SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Forschungszentrum Juelich GmbH
 - (B) ADDRESS: Postfach 1913
 - (C) CITY: Juelich
 - (E) COUNTRY: GERMANY
 - (F) ZIP CODE: 52425\
- (ii) TITLE OF INVENTION: METHOD FOR MICROBIAL PRODUCTION OF AMINO ACIDS OF THE ASPARTATE AND/OR GLUTAMATE FAMILY
- (iii) NUMBER OF SEQUENCES: 2
 - (iv) COMPUTER-READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)

(2) SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3728 Base Pairs
 - (B) Type: Nucleotide
 - (C) Strandedness: Single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: Genomic DNA

(xi) SEQ ID NO: 1:

•	CGCAACCGTG	CTTGAAGTCG	TGCAGGTCAG	GGGAGTGTTG	CCCGAAAACA	TTGAGAGGAA	60
-	AACAAAAACC	GATGTTTGAT	TGGGGGAATC	GGGGGTTACG	ATACTAGGAC	GCAGTGACTG	120
	CTATCACCCT	TGGCGGTCTC	TTGTTGAAAG	GAATAATTAC	TCTAGTGTCG	ACTCACACAT	180
	CTTCAACGCT	TCCAGCATTC	AAAAAGATCT	TGGTAGCAAA	CCGCGGCGAA	ATCGCGGTCC	240
	GTGCTTTCCG	TGCAGCACTC	GAAACCGGTG	CAGCCACGGT	AGCTATTTAC	CCCCGTGAAG	300
	ATCGGGGATC	ATTCCACCGC	TCTTTTGCTT	CTGAAGCTGT	CCGCATTGGT	ACCGAAGGCT	360
	CACCAGTCAA	GGCGTACCTG	GACATCGATG	AAATTATCGG	TGCAGCTAAA	AAAGTTAAAG	420
	CAGATGCCAT	TTACCCGGGA	TACGGCTTCC	TGTCTGAAAA	TGCCCAGCTT	GCCCGCGAGT	480

GTGCGGAAAA CGGCATTACT TTATTGGCC CAACCCCAGA GGTTCTTGAT CTCACCGGTG 540 ATAAGTCTCG CGCGGTAACC GCCGCGAAGA AGGCTGGTCT GCCAGTTTTG GCGGAATCCA 600 CCCCGAGCAA AAACATCGAT GAGATCGTTA AAAGCGCTGA AGGCCAGACT TACCCCATCT 660 TTGTGAAGGC AGTTGCCGGT GGTGGCGGAC GCGGTATGCG TTTTGTTGCT TCACCTGATG 720 AGCTTCGCAA ATTAGCAACA GAAGCATCTC GTGAAGCTGA AGCGGCTTTC GGCGATGGCG 780 CGGTATATGT CGAACGTGCT GTGATTAACC CTCAGCATAT TGAAGTGCAG ATCCTTGGCG 840 ATCACACTGG AGAAGTTGTA CACCTTTATG AACGTGACTG CTCACTGCAG CGTCGTCACC 900 AAAAAGTTGT CGAAATTGCG CCAGCACAGC ATTTGGATCC AGAACTGCGT GATCGCATTT 960 GTGCGGATGC AGTAAAGTTC TGCCGCTCCA\ TTGGTTACCA GGGCGCGGGA ACCGTGGAAT 1020 TCTTGGTCGA TGAAAAGGGC AACCACGTCT TCATCGAAAT GAACCCACGT ATCCAGGTTG 1080 AGCACACCGT GACTGAAGAA GTCACCGAGG TGGACCTGGT GAAGGCGCAG ATGCGCTTGG 1140 CTGCTGGTGC AACCTTGAAG GAATTGGGTC TGAQCCAAGA TAAGATCAAG ACCCACGGTG 1200 CAGCACTGCA GTGCCGCATC ACCACGGAAG ATCCAAACAA CGGCTTCCGC CCAGATACCG 1260 GAACTATCAC CGCGTACCGC TCACCAGGCG GAGCTGGCGT TCGTCTTGAC GGTGCAGCTC 1320 AGCTCGGTGG CGAAATCACC GCACACTTTG ACTCCATGCT GGTGAAAATG ACCTGCCGTG 1380 GTTCCGACTT TGAAACTGCT GTTGCTCGTG CACAGCGCGC GTTGGCTGAG TTCACCGTGT 1440 CTGGTGTTGC AACCAACATT GGTTTCTTGC GTGCGTTGCT GCGGGAAGAG GACTTCACTT 1500 CCAAGCGCAT CGCCACCGGA TTCATTGCCG ATCACCCGCA\ CCTCCTTCAG GCTCCACCTG 1560 CTGATGATGA GCAGGGACGC ATCCTGGATT ACTTGGCAGA TGTCACCGTG AACAAGCCTC 1620 ATGGTGTGCG TCCAAAGGAT GTTGCAGCTC CTATCGATAA GCTGCCTAAC ATCAAGGATC 1680 TGCCACTGCC ACGCGGTTCC CGTGACCGCC TGAAGCAGCT TGGCCCAGCC GCGTTTGCTC 1740 GTGATCTCCG TGAGCAGGAC GCACTGGCAG TTACTGATAC CACCTTCCGC GATGCACACC 1800 AGTCTTTGCT TGCGACCCGA GTCCGCTCAT TCGCACTGAA GCCTGCGGCA GAGGCCGTCG 1860 CAAAGCTGAC TCCTGAGCTT TTGTCCGTGG AGGCCTGGGG CGGCCCGACC TACGATGTGG 1920 CGATGCGTTT CCTCTTTGAG GATCCGTGGG ACAGGCTCGA CGAGCTGCGC GAGGCGATGC 1980 CGAATGTAAA CATTCAGATG CTGCTTCGCG GCCGCAACAC CGTGGGATAC ACCCCGTACC 2040 CAGACTCCGT CTGCCGCGCG TTTGTTAAGG AAGCTGCCAG CTCCGGCGTG GACATCTTCC 2100

