Appunti di Strade e Bim (Esercizi)

Università degli Studi di Napoli Federico II Ivano D'Apice ©telegram

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione inviare mail a: ivanodapice@hotmail.com.

Indice

1	Forn	nulario I																	i
	1.1	Esercizio	1																i
	1.2	Esercizio	2																iii
	1.3	Esercizio	3																iv
	1.4	Esercizio	4																vi
	1.5	Esercizio	5		•			•											vii
2	Forn	nulario II																	ix
	2.1	Esercizio	1																ix
	2.2	Esercizio	2					•											xiii
	2.3	Esercizio	3																xiv
	2.4	Esercizio	4		•			•											XV
3	Forn	nulario III																	xvii
	3.1	Esercizio	1																xvii
	3.2	Esercizio	2																xxi
	3.3	Esercizio	3																xxiv

Capitolo 1

Formulario I

1.1 Esercizio 1

Autocarro	m=18t	Pa=60%	Ne=120kW
-----------	-------	--------	----------

Determinare lo sforzo di trazione per mantenere una velocità costante di 55 Km/h su di un tronco stradale rettilineo, con pavimentazione asciutta con manto stradale con micro e macrotessitura ed elementi a spigoli vivi, ed in salita con la pendenza longitudinale i = 2%. Verificare e indicare se lo sforzo di trazione calcolato è effettivamente disponibile ed esplicabile.

$$T = P(\mu + \mu_c \pm i \pm \frac{\beta}{q} \frac{dv}{dt}) + k \cdot S \cdot V^2$$
 (1.1)

Dato che la strada in esame è in rettilineo, μ_c =0. Inoltre, a velocità costante possiamo trascurare la componente di accelerazione $\frac{dv}{dt}$, e infine, i avrà segno positivo perché in salita. L'equazione diventa:

$$T = P(\mu + i) + k \cdot S \cdot V^2 \tag{1.2}$$

μ	= 0,025. Valore dalla tabella 1 per V=20km/h (Dato che 55 è più vicino a 20 che a 100)
Р	$= m \cdot g = 18000 \text{kg} \cdot 9,81 \text{m/s}^2 = 176580 \text{N}$
k	= 0,025. Valore dalla tabella 1 per autocarri e autobus
S	= 3,0. Valore dalla tabella 1 per autocarri e autobus

$$T = 176580(0,025+0,020) + 0,025 \cdot 3,0 \cdot 55^2 = 8172,98N \tag{1.3}$$

Per verificare se lo sforzo di trazione sia esplicabile, poniamo $T \leq T_{esp} \text{ e cioè } T \leq Pa \cdot Fa. \text{ Invece, per quanto riguarda la trazione disponibile, si pone come verifica } T \leq T_{dsp} = T \leq \frac{N_e \cdot 3,6}{V}$

$$T_{esp} = f_a \cdot P_a = 0,45 \cdot 105948N = 47676,60N$$
 (1.4)

$$T_{disp} = \frac{N_e \cdot 3, 6}{V} = \frac{120kW \cdot 3, 6}{55km/h} = 7,85kN = 7850N \tag{1.5}$$

$$T \leq T_{esp}$$
 • Soddisfatto $T \leq T_{disp}$ • Non Soddisfatto (1.6)

Capitolo 1. Formulario I

1.2 Esercizio 2

Autovettura	m=1,9t	Pa=75%	Ne=70kW%

Determinare lo sforzo di trazione necessario all'avviamento su di un tronco stradale rettilineo, con pavimentazione bagnata in conglomerato bituminoso, in salita con la pendenza longitudinale i = 3,5%, e con un'accelerazione confortevole a = dv/dt = 0,25 m/s². Verificare e indicare se lo sforzo di trazione calcolato è effettivamente disponibile ed esplicabile.

$$T = P(\mu + \mu_c \pm i \pm \frac{\beta}{g} \frac{dv}{dt}) + k \cdot S \cdot V^2$$
 (1.7)

La componente μ_c si trascura sempre nel caso delle autovetture. In avviamento, tralasciamo la parte relativa a kSV^2 e poniamo V=5km/h.

