

Convolutional Neural Network

Taewook Ko

SCONE Lab.

Neural Network

• Network Types

- Multi-layer perceptron (MLP)
 - Fully-connected neural network (FCNN)
 - Dense Network
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)

S_{eoul} N_{ational} U_{niversity} 2022-03-23

Limitation of MLP

• Feature order and shape

- Some data has there own neighboring feature distribution
 - The context of the feature distribution
- Images!
 - Images are set of pixels
 - There is a dog image
 - There is a dog image after randomly shuffling the order of pixels
 - The shuffled image is no more a dog

Real Image

Re-ordering Image

Limitation of MLP

• Feature order and shape

- Neighboring pixels (features) has there own reason
 - Why they are neighboring together
- If there is different distribution
 - It is different data
- A feature order or shape of a data
 - May contain important information

Real Image

Re-ordering Image

Limitation of MLP

• Feature order and shape

- MLP always takes vector input
- Need Flattening when using 2D or higher input
- The important information can be lost
 - When Flattening or any manipulation on raw data
- For MLP, it has the same result when using real image and reordered image

Real Image

Re-ordering Image

MLP Flatten Input

Convolutional Operation

• Convolution operation in signal processing

$$-f * g(x) = \int f(\tau)g(x - \tau)d\tau$$
$$= \sum f(\tau)g(x - \tau)$$

- Mathematically meaning
 - A weighted average of all the inputs around the 'x'
 - Not only for the 'x'
 - Consider values around the 'x'
 - Expressed $'\tau'$ in the equation
- Convolutional is good for considering
 - Neighbor information

• Convolution Operation

$$-O[i,j] = x[i,j] * w[i,j] = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[i,j] \cdot w[i-m,j-n]$$

- When also consider adjacent neighboring information
 - 3x3 filter
 - $O_{i,j} = \sum_{m=-1}^{1} \sum_{n=-1}^{1} w_{m,n} \cdot x_{i+m+1,i+n+1}$

2	4	1	3	4
5	1	5	6	1
3	1	2	3	2
4	3	1	2	3
2	2	1	2	4

Data (5x5)

w _{0,0}	w _{0,1}	w _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}

O _{0,0}	O _{0,1}	O _{0,2}
O _{1,0}	O _{1,1}	O _{1,2}
O _{2,0}	O _{2,1}	0 _{2,2}

Output (3x3)

• Convolution Operation

- $O_{0.0}$: Convolute Data[:3,:3] with filter

$$O_{0,0} = (2 \times W_{0,0} + 4 \times W_{0,1} + 1 \times W_{0,2} + 5 \times W_{1,0} + 1 \times W_{1,1} + 5 \times W_{1,2} + 3 \times W_{2,0} + 1 \times W_{2,1} + 2 \times W_{2,2})$$

2	4	1	3	4
5	1	5	6	1
3	1	2	3	2
4	3	1	2	3
2	2	1	2	4

Data (5x5)

2
2

3x3 filter

O _{0,0}	O _{0,1}	O _{0,2}
O _{1,0}	0 _{1,1}	0 _{1,2}
O _{2,0}	0 _{2,1}	O _{2,2}

• Convolution Operation

- $O_{0,1}$: Convolute Data[1:4,1:4] with filter

$$O_{0,1} = (4 \times W_{0,0} + 1 \times W_{0,1} + 3 \times W_{0,2} + 1 \times W_{1,0} + 5 \times W_{1,1} + 6 \times W_{1,2} + 1 \times W_{2,0} + 2 \times W_{2,1} + 3 \times W_{2,2})$$

2	4	1	3	4
5	1	5	6	1
3	1	2	3	2
4	3	1	2	3
2	2	1	2	4

Data (5x5)

w _{0,0}	w _{0,1}	w _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}
W _{2,0}	W _{2,1}	W _{2,2}