GCATCTTCGA CGCGCTTAAC GACGTCTCCC AGATGCGTCC AGCAATCGAC GCA	AGTCCTGG 2160
AGACCAACAC CGCGGTAGCC GAGGTGGCTA TGGCTTATTC TGGTGATCTC TCT	GATCCAA 2220
ATGAAAAGCT CTACACCCTG GATTACTACC TAAAGATGGC AGAGGAGATC GTC	CAAGTCTG 2280
GCGCTCACAT CTTGGCCATT AAGGATATGG CTGGTCTGCT TCGCCCAGCT GCG	GGTAACCA 2340
AGCTGGTCAC CGCACTGCGC CGTGAATTCG ATCTGCCAGT GCACGTGCAC ACC	CCACGACA 2400
CTGCGGGTGG CCAGCTGGCA ACCTACTTTG CTGCAGCTCA AGCTGGTGCA GAT	rgctgttg 2460
ACGGTGCTTC CGCACCACTG TCTGGCACCA CCTCCCAGCC ATCCCTGTCT GCC	CATTGTTG 2520
CTGCATTCGC GCACACCCGT CGCGATACCG GTTTGAGCCT CGAGGCTGTT TCT	TGACCTCG 2580
AGCCGTACTG GGAAGCAGTG CGCGGACTGT ACCTGCCATT TGAGTCTGGA ACC	CCCAGGCC 2640
CAACCGGTCG CGTCTACCGC CACGAAATCC CAGGCGGACA GTTGTCCAAC CTC	GCGTGCAC 2700
AGGCCACCGC ACTGGGCCTT GCGGATCGTT TCGAACTCAT CGAAGACAAC TAG	CGCAGCCG 2760
TTAATGAGAT GCTGGGACGC CCAACCAAGG TGACCCCATC CTCCAAGGTT GT	TGGCGACC 2820
TCGCACTCCA CCTCGTTGGT GCGGGTGTGG ATCCAGCAGA CTTTGCTGCC GA	ICCACAAA 2880
AGTACGACAT CCCAGACTCT GTCATCGCGT TCCTGCGCGG CGAGCTTGGT AAG	CCCTCCAG 2940
GTGGCTGGCC AGAGCCACTG CGCACCCGCG CACTGGAAGG CCGCTCCGAA GG	CAAGGCAC 3000
CTCTGACGGA AGTTCCTGAG GAAGAGCAGG CGCACCTCGA CGCTGATGAT TCC	CAAGGAAC 3060
GTCGCAATAG CCTCAACCGC CTGCTGTTCC CGAAGCCAAC CGAAGAGTTC CT	CGAGCACC 3120
GTCGCCGCTT CGGCAACACC TCTGCGCTGG ATGATCGTGA ATTCTTCTAC GG	CCTGGTCG 3180
AAGGCCGCGA GACTTTGATC CGCCTGCCAG ATGTGCGCAC CCCACTGCTT GT	TCGCCTGG 3240
ATGCGATCTC TGAGCCAGAC GATAAGGGTA TGCGCAATGT TGTGGCCAAC GT	CAACGGCC 3300
AGATCCGCCC AATGCGTGTG CGTGACCGCT CCGTTGAGTC\TGTCACCGCA AC	CGCAGAAA 3360
AGGCAGATTC CTCCAACAAG GGCCATGTTG CTGCACCATT CGCTGGTGTT GT	CACCGTGA 3420
CTGTTGCTGA AGGTGATGAG GTCAAGGCTG GAGATGCAGT CGCAATCATC GA	GGCTATGA 3480
AGATGGAAGC AACAATCACT GCTTCTGTTG ACGGCAAAAT CGATCGCGTT GT	
CTGCAACGAA GGTGGAAGGT GGCGACTTGA TCGTCGTCGT TTCCTAAACC TT	TCTGTAAA 3600
AAGCCCCGCG TCTTCCTCAT GGAGGAGGCG GGGCTTTTTG GGCCAAGATG GG	AGATGGGT 3660
GAGTTGGATT TGGTCTGATT CGACACTTTT AAGGGCAGAG ATTTGAAGAT GG	AGACCAAG 3720

