Hamster Manual

1. Hamster Technical Specification

	Spec	Detail	
Size	35 x 35 x 30 mm	LxWxH	
Weight	35 g		
Communication	Bluetooth 4.0 BLE	Supports Bluetooth 4.1 BLE	
Required OS	Android 4.3 or above, iOS, OS X	Window OS requires USB dongle	
Battery	Li-poly, 3.7 volt, 100mA	Operation: 1 hr, Stand by: 12 hr	
Battery	PCM (Protection Circuit Module)	Recharging: 30 min	
Display light	BLE connection (blue), recharging (red)	7 colors	
Display light	left LED (RGB), right LED (RGB)	7 (0)013	
Sampling rate	Sensors: max 50 Hz (20 msec)	10~50 Hz	
Sampling rate	Actuators: max 50 Hz (20 msec)	10 30 112	
Actuator	DC geared motor x 2	Planetary gear	
Buzzer	1.00 ~ 165,000.00 Hz, monotone	Resolution: 0.01 Hz	
Music notes	88 key, A3 ~ A7, 12 equal temperament	precision: +/-0.1 cent	
IR Proximity	2 sensors (left/right), max distance 30 cm	50 Hz	
Light detection	Front facing, 0~65,000 Lux	10 Hz	
Line tracing	2 sensors (left/right)	50 Hz	
Accelerometer	3 Axes (x, y, z)	Resolution setting: 2, 4, 8, 16G	
Temperature	-40.0 ~ +87.5 deg (Celsius)	Resolution: 0.5 deg (Celsius)	
External input*	2 ports: Analog, Digital	0 ~ 3.3 volt	
External output*	2 ports: Analog, Digital, Servo, PWM	PWM 255 stages, 0~180 deg	
Recharging	Micro-USB	Smart phone cable (5 pin)	
BLE host/client	Connects up to 3 other BLE devices	Slower communication speed	
Other	Battery voltage, Signal strength		
Power	Slider switch	Power on/off	

[•] External I/O: Each port can use either input mode or output mode at a time. Note that it is possible to change I/O mode during operation.

2. Hamster advertising packet definition

Scanning: Advertising packet broadcasted by Hamster

□- Hamster (0xFC11FF7E6ADD) (-62dBm)
 □- RSSI: -62dBm
 □- Address: FC11FF7E6ADD
 □- Address Type: Random
 □- Advertising Type: Connectable
 □- Bonded: False
 □- Advertising Data
 □- CompleteLocalName: Hamster
 □- Appearance: 0x0402
 □- Flags: GeneralDiscoverable, BrEdrNotSupported
 □- ServicesCompleteListUuid16: 0xF138
 □- Scan Response Data

2.1 Product Name

Complete Local Name: Hamster

- 2.2 Bluetooth Address: 0xFC11FF7E6ADD is the unique product address
 - Address Type: Random
- 2.3 Advertizing Type: Connectable, Bonded: False
 - connectible device, no pairing
- 2.4 Appearance:
 - 16 bit ID number: used to differentiate products: Hamster: 0x0403 (PID+DID)
 - First byte: Product ID(0x04) product model

(if model numbers are the same, the control data are the same)

- Second byte: Device ID(0x03) - product version (number for checking the product type without actual connection)

2.5 Flags:

- General Discoverable: broadcasting Advertising signal continuously until connecting to the host (smart devices/computer)
- BrEdrNotSupported: supports on Bluetooth 4.0 BLE No registration or pairing required: can connect to any host without pairing process.
- 2.6 ServiceCompleteListUuid:
 - 16 bit UUID: 0xF138.
 - Among the devices satisfying conditions 2.1~2.5 above, connect the one with service ID 0xF138.

