State Updates, Satisfaction of Quantified Predicates

CS 536: Science of Programming, Fall 2019

A. Why?

- A predicate is satisfied relative to a state; it is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of this lecture, you should

- Know what it means to update a state.
- Know what it means for a quantified predicate to be valid of be satisfied in a state.

C. "Updating" States

- To check quantified predicates for satisfaction, we need to look at different states that are related to, but not identical to, our starting state.
- Example 1: For $\{y = 1\} \models \forall x \in \mathbb{N} : x^2 + 1 \ge y 1$, we need to know that $\{y = 1, x = \alpha\} \models x^2 + 1 \ge y 1$ for every natural number α . I.e., we need
 - $\{y = 1, x = 0\} \models x^2 + 1 \ge y 1$
 - $\{y = 1, x = 1\} \models x^2 + 1 \ge y 1$
 - $\{y = 1, x = 2\} \models x^2 + 1 > y 1$
 -
 - Similarly, for $\{z = 4\} \models \exists x \in \mathbb{N} : x \ge z$, we need $\{z = 4, x = \alpha\} \models x \ge z$ for some particular natural number α ($\alpha = 5$ works nicely).
- There is a complicating factor. If the quantified variable already appears in the state, then we need to replace
 its binding with one that gives the value we're interested in checking.
- Example 2: We already know $\{z = 4\} \models \exists x \in \mathbb{N} . x \ge z$ because $\{z = 4, x = 5\} \models x \ge z$. If we start with the state $\{z = 4, x = -15\}$, which already has a binding for x, we find that the new state $\models \exists x \in \mathbb{N} . x \ge z$ because once again, $\{z = 4, x = 5\} \models x \ge z$ holds.
- In **Example** 2, the x that appears in $\{z = 4, x = 5\}$ is not the same x that appears within $\exists x \in \mathbb{N} . x \ge z$. However, the two x's in " $\{z = 4, x = 5\} \models x \ge z$ " **are** the same x. Giving the two x's the same name causes the confusion. If we gave the x's different names, there'd be no problem with understanding; let xo be the "outer" x and xi be the "inner" x, then

$$\{z = 4, xo = -15\} \models \exists xi \in \mathbb{N} . xi \geq z$$

because

$$\{z = 4, xo = -15, xi = 5\} \models xi \ge z$$

When we use the same name x, the binding for the outer x becomes invisible, overridden by the binding for the inner x:

$$\{z = 4, (outer) | x = -15\} \models \exists x \in \mathbb{N} . x \ge z \text{ because } \{z = 4, x = 5\} \models x \ge z$$

