CHARMED BARYONS

(C=+1)

 $\Lambda_c^+ = udc, \quad \Sigma_c^{++} = uuc, \quad \Sigma_c^+ = udc, \quad \Sigma_c^0 = ddc,$ $\Xi_c^+ = usc, \quad \Xi_c^0 = dsc, \quad \Omega_c^0 = ssc$

$$I(J^P) = 0(\frac{1}{2}^+)$$

J is not well measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2286.46\pm0.14$$
 MeV Mean life $\tau=(200\pm6)\times10^{-15}$ s $~({\rm S}=1.6)$ $c\tau=59.9~\mu{\rm m}$

Decay asymmetry parameters

Ay asymmetry parameters
$$\begin{array}{ll} \Lambda \pi^+ & \alpha = -0.91 \pm 0.15 \\ \Sigma^+ \pi^0 & \alpha = -0.45 \pm 0.32 \\ \Lambda \ell^+ \nu_\ell & \alpha = -0.86 \pm 0.04 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_c^+ \rightarrow \Lambda \pi^+, \overline{\Lambda}_c^- \rightarrow \overline{\Lambda} \pi^- = -0.07 \pm 0.31 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_c^+ \rightarrow \Lambda e^+ \nu_e, \overline{\Lambda}_c^- \rightarrow \overline{\Lambda} e^- \overline{\nu}_e = 0.00 \pm 0.04 \end{array}$$

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 5/30/2017 17:13

Hadronic modes with a p: S = -1 final states

riadionic modes w	itii G	. <i>p</i> . 5 —	I IIIIai States		
pK_S^0		($1.58\pm$	0.08) %	S=1.2	873
$pK^-\pi^+$		($6.35\pm$	0.33) %	S=1.4	823
$p\overline{K}^{*}(892)^{0}$	[a]	($1.98\pm$	0.28) %		685
Δ (1232) $^{++}$ K $^-$		($1.09\pm$	0.25) %		710
$arLambda(1520)\pi^+$	[a]	(2.2 \pm	0.5) %		627
$pK^-\pi^+$ nonresonant		($3.5 \pm$	0.4) %		823
$pK_S^0\pi^0$ $pK^0\eta$		($1.99\pm$	0.13) %	S=1.1	823
, ,		(1.6 \pm	0.4) %		568
$ hoK_S^0\pi^+\pi^-$		($1.66\pm$	0.12) %	S=1.1	754
$pK^-\pi^+\pi^0$		(4.9 \pm	0.4) %	S=1.3	759
$pK^*(892)^-\pi^+$	[a]	(1.5 \pm	0.5) %		580
$ ho(\mathit{K}^-\pi^+)_{nonresonant}\pi^0$		(4.6 \pm	0.9) %		759
$\Delta(1232)\overline{K}^*(892)$		seen			419
$pK^{-}2\pi^{+}\pi^{-}$		(1.4 \pm	$1.0) \times 10^{-3}$		671
$pK^{-}\pi^{+}2\pi^{0}$		($1.0~\pm$	0.5) %		678

Hadronic modes with a p: S = 0 final states

$ ho\pi^+\pi^-$		$(4.3 \pm 0.4) \times 10^{-3}$	927
$p f_0(980)$	[<i>a</i>]	$(3.5 \pm 2.3) \times 10^{-3}$	614
$ ho 2\pi^+ 2\pi^-$		$(2.3 \pm 1.5) \times 10^{-3}$	852
$ ho K^+ K^-$		$(10 \pm 4) \times 10^{-4}$	616
$oldsymbol{ ho}\phi$	[<i>a</i>]	$(1.08\pm\ 0.14)\times10^{-3}$	590
$ ho {\it K}^+ {\it K}^-$ non- ϕ		$(5.3 \pm 1.2) \times 10^{-4}$	616

