- 8.1 પ્રસ્તાવના
- **8.2** તરંગો
- 8.3 તરંગોનું વર્ગીકરણ
- 8.4 તરંગનો કંપવિસ્તાર, તરંગમાં ઊર્જાનું પ્રસરણ, તરંગલંબાઈ અને આવૃતિ
- 8.5 તરંગ-સમીકરણ
- 8.6 તરંગ-ઝડપ અને કળા-ઝડપ
- 8.7 માધ્યમમાં તરંગ-ઝડપ
- 8.8 સંપાતપશાનો સિદ્ધાંત અને તરંગનું પરાવર્તન
- 8.9 સ્થિત-તરંગો
- 8.10 નળીમાં સ્થિત-તરંગો
- 8.11 સ્પંદ
- 8.12 ડાંપ્લર-અસર
 - સારાંશ
 - સ્વાધ્યાય

8.1 પ્રસ્તાવના (Introduction)

વિદ્યાર્થીમિત્રો, અગાઉ આપશે ભણી ગયા કે બ્રહ્માંડ એ દ્રવ્ય અને વિકિરણનું બનેલું છે. આ વિકિરણ એ તરંગ સ્વરૂપે પ્રસરણ પામે છે. ભૌતિકવિજ્ઞાનની લગભગ બધી જ શાખાઓમાં તરંગો પાયાની અગત્ય ધરાવે છે. પ્રકાશ અને ધ્વનિ-ઊર્જાનું પ્રસરણ તરંગ સ્વરૂપે થાય છે. સૂર્યમાંથી ઉદ્ભવતી અલગ-અલગ પ્રકારની વિકિરણ-ઊર્જાઓ એ તરંગ સ્વરૂપે આપણા સુધી પહોંચે છે. વાજિંત્રોમાંથી ઉદ્ભવેલું સંગીત આપણા કાન સુધી 'ધ્વનિ-તરંગો' સ્વરૂપે પહોંચે છે. રેડિયો, ટેલિવિઝન અને મોબાઇલ ફોન દ્વારા થતો આધુનિક સંદેશાવ્યવહાર એ તરંગોને આભારી છે. 20મી સદીમાં ભૌતિકવિજ્ઞાનમાં પ્રવેશેલી દ્રવ્યતરંગ (matter waves)ની વિભાવનાને પરિણામે તરંગોનું મહત્ત્વ અનેક ગણું વધી ગયું છે.

પ્રસ્તુત પ્રકરણમાં આપણે તરંગો, તરંગોના પ્રકાર, જુદા-જુદા માધ્યમમાં તરંગોની ઝડપ, તરંગોનું પરાવર્તન અને તેમનું સંપાતીકરણ, સ્પંદ અને ડૉપ્લર અસર જેવી ઘટનાઓનો અભ્યાસ કરીશું.

8.2 તરંગ (Waves)

અવકાશમાં જ્યારે કણ ગતિ કરે ત્યારે તેની સાથે સંકળાયેલી ગતિ-ઊર્જાનું પણ પરિવહન થાય છે. અવકાશમાં ઊર્જા એ બીજી રીતે પણ વહન પામે છે. જેમાં કણ પોતાના સ્થાન નજીક દોલનો કરી દૂર સુધી ઊર્જા પહોંચાડે છે.

હવામાં ધ્વિન આ રીતે પ્રસરણ પામે છે. જ્યારે તમે તમારા મિત્રને 'Hello' કહો છો, ત્યારે તમારા હોઠ આગળના માધ્યમના કણો ગતિ કરીને તમારા મિત્રના કાન સુધી પહોંચતા નથી, પરંતુ તમે તમારા હોઠની નજીક રહેલા માધ્યમમાં વિક્ષોભ ઉત્પન્ન કરો છો, જે તરંગ સ્વરૂપે પ્રસરણ પામીને મિત્રના કાન સુધી પહોંચે છે.

તરંગનો ખ્યાલ સ્પષ્ટ રીતે મેળવવા માટે લાંબી, સ્થિતિસ્થાપક અને જડિત આધારે બાંધેલી તણાવવાળી દોરીને ધ્યાનમાં લો. ધારો કે, આ દોરીને કોઈ વ્યક્તિએ ખેંચીને તણાવવાળી સ્થિતિમાં રાખેલી છે. અહીં દોરી એ એક પારિમાણિક સ્થિતિસ્થાપક માધ્યમ છે. આકૃતિ 8.1માં દર્શાવ્યા અનુસાર A, B, C, I એ દોરીના માધ્યમના કણ છે. પ્રારંભમાં માધ્યમના બધા જ કણો સમતોલનની અવસ્થામાં છે. (આકૃતિ 8.1a.)

(i) ધારો કે t=0 સમયે વ્યક્તિ દ્વારા ક્રણ Aમાં એવો વિક્ષોભ ઉત્પન્ન કરવામાં આવે છે, જેથી તે $y=A\sin\omega t$ અનુસાર સરળ આવર્તદોલન કરે છે. આ દોલનનો આવર્તકાળ T છે.

(ii) માધ્યમના સ્થિતિસ્થાપકતાના ગુણધર્મને લીધે t=0 સમયે A પાસે ઉદ્ભવેલ વિક્ષોભની અસર $\frac{T}{8}$ સમય ધારો કે કણ B પર પહોંચે છે. $\frac{T}{8}$ સમય દરમિયાન કણ Aનું સ્થાનાંતર $y=\mathrm{Asin}\Big(\frac{2\pi}{T}\Big)\Big(\frac{T}{8}\Big)=\frac{A}{\sqrt{2}}$ જેટલું થયું હશે ત્યારે કણ B એ સ.આ.ગ. શરૂ કરવાની તૈયારીમાં હશે. (આકૃતિ 8.1b)

(iii) હવે, વધારાનો $\frac{T}{8}$ જેટલો સમયગાળો પસાર થતાં એટલે કે $\frac{T}{8}+\frac{T}{8}=\frac{T}{4}$ જેટલા સમયગાળા બાદ A કણના દોલનની અસર કણ C પર પહોંચે છે અને તે દોલન શરૂ કરવાની તૈયારીમાં આવે છે. $\frac{T}{4}$ સમય દરમિયાન કણ Aનું સ્થાનાંતર, $y=\mathrm{Asin}\left(\frac{2\pi}{T}\right)\left(\frac{T}{4}\right)=\mathrm{A}$

$$t = \frac{T}{8}$$
(b)

$$t = \frac{2T}{8}$$
(c)

$$t = \frac{3T}{8}$$

$$t = \frac{4T}{8}$$
(e)

$$t = \frac{51}{8}$$
A
$$(f)$$

દોરી પર તરંગનો ઉદ્ભવ આકૃતિ 8.1

એટલે કે કંપવિસ્તાર જેટલું થાય છે અને ક્ષ્ય B નું સ્થાનાંતર $\frac{A}{\sqrt{2}}$ જેટલું થાય છે (જુઓ આકૃતિ 8.1c).

(iv) આમ, A પર ઉત્પન્ન કરેલ વિક્ષોભને લીધે ક્રમશઃ આવતા કશો એક પછી એક દોલનો શરૂ કરતા જાય છે અને પોતાના દોલનોની અસર પોતાનાથી આગળના કશો પર પહોંચાડતા જાય છે અને વિક્ષોભ માધ્યમમાં આગળ પ્રસરતો જાય છે.

(v) આ રીતે વિક્ષોભ આગળ વધતા $\frac{3T}{8}$ સમયે તે D ક્રણ પર, $\frac{4T}{8}$ સમયે તે E ક્રણ પર, અને T સમયે તે ક્રણ I પર પહોંચે છે. આ T સમયમાં ક્રણ Aનું એક દોલન પૂરું થાય છે ત્યારે ક્રણ I દોલન શરૂ કરવાની તૈયારીમાં હોય છે.

આ સમગ્ર પરિસ્થિતિ આકૃતિ 8.1માં દર્શાવી છે. યાદ રાખો કે, માધ્યમના કણો સ્થિર સમતુલન અવસ્થામાં હતાં. તેમાં t=0 સમયે કણ A પર આપણે સરળ આવર્તદોલન પ્રકારનો વિક્ષોભ ઉત્પન્ન કર્યો, જે t=T સમયે માધ્યમમાં પ્રસરણ પામતો, I પર પહોંચે છે.

(vi) અહીં, કણ Aને આપેલ વિક્ષોભ સરળ આવર્તગતિ (sine પ્રકારની) પ્રકારનો હતો, તેથી દોરીમાં ઉત્પન્ન થતો આકાર sine વક જેવો જોવા મળે છે. જો કણ Aનું સ્થાનાંતર કે દોલન બીજા કોઈ પ્રકારનું હોત, તો દોરી પર રચાતો આકાર તે દોલનના પ્રકાર અનુસાર મળે. અર્થાત, દોરી (માધ્યમ)માં રચાતો આકાર તેમાં ઉત્પન્ન કરેલ વિક્ષોભના પ્રકારને દર્શાવે છે. ઉદાહરણ તરીકે, જો દોરીના મુક્ત છેડાને કક્ત એક વાર ઝડપથી ઉપર-નીચે કરવામાં આવે, તો આકૃતિ 8.2માં દર્શાવ્યા અનુસાર આકાર ઉત્પન્ન થાય છે, જેને તરંગસ્પંદ (pulse) કહે છે.

વિક્ષોભ અનુરૂપ દોરીમાં ઉદ્દભવતો આકાર આકૃતિ 8.2

જેમજેમ સમય પસાર થાય છે તેમ આકૃતિ 8.1માં દર્શાવેલ વિક્ષોભ (કે આકાર) ક્યા J, K, L,..... વગેરે પરથી પસાર થતો જાય છે. t=T સમયે sine વક્ક જેવો આકાર A અને I ક્યા વચ્ચે રહેલો હતો. આ આકાર દોરી પર આગળ વધે છે અને t=2T સમયે તે આકૃતિ 8.3માં દર્શાવ્યા પ્રમાણે I અને Q ક્યા વચ્ચે આવી જાય છે. આ દરમિયાન Aથી I વચ્ચેના દોલનો બંધ પડી જાય છે અને દોરી તે વિભાગમાં મૂળ સ્થિતિમાં આવી જાય છે.

t = 2T સમયે દોરીનો આકાર આકૃતિ 8.3

આમ, દોરી પર કોઈ કશ પાસે વિક્ષોભ ઉત્પન્ન કરતાં તે વિક્ષોભના પ્રકાર અનુસાર આકાર ઉત્પન્ન થઈ તે આકાર 'પોતાનું સ્વરૂપ' જાળવી રાખી દોરી પર ગતિ કરે છે. એટલે કે દોરીના માધ્યમમાં વિક્ષોભ પ્રસરશ પામતો જાય છે. માધ્યમ (અવકાશ)માં વિક્ષોભની આવી ગતિને તરંગ-સ્પંદ અથવા સામાન્ય રીતે તરંગ કહે છે.

અહીં યાદ રાખો કે દોરીના કણો A, B, C... એ સમગ્રપણે એક એકમ તરીકે માધ્યમમાં ગતિ કરતા નથી, પરંતુ તેઓ સમતુલન સ્થાનની આસપાસ માત્ર દોલન કે સ્થાનાંતર જ કરે છે. આમ, તરંગ એ માધ્યમમાં આગળ વધતી કોઈ ભૌતિક 'વસ્તુ' નથી. માધ્યમના કોઈ એક ભાગમાં ઉદ્દભવેલ વિક્ષોભની અસર માધ્યમના જુદા-જુદા કણો દ્વારા ક્રમશઃ જેમજેમ અનુભવાતી જાય તેમતેમ તરંગ આગળ વધતું જાય છે, તેમ કહેવાય. કોઈ પણ કણ પાસેથી વિક્ષોભ પસાર થઈ ગયા પછી તે કણ ફરી પાછો પોતાની સમતુલિત અવસ્થામાં આવી જાય છે.

રેલવે ટ્રેન સાથે જ્યારે એન્જિનનું જોડાણ થાય છે, ત્યારે એન્જિન પાસેનો પ્રથમ ડબો ધ્રૂજે છે. ત્યાર પછી બીજો અને ત્યાર પછી ત્રીજો ડબો ધ્રુજારી અનુભવે છે. આમ, ધ્રુજારી પ્રથમ ડબાથી લઈને છેલ્લા ડબા સુધી આગળ વધે છે. આ ઘટના 'રેલવેના ડબાઓથી બનતા' માધ્યમમાં પ્રસરતા તરંગની જ કહેવાય.

તરંગમાળા (Wavetrain)

ઉપરોક્ત ચર્ચામાં જો કણ Aના સરળ આવર્તદોલન સતત નિયમિત ચાલુ રાખવામાં આવે, તો પ્રથમ દોલનને કારણે ઉત્પન્ન થયેલ આકાર આગળ વધે તેની તરત પાછળ બીજા દોલનને કારણે ઉદ્દ્ભવતો આકાર ગોઠવાઈ જાય છે. આમ, માધ્યયમાં એક પછી એક આકારો સતત ગતિ કરતા જણાય છે. વિશ્લોભોની આવી હારમાળાને તરંગમાળા કહે છે.

આપણે જે કિસ્સાની ચર્ચા કરી તેમાં તરંગ-ઘટનામાં ભાગ લેતાં કણો સરળ આવર્તગતિ કરતા હોય (અથવા તરંગને લીધે માધ્યમમાં ઉદ્દ્ભવતા આકાર sine અથવા cosine વક્કો હોય) તેવા તરંગોને હાર્મોનિક તરંગો (harmonic wave) કહે છે.

જો માધ્યમમાં તરંગો સતત આગળ ને આગળ ગતિ કરતા હોય તેવા તરંગોને પ્રગામીતરંગો (progressive waves) કહે છે.

8.3 તરંગોનું વર્ગીકરણ (Classification of Waves)

- (i) યાંત્રિક તરંગો (Mechanical waves): જે તરંગોને પ્રસરણ માટે સ્થિતિસ્થાપક માધ્યમની જરૂર છે તેવા તરંગોને યાંત્રિક તરંગો કહે છે. આવા તરંગો માધ્યમના સ્થિતિસ્થાપક ગુણધર્મને લીધે પ્રસરે છે. દા. ત., દોરી પરના તરંગો, પાણીની સપાટી પર પ્રસરતા તરંગો, ધ્વનિના તરંગો, ધરતીકંપના તરંગો (seismic waves). આ તરંગોની ખાસિયત એ છે કે તેઓ ન્યૂટનના નિયમોને અનુસરે છે.
- (ii) વિદ્યુતચુંબકીય તરંગો (Electromagnetic waves): વિદ્યુતચુંબકીય તરંગોના પ્રસરણ માટે માધ્યમની જરૂર નથી. તે શૂન્યાવકાશમાં પણ પ્રસરણ પામે છે. આ પ્રકારના તરંગમાં, અવકાશમાં વિદ્યુત અને ચુંબકીય ક્ષેત્રો સાથે સંકળાયેલ વિક્ષોભ પ્રસરણ પામે છે. તેમાં ક્યાંને બદલે બધા બિંદુઓ પર વિદ્યુત અને ચુંબકીય ક્ષેત્રની તીવ્રતાના સદિશો 'દોલન' કરે છે.

પ્રકાશના તરંગો, રેડિયો-તરંગો, માઇક્રોવેવ તરંગો, X—ray વિગેરે એ વિદ્યુતચુંબકીય તરંગોના ઉદાહરણો છે. (આ તરંગોની વધારે સમજૂતી ધોરણ 12માં મેળવશો.)

(iii) દ્રવ્ય-તરંગો (Matter waves) : દ્રવ્ય-તરંગો એ ગતિમાન ઇલેક્ટ્રૉન, પ્રોટોન, ન્યુટ્રૉન અને બીજા મૂળભૂત કણો તેમજ અણુ અને પરમાણુઓ સાથે સંકળાયેલ છે. આ કણો દ્રવ્યની રચના કરતા હોવાથી તેને દ્રવ્ય-તરંગો કહે છે. આ પ્રકારના તરંગની વિભાવનાનો અભ્યાસ તમે ધોરણ 12માં કરશો. આધુનિક ટેક્નોલોજીમાં આ તરંગની વિભાવના પરથી આધુનિક વૈજ્ઞાનિક ઉપકરણો બનાવવામાં આવ્યાં છે. ઉદાહરણ તરીકે, ઇલેક્ટ્રૉન સાથે સંકળાયેલ દ્રવ્ય-તરંગની વિભાવના પરથી ઇલેક્ટ્રૉન માઇક્રોસ્કૉપ વિકસાવવામાં આવેલ છે.

પ્રસ્તુત પ્રકરણમાં આપણે ફ્રક્ત યાંત્રિક-તરંગો વિશે અભ્યાસ કરીશું.

લંબગત તરંગ (Transverse wave): જે તરંગમાં માધ્યમના કશોના સ્થાનાંતરની દિશા તરંગના પ્રસરણની દિશાને લંબ હોય, તેવા તરંગને લંબગત તરંગ કહે છે. પરિચ્છેદ 8.2 માં ચર્ચેલા દોરી પરના તરંગો એ લંબગત તરંગો છે. વિદ્યુતચુંબકીય તરંગો (દા. ત. પ્રકાશના તરંગો) એ લંબગત તરંગો છે. આ તરંગોમાં એક તરફના મહત્તમ સ્થાનાંતરોને શુંગ (crest) અને તેની વિરુદ્ધ દિશામાંના

મહત્તમ સ્થાનાંતરોને **ાર્ત (trough)** કહે છે. આ તરંગો માધ્યમમાં ક્રમશઃ શૃંગ અને ગર્ત રચીને પ્રસરણ પામે છે.

સંગત તરંગો (Longitudinal wave): જે તરંગમાં માધ્યમના કણોનું સ્થાનાંતર તરંગ-પ્રસરણ દિશા પર જ હોય, તેવા તરંગને સંગત તરંગ કહે છે. દા. ત., હવામાં પ્રસરતા ધ્વનિના તરંગો. આ તરંગો માધ્યમમાં ક્રમશઃ સંઘનન અને વિઘનન રચીને પ્રસરણ પામતા હોય છે. માધ્યમમાં પ્રસરતા તરંગોમાં માધ્યમના કણો તરંગ-પ્રસરણની દિશા પર પોતાના સમતોલન સ્થાનની આસપાસ દોલન કરતા હોય છે.

સરળતા ખાતર હવામાંથી પસાર થતાં સંગત તરંગોના કિસ્સામાં માધ્યમના ક્રણોની સ્થિતિ, કોઈ એક ક્ષણે કેવી હોય તે આકૃતિ 8.4માં દર્શાવ્યું છે.

હવામાં પ્રસરતા સંગત તરંગો આકૃતિ 8.4

સંગત તરંગો (ધ્વનિ-તરંગો) હવામાંથી પસાર થાય ત્યારે અમુક વિભાગમાં હવાના અશુઓ તેમનાં દોલનો દરમિયાન એકબીજાની ખૂબ નજીક ધકેલાય છે. પરિશામે તે વિભાગોમાંથી હવાની ઘનતામાં અને પરિશામે હવાના દબાણમાં વધારો થાય છે અને આ વિભાગમાં સંઘનન (condensation) રચાયું છે તેમ કહેવાય. બે ક્રમિક સંઘનનો વચ્ચેના વિભાગમાં હવાના અશુઓ છૂટા પડેલા દેખાય છે. આ વિભાગમાં હવાની ઘનતા અને દબાણમાં ઘટાડો થાય છે અને આ વિભાગમાં હવાની ઘનતા અને દબાણમાં ઘટાડો થાય છે અને આ વિભાગમાં વિઘનન (rarefaction) રચાયું છે, તેમ કહેવાય. (જુઓ આકૃતિ 8.4).

આમ, ધ્વનિના પ્રસરણ દરમિયાન માધ્યમના સ્તરો પોતાના મધ્યમાન સ્થાનની આસપાસ દોલનો ચાલુ રાખે છે અને આ પ્રક્રિયા દરમિયાન ક્રમિક રીતે માધ્યમમાં સંઘનનો અને વિઘનનો રચાતાં જાય છે. જેમજેમ દોલનોની અસર એક પછી એક સ્તર પર પહોંચતી જાય છે, તેમ સંઘનનો અને વિઘનનો માધ્યમમાં આગળ વધતાં જાય છે. આ રીતે માધ્યમમાં ધ્વનિના તરંગોનું પ્રસરણ થાય છે. સંગત તરંગોના પ્રસરણ દરમિયાન માધ્યમના જુદા-જુદા વિભાગોનું દબાણ, સમય અને સ્થાન સાથે બદલાતું જતું હોવાથી આવા તરંગોને દબાણ-તરંગો (pressure waves) પણ કહે છે.

