FCC REPORT

Applicant: Nexpro International Limitada

Address of Applicant: Guadalupe, Barrio Tournon, Frente Al Hotel Villas Oficinas Del

Bufete Facio Y Canas

Equipment Under Test (EUT)

Product Name: M805

Model No.: Rush

Trade mark: sendtel

FCC ID: ZYPRUSH

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 06 Aug., 2014

Date of Test: 07 Aug., to 16 Sep., 2014

Date of report issued: 16 Sep., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Sep., 2014	Original

 Prepared by:
 Yoy0
 Lu0
 Date:
 16 Sep., 2014

Report Clerk

Reviewed by: Date: 16 Sep., 2014

Project Engineer

3 Contents

			age
1	С	OVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	:
	_	EST SUMMARY	
4			
5	G	BENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	7
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	T	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	c
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	20dB Occupy Bandwidth	17
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
	-	i.9.1 Conducted Emission Method	
	6.10		
	0.20	5.10.1 Conducted Emission Method	
	-	10.2 Radiated Emission Method	
7		EST SETUP PHOTO	_
1	- 1	E31 3E1UF FRU1U	55
8	F	UT CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Nexpro International Limitada
Address of Applicant:	Guadalupe, Barrio Tournon, Frente Al Hotel Villas Oficinas Del Bufete Facio Y Canas
Factory:	Megatron Mobile Corporation Limited
Address of Factory:	Room No. 1605, Building A, T-Share Jinniu Square (T-Share International Centre), Taoyuan Road, Nanshan District, Shenzhen, Guangdong, China 518033

5.2 General Description of E.U.T.

Product Name:	M805			
Model No.:	Rush			
Operation Frequency:	2402MHz~2480MHz			
Transfer rate:	1/2/3 Mbits/s			
Number of channel:	79			
Modulation type:	GFSK, π/4-DQPSK, 8DPSK			
Modulation technology:	FHSS			
Antenna Type:	Internal Antenna			
Antenna gain:	-1 dBi			
Power supply:	Rechargeable Li-ion Battery DC3.7V-1800mAh			
AC adapter:	Model:TPA-655100UU			
	Input:100-240V AC,50/60Hz 0.2A			
	Output:5.0V DC MAX1000mA			

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	Aug 23 2014	Aug 22 2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Apr 19 2014	Apr 19 2015			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Apr 19 2014	Apr 19 2015			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015			
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015			
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015			
8	Coaxial Cable	Coaxial Cable CCIS		CCIS0019	Apr. 01 2014	Mar. 31 2015			
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015			
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015			
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015			
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015			
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015			
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
16	Spectrum analyzer 9k-30GHz Rohde & Schwarz		FSP	CCIS0023	Apr 19 2014	Apr 19 2015			
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015			
18	Loop antenna	Laplace instrument	RF300	EMC0701	Apr 01 2014	Mar. 31 2015			
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 29 2014	May. 28 2015			
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Apr 19 2014	Apr 19 2015			

Conducted Emission:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	Oct 10 2011	Oct 09 2014					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Apr 10 2014	Apr 09 2015					
3	LISN	CHASE	MN2050D	CCIS0074	Apr 10 2014	Apr 10 2015					
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is -1 dBi.

6.2 Conducted Emissions

	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4:2003					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Swee	ep time=auto				
Limit:	Limit (dBu\/)					
	Prequency range (MHz) Quasi-peak Average					
	0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46					
	0.5-5 56 46					
	5-30 60 50					
	Decreases with the logarithm of	the frequency.				
Test setup:	Reference Plane					
	AUX Equipment E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
Test Instruments: F	Refer to section 5.7 for details					
Test mode:	Bluetooth (Continuous transmitting) mode					
	Pass					

Measurement Data

Line:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 644RF Condition

Job No. EUT : M805
Model : Rush
Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer:
Remark :

remark	10.50							
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
0 1000	MHz	dBu₹	₫B	₫B	dBu∀	dBu₹	<u>dB</u>	
1	0.162	41.19	0.27	10.77	52.23	65.34	-13.11	QP
2	0.166	23.86	0.27	10.77	34.90	55.16	-20.26	Average
3	0.211	36.59	0.28	10.76	47.63	63.18	-15.55	QP
4	0.214	17.16	0.28	10.76	28.20	53.05	-24.85	Average
5	0.294	15.35	0.26	10.74	26.35			Average
6	0.373	29.36	0.28	10.73	40.37	58.43	-18.06	QP
7	0.377	14.66	0.28	10.72	25.66	48.34	-22.68	Average
8	0.461	28.08	0.29	10.75	39.12	56.67	-17.55	QP
1 2 3 4 5 6 7 8 9	0.461	12.32	0.29	10.75	23.36	46.67	-23.31	Average
10	1.654	28.70	0.26	10.94	39.90	56.00	-16.10	QP
11	2.190	27.81	0.26	10.95	39.02	56.00	-16.98	QP
12	2.213	11.43	0.26	10.95	22.64	46.00	-23.36	Average