- **Definition**: For any state σ , variable x, and value α , the **update of** σ at x with α (written $\sigma[x \mapsto \alpha]$) is the state that is a copy of σ except that it binds variable x to value α .
 - Let $\tau = \sigma[x \mapsto \alpha]$, then $\tau(x) = \alpha$; if variable $y \not\equiv x$, then $\tau(y) = \sigma(y)$.
 - Note $\tau(\mathbf{x}) = \alpha$ regardless of whether $\sigma(\mathbf{x})$ is defined or not. If $\sigma(\mathbf{x})$ is defined, its type and exact value are irrelevant.
- Set theoretically,
 - If x has no binding in σ , then $\sigma[x \mapsto \alpha]$ is $\sigma \cup \{x = \alpha\}$: It's like σ but has been extended with $x = \alpha$.
 - If x has a binding in σ , say $\sigma = \{x = \beta\} \cup \sigma_0$ where σ_0 is the rest of σ , then $\sigma[x \mapsto \alpha]$ is $\sigma_0 \cup \{x = \alpha\}$. It's like σ but has the binding $x = \alpha$, not $x = \beta$. (Having two bindings for x would be illegal.)
- **Important**: Calling it the "update" of σ is kind of misleading because we're not modifying σ^* .
 - Taking $\sigma[x \mapsto \alpha]$ does not do an update in place; if we define $\tau = \sigma[x \mapsto \alpha]$, then σ is still σ .
 - Conceptually, we aren't modifying σ , we're creating a new state.
- We're not required to give $\sigma[x \mapsto \alpha]$ a new name; we can write it out explicitly:
 - If $x \equiv y$, then $\sigma[x \mapsto \alpha](y) = \alpha$, otherwise (if $x \not\equiv y$), then $\sigma[x \mapsto \alpha](y) = \sigma(y)$.
 - (You have to read $\sigma[\mathbf{x} \mapsto \alpha](y)$ left-to-right we're taking the function $\sigma[\mathbf{x} \mapsto \alpha]$ and applying it to y. I.e., $\sigma[x \mapsto \alpha](y) = (\sigma[x \mapsto \alpha])(y)$, where the left pair of parentheses are for grouping and the ones around y are for the function call.)
- **Example 3**: If $\sigma = \{x = 2, y = 6\}$, then $\sigma[x \mapsto 0] = \{x = 0, y = 6\}$:
 - $\sigma[\mathbf{x} \mapsto 0](\mathbf{x}) = 0$
- (Even though $\sigma(x) = 2$)
- $\sigma[x \mapsto 0](y) = \sigma(y) = 6$
- (Since we didn't update y)
- $\sigma[x \mapsto 0](x+y) = 0+6 = 6$ (Since the x in x+y gets evaluated to 0)
- $\sigma[x \mapsto 0] \models x^2 \le 0$
- (Even though our starting $\sigma \nvDash x^2 \le 0$)
- The value part of an update has to be a semantic value, not a syntactic one, so $\sigma[x \mapsto x+1]$ isn't well-formed.
 - In these notes, it may help to remember that since x+1 is in this font, it's syntactic.
 - On the other hand, " $\sigma[x \mapsto \sigma(x+1)]$ " or " $\sigma[x \mapsto \alpha$ plus one] where $\alpha = \sigma(x)$ " do make sense.

Multiple Updates

- We can do a sequence of updates on a state. E.g., $\sigma[x \mapsto 0][y \mapsto 8]$ is a doubly updated state. Sequences of updates are read left-to-right, so this is $(\sigma[x \mapsto 0])[y \mapsto 8]$.
 - **Example 4**: If $\sigma = \{x = 2, y = 6\}$, then $\sigma[x \mapsto 0][y \mapsto 8] = \{x = 0, y = 6\}[y \mapsto 8] = \{x = 0, y = 8\}$.
- The order of update doesn't matter if you have two different variables.
 - Example 5: $\sigma[x \mapsto 0][y \mapsto 8] = \sigma[y \mapsto 8][x \mapsto 0]$.

^{*} Unfortunately, "update" is the traditional name, and for myself, I can't find any word that's exactly right. We're not always extending σ , we're not always superseding σ ,

- If you update the same variable twice, the second update supersedes the first.
 - Example 6: $\sigma[\mathbf{x} \mapsto 0][\mathbf{x} \mapsto 17] = \sigma[\mathbf{x} \mapsto 17] \neq \sigma[\mathbf{x} \mapsto 17][\mathbf{x} \mapsto 0] = \sigma[\mathbf{x} \mapsto 0]$
 - Of course, if the second update is identical to the first, nothing happens: $\sigma[x \mapsto \alpha][x \mapsto \alpha] = \sigma[x \mapsto \alpha]$
- If you have to evaluate an expression, be sure to do it in the correct state.
 - Let $\sigma(x) = 1$ and let $\tau = \sigma[x \mapsto 2]$, then $\tau[z \mapsto \sigma(x) + 10]$ maps z to $\sigma(x) + 10 = 1 + 10 = 11$. We can omit τ and also write $\sigma[x \mapsto 2][z \mapsto \sigma(x) + 10]$, which gives the same state as τ .
 - On the other hand, $\tau[z \mapsto \tau(x)+10]$ maps z to $\tau(x)+10=2+10=12$. Here, if we don't give a name to $\sigma[x \mapsto 2]$, then we can't write $\tau[z \mapsto \tau(x)+10]$ so we have to write $\sigma[x \mapsto 2][z \mapsto \sigma[x \mapsto 2](x)+10]$. (This is pretty ugly, so giving $\sigma[x \mapsto 2]$ a name like τ makes things more readable.)

