

OGC Common Query Language 2

Luis Waldeyer, Nils Große Beikel Geosoftware II, 15.10.2025

Einstieg & Motivation

Einstieg & Motivation

- Warum brauchen wir CQL2?
 - Filtern ist eine Grundfunktion in Geodaten-APIs
 - Alte Standards (Filter Encoding, CQL1):
 - XML-basiert, schwer lesbar
 - Kompliziert, schlecht erweiterbar
 - Web-APIs brauchen eine einfache und einheitliche Filtersprache
 - CQL2: kompakt, verständlich und interoperabel die moderne Weiterentwicklung
 - Ziel: Einheitliche Filterlogik für STAC & OGC API & andere Dienste

Was ist CQL2?

- Ein Filterstandard für die Geodatenwelt
- Offizieller OGC-Standard für Filterausdrücke (Version 1.0, 2024)
- Ermöglicht logische, räumliche & zeitliche Abfragen
- Zwei Schreibweisen: Text vs. JSON
- Standardisiert und kompatibel mit STAC & OGC API

cloud_cover < 10 AND platform = 'Sentinel-2A'</pre>

Syntaxvarianten (Text vs JSON)

- Text-Encoding
 - Menschlich lesbare Syntax (ähnelt SQL)
 - Kompakt & gut für URL-Parameter geeignet
 - Unterstützt logische, räumliche & zeitliche Filter
 - Wird von OGC API Features, Records & STAC unterstützt


```
{
  "op": "and",
  "args": [
      { "op": "<", "args": [ { "property": "cloud_cover" }, 10 ] },
      { "op": "=", "args": [ { "property": "platform" }, "Sentinel-2A" ] }
  ]
}</pre>
```

Syntaxvarianten (Text vs JSON)

- JSON-Encoding
 - Maschinenlesbare Variante (JSON-Struktur)
 - Ideal für Web-APIs und zur Programmierung
 - Besser validierbar & einfacher zu parsen
 - Gleiche Logik wie Text-Encoding

Operatoren Überblick

Vergleichsoperatoren

=, <>, <, >, BETWEEN, LIKE, IN

Vergleich von Attributen & Werten

Logische Operatoren

AND, OR, NOT

Kombinieren von Bedingungen

Räumliche Operatoren

S_INTERSECTS, S_WITHIN, S_CONTAINS, S_EQUALS Beziehungen zwischen Geometrien

Zeitliche Operatoren

T_BEFORE, T_AFTER, T_DURING, T_EQUALS Vergleich zeitlicher Eigenschaften

jeder Ausdruck entweder true, false, oder null

ID	platform	cloud_cover (%)	date	region	geom
1	Sentinel-2A	8	2024-03-15	Münster	POLYGON((7.5 51.9, 7.7 51.9, 7.7 52.0, 7.5 52.0, 7.5 51.9))
2	Sentinel-2B	23	2024-04-20	Münster	POLYGON((7.6 51.8, 7.8 51.8, 7.8 51.9, 7.6 51.9, 7.6 51.8))
3	Landsat-8	12	2023-08-10	Münster	POLYGON((7.5 52.0, 7.7 52.0, 7.7 52.2, 7.5 52.2, 7.5 52.0))
4	Sentinel-2A	5	2025-03-08	Münster	POLYGON((7.4 51.9, 7.6 51.9, 7.6 52.0, 7.4 52.0, 7.4 51.9))
5	Landsat-9	40	2025-04-11	Paderborn	POLYGON((8.0 51.7, 8.2 51.7, 8.2 51.9, 8.0 51.9, 8.0 51.7))

ID	platform	cloud_cover (%)	date	region	geom
1	Sentinel-2A	8	2024-03-15	Münster	POLYGON((7.5 51.9, 7.7 51.9, 7.7 52.0, 7.5 52.0, 7.5 51.9))
2	Sentinel-2B	23	2024-04-20	Münster	POLYGON((7.6 51.8, 7.8 51.8, 7.8 51.9, 7.6 51.9, 7.6 51.8))
3	Landsat-8	12	2023-08-10	Münster	POLYGON((7.5 52.0, 7.7 52.0, 7.7 52.2, 7.5 52.2, 7.5 52.0))
4	Sentinel-2A	5	2025-03-08	Münster	POLYGON((7.4 51.9, 7.6 51.9, 7.6 52.0, 7.4 52.0, 7.4 51.9))
5	Landsat-9	40	2025-04-11	Paderborn	POLYGON((8.0 51.7, 8.2 51.7, 8.2 51.9, 8.0 51.9, 8.0 51.7))

Abfrage: Landsat-8 Datensätze

ID	platform	cloud_cover (%)	date	region	geom
1	Sentinel-2A	8	2024-03-15	Münster	POLYGON((7.5 51.9, 7.7 51.9, 7.7 52.0, 7.5 52.0, 7.5 51.9))
2	Sentinel-2B	23	2024-04-20	Münster	POLYGON((7.6 51.8, 7.8 51.8, 7.8 51.9, 7.6 51.9, 7.6 51.8))
3	Landsat-8	12	2023-08-10	Münster	POLYGON((7.5 52.0, 7.7 52.0, 7.7 52.2, 7.5 52.2, 7.5 52.0))
4	Sentinel-2A	5	2025-03-08	Münster	POLYGON((7.4 51.9, 7.6 51.9, 7.6 52.0, 7.4 52.0, 7.4 51.9))
5	Landsat-9	40	2025-04-11	Paderborn	POLYGON((8.0 51.7, 8.2 51.7, 8.2 51.9, 8.0 51.9, 8.0 51.7))

