

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задача 3_1_2 »

С тудент группы	ИКБО-27-21	Родионов А.А.
Руководитель практики	Ассистент	Морозов В.А.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Постановка задачи	5
Метод решения	6
Описание алгоритма	8
Блок-схема алгоритма	11
Код программы	14
Тестирование	16
ЗАКЛЮЧЕНИЕ	17
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)	18

введение

Постановка задачи

Создать объект первого типа, у которого одно целочисленное свойство. Значение данного свойства определяется посредством параметризированного конструктора.

Создать объект второго типа, у которого две целочисленных свойства. Значение данных свойств определяется посредством метода объекта. Реализовать дружественную функцию, которая находит максимальное значение полей объекта первого типа и полей объекта второго типа.

Написать программу:

- 1. Вводит значение для поля объекта первого типа.
- 2. Создает объект первого типа.
- 3. Вводит значения полей для полей объекта второго типа.
- 4. Создает объект второго типа.
- 5. Определяет значения полей объекта второго типа.
- 6. Определяет максимальное значение полей, созданных двух объектов разного типа посредством дружественной функции.
- 7. Выводит полученный результат.

Описание входных данных

Первая строка:

«целое число в десятичном формате»

Вторая строка:

«целое число в десятичном формате» «целое число в десятичном формате»

Описание выходных данных

Первая строка, с первой позиции:

max = «целочисленное значение в десятеричном формате»

Метод решения

Для выполнения задачи нам потребуется:
-Объект ввода\вывода потока данных
-Тип данных integer
-Условный оператор if
-Модификаторы доступа public/private
-Объект а класса А
-Объект b класса В
Класс А:
Поля:
Модификатор доступа public :
Наменование : А
Параметры : int p
Функционал : конструктор класса
Наименование : max
Параметры : A a, B b
Модификаторы : friend

Функционал : нахождение максимума от двух объектов типов А и В
Класс В :
Поля:
Модификатор доступа public :
Наименование : set
Параметры : int p1, p2
Функционал : задаёт значения переменным b1,b2
Наименовние : max
Параметры : A a, B b
Модификаторы : friend
Функционал : нахождение максимума от двух объектов типа А и В

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Конструктор класса: А

Модификатор доступа: public

Функционал: Конструктор класса

Параметры: int p

Алгоритм конструктора представлен в таблице 1.

Таблица 1. Алгоритм конструктора класса А

No	Предикат	Действия	№ перехода	Комментарий
1		a = p	Ø	

Класс объекта: В

Модификатор доступа: public

Метод: set

Функционал: Устанавливает значения переменным b1,b2

Параметры: int p1, p2

Возвращаемое значение: void

Алгоритм метода представлен в таблице 2.

Таблица 2. Алгоритм метода set класса В

N₂	Предикат	Действия	№ перехода	Комментарий
1		b1 = p1	2	
2		b2 = p2	Ø	

Класс объекта: В

Модификатор доступа: public

Метод: тах

Функционал: Нахождение максимума от двух объектов типов А и В

Параметры: A a, B b

Возвращаемое значение: void

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода тах класса В

N₂	Предикат	Действия	№ перехода	Комментарий
		Инициализация переменной		
1		типа int	2	
		int max_b		
2	b.b1 > b.b2		3	
2			4	
3		$max_b = b.b1$	5	
4		$max_b = b.b2$	5	
5	max_b > a.a		6	
5			7	
6		return max_b	Ø	
7		return a.a	Ø	

Функция: main

Функционал: Главная функция программы

Параметры: нет

Возвращаемое значение: void

Алгоритм функции представлен в таблице 4.

Таблица 4. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Инициализация переменных типа int int p1,p2	2	
2		Ввод значения р1	3	
3		Инициализация объекта типа А А a(p1)	4	
4		Инициализация объекта типа В В b	5	
5		Ввод значения р1,р2	6	
6		b.set(p1,p2)	7	
7		Вывод "max = " max(a,b)	Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Рис. 3. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл А.срр

```
#include "A.h"
A::A(int p){
          a = p;
}
```

Файл A.h

```
#ifndef A_h
#define A_h

class B;

class A{
        private:
        int a;
        friend int max(A a, B b);
        public:
        A(int p);
};
#endif
```

Файл В.срр

```
#include "B.h"
#include "A.h"

void B::set(int p1, int p2){
            b1 = p1;
            b2 = p2;
}
int max(A a, B b){
```

Файл B.h

```
#ifndef B_h
#define B_h

class A;

class B{
         private:
         int b1,b2;
         friend int max(A a, B b);
         public:
         void set(int p1, int p2);
};
#endif
```

Файл main.cpp

```
#include <iostream>
#include "A.h"
#include "B.h"

using namespace std;
int main()
{
    int p1, p2;
    cin >> p1;
    A a(p1);
    B b;
    cin >> p1 >> p2;
    b.set(p1,p2);
    cout << "max = " << max(a,b);
    return(0);
}</pre>
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
111	max = 1	max = 1
123	max = 3	max = 3

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL:
- https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).