(74) Agents: HANSBURG, Daniel; Kimeragen, Inc., 300 Pheasant

Run, Newtown, PA 18940 (US) et al.

145

09/682/150

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLIS	DER THE PATENT COOPERATION TREATT (PCT)				
(51) International Patent Classification 6:		(11) International Publication Number: WO 99/07865			
C12N 15/82, 15/84, 15/82, 5/04, A01H 4/00	A1	(43) International Publication Date: 18 February 1999 (18.02.99)			
(21) International Application Number: PCT/US	598/162	CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LC, LK, LR			
(22) International Filing Date: 5 August 1998 ((05.08.9	LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent			
(30) Priority Data: 60/054,836 5 August 1997 (05.08.97)	τ	(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European paten (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).			
(71) Applicant: KIMERAGEN, INC. [US/US]; 300 Phea Newtown, PA 18940 (US).	sant Ru	Published			
(72) Inventors: ARNTZEN, Charles, J.; 1005 Highla Ithaca, NY 14850 (US). KIPP, Peter, B.; Apartme 700 Warren Road, Ithaca, NY 14850 (US). Ramesh; 60 Yard Road, Pennington, NJ 08534 (U. Gregory, D.: 303 The Parkway, Ithaca, NY 14850 (US).	ent 11–3 KUMA S). MA	BE, R, Y,			

(54) Title: THE USE OF MIXED DUPLEX OLIGONUCLEOTIDES TO EFFECT LOCALIZED GENETIC CHANGES IN PLANTS

(57) Abstract

The invention concerns the use of duplex oligonucleotides about 25 to 30 base pairs to introduce site specific genetic alterations in plant cells. The oligonucleotides can be delivered by mechanical (biolistic) systems or by electroporation of plant protoplasts. Thereafter plants having the genetic alteration can be generated from the altered cells. In specific embodiments the invention concerns alteration in the gene that encodes acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, ACC synthase and ACC oxidase or etr-1 or a homolog of etr-1, and plants having isolated point mutations in such genes.

THICKNER MALE POSTOREALL

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

THE USE OF MIXED DUPLEX OLIGONUCLEOTIDES TO EFFECT LOCALIZED GENETIC CHANGES IN PLANTS

1. FIELD OF THE INVENTION

The field of the present invention relates to methods for the improvement of existing lines of plants and to the development of new lines having desired traits. The previously available methods of obtaining genetically altered plants by recombinant DNA technology enabled the introduction of preconstructed exogenous genes in random, atopic positions, so-called transgenes. In contrast the present invention allows the skilled practitioner to make a specific alteration of a specific pre-existing gene of a plant. The invention utilizes duplex oligonucleotides having a mixture of RNA-like nucleotides and DNA-like nucleotides to effect the alterations, hereafter "mixed duplex oligonucleotides" or MDON.

2. BACKGROUND TO THE INVENTION

2.1 MDON and Their Use to Effect Specific Genetic Alterations

Mixed duplex oligonucleotides (MDON) and their use to effect genetic changes in eukaryotic cells are described in United States patent No. 5,565,350 to Kmiec (Kmiec I). Kmiec I discloses *inter alia* MDON having two strands, in which a first strand contains two segments of at least 8 RNA-like nucleotides that are separated by a third segment of from 4 to about 50 DNA-like nucleotides, termed an "interposed DNA segment." The nucleotides of the first strand are base paired to DNA-like nucleotides of a second strand. The first and second strands are additionally linked by a segment of single stranded nucleotides so that the first and second strands are parts of a single oligonucleotide chain. Kmiec I further teaches a method for introducing specific genetic alterations into a target gene. According to Kmiec I, the sequences of the RNA segments are selected to be homologous, i.e., identical, to the sequence of a first and a second fragment of the target gene. The sequence of the interposed DNA segment is homologous with the sequence of the target gene between the first and second fragment except for a region of difference, termed the "heterologous region." The heterologous region can effect an insertion or deletion, or can contain one or

more bases that are mismatched with the sequence of target gene so as to effect a substitution. According to Kmiec I, the sequence of the target gene is altered as directed by the heterologous region, such that the target gene becomes homologous with the sequence of the MDON. Kmiec I specifically teaches that ribose and 2'-Omethylribose, i.e., 2'-methoxyribose, containing nucleotides can be used in MDON and that naturally-occurring deoxyribose-containing nucleotides can be used as DNA-like nucleotides.

United States patent application Serial No. 08\664,487, filed June 17, 1996, now U.S. patent No. 5,731,181 (Kmiec II) does specifically disclose the use of MDON to effect genetic changes in plant cells and discloses further examples of analogs and derivatives of RNA-like and DNA-like nucleotides that can be used to effect genetic changes in specific target genes.

Scientific publications disclosing uses of MDON having interposed DNA segments include Yoon, et al., 1996, *Proc. Natl. Acad. Sci.* 93:2071-2076 and Cole-Straus, A. et al., 1996, *SCIENCE* 273:1386-1389. The scientific publications disclose that rates of mutation as high as about one cell in ten can be obtained using liposomal mediated delivery. However, the scientific publications do not disclose that MDON can be used to make genetic changes in plant cells.

The present specification uses the term MDON, which should be understood to be synonymous with the terms "chimeric mutation vector," "chimeric repair vector" and "chimeraplast" which are used elsewhere.

2.2 Transgenic Plant Cells and the Generation of Plants from Transgenic Plant Cells

Of the techniques taught by Kmiec I and II for delivery of MDON into the target cell, the technique that is most applicable for use with plant cells is the electroporation of protoplasts. The regeneration of fertile plants from protoplast cultures has been reported for certain species of dicotyledonous plants, e.g., *Nicotiana tobacum* (tobacco), United States Patent 5,231,019 and Fromm, M.E., et al., 1988, Nature 312, 791, and soybean variety *Clycine max*, WO 92/17598 to Widholm, J.M. However, despite the reports of isolated successes using non-transformed cells, Prioli, L.M., et al., Bio/Technology 7, 589, Shillito, R.D., et al., 1989, Bio/Technology 7, 581, the regeneration of fertile monocotyledonous plants from transformed protoplast

cultures is not regarded as obtainable with application of routine skill. Frequently, transformed protoplasts of monocotyledonous plants result in non-regenerable tissue or, if the tissue is regenerated the resultant plant is not fertile.

Other techniques to obtain transformed plant cells by introducing kilobase-sized plasmid DNA into plant cells having intact or partially intact cell walls have been developed. United States patent No. 4,945,050, No. 5,100,792 and No. 5,204,253 concern the delivery of plasmids into intact plant cells by adhering the plasmid to a microparticle that is ballistically propelled across the cell wall, hereafter "biolistically transformed" cell. For example U.S. patent No. 5,489,520 describes the regeneration of a fertile maize plant from a biolistically transformed cell. Other techniques for the introduction of plasmid DNA into suspensions of plant cells having intact cell walls include the use of silicon carbide fibers to pierce the cell wall, see U.S. patent No. 5,302,523 to Coffee R., and Dunwell, J.M.

A technique that allows for the electroporation of maize cells having a complex cell wall is reported in U.S. patent No. 5,384,253 to Krzyzek, Laursen and P.C. Anderson. The technique uses a combination of the enzymes endopectin lyase (E.C. 3.2.1.15) and endopolygalacturonase (E.C. 4.2.2.3) to generate transformation competent cells that can be more readily regenerated into fertile plants than true protoplasts. However, the technique is reported to be useful only for F1 cell lines from the cross of line A188 x line B73.

3. SUMMARY OF THE INVENTION

The present invention provides new methods of use of the MDON that are particularly suitable for use in such plant cells.

Thus one aspect of the invention is techniques to adhere MDON to particles which can be projected through the cell wall to release the MDON within the cell in order to cause a mutation in a target gene of the plant cell. The mutations that can be introduced by this technique are mutations that confer a growth advantage to the mutated cells under appropriate conditions and mutations that cause a phenotype that can be detected by visual inspection. Such mutations are termed "selectable mutations."

In a further embodiment the invention encompasses a method of introducing a

mutation other than a selectable mutation into a target gene of a plant cell by a process which includes the steps of introducing a mixture of a first MDON that introduces a selectable mutation in the plant cell and a second MDON that causes the non-selectable mutation.

The invention further encompasses the culture of the cells mutated according to the foregoing embodiments of the invention so as to obtain a plant that produces seeds, henceforth a "fertile plant," and the production of seeds and additional plants from such a fertile plant.

The invention further encompasses fertile plants having novel characteristics which can be produced by the methods of the invention.

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 Recombinagenic Oligonucleobases and Mixed Duplex OligoNucleotides

The invention can be practiced with MDON having the conformations and chemistries described in Kmiec I or in Kmiec II, which are hereby incorporated by reference. The MDON of Kmiec I and/or Kmiec II contain two complementary strands, one of which contains at least one segment of RNA-type nucleotides (an "RNA segment") that are base paired to DNA-type nucleotides of the other strand.

Kmiec II discloses that purine and pyrimidine base-containing non-nucleotides can be substituted for nucleotides. Commonly assigned U.S. patent applications Serial No. 09/078,063, filed May 12, 1998, and Serial No. 09/078,064, filed May 12, 1998, which are each hereby incorporated in their entirety, disclose additional molecules that can be used for the present invention. The term "recombinagenic oligonucleobase" is used herein to denote the molecules that can be used in the present invention. Recombinagenic oligonucleobases include MDON, non-nucleotide containing molecules taught in Kmiec II and the molecules taught in the above noted commonly assigned patent applications.

In a preferred embodiment the RNA-type nucleotides of the MDON are made Rnase resistant by having replacing the 2'-hydroxyl with a fluoro, chloro or bromo functionality or by placing a substituent on the 2'-O. Suitable substituents include the

substituents taught by the Kmiec II, C₁₋₆ alkane. Alternative substituents include the substituents taught by U.S. Patent No. 5,334,711 (Sproat) and the substituents taught by patent publications EP 629 387 and EP 679 657 (collectively, the Martin Applications), which are hereby incorporated by reference. As used herein a 2'-fluoro, chloro or bromo derivative of a ribonucleotide or a ribonucleotide having a 2'-OH substituted with a substituent described in the Martin Applications or Sproat is termed a "2'-Substituted Ribonucleotide." As used herein the term "RNA-type nucleotide" means a 2'-hydroxyl or 2'-Substituted Nucleotide that is linked to other nucleotides of a MDON by an unsubstituted phosphodiester linkage or any of the non-natural linkages taught by Kmiec I or Kmiec II. As used herein the term "deoxyribotype nucleotide" means a nucleotide having a 2'-H, which can be linked to other nucleotides of a MDON by an unsubstituted phosphodiester linkage or any of the non-natural linkages taught by Kmiec I or Kmiec II.

A particular embodiment of the invention comprises MDON that are linked solely by unsubstituted phosphodiester bonds. Alternatively embodiments comprise linkage by substituted phosphodiesters, phosphodiester derivatives and non-phosphorus-based linkages as taught by Kmiec II. A further particular embodiment comprises MDON wherein each RNA-type nucleotide is a 2'-Substituted Nucleotide. Particular preferred embodiments of 2'-Substituted Ribonucleotides are 2'-fluoro, 2'-methoxy, 2'-propyloxy, 2'-allyloxy, 2'-hydroxylethyloxy, 2'-methoxyethyloxy, 2'-fluoropropyloxy and 2'-trifluoropropyloxy substituted ribonucleotides. In more preferred embodiments of 2'-Substituted Ribonucleotides are 2'-fluoro, 2'-methoxy, 2'-methoxyethyloxy, and 2'-allyloxy substituted nucleotides. In one embodiment the MDON oligomer is linked by unsubstituted phosphodiester bonds.

Although MDON having only a single type of 2'-substituted RNA-type nucleotide are more conveniently synthesized, the invention can be practiced with MDON having two or more types of RNA-type nucleotides. The function of an RNA segment may not be affected by an interruption caused by the introduction of a deoxynucleotide between two RNA-type trinucleotides, accordingly, the term RNA segment encompasses such an "interrupted RNA segment." An uninterrupted RNA segment is termed a contiguous RNA segment. In an alternative embodiment an RNA segment can contain alternating RNase-resistant and unsubstituted 2'-OH nucleotides.

The MDON of the invention preferably have fewer than 100 nucleotides and more preferably fewer than 85 nucleotides, but more than 50 nucleotides. The first and second strands are Watson-Crick base paired. In one embodiment the strands of the MDON are covalently bonded by a linker, such as a single stranded hexa, penta or tetranucleotide so that the first and second strands are segments of a single oligonucleotide chain having a single 3' and a single 5' end. The 3' and 5' ends can be protected by the addition of a "hairpin cap" whereby the 3' and 5' terminal nucleotides are Watson-Crick paired to adjacent nucleotides. A second hairpin cap can, additionally, be placed at the junction between the first and second strands distant from the 3' and 5' ends, so that the Watson-Crick pairing between the first and second strands is stabilized.

The first and second strands contain two regions that are homologous with two fragments of the target gene, i.e., have the same sequence as the target gene. A homologous region contains the nucleotides of an RNA segment and may contain one or more DNA-type nucleotides of connecting DNA segment and may also contain DNA-type nucleotides that are not within the intervening DNA segment. The two regions of homology are separated by, and each is adjacent to, a region having a sequence that differs from the sequence of the target gene, termed a "heterologous region." The heterologous region can contain one, two or three mismatched nucleotides. The mismatched nucleotides can be contiguous or alternatively can be separated by one or two nucleotides that are homologous with the target gene. Alternatively, the heterologous region can also contain an insertion or one, two, three or of five or fewer nucleotides. Alternatively, the sequence of the MDON may differ from the sequence of the target gene only by the deletion of one, two, three, or five or fewer nucleotides from the MDON. The length and position of the heterologous region is, in this case, deemed to be the length of the deletion, even though no nucleotides of the MDON are within the heterologous region. The distance between the fragments of the target gene that are complementary to the two homologous regions is identically the length of the heterologous region when a substitution or substitutions is intended. When the heterologous region contains an insertion, the homologous regions are thereby separated in the MDON farther than their complementary homologous fragments are in the gene, and the converse is applicable

when the heterologous region encodes a deletion.

The RNA segments of the MDON are each a part of a homologous region, i.e., a region that is identical in sequence to a fragment of the target gene, which segments together preferably contain at least 13 RNA-type nucleotides and preferably from 16 to 25 RNA-type nucleotides or yet more preferably 18-22 RNA-type nucleotides or most preferably 20 nucleotides. In one embodiment, RNA segments of the homology regions are separated by and adjacent to, i.e., "connected by" an intervening DNA segment. In one embodiment, each nucleotide of the heterologous region is a nucleotide of the intervening DNA segment. An intervening DNA segment that contains the heterologous region of a MDON is termed a "mutator segment."

Commonly assigned U.S. patent application Serial No. 09/078,063, filed May 12, 1998, and Serial No. 09/078,064, filed May 12, 1998, disclose a type of duplex recombinagenic oligonucleobase in which a strand has a sequence that is identical to that of the target gene and only the sequence of the "complementary" strand contains a heterologous region. This configuration results in one or more mismatched bases or a "heteroduplex" structure. The heterologous region of the heteroduplex recombinagenic oligonucleobases that are useful in the present invention is located in the strand that contains the deoxynucleotides. In one embodiment, the heterologous region is located on the strand that contains the 5' terminal nucleotide.

4.2 The Location and Type of Mutation Introduced by a MDON

Frequently, the design of the MDON for use in plant cells must be modified from the designs taught in Kmiec I and II. In mammalian and yeast cells, the genetic alteration introduced by a MDON that differs from the target gene at one position is the replacement of the nucleotide in the target gene at the mismatched position by a nucleotide complementary to the nucleotide of the MDON at the mismatched position. By contrast, in plant cells there can be an alteration of the nucleotide one base 5' to the mismatched position on the strand that is complementary to the strand that contains the DNA mutator segment. The nucleotide of the target gene is replaced by a nucleotide complementary to the nucleotide of the DNA mutator segment at the mismatched position. Consequently, the mutated target gene differs from the MDON at two positions.

The mutations introduced into the target gene by a MDON are located between the regions of the target gene that are homologous with the ribonucleotide portion of the homology regions of the MDON, henceforth the "RNA segments." The specific mutation that is introduced depends upon the sequence of the heterologous region. An insertion or deletion in the target gene can be introduced by using a heterologous region that contains an insertion or deletion, respectively. A substitution in the target gene can be obtained by using a MDON having a mismatch in the heterologous region of the MDON. In the most frequent embodiments, the mismatch will convert the existing base of the target gene into the base that is complementary to the mismatched base of the MDON. The location of the substitution in the target gene can be either at the position that corresponds to the mismatch or, more frequently, the substitution will be located at the position on the target strand immediately 5' to the position of the mismatch, i.e., complementary to the position of the MDON immediately 3' of the mismatched base of the MDON.

The relative frequency of each location of the mismatch-caused substitution will be characteristic of a given gene and cell type. Thus, those skilled in the art will appreciate that a preliminary study to determine the location of substitutions in the gene of particular interest is generally indicated, when the location of the substitution is critical to the practice of the invention.

4.3 The Delivery of MDON by Microcarriers and Microfibers

The use of metallic microcarriers (microspheres) for introducing large fragments of DNA into plant cells having cellulose cell walls by projectile penetration is well known to those skilled in the relevant art (henceforth biolistic delivery). United States patents No. 4,945,050, No. 5,100,792 and No. 5,204,253 concern general techniques for selecting microcarriers and devices for projecting them.

The conditions that are used to adhere DNA fragments to the microcarriers are not suitable for the use of MDON. The invention provides techniques for adhering sufficient amounts of MDON to the microcarrier so that biolistic delivery can be employed. In a suitable technique, ice cold microcarriers (60 mg/ml), MDON (60 mg/ml) 2.5 M CaCl₂ and 0.1 M spermidine are added in that order; the mixture gently agitated, e.g., by vortexing, for 10 min and allowed to stand at room temperature for

10 min, whereupon the microcarriers are diluted in 5 volumes of ethanol, centrifuged and resuspended in 100% ethanol. Good results can be obtained with a concentration in the adhering solution of 8-10 μ g/ μ l microcarriers, 14-17 μ g/ml MDON, 1.1-1.4 M CaCl₂ and 18-22 mM spermidine. Optimal results were observed under the conditions of 8 μ g/ μ l microcarriers, 16.5 μ g/ml MDON, 1.3 M CaCl₂ and 21 mM spermidine.

MDON can also be introduced into plant cells for the practice of the invention using microfibers to penetrate the cell wall and cell membrane. U.S. Patent No. 5,302,523 to Coffee et al. describes the use of $30x0.5~\mu m$ and $10x0.3~\mu m$ silicon carbide fibers to facilitate transformation of suspension maize cultures of Black Mexican Sweet. Any mechanical technique that can be used to introduce DNA for transformation of a plant cell using microfibers can be used to deliver MDON for transmutation.

A suitable technique for microfiber delivery of MDON is as follows. Sterile microfibers (2 μ g) are suspended in 150 μ l of plant culture medium containing about 10 μ g of MDON. A suspension culture is allowed to settle and equal volumes of packed cells and the sterile fiber/MDON suspension are vortexed for 10 minutes and plated. Selective media are applied immediately or with a delay of up to about 120 hours as is appropriate for the particular trait.

The techniques that can be used to deliver MDON to transmute nuclear genes can also be used to cause transmutation of the genes of a plastid of a plant cell. Plastid transformation of higher plants by biolistic delivery of a plasmid followed by an illegitimate recombinatorial insertion of the plasmid is well known to those skilled in the art. Svab, Z., et al., 1990, Proc. Natl. Acad. Sci. 87, 8526-8530. The initial experiments showed rates of transformation that were between 10-fold and 100-fold less than the rate of nuclear transformation. Subsequent experiments showed that rates of plasmid transformation comparable to the rate of nuclear transformation could be achieved by use of a dominant selectable trait such as a bacterial aminoglycoside 3'-adenosyltransferase gene, which confers spectinomycin resistance. Svab, Z., & Maliga, P., 1993, Proc. Natl. Acad. Sci. 90, 913-917.

According to the invention MDON for the transmutation of plastid genes can be introduced into plastids by the same techniques as above. When the mutation

desired to be introduced is a selectable mutation the MDON can be used alone. When the desired mutation is non-selectable the relevant MDON can be introduced along with a MDON that introduces a selectable plastid mutation, e.g., a mutation in the psbA gene that confers triazine resistance, or in combination with a linear or circular plasmid that confers a selectable trait.

The foregoing techniques can be adapted for use with recombinagenic oligonucleobases other than MDON.

4.4 <u>Protoplast Electroporation</u>

In an alternative embodiment the recombinagenic oligonucleobase can be delivered to the plant cell by electroporation of a protoplast derived from a plant part. The protoplasts are formed by enzymatic treatment of a plant part, particularly a leaf, according to techniques well known to those skilled in the art. See, e.g., Gallois et al., 1996, in Methods in Molecular Biology 55, 89-107 (Humana Press, Totowa, NJ). The protoplasts need not be cultured in growth media prior to electroporation.

Suitable conditions for electroporation are 3 x 10^5 protoplasts in a total volume of 0.3 ml with a concentration of MDON of between 0.6 - 4 μ g/mL.

4.5 The Introduction of Mutations

The invention can be used to effect genetic changes, herein "transmutate," in plant cells. In an embodiment the plant cells have cell walls, i.e., are other than protoplasts.

The use of MDON to transmutate plant cells can be facilitated by cointroducing a trait that allows for the ready differentiation and separation of cells
(hereafter "selection") into which MDON have been introduced from those that have
not. In one embodiment of the invention the selection is performed by forming a
mixture of MDON and a plasmid that causes the transient expression of a gene that
confers a selectable trait, i.e., one that permits survival under certain conditions, e.g.,
a kanamycin resistance gene. Under these circumstances elimination of cells lacking
the selectable trait removes the cells into which MDON were not introduced. The use
of a transient expression plasmid to introduce the selectable trait allows for the
successive introduction of multiple genetic changes into a plant cell by repeatedly

using a single standardized selection protocol.