P =
$$m \cdot g = 1900 \text{kg} \cdot 9,81 \text{m/s}^2 = 18639 \text{N}$$

 β = 1,05. Valore fissato
 μ = 0,020. Valore dalla tabella 1 preso per autovetture a 20km/h

$$T = P(\mu + i + \frac{\beta}{g} \frac{dv}{dt})$$
 (1.8)

$$T = 18639N(0,020+0,035+\frac{1,05}{9,81m/s^s}\cdot 0,25m/s^2) = 1523,90N$$
 (1.9)

Pa	= 75%P = 0,75·P = 13979,25N
Fa	= 0,50. Valore dalla tabella 4 in condizione di asciutto

$$T_{esp} = f_a \cdot P_a = 0,50 \cdot 13979,25N = 6989,63N$$
 (1.10)

$$T_{disp} = \frac{N_e \cdot 3.6}{V} = \frac{70kW \cdot 3.6}{5km/h} = 50.4kN = 50400N$$
 (1.11)

$$T \leq T_{esp}$$
 • Soddisfatto $T \leq T_{disp}$ • Soddisfatto (1.12)

1.3 Esercizio 3

Autovettura	m=1,9t	Pa=80%	Ne=50kW%
-------------	--------	--------	----------

Determinare la massima pendenza possibile di una strada tale che sia garantito l'avviamento in salita su un tronco stradale rettilineo con pavimentazione asciutta in conglomerato bituminoso. Si consideri un'accelerazione confortevole a = $dv/dt = 0,30 \text{ m/s}^2$.

$$T = P(\mu + i + \frac{\beta}{q} \frac{dv}{dt})$$
 (1.13)

$$\frac{T}{P} = \mu + i + \frac{\beta}{g} \frac{dv}{dt}$$
 (1.14)

$$\frac{T}{P} - \mu - \frac{\beta}{g} \frac{dv}{dt} = i \tag{1.15}$$

Р	=m·g = 1900kg·9,81m/s²= 18639N
Pa	= 80%P = 0,80·P = 18639,00N
Fa	= 0,85. Valore dalla tabella 4 in condizione di asciutto
μ	= 0,02. Valore dalla tabella 1 preso per autovetture a 20km/h

$$T_{esp} = f_a \cdot P_a = 0,85 \cdot 18639,00N = 12674,52N \tag{1.16}$$

$$T_{disp} = \frac{N_e \cdot 3.6}{V} = \frac{50kW \cdot 3.6}{5km/h} = 36,00kN = 36000N \tag{1.17}$$

Prendiamo il valore più piccolo tra T_{esp} e T_{disp} ponendolo come valore della trazione nella equazione [1.15]

$$i = \frac{12674,52N}{18639,00N} - 0,020 - \frac{1,05}{9,81m/s^2} \cdot 0,30m/s^2 = 63\% \tag{1.18}$$

1.4 Esercizio 4

Autocarro m=20t	Pa=60%	Ne=130kW%
-----------------	--------	-----------

Determinare la massima accelerazione all'avviamento su di un tronco stradale rettilineo in salita che ha la pendenza longitudinale i = 3% su di una pavimentazione asciutta con manto stradale con solo microtessitura ed elementi a spigoli vivi.

$$T = P(\mu + i + \frac{\beta}{g} \frac{dv}{dt})$$
 (1.19)

$$\frac{T}{P} = \mu + i + \frac{\beta}{g} \frac{dv}{dt} \tag{1.20}$$

$$\frac{g}{\beta}(\frac{T}{P} - \mu - i) = \frac{dv}{dt} \tag{1.21}$$

Р	=m·g = 20000kg·9,81m/s ² = 196200N
Pa	= 60%P = 0,60·P = 117720,00N
Fa	= 0,75. Valore dalla tabella 4 in condizione di asciutto
μ	= 0,025. Valore dalla tabella 1 preso per autovetture a 20km/h

$$T_{esp} = f_a \cdot P_a = 0,75 \cdot 117720,00N = 88290,00N$$
 (1.22)

