

IN THE CLAIMS

Please cancel claims 11-15 without prejudice.

Please amend claim 60 as follows below.

The following is a listing of claims that replaces all prior versions, and listings, of claims in the application:

Listing of Claims:

1 1. (Original) A capacitor array in an integrated circuit,
2 the capacitor array comprising:

3 a plurality of dummy unit capacitor cells decoupled
4 from signal paths to provide visual symmetry;

5 a plurality of active unit capacitor cells having a
6 terminal coupled to signal paths carrying analog signals;
7 and

8 wherein the plurality of active unit capacitor cells
9 is arranged in the capacitor array with the dummy unit
10 capacitor cells to provide visual symmetry and electrical
11 symmetry.

1 2. (Original) The capacitor array of claim 1 wherein,
2 the electrical symmetry to provide electrical matching
3 between active unit capacitor cells, and
4 the visual symmetry to provide process environment
5 uniformity.

1 3. (Original) The capacitor array of claim 1 wherein,
2 the visual symmetry is provided by
3 selecting the same size and shape of capacitor
4 plates for each unit capacitor in the capacitor array,
5 and
6 uniformly spacing each unit capacitor in the
7 capacitor array;
8 and wherein
9 the electrical symmetry is provided by
10 arranging the plurality of active unit capacitors
11 amongst the plurality of dummy unit capacitors in the
12 capacitor array so that the far range fringing fields
13 are symmetric.

1 4. (Original) A capacitor array in an integrated circuit,
2 the capacitor array comprising:
3 a plurality of unit capacitor cells arranged to
4 provide visual symmetry;
5 a set of N active unit capacitor cells of the
6 plurality of unit capacitor cells having a terminal coupled
7 to a signal path to carry analog signals;
8 if N is a prime number, arranging the N active unit
9 capacitor cells to be symmetrically located to form an N-
10 equilateral two-dimensional shape to provide electrical
11 symmetry,
12 otherwise if N is not a prime number,
13 dividing the set of N active unit capacitor cells

14 into P subsets of M active unit capacitor cells,
15 arranging the M active unit capacitor cells of each of
16 the P subsets to be symmetrically located to form an
17 M-equilateral two-dimensional shape in a neighborhood,
18 and

19 separating each neighborhood of each M-
20 equilateral two-dimensional shape by one or more dummy
21 unit capacitor cells to avoid encroachment of one
22 neighborhood into another in order to provide
23 electrical symmetry.

1 5. (Original) The capacitor array of claim 4 wherein,
2 the plurality of unit capacitor cells are arranged in
3 equally spaced apart rows and columns to provide visual
4 symmetry.

1 6. (Original) The capacitor array of claim 4 wherein,
2 the electrical symmetry to provide electrical matching
3 between active unit capacitor cells, and
4 the visual symmetry to provide process environment
5 uniformity.

1 7. (Original) The capacitor array of claim 4 wherein,
2 the N-equilateral shape is slightly skewed, and
3 a predetermined distance of separation is maintained
4 between active cells.

1 8. (Original) The capacitor array of claim 4 wherein,
2 the unit capacitor cells are integrated circuit
3 capacitors.

1 9. (Original) The capacitor array of claim 8 wherein,
2 the integrated circuit capacitors are metal oxide
3 semiconductor capacitors.

1 10. (Original) The capacitor array of claim 8 wherein,
2 the integrated circuit capacitors are thin film
3 capacitors.

1 11-15. (Cancelled)

1 16. (Original) A computer program product for layout
2 of a capacitor array in an integrated circuit, comprising:
3 a computer usable medium having
4 computer readable program code to arrange a
5 plurality of dummy unit capacitors and a plurality of
6 active unit capacitors in a capacitor array to provide
7 visual symmetry, and
8 computer readable program code to arrange the
9 plurality of active capacitors amongst the plurality
10 of dummy unit capacitors in the capacitor array to

11 provide symmetric far range fringing fields to each of
12 the plurality of active capacitors;
13 and
14 wherein the dummy unit capacitors are decoupled from
15 signal paths and the active unit capacitors have at least
16 one terminal coupled to a signal path carrying an analog
17 signal.

