$_{ m QCM}^{ m Algo}$

- 1. Un graphe peut être?
 - (a) Orienté
 - (b) Non orienté
 - (c) A moitié orienté
 - (d) Désorienté
- 2. Dans un graphe orienté, le sommet x est adjacent au sommet y si?
 - (a) Il existe un arc (x,y)
 - (b) Il existe un arc (y,x)
 - (c) Il existe un chemin (x,..,y)
 - (d) Il existe un chemin (y,..,x)
- 3. Dans un graphe orienté, un sommet de degré zéro est appelé?
 - (a) sommet unique
 - (b) sommet isolé
 - (c) sommet nul
 - (d) sommet perdu
- 4. Un graphe orienté G défini par le triplet G=<S,A,C> est?
 - (a) etiqueté
 - (b) valué
 - (c) valorisé
 - (d) numéroté
- 5. Dans un graphe orienté, on dit que l'arc $U = y \rightarrow x$ est?
 - (a) incident à x vers l'extérieur
 - (b) accident à x vers l'extérieur
 - (c) incident à x vers l'intérieur
 - (d) accident à x vers l'intérieur
- 6. Dans un graphe orienté, le nombre d'arcs ayant le sommet x pour extrémité terminale est appelé?
 - (a) le demi-degré extérieur de x
 - (b) le degré de x
 - (c) le demi-degré intérieur de x

- 7. Dans un graphe orienté, s'il existe un arc $U = y \rightarrow x$ pour tout couple de sommet $\{x,y\}$ le graphe est?
 - (a) complet
 - (b) partiel
 - (c) parfait
- 8. Deux arcs d'un graphe orienté sont dits adjacents si?
 - (a) il existe deux arcs les joignant
 - (b) le graphe est complet
 - (c) ils ont au moins une extrémité commune
- 9. L'ordre d'un graphe orienté est?
 - (a) Le nombre d'arcs du graphe
 - (b) Le nombre de sommets du graphe
 - (c) Le coût du graphe
 - (d) La liste triée des arcs du graphe
- 10. Dans un graphe orienté valué G=<S,A,C>, les coûts sont portés par?
 - (a) les arcs
 - (b) les sommets

QCM N°3

lundi 18 octobre 2021

Question 11

Soit (u_n) une suite réelle telle que, quand n tend vers $+\infty$, $u_n \sim \frac{(-1)^n}{n}$.

a.
$$|u_n| \sim \left| \frac{(-1)^n}{n} \right|$$

- b. Comme $\left(\frac{1}{n}\right)$ est décroissante, $\left(|u_n|\right)$ est décroissante elle aussi
- c. $\sum u_n$ converge
- d. Aucun des autres choix.

Question 12

Soit X une variable aléatoire finie entière dont la fonction génératrice a la forme : $G_X(t)=a\,(t+2)^2$

a.
$$a = \frac{1}{9}$$

b.
$$P(X=1) = \frac{4}{9}$$

c.
$$P(X=1) = \frac{2}{9}$$

d. Aucun des autres choix

Question 13

Soient X et Y deux variables aléatoires finies entières indépendantes, de mêmes fonctions génératrices

$$G_X(t) = G_Y(t) = \frac{t+1}{2}$$

a.
$$P(X+Y=1) = \frac{1}{4}$$

b.
$$P(X+Y=1) = \frac{1}{2}$$

c.
$$P(X+Y=1) = \frac{3}{4}$$

d. Aucun des autres choix

Question 14

Soit une suite $(a_n)_{n\in\mathbb{N}}$ et considérons la série entière $\sum a_n x^n$. On note R son rayon de convergence.

- a. Pour tout $x \in \mathbb{R}$ tel que |x| < R, $\sum a_n x^n$ converge
- b. Pour tout $x \in \mathbb{R}$ tel que |x| = R, $\sum a_n x^n$ converge
- c. Pour tout $x \in \mathbb{R}$ tel que |x| > R, $\sum a_n x^n$ converge
- d. Aucun des autres choix

Question 15

Soit la série entière $\sum \frac{x^n}{n!}$ et notons R son rayon de convergence.

