Percentile Bootstrap CIs

Arsenic in groundwater

Occurs naturally in the groundwater in Bangladesh

Groundwater is often used for drinking water in rural areas

Arsenic poisoning is a serious public health issue

The data


```
min Q1 median Q3 max mean sd n 0.5 6 22 109 2400 125.3199 297.9755 271
```

Bootstrapping arsenic concentrations

Observed sample mean: 125.3199

Mean of bootstrap distribution: 125.2212

Standard error of bootstrap distribution: 18.24569

Percentile method for bootstrap Cls

To form P·100% bootstrap confidence intervals use the following endpoints:

Lower endpoint: (1-P)/2 percentile

Upper endpoint: 1 - (1 - P)/2 percentile

99% CI for μ : 82.78694 to 179.2097 μ g/L

A. We are 99% sure that all arsenic levels will be between 82.79 and 179.21 μ g/L.

B. 99% of arsenic levels will be between 82.79 and 179.21 μ g/L.

C. We are 99% sure that the average arsenic levels for this sample will be between 82.79 and 179.21 μ g/L.

99% CI for μ : 82.78694 to 179.2097 μ g/L

D. We are 99% sure that the mean arsenic concentration in the groundwater is between 82.79 and 179.21 $\mu \rm g/L.$

E. We are 99% sure that the confidence interval for the mean arsenic concentration in the groundwater will be between 82.79 and 179.21 μ g/L.

F. There is a 99% chance that the mean arsenic concentration is between 82.79 and 179.21 μ g/L.

Cautions

Percentile intervals should not be used for small samples

Rule of thumb: bootstrap distribution should appear to be smooth

Applies to the bootstrap in general

Estimation

VS

Testing

Philosophical differences

Hypothesis testing: goal is to make a specific decision about a parameter

Confidence intervals: goal is to <u>estimate</u> a parameter

Connections

Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree

Connections

99% CI for μ : 82.78694 to 179.2097 μ g/L

Consider $H_0 = 50 \mu g/L vs. H_0 \neq 50$

Consider $H_0 = 50 \mu g/L vs. H_0 > 50$