Data Visualization and Pre-processing

Import libraries

	In [1]:
<pre>import numpy as np</pre>	
<pre>import pandas as pd</pre>	
<pre>import seaborn as sns</pre>	
<pre>import matplotlib.pyplot as plt</pre>	

Load dataset

<pre>from google.colab import drive drive.mount('/content/drive')</pre>	In [2]:
Mounted at /content/drive	•
<pre>data = pd.read_csv('drive/My Drive/Churn_Modelling.csv')</pre>	In [3]:
data.head()	

								Out	[3]:					
	Row Nu mbe r	Cus tom erId	Su rn am e	Cre ditS core	Geo gra phy	G en de r	A g e	Te nu re	Bal anc e	Num OfPr oduct s	Has CrC ard	IsActi veMe mber	Estim atedS alary	E xi te d
0	1	156 346 02	Ha rgr ave	619	Fra nce	Fe m ale	4 2	2	0.0	1	1	1	10134 8.88	1
1	2	156 473 11	Hil 1	608	Spai n	Fe m ale	4	1	838 07. 86	1	0	1	11254 2.58	0
2	3	156 193 04	On io	502	Fra nce	Fe m ale	4 2	8	159 660 .80	3	1	0	11393 1.57	1
3	4	157 013	Bo ni	699	Fra nce	Fe m	3 9	1	0.0	2	0	0	93826 .63	0

	Row Nu nbe r	Cus tom erId	Su rn am e	Cre ditS core	Geo gra phy	G en de r	A g e	Te nu re	Bal anc e	Num OfPr oduct s	Has CrC ard	IsActi veMe mber	Estim atedS alary	E xi te d
		54				ale								
4	5	157 378 88	Mit che ll	850	Spai n	Fe m ale	4 3	2	125 510 .82	1	1	1	79084 .10	0
InA data.info()											InÂ	[4]:		
In [4]: data.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns): # Column</class>														
12 13	ΕΣ	kited		alary	100	10000 non-null int64								
_	dtypes: float64(2), int64(9), object(3) memory usage: 1.1+ MB													

Visualisations

1. Univariate Analysis

In [5]:
data['Gender'].value_counts()

