

Trajectory Planning Bang-Bang-Control

Mein Name

4. Januar 2023

- Trajectory Planning
- 2 Notation
- 3 Bang-Bang-Control
- Quellen

Trajectory Planning I

Wir müssen hier unterscheiden zwischen:

- der Beschreibung der Position der Aktoren
- und der Beschreibung der Lage des Effektors (Werkzeugs)
 - diese wird auch als Pose bezeichnet und kann durch 3
 Positionsangaben (wie x,y,z) und 3 Drehwinkel (wie a,b,c) bezogen auf ein Bezugskoordinatensystem beschrieben werden
 - sie beschreibt eine Bahn im Raum

Einschränkung: zunächst nur die Position der Aktoren

Trajectory Planning I

Aufgabe: Beziehung zwischen Zeit und Position finden

Synonyme: Path Planning, Motion Planning

Unterscheidung hier:

- Geometrie (Path): Position der Aktoren ohne Zeitinformation
- Trajektorie (Trajectory): Position, Geschwindigkeit, Beschleunigung und Ruck als Funktion über die Zeit

Vereinfachung

- Eindimensionale Trajektorie: q = q(t)Definiert durch eine Skalar-Funktion
- Mehrdimensionale Trajektorie: $\mathbf{p} = \mathbf{p}(t)$ Definiert durch eine Vektor-Funktion

Einschränkung: zunächst nur eindimensionale Trajektorien

Trajectory Planning I

 q_0 : Startposition

 q_1 : Zielposition

$$q_0=q(t_0)$$
 \longrightarrow $q_1=q(t_1)$

Notation I

Position

$$q(t)$$
 (1)

Geschwindigkeit (Velocity)

$$v(t) = \dot{q}(t) = \frac{d}{dt}q(t) \tag{2}$$

Beschleunigung (Acceleration)

$$a(t) = \dot{v}(t) = \frac{d}{dt}v(t) = \ddot{q}(t) = \frac{d^2}{dt^2}q(t)$$
 (3)

Ruck (Jerk)

$$j(t) = \dot{a}(t) = \frac{d}{dt}a(t) = \ddot{v}(t) = \frac{d^2}{dt^2}v(t) = q^{(3)}(t) = \frac{d^3}{dt^3}q(t)$$

(4)

Bang-Bang-Control I

Prozess: Positionierung

Aufgabe: Positionieren in möglichst kurzer Zeit

Ansatz: Höchstmögliches ausreizen der limitierende(n) Größe(n)

Grenzen: Limitierende Größen (Constraints) ergeben sich

- durch den Motor über die Höchstdrehzahl wird v_{max} festgelegt über das Drehmoment wird a_{max} festgelegt
- ullet durch die Dynamik des mechanischen Systems über Steifigkeit/Nachgiebigkeit wird j_{max} festgelegt
- durch die Geometrie wird festgelegt, ob j_{max} , a_{max} und v_{max} überhaupt erreicht werden können
 - da hier nur eindimensionale Trajektorien betrachtet werden, ist nur die Weglänge der begrenzende Faktor
 - bei mehrdimensionalen Trajektorien ist die Krümmung ein weiterer begrenzender Faktor

Vielen Dank für Ihre Aufmerksamkeit

Hochschule Emden/Leer Abteilung Maschinenbau MSR-Labor

Quellen I

Nachfolgend werden die Quellen der Bilder angegeben, die für diese Präsentation in ihrer ursprünglichen Form oder modifiziert verwendet worden sind.