REPUBLIQUE DU CAMEROUN

Paix-Travail-Patrie

UNIERSITE DE DOUALA

ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE DE DOUALA

REPUBLIC OF CAMEROON
Peace-Work-Fatherland
THE UNIVERSITY OF DOUALA

NATIONAL HIGHER POLYTECHNIC SCHOOL OF DOUALA

MICROCONTRÔLEUR

PROJET: REALISATION D'UN PANNEAU D'AFFICHAGE D'UN RESTAURANT COMMANDABLE VIA UNE APPLICATION MOBILE.

Un projet réalisé par des étudiants de **ROBOTIQUE INDUSTRIELLE** troisième année, dont les noms sont :

ABOGSO Joachim-Didier (chef de projet)	18G00005
BASSAMA Fritz Eddy	18G00021
BEKE PENDA Franck Olivier	18G00023
BEMA EPOKO MASSOMA Rudolph	18G00025
BILONG II Paul Magloire	18G00464
BITA NDONGO Yacinthe	17G97321
BITJOKA DIYANI Prospere Honore	18G00031
BIYA Junior Jaures	18G00032
BOGMIS Yves Josue	18G00034
BOYOMO Lucien Rodrigue	18G00037
BOUM NYOBE jean Aime	18G00036
DIABE FIKOUE Steeve Brundon	18G00044
DIKOKE MANGAN Herman Charles	18G00045
DJALEDE Alida Marina	18G00047
DJOLLA EPE Ghislain Edgard	18G00049
DONGO DJOMEYA Arthur Borel	18G00054
EFA EDOA René Kevin	18G00062
FANDA WANKEU Loïc	18G00082
FANMENI KOUAMOU Ivan Miguel	18G00084
FEWO MONTHE Averrhoes	18G00086
FOPA TANE Valdes	18G00090
GWOS Gustave Baudoin	18G00100
KANA Loic Landry	18G00108
KENGNE Killian Stephane	18G00119
KENGOUM Joelle Claude Ingrid	18G00120
KING DIKOUM Amstrong Lionel	18G00123

KONDE MONK Jean Pierre	18G00126
LIBAMA Cédric Kamtor	18G00132
MATIP Emilienne Valerie	17G97437
MPATSOUDOU Maben Cyrus	18G97483
MBALLA Joe Mathy	18G00145
MBWANGUE MOUKOKO Henri Cohen	17G97449
MEJIOTSA DEMANOU Julie Brenda	18G00159
MESSI BINDZI Henri Stephane	17G97457
MESSOMO ONANA Japhet	18G00164
MOUTOUMBA NJOCK	
MOUHAMADOU ABBO Bamadjam	
NASSOU GONGON Benjamin	18G00181
NDEFFO ZEDJOM Lyonel	17G97495
NDOM NLEP MAHOP Yves	18G00192
NDOUM Adolphe Roméo	17G97511
NDZANA KEDE Sedrick	18G00194
NGUENA NGUEDIA Evrard	17G97533
NGOH MOUKOURI Leonel Valles	16G03014
NKANA NKOUTOU Simone Yvana	18G00221
NKIMO LENOU Randolph	18G00222
NOUTCHIEU NOUTCHIEU Franck	18G00230
NYAMSI KIAM Robert	18G00237
NYEMECK Bienvenu Junior	18G00239
NYETAM Hannah Emmanuel Olivier	17G97560
SAME ETIEKO Hermann Loic	18G00267
SIGNING WOUMFO Rochinel	18G00269
SIMEU NKOUNTCHOU Audrey Ulrich	18G00271
SUANWA Ronel	18G00278
TANKIO TELLA Jack Taty	18G00288
TCHOUNDA FOTSO Triomphe	18G00294
TETO Yves Loic	18G00303
TIOGUIM MEZATIO Brunel	18G00308

TOUFEU KOUGWA Steve Leonel	18G00312
WAKEU Christian Francky	18G00322
WATCHING Josias	18G00314
ZAMBO Luc Serges	18G00334

Sous la supervision de M. NANFAK, enseignant.

INTRODUCTION

Les panneaux d'affichage existent depuis longtemps sous différentes formes (écran LCD, écran 7 segments, et plus récemment les matrices à LED). Tous ont un seul et même objectif : donner une information dont la période de validité est généralement courte dans le temps. Un problème se pose donc, pourquoi ne pas concevoir un panneau qui permet une modification instantanée et dynamique de l'information ? C'est dans l'optique de trouver une solution efficace à ce problème que les étudiants de Polytechnique de Douala étudient le cas d'un restaurant moderne.

PROBLEMATIQUE

Un restaurant moderne qui propose plusieurs menus chaque jour désire avoir une plus grande portée en permettant à toute personne passant devant celui-ci de pouvoir lire de l'extérieur, le menu **phare** du jour, ce menu pouvant changer selon les cas, plusieurs fois le même jour.

DISPOSITIF PROPOSE

Concevoir un panneau à l'aide des matrices P10 Outdoor à LED rouges. Le panneau est fait de telle sorte que le potentiel client qui doit le voir de l'extérieur puisse lire le menu sans aucune difficulté ni ambiguïté, le menu proposé doit donc être fixe. Néanmoins, le gérant devrait pouvoir passer quelques informations relatives au restaurant ou au menu proposé, une partie du panneau dynamique donc.