3. Hamster's BLE Primary Services Definition

3.1 Generic Access Service (0x1800)

- service defined in Bluetooth BLE
- Min/Max Connection Interval: 20 msec
- 3.2 Generic Attribute Service (0x1801)
- service defined in Bluetooth BLE

3.3 Custom Defined Service "Sensors"

UUID: 0x00009001-9C80-11E3-A5E2-0800200C9A66 communication with host

Characteristic Description: Sensors

UUID: -- UUID: 0000900A-9C80-11E3-A5E2-0800200C9A66,

- service sending sensor values and internal status of Hamster to host
- packet length: 20 bytesservice name: Sensors
- communication type: notification (automatically enabled) and write without reponse

3.4 Custom Defined Service "Effectors"

UUID: 0x00009001-9C80-11E3-A5E2-0800200C9A66 communication with host

Characteristic Description: Effectors

UUID: UUID: 0000A006-9C80-11E3-A5E2-0800200C9A66,

- service sending effector control data and setting values of host to Hamster
- packet length: less than or equal to 20 bytes
- service name: Effectors
- communication type: write without reponse

3.5 OTA DFU service(Over-The-Air Device Firmware Update)

- service used by host for wireless firmware update
- sending DFU packet: DFU Packet Characteristic and Control Point Characteristic
- Note: not related to Hamster control
 - PrimaryService, Value: 00-18, Generic Access (0x1800) 亩 CharacteristicDeclaration, Value: 0A-03-00-00-2A, Properties: Read, Write, Characteristic UUID: 0x2A00 ... DeviceName, Value: 48-61-6D-73-74-65-72, DeviceName: Hamster - CharacteristicDeclaration, Value: 02-07-00-04-2A, Properties: Read, Characteristic UUID: 0x2A04 SlavePreferredConnectionParameters, Value: 10-00-10-00-00-32-00, MinConnInterval: 0x0010, Ma: PrimaryService, Value: 01-18, Generic Attribute (0x1801) - PrimaryService, Value: 0A-18, Device Information (0x180A) - CharacteristicDeclaration, Value: 02-0B-00-29-2A, Properties: Read, Characteristic UUID: 0x2A29 Manufacturer Name String, Value: 52-6F-62-6F-6D-61-74-69-6F-6E 🖶 CharacteristicDeclaration, Value: 02-0D-00-26-2A, Properties: Read, Characteristic UUID: 0x2A26 Firmware Revision String, Value: 31-2E-32

 PrimaryService, Value: 66-9A-0C-20-00-08-E2-A5-E3-11-80-9C-01-90-00, 0x00009001-9C80-11E3-A5E2-(UUID: 0000900A-9C80-11E3-A5E2-0800200C9A66, Value: 00-00-10-00-1B-00-65-14-02-BF-12-BF-C7-7F CharacteristicUserDescription, Value: 53-65-6E-73-6F-72-73, UserDescription: Sensors ClientCharacteristicConfiguration, Value: 00-00, CharacteristicConfigurationBits: None (0x0000) 📥 PrimaryService, Value: 66-9A-0C-20-00-08-E2-A5-E3-11-80-9C-00-A0-00-00, 0x0000A000-9C80-11E3-A5E2-Ġ. CharacteristicDeclaration, Value: 04-15-00-66-9A-0C-20-00-08-E2-A5-E3-11-80-9C-06-A0-00-00, Propert CharacteristicUserDescription, Value: 45-66-66-65-63-74-6F-72-73, UserDescription: Effectors ➡ PrimaryService, Value: 23-D1-BC-EA-5F-78-23-15-DE-EF-12-12-30-15-00-00, DFU (0x00001530-1212-EFDE-□ CharacteristicDeclaration, Value: 04-19-00-23-D1-BC-EA-5F-78-23-15-DE-EF-12-12-32-15-00-00, Proper ... DFU Packet, (No values read) 📥 CharacteristicDeclaration, Value: 18-1B-00-23-D1-BC-EA-5F-78-23-15-DE-EF-12-12-31-15-00-00, Prope DFU Control Point, (No values read) ClientCharacteristicConfiguration, Value: 00-00, CharacteristicConfigurationBits: None (0x0000) 🔓 CharacteristicDeclaration, Value: 02-1E-00-23-D1-BC-EA-5F-78-23-15-DE-EF-12-12-34-15-00-00, Prope ... UUID: 00001534-1212-EFDE-1523-785FEABCD123, Value: 01-00

```
PrimaryService, Value: 00-18, Generic Access (0x1800)

- CharacteristicDeclaration, Value: 0A-03-00-00-2A, Properties: Read, Write, Characteristic UUID: 0x2A00
- DeviceName, Value: 48-61-6D-73-74-65-72, DeviceName: Hamster
- CharacteristicDeclaration, Value: 02-05-00-01-2A, Properties: Read, Characteristic UUID: 0x2A01
- Appearance, Value: 02-04, Appearance: 0x0402
                                                                                                                                                                                                                                                                               © Kre8 Technology, Inc.
```

