Universidade do Estado de Santa Catarina Linguagens Formais e Autômatos Professora Karina Girardi Roggia

O plano cartesiano tem quatro quadrantes que podem ser enumerados como mostra a Figura 1.

Figura 1: Quadrantes do plano cartesiano

Se fizermos a mesma subdivisão em cada quadrante e concatenarmos os números, iremos obter a Figura 2.

22	21	12	11
23	24	13	14
32	31	42	41
33	34	43	44

Figura 2: Primeira subdivisão dos quadrantes do plano cartesiano

Se fizermos mais uma vez isso, vamos obter a Figura 3. É fácil notar que o processo é recursivo e pode ser continuado para sempre. Assim, podemos gerar uma grid de qualquer tamanho $n \times n$.

222	221	212	211	122	121	112	111
223	224	213	214	123	124	113	114
232	231	242	241	132	131	142	141
233	234	243	244	133	134	143	144
322	321	312	311	422	421	412	411
323	324	313	314	423	424	413	414
332	331	342	341	432	431	442	441
333	334	343	344	433	434	443	444

Figura 3: Segunda subdivisão dos quadrantes do plano cartesiano

Um fato curioso sobre essa grid é a presença de desenhos fractais nela. Fractais são figuras em que uma parte é igual ao todo. Encontramos, na Figura 3, o primeiro fractal ao pintarmos de preto somente as células que não contém o número 1 (ver Figura 4).

222	221	212	211	122	121	112	111
223	224	213	214	123	124	113	114
232	231	242	241	132	131	142	141
233	234	243	244	133	134	143	144
322	321	312	311	422	421	412	411
		312 313					
323	324		314	423	424	413	414

Figura 4: Grid 8×8 com quadrados que não contém 1 pintados.

Esse fractal é conhecido como Triângulo de Sierpinski e pode ser melhor visualizado se utilizarmos uma grid maior, por exemplo 512×512 , como a Figura 5.

Figura 5: Triângulo de Sierpinski em uma grid 512×512 .

O padrão pode ser representado pela expressão regular $(2+3+4)^*$.

Será demonstrado que é possível gerar este fractal por meio de uma Máquina de Mealy. Porém, antes de fazer a modelagem da Máquina de Mealy é necessário definir a representação da palavra de entrada. Utilizamos uma representação linear dos números presentes na Figura 3, a qual subtitui o pular de linhas pelo símbolo N e separa as células pelo símbolo . .

Assim, obtemos a seguinte palavra de entrada: w=222.221.212.211.122.121.112.111.N223.224.213.214.123.124.113.114.N232.231.242.241.132.131.142.141.N233.234.243.244.133.134.143.144.N322.321.312.311.422.421.412.411.N323.324.313.314.423.424.413.414.N332.331.342.341.432.431.442.441.N333.334.343.344.433.434.443.444.N

Antes de começarmos a modelagem precisamos fazer mais algumas observações.

- O comprimento do número em cada célula está relacionado com a largura da grid. Na Figura 1 temos uma grid 2×2 e o número tem comprimento 1. Na Figura 2 temos uma grid 4×4 e o número tem comprimento 2. Na Figura 3 temos uma grid 8×8 e o número tem comprimento 3. Portanto, o comprimento l do número é dado por $log_2 n$, onde l é a largura da grid.
- A Máquina de Mealy deve somente imprimir 1, 0, ε ou n, os quais, respectivamente, representam se há o padrão na célula, se não há o padrão, palavra vazia e pular linha.
- A máquina deve ler símbolo por símbolo da palavra w e imprimir uma vez para cada subpalavra de tamanho l. Para isso, pode-se utilizar transições que imprimem a palavra vazia. O exemplo deixará mais claro isso.
- A saída para a palavra w deve ser uma matriz binária como a seguir:

• Será utilizado o formato de imagem ppm, que é bastante simples, pois permite criar imagens com texto ascii. Para isso, basta adicionar um header à saída anterior, com o sistema de cor na primeira linha (que será P1, pois utilizaremos preto e branco) e a largura e altura da imagem na segunda linha.

Para facilitar o entendimento, vamos exibir um exemplo pequeno, o qual gera o fractal 8×8 do exemplo acima (ver Figura 6).

Figura 6: Máquina de Mealy para o padrão $(\mathbf{2} + \mathbf{3} + \mathbf{4})^*$

A Máquina de Mealy projetada para gerar o fractal deve ser executada por meio de um simulador de Máquinas de Mealy, o qual recebe como entrada uma descrição (ou codificação) de uma Máquina de Mealy (chamaremos de MM) e uma palavra w. O simulador deve ser capaz simular o comportamento de MM com entrada w.

Por exemplo,

A descrição da Máquina de Mealy deve seguir o seguinte padrão:

Para uma Máquina de Mealy $M = \langle \Sigma, Q, \delta, q_0, F, \Delta \rangle$ onde $\Sigma = \{1, 2, 3, 4, ., N\}, Q = \{q_0, q_1, \ldots, q_n\}, F = \{q_{f1}, \ldots, q_{fj}\}, \Delta = \{0, 1, \backslash n\}$ e δ é uma função parcial com $\delta(q_1, x_1) = (r_1, y_1), \delta(q_2, x_2) = (r_2, y_2), \ldots, \delta(q_k, x_k) = (r_k, y_k)$ onde $q_i, r_i \in Q, x_i \in \Sigma$ e $y_i \in \Delta^*$ para qualquer $i = 1, 2, \ldots, k$, o arquivo de entrada será dado pelo seguinte formato

```
q0 q1 (...) qn
q0
qf1 (...) qfj
1 2 3 4 . N
0 1 \n
q1 x1 r1 y1
q2 x2 r2 y2
(...)
qk xk rk yk
```

Os requisitos deste trabalho são os seguintes:

- Implementação do simulador de Máquina de Mealy. Entradas: dois arquivos texto, um com a descrição da Máquina de Mealy e outro com a palavra de entrada. Saída: arquivo de imagem ppm. Note que a saída da Máquina de Mealy será apenas a matriz binária.
- Modelagem de três Máquinas de Mealy: Arquivos de entrada e grafo (desenho). As expressões a serem modeladas serão enviadas pela professora em resposta ao mail de formação de duplas para o trabalho.

Prazos e entrega

01/10 - 4a.feira Envio de mail com formação da dupla de trabalho

25/10 – sábado Envio do programa, código fonte, e documentação em tarefa específica no moodle

O mail com a formação da dupla (ou indicação de que o trabalho será feito individualmente) deverá ter como título

[LFA] Trabalho Prático - Duplas

contendo os nomes dos alunos componentes no corpo da mensagem. A entrega deverá conter relatório (em formato pdf) e código-fonte anexados (alternativamente, pode ser enviado repositório público, como GitHub). O relatório deve conter: instruções de compilação do código-fonte, as modelagens das expressões regulares enviadas pela professora como Máquina de Mealy, resultados das saídas de exemplo disponibilizada no moodle e outras informações que forem julgadas pertinentes. Os códigos serão compilados em máquina com sistema operacional Ubuntu 24.04 LTS e as instruções devem ser completas e passo-a-passo para a execução do programa.

Será verificado plágio nos códigos e relatórios.