Considérons sa fonction somme, définie pour tout $x \in]-R, R[$ par : $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$

- a. R = 1
- b. $R = +\infty$
- c. Pour tout $x \in]-R, R[, f(x) = e^x$
- d. Pour tout $x \in]-R, R[, f(x) = \frac{1}{1-x}]$
- e. Aucun des autres choix

Question 16

Soit la série entière $\sum x^n$ et notons R son rayon de convergence.

Considérons sa fonction somme, définie pour tout $x \in]-R, R[$ par : $f(x) = \sum_{n=0}^{+\infty} x^n$

- a. R = 1
- b. $R = +\infty$
- c. Pour tout $x \in]-R, R[, f(x) = e^x$
- d. Pour tout $x \in]-R, R[, f(x) = \frac{1}{1-x}$
- e. Aucun des autres choix

Question 17

Soit une série entière $\sum a_n x^n$ et notons R son rayon de convergence.

Considérons sa fonction somme, définie pour tout $x \in]-R, R[$ par : $f(x) = \sum_{n=0}^{+\infty} a_n x^n$

a. Le rayon de convergence de la série $\sum n a_n x^{n-1}$ vaut R.

b. Pour tout
$$x \in]-R, R[, f'(x) = \sum_{n=1}^{+\infty} n \, a_n \, x^{n-1}$$

c. Le rayon de convergence de la série $\sum a_n \frac{x^{n+1}}{n+1}$ vaut R.

d. La fonction
$$x \mapsto \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}$$
 est définie sur]-R, R[et c'est une primitive de f.

e. Aucun des autres choix

Question 18

Soit X une variable aléatoire prenant ses valeurs dans \mathbb{N} , c'est-à-dire que $X(\Omega) = \mathbb{N}$. On suppose connues les probabilités P(X=n) pour tout $n \in \mathbb{N}$.

a. La série $\sum P(X=n)$ peut diverger

b.
$$P(X \ge 5) = \sum_{n=5}^{+\infty} P(X=n)$$

c.
$$P(X \ge 5) = 1 - \left(\sum_{n=0}^{5} P(X=n)\right)$$

d.
$$P(X \ge 5) = 1 - \left(\sum_{n=0}^{4} P(X=n)\right)$$

e. Aucun des autres choix.

Question 19

Soit X une variable aléatoire prenant ses valeurs dans $\mathbb N.$ Sa fonction génératrice est définie par :

a.
$$G_X(t) = \sum_{n=0}^{+\infty} P(X=n) t^n$$

b.
$$G_X(t) = \sum_{n=0}^{+\infty} P(X=n) n^t$$

c.
$$G_X(t) = \sum_{n=0}^{+\infty} P(X=n) \frac{t}{n}$$

d. Aucun des autres choix.

Question 20

Soit $q \in]0,1[$ et considérons une variable aléatoire X prenant ses valeurs dans \mathbb{N}^* telle que, pour tout $n \in \mathbb{N}^*$,

$$P(X{=}n)=(1-q)\,q^{n-1}$$

Alors la fonction génératrice de X est donnée par :

a.
$$G_X(t) = \frac{1-q}{1-qt}$$

b.
$$G_X(t) = \frac{(1-q)t}{1-qt}$$

c.
$$G_X(t) = \frac{1}{1 - qt}$$

d Aucun des autres choix.

QCM 3 Azar Chap13 (Punctu Adjec clause ex 38-41pp288-290) Sept 21

Read the following sentences, paying attention to their punctuation. Choose the letter of the sentence that gives the correct meaning of the given sentence.

- 21. The students, who attend class five hours per day, have become quite proficient in their new language.
- a. All of the students attend class five hours per day.
- b. Some of the students attend class five hours per day.
- c. None of the students attend class five hours per day.
- 22. The orchestra conductor signaled the violinists who were to begin playing.
- a. All of the violinists were to begin playing.
- b. One of the violinists was to begin playing.
- c. Some of the violinists were to begin playing.
- 23. Trees which lose their leaves in winter are called deciduous trees.
- a. All trees lose their leaves in winter.
- b. Some trees lose their leaves in winter.
- c. It is not possible to know which trees lose their leaves in winter.
- 24. Obljit leaned over the table and took the bottle which was half full.
- a. There was only one bottle on the table.
- b. There was more than one bottle on the table.
- c. All of the bottles were half full.

In the following sentences, decide whether the punctuation in the given sentence needs to be corrected. If so, choose the one correction.

