$\Pi\Lambda H30$

ΕΝΟΤΗΤΑ 5: ΑΠΟΦΑΣΙΣΙΜΕΣ και ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ

Μάθημα 5.3: Αποδεκτές Γλώσσες

Δημήτρης Ψούνης

ПЕРІЕХОМЕНА

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Μηχανές Turing που αποδέχονται γλώσσες
 - 1. Ορισμός Αποδεκτής Γλώσσας
 - 2. Κάθε Αποφασίσιμη Γλώσσα είναι Αποδεκτή

2. Καθολική Μηχανή Turing

- 1. Ορισμός του Αλγορίθμου
- 2. Η θέση Church-Turing
- 3. Μηχανές που τρέχουν μηχανές
- 4. Καθολική Μηχανή Turing

3. Η γλώσσα Halting

- 1. Ορισμός
- 2. Απόδειξη ότι δεν είναι αποφασίσιμη
- 3. Απόδειξη ότι είναι αποδεκτή

4. Κλειστότητα στις Αποδεκτές Γλώσσες

- 1. Κλειστότητα στην Ένωση
- Κλειστότητα στην Τομή
- 3. Κλειστότητα στην Παράθεση
- 4. Κλειστότητα στο Αστέρι Kleene
- 5. ΌΧΙ Κλειστότητα στο Συμπλήρωμα

Γ.Ασκήσεις

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

> (-)

Επίπεδο Β

- > Η γλώσσα Halting
- Απόδειξη ότι μία γλώσσα είναι αποδεκτή.
- > Κλειστότητες των αποδεκτών γλωσσών.

Επίπεδο Γ

> Απόδειξη ότι η Halting δεν είναι αποφασίσιμη

1. Μηχανές Turing που αποδέχονται γλώσσες

1. Ορισμός Αποδεκτής Γλώσσας

Μία μηχανή Turing θα λέμε ότι αποδέχεται (ή ημι-αποφασίζει ή αναγνωρίζει) μία γλώσσα αν για κάθε συμβολοσειρά εισόδου w:

- ightharpoonup Τερματίζει με σχηματισμό (h, #uav#) αν $w \in L$
- \triangleright Δεν Τερματίζει αν $w \notin L$ (πέφτει σε βρόχο)

Αν για μία γλώσσα L υπάρχει μηχανή Turing που την ημι-αποφασίζει **λέγεται Turing Αποδεκτή** (ή Αναδρομικά Απαριθμήσιμη ή Turing-Απαριθμήσιμη ή Αναγνωρίσιμη) Γλώσσα

> Συνεπώς το επόμενο σύνολο γλωσσών που μελετάμε είναι το σύνολο των αποδεκτών γλωσσών για τις οποίες υπάρχει μηχανή Turing που τις ημι-αποφασίζει.

Με απλά λόγια μία αποδεκτή γλώσσα θα έχει την ιδιότητα να:

- Τερματίζει μόνο αν η συμβολοσειρά εισόδου ανήκει στην γλώσσα.
- Για κάθε συμβολοσειρά που δεν ανήκει στην γλώσσα, θα πρέπει <u>υποχρεωτικά</u> η μηχανή να μην τερματίζει (να πέφτει σε βρόχο).

- 1. Μηχανές Turing που αποδέχονται γλώσσες
- 2. Κάθε Αποφασίσιμη γλώσσα είναι Αποδεκτή.

ΘΕΩΡΗΜΑ: Κάθε Turing-Αποφασίσιμη γλώσσα είναι Turing-Αποδεκτή γλώσσα.

<u>Απόδειξη:</u> Έστω μια αποφασίσιμη γλώσσα L. Αφού είναι αποφασίσιμη, υπάρχει μία μηχανή Turing που την αποφασίζει, έστω Μ.

Κατασκευάζουμε μια μηχανή Turing M' που ημι-αποφασίζει την γλώσσα ως εξής:

- Τρέχει την Μ και
 - Αν η Μ απαντήσει ΝΑΙ (δηλαδή τερματίσει με σχηματισμό #Υ#), τότε η Μ' τερματίζει.
 - Αν η Μ απαντήσει ΌΧΙ (δηλαδή τερματίσει με σχηματισμό #N#) τότε η Μ' πέφτει σε ατέρμονα βρόχο (π.χ. μετακινώντας την κεφαλή συνεχώς δεξιά)

Άρα η Μ' ημιαποφασίζει την γλώσσα L, άρα η L είναι αποδεκτή γλώσσα.

