Diagnostics in Multiple Linear Regression

University of California, San Diego Instructor: Armin Schwartzman

http://math.ucsd.edu/~eariasca/teaching.html

1 / 25

Checking assumptions

- ☐ All the p-values for the tests we performed and the confidence levels for all the confidence intervals we computed were derived under the standard assumptions.
- ☐ **Standard assumptions.** The measurement errors are i.i.d. normal with mean zero:

$$\varepsilon_1, \ldots, \varepsilon_n \sim^{iid} \mathcal{N}(0, \sigma^2)$$

- ☐ Are those assumptions correct?
 - 1. Mean zero, i.e. model accuracy unbiase d
 - 2. Equal variances, i.e. homoscedasticity -> believe estimate of covariance
 - 3. Independence
 - 4. Normality -> nonmality of estimate

2 / 25

Residuals are not independent - core to each other

- ☐ We (obviously) do not have access to the errors. Instead, we look at the residuals as proxies.
- \square Remember that $\mathbf{e}=(e_1,\ldots,e_n)$, with

$$e = y - \hat{y} = y - X \hat{\beta} = (I - H)y$$

- \Box Under the standard assumptions, e is multivariate normal with mean zero and covariance $\sigma^2(\mathbf{I} \mathbf{H})$).
- ☐ In particular,

$$\operatorname{Cov}(e_i, e_j) = -\sigma^2 h_{ij} \quad \forall i \neq j, \qquad \operatorname{Var}(e_i) = \sigma^2 (1 - h_{ii}) \quad \forall i$$

$$cov(e|x) = cov[(I - H)y | X]$$

$$= (I - H)cov(y | x)(I - H)^{T} y = x\beta + \epsilon$$

$$= (I - H)cov(\epsilon) (I - H)^{T}$$

$$= (I - H)\sigma^{2}I \cdot (I - H)^{T}$$

$$= \sigma^{2}(I - H)(I - H)^{T}$$

$$= \sigma^{2}(I - X(x^{T}x)^{T}, X^{T})(I - X(x^{T}x)^{-1}, X^{T}) = \sigma^{2}(I - H)$$


```
3  # an example of inaccurate model
4  x1 = runif(100,-1,1)
5  x2 = runif(100,-1,1)
6  x3 = runif(100,-1,1)
7  y = 2 + x1^2 + x2 + x3 + rnorm(100,sd=.1)
8  ex.lm = lm(y ~ x1 + x2 + x3) # we are not fitting the correct model
9  summary(ex.lm)
10
11 pairs(y- x1 + x2 + x3, pch=16, cex=1.5) # only a hint of curvature on the scatterplots
12 plot(ex.lm, which=1, pch=16) # the residuals vs fitted values plot does not show much, so we look at partial residual plots
13 residualPlots(ex.lm) # Residual plots show a clear curvature in x1
```

```
16 # an example of heteroscedastic model

17 x1 = runif(1000)

18 x2 = runif(1000)

19 x3 = runif(1000)

20 y = 2 + x1 + x2 + x3 + 3*x2*rnorm(1000, sd=.1)

21 ex.lm = lm(y ~ x1 + x2 + x3)

22 pairs(y ~ x1 + x2 + x3) # not much is visible

23 residualPlots(ex.lm) # clear fan shape on the 2nd plot
```

Residual standard error: 0.1732 on 996 degrees of freedom Multiple R-squared: 0.8892, Adjusted R-squared: 0.8888 F-statistic: 2664 on 3 and 996 DF, p-value: < 2.2e-16

Standardized residuals

- ☐ In practice, the residuals are often corrected for unequal variance.
- ☐ Internally studentized residuals (what R uses):

$$r_i = \frac{e_i}{\widehat{\sigma}\sqrt{1 - h_{ii}}}$$

papproximation

- \square Note that: $r_i \stackrel{.}{\sim} T_{n-p-1}$
- ☐ Externally studentized residuals:

$$t_i = \frac{e_i}{\widehat{\sigma}_{(i)}\sqrt{1 - h_{ii}}}$$

where $\widehat{\sigma}_{(i)}$ comes from the fit with the *i*th observation removed.

 \square Note that: $t_i \sim T_{n-p-2}$

4 / 25

Checking model accuracy

- □ With several predictors, the residuals-vs-fitted-values plot (provided by R) may be misleading. Instead, we look at partial residual plots, which focus on one variable at a time.
- \square Say we want to look at the influence of predictor $\mathbf{X}_j = (x_{1,j}, \dots, x_{n,j})$ (the jth column of \mathbf{X}) on the response \mathbf{y} .
- \square Partial residual plots: e versus X_i .
- \Box Component plus residual plots: $\widehat{\beta}_i \mathbf{X}_i + \mathbf{e}$ versus \mathbf{X}_i .

