

ML/DL Study

f.constant(['emetf.constant(['emetf.constant([General constant]]

te = tr.lookup.StaticVinit,
num_oov_buckets=5)

lookup.StaticVocabular
initializer,
num_oov_buckets,
lookup_key_dtype=Nonename=None,

Lookup.KeyValue

Code Review

Code Review

Brain tumors 256x256

A Refined Brain Tumor Image Dataset with Grayscale Normalization and Zoom

glioma_tumor	2023-11-13 오후 11:56	파일 폴더
meningioma_tumor	2023-11-13 오후 11:57	파일 폴더
normal	2023-11-13 오후 11:58	파일 폴더
pituitary_tumor	2023-11-13 오후 11:59	파일 폴더

Data Preprocesing

	Tumor_N ame	_	meningio ma_tumor	normal		glioma_tu mor_ratio	meningio ma_tumor _ratio	nomai ia	pituitary_t umor_rati o	SUM	Incorrect	Total	Incorrect Ratio
0	glioma_tu mor	161	19	4	0	0.875	0.103261	0.021739	0	,	23	184	0.125
1	meningio ma_tumor	9	161	0	9	0.050279	0.899441	0	0.050279	,	18	179	0.100559
2	normal	0	1	80	0	0	0.012346	0.987654	0	•	1	81	0.012346
3	pituitary_t umor	2	8	0	165	0.011429	0.045714	0	0.942857		10	175	0.057143

Actual: pitultary_tumor Predicted: glioma_tumor

Actual: meningioma tumor Predicted: meningioma tumor

Actual: meningioma tumor Predicted: meningioma tumor

Actual: meningioma tumor Predicted: meningioma tumor

Actual: pituitary_tumor Predicted: pituitary_tumor

Actual: glioma_tumor Predicted: normal

Actual: glioma_tumor Predicted: glioma_tumor

Actual: meningioma tumor Predicted: glioma tumor

Actual: glioma_tumor Predicted: glioma_tumor

Actual: pituitary_tumor Predicted: pituitary_tumor

Actual: meningioma_tumor Predicted: meningioma_tumor

Actual: normal Predicted: normal

Actual: glioma_tumor Predicted: glioma_tumor

Actual: pituitary_tumor Predicted: pituitary_tumor

Actual: pituitary_tumor Predicted: pituitary_tumor

Actual: glioma_tumor Predicted: meningioma_tumor

Model

```
base model =tf.keras.applications.resnet.ResNet50(include top=False)
base model.trainable = False
inputs = tf.keras.layers.Input(shape=(224, 224,3),name="input layer")
x = base model(inputs)
X =
tf.keras.layers.GlobalAveragePooling2D(name="global average pooling layer"
)(x)
x=tf.keras.layers.Flatten()(x)
x=tf.keras.layers.Dense(512,
activation="relu")(x)
x=tf.keras.layers.Dropout(0.5)(x)
outputs=tf.keras.layers.Dense(4,
activation="softmax",name="output layer")(x)
model= tf.keras.Model(inputs, outputs, name="model")
```

```
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),
              optimizer=tf.keras.optimizers.Adam(lr=0.001),
              metrics=["accuracy"]
learning rate reduction=tf.keras.callbacks.ReduceLROnPlateau(monitor=
"val loss", patience=2, factor=0.5, min lr=0.00001, verbose =1)
Early Stopping=
tf.keras.callbacks.EarlyStopping(monitor="val loss",patience=5,
restore best weights=True)
history1= model.fit(train data, epochs=20, validation data=
val data, callbacks=[Early Stopping, learning rate reduction], verbose=1)
```

Refactoring

- < 방향 설정 >
- 클래스 불균형 해결
- 모델 예측 결과 분석
- ResNet101, 152나 VGGNet, EfficientNet etc 활용
- 코드 재사용성↑

- 데이터 로딩 → 분할하는 처리 과정의 코드 재사용성 높이기
- model training 파트 코드 재사용성 높이기