લંબગત તરંગોના કિસ્સામાં માધ્યમના કણોનાં દોલનો તરંગના પ્રસરણની દિશાને લંબ હોવાથી જ્યારે આવા તરંગો માધ્યમમાં પ્રસરે છે, ત્યારે માધ્યમનો દરેક ખંડ કે ઘટક આકાર-વિકૃતિ (shearing strain) અનુભવે છે. માત્ર ઘન માધ્યમમાં જ આકાર-પ્રતિબળ (shearing stress) સંભવ હોવાથી લંબગત તરંગો દોરી, તાર કે સળિયા જેવાં ઘન માધ્યમોમાં જ પ્રસરણ પામી શકે છે અને પ્રવાહી કે વાયુમાં લંબગત તરંગો શક્ય નથી.

સંગત તરંગના પ્રસરણમાં માધ્યમના ક્યોનાં દોલનો પ્રસરણની દિશામાં જ થતાં હોવાથી આવા તરંગના પ્રસરણ દરમિયાન દાબીય વિકૃતિ (compressive strain) ઉત્પન્ન થાય છે અને દાબ-પ્રતિબળ (compressive stress) તો ઘન, પ્રવાહી કે વાયુ એમ દરેક માધ્યમમાં શક્ય હોવાથી સંગત તરંગો બધાં જ માધ્યમોમાં શક્ય છે.

આમ, ઘન માધ્યમમાં લંબગત અને સંગત એમ બંને પ્રકારના તરંગોનું પ્રસરણ શક્ય છે અને તરલ માધ્યમમાં માત્ર સંગત યાંત્રિક તરંગોનું જ પ્રસરણ શક્ય છે.

[ધરતીકંપના લીધે પૃથ્વીમાં લંબગત અને સંગત એમ બંને પ્રકારના તરંગો ઉદ્દ્ભવે છે, જેને અનુક્રમે S-તરંગ (secondary wave) અને P-wave (primary wave) કહે છે. પૃથ્વીની સપાટીના અંદરના ભાગમાં ધ્વનિ-તરંગ જેવા સંગત તરંગ (P-તરંગ) ઉદ્દ્ભવે છે, જેની ઝડપ આશરે 4—8 km/s જેટલી હોય છે અને S-તરંગની ઝડપ આશરે 2—5 km/s જેટલી હોય છે. S-તરંગમાં પૃથ્વીની સપાટીનો અંદરનો ભાગ તરંગ પ્રસરણની દિશાને લંબ દિશામાં દોલન કરે છે. સિસ્મોગ્રાફમાં પહેલું P-તરંગ એ પહેલા S-તરંગ કરતાં કેટલું વહેલું નોંધાય છે. તે પરથી સિસ્મોગ્રાફથી ધરતીકંપનું ઉદ્યામસ્થાન (epi-centre)નું અંતર નક્કી કરી શકાય છે.]

8.4 તરંગોમાં કંપવિસ્તાર, તરંગમાં ઊર્જાનું પ્રસરણ, તરંગલંબાઈ અને આવૃત્તિ (Amplitude of a Wave, Propagation of Energy in a Wave, Wavelength and Frequency)

તરંગનો કંપવિસ્તાર (Amplitude of a wave) : તરંગમાં 'ક્શો'ના દોલનના કંપવિસ્તારને તરંગનો

કંપવિસ્તાર કહે છે. આકૃતિ 8.5માં દર્શાવ્યા મુજબ તરંગનો કંપવિસ્તાર A છે.

તરંગમાં ઊર્જાનું પ્રસરણ (Propagation of energy in a wave) :

માધ્યમમાં તરંગ ઉત્પન્ન કરવા માટે તો કોઈ કશ (વિભાગ)ને દોલિત અથવા સ્થાનાંતરિત કરવો પડે છે. આ માટે તેના પર કાર્ય કરવું પડે છે. આ કાર્ય જેટલી ઊર્જા કશને મળે છે. જે તેના દોલન દરમિયાન તેની સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જાના સ્વરૂપમાં હોય છે. ક્રમશઃ આવતા કશો જેમજેમ વિક્ષોભ અનુભવતા જાય, તેમતેમ આ ઊર્જા માધ્યમના આગળને આગળના કશોને મળતી જાય છે. આમ, તરંગમાં ઊર્જાનું પ્રસરશ થાય છે. માધ્યમમાં આંતરિક ઘર્ષાશબળ હોય તો ઊર્જાનું ઉષ્મા ઊર્જા સ્વરૂપે વિખેરણ થતું જાય છે અને આગળ વધતું તરંગ મંદ પડતું જાય છે.

તરંગની પ્રસરણની દિશાને લંબ એવી એકમ ક્ષેત્રફળ-વાળી સપાટીમાંથી એક સેકન્ડમાં પસાર થતી ઊર્જાને તરંગની તીવ્રતા (intensity) કહે છે.

તરંગની તીવ્રતાનો ${
m SI}$ એકમ ${{
m J/s}\over {
m m}^2}$ અથવા ${{
m W}\over {
m m}^2}$ છે. તેનું પારિમાણિક સૂત્ર ${
m M}^{
m I}{
m L}^0{
m T}^{-3}$ છે.

કણના દોલનની ઊર્જા $\mathbf{E}=\frac{1}{2}k\mathbf{A}^2$, હોવાથી તરંગની તીવ્રતા, તરંગના કંપવિસ્તારના વર્ગના સમપ્રમાણમાં હોય છે. (I $\propto \mathbf{A}^2$).

તરંગલંબાઈ (Wavelength)

તરંગપ્રસરણમાં જે બે ક્રમિક ક્યો (બિંદુઓ)ના દોલનની કળાનો તફાવત 2π rad હોય છે તેમની વચ્ચેના અંતરને તરંગની તરંગલંબાઈ (λ) કહે છે. તેનો SI એકમ m છે.

આકૃતિ 8.5 દર્શાવ્યા અનુસાર ક્ષ P અને Rની વચ્ચે દોલનની કળાનો તફાવત $4\pi-2\pi=2\pi$ rad છે. આથી, તેમની વચ્ચેનું અંતર એ તરંગની તરંગલંબાઈ (λ) દર્શાવે

છે. આકૃતિ પરથી સ્પષ્ટ છે કે બે ક્રમિક શૃંગ અથવા બે ક્રમિક ગર્ત વચ્ચે દોલનનો કળા તફાવત 2π rad હોવાથી તેમની વચ્ચેનું અંતર પણ એ તરંગની તરંગલંબાઈ (λ) દર્શાવે છે. આ જ રીતે ધ્વનિ-તરંગોના કિસ્સામાં બે ક્રમિક સંઘનન અથવા વિઘનન વચ્ચેના અંતરને ધ્વનિ-તરંગની તરંગલંબાઈ કહે છે.

તરંગ-સંખ્યા અને તરંગ-સદિશ (Wave number and wave vector) :

એકમઅંતર દીઠ તરંગોની સંખ્યા $\left(\frac{1}{\lambda}\right)$ ને તરંગ-સંખ્યા કહે છે. તરંગ-સંખ્યાનો એકમ \mathbf{m}^{-1} છે.

તરંગ-પ્રસરણમાં λ અંતરે આવેલા બે કણોના દોલનની કળાનો તફાવત 2π rad હોય છે. આથી એકમઅંતરે રહેલા બે કણોના દોલનની કળાનો તફાવત $\frac{2\pi}{\lambda}$ rad થાય. $\frac{2\pi}{\lambda}$ ને તરંગ-સદિશ અથવા કોણીય તરંગ-સંખ્યા અથવા પ્રસરણ-અચળાંક (propagation constant) (k) કહે છે.

$$k = \frac{2\pi}{\lambda}$$

k નો SI એકમ rad/m છે. તેનું પરિમાણિક સૂત્ર ${
m M}^0{
m L}^{-1}{
m T}^0$ છે. તરંગ-સદિશની દિશા તરંગ-પ્રસરણની દિશામાં લેવાય છે.

તરંગની આવૃત્તિ (Frequency of a wave) :

એક સેકન્ડમાં માધ્યમના કશે પૂર્શ કરેલ દોલનોની સંખ્યાને કશની આવૃતિ (f) કહે છે. તરંગની આવૃત્તિ (f) એ માધ્યમના કશોના દોલનની આવૃત્તિ જ છે. તરંગ-પ્રસરણમાં કોઈ સ્થાન (કે બિંદુ) પાસેથી એક સેકન્ડમાં પસાર થતા તરંગોની સંખ્યાને તરંગની આવૃત્તિ કહે છે.

તેનો SI એકમ s^{-1} અથવા Hz (Hertz) છે.

 $\omega=2\pi f$ ને તરંગની કોણીય આવૃત્તિ કહે છે. $T=\frac{1}{f}$ ને તરંગનો આવર્તકાળ કહે છે.

8.5 તરંગ-સમીકરણ (Wave Equation)

તરંગ-પ્રસરણની ઘટનામાં ભાગ લેતાં દરેક ક્શોના સ્થાનાંતર દરેક સમયે જાણી શકાય, તો તરંગ-પ્રસરણની ઘટનાનું વર્શન કરી શકાય. એક પારિમાણિક તરંગો માટે x-યામ ધરાવતા કોઈ પણ ક્શનું કોઈ પણ t સમયે સ્થાનાંતર આપતું આપણે સમીકરણ મેળવીશું. આ સમીકરણમાં x અને tનાહ્ન જુદાં-જુદાં મૂલ્યો મૂકીને જુદા-જુદા ક્શોનાં જુદા-જુદા સમયે ક્શોનાં સ્થાનાંતરો જાણી શકાય છે અને સમગ્ર

ઘટનાનું વર્શન મેળવી શકાય છે. આવા સમીકરણને (પ્રસ્તુત કિસ્સામાં એક પારિમાણિક) **તરંગ-સમીકરણ** કહે છે.

આપણે પ્રગામી, હાર્મોનિક, એક-પારિમાણિક તરંગનું સમીકરણ મેળવીશું. ઘન x દિશામાં ગતિ કરતા તરંગ માટે તરંગ-સમીકરણ આકૃતિ 8.6માં દર્શાવેલા કોઈક માધ્યમના કણોને ધ્યાનમાં લો.

તરંગ-સમીકરણ આકૃતિ 8.6

ધારો કે, t=0 સમયે ક્શ P શૂત્ત્ય પ્રારંભિક કળા સાથે સરળ આવર્તદોલનો શરૂ થાય છે. એટલે કે P પાસેથી t=0 સમયે તરંગ ઉદ્ભવે છે.

કણ Pનો x-યામ શૂન્ય અને પ્રારંભિક કળા શૂન્ય હોવાથી t=0 સમયે તેનું સ્થાનાંતર,

$$y = A\sin\omega t \tag{8.5.1}$$

હવે, Pમાંથી ઉદ્ભવેલ તરંગ જ્યારે x અંતર કાપશે ત્યારે, P થી x અંતરે આવેલો માધ્યમનો ક્ષ (U) એ સરળ આવર્તગતિની શરૂઆત કરશે. તેના દોલનની કળા Pના દોલનની કળા કરતાં ઓછી હશે. ધારો કે તેની કળા P ક્ષ્મની કળા કરતાં δ જેટલી ઓછી છે. આથી, x અંતરે આવેલ ક્ષ્મની સરળ આવર્તગતિનું સમીકરણ,

$$y = A \sin(\omega t - \delta) \tag{8.5.2}$$

ધારો કે તરંગની તરંગલંબાઈ λ છે. આપણે જાણીએ છીએ કે Pથી λ અંતરે આવેલા કણની કળા એ કણ Pની કળા કરતાં 2π જેટલી ઓછી હોય છે. આથી Pથી x અંતરે આવેલા કણની કળા Pની પ્રારંભિક કળા કરતાં $\frac{2\pi x}{\lambda}$ જેટલી ઓછી હશે.

$$\therefore \delta = \frac{2\pi x}{\lambda} \tag{8.5.3}$$

δનું મુલ્ય સમીકરણ (8.5.2)માં મૂકતાં,

$$y = A \sin\left(\omega t - \frac{2\pi x}{\lambda}\right)$$

પરંતુ
$$\frac{2\pi}{\lambda} = k$$

$$\therefore y = A \sin(\omega t - kx) \tag{8.5.4}$$

અહીં $(\omega t - kx)$ ને ઉદ્ગમથી x અંતરે t જેટલા સમયે તરંગની કળા કહે છે. k સદિશની દિશા તરંગ- પ્રસરણની દિશામાં લેવામાં આવે છે.

સમીકરણ (8.5.4) એ xના વધતા મૂલ્યની દિશામાં ગિત કરતાં પ્રગામી હાર્મોનિક તરંગ માટેનું તરંગ-સમીકરણ છે. જો તરંગ xના ઘટતા મૂલ્યની દિશામાં ગિત કરતા હોય તો ઉપરના સમીકરણમાં $\omega t - kx$ ને બદલે $\omega t + kx$ લેવું.

$$y = A \sin(\omega t + kx) \tag{8.5.5}$$

સમીકરણ (8.5.4)માં $\omega=rac{2\pi}{\Gamma}$ અને $k=rac{2\pi}{\lambda}$

$$y = A \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$$
 (8.5.6)

ઉપર્યુક્ત સમીકરણમાં $\lambda = \nu T$ મૂકતાં

$$y = A \sin 2\pi \left(\frac{t}{T} - \frac{x}{vT}\right)$$

$$y = A \sin 2\pi f \left(t - \frac{x}{v}\right) \ (\because \frac{1}{T} = f) \quad (8.5.7)$$
eq.

$$y = A \sin 2\pi \frac{f}{v} (vt - x)$$

$$\therefore y = A \sin \frac{2\pi}{\lambda} (vt - x) (\because v = f \lambda) \quad (8.5.8)$$

ઉપર્યુક્ત સમીકરણો (8.5.6), (8.5.7) અને (8.5.8) એ પ્રગામી હાર્મોનિક તરંગો માટેના તરંગ-સમીકરણનાં જુદાં-જુદાં સ્વરૂપો છે.

જો કણ Pની પ્રારંભિક કળા φ હોય તો તરંગ-સમીકરણ (8.5.4)ને નીચે મુજબ લખી શકાય :

$$y = A \sin(\omega t - kx + \phi) \tag{8.5.9}$$

8.6 તરંગ-ઝડપ અને કળા-ઝડપ (Wave Speed and

Phase Speed)

તરંગ તેના એક આવર્તકાળ T દરમિયાન λ જેટલું અંતર કાપે છે. આથી, તરંગ-ઝડપ

પરંતુ,
$$2\pi f = \omega$$
 અને $\frac{2\pi}{\lambda} = k$
$$\therefore v = \frac{\omega}{k} \tag{8.6.2}$$

અત્યાર સુધીની ચર્ચામાં આપણે જોયું કે તરંગ-પ્રસરણની ઘટનામાં ભાગ લેતા કણનો કંપવિસ્તાર (A) તેનાં દોલનોનો આવર્તકાળ (T) અને આવૃત્તિ (f) અનુક્રમે એ જ તરંગનો 186 ભૌતિકવિશાન

કંપવિસ્તાર, તરંગનો આવર્તકાળ અને તરંગની આવૃત્તિ છે. પરંતુ દોલન કરતાં કણનો વેગ અને તરંગનો વેગ જુદો છે.

યાદ રાખો કે તરંગની આવૃત્તિ એ ઉદ્દગમનો ગુણધર્મ છે, જ્યારે તરંગલંબાઈ એ માધ્યમનો ગુણધર્મ છે. જુદા-જુદા માધ્યમમાં તરંગની ઝડપ જુદી-જુદી હોય છે. આથી તરંગલંબાઈ પણ જુદી-જુદી હોય છે, પરંતુ આપેલ માધ્યમમાં તરંગની ઝડપ અચળ હોય છે.

કળા-ઝડપ

આકૃતિ 8.7માં દર્શાવ્યા અનુસાર તરંગ એ xના વધતા મૂલ્યની દિશામાં ગતિ કરે છે. અહીં સંપૂર્શ તરંગભાત (wave pattern)એ Δt સમયમાં Δx જેટલું સ્થાનાંતર કરે છે. તરંગભાત પરના દરેક બિંદુઓ (દા. ત., બિંદુ A)એ ગતિ દરમિયાન તેમનું સ્થાનાંતર જાળવી રાખે છે.(યાદ રાખો કે દોરી પરના બિંદુઓનું સ્થાનાંતર બદલાય છે, પરંતુ તરંગભાત પરના નહિ) તરંગભાત પરના દરેક બિંદુઓની કળા અચળ હોય છે. આકૃતિ 8.7માં A અને A'ની કળા સમાન છે. આથી,

$$\therefore \omega t - kx = \text{vag} \tag{8.6.3}$$

અહીં, x અને t બંને બદલાય છે. જેમ t વધે છે તેમ x પણ એવી રીતે વધવો જોઈએ કે જેથી $\omega t - kx$ એ અચળ રહે. જે દર્શાવે છે કે તરંગભાત xના વધતા મૂલ્યની દિશામાં ગતિ કરે છે.

તરંગ-ગતિ આકૃતિ 8.7

ઉપર્યુક્ત સમીકરણનું tની સાપેક્ષે વિકલન કરતાં,

$$\frac{d}{dt}(\omega t - kx) = 0$$

$$\therefore \ \omega - k \frac{dx}{dt} = 0$$

$$\therefore \ \frac{dx}{dt} = v = \frac{\omega}{k}$$
(8.6.4)

અહીં *v* ને તરંગની **કળા-ઝડપ** (phase speed) કહે છે. ઉપર્યુક્ત સમીકરણ (8.6.4) એ સમીકરણ (8.6.2)જેવું જ છે. આમ, આપણે જે તરંગ-ઝડપ શોધીએ છીએ તે ખરેખર તો તરંગની કળા ઝડપ છે.

ઉદાહરણ 1 : અમદાવાદ વિવિધભારતી પરથી પ્રસારિત રેડિયો–તરંગની આવૃત્તિ 96.7 MHz છે. આ તરંગોની તરંગલંબાઈ, તરંગ–સદિશ અને કોષ્ટ્રીય આવૃત્તિ શોધો. રેડિયો–તરંગોની હવામાં ઝડપ 3×10^8 m/s છે.

ઉકેલ :

$$f=96.7~\mathrm{MHz}=96.7 imes10^6~\mathrm{Hz}$$
 $v=3 imes10^8~\mathrm{m/s}$ તરંગ-ઝડપ, $v=f\lambda$

∴
$$\lambda = \frac{v}{f} = \frac{3 \times 10^8}{96.7 \times 10^6} = 3.102 \text{ m}$$

તરંગ-સંદિશ, $k = \frac{2\pi}{\lambda}$
$$= \frac{2 \times 3.14}{3.102}$$

$$= 2.024 \text{ rad/m}$$

કોણીય આવૃત્તિ, $\omega = 2\pi f$ = $2 \times 3.14 \times 96.7 \times 10^6$ = 6.07×10^8 rad/s

ઉદાહરણ 2 : એક તરંગનું તરંગ–સમીકરણ

 $y = 0.5\sin(x - 60t) \text{ cm } \vartheta.$

(i) તરંગનો કંપવિસ્તાર (ii) તરંગ-સદિશ
 (iii) તરંગલંબાઈ (iv) તરંગની કોશીય આવૃત્તિ અને આવૃત્તિ
 (v) આવર્તકાળ અને (vi) તરંગની ઝડપ શોધો.

ઉકેલ : તરંગ-સમીકરશ, $y = -0.5 \sin(60t - x)$ ને $y = A \sin(\omega t - kx)$ સાથે સરખાવતાં, (i) તરંગનો કંપવિસ્તાર A = -0.5 cm (ii) તરંગ-સદિશ k = 1 rad/cm

(iii) તરંગ-લંબાઈ
$$\lambda=\frac{2\pi}{k}$$

$$=\frac{2\times3.14}{1}=6.28~\mathrm{cm}$$

(iv) તરંગની કોશીય આવૃતિ $\omega=60$ rad/s હવે, $\omega=2\pi f$, પરથી તરંગની આવૃત્તિ

$$f = \frac{\omega}{2\pi} = \frac{60}{2 \times 3.14} = 9.55 \text{ Hz}$$

(v) આવર્તકાળ $T = \frac{1}{f} = \frac{1}{9.55} = 0.105 s$

(vi) તરંગ-ઝડપ
$$v = \frac{\omega}{k} = \frac{60}{1} = 60$$
 cm/s.

ઉદાહરણ 3 : એક સ્વરકાંટાની આવૃત્તિ 250 Hz છે. જ્યારે સ્વરકાંટો 50 દોલનો પૂરાં કરશે, ત્યારે તેમાંથી ઉદ્ભવતો ધ્વનિએ કેટલું અંતર કાપ્યું હશે ? હવામાં ધ્વનિનો વેગ 340 m/s છે.

