Deep Learning

Vijaya Saradhi

IIT Guwahati

Mon, 14th Sept 2020

Knowledge Representation

Definition

Stored information or models used by a person or a machine to interpret, predict and appropriately respond to the outside world.

Knowledge Representation

Discussion

Knowledge of the world consists of two kinds of information:

- Prior Information the known facts.
- Class related prior information example: 20% of emails belong to spam;
- Feature related prior information example 2: 90% of spam emails contain the word "Free Free Free"

Knowledge Representation

Four main points

- Rule 1 Similar inputs from similar classes should produce similar representations inside the network
- Rule 2 Inputs to be categorized as separate classes should be given widely different representation in the network
- Rule 3 Importance to specific features is given through involving large number of neurons
- Rule 4 Prior information is achieved through design of neural network.

Introduction

- Obtain best result under given circumstance
- In engineering discipline the goal is to minimize the effort required or maximize the desired benefit
- These are expressed as function of certain decision variables
- Optimization can be defined as the process of finding conditions that gives maximum or minimum value of a function

Introduction

Figure 1.1 Minimum of f(x) is same as maximum of -f(x).

Vijaya Saradhi (IIT Guwahati)

Statement Of Optimization Problem

Optimization problem

minimize
$$f$$
 $f(\mathbf{x})$
subject to $g_j(\mathbf{x}) \leq 0 \ \forall \ j = 1, 2, \cdots, m$
 $l_j(\mathbf{x}) = 0 \ \forall \ j = 1, 2, \cdots, p$

- x: Design variables/ design vector
- $f(\mathbf{x})$: objective function
- $g_i(\mathbf{x})$ inequality constraints
- $l_i(\mathbf{x})$ equality constraints
- Constrained optimization problem

Variations

- Design variables:
 - Single variable/Multi-variable
 - Continuous values/integer values
- objective function
 - Linear
 - Non-linear
 - Convex
 - Single objective/multi objective
 - Unimodal/multimodal
- Constraints
 - No constraints
 - only $l_i(.)$ which are linear
 - both $g_i(.)$ and $I_i(.)$
 - Convex

Variables

Single Variable

$$f(x) = (x^2 - 2x + 7)$$
$$f(x) = x^2 + \frac{54}{x}$$

Multi Variable

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

$$f(x_1, x_2) = x_1 - x_2 + 2 \times x_1^2 + 2 \times x_1 \times x_2 + x_2^2$$

10 / 39

Continuous vs Integer

Continuous

$$f(x) = x^2 + \frac{54}{x}$$

s.t. $x \in \mathbb{R}$

Continuous

Integer

$$f(x) = (x^2 - 2x + 7)$$

s.t. $x \in \mathbb{N}$

Linear

Minimize
$$f(x_1, x_2) = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

Matrix Form

Let

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

let

$$\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Objective function matrix Form

$$Minimizef(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$$

CS590

Constraints in matrix form

Let A =

$$\left(\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right)$$

Let **b** =

$$\left(\begin{array}{c}b_1\\b_2\\\vdots\\b_n\end{array}\right)$$

Constraints in matrix form

Ax = b

Linear objective

Minimizef(
$$\mathbf{x}$$
) = $\mathbf{c}^T \mathbf{x}$
subjec to $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge 0$

16 / 39

Inequality Constraints

Example

Minimize
$$f(x_1, x_2) = x_1^2 + x_2^2$$

subject to $x_1 + 2x_2 \le 15$
 $1 \le x_1 \le 10$
 $1 < x_2 < 10$

Nature of objective functions

- When there are no constraints present the problem is an unconstrained optimization
- When there are constrains present the problem is known as constrained optimization
- Linear Optimization When f(x) is linear and only linear constraints are present
- Non Linear Optimization when f(x) is nonlinear
- Convex Optimization When $f(\mathbf{x})$ is convex and constraints are linear

Optimization Definition

Local optimal

f(x) has a minimum at $x = x^*$ if $f(x^*) \le f(x^* + h)$ for all sufficiently small positive and negative values of h.

f(x) has a maximum at $x = x^*$ if $f(x^*) \ge f(x^* + h)$ for all sufficiently small positive and negative values of h.

Global optimal

 $x = x^*$ found in the interval [a, b] such that x^* minimizes f(x)

Introduction

Figure 1.1 Minimum of f(x) is same as maximum of -f(x).

Single Variable

Necessary Condition

if f(x) is defined in the interval [a, b] and has a local minimum at $x = x^*$; let the first order derivative of f(x) exists at $x = x^*$ then

$$\frac{df(x)}{dx} = 0$$

CS590

Example

Example

$$f'(x) = 60(x^4 - 3x^3 + 2x^2) = 60x^2(x - 1)(x - 2)$$

$$f'(x) = 0 \text{ at } x = 0, 1 \text{ and } 2.$$

CS590

Multi Variable

Necessary Condition

Let
$$\mathbf{x} = (x_1, x_2, \cdots, x_n)$$

If f(x) has a maximum or minimium point at $x = x^*$. Assume partial derivatives of f(x) exists at x^* then

$$\frac{\partial f(\mathbf{x})}{\partial x_1}\bigg|_{x_1=x_1^*} = \frac{\partial f(\mathbf{x})}{\partial x_2}\bigg|_{x_2=x_2^*} = \cdots = \frac{\partial f(\mathbf{x})}{\partial x_n}\bigg|_{x_n=x_n^*} = 0$$

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\bigg|_{\mathbf{x}=\mathbf{x}^*} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}\bigg|_{\mathbf{x}=\mathbf{x}^*} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

Example

$$f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$$

Necessary Condition

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 3x_1^2 + 4x_1 = x_1(3x_1 + 4) = 0$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = 3x_2^2 + 8x_2 = x_2(3x_2 + 8) = 0$$

These equations satisfy at (0, 0), $(0, -\frac{8}{3})$, $(-\frac{4}{3}, 0)$ and $(-\frac{4}{3}, -\frac{8}{3})$

Contours

Contours

Descent Direction

Definition

A search direction \mathbf{d}^t is a descent direction at point \mathbf{x}^t if the condition $\nabla f(\mathbf{x}^t).\mathbf{d}^t \leq 0$ is satisfied

Descent Direction

Condition

$$f(\mathbf{x}^{(t+1)}) < f(\mathbf{x}^t) < f(\mathbf{x}^t + \alpha \nabla f(\mathbf{x}^t).\mathbf{d}^t)$$
 (1)

That is function value at new point $\mathbf{x}^{(t+1)}$ is less than function value at the current point $\mathbf{x}^{(t)}$

Maximum Descent Direction

Condition

When $\mathbf{d}^t = - \bigtriangledown f(\mathbf{x}^t)$ maxim decrease in function value is obtained Let $\mathbf{d}^t = (1,0)^T$ Example: $f(x_1,x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$ Let $\mathbf{x}^t = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Let $\mathbf{d}^t = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\bigtriangledown f \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -46 \\ -38 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = -46$

Maximum Descent Direction

Condition

When $\mathbf{d}^t = - \nabla f(\mathbf{x}^t)$ maxim decrease in function value is obtained

Example:
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Let
$$\mathbf{x}^t = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

When
$$\mathbf{d}^t = - \nabla f(\mathbf{x}^t) = \begin{pmatrix} 46 \\ 38 \end{pmatrix}$$

$$\nabla f\left(\left(\begin{array}{c}1\\1\end{array}\right)\right) = \left(\begin{array}{c}-46\\-38\end{array}\right)$$

$$(-46-38)\left(\begin{array}{c}46\\38\end{array}\right)=-3560$$

Algorithm

- Step 1 Choose: No. of iterations, $\mathbf{x}^{(0)}$, ϵ_1, ϵ_2 ; set k=0
- Step 2 Calculate $\nabla f(\mathbf{x}^{(k)})$
- Step 3 if $\| \nabla f(\mathbf{x}^{(k)}) \| \le \epsilon_1$ then *terminate*
- Step 4 Perform *uni-directional search* to find $\alpha^{(k)}$ using ϵ_2
 - such that $f(\mathbf{x}^{(k+1)}) = f(\mathbf{x}^{(k)} \alpha^{(k)} \nabla f(\mathbf{x}^{(k)}))$ is minimum
 - Terminate when $\nabla f(\mathbf{x}^{(k+1)})$. $\nabla f(\mathbf{x}^{(k)}) \leq \epsilon_2$
- Step 5 Increment k = k + 1; Repeat steps 2 to 5

Example

minimize.
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 + 7)^2$$

Example

Step 1 Let
$$k = 0$$
; $\mathbf{x}^0 = (0,0)^T$; $\epsilon_1 = \epsilon_2 = 0.001$

Example

minimize.
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 + 7)^2$$

Example

Step 1 Let
$$k = 0$$
; $\mathbf{x}^0 = (0,0)^T$; $\epsilon_1 = \epsilon_2 = 0.001$
Step 2 $\nabla f(\mathbf{x}^{(0)}) = (-14, -22)^T$; $\|\nabla f(\mathbf{x}^{(0)})\| = ((-14)^2 + (-22)^2) = 680 > \epsilon_1$

Example

minimize.
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 + 7)^2$$

Example

Step 1 Let
$$k = 0$$
; $\mathbf{x}^0 = (0, 0)^T$; $\epsilon_1 = \epsilon_2 = 0.001$

Step 2
$$\nabla f(\mathbf{x}^{(0)}) = (-14, -22)^T$$
;
 $\|\nabla f(\mathbf{x}^{(0)})\| = ((-14)^2 + (-22)^2) = 680 > \epsilon_1$

Step 4 In the direction $- \nabla f(\mathbf{x}^{(0)})$ perform unidirection search

- Steepest descent direction vector is: (14, 22)^T
- Find α^0 such that $f(\mathbf{x}^1) = f(\mathbf{x}^0 \alpha^0 \nabla f(\mathbf{x}^{(0)}))$ is minimum
- Let us compute: $\mathbf{x}^1 = \mathbf{x}^0 \alpha^0 \nabla f(\mathbf{x}^{(0)})$

$$\left(\begin{array}{c} 0\\0\end{array}\right)-\alpha^0\times\left(\begin{array}{c} -14\\-22\end{array}\right)=\left(\begin{array}{c} 14\alpha^0\\22\alpha^0\end{array}\right)$$

Example

Step 4 To find α^0 , minimize the function $f \mathbf{x}^1$

We have computed

$$\mathbf{x}^1 = \left(\begin{array}{c} 14\alpha^0 \\ 22\alpha^0 \end{array}\right)$$

Therefore

$$f(\mathbf{x}^1) = f\left(\begin{array}{c} 14\alpha^0\\ 22\alpha^0 \end{array}\right)$$

- Substituting in objective function $f(x_1, x_2) = (x_1^+ x_2 11)^2 + (x_1 + x_2^2 7)^2$ we have:
- $f(\mathbf{x}^1) = ((14\alpha^0)^2 + (22\alpha^0) 11)^2 + ((14\alpha^0) + (22\alpha^0)^2 7)^2$
- Minimize $f(\mathbf{x}^1)$ to find best α^0

Example

- Step 4 Using Golden section search or any other single variable optimization procedure we obtain $\alpha^0 = 0.127$. Compute $\mathbf{x}^1 = (\mathbf{x}^0 \alpha^0 \bigtriangledown f(\mathbf{x}^0)) = (14\alpha^0, 22\alpha^0) = (1.788, 2.810)^T$
- Step 4 Since the termination condition does not satisfy
 - Terminate when $\nabla f(\mathbf{x}^{(1)})$. $\nabla f(\mathbf{x}^{(0)}) \leq \epsilon_2$
 - $\nabla f(\mathbf{x}^{(1)}) = (30.707, -18.803)^T$
 - $\nabla f(\mathbf{x}^{(0)}) = (-14, -22)^T$

•

$$(30.707, -18.803)$$
 $\begin{pmatrix} -14 \\ -22 \end{pmatrix} \le \epsilon_2$?

Step 5 increment k = k + 1; that is k = 1; Repeat the algorithm until termination criteria is met

The optimization obtains \mathbf{x}^* as $(3.008, 1.999)^T$

Single variable optimization

36/39

Single variable optimization

Interval halving method

- Given interval (a, b)
- If $f(x_1) < f(x_m)$ then minimum cannot lie beyond x_m That is $f(x_1) < f(x_{m+1}) < \cdots < f(b)$
- The interval will reduce to (a, x_m)
- If $f(x_1) > f(x_m)$ then minimum cannot lie in (a, x_1)

Single variable optimization

Interval halving method - algorithm

- Step 1 Given interval (a, b), choose ϵ . Let $x_m = \frac{(a+b)}{2}$; L = (b-a)
- Step 2 Initialize $x_1 = a + \frac{L}{4}$; $x_2 = b \frac{L}{4}$; Compute $f(x_1), f(x_2)$
- Step 3 If $f(x_1) < f(x_m)$ then $b = x_m; x_m = x_1$; Go to step 5; else go to step 4
- Step 4 If $f(x_2) < f(x_m)$ then $a = x_m$; $x_m = x_2$; Go to step 5; else $a = x_1, b = x_2$; go to step 5;
- Step 5 Calculate L=(b-a). If $(|L|<\epsilon)$ terminate else go to step 2

Text books to read

Optimization

- Engineering Optimization Theory and Practice Singiresu S Rao
- Chapter 1 of the above book, sections 6.8 and 6.9
- mec.nit.ac.ir/file_part/master_doc/ 20149281833165301436305785.pdf
- Optimization for Engineering Design Kalyanmoy Deb
- Section 3.4 of the above book.