Assignment Project Exam Help Evaluating and Combining Forecasts Exam Help

https://tutorcs.com

WeChatvers Style 26, 2010

April 26, 2019

Contents

	1.	The Evaluation Situation	4
	2.	Forecast Schemes	5
A	2.1. S	signment Project Exam Help	6 8
	2.3.	Rolling scheme	14
	2.4.	Fixed, Recursive or Rolling	19
	3.	Optimality of forecast tutores.com Unblased less.//tutores.com	20
	3.1.	Unblased less .// LULUI CS.CUIII	22
	3.2.	1-step-ahead forecast errors that are white noise	28
	3.3.	h-step-ahead forecast errors are at most $MA(h-1)$	30
	3.4.	h-sep-ahead forecast errors with variances that are non-decreasing in h	32
	3.5.	Unforecastability principle	34
	4.	Measures of Forecast Accuracy	36
	5.	Meese and Rogoff (1983)	40
	5.1.	Structural models	41

5.2.	Time series models	43
5.3.	Models that do not require estimation	44
	Forecast comparison	45
\mathbf{A}^{6} . S	Why is random walk a good approximation? Sate in Disability of Forces & Grack Exam	Help ⁵⁰
8.	Forecast Encompassing	- 58
9.	Forecast combination	60
9.1.	When forecasts are known to be unbiased	60
9.2.	When forecasts are known to be unbiased COM	66
9.3.	Multiple period forecasts	67
9.4.	Time-varying weights	68
9.5.	Not Infar combination	69
9.6.	Notingar combination. Shrinkage of combining weights toward equality	70
10.	Application: Shipping Volume	71

1. The Evaluation Situation

Imagine a company is about to hire one forecaster among two candidates. Suppose his major duty is to produce one-step ahead forecast of y_t .

Assylve many earth down and their quality of forecast?

To answer these questions, we have to first understand that there are three types of forecast $\frac{1}{2}$ $\frac{1}{2}$

2. Forecast Schemes

Suppose we have T observations in our sample. We mimic an analyst starting to produce h-step-ahead forecasts at time R. $P \equiv T - R$ observations are reserved for sample than the product Exam Help

https://tutorcs.com

WeChat: cstutorcs

2.1. Fixed scheme. Suppose we use all the information up to time R to produce forecast of y_t for the coming P periods, i.e., y_{R+1} , y_{R+2} , ..., y_T . (Note R+P=T.) We will use

Assignment Project Exam Help.

• $e_{R+h,R}$ to denote the corresponding forecast errors, i.e., $e_{R+h,R}=y_{R+h}-y_{R+h,R}$.

Thus, the first and the localist and $e_{R+1,R}$, $e_{R+2,R}$, $e_{R+3,R}$..., $e_{T,R}$. This scheme of producing the forecast is often called the fixed scheme because a *fixed* sample is used to produce forecasts of different horizons.

- 2.2. Recursive scheme. Suppose we use all the information up to time R to produce forecast of y_t one period ahead (h=1), i.e., y_{R+1} , and use all the information up to time R+1 to produce forecast of y_t one period ahead, i.e., y_{R+2} , and so on. We will use P_{R+2} and P_{R+2} and P_{R+3} and P_{R+4} and $P_{$
 - $e_{R+1,R}$ to denote the corresponding forecast errors, i.e., $e_{R+1,R} = y_{R+1} y_R$ to the corresponding forecast errors, i.e., $e_{R+1,R} = y_{R+1} y_R$

Similarly, suppose we use all the information up to time R to produce forecast of y_t two period ahead (h=2), i.e., y_{R+2} , and use all the information up to time R+1 to produce forecast of y_t one period ahead, i.e., y_{R+3} , and so on. We will

Assignment Project Exam Heilpa,

• $e_{R+2,R}$ to denote the corresponding forecast errors, i.e., $e_{R+2,R} = y_{R+2} - y_R$ to the corresponding forecast errors, i.e., $e_{R+2,R} = y_{R+2} - y_{R+2}$

WeChat: cstutorcs

Forecast Schemes // 9 ...

Thus, the one-step-ahead forecasts and the forecast errors are $y_{R+1,R}$, $y_{R+2,R+1}$, $y_{R+3,R+2}$..., $y_{T,T-1}$, and $e_{R+1,R}$, $e_{R+2,R+1}$, $e_{R+3,R+2}$..., $e_{T,T-1}$. Again, note that T=R+P.

Assignment Project Exam Help

The two-step-ahead forecasts and the forecast errors are $y_{R+2,R}$, $y_{R+3,R+1}$, $y_{R+4,R+2}$... $y_{R+4,R+2}$ and $y_{R+4,R+2}$ y_{R+4

This scheme of producing the forecast is often called the *recursive* scheme because a *recursively larger sample is used* to produce forecasts of a fixed horizon.

WeChat: cstutorcs

Forecast Schemes // 10 ...

2.3. Rolling scheme. Suppose we fix the size of the sample used for estimation. That is, we use the information from period 1 up to period R to produce a forecast of y_t one period ahead, i.e., y_{R+1} . We will use

Assigniment Project Exam Help

• $e_{R+1,R}$ to denote the corresponding forecast errors, i.e., $e_{R+1,R}=y_{R+1}-y_{R+1,R}$.

We use the interpolation from the interpolation of the produce a forecast of y_t one period ahead, i.e., y_{R+2} ,

- $y_{R+2,R+1}$ to denote a forecast of y_{R+2} using the information from period 2 up to time R+1, and
- e_{R+1} and derivate corresponding foregas servors, i.e., $e_{R+2,R+1} = y_{R+2} y_{R+2,R+1}$.

and so on.

Despite the risk of confusing readers, we have chosen to use the same notations as in the recursive scheme in order to avoid additional subscripts or superscripts. Readers please take note.

