Отчёт

По индивидуальному заданию Вариант 23, 24

Выполнил: Радько В. А.

Первичная обработка статистических данных

Была дана выборка значений случайных величин «Число вызовов, поступивших на ATC за некоторый промежуток времени», обозначим её ξ , и «Продолжительность разговора (мин.)» обозначим её η .

Рассмотрим первую выборку $\{x_i\}$, её объём n=100. Сначала определим размах выборки, для этого находим $\min(x_i)=1$ и $\max(x_i)=21$. Разобьём интервал [1,21] на $k_1=10$ частей и построим вариационный ряд.

$[a_i, a_{i+1})$	[1,3)	[3,5)	[5,7)	[7,9)	[9, 11)	[11, 13)	[13, 15)	[15, 17)	[17, 18)	[19, 21]
$\frac{m_i}{n}$	0.06	0.23	0.35	0.2	0.1	0.04	0.01	0.0	0.0	0.1

Таблица 1: Вариационный ряд $\{x_i\}$

Рис. 1: Гистограмма $\{x_i\}$

Оценим $M\xi$ средним арифметическим:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \approx 6.08$$
 (1)

Дисперсию $D\xi$ будем оценивать формулой:

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n x_i^2 - \frac{n}{n-1} \bar{x}^2 \approx 8.2562$$
 (2)

Оценка среднеквадратического отклонения:

$$s_x = \sqrt{s_x^2} \approx 2.8734\tag{3}$$

Интервальные оценки числовых характеристик

Так как случайная величина

$$\frac{s^2}{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n \frac{\left(\xi_i - \bar{\xi}\right)^2}{\sigma^2} \in \frac{1}{n-1} \chi_{n-1}^2,\tag{4}$$

тогда получим, что

$$\frac{\bar{\xi} - m}{s} \sqrt{n} = \frac{\frac{\bar{\xi} - m}{\sigma} \sqrt{n}}{\frac{s}{\sigma}} = \frac{\frac{\bar{\xi} - m}{\sigma} \sqrt{n}}{\sqrt{\frac{s^2}{\sigma^2}}} \in t_{n-1}.$$
 (5)

Выберем уровень доверия $\gamma = 0.95$. Тогда для выбранного уровня доверия определим величину t_{γ} такую, что будет выполняться $P\left(|t_{n-1}| < t_{\gamma}\right) = \gamma$. Воспользуемся функцией, обратной функции распределения, tinv из пакета Matlab.

tinv(
$$(1 - 0.95)/2$$
, 99) = -1.98;
tinv(0.95 + $(1 - 0.95)/2$, 99) = 1.98;

Преобразуем левую часть уравнения (5):

$$\bar{x} - \frac{s_x}{\sqrt{n}} t_\gamma < M\xi < \bar{x} + \frac{s_x}{\sqrt{n}} t_\gamma$$

$$\frac{s_x}{\sqrt{n}} t_\gamma = \frac{2.8734}{10} \cdot 1.98 = 0.5689$$

$$\bar{x} - 0.5689 < M\xi < \bar{x} + 0.5689$$

$$5.5111 < M\xi < 6.6489$$

Следовательно, $M\xi \in (5.5111, 6.6489)$ с уровнем доверия $\gamma = 0.95$.

Теперь будем искать доверительный интервал для $D\xi$. Рассмотрим случайную величину $U=(n-1)\frac{s^2}{\sigma_\xi^2}$. Из уравнения (4) видно, что $U\in\chi^2_{n-1}$. Выберем интервал (U_1,U_2) так, чтобы вероятность попадания U левее и правее него была одинаковой и равной, следовательно, $(1-\gamma)/2$. При доверительной вероятности $\gamma=0.95$ имеем (1-0.95)/2=0.025. Для вычисления значения U_1 и U_2 воспользуемся функцией chi2inv из пакета Matlab.

chi2inv(
$$0.025$$
, 99) = 73.36
chi2inv(1 - 0.025 , 99) = 128.42

Тогда получаем:

$$73.36 < 99 \cdot \frac{8.2562}{\sigma_{\xi}^2} < 128.42$$

$$6.36 < D\xi < 11.14$$
(6)

Следовательно $D\xi \in (6.36, 11.14)$ с уровнем доверия $\gamma = 0.95$.

Проверка гипотезы о равенстве значения числовой характеристики фиксированному числу

Проверим гипотезу о равенстве значения $M\xi$ некоторому фиксированному числу. Сформулируем простую основную гипотезу и сложную альтернативную:

$$H_0: M\xi = \mu_0 = [\bar{x}] = 6$$

 $H_1: M\xi \neq \mu_0 = 6$

Запишем критерий проверки справедливости гипотезы:

$$T = t_{n-1} = \frac{\bar{x} - \mu_0}{s} \sqrt{n} \tag{7}$$

Выберем уровень значимости $\alpha = 0.01$, тогда поскольку критерий подчиняется закону распределения Стьюдента с параметром n-1, тогда определим $t_{\text{кр.}}$, исходя из того, что $P(|t_{n-1}| > t_{\text{кр.}}) = \alpha$.

Используя функцию, обратную функции распределения tinv, получим:

tinv(
$$0.01/2$$
, 99) = -2.62
tinv((1 - 0.01) + 0.01/2, 99) = 2.62

Вычислим $T_{\text{набл.}}$:

$$T_{\text{набл.}} = \frac{\bar{x} - \mu_0}{s_x} \cdot \sqrt{n} = \frac{6.08 - 6}{2.8734} \cdot 10 = 0.27842$$
 (8)

Так как $T_{\text{набл.}} \in Q_{\text{доп.}} \Rightarrow$ оснований отвергать гипотезу H_0 у нас нет, и мы её принимаем. Вычислим вероятности ошибок второго рода полагая: $H_1': \mu_1 = 5.5$ и $H_2'': \mu_2 = 6.5$. Согласно теореме Леви, будем считать, что распределение вероятностей t_{n-1} мало отличается от $N\left(\bar{y} - \mu_1; \frac{s_x}{\sqrt{n}}\right)$. тогда вероятность ошибки второго рода будет:

$$\beta = \Phi\left(\frac{\mu_0 - \mu_1}{s}\sqrt{n} + t_{\text{\tiny KP.}}\right) - \Phi\left(\frac{\mu_0 - \mu_1}{s}\sqrt{n} - t_{\text{\tiny KP.}}\right).$$

Получим $\beta' = \beta'' = 0.81054$.

Проверим гипотезу равенства дисперсии определённому числу. Запишем гипотезы, критерий и уровень значимости:

$$H_0: D\xi = [s_x^2] = 8$$

 $H_1: D\xi \neq 8$
 $T = \chi_{n-1}^2 = (n-1)\frac{s_x^2}{\sigma_0^2}$
 $\alpha = 0.01$

C помощью chi2inv вычислим $\chi^2_{ ext{крит.}}$, такое что $P\left(\chi^2_{n-1}>\chi^2_{ ext{крит.}}\right)=\alpha.$

chi2inv(1 - 0.01, 99) = 134.64

Вычислим $T_{\text{набл.}}$:

$$T_{\text{набл.}} = (n-1)\frac{s_x^2}{\sigma_0^2} = 99 \cdot \frac{8.2562}{8} = 102.17$$
 (9)

Поскольку $T_{\text{набл.}} \in Q_{\text{доп.}} \Rightarrow$ оснований не принимать гипотезу H_0 нет, мы её принимаем.

Проверка гипотезы о совпадении значений одноимённых числовых характеристик двух различных случайных величин

Проверим гипотезу о совпадении дисперсий двух случайных величин. Рассмотрим дисперсии рассматриваемой нами случайной величины $D\xi$ и другой $D\xi'$. Полученные точечные оценки дисперсий: $s_x^2 = 8.2562$ и $s_x'^2 = 9.4016$. Сформулируем гипотезы:

$$H_0: \frac{D\xi'}{D\xi} = 1$$

$$H_1: \frac{D\xi'}{D\xi} > 1$$

$$T = f_{n'-1,n-1} = \frac{\chi_{n'-1}^2/(n'-1)}{\chi_{n-1}^2/(n-1)}$$

Критерием проверки справедливости гипотезы будет отношение $T \in F(n'-1, n-1)$ - подчиняющееся распределению Фишера-Снедекора (F-распределению).