Hadronic modes with a hyperon: S = -1 final states

Hadronic modes with	a a hyperon: $S=-1$ final a	states	
$\Lambda \pi^+$	($1.30\pm~0.07)~\%$	S=1.2	864
$\Lambda\pi^+\pi^0$	(7.1 ± 0.4) %	S=1.2	844
Λho^+	< 6 %	CL=95%	636
$\Lambda\pi^-2\pi^+$	(3.7 ± 0.4) %	S=1.9	807
Σ (1385) $^+\pi^+\pi^-$, Σ^{*+} $ ightarrow$	(1.0 ± 0.5) %		688
$\Lambda\pi^+$	_		
$\Sigma(1385)^-2\pi^+$, $\Sigma^{*-} \rightarrow$	$(7.8 \pm 1.6) \times 10^{-3}$		688
$\Lambda\pi^- u$	(1.5 ± 0.6) %		524
$\Sigma(1385)^+ ho^0$, $\Sigma^{*+} ightarrowarLambda\pi^+$	$(5 \pm 4) \times 10^{-3}$		363
$\Lambda\pi^-2\pi^+$ nonresonant	< 1.1 %	CL=90%	807
$\Lambda\pi^-\pi^02\pi^+$ total	(2.3 ± 0.8) %		757
$\Lambda\pi^+\eta$	[a] (2.3 ± 0.5) %		691
$\Sigma(1385)^+ \eta$	[a] ($1.08\pm~0.32$) %		570
$\Lambda\pi^+\omega$	[a] ($1.5~\pm~0.5$) %		517
$arLambda\pi^-\pi^02\pi^+$, no η or ω	$<$ 8 \times 10 ⁻³	CL=90%	757
$\Lambda K^{+} \overline{K}{}^{0}$	$(5.7 \pm 1.1) \times 10^{-3}$	S=2.0	443
arxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	$(1.6 \pm 0.5) \times 10^{-3}$		286
$\Sigma^0 \pi^+$	($1.29\pm~0.07)~\%$	S=1.1	825
$\Sigma^+\pi^0$	($1.24\pm~0.10$) %		827
$\Sigma^+\eta$	$(7.0 \pm 2.3) \times 10^{-3}$		713
$\Sigma^+\pi^+\pi^-$	($4.57\pm~0.29)~\%$	S=1.2	804
$\Sigma^+ ho^0$	< 1.7 %	CL=95%	575
$\Sigma^- 2\pi^+$	($2.1~\pm~0.4$) %		799
$\sum_{n=0}^{\infty} \pi^{+} \pi^{0}$	(2.3 ± 0.9) %		803
$\Sigma^0\pi^-2\pi^+$	($1.13\pm~0.29)~\%$		763
$\Sigma^+\pi^+\pi^-\pi^0$	-		767
$\Sigma^+\omega$	[a] ($1.74\pm~0.21$) %		569
$\Sigma^+ K^+ K^-$	$(3.6 \pm 0.4) \times 10^{-3}$		349
$\Sigma^+\phi$	[a] $(4.0 \pm 0.6) \times 10^{-3}$	S=1.1	295
$\Xi(1690)^0K^+$, $\Xi^{*0} ightarrow$	$(1.03\pm 0.26) \times 10^{-3}$		286
$\Sigma^+ K^- \ \Sigma^+ K^+ K^-$ nonresonant	$< 8 \times 10^{-4}$	CL=90%	349
$\equiv^0 K^+$	$(5.0 \pm 1.2) \times 10^{-3}$		653
$\Xi^- K^+ \pi^+$	$(6.2 \pm 0.6) \times 10^{-3}$	S=1.1	565
$\Xi(1530)^0K^+$	[a] $(3.3 \pm 0.9) \times 10^{-3}$		473

