Algebra Lineare 18 gennaio 2022

		10 Schilla	10 2022			
Cognome e nome:						
Numero di matricola:						
IMPORTANTE: Scr nei riquadri le rispos						AMENTE
Esercizio 1. Si cons reali qualunque:	sideri il seg	uente sisten	na lineare	\mathcal{S} dove	b_1, b_2, b_3, b_4	sono numeri
Sia inoltre	($ x_2 + 2x_2 + 4x_2 + x_2 + $ $ \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} \in \mathbb{R}^4 $			`	
 (1) Trovare un'applicazione lineare φ: R⁴ → R⁴ con W = Im(φ). (2) Trovare una base di W. (3) Determinare la dimensione di Ker(φ). 						
D: 4 1		D. 4	a D	T	n: 4 9	D
Risposta 1: q	/	nisposta	a 2: Base	1 	usposta 3:	Dimensione

Esercizio 2. Sia $T:\mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare definita ponendo:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - y \\ 3x + 3y \end{pmatrix}$$

- Esercizio 2. Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare definita ponendo: $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x y \\ 3x + 3y \end{pmatrix}$ Si considera inoltre la base $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \end{pmatrix} \right\}$ di \mathbb{R}^2 .

 (1) Trovare la matrice di T rispetto alla base \mathcal{B} in partenza e la base standard $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ in arrivo.

 (2) Trovare la matrice di T rispetto alla base \mathcal{B} in partenza e in arrivo.

F	Risposta 1: Matrice	_	Risposta 2: Matrice

Esercizio 3. Si consideri la seguente matrice, dove k è un parametro.

$$A = \begin{pmatrix} 1 & 0 & 0 & k \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

- (1) Per quali valori di k si ha che A ammette un autovalore di molteplicità algebrica 2?
- (2) Per quali valori di k si ha che A ammette un autovalore di molteplicità algebrica 3? (Ce n'è solo uno.)
- (3) Per il valore di k trovato nel punto (2) sopra la matrice è diagonalizzabile?

Risposta 1: Valori di k	Risposta 2: Valori di k	Risposta 3: SI/NO

Esercizio 4. Sia $V\subseteq \mathcal{R}^3$ il sottospazio vettoriale di tutte le soluzioni del seguente sistema \mathcal{S} :

tema
$$S$$
:
$$(S) \begin{cases} x_1 - x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 - x_4 = 0 \end{cases}$$
(1) Qual è la dimensione di V ?
(2) Qual è la dimensione dello spazio ortogonale V^{\perp} ?
(3) Trovare una base **ortonormale** di V^{\perp}

- (3) Trovare una base **ortonormale** di V^{\perp} .

Risposta 1: $\dim(V)$	Risposta 2: $\dim(V^{\perp})$	Risposta 3: Base