Выберем уровень значимости $\alpha = 0.01$, тогда:

$$finv(1 - 0.01, 99, 99) = 1.6015$$

Вычислим $f_{\text{набл.}}$:

$$f_{\text{набл.}} = \frac{s_x'^2}{s_x^2} = \frac{9.4016}{8.2562} = 1.1387$$
 (10)

Поскольку $1.1387 < 1.6015 \Rightarrow T \in Q_{\text{доп.}}$, а значит мы принимаем гипотезу $H_0: D\xi = D\xi'$. Используем этот результат в проверке гипотезы о равенстве математических ожиданий. Запишем гипотезы и критерий:

$$H_0: M\xi = M\xi'$$

$$H_1: M\xi \neq M\xi'$$

$$T = t_{n_1+n_2-2} = \frac{\bar{x} - \bar{x}'}{s} \cdot \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}},$$

$$s^2 = \frac{1}{n_1 + n_2 - 2} \left((n_1 - 1) s_x^2 + (n_2 - 1) s_{x'}^2 \right) \right)$$

tinv(1 - 0.01, 100 + 100 - 2) = 2.345

Следовательно, при уровне значимости $\alpha=0.01,\,|t_{\text{крит.}}|=2.345.$ Вычислим $T_{\text{набл.}}$:

$$s^2 = \frac{1}{198} (99 \cdot 8.2562 + 99 \cdot 9.4016) = 8.8289$$
 $T_{\text{\tiny Ha6.7.}} = \frac{6.08 - 4.82}{\sqrt{8.8289}} \cdot \sqrt{\frac{100 \cdot 100}{2 \cdot 100}} = 2.9985$

Поскольку $T_{\text{набл.}} > t_{\text{крит.}} \Rightarrow$ отклоняем гипотезу H_0 и принимаем H_1 , при этом вероятность ошибки первого рода равна $\alpha = 0.01$.

Проверка гипотезы о виде закона распределения

В нашем случае гистограмма похожа на плотность вероятности гамма-распределения. Плотность вероянтости гамма-распределения:

$$p(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \cdot x^{\alpha - 1} e^{-\left(\frac{x}{\beta}\right)}, & x > 0 \end{cases},$$

где α и β – числовые параметры распределения. Найдём эти параметры:

$$\begin{split} &M\xi=\alpha\cdot\beta, D\xi=\alpha\cdot\beta^2 \Rightarrow \\ &\Rightarrow \alpha=\frac{M^2\xi}{D\xi}, \beta=\frac{D\xi}{M\xi} \\ &M\xi=6, D\xi=8 \Rightarrow \alpha=\frac{36}{8}=4.5, \beta=\frac{8}{6}=1.33 \end{split}$$

Критерием будет случайная величина:

$$T = \chi_{k-l-1}^2 = \sum_{j=1}^k \frac{(m_j - np_j)^2}{np_j}$$

где k=6 – количество интервалов вариационного ряда, а l=2 – количество параметров распределения, которые заменяются их точечными оценками, тогда при урове значимости $\alpha=0.01,\,\chi^2_{\text{крит.}}=11.345.$

$$chi2inv(1 - 0.01, 6 - 2 - 1) = 11.345$$

	$\left[\left(a_{j_1}; a_j \right] \right]$	m_j	p_j	np_j	$(m_j - np_j)^2/np_j$
1	[1;3)	6	0.12245	12.245	2.6187
2	[3;5)	23	0.2914	29.14	1.2937
3	[5;7)	35	0.27369	27.369	2.1277
4	[7;9)	20	0.16968	12.968	3.8132
5	[9;11)	10	0.083499	8.3499	0.32609
6	[11; 21]	6	0.056166	5.6166	0.026172
Σ		100	0.99689		10.206

Получили $\chi^2_{\text{набл.}} = 10.206 < 11.345 \Rightarrow$ у нас нет оснований отклонять гипотезу $H_0: \xi \in \Gamma(\alpha, \beta)$.

