CS136

CP4 Pengcheng Xu

Collaboration Statement:

- Total hours spent: 6 hrs
- Consult Resources:
 - · Course's website
 - Numpy website
 - Online resource
- Internet

Problem 1.

1a

After using pretrained EM model from 1(v) in the CP4 description, and running plot_history_for_many_runs,py script, we could make a figure as below (validation score versus iteration, with a separate line for each random seed):

From the figure above, we could see that K = 16 seems to do best on this data, because all the random seeds converge to a higher validation score (i.e. around 0.4) compared to other K-value models, and also converging to the final stable validation score relatively quickly.

1b

After modifying and running <code>train_EM_gmm_with_man_runs.py</code> script, we could see the best run with K = 8 is when we set random seed = 3001.

The corresponding visualizaton is as follows:

From the figure above, we could get out estimation:

- (a) long-sleeve (clusters k = 0, k= 7, and k = 4)
 probability = 54.3% (i.e. 20.6% + 17.4% +16.3%, the summation of each cluster's probability)
- (b) short-sleeve (clusters k= 2, k = 5, k = 3, and k = 1)

probability =
$$37.4\%$$
 (i.e. $13.3\% + 9.3\% + 8.5\% + 6.2\%$)

• (c) non-sleeve (cluster k = 6) probability = 8.3%

1c

After finishing #TODO parts and running the completed version of trian_EM_gmm_with_many_runs.py scripts, and extracting the score on both validation set and testing set, we could draw a table as below (keep 5 digits after decimal point):

K value	Validation score (log likelidhood per pixel)	Test score (log likelidhood per pixel)	See with best model
1	-0.15983	-0.17355	1001
4	0.29984	0.29848	3001
8	0.37801	0.37951	3001
16	0.40152	0.40639	7001