Localisation sous-marine

Système de logging pour déplacement de module sous-marin.

Ali Zoubir

Rapport de projet

Génie électrique École supérieure Suisse 7 mars 2023

Table des matières

1	Cara	actéristiques du projet 4						
	1.1	Description						
	1.2	Aperçu						
	1.3	Tâches à réaliser						
	1.4	Description des blocs						
	1.5	Jalons principaux						
	1.6	Livrable						
2	Duá	étude 8						
4								
	2.1	,						
	2.2	2.1.1 Schéma bloc						
	2.2	Choix des composants importants						
		2.2.1 Senseur absolu						
		2.2.2 Capteur de pression						
		2.2.3 Affichage						
		2.2.4 Carte SD						
		2.2.5 Real Time Clock						
		2.2.6 Microcontrôleur						
		2.2.7 Batterie, charge et régulation						
	2.3	Estimation des coûts						
	2.4	Conclusion et perspectives						
3	Déve	Développement schématique 19						
J	3.1	Scéma bloc détaillé						
	3.1	Choix des composants						
	3.2	3.2.1 Microcontrôleur						
	3.3							
	3.3							
		3.3.1 Vue d'ensemble schématique						
		3.3.2 Autonomie du système						
		3.3.3 LED Interface						
		3.3.4 Adaptation mécanique						
		3.3.5 Bus de communications						
		3.3.6 Périphériques						
		3.3.7 Chargeur de batterie						
		3.3.8 Conclusion et perspectives de l'étude						
4	Déve	eloppement du PCB 31						
-	4.1	Footprints						
	4.2	Bill of materials						
	4.3	Mécanique du projet						
	4.4	Restrictions mécaniques						
	4.5	Planification PCB						
	4.6	Placement des composants						
	7.0	1 faccinent des composants						

Localisation sous-marine 2022, V0.0

1 Caractéristiques du projet

1.1 Description

Lobjectif de ce projet, et de stocker des données de mesures du déplacement dun module sousmarin par une centrale inertielle, dans le but de mathématiquement le localiser depuis son point de départ (référence). Ceci, car la localisation sous-marine nest pas une tâche aisée due aux différentes contraintes de communication sous-marine notamment que les ondes électromagnétiques ne se propagent pas facilement.

1.2 Aperçu

- Sauvegarde dun set de donnée chaque 100ms.
- Profondeur dutilisation maximum, de 60m.
- 2 heure de logging dans carte SD.
- Sensing sur 9 axes:

Mesures [Il est souhaitable que les capteurs choisis aient une faible dérive];

Accéléromètre 3-axes.

Gyroscope 3-axes.

Magnétomètre 3-axes.

Senseur de température

Profondimètre [0->10bar] [Res 1/10]

3 à 5 slots libres MikroE pour autres mesures.

— Possibilité de sauvegarder la localisation de points dintérêts par :

Bouton de sauvegarde [A définir : Magnétique, Optique, Mécanique ou autre].

- Batterie, autonomie minimum de 2 heures [$\sim 10^{\circ}$ C].
- Charge de la batterie par connecteur USB.
- (Optionnel) Lecture des données par connecteur USB (Interfaçage électronique, software optionnel dans cette version).
- (Optionnel) Interface LED ou petit écran.

1.3 Tâches à réaliser

Développement et intégration dun PCB avec capteurs et logging sur carte SD dans une lampe de plongée étanche.

Développement schématique

- Fonctionnement MCU.
- Périphériques de mesures et de sauvegarde / Bus de communication.
- Gestion batterie

Routage pour intégration dans boitier de lampe de plongée 200x45mm. Programmation mesure et sauvegarde chaque 100ms.

- Configuration MCU.
- Configuration des périphériques de mesure pour 9-DOF.
- Configuration des périphériques de sauvegarde (Carte SD).
- Configuration et communication avec l'interface.
- Communication et traitement des données mesurées.

FIGURE 1 – Schéma de principe Source : Auteur

1.4 Description des blocs

1. Carte SD:

Stockage des données de mesures chaque 100ms, cur du projet.

2. Accéléromètre-gyroscope-magnétomètre :

Lecture des données individuelles brute ainsi que de fusion des capteurs, pour mesurer les déplacements sur 9 degrés de libertés.

3. Profondimètre:

Mesure la pression pour déduire la profondeur, afin de corroborer les autres mesures des capteurs.

