STRUMENTI FORMALI PER LA BIOINFORMATICA

Stringhe e Linguaggi

Un alfabeto è un insieme finito di elementi (chiamati lettere o simboli o caratteri (terminali))

Un alfabeto è un insieme finito di elementi (chiamati lettere o simboli o caratteri (terminali))

Esempio: L'alfabeto delle lettere romane minuscole è

$$\Sigma = \{a, b, c, ..., z\}$$

Un alfabeto è un insieme finito di elementi (chiamati lettere o simboli o caratteri (terminali))

Esempio: L'alfabeto delle lettere romane minuscole è

$$\Sigma = \{a, b, c, ..., z\}$$

Esempio: L'alfabeto delle cifre arabe è

$$\Sigma = \{0,1,\dots,9\}$$

Un alfabeto è un insieme finito di elementi (chiamati lettere o simboli o caratteri (terminali))

Esempio: L'alfabeto delle lettere romane minuscole è

$$\Sigma = \{a, b, c, ..., z\}$$

Esempio: L'alfabeto delle cifre arabe è

$$\Sigma = \{0,1,\ldots,9\}$$

Esempio: L'alfabeto binario è

$$\Sigma = \{0,1\}$$

Sia
$$\Sigma = \{a_1, \dots, a_k\}$$
 un alfabeto di k simboli,

Sia $\Sigma = \{a_1, \dots, a_k\}$ un alfabeto di k simboli, ovvero la **cardinalità** di Σ è k. In simboli: $|\Sigma| = k$.

Sia $\Sigma = \{a_1, \ldots, a_k\}$ un alfabeto di k simboli, ovvero la **cardinalità** di Σ è k. In simboli: $|\Sigma| = k$.

Una **stringa** (o **parola**) su un alfabeto è una sequenza (finita) di simboli dell'alfabeto.

Ossia è un insieme ordinato con eventuali ripetizioni di caratteri.

La **stringa vuota** ϵ è la stringa che non contiene nessun simbolo.

• **Esempio:** Sia $\Sigma = \{a, b\}$. aaba, aaa, abaa, b sono stringhe.

- **Esempio:** Sia $\Sigma = \{a, b\}$. *aaba*, *aaa*, *abaa*, *b* sono stringhe.
- **Esempio:** 0131 è una stringa sull'alfabeto $\Sigma = \{0, 1, 2, ..., 9\}$.

- **Esempio:** Sia $\Sigma = \{a, b\}$. aaba, aaa, abaa, b sono stringhe.
- **Esempio:** 0131 è una stringa sull'alfabeto $\Sigma = \{0, 1, 2, ..., 9\}$.
- **Esempio:** 0101 è una stringa sull'alfabeto $\Sigma = \{0, 1\}$.

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

PASSO RICORSIVO: Se $w \in \Sigma^*$ e $x \in \Sigma$, allora $wx \in \Sigma^*$.

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

PASSO RICORSIVO: Se $w \in \Sigma^*$ e $x \in \Sigma$, allora $wx \in \Sigma^*$.

• Nota. Se nel passo ricorsivo $w = \epsilon$, porremo $\epsilon x = x$.

Definizione

Un linguaggio (formale) è un insieme di stringhe su un alfabeto.

Definizione

Un linguaggio (formale) è un insieme di stringhe su un alfabeto.

Esempio: Linguaggi per computer, quali C, C^{++} o Java, sono linguaggi formali con alfabeto

$${a, b, ..., z, A, B, ..., Z, 0, 1, 2, ..., 9, >, <, =, +, -, *, /, (,), ...}.$$

Le regole della sintassi definiscono le regole del linguaggio. Ogni programma accettabile (cioè scritto seguendo le regole della sintassi) è una stringa del linguaggio.

Anche l'insieme dei nomi validi di variabili in C (o in C^{++} o Java) è un linguaggio formale.

Esempio: Sia $\Sigma = \{a, b\}$.

```
L_1 = \{aa, aaa\}

L_2 = \{aba, aab\}

L_3 = \{w \in \Sigma^* \mid \text{ numero di occorrenze di } a \text{ in } w

= \text{ numero di occorrenze di } b \text{ in } w\}
```

La **cardinalità** di un linguaggio (finito) è il numero delle sue stringhe.

La **cardinalità** di un linguaggio (finito) è il numero delle sue stringhe.

Esempio:

$$|L_2| = |\{aba, aab\}| = 2$$

La **cardinalità** di un linguaggio (finito) è il numero delle sue stringhe.

Esempio:

$$|L_2| = |\{aba, aab\}| = 2$$

Un linguaggio **finito** è un linguaggio che ha un numero finito di stringhe.

Un linguaggio infinito è un linguaggio non finito.