Hadronic modes with a hyperon: S = 0 final states

ΛK^+	(6.1 ± 1	$.2) \times 10^{-4}$		781
$\Lambda K^+ \pi^+ \pi^-$	< 5	$\times 10^{-4}$	CL=90%	637
$\Sigma^0 K^+$	(5.2 ± 0	$(.8) \times 10^{-4}$		735
$\Sigma^0 K^+ \pi^+ \pi^-$	< 2.6	\times 10 ⁻⁴	CL=90%	574
$\Sigma^+ K^+ \pi^-$	(2.1 ± 0	$0.6) \times 10^{-3}$		670
$\Sigma^+ \mathcal{K}^*(892)^0$	[a] (3.6 \pm 1	$.0) \times 10^{-3}$		469
$\Sigma^- K^+ \pi^+$	< 1.2	$\times 10^{-3}$	CL=90%	664

Doubly Cabibbo-suppressed modes

$pK^+\pi^-$	(1 ± 13) $ imes 10^{-}$	-4 823
-------------	-------------------------------	--------

Semileptonic modes

$$\Lambda e^{+} \nu_{e}$$
 (3.6 ± 0.4)%

Inclusive modes

e^+ anything		(4.5	± 1.7) %		_
pe ⁺ anything		(1.8	± 0.9) %		_
p anything		(50	± 16) %		_
p anything (no Λ)		(12	± 19) %		-
n anything		(50	± 16) %		_
n anything (no $arLambda$)		(29	±17) %		_
Λ anything		(35	± 11) %	S=1.4	-
$arSigma^\pm$ anything	[<i>b</i>]	(10	\pm 5) %		_
3prongs		(24	± 8) %		_

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

pe^+e^-	C1	< 5.5	\times 10 ⁻⁶	CL=90%	951
$ ho \mu^+ \mu^-$	C1	< 4.4	$\times 10^{-5}$	CL=90%	937
$pe^+\mu^-$	LF	< 9.9		CL=90%	947
$pe^-\mu^+$	LF	< 1.9		CL=90%	947
<u></u> p 2e ⁺	L,B	< 2.7		CL=90%	951
$\overline{p}2\mu^+$	L,B	< 9.4	$\times 10^{-6}$	CL=90%	937
$\overline{p}e^+\mu^+$	L,B	< 1.6	$\times 10^{-5}$	CL=90%	947
$\Sigma^-\mu^+\mu^+$	L	< 7.0	$\times 10^{-4}$	CL=90%	812

$\Lambda_c(2595)^+$

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Created: 5/30/2017 17:13

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P=1/2^+$ for the $\Sigma_c(2455)$.

Mass
$$m=2592.25\pm0.28$$
 MeV $m-m_{\Lambda^+}=305.79\pm0.24$ MeV Full width $\Gamma=2.6\pm0.6$ MeV

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

Λ_c (2595) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+\pi^+\pi^-$	[c] —	117
$\Sigma_c(2455)^{++}\pi^-$	24 \pm 7 %	†
$\Sigma_c^{(2455)^0}\pi^+$	24 \pm 7 %	†
$\Lambda_c^+\pi^+\pi^-$ 3-body	18 \pm 10 %	117
$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[d] not seen	258
$\Lambda_c^+ \gamma$	not seen	288

$\Lambda_c(2625)^+$

$$I(J^P) = 0(\frac{3}{2}^-)$$

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^{\it -}$ is the quark-model prediction.

Mass
$$m=2628.11\pm0.19~{\rm MeV}~{\rm (S}=1.1)$$
 $m-m_{\Lambda^+_+}=341.65\pm0.13~{\rm MeV}~{\rm (S}=1.1)$ Full width $\Gamma~<~0.97~{\rm MeV},~{\rm CL}=90\%$

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

Λ_c (2625) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \pi^+ \pi^-$	[c] $\approx 67\%$		184
$\Sigma_c(2455)^{++}\pi^- \ \Sigma_c(2455)^0\pi^+$	<5	90%	102
Σ_c (2455) $^0\pi^+$	<5	90%	102
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large		184
$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[d] not seen		293
$\Lambda_c^+ \gamma$	not seen		319