1 17. (Original) The computer program product of claim
2 16 wherein,
3 the visual symmetry is provided by
4 selecting the same size and shape of capacitor
5 plates for each unit capacitor in the capacitor array,
6 and
7 uniformly spacing each unit capacitor in the
8 capacitor array.

1 18. (Original) The computer program product of claim
2 16 wherein,
3 the computer usable medium further has
4 computer readable program code to define the mask
5 layers of a unit capacitor of the capacitor array.

1 19. (Original) The computer program product of claim
2 16 wherein,
3 the computer usable medium is a semiconductor medium,
4 a magnetic medium, an optical medium, or a processor

5 readable medium.

1 20. (Original) The computer program product of claim
2 16 wherein,
3 the computer usable medium is a computer data signal
4 embodied in a carrier wave over a transmission medium.

1 21. (Original) An N-bit digital to analog converter
2 (DAC) with a binary-weighted capacitor ladder in an
3 integrated circuit, the N-bit DAC comprising:
4 N-1 sampling switches each having a control gate, a
5 first pole, and a second pole coupled to a voltage
6 reference;
7 a switch controller to receive an N-bit digital data
8 input signal and generate N-1 control signals, the N-1
9 control signals respectfully coupled to each control gate
10 of the N-1 sampling switches to switch the N-1 sampling
11 switches open and closed in response to the N-bit digital
12 data input signal;
13 N capacitors formed out of a plurality of active unit
14 capacitor cells in a capacitor array, each of the N
15 capacitors having a top capacitor plate coupled together
16 and to an output of the binary-weighted capacitor ladder,
17 one of the N capacitors having a bottom capacitor plate
18 coupled to a ground while the remaining N-1 capacitors have
19 a bottom capacitor plate respectively coupled to each first
20 pole of the N-1 sampling switches; and
21 wherein the plurality of active unit capacitor cells

22 to form the N capacitors being arranged with a plurality of
23 dummy unit capacitor cells in the capacitor array to
24 provide visual symmetry and electrical symmetry.

1 22. (Original) The N-bit DAC of claim 21 wherein,
2 the integrated circuit is a digital to analog
3 converter.

1 23. (Original) The N-bit DAC of claim 21 wherein,
2 the integrated circuit is an analog to digital
3 converter and the N-bit DAC is a portion of each stage of
4 the analog to digital converter to successively approximate
5 the analog input signal.

1 24. (Original) The N-bit DAC of claim 21 wherein
2 the electrical symmetry to provide electrical matching
3 between active unit capacitors, and
4 the visual symmetry to provide process environment
5 uniformity.

1 25. (Original) The N-bit DAC of claim 21 wherein
2 the visual symmetry is provided by
3 selecting the same size and shape of capacitor
4 plates for each unit capacitor in the capacitor array,
5 and
6 uniformly spacing each unit capacitor in the

7 capacitor array.

1 26. (Original) The N-bit DAC of claim 21 wherein
2 the electrical symmetry is provided by
3 arranging the plurality of active unit capacitors
4 amongst the plurality of dummy unit capacitors in the
5 capacitor array so that the far range fringing fields
6 are symmetric.

1 27. (Original) The N-bit DAC of claim 21 wherein
2 the electrical symmetry is provided by
3 if a number M of active unit capacitor cells forming
4 the capacitor is a prime number, arranging the M active
5 unit capacitor cells to be symmetrically located to form an
6 M-equilateral two dimensional shape to provide electrical
7 symmetry,
8 otherwise if M is not a prime number,
9 dividing the set of M active unit capacitor cells
10 into P subsets of Q active unit capacitor cells,
11 arranging the Q active unit capacitor cells of each of
12 the P subsets to be symmetrically located to form an
13 Q-equilateral two dimensional shape in a neighborhood,
14 and
15 separating each neighborhood of each Q-
16 equilateral two-dimensional shape by one or more dummy
17 unit capacitor cells to avoid encroachment of one
18 neighborhood into another.