4. Sensors Service

Sensors service: packet format definition (20 bytes)

	Details	Value from Robot	User converted value	Etc
0	Version / Topology	0~255	0 ~ 255	Ref.1
1	Network ID	0~255	0 ~ 255	Ref.2
2	Command / Security	0~255	0 ~ 255	Ref.3
3	Signal Strength	-128 ~ O	-128 ~ 0 dBm	Ref.4
4	Left Proximity	0~255	0 ~ 255	Ref.5
5	Right Proximity	0 ~ 255	0 ~ 255	
6	Left Floor	0 ~ 255	0 ~ 255	Ref.6
7	Right Floor	0 ~ 255	0 ~ 255	
8	Acc X High	-32768 ~ 32767	-32768 ~ 32767	Ref.7
9	Acc X Low			
10	Acc Y High	-32768 ~ 32767	-32768 ~ 32767	
11	Acc Y Low			
12	Acc Z High	-32768 ~ 32767	-32768 ~ 32767	
13	Acc Z Low			
14	Flag			Ref.8
15	Light High	0 ~ 65535	0 ~ 65535 Lux	Ref.9
	or Temperature	-128 ~ 127	-40 ~ 88 °C	Ref.10
16	Light Low			
	or Battery	0 ~ 255	0 ~ 100 %	Ref.11
17	Input A	0~255	0 ~ 255	Ref.12
18	Input B		(0 ~ 3.3 V)	
19	Line Tracer State	0 ~ 255	0 ~ 255	Ref.13

Ref.1) Version, Topology

bit	7	6	5	4	3	2	1	0
value	Version				Topology			

Version: current version is 0

Topology Type

. 0, ,,			
None (only connecting to a hub)			
1	Daisy Chain		
2	Star		
3	Extended Star		

Ref.2) Network ID

Topology 0: None Network ID is 0x00

Topology 1: Daisy Chain(Line)

bit	7	6	5	4	3	2	1	0
value				Node 0	~ 255			

Topology 2: Star

bit	7	6	5	4	3	2	1	0
detail				Node 0	~ 255			

Topology 3: Extended Star(Cluster Tree)

bit	7	6	5	4	3	2	1	0
detail	Dep	th 4	Dep	th 3	Dep	th 2	Dep	th 1

Ref.3) Command, Security

bit	7	6	5	4	3	2	1	0	
value		Command				Security			

Security == 0: not encrypted

Security != 0: encrypted (different methods depending on Security value)

int command = (packet[2] >> 4) & 0x0f; int security = packet[2] & 0x0f;

Command Types

1. Sensory packet: 0x1?

If (packet[2] >> 4) & 0x0f == 0x01, Hamster sensors packet

Ref.4) Signal Strength

RSSI (Received Signal Strength Indication)

- -- changes with direction and distance
- -- operational up to -93dBm
- -- optimal operation between -50dBm and -80dBm

Ref.5) Left/Right Proximity

Infrared(IR) sensors located in the front

Name	Value (in hex)
Left Proximity	00 ~ FF (0 ~ 255, the closer, the bigger value)
Right Proximity	00 ~ FF (0 ~ 255, the closer, the bigger value)