ઉકેલ : સ્વરકાંટામાંથી ઉદ્ભવતા તરંગની તરંગલંબાઈ,

$$\lambda = \frac{v}{f} = \frac{340}{250} = 1.36 \text{ m}$$

હવે, એક દોલન દરમિયાન તરંગ એ તરંગલંબાઈ

(λ) જેટલું અંતર કાપે છે, આથી 50 દોલનો બાદ, તરંગે કાપેલું અંતર = $50 \times \lambda$ = $50 \times 1.36 = 68$ m.

ઉદાહરણ 4: એક વ્યક્તિ 100 m ઊંચા ટાવર પરથી એક પથ્થરને મુક્તપતન કરાવતાં તે તળાવમાં પડે છે. આ પથ્થર તળાવના પાણી સાથે અથડાતાં, તેમાંથી ઉત્પન્ન થતો ધ્વનિ એ વ્યક્તિએ પથ્થરને મુક્ત પતન કર્યા પછી કેટલા સમય પછી સંભળાશે ? ધ્વનિનો હવામાં વેગ 340 m/s છે.

ઉંકેલ : ધારો કે પથ્થર ટાવરની ટોચ પરથી તળાવમાં પડતા t_1 જેટલો સમય લે છે. અને પથ્થર પાણી સાથે ટકરાતા ઉત્પન્ન થતો ધ્વનિ એ ટાવરની ટોચ સુધી પહોંચતા t_2 જેટલો સમય લે છે. આથી, ટાવર પર ઊભેલી વ્યક્તિને $t=t_1+t_2$ સમય બાદ અથડામણનો ધ્વનિ સંભળાશે.

હવે, પથ્થરને પાણીની સપાટી સુધી પહોંચતાં લાગતા સમય t_1 નીચેના સૂત્ર પરથી શોધી શકાય.

$$s = v_0 t + \frac{1}{2} g t_1^2$$

$$s = 100 \text{ m}, v_0 = 0, g = 9.8 \text{ m/s}^2$$

$$\therefore 100 = 0 + \frac{1}{2} (9.8) t_1^2$$

$$\therefore t_1 = 4.52 \text{ s}.$$

હવે, પાણીની સપાટી આગળથી ઉદ્ભવતા ધ્વનિને ટાવરની ટોચ સુધી પહોંચતાં લાગતો સમય,

$$t_2 = \frac{\text{અંતર}}{\text{તરંગ - ઝડપ}} = \frac{100}{340} = 0.29 \text{ s}$$

$$\therefore t = t_1 + t_2 = 4.52 + 0.29 = 4.81 \text{ s}$$

ઉદાહરણ 5 : એક પરિમાણિક પ્રગામી, હાર્મોનિક લંબગત તરંગનું સમીકરણ,

$$y = 5\sin 30\pi \left(t - \frac{x}{240}\right) \ \vartheta.$$

અહીં y મીટરમાં અને t સેકન્ડમાં છે.

- (i) ઉદ્દગમબિંદુએ શૂન્ય સમયે ક્શ ધન Y કે ૠજ Y માંથી કઈ દિશામાં ગતિ કરવાની શરૂઆત કરતું હશે ? એટલે ત્યાં પ્રથમ ગર્ત ઉત્પન્ન થશે કે શુંગ ?
- (ii) $t=2~{
 m s}$ ને અંતે ઉદ્દગમબિંદુથી 480 ${
 m m}$ અંતરે આવેલ કશનું સ્થાનાંતર, કશના દોલનનો વેગ અને તરંગનો ઢાળ શોધો.
 - (iii) તરંગની ઝડપ શોધો.

ઉકેલ :

(i) x = 0 પાસે t = 0 સમયથી શરૂ કરી y જો ૠણ દિશામાં વધતો હોય, તો ગર્ત ઉત્પન્ન થશે અને જો y ધન દિશામાં વધતો હોય, તો શુંગ ઉત્પન્ન થશે.

અહીં, x=0, પર $y=5{\sin}30\pi t$ માટે t=0 સમયથી શરૂ કરતાં y ધન દિશામાં વધતો હોવાથી પહેલાં શુંગ ઉત્પન્ન થશે.

(ii) t=2 કના અંતે ઉદ્દગમબિંદુથી $x=480~{
m m}$ અંતરે સ્થાનાંતર

=
$$5\sin 30\pi(0) = 0$$
 m
કણના દોલનનો વેગ,
 $v = \frac{dy}{dt} = 150\pi\cos 30\pi \left(t - \frac{x}{240}\right)$
= $150\pi\cos 30\pi \left(2 - \frac{480}{240}\right)$
= 150π m/s

 $y = 5\sin 30\pi \left(2 - \frac{480}{240}\right)$

તરંગનો ઢાળ,

$$\frac{dy}{dx} = -\frac{5\pi}{8}\cos 30\pi \left(t - \frac{x}{240}\right)$$
$$= -\frac{5\pi}{8}\cos 30\pi \left(2 - \frac{480}{240}\right)$$
$$= -\frac{5\pi}{8}$$

(iii) આપેલ સમીકરશને,

$$y=\mathrm{A}\,\sin\!2\pi f\,\left(t-rac{x}{v}
ight)$$
સાથે સરખાવતાં

∴ તરંગ-ઝડપ v = 240 m/s

અહીં, નોંધો કે તરંગ-ઝડપ અને તરંગ-પ્રસરણમાં ભાગ લેતાં કણના દોલનનાં વેગનું મૂલ્ય સરખું નથી. 188 ભૌતિકવિશાન

8.7 માધ્યમમાં તરંગ-ઝડપ (Speed of Waves in a Medium)

8.7.1 તણાવવાળી દોરી પર લંબગત તરંગની ઝડપ (Speed of Transverse Wave on Streched String):

અગાઉ આપણે જોયું કે દોરીના કણો વિક્ષોભ પસાર થયા બાદ દોલન કરી, મૂળ સ્થાને પાછા આવે છે. આ માટે માધ્યમમાં પુનઃસ્થાપક બળ અને તેથી માધ્યમની સ્થિતિસ્થાપકતા આવશ્યક છે. તરંગની અસર હેઠળ દોલિત કણ કેટલું સ્થાનાંતર કરશે તે માધ્યમના જડત્વ પર આધારિત છે. આમ, યાંત્રિક તરંગોના પ્રસરણ માટે માધ્યમમાં સ્થિતિસ્થાપકતા અને જડત્વ જરૂરી છે. માધ્યમના આ બે ગુણધર્મો વડે તરંગની ઝડપ નક્કી થાય છે.

અભ્યાસો પરથી જણાયું છે કે, તણાવવાળી દોરી જેવા માધ્યમમાં લંબગત તરંગોની ઝડપ બે બાબતો (i) દોરીની રેખીય દળ ઘનતા (µ) અને (ii) દોરીમાંના તણાવબળ T પર આધાર રાખે છે.

અહીં, આપણે દોરી પર તરંગ-ઝડપ એ પારિમાણિક વિશ્લેષણની મદદથી મેળવીશું.

દોરીની રેખીય દળ ઘનતા એટલે એકમલંબાઈ દીઠ દોરીનું દળ.

μનું પારિમાણિક સૂત્ર,

$$\begin{split} \mu &= \frac{\text{દોરીનું કુલ દળ}}{\text{દોરીની લંબાઈ}} = \frac{M^1}{L^1} \\ &= M^1 L^{-1} T^0 \end{split}$$

તણાવબળ Tનું પારિમાણિક સૂત્ર = $M^1L^1T^{-2}$ ધારો કે તરંગ-ઝડપ,

$$v = k \ \mu^a \ T^b \tag{8.7.1}$$

અહીં, k= એ પરિમાણરહિત અંક અને $[a,\ b]\in R$ છે.

બન્ને બાજુનાં પરિમાણો લખતાં

$$M^{0}L^{1}T^{-1} = [M^{1}L^{-1}T^{0}]^{a} [M^{1}L^{1}T^{-2}]^{b}$$

= $M^{a+b} L^{-a+b} T^{-2b}$

બન્ને બાજુના પરિમાણો સરખાવતાં, a+b=0, -a+b=1 અને -2b=-1

આ પરથી,
$$a = -\frac{1}{2}$$
 અને $b = \frac{1}{2}$
સમીકરણ (8.7.1)માં a અને b નાં મૃલ્યો મૃકતાં,

$$v = k \mu^{-\frac{1}{2}} T^{\frac{1}{2}}$$

પ્રાયોગિક અને અન્ય અભ્યાસો પરથી k=1 મળે છે.

$$\therefore v = \sqrt{\frac{T}{\mu}}$$
 (8.7.2)

ઉપરોક્ત સમીકરણ દર્શાવે છે કે તરંગની ઝડપએ તરંગની આવૃત્તિ કે કંપવિસ્તાર પર આધારિત નથી.

ઉદાહરણ 6: સમાન ત્રિજ્યાઓ ધરાવતા બે તાર PQ અને QRને જોડીને તાર PQR બનાવેલ છે. તાર PQની લંબાઈ 4.8 m અને દળ 0.06 kg છે. તાર QRની લંબાઈ 2.56 m અને દળ 0.2 kg છે. તાર PQRમાં પ્રવર્તતું તણાવ 80 N છે. P છેડે ઉત્પન્ન કરેલ તરંગને R છેડે પહોંચતાં કેટલો સમય લાગશે ?

ઉકેલ : તાર PQ માટે એકમલંબાઈ દીઠ દળ,

$$\mu_1 = \frac{0.06}{4.8} = \frac{1}{80} \frac{kg}{m}$$

તાર QR માટે એકમલંબાઈ દીઠ દળ,

$$\mu_2 = \frac{0.2}{2.56} = \frac{10}{128} \frac{kg}{m}$$

∴ તાર PQમાં તરંગ-ઝડપ

$$v_1 = \sqrt{\frac{T}{\mu_1}} = \sqrt{\frac{80}{180}} = 80 \text{ m/s}$$

∴ તાર QR માં તરંગ-ઝડપ

$$v_2 = \sqrt{\frac{T}{\mu_2}} = \sqrt{\frac{80}{128}} = 32 \text{ m/s}$$

∴ તરંગને Pથી R પહોંચવા લાગતો સમય $t = t_1 + t_2$ $= \frac{PQ}{\nu_1} + \frac{QR}{\nu_2}$ $= \frac{4.8}{80} + \frac{2.56}{32}$ = 0.14 s

ઉદાહરણ 7: જિંદત આધાર પરથી લટકાવેલ નિયમિત દોરડાની લંબાઈ 12 m અને દળ 6 kg છે. દોરડાના મુક્ત છેડે 2 kg દળનો બ્લૉક લટકાવેલ છે. દોરડાના નીચેના છેડે 0.06 m જેટલી તરંગલંબાઈવાળું એક તરંગ ઉત્પન્ન કરવામાં આવે છે. આ તરંગ દોરડાના ઉપરના છેડે (જિડિત આધાર આગળ) પહોંચે ત્યારે તેની તરંગલંબાઈ કેટલી હશે ?

આકૃતિ 8.8

અહીં દોરડું ભારે હોવાથી દોરડાના નીચેના છેડે અને ઉપરના છેડે તણાવબળ (T) અલગ-અલગ હશે.

દોરડાનું દળ $m_2 = 6 \text{ kg}$ બ્લૉકનું દળ $m_1 = 2 \text{ kg}$ દોરડાના નીચેના છેડે તણાવબળ, $T_1 = m_1 g = 2g$ દોરડાના ઉપરના છેડે તણાવબળ, $T_2 = (m_1 + m_2)g$

$$=(6+2)g=8g$$
 હવે દોરડામાં તરંગની ઝડપ $\,v\,=\,\sqrt{rac{T}{\mu}}$

$$\therefore f\lambda = \sqrt{\frac{T}{\mu}} \qquad (\because v = f\lambda)$$

દોરડામાં પ્રસરતા તરંગની આવૃત્તિ દોરડાના દરેક ભાગમાં સમાન હોય છે. તેમજ μ પણ દોરડાના દરેક ભાગમાં સમાન છે. આથી,

$\lambda \alpha \sqrt{T}$

દોરડાના નીચેના છેડે તરંગલંબાઈ $\lambda_1 \ \alpha \ \sqrt{T_1}$ દોરડાના ઉપરના છેડે તરંગલંબાઈ $\lambda_2 \ \alpha \ \sqrt{T_2}$

$$\therefore \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{T_2}{T_1}}$$
 અને $\lambda_2 = \lambda_1 \sqrt{\frac{T_2}{T_1}}$
$$= (0.06) \sqrt{\frac{8g}{2g}}$$
$$= 0.12 \text{ m}$$

ઉદાહરણ 8: એક તારની લંબાઈ 50 cm, અને આડછેદનું ક્ષેત્રફળ 1 mm અને દળ 5.0 g છે. તારનો યંગ મૉડચુલસ $16 \times 10^{11} \text{ N/m}^2$ છે. તારમાંથી પસાર થતાં તરંગની ઝડપ 80 m/s છે. આ તરંગ પ્રસરણને લીધે તારની મૂળ લંબાઈમાં થતો વધારો શોધો.

ઉકેલ:

તારની લંબાઈ $L=50~{\rm cm}=50\times 10^{-2}~{\rm m}$ તારનું દળ $m=5g=5\times 10^{-3}~{\rm kg}$ તારના આડછેદનું ક્ષેત્રફળ

A = $1 \text{mm}^2 = 1 \times 10^{-6} \text{ m}^2$ તારનો યંગ મોડ્યુલસ Y = $16 \times 10^{11} \text{ N/m}^2$ તારમાં તરંગની-ઝડપ $\nu = 80 \text{ m/s}$. તારનું એકમ લંબાઈ દીઠ દળ

$$\mu = \frac{m}{L} = \frac{5 \times 10^{-3}}{50 \times 10^{-2}} = 1 \times 10^{-2} \text{ kg/m}$$

તારમાં તરંગ-ઝડપ
$$v=\sqrt{\frac{T}{\mu}}$$

 \therefore તારમાં તણાવબળ $=T=F=\mu v^2$ $=(1\times 10^{-2})~(80)^2$ $=64~\mathrm{N}$

યંગ મૉડ્યુલસ
$$Y = \frac{F_A}{\Delta L_L}$$

∴ આથી, તારની લંબાઈમાં વધારો

$$\Delta L = \frac{FL}{AY}$$

$$= \frac{(64)(50 \times 10^{-2})}{(1 \times 10^{-6})(16 \times 10^{11})}$$
= 0.02 mm

8.7.2 માધ્યમમાં ધ્વનિ-તરંગો (સંગત-તરંગો)ની ઝડપ (Speed of sound waves (longitudinal wave) in a medium) :

અભ્યાસો પરથી જાણી શકાયું છે કે માધ્યમમાં ધ્વનિ (સંગત-તરંગ) તરંગોની ઝડપ (i) માધ્યમના સ્થિતિસ્થાપક અંક E અને (ii) માધ્યમની ઘનતા ρ પર આધાર રાખે છે.

આ હકીકતનો ઉપયોગ કરી અને પારિમાણિક વિશ્લેષણની મદદથી સંગત તરંગોની ઝડપ નીચે પ્રમાણે મેળવી શકાય :

તરંગ-ઝડપ $v=k\mathrm{E}^a\rho^b$ અહીં, k એ પરિમાણરહિત અચળાંક અને $[a,\ b]\in\mathrm{R}$ છે.

હવે,
$$[E] = M^1 L^{-1} T^{-2}$$
, $[\rho] = M^1 L^{-3} T^0$ બંને બાજએ પારિમાણિક સુત્રો લખતાં,

$$M^{0}L^{1}T^{-1} = [M^{1}L^{-1}T^{-2}]^{a} [M^{1}L^{-3}T^{0}]^{b}$$

= $M^{a+b} L^{-a-3b} T^{-2a}$

બંને બાજુનાં પરિમાશો સરખાવતાં, a+b=0, -a-3b=1 અને -2a=-1

$$\therefore \ a = \frac{1}{2} \ \text{અને} \ b = -\frac{1}{2}$$

$$\therefore v = k E^{\frac{1}{2}} \rho^{-\frac{1}{2}}$$

પ્રાયોગિક તેમજ બીજા અભ્યાસો પરથી k=1મળે છે.

$$\therefore v = \sqrt{\frac{E}{\rho}}$$
 (8.7.3)

તરલ માધ્યમમાં ધ્વિન જેવા સંગત-તરંગોનું પ્રસરણ સંઘનન-વિઘનન વડે થતું હોય છે. આ પરિસ્થિતિમાં માધ્યમમાં જુદા-જુદા વિસ્તારોમાં દબાણના ફેરફારોના કારણે અહીં સ્થિતિસ્થાપક-અંક તરીકે બલ્ક મોડ્યુલસ (B) લેવામાં આવે છે.

$$\therefore \ \nu = \sqrt{\frac{B}{\rho}} \tag{8.7.4}$$

સળિયા જેવા રેખીય માધ્યમમાં સંગત-તરંગોનાં પ્રસરણ દરમિયાન રેખીય વિકૃતિ જોવા મળે છે. આથી સમીકરણ(8.7.3)માં સ્થિતિસ્થાપક-અંક તરીકે યંગ મૉડ્યુલસ (Y) લેતાં,

$$\therefore \ \nu = \sqrt{\frac{Y}{\rho}} \tag{8.7.5}$$

ટેબલ 8.1માં જુદાં-જુદાં માધ્યમમાં ધ્વનિ-તરંગોની ઝડપ દર્શાવી છે. **ટેબલ 8.1**

કેટલાંક માધ્યમોમાં ધ્વનિની ઝડપ (માત્ર જાણકારી માટે)

માધ્યમ	ઝડપ (m/s)	
વાયુઓ		
હવા (0°C)	331	
હવા (20°C)	343	
હિલિયમ	965	
હાઇડ્રોજન	1284	
પ્રવાહી		
પાશી (0°C)	1402	
પાણી (20°C)	1482	
દરિયાનું પાણી	1522	
ઘન પદાર્થ		
ઍલ્યુમિનિયમ	6420	
કૉપર	3560	
સ્ટીલ	5941	
રબર	54	

ટેબલ (8.1) પરથી સ્પષ્ટ છે કે પ્રવાહી અને ઘન પદાર્થોની ઘનતા, વાયુ કરતાં વધુ હોવા છતાં તે માધ્યમોમાં તરંગની ઝડપ વધુ છે. કારણ કે વાયુની સરખામણીમાં પ્રવાહી અને ઘન પદાર્થો ઓછા દબનીય હોય છે. એટલે કે તેમનો બલ્ક મોડ્યુલસ (B) વધુ હોય છે.

ન્યૂટનનું સૂત્ર : ન્યૂટને અનુમાન કર્યું કે વાયુ (હવા)માં ધ્વિનિના પ્રસરણ દરમિયાન વાયુમાં ઉદ્દભવતાં સંઘનન અને વિઘનનની ઘટના સમતાપી હોવી જોઈએ. આથી સમીકરણ 8.7.4માં આઇસોથર્મલ (સમતાપી) બલ્ક મૉડ્યુલસ-અંક વાપરવો જોઈએ.

સમતાપી પ્રક્રિયા માટે PV = અચળ, (T અચળ હોવાથી PV = μ RT = અચળ) Vની સાપેક્ષે વિકલન કરતાં,

$$P\frac{dV}{dV} + V\frac{dP}{dV} = 0$$

$$\therefore$$
 P = $-V \frac{dP}{dV} = -\frac{dP}{dV_V}$ = બલ્ક મોડ્યુલસ B

P = બલ્ક મૉડ્યુલસ B
$$(:B = -\frac{dP}{dV_V})$$

આમ, વાયુનો આઇસોથર્મલ બલ્ક મૉડ્યુલસ (B) એ વાયુના દબાશ P જેટલો હોય છે.

$$\therefore \ \nu = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{P}{\rho}} \tag{8.7.6}$$

આ સૂત્ર હવામાં ધ્વનિની ઝડપ શોધવા માટેનું ન્યૂટનનું સૂત્ર છે.

ઉદાહરણ 9 : ન્યૂટનના સૂત્રનો ઉપયોગ કરી STP એ હવામાં ધ્વનિની ઝડપ મેળવો.