1 28. (Original) The N-bit DAC of claim 21 further
2 comprising:

3 N grounding switches each having a control gate, a
4 first pole, and a second pole coupled to the ground;

5 and

6 wherein one of the N grounding switches has the
7 first pole coupled to the output;

8 wherein the remaining N-1 capacitors have their
9 bottom capacitor plate respectively coupled to each
10 first pole of the remaining N-1 grounding switches;
11 and

12 wherein the switch controller to further generate
13 N inverted control signals, the N inverted control
14 signals respectfully coupled to each control gate of
15 the N grounding switches to switch the N grounding
16 switches open and closed in response to the N-bit
17 digital data input signal.

1 29. (Original) An N-bit digital to analog converter
2 (DAC) with an equally-weighted capacitor array in an
3 integrated circuit, the N-bit DAC comprising:

4 a first plurality of N switches each having a switch
5 control gate, a first pole, and a second pole, the second
6 pole of each of the first plurality of N switches coupled
7 to a low level voltage supply;

8 a second plurality of N switches each having a switch
9 control gate, a first pole, and a second pole, the second

10 pole of each of the second plurality of N switches coupled
11 to a voltage reference, the first pole of each of the
12 second plurality of N switches coupled respectively to the
13 corresponding first pole of the first plurality of N
14 switches;

15 a digital input signal having N control signals, each
16 of the N control signals coupled respectively to each
17 switch control gate of the first plurality of N switches
18 and coupled respectively to each switch control gate of the
19 second plurality of N switches, the N control signals to
20 switch the second plurality of N switches open and closed
21 and to switch the first plurality of N switches closed and
22 open, respectively, in response to the digital input
23 signal;

24 N capacitors formed out of a plurality of active unit
25 capacitor cells in a capacitor array, each of the N
26 capacitors having a top capacitor plate coupled together
27 and to an analog output of the DAC, the N capacitors each
28 have a bottom capacitor plate respectively coupled to each
29 first pole of the first plurality of N switches and each
30 first pole of the second plurality of N switches; and

31 wherein the plurality of active unit capacitor cells
32 to form the N capacitors being arranged with a plurality of
33 dummy unit capacitor cells in the capacitor array to
34 provide visual symmetry and electrical symmetry to provide
35 a substantial equally matched capacitance for each of the N
36 capacitors.

1 30. (Original) The N-bit DAC of claim 29 wherein,

2 the integrated circuit is a digital to analog
3 converter.

1 31. (Original) The N-bit DAC of claim 29 wherein,
2 the integrated circuit is an analog to digital
3 converter and the N-bit DAC is a portion of each stage of
4 the analog to digital converter to successively approximate
5 the analog input signal.

1 32. (Original) The N-bit DAC of claim 29 wherein
2 the electrical symmetry to provide electrical matching
3 between active unit capacitors, and
4 the visual symmetry to provide process environment
5 uniformity.

1 33. (Original) The N-bit DAC of claim 29 wherein
2 the visual symmetry is provided by
3 selecting the same size and shape of capacitor
4 plates for each unit capacitor in the capacitor array,
5 and
6 uniformly spacing each unit capacitor in the
7 capacitor array.

1 34. (Original) The N-bit DAC of claim 29 wherein
2 the electrical symmetry is provided by
3 arranging the plurality of active unit capacitors

4 amongst the plurality of dummy unit capacitors in the
5 capacitor array so that the far range fringing fields
6 are symmetric.

1 35. (Original) The N-bit DAC of claim 29 wherein
2 the electrical symmetry is provided by
3 if a number M of active unit capacitor cells forming
4 the capacitor is a prime number, arranging the M active
5 unit capacitor cells to be symmetrically located to form an
6 M-equilateral two dimensional shape to provide electrical
7 symmetry,
8 otherwise if M is not a prime number,
9 dividing the set of M active unit capacitor cells
10 into P subsets of Q active unit capacitor cells,
11 arranging the Q active unit capacitor cells of each of
12 the P subsets to be symmetrically located to form an
13 Q-equilateral two dimensional shape in a neighborhood,
14 and
15 separating each neighborhood of each Q-
16 equilateral two-dimensional shape by one or more dummy
17 unit capacitor cells to avoid encroachment of one
18 neighborhood into another.