La **cardinalità** di un linguaggio (finito) è il numero delle sue stringhe.

Esempio:

$$|L_2| = |\{aba, aab\}| = 2$$

Un linguaggio **finito** è un linguaggio che ha un numero finito di stringhe.

Un linguaggio infinito è un linguaggio non finito.

Un esempio di linguaggio finito: il linguaggio vuoto \emptyset . $|\emptyset| = 0$.

Nota: non solo linguaggi finiti.

Infatti i linguaggi finiti non sono di solito interessanti.

Tutti i nostri alfabeti sono finiti, ma la maggior parte dei linguaggi che incontreremo sono infiniti.

Il numero di occorrenze di un carattere a in una stringa x viene indicato da $|x|_a$.

Il numero di occorrenze di un carattere a in una stringa x viene indicato da $|x|_a$.

Esempio:

$$|aab|_a = 2$$
, $|baa|_a = 2$, $|baa|_b = 1$, $|baa|_c = 0$

Il numero di occorrenze di un carattere a in una stringa x viene indicato da $|x|_a$.

Esempio:

$$|aab|_a=2, \quad |baa|_a=2, \quad |baa|_b=1, \quad |baa|_c=0$$

La **lunghezza** di una stringa x è il numero di simboli in x.

Il numero di occorrenze di un carattere a in una stringa x viene indicato da $|x|_a$.

Esempio:

$$|aab|_a=2, \quad |baa|_a=2, \quad |baa|_b=1, \quad |baa|_c=0$$

La **lunghezza** di una stringa x è il numero di simboli in x.

La lunghezza di x è denotata con |x|.

Il numero di occorrenze di un carattere a in una stringa x viene indicato da $|x|_a$.

Esempio:

$$|aab|_a=2, \quad |baa|_a=2, \quad |baa|_b=1, \quad |baa|_c=0$$

La **lunghezza** di una stringa x è il numero di simboli in x.

La lunghezza di x è denotata con |x|.

Esempio: |ab| = 2, |abaa| = 4.

Due stringhe

$$x = a_1 a_2 \cdots a_h, \quad y = b_1 b_2 \cdots b_k,$$

con $a_i, b_i \in \Sigma$, $1 \le i \le h$, $1 \le j \le k$, si dicono **eguali** se

Due stringhe

$$x = a_1 a_2 \cdots a_h, \quad y = b_1 b_2 \cdots b_k,$$

con $a_i, b_j \in \Sigma$, $1 \le i \le h$, $1 \le j \le k$, si dicono **eguali** se h = k e $a_i = b_i$, per i = 1, ..., h.

Due stringhe

$$x = a_1 a_2 \cdots a_h, \quad y = b_1 b_2 \cdots b_k,$$

con $a_i, b_j \in \Sigma$, $1 \le i \le h$, $1 \le j \le k$, si dicono **eguali** se h = k e $a_i = b_i$, per i = 1, ..., h.

In due stringhe uguali i caratteri letti ordinatamente da sinistra a destra coincidono.

Due stringhe

$$x = a_1 a_2 \cdots a_h, \quad y = b_1 b_2 \cdots b_k,$$

con $a_i, b_j \in \Sigma$, $1 \le i \le h$, $1 \le j \le k$, si dicono **eguali** se h = k e $a_i = b_i$, per i = 1, ..., h.

In due stringhe uguali i caratteri letti ordinatamente da sinistra a destra coincidono.

Esempio: $aba \neq baa$, $baa \neq ba$.

Date le stringhe

$$x = a_1 a_2 \cdots a_h, \quad y = b_1 b_2 \cdots b_k,$$

con $a_i, b_j \in \Sigma$, $1 \le i \le h$, $1 \le j \le k$, la concatenazione (di $x \in y$) è definita da

$$x \cdot y = a_1 a_2 \cdots a_h b_1 b_2 \cdots b_k$$

Date le stringhe

$$x = a_1 a_2 \cdots a_h, \quad y = b_1 b_2 \cdots b_k,$$

con $a_i,b_j\in\Sigma$, $1\leq i\leq h$, $1\leq j\leq k$, la concatenazione (di x e y) è definita da

$$x \cdot y = a_1 a_2 \cdots a_h b_1 b_2 \cdots b_k$$

La concatenazione di due stringhe x e y è spesso denotata xy (invece che $x \cdot y$).

Date le stringhe

$$x = a_1 a_2 \cdots a_h, \quad y = b_1 b_2 \cdots b_k,$$

con $a_i,b_j\in\Sigma$, $1\leq i\leq h$, $1\leq j\leq k$, la concatenazione (di x e y) è definita da

$$x \cdot y = a_1 a_2 \cdots a_h b_1 b_2 \cdots b_k$$

La concatenazione di due stringhe x e y è spesso denotata xy (invece che $x \cdot y$).

