15 - Convessità e Derivabilità

Proposizione 15.1: Maggiorazione della derivata direzionale in un punto di G-derivabilità di una funzione convessa

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$ convesso.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f:A \to \mathbb{R}$ una funzione convessa, G-derivabile in \mathbf{x}_0 .

Si ha $f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) \le f(\mathbf{x}) - f(\mathbf{x}_0)$ per ogni $\mathbf{x} \in A$.

Dimostrazione

Sia $\mathbf{x} \in A$; si provi che $f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) \leq f(\mathbf{x}) - f(\mathbf{x}_0)$.

Dalla definizione di G-derivabilità di f in \mathbf{x}_0 , si ha

$$\lim_{\lambda o 0}rac{f(\mathbf{x}_0+\lambda(\mathbf{x}-\mathbf{x}_0))-f(\mathbf{x}_0)}{\lambda}=f'(\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_0).$$

Per ogni $\lambda \in]0;1]$, si ha

$$egin{aligned} rac{f(\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0)) - f(\mathbf{x}_0)}{\lambda} &= rac{f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{x}_0) - f(\mathbf{x}_0)}{\lambda} \ &\leq rac{\lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{x}_0) - f(\mathbf{x}_0)}{\lambda} \ &= rac{\lambda f(\mathbf{x}) - \lambda f(\mathbf{x}_0)}{\lambda} &= f(\mathbf{x}) - f(\mathbf{x}_0) \end{aligned}$$

Per convessità di f, essendo $\lambda \in \left]0;1\right]$

Segue allora per confronto che

$$\lim_{\lambda o 0^+}rac{f(\mathbf{x}_0+\lambda(\mathbf{x}-\mathbf{x}_0))-f(\mathbf{x}_0)}{\lambda}\leq \lim_{\lambda o 0^+}f(\mathbf{x})-f(\mathbf{x}_0)=f(\mathbf{x})-f(\mathbf{x}_0);$$

essendo anche $\lim_{\lambda \to 0^+} rac{f(\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0)) - f(\mathbf{x}_0)}{\lambda} = f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$ per quanto visto prima, si ha allora

$$f'(\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_0) \leq f(\mathbf{x}) - f(\mathbf{x}_0).$$

Corollario 15.2: Punti in cui una funzione convessa è G-derivabile e ha derivata nulla sono di minimo assoluto

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$ convesso.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f:A \to \mathbb{R}$ una funzione convessa, G-derivabile in \mathbf{x}_0 .

Si supponga che $f'(\mathbf{x}_0) = \mathbf{0}_{X^*}$.

Allora, \mathbf{x}_0 è di minimo assoluto per f.

Dimostrazione

Sia $\mathbf{x} \in A$; si provi che $f(\mathbf{x}) \geq f(\mathbf{x}_0)$.

Essendo f G-derivabile in \mathbf{x}_0 con $f'(\mathbf{x}_0) = \mathbf{0}_{X^*}$ per ipotesi, si ha in particolare che $f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) = 0$.

Allora, dalla [Proposizione 15.1] segue che

$$f(\mathbf{x}) - f(\mathbf{x}_0) \geq f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) = 0.$$

Proposizione 15.2: Prima caratterizzazione della convessità di funzioni G-derivabili

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$ aperto e convesso.

Sia $f:A \to \mathbb{R}$ una funzione G-derivabile in A.

Sono equivalenti le seguenti affermazioni:

- 1. f è convessa;
- 2. $f(\mathbf{y}) \ge f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} \mathbf{x})$ per ogni $\mathbf{x}, \mathbf{y} \in A$.

ho Dimostrazione (1. \Rightarrow 2.)

Si supponga f convessa.

Siano $x, y \in A$; si provi che $f(y) \ge f(x) + f'(x)(y - x)$.

f è convessa per ipotesi, e sempre per ipotesi è anche G-derivabile in ${\bf x}$; dalla [Proposizione 15.1] segue allora che

$$f'(\mathbf{x})(\mathbf{y} - \mathbf{x}) \leq f(\mathbf{y}) - f(\mathbf{x}).$$

Si supponga $f(\mathbf{y}) \geq f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$ per ogni $\mathbf{x}, \mathbf{y} \in A$.

