In [178]: ▶

```
1 # Importar las librerias para el analasis
 2 import pandas as pd
 3 import numpy as np
4 from datetime import datetime, timedelta
5 from sklearn.metrics import mean_squared_error
6 from scipy.optimize import curve_fit
 7 from scipy.optimize import fsolve
   from sklearn import linear_model
9
   import matplotlib.pyplot as plt
   %matplotlib inline
10
11
   url = 'C:/Users/ADMINX/Downloads/Compressed/ecuacovid-master/ecuacovid-master/datos_cru
12
13
14
  df = pd.read_csv(url)
15
   df
```

Out[178]:

	fecha	dosis_total	primera_dosis	segunda_dosis
0	21/01/2021	0	0	0
1	22/01/2021	108	108	0
2	27/01/2021	2982	2982	0
3	04/02/2021	6228	6228	0
4	17/02/2021	8190	6228	1962
5	24/02/2021	24492	20784	3708
6	01/03/2021	42114	35886	6228
7	04/03/2021	59316	53088	6228
8	05/03/2021	71148	64920	6228
9	08/03/2021	74472	68244	6228
10	09/03/2021	75258	69030	6228
11	11/03/2021	95915	89687	6228
12	12/03/2021	123176	116948	6228
13	13/03/2021	139359	119222	20137
14	15/03/2021	141191	121054	20137
15	21/03/2021	178970	140765	38205
16	23/03/2021	182261	143614	38647
17	24/03/2021	191179	152526	38653
18	26/03/2021	230770	172413	58357
19	27/03/2021	235000	174642	60358
20	29/03/2021	244866	182329	62537
21	01/04/2021	283106	204902	78204
22	04/04/2021	301069	211720	89349
23	05/04/2021	335093	228504	106589

	fecha	dosis_total	primera_dosis	segunda_dosis
24	06/04/2021	356783	244159	112624
25	08/04/2021	363255	250631	112624
26	14/04/2021	480962	338180	142782
27	15/04/2021	485132	338180	146952
28	16/04/2021	514151	354019	160132
29	17/04/2021	545132	377199	167933
30	18/04/2021	554369	384093	170276
31	19/04/2021	577711	401871	175840
32	20/04/2021	601229	421937	179292
33	21/04/2021	643702	457403	186299
34	22/04/2021	675510	486524	188986
35	23/04/2021	711204	514854	196350
36	24/04/2021	732717	532367	200350
37	25/04/2021	743937	541420	202517
38	26/04/2021	765489	555265	210224
39	27/04/2021	816175	595699	220476
40	28/04/2021	861393	633421	227972
41	29/04/2021	920865	691000	229865
42	30/04/2021	987452	748021	239431
43	01/05/2021	1036794	791822	244972
44	02/05/2021	1067472	821960	245512
45	04/05/2021	1141262	889218	252044
46	05/05/2021	1182085	924539	257546
47	06/05/2021	1215676	953238	262438
48	07/05/2021	1245822	981620	264202

Generar graficas y reportes del total de personas vacunadas.

In [25]: ▶

```
df_t = pd.read_csv(url,header = None)
FMT = '%Y-%m-%d'
df_t.columns =['fecha','dosis_total','primera_dosis', 'segunda_dosis']
date = df_t['fecha'][1:]
filtro = df_t['dosis_total'][1:] # Filtro los datos que se empezo a tener casos
#Obtenemos la mediana
media = filtro.mean()
mediana = filtro.median()
print(mediana)
print(media)
df.plot(x ='fecha', y='dosis_total')
```

356783.0 2.2101686181263315e+275

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x20c7d25f248>

Generar grafico de pie por fabricante de la vacuna.

```
In [28]:

1  url = 'C:/Users/ADMINX/Downloads/Compressed/ecuacovid-master/ecuacovid-master/datos_cru
```

```
df = pd.read_csv(url)
df
```

