Variedades Complejas (tarea 7)

Eduardo León (梁遠光)

Diciembre 2020

Part I

Preliminaries. Let $\pi: E \to M$ be a complex vector bundle. Let $g_{\alpha\beta}: U_{\alpha\beta} \to \mathrm{GL}(k,\mathbb{C})$ be the transition functions of E with respect to an open cover $\{U_{\alpha}\}$ of M.

Exercise 1. Find the transition functions of E^{\star} , \bar{E} with respect to the same open cover of M.

Solution.

a) Let $\sigma_{\alpha}: U_{\alpha} \to \mathbb{C}^k$ and $\xi_{\alpha}: U_{\alpha} \to \mathbb{C}^k$ be the local representatives of two local sections σ, ξ of E, E^* , respectively. Consider the bilinear pairing $f = \langle \xi, \sigma \rangle$, whose value is

$$f(x) = \xi_{\alpha}(x)^{T} \cdot \sigma_{\alpha}(x) = \xi_{\beta}(x)^{T} \cdot \sigma_{\beta}(x) = \xi_{\beta}(x)^{T} \cdot g_{\alpha\beta}(x) \cdot \sigma_{\alpha}(x)$$

This equation holds no matter what σ is. Then $\xi_{\alpha}, \xi_{\beta}$ are related by

$$\xi_{\alpha}(x)^{T} = \xi_{\beta}(x)^{T} \cdot g_{\alpha\beta}(x) \implies \xi_{\beta}(x) = \left[g_{\alpha\beta}(x)^{-1}\right]^{T} \cdot \xi_{\alpha}(x)$$

b) Recall that E, \bar{E} are isomorphic as smooth vector bundles. The only difference between them is the complex structure on the fibers; however, this has no bearing whatsoever on whether a local smooth section is well defined. Therefore, we may reinterpret a local section σ of E as a local section $\bar{\sigma}$ of \bar{E} , and vice versa.

Let $\sigma_{\alpha}: U_{\alpha} \to \mathbb{C}^k$ be the local representatives of σ . Since the rescaling action on \bar{E} is related to the original rescaling action on E by complex conjugation, the natural local representatives of $\bar{\sigma}$ are the componentwise complex conjugates $\bar{\sigma}_{\alpha}: U_{\alpha} \to \mathbb{C}^k$. Then $\bar{\sigma}_{\alpha}, \bar{\sigma}_{\beta}$ are related by

$$\bar{\sigma}_{\beta}(x) = \overline{g_{\alpha\beta}(x) \cdot \sigma_{\alpha}(x)} = \bar{g}_{\alpha\beta}(x) \cdot \bar{\sigma}_{\alpha}(x)$$

Hence, the transition functions of the \bar{E} are the componentwise complex conjugates $\bar{g}_{\alpha\beta}$.

Exercise 2. Show that a Hermitian structure on E induces a canonical isomorphism $\bar{E} \cong E^*$.

Solution. A Hermitian structure on E is a smoothly chosen complex inner product on each fiber E_x . Such complex inner products admit several equivalent equivalent presentations:

- As sesquilinear maps $H_x: E_x \times E_x \to \mathbb{C}$, by definition.
- As C-bilinear maps $H_x: E_x \times \bar{E}_x \to \mathbb{C}$, by conjugating the antilinear argument.
- As \mathbb{C} -linear maps $H_x: E_x \otimes_{\mathbb{C}} \bar{E}_x \to \mathbb{C}$, by the universal property of $-\otimes_{\mathbb{C}} -$.
- As C-linear maps $H_x: \bar{E}_x \to E_x^*$, by the Hom-tensor adjunction.

In each case, the Hermitian matrix that represents H_x must be positive definite, hence invertible. Thus, in the last presentation, H_x is a \mathbb{C} -linear isomorphism. Thus, $H: \bar{E} \to E^*$ is a bundle isomorphism.

Exercise 3. Suppose that each transition function $g_{\alpha\beta}: U_{\alpha\beta} \to U(k)$ is unitary matrix-valued. Show that E has a canonically induced Hermitian structure.

Solution. Let $\sigma_{\alpha}, \tau_{\alpha}: U_{\alpha} \to \mathbb{C}^k$ be the local representatives of two local sections σ, τ of E. Then,

$$\begin{split} H(\sigma,\tau)_x &= \sigma_\alpha(x)^\dagger \cdot \tau_\alpha(x) \\ &= \sigma_\alpha(x)^\dagger \cdot \left[g_{\alpha\beta}(x)^\dagger \cdot g_{\alpha\beta}(x) \right] \cdot \tau_\alpha(x) \\ &= \left[g_{\alpha\beta}(x) \cdot \sigma_\alpha(x) \right]^\dagger \cdot \left[g_{\alpha\beta}(x) \cdot \tau_\alpha(x) \right] \\ &= \sigma_\beta(x) \cdot \tau_\beta(x), \end{split}$$

is a well-defined smoothly chosen complex inner product on E_x , regardless of the chosen local coordinate system. Therefore, H is a Hermitian structure on E.