Out[5]:
Male 5457
Female 4543

```
Name: Gender, dtype: int64
                                                               In [7]:
# Plotting the features of the dataset to see the correlation
between them
plt.hist(x = data.Gender, bins = 3, color = 'pink')
plt.title('comparison of male and female')
plt.xlabel('Gender')
plt.ylabel('population')
plt.show()
                                                               In [6]:
data['Age'].value counts()
                                                               Out[6]:
37
      478
38
      477
35
      474
36
      456
34
      447
92
        2
82
        1
88
        1
        1
85
83
        1
Name: Age, Length: 70, dtype: int64
                                                               In [8]:
# comparison of age in the dataset
plt.hist(x = data.Age, bins = 10, color = 'orange')
plt.title('comparison of Age')
plt.xlabel('Age')
plt.ylabel('population')
plt.show()
                                                               In [9]:
data['Geography'].value counts()
                                                               Out[9]:
France
           5014
Germany
           2509
           2477
Spain
Name: Geography, dtype: int64
                                                              In [10]:
# comparison of geography
```

```
plt.hist(x = data.Geography, bins = 5, color = 'green')
plt.title('comparison of Geography')
plt.xlabel('Geography')
plt.ylabel('population')
plt.show()
                                                              In [11]:
data['HasCrCard'].value counts()
                                                              Out[11]:
1
     7055
     2945
0
Name: HasCrCard, dtype: int64
                                                              In [12]:
# comparision of how many customers hold the credit card
plt.hist(x = data.HasCrCard, bins = 3, color = 'red')
plt.title('how many people have or not have the credit card')
plt.xlabel('customers holding credit card')
plt.ylabel('population')
plt.show()
                                                              In [13]:
data['IsActiveMember'].value counts()
                                                              Out[13]:
1
     5151
     4849
Name: IsActiveMember, dtype: int64
                                                              In [14]:
# How many active member does the bank have ?
plt.hist(x = data.IsActiveMember, bins = 3, color = 'brown')
plt.title('Active Members')
plt.xlabel('Customers')
plt.ylabel('population')
plt.show()
2. Bi - Variate Analysis
                                                              In [15]:
# comparison between Geography and Gender
Gender = pd.crosstab(data['Gender'], data['Geography'])
```

```
Gender.div(Gender.sum(1).astype(float), axis=0).plot(kind="bar",
stacked=True, figsize=(6, 6))
                                                             Out[15]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a93dbbfd0>
                                                             In [16]:
# comparison between geography and card holders
HasCrCard = pd.crosstab(data['HasCrCard'], data['Geography'])
HasCrCard.div(HasCrCard.sum(1).astype(float), axis =
0).plot(kind = 'bar',
                                             stacked =
True, figsize = (6, 6))
                                                             Out[16]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a93ced590>
                                                             In [17]:
# comparison of active member in differnt geographies
IsActiveMember = pd.crosstab(data['IsActiveMember'],
data['Geography'])
IsActiveMember.div(IsActiveMember.sum(1).astype(float), axis =
0).plot(kind = 'bar',
                                              stacked = True,
figsize= (6, 6))
                                                             Out[17]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a93c7c950>
                                                             In [18]:
# comparing ages in different geographies
Age = pd.crosstab(data['Age'], data['Geography'])
Age.div(Age.sum(1).astype(float), axis = 0).plot(kind = 'bar',
                                            stacked = True,
figsize = (15, 15))
                                                             Out[18]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a93bfea10>
                                                             In [19]:
# calculating total balance in france, germany and spain
total france = data.Balance[data.Geography == 'France'].sum()
total germany = data.Balance[data.Geography == 'Germany'].sum()
total spain = data.Balance[data.Geography == 'Spain'].sum()
```

```
print("Total Balance in France :", total france)
print("Total Balance in Germany :", total germany)
print("Total Balance in Spain :",total spain)
Total Balance in France: 311332479.49
Total Balance in Germany: 300402861.38
Total Balance in Spain: 153123552.01
                                                              In [20]:
# plotting a pie chart
labels = 'France', 'Germany', 'Spain'
colors = ['cyan', 'magenta', 'orange']
sizes = [311, 300, 153]
explode = [ 0.01, 0.01, 0.01]
plt.pie(sizes, colors = colors, labels = labels, explode =
explode, shadow = True)
plt.axis('equal')
plt.show()
3. Multi - Variate Analysis
                                                              In [21]:
sns.pairplot(data=data, hue='Exited')
                                                              Out[21]:
<seaborn.axisgrid.PairGrid at 0x7f6a93ddd510>
Descriptive statistics
                                                              In [23]:
#Statistical analysis
data.describe()
```

	Row Num ber	Cust omer Id	Cred itSco re	Age	Tenu re	Balan ce	Num OfPro ducts		IsActi veMe mber	Estim atedS alary	Exite d
co	1000	1.000	1000	1000	1000	10000	10000.	1000	10000.	10000.	1000
u	0.00	000e	0.000	0.000	0.000	.0000	00000	0.00	00000	00000	0.000
nt	000	+04	000	000	000	00	0	000	0	0	000

Out[23]:

	Row Num ber	Cust omer Id	Cred itSco re	Age	Tenu re	Balan ce	Num OfPro ducts	Has CrC ard	IsActi veMe mber	Estim atedS alary	Exite d
m ea n	5000 .500 00	1.569 094e +07	650.5 2880 0	38.92 1800	5.012 800	76485 .8892 88	1.5302	0.70 550	0.5151	10009 0.2398 81	0.203 700
st d	2886 .895 68	7.193 619e +04	96.65 3299	10.48 7806	2.892 174	62397 .4052 02	0.5816 54	0.45 584	0.4997 97	57510. 49281 8	0.402 769
m in	1.00 000	1.556 570e +07	350.0 0000 0	18.00 0000	0.000	0.000	1.0000	0.00	0.0000	11.580 000	0.000
2 5 %	2500 .750 00	1.562 853e +07	584.0 0000 0	32.00 0000	3.000	0.000	1.0000	0.00	0.0000	51002. 11000 0	0.000
5 0 %	5000 .500 00	1.569 074e +07	652.0 0000 0	37.00 0000	5.000	97198 .5400 00	1.0000	1.00 000	1.0000	10019 3.9150 00	0.000
7 5 %	7500 .250 00	1.575 323e +07	718.0 0000 0	44.00 0000	7.000	12764 4.240 000	2.0000	1.00 000	1.0000	14938 8.2475 00	0.000
m a x	1000 0.00 000	1.581 569e +07	850.0 0000 0	92.00 0000	10.00 0000	25089 8.090 000	4.0000	1.00 000	1.0000	19999 2.4800 00	1.000

Handle the Missing values

In [24]:

#Missing Values
data.isnull().sum()

Out[24]:

```
0
CustomerId
Surname
                    0
CreditScore
                    0
Geography
                    0
Gender
                    0
                    0
Age
Tenure
                    0
Balance
                    0
NumOfProducts
                    0
HasCrCard
                    0
IsActiveMember
                    0
EstimatedSalary
                    ()
                    0
Exited
dtype: int64
```

No missing values are found.

Find the outliers and replace the outliers

```
In [25]:
sns.boxplot(data = data, x = 'CreditScore')
                                                              Out[25]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a8ecfe7d0>
                                                              In [26]:
sns.boxplot(data = data, x = 'Age')
                                                              Out[26]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a8e9a3f50>
                                                              In [27]:
sns.boxplot(data = data, x = 'Balance')
                                                              Out[27]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a8d0e0e90>
                                                              In [28]:
sns.boxplot(data = data, x = 'EstimatedSalary')
                                                              Out[28]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a8d0e0c50>
                                                              In [29]:
for i in data:
    if data[i].dtype=='int64' or data[i].dtypes=='float64':
        q1=data[i].quantile(0.25)
        q3=data[i].quantile(0.75)
```

iqr=q3-q1
upper=q3+1.5*iqr
lower=q1-1.5*iqr
data[i]=np.where(data[i] >upper, upper, data[i])
data[i]=np.where(data[i] <lower, lower, data[i])</pre>

In [30]:

data.describe()

Out[30]:

					0 0.1	[0 0].					
	Row Num ber	Cust omer Id	Cred itSco re	Age	Tenu re	Balan ce	NumO fProd ucts	Has CrC ard	IsActi veMe mber	Estim atedSa lary	Ex ite d
co u nt	1000 0.000 00	1.000 000e +04	1000 0.000 000	1000 0.000 000	1000 0.000 000	10000 .0000 00	10000. 00000 0	1000 0.00 000	10000. 00000 0	10000. 00000 0	10 00 0.0
m ea n	5000. 5000 0	1.569 094e +07	650.5 6130 0	38.66 0800	5.012 800	76485 .8892 88	1.5272 00	0.70 550	0.5151	10009 0.2398 81	0.0
st d	2886. 8956 8	7.193 619e +04	96.55 8702	9.746 704	2.892 174	62397 .4052 02	0.5700 81	0.45 584	0.4997 97	57510. 49281 8	0.0
m in	1.000	1.556 570e +07	383.0 0000 0	18.00 0000	0.000	0.000	1.0000	0.00	0.0000	11.580 000	0.0
2 5 %	2500. 7500 0	1.562 853e +07	584.0 0000 0	32.00 0000	3.000	0.000	1.0000	0.00	0.0000	51002. 11000 0	0.0
5 0 %	5000. 5000 0	1.569 074e +07	652.0 0000 0	37.00 0000	5.000	97198 .5400 00	1.0000	1.00 000	1.0000	10019 3.9150 00	0.0
7 5 %	7500. 2500 0	1.575 323e +07	718.0 0000 0	44.00 0000	7.000 000	12764 4.240 000	2.0000	1.00 000	1.0000	14938 8.2475 00	0.0

