In the claims:

1	1.	(Currently	Amended)	A method	comprising:
---	----	------------	----------	----------	-------------

- using a data access primitive to model addressability for a memory-mapped device,
 addressability comprising an address matching function, a lane matching
 function and one or more bus connections,
 specifying a first starting address for the memory-mapped device; and
 [converting] replacing the data access primitive [to] with logic components that
 implement a first set of addressing matching function, lane matching function
 and one or more bus connections for the memory-mapped device based upon
 the data access primitive and the first starting address.
- 2. (Currently Amended) The method of claim 1, further comprising [converting]
 replacing the data access primitive [to] with logic components that implement a
 second set of addressing matching function, lane matching function and one or
 more bus connections for the memory-mapped device based upon the data access
 primitive and a second starting address.
- 1 3. (Original) The method of claim 1, further comprising:
 2 coupling the data access primitive to the memory-mapped device; and
 3 coupling an address bus to the data access primitive.
- 1 4. (Original) The method of claim 3, wherein the addressing matching function
 2 compares an address from the address bus with the first starting address for the
 3 memory-mapped device.

1	5.	(Original)	The method of claim 4, wherein the first starting address is
2		specified by a	user.
1	6.	(Original)	The method of claim 4, wherein the first starting address is
2		generated auto	matically.
1	7.	(Original)	The method of claim 6, wherein the first starting address is
2		generated auto	omatically using a set of address constraints.
1	8.	(Original)	The method of claim 1, wherein the data access primitive is
2		selected to allo	ow addressability for a minimum size transaction supported by the
3		memory-mapp	ped device.
1	9.	(Original)The	method of claim 8, wherein the memory-mapped device is a register.
1	10.	(Currently Am	nended) A computer readable medium containing executable
2		instructions w	hich, when executed in a processing system, causes the processing
3		system to perf	form a method comprising:
4		using a data ac	ccess primitive to model addressability for a memory-mapped device,
5		addressa	bility comprising an address matching function, a lane matching
6		function	and one or more bus connections,
7		specifying a fi	rst starting address for the memory-mapped device; and
8		[converting] re	eplacing the data access primitive [to] with logic components that
9		impleme	nt a first set of addressing matching function, lane matching function
10		and one	or more bus connections for the memory-mapped device based upon

11

the data access primitive and the first starting address.

- 1 11. (Currently Amended) The computer readable medium of claim 10, further

 comprising [converting] replacing the data access primitive logic components that

 implement a second set of addressing matching function, lane matching function

 and one or more bus connections for the memory-mapped device based upon the

 data access primitive and a second starting address.
- 1 12. (Original) The computer readable medium of claim 10, further comprising:
 2 coupling the data access primitive to the memory-mapped device; and
 3 coupling an address bus to the data access primitive.
- 1 13. (Original) The computer readable medium of claim 12, wherein the
 2 addressing matching function compares an address from the address bus with the
 3 first starting address for the memory-mapped device.
- 1 14. (Original) The computer readable medium of claim 13, wherein the first starting address is specified by a user.
- 1 15. (Original) The computer readable medium of claim 13, wherein the first starting address is generated automatically.
- 1 16. (Original) The computer readable medium of claim 15, wherein the first 2 starting address is generated automatically using a set of address constraints.
- 1 17. (Original) The computer readable medium of claim 10, wherein the memory-2 mapped device is selected to allow addressability for a minimum size transaction
- 3 supported by the memory-mapped device.

	1	18.	(Previously A	mended) A method, comprising:	
	2	`	selecting a dat	ta access primitive to provide data access of a desired transaction	
	3		size, and	to indicate an addressing matching function, a lane matching	
	4		function	and one or more bus connections for a memory-mapped device;	
	5		specifying an	address constraint for the memory-mapped device;	
	6		instantiating a	logic for the memory-mapped device, comprising:	
	7		generatii	ng a starting address for the memory mapped device using the	
	8		ade	dress constraint;	
i	9		using the	e selected data access primitive and the starting address to map the	
U	10		log	gic for the memory mapped device capable of being accessed at the	
h	`11		des	sired transaction size, comprising:	
У	12		gen	nerating first logic components that implement the address matching	
. ,	13			function, and	
	_14		ger	nerating second logic components that implement the lane matching	
0	15			function and the one or more bus connections.	
	1	19.	(Original)	The method of claim 18, wherein the address constraint is	
	2		specified by a user, and wherein the starting address for the memory mapped		
	3		device is generated automatically.		
	1	20.	(Original)	The method of claim 18, wherein the transaction size is one in a	

group comprising a byte, a halfword and a word.

Docket No.: 003242.P017 Application No.: 09/649,437

2

1	21.	(Original)	The method of claim 18, further comprising using a new starting
2		address for the r	nemory-mapped device without having to specify changes to the
3		addressing func	tion, the lane matching function and the one or more bus
4		connections.	
1	22.	(Original)	The method of claim 21, wherein different logic for the memory
2		mapped device	s instantiated automatically using the same data access primitive
3		and the new star	ting address.
	٠		
1	23.	(Unchanged)	The method of claim 18, wherein the addressing matching
2		function compar	res an address from an address bus coupled with the data access
3		primitive with th	ne starting address, and wherein when there is match, the lane
4		matching function	on matching the transaction size of a transaction to a respective
5		section of the m	emory-mapped device.
	24	(Duranianala, Ama	and ad). A commutan madable sadium containing arrayatable
1	24.		ended) A computer readable medium containing executable
2		instructions whi	ch, when executed in a processing system, causes the processing
3		system to perfor	m a method, comprising:
4		selecting a data	access primitive to provide data access of a desired transaction
5		size, and to	o indicate an addressing matching function, a lane matching
6		function a	nd one or more bus connections for a memory-mapped device;
7		specifying an ad	dress constraint for the memory-mapped device;
8		instantiating a lo	ogic for the memory-mapped device, comprising:

address constraint;

9

10

generating a starting address for the memory mapped device using the

11		using the selected data access primitive and the starting address to map the	
12		logic for the memory mapped device capable of being accessed at the	
13		desired transaction size, comprising:	
14		generating first logic components that implement the address matching	
15		function, and	
16		generating second logic components that implement the lane matching	
17		function and the one or more bus connections.	
1	25.	(Original) The computer readable medium of claim 24, wherein the address	
2		constraint is specified by a user, and wherein the starting address for the memory	
3		mapped device is generated automatically.	
1	26.	(Original) The computer readable medium of claim 24, wherein the	
2		transaction size is one in a group comprising a byte, a halfword and a word.	
1	27.	(Original) The computer readable medium of claim 24, further comprising	
2		using a new starting address for the memory mapped device without having to	
3		specify changes to the addressing function, the lane matching function and the one	
4		or more bus connections.	
1	28.	(Previously Amended) The computer readable medium of claim 27, wherein	
2		different logic for the memory mapped device is instantiated automatically using	
3		the same data access primitive and the new starting address	
1	29.	(Original) The computer readable medium of claim 24, wherein the	
2		addressing matching function compares an address from an address bus coupled	
3		with the data access primitive with the starting address, and wherein when there is	

3 dcl

match, the lane matching function matching the transaction size of a transaction to a respective section of the memory-mapped device.