• Esempio: x = vice, y = capo, z = stazione xy = vicecapo, $yx = capovice \neq xy$

$$(xy)z = vicecapostazione = x(yz)$$

La concatenazione **non è commutativa**, in generale $xy \neq yx$.

Operazioni sulle stringhe

La concatenazione **non è commutativa**, in generale $xy \neq yx$.

La concatenazione è associativa:

$$(xy)z = x(yz)$$

(possiamo scrivere senza parentesi la concatenazione di tre o più stringhe).

Operazioni sulle stringhe

La concatenazione **non è commutativa**, in generale $xy \neq yx$.

La concatenazione è associativa:

$$(xy)z = x(yz)$$

(possiamo scrivere senza parentesi la concatenazione di tre o più stringhe).

$$|xy| = |x| + |y|$$

Stringa vuota

La **stringa vuota** ϵ è la stringa che non contiene nessun simbolo.

Stringa vuota

La **stringa vuota** ϵ è la stringa che non contiene nessun simbolo.

Proprietà della stringa vuota:

$$x\epsilon = \epsilon x = x$$

$$|\epsilon| = 0$$

Stringa vuota

La **stringa vuota** ϵ è la stringa che non contiene nessun simbolo.

Proprietà della stringa vuota:

$$x\epsilon = \epsilon x = x$$

$$|\epsilon| = 0$$

Nota:

$$\emptyset \neq \epsilon, \quad \emptyset \neq \{\epsilon\}$$

 \emptyset è un sottoinsieme di Σ^* , $\epsilon \in \Sigma^*$; $|\emptyset| = 0 \neq 1 = |\{\epsilon\}|$.

Def. Data una stringa x, una sottostringa di x è una qualsiasi sequenza di simboli consecutivi della stringa x. Un prefisso di x è una qualsiasi sequenza di simboli consecutivi iniziali della stringa x. Un suffisso di x è una qualsiasi sequenza di simboli consecutivi terminali della stringa x.

Def. Data una stringa x, una sottostringa di x è una qualsiasi sequenza di simboli consecutivi della stringa x. Un prefisso di x è una qualsiasi sequenza di simboli consecutivi iniziali della stringa x. Un suffisso di x è una qualsiasi sequenza di simboli consecutivi terminali della stringa x.

Se x = uyv è la concatenazione di stringhe u, y, v (eventualmente vuote) allora:

Def. Data una stringa x, una sottostringa di x è una qualsiasi sequenza di simboli consecutivi della stringa x. Un prefisso di x è una qualsiasi sequenza di simboli consecutivi iniziali della stringa x. Un suffisso di x è una qualsiasi sequenza di simboli consecutivi terminali della stringa x.

Se x = uyv è la concatenazione di stringhe u, y, v (eventualmente vuote) allora:

y è una sottostringa di x,

Def. Data una stringa x, una sottostringa di x è una qualsiasi sequenza di simboli consecutivi della stringa x. Un prefisso di x è una qualsiasi sequenza di simboli consecutivi iniziali della stringa x. Un suffisso di x è una qualsiasi sequenza di simboli consecutivi terminali della stringa x.

Se x = uyv è la concatenazione di stringhe u, y, v (eventualmente vuote) allora:

- y è una sottostringa di x,
- u è un prefisso di x,

Def. Data una stringa x, una sottostringa di x è una qualsiasi sequenza di simboli consecutivi della stringa x. Un prefisso di x è una qualsiasi sequenza di simboli consecutivi iniziali della stringa x. Un suffisso di x è una qualsiasi sequenza di simboli consecutivi terminali della stringa x.

Se x = uyv è la concatenazione di stringhe u, y, v (eventualmente vuote) allora:

- y è una sottostringa di x,
- u è un prefisso di x,
- v è un **suffisso** di x

Def. Data una stringa x, una sottostringa di x è una qualsiasi sequenza di simboli consecutivi della stringa x. Un prefisso di x è una qualsiasi sequenza di simboli consecutivi iniziali della stringa x. Un suffisso di x è una qualsiasi sequenza di simboli consecutivi terminali della stringa x.

Se x = uyv è la concatenazione di stringhe u, y, v (eventualmente vuote) allora:

- y è una **sottostringa** di x,
- u è un prefisso di x,
- v è un **suffisso** di x

Una sottostringa (prefisso, suffisso) di x è **propria** se non coincide con x.

