

Lecture 14: Introduction to Model Checking

What are models?

- A system: (*S*, *I*, *T*, *O*)
 - S: States $s_1, s_2 \dots s_n$
 - *I*: Inputs (could be ∅)
 - T: Transitions $S \times I \times S$
 - *O*: Observations $f(S_o)$, $S_o \subseteq S$

- Model of the system (S^m, I^m, T^m)
 - S^m : Abstraction/approximation of S
 - Much fewer state variables and their values
 - $I^{\mathbf{m}}$: abstraction of I (could be \emptyset)
 - T^m : Transitions $S^m \times I^m \times S^m$

Abstraction: Different perspectives

• Models represent what you think are important for a system

• For different modeling objectives you can end up with different

models

Abstraction – removal of state variables

- States (s_x, s_y, s_z) are abstracted to (s_y^{m1}, s_z^{m1})
 - $-\left(s_{x}, s_{y}, s_{z}\right) \rightarrow \left(s_{y}^{m1}, s_{z}^{m1}\right)$
- Loss of information

Abstraction: Granularities of state variable

- Irrational numbers
 - $-\pi \approx 3.1415$
 - $-\sqrt{2} \approx 1.414$
- Approximation is another way of abstraction

Why do we need models?

Prediction

- We know the low-level mechanisms but we want to understand how they affect higher-level behaviors
- Use simulation instead of testing on the real system

Explain the data

 Make assumptions and use our knowledge to explain mechanisms that we don't understand

Classification

- i.e. definitions, machine learning algorithms

What is considered as a "good" model?

- Accuracy
 - All models are wrong!
 - Error accumulates over time
 - Initial condition of the model cannot be determined due to limited observability
- Generality
 - The capability to explain not only training data, but also testing data
- Identifiability
 - Model parameters can be identified from data
- Interpretability
 - $-S^m$ are meaningful and interpretable by human

Newton vs. Einstein

- The definition of "goodness" is changing over time
- Newtonian physics is suitable for macro level objects at low speed

$$\bullet \ L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

• A model can only be "good" within the context of its designated application

Modeling methodologies

- Bottom-up modeling
 - "White-box" model
 - Using first principles
 - Pros:
 - Interpretable
 - Convincing
 - Cons:
 - State space explosion
 - Difficult to be general
 - Low identifiability

- Data driven models (i.e. Neural networks)
 - "Black-box" model
 - From observable data
 - Pros:
 - No need to know domain knowledge
 - Cons:
 - Large and uninterpretable S^m
 - Depends highly on the quality and quantity of data

The Blind Men and the Elephant

- One can only obtain partial information
- On the other hand, you don't need full information to understand a system
- How do we extract the least amount of information that are useful?

Abstraction: extracting useful information

- Retain only the topological information
- Exact location/route does not matter

More Abstraction: London MTR

Formal Verification/Validation

Grand challenge:

Automate the process as much as possible!

Analysis Techniques

- Dynamic Analysis (runtime)
 - Execute the system, possibly multiple times with different inputs
 - Check if every execution meets the desired requirement
- Static Analysis (design time)
 - Analyze the source code or the model for possible bugs
- Trade-offs
 - Dynamic analysis is incomplete, but accurate (checks real system, and bugs discovered are real bugs)
 - Static analysis can catch design bugs early!
 - Many static analysis techniques are not scalable (solution: analyze approximate versions, can lead to false warnings)

Verification Methods

- Simulation
 - Simulate the model, possibly multiple times with different inputs
 - Easy to implement, scalable, but no correctness guarantees
- Proof based
 - Construct a proof that system satisfies the invariant
 - Requires manual effort (partial automation possible)
- State-space analysis (Model checking)
 - Algorithm explores "all" reachable states to check invariants
 - Not scalable, but current tools can analyze many real-world designs (relies on many interesting theoretical advances)

Different Requirements

Safety

- A system always stays within "good' states (i.e. a nothing bad ever happens)
- Leader election: it is never the case that two nodes consider them to be leaders
- Collision avoidance: Distance between two cars is always greater than some minimum threshold

Liveness

- System eventually attains its goal
- Leader election: Each node eventually makes a decision
- Cruise controller: Actual speed eventually equals desired speed
- A car will always eventually reach its destination

Model Checking

Model Checking

- A domain D representing the state space of a model
- The reachable state space M for the model
- Define a subset of the state space as property φ
- Explore the whole reachable state space of a model for property violations

Plato vs. Diogenes

• The definition of "human"

All living creatures

Counter – example

Here's Plato's

human!!!!

