Mathématiques Discrètes

Chapitre 1 Introduction à la Logique

Leo Donati Noëlle Stolfi

Université de Nice Sophia Antipolis IUT Nice Côte d'Azur DUT Informatique

2015-2016

Chapitre 1 : Introduction à la Logique

- 1 ÉNONCÉS MATHÉMATIQUES
 - Propositions
 - Définitions
 - Notations
 - Prédicats
- 2 CONNECTEURS

LOGIQUES

- Négation
- Conjonction
- Disjonction
- Implication

- 3 Prédicats et Quantificateurs
 - Forme d'un prédicat
 - Instanciation
 - Quantificattion
 - Négation
- 4 RAISONNEMENT
 - Modus Ponens
 - Par contraposée
 - Par l'absurde
 - Par récurrence

LOGIQUE MATHÉMATIQUE

JUSTIFICATION

Le langage mathématique est un langage qui ressemble *un peu* au français, mais avec quelques différences :

- le vocabulaire est différent : nouveaux mots (prédicat, surjectivité...) ou mots du français courant avec des sens différents ou plus précis (suite, application, matrice);
- la syntaxe est plus précise;
- de nouveaux symboles apparaissent $(\exists, \forall, \in, \emptyset, f)$;
- à l'alphabet latin s'ajoute l'alphabet grec $(\alpha, \beta, \Sigma, \pi...)$;
- la sémantique est rigoureuse et ne laisse aucune place à l'ambigüité quant au sens des énoncés.

Exemples d'énoncés mathématiques

- le nombre $\frac{7^{11}-7}{11}$ est un entier positif;
- soit x un nombre strictement positif;
- \bullet il existe un entier naturel plus grand que 2^{10} ;
- **1** posons $a = \int_0^1 e^{t^2} dt$;
- **5** si n est un entier positif alors $16n^2 48n + 33$ est un entier positif;
- \bullet si x est un réel, le plus grand des nombres x et -x s'appelle valeur absolue de x;
- \bullet notons I l'intervalle [0,1];
- si n est un entier positif, alors ou bien n est pair, ou bien n(n+2)(n+3) est multiple de 4;
- pour tout nombre réel x tel que $x^2 > 2$, on a x > 1;
- lacktriangle si x est un nombre réel, la valeur absolue de x se note |x|;
- $x^2 + 2x + 1 = 0.$

Propositions ou Assertions

DÉFINITION

Une proposition (ou assertion) est un énoncé complet auquel on doit pouvoir forcément associer une valeur de vérité : Vrai ou Faux.

EXEMPLES DE PROPOSITION

- 1+1=3
- Jean est grand
- 3 est un nombre premier ou 4 est un nombre premier
- S'il pleut alors le sol est mouillé

ASSERTIONS

- le nombre $\frac{7^{11}-7}{11}$ est un entier positif;
- il existe un entier naturel plus grand que 2¹⁰;
- **o** si n est un entier positif alors $16n^2 48n + 33$ est un entier positif;

- § si n est un entier positif, alors ou bien n est pair, ou bien n(n+2)(n+3) est multiple de 4;
- **9** pour tout nombre réel x tel que $x^2 > 2$, on a x > 1;

DÉFINITIONS

DÉFINITION

Une définition sert à introduire et nommer un nouvel objet mathématique ou un nouveau concept.

Exemples de définition

- Un triangle est un polygône à trois côtés.
- Un triangle isocèle est un triangle qui a deux côtés égaux.

DÉFINITIONS

6 si x est un réel, le plus grand des nombres x et -x s'appelle valeur absolue de x;

NOTATION

DÉFINITION

Une notation permet de remplacer un objet ou un concept par une lettre ou un symbôle

Remarques

- A ne pas confondre avec les définitions;
- Bien que souvent une définition soit suivie par une notation.

NOTATIONS

1 posons
$$a = \int_0^1 e^{t^2} dt$$
;

lacktriangledown Notons / l'intervalle [0,1];

lacktriangle si x est un nombre réel, la valeur absolue de x se note |x|;

AFFECTATION

DÉFINITION

Une affectation permet de donner un nom temporaire à un objet non défini car sujet à varier.

REMARQUES

À ne pas confondre avec les notations où les objets sont bien définis et le lien entre le nom et l'objet a plus de durée.

