

Declaration under 37 C.F.R. §1.132

I, Daijiro Inoue, a citizen of Japan, hereby declare the following:

1. I graduated in Kyoto Institute of Technology. My research involved analysis of amorphous materials.
2. Since 1985, I have been employed by Sanyo Electric Co., LTD, and affiliated with R&D Headquarters. I am and have been engaged in the research and development of compound semiconductor electronic and optical devices.
3. I am a co-inventor of the invention of United States Patent Application No. 09/746,065.
4. I have read and am familiar with the above-identified patent application as well as the Final Office Action dated February 11, 2003, and the cited references therein.
5. I declare that I conducted the following three experimental investigations, which show unexpected results associated with the thickness of a depletion enhancement layer in a semiconductor device of the present invention:

Background of the Experiments

FIG. 1 is a typical sectional view of a semiconductor laser device according to an embodiment of the present invention. In the semiconductor laser device shown in FIG. 1, a cladding layer 2 of n-(Al_{0.7}Ga_{0.3})_{0.5}In_{0.5}P having a thickness of 1500 nm and an emission layer 14 described later are successively formed on an n-GaAs substrate 1. A cladding layer 2 of p-(Al_{0.7}Ga_{0.3})_{0.5}In_{0.5}P having a thickness of 1500 nm and a contact layer of p-Ga_{0.5}In_{0.5}P having a thickness of 200 nm are successively formed on the emission layer 14. The p-type cladding layer 6 and the p-type contact layer 7 are etched to define a ridge portion.

TECHNOLOGY CENTER 2800
NOV 19 2003

RECEIVED

F I G . 1

The carrier concentration of the n-GaAs substrate 1 is $1*10^{18} \text{ cm}^{-3}$, the carrier concentration of the n-type cladding layer 2 is $3*10^{17} \text{ cm}^{-3}$, and the carrier concentration of the p-type contact layer 7 is $2*10^{18} \text{ cm}^{-3}$, respectively.

Further, a depletion enhancement layer 8 of a thickness t having a striped opening on the upper surface of the ridge portion is formed on the p-type cladding layer 6. A low carrier concentration layer 9 of GaAs of 1000 nm in thickness having a striped opening on the upper surface of the ridge portion is formed on the depletion enhancement layer 8. An n-type current blocking layer 10 of n-GaAs of 500 nm in thickness having a striped opening on the upper surface of the ridge portion is formed on the low carrier concentration layer 9. The carrier concentration of the n-type current blocking layer 10 is $8*10^{17} \text{ cm}^{-3}$. The carrier concentration of the low carrier concentration layer 9 is lower than that of the n-type current blocking layer 10.

A contact layer 11 of p-GaAs having a thickness of 3000 nm is formed on the p-type contact layer 7 located in the striped opening of the n-type current blocking layer 10 and on the n-type current blocking layer 10. The carrier concentration of the p-type contact layer is $3*10^{19} \text{ cm}^{-3}$. A p-electrode 12 having a thickness of 300 nm is formed on the p-type contact layer 11. An n electrode 13 having a thickness of 300 nm is formed on the back side of the n-GaAs substrate 1.

The emission layer 14 includes a guide layer 3 of $(\text{Al}_{0.5}\text{Ga}_{0.5})_{0.5}\text{In}_{0.5}\text{P}$ having a thickness of 30 nm formed on the n-type cladding layer 2, a quantum well active layer 4 formed on the guide layer 3 and a guide layer 5 of $(\text{Al}_{0.5}\text{Ga}_{0.5})_{0.5}\text{In}_{0.5}\text{P}$ having a thickness of 30 nm formed on the quantum well active layer 4.

The quantum well active layer 4 has a superlattice structure formed by alternately stacking a plurality of quantum well layers 15 of $\text{Ga}_{0.5}\text{In}_{0.5}\text{P}$ each having a thickness of 5 nm and a plurality of barrier layers 16 of $(\text{Al}_{0.5}\text{Ga}_{0.5})_{0.5}\text{In}_{0.5}\text{P}$ each having a thickness of 5 nm. For example, the number of the barrier layers 16 is 2, and the number of the quantum well layers 15 is 3.

Table 1 shows the aforementioned structure.

