TERM END EXAMINATIONS (TEE) - December 2023- January 2024

Programme	:	B.Tech.	Semester	:	Fall 2023-24
Course Title/ Course Code	:	Calculus and Laplace Transform/ MAT1001	Slot	:	F11+F12+F14
Time	:	3 Hrs.	Max. Marks		100

(Answer all the Questions)

Q.No		Question Description	Marks
*		PART A – (60 Marks)	
1	(a)	Prove $u = x^3 + y^3 - 63(x + y) + 12xy$ has maximum at $(-7, -7)$ and minimum at $(3,3)$.	6
	(b)	If $U = e^{xyz}$, find the value of $\frac{\partial^3 U}{\partial x \partial y \partial z}$.	6
	(c)	A scope probe in the shape of ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters the earth atmosphere and its surface begins to heat. After one hour the temperature at the point (x, y, z) on the surface is $T(x, y, z) = 8x^2 + 4yz - 16z + 600$. Find the hottest point on the probe surface.	12
2	(a)	Changing the order of integration of $\int_0^\infty \int_0^\infty e^{-xy} sinnx dx dy$ show that $\int_0^\infty \frac{sinnx}{x} dx = \frac{\pi}{2}$.	6
	(b)	Evaluate $\int_0^1 \int_0^x (x^2 + y^2) dA$ where dA indicated small area in xy plane.	6
	(c)	Find the volume of the cylindrical column standing on the area common to the parabolas $y^2 = x$, $x^2 = y$ and cut off by the surface $z = 12 + y - x^2$.	12
3	(a)	Evaluate $\iint_S (yzi + zxj + xyk)$. \overrightarrow{dS} where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant.	12

- (b) Verify Green's theorem in the plane $\int_C (3x^2 y^2)dx + (4y 6xy)dy$, where C is the boundary of the region bounded by $x \ge 0$; $y \ge 0$ and 2x 3y = 6.
- Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x^2$.
 - (b) Solve: $\frac{dy}{dx} + ycotx = 4xcosecx$, given that $y(\frac{n}{2}) = 0$.
 - (c) An inductor of L=2 heneries, resistor R=16 ohms and 1 capacitor C=0.02 farads are connected in series with a battery of e.m.f. $E=100sin\ 3t$. At t=0, the charge on the capacitor and current in the circuit are zero. Find the charge and current at t>0. Where the model of the differential equation is

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E.$$

5 (a) Solve using Laplace transform $2\frac{d^2y}{d^2x} + 3\frac{dy}{dx} - 2y = te^{-2t}, \quad given y(0) = 0; \quad y(0) = -2.$

OP

- (b) Find the inverse Laplace transform of $f(s) = log(\frac{s+a}{s+b})$.
- (c) Find the Laplace transform of $\frac{1-\cos 2t}{t}$.

PART B - (40 Marks)

- Find the tangent plane to the surface $z = x \cos y ye^x$ at (0,0,0).
- Evaluate the following integral by changing the order of the integration

 $\int_0^\infty \int_0^x x e^{-\frac{x^2}{y}} dy dx.$

- Find the directional derivative of $U = x^2yz + 4xz^2$ at (1, -2, 1) 8 in the direction of (2, -1, -2).
- Solve: $(x+1)^2 \frac{d^2y}{dx^2} + (x+1)\frac{dy}{dx} + y = 2\sin(2\ln(x+1)), x > 8$
- Using convolution theorem find $L^{-1}\left[\frac{1}{(s^2+1)(s+1)}\right]$.