Semantic Tableaux

Blat Blatnik

July, 2020

1 First Order Logic (FOL)

Closure condition: A branch of closes if it contains both A and $\neg A$.

Counter-model procedure: Take any open branch, if P occurs at any node in the branch, assign it 1, and if $\neg P$ occurs on any node, assign it 0.

Designated values: 1

2 First Degree Entailment (FDE)

Closure condition: A branch closes if it contains both A, + and A, -.

Counter-model procedure: Take any open branch, if P, + occurs at any node in the branch assign it P ρ 1, and if \neg P, + occurs on any node, assign it P ρ 0.

 $\begin{array}{ccc} b & 1 \\ 1 & 1 \\ b & 1 \\ 1 & 1 \end{array}$

Truth table:

\neg		\wedge	0	n	b	1	V	0
0	1	0	0	0	0	0	0	0
n	n	n	0	n	0	n	n	n
b	b	b	0	0	b	b	b	b
1	0	1	0	n	b	1	1	1

Designated values: 1, b

3 Kleene 3-valued logic (K_3)

Closure condition: A branch closes if it contains both A, + and A, - or both A, + and $\neg A$, +.

Counter-model procedure: Take any open branch, if P, + occurs at any node in the branch assign it P ρ 1, and if \neg P, + occurs on any node, assign it P ρ 0.

Truth table:

_		\land	0	i	1	V	0	i	1	\supset	0	i	1
0	1	0				0	0	i	1	0	1	1	1
i	i	i	0	i	i	i	i	i	1	i	i	i	1
1	0	1	0	i	1	1	1	1	1	1	0	i	1

Designated values: 1

4 Łukasiewicz 3-valued logic (L_3)

Closure condition: A branch closes if it contains both A, + and A, - or both A, + and $\neg A$, +.

Counter-model procedure: Take any open branch, if P, + occurs at any node in the branch assign it P ρ 1, and if \neg P, + occurs on any node, assign it P ρ 0.

Designated values: 1

Truth table:

\neg			\wedge	0	i	1		V	0	i	1		\supset	0	i	1
0	1		0					0					0	1	1	1
i	i		i	0	i	i		i	i	i	1		i	i	1	1
1	0		1					1	1	1	1		1	0	i	1
		•					•		•			•	`			

5 Logic of Paradox (LP)

Closure condition: A branch closes if it contains both A, + and A, - or both A, - and $\neg A$, -.

Counter-model procedure: Take any open branch, if P, – does not occur on any node of the branch assign it P ρ 1, and if \neg P, – does not occur on any node, assign it P ρ 0.

Designated values: 1, i

Truth table:

\neg		\wedge	0	i	1	V	0
0	1	0	0	0	0	0	0
i	i	i	0	i	i	i	i
1	0	1	0	i	1	1	1

/	0	i	1	\supset	0	i	1
)	0	i	1	0	1	1	1
i	i	i	1	i	i	i	1
1	1	1	1	1	0	i	1

6 Mix 3-valued logic (RM_3)

Closure condition: A branch closes if it contains both A, + and A, - or both A, - and $\neg A$, -.

Counter-model procedure: Take any open branch, if P, – does not occur on any node of the branch assign it P ρ 1, and if \neg P, – does not occur on any node, assign it P ρ 0.

Designated values: 1, i

Truth table:

\neg													\supset	0	i
	1		0	0	0	0		0	0	i	1		0	1	1
i	i		i	0	i	i		i	i	i	1		i	0	i
1	0		0 i 1	0	i	1		1					1	0	0
		,					,					, ,			

7 Basic Modal Logic

Closure condition: A branch of closes if it for some i, A, i and \neg A, i occur on the same branch.

Counter-model procedure: For each i that occurs the word w_i exists. If i r j occurs on the branch then $w_i \to w_j$. If P, i occurs on the branch then $v_{w_i}(P) = 1$, if $\neg P$, i occurs on the branch then $v_{w_i}(P) = 0$.

Extensions

 ρ reflexivity: for all w, wRw

 σ symmetry: for all w_1, w_2 , if $w_1 R w_2$, then $w_2 R w_1$

 τ transitivity: for all w_1, w_2, w_3 , if $w_1 R w_2$ and $w_2 R w_3$, then $w_1 R w_3$

 $\eta\,$ extendability: for all $w_1,$ there is a w_2 such that w_1Rw_2

8 Tense Logic

Closure condition: A branch of closes if it for some i, A, i and \neg A, i occur on the same branch.

Counter-model procedure: For each i that occurs the word w_i exists. If i r j occurs on the branch then w_i R w_j . If P, i occurs on the branch then $v_{w_i}(P) = 1$, if \neg P, i occurs on the branch then $v_{w_i}(P) = 0$. If there are lines of the form i = j, j = k, ..., we only chose one of them, like i, and ignore the others.

