GEARED SYSTEMS LAB 2

OUTLINE

- Applications
- Introduction to gear set
 - Rolling Cylinders & Belt
 - Gear Set
 - Equivalent to Four Bar Linkage
 - Involute Tooth Form
- Types of Gears
- Mechanical Advantage
- Simple Gear Trains
- Compound Gear Trains
- Efficiency
- Moments of Inertia
- Hypothesis Testing

APPLICATIONS

ROLLING CYLINDERS & BELT

CONTINUOUSLY VARIABLE TRANSMISSION (CVT)

GEAR SET

Fundamental law of gearing:

The angular velocity ratio between the gears of a gearset remains constant throughout the mesh

Speed ratio:

$$m_V = \frac{\sigma u}{\omega_{in}} = \pm \frac{u}{r_{out}} = \pm \frac{u}{d_{out}}$$

Torque ratio:

$$m_T = \frac{\omega_{in}}{\omega_{out}} = \pm \frac{r_{out}}{r_{in}} = \pm \frac{d_{out}}{d_{in}}$$

EQUIVALENT TO FOUR BAR LINKAGE

INVOLUTE TOOTH FORM

• The string is always tangent to the cylinder.

• The center of curvature of the involute is always at the point of tangency of the string with the cylinder.

• A tangent to the involute is then always normal to the string, the length of which is the instantaneous radius of curvature of the involute curve.

INVOLUTE TOOTH FORM

• Fundamental law of gearing in a more kinematically formal way as: the common normal of the tooth profiles, at all contact points within the mesh, must always pass through a fixed point on the line of centers, called the pitch point.

TYPES OF GEARS

Helical Gears

Bevel Gears

Miter Gears

MECHANICAL ADVANTAGE

Mechanical Advantage (MA) =
$$\frac{Tq_{out}}{Tq_{in}}$$

Velocity Ratio (VR) =
$$\frac{\omega_{in}}{\omega_{out}}$$

Efficiency (in%) =
$$\frac{MA}{VR} \times 100$$

EFFICIENCY

Shaft Power (in Watts) = Shaft Torque (in Nm) x Shaft Speed (in radians)

Motor Shaft Power is the input power (P_{in}) to a drive unit

 P_{in} = Motor torque x motor speed

Dynamometer Shaft Power is the output power (P_{out}) from a drive unit.

 P_{out} = Dynamometer torque x dynamometer speed

$$\eta = \frac{P_{out}}{P_{in}} \times 100$$

Efficiency (%) = (Gradient/VR) \times 100

SIMPLE GEAR TRAINS

 A simple gear train is one in which each shaft carries only one gear, the most basic, two-gear example of which is shown in Figure

$$m_V = \left(-\frac{N_2}{N_3}\right)\left(-\frac{N_3}{N_4}\right)\left(-\frac{N_4}{N_5}\right)\left(-\frac{N_5}{N_6}\right) = +\frac{N_2}{N_6}$$

$$m_V = \pm \frac{N_{in}}{N_{out}}$$

SIMPLE GEAR TRAINS

 $\frac{\text{Teeth ratio}}{\text{Teeth on Gear B}} = \frac{\text{Pitch Circle Diameter of Gear A}}{\text{Pitch Circle Diameter of Gear B}}$

GEAR RATIO

$$Velocity (gear) ratio = \frac{Velocity of Driver}{Velocity of Follower}$$

$$= \frac{\text{Velocity of Gear A}}{\text{Velocity of Gear B}} = \frac{\text{Teeth on Gear B}}{\text{Teeth on Gear A}} = \frac{\text{Diameter of Gear B}}{\text{Diameter of Gear A}}$$

COMPOUND GEARS

- A compound train is one in which at least one shaft carries more than one gear.
- Gear ratio

$$m_V = \left(-\frac{N_2}{N_3}\right)\left(-\frac{N_4}{N_5}\right)$$

 $m_V = \pm \frac{\text{product of number of teeth on driver gears}}{\text{product of number of teeth on driven gears}}$

COMPOUND GEARS

 $\frac{\text{Velocity of Gear A}}{\text{Velocity of Gear B}} = \frac{\text{Teeth on Gear B}}{\text{Teeth on Gear A}}$

 $\frac{\text{Velocity of Gear C}}{\text{Velocity of Gear D}} = \frac{\text{Teeth on Gear D}}{\text{Teeth on Gear C}}$

Velocity of Gear D = Velocity of Gear A $\times \frac{\text{Teeth on Gear A}}{\text{Teeth on Gear B}} \times \frac{\text{Teeth on Gear C}}{\text{Teeth on Gear D}}$

Overall Velocity (Gear) Ratio = $\frac{\text{Product of Teeth or Diameters on Follower Gears}}{\text{Product of Teeth or Diameters on Driver Gears}}$

Overall Velocity (Gear) Ratio = Product of Radii on Follower Gears
Product of Radii on Driver Gears

MANUAL TRANSMISSION

MOMENTS OF INERTIA

MOMENTS OF INERTIA

$$I_x = I_{shaft} + 0.5m_1r_1^2 + 0.5m_2r_2^2 - 0.5m_3r_3^2 - 14\{0.5(m_4r_4^2 + m_4r_5^2)\}$$

FINDING MOMENTS OF INERTIA

$$mg - ma = I\frac{a}{r^2}$$

FINDING MOMENTS OF INERTIA

$$mg - ma = I\frac{a}{r^2} + \frac{T_{qf}}{r}$$

- Two-tailed test
- Left-tailed test
- Right-tailed test

$$H_0: x' = x_0, \ H_a: x' \neq x_0$$

$$H_0: x' \ge x_0, \ H_a: x' < x_0$$

$$H_0: x' \le x_0, \ H_a: x' > x_0$$

z-test

$$z_0 = \frac{\bar{x} - x_0}{\sigma / \sqrt{N}}$$

• t-test

$$t_0 = \frac{\bar{x} - x_0}{s_x / \sqrt{N}}$$

•level of significance α

$$P(z) \equiv 1 - \alpha$$

- •p-value
 - Observed level of significance

 Table 4.5
 Critical Values Used in the z-test

Level of significance, α	0.10	0.05	0.01
Critical values of z One-tailed tests	-1.28 or 1.28	-1.645 or 1.645	-2.33 or 2.33
Critical values of z Two-tailed tests	-1.645 and 1.645	-1.96 and 1.96	-2.58 and 2.58

- Step 1
 - Establish the null hypothesis and the appropriate alternative hypothesis, such as $H_0: x' = x_0$, $H_a: x' \neq x_0$
- Step 2
 - ullet Assign a level of significance lpha to determine critical values.
- Step 3
 - Calculate the observed value of the test statistic
- Step 4
 - Compare the observed test statistic to the critical values.

EXAMPLE 4.5

- From experience, a bearing manufacturer knows that it can produce roller bearings to the stated dimensions of $2.00~\mathrm{mm}$ within a standard deviation of $0.061~\mathrm{mm}$. As part of its quality assurance program, engineering takes samples from boxes of bearings before shipment and measures them. On one occasion, a sample size of 25 bearings is obtained with the result $\bar{x} = 2.03~\mathrm{mm}$. Do the measurement support the hypothesis that $x' = 2.00~\mathrm{mm}$ for the whole box at a 5% level of significance?
- KNOWN: $\bar{x} = 2.03 \text{ mm}$; $x_0 = 2.00 \text{ mm}$; $\sigma = 0.061 \text{ mm}$; N = 25
- FIND: Apply hypothesis test at $\alpha=0.05$

EXAMPLE 4.5

- KNOWN: $\sigma^2 = 3.15 \text{ mm}$; N = 25
- FIND: Apply hypothesis test at lpha=0.05
- Step 1:

$$H_0: x' = x_0 = 2.00 \text{ mm}$$
 $H_a: x' \neq 2.00 \text{ mm}$

• Step 2:

$$P(-z_{0.025} \le z_0 \le z_{0.025}) = 1 - \alpha = 0.95$$

Critical value: -1.96 and 1.96

• Step 3:

Test statistic:
$$z_0 = \frac{\bar{x} - x_0}{\sigma / \sqrt{N}} = 2.459$$

• Step 4: