Függvények aszimptotikus növekedési üteme

I. Általános összefüggések

A. Definíciók

Legyenek $f,g:\mathbb{N}\to\mathbb{R}_0^+$ függvények, ahol \mathbb{N} a természetes számok, \mathbb{R}_0^+ pedig a nemnegatív valós számok halmaza.

- f-nek g aszimptotikus felső korlátja (jelölése: f(n) = O(g(n)); ejtsd: f(n) = nagyordó g(n)) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \le c \cdot g(n)$ minden $n \ge N$ -re.
- f-nek g aszimptotikus alsó korlátja (jelölése: $f(n) = \Omega(g(n))$) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \ge c \cdot g(n)$ minden $n \ge N$ -re.
- f-nek g aszimptotikus éles korlátja (jelölése: $f(n) = \Theta(g(n))$) ha léteznek olyan $c_1, c_2 > 0$ konstansok és $N \in \mathbb{N}$ küszöbindex, hogy $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ minden $n \ge N$ -re.

Megjegyzés: aszimptotikusan nemnegatív (egy küszöbindextől nemnegatív) értékű sorozatokra is kiterjeszthető.

B. Tulajdonságok

 O, Ω, Θ 2-aritású relációnak is tekinthetők a $\mathbb{N} \to \mathbb{R}_0^+$ függvényeken (pl. $(f,g) \in \Theta \Leftrightarrow f = \Theta(g)$).

- 1. O, Ω, Θ tranzitív (pl. $f = O(g), g = O(h) \implies f = O(h)$)
- 2. O, Ω , Θ reflexív
- 3. \(\textit{\theta} \) szimmetrikus
- 4. O, Ω fordítottan szimmetrikus $(f = O(g) \Leftrightarrow g = \Omega(f))$
- 5. (köv.) Θ ekvivalenciareláció, a $\mathbb{N} \to \mathbb{R}_0^+$ függvények egy osztályozását adja. Az egyes függvényosztályokat általában "legegyszerűbb" tagjukkal reprezentáljuk. Pl. 1 (korlátos függvények), n (lineáris függvények), n^2 (négyzetes függvények).

- 6. $f, g = O(h) \Rightarrow f + g = O(h)$, hasonlóan Ω -ra, Θ -ra. (Összeadásra való zártság)
- 7. Legyen c>0 konstans $f=O(g)\Rightarrow c\cdot f=O(g)$, hasonlóan Ω -ra, Θ -ra. (Pozitív konstanssal szorzásra való zártság)
- 8. $f + g = \Theta(\max\{f, g\})$ (szekvencia tétele). A domináns tag határozza meg egy összeg aszimptotikus nagyságrendjét.

C. Ha létezik az f/g határérték

- ha $f(n)/g(n) \to +\infty$ $\Rightarrow f(n) = \Omega(g(n))$ és $f(n) \neq O(g(n))$
- ha $f(n)/g(n) \rightarrow c$ $(c > 0) \Rightarrow f(n) = \Theta(g(n))$
- ha $f(n)/g(n) \to 0$ $\Rightarrow f(n) = O(g(n))$ és $f(n) \neq \Omega(g(n))$

D. Hibatagok jelölésére

Példa:

$$(n+1)^3 = n^3 + 3n^2 + O(n).$$

$$(n+1)^k = n^k + kn^{k-1} + O(n^{k-2}).$$

II. Konkrét függvények

- (a) $p(n) = a_k n^k + \dots + a_1 n + a_0 (a_k > 0)$, ekkor $p(n) = \Theta(n^k)$,
- (b) Minden p(n) polinomra és c > 1 konstansra $p(n) = O(c^n)$, de $p(n) \neq \Omega(c^n)$,
- (c) Minden c > d > 1 konstansokra $d^n = O(c^n)$, de $d^n \neq \Omega(c^n)$,
- (d) Minden a, b > 1-re $\log_a n = \Theta(\log_b n)$,
- (e) Minden c > 0 -ra $\log_2 n = O(n^c)$, de $\log_2 n \neq \Omega(n^c)$.

III. Feladatok

- 1. Mutassunk példát olyan f és g fv-ekre, melyekre
 - (a) f = O(g), de $f \neq \Omega(g)$,
 - (b) $f = \Omega(g)$, de $f \neq O(g)$,
 - (c) $f = \Theta(g)$

Igazoljuk állításainkat közvetlenül a definíciók felhasználásával!

