Prova scritta di Logica Matematica 9 febbraio 2018

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

	PRIMA PARTE					
	Barrate la risposta che ritenete corretta. Non dovete giustificare la rispost					
a.	. Ogni γ -formula ha come conseguenza logica una sua qualsiasi istanza.	V	7			
b.	Se $F \nvDash G$ allora non è detto che $F \vDash \neg G$.	VF	<u>.</u>			
c.	$p \lor (q \land \neg r) \lor \neg (r \to q) \equiv \neg ((q \to r) \to p) \to \neg q \land r.$	VF	٦			
$\mathbf{d}.$	Scrivete nel riquadro l'enunciato del teorema di correttezza per i tabl	leau	X			
	proposizionali.					
e.	Quante delle seguenti stringhe di simboli sono formule del linguaggio con					
	c simb. di costante, f e g di funzione unari, p di relaz. unaria, r di relaz. binaria		_			
	$\neg(\forall x \neg r(p(x), f(x))), r(c, g(f(x))), \exists x g(r(x, f(x))), r(f(c, x)) \rightarrow \neg p(y). \boxed{0 \boxed{1} \boxed{2}}$					
f.	Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = 3, f^I(1) = 2, f^I(2) = 3, f^I(3)$	i = 1	l,			
	$p^{I} = \{1, 2\}, r^{I} = \{(0, 3), (1, 1), (1, 3), (2, 3), (3, 1)\}.$					
	Allora $I \vDash \forall x (r(x, f(x)) \land p(f(x)) \rightarrow r(f(x), x)).$	V F	יי			
g.	$\forall x p(x) \to \exists x q(x) \equiv \exists x (\neg p(x) \lor q(x)).$	$V \mid \mathbf{F}$	יק			
h.	Se $I \equiv_{\mathcal{L}} J$ allora esiste un omomorfismo forte suriettivo di I in J .	$\overline{\mathbf{V} \mid \mathbf{F}}$	7			
i.	Esiste un insieme di Hintikka che contiene le formule					
	$\neg (p \lor \neg q), \ \neg r \to p \ e \ \neg (r \land q).$	$\mathbf{V} \mathbf{F}$	יה			
j.	. Se un tableau proposizionale per $F, \neg G$ è aperto allora $F \nvDash G$.	$\mathbf{V} \mid \mathbf{F}$	7			
	Questo albero rappresenta una deduzione naturale corretta:	VF	<u>-</u>			
	$\forall x (p(f(x)) \to q(x))$					
	$[p(f(x))]^1 \qquad \frac{\forall x (p(f(x)) \to q(x))}{p(f(x)) \to q(x)}$					

$$\exists x \ p(x)$$

$$\exists x \ p(x)$$

$$\exists x \ q(x)$$

$$\exists x \ q(x)$$

$$\exists x \ q(x)$$

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 6.

1. Usando l'algoritmo di Fitting mettete in forma normale disgiuntiva la formula

2pt

$$\neg (((p \to \neg q) \land r) \lor (s \land \neg t \to \neg u \land w)).$$

2. Usando il metodo dei tableaux stabilite se la formula

3pt

$$\neg(p \to q) \land (p \to \neg r \lor q) \to \neg(\neg p \lor r)$$

è valida. Se la formula non è valida definite una valutazione che lo testimoni.

3. Dimostrate che l'insieme di enunciati

4pt

$$\{ \forall x (p(x) \rightarrow \forall y \neg r(y, f(x))), \forall z (r(a, z) \lor p(z)), \exists v (p(v) \land \neg p(f(v))) \}$$

è insoddisfacibile.

4. Dimostrate che

4pt

$$\forall x \exists y \, r(y, x), \forall x \, (\neg r(x, x) \land \neg r(f(x), x)) \nvDash_{\equiv} \exists z \, z = f(z).$$

5. Mettete in forma prenessa la formula

2pt

$$\exists x \, q(x) \vee (\forall x \, p(f(x)) \wedge \neg \exists y \, \forall z \, r(y, z)) \rightarrow \forall y \, r(f(y), y).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

1pt

- **6.** Sia $\mathcal{L} = \{a, b, p, m, c\}$ un linguaggio dove a e b sono simboli di costante, p è un simbolo di funzione unario, m è un simbolo di relazione unario e c è un simbolo di relazione binario. Interpretando a come "Anna", b come "Bruno", p(x) come "il padre di x", m(x) come "x è medico", c(x, y) come "x conosce y", traducete le seguenti frasi:
 - (i) Anna è un medico che conosce il padre di Bruno, che non è (il padre) medico;

3pt

(ii) Ogni medico il cui padre è medico conosce qualcuno il cui padre non è medico.

