1. (a)
$$\begin{bmatrix} 1 & 4 & 1 & -2 \\ 3 & 11 & -4 & 0 \\ 2 & 2 & 1 & 1 \end{bmatrix} \xrightarrow{R3-2R1} \begin{bmatrix} 1 & 4 & 1 & -2 \\ 0 & -1 & -7 & 6 \\ 0 & -6 & -1 & 5 \end{bmatrix} \xrightarrow{-1R2} \begin{bmatrix} 1 & 4 & 1-2 \\ 0 & 1 & 7 & -6 \\ 0 & -6 & -1 & 5 \end{bmatrix} \xrightarrow{R3+6R2} \xrightarrow{R1-4R2} \begin{bmatrix} 1 & 0 & -27 & 22 \\ 0 & 1 & 7 & -6 \\ 0 & 0 & 41 & -31 \end{bmatrix} \xrightarrow{1/41R3} \begin{bmatrix} 1 & 0 & -27 & 22 \\ 0 & 1 & 7 & -6 \\ 0 & 0 & 1 & -\frac{31}{41} \end{bmatrix} \xrightarrow{R2-7R3} \begin{bmatrix} 1 & 0 & 0 & \frac{65}{41} \\ 0 & 1 & 0 & -\frac{29}{41} \\ 0 & 0 & 1 & -\frac{31}{41} \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 6 & 4 & 2 \\ 1 & 3 & 1 & 4 \\ 1 & 8 & 6 & -1 \end{bmatrix} \xrightarrow{R3-R1} \xrightarrow{R3-R1} \begin{bmatrix} 1 & 6 & 4 & 2 \\ 0 & -3 & -3 & 2 \\ 0 & 2 & 2 & -3 \end{bmatrix} \xrightarrow{-1/3R2} \begin{bmatrix} 1 & 6 & 4 & 2 \\ 0 & 1 & 1 & -\frac{2}{3} \\ 0 & 2 & 2 & -3 \end{bmatrix} \xrightarrow{R3-2R2} \xrightarrow{R1-6R2} \begin{bmatrix} 1 & 0 & -2 & 6 \\ 0 & 1 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 & -\frac{5}{3} \end{bmatrix} \xrightarrow{-3/5R3} \begin{bmatrix} 1 & 0 & -2 & 6 \\ 0 & 1 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2+2/3R3} \xrightarrow{R1-6R3} \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. (a)
$$\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ -1 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \\ -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 8 & 11 & 14 \\ 12 & 16 & 20 \end{bmatrix}$$

(a) We need to find $a, b \in \mathbb{R}$ such that:

$$a \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \\ 4 \end{bmatrix}$$

Augmented matrix for above equation and its row-reduced-echelon form

Augmented matrix for above equation and its row-reduced-echelon form:
$$\begin{bmatrix} 2 & 1 & 1 \\ -1 & 3 & 10 \\ -1 & 1 & 4 \end{bmatrix} \xrightarrow{R1-R3} \begin{bmatrix} -1 & 1 & 4 \\ -1 & 3 & 10 \\ 2 & 1 & 1 \end{bmatrix} \xrightarrow{-1R1} \begin{bmatrix} 1 & -1 & -4 \\ -1 & 3 & 10 \\ 2 & 1 & 1 \end{bmatrix} \xrightarrow{R3-2R1} \begin{bmatrix} 1 & -1 & -4 \\ 0 & 2 & 6 \\ 0 & 3 & 9 \end{bmatrix} \xrightarrow{1/3R3} \xrightarrow{1/2R2} \begin{bmatrix} 1 & -1 & -4 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \end{bmatrix} \xrightarrow{R3-R2} \xrightarrow{R3-R2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

(b)
$$a \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 & -4 & 2 \end{bmatrix}$$

Augmented matrix and its row reduced echelon:

$$\begin{bmatrix} 2 & 1 & 6 \\ -1 & 3 & -4 \\ -1 & 1 & 2 \end{bmatrix} \xrightarrow{R1 \leftrightarrow R3} \begin{bmatrix} -1 & 1 & 2 \\ -1 & 3 & -4 \\ 2 & 1 & 6 \end{bmatrix} \xrightarrow{-1R1} \begin{bmatrix} 1 & -1 & -2 \\ -1 & 3 & -4 \\ 2 & 1 & 6 \end{bmatrix} \xrightarrow{R3-2R1} \begin{bmatrix} 1 & -1 & -2 \\ 0 & 2 & -6 \\ 0 & 3 & 10 \end{bmatrix} \xrightarrow{1/3R2}$$

$$\begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & -3 \\ 0 & 3 & 10 \end{bmatrix} \xrightarrow{R3-3R2} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & -3 \\ 0 & 0 & 19 \end{bmatrix}$$

The row reduced echelon matrix is inconsistent. Thus $\begin{bmatrix} 6 \\ -4 \end{bmatrix}$ cannot be written as a linear combination of \vec{u} and \vec{v} .

(c) It is impossible to write $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ as a linear combination of \vec{u} and \vec{v} because $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^2$ while $\vec{u}, \vec{v} \in \mathbb{R}^3$.

- 4. (a) Neither \vec{u} nor \vec{v} is a multiple of the other. Hence \vec{u} and \vec{v} are linearly independent. Therefore, span $\{\vec{u}, \vec{v}\}$ is a plane.
 - An example of vector in span of $\{\vec{u}, \vec{v}\}$ is vector $2\vec{u} = \begin{bmatrix} 4 \\ -2 \\ -2 \end{bmatrix}$.
 - Example of vector not in span of $\{\vec{u}, \vec{v}\}$ is vector $\begin{bmatrix} 6 \\ -4 \\ 2 \end{bmatrix}$ as proved in Question 3.
 - No, since span of $\{\vec{u}, \vec{v}\}$ is a subset of \mathbb{R}^3 while \mathbb{R}^2 is not a subset of \mathbb{R}^3 .
- 5. Assume $\vec{u} = a\vec{v} + b\vec{w}$ where $a, b \in \mathbb{R}$.
 - (a) They are linearly dependent because zero vector is a non trivial linear combination of them: $0 = -\vec{u} + a\vec{v} + b\vec{w}.$
 - (b) No, we cannot guarantee that \vec{v} is a linear combination of \vec{u} and \vec{w} . To be more precise,
 - If $a \neq 0$, then $\vec{v} = \frac{1}{a}\vec{u} \frac{b}{a}\vec{w}$. Thus \vec{v} is a linear combination of \vec{u} and \vec{w} .
 - However if a=0, i.e $\vec{u}=b\vec{w}$, then nothing can be said about \vec{v} .
- 6. (a) span $\{\vec{u}, \vec{v}\} = \mathbb{R}^2$.
 - (b) $\begin{bmatrix} 2 \\ 18 \end{bmatrix} \not\in \operatorname{span}\{\vec{w}, \vec{v}\}.$
 - (c) The vectors $\vec{u}, \vec{v}, \vec{w}$ are linearly dependent.