# 為什麼要做特徵的歸一化/標準化?

OpenCV與AI深度學習 2022-09-24 09:17 發表於重慶

收錄於合集

#特徵提取3 #歸一化1

# 點擊下方<mark>卡片</mark>,關注" OpenCV與AI深度學習"

視覺/圖像重磅乾貨,第一時間送達!



### OpenCV與AI深度學習

專注計算機視覺、深度學習和人工智能領域乾貨、應用、行業資訊的分享交流! 168篇原創內容

公眾號

作者 | shine-lee

鏈接 | https://blog.csdn.net/blogshinelee/article/details/102875044

談到feature scaling的必要性,最常用的2個例子可能是:

- 特徵間的單位(尺度)可能不同,比如身高和體重,比如攝氏度和華氏度,比如房屋面積和房間數,一個特徵的變化範圍可能是[1000, 10000],另一個特徵的變化範圍可能是[-0.1,0.2],在進行距離有關的計算時,單位的不同會導致計算結果的不同,尺度大的特徵會起決定性作用,而尺度小的特徵其作用可能會被忽略,為了消除特徵間單位和尺度差異的影響,以對每維特徵同等看待,需要對特徵進行歸一化。
- 原始特徵下,因尺度差異,其損失函數的等高線圖可能是橢圓形,梯度方向垂直於等高線,下降會走zigzag路線,而不是指向local minimum。通過對特徵進行zero-mean and unit-variance變換後,其損失函數的等高線圖更接近圓形,梯度下降的方向震盪更小,收斂更快,如下圖所示,圖片來自Andrew Ng。

# **Feature Scaling**

Idea: Make sure features are on a similar scale.



Feature Scaling from Andrew Ng

對於feature scaling中最常使用的Standardization,似乎"無腦上"就行了,本文想多探究一些為什麼,

- 常用的feature scaling方法都有哪些?
- 什麼情況下該使用什麼feature scaling方法?有沒有一些指導思想?
- 所有的機器學習算法都需要feature scaling嗎?有沒有例外?
- 損失函數的等高線圖都是橢圓或同心圓嗎?能用橢圓和圓來簡單解釋feature scaling 的作用嗎?
- 如果損失函數的等高線圖很複雜, feature scaling還有其他直觀解釋嗎?

根據查閱到的資料,本文將嘗試回答上面的問題。但筆者能力有限,空有困惑,能講到哪算哪吧(微笑)。

常用feature scaling方法 在問為什麼前,先看是什麼。

給定數據集,令特徵向量為x,維數為D,樣本數量為R,可構成D×R的矩陣,一列為一個樣本,一行為一維特徵,如下圖所示,圖片來自Hung-yi Lee pdf-Gradient Descent:



feature matrix

feature scaling的方法可以分成2類,逐行進行和逐列進行。逐行是對每一維特徵操作,逐列是對每個樣本操作,上圖為逐行操作中特徵標準化的示例。

具體地,常用feature scaling方法如下,來自wiki,

• Rescaling (min-max normalization \ range scaling) :

$$x' = a + \frac{(x - \min(x))(b - a)}{\max(x) - \min(x)}$$

將每一維特徵線性映射到目標範圍[a,b],即將最小值映射為a,最大值映射為b,常用目標範圍為[0,1]和[-1,1],特別地,映射到[0,1]計算方式為:

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

• Mean normalization :

$$x' = \frac{x - \bar{x}}{\max(x) - \min(x)}$$

將**均值映射為0**.同時用最大值最小值的差對特徵進行歸一化,一種更常見的做法是用標準差進行歸一化,如下。

• Standardization (Z-score Normalization) :

$$x' = \frac{x - \bar{x}}{\sigma}$$

每維特徵0均值1方差(zero-mean and unit-variance)。

• Scaling to unit length:

$$x' = \frac{x}{\|x\|}$$

將每個樣本的特徵向量除以其長度,即對樣本特徵向量的長度進行歸一化,長度的度量常使用的是L2 norm(歐氏距離),有時也會採用L1 norm,不同度量方式的一種對比可以參見論文"CVPR2005-Histograms of Oriented Gradients for Human Detection"。

上述4種feature scaling方式,前3種為逐行操作,最後1種為逐列操作。

容易讓人困惑的一點是指代混淆,Standardization指代比較清晰,但是單說Normalization有時會指代min-max normalization,有時會指代Standardization,有時會指代Scaling to unit length。

