

Model regresji liniowej

Krzysztof Rudaś Bootcamp Data Science

Teoria uczenia statystycznego

Y - odpowiedź, zmienna zależna, zmienna wyjaśniana;

 X_1, X_2, \ldots, X_p - predyktory, zmienne niezależne, zmienne wyjaśniające, cechy;

$$Y = f(X) + \varepsilon,$$

gdzie f jest nieznaną funkcją predyktorów X_1, X_2, \ldots, X_p oraz ε to błąd losowy.

Teoria uczenia statystycznego

Istnieją dwa główne powody, dla których chcemy oszacować postać f:

- predykcja (ang. prediction), oraz
- wnioskowanie (ang. inference).

Predykcja

Niech \hat{Y} oznacza przewidzianą wartość zmiennej zależnej Y, zaś \hat{f} , to założona/wyestymowana postać nieznanej funkcji f:

$$\hat{Y} = \hat{f}(X)$$
.

Dokładność prognozy \hat{Y} zależy od dwóch wielkości:

- błędu redukowalnego (postać f zazwyczaj nie jest idealnym oszacowaniem funkcji f, ta niedokładność wprowadza pewien błąd do predykcji);
- błędu nieredukowalnego (wartość Y zależy od pewnego nieznanego błędu ε).

$$\begin{split} \mathbb{E}(\mathbf{Y} - \hat{\mathbf{Y}})^2 &= \mathbb{E}[\mathbf{f}(\mathbf{X}) + \varepsilon - \hat{\mathbf{f}}(\mathbf{X})]^2 \\ &= \underbrace{[\mathbf{f}(\mathbf{X}) - \hat{\mathbf{f}}(\mathbf{X})]^2}_{\text{błąd redukowalny}} + \underbrace{\mathsf{Var}(\varepsilon)}_{\text{błąd nieredukowalny}} \end{split}$$

4

Wnioskowanie

Często oprócz predykcji nieznanych wartości Y, jesteśmy również zainteresowani zrozumieniem relacji pomiędzy zmienną zależną a zmiennymi niezależnymi.

Wówczas jesteśmy zainteresowani odpowiedzią na następujące pytania:

• Które zmienne niezależne są powiązane ze zmienną odpowiedzi? Ważny elementem analizy jest określenie podzbioru dostępnych predyktorów, które istotnie są związane ze zmienną odpowiedzi *Y*.

Wnioskowanie

Często oprócz predykcji nieznanych wartości Y, jesteśmy również zainteresowani zrozumieniem relacji pomiędzy zmienną zależną a zmiennymi niezależnymi.

Wówczas jesteśmy zainteresowani odpowiedzią na następujące pytania:

- Które zmienne niezależne są powiązane ze zmienną odpowiedzi? Ważny elementem analizy jest określenie podzbioru dostępnych predyktorów, które istotnie są związane ze zmienną odpowiedzi Y.
- Jaki jest związek między zmienną odpowiedzi a każdym predyktorem? Niektóre zmienne niezależne mogą mieć pozytywny wpływ na zmienną odpowiedzi (np. wzrost wartości zmiennej X wiąże się ze wzrostem wartości zmiennej Y), inne predyktory mogą mieć odwrotny związek.

Wnioskowanie

Czy związek między zależną Y a każdą zmienną odpowiedzi X_i można przedstawić jako liniowy? Czy też związek jest bardziej złożony? Historycznie wiele metod zakładała liniową postać funkcji f. W niektórych sytuacjach takie założenie jest uzasadnione. Jednakże, w większości przypadków prawdziwy związek jest bardziej skomplikowany, wówczas model liniowy może być niewystarczający do odpowiedniego określenia związku między zmiennymi wejściowymi i wyjściowymi.

Zbiór danych Advertising

Zbiór danych Advertising zawiera dane ze sprzedaży reklamy pewnego produktu na 200 różnych rynkach wraz z budżetami reklamowymi tego produktu w każdym z nich dla trzech różnych typów mediów: telewizji, radia i gazety.

