定義 0.1

教科書及びこのメモでは scheme についての仮定 (*) を次で定める.この条件 (*) を満たす scheme では Weil divisor が定義できる.

- integral,
- separated,
- noetherian, and
- regular in codimention one.

最後の条件の定義は次のよう. X :: scheme に対し, $X^{(1)}$ を $\operatorname{codim}(\operatorname{cl}_X(\{z\},X))=1$ なる点 $z\in X$ の全体とする. (Weil divisor 全体は free abelian group $\mathbb{Z}^{(X^{(1)})}$ と表現できる.) X が "regular in codimention one" であるとは,任意の $z\in X^{(1)}$ に対し $\mathcal{O}_{X,z}$:: integrally closed domain であるということ.

さらに強く、codimension one とは限らない点 $x \in X$ において $\mathcal{O}_{X,x}$:: UFD であるとき、X は locally factorial であるという (Prop6.11). locally fatorial になる十分条件のひとつは X :: regular である (Remark 6.11.1A).

定義 0.2

X:: scheme 上の \mathcal{F} :: sheaf について定義する.

 $\mathcal F$ が invertible であるとは、X の開被覆 $\{U_\lambda\}_{\lambda\in\Lambda}$ が存在し、 $\mathcal F|_{U_\lambda}\cong\mathcal O_X$ が成り立つということである.

 \mathcal{F} が generated by global sections であるとは, $G \subseteq \Gamma(X,\mathcal{F})$ が存在し,任意の点 $x \in X$ について \mathcal{F}_x :: $\mathcal{O}_{X,x}$ -module が $G_x = \{g_x \mid g \in G\}$ で生成されるということである.G のことを global generator of \mathcal{F} と呼ぶ.

 \mathcal{F} \mathfrak{h}^{\sharp} locally generated by $\{\langle U, g_U \rangle\}_U (\subseteq \mathcal{F})$ とは、 $\mathcal{F}|_V$:: sheaf on V \mathfrak{h}^{\sharp} generated by global sections $\{\langle U \cap V, g_U|_{U \cap V} \rangle\}_U$ 、になるということ、 $\{\langle U, g_U \rangle\}$ のことを local generator of \mathcal{F} と呼ぶ、

Weil/Carier divisor の定義は難しくないので改めて書かない.

1 Remarks on Cartier divisor.

Cartier divisor を $\{\langle U_i, f_i \rangle\}$ の形で書いたものについて、定義を書き下しておく.

- ■Local Equations. Cartier divisor $\{\langle U_i, f_i \rangle\}$ について、 $\{f_i\}$ は local equations と呼ばれる.
- ■Equivalence of Cartier Divisor. 二つの Cartier divisor

$$D = \{\langle U_i, f_i \rangle\}_i, D' = \{\langle U'_j, f'_j \rangle\}_j$$

は,集合としての合併が再び Cartier divisor ならば同じものである. すなわち,次が成り立つならば D=D'. 任意の i,j について

$${}^{\forall}i,j, \ (f_i|_{U_i \cap U_j'}) \cdot (f_j'|_{U_i \cap U_j'})^{-1} \in \Gamma(U_i \cap U_j', \mathcal{O}_{U_i \cap U_j'}^*).$$

以上の二つは I.R.Shafarevich "Algebraic Geometry I" pp.255-256 にある.

■Principal Cariter Divisor. $\{\langle U_i, f_i \rangle\}$:: Cartier divisor on X が principal であるとは, $f \in \Gamma(X, \mathcal{K}_X)$ が存在し,すべてのi について $f_i/f \in \Gamma(U_i, \mathcal{O}_{U_i}^*)$ となること.これは $\{\langle U_i, f_i \rangle\} - \{\langle U_i, f \rangle\} = \{\langle U_i, f_i/f \rangle\}\}$ が $\Gamma(X, \mathcal{O}_X^*)$ に属すということを言い換えたものである.

