Python Implementation

In [1]:

```
#Import necessory Libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report,accuracy_score
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import matplotlib.pyplot as plt
#import plotly
import warnings
warnings.filterwarnings('ignore')
```

In [14]:

Get the CSV data here and print head
df=pd.read_csv('https://raw.githubusercontent.com/training-ml/Files/main/breast%20cancer.cs
df.head(25)

Out[14]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mea
id						
842302	М	17.990	10.38	122.80	1001.0	0.1184
842517	М	20.570	17.77	132.90	1326.0	0.0847
84300903	М	19.690	21.25	130.00	1203.0	0.109€
84348301	М	11.420	20.38	77.58	386.1	0.142
84358402	M	20.290	14.34	135.10	1297.0	0.1003
843786	M	12.450	15.70	82.57	477.1	0.1278
844359	M	18.250	19.98	119.60	1040.0	0.094€
84458202	M	13.710	20.83	90.20	577.9	0.1189
844981	M	13.000	21.82	87.50	519.8	0.1273
84501001	M	12.460	24.04	83.97	475.9	0.118€
845636	М	16.020	23.24	102.70	797.8	0.0820
84610002	M	15.780	17.89	103.60	781.0	0.097
846226	M	19.170	24.80	132.40	1123.0	0.0974
846381	M	15.850	23.95	103.70	782.7	0.084(
84667401	M	13.730	22.61	93.60	578.3	0.113 ⁻
84799002	M	14.540	27.54	96.73	658.8	0.113§
848406	M	14.680	20.13	94.74	684.5	0.0986
84862001	M	16.130	20.68	108.10	798.8	0.1170
849014	M	19.810	22.15	130.00	1260.0	0.0983
8510426	В	13.540	14.36	87.46	566.3	0.0977
8510653	В	13.080	15.71	85.63	520.0	0.107
8510824	В	9.504	12.44	60.34	273.9	0.1024
8511133	M	15.340	14.26	102.50	704.4	0.1073
851509	M	21.160	23.04	137.20	1404.0	0.0942
852552	М	16.650	21.38	110.00	904.6	0.112

25 rows × 32 columns

In [3]:

```
#print summary
print('shape
                -----, df.shape)
print('Each column and data type and its count','\n')
print(df.info())
         -----> (569, 32)
shape
Each column and data type and its count
<class 'pandas.core.frame.DataFrame'>
Int64Index: 569 entries, 842302 to 92751
Data columns (total 32 columns):
 #
    Column
                             Non-Null Count Dtype
_ _ _
    _____
                             _____
                                            ----
 0
    diagnosis
                             569 non-null
                                            object
 1
    radius_mean
                            569 non-null
                                            float64
 2
    texture_mean
                           569 non-null
                                            float64
 3
    perimeter mean
                           569 non-null
                                            float64
 4
    area mean
                            569 non-null
                                            float64
 5
    smoothness mean
                           569 non-null
                                            float64
 6
    compactness_mean
                           569 non-null
                                            float64
 7
                            569 non-null
                                            float64
    concavity_mean
                          569 non-null
 8
                                            float64
    concave points_mean
 9
                           569 non-null
                                            float64
    symmetry_mean
 10 fractal_dimension_mean 569 non-null
                                            float64
 11 radius se
                            569 non-null
                                            float64
                                            float64
 12 texture_se
                            569 non-null
 13 perimeter_se
                           569 non-null
                                            float64
 14 area_se
                           569 non-null
                                            float64
 15 smoothness_se
                           569 non-null
                                            float64
 16 compactness se
                           569 non-null
                                            float64
                           569 non-null
                                            float64
 17 concavity_se
                           569 non-null
 18 concave points_se
                                            float64
                           569 non-null
                                            float64
    symmetry_se
20 fractal_dimension_se 569 non-null radius worst 569 non-null
                                            float64
                                            float64
 22 texture_worst
                            569 non-null
                                            float64
 23 perimeter_worst
                           569 non-null
                                            float64
                           569 non-null
                                            float64
 24 area_worst
                           569 non-null
 25
    smoothness_worst
                                            float64
 26
    compactness_worst
                           569 non-null
                                            float64
 27
    concavity worst
                           569 non-null
                                            float64
 28
    concave points worst
                            569 non-null
                                            float64
 29
                             569 non-null
                                            float64
    symmetry_worst
 30 fractal_dimension_worst 569 non-null
                                            float64
                             0 non-null
 31 Unnamed: 32
                                            float64
dtypes: float64(31), object(1)
memory usage: 146.7+ KB
None
```

In [7]:

```
#DROP ALERT 1 : Unnamed :32 column has all nulls.safe to remove the column.
df=df.drop(['Unnamed: 32'],axis=1)
```

```
In [8]:
```

df.shape

Out[8]:

(569, 31)

