- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- No assumptions on the number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level

- Hierarchical clusterings may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

AGNES (Agglomerative Nesting)

DIANA (Divisive Analysis)

Complexity of hierarchical clustering

 Distance matrix is used for deciding which clusters to merge/split

At least quadratic in the number of data points

Not usable for large datasets

Agglomerative clustering algorithm

AGNES: Agglomerative Nesting

- Most popular hierarchical clustering technique
- Basic algorithm
 - 1. Compute the distance matrix between the input data points
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the distance matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the distance between two clusters
 - Different definitions of the distance between clusters lead to different algorithms

Input/Initial setting

 Start with clusters of individual points and a distance/proximity matrix

Intermediate State

• After some merging steps, we have some clusters

	C 1	C2	C 3	C4	C 5
C 1					
C2					
C3					
C4					
C 5					

Distance/Proximity Matrix

Intermediate State

• Merge the two closest clusters (C2 and C5) and update the distance

matrix.

Distance/Proximity Matrix

After Merging

"How do we update the distance matrix?"

			C2 U			
		C1	U C5	C 3	C4	
	C1		?			
C2 U	C5	?	?	?	?	
	C 3		?			
	C4_		?			

Distance between two clusters

Each cluster is a set of points

- How do we define distance between two sets of points
 - Lots of alternatives
 - Not an easy task

Distance between two clusters

Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j

 The distance is defined by the two most similar objects

$$D_{sl}(C_i, C_j) = \min_{x,y} \{ d(x, y) | x \in C_i, y \in C_j \}$$

Strengths of single-link clustering

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of single-link clustering

Original Points

Two Clusters

- Sensitive to noise and outliers
- It produces long, elongated clusters

Distance between two clusters

Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j

 The distance is defined by the two most dissimilar objects

$$D_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Strengths of complete-link clustering

- More balanced clusters (with equal diameter)
- Less susceptible to noise

Limitations of complete-link clustering

- Tends to break large clusters
- All clusters tend to have the same diameter small clusters are merged with larger ones

Distance between two clusters

Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_i

$$D_{avg}(C_i, C_j) = \frac{1}{|C_i| \times |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y)$$

Average-link clustering: discussion

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Distance between two clusters

 Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j

$$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$

Distance between two clusters

Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ij}

$$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$

- r_i: centroid of C_i
- r_i: centroid of C_i
- r_{ij}: centroid of C_{ij}

Ward's distance for clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of k-means
 - Can be used to initialize k-means

Hierarchical Clustering: Comparison

Example of converting data points into distance matrix

Clustering analysis with agglomerative algorithm

distance matrix

$$d_{AB} = \left(\left(1 - 1.5 \right)^2 + \left(1 - 1.5 \right)^2 \right)^{\frac{1}{2}} = \sqrt{\frac{1}{2}} = 0.7071$$

$$d_{DF} = ((3-3)^2 + (4-3.5)^2)^{\frac{1}{2}} = 0.5$$

Euclidean distance

Agglomerative Hierarchical Clustering - Numerical

Consider the following set of 6 one dimensional data points: 18, 22, 25, 42, 27, 43

- > Apply the agglomerative hierarchical clustering algorithm to build the hierarchical clustering dendogram.
- ➤ Merge the clusters using Min distance and update the proximity matrix accordingly.
- > show the proximity matrix corresponding to each iteration of the algorithm.

DATA POINTS

	18	22	25	27	42	43
18	0	4	7	9	24	25
22	4	0	3	5	20	21
25	7	3	0	2	17	18
27	9	5	2	0	15	16
42	24	20	17	15	0	1
43	25	21	18	16	1	0

MERGING 42,43

					,		0					
	18	22	25	27	42	43		18	22	25	27	42,
18	0	4	7	9	24	25	18	0	4	7	9	24
22	4	0	3	5	20	21		****	117	2	.37.1	
25	7	3	0	2	17	18	22	4	0	3	5	20
27	9	5	2	0	15	16	25	7	3	0	2	17
42 ^D	24	20	17	15	0	1	27	9	5	2	0	15
43	25	21	18	16	1	0	42, 43	24	20	17	15	0
		(42, 43)	•							

MERGED 42,43

MERGING 25,27

42, 43 9 0 , **43** 24

MERGING (25,27), 22

	18	22, 25, 27	42, 43
18	0	4	24
22, 25, 27	4 💆	0	15
42, 43	24	15	0

(42, 43), (25, 27)

	18, 22, 25, 27	42, 43
18, 22, 25, 27	0	15
42, 43	15 ^{\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	0

MERGING ((25,27) , 22),18 & MERGING 42,43

MERGING ALL

C _B	18, 22, 25, 27, 42, 43
18, 22, 25, 27, 42, 43	0

Hierarchical Clustering: Time and Space requirements

- For a dataset X consisting of n points
- O(n²) space; it requires storing the distance matrix
- O(n³) time in most of the cases
 - There are n steps and at each step the size n² distance matrix must be updated and searched
 - Complexity can be reduced to O(n² log(n)) time for some approaches by using appropriate data structures

DIANA: Divisive Analysis

- Start with a single cluster composed of all data points
- Split this into components
- Continue recursively
- Any inter cluster distance measure can be used
- Computationally intensive, less widely used than agglomerative methods

DIANA: Divisive Analysis

Consider the following set of 6 one dimensional data points: 18, 22, 25, 42, 27, 43