D. Updating Array Values

- Updating array elements like b[0] is a bit more complicated than updating simple variables like x and y. First, let's extend our notion of updating states to updating general functions.
- **Definition**: If ϕ is a function on one argument and α and β are valid members of the domain and range of ϕ respectively, then the **update of \phi at \alpha with \beta**, written $\phi[\alpha \mapsto \beta]$, is the function defined by $\phi[\alpha \mapsto \beta](\gamma) = \beta$ if $\gamma = \alpha$ and $\phi[\alpha \mapsto \beta](\gamma) = \phi(\gamma)$ if $\gamma \neq \alpha$.
- **Definition:** If σ is a (proper) state for an array b and α is a valid index value for b, then $\sigma[b[\alpha] \mapsto \beta]$ means $\sigma[b \mapsto \gamma[\alpha \mapsto \beta]]$ where γ = the function $\sigma(b)$ In words, if σ includes the binding b = function γ , then the updating σ at b[α] with β is just like updating σ at b with an updated version of γ , namely $\gamma[\alpha \mapsto \beta]$.
- **Example 7**: Say $\sigma = \{x = 3, b = (2, 4, 6)\}$, then $\sigma[b[0] \mapsto 8] = \{x = 3, b = (8, 4, 6)\}$. Here, $\sigma(b)$ is the function (2, 4, 6) (which means $\{(0, 2), (1, 4), (2, 6)]\}$), so $\sigma(b)[0 \mapsto 8]$ (the update of function $\sigma(b)$) is the function $(2, 4, 6)[0 \mapsto 8] = (8, 4, 6)$.

E. Satisfaction of Quantified Predicates

- One use of updated states is for describing how assignment works. (We'll see this later.) The other use for updated states is for defining when quantified predicates are satisfied.
- **Definition**: $\sigma \vDash \exists \ \mathbf{x} \in S$. p if for one or more **witness** values $\alpha \in S$, it's the case that $\sigma[\mathbf{x} \mapsto \alpha] \vDash p$. Note we're asking a hypothetical question: "If we were to calculate $\sigma[\mathbf{x} \mapsto \alpha]$, would we find that it satisfies p?"
 - Example 8a: For any state σ , we can show $\sigma \vDash \exists \mathbf{x} \cdot \mathbf{x}^2 \le 0$ using 0 as the witness: $\sigma[\mathbf{x} \mapsto 0] \vDash \mathbf{x}^2 \le 0$, since $\sigma[\mathbf{x} \mapsto 0](\mathbf{x}^2 \le 0) = \sigma[\mathbf{x} \mapsto 0](\mathbf{x}^2) \le \sigma[\mathbf{x} \mapsto 0](0) = (0^2 \le 0) = T$.
 - Remember, $\sigma(x)$ is irrelevant, since $\sigma[x \mapsto \alpha]$ overrides any value for $\sigma(x)$.
 - **Example 8b**: If $\sigma(\mathbf{x})$ is, say 5, it's still the case that $\sigma \models \exists \mathbf{x} \cdot \mathbf{x}^2 \le 0$ using 0 as the witness because we $\sigma[\mathbf{x} \mapsto 0] \models \mathbf{x}^2 \le 0$, regardless of $\sigma(\mathbf{x}) = 5$.
- If there are many successful witness values, we don't have to specify all of them; we just need one.
 - Example 12: If $\sigma(y) = 3$, then $\sigma \models \exists x . x^2 \le y$ with x = 0 or 1 as possible witness values.

