Correction du devoir surveillé 2.

Exercice 1

- **2°)** a) Pour $n \geq 2$, on note $H_n : F_n \geq n-1$.
 - \star $F_2 = 1 \ge 1$ et $F_3 = 2 \ge 2$ Donc H_2 et H_3 sont vraies.
 - ★ Soit $n \ge 2$ fixé. On suppose que H_n et H_{n+1} sont vraies. Montrons que H_{n+2} l'est aussi. $F_{n+2} = F_{n+1} + F_n$. Or par H_n et H_{n+1} , $F_{n+1} \ge n$ et $F_n \ge n-1$ donc, par somme, $F_{n+2} \ge 2n-1$.

Or $(2n-1)-(n+1)=n-2\geq 0$ car $n\geq 2$, donc $F_{n+2}\geq n+1$: H_{n+2} est vraie.

- \star On a montré par récurrence double que : $\forall n \geq 2, F_n \geq n-1$.
- **b)** $n-1 \underset{n \to +\infty}{\longrightarrow} +\infty$ et, pour tout $n \ge 2, F_n \ge n-1$ donc $F_n \underset{n \to +\infty}{\longrightarrow} +\infty$.
- **3°)** a) Soit $n \in \mathbb{N}^*$. On note $H_n : \sum_{k=1}^n F_k^2 = F_n F_{n+1}$.
 - ★ Pour $n = 1 : \sum_{k=1}^{1} F_k^2 = F_1^2 = 1$.

D'autre part, $F_1F_2 = 1$. Donc H_1 est vraie.

 \bigstar Soit $n\in\mathbb{N}$ fixé. On suppose que H_n est vraie. Montrons que H_{n+1} est vraie.

$$\sum_{k=1}^{n+1} F_k^2 = \sum_{k=1}^n F_k^2 + F_{n+1}^2$$

$$= F_n F_{n+1} + F_{n+1}^2 \quad \text{par } H_n$$

$$= F_{n+1} (F_n + F_{n+1})$$

$$= F_{n+1} F_{n+2} \quad \text{par definition de la suite}$$

Ainsi, H_{n+1} est vraie.

- \star On a montré par récurrence que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n F_k^2 = F_n F_{n+1}$.
- **b)** Pour $n \in \mathbb{N}$, on pose $H_n : F_{n+1}^2 F_n F_{n+2} = (-1)^n$.
 - ★ Pour n = 0, on a $F_1^2 F_0 F_2 = 1 0 \times 1 = 1 = (-1)^0$. Donc H_0 est vraie.
 - \star Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Montrons que H_{n+1} est vraie.

$$F_{n+2}^{2} - F_{n+1}F_{n+3} = F_{n+2}(F_{n+1} + F_{n}) - F_{n+1}(F_{n+2} + F_{n+1})$$

$$= F_{n+2}F_{n} - F_{n+1}^{2}$$

$$= -(-1)^{n} \quad \text{par } H_{n}$$

$$= (-1)^{n+1}$$

Ainsi, H_{n+1} est vraie.

 \bigstar Conclusion : on a montré par récurrence que, pour tout $n \in \mathbb{N}, F_{n+1}^2 - F_n F_{n+2} = (-1)^n$

c) Soit $n \in \mathbb{N}$.

