(upper) mantle rheology

Fanny Garel

University of Montpellier, France

with materials from lectures by Stéphane Labrosse, Maëlis Arnould, Yanick Ricard, Maylis Landeau, Catherine Thoraval

Deep Earth Doctoral School - Les Houches - Autumn 2022

Various responses of solids to an applied force

Reversible deformation > elastic

mechanical rupture > **brittle**

continuous deformation > ductile

So let's get going...?

- identify & parameterize deformation processes
- + how do they coexist/interact?

- upscaling to nature
 - > from crystal to plate
- > from lab rate to convection rate

Rheology = deformation of material under a mechanical stress

- → approached through laboratory experiments of crystal, aggregate or rock deformation
- Byerlee's "law" of friction and strength profile
- Creep (++strain without additionnal stress) > "yield stress"

For fluid and solid: viscous flow

Pitch drop exp.: 9 drops in 84 years!

Credit: John Mainstone

→ if you wait long enough, everything flows!

dimensionless Debora number "the mountains flowed before the Lord"

Viscosity = <u>measure</u> of material resistance to flow/deformation over time (> strain rate)

- = resulting from "internal" friction
- dynamic viscosity η or μ in Pa.s
 - kinematic viscosity v in m^2/s "momentum diffusivity"

For fluid and solid: viscous flow

Pitch drop exp.: 9 drops in 84 years!

Credit: John Mainstone

→ if you wait long enough, everything flows!

dimensionless Debora number "the mountains flowed before the Lord"

Viscosity – orders of magnitude

Water ~ 10^{-3} Pa.s, Oil ~ 10^{-2} Pa.s

Maple syrup ~ 1 Pa.s Peanut butter ~10² Pa.s

Pea ~ 10^{11} Pa.s Salt diapir ~ 10^{18} Pa.s Rock ~ 10^{19-28} Pa.s

How do rocks flow? > deformation by defects motion at micro-scale

Diffusion creep flow' law

Dependencies other than P and T: grain size, mineralogy, chemistry/water

Deformation by defects motion at micro-scale

Dislocations in olivine from TEM (*Mussi et al., 2015*)

2.5-D dislocation dynamics (DD) numerical experiments on olivine

2.5-D dislocation dynamics (DD) numerical experiments on olivine

2.5-D dislocation dynamics (DD) numerical experiments on olivine

$$\dot{\varepsilon} = A_{\text{disl}} \sigma_d^{\mathbf{n}} \exp\left(-\frac{E_a + PV_a}{RT}\right)$$

 Power-law between strain rate and stress
 valid at low stress and high T

$$\dot{\varepsilon} = A\sigma^{\mathbf{n}} \exp\left[-\frac{E_a}{RT} \left(1 - \left(\frac{\sigma}{\sigma_P}\right)^p\right)^q\right]$$

power-law breakdown

Frost and Ashby, 1982

at low T, high stress (deforming plates and slabs)

From flow "laws" to viscosity

polymerdatabase.com

CITS

yield strength =
mechanical
resistance of the
cold lithospheric
boundary layer

Tackley Science 2000

Importance of viscosity parameterization

localizing deformation at plate boundary

Mobile

lithosphere mobility as a function of yield stress σ_y and viscosity contrast η^* for a sub-plate low-viscosity layer

Richards G³ 2001

Deformation partitioning (minimal viscosity)

From flow "laws" to viscosity

Several coexisting deformation mechanisms → <u>addition of strain rates</u>?

$$\dot{\varepsilon}_{\text{tot}} = \dot{\varepsilon}_{\text{el}} + \dot{\varepsilon}_{\text{plastic}}$$

$$\dot{\varepsilon}_{\text{plastic}} = \dot{\varepsilon}_{\text{brittle}} + \dot{\varepsilon}_{\text{ductile}}$$

$$\dot{\varepsilon}_{\text{ductile}} = \dot{\varepsilon}_{\text{disl}} + \dot{\varepsilon}_{\text{diff}}$$

From flow "laws" to viscosity

Several coexisting deformation mechanisms → <u>addition of strain rates</u>?

$$\mu_{\text{eff}} = \frac{\tau_{II}}{2\varepsilon_{II}}$$

$$\frac{1}{\mu_{\text{eff}}} = \frac{2\varepsilon_{II}}{\tau_{II}}$$

$$= \frac{2\dot{\varepsilon}_{\text{disl}}}{\tau_{II}} + \frac{2\dot{\varepsilon}_{\text{diff}}}{\tau_{II}}$$

$$= \frac{1}{\mu_{\text{disl}}} + \frac{1}{\mu_{\text{diff}}}$$

$$= \frac{1}{\mu_{\text{disl}}} + \frac{1}{\mu_{\text{diff}}}$$

pseudoharmonic mean for viscosity

$$\mu_{\text{eff}} = \left(\frac{1}{\mu_{\text{disl}}} + \frac{1}{\mu_{\text{diff}}}\right)^{-}$$

Reconciling experimental micro-scale rheology and large-scale mantle viscosity

(through numerical modelling)

→ semi-empirical exponential fit

$$\dot{\varepsilon} = A\sigma^{\mathbf{n}} \exp\left[-\frac{E_a}{RT} \left(1 - \left(\frac{\sigma}{\sigma_P}\right)^p\right)^q\right]$$

Frost and Ashby, 1982

not modeler-friendly...

→ need to express stress as a function of strain rate for viscosity calculation

Reconciling experimental micro-scale rheology and large-scale mantle viscosity - - - Power La (through numerical modelling) $3 \neq$ sigmoid functions to fit both high-T and low-T data Stress σ (MPa) 600 500 Proxy for stress 400 Stress (MPa) 900 K 1000 K 1200 K -0.5 1400 K **TANH** — ERF 1700 K 100 **ALGEBRAIC** 10⁻¹⁰ Proxy for strain rate Strain rate (s-1)

3 parameterizations for dislocation creep rheology... fitting equally well the data!

Garel et al., EPSL, 2020

3 parameterizations for dislocation creep rheology... fitting equally well the data!

Composite rheology (addition of strain rates)

- pseudo-brittle / yield stress
- diffusion creep

- $\frac{1}{\mu} = \frac{1}{\mu_{diff}} + \frac{1}{\mu_{disl}} + \frac{1}{\mu_{br}}$
- <u>1 single parameterization for dislocation creep</u> (continuous from low to high temperature)
- BEFORE: 2 dislocation creeps (high-T and Peierls low-T)

Sarel et al., EPSL, 2020

Davies et al., G3, 2011 Kramer et al., PEPI, 2012

- finite-element, parallel-running code solving conservation equations
- developed by the AMCG group (Imperial College London)

 automatic adaptive meshing depending on spatial variations of temperature, velocity, viscosity...

VERY contrasted subduction dynamics

Garel et al., EPSL, 2020

t = 0.38 Myr 100 km

Sinking ++

- very weak asthenosphere
- high asth. strain rates
- very fast subduction
- cold, thin slab

Diffusive AND sinking

Thermal diffusion++

- high-viscosity asth.
- low asth. strain rates
- very slow subduction
- hot and wide slab

Deformation mechanisms

partitioning btn viscosity depending on strain rate

(disl. creep, n > 1) **or not** (diff. creep, n=1)

Garel et al., EPSL, 2020

Comparison with geological time-scales observables

Dislocation creep parameterization	ERF	TANH	ALGEBRAIC
Subduction dynamics	Thin, cold slab in free fall in low-viscosity upper mantle No time for thermal diffusion		Hot, diffusive slab in high-viscosity asthenosphere No strain-rate weakening
Time for the slab to reach 400-km	~0.5 Myr	~15 Myr	~40 Myr
Mean asthenosphere viscosity post-glacial rebound and geoid modelling (~10 ²⁰⁻²¹ Pa.s)	10 ¹⁸⁻²⁰ Pa.s	10 ²⁰⁻²¹ Pa.s	10 ²⁰⁻²¹ Pa.s
surface velocity of the subducting plate Paleomagnetism and GPS data (1-10 cm/yr)	~200 cm/yr	~1.5 cm/yr	~0.7 cm/yr
Slab morphology tomographic imaging	•••		
Dislocation creep in the upper mantle Seismic anisotropy			

deformation-induced GS reduction + grain-size-dep viscosity (diffusion creep)

→ deformation localization & plate tectonics

Ricard +Bercovici 2012, 2013, 2014, 2016

Mulyukova & Bercovici, 2019

Ricard +Bercovici 2012, 2013, 2014, 2016

 $\mathbf{v}_{max} = 0.044$

$$\mu_{min/max} = 0.0388/10.38$$

deformation-induced GS reduction + grain-size-dep viscosity (diffusion creep)

→ deformation localization & plate tectonics

Ricard +Bercovici 2012, 2013, 2014, 2016

