

Automated ChIP-Seq Analysis and Reporting Pipeline

Stephen Kelly 1,2 , Igor Dolgalev $^{1-5}$, Charalampos Lazaris $^{3-5}$ & Aristotelis Tsirigos $^{1-5}$

¹Applied Bioinformatics Center & ²Genome Technology Center, NYU School of Medicine, NY 10016, USA, ³Department of Pathology, ⁴NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, ⁵Center for Health Informatics & Bioinformatics,

Objective

Develop a reproducible ChIP-Seq pipeline that can adapt to varying numbers of samples, treatment groups, and parameter sets while allowing for user expansion with custom programs and analysis tasks.

Pipeline usage summary

- Create new directory for analysis from a clone of the pipeline repository
- ②Set input files (fastq, bam)
- Generate sample sheet with pipeline-provided scripts
- (Optional) Modify parameters as needed, add custom tasks
- 6 Run pipeline
- 6 Compile report

Figure 1: ChIP-Seq pipeline programmatic workflow. All sets of parameters are evaluated for each pipeline task in a combinatorial fashion

ChIP-Seq Pipeline tasks **Programs Used** Alignment bowtie2 bowtie2, R Alignment Stats

Quality Control FastQC, deepTools

MACS Peak Calling

GenomicTools Matrix Correlation

Principal Component Analysis **R** Heatmap Clustering DiffBind Differential Peak Binding Visualization

developed methods listed in bold.

R, μ T_EX 2_{ε} Automatic Reporting

Table 1: ChIP-Seq pipeline standard components. Internally

Auto-report Sample Output

Figure 2: Alignment summary statistics

Figure 4: Principal component analysis

Figure 3: Quality control metrics

Figure 5: Differential binding heatmaps

Figure 6: Our ChIP-Seq pipeline is part of the HiC-Bench software package, available on GitHub

Future Developments

- Automated motif analysis
- Peak overlapping and filtering

Acknowledgements

This work used computing resources at the Laura and Isaac Perlmutter Cancer Center, which is supported by Cancer Center Support Grant P30CA016087. A. Tsirigos was supported by a Research Scholar Grant, RSG-15-189-01-RMC from the American Cancer Society. This work also used computing resources at the High Performance Computing Facility of the Center for Health Informatics and Bioinformatics at the NYU Langone Medical Center.

Software

- Web: http://www.med.nyu.edu/ocs/applied-bioinformatics-center
- GitHub: https://github.com/NYU-BFX/hic-bench
- Zenodo: https://zenodo.org/record/47676
- Contact: stephen.kelly@nyumc.org, aristotelis.tsirigos@nyumc.org