	Α	В	С	D	E	F
Α	0	4	7	9	24	25
В	4	0	3	5	20	21
С	7	3	0	2	17	18
D	9	5	2	0	15	16
Е	24	20	17	15	0	1
F	25	21	18	16	1	0

DIANA: Divisive Analysis

Consider the following set of 6 one dimensional data points: 18, 22, 25, 42, 27, 43

Step 1: Initialize $C_L = \{a, b, c, d, e, f\}$

Step 2: Initialize $C_I = C_L$ and $C_J = \{\}$

Step 3: Initial Iteration

- Calculate the average dissimilarities of objects in C_I with other objects in C_I
- Average Dissimilarity of a
- a=1/5*(d(a, b) + d(a, c) + d(a, d) + d(a, e) + d(a, f))
- a=1/5(4+7+9+24+25)
- a=69/5
- =13.8
- b=10.6, c=9.4, d=9.4, e=15.4, f=16.2

	Α	В	С	D	E	F
Α	0	4	7	9	24	25
В	4	0	3	5	20	21
С	7	3	0	2	17	18
D	9	5	2	0	15	16
E	24	20	17	15	0	1
F	25	21	18	16	1	0

DIANA: Divisive Analysis

- The positive highest dissimilarity is 16.2 (if tie occurs choose arbitrary/random)
- Move f from C_I to C_J
- Now we have , $C_I = \{a, b, c, d, e\}$ and $C_J = \{f\}$

Step 3: Remaining Iterations

- Calculate the average dissimilarities of objects in C_I with other objects in C_I
- Average Dissimilarity of a
- a=1/4*(d(a, b) + d(a, c) + d(a, d) + d(a, e)) 1/1(d(a, f))
- a=1/4(4+7+9+24)-25
- a=11-25
- a=-14
- b=-13, c=-10.75, d=-8.25, e=18

	Α	В	С	D	E	F
Α	0	4	7	9	24	25
В	4	0	3	5	20	21
С	7	3	0	2	17	18
D	9	5	2	0	15	16
Е	24	20	17	15	0	1
F	25	21	18	16	1	0

- The +ve highest dissimilarity is 18 (if tie occurs choose arbitrary/random)
- Move e from C_I to C_J
- Now we have , $C_I = \{a, b, c, d\}$ and $C_J = \{f, e\}$

DIANA: Divisive Analysis

Step 3: Remaining Iterations

- Calculate the average dissimilarities of objects in C_I with other objects in C_I
- Average Dissimilarity of a
- a=1/3*(d(a, b) + d(a, c) + d(a, d)) 1/2(d(a, f) + d(a, e))
- a=1/3(4+7+9)-1/2(24+25)
- a=-17.83
- b=-16.5, c=-13.5, d=-10.16

	Α	В	С	D	E	F
Α	0	4	7	9	24	25
В	4	0	3	5	20	21
С	7	3	0	2	17	18
D	9	5	2	0	15	16
E	24	20	17	15	0	1
F	25	21	18	16	1	0

- The +ve highest dissimilarity is not available
- Stop and construct clusters C_I and C_J

$$C_I = \{a, b, c, d\} \text{ and } C_J = \{f, e\}$$

Calculate diameter of C_I and C_J

Diameter of $C_I = \max(d(a, b), d(a, c), d(a, d), d(b, c), d(b, d), d(c, d)) = 9$

Diameter of $C_I = max(d(f, e)) = 1$

DIANA: Divisive Analysis

Choose cluster with the highest Diameter (i.e. C₁) and start repeating from step 2

Step 2: Initialize
$$C_I = C_I = \{a, b, c, d\}$$
 and $C_J = \{\}$

Step 3: Remaining Iterations

- Calculate the average dissimilarities of objects in C_L with other objects in C_L
- Average Dissimilarity of a
- a=1/3*(d(a, b) + d(a, c) + d(a, d))
- a=1/3(4+7+9)
- a=6.67
- b=4, c=4, d=5.33

	Α	В	С	D	E	F
Α	0	4	7	9	24	25
В	4	0	3	5	20	21
С	7	3	0	2	17	18
D	9	5	2	0	15	16
E	24	20	17	15	0	1
F	25	21	18	16	1	0

- The +ve highest dissimilarity is a
- Move a from C_I to C_I
- Now we have, $C_I = \{b, c, d\}$ and $C_J = \{a\}$

DIANA: Divisive Analysis

Step 3: Remaining Iterations

- Calculate the average dissimilarities of objects in C_I with other objects in C_I
- Average Dissimilarity of b
- b=1/2*(d(b, c) + d(b, d)) 1/1(d(b, a))
- b=1/2(3+5)-4
- b=4-4
- b=0
- c=-4.5, d=-5.5

	Α	В	С	D	E	F
Α	0	4	7	9	24	25
В	4	0	3	5	20	21
С	7	3	0	2	17	18
D	9	5	2	0	15	16
E	24	20	17	15	0	1
F	25	21	18	16	1	0

- The +ve highest dissimilarity is not available
- Stop and construct clusters C_I and C_J

$$C_I = \{b, c, d\}$$
 and $C_J = \{a\}$

Calculate diameter of C_I and C_J

((42, 43), (((25, 27), 22), 18)) Dendrogram

Practice Problem

	а	b	С	d	е
a	0	9	3	6	11
b	9	0	7	5	10
С	3	7	0	9	2
d	6	5	9	0	8
е	11	10	2	8	0