Featherless Biped

Diogenes

Challenge

- State space explosion
 - Not every model can be model checked!!
 - i.e. Real-number (continuous) state space
 - Complex dynamics between states

Solution

- Simple yet expressive formalisms
- Symbolic states/executions
- Model abstraction/approximation

Simple yet expressive formalisms

Basic Finite State Machine (FSM)

WANT: if press is issued twice quickly then the light will get brighter; otherwise the light is turned off.

FSM with real number time

Solution: Add a real-valued clock x

Adding continuous variables to state machines

Timed Automata

Adding Invariants

Clocks: x, y

Transitions
$$(n, x=2.4, y=3.1415)$$
 $wait(3.2)$
 $wait(1.1)$
 $wait(1.1)$
 $wait(1.1)$

(n, x=3.5, y=4.2415)

Invariants ensure progress!!

Timed Automata: Syntax

- A finite set *V* of locations
- A subset V^0 of initial locations
- A finite set Σ of labels (alphabet)
- A finite set X of clocks
- Invariant Inv(l) for each location: (clock constraint over X)
- A finite set E of edges. Each edge has
 - source location l, target location l'
 - label a in $\Sigma(\varepsilon)$ labels also allowed)
 - guard g (a clock constraint over X)
 - a subset λ of clocks to be reset

Timed Automata: Semantics

- For a timed automaton A, define an infinite-state transition system S(A)
- States Q: a state q is a pair (l,v), where l is a location, and v is a clock vector, mapping clocks in X to R, satisfying Inv(l)
- (l,v) is initial state if l is in V^0 and v(x)=0
- Elapse of time transitions: for each nonnegative real number d, (l,v)-d->(l,v+<math>d) if both v and v+d satisfy Inv(l)
- Location switch transitions: (l,v)-a->(l',v') if there is an edge (l,a,g,λ,l') such that v satisfies

Product Construction

Model Checking: Forward Reachability

- Given a timed automata and a property φ
- R:=I
- Repeat
 - If R intersects $\neg \varphi$, report "yes"
 - Else if R contains Post(R), report "no"
 - Else R := R union Post(R)

Reachability for Timed Automata

gives rise to the infinite transition system:

Symbolic states/executions

Finite Partitioning

Goal: To partition state-space into finitely many equivalence classes so that equivalent states exhibit similar behaviors

Symbolic States/executions

Model abstraction/approximation

Existential Abstraction (Over-approximation)

Pros and Cons of Over-approximation

- Properties satisfied by M are also satisfied by P
 - Can model check a less complex model
- M has more behaviors than P
- If a counter-example returns, it may not be a behavior of P

Why spurious counterexample?

Refinement

Problem: Deadend and Bad States are in the same abstract state.

• Solution: Refine abstraction function.

• The sets of Deadend and Bad states should be separated into different abstract states.

CS132: Software Engineering

Refinement

CS132: Software Engineering

Counter-Example-Guided Abstraction and Refinement (CEGAR)

- Obtain initial abstraction
- 1. Model checking
- 2. Property satisfied -> no bugs
- 3. Property unsatisfied -> counter-examples
- 4. Check whether the CE is spurious
- 5. If not, bug found
- 6. If yes, refine the model and start from 1 again

Capture Environmental Variability With Over-approximation

- Properties satisfied by M are also satisfied by P1, P2
- Behaviors not exist in P1, P2 may also be physiologically-valid
- Is this a valid counter-example?
- Need a framework to provide context for counter-examples