Проверка гипотезы о совпадении законов распределения двух случайных величин

Имеем вариационный ряд, построенный по выборке x_i' значений случайной величины ξ' и подогнанный к разбиению вариационного ряда ξ , чтобы $a_i = a_i'$.

$[a_i, a_{i+1})$	[1,3)	[3, 5)	[5,7)	[7,9)	[9, 11)	[11, 13)	[13, 15)	[15, 17)	[17, 18)	[19, 21]
$\frac{m_i}{n}$	0.17	0.35	0.31	0.11	0.02	0.01	0.0	0.01	0.01	0.01

Таблица 2: Вариационный ряд $\{x_i'\}$

По этой выборке так же имеем: $\bar{x}' = 4.82, s'^2 = 9.4016, s' = 3.0662$. Формулируем гипотезу и критерий:

$$H_0: F_{\xi}(x) = F_{\xi'}(x)$$

$$T = \chi_{k-1}^2 = n_1 \cdot n_2 \sum_{j=1}^k \frac{1}{m_j + m'_j} \left(\frac{m_j}{n_1} - \frac{m'_j}{n_2} \right)^2 \stackrel{(n_1 = n_2 = 100)}{=} \sum_{j=1}^k \frac{\left(m_j - m'_j \right)^2}{m_j + m'_j}.$$

Выбираем уровень значимости $\alpha=0.01$, тогда получаем $\chi^2_{\text{крит.}}=15.086$. Вычислим $\chi^2_{\text{набл.}}$:

$$\chi^2_{\text{набл.}} = 16.332$$

Так как $16.332 > 15.086 \Rightarrow T_{\text{набл.}} \in S_{\text{крит.}}$, значит мы отклоняем гипотезу H_0 с уровнем значимости α и принимаем гипотезу H_1 . При этом вероятность ошибки первого рода $\alpha = 0.01$.

Первичная обработка статистических данных

Вторая выборка $\{y_i\}$ объёма n=100. Размах выборки: $\min(y_i)=1.8$ и $\max(y_i)=68.9$. Интервал [1.8,68.9] так же делим на $k_2=10$ частей.

$[a_i, a_{i+1})$	[1.8, 8.51)	[8.51, 15.22)	[15.22, 21.93)	[21.93, 28.64)	[28.64, 35.35)
$\frac{m_i}{n}$	0.08	0.08	0.12	0.13	0.14
	[35.35, 42.06)	[42.06, 48.77)	[48.77, 55.48)	[55.48, 62.19)	[62.19, 68.9]
	0.08	0.18	0.04	0.07	0.08

Таблица 3: Вариационный ряд $\{y_i\}$

Рис. 2: Гистограмма $\{y_i\}$

Оценка мат. ожидания $M\eta$:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \approx 33.923 \tag{11}$$

Оценка дисперсии $D\eta$:

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n y_i^2 - \frac{n}{n-1} \bar{y}^2 \approx 323.4$$
 (12)

Оценка среднеквадратического отклонения:

$$s_y = \sqrt{s_y^2} \approx 17.983 \tag{13}$$

Интервальные оценки числовых характеристик

Найдём доверительный интервал для $M\eta$. Для выбранного уровня доверия $\gamma=0.95,\,t_{\gamma}=1.98.$ Тогда:

$$\bar{y} - \frac{s_y}{\sqrt{n}} t_\gamma < M\eta < \bar{y} + \frac{s_y}{\sqrt{n}} t_\gamma$$

$$\frac{s_y}{\sqrt{n}} t_\gamma = \frac{17.983}{10} \cdot 1.98 = 3.56$$

$$\bar{y} - 3.56 < M\eta < \bar{y} + 3.56$$

$$30.363 < M\eta < 37.483$$

Следовательно, $M\eta \in (30.363, 37.483)$ с уровнем доверия $\gamma = 0.95$. Теперь будем искать доверительный интервал для $D\eta$:

$$\chi_1^2 < (n-1) \cdot \frac{s_y^2}{\sigma_\eta^2} < \chi_2^2$$

$$73.36 < 99 \cdot \frac{323.4}{\sigma_\eta^2} < 128.42$$

$$249.31 < D\eta < 436.43$$

Следовательно $D\eta \in (249.31, 436.43)$ с уровнем доверия $\gamma = 0.95$.