એક મોલ હવાનું દળ =
$$29.0 \times 10^{-3}$$
 kg. (P = 1.01×10^{5} Pa)

ઉકેલ : STPએ 1 mole હવાનું કદ = 22.4 L = $22.4 \times 10^{-3} \text{ m}^3$

આથી, STPએ હવાની ધનતા $\rho = \frac{\varepsilon \sigma}{\varepsilon \varepsilon}$

$$\therefore \rho = \frac{29.0 \times 10^{-3}}{22.4 \times 10^{-3}} = \frac{29.0}{22.4} = 1.29 \text{kg/m}^2$$

∴ ન્યૂટનના સૂત્ર અનુસાર,

STP એ હવામાં ધ્વિનની ઝડપ $v=\sqrt{rac{P}{
ho}}$

$$= \sqrt{\frac{1.01 \times 10^5}{1.29}} = 279.3 \text{ m/s}$$

લાપ્લાસનો સુધારો :

ન્યૂટનના સૂત્રથી મળતું ધ્વનિની ઝડપનું મૂલ્ય 279.3 m/s છે. પ્રાયોગિક રીતે STP એ મળતું મૂલ્ય 332 m/s છે. જે દર્શાવે છે કે સમીકરણ (8.7.6)માં કંઈક ક્ષતિ છે.

લાપ્લાસે સૂચવ્યું કે, જ્યાં સંઘનન રચાય છે, તે ભાગનું તાપમાન વધે છે અને જ્યાં વિઘનન રચાય છે, ત્યાં તાપમાન ઘટે છે. આથી ધ્વનિના પ્રસરણની ઘટના સમતાપી ન ગણી શકાય.

માધ્યમમાં સંઘનન અને વિઘનન રચાવાની પ્રક્રિયા એટલી ઝડપી હોય છે કે સંઘનન દરમિયાન ઉત્પન્ન થયેલ ઉષ્મા બહાર વિખેરણ પામે તે પહેલા તે સ્થાને રચાતા વિઘનન દરમિયાન શોષાઈ જાય છે. તેમજ વાયુઓની પ્રમાણમાં ઓછી ઉષ્માવાહકતા પણ ઉષ્માને બહાર ન જવા દેવામાં મદદ કરે છે. આમ, વાયુમાં ધ્વનિ-પ્રસરણની ઘટના સમતાપી નહિ, પરંતુ સમોષ્મી છે. આથી સમીકરણ (8.7.6)માં વાયુનો સમોષ્મી (adiabatic) બલ્ક મોડ્યુલસ વાપરવો જોઈએ.

આદર્શવાયુની સમોષ્મી પ્રક્રિયા માટે

 $PV^{\gamma} = અચળ$

જ્યાં, γ એ વાયુની બે વિશિષ્ટ ઉષ્માઓ $C_{
m p}$ અને $C_{
m v}$ નો ગુણોત્તર છે.

Vની સાપેક્ષે સમીકરણનું વિકલન કરતાં,

$$P \cdot \gamma V^{\gamma - 1} + V^{\gamma} \frac{dP}{dV} = 0$$

$$\therefore \gamma P + V \frac{dP}{dV} = 0$$

$$\therefore \gamma P + V \frac{dP}{dV} = 0$$

$$\therefore \frac{-dP}{dV/V} = \gamma P$$
$$\therefore B = \gamma P$$

આમ, સમોષ્મી પ્રક્રિયા માટે બલ્ક મૉડ્યુલસ $B=\gamma P.$

સમીકરણ (8.7.4) માં Bનું મૂલ્ય મૂકતાં, તરંગ-ઝડપ

$$v = \sqrt{\frac{\gamma P}{\rho}} \tag{8.7.7}$$

હવા માટે $\gamma=1.41$ છે અને STP એ ઝડપ ν શોધતાં તે 331.6 m/s મળે છે, જે પ્રાયોગિક મૂલ્ય સાથે મળતું આવે છે. આદર્શવાયુ જેવા માધ્યમમાં તરંગ-ઝડપ

મેળવવા માટે ન્યૂટનના સૂત્રને બદલે લાપ્લાસના સૂત્ર (સમીકરણ 8.7.7)નો ઉપયોગ કરવો જોઈએ.

ધ્વનિની ઝડપ પર અસર કરતાં વિવિધ પરિબળો : એક મોલ આદર્શવાયુ માટે અવસ્થા-સમીકરણ

$$PV = RT \quad (\mu = 1 \text{ mol})$$

$$\therefore P = \frac{RT}{V}$$

ધ્વિનની ઝડપના સૂત્ર $\nu=\sqrt{\frac{\gamma P}{
ho}}$ માં Pનું મૂલ્ય મૂકતાં,

$$\therefore \ v = \sqrt{\frac{\gamma RT}{\rho V}}$$

પરંતુ, ρV = એક મોલ વાયુનું દળ = વાયુનો અણ્ભાર M

∴ asy
$$v = \sqrt{\frac{\gamma RT}{M}}$$
 (8.7.9)

ઉપર્યુક્ત સમીકરશ પરથી સ્પષ્ટ છે કે વાયુમાં ધ્વનિની ઝડપ તેના નિરપેક્ષ તાપમાનના વર્ગમૂળના સમપ્રમાણમાં હોય છે.

એટલે કે,
$$\nu \propto \sqrt{T}$$

જો તાપમાન અચળ રાખીને જો વાયુનું દબાણ (P) બદલવામાં આવે, તો વાયુની ઘનતા ρ પણ દબાણના સમપ્રમાણમાં બદલાતી હોવાથી $\frac{P}{\rho}$ અચળ રહે છે. આથી અચળ તાપમાને અને આદ્રતા (humidity) એ **વાયુમાં** ધ્વનિની ઝડપ વાયુના દબાણ પર આધારિત નથી.

અચળ દબાણે પાણીની બાષ્યની ઘનતા સૂકી હવાની ઘનતા કરતાં ઓછી હોય છે. આથી, વાતાવરણમાં ભેજ વધતા $v=\sqrt{\frac{\gamma P}{\rho}}$ સૂત્ર પ્રમાણે ધ્વનિની ઝડપ વધે છે.

ઉદાહરણ 10 : સાબિત કરો કે t તાપમાને વાયુમાં ધ્વનિ-તરંગની ઝડપ $v_t=v_0\left(1+\frac{t}{546}\right)$ હોય છે. v_0 એ 0 °C તાપમાને વાયુમાં ધ્વનિની ઝડપ છે. (t<<273)

ઉકેલ : આપણે જાણીએ છીએ કે વાયુમાં ધ્વિનિની $\text{ઝડપ } \nu = \sqrt{\frac{\gamma RT}{M}} \;\; \dot{\Theta}.$

એટલે કે,
$$v \; \alpha \; \sqrt{T}$$

 $v_{t}=t$ °C તાપમાને વાયુમાં ધ્વનિની ઝડપ

192 ભૌતિકવિશાન

 $v_0^{}=0$ °C તાપમાને વાયુમાં ધ્વનિની ઝડપ

$$\therefore \frac{v_t}{v_0} = \sqrt{\frac{273 + t}{273}}$$

$$(\because T(K) = t(^{\circ}C) + 273)$$

$$\therefore v_t = v_0 \left(1 + \frac{t}{273}\right)^{\frac{1}{2}}$$

હવે, દ્વિપદી વિસ્તરણનો ઉપયોગ કરતાં અને ઉચ્ચ ઘાતવાળાં પદો અવગણતાં,

$$v_t = v_0 \left(1 + \frac{1}{2} \times \frac{t}{273} \right)$$
$$v_t = v_0 \left(1 + \frac{t}{546} \right)$$

િનોંધ : જો 0 °C તાપમાને વાયુમાં ધ્વનિની ઝડપ 332 m/s હોય, તો 1 °C તાપમાને ધ્વનિની ઝડપ, $v_t = 332 \Big(1 + \frac{1}{546}\Big) = v_0 \Big(1 + \frac{t}{546}\Big) = 332.61$ m/s.

આમ, તાપમાનમાં 1 $^{\circ}$ C જેટલો વધારો થતાં વાયુમાં ધ્વિનની ઝડપમાં 332.61 - 332 = 0.61 m/s જેટલો વધારો થાય છે.]

ઉદાહરણ 11 : 27 °C તાપમાન અને 76 cm દબાશે વાયુમાં ધ્વનિની ઝડપ 345 m/s છે, તો 127 °C તાપમાન અને 75 cm દબાશે વાયુમાં ધ્વનિની ઝડપ શોધો.

6કેલ : યાદ રાખો કે વાયુમાં દબાણ બદલાતા ધ્વનિની ઝડપ બદલાતી નથી. આથી,

જો v_1 અને v_2 એ અનુક્રમે 27°C અને 127°C તાપમાને ધ્વનિની ઝડપ હોય તો,

$$\frac{v_2}{v_1} \,=\, \sqrt{\frac{T_2}{T_1}} \,=\, \sqrt{\frac{273+127}{273+27}} \,=\, \sqrt{\frac{4}{3}} \,.$$

∴ 127°C તાપમાને ધ્વનિની ઝડપ,

$$v_2 = v_1 \times \sqrt{\frac{4}{3}} = 345 \times \sqrt{\frac{4}{3}} = 398.4 \text{ m/s}$$

ઉદાહરણ 12 : STP એ સૂકી હવામાં ધ્વનિની ઝડપ 332 m s⁻¹ છે. ધારો કે હવામાં કદની દૃષ્ટિએ 4 ભાગ નાઇટ્રોજન અને એક ભાગ ઑક્સિજન છે. STP એ નાઇટ્રોજન અને ઑક્સિજનની ઘનતાનો ગુણોત્તર 16 : 14 હોય, તો આ સ્થિતિમાં ઑક્સિજનમાં ધ્વનિની ઝડપ શોધો.

ઉકેલ : હવાની ઘનતા =
$$\frac{\frac{1}{3}$$
લ દળ $\frac{1}{3}$ લ કંદ $\frac{1}{3}$ લ $\frac{1}{3}$ લ કંદ $\frac{1}{3}$ લ ક

8.8 સંપાતપણાનો સિદ્ધાંત (Principle of Superposition)

= 314.77 m/s

અત્યાર સુધી આપણે માધ્યમ (દોરી)માં પ્રસરતા ફક્ત એક જ તરંગની ચર્ચા કરી. ધારો કે બે વ્યક્તિઓ દોરીના બંને છેડેથી પકડીને દોરીને હલાવે, તો આકૃતિ 8.9(a)માં દર્શાવ્યા અનુસાર દોરી પર બે તરંગ-સ્પંદો એકબીજા તરફ ગતિ કરતા જણાશે. અહીં માધ્યમ એક જ હોવાથી બંને તરંગ-સ્પંદની ઝડપ સમાન હશે.

ધારો કે પહેલા તરંગમાં કણનું મહત્તમ સ્થાનાંતર 0.5 cm છે અને બીજા તરંગમાં તે 0.3 cm છે. અહીં બંને તરંગો એકબીજા તરફની દિશામાં ગતિ કરે છે. આથી કોઈ એક ક્ષણે તેઓ દોરીના કોઈ વિભાગ આગળ એકબીજા પર સંપાત થાય છે અને ત્યાર બાદ તેઓ પોતાની મૂળ દિશામાં પોતાનો આકાર જાળવી રાખીને ગતિ કરે છે. બંને તરંગો દોરીના જે વિભાગમાં સંપાત થાય છે, ત્યાં ક્શનું મહત્તમ સ્થાનાંતર 0.5 cm + 0.3 cm = 0.8 cm જેટલું થાય છે.

આકૃતિ 8.9(b)માં દર્શાવ્યા અનુસાર જો બંને વ્યક્તિઓ દોરીને એવી રીતે દોલિત કરે જેથી દોરીના એક છેડે ઉત્પન્ન થયેલ તરંગ-સ્પંદમાં મહત્તમ સ્થાનાંતર ઊર્ધ્વ દિશામાં 0.5 cm જેટલું મળે અને બીજા છેડે ઉત્પન્ન થયેલા તરંગ-સ્પંદમાં આ સ્થાનાંતર અધોદિશામાં 0.5 cm જેટલું મળે. જ્યારે આ બંને તરંગો દોરી પર ગતિ કરતાં, દોરીના કોઈ એક વિભાગમાં કોઈ એક સમયે સંપાત થશે. ત્યારે બધા ક્ણોનું સ્થાનાંતર 0.5 cm + (-0.5 cm) = 0 થશે. અહીં કણનું સ્થાનાંતર શુન્ય થાય છે, પરંતુ કશનો વેગ શુન્ય થતો નથી. આ સ્થિતિમાં દોરી સીધી થઈ જાય છે. ત્યાર બાદ બંને તરંગ-સ્પંદ છૂટા પડી પોતાની મૂળ દિશામાં ગતિ કરે છે.

ઉપરનાં અવલોકનો પરથી સંપાતપણાનો સિદ્ધાંત નીચે મજબ લખી શકાય.

''જ્યારે માધ્યમનો કોઈ ક્ણ એકીસાથે બે કે તેથી વધારે તરંગોની અસર હેઠળ આવે છે, એટલે કે કોઈ ક્રણ પાસે બે કે બે કરતાં વધારે તરંગો સંપાત થાય છે, ત્યારે તે કણનું સ્થાનાંતર તે દરેક તરંગ વડે ઉદ્દભવતાં સ્વતંત્ર સ્થાનાંતરોના સદિશ સરવાળા જેટલું હોય છે."

તરંગનું પરાવર્તન (Reflection of Waves):

(a) જડિત આધાર પાસેથી તરંગનું પરાવર્તન (Reflection of waves from a rigid support):

આકૃતિ 8.10માં દર્શાવ્યા પ્રમાણે ધારો કે $y = A\sin$ $(\omega t + kx)$ વડે ૨જૂ થતું એક પ્રગામી તરંગ xના ઘટતાં મૂલ્યની દિશામાં ગતિ કરતાં x=0 બિંદુ પાસે આવે છે. તરંગ જડિત આધાર પાસે આવતાં તે જડિત આધાર (દીવાલ) પર બળ લગાડે છે. ન્યૂટનના ત્રીજા નિયમ અનુસાર દીવાલ એ દોરી પર પ્રતિક્રિયા બળ લગાડે છે. જે જડિત આધાર આગળ દોરી પર તરંગ ઉત્પન્ન કરે છે. આ તરંગ એ આપાત તરંગની વિરુદ્ધ દિશામાં ગતિ કરે છે, જેને પરાવર્તિત

દંઢ આધાર આગળથી તરંગનું પરાવર્તન આકૃતિ 8.10

194

આપાત-તરંગ $y = A\sin(\omega t + kx)$ ને કારણે x = 0 બિંદુ પરનાં દોલનો

$$y_i = A \sin \omega t \tag{8.8.1}$$

વડે રજૂ કરી શકાય. x=0 આગળનો છેડો જડિત હોવાથી તેનું સ્થાનાંતર તો શૂન્ય જ રહેવાનું છે. આથી સંપાતપણાના સિદ્ધાંત અનુસાર x=0 આગળ પરાવર્તિત તરંગનું સ્થાનાંતર નીચે મુજબ આપી શકાય.

$$y_r = -A \sin \omega t \tag{8.8.2}$$

સમીકરણ (8.8.2) ને નીચે મુજબ લખી શકાય :

$$y_r = A\sin(\omega t + \pi) \tag{8.8.3}$$

આ દર્શાવે છે કે **તરંગ જ્યારે દેઢ આધાર પરથી** પરાવર્તન પામે છે, ત્યારે તેની કળામાં π, જેટલો વધારો થાય છે. પરાવર્તન પામતી વખતે તરંગનો 'આકાર' ઉલટાઈ જાય છે. અર્થાત્ ગર્ત એ શૃંગરૂપે અને શૃંગ એ ગર્તરૂપે પરાવર્તિત થાય છે.

આ પરાવર્તિત તરંગ xના વધતા મૂલ્યની દિશામાં ગતિ કરતો હોવાથી તેનું તરંગ-સમીકરણ નીચે મુજબ મળે,

$$y_r = A \sin(\omega t + \pi - kx)$$

$$\therefore y_r = A \sin(\omega t - kx) \tag{8.8.4}$$

જો આપાત તરંગ વધતા xની દિશામાં ગતિ કરતું હોય, તો

$$y_i = A \sin(\omega t - kx)$$
 (8.8.5)
અને પરાવર્તિત તરંગનું સમીકરણ નીચે મુજબ લખી શકાય.
 $y_r = -A \sin(\omega t + kx)$ (8.8.6)

(b) મુક્ત આધાર પાસેથી તરંગનું પરાવર્તન (Reflection of waves from a free end) :

આકૃતિ 8.11માં દર્શાવ્યા પ્રમાણે દોરીનો એક છેડો ખૂબ જ હળવી રિંગ સાથે બાંધેલ છે અને આ રિંગ શિરોલંબ રાખેલ સળિયા પર ઘર્ષણરહિત સરકી શકે છે. અહીં દોરીનો આ છેડો મુક્ત છે તેમ કહેવાય અને આવા મુક્ત છેડેથી તરંગનું પરાવર્તન થાય ત્યારે શું થાય છે તે સમજીશું.

મુક્ત આધાર પાસેથી તરંગનું પરાવર્તન આકૃતિ 8.11

દોરીના બીજા છેડેથી ઉત્પન્ન કરેલ તરંગનો ધારો કે શૃંગ જેવો વિભાગ રિંગ પાસે પહોંચે છે. રિંગ દઢ આધાર સાથે બાંધેલી ન હોવાથી રિંગ ઉપર તરફ ધકેલાય છે. આથી તેની સાથે બાંધેલી દોરી પણ ઉપર તરફ ખેંચાય છે. પરિણામે દોરીમાં આ છેડેથી પરાવર્તિત તરંગ ઉત્પન્ન થાય છે, જેની કળા આપાત તરંગ જેટલી જ હોય છે. અર્થાત્ આ પ્રકારના પરાવર્તનમાં આકાર ઊલટાતો નથી અને શૃંગ એ શૃંગરૂપે તથા ગર્ત એ ગર્તરૂપે જ પરાવર્તન પામે છે. આવી પરિસ્થિતિમાં રિંગ પર બંને તરંગો સાથે હોવાથી રિંગનું સળિયા પરનું સ્થાનાંતર આપાત-તરંગના કંપવિસ્તારથી બમણું હોય છે.

આ ચર્ચા પરથી સ્પષ્ટ છે કે જો આપાત-તરંગનું સમીકરણ $y_i = \mathbf{A} \sin(\omega t + kx)$ હોય, તો મુક્ત છેડેથી તેના પરાવર્તિત તરંગનું સમીકરણ નીચે મુજબ લખી શકાય :

$$y_r = A \sin (\omega t - kx) \tag{8.8.7}$$

આમ, પ્રગામી તરંગ જ્યારે દેઢ આધાર અથવા બંધ છેડા પરથી પરાવર્તન પામે છે ત્યારે તેની કળામાં π rad જેટલો વધારો થાય છે અને મુક્ત છેડા પરથી પરાવર્તન પામે ત્યારે તેની કળામાં કોઈ તફાવત ઉદ્દભવતો નથી.

8.9 સ્થિત-તરંગો (Stationary or Standing Waves)

સમાન કંપવિસ્તારવાળા અને સમાન તરંગલંબાઈવાળાં પરસ્પર વિરુદ્ધ દિશામાં ગતિ કરતાં અને સંપાતીકરણ અનુભવતાં તરંગોની સમાસ અસર રૂપે મળતાં તરંગો પ્રગામીપણાનો ગુણધર્મ ગુમાવી બેસે છે. આ રીતે રચાતા સમાસ-તરંગો માધ્યમમાં સ્થિત ભાત ઊપજાવે છે. આવાં તરંગોને સ્થિત-તરંગો કહે છે.

દેઢ આધાર પર જડિત કરેલ દોરી આકૃતિ 8.12

આકૃતિ 8.12માં દર્શાવ્યા મુજબ બંને છેડે દેઢ આધાર પર જડિત કરેલી, L લંબાઈની તણાવવાળી દોરીને ધ્યાનમાં લો. આ દોરીમાં હાર્મોનિક તરંગ ઉત્પન્ન કરતાં તેનું દેઢ આધારો પરથી વારંવાર પરાવર્તન થાય છે અને દોરીનો દરેક કણ આપાત-તરંગ અને પરાવર્તિત તરંગની અસર હેઠળ આવે છે.