- **Definition**: $\sigma \vDash \forall \mathbf{x} \in S$. p if for every value $\alpha \in S$, we have $\sigma[\mathbf{x} \mapsto \alpha] \vDash p$. (Again, this is hypothetical: "If for every α , we were to calculate $\sigma[\mathbf{x} \mapsto \alpha]$, would we find that it satisfies p?"
 - Example 10: To know $\sigma \vDash \forall \ \mathbf{x} \in \mathbb{Z} \ . \ \mathbf{x}^2 \ge \mathbf{x}$, we need to know $\sigma[\mathbf{x} \mapsto \alpha] \vDash \mathbf{x}^2 \ge \mathbf{x}$ for every $\alpha \in \mathbb{Z}$. Since for every integer α , indeed α^2 is $\ge \alpha$, this does hold. Recall that it doesn't matter what $\sigma(\mathbf{x})$ is, since we're interested in $\sigma[\mathbf{x} \mapsto \alpha]$.
- When asking if σ satisfies $\forall x \in S$. q or $\exists x \in S$. q, we don't care about $\sigma(x)$. For a predicate p in general, for the question "Does $\sigma \vDash p$?" only depends on how σ operates on the non-quantified variables of p.
 - Example 11: Since the body of $\forall x \in \mathbb{Z}$. $x^2 \ge x$ uses only the quantified variable x, it doesn't matter what bindings σ has when checking $\sigma \vDash \forall x \in \mathbb{Z}$. $x^2 \ge x$. Even $\sigma = \emptyset$ works: $\emptyset \vDash \forall x \in \mathbb{Z}$. $x^2 \ge x$.
- Note with nested quantifiers, the notation does get more complicated.
- Example 12: $\sigma \models \forall x \ge y^2$. $\exists z \cdot z > x + y^2$ iff (for every $\alpha \in \mathbb{Z}$, if $\alpha \ge \sigma(y)^2$, then there is some $\beta \in \mathbb{Z}$ such that $\beta > \alpha + \sigma(y)^2$).

Taking $\beta=2\alpha$ for our witness value, we need $\alpha>\gamma^2$ implies for some $2\alpha\geq\alpha+\gamma^2$, which is true.

Note defining intermediate names like "let $\tau = \sigma[x \mapsto \alpha][z \mapsto \beta]$ " is allowed, if you prefer that style.

Justifying DeMorgan's Laws for Quantified Predicates

- In general, we want our systems of reasoning to be **sound**: We want the textual transformations that make up logical equivalence to reflect truths about how our semantics work.
- Example 15: Here is a check of DeMorgan's law for existentials, which says $\neg \exists \mathbf{x} \cdot p \Leftrightarrow \forall \mathbf{x} \cdot \neg p$. Semantically, we want each of these to be valid if and only if the other is. So we need $\sigma \vDash \neg \exists \mathbf{x} \cdot p$ if and only if $\sigma \vDash \forall \mathbf{x} \cdot \neg p$.

```
\sigma \vDash \neg \exists \ \mathbf{x} \in S \cdot p
\text{iff } \sigma \nvDash \exists \ \mathbf{x} \cdot p
\text{defn of } \sigma \vDash \neg \text{predicate}
\text{iff for no } \alpha \in S \text{ do we have } \sigma[\mathbf{x} \mapsto \alpha] \vDash p
\text{defn of } \sigma \vDash \text{existential}
\text{iff for every } \alpha \in S \text{ we have } \sigma[\mathbf{x} \mapsto \alpha] \nvDash p
\text{equivalence of "no} \vDash "vs "every} \nvDash "
\text{iff for every } \alpha \in S \text{ we have } \sigma[\mathbf{x} \mapsto \alpha] \vDash \neg p
\text{defn of } \sigma \vDash \neg \text{predicate}
\text{iff } \sigma \vDash \forall \ \mathbf{x} \cdot \neg p
\text{defn of } \sigma \vDash \neg \text{predicate}
\text{defn of } \sigma \vDash \neg \text{predicate}
```

• By using this property of $\neg \exists$, we can get a short proof of soundness for the negation of a universal: For all σ ,

$$\sigma \vDash \neg \forall \mathbf{x} \cdot p$$

$$\text{iff } \sigma \vDash \neg (\forall \mathbf{x} \cdot \neg \neg p) \qquad \qquad \text{double } \neg$$

$$\text{iff } \sigma \vDash \neg (\neg \exists \mathbf{x} \cdot \neg p)) \qquad \qquad \text{DeMorgan law } (\neg \exists \text{ vs } \forall \neg)$$

$$\text{iff } \sigma \vDash \exists \mathbf{x} \cdot \neg p \qquad \qquad \text{double } \neg$$

Satisfaction, Validity, and State Updates

CS 536: Science of Programming, Fall 2019

A. Why

- A predicate is satisfied or unsatisfied relative to a state.
- A predicate is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of today, you should

Know how to check a predicate for satisfaction in a state, how to check a predicate for validity, and know how
to update a state.