Siano $\mathbf{x}_1, \mathbf{x}_2 \in A$, e sia $\lambda \in [0;1]$; si provi che $f(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)) \leq \lambda f(\mathbf{x}_2) + (1 - \lambda)f(\mathbf{x}_1)$.

Si hanno le seguenti disuguaglianze:

$$f(\mathbf{x}_1) \geq f\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big) + f'\big(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big)\big(\mathbf{x}_1 - \mathbf{x}_1 - \lambda(\mathbf{x}_2 - \mathbf{x}_1)\big) \quad \text{Per ipotesi}$$

$$f = fig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig) + f'ig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)ig(-\lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)$$

$$=fig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig)-\lambda f'ig(\mathbf{x}_1+\lambda(\mathbf{x}_2-\mathbf{x}_1)ig)(\mathbf{x}_2-\mathbf{x}_1)$$

Per linearità di $f'(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1))$

da cui segue che $(1-\lambda)f(\mathbf{x}_1) \geq (1-\lambda)f(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)) - \lambda(1-\lambda)f'(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1))(\mathbf{x}_2 - \mathbf{x}_1)$, moltiplicando ambo i membri per $1-\lambda \geq 0$;

$$f(\mathbf{x}_2) \geq fig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig) + f'ig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)ig(\mathbf{x}_2 - \mathbf{x}_1 - \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)$$

$$f = fig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig) + f'ig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)ig((1 - \lambda)(\mathbf{x}_2 - \mathbf{x}_1)ig)$$

$$f_{1}=fig(\mathbf{x}_{1}+\lambda(\mathbf{x}_{2}-\mathbf{x}_{1})ig)+(1-\lambda)f'ig(\mathbf{x}_{1}+\lambda(\mathbf{x}_{2}-\mathbf{x}_{1})ig)(\mathbf{x}_{2}-\mathbf{x}_{1})ig)$$

Per linearità di $f'ig(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)ig)$

da cui segue che $\lambda f(\mathbf{x}_2) \geq \lambda f(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)) + \lambda(1 - \lambda)f'(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1))(\mathbf{x}_2 - \mathbf{x}_1)$, moltiplicando ambo i membri per $\lambda \geq 0$.

Sommando membro a membro le due disuguaglianze ottenute e semplificando, si ricava che

$$\lambda f(\mathbf{x}_2) + (1-\lambda)f(\mathbf{x}_1) \ge f(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1))$$

che è esattamente ciò che si voleva provare.

☆ Definizione: Monotonia

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$.

Un operatore $T: A \rightarrow X^*$ si dice **monotono** quando

$$(T(\mathbf{x}) - T(\mathbf{y}))(\mathbf{x} - \mathbf{y}) \ge 0$$
 per ogni $\mathbf{x}, \mathbf{y} \in A$.

Q Osservazione

Si consideri $\mathbb R$ come spazio euclideo, che è di Hilbert rispetto al prodotto di numeri reali; sia $\phi:\mathbb R\to\mathbb R^*$ la funzione definita ponendo $\phi(x)=\langle x,\cdot\rangle=x\cdot(\,\cdot\,)$, che è un'isometria lineare per la [Proposizione 10.14].

Sia $A \subseteq \mathbb{R}$.

Un operatore $T:A\to\mathbb{R}^*$ è monotono se e solo se la funzione $\tilde{T}:=\phi^{-1}\circ T$ è non decrescente in A.

Dimostrazione

Siano $x, y \in A$.

Sia $x_0 = \tilde{T}(x)$, e sia $y_0 = \tilde{T}(y)$.

Si osserva intanto che

$$(T(x) - T(y))(x - y)$$
 Per monotonia di T

$$=ig(\phi(x_0)-\phi(y_0)ig)(x-y)$$
 Per definizione di x_0 e y_0 e di $ilde T$

$$= (\phi(x_0 - y_0))(x - y)$$
 Per linearità di ϕ

$$=(x_0-y_0)\cdot(x-y)$$
 Per definizione di ϕ

$$=\left(ilde{T}(x)- ilde{T}(y)
ight)\cdot(x-y)$$
 Per definizione di x_0 e y_0

Si supponga dapprima T monotono.