AFFECTATION

soit x un nombre strictement positif;

IL RESTE UN ÉNONCÉ

PRÉDICAT

DÉFINITION

Un prédicat est un énoncé incomplet car il contient des variables non spécifiées, qu'on appelle variables libres.

EXEMPLE

Dans $x^2 + 2x + 1 = 0$ on ne connaît pas la valeur de x donc on est incapable de dire si c'est un énoncé vrai ou faux.

Sa valeur de vérité dépend de la valeur donnée au symbole x.

- Si on remplace x par 1 on obtient l'assertion 4 = 0
- Si on remplace x par -1 on obtient l'assertion 0 = 0

Chapitre 1 : Introduction à la Logique

- ÉNONCÉS MATHÉMATIQUES
 - Propositions
 - Définitions
 - Notations
 - Prédicats
 CONNECTEURS
 - LOGIQUES
 - Négation
 - Conjonction
 - Disjonction
 - Implication

- 3 Prédicats et Quantificateurs
 - Forme d'un prédicat
 - Instanciation
 - Quantificattion
 - Négation
- 4 RAISONNEMENT
 - Modus Ponens
 - Par contraposée
 - Par l'absurde
 - Par récurrence

Connecteurs

Assertions composées

Parmi les propositions, certaines sont simples ou élémentaires et d'autres composées de plusieurs propositions liées entres elles : ce sont des propositions coordonnées par des connecteurs : donc, d'où, car, puisque, et, ou, si et seulement si...

EXEMPLES

- Pierre est blond et Paul est gentil
- si 1=3 alors Paul est gentil
- si 0=0 alors Pierre n'est pas blond

Connecteurs logiques

LES PRINCIPAUX CONNECTEURS LOGIQUES SONT:

- Négation
- Conjonction
- Disjonction
- Implication
- Equivalence

PRINCIPE

La logique mathématique précise le sens de ces connecteurs en les traitant comme des opérateurs logiques :

• pour chaque valeur de vérité du (ou des) argument(s) calcule un résultat qui est Vrai ou Faux.

NÉGATION

DÉFINITION

Si P est une proposition alors la négation de P, notée non(P), est aussi une proposition qui est vraie quand P est fausse et fausse quand P est vraie.

Table de vérité de la négation

Р	non(P)
F	V
V	F

NÉGATION

EXEMPLES

- La négation de "Paul est blond" est "Paul n'est pas blond"
- La négation de $\sqrt{2} \in \mathbb{Q}$ est $\sqrt{2} \notin \mathbb{Q}$
- Tous les opérateurs logiques peuvent aussi s'appliquer aux prédicats : la négation de $x \ge 2$ est x < 2

Principe de double négation

P et non(non(P)) sont équivalentes, c'est à dire toutes les deux vraies ou toutes les deux fausses.

CONJONCTION

DÉFINITION

Si P et Q sont deux propositions, alors la conjonction de P et Q, notée P et Q, est une proposition qui est vraie si et seulement si les deux propositions P et Q sont vraies simultanément.

Table de vérité de la conjonction

Р	Q	Р	et	Q
F	F		F	
F	V		F	
V	F		F	
V	V		V	

PRINCIPE DE NON CONTRADICTION

Principe de non contradiction

Une assertion ne peut pas être vraie et fausse à la fois

- autrement dit : une assertion et sa négation ne peuvent pas être vraie simultanément
- autrement dit : quelle que soit l'assertion P, l'assertion

$$P$$
 et $non(P)$

est toujours fausse.

DISJONCTION

DÉFINITION

Si P et Q sont deux propositions, alors la disjonction de P et Q, notée P ou Q, est une proposition qui est vraie si au moins l'une des deux propositions P ou Q est vraie.

Table de vérité de la disjonction

Р	Q	P ou Q
F	F	F
F	V	V
V	F	V
V	V	V

DISJONCTION

EXEMPLES

- 2 est pair ou 2 est premier
- 2 est pair et 2 est premier
- 3 est pair ou 3 est premier
- 3 est pair et 3 est premier

OU INCLUSIF ET OU EXCLUSIF

- Le OU utilisé dans la disjonction est inclusif car il reste Vrai lorsque ses deux arguments sont Vrais
- À ne pas confondre avec le OU EXCLUSIF, appelé XOR, qui n'est vrai que lorsque l'un des deux arguments est vrai mais pas les deux.