ધારો કે, દોરી પર x ના વધતાં મૂલ્યોની દિશામાં ગતિ કરતું તરંગ (આપાત-તરંગ),

$$y_1 = A \sin(\omega t - kx) \tag{8.9.1}$$

વળી, દેઢ આધાર આગળથી પરાવર્તન પામી xનાં ઘટતાં મૂલ્યોની દિશામાં ગતિ કરતું તરંગ (પરાવર્તિત તરંગ)

$$y_2 = -A \sin(\omega t + kx) \tag{8.9.2}$$

સંપાતપણાના સિદ્ધાંત અનુસાર દોરીના કોઈ પણ કણનું સ્થાનાંતર,

$$y = y_1 + y_2$$

= $A\sin(\omega t - kx) - A\sin(\omega t + kx)$

∴
$$y = -2A\cos\omega t \sin kx$$
 (જુઓ ફૂટનોટ)

$$= -2A\sin kx \cos \omega t \tag{8.9.3}$$

સમીકરણ (8.9.3)માં તરંગ-વિધેયનું સ્વરૂપ એ $f(\omega t \pm kx)$ પ્રકારનું નથી એટલે કે આ તરંગ પ્રગામી તરંગ નથી. સમીકરણ (8.9.3)એ સ્થિત-તરંગનું સમીકરણ છે. આવા તરંગ દ્વારા ઊર્જાનું વહન થતું નથી, આથી તેને સ્થિત-તરંગ કહે છે.

સમીકરણ (8.9.3)માંનું પદ ' $\cos \omega t$ ' સૂચવે છે કે દોરીનો દરેક કણ સરળ આવર્તગિત કરે છે અને તેમના કંપવિસ્તારો $2A\sin kx$ અનુસાર કણના સ્થાન x પર આધાર રાખે છે. અહીં બધા જ કણનો કંપવિસ્તાર સમાન હોતો નથી. જે કણોના સ્થાન x એવાં છે, જેથી $\sin kx = 0$ થાય, તેવા કણોના કંપવિસ્તાર શૂન્ય છે. આવા કણોનું સ્થાનાંતર હંમેશાં શૂન્ય જ રહે છે. આવા બિંદુઓને નિસ્પંદ-બિંદુઓ (Nodes) કહે છે.

સ્થિત-તરંગમાં જે સ્થાનોએ કંપવિસ્તાર હંમેશા શૂન્ય રહે છે. તે સ્થાનોને નિસ્પંદ-બિંદુઓ કહે છે.

હવે, $\sin kx = 0$

$$\therefore kx = n\pi$$
 જયાં, $n = 1, 2, 3$

$$\therefore x = \frac{n\pi}{k} = \frac{n\pi}{2\pi/\lambda}$$

$$\therefore x = \frac{n\lambda}{2}$$
(8.9.4)

આ દર્શાવે છે કે x=0 થી $x=\frac{\lambda}{2}$, λ , $\frac{3\lambda}{2}$, $\frac{n\lambda}{2}$ વગેરે અંતરોએ રહેલા બિંદુઓ નિસ્પંદ-બિંદુઓ છે. બે અનુક્રમે આવતા નિસ્પંદ-બિંદુઓ વચ્ચેનું અંતર

 $\frac{\lambda}{2}$ ϑ .

$$\frac{1}{2} \sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

હવે, જે ક્શોના સ્થાન $\sin kx = \pm 1$ વડે આપી શકાય છે, તેવા ક્શો મહત્તમ કંપવિસ્તાર સાથે દોલનો કરે છે. તે બિંદુઓને પ્રસ્પંદ-બિંદુઓ (Antinodes) કહે છે.

સ્થિત-તરંગમાં જે સ્થાનોએ કંપવિસ્તાર હંમેશા મહત્તમ રહે છે તે સ્થાનોને પ્રસ્પંદ-બિંદુઓ કહે છે. આવાં બિંદુઓનો કંપવિસ્તાર 2A હોય છે.

હવે, $\sin kx = \pm 1$

∴
$$kx = (2n - 1)\frac{\pi}{2}$$
 જ્યાં, $n = 1, 2, ...$
∴ $x = \frac{(2n - 1)\pi}{2k}$
 $= (2n - 1)\frac{\lambda}{4}$ (8.9.5)

આમ, દોરીના x=0 છેડાથી પ્રસ્પંદ-બિંદુઓ અનુક્રમે $x=\frac{\lambda}{4}$, $\frac{3\lambda}{4}$, $\frac{5\lambda}{4}$, અંતરે આવેલાં છે. અહીં પણ બે અનુક્રમે આવતાં પ્રસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{2}$ છે. વળી, અનુક્રમે આવતાં નિસ્પંદ-બિંદુઓ અને પ્રસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{4}$ હોય છે.

આકૃતિ 8.13માં પ્રસ્પંદ-બિંદુઓને (Antinodes) A વડે અને નિસ્પંદ-બિંદુઓને (Nodes) N વડે દર્શાવ્યા છે.

અહીં, દોરીના બંને છેડા x=0 તેમજ x=L પાસે દઢ આધાર સાથે બાંધેલી હોવાથી તે છેડાનું સ્થાનાંતર પણ બધા જ સમયે શૂન્ય રહેવું જોઈએ.

$$\therefore kL = n\pi$$
 $\forall ui, n = 1, 2, 3,$

$$\therefore \frac{2\pi}{\lambda} L = n\pi$$

$$\therefore \ \lambda_n = \frac{2L}{n} \tag{8.9.6}$$

આ સમીકરણ દર્શાવે છે કે, nના જુદાં-જુદાં મૂલ્યો અનુસાર, અત્રે આપેલ L લંબાઈની દોરીમાં 2L, L, $\frac{2L}{3}$, $\frac{L}{2}$, જેવી અમુક નિશ્ચિત તરંગલંબાઈનાં તરંગો માટે સ્થિતતરંગો જોવા મળશે. આમ, આપેલી તણાવવાળી દોરીમાં ગમે તે તરંગલંબાઈના તરંગો ઉત્પન્ન કરી સ્થિત-તરંગોની રચના મેળવી શકાય નહિ.

દોરી પર ઉત્પન્ન થતા સ્થિત-તરંગોની શક્ય એવી તરંગલંબાઈઓને અનુરૂપ આવૃત્તિ,

$$f_n = rac{v}{\lambda_n}$$
 સમીકરણ 8.9.6 પરથી, $f_n = rac{nv}{2 ext{L}}$ (8.9.7)

મુળભુત આવૃત્તિ

(b) n = 2

દ્વિતીય હાર્મોનિક અથવા પ્રથમ ઓવરટોન

તૃતીય હાર્મોનિક અથવા દ્વિતીય ઓવરટોન દોરી પર સ્થિત-તરંગો આકૃતિ 8.13

અથવા
$$f_n = \frac{n}{2L} \sqrt{\frac{\Gamma}{\mu}}$$
 (8.9.8)

જ્યાં, v= દોરી પર તરંગની ઝડપ $=\sqrt{\frac{\mathrm{T}}{\mu}}$ સમીકરણ (8.9.7)માં n=1 મૂકતાં,

$$f_1 = \frac{v}{2L}$$

અહીં, f_1 ને દોરીની **મૂળભૂત આવૃત્તિ** અથવા **પ્રથમ** હાર્મોનિક કહે છે.

$$n=2$$
 લેતાં,

$$f_2 = \frac{2v}{2L} = 2f_1$$

 f_2 ને દ્વિતીય (second) હાર્મોનિક અથવા પ્રથમ ઓવરટોન કહે છે.

$$n=3$$
 લેતાં,

$$f_3 = \frac{3v}{2L} = 3f_1$$

 f_3 ને તૃતીય હાર્મોનિક અથવા દ્વિતીય ઓવરટોન કહે છે.

આમ, સમીકરણ (8.9.7)માં *n*ના જુદાં-જુદાં મૂલ્યો લઈને દોરીના શક્ય પ્રકારનાં દોલનો મેળવી શકાય અને તેને અનુરૂપ આવૃત્તિઓ શોધી ચતુર્થ.....વગેરે હાર્મોનિક્સ મેળવી શકાય.

પ્રથમ, દ્વિતીય અને તૃતીય હાર્મોનિક્સ સાથે દોરી પર થતાં દોલનો આકૃતિ 8.13માં દર્શાવ્યાં છે. આકૃતિ પરથી સ્પષ્ટ છે કે દોરી પર ઉત્પન્ન થતાં ગાળાઓની સંખ્યા n જેટલી છે.

આમ, જુદી-જુદી નિશ્ચિત આવૃત્તિઓ સાથેના શક્ય દોલનોને દોરીનાં પ્રસામાન્યરીતિ દોલનો (Normal Modes of Vibration) કહે છે.

જુદા-જુદા નૉર્મલ મોડ્સ ઑફ વાઇબ્રેશનને અનુરૂપ આવૃત્તિઓ નીચેના સૂત્રથી મેળવી શકાય.

$$f_n = \frac{nv}{2L} = nf_1 \text{ sui, } n = 1, 2, 3....$$

જયાં, દોરી પર ઉત્પન્ન થતી આવૃત્તિ f_n ને n-મી હાર્મોનિક અથવા (n-1)મો ઓવરટોન કહે છે. અહીં, n એ દોરી પર રચાતા ગાળાઓની સંખ્યા પણ દર્શાવે છે.

ઉદાહરણ 13: 60 cm લાંબી એક દોરીમાં ઉત્પન્ન કરેલા સ્થિત-તરંગો $y=4\sin\left(\frac{\pi x}{15}\right)\cos\left(96\pi t\right)$ સમીકરણ વડે રજૂ કરવામાં આવે છે. અહીં x અને y cmમાં અને t સેકન્ડમાં છે.

- (1) નિસ્પંદ-બિંદુઓનાં સ્થાન શોધો.
- (2) પ્રસ્પંદ-બિંદુઓનાં સ્થાન શોધો.
- (3) x = 5 cm અંતરે રહેલા કશનું મહત્તમ સ્થાનાંતર શોધો.
- (4) આ સ્થિત-તરંગ જે ઘટક-તરંગોનું બનેલું હોય તે ઘટક-તરંગોનાં સમીકરણો શોધો.

ઉકેલ : $y = 4\sin\left(\frac{\pi x}{15}\right)\cos\left(96\pi t\right)$ ને $y = 2A\sin\left(kx\right)\cos\left(\omega t\right)$ સાથે સરખાવતાં,

$$A = 2 \text{ cm}, k = \frac{\pi}{15} \frac{\text{rad}}{\text{cm}}$$
 with $\omega = 96\pi$ rad/s.

પરંતુ,
$$k=rac{2\pi}{\lambda}$$

$$\therefore \frac{2\pi}{\lambda} = \frac{\pi}{15} \Rightarrow \lambda = 30 \text{ cm}$$

(1) નિસ્પંદ-બિંદુઓનાં સ્થાન

$$=\frac{n\lambda}{2}$$
, $\%$ i, $n=1, 2,...$

= 15 cm, 30 cm, 45 cm

(0 cm અને 60 cm અંતરે રહેલા ક્યો તો જકડેલા રાખેલા છે, એટલે ગયાતરીમાં તેમનો સમાવેશ કર્યો નથી.)

(2) પ્રસ્પંદ-બિંદુઓનાં સ્થાન
$$= (2n-1)\frac{\lambda}{4}, \text{ જ્યાં, } n=1, 2, 3,...$$

$$= 7.5 \text{ cm, } 22.5 \text{ cm, } 37.5 \text{ cm, } 52.5 \text{ cm}$$

(3)
$$x = 5$$
 cm અંતરે રહેલ કણનું મહત્તમ સ્થાનાંતર
$$= 2A\sin kx$$
$$= 4\sin\left(\frac{\pi x}{15}\right)$$
$$= 4\sin\left(\frac{\pi}{3}\right) \ (\because x = 5 \text{ cm})$$
$$= 4\frac{\sqrt{3}}{2}$$
$$= 2\sqrt{3} \text{ cm}$$

$$(4) y = 4\sin\left(\frac{\pi x}{15}\right) \cos(96\pi t)$$

$$=2\sin\left(\frac{\pi x}{15} + 96\pi t\right) + 2\sin\left(\frac{\pi x}{15} - 96\pi t\right)$$

$$\therefore$$
 ઘટક-તરંગ $y_1=2\sin\Bigl(rac{\pi x}{15}+96\pi t\Bigr)$ cm અને,
$$y_2=2\sin\Bigl(rac{\pi x}{15}-96\pi t\Bigr)$$
cm

ઉદાહરણ 14: એક માધ્યમમાં પ્રસરતા પ્રગામી, હાર્મોનિક તરંગનું સમીકરણ $y_i = A\cos{(ax+bt)}$ છે, જ્યાં A, a અને b ધન અચળાંકો છે. x=0 સ્થાને રાખેલ દઢ આધારથી આ તરંગનું પરાવર્તન થાય છે અને પરાવર્તિત તરંગની તીવ્રતા એ આપાત-તરંગની તીવ્રતાથી 0.64 ગણી છે, તો

- (a) આપાત-તરંગની તરંગલંબાઈ અને આવૃત્તિ શોધો.
- (b) પરાવર્તિત તરંગનું સમીકરણ મેળવો.
- (c) આપાત અને પરાવર્તિત તરંગોના સંપાતીકરણથી મળતા પરિષ્ટામી તરંગને પ્રગામી તરંગ અને સ્થિત-તરંગનાં સમીકરણો રૂપે દર્શાવો.

ઉકેલ :

(a) આપાત-તરંગ $y_i=$ Acos (ax+bt) આ સમીકરણને તરંગ-સમીકરણ y= Acos ($kx+\omega t$) સાથે સરખાવતાં,

∴ તરંગ-સદિશ
$$k = a$$

$$\therefore \frac{2\pi}{\lambda} = a$$

$$\therefore \lambda = \frac{2\pi}{a}$$

કોણીય આવૃત્તિ $\omega=2\pi f=b$

$$\therefore f = \frac{b}{2\pi}$$

(b) તરંગ-તીવ્રતા I α A², જ્યાં A = કંપવિસ્તાર.

અહીં ${f A}_1$ અને ${f A}_2$ આપાત અને પરાવર્તિત તરંગોના કંપવિસ્તાર તથા ${f I}_1$ અને ${f I}_2$ અનુક્રમે તેઓની તીવ્રતાઓ છે.

$$\therefore \frac{I_2}{I_1} = \frac{(A_2)^2}{(A_1)^2}$$

$$\therefore \frac{A_2}{A_1} = \left(\frac{I_2}{I_1}\right)^{\frac{1}{2}} = (0.64)^{\frac{1}{2}}$$

 $\therefore \ \, {
m A}_2 = 0.8 \, \, {
m A} \, \, (\because \, \, {
m A}_1 = \,$ આપાત તરંગનો કંપવિસ્તાર = A)

 \therefore પરાવર્તિત તરંગનો કંપવિસ્તાર ${
m A_2}=0.8~{
m A}$ પરાવર્તિત તરંગનું સમીકરણ

$$y_r = -A_2 \cos (bt - ax)$$

$$\therefore y_r = -0.8 \text{ A } \cos(bt - ax)$$

(c) પરિણામી તરંગ
$$y = y_i + y_r$$

$$= A \cos(bt + ax) - 0.8 A \cos(bt - ax)$$

$$= 0.8 A \left[\cos(bt + ax) - \cos(bt - ax)\right]$$

$$+ 0.2 \text{ Acos } (bt + ax)$$

 $=-1.6 \text{ A}\sin(ax)\cdot\sin(bt) + 0.2 \text{ A}\cos(bt+ax),$ જયાં સ્થિત-તરંગ

$$y_s = -1.6 \text{ Asin } (ax) \cdot \sin (bt)$$
 અને

પ્રગામી તરંગ $y_p = 0.2 \text{ Acos } (bt + ax)$ છે.

ઉદાહરણ 15 : સોનોમીટરના તારના મુક્ત છેડે એક બ્લોક લટકાવેલ છે. આ પરિસ્થિતિમાં તારનાં દોલનો માટે મૂળભૂત f_1 Hz છે. આ બ્લોકને પાણીમાં ડુબાડતાં તે જ તાર માટે મૂળભૂત આવૃત્તિ f_2 Hz થાય છે. તે પછી બ્લોકને એક પ્રવાહીમાં ડુબાડતાં આ તાર માટે f_3 Hz મૂળભૂત આવૃત્તિ મળે છે, તો બ્લોકના દ્રવ્યની અને પ્રવાહીની વિશિષ્ટ ધનતાઓ શોધો.

198 ભૌતિકવિશાન

ઉકેલ: બ્લૉકને હવામાં, પાણીમાં અને પ્રવાહીમાં રાખતાં તેના પર જુદું-જુદું ઉત્પ્લાવક બળ (force of buoyancy) લાગે છે. આથી દરેક કિસ્સામાં અસરકારક વજન બદલાતાં તારમાં તણાવ બદલાય છે અને પરિણામે આપેલ લંબાઈના એક જ દ્રવ્યના તાર માટે આવૃત્તિ પણ બદલાય છે.

ધારો કે બ્લૉકનું વજન, હવામાં $\mathbf{W}_{_{1}}$, પાણીમાં $\mathbf{W}_{_{2}}$ અને પ્રવાહીમાં $\mathbf{W}_{_{3}}$ છે.

મૂળભૂત આવૃત્તિનું સૂત્ર $f=rac{1}{2\mathrm{L}}\,\sqrt{rac{\mathrm{T}}{\mu}}\,$ છે. અહીં, L અને μ અચળ હોવાથી,

 $f \alpha \sqrt{T}$

 $T = kf^2$ જયાં, k = સમપ્રમાણતાનો અચળાંક પરંત તણાવ T = W

 $\therefore W = kf^2$

∴ $W_1 = kf_1^2$; $W_2 = kf_2^2$; $W_3 = kf_3^2$ આર્કિમિડિઝના સિદ્ધાંત અનુસાર,

બ્લૉકના (ઘન પદાર્થના) દ્રવ્યની વિશિષ્ટ ઘનતા

$$=\frac{\text{હવામાં બ્લૉકનું વજન}}{\text{પાણીમાં બ્લૉકના વજનમાં ઘટાડો}}$$

$$=\frac{W_1}{W_1-W_2}=\frac{f_1^2}{f_1^2-f_2^2}$$

પ્રવાહીની વિશિષ્ટ ઘનતા

 $=\frac{\text{પ્રવાહીમાં બ્લૉકના વજનમાં ઘટાડો}}{\text{પાણીમાં બ્લૉકના વજનમાં ઘટાડો}}$ $=\frac{W_1-W_3}{W_1-W_2}=\frac{k{f_1}^2-k{f_3}^2}{k{f_1}^2-k{f_2}^2}$ $=\frac{f_1^2-f_3^2}{f_2^2-f_2^2}$

8.10 નળીમાં સ્થિત-તરંગો (Stationary Wave in Pipes)

જેમ દોરીમાં નિશ્ચિત આવૃત્તિવાળા લંબગત તરંગોનું પરાવર્તન થતાં, આપાત અને પરાવર્તિત તરંગોના સંપાતીકરણને લીધે સ્થિત-તરંગો રચાય છે તેવી જ રીતેનળી (pipe) માં રહેલા હવાના સ્તંભમાં પણ નિશ્ચિત આવૃત્તિવાળા સંગત-તરંગોના નળીના છેડેથી થતાં પરાવર્તનના કારણે સ્થિત-તરંગો રચાય છે. વાંસળી, ટ્રમ્પેટ (trumpet), ક્લેરિનેટ (clarinet) જેવાં સંગીતનાં વાઘો પણ આવી નળીઓ-ઑર્ગન પાઇપ્સ છે. જેમાં સ્થિર-તરંગો રચાય છે.

નળીઓ બે પ્રકારની હોય છે : (1) જે નળીમાં બંને છેડા ખુલ્લા હોય તેવી નળીને ઓપન પાઇપ (open pipe) કહે છે. દા.ત., વાંસળી. (2) જેમાં એક છેડો ખુલ્લો અને બીજો છેડો બંધ હોય તેવી નળીને ક્લોઝ્ડ પાઇપ (closed pipe) કહે છે. દા.ત., ક્લેરિનેટ.

જેમ દોરીના કિસ્સામાં જિડત છેડે હંમેશા નિસ્પંદ બિંદુ જ હોય છે, તેવી જ રીતે પાઇપના બંધ છેડેથી સંગત-તરંગનું પરાવર્તન એવી રીતે થાય છે કે તે છેડો નિસ્પંદ-બિંદુ જ બને. પરંતુ સંગત-તરંગની તરંગલંબાઈની સરખામણીમાં પાઇપ સાંકડી હોય, તો ખુલ્લા છેડે (કે તેની સહેજ બહાર) પ્રસ્પંદ બિંદુ મળે છે. (પાઇપના ખુલ્લા છેડેથી થતા સંગત તરંગોના પરાવર્તનની પ્રક્રિયા થોડી જિટલ હોય છે.)

