

Data Sheet July 1999 File Number 2285.3

1.0A, 100V, 0.6 Ohm, P-Channel Power MOSFET

This advanced power MOSFET is designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are P-Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17501.

Ordering Information

PART NUMBER	PACKAGE	BRAND		
IRFD9120	HEXDIP	IRFD9120		

NOTE: When ordering, use the entire part number.

Features

- 1.0A, 100V
- $r_{DS(ON)} = 0.6\Omega$
- · Single Pulse Avalanche Energy Rated
- · SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- · Linear Transfer Characteristics
- · High Input Impedance

Symbol

Packaging

HEXDIP

IRFD9120

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	IRFD9120	UNITS
Drain to Source Breakdown Voltage (Note 1)	-100	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	-100	V
Continuous Drain Current	-1.0	Α
Pulsed Drain Current (Note 3)	-8.0	Α
Gate to Source Voltage	±20	V
Maximum Power Dissipation (Figure 1)	1.0	W
Linear Derating Factor (Figure 1)	0.008	W/oC
Single Pulse Avalanche Energy Rating (Note 4)	370	mJ
Operating and Storage Temperature	-55 to 150	oC
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = -250\mu A$, $V_{GS} = 0V$, (Figure 9)	-100	-	-	V
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250\mu A$	-2	-	-4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V	-	-	-25	μΑ
		$V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = 0V, T_{C} = 125^{\circ}C$	-	-	-250	μΑ
On-State Drain Current (Note 2)	I _{D(ON)}	$V_{DS} > I_{D(ON)} \times r_{DS(ON) MAX}, V_{GS} = -10V$	-1.0	-	-	Α
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$	-	-	±500	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = -0.8A, V _{GS} = -10V, (Figures 7, 8)	-	0.5	0.6	Ω
Forward Transconductance (Note 2)	9fs	V _{DS} < 50V, I _D = -0.8A (Figure 11)	0.8	1.2	-	S
Turn-On Delay Time	t _{d(ON)}	V _{DD} = 0.5 x Rated BV _{DSS} , I _D = -1.0A,		25	50	ns
Rise Time	t _r	$R_G = 9.1Ω$, $V_{GS} = -10V$, (Figures 16, 17) $R_L = 50Ω$ for $V_{DD} = -50V$	-	50	100	ns
Turn-Off Delay Time	t _{d(OFF)}	MOSFET Switching Times are Essentially Indepen-	-	50	100	ns
Fall Time	t _f	dent of Operating Temperature		50	100	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	V _{GS} = -10V, I _D = -1.0A, V _{DS} = 0.8 x Rated BV _{DSS} (Figures 13, 18, 19) Gate Charge is Essentially Independent of Operating Temperature		16	20	nC
Gate to Source Charge	Q _{gs}			9	-	nC
Gate to Drain "Miller" Charge	Q _{gd}			7	-	nC
Input Capacitance	C _{ISS}	V _{DS} = -25V, V _{GS} = 0V, f = 1MHz, (Figure 10)		300	-	pF
Output Capacitance	C _{OSS}			200	-	pF
Reverse Transfer Capacitance	C _{RSS}			50	-	pF
Internal Drain Inductance	L _D	Measured From the Drain Lead, 2.0mm (0.08in) From Header to Center of Die Modified MOSFET Symbol Showing the Internal Devices	-	4.0	-	nH
Internal Source Inductance	L _S	Measured From the Source Lead, 2.0mm (0.08in) From Header to Source Bonding Pad	-	6.0	-	nH
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	Typical Socket Mount	-	-	120	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET Symbol	-	-	-1.0	Α
Pulse Source to Drain Current (Note 3)	^I SDM	Showing the Integral Reverse P-N Junction Diode	-	-	-8.0	A
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_C = 25^{\circ}C$, $I_{SD} = -1.0A$, $V_{GS} = 0V$, (Figure 12)	-	-	-1.5	V
Reverse Recovery Time	t _{rr}	$T_J = 150^{\circ}C$, $I_{SD} = -4.0A$, $dI_{SD}/dt = 100A/\mu s$	-	150	-	ns
Reverse Recovery Charge	Q _{RR}	$T_J = 150^{\circ}C$, $I_{SD} = -4.0A$, $dI_{SD}/dt = 100A/\mu s$	-	0.9	-	μC

NOTES:

- 2. Pulse test: pulse width $\leq 80\mu s$, duty cycle $\leq 2\%$.
- ${\it 3. }\ {\it Repetitive \ rating: pulse \ width \ limited \ by \ maximum \ junction \ temperature.}$
- 4. V_{DD} = 25V, starting T_J = 25°C, L = 555mH, R_G = 25 Ω , Peak I_{AS} = 1.0A (Figures 14, 15).

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 3. FORWARD BIAS SAFE OPERATING AREA

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE

FIGURE 4. OUTPUT CHARACTERISTICS

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 5. SATURATION CHARACTERISTICS

NOTE: Heating effect of 2µs pulse is minimal.

FIGURE 7. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

FIGURE 9. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 6. TRANSFER CHARACTERISTICS

FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

FIGURE 10. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 11. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 12. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 13. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

Test Circuits and Waveforms (Continued)

FIGURE 16. SWITCHING TIME TEST CIRCUIT

FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

FIGURE 18. GATE CHARGE TEST CIRCUIT

FIGURE 19. GATE CHARGE WAVEFORMS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000

TEL: (407) 724-7000 FAX: (407) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029