(Η Μ' κατασκευάζεται μέσω του εξής διαγράμματος ροής:
$$> M \longrightarrow L \xrightarrow{\gamma} R_{\#}$$

$$\downarrow N$$

$$R_{\#}$$

Β. Θεωρία

2. Καθολική Μηχανή Turing

1. Ορισμός του Αλγορίθμου

Κατά D.Knuth (The Art of Computer Programming) ένας αλγόριθμος πρέπει να χαρακτηρίζεται από τα εξής:

- Ακρίβεια: Τα βήματα πρέπει να είναι σαφή.
- Μοναδικότητα: Τα ενδιάμεσα αποτελέσματα είναι μοναδικά για κάθε είσοδο (δεν μπορεί να προκύψουν διαφορετικά ενδιάμεσα αποτελέσματα για την ίδια είσοδο)
- Αριθμός Βημάτων: Πρέπει να είναι πεπερασμένα. Δηλαδή πρέπει ο αλγόριθμος κάποια στιγμή να τελειώνει, μετά από πεπερασμένο αριθμό βημάτων.
- Γενικότητα: Ο αλγόριθμος πρέπει να λειτουργεί για όλες τις εισόδους ενός συγκεκριμένου τύπου.
- Είσοδος-Έξοδος: Ο αλγόριθμος πρέπει να παίρνει κάποια είσοδο και να παράγει μία μοναδική έξοδο για κάθε είσοδο.

Παρατηρούμε ότι η μηχανή Turing πληρεί όλα τα κριτήρια του ορισμού ενός αλγορίθμου!

2. Καθολική Μηχανή Turing

2. Θέση Church-Turing

Διαισθητικά:

- Η μηχανή Turing ταυτίζεται σε όλα τα σημεία με τον ορισμό του αλγορίθμου.
- > Άρα:

ΘΕΣΗ CHURCH – TURING:

Η **ΜΗΧΑΝΗ TURING** είναι το συνώνυμο της έννοιας **ΑΛΓΟΡΙΘΜΟΣ**

- Με την παραπάνω ισοδυναμία εννοούμε ότι το μαθηματικό ισοδύναμο της έννοιας αλγόριθμος είναι η Μηχανή Turing.
- Επίσης ισοδύναμη έννοια του αλγορίθμου είναι η έννοια ενός προγράμματος (που λειτουργεί σωστά) π.χ. σε γλώσσα C. Άρα για τα επόμενα: MHXANH-TURING = ΑΛΓΟΡΙΘΜΟΣ = ΠΡΟΓΡΑΜΜΑ
- Προσοχή! Ένας αλγόριθμος τερματίζει πάντα! Άρα «αλγόριθμοι» είναι οι
 Μ.Τ. που υπολογίζουν συναρτήσεις ή αποφασίζουν γλώσσες. Όχι οι Μ.Τ που αποδέχονται γλώσσες.

- 2. Καθολική Μηχανή Turing
- 2. Θέση Church-Turing

ΘΕΣΗ CHURCH – TURING:

Η **ΜΗΧΑΝΗ TURING** είναι το συνώνυμο της έννοιας **ΑΛΓΟΡΙΘΜΟΣ**

- Μέχρι σήμερα δεν έχει βρεθεί υπολογιστικό μοντέλο ισχυρότερο από τη Μηχανή Turing:
 - Δηλαδή δεν έχει βρεθεί κάποιο πρόβλημα που να μην λύνεται από μηχανή Turing και να λύνεται από κάποιο άλλο υπολογιστικό μοντέλο.
 - Για τον λόγο αυτό η θέση των Church Turing διατυπώνει ότι δεν θα βρεθεί κάποιο ισχυρότερο μοντέλο από την Μηχανή Turing.
 - Ωστόσο είναι θέση (εικασία) και δεν έχει αποδειχτεί με μαθηματικό τρόπο.
 - Άρση της θέσης των Church-Turing θα οδηγήσει σε καινούργια υπολογιστικά μοντέλα!

2. Καθολική Μηχανή Turing

3. Προγράμματα που δέχονται ως είσοδο προγράμματα.

Θεωρούμε τα εξής δύο υπολογιστικά προβλήματα:

ΠΡΟΒΛΗΜΑ 1:

Είσοδος: Ο κώδικας ενός προγράμματος σε γλώσσα C.