Fissati $x,y\in A$ con x< y, si ha $\big(T(x)-T(y)\big)(x-y)\geq 0$ per ipotesi di monotonia di T, ossia $\big(\tilde{T}(x)-\tilde{T}(y)\big)\cdot(x-y)\geq 0$ per la catena di uguaglianze osservata prima; essendo x< y, segue allora $\tilde{T}(x)\leq \tilde{T}(y)$, da cui la non decrescenza di \tilde{T} per arbitrarietà di $x,y\in A$.

Viceversa, se $\varphi^{-1}\circ T$ è non decrescente, si ha

$$ig(ilde{T}(x)- ilde{T}(y)ig)\cdot(x-y)\geq 0$$
 per ogni $x,y\in A$ (si verifica per ispezione sui casi $x\leq y$ e $x>y$),

$$(T(x) - T(y))(x - y) \ge 0$$
 per la catena di uguaglianze osservata prima;

Proposizione 15.3: Seconda caratterizzazione della convessità di funzioni G-derivabili

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$ aperto e convesso.

Sia $f:A \to \mathbb{R}$ una funzione G-derivabile in A.

Sono equivalenti le seguenti affermazioni:

- 1. f è convessa;
- 2. f' è un operatore monotono.

Q Osservazioni preliminari

Fissati $\mathbf{x}, \mathbf{y} \in A$, si definisca $\varphi_{\mathbf{x}, \mathbf{y}} : [0; 1] \to \mathbb{R}$ ponendo $\varphi_{\mathbf{x}, \mathbf{y}}(\lambda) = f(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))$ per ogni $\lambda \in [0; 1]$.

Allora:

- 1. Per ogni $\mathbf{x}, \mathbf{y} \in A$, $\varphi_{\mathbf{x}, \mathbf{y}}$ è derivabile in [0; 1], e si ha $\dot{\varphi}_{\mathbf{x}, \mathbf{y}}(\lambda) = f'(\mathbf{x} + \lambda(\mathbf{y} \mathbf{x}))(\mathbf{y} \mathbf{x})$ per ogni $\lambda \in [0; 1]$;
- 2. f è convessa in A se e solo se $\varphi_{\mathbf{x},\mathbf{y}}$ è convessa in [0;1] per ogni $\mathbf{x},\mathbf{y}\in A$;
- 3. f è convessa in A se e solo se $\dot{\varphi}_{\mathbf{x},\mathbf{y}}$ è non decrescente in [0;1] per ogni $\mathbf{x},\mathbf{y}\in A$.

ll punto 1. segue dal fatto che, fissati $\mathbf{x},\mathbf{y}\in A$ e fissato $\lambda_0\in[0;1]$, si ha

$$\lim_{\mu \to 0} \frac{\varphi_{\mathbf{x},\mathbf{y}}(\lambda_0 + \mu) - \varphi_{\mathbf{x},\mathbf{y}}(\lambda_0)}{\mu} = \lim_{\mu \to 0} \frac{f\big(\mathbf{x} + \lambda_0(\mathbf{y} - \mathbf{x}) + \mu(\mathbf{y} - \mathbf{x})\big) - f\big(\mathbf{x} + \lambda_0(\mathbf{y} - \mathbf{x})\big)(\mathbf{y} - \mathbf{x})}{\mu} \quad \text{Per definizione di } \varphi_{\mathbf{x},\mathbf{y}}(\lambda_0 + \mu) - \varphi_{\mathbf{x},\mathbf{y}}(\lambda_0) = \lim_{\mu \to 0} \frac{f\big(\mathbf{x} + \lambda_0(\mathbf{y} - \mathbf{x}) + \mu(\mathbf{y} - \mathbf{x})\big) - f\big(\mathbf{x} + \lambda_0(\mathbf{y} - \mathbf{x})\big)(\mathbf{y} - \mathbf{x})}{\mu}$$

$$=f'ig(\mathbf{x}+\lambda_0(\mathbf{y}-\mathbf{x})ig)(\mathbf{y}-\mathbf{x})$$

Per G-derivabilità di f in $\mathbf{x}+\lambda_0(\mathbf{y}-\mathbf{x})\in A$ (A è convesso, e $\mathbf{x},\mathbf{y}\in A$), e per definizione di f'

Si mostri il punto 2.

