

| Program | B. Tech. (SoCS/SoAE)                | Semester           | II                |
|---------|-------------------------------------|--------------------|-------------------|
| Course  | Advanced Engineering Mathematics II | <b>Course Code</b> | MATH1065          |
| Session | January-May 2025                    | Unit I             | Numerical Methods |
|         |                                     |                    | and Optimization  |

- 1. (i) Compute the real root of the equation  $x^3 5x + 3 = 0$ , starting with  $x_0 = 1$  and  $x_1 = 2$  using the bisection method. Perform <u>two</u> iterations.
  - (ii) Compute a real root of the equation  $e^x = 3x$ , using the bisection method correct up to *three* decimal places.
  - (iii) Use the bisection method to find out the positive square root of 28, correct up to *three* decimal places.
- 2. (i) Compute the real root of the equation  $x^3 3x 5 = 0$ , using Newton-Raphson method correct up to *three* decimal places.
  - (ii) Find a positive real root of the equation  $3x \cos x = 1$  by Newton-Raphson method, correct up to *three* decimal places.
  - (iii) The bacteria concentration in a reservoir varies as  $C = 4e^{-2t} + e^{-0.1t}$ . Using Newton-Raphson method, calculate the time required for the bacteria concentration to be 0.5.
- 3. (i) Solve the following system of linear equations:

$$2x + 4y + z = 3$$
;  $3x + 2y - 2z = -2$ ;  $x - y + z = 6$ ;

using Gauss's elimination method.

(ii) Use Gauss-Seidel iterative method to solve the following system of simultaneous equations:

$$9x + 4y + z = -17$$
;  $x - 2y - 6z = 14$ ;  $x + 6y = 4$ ;

Perform four iterations.

- 4. Prove the following relations, where the symbols have their usual meanings:
  - (i)  $\Delta(1+\Delta)^{-1/2} \equiv \nabla(1-\nabla)^{-1/2}$ .
  - (ii)  $D \equiv \frac{1}{h} \left[ \Delta \frac{\Delta^2}{2} + \frac{\Delta^3}{3} \frac{\Delta^4}{4} + \cdots \right].$
  - (iii)  $\nabla \Delta \equiv -\nabla \Delta$ .
- 5. The following table gives the population of a town during the last six census. Estimate the population in 1913 by Newton's forward difference interpolation formula.

| Years (x)                           | 1911 | 1921 | 1931 | 1941 | 1951 | 1961 |
|-------------------------------------|------|------|------|------|------|------|
| <i>Population</i> (y)(in thousands) | 12   | 15   | 20   | 27   | 39   | 52   |

6. Evaluate f(3.8) from the following table using Newton's backward difference interpolation formula.

| x    | 0 | 1   | 2   | 3   | 4   |
|------|---|-----|-----|-----|-----|
| f(x) | 1 | 1.5 | 2.2 | 3.1 | 4.6 |



7. The viscosity of a certain kind of oil is experimentally measured at different temperatures as shown in the following table.

| Temperature in Celsius     | 110  | 130 | 160 | 190 |
|----------------------------|------|-----|-----|-----|
| Viscosity in Pascal-second | 10.8 | 8.1 | 5.5 | 4.8 |

Find the viscosity of the oil at  $140^{\circ}C$ , by Lagrange's method of interpolation.

- 8. Establish a cubic polynomial of the curve y = f(x) passing through the points (0, 18), (1, 10), (3, -18), (6, 90) using Lagrange's interpolation formula. Also, find the slope of the curve at x = 2.
- 9. Using Newton's divided difference formula, calculate the value of f(6) from the following data:

| х    | 1 | 2 | 7 | 8 |
|------|---|---|---|---|
| f(x) | 1 | 5 | 5 | 4 |

10. Develop the divided difference table from the data given below and obtain the interpolation polynomial f(x) using Newton's divided difference formula. Also, find f''(3.5).

| х    | 0 | 2  | 3  | 4  |
|------|---|----|----|----|
| f(x) | 7 | 11 | 28 | 63 |

11. Compute  $\int_{0.6}^{2} y dx$ , where y(x) is given by the following table:

|   |      |      |      |      |      |      |       | 2.0   |
|---|------|------|------|------|------|------|-------|-------|
| y | 1.23 | 1.58 | 2.03 | 4.32 | 6.25 | 8.36 | 10.23 | 12.45 |

12. A curve y = f(x) is drawn to pass through the points given in the following table:

| x | 1 | 1.5 | 2   | 2.5 | 3 | 3.5 | 4   |
|---|---|-----|-----|-----|---|-----|-----|
| y | 2 | 2.4 | 2.7 | 2.8 | 3 | 2.6 | 2.1 |

Find the area bounded by the curve y = f(x), the straight lines x = 1, x = 4 and the x-axis using Simpson's  $\left(\frac{1}{3}\right)^{\text{rd}}$  rule.

13. The velocities of a car running on a straight road at intervals of 2 minutes are given below:

| Time (minutes) | 0 | 2  | 4  | 6  | 8  | 10 | 12 |
|----------------|---|----|----|----|----|----|----|
| Vel. (km/hr.)  | 0 | 22 | 30 | 27 | 18 | 7  | 0  |

Apply Simpson's  $\left(\frac{3}{8}\right)$  rule to find the distance covered by the car.

- 14. Using Picard's method of successive approximations, obtain a solution up to third approximation of the equation  $\frac{dy}{dx} = 1 + xy$ , such that y = 0 when x = 0.
- 15. Use Euler's method to obtain an approximate value of y(0.1) for the equation

$$\frac{dy}{dx} = x + y + xy, y(0) = 1.$$
 [Choose step size,  $h = 0.025$ ]



- 16. Estimate y(1) if  $2yy' = x^2$  and y(0) = 2 using the Runge-Kutta method of fourth-order by taking h = 0.5. Also, compare the result with the exact value.
- 17. Examine the convexity of the set

$$S = \{(x_1, x_2, x_3) \colon 2x_1 - x_2 + x_3 \le 4\} \subset R^3.$$

18. By applying the Simplex method, solve the LPP:

$$Max. z = 25x_1 + 20x_2$$

subject to the constraints

$$16x_1 + 12x_2 \le 100$$
$$8x_1 + 16x_2 \le 80$$

and

$$x_1, x_2^- \geq 0.$$