	Num	Cust omer Id	Cred itSco re	Age	Tenu re	Balan ce	NumO fProd ucts	CrC	veMe	Estim atedSa lary	ite
m a x	1000 0.000 00	1.581 569e +07	850.0 0000 0	62.00 0000	10.00 0000	25089 8.090 000	3.5000	1.00 000	1.0000	19999 2.4800 00	0.0

Preprocessing

Split the data into dependent and independent variables

```
In [33]:
# splitting the dataset into x(independent variables) and
y(dependent variables)

x = data.iloc[:,0:10]
y = data.iloc[:,10]

print(x.shape)
print(y.shape)

print(x.columns)
(10000, 10)
(10000,)
```

Check for Categorical columns and perform encoding

In [34]:
Encoding Categorical variables into numerical variables
One Hot Encoding

x = pd.get_dummies(x)
x.head()

Out[34]: Num **IsAct** Gen Gen Cre \mathbf{T} Ha Esti Geogr Geogr Geog Ba A dit OfPr iveM aphy_ aphy_ sCr mate raph der_ der en lan Sco oduc Ca embe dSal Fem ur Franc Germa y_Sp $_{\mathbf{M}}$ \mathbf{e} ce rd ale ale re e ts r ary e ny ain 2. 619 0.0 1013 1.0 1 0 0 1 1.0 1.0 0 0 48.88 0. 0 83 608 1. 80 1 1125 1.0 0.0 1.0 0 0 1 1 0 .0 0 7.8 42.58 0 6 4 15 502 2 8. 96 1139 3.0 1.0 0.0 1 0 0 1 0 0. 0 60. 31.57 0 80 699 9 1. 0.0 9382 2.0 1 0 0.0 0.0 0 1 0 .0 0 6.63 0

	Cre dit Sco re	A g e	ur	oauc	Ca	embe	uSai	r ranc	Geogr aphy_ Germa ny	y_Sp	rein	_111
4	850 .0	-		 1.0	1.0	1.0	7908 4.10	0	0	1	1	0

Split the data into training and testing

```
In [35]:
# splitting the data into training and testing set

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size = 0.25, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
(7500, 13)
(7500,)
(2500, 13)
(2500,)
```

Scale the independent variables

```
In [36]:
# Feature Scaling
# Only on Independent Variable to convert them into values
ranging from -1 to +1

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)

x_train = pd.DataFrame(x_train)
x_train.head()
```

												Οt	ແເວບ].
	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.73	0.04	0.00	0.67	2.58	1.55	1.03	1.64	1.01	1.76	0.57	1.08	1.08
	682	228	886	316	323	362	446	081	558	021	468	726	726
	8	3	0	0	1	4	0	0	8	6	2	1	1
1	1.02	0.67	0.00	1.20	0.82	0.64	1.03	0.07	0.98	0.56	0.57	1.08	1.08
	525	449	886	772	257	365	446	927	465	811	468	726	726
	7	6	0	4	8	7	0	2	1	2	2	1	1
2	0.80	0.46	1.39	0.35	0.82	0.64	0.96	0.99	1.01	0.56	1.74	1.08	1.08
	886	970	329	693	257	365	668	684	558	811	009	726	726
	1	2	3	7	8	7	8	0	8	2	4	1	1
3	0.39	0.06	0.00	0.00	0.93	0.64	0.96	1.59	1.01	0.56	1.74	0.91	0.91
	667	011	886	935	807	365	668	174	558	811	009	974	974
	7	4	0	6	6	7	8	6	8	2	4	3	3
4	0.46	1.37	0.70	1.20	0.82	0.64	0.96	1.28	0.98	0.56	0.57	0.91	0.91
	890	344	107	772	257	365	668	330	465	811	468	974	974
	8	4	7	4	8	7	8	2	1	2	2	3	3