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

Zbiór danych Advertising

Zbiór danych Advertising

- 1. Czy istnieje związek między budżetem przeznaczonym na reklamę a wielkością sprzedaży?
- 2. Jak silny jest związek między budżetem a wielkością sprzedaży?
- 3. Które rodzaje mediów wpływają na sprzedaż?
- 4. Jak dokładnie możemy przewidzieć wpływ każdej formy mediów na wielkość sprzedaży?
- 5. Jak dokładnie możemy przewidzieć wielkość przyszłej sprzedaży?
- 6. Czy związek między zmienną odpowiedzi a zmiennymi niezależnymi jest liniowy?

Model regresji prostej

$$Y = \beta_0 + \beta_1 X + \varepsilon,$$

gdzie $\varepsilon \sim \mathcal{N}(0, \sigma)$.

W praktyce, współczynniki β_0 i β_1 są nieznane.

Cel: Przy użyciu par $(x_1,y_1),(x_2,y_2),\dots(x_n,y_n)$ odpowiadającym pomiarom, odpowiednio, zmiennej X i Y, wyznaczyć współczynniki b_0,b_1 tak, aby

$$y_i \approx b_0 + b_1 x_i$$

Zapis:

 $\hat{y}_i = b_0 + b_1 x_i$ – wartość prognozowana Y na podstawie i-tej wartości X $e_i = y_i - \hat{y}_i$ – i-te rezyduum (wartość resztowa)

Model regresji prostej — zbiór Advertising

Niech

- X będzie zmienną niezależną opisującą wysokość budżetu przeznaczonego na reklamę w telewizji (TV),
- Y będzie zmienną zależną opisującą wysokość sprzedaży pewnego produktu (Sales).

Zakładamy, że prawdziwy jest związek:

$$\mathsf{Sales} \approx b_0 + b_1 \cdot \mathsf{TV}.$$

Jak wyznaczyć b_0 i b_1 ?

Suma kwadratów błędów (ang. residual sum of squares):

RSS =
$$e_1^2 + e_2^2 + \dots + e_n^2$$

= $(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \dots + (y_n - \hat{y}_n)^2$

Funkcja kryterialna:

$$(b_0, b_1) = \arg\min_{(b_0, b_1)} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \arg\min_{(b_0, b_1)} \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów wyznacza b_0, b_1 minimalizując RSS, tj.

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}},$$

$$b_{0} = \overline{y} - b_{1}\overline{x}$$

gdzie
$$\bar{x} = \frac{1}{n}x_i$$
 oraz $\bar{y} = \frac{1}{n}y_i$

OLS Regression Results

Sales R-squared:

Dep. Variable:

Madal				01.6	A -1 -1	D. sausand.		0.610
Model:				0LS	_	R-squared:		0.610
Method:		Leas	t Squ	ares	F-st	atistic:		312.1
Date:		Sun, 16	Feb :	2020	Prob	(F-statistic):		1.47e-42
Time:			11:5	0:53	Log-	Likelihood:		-519.05
No. Observatio	ns:			200	AIC:			1042.
Df Residuals:				198	BIC:			1049.
Df Model:				1				
Covariance Typ	e:		nonro	bust				
	======							
	coef	std	err		t	P> t	[0.025	0.975]
Intercept	7.0326	0	. 458	15	. 360	0.000	6.130	7.935
TV	0.0475	0	.003	17	. 668	0.000	0.042	0.053
Omnibus:			0	.531	Durb:	in-Watson:		1.935
Prob(Omnibus):			0	.767	Jarq	ue-Bera (JB):		0.669
Skew:			- 0	.089	Prob	(JB):		0.716
Kurtosis:			2	.779	Cond	. No.		338.
		======	=====					

0.612

Model regresji prostej — zbiór Advertising

Stopnie swobody

Dep. Variable	:		Sales	5	R-squ	ared:		0.612
Model:			OLS	5	Adj.	R-squared:		0.610
Method:		Least	Squares	5	F-sta	tistic:		312.1
Date:		Sun, 16	Feb 2020	9	Prob	(F-statistic):		1.47e-42
Time:			11:50:53	3	Log-L	ikelihood:		-519.05
No. Observati	ons:		200	9	AIC:			1042.
D† Residuals:			198	3	BIC:			1049.
Df Model:				l				
Covariance Ty	pe:	r	nonrobust	t				
	coe	f std	err		t	P> t	[0.025	0.975]
Intercept	7.032	5 0.	458	15	.360	0.000	6.130	7.935
TV	0.047	5 0.	003	17	.668	0.000	0.042	0.053
Omnibus:			0.53	=== l	Durbi	======== n-Watson:		1.935
Prob(Omnibus)	:		0.767			e-Bera (JB):		0.669
Skew:			-0.089		Prob(0.716
Kurtosis:			2.779	9	Cond.	,		338.
	======					=========	======	

Stopnie swobody

Df Model — liczba stopni swobody modelu, wyrażona jako

p,

Df Residuals — liczba stopni swobody, wyrażona jako

$$n - p - 1$$

gdzie n oznacza liczbę obserwacji w modelu, zaś p to liczba predyktorów w modelu.

