Aprendizagem Automática

Projecções Lineares

PCA: Análise em Componentes Principais

LDA: Análise em Discriminantes Lineares

G. Marques

Projecções Lineares

- REDUÇÃO DA DIMENSIONALIDADE DE DADOS DE ELEVADA DIMENSÃO
 - Visualização ou pré-processamento para posterior classificação, análise, etc..
 - PCA Reduz a dimensionalidade de maneira a preservar o mais possível a variação presente nos dados de alta dimensão
 - LDA Reduz a dimensionalidade de maneira a preservar o mais possível a informação discriminativa entre classes presente nos dados de alta dimensão
- Outras Utilizações
 - Remoção de ruído
 - Reposição de valores omissos
 - Compressão
 - **•** . . .

- Objectivo: Projectar dados nas direcções de maior variância.
- Pressuposto: direcções onde os dados variam mais contêm mais informação.

- Objectivo: Projectar dados nas direcções de maior variância.
- Não há classes (método não supervisionado)
- Projecção:

$$\mathbf{y} = \mathbf{W}^{\top} \mathbf{x} = \begin{bmatrix} \begin{bmatrix} w_{11} & w_{21} & \cdots & w_{d1} \\ w_{12} & w_{22} & \cdots & w_{d2} \end{bmatrix} & \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$
$$\begin{bmatrix} w_{1k} & w_{2k} & \cdots & w_{dk} \end{bmatrix}$$

y vector de k dimensões (com $k \le d$) e **W** matriz de $d \times k$

 colunas de W são as componentes principais e formam uma base ortonormal:

$$\mathbf{w}_i^{\top} \mathbf{w}_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \quad \text{com } \|\mathbf{w}_i\| = 1, \ \forall i$$

- Estimação da matriz W:
 Decomposição em valores e vectores próprios da matriz de covariância de x
- Matriz de covariância:

$$\mathbf{\Sigma}_{\mathbf{x}} = \mathbb{E}\left\{ (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{\top} \right\} \approx \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathbf{x}})(\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathbf{x}})^{\top}$$

- Σ_x pode ser estimada com um produto matricial:
 - **1 X**: matriz $d \times N$ com todos os dados
 - $\mathbf{\bar{X}} = \mathbf{X} \mu_{\mathbf{x}}$: matriz de dados com média subtraída
 - $\mathbf{S}_{\mathbf{X}} \approx \frac{1}{N-1} \hat{\mathbf{X}} \hat{\mathbf{X}}^{\mathsf{T}}$

- Estimação da matriz W:
 Decomposição em valores e vectores próprios da matriz de covariância de x
- Matriz de covariância:

$$\mathbf{\Sigma}_{\mathbf{x}} = \mathbf{\Gamma} \mathbf{\Delta} \mathbf{\Gamma}^{ op}$$

- ightharpoonup Γ: matriz $d \times d$ em que as colunas são os vectores próprios de Σ_x
- ► **Γ**: matriz ortogonal (colunas $\gamma_i^\top \gamma_i = 0$ para $i \neq j$)
- ▶ Δ : matriz diagonal $d \times d$, em que os elementos da diagonal são os valores próprios de Σ_x
- ▶ **W**: escolher $k \le d$ colunas de Γ associadas aos k maiores valores próprios de $\Sigma_{\mathbf{x}}$

- Estimação da matriz W: Decomposição em valores e vectores próprios da matriz de covariância de x
- Matriz de covariância:

matriz de $d \times k$

(valores próprios ordenados: $\delta_1 > \delta_2 > \ldots > \delta_d$)

Dados Projectados: $\mathbf{y} = \mathbf{W}^{\top} \mathbf{x}$ (com W matriz de $d \times k$)

Média:

$$\boldsymbol{\mu}_{\mathbf{y}} = \mathbb{E}\left\{\mathbf{y}\right\} = \mathbb{E}\left\{\mathbf{W}^{\top}\mathbf{x}\right\} = \mathbf{W}^{\top}\boldsymbol{\mu}_{\mathbf{x}}$$

Matriz de covariância:

$$\begin{split} \boldsymbol{\Sigma}_{\mathbf{y}} &= \mathbb{E}\left\{(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}})(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}})^{\top}\right\} \\ &= \mathbb{E}\left\{\mathbf{W}^{\top}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{\top}\mathbf{W}\right\} = \mathbf{W}^{\top}\boldsymbol{\Sigma}_{\mathbf{x}}\mathbf{W} \\ &= \mathbf{W}^{\top}(\boldsymbol{\Gamma}\boldsymbol{\Delta}\boldsymbol{\Gamma}^{\top})\mathbf{W} = \boldsymbol{\Delta}_{k} \end{split}$$

