BLM312 Mikroişlemciler

Introduction to Computing Systems & Microprocessors

Outline

- Gömülü Sistemlere Giriş (Embedded System)
 - Bilgisayar Sistemleri (Computing Systems)
 - Bilgisayar Sistemlerinin Evrimi(Evolution of Computing Systems)
 - Gömülü Sistem (Embedded System)
- İşlemci (Processor)
 - İşlemcinin evrimi
 - İşlemci sınıflandırması

Computing Systems

- Bilgisayar sistemleri heryerde
 - (Harici olaylara ilişkin) girişleri alır, onları işler ve çıktı üreterek cevap verir
- Çoğumuzun aklına "bilgisayarlar" gelir.

- Ancak başka tür bilgisayar sistemleri vardır
 - Çok daha yaygın...

Embedded Systems- A

Branch of Computing Systems

Gömülü sistemler

- Genellikle gerçek zamanlı hesaplama kısıtlamalarıyla bir veya birkaç adanmış (dedicated) işlevi gerçekleştirmek için tasarlanmış özel amaçlı bir bilgisayar
- Elektronik cihazlara gömülü
- Milyarlarca birim gömülü sistem ve milyonlarca birim bilgisayar sistemleri her yıl üretilmekte
- 1999'da hane ve otomobil başına tahmini 40 50 adet
- Yeni bir arabanın içinde ortalama bir birkaç düzine mikroişlemci bulunur. Örneğin: Mercedes S sınıfı 65 mikroişlemciye sahiptir

and even here...

Computer System vs. Embedded System

- Computer Systems
 - Genel
 - Masaüstü PC/ Ultra-book
 - Windows, email, instant message, Microsoft word, power point, games
 - Hesaplama ve iletişim (computation and communication)
- Embedded systems
 - Bir uygulama sisteminin temel yazılım ve donanım bileşeni
 - "Kontrolör" (Controller) ile sınırlı olmamalıdır

Embedded Systems -- Examples

Emerging Embedded Systems

History of Computing...

2000BC: Mechanical Age Computing

WWII: 1st Computer (electromechanical, vacuum tube)

Dec 16 1947: 1st Transistor Invented

CHODA FROME PROSES WWW. MyNk ko.com 2008

1971: World 1st microprocessor (Intel)

1979: 1st Laptop

1980: Wearable Computing

John Bardeen Walter Brattain William Shockley

Source: http://www.cedmagic.com/history/transis

1991: Ubiquitous Computing (Pervasive computing)
/Ambient Intelligence

Implantable

???

History of Computing -- Wearable, Ubiquitous & Implantable Computing

Swallow a ball-semiconductor chip to gather data of internal organs.

Ambient Intelligent – Smart Home

eless Sensor Network - Military

Source: http://www-users.cs.umn.edu/~tianhe/MESS/

1965 yılında,

"mikroişlemciler içindeki transistör sayısı her yıl iki katına çıkacaktır" diyen Moore, daha sonraları 1975 yılında bu öngörüsünü güncellemiş ve her iki yılda bir iki katına çıkacak şekilde düzeltmiştir. Moore "18 ayda bir" ifadesinin de kendisi tarafından söylenmediği konusunda da ısrar etmiştir.

Thanks to Moore's Law

"Note: Vertical scale of chart not proportional to actual Transistor cour

Source: http://www.intel.com/museum/archives/history_docs/Moore.htm

Embedded System for Biomedical Engineering Application (1)

ScienceDaily (1 Ağustos 2007) – ABD Savunma Bakanlığı, Clemson Üniversitesi'ndeki Biyoelektronik, Biyosensörler ve Biyoçipler Merkezi'ne (C3B), savaşta askerin veya kazada bir sivilin yaralanması durumunda hayati sağlık bilgilerini aktarabilecek implant edilebilir bir biyoçip geliştirmek için 1,6 milyon dolar verdi.

"Bir pirinç tanesi büyüklüğündeki biyoçip, savaş alanında, evde veya karayolunda büyük bir kanama durumunda laktat ve glikoz seviyeleri gibi bilgileri ölçebilir ve aktarabilir."

Nikkei Electronics Asia (Temmuz 2003) -STMicroelectronics aktif olarak DNA amplifikasyonu ve tespiti için tek çipli bir silikon laboratuvarı üzerinde çalışıyor.

Fig 1 ST's Lab-on-a-Chip

"Mekanik, elektrik, akışkan ve optik elemanların bir kombinasyonuyla minyatür cihazlar üretmek için çip üretim tekniklerini uygulayan mikro-elektromekanik sistem (MEMS) teknolojisi kullanılarak oluşturuldu."

Embedded System for Biomedical Engineering Application (2)

"Vücut alanı sensör ağlarındaki (**body area sensor networks** BASN'ler) son gelişmeler, fizyolojik, biyokinetik veya çevresel olayları algılayan ve vücut boyunca bilgi iletmek için düşük güçlü telsizler kullanan invazif olmayan (*non-invasive*) sistemlerin ortaya çıkmasına neden oldu."