1 36. (Original) The N-bit DAC of claim 29 wherein
2 the first plurality of N switches are n-channel field
3 effect transistors; and
4 the second plurality of N switches are p-channel field
5 effect transistors.

1 37. (Original) The N-bit DAC of claim 36 wherein
2 the digital input signal is a thermometer coded
3 digital input signal, and
4 each of the N control signals are directly coupled
5 respectively to each switch control gate of the n-channel
6 field effect transistors and are directly coupled
7 respectively to each switch control gate of the p-channel
8 field effect transistors.

1 38. (Original) The N-bit DAC of claim 29 wherein
2 the N control signals include N positive control
3 signals and N negative control signals,
4 each of the N positive control signals are directly
5 coupled respectively to each switch control gate of the
6 first plurality of N switches, and
7 each of the N negative control signals are directly
8 coupled respectively to each switch control gate of the
9 second plurality of N switches.

1 39. (Original) The N-bit DAC of claim 38 wherein
2 the N negative control signals are respective inverted
3 logical signals of the N positive control signals.

1 40. (Original) The N-bit DAC of claim 29 further
2 comprising:

3 a switch controller to receive the digital input
4 signal and generate the N control signals in response
5 thereto.

1 41. (Original) The N-bit DAC of claim 40 wherein
2 the N control signals include N positive control
3 signals and N negative control signals,
4 each of the N positive control signals are directly
5 coupled respectively to each switch control gate of the
6 first plurality of N switches, and
7 each of the N negative control signals are directly
8 coupled respectively to each switch control gate of the
9 second plurality of N switches.

1 42. (Original) The N-bit DAC of claim 41 wherein
2 the N negative control signals are respective inverted
3 logical signals of the N positive control signals.

1 43. (Original) A pipelined analog to digital converter
2 (ADC) in an integrated circuit to receive an analog input
3 signal and to generate a digital output signal, the
4 pipelined analog to digital converter (ADC) comprising:
5 a plurality of M converter stages coupled in series
6 together, each of the M converter stages to receive an
7 analog input and generate an analog residue output, each of
8 the plurality of M converter stages including
9 a K-bit flash analog to digital converter to

10 receive the analog input and generate a stage digital
11 output, wherein K is a variable from stage to stage
12 over the plurality of M converter stages;
13 an N-bit digital to analog converter (DAC) with
14 an equally-weighted capacitor array, the N-bit DAC to
15 receive the stage digital output to generate an
16 estimated analog output, the N-bit DAC including
17 a first plurality of N switches each having
18 a switch control gate, a first pole, and a second
19 pole, the second pole of each of the first
20 plurality of N switches coupled to a first
21 voltage reference,
22 a second plurality of N switches each having
23 a switch control gate, a first pole, and a second
24 pole, the second pole of each of the second
25 plurality of N switches coupled to a second
26 voltage reference, the first pole of each of the
27 second plurality of N switches coupled
28 respectively to the corresponding first pole of
29 the first plurality of N switches,
30 wherein the stage digital output has N
31 control signals, each of the N control signals
32 coupled respectively to each switch control gate
33 of the first plurality of N switches and coupled
34 respectively to each switch control gate of the
35 second plurality of N switches, the N control
36 signals to switch the second plurality of N
37 switches open and closed and to switch the first
38 plurality of N switches closed and open,

39 respectively, in response to the stage digital
40 output,

41 N capacitors formed out of a plurality of
42 active unit capacitor cells in a capacitor array,
43 each of the N capacitors having a top capacitor
44 plate coupled together and to the estimated
45 analog output, the N capacitors each have a
46 bottom capacitor plate respectively coupled to
47 each first pole of the first plurality of N
48 switches and each first pole of the second
49 plurality of N switches,

50 wherein the plurality of active unit
51 capacitor cells to form the N capacitors being
52 arranged with a plurality of dummy unit capacitor
53 cells in the capacitor array to provide visual
54 symmetry and electrical symmetry to provide a
55 substantial equally matched capacitance for each
56 of the N capacitors, and

57 wherein N is a variable from stage to stage
58 over the plurality of M converter stages;

59 and,

60 an analog subtractor to receive the analog input
61 and subtract the estimated analog output therefrom to
62 generate the analog residue output.