Capitolo 1. Formulario I

$$T_{disp} = \frac{N_e \cdot 3.6}{V} = \frac{130kW \cdot 3.6}{5km/h} = 93,60kN = 93600N \tag{1.23}$$

$$\frac{dv}{dt} = \frac{9,81m/s^2}{1,05} \left(\frac{88290,00N}{196200N} - 0,025 - 0,30\right) = 3,7m/s^2 \tag{1.24}$$

1.5 Esercizio 5

Determinare le distanze di visibilità per il cambio di corsia, il sorpasso su di una strada ad unica carreggiata di tipo C nell'ipotesi che essa sia percorsa in salita da una autovettura ad una velocità V = 100 Km/h.

- A1) Determinare, altresì, la distanza di arresto nell'ipotesi che l'autovettura freni in 150m.
- A2) Determinare, altresì, la distanza di arresto nell'ipotesi di pendenza longitudinale i = 5%.

$$D_c = 2, 6 \cdot V = 260m \tag{1.25}$$

$$D_a = v \cdot t_{pr} + s_f \tag{1.26}$$

$$t_{pr} = 2, 8 - 0, 01 \cdot V = 1, 8s \tag{1.27}$$

27,8m/s perché come si vede anche nella formula, v è minuscolo. Quando troviamo questo tipo di notazione, la velocità è in metri al secondo.

$$D_a = 27,8m/s \cdot 1,8s + 150m = 200m \tag{1.28}$$

$$D_a = 0,78 \cdot 100 - 0,0028 \cdot 10000 + \frac{10000}{254(0,35+0,05)}$$
 (1.29)

Capitolo 2

Formulario II

2.1 Esercizio 1

- Determinare il raggio minimo della curva circolare planimetrica per cui è garantito l'equilibrio allo sbandamento dei veicoli adottando i valori di aderenza trasversale forniti dal DM 5/11/2001;
- Determinare la velocità di percorrenza al limite dello sbandamento dell'autovettura nell'ipotesi di un valore del coefficiente di aderenza fa = 0,45 e di pendenza longitudinale i = 3,5%;
- Determinare l'accelerazione trasversale non compensata e compensata per i quesiti a) e b).

$$\frac{V^2}{R} = 127(q + f_t) \Rightarrow R = \frac{V^2}{127(q + f_t)}$$
 (2.1)

Dato che ci troviamo in condizione di percorrere una strada di tipo C1, avremo come limiti inferiori e superiori rispettivamente 60 e 100km/h. In ordine per calcolare Rmin useremo il limite inferiore di 60km/h, mentre il valore di pendenza q sarà dato da tabella nel DM.6792 a pagina 60. Ft è preso da tabella 4 a seconda di velocità e tipologia di strada.

TIPI SECONDO IL CODICE		AMBITO TERRITORIALE	DENOMINAZIONE	V _p min [km/h]	q _{max}	f _{t max}	Raggio minimo [m]
AUTOSTRADA	Α	EXTRAURBANO	STRADA PRINCIPALE	90	0,07	0,118	339
			STRADA DI SERVIZIO (EVENTUALE)	40	0,07	0,210	45
		URBANO	STRADA PRINCIPALE	80	0,07	0,130	252
			STRADA DI SERVIZIO (EVENTUALE)	40	0,035	0,210	51
EXTRAURBANA PRINCIPALE	В	EXTRAURBANO	STRADA PRINCIPALE	70	0,07	0,147	178
			STRADA DI SERVIZIO (EVENTUALE)	40	0,07	0,210	45
EXTRAURBANA SECONDARIA	С	EXTRAURBANO		60	0,07	0,170	118
URBANA DI SCORRIMENTO	D	URBANO	STRADA PRINCIPALE	50	0,05	0,205	77
			STRADA DI SERVIZIO (EVENTUALE)	25	0,035	0,220	19
URBANA DI QUARTIERE	E	URBANO		40	0,035	0,210	51
LOCALE	F	EXTRAURBANO		40	0,07	0,210	45
		URBANO		25	0,035	0,220	19