Dados Projectados: $\mathbf{y} = \mathbf{W}^{\top} \mathbf{x}$ (com W matriz de $d \times k$)

Média:

$$\boldsymbol{\mu}_{\mathbf{y}} = \mathbb{E}\left\{\mathbf{y}\right\} = \mathbb{E}\left\{\mathbf{W}^{\top}\mathbf{x}\right\} = \mathbf{W}^{\top}\boldsymbol{\mu}_{\mathbf{x}}$$

Matriz de covariância:

$$\mathbf{\Sigma}_{\mathbf{y}} = \mathbf{\Delta}_{k} = egin{bmatrix} \delta_{1} & 0 & \cdots & 0 \ 0 & \delta_{2} & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & 0 & \delta_{k} \end{bmatrix}$$

Dados projectados são descorrelacionados

 \Rightarrow Σ_y matriz de covariância diagonal $(k \times k)$ com os k primeiros valores próprios de Σ_x

Exemplo: dados sintéticos 2D

• $\mathbf{y} = \mathbf{W}^{\mathsf{T}} \mathbf{x} \text{ com } \mathbf{W} = \mathbf{\Gamma} \text{ matriz } 2 \times 2$

Exemplo: dados sintéticos 2D

• $\mathbf{y} = \mathbf{W}^{\top} \mathbf{x}$ com $\mathbf{W} = \mathbf{\Gamma}$ matriz 2×2 Preferível primeiro tirar média a \mathbf{x}

Exemplo: dados sintéticos 2D

• Reconstrução: $\hat{\mathbf{x}} = \mathbf{W}\mathbf{y}$ com $\mathbf{W} = \mathbf{\Gamma}$ matriz 2×2 Repor depois a média de \mathbf{x} . Neste caso $\hat{\mathbf{x}} = \mathbf{x}$.

Exemplo: dados sintéticos 2D

• $\mathbf{y} = \mathbf{W}^{\mathsf{T}} \mathbf{x} \text{ com } \mathbf{W} = \mathbf{w}_1 \text{ "matriz" } 2 \times 1$

Exemplo: dados sintéticos 2D

Reconstrução: x̂ = w₁y
 Repor depois a média de x. Neste caso x̂ ≠ x.

Exemplo: Compressão de imagem

• Dividir imagem em blocos de 8×8 (1024 blocos total)

Exemplo: Compressão de imagem

- Cada vector **x** corresponde a um bloco (dim. **x** de 64×1)
- 64 componentes principais (em blocos de 8×8)

 Cada bloco de 8×8 da imagem original é reconstruido sem perdas com uma soma ponderada destes 64 blocos

Exemplo: Compressão de imagem

- Total de 64 componentes principais
- Compressão obtida escolhendo $k \ll 64$ componentes principais
- Quantas escolher? (ver percentagem da variância total)

individual:

cumulativa:

Exemplo: Compressão de imagem

• Imagem original vs reconstruida (4 PCs)

Exemplo: Compressão de imagem

• Imagem original vs reconstruida (8 PCs)

Exemplo: Compressão de imagem

Imagem original vs reconstruida (16 PCs)

Exemplo: Compressão de imagem

Imagem original vs reconstruida (32 PCs)

Exemplo: Eigenfaces

Imagens cortesia de Olivetti Research Lab. em Cambridge, UK.

- 10 imagens de faces por individuo (num total de 40)
- Cada imagem 112×92 pixeis

Exemplo: Eigenfaces

- ⇒ dados com 10304 dimensões!!!
- X matriz de 10304×400 com todas as imagens.
 Considere que a matriz X já tem a média tirada, e que foi multiplicada por ¹/_{N-1}
- Matriz de covariância: Σ_x ≈ XX[⊤]
 Neste caso Σ_x é de 10304×10304 ⇒proibitivo!!!
- Constatação: como só temos 400 pontos, há no máximo 399 valores próprios ≠ 0
 (os dados vivem num sub-espaço de 399 dimensões)

Exemplo: Eigenfaces

Solução:

Ver o problema de outra maneira: considerar que temos 10304 pontos a 400 dimensões em vez do contrário