Współczynnik determinacji R^2

=========							======	
Dep. Variable	:		S	ales	R-sq	uared:		0.612
Model:				0LS	Adj.	R-squared:		0.610
Method:		Leas	t Squ	ares	F-sta	atistic:		312.1
Date:		Sun, 16	6 Feb	2020	Prob	(F-statistic):		1.47e-42
Time:			11:5	0:53	Log-l	_ikelihood:		-519.05
No. Observation	ons:			200	AIC:			1042.
Df Residuals:				198	BIC:			1049.
Df Model:				1				
Covariance Typ	oe:		nonro	bust				
	coef	f sto	err		t	P> t	[0.025	0.975]
Intercept	7.0326	5 (.458	15	.360	0.000	6.130	7.935
TV	0.0475	5 (0.003	17	.668	0.000	0.042	0.053
Omnibus:			 0	 .531	Durb	in-Watson:		1.935
Prob(Omnibus)	:		0	.767	Jarqu	ue-Bera (JB):		0.669
Skew:			- 0	.089	Prob	(JB):		0.716
Kurtosis:			2	.779	Cond	No.		338.
=========							======	

Współczynnik determinacji R^2

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS},$$

gdzie

$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2,$$

to całkowita suma kwadratów (ang. total sum of squares).

- 1. $0 \le R^2 \le 1$
- 2. TSS mierzy zmienność zmiennej Y przed zastosowaniem regresji
- 3. ${
 m RSS}$ mierzy wielkość zmienności, która jest niewyjaśniana przez model regresji
- 4. TSS-RSS mierzy wielkość zmienności, która jest wyjaśniana przez model regresji
- 5. \mathbb{R}^2 mierzy stosunek zmienności Y, która może być wyjaśniona przez X

Funkcja wiarogodności

			=====		=====			
Dep. Variable:	:		Sa	les	R-squ	uared:		0.612
Model:			(0LS	Adj.	R-squared:		0.610
Method:		Leas	t Squa	res	F-sta	atistic:		312.1
Date:		Sun, 16	Feb 20	020	Prob	(F-statistic):		1.47e-42
Time:			11:50	:53	Log-l	ikelihood:		-519.05
No. Observation	ons:		:	200	AIC:			1042.
Df Residuals:				198	BIC:			1049.
Df Model:				1				
Covariance Typ	oe:		nonrob	ust				
					=====			
	coe	f std	err		t	P> t	[0.025	0.975]
Intercept	7.032	5 0	. 458	15	.360	0.000	6.130	7.935
TV	0.047	5 0	.003	17	.668	0.000	0.042	0.053
Omnibus:			====== ا . 0	===== 531	Durb	======== in-Watson:		1.935
Prob(Omnibus):				767		ue-Bera (JB):		0.669
Skew:	•			089	Prob	, ,		0.716
Kurtosis:				779	Cond			338.
=======================================			=====		=====			

Funkcja wiarogodności

Zgodnie z założenia regresji

$$Y \sim \mathcal{N}(\beta_0 + \beta_1 X, \sigma).$$

wówczas funkcja wiarogodności ma postać

$$L(y_1, y_2 \dots, y_n, \sigma) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right\}.$$

Mamy

$$I(y_1, y_2, \dots, y_n, \sigma) = \ln L = -\frac{n}{2} \ln (2\pi) - n \ln \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Funkcja wiarogodności

Można pokazać, że wartości b_0 i b_1 maksymalizujące funkcję l, to:

$$\hat{\beta}_1 = b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}, \quad \hat{\beta}_0 = b_0 = \overline{y} - b_1 \overline{x}.$$

Wówczas szukając postaci ENW dla σ^2 postępujemy następująco:

1.
$$\frac{\partial I}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
;

2.
$$\frac{\partial l}{\partial \sigma} = 0 \implies \sigma_0^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
.