In an alternative embodiment transmutation can be used to introduce a selectable trait. A mixture of a first MDON that causes a selectable mutation in a first target gene and a second MDON that causes a non-selectable mutation in a second target gene is prepared. According to the invention, at least about 1% of the cells having the selectable mutation will be found to also contain a mutation in the second target gene that was introduced by the second MDON. More frequently at least about 10% of the cells having the selectable mutation will be found to also contain a mutation in the second target gene.

One use of this embodiment of the invention is the investigation of the function of a gene-of-interest. A mixture is provided of a MDON that causes a selectable mutation and a MDON that causes a mutation that would be expected to "knock-out" the gene-of-interest, e.g., the insertion of a stop codon or a frameshift mutation. Cells in which one or more copies of the gene-of-interest have been knocked out can be recovered from the population having the selectable mutation. Such cells can be regenerated into a plant so that the function of the gene-of-interest can be determined.

A selectable trait can be caused by any mutation that causes a phenotypic change that can produce a selective growth advantage under the appropriate selective conditions or a phenotypic change that can be readily observed, such as change in color of the plant cells growing in a callus. The selectable trait can itself be a desirable traits, e.g., herbicide resistance, or the selectable trait can be used merely to facilitate the isolation of plants having a non-selectable trait that was introduced by transmutation. A desired nonselectable trait can be introduced into a cell by using a mixture of the MDON that causes the desired mutation and the MDON that causes the selectable mutation, followed by culture under the selecting conditions. Selection according to this scheme has the advantage of ensuring that each selected cell not only received the mixture of MDONs, but also that the cell which received the mixture was then susceptible to transmutation by a MDON.

A mutation that causes a lethal phenotypic change under the appropriate conditions, termed a negatively selectable mutation, can also be used in the present invention. Such mutations cause negatively selectable traits. Negatively selectable

traits can be selected by making replica plates of the transmutated cells, selecting one of the replicas and recovering the transmutated cell having the desired property from the non-selected replica.

4.6 Specific Genes That Can Be Transmutated to Create Selectable Traits

In one embodiment of the invention a MDON is used to introduce a mutation into an Acetolactate synthase (ALS) gene, which is also termed the aceto-hydroxy amino acid synthase (AHAS) gene. Sulfonylurea herbicides and imidazoline herbicides are inhibitors of the wild type ALS enzymes. Dominant mutations that render plants resistant to the actions of sulfonylureas and imidazolines have been described. See U.S. Patent Nos. 5,013,659 and 5,378,824 (Bedbrook) and Rajasekaran K., et al., 1996, Mol. Breeding 2, 307-319 (Rajasekaran). Bedbrook at Table 2 describes several mutations (hereafter, a "Bedbrook Mutation") that were found to render yeast ALS enzymes resistant to sulfonylurea herbicides. Bedbrook states that each of the Bedbrook mutations makes a plant resistant to sulfonylurea and imidazoline herbicides when introduced into a plant ALS gene. It is understood that in most plants the gene encoding ALS has been duplicated. A mutation can be introduced into any allele of either ALS gene.

Three of the Bedbrook mutations were, in fact, shown to confer herbicide resistance in a plant, namely the substitutions Pro→Ala¹⁹⁷, Ala→Asp²⁰⁵ and Trp¬Leu⁵⁹¹. Rajasekaran reports that mutations Trp¬Ser⁵⁹¹ caused resistance to sulfonylurea and imidazoline and that Ser¬Asn⁶⁶⁰ caused resistance to imidazoline herbicides. The results of Rajasekaran are reported herein using the sequence numbering of Bedbrook. Those skilled in the art will understand that the ALS genes of different plants are of unequal lengths. For clarity, a numbering system is used in which homologous positions are designated by the same position number in each species. Thus, the designated position of a mutation is determined by the sequence that surrounds it. For example, the mutation Trp¬Ser⁵⁹¹ of Rajasekaran is at residue 563 of the cotton ALS gene but is designated as position 591 of Bedbrook because the mutated Trp is surrounded by the sequence that surrounds Trp⁵⁹¹ in Table 2 of Bedbrook. According to the invention any substitution for the naturally occurring amino and at position 660 or one of the positions listed in Table 2 of Bedbrook, which is hereby incorporated by

reference, can be used to make a selectable mutation in the ALS gene of a plant.

In a further embodiment of the invention the selectable mutation can be a mutation in the chloroplast gene psbA that encodes the D1 subunit of photosystem II, see Hirschberg, J., et al., 1984, Z. Naturforsch. 39, 412-420 and Ohad, N., & Hirschberg, J., The Plant Cell 4, 273-282. Hirschberg et al. reports that the mutation Ser→Gly²⁶⁴ results in resistance to triazine herbicides, e.g., 2-Cl-4-ethylamino-6-isopropylamino-s-triazine (Atrazine). Other mutations in the psbA gene that cause Atrazine herbicide resistance are described in Erickson J.M., et al., 1989, Plant Cell 1, 361-371, (hereafter an "Erickson mutation"), which is hereby incorporated by reference. The use of the selectable trait caused by an Erickson mutation is preferred when it is desired to introduce a second new trait into a chloroplast.

The scientific literature contains further reports of other mutations that produce selectable traits. Ghislain M., et al., 1995, The Plant Journal 8, 733-743, describes a Asn-Ile¹⁰⁴ mutation in the *Nicotiana sylvestris* dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) gene that results in resistance to S-(2-aminoethyl)L-cysteine. Mourad, G., & King, J., 1995, Plant Physiology 109, 43-52 describes a mutation in the threonine dehydratase of *Arabidopsis thaliana* that results in resistance to L-O-methylthreonine. Nelson, J.A.E., et al., 1994, Mol. Cell. Biol. 14, 4011-4019 describes the substitution of the C-terminal Leu of the S14/rp59 ribosomal protein by Pro, which causes resistance to the translational inhibitors crytopluerine and emetine. In further embodiments of the invention, each of the foregoing mutations can be used to create a selectable trait. Each of Ghislain, Mourad and Nelson are hereby incorporated by reference.

4.7 Genes That Can Be Mutated to Create Desirable Non-selectable Traits

Example 1 MALE STERILITY

Certain commercially grown plants are routinely grown from hybrid seed including corn (maize, Zea maize), tomatoes and most other vegetables. The production of hybrid seed requires that plants of one purebred line be pollinated only by pollen from another purebred line, i.e., that there be no self pollination. The removal of the pollen-producing organs from the purebred parental plants is a

laborious and expensive process. Therefore, a mutation that induces male-sterility i.e., suppresses pollen production or function, would obviate the need for such process.

Several genes have been identified that are necessary for the maturation or function of pollen but are not essential for other processes of the plant. Chalcone synthase (chs) is the key enzyme in the synthesis of flavonoids, which are pigments found in flowers and pollen. Inhibition of chs by the introduction of a chs antisense expressing gene in the petunia results in male sterility of the plant. Van der Meer, I.M., et al., 1992, The Plant Cell 4, 253-262. There is a family of chs genes in most plants. See, e.g., Koes, R.E., et al., 1989, Plant Mol. Biol. 12, 213-226. Likewise disruption of the chalcone synthase gene in maize by insertion of a transposable element results in male sterility. Coe, E.H., J. Hered. 72, 318-320. The structure of maize chalcone synthase and a duplicate gene, whp, is given in Franken, P., et al., 1991, EMBO J. 10, 2605-2612. Typically in plants each member of a multigene family is expressed only in a limited range of tissues. Accordingly, the present embodiment of the invention requires that in species having multiple copies of chalcone synthase genes, the particular chs gene or genes expressed in the anthers be identified and interrupted by introduction of a frameshift, and one or more in-frame termination codons or by interruption of the promoter.

A second gene that has been identified as essential for the production of pollen is termed *Lat52* in tomato. Muschietti, J., et al., 1994, The Plant Journal 6, 321-338. LAT52 is a secreted glycoprotein that is related to a trypsin inhibitor. Homologs of *Lat52* have been identified in maize (termed *Zm13*, Hanson D.D., et al., 1989 Plant Cell 1, 173-179; Twell D., et al., 1989, Mol. Gen. Genet. 217, 240-245), rice (termed *Ps1*, Zou J., et al., 1994 Am. J. Bot. 81, 552-561 and olive (termed *Ole e I*, Villalba, M., et al., 1993, Eur. J. Biochem. 276, 863-869). Accordingly, the present embodiment of the invention provides for a method of obtaining male sterility by the interruption of the *Lat52/Zm13* gene or its homologs by the introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

A third gene that has been identified as essential for the production of pollen is the gene that encodes phenylalanine ammonium lyase (PAL, EC 4.3.1.5). PAL is an essential enzyme in the production of both phenylpropanoids and flavonoids.

Because phenylpropanoids are a precursor to lignins, which can be an essential for the resistance to disease in the preferred embodiment a PAL isozyme that is expressed only in the anther is identified and interrupted to obtain male sterility.

Example 2 ALTERATION OF CARBOHYDRATE METABOLISM OF TUBERS

Once harvested, potato tubers are subject to disease, shrinkage and sprouting during storage. To avoid these losses the storage temperature is reduced to 35-40° F. However, at reduced temperatures, the starch in the tubers undergoes conversion to sugar, termed "cold sweetening", which reduces the commercial and nutritional value of the tuber. Two enzymes are critical for the cold sweetening process: acid invertase and UDP-glucose pyrophosphorylase. Zrenner, R., et al., 1996, Planta 198, 246-252 and Spychalla, J.P., et al., 1994, J. Plant Physiol. 144, 444-453, respectively. The sequence of potato acid invertase is found in EMBL database Accession No. X70368 (SEQ ID NO. 1) and the sequence of the potato UDP Glucose pyrophosphorylase is reported be Katsube, T. et al., 1991, Biochem. 30, 8546-8551. Accordingly, the present embodiment of the invention provides for a method of preventing cold sweetening by the interruption of the acid invertase or the UDP glucose phosphorylase gene by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

Example 3 REDUCTION IN POST HARVEST BROWNING DUE TO PPO

000796EA11

Polyphenol oxidase (PPO) is the major cause of enzymatic browning in higher plants. PPO catalyzes the conversion of monophenols to o-diphenols and of o-dihydroxyphenols to o-quinones. The quinone products then polymerize and react with amino acid groups in the cellular proteins, which results in discoloration. The problem of PPO induced browning is routinely addressed by the addition of sulfites to the foods, which has been found to be associated with some possible health risk and consumer aversion. PPO normally functions in the defense of the plant to pathogens or insect pests and, hence, is not essential to the viability of the plant. Accordingly, the present embodiment of the invention provides for a method of preventing enzymatic browning by the interruption of the PPO gene by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter

in apple, grape, avocado, pear and banana.

The number of PPO genes in the genome of a plant is variable; in tomatoes and potatoes PPO forms a multigene family. Newman, S.M., et al., 1993, Plant Mol. Biol. 21, 1035-1051, Hunt M.D., et al., 1993, Plant Mol. Biol. 21, 59-68; Thygesen, P.W., et al., 1995, Plant Physiol. 109, 525-531. The grape contains only a single PPO gene. Dry, I.B., et al., 1994, Plant Mol. Biol., 26, 495-502. When the plant species of interest contains multiple copies of PPO genes it is essential that the PPO gene that is normally expressed in the commercial product be interrupted. For example, only one PPO gene is expressed in potatoes of harvestable size, which gene is termed POT32 and its sequence is deposited in GENBANK accession No. U22921 (SEQ ID NO. 2), which sequence is incorporated by reference. The other potato PPO isozymes have been sequenced and the sequences deposited so that one skilled in the art can design a MDON that specifically inactivates POT32.

Example 4 REDUCTION OF LIGNIN IN FORAGE CROPS AND WOOD PULP

Lignin is a complex heterogeneous aromatic polymer, which waterproofs higher plants and strengthens their cell walls. Lignin arises from the random polymerization of free radicals of phenylpropanoid monolignins. Lignins pose a serious problem for the paper industry because their removal from wood pulp involves both monetary and environmental costs. Similarly, the lignin content of forage crops limits their digestibility by ruminants. Indeed, naturally occurring mutations, termed "brown midrib" in sorghum, Porter, KS, et al., 1978, Crop Science 18, 205-218, and maize, Lechtenberg, V.L., et al., 1972, Agron. J. 64, 657-660, have been identified as having reduced lignin content and tested as feed for cattle.

The brown mid-rib mutation in maize involves the O-methyl transferase gene. Vignol, F., et al., 1995, Plant Cell **7**, 407-416. The O-methyltransferase genes of a number of plant species have been cloned: Burgos, R.C., et al., 1991, Plant Mol. Biol. **17**, 1203-1215 (aspen); Gowri, G., et al., 1991, Plant Physiol. **97**, 7-14 (alfalfa, *Medicago sativa*) and Jaeck, E., et al., 1992, Mol. Plant-Microbe Interact. **4**, 294-300 (tobacco) (SEQ ID No. 3 and SEQ ID No. 4). Thus, one aspect of the present embodiment is the interruption of the O-methyltransferase gene to reproduce a brown mid-rib phenotype in any cultivar of maize or sorghum and in other species of forage

crops and in plants intended for the manufacture of wood pulp.

A second gene that is involved in lignin production is the cinnamyl alcohol dehydrogenase (CAD) gene, which has been cloned in tobacco. Knight, M.E., 1992, Plant Mol. Biol. 19, 793-801 (SEQ ID No. 5 and SEQ ID No. 6). Transgenic tobacco plants making a CAD antisense transcript have reduced levels of CAD and also make a lignin that is more readily extractable, apparently due to an increase in the ratio of syringyl to guaiacyl monomers and to the increased incorporation of aldehyde monomers relative to alcohol residues. Halpin, C., et al., 1994, The Plant Journal 6, 339-350. Accordingly, an embodiment of the invention is the interruption of the CAD gene of forage crops such as alfalfa, maize, sorghum and soybean and of paper pulp trees such as short-leaf pine (*Pinus echinata*) long-leaf pine (*Pinus palustris*) slash pine (*Pinus elliottii*), loblolly pine (*Pinus taeda*), yellow-poplar (*Liriodendron tulipifera*) and cotton wood (*Populus sp.*) by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

Example 5 THE REDUCTION IN UNSATURATED AND POLYUNSATURATED LIPIDS IN OIL SEEDS

The presence of unsaturated fatty acids, e.g., oleic acid, and polyunsaturated fatty acids, e.g., linoleic and linolenic acids, in vegetable oil from oil seeds such as rape, peanut, sunflower and soybean causes the oils to oxidize, on prolonged storage and at high temperatures. Consequently, vegetable oil is frequently hydrogenated. However, chemical hydrogenation causes transhydrogenation, which produces non-naturally occurring stereo-isomers, which are believed to be a health risk.

Fatty acid synthesis proceeds by the synthesis of the saturated fatty acid on an acyl carrier protein (ACP) followed by the action of desaturases that remove the hydrogen pairs. Consequently, it would be desirable to inhibit the activity of these desaturase enzymes in oil seeds.

The first enzyme in the synthesis of oleic acid is stearoyl-ACP desaturase (EC 1.14.99.6). The stearoyl-ACP desaturases from safflower and castor bean have been cloned and sequenced. Thompson, G.A., et al., 1991, Proc. Natl. Acad. Sci. 88, 2578-2582 (SEQ ID No. 7); Shanklin, J., & Somerville, C., 1991, Proc. Natl. Acad. Sci. 88, 2510-2514 (SEQ ID No. 8); Knutzon, D.S., et al., 1991, Plant Physiology 96, 344-

C141. C100000

345. Accordingly, one embodiment of the present invention is the interruption of the stearoyl-ACP desaturase gene of oil seed crops such as soybean, safflower, sunflower, soy, maize and rape by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

A second enzyme that can be interrupted according to the present invention is ω -3 fatty acid desaturase (ω -3 FAD) the enzyme that converts linoleic acid, a diene, to linolenic acid, a triene. There are two ω -3 FAD isozymes in *Arabidopsis thaliana* and, those skilled in the art expect, in most other plants. One isozyme is specific for plastids and is the relevant isozyme for the synthesis of the storage oils of seeds. The other is microsome specific. The cloning of the *Arabidopsis thaliana* plastid ω -3 FAD is reported by Iba., K. et al., 1993, J. Biol. Chem. **268**, 24099-24105 (SEQ ID No. 9). Accordingly an embodiment of the invention is the interruption of the plastid ω -3 FAD gene of oil seed crops such as soybean, safflower, sunflower, soy, maize and rape by introduction of a frameshift, an in-frame termination codon or by interruption of the promoter.

Example 6 INACTIVATION OF S ALLELES TO PERMIT INBRED LINES

Certain plant species have developed a mechanism to prevent self-fertilization. In these species, e.g., wheat and rice, there is a locus, termed S, which has multiple alleles. A plant that expresses an S allele cannot be fertilized by pollen expressing the same S allele. Lee, H-K., et al., 1994, Nature 367, 560-563; Murfett, J., et al., 1994, Nature 367, 563. The product of the S locus is an RNase. McClure, B.A., et al., 1989, Nature 342, 955-957. The product of the S locus is not essential for the plant. Accordingly, an embodiment of the invention is the interruption of genes of the S locus to permit the inbreeding of the plant by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

Example 7 ETHYLENE INSENSITIVITY

Ethylene is a gaseous plant hormone that is involved in plant growth and development. An unwanted aspect of ethylene's action is the over-ripening of fruit, vegetables and the wilting of flowers that results in rotting and loss. The ethylene

receptor of *Arabidopsis thaliana* has been cloned and is termed ETR-1. Chang, C., et al., 1993, Science 262, 539-544 (SEQ ID No. 10). A mutant, Cys¬Tyr⁶⁵, results in a dominant insensitivity to ethylene. Transgenic tomato plants expressing the *Arabidopsis thaliana* mutant ETR-1 also showed an insensitivity to ethylene, indicating that the Cys¬Tyr⁶⁵ mutation would be a dominant suppressor of ethylene action in most plant species. Accordingly one aspect of the present embodiment of the invention is the insertion of the Cys¬Tyr⁶⁵ mutation into the ETR-1 gene so as to extend the life span of the mutated fruit vegetable or flower.

In a further aspect of the present embodiment, the preservation of the fruit or flower can be achieved by interrupting one of the genes that encode the enzymes for ethylene synthesis: namely 1-aminocyclopropane-1-carboxylic acid synthase (ACC synthase) and ACC oxidase. For this embodiment of the invention the amount of ethylene synthesis can be eliminated entirely, so that ripening is produced by exogenous ethylene or some amount of ethylene production can be retained so that the fruit ripens spontaneously, but a has a prolonged storage life. Accordingly, it is anticipated that the interruption of one allele of either the ACC synthase or the ACC oxidase gene can result in an useful reduction in the level of ethylene synthesis. Alternatively, the invention provides for the interruption of one allele along with the introduction of a mutation that results in a partial loss of activity in the uninterrupted allele.

The sequences of the *Arabidopsis thaliana* ACC synthase and ACC oxidase genes are reported in Abel., S., et al., 1995, J. Biol. Chem. **270**, 19093-19099 (SEQ ID No. 12)and Gomez-Lim, M.A., et al., 1993, Gene **134**, 217-221 (SEQ ID No. 11), respectively, which are incorporated by reference in their entirety.

Example 8 REVERSION OF KANAMYCIN RESISTANCE

Recombinant DNA technology in plants allows for the introduction of genes from one species of plant and bacterial genes into a second species of plant. For example, Kinney, A.J., 1996, Nature Biotech. 14, 946, describes the introduction of a bay laural ACP-thioesterase gene into the rape seed to obtain a vegetable oil rich in lauric acid. Such transgenic plants are normally constructed using an antibiotic resistance gene, e.g., kanamycin resistance, which is coinserted into the transgenic

plant as a selectable trait. The resultant transgenic plant continues to express the antibiotic resistance gene, which could result in large amounts of the resistance product and the gene entering the food supply and/or the environment, which introduction may represent an environmental or health risk. An embodiment of the invention obviates the risk by providing for the interruption of the kanamycin gene by introduction of a

frameshift, one or more in-frame termination codons or by interruption of the promoter.

Example 9 Modification of Storage Protein Amino Acid Content

Seeds and tubers contain a family of major storage proteins, e.g., patatins in potato and zeins in maize. The amino acid composition of such storage proteins is often poorly suited to the needs of the human and animals that depend on these crops, e.g., corn is deficient in lysine and methionine and potato is deficient in methionine. Accordingly, one embodiment of the invention is the mutation of a storage protein of a food crop to increase the amount of low abundance amino acids. Patatins are encoded by a multigene family which are characterized in Mignery, G.A., et al., 1988, Gene 62, 27-44, and the structure of zeins is reported by Marks, M.D., et al., 1985, J. Biol. Chem. 260, 16451459, both of which are hereby incorporated by reference. Alternatively, the anticodon of a methionine or lysine specific tRNA can be mutated to that of a more common amino acid.

Example 10 The Use of MDON to Determine the Function of a Gene

The presently available techniques for the cloning and sequencing of tissue specific cDNAs allow those skilled in the art to obtain readily the sequences of many genes. There is a relative paucity of techniques for determining the function of these genes. In one embodiment of the invention, MDON are designed to introduce frameshilft or stop codons into the gene encoding a cDNA of unknown function. This allows for the specific interruption of the gene. Plants having such specific "knockouts" can be grown and the effects of the knock-out can be observed in order to investigate the function of the unknown gene.

4.8 Fertile Plants of the Invention

The invention encompasses a fertile plant having an isolated selectable point mutation, which isolated selectable mutation is not a rare polymorphism, i.e., would not be found in population of about 10,000 individuals. As used herein a point mutation is mutation that is a substitution of not more than six contiguous nucleotides, preferably not more than three and more preferably one nucleotide or a deletion or insertion from one to five nucleotides and preferably of one or two nucleotides. As used herein an isolated mutation is a mutation which is not closely linked genetically to any other mutation, wherein it is understood that mutations that are greater than 100 Kb and preferably greater than 40 Kb and more preferably greater than 23 Kb are not closely linked.