Проверка гипотезы о равенстве значения числовой характеристики фиксированному числу

$$H_0: M\eta = \mu_0 = [\bar{y}] = 34$$

$$H_1: M\eta \neq \mu_1 = 34$$

$$\alpha = 0.01$$

$$T = \frac{\bar{y} - \mu_0}{s} \sqrt{n}$$

Найдём $t_{\text{крит.}}$, исходя из того, что $P\left(|t_{n-1}| > t_{\text{кр.}}\right) = \alpha$:

tinv(
$$0.01/2$$
, 99) = -2.62
tinv((1 - 0.01) + 0.01/2, 99) = 2.62

Вычислим $T_{\text{набл.}}$:

$$T_{\text{набл.}} = \frac{33.923 - 34}{17.983} \cdot 10 = -0.042818$$
 (14)

Так как $0.042818 < 2.62 \Rightarrow T_{\text{набл.}} \in Q_{\text{доп.}} \Rightarrow$ оснований отвергать гипотезу H_0 нет, мы её принимаем. Теперь проверим гипотезу о равенстве $D\eta$:

$$H_0: D\eta = [s_y^2] = 323$$

 $H_1: D\eta \neq = 323$
 $\alpha = 0.01$
 $T = (n-1)\frac{s_y^2}{\sigma_0^2}$

Найдём $\chi^2_{\text{крит.}}$, такое что $P\left(\chi^2_{n-1}>\chi^2_{\text{крит.}}\right)=\alpha.$ chi2inv(1 - 0.01, 99) = 134.64

Вычислим $T_{\text{набл.}}$:

$$T_{\text{набл.}} = (n-1)\frac{s_y^2}{\sigma_0^2} = 99 \cdot \frac{323.4}{323} = 99.123$$
 (15)

Поскольку $T_{\text{набл.}} \in Q_{\text{доп.}} \Rightarrow$ оснований не принимать гипотезу H_0 нет, мы её принимаем.

Проверка гипотезы о совпадении значений одноимённых числовых характеристик двух различных случайных величин

Проверим гипотезу о совпадении дисперсий рассматриваемой нами случайной величины $D\eta$ и $D\eta'$. Полученные точечные оценки дисперсий: $s_y^2 = 323.4$ и $s_y'^2 = 815.59$. Запишем гипотезы, критерий и уровень значимости:

$$H_0: \frac{D\eta'}{D\eta} = 1$$

$$H_1: \frac{D\eta'}{D\eta} > 1$$

$$\alpha = 0.01$$

$$T = f_{n'-1,n-1} = \frac{\chi_{n'-1}^2/(n'-1)}{\chi_{n-1}^2/(n-1)}$$

Для уровня значимости $\alpha = 0.01$:

finv(1 - 0.01, 99, 99) = 1.6015

Вычислим $T_{\text{набл.}}$:

$$T_{\text{набл.}} = \frac{s_y'^2}{s_y^2} = \frac{815.59}{323.4} = 2.5219$$
 (16)

Поскольку $2.5219 > 1.6015 \Rightarrow T \in S_{\text{крит.}}$, а значит мы отклоняем гипотезу H_0 и принимаем H_1 . При этом вероятность ошибки первого рода равна $\alpha = 0.01$.

