PROJECT REAL-TIME SENTIMENT ANALYSIS SYSTEM

Team Members

Mina Edwar Dawood

Samaa Abdullah Elsayed

Bavly Wagdy Alfy

Mohamed Heshmat

Mohaned Saber

Malak Magdy

Table of Contents

System Introduction **Data Collection** Objectives Architecture Models with Deployment& Tools & Data Evaluation Preprocessing Demo Libraries Results

Future Work

Introduction

Introduction

- In today's digital world, understanding public sentiment in real time is crucial for businesses, governments, and researchers.
- Over 500 million tweets are sent per day – a goldmine of opinions and emotions.
- Existing sentiment tools often ignore
 Arabic or spoken language inputs.

- Develop a system that predicts sentiment from text or voice inputs in Arabic or English.
- Train the system using Twitter and review datasets for higher accuracy with different models.
- Use translation APIs and speech-to-text tools to process non-English and voice inputs.
- Deliver real-time predictions with an easy-to-use interface.

System Architecture

Predicted Sentiment

Data Collection

- Data was collected from Kaggle.
- We collected two datasets the first was Twitter
 Sentiment Analysis dataset and the second one was
 Social Media-Analysis Sentiment with overall 65269
 input texts and sentiment.

Data Preprocessing

Dataset Operation	Dataset (1) Twitter Sentiment Analysis	Dataset (2) Social Media-Analysis Sentiment
Removed Nulls & Duplicates		
Labels fixed	Mapped some words first to Negative- Neutral-Positive then mapped Negative: 0 Neutral: 1 Positive: 2	Mapped Negative: 0 Neutral: 1 Positive: 2
Text Processing	Removed: hashtags (#), URLs, emojis, ,@, &, * ,then Lowercase, Tokenize, Stop Words Removal, Lemmatization.	Removed: hashtags (#), URLs, emojis, ,@, &, * ,then Lowercase, Tokenize, Stop Words Removal, Lemmatization.

- After Preprocessing each data alone we combined them into fully dataset with 65269 text inputs.
- We started tokenizing and padding sequences for the combined data with vocab_size = 30000 and max_len = 100.
- We used pre-trained word embeddings (GLoVe) to form our embedding layer.
- We finally split our data 87% train,10% valid and 3% test.

Words Cloud

Models

BILSTM

GRU

BERT

Model I: BILSTM Architecture

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 100, 300)	9,000,000
bidirectional (Bidirectional)	(None, 100, 512)	1,140,736
global_average_pooling1d (GlobalAveragePooling1D)	(None, 512)	0
dense (Dense)	(None, 128)	65,664
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 64)	8,256
dropout_1 (Dropout)	(None, 64)	0
dense_2 (Dense)	(None, 3)	195

Total params: 10,214,851 (38.97 MB)
Trainable params: 1,214,851 (4.63 MB)

Non-trainable params: 9,000,000 (34.33 MB)

BILSTM: Training

• The model was trained for 10 epochs.


```
Epoch 9/10

1821/1821 — 1030s 565ms/step - accuracy: 0.9310 - loss: 0.1762 - val_accuracy: 0.8937 - val_loss: 0.3221

Epoch 10/10

1821/1821 — 1039s 564ms/step - accuracy: 0.9366 - loss: 0.1611 - val_accuracy: 0.8980 - val_loss: 0.3043
```

BILSTM: Evaluation

Classification	Report:			
	precision	recall	f1-score	support
0	0.89	0.92	0.90	2129
1	0.91	0.92	0.91	3018
2	0.89	0.87	0.88	1853
2	0.09	0.07	0.00	1000
accuracy			0.90	7000
macro avg	0.90	0.90	0.90	7000
weighted avg	0.90	0.90	0.90	7000

Model II: GRU Architecture

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 100, 300)	9,000,000
gru (GRU)	(None, 100, 256)	428,544
<pre>global_average_pooling1d (GlobalAveragePooling1D)</pre>	(None, 256)	0
dropout (Dropout)	(None, 256)	0
dense (Dense)	(None, 64)	16,448
dropout_1 (Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 3)	195

Total params: 9,445,187 (36.03 MB)
Trainable params: 445,187 (1.70 MB)

Non-trainable params: 9,000,000 (34.33 MB)

GRU: Training

The model was trained for 10 epochs.

GRU: Evaluation

Classification	Report:
----------------	---------

0_00_0				
	precision	recall	f1-score	support
0	0.88	0.86	0.87	2129
1	0.84	0.90	0.87	3018
2	0.87	0.80	0.83	1853
accuracy			0.86	7000
macro avg	0.86	0.85	0.86	7000
weighted avg	0.86	0.86	0.86	7000

Model III: BERT

- We fine-tuned bert-base-uncased pretrained model with 3 epochs.
- The following is our configurations with 3 classes as output for Negative, Neutral and Positive.
- We also used the BERT Pre-trained Tokenizer to tokenize

```
# Model Hyperparameters

MAX_LEN = 128

BATCH_SIZE = 32

N_LAYERS = 12

D_MODEL = 768

N_HEADS = 12

D_FF = 3072

VOCAB_SIZE = 30522 # Standard BERT vocab size

NUM_CLASSES = 3 # Sentiment classes

DROPOUT = 0.1
```

BERT Training Process

```
Epochs: 33% | 1/3 [22:49<45:38, 1369.02s/it]

Epoch 1/3 - Loss: 0.6859 - Val Accuracy: 0.8216

Epochs: 67% | 2/3 [45:36<22:47, 1367.92s/it]

Epoch 2/3 - Loss: 0.3119 - Val Accuracy: 0.8883

Epochs: 100% | 3/3 [1:08:23<00:00, 1367.90s/it]

Epoch 3/3 - Loss: 0.1665 - Val Accuracy: 0.9071
```

Bert Evaluation

. المنتج سيء جدًا وخيبة أمل كبيرة :Arabic

Translated: The product is very bad and a great disappointment.

Predicted Label: 0 Sentiment: Negative

.ما زلت أجربه، لا يمكنني الحكم الآن :Arabic

Translated: I still try it, I can't judge now.

Predicted Label: 1 Sentiment: Neutral

.المنتج رائع جدًا وتجاوز توقعاتي :Arabic

Translated: The product is very great and exceeds my expectations.

Predicted Label: 2 Sentiment: Positive

Validation Accuracy

Deployment& Demo

Deployment

 We used streamlit to deploy our model, we built an easy-to use interface.

Speech & Text Sentiment Analysis Analyze sentiment in text or speech with support for Arabic and English! Text Analysis Voice Analysis **Text Sentiment Analysis** Enter text to analyze its sentiment Your Text The atmosphere was warm and cozy. Analyze Text Detected Language: English Sentiment Analysis: Positive sentiment detected!

DEMO

() Tools & Libraries

Streamlit

Future Work

We will work on gathering more data of reviews for sentiment analysis

We will work on adding a computer vision feature to allow real-time sentiment analysis using the camera

Thank You!