

Assic	oma di	contiu	uità						
Def.	Stauo	A = F	2 e B	s e R	due	soltoù	rsieuu.	Si dia	che A
	sta a								
	(tutti e	. لع نام	di A	souo	< di-	tutti	-166	Au ou	R.
	ger a	l. di	B)					/ C	
	∀a ∈	A A	b∈B	a ≤	. b				
Assic	oma di c	witha	utà:	se A :	sta a	sx di	B, allo	ra esiste	,
	almeur	s cu	p:10	CER	. tale	che			
	5 /	0	\d \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X					
			4a∈ 4b∈						
Falk	٠ زير (iou A	r vale	Q'ass	ioma	gr, con	timita	, e Q'e	sempio
	clas	sico è							
	* - 5	400			2	7			
	A = { x B = { x								
	D \		. 720		X > 2	J			
Sì i	pohebbe c	teauik	rare di	٩					
0	A sta	a sx	di B						
2	Nou esi								
	succeole	a che	C ² = 2	هس ر ـ	quest	ro cu G	y non é	possibile	.)
TEO	REMONE	- 1	(Es: 8)	Hellana C	Jei bu), PA (000)		
	10000		(23,63		700		30001		
Esiste	e una s	tuetta	ra (R,+,	(che i	serifica	tertti gl	·
assio	ui enu	ucioti	aviz ,	va.					
TIC	FICILE								

TEOREMONE 2) (Viicità dei numeri reali) Suppositante de esistante du strutture (R,+,0,>) e (B, +, 0, 3) che venficano gli assioni. Allora esiste una funcione ₽: R → R cusentibile (quindi bigottiva) che commuta con le operazioni e l'ordinamento, cioè f(x+y) = f(x) + f(y) $f(x \cdot y) = f(x) + f(y)$ × > y (=>) \$ (x) (3) \$ (v) UN PO' MEND DIFFICILE DA DIMOSTRARE Esercizi Dimostrare la legge di semplificazione a+c=b+c=>a=b [Din Sia d'un qualenque apposto di c, cioè c+d=0. Agginno da dx esx e uso un po' di (52) e (53) a+(c+d)=b+(c+d) as a+0=b+0 as a=b] 2) Dimostrare che l'opposto dia è unico Siano b, e be due opposti! allora a+b, = a+b2 = 0 b1+a=b2+a Uso la legge di caucellasione e concludo 3 4. (-1) = -1