- 1. (16.2.5) By induction on declarative typing derivations. Proceed by cases on the final rule in the derivation.
 - Case TVar: t = x and $\Gamma(x) = T$. Immediate, by TAVar.
 - Case TAbs: $t = \lambda x : T_1.t_2$, $\Gamma, x : T_1 \vdash t_2 : T_2$ and $T = T_1 \rightarrow T_2$. By the induction hypothesis, $\Gamma, x : T_1 \vdash t_2 : S_2$, for some $S_2 <: T_2$. By SArrow, $T_1 \rightarrow S_2 <: T_1 \rightarrow T_2$.
 - Case TApp: $t = t_1t_2$, $\Gamma \vdash t_1 : T_{11} \to T_{12}$, $\Gamma \vdash t_2 : T_{11}$ and $T = T_{11}$. By the induction hypothesis, $\Gamma \Vdash t_1 : S_1$, for some $S_1 <: T_{11} \to T_{12}$ and $envEt_2 : S_2$, for some $S_2 <: T_{11}$. By the inversion lemma for the subtype relation, S_1 must have the form $S_{11} \to S_{12}$, for some S_{11} and S_{12} with $T_{11} <: S_{11}$ and $S_{12} <: T_{12}$. By transitivity, $S_2 <: S_{11}$. By the completeness of algorithmic subtyping, $\Vdash S_2 <: S_{11}$. Now, by TAApp, $\Gamma \Vdash t_1t_2 : S_{12}$, which finishes this case (since we already have $S_{12} <: T_{12}$).
 - CaseTRcd: $t = \{l_i = t_i^{i \in 1 \cdots n}\}$, $\Gamma \vdash t_i : T_i$ for each i and $T = \{l_i : T_i^{i \in 1 \cdots n}\}$. By the induction hypothesis, $\Gamma \Vdash t_i : S_i$, with $S_i <: T_i$ for each i. Now, by TARcd, $\Gamma \Vdash \{l_i = t_i^{i \in 1 \cdots n}\} : \{l_i : S_i^{i \in 1 \cdots n}\}$. By SRcd $\{l_i : S_i^{i \in 1 \cdots n}\} <: \{l_i : T_i^{i \in 1 \cdots n}\}$, which finishes this case.
 - TProj: $t = t_1.l_j$, $\Gamma \vdash t_1 : \{l_i : T_i^{i \in 1 \cdots n}\}$ and $T = T_j$. By the induction hypothesis, $\Gamma \Vdash t_1 : S$, with $S <: \{l_i : T_i^{i \in 1 \cdots n}\}$. By the inversion lemma in subtyping relation, S must have the form $\{k_i : S_i^{i \in 1 \cdots m}\}$, with at least the labels $\{l_i^{i \in 1 \cdots n}\}$ i.e., $\{l_i^{i \in 1 \cdots n}\} \subseteq \{k_j^{j \in 1 \cdots m}\}$, with $S_j <: T_i$ for each common label $l_i = k_j$. By $SARcd \Gamma \Vdash t_1.t_j : S_j$, which finishes this case (since we already have $S_j <: T_j$).
 - Case TSub: $\Gamma \vdash t : S$ and $S \lt : T$. By the induction hypothesis and transitivity of subtyping.
- 2. (16.2.6) If we dropped the arrow subtyping rule S-Arrow but kept the rest of the declarative subtyping and typing rules the same, the system do not still have the minimal typing property. For example, the term $\lambda x: \{a: Nat\}.x$ has both the types $\{a: Nat\} \rightarrow \{a: Nat\}$ and $\{a: Nat\} \rightarrow Top$ under the declarative rules. With the algorithmic typing has the type $\{a: Nat\} \rightarrow \{a: Nat\}$, but without S-Arrow, this type is incomparable with $\{a: Nat\} \rightarrow Top$.
- 3. (16.3.3) The minimal type of if true then false else $\{\}$ is Top, the join of Bool and $\{\}$. However, it is hard to imagine that the programmer really intended to write this expression, after all, no operations can be performed on a value of type Top.
- 4. (14.3.1)

$$\frac{\Gamma \vdash t_j : T_j \quad T_{exn} = \{l_i : T_i^{i \in 1 \cdots n}\}}{\text{rise } (\langle l_j = t_i \rangle \text{ as } T_{exn})} (\text{TExn})$$

$$\begin{array}{c|c} \Gamma \vdash t : T & T_{exn} = \{l_i : T_i^{i \in 1 \cdots n}\} & \Gamma, x_j : T_j \vdash \ h : T \\ \hline \Gamma \vdash \mathsf{try} \ t \ \mathsf{with} \ \lambda e : T_{exn}. \ \mathsf{case} \ e \ \mathsf{of} \\ < l_j = x_j > \ \Rightarrow \ h \\ |\ _ \ \Rightarrow \ \mathsf{rise} \ e : T \end{array}$$

(rise
$$(\langle l_j = v_j \rangle \text{ as } T_{exn})$$
) $t_2 \longrightarrow \text{rise } (\langle l_j = v_j \rangle \text{ as } T_{exn})$ (EAppRaise1)

$$v \text{ (rise } (< l_j = v_j > \text{ as } T_{exn})) \longrightarrow \text{rise } (< l_j = v_j > \text{ as } T_{exn}) \text{ (EAppRaise2)}$$

$$\frac{t_1 \longrightarrow t'_1}{\text{rise } t_1 \longrightarrow \text{rise } t'_1} (\text{ERaise})$$

rise (rise (
$$< l_j = v_j > \text{ as } T_{exn}$$
)) \longrightarrow rise ($< l_j = v_j > \text{ as } T_{exn}$) (ERaiseRaise)

$$\frac{t_j \longrightarrow t_j'}{\text{rise } (< l_j = t_j > \text{ as } T_{exn}) \longrightarrow \text{rise } (< l_j = t_j' > \text{ as } T_{exn})} \text{(ERaiseVariant)}$$

try v with $t_2 \longrightarrow v$ (ETryV)

try rise
$$(< l_j = v_j > \text{ as } T_{exn})$$
 with $\lambda e: T_{exn}$. case e of $< l_j = x_j > \Rightarrow h$ $|_ \Rightarrow \text{rise } e \longrightarrow [x_j \mapsto v_j]h \text{ (ETryRise1)}$

$$\begin{array}{c} l_j \neq l_k \\ \\ \text{try rise } (< l_j = v_j > \text{ as } T_{exn}) \text{ with } \lambda e : T_{exn}. \text{ case } e \text{ of } \\ < l_j = x_j > \Rightarrow h \\ |_ \Rightarrow \text{rise } e \longrightarrow \text{rise } (< l_j = v_j > \text{ as } T_{exn}) \end{array}$$

$$\frac{t_1 \longrightarrow t_1'}{\text{try } t_1 \text{ with } t_2 \longrightarrow \text{try } t_1' \text{ with } t_2} (\text{ETry})$$