Федеральное государственное бюджетное образовательное учреждение высшего образования. «Национально исследовательский университет «Московский энергетический институт»

Кафедра ВМСС

Лабораторная работа №4 ИССЛЕДОВАНИЕ ПРИНЦИПОВ ОРГАНИЗАЦИИ ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА В МВС С РАСПРЕДЕЛЕННОЙ ПАМЯТЬЮ

Курс: Вычислительные системы

Группа: A-08-19 Выполнил: Балашов

C.A.

Проверил: Карпов А.В.

Домашняя подготовка

Цель работы: изучение способов организации вычислительного процесса при выполнении наборов задач различных типов на MBC с распределенной памятью с целью определения параметров MBC (количество процессоров и шин), позволяющих выполнить набор задач конкретного типа за заданное время. Сравнение временных характеристик и коэффициентов загрузки оборудования в MBC различной организации.

- 1. Изучить соответствующие разделы лекционного курса и описания лабораторных работ.
- 2. Для графа задачи, исследуемого при выполнении домашней подготовки в лабораторной работе №3, вручную определить минимальное время выполнения задачи в МВС с распределенной памятью на основе поиска критического пути графа задачи. Сравнить полученное значение с минимальным временем выполнения задачи в МВС с обшей памятью.

Рис. 1. Граф с критическим путём, минимальными и максимальными временами начала выполнения в узлах (МВС с общей памятью)

Обнулим дуги графа, следуя алгоритму подпорки (Таблица 1).

Путь							Длина пу	ти				
	Шаг 1	Шаг 2	Шаг 3	Шаг 4	Шаг 5	Шаг 6	Шаг 7	Шаг 8	Шаг 9	Шаг 10	IIIar 11	Шаг 12
1-2-6-11-15-18-20	39	39	39	39	39	39	39	39	39	39	35	33
1-2-7-11-15-18-20	39	39	39	39	39	39	33	33	33	33	33	31
1-3-7-11-15-18-20	43	40	40	40	40	40	34	34	34	34	34	32
1-3-8-12-15-18-20	43	40	39	38	38	38	38	38	38	38	38	36
1-3-8-12-16-18-20	45	42	41	40	39	39	39	33	33	33	33	31
1-3-8-12-16-19-20	38	35	34	33	32	32	32	32	32	32	32	32
1-4-8-12-15-18-20	40	40	40	39	39	39	39	39	39	39	39	37
1-4-8-12-16-18-20	42	42	42	41	40	40	40	34	34	34	34	32
1-4-8-12-16-19-20	39	39	39	38	37	37	37	37	37	37	37	37
1-4-9-13-16-18-20	41	41	41	41	41	39	39	33	30	30	30	28
1-4-9-13-16-19-20	38	38	38	38	38	36	36	36	33	33	33	33
1-4-9-13-17-19-20	38	38	38	38	38	36	36	36	33	33	33	33
1-4-9-14-17-19-20	40	40	40	40	40	40	40	40	37	32	32	32
1-5-9-13-16-18-20	41	41	41	41	41	39	39	33	33	33	33	31
1-5-9-13-16-19-20	38	38	38	38	38	36	36	36	36	36	36	36
1-5-9-13-17-19-20	38	38	38	38	38	36	36	36	36	36	36	36
1-5-9-14-17-19-20	40	40	40	40	40	40	40	40	40	35	35	35
1-5-10-14-17-19-20	38	38	38	38	38	38	38	38	38	33	33	33
Обнуляемая ветка	1-3 (- 3)	3-8 (-1)	8-12 (- 1)	12-16 (-2)	9-13 (- 2)	7-11 (- 6)	16-18 (- 6)	4-9 (-3)	14-17 (- 5)	2-6 (-4)	18-20 (-2)	-
Ветки запрещенные к обнулению	1-2, 1- 4, 1-5	4-8, 3-7	-	12-15, 13-16	9-14,	6-11,	15-18, 16-19	5-9, 4- 8	13-17,	2-7,	19-20,	-

Заметим, что после полного прохождения алгоритма, ветвь 5-10, 10-14, 11-15, 17-19 не являются ни обнуленными, ни запрещенными к обнулению. Согласно алгоритму подпорки, в случае возникновения таких ветвей, их также следует обнулять.

Рис. 2. Граф с обнуленными дугами, критическим путём, минимальными и максимальными временами начала выполнения в узлах (МВС с распределенной памятью)

3. Предложить значения параметров структуры MBC с распределенной памятью, на которой возможно выполнение задачи за минимальное время. Для выполнения данного пункта построить временную диаграмму выполнения вычислительного процесса в MBC с распределенной памятью.