^{*} Values depend on setting of Effectors' Proximity IR Current value (default setting: 10mA)

Ref.6) Left/Right Floor

Line sensors located on the bottom

^{*} In case of the default setting (10mA), max detection \sim 10cm. For this case, 50 == \sim 5cm. (depending on materials)

Name	Value (in hex)
Left Floor	0 ~ 100 (100: white)
Right Floor	0 ~ 100 (100: white)

^{*} white balance used regular white paper for normal printers

Ref.7) Acceleration

3D accelerometer (precision: 16 bit)

Name	Value(in hex)
Acc_X	-32768 ~ +32767(0x8000~0x7FFF)
Acc_Y	-32768 ~ +32767(0x8000~0x7FFF)
Acc_Z	-32768 ~ +32767(0x8000~0x7FFF)

^{*} Values depend on the setting of Effectors' G-Range value (default: 0x0 == 2g).

Ref.8) Flag

0	if next 2 bytes are Light sensor values (high and low)
1	if next 2 bytes are Temperature and Battery

Ref.9) Light

Light sensor located in the front

Name	Value (in hex)

^{*} If G-Range is set for 2g, 2g == 32767(0x7FFF). In this case, the gravity (1g) == -16384 indicating negative Z-axis direction.

Light(High, Low)	0000 ~ FFFF (0 ~ 65535), unit: lux

Ref.10) Temperature

Internal temperature in 2's complement (-40 ~ 87.5 Celsius with 24.0 as middle)

Formula) Temperature(in Celsius) = 24.0 + packet[15] / 2

ex) If packet[15] = 0xED(-19), 24.0 - 19/2 = 24.0 - 9.5 = 14.5 deg (in Celsius)

If packet[15] = 0x11(17), 24.0 + 17/2 = 24.0 + 8.5 = 32.5 deg (in Celsius)

(Caution) Temperature is the internal temperature of Hamster, not the room temperature.

Ref.11) Battery

Voltage of the internal lithium-polymer battery

Formula) Battery(in Volt) = 2.0 + battery level / 100

ex) if packet[16] = 0x95(149), 2.0 + 149/100 = 2.0 + 1.49 = 3.49 volt

(Users use this value by converting to % and comparing to the battery graph)

(Caution) Hamster's DC regulated circuit uses 3.6 volt, voltage value = 3.6 +/- 0.1 volt

(Caution) If voltage < 3.5 volt, low voltage state (erratic sensor reading and effector writing, needs recharging)

(Caution) When fully charged, voltage = \sim 4.0 volt. The normal range is 3.7 \sim 3.8 volt.

Ref.12) Input A/B

ADC mode) Analog to Digital Converter mode (Measuring analog voltage)

Active only if the Effectors' IO Mode value == 0

Formula) Volt = 3.3 * ADC level / 255 (volt)

DI mode) Digital Input mode (Measuring digital input)

Active only if the Effectors' IO Mode value == 1

Formula) 1 if input voltage >= 0.5, 0 otherwise

Ref.13) Line Tracer State

1)

bit	7	6	5	4	3	2	1	0
value	0	1	lef	t wheel 0 ~	11	right	wheel 0 ~	11

If wheel value == 0, wheel is stopped.

If wheel is moving, wheel value = (real wheel value / 10) + 1

(Caution) If it is not line-tracing mode, wheel value == 0x00.

(Caution) If it is line-tracing mode and wheel is stopped, wheel value == 0x40.

2) Bar Code (Not implemented)

bit	7	6	5	4	3	2	1	0
value	1	0/1			Bar Code	Number		

Detecting Bar Code value (6 bit)

(Caution) If the same values of bar code are detected consecutively, the 6 bit alternates 0/1.

