Мартингалы

6.1 Фильтрации, моменты остановки и мартингалы

6.1.1 Фильтрации

Пусть (Ω, \mathcal{F}) - измеримое пространство, T - подмножество \mathbb{R} или \mathbb{Z} .

Определение 6.1. Совокупность σ -подалгебр $\mathcal{F}_t \subseteq \mathcal{F}$, $t \in T$, называется фильтрацией, если $\mathcal{F}_s \subseteq \mathcal{F}_t$ при любых $s \leq t$.

Определение фильтрации означает, что если множество $B \in \mathcal{F}$ измеримо относительно \mathcal{F}_s , то оно также измеримо относительно \mathcal{F}_t при $s \leq t$, однако σ -алгебра \mathcal{F}_t может содержать множества, неизмеримые относительно \mathcal{F}_s .

6.1.2 Момент остановки

Определение 6.2. Случайная величина τ на измеримом пространстве (Ω, \mathcal{F}) со значениями в T называется моментом остановки относительно фильтрации $(\mathcal{F}_t)_{t\in T}$, если $\{\tau \leq t\} \in \mathcal{F}_t$ для любого $t \in T$.

Давайте рассмотрим простейший пример момента остановки. Представим себе игру, каждый раунд которой может закончится либо выигрышем (получаем 1 доллар), либо проигрышем (теряем 1 доллар). Эту игру закодируем бесконечной последовательностью, элементы которой либо 1 (выигрыш), либо -1 (проигрыш). Пусть τ_1 - первый момент времени, когда накопленный выигрыш составит 1 доллар, а τ_2 - минимальный номер раунда, такой, что следующий раунд будет проигран. Давайте выясним, являются случайные величины τ_1 и τ_2 моментами остановки. Для этого формализуем выше сказанное:

$$\Omega = \{\omega = (\omega_1, \omega_2, \dots), \omega_i \in \{-1, +1\}\},$$

$$\mathcal{F}_n = \sigma(\omega : \omega_1 = a_1, \dots, \omega_n = a_n, a_i \in \{-1, +1\}),$$

$$\mathcal{F} = \sigma(\mathcal{F}_n, n \in \mathbb{N}),$$

$$\tau_1(\omega) = \min\{n : \sum_{i=1}^n \omega_i = 3\},$$

$$\tau_2(\omega) = \min\{n : \omega_{n+1} = -1\},\$$

Теперь стало очевидно, что множество $\{\tau_1 \leq n\} \in \mathcal{F}_n$, поэтому τ является моментом остановки, а $\{\tau_2 \leq n\} \notin \mathcal{F}_n$, т.е. τ_2 не является моментом остановки.

Можно доказать много разных свойств про моменты остановки. Давайте для примера рассмотрим следующее:

Утверждение 6.1. Если τ_1, τ_2 - моменты остановки фильтрации $(\mathcal{F}_t)_{t \in T}, \ mo \ \tau_1 \wedge \tau_2 := \min(\tau_1, \tau_2)$ также является моментом остановки.

Доказательство.

$$\{\tau_1 \wedge \tau_2 \le t\} = \{\tau_1 \le t\} \cup \{\tau_2 \le t\} \in \mathcal{F}_t.$$

Аналогичные свойства можно доказать для $\tau_1 \vee \tau_2 := \max(\tau_1, \tau_2), \ \tau_1 + \tau_2$. Оставим это читателю.

6.1.3 σ -алгебра событий, определенных до момента остановки

Определение 6.3. Пусть τ - момент остановки фильтрации $(\mathcal{F})_{t\in T}$. Совокупность событий $A \in \mathcal{F}$, для которых $A \cap \{\tau \leq t\} \in \mathcal{F}_t$ для любого $t \in T$, называется σ -алгеброй событий, определенных до момента τ , и обозначается \mathcal{F}_{τ} .

Утверждение 6.2. Выполнены следующие свойства:

- 1. \mathcal{F}_{τ} является σ -алгеброй,
- 2. τ измерима относительно \mathcal{F}_{τ} ,
- 3. если $\tau_1 \leq \tau_2$ моменты остановки, то $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$

Доказательство. 1. Очевидно, певрое свойство выполнено, т.к.

$$\Omega \cap \{\tau < t\} \in \mathcal{F}_t$$
.

