Data Science Project Automated Colorization of Images

Bharat Prakash, Deepanjan Bhattacharyya & Harsh Vashistha

Agenda

- Introduction
- Problem Statement
- Approach
- Model
- Results
- Hiccups
- Future Work
- Reference

Introduction

- Converting a black & white image to color is a tedious task
- Problems:
 - Too many objects and varying textures.
 - Each object or part of image can take on different color
- Problem under-constrained and can have multiple solutions.

Problem Statement

Automatically colorize grayscale images.

Why?

Automated conversion of old school black white pictures.

Improvement in evaluating black and white images on color models

Approach

- Convert RGB images to Lab color space
 - L(grayscale) stands for lightness, and a and b for the color spectra green-red and blue-yellow.
- Input is the grayscale(L) and we want to predict a and b layers
- The colorization pipeline is basically is an autoencoder, the first half of the pipeline is an Encoder to
 extract important features and the second half is a Decoder to recreate the image from those
 features.
- These two halves are connected via a fusion layer which also takes embeddings generated by Inception-ResNet-V2 model (pre-trained on ImageNet) on a separate branch.
- The output is a two channel image representing a*b* channels, which is then merged with the L
 channel provided as input, which is then converted back to RGB.

Dataset

Source: ImageNet (First 12k images from fall_11 published urls)

- Images in the dataset largely are colored (RGB) and with varying content.
- Resolution of the images is also not fixed and hence, the images are preprocessed to (299x299) for inception-resnet-v2 and (256x256) for the coloring pipeline.

Preprocessing and Cleaning

Varied Resolution to Fixed Resolution

RGB \rightarrow L*a*b*

 $RGB \rightarrow Grayscale$

Zero centering

Normalizing

Train/Test/Validation split

Model Architecture

Jupyter Notebook

Results

Gray Scale

Actual

Hiccups

Time/Resource constraints made the input dataset quite small, but with lot of variations

Having a huge model, we had to use pre trained network.

Conversion between color space representations is tricky

Future Work

- Generalize network input size so as to enable it to train on multiple resolution images
- Train on larger dataset to increase accuracy and generalization
- Giving context in terms of either object or texture while coloring
- Experiment using other pretrained models
- Can be extended to videos

Reference

- lizuka, Satoshi, Edgar Simo-Serra, and Ishikawa Hiroshi. Let there be Color! SIGGRAPH 2016
- Larsson, Maire, and Shakhnarovich. Learning Representations for Automatic Colorization. ECCV 2016
- Zhang, Richard, Phillip Isola, and Alexei A. Efros. Colorful Image Colorization. ECCV 2016
- Baldassarre, Morin and Lucas Rodes-Guirao. Deep Koalarization: Image Colorization using CNNs and
 Inception-Resnet-v2. https://github.com/baldassarreFe/deep-koalarization/blob/master/paper.pdf
- http://www.whatimade.today/our-frst-reddit-bot-coloring-b-2/

Questions