5. Effectors Service

Effectors service: packet format definition (20 bytes)

	Data	Value to Robot	User input value	Etc
0	Version / Topology	0~255	0~255	Ref.1
1	Network ID	0~255	0~255	Ref.2
2	Command / Security	0~255	0 ~ 255	Ref.3
3	Left Wheel	-100 ~ +100	-100 ~ 100 %	
4	Right Wheel	(+fwd, -bwd)		
5	Left LED	0 (off) ~ 7	0 (off) ~ 7	Ref.4
6	Right LED			
7	Buzzer High	O(off)	O(off)	Ref.5
8	Buzzer Middle	1 ~ 16777215	1.00 Hz ~	
9	Buzzer Low		167.77215 KHz,	
10	Musical Note	0(off) ~88 (piano key)	0 (off) ~ 88	Ref.6
11	Line Tracer	0x11 ~ 0x6A	0x11 ~ 0x6A	Ref.7
	Mode/Speed	0x0?(off)	0x0?(off)	
12	Proximity IR Current	0 ~ 7 (default 2)	0 ~ 7 (default 2)	Ref.8
13	G-Range,	0 ~ 3 (default 0),	0 ~ 3 (default 0),	Ref.9
	Bandwidth	0 ~ 8 (default 3)	0 ~ 8 (default 3)	
14	IO Mode(A, B)	0~127	0~127	Ref.10
15	Output A	0 ~ 255	0 ~ 255	
16	Output B			
17	Wheel Balance	-128 ~ 127	-128 ~ 127	Ref.11
18	Input Pull	0~16		Ref.12
19	not assigned			

Ref.1) Version, Topology

bit	7	6	5	4	3	2	1	0	
value		Version	Number		Topology Type				
		Default va	alue: 0x0			Default v	alue: 0x0		

Indicating the networking type and create the commanded network topology type in the device (Hamster). Currently, only the default is supported.

Each topology type needs corresponding firmware (with different version number). The packet definition can be changed depending on the version number.

(Caution) Make sure to confirm from the Sensors packet that the device (Hamster) can create the commanded network topology type before proceed.

Topology type

Ī	0	None (connect only to hub)					
Ī	1	Daisy Chain					
Ī	2	Star					
ſ	3	Extended Star					

Ref.2) Network ID

Regardless of Topology type, if ID == 0x00, the packet is for yourself.

Topology 0: None

ID is always 0x00.

Topology 1: Daisy Chain

_ 1 - 37								
bit	7	6	5	4	3	2	1	0
value				Node 0	~ 255			

```
if (packet[1] == 0x00)
    the packet is for yourself
else
    packet[1] --; // deliver to children
```

Topology 2: Star

bit	7	6	5	4	3	2	1	0
value	Node 0 ~ 255							

```
if (packet[1] == 0x00)
    the packet is for yourself
else {
    child = packet[1] - 1; // index of child to which the packet should be delivered
    packet[1] = 0x00;
}
```

Topology 3: Extended Star

. 03								
bit	7	6	5	4	3	2	1	0
value	Dep	th 4	Dep	th 3	Dep	th 2	Dep	th 1

Max level of depth == 4. Max number of children == 3.

Each Depth, first child == 1, second child == 2, third child == 3.

```
if (packet[1] == 0x00)
    the packet is for yourself
else {
    child = (packet[1] & 0x03) - 1; // index of child to which the packet should be delivered
    packet[1] >>= 2;
}
```

Ref.3) Command, Security

bit		7	6	5	4	3	2	1	0
val	ue		Com	mand	1		Sec	urity	

If Security == 0, not encrypted.

If Security != 0, encrypted. (Different encryption methods depending on Security value)

int command = (packet[2] >> 4) & 0x0f;

int security = packet[2] & 0x0f;

Command Types

- 1. Motoring packet: 0x1?
- If (packet[2] >> 4) & 0x0f == 0x01, it is Effectors packet.
- 2. Bluetooth reset

byte	detail	value to robot	user input	
2	Command+Security	0xF?	0xF?	