1 44. (Original) The pipelined analog to digital
2 converter (ADC) of claim 43 wherein
3 the analog subtractor includes an amplifier to amplify
4 the magnitude of analog residue output.

1 45. (Original) The pipelined analog to digital
2 converter (ADC) of claim 43 wherein
3 a first converter stage of the plurality of M
4 converter stages to receive the analog input signal of the
5 analog to digital converter (ADC) as the analog input,
6 and the analog to digital converter (ADC) further
7 includes

8 a digital bit corrector to receive each stage
9 digital output of the respective plurality of M
10 converter stages and to generate the digital output
11 signal of the analog to digital converter in response
12 to the analog input signal.

1 46. (Original) The pipelined analog to digital
2 converter (ADC) of claim 43 further comprising:
3 a last converter stage coupled in series with an Mth
4 converter stage of the plurality of M converter stages, the
5 last converter stage including

6 an J-bit flash analog to digital converter to
7 receive the analog residue output of the Mth converter
8 stage as the analog input and generate a last stage
9 digital output.

1 47. (Original) The pipelined analog to digital
2 converter (ADC) of claim 46 wherein
3 a first converter stage of the plurality of M

4 converter stages to receive the analog input signal of the
5 analog to digital converter (ADC) as the analog input,
6 and the analog to digital converter (ADC) further
7 includes

8 a digital bit corrector to receive each stage
9 digital output of the respective plurality of M
10 converter stages and the last stage digital output of
11 the last converter stage to generate the digital
12 output signal of the analog to digital converter in
13 response to the analog input signal.

1 48. (Original) The pipelined analog to digital
2 converter (ADC) of claim 43 wherein
3 the N-bit DAC in each of the plurality of M
4 converter stages further includes
5 a switch controller to receive the digital
6 input signal and generate the N control signals
7 in response thereto.

1 49. (Original) The pipelined analog to digital
2 converter (ADC) of claim 43 wherein
3 the first voltage reference is a negative voltage
4 reference and
5 the second voltage reference is a positive
6 voltage reference.

1 50. (Original) The pipelined analog to digital
2 converter (ADC) of claim 43 wherein
3 the first voltage reference is a low level
4 voltage supply.

1 51. (Original) The pipelined analog to digital
2 converter (ADC) of claim 43 wherein
3 the low level voltage supply is ground.

1 52. (Original) The pipelined analog to digital
2 converter (ADC) of claim 43 wherein
3 the N-bit DAC in each of the plurality of M
4 converter stages further includes
5 a third plurality of N switches each having
6 a switch control gate, a first pole, and a second
7 pole, the second pole of each of the second
8 plurality of N switches coupled to a low level
9 voltage supply, the first pole of each of the
10 third plurality of N switches coupled
11 respectively to the corresponding first pole of
12 the first plurality of N switches.

1 53. (Original) The pipelined analog to digital
2 converter (ADC) of claim 52 wherein
3 the switch control gates of the third

4 plurality of switches are coupled together and to
5 a reset control signal to close each of the third
6 plurality of switches and initialize the N
7 capacitors of the capacitor array.