3x3 filter

O _{0,0}	O _{0,1}	O _{0,2}
0 _{1,0}	0 _{1,1}	O _{1,2}
0 _{2,0}	0 _{2,1}	0 _{2,2}

• Convolution Operation

- $O_{0,2}$: Convolute Data[2:5,2:5] with filter

$$O_{0,2} = (1 \times W_{0,0} + 3 \times W_{0,1} + 4 \times W_{0,2} + 5 \times W_{1,0} + 6 \times W_{1,1} + 1 \times W_{1,2} + 2 \times W_{2,0} + 3 \times W_{2,1} + 2 \times W_{2,2})$$

2	4	1	3	4
5	1	5	6	1
3	1	2	3	2
4	3	1	2	3
2	2	1	2	4

Data (5x5)

w _{0,0}	w _{0,1}	w _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}
		·

3x3 filter

O _{0,0}	O _{0,1}	O _{0,2}
O _{1,0}	O _{1,1}	0 _{1,2}
0 _{2,0}	0 _{2,1}	0 _{2,2}

• Convolutional Operation

- Apply activation on the output
- The output of convolutional layer is called
 - Activation map

Data (5x5)

2	4	1	3	4							
5	1	5	6	1	-	$ w_{0,0} w_{0,1}$	$W_{0,2}$		$f(O_{0,0})$	$f(0_{0,1})$	$f(0_{0,2})$
3	1	2	3	2	×	$\begin{bmatrix} W_{0,0} & W_{0,1} \\ W_{1,0} & W_{1,1} \end{bmatrix}$	$W_{1,2}$	=	$f(0_{1,0})$	$f(0_{1,1})$	$f(0_{1,2})$
4	3	1	2	3		W _{2,0} W _{2,1}	W _{2,2}		f(0, 0)	$f(0_{2,1})$	f(0, s)
2	2	1	2	4		3x3 fil	ter	I		Output	

S_{eoul} N_{ational} U_{niversity} 2022-03-23

• Meaning of convolutional operation

- Aggregate filter sized features together from raw data
 - 9 features for 3x3 filter
- Aggregate features with neighboring information
 - Preserves the neighboring context of the raw data

• Meaning of filters

- Parameters to train
 - 9 parameters for 3x3 filter
- Weights, how much important a pixel is
- Extract pattern or information by weighted sum

2	4	1	3	4					•			
5	1	5	6	1		w _{0,0}	w _{0,1}	W _{0,2}		O _{0,0}	0 _{0,1}	O _{0,}
3	1	2	3	2	X	W _{1,0}	W _{1,1}	W _{1,2}	=	01,0	0 _{1,1}	01,
4	3	1	2	3		W _{2,0}	W _{2,1}	W _{2,2}		O _{2,0}	0 _{2,1}	02
2	2	1	2	4		, -	,	,		2,0	2,1	

13

Convolution Layer

• Convolutional Operation

- For 3 dimensional data
 - Ex. (R,G,B) of a image data
 - Filter is expanded to the same size of input channel
 - Element-wise multiplication for (i, j, k), make one scalar output

 $S_{\text{eoul}} \, N_{\text{ational}} \, U_{\text{niversity}}$ 2022-03-23

14

Convolution Layer

• Convolutional Operation

- For 3 dimensional data
 - Ex. (R,G,B) of a image data
 - Filter is expanded to the same size of input channel
 - Element-wise multiplication for (i, j, k), make one scalar output

 $S_{\text{eoul}} \, N_{\text{ational}} \, U_{\text{niversity}}$ 2022-03-23

• Convolutional Operation

- For 3 dimensional data
 - To extract multiple patterns

• Use several filters

Data (5x5x3)

O _{0,0,1}	O _{0,1,1}	0 _{0,2,1}
O _{1,0,1}	0 _{1,1,1}	0 _{1,2,1}
O _{2,0,1}	0 _{2,1,1}	0 _{2,2,1}

Output (3x3x2)

