

Vijay Saddi August 2020

AGENDA

COVID-19 BACKGROUND

- The 2019 outbreak of Covid-19 has kept the world on lockdown with the effort to stop the spread
- It is a highly contagious illness which affects the lungs of the respiratory system
- · Transmitted via close proximity via small droplets produced by coughing, sneezing & talking
- X-rays and CT scans of Covid-19 victims can depict the damage inflicted on the lungs

At admission 4 hours 24 hours 48 hours 72 hours

RADIOLOGY

- Chest x-rays are useful in the follow-up of the disease (it is insensitive early on)
- The image on the left is an 83-year old male with Covid-19
- Image findings:
 - Admission: Ill defined bilateral alveolar consolidation
 - 4-hrs: Radiology worsening, affected lower lobes
 - 24-hrs: Bilateral alveolar consolidation¹
 - 48-hrs: Further radiology worsening
 - 72-hrs: Panlobar affectation², with typical radiology findings of ARDS³; 24 hrs later patient passed away

Infers an alveolar spread of disease, commonly due to pneumonia

^{2.} Alveolar destruction within the lobule

Acute Respiratory Distress Syndrome: fluid buildup in the alveoli

CURRENT STATISTICS ON COVID-19

Last updated: August 08, 2020, 20:24 GMT

Coronavirus Cases:

19,725,620

Deaths:

727,540

Recovered:

12,659,896

- High rate of infection
- High rate of recovery (95%)
- 5% death rate (August 2020)

6,338,184 Currently Infected Patients 6,273,265 (99%) in Mild Condition Show Graph

QUESTION With the emergence of Deep Learning for Al in healthcare, can we build a model to help identify Covid-19 by evaluating lung x-rays?

DATA SET

- 2 main data sources for Covid-19 and Normal x-ray images
- Covid-19 x-rays were taken from Github: <u>https://github.com/ieee8023/covid-chestxray-dataset</u>
- Normal x-ray images were taken from Kaggle: https://www.kaggle.com/paultimothymoon ey/chest-xray-pneumonia
- There were 180 images per group, with a total of 360

EXPLORATION & QUALITY ASSESSMENT

- Image file sizes range from 400-600kb each
- Images are of high quality (720p-1080p resolution)
- Each image has different dimensions (width vs height)
- RGB & greyscale formats

DATA PRE-PROCESSING

- Github images were filtered to select only Covid-19 diagnosed, and Posteroanterior view
- From the entire pool of images, the 80/20 split was implemented to divide the training/test data
- Training: 144 images per category (Covid & Normal)
- Testing: 36 images per category (Covid & Normal)

df_metadata[(df_metadata["finding"]=="COVID-19") & (df_metadata["view"]=="PA")]										
	patientid	offset	sex	age	finding	RT_PCR_positive	survival	intubated	intubation_prese	
0	2	0.0	М	65.0	COVID- 19	Y	Y	N	N	

FEATURE ENGINEERING

- Prior to model training, augmentation methods were required to account for variations in the image makeup:
 - Normalization: images rescaled by 1/255 to ensure pixel values range between 0 and 1
 - Shear range: shear angle for variations in image rotation
 - Zoom range: account for variations in zoom between images
 - Horizontal flip: reverses the rows/columns of pixels in random images – as lung images show symmetry in nature
 - Target size: resize all images to standard 224x224

```
# prepping & augmenting the images for Loading into the model as inputs for training
train_data = image.ImageDataGenerator(
    rescale = 1./255, #normalize images
    shear_range = 0.2,
    zoom_range = 0.2,
    horizontal_flip = True
)
```

```
# converting image size, set the batch size (standard 224 by 224)
# feed the augmented images from previous step into the generator
train_generator = train_data.flow_from_directory(
   'Covid_Dataset/Train',
   target_size = (224,224),
   batch_size = BS,
   class_mode = 'binary'
)
```

DEEP LEARNING MODEL

- A Convolutional Neural Network (CNN) is best suited for image processing
- Summary:
 - 4 convolutional layers
 - 3 pooling layers (2,2)
 - 4 dropout layers
- Dropout Layer: reduction by 25% to prevent overfitting in first 3 layers
- Loss function: binary cross-entropy to classify between 2 classes
- Optimizer: Adam shows better performance on deep learning models

```
model = Sequential()
model.add(Conv2D(32, kernel size=(3,3), activation='relu', input shape=(224,224,3)))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPool2D(pool size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPool2D(pool size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(MaxPool2D(pool size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=keras.losses.binary_crossentropy, optimizer='adam', metrics=['accuracy'])
```

Layer (type)	Output Shape		Param #
conv2d_9 (Conv2D)	(None, 222,	222, 32)	896
conv2d_10 (Conv2D)	(None, 220,	220, 64)	18496
max_pooling2d_7 (MaxPooling2	(None, 110,	110, 64)	0
dropout_9 (Dropout)	(None, 110,	110, 64)	0
conv2d_11 (Conv2D)	(None, 108,	108, 64)	36928
max_pooling2d_8 (MaxPooling2	(None, 54, 5	4, 64)	0
dropout_10 (Dropout)	(None, 54, 5	4, 64)	0
conv2d_12 (Conv2D)	(None, 52, 5	2, 128)	73856
max_pooling2d_9 (MaxPooling2	(None, 26, 2	6, 128)	0
dropout_11 (Dropout)	(None, 26, 2	6, 128)	0
flatten_3 (Flatten)	(None, 86528	()	0
dense_5 (Dense)	(None, 64)		5537856
dropout_12 (Dropout)	(None, 64)		0
dense_6 (Dense)	(None, 1)		65

Non-trainable params: 0

MODEL PERFORMANCE

- Based on the confusion matrix, the model has a high accuracy when predicting Covid-19 and Normal x-rays
- 97% accuracy when predicting Covid-19 xrays
- 94% accuracy when predicting normal xrays

PERFORMANCE INDICATORS

- **F1-Score** is used as the best performance indicator for binary classification problems
- Precision correctly identified 97% of positive cases from all the predicted positive cases
- Recall correctly identified 94% of positive cases from all the actual positive cases

	precision	recall	f1-score	support
Covid	0.97	0.95	0.96	37
Normal	0.94	0.97	0.96	35
accuracy			0.96	72
macro avg	0.96	0.96	0.96	72
weighted avg	0.96	0.96	0.96	72

Precision score: 0.9714 Recall score: 0.9444

F1 Score: 0.9577

MODEL EVALUATION

TRAINING HISTORY

- Does the model overfit to the training data?
- Based on the plot history, the accuracy and loss follows the same trend, although does not overfit!
- Throughout each Epoch, there are slight variations in loss and accuracy

SUMMARY/NEXT STEPS

CNN MODEL

- Successful working model
 - 96% Accuracy
 - Does not overfit

LIMITATION

Data set is very small for large scale use; more data needed

NEXT STEP

- Using ImageNet to import a larger data set for training
 - Compare model with a transfer learning model results

THANKS!

CONTACT

Does anyone have any questions?

Email: vijay.saddi@outlook.com

LinkedIn: https://www.linkedin.com/in/vijay-ss/

Github: https://github.com/vijay-ss

Portfolio: https://vijay-ss.github.io/Vijay Portfolio/

