Number Theory

Aamod Varma

MATH - 3235, Fall 2025

Contents

1	Divisibility and Factorization	2
	1.1 Divisibility	. 2
	1.2 Prime Numbers	. 4

Chapter 1

Divisibility and Factorization

1.1 Divisibility

Definition (Divisibility). Let $a, b \in \mathbb{Z}$, then a divides b and we write, $a \mid b$, if there exists $c \in \mathbb{Z}$ such that, b = ac. We also say a is a divisor of b or a factor. We write $a \not\mid b$ to say a does not divide b

Example. 1. 3|6 as $c=2\in\mathbb{Z}$ such that $3\cdot 2=6$

- 2. 3|-6 as $c=-2 \in \mathbb{Z}$ such that $3 \cdot 2 = 6$
- 3. If $a \in \mathbb{Z}$ then a|0 as for all a c=0 will give us $a \cdot 0 = 0$
- 4. $0 \mid 0$ as for any $c \in \mathbb{Z}$ it holds true.

 \Diamond

Proposition 1.1. Let $a, b, c \in \mathbb{Z}$. If a|b and b|c, then a|c

Proof. If a|b then we have c_1 such that $ac_1 = b$ by definition. If b|c then we have $bc_2 = c$ by definition. So we have,

$$bc_2 = c$$

 $ac_1c_2 = c$
 $ac_3 = c$ taking $c_3 = c_1c_2$

which by definition implies that a|c

Proposition 1.2. Let $a, b, c, m, n \in \mathbb{Z}$. If c|a and c|b then c|am + bn.

Proof. If c|a then exists c_1 such $cc_1 = a$ similarly exists c_2 such that $cc_2 = b$. Now we have,

$$cc_1 = a$$
$$cc_1 m = am$$

and

$$cc_2 = b$$
$$cc_2 n = bn$$

which gives us $am + bn = c(c_1m + c_2n) = cc_3$ which by definition implies that c|am + bn

Definition (Greatest integer function). Let $x \in \mathbb{R}$, the greatest integer function of x, denoted [x] or [x] is the greatest integer less than or equal to x.

Example. 1. If $a \in \mathbb{Z}$ then [a] = a (The converse that if [a] = a then $a \in \mathbb{Z}$ is also true.)

2.
$$[\pi] = 3, [e] = 2, [-1.5] = -2, [-\pi] = -4$$

 \Diamond

Lemma 1.3. Let $x \in R$ then $x - 1 < [x] \le x$

Proof. Suppose to the contrary that $[x] \le x - 1$ then $[x] < [x] + 1 \le x$. However $[x] + 1 \in \mathbb{Z}$ which mmakes [x] + 1 the greatest integer lesser than x. But this contradicts the definition hence we have x - 1 < [x].

Theorem 1.4 (The Division Algorithm). Let $a, b \in \mathbb{Z}$ with b > 0. Then there exists unique q, r such that,

$$a = bq + r \qquad 0 \le r < b$$

Proof. 1. Existence

Let $q = \left[\frac{a}{b}\right]$ and $r = a - b\left[\frac{a}{b}\right]$. Now by construction we have, a = bq + r. Now we show that $0 \le r < b$. By Lemma we have,

$$\begin{aligned} \frac{a}{b} - 1 &< \left[\frac{a}{b}\right] \leq \frac{a}{b} \\ b - 1 &> -b \left[\frac{a}{b}\right] \geq -a \\ b - a &> -b \left[\frac{a}{b}\right] \geq -a \\ b &> a - b \left[\frac{a}{b}\right] = r \geq 0 \end{aligned}$$

2. Uniqueness

Assume there are q_1, q_2, r_1, r_2 such that,

$$a = bq_1 + r_1$$
 $a = bq_2 + r_2$

We have,

$$0 = a - a$$

= $(bq_1 + r_1) - (bq_2 + r_2)$
= $b(q_1 - q_2) + (r_1 - r_2)$

Now,

$$r_2 - r_1 = b(q_1 - q_2)$$

so now we have $b|r_2-r_1$, but we know that $-(b-1) \le r_2-r_1 \le b-1$ which means that $r_2-r_1=0$ which implies that $r_1=r_2$. Similarly we have $b(q_1-q_2)=r_2-r_1=0$ which means that $q_1-q_2=0$ or $q_1=q_2$

Note. r = 0 if and only if b|a

Example. Suppose a = -5, b = 3 then we have,

$$q = \left[\frac{a}{b}\right] = \left[-\frac{5}{3}\right] = -2$$

And

$$r = a - b\left[\frac{a}{b}\right] = -5 = 3(-2) = 1$$

So $-5 = 3 \cdot -2 + 1$

Note. We can also write $-5 = -3 \cdot 1 - 2$. However this doesn't contradicts the uniqueness as r = -2 is not in the bounds defined in our definition.