$$\sum_{k=0}^{n} F_k = \sum_{k=0}^{n} (F_{k+2} - F_{k+1})$$

$$= F_2 - F_1 + F_3 - F_2 + F_4 - F_3 + \dots + F_{n+2} - F_{n+1}$$

$$= -F_1 + F_{n+2} \quad \text{(somme téléscopique)}$$

$$\sum_{k=0}^{n} F_k = F_{n+2} - 1$$

- 4°) a) 2n, 2n+1 et 2n+2 sont des indices supérieurs ou égaux à 2 donc, par la question 2a, $F_{2n} \geq 2n-1$ donc $F_{2n} \geq 1$. De même, $F_{2n+1} \geq 2n \geq 2$, $F_{2n+2} \geq 2n+1 \geq 3$. Ainsi, $\frac{1}{F_{2n}}$, $\frac{1}{F_{2n+1}}$, existent. De plus, Arctan est définie sur \mathbb{R} , donc $\underline{A_n}$ et B_n existent. De plus, on $a:0<\frac{1}{F_{2n}}\leq 1$, $0<\frac{1}{F_{2n+1}}<1$ et $0<\frac{1}{F_{2n+2}}<1$. Comme Arctan est strictement croissante sur \mathbb{R} , que Arctan(0)=0 et que Arctan $(1)=\frac{\pi}{4}:0<$ Arctan $\left(\frac{1}{F_{2n}}\right)\leq \frac{\pi}{4}, 0<$ Arctan $\left(\frac{1}{F_{2n+1}}\right)<\frac{\pi}{4}, 0<$ Arctan $\left(\frac{1}{F_{2n+2}}\right)<\frac{\pi}{4}$. Ainsi, $0<A_n\leq \frac{\pi}{4}$ et $0<B_n<\frac{\pi}{2}$.
 - Donc, A_n et B_n sont dans $\left]0, \frac{\pi}{2}\right[$.
 - **b)** Simplifions $tan(B_n)$:

$$\tan(B_n) = \frac{\tan\left(\operatorname{Arctan}\left(\frac{1}{F_{2n+1}}\right)\right) + \tan\left(\operatorname{Arctan}\left(\frac{1}{F_{2n+2}}\right)\right)}{1 - \tan\left(\operatorname{Arctan}\left(\frac{1}{F_{2n+1}}\right)\right) \tan\left(\operatorname{Arctan}\left(\frac{1}{F_{2n+2}}\right)\right)}$$

$$= \frac{\frac{1}{F_{2n+1}} + \frac{1}{F_{2n+2}}}{1 - \frac{1}{F_{2n+1}} \frac{1}{F_{2n+2}}}$$

$$= \frac{F_{2n+2} + F_{2n+1}}{F_{2n+1}F_{2n+2} - 1}$$

$$= \frac{F_{2n+1}}{F_{2n+1}(F_{2n+1} + F_{2n}) - 1}$$

$$= \frac{F_{2n+3}}{F_{2n+1}^2 + F_{2n+1}F_{2n-1}}$$

Or, par 3b, $F_{2n+1}^2 - F_{2n}F_{2n+2} = (-1)^{2n} = 1$ donc $F_{2n+1}^2 = 1 + F_{2n}F_{2n+2}$.

$$\tan(B_n) = \frac{F_{2n+3}}{F_{2n}F_{2n+2} + F_{2n+1}F_{2n}}$$

$$= \frac{F_{2n+3}}{F_{2n}(F_{2n+1} + F_{2n+2})}$$

$$\tan(B_n) = \frac{1}{F_{2n}} \qquad \operatorname{car} F_{2n+1} + F_{2n+2} = F_{2n+3}$$

c) tan est strictement croissante sur $\left]0, \frac{\pi}{2}\right[$ et A_n et B_n sont dans $\left]0, \frac{\pi}{2}\right[$ donc

$$A_n = B_n \iff \tan(A_n) = \tan(B_n)$$

$$\tan(A_n) = \tan\left(\arctan\left(\frac{1}{F_{2n}}\right)\right) = \frac{1}{F_{2n}}$$

Donc, par la question précédente, $tan(A_n) = tan(B_n)$. On en déduit que $A_n = B_n$.

d) Pour
$$n=1$$
, sachant les valeurs de F_2 , F_3 et F_4 :

$$\operatorname{Arctan}(1) = \operatorname{Arctan}\left(\frac{1}{2}\right) + \operatorname{Arctan}\left(\frac{1}{3}\right) \text{ i.e. } \boxed{\frac{\pi}{4} = \operatorname{Arctan}\left(\frac{1}{2}\right) + \operatorname{Arctan}\left(\frac{1}{3}\right)}.$$

Pour
$$n = 2$$
: $Arctan\left(\frac{1}{3}\right) = Arctan\left(\frac{1}{5}\right) + Arctan\left(\frac{1}{8}\right)$

