

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

STORE SEPARATION METHODOLOGY ANALYSIS

> by Darcy Michael Hansen

> > September, 1991

Thesis Advisor: Co-Advisor:

Prof. Oscar Biblarz Prof. Louis Schmidt

Approved for public release; distribution is unlimited

		REPORT	DOCUMENTATIO	ON PAGE		ŀ							
1a REPORT	SECURITY CLASSI	FICATION		16 RESTRICTIVE MARKINGS									
2a SECURIT	Y CLASSIFICATION	NAUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT									
26 DECLAS	SIFICATION/DOW	NGRADING SCHED	JLE	Approved for public release; distribution is unlimited.									
4 PERFORM	ING ORGANIZAT	ON REPORT NUMB	ER(S)	5 MONITORING ORGANIZATION REPORT NUMBER(S)									
	OF PERFORMING C graduate School	ORGANIZATION	6b OFFICE SYMBOL (If applicable) 31		7a NAME OF MONITORING ORGANIZATION Naval Postgraduate School								
	S (City, State, and CA 93943-5000	d ZIP Code)		7b ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000									
8a. NAME O ORGANIZA	OF FUNDING/SPOR	NSORING	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER									
8c ADDRES	S (City, State, and	d ZIP Code)		10 SOURCE OF FU	NDING NUMBER	<u> </u>							
				Program Element No	Project No	Task No	Work Unit Ac Number	Cession					
11 TITLE (In	nclude Security Cla	assification)		1		1		_					
	ation Methodolog												
12. PERSON	AL AUTHOR(S)	lansen, Darcy M.											
13a TYPE C Master's Th		13b TIME (TO TO	14_DATE OF REPOR 1991, September	T (year, month, o	(ay) 15 PA	AGE COUNT 81						
			e author and do not refle	ect the official policy o	r position of the l	Department o	of Defense or the U	J.S.					
17 COSATI	CODES		18. SUBJECT TERMS (d	(continue on reverse if necessary and identify by block number)									
FIELD	GROUP	SUBGROUP	separation, store, tra	jectory									
19 ABSTRA	CT (continue on r	everse if necessary	and identify by block nu	mber)									
aircraft stor coefficients results are speeds belo coefficients	res are examined, together with th compared with th w the subsonic Maprovides single-p	The semi-empiric e modeled ejection e Nielson Engineer ach critical speed, b	I computer codes used to al aeroprediction code M forces, are used in free-st ing and Research (NEAI y use of a vortex-lattice ediction of the store pitch ght.	issile DATCOM is use ream state-space equ R) store separation co and panel method. M	ed to obtain the c ations of motion de which provide odification of the	oefficients of a to predict the es accurate tra e Missile DAT	a modeled store. store trajectory. ajectory profiles, COM aerodynam	The for nic					
30 DISTRIB	LITIONIANAMAN	LITY OF A DETRACT		21 ABSTRACTOS	HOITY CLASSICIO	ATION							
	UTION/AVAILABI	LITY OF ABSTRACT SAME AS REPORT	DTIC USERS	21. ABSTRACT SEC	UKIT T CLASSIFIC	ATION							
	OF RESPONSIBLE			22b. TELEPHONE (4 (408) 646-3096	Include Area cod	e)	22c. OFFICE SYN A.A/BI	NBOL					
DDEORM	1472 SA BAAL		83 APR adition may	v he used until exhau	sted SEC	LIRITY CLASSI	FICATION OF THE	SPAGE					

Approved for public release; distribution is unlimited.

Store Separation Methodology Analysis

by

Darcy M. Hansen B.S., Arizona State University, 1983

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 1991

ABSTRACT

Various computational methods and operational computer codes used to predict the aerodynamic coefficients and separation trajectories of aircraft stores are examined. The semi-empirical aeroprediction code Missile DATCOM is used to obtain the coefficients of a modeled store. These coefficients, together with the modeled ejection forces, are used in free-stream state-space equations of motion to predict the store trajectory. The results are compared with the Nielson Engineering and Research (NEAR) store separation code which provides accurate trajectory profiles, for speeds below the critical speed, by use of a vortex-lattice and panel method. Modification of the Missile DATCOM aerodynamic coefficients provides single-point state-space prediction of the store pitch trajectory within 30% of the NEAR code results. Store trajectories were restricted to the first 0.2 seconds of free flight.

H- 11235

TABLE OF CONTENTS

I.	STO	ORE SEPARATION INTRODUCTION	1
	A.	BACKGROUND	1
	В.	MATHEMATICAL MODELING	2
	C.	METHODOLOGY	(1)
II.	EJI	ECTION FORCES AND MOMENTS	5
	A.	EJECTOR CHARACTERISTICS	5
	В.	FORCES	8
		1. Theory	8
		2. Example	8
	C.	MOMENTS	9
		1. Theory	9
		2. Example	9
	D.	PRELIMINARY OBSERVATION	LC
III	. Al	ERODYNAMIC CALCULATION	۱1
	A.	THEORY	L1
		1. Longitudinal Equations	12
		2. Lateral Equations	13
		3. State Variable Representation	1 4
	В.	MISDATCOM	15
		1 Theory	1.5

100			

		2. Procedure	17
	C.	AERODYNAMIC CALCULATION	20
		1. Longitudinal	20
		2. Lateral	23
	D.	PARAMETER VARIATION	23
	E.	PRELIMINARY OBSERVATION	24
IV.	"N	EAR" PROGRAM	25
	A.	BACKGROUND	25
	В.	THEORY	26
		1. Source Program	26
		2. Trajectory Program	27
		3. Shape Modeling	28
	C.	PROCEDURE	31
		1. Source Program	31
		2. Trajectory Program	35
V.	RE	SULTS AND COMPARISONS	40
	A.	EJECTOR FORCES AND MOMENTS	40
		1. Vertical Velocity	40
		2. Pitch Rate Q	40
	B.	TRAJECTORY COMPARISON	40
		1. Vertical Separation Z	41
		2. Pitch Angle	41
		3. Pitch Rate	45
		4. Vertical Velocity	45

	C.	AUG	MEN	1TE	D	ΑE	RC	PR	ŒD	IC	TI	ON	ĺ	٠	•	٠	•	•	٠	•	٠	٠	•	•	4.5
		1.	C _{Mq} -	- (coe	ff	ic	ci€	ent	-		•	•	٠	٠				٠					٠	46
		2.	C _{Må} -	- (coe	ff	ic	cie	ent	-		•										٠			46
		3.	Tra	ije	ct	or	У	Pr	ed	lic	cti	.on	1	٠	٠	•	٠			٠	•	٠	٠	٠	4 6
VI.	CON	CLU	JSIC	ns		•	•			•	٠		•	٠	٠		٠	•	٠			٠	•	•	50
APPE	KIDN	(A		•		•	•	٠	٠	•	•	•	•	٠	٠			•			•		•		52
APPE	KIDNE	КВ	•	•	•		•			•	٠	٠	•	•	•	٠				•	٠	٠	•	•	53
APPE	RIDNS	(C		•		•	•	٠			•						•				٠	•		•	55
APPE	KIDNE	k D	٠	٠		•	•	•	•		٠	٠	•	•	•						•	٠		•	60
APPE	KIDNE	ζE	٠	٠	•	•	•	•	٠	٠	•	٠	•	•	٠		•				•			•	61
LIST	OF	REF	FERE	ENC	ES				•				•		•	•						•	٠		66
INIT	TIAL	DIS	STRI	BU	ΤI	ON	I	LIS	ST		•												•		68

LIST OF FIGURES

Figure	1	Ejector Force
Figure	2	MISDATCOM Pod Shape
Figure	3	MISDATCOM Input
Figure	4	MISDATCOM Output
Figure	5	Pitch Angle Response
Figure	6	Pitch Rate Response
Figure	7	Vertical Separation Distance
Figure	8	Vertical Velocity
Figure	9	F/A18 NEAR Polynomials
Figure	10	Source Program Input
Figure	11	Source Program Output
Figure	12	Trajectory Program Partial Output 3
Figure	13	Trajectory Output (Cont)
Figure	14	Vertical Separation Distance 4
Figure	15	Pitch Angle 4
Figure	16	Parameter Error
Figure	17	Vertical Separation Distance (Augmented) . 4
Figure	18	Pitch Angle (Augmented) 4
Figure	19	Pitch Rate (Augmented) 4
Figure	20	Parameter Error (Augmented) 4
Figure	21	Store Reference Frame
Figure	22	Control-C Program For EOM Simulation 6
Figure	23	MISDATCOM INPUT/OUTPUT 6

Figure	24	MISDATCOM	Input/Output	(Cont)	٠	٠	٠	٠	٠	٠	٠	62
Figure	25	MISDATCOM	Input/Output	(Cont)					٠	•		63
Figure	26	MISDATCOM	Input/Output	(Cont)	•	•	•		٠	٠	٠	64
Figure	27	MISDATCOM	Input/Output	(Cont)								65

LIST OF ABBREVIATIONS AND ACRONYMS

axial force coefficient C_{A} drag coefficient C_{p} lift coefficient C_{t} yawing-moment coefficient $C_{t,N}$ rolling-moment coefficient C_{1t} CNA normal-force derivative wrt to AOA pitching-moment derivative wrt to AOA CMA side-force derivative wrt to beta CYB yawing-moment derivative wrt to beta C_{1NB} rolling-moment derivative wrt to beta C_{1LB} C_m pitching-moment coefficient pitching-moment derivative wrt to AOA rate $C_{m\dot{\alpha}}$ C_{mq} pitching-moment derivative wrt to pitch rate yawing-moment coefficient C_n normal-force coefficient C_N normal-force derivative wrt to AOA rate CNà normal-force derivative wrt to pitch rate CNG side-force coefficient C_{y} maximum store diameter d gravitational constant g mass moment of inertia about the x-axis I,, mass moment of inertia about the y-axis I mass moment of inertia about the z-axis Izz

body (or store) length 1 reference length l_R body contour slope m free-stream Mach number M_ free-stream dynamic pressure q_{∞} S local body cross-sectional area reference area S_{R} time (seconds) t free-stream velocity V_{∞} x, y, z, store coordinate system x_b , y_b , z_b aircraft body coordinate system fuselage or store angle of attack α β fuselage or store sideslip angle

ACKNOWLEDGEMENT

I would like to thank the faculty of the Aeronautical and Astronautical Department at the Naval Postgraduate School for providing me with such professional insight into the field of aeronautics. I especially want to thank my thesis advisors, Prof. O. Biblarz and Prof. L. Schmidt, for continually providing guidance and direction in my search for the elusive truth.

Rony Salama, a fellow student, was also instrumental in validating my results by use of his practical knowledge in the field of store separation.

In addition, my thesis work would have been impossible without the able assistance of Tony Cricelli, who helped me navigate the labyrinth of computer paths.

And most importantly, I want to thank my wife, Victoria, for supporting her "ghost" husband for the duration of this thesis.

I. STORE SEPARATION INTRODUCTION

A. BACKGROUND

The prediction of the trajectory of a store ejected from an aircraft is of major concern to defense aviation. The increasing requirement for aircraft to fulfill a multiple role in the hostile environment demands that it also carry an ever-increasing variety of stores. These stores range from missiles and bombs stockpiled for many years to new, aerodynamically complex stores with lifting bodies.

