Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica

Filtros y perfilador

Procesamiento Digital de Señales

Integrantes:

Anthony Chaves Achoy Tobías Fonseca Cruz

Profesor:

Dr.-Ing. Pablo Alvarado Moya

9 de octubre de 2024

Respuesta en frecuencia de los filtros

Butterworth LowPass

1 dos

Respuesta en Frecuencia (Fase)

Diagrama de Polos y Ceros

Butterworth HighPass

Butterworth BandPass

${\bf Butterworth~StopPass}$

Chebyshev1 LowPass

Chebyshev1 HighPass

Chebyshev1 BandPass

Chebyshev1 StopPass

Chebyshev2 LowPass

Chebyshev2 HighPass

Chebyshev2 BandPass

Chebyshev2 StopPass

Elliptic LowPass

Elliptic HighPass

Elliptic BandPass

Elliptic StopPass

Perfilador

Es muy necesario antes de empezar la sección, identificar que el objetivo primordial es hacer lo más pequeño posible el tiempo de la cascada, ya que el biquad no refleja necesariamente en el process el uso de métodos con lógica avanzada dado que esto implicaría cambiar métodos internos que potencialmente cambiarían la lógica de biquad para algunas pruebas (la lógica vectorial no está integrada directamente con la continuidad de la lógica sin vectores).

En la Figura 1 observamos como un método con la transpuesta, sin loop unrolling y recorriendo totalmente cada buffer de resultados parciales es la solución más lenta.

Benchmark	Time	CPU	Iterations UserCounters
BM_Biquad_Process/256	8673 ns	8672 ns	80514 items_per_second=366.632/s
BM_Biquad_Process/512	17677 ns	17676 ns	39596 items_per_second=731.525/s
BM_Biquad_Process/1024	19608 ns	19607 ns	35689 items_per_second=1.46337k/s
BM_Biquad_Process/2048	22062 ns	22061 ns	31727 items_per_second=2.92599k/s
BM_Biquad_Process/4096	26889 ns	26888 ns	26036 items_per_second=5.85097k/s
BM_Biquad_Process/8192	36716 ns	36715 ns	19066 items_per_second=11.7027k/s
BM_Cascade_Process/256	11859 ns	11859 ns	58916 items_per_second=366.416/s
BM_Cascade_Process/512	21682 ns	21682 ns	32269 items_per_second=731.803/s
BM_Cascade_Process/1024	26858 ns	26857 ns	26056 items_per_second=1.46328k/s
BM_Cascade_Process/2048	36198 ns	36197 ns	19474 items_per_second=2.90535k/s
BM_Cascade_Process/4096	54204 ns	54204 ns	12841 items_per_second=5.88479k/s
BM_Cascade_Process/8192	90813 ns	90813 ns	7692 items_per_second=11.7274k/s

Figura 1: Resultados perfilador 1

En la Figura 2, por su parte tenemos la transpuesta pero con una especie loop unrolling en la que se trabaja muestra por muestra, haciendo que los resultados parciales se reflejen directamente en el resultado final, disminuyendo el recorrido de los buffers a sola un ciclo para todas las muestras.

Benchmark	Time	CPU	Iterations UserCounters
BM Biquad Process/256	8673 ns	8672 ns	80527 items per second=366.575/s
BM_Biquad_Process/512	17693 ns	17684 ns	39513 items_per_second=732.757/s
BM_Biquad_Process/1024	20008 ns	20007 ns	35474 items_per_second=1.44281k/
BM_Biquad_Process/2048	21978 ns	21978 ns	31827 items_per_second=2.92786k/
BM_Biquad_Process/4096	26900 ns	26900 ns	26022 items_per_second=5.85148k/
BM_Biquad_Process/8192	36777 ns	36777 ns	19029 items_per_second=11.7059k/
BM_Cascade_Process/256	11182 ns	11182 ns	62534 items_per_second=366.098/s
BM_Cascade_Process/512	20331 ns	20330 ns	34468 items_per_second=730.649/s
BM_Cascade_Process/1024	23316 ns	23316 ns	30033 items_per_second=1.46235k/
BM_Cascade_Process/2048	27848 ns	27846 ns	25186 items_per_second=2.92018k/
BM_Cascade_Process/4096	36971 ns	36971 ns	18934 items_per_second=5.85143k,
BM_Cascade_Process/8192	55310 ns	55307 ns	12655 items_per_second=11.7044k

Figura 2: Resultados perfilador 2

Por último, se realiza una optimización agresiva de la versión anterior, utilizando banderas del compilador para aprovechar la arquitectura y prefetch a L1 de los datos en un rango de 16 posiciones de float.

Benchmark	Time	СРИ	Iterations UserCounters
BM_Biquad_Process/256	857 ns	857 ns	807580 items_per_second=370.033/s
BM_Biquad_Process/512	1709 ns	1709 ns	408966 items_per_second=732.77/s
BM_Biquad_Process/1024	3416 ns	3416 ns	204455 items_per_second=1.4662k/s
BM_Biquad_Process/2048	6851 ns	6850 ns	101398 items_per_second=2.94851k/s
BM_Biquad_Process/4096	13702 ns	13701 ns	50892 items_per_second=5.87441k/s
BM_Biquad_Process/8192	27352 ns	27351 ns	25631 items_per_second=11.6857k/s
BM_Cascade_Process/256	1207 ns	1207 ns	581577 items_per_second=364.748/s
BM_Cascade_Process/512	2409 ns	2409 ns	290451 items_per_second=731.695/s
BM_Cascade_Process/1024	4816 ns	4816 ns	145258 items_per_second=1.4639k/s
BM_Cascade_Process/2048	9629 ns	9629 ns	72583 items_per_second=2.93039k/s
BM_Cascade_Process/4096	19263 ns	19262 ns	36337 items_per_second=5.85209k/s
BM_Cascade_Process/8192	38516 ns	38515 ns	18153 items_per_second=11.717k/s

Figura 3: Resultados perfilador 3