TIERS EXCLU

PRINCIPE DU TIERS EXCLU

Il n'y a pas d'autre possibilité pour une assertion que d'être vraie ou fausse (c'est à dire avec sa négation vraie). Autrement dit l'assertion composée P ou non(P) est toujours vraie.

DÉFINITION

Une tautologie est une proposition composée qui reste toujours vraie quelles que soient les valeurs de vérité des propositions qui la composent.

Exemples de tautologie

- x > 2 ou $x \le 2$
- "Je vais à la mer ou pas"

M1201-1

Lois de De Morgan

Lois de De Morgan

Les lois de De Morgan explicitent ce qui se passe lorsqu'on nie une conjonction ou une disjonction :

$$\operatorname{non}(P \text{ ou } Q) \sim \operatorname{non}(P) \text{ et } \operatorname{non}(Q)$$

 $\operatorname{non}(P \text{ et } Q) \sim \operatorname{non}(P) \text{ ou } \operatorname{non}(Q)$

EXEMPLE

La phrase

non(Pierre est blond et Paul est gentil)

est logiquement équivalente à

Pierre n'est pas blond **ou** Paul n'est pas gentil

IMPLICATION

DÉFINITION

L'implication de P vers Q, notée $P \Rightarrow Q$, et qui se lit "Si P alors Q" ou encore "Q si P" est une proposition définie par le tableau suivant :

Р	Q	$P \Rightarrow Q$
F	F	V
F	V	V
V	F	F
V	V	V

ATTENTION

Une implication dont le point de départ est faux est automatiquement vraie

EXEMPLES D'IMPLICATION

EXEMPLES

- S'il fait beau alors je vais à la plage
- S'il pleut alors le sol est mouillé
- si 1=3 alors Paul est gentil
- si 0=0 alors Pierre n'est pas blond
- $\sqrt{2} \in \mathbb{Q} \Rightarrow (\sqrt{2})^2 \in \mathbb{Q}$

IMPLICATION COMME DISJONCTION

Théorème

Quelles que soient les propositions P et Q, les assertions $P \Rightarrow Q$ et non(P) ou Q sont équivalentes.

$$P \Rightarrow Q \sim non(P)$$
 ou Q

PREUVE

Avec la table de vérité.

Р	Q	non(P)	non(P)	ou	Q
F	F				
F	V				
V	F				
V	V				

M1201-1

NÉGATION D'UNE IMPLICATION

THÉORÈME

La négation d'une implication n'est pas une implication mais une conjonction :

$$non(P \Rightarrow Q) \sim P$$
 et $non(Q)$

PREUVE

D'après l'écriture de l'implication comme disjonction et des lois de De Morgan

EXEMPLE

La négation de "S'il pleut alors le sol est mouillé" est Il pleut et le sol n'est pas mouillé

Contraposée et Réciproque

CONTRAPOSÉE D'UNE IMPLICATION

La contraposée de $P \Rightarrow Q$ est $non(Q) \Rightarrow non(P)$

Ces deux implications sont logiquement équivalentes.

RÉCIPROQE D'UNE IMPLICATION

La réciproque de $P \Rightarrow Q$ est $Q \Rightarrow P$

Ces deux implications ont des sens différents.

Exemple de "S'il pleut alors le sol est mouillé"

- la contraposée est "Si le sol est sec alors il ne pleut pas"
- la réciproque est "Si le sol est mouillé alors il pleut"

CONDITION NÉCESSAIRE ET CONDITION SUFFISANTE

DÉFINITION

Considérons les trois cas où l'implication $P \Rightarrow Q$ est vraie

P	Q	$P \Rightarrow Q$
F	F	V
F	V	V
V	V	V

On dira que

- Q est une condition nécessaire à P car si Q est faux alors P est faux
- P est une condition suffisante à Q car dès que P est vrai alors Q est vrai aussi

M1201-1

• Ces deux énoncés sont équivalents à " $P \Rightarrow Q$ est vrai"

CONDITION NÉCESSAIRE ET SUFFISANTE

DÉFINITION

On dit que la proposition P est une condition nécessaire et suffisante (CNS) à la proposition Q pour dire à la fois que l'implication $P \Rightarrow Q$ est vraie et que sa réciproque $Q \Rightarrow P$ est vraie aussi.