- 25. We enjoyed the view from the hotel we stayed in last August.
- a. We enjoyed the view, from the hotel we stayed in last August.
- b. We enjoyed the view, from the hotel, we stayed in last August.
- c. We enjoyed the view, from the hotel we stayed in, last August.
- d. No change is needed. The punctuation is correct as it is.
- 26. We had to use the toilet, so we walked to the nearest restaurant. The waiter who received us listened sympathetically to our request.
- a. No change is needed. The punctuation is correct as it is.
- b. The waiter, who received us listened sympathetically to our request.
- c. The waiter who received us, listened sympathetically to our request.
- d. The waiter, who received us, listened sympathetically to our request.

- 27. One of the most common devices found in offices today is the computer which has become indispensable for almost all office work.
- a. One of the most common devices, found in offices today is, the computer which has become indispensable for almost all office work.
- b. One of the most common devices found in offices today, is the computer which has become indispensable for almost all office work.
- c. One of the most common devices found in offices today is the computer which has become indispensable for almost all office work.
- d. One of the most common devices found in offices today is the computer, which has become indispensable for almost all office work.
- 28. Paint which is made with water is called acrylic paint.
- a. Paint, which is made with water is called acrylic paint.
- b. Paint, which is made with water, is called acrylic paint.
- c. Paint which is made with water, is called acrylic paint.
- d. No change is needed. The punctuation is correct as it is.
- 29. Bruges where my sister was born is known as the Venice of the north.
- a. Bruges where my sister was born is known as, the Venice of the north.
- b. Bruges, where my sister was born, is known as, the Venice of the north.
- c. Bruges, where my sister was born, is known as the Venice of the north.
- d. No commas. No change is needed.
- 30. Ms. Adonis whose daughter won Epita's Excellencia award this year is very proud of her daughter's achievement.
- a. Ms. Adonis, whose daughter won Epita's Excellencia award this year, is very proud of her daughter's achievement.
- b. Ms. Adonis whose daughter won Epita's Excellencia award this year, is very proud of her daughter's achievement.
- c. Ms. Adonis whose daughter won Epita's Excellencia award, this year is very proud of her daughter's achievement.
- d. No change is needed. The punctuation is correct as it is.

O.C.M n°3 de Physique

41- Soit la distribution de charges représentée sur la figure ci-dessous: (OA = OB = a).

Le potentiel électrique au point O est

a)
$$V(0) = -k\frac{q}{a}$$
 b) $V(0) = 0$ c) $V(0) = k\frac{q}{a}$

b)
$$V(0) = 0$$

c)
$$V(0) = k \frac{q}{a}$$

42- Un électron envoyé entre deux armatures d'un condensateur plan est soumis à une force électrique \vec{F}_e qui vérifie :

a) Orthogonale aux armatures et orientée de la plaque (+) vers la plaque (-)

b) Parallèle aux armatures

c) Orthogonale aux armatures et orientée de la plaque (-) vers la plaque (+)

43- La circulation du vecteur champ électrique \vec{E} de A vers B s'écrit :

a)
$$C(\vec{E}_{AB}) = \vec{E} \cdot \vec{dl}$$

b)
$$C(\vec{E}) = E(B) - E(A)$$

b)
$$C(\vec{E}) = E(B) - E(A)$$
 c) $C(\vec{E}) = V(B) - V(A)$ d) $C(\vec{E}) = \int_A^B \vec{E} \cdot d\vec{l}$

d)
$$C(\vec{E}) = \int_A^B \vec{E} \cdot d\vec{l}$$

44- Une distribution de charges sphérique crée au point M un potentiel électrique $V(\theta,\phi)$, on peut donc affirmer que le vecteur champ électrique s'écrira :

a)
$$\vec{E} \begin{pmatrix} 0 \\ 0 \\ E_{+} \end{pmatrix}$$

b)
$$\vec{E} \begin{pmatrix} E_r \\ 0 \\ E_{\phi} \end{pmatrix}$$

c)
$$\vec{E} \begin{pmatrix} E_r \\ E_\theta \\ 0 \end{pmatrix}$$

a)
$$\vec{E} \begin{pmatrix} 0 \\ 0 \\ E_{\phi} \end{pmatrix}$$
 b) $\vec{E} \begin{pmatrix} E_r \\ 0 \\ E_{\phi} \end{pmatrix}$ c) $\vec{E} \begin{pmatrix} E_r \\ E_{\theta} \\ 0 \end{pmatrix}$ d) $\vec{E} \begin{pmatrix} 0 \\ E_{\theta} \\ E_{\phi} \end{pmatrix}$