2 Cartier Divisor ↔ Weil Divisor.

- ■Weil divisor \leftarrow Cartier divisor. Prop6.11 の前半から、この対応は (*) を満たすならば成立する、 $\{\langle U_i,f_i\rangle\}_i$ を Cartier Divisor とすると、X:: integral から K は K の constant sheaf. なので $z\in X^{(1)}$ について $v_z(f_i|_{\mathrm{cl}_{U_i}(x)})$ が定まる。 したがって $\sum_{z\in X^{(1)}}\sum_i v_z(f_i|_{\mathrm{cl}_{U_i}(x)})\,\mathrm{cl}_X(z)$ とすればよい。(この対応を EGA IV では cyc と呼んでいる。)
- ■Weil divisor \to Cartier divisor. Prop6.11 の後半から、この対応は X が (*) を満たし、かつ locally factorial であるならば成立する。D :: Weil divisor とし、詳しく $D = \sum_{z \in X^{(1)}} n_z \operatorname{cl}_X(z)$ とする。点 $x \in X$ をとり、 $T_x = \operatorname{Spec} \mathcal{O}_{X,x}$ とする。

$$D_x = D|_{T_x} = \sum_{z \in X^{(1)} \cap T_x} n_z \operatorname{cl}_{T_x}(z)$$

(記法は EGA ch.IV, p.274 より借用した.) は T_x 上の Weil divisor であり、X:: nonsingular projective curve より (Remark 6.11.1A) \mathcal{O}_x :: UFD. なので Prop6.2 より, $D_x = (f_x)$ なる $f_x \in K$ が存在する (つまり principal divisor). よって $D \cap U_x = f_x|_{U_x}$ となる x の近傍 U_x が存在する.これをまとめて, $\{\langle U_x, f_x \rangle\}_x$ が Cartier divisor になる.(ここは U.Görtz,T.Wedhorn "Algebraic Geometry I" pp.306-309 も参考になる.基本的に EGA ch.IV の翻訳ではあるが,Hartshorne の記法に近い.)

3 Cartier Divisor \leftrightarrow Invertible Subsheaf of \mathcal{K} .

D:: Cartier divisor は X の被覆 $\{U_i\}_i$ と $f_i \in \Gamma(U_i, \mathcal{K}_X)$ で表現される。ただし, $f_i/f_j \in \Gamma(U_i \cap U_j, \mathcal{O}_X^*)$ となっている。

対応は Prop6.13 で証明されている.

- ■Cartier Divisor \to Invertible Subsheaf of \mathcal{K} . $\{\langle U_i, f_i \rangle\}_i$ で表現される D :: Cartier divisor に対して, $\mathcal{L}(D)$:: subsheaf of \mathcal{K} を, $\mathcal{O}_{U_i} \ni 1 \mapsto f_i^{-1}$ で定まる準同型の像として定める. (\mathcal{L} の local generator は $\{\langle U_i, f_i \rangle\}_i$ である.)
- ■Cartier Divisor \leftarrow Invertible Subsheaf of \mathcal{K} . X の開被覆 $\{U_i\}$ が存在し, \mathcal{L} の local generator が $\{\langle U_i, g_i \rangle\}_i$ だとする.この時, $\{\langle U_i, g_i^{-1} \rangle\}_i$ が Cartier divisor を定める.

4 Morphism to $\mathbb{P}^n \leftrightarrow$ Invertible Sheaf & Global Generators.

対応が存在することは Thm7.1 による. また, $\mathcal{O}(1)=\mathcal{O}_{\mathbb{P}^n_A}(1)=(A[x_0,\ldots,x_n](1))$ ~ とする. これの generator は x_0,\ldots,x_n である.

定義 4.1

 $f: X \to Y$:: morphism of schemes, \mathcal{F} :: \mathcal{O}_X -module とする. $\eta_{\mathcal{F}}: \mathcal{F} \to f_* f^* \mathcal{F}$ を adjoint pair $f^* \dashv f_*$ の unit とする. V:: open in Y について, $(\eta_{\mathcal{F}})_V: \mathcal{F}(V) \to f_* f^* \mathcal{F}(V)$ を f^* と書く.

この定義は教科書には書かれていない. 私は Daniel Murfet の lecture note †1 を参照した.