Abfrage: Weniger als 10% Wolken

ID	platform	cloud_cover (%)	date	region	geom
1	Sentinel-2A	8	2024-03-15	Münster	POLYGON((7.5 51.9, 7.7 51.9, 7.7 52.0, 7.5 52.0, 7.5 51.9))
2	Sentinel-2B	23	2024-04-20	Münster	POLYGON((7.6 51.8, 7.8 51.8, 7.8 51.9, 7.6 51.9, 7.6 51.8))
3	Landsat-8	12	2023-08-10	Münster	POLYGON((7.5 52.0, 7.7 52.0, 7.7 52.2, 7.5 52.2, 7.5 52.0))
4	Sentinel-2A	5	2025-03-08	Münster	POLYGON((7.4 51.9, 7.6 51.9, 7.6 52.0, 7.4 52.0, 7.4 51.9))
5	Landsat-9	40	2025-04-11	Paderborn	POLYGON((8.0 51.7, 8.2 51.7, 8.2 51.9, 8.0 51.9, 8.0 51.7))

Abfrage: Bilder, die Münster überdecken

Text	JSON
S_INTERSECTS(geom, BBOX(7.5, 51.9, 7.7, 52.0))	<pre>{ "op": "s_intersects", "args": [</pre>

ID	platform	cloud_cover (%)	date	region	geom
1	Sentinel-2A	8	2024-03-15	Münster	POLYGON((7.5 51.9, 7.7 51.9, 7.7 52.0, 7.5 52.0, 7.5 51.9))
2	Sentinel-2B	23	2024-04-20	Münster	POLYGON((7.6 51.8, 7.8 51.8, 7.8 51.9, 7.6 51.9, 7.6 51.8))
3	Landsat-8	12	2023-08-10	Münster	POLYGON((7.5 52.0, 7.7 52.0, 7.7 52.2, 7.5 52.2, 7.5 52.0))
4	Sentinel-2A	5	2025-03-08	Münster	POLYGON((7.4 51.9, 7.6 51.9, 7.6 52.0, 7.4 52.0, 7.4 51.9))
5	Landsat-9	40	2025-04-11	Paderborn	POLYGON((8.0 51.7, 8.2 51.7, 8.2 51.9, 8.0 51.9, 8.0 51.7))

Abfrage: Sentinel-Bilder mit wenig Wolken

12

Anwendung in STAC & OGC API

- STAC = SpatioTemporal Asset Catalog
 - API zum Durchsuchen und Filtern georäumlicher Sammlungen
- Unterstützt CQL2 zur präzisen Suche nach Items
- Formate für Filter:
 - Text-Encoding: einfach in GET-Requests
 - JSON-Encoding: komplexere Filter per POST
- Beispiel:
 - GET /collections/satellite_data/items?filter-lang=cql2-text&filter=cloudcover<10
 - POST /search

Anwendung in STAC & OGC API

- OGC API = REST-basierter Standard des Open Geospatial Consortium (OGC)
- Nutzt dieselbe CQL2-Syntax für Filterparamter
- Filter werden bei POST-Requests im JSON-Body übergeben
- Ermöglicht strukturierte Abfragen auf Feature-Daten
- Gleiche Syntax → kompatibel zwischen OGC API & STAC API

Fazit

- Einheitliche, moderne Filtersprache für alle OGC-konformen Dienste
- Erhöht Interoperabilität: einmal formulieren \rightarrow überall nutzbar
- Verständlich für Menschen (Text) & Maschinen (JSON)
- Ablösen komplexer XML-Filter älterer Standards
- Grundlage für präzise, standardisierte Geodatenabfragen (z. B. in STAC, OGC API)
- Verweis auf offizielle Dokumentation vom OGC
 - https://docs.ogc.org/is/21-065r2/21-065r2.html

Fragen?

Quellen

- https://www.ogc.org/standards/cql2
- https://www.ogc.org/announcement/ogc-membership-approves-common-query-language-cql2-as-an-official-ogc-standard
- https://docs.ogc.org/is/21-065r2/21-065r2.html
- Bilder:
 - https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2008/11/sentinel-2/9773238-3-eng-GB/Sentinel-2_pillars.jpg
 - https://www.webbaviation.de/galerie/_data/i/galleries/Nordrhein-Westfalen/Muenster/Muenster_Innenstadt_Luftbild_qd08049-la.jpg
 - https://media.techem.com/is/image/techem/Interoperabilit%C3%A4t?qlt=85&wid=1000&ts=1753807604674&dpr=off
 - https://www.grin.com/wp-content/uploads/2021/12/Fazit_Blog.jpg