ક્લોઝૂડ પાઇપમાં સ્થિર-તરંગો :

કલોઝ્ડ પાઇપમાં સ્થિત-તરંગો મળે તે માટે તરંગલંબાઈ (λ) એવી હોવી જોઈએ કે જેથી પાઇપના બંધ છેડે નિસ્પંદ બિંદુ અને ખુલ્લા છેડે પ્રસ્પંદ-બિંદુ મળે. સ્થિત-તરંગોમાં નિસ્પંદ અને પ્રસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{4}$, $\frac{3\lambda}{4}$, $\frac{5\lambda}{4}$,(2n-1) $\frac{\lambda}{4}$ હોય છે. આથી વ્યાપક રીતે, ક્લોઝ્ડ પાઇપની આપેલી લંબાઈ L માટે તરંગોની તરંગલંબાઈ λ એવી હોય કે જેથી,

 $L = (2n - 1)\frac{\lambda}{4} \text{ sui, } n = 1, 2, 3,.... (8.10.1)$ થાય તો જ નળીમાં સ્થિત-તરંગો ઉદ્દ્ભવે.

આથી, ક્લોઝ્ડ પાઇપમાં ઉદ્ભવતાં સ્થિત-તરંગોની શક્ય એવી તરંગલંબાઈઓ નીચેના સૂત્રમાં nનાં જુદાં-જુદાં

મૂલ્યો મૂકવાથી મળે છે.
$$\lambda_n = \frac{4L}{(2n-1)}$$
 (8.10.2)

પાઇપમાં સ્થિત-તરંગોની આવૃત્તિ $f_n = \frac{v}{\lambda_n}$, $L=\frac{3\lambda}{}$ n = 1n=2n = 3(a) (b) (c) મૂળભૂત આવૃત્તિ તૃતીય હાર્મોનિક પાંચમી હાર્મોનિક (પ્રથમ (પ્રથમ (દ્વિતીય હાર્મોનિક) ઓવરટોન) ઓવરટોન)

ક્લોઝ્ડ પાઇપમાં સ્થિત-તરંગો આકૃતિ 8.14

$$\therefore f_n = \frac{v}{4L} (2n - 1)$$
 (8.10.3)
જ્યાં, v એ તરંગની ઝડપ છે.

(i) n = 1 elai.

$$f_1 = \frac{v}{4L}$$

 f_1 ને **મૂળભૂત આવૃત્તિ** અથવા **પ્રથમ હાર્મોનિક** કહે છે (જુઓ આકૃતિ 8.14(a)).

(ii) n=2 elai,

$$f_2 = \frac{3v}{4L} = 3f_1 \qquad (\because f_1 = \frac{v}{4L})$$

 f_2 ને **તૃતીય હાર્મોનિક** અથવા **પ્રથમ ઓવરટોન** કહે છે (જુઓ આકૃતિ 8.14(b)).

(iii) આ જ રીતે n=3 લેતાં

$$f_3 = \frac{v}{4L}(2(3) - 1) = \frac{5v}{4L} = 5f_1$$

 f_3 ને **પાંચમી હાર્મોનિક** અથવા **હિતીય ઓવરટોન** કહે છે. આમ, વ્યાપક રીતે ક્લોઝ્ડ પાઇપમાં nમાં પ્રસામાન્ય, રીતી દોલનોની આવૃત્તિ નીચે મુજબ આપી શકાય.

$$f_n = \frac{v}{4L}(2n-1) = (2n-1)f_1$$
 (8.10.4) $vui, n = 1, 2, 3,...$

જયાં, f_n એ (2n-1)મી હાર્મોનિક અથવા (n-1)મો ઓવરટોન દર્શાવે છે.

આમ, ક્લોઝ્ડ પાઇપ માટે બધા જ હાર્મોનિક શક્ય \mathbf{r} થી, મૂળભૂત આવૃત્તિના એકી પૂર્ણાંક હાર્મોનિક $(f_1,\ 3f_1,\ 5f_1,\)$ જ શક્ય છે.

[આ સંદર્ભમાં સમીકરણ (8.10.3)ને નીચે મુજબ પણ લખી શકાય.

$$f_n = nf_1 = \frac{nv}{4L}$$
 wei, $n = 1, 3, 5...$

જ્યાં, f_n એ nમી હાર્મોનિક અથવા $\left(\frac{n-1}{2}\right)$ મી ઓવરટોન કહે છે.]

નળીમાં જે આવૃત્તિઓવાળાં સ્થિત-તરંગો રચાય છે, તે આવૃત્તિઓનો (જુદા-જુદા હાર્મોનિક્સને) નળીની પ્રાકૃતિક આવૃત્તિઓ (natural or characteristics frequencies) કહે છે.

ઓપન પાઇપ (ખુલ્લી નળી)માં સ્થિત-તરંગો : ઓપન પાઇપમાં બંને છેડે પ્રસ્પંદ-બિંદુઓ રચાય છે. આપણે જાણીએ છીએ કે પ્રસ્પંદ-બિંદુઓ વચ્ચેનું અંતર $\frac{\lambda}{2}$, λ , $\frac{3\lambda}{2}$ $\frac{n\lambda}{2}$ હોય છે. જ્યાં, $n=1,\,2,\,3,$

આથી વ્યાપક રીતે, ઓપન પાઇપની આપેલી લંબાઈ L માટે તરંગોની તરંગલંબાઈ λ એવી હોય કે જેથી,

$$L = \frac{n\lambda}{2}$$

થાય તો જ નળીમાં સ્થિત-તરંગો ઉદ્દભવે,

આથી,
$$\lambda_n = \frac{2L}{n}$$
 (8.10.5)

ઓપન પાઇપમાં સ્થિત-તરંગોની આવૃત્તિ,

$$f_n = \frac{v}{\lambda_n} = \frac{nv}{2L} \tag{8.10.6}$$

જ્યાં, v એ તરંગની ઝડપ છે.

ઓપન પાઇપમાં સ્થિત-તરંગો

આકૃતિ 8.15

(i) સમીકરણ (8.10.6)માં n=1 મૂકતાં,

$$f_1 = \frac{v}{2L}$$
 (8.10.7)

અહીં, f_1 ને **મૂળભૂત આવૃત્તિ** અથવા **પ્રથમ હાર્મોનિક** કહે છે. (જુઓ આકૃતિ 8.15a) જે ક્લોઝ્ડ પાઇપની મૂળભૂત આવૃત્તિ કરતાં બમણી છે. ($\because f_1 = \frac{v}{4L}$).

(ii)
$$n=2$$
 elai,

$$f_2 = \frac{2v}{2L} = \frac{v}{L} = 2f_1$$

 f_2 ને **દ્વિતીય હાર્મોનિક** અથવા **પ્રથમ ઓવરટોન** કહે છે. (જુઓ આકૃતિ 8.15b)

આમ, સમીકરણ (8.10.6)માં nનાં જુદાં-જુદાં મૂલ્યો લઈને તૃતીય, ચતુર્થ હાર્મોનિક્સ મેળવી શકાય છે. વ્યાપક રૂપે ઓપન પાઇપમાં nમી હાર્મોનિક અથવા (n-1)માં ઓવરટોન માટે,

$$f_n = \frac{nv}{2L} = nf_1$$
 (8.10.8)
wei, $n = 1, 2, 3....$

આમ, ઓપન પાઇપ માટે દરેક હાર્મોનિક $(f_1, 2f_1, 3f_1...)$ શક્ય છે.

આમ, બંને પ્રકારની પાઇપ્સમાં પણ હવાના સ્તંભ માટે નૉર્મલ મોડ્સ ઑફ વાઇબ્રેશન મળે છે.

ઉદાહરણ 16 : ક્લોઝ્ડ પાઇપનો દ્વિતીય ઓવરટોન અને ઓપન પાઇપનો તૃતીય ઓવરટોન સમાન હોય, તો બંને પાઇપની લંબાઈનો ગુણોત્તર શોધો.

ઉકેલ:

ક્લોઝ્ડ પાઇપ માટે દ્વિતીય ઓવરટોન એટલે પાંચમી હાર્મોનિક્સ. આથી નીચેના સમીકરણમાં n=5 મૂકતાં,

$$f = \frac{nv}{4L} = \frac{5v}{4L_1}.$$

ઓપન પાઇપ માટે ત્રીજી ઓવરટોન એટલે ચોથી હાર્મોનિક્સની આવૃત્તિ આથી નીચેના સમીકરણમાં n=4

મૂકતાં,
$$f = \frac{nv}{2L} = \frac{4v}{2L_2}$$
.

હવે, બંને પાઇપ્સની આવૃત્તિ સમાન હોવાથી,

$$\frac{5v}{4L_1} = \frac{4v}{2L_2}$$

$$\therefore \frac{L_1}{L_2} = \frac{5}{8} \text{ OR } L_1 : L_2 = 5 : 8$$

ઉદાહરણ 17: અનુનાદ-નળીના પ્રયોગમાં જ્યારે હવાના સ્તંભની (નળીની) લંબાઈ 9.75 cm હોય, ત્યારે 800 Hz આવૃત્તિવાળા સ્વરકાંટા સાથે પ્રથમ અનુનાદ થાય છે. હવે હવાના સ્તંભની (નળીની) લંબાઈ વંધારીને 31.25 cm કરવામાં આવે ત્યારે પાછો તેજ સ્વરકાંટા સાથે અનુનાદ સર્જાય છે. આ અવલોકનો પરથી હવામાં ધ્વનિની ઝડપ શોધો.

ઉકેલ: અનુનાદ-નળીના પ્રયોગમાં ઓપન પાઇપનો એક છેડો પાણીમાં ડુબાડેલો રાખીને ક્લોઝ્ડ પાઇપની રચના મેળવી શકાય છે.

જો નળીમાંના હવાના સ્તંભને તેની પ્રાકૃતિક આવૃત્તિ જેટલી જ આવૃત્તિ ધરાવતા સ્વરકાંટાથી દોલિત કરવામાં આવે તો હવાનો સ્તંભ મોટા કંપવિસ્તાર સાથે દોલનો કરે છે. આ સ્થિતિમાં પ્રબળ અવાજ સંભળાય છે. આને અનુનાદની ઘટના કહે છે.

અહીંયા, $f=800\,$ Hz, $\mathrm{L_1}=9.75\,$ cm, $\mathrm{L_2}=31.25\,$ cm.

અનુનાદ-નળી એ ક્લોઝ્ડ પાઇપ છે. ક્લોઝ્ડ પાઇપ

માટે પ્રાકૃતિક આવૃત્તિ નીચેના સમીકરણ વડે અપાય છે.

$$f = (2n - 1) \frac{v}{4L}$$

પ્રથમ અનુનાદ વખતે ઉપર્યુક્ત સમીકરણમાં n=1 લેતાં,

$$f = \frac{v}{4L_1}$$

$$\therefore L_1 = \frac{v}{4f}$$
બીજા અનુનાદ માટે $n = 2$ મૂકતાં,
$$f = (2 \times 2 - 1) \frac{v}{4L_2} = \frac{3v}{4L_2}$$

$$\therefore L_2 = \frac{3v}{4f}$$

$$\therefore L_2 - L_1 = \frac{3v}{4f} - \frac{v}{4f} = \frac{2v}{4f} = \frac{v}{2f}$$

$$\therefore ધ્વિનિની ઝડપ $v = (L_2 - L_1) (2f)$

$$= (31.25 - 9.75) (2 \times 800)$$

$$= 34400 \text{ cm/s}$$

$$= 344 \text{ m/s}$$$$

8.11 स्पंड (Beats)

આગળના પરિચ્છેદમાં આપણે એકસમાન કંપવિસ્તાર વાળા, સમાન આવૃત્તિવાળા અને પરસ્પર વિરુદ્ધ દિશામાં ગતિ કરતાં તરંગો માટે સંપાતપણાનો સિદ્ધાંત લાગુ પાડ્યો, જે માધ્યમમાં અપ્રગામી એવા સ્થિત-તરંગો રચે છે.

હવે, સંપાતપણાના સિદ્ધાંતથી આપણે સમાન કંપવિસ્તારવાળાં પણ સહેજ જુદી પડતી આવૃત્તિવાળાં હાર્મોનિક તરંગો માધ્યમમાં એક જ દિશામાં ગતિ કરે, તો માધ્યમનું કણ કેવી દોલિત ગતિ કરશે તેનો અભ્યાસ કરીશું.

સ્પંદની ઘટના આકૃતિ 8.16

ધારો કે માધ્યમમાં પ્રસરતાં બે હાર્મોનિક તરંગો,

 $y_1 = A \sin \omega_1 t = A \sin 2\pi f_1 t$ અને

 $y_2 = A \sin \omega_2 t = A \sin 2\pi f_2 t$

અહીં, સરળતા ખાતર આપણે બંને તરંગોની પ્રારંભિક કળા શૂન્ય લીધી છે. f_1 અને f_2 એ અનુક્રમે પ્રથમ અને બીજા તરંગની આવૃત્તિઓ છે. યાદ રાખો કે આપણે અહીં બંને તરંગોની અસર હેઠળ માધ્યમના કોઈ એક કણનું અવલોકન કરી રહ્યા છીએ.

સંપાતપશાના સિદ્ધાંત અનુસાર t સમયે કથિત કશનું સ્થાનાંતર y હોય તો,

$$y = y_1 + y_2$$

= A sin $2\pi f_1 t$ + A sin $2\pi f_2 t$

$$\therefore y = \left[2A\cos 2\pi \left(\frac{f_1 - f_2}{2}\right)t\right] \sin 2\pi \left(\frac{f_1 + f_2}{2}\right)t$$
(8.11.1)

$$y = A' \sin 2\pi \left(\frac{f_1 + f_2}{2}\right) t$$

અથવા $y = A' \sin 2\pi ft$ (8.11.2) ઉપર્યુક્ત સમીકરણ દર્શાવે છે કે કથિત કણનું પરિણામી

દોલન $f=\left(rac{f_1+f_2}{2}
ight)$ આવૃત્તિ સાથેનાં આવર્તદોલનો છે. f એ બંને તરંગોની સરેરાશ આવૃત્તિ દર્શાવે છે. આ દોલનોનો કંપવિસ્તાર,

A' =
$$2A\cos 2\pi \left(\frac{f_1 - f_2}{2}\right)t$$
 (8.11.3)

કંપવિસ્તાર સમય સાથે આવર્ત રીતે બદલાતો જાય છે. કંપવિસ્તારનું આ પદ સમયમાં આવર્ત-વિધેય છે. આ

વિધેયની આવૃત્તિ $\left(\frac{f_1-f_2}{2}\right)=f$ ' છે. આથી, તેનો આવર્તકાળ,

$$T = \frac{1}{f'} = \frac{2}{f_1 - f_2} \tag{8.11.4}$$

હવે, એક આવર્તકાળ (T) જેટલા સમયગાળા દરમિયાન cosine વિધેય બેવાર મહત્તમ મૂલ્યો અને બે વાર શૂન્ય મૂલ્ય ધારણ કરે છે. તેથી એકમસમયમાં આ વિધેય f_1-f_2 વખત મહત્તમ મૂલ્ય ધારણ કરે છે. અર્થાત્ ક્શનાં પરિણામી દોલનોનો કંપવિસ્તાર એકમસમયમાં f_1-f_2 વખત મહત્તમ અને f_1-f_2 વખત શૂન્ય બને છે.

$$\frac{}{\text{Ex-lie} : \sin C + \sin D} = 2\sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

જો તરંગો ધ્વનિ-તરંગો હોય તો ધ્વનિની પ્રબળતા કંપવિસ્તારના વર્ગ (I α \mathbf{A}^2) ના સમપ્રમાણમાં હોવાથી બંને તરંગો માધ્યમના જે વિસ્તારમાં સંપાત થાય છે, ત્યાં એકમસમયમાં ધ્વનિ f_1-f_2 વખત મહત્તમ અને f_1-f_2 વખત શૂન્ય થાય છે.

આમ, સમાન કંપવિસ્તારવાળા પણ સહેજ જુદી પડતી આવૃત્તિઓવાળાં તરંગોના સંપાતીકરણને કારણે આવર્ત રીતે કંપવિસ્તાર અને પરિણામે ધ્વનિની પ્રબળતા મહત્તમ બનવાની ઘટનાને સ્પંદ કહે છે. એકમસમય દીઠ સ્પંદની સંખ્યા $f_1 - f_2$ છે. જેને સ્પંદની આવૃત્તિ પણ કહે છે.

નોંધ : ધ્વનિના કિસ્સામાં સ્પંદ સ્પષ્ટ રીતે અનુભવાય તે માટે f_1-f_2 આશરે 6થી 7 કરતાં વધારે ન હોવો જોઈએ.

સ્પંદનો અનુભવ કરવા માટે સમાન આવૃત્તિવાળા બે સ્વરકાંટા લો. તેમાંથી એક સ્વરકાંટાનાં પાંખિયાં પર મીણ ચોંટાડો. આમ, કરવાથી તેની આવૃત્તિ થોડી ઘટશે. (જો તેના પાંખિયાને ઘસવામાં આવે તો સ્વરકાંટાની આવૃત્તિ વધે છે.) હવે બંને સ્વરકાંટાને કંપિત કરી પાસ પાસે રાખતા તમને નિયમિત સમયાંતરે ધ્વનિમાં થતી પ્રબળતાના ફેરફારનો અનુભવ થશે. સંગીતકારો તેમનાં જુદાં-જુદાં વાંજિત્રોને tune કરવા માટે સ્પંદની ઘટનાનો ઉપયોગ કરે છે.

ઉદાહરણ 18 : સ્વરકાંટો A અને સ્વરકાંટો B ને એક સાથે કંપિત કરતાં 8 સેકન્ડમાં 20 સ્પંદ ઉત્પન્ન થાય છે. કોઈ એક સ્વરકાંટા પર મીણ લગાડતાં તેઓ 8 સેકન્ડમાં 32 સ્પંદ ઉત્પન્ન કરે છે. જે સ્વરકાંટા પર મીણ લગાવ્યું નથી, તેની આવૃત્તિ 512 Hz હોય, તો બીજા સ્વરકાંટાની આવૃત્તિ શોધો.

ઉકેલ : ધારો કે સ્વરકાંટા B પર મીણ લગાવવામાં આવે છે. સ્વરકાંટા Aની આવૃત્તિ

 $f_{\rm A} = 512 \, {\rm Hz}.$

સ્વરકાંટાની B મૂળ આવૃત્તિ $f_{_{
m B}}=?$

મીણ લગાડ્યા પહેલા, એકમસમયમાં ઉત્પન્ન થતાં, 20

સ્પંદોની સંખ્યા =
$$\frac{20}{8}$$
 = 2.5 Hz.

 \therefore આથી, મીણ લગાવ્યા પહેલાં સ્વરકાંટા Bની આવૃત્તિ $512+2.5=514.5~\mathrm{Hz}$

હવે, સ્વરકાંટા $\mathbf B$ પર મીણ લગાવ્યા બાદ એકમ સમયમાં ઉત્પન્ન થતાં સ્પંદોની સંખ્યા $= \frac{32}{8} = 4 \ \mathrm{Hz}.$

આથી મીણ લગાવ્યા બાદ સ્વરકાંટા Bની આવૃત્તિ, $512 + 4 = 516 \; \mathrm{Hz}$

અથવા 512 - 4 = 508 Hz

પરંતુ, મીણ લગાવ્યા બાદ સ્વરકાંટા Bની આવૃત્તિ ઘટશે. ઉપર્યુક્ત ગણતરીમાં જોઈ શકાય છે કે મીણ લગાવ્યા પહેલાં સ્વરકાંટા Bની આવૃત્તિ 509.5 Hz અને ત્યાર બાદ તે 508 Hz થાય છે.

આથી, સ્વરકાંટા Bની મૂળ આવૃત્તિ 509.5 Hz હશે. **8.12 ડૉપ્લર-અસર (Doppler Effect)**

જયારે ધ્વનિ-ઉદ્ગમ અથવા શ્રોતા અથવા બંને હવાના માધ્યમની સાપેક્ષે અને એકબીજાની સાપેક્ષે ગતિ કરે ત્યારે શ્રોતા દ્વારા અનુભવાતી ધ્વનિની આવૃત્તિ, ઉદ્દગમ દ્વારા ઉત્સર્જાતી ધ્વનિની આવૃત્તિ કરતાં જુદી સંભળાય છે. આ ઘટનાને ડોપ્લર અસર કહે છે. આ અસર ક્રિશ્ચયન જહૉન ડોપ્લર (1803–1853) નામના ઑસ્ટ્રિયન વિજ્ઞાનીએ શોધી હતી.

આપણી તરફ ગતિ કરતી ટ્રેનની વ્હીસલની આવૃત્તિ મૂળ આવૃત્તિ કરતાં વધુ અનુભવાતાં વ્હીસલનો ધ્વનિ વધુ તીક્ષ્ણ લાગે છે. ટ્રેન બરાબર આપણી પાસેથી પસાર થાય ત્યારે અનુભવાતી આવૃત્તિ એ મૂળ ઉત્સર્જાતિ આવૃત્તિ જેટલી અનુભવાય છે અને ટ્રેન આપણાથી દૂર જાય ત્યારે અનુભવાતી આવૃત્તિ ઓ મૂળભૂત આવૃત્તિ કરતાં ઓછી હોઈ અવાજ એછો તીક્ષ્ણ લાગે છે.