Рис. 3. Диаграмма Ганта

Лабораторное задание

1. Проверить выбранный при домашней подготовке вариант на модели, проанализировать и объяснить полученные результаты.

При выполнении дальнейших пунктов лабораторного задания исследуются наборы из четырех задач различных типов, которые исследовались в лабораторной работе №3 в MBC с общей памятью (см. Таблицу 2).

Рис. 4. Моделирование выполнения задачи из подготовки

Вывод: время решения на временной диаграмме, полученной при моделировании, составляет 53 такта. Это меньше, чем время решения, полученное при ручном моделировании (62 такта). Данный результат, как и в случае лабораторной работы №3, объясняется спецификой построения временных диаграмм программой моделирования — в данном случае временная диаграмма подразумевает одновременную передачу процессором результата в память другого процессора и выполнение этим же процессором следующей доступного ему узла.

2. Для набора задач каждого типа построить зависимости времени решения задач от числа процессоров, числа шин в MBC с распределенной памятью, найти лучший вариант. Выявить параметры, которые дают наиболее существенный выигрыш.

Таблица 2 Варианты задач для исследования при выполнении лабораторной работы

№ бригады	Наборы задач для исследования различных типов задач 1 — слабосвязанные задачи:Laba3\Grafs\Easy\ 2 — среднесвязанные задачи:Laba3\Grafs\Easy\ 3 — сильносвязанные задачи:Laba3\Grafs\Easy\	Заданное время выполнения набора задач Т _{зад.}
4	1 - F21,F41,F61,F81	300
	2 - F22,F42,F62,F82	1200
	3 - F23,F43,F63,F83	1500

Стратегия назначения готовых к выполнению узлов не задана, выберем стратегию назначения по максимальному времени выполнения. Приоритеты при моделировании не используются.

Таблица 3 Время выполнения от числа процессоров и шин для слабосвязанных задач (F21,F41,F61,F81).

BUS		CPU													
ВОО	1	2	3	4	5	6	7	8	9	10					
1	1440	758	544	414	371	293	293	293	293	293					
2		758	544	414	357	311	281	293	293	293					
3			544	414	357	311	281	293	293	293					
4				414	357	311	281	293	293	293					
5					357	311	281	293	293	293					
6						311	281	293	293	293					
7							281	293	293	293					
8								293	293	293					
9									293	293					
10										293					

Рис. 5. Графики зависимости времени выполнения слабосвязанного графа от числа шин (при фиксированном числе процессоров)

Рис. 6. Графики зависимости времени выполнения слабосвязанного графа от числа процессоров (при фиксированном числе шин)

Таблица 4 Время выполнения от числа процессоров и шин для среднесвязанных задач (F22, F42, F62, F82).

BUS		CPU													
Б03	1	2	3	4	5	6	7	8	9	10					
1	1440	1025	884	701	1036	934	1051	1031	1076	1107					
2		1070	863	723	737	657	589	577	592	614					
3			863	723	737	766	758	619	560	537					
4				723	737	776	658	616	563	536					
5					737	776	638	619	563	536					
6						776	638	619	563	536					
7							638	619	563	536					
8	·							619	563	536					
9									563	536					
10										536					

Рис. 7. Графики зависимости времени выполнения среднесвязанного графа от числа шин (при фиксированном числе процессоров)

фиксированном числе шин)

Таблица 5 Время выполнения от числа процессоров и шин для сильносвязанных задач (F23, F43, F63, F83).

					105).										
BUS		CPU													
Б03	1	2	3	4	5	6	7	8	9	10					
1	1440	1258	1176	840	1602	1106	1527	1714	1574	1565					
2		1349	1196	925	1308	1123	941	1050	1006	958					
3			1273	927	1079	1299	1035	1049	965	901					
4				927	1356	1078	1035	940	930	777					
5					1356	1154	1035	940	930	777					
6						1154	1050	900	930	777					
7							1050	900	930	777					
8								900	930	777					
9									930	777					
10										777					

Рис. 9. Графики зависимости времени выполнения сильносвязанного графа от числа шин (при фиксированном числе процессоров)

Рис. 10. Графики зависимости времени выполнения сильносвязанного графа от числа процессоров (при фиксированном числе шин)