- 2. Igazoljuk O tranzitivitását!
- 3. Igazoljuk Θ szimmetrikusságát!
- 4. Igazoljuk a C pont állítását!
- 5. Igazoljuk a **II** pont állításait!
- 6. Mit mondhatunk arról az f függvényről, melyre f(1) = 1, f(2) = 10, és f(3) = 100?
 - (1) $f(n) = O(10^n)$,
 - (2) $f(n) = 10^{O(n)}$,
 - (3) Egyik fenti állítás sem igaz minden esetben.
- 7. Hasonlítsuk össze az alábbi 2 függvényt aszimptotikus növekedésük szerint! $f(n) = 5 \cdot 2^n + n^3$, $g(n) = 3^n + 2 \cdot n$.
- 8. Lássuk be, hogy $n \ge 6$ -ra

$$\left(\frac{n}{3}\right)^n < n! < \left(\frac{n}{2}\right)^n.$$

- 9. Lássuk be, hogy $\log_2(n!) = \Theta(n \log n)$.
- 10. Rendezzük aszimptotikus nagyságrendjük szerint az alábbi függvényeket!

$$\log_3(n!),$$

$$(2/3)^n$$
,

$$4\log_{17}(n+5),$$

$$n^{1,01}+3\sqrt{n},$$

$$100n^{100} + 3^n,$$

$$n!$$
,

$$n^{0,03} + 2\ln n,$$

$$3^n + 2^n$$
,

$$n^{3/2}$$
.

IV. Megoldások

1. (a) f(n) = 3n + 4, $g(n) = 2n^2 + 1$

 $n \ge 1$ -re $f(n) = 3n + 4 \le 3n^2 + 4 < 8n^2 + 4 = 4g(n)$. Tehát N = 1, c = 4 például jó.

Ha $2n^2+1 \le c(3n+4)$ igaz lenne valamely c>0-ra és n>N-re akkor $(2n^2+1)/(3n+4) \le c$ teljesülne. Azonban a baloldalon álló tört nem korlátos $(+\infty$ a határértéke).

- (b) $f(n) = 2n^2 + 1$ és g(n) = 3n + 4 jó.
- (c) f(n) = 3n + 4, g(n) = 5n + 1. Ekkor minden n-re $f(n) = 3n + 4 \le 20n + 4 = 5g(n)$ és $g(n) = 5n + 1 \le 6n + 8 = 2f(n)$. Tehát pédául N = 0, $c_1 = 1/2$ és $c_2 = 5$ jó választás.

2. f = O(g): $\exists c_1 > 0, N_1 \in \mathbb{N}$, hogy $\forall n \ge N_1$: $f(n) \le c_1 g(n)$

g = O(h): $\exists c_2 > 0, N_2 \in \mathbb{N}$, hogy $\forall n \ge N_2 : g(n) \le c_2 h(n)$

Így $\forall n \ge \max\{N_1, N_2\}$: $f(n) \le c_1 g(n) \le c_1 c_2 h(n)$. Mivel $c_1, c_2 > 0$, ezért $c_1 c_2 > 0$. Tehát f = O(h).

3. $f = \Theta(g)$: $\exists c_1, c_2 > 0, N \in \mathbb{N}$, hogy $\forall n \ge N$: $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$.

Ekkor

$$\forall n \ge N : \frac{1}{c_2} \cdot f(n) \le g(n) \le \frac{1}{c_1} \cdot f(n).$$

4. Mivel $f,g:\mathbb{N}\to\mathbb{R}_0^+$ függvények, ezért

$$\lim_{n \to +\infty} \frac{f}{g} = \begin{cases} 0 & 1. \text{ eset} \\ c(>0) & 2. \text{ eset} \\ +\infty & 3. \text{ eset} \end{cases}$$

1. eset: $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : f(n)/g(n) \leq \varepsilon$, tehát pl. $\varepsilon = 5$ -tel: $\forall n \geq N : f(n) \leq 5 \cdot g(n)$.

2. eset: $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \ge N : c - \varepsilon \le f(n)/g(n) \le c + \varepsilon$. Pl. $\varepsilon = c/2$ -vel: $(c/2)g(n) \le f(n) \le (3c/2)g(n)$

3. eset: $\forall K > 0 \exists N \in \mathbb{N} \ \forall n \geq N : \ f(n)/g(n) \geq K$, így pl. K = 77 esetén $\forall n \geq N$ -re $f(n)/g(n) \geq 77$, azaz $f(n) \geq 77 \cdot g(n)$.

5. (a) ha $a_k > 0$, akkor

$$\frac{p(n)}{n^k} = \frac{a_k n^k + \dots + a_1 n + a_0}{n^k} = a_k + a_{k-1} \frac{1}{n} + \dots + a_0 \frac{1}{n^k} \to a_k > 0$$

Tehát a **C** szerint $p(n) = \Theta(n^k)$.

(b) • x > 1-re $x \le 2^x$

Teljes indukcióval könnyen bizonyítható, hogy $n+1 \le 2^n$. Létezik $n \in \mathbb{N}: n \le x \le n+1. x \le n+1 \le 2^n \le 2^x$.