Si fissino $\mathbf{x}, \mathbf{y} \in A$.

Se $\varphi_{\mathbf{x},\mathbf{y}}$ è convessa in [0;1], si ha in particolare che

$$\begin{split} &f\big(\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x})\big)=\varphi_{\mathbf{x},\mathbf{y}}(\lambda) & \text{ Per definzione di } \varphi_{\mathbf{x},\mathbf{y}} \\ &=\varphi_{\mathbf{x},\mathbf{y}}(0+\lambda(1-0)) \\ &\leq \lambda\varphi_{\mathbf{x},\mathbf{y}}(1)+(1-\lambda)\varphi_{\mathbf{x},\mathbf{y}}(0) & \text{ Per convessità di } \varphi_{\mathbf{x},\mathbf{y}} \\ &=\lambda f(\mathbf{y})+(1-\lambda)f(\mathbf{x}) & \text{ Per definizione di } \varphi_{\mathbf{x},\mathbf{y}} \end{split}$$

Ne segue che, se $\varphi_{\mathbf{x},\mathbf{y}}$ è convessa in [0;1] per ogni $\mathbf{x},\mathbf{y}\in A$, f è convessa in A.

Viceversa, si supponga f convessa in A.

Siano $\mathbf{x},\mathbf{y}\in A;$ siano $\lambda_1,\lambda_2\in[0;1]$, e sia $\mu\in[0;1].$

Si ha

$$\begin{split} & \varphi_{\mathbf{x},\mathbf{y}}\big(\lambda_1 + \mu(\lambda_2 - \lambda_1)\big) = f\big(\mathbf{x} + \big(\lambda_1 + \mu(\lambda_2 - \lambda_1)\big)(\mathbf{y} - \mathbf{x})\big) & \text{Per definizione di } \varphi_{\mathbf{x},\mathbf{y}} \\ & = f\big(\mathbf{x} + \lambda_1(\mathbf{y} - \mathbf{x}) + \mu(\lambda_2 - \lambda_1)(\mathbf{y} - \mathbf{x})\big) \\ & = f\big(\mathbf{x} + \lambda_1(\mathbf{y} - \mathbf{x}) + \mu\big(\mathbf{x} + \lambda_2(\mathbf{y} - \mathbf{x}) - (\mathbf{x} + \lambda_1(\mathbf{y} - \mathbf{x}))\big)\big) \\ & \leq \mu f\big(\mathbf{x} + \lambda_2(\mathbf{y} - \mathbf{x})\big) + (1 - \mu)f\big(\mathbf{x} + \lambda_1(\mathbf{y} - \mathbf{x})\big) & \text{Per convessità di } f \\ & = \mu \varphi_{\mathbf{x},\mathbf{y}}(\lambda_2) + (1 - \mu)\varphi_{\mathbf{x},\mathbf{y}}(\lambda_1) & \text{Per definizione di } \varphi_{\mathbf{x},\mathbf{y}} \end{split}$$

da cui segue la convessità di $\varphi_{\mathbf{x},\mathbf{v}}$.

Infine, essendo $\varphi_{\mathbf{x},\mathbf{y}}$ derivabile in [0;1] per ogni $\mathbf{x},\mathbf{y}\in A$ e a valori reali, per un risultato noto si ha che $\varphi_{\mathbf{x},\mathbf{y}}$ è convessa se e solo se $\dot{\varphi}_{\mathbf{x},\mathbf{y}}$ è non decrescente in [0;1].

Essendo la convessità di $\varphi_{x,y}$ equivalente alla convessità di f per il punto precedente, è acquisito anche il punto 3.

\bigcap Dimostrazione (1. \Rightarrow 2.)