MATERIEL UTILISE

• Six (06) matrices LED P10 16x32 Outdoor disposées de façon à former un affichage de 96x32

• Un module Bluetooth HC- 05

• Un microcontrôleur (dans notre cas Arduino Uno)

• Une alimentation 5V-40A

• Les connectiques

• Une bouteille de silicone pour assurer l'étanchéité

PROGRAMMATION DU MICROCONTRÔLEUR

Le microcontrôleur utilisé dans le cadre de notre travail est **Arduino Uno.** Il délivre 5V en sortie.

Code Arduino

```
Code_final_P10 §
#include <SPI.h>
                       //SPI.h must be included as DMD is written by SPI (the IDE complains otherwise)
#include <DMD.h>
#include <TimerOne.h>
#include "SystemFont5x7.h"
#include "Arial_black_16.h"
//Fire up the DMD library as dmd
#define DISPLAYS_ACROSS 3
#define DISPLAYS DOWN 2
DMD dmd(DISPLAYS ACROSS, DISPLAYS DOWN);
//number max of characters in your message
#define max char 100
char message[max_char];  // stores you message
char message2[max char];  // stores you message
//char mess[max_char];
char r_char;
                        // reads each character
byte index = 0;
                        // defines the position into your array
int i;
char greeting[] = "Bluetooth non connecte ";
char firstletter = '0';
/*----
  Interrupt handler for Timer1 (TimerOne) driven DMD refresh scanning, this gets
  called at the period set in Timer1.initialize();
void ScanDMD()
  dmd.scanDisplayBySPI();
```

```
void ScanDMD()
  dmd.scanDisplayBySPI();
void setup(void)
{
  //initialize TimerOne's interrupt/CPU usage used to scan and refresh the display
                                       //period in microseconds to call ScanDMD. Anything longer than 5000 (5s) and you can see flicker.
  Timer1.initialize( 5000 );
  Timer1.attachInterrupt( ScanDMD ); //attach the Timer1 interrupt to ScanDMD which goes to dmd.scanDisplayBySPI()
  //clear/init the DMD pixels held in RAM
  dmd.clearScreen( true ); //true is normal (all pixels off), false is negative (all pixels on)
  Serial.begin(9600);
strcpy(message, greeting);
strcpy(message2, greeting);
void loop (void)
  //check if serial is avaible an before reading a new message delete's the old message
  if(Serial.available())
        firstletter=Serial.read();
        for(i=0; i<99; i++){
           if (firstletter=='1') {message[i] = '\0';}
```

```
if (firstletter=='2') {message2[i] = '\0';}
    //resests the index
    index=0;
//while is reading the message
while (Serial.available() > 0) {
   //the message can have up to 100 characters
   dmd.clearScreen( true );
  if (firstletter=='1')
     while(index < (max_char-1))</pre>
                                    // Reads a character
      r_char = Serial.read();
      message[index] = r_char;
                                    // Stores the character in message array
      index++;
                                    // Increment position
     // message[index] = '\0';
                                     // Delete the last position
   message[index]=' ';
   else if (firstletter=='2')
    while(index < (max_char-1))</pre>
```

```
// Reads a character
         r_char = Serial.read();
         // Increment position
         index++;
        // message[index] = '\0';
                                 // Delete the last position
  }
//prepares the display to print our message
  dmd.selectFont(Arial_Black_16);
  //displays the message
  dmd.drawMarquee(message,max_char,(32*DISPLAYS_ACROSS)-1,0);
  long start=millis();
  long timer=start;
  boolean ret=false;
  while(!ret)
  {
   dmd.drawString(0,16, message2, 6, GRAPHICS_NORMAL);
   if ((timer+30) < millis()) {
     ret=dmd.stepMarquee(-2,0);
     timer=millis();
    }
  }
}
```

CABLAGE DES DIFFERENTS ELEMENTS

Fig1: câblage de Arduino + module Bluetooth + matrix P10

Fig2 : câblage de Arduino avec l'alimentation externe par les pins VIN et GND

APPLICATION MOBILE

La plateforme utilisée pour concevoir notre application est *Android*. Ainsi, nous avons conçu grâce à un site de développement rapide des applications Android du nom d'**APP Inventor**, une application capable de communiquer avec le module Bluetooth HC-05.

L'interface de notre application nous propose de modifier deux zones de texte : une zone où le texte sera déroulant et une autre où il sera fixe.

```
quand BluetoothList . Avant prise
 faire mettre BluetoothList . Éléments à BluetoothClient1 . Adresses et noms .
 quand BluetoothList .Après prise
faire mettre BluetoothList v . Sélection v à appeler BluetoothClient1 v .Se connecter
                                                                        adresse BluetoothList Sélection
              BluetoothClient1 - Est connecté -
      🔯 si
            mettre Connected . Texte a à Connecte
             mettre Connected . Texte à
      sinon mettre Connected . Texte a à Deconnecte
            mettre Connected . Texte à
quand Send_Button_1 - .Clic
faire appeler BluetoothClient1 . Envoyer texte
                                            . 1
      appeler BluetoothClient1 . Envoyer texte
                                            joint C Zone de texte. Texte
                                                             de composant ( message_deroulant *
quand Send_Button_2 · .Clic
faire appeler BluetoothClient1 . Envoyer texte
                                             2 "
     appeler BluetoothClient1 . Envoyer texte
                                            o joint Zone de texte. Texte
                                                             de composant ( message_fixe *
```


RESULTAT FINAL

Après un suivi rigoureux des différentes étapes énumérées plus haut, nous obtenons un panneau d'affichage de six panneaux dont les trois premières matrices de dessus nous permettent d'afficher une écriture défilante tandis que les trois de dessous nous permettent d'afficher une écriture fixe. Tous modifiable via notre Smartphone.

