## Projet Enigma

2014-2015

Naim Kissi Robin Trouve Marianna De Lima

## Plan

- Enigma: Machine de cryptage
  - Les rotors
  - Le plugboard
  - ▶ Le réflecteur
- Enigma: Simulation informatique
  - Organisation du projet
  - Logique de fonctionnement
  - Difficultés et solutions retenues

#### Les rotors



- Au nombre de trois parmis 5
- Forme cylindrique et fixé sur un axe où ils peuvent tourner
- Forme cylindrique et fixé sur un axe où ils peuvent tourner
- Une lettre ne sera pas cryptée deux fois par la même lettre

Nombre de possibilités:

 $5*4*3 = 60\ 263 = 17\ 576$  $26^3 = 17\ 576$ 

Soit: 60\*17 576= 1 054 560

## Fonctionnement Rotors



- « A » cryptée en B
- Les rotors tournent: sorties/entrées décalées

## Le Plugboard



- Tableau de connexion situé devant la machine
- Permet de permuter deux lettres entre elles
- Il offre le plus de possibilité de cryptage

Nombre de possibilités du plugboard:

$$\frac{26!}{6!10!2^{10}} = 150738274937250$$

Nombre de possibilités totale:

150 738 274 937 250 \* 1 054 560 = 158 962 555 217 826 360 000

## Fonctionnement Plugboard



• Le plugboard échange les lettres « A » et « B »

## Le réflecteur



- Rend le cryptage réversible
- Plus besoin d'avoir une machine pour crypter et une autre pour décrypter
- « A » cryptée en « B » alors « B » sera décryptée en « A »
- Empêche alors toute lettre d'être cryptée par ellemême
- Ne rajoute pas de possibilités de cryptage

## Fonctionnement Réflecteur



- Le réflecteur fait une ultime permutation
- « A » cryptée en « C »
- « C » décryptée en « A »

## Organisation du projet

- Compréhension du sujet et du fonctionnement d'Enigma
- Mise en accord sur les différents outils (Java, MVC)
- Création du diagramme de Gantt





- Conception UML
- Répartition des tâches:
  - Model : cœur de l'application
  - View: interface utilisateur
  - Controller : verification des données saisies

## Logique de fonctionnement

Rotors = tableaux d'entrées/sorties

| Indices                         | 0 | 1        | 2 | 3 |
|---------------------------------|---|----------|---|---|
|                                 |   |          |   |   |
| Tableaux des lettres cryptables | A | В        | С | D |
|                                 | 1 |          |   |   |
| Permutations Plugboard          | 1 | 0        | 2 | 3 |
|                                 |   |          |   |   |
| Rotor 1                         | 2 | _ 1      | 3 | 0 |
| Datas 2                         |   | <b>"</b> |   |   |
| Rotor 2                         | 1 | 3        | 0 | 2 |
|                                 |   |          |   |   |
| Rotor 3                         | 3 | 1        | 2 | 0 |
|                                 |   |          |   |   |
| Reflecteur                      | 1 | 2        | 3 | 0 |

# Difficultés rencontrées et solutions retenues

| Difficultés                                         | Solutions                                                                                               |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Complexité algorithmique:<br>Temps de calcul        | Création de tableaux « miroirs »                                                                        |  |
| Interface graphique:<br>Non responsive (adaptative) | Création interface v2.0 avec Java FX et Scene Builder                                                   |  |
| Méthode « Decrypter »<br>Décryptage long et coûteux | Création d'une classe à part.  - méthode de décryptage naïve  - Méthode basée sur indice de coïncidence |  |

#### Fichier Edition Format Affichage ? heureux mauvais serieux vieux vrai ancien beau blanc certain chaud cher clair content dernier different droit entier fort froid gentil

#### Dictionnaire

- Dictionnaire : fichier texte de 600 mots les plus courant
- Crypte chaque mot 46<sup>3</sup>
- Cherche dans la chaine cryptée une correspondance
- Avantages: traite aussi bien un texte long que court
- Limites: très coûteux en temps pour trouver la position des rotors.

Au plus: 46<sup>3</sup> \* nombre de mots possibles

#### Indice de coincidence

Formule mathématique:

$$IC = \sum_{i=1}^{26} \frac{ni(ni-1)}{N(N-1)}$$

- Calcul la probabilité d'apparition de chaque lettre (alphabet de 26 lettres « a » à « z »)
- Détermine le langage utilisé grâce aux indices de référence (0,072 pour le français)
- Détermine si c'est une substitution polyalphabétique ou mono-alphabétique
- Décryptage du texte 46<sup>3</sup> fois
- Calcul de l'indice de coincidence pour chaque décryptage
- On garde le texte décrypté où l'indice est le plus proche de 0,072
- **Avantages**: très efficace et calcul au plus 46<sup>3</sup> pour trouver la position des rotors. Possibilité de trouver les branchements dans le plugboard de manière moins coûteuse.
- Limites: Indice pas ou peu fiable sur les textes courts.

## Bilan

- Nouvelles connaissances en cryptographie
- Fort intérêt pour la cryptanalyse
- Application de nos connaissances en informatique et en gestion de projet
- Envie de continuer le projet