Запишем гипотезы:

$$H_0: M\eta = M\eta'$$

 $H_1: M\eta \neq M\eta'$

Поскольку гипотеза о равенстве дисперсий не подтвердилась, будем использовать другой критерий:

$$T = u = (\bar{y} - \bar{y}') / \sqrt{\frac{s_y^2}{n} + \frac{s_y'^2}{n'}}$$
 (17)

Этот критерий, согласно теореме Леви, асимптотически нормален, тогда $P\left(|u|>u_{\text{кр.}}\right)=1-2\Phi\left(u_{\text{кр.}}\right)=\alpha$, или $u_{\text{кр.}}=\Phi^{-1}\left(\left(1-\alpha\right)/2\right)$.

norminv(0.01/2) = -2.5758 norminv(1 - 0.01/2) = 2.5758

Вычислим $T_{\text{набл.}}$:

$$T_{\text{набл.}} = (33.923 - 51.184) / \sqrt{\frac{323.4}{100} + \frac{815.59}{100}} = -17.261 \cdot \sqrt{11.390} = -58.254$$
 (18)

Поскольку $|T_{\text{набл.}}| > u_{\text{кр.}} \Rightarrow$ мы отклоняем гипотезу H_0 и принимаем H_1 .

Проверка гипотезы о виде закона распределения

В нашем случае гистограмма похожа на плотность вероятности равномерного распределения. Плотность вероятности равномерного распределения:

$$p(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a}, & a \le x < b \\ 0, & b \le x \end{cases}$$

где a и b – начало и конец отрезка, на котором η принимает не нулевые значения. Возьмём в качестве этих параметров $x_{min}=1.8$ и $x_{max}=68.9$. Критерий:

$$T = \chi_{k-l-1}^2 = \sum_{j=1}^k \frac{(m_j - np_j)^2}{np_j}$$
 (19)

где k=10 – количество интервалов вариационного ряда, а l=2 – количество параметров распределения, которые заменяются их точечными оценками. Тогда при уровне значимости $\alpha=0.01,\,\chi^2_{\text{крит.}}=18.475.$

$$chi2inv(1 - 0.01, 10 - 2 - 1) = 18.475$$

	$(a_{j_1}; a_j]$	m_j	p_j	np_j	$(m_j - np_j)^2/np_j$
1	[1.8; 8.51)	8	0.1	10	0.39996
2	[8.51; 15.22)	8	0.1	10	0.39996
3	[15.22; 21.93)	12	0.1	10	0.40004
4	[21.93; 28.64)	13	0.1	10	0.90007
5	[28.64; 35.35)	14	0.1	10	1.6001
6	[35.35; 42.06)	8	0.1	10	0.39996
7	[42.06; 48.77)	18	0.1	10	6.4002
8	[48.77; 55.48)	4	0.1	10	3.5999
9	[55.48; 62.19)	7	0.1	10	0.89995
10	[62.19; 68.9]	8	0.1	10	0.39996
Σ		100	1		15.400

Получили $\chi^2_{\text{набл.}} = 15.4 < 18.475 \Rightarrow$ у нас нет оснований отклонять гипотезу H_0 .

Проверка гипотезы о совпадении законов распределения двух случайных величин

Перепишем оба вариационных ряда так, чтобы разбиения у них совадали $(a_i = a_i')$.

$\boxed{[a_i, a_{i+1})}$	[0, 10)	[10, 20)	[20, 30)	[30, 40)	[40, 50)
$\frac{m_i}{n}$	8	19	19	14	21
	[50, 60)	[60, 70)	[70, 80)	[80, 90)	[90, 100]
	9	10	0	0	0

Таблица 3: Вариационный ряд $\{y_i\}$

$[a_i, a_{i+1})$	[0, 10)	[10, 20)	[20, 30)	[30, 40)	[40, 50)
$\frac{m_i}{n}$	11	8	8	10	13
	[50, 60)	[60, 70)	[70, 80)	[80, 90)	[90, 100]

Таблица 3: Вариационный ряд $\{y_i'\}$

Мы видим, что в первом вариационном ряду значения на отрезках [70,80), [80,90) и [90,100) равны нулю. Мы можем сделать проверку двумя способами: 1) можно выбросить часть вариационного ряда y'_i , и 2) объединим интервалы в [60,100) в обоих вариационных рядах.