Если $A \in \mathcal{F}_{\tau}$, то

$$(\Omega \setminus A) \cap \{\tau \le t\} = \{\tau \le t\} \setminus (A \cap \{\tau \le t\}) \in \mathcal{F}_t.$$

Если $A_i \in \mathcal{F}_{\tau}$, то

$$(\bigcup_{i\in\mathbb{N}} A_i) \cap \{\tau \le t\} = \bigcup_{i\in\mathbb{N}} (A_i \cap \{\tau \le t\}) \in \mathcal{F}_t.$$

2. Второе свойство выполнено, т.к.

$$\{\tau \leq c\} \cap \{\tau \leq t\} \in \mathcal{F}_{\min(c,t)} \in \mathcal{F}_t.$$

3. Третье свойство выполнено, т.к. если $A \in \mathcal{F}_{ au_1}$, то

$$A \cap \{\tau_2 \le t\} = (A \cap \{\tau_1 \le t\}) \cap \{\tau_2 \le t\} \in \mathcal{F}_t.$$

6.1.4 Случайный процесс, согласованный с фильтрацией

Определение 6.4. Случайный процесс $(X_t)_{t\in T}$ называется согласованным с фильтрацией $(\mathcal{F}_t)_{t\in T}$, если случайная величина X_t измерима относительно \mathcal{F}_t при любом $t\in T$.

Простым примером фильтрации служит фильтрация, порожденная самим процессом: $\mathcal{F}_t^X := \sigma(X_s, s \leq t)$. Очевидно, что процесс $(X_t)_{t \in T}$ согласован с фильтрацией $(\mathcal{F}_t^X)_{t \in T}$.

Утверждение 6.3. Пусть $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ - согласованный процесс, τ - момент остановки. Тогда случайная величина X_{τ} измерима относительно \mathcal{F}_{τ} .

Доказательство. Случайная величина τ принимает целые значение $m \in \mathbb{Z}_+$. Для любого $m \leq n$ верно следующее свойство: $\{X_m \in B\} \in \mathcal{F}_m \subseteq \mathcal{F}_n$ для любого $B \in \mathcal{B}(\mathbb{R})$, т.к. $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ - согласованный процесс. Поэтому верно следующее:

$$\{X_{\tau} \in B\} \cap \{\tau \leq n\} \in \mathcal{F}_n$$
 для любого $B \in \mathcal{B}(\mathbb{R})$

6.1.5 Мартингалы

Определение 6.5. Семейство $(X_t, \mathcal{F}_t)_{t \in T}$ называется мартингалом, если выполнены следующие свойства:

- 1. $(X_t)_{t\in T}$ согласован с фильтрацией $(\mathcal{F}_t)_{t\in T}$,
- 2. $X_t \in L_1(\Omega, \mathcal{F}, P)$,
- 3. $X_s = \mathbb{E}[X_t | \mathcal{F}_s]$ для любых $s \leq t$.

Если в третьем свойстве знак равенства заменить на $\leq u_N u \geq m_0 (X_t, \mathcal{F}_t)_{t \in T}$ будет называться субмартингалом или супермартингалом соответственно.

Утверждение 6.4. Если $(X_t)_{t\in T}$ - процесс с независимыми приращениями, $\mathbb{E}[X_t] = c$ для любых $t\in T$, тогда $(X_t, \mathcal{F}^X_t)_{t\in T}$ - мартингал.

Доказательство. Пусть $s \le t$. Тогда верно следующее:

$$\mathbb{E}\left[X_t|\mathcal{F}_s^X\right] = \mathbb{E}\left[X_t - X_s + X_s|\mathcal{F}_s^X\right] = \mathbb{E}\left[X_t - X_s|\mathcal{F}_s^X\right] + X_s = X_s \quad \text{п.н.}$$

Примерами процессов, для которых выполнено предыдущее утверждение (а, следовательно, мартингалов) служит винеровский процесс и процесс $Y_t = X_t - \mathbb{E}[X_t]$, где X_t процесс Пуассона. Примером субмартингала служит процесс, полученный применением выпуклой функции к мартингалу.

Утверждение 6.5. Пусть $(X_t, \mathcal{F}_t)_{t \in T}$ - мартингал, $h : \mathbb{R} \to \mathbb{R}$ - выпуклая функция, $Y_t := h(X_t)$ интегрируема для любого $t \in T$. Тогда $(Y_t, \mathcal{F}_t)_{t \in T}$ - субмартингал.

Доказательство. Для доказательства достаточно применить условное неравенство Йенсена:

$$Y_s = h(X_s) = h(\mathbb{E}[X_t | \mathcal{F}_f]) \le \mathbb{E}[h(X_t) | \mathcal{F}_f] = \mathbb{E}[Y_t | \mathcal{F}_f]$$

6.2 Мартингалы с дискретным временем

Мы докажем важные свойства мартингалов с дискретным временем. Эти свойства можно обобщить на мартингалы и субмартингалы с непрерывным временем, однако мы оставляем читателю возможность разобраться в этом самостоятельно.

Теорема 6.6. (Разложение Дуба)

Eсли $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ - субмартингал, то существует два случайных процесс M_n и A_n со следующими свойствами:

- 1. $X_n = M_n + A_n \ npu \ t > 1$,
- 2. (M_n, \mathcal{F}_n) мартингал,
- 3. $A_1=0$, случайная величина A_n измерима относительно \mathcal{F}_{n-1} при $n\geq 2$,
- 4. $A_n(\omega) \leq A_{n+1}(\omega)$ п.н. при всех $n \geq 1$, т.е. A_n не убывает

Более того, если другая пара \bar{M}_n , \bar{A}_n обладает теми же свойствами, то $M_n = \bar{M}_n$, $A_n = \bar{A}_n$ n.н.

Доказательство. 1. Определим процессы M_n, A_n по индукции.

$$M_1 = X_1, \quad A_1 = 0,$$

$$A_n = A_{n-1} + \mathbb{E}[X_n | \mathcal{F}_{n-1}] - X_{n-1}, \quad M_n = X_n - A_n, \quad n \le 2$$

Очевидно, эти процессы обладают свойствами 1,3,4. Проверим свойство 2:

$$\mathbb{E}[M_n|\mathcal{F}_{n-1}] = \mathbb{E}[X_n - A_n|\mathcal{F}_{n-1}] = \mathbb{E}[X_n|\mathcal{F}_{n-1}] - A_n = X_{n-1} - A_{n-1} = M_{n-1}.$$

2. Теперь докажем единственность. Для этого покажем, что случайные величины M_n, A_n однозначно определяются по X_{n-1}, X_n

$$A_1 = 0, \quad M_1 = X_1 - A_1 = X_1,$$

$$X_n - X_{n-1} = M_n - M_{n-1} + A_n - A_{n-1},$$

$$\mathbb{E}[X_n - X_{n-1}|\mathcal{F}_{n-1}] = \mathbb{E}[M_n - M_{n-1} + A_n - A_{n-1}|\mathcal{F}_{n-1}],$$

$$\mathbb{E}[X_n | \mathcal{F}_{n-1}] - X_{n-1} = A_n - A_{n-1},$$

$$M_n = X_n - A_n.$$

Теорема 6.7. (Теорема о свободном выборе) Пусть $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ - субмартингал, σ, τ - моменты остановки, $\sigma \leq \tau \leq k$ для некоторого $k \in \mathbb{N}$. Тогда $X_{\sigma} \leq \mathbb{E}[X_{\tau}|\mathcal{F}_{\sigma}]$.

 $Ecnu\ (X_n, \mathcal{F}_n)_{n\in\mathbb{Z}_+}$ - мартингал или супермартингал, то выполнено такое же утверждение, но с заменой $\leq na = nu \geq 1$.

 \mathcal{A} оказательство. Докажем для случая, когда $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ - субмартингал.

Пусть $A \in \mathcal{F}_{\sigma}$. Введем следующие события для $1 \leq m \leq n$:

$$A_m = A \cap \{\sigma = m\} \quad A_{m,n} = A \cap \{\sigma = m\} \cap \{\tau = n\}$$

$$B_{m,n} = A \cap \{\sigma = m\} \cap \{\tau > n\} \quad C_{m,n} = A \cap \{\sigma = m\} \cap \{\tau \ge n\}$$

Очевидно, $C_{m,n} = A_{m,n} \cup B_{m,n}$, $B_{m,n} = C_{m,n+1}$, $A_m = C_{m,m}$, $C_{m,k+1} = \emptyset$, $\bigcup_{m=1}^k A_m = A$.

Заметим, что $\{\tau > n\} = \Omega \setminus \{\tau \le n\} \in \mathcal{F}_n$, поэтому $B_{m,n} \in \mathcal{F}_n$.

По определению субматрингала $X_n \leq \mathbb{E}[X_{n+1}|\mathcal{F}_n]$, поэтому верно следующее:

$$\int\limits_{B_{m,n}} X_n dP = \int\limits_{B_{m,n}} X_{n+1} dP,$$

Используя свойства $C_{m,n}=A_{m,n}\cup B_{m,n},\, B_{m,n}=C_{m,n+1},$ получим:

$$\int_{C_{m,n}} X_n dP \le \int_{A_{m,n}} X_n dP + \int_{B_{m,n}} X_n dP \le \int_{A_{m,n}} X_n dP + \int_{B_{m,n}} X_{n+1} dP = \int_{A_{m,n}} X_n dP + \int_{C_{m,n+1}} X_{n+1} dP$$

$$\int_{C_{m,n}} X_n dP - \int_{C_{m,n+1}} X_{n+1} dP \le \int_{A_{m,n}} X_n dP$$