Two 3x3x3 filters

• Convolutional filter

- Filter size
 - Receptive field are varying depends on the filter size
 - Aggregating window size
 - \bullet (1x1), (3x3), (5x5) are commonly-used
- Filter numbers
 - Normally many filters are in advantages
 - Each filters are trained to extract different patters
 - For example
 - Filter 1, extracts horizontal lines
 - Filter 2, extracts vertical lines
 - Filter 3, extracts circular lines

Seoul National University 2022-03-23 16

• Padding

- Maintain original data size
- Reduce edge side data loss

0	0	0	0	0	0	0
0	2	4	1	3	4	0
0	5	1	5	6	1	0
0	3	1	2	3	2	0
0	4	3	1	2	3	0
0	2	2	1	2	4	0
0	0	0	0	0	0	0

Data (5x5) with zero padding

	w _{0,0}	w _{0,1}	w _{0,2}	
×	W _{1,0}	W _{1,1}	W _{1,2}	=
	W _{2,0}	w _{2,1}	w _{2,2}	
,				

3x3 filter

0 _{0,0}	0 _{0,1}	0 _{0,2}	0 _{0,3}	0 _{0,4}
O _{1,0}	0 _{1,1}	0 _{1,2}	0 _{1,3}	0 _{1,4}
O _{2,0}	0 _{2,1}	0 _{2,2}	0 _{2,3}	0 _{2,4}
O _{3,0}	0 _{3,1}	0 _{3,2}	0 _{2,3}	0 _{2,4}
04,0	0 _{4,1}	0 _{4,2}	0 _{2,3}	0 _{2,4}

Output (5x5)

S_{eoul} N_{ational} U_{niversity} 2022-03-23

• Pooling

- Max pooling
- Average pooling
- Min pooling
 - Reduce the size of activation map / Reduce model size
 - Drop less important feature

13	10	1	24
7	8	5	4
21	11	5	9
3	19	34	7

13	24
21	34

10	9
14	14

7	1
3	5

Activation map

Max pooling

Avg pooling

Min pooling

• CNN notations

- Filter
 - Parameter matrix or a tensor
- Activation map
 - Output features of convolutional operation
- Channel
 - Dimension of data or activation map
 - For color image data = (R,G,B) three channel
- Padding
- Pooling
- Stride
 - Moving step size of a filter

Seoul National University 2022-03-23 19

• Stride

- Moving step size of a filter

Stride = 1

0	0	0	0	0	0	0
0	2	4	1	3	4	0
0	5	1	5	6	1	0
0	3	1	2	3	2	0
0	4	3	1	2	3	0
0	2	2	1	2	4	0
0	0	0	0	0	0	0

Stri	de	=	2
\sim $^{\circ}$	·		_

0	0	0	0	0	0	0
0	2	4	1	3	4	0
0	5	1	5	6	1	0
0	3	1	2	3	2	0
0	4	3	1	2	3	0
0	2	2	1	2	4	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	2	4	1	3	4	0
0	5	1	5	6	1	0
0	3	1	2	3	2	0
0	4	3	1	2	3	0
0	2	2	1	2	4	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	2	4	1	3	4	0
0	5	1	5	6	1	0
0	3	1	2	3	2	0
0	4	3	1	2	3	0
0	2	2	1	2	4	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	2	4	1	3	4	0
0	5	1	5	6	1	0
0	3	1	2	3	2	0
0	4	3	1	2	3	0
0	2	2	1	2	4	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	2	4	1	3	4	0
0	5	1	5	6	1	0
0	3	1	2	3	2	0
0	4	3	1	2	3	0
0	2	2	1	2	4	0
0	0	0	0	0	0	0

• Activation map size

- *W*: image width

- *F*: filter width

- *P*: padding size

- *S*: stide size

$$\bullet \frac{W-F+2\times P}{S} + 1$$

2	4	1	3	4
5	1	5	6	1
3	1	2	3	2
4	3	1	2	3
2	2	1	2	4

3x3 filter

$5-3+2\times0$		1-	2
1	—	1—	J

O _{0,0}	0 _{0,1}	O _{0,2}
O _{1,0}	0 _{1,1}	O _{1,2}
O _{2,0}	O _{2,1}	0 _{2,2}

Output (3x3)

