Parkinson Hastalığı Sınıflandırma Veri Kümesi

Kişiler:

C. Okan Sakar, Gorkem Serbes, Aysegul Gunduz, Hunkar C. Tunc, Hatice Nizam, Betul Erdogdu Sakar, Melih Tutuncu, Tarkan Aydin, M. Erdem Isenkul, Hulya Apaydin

Amaç:

Bu çalışmanın amacı parkinson hastalığının tanısının koyulmasında uzaktan görüntüleme sistemi geliştirilmesidir. Bu amaç doğrultusunda kişilerden alınan ses sinyalinden parkinson hastası olup olmadığı tahmin edilmektedir. Alınan ses sinyali, çeşitli sinyali işleme teknikleri kullanılarak sayısallaştırılmıştır. Bu sayısallaştırma sonucunda 6 kategoride toplam 755 farklı özellik elde edilmiştir. Özellik kategorileri ve kısa açıklamaları tablo 1'de verilmiştir.

Tablo 1. Özellik kümeleri

Özellik Kümesi	Açıklama	Özellik Sayısı	
Temel Özellikler	Bir ses sinyalinin temel	21	
	özelilklerini içeren özellikler		
	bu kategoride verilmiştir.		
	Frekans bilgisi, osilasyon ve		
	salınım özellikleri.		
Zaman frekans özellikleri	Yoğunluk, akustik ve bant	11	
	genişliği ile ilgili özellikler		
	kümesi		
Mel Frekans Kepstral	Kısa süreli güç spektrumu	84	
Katsayısı	hakkında bilgi içeren özellik		
	kümesi		
Dalgacık Dönüşümü	Dalgacık Dönüşümü	182	
	sonucunda elde edilen özellik		
	kümesi (F0)		
Ses Kıvrımları özellikleri	Sesin oluşumu sırasında	22	
	dudak ve boğazda meydana		
	gelen olay bilgilerini içeren		
	özellikler		

Ayarlanabilir	Q-faktör	Ayrık	ve	Ayarla	nabilir	432
Dalgacık	Dönüşümü	osilatör	davr	anışına	sahip	
(TQWT)		DD				

Elde edilen tüm veriler önişleme adımında standartlaştırılarak özellik seçimi yöntemine verilmektedir. Bu adımda en uygun özellikler belirlenmekte ve makine öğrenmesi yöntemine giriş olarak uygulanmaktadır. Özellik seçimi aşamasında kullanılan minimum fazlalık maksimum uygunluk (mRMR) filtresi kullanılarak en önemli 50 özellik 3 farklı kombinasyon için Tablo 2'deki gibi seçilmiştir. İlk deneyde TQWT özellikleri, özellik kümesinden çıkartılmıştır. İkinci deneyde MFCC özellikleri çıkartılmış ve son deneyde ise tüm özellikler kullanılmıştır.

Tablo 2. Özellik Seçimi

Average distribution of the top-50 features selected by the mRMR filter.

	All feature subsets except TQWT	All feature subsets except MFCC	All feature subsets
Baseline (n = 26)	5	5	4
Intensity $(n = 3)$	1	1	0
Bandwidth + Formant $(n = 8)$	5	2	2
MFCC (n = 84)	27	_	10
WT applied to F_0 (n = 182)	4	1	1
Vocal Fold $(n = 22)$	8	4	3
TQWT (n = 432)	-	37	30

Elde edilen başarı oranları Tablo 2'de verilmiştir. Başarı değerleri LOOCV çapraz doğrulama yöntemi kullanılarak elde edilmiştir. Tablo 2'ye göre en yüksek başarı tüm özellik kümelerinin birlikte SVM yöntemi ve RBF çekirdeği ile birlikte kullanıldığı deneyde elde edilmiştir.

Tablo 3. Makine öğrenmesi yöntemlerinin sonuçları

•	All feature subsets except TQWT			All feature subsets except MFCC			All feature subsets		
	Accuracy	F1-Score	MCC	Accuracy	F1-Score	MCC	Accuracy	F1-Score	MCC
Naive Bayes	0.65	0.67	0.29	0.81	0.81	0.51	0.83	0.83	0.54
Logistic regression	0.81	0.79	0.45	0.83	0.82	0.51	0.85	0.84	0.57
k-NN	0.82	0.79	0.48	0.84	0.82	0.53	0.85	0.82	0.56
Multilayer perceptron	0.83	0.81	0.50	0.81	0.80	0.46	0.84	0.83	0.54
Random Forest	0.79	0.78	0.40	0.83	0.82	0.51	0.85	0.84	0.57
SVM (Linear)	0.81	0.80	0.46	0.84	0.83	0.54	0.83	0.82	0.52
SVM (RBF)	0.83	0.81	0.50	0.83	0.81	0.50	0.86	0.84	0.59
Average	0.79	0.77	0.43	0.83	0.82	0.51	0.84	0.83	0.55
Std. Dev.	0.07	0.05	0.08	0.01	0.01	0.03	0.01	0.01	0.02
Ensemble with voting	0.81	0.80	0.46	0.85	0.84	0.57	0.85	0.84	0.58
Ensemble with stacking	0.82	0.81	0.49	0.83	0.81	0.52	0.84	0.82	0.55

Rafet DURGUT