(2) SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1140 Amino Acids
 - (B) TYPE: Amin'p Acid
 - (C) STRANDEDNESS: Single Strand
 - (D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: \Protein

(xi) SEQ ID NO: 2:

Met Ser Thr His Thr Ser Ser Thr Leu Pro Ala Phe Lys Lys Ile Leu 10 15

Val Ala Asn Arg Gly Glu The Ala Val Arg Ala Phe Arg Ala Ala Leu 20 25 30

Glu Thr Gly Ala Ala Thr Val Ala Ile Tyr Pro Arg Glu Asp Arg Gly 35 45

Ser Phe His Arg Ser Phe Ala Ser Glu Ala Val Arg Ile Gly Thr Glu 50 60

Gly Ser Pro Val Lys Ala Tyr Leu Asp Ile Asp Glu Ile Ile Gly Ala 65 70 75 80

Ala Lys Lys Val Lys Ala Asp Ala\Ile Tyr Pro Gly Tyr Gly Phe Leu 85 90 95

Ser Glu Asn Ala Gln Leu Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr

Phe Ile Gly Pro Thr Pro Glu Val Leu Asp Leu Thr Gly Asp Lys Ser

Arg Ala Val Thr Ala Ala Lys Lys Ala Gly Leu Pro Val Leu Ala Glu
130 135 140

Ser Thr Pro Ser Lys Asn Ile Asp Glu Ile Val Lys Ser Ala Glu Gly 145 150

Gly Met Arg Phe Val Ala Ser Pro Asp Glu Leu Arg Lys Leu Ala Thr 180 185 190

Glu Ala Ser Arg Glu Ala Glu Ala Ala Phe Gly Asp Gly Ala Val Tyr

Val Glu Arg Ala Val Ile Asn Pro Gln His Ile Glu Val Gln Ile Leu Gly Asp His Thr Gly Glu Val Val His Leu Tyr Glu Arg Asp Cys Ser Leu Gln Arg Arg His Gln Lys Val Val Glu Ile Ala Pro Ala Gln His Leu Asp Pro Glu Leu Arg Asp Arg Ile Cys Ala Asp Ala Val Lys Phe Cys Arg Ser Ile Gly Tyr Gin Gly Ala Gly Thr Val Glu Phe Leu Val Asp Glu Lys Gly Asn His Val\Phe Ile Glu Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr Glu Val Asp Leu Val Lys Ala Gln Met Arg Leu Ala Ala Gly Ala Thr Leu Lys Glu Leu Gly Leu Thr Gln Asp Lys Ile Lys Thr His Gly Ala Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Asn Asn Gly Phe Arg Pro Asp Thr Gly Thr Ile Thr Ala Tyr Arg Ser Pro Gly Gly Ala Gly Val Arg Leu Asp Gly Ala Ala Gln Leu Gly Gly Glu Ile Thr Ala Hi's Phe Asp Ser Met Leu Val Lys Met Thr Cys Arg Gly Ser Asp Phe Glu \Thr Ala Val Ala Arg Ala Gln Arg Ala Leu