Cancer: how to deal with it?

Diagnostics (in vitro, ex vivo & in vivo) to know what is going on

Therapy (systemic & targeted) to inhibit it

Surgery (conventional & fluorescentassisted) to eradicate it

Cancer Screening for Early Detection

Diagnostics is instrumental for rational downstream actions

- Reliable markers
- Costs
- Feasibility
- Invasiveness

Biopsy (conventional & liquid)

Liquid Biopsy

Looking for suitable circulating biomarkers:

- Proteins
- Nucleic acids
- Lipids
- Metabolites

Liquid Biopsy

Looking for suitable circulating biomarkers:

Exosomes and extracellular vesicles

In vivo imaging

Conventional & Ab-dependent: signal-to-noise ratio

Immunoglobulins

IgG Antibodies

Assembled antibody molecule

IgG antibodies

6 loops, corresponding to the 3 CDRs of each variable region, form the (flat) paratope of a conventional IgG antibody

Antibody fragments

Camelidae & shark antibodies (but also alternative scaffolds) are suitable for molecular recognition and binding

Epitope characteristics & multiple binding

Fluorescence-assisted surgery

Why? To identify the tumor margins

Targeted therapy

Why? To reduce toxicity due to unspecific activity

How to target tumors?

Exploiting the Biomarkers (molecules present only in the tumor cells) for selective delivery

Our contribution

Binders and reagents – optimization and functionalization

Our contribution

Alternative scaffolds