45- Le champ électrique $\vec{E}(M)$ créé au point M est relié au potentiel électrique V(M) par l'expression :

a)
$$\vec{E}(M) = -\overrightarrow{grad}(V)$$

b)
$$V(M) = \overline{grad}(\vec{E})$$

c)
$$\vec{E}(M) = \frac{1}{grad}(V)$$

46- Un champ électrostatique \vec{E} est dit entant lorsqu'il est créé par :

a) Un proton

b) Un neutron

c) Un électron

47- Le champ électrique créé par un fil infini uniformément chargé, en un point M extérieur au fil est :

a) orthogonal au fil

b) Parallèle au fil

c) non défini

48-Soit le potentiel électrique $V(x, y, z) = ax^2 - z \ln(by)$, tel que : a et b sont des constantes. Le champ électrique qui dérive de ce potentiel s'écrit :

a)
$$\vec{E} = -2ax + \frac{z}{y} + \ln(by)$$

a)
$$\vec{E} = -2ax + \frac{z}{y} + \ln(by)$$

b) $\vec{E} = -2ax \overrightarrow{u_x} + \frac{z}{y} \overrightarrow{u_y} + \ln(by) \overrightarrow{u_z}$

c)
$$\vec{E} = -2ax \vec{u_x} + b \frac{z}{v} \vec{u_y} + \ln(by) \vec{u_z}$$

49- On montre qu'un élément de longueur infinitésimal situé en P d'un fil de charge linéique constante λ crée un champ électrique \overrightarrow{dE} en un point M extérieur au fil, de composante : $dE_x(x) = \frac{k \cdot \lambda}{x} \cos(\alpha) d\alpha$. L'angle α est tel qu'indiqué ci-dessous, on pose : (OM = x).

Le champ électrique total créé par le fil infini s'écrit :

a)
$$E(x) = \frac{k\lambda}{x}$$

b)
$$E(x) = \frac{2k\lambda}{x}$$

b)
$$E(x) = \frac{2k\lambda}{x}$$
 c) $E(x) = 2\sin(\alpha)\frac{k\lambda}{x}$

50- La densité linéique de charge vérifie :

- a) Elle représente le rapport d'un élément infinitésimal de charge dQ sur une surface élémentaire dS.
- b) Elle s'exprime en Coulomb par mètre carré.
- c) Elle est constante pour tout objet unidimensionnel dont la charge électrique est répartie de façon homogène.

QCM Electronique - InfoS3

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Q1. Si on prend du silicium comme élément semi-conducteur et qu'on le dope avec un élément ayant un électron de valence de plus que le silicium, on a :

a- Un dopage N

c- Un dopage P

b- Aucun dopage

d- Dopage NP

Q2. Dans un semi-conducteur intrinsèque, le nombre d'électrons libres est :

a- plus grand que le nombre de trous

c- égal au nombre de trous

b- plus petit que le nombre de trous

d- aucun des cas précédents

Q3. Soit le circuit ci-contre, dans lequel on considère la diode idéale. Que vaut la tension aux bornes de R si E=10V, $R=100\Omega$.

a- 10 V

c- 1 kV

b- 0 V

d- 0,1 V

Q4. Par quoi remplace-t-on la diode passante si on utilise le modèle à seuil (source de tension idéale)?

 V_0 I_{AK} V_D V_{AK} V_{AK}

Q5. Soit le circuit ci-contre, dans lequel on modélise la diode par son modèle à seuil avec $V_0=0.6V$. Choisir l'affirmation correcte si E=1~V, $R_1=100~\Omega$, et $R_2=50~\Omega$:

- a- La diode est passante et le courant qui la traverse vaut 100mA
- b- La diode est bloquée et la tension à ses bornes est égale à $\frac{1}{3}V$.
- c- La diode est passante et le courant qui la traverse vaut 5A.
- d- La diode est passante et le courant qui la traverse vaut 200mA.

