Project Development Phase Model Performance Test

Date	16 November 2022	
Team ID	PNT2022TMID10582	
Project Name	Project - Web Phishing Detection	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	Screenshot			
1.	Metrics		In [3] Acapating the classification regard of the model print(merica alaxy)(faction_report(0_case_x_tase_admin)) greation recoll flavore support 1 8.56 8.66 8.67 8.75 876 886 886 887 887 888 888 888 888 888			
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wilconon signed-rank test is (55) emission of creat signification mean from sign, with more scalaring disc (Communication significant) disc (Communication significant) from gloval layer Sittle-and significant from gloval layer Sittle-and significant and the significant significant significant and the significant significant and the significant significant significant and significant significant and significant significant significant significant significant significant significant significant significant significant			

1. METRICS:

CLASSIFICATION REPORT:

In [52]: #computing the classification report of the model print(metrics.classification_report(y_test, y_test_gbc)) precision recall f1-score support 0.99 -1 0.96 0.97 976 1 0.97 0.99 0.98 1235 0.97 2211 accuracy 0.98 0.97 macro avg 0.97 2211 weighted avg 0.97 0.97 0.97 2211

PERFORMANCE:

Out[83]:		ML Model	Accuracy	f1_score	Recall	Precision
	0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986
	1	CatBoost Classifier	0.972	0.975	0.994	0.989
	2	Random Forest	0.969	0.972	0.992	0.991
	3	Support Vector Machine	0.964	0.968	0.980	0.965
	4	Decision Tree	0.958	0.962	0.991	0.993
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
	6	Logistic Regression	0.934	0.941	0.943	0.927
	7	Naive Bayes Classifier	0.605	0.454	0.292	0.997
	8	XGBoost Classifier	0.548	0.548	0.993	0.984
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
         from scipy.stats import wilcoxon
         from sklearn.datasets import load_iris
         from sklearn.ensemble import GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.model_selection import cross_val_score, KFold
         # Load the dataset
         X = load iris().data
         y = load_iris().target
         # Prepare models and select your CV method
         model1 = GradientBoostingClassifier(n_estimators=100)
         model2 = XGBClassifier(n_estimators=100)
         kf = KFold(n_splits=20, random_state=None)
         # Extract results for each model on the same folds
         results_model1 = cross_val_score(model1, X, y, cv=kf)
         results_model2 = cross_val_score(model2, X, y, cv=kf)
         stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
         stat
Out[78]: 95.0
```

5x2CV combined F test