BIOLISTIC WORKING EXAMPLES

In the following working examples the media and protocols found in Gelvin, S.B., et al., (eds) 1991, PLANT MOLECULAR BIOLOGY MANUAL (Kluwer Acad. Pub.) were followed. Gold particles were coated with MDON according the following protocol. The microprojectiles are first prepared for coating, then immediately coated with the chimeraplast. To prepare the microprojectiles, suspend 60 mg of gold particles in 1 ml of 100% ethanol (see Note 4). Sonicate the suspension for three, 30 s bursts to disperse the particles. Centrifuge at 12,000 xg for 30 s, discard supernatant. Add 1 ml of 100% ethanol, vortex for 15 s, centrifuge at 12,000 xg for 5 min, then discard the supernatant. A 25 μ l suspension of washed gold particles (1.0 μ m diameter, 60 mg/ml) in H_2O are slowly vortexed, to which 40 μ l MDON (50 μ g/ml), 75 μ l of 2.5 M CaCl₂, 75 μ l 0.1M spermidine are sequentially added. All solutions are ice cold. The completed mixture is vortexed for a further 10 min and the particles are allowed to settle at room temperature for a further 10 min. The pellet is washed in 100% EtOH and resuspended in 50 μ l. of absolute ethanol. Biolistic delivery is performed using a Biorad Biolistic gun with the following settings: tank pressure 1100 psi, rupture disks x2 breaking at 900 psi, particle suspension volume 5 μ l.

NT-1 (TOBACCO), A DICOT CELL SUSPENSION: Lawns of NT-1 of approximately 5 cm diameter, containing 5 million cells, were grown for 3 days on standard media at

28°C. Gold particles were coated with ALS-1 or ALS-2 and were shot as above. The cells were cultured a further 2.5 days, suspended and transferred to solid medium supplemented with 15-50 ppb chlorosulfuron (GLEAMTM). Resistant colonies emerged after 7-14 days.

The sequences of the MDON used are as follows: (The nucleotides not homologous with the target gene are underlined and bold. Lower case letters denote 2'-Omethyl ribonucleotides.)

```
ALS-1
```

```
TGCGCG-guccaguucaCGTTGcauccaacuaT

T T T (SEQ ID No. 13)

TCGCGC CAGGTCAAGTGCAACGTAGGATGATT

ALS-2

TGCGCG-guccaguucaCGATGcauccaacuaT

T T T T (SEQ ID No. 14)

TCGCGC CAGGTCAAGTGCTACGTAGGATGATT
```

ALS-1 and ALS-2 have single base mismatches with the ALS gene at the second nucleotide of the Pro¹⁹⁷ (CCA) codon: ALS-1 is CAA and ALS-2 is CTA. Following PCR amplfication and sequencing of the gene of the ALS-1 and ALS-2 transmutated, resistant cell lines, a mutation was in the targeted codon which was found to be Thr (ACA) and Ser (TCA), respectively. The observed mutation was shifted one nucleotide 5' of the location that would have been expected based on the action of MDON in mammalian cells on the coding strand and one nucleotide 3' of the expected location on the non-coding strand. A total of 3 ALS-1 and 5 ALS-2 transmutants having these mutations were identified. No resistant calli were obtained from ALS-1DNA treated cells.

For selection of chlorsulfuron resistant cells, cells were transferred from each bombarded plate to 15 ml containing 5 ml of liquid CSM 2 d after bombardment. The tubes were inverted several times to disperse cell clumps. The cells were then transferred to solidified CSM medium containing 15 ppb chorsulfuron (Dupont, Wilmington, DE). After approximately 3 - 5 wk, actively growing cells (raised, light

colored colonies) are selected and transferred to solidified CSM containing 50 ppb chlorsulfuron. Three to four weeks later, actively growing cells are selected, then transferred to solidified CSM containing 200 ppb chlorsulfuron. Cells that survive this treatment are then analyzed.

MEDIA

- 1. NT-1 cell suspension medium (CSM): Murashige and Skoog salts (Gibco BRL, Grand Island, NY), 500 mg/l MES, 1 mg/l thiamine, 100 mg/l myoinositol, 180 mg/l KH₂PO₄, 2.21 mg/L 2,4-diclorophenoxyacetic acid (2,4-D), 30g/L sucrose. Adjust pH to 5.7 with 1M KOH or HCl and autoclave. For solidified medium add 8g/l Agar-agar (Sigma, St. Louis, MO) prior to autoclaving.
- 2. Plating out medium (POM): 80% (v/v) CSM, 0.3M mannitol, 20% (v/v) supernatant from the initial centrifugation of the NT-1 cell suspension prior to protoplast isolation.

TOBACCO LEAF, A DICOT: *Nicotiana tabacum v. Samsun* leaf disks were co-transformed by *Agrobacterium tumefaciens* LBA 4404 harboring bin 19-derived plasmids containing a nptll expression cassette containing two genes: a gene for kanamycin resistance and one of two mutants of a gene encoding a Green Fluorescence Protein (GFP, Chui, W., 1996, Current Biol. 6, 325-330). Neither mutant GFP gene produces a GFP product. The mutants contain either a $G \rightarrow T$ substitution in the sixth codon resulting in a stop codon or a deletion of one nucleotide at the same position, which are termed, respectively, G-stop and $G - \Delta$. After culture on selective MS 104 medium, leaves were recovered and the presence of a GFP gene confirmed by northern blot. Sequence of first eight codons of GFP:

The sequences of the MDON used were as follows: (The nucleotides not homologous with G-stop are underlined and bold. Lower case letters denote 2'-Omethyl ribonucleotides.)

GFP-1

Leaf disks of the G-stop and G-Δ transgenic plants were incubated on MS 104 selective media and G-1 or G-1 introduced biolistically by two successive deliveries as above. Approximately 10 days after the introduction of the MDON, calli exhibiting GFP-like fluorescence were seen in the G-1 and G-2 treated cultures of both the G-stop and G-Δ leaf disks. Larger and more rapidly growing callusing pieces were subdivided by scalpel to obtain green fluorescent cell-enriched calli. The fluorescent phenotype remained stable for the total period of observation, about 30 days. The presence of green fluorescent cells in the G-1 treated G-stop culture indicates that G-1 does not cause mutations exclusively one base 5' of the mismatched nucleotide.

Green fluorescence was observed using a standard FITC filter set using an IMT-2 Olympus microscope.

ELECTROPORATION WORKING EXAMPLE

CONVERSION OF GFP IN TOBACCO MESOPHYLL PROTOPLASTS

Plant Material

- 1. Tobacco plant transformant (Delta6) harboring a deletion mutant of GFP.
- 2. Leaves were harvested from 5 to 6-week-old in vitro-grown plantlets

Protoplast Isolation

0007965811

DEIGNOOID -WO

1. Basically followed the procedure of Gallois, et al., 1996, Electroporation of tobacco leaf protoplasts using plasmid DNA or total genomic DNA. Methods in Molecular Biology, Vol. 55: Plant Cell Electroporation and Electrofusion Protocols Edited by: J. A.

Nickoloff Humana Press Inc., Totowa, NJ. pp.89 - 107.

2. Enzyme solution: 1.2 % cellulase R-10 "Onozuka" (Karlan, Santa Rosa, CA), 0.8% macerozyme R-10 (Karlan, Santa Rosa, CA), 90 g/l mannitol, 10 mM MES, filter sterilize, store in 10 ml aliquots at -20°C.

- 3. Leaves were cut from the mid-vein out every 1 2 mm. They were then placed abaxial side down in contact with 10 ml of enzyme solution in a 100 x 20 mm petri plate. A total of 1 g of leaves was placed in each plate.
- 4. The plates were incubated at 25°C in the dark for 16 hr.
- 5. The digested leaf material was pipetted and sieved through a 100 μ m nylon screen cloth (Small Parts, Inc., Miami Lakes, FL). The filtrate was then transferred to a centrifuge tube, and centrifuged at 1000 rpm for 10 min. All centrifugations for this protocol were done at these conditions.
- 6. The protoplasts collected in a band at the top. The band of protoplasts was then transferred to a clean centrifuge to which 10 ml of a washing solution (0.4 M sucrose and 80 mM KCl) was added. The protoplasts were gently resuspended, then centrifuged.
- 7. Repeated step 6 twice.
- 8. After the last wash, the protoplast density was determined by dispensing a small aliquot onto a hemocytometer. Resuspend the protoplasts to a density of 1 x 10⁶ protoplasts/ml in eletroporation buffer (80 mM KCl, 4 mM CaCl₂, 2mM potassium phosphate, pH 7.2, 8% mannitol, autoclave. The protoplasts were allowed to incubate at 8°C for 2 hr.
- 9. After 2 hr, 0.3 ml (3 x 10^5 protoplasts) were transferred to each 0.4 cm cuvette, then placed on ice. GFP-2 (0.6 4 μ g/mL) was added to each cuvette except for an unelectroporated control. The protoplasts were electroporated (250V, capacitance 250 μ F, and time constant 10 14 ms).
- 10. The protoplasts were allowed to recover for 10 min on ice, then transferred to petri

plates (100 x 20 mm). After 35 min, 10 ml of POM, see above, was added to each plate. The plates were transferred to the dark at 25° C for 24 hr, then transferred to the light.

11. The protoplast cultures were then maintained according to Callois supra.

Fluorescence Microscopy

1. Under UV light, we observed 8 GFP converted protoplasts out of 3 \times 10⁵ protoplasts.

We Claim:

 A method of making a localized mutation in a target gene in a plant cell comprising the steps of:

- a. adhering to a particle a recombinagenic oligonucleobase, which contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of the target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region;
- b. introducing the particle into a cell of a population of plant cells;
- c. identifying a cell of the population cell having a mutation located between the first and second fragments of the target gene.
- The method of claim 1, wherein the recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-type nucleotides.
- 3. The method of claim 2, wherein the intervening region is at least 3 nucleotides in length.
- 4. The method of claim 2, which further comprises the step of culturing the identified cell so that a plant is generated.
- 5. The method of claim 2, wherein the first RNA segment contains at least 8 contiguous 2'-Substituted Ribonucleotides.
- 6. The method of claim 5 wherein the second RNA segment contains at least 8 contiguous 2'-Substituted Ribonucleotides.
- 7. The method of claim 2, wherein the sequence of the mutated target gene is homologous with the sequence of the MDON.
- 8. The method of claim 2, wherein the adhering step is performed in a solution

comprising 1.1-1.4 M NaCl and 18-22 μ M spermidine and at least 14 μ g/ml MDON.

- 9. The method of claim 2, wherein the target gene is a first ALS gene, a second ALS gene, a psbA gene, a threonine dehydratase gene, a dihydrodipicolinate synthase gene, or an S14/rp59 gene
- 10. The method of claim 9, wherein the plant cell is a maize, wheat, rice or lettuce cell.
- 11. The method of claim 9, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.
- 12. The method of claim 2, wherein the target gene selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, *etr-1* or a homolog thereof, ACC synthase and ACC oxidase.
- 13. The method of claim 12, where the plant cell is from a maize, wheat, rice or lettuce plant.
- 14. The method of claim 12, where the plant cell is from a potato, tomato, canola, soybean or cotton plant.
- 15. The method of claim 2, which further comprises making seeds from the plant or from progeny of the plant.
- 16. A method of making a localized mutation in a target gene in a plant cell having a cell wall comprising the steps of:
 - a. perforating the cell walls of a population of plant cells;
 - b. introducing a recombinagenic oligonucleobase, which contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of the target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region

- and the second homologous region;
- c. identifying a cell of the population having a mutation located between the first and second fragments of the target gene.
- 17. The method of claim 16, wherein the recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-Type nucleotides.
- 18. The method of claim 17, which further comprises the step of culturing the identified cell so that a plant is generated.
- 19. The method of claim 17, wherein the sequence of the target gene between the first and the second fragments differs from the sequence of the intervening region of the MDON at a mismatched nucleotide and the mutation of the target gene is located adjacent to the mismatched nucleotide.
- 20. The method of claim 17, wherein the sequence of the target gene between the first and the second fragments differs from the sequence of the mutator segment of the MDON at a mismatched nucleotide and the mutation of the target gene is located at the mismatched nucleotide.
- 21. The method of claim 17, wherein the target gene is a first ALS gene, a second ALS gene, a psbA gene, a threonine dehydratase gene, a dihydrodipicolinate synthase gene, or an S14/rp59 gene
- 22. The method of claim 21, wherein the plant cell is a maize, wheat, rice or lettuce cell.
- 23. The method of claim 21, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.
- 24. The method of claim 17, wherein the target gene is selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, etr-1 or a homolog thereof, ACC synthase and ACC oxidase.
- 25. The method of claim 24, where the target gene is a gene from a maize, wheat, rice or lettuce plant.

26. The method of claim 24, where the target gene is a gene from a potato, tomato, canola, soybean or cotton plant.

- 27. The method of claim 17, which further comprises making seeds from the plant or from progeny of the plant.
- 28. A method of making a localized mutation in a target gene of a plastid of a plant cell which comprises the steps of:
 - a. Introducing a recombinagenic oligonucleobase, which contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of the target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region;
 - b. Identifying a cell having a mutation in the region between the first and second fragments of the target gene.
- 29. The method of claim 28, wherein the recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-Type nucleotides.
- 30. The method of claim 29, which further comprises culturing the identified cell so that a plant is generated.
- 31. A method of making a localized, non-selectable mutation in a target gene in a plant cell comprising the steps of:
 - a. introducing into the cells of a population of cells a mixture of a first recombinagenic oligonucleobase and a second reombinagenic oligonucleobase wherein:
 - i. the first recombinagenic oligonucleobase contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of a first target gene and a second homologous

region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the first target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region, and

- ii. the second recombinagenic oligonucleobase contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of a second target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the second target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region;
- b. selecting cells from the population having a selectable mutation located between the first and the second fragments of the first target gene from the population; and
- c. identifying a selected cell having a non-selectable mutation located between the first fragment and the second fragment of the second target cell.
- 32. The method of claim 31, wherein the each recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-Type nucleotides.
- 33. The method of claim 32, wherein the first target gene is a first ALS gene, a second ALS gene, a psbA gene, a threonine dehydratase gene, a dihydrodipicolinate synthase gene, or an S14/rp59 gene.
- 34. The method of claim 33, wherein the plant cell is a maize, wheat, rice or lettuce cell.
- 35. The method of claim 33, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.

DESCRIPTION OF THE PROPERTY IS

36. The method of claim 32, wherein the second target gene is selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, *etr-1* or a homolog thereof, ACC synthase and ACC oxidase.

- 37. The method of claim 36, wherein the plant cell is a maize, wheat, rice or lettuce cell.
- 38. The method of claim 36, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.
- 39. The method of claim 32, which further comprises culturing the identified cell such that a plant is generated.
- 40. The method of claim 39, which further comprises making seeds from the plant or from progeny of the plant.
- 41. The method of claim 31, wherein the second recombinagenic oligonucleobase is a heteroduplex recombinagenic oligonucleobase and each of the homologous regions of the second recombinagenic oligonucleobase contains an RNA segment of at least 6 RNA-Type nucleotides.
- 42. The method of claim 41, wherein the first target gene is a first ALS gene, a second ALS gene, a psbA gene, a threonine dehydratase gene, a dihydrodipicolinate synthase gene, or an S14/rp59 gene.
- 43. The method of claim 42, wherein the plant cell is a maize, wheat, rice or lettuce cell.
- 44. The method of claim 42, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.
- 45. The method of claim 41, wherein the second target gene is selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, etr-1 or a homolog thereof, ACC synthase and ACC oxidase.
- 46. The method of claim 36, 45, wherein the second target gene is from a maize, wheat, rice or lettuce plant.

DAIGNOOID -WA GOOTGERATILS

47. The method of claim 36, 45, wherein the second target gene is from a potato, tomato, canola, soybean or cotton plant.

- 48. The method of claim 41, which further comprises culturing the identified cell such that a plant is generated.
- 49. The method of claim 48, which further comprises making seeds from the plant or from progeny of the plant.
- 50. A method of making a localized mutation in a target gene in a plant cell comprising the steps of:
 - a. digesting a plant part with cellulase such that plant cell protoplasts are formed;
 - b. suspending the protoplasts in a solution comprising a recombinagenic oligonucleobase which contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of the target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region;
 - c. electroporating the suspension such that the recombinagenic oligonucleobase enters a protoplast of the suspension;
 - d. culturing the protoplast; and
 - e. identifying a progeny of the protoplast having a mutation located between the first and second fragments of the target gene.
 - 51. The method of claim 50, which further comprises the step of culturing the identified progeny such that a plant is generated.
 - 52. The method of claim 50, wherein the recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-Type nucleotides.

53. The method of claim 50, wherein the recombinagenic oligonucleobase is an heteroduplex recombinagenic oligonucleobase.

- 54. A plant or seed having a point mutation in a gene is in its wild type genetic position, which gene is selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, ACC synthase and ACC oxidase or etr-1 or a homolog of etr-1, and the sequence of the genomic DNA within 23 KB of the mutation is the sequence of the wild type DNA, and the point mutation forms a stop codon or is a frameshift mutation.
- 55. The plant or seed of claim 54, in which the point mutation forms a stop codon.
- 56. The plant or seed of claim 55, in which the sequence of the genomic DNA within 40 KB of the selectable mutation is the sequence of the wild type DNA.
- 57. The plant or seed of claim 55, in which the sequence of the genomic DNA within 100 KB of the selectable mutation is the sequence of the wild type DNA.
- 58. The plant or seed of claim 55, in which the point mutation is a single base pair mutation.
- 59. The plant or seed of claim 55, which is a maize, wheat, rice or lettuce plant or seed.
- 60. The plant or seed of claim 55, which is a potato, tomato, canola, soybean or cotton plant or seed.
- 61. The plant or seed of claim 55, further having a selectable point mutation in a second gene and the sequence of the genomic DNA within 23 KB of the selectable point mutation is the sequence of the wild type DNA.
- 62. The plant or seed of claim 61, in which the sequence of the genomic DNA within 40 KB of the selectable mutation is the sequence of the wild type DNA.
- 63. The plant or seed of claim 61, in which the sequence of the genomic DNA within 100 KB of the selectable mutation is the sequence of the wild type DNA.
- 64. The plant or seed of claim 54, in which the point mutation is a frameshift

WO 99/07865 PCT/US98/16267

mutation.

65. The plant or seed of claim 64, in which the sequence of the genomic DNA within 40 KB of the selectable mutation is the sequence of the wild type DNA.

- 66. The plant or seed of claim 64, in which the sequence of the genomic DNA within 100 KB of the selectable mutation is the sequence of the wild type DNA.
- 67. The plant or seed of claim 64, in which the point mutation is a single base pair mutation.
- 68. The plant or seed of claim 64, which is a maize, wheat, rice or lettuce plant or seed.
- 69. The plant or seed of claim 64, which is a potato, tomato, canola, soybean or cotton plant or seed.
- 70. The plant or seed of claim 64, further having a selectable point mutation in a second gene and the sequence of the genomic DNA within 23 KB of the selectable point mutation is the sequence of the wild type DNA.
- 71. The plant or seed of claim 70, in which the sequence of the genomic DNA within 40 KB of the selectable mutation is the sequence of the wild type DNA.
- 72. The plant or seed of claim 70, in which the sequence of the genomic DNA within 100 KB of the selectable mutation is the sequence of the wild type DNA.

<110> 1. Arntzen, Charles

1

SEQUENCE LISTING

```
2. Kipp, Peter B.
            3. Kumar, Ramesh
            4. May, Gregory D.
      <120> The Use of Mixed Duplex Oligonucleotides
        to Effect Localized Genetic Changes in Plants
      <130> 7991-023-999
      <150> 60/054,386
      <151> 1997-08-05
      <160> 19
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 2063
      <212> DNA
      <213> Solanum tuberosum
      <220>
      <221> CDS
      <222> (3)...(1907)
      <400> 1
agtaccattc cagttatgac ccggaaaact ccgcctccca ttacacattc ctcccggatc
                                                                        60
aacccgattc cggccaccgg aagtccctta aaatcatctc cggcattttc ctctcctctt
                                                                       120
tecttttget ttetgtagee ttettteega tecteaacaa ceagteaceg gaettgeaga
                                                                       180
gtaactcccg ttcgccgccg ccgtcaagag gtgtttctca gggagtctcc gataagactt
                                                                       240
ttcgagatgt cgtcaatgct agtcacattt cttatgcgtg gtccaatgct atgcttagct
                                                                       300
ggcaaagaac tgcttaccat tttcaacctc aaaaaaattg gatgaacgat cctaatggtc
                                                                       360
cattgtacca caagggatgg tatcatcttt tttatcaata caatccagat tcaqctattt
                                                                       420
ggggaaatat cacatggggc catgccgtat ccaaggactt gatccactgg ctctacttgc
                                                                       480
cttttgccat ggttcctgat caatggtacg atattaacgg tgtctggact gggtccgcct
                                                                       540
ccatcctacc cgatggtcag atcatgatgc tttataccgg tgtctctgat gattatgtac
                                                                       600
aagtgcaaaa tottgcgtac cocaccaact tatotgatoo totoottota gactgggtca
                                                                       660
agtacaaagg caacceggtt etggtteete cacceggeat tggtateaag gaetttagag
                                                                       720
accegaceae tgettggace ggaceecaaa atgggeaatg gettttaaca ategggteta
                                                                       780
agattggtaa aacgggtatt gcacttgttt atgaaacttc caacttcaca agctttaagc
                                                                       840
tattggatga agtgctgcat gcggttccgg gtacgggtat gtgggagtgt gtggactttt
                                                                       900
acceggtate gaetgaaaaa acaaacgggt tggacacate atataacgge cegggtgtaa
                                                                       960
agcatgtgtt aaaagcaagt ttagatgaca ataagcaaga tcactatgct attgggacgt
                                                                      1020
atgacttgac aaagaacaaa tggacacccg ataacccgga attggattgt ggaattgggt
                                                                      1080
tgaagctgga ttatgggaaa tattatgcat caaagacatt ttatgacccg aagaaacaac
                                                                      1140
gaagagtact gtggggatgg attggggaaa ctgatagtga atctgctgac ctgcagaagg
                                                                      1200
gatgggcatc tgtacagagt attccaagga cagtgcttta cgacaagaag acagggacac
                                                                      1260
atctacttca gtggccagtt gaagaaattg aaagcttaag agtgggtgat cctattgtta
                                                                      1320
agcaagtcaa tottcaacca ggttcaattg agctactcca tgttgactca gctgcagagt
                                                                      1380
tggatataga agcctcattt gaagtggaca aagtcgcgct ccagggaata attgaagcag
                                                                      1440
```

