Assignment #1: LOGIC

1. Equivalence Laws

In digital electronics the following gates implements logical statements:

Write a diagram for each of the laws equivalence:

- Associative

$$a \wedge (b \wedge c) \equiv (a \wedge b) \wedge c$$

- Commutative

$$a \wedge b \equiv b \wedge a$$

Distributive $a \land (b \lor c) \equiv (a \land b) \lor (a \land c)$

- Identity $a \wedge t \equiv a$

Tautology is always TRUE in all cases.

- Negation $a \lor \neg a \equiv t$

- Idempotent $a \land a \equiv a$

- Universal bounds $a \lor t \equiv t$

- Absorption $a \vee (a \wedge b) \equiv a$

2. NAND

The simplest logic circuit to create is a nand gate. It has the following truth table and is equivalent to $\neg(a^b)$:

a	b	$\neg(a \wedge b)$
f	f	t
f	t	t
t	f	t
t	t	f

Nand has the special property, that any other binary operator can be built from NAND, here the NAND gate is shown and the implementation of **not**:

Build the operators and, or, and implies with NAND gates alone.

And

Or

• Implies

 $a \rightarrow b \equiv \neg a \ V \ b$, a conditional statement for implication. The diagram shows $a \rightarrow b$ which is equivalent to $\neg a \ V \ b$, it would only be false if a is true and b is false then the rest of the cases are true.