Out[28]:

	vaccine	total	arrived_at
0	Pfizer/BioNTech	8190	20/01/2021
1	Pfizer/BioNTech	16380	17/02/2021
2	Pfizer/BioNTech	17550	24/02/2021
3	Pfizer/BioNTech	31590	03/03/2021
4	Sinovac	20000	06/03/2021
5	Pfizer/BioNTech	73710	10/03/2021
6	Oxford/AstraZeneca	84000	17/03/2021
7	Pfizer/BioNTech	62010	17/03/2021
8	Pfizer/BioNTech	65520	24/03/2021
9	Pfizer/BioNTech	66690	31/03/2021
10	Pfizer/BioNTech	53820	05/04/2021
11	Sinovac	300000	07/04/2021
12	Sinovac	700000	10/04/2021
13	Pfizer/BioNTech	53820	14/04/2021
14	Pfizer/BioNTech	54990	21/04/2021
15	Oxford/AstraZeneca	336000	24/04/2021
16	Pfizer/BioNTech	54990	28/04/2021
17	Pfizer/BioNTech	100620	04/05/2021

In [33]:

```
1 df_fa = pd.read_csv(url, header = None)
   df_fa.columns = ['vaccine', 'total', 'arrived_at']
   a = np.array(list(set(df_fa['vaccine'][1:])))
   print(a)
 5
   ox = 0
 7
   si = 0
8
   pf = 0
   for i, j in zip(df_fa['vaccine'][1:], df_fa['total'][1:]):
9
10
     if i == a[0]:
       si = si + + int(j)
11
     elif i == a[1]:
12
13
       pf = pf + + int(j)
     elif i == a[2]:
14
15
       ox = ox + int(j)
16
17 | b = np.array([si, pf, ox])
18 print(b)
   plt.barh(df_fa['vaccine'][1:], df_fa['total'][1:])
20 plt.gcf().set_size_inches(42, 25)
21 plt.grid()
  plt.show()
22
```

```
['Oxford/AstraZeneca' 'Sinovac' 'Pfizer/BioNTech']
[ 420000 1020000 659880]
```


Generar histogramas de vacunas por mes de llega y fabricante.

In [177]:

H

```
from ipykernel import kernelapp as app
 1
 2
   lista1=[]
 3 fig1 = plt.subplot(2, 2, 1)
   fig2 = plt.subplot(2, 2, 2)
 4
 5
   fig3 = plt.subplot(2, 2, 3)
 6 | fig4 = plt.subplot(2, 2, 4)
   for i in range(1, 32):
 7
8
     lista1.append(0)
9
   con = 0
10
   con1 = 0
   con2=0
11
   con3=0
12
   con4=0
13
14
   for i, j, k in zip(df_fa['vaccine'][1:], df_fa['total'][1:], df_fa['arrived_at'][1:]):
15
16
      fecha dt = datetime.strptime(k, '%d/%m/%Y')
      if((i == a[0] \text{ or } i == a[1] \text{ or } i == a[2]) \text{ and } (fecha dt.month == 1)):
17
18
          con =con+int(j)
19
          fig1.barh(i,con)
20
          fig1.set_title('ENERO')
      elif((i == a[0] or i == a[1] or i == a[2]) and (fecha dt.month == 2)):
21
          con1 =con1+int(j)
22
23
          fig2.barh(i,con1)
24
          fig2.set title('Febrero')
25
      elif((i == a[0] or i == a[1] or i == a[2]) and (fecha_dt.month == 3)):
26
          con2 =con2+int(j)
27
          fig3.barh(i,con2)
28
          fig3.set title('Marzo')
      elif((i == a[0] or i == a[1] or i == a[2]) and (fecha_dt.month == 4)):
29
30
          con3 =con3+int(j)
          fig4.barh(i,con3)
31
32
          fig4.set_title('Abril')
        elif((i == a[0] \text{ or } i == a[1] \text{ or } i == a[2]) \text{ and } (fecha dt.month == 5)):
33
34
   #
            con4 =con4+int(j)
35
            plt.barh(i,con4)
36
            plt.title('Mayo')
   #
```


Generar un reporte parametrizado que pueda ingresar los datos de las fechas inicio y fin para obtener la información de las graficas vistas en el primer punto.

```
In [197]:
                                                                                          H
    df_planva = pd.read_csv(url)
 2
    lisx=[]
 3
    lisy=[]
    df planva.columns =['fecha','dosis total','primera dosis', 'segunda dosis']
    #SE INGRESA LAS FECHAS INICIO Y FIN
    feini=input("ingrese fecha de inicio")
    fefin=input("ingrese fecha de fin")
 7
    for d,i, j, k in zip(df_planva['fecha'][1:],df_planva['dosis_total'][1:], df_planva['pr
      fecha dt = datetime.strptime(d, '%d/%m/%Y')
 9
10
      if(datetime.strptime(feini,'%d/%m/%Y')<=datetime.strptime(d, '%d/%m/%Y') and datetime
        lisx.append(d)
11
12
        lisy.append(i)
    plt.barh(lisx,lisy)
13
```

ingrese fecha de inicio01/01/2021
ingrese fecha de fin01/03/2021

Out[197]:

<BarContainer object of 6 artists>

Generar un modelo matemático de predicción para regresión lineal, exponencial, polinómico y logarítmico, del procesos de vacunación en base al numero actual de vacunados (1 y 2 dosis) y a la llegada de nuevas vacunas

In [186]: ▶

```
url = 'C:/Users/ADMINX/Downloads/Compressed/ecuacovid-master/ecuacovid-master/datos_cru
 1
 2
 3 #Vamos a comprobar:
   # según la media y la mediana podemos obtener la taza de crecieminto y predicir su com
 4
   # Cargamos los datos de total de casos
 5
 6 df t = pd.read csv(url)
 7 FMT = '%Y - %m - %d'
   date = df_t['date']
   df_t['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2026)
9
10 df_t = df_t.loc[:,['date','Ecuador']] #Selecciono las columnas de analasis
   y = list(df t.iloc [:, 1]) # Total casos
12 x = list(df_t.iloc [:, 0]) # Dias
13 | #Realizamos un ejemplo de prediccion
14 | prediccion_siguiente = int(y[-1] + mediana)
  print(prediccion siguiente)
15
```

Desarrollar y generar un proceso de comparación con al menos cuatro países (2. Latinoamérica, 1. E.E.U.U./Canada, 1. Europa

In [204]:

```
url_v = 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccin
   df_vacum = pd.read_csv(url_v, header = None).fillna(0)
 3
   df_vacum.columns = ['location', 'iso_code', 'date', 'total_vaccinations', 'people_vacci
 4 | lista fechas = []
 5
   lista_tot = []
   lista fechasbr = []
 7
   lista_totbr = []
8
   for i, j, k in zip(df_vacum['location'], df_vacum['date'], df_vacum['people_fully_vacci
9
       print(i)
     if i == 'Ecuador':
10
       lista fechas.append(j)
11
12
       lista_tot.append(k)
13
     elif i == 'Peru':
14
       lista_fechasbr.append(j)
15
       lista totbr.append(k)
16 | dat = np.array(lista fechas)
   tot = np.array(lista tot, dtype='float')
   x = np.arange(1, len(tot) + 1, 1)
18
19
   dat_br = np.array(lista_fechasbr)
20
   tot_br = np.array(lista_totbr, dtype='float')
21
   xbr = np.arange(1, len(tot_br) + 1, 1)
22
   from sklearn import linear_model
23
   print("-----")
24
   regr = linear_model.LinearRegression()
25
   regr.fit(np.array(x).reshape(-1, 1), tot)
26
   print('Coefficients: \n', regr.coef_)
27
   print('Independent term: \n', regr.intercept_)
28
   print("-----")
29
   regrbr = linear_model.LinearRegression()
30
   regrbr.fit(np.array(xbr).reshape(-1, 1), tot_br)
31
   print('Coefficients: \n', regrbr.coef_)
32 print('Independent term: \n', regrbr.intercept_)
33
   #SE GRAFICA
34
   fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', sharey='row',
                           gridspec_kw={'hspace': 0, 'wspace': 0}, figsize=(20,20))
35
   fig.suptitle('COMPARACION ECUADOR VS. PERU EN VACUNADOS')
36
37
   ax1.scatter(x, tot, color='yellow')
   ax1.set_title('ECUADOR')
38
   x real = np.array(range(50, 100))
40 ax2.scatter(xbr, tot_br, color='green')
41
   ax2.set_title('PERU')
42
```

COMPARACION ECUADOR VS. PERU EN VACUNADOS

In [205]: ▶

```
url_v = 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccin
   df_vacum = pd.read_csv(url_v, header = None).fillna(0)
 3
   df_vacum.columns = ['location', 'iso_code', 'date', 'total_vaccinations', 'people_vacci
 4 | lista fechas = []
 5
   lista_tot = []
   lista fechasbr = []
 7
   lista_totbr = []
 8
   for i, j, k in zip(df_vacum['location'], df_vacum['date'], df_vacum['people_fully_vacci
 9
       print(i)
     if i == 'Ecuador':
10
       lista fechas.append(j)
11
12
       lista_tot.append(k)
13
     elif i == 'Colombia':
14
       lista_fechasbr.append(j)
15
       lista totbr.append(k)
16 | dat = np.array(lista fechas)
   tot = np.array(lista tot, dtype='float')
   x = np.arange(1, len(tot) + 1, 1)
18
19
   dat_br = np.array(lista_fechasbr)
20 | tot_br = np.array(lista_totbr, dtype='float')
21
   xbr = np.arange(1, len(tot_br) + 1, 1)
22
   from sklearn import linear_model
23
   print("-----")
24
   regr = linear_model.LinearRegression()
25
   regr.fit(np.array(x).reshape(-1, 1), tot)
26
   print('Coefficients: \n', regr.coef_)
27
   print('Independent term: \n', regr.intercept_)
28
   print("----")
29
   regrbr = linear_model.LinearRegression()
30
   regrbr.fit(np.array(xbr).reshape(-1, 1), tot_br)
   print('Coefficients: \n', regrbr.coef_)
32 print('Independent term: \n', regrbr.intercept_)
33
   #SE GRAFICA
34
   fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', sharey='row',
35
                           gridspec kw={'hspace': 0, 'wspace': 0}, figsize=(20,20))
   fig.suptitle('COMPARACION ECUADOR VS. COLOMBIA EN VACUNADOS')
36
37
   ax1.scatter(x, tot, color='yellow')
   ax1.set_title('ECUADOR')
38
   x_{real} = np.array(range(50, 100))
40 | ax2.scatter(xbr, tot_br, color='green')
   ax2.set_title('COLOMBIA')
41
-----ECUADOR-----
```


In [208]: ▶

```
url_v = 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccin
   df_vacum = pd.read_csv(url_v, header = None).fillna(0)
 3
   df_vacum.columns = ['location', 'iso_code', 'date', 'total_vaccinations', 'people_vacci
 4 | lista fechas = []
 5
   lista_tot = []
   lista fechasbr = []
 7
   lista_totbr = []
8
   for i, j, k in zip(df_vacum['location'], df_vacum['date'], df_vacum['people_fully_vacci
9
       print(i)
     if i == 'Ecuador':
10
       lista fechas.append(j)
11
12
       lista_tot.append(k)
13
     elif i == 'Spain':
14
       lista_fechasbr.append(j)
15
       lista totbr.append(k)
16 | dat = np.array(lista fechas)
   tot = np.array(lista tot, dtype='float')
   x = np.arange(1, len(tot) + 1, 1)
18
19
   dat_br = np.array(lista_fechasbr)
20
   tot_br = np.array(lista_totbr, dtype='float')
21
   xbr = np.arange(1, len(tot_br) + 1, 1)
   from sklearn import linear_model
22
23
   print("-----")
24
   regr = linear_model.LinearRegression()
25
   regr.fit(np.array(x).reshape(-1, 1), tot)
26
   print('Coefficients: \n', regr.coef_)
27
   print('Independent term: \n', regr.intercept_)
28
   print("-----")
   regrbr = linear_model.LinearRegression()
29
30
   regrbr.fit(np.array(xbr).reshape(-1, 1), tot_br)
31
   print('Coefficients: \n', regrbr.coef_)
32 print('Independent term: \n', regrbr.intercept_)
33
   #SE GRAFICA
34
   fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', sharey='row',
35
                           gridspec_kw={'hspace': 0, 'wspace': 0}, figsize=(20,20))
36
   fig.suptitle('COMPARACION ECUADOR VS. ESPAÑA EN VACUNADOS')
37
   ax1.scatter(x, tot, color='yellow')
   ax1.set_title('ECUADOR')
38
39 x real = np.array(range(50, 100))
40 ax2.scatter(xbr, tot_br, color='green')
   ax2.set_title('ESPAÑA')
41
```

