

Target-Guided Composed Image Retrieval

Haokun Wen¹, Xian Zhang¹, Xuemeng Song^{2*}, Yinwei Wei³, and Liqiang Nie^{1*}

1 Harbin Institute of Technology (Shenzhen), Shenzhen, China
2 Shandong University, Qingdao, China
3 Monash University, Melbourne, Australia

Outline

- 1. Background
- 2. Motivation
- 3. Framework
- 4. Experiment
- 5. Conclusion

1. Background

Traditional single-model query-based image retrieval system cannot well deliver the user's sophisticated search intention. Composed image retrieval (CIR) allows users using the multimodal query to express the search intentions more flexibly.

- Extending the retrieval paradigm of the image retrieval systems.
- Enhancing the interaction ability of the retrieval system.
- Commercial product search.
- Interactive intelligent robot.

1. Background

Composed Image Retrieval (CIR)

The key to CIR lies in two key points:

- (1) Multimodal fusion for accurately capturing the user's search intention;
- (2) Metric learning for accurately ranking the candidate images.

2. Motivation

 On multimodal fusion: Existing methods ignore the intrinsic conflicting relationship between the multimodal query.

Leverage the target-query relationship to model the conflicting relationship

2. Motivation

 On metric learning: The widely-used batch-based classification loss can affect the metric learning process.

Leverage the target visual similarity to promote the metric learning

> Target-Guided Composed Image Retrieval network (TG-CIR)

Target-Guided Composed Image Retrieval network (TG-CIR)

© 2023 Haokun Wen.

> Target-Guided Composed Image Retrieval network (TG-CIR)

© 2023 Haokun Wen.

Distribution-guided Metric Learning

Target-Guided Composed Image Retrieval network (TG-CIR)

© 2023 Haokun Wen.

4. Experiment

> Performance comparison on FashionIQ and Shoes

	FashionIQ							Shoes				
Method	Dresses		Shirts		Tops&Tees		Avg		R@1	R@10	R@50	Avg
	R@10	R@50	R@10	R@50	R@10	R@50	R@10	R@50	NW 1	K@10	K@30	Avg
TIRG [32] (CVPR'19)	14.87	34.66	18.26	37.89	19.08	39.62	17.40	37.39	12.60	45.45	69.39	42.48
VAL [5] (CVPR'20)	21.12	42.19	21.03	43.44	25.64	49.49	22.60	45.04	16.49	49.12	73.53	46.38
CIRPLANT [24] (ICCV'21)	17.45	40.41	17.53	38.81	21.64	45.38	18.87	41.53	_	_	_	_
CosMo [21] (CVPR'21)	25.64	50.30	24.90	49.18	29.21	57.46	26.58	52.31	16.72	48.36	75.64	46.91
DATIR [11] (ACM MM'21)	21.90	43.80	21.90	43.70	27.20	51.60	23.70	46.40	17.20	51.10	75.60	47.97
MCR [38] (ACM MM'21)	26.20	51.20	22.40	46.00	29.70	56.40	26.10	51.20	17.85	50.95	77.24	48.68
CLVC-Net [35] (SIGIR'21)	29.85	56.47	28.75	54.76	33.50	64.00	30.70	58.41	17.64	54.39	79.47	50.50
ARTEMIS [7] (ICLR'22)	27.16	52.40	21.78	43.64	29.20	54.83	26.05	50.29	18.72	53.11	79.31	50.38
EER [37] (TIP'22)	30.02	55.44	25.32	49.87	33.20	60.34	29.51	55.22	20.05	56.02	79.94	52.00
FashionVLP [9] (CVPR'22)	32.42	60.29	31.89	58.44	38.51	68.79	34.27	62.51	_	49.08	77.32	_
CRR [36] (ACM MM'22)	30.41	57.11	30.73	58.02	33.67	64.48	31.60	59.87	18.41	56.38	79.92	51.57
AMC [41] (TOMM'23)	31.73	59.25	30.67	59.08	36.21	66.60	32.87	61.64	19.99	56.89	79.27	52.05
Clip4cir [1] (CVPRW'22)	33.81	59.40	39.99	60.45	41.41	65.37	38.32	61.74	_	_	_	_
FAME-ViL[17] (CVPR'23)	42.19	<u>67.38</u>	<u>47.64</u>	68.79	50.69	73.07	46.84	<u>69.75</u>	_	_	_	_
TG-CIR	45.22	69.66	52.60	72.52	56.14	77.10	51.32	73.09	25.89	63.20	85.07	58.05
Improvement(%)	↑ 7.18	↑ 3.38	↑ 10.41	↑ 5.42	↑ 10.75	↑ 5.52	↑ 9.56	↑ 4. 79	↑ 29.13	↑ 11.09	↑ 6.42	↑ 11.53

4. Experiment

> Performance comparison on CIRR

Method		R@	F	Avg				
	k = 1	k = 5	k = 10	k = 50	k = 1	k = 2	k = 3	nvg
TIRG [32] (CVPR'19)	14.61	48.37	64.08	90.03	22.67	44.97	65.14	35.52
ARTEMIS [7] (ICLR'22)	16.96	46.10	61.31	87.73	39.99	62.20	75.67	43.05
CIRPLANT [24] (ICCV'21)	15.18	43.36	60.48	87.64	33.81	56.99	75.40	38.59
Clip4cir [1] (CVPRW'22)	38.53	69.98	81.86	95.93	68.19	85.64	94.17	69.09
TG-CIR	45.25	78.29	87.16	97.30	72.84	89.25	95.13	75.57
Improvement(%)	↑ 17.44	↑ 11.87	↑ 6.47	↑ 1.43	↑ 6.82	↑ 4.22	↑ 1.02	↑ 9.38

4. Experiment

> Ablation study

Method	Fashior	nIQ-Avg	Shoes	CIRR	
	R@10	R@50	Avg	Avg	
Local-AttriFea_Only	41.92	67.37	52.35	55.68	
Global-AttriFea_Only	49.50	72.89	56.31	74.50	
w/o_ortho	50.77	72.23	57.50	75.04	
w/o_target_guide	48.84	72.28	55.80	72.62	
w/o_target_guide_c	50.00	72.82	55.84	74.17	
w/o_target_guide_m	48.95	72.31	56.33	74.58	
TG-CIR	51.32	73.09	58.05	75.57	

5. Conclusion

1. We propose a target-query relationship-guided multimodal query composition module with the "keep-and-replace" paradigm.

2. We propose a batch-based **target similarity-guided matching degree regularization** that can improve the performance of metric learning for CIR.

3. We propose an attribute feature extraction module, which can extract unified attribute features of the three elements of the CIR task from both local and global perspectives, to facilitate the conflicting relationship modeling

Thanks for your listening!

Codes are available!