3.
$$\left. \frac{\partial^2 I}{\partial \sigma^2} \right|_{\sigma^2 = \sigma_0^2} = -\frac{2n}{\sigma_0^2} < 0.$$

Estymatorem największej wiarogodności wariancji σ^2 jest:

$$\hat{\sigma}^2 = \frac{\mathsf{RSS}}{\mathsf{n}}.$$

AIC i BIC

Dep. Variable	:			Sales	R-	squa	red:		0.612
Model:				0LS	Ad	j. R	-squared:		0.610
Method:		L	east Sq	uares	F-	stat:	istic:		312.1
Date:		Sun,	16 Feb	2020	Pr	ob (I	F-statistic)	:	1.47e-42
Time:			11:	50:53	Lo	q-Li	kelihood:		-519.05
No. Observation	ons:			200	ΑI	C:			1042.
Df Residuals:				198	ΒI	C:			1049.
Df Model:				1					
Covariance Typ	oe:		nonr	obust					
	coe	f	std err			t	P> t	[0.025	0.975]
Intercept	7.032	5	0.458	1	15.36	0	0.000	6.130	7.935
TV	0.047	5	0.003	1	17.66	8	0.000	0.042	0.053
Omnibus:				===== 0.531	==== Du	rbin	======== -Watson:		1.935
Prob(Omnibus)	:			0.767			-Bera (JB):		0.669
Skew:			_	0.089		ob(JI	, ,		0.716
Kurtosis:				2.779		nd. I	•		338.
				=====					

AIC i BIC

Kryterium Akaike (ang. Akaike Information Criterion):

$$AIC = -2\ln L + 2p$$

Kryterium Schwarza (ang. *Bayesian Information Criterion*):

$$BIC = -2\ln L + \ln(n)p,$$

gdzie p jest liczbą parametrów w modelu, n jest liczbą obserwacji, a L jest funkcją wiarygodności.

Współczynniki regresji

Dep. Variable:	Sales	R-squared:	0.612
Model:	0LS	Adj. R-squared:	0.610
Method:	Least Squares	F-statistic:	312.1
Date:	Sun, 16 Feb 2020	Prob (F-statistic):	1.47e-42
Time:	11:50:53	Log-Likelihood:	-519.05
No. Observations:	200	AIC:	1042.
Df Residuals:	198	BIC:	1049.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	7.0326	0.458	15.360	0.000	6.130	7.935
TV	0.0475	0.003	17.668	0.000	0.042	0.053

Omnibus:	0.531	Durbin-Watson:	1.935
Prob(Omnibus):	0.767	Jarque-Bera (JB):	0.669
Skew:	-0.089	Prob(JB):	0.716
Kurtosis:	2.779	Cond. No.	338.

Odchylenie standardowe estymatorów współczynników β_0 i β_1

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right],$$

$$SE(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2},$$

 $\mathsf{gdzie}\ \sigma^2 = \mathsf{Var}(\varepsilon).$

95% przedziały ufności dla parametrów regresji:

$$\hat{\beta}_1 \pm 2 \cdot \mathsf{SE}(\hat{\beta}_1), \quad \hat{\beta}_0 \pm 2 \cdot \mathsf{SE}(\hat{\beta}_0).$$

Istotność współczynników regresji

$$H_0:\beta_1=0,$$

$$H_1: \beta_1 \neq 0.$$

W przypadku prostej regresji liniowej, hipoteza służy do oceny, czy istnieje związek między zmienną X i Y.

Jeśli $\beta_1=0$ wówczas model regresji redukuje się do $Y=\beta_0+\varepsilon$ i X nie jest związana ze zmienną Y.

Będziemy używać statystyki testowej:

$$t = \frac{\hat{\beta}_1 - 0}{\mathsf{SE}(\hat{\beta}_1)}.$$

Przy prawdziwości hipotezy zerowej statystyka t ma rozkład t-Studenta z n-2 stopniami swobody.