This scheme in principal the forecasts of a fixed horizon.


```
\begin{array}{c} \text{h-step-ahead} \\ \text{Ass. sample} \\ y_{2}, \dots, y_{R+1} \\ y_{2}, \dots, y_{R+1} \\ y_{3}, \dots, y_{R+2} \\ \end{array} \xrightarrow{\begin{array}{c} y_{R+1+h,R+1} \\ y_{R+1+h,R+1} \\ y_{R+1+h,R+1} \\ y_{R+1+h,R+1} \\ \end{array}} \xrightarrow{\begin{array}{c} Forecast \\ e_{R+1+h,R+1} \\ e_{R+1+h,R+1} \\ \end{array}} \xrightarrow{\begin{array}{c} Forecast \\ \end{array}} \xrightarrow{\begin{array}{c} Fo
```

WeChat: cstutorcs (P-h+1) of them

2.4. Fixed, Recursive or Rolling.

It is easy to see that the recursive scheme is similar to the way forecasters produce their forecasts and how they are likely evaluated.

sample is ignored as we roll along. Why do we want to throw away some information when such information is in fact available to us? One reason is that rolling scheme can help ayojd the influence of structural breaks in the data.

With a long time series, structural breaks are common. So, we may choose to ignore data before the structural break. If, however, we do not know when the structural breaks happen, we may want to constantly throw away some old information. CSTUTOTCS

In the following discussions of forecast evaluation, we will *focus* on the forecast due to the *recursive* scheme or the *rolling* scheme.

Forecast Schemes // 19 ...

3. Optimality of forecast

There are four key properties of optimal forecast.

(1) Optimal forecasts are unbiased

- A(S) Optimal forecasts are applied to ecast excelling ar where rose

 (3) Optimal forecasts have h-step-shead forecast errors that are at most
 - (3) Optimal forecasts have h-step-ahead forecast errors that are at most MA(h-1)
 - (4) Optimal forecasts/have h-step-ahead forecast errors with variances that are not the essing/in that the conditional variance of the process.

To fix ideas for the discussion below, suppose we are interested in forecasting a covariance stationary series with the following underlying Wold representation

Assignment Project Exam Help

where the mean of y_t is μ , nonzero.

Of course, https://extetuteOscisn.com/mplicated data generating processes (DGP) with trend and seasonality components. In that case, all we have to do is to modify μ to allow it to have trend and seasonality components.

3.1. **Unbiasedness.** A h-step-ahead forecast $y_{t+h,t}$ is unbiased if

$$y_{t+h,t} = E(y_{t+h} \mid y_t, y_{t-1}, y_{t-2}, ...)$$

or equivalently

Assignment Project Exam Help

$$= E(y_{t+h} \mid y_t, y_{t-1}, ...) - E(y_{t+h,t} \mid y_t, y_{t-1}, ...)$$

where the third line in the above equation is due to the law of iterated expectation that $E(E(A \mid B) \mid B) = E(A \mid B)$.

Again, by laWf EchaettatiC,Stutorcs

$$E(e_{t+h,t} \mid y_t, y_{t-1}, y_{t-2}, ...) = 0$$
 implies $E(e_{t+h,t}) = 0$.

In producing the forecast, it is unlikely we will know the DGP. That is, we may not know what the conditional expectation looks like, or whether our forecast is the same as the conditional expectation, $E(y_{t+h} \mid y_t, y_{t-1}, y_{t-2}, ...)$. In this case, we often want to check the unbiasedness of the forecast. Help

https://tutorcs.com

Suppose we have a set of *1-step-ahead* forecast errors, $e_{R+1,R}$, $e_{R+2,R+1}$, ..., $e_{T,T-1}$ from some forecaster or forecasting model. How do we test whether the forecaster is unbiased?

A so in the property of the property
$$H_0$$
: $E(e_{t+1,t})=0$ versus H_1 : $E(e_{t+1,t})\neq 0$

using the usual hypothesis testing procedures.

https://tutorcs.com

An alternative is to run a regression of

$$e_{t+1,t} = \alpha + v_t$$
 $t = R, R+1, ..., T-1$

where α is a constant and v_t the residual. Then, it is easy to perform the usual thin the project $\underset{H_0:}{\operatorname{Project}} \underset{\alpha}{\operatorname{Exam}} \underset{\beta}{\operatorname{Help}}$

Suppose we have a set of *2-step-ahead* forecast errors, $e_{R+2,R}$, $e_{R+3,R+1}$, ..., $e_{T,T-2}$ from some forecaster or forecasting model. How do we test whether the forecaster is unbiased?

Assippynmente i Projecte Exam A-16 epst errors and test

$$H_0$$
: $E(e_{t+2,t}) = 0$ versus H_1 : $E(e_{t+2,t}) \neq 0$

using the usual hypothesis testing procedures. https://tutorcs.com

An alternative is to run a regression of

$$e_{t+2,t} = \alpha + v_t$$
 $t = R, R+1, ..., T-2$

where α is a the resignation to get the resignation to get the usual test

$$H_0$$
: $\alpha = 0$ versus H_1 : $\alpha \neq 0$

using a heteroskedasticity consistent standard errors of $\hat{\alpha}$ ($\hat{\alpha}$ =the estimator of α).

More generally, if we have a set of h-step-ahead forecast errors, $e_{R+h,R}$, $e_{R+h+1,R+1}$, ..., $e_{T,T-h}$ from some forecaster or forecasting model. To test whether the forecaster is unbiased, one possibility is to compute the average of the P-h+1=

ASSIGNMENT, Project Exam Help

using the usual hypothesis testing procedures.

An alternative is to run a repression of the state of th

where α is a constant and v_t the residual. Then, it is easy to perform the usual test

weChat:=cstutoros

using a heteroskedasticity consistent standard errors of $\hat{\alpha}$ ($\hat{\alpha}$ =the estimator of α).

3.2. 1-step-ahead forecast errors that are white noise. As discussed earlier, when the underlying process is

https://tutorcs.com ... The optimal 1-step-ahead forecast is

$$y_{t+1,t} = E(y_{t+1} \mid y_t, y_{t-1}, y_{t-2}, ...) = \mu + b_1 \epsilon_t + b_2 \epsilon_{t-1} + b_3 \epsilon_{t-2} + ...$$
 and the forever extense at: CSTUTOTCS

$$e_{t+h,t} = y_{t+1} - y_{t+1,t} = \epsilon_{t+1}$$

That is, if the forecast is optimal, the 1-step-ahead forecast is supposedly white noise.