- ■Morphism to $\mathbb{P}^n \to \text{Invertible Sheaf \& Global Generators.}$ $\phi: X \to \mathbb{P}^n_A$ を Spec A-morphism (p.78) とする. ϕ に対し、 $\phi^*(\mathcal{O}(1))$ は invertible sheaf であり、 $\phi^*(x_0), \ldots, \phi^*(x_n)$ がその global generator である.
- ■Morphism to $\mathbb{P}^n \leftarrow$ Invertible Sheaf & Global Generators. 上の対応の逆も成り立つ、 \mathcal{L} :: invertible sheaf, $G \subseteq \Gamma(X,\mathcal{L})$:: global generator (#G = n) に対し, $\mathcal{L} \cong \phi^*(\mathcal{O}(1))$, $G = \{\phi^*(x_i)\}_{i=1}^n$ であるような $\phi: X \to \mathbb{P}^n_A$ が存在する.

5 Ample Sheaf.

定義 5.1

 \mathcal{L} :: invertible sheaf on noetherian scheme X が ample sheaf であるとは、任意の \mathcal{F} :: coherent sheaf on X に対して十分大きいすべての n で $\mathcal{F}\otimes\mathcal{L}^{\otimes n}$ が generated by global section になるということである.

6 Linear System.

k :: algebraically closed field, X :: nonsingular projective variety over k, K :: functor field of X とする. この時は、次の対応関係が成り立つ.

- ■Cartier Divisor ↔ Weil Divisor. Prop6.11 に証明がある. 詳細は上に書いたとおり.
- ■ $\operatorname{CaCl} X \cong \operatorname{Pic} X$. Prop6.15 にある.

また、この状況では次の事実が成り立つ (5.19): 任意の \mathcal{L} :: invertible sheaf on X について、 $\Gamma(X,\mathcal{L})$:: finite dimentional k-vector space.

- ■Linear System \to Invertible Sheaf. $\mathfrak d$:: linear system の元はすべてある D_0 :: Cartier divisor on X と linear equivalent である. なので上の段落にある $\operatorname{CaCl} X \cong \operatorname{Pic} X$ より, $\mathfrak d$ の任意の元は $\mathcal L \in \operatorname{Pic} X$:: invertible sheaf に対応する.
- ■Nonzero Global Section of \mathcal{L} → Effective Cartier Divisor. \mathcal{L} :: invertible sheaf on $X, s \in \Gamma(X, \mathcal{L})$:: nonzero global section of \mathcal{L} とする. $\mathcal{L}|_U \cong \mathcal{O}_U$ となる任意の開集合 U について,この同型写像を $\phi^{(U)}: \mathcal{L}|_U \xrightarrow{\cong} \mathcal{O}_U$ とする. すると明らかに $\phi_U(s|_U) \in \Gamma(U, \mathcal{O}_U)$. なのでこうして得られる $\{U, \phi_U^{(U)}(s|_U)\}$ は effective Cartier divisor を定めている. $\phi^{(U)}$ のとり方には $\Gamma(U, \mathcal{O}_U^*)$ の分だけ自由度があるが,これは結局同じ Cartier divisor を定めている.
- ■Complete Linear System $|D_0| \approx$ Nonzero Global Sections of $\mathcal{L}(D_0)$. Complete Linear System $|D_0|$ は、ある与えられた divisor D_0 と線形同値なすべての effective divisor の集合である。Prop7.7 より、 $|D_0|$ の任意の元は $s \in \Gamma(X, \mathcal{L}(D_0)) \{0\}$ を用いて $(s)_0$ と書ける。 $k^* = \Gamma(X, \mathcal{O}_X^*)$ の分だけ自由度があるから、結局 $|D_0|$ は $(\Gamma(X, \mathcal{L}(D_0)) \{0\})/k^*$ と同型である。(X の様子を表す divisor から線形空間という比較的わかりやすいものが取り出せた。) Thm5.19 より、 $\Gamma(X, \mathcal{L}(D_0))$ は finite dimensional k-vector space であることに

^{†1} http://therisingsea.org/notes/Section2.7-ProjectiveMorphisms.pdf

注意.