計算方式上對比分析

前3種feature scaling的計算方式為**減一個統計量再除以一個統計量**,最後1種為**除以向**量自身的長度。

- 減一個統計量可以看成選哪個值作為原點,是最小值還是均值,並將整個數據集平移 到這個新的原點位置。如果特徵間偏置不同對後續過程有負面影響,則該操作是有益 的,可以看成是某種偏置無關操作;如果原始特徵值有特殊意義,比如稀疏性,該操 作可能會破壞其稀疏性。
- 除以一個統計量可以看成在坐標軸方向上對特徵進行縮放,用於降低特徵尺度的影響,可以看成是某種尺度無關操作。縮放可以使用最大值最小值間的跨度,也可以使用標準差(到中心點的平均距離),前者對outliers敏感,outliers對後者影響與outliers數量和數據集大小有關,outliers越少數據集越大影響越小。

● **除以長度**相當於把長度歸一化,**把所有樣本映射到單位球上**,可以看成是某種**長度無關操作**,比如,詞頻特徵要移除文章長度的影響,圖像處理中某些特徵要移除光照強度的影響,以及方便計算餘弦距離或內積相似度等。

稀疏數據、outliers 相關的更多數據預處理內容可以參見scikit learn-5.3. Preprocessing data。

從幾何上觀察上述方法的作用,圖片來自CS231n-Neural Networks Part 2: Setting up the Data and the Loss,zero-mean將數據集平移到原點,unit-variance使每維特徵上的跨度相當,圖中可以明顯看出兩維特徵間存在線性相關性,Standardization操作並沒有消除這種相關性。



Common data preprocessing pipeline. Left: Original toy, 2-dimensional input data. Middle: The data is zero-centered by subtracting the mean in each dimension. The data cloud is now centered around the origin. Right: Each dimension is additionally scaled by its standard deviation. The red lines indicate the extent of the data - they are of unequal length in the middle, but of equal length on the right.

### Standardization

可通過PCA方法移除線性相關性(decorrelation),即引入旋轉,找到新的坐標軸方向,在新坐標軸方向上用"標準差"進行縮放,如下圖所示,圖片來自鏈接,圖中同時描述了unit length的作用——將所有樣本映射到單位球上。





Effect of the operations of standardization and length normalization

當特徵維數更多時,對比如下,圖片來自youtube,



feature scaling comparison

總的來說,歸一化/標準化的目的是為了獲得某種"無關性"——偏置無關、尺度無關、長度無關……當歸一化/標準化方法背後的物理意義和幾何含義與當前問題的需要相契合時,其對解決該問題就有正向作用,反之,就會起反作用。所以,"何時選擇何種方法"取決於待解決的問題,即problem-dependent。

## feature scaling 需要還是不需要

下圖來自data school-Comparing supervised learning algorithms,對比了幾個監督學習算法,最右側兩列為是否需要feature scaling。

|   | A                 | B              | С                        | D                               | E                  | F              | G            | н                                                  | 1                                        | J                                                         | К                               | L                                             | М           | N                          | 0                 |
|---|-------------------|----------------|--------------------------|---------------------------------|--------------------|----------------|--------------|----------------------------------------------------|------------------------------------------|-----------------------------------------------------------|---------------------------------|-----------------------------------------------|-------------|----------------------------|-------------------|
| 1 |                   |                | Results<br>interpretable | Easy to<br>explain<br>algorithm | Average predictive |                | Prediction   | Amount of<br>parameter tuning<br>needed (excluding | Performs well<br>with small<br>number of | Handles lots of<br>irrelevant features<br>well (separates | Automatically<br>learns feature | Gives calibrated<br>probabilities of<br>class |             | Features might             |                   |
|   | Algorithm         | Problem Type   | by you?                  | to others?                      | accuracy           | Training speed | speed        | feature selection)                                 | observations?                            | signal from noise)?                                       | interactions?                   | membership?                                   | Parametric? | need scaling?              | Algorithm         |
| 2 | KNN               | Either         | Yes                      | Yes                             | Lower              | Fast           | Depends on n | Minimal                                            | No                                       | No                                                        | No                              | Yes                                           | No          | Yes                        | KNN               |
| 3 | Linear regression | Regression     | Yes                      | Yes                             | Lower              | Fast           | Fast         | None (excluding regularization)                    | Yes                                      | No                                                        | No                              | N/A                                           | Yes         | No (unless<br>regularized) | Linear regression |
| 4 | Lasistic services | Classification | Communicat               | Camandas                        |                    | East           | Et           | None (excluding                                    | V                                        | N-                                                        | N-                              | Van                                           | Vaa         | No (unless                 |                   |