DÉFINITION

On dit dans ce cas qu'il y a une équivalence entre ces deux propositions :

$$P \sim Q$$

Ce qui signifie que la vérité de l'une entraîne la vérité de l'autre et vice versa.

OPÉRATEUR D'ÉQUIVALENCE

DÉFINITION

Si on définit l'opérateur d'équivalence $P \Leftrightarrow Q$ par

$$P \Leftrightarrow Q = (P \Rightarrow Q)$$
 et $(Q \Rightarrow P)$

on obtient la table de vérité suivante :

P	Q	$P \Leftrightarrow Q$
F	F	V
F	V	F
V	F	F
V	V	V

et on peut donc affirmer que

 $P \sim Q$ si et seulement si $P \Leftrightarrow Q$ est vrai

Chapitre 1 : Introduction à la Logique

- 1 Énoncés Mathématiques
 - Propositions
 - Définitions
 - Notations
- Prédicats
 CONNECTEURS
 - Négation
 - Conjonction
 - Disjonction
 - Implication

- Prédicats et Quantificateurs
 - Forme d'un prédicat
 - Instanciation
 - Quantificattion
 - Négation
- 4 RAISONNEMENT
 - Modus Ponens
 - Par contraposée
 - Par l'absurde
 - Par récurrence

FORME D'UN PRÉDICAT

DÉFINITION

Un prédicat est un énoncé dans lequel il existe (au moins) une variable qui n'est pas spécifiée.

On dit que cette variable est libre.

EXEMPLE

- x est libre dans $x^2 + 2x + 1 = 0$ ou dans $x \ge y^2$;
- Dans la phrase "Il préfère ça" il y a deux éléments non spécifiés "il" et "ça".

NOTATION

$$P(x,y)$$
 pour le prédicat $x \ge y^2$

Instanciation

DÉFINITION

On instancie une variable libre d'un prédicat en lui affectant une valeur. La variable instanciée devient liée.

On obtient alors

- soit une assertion (s'il n'y a plus de variables libres),
- soit un prédicat avec une variable libre en moins.

EXEMPLES D'INSTANCIATION

Si P(x,y) est le prédicat $x \ge y^2$ alors

- P(-1,y) est le prédicat $-1 \ge y^2$
- P(x,3) est le prédicat $x \ge 9$
- P(-1,3) est l'assertion $-1 \ge 9$

M1201-1

QUANTIFICATION

DÉFINITION

Les quantificateurs servent à préciser le type de variabilité permise aux variables libres d'un prédicat, ainsi que l'espace de variation. Ils sont au nombre de deux :

- le quantificateur universel dit que la variable peut prendre toutes les valeurs dans un ensemble donné.
 - "Tous les hommes sont mortels";
- le quantificateur existentiel dit que la variable peut prendre une valeur dans l'ensemble donné.
 - "Certains hommes meurent".

REMARQUE

La quantification fait baisser le nombre de variables libres du prédicat.

QUANTIFICATEUR UNIVERSEL

QUANTIFICATEUR "POUR TOUT"

Soit P(x) est un prédicat avec x variable libre, alors la proposition

$$\forall x \in E, P(x)$$

qui se lit : Pour tout x appartenant à E on a P(x) est vraie si et seulement si toutes les instanciations de x dans l'ensemble E donnent des assertions vraies.

REMARQUE

Il suffit qu'il existe une valeur $a \in E$ telle que P(a) soit fausse, pour que la proposition quantifiée devienne fausse. Cet élément a est un contre-exemple.

QUANTIFICATEUR EXISTENTIEL

QUANTIFICATEUR "IL EXISTE"

Si P(x) est un prédicat avec x variable libre, alors la proposition

$$\exists x \in E, P(x)$$

qui se lit : Il existe x appartenant à E tel que P(x) est vraie si pour au moins une instanciation de x parmi les valeurs de l'ensemble E on obtient une assertion vraie.