4. Real time clock:

Permet de sauvegarder la temporalité du set de mesure dans la carte SD.

5. Affichage:

Affichage LED ou écran, pour affichage pas encore définis (ex. Profondeur, état batterie)

6. Bouton sauvegarde:

Permet la mise en valeur dun set de mesure. La forme de ce bouton nest pas encore définie. Il sera peut-être fusionné avec le bouton ON/OFF.

7. Bouton ON/OFF:

Permet dallumer ou déteindre le système.

8. Batterie:

Batterie du système, technologie à définir dans la pré-étude.

9. **COM. USB:**

Permet de charger les batteries. Il faudra également prévoir dans cette version linterface électronique pour la lecture de la carte SD directement par le port USB.

10. Microcontrôleur:

Lis et traite les valeurs des capteurs, sauvegarde dans la carte SD...

1.5 Jalons principaux

FIGURE 2 – Jalons principaux

1.6 Livrable

Les fichiers sources de CAO électronique des PCB réalisés

Tout le nécessaire à fabriquer un exemplaire hardware de chaque :

fichiers de fabrication (GERBER) / liste de pièces avec références pour commande / implantation

Prototype fonctionnel

Remise d'un rapport chaque semaine précédant une présentation.

Modifications / dessins mécaniques, etc

Les fichiers sources de programmation microcontrôleur (.c / .h)

Tout le nécessaire pour programmer les microcontrôleurs (logiciel ou fichier .hex)

Un calcul / estimation des coûts

Un rapport contenant les calculs - dimensionnement de composants - structo-gramme, etc.

2 Pré-étude

L'objectif de cette pré-étude, est de se pencher sur le fonctionnement plus fondamental du système, faire des petits dimensionnements ainsi que de survoler différents aspects techniques liés au projet.

2.1 Fonctionnement du système

2.1.1 Schéma bloc

FIGURE 3 – Schéma bloc du module Source : Auteur

Capteurs:

Les différents capteurs sont interfacés sur le même bus, et ont comme master le microcontrôleur en communication bidirectionnel, afin d'à la fois configurer les registres des périphériques et de lire leurs mesures.

7 mars 2023

Carte SD:

La carte SD est interfacée en SPI et va contenir les données des différents capteurs ainsi que leurs éventuels flags d'importance (sauvegarde), sa taille sera dimensionnée ultérieurement.

Port USB & charge:

Un port USB est présent, afin charger les batteries par un IC de gestion de charge connecté directement au 5V. De plus le port USB est communiquant avec le microcontrôleur par un driver FTDI, afin d'éventuellement ajouter un système de lecture de la carte SD, directement par USB. Ceci dans cette version ou une ultérieure. Le port USB pourrait aussi servir a fixer la référence de la RTC.

Bouton multiforction:

Sachant qu'un bouton étanche est déjà présent sur le module, l'exploiter en tant que bouton multifonction est une solution ergonomique pour ne pas mettre en péril l'étanchéité globale. Ce bouton ferait office de ON/OFF et de "sauvegarde" de point d'intérêt. Pour se faire, le bouton contrôlerait par un transistor de commutation l'alimentation du système, puis lors de l'allumage du microcontrôleur, le MCU prendrait la relève en maintenant le système allumé a sont tour, permettant ainsi de lire le bouton et de sur une pression longue déconnecter l'alimentation.

Affichage:

L'affichage permettra de visualiser différentes données, dont les plus importantes tel que la pression ou le statut de la batterie.

La forme de l'affichage est encore a définir selon la mécanique du module, mais le plus élégant, serait l'utilisation d'un petit écran OLED.

Capteur de pression :

Le capteur de pression devra avoir un contact direct avec l'eau, cela impliquera de la mécanique et de la gestion d'étanchéité. Une autre possibilité aurait été de mesurer optiquement la déformation du boîtier pour en déduire la pression, mais la complexité est trop importante.

2.2 Choix des composants importants

2.2.1 Senseur absolu

Pour le senseur absolu, il existe des IC permettant directement de faire la fusion des senseurs (Accéléromètre, gyroscope, magnétomètre et thermomètre), ce qui épargne toute une phase de calcul chronophage, en permettant directement de lire les quaternion, angles de Euler, vecteurs de rotations, cap de direction etc... directement sur le composant. Il existe différents IC dont deux ce sont montrés très intéressants, le BNO85 et le BNO55, les deux étant PIN-Compatibles, j'ai décidé d'opter pour le BNO055.