When the forecast errors are not white noise, there is still room for improvement by including additional ARMA terms in the model. Thus, we often want to check whether 1-step-ahead forecast errors are white noise.

The errors of a constant term and then check

- the correlogram (ACF and PACF),
- the Durbin-Watson (for first autocorrelation), and/or
 the Box Person and Linguis Statistic COM

of the residuals.

3.3. h-step-ahead forecast errors are at most MA(h-1). Recall if we have

$$y_t = \mu + \epsilon_t + b_1 \epsilon_{t-1} + b_2 \epsilon_{t-2} + ...$$

Assignment Project+Exam ϵ_t Help + ...
the h -step-ahead forecast error is

 $\begin{array}{c} e_{t+h,t} \overline{\mathbf{h}} y_{t+h} - y_{t+h/t} \overline{\mathbf{f}} \epsilon_{t+h} + b_1 \epsilon_{t+h-1} + b_2 \epsilon_{t+h-2} + \dots + b_{h-1} \epsilon_{t+1} \\ \underline{\mathbf{h}} \underline{\mathbf{e}}_{t+h,t} \\ \underline{\mathbf{h}} \underline{\mathbf{e}}_{t+h,t} \\ \underline{\mathbf{e}}_{t+h,t} \\ \mathbf{We} \underbrace{\mathbf{c}}_{\mathbf{3}} \mathbf{hat} \underbrace{\mathbf{c}}_{\mathbf{5}} \underbrace{\mathbf{c}}_{\mathbf{5}} \underbrace{\mathbf{th}} \underbrace{\mathbf{c}}_{\mathbf{1}} \mathbf{c} \mathbf{c} \mathbf{s} \\ \underline{\mathbf{e}}_{t+1} \\ \underline{\mathbf{e}}_{t+1} + b_1 \epsilon_{t+2} + b_2 \epsilon_{t+1} \\ \underline{\mathbf{e}}_{t+4} + b_1 \epsilon_{t+3} + b_2 \epsilon_{t+2} + b_3 \epsilon_{t+1} \\ \underline{\dots} \\ \underline{\dots} \end{array}$

That is, a MA(h-1) structure is expected in the forecast error for optimal forecast. The MA(h-1) structure implies a cutoff in the forecast error's autocorrelation function beyond displacement (h-1). To check this property visually,

Assignment Project Exam Help Statistically, we can run a regression of $e_{t+h,t}$ on a constant term allowing for MA(q) disturbances with q > (h-1), and test whether the moving-average parameters beyond lag h = 1 are zero. Suppose we allow q = h. That means we run the regression

 $e_{t+h,t} = \alpha + w_t + \theta_1 w_{t-1} + \dots + \theta_{h-1} w_{t-h+1} + \theta_h w_{t-h}$ and test θ_h **W. eChat: CSTUTOTCS**

3.4. h-step-ahead forecast errors with variances that are non-decreasing in h. As discussed earlier, when the underlying process is

Assignment $\epsilon_t Proje^2 ct Exam Help$

 $y_{t+h,t} = E(y_{t+h} \mid y_t, y_{t-1}, y_{t-2}, \ldots) = \mu + b_h \epsilon_t + b_{h+1} \epsilon_{t-1} + b_{h+2} \epsilon_{t-2} + \ldots$ the forecast of the forecast of the point of the

$$e_{t+h,t} = y_{t+h} - y_{t+h,t} = \epsilon_{t+h} + b_1 \epsilon_{t+h-1} + b_2 \epsilon_{t+h-2} + \ldots + b_{h-1} \epsilon_{t+1}$$
 the variance of the content of the content

$$Var(e_{t+h,t}) = Var(\epsilon_{t+h} + b_1\epsilon_{t+h-1} + \dots + b_{h-1}\epsilon_{t+1})$$

$$= Var(\epsilon_{t+h}) + Var(b_1\epsilon_{t+h-1}) + \dots + Var(b_{h-1}\epsilon_{t+1})$$
+a bunch of covariances
$$= \sigma^2 + b_1^2\sigma^2 + \dots + b_{h-1}^2\sigma^2$$

Optimality of forecast

That is,

Assignment
$$\Pr_{h, \text{ or at least non-decreasing in } h}^{\sigma_h^2 = \sigma^2 \left(1 + \sum_{i=1}^{h-1} b_i^2\right)} Exam Help$$

https://tutorcs.com
$$\frac{\sigma_{h}^{2}}{\sqrt{tutorcs.com}}$$

$$\frac{\sigma^{2}(1+b_{1}^{2})}{\sigma^{2}(1+b_{1}^{2}+b_{2}^{2})}$$
WeChat: cstutorcs

3.5. **Unforecastability principle.** Optimal forecast errors should be unforecastable on the basis of information available at the time the forecast was made.

To assess the forecastability, we can run the following regression $\underset{t+h,t}{\text{ASSignment}} \underset{t=1}{\text{Project Exam}} \underset{t=R,R+1,...,T-h}{\text{Help}}$

where x_{it} are information available at time t when the forecast was made. Unforecastability implies

The simplest piece of information that is available at time t is the h-step-ahead forecast made at time t, $y_{t+h,t}$. Thus, a simple test is to run the Mincer-Zarnowitz regression of

Assignment of the control of the co H_0 : $(\alpha_0, \alpha_1) = (0, 0)$ versus H_1 : $(\alpha_0, \alpha_1) \neq (0, 0)$.

Using e_{t+h} , y_t by y_t by y_t by y_t $y_$ $y_{t+h} = \alpha_0 + (\alpha_1 + 1)y_{t+h,t} + v_t$

WeChat: cstutorcs and we will test for H_0 : $(\beta_0, \beta_1) = (0, 1)$ versus H_1 : $(\beta_0, \beta_1) \neq (0, 1)$.