定義 6.1

D:: Weil divisor on X が $D=\sum_{x\in X^{(1)}}n_x\operatorname{cl}_X(x)$ と書けたとする. この時,

$$\operatorname{Supp} D = \bigcup_{x \in X^{(1)}, n_x \neq 0} \operatorname{cl}_X(x) \subseteq X$$

とする. これは閉集合の有限和なので閉集合. $\mathfrak d$:: linear system on X について, $\bigcap_{D\in\mathfrak d}$ Supp D の点を base point と呼び,この集合が空ならば $\mathfrak d$ は base point free と呼ばれる.

7 Global (or Relative) Projective Space Proj (or Proj).

- ■Assumption (†). X :: noetherian scheme, S :: graded \mathcal{O}_X -algebra とする. また, $d \in \mathbb{Z}, d \geq 0$ について, \mathcal{S}_d :: homogeneous part of S を $U \mapsto \mathcal{S}(U)_d$ で定める. 次のように仮定する.
 - S :: quasi-coherent.
 - $S = \bigoplus_{d \geq 0} S_d$.
 - $S_0 = \mathcal{O}_X$.
 - S_1 :: coherent \mathcal{O}_X -module.
 - S :: locally generated by S_1 as \mathcal{O}_X -algebra.

下の二つから、任意の $d \ge 0$ についても S_d :: coherent であることが分かる.

■Construction of Proj . X, \mathcal{S} を (\dagger) を満たす scheme, graded \mathcal{O}_X -algebra とする. 任意の affine open subset $U = \operatorname{Spec} A \subseteq X$ をとる. $\mathcal{S}_0(U) = \mathcal{O}_X(U) = A$ に注意する. \mathcal{S} :: quasi-coherent なので, $\mathcal{S}|_U = \tilde{M}$ となる M :: A-algebra が存在する. $D_+(g)$ $(g \in M_+ \otimes A_f = (M \otimes A_f)_+)$ での section を見ると, 次式の最後の等号が分かる.

$$\operatorname{Proj} S(U) = \operatorname{Proj} M = \operatorname{Proj} M \otimes_A A = \operatorname{Proj} M \times_{\operatorname{Spec} A} \operatorname{Spec} A.$$

なので、次の fiber product の可換図式が得られる.

$$(\operatorname{Proj} \mathcal{S}(U)) \times_{U} U \xrightarrow{\pi_{U}} U$$

$$\downarrow^{\operatorname{pr}} \downarrow \qquad \qquad \parallel$$

$$\operatorname{Proj} \mathcal{S}(U) \longrightarrow U.$$

このように、 $\operatorname{Proj} \mathcal{S}(U) = (\operatorname{Proj} \mathcal{S}(U)) \times_U U$ からの projection map として π_U を定める。 $f \in A, U_f = \operatorname{Spec} A_f \subseteq U$ とすると、 $\operatorname{Thm} 3.3$ の証明より次が得られる。

$$\pi_U^{-1}(U_f) = (\operatorname{Proj} \mathcal{S}(U)) \times_U U_f = \operatorname{Proj} M \otimes A_f = \operatorname{Proj} M_f = \operatorname{Proj} \mathcal{S}(U_f).$$

 $\mathcal{S}(U_f) = M_f = \mathcal{S}(U)_f$ に注意. これら (と私が書いた Ex3.1 の解答にある道具たち) を使うと,U,V:: open affine subset in X について $\pi_U^{-1}(U\cap V)\cong\pi_V^{-1}(U\cap V)$ となることがわかる. したがって $\operatorname{Proj}\mathcal{S}(U)$ と π_U の張り合わせが可能であり,こうして $\operatorname{Proj}\mathcal{S},\pi:\operatorname{Proj}\mathcal{S}\to X$ が構成できる. $\mathcal{O}_{\operatorname{Proj}\mathcal{S}(U)}(1)$ 達も貼りあわせて, $\mathcal{O}(1)$ を得る.