

Francesco Lenti - 865274 - f.lenti3@campus.unimib.it Mattia Boller - 873358 - m.boller@campus.unimib.it Mattia Marchi - 817587 - m.marchi@campus.unimib.it

Road Map

01

Esplorazione Dataset

Investigazione delle caratteristiche chiave dei dataset attraverso data visualization.

02

Approccio Metodologico

Definizione e caratteristiche dei modelli utilizzati e motivazioni delle scelte adottate. 03

Valutazione Performance

Valutazione e confronto dei vari modelli ed analisi dei risultati. 04

Conclusioni

Considerazioni finali e possibili sviluppi futuri.

Introduzione

Problema

Una immagine vale più di mille parole.

Sapevi che un'immagine può salvare più di mille vite?

Milioni di animali randagi soffrono per le strade o vengono soppressi nei rifugi ogni giorno in tutto il mondo.

Introduzione

Soluzione

Adottare tecniche di Deep Learning per prevedere la popolarità della foto e massimizzare la probabilità di adozione.

Immagini

9912 immagini rappresentanti animali che hanno un profilo sulla piattaforma PetFinder.my

Dall'analisi visiva effettuata non si evincono particolari dettagli su cosa possa rendere una foto più popolare rispetto ad un'altra.

kaggle

Pawpularity: 54

Pawpularity: 32

Compare Language Parage 1 Compare Dataset

Metadati

File tabellare contenente i metadati per ogni immagine. I metadati contengono il Pawpularity score e altre caratteristiche nelle foto.

Metadati

Metadati

Metadati

Metadati

Metadati

Metadati

02 Approccio Metodologico

CONVOLUTIONAL NEURAL NETWOK

- Activation ReLU
- Dropout (50% 30% 10%)
- Output lineare
- Loss MSE
- Optimizer ADAM

EFFICIENT-NET B3 NOISY STUDENT

02 Approccio Metodologico

MULTI-LAYER PERCEPTRON

Rete dedicata al trattamento dei metadati.

- Activation ReLU
- Dropout (20% 10%)
- Output lineare
- Loss MSE
- Optimizer ADAM

02 Approccio Metodologico

HYBRID DEEP NEURAL NETWORK

CONVOLUTIONAL NEURAL NETWOK

- Numero epoche: 30
- Batch Size: 32
- Checkpoint su miglior validation loss
- Segnali di overfitting

Minore Train RMSE: 15.61

Minore Validation RMSE: 17.56

MULTI-LAYER PERCEPTRON

- Numero epoche: 30
- Batch Size: 32
- Checkpoint su miglior validation loss
- Performance peggiori

Minore Train RMSE: 21.24

Minore Validation RMSE: 20.12

HYBRID DEEP NEURAL NETWORK

- Numero epoche: 30
- Batch Size: 32
- Checkpoint su miglior validation loss

Minore Train RMSE: 17.36

Minore Validation RMSE: 17.31

CONFRONTO

Validation RMSE Hybrid: 17.31 Validation RMSE CNN: 17.56

Validation MLP: 20.12

Come capire come ragiona il modello sulle immagini?

GRAD CAM

04 Conclusioni

Sviluppi futuri

TRANSFORMER

RISOLUZIONE IMMAGINI MAGGIORE

METADATI PIU' COMPLETI E CONSISTENTI

GRAZIE PER L'ATTENZIONE!

