

Automated and Connected Driving Challenges

Section 3 – Object Fusion and Tracking

Introduction

Tasks in Section 3

Bastian Lampe

Institute for Automotive Engineering

Task Overview

- Examination of three steps of the Kalman filter
- Implementation of modules highlighted in green
- Using a Closed-Loop-Simulation using ROS

Object Prediction

Subdivided into three Subsections

- Examination of three steps of the Kalman filter
- Implementation of modules highlighted in green
- Using a Closed-Loop-Simulation using ROS

Object Prediction

- Understand mathematical background of temporal alignment
- Construct a vehicle motion model
- Perform a Kalman Filter prediction step

Object Association

Subdivided into three Subsections

- Examination of three steps of the Kalman filter
- Implementation of modules highlighted in green
- Using a Closed-Loop-Simulation using ROS

Object Association

- Learn about metrics used for cost functions
- Implement calculation of Intersection of Union (IoU) and Mahalanobis distance
- Apply an association algorithm

Object Fusion

- Examination of three steps of the Kalman filter
- Implementation of modules highlighted in green
- Using a Closed-Loop-Simulation using ROS

Object Fusion

- Examine the measurement update step of a Kalman filter
- Perform an object fusion
- **Experiment** with fusion parameters