Data (5x5)

• Activation map size

- *W*: image width

- *F*: filter width

- *P*: padding size

- *S*: stide size

$$\bullet \frac{W-F+2\times P}{S} + 1$$

0	0	0	0	0	0	0
0	2	4	1	3	4	0
0	5	1	5	6	1	0
0	3	1	2	3	2	0
0	4	3	1	2	3	0
0	2	2	1	2	4	0
0	0	0	0	0	0	0

Data (5x5)

$$\frac{5-3+2\times 1}{2} + 1 = 3$$

0,0	w _{0,1}	$W_{0,2}$		O _{0,0}	0 _{0,1}	O _{0,2}
1,0	W _{1,1}	W _{1,2}	=	O _{1,0}	0 _{1,1}	0 _{1,2}
2,0	w _{2,1}	W _{2,2}		O _{2,0}	0 _{2,1}	0 _{2,2}
3x	x3 filt	er		_	(0	

Compare to MLP

- MLP requires input shape of 1D vector
 - When dealing image data, need flattening
 - MNIST data : $(28 \times 28 \times 3)$ image to $(1 \times 2,352)$ vector
- MLP requires to many parameters
 - $W^l \in \mathbb{R}^{d_1 \times d_2}$
 - Needs huge number of parameters with large image
 - For $(256 \times 256 \times 3)$ image
 - The first layer parameters are size of (196,608 \times d_2)
 - Not depend on the input size for CNN
 - Parameter size = filter size
- CNN can reduce parameter size a lot

Seoul National University 23 2022-03-23

Compare to MLP

- Neighboring Feature aggregation
 - Some neighboring features have their own pattern
 - CNN works better if data has their neighboring context
 - Image
 - Sentence (word order is important)
 - I am a boy and you are a girl
 - A I you and are girl boy a am

Image

CNN

MLP

Limitations

• Restricted receptive field

- Convolutional operation is an advantage of CNN
 - Aggregate neighbor features or data together
- But the receptive field is fixed by the size of filter
- Out of receptive field data are not considered together
 - Example, For sentence data
 - "KENTECH is an energy-specialized college that focuses on energy science and technology located in Naju."
 - If the receptive field is small
 - Cannot aggregate 'KENTECH' and 'Naju' together
 - Reason why 'Attention mechanism' proposed
- Nevertheless, CNN has made unprecedent advances in performance in computer vision.

 $S_{\text{eoul}} \, N_{\text{ational}} \, U_{\text{niversity}}$ 2022-03-23 25

• ImageNet Large Scale Visual Recognition Challenge

- Image classification task
 - Classify given images out of 1,000 categories
- Train/Valid/Test = 1M/50k/150k
- 2010 to 2017

2022-03-23

- During the ImageNet challenges
 - Hundreds of papers published
 - Huge breakthrough in computer vision and AI
 - Higher score than human

27

ILSVRC

- ImageNet Large Scale Visual Recognition Challenge
 - Accuracy loss for the winner models

Seoul National University 2022-03-23

28

ILSVRC

- ImageNet Large Scale Visual Recognition Challenge
 - Accuracy loss for the winner models

S_{eoul} N_{ational} U_{niversity} 2022-03-23

• AlexNet

- Input: (224x224x3)
- Output: (1x1000)
- 5 convolution (CNN) and 2 fully connected (MLP)

[2] K, Alex, G. Hinton. NIPS 2012

• AlexNet

	Filter	Stride	Padding	Input	Output
Conv1	11x11x3 (96)	4	0	224x224x3	55x55x96
Maxpool1	3x3	2	-	55x55x96	27x27x96
Norm1	-	-	-	27x27x96	27x27x96
Conv2	5x5x96 (256)	1	2	27x27x96	27x27x256
Maxpool2	3x3	2	-	27x27x256	13x13x256
Norm2	-	-	-	13x13x256	13x13x256
Conv3	3x3x256 (348)	1	1	13x13x256	13x13x384
Conv4	3x3x384 (348)	1	1	13x13x384	13x13x384
Conv5	3x3x384 (256)	1	1	13x13x384	13x13x256
Maxpool3	3x3	2	-	13x13x256	6x6x256
FC1	-	-	-	6x6x256	4096
FC2	-	-	-	4096	1000

