What will we cover?
Bosic Moule Coulo + Muit Heavens WH Wh Browniau + Stochastic Calculus + compuler simulation
(4) Stochastic approximation
De Markov jump processes + computer smulation
6 Feynman-kac equations
Main Resource: "Applied Stochastic Analysis" E, Li, Vander-Eignder

My Notes (in class and polt on Brightpures).

Evaluation: Written and programming execuser every week or two

I cessur that you know some basic probe (RV, independence, Expectation, Conditional expectation)

Today: Monte Carlo basics and limit theorles

Goal of Monte Carlo is to estimate

 $E[f(X)] = \int f(x) \pi(dx)$

TT is the "low" of X, i.e.

 $P(X \in A) = P(X \in A)$

I often write #[F] = E[f(X)]

The simplest Nearle Coulo estimator is

$$F_{N} = \frac{1}{N} \sum_{k=0}^{N-1} f(X^{(k)}) \text{ where}$$

$$X^{(k)} \text{ one independent ad identically distributed}$$

$$0 \subset S \text{ of } \pi$$
Uptile That
$$E[f_{N}] = E[f(X)] = \pi [f]$$
But what we want is
$$f_{N} \to \pi f f \text{ as } N \to \infty$$

$$f_{N} \text{ is a RV (i.e. a function) so we}$$

For is a RV (i.e. a function) so we could mean different Things by ->

Laws of Large Numbers (for
$$F_N$$
)

Suppose $Var(f(X)) = 5^2 < \infty$
 $X^{(K)}$ i.i.d. from H

$$Vos\left(\overline{P_{N}}\right) = \overline{E}\left[\left(\overline{P_{N}} - \overline{HF}\right)^{2}\right] = \overline{E}\left[\left(\overline{P_{N}} - \overline{HF}\right)^{2}\right]$$

$$= \frac{1}{N^{2}} \frac{\sum_{k=0}^{N-1} \left(f(X^{(k)}) - \overline{HF}\right)^{2}}{F(X^{(k)}) - \overline{HF}}\left[\left(f(X^{(k)}) - \overline{HF}\right)^{2}\right]}$$

$$+ \frac{2}{N^{2}} \frac{\sum_{k=0}^{N-1} \left(f(X^{(k)}) - \overline{HF}\right)^{2}}{N^{2}}$$

$$+ \frac{2}{N^{2}} \frac{\sum_{k=0}^{N-1} \left(f(X^{(k)}) - \overline{HF}\right)^{2}}{N^{2}}$$

$$= \frac{\overline{G^{2}}}{N^{2}} \rightarrow 0 \quad \text{of } N \rightarrow \infty$$

$$We'll call Phio configure is mean squared error (MSE)$$

$$By dietaychen \neq$$

$$Fn og 500 P(|\overline{P_{N}} - \overline{HF}|) > \varepsilon \right) \leq \frac{Vor(\overline{P_{N}})}{C^{2}} = \frac{\overline{G^{2}}}{N\varepsilon^{2}}$$

$$So \quad \overline{P_{N}} \rightarrow \pi\overline{HF}$$

$$N \quad \text{probability'}$$

$$This is called New Weak law of large Numbers
$$In \quad \text{fact Welly holds for } X^{(K)} \text{ i.i.d. if } \overline{E}[f(X)] < \infty$$$$

The Strong law of Large (SZLW) says

lin $f_{N}(\omega) = \pi \Gamma F$ $V \omega \in A \subset \Gamma Z$ $N\to\infty$ with P(A) = ISLLW is still true for i.i.d. $X^{(c)}$ if F[If(X)] J cooConvergence in distribution:

The LLWs imply that for early bounded

continuous function $F[I(X)] J \to G(\pi F F)$

The LLNs imply that for early bounded continuous function g, $E[g(T_N)] \rightarrow g(\pi I f)$ The distribution of F_N ($\rho_N(A) = P(F_N \in A)$)

converge to $S(x-\pi I f)$

Not so excity since to is conveying to a number

But consider ZN = TN (FN - *[F])

E[ZN]=0 Var (ZN) = N var (Fn) = 02

So There's a chance to make suse of the 1mit of The Zis

For example, suppose
$$E[e^{1f(X)}] < \infty \ V \ 1$$

od $X^{(4)}$ ad i.i.d. how π
 $E[e^{1Z_{0}}] = E[e^{1/2}(f(X^{(4)}) - \pi (f))]$
 $= E[e^{1/2}(f(X^{(4)}) - \pi (f))]^{N}$

expand e^{x} about $x = 0$
 $E[e^{1/2}N] = (1 + \frac{f^{2}}{2N}\sigma^{2} + \sigma (N^{-3/2}))^{N}$
 $\approx e^{\frac{1}{2}\frac{f^{2}}{2N}}$ (he by N)

but $e^{\frac{f^{2}}{2}\frac{f^{2}}{2N}}$ is the moment queenty furth of $N(0, \sigma^{2})$

CLT: If
$$X^{(k)}$$
 are i.i.d. and $\sigma^2 = var(f(X)) < \infty$
Then
$$Z_N = JN(f_N - \pi If I) \longrightarrow N(0, \sigma^2)$$
in Olishibutian

The CLT tells as

For
$$T \in T$$
 some interval

 $T \in T$ far large $T \in T$ or $T \in T$ $T \in T$

It Lolan't fell us about

specifically it doent tell us how best

P(FN-4TF)GI) goes to O'y OEI

Concerbration +

Suppose Ele SF(X)] coo H1

chernolf's 7 says

$$P(f_{N} - \pi [f] \geq_{e} a) = P(Z f(x^{(k)}) - \pi [f] \geq_{e} Na)$$

$$= e^{-3Na} E[e^{3Z(f(x^{(k)}) - \pi [f]})$$

$$= e^{-3Na} E[e^{3(f(x) - \pi [f]})]^{N}$$

$$= e^{-3Na} E[e^{3(f(x) - \pi [f]})]^{N}$$

$$= V_{370}$$

where I(a)= sup { la - log E(e & (f(X) - TEPJ)]}

LDP says that this decay rate is short

roughly:
$$-\frac{1}{N}\log P(f_N-\pi I \not= J \geqslant a) \longrightarrow I(a)$$

¥2>0