 5°) Soit $n \in \mathbb{N}^*$.

$$S_{n} = \operatorname{Arctan}\left(\frac{1}{F_{1}}\right) + \sum_{k=1}^{n} \operatorname{Arctan}\left(\frac{1}{F_{2k+1}}\right)$$

$$= \operatorname{Arctan}\left(1\right) + \sum_{k=1}^{n} \left[\operatorname{Arctan}\left(\frac{1}{F_{2k}}\right) - \operatorname{Arctan}\left(\frac{1}{F_{2k+2}}\right)\right] \quad \text{par 4c}$$

$$= \frac{\pi}{4} + \operatorname{Arctan}\frac{1}{F_{2}} - \operatorname{Arctan}\frac{1}{F_{4}} + \operatorname{Arctan}\frac{1}{F_{4}} - \operatorname{Arctan}\frac{1}{F_{6}} + \dots + \operatorname{Arctan}\frac{1}{F_{2n}} - \operatorname{Arctan}\frac{1}{F_{2n+2}}$$

$$= \frac{\pi}{4} + \operatorname{Arctan}\left(\frac{1}{F_{2}}\right) - \operatorname{Arctan}\left(\frac{1}{F_{2n+2}}\right) \quad \text{(somme t\'elescopique)}$$

$$S_{n} = \frac{\pi}{2} - \operatorname{Arctan}\left(\frac{1}{F_{2n+2}}\right)$$

- **6°**) Par la question 2b, $F_n \xrightarrow[n \to +\infty]{} + \infty$ donc $F_{2n+2} \xrightarrow[n \to +\infty]{} + \infty$. Ainsi, $\frac{1}{F_{2n+2}} \xrightarrow[n \to +\infty]{} 0$.

 Or $\operatorname{Arctan}(x) \xrightarrow[x \to 0]{} \operatorname{Arctan}(0) = 0$ donc, par composition, $\operatorname{Arctan}\left(\frac{1}{F_{2n+2}}\right) \xrightarrow[n \to +\infty]{} 0$.

 Finalement, $S_n \xrightarrow[n \to +\infty]{} \frac{\pi}{2}$.
- 7°) Le trinôme x^2-x-1 a pour discriminant $\Delta=1+4=5$ donc les racines sont $\frac{1+\sqrt{5}}{2}$ et $\frac{1-\sqrt{5}}{2}$. $1-\sqrt{5}<0$ et $1+\sqrt{5}>0$.

Ainsi, il y a un unique réel positif φ tel que $\varphi^2 = \varphi + 1$. On a : $\varphi = \frac{1 + \sqrt{5}}{2}$.

$$\varphi + \frac{1}{\varphi} = \frac{1+\sqrt{5}}{2} + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2} + \frac{2(1-\sqrt{5})}{1-5} = \frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2} = \sqrt{5}.$$
On a bien : $\varphi + \frac{1}{\varphi} = \sqrt{5}$.

- **8°)** On pose, pour $n \in \mathbb{N}, H_n : F_n = \frac{1}{\sqrt{5}} \left(\varphi^n + \frac{(-1)^{n+1}}{\varphi^n} \right)$.
 - $\star \frac{1}{\sqrt{5}} \left(\varphi^0 + \frac{(-1)}{\varphi^0} \right) = \frac{1}{\sqrt{5}} (1 1) = 0 = F_0 \text{ donc } H_0 \text{ est vraie.}$ $\frac{1}{\sqrt{5}} \left(\varphi^1 + \frac{(-1)^2}{\varphi^1} \right) = \frac{1}{\sqrt{5}} \left(\varphi + \frac{1}{\varphi} \right) = 1 \text{ par la question précédente.}$ Or $F_1 = 1 \text{ donc } H_1 \text{ est vraie.}$
 - \bigstar Soit $n \in \mathbb{N}$ fixé. On suppose que H_n et H_{n+1} sont vraies. Montrons que H_{n+2} est vraie.

