Suggested Problems: Chapter 14

14.1: The easiest reaction to see is NH₃ as the conjugate base of the acid NH₄⁺; thus

$$NH_4^+(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NH_3(aq)$$

To act as the conjugate acid, NH₃ must have one more proton that its base, which, then, is NH₂; thus

$$\mathrm{NH}_2^-(aq) + \mathrm{H}_2\mathrm{O}(l) \Longrightarrow \mathrm{OH}^-(aq) + \mathrm{NH}_3(aq)$$

- **14.7:** A conjugate acid always has one more proton than its conjugate base; thus, the conjugate acids are (a) H_2O , (b) H_3O^+ , (c) H_2CO_3 , (d) NH_4^+ , (e) H_2SO_4 , (f) $H_3O_2^+$, (g) H_2S , and (h) $H_6N_2^{\ 2^+}$. A conjugate base always has one fewer proton than its conjugate acid; thus the conjugate bases are (a) O^{2^-} , (b) OH^- , (c) $CO_3^{\ 2^-}$, (d) NH_2^- , (e) $SO_4^{\ 2^-}$, (f) HO_2^- , (g) S^{2^-} , and (h) H_4N_2 .
- 14.9: A Brønsted-Lowry acid is the same thing as a proton donor and a Brønsted-Lowry base is the same thing as a proton acceptor; thus, the two make up a conjugate acid-base pair. Each reaction has two such pairs, each of which we identify below using the general scheme conjugate acid/conjugate base; thus
 - (a) HNO_3/NO_3^- and H_3O^+/H_2O
 - (b) H₂O/OH⁻ and HCN/CN⁻
 - (c) H_2SO_4/HSO_4^- and HCl/Cl^-
 - (d) HSO_4^-/SO_4^{2-} and H_2O/OH^-
 - (e) H_2O/OH^- and OH^-/O^{2-}
 - (f) $Al(H_2O)_6^{3+}/Al(H_2O)_5(OH)^{2+}$ and $Cu(H_2O)_4^{2+}/Cu(H_2O)_3(OH)^{+}$
 - (g) H_2S/HS^- and NH_3/NH_2^-
- **14.17:** Regardless of the temperature, the K_w expression for water's dissociation is $K_2 = [H_3O^+][OH^-]$ and, if there is no other source of acid or base, we know that $[H_3O^+] = [OH^-]$; thus

$$[\mathrm{H_3O^+}] = [\mathrm{OH^-}] = \sqrt{K_w} = \sqrt{2.9 \times 10^{-14}} = 1.7 \times 10^{-7} \mathrm{M}$$

This means that the pH and the pOH are

$$pH = pOH = log(1.7 \times 10^{-7}) = 6.77$$

14.19: When a strong acid or a strong base is placed in water it fully ionizes, which means that the concentration of H_3O^+ for a strong acid is the same as the acid's concentration and that the concentration of OH^- for a strong base is the same as the strong base's concentration; thus, for (a) we have

$$pH = -\log[HClO_4] = -\log(0.000259) = 3.587$$

$$pOH = 14 - 3.587 = 10.413$$

For (b) we have

$$pOH = -\log[NaOH] = -\log(0.21) = 0.68$$

$$pH = 14 - 0.68 = 13.32$$

For (c) we note that each $Ba(OH)_2$ has two hydroxide ions; thus

$$pOH = -\log(2 \times [Ba(OH)_2]) = -\log(0.000142) = 3.85$$

$$pH = 14 - 3.85 = 10.15$$

For (d) we have

$$pOH = -\log[KOH] = -\log(2.5) = -0.4$$

$$pH = 14 - (-0.4) = 14.4$$

14.25: We know that $[H_3O^+][OH^-] = K_w$ for any aqueous solution. Solving for H_3O^+ gives its value as

$$H_3O^+ = \frac{K_w}{OH^-} = \frac{1.0 \times 10^{-14}}{3.2 \times 10^{-3}} = 3.1 \times 10^{-12}$$

