

## Esercitazione 03 – Stati bifase

Esercizio 01 (link registrazione, min 50 in poi)

Corso di Fisica Tecnica a.a. 2019-2020

*Prof. Gaël R. Guédon*Dipartimento di Energia, Politecnico di Milano

### E03: Stati bifase Esercizio 01

**3.1.** [base] Utilizzando la tabella dell'acqua satura e del vapore surriscaldato, determinare lo stato dell'acqua (liquido sottoraffreddato, bifase, liquido saturo, vapore surriscaldato) e la grandezza indicata tra parentesi, per tutti i casi seguenti:

| 1. $P = 10,561 \text{ MPa}$         | s = 8.4521  kJ/kgK                  | (stato dell'acqua) |
|-------------------------------------|-------------------------------------|--------------------|
| 2. $T = 250  ^{\circ}\text{C}$      | $v = 0.04276 \text{ m}^3/\text{kg}$ | (h)                |
| 3. $v = 0.12 \text{ m}^3/\text{kg}$ | P = 400  mbar                       | (s)                |
| 4. $T = 160  ^{\circ}C$             | P = 2 bar                           | (h)                |
| 5. $P = 60 \text{ bar}$             | h = 3600  kJ/kg                     | (T)                |
| 6. $P = 80 \text{ bar}$             | h = 1200  kJ/kg                     | (T)                |
| 7. $T = 80  ^{\circ}C$              | P = 10  kPa                         | (h)                |
| 8. $P = 2 \text{ bar}$              | s = 5.5967  kJ/kg                   | (v)                |
| 9. $T = 250  ^{\circ}\text{C}$      | $v = 0.27 \text{ m}^3/\text{kg}$    | (P)                |
| 10. P = 1000  kPa                   | h = 650  kJ/kg                      | (T)                |
| 11. $P = 2 MPa$                     | x = 0.5                             | (s)                |
| 12. $T = 200  ^{\circ}C$            | $v = 25 \text{ m}^3/\text{kg}$      | (h)                |
| 13. $P = 2500 \text{ kPa}$          | h = 1800  kJ/kg                     | (s)                |
| 14. $T = 60  ^{\circ}C$             | P = 50  kPa                         | (h)                |
| 15. T = 140 °C                      | x = 1                               | (P)                |
| 16. $P = 70 \text{ kPa}$            | s = 5.3  kJ/kgK                     | (v)                |

### E03: Stati bifase

#### Esercizio 01



Per prima cosa nella tabella di saturazione cerchiamo (stato dell'acqua) il valore 105,61bar, non lo trovo, ma abbiamo 100 e 110. Controlliamo anche l'altra tabella e notiamo che qua invece siamo fortunati e troviamo la pressione richiesta di 105,61 bar. Continuiamo quindi con la seconda tabella. A 105,61 bar, il liquido saturo ha 3,4002 di entropia, nel testo dell'esercizio ho 8,4521 di entropia specifica, che è maggiore di quella trovata, dunque, nel grafico T-s, siamo ben più a destra del punto di liquido saturo. (continua sotto)

A 105,61 bar, invece, il vapore saturo vale 5,5858, anche in questo caso è minore di 8,4521 specificato nel testo.

Illustriamo il problema con questo disegno a sinistra: La linea blu rappresenta l'isobara 105,61 bar. nelle tabelle ho trovato i valori di stato liquido saturo (LS) e vapore saturo (VS) alla pressione 105,61bar. Siccome il valore dell'entropia del testo vale 8,4521, vuol dire che siamo ancora più a destra del valore di

🔇 vapore saturo (VS). Quindi come conclusione deduco che sono nella zona di vapore surriscaldato.

Se il dato di entropia del problema fosse stato compreso fra 3,4002 e 5,5858 saremmo stati nella zona bifase, e se il dato di entropia del problema fosse stato minore di 3,4002 saremmo stati nella zona di liquido sottoraffreddato.

### E03: Stati bifase Esercizio 01

Per calcolare l'entalpia dobbiamo capire quale è lo stato. Quindi nella tabella di saturazione cerchiamo 250 gradi, che troviamo. Vogliamo ora trovare il volume specifico 0.04276. In tabella abbiamo il volume specifico del liquido saturo (0,001251) e quello del vapore saturo (0,050037). Il volume specifico richiesto dall'esercizio è quindi compreso fra i due trovati, quindi sono in una situazione di stato bifase (liquido + vapore).