In [9]:

```
#Dataframe statistics
df.describe()
```

Out[9]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactne
count	569.000000	569.000000	569.000000	569.000000	569.000000	5(
mean	14.127292	19.289649	91.969033	654.889104	0.096360	
std	3.524049	4.301036	24.298981	351.914129	0.014064	
min	6.981000	9.710000	43.790000	143.500000	0.052630	
25%	11.700000	16.170000	75.170000	420.300000	0.086370	
50%	13.370000	18.840000	86.240000	551.100000	0.095870	
75%	15.780000	21.800000	104.100000	782.700000	0.105300	
max	28.110000	39.280000	188.500000	2501.000000	0.163400	

8 rows × 30 columns

seems no other cols have nulls. It's safe to poceed

As we can see each feature data scaled differently. Let's go ahead and scale the data

In [10]:

```
scaler= StandardScaler()
x=df.drop('diagnosis',axis=1)
x_scaled=scaler.fit_transform(x)
```

Principal component Analysis (PCA)

PCA is dimension reduction technique (Not feature selection technique)

PCA can be applied only on Features (not on target)

PCA can be applied when you have too many features and their correlation is not that significant with target.

PCA will also takes care of multicollinearity problem

In [11]:

```
pca=PCA()
pca.fit_transform(x_scaled)
```

Out[11]:

```
array([[ 9.19283683e+00,
                         1.94858307e+00, -1.12316616e+00, ...,
        -3.39144536e-02,
                         4.56477199e-02, -4.71692081e-02],
       [ 2.38780180e+00, -3.76817174e+00, -5.29292687e-01, ...,
         3.26241827e-02, -5.68742432e-03, -1.86787626e-03],
       [ 5.73389628e+00, -1.07517380e+00, -5.51747593e-01, ...,
         4.70258247e-02, 3.14589659e-03, 7.50534755e-04],
       [ 1.25617928e+00, -1.90229671e+00, 5.62730526e-01, ...,
                         6.70621179e-03,
                                          3.77041667e-03],
        -2.57775589e-03,
                         1.67201011e+00, -1.87702933e+00, ...,
       [ 1.03747941e+01,
        -6.80863833e-02, -8.41632764e-02, -2.37828222e-02],
       [-5.47524330e+00, -6.70636791e-01, 1.49044308e+00, ...,
        -9.51587894e-03, -6.09131090e-02, -1.94755854e-02]])
```

In [12]:

```
# Let's plot scree plot to check the best component
plt.figure()
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('Principal Components')
plt.ylabel('Variance Covered')
plt.title('PCA')
plt.show
```

Out[12]:

<function matplotlib.pyplot.show(close=None, block=None)>

Around 13 Principal components are able to explain >95% variance. Its safe to consider starting 13 PC's

In [13]:

```
pca=PCA(n_components=13)
new_pcomp=pca.fit_transform(x_scaled)
princi_comp=pd.DataFrame(new_pcomp,columns=['PC1','PC2','PC3','PC4','PC5','PC6','PC7','PC8'
princi_comp
```

Out[13]:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	
0	9.192837	1.948583	-1.123166	3.633731	-1.195110	1.411424	2.159370	-0.398406	-0.
1	2.387802	-3.768172	-0.529293	1.118264	0.621775	0.028656	0.013358	0.240991	-0.7
2	5.733896	-1.075174	-0.551748	0.912083	-0.177086	0.541452	-0.668166	0.097372	0.0
3	7.122953	10.275589	-3.232790	0.152547	-2.960878	3.053422	1.429911	1.059566	-1.4
4	3.935302	-1.948072	1.389767	2.940639	0.546747	-1.226495	-0.936213	0.636376	-0.2
564	6.439315	-3.576817	2.459487	1.177314	-0.074824	-2.375193	-0.596130	-0.035472	9.0
565	3.793382	-3.584048	2.088476	-2.506028	-0.510723	-0.246710	-0.716326	-1.113359	-0.1
566	1.256179	-1.902297	0.562731	-2.089227	1.809991	-0.534447	-0.192758	0.341887	0.3
567	10.374794	1.672010	-1.877029	-2.356031	-0.033742	0.567936	0.223081	-0.280243	-0.5
568	-5.475243	-0.670637	1.490443	-2.299157	-0.184703	1.617837	1.698952	1.046354	0.3

569 rows × 13 columns

In [15]:

```
# Replace label column (diagnosis) into binary codes
df['diagnosis']=df['diagnosis'].replace({'M':1,'B':0})
y=df['diagnosis']
```

In [16]:

```
# Data split into train and test
x_train,x_test,y_train,y_test=train_test_split(princi_comp,y,test_size=0.25,random_state=35
```