Neutral:

Site Condition CCIS Shielding Room FCC PART15 B QP LISN NEUTRAL

Job No. EUT 644RF M805 Model : Rush Test Mode : BT mode Power Rating : AC 120V/60Hz Test Mode

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer:

Remark

Frea	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	dB	<u>d</u> B	dBu₹	dBu∜	dB	
0.166	23.36	0.25	10.77	34.38	55.16	-20.78	Average
0.170	41.08	0.25	10.77	52.10	64.94	-12.84	QP
0.211	37.28	0.25	10.76	48.29	63.18	-14.89	QP
0.211	21.88	0.25	10.76	32.89	53.18	-20.29	Average
0.377	32.74	0.25	10.72	43.71	58.34	-14.63	QP
0.377	20.89	0.25	10.72	31.86	48.34	-16.48	Average
0.459	29.30	0.28	10.75	40.33	56.71	-16.38	QP
0.461	17.63	0.28	10.75	28.66	46.67	-18.01	Average
1.005	15.91	0.22	10.87	27.00	46.00	-19.00	Average
1.135	28.30	0.23	10.89	39.42	56.00	-16.58	QP
1.262	13.69	0.24	10.90	24.83	46.00	-21.17	Average
1.433	27.91	0.26	10.92	39.09	56.00	-16.91	QP
	0.166 0.170 0.211 0.211 0.377 0.377 0.459 0.461 1.005 1.135 1.262	Freq Level MHz dBuV 0.166 23.36 0.170 41.08 0.211 37.28 0.211 21.88 0.377 32.74 0.377 20.89 0.459 29.30 0.461 17.63 1.005 15.91 1.135 28.30 1.262 13.69	MHz dBuV dB 0.166 23.36 0.25 0.170 41.08 0.25 0.211 37.28 0.25 0.211 21.88 0.25 0.377 32.74 0.25 0.377 20.89 0.25 0.459 29.30 0.28 0.461 17.63 0.28 1.005 15.91 0.2 1.135 28.30 0.23 1.262 13.69 0.24	MHz dBuV dB dB 0.166 23.36 0.25 10.77 0.170 41.08 0.25 10.77 0.211 37.28 0.25 10.76 0.211 21.88 0.25 10.76 0.377 32.74 0.25 10.72 0.377 20.89 0.25 10.72 0.459 29.30 0.28 10.75 0.461 17.63 0.28 10.75 1.005 15.91 0.22 10.87 1.135 28.30 0.23 10.89 1.262 13.69 0.24 10.90	MHz dBuV dB dB dBuV 0.166 23.36 0.25 10.77 34.38 0.170 41.08 0.25 10.77 52.10 0.211 37.28 0.25 10.76 48.29 0.211 21.88 0.25 10.76 32.89 0.377 32.74 0.25 10.72 43.71 0.377 20.89 0.25 10.72 31.86 0.459 29.30 0.28 10.75 40.33 0.461 17.63 0.28 10.75 28.66 1.005 15.91 0.22 10.87 27.00 1.135 28.30 0.23 10.89 39.42 1.262 13.69 0.24 10.90 24.83	MHz dBuV dB dB dBuV dBuV 0.166 23.36 0.25 10.77 34.38 55.16 0.170 41.08 0.25 10.77 52.10 64.94 0.211 37.28 0.25 10.76 48.29 63.18 0.211 21.88 0.25 10.76 32.89 53.18 0.377 32.74 0.25 10.72 43.71 58.34 0.377 20.89 0.25 10.72 31.86 48.34 0.459 29.30 0.28 10.75 40.33 56.71 0.461 17.63 0.28 10.75 28.66 46.67 1.005 15.91 0.22 10.87 27.00 46.00 1.135 28.30 0.23 10.89 39.42 56.00 1.262 13.69 0.24 10.90 24.83 46.00	MHz dBuV dB dB dBuV dBuV dB 0.166 23.36 0.25 10.77 34.38 55.16 -20.78 0.170 41.08 0.25 10.77 52.10 64.94 -12.84 0.211 37.28 0.25 10.76 48.29 63.18 -14.89 0.211 21.88 0.25 10.76 32.89 53.18 -20.29 0.377 32.74 0.25 10.72 43.71 58.34 -14.63 0.377 20.89 0.25 10.72 31.86 48.34 -16.48 0.459 29.30 0.28 10.75 40.33 56.71 -16.38 0.461 17.63 0.28 10.75 28.66 46.67 -18.01 1.005 15.91 0.22 10.87 27.00 46.00 -19.00 1.135 28.30 0.23 10.89 39.42 56.00 -16.58 1.262 13.69 0.24

