

Correction - Bac Blanc (Sujet 2)

(Calculatrice autorisée)

Cette évaluation est composée de 4 exercices indépendants.

Exercice 1

Partie A

1. On représente la situation à l'aide de cet arbre pondéré :

- **2**. $P(R \cap J) = 0.17 \times 0.32 = 0.0544$
- 3. D'après cette même étude, les jeunes de 18 à 24 ans représentent 11% de la population française, donc P(J) = 0, 11.

La probabilité que la personne interrogée soit un jeune de 18 à 24 ans n'utilisant pas régulièrement les transports en commun est $P(\overline{R} \cap J)$.

D'après la formule des probabilités totales : $P(J) = P(R \cap J) + P(\overline{R} \cap J)$. Donc :

$$P(\overline{R} \cap J) = P(J) - P(R \cap J) = 0,11 - 0,0544 = 0,0556$$

Ainsi, $P\left(\overline{R}\cap J\right)\approx 0,056$ à 10^{-3} près.

4.
$$P_{\overline{R}}(J) = \frac{P(\overline{R} \cap J)}{P(\overline{R})} = \frac{0,056}{0,83} \approx 0,0675$$

La proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun est donc d'environ 6,75%.

Partie B

- 1. On interroge une personne au hasard et il n'y a que deux possibilités : elle utilise régulièrement les transports en commun, avec une probabilité p=0,17, ou pas, avec une probabilité de 1-p=0,83.
 - On réalise n = 50 fois ce questionnement de façons identiques et indépendantes.

Donc $X \sim \mathcal{B}(50; 0, 17)$.

2. $P(X=5) = {50 \choose 5} \times 0.17^5 \times (1-0.17)^{50-5} \approx 0.069$

Il y a donc une probabilité de 0,069 que, sur 50 personnes interrogées, exactement 5 prennent régulièrement les transports en commun.

3. Le recenseur indique qu'il y a plus de 95 % de chance pour que, parmi les 50 personnes interrogées, moins de 13 d'entre elles utilisent régulièrement les transports en commun. Autrement dit, le recenseur affirme que $P(X < 13) \ge 0,95$.

Or $P(X < 13) = P(X \le 12) \approx 0,929 < 0,95$ donc cette affirmation est fausse.

- 4. Le nombre moyen de personnes utilisant régulièrement les transports en commun parmi les 50 personnes interrogées est $E(X) = np = 50 \times 0, 17 = 8, 5.$
- **Exercice 2** 1. a. Premièrement, on a $\overrightarrow{AB}(-2,3,0)$ et $\overrightarrow{AC}(-2,0,1)$. Il est clair que ces vecteurs ne sont pas colinéaires donc les points A,B et C, non alignés, définissent un plan. De plus,

$$\overrightarrow{AB} \cdot \overrightarrow{n} = -2 \times 3 + 3 \times 2 + 0 \times 6 = 0$$
 et $\overrightarrow{AC} \cdot \overrightarrow{n} = -2 \times 3 + 0 \times 2 + 1 \times 6 = 0$

Donc le vecteur \overrightarrow{n} est normal au plan (ABC).

b. Le vecteur \overrightarrow{n} est normal plan (ABC) donc une équation cartésienne de (ABC) est de la forme 3x + 2y + 6z + d = 0. Enfin, $A \in (ABC)$ donc :

$$3 + 2 \times 0 + 6 \times 0 + d = 0 \iff 6 + d = 0 \iff d = -6$$

Le plan (ABC) a donc pour équation cartésienne 3x + 2y + 6z - 6 = 0.

- **2**. On note d la droite passant par O et orthogonale au plan (ABC).
 - **a.** La droite d est orthogonale au plan (ABC) donc elle a pour vecteur directeur le vecteur \overrightarrow{n} normal à (ABC).

De plus elle passe par le point O de coordonnées (0 ; 0 ; 0)

La droite d a donc pour représentation paramétrique $\left\{ \begin{array}{l} x=3t\\ y=2t \quad, t\in \mathbb{R}\\ z=6t \end{array} \right.$

b. La droite d coupe le plan (ABC) au point H.