FIGURE 4 – Schéma bloc du module Source : https://www.mouser.ch/new/bosch/bosch-bno55-sensor/

Sachant que la brazure de ce type de boîtier est compliquée et également dans un but de simplification du projet, j'ai décidé d'utiliser les cartes d'évaluation d'adafruit **Nř**: **4646** qui ont des connections bergs ainsi que tous les composants externes passifs déjà montés.

Caractéristiques importantes :

Résolution gyroscope	:	16	[bits]
Résolution accéléromètre	:	14	[bits]
Résolution magnétomètre	:	~ 0.3	$[\mu T]$
I_{DD}	:	12.3	[mA]
Dérive de température	:	± 0.03	[%/K]
Dérive accéléromètre	:	0.2	[%/V]
Dérive gyroscope	:	< 0.4	[%/V]

Nous allons par la suite voir sur la figure 5, quelles données du BNO055 sont disponibles ainsi que leurs tailles mémoires.

^{1.} K:/ES/PROJETS/SLO/2221_LocalisationSousMarine/doc/composants/9DOF-BNO055

Table 3-36: Temperature Data

Parameter	Data type	bytes
TEMP	signed	1

Table 3-34: Gravity Vector Data

Parameter	Data type	bytes
GRV_Data_X	signed	2
GRV_Data_Y	signed	2
GRV_Data_Z	signed	2

Table 3-32: Linear Acceleration Data

Parameter	Data type	bytes
LIA_Data_X	signed	2
LIA_Data_Y	signed	2
LIA Data Z	signed	2

Table 3-30: Compensated orientation data in quaternion format

Parameter	Data type	bytes
QUA_Data_w	Signed	2
QUA_Data_x	Signed	2
QUA_Data_y	Signed	2
QUA_Data_z	Signed	2

Table 3-28: Compensated orientation data in Euler angles format

Parameter	Data type	bytes
EUL_Heading	Signed	2
EUL_Roll	Signed	2
EUL_Pitch	Signed	2

Table 3-27: Yaw rate data

Parameter	Data type	bytes
Gyr_Data_X	signed	2
Gyr_Data_Y	signed	2
Gyr_Data_Z	signed	2

Table 3-26: Magnetic field strength data

Parameter	Data type	bytes
Mag_Data_X	signed	2
Mag_Data_Y	signed	2
Mag_Data_Z	signed	2

Table 3-25: Acceleration data

Parameter	Data type	bytes	
Accel_Data_X	signed	2	
Accel_Data_Y	signed	2	

FIGURE 5 – Donnée de sortie de l'IC (43 bytes) Source : https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf

2.2.2 Capteur de pression

Pour le capteur de pression, une modification mécanique du boîter sera très probablement nécessaire. J'ai pu trouver un capteur correspondant aux caractéristiques demandée du projet, celui-ci est plutôt générique et peut communiquer en I2C : **PTE7300-14AN-1B016BN**

FIGURE 6 – Illustration capteur de pression Source : Distrelec, PTE7300-14AN-1B016BN

L'avantage avec le capteur ci-dessus est le système hermétique pour le trou, un autre capteur peut être utilisé lors de l'étude, néanmoins la modification mécanique étant probablement inévitable, le système de vissage de la figure 6 est intéréssant.

2.2.3 Affichage

Pour l'affichage, je vais essayer d'opter pour un petit afficheur OLED, en gardant la possibilité en cas de de complication lors de l'étude, l'utilisation de simples LEDS d'indications.

Il existe plusieurs affichages OLED rond petits formats, sur lesquels je me pencherais plus en détail lors de l'étude.

 S_{flag}

2.2.4 Carte SD

Taille mémoire :

Afin de dimensionner la taille de stockage de la carte SD, il faut utiliser les différentes caractéristiques du projet. Normalement la taille de la carte SD n'est clairement pas un problème, sachant que seulement du texte est enregistré et que les tailles mémoires disponibles peuvent être très élevées. Néanmoins il est intéressant de faire le dimensionnement pour connaître le minimum, et pour éventuellement adapter le projet avec d'autres systèmes de mémorisation.