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

weasurement Data					
	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-0.28	21.00	Pass		
Middle	2.12	21.00	Pass		
Highest	2.13	21.00	Pass		
	π/4-DQPSK ι	mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-0.80	21.00	Pass		
Middle	1.64	21.00	Pass		
Highest	1.64	21.00	Pass		
	8DPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-0.80	21.00	Pass		
Middle	1.77 21.00 Pass		Pass		
Highest	1.77	21.00	Pass		

Test plot as follows:

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Took ahammal	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	849.70	1094.19	1178.36
Middle	849.70	1138.28	1182.36
Highest	849.70	1138.28	1178.36

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

	GFSK mode		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	566.47	Pass
Middle	1002	566.47	Pass
Highest	1002	566.47	Pass
	π/4-DQPSK mode	e	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	758.85	Pass
Middle	1002	758.85	Pass
Highest	1002	758.85	Pass
	8DPSK mode		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	788.24	Pass
Middle	1002 788.24 Pass		Pass
Highest	1002 788.24 Pass		Pass

Note: According to section 6.4

Mode	Mode 20dB bandwidth (kHz) Limit (kHz) (worse case) (Carrier Frequencies Separa	
GFSK	849.70	566.47
π/4-DQPSK	1138.28	758.85
8DPSK	1182.36	788.24

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.4:2003 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

2.SEP.2014 16:50:04

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12512		
GFSK	DH3	0.26448	0.4	Pass
	DH5	0.31147		
	2-DH1	0.12832		
π /4-DQPSK	2-DH3	0.26512	0.4	Pass
	2-DH5	0.31104		
	3-DH1	0.12768		
8DPSK	3-DH3	0.26864	0.4	Pass
	3-DH5	0.31232		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.391*(1600/(2*79))*31.6=125.12ms DH3 time slot=1.653*(1600/(4*79))*31.6=264.48ms DH5 time slot=2.920(1600/(6*79))*31.6=311.47ms

2-DH1 time slot=0.401*(1600/(2*79))*31.6=128.32ms

2-DH3 time slot=1.657*(1600/ (4*79))*31.6=265.12ms

2-DH5 time slot=2.916(1600/ (6*79))*31.6=311.04ms

3-DH1 time slot=0.399*(1600/ (2*79))*31.6=127.68ms

3-DH3 time slot=1.679*(1600/ (4*79))*31.6=268.64ms

3-DH5 time slot=2.928(1600/ (6*79))*31.6=312.32ms

Test plot as follows:

2.SEP.2014 16:59:48

2-DH5

2.SEP.2014 17:05:07

3-DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209 and	d 15.205					
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement Dis	stance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 10112	Peak	1MHz	10Hz	Average Value			
Limit:	Freque	ency	Limit (dBuV/		Remark			
	Above 1	GHz	54.0 74.0		Average Value Peak Value			
Test setup:	EUT Turn Table	3m ← 4m 4m 0.8m		Antenna Horn Ant Spectrum Analyzer Amplit	enna			
Test Procedure:	at a 3 meter composition of the position of the second was mounted. The antennal determine the polarizations of the antennal was turned from the antennal was turned from the second with the second specified, there is the second one specified one second was turned from the second was turned	amber. The table highest radiation set 3 meters awon the top of a varied film maximum value of the antenna are ected emission, as tuned to height of the antenna are ver system was an Maximum Hold of level of the EU of testing could be otherwise the emission.	e was rotated in. ay from the invariable-height rom one metel of the field streeset to make the EUT was this from 1 me 360 degrees to Peak Ded Mode. T in peak mode stopped and hissions that diak, quasi-peak	terference-re antenna tow r to four meter rength. Both the measure arranged to iter to 4 meter to 4 meter to 10 find the mater to 10 find the mater arranged to 10 find the material arranged to 10 find the peak valid not have 1	ers above the ground to horizontal and vertical ement. its worst case and then its and the rota table eximum reading.			
Test Instruments:	Refer to section 5							
Test mode:	Non-hopping mod	de						
Test results:	Passed							
Pomark:								

