[THIS WORK IS IN PROGRESS AND NOT REVIEW READY]

The Holographic Interval

Most information is only ever known to a certain measure accuracy or precision (9 \pm 0.5, 8.5 $^{\sim}$ 9.5, 9.0 \pm 0.05, etc.), the range of that accuracy is what we refer to as the interval. These <u>intervals</u> or ranges utilize the <u>holographic principal</u> to represent numbers or other kinds of information by encoding only their boundary.

For use in computer graphics, I utilize the following notation to simplify the process of working with intervals, which has implications reaching from robotic control theory to time-and-pixel aware motion-blur in movies and video game rendering:

Interval and Cubic Operators

Notation	Definition	Term	Icon	Explanation
а	= a	point	•	single precision point
ã	$= [b, c]$ $= \{x b \le x < c\}$	range		The range from B to almost C
ä	$=\{\widetilde{b},\ldots,\widetilde{c}\}$	tiling		tiling defined from range B to range C
\hat{a}	$= [a_0, \dots, a_n]$	array	— • • • •	Array of values
$\hat{\ddot{a}}$	$= [\tilde{b},, \tilde{c}]$	tile array		Array of tiles
\vec{a}	$= \{x,y,z\}$	cubic point		A 3-dimensional point
$ec{ ilde{a}}$	$= \{\widetilde{x},\widetilde{y},\widetilde{z}\}$	cubic range		A 3-dimensional range
f	$=f(\vec{\tilde{a}})$	cubic function		A function which takes a cubic range and returns a value
$\vec{\ddot{a}}$	$= \{\ddot{x}, \ddot{y}, \ddot{z}, \ddot{w}\}$	cubic tiling		The intersection of 3 tiled dimensions
$\ddot{\ddot{a}}$	$= \left[\overrightarrow{\widetilde{x}_{\iota}} \middle \overrightarrow{\widetilde{x}_{\iota}} \in \overrightarrow{\widetilde{a}} \right]$	cubic tile array		A 3-dimensional array of tiles
v_i	$= \left(\widehat{\vec{a}}\right)_i$	volume element "voxel"		An tile within the 3-dimensional array of tiles
V	$=\widetilde{f(v_i)}$	cubic buffer "data cube"		An cubic array of the values, each associated with a tile
P	$=$ $\hat{\vec{a}}$	cubic projection		The projection or dimensional rotation
$P(\vec{\tilde{x}})$	$= \left(\vec{\tilde{x}} * P\right) \cap \stackrel{\frown}{\ddot{a}}$	projected voxels covered by x		The voxels covered by a point x