Contents

1	Twist of $\mathbb{C}S_4$	1
2	Twisting representations of rational Cherednik algebras	3
	2.1 Approach 1	3
	2.2 Approach 2	4
3	References	4

1 Twist of $\mathbb{C}S_4$

We view the Klein 4-group $T=\langle a,b\mid a^2=b^2=1,ab=ba\rangle$ as a subset of $\mathbb{C}S_4$ via the following embedding: $a\mapsto (12),b\mapsto (34)$. Then $\mathbb{C}S_4$ becomes a $\mathbb{C}T$ -module algebra via an action of T given by conjugation, i.e. $a\rhd g:=(12)g(12),\ b\rhd g=(34)g(34)$. We take the following (non-trivial) cocycle of $\mathbb{C}T$:

$$\chi = \frac{1}{2}(1 \otimes 1 + (12) \otimes 1 + 1 \otimes (34) - (12) \otimes (34))$$

We wish to investigate the structure of the twisted module algebra $(\mathbb{C}S_4)_{\chi}$. First recall that group algebras (over \mathbb{C}) are semisimple and therefore $\mathbb{C}S_4 \cong \bigoplus_{i\in I} M_{n_i}(\mathbb{C})$ for some matrix rings $M_{n_i}(\mathbb{C})$ and some index set I. Note that under this isomorphism $\bigoplus_{i\in I} M_{n_i}(\mathbb{C})$ is also a $\mathbb{C}T$ -module algebra, again with T acting by conjugation, this time by certain elements of $\bigoplus_i M_{n_i}(\mathbb{C})$. Each of the matrix rings $M_{n_i}(\mathbb{C})$ can be seen to be a $\mathbb{C}T$ -module algebra too. Indeed, each ring $M_{n_i}(\mathbb{C})$ is an ideal of $\bigoplus_i M_{n_i}(\mathbb{C})$, and is therefore closed under multiplication from the left or right. As the action of T on $M_{n_i}(\mathbb{C})$ is just to conjugate by some element of $\bigoplus_i M_{n_i}(\mathbb{C})$, we see this action must be closed, and therefore $M_{n_i}(\mathbb{C})$ is a $\mathbb{C}T$ -submodule of $\bigoplus_i M_{n_i}(\mathbb{C})$. So each ring $M_{n_i}(\mathbb{C})$ must be a $\mathbb{C}T$ -module algebra in its own right. Next we prove a general result about module algebras:

Lemma 1.1. If A, B are H-module algebras and χ is a cocycle for H, then $(A \oplus B)_{\chi} = A_{\chi} \oplus B_{\chi}$.

Proof. Certainly this equality is true at the level of vector spaces. It remains to verify the products on these two spaces coincide. If the products on A and B are denoted m_A, m_B respectively, then the product on $A \oplus B$ is $m_{A \oplus B}((a,b) \otimes (a',b')) := (m_A(a \otimes a'), m_B(b \otimes b'))$. Note $A \oplus B$ forms an H-module algebra whereby H acts diagonally, i.e. $h \rhd (a,b) = (h \rhd a, h \rhd b)$. Therefore $A \oplus B$ is amenable to twisting, and the resulting product is $(m_{A \oplus B})_{\chi} = (m_A \otimes a') + (m_A \otimes$

 $m_{A\oplus B}(\chi^{-1}\rhd(a,b)\otimes(a',b'))$. Suppose $\chi^{-1}=\sum\chi_1\otimes\chi_2$ for some $\chi_1,\chi_2\in H$, then

$$(m_{A \oplus B})_{\chi} = m_{A \oplus B}((\chi_1 \rhd a, \chi_1 \rhd b) \otimes (\chi_2 \rhd a', \chi_2 \rhd b'))$$

$$= (m_A(\chi_1 \rhd a \otimes \chi_2 \rhd a'), m_B(\chi_1 \rhd b \otimes \chi_2 \rhd b'))$$

$$= (m_A(\chi^{-1} \rhd (a, a'), m_B(\chi^{-1} \rhd (b, b'))))$$

$$= ((m_A)_{\chi}(a, a'), (m_B)_{\chi}(b, b')$$

where this last line is the product on $A_{\chi} \oplus B_{\chi}$, as we required.

Applying this Lemma we can deduce the following:

$$(\mathbb{C}S_4)\chi \cong (\bigoplus_i M_{n_i}(\mathbb{C}))\chi \cong \bigoplus_i M_{n_i}(\mathbb{C})_\chi \tag{1}$$

The problem of understanding $(\mathbb{C}S_4)_{\chi}$ therefore reduces to understanding how matrix rings change under twists.

