Shrinkage

Instructor: Haoran LEI

Hunan University

Shrinkage Methods

- JS Estimators imply that we can fit a model containing all p predictors using a technique that shrinks the coefficient estimates towards zero.
- It turns out that shrinking the coefficient estimates can significantly *reduce their variance*, and thus can improve the fit.
- Two popular shrinkage methods in the context of linear model:
 Ridge Regression and lasso.

From OLS to Ridge regression

- Linear model: $f_L(x) = eta_0 + \sum_{j=1}^p eta_j x_j$.
- Recall that the **LS fitting** procedure estimates β_0 , β_1 , ..., β_p using the values that minimize RSS over the training data:

$$RSS = \sum_{i=1}^N (y_i - \hat{y}_i)^2$$

ullet where $\hat{y}_i=eta_0+\sum_{j=1}^peta_jx_{ij}.$

From OLS to Ridge regression

- Linear model: $y=eta_0+\sum_{j=1}^p eta_j x_j+arepsilon$.
- ullet Ridge regression uses the \hat{eta}^R that minimize

$$RSS + \lambda \sum_{j=1}^p eta_j^2$$

• where $\lambda \geq 0$ is a **tuning parameter**, to be determined separately.

Ridge regression

- As with LS, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small.
- However, the second term $\lambda \sum_{j=1}^p \beta_j^2$ is small when the β 's are close to zero, and so it has the effect of *shrinking* the estimates of β_j towards zero.
- The tuning parameter λ is determined by cross validation, and serves to control the relative impact of these two terms on the regression coefficient estimates.

Figure. the credit data example: predicting balance from other 10 predictors (age, cards, gender, student, limit, ...)

Some "stupid questions" in case anyone is confused...

- Q: How many "models" are there in the left panel? A: Infinite. Each $\lambda \in (0.01, 10000)$ leads to some β_λ^R .
- Q: What are "1e-02" and "1e+04" in the left panel? A: That's how R represents 10^{-2} and 10^4 (scientific e notation).
- Q: What's $||\hat{\beta}||_2$ in the right panel?
 - A: This is called the ℓ_2 norm: $||x||_2 = \sqrt{x_1^2 + \cdots + x_p^2}$. Specifically, $\hat{\beta}$ is OLS estimator and $\hat{\beta}^R_{\lambda}$ is the Ridge estimator with the tuning parameter λ .
- Q: Why the range of x-axis is [0,1] in the right panel?

Ridge regression: scaling of predictors

- The OLS estimates are scale equivariant: multiplying X_j by a constant c simply leads to a scaling of the LS estimates by a factor of 1/c.
 - \circ In other words, regardless of how the j-th predictor is scaled, $\hat{eta}_j X_j$ will remain the same.
- In contrast, the ridge regression coefficient estimates can change substantially when multiplying a given predictor by a constant, due to the penalty term in the ridge regression objective function.

Ridge regression: scaling of predictors

• Therefore, it is best to apply ridge regression after standardizing the predictors, using the formula:

$$ilde{x}_{ij} = rac{x_{ij}}{\sqrt{rac{1}{n} \sum_{i=1}^{N} (x_{ij} - ar{x}_j)^2}}$$

• Like OLS, Ridge regression allows an exact formula:

$$\hat{eta}^R = (X^TX + \lambda I_p)^{-1}X^TY$$

You can see that the ridge estimates are not scale equivariant.

Fig: Ridge regression and bias-variance tradeoff. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set.

Least Absolute Shrinkage and Selection Operator (LASSO)

- Lasso, invented by Rob Tibshirani in 1996, is a relatively recent alternative to ridge regression.
- Ridge regression has one obvious disadvantage:
 - \circ unlike subset selection, which will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model.
 - In other words, Ridge does not select features.
- Lasso is mainly proposed to overcome that disadvantage.

Least Absolute Shrinkage and Selection Operator (LASSO)

ullet The lasso coefficients, eta_λ^L , minimize the quantity

$$RSS + \lambda \sum_{j=1}^p |eta_j|$$

- In other words, the lasso uses an ℓ_1 (pronounced "ell 1") penalty instead of an ℓ_2 penalty.
 - \circ The ℓ_1 norm of a coefficient vector β is given by $||\beta||_1 = \sum_{j=1}^p |\beta_j|.$

Lasso v.s. Ridge Regression

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero.
- However, in the case of the lasso, the ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large.
- Hence, much like best subset selection, the lasso *performs* variable selection.
- We say that the lasso yields **sparse models** that is, models that involve only a subset of the variables.

Example: Credit dataset and lasso

Review: Lagrangian of an optimization problem

One can show that the lasso and ridge regression coefficient estimates solve the problems

$$\min \sum_{i=1}^N \left(y_i - f_L(x_i)
ight)^2 ext{s.t. } \sum eta_j^2 \leq s ext{ (Ridge)}$$

$$\min \sum_{i=1}^N \left(y_i - f_L(x_i)
ight)^2 ext{s.t. } \sum |eta_j| \leq s \; ext{(Lasso)}$$

respectively, where $f_L(x_i) = eta_0 + \sum_{j=1}^p eta_j x_j$.

Why LASSO performs feature selection while Ridge Regression does not?

- Ridge regression uses ℓ_2 penalty. So in the optimization, the search area is a circle, which leads to an *interior solution*.
- Lasso uses ℓ_1 penalty. So in the optimization, the search area is a square, which leads to an corner solution.

Lasso v.s. Ridge Regression: illustration

Lasso v.s. Ridge regression on predicting power

- In general, one might expect the lasso to perform better when the response is a function of *only a relatively small* number of predictors.
- However, the number of predictors that is related to the response is never known a priori for real data sets.
- One needs to use cross-validation to determine which approach is better on a particular problem.

Selecting the Tuning Parameter

- For both Ridge Regression and Lasso, we need to do cross-validation to select a value for the tuning parameter λ (or equivalently, the value of the constraint s):
 - 1. We choose a grid of λ values, and compute the cross-validation error rate for each value of λ .
 - 2. We then select the tuning parameter value for which the cross-validation error is smallest.
 - 3. Finally, the model is re-fit using all of the available observations and the selected value of λ .

Fig: Credit data example. Cross-validation errors that result from applying ridge regression to the Credit data set.

Fig: CV on lasso. Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data set.