If (packet[2] >> 4) & 0x0f == 0x0f, Reset the Bluetooth

3. Permanent storage of Wheel Balance value

byte	detail	value to robot	user input
2	Command+Security	0xE?	0xE?
17	Wheel Balance	-128 ~ 127	-128 ~ 127

If (packet[2] >> 4) & 0x0f == 0x0e, current Wheel Balance value (packet[17]) is stored permanently and applied immediately affecting all future wheel speeds.

The positive Wheel Balance value will make wheels move bias to the right, and the negative value to will make wheels move bias to the left. Therefore, if Hamster moves left with an equal speed value to both wheels, a positive Wheel Balance value will make the motion straighter.

(Caution) The Wheel Balance value is added to the permanently stored Wheel Balance value before applied to the motors. So, if you want to change Wheel Balance value, you need to aware of the permanently stored Wheel Balance value (usually setting to 0 before changing Wheel Balance value).

4. Effectors command timeout (life-time)

byte	detail	value to robot	user input
2	Command+Security	0xD?	0xD?
3	Life-time Constant	0(infinite) or 1~255	25 msec*255 또는 무한

Effectors packet has a time limit. After the time limit, Effector packet is reset to 0 automatically causing Hamster to stop motors and turn off LEDs and sounds. Therefore, next Effectors packet has to be transmitted before the reset if you want to control the robot.

Ref.4) Left/Right LED

bit	7	6	5	4	3	2	1	0
value	white	yellow	magenta	red	cyan	green	blue	off

Ref.5) Buzzer

```
Formula) Frequency = Buzzer / 100 (accuracy: 1/100)
Buzzer value (24 bit): 1 ~ 16777215
ex) 100 == 1.00 hz, 4800000 == 48,000.00 hz, 16777215 == 167,772.15 hz
(Caution) If value == 0, Buzzer is off.
```

Ref.6) Musical Note

Musical notes are produced by Buzzer (accuracy < 0.01%).

Activated only when Buzzer value == 0(off).

Values (1~88) are keys of Piano using the 12-tone Equal Temperament.

Frequency range: A0(27.50Hz) ~ C8(4186.01Hz). Refer to Appendix#2.

```
ex) 54 → 5th Octave D (D5: 587.330 hz)
ex) 70 → 6th Octave F# (F#6: 1479.98 hz)
ex) 40 → 4th Octave C (middle C: C4: 261.626 hz)
```

Ref.7) Line Tracer Mode/Speed

- * Hamster has line tracing algorithms in the firmware in order to support high speed line tracing without the inherent network (Bluetooth communication) delay. These algorithms use feedback control with sampling rate > 50 hz.
- * The optimal line width (black/white) is 9.0 mm.
- * In case of 90 degree turn, make sure to cut the corner to 45 degree such that the thickest part of line is less than 10 mm.
- * The between left and right sensors is 16mm.

bit	7	6	5	4	3	2	1	0
value	command		m	node			speed	

mode: 0 Inactive (Off mode)
mode: 1 left sensor/black (Black_Left mode)
mode: 2 right sensor/white (Black_Right mode)
mode: 3 both sensors/black (Black_Both mode)

mode: 4 one segment left turn/black (Black_Segment_Left mode)
mode: 5 one segment right turn/black (Black_Segment_Right mode)

mode: 6 one segment forward/black (Black_Segment_Forward mode)

mode: 7 one segment U-turn/black (Black_Segment_UTurn mode)

mode: 8 left sensor/white (White_Left mode)
mode: 9 right sensor/white (White_Right mode)
mode: 10 both sensors/white (White Both mode)

mode: 11 one segment left turn/white (White_Segment_Left mode)
mode: 12 one segment right turn/white (White_Segment_Right mode)
mode: 13 one segment forward/white (White_Segment_Forward mode)
mode: 14 one segment U-turn/white (White_Segment_UTurn mode)

- * mode and speed are independent of each other.
- * When sending a new mode, command (bit 7) should be toggled between 1 and 0.
- * Speed has 8 levels $(0 \sim 7)$. 7 is max speed(100%) and 0 is the min speed.

check = (packet[11] >> 3) & 0x1f;

mode = check & 0x0f; speed = packet[11] & 0x07;

If "check" is different from the "previous check", there is a new command

- * If mode != 0, Left/Right Wheel commands are ignored.
- * If mode == 0, line tracing speed is ignored and Hamster moves by Left/Right Wheel commands.

