ZhdanovDS 25112024-191833

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Задан двухполюсник на рисунке 1, причём R1 = 24.89 Ом.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 2 – Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.44\text{-}0.43\mathrm{i}$.

Рисунок 3 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Найти точку (см. рисунок 4), соответствующую s_{22} на частоте 4 ГГц.

Рисунок 4 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C

4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
6.4	0.510	148.5	4.351	37.0	0.089	43.9	0.193	-127.7
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
6.6	0.515	146.1	4.212	34.9	0.091	43.0	0.186	-130.8
6.8	0.519	143.8	4.077	32.9	0.093	42.3	0.178	-133.4
7.0	0.525	141.5	3.947	30.8	0.096	41.6	0.169	-136.4
7.2	0.530	139.6	3.824	29.0	0.098	40.9	0.158	-139.2
7.4	0.535	137.7	3.704	27.2	0.101	40.3	0.147	-142.3
7.6	0.543	135.9	3.597	25.3	0.104	39.4	0.137	-147.3
7.8	0.554	134.3	3.501	23.3	0.107	38.4	0.129	-154.4
8.0	0.566	132.7	3.410	21.2	0.111	37.4	0.124	-162.2
8.2	0.576	131.1	3.305	19.1	0.113	35.9	0.125	-172.4

и частоты $f_{\scriptscriptstyle \rm H}=6.4$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=7.8$ $\Gamma\Gamma$ ц. **Найти** модуль s_{11} в дБ на частоте $f_{\scriptscriptstyle \rm H}$.

- 1) -21 дБ
- 2) -14.3 дБ
- 3) 12.8 дБ
- 4) -5.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.1	0.346	-161.8	11.790	89.8	0.042	67.1	0.303	-65.9
1.2	0.349	-165.3	10.751	87.4	0.045	67.0	0.283	-68.4
1.3	0.352	-168.2	9.941	85.5	0.048	66.9	0.266	-70.5
1.4	0.358	-170.8	9.244	83.6	0.051	66.7	0.250	-73.2
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
1.6	0.362	-175.7	7.985	79.9	0.057	66.1	0.223	-78.0
1.7	0.366	-178.0	7.524	78.6	0.060	65.9	0.211	-80.4
1.8	0.370	-179.8	7.119	77.2	0.063	65.7	0.202	-83.2
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5

и частоты $f_{\mbox{\tiny H}}=1.1$ $\Gamma\Gamma\mbox{\scriptsize H},\,f_{\mbox{\tiny B}}=1.9$ $\Gamma\Gamma\mbox{\scriptsize H}.$

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

- 1) 0.8 дБ
- 2) 4.9 дБ

- 3) 2.4 дБ 4) 6.2 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.455	-145.3	20.384	94.7	0.026	56.0	0.358	-67.2
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
2.8	0.468	-176.6	10.275	72.5	0.043	57.9	0.234	-92.9
3.5	0.479	174.0	8.174	64.8	0.052	57.2	0.224	-102.6
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.9	0.501	159.4	5.792	50.4	0.071	53.0	0.199	-118.0
5.6	0.498	153.6	5.025	44.1	0.081	50.8	0.188	-123.0
6.3	0.510	145.9	4.487	37.2	0.091	46.4	0.174	-134.3
7.4	0.537	134.7	3.753	26.6	0.105	41.6	0.131	-154.6

и частоты $f_{\mbox{\tiny H}}=1.4$ ГГц, $f_{\mbox{\tiny B}}=7.4$ ГГц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \mathrm{H}}.$

- 1) 8.8 дБ
- 2) 17.8 дБ
- 3) 8.9 дБ
- 4) 17.7 дБ