INTRODUCTION TO MACHINE LEARNING LAB ASSIGNMENT – 6

NAME: PRATHAPANI SATWIKA

REG.NO.: 20BCD7160

Implement SVM on the data set provided.

```
import pandas as pd
         from sklearn import svm
        from sklearn.metrics import accuracy score, confusion matrix, precision score, recall score, classification report
         from sklearn.model selection import train test split
[ ] from google.colab import drive
            drive.mount('/content/drive')
      train_data=pd.read_csv('/content/drive/My Drive/lab4/mnist_train.csv')
        print(train data)
          5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ... 0.608 0.609 0.610 \
              0 0 0 0 0 0 0 0 0 0 ... 0 0 0
4 0 0 0 0 0 0 0 0 0 ... 0 0
                                                                                 0 ...

      59994
      8
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0</td
               0.611 0.612 0.613 0.614 0.615 0.616 0.617
                3
               59994
     59996
     59997
     [59999 rows x 785 columns]
```

```
test_data=pd.read_csv('/content/drive/My Drive/Colab Notebooks/mnist_test.csv')
 print(test_data)
     7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ... 0.658 0.659 0.660 \
    20000000000...000
 1
    10000000000...
                                          0
                                               0
                                                    0
 2
    00000000000...
    ... .. ... ... ... ... ... ... ... ... ... ... ...
9994 2 0 0 0 0 0 0 0 0 0 0 ... 0 0 9995 3 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 9996 4 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 9997 5 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 9998 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0.661 0.662 0.663 0.664 0.665 0.666 0.667
                   0
 0
      0
               0
 1
                 0
                      0
                     0
 2
                     0
           0 0
0 0
       0
0
                          0
                     0
      ... ... ... ... ...
      9994
 9995
 9996
                0 0 0 0
      0 0
0 0
 9997
 9998
 [9999 rows x 785 columns]
```

```
x=train_data.iloc[:,1:785]
y=train_data.iloc[:,0]
print("X.shape :",x.shape)
print("Y.shape :",y.shape)
```

```
X.shape : (59999, 784)
Y.shape : (59999,)
```

```
[ ] x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=10)
    model=svm.SVC()
    print(model.fit(x_train,y_train))
```

```
SVC()
```

```
[ ] y_train_predict=model.predict(x_train)
    y_test_predict=model.predict(x_test)
    print("Accuracy Score:",accuracy_score(y_train,y_train_predict))
    print("\n CONFUSION MATRIX\n")
    print(confusion_matrix(y_test,y_test_predict))
```

Accuracy Score: 0.9889759279982857

CONFUSION MATRIX

[[1812	0	4	0	0	2	6	0	1	2]
[0	2016	8	4	3	0	1	2	1	3]
[7	4	1717	2	9	2	4	15	10	1]
[0	2	12	1705	1	22	1	8	16	10]
	1	3	0	0	1711	0	3	2	1	19]
[5	1	5	7	4	1602	10	1	4	3]
[7	2	1	0	2	8	1731	0	1	0]
[1	3	11	2	12	0	0	1860	2	11]
[3	9	8	8	5	11	3	1	1674	6]
[5	1	1	10	22	6	0	19	8	1751]]

print("\n CLASSIFICATION REPORT \n")
print(classification_report(y_test,y_test_predict))

CLASSIFICATION REPORT

	precision	recall	f1-score	support
0	0.98	0.99	0.99	1827
1	0.99	0.99	0.99	2038
2	0.97	0.97	0.97	1771
3	0.98	0.96	0.97	1777
4	0.97	0.98	0.98	1740
5	0.97	0.98	0.97	1642
6	0.98	0.99	0.99	1752
7	0.97	0.98	0.98	1902
8	0.97	0.97	0.97	1728
9	0.97	0.96	0.97	1823
accuracy			0.98	18000
macro avg	0.98	0.98	0.98	18000
veighted avg	0.98	0.98	0.98	18000