- Q6. Si on veut montrer qu'une diode est bloquée par un raisonnement par l'absurde, il faut :
 - a- La supposer bloquée et montrer que la tension à ses bornes est supérieure à sa tension de seuil.
 - b- La supposer passante et montrer que la tension à ses bornes est supérieure à sa tension de seuil.
 - c- La supposer passante et montrer que le courant qui la traverse de l'anode vers la cathode est positif.
 - d- La supposer passante et montrer que le courant qui la traverse de l'anode vers la cathode est négatif.

Soit le circuit ci-contre, dans lequel on considère la diode idéale (interrupteur) (Q7&8)

Q7. Que vaut la tension aux bornes de R.si E = 10V, $R = 100\Omega$.

a- 0 V

c- 1 kV

b- 10 V

d- 0,1 V

Q8. Que vaut la tension V_{AK} aux bornes de la diode si E=0.5~V, $R=1\mathrm{k}\Omega$.

a- 0 V

c- 0,7 V

b- -0.5 V

d - 0.7 V

Q9. Soit le circuit ci-contre : Comment sont les diodes si $V_A = V_B = 5V$?

a- Bloquées

b- Passantes

Q10. Soit le circuit ci-contre. On considère la diode idéale, et $e(t) = E.\sqrt{2}.\sin(\omega.t)$. Choisir l'affirmation correcte :

a- Si e(t) > 0, alors u(t) = e(t).

b- Si e(t) < 0, alors u(t) = 0.

c- Si e(t) > 0, alors u(t) = 0.

d- La diode est bloquée et la tension à ses bornes est égale à $\frac{E_0}{R}V$.

QCM 3 Architecture des ordinateurs

Lundi 18 octobre 2021

Pour toutes les questions, une ou plusieurs réponses sont possibles.

- 11. Le flag C est positionné à 1 quand :
 - A. Un dépassement signé apparaît.
 - B. Un résultat est positif.
 - C. Un dépassement non signé apparaît.
 - D. Un résultat est négatif.
- 12. Quel(s) mnémonique(s) est (sont) une directive d'assemblage ?
 - A. ORG
 - B. MOVE
 - C. ILLEGAL
 - D. EQU
- 13. À quoi sert le symbole '#'?
 - A. Il indique qu'un opérande est sous forme décimale.
 - B. Il indique qu'un opérande est une donnée immédiate.
 - C. Il indique qu'un opérande est sous forme hexadécimale.
 - D. Il indique qu'un opérande est une adresse.
- 14. Soit l'instruction suivante : MOVE.W 2(A0),00
 - A. A0 est incrémenté de 4.
 - B. A0 est incrémenté de 2.
 - C. A0 est incrémenté de 1.
 - D. A0 ne change pas.
- 15. Quels modes d'adressage ne spécifient pas d'emplacement mémoire ?
 - A. Mode d'adressage indirect.
 - B. Mode d'adressage absolu.
 - C. Mode d'adressage immédiat.
 - D. Mode d'adressage direct.

- 16. Quelle(s) instruction(s) peut-on utiliser pour appeler un sous-programme?
 - A. JMP
 - B. BRA
 - C. BEQ
 - D. Aucune de ces réponses.
- 17. Après l'exécution d'une instruction RTS, le pointeur de pile :
 - A. Est incrémenté de quatre.
 - B. Est décrémenté de quatre.
 - C. Ne change pas.
 - D. Aucune de ces réponses.
- 18. Les étapes pour dépiler une donnée sont :
 - A. Lire la donnée dans (A7) puis décrémenter A7.
 - B. Décrémenter A7 puis lire la donnée dans (A7).
 - C. Incrémenter A7 puis lire la donnée dans (A7).
 - D. Aucune de ces réponses.
- 19. Les étapes pour empiler une donnée sont :
 - A. Écrire la donnée dans (A7) puis décrémenter A7.
 - B. Décrémenter A7 puis écrire la donnée dans (A7).
 - C. Incrémenter A7 puis écrire la donnée dans (A7).
 - D. Aucune de ces réponses.
- 20. L'instruction RTS:
 - A. Empile une adresse de retour.
 - B. Ne modifie pas la pile.
 - C. Restaure les registres.
 - D. Aucune de ces réponses.