Testy normalności — Omnibus

Dep. Variable Model:	e:		Sales OLS		nared: R-squared:		0.612 0.610
Method:		Least Sq	lares	_	tistic:		312.1
Date:		Sun, 16 Feb			(F-statisti	c):	1.47e-42
Time:		•	50:53		ikelihood:		-519.05
No. Observat:	ions:		200	AIC:	INC CINOCA.		1042.
Df Residuals			198	BIC:			1049.
Df Model:	•		1	DIC.			1045.
Covariance Ty	ype:	nonr	obust				
========	coef	std err		t	P> t	[0.025	0.975]
Intercept TV	7.0326 0.0475			.5.360 .7.668	0.000	6.130 0.042	
Omnibus: Prob(Omnibus Skew: Kurtosis:) :	-1	9.531 9.767 9.089 2.779	Jarqı Prob		:	1.935 0.669 0.716 338.

Test normalności — Omnibus

Test typu omnibus D'Agostino-Pearsona oparty o kurtozę i skośność.

Łącząc dwa testy otrzymuje się test czuły na odstępstwa od normalności zarówno w postaci niezerowej skośności jak i kurtozy istotnie różniej od 3.

Statystyką testową jest

$$K^2 = (Z(\sqrt{b_1}))^2 + (Z(b_2))^2,$$

gdzie $Z(\sqrt{b_1})$ to statystyka testowa testu opartego o skośność a $Z(b_2)$ to statystyka testowa testu opartego o kurtozę.

Asymptotyczny rozkład tej statystyki to rozkład χ^2 .

Ponadto:
$$m_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k$$
, $\sqrt{b_1} = \frac{m_3}{m_2^{3/2}}$, $b_2 = \frac{m_4}{m_2^2} - 3$.

Test normalności — Jarque-Bera

Dep. Variable	:		9	Sales	R-sq	uared:		0.612
Model:				0LS	Adj.	R-squared:		0.610
Method:		Leas	t Squ	iares	F-sta	atistic:		312.1
Date:		Sun, 16	Feb	2020	Prob	(F-statistic):		1.47e-42
Time:			11:5	0:53	Log-l	Likelihood:		-519.05
No. Observati	ons:			200	AIC:			1042.
Df Residuals:				198	BIC:			1049.
Df Model:				1				
Covariance Ty	pe:		nonro	bust				
	coe	f sto	err		t	P> t	[0.025	0.975]
Intercept	7.032	5 (. 458	15	. 360	0.000	6.130	7.935
TV	0.047	5 (.003	17	.668	0.000	0.042	0.053
Omnibus:			.====	.531	Durb	======== in-Watson:		1.935
Prob(Omnibus)	:			7.767		ue-Bera (JB):		0.669
Skew:				0.089	Prob	, ,		0.716
Kurtosis:			2	2.779	Cond	. No.		338.

Test normalności — Jarque-Bera

Innym testem opartym o kurtozę i skośność jest **test Jarque-Bera**. Statystyka testowa w przypadku tego testu ma łatwiejszą postać niż dla testu D'Agostino-Pearsona. Traci się jednak na niedokładnym oszacowaniu wartości krytycznych przy niewielkich wielkościach próby. Asymptotycznie ten test jest tak samo mocny jak test D'Agostino-Pearsona, ale na asymptotykę można liczyć jedynie w przypadku dużych prób.

Statystyka testowa ma postać:

$$\mathsf{JB} = \frac{n}{6} \Big((\sqrt{b_1})^2 + \frac{1}{4} (b_2 - 3)^2 \Big).$$

Statystyka Durbina-Watsona

Dep. Variable:			S	ales	R-squ	lared:		0.612
Model:				0LS	Adj.	R-squared:		0.610
Method:		Leas	t Squ	ares	F-sta	atistic:		312.1
Date:		Sun, 16	Feb	2020	Prob	(F-statistic):		1.47e-42
Time:			11:5	0:53	Log-l	ikelihood:		-519.05
No. Observation	ıs:			200	AIC:			1042.
Df Residuals:				198	BIC:			1049.
Df Model:				1				
Covariance Type	2:	1	nonro	bust				
	coe	std	err		t	P> t	[0.025	0.975]
Intercept	7.0326	5 0	. 458	15	.360	0.000	6.130	7.935
TV	0.0475	6 0	.003	17	.668	0.000	0.042	0.053
Omnibus:			===== 0	===== .531	Durbi	n-Watson:		1.935
Prob(Omnibus):				.767		ie-Bera (JB):		0.669
Skew:				.089	Prob	, ,		0.716
Kurtosis:			_	.779	Cond	•		338.