Esempio: La stringa 472 ha

Esempio: La stringa 472 ha

• prefissi: ϵ , 4, 47, 472,

Esempio: La stringa 472 ha

• prefissi: ϵ , 4, 47, 472,

• suffissi: ϵ , 2, 72, 472,

Esempio: La stringa 472 ha

• prefissi: ϵ , 4, 47, 472,

• suffissi: ϵ , 2, 72, 472,

• sottostringhe: ϵ , 4, 7, 2, 47, 72, 472

Esempio: La stringa 472 ha

- prefissi: ϵ , 4, 47, 472,
- suffissi: ϵ , 2, 72, 472,
- sottostringhe: ϵ , 4, 7, 2, 47, 72, 472
- La stringa 42 non è sottostringa di 472.

Definizione

L'inversa (o reverse o riflessione) \mathbf{w}^R di una stringa w è la stringa ottenuta scrivendo i caratteri di w da destra verso sinistra.

Definizione

L'inversa (o reverse o riflessione) \mathbf{w}^R di una stringa w è la stringa ottenuta scrivendo i caratteri di w da destra verso sinistra.

$$\epsilon^R=\epsilon$$
 e se $w=a_1\cdots a_n$, con a_j lettere, allora ${f w}^R=a_na_{n-1}\cdots a_1.$

Definizione

L'inversa (o reverse o riflessione) \mathbf{w}^R di una stringa w è la stringa ottenuta scrivendo i caratteri di w da destra verso sinistra.

$$\epsilon^R=\epsilon$$
 e se $w=a_1\cdots a_n$, con a_j lettere, allora ${f w}^R=a_na_{n-1}\cdots a_1.$

Esempio: x = roma, $x^R = amor$.

Definizione

L'inversa (o reverse o riflessione) \mathbf{w}^R di una stringa w è la stringa ottenuta scrivendo i caratteri di w da destra verso sinistra.

$$\epsilon^R=\epsilon$$
 e se $w=a_1\cdots a_n$, con a_j lettere, allora ${f w}^R=a_na_{n-1}\cdots a_1.$

Esempio: x = roma, $x^R = amor$.

Proprietà:

$$(x^R)^R = x$$
, $(xy)^R = y^R x^R$

Definizione ricorsiva dell'inversa di una stringa

PASSO BASE: $\epsilon^R = \epsilon$.

Definizione ricorsiva dell'inversa di una stringa

PASSO BASE: $\epsilon^R = \epsilon$.

PASSO RICORSIVO: Per ogni $x \in \Sigma^*$ e $\sigma \in \Sigma$, $(x\sigma)^R = \sigma x^R$.

Sia $m \geq 1$ un intero non negativo. La potenza m-esima di una stringa x è la concatenazione di x con sé stessa m-1 volte. Per convenzione la potenza 0 di una stringa è la stringa vuota.

Sia $m \geq 1$ un intero non negativo. La potenza m-esima di una stringa x è la concatenazione di x con sé stessa m-1 volte. Per convenzione la potenza 0 di una stringa è la stringa vuota.

Definizione

Sia x una stringa. Poniamo

PASSO BASE: $x^0 = \epsilon$

PASSO RICORSIVO: $x^m = x^{m-1}x$, per m > 0.

Esempi:

Esempi:

$$x = ab$$

$$x^{0} = \epsilon$$

$$x^{1} = x = ab$$

$$x^{2} = (ab)^{2} = abab$$

$$y = a^{2} = aa$$

$$y^{3} = a^{2}a^{2}a^{2} = a^{6}$$

$$\epsilon^{0} = \epsilon$$

$$\epsilon^{2} = \epsilon$$

Nota. È necessario racchiudere tra parentesi la stringa da elevare alla potenza se ha lunghezza maggiore di uno.

Nota. È necessario racchiudere tra parentesi la stringa da elevare alla potenza se ha lunghezza maggiore di uno.

$$(ab)^2 = abab \neq abb = ab^2$$

Nota. È necessario racchiudere tra parentesi la stringa da elevare alla potenza se ha lunghezza maggiore di uno.

$$(ab)^2 = abab \neq abb = ab^2$$

L'elevamento a potenza ha *precedenza* rispetto alla concatenazione.

Nota. È necessario racchiudere tra parentesi la stringa da elevare alla potenza se ha lunghezza maggiore di uno.

$$(ab)^2 = abab \neq abb = ab^2$$

L'elevamento a potenza ha *precedenza* rispetto alla concatenazione.

Anche la riflessione ha *precedenza* rispetto alla concatenazione.

Nota. È necessario racchiudere tra parentesi la stringa da elevare alla potenza se ha lunghezza maggiore di uno.

$$(ab)^2 = abab \neq abb = ab^2$$

L'elevamento a potenza ha *precedenza* rispetto alla concatenazione.

