The relationship of two variables

STATISTICAL TECHNIQUES IN TABLEAU

Maarten Van den Broeck Content Developer at DataCamp

Revisit the lake again

Revisit the lake again: scatter plot

Variable of interest is placed on y-axis

Correlation coefficient

- Quantifies the relationship between two variables
- Between -1 and 1
- Sign (+ or -) corresponds to direction of relationship
- Magnitude (absolute value) corresponds to strength of the relationship

Trend lines

- Visualizes the relationship between two variables
- As close as possible to each data point
- A high (absolute) correlation value has all point close or on the trend line
- Not necessarily a straight line

Trend lines: linear vs. logarithmic

Linear trend line

Logarithmic trend line

Trend lines: predicting and extrapolating

- Distance of 1400 m corresponds to approx.
 19 species
- Distance of 3000 m corresponds to approx.
 21 species

Other types of trend lines

- Exponential: inverse of logarithmic
- Power or log-log: both variables follow logarithmic trend
- Polynomial: n-degree, from second degree till eight degree

Let's practice!

STATISTICAL TECHNIQUES IN TABLEAU

Tableau: trend lines

STATISTICAL TECHNIQUES IN TABLEAU

Maarten Van den Broeck Content Developer at DataCamp

Let's practice!

STATISTICAL TECHNIQUES IN TABLEAU

Assessing a trend line

STATISTICAL TECHNIQUES IN TABLEAU

Maarten Van den Broeck Content Developer at DataCamp

Linear and logarithmic models

Distance to agricultural activity (m)

Distance to agricultural activity (m)

1000 1200 1400 1600 1800 2000 2200

Linear model

•
$$y = a * x + b$$

- ullet Regression: quantify how x causes y to change
- a = slope, b = intercept
- richness = a * distance + b
- richness = 0.0038 * distance + 13.4

Residuals and ${\mathbb R}^2$ of linear model

- Goal is to minimize distance between observation and trend line
- The distance is called a residual
- Coefficient of determination R^2
- For linear model, R^2 = correlation coefficient squared
- Between 0 (worst) and 1 (best)
- $R^2 = 0.33$
- Explains n% of the variation

${\cal R}^2$ of logarithmic model

• $R^2 = 0.59$

Residual standard error (RSE)

- Average difference between observed values and trend line
- Linear model: RSE = 3.69

Confidence interval is wider at low and high distances

- Same unit as unit on y axis
- Logarithmic model: RSE = 2.91

 Confidence interval is only wider at very high distances

p-value

Linear model

- p-value = 0.001
- Chance of $\frac{1}{1000}$ there is no correlation
- p-value < 0.05: model is statistically significant, fits data well

Logarithmic model

- p-value = 0.0001
- Chance of $\frac{1}{10000}$ there is no correlation
- The lower the p-value, the better, but pvalue isn't everything!

Let's practice!

STATISTICAL TECHNIQUES IN TABLEAU

Tableau: describing trend models

STATISTICAL TECHNIQUES IN TABLEAU

Maarten Van den Broeck Content Developer at DataCamp

Let's practice!

STATISTICAL TECHNIQUES IN TABLEAU