Ala Glu Phe Thr Val Ser Gly Val Ala Thr Asn Ile Gly Phe Leu Arg Ala Leu Leu Arg Glu Glu Asp Phe Thr Ser Lys Arg Ile Ala Thr Gly Phe Ile Ala Asp His Pro His Leu Leu Gln Ala Pro Pro Ala Asp Asp Glu Gln Gly Arg Ile Leu Asp Tyr Leu Ala Asp Val Thr Val Asn Lys Pro His Gly Val Arg Pro Lys Asp Val Ala Ala Pro

Ile Asp Lys Leu Pro Asn Ile Lys Asp Leu Pro Leu Pro Arg Gly Ser Arg Asp Arg Leu Lys Gln Leu Gly Pro Ala Ala Phe Ala Arg Asp Leu Arg Glu Gln Asp Ala Let Ala Val Thr Asp Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Val Arg Ser Phe Ala Leu Lys Pro Ala Ala Glu Ala Val Ala Ly's Lys Thr Pro Glu Leu Leu Ser Val Glu Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala Met Arg Phe Leu Phe Glu Asp Pro Trp Asp Arg Leu Asp Glù Leu Arg Glu Ala Met Pro Asn Val Asn Ile Gln Met Leu Leu Arg Gly Xrg Asn Thr Val Gly Tyr Thr Pro Tyr Pro Asp Ser Val Cys Arg Ala Phè Val Lys Glu Ala Ala Ser Ser Gly Val Asp Ile Phe Arg Ile Phe Asp Ala Leu Asn Asp Val Ser Gln Met Arg Pro Ala Ile Asp Ala Val Leu Glù Thr Asn Thr Ala Val Ala Glu Val Ala Met Ala Tyr Ser Gly Asp Leu Ser Asp Pro Asn Glu Lys Leu Tyr Thr Leu Asp Tyr Tyr Leu Lys Met Ala Glu Glu Ile Val Lys Ser Gly Ala His Ile Leu Ala Ile Lys Asp Met Xaa Gly Leu Leu Arg Pro Ala Ala Val Thr Lys Leu Val Thr Ala Leu Arg Arg Glu Phe Asp Leu Pro Val His Val His Thr His Asp Thr Ala Glỳ Gly Gln Leu Ala Thr Tyr Phe Ala Ala Ala Gln Ala Gly Ala Asp Ala\Val Asp Gly Ala

Ser Ala Pro Leu Ser Gly Thr Thr Ser Gln Pro Ser Leu Ser Ala Ile

Ala Asn Val Asn Gly Gln Ile Arg Pro Met Arg Val Arg Asp Arg Ser

Val Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp Ser Ser Asn Lys

Gly His Val Ala Ala Pro Phe Ala Gly Val Val Thr Val Ala 1075 1080 1085

Glu Gly Asp Glu Val Lys Ala Gly Asp Ala Val Ala Ile Ile Glu Ala
1090 1095 1100

Met Lys Met Glu Ala Thr Ile Thr Ala Ser Val Asp Gly Lys Ile Asp 1105 1110 1115 1120

Arg Val Val Pro Ala Ala Thr Lys Val Glu Gly Gly Asp Leu Ile 1125 1130 1135

Val Val Val Ser 1140

Bont