$\Lambda_c(2880)^+$

$$I(J^P)=0(\tfrac{5}{2}^+)$$

There is some good evidence that indeed $J^{\mbox{\it P}}=5/2^+$

Mass
$$m=2881.53\pm0.35$$
 MeV $m-m_{\Lambda_c^+}=595.1\pm0.4$ MeV Full width $\Gamma=5.8\pm1.1$ MeV

HTTP://PDG.LBL.GOV

Page 4

Fraction (Γ_i/Γ)	p (MeV/c)
seen	471
seen	376
seen	317
seen	316
	seen seen seen

$\Lambda_c(2940)^+$

$$I(J^P) = 0(??)$$

Mass $m=2939.3^{+1.4}_{-1.5}~{\rm MeV}$ Full width $\Gamma=17^{+8}_{-6}~{\rm MeV}$

Λ_c (2940) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
pD^0	seen	420
Σ_c (2455) $^{0,++}\pi^\pm$	seen	_

$\Sigma_c(2455)$

$$I(J^P)=1(\tfrac{1}{2}^+)$$

$$\begin{split} & \Sigma_c(2455)^{++} \text{mass } m = 2453.97 \pm 0.14 \text{ MeV} \\ & \Sigma_c(2455)^+ \quad \text{mass } m = 2452.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c(2455)^0 \quad \text{mass } m = 2453.75 \pm 0.14 \text{ MeV} \\ & M_{\Sigma_c^{++}} - M_{\Lambda_c^{+}} = 167.510 \pm 0.017 \text{ MeV} \\ & M_{\Sigma_c^{+}} - M_{\Lambda_c^{+}} = 166.4 \pm 0.4 \text{ MeV} \\ & M_{\Sigma_c^{0}} - M_{\Lambda_c^{+}} = 167.290 \pm 0.017 \text{ MeV} \\ & M_{\Sigma_c^{0}} - M_{\Lambda_c^{+}} = 167.290 \pm 0.013 \text{ MeV} \\ & M_{\Sigma_c^{++}} - M_{\Sigma_c^{0}} = 0.220 \pm 0.013 \text{ MeV} \\ & M_{\Sigma_c^{+}} - M_{\Sigma_c^{0}} = -0.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c(2455)^{++} \text{full width } \Gamma = 1.89^{+0.09}_{-0.18} \text{ MeV} \quad (\text{S} = 1.1) \\ & \Sigma_c(2455)^+ \quad \text{full width } \Gamma < 4.6 \text{ MeV, CL} = 90\% \\ & \Sigma_c(2455)^0 \quad \text{full width } \Gamma = 1.83^{+0.11}_{-0.19} \text{ MeV} \quad (\text{S} = 1.2) \end{split}$$

 $\Lambda_{c}^{+}\pi$ is the only strong decay allowed to a Σ_{c} having this mass.

Σ_c (2455) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi$	pprox 100 %	94

$$\Sigma_c(2520)$$

$$I(J^P) = 1(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2520)^{++} \text{mass } m = 2518.41^{+0.21}_{-0.19} \text{ MeV} \quad (\text{S} = 1.1) \\ & \Sigma_c(2520)^{+} \quad \text{mass } m = 2517.5 \pm 2.3 \text{ MeV} \\ & \Sigma_c(2520)^{0} \quad \text{mass } m = 2518.48 \pm 0.20 \text{ MeV} \quad (\text{S} = 1.1) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Lambda_c^+} = 231.95^{+0.17}_{-0.12} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{+}} - m_{\Lambda_c^+} = 231.0 \pm 2.3 \text{ MeV} \\ & m_{\Sigma_c(2520)^{0}} - m_{\Lambda_c^+} = 232.02^{+0.15}_{-0.14} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Sigma_c(2520)^{0}} = 0.01 \pm 0.15 \text{ MeV} \\ & \Sigma_c(2520)^{++} \quad \text{full width } \Gamma = 14.78^{+0.30}_{-0.40} \text{ MeV} \\ & \Sigma_c(2520)^{+} \quad \text{full width } \Gamma < 17 \text{ MeV}, \text{ CL} = 90\% \\ & \Sigma_c(2520)^{0} \quad \text{full width } \Gamma = 15.3^{+0.4}_{-0.5} \text{ MeV} \end{split}$$

 $\Lambda_{\it C}^+\pi$ is the only strong decay allowed to a $\Sigma_{\it C}$ having this mass.