Si supponga f convessa;

si provi che f' è monotona, cioè $\big(f'(\mathbf{x}) - f'(\mathbf{y})\big)(\mathbf{x} - \mathbf{y}) \geq 0$ per ogni $\mathbf{x}, \mathbf{y} \in A$.

Si fissino dunque $x, y \in A$.

In virtù delle osservazioni preliminari, si ha che $\varphi_{\mathbf{x},\mathbf{y}}$ è derivabile in [0;1] con $\dot{\varphi}_{\mathbf{x},\mathbf{y}}(\lambda) = f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x})$ per ogni $\lambda \in [0;1]$;

inoltre, essendo f convessa, si ha $\dot{\varphi}_{\mathbf{x},\mathbf{v}}$ non decrescente in [0;1].

Ne viene in particolare che $\dot{\varphi}_{\mathbf{x},\mathbf{y}}(0) \leq \dot{\varphi}_{\mathbf{x},\mathbf{y}}(1)$, ossia $f'(\mathbf{x})(\mathbf{y} - \mathbf{x}) \leq f'(\mathbf{y})(\mathbf{y} - \mathbf{x})$, da cui la tesi.

Si supponga f' monotona;

in virtù delle osservazioni preliminari, si per provare la convessità di f basta mostrare che $\dot{\varphi}_{\mathbf{x},\mathbf{y}}$ è non decrescente in [0;1] per ogni $\mathbf{x},\mathbf{y}\in A$.

Siano dunque $\lambda, \mu \in [0;1]$, con $\lambda < \mu$; si provi che $\dot{\varphi}_{\mathbf{x},\mathbf{y}}(\lambda) \leq \dot{\varphi}_{\mathbf{x},\mathbf{y}}(\mu)$.

Si ha

$$0 \leq \left(f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right)\left(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}) - (\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right)$$

$$= \left(f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right)\left((\lambda - \mu)(\mathbf{y} - \mathbf{x})\right)$$

$$= f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))\left((\lambda - \mu)(\mathbf{y} - \mathbf{x})\right) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\left((\lambda - \mu)(\mathbf{y} - \mathbf{x})\right)$$

$$= f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))\left((\lambda - \mu)(\mathbf{y} - \mathbf{x})\right) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))$$

$$= (\lambda - \mu)f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x}) - (\lambda - \mu)f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x})$$

$$= (\lambda - \mu)\dot{\varphi}_{\mathbf{x},\mathbf{y}}(\lambda) - (\lambda - \mu)\dot{\varphi}_{\mathbf{x},\mathbf{y}}(\mu)$$

$$= (\lambda - \mu)(\dot{\varphi}_{\mathbf{x},\mathbf{y}}(\lambda) - \dot{\varphi}_{\mathbf{x},\mathbf{y}}(\mu))$$
Per ipotesi di monotonia di f'

$$f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))$$
Per definizione di
$$f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))$$
Per linearità di $f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))$ e
$$f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))$$
Per legge di $\dot{\varphi}_{\mathbf{x},\mathbf{y}}$

Da questa catena di disuguaglianze e dal fatto che $\lambda < \mu$, segue che $\dot{\varphi}_{\mathbf{x},\mathbf{y}}(\lambda) - \dot{\varphi}_{\mathbf{x},\mathbf{y}}(\mu) \leq 0$, che è ciò che si voleva mostrare.

$holdsymbol{ holdsymbol{eta}}$ Dimostrazione alternativa (1. \Rightarrow 2.) (non voglio usare $\varphi_{\mathbf{x},\mathbf{y}}$)

Si supponga f convessa;

si provi che f' è monotona, cioè $\big(f'(\mathbf{x}) - f'(\mathbf{y})\big)(\mathbf{x} - \mathbf{y}) \geq 0$ per ogni $\mathbf{x}, \mathbf{y} \in A$.

Si fissino dunque $\mathbf{x}, \mathbf{y} \in A$.