Statystyka Durbina-Watsona

Test Durbina-Watsona (statystyka) służy do oceny występowania korelacji pomiędzy resztami. Wzór na statystykę testu Durbina-Watsona ma postać:

$$DW = \frac{\sum_{i=1}^{n-1} \left((y_{i+1} - \hat{y}_{i+1}) - (y_i - \hat{y}_i) \right)^2}{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Jeżeli statystyka DW ≈ 2 , możemy uznać **brak autokorelacji** pomiędzy resztami w modelu.

Wielowymiarowy model regresji liniowej

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \varepsilon,$$

gdzie $\varepsilon_i \sim \mathcal{N}(0, \sigma)$.

Zapis macierzowy:

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon,$$

gdzie

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ 1 & \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix},$$

$$\beta^T = (\beta_0, \beta_1, \dots, \beta_p)^T$$
 oraz $\varepsilon^T = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)^T$.

Metoda najmniejszych kwadratów

Funkcja kryterialna:

$$\mathbf{b} = \underset{\mathbf{b}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \underset{\mathbf{b}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{X}_i \beta)^2,$$

wówczas

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Wielowymiarowy model regresji liniowej — zbiór Advertising

Dopasowujemy model

Sales $\approx b_0 + b_1 \cdot \mathsf{TV} + b_2 \cdot \mathsf{Radio} + b_3 \cdot \mathsf{Newspaper}$.

OLS Regression Results								
Dep. Variable Model: Method: Date: Time: No. Observat Df Residuals	tions:		Sales OLS Squares Feb 2026 12:24:33 206	Adj. F-sta Prob Log-L AIC: BIC:	uared: R-squared: utistic: (F-statistic) ikelihood:	:	0.897 0.896 570.3 1.58e-96 -386.18 780.4 793.6	
Df Model: Covariance T	Гуре: 		onrobust err		P> t	[0.025	0.975]	
Intercept TV Radio Newspaper	2.9389 0.0458 0.1885 -0.0016	9 0	001	9.422 32.809 21.893 -0.177	0.000 0.000 0.000 0.860	2.324 0.043 0.172 -0.013	3.554 0.049 0.206 0.011	
Omnibus: Prob(Omnibus Skew: Kurtosis:	5):		60.414 0.006 -1.327 6.332	Jarqu Prob(2.084 151.241 1.44e-33 454.	

Wielowymiarowy model regresji liniowej

Dopasowując model regresji wielokrotnej ważnym jest odpowiedzenie na następujące pytania:

1. Czy przynajmniej jeden z predyktorów X_1, \ldots, X_p jest przydatny w przewidywaniu zmiennej odpowiedzi Y?

Test F

Dep. Variable: Model:	Sal		uared: R-squared:		0.897 0.896
Method:	Least Squar		atistic:		570.3
Date:	Sun, 16 Feb 20		(F-statistic		1.58e-96
Time:	12:24:		Likelihood:		-386.18
No. Observations:		200 AIC:	LIKE (IIIOOU.		780.4
Df Residuals:		.96 BIC:			
	1	3 610:			793.6
Df Model:	nanrahi	_			
Covariance Type:	nonrobu				
	 f std err	t	D> I + I	[0.025	0.9751
Coe	i stu eii		P> t	[0.025	0.9/5]
Intercept 2.938	9 0.312	9.422	0.000	2.324	3.554
TV 0.045		32.809	0.000	0.043	0.049
Radio 0.188		21.893	0.000	0.172	0.206
Newspaper -0.001		-0.177	0.860	-0.013	0.011
Newspaper 0.001		-0.1//		-0.015	0.011
Omnibus:	60.4	14 Durb	in-Watson:		2.084
Prob(Omnibus):	0.0		ue-Bera (JB):		151.241
Skew:	-1.3		(JB):		1.44e-33
Kurtosis:	6.3		. No.		454.

Test F

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$$

 H_1 : co najmniej jeden współczynnik eta_j jest niezerowy

Do weryfikacji hipotezy korzystamy ze statystyki

$$F = \frac{\mathsf{TSS} - \mathsf{RSS}}{p} : \frac{\mathsf{RSS}}{n - p - 1},$$

która przy prawdziwości hipotezy zerowej ma rozkład F-Snedecora z (p,n-p-1) stopniami swobody.