Table 1

Name of Layer	Composition and Name of Layer	Thick-ness (nm)	Carrier Concentration (cm ⁻³)	Numer-al
Emis-sion Layer	n-GaAs Substrate		1×10^{18}	1
	Cladding Layer of n- $(Al_{0.7}Ga_{0.3})_{0.5}In_{0.5}P$	1500	3×10^{17}	2
	Guide Layer of $(Al_{0.5}Ga_{0.5})_{0.5}In_{0.5}P$	30		3
	Quantum Well Layer of $Ga_{0.5}In_{0.5}P$	5		15
	Active Barrier Layer of $(Al_{0.5}Ga_{0.5})_{0.5}In_{0.5}P$	5		16
	Guide Layer of $(Al_{0.5}Ga_{0.5})_{0.5}In_{0.5}P$	30		5
	Cladding Layer of p- $(Al_{0.7}Ga_{0.3})_{0.5}In_{0.5}P$	1500	3×10^{17}	6
	Contact Layer of p- $Ga_{0.5}In_{0.5}P$	200	2×10^{18}	7
	Depletion Enhancement Layer of $Ga_{0.5}In_{0.5}P$	t		8
	Low Carrier Concentration Layer of GaAs	1000		9
	Current Blocking Layer of n-GaAs	500	8×10^{17}	10
	Contact Layer of p-GaAs	3000	3×10^{19}	11
	p-Electrode	300		12
	n-Electrode	300		13

The cutoff frequency is such a frequency that the amplitude of a laser beam superposed with a sine wave output from the object semiconductor laser device is reduced by 3 dB as compared with the case of superposing a low frequency (the superposed frequency is not more than 10 MHz in this example).

First Experiment

The present inventors investigated the effects on cutoff frequency of varying the thickness t of the depletion enhancement layer 8 of the above structure. Thicknesses of less than 10 nm to 50 nm were studied. FIG. 6 shows the results of measurement of a cutoff frequency of the semiconductor laser device shown in Table 1 with variation of the thickness t of the depletion enhancement layer 8.

FIG. 6

Referring to FIG. 6, O denotes a case of employing a depletion enhancement layer 8 of $\text{Ga}_{0.5}\text{In}_{0.5}\text{P}$ having a single-layer structure, □ denotes a case of employing a depletion enhancement layer 8 of a superlattice structure alternately having $(\text{Al}_{0.7}\text{Ga}_{0.3})_{0.5}\text{In}_{0.5}\text{P}$ barrier layers and $\text{Ga}_{0.5}\text{In}_{0.5}\text{P}$ well layers (the thickness t is the sum of the thicknesses of the well layers), and Δ denotes a case of employing a depletion enhancement layer 8 of $\text{Al}_{0.45}\text{Ga}_{0.55}\text{As}$ having a single-layer structure respectively.

FIG. 6 clearly shows that the cutoff frequency, which was 200 MHz when the semiconductor laser device was formed with no depletion enhancement layer 8, is improved when the thickness t of the depletion enhancement layer 8 is increased, and remarkably improved when the thickness t of the depletion enhancement layer 8 exceeds 10 nm, and substantially saturated when the thickness t is about 20 nm. Therefore, the thickness t of the depletion enhancement layer 8 is preferably at least 10 nm, and more preferably at least 20 nm saturating improvement of the cutoff frequency. When the thickness t of the depletion enhancement layer 8 is at least 15 nm, the intermediate level between 10 nm and 20 nm, the high-frequency characteristic is sufficiently improved.

Second Experiment

The structure of a semiconductor laser device evaluated in a second experiment is similar to that shown in FIG. 1, while the materials, thicknesses and carrier concentrations of respective layers are different from those in the first experiment. Table 2 shows the materials, thicknesses and carrier concentrations of the respective layers forming the semiconductor laser device according to this embodiment.

Table 2

Name of Layer	Composition and Name of Layer	Thickness (nm)	Carrier Concentration (cm^{-3})	Numerical
Emission Layer	n-GaAs Substrate		1×10^{18}	1
	Cladding Layer of n- $\text{Al}_{0.45}\text{Ga}_{0.55}\text{As}$	1500	3×10^{17}	2
	Guide Layer of $\text{Al}_{0.35}\text{Ga}_{0.65}\text{As}$	30		3
	Quantum Well Layer of $\text{Al}_{0.1}\text{Ga}_{0.9}\text{As}$	5		15
	Barrier Layer of $\text{Al}_{0.35}\text{Ga}_{0.65}\text{As}$	5		16
	Guide Layer of $\text{Al}_{0.35}\text{Ga}_{0.65}\text{As}$	30		5
	Cladding Layer of p- $\text{Al}_{0.45}\text{Ga}_{0.55}\text{As}$	1500	1×10^{18}	6
	Contact Layer of p-GaAs	200	4×10^{18}	7
	Depletion Enhancement Layer of $\text{Al}_{0.25}\text{Ga}_{0.75}\text{As}$	t		8
	Low Carrier Concentration Layer of GaAs	1000		9
	Current Blocking Layer of n-GaAs	500	5×10^{17}	10
	Contact Layer of p-GaAs	3000	3×10^{19}	11
	p-Electrode	300		12
	n-Electrode	300		13

The present inventors investigated the effects on cutoff frequency of varying the thickness t of the depletion enhancement layer 8 of the above structure. Thicknesses of less than 10 nm to 50 nm were studied. FIG. 8 illustrates results of measurement of a cutoff frequency of the semiconductor laser device shown in Table 2 with variation of the thickness t of a depletion enhancement layer 8. Referring to FIG. 8, \circ denotes a case of employing a depletion enhancement layer 8 of $\text{Al}_{0.25}\text{Ga}_{0.75}\text{As}$ having a single-layer structure, and \square denotes a case of employing a depletion enhancement layer 8 of a superlattice structure alternately having $\text{Al}_{0.45}\text{Ga}_{0.55}\text{As}$ barrier layers and $\text{Al}_{0.25}\text{Ga}_{0.75}\text{As}$ well layers (the thickness t is the sum of the thicknesses of the well layers).