The aim of this work is to review current methods of predicting store releases, compare results of two different methods, and to present an easy-to-use methodology for investigating the subsonic release of a unsophisticated store.

A non-axisymmetric pod ejected from the F/A-18 outboard pylon is presented as an example. This store was chosen because it is of practical value due to the extensive use of these modified pods at the Pacific Missile Test Center, at Point Mugu, California. Non-axisymmetrical stores are very difficult to model and present a special problem in the store separation field. This pod is, therefore, modeled as axisymmetric and non-axisymmetric, and the results are compared. In addition, the store lacks aerodynamic control surfaces and is highly unstable. Application of the

methodology presented here should eventually provide the user with accurate results for a minimal time and cost expenditure.

B. MATHEMATICAL MODELING

There are many ways to mathematically model store Economics and accuracy are always the main separation. considerations when exploring the codes and methods to be used. For simple cases, intermediate approaches such as panel methods and solutions of the Euler equations provide sufficient accuracy. Calculations involving flow separation shock wave interference become and too complex intermediate methods and acceptable results can only be obtained using modern computational fluid dynamic (CFD) techniques involving solutions of the Navier-Stokes equations [Ref. 1:p. 7-2]. For speeds below the subsonic Mach critical speed, component buildup methods (empirical and semiempirical), and panel methods provide the necessary accuracy and are much easier to use. The codes chosen for this study are explained in detail in their respective sections.

The F/A-18 model was obtained from Mr. L. L. Gleason of the Ordnance Systems Department, Naval Weapons Center, at China Lake, California. The F/A-18 was chosen due to its wide variety of store carriage and also because of its solid future with Naval aviation.

The store model is based upon both the Missile Datcom method [Ref 2] and also by the Nielson program [Ref 3]. These

will be discussed in Sections III and IV. Appendix A contains the physical description of the pod and its inertial characteristics.

C. METHODOLOGY

The initial investigation (Section II) consisted of looking at the ejector forces, combined with the store's inertial characteristics, to give a sense of the magnitude of initial velocities and moments. These forces and moments, while easy to predict, were insufficient to provide real evidence of a safe release or of a release problem. A large pitch-down moment or a large vertical velocity may be off-set by unforeseen aerodynamic forces. The velocities and moments calculated will be used in Section III and compared with results of Section IV for trajectory prediction.

Section III introduces a method of predicting the store's longitudinal and lateral aerodynamic coefficients using a missile code (Missile DATCOM) developed by McDonnell Douglas Missile Systems Company for the Flight Dynamics Laboratory (FDL), Wright-Patterson Air Force Base (WFAFB), Ohio [Ref. 2]. These aerodynamic coefficients are then used in longitudinal and lateral equations of motion to predict the free-stream trajectory of the store. A brief explanation of the derivation of these equations of motion is provided to the reader. An accurate representation of the aerodynamic characteristics is essential for the full prediction of the

shape's trajectory. Missile DATCOM is based on the body buildup method and includes a number of prediction methods for each component of the configuration. Other codes, such as MISL3, are also available, each with its own relative strengths.

Section IV describes a computer prediction method developed by Nielson Engineering and Research, Inc., (NEAR), also under contract to the United States Air Force. This code provides a six degree-of-freedom (6DOF) simulation which takes into account the aircraft flowfield using vortex-lattice and panel methods. The NEAR simulation provides a high fidelity representation for the subsonic case, but also requires the most effort and computer capability. An attempt has been made to minimize the complexity of the input to the program. Once a good data base has been developed the NEAR code should prove easy to use. It has been used extensively throughout the defense industry, and has undergone many modifications to incorporate improvements and options.

Section V compares the trajectory results of the linearized aerodynamic simulation method and the NEAR code.

A modification to the linear coefficients used in the linear aerodynamic simulation is also discussed.

II. EJECTION FORCES AND MOMENTS

Although quite uncomplicated in nature, calculating the ejection forces and moments provides the user with a feel for the magnitude of the initial movement of the store. This procedure should be done prior to using any other method as a preliminary step in order to prepare for the simulation.

A. EJECTOR CHARACTERISTICS

The non-aerodynamic forces involved in the ejection of a store depend upon the ejector cartridge, the ejector rack, the weight of the store, and the rigidity of the wing. Each of these parameters determine the resultant moments and forces provided to the store. The store and the wing (or fuselage) were considered as rigid, thus neglecting any aeroelastic or structural bending effects. None of the methods discussed here address aeroelastic bending due to the added complexity of the problem.

The Douglas production BRU-32/A Bomb Ejector Rack combines two sets of hooks, one set at 14-inch spacing and one set at 30-inch spacing, with an ejection system designed for carriage of stores with suspension lugs per MIL-A-8591. Two electrically initiated CCU-45B cartridges are used for store release and ejection. The self-retracting ejector pistons,

spaced symmetrically 20 inches apart at each end of the rack, have a piston stroke of six inches. These pistons are spring loaded against the store during loading to prevent impact of pistons during firing. The orifice sizes can be varied, by replacement, to provide force and pitch control for store separation. [Ref. 4]

The best source of ejector data is from the Aircraft Ordnance Procedures (AOP) contained in the Aircraft Stores Interface Manual, (Reference 4). This manual contains a complete description of the rack under consideration. Here, the example separation uses two 14-inch spaced hooks and 0.118-Diameter orifices. The force diagram corresponding to this orifice, modeled from the AOP, is shown in Figure 1. Sufficient data points were read from the AOP graph in order curve-fit the points using Computer Associates' CricketGraph software [Ref. 5]. This provided two things; 1.) integration of the polynomial equation gave the total impulse value, and 2.) Nielson software in Section IV uses a fifth-order polynomial for calculations. Note that the AOP shows the total force provided by the ejector, while the NEAR simulation requires a force-per-ejector-foot polynomial. curve, a triangular Given the shape of the force representation of the curve gave a value of 348 lbf-sec versus the integrated value of 344.9 lb,-sec, which corresponds to an error of only 1%. Therefore elementary estimates of the total impulse are practical.

Figure 1 Ejector Force

B. FORCES

1. Theory

Using the conservation of linear momentum theory presented in Appendix B, the pod was modeled as a simple beam. The weight was concentrated at the center of gravity and the resultant ejection forces were placed at the ejector feet locations. The ejection force time histories are treated as an equivalent force impulse which results in a change in linear momentum as shown by the following equation:

$$\int \Sigma F_{*} dt = G_{2} - G_{1} = (M*V_{*})_{2} - (M*V_{*})_{1}$$

The integral for representing the linear impulse is based upon the fifth-order polynomial force time history shown here.

$$y=280.2-608022.8x+180688545.8x^2-10638451765.5x^3+$$

$$234526098234.3x^4-1783873760363.4x^5$$

2. Example

For our example, the BRU-32A bomb rack used two CCU-45B cartridge-activated devices (CADS). The peak force was 14,500 lb_f and the pulse duration was 50 msec. The total linear impulse calculated was 345 lb_f-sec. Using a weight of 371 pounds for the pod, the end-of-stroke velocity was 29.9 feet per sec (fps). This value was used in Section III as the initial velocity for the trajectory simulation.

The graphs contained in the AOP shows end-of-stroke velocity for a 371 lb store to be approximately 24.5 fps. This graph is derived from empirical data and should provide the most accurate representation of the actual release velocity. The values of 24.5 and 29.9 fps are compared with the end-of-stroke store velocity of 30.9 fps predicted from the NEAR code in Section IV.

C. MOMENTS

1. Theory

The pod was modeled as a simple beam. The inertial characteristics of the store are listed in Appendix A. The two ejector feet provide the beam with a moment. The equations used are elementary, and with certain assumptions the angular velocity can be calculated. The equations are based on conservation of angular momentum. The equations and assumptions are presented in Appendix B for completeness. The resulting equation is shown here.

$$\int \Sigma M_v dt = I_{vv} \star \dot{\omega}_v$$

2. Example

The center of gravity was offset aft of the center of the ejector feet by 4.05 inches. The impulse thus provided the pod with 1.12 radians per second (rps) or 64.1 deg/sec initial angular velocity. The question now is, are these reasonable values? At the end of 0.429 seconds, the shape will be one body-length below the aircraft. At the same time,

the shape will have rotated 27.5 degrees nosedown. Therefore, without considering the aerodynamics of the vehicle, the pod seems to have cleared the wing. A good rule of thumb is 2-3 body lengths clearance, although exceptions do occur.

D. PRELIMINARY OBSERVATION

This initial calculation provides an approximate estimate of the forces and moments involved. The values obtained are of sufficient accuracy for calculations such as end-of-stroke loading, etc. Excessively large separation velocities are usually an indication of a miscalculation. Translational velocities should range from 10-30 fps and pitching velocities from 0-6 rps.

III. AERODYNAMIC CALCULATION

A. THEORY

Many physical systems can be modeled by second-order differential equations. The mathematical treatment of fixedwing flight vehicle motions was first developed by G.H. Bryan. He laid the mathematical foundation for airplane dynamic stability analysis, developed the concept of the aerodynamic stability derivative, and recognized that the equations of motion could be separated into a symmetric longitudinal motion and an unsymmetric lateral motion. Experimental studies were initiated by L. Bairstow and B.M. Jones of the National Physical Laboratory in England, and by Jerome Hunsaker of the Massachusetts Institute of Technology to determine estimates of the aerodynamic stability derivatives in Bryan's theory. In addition to determining stability derivatives from windtunnel tests of scale models, Bairstow and Jones nondimensionalized the equations of motion and showed that, with certain assumptions, there were two independent solutions, i.e., one longitudinal and one lateral. These two solutions provide the free-stream trajectories we seek. [Ref. 6:p. 113]

The dynamic stability characteristics of a pod can be represented by six equations of motion, three for the forces

involved X, Y, and Z and three for the moments L, M and N. The force equations relate the forces acting on the body to the corresponding linear accelerations and the moment equations relate the moments to the corresponding angular accelerations. It is usually possible to consider the longitudinal motions completely separately from the lateral-directional motion, by neglecting the various coupling terms.

[Ref. 7:p. 14]

As a caveat to the use of this method, these equations are the linearized version and are only valid up to approximately 10 degrees angle-of-attack. Treatment of the non-linear aerodynamic coefficients, while not extremely difficult, does require knowledge of the behavior of the coefficients. Since the goal of this report is to predict the behavior of new shape configurations, this knowledge is not presumed. Therefore, the results obtained in this fashion are only valid for estimating the motion in the first fractions of a second. These results are compared with those obtained in the more rigorous method of Section IV.