1 54. (Original) A pipelined analog to digital converter
2 (ADC) in an integrated circuit to receive an analog input
3 signal and to generate a digital output signal, the
4 pipelined analog to digital converter (ADC) comprising:
5 a plurality of converter stages coupled in series
6 together, each of the plurality of converter stages
7 including:

8 a flash analog to digital converter to receive
9 the analog input and generate a stage digital output;
10 a digital to analog converter (DAC) with a
11 capacitor array, the digital to analog converter to
12 receive the stage digital output to generate an
13 estimated analog output, the digital to analog
14 converter including

15 a plurality of switches each having a switch
16 control gate, a first pole, and a second pole,
17 a plurality of active unit capacitor cells
18 in the capacitor array, each of the active unit
19 capacitor cells having a capacitor plate coupled
20 to each respective first pole of the plurality of
21 switches, respectively,

22 wherein the plurality of active unit
23 capacitor cells to form the active capacitors
24 being arranged with a plurality of dummy unit

25 capacitor cells in the capacitor array to provide
26 visual symmetry and electrical symmetry to
27 provide a substantial equally matched capacitance
28 for each of the active unit capacitors.

1 55. (Original) The pipelined analog to digital
2 converter (ADC) of claim 54 wherein
3 the electrical symmetry to provide electrical matching
4 between active unit capacitors, and
5 the visual symmetry to provide process environment
6 uniformity.

1 56. (Original) The pipelined analog to digital
2 converter (ADC) of claim 54 wherein
3 the visual symmetry is provided by
4 selecting the same size and shape of capacitor
5 plates for each unit capacitor in the capacitor array,
6 and
7 uniformly spacing each unit capacitor in the
8 capacitor array.

1 57. (Original) The pipelined analog to digital
2 converter (ADC) of claim 54 wherein
3 the electrical symmetry is provided by
4 arranging the plurality of active unit capacitors
5 amongst the plurality of dummy unit capacitors in the
6 capacitor array so that the far range fringing fields

7 are symmetric.

1 58. (Original) The pipelined analog to digital
2 converter (ADC) of claim 54 wherein
3 the electrical symmetry is provided by
4 if a number M of active unit capacitor cells forming
5 the active capacitor is a prime number, arranging the M
6 active unit capacitor cells to be symmetrically located to
7 form an M-equilateral two dimensional shape to provide
8 electrical symmetry,

9 otherwise if M is not a prime number,
10 dividing the set of M active unit capacitor cells
11 into P subsets of Q active unit capacitor cells,
12 arranging the Q active unit capacitor cells of each of
13 the P subsets to be symmetrically located to form an
14 Q-equilateral two dimensional shape in a neighborhood,
15 and

16 separating each neighborhood of each Q-
17 equilateral two-dimensional shape by one or more dummy
18 unit capacitor cells to avoid encroachment of one
19 neighborhood into another.

1 59. (Original) The pipelined analog to digital
2 converter (ADC) of claim 54 wherein
3 a bottom capacitor plate is the capacitor plate of
4 each of the active capacitors which is coupled to each
5 respective first pole of the plurality of switches.

1 60. (Currently Amended) A pipelined analog to digital
2 converter (ADC) in an integrated circuit to receive an
3 analog input signal and to generate a digital output
4 signal, the pipelined analog to digital converter (ADC)
5 comprising:

6 a plurality of converter stages coupled in series
7 together, each of the plurality of converter stages
8 including

9 a flash analog to digital converter to receive
10 the analog input and generate a stage digital output;

11 a multiplying digital to analog converter (MDAC)
12 with a capacitor array, the digital to analog
13 converter to receive the stage digital output to
14 generate a residual analog output, the multiplying
15 digital to analog converter including

16 a first plurality of switches each having a
17 switch control gate, a first pole, and a second
18 pole, the second pole of each of the first
19 plurality of switches coupled together and to a
20 negative reference voltage,

21 a second plurality of switches each having a
22 switch control gate, a first pole, and a second
23 pole, the second pole of each of the second
24 plurality of switches coupled together and to a
25 positive reference voltage, each first pole of
26 the second plurality of switches correspondingly
27 coupled to each first pole of the first plurality
28 of switches, respectively, [.]