Extensions

- δ denseness: if iRj then for some k, iRk and kRj
- ϕ forward convergence: if iRj and iRk then jRk or j=k or kRj
- β backward convergence: if jRi and kRi then jRk or j=k or kRj

9 First Order Modal Logic

Variable Domain

$$\forall x \ A, \ i \qquad \neg \forall x \ A, \ i \qquad \exists x \ A, \ i \qquad \neg \exists x \ A, \ i$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A_x(a), \ i \ \neg \mathfrak{E}a, \ i \qquad \exists x \ \neg A, \ i \qquad \mathfrak{E}a, \ i \qquad \forall x \ \neg A, \ i$$

$$(\text{old } a \text{ if possible}) \qquad \qquad A_x(a), \ i$$

$$(\text{new } a)$$

Constant Domain

$$\forall x \ A, \ i \qquad \neg \forall x \ A, \ i \qquad \exists x \ A, \ i \qquad \neg \exists x \ A, \ i \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ A_x(a), \ i \qquad \exists x \ \neg A, \ i \qquad A_x(a), \ i \qquad \forall x \ \neg A, \ i$$
 (old a if possible)
$$\qquad \qquad (\text{new } a)$$

Counter-models: Need to define:

- which objects exist in which worlds: e.g. $D(w_1) = \{\partial_a, \partial_b\}$
- which predicates hold for which objects: e.g. $v_{w_1}(P) = \{\partial_c\}$

10 Fuzzy Logic

$$\neg x = 1 - x$$

$$x \land y = \min(x, y)$$

$$x \lor y = \max(x, y)$$

$$x \to y = \min(1, 1 - x + y)$$

Designated values: $A \models_{\mathbf{L}_{0.5}}$ if $v(A) \geq 0.5$ then $v(B) \geq 0.5$ Special case: \mathbf{L}_{\aleph} - the only designated value is 1.

11 Default Logic

$$\beta = \frac{\phi : \psi_1, ..., \psi_n}{\chi}$$
 for example $\frac{bird(X) : flies(X)}{flies(X)}$

where:

 $pre(\delta) = \phi$ (the prerequisites of δ)

 $just(\delta) = \{\psi_1, ..., \psi_n\}$ (the justification of δ)

 $cons(\delta) = \chi$ (the consequence of δ)

11.1 Processes

 $\Pi = (\delta_0, \delta_1, ...)$ can also be empty: ()

Th(X) =all formulas that can be deduced from X.

 $In(\prod) = Th(M)$, where $M = W \cup \{ cons(\delta) \mid \delta \in \prod \}$

 $Out(\prod) = Th(N)$, where $N = \{ \neg just(\delta) \mid \delta \in \prod \}$

 \prod is *closed* iff every $\delta \in D$ that is applicable to $In(\prod)$ is also in \prod .

 \prod is successful iff $In(\prod) \cap Out(\prod) = \emptyset$

Extensions A set of formulas E is an extension of the default theory T iff there is some closed and successful process \prod of T such that $E = In(\prod)$

Skeptical consequence $(W, D) \vdash_s \phi$ iff ϕ is in all extensions of (W, D).

Credulous consequence $(W,D) \vdash_c \phi$ iff ϕ is in at least one extension of (W,D).

12 Soundness and Completeness

12.1 Propositional Logic

- $\Sigma \models A$ iff for all valuations v, for all $B \in \Sigma$, v(B) = 1, then v(A) = 1.
- $\Sigma \vdash A$ iff there is a closed tree whose initial list comprises the members of Σ and the negation of A.
- **Faithful** A valuation v is *faithful* to branch b iff for every formula D that occurs on b, v(D) = 1.
- **Induced** A valuation v is *induced* by branch b, iff for every propositional parameter p that occurs on b, v(p) = 1 iff p is a node on b, and v(p) = 0 iff $\neg p$ is a node on b.
- **Soundness lemma** If v is faithful to a branch b, and a tableau rule is applied to b, then v is faithful to at least one of the branches generated by the application of the rule.
- **Completeness lemma** If branch b is complete and open, and if v is the valuation induced by b, then for all formulas D: if D is on b, then v(D) = 1, and if $\neg D$ is on b, then v(D) = 0.

12.2 Modal Logic

Basic modal logic, extensions K_{ρ} , K_{σ} , K_{τ} , K_{η} , and any combination of extensions are all sound *and* complete.

- $\Sigma \models A$ iff for all valuations v, for all $B \in \Sigma$, v(B) = 1, then v(A) = 1.
- $\Sigma \vdash A$ iff there is a closed tree whose initial list comprises the members of Σ and the negation of A.
- **Faithful** An interpretation $I = \langle W, R, v \rangle$ is *faithful* to branch b iff there is a map f from \mathbb{N} to W such that:
 - For every node D, i on b, D is true at world f(i) in I.
 - If i r j is on b, then f(i)Rf(j) is in R.

Induced If branch b is complete and open, $I = \langle W, R, v \rangle$ is induced by b iff:

- W =the set of all worlds w_i such that i appears on b.
- $w_i R w_j$ iff i r j occurs on b.
- If p, i occurs on b, then $v_{w_i}(p) = 1$, and if $\neg p, i$ occurs on b, then $v_{w_i}(p) = 0$.
- **Soundness lemma** If $I = \langle W, R, v \rangle$ is *faithful* to branch b, and a tableau rule is applied to b, then I is faithful to at least *one* of the branches generated by the application of the rule.

Completeness lemma If branch b is *complete* and *open*, and $I = \langle W, R, v \rangle$ is *induced* by b, then for all formulas D and for all i: if D, i is on b, then $v_{w_i}(D) = 1$, and if $\neg D, i$ is on b, then $v_{w_i}(D) = 0$.