$\Sigma_{c}(2800)$

$$I(J^P) = 1(??)$$

$$\begin{split} & \Sigma_c(2800)^{++} \text{ mass } m = 2801^{+4}_{-6} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ mass } m = 2792^{+14}_{-5} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ mass } m = 2806^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2800)^{++}} - m_{\Lambda_c^+} = 514^{+4}_{-6} \text{ MeV} \\ & m_{\Sigma_c(2800)^+} - m_{\Lambda_c^+} = 505^{+14}_{-5} \text{ MeV} \\ & m_{\Sigma_c(2800)^0} - m_{\Lambda_c^+} = 519^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & \Sigma_c(2800)^{++} \text{ full width } \Gamma = 75^{+22}_{-17} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ full width } \Gamma = 62^{+60}_{-40} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ full width } \Gamma = 72^{+22}_{-15} \text{ MeV} \end{split}$$

Σ_c (2800) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/30/2017 17:13

 $\Lambda_c^+ \pi$

seer

443

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2467.87\pm0.30$$
 MeV (S $=1.1$)
Mean life $au=(442\pm26)\times10^{-15}$ s (S $=1.3$)
 $c au=132~\mu{\rm m}$

 \equiv_c^+ DECAY MODES

Fraction (Γ_i/Γ)

Created: 5/30/2017 17:13

Confidence level (MeV/c)

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^- 2\pi^+$.

Cabibbo-favored (S=-2) decays — relative to $\Xi^-2\pi^+$

	, ,		
$p2K_S^0$	0.087 ± 0.021		767
$\Lambda \overline{K}{}^0 \pi^+$	_		852
$\Sigma(1385)^+\overline{K}{}^0$	[a] 1.0 ± 0.5		746
$\Lambda K^- 2\pi^+$	0.323 ± 0.033		787
$\Lambda \overline{K}^{*}(892)^{0} \pi^{+}$	[a] < 0.16	90%	608
Σ (1385) $^+$ K $^ \pi^+$	[a] < 0.23	90%	678
$\Sigma^+ K^- \pi^+$	$0.94\ \pm0.10$		811
$\Sigma^{+}\overline{K}^{*}(892)^{0}$	[a] 0.81 ± 0.15		658
$\Sigma^0 K^- 2\pi^+$	$0.27\ \pm0.12$		735
$\equiv^0 \pi^+$	0.55 ± 0.16		877
$\Xi^- 2\pi^+$	DEFINED AS 1		851
$\Xi(1530)^{0}\pi^{+}$	[a] < 0.10	90%	750
$= 0 \pi + \pi^0$	2.3 ± 0.7		856
$= 0 \pi^{-} 2\pi^{+}$	1.7 ± 0.5		818
$\equiv^0 \mathrm{e}^+ \nu_\mathrm{e}$	$\begin{array}{cc} 2.3 & +0.7 \\ -0.8 \end{array}$		884
Ω^- K $^+$ π^+	0.07 ± 0.04		399

Cabibbo-suppressed decays — relative to $\Xi^- 2\pi^+$

$pK^-\pi^+$		0.21 ± 0.04		944
$p\overline{K}^{*}(892)^{0}$	[a]	0.116 ± 0.030		828
$\Sigma^+\pi^+\pi^-$		$0.48\ \pm0.20$		922
$\Sigma^- 2\pi^+$		$0.18\ \pm0.09$		918
$\Sigma^+ K^+ K^-$		$0.15\ \pm0.06$		579
$oldsymbol{\Sigma}^+\phi$	[a] <	< 0.11	90	% 549
$ec{arxi}(1690)^0 K^+$, $ec{arxi}^0 ightarrow$	<	< 0.05	90	% 501
$\Sigma^+ {\mathcal K}^-$				