1. Longitudinal Equations

The rigid-body, longitudinal equations of motion can be developed from Newton's second law:

 Σ Pitching moments= $\Sigma M_{cg} = I_{vv} * \ddot{\Theta}$

The assumption that body motion consists of small deviations from its equilibrium flight condition allows us to use

perturbation theory to examine the aerodynamic force derivatives in terms of angle-of-attack (AOA), vertical velocity, pitch angle, and pitch rate, by means of a Taylor series expansion. The X-force, Z-force, and pitching moment equations comprise the longitudinal equations. To separate these equations from the lateral equations, they must not be coupled. This is a reasonable assumption given the nominal geometric shape of missiles or pods [Ref. 6]. The body is constrained to move in a vertical plane and is free to pitch about its center of gravity. For a comprehensive derivation of the equations of motion, see Reference 6. The resulting equations of motion are shown in Appendix C.

2. Lateral Equations

The Y-force, rolling, and yawing moment equations comprise the lateral equations of motion. Once again, these equations are uncoupled from the longitudinal equations by the assumption of small cross-component moments of inertia. That is, I_{xy} , I_{xz} , I_{yz} are small in comparison to the principal axis moments. These equations are also valid assuming only small variations in displacement and velocity. The lateral equations are derived from the following Newton's laws:

 Σ Rolling moments= $I_{xx}*\ddot{\Phi}$

 Σ Yawing moments= $I_{zz}*\ddot{\psi}$

The third equation is derived from the Taylor series expansion of the side force derivative. The lateral motion of the pod

disturbed from its equilibrium state is a complicated combination of rolling, yawing, and sideslipping motions.

Assuming the cross products of inertia are ignored, some of the coupling terms can be simplified.

3. State Variable Representation

The linearized longitudinal and lateral equations developed above are simple, ordinary linear differential equations with constant coefficients. The coefficients in the differential equations are made up of the aerodynamic stability derivatives, mass, and inertia characteristics of the pod. These equations can be written as a set of first-order differential equations in the state-space (state variable) form:

$$\{\dot{x}\} = [A] * \{x\} + [B] * \{\eta\}$$

where $\{x\}$ is the state vector, $\{\eta\}$ is the control vector and the matrices [A] and [B] contain the pod's dimensional stability derivatives. In our case the pod does not have any active control surfaces. For missile launches, however, the control vector and the B-matrix would be used to represent the control surfaces and control input. The simplified statespace representations of the longitudinal and lateral equations of motion are shown in Appendix C. The required

coefficients listed in Appendix C are derived using the procedures in Section III.B.

The state-space representation of the equations of motion can be solved simultaneously using matrix software such as MATLAB* [Ref. 8] or Control-C* [Ref. 9]. Given the conditions of the ejection, namely, initial translational velocities, initial angular velocities, and attitude angles, solutions of the state-space equations can be used to predict the trajectory of the pod. The initial angles and velocities are the initial conditions imposed upon the state-space equations. The Control-C* commands for this procedure are contained in Appendix D.

B. MISDATCOM

MISDATCOM was developed by McDonnell Douglas Astronautics Company, St Louis, Missouri, for the Flight Dynamics Laboratory of the Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB. The program was completed in December 1985. The Missile Datcom was created to provide an aerodynamic design tool which has the predictive accuracy suitable for preliminary design, and the capability for the user to easily substitute methods to fit specific applications. [Ref. 2:p. 1]

1. Theory

There are many different methods to predict the aerodynamic static, dynamic, and control characteristics of

missiles. Component build-up was chosen as the most suitable for this program. Although panel methods are better suited for arbitrary configurations, component build-up was chosen due to the accuracy provided for conventional configurations and for the ability to do parametric studies easier.

Basically, component build-up consists of using various methods to compute the characteristics (skin friction, force and moment coefficients, panel loading, ...) of the individual configuration components. The various methods are chosen for their applicability to the configuration or flight condition. Then the components are combined. Previous methods of combining the components (fins, body, engine inlet) consisted of adding the individual coefficients and then multiplying the sum by some interference factor obtained using slender body theory. The approach taken with MISDATCOM was to use the "equivalent angle of attack method" developed by Nielson Engineering and Research, Inc. (NEAR). This method assumes that the panel loading for a given panel angle-ofattack is unique. With this method the panel angle of attack is computed including the effect of panel roll orientation with respect to the free stream velocity vector, panel proximity to the fuselage or to other panels, and external vortex flow field effects. Then the isolated panel characteristics are interpolated at the panel equivalent angle of attack to yield the panel load when mounted on a body in combination with other surfaces. [Ref. 2]

2. Procedure

The procedure for using MISDATCOM is straightforward. The pod shape is modeled using simple geometric shapes. The previous release of MISDATCOM software could only handle axisymmetric shapes or forms with a vertical plane of symmetry. Unfortunately, the pod under consideration is non-axisymmetric and therefore the results are not entirely valid. The latest version, however, can model some non-axisymmetry through the use of a "protuberance" option. This is the April 1991 release and is now available.

For this investigation, a simulation run was made using both versions and a comparison of the aerodynamic coefficients was made. The pod radius was also varied from the minimum pod to the maximum, and the resulting coefficients The MISDATCOM code coefficients were somewhat insensitive to radius changes of this magnitude, therefore, the minimum-radius, axisymmetric case was retained for comparison with the minimum-radius non-axisymmetric case. Figure 2 shows the pod semi-profile of the MISDATCOM procedure alongside the pod semi-profile of the NEAR simulation. Figure 3 contains a sample input to the program and Figure 4 lists a partial sample output. The actual input and output of the program are contained in Appendix E. These aerodynamic coefficients are next used in the longitudinal and lateral state-space equations of motion to predict the store trajectory.

Figure 2 MISDATCOM Pod Shape

```
THE UDGE GUIDNATED MISSILE DATON A PEU 7709 A
ARRUPTHANIC HOTHOUS FIP DISSILE CONCURRATIONS

CASE INFUTS

FOLLOUING ARE THE CARDS INFUT FOR THIS CASE

CASEID SIMPLY HODY CONTIBURATION FULL LAT
UERTV RAD
DIN IN
NAMP

**ELTCON MAGNI=1., MACH=0.7,
REM-4.13E6,
MALPHA-6., ALPHA-0., 0.8, )...., 0...4., BUTG=-0.5, $
**AREO XCG=55.75, 8

**ARIBOT LNGS==24., DUIGC=-19.5, LCENIP-03.2, DCFNIR-19.5, TAIl=0.,

LAFT=46.6, DAFT=1.0, $

BUILD
PRINT AERO MODY
PRINT GEON BODY
MEXT CASE

A WARNING A THE REFERENCE AREA 15 UNSPECIFIED, DEFAULT VALUE ASSUMED

THE BOUNDARY LATER IS ASSUMED TO BE TURNILLENT OVER ALL CUMPONENTS OF THE CONFIGURATION

THE INPUT UNITS ARE IN INCHES, THE SCALE FACTOR IS 1.0000
```

Figure 3 MISDATCOM Input

4 3 S S S S S S S S S S S S S S S S S S S	MEE. CENTER VERTICAL IM 0.000	MAL CLEB	00000000000000000000000000000000000000			
		R MADIAN)	-1.095E+01 -1.096E+01 -1.094E+01 -1.093E+01 -1.084E+01			
	PEEEEEENE DIESSIUNS LONG. LAT. LONG. IN I	DEKTUATIVES (PER MADIAM) AL CMA CTM CTM CL	-4.566E-01 -4.669E-01 -4.725E-01 -4.998E-01 -5.310E-01			
	REF. KE. AREA LON INAA2 IN 298.648 19.500	100	1.097E+01 1.096E+01 1.095E+01 1.091E+01 1.095E+01			
A PEU 7/89 LL LAI KETERISTICH	ROLL ANGLE DEG 0.00 298	LONGIT	4.526E-01 5.092E-01 5.092E-01 6.306E-01 7.034E-01	D X-C.P.	24.23.23.45.44.44.45.45.45.45.45.45.45.45.45.45.	
LE DATCOM . MISSILE COI URATION EU	SIDECLIP ANGLE DEG	-		כס כר/כם	.100 0.000 .100 0.051 .100 0.139 .101 0.224	
HATED HISSI ETHORS FOR BODY COMEIG FATIC AEROU	E RETHOLUS: MUMBER 1/ET 4.130£+06	LATERAL DIRECTIONAL CLL	0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0	3 13	0.000 0.005 0.005 0.006 0.014 0.023 0.023 0.001	
THE USAF AUTUMNTED MISSILE DATCOM A REV 7/89 AERODYNAMIC METHUMS FOR MISSILE COMFIGURATIOMS SIMPLE BODY COMFIGURATION FULL LAT BODY ALONE STATIC AEROUVMAMIC CHARACTERISTICS	and the second	12	0.000	ALPHA	4 H 11 10 00 00 00 00 00 00 00 00 00 00 00	
H &	PEESSURE TENPERATURESSURE TENPERATURES ENTERNATURE ENT	. ca	001000000000000000000000000000000000000			
	VELOCITY PI/SEC	LONG (TUD)MAL -	000000000000000000000000000000000000000			
	ALTITUBE ET	10A	0.000 0.006 0.008 0.017 0.013			
	NUMBER 0.70	ALPHA	00 4 4 W 4			

Figure 4 MISDATCOM Output

C. AERODYNAMIC CALCULATION

1. Longitudinal

The aerodynamic coefficients derived from the MISDATCOM were entered into the plant matrix [A] of the longitudinal equations of motion. The initial conditions were applied and time history of the pitch angle, pitch angular velocity, and vertical velocity was found. Figures 5-8 show that the pod assumes a large nose-down, highly divergent pitching motion. This is understandable since there are no control surfaces to make the pod stable. Examination of the roots of the plant matrix [A] indicates an unstable flight vehicle. The pitch angle and pitch rate shown are in the store body coordinate frame.

These results are valid only for the range of <u>linear</u> values of the aerodynamic coefficients. This is approximately up to 10-12 degrees angle-of-attack. Therefore, an estimate of the non-linear behavior of the pod after an AOA of 10 degrees is reached is necessary. Due to the large pitch angular velocity, it is obvious that this limit is reached after only 0.2 seconds. Section V discusses the acceptable time range where these results are valid.

To estimate the non-linear behavior, the dominating terms in the [A]-matrix must be determined. This provides an insight into the possible range of values to substitute into the [A]-matrix. A discussion of a possible approach to this

Figure 5 Pitch Angle Response

Figure 6 Pitch Rate Response

Figure 7 Vertical Separation Distance

Vertical Velocity Figure 8

problem is presented in Section V. To completely investigate this area is beyond the scope of the method outlined here. Comparison of the "linear" trajectory obtained here will be made with the trajectory obtained in Section IV, which does take into account the non-linearity of the coefficients.

2. Lateral

Due to the nearly vertical forces and moments provided by the ejection rack during straight and level flight, the free-stream lateral equations of motion will not provide us with any insight into the safe jettison of the shape. However, if the pod were experiencing sideslip, then the sideslip could be entered into the state-space equations as an initial condition. For this pod a sideslip of -0.5 degrees was assumed. The resulting lateral motion is not shown because the main emphasis is on the longitudinal motion. The pod is unstable laterally, also, but the initial movement is small due to the relatively small initial conditions. In addition to the yaw angle and rate, if the ejection rack provided an initial roll rate, such as when the pod is loaded off-center of the bomb rack, then that influence could also be included.

D. PARAMETER VARIATION

The parameter variation due to non-axisymmetry is difficult to handle. Comparison with shapes with known

(experimentally obtained) coefficients might provide some degree of accuracy in predicting more accurate results.

E. PRELIMINARY OBSERVATION

The results of the method in Section II were a vertical velocity of 29.9 feet/sec and an angular velocity of 64.1 deg/sec. The aerodynamic method of Section III begins with a vertical velocity of 29.9 fps, quickly diverging to an extreme value. The pitch rate, q, also diverges quickly. Because the pod is very unstable any linear approximation of its behavior will have strict limits. The coefficients used in this calculation, from the MISDATCOM code, are not valid beyond a fraction of the trajectory. The valid time range of prediction is presented in Section V.

IV. "NEAR" PROGRAM

A. BACKGROUND

A computer prediction method was developed by Nielsen Engineering and Research, Inc., (NEAR) under contract to the United States Air Force. The work was performed during the period 1968 to 1972. The final result is a method for predicting the six degree-of-freedom store separation trajectory at speeds up to the subsonic critical Mach number. After delivery of the program to the Government, many new capabilities were added. The code used for this paper was obtained from the Naval Weapons Center, China Lake, Ca. The program has been widely accepted by industry and government. The code encompasses 9,900 lines of code and thus requires a device with sufficient computer memory for operation. (This also depends upon the program application.)

The aircraft fuselage, separated store body, and adjacent stores are modeled using point sources and sinks. Angle of attack effects are included using a cross-flow model. The aircraft wing and wing pylons are modeled using planar vortex lattice models which include dihedral, camber, and twist of the aircraft wing. Thickness strips are used to model the thickness of the aircraft wing and pylons. [Ref. 10:p. 807]

The capability exists to install multiple sets of wings, fins, or canards, and to use active control surfaces on the store by inputting the control laws into the program. Powered separations may be simulated by inputting the store thrust characteristics.

The NEAR program actually consists of two separate programs: the source program and the trajectory program. Both are described in Section IV.B below.

Alternate separation programs include USTORE and USSAERO codes. USSAERO was developed by F. A. Woodward, of NASA, as a lower-order panel method. USTORE was developed from USSAERO by G. J. van den Broek, of the National Institute for Aeronautics and Systems Technology, Pretoria, South Africa. [Ref. 11:p. 309]

B. THEORY

The three principal tasks in the prediction of a store trajectory are: first, the determination of the nonuniform flow field in the neighborhood of the ejected store; second, the determination of the forces and moments on the store in this flow field; and third, the integration of the equations of motion to determine the store trajectory [Ref. 3].

1. Source Program

The source program is used to represent an axisymmetric body as a distribution of sources along the axis of the body. It provides point source-sink distributions to

represent the fuselage, rack, and store volumes. The program calculates and prints the source strengths and locations. These quantities are then used as input data to the trajectory program.

The source program is used for the generation of an aircraft or pylon model which is then used for the trajectory program. These models are Mach number dependent and thus need to be generated for each test case with different Mach number. For ongoing store separation studies, a good database of aircraft models is required and should be available from appropriate Government facilities. The F/A-18 model was obtained from China Lake along with the program code. This model included pylon stations.

2. Trajectory Program

The trajectory program uses the source-sink distributions from the source program, and additional information to first determine the vorticity distribution which represents the wing-pylon loading including interference of the fuselage, rack, and stores, and then to calculate the store trajectory. See Sections IV.C.3.d.(1) and (2) for descriptions of the vortex lattice method and the panel method.

Once the trajectory program input has been generated for a single flight condition, it is relatively easy for the user to input different stores. The major effort is to obtain

the initial aircraft fuselage, wing, and pylon models for this input.

3. Shape Modeling

a. Aircraft

The aircraft fuselage geometry was modeled by using a Fortran program called NGDELX developed by L. Gleason of the Naval Weapons Center. This program provides the coefficients to the NEAR polynomial representation of equivalent body. The shape is divided into appropriate segments. Radius values for the segment points and maximum radius values are entered. These coefficients are then entered into the source program to generate the source representation of the fuselage. Figure 9 shows the coefficients for the F/A-18 fuselage. Following is the equation used to calculate the coefficients:

$$r_{eq/L} = C_1 + C_7 * (C_2 * (X/L)^2 + C_3 * (X/L) + C_4) + C_5 * (X/L) + C_6 * (X/L)^2$$

b. Pylons

The pylons used are modeled the same as in Section IV.C.1.a above. The geometry is used to obtain the NEAR coefficients.

Polynomial Representation of Equivalent Body

r _{eq}	~	c,	+	c,	 c,	(×)	2	+	c,	×	+	c,	+	c.	(<u>x</u>)	+	C.	×	2
~				- /	- 4	(4)			3	21		- 4		3	(4)			ركا	

×/2	c ₁	C 2	c ₃	c4	C ₅	C 6	c ₇
0.0 to 0.12	35763	-1.0	. 29259	.12790	. 0.0	1040	1.0
0.12 to 0.28	.01978	0.0	0.0	0.0	.06745	0.0	0.0
0.28 to 0.48	.03239	0.0	0.0	0.0	.02318	10.0	0.0
0.48 to 0.542	.88523	-1.0	.82195	.54438	0.0	0.0	-1.0
0.542 to 0.64	99071	-1.0	1.280	.68496	0.0	0.0	1.0
0.64 to 1.10	0.0	01456	.01863	00288	00.0	0.0	1.0

Figure 9 F/A18 NEAR Polynomials

c. Pod or Missile

Again, the procedure in Section IV.C.1.a is used to represent the shape as a set of polynomial coefficients. The NGDELX program is again used to represent the missile shape as an "equivalent body of revolution" (EBR). NGDELX is very easy to use, but, again, only represents axisymmetric shapes.

d. Wing (Lifting Sumfaces)

The aircraft wings, missile fins, or any other lifting surfaces are modeled using a vortex lattice method to

represent the loaded wing. The thickness is also modeled using the lattice method.

- Vortex Lattice Methods. There are several (1) variations of the vortex lattice method that are presently available and have proven to be very practical and versatile theoretical tools for the aerodynamic analysis and design of planar and non-planar configurations. [Ref. 12 p. 27] vortex lattice method represents the wing as a planar surface on which a grid of horseshoe vortices is superimposed. velocities induced by each horseshoe vortex at a specified control point are calculated using the law of Biot-Savart. A summation is performed for all control points on the wing to produce a set of linear algebraic equations for the horseshoe vortex strengths that satisfy the boundary condition of no flow through the wing. The vortex strengths are related to the circulation and the pressure differential between the upper and lower wing surfaces. The pressure differentials are integrated to yield the total forces and moments. [Ref. 13 For a rigorous introduction to the vortex lattice method, see Reference 13.
- (2) Panel Methods. The configuration is modeled by a large number of elementary quadrilateral panels lying either on the actual aircraft surface, or on some mean surface, or on a combination thereof. To each elementary panel, there is attached one or more types of singularity

distributions, such as sources, vortices, and doublets. These singularities are determined by specifying some functional variation across the panel (e.g., constant, linear, quadratic, etc.), whose actual value is set by corresponding strength parameters. These strength parameters are determined by solving the appropriate boundary condition equations. Once the singularity strengths have been determined, the velocity field and the pressure field can be computed. [Ref. 13:p. 258-259]

C. PROCEDURE

1. Source Program

a. Input

The program input consists of the polynomial representation of the equivalent body of revolution (EBR) values obtained in Section IV.B.3.a. The surface of the EBR is approximated by these polynomials, which represent the EBR x,r distribution. The source program is then run with a user-specified finite distribution. The surface obtained from this source distribution can then be compared with the polynomial surface. Additional runs may be required to closely match the surfaces. The aircraft fuselage, pylon(s), and the adjacent store EBR values are input along with two variables, NRAT and PERCR. NRAT is the number of segments which the body will be divided for the specification of the source distribution.

PERCR is the source spacing for each NRAT segment and is input as a fraction of the local body radius of the segment.

Adjacent stores are included in the aircraft source input. In this way it becomes part of the aircraft configuration. The separated store is not input to the source program since the trajectory program calls the source program during its execution to model the store. this is due to the fact the store changes position during the program run and the sources/sinks will change values. Figure 10 lists a sample format for the source program input.

Figure 10 Source Program Input

b. Output

The source program output is used as input to the trajectory program. However, it is not directly read into the trajectory input and must be entered via keyboard. The form of the output is shown as a partial output in Figure 11. Source locations and strengths are listed.

```
F-10 AIRCRAFT
X/L OF END POINT OF EACH SECTION OF BODY
 SECTION
               0.12000 0.20000 0.48000 0.84200 0.44000 1.00000
 X/11
COEFFICIENTS OF POLYHOMIAL DESCRIBING EACH SECTION
   SECTION
              Cl
                             C 2
                                          C$
                                                      C4
                                                                  CS
                                                                                C 6
                                                                                            C7
             -0.85768 -1.00000 0.29259 0.12790 0.00000 0.00000 1.00000
              0.01978 0.00000 0.00000 0.06745 0.00000 0.00000
0.03239 0.00000 0.00000 0.00000 0.02318 0.00000 0.00000
              0.08528 -1.00000 0.02195 0.54430 0.00000 0.00000 -1.00000
             -0.99071 -1.00000 1.29000 0.48494 0.00000 0.00000 1.00000
0.00000 -0.01454 0.01843 -0.00288 0.00000 0.00000 1.00000
FIRST SOURCE AT X/L. 0.00100
LAST SOURCE AT M/L = 1.10000
FROM 8.00100 TO 0.10044 BOURCE SPACING 15 0.40000 TIMES LOCAL RADIUS
PROM 8.10044 TO 8.18525 SOURCE SPACING 18 0.50000 TIMES LOCAL RADIUS
FROM 8.15525 TO 0.28311 SOURCE SPACING 13 1.00000 TIMES LOCAL RADIUS
FROM 0.28311 TO 0.37443 SOURCE SPACING 15 1.20000 TIMES LOCAL RADIUS
PROM 0.37443 TO 0.97717 BOURCE SPACING IS 0.80000 TIMES LOCAL RADIUS FROM 0.97717 TO 1.00000 GOURCE SPACING IS 0.80000 TIMES LOCAL RADIUS
FOR THIS CASE THERE ARE 74 SOURCES
SOURCE LOCATIONS AND BODY RADIUS AND SURFACE SLOPE AT THESE LOCATIONS
               0.00100 0.00110 0.00138 0.00162 0.00190 0.00224
           0.00041 0.00040 0.00054 0.00044 0.00077 0.00091
0.40501 0.40524 0.40457 0.40379 0.40207 0.40100
  R/L
                                                                                           0.00104
  DR/DX
                                                                                           0.40054

        0.00308
        0.00361
        0.00424
        0.00497
        0.00583
        0.00402
        0.00799

        0.00125
        0.00144
        0.00171
        0.00199
        0.00233
        0.00272
        0.00317

  X/L
  R/L
  DR/DX
              0.39906 0.39734 0.39533 0.39290 0.39024 0.30705 0.30334
              0.00934 0.01092 0.01275 0.01400 0.01733 0.02017
              0.00376 0.00496 0.00496 0.00573 0.00661 0.00760 0.00871 0.37904 0.37406 0.36803 0.36167 0.35405 0.34534 0.3550
  R/L
  DR / DX
  X/L
              0.02716 0.03142 0.03625 0.04172 0.04707 0.05474 0.06235
              0.00994 0.01129 0.01277 0.01435 0.01402 0.01776 0.32418 0.31139 0.29709 0.20112 0.26341 0.24390
  R/L
                                                                                          0.01984
   DR/DX
                                                                                          0.22257

        0.07072
        0.07980
        0.08971
        0.10025
        0.11139
        0.12493
        0.14512

        0.02130
        0.02301
        0.02460
        0.02601
        0.02719
        0.02834
        0.02943

        0.19944
        0.17457
        0.14005
        0.12009
        0.09069
        0.06745
        0.06745

  X/L
   DR/DX
               0.15993 0.10176 0.20464 0.22068 0.25377 0.20012 0.80700
               8.03057 8.03204 8.03338 0.03320 0.03690 0.03888
8.06748 8.06745 8.06745 0.06745 8.02318
  R/L
                                                                                           0.03953
  DR/DX
                                                                                          0.02310
   X/L
               0.34176 0.37430 0.39979 0.42559 0.44771 0.47214
               R/L
                                                                                           8.04505
   DR/DX
                                                                                           0.10227
   X/L
               0.52244 0.55011 0.57941 0.61032 0.44179 0.47349
                                                                                          0.70511
               0.04000 0.05163 0.05376 0.05500 0.05549 0.05534 0.05493
   R/L
   DR/DX
               0.13330 0.00624 0.05702 0.02030 -0.00053 -0.00007 -0.01732
               0.73649 0.76749 0.79794 0.02771 0.03665 0.00660 0.91144
```

Figure 11 Source Program Output

2. Trajectory Program

The trajectory program uses the output of the source program, and the input of the wing configuration and pylons, along with store information to calculate the trajectory of the separated store. It is not the intent of this report to fully explain the aircraft modeling details of the program. The assumption is made that the appropriate aircraft model is available for the correct flight condition and configuration. The applicable store inputs to the program are discussed and the resulting trajectory examined. Nielson contains a thorough description of the theory and input of the aircraft model in Reference 3.

a. Input

The example input to the trajectory program was 1064 lines in size. The store data entry begins at approximately 980 lines, depending upon aircraft input. The store input will vary according to the physical configuration of the store. For the example separation, Input Items 35-43 and 48-51 were used to input store physical data. The ejector information was input in Items 44A-47. This is where the fifth-order polynomial representation of the ejector force was used. Data concerning initial and final times, and integration step sizes were entered in Input Item 72. The correct input form of the above data is contained in the NEAR code users manual [Ref. 14] and is not presented here.

b. Output

The output of the trajectory program is dependent upon the input conditions, i.e., the number of stores, number of store segments, and number of integration steps, etc. The example case output is 4,524 lines. The first 1,840 lines of output are aircraft-specific output, such as the source and vorticity information.

The last 2,650 lines of code contain the trajectory data. The ejector force data is repeated as is the store shape data, reference dimensions and inertial characteristics.

Proceeding the ejector data, a data block is presented for each time integration step. This data block contains the parameters which describe the store displacement, velocity, and acceleration during the separation. A partial sample output of this section of the output file is included in Figure 12. Plotting routines can be developed to facilitate data analysis of the simulation but have not been developed for this study. The following are short descriptions of some of these parameters. A comparison with the results of the method of Section III follows in Section IV.D.

The force and moment coefficients are listed by their individual contributions. The effects of buoyancy, slender body theory, crossflow, and empennage are totaled to give an effective C_N , C_Y , C_{lm} , and C_{ln} .

```
BOOD EJECTOR DATA
                                   PECEL
                                                      9180KF183
      EFFOOT HEFOLY(1)
                           -1.0778
                                           0.00
                                                        999.0000
             TPENDEE: II
                            178110(1.2)
                                         10011011.51
                                                         1771/011.43
                                                                       10011-11
                                        ......
                                                         ........
                                                                        .........
**** TIME 10 THE INDEPENDENT EJECTOR VARIABLE *****
      EFOOT MEPOLYSTS
                            MECTI
                                        11/21AE111
                                                         STROKETED
                            0.1750
                                           ....
                                                        117.0000
             11.1300991
                                          18.1304991
                                                       TPENDIT-41
                                                                       15511011.51
                           0.00006.60
                                         0.00000.00
                                                        .......
                                                                       .........
**** TIME 18 THE INDEPENDENT EJECTOR VARIABLE *****
    COEFFICIENTS OF STH DEGREE POLYHOHINAL
                                        CO
                                                       C 0
                                                                     C#
                                                                                     C 0
                                                                                                     C
                        0.2003E-03 -0.6000E-06 0.1067E-07 -0.1064E-11
                                                                                 0.23452-12
                                                                                               -0.1704E-11
                2 0.2002E.05 -0.6000E.06
                                                    0.1007E+01 -0.1064E+81
                                                                                  0.31456-12
                                                                                               -0.17042:13
     STORE HUMBER 1 15 THE STORE EJECTES
         ADDITIONAL SHOUT FOR THIS STORE
              STORE HASE . $8.500 SLUGS
               HOHENTS AND PRODUCTS OF EMERIEA, SLUG - SQ PT
                 1xx ·
                             9.00
                 BYY .
                              52.00
                 117 .
                              92.00
                 IVZ .
                               0.00
                 IXZ .
                               0.00
                 DXY .
                               0.00
              STORE MOMENT CENTER 19 -8.400 FEET BEHIND MOSE
BIORE REFERENCE AREA 19 2.699 94.FT.
BIORE REFERENCE LEMOTH 19 1.439 ET.
               STORE CENTER OF DRAVETY OFFSET ERON MOMENT CENTER. FEET
                 X8AR . 8.00000
                  YEAR . 8.00000
                 28AR - 0.00000
               POLYHONIALS SPECIFYENG COMPRESSIBLE STORE SHAPE
                  RAL OF END OF EACH SECTION
                    BECTION H/L
                                            TYPE PIT 18 . HO. I . POLYI
                               0.01950
                              0.04500
                              0.09750
                              0.13400
                               0.79470
                               1.00000
                  COEFFECIENTS OF POLYHONIALS DESCRIPTING EACH SECTION
                               C1 C2 C8 C9 C5 C4 C7
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
                     SECTION CI
                        1
                              | 0.01219 | -1.00000 | 0.17006 | -0.00113 | 0.00000 | 0.00000 | 1.00000 | -0.00179 | -1.00000 | 0.19506 | -0.0002 | 0.00000 | 0.00000 | 1.00000 |
                        2
                            0.01441 -1.00000 0.27010 -0.01340 0.00000 0.00000 1.00000
```

Figure 12 Trajectory Program Fartial Output

```
PILE: 18×12 TR
         TIME . 0.1150 TIMEF . 1.0000 ETIME . 0.0500
1 TIME - 9.11500 SECONDS
         PORCE AND HOMENI COEFFICIENTS TREF. AREA . 2.010 FT.-2 -- REF. LEIGIN . 1.653 F1.9
                           CH CY CLM CLM
-0.50107 0.01059 0.09415 -0.05126
                                                                         CLL
            SLEHDER GODY 1.74710 -0.02479 0.94147 -0.10729
           CROSSFLOM 8.18901 -0.00241 -0.4902 0.00897
EMPERIOLAGE 3 8.00000 8.00000 0.00000 0.00000
                            1.87904 -0.01041 0.85900 -0.22945 0.00000
         LOCATION OF STORE IN PUSELAGE COORDINATE SYSTEM, DIMENSIONS OF PEET
               RELATIVE TO PUSELAGE MOSE RELATIVE TO INITIAL POSITION

XP YP ZP DEL XP DEL YP DEL 2P

MOSO ~27,94376 ~11,19107 6.11512 ~0.00225 ~0.00107 4.11535

        NF
        YF
        2F
        DEL NF
        DEL YF
        DEL YF

        HOS0
        -27.94376
        -11.19107
        6.11513
        -0.00223
        -0.00107
        4.11513

        NHOH
        -33.34522
        -11.19010
        0.19044
        -0.01125
        -0.0010
        3.52504

        0ASE
        -40.60001
        -11.10601
        3.99237
        0.00309
        0.00119
        3.67171

          TRANSLATIONAL VELOCITIES AND ACCELERATIONS OF STORE IN FUSELAGE COORDINATE SYSTEM
              RELATIVE TO FUSELAGE HOTTON
                                                 DZXF
                   PXF DYF DZF
                                                                       DIZE
                                                            DZYF
                 -0.16584 -0.80110 88.17662 -1.20077 -0.00393 21.05528
          RDIATIONAL VELOCITIES AND ACCELERATIONS OF STORE IN STORE COORDINATE SYSTEM :
                  P 9 R PDD1 DDD1 RDD1
0.00028 -3.01056 -0.00260 0.00000 0.64850 -0.01762
          STORE ANGULAR ORIGINATION IN PUSELAGE COORDINATS SYSTEM AND RATES OF CHARGE OF THESE ARREST
               ANOLES IN DEGREES. RATES DF CHANGE IN RADIANS FER SECOND
FOR THETA PHE DPSE DIRETA DPHE
                 -0.01028 -0.71236 0.00266 -0.00278 -3.01036 0.00069
          TIME . 0.8350 TIMEP . 1.0000 ETIME . 0.0500
          TIME . 0.19888 SECONDS
          FORCE AND MOMENT COEFFICIENTS IREP, AREA + 0.893 PT==5 -- REP, LENGTH + 3.633 P7.3

CN CV CLN CLN CLL

8UDYANCY -0.86878 0.88988 0.18578 -0.84788
            SLEHDER BDDY 8.74658 -0.02450 0.05120 -0.27050
                             0.10319 -0.00220 -0.40300 0.00010
            CRDSSFLOW
            EMPENHADE 1 0.00000 0.00000 0.00000 0.00000
                             1.34305 -0.01743 0.27310 -0.21034 0.00000
            TOTAL
          LOCATION OF STORE IN PUSELADE COORDINATE SYSTEM, DIMENSIONS OF FEET
               TRANSLATIONAL VELOCITIES AND ACCELERATIONS OF STORE IN PUBLICE COORDINATE SYSTEM
                RELATIVE TO PUSELADE HOTION
                    DXF DYF D2F
                                                    DZXF
                                                               DZYF
                  -0.10111 -0.00111 11.01361 -1.20260 -0.00301 31.05107
          ROTATIONAL VELOCITIES AND ACCELERATIONS OF STORE IN STORE COORDINATE SYSTEM
                   STORE ANDULAR ORIENTATION IN PUSCLAGE COORDINATS SYSTEM AND RATES OF CHANGE OF TIRESE ANGLES
                ANDLES IN DEDREES. RATES OF CHANGE IN RADIANS FER SECOND
                    POS TIETA PHS DPOS DINETA DPHS
                  -0.01340 -10.03231 0.00302 -0.00311 -0.13701 0.00003
           TIME . 0.1950 71HEF .
                                          1.0000 E71HE .
                                                                0.0500
            TIME . 0.17500 SECONDS
           FORCE AND MOMENT COEFFICIENTS IREF. AREA . 0.890 FT.. 8 -- REF. LEMOIN . 8.888 FT.1
                             CH CY CLN CLM CLL
-0.00060 0.00781 0.10088 -0.04460
```

Figure 13 Trajectory Output (Cont)

The ejector force and moment components are listed. The vertical force history matches the force profile from Section II very closely. The store's nose, inertial reference center, and the base position in the fuselage coordinate system is listed. The separation distance from the initial position is also listed as output. Plots of these parameters will indicate the miss distance of the shape from the wing. The store translational and rotational velocities are output in both the store's reference frame and the fuselage reference frame.

