UEPB/CCT/DC/BC

Disciplina: Cálculo Numérico Período: 2022.1 Data: 26/ 06 /2022 Prof. Antonio Carlos

1ª. Avaliação – Os Métodos Numéricos (Temas 0 e 1) e seus Princípios (Tema 2)

ATENÇÃO! Os quesitos desta avaliação dependem de dados (A1, A2, etc.) da tabela a seguir que, por sua vez, dependem do último algarismo da matrícula de cada aluno. POR FAVOR, não pequem os dados de outra matrícula!

i oit i / troit, ilao po	gaoiii oo	aaacc a	o oana n	iatiroara
latrículas terminadas m	0, 2 e 3	1 e 8	4 e 9	5, 6 e 7
A1	a	b	C	d
A2	w	X	у	Z
А3	30x30	35x35	40x40	45x45
A4	k	1	m	n
A5	[1,2]	[2,3]	[3,4]	[4,5]

Quesito 1: Responda FALSO ou VERDADEIRO de acordo com a situação **b**. Justifique sua resposta. (veja sua matrícula)

b – Com relação à solução de equações do 2º. Grau, a matemática possui uma teoria capaz de resolver todos os casos. (Tema 0 slide 8)

Resposta: Verdadeiro, é possível chegar a uma solução para todas as equações do 2° grau através da análise do Δ e pelo uso da fórmula de bhaskara.

Quesito 2: Responda de acordo com a situação x. (veja sua matrícula)

 X – Quais são as bases matemáticas que a maioria das técnicas dos métodos numéricos utiliza na realização dos cálculos? (Tema 1 slide 4)

Resposta: Aritmética básica: adição, subtração, multiplicação, divisão e potenciação.

Quesito 3: Usando o supermega computador do slide 17 do tema 0, diga QUANTOS ANOS serão necessários para se chegar à solução do sistema de equações lineares de dimensões (nº. de equações X nº. de incógnitas) especificadas na situação 35x35. (Tema 0 slides 16 a 19, veja sua matrícula. Lembre-se: a resposta deve ser dada em ANOS)

$$TOT \times = (35-1)(35+1)! = 1,264777311 * 10^{43}$$

 $TOT + = (35+1)(35!-1) = 3,719933268 * 10^{41}$

trabalhando no supercomputador de 50 GHz, temos que 1 ciclo de instrução é igual a 2 * 10^{-11} , logo:

```
TOT \times = 1,264777311 * 10^{43} \times 2 * 10^{-11} / 20 = 1,264777311 * 10^{31} segundos.

TOT \pm = 3,719933268 * 10^{41} \times 2 * 10^{-11} / 100 = 7,439866536 * 10^{28} segundos.

totalizando = 1,272217178 * 10^{31} segundos

equivalente a: 4,034174206 * 10^{23} anos.
```

Quesito 4: Resuma em um texto breve, quais são os objetivos do princípio l dos métodos numéricos. (veja sua matrícula)

I – Princípio da divisão e conquista (Tema 2 slide 16)

Resposta: A fim de simplificar a resolução de determinado problema divide-se o mesmo em pequenas partes e ao solucionar (derrotar) todas as pequenas partes o resultado (vitória) estará dado.

Quesito 5: Com relação ao princípio da discretização usado na integração de funções, mostre que a regra do trapézio (Tema 2 slide 12) é mais precisa do que a regra do retângulo (Tema 2 slides 9 ou 10) para o cálculo da área sob a curva $f(x) = \sqrt{x} + 1$ no intervalo dado em [2,3] . Compare os resultados obtidos pela discretização com o obtido pelo cálculo convencional. Resposta: Com os dados inseridos abaixo, conseguimos perceber que a área do Trapézio tem maior precisão.

III.			
f(x) = Vx+1 = A	· A5 = [2, 3]	· h= b-a	
V	a=2	h=1	
	6=3		
tropegu			
$A = R \cdot (f(b) + f(a))$) =) A = 1 . (B	(3) + k(a) 1	
<u> </u>	a a	9 0	
	= 1 . (a, t	32050808 + 2,4	19213562)
	2		
	= 1,(5,14	626437)	
	Э		
	A=2, 5737	301850	
C= Elasz. A = A	A = 102, 4142135		
	$f(3) = \sqrt{3} + 1 = 2, \pm$		
	$f(3) = \sqrt{3} + 1 = 2, \pm$ $= 1 \cdot 2, \pm 3 \cdot 2 \cdot 0$		
A = h. fE(p)] =			
		50808 = jA = 6	
A = h. fE(p)] =	=) A = 1.2,1320	50808 = jA = 6	
A = h. fE(p)] =	=) A = 1.2,1320	50808 = jA = 6	1, 4 32050808
A = h. fE(p)] =	=) A = 1.2,4320 =) I = 2/x.1	50808 = jA = 6	1, 4 32050808
A = h. fE(p)] =	=) A = 1.2,4320 =) I = 2/x.1	50808 = jA = 6	1-4V2 3.84