 T_{rec} = 7200'000Temps a enregistrer [ms] T_{ech} = 100Temps d'un échantillon ms S_{mes} Taille de toutes les données de mesures = 43 [bytes] Taille de l'information de temporalité [bytes] $S_{timestamp}$ = \sim 23

Nombre de mesure a effectuer :

$$Nb_{mesures} = \frac{T_{rec}}{T_{ech}} \tag{1}$$

Taille de l'indication d'importance

D'après (1), nous avons un nombre de mesure de 72'000.

[bytes]

Taille minimum:

$$Taille_{min} = Nb_{mesures} * (S_{mes} + S_{timestamp} + S_{flag})$$
 (2)

D'après (2), la taille mémoire minimum doit être de \sim 5MB.

Nous pouvons donc constater que pour une utilisation standard de 2h, la mémoire occupée est très faible, d'où l'intérêt de sauvegarder dans la carte SD la date, afin de pouvoir faire plusieurs "expéditions" en "une fois", sans avoir à vider la carte.

2.2.5 Real Time Clock

L'objectif de la RTC, est de donner l'information de la temporalité de la mesure (timestamp), afin de lors du traitement des donnée avoir accès à ce paramètre. Sachant que l'échantillonnage des mesures est de 100ms, la RTC devrait permettre cette résolution. Néanmoins une autre information importante, comme mentionnée lors de la section 2.2.4, est la date de la mesure, afin de permettre plusieurs expéditions par utilisation de la carte.

J'ai donc décidé d'utiliser une RTC pour l'heure grossière de départ (Année, date, heure, minute, seconde) et les compteur du MCU pour faire le delta entre chacune des mesures en ms.

La RTC devra pouvoir tenir le minimum de 2 heure d'utilisation, à cette fin, la batterie LI-ION déjà présente sera suffisante.

La RTC devra avoir une faible consommation, le calendrier ainsi qu'une bonne précision. A cette fin, la RTC **S-35390A-T8T1G** est assez générique et possède une bonne documentation.

FIGURE 7 – Illustration de la RTC

Source: https://www.digikey.com/en/products/detail/ablic-inc/S-35390A-T8T1G/1628383

2.2.6 Microcontrôleur

Le microcontrôleur devra avoir un nombre suffisant de communications, sachant que beaucoup sont présentes dans le projet (**I2C, SPI, UART...**), ce qui signifie un nombre de pattes élevées.

Des calculs peuvent aussi être nécessaire, si il s'avère qu'il faille faire une traitement des données préliminaire, il faudrait donc opter pour un MCU 32bits si possible.

La famille PIC est celle standardisée par l'école supérieure, c'est donc pour cette famille-ci que je vais opter.

FIGURE 8 – Illustration du modèle MCU du kit ETML-ES Source : https://www.microchip.com/en-us/product/PIC32MX795F512L

2.2.7 Batterie, charge et régulation

Pour la technologie de batterie, en utilisation sous-marine, j'ai trouvé ce tableau de comparaison :

Chemistry	Energy Density (Whr/kg)	Pressure Compensatable (Whr/kg)	Outgassing	Cycles	Comments
Alkaline	140	No	Possible, at higher temperatures	1	Inexpensive, easy to work with
Li Primary	375	No		1	Very high energy density
Lead Acid	31.5	Yes (46)	Yes, even with sealed cells	~100	Well established, easy to work with technology
Ni Cad	33	No	If overcharged	~100	Very flat discharge curves
Ni Zn	58.5	Possibly (160)	None	~500	Emerging Technology
Li Ion	144	No	None	~500	In wide use in small packs
Li Polymer	193	Possibly	None	~500	Only "credit card" form factor currently available
Silver zinc	100	No	Yes	~30	Can handle very high power spikes

FIGURE 9 – Comparaison des technologies de batteries Source : Power Systems for Autonomous Underwater Vehicles[1]

Pour des raisons de praticité et étant-donné la documentation plus importante, j'ai décidé d'utiliser la technologie **LI-ION** :

Avantages	Inconvénient
Haute densité d'énergie	Risque d'éclatement
Poids léger	Risque d'enflammement avec l'eau
Haute durée de vie	Sensible a la température
Charge rapide	Décharge complète altérante

Malgré les risque dûs au contact de l'eau (**Enflammement, éclatement...**) la technologie LI-ION est souvent utilisée pour les application sous-marines dû a ses différents avantages, c'est pour cela que j'opterais pour cette technologie.

