STA201: Elements of Statistics and Probability

Quiz 02

Section: 20

Date: 29/11/2022

- 1. Every year, many people hiking the Australian Outbacks are reported to be lost, and around 80% of them are eventually found by rescue missions. 60% of the people who were rescued were found to carry an emergency GPS locator, whereas 35% of the people who who were not rescued were known to carry a similar locator.
- a. If a lost hiker is carrying an emergency GPS locator, what is the probability of them being rescued? [4 marks]

$$P(R|G) = \frac{0.00\times0.8}{(0.00\times0.8) + (0.2\times0.35)} = 0.82$$

b. If a hiker gets lost without a GPS locator, what is the probability that they will not get rescued?[4 marks]

c. If the probability of carrying a GPS locator is 65%, what is the probability that a hiker was carrying a GPS locator and was found by rescued missions?[4 marks]

2. The discrete random variable X has the probability distribution given by:

Z. The discrete ra	IIdom variati				700
x	7	9	12	13	15
P(X=x)	u/2 0.3/2	0.05	0.35	u 0.3	0.15

a. Determine the following probability: $P(X \le 13)$. [3 marks]

$$= \frac{4}{2} + 0.05 + 0.35 + 4 + 0.15 = 1$$

$$\Rightarrow \frac{4}{2} + 4 = 0.45$$

$$\Rightarrow 34 = 0.9$$

$$\therefore 4 = 0.3$$

$$P(X < 13) = \frac{0.3}{2} + 0.05 + 0.35 + 0.35$$

$$= 0.85$$

b. What is the expected value of the random variable X? [3 marks] Chester

$$E(x) = \left(x \times \frac{0.3}{2}\right) + \left(9 \times 0.05\right) + \left(12 \times 0.95\right) + \left(13 \times 0.3\right) + \left(15 \times 0.15\right)$$

$$= 1.05 + 0.45 + 4.2 + 3.9 + 2.25$$

$$= 11.85$$

c. What is the variance of the random variable X? [3 marks]

$$Var(X) = \left[\frac{1}{2} \left(\frac{1}{2} \right) - \left[\frac{1}{2} \left(\frac{1}{2} \right) \right] + \left(\frac{1}{2} \times \left(\frac{0.3}{2} \right) \right) + \left(\frac{0$$

d. Find the expectation and standard deviation of the random variable Y, where $Y = \frac{5X}{6} - 4$. [3 marks]

3. Letting Y denote the random variable that is defined as the sum of two fair dice, find the probabilities associated with . [5 marks]

Y 2 3 4 5 6	
1 2 36 36 36	
34	
7 8 9 10 11	12 • <u>4</u> 36
36 36 36 36	- (

(MX	7.2	2]	3	4	5	A
ī	1,1	1,2	1,3	1,4	1,5	1.
2'	2,1	2,2	23	2,4	2,5	2
3	3,1		3,3	12.V		
4	4,1	4,2	4,3	4,4	4,5	1
5	5-1	5.	2 5,	3 5	1 5,	5
6	6-1	6,	2 6	3 6.	46.	5

4. Consider the following probability density function

$$f(x) = \{x^2 - 1, -2 \le x < 0\}$$

$$\frac{1}{2}x + 2, \ 0 \le x < 2$$

- 0, otherwise
- a. Determine the value of $P(-1 \le x \le 2)$ [6 marks]

$$P(-1 \le x \le 2) - \int_{-2}^{6} \chi^{2} - 1^{9} dx + \int_{0}^{2} \frac{1}{2} x + 2$$

$$= \left[\frac{\chi^{3}}{3} - \lambda \right]_{-2}^{6} + \left[\frac{1}{2} \frac{\chi^{2}}{2} + 2\lambda \right]_{0}^{2}$$

$$= \left(\frac{(-2)^{3}}{3} - (-2) \right) + \left(\frac{1}{2} \frac{2^{2}}{2} + 2x^{2} \right)$$

$$= e\left(\frac{8}{3} + 2 \right) + e^{5}$$

$$= \frac{14}{3} + 5$$

$$= \frac{29}{3} = 9.67$$

b. Determine the expectation of the random variable. [6 marks]

$$E(x) = \int_{-2}^{0} \chi (n^{2}-1) + \int_{0}^{2} \chi (\frac{1}{2}x+2)$$

$$= \int_{-2}^{0} (x^{3}-x) dx + \int_{0}^{2x} \frac{1}{2} x^{2} + 2x dx$$

$$= \int_{-2}^{2} (x^{3}-x) dx + \int_{0}^{2x} \frac{1}{2} x^{2} + 2x dx$$

$$= \left[\frac{x^{4}}{4} - \frac{x^{2}}{2} \right]_{-2}^{0} + \left[\frac{1}{2} \times \frac{x^{3}}{3} + x^{2} \right]_{0}^{2}$$

$$= 8.6 \%$$