1920

1958

```
atcatgtagg tttcagctgc tctactagtg gaggtgctgc tagcagaggc attttgggac
                                                                      1500
catttggtgt cgttgtaatt gctgatcaaa agctatctga gctaacgcca gtttacttct
                                                                      1560
                                                                      1620
acatttctaa aggagetgat ggtegagetg agaetcaett etgtgetgat caaactagat
                                                                      1680
cctcagaggc tccgggagtt gctaaacaag tttatggtag ttcagtaccc gtgttagacg
gtgaaaaaca ttcgatgaga ttattggagg accactcaat tgtggagagc tttgcccaag
                                                                      1740
                                                                      1800
gaggaagaac agtcataaca tcgcgaattt acccaacaaa ggcagtgaat ggagcagcac
gactettegt ttteaacaat gecacagggg ctagegtgae tgetteegte aagatttggt
                                                                      1860
                                                                      1920
cacttgagtc ggctaatatt cgatccttcc ccttgcaaga cttgtaattc atcaagccat
atcttcttca ttctttttt catttgaagg ttatttcacc gatgtcccat caagaaaggg
                                                                      1980
aagagaggga gaatatgtag tgttatactc tacttattcg ccattttagt gatttttcta
                                                                      2040
ctggactttt gctattcgca aaa
                                                                      2063
      <210> 2
      <211> 1958
      <212> DNA
      <213> Solanum tuberosum
      <220>
      <221> CDS
      <222> (22)...(1815)
      <400> 2
tcttttgcgt tttgagcaat aatggcaagc ttgtgcaata gtagtagtac atctctcaaa
                                                                        60
actoctttta cttcttcctc cacttcttta tcttccactc ctaagccctc tcaacttttc
                                                                       120
atccatggaa aacgtaacca aatgttcaaa gtttcatgca aggttaccaa taataacggt
                                                                       180
gaccaaaacc aaaacgttga aacaaattct gttgatcgaa gaaatgttct tcttggctta
                                                                       240
ggtggtcttt atggtgttgc taatgctata ccattagctg catccgctgc tccagctcca
                                                                       300
cctcctgatc tctcgtcttg tagtatagcc aggattaacg aaaatcaggt ggtgccgtac
                                                                       360
agttgttgcg cgcctaagcc tgatgatatg gagaaagttc cgtattacaa gttcccttct
                                                                       420
atgactaage teegtgtteg teageetget catgaageta atgaggagta tattgeeaag
                                                                       480
tacaatctgg cgattagtcg aatgaaagat cttgataaga cacaaccttt aaaccctatt
                                                                       540
ggttttaagc aacaagctaa tatacattgt gcttattgta acggtgctta tagaattggt
                                                                       600
ggcaaagagt tacaagttca taattcttgg cttttcttcc cgttccatag atggtacttg
                                                                       660
tacttccacg agagaatcgt gggaaaattc attgatgatc caactttcgc tttaccatat
                                                                       720
                                                                       780
tggaattggg accatccaaa aggtatgcgt tttcctgcca tgtatgatcg tgaagggact
tecetttteg atgtaacaeg tgaccaaagt caccgaaatg gagcagtaat egatettggt
                                                                       840
                                                                       900
tttttcggca atgaagttga aacaactcaa ctccagttga tgagcaataa tttaacacta
                                                                       960
atgtaccgtc aaatggtaac taatgctcca tgtcctcgga tgttctttgg cgggccttat
                                                                      1020
gatetegggg ttaacaetga acteeeggga actatagaaa acateeetea eggteetgte
cacatotggt otggtacagt gagaggttca actttgccca atggtgcaat atcaaacggt
                                                                      1080
                                                                      1140
gagaatatgg gtcattttta ctcagctggt ttggacccgg ttttcttttg ccatcacagc
aatgtggatc ggatgtggag cgaatggaaa gcgacaggag ggaaaagaac ggatatcaca
                                                                      1200
cataaagatt ggttgaactc cgagttcttt ttctatgatg aaaatgaaaa cccttaccgt
                                                                      1260
gtgaaagtca gagactgttt ggacacgaag aagatgggat acgattacaa accaattgcc
                                                                      1320
acaccatggc gtaacttcaa gcccttaaca aaggcttcag ctggaaaagt gaatacagct
                                                                      1380
teactteege cagetageaa tgtatteeca ttggetaaae tegacaaage aatttegttt
                                                                      1440
                                                                      1500
tccatcaata ggccgacttc gtcaaggact caacaagaga aaaatgcaca agaggagatg
ttgacattca gtagcataag atatgataac agagggtaca taaggttcga tgtgttttcg
                                                                      1560
aacgtggaca ataatgtgaa tgcgaatgag cttgacaagg cggagtttgc ggggagttat
                                                                      1620
acaagtttgc cacatgttca tagagctggt gagactaatc atatcgcgac tgttgatttc
                                                                      1680
cagctggcga taacggaact gttggaggat attggtttgg aagatgaaga tactattgcg
                                                                      1740
gtgactctgg tgccaaagag aggtggtgaa ggtatctcca ttgaaggtgc gacgatcagt
                                                                      1800
```

cttgcagatt gttaattagt ctctattgaa tctgctgaga ttacactttg atggatgatg

ctctgttttt gttttcttgt tctgtttttt cctctgttga aatcagcttt gttgcttgat

ttcattgaag ttgttattca agaataaatc agttacaa

```
<210> 3
      <211> 1460
      <212> DNA
      <213> Nicotiana tabacum
      <220>
      <221> CDS
      <222> (84)...(1178)
      <400>3
                                                                      60
totgtttott caactcacct taatttgccc aattgagtca ttgtaaaatc tgaaacagaa
ccaagagaga agagaaaaaa aatatgggtt caacaagcca gagccagagt aagagtctaa
                                                                     120
ctcacacaqa aqacqaaqcq ttcttatttg ccatgcaatt ggctagtgct tctgtacttc
                                                                     180
ctatggtcct aaaatcagcg ttagaacttg accttcttga actcatggct aaagctggtc
                                                                     240
caqqtqcaqc catttctcct tctgaattag ctgctcagct ctcaacccag aacccagaag
                                                                     300
cacceqttat tettqategg atgettagge tacttgetae ttactetgtt etcaattgta
                                                                     360
ctcttagaac actqtctgat ggcagtgttg agaggcttta tagtctggct ccggtttgta
                                                                     420
agttettgae taagaatget gatggtgttt etgttgeece aettttgett atgaatcaag
                                                                     480
ataaagttct tatggagagc tggtaccact taaaagatgc agtactagat ggtggaatcc
                                                                     540
cattcaacaa qqcctatqqa atqacagcat ttgagtacca tggcacagat ccaagattca
                                                                     600
acaaagtttt caaccgtgga atgtctgatc actccactat gtcaatgaaa aagattcttg
                                                                     660
aggactacaa aggatttgaa ggcctaaatt ccattgttga tgttggtggt ggaactggcg
                                                                     720
ctactgttaa catgattgtc tccaaacatc cctctattaa gggtattaac tttgatttac
                                                                     780
cacatgttat tggagatgct ccagcttacc ctggtgtcga gcacgttggt ggcgacatgt
                                                                     840
ttgccagtgt gccaaaagca gatgccattt tcatgaagtg gatttgtcat gattggagcg
                                                                     900
acqagcattg cctaaaattc ttgaagaatt gctatgaagc actacctgca aatgggaagg
                                                                     960
tqataatagc ggagtgcata cttccagagg ccccagatac atcacttgca actaagaata
                                                                    1020
cagtacatgt tgatattgtg atgttagcac ataacccagg aggcaaagaa aggactgaga
                                                                    1080
aggaatttga ggctttggct aagggcgctg gttttactgg attcgcaagg cttgttgcgc
                                                                    1140
ttacaacact tgggtcatgg aattcaacaa ataattaatc gattcctttg gaggattaag
                                                                    1200
caatatactg ttcattttgc attttgaaat tctacttttc acagagtggc tttactgcga
                                                                    1260
1320
aggaagatga aataattgct ctcagaaaag cagtgtgtta ggaaaaagct ttttagctgg
                                                                    1380
attttqaatt ttattqtatq tatttctgta atacacatgt attgaaggaa tactagtttt
                                                                    1440
                                                                    1460
cqaccaatca tatttctttq
      <210> 4
      <211> 1418
      <212> DNA
      <213> Nicotiana tabacum
      <220>
      <221> CDS
      <222> (59) . . . (1153)
      <400> 4
attectteaa ettaeceaat taagteateg aaaaatetga aacagaacta aaagtaaaat
                                                                      60
gggttcaaca agcgagagcc agagtaacag tctcactcac acagaagacg aagctttctt
                                                                      120
atttgccatg caattgtgta gtgcttctgt acttcctatg gtcctaaaat cagccgtaga
                                                                     180
acttgacett ettgagetaa tggetaagge tggtecaggt geagetattt eteettetga
                                                                     240
attagctgct cageteteaa eteagaacee agaageacet gttatgettg ateggatget
                                                                      300
taggctactt gcttcttact ctgttctcaa ttgtactctt agaacactgc ctgatagcag
                                                                      360
tgttgagagg ctttatagtc tggctcccgt ctgtaagtac ttgactaaga atgctgatgg
                                                                      420
tgtttctgtt gccccacttt tgcttatgaa tcaagataaa gttcttatgg agagctggta
                                                                      480
ccacttaaaa gatgcagtac tagatggcgg aatcccattc aacaaagcct atggaatgac
                                                                      540
```

```
agcatttgag taccatggca cagatccaag attcaacaaa gtgttcaacc gtggaatgtc
                                                                       600
tgatcactcc actatgtcaa tgaagaagat tcttgaggac tacaaaggat ttgaaggcct
                                                                       660
aaattccatt gttgatgttg gtggtggaac gggtgctact gttaacatga ttgtctctaa
                                                                       720
atatecetet attaagggea ttaaetttga tttgecaeat gtaattggag atgetecaae
                                                                       780
ttaccccggt gtcgagcacg ttggtggcga catgtttgct agtgtgccaa aaqcaqatqc
                                                                       840
cattttcatg aagtggattt gtcatgattg gagcgatgag cattgcctaa aattcttgaa
                                                                       900
gaattgctat gaagcactac ctgcaaatgg gaaggtgata attgcagagt gcatacttcc
                                                                       960
agaggcccca gatacatcac ttgcaactaa gaatacagta catgttgata ttgttatgtt
                                                                      1020
agcacataac ccaggaggca aagaaaggac tgagaaggaa tttgaggctt tqqctaaqqq
                                                                      1080
egetggtttt actggatteg caaggettgt tgegettaca acaettgggt catggaatte
                                                                      1140
aacaagtaat taatcgattc cttaatttga aggattaagc aatatactgt tcgttttgca
                                                                      1200
tttggaaatt ctacttttct cagagtggct tgactgtgaa ataaaagaaa tatagctttt
                                                                      1260
aacttgaaaa gattgatgtt caaaagaaaa aaaggaagat gaaataattg ctctcaqaaa
                                                                      1320
agcaatgtgt taggaaaaag cttttttagc tggattttga attttactgt atgtatttct
                                                                      1380
gttatacaca tgtattgaag gaatactagt tttcgacc
                                                                      1418
      <210> 5
      <211> 1419
      <212> DNA
      <213> Nicotiana tabacum
      <220>
      <221> CDS
      <222> (92)...(1165)
      <400> 5
attictitct ctiticccitg aactgigtti tcattititic igcicigaaa caatagiqti
                                                                        60
ttccttgtag attttaagtt aaaagaaaac catgggtagc ttggatgttg aaaaatcagc
                                                                       120
tattggttgg gctgctagag accettctgg tctactttca cettatacet atactctcag
                                                                       180
aaacacagga cctgaagatg tgcaagtcaa agttttgtat tgtggacttt gccacagtga
                                                                       240
tetteaceaa gttaaaaatg atettggeat gteeaactae eetetggtte etggaeatga
                                                                       300
agtggtggga aaagtagtgg aggtaggagc agatgtgtca aaattcaaag tgggggacac
                                                                       360
agttggagtt ggattactcg ttggaagttg taggaactgt ggcccttgca agagagaaat
                                                                       420
agagcaatat tgcaacaaga agatttggaa ttgcaatgat gtctacactg atggcaaacc
                                                                       480
cacccaaggt ggttttgcta attctatggt tgttgatcaa aactttgtgg tgaaaattcc
                                                                       540
agagggtatg gcaccagaac aagcagcacc tctattatgt gctggcataa cagtatacag
                                                                       600
tccattcaac cattttggtt ttaatcagag tggatttaga ggaggaattt tgggattagg
                                                                       660
aggagttgga catatgggag tgaaaatagc aaaggcaatg ggacatcatg ttactgtcat
                                                                       720
tagttettea aataagaaga gacaagagge attggaacat ettggtgeag atgattatet
                                                                       780
tgttagttca gacactgata aaatgcaaga agctgctgat tcacttgact atattattga
                                                                       840
tactgtccct gttggccatc ctcttgaact ttatctttct ttgcttaaaa ttgatggcaa
                                                                       900
acttatettg ateggagtta teaacaceee ettgeaattt ateteteeea tggttatget
                                                                       960
cgggagaaag agcatcactg gaagctttat tggtagcatg aaggaaacag aggaaatgct
                                                                      1020
agacttctgc aaagagaaag gtgtgacttc acagattgag atagtgaaaa tggattatat
                                                                      1080
caacactgca atggagaggt tggagaaaaa tgatgtgagc tacagatttg ttgttgatgt
                                                                      1140
tgctggaagc aagcttgacc agtaattgca caagaaaaac aacatggaat ggttcactat
                                                                      1200
tatacaacaa ggctatgaga aaaatagtac tcctcaactt tgatgtcatc tttgttacct
                                                                      1260
ttgttttatt ttccacctgt attatcatat ttggtggtcg agagtgacgt ttatgtatat
                                                                      1320
tttctttctt caaaacaatc ttaaatgaat ttggatgttg gtgacgattt tgaaatatac
                                                                      1380
caaccatgca aacttacttt ggtagaaaaa aaaaaaaaa
                                                                      1419
```

<210> 6

<211> 1398

<212> DNA

<213> Nicotiana tabacum

PCT/US98/16267

```
<220>
      <221> CDS
      <222> (88)...(1161)
      <400> 6
attectettt ccettgaact gtgttttegt tttttetget etaaaacaat egtgtgttee
                                                                      60
ttctagattt taagtttaaa gaacatcatg ggtggcttgg aagttgagaa aacaactatt
                                                                     120
ggttgggctg ctagagaccc ttctggtgta ctttcacctt atacctatac tctcagaaac
                                                                     180
                                                                     240
acaggacctg aagatgtgga agtcaaagtt ttgtattgtg ggctctgtca cactgatctt
caccaagtta aaaatgatct tggcatgtcc aactaccctc tggttcctgg acatgaagtg
                                                                     300
                                                                     360
gtgggagaag tggtggaggt aggaccagat gtgtcaaaat tcaaagttgg ggacacagtt
                                                                     420
ggagttggat tactcgttgg aagttgcagg aactgtggcc cttgcaagag agatatagag
                                                                     480
caatattgca acaagaagat ttggaactgc aatgatgtct acactgatgg caaacccacc
caaggtggtt ttgctaaatc catggttgtt gatcaaaagt ttgtggtgaa aattccagag
                                                                     540
ggtatggcac cagaacaagc agcacctcta ttatgtgctg gtataacagt atacagtcca
                                                                     600
                                                                     660
ttgaaccatt ttggtttcaa acagagtgga ttaagaggag gaattttggg attaggagga
                                                                     720
qtgggacaca tgggagtgaa aatagcaaag gcaatgggac atcatgttac tgtcattagt
                                                                     780
tetteaaata agaagagaca agaggeattg gaacatettg gtgeagatga ttatettgte
agttcagaca ctgataaaat gcaagaggct tctgattcac ttgactatat tattgatact
                                                                     840
greectgtrg gecatecter rgaacettar ettrettrge traaaatrga rggeaaactr
                                                                     900
atcttgatgg gagttatcaa caccccttg caatttatct cccccatggt tatgctcggg
                                                                     960
agaaagagca tcacaggaag ctttattggt agcatgaagg aaacagagga aatgctagat
                                                                    1020
ttctgcaaag agaaaggtgt gacttcacag attgagatag tgaaaatgga ttatatcaac
                                                                    1080
actgcaatgg agaggttgga gaaaaatgat gtgaggtaca gatttgtggt tgatgttatt
                                                                    1140
ggaagcaagc ttgaccagta attatattac acaagaaaaa caacatggaa tggttcacta
                                                                    1200
ttatacaagg ctgtgagaat actaaacttt gatgtcgtct tttgtatcct tttgttttat
                                                                    1260
ttgccacctg tattttctta tttggtgatc gagagtgacg tttatgtatt attttctttc
                                                                    1320
1380
                                                                     1398
aaaaaaaaa aaaaaaaa
      <210> 7
      <211> 1533
      <212> DNA
      <213> Carthamus tinctorius
      <220>
      <221> CDS
      <222> (106)...(1296)
                                                                      60
gctcacttgt gtggtggagg agaaaaacag aactcacaaa aagctttgcg actgccaaga
                                                                      120
acaacaacaa caacaagatc aagaagaaga agaagaagat caaaaatggc tcttcgaatc
actocagtga cottgoaato ggagagatat ogttogtttt ogtttootaa gaaggotaat
                                                                      180
ctcagatete ccaaattege catggeetee acceteggat catecacace gaaggttgae
                                                                      240
aatgccaaga agccttttca acctccacga gaggttcatg ttcaggtgac gcactccatg
                                                                      300
ccaccacaga agatagagat tttcaaatcc atcgagggtt gggctgagca gaacatattg
                                                                      360
gttcacctaa agccagtgga gaaatgttgg caagcacagg atttcttgcc ggaccctgca
                                                                      420
tctgaaggat ttgatgaaca agtcaaggaa ctaagggcaa gagcaaagga gattcctgat
                                                                      480
gattactttg ttgttttggt tggagatatg attacagagg aagccctacc tacttaccaa
                                                                      540
acaatgctta ataccctaga tggtgtacgt gatgagactg gggctagcct tacgccttgg
                                                                      600
gctgtctgga ctagggcttg gacagctgaa gagaacaggc atggcgatct tctccacacc
                                                                      660
                                                                      720
tatctctacc tttctgggcg ggtagacatg aggcagatac agaagacaat tcagtatctc
                                                                      780
attgggtcag gaatggatcc tcgtaccgaa aacagcccct accttgggtt catctacaca
                                                                      840
tegttteaag agegtgeeac atttgtttet caeggaaaca eegeeaggea tgeaaaggat
catggggacg tgaaactggc gcaaatttgt ggtacaatcg cgtctgacga aaagcgtcac
                                                                      900
```

```
gagaccgctt atacaaagat agtcgaaaag ctattcgaga tcgatcctga tggcaccgtt
                                                                       960
cttgcttttg ccgacatgat gaggaaaaag atctcgatgc ccgcacactt gatgtacqat
                                                                      1020
gggcgtgatg acaacctctt cgaacatttc tcggcggttg cccaaagact cggcgtctac
                                                                      1080
accgccaaag actacgccga catactggaa tttctggtcg ggcggtggaa agtggcggat
                                                                      1140
ttgaccggcc tatctggtga agggcgtaaa gcgcaagatt atgtttgcgg gttgccacca
                                                                      1200
agaatcagaa ggctggagga gagagctcaa gggcgagcaa aggaaggacc tgttgttcca
                                                                      1260
ttcagctgga ttttcgatag acaggtgaag ctgtgaagaa aaaaaaaacg agcagtgagt
                                                                      1320
teggtttetg ttggettatt gggtagaggt taaaacctat tttagatgte tgtttegtgt
                                                                      1380
aatgtggttt tttttcttct aatcttgaat ctggtattgt gtcgttgagt tcgcgtgtgt
                                                                      1440
gtaaacttgt gtggctgtgg acatattata gaactcgtta tgccaatttt gatgacggtg
                                                                      1500
gttatcgtct cccctggtgt ttttttattg ttt
                                                                      1533
      <210> 8
      <211> 1643
      <212> DNA
      <213> Ricinus communis
      <220>
      <221> CDS
      <222> (1) ... (1239)
      <400> 8
ttccggcaaa taacaaaaaa ccaaaagaaa aaggtaagaa aaaaaacaat ggctctcaag
                                                                       60
ctcaatcctt teetttetea aacccaaaag ttacettett tegetettee accaatqqce
                                                                       120
agtaccagat ctcctaagtt ctacatggcc tctaccctca agtctggttc taaqqaaqtt
                                                                       180
gagaatetea agaageettt catgeeteet egggaggtae atgtteaggt tacceattet
                                                                       240
atgccaccc aaaagattga gatctttaaa tccctagaca attgggctga ggagaacatt
                                                                       300
ctggttcatc tgaagccagt tgagaaatgt tggcaaccgc aggatttttt gccagatccc
                                                                       360
gcctctgatg gatttgatga gcaagtcagg gaactcaggg agagagcaaa ggagattcct
                                                                       420
gatgattatt ttgttgtttt ggttggagac atgataacgg aagaagccct tcccacttat
                                                                       480
caaacaatgc tgaatacctt ggatggagtt cgggatgaaa caggtgcaag tcctacttct
                                                                       540
tgggcaattt ggacaagggc atggactgcg gaagagaata gacatggtga cctcctcaat
                                                                       600
aagtatetet aeetatetgg aegagtggae atgaggeaaa ttgagaagae aatteaatat
                                                                       660
ttgattggtt caggaatgga tccacggaca gaaaacagtc cataccttgg gttcatctat
                                                                       720
acatcattcc aggaaagggc aaccttcatt tctcatggga acactgcccg acaagccaaa
                                                                       780
gagcatggag acataaagtt ggctcaaata tgtggtacaa ttgctgcaga tgagaagcgc
                                                                       840
catgagacag cctacacaaa gatagtggaa aaactctttg agattgatcc tgatggaact
                                                                       900
gttttggctt ttgctgatat gatgagaaag aaaatttcta tgcctgcaca cttgatgtat
                                                                       960
gatggccgag atgataatct ttttgaccac ttttcagctg ttgcgcagcg tcttggagtc
                                                                      1020
tacacagcaa aggattatgc agatatattg gagttcttgg tgggcagatg gaaggtggat
                                                                      1080
aaactaacgg gcctttcagc tgagggacaa aaggctcagg actatgtttg tcggttacct
                                                                      1140
ccaagaatta gaaggctgga agagagagct caaggaaggg caaaggaagc acccaccatg
                                                                      1200
cctttcagct ggattttcga taggcaagtg aagctgtagg tggctaaagt gcaggacgaa
                                                                      1260
accgaaatgg ttagtttcac tctttttcat gcccatccct gcagaatcag aagtagaggt
                                                                      1320
agaattttgt agttgctttt ttattacaag tccagtttag tttaaggtct gtggaaggga
                                                                      1380
gttagttgag gagtgaattt agtaagttgt tgatactgtt gtgttcttgt gttgtcatga
                                                                      1440
gtotgottga tagtgagttt ottttgttto ottttgttgt gttottttat otggtototo
                                                                      1500
tototototo totototttt totottatoo caagtgtoto aagtataata agcaaacgat
                                                                      1560
ccatgtggca attittgatga tggtgatcag tctcacaact tgatcttttg tcttctattg
                                                                     1620
gaaacacagc ctgcttgttt gaa
                                                                      1643
```