Definition. Let $n \in \mathbb{Z}$, then n is even if 2|n and odd otherwise.

1.2 Prime Numbers

Definition (Prime Numbers). Let $p \in \mathbb{Z}$ with p > 1. Then p is prime if and only if the only positive divisors of p are 1 and itself. If $n \in \mathbb{Z}$ and n > 1, if n is not prime then n is composite.

Note. 1 is neither prime nor composite.

Example. 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 47

Lemma 1.5. Every integer greater than 1 has a prime divisor

Proof. Assume this is not true and by the well ordering principle there exists a least number n that does not have a prime divisor. Note n|n so n can't be prime so assume n is composite then that means n=ab for some 1 < a, b < n. However, n is the least integer that doesn't have a prime divisor. Which means that both a, b have prime divisors which also means that n has a prime divisor. This contradicts our assumption and therefore every integer n > 1 has a prime divisor.

Note. Well ordering principle sates that every non-empty subset of the positive integers has a least element.

Theorem 1.6. There are infinitely many primes.

Proof. Assume not true and let p_1, \ldots, p_n be the finite primes. Now consider $N = p_1 p_1 \ldots p_n + 1$, this must be composite by assumption. Now using Lemma 1.5 this means that N has some prime divisor p_i . This means that $p_i|N$. We also know $p_i|p_1p_2\ldots,p_n$. This means $p_i|N-p_1,\ldots,p_n$ or $p_i|1$ which is false. Hence, by contradiction our assumption is wrong and there are infinitely many primes.

Note. Try to modify the proof and construct infinitely many problematic N.

Proposition 1.7. If n is composite, the n has prime divisor that is less than or equal to \sqrt{n}

Proof. Consider n=ab where 1 < a,b < n. now, without loss of generality choose b such that $b \ge a$. now we show that $a \le \sqrt{n}$. Suppose to the contrary $a > \sqrt{n}$. Then we have $n=ab \ge a^2 > n$. Which is not true. Hence we have $a \le \sqrt{n}$. By lemma 1.5, a has a prime divisor p. But p|a and a|n> Since p|a we have $p \le a \le \sqrt{n}$.

 \Diamond

Note. This means if all prime divisors n are greater than \sqrt{n} then n is prime.

Example. To find primes less than n then we can delete multiples of primes less than \sqrt{n} .

Proposition 1.8. For any positive integer n, there are at least n consecutive composite numbers.

Proof. Consider the following set of numbers,

$$\{(n+1)!+2,\ldots,(n+1)!+(n+1)\}$$

Note that for any $2 \le m \le n+1$, clearly m|m and m|(n+1)! so we have by Proposition 1.2,

$$m|(n+1)! + m$$

5

Hence every integer in the set is composite.

Note. Primes can also be very close,

Conjecture. There are infinitely many pairs of primes that differ by exactly 2.

Note. Zhang (2013) showed that infintely many pairs whose diff is $\leq 70,000,000$. This has been lowered to 246

Note. Assuming UBER strong conjectures, we can get down to 6.

Average Gaps

Gauss conjectured that as $x \to \infty$ the number of primes $\leq x$ denoted by $\pi(x)$ goes to $\frac{x}{\log(x)}$.

Or, the "probability" that $n \le x$ is prime is $\frac{\pi(x)}{x} \sim \frac{1}{\log(x)}$

Note. This was proven independently in 1896

Definition. Let $x \in \mathbb{R}$, $\pi(x) = |\{p : p \text{ is prime}, p \leq x\}|$

Theorem 1.9.

$$\lim_{x \to \infty} \frac{\pi(x) \log(x)}{x} = 1$$

Conjecture (Goldbach's Conjecture). Every even integer ≥ 4 is the sum of two primes.

Note. Ternary Goldbach shows that odd number ≥ 7 is a sum of 3 primes and is proved.

Mersenne and Fermats Primes

If $p = 2^n - 1$ is prime then its called a Mersenne prime.

If $p = 2^{2^n} + 1$ is prime then its called a Fermat prime.

Conjectures are there are infinitely many Mersenne primes and but finitely many Fermat primes.