NÉGATION D'UN QUANTIFICATEUR

THÉORÈME

$$non(\forall x \in E, P(x)) \sim \exists x \in E, non(P)(x)$$

$$non(\exists x \in E, P(x)) \sim \forall x \in E, non(P)(x)$$

EXEMPLES

- La négation de $\forall x \in \mathbb{R} \ x^2 + 2x + 1 = 0$ est $\exists x \in \mathbb{R} \ x^2 + 2x + 1 \neq 0$
- La négation de "Je suis toujours là" est "Parfois je suis absent"

Chapitre 1 : Introduction à la Logique

- 1 Énoncés mathématiques
 - Propositions
 - Définitions
 - Notations
- Prédicats
 CONNECTEURS
 - Négation
 - Conjonction
 - Disjonction
 - Implication

- 3 Prédicats et Quantificateurs
 - Forme d'un prédicat
 - Instanciation
 - Quantificattion
 - Négation
- 4 Raisonnement
 - Modus Ponens
 - Par contraposée
 - Par l'absurde
 - Par récurrence

Raisonner et prouver

EXERCICE DE TYPE DÉDUCTIF

"Prouver P"

EXEMPLE

Prouver qu'un triangle isocèle a deux angles égaux.

COMMENT FAIT-ON?

- On identifie le point de départ : l'Hypothèse H : "soit T un triangle isocèle".
- On identifie le point d'arrivée : la Conclusion K : "T a deux angles égaux".
- On construit un raisonnement déductif qui permet de prouver que chaque fois que *H* est vrai, alors *K* est vrai.

Modus Ponens

DÉFINITION

La règle du Modus Ponens est le premier principe de raisonnement déductif.

Il affirme que si on sait que l'implication $H \Rightarrow K$ est vraie alors si H est vrai, K est vrai aussi.

Utilisations du Modus Ponens

- On utilise une série d'implication vraies $H\Rightarrow K_1,K_1\Rightarrow K_2,\ldots,K_{n-1}\Rightarrow K$ qui vont de H à K;
- ② On divise l'hypothèse en plusieurs cas $H \sim (H_1 \text{ ou } H_2)$ et on prouve séparément $H_1 \Rightarrow K$ et $H_2 \Rightarrow K$.

Modus Tollens

DÉFINITION

Le Modus Tollens consiste à dire que si on a l'implication $H \Rightarrow K$, alors à partir de la négation de la conclusion non(K) on peut déduire la négation de l'hypothèse non(H).

PREUVE

Ce n'est rien d'autre que le modus ponens appliqué à l'implication contraposée $non(K) \Rightarrow non(H)$ qui est logiquement équivalente à $H \Rightarrow K$

Par contraposée

DÉMONSTRATION PAR CONTRAPOSÉE

Dans une démonstration par contraposée au lieu de partir de H pour prouver K, on part de non(K) et on essaie de prouver non(H).

EXEMPLE

Prouver que $\forall n \in \mathbb{N}, (n^2 \text{ pair } \Rightarrow n \text{ pair }).$

PAR L'ABSURDE

DÉMONSTRATION PAR L'ABSURDE

Dans une démonstration par l'absurde pour prouver $H \Rightarrow K$, on suppose à la fois que l'hypothèse H est vraie, et que la conclusion K est fausse.

À partir de là, on cherche à en déduire une contradiction logique (quelque chose qui est vrai et faux à la fois).

Si on arrive à prouver une absurdité, c'est que le point de départ H et non(K) était faux, donc que sa négation était vraie. Or

$$\operatorname{non}(H \text{ et } \operatorname{non}(K)) \sim \operatorname{non}(H) \text{ ou } \operatorname{non}(\operatorname{non}(K))$$

 $\sim \operatorname{non}(H) \text{ ou } K$
 $\sim H \Rightarrow K$

Exemple de raisonnement par l'absurde

Théorème (Euclide)

 $\sqrt{2}$ est irrationnel.

PAR RÉCURRENCE

Contexte

On applique cette technique démonstrative pour prouver des énoncés —concernant des nombres entiers— qui ont la forme suivante :

$$\forall n \geq n_0 \ P(n)$$

où P(n) est un prédicat avec variable libre n.

TECHNIQUE DE DÉMONSTRATION PAR RÉCURRENCE

La démonstration se fait en deux étapes :

- on vérifie/prouve que $P(n_0)$ est une assertion vraie;
- on prouve l'implication

$$P(n) \Rightarrow P(n+1)$$

Modus Ponens Par contraposée Par l'absurde Par récurrence

Exemple de démonstration par récurrence

EXEMPLE

Prouver que la somme des entiers impairs donne un carré parfait.