$$R_{min} = \frac{60^2 km^2/h^2}{127(0,07+0,17)} = 118m \tag{2.2}$$

$$V^{2} = 127 \cdot R(q + f_{t}) \Rightarrow V = \sqrt{127 \cdot R(q + f_{t})}$$
 (2.3)

Ci troviamo in questa parte di progetto a verificare la velocità di percorrenza a limite di sbandamento. Ciò significa che ci troviamo nel caso limite in cui con tale velocità riusciamo ancora a rimanere su strada. Tale condizione viene data da T=A. Calcoleremo la velocità con la formula del raggio minimo interpolando Ft tramite trazione.

$$A = f_a \cdot P_a = \sqrt{f_l^2 + f_t^2} \cdot P_a \tag{2.4}$$

Pa	$= 85\%P = 0.85\cdotP = 5525.00N$
K	= 0,015. Valore dalla tabella 2 per autovetture di serie
μ	= 0,025. Valore dalla tabella 1 preso per autovetture a 100km/h
S	= 1,50. Valore dalla tabella 3 per autovetture

$$T = P(\mu + i) \cdot K \cdot S \cdot V^2 \tag{2.5}$$

$$T = 6500N(0,025+0,035) + 0.015 \cdot 1.5m^2 \cdot 60^2 km^2/h^2 = 471N$$
 (2.6)

Nelle componenti dell'aderenza trascuriamo quella trasversale riducendo tutto alla forza longitudinale.

$$T = A = f_l \cdot P_a \Rightarrow f_l = \frac{T}{P_a} = \frac{471N}{5525N} = 0,085$$
 (2.7)

$$f_t = \sqrt{f_a^2 - f_l^2} = \sqrt{0,45^2 - 0,085^2} = 0,44$$
 (2.8)

$$V = \sqrt{127 \cdot 118m(0,07+0,44)} = 87km/h \tag{2.9}$$

Ricalcoliamo T con la nuova velocità per verificare che sia corretta.

$$T = 6500N(0,025+0,035) + 0,015 \cdot 1,5m^2 \cdot 87^2km^2/h^2 = 560N \quad (2.10)$$

$$f_l = \frac{T}{P_a} = \frac{560N}{5525N} = 0,101 \tag{2.11}$$

$$f_t = \sqrt{f_a^2 - f_l^2} = \sqrt{0,45^2 - 0,101^2} = 0,44$$
 (2.12)

$$V = \sqrt{127 \cdot 118m(0,07+0,44)} = 87km/h \tag{2.13}$$

$$a_{nc1} = g \cdot f_t = 9,81 \text{m/s}^2 \cdot 0,17 = 1,66 \text{m/s}^2$$
 (2.14)

$$a_{nc2} = g \cdot f_t = 9.81 \text{m/s}^2 \cdot 0.44 = 4.32 \text{m/s}^2$$
 (2.15)

$$a_c = g \cdot q = 9.81 \text{m/s}^2 \cdot 0.07 = 0.69 \text{m/s}^2$$
 (2.16)

2.2 Esercizio 2

Autovettura	P=6,50kN	Pa=85%	Strada	di	tipo	C1	
-------------	----------	--------	--------	----	------	----	--

- Determinare la pendenza trasversale q di una curva di raggio R = 750 m e la velocità di percorrenza V dell'autovettura secondo il DM 5/11/2001;
- Verificare se con il raggio assegnato è garantita la visibilità del ciglio interno. Si consideri per il calcolo del raggio che consente la visibilità del ciglio interno un valore di velocità pari a Vp,min.