ડૉપ્લર અસર સમજવા માટે આપણે આકૃતિ 8.17 માં દર્શાવ્યા અનુસાર સુરેખ પથ પર, સ્થિર હવા (માધ્યમ)ની સાપેક્ષે શ્રોતાનો વેગ $v_{\rm L}$ અને ધ્વિન ઉદ્દગમનો વેગ $v_{\rm S}$ લઈશું. તેમજ શ્રોતાથી ઉદ્દગમ તરફ જતી દિશામાંના વેગોને ધન ગણીશું અને તેનાથી વિરુદ્ધ દિશામાંના વેગોને ૠણ ગણીશું. ધ્વિનની ઝડપ v હંમેશાં ધન ગણીશું. આવી પ્રણાલિકા સ્વીકારવાથી એક વ્યાપક પરિણામ મેળવી શકાય છે અને બીજા કિસ્સાઓ તેના ખાસ કિસ્સા તરીકે ચર્ચી શકાય છે.

ગતિમાન શ્રોતા : ધારો કે શ્રોતા L એ v_L વેગથી સ્થિર ધ્વનિ ઉદ્દગમ S તરફ ગતિ કરે છે. (જુઓ આકૃતિ S.17) ધ્વનિ-ઉદગમમાંથી ઉત્સર્જાતાં તરંગોની આવૃત્તિ f_S

છે. આથી તેમની તરંગલંબાઈ $\lambda = \frac{v}{f_{\rm S}}$ થશે. જ્યાં v એ ધ્વિન-તરંગનો વેગ છે.

(a) શ્રોતા ગતિમાં અને ધ્વનિ-ઉદ્દગમ સ્થિર

શ્રોતા અને ધ્વનિ-ઉદ્ગમ બંને ગતિમાં ડૉપ્લર અસર આકૃતિ 8.17

આ તરંગો શ્રોતા તરફ ગતિ કરતાં હોવાથી, શ્રોતાની સાપેક્ષે ધ્વનિ-તરંગોનો વેગ $v+v_{\rm L}$ થશે. આથી, શ્રોતા વડે અનુભવાતી આવૃત્તિ

$$f_{\rm L} = \frac{v + v_{\rm L}}{\lambda} \tag{8.12.1}$$

ગતિમાન ઉદ્ગમ અને ગતિમાન શ્રોતા : હવે, ધારો કે ધ્વિન ઉદ્ગમ એ v_s જેટલા વેગથી L થી S તરફથી દિશામાં ગતિ કરે છે. (જુઓ આકૃતિ $8.17\ b$).

t=0 સમયે ધ્વનિ-ઉદ્ગમ (S) એ O સ્થાન પર અને $t=\mathrm{T}$ સમયે તે O'સ્થાન પર છે, જ્યાં $\mathrm{T}=rac{1}{f_{\mathrm{c}}}$ એ

ઉદ્ભવતાં તરંગનો આવર્તકાળ છે.

આ T સમયમાં ધ્વિનિ ઉદ્ગમે કાપેલું અંતર, $OO' = v_s T$ થશે અને ધ્વિનિ ઉદ્ગમે t = 0 સમયે ઉત્પન્ન કરેલું તરંગ (શૃંગ) એ T સમયમાં v T અંતર કાપશે. આકૃતિ પરથી, Oa = Ob = v T.

હવે, t = T સમયે ઉદ્ગમ O' પાસે હશે ત્યારે તે બીજું ક્રમિક ધ્વિન તરંગ (શૃંગ) ઉત્પન્ન કરે છે અને શ્રોતા તરફ ગતિ કરતું તરંગ O'b વચ્ચે અને શ્રોતાથી દૂર જતું તરંગ O'a વિસ્તારમાં હશે.

શ્રોતા તરફ જતાં તરંગની તરંગલંબાઈ,

 $\lambda = O'b$ વિસ્તારમાં બે ક્રમિક તરંગ (શૃંગ) વચ્ચેનું અંતર

$$= v_{\rm S} T + v T$$

$$\therefore \lambda = \frac{v_S + v}{f_S} \ (\because \ T = \frac{1}{f_S})$$
 (8.12.3)

સમીકરણ (8.12.1) માંથી λ નું મૂલ્ય મૂકતાં,

$$f_{\rm L} = \frac{v + v_{\rm L}}{v + v_{\rm S}} \cdot f_{\rm S}$$
 (8.12.3)

અથવા
$$\frac{f_{\rm L}}{\nu + \nu_{\rm L}} = \frac{f_{\rm S}}{\nu + \nu_{\rm S}}$$
 (8.12.4)

આકૃતિ (8.17) પરથી સ્પષ્ટ છે કે ધ્વનિ-ઉદ્દ્ગમની ગતિને લીધે ઉદ્દગમના આગળના વિસ્તાર (O'a) માં તરંગો દબાય છે અને તરંગલંબાઈ ઘટે છે, જયારે પાછળના વિસ્તારમાં (O'b) તરંગ ફેલાય છે અને તેની તરંગલંબાઈ વધે છે. અહીં, તરંગ એક જ માધ્યમ (હવા)માં પ્રસરતું હોવા છતાં તેની તરંગલંબાઈ બદલાય છે ? કેમ આમથયું ? આ માટે તરંગ અને ધ્વનિ-ઉદ્દગમનું સાપેક્ષ સ્થાનાંતર જવાબદાર છે.

કેટલાક ખાસ કિસ્સાઓ :

(i) શ્રોતા સ્થિર હોય અને ધ્વનિ-ઉદ્ગમ શ્રોતા તરફ ગતિ કરતું હોય, તો આપશે ઉપર આપેલી વેગોની સંજ્ઞાની પ્રશાલિકા અનુસાર સમીકરશ (8.12.3)માં $v_{\rm L}=0$ અને $v_{\rm S}=-v_{\rm S}$ લેતાં,

શ્રોતાને સંભળાતી આવૃત્તિ
$$f_{\mathrm{L}} = \frac{v}{v - v_{\mathrm{S}}} \; f_{\mathrm{S}}$$

આ દર્શાવે છે કે શ્રોતાને સંભળાતી આવૃત્તિ એ મૂળ આવૃત્તિ કરતાં ઊંચી આવૃત્તિ સંભળાશે. $(f_{
m L} > f_{
m S})$

(ii) શ્રોતા સ્થિર હોય અને ધ્વનિ-ઉદ્ગમ શ્રોતાથી દૂર થાય તે કિસ્સામાં $v_{\rm L}=0$ અને $v_{\rm S}=+v_{\rm S}$ થશે.

શ્રોતાને સંભળાતી આવૃત્તિ
$$f_{\rm L}=rac{v}{v+v_{
m S}}f_{
m S}.$$

આ દર્શાવે છે કે $f_{
m L} < f_{
m S}$ એટલે કે શ્રોતાને મૂળ આવૃત્તિ કરતાં નીચી આવૃત્તિ સંભળાશે.

(iii) શ્રોતા અને ધ્વનિ-ઉદ્દગમ બંને એકબીજાં તરફ ગતિ કરતાં હોય, તો $v_{\rm L} = + v_{\rm L}$ અને $v_{\rm S} = - v_{\rm S}$ થશે. આથી શ્રોતાને સંભળાતી આવૃત્તિ,

$$f_{\rm L} = \frac{v + v_{\rm L}}{v - v_{\rm S}} f_{\rm S}$$

આ કિસ્સામાં પણ $f_{_{
m L}} > f_{_{
m S}}$ થશે.

(iv) શ્રોતા અને ધ્વનિ-ઉદ્ગમ એકબીજાંથી દૂર જતાં હોય તે કિસ્સામાં $v_L = -v_L$ અને $v_S = +v_S$ લેવા પડે.

$$\therefore f_{\rm L} = \frac{v - v_{\rm L}}{v + v_{\rm S}} f_{\rm S}$$

આ કિસ્સામાં $f_{\rm r} < f_{
m s}$ થશે.

આ ગણતરીમાં આપણે માધ્યમ (હવા)ને સ્થિર ધારેલ છે. જો પવન ધ્વનિની ગતિની દિશામાં જ (ઉદ્દગમથી શ્રોતા તરફ) v_{w} જેટલા વેગથી ગતિ કરતો હોય, તો સમીકરણ 8.12.3માં ધ્વનિ-તરંગોનો વેગ vને બદલે $v + v_{w}$ અને જો પવન ધ્વનિ-તરંગોની વિરુદ્ધ દિશામાં (શ્રોતાથી ઉદ્ગમ તરફ) ગતિ કરતો હોય તો ધ્વનિ-તરંગોનો વેગ $v - v_{w}$ લેવો.

આવા બધા કિસ્સાઓમાં આપશે શ્રોતા અને ઉદ્દગમનો વેગ ધ્વનિના વેગ કરતાં ઓછો ધાર્યો છે.

ઉદાહરણ 19: એક પોલીસકારની સાઇરનમાંથી ઉદ્ભવતાં ધ્વનિની આવૃત્તિ 300 Hz છે. ધ્વનિની હવામાં ઝડપ 340 m/s છે. (a) પોલીસકાર સ્થિર હોય, ત્યારે સાયરનમાંથી ઉદ્ભવતા તરંગની તરંગલંબાઈ શોધો. (b) જો પોલીસકાર 108 km/hની ઝડપે ગતિ કરતી હોય તો કારની આગળના વિસ્તારમાં અને કારની પાછળના વિસ્તારમાં ધ્વનિ-તરંગોની તરંગલંબાઈ શોધો.

ઉકેલ : (a) પોલીસકાર સ્થિર હોય ત્યારે, $f_{\rm S}=300~{
m Hz},~ v=340~{
m m/s}.$ સાયરનમાંથી ઉદ્ભવતાં તરંગની તરંગલંબાઈ

$$\lambda = \frac{v}{f_S} = \frac{340}{300} = 1.13 \text{ m}.$$

(b) પોલીસકારની ઝડપ $v_{\rm S} = 108$ km/h = 30 m/s.

હવે
$$f_{\rm L} = \frac{v + v_{\rm L}}{v + v_{\rm S}} f_{\rm S}$$

ગતિમાન કારની આગળના વિસ્તારમાં શ્રોતા ઊભો હોય, તો $v_{\rm L}=0$ થશે અને $v_{\rm S}=-v_{\rm S}$

$$\therefore f_{\text{front}} = \frac{v}{v - v_{\text{S}}} f_{\text{S}}$$

$$\therefore \frac{v}{\lambda_{front}} = \frac{v}{v - v_{S}} f_{S}$$

$$\therefore \lambda_{front} = \frac{v - v_{S}}{f_{S}} = \frac{340 - 30}{300} = 1.033 \text{ m}$$

હવે, ગતિમાન પોલીસકારની પાછળના વિસ્તાર માટે $v_{\rm r}=0$ અને $v_{\rm s}=+v_{\rm s}.$

$$f_{\text{behind}} = \frac{v}{v + v_{\text{S}}} f_{\text{S}}$$

$$\therefore \ \lambda_{\text{behind}} = \frac{v + v_{\text{S}}}{f_{\text{S}}} = \frac{340 + 30}{300} = 1.233 \text{m}.$$

ઉદાહરણ 20 : દરિયામાં સ્થિર રહેલી સબમરીનમાં ગોઠવેલ SONAR તંત્રમાંથી ઉદ્ભવતાં ધ્વનિ-તરંગોની આવૃત્તિ 40 kHz છે. દુશ્મનની સબમરીન એ SONAR તંત્ર તરફ 360 kmh⁻¹ની ઝડપે ગતિ કરી રહી છે. દુશ્મનની સબમરીન દ્વારા પરાવર્તિત થતાં ધ્વનિની આવૃત્તિ કેટલી હશે ? પાણીમાં ધ્વનિ-તરંગોની ઝડપ 1450 m s⁻¹ છે.

634: $f_S = 40$ kHz, v = 1450 m/s.

અહીં, SONAR માંથી ઉદ્ભવતાં ધ્વનિ-તરંગની આવૃત્તિ બે તબક્કામાં બદલાય છે.

(i) SONAR થી દુશ્મનની ગતિમાન સબમરીન તરફ જતાં આવૃત્તિ બદલાશે. આ કિસ્સામાં SONAR એ ધ્વનિ ઉદ્ગમ (S) તરીકે અને સબમરીન એ શ્રોતા (L) તરીકે વર્તશે.

આથી,
$$v_{\rm S}=0$$
 અને
$$v_{\rm L}=360~{\rm km/h}=\frac{360\times1000}{3600}=100~{\rm m/s}$$
 હવે, $f_{\rm L_1}=\frac{v+v_{\rm L}}{v+v_{\rm S}}\times f_{\rm S}$
$$=\frac{1450+100}{1450+0}\times40\times10^3$$

$$=42.758~{\rm kHz}$$

(ii) બીજા તબક્કામાં દુશ્મન સબમરીન એ 42.758 kHzની આવૃત્તિને પરાવર્તિત કરે છે. આ કિસ્સામાં સબમરીન એ ધ્વનિ-ઉદ્દ્ગમ (S) તરીકે અને SONAR એ શ્રોતા (L) તરીકે વર્તશે.

 $f_{\rm S} =$ 42.758 kHz, $\nu_{\rm L} =$ 0, $\nu_{\rm S} = -100$ m/s પરાવર્તિત તરંગની આવૃત્તિ,

$$f_{L_2} = \frac{v + v_L}{v + v_S} \times f_S$$

$$= \frac{1450 + 0}{1450 - 100} \times 42.758 \times 10^3$$

$$= 45.92 \text{ kHz}$$

આમ, સબમરીનથી પરાવર્તિત થઈ SONAR તરફ જતાં ધ્વનિની આવૃત્તિ 45.92 kHz હશે.

સારાંશ

- 1. તરંગ : માધ્યમ (કે અવકાશ)માં વિક્ષોભની ગતિને તરંગ-સ્પંદ અથવા સામાન્ય રીતે તરંગ કહે છે.
- 2. **તરંગનો કંપવિસ્તાર** : તરંગમાં 'ક્શો'ના દોલનના કંપવિસ્તારને તરંગનો કંપવિસ્તાર (A) કહે છે.
- 3. તરંગલંબાઈ અને આવૃત્તિ : તરંગ-પ્રસરણમાં જે બે ક્રમિક ક્રણોના દોલનની કળાનો તફાવત 2π rad હોય, તેમની વચ્ચેના અંતરને તરંગની તરંગલંબાઈ (λ) કહે છે. તરંગ-પ્રસરણમાં માધ્યમના ક્રણોના દોલનની આવૃત્તિને તરંગની આવૃત્તિ (f) કહે છે.

$$v = f \lambda = \frac{\omega}{k}$$

જ્યાં. v એ માધ્યમમાં તરંગની ઝડપ છે.

- 4. **યાંત્રિક-તરંગો :** જે તરંગોને પ્રસરવા માટે સ્થિતિસ્થાપક માધ્યમની જરૂર પડે છે, તેને યાંત્રિક-તરંગો કહે છે.
- 5. લં<mark>બગત અને સંગત-તરંગો</mark> : તરંગમાં માધ્યમના કશોના સ્થાનાંતર (દોલન)ની દિશા તરંગ પ્રસરશની દિશાને લંબ હોય તેવા તરંગને લંબગત તરંગ કહે છે.

જે તરંગમાં માધ્યમના ક્શોનું સ્થાનાંતર તરંગ-પ્રસરણની દિશા પર જ હોય, તેવા તરંગને સંગત-તરંગ કહે છે.

6. તરંગ-સમીકરણ : એક પારિમાણિક તરંગ-પ્રસરણની ઘટનામાં ભાગ લેતાં દરેક ક્શનું કોઈ પશ સમયે સ્થાનાંતર દર્શાવતા સમીકરણને તરંગ-સમીકરણ કહે છે. તરંગ-સમીકરણનાં જુદાં-જુદાં સ્વરૂપો નીચે મુજબ છે :

(i)
$$y = A \sin (\omega t - kx)$$
, (ii) $y = A \sin \left(\frac{t}{T} - \frac{x}{\lambda}\right)$,

(iii)
$$y = A \sin 2\pi f \left(t - \frac{x}{v}\right)$$
, (iv) $y = A \sin \frac{2\pi}{\lambda} (vt - x)$.

ઉપર્યુક્ત સમીકરણો xનાં વધતાં મૂલ્યોની દિશામાં ગતિ કરતાં તરંગ માટે છે. જો તરંગ xનાં ઘટતાં મૂલ્યોની દિશામાં પ્રસરતું હોય, તો સમીકરણમાં '–' ને બદલે '+' મૂકવું.

- યાંત્રિક-તરંગોના પ્રસરણ માટે માધ્યમની સ્થિતિસ્થાપકતા અને જડત્વ જરૂરી છે.
- 8. તણાવવાળી દોરી જેવા માધ્યમમાં લંબગત તરંગનો વેગ $u = \sqrt{\frac{T}{\mu}}$. જ્યાં, T = દોરીમાં તણાવ, $\mu =$ એકમલંબાઈ દીઠ દોરીનું દળ $= \frac{m}{L}$
- 9. સ્થિતિસ્થાપક માધ્યમમાં ધ્વનિ-તરંગનો વેગ $\nu=\sqrt{\frac{E}{\rho}}$. જ્યાં, E= માધ્યમનો સ્થિતિસ્થાપક-અંક, ho= માધ્યમની ઘનતા

વાયુ જેવા તરલ માધ્યમમાં સંગત-તરંગનો વેગ $v=\sqrt{\frac{B}{\rho}}=\sqrt{\frac{\gamma P}{\rho}}$. જયાં, B= બલ્ક મૉડ્યુલસ $\gamma=\frac{C_P}{C_V}=1.41$ (હવા માટે)

સળિયા જેવા રેખીય માધ્યમમાં સંગત-તરંગોનો વેગ : $v=\sqrt{\frac{\gamma}{\rho}}$

જયાં, $\gamma=$ યંગ મોડ્યુલસ, ho= માધ્યમની ઘનતા, વાયુમાં ધ્વિનનો વેગ (અચળ દબાણે અને આદ્ગતાએ) તેના નિરપેક્ષ તાપમાનના વર્ગમૂળના સમપ્રમાણમાં હોય છે. $v=\sqrt{\frac{\gamma RT}{M}}$ $\therefore v \propto \sqrt{T}$. ધ્વિનિનો વેગ દબાણના ફેરફાર સાથે બદલાતો નથી.

- 10. સંપાતપશાનો સિદ્ધાંત : જ્યારે માધ્યમના કોઈ ક\mathbb{S} પાસે બે કે બે કરતાં વધારે તરંગો સંપાત થાય છે, ત્યારે તે ક\mathbb{S}નું સ્થાનાંતર તે દરેક તરંગ વડે ઉદ્દભવતા સ્વતંત્ર સ્થાનાંતરોના સિદિશ સરવાળા જેટલું હોય છે.
- 11. સ્થિત-તરંગો : સમાન કંપવિસ્તારવાળાં અને સમાન આવૃત્તિઓવાળાં પણ પરસ્પર વિરુદ્ધ દિશામાં ગિત કરતા અને સંપાતીકરણ અનુભવતાં તરંગોની સમાસ અસર રૂપે મળતાં તરંગો પ્રગામીપણાના ગુણધર્મ ગુમાવી બેસે છે. આવાં તરંગોને સ્થિત-તરંગો કહે છે.

સ્થિત-તરંગનું સમીકરણ $y=-2\mathrm{A}\mathrm{sin}kx$ $\cos\omega t$, આ સ્થિત-તરંગનો કંપવિસ્તાર $2\mathrm{A}~\mathrm{sin}kx$ સ્થિત-તરંગમાં નિસ્પંદ-બિંદુઓનાં સ્થાન $x_n=\frac{n\lambda}{2}$.

206 બ્યોતિકવિશાન

જ્યાં, n=1, 2, 3... આ બિંદુઓ પાસે કંપવિસ્તાર શૂન્ય હોય છે.

સ્થિત-તરંગમાં પ્રસ્પંદ-બિંદુઓનાં સ્થાન $x_n = (2n-1)\frac{\lambda}{4}$

જ્યાં, $n=1,\,2,\,3,...$ આ બિંદુઓ પાસે કંપવિસ્તાર 2A હોય છે.