In [19]:

```
def print_score(clf,x_train,x_test,y_tain,y_test,train=True):
    if train:
        y_pred=clf.predict(x_train)

        print("\n==========Train Result========"")

        print(f"Accuracy score:{accuracy_score(y_train,y_pred)* 100:.2f}%")

elif train==False:
        pred=clf.predict(x_test)

        print('\n==========Test Result===========')
        print(f"Accuracy score:{accuracy_score(y_test,pred)*100:.2f}%")

        print('\n \n Test classification Report \n',classification_report(y_test,pred,digi)
```

In [20]:

```
from sklearn.svm import SVC
svc=SVC()
#svc model training and printing train and test score
svc.fit(x_train,y_train)
# call the function and pass dataset to check train and test score
print_score(svc,x_train,x_test,y_train,y_test,train=True)
print_score(svc,x_train,x_test,y_train,y_test,train=False)
```

========Train Result==========

Accuracy score:98.12%

========Test Result================

Accuracy score:97.90%

Test classification Report

	precision	recall	f1-score	support
0	0.97	1.00	0.98	93
1	1.00	0.94	0.97	50
accuracy			0.98	143
macro avg	0.98	0.97	0.98	143
weighted avg	0.98	0.98	0.98	143

In [21]:

```
from sklearn.ensemble import GradientBoostingClassifier
gbdt=GradientBoostingClassifier()
#GBDT model training and printing train and test score
gbdt.fit(x_train,y_train)

# call the function and pass dataset to check train and test score
print_score(gbdt,x_train,x_test,y_train,y_test,train=True)
print_score(gbdt,x_train,x_test,y_train,y_test,train=False)
```

=======Train Result===========

Accuracy score:100.00%

Accuracy score:94.41%

Test classification Report

	precision	recall	f1-score	support
0	0.95	0.97	0.96	93
1	0.94	0.90	0.92	50
accuracy			0.94	143
macro avg	0.94	0.93	0.94	143
weighted avg	0.94	0.94	0.94	143

In [22]:

```
from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier()

#Random Forest model training and printing train and test score
rf.fit(x_train,y_train)

# call the function and pass dataset to check train and test score
print_score(rf,x_train,x_test,y_train,y_test,train=True)
print_score(rf,x_train,x_test,y_train,y_test,train=False)
```

=======Train Result==========

Accuracy score:100.00%

======Test Result=====================

Accuracy score:96.50%

Test classification Report

	precision	recall	f1-score	support
0	0.98	0.97	0.97	93
1	0.94	0.96	0.95	50
accuracy			0.97	143
macro avg	0.96	0.96	0.96	143
weighted avg	0.97	0.97	0.97	143

In [23]:

from sklearn.model_selection import GridSearchCV

In [24]:

In [25]:

```
gridsearch=GridSearchCV(svc,param_grid)
gridsearch.fit(x_train,y_train)

# best parms
gridsearch.best_params_
```

Out[25]:

```
{'C': 5, 'gamma': 0.01}
```

In [26]:

```
# SVC Model Training and printing train and test score(post param update)
svc = SVC(C= 7, gamma =0.001)
svc.fit(x_train,y_train)
#Call the function and pass dataset to check train and test score
print_score(svc,x_train,x_test,y_train,y_test,train=True)
print_score(svc,x_train,x_test,y_train,y_test,train=False)
```

Test classification Report

	precision	recall	f1-score	support
0	0.97	1.00	0.98	93
1	1.00	0.94	0.97	50
accuracy			0.98	143
macro avg	0.98	0.97	0.98	143
weighted avg	0.98	0.98	0.98	143

Creating Pipeline

In real world the final model is built with popeline. We work on all preprocessing steps, do EDA, make analysis etc. Once we find all the hyperparameter and feature selection techniquesetc, we use the main techniques and create pipeline. This will be clean and better flow of data through series of sequences.

In [28]:

```
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
```

In [29]:

```
df=pd.read_csv('https://raw.githubusercontent.com/training-ml/Files/main/breast%20cancer.cs
```

In [30]:

```
x=df.drop(['Unnamed: 32','diagnosis'],axis=1)
y=df.diagnosis
x_train,x_test,y_train,y_test=train_test_split(
x,y,test_size=0.25,random_state=355)
```

```
In [32]:
```

In [33]:

```
pipe.fit(x_train,y_train)
```

Out[33]:

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [34]:

```
y_pred=pipe.predict(x_test)
```

In [35]:

```
accuracy_score(y_test,y_pred)
```

Out[35]:

0.9790209790209791

- key points . you need to know the execution sequence(example- Imputation techniques should be applied before standard scaler and then PCA
- . you cannot use pipeline for plotting graphs and analysis.
- . Analysis can be done before creating a pipeline
- . Do not use unnecessary methods in the pipeline

you can also use ny encoding/imputation techniques in the pipeline like.

.('Simple Imputer', SinpleImputer(strategy='mean')),#fit_transform

.('Ohe',OneHotEncoder(handle_unknown='ignore')), #fit_transform

In []: