题 7.1 图(a)所示电路是锁存器,试画出在如题 7.1 图(b)所示输入 \overline{R} , \overline{S} 的波形作用下,Q 端的输出波形。

与非门组成的基本 RS 触发器简化特性表

\overline{R}	\overline{S}	Q^{n+1}	功能
0	0	X	不定
0	1	0	置0
1	0	1	置1
1	1	Q^n	保持

7.2 试分析题 7.2 图所示电路的逻辑功能,列出状态转移真值表。

由电路图可得逻辑表达式:

$$Q^{n+1} = \overline{\overline{Q^n} + R \cdot CP}$$
$$\overline{Q^{n+1}} = \overline{Q^n + S \cdot CP}$$

当 CP=0 时, $Q^{n+1} = \overline{\overline{Q^n}} = Q^n$ 当 CP=1 时,

$$Q^{n+1} = \overline{\overline{Q^n} + R} = \overline{R} \cdot Q^n$$

$$\overline{Q^{n+1}} = \overline{S} \cdot \overline{Q^n}$$

R=S=0, 保持。

R=0, S=1, 置1。

R=1, S=0, 置 0。

R=S=1, 全 0。(此时就是或非门组成的基本 RS 触发器)

	输	输出	功能		
СР	R	S	Q^n	Q^{n+1}	
0	Χ	Χ	0	0	保持
0	X	X	1	1	不付
1	0	0	0	0	保持
1	0	0	1	1	本1寸
1	0	1	0	1	置1
1	0	1	1	1	且↓
1	1	0	0	0	置0
1	1	0	1	0	且U
1	1	1	0	X	全0,禁止
1	1	1	1	X	土0, 赤山

- 7.4 由或非门组成的锁存器和输入信号如题 7.4 图所示, 设锁存器的初始状态位
- 1, 画出输出端 Q 的波形。

右侧可以看成 BC 相或的结果输入 Q+B+C=Q+(B+C)令 D=B+C, 先作 D 的波形, 再代入或非门 RS 基本触发器可得 Q 的波形

7.5 题 7.5 图(a)是为防抖动输出的开关电路,其中的锁存器是由两个与非门构成。当拨动开关 S 时,开关触点会在瞬间发生抖动。假设拨动开关 S 时, $\overline{S_D}$ 、 $\overline{R_D}$ 的电压波形如题 7.5 图(b)所示,试画出 Q 端对应的输出波形。

Q 的输出波形:

7.6 在题 7.6 图所示电路中,若 CP、S、R 的电压波形如图所示,试画出 Q 端的电压波形。假定锁存器的初始状态为 Q=0。

CP=0, 保持。CP=1, 和基本 RS 触发器相同。

Q 的电压波形为:

7.8 门控 R-S 锁存器如题 7.8 图所示,设锁存器的初始状态为 0,画出在门控端作用下,对应于 R、S 输入信号波形的输出端 Q 的波形。

从图看出门控 RS 锁存器是高电平有效。

Q 的波形如下:

7.15 电路如题 7.15 图所示,假设触发器的初始状态为 0,画出在 CP 作用下 Q 端的波形。

上升沿触发

$$D = Q + \overline{\overline{Q}} = Q$$

Q=0 始终保持

7.16 电路如题 7.16 图所示,画出在题图所示的 CP 和 K 波形作用下的 Q 端波形。初始状态假设为 Q=0

上升沿触发

$$D=\overline{Q}\oplus K=Q\odot K$$

7.18 画出题 7.18 图所示触发器在图示波形作用下对应的 Q 端波形,假设 $\overline{S_D}$ 为 1,Q 初始为 0。

上升沿触发

注意:当 $\overline{R_D}=0$ 时,此时的上升沿不会改变触发器的内部状态。所以触发器内部状态的转变需要等到 $\overline{R_D}=1$ 时且遇到上升沿时。

7.23 电路图如题 7.23 图所示。假设触发器的初始状态为 0, 画出在连续脉冲 CP 作用下 Y 端的输出波形。

题 7.23 图

靠上的触发器 1 是上升沿触发,靠下的触发器 2 可以看作是 CP 的下降沿触发。

两个触发器的输入都是 $Y = Q_1^n \odot Q_2^n$

7.25 试用 D 触发器构成 R-S 触发器

特征方程法:

D 触发器特性方程: $Q^{n+1} = D$

RS 触发器特性方程: $Q^{n+1} = S + \overline{R}Q^n$, 约束条件 RS = 0

状态转移表法:

RS 触发器状态转移表

R	S	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	X

列出每种情况 D 的激励

R	S	Q^n	Q^{n+1}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	X	X
1	1	1	X	X

输入为 R、S、Qⁿ,输出为 D 的卡诺图

O ⁿ RS	00	01	11	10
0	0	1	Х	0
1	1	1	Х	0

可得 $D = S + \overline{R}Q^n$

构造电路图为

8.4 电路的时序图如题 8.4 图所示,画出电路的状态转换真值表和状态转移图,其中 X 为输入, Y 为输出。

观察 Q1Q0 的波形,可以看出两个触发器的状态只在 CP 下降沿改变,它们都是下降沿触发的。

列状态转移真值表

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$			
	X = 0	X = 1		
0 0	/1	1 1/1		
01				
10				
11	0 0/1	1 1/0		

画状态图

8.7 电路如题 8.7 图所示,画出脉冲作用下 Q₃Q₂Q₁Q₀的输出波形 (初态为 0000)。

无输入输出,时钟是相同的 CP 上升沿触发。直接看状态方程

$$\begin{aligned} Q_3^{n+1} &= Q_2^n \\ Q_2^{n+1} &= Q_1^n \\ Q_1^{n+1} &= Q_0^n \\ Q_0^{n+1} &= \overline{\overline{Q_2^n} \cdot \overline{Q_1^n} \cdot \overline{Q_0^n}} = Q_2^n + Q_1^n + Q_0^n \end{aligned}$$

列状态转换真值表

现态			次态				
Q_3^n	Q_2^n	Q_1^n	Q_0^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	0	0	0

8.10 分析题 8.10 所示电路, 写出状态转换真值表和状态转换图。

题 8.10 图

无输入输出,时钟是相同的 CP 上升沿触发。

激励方程
$$D_0 = \overline{\overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0}} \cdot \overline{Q_2 \oplus Q_1} = \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + Q_2 \oplus Q_1 = \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_2} Q_1 + Q_2 \overline{Q_1}$$

状态方程

$$Q_2^{n+1} = Q_1^n$$

$$Q_1^{n+1} = Q_0^n$$

$$Q_0^{n+1} = \overline{Q_2^n} \cdot \overline{Q_1^n} \cdot \overline{Q_0^n} + \overline{Q_2^n} Q_1^n + Q_2^n \overline{Q_1^n}$$

列状态表

现态			次态		
Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	0

作状态图

8.11 电路如题 8.11 图所示,两个触发器的初态都为 0,画出 Z 的波形。

两个 D 触发器都是相同的 CP 下降沿触发

左侧触发器 1 的置 0 端不起作用,右侧触发器 2 的置 0 端被触发器 1 的输出控制,Q1 为低电平时,Q2 置 0 也为低电平。

激励方程 $D_2 = Q_1$

$$D_1 = \overline{Q_2}$$

输出方程 $Z = \overline{CP + Q_1}$

Z的波形为周期为 3 倍 CP 周期的循环, 占空比为 1: 6

8.15 分析题 8.15 图所示的逻辑电路, 画出状态转移图。

题 8.15 图

两个 D 触发器都是 CP 上升沿触发。左侧为触发器 1, 右侧为触发器 2。

激励方程:

$$D_1 = A \cdot \overline{Q_2}$$

$$D_2 = \overline{\overline{Q_1} \cdot \overline{Q_2}} \cdot A = (Q_1 + Q_2)A$$

输出方程:

$$Y = A \cdot Q_2 \cdot \overline{Q_1}$$

状态方程:

$$Q_2^{n+1} = (Q_1^n + Q_2^n)A$$

$$Q_1^{n+1} = A \cdot \overline{Q_2^n}$$

列状态表:

输入	现态		次态		输出
A	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	0	0

作状态图