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass
$$m=2470.87^{+0.28}_{-0.31}~{
m MeV}$$
 $m_{\Xi_c^0}-m_{\Xi_c^+}=3.00\pm0.24~{
m MeV}$ Mean life $\tau=(112^{+13}_{-10})\times10^{-15}~{
m s}$ $c au=33.6~\mu{
m m}$

Decay asymmetry parameters

$$\Xi^{-}\pi^{+}$$
 $\alpha = -0.6 \pm 0.4$

No absolute branching fractions have been measured. Several measurements of ratios of fractions may be found in the Listings that follow.

Fraction (Γ_i/Γ)

p (MeV/c)

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^-\pi^+$.

Cabibbo-favored (S = -2) decays — relative to $\Xi^-\pi^+$

$ ho K^- K^- \pi^+$	0.34 ± 0.04	676
$\rho K^{-} \overline{K}^{*} (892)^{0}$	$0.21\ \pm0.05$	413
$pK^-K^-\pi^+$ (no \overline{K}^{*0})	0.21 ± 0.04	676
ΛK_S^0	0.210 ± 0.028	906
$\Lambda K^{-}\pi^{+}$	1.07 ± 0.14	856
$\Lambda \overline{K}{}^0 \pi^+ \pi^-$	seen	787
$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen	703
$\equiv -\pi^+$	DEFINED AS 1	875
$= \pi^{+} \pi^{+} \pi^{-}$	3.3 ± 1.4	816
$\Omega^- K^+$	0.297 ± 0.024	522
$\Xi^- e^+ \nu_e$	3.1 ± 1.1	882
$oldsymbol{arXi}^-\ell^+$ anything	1.0 ± 0.5	_

Cabibbo-suppressed decays — relative to $\Xi^-\pi^+$

$\Xi^- K^+$	0.028 ± 0.006	790
$\Lambda K^+ K^-$ (no ϕ)	0.029 ± 0.007	648
$\Lambda\phi$	0.034 ± 0.007	621

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $_{J}^{P}$ has not been measured; $_{2}^{1}$ is the quark-model prediction.

Mass
$$m=2577.4\pm1.2~{\rm MeV}~{\rm (S}=2.9)$$
 $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{+}}=109.5\pm1.2~{\rm MeV}~{\rm (S}=3.7)$ $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{\prime0}}=-1.4\pm1.3~{\rm MeV}~{\rm (S}=2.5)$

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

Ξ <u>′</u> +	DECAY	MODES	

Fraction (Γ_i/Γ)

p (MeV/c)

$$\overline{\Xi_c^+ \gamma}$$

seen

107

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2578.8\pm0.5~{
m MeV}~{
m (S}=1.2)$$
 $m_{\Xi_c^{\prime 0}}-m_{\Xi_c^0}=108.0\pm0.4~{
m MeV}~{
m (S}=1.2)$

The $\Xi_c^{\prime0}$ - Ξ_c^0 mass difference is too small for any strong decay to occur.

≡′0 DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/30/2017 17:13

$$\overline{\Xi_{c}^{0}}\gamma$$

seen

106

$$\Xi_c(2645)$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

 J^P has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$Ξ_c(2645)^+$$
 mass $m=2645.53\pm0.31$ MeV $Ξ_c(2645)^0$ mass $m=2646.32\pm0.31$ MeV (S = 1.1) $m_{Ξ_c(2645)^+}-m_{Ξ_c^0}=174.66\pm0.09$ MeV $m_{Ξ_c(2645)^0}-m_{Ξ_c^+}=178.44\pm0.11$ MeV (S = 1.1) $m_{Ξ_c(2645)^+}-m_{Ξ_c(2645)^0}=-0.79\pm0.27$ MeV $Ξ_c(2645)^+$ full width $\Gamma=2.14\pm0.19$ MeV (S = 1.1) $Ξ_c(2645)^0$ full width $\Gamma=2.35\pm0.22$ MeV

 $\Xi_{\mathcal{C}} \pi$ is the only strong decay allowed to a $\Xi_{\mathcal{C}}$ resonance having this mass.

Ξ_c (2645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c^0\pi^+}$	seen	102
$\equiv_c^+ \pi^-$	seen	106

$\Xi_c(2790)$

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^{\it -}$ is the quark-model prediction.

$$\Xi_c(2790)^+$$
 mass = 2792.0 \pm 0.5 MeV (S = 1.2)
 $\Xi_c(2790)^0$ mass = 2792.8 \pm 1.2 MeV (S = 2.9)
 $m_{\Xi_c(2790)^+} - m_{\Xi_c^0} = 321.1 \pm 0.4$ MeV (S = 1.2)
 $m_{\Xi_c(2790)^0} - m_{\Xi_c^+} = 324.9 \pm 1.2$ MeV (S = 3.7)
 $m_{\Xi_c(2790)^+} - m_{\Xi_c^0} = 213.10 \pm 0.26$ MeV (S = 1.2)
 $m_{\Xi_c(2790)^0} - m_{\Xi_c^{\prime +}} = 215.4 \pm 0.8$ MeV (S = 3.7)
 $m_{\Xi_c(2790)^+} - m_{\Xi_c(2790)^0} = -0.9 \pm 1.3$ MeV (S = 2.5)
 $\Xi_c(2790)^+$ width = 8.9 \pm 1.0 MeV
 $\Xi_c(2790)^0$ width = 10.0 \pm 1.1 MeV

$egin{aligned} egin{aligned} & egin{$

$\Xi_c(2815)$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Created: 5/30/2017 17:13

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^{\it -}$ is the quark-model prediction.

$$\Xi_c(2815)^+$$
 mass $m=2816.67\pm0.31$ MeV (S = 1.1) $\Xi_c(2815)^0$ mass $m=2820.22\pm0.32$ MeV $m_{\Xi_c(2815)^+}-m_{\Xi_c^+}=348.80\pm0.10$ MeV $m_{\Xi_c(2815)^0}-m_{\Xi_c^0}=349.35\pm0.11$ MeV $m_{\Xi_c(2815)^+}-m_{\Xi_c(2815)^0}=-3.55\pm0.28$ MeV $\Xi_c(2815)^+$ full width $\Gamma=2.43\pm0.26$ MeV $\Xi_c(2815)^0$ full width $\Gamma=2.54\pm0.25$ MeV

The $\Xi_{\it C}\,\pi\,\pi$ modes are consistent with being entirely via $\Xi_{\it C}(2645)\,\pi.$

Ξ_c (2815) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c \pi$	seen	_
$ \Xi_{c} \pi $ $ \Xi_{c}^{+} \pi^{+} \pi^{-} $ $ \Xi_{c}^{0} \pi^{+} \pi^{-} $	seen	196
$\equiv_c^0 \pi^+ \pi^-$	seen	191

