

Tree

0-ден бастап N-1-ге дейін нөмірленген N **төбеден** тұратын **дарақты** қарастырайық. 0 төбесі **түбір** деп аталады. Түбірден басқа әрбір төбенің жалғыз **әкесі** болады. $1 \leq i < N$ орындалатын әрбір i үшін, i төбесінің әкесі P[i] болады, мұндағы P[i] < i . Біз сондай-ақ P[0] = -1 деп есептейміз.

Кез келген i төбесі үшін ($0 \leq i < N$), i **ішкі дарағы** келесі төбелердің жиыны болып табылады:

- *i* , және
- әкесі i болатын кез келген төбе және
- ullet әкесінің әкесі i болатын кез келген төбе және
- ullet әкесінің әкесінің әкесіi болатын кез келген төбе және
- т.б.

Төмендегі суретте N=6 төбеден тұратын мысал дарақ көрсетілген. Әрбір көрсеткіш төбені өзінің әкесімен қосады, тек әкесі жоқ түбірден басқа. 2 төбесінің ішкі дарағында 2,3,4 және 5 төбелері бар. 0 төбесінің ішкі дарағы барлық 6 төбеден тұрады, ал 4 төбесінің ішкі дарағы тек 4 төбесін қамтиды.

Әрбір төбенің белгілі бір **салмағы** ретінде теріс емес бүтін сан тағайындалады. i ($0 \le i < N$) төбесінің салмағын W[i] деп белгілейміз.

Сіздің тапсырмаңыз - (L,R) оң бүтін сандар жұбымен көрсетілген Q сұрауларына жауап беретін бағдарламаны жазу. Сұрауға жауапты келесідей есептеу керек.

Дарақтың әрбір төбесіне **коэффицент** деп аталатын бүтін санды тағайындауды қарастырыңыз. Мұндай тағайындау $C[0],\dots,C[N-1]$ ретімен сипатталады, мұндағы C[i] ($0\leq i< N$) i төбесіне тағайындалған коэффициент. Бұл тізбекті **коэффиценттер тізбегі** деп

атайық. Коэффициенттер тізбегінің элементтері теріс, 0 немесе оң болуы да мүмкін екенін ескеріңіз.

(L,R) сұрауы үшін коэффициент тізбегі **жарамды** деп аталады, егер әрбір i төбесі үшін ($0 \le i < N$) i төбесінің ішкі дарағындағы төбелердің коэффициенттерінің қосындысы L -ден кем емес және R -ден көп емес болатын болса.

 $C[0],\dots,C[N-1]$ берілген коэффициент тізбегі үшін i төбесінің **құны** $|C[i]|\cdot W[i]$, мұндағы |C[i]| дегеніміз C[i]-дың абсолютті мәнін білдіреді. Соңында, **жалпы құн** барлық төбелердің құнынын қосындысы болып табылады. Сіздің тапсырмаңыз - әрбір сұрау үшін жарамды коэффициент тізбегі арқылы қол жеткізуге болатын **ең төменгі жалпы құнды** есептеу.

Кез келген сұрау үшін кем дегенде бір жарамды коэффициент тізбегі бар екенін көрсетуге болады.

Implementation Details

Сізге келесі екі функцияны іске асыру керек:

```
void init(std::vector<int> P, std::vector<int> W)
```

- ullet P , W : ұзындықтары N болатын әкелер мен салмақтарды көрсететін массив.
- Бұл функция әрбір тест жағдайында грейдер мен сіздің бағдарламаңыз арасындағы өзара әрекеттесу басында бір рет шақырылады.

```
long long query(int L, int R)
```

- L, R: сұрауларды сипаттайтын бүтін сандар.
- Бұл функция әрбір сынақ жағдайында init шақырылғаннан кейін Q рет шақырылады.
- Бұл функция берілген сұрауға жауапты қайтаруы керек.

Constraints

- $1 \le N \le 200\,000$
- $1 \le Q \le 100000$
- P[0] = -1
- $0 \leq P[i] < i$ кез келген i ($1 \leq i < N$) үшін
- $0 \leq W[i] \leq 1\,000\,000$ кез келген i ($0 \leq i < N$) үшін
- $1 \le L \le R \le 1\,000\,000$ кез келген сұрау үшін

Subtasks

Ішкі есеп	Ұпай	Қосымша шектеу	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ кез келген i ($1 \leq i < N$) үшін	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ кез келген i ($0 \leq i < N$) үшін	
5	11	$W[i] \leq 1$ кез келген i ($0 \leq i < N$) үшін	
6	22	L=1	
7	19	Қосымша шектеу жоқ.	

Examples

Келесі функция шақырылуын қарастырайық:

Дарақта 3 төбе бар: түбірі және оның 2 баласы. Әр төбенің салмағы 1.

Бұл сұрауда L=R=1, ол дегеніміз әрбір төбенің ішкі дарағының коэффициентер қосындысы 1 болуы керек. [-1,1,1] коэффициенттер тізбегін қарастырайық. Дарақ және сәйкес коэффициенттер (көлеңкеленген шаршыларда) төмендегі сүретте көрсетілген.

Әрбір i төбесі үшін ($0 \le i < 3$), i ішкі дарағындағы барлық төбелердің коэффициенттерінің қосындысы 1-ге тең. Демек, бұл коэффициенттер тізбегі жарамды. Жалпы құн келесідей есептеледі:

Төбе	Салмағы	Коэффициенті	Құны
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$ 1 \cdot 1 = 1$

Сондықтан жалпы құны 3 болады. Бұл жалғыз жарамды коэффициенттер тізбегі болғандықтан бұл шақырылуы 3 қайтаруы керек.

```
query(1, 2)
```

Бұл сұраудың ең төменгі жалпы құны 2 құрайды және коэффициенттер тізбегі [0,1,1] болғанда қол жеткізіледі.

Sample Grader

Үлгі грейдер енгізбені келесі форматта оқиды:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

мұндағы L[j] және R[j] ($0 \le j < Q$ үшін) j-ші query шақыруындағы кіріс аргументтері болып табылады. Енгізудің екінші жолында **тек** N-1 **бүтін сандар** бар екенін ескеріңіз, өйткені үлгі грейдер P[0] мәнін оқымайды.

Үлгі бағалаушы жауабыңызды келесі форматта басып шығарады:

```
A[0]
A[1]
...
A[Q-1]
```

мұндағы A[j] ($0 \leq j < Q$ үшін) j-ші query шақыруындағы қайтарылған мән.