NAIL062 V&P LOGIKA: 4. SADA PŘÍKLADŮ – TABLO METODA

Výukové cíle: Po absolvování cvičení student

- zná potřebné pojmy z tablo metody (položka, tablo, tablo důkaz/zamítnutí, dokončená/sporná větev, kanonický model), umí je formálně definovat, uvést příklady
- zná všechna atomická tabla, a umí vytvořit vhodná atomická tabla pro libovolnou logickou spojku
- umí sestrojit dokončené tablo pro danou položku z dané (i nekonečné) teorie
- umí popsat kanonický model pro danou dokončenou bezespornou větev tabla
- umí aplikovat tablo metodu k řešení daného problému (slovní úlohy, aj.)
- zná větu o kompaktnosti, umí ji aplikovat

PŘÍKLADY NA CVIČENÍ

Příklad 1. Aladin našel v jeskyni dvě truhly, A a B. Ví, že každá truhla obsahuje buď poklad, nebo smrtonosnou past.

- Na truhle A je nápis: "Alespoň jedna z těchto dvou truhel obsahuje poklad."
- Na truhle B je nápis: "V truhle A je smrtonosná past."

Aladin ví, že buď jsou oba nápisy pravdivé, nebo jsou oba lživé.

- (a) Vyjádřete Aladinovy informace jako teorii T nad vhodně zvolenou množinou výrokových proměnných \mathbb{P} . (Vysvětlete význam jednotlivých výrokových proměnných v \mathbb{P} .)
- (b) Pokuste se sestrojit tablo důkazy, z teorie T, výroků o významu "Poklad je v truhle A" a "Poklad je v truhle B".
- (c) Je-li některé z těchto dokončených tabel bezesporné, sestrojte kanonický model pro některou z jeho bezesporných větví.
- (d) Jaký závěr z toho můžeme učinit?

Řešení. (a) Z kontextu poznáme, že 'buď, ...nebo' je exkluzivní (truhla nemůže obsahovat zároveň poklad i smrtonosnou past). Zvolíme jazyk $\mathbb{P} = \{a, b\}$, kde a znamená 'truhla A obsahuje poklad', podobně pro b. Nápisy na truhlách formalizujeme jako výroky $a \lor b$, $\neg a$. Teorie T vyjadřuje, že jsou oba pravdivé nebo oba lživé:

$$T = \{ ((a \lor b) \land \neg a) \lor (\neg (a \lor b) \land \neg \neg a) \}$$

(b) Tabla budou mít v kořeni položky Fa resp. Fb (dokazujeme 'sporem'):

- (c) První tablo je dokončené, ale bezesporné. Bezesporná větev obsahuje položky Fa, Tb, kanonický model pro tuto větev je v=(0,1). Je to model teorie T (všechny jeho větve jsou sporné), ve kterém v truhle A není poklad, tedy protipříklad k tvrzení, že v truhle A je poklad.
- (d) Druhé tablo je sporné, jde tedy o tablo důkaz a víme, že v truhle B je poklad.

Příklad 2. Uvažme nekonečnou výrokovou teorii (a) $T = \{p_{i+1} \to p_i \mid i \in \mathbb{N}\}$ (b) $T = \{p_i \to p_{i+1} \mid i \in \mathbb{N}\}$. Pomocí tablo metody najděte všechny modely T. Je každý model T kanonickým modelem pro některou z větví tohoto tabla?

