ASSIGNMENT 3

D.SASHI

1.Importing Required Package

import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline

2.Loading the Dataset

In [3]:

df=pd.read_csv("C:\\Users\\Sandhya Jayaraman\\Downloads\\abalone.csv")
df

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
									
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

3. Visualizations

3.1 Univariate Analysis

sns.displot(df.Sex)

In [4]:

Out[4]:

<seaborn.axisgrid.FacetGrid at 0x1ca06fdfd48>

3.2 Bi-Variate Analysis

df.plot.line()

In [5]:

Out[5]:

<AxesSubplot:>

3.3 Multi-Variate Analysis

In [6]:

sns.lmplot("Diameter", "Length", df, hue="Length", fit reg=False);

c:\users\sandhya jayaraman\appdata\local\programs\python\python37\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following varia bles as keyword args: x, y, data. From version 0.12, the only valid positio nal argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

4.Perform descriptive statistics on the dataset.

In [7]:

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
Mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
Std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
Min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values.

```
In [9]:
```

data=pd.read_csv("C:\\Users\\Sandhya Jayaraman\\Downloads\\abalone.csv")
pd.isnull(data["Sex"])

```
False
1
       False
      False
      False
      False
4172
      False
4173
      False
4174
      False
4175
      False
4176
      False
Name: Sex, Length: 4177, dtype: bool
```

6. Find the outliers and replace the outliers

```
In [10]:
df["Rings"]=np.where(df["Rings"]>10,np.median,df["Rings"])
df["Rings"]
                                                                        Out[10]:
        <function median at 0x000001CA73E62048>
1
2
                                                9
3
                                               10
        <function median at 0x000001CA73E62048>
4173
4174
                                                9
4175
                                               10
        <function median at 0x000001CA73E62048>
4176
Name: Rings, Length: 4177, dtype: object
```

7. Check for Categorical columns and perform encoding

E620 48>

```
In [11]:
pd.get dummies(df,columns=["Sex","Length"],prefix=["Length","Sex"]).head()
            S
        W
                  S
        h
                                         Se
               е
 Di
                      R
                                   Le
            k r
                 Ш
                                  n.
                                n
            e a w
                         Leng
                               g gt .
t h_ .
                          th_F
 et
               е
                                             7
                                                     7
                                                                    7
                                h
 er
               i g
           ei
        g
                               _I
            g
               g
                  h
        h
               h
                          <fun
                          ction
               0. 0.
                         medi
                         an at
                 0 1
            1
                          0x00
                                   0 1 ... 0
                                                  0
                                                     0
                                                             0
                  1 5
                         0001
                  0
                         CA73
```

5 rows × 144 columns

8. Split the data into dependent and independent variables

8.1 Split the data into Independent variables.

```
X=df.iloc[:,:-2].values
print(X)
[['M' 0.455 0.365 ... 0.514 0.2245 0.101]
 ['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]
 ['F' 0.53 0.42 ... 0.677 0.2565 0.1415]
 ['M' 0.6 0.475 ... 1.176 0.5255 0.2875]
 ['F' 0.625 0.485 ... 1.0945 0.531 0.261]
 ['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

8.2 Split the data into Dependent variables.

In [13]: Y=df.iloc[:,-1].valuesprint(Y) [<function median at $0x000001CA73E62048 > 7 9 \dots 9 10$ <function median at 0x000001CA73E62048>1

9. Scale the independen tvariables

```
In [14]:
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
                                                                                                 In [15]:
df[["Length"]] = scaler.fit transform(df[["Length"]])
print(df)
                 Length Diameter Height Whole weight Shucked weight \
        Sex