They allow to better appreciate the variation of the residuals compared to the variation in each component.

- □ Added variable plots take into account the influence of the other predictors:
 - 1. Regress y on all the predictors excluding X_j , yielding residuals $y_{(j)}$.
 - 2. Regress X_j on all the predictors excluding X_j , yielding residuals $X_{(j)}$.
 - 3. Plot $\mathbf{y}_{(j)}$ versus $\mathbf{X}_{(j)}$.

(For each method, the procedure is repeated for all $j = 1, \dots, p$.)

Checking homoscedasticity	
\Box The residuals vs fitted values plot is what R pr with $\mathbb{E}(y \mathbf{x}).$	ovides by default and can be helpful in situations where σ varies
\square Partial residual plots may be helpful when σ de	epends on one variable only.
$\hfill \Box$ A fan-shape in the plot is an indication that the	e errors do not have equal variances.
	ended. There are methods (e.g., Levene test) for that but they over, the tests and confidence intervals we computed are
	6 / 2
Checking normality	
\Box R provides a q-q plot of the standardized resid	uals.
☐ Testing for normality is not recommended. The confidence intervals we computed are somewhat	ere are methods (e.g., Lilliefors test) for that but the tests and at robust to mild departures from normality.
	7 / 2
Checking for independence	
- · · · · · · · · · · · · · · · · · · ·	ing a dependency structure explicitly and testing against that. licates of the data, i.e. multiple samples of same size.)
•	for example the observations are collected over time, then this dependency may be tested for (e.g., the Durbin-Watson test).
	rable to model the errors using some model, e.g., an In that case, a likelihood approach is still viable, but the ot result in closed-form expressions).
	8 / 2
Outliers	
□ Outliers are points that are unusual compared	to the bulk of the observations.
☐ An outlier in predictor (aka high-leverage point the sample predictor vectors.	(\mathbf{x}_i,y_i) is a data point (\mathbf{x}_i,y_i) such that \mathbf{x}_i is away from the bulk of

 \Box An outlier in response is a data point (\mathbf{x}_i,y_i) such that y_i is away from the trend implied by the other

 $\hfill\square$ A point that is both an outlier in predictor and response is said to be influential.

observations.

Detecting outliers

- \square To detect outliers in predictor, plotting the hat values h_{ii} may be useful. The hat values are the diagonal entries of the hat matrix $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$.
- \square Rule of thumb: $h_{ii} > 2(p+1)/n$ is considered problematic.
- \square Suppose (without loss of generality) that the variables have been normalized so that $\bar{\mathbf{x}}=0$ and there is no intercept in the fit. Then

$$h_{ii} = \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i.$$

It measures the distance of \mathbf{x}_i from $\bar{\mathbf{x}} = 0$ in the (Mahalanobis) metric given by $\mathbf{X}^{\top}\mathbf{X}$.

 \Box To detect outliers in response, plotting the externally studentized residuals may be useful. We know they are normalized to have the same T_{n-p-2} distribution under 'normal' circumstances.

10 / 25

Leave-one-out diagnostics

 \Box If $\widehat{oldsymbol{eta}}_{(i)}$ is the least squares coefficient vector computed with the ith case deleted, then

$$\widehat{\boldsymbol{\beta}}_{(i)} = \widehat{\boldsymbol{\beta}} - \frac{e_i}{1 - h_{ii}} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i$$

□ Define

$$\widehat{\mathbf{y}}_{(i)} = \mathbf{X} \widehat{\boldsymbol{eta}}_{(i)}$$

In particular, $\widehat{y}_{(i)i}$ is the value at \mathbf{x}_i predicted by the model fitted without the observation (\mathbf{x}_i, y_i) . Note that

$$\widehat{y}_{(i)i} = \widehat{y}_i - \frac{e_i}{1 - h_{ii}} \mathbf{x}_i^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_i$$

11 / 25

Cook's distances

□ Cook's distances

$$\begin{split} D_i &= \frac{\|\widehat{\mathbf{y}} - \widehat{\mathbf{y}}_{(i)}\|^2}{(p+1)\widehat{\sigma}^2} \quad \text{(change in fitted values)} \\ &= \frac{(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{(i)})^\top \mathbf{X}^\top \mathbf{X} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{(i)})}{(p+1)\widehat{\sigma}^2} \quad \text{(change in coefficients)} \\ &= \frac{r_i^2}{p+1} \, \frac{h_{ii}}{1-h_{ii}} \quad \text{(combination of residuals and hat values)} \end{split}$$

 $\hfill\Box$ Rule of thumb: $D_i>1$ is considered suspect.

DFBETAS and **DFFITS**

□ DFBETAS

DFBETAS_{j(i)} =
$$\frac{\widehat{\beta}_j - \widehat{\beta}_{j(i)}}{\sqrt{\widehat{\sigma}_{(i)}^2 (\mathbf{X}^\top \mathbf{X})_{j,j}^{-1}}}$$

- \square Rule of thumb: DFBETAS_{j(i)} > $2/\sqrt{n}$ is considered suspect.
- □ DFFITS

DFFITS_i =
$$\frac{\widehat{y}_i - \widehat{y}_{i(i)}}{\sqrt{\widehat{\sigma}_{(i)}^2 h_{ii}}} = t_i \sqrt{\frac{h_i}{1 - h_i}}$$

 $\hfill\Box$ Rule of thumb: $\mathrm{DFFITS}_i > 2\sqrt{(p+1)/n}$ is considered suspect.

13 / 25

Multicollinearity

- ☐ When the predictors are nearly linearly dependent, several issues arise:
 - 1. Interpretation is difficult.
 - 2. The estimates have large variances:

$$\operatorname{Var}\left(\widehat{\beta}_{j}\right) = \frac{\sigma^{2}}{(1 - Q_{j}^{2})\operatorname{SS}_{X_{j}}}$$

where Q_j^2 is the R^2 when regressing \mathbf{X}_j on $\mathbf{X}_k, k \neq j$.

- 3. The fit is numerically unstable since $\mathbf{X}^{\top}\mathbf{X}$ is almost singular.
- \square Assume we work with standardized variables, so that there is no intercept and the predictor vectors \mathbf{X}_j have zero mean and unit variance (use the function scale). (The columns can be standardized to unit norm, which corresponds to a variance equal to 1/(n-1).)

14 / 25

Correlation between predictors

- \square A large correlation between \mathbf{X}_j and \mathbf{X}_k is indicative that these variables are nearly linearly dependent (in this case, proportional).
- \square We simply inspect the correlation between the variables. Note that with standardized variables, the correlation between \mathbf{X}_j and \mathbf{X}_k is simply their inner product $\mathbf{X}_j^{\top}\mathbf{X}_k$. In particular, $\mathbf{X}^{\top}\mathbf{X}$ is the correlation matrix in this case.

$$y = \beta_{0} + \beta_{1} \times_{1} + \beta_{2} \times_{2} + \varepsilon \qquad x_{1} \times_{2} \text{ are dependent} \\
= \beta_{0} + \beta_{1} \times_{1} + \beta_{2} \left(\frac{\delta_{0} + \delta_{1} \times_{1} + \delta_{1}}{\delta_{1} \times_{1} + \delta_{2}} \right) + \varepsilon \\
= (\beta_{0} + \beta_{2} \times_{0}) + (\beta_{1} + \beta_{2} \times_{1}) \times_{1} + (\beta_{2} + \varepsilon_{2})$$

Suppose
$$\delta = 0$$
:
 $y = (\beta_0 + \beta_2 x_0) + (\beta_1 + \beta_2 x_1) x_1 + \varepsilon$

Variance Inflation Factors

☐ Alternatively, one can look at the variance inflation factors:

$$VIF_j = \frac{1}{1 - Q_j^2}$$

 \Box If the predictors are standardized to unit variance, $\mathbf{X}^{\top}\mathbf{X}$ is a correlation matrix and we have:

$$VIF = diag((\mathbf{X}^{\top}\mathbf{X})^{-1})$$

 $\mathrm{VIF}_j > 10$ (same as $Q_j^2 > 90\%$) is considered suspect

16 / 25

Condition Indices

 \square Another option is to examine the condition indices of X^TX :

$$\kappa_j = \frac{\lambda_{\text{max}}}{\lambda_j}$$

where the λ_j 's are the eigenvalues of $\mathbf{X}^{\top}\mathbf{X}$.

 $\kappa_j > 1000$ is considered suspect

(It is important to standardize the variables for this to make sense.)

