Verificando Igualdade de Polinômios

Prof. André Vignatti

Dados F(x) e G(x) dois polinômios de grau d dados como:

$$F(x) = (x+1)(x-2)(x+3)(x-4)(x+5)(x-6)$$

$$G(x) = x^6 - 7x^3 + 25$$

Como saber se $F(x) \equiv G(x)$?

• Solução natural em $O(d^2)$.

Considere o seguinte algoritmo aleatorizado:

Algoritmo VP

- 1. Escolha $r \in \{1, \dots, 100d\}$ aleatoriamente.
- 2. Verifique se F(r) é igual a G(r), em tempo O(d).
- 3. Se F(r) = G(r) o algoritmo responde SIM;
- 4. caso contrário, o algoritmo responde $\tilde{\text{NAO}}.$

VP executa em tempo O(d). Quando erra?

• Erra quando r é raiz de H(x) = 0, onde H(x) = F(x) - G(x).

H(x)tem grau $\leq d \Longrightarrow H(x)$ tem $\leq d$ raízes. Assim, a probabilidade de VP errar é:

$$\Pr(VP\ errar) \le \frac{d}{100d} = \frac{1}{100}$$

Vamos formalizar matematicamente essa conversa.

Definição. Um espaço de probabilidade discreto tem 3 componentes:

- Um conjunto Ω , chamado de espaço amostral
- O conjunto \mathcal{F} de todos subconjuntos de Ω , cada $E \in \mathcal{F}$ é chamado de evento.
- Função de probabilidade $Pr: \mathcal{F} \to \mathbb{R}^+$

 $E \in \mathcal{F}$ é dito ser simples ou elementar se |E| = 1

Exemplo. Se $\Omega = \{1, 2, 3\}$ então

$$\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

 $\{1,2\}$ é um evento, $\{3\}$ é um evento simples, pois $|\{3\}|=1$.

Definição. Uma função de probabilidade é uma função $\Pr: \mathcal{F} \to \mathbb{R}^+$ t.q.

- $\forall E \in \mathcal{F} \text{ temos } 0 \leq \Pr(E) \leq 1$
- $Pr(\Omega) = 1$
- Para toda sequência de eventos **disjuntos** E_1, E_2, \ldots , temos

$$\Pr(E_1 \cup E_2 ...) = \Pr(E_1) + \Pr(E_2) + ...$$

Exemplo. Na verificação de polinômios

- $\Omega = \{1, \dots, 100d\}$
- Cada escolha de r = i é o evento simples $E_i = \{i\}$
- r é escolhido uniformemente $\Rightarrow \Pr(E_i) = \Pr(E_j), \forall i, j.$
- $\Pr(\Omega) = 1 \Rightarrow \Pr(E_i) = \frac{1}{100d}$.

Exemplo. Considere o lance de um dado de 6 lados.

• $\Omega = \{1, \dots, 6\}$

Exemplo de eventos que podemos considerar

- E' = Evento do dado mostrar número par.
- E'' = Evento do dado mostrar número menor ou igual a 3.
- E''' = Evento do dado mostrar número primo.

Lema. Para eventos E_1 e E_2 temos

$$\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2) - \Pr(E_1 \cap E_2)$$

Demonstração. (Só dar ideia com uma figura)

Corolário. Para eventos E_1 e E_2 temos

$$\Pr(E_1 \cup E_2) \le \Pr(E_1) + \Pr(E_2)$$

Lema. Dados eventos E_1, E_2, \ldots temos

$$\Pr(\bigcup_{i>1} E_i) \le \sum_{i>1} \Pr(E_i)$$

Demonstração. (Exercício: indução)

Definição. Dois eventos E e F são ditos serem independentes se

$$\Pr(E \cap F) = \Pr(E) \cdot \Pr(F).$$

Suposição computacional: obter um número aleatório gasta $\Theta(1)$.

Como diminuir a probabilidade de erro para $\frac{1}{1$ bilhão ?

- Primeira tentativa: aumentar o espaço amostral
 - Faixa de valores limitada pela precisão da máquina
 - Sorteio do r pode não levar tempo constante!
- Segunda tentativa: executar várias vezes o algoritmo

Algoritmo VP_k

- 1. Execute o algoritmo $VP\ k$ vezes (com reposição).
- 2. Devolve não se em uma das k execuções o VP devolve não;
- 3. caso contrário, devolve SIM.
- Seja E_i o evento do algoritmo escolher raiz de F(x) G(x) = 0 na i-ésima execução de VP.
- Os eventos E_i são mutuamente independentes.
- A probabilidade do algoritmo falhar é:

$$\Pr(E_1 \cap E_2 \cap ... \cap E_k) = \prod_{i=1}^k \Pr(E_i) \le \prod_{i=1}^k \frac{d}{100d} \le \left(\frac{1}{100}\right)^k$$

Filosofando...

- Parece errado um algoritmo que pode dar a resposta errada! Estamos acostumados com:
 - algoritmos 100% corretos.
 - otimizar o tempo de execução.
 - sacrificar tempo de execução gastanto menos memória.

Abra sua cabeça! Porque não pensar em:

- algoritmo < 100% corretos?
- otimizar a corretude?
- sacrificar tempo de execução aumentando a corretude?