29 a third plurality of switches each having a
30 switch control gate, a first pole, and a second
31 pole, each second pole of the third plurality of
32 switches corresponding coupled to each first pole
33 of the first plurality of switches and each first
34 pole of the second plurality of switches,
35 respectively,

36 a fourth plurality of switches each having a
37 switch control gate, a first pole, and a second
38 pole, the second pole of each of the fourth
39 plurality of switches coupled together and to an
40 analog input,

41 a plurality of active capacitors in the
42 capacitor array each having a first capacitor
43 plate and a second capacitor plate, each first
44 capacitor plate of the active capacitors coupled
45 to each first pole of the third plurality of
46 switches and each first pole of the fourth
47 plurality of switches, respectively, each second
48 capacitor plate of each of the active capacitors
49 coupled together,

50 an operational amplifier having an input
51 coupled to each second capacitor plate of each of
52 the active capacitors, the operational amplifier
53 to generate the analog residue output,

54 a switch having a switch control gate, a
55 first pole, and a second pole, the first pole of
56 the switch coupled to input of the operational
57 amplifier and the second capacitor plate of each

58 of the active capacitors, the second pole of the
59 switch coupled to the analog residue output of
60 the operational amplifier, and

61 wherein a plurality of active unit capacitor
62 cells form the active capacitors and are arranged
63 with a plurality of dummy unit capacitor cells in
64 the capacitor array to provide visual symmetry
65 and electrical symmetry to provide a substantial
66 equally matched capacitance for each of the
67 active capacitors.

1 61. (Original) The pipelined analog to digital
2 converter (ADC) of claim 60 wherein
3 the multiplying digital to analog converter further
4 includes

5 a fifth plurality of switches each having a
6 switch control gate, a first pole, and a second
7 pole, the second pole of each of the fifth
8 plurality of switches coupled together and to a
9 low level power supply voltage, each first pole
10 of the fifth plurality of switches
11 correspondingly coupled to each first pole of the
12 first plurality of switches and to each first
13 pole of the second plurality of switches,
14 respectively.

1 62. (Original) The pipelined analog to digital
2 converter (ADC) of claim 61 wherein

3 the low level power supply voltage is
4 ground.

1 63. (Original) The pipelined analog to digital
2 converter (ADC) of claim 61 wherein
3 the multiplying digital to analog converter further
4 includes

5 a sixth plurality of switches each having a
6 switch control gate, a first pole, and a second
7 pole, the second pole of each of the sixth
8 plurality of switches coupled together and to the
9 analog residue output, each first pole of each of
10 the sixth plurality of switches coupled to each
11 first capacitor plate of the active capacitors,
12 each first pole of the third plurality of
13 switches, and each first pole of the fourth
14 plurality of switches, respectively.

1 64. (Original) The pipelined analog to digital
2 converter (ADC) of claim 60 wherein
3 the electrical symmetry to provide electrical matching
4 between active unit capacitors, and
5 the visual symmetry to provide process environment
6 uniformity.

1 65. (Original) The pipelined analog to digital
2 converter (ADC) of claim 60 wherein

3 the visual symmetry is provided by
4 selecting the same size and shape of capacitor
5 plates for each unit capacitor in the capacitor array,
6 and
7 uniformly spacing each unit capacitor in the
8 capacitor array.

1 66. (Original) The pipelined analog to digital
2 converter (ADC) of claim 60 wherein
3 the electrical symmetry is provided by
4 arranging the plurality of active unit capacitors
5 amongst the plurality of dummy unit capacitors in the
6 capacitor array so that the far range fringing fields
7 are symmetric.

1 67. (Original) The pipelined analog to digital
2 converter (ADC) of claim 60 wherein
3 the electrical symmetry is provided by
4 if a number M of active unit capacitor cells forming
5 the active capacitor is a prime number, arranging the M
6 active unit capacitor cells to be symmetrically located to
7 form an M-equilateral two dimensional shape to provide
8 electrical symmetry,
9 otherwise if M is not a prime number,
10 dividing the set of M active unit capacitor cells
11 into P subsets of Q active unit capacitor cells,
12 arranging the Q active unit capacitor cells of each of
13 the P subsets to be symmetrically located to form an

14 Q-equilateral two dimensional shape in a neighborhood,
15 and
16 separating each neighborhood of each Q-
17 equilateral two-dimensional shape by one or more dummy
18 unit capacitor cells to avoid encroachment of one
19 neighborhood into another.