 \square $\lambda_{\max}/\lambda_{\min}$ is an important quantity in numerical linear algebra. It is called the condition number of matrix $\mathbf{X}^{\top}\mathbf{X}$ and quantifies how stable it is to invert a linear system of the form

$$(\mathbf{X}^{\top}\mathbf{X})\mathbf{b} = \mathbf{c}$$

(Alternatively, one can use the singular values of X, which are the square root of the eigenvalues of $X^{\top}X$.)

17 / 25

Dealing with curvature

- $\hfill \square$ When the model accuracy is questionable, we can:
 - 1. Transform the variables and/or the response, which often involves guessing. This is particularly useful to spread the variables which helps limit the number of high-leverage observations.
 - 2. Augment the model by adding other terms, perhaps with interactions. This is often used in conjunction with model selection so as to avoid overfitting.

Dealing with heteroscedasticity

- ☐ When homoscedasticity is questionable, we can:
 - 1. Apply a variance stabilizing transformation to the response.
 - 2. Fit the model by weighted least squares.

Both involve guessing at the dependency of the variance as a function of the variables.

19 / 25

Variance stabilizing transformations

☐ Here are a few common transformations on the response to stabilize the variance:

$$\begin{array}{lll} \sigma^2 \propto \mathbb{E}(y_i) \text{ (Poisson)} & \text{change to } \sqrt{y} \\ \sigma^2 \propto \mathbb{E}(y_i)(1-\mathbb{E}(y_i)) \text{ (binomial)} & \text{change to } \sin^{-1}(\sqrt{y}) \\ \sigma^2 \propto \mathbb{E}(y_i)^2 & \text{change to } \log(y) \\ \sigma^2 \propto \mathbb{E}(y_i)^3 & \text{change to } 1/\sqrt{y} \\ \sigma^2 \propto \mathbb{E}(y_i)^4 & \text{change to } 1/y \end{array}$$

 \square In general, we want a transformation ψ such that

$$\psi'(\mathbb{E}(y_i)) \operatorname{Var}(y_i) \propto 1$$

(This is based on the delta method, which involves asymptotic calculations.)

20 / 25

Weighted least squares

□ Suppose

$$y_i = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i + \epsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, \sigma_i^2)$$

 \square Maximum likelihood estimation of eta corresponds to the weighted least squares solution that minimizes

$$SSE(\boldsymbol{\beta}) = \sum_{i=1}^{n} w_i (y_i - \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i)^2, \qquad w_i = \frac{1}{\sigma_i^2}$$

- $\hfill\Box$ To determine appropriate weights, different approaches are used:
 - \triangleright Guess how σ_i^2 varies with x_i , i.e. the shape of $\mathrm{Var}\,(y_i|x_i)$.
 - ▷ Assume a parametric model for the weights and use maximum likelihood estimation solved by iteratively reweighted least squares.
- □ Using weights is helpful in situations where some observations are more reliable than others, mostly because of variability.

Generalized least squares
$\hfill \Box$ Weighted least squares assumes that the errors are uncorrelated.
\Box Generalized least squares assumes a more general form for the covariance of the errors, namely $\sigma^2 V$, where V is usually known.
\square Assuming both the design matrix ${f X}$ and the covariance matrix ${f V}$ are full rank, the maximum likelihood estimates are
estimates are $\widehat{oldsymbol{eta}} = (\mathbf{X}^ op \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^ op \mathbf{V}^{-1} \mathbf{y}$
22 / 29
Dealing with outliers
\Box Spreading the variables often equalizes the leverage of the data points. It often improves the fit, both numerically (e.g. R^2) and visually.
\Box A typical situation is an accumulation of data points near 0, in which case applying a logarithm or a square root helps spread the data more evenly.
□ Example: mammals dataset in the MASS package.
23 / 29
Dealing with outliers
☐ We have identified an outlier. Was it recorded properly?
No: correct it or remove it from the fit.
> Yes: decide whether to include it in the fit.
☐ Genuine outliers carry information, so simply discarding them amounts to losing that information. However, strong outliers can compromise the quality of the overall fit.
□ Possible options:
1. If there are comparatively few of them, remove the outliers (particularly the influential points).
If there are many outliers, model outliers and non-outliers separately. There might be a lurking variable that we may need to include in the model.
3. Use a robust method for fitting the model.
24 / 29

Dealing with Multicolinearity

- \Box If interpretation is the main goal, drop a few redundant predictors.
- \Box If prediction is the main goal, use a model selection procedure.