Les coordonnées du point H vérifient le système

$$\begin{cases} x_{H} = 3t \\ y_{H} = 2t \\ z_{H} = 6t \\ 3x_{H} + 2y_{H} + 6z_{H} - 6 = 0 \end{cases}$$

Donc $3 \times 3t + 2 \times 2t + 6 \times 6t - 6 = 0$ ce qui équivaut à 9t + 4t + 36t = 6 ou 49t = 6 donc $t = \frac{6}{49}$.

$$x_H = 3t \text{ donc } x_H = \frac{18}{49}, y_H = 2k \text{ donc } y_H = \frac{12}{49}, \text{ et } z_H = 6k \text{ donc } z_H = \frac{36}{49}.$$

Le point H a donc pour coordonnées $\left(\frac{18}{49}; \frac{12}{49}; \frac{36}{49}\right)$.

c.
$$OH^2 = (x_H - x_O)^2 + (y_H - y_O)^2 + (z_H - z_O)^2 = \left(\frac{18}{49}\right)^2 + \left(\frac{12}{49}\right)^2 + \left(\frac{36}{49}\right)^2 = \frac{18^2 + 12^2 + 36^2}{49^2} = \frac{1764}{49^2}$$

Donc $OH = \sqrt{\frac{1764}{49^2}} = \frac{42}{49} = \frac{7 \times 6}{7 \times 7} = \frac{6}{7}$.

- 3. On rappelle que le volume d'une pyramide est donné par : $V = \frac{1}{3}\mathcal{B}h$, où \mathcal{B} est l'aire d'une base et h est la hauteur de la pyramide correspondant à cette base.
 - En prenant le triangle OAB pour base de la pyramide OABC, la hauteur est OC, et le volume \mathcal{V} est égal à $\frac{1}{3} \times \mathcal{B} \times$ OC où \mathcal{B} est l'aire du triangle OAB.

$$\mathcal{B} = \frac{1}{2} \times \text{OA} \times \text{OB} = \frac{1}{2} \times 2 \times 3 = 3 \text{ et OC} = 1.$$

Donc
$$V = \frac{1}{3} \times 3 \times 1 = 1$$
 (u. a.).

• En prenant le triangle ABC pour base de la pyramide OABC, la hauteur est OH, et le volume $\mathcal V$ est égal à $\frac{1}{3} \times \mathcal B' \times$ OH où $\mathcal B'$ est l'aire du triangle ABC.

OH =
$$\frac{6}{7}$$
 et $\mathcal{V} = 1$ donc $1 = \frac{1}{3} \times \mathcal{B}' \times \frac{6}{7}$ et donc $\mathcal{B}' = \frac{49}{14} = \frac{7 \times 7}{7 \times 2} = \frac{7}{2} = 3, 5.$

L'aire du triangle ABC vaut $\frac{7}{2} = 3, 5$ (u. a.).

Exercice 3

Partie A

- **1**. Pour tout x > 0, on a : $g'(x) = \frac{2\frac{1}{x} \times x 2\ln x \times 1}{x^2} = \frac{2 2\ln x}{x^2}$
- 2. a. La valeur $\frac{2}{e}$ est l'image de e par $f: f(e) = \frac{2 \ln e}{e} = \frac{2}{e}$.
 - **b.** Soit x > 0, on a $g'(x) = \frac{2 2 \ln x}{x^2}$ et $x^2 > 0$. Ainsi, g'(x) est du signe de $2 - 2 \ln x = 2(1 - \ln x)$.
 - Sur]0 ; e[, $\ln x < 1$ donc $1 \ln x > 0$ donc g'(x) > 0 ; la fonction g est strictement croissante sur cet intervalle.
 - Sur] e ; $+\infty$ [, $\ln x > 1$ donc $1 \ln x < 0$ donc g'(x) < 0; la fonction g est strictement décroissante sur cet intervalle.
 - **c.** Par croissances comparées, $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ donc $\lim_{x \to +\infty} g(x) = 0$.
- 3. On en déduit le tableau de signes de la fonction g sur l'intervalle]0; $+\infty[$.

x	0	1		$+\infty$
g(x)		- 0	+	

Partie B

1. f est de la forme u^2 avec $u = \ln$.

Or
$$(u^2)'(x) = 2u'(x)u(x)$$
 donc $f'(x) = 2 \times \frac{1}{x} \times \ln x = \frac{2\ln x}{x} = g(x)$

Donc sur l'intervalle $]0 ; +\infty[$, on a f'=g.

2. On étudie les variations de la fonction f en utilisant le signe de f' = g.

Sur l'intervalle]0;1[, la fonction g est négative donc f' est négative; la fonction f est donc strictement décroissante sur cet intervalle.

Sur l'intervalle]1; $+\infty$ [, la fonction g est positive donc f' est positive; la fonction f est donc strictement croissante sur cet intervalle.

De plus on peut dire que la fonction f admet un minimum pour x = 1.

3. On étudie la convexité de la fonction f.

D'après les questions précédentes, la fonction g, dérivée de la fonction f, est croissante sur [0;e[, donc la fonction f est convexe sur cet intervalle.

De même, la fonction g, dérivée de la fonction f, est décroissante sur] e $;+\infty[$, donc la fonction f est concave sur cet intervalle.

De plus, la fonction g donc la fonction f', change de sens de variation en x = e, donc la courbe représentant la fonction f admet un point d'inflexion en x = e.

4. Une équation de la tangente à la courbe représentative de f au point d'abscisse e est :

$$y = f'(e)(x - e) + f(e)$$
. On a : $f'(e) = g(e) = \frac{2}{e}$; $f(e) = (\ln e)^2 = 1$

L'équation devient : $y = \frac{2}{e}(x - e) + 1$ soit $y = \frac{2}{e}x - 2 + 1$ c'est-à-dire $y = \frac{2}{e}x - 1$.

5. La fonction f est convexe sur]0,e] donc sa courbe représentative est au dessus de ses tangentes. En particulier, elle est au dessus de celle étudiée dans la question précédente. On en déduit que sur]0,e], on a : $\ln(x)^2 \geqslant \frac{2}{6}x-1$.

Exercice 4 1. Disons que Astrid commence à constituer son équipe, elle a donc 5 choix parmi 18 (on exclut Astrid et Assia des choix). Ensuite, Assia aura donc 5 choix parmi les 13 personnes restantes.

Il y a donc $\binom{18}{5} \times \binom{13}{5} = 8568 \times 1287 = 11027016$ possibilités : l'affirmation est **fausse**.

2. Pour qu'un nombre comporte 10 chiffres, il ne doit pas commencer par 0. On a donc 9 possibilités pour le premier chiffre, puis 9 encore, puis 8, puis 7,etc...

Il y a donc $9 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 3265920$: l'affirmation est **fausse**.

- 3. On a un choix ordonnée, avec potentiellement des répétition, et 9 choix à chaque étape (8 couleur + le vide). On a donc $9^5 = 59049$ possibilités : l'affirmation est **vraie**.
- 4. On a $\lim_{x \to 5^{-}} x^{2} 11x + 28 = -2$ et $\lim_{x \to 5^{-}} x^{2} 25 = 0^{-}$. Donc $\lim_{x \to 5^{-}} f(x) = +\infty$: l'affirmation est **vraie**.
- **5**. Pour tout $n \in \mathbb{N}^*$, on a : $\frac{-3}{n^2} \leqslant u_n \leqslant \frac{3}{n^2}$. Or $\frac{-3}{n^2} \xrightarrow[n \to +\infty]{} 0$ et $\frac{3}{n^2} \xrightarrow[n \to +\infty]{} 0$. Donc par encadrement, $\lim_{n \to +\infty} u_n = 0$: l'affirmation est **vraie**.