Exemplo: Eigenfaces

- Matriz de covariância original: $\Sigma_x \approx XX^\top = \Gamma \Delta \Gamma^\top$
- Nova matriz de covariância: $\tilde{\Sigma}_{x} \approx \mathbf{X}^{T} \mathbf{X} = \tilde{\Gamma} \tilde{\Delta} \tilde{\Gamma}^{T}$
- Notar que:

$$\boldsymbol{X}\boldsymbol{\tilde{\Sigma}_{x}}\boldsymbol{X}^{\top}\!=\!\boldsymbol{X}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{X}^{\top}\!=\!\boldsymbol{\Sigma_{x}}\boldsymbol{\Sigma_{x}}\!=\!\boldsymbol{\Gamma}\boldsymbol{\Delta}\boldsymbol{\Gamma}^{\top}\boldsymbol{\Gamma}\boldsymbol{\Delta}\boldsymbol{\Gamma}^{\top}\!=\!\boldsymbol{\Gamma}\boldsymbol{\Delta}^{2}\boldsymbol{\Gamma}^{\top}$$

e que:

$$\mathbf{X}\tilde{\mathbf{\Sigma}}_{\mathbf{x}}\mathbf{X}^{\top} = \mathbf{X}\tilde{\mathbf{\Gamma}}\tilde{\mathbf{\Delta}}\tilde{\mathbf{\Gamma}}^{\top}\mathbf{X}^{\top} = \mathbf{\Gamma}\mathbf{\Delta}^{2}\mathbf{\Gamma}^{\top}$$

• então: $\mathbf{X}\tilde{\mathbf{\Gamma}} = \mathbf{\Gamma}$ e $\tilde{\mathbf{\Delta}} = \mathbf{\Delta}^2$

Exemplo: Eigenfaces

Solução:

- $\bigcirc \quad \text{Calcular } \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}} \! = \! \boldsymbol{X}^{\top} \boldsymbol{X}$
- 2 Estimar os vectores próprios, $\tilde{\Gamma}$ de $\tilde{\Sigma}_x$
- Estimar os vectores próprios, Γ=XΓ
- Normalizar colunas de Γ de modo a terem norma unitária
- **5 W**: escolher $k \le N 1$ colunas de Γ.

Exemplo: Eigenfaces

40 primeiras "eigenfaces"

Exemplo: Eigenfaces

 Cada imagem (face) é reconstruida com uma soma ponderada dos vectores próprios (eigenfaces).

Exemplo: Eigenfaces

 Cada imagem (face) é reconstruida com uma soma ponderada dos vectores próprios (eigenfaces).

Orig.

50 PCs

100 PCs

200 PCs

300 PCs

Exemplo: Dados com valores omissos

Dados sintéticos

Reposição do valor em falta

Exemplo: Dados com valores omissos

Dados sintéticos

- Reposição do valor em falta
- Substituir pela média
 Pode não dar bons resultados

Exemplo: Dados com valores omissos

Dados sintéticos

- Reposição do valor em falta
- Substituir pela média
 Pode não dar bons resultados
- Melhor projectar no sub-espaço das componentes principais

Exemplo: Dados com valores omissos

Imagem de teste

Imagens de treino

Exemplo: Dados com valores omissos

Pixeis repostos

Imagens de treino

Exemplo: Dados com valores omissos

Imagem reconstruida

Imagem original

Imagens de treino

Exemplo: Dados com valores omissos

Imagem reconstruida

Imagem original

Imagens de treino

- Objectivo: Encontrar uma projecção de modo a maximizar a variância inter-classe (entre classes) e minimizar variância intra-classe (dentro da mesma classe)
- Generalização do método dos discriminantes de Fisher para mais que duas classes

LDA - Discriminantes de Fisher

- DISCRIMINANTES DE FISHER 2 classes $\Omega = \{ \varpi_1, \varpi_2 \}$, com $N_i = |\mathbf{x} \in \varpi_i| \text{ e } i = 1, 2$
- Dados projectados num recta y = w[⊤]x
 cada vector x a d dimensões é convertido num escalar y

$$y = \mathbf{w}^{\top} \mathbf{x} = \begin{bmatrix} w_1 & w_2 & \cdots & w_d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

LDA - Discriminantes de Fisher

- DISCRIMINANTES DE FISHER 2 classes $\Omega = \{ \varpi_1, \varpi_2 \}$, com $N_i = |\mathbf{x} \in \varpi_i| \text{ e } i = 1, 2$
- Dados projectados num recta y = w[⊤]x de modo a maximizar a função:

$$\mathcal{J}(\mathbf{w}) = \frac{\mathbf{w}^{\top} (\mu_1 - \mu_2)^2 \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_w \mathbf{w}}$$

para
$$\mu_i = \frac{1}{N_i} \sum_{\mathbf{x} \in \varpi_i} \mathbf{x}$$

e para
$$\mathbf{S}_w = \mathbf{S}_{w_1} + \mathbf{S}_{w_2} \text{ com } \mathbf{S}_{w_i} = \sum_{\mathbf{x} \in \varpi_i} (\mathbf{x} - \boldsymbol{\mu}_i) (\mathbf{x} - \boldsymbol{\mu}_i)^{ op}$$