      M
      0.513514
      0.365
      0.095
      0.5140
      0.2245

      M
      0.371622
      0.265
      0.090
      0.2255
      0.0995

      F
      0.614865
      0.420
      0.135
      0.6770
      0.2565

      M
      0.493243
      0.365
      0.125
      0.5160
      0.2155

      I
      0.344595
      0.255
      0.080
      0.2050
      0.0895

0
1
4172 F 0.662162 0.450 0.165
4173 M 0.695946 0.440 0.135
4174 M 0.709459 0.475 0.205
4175 F 0.742242
                                                      0.8870
                                                                                 0.3700
                                                           0.9660
                                                                                  0.4390
                                                           1.1760
                                                                                  0.5255
                                                           1.0945
                                                                                  0.5310
4176 M 0.858108
                              0.555 0.195
                                                                                  0.9455
                                                           1.9485
        Viscera weight Shell weight
                                                                                                 Rings
0
                   0.0485
1
                                      0.0700
                                                                                                       9
                   0.1415
                                      0.2100
                   0.1140
                                      0.1550
                                                                                                     10
                   0.0395
                                      0.0550
                                                                                                       7
. . .
                        . . .
                 0.2390
                                   0.2490 <function median at 0x000001CA73E62048>
4172
4173
                 0.2145
                                     0.2605
4174
                 0.2875
                                     0.3080
                                                                                                       9
                  0.2610
4175
                                     0.2960
                                                                                                     10
                  0.3765
4176
                                     0.4950 <function median at 0x000001CA73E62048>
```

10. Split the data into training and testing

```
In [16]:
from sklearn.model selection import train test split
train size=0.8
X=df.drop(columns=['Sex']).copy()
y=df['Sex']
X_train,X_rem,y_train,y_rem=train_test_split(X,y,train_size=0.8)
test size=0.5
X_valid, X_test, y_valid, y_test=train_test_split(X_rem, y_rem, test_size=0.5)
print(X train.shape),print(y train.shape)
print(X valid.shape),print(y valid.shape)
print(X test.shape),print(y test.shape)
(3341, 8)
(3341,)
(418, 8)
(418,)
(418, 8)
(418,)
                                                                         Out[16]:
(None, None)
```

11.Build the Model

```
In [18]:
test_size=0.33
seed=7
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=test_size, rand
om state=seed)
```

12.Train the model

In [19]: X train

Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
4131	0.682432	0.425	0.145	0.8300	0.3790	0.1605	0.2575	<pre><function 0x000001ca73e62048="" at="" median=""></function></pre>

Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
3204	0.797297	0.530	0.185	1.3955	0.4560	0.3205	0.4900	<function 0x000001ca73e62048="" at="" median=""></function>
2622	0.844595	0.575	0.205	1.7975	0.7295	0.3935	0.5165	<function 0x000001ca73e62048="" at="" median=""></function>
2114	0.074324	0.095	0.035	0.0105	0.0050	0.0065	0.0035	4
1422	0.871622	0.575	0.215	2.1730	0.9515	0.5640	0.5365	<function 0x000001ca73e62048="" at="" median=""></function>
•••								
1372	0.729730	0.475	0.165	1.0230	0.4905	0.1955	0.3035	<function 0x000001ca73e62048="" at="" median=""></function>
919	0.452703	0.310	0.090	0.3335	0.1635	0.0610	0.0910	6
2550	0.277027	0.220	0.080	0.1315	0.0660	0.0240	0.0300	5
537	0.290541	0.230	0.075	0.1165	0.0430	0.0255	0.0400	7
1220	0.344595	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7

2798 rows × 8 columns

y_train

Out[20]:

4131 I
3204 F
2622 F
2114 I
1422 M
...
1372 F
919 I

2550 I 537 M 1220 I

Name: Sex, Length: 2798, dtype: object

13.Test the model

2050 M

X tes	ıt.							In [21]:
								Out[21]:
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1157	0.716216	0.470	0.165	1.1775	0.6110	0.2275	0.2920	9
1125	0.641892	0.425	0.150	0.8315	0.4110	0.1765	0.2165	10
2053	0.520270	0.345	0.110	0.4595	0.2350	0.0885	0.1160	7
3591	0.777027	0.475	0.165	1.3875	0.5800	0.3485	0.3095	9
455	0.675676	0.470	0.140	0.8375	0.3485	0.1735	0.2400	<pre><function 0x000001ca73e62048="" at="" median=""></function></pre>
3150	0.783784	0.505	0.165	1.3670	0.5835	0.3515	0.3960	10
3037	0.655405	0.450	0.145	0.8940	0.3885	0.2095	0.2640	9
2050	0.506757	0.350	0.130	0.4655	0.2075	0.1045	0.1350	8
1690	0.743243	0.500	0.170	1.0985	0.4645	0.2200	0.3540	9
253	0.675676	0.460	0.185	1.0940	0.4485	0.2170	0.3450	<pre><function 0x000001ca73e62048="" at="" median=""></function></pre>
1379 r	$ows \times 8 col$	umns						
y_tes	t							Out[22]:
1157 1125 2053 3591 455	F M M F M							Out[22].
3150 3037	F M							

```
1690 M
253 F
```

Name: Sex, Length: 1379, dtype: object

14. Measure the performance using Metrics