Assignment 2

Write c++ / python code that implement a simple Markov decision process (MDP) with the following properties:

- a) Its immediate action costs are all positive
- b) All of its actions can result with some probability in the start state
- c) The optimal policy without discounting differs from the optimal policy with discounting and a discount factor of 0.9. Prove
- d) Use value iteration algorithm

With no discount factor, action al is preferred over action a2 in state s1:

	i	0	1	2	3	4	
State1	a1	0	100	100.09	100.10009	100.1001001	
	a2	0	90	101.079	101.179	101.18909	
State2	a3	0	11	11.09	11.10009	11.10010009	
State3		0	0	0	0	0	

With discount factor = 0.9, action a2 is preferred over action a1 in state s1:

	i	0	1	2	3	4	
State1	a1	0	100	100.081	100.089974	100.0900476	
	a2	0	90	99.9711	100.0529011	100.0610432	
State2	a3	0	11	11.081	11.08997399	11.09004761	
State3		0	0	0	0	0	

- You should work individually.
- Your code should produce the same result as shown in the answer section.
- Make sure you understand the problem first; solve it by hand initially before writing your code.
- You must write the code yourself.
- Identical solutions will be considered cheating, and both assignments will receive a grade of zero.