Essendo f convessa e G-derivabile su A per ipotesi, dalla [Proposizione 15.2] segue che

$$f(\mathbf{y}) \geq f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$$
,

e anche

$$f(\mathbf{x}) \geq f(\mathbf{y}) + f'(\mathbf{y})(\mathbf{x} - \mathbf{y}).$$

Sommando membro a membro le due disuguaglianze ottenute e semplificando, si ottiene

$$0 \geq f'(\mathbf{x})(\mathbf{y} - \mathbf{x}) + f'(\mathbf{y})(\mathbf{x} - \mathbf{y})$$
 = $-f'(\mathbf{x})(\mathbf{x} - \mathbf{y}) + f'(\mathbf{y})(\mathbf{x} - \mathbf{y})$ Per linearità di $f'(\mathbf{x})$

Si ha dunque $f'(\mathbf{x})(\mathbf{x} - \mathbf{y}) - f'(\mathbf{y})(\mathbf{x} - \mathbf{y}) \ge 0$, che corrisponde a quanto si voleva mostrare.

$holdsymbol{ holdsymbol{eta}}$ Dimostrazione alternativa (2. \Rightarrow 1.) (non voglio usare $\varphi_{\mathbf{x},\mathbf{y}}$ parte 2)

Si supponga f' monotona.

Essendo f G-derivabile su A, in virtù della [Proposizione 15.2] si provi che $f(\mathbf{y}) \geq f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$ per ogni $\mathbf{x} \in X$.

Si fissino $\lambda, \mu \in [0; 1]$ con $\lambda < \mu$.

Si ha che

$$0 \leq \left(f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right) \left(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}) - (\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right)$$
Per ipotesi di monotonia di f'

$$0 \leq \left(f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right) \left(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}) - (\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right)$$
Per ipotesi di monotonia di f'

$$= \left(f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right) \left((\lambda - \mu)(\mathbf{y} - \mathbf{x})\right)$$
Per linearità di
$$f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))\right)$$
Per linearità di
$$f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))$$

Avendo supposto $\lambda < \mu$, ne segue che

$$(f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x})))(\mathbf{y} - \mathbf{x}) \le 0$$
, ossia $f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x}) \le f'(\mathbf{x} + \mu(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x})$.

Ne segue che la funzione $[0;1] \to \mathbb{R} : \lambda \mapsto f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x})$ è monotona non decrescente; in particolare, si ha allora

$$\underbrace{f'\big(\mathbf{x}+0(\mathbf{y}-\mathbf{x})\big)(\mathbf{y}-\mathbf{x})}_{=f'(\mathbf{x})(\mathbf{y}-\mathbf{x})} \leq f'\big(\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x})\big)(\mathbf{y}-\mathbf{x}) \leq \underbrace{f'\big(\mathbf{x}+1(\mathbf{y}-\mathbf{x})\big)(\mathbf{y}-\mathbf{x})}_{=f'(\mathbf{y})(\mathbf{y}-\mathbf{x})},$$

per ogni $\lambda \in [0;1]$.

Sia ora $C = \{f'(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x}) \mid \lambda \in]0; 1[\};$ per quanto appena osservato, si ha $C \subseteq [f'(\mathbf{x})(\mathbf{y} - \mathbf{x}); f'(\mathbf{y})(\mathbf{y} - \mathbf{x})].$

Perdipiù, essendo $[f'(\mathbf{x})(\mathbf{y} - \mathbf{x}); f'(\mathbf{y})(\mathbf{y} - \mathbf{x})]$ un insieme chiuso e convesso, ne viene che $\overline{\mathrm{conv}}(C) \subseteq [f'(\mathbf{x})(\mathbf{y} - \mathbf{x}); f'(\mathbf{y})(\mathbf{y} - \mathbf{x})].$

Si osserva infine che f soddisfa le ipotesi del teorema di Lagrange ([Teorema 11.4]) rispetto a x, y, pertanto

 $f(\mathbf{y}) - f(\mathbf{x}) \in \overline{\operatorname{conv}}(C) \subseteq \left[f'(\mathbf{x})(\mathbf{y} - \mathbf{x})\,;\, f'(\mathbf{y})(\mathbf{y} - \mathbf{x})
ight]$, da cui segue in ultima battuta che

 $f(\mathbf{y}) - f(\mathbf{x}) \ge f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$, che è ciò che si voleva mostrare.