 બંને છેડે તણાવ સાથે બાંધેલી દોરીમાં ઉદ્ભવતા નૉર્મલ મોડ્સ ઑફ વાઇબ્રેશનને અનુરૂપ શક્ય આવૃત્તિઓ,

$$f_n=rac{nv}{2\mathrm{L}}=rac{n}{2\mathrm{L}}\,\sqrt{rac{\mathrm{T}}{\mu}}\,$$
 sai, $n=1,\,2,\,3.....$

13. ક્લોઝૂડ પાઇપમાં સ્થિત તરંગભાત મેળવવા માટે શક્ય તરંગલંબાઈઓ,

$$\lambda_n=rac{4{
m L}}{(2n-1)}$$
 અને પાઇપની લંબાઈ શક્ય આવૃત્તિઓ $f_n=(2n-1)rac{v}{4{
m L}}=(2n-1)f_1$

જ્યાં, $n=1,\,2,\,3,...$. અને L= પાઇપની લંબાઈ

ક્લોઝ્ડ પાઇપમાં f_1 , $3f_1$, $5f_1$, જેવી હાર્મોનિક જ શક્ય છે.

14. ઓપન પાઇપમાં સ્થિત તરંગભાત મેળવવા માટે શક્ય તરંગલંબાઈઓ,

$$\lambda_n=rac{2\mathbf{L}}{n}$$
 જ્યાં, $n=1,\,2,\,3,\,...$. અને $\mathbf{L}=$ પાઇપની લંબાઈ

શક્ય આવૃત્તિઓ
$$f_n=rac{nv}{2\Gamma}=nf_1$$

ઓપન પાઇપમાં $f_{\scriptscriptstyle 1}$, $2f_{\scriptscriptstyle 1}$, $3f_{\scriptscriptstyle 1}$, જેવી બધી જ હાર્મોનિક શક્ય છે.

15. સ્પંદ : સમાન કંપવિસ્તારવાળા પણ સહેજ જુદી પડતી આવૃત્તિઓવાળાં તરંગોના સંપતીકરણને કારણે આવર્ત રીતે કંપવિસ્તાર અને પરિણામે ધ્વિનિની પ્રબળતા મહત્તમ બનવાની ઘટનાને સ્પંદ કહે છે.

એક સેકન્ડમાં ઉત્પન્ન થતાં સ્પંદોની સંખ્યા $=f_{_1}-f_{_2}$

16. ડૉપ્લર-અસર : જ્યારે ધ્વનિ-ઉદ્ગમ કે શ્રોતા કે બંને હવાના માધ્યમની સાપેક્ષે અને એકબીજાની સાપેક્ષે ગતિ કરે છે, ત્યારે શ્રોતા દ્વારા અનુભવાતી ધ્વનિની આવૃત્તિ, ઉદ્દગમ દ્વારા ઉત્સર્જાતી ધ્વનિની આવૃત્તિ કરતાં જુદી હોય છે. આ ઘટનાને ડૉપ્લર-અસર કહે છે.

શ્રોતાને સંભળાતી આવૃત્તિ,
$$f_{
m L}=rac{v\pm v_{
m L}}{v\pm v_{
m S}}f_{
m S}$$

જ્યાં,
$$v =$$
ધ્વનિનો વેગ $v_r =$ શ્રોતાનો વેગ

$$v_{\rm s}=$$
 ઉદ્દુગમનો વેગ

 $f_{
m S}=$ ઉદ્ગમ દ્વારા ઉત્સર્જાતા ધ્વનિની આવૃત્તિ

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

1.	યાંત્રિક તરંગો નું વહન કરે છે.				
	(A) ସିର୍ଷ	(B) દ્રવ્ય			
	(C) ઊર્જા અને દ્રવ્ય બંને	(D) એક પણ નહિ			
2.	બેક સ્વરકાંટો (tunign fork) એ એક સેકન્ડમાં 256 વાર ધ્રુજારી અનુભવે છે. જો માધ્ય વિનની ઝડપ 330 m/s હોય, તો સ્વરકાંટાની ઉત્પન્ન થતાં તરંગની તરંગલંબાઈ				
	(A) 0.56 cm (B) 0.89 m	(C) 1.11 m (I	O) 1.29 m		
3.	જ્યારે 300 Hz આવૃત્તિવાળો ધ્વનિ માધ્યમમાંથી પસાર થાય છે, ત્યારે માધ્યમના કણનું મહત્તમ સ્થાનાંતર 0.1 cm છે. આ કણનો મહત્તમ વેગ હશે.				
	(A) 60π cm/s (B) 30π cm/s	(C) 30 cm/s (I	0) 60 cm/s		
4.	$500~ m{Hz}$ આવૃત્તિવાળા એક તરંગની ઝડપ $360~ m{m~s^{-1}}$ છે. તેના પર 60° જેટલો કળા-તફ્રાવત ધરાવતા બે ક્શો વચ્ચેનું લઘુતમ અંતર છે.				
	(A) 0.23 m (B) 0.12 m	(C) 8.33 m (I	O) 60 m		
5.	આકૃતિમાં દર્શાવેલ તરંગની માધ્યમમાં 0.05 ઝડપ 330 m/s છે. આ તરંગ ધન x -દિશામાં ગતિ કરતું હોય તો તેનું તરંગ સમીકરણ	5 m O O O O O O O O O O O O O O O O O O	x		
	આકૃતિ 8.18				
6.	(A) $y = 0.05 \sin 2\pi (4000 \ t - 12.5x)$ (B) $y = 0.05 \sin 2\pi (4000 \ t - 122.5x)$ (C) $y = 0.05 \sin 2\pi (3300 \ t - 10x)$ m (D) $y = 0.05 \sin 2\pi (3300 \ t - 10t)$ m $y = A\sin^2 (kx - \omega t)$ તરંગ-સમીકરણ ધરાવ	m	અને આવૃત્તિ		
	(A) A, $\omega/2\pi$ (B) $\frac{A}{2}$, $\frac{\omega}{\pi}$	(C) 2A, $\frac{\omega}{4\pi}$ (D)	\sqrt{A} , $\frac{\omega}{2\pi}$		
7.	આકૃતિમાં દર્શાવ્યા અનુસાર બે સમાન તરંગ-સ્પંદો, દોરી પર પરસ્પર વિરુદ્ધ દિશામાં 2.5 cm/sની ઝડપથી ગતિ કરે છે. પ્રારંભમાં આ બે તરંગ-સ્પંદ વચ્ચેનું	← 10cm → (a)	5cm (b)		
	અંતર 10 cm છે. બે સેકન્ડ	(c)	(d)		
	બાદ દોરીની સ્થિતિ કેવી હશે ?	આકૃતિ 8.19			
8.	$y = 10\sin(100\ t)\cos(0.01x)$ થી ૨જૂ થતાં િ અહીં, x એ y માં અને t એ s માં છે.	_	ઝડપ છે.		
	1 2 1				
	(A) 1 m s^{-1} (B) 10^2 m s^{-1}	(C) 10^3 m s^{-1} (E	10^4 m s^{-1}		

9.	7 m લાંબી દોરીનું દળ તરંગની ઝડપ	0.035 kg છે. જો દોર્ર	l પરનો તણાવ 60. 5	N હોય, તો દોરી પર		
	(A) 77 m s ⁻¹	(B) 102 m s^{-1}	(C) 110 m s ⁻¹	(D) 165 m s^{-1}		
10.		ોના સંપાતીકરણથી ઉદ્ભવતા સ્પંદમાં મહત્તમ તીવ્રતા એ આપાત થતા મૂળ તરંગો \cdot ો x ગણી હોય, તો $x=$.				
	(A) 1	(B) $\sqrt{2}$	(C) 2	(D) 4		
11.	2.00 m અને 2.02 m લ સ્પંદ ઉત્પન્ન કરે છે. જો					
	(A) 400 m/s	(B) 402 m/s	(C) 404 m/s	(D) 406 m/s		
12.	એક માધ્યમમાં 1200 m	/s જેટલા ઘટક-તરંગોની	ઝડપ ધરાવતા સ્થિત-	-તરંગોમાં ક્રમિક પ્રસ્પંદ-		
	બિંદુ અને નિસ્પંદ-બિંદુ વચ્ચેનું અંતર 1 m હોય, તો સ્થિત તરંગની આવૃત્તિ					
	(A) 300 Hz	(B) 400 Hz	(C) 600 Hz	(D) 1200 Hz		
13.	ધ્વનિ ઉદ્દગમ અને શ્રોતા	બંને એકબીજાની સામે	50 m/s ની સમાન ઝ	ડપે સુરેખ પથ પર ગતિ		
	કરી રહ્યા છે. જો શ્રોતાને સંભળાતી આવૃત્તિ 440 Hz હોય, તો ધ્વનિની મૂળ આવૃત્તિ કેટલી					
	હશે ? (હવામાં ધ્વનિની ઝડપ 340 m/s છે.)					
	(A) 327 s^{-1}	(B) 367 s^{-1}	(C) 390 s^{-1}	(D) 591 s^{-1}		
14.	એક ક્લોઝ્ડ પાઇપ માટે હવાના સ્તંભની મૂળભૂત આવૃત્તિ 512 Hz છે. જો આ પાઇપ બંને					
	છેડેથી ખુલ્લી હોય, તો મ	ાૂળભૂત આવૃત્તિ	Hz થાય.			
	(A) 1024	(B) 512	(C) 256	(D) 128		
15.		ઝ્ડ પાઇપમાં હવાના સ્તંભની લંબાઈ cm હોય, તો તેનો હવાનો સ્તંભ 264 Hz વૃત્તિવાળા સ્વરકાંટા સાથે પ્રથમ અનુનાદમાં હોય, ધ્વનિની હવામાં ઝડપ 330 m/s.				
	(A) 31.25	(B) 62.50	(C) 93.75	(D) 125		
16.	•	આદર્શવાયુના તાપમાનમાં $600~\mathrm{K}$ જેટલો વધારો કરતાં, તેમાં ધ્વનિ-તરંગની ઝડપ એ ભેક ઝડપ કરતાં $\sqrt{3}$ ગણી થાય છે. આ વાયુનું પ્રારંભિક તાપમાન				
	(A) -73 °C					
17.	બે તરંગો $y_1 = A\sin (y_1)$ માધ્યમમાં સ્પંદ ઉત્પન્ન	$(2000\pi)t$ (m) अने y_2	$_{2} = A \sin (2008\pi)t$	t (m)ના સંપાતીકરણથી		
	(A) 0	(B) 1	(C) 4	(D) 8		
18.	એક સ્થિર શ્રોતા તરફ, ધ	વનિ ઉદ્ગમ એ ધ્વનિની	. ઝડપના 1/10 ગણી	ઝડપે ગતિ કરી રહ્યું છે.		
	શ્રોતાને સંભળાતી આવૃત્તિ અને સાચી આવૃત્તિનો ગુજ્ઞોત્તર					
	(A) 10/9	(B) 11/10	(C) $(11/10)^2$	(D) $(9/10)^2$		
19.	એક લંબગત તરંગનું સ		,	ા કઈ તરંગલંબાઈ માટે		
	ક્ણનો મહત્તમ વેગ એ તરંગ-વેગથી બમણો થાય ?					
	(A) $\lambda = \frac{\pi A}{4}$	(B) $\lambda = \frac{\pi A}{2}$	(C) $\lambda = \pi A$	(D) $\lambda = 2\pi A$		

20. કયા તાપમાને હવામાં ધ્વનિની ઝડપ એ $0^{\circ}\mathrm{C}$ તાપમાને ઝડપ હોય તેના કરતાં બમણી થશે ?

(A) 273 K

- (B) 546 K
- (C) 1092 K
- (D) 0 K

જવાબો

- 1. (A) 2. (D) 3. (A) 4. (B) 5. (C) 6. (B) 7. (C) 8. (D) 9. (C) **10.** (D) 11. (C) 12. (A) 13. (A) 14. (A) 15. (A) 16. (B) 17. (C) 18. (A) 19. (C) 20. (C)
- નીચે આપેલ પ્રશ્નોના જવાબ ટૂંકમાં આપો :
- 1. તરંગ તીવ્રતાની વ્યાખ્યા લખો અને તેનો SI એકમ જણાવો.
- 🛂 તરંગની કોણીય તરંગસંખ્યા (તરંગસદિશ) એટલે શું ?
- 3. એક પ્રગામી તરંગની તરંગલંબાઈ λ અને આવૃત્તિ f હોય, તો t સેકન્ડમાં તરંગે કાપેલું અંતર કેટલું થશે ?
- 4. યાંત્રિક તરંગના પ્રસરણ માટે માધ્યમના કયા ગુણધર્મો જરૂરી છે ?
- દબાણના તરંગો કોને કહેવાય ?
- માધ્યમના તાપમાન સાથે તેમાં પ્રસરતા તરંગની ઝડપ કેવી રીતે બદલાય છે ?
- જો તારમાં રહેલું તણાવબળ ચાર ગણું કરવામાં આવે, તો તારમાં તરંગની ઝડપમાં શો ફેરફાર થશે ?
- માધ્યમમાં દબાણમાં થતો ફેરફાર તેમાંથી પસાર થતાં તરંગની ઝડપ પર શું અસર કરશે ?
- 9. એક તરંગનું તરંગ સમીકરણ $y = 5 \sin(0.01x 2t)$ છે. જ્યાં x અને y એ cmમાં છે. આ તરંગની ઝડપ કેટલી હશે ?
- 10. દોરી પર પ્રસરતું તરંગ જ્યારે જિંત આધારથી પરાવર્તિત થાય, તો તેની કળામાં કેટલો ફેરફાર થાય ?
- 11. સ્થિત-તરંગમાં નિસ્પંદ-બિંદુ અને પ્રસ્પંદ-બિંદુનો કંપવિસ્તાર કેટલો હશે ?
- 12. સ્થિત-તરંગમાં ક્રમિક નિસ્પંદ-બિંદુ અને પ્રસ્પંદ-બિંદુ વચ્ચેનું અંતર 5 cm હોય, તો બે ક્રમિક પ્રસ્પંદ-બિંદુ વચ્ચેનું અંતર કેટલું હશે ?
- 13. ક્લોઝ્ડ પાઇપની મૂળભૂત આવૃત્તિ 300 Hz છે, તો તેના દ્વિતીય ઓવરટોનની આવૃત્તિ કેટલી હશે ?
- 14. ધ્વનિઉદ્દ્ગમની આવૃત્તિ 440 Hz છે. જો ધ્વનિઉદ્દ્ગમ અને શ્રોતાનો સાપેક્ષ વેગ શૂન્ય હોય તો શ્રોતાને કઈ આવૃત્તિ સંભળાશે ?
- 15. સ્પંદ એટલે શું ?

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. તરંગોનું વર્ગીકરણ સમજાવો. પ્રત્યેક તરંગનાં ઉદાહરણ આપો.
- તરંગની તરંગલંબાઈ, તરંગસંખ્યા અને આવૃત્તિ સમજાવો.
- પારિમાણિક વિશ્લેષણની મદદથી તણાવવાળી દોરી પર પ્રસરતા તરંગના વેગનું સૂત્ર મેળવો.
- માધ્યમમાં ધ્વનિ-તરંગોનું પ્રસરણ કેવી રીતે થાય છે તે સમજાવો.
- હવામાં ધ્વનિની ઝડપ માટે ન્યૂટનનું સુત્ર લખો. ન્યૂટનના સુત્રમાં લાપ્લાસે કરેલો સુધારો સમજાવો.

6. xના વધતા મૂલ્યની દિશામાં ગતિ કરતા એક પારિમાણિક પ્રગામી તરંગનું તરંગ-સમીકરણ $y = A\sin\left(\omega t - kx\right)$ મેળવો.

- તરંગોના સંપાતપણાનો સિદ્ધાંત લખો અને સમજાવો.
- સ્થિત-તરંગો એટલે શું ? બે છેડેથી જડિત કરેલ દોરીમાં ઉદ્ભવતા સ્થિત-તરંગનું સમીકરણ મેળવો.
- દર્શાવો કે ક્લોઝ્ડ પાઇપમાં રચાતા સ્થિત-તરંગમાં ફક્ત મૂળભૂત આવૃત્તિના એકી પૂર્શાંક હાર્મોનિક જ શક્ય છે.
- 10. ડૉપ્લર-અસર એટલે શું ? ધ્વિનિઉદ્દગમ સ્થિર હોય અને શ્રોતા ઉદ્દગમ તરફ ગિત કરતો હોય તે કિસ્સામાં શ્રોતા તરફ જતાં તરંગની તરંગલંબાઈનું સૂત્ર મેળવો.

નીચેના દાખલા ગણો :

- પ્રગામી હાર્મોનિક તરંગના કિસ્સામાં સાબિત કરો કે કોઈ પણ કણના દોલનના તાત્ક્ષણિક વેગના મૂલ્ય અને તરંગ-ઝડપનો ગુણોત્તર તરંગથી રચાતા આકારના આ બિંદુ પાસેના તે સમયના ઢાળના ઋણ મૂલ્ય જેટલો હોય છે.
- ધરતીકંપના કારણે પૃથ્વીમાં લંબગત (S) અને સંગત (P) એમ બંને પ્રકારના ધ્વનિના તરંગો ઉદ્ભવે છે. S તરંગની ઝડપ લગભગ 4.0 km/s અને P તરંગની ઝડપ લગભગ 8.0 km/s હોય છે. ધરતીકંપ નોંધાતા સિસ્મોગ્રાફ પર પહેલું P તરંગ એ પહેલાં S તરંગ કરતાં 4 મિનિટ વહેલું નોંધાય છે. તરંગો સુરેખપથ પર પ્રસરે છે, તેવું ધારીને આ સિસ્મોગ્રાફથી કેટલા અંતરે ધરતીકંપનું ઉદ્દગમસ્થાન હશે તેનક્કી કરો. [જવાબ: લગભગ 1920 km.]
- 3. એક પ્રગામી હાર્મોનિક તરંગનો કંપવિસ્તાર 10 m છે. આ તરંગ-પ્રસરણની ઘટનામાં ઉદ્દ્ગમથી 2 m અંતરે આવેલા કણનું 2 સેકન્ડને અંતે સ્થાનાંતર 5 m છે અને ઉદ્દગમથી 16 m અંતરે આવેલા કણનું 8 સેકન્ડના અંતે સ્થાનાંતર $5\sqrt{3} \text{ m}$ છે. આ તરંગની કોણીય આવૃત્તિ અને તરંગસદિશ શોધો. $[\text{જવાબ}: \omega = \pi/8 \text{ rad/s}, \ k = \pi/24 \text{ rad/m}]$
- 4. તણાવવાળી દોરી પર x—િદશામાં ગિત કરતાં તરંગનું તરંગ સમીકરણ, $y=3 \sin \left[(3.14)x (314)t \right]$ છે. જ્યાં x એ cm અને t એ સેકન્ડમાં છે.
 - (i) દોરી પરના કણની મહત્તમ ઝડપ શોધો.
 - (ii) ઊગમબિંદુથી $x=6.0~{\rm cm}$ અંતરે આવેલા દોરી પરના કણનો =t=0.11 સેકન્ડે પ્રવેગ શોધો. [જવાબ : મહત્તમ વેગ $=9.4~{\rm m/s},~a=0$]
- 5. 0°C તાપમાને 250 Hz આવૃત્તિવાળો એક ધ્વનિઉદ્દગમ હવામાં 1.32 m તરંગ લંબાઈવાળા તરંગો ઉત્પન્ન કરે છે, તો 27°C તાપમાને તેની તરંગલંબાઈમાં કેટલો વધારો થયો હશે ?
 [જવાબ: 0.06 m]
- 6. હાઇડ્રોજન વાયુના કેટલા તાપમાને તેમાંથી પસાર થતાં ધ્વનિની ઝડપ એ 1200 °C તાપમાને રહેલા ઑક્સિજન વાયુમાં ધ્વનિની ઝડપ જેટલી હશે ? ઑક્સિજનની ઘનતા, હાઇડ્રોજનની ઘનતા કરતાં 16 ગણી છે.
 [જવાબ: -180.9 °C]
- 7. બે છેડે તણાવ સાથે બાંધેલા એક તારની લંબાઈ $110~{\rm cm}$ છે. બે ટેકાઓ ${\rm s}_1$ અને ${\rm s}_2$ યોગ્ય સ્થાનોએ મૂકીને તારને એવી રીતે કંપિત કરવામાં આવે છે, કે તેના ત્રણ વિભાગોમાં રચાતા સ્થિત–તરંગોની મૂળભૂત આવૃત્તિઓ $f_1:f_2:f_3=1:2:3$ હોય, તો ટેકાઓનાં સ્થાન (કે તારના વિભાગોની લંબાઈઓ) શોધો.

[8414 : $L_1 = 60$ cm, $L_2 = 30$ cm, $L_3 = 20$ cm]