$$F_{n+2} = F_{n+1} + F_n$$

$$= \frac{1}{\sqrt{5}} \left(\varphi^{n+1} + \frac{(-1)^{n+2}}{\varphi^{n+1}} + \varphi^n + \frac{(-1)^{n+1}}{\varphi^n} \right)$$

$$\begin{split} F_{n+2} &= \frac{1}{\sqrt{5}} \left(\varphi^{n+1} + \varphi^n + (-1)^{n+1} \left(-\frac{1}{\varphi^{n+1}} + \frac{1}{\varphi^n} \right) \right) \\ &= \frac{1}{\sqrt{5}} \left(\varphi^n (\varphi + 1) + (-1)^{n+1} \frac{-\varphi + \varphi^2}{\varphi^{n+2}} \right) \\ &= \frac{1}{\sqrt{5}} \left(\varphi^{n+2} + (-1)^{n+1} \frac{1}{\varphi^{n+2}} \right) & \text{car } \varphi^2 = \varphi + 1 \\ &= \frac{1}{\sqrt{5}} \left(\varphi^{n+2} + \frac{(-1)^{n+3}}{\varphi^{n+2}} \right) & \text{car } n+1 \text{ et } n+3 \text{ ont même parité} \end{split}$$

Ainsi, H_{n+2} est vraie.

★ On a montré par récurrence double que : $\forall n \in \mathbb{N}, F_n = \frac{1}{\sqrt{5}} \left(\varphi^n + \frac{(-1)^{n+1}}{\varphi^n} \right)$

9°) Soit $n \in \mathbb{N}$. Par la question 8,

$$F_n x^n = x^n \times \frac{1}{\sqrt{5}} \left(\varphi^n + \frac{(-1)^{n+1}}{\varphi^n} \right) = \frac{1}{\sqrt{5}} \left((x\varphi)^n - \left(-\frac{x}{\varphi} \right)^n \right)$$

 $x\varphi \in [0,1[\text{ donc } (x\varphi)^n \underset{n \to +\infty}{\longrightarrow} 0.$

$$\left| -\frac{x}{\varphi} \right| = \frac{x}{\varphi} \le \frac{1}{\varphi^2} < 1 \text{ car } \varphi > 1. \text{ Donc } -1 < -\frac{x}{\varphi} < 1 \text{ donc } \left(-\frac{x}{\varphi} \right)^n \underset{n \to +\infty}{\longrightarrow} 0.$$

Ainsi, par opérations, $\lim_{n \to +\infty} F_n x^n = 0$.

10°) a) Soit n un entier ≥ 2 .

$$(1 - x - x^{2})T_{n}(x) = (1 - x - x^{2}) \sum_{k=0}^{n} F_{k}x^{k} = \sum_{k=0}^{n} F_{k}x^{k} - \sum_{k=0}^{n} F_{k}x^{k+1} - \sum_{k=0}^{n} F_{k}x^{k+2}$$

$$= \sum_{j=0}^{n} F_{j}x^{j} - \sum_{j=1}^{n+1} F_{j-1}x^{j} - \sum_{j=2}^{n+2} F_{j-2}x^{j}$$

$$= \sum_{j=0}^{n} \underbrace{(F_{j} - F_{j-1} - F_{j-2})}_{=0} x^{j} + F_{0}x^{0} + F_{1}x^{1} - F_{0}x^{1} - F_{n}x^{n+1} - F_{n-1}x^{n+1} - F_{n}x^{n+2}$$

$$= x - (F_{n} + F_{n-1})x^{n+1} - F_{n}x^{n+2}$$

$$(1 - x - x^{2})T_{n}(x) = x - F_{n+1}x^{n+1} - F_{n}x^{n+2}$$

b) Si x = 0, on a bien $1 - x - x^2 \neq 0$

Sinon, on a $1-x-x^2=x^2\left(\frac{1}{x^2}-\frac{1}{x}-1\right)=x^2P\left(\frac{1}{x}\right)$ où P est le trinôme du second degré

 $X^2 - X - 1$, dont les racines sont $\varphi > 0$ et un nombre négatif. Comme $0 < x < \frac{1}{\varphi}$, on a

 $\frac{1}{r} > \varphi$, donc $\frac{1}{r}$ n'est pas racine de P.