3pt

7. Sia $\mathcal{L} = \{f, r\}$ un linguaggio in cui f è un simbolo di funzione unario e r è un simbolo di relazione binario. Sia I l'interpretazione per \mathcal{L} definita da

3pt

$$D^{I} = \{0, 1, 2, 3, 4, 5, 6\};$$
 $r^{I} = \{(0, 2), (2, 2), (5, 2), (6, 2)\}$

$$f^{I}(0) = 3;$$
 $f^{I}(1) = 2;$ $f^{I}(2) = 1;$ $f^{I}(3) = 2;$ $f^{I}(4) = 2;$ $f^{I}(5) = 4;$ $f^{I}(6) = 4.$

Definite una relazione di congruenza \sim su I che abbia tre classi d'equivalenza, giustificando la vostra risposta. Descrivete l'interpretazione quoziente I/\sim .

8. Usando il metodo dei tableaux stabilite che

4pt

$$\forall x (\exists y \, r(x,y) \to \neg p(x) \vee \neg r(x,x)), \forall x \, (r(x,x) \vee \forall y \, \neg r(x,y)) \vDash \exists z \, \neg p(z) \vee \neg \exists u \, r(u,c).$$

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\exists z \, r(z, a), \forall z (\exists y \, r(y, z) \to p(z)), \forall x (\exists y \, r(x, y) \to \exists y \, r(y, q(x))) \rhd \exists v \, p(q(v)).$$

Soluzioni

- a. V è il Lemma 10.6 delle dispense.
- **b.** V $F \nvDash G$ significa che esiste un'interpretazione v tale che $v(F) = \mathbf{V}$ e $v(G) = \mathbf{F}$: questo non significa che $F \vDash \neg G$; un controesempio specifico si ottiene scegliendo p come F e q come G.
- c. V come si verifica per esempio con le tavole di verità.
- **d.** Se un tableau per la formula F è chiuso allora F è insoddisfacibile.
- e. 1 l'unica formula è la seconda; nella prima stringa una formula atomica è il primo argomento di r, nella terza g è applicata ad una formula atomica, nella quarta r ha un solo argomento e f ne ha due.
- **f.** V perché per ogni $d \in D^I$ abbiamo $I, \sigma[x/d] \models r(x, f(x)) \land p(f(x)) \rightarrow r(f(x), x)$; l'unico d per cui l'antecedente dell'implicazione risulta essere vero è 3, per cui anche il conseguente è vero.
- g. V come verificato utilizzando i lemmi 7.71 e 2.24.3 delle dispense.
- h. F come sottolineato nella Nota 9.15 delle dispense.
- i. F se \mathcal{H} è un insieme di Hintikka che contiene $\neg(p \lor \neg q)$ allora $\neg p, \neg \neg q, q \in \mathcal{H}$; se anche $\neg r \to p \in \mathcal{H}$ deve essere $\neg \neg r \in \mathcal{H}$ e quindi $r \in \mathcal{H}$; ma allora non può essere $\neg(r \land q) \in \mathcal{H}$ perché entrambi i ridotti di questa γ -formula formano una coppia complementare con uno dei letterali già presenti in \mathcal{H} .
- j. V si tratta di un'applicazione dell'Algoritmo 4.40 delle dispense.
- **k. F** l'uso di $(\exists e)^g$ è scorretto perché f(x) non è una variabile; d'altronde $\exists x \, p(x), \forall x (p(f(x)) \to q(x)) \not\vDash \exists x \, q(x).$
- 1. Utilizziamo l'Algoritmo 3.22 delle dispense, adottando le semplificazioni suggerite nella Nota 3.29:

$$\begin{split} \left[\left\langle \neg \left(((p \to \neg q) \land r) \lor (s \land \neg t \to \neg u \land w) \right) \right\rangle \right] \\ \left[\left\langle \neg ((p \to \neg q) \land r), \neg (s \land \neg t \to \neg u \land w) \right\rangle \right] \\ \left[\left\langle \neg ((p \to \neg q) \land r), s \land \neg t, \neg (\neg u \land w) \right\rangle \right] \\ \left[\left\langle \neg ((p \to \neg q) \land r), s, \neg t, \neg (\neg u \land w) \right\rangle \right] \\ \left[\left\langle \neg (p \to \neg q), s, \neg t, \neg (\neg u \land w) \right\rangle, \left\langle \neg r, s, \neg t, \neg (\neg u \land w) \right\rangle \right] \\ \left[\left\langle p, q, s, \neg t, \neg (\neg u \land w) \right\rangle, \left\langle \neg r, s, \neg t, u \right\rangle, \left\langle \neg r, s, \neg t, \neg w \right\rangle \right] \\ \left[\left\langle p, q, s, \neg t, u \right\rangle, \left\langle p, q, s, \neg t, \neg w \right\rangle, \left\langle \neg r, s, \neg t, u \right\rangle, \left\langle \neg r, s, \neg t, \neg w \right\rangle \right] \\ \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \land q \land s \land \neg t \land u) \lor (p \land q \land s \land \neg t \land \neg w) \lor (\neg r \land s \land \neg t \land u) \lor (\neg r \land s \land \neg t \land \neg w).$$

2. Per stabilire la validità della formula utilizziamo l'Algoritmo 4.5 delle dispense e costruiamo (utilizzando le convenzioni 4.31 e 4.32) un tableau con la radice etichettata dalla negazione della formula. In ogni passaggio sottolineiamo le formule su cui agiamo.

The choice defined formula. In ordin passaggio sottonne famo fe formula
$$\frac{\neg(\neg(p \to q) \land (p \to \neg r \lor q), \neg p \lor r}{\mid}$$

$$\frac{\neg(p \to q), p \to \neg r \lor q, \neg p \lor r}{\mid}$$

$$p, \neg q, p \to \neg r \lor q, \neg p \lor r$$

$$p, \neg q, p \to \neg r \lor q, \neg p \lor r$$

$$p, \neg q, p \to \neg r \lor q, \neg p, r$$

$$p, \neg q, \neg p, r$$

$$p, \neg q, \neg r, r$$

$$p, \neg q, \neg r, r$$

$$p, \neg q, q, r$$

$$p, \neg q, \neg r, r$$

$$p, \neg q, q, r$$

Il tableau è chiuso e quindi la formula è valida.

3. Supponiamo per assurdo che I sia un'interpretazione che soddisfa i tre enunciati, che chiamiamo F, G e H.

Dato che $I \models H$ esiste $d_0 \in D^I$ tale che $d_0 \in p^I$ e $f^I(d_0) \notin p^I$. Da $I \models F$ segue in particolare che $I, \sigma[x/d_0] \models p(x) \to \forall y \neg r(y, f(x))$ e, dato che $d_0 \in p^I$, si ha $I, \sigma[x/d_0] \models \forall y \neg r(y, f(x))$, cioè $(d, f^I(d_0)) \notin r^I$ per qualsiasi $d \in D^I$. D'altra parte $I \models G$ implica in particolare che $I, \sigma[z/f^I(d_0)] \models r(a, z) \lor p(z)$ e perciò che deve valere almeno uno tra $(a^I, f^I(d_0)) \in r^I$ e $f^I(d_0) \in p^I$. Entrambe queste possibilità contraddicono quanto ottenuto in precedenza, e abbiamo ottenuto la contraddizione che volevamo.

4. Dobbiamo definire un'interpretazione normale che soddisfa i due enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni normali con queste caratteristiche sono definite da

$$D^{I} = \{0, 1, 2\}, \quad f^{I}(0) = 1, f^{I}(1) = 2, f^{I}(2) = 0, \quad r^{I} = \{(0, 1), (1, 2), (2, 0)\};$$
$$D^{J} = \mathbb{N}, \quad f^{J}(n) = n + 1, \quad r^{J} = \{(n + 2, n) : n \in \mathbb{N}\}.$$

Dato che le interpretazioni sono normali non abbiamo bisogno di specificare $=^{I}$ e $=^{J}$.

5. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\exists x \, q(x) \lor (\forall x \, p(f(x)) \land \neg \exists y \, \forall z \, r(y, z)) \to \forall y \, r(f(y), y)$$

$$\exists x \, q(x) \lor (\forall x \, p(f(x)) \land \forall y \, \exists z \, \neg r(y, z)) \to \forall y \, r(f(y), y)$$

$$\exists x \, q(x) \lor \forall y \, \exists z (p(f(y)) \land \neg r(y, z)) \to \forall y \, r(f(y), y)$$

$$\forall y (\exists x \, q(x) \lor \exists z (p(f(y)) \land \neg r(y, z))) \to \forall y \, r(f(y), y)$$

$$\forall y \, \exists x (q(x) \lor (p(f(y)) \land \neg r(y, x))) \to \forall y \, r(f(y), y)$$

$$\exists y \, \forall x ((q(x) \lor (p(f(y)) \land \neg r(y, x))) \to \forall y \, r(f(y), y))$$

$$\exists y \, \forall x \, \forall u ((q(x) \lor (p(f(y)) \land \neg r(y, x))) \to r(f(u), u))$$

6. (i) $m(a) \wedge c(a, p(b)) \wedge \neg m(p(b))$;

(ii) $\forall x (m(x) \land m(p(x)) \rightarrow \exists y (c(x,y) \land \neg m(p(y)))).$

7. 2 è l'unico elemento di D^I che compare al secondo posto negli elementi di r^I , e quindi non può essere in relazione di congruenza con nessun altro elemento di D^I . Notiamo anche che 0, 5 e 6 sono in relazione r^I con 2, mentre 1, 3 e 4 non lo sono. Perciò le tre classi d'equivalenza rispetto a \sim non possono che essere $\{2\}$, $\{0,5,6\}$ e $\{1,3,4\}$. Inoltre ~ verifica anche la condizione che riguarda f, perché $f^I(0) \sim f^I(5) \sim f^I(6)$ e

f^I(1) $\sim f^{I}(3) \sim f^{I}(4)$. Si ha $D^{I}/\sim = \{[0], [1], [2]\}, f^{I/\sim}([0]) = [1], f^{I/\sim}([1]) = [2], f^{I/\sim}([2]) = [1], r^{I/\sim} = [1], r^{I/\sim}([1]) = [1], r^{$ $\{([0],[2]),([2],[2])\}.$

8. Per mostrare che vale la conseguenza logica utilizziamo l'Algoritmo 10.49 delle dispense e costruiamo (utilizzando le convenzioni 10.20 e 10.22) un tableau chiuso con la radice etichettata dagli enunciati $F \in G$ (che sono γ -formule) che stanno a sinistra del simbolo di conseguenza logica e dalla negazione dell'enunciato che sta a destra. Indichiamo anche con H, K e L le γ -formule $\neg \exists z \neg p(z), \neg \exists y \ r(a, y) \ e \ \forall y \neg r(a, y)$. In ogni passaggio

di conseguenza logica e dalla negazione dell'enunciato che sta a destra. Indichiamo anche con
$$H$$
, K e L le γ -formule $\exists z \neg p(z)$, $\neg \exists y r(a,y)$ e $\forall y \neg r(a,y)$. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$F, G, \neg (\exists z \neg p(z) \lor \neg \exists u r(u,c))$$

$$\downarrow F, G, H, \neg (a,c)$$

$$\downarrow F, G, H, r(a,c)$$

$$\downarrow F, G, H, r(a,c)$$

$$\downarrow F, \neg (a,y) \to \neg p(a) \lor \neg r(a,a), G, H, r(a,c)$$

$$\downarrow F, \neg (a,c), G, H, p(a), r(a,c)$$

$$\downarrow F, \neg (a,a), G, F, \neg (a,a),$$

$$\begin{array}{c|c} & [r(z,a)]^1 & \forall x(\exists y\,r(x,y)\to\exists y\,r(y,g(x)))\\ \hline \exists y\,r(z,y) & \exists y\,r(z,y)\to\exists y\,r(y,g(z))\\ \hline & \exists y\,r(y,g(z)) & \exists y\,r(y,g(z))\to p(g(z))\\ \hline \exists z\,r(z,a) & \hline & [p(g(z))\\ \hline & \exists v\,p(g(v)) & \\ \hline \end{array}$$

