2.1 General Guidance

- model bias
- Model Bias v.s. Optimization Issue
- Overfitting
- Bias-Complexity Trade-off
- cross Validation

model bias

模型过于简单

- 增加特征
- 复杂的神经网络

• The model is too simple. $y = f_{\boldsymbol{\theta}}(\boldsymbol{x})$ $f_{\boldsymbol{\theta^1}}(\boldsymbol{x})$ $f_{\theta^2}(x)$ find a needle in a haystack ... $f_{\boldsymbol{\theta}^*}(\boldsymbol{x})$... but there is no needle $f^*(\mathbf{x})$ small loss too small ... Solution: redesign your model to make it more flexible More features $y = b + wx_1$ ②Deep Learning (more neurons, layers) $y = b + \sum_{i} c_{i} sigmoid \left(b_{i} + \sum_{i} w_{ij} x_{j}\right)$

Model Bias v.s. Optimization Issue

20层的model在training data上跑的错误率比56层的错误率低,说明56层的优化 没做好

- Gaining the insights from comparison
- Start from shallower networks (or other models), which are easier to optimize.
- If deeper networks do not obtain smaller loss on **training data**, then there is optimization issue.

	1 layer	2 layer	3 layer	4 layer	5 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k	0.34k

 Solution: More powerful optimization technology (next lecture)

Overfitting

- 增加训练数据
 - data augmentation (比如左右翻转图像,具体取决于对资料的理解)
- 给模型加限制 (constrained model)
 - Less Parameters, sharing parameters
 - Less features
 - Early stopping
 - Regularization
 - o Dropout

Bias-Complexity Trade-off

Cross Validation

合理的选择Model的方法: 把training资料分成training set和validation set,根据validation set的结果来挑选model,然后再用test set测试结果。

把训练资料切成 N 等份,拿一份当 validation set,剩下 n-1份当 training set,重复 n次。把 m 个模型在这 n 个 setting 下都跑一次,然后把 n 次的结果平均起来,看谁的结果最好。

