Exercice 1:

Soit $f(x,y) = \ln\left(\frac{1-x^2}{1+y}\right)$ où $(x,y) \in \mathbb{R}^2$.

- 1. Déterminer le domaine de définition D_f de f (on mettra en évidence une réunion de produits cartésiens).
- 2. Déterminer la ligne de niveau 0 de f, c'est-à-dire l'ensemble des réels $(x, y) \in D_f$ tels que f(x, y) = 0. Représenter graphiquement cette ligne de niveau.
- 3. Déterminer le domaine de définition D_g de la fonction $g: t \mapsto f(0,t)$ et étudier ses variations sur D_g (en précisant les limites aux bornes).
- 4. L'application $D_f \longrightarrow \mathbb{R}$ est-elle injective? Surjective? Justifier.

Exercice 2:

On pose $f(x) = x - 3 - 2\sqrt{x+2}$.

- 1. Déterminer le domaine de définition \mathcal{D}_f de f.
- 2. L'application $f: \left| \begin{array}{l} \mathcal{D}_f \longrightarrow \mathbb{R} \\ x \mapsto x 3 2\sqrt{x+2} \end{array} \right|$ est-elle injective? Surjective?
- 3. Montrer que f réalise une bijection de $[-1, +\infty[$ sur un intervalle J que l'on précisera.
- 4. Déterminer la bijection réciproque $f^{-1}: J \longrightarrow [-1, +\infty[$.

Exercice 3 : Rappel : toute réponse devra être soigneusement justifiée.

Soit E un ensemble non vide et A une partie de E.

- 1. On considère $f: \left| \begin{array}{c} \mathcal{P}(E) \to \mathcal{P}(E) \\ B \mapsto B \cap A \end{array} \right|$.
 - (a) On suppose A=E. Déterminer f(B) pour toute partie B de E. Quelle est l'application f dans ce cas?
 - (b) On suppose $A \neq E$. Il existe donc un élément a de E tel que $a \notin A$.
 - i. Le sous-ensemble $\{a\}$ admet-il un antécédent par f? f est-elle surjective?
 - ii. Déterminer $f(\{a\})$ et $f(\varnothing)$. f est-elle injective ?
- 2. On considère $g: \mathcal{P}(E) \to \mathcal{P}(E)$ $B \mapsto B \cup A$
 - (a) On suppose $A = \emptyset$. Déterminer g(B) pour toute partie B de E. Quelle est l'application g dans ce cas?
 - (b) On suppose $A \neq \emptyset$. Il existe donc un élément a de A.
 - i. L'ensemble vide \varnothing admet-il un antécédent par g? g est-elle surjective?
 - ii. Déterminer $g(\{a\})$ et $g(\emptyset)$. g est-elle injective?