LÓGICA COMBINACIONACIONAL

ALGUNOS MÓDULOS BÁSICOS

Esquema General

FIGURA 4-1

Diagrama de bloques de un circuito combinacional

Análisis

FIGURA 4-2

Diagrama lógico para el ejemplo de análisis

• Ejemplo de Diseño

Tabla 4-2 *Tabla de verdad para el ejemplo de conversión de código*

	Entrac	la BCD		Salid	da cód	igo exc	eso-3
Α	В	С	D	W	X	У	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

• Ejemplo de Diseño

Sección 4-3 Procedimiento de diseño 117

Ejemplo de Diseño

FIGURA 4-3

Mapas para el convertidor de código BCD a exceso-3

• Ej:

FIGURA 4-4
Diagrama lógico para el convertidor de código BCD a exceso-3

Semisumador

Tabla 4-3 *Semisumador*

x	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Semisumador

Capítulo 4 Lógica combinacional

a)
$$S = xy' + x'y$$

 $C = xy$

b)
$$S = x \oplus y$$

 $C = xy$

FIGURA 4-5

Implementación de semisumador

Sumador Completo

Tabla 4-4 *Sumador completo*

X	у	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sumador Completo

Sección 4-4 Sumador-restador binario

121

$$C = xy + xz + yz$$

= $xy + xy'z + x'yz$

FIGURA 4-6

Mapas para el sumador completo

Sumador Completo

FIGURA 4-7
Implementación de un sumador completo como suma de productos

Sumador Completo

122 Capítulo 4 Lógica combinacional

FIGURA 4-8

Implementación de un sumador completo con dos semisumadores y una compuerta OR

Sumador Completo

FIGURA 4-9
Sumador de cuatro bits

Sumador Completo

FIGURA 4-10

Sumador completo en el que se indican P y G

Acarreo Anticipado

Considere el circuito del sumador completo que se aprecia en la figura 4-10. Si definimos dos nuevas variables binarias

$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

la suma y el acarreo se expresarán así:

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

Acarreo Anticipado

$$C_0$$
 = acarreo de entrada
 $C_1 = G_0 + P_0 C_0$
 $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

Sección 4-4 Sumador-restador binario 125

FIGURA 4-11
Diagrama lógico del generador de acarreo anticipado

FIGURA 4-12 Sumador de cuatro bits con acarreo anticipado

Sección 4-4 Sumador-restador binario 127

FIGURA 4-13

Sumador-restador de cuatro bits

Ejemplo de Multiplicador Binario

Ejemplo de Multiplicador Binario

FIGURA 4-16 Multiplicador binario de 4 bits por 3 bits

Sección 4-8 Decodificadores

Tabla 4-6 *Tabla de verdad de un decodificador de 3 a 8 líneas*

Entradas							Sa	lidas			
X	y	Z	E) ₀	D_1	D_2	D_3	D_4	D_5	D_6	D_7
0	0	0		1	0	0	0	0	0	0	0
0	0	1	()	1	0	0	0	0	0	0
0	1	0	()	0	1	0	0	0	0	0
0	1	1	()	0	0	1	0	0	0	0
1	0	0)	0	0	0	1	0	0	0
1	0	1)	0	0	0	0	1	0	0
1	1	0)	0	0	0	0	0	1	0
1	1	1)	0	0	0	0	0	0	1

E	\boldsymbol{A}	\boldsymbol{B}	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

a) Diagrama lógico

b) Tabla de verdad

FIGURA 4-19

Decodificador de 2 a 4 líneas con entrada habilitadora

FIGURA 4-20

Decodificador 4×16 construido con dos decodificadores 3×8

Implementación de lógica con decodificadores

Suma de Productos

FIGURA 4-21
Implementación de un sumador completo con un decodificador

MULTIPLEXORES

• De 2 a 1

a) Diagrama lógico

FIGURA 4-24 Multiplexor de 2 líneas a 1

b) Diagrama de bloque

MULTIPLEXORES

• De 4 a 1

b) Tabla de función

a) Diagrama lógico

FIGURA 4-25 Multiplexor de 4 líneas a 1

MULTIPLEXORES

FIGURA 4-26

Multiplexor cuádruple de 2 líneas a 1

IMPLEMENTACIÓN DE LÓGICA CON MULTIPLEXORES

x	y	z	F	
0	0	0	0	F = z
0	0	1	1	$\Gamma - \zeta$
0	1	0	1	F = z'
0	1	1	0	$\Gamma - \zeta$
1	0	0	0	E = 0
1	0	1	0	F = 0
1	1	0	1	Б 1
1	1	1	1	F = 1

a) Tabla de verdad

b) Implementación con multiplexor

FIGURA 4-27

Implementación de una función booleana con un multiplexor

IMPLEMENTACIÓN DE LÓGICA CON MULTIPLEXORES

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	$\boldsymbol{\mathit{F}}$	
0	0	0	0	0	F = D
0	0	0	1	1	$\Gamma - D$
0	0	1	0	0	F = D
0	0	1	1	1	$\Gamma - D$
0	1	0	0	1	F = D'
0	1	0	1	0	$\Gamma - D$
0	1	1	0	0	F = 0
0	1	1	1	0	$\Gamma = 0$
1	0	0	0	0	F = 0
1	0	0	1	0	$\Gamma = 0$
1	0	1	0	0	F = D
1	0	1	1	1	$\Gamma - D$
1	1	0	0	1	E _ 1
1	1	0	1	1	F = 1
1	1	1	0	1	E - 1
1	1	1	1	1	F = 1

FIGURA 4-28

Implementación de una función de cuatro entradas con un multiplexor

IMPLEMENTACIÓN DE LÓGICA CON BUFFERS DE ALTA CON ALTA IMPEDANCIA

a) Mux de 2 líneas a 1

b) Mux de 4 líneas a 1

FIGURA 4-30

Multiplexores con compuertas de tres estados