The following shows the motions of each mode (Hamster stops at X for modes 4~7).

* Note that modes 8~14 is the same as modes 1~7 except the line/floor colors(black/white) are flipped to white/black.

Ref.8) Proximity IR Current

Current of IR Sensors (default: 0x0 or 0x02 = 10mA)

- If needed to detect farther, change it to higher current.
- Default setting (0x02) is optimal for detecting distance < 10cm.

0x01	0x0 or 0x02	0x03	0x04	0x05	0x06	0x07
5 mA	10 mA	20 mA	50 mA	100 mA	150 mA	200 mA

Ref.9) G-Range / Band Width

bit	7	6	5	4	3	2	1	0
value		G-Ra	ange			Band	width	

Accelerometer: Gravity measuring range (default: 0x0 = 2g where g is 9.81 m/sec^2)

- Default value (2g) is to detect the orientation of Hamster.
- If needed to measure impact or fast motion, use higher measuring range.
- If you double the measuring range, the measuring value is halved.

0x00	0x00 0x10		0x30	
2g	4g	8g	16g	

Accelerometer: Bandwidth (default: 0x3 = 31.25 hz)

- setting the responsiveness of accelerometer.
- Higher bandwidth \rightarrow faster response but more noise

0x01	0x02	0x00 or 0x03	0x04	0x05	0x06	0x07	80x0
7.81 hz	15.63 hz	31.25 hz	62.5 hz	125 hz	250 hz	500 hz	1000 hz

Ref.10) IO Mode

External Input/Output mode(currently supports only 0x00~0x05 and 0x08, 0x09, 0x0A modes)

bit	7	6	5	4	3	2	1	0
value	Port A				Port B			
default	ADC mode, 0x0					ADC mo	ode, 0x0	

Port A and Port B are independent of each other.

0x00 ADC (Analog-to-Digital)

0x01 DI (Digital Input)

0x08 SERVO (Analog Servo Control)

0x09 PWM (Digital-to-Analog)

0x0A DO (Digital Output)

ADC (Analog-to-Digital) Mode: 0x00

Measures input voltage with 8-bit ADC.

Max input voltage is \sim 3.7volt \rightarrow 255(0xFF)

DI (Digital Input) Mode: 0x01

Detect input voltage to either 0 or 1.

1 if input voltage > 3.7/2 (~ 1.8 volt)

0 otherwise

SERVO (Analog servo) Output Mode: 0x08

Generating PWM signal(mode = 8) for external Servo control

Port A	1 ~ 180	0(off), 90(center)	1deg=1.0ms, 90deg=1.5ms, 180deg=2.0ms
Port B	1 ~ 180	0(off), 90(center)	1deg=1.0ms, 90deg=1.5ms, 180deg=2.0ms

^{*} If value $== 0(off) \rightarrow no pulse$

^{*} If value > 180, pulse width limits to 2.5 ms

PWM (Digital-to-Analog) Output Mode: 0x09

Output: PWM signal's Duty value

If value > 100(0x64), output is 1 and PWM pulse period is 20 msec.

Therefore, if Duty value is 50%(50, 0x32), output is 0 for 10 msec, then output is 1 for the next 10msec.

DO (Digital Output) Mode: 0x0A If value is not 0, output is 'high'.

Ref.11) Wheel Balance

Correction of the ratio of wheel(motor) speeds to achieve straight forward motion when same wheel speeds are given to both wheels.

Default value is 0 and any value is reset to when Hamster is off.

(Caution) If you want to store Wheel Balance value permanently, you have set Command(Byte 2) value to 0xE0.

Ref.12) Port Pull Up/Down (incompete)

Port A/B extension setting: changing Pull-up or Pull-down of internal resistance(~10 kohm). Default is Pull-up.

bit	7	6	5	4	3	2	1	0
value		rese	rved		Poi	rt B	Poi	rt A

Port A

- 0: Pull-up, connected to VCC
- 1: Pull-down, connected to GND
- 2, 3: No-pull, no connection

Port B

- 0: Pull-up, connected to VCC
- 1: Pull-down, connected to GND
- 2, 3: No-pull, no connection

Appendix 1: Hamster Battery Usage Graph

^{*} According to this graph, the max standby time is 12 hours

Appendix 2: Hamster Musical Notes and Piano Keys with Frequency

Key number	Notation	Frequency(Hz)Hz	
88	C8 - Last tone	4186.01	
87	B7	3951.07	
	A #7/B ♭ 7	3729.31	
85	A7	3520.00	
	G [‡] 7/A ⊳7	3322.44	
83	G7	3135.96	
	F ♯ 7/G♭7	2959.96	
81	F7	2793.83	
80	E7	2637.02	
	D ♯ 7/E♭7	2489.02	
78	D7	2349.32	
	C. \$7/D ⊳7	2217.46	
76	C7	2093.00	
75	B6	1975.53	
	A \$6/B ⊳ 6	1864.66	

^{*} Note: Operational time is approximately 1 hour.

73	A6	1760.00
	G ♯ 6/A♭6	1661.22
71	G6	1567.98
	F ♯ 6/G♭6	1479.98
69	F6	1396.91
68	E6	1318.51
	D ♯ 6/E♭6	1244.51
66	D6	1174.66
	C ♯ 6/D♭6	1108.73
64	C6 (high C)	1046.50
63	B5	987.767
	A ♯ 5/B ♭ 5	932.328
61	A5	880.000
	G ♯ 5/A♭5	830.609
59	G5	783.991
	F ♯ 5/G♭5	739.989
57	F5	698.456
56	E5	659.255
	D ♯ 5/E♭5	622.254
54	D5	587.330
	C♯5/D♭5	554.365
52	C5	523.251
51	B4	493.883
	A \$4/B ♭ 4	466.164
49	A4 concert pitch	440.000
	G \$4/A ⊳4	415.305
47	G4	391.995
	F #4/G ♭4	369.994
45	F4	349.228
44	E4	329.628
	D#4/E♭4	311.127
42	D4	293.665
	C#4/D ⊳4	277.183
40	C4 (middle C)	261.626
39	B3	246.942
	A \$3/B ♭3	233.082
37	A3	220.000
	G ♯ 3/A♭3	207.652
35	G3	195.998
	F ♯ 3/G♭3	184.997
33	F3	174.614
32	E3	164.814
	D#3/E♭3	155.563
30	D3	146.832
	C#3/D ▶3	138.591

28	C3	130.813
27	B2	123.471
	A \$2/B ≥ 2	116.541
25	A2	110.000
	G \$2/A ▶2	103.826
23	G2	97.9989
	F ♯ 2/G♭2	92.4986
21	F2	87.3071
20	E2	82.4069
	D ♯ 2/E♭2	77.7817
18	D2	73.4162
	C\$2/D♭2	69.2957
16	C2 (low C)	65.4064
15	B1	61.7354
	A ∮ 1/B ♭ 1	58.2705
13	A1	55.0000
	G [♯] 1/A♭1	51.9130
11	G1	48.9995
	F ♯ 1/G♭1	46.2493
9	F1	43.6536
8	E1	41.2035
	D ♯ 1/E♭1	38.8909
6	D1	36.7081
	C#1/D♭1	34.6479
4	C1	32.7032
3	B0	30.8677
	A #0/B ♭ 0	29.1353
1	A0 - First tone	27.5000