Introduction to KiCAD & Open Hardware

Katharina Fey

17. March 2018

Before we get started

A repository with resources

https://github.com/spacekookie/adaconf-kicad-workshop or https://spacekookie.de/adaconf (temp link)

- ▶ PCB design is complicated. KiCAD is complicated
- Workshop & Slides meant as an introduction
- You will still have questions afterwards ;)

Contents

- Introduction
 - What is hardware development
 - What is KiCAD?
- Workflow
 - Creating schematic symbols
 - Creating footprints
 - Working with schematics and boards
 - Updating designs
- Best Practises
 - Project management
 - Library/ Parts management
 - Datasheets
 - Part Selection

Introduction

- Components, Boards and Firmware
- Board (PCB) design is "drawing"
- ► Open Hardware guideline
 - Schematics, Boards, Symbols, Footprints (as CAD files!)
 - ▶ Bill of material
 - Firmware (if any)
 - ► Mechanical CAD files (if any)
 - Documentation
 - Non-commertial license

KiCAD

- Free software
 - Developed & funded by CERN
- ► Current version 4.0.*
- ▶ Next version (5.0) just around the corner
- ▶ Open ecosystem around components & footprints

Workflow

- Schematics (represent Circuits)
- Associate Footprints
- Layout boards & route traces
- Repeat for iterations

Schematics

- Symbols (Create missing symbols)
- ► Labels
- Connections

Schematics Workflow

- Create circuit schematic
- Annotate (Give components unique names)
- Associate footprints
- Export Netlist

Board Layout

- ► Import Netlist
 - Imports component footprints
 - Can replace/ update/ remove old footprints
 - ► Import new Netlist for each revision
- Layout components
- Route traces
- Export
 - ► Gerber files (traces)
 - Drill holes (holes, edge cuts)
 - (Optional) Bill of Materials

Best Practises

- Schematics
 - Group components into segments (in nice boxes)
 - ► Put large segments onto sub-sheets
 - Use labels to connect segments together
- Store required libraries in project
- Include datasheets for components

Figure: Avoid doing this!

Understanding Datasheets

- Describes a component in detail
- Not everything always relevant
- Pick out important information
 - High-level description
 - Example usage
 - ▶ Pin-out
 - Footprint size

Finding Datasheets & Components

- ▶ Use component categories & search on retail websites
 - ► Farnell (Excellent search, medium catalogue)
 - Digikey (Meh search, excellent catalogue)
 - Mouser (Good search, good catalogue, expensive!)
 - Adafruit (Limited catalogue, expensive!)
- Datasheets provided by retail websites
- Often includes additional documentation

Best Practises: Library Management

- Three types of libraries
 - Schematic symbols (.lib)
 - Component footprints (.pretty)
 - ► (Optional) 3D models (.3dshapes)
- Different approaches to library management
 - Each have their pro's and con's
 - No "standard" way of doing it
 - One library per ...
 - Project
 - Component type
 - Manufacturer
 - Individual component