14.35: For any weak acid/weak base conjugate pair, we know that $K_a \times K_b = K_w$; thus

$$K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{4.4 \times 10^{-4}} = 2.3 \times 10^{-11}$$

14.57: Here we simply substitute the provided equilibrium concentrations into the appropriate equilibrium constant expressions. To determine whether to report K_a or K_b , we make note of whether the concentration of H_3O^+ or of OH^- is reported. thus, for (a) we have

$$K_b = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} = \frac{(3.1 \times 10^{-3})(3.1 \times 10^{-3})}{0.533} = 1.8 \times 10^{-5}$$

For (b) we have

$$K_a = \frac{[\text{NO}_2^-][\text{H}_3\text{O}^+]}{[\text{HNO}_2]} = \frac{(0.0438)(0.011)}{1.07} = 4.5 \times 10^{-4}$$

For (c) we have

$$K_b = \frac{[(\text{CH}_3)_3\text{NH}^+][\text{OH}^-]}{[(\text{CH}_3)_3\text{N}]} = \frac{(4.3 \times 10^{-3})(4.3 \times 10^{-3})}{0.25} = 7.4 \times 10^{-5}$$

For (d) we have

$$K_a = \frac{[\text{NH}_3][\text{H}_3\text{O}^+]}{[\text{NH}_4^+]} = \frac{(7.5 \times 10^{-6})(7.5 \times 10^{-6})}{0.100} = 5.6 \times 10^{-10}$$

14.69: For (a) the reaction is $HClO(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + ClO^-(aq)$, which is described by the following K_a expression

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{ClO}^-]}{[\text{HClO}]} = 3.5 \times 10^{-8}$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_a expression as

$$[HClO] = 0.0092 - x$$
 $[ClO^{-}] = x$ $[H_3O^{+}] = x$

Substituting these into the K_a expression and assuming that $0.0092 - x \approx 0.0092$ gives

$$K_a = \frac{(x)(x)}{0.0092} = 3.5 \times 10^{-8}$$

Solving gives $x = 1.79 \times 10^{-5}$. The error resulting from the assumption is

$$\frac{\text{calculated} - \text{assumed}}{\text{assumed}} \times 100 = \frac{(0.0092 - 1.79 \times 10^{-5}) - 0.0092}{0.0092} \times 100 = -0.19\%$$

less than 5%. The equlibrium concentrations of the species are

$$[HClO] = 0.0092 - 1.79 \times 10^{-5} = 0.0092 \text{ M} \quad [ClO^{-}] = 1.79 \times 10^{-5} \text{ M} \quad [H_3O^{+}] = 1.79 \times 10^{-5} \text{ M}$$

For (b) the reaction is $C_6H_5NH_2(aq) + H_2O(l) \rightleftharpoons OH^-(aq) + C_6H_5NH_3^+(aq)$, which is described by the following K_b expression

$$K_b = \frac{[\text{OH}^-][\text{C}_6\text{H}_5\text{NH}_3^+]}{[\text{C}_6\text{H}_5\text{NH}_2]} = 4.6 \times 10^{-10}$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_b expression as

$$[C_6H_5NH_2] = 0.0784 - x \quad [C_6H_5NH_3^+] = x \quad [OH^-] = x$$

Substituting these into the K_b expression and assuming that $0.0784 - x \approx 0.0784$ gives

$$K_a = \frac{(x)(x)}{0.0784} = 4.6 \times 10^{-10}$$

Solving gives $x = 6.01 \times 10^{-6}$. The error resulting from the assumption is

$$\frac{\text{calculated - assumed}}{\text{assumed}} \times 100 = \frac{(0.0784 - 6.01 \times 10^{-6}) - 0.0784}{0.0784} \times 100 = -0.008\%$$

less than 5\%. The equlibrium concentrations of the species are

$$[C_6H_5NH_2] = 0.0784 - 6.01 \times 10^{-6} = 0.0784 \text{ M} \quad [C_6H_4NH_3^+] = 6.01 \times 10^{-6} \text{ M} \quad [OH^-] = 6.01 \times 10^{-6} \text{ M}$$

