Aspect Based Sentiment Analysis with Gated Convolutional Networks

Ananya Mantravadi CS19B1004

Faculty:

Prof. C Krishna Mohan Dept. of CSE, IIT Hyderabad

Teaching Assistant:

Prudviraj Jeripothula PhD Research Scholar **Authors:**

Wei Xue and Tao Li

Publisher:

Association for Computational Linguistics

Outline

- Summary of Presentation 1
 - Problem Statement
 - Proposed Approach
- Reproduced Results
- Novel Ideas for future work
 - Octave Convolutions
 - Squeeze & Excitation Blocks
- Conclusion
- References

Problem Statement - Aspect Based Sentiment Analysis

Two subtasks:

- Aspect-Category Sentiment Analysis (ACSA)
- Aspect-Term Sentiment Analysis (ATSA)

Proposed Approach

- CNN Model with Gating Mechanism
- Gated Tanh-ReLU selectively outputs sentiment features according to a given aspect or entity.
- Simpler than existing models (compared to models with attention)
- Can be trained in parallel not time dependent unlike previous attention based and LSTM models

Gated Convolutional Network with Aspect Embedding (GCAE)

ACSA

ATSA

Datasets

- SemEval Workshops customer reviews: Restaurant & Laptop
- Hard Datasets: Sentences having multiple aspect labels associated with multiple sentiments

Sentence	aspect category/term	sentiment label
Average to good Thai food, but terrible delivery.	food	positive
Average to good Thai food, but terrible delivery.	delivery	negative

Table 1: Two example sentences in one hard test set of restaurant review dataset of SemEval 2014.

Implementation Details

- 300-dimension GloVe vectors pre-trained on unlabeled data of 840 billion tokens
- Random initialization uniform distribution U(-0.25, 0.25)
- Adagrad
- Batch size: 32 instances
- Learning Rate: 1e-2
- Maximal epochs: 30
- 5-fold cross validation

Results - ACSA

Models	Restaurant-Large		Restaurant 2014	
	Test	Hard Test	Test	Hard Test
SVM*	-	-	75.32	-
SVM + lexicons*	-	-	82.93	-
ATAE-LSTM	83.91±0.49	66.32 ± 2.28	78.29 ± 0.68	45.62 ± 0.90
CNN	84.28 ± 0.15	50.43 ± 0.38	79.47 ± 0.32	44.94 ± 0.01
GCN	84.48 ± 0.06	50.08 ± 0.31	79.67 ± 0.35	44.49 ± 1.52
GCAE	85.92±0.27	70.75 ± 1.19	79.35 ± 0.34	50.55 ± 1.83

Reproduced Results

GCAE	Restaurant-Large		Restaurant 2014	
	Test	Hard-Test	Test	Hard-Test
	82.60	47.43	76.29	42.69

Results - ATSA

Models	Restaurant		Laptop	
	Test	Hard Test	Test	Hard Test
SVM*	77.13	-	63.61	-
SVM + lexicons*	80.16	-	70.49	-
TD-LSTM	73.44 ± 1.17	56.48 ± 2.46	62.23 ± 0.92	46.11±1.89
ATAE-LSTM	73.74 ± 3.01	50.98 ± 2.27	64.38 ± 4.52	40.39 ± 1.30
IAN	76.34 ± 0.27	55.16 ± 1.97	68.49 ± 0.57	44.51 ± 0.48
RAM	76.97 ± 0.64	55.85 ± 1.60	68.48 ± 0.85	45.37 ± 2.03
GCAE	77.28 \pm 0.32	56.73 ± 0.56	69.14±0.32	47.06 ± 2.45

Reproduced Results

	Restaurant		Laptop	
GCAE	Test	Hard-Test	Test	Hard-Test
	74.25	55.10	65.74	49.07

Novel Ideas that can be implemented

- Octave Convolutions
- Squeeze & Excitation Block

Octave Convolutions

Detailed Design

Octave convolutions on word embeddings

Squeeze & Excitation Block

Conclusion

- An efficient CNN with gating mechanisms for ACSA and ATSA tasks.
- Reproduced results similar to paper findings.
- Octave convolutions and SE Block to improve accuracy and enhance performance or original architecture

References

- W. Xue and T. Li, "Aspect based sentiment analysis with gated convolutional networks," in Proc. ACL, vol. 1, 2018, pp. 2514–2523.
- Maria Pontiki, Dimitrios Galanis, John Pavlopoulos, Haris Papageorgiou, Ion Androutsopoulos, and Suresh Manandhar. 2014. Semeval-2014 task 4: Aspect based sentiment analysis. In SemEval@COLING, pages 27–35, Stroudsburg, PA, USA. Association for Computational Linguistics.
- Chen, Y., Fan, H., Xu, B., Yan, Z., Kalantidis, Y., Rohrbach, M., Yan, S., & Feng, J. (2019). Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks With Octave Convolution.
 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 3434-3443.
- Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2020). Squeeze-and-Excitation Networks. IEEE
 Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023.
- https://github.com/wxue004cs/GCAE

Thank You