COMPARACION ECUADOR VS. ESPAÑA EN VACUNADOS

In [210]:

```
url_v = 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccir
   df_vacum = pd.read_csv(url_v, header = None).fillna(0)
 3
   df_vacum.columns = ['location', 'iso_code', 'date', 'total_vaccinations', 'people_vacci
 4 | lista fechas = []
 5
   lista_tot = []
   lista fechasbr = []
 7
   lista_totbr = []
 8
   for i, j, k in zip(df_vacum['location'], df_vacum['date'], df_vacum['people_fully_vacci
 9
       print(i)
     if i == 'Ecuador':
10
       lista fechas.append(j)
11
12
       lista_tot.append(k)
13
     elif i == 'India':
14
       lista_fechasbr.append(j)
15
       lista totbr.append(k)
16 | dat = np.array(lista fechas)
   tot = np.array(lista tot, dtype='float')
   x = np.arange(1, len(tot) + 1, 1)
18
19
   dat_br = np.array(lista_fechasbr)
20 | tot_br = np.array(lista_totbr, dtype='float')
21
   xbr = np.arange(1, len(tot_br) + 1, 1)
22
   from sklearn import linear model
23
   print("-----")
24
   regr = linear_model.LinearRegression()
25
   regr.fit(np.array(x).reshape(-1, 1), tot)
26
   print('Coefficients: \n', regr.coef_)
27
   print('Independent term: \n', regr.intercept_)
28
   print("-----")
29
   regrbr = linear_model.LinearRegression()
30
   regrbr.fit(np.array(xbr).reshape(-1, 1), tot_br)
   print('Coefficients: \n', regrbr.coef_)
32 print('Independent term: \n', regrbr.intercept_)
33
   #SE GRAFICA
34
   fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', sharey='row',
                           gridspec_kw={'hspace': 0, 'wspace': 0}, figsize=(20,20))
35
   fig.suptitle('COMPARACION ECUADOR VS. INDIA EN VACUNADOS')
36
37
   ax1.scatter(x, tot, color='yellow')
38 ax1.set_title('ECUADOR')
   x real = np.array(range(50, 100))
40 ax2.scatter(xbr, tot_br, color='green')
   ax2.set_title('INDIA')
41
-----FCUADOR-----
```


Identificar cual es la fecha tentativa en la que todos los Ecuatorianos podrán ser vacunados con las dos dosis

Cual tiene una mejor predicción.

Ventajas: Aplicar una lectura de manera grafica y prediciendo datos que se obtiene para poder clasificar bien los datos.

Desventajas de los modelos: Usar los datos para poder aplicar un buen sistema de simulacion, es complicado si no se tiene los datos necesarios y la logica de estudio.

Conclusiones: Es bueno poder aplicar prediciones con datos en los cuales importe mucho ya que es horientado a la salud. Recomendaciones:Realizar mas ejemplos como sistemas donde se aplice la lectura de datos reales

In []:	ł
1		