4. Measures of Forecast Accuracy

There are several common measures of forecast accuracy. Note that forecast errors are sometimes called prediction errors and the two terms are often used in the forecast errors. Project Exam Help

(2) Mean squared forecast errors

(3) Root mean squared forecast errors

 $\frac{\text{https://tutores.com}}{\text{We can verify that MSFE are related to MFE and VFE}}^{VFE} \frac{1}{\text{tutores.com}}^{I-h} (e_{t+h,t} - ME)^2$

we can verify that MSFE are related to MFE and VFE $MSFE = MFE^2 + VFE$

Sometimes, we might be concern the prediction errors as a percentage of the realized data, i.e., the percentage prediction errors,

Assignment Project Exam Help

https://tutorcs.com

We can then define the various measures of the forecast accuracy similarly:

(1) Mean percentage forecast errors

Assignment Project Exam Help

(2) Mean squared percentage forecast errors

(3) Root mean squared percentage forecast errors

We Chat: cstutorcs
$$T-h$$
 $RMSPFE = \sqrt{MSPFE} = \sqrt{\frac{1}{P-h+1}\sum_{t=R}^{T-h}p_{t+h,t}^2}$

5. Meese and Rogoff (1983)

In 1983, Richard Meese and Kenneth Rogoff¹ reported a striking result that sparked a series of research on the comparison of forecast accuracy (sometimes was specifically). Project Exam Help

Before the research by Meese and Rogoff, most studies of exchange rate models claimed success based on the significance of coefficients and R-squares of the regressions. Resquare is essentially a measure of in sample accuracy. Meese and Rogoff took a different route. They used out-of-sample forecast performance as a *metric* to compare several popular structural models at the time with some simple time series models.

¹Meese, Richard A. and Kenneth Rogoff (1983): "Empirical Exchange Rate Models of the Seventies: Do they fit out of sample?" *Journal of International Economics*, 14: 3-24.

5.1. **Structural models.** The structural models considered can be summarized as in a regression model

$$\begin{array}{l} s = a_0 + a_1(m - \dot{m}) + a_2(y - \dot{y}) + a_3(r_s - \dot{r}_s) + a_4(\pi^e - \dot{\pi}^e) + a_5\overline{TB} + a_6\overline{TB} + u \\ \textbf{Arssignment Project Exam Help} \end{array}$$

- ullet s is the logarithm of the dollar price of foreign currency,
- $(m-\dot{m})$ the logarithm of the ratio of the US money supply to the foreign moley(supply) //t | 1 + 0 + 0 = 0
- moley supply .//tutorcs the foreign real income,
- $(r_s \dot{r}_s)$ the short-term interest rate differential,
- $(\pi^e \dot{\pi}^e)$ the expected long-run inflation rate differential,
- TB We wall trace state orcs
- \bullet \overline{TB} the cumulative foreign trade balance.

As noted by Meese and Rogoff,

• all models posit that the exchange rate exhibits first-degree homogeneity in the relative money supplies, i.e., $a_1 = 1$.

Assignment Project Exam Help=

- The Dornbusch-Frankel model allows for domestic price adjustment and consequent *deviations from purchasing power parity*, i.e., $a_5 = a_6 = 0$.
- The hip per Morton mortal improses no contraints on the coefficients.

5.2. **Time series models.** Univariate and multivariate time series models were considered. A variety of prefiltering techniques (differencing, deseasonalizing, and de-trending) were applied to the data. Lag lengths were selected using standard model selection criteria such as AIC and SIC. Generally, the univariate and publication of the models of portion as X am HC p

 $s_{t} = a_{i1}s_{t-1} + a_{i2}s_{t-2} + \dots + a_{in}s_{t-n} + B'_{i1}X_{t-1} + B'_{i2}X_{t-2} + \dots + B'_{in}X_{t-n} + u_{it}$

where

- s_t intelige Sarjable that the lies by sale to the lies model and
- the subscript i is used to index the equation i coefficients,
- X_t is the additional vector of explanatory variables included in the univariate models (i.e., WAR).

5.3. Models that do not require estimation.

Random walk model:

$$s_t = s_{t-1} + u_t$$

Assignment Project Exam Help

https://tut.or.com

where $f_t(h)$ is the h-step-ahead forward exchange rate, known at time t. Thus, the h-step-ahead forecast is

WeChat: sest utorcs

5.4. **Forecast comparison.** Meese and Rogoff reported root mean squared forecast errors, mean absolute forecast errors and mean forecast errors. Their root mean squared forecast errors are reproduced below.

Assignment Project Exam Help

https://tutorcs.com

			Model:						
	Exchange Rate	Horizon	RW	FR	AR(p)	VAR(p)	FB	DF	НМ
A	\$/Mark	1 month	3.72	3.20	3.51	5.40	3.17	3 65	3.50
A	ASSIGIII	f non hs	8. 1	908	12.40		9.64	12 03	3 .95
		12 months	12.98	12.60	22.53	15.06	16.12	18.87	15.69
	\$/Yen	1 month	3.68	3.72	4.46	7.76	4.11	4.40	4.20
	htt	6 months/4	11.58	11.93	22.04	18.90	13.38	13.94	11.94
	1111	12 honths	Uild	18.05	5218	12 98	18.55	20.41	19.20
	\$/pound	1 month	2.56	2.67	2.79	5.56	2.82	2.90	3.03
		6 months	6.45	7.23	7.27	12.97	8.90	8.88	9.08
	W	2 mouths	9.96	41462	43.35	2128	14.62	13.66	14.57
	Trade-	month	1.99	D MA	2.72	4.10	2.40	2.50	2.74
	weighted	6 months	6.09	NA	6.82	8.91	7.07	6.49	7.11
	dollar	12 months	8.65	14.24	11.14	10.96	11.40	9.80	10.35