Вывод: были рассмотрены вариации с различным количеством (от 1 до 10) процессоров и шин. Для набора слабосвязанных задач число шин практически не влияет на время выполнения. Ощутимое сокращение времени выполнения наблюдается лишь при увеличении числа процессоров (вплоть до 5-го процессора). Это объясняется тем, что для набора слабосвязанных задач время передачи по шине значительно меньше времени выполнения узла на процессоре, к тому же передач стало значительно меньше, чем в случае с общей памятью. Для набора среднесвязанных задач с увеличение числа шин не всегда вызывает уменьшение времени выполнения, хотя до добавления 4ой шины общая тенденция заключается в незначительном увеличении скорости выполнения. Увеличение числа процессоров также не всегда приводят к уменьшению времени выполнения (небольшой прирост в скорости наблюдается при добавлении не более 3-х дополнительных процессоров). Для набора сильносвязанных задач время выполнения уменьшается при росте числа шин вплоть до 3-ех, при этом в некоторых случаях рост числа шин негативно сказывается на время выполнения (например, при добавлении 2-ой шины при 3-ех процессорах). Добавление новых процессоров в этом случае несет крайне непредсказуемый характер.

3. На тех же графиках построить аналогичные зависимости для MBC с общей памятью (необходимые данные были получены в лабораторной работе №3). Для сравнения необходимо в пп 2 и 3 рассматривать MBC с одинаковыми параметрами.

Рис. 11. Сравнение графиков зависимости времени выполнения слабосвязанного графа от числа шин (при фиксированном числе процессоров) для MBC с общей памятью (пунктирные линии) и распределенной памятью (сплошные линии)

Рис. 12. Сравнение графиков зависимости времени выполнения слабосвязанного графа от числа процессоров (при фиксированном числе шин) для MBC с общей памятью (пунктирные линии) и распределенной памятью (сплошные линии)

Рис. 13. Сравнение графиков зависимости времени выполнения среднесвязанного графа от числа шин (при фиксированном числе процессоров) для MBC с общей памятью (пунктирные линии) и распределенной памятью (сплошные линии)

Рис. 14. Сравнение графиков зависимости времени выполнения среднесвязанного графа от числа процессоров (при фиксированном числе шин) для MBC с общей памятью (пунктирные линии) и распределенной памятью (сплошные линии)

Рис. 15. Сравнение графиков зависимости времени выполнения сильносвязанного графа от числа шин (при фиксированном числе процессоров) для MBC с общей памятью (пунктирные линии) и распределенной памятью (сплошные линии)

Рис. 16. Сравнение графиков зависимости времени выполнения сильносвязанного графа от числа процессоров (при фиксированном числе шин) для MBC с общей памятью (пунктирные линии) и распределенной памятью (сплошные линии)

Вывод: сравнивая графики для случая слабосвязанных задач, можно увидеть, что время выполнения у MBC с распределённой памятью меньше, чем у MBC с общей памятью. Это объясняется тем, что в случае MBC с распределённой памятью некоторые дуги графа обнуляются (а так как вес этих дуг не столь велик по отношению к времени выполнения узлов, то и прирост в скорости составил в среднем 20%). Для наборов среднесвязанных и сильносвязанных задач видно, что время выполнения на MBC с распределённой памятью меньше времени выполнения на MBC с общей памятью, при этом разница этих времён существенная (до нескольких раз в зависимости от рассматриваемых конфигураций). Это объясняется тем, что времена передач по шинам вносят значимый вклад в общее время выполнения (так как примерно равны или даже превышают время выполнения узлов), то обнуление части из этих времён передач значительно уменьшает время выполнения.

4. Определить коэффициенты улучшения времени выполнения задач в МВС с различной организацией; коэффициенты загрузки процессоров в МВС с распределенной памятью и сравнить их с коэффициентами загрузки процессоров в МВС с общей памятью. Проанализировать и объяснить полученные результаты.

Коэффициент улучшения времени выполнения рассчитывается как отношение времени решения задачи (набора задач) на MBC с общей памятью Топ ко времени решения задачи (набора задач) на MBC с распределенной памятью Трп:

$$K_{y\pi} = \ T_{O\Pi}/T_{P\Pi}$$

Таким образом, найденный коэффициент показывает, насколько быстрее выполняются задачи на MBC с распределенной памятью.

Построить зависимость изменения Кул при изменении числа процессоров.

Таблица 6

Коэффициент улучшения для слабосвязанных задач (F21, F41, F61, F81).

		СРИ													
BUS	1	2	3	4	5	6	7	8	9	10					
1	1.301	1.284	1.381	1.498	1.464	1.867	1.662	1.908	1.662	1.788					
2		1.261	1.239	1.295	1.232	1.347	1.313	1.137	1.099	1.038					
3			1.263	1.254	1.207	1.232	1.199	1.082	1.031	0.962					
4				1.249	1.19	1.186	1.149	1.061	1	0.898					
5					1.232	1.257	1.167	1.082	0.98	0.85					
6						1.203	1.185	1.082	1	0.853					
7							1.178	1.075	1.007	0.846					
8								1.075	1	0.853					
9									1.003	0.853					
10										0.853					

Рис. 17. Графики зависимости коэффициентов улучшения от числа процессоров (при фиксированном числе шин) для набора слабосвязанных задач.

