Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1 1 (Previously Presented). A distributed method for processing auction 2 traffic using one or more servers at a plurality of nodes in a distributed 3 processing system comprising the steps of: 4 using a computer implemented current local winner determination 5 method at each of the nodes to identify loser bids and candidate winning 6 bids; and 7 using a computer implemented current global winner determination 8 method to determine from the candidate winning bids from each of the 9 nodes a current set of winners. 1 2 (Original). The method of claim 1, wherein the auction is an open-cry 2 auction. 1 3 (Previously Presented). A distributed method for processing open-cry 2 auction traffic using one or more servers at a plurality of nodes in a 3 distributed processing system comprising the steps of: 4 using a current local winner determination method at each of the 5 nodes to identify loser bids and candidate winning bids, wherein the 6 current local winner determination method comprises the steps of: 7 (a) receiving a new bid(v,q) at a node, where v denotes the price per 8 unit and q denotes the quantity desired; 9 (b) checking to see if the new bid ranks in the top |N/q| bids, in 10 terms of price/unit bid value, amongst all the bids asking for 11 quantity q whose information is available to this process, 12 where N is a number of copies of a single item on sale and 13 |x| stands for the greatest integer less than or equal to x; 14 (c) taking the new bid along with the set of |N/q| bids that have 15 been processed and determining a new set of top |N/q| bids;

16	(d) determining if $bid(v,q)$ is in the top $\lfloor N/q \rfloor$ bids and, if it is not,
17	declaring it a loser bid, but if so, declaring it a candidate
18	bid; and
19	using a current global winner determination method to determine
20	from the candidate winning bids from each of the nodes a current set of
21	winners.
1	4 (Original). The method of claim 3, further comprising the steps of:
2	holding the candidate bid at the node for a time, τ ; and
3	if by time τ , through an arrival of another bid, a candidate bid loses
4	its position amongst the top $\lfloor N/q \rfloor$ highest bids, declaring the bid a loser
5	bid;
6	otherwise, declaring the bid a winner candidate and making the bid
7	accessible for further processing by the current global winner
8	determination method.
0	
9	5 (Previously Presented). The method of claim 4, wherein the current
10	global winner determination method comprises the steps of:
11	receiving new candidate winning bid from a node $bid(v,q)$;
12	taking the candidate winning bid along with the set of all bids that
13	have been processed and determining a new set of winners;
14	determining whether the new candidate $bid(v,q)$ is a winner or a
15	loser; and
16	notifying the bidder of $bid(v,q)$ as to whether they are a winner or
17	loser.
1	6 (Previously Presented). A distributed method for processing open-cry
2	auction traffic using one or more servers at a plurality of nodes in a
3	distributed processing system comprising the steps of:
4	using a current local winner determination method at each of the
5	nodes to identify loser bids and candidate winning bids, wherein the
6	current local winner determination method comprises the steps of:

7	(a) receiving a new $bid(v,q)$ at a node, where v denotes the price per
8	unit and q denotes the quantity desired;
9	(b) considering a set of bids using a set of pre-specified auction
10	rules and selecting winners for auctioning $N+x$ copies of the
11	item on sale; and
12	(c) determinating whether the $bid(v,q)$ is a candidate winner bid;
13	and
14	using a current global winner determination method to determine
15	from the candidate winning bids from each of the nodes a current set of
16	winners.
17	7 (Previously Presented). The method of claim 6, wherein the current
18	global winner determination method comprises the steps of:
19	receiving new candidate winning bid from a node $bid(v,q)$;
20	taking the candidate winning bid along with the set of all bids that
21	have been processed and determining a new set of winners;
22	determining whether the new candidate $bid(v,q)$ is a winner or a
23	loser; and
24	notifying the bidder of $bid(v,q)$ as to whether they are a winner or
25	loser.
1	8 (Original). The method of claim 1, wherein the auction is a descending
2	auction.
1	9 (Previously Presented). A distributed method for processing descending
2	auction traffic using one or more servers at a plurality of nodes in a
3	distributed processing system comprising the steps of:
4	using a current local winner determination method at each of the
5	nodes to identify loser bids and candidate winning bids, wherein the
6	current local winner determination method comprises the steps of:
7	(a) receiving a bid (q) for processing, where q is the quantity
8	desired at going price p ;

9	(b) determinating whether the bid is in the first $\lfloor R/q \rfloor$ bids, asking
10	for quantity q at price p, where $\lfloor x \rfloor$ stands for the greatest
11	integer less than or equal to x and R is a currently remaining
12	quantity on auction;
13	(c) if the bid is in the first $\lfloor R/q \rfloor$ bids, asking for quantity q at the
14	going price p, then declaring the bid a candidate winner bid;
15	and
16	(d) making the candidate winner bid available for further
17	processing by the current global winner determination
18	method; and
19	using a current global winner determination method to determine
20	from the candidate winning bids from each of the nodes a current set of
21	winners.
1	10 (Original). The method of claim 9, further comprising the steps of:
2	giving bids processed by the method a time stamp of arrival; and
3	determining whether the time stamp, if it exists on the bid, is
4	greater than or equal to the time stamp of any bid, asking for quantity q at
5	going price p , that has been processed by the method in the past.
1	11 (Previously Presented). The method of claim 1, wherein bidders submit
2	multi-item bids and the bids may be indivisible.