			Model:							
	Exchange Rate	Horizon	RW	FR	AR(p)	VAR(p)	FB	DF	НМ	
	\$/Mark	1 month	1.00	0.86	0.94	1.45	0.85	0.98	0.94	
A		6 months	1.00	1.04	1.42	1.36	1.11	1.38	1.14	
A	SSIGNN	1 min h	Pr.6)	1.07	C].24	1.45		D
	\$/Yen	1 month	1.00	1.01	1.21	2.11	1.12	1.20	1.14	1
		6 months	1.00	1.03	1.90	1.63	1.16	1.20	1.03	
	httm	12 months	1.00	1.03	2.85	1.26	1.01	1.11	1.05	
	\$/pound	10 month	1112	J 04	- 69	1.17	1.10	1.13	1.18	
	•	6 months	1.00	1.12	1.13	2.01	1.38	1.38	1.41	
		12 months	1.00	1.17	1.34	2.14	1.47	1.37	1.46	
	T) de-	month 4	1.00	4NA	1.37	2,06	1.21	1.26	1.38	
	weighted	o months	1.00	NA	LY12	1.46	1.16	1.07	1.17	
	dollar	12 months	1.00	1.65	1.29	1.27	1.32	1.13	1.20	

From the table, it is easy to see that except for \$/mark at 1-month-ahead forecast, random walk forecast achieved the smaller root mean squared forecast errors.

			Model:						
	Exchange Rate	Horizon	RW	FR	AR(p)	VAR(p)	FB	DF	НМ
	\$/Mark	1 month	1.16	1.00	1.10	1.69	0.99	1.14	1.09
٨	~ ~ 4 ~ 4 ~ 4	6 months	0.96	1.00	1.37	1.31	1.07	1.33	1.10
A	SSIGNI	1 min h	Pr.	1.60	79	L Xx	1.28	1.50	1 25
	\$/Yen	1 month	0.99	1.00	1.20	2.09	1.10	1.18	1.13
		6 months	0.97	1.00	1.85	1.58	1.12	1.17	1.00
	http	12 months	0.97	1.00	2.75	1.21	0.98	1.08	1.01
	\$/point	1 Innonth	1606	L00	- 64	2.48	1.06	1.09	1.13
	•	6 months	0.89	1.00	1.01	1.79	1.23	1.23	1.26
		12 months	0.86	1.00	1.15	1.83	1.26	1.18	1.25
	T) de-	month +	• NA	4NA	+ NA	C (NA	NA	NA	NA
	weighted	C months	· WA	NA	LAM	C SNA	NA	NA	NA
	dollar	12 months	0.61	1.00	0.78	0.77	0.80	0.69	0.73

This finding is shocking. Random walk forecast costs almost nothing to produce, yet it out-performs the other models that are costly to produce.

This study compares the out-of-sample forecasting accuracy of various structural and time series exchange rate models. We find that a Sancen value of the forms is well is not est math doubt to net to twelve month horizons for the dollar/pound, dollar/mark, dollar/yen and trade weighted dollar exchange rates. The candidate structural models include the flexible-price (Frenkel-Bilson) and sticky-price (Dornbisch) Rokel) nobet in process and sticky price model which incorporates the current account (Hooper-Morton). The structural models perform poorly despite the fact that we based their forecasts on actual realized values of future explanatory variables. (Meese and Rogeli 1988 abs not)

6. Why is random walk a good approximation?

Our experience suggests that macroeconomic forecasts usually outperform naive random walk benchmark. However, it appears not the case for financial forecasts.

As Significant that the least of exchange rates from other time series or structural models.

Why is random walk a good approximation? It turns out that theory can be derived to yell in Series/tlatate poor attended more walk.

For instance, using a infinitely lived representative agent model with rational expectation, Hall $(1987)^2$ was able to derive the Euler's equation relating the marginal utilities of today's consumption and tomorrow's consumption:

Assignment Project Exam Help

$$u'(c_{t+1}) = \frac{1+\delta}{1+r}u'(c_t) + e_{t+1}$$

https://tutorcs.com

²Hall, Robert E. (1987): "Consumption," NBER Working Paper No. 2265.

If utility function is quadratic in consumption, marginal utility will be linear in consumption, i.e., $u'(c_t) = ac_t + b$, and hence

Assignment
$$\frac{ac_{t+1} + b}{P_t} = \frac{\frac{1+\delta}{1+r}(ac_t + b) + e_t}{P_t}$$
 Exam Help $\frac{b+\delta}{1+r}(ac_t + b) + e_t}{1+r} + \frac{b+\delta}{1+r}(ac_t + b) + e_t}{1+r}$ Help $\frac{b+\delta}{1+r}(ac_t + b) + e_t}{1+r} = \frac{b+\delta}{1+r}(ac_t + b) + e_t}{1+r}$

which is APAN Colorest in contract, reserve to the contract of the contract reserve to the contract r

which is ARWine which is ARWine with the discount latter of the contract of t

Efficient market hypothesis, e.g., Fama $(1965)^3$, may generate similar result. With rational expectation, we have

Assignment
$$P_{t} = (1+r)P_{t-1}$$
 Exam Help

Hence, P_t follows non-stationary AR(1) with an explosive root (since r > 0).

³Fama, Eugene (1965). "The Behavior of Stock Market Prices," *Journal of Business* 38: 34–105.

7. Statistical Comparison of Forecast Accuracy

Some researchers argue that the findings based on simple forecast comparison as in Meese and Rogoff (1983) can be due to luck. Indeed, comparison of forecast acturacy has to be based of sample information. Consequently, we must take into account of the statistic (i.e., sampling error) in drawing conclusion.

To fix ideal suppose we have two sets of h-step ahead forecast errors, $e^a_{t+h,t}$ from model B, t=R,...,T-h. Let the loss function or the criteria of comparison be denoted $L(e_{t+h,t})$. An example of such loss function is squared errors

WeCehat:eccstutorcs-h

We would like to test the null hypothesis of no difference in the performance of the two models on average versus there is a difference between the two models, i.e..

