Learning Portable Representations for High-Level Planning

Steven James¹ Benjamin Rosman¹ George Konidaris²

¹University of the Witwatersrand ²Brown University

June 12, 2020

Authors

(a) Steven James

(b) Benjamin Rosman

(c) George Konidaris

Introduction

- Planning in continuous state space and continuous action space is costly and inefficient.
- Learn symbolic representations of state space.
- ▶ Previous work of Konidaris et al. [3] shows a procedure to generate these symbolic representations.
- ▶ However, learned symbols are not general.

Contribution

- 1. Learn symbols in *egocentric* state space with [3].
- 2. Then, for each newly encountered environment, augment the environment specific representations.
- \rightarrow Results in sample efficiency.
- \rightarrow More general representations.

Semi Markov Decision Processes

Framing the problem as Semi-Markov Decision Processes. (What is that?)

$$MDP = (States, Actions, Transitions, Rewards)$$

In MDP, time is discrete. In SMDP time is continuous

$$SMDP = (States, Options, Transitions, Rewards)$$

$$o_i \in Options = (\mathcal{I}_i, \pi_i, \beta_i)$$

 \mathcal{I}_i : initiation set,

 π_i : policy of o_i ,

 β_i : termination probability of o_i .

High-Level Planning

High level planning operates using symbolic states and operators. A set of propositions:

$$\mathcal{P} = \{p_1, p_2, \dots, p_n\}$$

A set of operators:

$$\mathcal{A} = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$$

High level state is obtained by assigning truth values to p_i 's. Each operator is described as:

$$\alpha_i = (precond_i, effect_i^+, effect_i^-)$$

Definition

A propositional symbol σ_Z is the name associated with a test τ_Z , and the corresponding set of states $Z=\{s\in S| \tau_Z(s)=1\}.$

Definition

A propositional symbol σ_Z is the name associated with a test τ_Z , and the corresponding set of states $Z = \{s \in S | \tau_Z(s) = 1\}$.

Figure: AND operation

Definition

A propositional symbol σ_Z is the name associated with a test τ_Z , and the corresponding set of states $Z = \{s \in S | \tau_Z(s) = 1\}$.

Figure: OR operation

Definition

A propositional symbol σ_Z is the name associated with a test τ_Z , and the corresponding set of states $Z=\{s\in S| \tau_Z(s)=1\}.$

Figure: NOT operation

Definition

A plan $p = \{o_1, o_2, \dots, o_{p_n}\}$ from a state set $Z \subseteq S$ is a sequence of options $o_i \in O$, $1 \le i \le p_n$, to be executed from some state in Z.

Definition

The plan space for an SMDP is the set of all tuples (Z, p), where $Z \subseteq S$ is a set of states in the SMDP, and p is a plan.

We need a symbol for the precondition for each option.

Definition

The precondition of option o is the symbol referring to its initiation set: $Pre(o) = \sigma_{I_o}$.

Then, we need a symbol for the effect of each option.

Definition

Given an option o and a set of states $X \subseteq S$, we define the image of o from X as: $Im(X,o) = \{s' | \exists s \in X, P(s' | s, o) > 0\}$.

Figure: "Image" of option o from a set of states X.

Theorem

Given an SMDP, the ability to represent the preconditions of each option and to compute the image operator is sufficient for determining whether any plan tuple (Z, p) is feasible [3].

Proof.

```
Consider any plan tuple (Z,p), with plan length n. We set z_0=Z and repeatedly compute z_{j+1}=Im(z_j,p_j), for j\in\{1,2,\ldots,n\}. The plan tuple is feasible if and only if z_i\subseteq Pre(p_{i+1}), \forall i\in\{0,1,\ldots,n-1\}.
```


Figure: Informal proof

- ▶ It is the necessary condition.
- ► Checking feasibility ⇒ We have precond. and image ops. symbols
- It is the sufficient condition.
- ▶ We have precond. and image ops. symbols ⇒ Checking feasibility.
- ► Checking feasibility ←⇒ We have precond. and image ops. symbols.

- ightharpoonup However, representing Im(X, o) may be hard.
- ► There are good alternatives that is appropriate for this framework.
- Subgoal options and abstract subgoal options.

Definition

The effect set of subgoal option o is the symbol representing the set of all states that an agent can possibly find itself in after executing o: $Eff(o) = \{s' | \exists s \in S, t, P(s', t | s, o) > 0\}$.

Definition

Given an option o and a set of states $Z \subseteq S$, we define the projection of Z, with respect to o (denoted Project(Z, o)) as: $Project(Z, o) = \{[a, b] | \exists a', [a', b] \in Z\}.$

Then, image operator for an abstract subgoal option can be computed as: $Im(Z, o) = Project(Z, o) \cap Eff(o)$.

Constructing a PDDL Domain Description

So far, we only created symbols for Pre(o). We also need Im(X, o).

Factor	State Variables	Options
f_1	s_1, s_2	o_1
f_2	s_3	o_1, o_2
f_3	s_4	o_2
f_4	s_5	o_2, o_3
f_5	s_6, s_7	o_3

Figure: Reprinted from [3].

Constructing a PDDL Domain Description

- Executing an option o_i projects the factors it changes and intersects with $Eff(o_i)$.
- A future execution of option o_j projects the overlapping factors out of $Eff(o_i)$.
- This may result in a combinatorial explosion if we would not be careful.
- ▶ Remember, we need to enumerate these combinations since all we want is Im(X, o).

Problem with Environment Specific State Space

Figure: We cannot use the symbol learned in the left environment for the right environment. Reprinted from [2].

Symbolic Representations in Egocentric Space

Figure: (a) Possible actions are shown with arrows. (b-d) Local egocentric observations. Reprinted from [2].

Symbolic Representations in Egocentric Space

Option	Precondition	Effect
Clockwise1	wall-junction	window-junction
Clockwise2	window-junction	wall-junction
Anticlockwise1	wall-junction	window-junction
Anticlockwise2	window-junction	wall-junction
Outward	wall-junction ∨ window-junction	dead-end
Inward	dead-end	$\begin{cases} \texttt{window-junction w.p. } 0.5\\ \texttt{wall-junction w.p. } 0.5 \end{cases}$

Figure: Subgoal options learned in egocentric space. Reprinted from [2].

Transferring Egocentric Symbols

Figure: Environment-specific states are clustered. Reprinted from [2].

Pipeline

Figure: General pipeline for learning portable representations. Reprinted from [2].

Figure: The rod-and-block domain. Available high-level options are GoLeft, GoRight, RotateUp, and RotateDown. Reprinted from [2].

Figure: An example learned rule in PDDL. (a) Preconditions, (b) effect. Reprinted from [2].

Figure: An example learned rule in PDDL. (a) Up, precondition. Down, effect. (b) States in which this option can be executed. Reprinted from [2]. Also, the character is taken from the amazing game Braid [1].

(b) Results for the $Treasure\ Game\ domain.$

Figure: The usage of egocentric state space reduces the necessary sample size. Reprinted from [2].

- [1] Jonathan Blow. Braid. https://en.wikipedia.org/wiki/Braid_(video_game), 2008.
- [2] Steven James, Benjamin Rosman, and George Konidaris. Learning portable representations for high-level planning. *arXiv* preprint arXiv:1905.12006, 2019.
- [3] George Konidaris, Leslie Kaelbling, and Tomas Lozano-Perez. Constructing symbolic representations for high-level planning. In *Twenty-Eighth AAAI Conference on Artificial Intelligence*, 2014.