Finalement, dans tous les cas, $1 - x - x^2 \neq 0$.

On pouvait aussi déterminer les racines de $1-X-X^2$ pour le prouver.

Par la question 10a, $T_n(x)=\frac{x-F_{n+1}x^{n+1}-F_nx^{n+2}}{1-x-x^2}$.

Par ailleurs, par la question 9, $F_{n+1}x^{n+1} \underset{n \to +\infty}{\longrightarrow} 0$. De plus, $F_nx^{n+2}=x^2\times F_nx^n \underset{n \to +\infty}{\longrightarrow} 0$.

Donc, par opérations sur les limites $T_n(x) \underset{n \to +\infty}{\longrightarrow} \frac{x}{1-x-x^2}$.

Ainsi, $\ell(x) = \frac{x}{1 - x - x^2}$

Exercice 2

1°) $r: x \mapsto \sqrt{x}$ est définie sur \mathbb{R}_+ , et Arctan est définie sur \mathbb{R} , donc par composition, f est définie sur \mathbb{R}_+ .

r est dérivable sur \mathbb{R}_+^* et Arctan est dérivable sur \mathbb{R} , donc par composition, f est dérivable sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$:

$$f'(x) = \frac{2}{2\sqrt{x}} \frac{1}{1 + (\sqrt{x})^2} = \boxed{\frac{1}{\sqrt{x}(1+x)}}$$

2°) a) Soit $x \in \mathbb{R} \setminus \{-1\}$. On sait que Arccos est définie sur [-1,1] donc :

$$g(x) \text{ existe} \iff -1 \le \frac{1-x}{1+x} \le 1$$

$$\iff \left(\frac{1-x}{1+x}\right)^2 \le 1$$

$$\iff (1-x)^2 \le (1+x)^2 \qquad \text{car } (1+x)^2 > 0$$

$$\iff 1 - 2x + x^2 \le 1 + 2x + x^2$$

$$\iff x \ge 0$$

Donc le domaine de définition de la fonction g est \mathbb{R}_+

On sait que Arccos est dérivable sur]-1,1[. La fonction $u:x\mapsto \frac{1-x}{1+x}$ est dérivable partout où elle est définie; nous avons vu qu'elle est à valeurs dans [-1,1] sur \mathbb{R}_+ , et :

$$\frac{1-x}{1+x} = 1 \Longleftrightarrow 1-x = 1+x \Longleftrightarrow 2x = 0 \Longleftrightarrow x = 0$$

$$\frac{1-x}{1+x} = -1 \Longleftrightarrow 1-x = -1-x \Longleftrightarrow 1 = -1 \text{ impossible}$$

Donc la fonction u est à valeurs dans]-1,1[sur l'intervalle \mathbb{R}_+^* .

Par composition et quotient de fonctions dérivables, la fonction g est donc dérivable sur \mathbb{R}_+^*

b) Pour tout $x \in \mathbb{R}_+^*$,

$$g'(x) = \frac{(-1)(1+x) - 1 \cdot (1-x)}{(1+x)^2} \frac{-1}{\sqrt{1 - \left(\frac{1-x}{1+x}\right)^2}}$$

$$= \frac{-1-x-1+x}{(1+x)^2} \frac{-1}{\sqrt{1 - \frac{(1-x)^2}{(1+x)^2}}}$$

$$= \frac{2}{(1+x)^2} \frac{1}{\sqrt{\frac{1+2x+x^2-1-x^2+2x}{(1+x)^2}}}$$

$$= \frac{2}{(1+x)^2} \frac{\sqrt{(1+x)^2}}{\sqrt{4x}} = \frac{2}{(1+x)^2} \frac{|1+x|}{\sqrt{4x}} = \frac{2}{(1+x)^2} \frac{1+x}{2\sqrt{x}} \quad \text{car } 1+x > 0$$

$$g'(x) = \frac{1}{(1+x)\sqrt{x}}$$

3°) On constate que pour tout $x \in \mathbb{R}_+^*$, f'(x) = g'(x), donc (f - g)'(x) = 0.

