Міністерство освіти і науки України Національний авіаційний університет Факультет кібербезпеки, комп'ютерної та програмної інженерії Кафедра комп'ютеризованих систем управління

Лабораторна робота № 1.5 з дисципліни «Паралельні і розподілені обчислення» на тему «Обмін повідомленнями. Бібліотека МРІ»

> Виконав: студент ФККПІ групи СП-425 Клокун В. Д. Перевірив: Корочкін О. В.

Київ 2019

1. Завдання роботи

Розробити програму для заданої паралельної комп'ютерної системи із локальною пам'яттю (рис. 1).

Рис. 1: Задана паралельна комп'ютерна система зі спільною пам'яттю

Програма, розроблена для даної системи, повинна обчислювати значення виразу: $A = d \cdot B + Z \cdot MS$.

2. Хід роботи

2.1. Побудова паралельного алгоритму

Щоб паралельно обчислити значення виразу $A = d \cdot B + Z \cdot MS$, складаємо паралельний алгоритм:

1.
$$A_H = d \cdot B_H + Z \cdot MS_H$$
.

Паралельний алгоритм реалізуємо на мові програмування Python з використанням програмного інтерфейсу MPI, реалізованого бібліотекою Microsoft MPI. Щоб отримати доступ до бібліотеки Microsoft MPI з програми, написаною мовою Python, використаємо обгортку mpi4py.

2.2. Розробка алгоритмів потоків

Розробивши паралельний алгоритм, переходимо до розробки алгоритмів задач. Представимо алгоритми у вигляді таблиці (табл. 1).

Табл. 1: Паралельні алгоритми задач

Таол. 1: Паралель	ьні алгоритми задач
a) T1	6) T2
Дія	Дія
Отримати d , B , Z , MS від $T3$ Обчислити $A_H = d \cdot B_H + Z \cdot MS_H$ Відправити A_H в $T3$	Отримати d , B , Z , MS від $T3$ Обчислити $A_H = d \cdot B_H + Z \cdot MS_H$ Відправити A_H
в) Т4	г) <i>T</i> 5
Дія	Дія
Отримати d , B , Z , MS від $T3$ Обчислити $A_H = d \cdot B_H + Z \cdot MS_H$ Відправити A_H	Отримати d , B , Z , MS від $T3$ Обчислити $A_H = d \cdot B_H + Z \cdot MS_H$ Відправити A_H
д) Т3	
Дія	•
Ввести d , B , Z , MS Відправити d , B , Z , MS в $T1$, $T2$, $T4$, $T5$ Отримати A_H від $T1$, $T2$, $T4$, $T5$ Обчислити $A_H = d \cdot B_H + Z \cdot MS_H$ Вивести A	

2.3. Розробка структурної схеми взаємодії задач

Після розробки алгоритмів потоків, розроблюємо структурну схему взаємодії задач (рис. 2).

Рис. 2: Структурна схема взаємодії задач

2.4. Розробка програми

Коли структурна схема розроблена, створюємо програму на мові програмування Руthon (лістинг А.1). Для обміну повідомленнями використаємо функції, які надає пакет трі4ру. Після розробки програми запускаємо її на виконання і спостерігаємо результат (рис. 3).

Як видно, програма коректно обчислює значення заданого виразу з вхідними значеннями, заданими у програмі.

Рис. 3: Результат виконання розробленої програми

3. Висновок

Виконуючи дану лабораторну роботу, ми розробили програму для заданої паралельної комп'ютерної системи із локальною пам'яттю, ознайомились із процесом розробки паралельних алгоритмів, а також із обміном повідомленнями за допомогою програмного інтерфейсу МРІ.

А. Програма для розв'язку поставленої задачі

Лістинг А.1: Початковий код програмного модуля для розв'язання задачі

```
1
   Solution to PDC lab about message passing.
2
3
   Before running, make sure and MPI implementation is installed, e.g. Open
    → MPI, Microsoft MPI etc.
 5
   After an MPI environment has been installed, run using:
6
       mpiexec -n 5 python solution.py
7
8
   from mpi4py import MPI
9
10
   import numpy as np
11
   import logging
12
13
   logging.basicConfig(
14
        level=logging.INFO,
15
        format="%(asctime)s - %(levelname)s: %(message)s",
16
17
18
   DIMENSION = 10
19
   THREAD_COUNT = 5
20
   WORKER_IDS = [0, 1, 3, 4]
21
22
23 H = DIMENSION // THREAD_COUNT
24
D_VAL = 5
26 B_VAL = np.full((DIMENSION), 2)
27 Z_VAL = np.full((DIMENSION), 3)
   MS_VAL = np.full((DIMENSION, DIMENSION), 1)
28
29
   comm = MPI.COMM_WORLD
30
   rank = comm.Get_rank()
31
32
   def compute_A_H(d, B, Z, MS, chunk_id):
33
        start = chunk_id * H
34
35
        stop = (chunk_id + 1) * H
        B_H = B[start:stop]
36
        MS_H = MS[:, start:stop]
37
        A_H = d * B_H + Z.dot(MS_H)
38
        logging.debug("A_H = {}".format(A_H))
39
40
41
        res = {
            "part_data": A_H,
42
```

```
"start": start,
43
            "stop": stop,
44
45
        return res
46
47
   # Follower scenario. Store no data.
48
    if rank != 2:
49
        data = comm.recv(source=2, tag=1)
50
        logging.debug(data)
51
        A_H = compute_A_H(**data, chunk_id=rank)
52
53
        comm.send(A_H, dest=2, tag=2)
   # Leader scenario. Stores all the data.
    elif rank == 2:
55
        # Initialize data
56
        A = np.empty(DIMENSION, dtype=np.int)
57
        d = D_VAL
58
        B = B_VAL
59
60
        Z = Z_VAL
        MS = MS_VAL
61
62
        # Gather all data into one dictionary for simple message passing
63
        data = {
64
            "d": d,
65
            "B": B,
66
            "Z": Z,
67
            "MS": MS,
68
        }
69
70
        # Send messages to all followers
71
        for i in WORKER_IDS:
72
            logging.debug(i)
73
            comm.send(data, dest=i, tag=1)
74
75
        # Receive and compile results from all followers
76
        for i in WORKER_IDS:
77
            res = comm.recv(source=i, tag=2)
78
            logging.debug("Received {} from worker {}".format(res, i))
79
            A[res["start"]:res["stop"]] = res["part_data"]
80
81
        # Compute the leader's part
82
        res = compute_A_H(**data, chunk_id=2)
83
        A[res["start"]:res["stop"]] = res["part_data"]
84
85
        logging.info("Final A = {}".format(A))
86
```