Notes for Week 5/29/19 - 5/31/19

Alden Green

June 4, 2019

Consider absolutely continuous distributions \mathbb{P} and \mathbb{Q} with density functions f and g, respectively. For fixed $n \geq 0$, let $Z = (z_1, \ldots, z_n)$, where for $i = 1, \ldots, n$, $z_i \sim \frac{\mathbb{P} + \mathbb{Q}}{2}$ are independent. Given Z, for $i = 1, \ldots, n$ let

$$\ell_i = \begin{cases} 1 \text{ with probability } \frac{f(z_i)}{f(z_i) + g(z_i)} \\ -1 \text{ with probability } \frac{g(z_i)}{f(z_i) + g(z_i)} \end{cases}$$

be conditionally independent labels, and write

$$1_X = \begin{cases} 1, \ l_i = 1 \\ 0, \text{ otherwise} \end{cases} \quad 1_Y = \begin{cases} 1, \ l_i = -1 \\ 0, \text{ otherwise.} \end{cases}$$

We will write $X = \{x_1, \dots, x_{N_X}\} := \{z_i : \ell_i = 1\}$ and similarly $Y = \{y_1, \dots, y_{N_Y}\} := \{z_i : \ell_i = -1\}$, where N_X and N_Y are of course random but $N_X + N_Y = n$.

Our statistical goal is hypothesis testing: that is, we wish to construct a test function ϕ which differentiates between

$$\mathbb{H}_0: f = g \text{ and } \mathbb{H}_1: f \neq g.$$

For a given function class \mathcal{H} , some $\epsilon > 0$, and test function ϕ a Borel measurable function of the data with range $\{0,1\}$, we evaluate the quality of the test using worst-case risk

$$R_{\epsilon}^{(t)}(\phi;\mathcal{H}) = \sup_{f \in \mathcal{H}} \mathbb{E}_{f,f}^{(t)}(\phi) + \sup_{\substack{f,g \in \mathcal{H} \\ \delta(f,g) \geq \epsilon}} \mathbb{E}_{f,g}^{(t)}(1-\phi)$$

where

$$\delta^2(f,g) = \int_{\mathcal{D}} (f-g)^2 dx.$$

Test statistic. For $r \geq 0$, define the r-graph $G_r = (V, E_r)$ to have vertex set $V = \{1, \ldots, t\}$ and edge set E_r which contains the pair (i, j) if and only if $\|z_i - z_j\|_2 \leq r$. Let D_r denote the incidence matrix of G_r .

Define the Laplacian Smooth test statistic over the neighborhood graph to be

$$T_{LS} = \sup_{\theta: \|D\theta\|_2 \le C(n,r)} \langle \theta, \frac{1_X}{N_X} - \frac{1_Y}{N_Y} \rangle$$

where we note that the test statistic is implicitly a function of r and C(n,r).

1 Additional Theory

Let $\theta^* = (\theta_i^*)_{i=1}^n$, with $\theta_i^* := f(z_i) - g(z_i)$. Write $L = D^T D$ for the Laplacian matrix of the r-neighborhood graph, $\mathcal{D}f$ for the gradient of a function f, and $\mathcal{D}^2 f$ for the Hessian of a function f. We write $C^2(L)$ for the set of functions f twice continuously differentiable over \mathbb{R}^d , with bounded Hessian $\|\mathcal{D}^2 f\|_{\infty} \leq L$.

Lemma 1. For all density functions $f, g \in C^2(L)$ with $\int (f-g)^2 \ge \epsilon^2$, if $r \ge c_1(\log n/n)^{1/d}$ and $\epsilon \ge c_2 n r^{d+1}$ then

$$\sup_{\|D\theta\|_2 \le 1} \langle \theta, \theta^* \rangle \ge \frac{c_2}{2} (\log n)^{1+2/d} n^{-2/d}$$

with probability at least $1 - \delta$.

Proof. By Lemmas 4 and 5, we have

$$\sup_{\|D\theta\|_{2} \le 1} \langle \theta, \theta^{\star} \rangle = \frac{1}{n} \sqrt{(\theta^{\star})^{T} L^{\dagger} \theta^{\star}}$$

$$\ge \frac{1}{\lambda_{k}} \left(\langle \theta^{\star}, \theta^{\star} \rangle - \langle P_{k}^{\perp} \theta^{\star}, P_{k}^{\perp} \theta^{\star} \rangle \right)^{2}$$
(1)

where the latter inequality holds for any k = 1, ..., n-1. We upper bound $\langle P_k^{\perp} \theta^{\star}, P_k^{\perp} \theta^{\star} \rangle$ using the following relations

$$(\theta^{\star})^T L \theta^{\star} \ge (P_k^{\perp} \theta^{\star})^T L^{\dagger} (P_k^{\perp} \theta^{\star}) \ge \lambda_k \langle P_k^{\perp} \theta^{\star}, P_k^{\perp} \theta^{\star} \rangle$$

