j = p^w(v - 1) + u$, so that the i^{th} or \circ becomes $j = p^w h'_i$. Introduce variables a_j , b_j and c_j for drawn points in bands of the form \bullet , \bullet , and \circ . Form the polynomial

$$\pi + \sum_{(u,v) \text{ as } \bullet} a_j \pi^v x^u + \sum_{(u,v) \text{ as } \bullet} b_j \pi^v x^u + \sum_{(u,v) \text{ as } \circ} c_j \pi^v x^u + x^{p^w}$$

Our earlier example $I = [1, \frac{11}{6}] = ((\frac{2}{3}, 2\frac{1}{3})) = \langle \langle \frac{2}{3}, 1\frac{4}{9} \rangle \rangle$ yields

For $\pi = 3$, it's $(3 + 9c_9) + 9a_{13}x^4 + 9b_{14}x^5 + 3a_6x^6 + 9b_{16}x^7 + x^9$.

Notation for the Krasner-Monge theorem

Let F be a p-adic field with residue field \mathbb{F}_q with $q = p^f$.

For d a divisor of f, the additive map

$$\mathbb{F}_q \to \mathbb{F}_q : k \mapsto k^{p^d} - k$$

has kernel \mathbb{F}_{p^d} and so image $T_d \subset \mathbb{F}_q$ of index p^d .

Choose a uniformizer π and a lift $\kappa \subset \mathcal{O}$ of \mathbb{F}_{p^f} . Require $0 \in \kappa$ and write $\kappa^\times = \kappa - \{0\}$. For each divisor d of f, choose a lift $\kappa_d \subset \kappa$ of \mathbb{F}_q/T_d , so that $|\kappa_d| = p^d$ and $\kappa_f = \kappa$. For $F = \mathbb{Q}_p$, we always just take $\pi = p$ and $\kappa = \{0, 1, \ldots, p-1\}$.

For a ramification invariant I, let

- α be its number of •'s;
- β be its number of •'s;.
- $\gamma = \sum_{j} \gcd(\rho(j), f)$ where j runs over indices of o's and $\rho(j)$ it the number of times the corresponding slope is repeated.

Krasner-Monge theorem

Theorem

Let F be a p-adic field with absolute ramification index $e \in \mathbb{Z}_{\geq 1}$ and chosen π and κ_d as on the previous slide. Let $I \in \mathcal{I}_{p,e,w}$ be a possible ramification invariant for degree p^w extensions of F. Consider the polynomials in the corresponding Krasner-Monge family

$$\pi + \sum_{(u,v) \text{ as } \bullet} a_j \pi^v x^u + \sum_{(u,v) \text{ as } \bullet} b_j \pi^v x^u + \sum_{(u,v) \text{ as } \circ} c_j \pi^v x^u + x^{p^w}$$

with $a_j \in \kappa^{\times}$, $b_j \in \kappa$, and $c_j \in \kappa_{\gcd(\rho(j),f)}$. Then the corresponding extensions are in F(I), with each K represented $\frac{p^{\gamma}}{|\operatorname{Aut}(K/F)|}$ times.

Corollary

The total number of extensions in F(I) is $\geq (q-1)^{\alpha}q^{\beta}$, with equality if $\gamma = 0$.

6.1 The case $I = [\hat{s}_1, \hat{s}_2] = [2, \frac{17}{6}]$ over \mathbb{Q}_3

The database says there are 36 fields falling in four packets of nine. As said before, the family is

$$f(a_6, a_{13}, b_{14}, b_{16}, c_9, x) = (3 + 9c_9) + 9a_{13}x^4 + 9b_{14}x^5 + 3a_6x^6 + 9b_{16}x^7 + x^9,$$

Since there is just one c and f=1, the ambiguity parameter is $\gamma=1$ and each field K has $p^{\gamma}=3$ near-canonical defining polynomials. The ambiguity is easily resolved by setting a parameter to 0 and the packets are cleanly described:

```
f(1, 2, 0, b_{16}, c_{9}, x) gives 9T13 and hidden slopes [5/2]_{2} f(1, 1, b_{14}, b_{16}, 0, x) gives 9T18 and hidden slopes [5/2]_{2}^{2} f(2, 2, 0, b_{16}, c_{9}, x) gives 9T22 and hidden slopes [3/2, 5/2]_{2} f(2, 1, b_{14}, b_{16}, 0, x) gives 9T24 and hidden slopes [3/2, 5/2]_{2}^{2}
```

6.2 The case $I = [\hat{s}_1, \hat{s}_2] = [\frac{5}{2}, \frac{17}{6}]$ over \mathbb{Q}_3

The database says that in this case there are 18 fields falling into two packets of nine. The Krasner-Monge family is

$$g(a_{14}, b_{12}, b_{16}, x) = 3 + 9b_{12} + 9a_{14}x^5 + 9b_{16}x^7 + x^9$$

Defining polynomials are in this case unique and

$$g(2, b_{12}, b_{16}, x)$$
 gives $9T11$ and hidden slopes $[2]_2$ $g(1, b_{12}, b_{16}, x)$ gives $9T18$ and hidden slopes $[2]_2^2$

In general, resolvent constructions should have nice descriptions via the universal families. For example, $9\,T13$ from the previous slide and $9\,T11$ are the same abstract group. The bijection between

- the nine 9T13 fields defined by $f(1, 2, 0, b_{16}, c_9, x)$ and
- the nine 9T11 fields defined by $g(2, b_{12}, b_{16}, x)$

is given by
$$c_9 = b_{12}$$
 and $b_{16} = b_{16} + 1 - b_{12}^2$.

6.3 The case $I = [\hat{s}_1, \hat{s}_2] = [3/2, \frac{8}{3}]$ over \mathbb{Q}_3

The database gives five types of fields. The family is

$$f(a_3, a_{11}, b_{13}, b_{14}, c_{15}) = 3 + 9x^2a_{11} + 3x^3a_3 + 9x^4b_{13} + 9x^5b_{14} + 9x^6c_{15} + x^9$$

The five types are

Here \star can be any element of $\{0,1,2\}$ without changing the field. Otherwise, different parameters give different fields.

Commented main references

Much of this material has origin in:

M. Krasner, Sur la primitivité des corps p-adiques, Mathematica (Cluj) 13 (1937) 72–191.

Krasner's results were modernized in:

P. Deligne, Les corps locaux de caractéristique p, limites de corps locaux de caractéristique 0, in Representations of Reductive Groups over a Local Field (1984), pp. 119–157.

The original database from which the LMFDB database grew:

J. W. Jones and D. P. Roberts, *A database of local fields*, J. Symbolic Comput. 41(1) (2006) 80–97.

A modernization which, like Krasner, emphasizes polynomials:

M. Monge, A family of Eisenstein polynomials generating totally ramified extensions, identification of extensions and construction of class fields. Int. J. Number Theory 10 (2014), no. 7, 1699–1727.