Examen No. 1 - Paralelo B

NOMBRE:	CALIFICACIÓN:	
TOMEDICE.	 CALIFICACION.	

Asignatura: Leyes Físicas III - Fecha: 2 de mayo de 2018 - Créditos: 10 puntos a ponderarse.

La evaluación consiste en resolver los siguientes ejercicios y problemas de aplicación relacionados a los conceptos revisados en las Unidades 1, 2, y 3 del curso. Exprese las respuestas numéricas en unidades del Sistema Internacional (SI).

1. **(2 puntos)**

Deduzca una expresión para la ventaja mecánica del torno de la figura a continuación.

2. **(2 puntos)**

- (a) Calcule la cantidad de movimiento lineal de una bicicleta de $8.5\,\mathrm{kg}$ de masa, que se mueve horizontalmente con una velocidad de $-11\,\vec{\imath}\,\mathrm{km}\,\mathrm{h}^{-1}$.
- (b) ¿Por cuánto tiempo se debe aplicar una fuerza constante $\vec{F} = 10\,\text{ï}\,\text{N}$ sobre la bicicleta del literal (a), para que su cantidad de movimiento aumente a $\vec{p} = 12\,\text{ï}\,\text{kg}\,\text{m}\,\text{s}^{-1}$?

3. **(2 puntos)**

Sobre una partícula que se mueve del punto $x_0 = 0$ m al punto $x_f = 2$ m, a lo largo del eje X, actúa una fuerza asociada a la función de energía potencial $U(x) = x^3 - 3x^2$ [J].

- (a) Deduzca una expresión para la fuerza $\vec{F}(x)$ aplicada sobre la partícula, y esboce un gráfico de F(x) versus x para el intervalo $x \in [0; 2]$ m.
- (b) ¿Qué trabajo neto realiza la fuerza \vec{F} sobre la partícula, cuando ésta se mueve del punto $x_A=0.2\,\mathrm{m}$ al punto $x_B=1.5\,\mathrm{m}$?

4. (2 puntos)

Un bloque de 8 kg de masa parte desde el reposo y desliza 15 cm hacia abajo por el plano inclinado 25° con respecto a la horizontal, como se indica en la figura. En ese instante, golpea el resorte cuya constante elástica es $980\,\mathrm{N}\,\mathrm{m}^{-1}$.

- (a) Si el coeficiente de rozamiento cinético entre el bloque y el plano es $\mu_k = 0.2$ en todo el recorrido, hallar la compresión máxima a la que es sometido el resorte.
- (b) ¿Cuál sería la compresión máxima del resorte si las superficies fuesen totalmente lisas?

5. **(2 puntos)**

Un pequeño bloque de masa m se suelta desde el punto A sobre la pista lisa de la figura. Determinar en función del radio R:

- (a) El valor de la altura H para que el bloque se separe de la pista en el punto E.
- (b) La fuerza de reacción de la pista sobre el bloque en el punto D.