Anche la riflessione ha *precedenza* rispetto alla concatenazione.

$$b^R = b$$
, quindi $ab^R = ab$.

$$(ab)^R = ba \neq ab^R = ab$$

Operazioni sui linguaggi

Data un'operazione su una stringa, essa si può estendere a tutte le stringhe di un linguaggio.

Operazioni sui linguaggi

Data un'operazione su una stringa, essa si può estendere a tutte le stringhe di un linguaggio.

Otteniamo così alcune operazioni sui linguaggi.

Operazioni unarie sui linguaggi

La riflessione di un linguaggio L:

$$L^R = \{ x \mid x = y^R \land y \in L \}$$

Operazioni unarie sui linguaggi

La riflessione di un linguaggio L:

$$L^R = \{ x \mid x = y^R \land y \in L \}$$

• Esempio:

$$L_1 = \{aa, aaa\}$$

Operazioni unarie sui linguaggi

La riflessione di un linguaggio L:

$$L^R = \{ x \mid x = y^R \land y \in L \}$$

• Esempio:

$$L_1 = \{aa, aaa\}$$

$$L_1 = L_1^R$$

La riflessione di un linguaggio L:

$$L^R = \{ x \mid x = y^R \land y \in L \}$$

• Esempio:

$$L_1 = \{aa, aaa\}$$

$$L_1 = L_1^R$$

$$L_2 = \{aba, aab\}$$

La riflessione di un linguaggio L:

$$L^R = \{ x \mid x = y^R \land y \in L \}$$

• Esempio:

$$L_1 = \{aa, aaa\}$$

$$L_1 = L_1^R$$

$$L_2 = \{aba, aab\}$$

$$L_2^R = \{aba, baa\}$$

La riflessione di un linguaggio L:

$$L^R = \{ x \mid x = y^R \land y \in L \}$$

La riflessione di un linguaggio L:

$$L^R = \{ x \mid x = y^R \land y \in L \}$$

• Esempio:

$$L_3 = \{ w \in \{a, b\}^* \mid |w|_a = |w|_b \}$$

La riflessione di un linguaggio L:

$$L^R = \{ x \mid x = y^R \land y \in L \}$$

• Esempio:

$$L_3 = \{ w \in \{a, b\}^* \mid |w|_a = |w|_b \}$$

$$L_3 = L_3^R$$

L'insieme dei prefissi propri delle stringhe di un linguaggio L:

$$\begin{array}{lll} \mathsf{Prefissi}(\mathit{L}) & = & \{y \mid x = yz \land x \in \mathit{L} \land z \neq \epsilon\} \\ & = & \{y \mid \exists x \in \mathit{L} \text{ tale che } x = yz \text{ con } z \neq \epsilon\} \\ & = & \{y \mid y \text{ è prefisso proprio di una stringa in } \mathit{L}\} \end{array}$$

L'insieme dei prefissi propri delle stringhe di un linguaggio L:

$$\begin{aligned} \mathsf{Prefissi}(L) &= \{ y \mid x = yz \land x \in L \land z \neq \epsilon \} \\ &= \{ y \mid \exists x \in L \text{ tale che } x = yz \text{ con } z \neq \epsilon \} \\ &= \{ y \mid y \text{ è prefisso proprio di una stringa in } L \} \end{aligned}$$

Esempio:

• $L_1 = \{aa, aaa\}$

L'insieme dei prefissi propri delle stringhe di un linguaggio L:

$$\begin{aligned} \mathsf{Prefissi}(L) &= & \{ y \mid x = yz \land x \in L \land z \neq \epsilon \} \\ &= & \{ y \mid \exists x \in L \text{ tale che } x = yz \text{ con } z \neq \epsilon \} \\ &= & \{ y \mid y \text{ è prefisso proprio di una stringa in } L \} \end{aligned}$$

```
• L_1 = \{aa, aaa\}
Prefissi(L_1) = \{\epsilon, a, aa\}
```

L'insieme dei prefissi propri delle stringhe di un linguaggio L:

$$\begin{aligned} \mathsf{Prefissi}(L) &= \{ y \mid x = yz \land x \in L \land z \neq \epsilon \} \\ &= \{ y \mid \exists x \in L \text{ tale che } x = yz \text{ con } z \neq \epsilon \} \\ &= \{ y \mid y \text{ è prefisso proprio di una stringa in } L \} \end{aligned}$$

- $L_1 = \{aa, aaa\}$ Prefissi $(L_1) = \{\epsilon, a, aa\}$
- $L_2 = \{aba, aab\}$

L'insieme dei prefissi propri delle stringhe di un linguaggio L:

$$\begin{aligned} \mathsf{Prefissi}(L) &= \{ y \mid x = yz \land x \in L \land z \neq \epsilon \} \\ &= \{ y \mid \exists x \in L \text{ tale che } x = yz \text{ con } z \neq \epsilon \} \\ &= \{ y \mid y \text{ è prefisso proprio di una stringa in } L \} \end{aligned}$$

- $L_1 = \{aa, aaa\}$ Prefissi $(L_1) = \{\epsilon, a, aa\}$
- $L_2 = \{aba, aab\}$ Prefissi $(L_2) = \{\epsilon, a, ab, aa\}$

L'insieme dei prefissi propri delle stringhe di un linguaggio L:

$$\begin{aligned} \mathsf{Prefissi}(L) &= & \{ y \mid x = yz \land x \in L \land z \neq \epsilon \} \\ &= & \{ y \mid \exists x \in L \text{ tale che } x = yz \text{ con } z \neq \epsilon \} \\ &= & \{ y \mid y \text{ è prefisso proprio di una stringa in } L \} \end{aligned}$$

- $L_1 = \{aa, aaa\}$ Prefissi $(L_1) = \{\epsilon, a, aa\}$
- $L_2 = \{aba, aab\}$ Prefissi $(L_2) = \{\epsilon, a, ab, aa\}$
- $L_3 = \{ w \in \{a,b\}^* \mid |w|_a = |w|_b \}$

L'insieme dei prefissi propri delle stringhe di un linguaggio L:

$$\begin{aligned} \mathsf{Prefissi}(L) &= \{ y \mid x = yz \land x \in L \land z \neq \epsilon \} \\ &= \{ y \mid \exists x \in L \text{ tale che } x = yz \text{ con } z \neq \epsilon \} \\ &= \{ y \mid y \text{ è prefisso proprio di una stringa in } L \} \end{aligned}$$

- $L_1 = \{aa, aaa\}$ Prefissi $(L_1) = \{\epsilon, a, aa\}$
- $L_2 = \{aba, aab\}$ Prefissi $(L_2) = \{\epsilon, a, ab, aa\}$
- $L_3 = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$ Prefissi $(L_3) = \{a, b\}^*$

Un linguaggio è prefisso se non contiene nessuno dei suoi prefissi propri.

Un linguaggio è prefisso se non contiene nessuno dei suoi prefissi propri.

Un linguaggio L è prefisso se e solo se

$$L \cap \mathsf{Prefissi}(L) = \emptyset$$

Un linguaggio è prefisso se non contiene nessuno dei suoi prefissi propri.

Un linguaggio L è prefisso se e solo se

$$L \cap \mathsf{Prefissi}(L) = \emptyset$$

Importanza pratica: se nella trasmissione dell'informazione una parte finale della stringa viene accidentalmente troncata, l'errore viene individuato.

Nella codifica dell'informazione la decodifica è immediata.

Esempio. $L_1 = \{a^n b^n \mid n \ge 1\}$ è prefisso perché

Prefissi
$$(L_1) = \{a^n b^m \mid n > m \ge 1\} \cup \{a^n \mid n \ge 0\}.$$

Esempio. $L_1 = \{a^n b^n \mid n \ge 1\}$ è prefisso perché

$$\mathsf{Prefissi}(L_1) = \{ a^n b^m \mid n > m \ge 1 \} \cup \{ a^n \mid n \ge 0 \}.$$

Esempio. $L_2 = \{a^m b^n \mid m \ge n \ge 1\}$ non è prefisso perché, ad esempio, $a^3 b^2$ e $a^3 b$ sono entrambi in L_2 .

Esempio. $L_1 = \{a^n b^n \mid n \ge 1\}$ è prefisso perché

$$\mathsf{Prefissi}(L_1) = \{ a^n b^m \mid n > m \ge 1 \} \cup \{ a^n \mid n \ge 0 \}.$$

Esempio. $L_2 = \{a^m b^n \mid m \ge n \ge 1\}$ non è prefisso perché, ad esempio, $a^3 b^2$ e $a^3 b$ sono entrambi in L_2 .

Esempio. Ogni linguaggio L che contiene la stringa vuota ϵ e tale che $L \neq \{\epsilon\}$ non è prefisso.

Anche le operazioni su due stringhe possono essere estese a due linguaggi.

Anche le operazioni su due stringhe possono essere estese a due linguaggi.

Prodotto di linguaggi

Anche le operazioni su due stringhe possono essere estese a due linguaggi.

Prodotto di linguaggi

Definizione

Dati due linguaggi L' ed L'' sull'alfabeto Σ , il prodotto (o concatenazione) di L' ed L'' è

$$L'L'' = L' \circ L'' = \{xy \mid x \in L' \land y \in L''\}$$

Anche le operazioni su due stringhe possono essere estese a due linguaggi.