Above we reasoned that each matrix ring $M_{n_i}(\mathbb{C})$ is a $\mathbb{C}T$ -module algebra, so in particular the group T acts by automorphisms on $M_{n_i}(\mathbb{C})$, for each $i \in I$. Since every automorphism of a matrix ring is inner, we find that for each $i \in I$, we can identify T with a certain subset of invertible elements of $M_{n_i}(\mathbb{C})$ such that the action of T becomes conjugation by these elements.

Now let us consider the twisted algebra $M_{n_i}(\mathbb{C})_{\chi}$, which is also a $\mathbb{C}T$ -module algebra since $\mathbb{C}T$ is commutative and therefore $\mathbb{C}T_{\chi} \cong \mathbb{C}T$. The action of $\mathbb{C}T$ on $M_{n_i}(\mathbb{C})_{\chi}$ is the same as that of $\mathbb{C}T$ on $M_{n_i}(\mathbb{C})$, which, by above, is given by conjugation (with respect to the product on $M_{n_i}(\mathbb{C})$.

Lemma 1.2. If I is a 2-sided ideal of $M_{n_i}(\mathbb{C})_{\chi}$, then I is also a $\mathbb{C}T$ -submodule of $M_{n_i}(\mathbb{C})_{\chi}$.

Proof. For $t \in T$, $i \in I$ we have $t \triangleright i = \tau \cdot i \cdot \tau^{-1}$ where \cdot is the product on $M_{n_i}(\mathbb{C})$ and τ is some invertible element of $M_{n_i}(\mathbb{C})$. At this point we notice $\tau \cdot i = \tau \star i$ where \star is the product on $M_{n_i}(\mathbb{C})_{\chi}$. This is true because

$$\chi \rhd \tau \otimes i = \frac{1}{2} (\tau \otimes i + ((12) \rhd \tau) \otimes i + \tau \otimes ((34) \rhd i) - ((12) \rhd \tau) \otimes ((34) \rhd i))$$
$$= \tau \otimes i$$

since (12) $\triangleright \tau = \mu \cdot \tau \cdot \mu^{-1}$ for some $\mu \in M_{n_i}(\mathbb{C})$, where μ and τ are elements of a subgroup of $M_{n_i}(\mathbb{C})$ isomorphic to T. Since this group is commutative and every element has order 2 we see that (12) $\triangleright \tau = \tau$, from which the above follows. Therefore $\tau \star i = \cdot (\chi \triangleright \tau \otimes i) = \tau$ $\cdot (\tau \otimes i) = \tau \cdot i$. Similarly one shows that $(\tau \cdot i) \cdot \tau^{-1} = (\tau \cdot i) \star \tau^{-1}$, and so $\tau \rhd i = \tau \star i \star \tau^{-1}$. Finally we apply the fact I is a 2-sided ideal of $M_{n_i}(\mathbb{C})_{\chi}$ to deduce $\tau \rhd i \in I$, as required. \square

Corollary 1.3. If I is a 2-sided ideal of $M_{n_i}(\mathbb{C})_{\chi}$, then the underlying subspace of I also defines a 2-sided ideal of $M_{n_i}(\mathbb{C})$.

Proof. Let $a \in M_{n_i}(\mathbb{C})$ and $i \in I$. Then $a \cdot i = \star(\chi \rhd a \otimes i) = \star((\chi_1 \rhd a) \otimes (\chi_2 \rhd i))$ where $\chi = \sum \chi_1 \otimes \chi_2$. Now $\chi_1 \rhd a \in M_{n_i}(\mathbb{C})$, and by Lemma 1.2 we know I is a $\mathbb{C}T$ -submodule and therefore $\chi_2 \rhd i \in I$. Since I is an ideal of $M_{n_i}(\mathbb{C})_{\chi}$ we deduce $\star((\chi_1 \rhd a) \otimes (\chi_2 \rhd i)) \in I$. So we have shown $a \cdot i \in I$, and therefore I is a left ideal of $M_{n_i}(\mathbb{C})$. Similarly one shows it is a right ideal, and therefore 2-sided.

From this corollary, and the fact that matrix rings are simple, we find that the twisted matrix rings $M_{n_i}(\mathbb{C})_{\chi}$ must also be simple. Additionally, since simple \mathbb{C} -algebras are uniquely determined (up to isomorphism) by their dimension, we deduce $M_{n_i}(\mathbb{C})_{\chi} \cong M_{n_i}(\mathbb{C})$. We can now continue the series of isomorphisms in (1) above,

$$(\mathbb{C}S_4)\chi \cong (\bigoplus_i M_{n_i}(\mathbb{C}))\chi \cong \bigoplus_i M_{n_i}(\mathbb{C})\chi \cong \bigoplus_i M_{n_i}(\mathbb{C}) \cong \mathbb{C}S_4$$

2 Twisting representations of rational Cherednik algebras

2.1 Approach 1.

For a rational Cherednik algebra $H = H_c(G(m, p, n))$ with m even, and $T = (C_2)^n$, consider a representation $\rho: H \to \operatorname{End}(V)$. Now, strictly under the assumption that $\frac{m}{p}$ is even, so that $T \subseteq G(m, p, n)$, we can equip $\operatorname{End}(V)$ with a $\mathbb{C}T$ -module structure via: $t \rhd f = \rho(t)f\rho(t)^{-1}$ for $t \in T$, $f \in \operatorname{End}(V)$.