Řešení. Sestrojíme tablo z teorie T, do kořene dáme položku $T\alpha_0$, kde α_0 je první axiom T. Ukážeme jen začátek konstrukce, potřebujete-li, zkonstuujte více. Neprve vyřešme (a):

Každý model T se shoduje s některou (bezespornou) větví tohoto (dokončeného) tabla. Zde dokonce platí, že každý model T je kanonickým modelem pro některou z větví. Modely jsou: $M(T) = \{v_{< k} \mid k \in \mathbb{N}\} \cup \{v_{all}\} \text{ kde } v_{all} = 1 \text{ pro všechna } i \in \mathbb{N}, \text{ a}$

$$v_{< k}(p_i) = \begin{cases} 1 & \text{if } i < k, \\ 0 & \text{if } i \ge k. \end{cases}$$

Nyní (b):

Opět není těžké nahlédnout, že každý model je kanonickým modelem pro některou větev. Máme $M(T) = \{v_{none}\} \cap \{v_{>k} \mid k \in \mathbb{N}\}$ kde $v_{none} = 0$ pro všechna $i \in \mathbb{N}$, a

$$v_{\geq k}(p_i) = \begin{cases} 0 & \text{if } i < k, \\ 1 & \text{if } i \geq k. \end{cases}$$

Příklad 3. Navrhněte vhodná atomická tabla pro logickou spojku \oplus (XOR) a ukažte, že souhlasí-li model s kořenem vašich atomických tabel, souhlasí i s některou větví.

Řešení. Potřebujeme dvě atomická tabla, pro položky tvaru $T\varphi \oplus \psi$ a $F\varphi \oplus \psi$. Mohou vypadat například následovně, podmínku si ověřte sami (snadno sémanticky):

Příklad 4. Pomocí věty o kompaktnosti ukažte, že každé spočetné částečné uspořádání lze rozšířit na úplné (lineární) uspořádání.

Řešení. Pro konečná částečná uspořádání se dokáže snadno (podobně jako topologické uspořádání acyklického orientovaného grafu).

Mějme spočetně nekonečnou částečně uspořádanou množinu $\langle X; \leq^X \rangle$. Sestrojíme výrokovou teorii T takovou, aby její modely popisovaly lineární uspořádání na X rozšiřující \leq^X . Bude sestávat z následujících množin výroků:

• p_{xx} pro všechna $x \in X$ (reflexivita)

• $p_{xy} \to \neg p_{yx} \text{ pro všechna } x \neq y \in X$ (antisymetrie)

• $p_{xy} \land p_{yz} \rightarrow p_{xz}$ pro všechna $x, y, z \in X$ (tranzitivita) • $p_{xy} \lor p_{yx}$ pro všechna $x, y \in X$ (linearita)

• p_{xy} pro všechna x, y taková, že $x \leq^X y$ (jde o rozšíření \leq^X)

(Reflexivitu lze vynechat, plyne už z toho, že jde o rozšíření reflexivní relace \leq^X .)

Dokazujme: $\langle X; \leq^X \rangle$ má lineární rozšíření, právě když T má model, to je z věty o kompaktnosti právě když každá konečná část T má model. Vezměme libovolnou konečnou $T' \subseteq T$. Stačí tedy ukázat, že T' má model. Označme jako X' množinu všech $x \in X$, o kterých mluví T', tj:

$$X' = \{x \in X \mid p_{xy} \in \operatorname{Var}(T') \text{ nebo } p_{yx} \in \operatorname{Var}(T') \text{ pro nějaké } y \in X\}$$

Protože T' je konečná, je i X' konečná množina. Buď $\leq^{X'}$ restrikce \leq^{X} na množinu X', neboli $\leq^{X'} = \leq^{X} \cap (X' \times X')$. Toto konečné částečné uspořádání lze rozšířit na lineární uspořádání $\leq^{X'}_{L}$, což nám dává model teorie T' (kde $v(p_{xy}) = 1$ právě když $x \leq^{X'}_{L} y$).

Další příklady k procvičení

Příklad 5. Adam, Barbora a Cyril jsou vyslýcháni, při výslechu bylo zjištěno následující:

- (i) Alespoň jeden z vyslýchaných říká pravdu a alespoň jeden lže.
- (ii) Adam říká: "Barbora nebo Cyril lžou"
- (iii) Barbora říká: "Cyril lže"

- (iv) Cyril říká: "Adam nebo Barbora lžou"
- (a) Zapište tvrzení (i) až (iv) jako výroky φ_1 až φ_4 nad množinou prvovýroků $\mathbb{P} = \{a, b, c\}$, přičemž a, b, c znamená (po řadě), že "Adam/Barbora/Cyril říká pravdu".
- (b) Pomocí tablo metody dokažte, že z teorie $T=\{\varphi_1,\ldots,\varphi_4\}$ plyne, že Adam říká pravdu.
- (c) Je teorie T ekvivalentní s teorií $T' = \{\varphi_2, \varphi_3, \varphi_4\}$? Zdůvodněte.

Příklad 6. Pomocí tablo metody dokažte, že následující výroky jsou tautologie:

- (a) $(p \to (q \to q))$
- (b) $p \leftrightarrow \neg \neg p$
- (c) $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$
- (d) $(p \to q) \leftrightarrow (\neg q \to \neg p)$

Příklad 7. Pomocí tablo metody dokažte nebo najděte protipříklad ve formě kanonického modelu pro bezespornou větev.

- $\begin{array}{l} \text{(a) } \{\neg q,\ p \lor q\} \models p \\ \text{(b) } \{q \to p,\ r \to q,\ (r \to p) \to s\} \models s \\ \text{(c) } \{p \to r,\ p \lor q,\ \neg s \to \neg q\} \models r \to s \end{array}$

Příklad 8. Pomocí tablo metody určete všechny modely následujících teorií:

- (a) $\{(\neg p \lor q) \to (\neg q \land r)\}$
- (b) $\{\neg q \rightarrow (\neg p \lor q), \neg p \rightarrow q, r \rightarrow q\}$ (c) $\{q \rightarrow p, r \rightarrow q, (r \rightarrow p) \rightarrow s\}$

Příklad 9. Navrhněte vhodná atomická tabla a ukažte, že souhlasí-li model s kořenem vašich atomických tabel, souhlasí i s některou větví:

- pro Peirceovu spojku ↓ (NOR),
- pro Shefferovu spojku \(\gamma\) (NAND),
- pro \oplus (XOR),
- pro ternární operátor "if p then g else r" (IFTE).

Příklad 10. Half-adder circuit je logický obvod se dvěma vstupními bity (bit 1, bit 2) a dvěma výstupními bity (carry, sum) znázorněný v následujícím diagramu:

- (a) Formalizujte tento obvod ve výrokové logice. Konkrétně, vyjádřete jej jako teorii T= $\{c\leftrightarrow\varphi,\ s\leftrightarrow\psi\}$ v jazyce $\mathbb{P}=\{b_1,b_2,c,s\}$, kde výrokové proměnné znamenají po řadě "bit 1", "bit 2", "carry" a "sum", a formule φ, ψ neobsahují proměnné c, s.
- (b) Dokažte tablo metodou, že $T \models c \rightarrow \neg s$.

Příklad 11. Pomocí věty o kompaktnosti dokažte, že každý spočetný rovinný graf je obarvitelný čtyřmi barvami. Můžete využít Větu o čtyřech barvách (pro konečné grafy).

K zamyšlení

Příklad 12. Dokažte přímo (transformací tabel) *větu o dedukci*, tj. že pro každou teorii T a výroky φ , ψ platí:

$$T \models \varphi \rightarrow \psi \;\; \text{právě když} \;\; T, \varphi \models \psi$$

Příklad 13. Mějme dvě neprázdné teorie A, B v témž jazyce. Nechť platí, že každý model teorie A splňuje alespoň jeden axiom teorie B. Ukažte, že existují konečné množiny axiomů $\{\alpha_1, \ldots, \alpha_k\} \subseteq A$ a $\{\beta_1, \ldots, \beta_n\} \subseteq B$ takové, že $\alpha_1 \wedge \cdots \wedge \alpha_k \to \beta_1 \vee \cdots \vee \beta_n$ je tautologie.