EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 5	le 28 Mars 2022

Veuillez télécharger vos solutions à l'exercice 7 sur la page Moodle du cours avant le dimanche 10 avril, 18h.

Exercice 1. (a) Trouver tous les idéaux des anneaux quotients $\mathbb{F}_3[t]/(t^2)$ et $\mathbb{F}_2[t]/(t^3)$. Déterminer lesquels sont premiers et lesquels sont maximaux.

(b) Soit $I \subset M \subset A$ deux idéaux d'un anneau A et soit $\pi : A \to A/I$ l'homomorphisme quotient. Montrer que l'idéal $\pi(M)$ est maximal dans A/I si et seulement si M est maximal dans A.

Exercice 2.

Les fonctions polynomiales. Soit A un anneau commutatif et $\mathcal{F}(A)$ l'anneau des fonctions $\varphi \colon A \to A$ où la somme et le produit sont définis dans l'ensemble d'arrivée (par exemple $(\varphi \cdot \phi)(a) = \varphi(a) \cdot \phi(a)$). On considère l'évaluation comme application ev : $A[t] \to \mathcal{F}(A)$. L'évaluation d'un polynôme f est donc la fonction polynomiale ev(f) définie par ev $(f)(a) = \operatorname{ev}_a(f) = f(a)$.

- (a) Montrer que l'évaluation est un homomorphisme d'anneaux.
- (b) Soit p est un nombre premier. Montrer que l'évaluation n'est pas injective lorsque $A = F_p$. [Indication: Petit Théorème de Fermat.]
- (c) Montrer que l'évaluation est injective pour $A = \mathbb{R}$.

Exercice 3.

Soit F un corps.

- (a) Déterminer $\operatorname{nil}(A)$, où $A = F[x, y] / (x^2 y^3)$.
- (b) Trouver $\operatorname{nil}(A) = \bigcap_{i=1}^{m} p_i$, où m est minimal et les p_i sont des idéaux premiers dans A.

This was the bonus exercise of last year. It will not be present in the exam.

Exercice 4.

Soit F un corps. Prouver ce qui suit.

- (a) Montrer que $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}] \cong \mathbb{F}_p[x]/(x^p-1)$.
- (b) Montrez que $car(\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]) = p$. En particulier on a $\mathbb{F}_p \hookrightarrow \mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$
- (c) Montrer que $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ n'est pas un produit des 2 anneaux non-zéros.

Exercice 5.

Montrer que l'anneau $\mathbb{Z}[\sqrt{2}i]$ est Euclidien.

1 Supplementary exercise

Exercice 6.

Soit A = F[G], où F est un corps et G est un groupe.

- (a) Montrer que $\sum_{g \in G} a_g g \in \mathbf{Z}(A)$ si et seulement si $g \to a_g$ est constant sur les classes de conjugaison.
- (b) Fixons $A = \mathbb{C}[S_3]$ et ε une racine primitive cubique d'unité. Soit

$$e_1 = \frac{1}{6} \sum_{g \in S_3} g, \ e_2 = \frac{1}{6} \sum_{g \in S_3} \operatorname{sgn}(g)g \text{ et } e_3 = f_1 + f_2 \in A,$$

où
$$f_1=rac{\mathrm{Id}+arepsilon(123)+arepsilon^2(132)}{3}$$
 et $f_2=rac{\mathrm{Id}+arepsilon^2(123)+arepsilon(132)}{3}.$

Montrer que $A \cong Ae_1 \times Ae_2 \times Ae_3$.

- (c) Montrer que $Ae_1 \cong \mathbb{C}$ et $Ae_2 \cong \mathbb{C}$.
- (d) Montrer que $Ae_3 \cong M_2(\mathbb{C})$.

2 Exercice Bonus

Exercice 7.

For the exercise we will need the following definitions. Let p be a prime number.

- a) A ring A is finitely generated if there are finitely many elements $c_1, \ldots, c_n \in A$ such that the subring of A generated by c_1, \ldots, c_n is equal to A itself.
- b) $\mathbb{Z}_{(p)} = \{a/b \in \mathbb{Q} | a \in \mathbb{Z}, b \in \mathbb{Z} \setminus 0, p \nmid b\}$ is the valuation ring of the p-adic valuation on \mathbb{Q} .
- c) $\mathbb{Z}_p = \{a/p^i \in \mathbb{Q} | a \in \mathbb{Z}, i \in \mathbb{N}\}$, which should not be confused with the ring of p-adic numbers, which is denoted the same way, but which we have not learned so far in this course

Prove the following points.

- 1. $\mathbb{Z}_{(p)}$ is not a finitely generated ring.
- 2. \mathbb{Z}_p is generated by 1/p or with other words $\mathbb{Z}_p = \mathbb{Z}[1/p]$. In particular \mathbb{Z}_l is a finitely generated ring.
- 3. Show that \mathbb{Z}_p has two subrings: \mathbb{Z} and \mathbb{Z}_p itself.
- 4. Let q be a prime number different than p. Show that $\mathbb{Z}[1/p, 1/q] \subseteq \mathbb{Q}$ is not isomorphic to $\mathbb{Z}_{(p)}$ (as an abstract ring).
- 5. How many elements do you need to generated $\mathbb{Z}[1/p, 1/q]$?