V. RESULTS AND COMPARISONS

A. EJECTOR FORCES AND MOMENTS

1. Vertical Velocity

The predicted end-of-stroke vertical velocity from the hand-calculation was 29.9 fps, comparing with the NEAR code results of 30.84. This is a 3% difference. The predicted value from the ejector graph of Reference 4 yields 24.5 fps. The ejector graph is representative of the average store used in the Naval inventory, which more than likely would have control surfaces for stability reasons. These surfaces would also provide aerodynamic damping which could be the source of the discrepancy.

2. Pitch Rate Q

The predicted pitch rate, q, of 1.12 radians/second matches well with the NEAR end-of-stroke q of 1.08 radians/second. For most applications, this correlation of 4% should have sufficient accuracy.

B. TRAJECTORY COMPARISON

The main consideration in determining the accuracy of these trajectory methods is the safe separation (or jettison) of the pod. Vertical distance and pitch attitude are indications of the pod separation while velocity and angular velocity are indications of the store loads. Therefore,

criteria for judging the correlation between the linear method and the NEAR code must be based on the practical standpoint of a reasonable assumption of safe separation. The individual parameters are addressed below. For determining the valid time range of the aerodynamic prediction method, the NEAR code was used as reference.

1. Vertical Separation Z

Vertical distance z in the linear method is derived from the vertical velocity term. Therefore the error (deviation from NEAR results) will be slightly less due to the integration effects. However, given the initial vertical velocity, the NEAR code predicts a five foot separation. The error limit must be set as an acceptable variation of this distance. Based upon practical knowledge of store separation, a 20% error limit was set. Figure 14 compares the linear aerodynamic method results comparison with the NEAR results in the amplified time region of the first 0.2 seconds.

2. Pitch Angle

Since the pitch angle is used solely for determining the safe separation and is not used for more accurate applications, like rocket engine ignition, the effect of an error in pitch will vary as the sine of the angle deviation. This could result in an error, due to rotation about the center of gravity, of an order of 7.2 feet times the sine of the error angle. The pitch angle error must be fairly small

initially, but can grow as time increases due to increased separation distance and its decreasing effect. Therefore, a conservative error limit is set for 0.1 sec. At 0.1 seconds, the NEAR pod has rotated 4.5 degrees. A 30% error would give a vertical error of 0.2 feet, which is approximately 10% of the actual separation. Figure 15 shows a comparison of the linear method with the NEAR results. Figure 16 provides the error between the methods as a function of time.

Figure 14 Vertical Separation Distance

Figure 15 Pitch Angle

Figure 16 Parameter Error

3. Pitch Rate

The required accuracy for pitch rate will be determined by its application. For instance, navigational considerations will require quite accurate predictions of the angular loading of its components. However, for this case, there is not a requirement of this kind. The divergent nature of the pitch rate from the linear aerodynamic model does not present a problem for this case, beyond the fact that the pitch angle follows this trend. Therefore, an error limit is not placed upon the pitch rate.

4. Vertical Velocity

Vertical velocity is divergent and represents the lack of aerodynamic damping in the linear model. Therefore, it does not provide meaningful information beyond the phase relationship with the vertical separation distance. For this reason, an error limit is not placed upon the velocity.

C. AUGMENTED AEROPREDICTION

Due to the limited valid time limits on the aerodynamic method, an alternative approach was investigated. Obviously, the non-linear operating region is reached very quickly. The two dominant terms of the A-matrix are the damping terms, C_{Mq} and $C_{M\dot{\alpha}}$. The unstable pod is shown from the NEAR code to quickly reach a somewhat steady-state value of pitch rate as it tumbles. An effort was made to calculate a new (and valid) value of C_{Mg} . This approach modeled the tumbling store as a

cylinder of constant radius. Using a value of $C_d=1.0$, and the end-of-stroke pitch rate of 1.12 radians/second, new values of damping coefficients were calculated.

1. C_{Ma}- Coefficient

The new pitch damping coefficient of -.1054 was used versus the MISDATCOM value of -.04. This is an obvious improvement and also realistic since the pod will definitely experience aerodynamic damping, due to pitch rate, that would not have been predicted by MISDATCOM.

2. Cwa- Coefficient

The value of the aerodynamic damping effects of change in angle of attack, $C_{M\dot{\alpha}}$, was combined with C_{Mq} in the MISDATCOM output. Therefore, the valid value of $C_{M\dot{\alpha}}$ is unclear. For this model of a rotating pod, it was assumed that $C_{M\dot{\alpha}}$ would have minimal effect on the damping and a value of 0.0 was assigned.

3. Trajectory Prediction

The predicted parameters using the above coefficients are contained in Figures 17, 18 and 19. As shown in the figures, there is considerable improvement in the correlation with the NEAR trajectories for pitch angle and pitch rate. The more realistic value for C_{Mq} obviously improves the results. The time range of validity for these two parameters is now estimated to be 1.0 seconds. However, the most important parameter, vertical separation distance, is still

outside of reasonable accuracy limits. Therefore, the augmented plant matrix method is still unusable for complete trajectory prediction. Figure 20 shows the parameter error for the augmented system.

Although there is substantial correspondence in the partial comparison between the NEAR results and these results, there are not enough data points to substantiate this method. Further work using different shapes need to be done.

Figure 17 Vertical Separation Distance (Augmented)

Figure 18 Pitch Angle (Augmented)
48

Figure 19 Pitch Rate (Augmented)

Figure 20 Parameter Error (Augmented)

VI. CONCLUSIONS

In the preliminary design application, MISDATCOM provides an easy-to-use method to predict moderately accurate store aerodynamic characteristics. These aerodynamic coefficients can be used to model the store dynamics for design work. However, their use in the linearized equations of motion for an externally ejected store trajectory prediction is highly limited.

Comparisons with the Nielson Engineering and Research (NEAR) code show that trajectory values are outside of reasonable accuracy limits for use in store separations. The store separation vertical distance and pitch angle values diverged within 0.1 seconds. Therefore, the use of the linearized equations of motion cannot provide useful trajectory information.

However, a modification to these coefficients to more accurately reflect the existing aerodynamic damping does provide correlations with the NEAR code of within 30% for pitch angle and 10% for pitch rate. Use of these "augmented" linear equations of motion for attitude prediction shows sufficient accuracy for many applications.

The NEAR code is widely used for ejected store trajectory prediction in the aviation field. Its use for safe separation

investigation should be considered as standard for obtaining accurate results. The cost of the Nielson code in both engineering time and computational time increases with the level of information produced, but the need for safe separation accuracy, aerodynamic load distributions, and vortex-induced effects make the extra effort justified.

For limited applications requiring less accuracy, the augmented linear equations of motion can provide some information for the initial trajectory movement. A potential application would be the investigation of the effects of small weight or inertial modifications to existing stores.

APPENDIX A

A. POD CHARACTERISTICS

The pod in question was an ALE-29B pod modified to accommodate the SUU-53 chaff dispenser and associated equipment. The ALE-29 pod was flight approved by the Aircraft Configuration Control Board (ACCB) document #75-004. It was originally an ALE-2 pod. No significant aerodynamic changes have been made to the pod.

The pod physical characteristics are listed in Table 1.

TABLE 1 POD CHARACTERISTICS

Length	153.8 inches
Radius -minimum	9.75 inches
-maximum	11.20 inches
CG location -empty	62.4 inches from nose
-full	65.4 inches
Weight -empty	326 lbs
-full	371 lbs
Moment of Inertias	
-Ixx	300 lb-ft ²
-1уу	1675 lb-ft ²
-Izz	1675 lb-ft ²

APPENDIX B

A. FORCE EQUATIONS

$$\Sigma F = M \star \dot{V} = d/dt (M \star V) = \dot{G}$$

Separating variables:

$$\Sigma F_x = \dot{G}_x$$
 $\Sigma F_y = \dot{G}_y$ $\Sigma F_z = \dot{G}_z$

Assuming $\Sigma F_{x,y} = 0$,

Integrating the remaining equation,

$$\int \Sigma F_z dt = G_2 - G_1 = (M*V_z)_2 - (M*V_z)_1$$

Assuming straight and level flight, $V_{z1} = 0$ yields:

$$\int \Sigma F$$
, dt = M* ΔV , = M* V ,

Integrating the ejector force polynomial yields a total impulse of 345 lb_f -secs. Substituting (wt=371 lb),

345
$$lb_{f-secs} = 371 lb_{m} * V_{z}$$

$$V_{z} = 1.1773 (lb_{f}-sec/lb_{m}) * 32.174 (lb_{m}-ft/lb_{f}-sec^{2})$$

$$V_{z} = 29.9 fps$$

B. MOMENT EQUATIONS

$$\Sigma M_o = r \times \Sigma F = r \times M^*V = d/dt(r \times M^*V) = H_o$$

where H_o is the angular momentum about pt O. Integrating the moments,

$$\int \Sigma M_o dt = H + r \times H$$

Separating the component equations yields,

$$\Sigma M_{x} = I_{xx} * \dot{\omega}_{x} - (I_{yy} - I_{zz}) * \omega_{y} * \omega_{z}$$

$$\Sigma M_{y} = I_{yy} * \dot{\omega}_{y} - (I_{zz} - I_{xx}) * \omega_{z} * \omega_{x}$$

$$\Sigma M_{z} = I_{zz} * \dot{\omega}_{z} - (I_{xx} - I_{yy}) * \omega_{x} * \omega_{y}$$

Assuming the reference frame coincides with the principal axes, $I_{xy,xz,yz}$ = 0, and assuming $\omega_{x,z}$ = 0, yields the following:

$$\int \Sigma M_y dt = I_{yy} * \dot{\omega}_y$$
$$\omega_y = 1.12 \text{ rad/sec}$$

APPENDIX C

A. LONGITUDINAL EQUATIONS OF MOTION

The equations of motion for the pod can be derived from Newton's Second Law of motion, which states that the summation of all external forces acting on a body must be equal to the time rate of change of the momentum of the body, and the summation of the external moments acting on a body must be equal to the time rate of change of the moment of momentum (angular momentum). The time rates of change are all taken with respect to body coordinates space. [Ref.8]

Figure 21 Store Reference Frame

$$\sum_{\sum \Delta F_x = m*} (\dot{U} + W*Q - V*R)$$

$$\sum_{\sum \Delta F_z = m*} (\dot{W} + V*P - U*Q)$$

$$\sum_{\sum \Delta M = \dot{Q}*} I_y + P*R* (I_x - I_z) + (P^2 - R^2) *J_{xz}$$

$$\sum_{X} \Delta F_{x} = m* (\dot{U} + W*Q - V*R)$$

$$\sum_{X} \Delta F_{z} = m* (\dot{W} + V*P - U*Q)$$

$$\sum_{X} \Delta M = \dot{Q}*I_{y}$$

By restricting the disturbances to small perturbations about the equilibrium condition, the product of the variations will be small in comparison with the variations and can be neglected, and the small angle assumptions can be made relative to the angles between the equilibrium and disturbed axes.

$$\sum_{\sum \Delta F_{x}=m*\dot{u}} \Delta F_{x}=m*\dot{u}$$

$$\sum_{\sum \Delta M=I_{y}*\dot{q}=I_{y}*\dot{\Theta}} \Delta M=I_{y}*\dot{q}=I_{y}*\dot{\Theta}$$

Expanding the applied forces and moments in terms of the changes in the aerodynamic and gravitation forces and moments using the total differential form yields:

$$\sum dF_x = (\partial F_x/\partial U) * dU + (\partial F_x/\partial W) * dW + (\partial F_x/\partial \dot{W}) * d\dot{W} + (\partial F_x/\partial \Theta) * d\Theta + (\partial F_x/\partial \Theta)$$

$$\sum_{z} dF_{z} = (\partial F_{z}/\partial U) * dU + (\partial F_{z}/\partial W) * dW + (\partial F_{z}/\partial W) * dW + (\partial F_{z}/\partial \Theta) * d\Theta + (\partial F_{z}/\partial \Theta)$$

$$\sum \Delta M = (\partial M/\partial U) * dU + (\partial M/\partial W) * dW + (\partial M/\partial \dot{W}) * d\dot{W} + (\partial M/\partial \dot{\Theta}) * d\dot{\Theta}$$

Non-dimensionalizing the terms in the above equations yield the aerodynamic coefficients. Following are the definitions of the longitudinal stability coefficients and derivatives:

C_{xu} Variation of drag and thrust with u.

 $C_{x\alpha}$ Lift and drag variations along the x-axis.

C_w Gravity

 $C_{x\dot{\alpha}}$ Downwash lag on drag.

 C_{xq} Effect of pitch rate on drag.

C_{zu} Variation of normal force with u.

 $C_{z\alpha}$ Slope of the normal force curve.

 $C_{z\dot{\alpha}}$ Downwash lag on lift of tail.

C_{zq} Effect of pitch rate on lift.

C_{mu} Effects of thrust, slipstream, and flexibility.

C_{mq} Static longitudinal stability.

 $C_{m\dot{\alpha}}$ Downwash lag on moment.

C_{mq} Damping in pitch.

Arranging the linearized longitudinal equations into matrix form yields the following matrix equation. The control

matrix B is not shown here but is included in the Control-C program. Since there are no active control surfaces, the B-matrix is a zero matrix.

$$\begin{bmatrix} \Delta \mathbf{u} \\ \Delta \mathbf{w} \\ \Delta \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{\mathbf{u}} & \mathbf{X}_{\mathbf{w}} & \mathbf{0} & -\mathbf{g} \\ \mathbf{Z}_{\mathbf{u}} & \mathbf{Z}_{\mathbf{w}} & \mathbf{u} & \mathbf{0} \\ \mathbf{M}_{\mathbf{u}} + \mathbf{M}_{\mathbf{w}} * \mathbf{Z}_{\mathbf{u}} & \mathbf{M}_{\mathbf{w}} + \mathbf{M}_{\mathbf{w}} * \mathbf{Z}_{\mathbf{w}} & \mathbf{M}_{\mathbf{q}} + \mathbf{M}_{\mathbf{w}} * \mathbf{U} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u} \\ \Delta \mathbf{w} \\ \Delta \mathbf{q} \\ \Delta \mathbf{q} \end{bmatrix}$$

B. LATERAL EQUATIONS OF MOTION

In the same manner used to obtain the longitudinal equations, the lateral equations are derived. The same assumptions using perturbation theory apply. Following are the equations in their developing order.

$$\sum_{\Delta} \Delta F_y = m* \left(\stackrel{.}{V} + U*R - W*P \right)$$

$$\sum_{\Delta} \Delta L = \stackrel{.}{P} * \stackrel{.}{I}_x - \stackrel{.}{R} * \stackrel{.}{J}_{xz} + Q*R* \left(\stackrel{.}{I}_z - \stackrel{.}{I}_y \right) - P*Q*J_{xz}$$

$$\sum_{\Delta} \Delta N = \stackrel{.}{R} * \stackrel{.}{I}_z + \stackrel{.}{P} * \stackrel{.}{J}_{xz} + P*Q* \left(\stackrel{.}{I}_y - \stackrel{.}{I}_x \right) + Q*R*J_{xz}$$

$$\begin{split} \sum \Delta F_Y = m* \left(\dot{v} + U*r + u*r \right) \\ \sum \Delta L = \dot{p}*I_X - \dot{r}*J_{XZ} \\ \sum \Delta N = \dot{r}*I_Z - \dot{p}*J_{XZ} \end{split}$$

$$\sum_{x} \Delta F_{y} = m * (\dot{v} + U * r)$$

$$\sum_{x} \Delta L = \dot{p} * I_{x} - \dot{r} * J_{xz}$$

$$\sum_{x} \Delta N = \dot{r} * I_{z} - \dot{p} * J_{xz}$$

$$\sum dF_y = (\partial F_y / \partial \mathbf{B}) * d\mathbf{B} + (\partial F_y / \partial \mathbf{\Psi}) * d\mathbf{\Psi} + (\partial F_y / \partial \mathbf{\Phi}) * d\mathbf{\Phi} + (\partial F_y / \partial$$

$$\begin{bmatrix} \Delta \beta \\ \Delta p \\ \Delta p \end{bmatrix} = \begin{bmatrix} Y_{\beta}/u & Y_{p}/u & -(1-Y_{r}/u) & g*\cos\theta/u \\ L_{\beta} & L_{p} & L_{r} & 0 \\ N_{\beta} & N_{p} & N_{r} & 0 \\ \Delta p \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \beta \\ \Delta p \\ \Delta r \\ \Delta \phi \end{bmatrix}$$

APPENDIX D

```
m-input('enter m (1bs):')/32.2;
Uo-input('enter Uo (fps):');
S-input('enter S (in**2):')/144;
b-input('enter b (in):')/12;
Ro-input('enter Ro (slugs/ft**3):');
cref=input('enter c ref(in):')/12;
Ix=input('enter Ixx (ft-1b):')/32.2;
Iy=input('enter IYY (ft-1b):')/32.2;
Iz=input('enter Izz (ft-1b):')/32.2;
q-32.174;
Cn-input('enter Cn (Normal Force coefficient):');
Cm-input('enter Cm (Pitching Moment Coefficient):');
Ca-input('enter Ca (Axial Force Coefficient):');
Cy-input('enter Cy (Side Force Coefficient):');
CLN-input('enter CLN (Yawing Moment Coeff):');
CLL-input('enter CLL (Rolling Moment Coeff):');
CNA-input('enter CNA (Normal Force Deriv wrt AOA):');
CMA-input('enter CMA (Pitching Moment Deriv wrt AOA):');
CYB-input('enter CYB (Side Force Deriv wrt Beta):');
CLNB-input('enter CLNB (yawing Moment deriv wrt Beta);')
CLLB-input ('enter CLLB (Rolling Moment deriv wrt Beta):');
CL-input('enter Cl (lift coeff):');
CD-input('enter Cd (Drag coeff):');
CNQ-input('enter CNQ (Normal Force Deriv wrt Q):');
CMQ-input('enter CMQ (Pitching Moment Deriv wrt Q):');
CNAOADOT=input('enter CN AOAdot (Normal force Deriv wrt AOAdot):');
CMAOADOT=input('enter CM AOAdot (Pitching Hom Deriv wrt AOAdot):');
q=.5*ro*uo*uo;
Xu=-2*Cd*q*s/(m*uo);
Xw=Cl*q*s/(m*uo);
Zu=-2*C1*q*s/(m*uo);
Zw=-Cd*q*s/(m*uo);
Zwd-Cnaoadot*cref*s*q/(2*uo*uo*m);
Mw-Cma*q*s*cref/(Iy*uo);
Mu-0;
Ma-uo*Mw;
Mwd=Cmaoadot*cref*q*s*cref/(2*uo*uo*Iy);
Had-uo *Hwd;
Mq=Cmq*cref*q*s*cref/(2*uo*Iy);
A=(Xu Xw 0 -q;Zu Zw uo 0;(Mu+Mwd*Zu)/(1-Zwd) (Mw+Mwd*Zw)/(1-Zwd)...
(Mq+Mwd*uo)/(1-Zwd) 0;0 0 1 0;;
B = \{0\ 0\ 0\ 0, 0\ 0\ 0\ 0\}', C = \{0\ 1\ 0\ 0\}, D = \{0\ 0\},
IC-[0 0 0 0]',
IC(2)=input('enter initial vertical velocity (fps):');
IC(3)=input('enter initial pitching rate (rad/s):');
ttt-input('enter end time (sec)');
t=0:.001:ttt;
uuu-(ttt/.001)+1;
u=0*ones(2,uuu);
simu('IC', IC);
y-simu(a,b,c,d,u,t);
plot(t,y);
```

Figure 22 Control-C Program For EOM Simulation

APPENDIX E

THE USAR ANTONATED MISSILE DATON A REV 7/69 A AERUDTHAMIC METHODS FOR MISSILE CONFIGURATIONS CASE IMPUIS INE BOUNDARY LAYER IS ASSUMED TO BE TURBULENT OVER ALL COMPONENTS OF THE CONFIGURATION A WARNING A THE REFERENCE LENGIN IS UNSPECIFIED, DEFAULT VALUE ASSUNED A MARNING A THE EEFEKENCE AREA IS UNSPECIFIED, DEFAULT VALUE ASSUNED RREED XCG-65,75.8 saxibod LNGSP-24., UNGSP-19.5, LCENTE-03.2, DCFNTE-19.5, TALT-0., 1.0000 THE INPUT UNITS ARE IN INCHES, THE SCALE FACTOR IS FOLLOWING ARE THE CARDS INPUT FOR THIS CASE CASEID SIMFLE MODY COMFIGURATION FULL LAT DERIV RAD DIM IN SELICON MANCHEL, MACHEG.7. REM-4.13E6. BUILD PRINT AEKO HOUY PRINT GROM BODT HEXT CASE

