Instituto de Matemática y Estadística

N ^o . PARCIAL	Cédula	Apellido, Nombre	Salón

Examen

27 de Diciembre de 2007.

Ejercicio 1.(40 puntos)

1. Hallar todas las parejas de enteros (x, y) que verifican (simultaneamente):

$$\begin{cases} 17x - 5y = 11\\ 100 \le x + y \le 142 \end{cases}$$

- 2. Hallar todas las parejas de enteros positivos (a, b) que verifican las siguientes cuatro condiciones (simultaneamente):
 - i) $5mcd(a,b)^2 + 11mcd(a,b) = 17a$.

 - $\begin{aligned} &\text{ii)} \ \ 100 \leq \frac{a}{mcd(a,b)} + mcd(a,b) \leq 142. \\ &\text{iii)} \ \begin{cases} \ b \equiv 3 \pmod{5} \\ \ b \equiv 1 \pmod{7} \end{aligned}$

(Sugerencia: Escribir a = md y b = nd con d = mcd(a, b) y hallar primero d utilizando las dos primeras condiciones.)

Ejercicio 2.(40 puntos)

Sea G un grupo y H un subgrupo. El normalizador de H en G es el conjunto

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}.$$

El centralizador de H en G es el conjunto

$$C_G(H) = \{ g \in G : ghg^{-1} = h \,\forall \, h \in H \}.$$

- 1. Probar que $N_G(H) < G$ y $C_G(H) < G$.
- 2. Probar que existen casos donde $N_G(H) \neq C_G(H)$ (sugerencia: buscar un ejemplo con $G = S_3$).
- 3. Probar que el cardinal del conjunto de las clases de conjugación de H en G es $[G:N_G(H)]$ (se recuerda que una clase de conjugación de H es un conjunto de la forma gHg^{-1} con $g \in G$).
- 4. Se considera el grupo de permutaciones de 5 elementos S_5 y el subgrupo $H = \{e, (1\ 2)\}$, donde e es el neutro de S_5 . Calcular la cantidad de clases de conjugación de H en S_5 (sugerencia: calcule previamente el cardinal de $N_G(H)$ y use la parte anterior).

Ejercicio 3.(20 puntos)

Se recuerdan algunos códigos importantes:

- · El Código de verificación de paridad (m+1,m) es aquel cuya función de codificación $E:\mathbb{Z}_2^m\to\mathbb{Z}_2^{m+1}$ viene dada por $E(w_1 \dots w_m) = w_1 \dots w_m w_{m+1}$ donde $w_{m+1} = w_1 + w_2 + \dots + w_m$ (la suma es en \mathbb{Z}_2).
- · El Código de triple repetición (3m,m) es el código cuya función de codificación $E:\mathbb{Z}_2^m\to\mathbb{Z}_2^{3m}$ viene dada por E(w) = www (por ejemplo, para m = 2, E(01) = 010101, E(10) = 101010, etc).
 - 1. Para cada uno de los códigos anteriormente mencionados, hallar la distancia mínima del código y discutir sobre la capacidad de detección y corrección de errores.
 - 2. En la primer columna de la tabla aparecen una lista de palabras codificadas usando un código de triple repetición (9,3) luego de ser trasmitido a traves de un canal ruidoso. Suponiendo que la probabilidad de cometer mas de un error es despreciable, completar la siguiente tabla.

Palabra recibida	Palabra corregida	Palabra decodificada
010010010		
101100101		
111111110		
100000100		

3. Se considera un código de grupo
$$\mathcal{C}$$
 con función de codificación $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6, E(w) = wG$ donde $G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} \in M_{3\times 6}(\mathbb{Z}_2).$

- i) Hallar la matriz de chequeo de paridad $H \in M_{3\times 6}(\mathbb{Z}_2)$.
- ii) Hallar los síndromes de 100000 y de 010000.
- iii) Llenar la tabla a continuación sabiendo que no se cometió más de un error en la trasmición (sug: decodificación por síndromes).

Palabra recibida	Palabra corregida	Palabra decodificada
100110		
000110		
000011		
010011		