Part II

Preliminaries. Let (M, J) be an almost complex manifold, and let g be a Hermitian metric on it. Recall that the fundamental 2-form of h is $\omega(X, Y) = g(JX, Y)$.

Exercise 1. Suppose that M is a surface. Show that g is a Kähler metric.

Solution. We must show that ω is closed and J is integrable.

- Since M is a surface, $\Omega^3(M) = 0$. Therefore, $d\omega = 0$, i.e., ω is a closed 2-form.
- Let X be a nowhere vanishing local real vector field. Since J has no real eigenvalues, X and JX are fiberwise linearly independent. Since M is a surface, X and JX form a local basis of TM. Since

$$N_J(X, JX) = [X, JX] + J[JX, JX] + J[X, J^2X] - [JX, J^2X] = 0,$$

the Nijenhuis tensor is identically zero. Therefore, J is integrable.

Exercise 2. Show that ω is a (1,1)-form.

Solution. The fundamental 2-form ω satisfies the following identity:

$$\omega(JX, JY) = q(J^2X, JY) = q(JX, Y) = \omega(X, Y)$$

However, if X, Y are both of type (1,0), then

$$\omega(JX, JY) = \omega(iX, iY) = i^2 \,\omega(X, Y) = -\omega(X, Y)$$

Similarly, if X, Y are both of type (0, 1), then

$$\omega(JX, JY) = \omega(-iX, -iY) = (-i)^2 \omega(X, Y) = -\omega(X, Y)$$

Hence ω vanishes if its arguments are both of the same type. Therefore, ω is a (1,1)-form.

Exercise 3. Show that the representation of g in local holomorphic coordinates is a Hermitian matrix.

Remark. The problem statement implicitly asserts that J is a complex structure. Otherwise we would not have any local holomorphic coordinates at our disposal.

Solution. Let $z=(z_1,\ldots,z_n)$ be a local holomorphic chart on M. We have

- The induced real coordinates $x = \Re(z)$ and $y = \Im(z)$ satisfying z = x + iy.
- The induced antiholomorphic coordinates $\bar{z} = x iy$.

These coordinate systems are related to each other by the real change of basis

$$2\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} I & I \\ iI & -iI \end{bmatrix} \begin{bmatrix} z \\ \bar{z} \end{bmatrix}$$

Since g is a Hermitian metric, its real representation has the form

$$G = 4 \begin{bmatrix} A & -B \\ B & A \end{bmatrix}, \text{ where } \begin{cases} A^T = A \\ B^T = -B \end{cases}$$

Hence its complexified representation has the form

$$G^{\mathbb{C}} = \begin{bmatrix} I & I \\ iI & -iI \end{bmatrix}^T \begin{bmatrix} A & -B \\ B & A \end{bmatrix} \begin{bmatrix} I & I \\ iI & -iI \end{bmatrix} = 2 \begin{bmatrix} 0 & A+iB \\ A-iB & 0 \end{bmatrix}$$

It only remains to show that A - iB is a Hermitian matrix:

$$(A - iB)^{\dagger} = A^T + iB^T = A - iB$$

Exercise 4. Show that the complexification of g is a symmetric bilinear tensor satisfying

- a) $g(\bar{Z}, \bar{W}) = \overline{g(Z, W)}$
- b) $g(Z, \bar{Z}) > 0$, for every nonzero vector $Z \in TM^{\mathbb{C}}$.
- c) g(Z, W) = 0, whenever both vectors are of the same type.

Solution. Recall that the complexified representation of g has the form

$$G^{\mathbb{C}} = \begin{bmatrix} 0 & A+iB \\ A-iB & 0 \end{bmatrix},$$

where A is real symmetric and B is real antisymmetric. Then,

- a) This follows from the fact that $G^{\mathbb{C}}$ is a Hermitian matrix.
- b) Let Z = X + iY be a nonzero vector. Then at least one of X, Y is nonzero. Hence,

$$g(Z, \bar{Z}) = g(X + iY, X - iY) = g(X, X) + g(Y, Y) > 0$$

c) This follows from the fact that the diagonal blocks in $G^{\mathbb{C}}$ are zero.