Έξοδος: ΝΑΙ/ΟΧΙ ανάλογα με το αν το πρόγραμμα είναι συντακτικά ορθό (αν σέβεται

τους κανόνες του συντακτικού σε C)

ΠΡΟΒΛΗΜΑ 2:

Είσοδος: Ο κώδικας ενός προγράμματος σε γλώσσα C και μία είσοδος του συγκεκριμένου προγράμματος.

Έξοδος: NAI/ΟΧΙ ανάλογα με το αν το πρόγραμμα τερματίζει με την συγκεκριμένη είσοδο.

Το πρόβλημα 1 είναι η γνωστή διαδικασία που κάνει ο μεταγλωττιστής και είναι ένα αποφασίσιμο πρόβλημα (έχει λυθεί ήδη, είναι ένα ΕΠΙΛΥΣΙΜΟ πρόβλημα)

Για το πρόβλημα 2 δεν έχει βρεθεί αλγόριθμος που το λύνει. Και θα αποδείξουμε ότι δεν μπορεί να λυθεί ποτε! (είναι ένα **ΜΗ ΕΠΙΛΥΣΙΜΟ** πρόβλημα)

Θα δούμε την μοντελοποίηση των προβλημάτων με μηχανές Turing!

2. Καθολική Μηχανή Turing

4. Η καθολική μηχανή Turing U

Η καθολική μηχανή Turing U ή «προσομοιωτής» είναι μία Μ.Τ. 3 ταινιών η οποία:

- Λαμβάνει ως είσοδο μία συμβολοσειρά <Μ,w> όπου Μ η μαθηματική περιγραφή μιας Μ.Τ. και w είσοδος της μηχανής Μ.
- Η Μ προσομοιώνει την εκτέλεση της Μ με είσοδο w.
- Τερματίζει αν και μόνο αν η Μ τερματίζει δίνοντας ως απάντηση την ίδια απάντηση που δίνει η Μ με είσοδο w.

2. Καθολική Μηχανή Turing

4. Η καθολική μηχανή Turing U

Η προσομοίωση (= Ο τρόπος λειτουργίας της U) είναι ο εξής:

- Στην πρώτη ταινία έχει την τρέχουσα κατάσταση της ταινίας της Μ (αρχικά εκεί γράφεται η είσοδος w)
- > Στην δεύτερη ταινία γράφεται η μαθηματική περιγραφή της Μ
- > Στην τρίτη ταινία κωδικοποιείται η τρέχουσα κατάσταση της Μ.
- Σε κάθε βήμα η U κοιτάζει την κατάσταση της M (από την τρίτη ταινία), το σύμβολο της ταινίας της M (από την πρώτη ταινία) και εκτελεί την μετάβαση που περιγράφει η μαθηματική περιγραφή η οποία βρίσκεται στην δεύτερη ταινία.

Ο τρόπος λειτουργίας της U είναι το ισοδύναμο του υπολογιστή:

- Άρα με βάση την θέση των Church-Turing ένας σημερινός υπολογιστής είναι ισοδυναμος με την καθολική μηχανή Turing.
- Ή ακόμη περισσότερο ο σημερινός Υπολογιστής δεν είναι ισχυρότερος από τις Μηχανή Turing.

Β. Θεωρία

3. Η γλώσσα Halting

1.Ορισμός

Η γλώσσα Halting (=τερματισμός) ορίζεται ως εξής:

$$H = \{ \langle M, w \rangle | H M τερματίζει με είσοδο w \}$$

- > Περιλαμβάνει δηλαδή όλα τα ζεύγη:
 - Μαθηματική Περιγραφή μίας μηχανής Turing M
 - Μία είσοδος w της Μ
- ➤ Έτσι ώστε:
 - > Η μηχανή Turing Μ τερματίζει με είσοδο w.
- Ένα παράδειγμα μιας μηχανής Turing M και μιας εισόδου w που ανήκει στην Η είναι π.χ.
 - ➤ Η Μ.Τ. Μ που είδαμε στο προηγούμενο μάθημα που αποφασίζει την γλώσσα L={0ⁿ1ⁿ|n≥0} με την είσοδο w=0011
- Ενώ η ακόλουθη μηχανή Turing με την είσοδο w=11 δεν ανήκει στην Η, αφού δεν τερματίζει ποτέ

- 3. Η γλώσσα Halting
- 2. Απόδειξη ότι η γλώσσα Η δεν είναι αποφασίσιμη.

Θα δείξουμε ότι η γλώσσα Η δεν είναι αποφασίσιμη γλώσσα:

Σημειώση: Η απόδειξη αυτή είναι αυξημένης δυσκολίας, και στηρίζεται στην τεχνική της διαγωνοποίησης που θα μελετήσουμε σε επόμενο μάθημα

Θεώρημα: Η γλώσσα $H = \{ < M, w > | H M τερματίζει με είσοδο w \}$ δεν είναι αποφασίσιμη γλώσσα

Απόδειξη του Θεωρήματος:

• Βλέπε βιβλίο ΕΑΠ σελ.107-108. (παραλείπεται)

- 3. Η γλώσσα Halting
- 2. Απόδειξη ότι η γλώσσα Η είναι αποδεκτή..
 - Θα δείξουμε ότι υπάρχει μηχανή Turing που ημι-αποφασίζει την Halting:

<u>Θεώρημα:</u> Η γλώσσα $H = \{ < M, w > | H M τερματίζει με είσοδο w<math>\}$ είναι αποδεκτή γλώσσα

Απόδειξη του Θεωρήματος:

Δείχνουμε ότι η Η είναι αποδεκτή γλώσσα κατασκευάζοντας μία μηχανή Turing M' η οποία ημι-αποφασίζει την Η ως εξής. Η M' με είσοδο <M,w> λειτουργεί όπως η καθολική μηχανή Turing U, δηλαδή προσομοιώνει την λειτουργία της μηχανής Truing M με είσοδο w.

Είναι προφανές ότι:

- Αν η Μ με είσοδο w τερματίζει, τότε θέτουμε την Μ' να τερματίζει.
- Αν η Μ με είσοδο w κρεμάει, μπορούμε να το «πιάσουμε» (π.χ. θέτοντας έναν ειδικο χαρακτήρα στο αριστερό άκρο της ταινίας της Μ και αν διαβαστεί αυτός ο χαρακτήρας, τότε η Μ' θα πέφτει σε ατέρμονα βρόχο.
- Αν η Μ με είσοδο w δεν τερματίζει, τότε και η Μ' δεν τερματίζει.
- Συνεπώς η Μ' ημι-αποφασίζει την Η, άρα η Η είναι αποδεκτή γλώσσα.

4. Κλειστότητα των Αποδεκτών Γλωσσών

Έστω δύο αποδεκτές γλώσσες

- Η <u>ένωση</u> τους είναι αποδεκτή γλώσσα
- Η παράθεση τους είναι αποδεκτή γλώσσα
- Η τομή τους είναι αποδεκτή γλώσσα
- Το αστέρι Kleene μίας γλώσσας θα είναι αποδεκτή γλώσσα

Αντίθετά (πολύ σημαντικό)

Δεν έχουμε κλειστότητα στην πράξη του συμπληρώματος

Β. Θεωρία

4. Κλειστότητα των Αποδεκτών Γλωσσών

1. Κλειστότητα στην Ένωση

Θεώρημα (Κλειστότητα των Αποδεκτών Γλωσσών στην Ένωση)

Αν η L_1 είναι Αποδεκτή Γλώσσα και η L_2 είναι Αποδεκτή Γλώσσα τότε και η L_1 U L_2 είναι Αποδεκτή Γλώσσα

Απόδειξη

Η L_1 είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_1 Η L_2 είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_2

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

• Εκτελεί **εναλλάξ** τις M_1 και M_2 , δηλαδή τρέχει εναλλάξ ένα βήμα στην M_1 , ένα βήμα στην M_2 κ.ο.κ. Έαν σε κάποιο βήμα μία από τις δύο τερματίσει, τότε θέτουμε την M' να τερματίσει.

Συνεπώς:

- Αν τερματίσει η M₁ (άρα η συμβολοσειρά ανήκει στην L₁), τότε η Μ' τερματίζει
- Αν τερματίσει η M₂ (άρα η συμβολοσειρά ανήκει στην L₂), τότε η Μ΄ τερματίζει.
- Αν η M_1 δεν τερματίζει και η M_2 δεν τερματίζει (άρα η συμβολοσειρά δεν ανήκει ούτε στην L_1 ούτε στην L_2 , άρα ούτε και στην ένωσή τους), τότε η M' δεν τερματίζει.

Η μηχανή Turing M' ημι-αποφασίζει την γλώσσα L_1 U L_2 , άρα αυτή είναι αποδεκτή γλώσσα.