|    | rodistir telitession | Classincarion  | Onliamia | oumerman | Folia  | 1.491                               | Lear     | talanaurannii                  | 189 | 140                                      | PNO | 169      | 169 | iaAniauran) | rollistic teltassion |
|----|----------------------|----------------|----------|----------|--------|-------------------------------------|----------|--------------------------------|-----|------------------------------------------|-----|----------|-----|-------------|----------------------|
| 5  | Naive Bayes          | Classification | Somewhat | Somewhat | Lower  | Fast (excluding feature extraction) |          | Some for feature<br>extraction | Yes | Yes                                      | No  | No       | Yes | No          | Naive Bayes          |
| 6  | Decision trees       | Either         | Somewhat | Somewhat | Lower  | Fast                                | Fast     | Some                           | No  | No                                       | Yes | Possibly | No  | No          | Decision trees       |
| 7  | Random Forests       | Either         | A little | No       | Higher | Slow                                | Moderate | Some                           | No  | Yes (unless noise<br>ratio is very high) | Yes | Possibly | No  | No          | Random Forests       |
| 8  | AdaBoost             | Either         | A little | No       | Higher | Slow                                | Fast     | Some                           | No  | Yes                                      | Yes | Possibly | No  | No          | AdaBoost             |
| 9  | Neural networks      | Either         | No       | No       | Higher | Slow                                | Fast     | Lots                           | No  | Yes                                      | Yes | Possibly | No  | Yes         | Neural networks      |
| 10 |                      |                |          |          |        |                                     |          |                                |     |                                          |     |          |     |             |                      |

Comparing supervised learning algorithms

### 下面具體分析一下。

什麼時候需要feature scaling?

● 涉及或隱含**距離計算**的算法,比如K-means、KNN、PCA、SVM等,一般需要feat ure scaling,因為:

zero-mean一般可以增加樣本間餘弦距離或者內積結果的差異,區分力更強,假設數據集集中分佈在第一象限遙遠的右上角,將其平移到原點處,可以想像樣本間餘弦距離的差異被放大了。在模版匹配中,zero-mean可以明顯提高響應結果的區分度。

就歐式距離而言,增大某個特徵的尺度,相當於增加了其在距離計算中的權重,如果有明確的先驗知識表明某個特徵很重要,那麼適當增加其權重可能有正向效果,但如果沒有這樣的先驗,或者目的就是想知道哪些特徵更重要,那麼就需要先feature scaling,對各維特徵等而視之。

增大尺度的同時也增大了該特徵維度上的方差,PCA算法傾向於關注方差較大的特徵所在的坐標軸方向,其他特徵可能會被忽視,因此,在PCA前做Standardization效果可能更好,如下圖所示,圖片來自scikit learn-Importance of Feature Scaling。



#### PCA and Standardization

- 損失函數中含有正則項時,一般需要feature scaling:對於線性模型y=wx+b而言,x的任何線性變換(平移、放縮),都可以被w和b"吸收"掉,理論上,不會影響模型的擬合能力。但是,如果損失函數中含有正則項,如λ||w||^2,λ為超參數,其對w的每一個參數施加同樣的懲罰,但對於某一維特徵xi而言,其scale越大,係數wi越小,其在正則項中的比重就會變小,相當於對wi懲罰變小,即損失函數會相對忽視那些scale增大的特徵,這並不合理,所以需要feature scaling,使損失函數平等看待每一維特徵。
- 梯度下降算法,需要feature scaling。梯度下降的參數更新公式如下,

$$W(t+1) = W(t) - \eta \frac{dE(W)}{dW}$$

E(W)為損失函數,收斂速度取決於:參數的初始位置到local minima的距離,以及學習率η的大小。一維情況下,在local minima附近,不同學習率對梯度下降的影響如下圖所示:



Fig. 6. Gradient descent for different learning rates.

Gradient descent for different learning rates

多維情況下可以分解成多個上圖,每個維度上分別下降,參數W為向量,但學習率只有1個,即所有參數維度共用同一個學習率(暫不考慮為每個維度都分配單獨學習率的算法)。收斂意味著在每

個參數維度上都取得極小值,每個參數維度上的偏導數都為0,但是每個參數維度上的下降速度是不同的,為了每個維度上都能收斂,學習率應取所有維度在當前位置合適步長中最小的那個。下面討論feature scaling對gradient descent的作用,

- zero center與參數初始化相配合,縮短初始參數位置與local minimum間的距離,加快收斂。模型的最終參數是未知的,所以一般隨機初始化,比如從0均值的均勻分佈或高斯分佈中採樣得到,對線性模型而言,其分界面初始位置大致在原點附近,bias經常初始化為0,則分界面直接通過原點。同時,為了收斂,學習率不會很大。而每個數據集的特徵分佈是不一樣的,如果其分佈集中且距離原點較遠,比如位於第一象限遙遠的右上角,分界面可能需要花費很多步驟才能"爬到"數據集所在的位置。所以,無論什麼數據集,先平移到原點,再配合參數初始化,可以保證分界面一定會穿過數據集。此外,outliers常分佈在數據集的外圍,與分界面從外部向內挪動相比,從中心區域開始挪動可能受outliers的影響更小。
- 對於採用均方誤差損失LMS的線性模型,損失函數恰為二階,如下圖所示