Таблица 7 Коэффициент улучшения для среднесвязанных задач (F22, F42, F62, F82).

	1100 4 411	.щ	Ty IIIICIIII	л долг ор			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,, -	0=, 1 0=).						
BUS		CPU													
В	1	2	3	4	5	6	7	8	9	10					
1	4.129	4.422	5.157	6.556	4.459	4.894	4.349	4.477	4.235	4.117					
2		3.127	3.022	3.385	3.43	3.948	4.117	4.272	4.321	3.954					
3			2.594	2.78	2.431	2.234	2.565	2.824	3.189	3.354					
4				2.438	2.121	1.844	2.12	2.328	2.455	2.472					
5					2.042	1.7	1.972	1.861	1.984	2.095					
6						1.616	1.906	1.84	1.794	1.961					
7							1.771	1.848	1.865	1.897					
8								1.821	1.833	1.707					
9									1.753	1.851					
10										1.851					

Рис. 18. Графики зависимости коэффициентов улучшения от числа процессоров (при фиксированном числе шин) для набора среднесвязанных задач.

Таблица 8 Коэффициент улучшения для сильносвязанных задач (F23, F43, F63, F83).

	Коэффи	, ,	<i>-</i>	- ' '	CI		, ,	, ,						
BUS														
	1	2	3	4	5	6	7	8	9	10				
1	5.388	5.084	5.454	7.626	4.016	5.801	4.22	3.755	4.047	4.07				
2		2.977	3.077	3.645	2.653	3.174	3.489	3.281	3.429	3.789				
3			2.419	2.875	2.183	1.787	2.3	2.367	2.76	2.708				
4				2.548	1.476	1.833	1.734	2.326	1.965	2.45				
5					1.474	1.634	1.519	1.873	1.826	2.543				
6						1.462	1.523	1.664	1.643	1.918				
7							1.56	1.507	1.459	1.871				
8								1.589	1.427	1.604				
9									1.394	1.931				
10										1.526				

Рис. 19. Графики зависимости коэффициентов улучшения от числа процессоров (при фиксированном числе шин) для набора сильносвязанных задач.

Коэффициенты загрузки процессоров рассмотрим на примере конфигурации из 5 процессоров и 5 шин.

Коэффициенты загрузки процессоров

Таблица 9

Связность	Память	Коэффициенты загрузки процессоров							
Связность	аткматт	1	2	3	4	5	среднее		
Слабая	Общая	0,716	0,716	0,668	0,740	0,597	0,6874		
Слабая	Распределенная	0,896	0,896	0,840	0,644	0,756	0,8064		
Средняя	Общая	0,231	0,224	0,168	0,182	0,203	0,2016		
Средняя	Распределенная	0,488	0,407	0,421	0,393	0,244	0,3906		
Сильная	Общая	0,166	0,172	0,140	0,134	0,161	0,1546		
Сильная	Распределенная	0,229	0,192	0,273	0,177	0,192	0,2126		

Вывод: для набора слабосвязанных задач коэффициент усиления находится в пределах от 0,846 до 1908 (среднее значение 1,1886) для различных конфигураций. В большинстве случаев, он превышает 1, но есть и исключения, вызываемые тем, что в случае МВС с распределенной памятью есть ограничение: если дуга между узлами обнулена, значит эти узлы обязательно выполняются на одном процессоре. Выполнение этого условия иногда препятствует более рациональному распределению узлов и процессоров. Для среднесвязанных и сильносвязанных задач коэффициент усиления всегда больше 1 и доходит до 6,556 для среднесвязанных задач (среднее значение 2.8561) и до 7,626 для сильносвязанных задач (среднее значение 2,6846). При этом для любого вида связности видно, что при увеличении числа шин коэффициент усиления уменьшается, а при увеличении числа процессоров изменяется либо в большую, либо в меньшую сторону. Из Таблицы 9 видно, что для набора слабосвязанных задач коэффициенты загрузки максимальные, так как процессоры большую часть времени занимаются выполнением узлов и не ждут завершения передачи данных с предыдущих этапов. При переходе от МВС с общей памятью к МВС с распределённой памятью коэффициенты загрузки во всех 3-х случаях увеличиваются: для набора слабосвязанных задач увеличение составило 17%, для среднесвязанных и сильносвязанных – 94% и 38% соответственно (так как обнуляемые времена передач вносят существенный вклад в общее время выполнения таких задач).