and obtain

$$\frac{1}{\lambda_k} \left(\langle \theta^{\star}, \theta^{\star} \rangle - \langle P_k^{\perp} \theta^{\star}, P_k^{\perp} \theta^{\star} \rangle \right)^2 \ge \frac{1}{\lambda_k} \left(\langle \theta^{\star}, \theta^{\star} \rangle - \frac{(\theta^{\star})^T L \theta^{\star}}{\lambda_k} \right)^2 \\
\ge \frac{1}{\lambda_k} \left(c_1 n \epsilon^2 - \frac{c_2 n^2 r^{d+2}}{\lambda_k} \right)^2 \tag{Lemmas 2 and 3}$$

where the latter inequality occurs with probability at least $1-2\delta$. Choose k=n-1. As $r \geq c_1(\log n/n)^{1/d}$, we have that $G \leq \text{Grid}$, and as a result $4 \geq \lambda_{n-1} \geq 1$. Therefore,

$$\frac{1}{\lambda_k} \left(c_1 n \epsilon^2 - \frac{c_2 n^2 r^{d+2}}{\lambda_k} \right)^2 \ge \frac{1}{4} \left(c_1 n \epsilon^2 - c_2 n^2 r^{d+2} \right)^2
\ge \frac{1}{4} \left(c_2 n^2 r^{d+2} \right)^2
\ge \frac{1}{4} \left(c_2 n^{1-2/d} \log(n)^{1+2/d} \right)^2 = \frac{c_2^2}{4} n^{2-4/d} \log(n)^{2+4/d}$$

and the proof is complete.

Lemma 2. For any $f, g \in L^2(\mathbb{R}^d)$ satisfying the regularity conditions, such that $\int_{\mathbb{R}^d} (f-g)^2 dx \ge \epsilon^2$ there exists constant c_1 such that

$$\langle \theta^{\star}, \theta^{\star} \rangle \ge c_1 n \epsilon^2$$

with probability at least $1 - \delta$.

Lemma 3. For any $f, g \in C^2(L)$ satisfying the regularity conditions, there exists a constant c_2 such that

$$(\theta^{\star})^T L \theta^{\star} \le c_2 n^2 r^{d+2}$$

with probability at least $1 - \delta$.

2 Linear Algebra

Lemma 4. For any unweighted, undirected, connected graph G = (V, E) with incidence matrix D, and any vector $v \in \mathbb{R}^n$ with $\sum_{i=1}^n v_i = 0$,

$$\sup_{\theta: \|D\theta\|_2 \leq C} \langle \theta, v \rangle = C \sqrt{v^T L^\dagger v}$$

Additionally, for any vector $v \in \mathbb{R}^n$ (not necessarily $\sum_{i=1}^n v_i = 0$), under the additional constraint $\theta^T \mathbf{1} = 0$, the same statement holds. That is,

$$\sup_{\substack{\theta: \|D\theta\|_2 \le C, \\ \theta^T = 0}} \langle \theta, v \rangle = C\sqrt{v^T L^{\dagger} v}$$

Proof. Note that the condition $||D\theta||_2 \leq C$ is equivalent to $\theta^T L \theta \leq C$. The solution then follows from the KKT conditions.

Let L be the Laplacian matrix of a connected graph, and L^{\dagger} be the pseudo-inverse L. Write the eigendecomposition of $L^{\dagger} = U\Lambda^{\dagger}U^{T}$, where Λ is an $n \times n$ diagonal matrix with entries $0 = \lambda_{0} < \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n-1}$ and U is an orthogonal matrix with columns $U = (u_{0} \ldots u_{n-1})$. For each $k = 0, \ldots, n-1$, write $U_{k} = (u_{0} \ldots u_{k-1})$ for the first k columns of U, P_{k} as the projection operator onto the span of U_{k} , and P_{k}^{\perp} for the projection operator onto the subspace orthogonal to the span of U_{k} .

Lemma 5. For any $k = 1, \ldots, n$,

$$(\theta^{\star})^T L^{\dagger} \theta^{\star} \ge \frac{1}{\lambda_k} \left(\langle \theta^{\star}, \theta^{\star} \rangle - \langle P_k^{\perp} \theta^{\star}, P_k^{\perp} \theta^{\star} \rangle \right)^2$$

Proof. Note that Λ^{\dagger} is a diagonal matrix, with entries $\rho_{1,1} = 0$ and $\rho_{k,k} = \frac{1}{\lambda_k}$ for $k = 1, \ldots, n$. Therefore,

$$(\theta^{\star})^T L^{\dagger} \theta^{\star} = \sum_{k=1}^n \frac{\langle \theta^{\star}, u_k \rangle^2}{\lambda_k}.$$

Clearly, for any $k = 1, \ldots, n$,

$$\sum_{k=1}^{n} \frac{\langle \theta^{\star}, u_k \rangle^2}{\lambda_k} \ge \frac{\langle P_k \theta^{\star}, P_k \theta^{\star} \rangle^2}{\lambda_k}$$

and as $\langle P_k \theta^{\star}, P_k \theta^{\star} \rangle + \langle P_k^{\perp} \theta^{\star}, P_k^{\perp} \theta^{\star} \rangle = \langle \theta^{\star}, \theta^{\star} \rangle$, we obtain

$$\frac{\langle P_k \theta^*, P_k \theta^* \rangle^2}{\lambda_k} = \frac{1}{\lambda_k} \left(\langle \theta^*, \theta^* \rangle - \langle P_k^{\perp} \theta^*, P_k^{\perp} \theta^* \rangle \right)^2.$$