5

Comme \mathbb{R}_+^* est un intervalle, on en tire que la fonction f - g est constante sur \mathbb{R}_+^* : il existe une constante C telle que, pour tout $x \in \mathbb{R}_+^*$, f(x) - g(x) = C.

En particulier,
$$f(1) - g(1) = C$$
 d'où $C = 2 \operatorname{Arctan}(1) - \operatorname{Arccos}(0) = 2 \frac{\pi}{4} - \frac{\pi}{2} = 0$.

Par ailleurs, $f(0) - g(0) = 2 \operatorname{Arctan}(0) - \operatorname{Arccos}(1) = 2.0 - 0 = 0.$

Finalement, pour tout $x \in \mathbb{R}_+$, f(x) - g(x) = 0, c'est-à-dire :

$$\forall x \in \mathbb{R}_+, \operatorname{Arccos}\left(\frac{1-x}{1+x}\right) = 2\operatorname{Arctan}(\sqrt{x})$$

- **4°)** Nous avons vu que $-1 \le \frac{1-x}{1+x} \le 1$, et même $-1 < \frac{1-x}{1+x} \le 1$ car $-1 = \frac{1-x}{1+x}$ était impossible. Donc, par stricte décroissance de Arccos, Arccos(-1) > Arccos $\left(\frac{1-x}{1+x}\right)$ \ge Arccos(1), i.e. $\pi > \theta \ge 0$.
- 5°) On a $\cos(\theta) = \cos\left(\operatorname{Arccos}\left(\frac{1-x}{1+x}\right)\right) = \frac{1-x}{1+x}$ d'où : $(1+x)\cos(\theta) = 1-x$ $x\cos(\theta) + x = 1-\cos(\theta)$ $(\cos(\theta) + 1)x = 1-\cos(\theta)$

Comme $\theta \in [0, \pi[$, on sait que $\cos(\theta) + 1 \neq 0$, ce qui nous permet d'écrire : $x = \frac{1 - \cos(\theta)}{1 + \cos(\theta)}$

Or $\cos(\theta) = \cos\left(2\frac{\theta}{2}\right) = 1 - 2\sin^2\left(\frac{\theta}{2}\right)$, donc $1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right)$.

On a également : $\cos(\theta) = \cos\left(2\frac{\theta}{2}\right) = 2\cos^2\left(\frac{\theta}{2}\right) - 1$, donc $1 + \cos(\theta) = 2\cos^2\left(\frac{\theta}{2}\right)$. Ainsi,

$$x = \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\cos^2\left(\frac{\theta}{2}\right)} = \frac{\sin^2\left(\frac{\theta}{2}\right)}{\cos^2\left(\frac{\theta}{2}\right)} = \left(\frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)}\right)^2 = \left[\tan^2\left(\frac{\theta}{2}\right)\right]$$

6°) On en tire que $\sqrt{x} = \sqrt{\tan^2\left(\frac{\theta}{2}\right)} = \left|\tan\left(\frac{\theta}{2}\right)\right|$.

Or $\theta \in [0, \pi[$, donc $\frac{\theta}{2} \in \left[0, \frac{\pi}{2}\right[$, ce qui permet d'affirmer que $\tan\left(\frac{\theta}{2}\right) \ge 0$.

Finalement, $\sqrt{x} = \tan \frac{\theta}{2}$, donc $Arctan(\sqrt{x}) = Arctan\left(\tan \frac{\theta}{2}\right) = \frac{\theta}{2}$, puisque $\frac{\theta}{2} \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[$.