<210> 9

<211> 2569

<212> DNA

<213> Arabidopsis thaliana

```
<220>
      <221> exon
      <222> (236)...(729)
      <223> Exon 1
      <221> exon
      <222> (1030)...(1119)
      <223> Exon 2
      <221> exon
      <222> (1201)...(1267)
      <223> Exon 3
      <221> exon
      <222> (1358)...(1450)
      <223> Exon 4
      <221> exon
      <222> (1530)...(1715)
      <223> Exon 5
      <221> exon
      <222> (1809)...(1889)
      <223> Exon 6
      <221> exon
      <222> (1993)...(2130)
      <223> Exon 7
      <221> exon
      <222> (2212)...(2403)
      <223> Exon 8
      <400> 9
cacaccatca ctaataaatt teetteteet tteaagttgt agetaaetta tataagaeat
                                                                        60
aagcgtgcga accagagaca gagatagaaa ttgagagacg ataagcaaag tagaaaacac
                                                                       120
aagtttctct cacacacatt atctctttct ctattaccac cactcattca taacagaaac
                                                                       180
ccaccaaaaa ataaaaagag agacttttca ctctggggag agagctcaag ttctaatggc
                                                                       240
gaacttggtc ttatcagaat gtggtatacg acctctcccc agaatctaca caacaccaq
                                                                       300
atccaatttc ctctccaaca acaacaaatt cagaccatca ctttcttctt cttcttacaa
                                                                       360
aacatcatca totoctotgt ottttggtot gaattcacga gatgggttca cgaggaattg
                                                                       420
ggcgttgaat gtgagcacac cattaacgac accaatattt gaggagtctc cattggagga
                                                                       480
agataataaa cagagattog atccaggtgc gcctcctccg ttcaatttag ctgatattag
                                                                       540
agcagctata cctaagcatt gttgggttaa gaatccatgg aagtctttga gttatgtcgt
                                                                       600
cagagacgtc gctatcgtct ttgcattggc tgctggagct gcttacctca acaattggat
                                                                       660
tgtttggcct ctctattggc tcgctcaagg aaccatgttt tgggctctct ttgttcttgg
                                                                       720
tcatgactgg taaacttaaa aaccetaact tttttcttgt tttctcctct gctttagtct
                                                                       780
cctttagcct ttgatttggt caactttgga tgattccaaa gaaccaatcg aacaaattgg
                                                                       840
tetttateca tatetettea aatagettta ggacataatt ggteteteag gtaacaaget
                                                                       900
gtcattatca tcatactcat catgttgcta gtagaccaac ccaattggca actgtttgtt
                                                                       960
ggttttgcaa ctgtgtaatc tgctttgaat tgtgaacaaa attattgatt tatgttgatt
                                                                      1020
acattgcagt ggacatggta gtttctcaaa tgatccgaag ttgaacagtg tggtcggtca
                                                                      1080
tettetteat teeteaatte tggteeeata eeatggetgg tgagttttge ttteagacea
                                                                      1140
ttcttctcta aaaccacttg cagaatctca tcttcttcat gtaaaaatat gactttgcag
                                                                      1200
gagaattagt cacagaactc accaccagaa ccatggacat gttgagaatg acgaatcttg
                                                                      1260
```

```
gcatcotgta agtcaaaaac gtatttttt ggttatottg ttttagtoot gtggtqttto
                                                                     1320
ttagatgcag ttttattaac tgtttctgta actgcagatg tctgagaaaa tctacaatac
                                                                     1380
tttggacaag ccgactagat tctttagatt tacactgcct ctcgtgatgc ttgcataccc
                                                                     1440
tttctacttg gtaagaactc ctctatttgt tatggtaact taagctgcca caccaagtaa
                                                                     1500
aaaageteat gtetattett etgttteagt gggetegaag teeggggaaa aagggttete
                                                                     1560
attaccatcc agacagtgac ttgttcctcc ctaaagagag aaaggatgtc ctcacttcta
                                                                     1620
ctgcttgttg gactgcaatg gctgctctgc ttgtttgtct caacttcaca atcggtccaa
                                                                     1680
ttcaaatgct caaactttat ggaatteett actgggtaat gegeegetgt tacteeeetq
                                                                     1740
tttcagcctg agcaatttgt gtattatttc ctctgcctta ctcaaaaagg tttttatgtc
                                                                     1800
aaatacagat aaatgtaatg tggttggact ttgtgactta cctgcatcac catggtcatg
                                                                     1860
aagataagct teettggtae egtggeaagg taaaatacat attetetget teeactgtte
                                                                     1920
tttgactaca tcgctctttc ttttaaggtt aaagccaact ggtgtgtaaa tctcatgatt
                                                                     1980
ctcccaaaac aggagtggag ttacctgaga ggaggactta caacattgga tcgtqactac
                                                                     2040
ggattgatca ataacatcca tcatgatatt ggaactcatg tgatacatca tcttttcccg
                                                                     2100
cagatcccac attatcatct agtagaagca gtaagtaaat tgaaagtaaa gactqtttqt
                                                                     2160
gtttttggtg ttcatgctag tttccctgac tcttgctcca ctgttatgca gacagaaqca
                                                                     2220
gctaaaccag tattagggaa gtattacagg gagcctgata agtctggacc gttgccatta
                                                                     2280
catttactgg aaattctagc gaaaagtata aaagaagatc attacqtgaq cqacqaaqqa
                                                                     2340
gaagttgtat actataaagc agatccaaat ctctatggag aggtcaaaqt aagaqcaqat
                                                                     2400
tgaaatgaag caggettgag attgaagttt tttetattte agaceagetg attttttget
                                                                     2460
tactgtatca atttattgtg tcacccacca gagagttagt atctctgaat acgatcgatc
                                                                     2520
agatggaaac aacaaatttg tttgcgatac tgaagctata tataccata
                                                                     2569
      <210> 10
```

```
<211> 3879
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> exon
<222> (780)...(1685)
<223> Exon 1
<221> exon
<222> (1761)...(2129)
<223> Exon 2
<221> exon
<222> (2207)...(2461)
<223> Exon 3
<221> exon
<222> (2544)...(2671)
<223> Exon 4
<221> exon
<222> (2762)...(2959)
<223> Exon 5
<221> exon
<222> (3088)...(3448)
<223> Exon 6
```

<400> 10

aaagatagta tttgttgata aatatgggga tatttatcct atattatctg tatttttctt

accattttta	ctctattcct	ttatctacat	tacgtcatta	cactatcata	agatatttga	120
atgaacaaat	tcatgcaccc	accagctata	ttaccctttt	ttattaaaaa	aaaacatctg	180
ataataataa	caaaaaaatt	agagaaatga	cgtcgaaaaa	aaaagtaaga	acgaagaaga	240
agtgttaaac	ccaaccaatt	ttgacttgaa	aaaaagcttc	aacgctcccc	ttttctcctt	300
ctccgtcgct	ctccgccgcg	tcccaaatcc	ccaattcctc	ctcttctccg	atcaattctt	360
cccaagtaag	cttcttcttc	ctcgattctc	tcctcagatt	gtttcgtgac	ttctttatat	420
atattcttca	cttccacagt	tttcttctgt	tgttgtcgtc	gatctcaaat	catagagatt	480
gattaaccta	attggtcttt	atctagtgta	atgcatcgtt	attaggaact	ttaaattaag	540
atttaatcgt	taatttcatg	attcggattc	gaattttact	gttctcgaga	ctgaaatatg	600
caacctattt	tttcgtaatc	gttgtgatcg	aattcgattc	ttcagaattt	atagcaattt	660
tgatgctcat	gatctgtcta	cgctacgttc	tcgtcgtaaa	tcgaagttga	taatgctatg	720
tgtttgttac	acaggtgtgt	gtatgtgtga	gagaggaact	atagtgtaaa	aaattcataa	780
tggaagtctg	caattgtatt	gaaccgcaat	ggccagcgga	tgaattgtta	atgaaatacc	840
aatacatctc	cgatttcttc	attgcgattg	cgtattttc	gattcctctt	gagttgattt	900
	gaaatcagcc					960
ttatcgttct	ttgtggagca	actcatctta	ttaacttatg	gactttcact	acgcattcga	1020
gaaccgtggc	gcttgtgatg	actaccgcga	aggtgttaac	cgctgttgtc	tcgtgtgcta	1080
ctgcgttgat	gcttgttcat	attattcctg	atcttttgag	tgttaagact	cgggagcttt	1140
tcttgaaaaa	taaagctgct	gagctcgata	gagaaatggg	attgattcga	actcaggaag	1200
	gcatgtgaga					1260
	gactacactt					1320
	tactagaact					1380
atcccgtgga	gtatacggtt	cctattcaat	taccggtgat	taaccaagtg	tttggtacta	1440
	aaaaatatct					1500
aatatatgct	aggggaggtg	gtcgctgtga	gggttccgct	tctccacctt	tctaattttc	1560
	ctggcctgag					1620
	tgcaaggcaa					1680
	acattgctga					1740
	cttattatag					1800
	tagggacctt					1860
	agcaatccgt					1920
	gcatgcgatt					1980
	actgatggtg					2040
	cttagatctt					2100
	tcatacatta					2160
tttatactat	ttgtgtactt	gattgtcata	ttgaatcttg	ttgcaggtcc	tcaatctgat	2220
aaagcctata	gcggttgtta	agaaattacc	catcacacta	aatcttgcac	cagatttgcc	2280
agaatttgtt	gttggggatg	agaaacggct	aatgcagata	atattaaata	tagttggtaa	2340
tgctgtgaaa	ttctccaaac	aaggtagtat	ctccgtaacc	gctcttgtca	ccaagtcaga	2400
cacacgagct	gctgactttt	ttgtcgtgcc	aactgggagt	catttctact	tgagagtgaa	2460
ggttattatc	ttgtatcttg	ggatcttata	ccatagctga	aagtatttct	taggtcttaa	2520
ttttgatgat	tattcaaata	taggtaaaag	actctggagc	aggaataaat	cctcaagaca	2580
ttccaaagat	tttcactaaa	tttgctcaaa	cacaatcttt	agcgacgaga	agctcgggtg	2640
gtagtgggct	tggcctcgcc	atctccaaga	ggtttgagcc	ttattaaaag	acgtttttt	2700
ccaactttt	cttgtcttct	gtgttgttaa	aagtttactc	ataagcgttt	aatatgacaa	2760
ggtttgtgaa	tctgatggag	ggtaacattt	ggattgagag	cgatggtctt	ggaaaaggat	2820
gcacggctat	ctttgatgtt	aaacttggga	tctcagaacg	ttcaaacgaa	tctaaacagt	2880
cgggcatacc	gaaagttcca	gccattcccc	gacattcaaa	tttcactgga	cttaaggttc	2940
	tgagaacggg					3000
gccttacttc	ttgcaaatgc	agatattggc	gtttagaaaa	aacgcaaatt	taatcttatg	3060
agaaaccgat	gattattttg	gttgcagggt	aagtagaatg	gtgacgaagg	gacttcttgt	3120
acaccttggg	tgcgaagtga	ccacggtgag	ttcaaacgag	gagtgtctcc	gagttgtgtc	3180
	: aaagtggtct					3240
	attcacgaga					3300
actcagtggt	aacactgaca	aatccacaaa	agagaaatgc	atgagctttg	gtctagacgg	3360

```
tgtgttgctc aaacccgtat cactagacaa cataagagat gttctgtctg atcttctcga
                                                                      3420
gccccgggta ctgtacgagg gcatgtaaag gcgatggatg ccccatgccc cagaggagta
                                                                      3480
attocqctcc cqccttcttc tcccgtaaaa catcggaagc tgatgttctc tggtttaatt
                                                                      3540
                                                                      3600
gtgtacatat cagagattgt cggagcgttt tggatgatat cttaaaacag aaagggaata
                                                                      3660
acaaaataga aactctaaac cggtatgtgt ccgtggcgat ttcggttata gaggaacaag
atggtggtgg tataatcata ccatttcaga ttacatgttt gactaatgtt gtatccttat
                                                                      3720
atatgtagtt acattettat aagaatttgg ategagttat ggatgettgt tgegtgeatg
                                                                      3780
tatgacattg atgcagtatt atggcgtcag ctttgcgccg cttagtagaa caacaacaat
                                                                      3840
                                                                      3879
ggcgttactt agtttctcaa tcaacccgat ctccaaaac
      <210> 11
      <211> 1200
      <212> DNA
      <213> Arabidopsis thaliana
      <220>
      <221> CDS
      <222> (53)...(1024)
      <400> 11
                                                                        60
cgttgctgtc gaagttaggc caagaaaccc atttaaaaaa aaagagagag agatggagag
tttcccgatc atcaatctcg agaagcttaa tggagaagag agagcaatca ctatggagaa
                                                                       120
                                                                       180
gatcaaagac gcttgtgaaa actggggctt ctttgagtgt gtgaaccatg ggatttcact
cgagcttttg gacaaagtgg agaagatgac caaggaacat tacaagaagt gcatggaaga
                                                                       240
                                                                       300
gagattcaag gaatcgatta agaacagagg tettgaetet ettegetetg aagtcaacga
                                                                       360
cgttgactgg gaatccactt tctacctcaa gcaccttccc gtctctaata tctccgatgt
                                                                       420
ccctgatctc gacgacgatt acagaacgtt aatgaaagac ttcgccggaa agatagagaa
gttgtcggag gagctactgg atctgctgtg cgagaatctc ggtttagaga agggttattt
                                                                       480
                                                                       540
aaaaaaggtg ttttacgggt cgaaaagacc gacttttgga accaaagtca gcaattatcc
accttgtcct aatccggacc tagtcaaggg tctccgagcc cacaccgacg ccggcggcat
                                                                       600
                                                                       660
catcctcctc ttccaagacg acaaagtcag tggacttcag cttcttaaag acggcgagtg
ggtcgatgtt cctccggtta agcattcaat cgtcgttaat ctcggcgatc aacttgaggt
                                                                       720
                                                                       780
gataaccaat gggaagtaca agagtgtgga acatagagtg ctatctcaga cagacggaga
aggaagaatg tcgatcgcat cattctataa tccgggaagc gactctgtta tttttccggt
                                                                       840
                                                                       900
gccggagctg atcggaaaag aagcagagaa ggagaagaaa gagaactatc cgagatttgt
gtttgaagat tacatgaaac tctactctgc tgtcaagttt caggccaagg aaccaaggtt
                                                                       960
tgaagccatg aaagctatgg agacaactgt ggccaacaat gttggaccat tggccactgc
                                                                      1020
gtgaatgata tgtaactggt taataaatat atatatat atatatatag tctttatata
                                                                      1080
atgtcttaga aacttgatta ttcactatac gaataatttt gttcatgttg ttgtatgttt
                                                                      1140
                                                                      1200
aagtggtgaa tgtgttatat atgggaatta atgttttctg ttcgaaaaaa aaaaaaaaa
      <210> 12
       <211> 3438
       <212> DNA
       <213> Arabidopsis thaliana
       <220>
       <221> exon
       <222> (1212)...(1358)
       <223> Exon 1
       <221> exon
       <222> (1461)...(1592)
       <223> Exon 2
```

<221> exon

<223> Exon 3

<222> (1660)...(1820)

```
<221> exon
      <222> (1909) ... (2893)
      <223> Exon 4
      <400> 12
                                                                       60
gttacttttc aaatcttccc tcatattata tagccattga tatcatagag gatgtgagtt
ttaacttaat atttacccgt ttgaaactag ctatttactt aaatatgaat tataatctag
                                                                      120
tttaactacc aaaaacatca tatggggaca agaaaaagta ataaaacgta tggaaaattt
                                                                      180
tgtagatgtt ataaatggat aattattcaa gtgataatct atcactttga tcttatctct
                                                                      240
ttatccaatt taattacttt gtctctaagt gatttgcttc caaaatctaa gtgtagtcta
                                                                      300
tectatttet atettateet ateatataat ettetatata tatgtgagte egatgttgta
                                                                      360
aagcgtacga gagagagtaa tgaagagtga agtgttatat tgttctctcg tccacttcca
                                                                      420
ctctctttt tatctcttac ttacttcttc gtaagatcat tacatataat aaataatatt
                                                                      480
                                                                      540
atttatgttt gtgttatatt taataacagt aaaaagtttt aaaacgttga aaaaattagc
cgacatagaa tacaaaagag ggttagcatc gggggagaaa cgtggaccaa catgatacac
                                                                       600
cctccaaaat agtccccaag ttgaaacatt gacatgtttc gctttttctt ttctgtgtat
                                                                      660
actttttttt tctqtqqqtc acattattta atatttgtat acaagcagct attttacatg
                                                                      720
                                                                       780
gagatttcct gtcggtatag cgtcctcatt tctccatcgc ttccactttt ttcctatact
                                                                       840
aatttqatct aattaattca tatgtcaaaa cattaagaaa atgaaactcg taattcatac
ttgaatttaa tagattaatt aaaatgctat ttattggcaa aataaactcg gtttatatct
                                                                       900
                                                                      960
aaattttaga atcactaaaa ctttttgccc aaaaaaaaat aaaaataaat cactaaaaca
                                                                      1020
aaaaacaatc aaaagaaaac ccatgttggt aaatcggata atgaaaataa ttagaatccc
cgtcctttgt gtattttggc gtagcatgaa actatataat aaacatgcat tcattcttag
                                                                      1080
acttctcgta gcttatcaac aacaacgcgc tcgatctctc tcagcctgtc tgacaactct
                                                                     1140
ttctctagtt ctagagtttt caatttattg ttgagccttt tattaaaaaa aaaaaaacaa
                                                                      1200
gaacaaaaga aatggttcaa ttgtcaagaa aagctacatg caacagccat ggccaagtct
                                                                      1260
cttcgtattt ccttggttgg gaagagtacg agaagaatcc ttacgacgtt accaagaacc
                                                                      1320
ctcaaggcat tatccagatg ggtcttgcgg aaaatcaggt aaacaaatat tattcaacag
                                                                      1380
                                                                      1440
catgtgatat atatatatt atgtatatca tgacagagag actaatttaa agtatgttta
attttattgg atttctgtag ctatgctttg atctactaga gtcatggctt gcacaaaaca
                                                                      1500
cagacgcagc ctgtttcaag agagatggcc agtctgtttt ccgggaactc gctctctttc
                                                                      1560
aagactacca tggcctctct tccttcaaaa atgtaagatt attaattgta tttatcaaat
                                                                      1620
                                                                      1680
ttatttgtag gttgctgatc ttgctcgaat gattttcagg cctttgctga tttcatgtca
                                                                      1740
gaaaatagag gaaatcgagt ttcttttgat tcaaacaacc ttgtgctcac tgctggagcc
acttccgcaa acgagactct aatgttttgt cttgcagatc ccggtgacgc tttcttgctt
                                                                      1800
cccacgccat attatccagg gttagtccac tgtttgctta cacgtaaaat ttccatcatt
                                                                      1860
cctacgaact tgacttaact aaaactcatg tttattttttg tacttcaggt ttgataggga
                                                                      1920
totaaaatgg cgaaccgggg ttgagattgt accaatccaa agctcaagta ctaacgggtt
                                                                      1980
                                                                      2040
tegeataaeg aaacttgeae tegaagaage etaegageaa gecaagaage ttgacetaaa
                                                                      2100
cgtcaaagga atactcatca ccaacccatc taaccctttg ggtacgacaa caacccaaac
cgaactcaac attctatttg atttcatcac caagaataag aatatacatt tagtaagtga
                                                                      2160
cgagatatat tcgggcacag tattcaactc ttcagaattc atcagcgtca tggagattct
                                                                      2220
                                                                      2280
aaaaaataat caactegaaa acacegatgt tttgaacega gtecacattg tttgtagett
atctaaagat ctaggcctcc ctggttttag agttggagcc atttactcca atgacaaaga
                                                                      2340
tgtcatctct qccqctacaa aaatgtcaag tttcggcctt gtctcctccc agacacaata
                                                                      2400
                                                                      2460
cctactatcc tcattattat ctgacaagaa gttcactaag aactacctta gagagaacca
aaaacggctc aagaacagac agagaaagct cgtgttgggt ctagaggcca tcgggatcaa
                                                                      2520
atgtctgaag agtaatgcgg gactcttttg ttgggtcgac atgagacctc tccttagatc
                                                                      2580
taaaacgttc gaagcggaaa tggatctttg gaagaagatt gtttacgaag tgaagctcaa
                                                                      2640
catctctcct ggttcgtcgt gccattgtga agaaccgggt tggtttagag tttgtttcgc
                                                                      2700
gaacatgatt gatgagacat taaagcttgc tttaaagaga ttgaagatgt tggttgatga
                                                                      2760
```

tgaaaactca agtagaagat gccaaaagag taaaagcgaa agactaaacg gttcgaggaa gaagacgatg tcaaatgtct ctaactgggt tttccgacta tcgttcacg accgtgaggc tgaggaacga tagtccggtt tttgttttga agttctttt ttttgtttcc cacacattgc aagtgattct gtaattttt ttatcacgag agagagtgta aaaaaatgga aatgcaacgt gcttactctg atcctagatt ttagaaaacc gttgaagact tcttagagca agtccatcgg cagttttaa tgggtttcta atgggtttct agctaattaa aagtccaaaa ttaaattagga tccatccaa tattaggttt tttggatggg tttttagacg gcgacgtggt cgactgtgag tcgtcggaaa acaaaaaaaa tcacaacact catgtttcc tttttcctct cgtttttcac ttttttgttt tgtccgacgg ccggcgattc gaatcgattt gatctccggt gtatcgaaca tgaaatcggg agagaagagc caaatcatcg acgacttggt tcaccaattc cattcttcga accatactca tattaggtt tcttggcttc tctctaaaac tcttctaatt ttctgata	2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3438
<210> 13 <211> 68 <212> DNA <213> Artificial Sequence	
<220> <223> Beneficial Oligonucleotide-Contains both DNA and RNA	
<400> 13 caggtcaagt gcaacgtagg atgattttta ucaaccuacg ttgcacuuga ccuggcgcgt tttcgcgc	60 68
<210> 14 <211> 68 <212> DNA <213> Artificial Sequence	
<220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA	
<400> 14 caggtcaagt gctacgtagg atgattttta ucaaccuacg tagcacuuga ccuggcgcgt tttcgcgc	60 68
<210> 15 <211> 24 <212> DNA <213> Jelly Fish	
<400> 15 atggtgagca agggcgagga gctg	24
<210> 16 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Mutation	