Wielowymiarowy model regresji liniowej

Dopasowując model regresji wielokrotnej ważnym jest odpowiedzenie na następujące pytania:

- 1. Czy przynajmniej jeden z predyktorów X_1, \ldots, X_p jest przydatny w przewidywaniu zmiennej odpowiedzi Y?
- 2. Które zmienne niezależne X_1, \ldots, X_p są istotne w wyjaśnianiu zmiennej odpowiedzi Y?

Istotność zmiennych niezależnych

Dep	. Variable:	Sales	R-squared:	0.897
Mod	lel:	0LS	Adj. R-squared:	0.896
Met	:hod:	Least Squares	F-statistic:	570.3
Dat	e:	Sun, 16 Feb 2020	Prob (F-statistic):	1.58e-96
Tim	ie:	12:24:33	Log-Likelihood:	-386.18
No.	Observations:	200	AIC:	780.4
Df	Residuals:	196	BIC:	793.6
Df	Model:	3		
Cov	ariance Type:	nonrobust		

Intercept 2.9389 0.312 9.422 0.000 2.324 TV 0.0458 0.001 32.809 0.000 0.043 Radio 0.1885 0.009 21.893 0.000 0.172		coef	std err	t	P> t	[0.025	0.975]
Newspaper -0.0010 0.006 -0.177 0.860 -0.013	TV Radio	0.0458 0.1885	0.001 0.009	32.809 21.893	0.000 0.000	0.043 0.172	3.554 0.049 0.206 0.011

Omnibus:	60.414	Durbin-Watson:	2.084
Prob(Omnibus):	0.000	Jarque-Bera (JB):	151.241
Skew:	-1.327	Prob(JB):	1.44e-33
Kurtosis:	6.332	Cond. No.	454.

Istotność współczynników regresji

$$H_0: \beta_i = 0,$$

$$H_1: \beta_i \neq 0,$$

dla i = 1, ..., p.

Używamy statystyki testowej:

$$t = \frac{\hat{\beta}_i - 0}{\mathsf{SE}(\hat{\beta}_i)},$$

która przy prawdziwości hipotezy zerowej statystyka t ma rozkład t-Studenta z n-2 stopniami swobody.

Wielowymiarowy model regresji liniowej

Dopasowując model regresji wielokrotnej ważnym jest odpowiedzenie na następujące pytania:

- 1. Czy przynajmniej jeden z predyktorów X_1, \ldots, X_p jest przydatny w przewidywaniu zmiennej odpowiedzi Y?
- 2. Które zmienne niezależne X_1, \ldots, X_p są istotne w wyjaśnianiu zmiennej odpowiedzi Y?
- 3. Jak dobrze model jest dopasowany do danych?

Dopasowanie modelu

			======				
Dep. Variab	le:		Sales	R-sc	uared:		0.897
Model:			0LS		R-squared:		0.896
Method:		Least Sq	uares		atistic:		570.3
Date:		Sun, 16 Feb	2020	Prob	(F-statistic)	:	1.58e-96
Time:		12:	24:33	Log-	Likelihood:		-386.18
No. Observa	tions:		200	AIC:			780.4
Df Residual	s:		196	BIC:			793.6
Df Model:			3				
Covariance	Type:	nonr	obust				
	coet	std err		t	P> t	[0.025	0.975]
Intercept	2.9389	0.312	9	. 422	0.000	2.324	3.554
TV	0.0458		32			0.043	
Radio	0.1885	0.009	21	.893	0.000	0.172	0.206
Newspaper	-0.0010	0.006	- 0	.177	0.860	-0.013	0.011
========							
Omnibus:		_	0.414		in-Watson:		2.084
Prob(Omnibu	s):		0.000		ue-Bera (JB):		151.241
Skew:			1.327		(JB):		1.44e-33
Kurtosis:			6.332	Cond	l. No.		454.

Materiały na podstawie

- Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Introduction to Statistical Learning with Applications in R, Springer 2014.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009.

LATEX now knows how many pages to expect for this document.

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has

If you rerun the document (without altering it) this surplus page will go away, beca

been added to receive it.