 H_0 : $E(L(e^a_{t+h,t})) = E(L(e^b_{t+h,t}))$ versus H_1 : $E(L(e^a_{t+h,t})) \neq E(L(e^b_{t+h,t}))$ and $E(L(e^a_{t+h,t})) \neq E(L(e^b_{t+h,t}))$ errors for the comparison

https://tutoros.com

Often, we rewrite the hypotheses as

$$H_0: \ E(L(e^a_{t+h,t})) - E(L(e^b_{t+h,t})) = 0 \ \text{versus} \ H_1: \ E(L(e^a_{t+h,t})) - E(L(e^b_{t+h,t})) \neq 0$$
 or
$$H_0: \ E(L(e^a_{t+h,t}) - L(e^b_{t+h,t})) = 0 \ \text{versus} \ H_1: \ E(L(e^a_{t+h,t}) - L(e^b_{t+h,t})) \neq 0$$

Define d_t as the difference in the squared losses of the two models.

$$d_{t} = L(e_{t+h,t}^{a}) - L(e_{t+h,t}^{b})$$

The hypotheses can be rewritten as ASSIGNMENTAL Project Exam Help

The time series version of Central Limit Theorem suggests that

where
$$f$$
 is the couprisince of $\sqrt[L]{T}(\bar{d}-\mu) \simeq N(0,f)$

The covariance f has to be estimated and the test can be based on

$$\underbrace{WeChat}_{J\hat{f}}$$
 cstytorcs $M = T^{1/3}$

where $\hat{\gamma}_d(\tau)$ is sample auto-covariance of d at τ displacement. Knowing the distribution of \bar{d} , we can perform the usual hypothesis test.

Performing the test using this procedure is cumbersome and prohibitive. Fortunately, like the usual test of the zero population mean, we can implement the test using a simple regression

Assignment Project Exam Help

 H_0 : $\alpha = 0$ versus H_1 : $\alpha \neq 0$

On the use of terression to implement rations kinds of tests of forecast accuracy, see West and McGracken (1998).

⁴West, Kenneth and Michael W. McCracken (1998): "Regression Based Tests of Predictive Ability," *International Economic Review*, 39: 817-840.

8. Forecast Encompassing

Is a forecast better than the competing forecasts? One criteria to answer this question is forecast encompassing:

As Siferant bette that have meing fore as it flower the properties processes embody no useful information absent in the preferred forecasts.

Consider the following regression to respect to
$$y_{t+h} = \beta_a y_{t+h,t}^a + \beta_b y_{t+h,t}^b + \epsilon_{t+h,t}$$

- Model A is said to forecast-encompasses model B if $(\beta_a, \beta_b) = (1, 0)$;
- Mode B is faid to forecast-encompasses model A if $(\beta_a, \beta_b) = (0, 1)$. • We say neither model encompasses the other for other general values of
- We say neither model encompasses the other for other general values of (β_a, β_b) .

To test forecast encompassing, we simply run the above regression and test the joint hypothesis $(\beta_a, \beta_b) = (1, 0)$, or $(\beta_a, \beta_b) = (0, 1)$.

What is the implication if neither model encompasses the other?

When neither model encompasses the other, we conclude that both forecasts have their merits or values in forecasting the object in question, i.e. n_{t+h} . Consequently, i.e. the possible to both the property of the control of th

https://tutorcs.com

9. Forecast combination

9.1. When forecasts are known to be unbiased.

Consider a simple weighted average of two unbiased forecasts to form a new Assignment Project Exam Help

It implies the forecast error of the new forecast is also a weight average of the two original fletast Sroys/tutores.com $e^c_{t+h,t} = \omega e^a_{t+h,t} + (1-\omega) e^b_{t+h,t}$

$$e_{t+h,t}^c = \omega e_{t+h,t}^a + (1-\omega)e_{t+h,t}^b$$

WeChat: Eostutores

ω	$y_{t+h,t}^c$
0	$y_{t+h,t}^b$
1	$y_{t+h,t}^a$

It can be easily verified that the unbiasedness of $y^a_{t+h,t}$ and $y^b_{t+h,t}$ implies that $y^c_{t+h,t}$ is also unbiased.

$$\begin{array}{ll} \textbf{Assignment} \overset{E[e^{c}_{t+h,t} \mid \Omega_{t}]}{\underset{= \omega \times 0 + (1-\omega) \times 0 = 0}{\text{E[}\omega e^{a}_{t+h,t} + (1-\omega) e^{b}_{t+h,t} \mid \Omega_{t}]}} \underset{= \omega \times 0 + (1-\omega) \times 0 = 0}{\overset{E[e^{c}_{t+h,t} \mid \Omega_{t}]}{\underset{= \omega \times 0 + (1-\omega) \times 0 = 0}{\text{E[}\omega e^{a}_{t+h,t} + (1-\omega) e^{b}_{t+h,t} \mid \Omega_{t}]}} \underset{= \omega \times 0 + (1-\omega) \times 0 = 0}{\overset{E[e^{c}_{t+h,t} \mid \Omega_{t}]}{\underset{= \omega \times 0 + (1-\omega) \times 0 = 0}{\text{E[}\omega e^{a}_{t+h,t} + (1-\omega) e^{b}_{t+h,t} \mid \Omega_{t}]}} \\ \end{array}$$

By Law of later Section
$$E[e^c_{t+h,t} \mid \Omega_t] \Longrightarrow E[e^c_{t+h,t}] = 0$$

Given that the new forecast is unbiased, it is logical to choose the weight (i.e., ω) such that the variance of the new forecast is minimized.

$$\Delta signment$$
 $\omega^* = arg min \sigma_c^2$

$$Assignment \omega^* P_a roject + Exam_b Help$$
where $\sigma_k^2 = Var(e_{t+h,t}^k)$, $k = a, b, c$, and $\sigma_{ab} = Cov(e_{t+h,t}^a, e_{t+h,t}^b)$.

