Introductory Astronomy

Week 5: Stellar Evolution

Clip 2: Pre-Main Sequence

Modelling Collapse

- Model a cloud of mass $1M_{\odot}$
- Within a few Ky form opaque radiating photosphere of dust and later H⁻
- Photosphere contracts from $R\sim 5\,\mathrm{AU};\ T\sim 300 K$ to $R\sim 2R_\odot$ $T\sim 4000\,\mathrm{K}$ at constant $L\sim 10L_\odot$ fueled by Kelvin-Helmholtz and deuterium fusion over 600Ky

Can We See This?

- Protostars hidden in dusty cocoon
- Observe radio and IR emissions
- Deduce structure from intensity in bands and lineshape

L-1527

Pre-Main Sequence

- Initial photosphere contracts at constant T decreasing L
- Rising ionization in center reduces opacity creating radiative zone increasing L
- When fusion begins L decreases initially as core expands
- In 40My settle down to MS equilibrium: KH time!
- Larger stars go faster

Too Small

- Below $0.072 M_{\odot}$ effective fusion does not occur
- $0.013 M_{\odot} \leq M \leq 0.072 M_{\odot}$ is a brown dwarf type L, T, Y
- How Many? 1:1? 1:5?

Too Big?

- Models suggest that collapse with $M \gtrsim 200 M_{\odot}$ fails as radiation pressure fragments cloud
- Recent record $M \sim 265 M_{\odot}$

Credits

- Protostar Images: ESO http://www.eso.org/public/images/phot-16d-03/
- Brown Dwarf Gliese 229B: NASA <u>http://starchild.gsfc.nasa.gov/Images/StarChild/questions/brown_dwarf.jpg</u>
- Brown Dwarf Survey: NASA/JPL-Caltech <u>http://www.nasa.gov/mission_pages/WISE/multimedia/pia15637.html</u>
- RMC 136a Images: ESO/P. Crowther/C.J. Evans http://www.eso.org/public/images/eso1030d/
- RMC 136a Size Comparison: ESO/M. Kornmesser http://www.eso.org/public/images/eso1030b/