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site

Condition

Job No. EUT : M805

Model : Rush
Test mode : BT-TX(DH1-L) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

Fre	Freq		Antenna Factor						Remark
,	MHz	dBm	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m	<u>dB</u>	
1 2	2390.000 2390.000				0.00 0.00				Peak Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 644RF Condition

Job No. : M805 EUT Model : Rush

Test mode : BT-TX(DH1-L) Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK

MAK	K :	Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
1	MHz	dBm	dB/m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m		
1 2	2390.000 2390.000	70.75.07.07	27.58 27.58			57.25 44.85			Peak Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 644RF : M805

Condition Job No. EUT

Model : Rush
Test mode : BT-TX(DH1-H) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
RFMMRK

REMARK

	Freq		Antenna Factor				Limit Line		Remark	
	MHz	dBm	dB/m	āB	−−−dB	_dBm/m	dBm/m	dB		
1 2	2483.500 2483.500	T073335							Peak Average	

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 644RF Condition

Job No. EUT : M805

Model : Rush
Test mode : BT-TX(DH1-H) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

		ReadAntenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBm	dB/m dB	dBd	_dBm/m	dBm/m	dB		
1 2	2483.500 2483.500								Peak Average

π/4-DQPSK mode Test channel: Lowest

Horizontal:

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. 644RF EUT : M805

Model : Rush
Test mode : BT-TX(2DH1-L) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer:

REMARK

	Freq	ReadAnter Freq Level Fact							
7	MHz	dBm	dB/m	āB	<u>ab</u>	_dBm/m	-dBm/m	 	
1 2	2390.000 2390.000								

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 644RF Condition

Job No. EUT : M805 Model : Rush

Test mode : BT-TX(2DH1-L) Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK

T.IIII.	F (3)		Antenna Footor				Limit		Panaula
	rreq	rever	Factor	FORR	ractor	rever	Line	LIMIT	иешатк
,	MHz	dBm	dB/m	<u>ab</u>	dB	dBm/m	dBπ/m	dB	
1 2	2390.000 2390.000	70/71/04/07 117	75.00 5.00 5.00		0.00				Peak Average

Test channel: Highest

Horizontal:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 644RF : M805 Job No. EUT

: Kush
Test mode : BT-TX(2DH1-H) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK :

Silu II d	S (5)		Antenna Factor			Level	Limit Line		
5	MHz	dBm	<u>dB</u> /m		<u>d</u> B			ā	
1 2	2483.500 2483.500			7.5 30 50			1010000000	7.7.7.7.7.7.	Peak Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 644RF Condition

Job No. : M805

: Kush
Test mode : BT-TX(2DH1-H) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK :

		Read	Antenna Cable Preamp				Limit	Over		
	Freq		Factor					Limit	Remark	
	MHz	dBm	dB/m	dB	<u>dB</u>	_dBm/m	dBm/m	dB		
1 2	2483.500 2483.500	726 (10.10)	7.13.53.53.73	705,430,50	(E)				Peak Average	

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 644RF Condition

Job No. EUT : M805

Model : Rush
Test mode : BT-TX(3DH1-L) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

	Freq	ReadAntenna Freq Level Factor					Limit Line		Remark	
ō	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000 2390.000				0.00 0.00					

Vertical:

Site Condition

Job No. EUT M805

: Rush
Test mode : BT-TX(3DH1-L) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK :

	**	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000		70.00.00.00.00.00.00.00				111000000000000000000000000000000000000		Peak Average

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 644RF Condition

Job No. EUT Model : M805

Model : Rush
Test mode : BT-TX(3DH1-H) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

Freq				nna Cable I tor Loss I B/m dB	Factor	Level			Remark	
MHz	dBu∀	dB/m	dB							
	2483.500 2483.500									

Page 48 of 60

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 644RF Condition

Job No. EUT : M805

: Kush
Test mode : BT-TX(3DH1-H) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK :

T.110111.0	3 S.		Antenna Factor					Remark
,	MHz	dBu₹	— <u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	
1 2	2483.500 2483.500	7,000		705-1050	0.00 0.00			Peak Average