$$R_{min} = \frac{60^2 km^2/h^2}{127(0,07+0,17)} = 118m \tag{2.17}$$

$$R_{max} = \frac{100^2 km^2/h^2}{127(0.07 + 0.11)} = 437m \tag{2.18}$$

$$R > R_{max} \Rightarrow V = V_{max} = 100km/h \tag{2.19}$$

b	= 1,23 da tabella 5, considerando la velocità massima per tipo di strada
l_o	= 300m preso dall'abaco in figura 1 considerando la velocità minima per tipo di strada
2ϕ	= 78 gradi preso dall'abaco in figura 2 considerando la velocità minima per tipo di strada

$$\ln q = -0.64 \cdot \ln R + b \tag{2.20}$$

$$\ln q = -0.64 \cdot \ln 750m + 1.23 \tag{2.21}$$

$$q = e^{-3} = 0, 5 = 5\% (2.22)$$

$$R_o = \frac{l_o}{\sin(2\phi)} = \frac{300m}{\sin(78^\circ)} = 306m$$
 (2.23)

$$R > R_o \Rightarrow \checkmark$$
 (2.24)

2.3 Esercizio 3

Autovettura	P=6,50kN	Pa=85%	Strada	di	tipo	C1
-------------	----------	--------	--------	----	------	----

Determinare la velocità di percorrenza V dell'autovettura e la pendenza trasversale q di una curva di raggio R = 185 m secondo il DM 5/11/2001.

$$R_{min} < R < R_{max} \Rightarrow q = q_{max} = 7\% = 0.07$$
 (2.25)

Calcoliamo V con l'equazione a Vmax per tipo di strada relativa a 100km/h, da risolvere come eq di secondo grado.

$$V^{2}(1 - R \cdot 0,0015) + V(R \cdot 0,432) - R \cdot 50,17 = 0$$
 (2.26)

2.4 Esercizio 4

Autovettura	P=6,50kN	Pa=85%	Strada	di	tipo	C1	
-------------	----------	--------	--------	----	------	----	--

Determinare per gli esercizi 2) e 3) nell'ipotesi di pendenza longitudinale i = 3.5% e nell'ipotesi che osservatore ed ostacolo si trovino entrambi sulla curva circolare:

- la distanza minima D dell'asse della corsia da un ostacolo laterale, affinché sia garantita la distanza di visibilità nell'ipotesi di sorpasso e di arresto
- Il valore minimo del raggio R, affinché sia garantita la distanza di visibilità nell'ipotesi di sorpasso e di arresto.

$$D = 2\sqrt{2 \cdot R \cdot \Delta} \Rightarrow \Delta = \frac{D^2}{8 \cdot R}$$
 (2.27)

$$D_{S} = 5, 5 \cdot V$$

$$D_{S2} = 5, 5 \cdot 100 km/h = 550m$$

$$D_{S3} = 5, 5 \cdot 71 km/h = 390, 5m$$
(2.28)

$$\Delta_{min,2} = \frac{550^2 m^2}{8 \cdot 750m} = 50, 4m$$

$$\Delta_{min,3} = \frac{390, 5^2 m^2}{8 \cdot 185m} = 103m$$
(2.29)

$$D_A = 0.78 \cdot V - 0.0028 \cdot V^2 + \frac{V^2}{254(f_e \pm i)}$$
 (2.30)

$$D_{A2} = 0.78 \cdot 100 km/h - 0.0028 \cdot 100^2 km^2/h^2 + \frac{100^2 km^2/h^2}{254(0.35 + 0.035)} = 156.26 m$$

$$D_{A3} = 0.78 \cdot 71 km/h - 0.0028 \cdot 71^2 km^2/h^2 + \frac{71^2 km^2/h^2}{254(0.40 + 0.035)} = 86.89 m$$

$$(2.31)$$

$$\Delta_{min,2} = \frac{152,26^2 m^2}{8 \cdot 750 m} = 3,86m$$

$$\Delta_{min,3} = \frac{86,89^2 m^2}{8 \cdot 185 m} = 5,10m$$
(2.32)

Il valore di Δ per Rmin è dato dalla lunghezza della corsia più quello della banchina, tabellare da caratteristiche geometriche per tipo di strada

$$R_{DS2,min} = \frac{D_{S2}^2}{8 \cdot \Delta} = \frac{550^2 m^2}{8 \cdot 3,38m} = 11187m$$

$$R_{DS3,min} = \frac{D_{S3}^2}{8 \cdot \Delta} = \frac{390,5^2 m^2}{8 \cdot 3,38m} = 5639,43m$$
(2.33)

$$R_{DA2,min} = \frac{D_{A2}^2}{8 \cdot \Delta} = \frac{152, 26^2 m^2}{8 \cdot 3,38m} = 857,81m$$

$$R_{DA3,min} = \frac{D_{A3}^2}{8 \cdot \Delta} = \frac{86,89^2 m^2}{8 \cdot 3,38m} = 279,27m$$
(2.34)

Capitolo 3

Formulario III

3.1 Esercizio 1

Lo scostamento R tra un rettifilo e una curva circolare di raggio R pari a 380m è 0,60m. La strada assegnata è di tipo C1 extraurbana.

- Determinare il parametro A della clotoide e verificare se tale parametro soddisfa i criteri indicati nel DM 5/11/2001;
- Determinare lo scostamento R minimo che assicuri il superamento delle verifiche indicate nel D.M. 5/11/2001 per il parametro A della clotoide. Si trascuri per il calcolo di R minimo la quantità $1+\frac{3}{14}\frac{\Delta R}{R}$;
- Determinare le coordinate del centro del cerchio, le coordinate del punto finale e il valore di tc e rappresentare graficamente il raccordo rettifilo-clotoidecurva circolare indicando le grandezze fondamentali.

$$A = \sqrt[4]{24 \cdot R^3 \cdot \Delta R (1 + \frac{3}{14} \frac{\Delta R}{R})}$$
 (3.1)

$$A = \sqrt[4]{24 \cdot 380^3 m^3 \cdot 0,60 m (1 + \frac{3}{14} \frac{0,60 m}{380 m})} = 167,67 m \tag{3.2}$$

$$A \ge A_{min,1} = 0,021 \cdot V^2 \tag{3.3}$$

$$R_{min} = \frac{60^2 km^2/h^2}{127(0,07+0,17)} = 118m \tag{3.4}$$

$$R_{max} = \frac{100^2 km^2/h^2}{127(0.07 + 0.11)} = 437m \tag{3.5}$$

$$R_{min} < R < R_{max} \tag{3.6}$$

Dato che il raggio non può dirci il dato della velocità, lo ricaviamo tramite equazione di secondo grado

$$V^{2}(1 - R \cdot 0,0015) + V(R \cdot 0,432) - R \cdot 50,17 = 0$$
(3.7)

$$V^2(0,43) + V(164,16) - 19064, 6 = 0$$
 (3.8)

$$V = \frac{-164, 16 \pm \sqrt{164, 16^2 - 4(0, 43 \cdot -19064, 6)}}{2 \cdot 0, 43} = 93, 32 km/h \tag{3.9}$$

$$A \ge A_{min,1} = 0.021 \cdot V^2 = 182m$$
 × (3.10)

$$A \ge A_{min,2} = \sqrt{\frac{R_f - R_i}{\Delta i_{max}} \cdot 100 \cdot B(q_f + q_i)}$$
(3.11)

 R_f è il raggio del cerchio che segue, mentre R_i è quello che precede (rettifilo = 0). q_f lo poniamo uguale a q_{max} e q_i a q_{min} . Nella formula per calcolare Δi_{max} il valore di B è dato dalla distanza dell'asse di rotazione e ovvero dall'asse della corsia più la banchina.

