CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Basics of COA

Lecture No.- 01

Topics to be Covered

Topic **Prerequisites**

Topic Why COA

Topic **Data In Computers**

Topic **Components of Computer**

Topic **Binary Numbers**

Topic: Prerequisites

Basic components of computer: CPU, memory (RAM, ROM, HDD), I/O

Number system: Binary, Decimal, Hexadecimal etc.

Digital logic basics: Mux, Decoder etc.

Powers of 2:

Unit	Time	Bit or Byte
K (Kilo)	10^{3}	210
M (Mega)	10^{6}	220
G (Giga)	10 ⁹	230
T (Tera)	1012	240

millisec.
$$\Rightarrow$$
 10^{-3} sec (ms)
microsec \Rightarrow 10^{-6} sec (Us)
nanosec \Rightarrow 10^{-9} sec (ns)

$$2^{\circ} = 1$$
 $2^{\circ} = 2$
 $2^{\circ} = 2$
 $2^{\circ} = 32$
 $2^{\circ} = 256$

$$2^9 = 512$$
 $2^{10} = 1024 = 1 \text{ kilo}$
 $2^{11} = 2048$
 $2^{12} = 4096$
 $2^{13} = 8192$

- To understand: How a computer works
- To understand other courses: OS, Compiler, Programming etc.
- Help in real world development: DBMS, Hardware Design, IoT problems etc.

Number System

Binary, Hexadecimal, Decimal

Conversion from one system to another

Signed numbers: Sign-Magnitude, 1's Complement, 2's Complement

- Decoder
- Multiplexer

Topic: Computer Organization & Architecture

Computer Architecture:

Conceptual design and fundamental operational structure.

Computer Organization: Implementation of Computer architecture

- Deals with physical devices and their interconnections
- With a perspective of improving the performance.

Computer Architecture	Computer Organization
CPU Design	I/O Organization
Instructions	Memory Organization
Addressing modes	Performance
Data format	

Syllabus:--> Basics -> Instruction La Addressing modes -> CPU design -> CPU -> Jata path -> Floating point Representation

→ IO organization -> Mem. organ Scache Disk

pripelining

Topic: Data In Computers

Data (Binary)

Number floating point Fixed point signed unsigned → sign-Magnitude → 15 Complement → 25 — 11 Prerequisite

character SASCII SEBCDIC

Topic: Binary Numbers

Topic: Components of Computer

- CPU ⇒ Control Unit

 → Control Unit

 ALU (Arithmetic Logic Unit)
- Memory: → Rimary / main memory RAM

 ROM

I/O Devices:

working of computer system: (main memory) 05 Instructions Program 1

Topic: Other Components

- System Buses
- CPU Registers

Topic: Other Components

System Buses: Collection of Communication lines

can transmit 4 bits parallely.

single line can transmit one bit at a time.

CPU (system bus mem.

Topic: Other Components

System Buses:

- Address Bus
- Data Bus
- Control Bus

Topic: System Buses

some Control signal:

from CPU to memory => Read curite

from CPU to I/O => Read write

I/o & CPU => Interrupt

from mem. to CPU Wait Ready

2 mins Summary

Topic

Architecure vs Organization

Topic

Numbers & Data in Computers

Topic

Components of Computer

Topic

System Buses

Topic

Types of Buses

Happy Learning THANK - YOU