Возьмем сумму по n от m до k от левой части неравенства:

$$\sum_{n=m}^{k} \left[\int_{C_{m,n}} X_n dP - \int_{C_{m,n+1}} X_{n+1} dP \right] = \int_{C_{m,m}} X_m dP - \int_{C_{m,k+1}} X_{k+1} dP = \int_{C_{m,m}} X_m dP = \int_{A_m} X_m dP$$

Возьмем сумму по n от m до k от правой части неравенства:

$$\sum_{n=m}^{k} \int_{A_{m,n}} X_n dP = \sum_{n=m}^{k} \int_{A_m \cap \{\tau=n\}} X_n dP = \int_{A_m} X_\tau dP$$

Получим следующее неравенство:

$$\int_{A_m} X_m dP \le \int_{A_m} X_\tau dP$$

Теперь сделаем суммирование по m от 1 до k:

$$\sum_{m=1}^{k} \int_{A_m} X_m dP = \sum_{m=1}^{k} \int_{A \cap \{\sigma=m\}} X_m dP = \int_A X_\sigma dP$$
$$\sum_{m=1}^{k} \int_{A_m} X_\tau dP = \int_A X_\tau dP$$

Получим следующее неравенство:

$$\int\limits_A X_\sigma dP \le \int\limits_A X_\tau dP$$

Т.к. множество A было выбрано произвольно, можно сделать вывод, что $X_{\sigma} \leq \mathbb{E}[X_{\tau}|\mathcal{F}_{\sigma}]$. Для доказательства аналогичного свойства для супермартингала $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ достаточно заметить, что $(-X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ является субмартингалом. Для доказательства аналогичного свойства для мартингала $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ достаточно заметить, что $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ является одновременно субмартингалом и супермартингалом.

Теорема о свободном выборе верна для неограниченных σ, τ при условии, что случайные величины $X_n, n \in \mathbb{Z}_+$ равномерно интегрируемы.

Определение 6.6. Множество случайных величин $\{f_s\}_{s\in S}$ называется равномерно интегрируемым, если

$$\lim_{\lambda \to \infty} \sup_{s \in S} \int_{|f_s| > \lambda} |f_s| dP = 0$$

Введем следующее обозначение: $A(\lambda, n) = \{\omega : \max_{1 \le i \le n} X_i(\omega) \ge \lambda\}.$

Теорема 6.8. (Неравенство Дуба) Пусть $(X_n, \mathcal{F}_n)_{n \in \mathbb{Z}_+}$ - субмартингал. Тогда для любого $n \in \mathbb{N}$ и $\lambda > 0$ выполняется неравенство:

$$\lambda P(A(\lambda, n)) \le \int_{A(\lambda, n)} X_n dP \le \max(X_n, 0)$$

Доказательство. Введем следующие моменты остановки:

- 1. σ_0 первый момент, когда $X_i \geq \lambda$
- 2. $\sigma = \sigma_0 \wedge n$
- 3. $\tau = n$

Поскольку $\sigma \le \tau$, можно применить теорему о свободном выборе:

$$X_{\sigma} \leq \mathbb{E}[X_n | \mathcal{F}_{\sigma}]$$

Напомним, что $A(\lambda,n)=\{\omega:\max_{1\leq i\leq n}X_i(\omega)\geq \lambda\}$. Заметим, что $A(\lambda,n)\in\mathcal{F}_\sigma$, т.к.

$$A(\lambda, n) \cap \{\sigma \le m\} = \{\omega : \max_{1 \le i \le m} X_i(\omega) \ge \lambda\}.$$

Поэтому верно следующее:

$$\int_{A(\lambda,n)} X_{\sigma} dP \le \int_{A(\lambda,n)} X_n dP$$

Очевидно, что можно записать следующее неравенство:

$$\int\limits_{A(\lambda,n)} X_n dP \le \int\limits_{A(\lambda,n)} max(X_n,0) dP \le \mathbb{E}\left[max(X_n,0)\right]$$

Если $\omega \in A(\lambda, n)$, то $X_{\sigma(\omega)}(\omega) \geq \lambda$. Следовательно,

$$\int\limits_{A(\lambda,n)} X_{\sigma} dP \ge \int\limits_{A(\lambda,n)} \lambda dP = \lambda P(A(\lambda,n))$$

А теперь соберем все вместе:

$$\lambda P(A(\lambda, n)) \le \int_{A(\lambda, n)} X_{\sigma} \le \int_{A(\lambda, n)} X_n dP \le \mathbb{E} \left[max(X_n, 0) \right]$$