"BASN'lerin temel sorunları arasında giyilebilirlik (*wearability*), sistem yetenekleri, güç tüketimi, dinamik ortam ayarlaması (örn. Değişken veri hızları ve kablosuz kanal özellikleri) ile ilgili ödünleşimler (tradeoffs) yer alır."

Outline

- Gömülü Sistemlere Giriş (Embedded System)
 - Bilgisayar Sistemleri (Computing Systems)
 - Bilgisayar Sistemlerinin Evrimi(Evolution of Computing Systems)
 - Gömülü Sistem (Embedded System)
- İşlemci(Processor)
 - İşlemcinin evrimi
 - İşlemcinin sınıflandırması

Processor – The Brain of the Computing System

Human Reaction System

Embedded System

Bir insan hareket sisteminin gözlemine dayanarak, bilgisayar sistemini (biyo-esinlenmiş sistem) nasıl inşa edebiliriz?

Processor – The Brain of the Computing System (1)

Sistemimiz için seçebileceğimiz beyin türleri nelerdir?

Processor – The Brain of the Computing System (2)

- Çoğumuz işlemcinin genellikle programlanabilir yazılım işlemcisi ile ilişkili olduğunu düşünürüz, ancak...
 - Hesaplama görevini yerine getiren herhangi bir dijital devre aynı zamanda bir işlemcidir.

General Purpose Processor

- GSM/CDMA Communication module, etc.
- QualComm SnapDragon
 - Toshiba TG01 smartphone, ASUS Eee PC, etc.
- DEC StrongARM
 - PDA (HP iPAQ), set top box, etc.

General Purpose Processor (1)

- Çeşitli uygulamalarda kullanılan programlanabilir cihaz
 - "Mikroişlemci" olarak da bilinir
- Özellikleri:
 - Program belleği (ROM, FLASH)
 - Veri belleği (RAM)
 - Büyük register file içeren genel veri yolu ve genel Aritmetik Mantık Birimi (ALU)
- Kullanıcı avantajları:
 - Düşük pazara sunma süresi ve Yinelenmeyen
 Mühendislik (NRE-Non-Recurring Engineering)
 maliyetleri
 - Yüksek esneklik
- En bilineni "Pentium", ancak yüzlerce başkası daha var

Source: Embedded System Design

General Purpose Processor (2)

Source: http://www.liafa.jussieu.fr/~carton/
Enseignement/Architecture/Cours/

Gallery/Processors/

- Şekil Motorola 68k mikroişlemcisini ve M68k temel alınarak tasarlanmış bir sistemi göstermektedir
 - ❖ İşlemcinin resimde nerede olduğunu bulabilir misiniz?

Trends and Perspective

- 2. Dünya Savaşı (WW-II) Öncesi: Mekanik hesap makineleri
- WW-II: ENIAC (İlk gerçek bilgisayar)
 - Programlanmış komutlar
 - Vakum tüpleri
- 1947: Transistör icat edildi
- 1971: Intel'in ilk mikroişlemcisi
 - Dünyanın ilk mikro işlemcisi Intel 4004.
 - Bir çip üzerinde 4 bitlik bir mikroişlemci ile programlanabilir denetleyici.
 - 4096 adet 4-bit genişliğinde bellek hücresini adresleyebiliyor.
- 4004 komut seti 45 komut (emir) içeriyordu.
- Komutlar 50 KIPs'de yürütülür (kilo-instructions per second).
- Şu anda: ???

ENIAC

Specifications:

- 17,000 vacuum tubes
- > 500 miles of wires
- Weight > 30ton
- Programmin g approach: circuit rewiring
- Performance : ~100k operation per second (ops)

Source: http://en.wikipedia.org/wiki/File:Eniac.jpg

Intel Microprocessor Timeline & History

Year s	Early 1971	1972	1974	1978	1982	1985	1989	1993	1995	1997	1999	2000	2002	2005	2006	2007
Micr opro cess or	4004/ 4- bits/ Harv ard Arch	8008/ 8- bits	8080	8086/ 16- bits	8028 6	8038 6/32- bits	8048 6	Penti um		Penti um-II	Penti um- III	Penti um- IV/ 64- bits	Penti um- M	Dual- Core	Dual- core	Quad -core
Oper ating Freq uenc y	0.74 MHz/ 92k IPS	0.5-0. 8MH z/ 45k-1 00k IPS	2MH z	5MH z/ 2.5M IPS	6MH z	16M Hz	25M Hz	66M Hz	200M Hz	300M Hz	500M Hz	1.5G Hz	1.7G Hz	3.2G Hz	2.93 GHz	>3G Hz
# of trans istor s	2300	2.5k	4.5k	29k	134k	275k	1.2M	3.1M	5.5M	7.5M	9.5M	42M	55M	291M	291M	820M
Tech nolo gy	10u m pmo s tech.	10u m pmo s tech.	6um	3um	1.5u m	1.5u m	1.0u	0.8u m	0.6u m	0.25u m	0.18u m	0.18u m	90n m	65n m	65n m	45n m
# of instr uctio ns	46	48		246												

Intel® Itanium Processor Wafer/Intel 80-cores Processor