Using calculus (using the first-order condition of the optimization), we find that $\omega^* = \frac{\sigma_b^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}}$

$$\omega^* = \frac{\sigma_b^2 - \sigma_{ab}}{\sigma_a^2 + \sigma_b^2 - 2\sigma_{ab}}$$

To obtain some intuition for this formula, it is useful to consider a special case of $\sigma_{ab} = 0$. When $\sigma_{ab} = 0$, the optimal weight reduces to

$\underbrace{ \text{Assignment}}_{\text{The formula suggest that}}^{\omega^*} \overline{\overline{\textbf{Proj}}} \overline{\overline{\textbf{Je}^2(\textbf{t}^2)}} \underline{\overline{\textbf{E}}}_{xam Help}$

- a noisier forecast will receive a lighter weight.
- a modificio se foretal to recisa de ver meight.

To see this, consider the extreme cases.

- (1) If $y^a_{t+h,t}$ is a much noisier forecast than $y^b_{t+h,t}$, say, $(\sigma^2_a/\sigma^2_b)=\infty$. The formula suggests $y^*_{t+h,t}$.
- (2) Conversely, if $y_{t+h,t}^a$ is a much more accurate forecast than $y_{t+h,t}^b$, say, $(\sigma_a^2/\sigma_b^2)=0$, the formula will suggest $\omega^*=1$, i.e., we give all the weight to $y_{t+h,t}^a$.

$$\omega^* = \frac{\sigma_b^2}{\sigma_a^2 + \sigma_b^2} = \frac{1}{(\sigma_a^2/\sigma_b^2) + 1}$$

Assignment Project Exam Help

Of course, in real applications, the variances and covariance have to be estimated as

Assignment Project Exam Help

https://tuterfactor

$$\hat{\sigma}_{ab} = \frac{1}{T} \sum_{t=1}^{T} e^a_{t+h,t} e^b_{t+h,t}$$
 and an estimate of the optimal weight is stutores

$$\hat{\omega}^* = \frac{\hat{\sigma}_b^2 - \hat{\sigma}_{ab}}{\hat{\sigma}_a^2 + \hat{\sigma}_b^2 - 2\hat{\sigma}_{ab}}$$

9.2. When forecasts need not be unbiased.

More generally, the original two forecasts need not be unbiased and we may not want to restrict the weights to add up to unity. So, generally, we will estimate the following regression

 $\overset{\text{the following regression}}{Assignment} \underset{y_{t+h}}{\underline{P_{f}}} \underbrace{P_{\beta_1 y_{t+h}}} \underbrace{ject}_{\beta_2 y_{t+h,t}} \underbrace{Exam}_{t+h,t} \underbrace{Help}$

and use the estimated coefficients to form a new forecast

https://tutorcs.com

9.3. Multiple period forecasts.

We can also allow for different serial correlation structure in the errors in order to obtain a more precise estimate of the coefficients. For instance, as in the last shape the serial following the error of the more precise estimates of the coefficients. For instance, as in the last shape the error of the error of

$$\mathbf{https:} \neq / \underbrace{\mathsf{futtoffgs}}_{\epsilon_{t+h,t}} \underbrace{\mathsf{ptoffgs}}_{MA(h-1)} \underbrace{\mathsf{ptoffgs}}_{t+h,t}$$

We can also allow for the very general serial correlation structure in the errors and use the sample AlCland SIC to determine the ARIMA orders.

$$y_{t+h} = \beta_0 + \beta_1 y_{t+h,t}^a + \beta_2 y_{t+h,t}^b + \epsilon_{t+h,t}$$
$$\epsilon_{t+h,t} \sim ARMA(p,q)$$

9.4. Time-varying weights.

We can also allow for time-varying weights, such as,

$$\underbrace{Assignment}_{t+h} \underbrace{Project}_{t+h,t} \underbrace{F}_{2} x_{2} m_{E} \underbrace{Help}_{t+h,t}$$

https://tutorcs.com

9.5. Nonlinear combination.

We can also allow for nonlinear combinations of the forecasts

Assignment² Project Exam Help

https://tutorcs.com

9.6. Shrinkage of combining weights toward equality.

Simple arithmetic averages of forecasts sometimes perform very well in out-of-sample forecast competitions, ever relative to "optimal" combinations (say, pased on the project Exam Help of the proj

If we have forecasts from three models, $\frac{\mathbf{https:}}{\mathbf{y_{t+h,t}^c}} = \frac{1}{2} y_{t+h,t}^{(1)} + \frac{1}{2} y_{t+h,t}^{(2)}$

$$y_{t+h,t}^{c} = \frac{1}{3}y_{t+h,t}^{(1)} + \frac{1}{3}y_{t+h,t}^{(2)} + \frac{1}{3}y_{t+h,t}^{(3)}$$

WeChat: cstutorcs

Combination using simple arithmetic averages has the advantage that *weights* are fixed and need not be estimated. Consequently, the sampling error due to the estimation of weight is avoided. The drawback is that the weights are not optimal and hence a bias might be present.

10. Application: Shipping Volume

Oversea Shipping Volume on the Atlantic East Trade Lane

- To help guide fleet allocation decisions, each week OverSea makes fore-A S Casts of volume shipped over carte of its major trade lanes at the irons ranging from 1 week ahead through 16 weeks ahead.
 - Two set of forecasts:
 Aquantitative forecasts produced using modern quantitative techniques (VOLQ)
 - A judgmental forecast is produced by soliciting the opinion of the salistrepresentatives many of thorse have years of valuable experience.

FIGURE 10.1. *Two-week ahead* Shipping Volume Quantitative Forecast and Realization

Application: Shipping Volume

FIGURE 10.2. *Two-week ahead* Shipping Volume Judgmental Forecast and Realization

FIGURE 10.3. Quantitative forecast error

 $FIGURE\ 10.4.$ Judgmental forecast error

Table 10.1. Correlogram, quantitative forecast error

Sample: 1/01/1988 7/18/1997

included ob	servations: 499				
Assign	mentcor	rogect	jeing Box	nowe	1
1 0	.518 0.518	.045	134.62	0.000	r
2 0	.010 -0.353	.045	134.67	0.000	
3	.044 0.205	.045	135.65	0.000	
4 11-0	13 S / /01/2	101@S.C	116.10	0.000	
5 0	0.195	.045	136.73	0.000	
6 0	.057 -0.117	.045	138.36	0.000	