4. Κλειστότητα των Αποδεκτών Γλωσσών

2. Κλειστότητα στην Τομή

Θεώρημα (Κλειστότητα των Αποδεκτών Γλωσσών στην Τομή)

Αν η L_1 είναι Αποδεκτή Γλώσσα και η L_2 είναι Αποδεκτή Γλώσσα τότε και η $L_1 \cap L_2$ είναι Αποδεκτή Γλώσσα

Απόδειξη

Η L_1 είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_1 Η L_2 είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_2

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1. Τρέχει την M_1 με είσοδο w.
 - Αν η M_1 δεν τερματίσει (άρα η w δεν ανήκει στην L_1), τότε και η M δεν τερματίζει (όπως θα όφειλε, αφού η w δεν ανήκει στην $L_1 \cap L_2$)
 - Αν η Μ₁ τερματίσει (άρα η w ανήκει στην L₁), τότε και η Μ' προχωρά στο επόμενο βήμα.
- 2. Τρέχει την M_2 με είσοδο w.
 - Αν η M_2 δεν τερματίσει (άρα η w δεν ανήκει στην L_2), τότε και η M δεν τερματίζει (όπως θα όφειλε, αφού η w δεν ανήκει στην $L_1 \cap L_2$)
 - Αν η M_2 τερματίσει (άρα η w ανήκει στην L_2), τότε και η M τερματίζει.

Η μηχανή Turing M' ημι-αποφασίζει την γλώσσα $L_1 \cap L_2$, άρα αυτή είναι αποδεκτή γλώσσα.

Β. Θεωρία

4. Κλειστότητα των Αποδεκτών Γλωσσών

4. Κλειστότητα στην Παράθεση

Θεώρημα (Κλειστότητα των Αποδεκτών Γλωσσών στην Παράθεση)

Αν η L_1 είναι Αποδεκτή Γλώσσα και η L_2 είναι Αποδεκτή Γλώσσα τότε και η L_1L_2 είναι Αποδεκτή Γλώσσα

<u>Απόδειξη</u>

Η L_1 είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_1 Η L_2 είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_2

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση δύο συμβολοσειρών w₁ και w₂ (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w₁w₂.)
- 2. Για κάθε διαχωρισμό εξετάζεται παράλληλα αν η συμβολοσειρά w ανήκει στην παράθεση ως εξής:
 - Γα τον πρώτο διαχωρισμό: Τρέχει ένα βήμα στην M₁ με είσοδο w₁ ένα βήμα της M₂ με είσοδο w₂.
 - Γα τον δεύτερο διαχωρισμό: Τρέχει ένα βήμα στην M₁ με είσοδο w₁ ένα βήμα της M₂ με είσοδο w₂.

. . .

- Για τον τελευταίο διαχωρισμό: Τρέχει ένα βήμα στην M₁ με είσοδο w₁ ένα βήμα της M₂ με είσοδο w₂.
- 3. Αν σε κάποιο βήμα τερματίσουν οι δύο μηχανές που εξετάζουν έναν διαχωρισμό, τότε η Μ' τερματίζει.

4. Κλειστότητα των Αποδεκτών Γλωσσών

4. Κλειστότητα στο Αστέρι Kleene

<u>Θεώρημα (Κλειστότητα των Αποδεκτών Γλωσσών στο Αστέρι Kleene)</u>

Αν η L είναι Αποδεκτή Γλώσσα η L* είναι Αποδεκτήη Γλώσσα

Απόδειξη

Η L είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω Μ

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1. Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση 1..|w| συμβολοσειρών (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w₁w₂...w_k με k=1,2,...|w|)
- 2. Για κάθε διαχωρισμό εξετάζεται παράλληλα αν η συμβολοσειρά w ανήκει στο αστέρι Kleene:
 - Γα τον πρώτο διαχωρισμό, έστω w₁w₂...w_i: Τρέχει ένα βήμα στην M με είσοδο w₁, ένα βήμα της M με είσοδο w₂,..., ένα βήμα της M με είσοδο w_i.

. . .

- Για τον τελευταίο διαχωρισμό $w_1w_2...w_j$: Τρέχει ένα βήμα στην M_1 με είσοδο w_1 ένα βήμα της M_2 με είσοδο $w_2...$, ένα βήμα της M με είσοδο w_j .
- 3. Αν σε κάποιο βήμα τερματίσουν όλες οι μηχανές που εξετάζουν έναν διαχωρισμό, τότε η Μ' τερματίζει.

