UPPSALA UNIVERSITET

Introduction to PDE

Lecture Notes

Rami Abou Zahra

Contents

1.	Introduction	2
1.1.	Examples of linear operators	2
1.2.	Other PDEs	
2.		4
2.1.	Methods of solutions - Transport equation	4

1. Introduction

Definition/Sats 1.1: Domain

An open connected set $\Omega \subset \mathbb{R}^n$ is called a *domain*

Definition/Sats 1.2: Bounded domain

A domain is bounded if its closure $\overline{\Omega}$ is compact

Definition/Sats 1.3: Smooth boundary

The boundary of a set (denoted $\partial\Omega$) is called *smooth* if it can be locally represented by a smooth function

1.1. Examples of linear operators.

- Gradient of $u \in C^1(\Omega)$, i.e $\nabla u = (u_{x_1}, \dots, u_{x_n})$
- Laplacian of $u \in C^2(\Omega)$, i.e $\Delta u = u_{x_1x_1} + \cdots + u_{x_nx_n}$
- Divergence of vector field

Definition/Sats 1.4: Classification of PDEs

A PDE is said to be **Quasilinear**: $\sum_{k,l=1}^{n} a^{kl}(x,u(x),Du(x))u_{x_kx_l} + b(x,u(x),Du(x)) = 0$

A PDE is said to be **Semilinear**: $\underbrace{\sum_{k,l=1}^n a^{kl}(x)u_{x_kx_l}}_{\text{principal term}} + b(x,u(x),Du(x)) = 0$

A PDE is said to be linear: $\sum_{k,l=1}^n a^{kl}(x)u_{x_kx_l} + \sum_{l=1}^n b^l(x)u_{x_l} + c(x)u(x) = f(x)$

Example: Heat equation

$$u_t - \Delta u = f \Leftrightarrow (\partial_t - \Delta)u$$

Take domain $\Omega \in \mathbb{R}^3$ and outward pointing unit \overrightarrow{n}

Let u = u(x, y, z, t) be temperature at point $\overline{x} = (x, y, z)$ at time t, and let q = (x, y, z, t, u) be the function describing the heat problem.

Heat production is dependent on temperature.

Let $\overline{Q} = \overline{Q}(x, y, z, t)$ be a vector field representing heat flux through $\partial \Omega$

The temperature change from t to $t + \Delta t$ corresponds to the flux in heat production as follows:

$$\int_{\Omega} (u(x,y,z,t+\Delta t) - u(x,y,z,t)) dV = \int_{t}^{t+\Delta t} \int_{\Omega} q(x,y,z,t,u) dV dt - \int_{t}^{t+\Delta t} \int_{\partial \Omega} Q(x,y,z,t) \overrightarrow{n} dS dt$$

Divide both sides by Δt and take the limit as $\Delta t \to 0$ yields:

$$\int_{\Omega} u_t(x, y, z, t) dV = \int_{\Omega} q(x, y, z, t, u) dV - \int_{\partial \Omega} \overline{Q}(x, y, z, t) \overrightarrow{n} dS$$

We expect that in practice $\overline{Q} = -a\nabla u$ for a > 0

Note that the last term becomes

$$\int_{\partial\Omega} \overline{Q}(x,y,z,t) \overrightarrow{n} dS = \int_{\partial\Omega} -a \nabla u \overrightarrow{n} dS = -a \int_{\Omega} \nabla \bullet \nabla u dV$$

Move everything of one side and integrating under same domain:

$$\int_{\Omega} (u_t(x, y, z, t) - q(x, y, z, t, y) - a\nabla \bullet \nabla u)dV = 0$$

This is precisely the heat equation.

The further study of the equation involves introducing/imposing further conditions:

- Initial conditions: At t = 0, $u(x, y, z, t) = \varphi(x, y, z)$
- Dirichlet data: Prescribes behaviour of boundary independent of time, i.e $u(x,y,z,t) = \psi(x,y,z) \quad \forall (x,y,z) \in \partial \Omega$
- Neumann Conditions: Prescribes heat production with boundary independent of time derivative: $u_{\overrightarrow{n}}(x,y,z,t) = \psi(x,y,z)$

There are other types, for example Robin conditions.