$$E(W) = rac{1}{2P} \sum_{p=1}^P \left| d^p - \sum_i w_i x_i^p 
ight|^2$$

不同方向上的下降速度變化不同(二階導不同,曲率不同),恰由輸入的協方差矩 陣決定,通過scaling改變了損失函數的形狀,減小不同方向上的曲率差異。將每個 維度上的下降分解來看,給定一個下降步長,如果不夠小,有的維度下降的多,有 的下降的少,有的還可能在上升,損失函數的整體表現可能是上升也可能是下降, 就會不穩定。scaling後不同方向上的曲率相對更接近,更容易選擇到合適的學習 率,使下降過程相對更穩定。

- 另有從Hessian矩陣特徵值以及condition number角度的理解,詳見Lecun paper-Efficient BackProp中的Convergence of Gradient Descent一節,有清晰的數學描述,同時還介紹了白化的作用——解除特徵間的線性相關性,使每個維度上的梯度下降可獨立看待。
- 文章開篇的橢圓形和圓形等高線圖,僅在採用均方誤差的線性模型上適用,其他 損失函數或更複雜的模型,如深度神經網絡,**損失函數的error surface可能很複雜,並不能簡單地用橢圓和圓來刻畫**,所以用它來解釋feature scaling對所有損失函數的梯度下降的作用,似乎過於簡化,見Hinton vedio-3.2 The error surface for a linear neuron。

- 對於損失函數不是均方誤差的情況,只要權重w與輸入特徵x間是相乘關係,損失函數對w的偏導必然含有因子x,w的梯度下降速度就會受到特徵x尺度的影響。理論上為每個參數都設置上自適應的學習率,可以吸收掉x尺度的影響,但在實踐中出於計算量的考慮,往往還是所有參數共用一個學習率,此時x尺度不同可能會導致不同方向上的下降速度懸殊較大,學習率不容易選擇,下降過程也可能不穩定,通過scaling可對不同方向上的下降速度有所控制,使下降過程相對更穩定。
- 對於傳統的神經網絡,對輸入做feature scaling也很重要,因為採用sigmoid等有飽和區的激活函數,如果輸入分佈範圍很廣,參數初始化時沒有適配好,很容易直接陷入飽和區,導致梯度消失,所以,需要對輸入做Standardization或映射到[0,1]、[-1,1],配合精心設計的參數初始化方法,對值域進行控制。但自從有了Batch Normalization,每次線性變換改變特徵分佈後,都會重新進行Normalization,似乎可以不太需要對網絡的輸入進行feature scaling了?但習慣上還是會做feature scaling。

什麼時候不需要Feature Scaling?

與距離計算無關的概率模型,不需要feature scaling,比如Naive Bayes;

與距離計算無關的基於樹的模型,不需要feature scaling,比如決策樹、隨機森林等,樹中節點的選擇只關注當前特徵在哪里切分對分類更好,即只在意特徵內部的相對大小,而與特徵間的相對大小無關。

### 小結

這篇文章寫得十分艱難,一開始以為蠻簡單直接,但隨著探索的深入,冒出的問號越來越多,打破了很多原來的"理所當然",所以,在寫的過程中不停地做加法,很多地方想解釋得盡量直觀,又不想照搬太多公式,但自己的理解又不夠深刻,導致現在敘述這麼冗長,希望以後在寫文時能更專注更精煉。

#### 參考文獻

- 1.wiki-Feature scaling
- 2.wiki-Backpropagation
- 3.[Hung-yi Lee pdf-Gradient Descent]
- (<http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML\_2016/Lecture/Gradient Descent (v2).pdf>)
- 4.quora-Why does mean normalization help in gradient descent?
- 5.scikit learn-Importance of Feature Scaling
- 6.scikit learn-5.3. Preprocessing data

本文僅做學術分享, 如有侵權, 請聯繫刪文。

#### -THE END-

# 计算机视觉与深度学习 · 聚焦行业最前沿

- 机器视觉/深度学习/3D视觉/人工智能
- 硬核干货/实战应用/行业信息/前沿速递

商务合作:

投稿咨询:

学习交流:



长按扫描右侧二维码关注"OpenCV与AI深度学习"公众号





覺得有用,麻煩給個贊和在看



收錄於合集#特徵提取3

下一篇·特徵提取:傳統算法vs 深度學習

喜歡此內容的人還喜歡

### 精通機器學習必須掌握的20大算法

小白學視覺



YOLOP v2來啦| YOLOv7結合YOLOP的多任務版本,超越YOLOP以及HybridNets

7 结合 YOLOP 的多任务 YOLOP、HybridNets 速

集智書僮

機器學習生物醫學圖像處理方向研究前景如何?

小白學視覺