<400> 16	
atggtgagca agggctagga gctg	24
<210> 17	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mutation	
<400> 17	
atggtgagca agggcaggag ctgt	24
<210> 18	
<211> 68	
<212> DNA	
<213> Artifical Sequence	
<220>	
<223> Beneficial Oligonucleotide-Contains Both DNA and RNA	
<400> 18	
gtgagcaagg gcgaggagct gttcattttu gaacagcuce tegeeeuuge ucaegegegt tttegege	60 68
<210> 19	
<211> 68	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Beneficial Oligonucleotide-Contains Both DNA and RNA	
<400> 19	
tgagcaaggg ctcggagctg ttcacttttg ugaacagcuc cgagcccuug cucagcgcgt tttcgcgc	60 68

INTERNATIONAL SEARCH REPORT

In ..ational application No. PCT/US98/16267

A. CLAS	. CLASSIFICATION OF SUBJECT MATTER					
IPC(6) :	IPC(6) :C12N 15/82, 15/84, 15/82, 5/04; A01H 4/00					
US CL :	536/23.6; 435/172.1; 800/278 International Patent Classification (IPC) or to both no	ational classification and IPC				
	DS SEARCHED					
Minimum do	cumentation searched (classification system followed	by classification symbols)				
u.s. :	536/23.6; 435/172.1; 800/278					
Documentati	on searched other than minimum documentation to the e	xtent that such documents are included	in the fields scarched			
	ata base consulted during the international search (name deposition) (name depositio	ne of data base and, where practicable	, search terms used)			
C. DOC	UMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.			
Y	SPRINGER et al. Gene Trap Tagging of MCM2-3-5- Like Gene in Arabidopsis. 268, pages 877-880. See the entire docu	1-45, 48-72				
Y	SUNDARESAN et al. Patterns of Gene A Revealed by Enhancer Trap and Gene T Genes Deveploment. 1995, Vol. 9, No. the entire documenation.	Trap Transposable Elements.	1-45, 48-72			
- Furt	her documents are listed in the continuation of Box C					
	pecial categories of cited documents:	"T" leter document published after the is date and not in conflict with the ap the principle or theory underlying the	plication but cited to understand			
) u	ocument defining the general state of the art which is not considered to be of particular relevance	*V* document of particular relevance:	the claimed invention cannot be			
	arlier document published on or after the international filing date ocument which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered when the document is taken alone	dered to involve an inventive step			
	ited to establish the publication data of another citation or other pecial reason (as specified)	"Y" document of particular relevance; considered to involve an inventi- combined with one or more other so	ve sien when the document is			
1	locument referring to an oral disclosure, use, exhibition or other needs	being obvious to a person skilled is	n the art			
· · · · · · · ·	ocument published prior to the international filing date but later than he priority date claimed	*A. document member of the same pat				
Date of the actual completion of the international search		Date of mailing of the international	searen repon			
13 OCT	OBER 1998	3 0 OCT 1998				
Name and Commiss Box PCT	mailing address of the ISA/US ioner of Patents and Trademarks	Authorized officer OUSAMA M-FAIZ ZAGHMOU				
Washing	ton, D.C. 20231	1				
Facsimile	No. (703) 305-3230	Telephone No. (703) 308-0196				

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/16267

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: 46-47 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report cover only those claims for which fees were paid, specifically claims Nos.:
Only trose chains for which lees were paid, specifically chains 1705
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

INTERNATIONAL SEARCH REPORT

Inmanational application No. PCT/US98/16267

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I. Claims 1-4, 8-30, 50-53 are drawn to a method of making localized mutation in a target gene.

Group II. Claims 5 -7 are drawn to a method for making mutation using RNA segment contains at least 8 contiguous 2'-substituted Ribonucleotides.

Group III. Claims 31-45, 48-49 are drawn to a method of making localized, non-selectable mutation in a target gene.

Group IV. Claims 54-72 are drawn to a method of making specific mutation such as point mutation or frameshift mutation.

The inventions listed as groups I-IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The specific technical feature of group 1 is a method of making localized mutation in a target gene. Second product does not require the special technical features of group 1 because it entails to a method for making mutation using RNA segment contains at least 8 contiguous 2'-substituted Ribonucleotides, other than the ones claimed in group 1 and it does not require the particular DNA molecules of group 1. The third is a method of making localized, non-selectable mutation in a target gene, not required by group 1. The fourth is entails the making of point or frameshift mutation, does not require the special technical features of group I because it is drawn to specific rather than random mutation. The claims are not so linked by a special technical feature within the meaning of the PCT Rule 13.2 so as to form a single inventive concept, accordingly, the unity of invention is lacking among all groups.

ı	•	١	•

PCT/US98/16267

138D

1440

1

SEQUENCE LISTING

```
<110> 1. Arntzen, Charles
            2. Kipp, Peter B.
            3. Kumar, Ramesh
            4. May, Gregory D.
      <120> The Use of Mixed Duplex Oligonucleotides
        to Effect Localized Genetic Changes in Plants
      <130> 7991-023-999
      <150> 60/054,386
      <151> 1997-08-05
      <160> 19
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 2063
      <212> DNA
      <213> Solanum tuberosum
      <220>
      <221> CDS
      <222> [3]...(1907)
      <400> 1
                                                                        60
agtaccattc cagtiatgac ccggaaaact ccgcotocca ttacacattc otcccggatc
aaccegatte eggecacegg aagteeetta aaatemiete eggeattite eteteetett
                                                                       120
tectitiget theighages tictitosga tectoaacaa coagteaceg gaetigeaga
                                                                       180
gtaactoocg ttogoogcog cogtoaagag gtgtttotca gggagtotoc gataagactt
                                                                       240
ttegagatg: egteaatget agteacattt ettatgegtg gtecaatget atgettaget
                                                                       300
ggoamagmae igcitaccat titcameete mammamatig gatgamegat cetamiggie
                                                                       360
cattgtacca caagggatgg tatcatcttt tttatcaata caatccagat tcagctattt
                                                                       420
                                                                       480
goggaaatat cacatggggr catgccgtat ccaaggactt gatccactgg ctctacttgc
ettttgecat getteetgat caatggtacq atattaacgg tgtctggact gggtccgcct
                                                                       540
ccatectace egatggicag atcatgatge tittatacegg tgtctctgat gattatgtae
                                                                       60Q
angigoaaaa tottgogtao cocaccaact tatetgatco totocttota gactgggtca
                                                                       660
agtacaaagg cascooggtt otggttootto cacooggtt tggtatoaag gaotttagag
                                                                       720
                                                                       780
accegaceae tgettggace ggaceceaaa atgggcaatg gettttaaca atcgggteta
agattggtaa aacgggtatt gcacttgttt atgaaacttc caacttcaca agotttaago
                                                                       640
tättääätga aptgotgoat gopgttoogg gtaogggtat gtgggagtgt gtggactttt
                                                                       900
accoggitate gactgasasa acasaegggi iggadetate atataaeggo cogggitgiaa
                                                                       960
                                                                      1020
egoelgtgit aseagceagt bisgatgeca staagceage toectalgot stigggaogt
                                                                      1080
atgantigan asagasnas igganannig ataannigas attigatigt ggaatiggi
tgaagetgga ttatgggaaa tattatgcat caaagacatt ttatgacccg aagaaacaac
                                                                      114D
                                                                      1200
gaagagtact giggggaigg aliggggaaa Cigalagiga alotgoigac obgoagaagg
gatgaagate tytacagagt attocaagga cagtgottta cyacaagaag acagggacac
                                                                      1260
                                                                      1320
atotactica gtggccagtt gaagaasttg aaagcttaag agtgggtgat cotattgtta
```

øgdaagtesa tetteaaces gyttesatty agetaetees tyttgaetes getyesgagt tygatataga ageetesttt gasytygses asytegeyet eesyggasta attyaageag

```
2
atcatgtagg titcagcigo totactagig gaggigoigo tagcagaggo attitgggad
                                                                      1500
cattleggtgt ogttgtaatt grigatcass agriatrigs grianogros gittactict
                                                                      1.560
acatiticias aggagetgat ggiogagotg agactoacti etgigetgat esaactagat
                                                                      1620
ecteagagge teegggagtt getaaacaag tttatggtag tteagtacee gtgttagaeg
                                                                      1600
gtgaaaaaca ttogatgaga ttattggagg accartcaat tgtggagagc tttgcccaag
                                                                      1740
gaggaagtaac agtrataaca togogaattt acccaacaaa ggcagtgaat ggagcagcac
                                                                      1600
gactettegt titteaseaat gedadsgggg etsgegtgad tgetteegte aagattiggt
                                                                      1960
cachtgagte ggrtastatt egateettee eettgeaaga ettgtaatte atcaageeat
                                                                      1920
atottottoa ttottttttt catttgaagg ttatttoacc gatgtoccat caagaaaggg
                                                                      3980
aagagagggs gaatatgtag tgttatacte tasttatteg ceattttagt gattitteta
                                                                      2040
ciggactitt getattegea aaa
                                                                      20€3
      <210> 2
      <211> 1958
      <212 > DNA
      <213> Solanum tuberosum
      c220>
      <221> CDS
      <222> (22)...(1815)
      <400> 2
tettitgegt titgageaat aatggeaage tigtgeaata gtagtagtae ateteteaaa
                                                                        БŌ
actoetttta ettetteete caettettta tetteeaete etaageeete teaaetttte
                                                                       120
atoratggaa aaogtaacca aatgttoaaa gtttoatgoa aggttaccaa taataacggt
                                                                       160
Saccassacc sesscrities escessifict diffations desetation totinguite
                                                                       240
ggtggtcttt atggtgttgc taatgctata ccattagetg cateogctgc tecagetcca
                                                                       300
cotcotgato totogtotto tagtatagen aggattasen aaaatmaget getgoogtad
                                                                       360
agtigtigeg egectaaged igaigatatg gagaaagtic egiatiacaa gitecettet
                                                                       420
atgactaage teegtgiteg teagestget catgaageta atgaggagta tattgeeaag
                                                                       480
tacaatctgg cgattagtcg aatgaaagat cttgataaga cacaaccttt asaccctatt
                                                                       540
ggttttaage aacaagetaa tatacattgt gettattgta aeggtgetta tagaattggt
                                                                       600
ggcassgagt tacasgites isattetigg ettiteties egitecatag aiggiactig
                                                                       66D
tacttecacg agagastogt gggamaatte attgmtgate cametttege titmecabat
                                                                       720
tggaattggg accatccaaa aggtatgcgt tttcctgcca tgtatgatcg tgaagggact
                                                                       780
tecetttteg atgtaacaeg tgaccaaagt cacegaaatg gagcagtaat egatettggt
                                                                       840
titticggca atgaagtiga macameticma ciccagtiga tgagcaataa titmacacta
                                                                       900
```

atgtaccetc awatgstawc twatgctccw tetcctcegga tettcttteg egggccttat 960 gatotogggg timecaciga actocoggga actatagema ecetocotca oggiocigio 1020 cacatetegt etggtacagt gagaggttea actttgecca atggtgeast atcaaacggt 1080 gagaatatgg gtcattttta ctcagctggt ttggaccogg ttttcttttg ccatcacagc 1140 aatgtggato ggatgtggag cgaatggaaa gcgacaggag ggaaaagaac ggatatcaca 1200 catasagatt ggttgaacto cgagttottt ttotatgatg aasatgaasa coottacogt 1260 gtgæaagtca gagactgttt ggacecgaag aagatgggat acgattacaa accaattgcc 1320 aracratggc gtaacttcaa goodttaaba saggetteag etggaaasgt gaatacaget 1380 teacticege cagetageaa tgtatteeca tiggetaaac tegacaaage aattiegitt 1440 treatesats ggeegactte gtesaggaet esacssgags assetgeses agsggagatg 1500 tigacatica giagcataag ataigataac agagggiaca taaggiicga igigtitiig 1560 aacgiggaca alaaigigaa igcgaaigag ciigacaagg cggagiiigc ggggagiiai 1620 acaagtttgo cacatgttca tagagotggt gagactaato atatogogac tgttgattto 1680 cagctggcga taacggaact gttggaggat attggtttgg aagatgaaga tactattgcg 1740 stgactotss tsccaaasas asstsstsaa sstatctcca ttsaasstsc sacsatcast 1800 cttgcagatt gttaattagt ctctattgsa tctgctgaga ttacactttg atggatgatg 1850 ctctgttttt gtttcttgt tctgtttttt cctctgttga aatcagcttt gttgcttgat 1920

ticattgaag tigtkattca agaataastc agitacaa

s / 1 /

```
<210> 3
      <211> 3.460
      <212> DNA
      <213> Nicotiana tabacum
      <220>
      <221> CDS
      <222> (84)...(3,178)
      <400> 3
totgittott caactcecct testitgccc satigagica tigteeaako tgaaacagaa
                                                                        ΘD
ccaegagaga agagaaaaaa aatatgggtt caacaagcca gagccagagt aagagtctaa
                                                                       120
ctcacacaga agacgaageg ttettatitig ceatgeaatt ggetagtget tetgtactte
                                                                       3.80
                                                                       240
ctatggtert aaaateageg ttagaacttg accttettga acteatgget aaagetggte
caggigoage cattificit totgaattag eigetmaget eitmatecoag aaccompang
                                                                       300
caccogitat tottgatogg atgottaggo tacttgotae tisetetgtt bicaattgta
                                                                       350
ctottagaac actgrotgat ggcagtgttg agaggottta tagtotggot coggtttgta
                                                                       420
agttottgac tamgaatgot gatggtgttt otgttgoocc acttttgctt atgaatcaag
                                                                       460
abasagettet tatggagage tegtaceact taasagatge agtactagat gotogaatee
                                                                       540
cattomacam ggootatgga abgacagoab ttgagtacom tggcacagat comagattom
                                                                       6D0
acasagtett caacogtggs argrergate actocactat gteaatgaaa aagattettg
                                                                       660
                                                                       720
eggertaras aggatttgaa ggodtaaatt coattgttga tgttggtggt ggaactggog
                                                                       780
ctactyttaa catgattyte teessaeste eetetattaa gygtattaad titgatttac
cacatgitat iggagatget coagettace eiggigtega geacgitggi ggegacaigt
                                                                       B40
                                                                       900
tigocagigt godanaagoa gaigeeatti teatgaagig gattigteat gattiggageg
acquiretty cotuments tigaagaatt getatgaags actacctica aatgiggaagg
                                                                       960
tgataatage ggagtgeata etteesgagg eecengatae ateaettgea aetaagaata
                                                                      1020
cagtaratgt tgatattgtg atgttagcac ataacccagg aggcaaagaa aggactgaga
                                                                      1080
aggaatttga ggetttgget aagggegetg gttttaetgg attegeaægg ettgttgege
                                                                      1140
ttacaacart tgggtcatgg aattcaacaa ataattaatc gattcctttg gaggattaag
                                                                      1200
caatatacts treathttse athttsaaat totactttte acasastsse thtactsesa
                                                                      1260
aataaaagaa atatataget tttacettga amagmicami gticammaggg amammmamam
                                                                      132D
aggaagatga aataattgot otoxgammaq cagtgtgtta ggammaagot tittagotgg
                                                                      1380
attttgeatt ttettgtatg tatttctgta atacacatgt attgaaggaa tactagtttt
                                                                      1440
                                                                      1460
egaccaatca tattictttg
      <210> 4
      <211> 1418
      <212> DNA
      <213> Nicotians tabacum
      <22Q>
      <221> CDS
      <222> (59)...(1153)
       <400> 4
                                                                        60
attoottoaa ottaoocaat taagtoatog aaaaatotga aacagaacta aaagtaaaat
                                                                        120
gggttcaaca agcgagagec agagtaacag tetemeteme acagaagaeg aagetttett
atttgccatg caattgtgta gtgcttctgt acttcctatg gtcctasaat cagccgtaga
                                                                        180
                                                                        24 D
acttgacctt cttgagctea tggcteeggc tggtccaggt gcagctattt ctccttctga
attagetget cageteteaa etcagaacee agaageacet gitatgetig ateggatget
                                                                        300
taggetactt gettettact etgttetess tigtactett agasesetge eigatageag
                                                                        36D
tgttgagagg ctttatagte tggctecegt etgtaagtae ttgaetaaga atgetgatgg
                                                                        420
                                                                        48D
tgtttctgtt gcccactit tgcttatgaa tcaagataaa gttcttatgg agagctggta
                                                                        540
ccacttaaaa gatgcagtac tagatggogg aatcccatte aacaaagcet atggaatgac
```

. 1 1 4

```
agcetttgag taccatggca cagatccasg attcascasa gtgttcaacc gtggaztgto
                                                                       600
tgatcaptop actatgtoaa tgaagaagat totbgaggac bacaaaggat ttgaaggoot
                                                                       660
anattocatt gitgatgitg giggiggase gggigetect gittaacatga tigiototaa
                                                                       720
atatecetet attaagggea ttaaetttga tttgecaeat gtaattggag atgetecaae
                                                                       780
ttaccodggt gtcgagcacg ttggtggcga catgtttgct agtgtgccaa aagcagatgc
                                                                       840
                                                                       900
cattiticatg aagiggatti gicatgatig gagogatgag cattgcctaa sattcftgaa
                                                                       960
gaattgotat gaagcactac otgoaaatgg gaaggtgata attgcagagt goatacttoc
                                                                      1020
agaggeeeca gatacateae ttgcaaetaa gaatacagta catgttgata ttgttatgtt
agoacataac ccaggaggca aagaaaggac tgagaaggaa Ettgaggobt tggotaaggg
                                                                      1080
cgctggtttt actggatteg caaggettgt tgegettaca acaettgggt catggaatte
                                                                      1140
aecaagtaat taatogatto ottaatttga aggattaago aatatactot togttitigoa
                                                                      1200
                                                                      1260
tttggaaatt ctacttttct cagagtggct tgactgtgas ataaaagaas tatagctttt
aacttgaaaa gattgatgtt caaxagaxaa xaaggaagat gaxataattg ctctcagaaa
                                                                      1320
                                                                      1360
aggaatgtot taggasaaag ctittttagc tggatttiga attitactgt atgtatttot
                                                                      1418
gttatacaca tgtattgaag gaatactagt tttcgacc
      <210> 5
      <211> 1419
      <2125 DNA
      <2135 Nicotiana tabadum
      c220>
      <221> CDS
      <222> (92) ... (1165)
      <400> 5
atttettiet ettieeetty saetytytti testittie tyetelyssa caafaytytt
                                                                        60
                                                                       120
ttoottotag attttaagtt aaaagaaaac catgggtago ttggatgttg aaaaatcago
tattggttgg getgetagag accettetgg tetactitea cettatacet atacteteag
                                                                       160
asacacagga cetgaagatg tgesagteaa agtittgiat tgiggaetti gebacagiga
                                                                       240
                                                                       300
tottoaccae gttaasaatg stottggcat gtorascisc cototggtto ctggacatga
                                                                       360
agtggtggga aaagtagtgg aggtaggago agatgtgtca aaattcaaag tgggggacac
agttggagtt ggsttactog ttggaagttg taggaactgt ggcccttgca agagagaaat
                                                                       420
                                                                       480
agageaatat tgeaacaaga agatttggaa ttgeaatgat gtetacaetg atggeaaace
                                                                       54D
cacceaaggt ggttttgeta attetatggt tgttgateaa aactttgtgg tgaaaatt¢d
                                                                       600
agagggtatg geaccagane magempeace tetattatgt getggeatam cagtatacag
                                                                       660
tocattomac cattitggit tiaatcagmg tggatttagm ggaggaattt tgggattagg
aggagttgga catatgggag tgaaaatago aaaggcaatg ggacatcatg ttactgtcat
                                                                       720
                                                                       7₽0
tagttottoa aataagaaga gacaagaggo attggaacat ottggtgoag atgattatot
tgttagttca gacactgata aaatgcaaga agotgotgat toacttgact atattattga
                                                                       840
tactgtccct gttggccatc ctcttgaact ttatctttct ttgcttaass ttgatggcas
                                                                       900
                                                                       960
acttatette ateggagtta teaacacece ettgeaattt ateteteesa tygttatget
                                                                       1020
rgggagaaag agratractg gaagetttat tggtagcatg aaggaaarag aggaaatget
agacttotgo aaagagaaag gtgtgactto acagattgag abagtgaaaa tggattatat
                                                                       1080
                                                                       1140
caacsctgcm atggmgaggt tggmgammam tgmtgtgmgc tmcmgmtttg ttgttgmtgt
                                                                       1200
tgotggaago aagottgaco agteattgca caagaaaaac aacatggaat ggttcactat
                                                                       1260
tateceacea ggotetgaga aaaategtac tootcaactt tgatgtcatc tttgttacct
                                                                       1320
ttgttttatt ttccacctgt attatcatat ttggtggtcg agagtgacgt ttatgtatat
                                                                       1380
tttctttctt caasscaste ttaastgast ttggatgttg gtgacgattt tgssatstac
                                                                       1419
caaccatgca aacttacttt ggtagaaaaa aaaaaaaaa
```