$$\Delta i_{max} = \frac{18 \cdot B_i}{V} \tag{3.12}$$

$$A \ge A_{min,2} = \sqrt{\frac{380m}{\frac{18 \cdot 5,25m}{93,32km/h}} \cdot 100 \cdot 5,25m(0,07+0,025)} = 136,8m \quad \checkmark \quad (3.13)$$

$$A \ge A_{min,3} = \frac{R}{3} \quad \checkmark \tag{3.14}$$

$$A \ge A_{\min 4} = R \quad \checkmark \tag{3.15}$$

$$A = \sqrt[4]{24 \cdot 380^3 m^3 \cdot 0,60 m (1 + \frac{3}{14} \frac{0,60 m}{380 m})}$$
 (3.16)

$$A^4 = 24 \cdot R^3 \cdot \Delta R \tag{3.17}$$

Utilizziamo A=182,88m perché nella verifica è stato il valore non soddisfatto. Prendendolo ora per le successive verifiche sappiamo che è il valore minimo per cui tutte e 4 le prove sono soddisfatte.

$$\Delta R = \frac{A^4}{24 \cdot R^3} = \frac{182,88^4 m^4}{24 \cdot 380^3 m^3} = 0,84m \tag{3.18}$$

$$l = \frac{L}{A} = \frac{A^2}{R \cdot A} = \frac{A}{R} = \frac{182,88m}{380m} = 0,48$$
 (3.19)

Con questo valore di la ndiamo a prendere tutte le componenti cartesiane che ci servono per disegnare la figura dalla tabella in fondo al formulario.

τ_c	= 7,33
X	$= 0,4974m \times A = 57,67m$
y	$= 0.0184 \text{m} \times \text{A} = 3.36 \text{m}$
x_m	= 0,2399m×A = 43,87m
y_m	$= R + \Delta R = 380m + 0,84m = 80,84m$

3.2 Esercizio 2

In figura sono assegnati due elementi curvilinei circolari di raggio R1 = 500m e R2 = 350m distanti D = 10m. Il verso di percorrenza è indicato. La strada assegnata è di tipo F1 extraurbana.

- Determinare il parametro della clotoide di flesso e verificare se tale parametro soddisfa i criteri indicati nel DM 5/11/2001;
- Determinare le coordinate del centro dei cerchi, le coordinate dei punti iniziali e finali e i valori di τ_c ;
- Rappresentare graficamente il raccordo curva circolareclotoide-curva circolare indicando tutte le grandezze fondamentali.

Calcoliamo i valori relativi agli assi x e y della figura 2 del formulario.

$$\frac{R_2}{R_1} = 0,7m\tag{3.20}$$

$$\frac{D}{R_1} = 0,02m \tag{3.21}$$

Grazie ai due dati precedenti possiamo prendere il valore della prossima frazione da tabella:

$$\frac{A}{R_1} = 0,43m$$
 (3.22)
$$A = 0,43m \cdot R_1 = 215m$$

$$R_{min} = \frac{40^2 km^2/h^2}{127(0,07+0,21)} = 45m \tag{3.23}$$

$$R_{max} = \frac{100^2 km^2/h^2}{127(0,07+0,11)} = 437m \tag{3.24}$$

$$R > R_{max} \Rightarrow V = V_{max} = 100km/h \tag{3.25}$$

$$A \ge A_{min,1} = 0.021 \cdot V^2 = 210m \quad \checkmark$$
 (3.26)

$$A \ge A_{min,2} = \sqrt{\frac{R_f - R_i}{\Delta i_{max}} \cdot 100 \cdot B(q_f + q_i)}$$
 (3.27)

In questo caso possiamo trascurare B e q_i la calcoliamo con l'equazione logaritmica.