LDA - Discriminantes de Fisher

- DISCRIMINANTES DE FISHER 2 classes $\Omega = \{ \varpi_1, \varpi_2 \}$, com $N_i = |\mathbf{x} \in \varpi_i| \text{ e } i = 1, 2$
- Dados projectados num recta y = w[⊤]x de modo a maximizar a função:

$$\mathcal{J}(\mathbf{w}) = rac{\mathbf{w}^{ op}(\mu_1 - \mu_2)^2 \mathbf{w}}{\mathbf{w}^{ op} \mathbf{S}_w \mathbf{w}}$$

ullet Solução: $\mathbf{w} = \mathbf{S}_w^{-1}(\mu_1 - \mu_2)$

- DISCRIMINANTES DE FISHER MULTI-CLASSE $\Omega = \{ \varpi_1, \dots, \varpi_c \}$, com $N_i = |\mathbf{x} \in \varpi_i| \text{ e } i = 1, \dots, c$
- Dados projectados num sub-espaço $\mathbf{y} = \mathbf{W}^{\top}\mathbf{x}$ cada vector \mathbf{x} a d dimensões é noutro vector \mathbf{y} com o máximo de c-1 dimensões

$$\mathbf{y} = \mathbf{W}^{\top} \mathbf{x} = \begin{bmatrix} w_{11} & w_{21} & \cdots & w_{d1} \\ \vdots & & \ddots & \vdots \\ w_{1(c-1)} & w_{2(c-1)} & \cdots & w_{d(c-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

- DISCRIMINANTES DE FISHER MULTI-CLASSE $\Omega = \{ \varpi_1, \dots, \varpi_c \}$, com $N_i = |\mathbf{x} \in \varpi_i| \text{ e } i = 1, \dots, c$
- Dados projectados num sub-espaço y = W[⊤]x de modo a maximizar a função:

$$\mathcal{J}(\mathbf{w}) = \frac{\mathbf{W}^{\top} \mathbf{S}_b \mathbf{W}}{\mathbf{W}^{\top} \mathbf{S}_W \mathbf{W}}$$

para
$$\mathbf{S}_b = \mathbf{S}_{b_1} + \dots + \mathbf{S}_{b_c}$$
 e $\mathbf{S}_w = \mathbf{S}_{w_1} + \dots + \mathbf{S}_{w_c}$ com $\mathbf{S}_{b_i} = (\boldsymbol{\mu}_i - \boldsymbol{\mu}_{\mathbf{x}})(\boldsymbol{\mu}_i - \boldsymbol{\mu}_{\mathbf{x}})^{\top}$ e com $\boldsymbol{\mu}_{\mathbf{x}} = \frac{1}{N} \sum_{\forall \mathbf{x}} \mathbf{x}$ \mathbf{S}_b e \mathbf{S}_w matrizes de $d \times d$

- DISCRIMINANTES DE FISHER MULTI-CLASSE $\Omega = \{ \varpi_1, \dots, \varpi_c \}$, com $N_i = |\mathbf{x} \in \varpi_i| \text{ e } i = 1, \dots, c$
- Dados projectados num sub-espaço y = W[⊤]x de modo a maximizar a função:

$$\mathcal{J}(\mathbf{w}) = \frac{\mathbf{W}^{\top} \mathbf{S}_b \mathbf{W}}{\mathbf{W}^{\top} \mathbf{S}_W \mathbf{W}}$$

• Solução: **W** matriz em que as colunas são os c-1 primeiros vectores próprios da matriz $(\mathbf{S}_w^{-1}\mathbf{S}_b)$

PCA:

- As componentes principais podem não ser as direcções mais discriminativas
- Dados projectados podem ter as mesmas dimensões dos dados originais

LDA:

- Melhor poder discriminativo
- ▶ Dados projectados num sub-espaço com c − 1 dimensões (c = n. classes)

Exemplo: Dígitos Manuscritos

```
323304064413022

401122402344443

123/31/200/3021

442304034334303

4010//341234404

2430/0/40/40[20

103211214124420

02221331/21210
```

- MNIST: Base de dados de dígitos manuscritos pre-processados, composto por mais de 70000 imagens. Para obter a informação completa sobre esta base de dados, consultar a página: http://yann.lecun.com/exdb/mnist/.
- Cada imagem 28×28 pixeis $\Rightarrow d = 784$
- Reduzir dimensionalidade com PCA e LDA

Exemplo: Dígitos Manuscritos

Classes: 0,1,2,3,4

Projecções com PCA

Exemplo: Dígitos Manuscritos

Classes: 0,1,2,3,4

Projecções com LDA