<210> €

DEICHOOLD JAKO DONTOREASTI -

<211> 1398

<2125 DNA

<2135 Nicotians tabacum

5

```
<22D>
      <221> CD6
      <222> (88) . . (1161)
      <40D> 6
                                                                      €0
attectettt coettgaact gegttttegt titttetget etaaaacaat egigtgitee
                                                                     120
ttctagattt taagtttaaa gaacetcatg getgectteg aagttgagaa aacaactatt
getteggetg ctagagacco trotgetgta ctitoaccit atacctatae totoagasac
                                                                     180
                                                                     24 D
adaggacctg aagatgtgga agtcaaagtt ttgtattgtg ggdtctgtca cactgatctt
caccaagita assaigatet iggeatgice asciseeric iggiteetgg acaigaagig
                                                                     300
                                                                     360
gtgggagaag tggtggaggt aggaccagat gtgtcaaaat tcasagttgg ggacacagtt
ggagttggat tactogttgg aagttgcagg aactgtggcc ottgcaagag agatatagag
                                                                      420
castattyca acaagasgat ttygasetyc satyatytet acaetystyg casseccace
                                                                      48D
caaggtggtt ttgctaaatc catggttgtt gatcaaaagt ttgtggtgaa aattccagag
                                                                     540
                                                                      600
ggtatggcar cagaacaagc agcarctrte ttatgtgctg gtataacagt atacagtcca
                                                                      660
ttgaaccatt ttggtttcaa acagagtgga tteagaggag gaattttggg attaggagga
gtgggadada tgggagtgsa satagdamag gdamtgggad atcatgttad tgtcattagt
                                                                      72 D
                                                                      780
tottosaata agaagagaca agaggoattg gaacatottg gtgoagatga ttatottgto
agticagaca otgataaaat goaagaggot totgattone tigactatat tattgatact
                                                                      840
                                                                      90 D
gtorotgttg gecatoriot tgaaccttat ctttotttgo ttaaaattga tggcassott
                                                                      960
atottgatgg gagttatoaa bacccccttg castttatot codccatggt tatgotoggs
                                                                     1020
agaaagagca toacaggaag etttattggt agcatgaagg aaacagagga aatgctagat
                                                                     1080
ttotgoaxag agaaaggtgt gaottoacag attgagatag tgwaxatgga ttatatcaac
                                                                     114D
actgcaatgg agaggttgga gaeaaatgat gtgaggtaca gatttgtggt tgatgttatt
                                                                     1200
qqaaqcaaqc ttgaccagta attatattac acaagaaaaa caacatggaa tggttcacta
ttatacsagg ctgtgagsat actsaacttt gatgtcgtct tttgtatcct tttgttttat
                                                                     1260
                                                                     1320
ttgccaccts tattttctta tttggtgatc gagagtgacg tttatgtatt attttctttc
                                                                     138D
1398
SESSESS ESSESSES
      <210> 7
      <211> 1533
      <212> DNA
      <233> Carthamus tinctorius
      <220>
      <221> CDS
       <222> (106)...(1296)
      <400> 7
geteactigt giggiggagg agasaaacag aacteacsaa aagettigeg aetgecaaga
                                                                       €0
                                                                      120
acaacaacaa caacaagato aagaagaaga agaagaagat caaaaatggo tottogaato
actocagiga cottgesate ggagagatat egitegitti egitteetaa gaaggetaat
                                                                      160
                                                                      240
ctcagateto ecamattoge catggeotec acceteggat catecacace gaaggttgac
                                                                      300
autgecaaga ageetttica aceteesega gaggtteatg tteaggtgae geactecatg
conceacaga agatagagat titcaaatee ategagggtt gggetgagea gaacatatig
                                                                      360
                                                                      420
gttcacctaa agecagtgga gasatgttgg caagcacagg atttcttgcc ggaccctgca
                                                                      460
totgaaggat ttgatgaaca agtoaaggaa otaagggcaa gagcaaagga gattootgat
                                                                      540
gattactitg tigittiggt iggagataig attacagagg aagccotace tacttaccaa
                                                                      600
acantgetta ataccetaga tegetetaegt gatgagactg gegetageet taegeetteg
                                                                      660
gotgtotgga otagggottg gacagotgaa gagaadaggo atggogatot totocacaco
                                                                      720
 tatetetace titletgggeg ggtagaeatg aggeagatae agaagaeaat teagtatete
                                                                      760
 attgggtcag gaatggatee tegtaeegaa aacageeest acettgggtt catetacaea
                                                                      B40
 togtttcame agostscome attistitct cacegemanca coeccassca igcamaget
```

catggggacg tgasactggc gcaeatttgt ggtacaatcg cgtctgacga aaagcgtcac

1620

1643

```
gagaddgott atadaaagat agtogaaaag Otattogaga togatootga tggcacogtt
                                                                                                                             960
cttgcttttg ccgacatgat gaggaaaaag atctcgatgc ccgcacactt gatgtacgat
                                                                                                                           1020
gggdgtgatg acaectitt dgaadatttd tdggdggttg occaaagant oggdgtctac
                                                                                                                           1080
accgccaaag actacgccga catactggaa titctggtcg ggcggthpha agtggcggat
                                                                                                                           1140
ttgaccggcc tatetggtga agggcgtaaa gegcaagatt atgtttgegg gttgecacea
                                                                                                                           1200
Agmatragma ggctggaggma gagmgctcha gggrgagrma aggmaggacc tgttgttcca
                                                                                                                           1260
ttcagctgga ttttcgatag acaggtgaag ctgtgaagaa aaaaaaaacg agcagtgagt
                                                                                                                           1320
toggttictg tiggcttatt gggtagaggt taaaacctat titagatgto tgtttogtqt
                                                                                                                           1360
aatgtggttt titttottot aatottgaat otggtattgi giogitgagt tegegtgtgt
                                                                                                                           1.440
gtsaacttgt gtggctgtgg acetattate gaactcgtta tgccaatttt gatgacggtg
                                                                                                                           1500
gttategtet bedetggtgt ttttttattg ttt
                                                                                                                           1533
          <210> 8
          <21%> 1643
           <212> DNA
          <213> Ricinus communis
          <220>
          <2215 CDS
           <222> {1}...(1239)
          <400> B
ttorggraam tameaaaaaa eesaaagaaa maggtamgaa maammadami ggeterraag
                                                                                                                               60
programment topition of a second and the state of the second seco
                                                                                                                             120
agtaccagat ctoctaagtt ctacatggcc totaccetca agtetggtte taaggaagtt
                                                                                                                             180
gagaatotea agaageettt catgoeteet egggaggtae atgtteaggt tacceattet
                                                                                                                             240
atgocaccoc anaagattga gatotttaaa tooctagaca attgggctga ggagaacatt
                                                                                                                             300
otgetteate tgaageeagt tgagaaatgt tggcaacege aggattett geesgateee
                                                                                                                             360
geetetgatg gattigatga geaagteagg gaacteaggg agagageasa ggagatteet
                                                                                                                             420
gatgattatt tigitgitti ggitggagad algataaogg aagaagddot toddaffiab
                                                                                                                             480
cassessing typetaccit ggatggagtt cgggatgasa caggtgcasg toctactict
                                                                                                                             540
tgggcaatti ggacaagggc atggactgog gaagagaata gacatggiga cotoctcaat
                                                                                                                             600
abgtatetet acctatetgg aegagtggae atgaggeann ttgagangan anticantat
                                                                                                                             66D
ttgattggtt baggaatgga tobacggaca gaaaacagte catacettgg gttcatetat.
                                                                                                                             720
acateattee agganaggge aacetteatt tetentggga acaetgeeog acaagecaaa
                                                                                                                             78D
gagcatggag acataaagtt ggctcaaata tgtggtacaa ttgctgcaga tgagaagogc
                                                                                                                             840
catgagadag odtadadaa gatagtagaa aaadtotttg agattgatoo tgatggaact
                                                                                                                             90D
gttttggctt ttgctgatat gatgagaaag asaatttcta tgcctgcaca cttgatgtat
                                                                                                                             960
gaiggregas atsataatet tittgaeeae titteagets tigegeages tottgaate
                                                                                                                           1020
tacocagosa aggattatgo agatatattg gagttottgg tgggcagatg gaaggtggat
                                                                                                                           1000
asactaacgg gcctttcagc tgagggacaa aaggctcagg actatgtttg tcggttacct
                                                                                                                           1140
ccaagaatta gaaggotgga agagagagot caaggaaggg caaaggaagc acccaccatg
                                                                                                                           3.200
cotttoaget ggattttega taggemægtg magetgtmgg tøgetmæagt geæggaegam
                                                                                                                           1250
accgaaatgg ttagtttoac totttttcat gcccatecct gcagaatcag aagtagaggt
                                                                                                                           1320
agaattitgt agtigottit trattacaag tocagittag titaaggiot giggaaggga
                                                                                                                           13BD
gttagttgag gagtgaatti agtaagitgi igalacigii gigitciligi gitgicaliga
                                                                                                                           1440
gtchgcttga tagtgagttt cttttgtttc cttttgttgt gtretrrar eiggrerere
                                                                                                                           1500
```

tototototo totototttt totottatoo oaagtgtoto aagtataata agoaaaogat

ccatgtggca attttgatga tggtgatcag totcacaact tgatcttttg tcttctattg

<210> 9

<211> 2569

gaaacacage ctgcttgttt gas

<212> DNA

<213> Arabidopsis thaliana

. . .

```
<220>
      <221> exon
      <222> (236) ... (729)
      <223> Exon 1
      <221> exon
      <222> (1030)...(1119)
      <223 Exon 2
      <227.> exon
      <222> (1201)...(1267)
      <223> Exon 3
      <221> exon
      <222> (1358)...(1450)
      <223> Bxon 4
      <221> exon
      <222> (1530)...(1715)
      <223> Exon 5
      <221> exon
      <222> (1809)...(1889)
      <223> Excn 6
      <221> exon
      <222× (1993)...{2130}
      <223> Excn 7
      <2215 exon
      <2225 (2212) ... (2403)
      <223> Exon B
      < 4 DD> 9
cacaccatca ctastaaali teetteteet tteaagtigt agetaacita tataagacat
                                                                        60
aagogtgoga accagagaca gagatagaaa ttgagagacg ataagcaaaq tagaaaacac
                                                                       120
adotticiót cacacacall afcicitici ciatiaceae cacicatica taacagaaac
                                                                       180
ccaccaasaa ataaaaagag agacttttca ctotggggag agagotcaag ttotaatggo
                                                                       240
gaacttggtd ttatoagaat geggtaterg acctdtddd agaatdtaus casceddag
                                                                       300
atpoaattto ptotoceaca acaacaaatt cagaccatca ctttottott ottottacaa
                                                                       360
aacatcatca totoototgt cttttggtot gaattcacga gatgggttca cgaggaattg
                                                                       420
ggogttgaat gtgagcabac battaacgab abbaatattt gaggagtbtb battggagga
                                                                       48D
agataataan cagagattog atoraggtgo gootootoog ttoaatttag otgatattag
                                                                       540
agcagotata cotaagcatt gttgggttaa gaatecatgg aagtotttga gttatgtogt
                                                                       60D
Casasacete ectatoetet tigeatteee tectegaget gettacetea acaattegat
                                                                       660
tgtttggcct ctctattggc tcgctcaagg aaccatgttt tgggctctct ttgttcttgg
                                                                       720
tratgartgg tasacttsas sacrotesor titticityt titicitottet gotttagict
                                                                       780
cetttageet ttgatttggt caactttgga tgattecaaa gaaccaateg aacaaattgg
                                                                       840
tetttateea tatetettea satagettta ggacataatt ggteteteag gtaacaaget
                                                                       900
gicattatea tratacteat catgitgeta giagacease ecastigges actgittgit
                                                                       960
99tittgcaa ctgtgtaatc tgctttgaat tgtgaacaaa attattgatt tatgttgatt.
                                                                      1020
acattgcagt ggacatggta gtttctcaaa tgatccgaag ttgaacagtg tggtcggtca
                                                                      1080
tobtobtoat tootoaattu tggtoocata coatggotgg tgagttttgc tttcagacca
                                                                      1140
ttottotota aascoactty cagaatotoa tottottoat gtaaaaatat gactttgcag
                                                                      1200
geseattagt nacagaacto accaccagaa coatggadat gitgagaatg acgaatottg
                                                                      1260
```

```
gcatcotgta agtoasaaac gtattittti ggttatotig tittagioot giggigitto
                                                                     1320
ttagatgcag tittattase egitterigta arigragatg trigagasaa triacaatao
                                                                     1380
tttggaraag cogactagat totttagatt tacactgoot otogtgatgo ttgcataroc
                                                                     1440
tttotacttg gtaagaacte ctctatttgt tatggtaact taagetgeea caccaagtaa
                                                                     3.5 DQ
aaaagoboab gertattott otgettoage gggotogaag tooggggaaa aagggttoto
                                                                     1560
attaccated agacagigae tighteetee diamagagag maaggatgie cicaciteta
                                                                     1€20
ctgottgttg gactgcastg gctgctctgc ttgtttgtct caacttcaca atcggtccaa
                                                                     1680
ttcasatget caaacittat ggaatteett actgggtaat gegeegetgt tacteecetg
                                                                     1740
tttcagcotg agcaatiigt giatiatiic cictgootta cicaasaagg tiittaigic
                                                                     1800
aaatacagat aaatgtaatg tggttggact ttgtgactta cotgcatcac catggtcatg
                                                                     1960
aagataaget teettggtae egtggeaagg taaaatacat attetetget teeactgtte
                                                                     1920
tttgactaca togotottto tttteaggtt aaagocaact ggtgtgtaaa totcatgatt
                                                                     1980
ctoccaeaad aggegtggag ttacctgaga ggaggactta caecattgge togtgectac
                                                                     2040
ggattgates ataacateca toatgatatt ggaactcatg tgatacatca tetttteccg
                                                                     2100
cagateceae attateatet agtagasges graagtaaat tgaaagtaaa gaetgittgi
                                                                     2160
gtttttggtg ttcatgctag tttccctgac tcttgctcca ctgttatgca gacagaagca
                                                                     2220
getasscosg tattagggaa gtattacagg gageotgata agtetggace gttgecatta
                                                                     2280
catttactgg naattcrage gasaagtata aaagaagate attacgtgag egacgaagga
                                                                     2340
gaagtigtat actataaago agatocaaat ototatggag aggtoaaagt aagagoagat
                                                                     2400
tgaaatgaag caggottoeg attgaagttt ttrotattto agaccagotg attrottgot
                                                                     2460
tactgratea atttattgtg teacceacea gagagttagt atetetgaat acgategate
                                                                     2520
egatggaaac aacaaatttg titgcgatac tgaagctata tataccata
                                                                     2569
```

```
<210> 10
<211> 3879
<2125 DNA
<213> Arabidopsis thaliana
<2205
<221> exon
<222> (780) ... [1685]
<223 > Exon 1.
<221> exon
<222> (1761)...(2129)
<2235 Exon 2
<2215 exon
<2225 {2207}...[2461]
<223> Exon 3
<221> exon
<2225 (2544)...(2671)
<223> Exon 4
<221> exon
<222> (2762)...(2959)
<223> Exon 5
<221> axon
<222> (3088)...(3948)
<223> Exon 6
```

<400> 10
668getagte tttgttgata aatatgggga tatttateet atattatetg tatttttett

		ttatctacat				120
		accagctata				160
		agagaaatga				240
		ttgacttgaa				300
		teccaaatee				360
		ctcgsttctc				420
		tttcttctgt				480
		atctagtgta				540
		attoggatto			_	€₽₫
		gttgtgatcg				ಕ್ಕಂ
		cgctacgttc				720
		gtatgtgtga				780
		geaccgcest				840
		attgcgattg				900
actttgtgaa	gaaatcagcc	gtgtttccgt	ategatgggt	actigitoso	tttggtgctt	960
ttatogttot	ttgtggagca	actcatctta	ttaacttatg	gactttcart	acgcattcga	1020
gasccgtggc	gcttgtgatg	actaccgcga	aggtgttaac	coctottgtc	togtgtgeta	1080
ctgcgttgat	gottgttcat	attattcctg	atcttttgag	tgttaagact	rgggagettt	1140
tettgaasaa	taaagetget	gagetegata	gagaaatggg	attgattoga	actcaggaag	1200
aaaccggaag	gcatgtgaga	atgttgactc	atgagattag	aagcacttta	gatagacata	1260
ctattttaaa	gactacactt	gttgagcttg	gtaggacatt	agotttggag	gagtgtgcat	1320
tgtggatgcc	tactagaact	gggttagagc	tacagettte	ttatacactt	cetcatcaac	1390
atcocgtgga	gtatacggtt	cctattcast	taccggtgat	taaccaagtg	tttggtacta	1440
gtagggctgt	a aaaatetct	cctaattctc	ctgtggctag	gttgagacct	gtttctggga	1500
aatatatgct	49\$\$\$\$a \$ \$t\$	gtogotgtga	gestteeset	tetecacett	totaatttto	1560
agattaatga	ctggcctgag	ctttcaacaa	agagatatgo	tttgatggtt	ttgatgcttc	1620
cttcagatag	tgcaaggcaa	tggcatgtcc	atgagttgga	actosttsaa	gtogtogotg	1680
atcaggtttt	acattgctga	gaatttotot	totttgctat	gttcatgatc	ttgtctataa	174D
cttttcttct	cttattatag	gtggctgtag	ctctctcaca	tectgogate	ctagaagagt	1800
cgatgcgagc	tagggacett	ctcatggage	agaatgttgc	tottgateta	gctagacgag	186D
೩ನಡ್ಡ ರಕ್ಷಿತ್ರಕ್ಕಿತ್ರ	agcaatccgt	gcccgcaatg	atttcctage	gettatgaac	catgaaatge	1920
gaacaccgat	gcatgcgatt	attgcactct	cttccttact	ccaageeecg	gasctasccc	1980
ctgaaceeag	actgatggtg	gaaacaatac	ttaaaagtag	taacettttg	gcaectttga	2040
tgaatgatgt	cttagatott	tcaaggttag	aagatggaag	tottomactt	gaacttggga	2100
cattcaatct	tcatacatta	tttagagagg	taacttttga	acagetetat	gtttcataag	2160
tttatactat	ttgtgtactt	gattgtcata	ttgaatcttg	ttgcaggtcc	tcastctgat	2220
assgcctsta	gcggttgtta	agaaattacc	catcacacta	aatottgcac	cagatttgcc	2260
agaatttgtt	gttggggatg	agaaacggct	aatgcagata	atattasata	tagttggtaa	2340
tgctgtgaaa	ttotocaaac	aaggtagtat	ctccgtaacc	gctcttgtca	ccaagtcaga	2400
cacacgaget	gctgactttt	ttgtcgtgcc	aactgggagt	cstttctact	tgagagtgaa	2460
ggttattate	ttetatette	ggatettata	ccatagotga	aagtatttct	taggtottaa	2520
ttttgatgat	tattcaaata	taggtassag	actctggage	aggeataeet	cctceagaca	2580
ttocaaagat	tttcactaaa	tttgctcaaa	cacaatettt	agogaogaga	agetegggtg	2640
gtagtgggct	tggcctcgcc	atctccaaga	ggtttgagcc	ttattaaqag	acgttttttt	2700
		gtgttgttaa				2760
ggtttgtgaa	tctgatggag	ggtaacattt	ggattgageg	cgatggt¢tt	ggaaaaggat	2820
gcacggctat	ctttgatgtt	aaacttggga	totoagaacg	ttcaaaogaa	totaaacagt	2680
cgggcatacc	gaaagttcca	gccattccc	gacattcass	tttaactgga	cttaaggttc	2940
		ttagtataag				3000
		agatatt gg c				3060
		gttgcagggt				3120
		ccacggtgag				3180
		tcatggacgt				3 24 0
		aattomcamm				3300
actcagtggt	*acactgaca	aatocacaaa	agagaaatgo	atgagetttg	gtotagacgg	33 6 0

. . .

```
totottote aaaccoptat cactagacas cataagagat ottototot atottotega
                                                                      3420
gedeegggta etgtacgagg geatgtaaag gegatggatg ccccatgeed dagaggagta.
                                                                      3480
attrogetee egentiette teregtaaaa matrogaage tgatettete tegittaatt
                                                                      354D
                                                                      3600
gtgtacatet cegagettgt oggegogttt tggatgetet ottekkeckg kakegggeete
acaasatsga asctotasac oggtatgtgt cogtaggogat ttoggttata gaggaacasg
                                                                      366D
atggtggtgg tataatcata coatttoaga ttacatgttt gsctaatgtt gtatoottat
                                                                      3720
atatgtagtt acattettat aagaatitgg at@gagttat ggatgettgt tgegtgeatg
                                                                      3780
tatgacatty atycagtatt atygogteag ctttgcgccg cttagtagaa caacaacaat
                                                                      3840
                                                                      3879
ggcgttacti agtitctcaa tcaacccgat ctccaaaac
      <210> 11
      <211> 1200
      <212> DNA
      <213> Arabidopeis thaliana
      <220×
      <221> CDS
      <222> (53)...(1024)
      <400> 11
                                                                       60
cqttgctgtc gaagttaggc caagaaaccc atttaaaaaa aaagagagag agatggagag
                                                                       120
tttcccgatc atcastctcg agasgcttaa tggagaagag agagcaatca ctatggagas
                                                                       180
gaticaaagac gettgtgaaa actggggett etttgagtgt gtgaaccatg ggattteact
chanctttty pacaaantyn anaanathan caangaacat tacaanaant gcatsgaaga
                                                                       240
                                                                       300
qaqattcaaq qaatoqatta aqaacagagg tottgactot ottogototg aagtoaaoga
                                                                       36D
eghtgadtgg gaatecacht totacoteaa geacotteen gtotetaats tetengangt
                                                                       420
cootgatoto gaogaogatt acagaacgtt aatgaaaga0 ttogooggaa agabagagaa
                                                                       460
gttgteggag gagetættgg Atetgetgtg egagaatete ggtttagaga agggttattt
aaaaaaggig tittacgggi ogaaaagaco gactitigga accaaagtoa gcaattatoo
                                                                       540
accttgtcct aatcoggacc tagtcaagag totoogagoo cacacogacg coggoggcat
                                                                       6D0
catectecte trecaagang acaaagreag togantinas citettakag acgongagto
                                                                       €6Û
                                                                       720
ggtcgatgtt cctccggtta agcattcaat cgtcgttaat ctcggcgatc aacttgaggt
                                                                       790
gataaccaat gggaagtaca agagtgtgga acatagagtg ctatctcaga cagacggaga
                                                                       840
aggaagaatg tegategeat cattetataa teegggaage gactetgita tittiteeggt
                                                                       900
googgagotg atoggaaaag aagbagagaa ggagaagaaa gagaactato ogagattigt
                                                                       960
gtttgaagat tacatgaaac totactotge tgtcaagttt caggccaagg aaccaaggtt
tgaagccatg amagctatgg agacametgt ggccamemat gttggaccat tggccactge
                                                                      1020
                                                                      1080
gtgaatgata tgtaactggt taataaatat atatatat atatatatag tetttatata
                                                                      1140
atqtcttaga ascttqatta ttcactatac gaataatttt gttcatqttg ttgtatgttt
                                                                      1200
aagtggtgaa tg6gttatat atgggaatta atg8ttttctg ttcg888888 888888888
      <230 > 12
      <211> 3438
       <212> DNA
       <213> Arabidopsis thaliana
       <220>
       <221> exon
       <222× (1212)...(1358)
       <223> Exon 1
       <221> exon
       <222> (1661) ... [1592]
       <223> Bxon 2
```