$$A \ge A_{min,2} = \sqrt{\frac{500 - 350m}{18} \cdot V \cdot 100(0,064 + 0,07)} = 105,71m \quad \checkmark \quad (3.28)$$

$$A \ge A_{min,3} = \frac{R}{3} \quad \checkmark \tag{3.29}$$

$$A \ge A_{min,4} = R \quad \checkmark \tag{3.30}$$

$$A_1 = A_2 = 215m \tag{3.31}$$

$$l_1 = \frac{215m}{500m} = 0,43 \tag{3.32}$$

$$l_2 = \frac{215m}{350m} = 0,61 \tag{3.33}$$

τ_{c1}	= 5,88
x_1	= 0,4296m×A = 92,36m
y_1	= 0,0132m×A = 2,84m
x_{m1}	= 0,2149m×A = 46,20m
y_{m1}	$= R + \Delta R = 500\text{m} + 0,7095\text{m} = 500,71\text{m}$

$ au_{c2}$	= 11,84
x_2	$= 0,6079m \times A = 130,70m$
y_2	= 0,0377m×A = 8,11m
x_{m2}	= 0,3046m×A = 65,49m
y_{m2}	$= R + \Delta R = 350m+2,021m = 352,02m$

$$\varepsilon = \arctan\left(\frac{x_{m1} + x_{m2}}{y_{m1} + y_{m2}}\right) = 7,46^{\circ}$$
 (3.34)

3.3 Esercizio 3

Sono assegnate due livellette, la prima con pendenza i_1 =-4,5% e la seconda con pendenza i_2 =+3,5%. L'elemento che sottende il raccordo è una curva circolare di raggio R = 590m. La strada assegnata è di tipo B extraurbana principale.

- Determinare il raggio e la lunghezza del raccordo verticale secondo i criteri indicati nel DM 5/11/2001.
 Si effettui il calcolo per D = Da;
- Determinare le coordinate del vertice, del punto a tangenza orizzontale e il valore della freccia;
- Rappresentare graficamente il raccordo verticale indicando tutte le grandezze fondamentali

Dato che abbiamo prima una discesa e poi una salita ($i_1=-,i_2=+$), la curva che si andrà a formare sarà concava.

$$\Delta i = i_2 - i_1 = 3,5\% - (-4,5\%) = 8,0\% = 0,08$$
 (3.35)

$$R_{min} = \frac{70^2 km^2/h^2}{127(0,07+0,15)} = 175m \tag{3.36}$$

$$R_{max} = \frac{120^2 km^2/h^2}{127(0,07+0,10)} = 667m \tag{3.37}$$

$$R_{min} < R < R_{max} \tag{3.38}$$

$$V^{2}(1 - R \cdot 0,0015) + V(R \cdot 0,432) - R \cdot 50,17 = 0 \Rightarrow V = 110km/h \quad (3.39)$$

Entriamo nell'abaco di figura 1 con pendenza longitudinale e velocità e ricaviamo la distanza di arresto. Con questa distanza poi vediamo in che zona degli abachi in figura 3 o 4 ci troviamo (D>L o D<L). In questo caso Da=170m e ci troviamo nella situazione di D<L.

$$L = \frac{\Delta i \cdot D_a^2}{2(h + D_a \cdot \theta)} \tag{3.40}$$

h è fissato a 0,5m mentre ϑ a 1 grado e ovvero 0,017 radianti.

$$L = \frac{0.08 \cdot 170^2 m^2}{2(0.5m + 170m + 0.017)} = 341m \tag{3.41}$$

$$L = \frac{D_a^2}{2(h + D_a \cdot \theta)} = 4262,5m \tag{3.42}$$

x_v	$= \frac{L}{2} = 170,5m$
x_a	= $-\frac{i_1}{\Delta i} \cdot L$ =191,81m
y_v	$= \frac{L \cdot i}{2} = -7,67 \text{m}$
Уa	$= -\frac{i_1^2}{2\Delta i} \cdot L = -4,32\text{m}$
f	$= \left \frac{\Delta i}{2L} \right (\frac{L}{2})^2 = 3,41 \text{m}$
y_f	= $y_v - f$ = -4,26m