2.3 Estimation des coûts

Ici je vais me baser sur les composants que j'ai pu trouver et estimer le coût moyen de ceux-ci, c'est a titre purement indicatif, (les prix sont généralement estimés a la hausse).

Composant	Estimation
Profondimètre	70
Centrale inertielle	35
RTC	5
Microcontrôleur	5
Carte SD	20
Affichage OLED	45
FTDI	4
Batterie LI-ION	20
IC chargeur	4
Traco-power 3.3V	10
PCB	40
Total	258

L'estimation des prix étant plutôt élevée, des économies peuvent être très facilement réalisées, en changeant l'affichage OLED pour des LEDS ou en modifiant le PCB (Le simplifier ou changer de fournisseur (eurocircuit)).

2.4 Conclusion et perspectives

J'ai pu lors de cette pré-étude, établir le fonctionnement global du système, choisir certaines technologies et composants importants, ainsi que pu procéder a certains dimensionnements utiles quant au futur développement.

Par la suite, je vais affiner les différents éléments abordés lors de la pré-étude, effectuer le développement plus détaillé de chacun des blocs et réaliser la schématique du projet.

Lors de la pré-étude, je n'ai pas eu accès au boîtier mécanique du projet, ce qui a restreint mon champs d'action lors de certains dimensionnement, tandis que pendant l'étude j'aurais accès a celui-ci, ce qui risque d'impacter/modifier certains aspect fixés lors des section antérieures.

Je suis très intéressé par le projet et me réjouis grandement de poursuivre son développement.

3 Développement schématique

3.1 Scéma bloc détaillé

FIGURE 10 – Schéma bloc détaillé Source : Auteur

3.2 Choix des composants

3.2.1 Microcontrôleur

Lors de la recherche de composants, j'ai décidé d'utiliser l'un des PIC32 standards de l'ES : **PIC32MX130F064D-I/PT**.

7 mars 2023

				Rem	appab	le Pe	riphe	rals							ls)				
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/Compare	UART	SPI/I ² S	External Interrupts ⁽³⁾	Analog Comparators	USB On-The-Go (OTG)	l²C	PMP	DMA Channels (Programmable/Dedicated)	СТМО	10-bit 1 Msps ADC (Channels)	RTCC	I/O Pins	JTAG	Packages
PIC32MX130F064D	44	64+3	16	32	5/5/5	2	2	5	3	N	2	Υ	4/0	Υ	13	Υ	35	Υ	VTLA, TQFP, QFN

FIGURE 11 – Périphériques disponibles du PIC Source : PIC32MM0256GPM064 family datasheet

Nous pouvons constater sur la figure 11 que les critères minimaux de mon projet sont respectés :

3.3 Dimensionnements

3.3.1 Vue d'ensemble schématique

FIGURE 12 – Schéma bloc de la schématique Source : Auteur

Nous pouvons constater sur la figure 12 la structure des différents blocs du schéma :

Bloc	Description
Power	Contient les différents régulateurs du sys-
	tème, ainsi que la gestion de charge de la
	batterie.
MCU	Contient l'intelligence du système, avec le
	microcontrôleur ainsi que tous ses compo-
	sants passifs associés.
Peripherals	Périphériques du système : Carte-SD, Cen-
	trale inertielle, Capteur de pression, Slots
	MikroE.
Interface	Connecteur USB avec convertisseur serial
	(FTDI) et tous les composants passifs de sé-
	curité. Interface LED RGB pour le statut.

3.3.2 Autonomie du système

Afin de proportionner la batterie du circuit, il a fallut dimensionner les différentes consommations des composants, ceci par le biais de leurs documentations :

Nous pouvons constater que la plus grande consommation vient de la carte micro-SD, qui au maximum peut induire 100mA. ²

Afin d'obtenir une autonomie d'au moins 2h (selon CDC), il faudrait une capacité de :

$$Capacite = Consommation_{tot} * Temps \tag{3}$$

Ce qui nous fait une capacité de \sim 342.68mAh, valeur facilement atteignable par les batteries li-ion du marché. Étant-donné que différents projets utilisaient des batteries 3400mAh, dans un objectif de conformité et de simplification des commandes, j'ai choisis cette même valeur. Ce qui signifie une autonomie de \sim 20 heures, sans compter les différents mécanismes d'économie d'énergie.

