```
name: <unnamed>
           C:\Users\saiomkark\OneDrive\Documents\AdvStats\anRoyModelSample.log
      log:
 log type: text
 opened on: 8 Oct 2021, 19:09:38
. * Set up data simulation dataset. Set seed so we may replicate this program
 *****************
 ******
. set seed 195912191
. *
. * Set covariance matrix for Standard normal random variables
. matrix V = (1, .9 \setminus .9, 1)
. * draw bivariate normal with n = 1,000,000
. drawnorm za ze, cov(V) n(1000000)
(obs 1,000,000)
. * y1 economists y0 accountant mean 60k for econ, 65k for acct
. * sd econ 10,000 and 5,000 for acct
. gen y1 = 60000 + 10000*ze
. \text{ gen y0} = 65000 + 5000*za
. *summarize the data
. sum y1 y0
  Variable | Obs Mean Std. Dev. Min Max
        y1 | 1,000,000 60004.08 9995.004 12692.68 105929
y0 | 1,000,000 65001.36 4999.691 40285.02 89629.73
. * pick the field that pays the most
. gen y = max(y0,y1)
. * summarize observed earnings
. sum y
                  Obs
                            Mean Std. Dev.
  Variable |
                                                   Min
                                                             Max
        y | 1,000,000 65656.41 6016.329 40285.02 105929
. * d=1 means economics, d=0 accounting
. gen d = y1 > y0
. * run cross tables
. tab d
d | Freq. Percent
                                      Cum.
        0 | 801,660 80.17
1 | 198,340 19.83
                                      80.17
                                      100.00
    Total | 1,000,000 100.00
```

. tab d, sum(y)

d			Summary of y Std. Dev.	Freq.
0 1		63826.404 73053.032	4499.5368 5693.8071	801,660 198,340
Total		65656.413	6016.3287	1,000,000

- . * selection into y0
- . tab d, sum(y0)

d		S Mean	Summary of y0 Std. Dev.	Freq.
0 1	+- -	63826.404 69750.352	4499.5368 4008.4031	801,660 198,340
Total		65001.36	4999.6907	1,000,000

- . * selection into y1
- . tab d, sum(y1)

d			Summary Std.		Freq.
0		56775.624 73053.032	8002. 5693.		801,660 198,340
Total	1	60004.085	9995.	.0037	1,000,000

*

- . *Answer for Question1
- . *Two reasons:
- . *Seed is different in R and Stata. Seed is a dynamic number that can be set which al > lows us to replicate the observations generated b
- > y the random number generator. It is helpful for simulations to replicate the result > s which can aid simulation analysis.
- . *However, even with same seed, different results are observed in R and Stata. This c > an be because the Normal distribution generated i
- > n R differs from what is generated in $\tilde{\text{S}}$ tata.
- . *This shows that the underlying distribution generator algorithm functions different > ly in R(mvrnorm) and Stata(drawnorm).

. 7

- . * makes sure memory is clear. clear
- . *Question2
 - *Change the seed
 - *set seed 02101870
- . *Question2

```
. set seed 195912191
. * Set covariance matrix for Standard normal random variables
. matrix V = (1, .9 \setminus .9, 1)
. * draw bivariate normal with n = 1,000,000
. drawnorm za ze, cov(V) n(1000000)
(obs 1,000,000)
. * y1 economists y0 accountant mean 60k for econ, 65k for acct
. * sd econ 10,000 and 5,000 for acct
. gen y1 = 60000 + 10000*ze
. gen y0 = 65000 + 5000*za
. *summarize the data
. sum y1 y0
  Variable | Obs Mean Std. Dev. Min Max
     y1 | 1,000,000 60004.08 9995.004 12692.68 105929
y0 | 1,000,000 65001.36 4999.691 40285.02 89629.73
. * pick the field that pays the most
. gen y = max(y0,y1)
. * summarize observed earnings
. sum y
  Variable | Obs Mean Std. Dev. Min
                                                              Max
     y | 1,000,000 65656.41 6016.329 40285.02 105929
. * d=1 means economics, d=0 accounting
. gen d = y1 > y0
. * run cross tables
. tab d
        d | Freq. Percent Cum.
______

      0 | 801,660
      80.17
      80.17

      1 | 198,340
      19.83
      100.00

    Total | 1,000,000 100.00
. tab d, sum(y)
        | Summary of y d | Mean Std. Dev. Freq.
0 | 63826.404 4499.5368 801,660
1 | 73053.032 5693.8071 198,340
     Total | 65656.413 6016.3287 1,000,000
```

. * selection into y0 . tab d, sum(y0)

d		Summary of y0 Std. Dev.	Freq.
0 1	00020.101	4499.5368 4008.4031	801,660 198,340
Total	65001.36	4999.6907	1,000,000

- . * selection into y1
- . tab d, sum(y1)

		Summary of yl	
d	Mean	Std. Dev.	Freq.
0 1	56775.624 73053.032	8002.7879 5693.8071	801,660 198,340
Total	60004.085	9995.0037	1,000,000

. *Answer for Question 2

. *Reset the seed to original seed value 195912191 . *1) Reason for not giving birthdate of self could be construed a data privacy issue > or data security issue. Also it will produce simi

> lar results as fellow mates in the class because the birthday paradox shows that the > ir is a greater probablity for repition of birthd

> ay when the sample size exceeds 23.

. *2) Seed set is different in question 1 and question 2. As seed is changed, the dist > ribution generated changes slightly causing the r

> esults to change slightly. *However the mean and variance still remains same as they are fixed. Only th > e observations changes with change in seed.

. * makes sure memory is clear . clear

. set seed 195912191

. * Set covariance matrix for Standard normal random variables . matrix $V = (1, .9 \setminus .9, 1)$

. * draw bivariate normal with n = 1,000,000. drawnorm za ze, cov(V) n(1000000) (obs 1,000,000)

. *
. * y1 economists y0 accountant mean 60k for econ, 65k for acct
. * sd econ 10,000 and 5,000 for acct
. *

. gen y1 = 60000 + 10000*ze

. gen y0 = 65000 + 5000*za

. *summarize the data

. sum y1 y0

Variable	Obs	Mean	Std. Dev.	. Min	Max
	1,000,000 1,000,000	60004.08 65001.36			105929 89629.73

. * pick the field that pays the most

. gen y = max(y0,y1)

. * summarize observed earnings

. sum y

Variable	Obs	Mean	Std. Dev.	Min	Max
у	1,000,000	65656.41	6016.329	40285.02	105929

. * d=1 means economics, d=0 accounting

. gen d = y1 > y0

. * run cross tables

. tab d

d	Freq.	Percent	Cum.
0	801,660 198,340	80.17 19.83	80.17 100.00
Total	1,000,000	100.00	

. tab d, sum(y)

d			Summary of y Std. Dev.	Freq.
0		63826.404 73053.032	4499.5368 5693.8071	801,660 198,340
Total		65656.413	6016.3287	1,000,000

- . * selection into y0
- . tab d, sum(y0)

d			Summary Std.		Freq.
0	 	63826.404 69750.352	4499. 4008.		801,660 198,340
Total		65001.36	4999.	.6907	1,000,000

. * selection into y1
. tab d, sum(y1)

```
0 | 56775.624 8002.7879 801,660
1 | 73053.032 5693.8071 198,340
     Total | 60004.085 9995.0037 1,000,000
. **Answer for Question 3
. *The standard normal samle size is 1000000
. *It is observed that out of the sample size for economists only 198340 have become e
> conomists and hence the standard deviation we obs
> erved (5693.8071) is significantly less compared to the conditional standard deviati
> on of 100000
. *The same goes for accountants, out of the sample size for accountants its observed
> that 801660 have become accountants, hence the st
> andard deviation we observed (4499.5368) is less compared to the conditional standar
> d deviation set of 5000
 *******************
. * makes sure memory is clear
. clear
. *Question4
         *Change the standard deviation of Economist earnings to 12000 from 10000
          * gen y1 = 60000 + 12000*ze
. *Ouestion4
. set seed 195912191
. * Set covariance matrix for Standard normal random variables
. matrix V = (1, .9 \setminus .9, 1)
. * draw bivariate normal with n = 1,000,000
. drawnorm za ze, cov(V) n(1000000)
(obs 1,000,000)
. \star y1 economists y0 accountant mean 60k for econ, 65k for acct
. * sd econ 10,000 and 5,000 for acct
. \text{ gen y1} = 60000 + 12000*ze
```

Freq.

Summary of y1

d | Mean Std. Dev.

- . gen y0 = 65000 + 5000*za
- . *summarize the data
- . sum y1 y0

Variable	Obs	Mean	Std. Dev.	Min	Max
	1,000,000 1,000,000	60004.9 65001.36	11994 4999.691		115114.7 89629.73

- . * pick the field that pays the most
- . gen y = max(y0,y1)
- . * summarize observed earnings
- . sum y

Variable	Obs	Mean	Std. Dev.	Min	Max
у	1,000,000	66232.43	6952.761	40285.02	115114.7

- . * d=1 means economics, d=0 accounting
- . gen d = y1 > y0
- . * run cross tables . tab d

Cum.	Percent	Freq.	d
73.93 100.00	73.93 26.07	739,328 260,672	0 1
	100.00	1,000,000	Total

. tab d, sum(y)

	Summary of y		
Freq.	Std. Dev.	Mean	d
739,328 260,672	4294.5497 6628.3023	63369.132 74353.441	0 1
1,000,000	6952.7611	66232.434	Total

- . * selection into y0
- . tab d, sum(y0)

d	1	Mean	Summary Std.		Freq.
0 1	+-	63369.132 69630.746	4294. 3820.		739,328 260,672
Total		65001.36	4999.	6907	1,000,000

- . * selection into y1
- . tab d, sum(y1)

d		Summary of y1 Std. Dev.	Freq.
0	54945.899 74353.441	8994.6477 6628.3023	739,328 260,672
Total	60004.902	11994.004	1,000,000

```
. *Answer to question 4
. *The data shows an increase in total economists and decrease in accountants. As the
> standard deviation of economist earnings is incre
> ased from $10000 to $12000, the economist earnings of economist have increased and a
> ccountants with economist earnings have reduced.
> This is due to the flattening of the curve that happens because of the increase in s
> tandard deviation causing the occurrences of high
 economist earnings has increased resulting more total economists and less total acc
> ountants. Due to the same, the mean of economists
  with economist earnings increases (Mean changed from 73053.0.32 to 74353.441 ) whe
> reas the mean of accountants with accountant earn
> ings has reduced(Mean changed from 63826.404 to 63369.132). One another observation
> is the increase in people with economists earning
> s (198340 to 260672) and reduction in number of people with accountants earnings (80
> 1660 to 739328)
. ***************
. log close
    name:
           <unnamed>
           C:\Users\saiomkark\OneDrive\Documents\AdvStats\anRoyModelSample.log
      log:
 log type: text
closed on: 8 Oct 2021, 19:09:42
______
```