Рассмотрим вариант 1):

Имеем гипотезу: $H_0: F_{\eta}(x) = F_{\eta'}(x)$;

Тогда, поскольку мы выбросили часть выборки $\{y_i'\}$, тогда $n_2 = 100 - 13 - 8 - 8 = 71$ и критерий будет иметь вид:

$$T = \chi_{k-1}^2 = n_1 \cdot n_2 \sum_{j=1}^k \frac{1}{m_j + m_j'} \left(\frac{m_j}{n_1} - \frac{m_j'}{n_2} \right)^2$$
 (20)

Для уровня значимости $\alpha = 0.01$ получим $\chi^2_{\text{крит.}} = 16.812$

Вычислим $T_{\text{набл.}} = 8.3750 < 16.812 \Rightarrow H_0$ принимается.

Рассмотрим вариант 2):

Гипотеза H_0 - та же. Поскольку $n_1=n_2=100$, то воспользуемся более простым критерием:

$$T = \sum_{j=1}^{k} \frac{\left(m_j - m_j'\right)^2}{m_j + m_j'}.$$
 (21)

Тогда при тех же $\alpha=0.01$ и $\chi^2_{\text{крит.}}=16.812$ получим $\chi^2_{\text{набл.}}=31.737>16.812\Rightarrow H_0$ отклоняется.

Какой из способов выбрать? Мы знаем, что оба распределения - равномерны, но их графики, видимо, выглядят так:

Корреляционный анализ

По элементам двумерной выборки $\{(x_i; y_i) : y \in 1, n\}$ составим корреляционную таблицу:

$\eta \setminus \xi$	[1, 3)	[3, 5)	[5,7)	[7, 9)	[9, 11)	[11, 13)	[13, 15)	[15, 17)	[17, 19)	[19, 21]	
[1.8; 8.51)		1		2	2	3					8
[8.51; 15.22)	1		3	2	1	1					8
[15.22; 21.93)			3	3	5		1				12
[21.93; 28.64)			6	5	1					1	13
[28.64; 35.35)		2	10	1	1						14
[35.35; 42.06)		3	3	2							8
[42.06; 48.77)		4	10	4							18
[48.77; 55.48)	1	2		1							4
[55.48; 62.19)	1	6									7
[62.19; 68.9]	3	5									8
	6	23	35	20	10	4	1			1	100

Сила статистической связи оценивается с помощью коэффициента линейной корреляции:

$$\rho = \frac{\alpha_{11} - m_{\xi} m \eta}{\sigma_{\xi} \sigma_{\eta}} \tag{22}$$

Точечная оценка коэффициента линейной корреляции:

$$r = \frac{a_{11} - \bar{x}\bar{y}}{s_x s_y}$$
, где
$$a_{11} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$
(23)

В нашем случае r = -0.011603. Получнюе близкое к нулю значение позволяет сделать вывод о почти отсутствующей связи между случайными величинами.

Найдём функции регрессии: $f(x) = M [\eta/\{\xi = x\}]$. По корреляционной таблице видно, что обе функции регрессии - линейные, то есть $f(x) = a_1x + b_1$. Теоретическое уравнение линейной функции регрессии η на ξ имеет вид:

$$y - m_{\eta} = \rho \frac{\sigma_{\eta}}{\sigma_{\xi}} \left(x - m_{\xi} \right) \tag{24}$$

Заменяя в этом уравнении теоретические числовые характеристики их точечными оценками получим:

$$y - \bar{y} = r \frac{s_y}{s_x} \left(x - \bar{x} \right) \tag{25}$$

В нашем случае уравнение принимает вид:

$$y - 33.923 = -0.011603 \cdot \frac{17.983}{2.8734} (x - 6.08)$$

$$y - 33.923 = -0.072617 \cdot (x - 6.08)$$

$$y = -0.072617x + 34.365$$
(26)

Аналогично находим регрессию ξ на η :

$$x - m_{\xi} = \rho \frac{\sigma_{\xi}}{\sigma_{\eta}} (y - m_{\eta})$$

$$x - \bar{x} = r \frac{s_{x}}{s_{y}} (y - \bar{y})$$

$$x - 6.08 = -0.011603 \cdot \frac{2.8734}{17.983} (y - 33.923)$$

$$x = -0.0018539y + 6.1429$$
(27)