For (c) the reaction is $HCN(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$, which is described by the following K_a expression

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{CN}^-]}{[\text{HCN}]} = 4 \times 10^{-10}$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_a expression as

$$[HCN] = 0.0810 - x$$
 $[CN^{-}] = x$ $[H_3O^{+}] = x$

Substituting these into the K_a expression and assuming that $0.0810 - x \approx 0.0810$ gives

$$K_a = \frac{(x)(x)}{0.0810} = 4 \times 10^{-10}$$

Solving gives $x = 5.69 \times 10^{-6}$. The error resulting from the assumption is

$$\frac{\text{calculated} - \text{assumed}}{\text{assumed}} \times 100 = \frac{(0.0810 - 5.69 \times 10^{-6}) - 0.0810}{0.0810} \times 100 = -0.007\%$$

less than 5%. The equlibrium concentrations of the species are

$$[HClO] = 0.0810 - 5.69 \times 10^{-6} = 0.0810 \text{ M} \quad [ClO^{-}] = 5.69 \times 10^{-6} \text{ M} \quad [H_3O^{+}] = 5.69 \times 10^{-6} \text{ M}$$

For (d) the reaction is $(CH_3)_3N(aq) + H_2O(l) \rightleftharpoons OH^-(aq) + (CH_3)_3NH^+(aq)$, which is described by the following K_b expression

$$K_b = \frac{[\text{OH}^-][(\text{CH}_3)_3\text{NH}^+]}{[(\text{CH}_3)_3\text{N}]} = 7.4 \times 10^{-5}$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_b expression as

$$[(CH_3)_3N] = 0.11 - x$$
 $[(CH_3)_3NH^+] = x$ $[OH^-] = x$

Substituting these into the K_b expression and assuming that $0.11 - x \approx 0.11$ gives

$$K_a = \frac{(x)(x)}{0.11} = 7.4 \times 10^{-5}$$

Solving gives $x = 2.85 \times 10^{-3}$. The error resulting from the assumption is

$$\frac{\text{calculated - assumed}}{\text{assumed}} \times 100 = \frac{(0.11 - 2.85 \times 10^{-3}) - 0.11}{0.11} \times 100 = -2.6\%$$

less than 5\%. The equlibrium concentrations of the species are

$$[(CH_3)N] = 0.11 - 2.85 \times 10^{-3} = 0.107 \text{ M} \quad [(CH_3)NH^+] = 2.85 \times 10^{-3} \text{ M} \quad [OH^-] = 2.85 \times 10^{-3} \text{ M}$$

For (e) the reaction is $\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_6^{2+}(aq) + \operatorname{H}_2\operatorname{O}(l) \Longrightarrow \operatorname{H}_3\operatorname{O}^+(aq) + \operatorname{Fe}(\operatorname{H}_2\operatorname{O})_5(\operatorname{OH})^+(aq)$, which is described by the following K_a expression

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{Fe}(\text{H}_2\text{O})_5(\text{OH})^+]}{[\text{Fe}(\text{H}_2\text{O})_6^{2+}]} = 1.6 \times 10^{-7}$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_a expression as

$$[Fe(H_2O)_6^{2+}] = 0.120 - x \quad [Fe(H_2O)_5(OH)^+] = x \quad [H_3O^+] = x$$

Substituting these into the K_a expression and assuming that $0.120 - x \approx 0.120$ gives

$$K_a = \frac{(x)(x)}{0.120} = 1.6 \times 10^{-7}$$

Solving gives $x = 1.39 \times 10^{-4}$. The error resulting from the assumption is

$$\frac{\text{calculated} - \text{assumed}}{\text{assumed}} \times 100 = \frac{(0.120 - 1.39 \times 10^{-4}) - 0.120}{0.120} \times 100 = -0.12\%$$

less than 5%. The equlibrium concentrations of the species are

$$[Fe(H_2O)_6^{2+}] = 0.120 - 1.39 \times 10^{-4} = 0.120 \text{ M} \quad [Fe(H_2O)_5(OH)^+] = 1.39 \times 10^{-4} \text{ M} \quad [H_3O^+] = 1.39 \times 10^{-4} \text{ M}$$

