CI. Grupo A. Hoja 2. Funciones Integrables. Teorema de Fubini.

Problema 1. Sea $A \subset \mathbb{R}^n$ acotado y $f: A \to \mathbb{R}$ una función acotada e integrable Riemann. Probar que su gráfica tiene volumen cero en \mathbb{R}^{n+1} .

Problema 2. Probar que la circunferencia unidad $\{(x,y): x^2 + y^2 = 1\} \subset \mathbb{R}^2$ tiene volumen cero.

Problema 3. Sea $A = [0,1] \times [0,1]$ y $f : A \to \mathbb{R}$ dada por f(x,y) = x si x > y, y $f(x,y) = y^2$ si $x \le y$. Probar que f es integrable y calcular su integral.

Problema 4. Sea $A \subset \mathbb{R}^2$ la región comprendida entre las gráficas de las curvas $y = x^2$, $y = -x^2$ y las rectas x = -1, x = 1. Calcular

$$\int \int_A (x^2 - y) \, dx \, dy \, .$$

Problema 5. Sea $A\subset\mathbb{R}^2$ la región del primer cuadrante encerrada entre las parábolas $y^2=x$ e $y=x^2$. Hallar

$$\int \int_A xy \, dx \, dy.$$

Problema 6. Sea $I = [0, 1] \times [0, 1]$.

(a) Hallar

$$\int \int_I x^y \, dx \, dy.$$

(b) Utilizarlo para demostrar que

$$\int_0^1 \frac{x-1}{\log x} \, dx = \log 2.$$

Problema 7. Demostrar que

$$\int_0^1 \left(\int_0^1 \frac{x-y}{(x+y)^3} dy \right) dx = \frac{1}{2}, \quad \int_0^1 \left(\int_0^1 \frac{x-y}{(x+y)^3} dx \right) dy = -\frac{1}{2}.$$

Explicar por qué se tienen resultados distintos.