C. Questions

- 1. Say u and v stand for variables (possibly the same variable) and α and β are values (possibly equal). When is $\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha]$? Hint: There are four cases because maybe $x \equiv y$, maybe $\alpha = \beta$.
- 2. Let $\sigma(b) = (7, 5, 12, 16)$.
 - a. Does $\sigma \models \exists k . 0 \le k \land k+1 < size(b) \land b[k] < b[k+1]$? If so, what was your witness values for k?
 - b. Does $\sigma \models \exists k . 0 \le k-1 \land k+1 < size(b) \land b[k-1] < b[k] < b[k+1]$? If so, what was your witness values for k?
 - c. Does $\sigma \models \forall k \cdot b[k] > 0$?
 - d. If $\sigma(k) = -5$, then does $\sigma \models \exists k . b[k] > 0$?
- 3. For each of the situations below, fill in the blanks to describe when the situation holds.

```
Fill in ______ 1 with "some", "every", or "this"
```

Fill in _______3 with " $\sigma(\mathbf{x})$ must be undefined", " $\sigma(\mathbf{x})$ must be defined and $\sigma \models p$ ", or "nothing of $\sigma(\mathbf{x})$ ",

Fill in _____ 4 with " $\models p$ " or " $\not\models p$ ".

- a. $\sigma \models (\exists \ \mathbf{x} \in U \cdot p) \text{ iff for } \underline{}_1 \text{ state } \sigma \text{ and } \underline{}_2 \alpha \in U, \sigma[\mathbf{x} \mapsto \alpha] \underline{}_4$
- b. $\sigma \models (\forall x \in U \cdot p) \text{ iff for } \underline{\hspace{1cm}}_1 \text{ state } \sigma \text{ and } \underline{\hspace{1cm}}_2 \alpha \in U, \sigma[x \mapsto \alpha] \underline{\hspace{1cm}}_4$
- c. $\sigma \models (\exists x \in U \cdot p) \text{ requires } \underline{\hspace{1cm}}_3$.
- d. $\sigma \vDash (\forall x \in U \cdot p) \text{ requires } \underline{\hspace{1cm}}_3$.
- e. $\sigma \nvDash (\exists \ \mathbf{x} \in U \cdot p)$ iff for $\underline{}_1$ state σ for $\underline{}_2 \alpha \in U$, $\sigma[\mathbf{x} \mapsto \alpha]$ $\underline{}_4 p$.
- **f.** $\sigma \nvDash (\forall x \in U \cdot p)$ iff for $\underline{}_1$ state σ for $\underline{}_2 \alpha \in U$, $\sigma[x \mapsto \alpha] \underline{}_4 p$.
- g. $\not\models (\forall x \in U \cdot p)$ iff for $\underline{}_2$ state σ , we have $\sigma \underline{}_4$ ($\forall x \in U \cdot p$).
- h. $\not\models (\exists \ x \in U \cdot p)$ iff for ______ 2 state σ , we have σ ______ 4 ($\exists \ x \in U \cdot p$).
- i. $\not\models (\forall x \in U \cdot p)$ iff for _______2 state σ , and for _______2 $\alpha \in U$, we have $\sigma[x \mapsto \alpha]$ _______4.

- 4. Let $p_1 \equiv \exists y . \forall x . f(x) > y$, and let $p_2 \equiv \forall x . \exists y . f(x) > y$. (As usual, assume a domain of \mathbb{Z} .)
 - a. Is it the case that (regardless of the definition of f), if p_1 is valid then so is p_2 ? If so, explain why. If not, give a definition of f(x) and show $\models p_1$ but $\not\models p_2$.
 - b. (Repeat part a in the other direction.) Is it the case that (regardless of the definition of f), if p_2 is valid then so is p_1 ? If so, explain why. If not, give a definition of f(x) and show f(x) but f(x)

CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

- 1. $\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha] \text{ iff } u \not\equiv v \text{ or } (u \equiv v \text{ and}) \alpha = \beta.$
- 2. (Quantified statements over arrays) Let $\sigma(b) = (7, 5, 12, 16)$.
 - a. Yes, $\sigma \models \exists k . 0 \le k \land k+1 < size(b) \land b[k] < b[k+1]$ with 1 and 2 as possible witnesses for k.
 - b. Yes, $\sigma \vDash \exists \ k \ . \ 0 \le k-1 \land k+1 < \mathtt{size}(b) \land \ b[k-1] < b[k] < b[k+1]$ with 2 as the only witness that works.
 - c. Yes, $\sigma \models \forall k . b[k] > 0$
 - d. Yes, if $\sigma(k) = -5$, we still have $\sigma \models \exists \ k$. b[k] > 0, with witnesses 0, 1, 2, 3. The key is that for σ to satisfy the existential with witness call it α , then we need $\sigma[k \mapsto \alpha] \models b[k] > 0$, which doesn't depend on $\sigma(k)$ because the update of σ uses $k = \alpha$, not k = 0 whatever $\sigma(k)$ happens to be. Here's a step-by-step explanation (this is way too much detail for a test):

$$\begin{split} \sigma[k \mapsto \alpha] &\vDash b[k] > 0 \\ & \text{iff } \sigma[k \mapsto \alpha](b[k]) > \sigma[k \mapsto \alpha](0) & \text{defn state} \vDash \text{relational test} \\ & \text{iff } (\sigma[k \mapsto \alpha](b))(\sigma[k \mapsto \alpha](k)) > 0 & \text{the value of 0 is zero} \\ & \text{iff } (\sigma(b))(\sigma[k \mapsto \alpha](k)) > 0 & \sigma[k \mapsto \alpha](b) = \sigma(b) \text{ because } b \not\equiv k \\ & \text{iff } (\sigma(b))(\alpha) > 0 & \sigma[k \mapsto \alpha](k)) = \alpha \\ & \text{iff } 7, 5, 12, \text{ or } 16 > 0 & \text{depending on } \alpha = 0, 1, 2, \text{ or } 3 \end{split}$$

- 3. (Validity/invalidity of quantified predicates)
 - a. this σ , some α , $\models p$
 - b. this σ , every α , $\models p$
 - c. nothing of $\sigma(x)$
 - d. nothing of $\sigma(x)$
 - e. this σ , every α , $\not\models p$
 - f. this σ , some α , $\not\succeq p$
 - g. some σ , $\not\models \forall x \in U$. p
 - h. some σ , every α , $\not\models p$
 - i. some σ , some α , $\not\vDash p$
 - j. every σ, some α, every β, $\models p$
 - k. some σ , every α , some β , $\not\models p$
 - 1. every σ , every α , some β , $\models p$
 - m. some σ , some α , every β , $\nvDash p$
- 4. ($\exists \forall$ predicates versus $\forall \exists$ predicates, specifically $p_1 \equiv \exists y . \forall x . f(x) > y$, and $p_2 \equiv \forall x . \exists y . f(x) > y$)
 - The relation does hold: $\models p_1$ implies $\models p_2$. The short explanation is that for each value α for \mathbf{x} , we need to find a value β for \mathbf{y} that satisfies the body, but p_1 says that there's a value that works for every α , so we can use that value for β . In more detail, assume p_1 is valid: for every state σ , there is some value β where for every value α , $\sigma[\mathbf{y} \mapsto \beta][\mathbf{x} \mapsto \alpha] \models \mathbf{f}(\mathbf{x}) > \mathbf{y}$. To show that p_2 is valid, take an arbitrary state σ

- with value α for x. We need a witness value for the $\exists y$; using p_1 with τ for σ , we get a β for the $\exists y$ of p_1 and use that as the witness for the $\exists y$ in p_2 . So then we need $\tau[x \mapsto \alpha][y \mapsto \beta] \models f(x) > y$. Substituting σ for τ and swapping the order of the updates, we need $\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y$. But that's exactly what p_1 provided.
- b. The relation does not hold: We can have $\models p_2$ but $\not\models p_1$. The easiest example is f(x) = x, then validity of p_1 would require us to find an integer value for y that is > every possible integer value of x, and no such value exists.