WeChat: cstutorcs

Table 10.2. Correlogram, Judgmental forecast error

Sample: 1/01/1988 7/18/1997 Included observations: 499 .045 122.90 0.000 0.495 0.495 -0.027-0.360.045123.26 0.000 124.30 0.000 0.000 126.41 0.000 130.22 0.000 0.087 -0.011.045

WeChat: cstutorcs

 $FIGURE\ 10.5.$ Sample autocorrelation of quantitative forecast error

 ${
m Figure}\ 10.6.$ Sample partial autocorrelation of quantitative forecast error

/ 79

FIGURE 10.7. Sample autocorrelation of Judgmental forecast error

 ${
m FIGURE}~10.8.$ Sample partial autocorrelation of Judgmental forecast error

'/ 81

TABLE 10.3. Quantitative Forecast Error, Regression on Intercept, allowing MA(1) Disturbances

Assimulations: 499 Project Exam Help

Variable	Coefficient	Std. Err	or	t-Statistic	Prob.
chttr) S.024/770 t	uto 15	CS.	eom	0.7565
mr4(1)				59.01554	0.0000
R^2		0.468347	Mean d	lependent var.	-0.02657
Adjusted R ²		.467277	SD dep	endent var.	1.26281
SE diegress	M hat	.921703	Akaite	in o criterion	-0.15906
Sum squared	resid.	22.2198		z criterion	-0.14218
Log likelihoo	d –6	666.3639	F-statist	ic	437.820
Durbin-Watso	on stat.	.988237	Prob(F	statistic)	0.00000
Inverted MA	roots	94			

Application: Shipping Volume

Convergence achieved after 6 iterations

TABLE 10.4. Judgmental Forecast Error, Regression on Intercept, allowing MA(1) Disturbances

Assimilations 4997 Project Exam Help

Variable	Coefficient	Std. Erro	r t-Statistic	Prob.
chttp	S026379 tl	1000191 0.012470	CS. COM	0.0000 0.0000
R^2	0.4	83514	Mean dependent var.	1.023744
Adjusted R ²		82475	SD dependent var.	1.063681
SE of regression	€ 'h a†	6520 C	Akine my frierig	-0.531226
Sum squarea r	esid. 29	1.0118	Schwarz criterion	-0.514342
Log likelihood	-57	3.5094	F-statistic	465.2721
Durbin-Watson	stat. 1.9	68750	Prob(F-statistic)	0.000000
Inverted MA ro	oots	96		

TABLE 10.5. Mincer Zarnowitz Regression, Quantitative Forecast

LS // Dependent variable is VOL. Sample: 1/01/1988 7/18/1997 Included observations: 499 Project Exam Help 0.0000 C2.958191 0.341841 8.653696 VOLQ 0.849559 0.016839 50.45317 0.00000.0000 MA(1 19.80609 Adjusted R2 0.936718 SD dependent var. 3.403283 Akaike info criterion -0.304685SE of regression 0.856125 363.5429 -0.279358Sum squared resid Schwarz criterion Log likelingod 3686.790 0.000000 Inverted MA roots -.91Wald test: C(1) = 0 C(2) = 1Null hypothesis: i.e., unforecastability F-statistic 39.96862 Probability 0.0000000Chi-square 79.93723 Probability 0.000000

TABLE 10.6. Mincer Zarnowitz Regression, Judgmental Forecast

// 85

. . . .

FIGURE 10.9. (Squared) Loss differential $(e^a_{t+h,t})^2 - (e^b_{t+h,t})^2$

Table 10.7. Loss differential correlogram

		e: 1/01/1988					
Acc	Includ	led observatio	ns: 499	raia	of Eve	m plane	n
Ass	oīg	Mor.	P. Acor r.	t LErn	Ljung Be	p-laive	lP
	1	0.357	0.357	.045	64.113	0.000	
	2	-0.069	-0.226	.045	66.519	0.000	
	3	440.050	//4.074 4	045	67.761	0.000	
	4	110040	//-Lose	OI 645	.CO 1741	0.000	
	5	-0.078	-0.043	.045	71.840	0.000	
	6	0.017	0.070	.045	71.989	0.000	

WeChat: cstutorcs

FIGURE 10.10. Sample autocorrelation of loss differential

FIGURE 10.11. Sample autocorrelation of loss differential

Table 10.8. Loss Differential, regression on intercept with MA(1) disturbances

Assimilations: 499 Project Exam Help

Convergence achieved	after 4 iterations		
Variable Coeffi			Prob.
chttps: 585 MA(I)	33/tut@1 901 tut@1	3CS.26911 26 11.96433	0.0044 0.0000
R^2	0.174750	Mean dependent var.	-0.584984
Adjusted R ²	0.173089	SD dependent var.	3.416190
SE of regression	73106500	Akhile mocreterish	2.270994
Sum squared resid.	4796.222	Schwarz criterion	2.287878
Log likelihood	-1272.663	F-statistic	105.2414
Durbin-Watson stat.	2.023606	Prob(F-statistic)	0.000000
Inverted MA roots	47		

Table 10.9. Shipping volume combining regression

LS // Dependent variable is VOL.
Sample: 1/01/1988 7/18/1997
Lacksded observations 4004

Assignation Project Exam Help

Turiubic	Cocincicit	ota. mioi	istausuc	TIOD.
C	2.181977	0.259774	8.399524	0.0000
volettt	@12915/77 1	U (0.038146 0.039935	7.6039197	0.0000
VOL	0.630551	0.039935	CS. C5.78944	0.0000
MA(1)	0.951107	0.014174	67.10327	0.0000
R^2		.957823	Mean dependent var.	19.80609
Adjust d/R ² SE of regression	Cha	957567	Akaike mio criterion	3.403283
SE of regressi	$6n$ $11Cl_0$	70104	Akaike info criterion	-0.702371
Sum squared	resid. 2	43.2776	Schwarz criterion	-0.668603
Log likelihoo	d -59	28.8088	F-statistic	3747.077
Durbin-Watso	n stat. 1.	.925091	Prob(F-statistic)	0.000000
Inverted MA	roots	95		