DECORPORATE AND PROTOCERATE

```
<221> exon
<222> (1660)...(1820)
<223> Exon 3
<221> exon
<222> (1909)...(2893)
<223> Exon 4
```

<4D0> 12

60 gttacttttt aaatottood toatattata tagooattga tatoatagag gatgtgagtt ttaacttaat átttaccogt ttgasscteg Ctatttactt aastatgast tstaetotag 120 tttaactacc maaaacatca tatggggaca agaasaagta atamaacgta tggaaaattt 180 240 equagatget atamatggat mattattomm gtgatmatet atcacettigm tettatetet 300 ttatecasti taattaetti gietetaagi gaittgette caakatetaa gigtagieta 360 tectatttet atettateet ateatataat ettetatata tatgtgagte egatgttgta aagogtacga gagagagtaa tgaagagtga agtgttatat tgttototog tocacttoca 420 480 etetetettt tabetettae ttaettette gtaagateat taeatataat aaataatatt atttatgttt gtgttatett teatescagt aamaagtttt aamacgtige aesaattago 540 cgacatagaa tacaaaagag ggttagcatc gggggagaaa cgtggaccaa catgatacac 600 corocaasat agroccossg tigasscett gacatgitto gotititott ticigigist 660 720 actititit totgigggto acattatta atattigtat acaaggagot attitacatg gagattteet groggtatag ogtoctoatt totocatogo thecastitt ticctatact 780 8 é D sstrtgatot dattaattoa tatgicaaaa cattaagaaa sigaaactog taattoatac 900 ttgaatttaa tagattaatt aaaatgotat ttattggdaa aataaactog gtttatatot 960 asstittaga algagiases cittitigood aaasaaaas aaaaalaab dagtaaasca 1020 assacasto saaagaaaso costgttggt asateggsts atgssataa ttagaateee egreeritgi gusttitgge giogestgaa actatataat aaacatgeat testicitag 1080 114D actictogra gettatoase ascasegoge togatototo toageotyte tyacasetot 1200 gaacaaaaga aatggttess tigtessgas asg¢tscatg caacagccat ggccaagtct 126D 1320 cttcgtattt cottggttgg gaagagtacg agaagaatcc ttacgecgtt accaagaacc ctcaaggcat tatccagatg ggtcttgcgg aaaatcaggt aaacaaatat tattcaacag 1380 catotoatat atatatactt atgtatatoa tgacagagag actaatttea agtatgttta 144D 150D attitatigg atticigtag ctatgetitg atctactaga gtcatggett gcacaaaaaca cagacgoage objittomag agagatggod agtotgitti ocgggaachd gototetito 1560 1620 aagactacca togoctotot toottossaa atgtaagatt attaattyta titatossat ttatriguag gitgotgato itgotogaat gartticagg coittgciga titoatgica 1680 174D qaasataqaq qaastegagt ttettttgat teaaacaace ttgtgetcae tgetggagee 1800 Acttococaa acgagactot aatottttot ottocagato coggtoacoc tttottoctt cocargonat ettaborage getagerran tettegetta cangeasast teccetratt 1860 cotacgaact tgacttaact aaaactcatg tttatttttg tacttcaggt ttgataggga 1920 trisamango ogaacogggo tigagatigi accaatocaa agetraagta ctaacgggti 1980 204D togcateacy asacttgcac togsagsage ctacgagess gccaagsage ttgacctass egicaaagga atacteatea ecaaceeate taaceetitg ggiacgacaa caaceeaaac 2100 egaacteaac attetattty attteatear caagaataag aatatacatt tagtaagtga 216D egagatatat tegggedesig tattesiete tteagaatte ateagogtea tegagisttet. 2220 2280 ammanatant caaptogaaa acacogatgt titgmaccgm giccacattg titgtagcti atotawagat ctaggeotee otggthttag agthggagod atttactors atgacsaaga 2340 tgtcatetet geogetacaa aaatgteaag ttteggentt gteteeteec agacacaata 240D ectactator testiatiat ergsesagas ottoretaag aactacetta gagagasees 246D assacegette aagaacagae agagaaaget egtgttgggt etagaggeta tegggateaa **25**20 atgictgasg agtastgegg gaetettttg ttgggtegae atgagaeete teettagate 2580 264D taaaacetto gaagoggaaa tggatotttg gaagsagatt gtttaceaas tgaagotcaa cateteteet ggttegtegt gecattgtga agameegggt tggtttagag tittgtttege 2700 2760 gancatgatt gatgagacat taaagottgo tttaaagaga Etgaagatgt tggttgatga

gaagangatg towaatgtot obaactggt titeogacta togitteacg acceptgagge togaggaacga tagteettit tittgtite cacacattge agtgattot gaattitit tittgtite cacacattge agtgattot gaattitit titateacgag agaggigta aaaaaatgga aatgcaangt gottactotg atoctagat tiagaaaacc gitgaagact tottagagaa agtccategg cagttitea tigggittota atgggittot agctaattaa aagtccaaaa tiaaatgaaa gogaccaactaa ataattagga tocateccaa tattaggitt tittggatggg tittitagacg gogaccateggi cgactgigag togicggaaa acaaaaaaaaa toacaacac catgiticc gattitectot cgittiteac tittitgtit tigteegacgi ceggegatte gaategatti gatotecggi giategaaca tigaaateggi agagaagagi caastcateg acgacttiggi toacceaate cattotecga accatactca tataagagti tottggetto totetaaaac 34	
tyaggaacga hagiceggit titgittiga agitettiti tittgittee eacacatige aastgattet glaatitti titateegga agiagatga aastgaacga agigegtatet glaatittit titateegga agigaagita aastgaacga astgaacga gettactet atettagate ittagaasacc gitgaagact tettagaga astgaacga eagittita taggattitta agigitteta agitaataa aagiceaasa titaatigaa accaacaata ataatiagga teestoocaa tataagittiteeggi gitteegaacgi egactgigag teestoocaa tataagattitteeggi gateeggi gateegaacgi egactgigag teestoogaa acaasaasaa teesaacaac estgittice gateeggi gateegaac tittitigit byteegaagg eegactgig saateegatti gateeggi gateegaa acaataacaa tataagagi teetegaacaate eattettega accatactea tataagagit tettggette teeteaaaac teetettaati titetgata eegactaggi gagaagaaga caastcateg acgactiggi gateacaatic eattettega accatactea tataagagit tettggette teeteaaaac teetettaati titetgata eegactaga accatactea tataagagit tettggette teeteaaaac teetettaati titetgata eegactagi gagaagaaga eaaatcateg acgactiggi gagacagaaga eaaatcateg acgactiggi gagactatitta titetgata eegactagi tettggette teeteaaaac eegactiggi gagacaaga eaaatcateg acgactiggi gagactatitta ucaaccuacg titecacuuga ceuggegegi titetgege eegacgi gategaaga atgattitta ucaaccuacg titecacuuga ceuggegegi eegacgi gategaaga atgattitta ucaaccuacg tagcacuuga ceuggegegi eegacgi gategaaga getacgi gategaaga atgattitta ucaaccuacg tagcacuuga ceuggegegi titecgege eegacgi gategaaga atgattitta ucaaccuacg tagcacuuga ceuggegegi eegacgi gategaaga gataattita ucaaccuacg tagcacuuga ceuggegegi titecgege eegacgi gategaaga atgattitta ucaaccuacg tagcacuuga ceuggegegi titecgege eegacgi gategaaga atgattitta ucaaccuacg tagcacuuga ceuggegegi titecgege eegacgi gategaagaagaagacaaaccuacga tagcacuuga ceuggegegi titecgege eegacgi gategaagaagacaaaccuacga tataagaaccuacacga eegaccuacacga eegaccuacacacacacacacacacacacacacacacacaca	caaaagag taaaagcgaa agactaaacg gttcgaggaa 2820
asgtgattot gtaattttt bittocagag agagagtgta saaasatgga astgcaacgt gottactotg atcrtagat ittagasacc gitgaagact tottagagas agtccategg cagttittas taggittots atggittot agctaattaa sagtocaaca gitccategg cagtittas taggittots atggittot agctaattaa sagtocaaca tittagaga accoaactaa ataattaga tocatocaac tattaggitt titggatggg tottitec titticctot cittitocot tittitocot tittitoco	aactgggt tttccgacta tegtttcacg accgtgagge 2800
gothactoth atcotagath tragmanacc giteasgach tottagagas agtocategg cagiffilms tyggittota atgggittic agotaatras asagificasas itaaatgas accoaactas ataattaga tocktocas tattaggitt titiggatgg tititagacg gogacgitgi cgactytgag togtoggaa accassassa tracascact catgitticc tititoctot cgittitoca titititott bitotaga coggogate gastogategi gatocagas tgasaatcga acgastagg coggogate gastogategi tracocatto catcitotga accatactos tataagagit tottogategi tracocatto catcitotga accatactos tataagagit tottogotic tottotaate tititogate catcitotaate tititogate catcitoga accatactos tataagagit tottogotic tottotaate tititogate catcitoga accatactos tataagagit tottogotic tottotaaaccatic accatactos tataagagit tottogotic tottotaaaccatic accatactos tataagagit tottogotic tottotaate tititogotic catcitogaccatic accatactos tataagagit tottogotic tottogotic contains both DNA and RNA catcitogotic catcitogotic tottogotic contains both DNA and RNA catcitogotic	tgittiga agitcitti tittgittoo cacacattgo 2940
cogttitte toggttota atgggttot accators accessed thatagas accesses ataitagas accesses tatagated togetocae tattagated tittingatog gogactagat cactificated toggtated toggas accasses traceacact cattitions gattotogat toggtogas accasses traceacact cattitions gattotogat gratiques toggtogas accasses traceacact cattitions gattotogat gratiques toggastoga accasses traceacact cactifities gattotogat gratiques toggastoga accasses traceacact cactifities gattotogated gratiques accasted gasgasagae cassinated accasted gasgastogated gasgastogated gastogated gastogated tottotaate trougate accasted tatagagit tottogate accasted tatagagit tottogate tottogate accasted tatagagit tottogate accasted tatagagit tottogate accasted tatagagit tottogate accasted tottogate tottogate accasted tottogate accasted tottogate accasted tottogate accasted tottogate tottogate accasted tatagagit tottogate accasted tottogate tottogate accasted tottogate tottogate accasted tottogate accasted tottogate accas	atcacgag agagagtgta aaaaaatgga aatgcaacgt 3000
acceance a statitage techtocan tattagett titigating tittlagang grapherings tigategaa tegrospasa acaasasas traceance testitice ightitice tititites tititititit titigating tegrospasa acaasasas traceance teactitite igategace tititititititititititititititititititi	
gogsegtegt cgactgtgag togtoggaaa acasamasam tracasacat catgitited titttoctot egititidae tittitgit tigtogaogg ocggegatis gaategatit 32 atotocsatic cattoticya accatactea tataagagt casatcateg acgactiggt tracacaatic cattoticya accatactea tataagagt tottggette tototaaaa 34 tottotaati tittigata 34 <210	gggtttot agctaattaa sagtooaaaa ttaaatgaaa 3120
tittecete cytitted tittight byteogaegy coggeste gaategatt gateteegy gatetegaes tgaategag agagaagag caastesteg acquettgg 132 teaceaatte cattetega accatactea tataagagit tettggette tetetaaaac 134 tettetaatt treigats 134 colorate treigats 134 colorate treigats 135 colorate treigats 136 colorate treigats 137 colorate treigats 138 col	catcodaa tattaggtti titggatggg titttagacg 3180
gatebooggt grategaacs tgsaateggg agsgaagage casatesteg acgaettggt tracesatte estettega accatactes tataagaget tettggette tetetaaase 34 tettotaatt tretgats 34 tettotaatt tretgats 34 c210 13 c211 68 c212 DNA c211 Artificial Sequence c220 Seneficial Oligonucleotide-Contains both DNA and RNA c400 13 caggreaget geaacgtagg atgattetta ucaaccuacg tegeacuuga ccuggegegt tetegege c210 14 c211 68 c212 DNA c213 Artificial Sequence c220 Seneficial Oligonucleotide-Contains Both DNA and RNA c210 Artificial Sequence c220 Seneficial Oligonucleotide-Contains Both DNA and RNA c400 14 caggreaget getacgtagg atgattetts ucaaccuseg tageacuuga ccuggegegt tetegoge c210 15 c211 24 c212 DNA c213 Jelly Fish c400 15	Groggada Rosserasee toecascact catottttcc 3240
traccasate cattettega accatactes tataagagtt tettggette tetetaaaac 34 tettetaatt ttetgats 34 <210> 13 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Beneficial Oligonucleotide-Contains both DNA and RNA <400> 13 caggteaagt geasegtagg atgatttta ucaaccuaeg ttgeacuuga eeuggegegt tttegege <210> 14 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggteaagt geacgtagg atgatttta ucaaccuaeg ttgeacuuga eeuggegegt tttegege <220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggteaagt getacgtagg atgatttta ucaaccuaeg tagcacuuga eeuggegegt tttegege <210> 15 <211> 24 <212> DNA <213> Jelly Fieh <400> 15	ttitgtit tgtocgaogg coggogatte gaatogattt 3300
tettetaatt ttetgats <210> 13 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Seneficial Oligonucleotide-Contains both DNA and RNA <400> 13 caggtcaagt geaacgtagg atgatttta ucaaccuacg ttgeacuuga ccuggcgcgt.tttcgcgc <210> 14 <221> 68 <212> DNA <213> Artificial Sequence <220> <220> <223> Seneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggtcaagt getacgtagg atgatttta ucaaccuacg tagcacuuga ccuggcgcgt tttcgcgc <210> 14 <221> DNA <213> Artificial Sequence <220> <221> 221> Geneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggtcaagt gctacgtagg atgatttta ucaaccuacg tagcacuuga ccuggcgcgt tttcgcgc <210> 15 <211> 24 <212> DNA <213> Jelly Fieh <400> 15	Baatcaga agagaagagc caastcateg acgacttagt 3360
<pre> <210> 13</pre>	
<pre></pre>	3438
<pre><212> DNA <213> Artificial Sequence <220> <223> Beneficial Oligonucleotide-Contains both DNA and RNA <400> 13 caggreaagt geascgtagg atgatttta ucaaccuacg ttgcacuuga ceuggegegt tttcgcgc <210> 14 <221> 68 <212> DNA <213> Artificial Sequence <220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggreaagt gctacgtagg atgatttts ucsaccusrg tagcscuugs ccuggegegt tttcgcgc</pre> <pre><210> 15 <211> 24 <211> 24 <212> DNA <213> Jelly Fieh <400> 15</pre>	
<pre><210> <220> <223> Beneficial Oligonucleotide-Contains both DNA and</pre>	
<pre> <220> <223> Benefici@l Oligonucleotide-Contains both DNA and</pre>	
<pre><223> Beneficial Oligonucleotide-Contains both DNA and RNA <400> 13 caggtcaagt gcaacgtagg atgatttta ucaaccuaeg ttgcacuuga ccuggegegt tttcgcgc <210> 14 <211> 68 <211> DNA <213> Artificial Sequence <220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggtcaagt gctacgtagg atgatttts ucaaccuaeg tagcacuuga ccuggegegt tttcgcgc <210> 15 <221> DNA <213> DNA <213> Jelly Fieh <400> 15</pre>	ednevce
<pre><223> Beneficial Oligonucleotide-Contains both DNA and RNA <400> 13 caggtcaagt gcaacgtagg atgatttta ucaaccuaeg ttgcacuuga ccuggegegt tttcgcgc <210> 14 <211> 68 <211> DNA <213> Artificial Sequence <220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggtcaagt gctacgtagg atgatttts ucaaccuaeg tagcacuuga ccuggegegt tttcgcgc <210> 15 <221> DNA <213> DNA <213> Jelly Fieh <400> 15</pre>	
<pre>capgreaagt gcaacgtagg atgatttta ucaaccuacg ttgcacuuga ccuggcgcgt. tttcgcgc <210> 14</pre>	
caggicaagt gcaacgiagg atgattita ucaaccuacg tigcacuuga ccuggegegt titegege <210> 14 <211> 68 <212> DNA <213> Artifficial Sequence <220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 Caggicaagt gciacgiagg atgattita ucaaccuarg tagcacuuga ccuggegegt titegege <210> 15 <211> 24 <212> DNA <213> Jelly Fish <400> 15	ligonucleotide-Contains both DNA and
caggicaagt gcaacgiagg atgattita ucaaccuacg tigcacuuga ccuggegegt titegege <210> 14 <211> 68 <212> DNA <213> Artifficial Sequence <220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 Caggicaagt gciacgiagg atgattita ucaaccuarg tagcacuuga ccuggegegt titegege <210> 15 <211> 24 <212> DNA <213> Jelly Fish <400> 15	
<pre>tttcgcgc <210> 14</pre>	A4+++++
<pre><211> 68 <212> DNA <213> Artificial Sequence <220> <2223> Seneficial Oligonuclectide-Contains Both DNA and RNA <400> 14 caggtcaegt gctacgtagg atgatttts ucsaccuscg tagcscuugs ccuggogegt tttegoge <210> 15 <211> 24 <212> DNA <213> Jelly Figh <400> 15</pre>	gattttta ucaaccuaeg ttgcaeuuga deuggegegt. 60 68
<pre><211> 68 <212> DNA <213> Artificial Sequence <220> <2223> Seneficial Oligonuclectide-Contains Both DNA and RNA <400> 14 caggtcaegt gctacgtagg atgatttts ucsaccuscg tagcscuugs ccuggogegt tttegoge <210> 15 <211> 24 <212> DNA <213> Jelly Figh <400> 15</pre>	
<pre><212> DNA <213> Artificial Sequence <220> <223> Seneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggtcaagt gctacgtagg atgatttts ucsaccusrg tagcscuugs ccuggogegt tttcgcgc <210> 15 <211> 24 <212> DNA <213> Jelly Fish <400> 15</pre>	
<pre><213> Artificial Sequence <220> <223> Seneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggtcaegt gctacgtagg atgatttts ucsaccusrg tagcscuugs ccuggcgegt tttcgcgc <210> 15 <211> 24 <212> DNA <213> Jelly Fish <400> 15</pre>	
<pre><220> <223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggtcaegt gctacgtagg atgatttts ucsaccoarg tagcacuugs couggogegt tttcgogc <210> 15 <211> 24 <212> DNA <213> Jelly Figh <400> 15</pre>	Sequence
<pre><223> Beneficial Oligonucleotide-Contains Both DNA and RNA <400> 14 caggtcaegt gctacgtagg atgatttts ucsaccusrg tagcacuugs couggegegt tttegoge <210> 15 <211> 24 <212> DNA <213> Jelly Figh <400> 15</pre>	•
RNA <400> 14 caggtcaegt gctacgtagg atgatttts ucsaccusrg tagcscuugs couggogegt tttegoge <210> 15 <211> 24 <212> DNA <213> Jelly Fish <400> 15	
<pre><400> 14 caggtcaegt gctacgtagg atgatttts ucsaccusrg tagcscuugs couggogegt tttcgcgc <210> 15 <211> 24 <212> DNA <213> Jelly Figh <400> 15</pre>	ligonuclectide-Contains Both DNA and
<pre>caggtdaagt gctacgtagg atgatttts ucsaccoarg tagcscuugs ccuggdgegt tttcgcgc <210> 15</pre>	
<pre>tttegogc <210> 15 <211> 24 <212> DNA <213> Jelly Figh <400> 15</pre>	
<pre>tttegogc <210> 15 <211> 24 <212> DNA <213> Jelly Figh <400> 15</pre>	gatitita ucaaccuarg tagcacuuga couqqoqoqt 60
<211> 24 <212> DNA <213> Jelly Figh <400> 15	60
<212> DNA <213> Jelly Fieh <400> 15	
<213> Jelly Fieh <400> 15	
<400> 15	
	etg 24
<210> 16	
<211> 24	
<212> DNA	
<213> Artificial Sequence	lequence
<220>	
<223> Mutation	

<40D> 16	
atggtgagca agggctagga gctg	24
<210> 17	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mutation	
<400> 17	
atggtgagca agggcaggag ttgt	24
	٠,
<210> 1B	
<211> 68	
<212> DNA	
<213> Artifical Sequence	
<220>	
<223> Beneficial Oligonucleotide-Contains Both DNA and	
FMA	
<400> 18	
gtgagcaagg gegaggaget gttcattttv gaacageuer tegeceuuge weacagegest	60
tttcgcgc	€6
<210> 19	
<211> 68	
<212> NNA	
<213> Artificial Sequence	
<220>	
<223> Beneficial Oligonucleotide-Contains Both DNA and	
RNA	
<400> 19	
tgageaaggg ctoggagetg treactititg ugameageur egageceuug cucagegegt	δD
titiogege	68

\$100000 JMO 000700EEA43

.