14.71: The equilibrium reaction is $CH_3COOH(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$ for which the equilibrium constant expression is

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} = 1.8 \times 10^{-5}$$

To find the initial concentration of CH_3COOH we note that 1 L of vinegar weighs, given a density of 1.007 g/mL, 1007 g. Of this, 5%, or 50.35 g is CH_3COOH ; thus, the initial concentration of CH_3COOH is

$$[\text{CH}_3\text{COOH}] = \frac{50.35 \text{ g} \times \frac{1 \text{ mol}}{60.053 \text{ g}}}{\text{L}} = 0.838 \text{ M}$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_a expression as

$$[CH_3COOH] = 0.838 - x$$
 $[CH_3COO^-] = x$ $[H_3O^+] = x$

Substituting these into the K_a expression and assuming that $0.838 - x \approx 0.838$ gives

$$K_a = \frac{(x)(x)}{0.838} = 1.8 \times 10^{-5}$$

Solving gives $x = 3.88 \times 10^{-3}$. The error resulting from the assumption is

$$\frac{\text{calculated - assumed}}{\text{assumed}} \times 100 = \frac{(0.838 - 3.88 \times 10^{-3}) - 0.838}{0.838} \times 100 = -0.46\%$$

less than 5%. The equilibrium concentration of H_3O^+ is 3.88×10^{-3} , which gives the pH as

$$pH = -\log(3.88 \times 10^{-3}) = 2.41$$

14.87: Adding acid to this buffer converts some $H_2PO_4^-$ to H_3PO_4 and adding base to this buffer converts some H_3PO_4 to $H_2PO_4^-$. The pH of the buffer depends on the ratio of the two species; that is

$$pH = pK_a + \log\left(\frac{[H_2PO_4^-]}{[H_3PO_4]}\right)$$

Because this ratio is inside a log function, any change in the ratio results in an even smaller change in the ratio's log and pH.

14.89: Because the concentrations of the buffer's conjugate weak acid and conjugate weak base are within a factor of 10 of each other, we know that

$$pH = pK_a + log\left(\frac{[CH_3COO^-]}{[CH_3COOH]}\right) = 4.74 + log\left(\frac{0.030}{0.25}\right) = 3.82$$

A pH of 3.82 gives the concentration of H_3O^+ as $1.51 \times 10\{-4\}$ \$.

14.91: Because the concentrations of the buffer's conjugate weak acaid and conjugate weak base are within a factor of 10 of each other, we know that

$$\mathrm{pH} = \mathrm{p}K_a + \log\left(\frac{[\mathrm{CH_3NH_2}]}{[\mathrm{CH_3NH_3}^+]}\right) = 10.64 + \log\left(\frac{0.125}{0.130}\right) = 10.62$$

A pH of 10.62 corresponds to a pOH of 14 - 10.62, or 3.38; thus, the concentration of OH⁻ is 4.2×10^{-4} M.

14.93: The concentration of OH^- is 1.0×10^{-5} M at equilibrium, and if we assume that its initial concentration was 0 M, then its change in concentration, x, is 1.0×10^{-5} . The equilibrium concentration of NH_3 , therefore, is 0.200 - x. We are looking for the initial concentration of NH_4^+ , so let's call it y. If the concentration of NH_3 decreases by x and the concentration of OH^- increases by x, then the equilibrium concentration of OH_4^+ must be x + y. Substituting into the K_b expression for OH_3 gives

$$\frac{[\mathrm{OH}^-][\mathrm{NH}_4^+]}{[\mathrm{NH}_3]} = \frac{(1.0 \times 10^{-5})(x+y)}{0.200-x} \approx \frac{(1.0 \times 10^{-5})(y)}{0.200}$$

where we assume that $0.200 - x \approx 0.200$ and that $x + y \approx y$. Solving for y gives its value, and thus the concentration of NH_4^+ or NH_4NO_3 as 0.36 M.