Β. Θεωρία

4. Κλειστότητα των Αποδεκτών Γλωσσών

5. ΌΧΙ Κλειστότητα στο Συμπλήρωμα

Για να δείξουμε ότι δεν έχουμε κλειστότητα στο συμπλήρωμα, ξεκινούμε από το εξής σημαντικό θεώρημα:

<u>Θεώρημα:</u> Αν L και \overline{L} είναι αποδεκτές γλώσσες, τότε η L είναι αποφασίσιμη γλώσσα.

<u>Απόδειξη</u>

Η L είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M(L) Η \bar{L} είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω $M(\bar{L})$

Για μία συμβολοσειρά w ισχύει ότι:

- Είτε θα ανήκει στην γλώσσα, άρα θα M(L) θα τερματίζει με είσοδο w.
- Είτε δεν θα ανήκει στην γλώσσα, άρα θα ανήκει στο συμπλήρωμά της, άρα η $M(\bar{L})$ θα τερματίζει με είσοδο w.

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

• Εκτελεί **εναλλάξ** τις M(L) και $M(\bar{L})$ με είσοδο w, δηλαδή τρέχει εναλλάξ ένα βήμα στην M(L), ένα βήμα στην $M(\bar{L})$, κ.ο.κ.

Συνεπώς:

- Αν τερματίσει η M(L), η w ανήκει στην L, άρα θέτουμε την M' απαντά NAI
- Av τερματίσει η $M(\bar{L})$, η w δεν ανήκει στην L, άρα θέτουμε την M απαντά OXI

Κατασκευάσαμε μηχανή Turing που αποφασίζει την L, άρα αυτή είναι αποφασίσιμη.

4. Κλειστότητα των Αποδεκτών Γλωσσών

5. ΌΧΙ Κλειστότητα στο Συμπλήρωμα

Από το προηγούμενο θεώρημα εκπορεύονται τα ακόλουθα τρία σημαντικά πορίσματα.

Πόρισμα 1: Το συμπλήρωμα του Halting: Η δεν είναι ούτε καν Αποδεκτή Γλώσσα.

<u>Απόδειξη</u>

Έστω ότι η γλώσσα \overline{H} είναι αποδεκτή γλώσσα. Η γλώσσα H είναι αποδεκτή γλώσσα. Συνεπώς από το θεώρημα 1, έχω ότη η γλώσσα Halting είναι αποφασίσιμη γλώσσα. Αυτό όμως είναι άτοπο, διότι έχουμε αποδείξη ότι η H δεν είναι αποφασίσιμη γλώσσα.

Πόρισμα 2: Οι Αποδεκτές Γλώσσες δεν είναι κλειστές στην πράξη του συμπληρώματος

Απόδειξη

Άμεση συνέπεια του πορίσματος 1, αφού η Η είναι αποδεκτή γλώσσα, αλλά το συμπλήρωμά της δεν είναι αποδεκτή γλωσσα.

Πόρισμα 3: Το συμπλήρωμα κάθε γλώσσας που είναι αποδεκτή και όχι αποφασίσιμη, δεν είναι αποδεκτή γλώσσα.

Απόδειξη

Αν το συμπλήρωμα μιας αποδεκτής γλώσσας και όχι αποφασίσιμης γλώσσας ήταν αποδεκτή γλώσσα, τότε από το θεώρημα 1, θα ήταν και αποφασίσιμη. Άτοπο.

ΣΥΝΟΨΗ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΙΜΟΤΗΤΑ

Γ. Ασκήσεις Εφαρμογή 1

Δίνεται η γλώσσα

X = {c(M) | η μηχανή Turing M τερματίζει με είσοδο την κενή συμβολοσειρά}

Δείξτε ότι η γλώσσα Χ είναι αποδεκτη

Γ. Ασκήσεις Εφαρμογή 2

Δίνεται η γλώσσα

X = {c(M) | η μηχανή Turing M τερματίζει με είσοδο την συμβολοσειρά 0011}

Δείξτε ότι η γλώσσα Χ είναι αποδεκτη

Γ. Ασκήσεις Εφαρμογή 3

Δίνεται η γλώσσα

 $X = \{c(M,q) \mid η μηχανή Turing M περνά από την κατάσταση q όταν ξεκινά με είσοδο την κενή σ/σειρά}$

Δείξτε ότι η γλώσσα Χ είναι αποδεκτη

Γ. Ασκήσεις Εφαρμογή 4

Δίνεται η γλώσσα

X = {c(M) | η μηχανή Turing M δεν τερματίζει με είσοδο την συμβολοσειρά αα}

Δείξτε ότι η γλώσσα Χ δεν είναι ούτε καν Turing-Αποδεκτή.