2. 
$$T = 250 \, ^{\circ}\text{C}$$
  $v = 0.04276 \, \text{m}^3/\text{kg}$  (h)

 $V_{LS} \left( T_{SAT} = 250 \, ^{\circ}\text{C} \right) = 0,001251 \, m^3/\text{kg}$ 
 $V_{VS} \left( T_{SAT} = 250 \, ^{\circ}\text{C} \right) = 0,050037 \, m^3/\text{kg}$ 
 $V_{LS} \left( V_{SAT} = 250 \, ^{\circ}\text{C} \right) = 0,050037 \, m^3/\text{kg}$ 

Ora per calcolare l'entalpia devo usare la formula del bifase che è

da cui ricavo che:

$$h = 1085/8 + 0,851 (2800/4 - 1085/8) = 2544/6 \frac{95}{900}$$

# E03: Stati bifase saturazione, per cui trovo che la pressione di saturazione è 6,1806 bar. Cosa significa? significa che per avere un bifase devo avere una pressione maggiore di 6,1806 bar, quindi noi avendo pressione 2 bar nella consegna

Esercizio 01 dell'esercizio, o siamo un liquido sottoraffreddato o un vapore surriscaldato. Ma procedendo in questo modo il ragionamento diventa difficile. Proviamo invece a partire dalla pressione, per cui cerchiamo nell'altra tabella 2 bar, per cui la temperatura di saturazione è 120 gradi. Quindi in questo caso abbiamo una temperatura di 160 gradi che è maggiore di quella scritta in tabella (120),

siamo quindi in una zona di vapore surriscaldato (la temperatura è maggiore e la pressione è la stessa). Se fossimo stati a 100 gradi invece che a 160, la temperatura sarebbe stata minore e quindi saremmo stati in una zona di liquido sottoraffreddato.

(h) Ora che sappiamo di essere in zona di vapore surriscaldato, usiamo la 4. T = 160 °C P = 2 bartabella corrispondente. Alla pressione di 2 bar cerco 160 gradi, che non ho, ma ho 150 e 200 quindi usiamo l'interpolazione lineare



(formula di interpolazione)

nella tabella abbiamo 1) A: T<sub>A</sub> = 150°C

$$R_{A} = 2768,5 \text{ e.g.}$$

$$R = R_A + \frac{h_B - k_A}{T_B - T_A} (T - T_A) = 2788,9$$

(applichiamo l'interpolazione lineare all'entalpia coi dati che abbiamo trova

(Se non avessimo avuto neanche la pressione in tabella.

avremmo dovuto fare l'interpolazione bilineare)

# Esercizio 01

Cerco 80 bar nella tabella di saturazione, in cui l'entalpia di saturazione del liquido saturo è 1317,2, l'entalpia che ci E03: Stati bifase viene fornita come dato è 1200, che quindi è minore, quindi siamo in presenza di un liquido sottoraffraddato, quindi la temperatura che stiamo cercando non è la temperatura di saturazione (294,98) segnata in tabella, ma sarà minore. A questo punto per calcolare l'entalpia del liquido sottoraffreddato uso le formule del liquido sottoraffreddato

6. 
$$P = 80 \text{ bar}$$
  $h = 1200 \text{ kJ/kg}$  (T)

 $h_{LS} \left(P_{SAT} = 80 \text{ bar}\right) = 1314, 2 \text{ LT/hg}$   $h \in h_{LS} \Rightarrow 2100100$ 

Formula dell'entalpia per il liquido sottoraffreddato:

 $h(P,T) = h_{LS} \left(P_{SAT}(T)\right) + v(P - P_{SAT}(T))$ 
 $h_{LS} \left(P_{SAT}(T)\right) + v(P_{SAT}(T))$ 
 $h_{LS} \left(P_{SAT}(T)\right)$ 
 $h_{LS} \left(P_{SAT}($ 

## E03: Stati bifase

#### Esercizio 01

Ora che sappiamo dove cade precisamente in tabella l'entalpia interpoliamo la temperatura fra questi due valori:

1) 
$$A: T_A = 769,94$$
 $L_{S,A} = 1184,9$ 
 $L_{S,A} = 1184,9$ 

Interpolazione lineare:

$$T = 269,94 + \frac{275,56 - 269,94}{1213,4 - 1184,9} (1196,65 - 1184,9)$$

la soluzione nel testo è 272,9 perchè non è stata utilizzata la stima dell'entalpia (calcoli in colore rosso della slide precedente)

# Esercizio 01

Questo approccio è stato mostrato anche nella lezione di teoria riguardo le formule per l'acuga sottoraffreddata, in E03: Stati bifase cui per trovare la formula dell'entalpia, invece di esprimerla in funzione della temperatura, si esprime in funzione della medesima pressione... (vai a vedere quelle slide per capire meglio).

Questo approccio è sconsigliato, e in questa slide ci sta mostrando in pratica perchè lo è.

https://webbook.nist.gov/chemistry/