Prova scritta di Logica Matematica 9 febbraio 2018

Cognome Matricola Nome

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

PRIMA PARTE

	Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.						
a.	$\neg((p \to q) \to r) \to \neg p \land q \equiv r \lor (p \land \neg q) \lor \neg(q \to p).$	\mathbf{V}]	F			
b.	Se $F \nvDash G$ allora $F \vDash \neg G$.	$\overline{\mathbf{V}}$]	F			
c.	Se un tableau proposizionale per $F, \neg G$ è chiuso allora $F \vDash G$.	\mathbf{V}]	F			
$\mathbf{d}.$	Esiste un insieme di Hintikka che contiene le formule		_				
	$\neg p \to q, \neg (q \vee \neg r) \in \neg (p \wedge r).$	\mathbf{V}]	F			
e.	Quante delle seguenti stringhe di simboli sono formule del linguaggio con						
	c simb. di costante, f e g di funzione unari, p di relaz. unaria, r di relaz. binari	_					
	$\exists x g(r(x, f(x))), \neg(\forall x \neg r(f(x))), r(f(c, x), p(x)) \rightarrow \neg p(y), r(c, g(f(x))). \boxed{0 \boxed{1} \boxed{2}}$						
f.	Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = 1, f^I(1) = 2, f^I(2) = 0, f^I(3)$	3) =	=	2,			
	$p^{I} = \{0, 1\}, r^{I} = \{(0, 0), (0, 2), (1, 2), (2, 0), (3, 2)\}.$						
	Allora $I \vDash \forall x (r(x, f(x)) \land p(f(x)) \rightarrow r(f(x), x)).$	\mathbf{V}]	F			
g.	$\neg \forall x p(x) \lor \exists x q(x) \equiv \exists x (p(x) \to q(x)).$	\mathbf{V}		F			
h.	h. Se $I \equiv_{\mathcal{L}} J$ allora esiste un omomorfismo forte suriettivo di I in J .						
i.	i. Ogni γ -formula ha come conseguenza logica una sua qualsiasi istanza.						
j.	j. Questo albero rappresenta una deduzione naturale corretta:						
	$\forall x (q(g(x)) \to p(x))$						
	$[q(g(x))]^1 \qquad \frac{\forall x (q(g(x)) \to p(x))}{q(g(x)) \to p(x)}$						
	p(x)						
	$\exists x q(x)$ $\exists x p(x)$						

		$\forall x (q(g(x)) \to p(x))$
	$[q(g(x))]^1$	$q(g(x)) \to p(x)$
		p(x)
$\exists x \ q(x)$		$\exists x p(x)$
	$\exists x p(x)$	1

		_	l'enunciato	del	teorema	di	completezza	per	i	tableaux
proposizi	ional	i.								

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 6.

1. Usando l'algoritmo di Fitting mettete in forma normale disgiuntiva la formula

2pt

$$\neg ((p \land \neg q \to r \land \neg s) \lor ((t \to \neg u) \land w)).$$

2. Usando il metodo dei tableaux stabilite se la formula

3pt

$$\neg(\neg r \to p) \land (\neg r \to q \lor p) \to \neg(r \lor \neg q)$$

è valida. Se la formula non è valida definite una valutazione che lo testimoni.

3. Dimostrate che l'insieme di enunciati

4pt

$$\{ \forall z (\neg r(z,c) \lor p(z)), \exists v (p(v) \land \neg p(f(v))), \forall x (p(x) \rightarrow \forall y \, r(f(x),y)) \}$$

è insoddisfacibile.

4. Dimostrate che

4pt

$$\forall x (\neg r(x, x) \land \neg r(x, f(x))), \forall x \exists y r(y, x) \nvDash_{\equiv} \exists z z = f(z).$$

5. Mettete in forma prenessa la formula

2pt

$$\exists x \, p(x) \vee (\neg \exists y \, \forall z \, r(y, z) \wedge \forall x \, q(f(x))) \rightarrow \forall y \, r(f(y), y).$$

1...+

Se riuscite, usate il minimo numero di quantificatori possibili.