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

GFSK

Lowest channel

Date: 1.SRP.2014 11:24:33

30MHz~25GHz

Middle channel

Date: 1.SEP.2014 11:27:14

30MHz~25GHz

Highest channel

Date: 1.SEP.2014 11:30:20

30MHz~25GHz

$\pi/4$ -DQPSK

Lowest channel

Date: 1.SEP.2014 11:35:59

30MHz~25GHz

Middle channel

Date: 1.SEP.2014 11:34:28

30MHz~25GHz

Highest channel

Date: 1.SEP.2014 11:32:29

30MHz~25GHz

8DPSK

Lowest channel

Date: 1.SRP.2014 11:38:16

30MHz~25GHz

Middle channel

Date: 1.SEP.2014 11:40:34

30MHz~25GHz

Highest channel

Date: 1.SEP.2014 11:42:54

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Me								
Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	9 kHz to 25 GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Remark						
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	710070 10112	Peak	1MHz	10Hz	Average Value			
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Remark			
	30MHz-8		40.0)	Quasi-peak Value			
	88MHz-21	16MHz	43.5	5	Quasi-peak Value			
	216MHz-9	60MHz	46.0)	Quasi-peak Value			
	960MHz-	1GHz	54.0)	Quasi-peak Value			
	Above 1	GHz	54.0		Average Value			
	7.5575	01.12	74.0)	Peak Value			
	Antenna Spear Antenna Tower Horn Antenna Spectrum Analyzer							

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: 644RF : M805 Job No. EUT : Rush
Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	36.509	46.91	12.73	0.49	29.93	30.20	40.00	-9.80	QP
2	66.499	44.19	10.02	0.76	29.75	25.22	40.00	-14.78	QP
1 2 3	81.783	43.55	9.28	0.86	29.63	24.06	40.00	-15.94	QP
4	157.559	45.12	8.58	1.33	29.15	25.88	43.50	-17.62	QP
5	207.123	38.40	10.80	1.42	28.78	21.84	43.50	-21.66	QP
4 5 6	292.058	35.88	12.89	1.75	28.46	22.06	46.00	-23.94	QP

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 644RF Condition

Job No. EUT : M805 : Kush
Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

SHEHAL									
	Freq		Antenna Factor				Limit Line	Over Limit	
-	MHz	dBu∜	dB/m	dB	dB	dBu∜/m	$\overline{dBuV/m}$	<u>dB</u>	
1	32.634	36.41	12.31	0.46	29.96	19.22	40.00	-20.78	QP
1 2 3	37.025	35.06	12.82	0.50	29.93	18.45	40.00	-21.55	QP
3	60.069	39.12	12.69	0.69	29.77	22.73	40.00	-17.27	QP
4	84.110	39.41	10.02	0.87	29.61	20.69	40.00	-19.31	QP
5	135.506	46.67	8.51	1.23	29.30	27.11	43.50	-16.39	QP
6	166.651	37.56	8.87	1.34	29.08	18.69	43.50	-24.81	QP

Above 1GHz:

ADOVE IGI			Lou	woot	La	vol	Dook		
re	st channel:			west	Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804	57.65	31.53	8.90	40.24	57.84	74.00	-16.16	Vertical	
4804	58.65	31.53	8.90	40.24	58.84	74.00	-15.16	Horizontal	
Te	st channel:		Lov	west	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	40.25	31.53	8.90	40.24	40.44	54	-13.56	Vertical	
4804.00	41.52	31.53	8.90	40.24	41.71	54	-12.29	Horizontal	
Te	st channel		Mid	ddle	Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	57.89	31.58	8.98	40.15	58.30	74.00	-15.70	Vertical	
4882.00	57.85	31.58	8.98	40.15	58.26	74.00	-15.74	Horizontal	
Te	st channel		Mic	ddle	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	39.85	31.58	8.98	40.15	40.26	54.00	-13.74	Vertical	
4882.00	39.51	31.58	8.98	40.15	39.92	54.00	-14.08	Horizontal	
Te	st channel	•	Hig	hest	Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	56.65	31.69	9.08	40.03	57.39	74.00	-16.61	Vertical	
4960.00	56.55	31.69	9.08	40.03	57.29	74.00	-16.71	Horizontal	
Test channel:			Hig	Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	39.65	31.69	9.08	40.03	40.39	54.00	-13.61	Vertical	
4960.00	39.49	31.69	9.08	40.03	40.23	54.00	-13.77	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.