- Ha c > 1, akkor $\exists n_1, n > n_1$: $c^n \ge 2$. $\varepsilon := c - 1 > 0. \ c^n = (1 + \varepsilon)^n = \binom{n}{0} 1^n \varepsilon^0 + \binom{n}{1} 1^{n-1} \varepsilon^1 + \ldots = 1 + n\varepsilon + \delta,$ ahol $\delta \ge 0$.
- Ha c > 1 és $k \in \mathbb{N}$ akkor $n^k = O(c^n)$. Legyen n_1 az előző küszöb. $n > n_1 k$ esetén

$$n^k = n_1^k k^k \left(\frac{n}{n_1 k}\right)^k \le n_1^k k^k 2^{\frac{n}{n_1 k} \cdot k} \le n_1^k k^k c^{\frac{n}{n_1} \cdot n_1} = n_1^k k^k c^n.$$

- $p(n) = O(n^k)$, ahol k p(n) foka. $n^k = O(c^n)$, tehát a tranzitivitás miatt $p(n) = O(c^n)$.
- Indirekt, tegyük fel, hogy létezik $d_1 > 0$ és $N_1 \in \mathbb{N}$, hogy $n \ge N_1$ -re $c^n \le d_1 p(n)$. Legyen c_1 olyan, hogy $1 < c_1 < c$. Ekkor létezik $d_2 > 0$ és $N_2 \in \mathbb{N}$, hogy $n \ge N_2$ -re $p(n) \le d_2 c_1^n$. Tehát $n \ge \max N_1, N_2$ -re $c^n \le d_1 p(n) \le d_1 d_2 c_1^n$. Azaz $(\frac{c}{c_1})^n \le d_1 d_2$, ami ellentmondás.
- (c) ha c > d > 1, akkor $c^n/d^n = (c/d)^n \to +\infty$, így **C** szerint $d^n = O(c^n)$, de $d^n \neq \Omega(c^n)$.
- (d) $\log_a n = \log_a b \cdot \log_b n$. Itt $\log_a b$ konstans, így $\log_a n = \Theta(\log_b n)$.
- (e) ha $m = \log_2 n$, akkor $\log_2 n = m^1$ (m polinomja) és $n^c = (2^c)^m$ (m exponenciális függvénye), alkalmazzuk a (b) pontot.
- 6. (3) a helyes, nem mondhatunk semmit egy függvény viselkedéséről nagy *n*-ekre a kezdőértékek alapján.

7. $f(n) = 5 \cdot 2^n + n^3$, $g(n) = 3^n + 2 \cdot n$. f(n) = 5; 11; 28; 67... g(n) = 1; 5; 13; 33;...

1. megoldás

- $5 \cdot 2^n + n^3 = \Theta(2^n)$, valóban: $\frac{5 \cdot 2^n + n^3}{2^n} = 5 + \frac{n^3}{2^n} \to 5$, ebből C miatt következik
- $3^n + 2 \cdot n = \Theta(3^n)$, valóban: $\frac{3^n + 2 \cdot n}{3^n} = 1 + \frac{2n}{3^n} \rightarrow 1$, ebből C miatt következik
- Θ tranzitivitása miatt elég a 2^n és 3^n függvényeket aszimptotikusan összehasonlítani. Ezekről viszont tudjuk, hogy a 2.-nak nagyobb az aszimptotikus nagyságrendje.

2. megoldás

Közvetlenül is kiszámíthatjuk a határértéket:

$$\frac{5 \cdot 2^n + n^3}{3^n + 2 \cdot n} = \frac{5 \cdot (2/3)^n + n^3/3^n}{1 + 2 \cdot n/3^n} \to \frac{0}{1} = 0$$

A számláló 0-hoz tart, mivel két 0-hoz tartó tag összege. A nevező 1-hez tart, mivel a 2. tag 0-hoz tart. Tehát a határérték 0/1=0. Ebből C miatt következik, hogy a 2. függvénynek nagyobb az aszimptotikus nagyságrendje.

- 8. $n \ge 6$ -ra teljes indukcióval belátható. Felhasználva, hogy $(1 + 1/n)^n \to e$ alulról és $(1 - 1/n)^n \rightarrow 1/e$ felülről.
- 9. $n \ge 6$ -ra $(n/3)^n < n! < (n/2)^n$. Tehát $n(\log_2 n \log_2 3) < \log_2 (n!) < 1$ $n(\log_2 n - \log_2 2)$. Így

$$1 - \frac{\log_2 3}{\log_2 n} < \frac{\log_2 (n!)}{n \log_2 n} < 1 - \frac{\log_2 2}{\log_2 n},$$

amiből $\log_2(n!)/(n\log_2 n) \to 1$, C miatt következik az állítás.

10. legkisebb az (1):

(4)
$$\log_3(n!)$$
, (1) $(2/3)^n$, (2) $4\log_{17}(n+5)$,

(4)
$$\log_3(n!)$$
, (1) $(2/3)^n$, (2) 4 logs (5) $n^{1,01} + 3\sqrt{n}$, (7-8) $100n^{100} + 3^n$, (9) $n!$,

(3)
$$n^{0.03} + 2 \ln n$$
, (7-8) $3^n + 2^n$, (6) $n^{3/2}$.