 $1 \mathrm{pt}$

- **6.** Sia $\mathcal{L} = \{b, d, m, a, c\}$ un linguaggio dove b e d sono simboli di costante, m è un simbolo di funzione unario, a è un simbolo di relazione unario e c è un simbolo di relazione binario. Interpretando b come "Bruno", d come "Delia", m(x) come "la madre di x", a(x) come "x è artista", c(x, y) come "x conosce y", traducete le seguenti frasi:
 - (i) Bruno è un artista che conosce la madre di Delia, che non è (la madre) artista;

3pt

(ii) Ogni artista la cui madre è un'artista conosce qualcuno la cui madre non è artista.

3pt

7. Sia $\mathcal{L} = \{f, r\}$ un linguaggio in cui f è un simbolo di funzione unario e r è un simbolo di relazione binario. Sia I l'interpretazione per \mathcal{L} definita da

3pt

$$D^{I} = \{0, 1, 2, 3, 4, 5, 6\};$$
 $r^{I} = \{(0, 3), (2, 3), (3, 3), (5, 3)\}$

$$f^{I}(0) = 4;$$
 $f^{I}(1) = 3;$ $f^{I}(2) = 4;$ $f^{I}(3) = 1;$ $f^{I}(4) = 3;$ $f^{I}(5) = 6;$ $f^{I}(6) = 3.$

Definite una relazione di congruenza \sim su I che abbia tre classi d'equivalenza, giustificando la vostra risposta. Descrivete l'interpretazione quoziente I/\sim .

8. Usando il metodo dei tableaux stabilite che

4pt

$$\forall x \, (r(x,x) \vee \forall y \, \neg r(y,x)), \forall x (\exists y \, r(y,x) \rightarrow \neg p(x) \vee \neg r(x,x)) \vDash \neg \exists u \, r(a,u) \vee \exists z \, \neg p(z).$$

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\exists z \, r(c, z), \forall x (\exists y \, r(y, x) \rightarrow \exists y \, r(f(x), y)), \forall z (\exists y \, r(z, y) \rightarrow p(z)) \rhd \exists u \, p(f(u)).$$

Soluzioni

- a. V come si verifica per esempio con le tavole di verità.
- **b. F** $F \nvDash G$ significa che esiste un'interpretazione v tale che $v(F) = \mathbf{V}$ e $v(G) = \mathbf{F}$: questo non significa che $F \vDash \neg G$; un controesempio specifico si ottiene scegliendo p come $F \in q$ come G.
- c. V si tratta di un'applicazione dell'Algoritmo 4.40 delle dispense.
- **d.** F se \mathcal{H} è un insieme di Hintikka che contiene $\neg(q \vee \neg r)$ allora $\neg q, \neg \neg r, r \in \mathcal{H}$; se anche $\neg p \to q \in \mathcal{H}$ deve essere $\neg \neg p \in \mathcal{H}$ e quindi $p \in \mathcal{H}$; ma allora non può essere $\neg(p \wedge r) \in \mathcal{H}$ perché entrambi i ridotti di questa γ -formula formano una coppia complementare con uno dei letterali già presenti in \mathcal{H} .
- e. 1 l'unica formula è l'ultima; nella prima stringa g è applicata ad una formula atomica, nella seconda r ha un solo argomento, nella terza una formula atomica è il secondo argomento di r.
- **f.** V perché per ogni $d \in D^I$ abbiamo $I, \sigma[x/d] \models r(x, f(x)) \land p(f(x)) \rightarrow r(f(x), x)$; l'unico d per cui l'antecedente dell'implicazione risulta essere vero è 2, per cui anche il conseguente è vero.
- g. V come verificato utilizzando i lemmi 2.24.3 e 7.71 delle dispense.
- h. F come sottolineato nella Nota 9.15 delle dispense.
- ${f i.~V}$ è il Lemma 10.6 delle dispense.
- **j. F** l'uso di $(\exists e)^g$ è scorretto perché g(x) non è una variabile; d'altronde $\exists x \, q(x), \forall x (q(g(x)) \to p(x)) \not\models \exists x \, p(x).$
- **k.** Se un tableau per la formula F è aperto allora F è soddisfacibile.
- 1. Utilizziamo l'Algoritmo 3.22 delle dispense, adottando le semplificazioni suggerite nella Nota 3.29:

$$\left[\left\langle \neg \left((p \land \neg q \to r \land \neg s) \lor ((t \to \neg u) \land w) \right) \right\rangle \right]$$

$$\left[\left\langle \neg (p \land \neg q \to r \land \neg s), \neg ((t \to \neg u) \land w) \right\rangle \right]$$

$$\left[\left\langle p \land \neg q, \neg (r \land \neg s), \neg ((t \to \neg u) \land w) \right\rangle \right]$$

$$\left[\left\langle p, \neg q, \neg (r \land \neg s), \neg ((t \to \neg u) \land w) \right\rangle \right]$$

$$\left[\left\langle p, \neg q, \neg r, \neg ((t \to \neg u) \land w) \right\rangle, \left\langle p, \neg q, s, \neg ((t \to \neg u) \land w) \right\rangle \right]$$

$$\left[\left\langle p, \neg q, \neg r, \neg (t \to \neg u) \right\rangle, \left\langle p, \neg q, \neg r, \neg w \right\rangle, \left\langle p, \neg q, s, \neg (t \to \neg u) \right\rangle, \left\langle p, \neg q, s, \neg w \right\rangle \right]$$

$$\left[\left\langle p, \neg q, \neg r, t, u \right\rangle, \left\langle p, \neg q, \neg r, \neg w \right\rangle, \left\langle p, \neg q, s, t, u \right\rangle, \left\langle p, \neg q, s, \neg w \right\rangle \right]$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \land \neg q \land \neg r \land t \land u) \lor (p \land \neg q \land \neg r \land \neg w) \lor (p \land \neg q \land s \land t \land u) \lor (p \land \neg q \land s \land \neg w).$$

2. Per stabilire la validità della formula utilizziamo l'Algoritmo 4.5 delle dispense e costruiamo (utilizzando le convenzioni 4.31 e 4.32) un tableau con la radice etichettata dalla negazione della formula. In ogni passaggio sottolineiamo le formule su cui agiamo.

Il tableau è chiuso e quindi la formula è valida.

3. Supponiamo per assurdo che I sia un'interpretazione che soddisfa i tre enunciati, che chiamiamo F, G e H.

Dato che I
variable G esiste $d_0 \in D^I$ tale che $d_0 \in p^I$ e $f^I(d_0) \notin p^I$. Da I
varthing H segue in particolare che $I, \sigma[x/d_0]
varthing p(x) o \forall y \, r(f(x), y)$ e, dato che $d_0 \in p^I$, si ha $I, \sigma[x/d_0]
varthing \forall y \, r(f(x), y)$, cioè $(f^I(d_0), d) \in r^I$ per qualsiasi $d \in D^I$. D'altra parte I
varthing F implica in particolare che $I, \sigma[z/f^I(d_0)]
varthing \neg r(z, c) \lor p(z)$ e perciò che deve valere almeno uno tra $(f^I(d_0), c^I) \notin r^I$ e $f^I(d_0) \in p^I$. Entrambe queste possibilità contraddicono quanto ottenuto in precedenza, e abbiamo ottenuto la contraddizione che volevamo.

4. Dobbiamo definire un'interpretazione normale che soddisfa i due enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni normali con queste caratteristiche sono definite da

$$D^{I} = \{0, 1, 2\}, \quad f^{I}(0) = 1, f^{I}(1) = 2, f^{I}(2) = 0, \quad r^{I} = \{(0, 2), (1, 0), (2, 1)\};$$
$$D^{J} = \mathbb{N}, \quad f^{J}(n) = n + 1, \quad r^{J} = \{(n + 2, n) : n \in \mathbb{N}\}.$$

Dato che le interpretazioni sono normali non abbiamo bisogno di specificare $=^I$ e $=^J$.

5. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\exists x \, p(x) \lor (\neg \exists y \, \forall z \, r(y, z) \land \forall x \, q(f(x))) \to \forall y \, r(f(y), y)$$

$$\exists x \, p(x) \lor (\forall y \, \exists z \, \neg r(y, z) \land \forall x \, q(f(x))) \to \forall y \, r(f(y), y)$$

$$\exists x \, p(x) \lor \forall y \, \exists z (\neg r(y, z) \land q(f(y))) \to \forall y \, r(f(y), y)$$

$$\forall y (\exists x \, p(x) \lor \exists z (\neg r(y, z) \land q(f(y)))) \to \forall y \, r(f(y), y)$$

$$\forall y \, \exists x (p(x) \lor (\neg r(y, x) \land q(f(y)))) \to \forall y \, r(f(y), y)$$

$$\exists y \, \forall x ((p(x) \lor (\neg r(y, x) \land q(f(y)))) \to \forall y \, r(f(y), y))$$

$$\exists y \, \forall x \, \forall u ((p(x) \lor (\neg r(y, x) \land q(f(y)))) \to r(f(u), u))$$

6. (i) $a(b) \wedge c(b, m(d)) \wedge \neg a(m(d));$

(ii)
$$\forall x (a(x) \land a(m(x)) \rightarrow \exists y (c(x,y) \land \neg a(m(y)))).$$

7. 3 è l'unico elemento di D^I che compare al secondo posto negli elementi di r^I , e quindi non può essere in relazione di congruenza con nessun altro elemento di D^I . Notiamo anche che 0, 2 e 5 sono in relazione r^I con 3, mentre 1, 4 e 6 non lo sono. Perciò le tre classi d'equivalenza rispetto a \sim non possono che essere $\{3\}$, $\{0,2,5\}$ e $\{1,4,6\}$. Inoltre ~ verifica anche la condizione che riguarda f, perché $f^I(0) \sim f^I(2) \sim f^I(5)$ e

Figure 1. Since $f^{I}(1) \sim f^{I}(4) \sim f^{I}(6)$. Si ha $D^{I}/\sim = \{[0], [1], [3]\}, f^{I/\sim}([0]) = [1], f^{I/\sim}([1]) = [3], f^{I/\sim}([3]) = [1], r^{I/\sim} = [1], r^{I/\sim} = [1], r^{I/\sim}([1]) = [1], r^{I/\sim} = [1], r^{I/\sim}([1]) = [$ $\{([0],[3]),([3],[3])\}.$

8. Per mostrare che vale la conseguenza logica utilizziamo l'Algoritmo 10.49 delle dispense e costruiamo (utilizzando le convenzioni 10.20 e 10.22) un tableau chiuso con la radice etichettata dagli enunciati $F \in G$ (che sono γ -formule) che stanno a sinistra del simbolo di conseguenza logica e dalla negazione dell'enunciato che sta a destra. Indichiamo anche con H, K e L le γ -formule $\neg \exists z \neg p(z), \neg \exists y \, r(y, b)$ e $\forall y \neg r(y, b)$. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$F,G, \underline{\neg (\neg \exists u \, r(a,u) \lor \exists z \, \neg p(z))}$$

$$| \\ F,G, \underline{\exists u \, r(a,u)}, H \\ | \\ F,G,\underline{\neg (a,b)}, H \\ | \\ F,G,\underline{\exists y \, r(y,b) \to \neg p(b) \lor \neg r(b,b)}, r(a,b), H}$$

$$F,G,\underline{\neg (b,b)}, r(a,b), H$$

$$F,G, \neg p(b), r(a,b), \underline{H}$$

$$F,G, \neg p(b),$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (se le scelte non sono appropriate il tableaux cresce rapidamente di dimensione).

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{[r(c,z)]^1}{\exists y \, r(y,z)} \qquad \frac{\forall x (\exists y \, r(y,x) \to \exists y \, r(f(x),y))}{\exists y \, r(y,z) \to \exists y \, r(f(z),y)} \qquad \forall z (\exists y \, r(z,y) \to p(z)) \\ \exists y \, r(f(z),y) \qquad \qquad \exists y \, r(f(z),y) \to p(f(z)) \\ \exists z \, r(c,z) \qquad \qquad \boxed{\exists u \, p(f(u))}$$