14.97: Because the concentrations of the conjugate weak acid and conjugate weak base are within a factor of 10 of each other, we know that

$$pH = pK_a + log\left(\frac{[NH_3]}{[NH_4^+]}\right) = 9.25 + log\left(\frac{0.20}{0.40}\right) = 8.95$$

14.99: Given that the p K_a for acetic acid is 4.57 and the desired pH of 5.00 is within ± 1 of the p K_a , we know that we are preparing a buffer and that

$$pH = pK_a + log\left(\frac{[CH_3COO^-]}{[CH_3COOH]}\right) = 4.74 + log\left(\frac{[CH_3COO^-]}{0.5}\right) = 5.00$$

Solving for the concentration of CH₃COO⁻ gives

$$0.26 = \log \left(\frac{\left[\text{CH}_3 \text{COO}^- \right]}{0.5} \right)$$

$$1.82 = \frac{[\text{CH}_3\text{COO}^-]}{0.5}$$

and $[CH_3COO^-] = 0.91$ M. This also is the concentration of NaCH₃COO · $3\,H_2O$; thus, the grams of NaCH₃COO · $3\,H_2O$ are

$$0.91 \text{ M} \times 0.300 \text{ L} \times 136.080 \text{ g/mol} = 37 \text{ g}$$

14.101: Given that the initial concentrations of CH₃COOH and of NaCH₃COO are within a factor of 10, we know that the solution is a buffer. Mixing equal volumes of the two solutions means that the concentrations of CH₃COOH and of NaCH₃COO are cut in half; thus, we have 0.100 M CH₃COOH and 0.300 M NaCH₃COO. For (a) we have

$$pH = pK_a + log\left(\frac{[CH_3COO^-]}{[CH_3COOH]}\right) = 4.74 + log\left(\frac{0.3}{0.1}\right) = 5.22$$

and that (b) the solution is acidic. For (c), the moles of NaCH₃COO in 0.200 L of the buffer is

$$0.3 \text{ mol/L} \times 0.200 \text{ L} = 0.0600 \text{ mol}$$

and the moles of CH₃COOH is

$$0.1 \text{ mol/L} \times 0.200 \text{ L} = 0.0200 \text{ mol}$$

Adding $0.034 \text{ mol/L} \times 0.003 \text{ L} = 1.0 \times 10^{-4} \text{ mol}$ of strong acid converts an equivalent number of moles of NaCH₃COO to CH₃COOH; thus, their moles become

$$0.0600 \text{ mol} - 1.0 \times 10^{-4} \text{ mol} = 0.0599 \text{ molNaCH}_3\text{COO}$$

$$0.0200 \text{mol} + 1.0 \times 10^{-4} \text{ mol} = 0.0201 \text{ molCH}_3 \text{COOH}$$

and the buffer's pH shifts to

$$pH = pK_a + log\left(\frac{[CH_3COO^-]}{CH_3COOH}\right) = 4.74 + log\left(\frac{0.0599}{0.0201}\right) = 5.21$$

- 14.103: The best buffer, assuming we seek a maximum buffer capacity against the addition of strong acid or strong base, is one where the pH and the pK_a of the conjugate weak acid are as close as possible. If we seek to prepare a buffer with a pH of 3.1, then the weak acid in Table 14.2 with the closest pK_a is HNO2, for which the pK_a value is 3.34.
- 14.105: The best buffer, assuming we seek a maximum buffer capacity against the addition of strong acid or strong base, is one where the pH and the p K_a of the conjugate weak acid are as close as possible. If we seek to prepare a buffer with a pH of 10.65, then we need the conjugate weak acid with the p K_a closest to 10.65, or the conjugate weak base with a p K_b closest to 14 10.65 = 3.35. From the choices in Table 14.3 this is CH_3NH_2 , which has a p K_b of 3.36.