Figure 23 MISDATCOM INPUT/OUTPUT

3 S A G S A						ě.			a,				
9.6					INAA2	IN FROM NOSE TIP	INAAD	INAAB	IN EKON NOSE IIP		21.6000 98.8800 149.1400	9.6662	
			ž		INI						19.2000 90.5600 144.4600	9.4136 9.7500 2.3500	
	TOTAL		153.8000	7.8872	2422.1091	70.2619	7700.4458	33734.6836	67.5578		16.8000 82.2100 139.8200	8.9884 9.7500 3.2750	
7/C9 A	BODY	CONIC	000	268	503	910	584	903	751		14.4000 73.9200 135.1600	E.3839 9.7500 4.2000	
THE USAF GUTOMATEO MISSILE DATCOM A REV 7/09 A AEROTMAMIC NETHUDS YER MISSILE COMFGHIRATIONS SIMPLE HONY COMPIGURATION FUIL LAT AXISTAMETRIC GODY OVEINITION	AET BODY	00	46.6000	2.3897	477.6503	123.4910	1529.8584	4839.0903	119.4751		12.0000 65.6000 130.5000	7.5900 9.7500 5.1250	
USILE DATC	Y008	DER	000	295	966	000	34:	020	000	NOLD LINE CONTOUR	9.6000 57.2800 125.8400	6.5924 9.7200 6.0500	
CUTOMATEO MISSILE DATCOM A R TO REHUBDE FOR MISSILE CORE PLE HOUY COMPICUMATION AXISYMMETRIC BODY OVETHITION	CENTERBOOT	CYLINDER	83.2000	1.2667	1622.3998	65.6000	3096.9248	21847.5020	65.6000	HOLD L	7.2000	5.3706 9.7500 6.9750	
HE USAF FU SIMPL A A X	1	30100	24.0000	1.2308	0588	14.8018	2693	9860	16.2377		4.8000 10.6400 116.5200	3.8961 9.7500 7.9000	INTS
₩ «	MOSE	9	24.	-	322.0588	14.	1073.6632	3990.0938			2.4000 32.3200 111.8600	2.1270 9.7500 8.8250	INUOUS PO
			*	ESS RATIO	PLANEOKH AKEA	AREA CENTRO10	WEITED AREA	r,	VOLUME CENTROIO		24.0000 107.2000A 153.3000A	0.0000 9.7500 9.7500A	PE DISCONT
		SHAPE	. LENGIH	FINENESS	PLANE	ABEA	WETTE	VOLUME	VOLUM		LONGITUDINAL STATIONS	800Y RAD11	NOTE - A INDICATES SLOPE DISCONTINUOUS POINTS

Figure 24 MISDATCOM Input/Output (Cont)

PAGE 3	EE. CENTER CERTICAL 0.000				
	PEF. LENGTH CORENT LONG. LAT. LONG. LAT. LONG. IN IN IN IN IN SOO 19.500 65.750				
	REF. LUNG. 1N 19.500				
110NS	PEE. AKEA 1N*#2				0.1915 0.1915 0.1937 0.1052 0.3171
NE IGURAL LL LAT UT	ROLL ANGLE DES		LIUNS		
LE DATCHM MISSILE CO HIKATION FU	SIDESLIP ANGLE DES	CA - 0 . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	CE CALCULAT		CA-V15COUS 0.0000 -0.0001 -0.0001 -0.0011
THE USAL AUTOMATED MISCILE DATCOM A REV 7789 A AERODYMAMIC METHOOS EUR MISSILE CONFIGURATIONS SIMPLE MONT COMPIGURATION FULL LAT BODY ALOME PARTIAL DUTPUT	RE RETMOLOS NUMBER 1/FI 4.1302406	C P - K C C C C C C C C C C C C C C C C C C	THE AXIAL FOR		CH-POIENTIAL 0.0958 0.1807 0.181 0.2141 0.2812 0.7691
THE USAL	PRESSURE TEMPERATURE LB/IMAA2 DEG R	CA-PRESSUBE/MAVE 0.04186 0.04186 0.04186 0.04186 0.04186	IS MOT INCLUDED IN THE AXIAL FORCE CALCULATIONS	LITY FACTOR = 0.68045	CAVISCOUS 0.0001 0.0006 0.0006 0.0012 0.0019
		400000		MALITY FA	
	ALTITUDE VELOCITY FT FT/SEC	CA-FRICTIUN 0.05760 0.05740 0.05780 0.05780 0.05780	BASE DRAG INCREMENT	DRAG PROPORTIONAL	CN-POTENTIAL 0.0038 0.0072 0.0086 0.0158 0.0232 0.0300
	MACH ALIII NUMBER FI	400000 100000 1000000 1000000	NOTE - THE B	CROSS FLOW D	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25 MISDATCOM Input/Output (Cont)

CASE 1	KEE. CENTER OERTICAL O.000	AL CLLB	0.000 E + 00 0.000 E + 00 0.000 E + 00 0.000 E + 00 0.000 E + 00		.0	
		R KADIAN) LATERAL DIRECTIONAL	-1.097E+01 -1.096E+01 -1.096E+01 -1.094F+01 -1.092E+01			
	REFERENCE OIMENSIONS WEF. LENGTH HOMENT LONG. LAT. LONG. IN IN IN SOO 19.500 65.750	DEMINATIVES (PER MADIAN) LONGITUDINAL CHA CHA CYB CLNB	-4.566£-01 -4.669£-01 -4.725£-01 -4.998£-01 -5.310£-01			
« и и е ж и	REF. KEI AREA LUN INAA2 IN 298.648 19.500	LONGITUDINAL IA CHA	1.097E+01 1.096E+01 1.095E+01 1.091E+01 1.095E+01 1.079E+01			
THE USAF AUTUMATED MISSILE DATCOM A REV 7/89 A AERODYAMKIC METHUIS FOR MISSILE COMFIGURATIOMS SIMPLE BUDY COMFIGURATION FULL LAT BODY ALONE STATIC AEROUTMANIC CHARACTERISTICS	BOLL ANGLE BEG 0.00		4.526£-01 4.761£-01 5.092£-01 5.609£-01 6.306£-01 7.034£-01	CD X-C.P.	51 23.566 65 23.306 34 21.940 24 20.590 18 19.302	
SILE DATCON IR MISSILE C IGURATION E	SIDESTIF ANGLE DEG	OWAL	0000000	כם כד/כם	0.100 0.000 0.100 0.051 0.100 0.055 0.100 0.139 0.101 0.224	
TUMATED HIS METHOUS FO E BUDY COME STATIC AER	E RETHOLUS: NUMBER 1/ET 4.130E+06	LATERAL DIRECTIONAL CT CLL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CL	00000000000000000000000000000000000000	
HE USAF AU AERODYHANIC SIMPL BODY ALONE	FLIGHT COMDITIONS PRESSURE TEMPFEATURE LEVINAAS DEG #	LATER	000000	ALPHA	00000000000000000000000000000000000000	
-	PRESSURE LE/IMAA2		0.11000			
	VELOCITY VELOCITY	LONGITUDINAL CM	0.150 0.153 0.193 0.583 0.753			
	ALTITUBE	CN - CN	0.000 0.000 0.017			
	NUMBER 0.70	ALPHA	000000000000000000000000000000000000000			

Figure 26 MISDATCOM Input/Output (Cont)

7 P S S S S S S S S S S S S S S S S S S	REF. LENGTH HONEMSIONS
	DINENSIONS HORENS LONG. 1N 65.750
	E LEGINCE 19. 100 00 00 00 00 00 00 00 00 00 00 00 00
7/89 k	
VA A PULL LAY	C DER [VATIVES 1055L 1055L
THE USAR AUTOHATED HISSILE DATCON A EEV 7/89 A AERODYNAMIG METHODS FOR HISSILE COWISUMATIONS SIMPLE BOUY COMESCURATION FULL LAT	
AUTOHAIED LE HOUY C.	FLIGHT COMUITIONS
THE USAP AEROBYNAM	PRESSURE TEMPERATURE OF THE PRESENTING OF THE PROPERTY OF THE
	1 1
	f 1/SEC
	ALTITUDE FT
	NUMBER 0 . 70

Figure 27 MISDATCOM Input/Output (Cont)

LIST OF REFERENCES

- 1. Mendenhall, M.R., Lesieutre, D.J., Caruso, S.C., Dillinius, M.F.E., Kuhn, G.D., Aerodynamic Design of Pegasus, CP-493, paper presented at the AGARD Conference Proceedings #493, pages 7-1,2.
- 2. Air Force Flight Dynamics Laboratory, AFWAL-TR-86-3091, Missile Datcom, Volume I- Final Report, Vukelich, S.R., Stoy, S.L., Bruns, K.A., Castillo, J.A., Moore, M.E., December 1988.
- 3. Air Force Flight Dynamics Laboratory, Technical Report AFFDL-TR-72-83, Vol. I, 1972, Prediction of the Six-Degree-of-Freedom Store Separation Trajectories at Speeds up to the Critical Speed, Vol. I--Theoretical methods and Comparisons with Experiment, by Dillenius, M.F.E., Goodwin, F.K., and Nielsen, J.N., 1972.
- 4. Joint Ordnance Commander Subgroup For Aircraft/Stores Compatibility, AOP-12, Volume 3, Aircraft Stores Interface Manual, pp. 2-(15-18), April, 1983.
- 5. CricketGraph® software, copyright 1990, Computer Associates.
- 6. Nelson, R.C., Flight Stability and Automatic Control, page 113, McGraw-Hill Book Co., 1989.
- 7. Dickenson, B., Aircraft Stability and Control for Pilots and Engineers, p. 14, Pitman Publishing Corporation, 1968.
- 8. PC-MATLAB Version 3.2-PC software, copyright 1987, The MathWorks, Inc.
- 9. Ctrl-C software, copyright 1986, Systems Control Technology, Inc.
- 10. Spahr, H. R., Theoretical Store Separation Analysis of a Prototype Store, Journal of Aircraft, Volume 12, Number 10, page 807, October 1975.
- 11. van den Broek, G. J., The Use of a Panel Method in the Prediction of External Store Separation, Journal of Aircraft, Volume 21, Number 5, page 309, May 1984.
- 12. Miranda, L. R., Extended Applications of the Vortex Lattice Method, Vortex Lattice Utilization, NASA SP-405, page 27, 1984.

13. Bertin, J. J., Smith, M. L., Aerodynamics for Engineers, Prentice-Hall, Incorporated, 1989.

INITIAL DISTRIBUTION LIST

	INITIAL DISTRIBUTION LIST	10. C	opies
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	:	2
2.	Library, Code 52 Naval Postgraduate School Monterey, CA 93943-5002		2
3.	Chairman Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943-5000		1
4.	Commander Pacific Missile Test Center Point Mugu, CA 93042		1
5.	Naval Air Systems Command AIR-530E Washington, D.C. 20361		1
6.	Flight Dynamics Laboratory Air Force Wright Aeronautical Laboratories Air Force Systems Command ATTN: Mr. William Blake Wright Patterson Air Force Base, OH 45433-655		1
7.	Naval Weapons Center Code 3592 ATTN: Mr. L. Gleason China Lake, CA 93555		1
8.	Pacific Missile Test Center Code 9053 Point Mugu, CA 93042		4
9.	Prof. O. Biblarz, Code AA/Bi Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93942-5000		1
10.	Prof. L. Schmidt, Code AA/Si Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93942-5000		1

EVALUATION OF THE PARTY OF THE

Thesis
H201235 Hansen
c.1 Store separation
methodology analysis.

Thesis
H201235 Hansen
c.1 Store separation
methodology analysis.