C'est un temps largement suffisant pour la durée de plusieurs expéditions, néanmoins la RTCC du microcontrôleur requiert d'être alimentée en permanence, j'ai donc décidé de déterminer un fonctionnement, où lorsque l'on charge la batterie la date se mettrait à jour et le mode "éteint" serait juste un mode de veille qui attendrait un niveau positif sur le switch avant de commencer le logging avec un timsetamp principale contenant la date, puis, seulement des deltas entre les mesures. Un diagramme des états est présents à la figure 13.

^{2.} Selon datasheet SanDisk: https://images-na.ssl-images-amazon.com/images/I/91tTtUMDM3L.pdf

FIGURE 13 – Diagramme des états du système Source : Auteur

3.3.3 LED Interface

Afin d'informer l'utilisateur de ce qu'il se passe dans le système, j'ai décidé d'implémenter en tant qu'interface, une led RGB. Celle-ci sera un minimum puissante, afin de pouvoir être lisible lors de l'utilisation sous-marine du module.

La consommation de la led RGB étant relativement importante, des mécanismes d'économie d'énergie seront mis en place dans le développement firmware.

Diagramme d'interface :

Rouge

- -Constamment allumé : Indique que la batterie doit être chargée.
- -Clignote rapidement ; Indique le passage en mode veille ou le passage en mode éteint.
- -Clignote lentement: Indique que la carte SD est pleine.

Vert

- -Clignote lentement : Indique que le logging est en cours.
- -Clignote rapidement : Indique que la charge est en cours
- -Allumé et carte branché : Indique que la charge est complète.

Bleu

- -S'allume : Indique que le flag d'importance a été enregistré.
- -Clignote rapidement : Indique qu'un transfert de fichier est en cours.

Orange

-Indique une erreur autre.

Eteint

-Constamment éteint : Indique que l'appareil est en veille ou entièrement éteint.

FIGURE 14 – Définitions des états de la LED RGB Source : Auteur

3.3.4 Adaptation mécanique

L'idée étant d'obtenir une mesure de pression sans modification mécaniques sur le boîtier originale, plusieurs idées ont émergées :

- 1) Mesurer une déformation mécanique a-même le module, dans le but de déduire la pression (Développement d'un capteur).
- 2) Ajout d'une rallonge cylindrique au module, afin de fixer un capteur de pression à plat sur celui-ci, tout en permettant les modifications mécaniques sans altération du boîtier originale.

Par sa complexité moins importante et due aux contraintes de temps, la seconde option sera-celle développée lors de cette version du projet. Voici des ébauches (Pas à l'échelle) du concept :

FIGURE 15 – Ébauche intérieur du cylindre Source : Auteur

FIGURE 16 – Ébauche globale Source : Auteur

3.3.5 Bus de communications

UART (1):

<u>Utilisation</u>: Communication avec les boards Mikroe, pour les clicks-boards utilisant la comm. série.

Pinning:

RB4 U1TX	IIITX
RA8 U1CTS	UICTS
RA3 U1RTS	<u> </u>
RA2 U1RX	UIRTS
	< Ulrx

UART (2):

<u>Utilisation</u>: Communication avec FTDI conversion USB-Serial. Transfert des fichiers de la carte-SD et mise-à-jour de la RTCC.

Pinning:

RB14	U2TX	U2TX
RB13	U2CTS	U2CTS
RB15	U2RTS	U2RTS
RC8	U2RX	LIZRX
		U2RA

SPI:

<u>Utilisation</u>: Communication avec la carte micro-SD, écriture des mesures, timestamps et flag d'importance.

Pinning:

RAO CS SD	CS SD
RA1 SCK	SCK
RA4 SDO1	MOSI
RA9 SDI1	MISO

I2C (1):

<u>Utilisation</u>: Lecture des mesure de la centrale inertielle BNO055 et paramétrage des registres de celui-ci.