• GoogLeNet

- a.k.a. Inception Net
- Inception ← The movie name!
 - It is an SF movie we go deeper and deeper into a dream
 - The authors want to make deeper CNN layers
- 22 Layers
 - Blue block : Convolution layer with filter
 - Red block : Pooling layer
 - Green block: Concatenation
 - Yellow block : Softmax layer

• GoogLeNet

- Inception module
 - 8 inception modules in GoogLeNet
 - Apply (1x1), (3x3), (5x5) filters and max pooling
 - Then concatenate the activation maps

32 $S_{\text{eoul}} \, N_{\text{ational}} \, U_{\text{niversity}}$ 2022-03-23

• GoogLeNet

- Inception module overview
 - The concatenated output has
 - All information of (1x1), (3x3), (5x5)

- What is the (1x1) filter for?
 - (1x1) filter has no convolution effect
 - But apply convolutional operation,
 - We can adjust activation map channel
 - If input data is size of (100x100x30)
 - We apply 10 (1x1x30) filters
 - Then the output shape is (100x100x10)
 - Still had channel-wise convolution effect

Seoul National University 33 2022-03-23

• GoogLeNet

- x12 less parameters than AlexNet
 - Use less number of filters
- There are three outputs for the model
 - Called auxiliary classification
- To prevent gradient vanishing issue
 - Make intermediate prediction and calculate loss
 - Add gradient
 - Our main goal is the last prediction performance

S_{eoul} N_{ational} U_{niversity} 2022-03-23

• GoogLeNet

type	patch size/	output	depth	#1×1	#3×3	#3×3	#5×5	#5×5	pool	params	ops
	stride	size			reduce		reduce		proj		_
convolution	$7 \times 7/2$	$112 \times 112 \times 64$	1							2.7K	34M
max pool	$3 \times 3/2$	$56 \times 56 \times 64$	0								
convolution	$3 \times 3/1$	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3 \times 3/2$	$28 \times 28 \times 192$	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	$3\times3/2$	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

 $S_{\text{eoul}} \, N_{\text{ational}} \, U_{\text{niversity}}$ 2022-03-23 35

• ResNet

- Residual connection
- Reduce gradient vanishing issue and make deeper layer

37

ILSVRC

• ResNet

- Residual block
 - Add identity value to layer output
- Prevent gradient vanishing
 - (F(x) + x)' = F'(x) + 1
 - Gradients maintain at least 1

Seoul National University 2022-03-23

• ResNet

- Model overview of 34 layered ResNet
- Boxes indicates convolution layer
- Residual connections for every two layers
 - When the addition is possible (same size)
 - Dashed lines are size mis-match
 - Apply (1x1) filter to adjust feature map size

2022-03-23 Seoul National University 38

• ResNet

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7 , 64, stride 2				
conv2_x	56×56	3×3 max pool, stride 2				
		$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$ \left[\begin{array}{c} 3\times3,64\\3\times3,64 \end{array}\right]\times3 $	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
		_				
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $
	1×1	average pool, 1000-d fc, softmax				

S_{eoul} N_{ational} U_{niversity} 2022-03-23

Reference

- [1] https://image-net.org/challenges/LSVRC/
- [2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012).
- [3] Szegedy, Christian, et al. "Going deeper with convolutions." *Proceedings of* the IEEE conference on computer vision and pattern recognition. 2015.[4] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks" from overfitting." The journal of machine learning research 15.1 (2014): 1929-1958.
- [4] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Seoul National University 2022-03-23 40