$\Xi_c(2970)$ was $\Xi_c(2980)$

$$I(J^P) = \frac{1}{2}(??)$$

$$\begin{split} & \Xi_c(2970)^+ \ m = 2969.4 \pm 0.8 \ \text{MeV} \quad (\text{S} = 1.1) \\ & \Xi_c(2970)^0 \ m = 2967.8 \pm 0.8 \ \text{MeV} \quad (\text{S} = 1.1) \\ & m_{\Xi_c(2970)^+} - m_{\Xi_c^0} = 498.5 \pm 0.8 \ \text{MeV} \quad (\text{S} = 1.1) \\ & m_{\Xi_c(2970)^0} - m_{\Xi_c^+} = 499.9^{+0.8}_{-0.7} \ \text{MeV} \quad (\text{S} = 1.1) \\ & m_{\Xi_c(2970)^+} - m_{\Xi_c(2970)^0} = 1.6 \pm 1.1 \ \text{MeV} \quad (\text{S} = 1.1) \\ & \Xi_c(2970)^+ \ \text{width} \ \Gamma = 20.9^{+2.4}_{-3.5} \ \text{MeV} \quad (\text{S} = 1.2) \\ & \Xi_c(2970)^0 \ \text{width} \ \Gamma = 28.1^{+3.4}_{-4.0} \ \text{MeV} \quad (\text{S} = 1.5) \end{split}$$

Ξ_c (2970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K} \pi$	seen	231
$\Sigma_c(2455)\overline{K}$	seen	133
$\sum_{\substack{C \\ \Lambda_c^+ \overline{K}}} (2455) \overline{K}$	not seen	414
$\Xi_c 2\pi$	seen	385
$\Xi_c(2645)\pi$	seen	277

$\Xi_c(3055)$

$$I(J^P) = ?(??)$$

Created: 5/30/2017 17:13

Mass $m=3055.9\pm0.4$ MeV Full width $\Gamma=7.8\pm1.9$ MeV

Ξ_c (3055) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma^{++} K^-$	seen	_
ΛD^+	seen	317

$$\Xi_c(3080)$$

$$I(J^P) = \frac{1}{2}(??)$$

$$\Xi_c(3080)^+\ m=3077.2\pm0.4\ {
m MeV}$$
 $\Xi_c(3080)^0\ m=3079.9\pm1.4\ {
m MeV}\ ({
m S}=1.3)$ $\Xi_c(3080)^+\ {
m width}\ \Gamma=3.6\pm1.1\ {
m MeV}\ ({
m S}=1.5)$ $\Xi_c(3080)^0\ {
m width}\ \Gamma=5.6\pm2.2\ {
m MeV}$

Ξ_c (3080) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K} \pi$	seen	415
$\Sigma_c(2455)\overline{K}$	seen	342
$\Sigma_c(2455)^{++}K^-$	seen	342
$\Sigma_c(2520)^{++}K^-$	seen	239
$\Sigma_c(2455)\overline{K} + \Sigma_c(2520)\overline{K}$	seen	_
$\Lambda_c^+\overline{K}$	not seen	536
$\Lambda_c^+ \overline{K}_{\pi^+ \pi^-}$	not seen	144
ΛD^+	seen	362

Ω_c^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m=2695.2\pm1.7$$
 MeV $~(S=1.3)$ Mean life $au=(69\pm12)\times10^{-15}$ s $c au=21~\mu{\rm m}$

No absolute branching fractions have been measured.

Ω_c^0 DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma^+ K^- K^- \pi^+$	seen	689
\equiv^0 K $^ \pi^+$	seen	901
$\Xi^- K^- \pi^+ \pi^+$	seen	830
$\Omega^-\mathrm{e}^+ u_\mathrm{e}$	seen	829
$\Omega^-\pi^+$	seen	821
$\Omega^-\pi^+\pi^0$	seen	797
$\Omega^-\pi^-\pi^+\pi^+$	seen	753

$$\Omega_c(2770)^0$$

$$I(J^P) = 0(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

Mass
$$m=2765.9\pm 2.0$$
 MeV (S $=1.2$) $m_{\Omega_c(2770)^0}-m_{\Omega_c^0}^0=70.7^{+0.8}_{-0.9}$ MeV

The $\Omega_c(2770)^0 - \Omega_c^0$ mass difference is too small for any strong decay to occur.

Ω_c (2770) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Omega_c^0 \gamma$	presumably 100%	70

NOTES

- [a] This branching fraction includes all the decay modes of the final-state resonance.
- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [c] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [d] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .