Lenguajes Formales y Computabilidad Teoremas: Combo 8

Tomás Maraschio

June 26, 2025

Lema. Supongamos $\Sigma_p \subseteq \Sigma$. Entonces AutoHalt^{\Sigma} no es \Sigma-recursivo. Proof.

$$AutoHalt^{\Sigma} = \lambda \mathcal{P}[(\exists t \in \omega) Halt^{0,1}(t, \mathcal{P}, \mathcal{P})]$$

Notar que $D_{AutoHalt^{\Sigma}} = Pro^{\Sigma}$ y $\forall \mathcal{P} \in Pro^{\Sigma}$ se cumple

(*)
$$AutoHalt^{\Sigma}(\mathcal{P}) = 1 \iff \mathcal{P}$$
 se detiene partiendo de $\|\mathcal{P}\|$

Supongamos que $AutoHalt^{\Sigma}$ es Σ -recursiva, entonces, por el 2° manantial de macros, existe el macro

[IF
$$AutoHalt^{\Sigma}(W1)$$
 GOTO A1]

Luego, sea $\mathcal{P}_0 = \text{L1}[\text{ IF } AutoHalt^{\Sigma}(\text{P1}) \text{ GOTO L1}]$, tenemos que \mathcal{P}_0 se detiene partiendo de $\|\mathcal{P}_0\|$ si y solo si $AutoHalt^{\Sigma}(\mathcal{P}_0) = 0$. Pero esto contradice la propiedad (*), y viene de suponer que $AutoHalt^{\Sigma}$ es Σ -recursiva, por lo que llegamos a que $AutoHalt^{\Sigma}$ no puede ser Σ -recursiva.

Teorema. Supongamos $\Sigma_p \subseteq \Sigma$. Entonces AutoHalt^{\Sigma} no es \Sigma-efectivamente computable. Es decir, no hay ningun procedimiento efectivo que decida si un programa de S^{Σ} termina partiendo de sí mismo.

Proof. La Tesis de Church dice que toda función Σ-efectivamente computable es Σ-recursiva. Por lo que si $AutoHalt^{\Sigma}$ fuese Σ-efectivamente computable, esta sería también Σ-recursiva, contradiciendo el lema anterior. Luego, $AutoHalt^{\Sigma}$ no es Σ-efectivamente computable.

Lema. Supongamos $\Sigma_p \subseteq \Sigma$. Entonces

$$A = \{ \mathcal{P} \in Pro^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 1 \}$$

es Σ -recursivamente enumerable y no es Σ -recursivo. Mas aún, el conjunto

$$N = \{ \mathcal{P} \in Pro^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 0 \}$$

no es Σ -recursivamente enumerable. Proof. Sea $P = \lambda t \mathcal{P}[Halt^{0,1}(t,\mathcal{P},\mathcal{P})] = Halt^{0,1} \circ [p_1^{1,1},p_2^{1,1},p_2^{1,1}]$. Notar que $D_P = \omega \times Pro^{\Sigma}$. Además, P es $(\Sigma \cup \Sigma_p)$ -p.r., que en este caso es lo mismo que Σ -p.r. Entonces, M(P) es Σ -recursiva y además

$$D_{M(P)} = \{ \mathcal{P} \in Pro^{\Sigma} : (\exists t \in \omega) P(t, \mathcal{P}) = 1 \} = \{ \mathcal{P} \in Pro^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 1 \} = A$$

Luego, por el teorema de caracterización de conjuntos Σ -recursivamente enumerables, que entre otras cosas dice que un conjunto es Σ -r.e. si y solo si es el dominio de alguna función Σ -recursiva, tenemos que \underline{A} es Σ -r.e.

Supongamos ahora que N es Σ -r.e. Entonces, por el lema de restricción de funciones recursiva tenemos que $C_0^{0,1}|_N$ es Σ -recursiva. Por el mismo lema, y como sabemos que A es Σ -r.e., $C_1^{0,1}|_A$ es Σ -recursiva. Además, notar que $A \cup N = Pro^{\Sigma}$ y $A \cap N = \emptyset$. Entonces, por el lema de división por casos de funciones Σ -recursivas, tenemos que la función

$$AutoHalt^{\Sigma} = C_1^{0,1}|_A \cup C_0^{0,1}|_N$$

es $\Sigma\text{-recursiva}.$ Pero esto contradice el lema probado anteriormente, por lo que N no puede ser Σ -r.e.

Por último, supongamos que A es Σ -recursivo, entonces el conjunto

$$N = Pro^{\Sigma} - A$$

también es Σ -recursivo. Pero esto es un absurdo porque N no es Σ -r.e. y por lo tanto tampoco es Σ -recursivo. Así, \underline{A} no es Σ -recursivo.

Teorema. (Neumann vence a Godel). Si h es Σ -recursiva, entonces h es Σ -computable. (En la induccion de la prueba hacer solo el caso h = M(P))

Proof. Probaré por inducción sobre k que si $h \in R_k^{\Sigma}$ entonces h es Σ computable.

<u>Caso base.</u> Para cada una de las funciones de R_0^Σ daré un programa que las compute.

Suc:

$$N1 \leftarrow N1 + 1$$

Pred:

IF $N1 \neq 0$ GOTO L2 L1GOTO L1 $N1 \leftarrow N1 \dot{-}1$

 $C_0^{0,0} \text{ y } C_{\varepsilon}^{0,0}$:

SKIP

 d_a , para todo $a \in \Sigma$:

 $\mathrm{P1} \leftarrow \mathrm{P1}.a$

 $p_j^{n,m}$, para todo $n,m\in\omega$ y $1\leq j\leq n$:

$$N1 \leftarrow N\overline{j}$$

 $p_{j}^{n,m},$ para todo $n,m \in \omega$ y $n < j \leq m$:

$$P1 \leftarrow P\overline{j-n}$$

<u>Caso inductivo.</u> Supongamos que la hipótesis vale para $k \in \omega$. Sea $h = M(P) \in R_{k+1}^{\Sigma}$ tal que $h : D_h \subseteq \omega^{n+1} \times \Sigma^{*m} \to \omega$ y $P : \omega^n \times \Sigma^{*m} \to \omega$ un predicado en R_k^{Σ} . Por hipótesis inductiva, P es Σ -computable, entonces por 1° manantial de macros existe el macro

[IF
$$P(V\overline{n+1}, V1, ..., V\overline{n}, W1, ..., W\overline{m})$$
 GOTO A1]

Así, el siguiente programa computa a $\mathcal{M}(P)$:

L2 [IF
$$P(N\overline{n+1}, N1, ..., N\overline{n}, P1, ..., P\overline{m})$$
 GOTO L1]
 $N\overline{n+1} \leftarrow N\overline{n+1} + 1$
GOTO L2
L1 $N1 \leftarrow N\overline{n+1}$

Esto es porque, para $(x_1,\cdots,x_n,\alpha_1,\cdots,\alpha_m)\in\omega^n\times\Sigma^{*m}$, si el programa se detiene partiendo de $\|x_1,\cdots,x_n,\alpha_1,\cdots,\alpha_m\|$ entonces en N1 quedará guardado el primer t tal que $P(t,x_1,\cdots,x_n,\alpha_1,\cdots,\alpha_m)=1$. Si no se detiene partiendo de $\|x_1,\cdots,x_n,\alpha_1,\cdots,\alpha_m\|$ es porque no existe t tal que $P(t,x_1,\cdots,x_n,\alpha_1,\cdots,\alpha_m)=1$, lo que significa que $(x_1,\cdots,x_n,\alpha_1,\cdots,\alpha_m)\notin D_h$.