They can be mixed, and solutions can be determined if for example the combinations include stability etc.

1.2. Other PDEs.

- Poisson equations: $\Delta u = f$, if f = 0 then this is the Laplace equation (which has harmonic functions)
- Wave equations: $\Delta u u_{tt}$
- Minimal surface equation: $\nabla \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) = 0$
- Eikonal equation $|\nabla u| = 1$

2.1. Methods of solutions - Transport equation.

A quick recall, a Quasi-linear PDE is on the form:

$$a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$$

Example: Transport-equation

$$u_t + aux = 0$$
$$u(t = 0, x) = h(x)$$

This can be solved with a number of methods.

Method 1 - Change of variables By letting s = x - at and v = x + at, we get by the chain rule:

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial s} \frac{\partial s}{\partial t} + \frac{\partial u}{\partial v} \frac{\partial v}{\partial t} = \frac{\partial u}{\partial s} (-a) + \frac{\partial u}{\partial v} a$$
$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial s} + \frac{\partial u}{\partial v}$$

Then, by substitution into our original equation, we get:

$$0 = \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 2a \frac{\partial u}{\partial y} \Rightarrow u = u(s) = u(x - at)$$

We assume $h \in C^1$

Method 2

Note that we can rewrite our problem as $(1, a) \bullet \nabla u = 0$, this means that the gradient of the solution must be orthogonal to the lines (1, a) (where $a \neq 0$)

Thus, $u(x_0 + at, t) == c \quad \forall t \in \mathbb{R} \text{ and } u(x_0, 0) = 0.$

By initial condition, $u(x_0, 0) = h(x_0)$. Since the lines can written as $x_0 + at = x$, we immediately obtain that by shifting:

$$u(x - at, 0) = h(x - at) = u(x, t)$$

Method 2 (general)

For a general Quasi-linear PDE, we have $(a, b, c) \bullet (u_x, u_y, -1) = 0$

Some geometry; think of the graph S of the function u = u(x,y) with z = u(x,y). Since a,b,c are functions of x,y,u, they may be treated as functions in \mathbb{R}^3 and we may therefore define the vector field (a,b,c) on \mathbb{R}^3 .

Definition/Sats 2.5: Integral surface of vector field

The graph (sruface) in the above mentioned paragraph is called the *integral surface* of \overline{V}

The equation will usually be given an initial condition, which we have to interpret geometrically. Naturallym, we prescribe a curve $\Gamma: S \to (x_0(s), y_0(s), z_0(s))$

Example

Consider the transport equation with initial conditions $u(x_0, 0) = h(x_0)$. Think of t as y, then for x = s, y = 0, z = h(s), we get:

$$\Gamma: S \to (s, 0, h(s))$$

Most Quasi-linear PDEs can be transformed this way

Method of characteristics

Idea is we want to define surface $S \subset \mathbb{R}^3$ representing the graph of a solution such that the vector field is tangent to S at any point and such that S is continuous along Γ

Take a point $(x_0(s), y_0(s), z_0(s))$ and find a curve $\gamma_s(t) = (x(t), y(t), z(t))$ (integral curve of \overline{V}) along S

In this case, the curves equations are:

$$\begin{cases} x_t(t) = a(x(t), y(t), z(t)) \\ y_t(t) = b(x(t), y(t), z(t)) \\ z_t(t) = c(x(t), y(t), z(t)) \\ x(0) = x_0(s) \\ y(0) = y_0(s) \\ z(0) = z_0(s) \end{cases}$$

$Potential\ problems$

Only guaranteed existence for the system locally over t by the Picard-Lindelöf theorem. The graph S may fold into itself so that $|\nabla u| = 0$

This happens during joining of local parametrization, where transitions may seem smooth. Another problem is \overline{V} may be parallel to Γ , the procedurew will not recover Γ

Example

$$uu_x + u_y = 0 y > 0$$
$$u(x,0) = h(x)$$

Here we have $a=u=z,\,b=1,\,c=0$ Similar to before, $\Gamma:s\to(s,0,h(s))$.