FIG. 8 clearly shows that the cutoff frequency, which was 400 MHz when the semiconductor laser device is formed with no depletion enhancement layer 8, is improved when the thickness t of the depletion enhancement layer 8 is increased, remarkably improved when the thickness t of the depletion enhancement layer 8 exceeds 10 nm, and substantially saturated when the thickness

t is about 20 nm. Therefore, the thickness t of the depletion enhancement layer 8 is preferably at least 10 nm, and more preferably at least 20 nm saturating improvement of the cutoff frequency. When the thickness t of the depletion enhancement layer 8 is at least 15 nm, the intermediate level between 10 nm and 20 nm, the high-frequency characteristic is sufficiently improved.

Third Experiment

The structure of the semiconductor laser device evaluated in a third experiment is similar to that shown in FIG. 1, while the materials, thicknesses and carrier concentrations of respective layers are different from those in the first embodiment. Table 3 shows the materials, thicknesses and carrier concentrations of the respective layers forming the semiconductor laser device according to this embodiment.

Table 3

Name of Layer	Composition and Name of Layer	Thickness (nm)	Carrier Concentration (cm^{-3})	Numerical
Emis-sion Layer	n-GaN Substrate		1×10^{18}	1
	Cladding Layer of n-Al _{0.15} Ga _{0.85} N	1000	3×10^{17}	2
	Guide Layer of GaN	30		3
	Quantum Well Active Layer	Quantum Well Layer of In _{0.15} Ga _{0.85} N	5	15
		Barrier Layer of In _{0.05} Ga _{0.95} N	5	16
		Guide Layer of GaN	30	5
		Cladding Layer of p-Al _{0.15} Ga _{0.85} N	1000	2×10^{17}
		Contact Layer of p-GaN	200	3×10^{17}
		Depletion Enhancement Layer of Al _{0.07} Ga _{0.93} N	t	8
		Low Carrier Concentration Layer of GaN	800	9
	Current Blocking Layer of n-GaN	200	5×10^{17}	10
	Contact Layer of p-GaN	3000	8×10^{17}	11
	p-Electrode	300		12
	n-Electrode	300		13

FIG. 9 illustrates results of measurement of a cutoff frequency of the semiconductor laser device shown in Table 3 with variation of the thickness t of a depletion enhancement layer 8. Referring to FIG. 9, \circ denotes a case of employing a depletion enhancement layer 8 of $\text{Al}_{0.07}\text{Ga}_{0.93}\text{N}$ having a single-layer structure, and \square denotes a case of employing a depletion enhancement layer 8 of a superlattice structure alternately having $\text{Al}_{0.15}\text{Ga}_{0.85}\text{N}$ barrier layers and $\text{Al}_{0.07}\text{Ga}_{0.93}\text{N}$ well layers (the thickness t is the sum of the thicknesses of the well layers).

The present inventors investigated the effects on cutoff frequency of varying the thickness t of the depletion enhancement layer 8 of the above structure. Thicknesses of less than 10 nm to 50 nm were studied. FIG. 9 clearly shows that the cutoff frequency, which was 320 MHz when the semiconductor laser device is formed with no depletion enhancement layer 8, is gradually improved when the thickness t of the depletion enhancement layer 8 is increased, remarkably improved when the thickness t of the depletion enhancement layer 8 exceeds 10 nm, and substantially saturated when the thickness t is about 20 nm. Therefore, the thickness t of the

depletion enhancement layer 8 is preferably at least 10 nm, and more preferably at least 20 nm saturating improvement of the cutoff frequency. When the thickness t of the depletion enhancement layer 8 is at least 15 nm, the intermediate level between 10 nm and 20 nm, the high-frequency characteristic is sufficiently improved.

Summary

The above experiments clearly show the unexpected result associated with the thickness of the depletion enhancement layer of a semiconductor device of the present invention being in the range of 10-20 nm.

Signed,

C/o Sanyo Electric Co., LTD
2-5-5, Keihanhondori, Moriguchi-shi,
Osaka 570-8677 JAPAN

Daijiro Inoue

Daijiro Inoue

Nov. 6, 2003

Date