CS 4510: Automata and Complexity

Spring 2019

Lecture 2: Languages and Machines

August 21, 2019

Lecturer: Santosh Vempala Scribe: Aditi Laddha

2.1 Definitions

- Alphabet Σ : a finite set of symbols
- Strings : Finite sequence of symbols from Σ
- Σ^* : Set of all strings over Σ
- Language: Set of strings over Γ , $L \subseteq \Gamma$
- Regular language: A language accepted by some DFA.

We say that a DFA M accepts a string w if M stops in a final state on reading w and M recognizes a language L if $L = \{w : M \text{ accepts } w\}$.

Example: $\Sigma = \{0, 1\}$, $\Sigma^* = \text{set of binary strings}$, $L = \{x \in \Sigma^* : x \text{ has an even number of 1's }\}$. Given a language L, we can ask the following questions:

- Does there exist a DFA that accepts L?
- Does there exist a Turing Machine that accepts L?

Languages recognized by DFA \subseteq Languages recognized by TM \subseteq All Languages

Are the set inclusions proper? We will prove that they are in later lectures.

2.2 Composition of Automata

 $L = \{x \in \{0,1\}^* : \text{number of 1's in } x \text{ is not divisible by 2 or 3}\}$. We want to construct a DFA that accepts L.

We can rewrite L as $L = \overline{L}_1 \cap \overline{L}_2$ where $L_1 = \{x \in \{0,1\}^* : \text{number of 1's in } x \text{ is divisible by 2} \}$ and $L_2 = \{x \in \{0,1\}^* : \text{number of 1's in } x \text{ is divisible by 3} \}$. In last lecture, we saw how to construct DFAs that accept L_1, L_2 .

We can use the DFAs for L_1 and L_2 to construct a DFA that accepts L using the following operations.

2.2.1 Complement

Given a language L recognized by DFA $D = \{Q, \Sigma, \delta, F, q_0\}$, we can construct a DFA D' that recognizes $\overline{L} = \Sigma^* \setminus L$ as $D' = \{Q, \Sigma, \delta, F', q_0\}$ where $F' = Q \setminus F$.

2.2.2 Intersection

Given languages L_1, L_2 that are recognized by DFAs $D_1 = \{Q_1, \Sigma_1, \delta_1, F_1, q_{10}\}, D_2 = \{Q_2, \Sigma_2, \delta_2, F_2, q_{20}\},$ we can construct a DFA D that recognizes $L_1 \cap L_2 = \{w : w \in L_1 \text{ and } w \in L_2\}$ as

 $D = \{Q, \Sigma, \delta, F, q_0\}$ where

- 1. $Q = Q_1 \times Q_2 = \{(q_1, q_2) : q_1 \in Q_1, q_2 \in Q_2\}$
- 2. $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
- 3. $F = F_1 \times F_2$
- 4. $q_0 = (q_{10}, q_{20})$

Proof of correctness: Let $w=w_1w_2\dots w_n$ and $w\in L_1\cap L_2$, then there exist 2 sequence of state transitions $q_{11},q_{12},\dots,q_{1n}$ and $q_{21},q_{22},\dots,q_{2n}$ such that $\delta_i(q_{i,j-1},w_j)=q_{i,j}, \forall i\in\{1,2\}$ and $\forall j\in\{1,\dots,n\}$ and $q_{1n}\in F_1,q_{2n}\in F_2$. So, the sequence $(q_{10},q_{20}),(q_{11},q_{21}),(q_{12},q_{22}),\dots,(q_{1n},q_{2n})$ forms a valid sequence of state transitions for D on input w(by construction) and $(q_{1n},q_{2n})\in F$, so $w\in L_1\cap L_2\Rightarrow D$ accepts w.

We can prove the other direction similarly.

Using the complement and intersection constructions, the DFAs for $\overline{L}_1, \overline{L}_2$ and L follow

Figure 2.1: A DFA which accepts complement of L_1

Figure 2.2: A DFA which accepts complement of L_2

Figure 2.3: A DFA which accepts L

2.2.3 Union

Given languages L_1, L_2 that are recognized by DFAs $D_1 = \{Q_1, \Sigma_1, \delta_1, F_1, q_{10}\}, D_2 = \{Q_2, \Sigma_2, \delta_2, F_2, q_{20}\},$ we can construct a DFA D that recognizes $L_1 \cap L_2 = \{w : w \in L_1 \text{ or } w \in L_2\}$ as

$$D = \{Q, \Sigma, \delta, F, q_0\}$$
 where

1.
$$Q = Q_1 \times Q_2 = \{(q_1, q_2) : q_1 \in Q_1, q_2 \in Q_2\}$$

2.
$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

3.
$$F = \{F_1 \times Q_2\} \cup \{Q_1 \times F_2\}$$

4.
$$q_0 = (q_{10}, q_{20})$$

2.3 Exercises

Construct DFAs or Turing machines that accept the following languages:

- 1. $\Sigma = \{0, 1\}, L = \{a \in \Sigma^* : a\}$ has equal number of 0's and 1's
- 2. $\Sigma = \{a, \ldots, z\}, L = \{a \in \Sigma^* : a\}$ is a palindrome.
- 3. $\Sigma = \{0, \dots, 9\}, L = \{a \in \Sigma^* : a\}$ is a prime integer

Idea for Turing Machine for problem (1): For input x, start at the leftmost symbol of x and replace it with another symbol α (different from 0,1) and move right searching for the opposite symbol and replace it with α if found. If the end of input is reached without finding it, then reject. Otherwise move to the leftmost non- α letter of x and repeat. If all symbols of x are replaced by α , accept.