On obtient bien $2 \operatorname{Arctan}(\sqrt{x}) = \theta = \operatorname{Arccos}\left(\frac{1-x}{1+x}\right)$

Exercice 3

Soit $z \in \mathbb{C}$. 0 n'est pas solution, on peut donc supposer que $z \neq 0$.

$$z \text{ solution de } (E) \iff (z-1)^n = z^n$$

$$\iff \left(\frac{z-1}{z}\right)^n = 1 \qquad \text{car } z \neq 0$$

$$\iff \exists k \in \{0, \dots, n-1\}, \quad \frac{z-1}{z} = e^{i\frac{2k\pi}{n}}$$

$$\iff \exists k \in \{0, \dots, n-1\}, \quad z-1 = ze^{i\frac{2k\pi}{n}}$$

$$\iff \exists k \in \{0, \dots, n-1\}, \quad z(1-e^{i\frac{2k\pi}{n}}) = 1$$

Pour k=0, l'équation donne 0=1, donc le cas k=0 est exclu. Pour $k\in\{1,\ldots,n-1\},\,\frac{2k\pi}{n}\in]0,2\pi[$ donc $1-e^{i\frac{2k\pi}{n}}\neq 0$. On a donc :

$$z$$
 solution de $(E) \iff \exists k \in \{1, \dots, n-1\}, \quad z = \frac{1}{1 - e^{i\frac{2k\pi}{n}}}$

Or, pour tout $k \in \{1, \dots, n-1\}$,

$$\begin{split} \frac{1}{1 - e^{i\frac{2k\pi}{n}}} &= \frac{1}{e^{i\frac{k\pi}{n}} \left(e^{-i\frac{k\pi}{n}} - e^{i\frac{k\pi}{n}}\right)} \\ &= \frac{1}{e^{i\frac{k\pi}{n}} \left(-2i\sin\left(\frac{k\pi}{n}\right)\right)} \\ &= i\frac{e^{-i\frac{k\pi}{n}}}{2\sin\left(\frac{k\pi}{n}\right)} = i\frac{\cos\left(\frac{k\pi}{n}\right) - i\sin\left(\frac{k\pi}{n}\right)}{2\sin\left(\frac{k\pi}{n}\right)} \\ &= \frac{1}{2} + i\frac{\cos\left(\frac{k\pi}{n}\right)}{2\sin\left(\frac{k\pi}{n}\right)} \end{split}$$

Finalement, l'ensemble solution est : $\boxed{ \left\{ \frac{1}{2} \left(1 + i \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} \right) / k \in \{1, \dots, n-1\} \right\} }$

On constate que la partie réelle des solutions est égale à $\frac{1}{2}$.

Remarque: attention à ne pas écrire $\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} = \frac{1}{\tan\left(\frac{k\pi}{n}\right)}$: c'est faux, car il arrive que le membre de gauche soit défini mais pas le membre de droite!

Par exemple, si n = 4 et k = 2, alors $\frac{k\pi}{n} = \frac{\pi}{2}$; $\tan(\frac{k\pi}{n})$ n'existe pas, alors que $\frac{\cos(\frac{k\pi}{n})}{\sin(\frac{k\pi}{n})} = \frac{\cos(\frac{\pi}{2})}{\sin(\frac{\pi}{2})} = 0$!

Exercice 4

1°)

$$Z + \frac{1}{Z} \in \mathbb{R} \iff \overline{Z + \frac{1}{Z}} = Z + \frac{1}{Z}$$

$$\iff \overline{Z} + \frac{1}{\overline{Z}} = Z + \frac{1}{Z}$$

$$\iff \overline{Z} - Z = \frac{1}{Z} - \frac{1}{\overline{Z}}$$

$$\iff \overline{Z} - Z = \frac{\overline{Z} - Z}{Z\overline{Z}}$$

$$\iff (\overline{Z} - Z)Z\overline{Z} = (\overline{Z} - Z)$$

$$\iff (\overline{Z} - Z)(Z\overline{Z} - 1) = 0$$

$$\iff Z = \overline{Z} \text{ ou } |Z|^2 = 1$$

$$Z + \frac{1}{Z} \in \mathbb{R} \iff Z \in \mathbb{R} \text{ ou } |Z| = 1$$

 2°) f est dérivable sur \mathbb{R}^* comme somme de fonctions dérivables et, pour tout $x \in \mathbb{R}^*$,

$$f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$$

x	$-\infty$	-1	()	1	$+\infty$
f'(x)	+	0	-	_	0	+
f	$-\infty$	-2	$-\infty$	$+\infty$		+∞

3°) z_1 et z_2 sont les racines de (E): $z^2 - 2az + b = 0$.

$$\forall z \in \mathbb{C}, z^2 - 2az + b = 0 \iff \forall z \in \mathbb{C}, (z - z_1)(z - z_2) = 0$$
$$\iff \forall z \in \mathbb{C}, z^2 - (z_1 + z_2)z + z_1z_2 = 0$$

Donc, par unicité des coefficients d'un polynôme, $\begin{cases} z_1+z_2=2a\\ z_1z_2=b \end{cases}$. D'où $\frac{a^2}{b}=\boxed{\frac{(z_1+z_2)^2}{4z_1z_2}}$

4°) a)

$$z_1 + z_2 = r(e^{i\theta_1} + e^{i\theta_2})$$

$$= re^{i\frac{\theta_1 + \theta_2}{2}} \left(e^{i\frac{\theta_1 - \theta_2}{2}} + e^{i\frac{\theta_2 - \theta_1}{2}} \right)$$

$$z_1 + z_2 = 2r\cos\left(\frac{\theta_1 - \theta_2}{2}\right) e^{i\frac{\theta_1 + \theta_2}{2}}$$

b)
$$z_1 + z_2 = 2r \cos\left(\frac{\theta_1 - \theta_2}{2}\right) e^{i\frac{\theta_1 + \theta_2}{2}} \text{ et } z_1 z_2 = r^2 e^{i(\theta_1 + \theta_2)}.$$

Or, par la question 3, $\frac{a^2}{b} = \frac{(z_1 + z_2)^2}{4z_1z_2}$ donc $\frac{a^2}{b} = \frac{4r^2\cos^2\left(\frac{\theta_1 - \theta_2}{2}\right)e^{i(\theta_1 + \theta_2)}}{4r^2e^{i(\theta_1 + \theta_2)}}$.

Ainsi,
$$\frac{a^2}{b} = \cos^2\left(\frac{\theta_1 - \theta_2}{2}\right)$$
.

On en déduit en particulier que $\boxed{\frac{a^2}{b} \in \mathbb{R}}$. De plus, $0 \le \frac{a^2}{b} \le 1$. Comme $a \ne 0$, finalement :

$$\boxed{\frac{a^2}{b} \in]0,1]}$$

5°) a) Calculons :
$$Z + \frac{1}{Z} = \frac{z_1}{z_2} + \frac{z_2}{z_1} = \frac{z_1^2 + z_2^2}{z_1 z_2} = \frac{(z_1 + z_2)^2 - 2z_1 z_2}{z_1 z_2} = \frac{(z_1 + z_2)^2}{z_1 z_2} - 2.$$

Donc,
$$\boxed{Z + \frac{1}{Z} = 4\frac{a^2}{b} - 2}$$

Comme $\frac{a^2}{b}$ est un réel, on en déduit en particulier que $Z + \frac{1}{Z}$ est un réel donc, par 1, il vient : $Z \in \mathbb{R}$ ou |Z| = 1.

- **b)** Si |Z| = 1 alors on a bien : $|z_1| = |z_2|$
- c) Supposons $Z \in \mathbb{R}$. Alors $Z + \frac{1}{Z}$ peut donc s'écrire f(Z).

Or, par 5a, $f(Z) = Z + \frac{1}{Z} = 4\frac{a^2}{b} - 2$ et $\frac{a^2}{b} \in [0, 1]$, donc $f(Z) \in [-2, 2]$.

Par les variations de f dans la question 2, on en déduit que la seule possibilité est f(Z) = 2 et Z = 1. On obtient donc $z_1 = z_2$.

Remarque: On en déduit $que |z_1| = |z_2|$.

6°) On a démontré que
$$|z_1| = |z_2| \iff \frac{a^2}{b}$$
 est un réel de $]0,1]$