Lemma 2.1. ρ is a $\mathbb{C}T$ -module homomorphism, and additionally can be viewed as an algebra homomorphism of the twisted algebras: $\rho: H_{\mathcal{F}} \to End(V)_{\mathcal{F}}$.

Proof. ρ is a $\mathbb{C}T$ -module homomorphism since $t \triangleright \rho(h) = \rho(t)\rho(h)\rho(t)^{-1} = \rho(tht^{-1}) = \rho(t\triangleright h)$. Now let $m, m_{\mathcal{F}}$ denote the products on $H, H_{\mathcal{F}}$ respectively, and $m', m'_{\mathcal{F}}$ the products on $\operatorname{End}(V), \operatorname{End}(V)_{\mathcal{F}}$. Then $\rho(m_{\mathcal{F}}(h\otimes h')) = (\rho\circ m)(\mathcal{F}^{-1}\triangleright h\otimes h') = (m'\circ(\rho\otimes\rho))(\mathcal{F}^{-1}\triangleright h\otimes h') = m'(\mathcal{F}^{-1}\triangleright(\rho\otimes\rho)(h\otimes h')) = m'_{\mathcal{F}}\circ(\rho\otimes\rho)(h\otimes h')$, where in the second equality we apply the fact ρ is an algebra homomorphism of the untwisted algebras, and in the 3rd isomorphism we use the fact ρ is a $\mathbb{C}T$ -module homomorphism. Assuming now that V is finite-dimensional, then for each choice of basis for V we have an isomorphism $\operatorname{End}(V) \cong M_n(\mathbb{C})$ for some $n \in \mathbb{N}$, and as we know matrix rings are simple. Using an identical line of reasoning to that used in the proofs of Lemma 1.2 and Corollary 1.3 one can show that $\operatorname{End}(V)_{\mathcal{F}} \cong M_n(\mathbb{C})_{\mathcal{F}}$ must also be simple. Therefore $\operatorname{End}(V)_{\mathcal{F}} \cong \operatorname{End}(V')$ for some $V' \cong V$. Using this isomorphism we arrive at a new representation, of the same dimension as before, but for the twisted rational Cherednik algebra: $\rho' : H_{\mathcal{F}} \to \operatorname{End}(V')$.

2.2 Approach 2

As before we start with a representation $\rho: H \to \operatorname{End}(V)$ for $H = H_c(G(m, p, n))$. Now H is a subalgebra of $\overline{H} = H_c(G(m, 1, n))$. Notice that $T \subseteq G(m, 1, n)$. We can use ρ to get an induced representation for \overline{H} given by: $V' = \overline{H} \otimes_H V$.

Is V' still finite dimensional? I think yes.. For groups $H \leq G$ where V is a $\mathbb{C}H$ -module, we have $\dim(\mathbb{C}G \otimes_{\mathbb{C}H} V) = \frac{|G|}{|H|} \cdot \dim(V)$. Do we have for \mathbb{C} -algebras $S \subseteq R$ (sharing identities), where V is an S-module, that $\dim(R \otimes_S V) = \frac{\dim(R)}{\dim(S)} \cdot \dim(V)$?

Now in our case S and R are both infinite-dimensional, but one is a "finite-dimensional extension" of the other.. $H = S(V) \otimes \mathbb{C}G(m, p, n) \otimes S(V^*)$ as a vector space, so

$$\dim(H) = \dim(S(V))^2 \cdot |G(m, p, n)| = \dim(S(V))^2 \cdot \frac{m^n n!}{p}$$

Similarly $\dim(\overline{H}) = \dim(S(V))^2 \cdot m^n n!$. Is there a rigorous way to conclude $\frac{\dim(\overline{H})}{\dim(H)} = p$??

If so, then, by restriction, we have a new finite-dimensional representation ρ' of H on the space V', which is of dimension $p\dim(V)$. We can define an action of T on $\operatorname{End}(V')$ in an indentical fashion to Approach 1. Therefore it remains prove a second version of Lemma 2.1 for ρ' to get a twisted representation of a rational Cherednik algebra.

3 References