Pinning:

RB8 SCL1	(SCL1)
RB9 SDA1	SDA1
RB6 RstImu	RST IMU
RB7 IntImu	1101 11110
	<u>INT IMU</u>

I2C (2):

<u>Utilisation</u>: Lecture des données du capteur de pression et est également connecté aux slots Mikroe, pour permettre à ceux-ci de communiquer via I2C. Pinning:

RB3 SCL2
RB2 SDA2
SCL2
SCL2

Pour ce qui est des mesures sur ces différents bus de communications, des connecteurs bergs ont étés prévus, afin de pouvoir connecter facilement un analyseur logique sur les différentes trames :

FIGURE 17 – Connecteurs pour analyseur logique

Une contrainte s'est crée, lorsque toutes les pins du microcontrôleur ont été allouée alors qu'il restait des connexion pour les "Chip select" et "Reset" des carte click-board Mikroe. Afin de remédier à ce problème, j'ai décidé d'utiliser un démultiplexeur, sachant que chacune des ces PINS, peuvent être activée seulement une à une :

FIGURE 18 – Demultiplexeur

3.3.6 Périphériques

FIGURE 19 – Carte-SD, capteur de pression et centrale inertielle.

7 mars 2023

Pour la carte-SD, certaines pins ne sont pas utilisée car pas utile dans le cadre du projet (Ex : Pin CD (Card Detect)).

Pour le capteur de pression, il s'agit d'un simple connecteur (AMTEK 5H2001N0-105PXBL00A01) qui vas venir connecter le senseur rattaché à l'extension mécanique.

Quant à la centrale inertielle (BNO055 adafruit-board) le bit d'adresse supplémentaire est mis à 0.

Slots MikroE

FIGURE 20

Les slots Mikroe (3x figure 20) sont prévus pour pouvoir utiliser le plus de bus de communication possibles. Les jumpers sont prévus pour éviter les collisions sur les lignes.

3.3.7 Chargeur de batterie

Ici je vais me pencher sur les dimensionnement des 3 résistances *PROG* du composant de régulation et de charge d'accu, les autres composants passifs n'ont pas requis de dimensionnements particuliers.

FIGURE 21 – IC régulation et gestion charge de l'accu

Afin de déterminer le comportement de la charge via les différentes étapes de courants, quelques équations ont été utiles :

Où

C = 3400 mAh

 $ratio_{term} = 0.05 \ ratio_{chrg} = 0.1$

$$I_{term} = C * ratio_{chrg} \tag{4}$$

D'après 4, $I_{term} = 170 mA$.

$$Rprog3 = \frac{1000V}{I_{term}} \tag{5}$$

D'après 6, $Rprog3 = 5k88\Omega$ E12 \Longrightarrow $6k2\Omega$ (Arrondis au supérieur pour limiter courant de terminaison).

$$Rprog1 = \frac{1000V}{C * ratio_{chrg}} \tag{6}$$

D'après 6, $Rprog1 = 2k94\Omega$ E12 $\Longrightarrow 2k2\Omega$ (Arrondis à l'inférieur pour limiter courant de charge).

3.3.8 Conclusion et perspectives de l'étude

Lors du développement de la schématique, je n'ai pas eu de grands dimensionnements à faire mais plutôt dû mettre en place des mécanismes permettant la communication avec tous les senseurs et périphériques du système. J'ai essayé d'être le plus explicite possible lors de la création des différents blocs du schéma électrique, pour permettre une compréhension aisée de celui-ci.

J'ai pû faire un contrôle mutuel de la schématique avec mon collègue M. Meven Ricchieri.

Je n'ai pas rencontré de problèmes particuliers, j'ai pus compléter la schématique, avancer sur le concept globale et je suis très enthousiaste de continuer ce projet.

Désormais il vas falloir préparer la création du PCB, en contrôlant les footprints du circuit et développer d'avantage l'aspect mécanique du projet.

La schématique issue de cette partie développement, sera disponible en annexe de ce rapport.

4 Développement du PCB

4.1 Footprints

4.2 Bill of materials

4.3 Mécanique du projet

4.4 Restrictions mécaniques

4.5 Planification PCB

4.6 Placement des composants

4.7 Routage

4.8 Points d'améliorations

4.9 Conclusion du projet

Références

- [1] A. Bradley, M. Feezor, H. Singh, and F. Yates Sorrell, "Power systems for autonomous underwater vehicles," vol. 26, no. 4, pp. 526–538. Conference Name: IEEE Journal of Oceanic Engineering.
- [2] N. Shaukat, A. Ali, M. Javed Iqbal, M. Moinuddin, and P. Otero, "Multi-sensor fusion for underwater vehicle localization by augmentation of RBF neural network and error-state kalman filter," vol. 21, no. 4, p. 1149. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.
- [3] A. S. Zaki, T. B. Straw, M. J. Obara, and P. A. Child, "High accuracy heading sensor for an underwater towed array."