Prodotto di linguaggi

Definizione

Dati due linguaggi L' ed L'' sull'alfabeto Σ , il prodotto (o concatenazione) di L' ed L'' è

$$L'L'' = L' \circ L'' = \{xy \mid x \in L' \land y \in L''\}$$

L'L'' è l'insieme di tutte le stringhe che sono concatenazione di una stringa in L' e di una stringa in L''.

Esempi

```
\begin{array}{rcl} L_1 &=& \{aa,aaa\} \\ L_2 &=& \{aba,aab\} \\ L_1L_2 &=& \{aaaba,aaaab,aaaaba,aaaaab\} = \{a^3ba,a^4b,a^4ba,a^5b\} \end{array}
```

Esempi

Esempio. Siano

$$L_1 = \{a^i \mid i \geq 0, \text{ pari}\}$$
 $L_2 = \{b^j a \mid j \geq 1, \text{ dispari}\}$

Esempio. Siano

$$L_1 = \{a^i \mid i \geq 0, \; \mathsf{pari}\}$$
 $L_2 = \{b^j a \mid j \geq 1, \; \mathsf{dispari}\}$

risulta

$$L_1L_2 = \{a^ib^ja \mid (i \geq 0, \text{ pari}) \land (j \geq 1, \text{ dispari})\}$$

Esempio. Siano

$$L_1 = \{a^i \mid i \geq 0, \; \mathsf{pari}\}$$
 $L_2 = \{b^j a \mid j \geq 1, \; \mathsf{dispari}\}$

risulta

$$L_1L_2 = \{a^ib^ja \mid (i \geq 0, \text{ pari}) \land (j \geq 1, \text{ dispari})\}$$

Esempi di stringhe in L_1L_2 :

$$ba, a^2ba, a^4ba, b^3a, a^2b^3a, a^4b^3a$$

Operazioni sui linguaggi

Potenza di un linguaggio

Operazioni sui linguaggi

Potenza di un linguaggio

Definizione

Sia L un linguaggio sull'alfabeto Σ . Definiamo:

$$L^{0} = \{\epsilon\},$$

$$L^{k} = L^{k-1}L, \quad k \ge 1$$

Operazioni sui linguaggi

Potenza di un linguaggio

Definizione

Sia L un linguaggio sull'alfabeto Σ . Definiamo:

$$L^{0} = \{\epsilon\},$$

$$L^{k} = L^{k-1}L, \quad k \ge 1$$

Nota.

$$L^{1} = L$$

$$L^{k} = \{ w_{1}w_{2} \dots w_{k} \mid w_{i} \in L, \ 1 \leq i \leq k \}, \ k \geq 0.$$

$$L_1 = \{aa, aaa\}$$

 $L_1^2 = \{aa, aaa\}\{aa, aaa\} = \{a^4, a^5, a^6\}$

$$L_2 = \{aba, aab\}$$

 $L_2^2 = \{aba, aab\}\{aba, aab\} = \{(aba)^2, abaaab, aababa, (aab)^2\}$

$$\begin{array}{rcl} \emptyset^0 & = & \{\epsilon\} \\ L \cdot \emptyset & = & \emptyset \cdot L = \emptyset \\ L \cdot \{\epsilon\} & = & \{\epsilon\} \cdot L = L \end{array}$$

Nota. Dato un linguaggio L e un intero $m \ge 2$ consideriamo

Nota. Dato un linguaggio L e un intero $m \ge 2$ consideriamo

• il linguaggio $\{x^m \mid x \in L\}$ che ha come elementi le potenze m-esime degli elementi di L,

Nota. Dato un linguaggio L e un intero $m \ge 2$ consideriamo

- il linguaggio $\{x^m \mid x \in L\}$ che ha come elementi le potenze m-esime degli elementi di L,
- la potenza *m*-esima *L*^m di *L*.

Nota. Dato un linguaggio L e un intero $m \ge 2$ consideriamo

- il linguaggio $\{x^m \mid x \in L\}$ che ha come elementi le potenze m-esime degli elementi di L,
- la potenza m-esima L^m di L.

$$\{x^m \mid x \in L\} \subseteq L^m$$

Nota. Dato un linguaggio L e un intero $m \ge 2$ consideriamo

- il linguaggio $\{x^m \mid x \in L\}$ che ha come elementi le potenze m-esime degli elementi di L,
- la potenza *m*-esima *L*^m di *L*.

$$\{x^m \mid x \in L\} \subseteq L^m$$

In generale il primo è incluso ma è diverso dal secondo.

Nota. Dato un linguaggio L e un intero $m \ge 2$ consideriamo

- il linguaggio $\{x^m \mid x \in L\}$ che ha come elementi le potenze m-esime degli elementi di L,
- la potenza *m*-esima *L*^m di *L*.

$$\{x^m \mid x \in L\} \subseteq L^m$$

In generale il primo è incluso ma è diverso dal secondo.

Esempio

$$L = \{a, b\}, \quad \{x^2 \mid x \in L\} = \{aa, bb\}, \quad L^2 = \{aa, bb, ab, ba\}$$

Nota. Dato un linguaggio L e un intero $m \ge 2$, in generale $\{x^m \mid x \in L\}$ è incluso strettamente in L^m .

Nota. Dato un linguaggio L e un intero $m \ge 2$, in generale $\{x^m \mid x \in L\}$ è incluso strettamente in L^m .

Cosa accade per m = 0?

Nota. Dato un linguaggio L e un intero $m \ge 2$, in generale $\{x^m \mid x \in L\}$ è incluso strettamente in L^m .

Cosa accade per m = 0?

Cosa accade per m = 1?

Nota. Dato un linguaggio L e un intero $m \ge 2$, in generale $\{x^m \mid x \in L\}$ è incluso strettamente in L^m .

Cosa accade per m = 0?

Cosa accade per m = 1?

Esistono linguaggi L tali che $\{x^m \mid x \in L\} = L^m$ con $m \ge 2$?

L'operatore di potenza permette di definire in modo espressivo il linguaggio delle stringhe di lunghezza non superiore a un intero k.

L'operatore di potenza permette di definire in modo espressivo il linguaggio delle stringhe di lunghezza non superiore a un intero k.

Esempio. Sia $\Sigma = \{a, b\}$ e k = 3.

$$L = \{ w \in \Sigma^* \mid |w| \le 3 \}$$

= $\{ \epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb \}$

L'operatore di potenza permette di definire in modo espressivo il linguaggio delle stringhe di lunghezza non superiore a un intero k.

Esempio. Sia
$$\Sigma = \{a, b\}$$
 e $k = 3$.

$$L = \{ w \in \Sigma^* \mid |w| \le 3 \}$$

= $\{ \epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb \}$

Altre espressioni per *L*:

$$L = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3$$

L'operatore di potenza permette di definire in modo espressivo il linguaggio delle stringhe di lunghezza non superiore a un intero k.

Esempio. Sia
$$\Sigma = \{a, b\}$$
 e $k = 3$.

$$L = \{ w \in \Sigma^* \mid |w| \le 3 \}$$

= \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb}

Altre espressioni per *L*:

$$L = \Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3}$$
$$L = \{\epsilon, a, b\}^{3}$$

L'operatore di potenza permette di definire in modo espressivo il linguaggio delle stringhe di lunghezza non superiore a un intero k.

Esempio. Sia
$$\Sigma = \{a, b\}$$
 e $k = 3$.

$$L = \{ w \in \Sigma^* \mid |w| \le 3 \}$$

= \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb}

Altre espressioni per *L*:

$$L = \Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3}$$
$$L = \{\epsilon, a, b\}^{3}$$

$$L' = \{ w \in \Sigma^* \mid 1 \le |w| \le 3 \} = \{ a, b \} \{ \epsilon, a, b \}^2$$

Operazioni sui linguaggi - operazioni insiemistiche

I linguaggi sono insiemi. Quindi le operazioni insiemistiche di unione, intersezione, differenza, complemento sono definite anche per i linguaggi in quanto insiemi di stringhe;

Operazioni sui linguaggi - operazioni insiemistiche

I linguaggi sono insiemi. Quindi le operazioni insiemistiche di unione, intersezione, differenza, complemento sono definite anche per i linguaggi in quanto insiemi di stringhe; come pure le relazioni di inclusione (\subseteq), di inclusione stretta (\subset) e di eguaglianza (=).

Se L_1 ed L_2 sono due linguaggi su un alfabeto Σ , la differenza L_1-L_2 di L_1 ed L_2 è

$$L_1 - L_2 = \{ w \in L_1 \mid w \not\in L_2 \}.$$

Se L_1 ed L_2 sono due linguaggi su un alfabeto Σ , la differenza L_1-L_2 di L_1 ed L_2 è

$$L_1 - L_2 = \{ w \in L_1 \mid w \not\in L_2 \}.$$

Notazione alternativa: $L_1 \setminus L_2$.

$$\begin{split} \Sigma &= \{a,b,c\} \\ L_1 &= \{x \in \Sigma^* \mid |x|_a = |x|_b = |x|_c \geq 0\} \\ L_2 &= \{x \in \Sigma^* \mid (|x|_a = |x|_b \geq 0) \land (|x|_c = 1)\} \end{split}$$

$$\Sigma = \{a, b, c\}$$

$$L_1 = \{x \in \Sigma^* \mid |x|_a = |x|_b = |x|_c \ge 0\}$$

$$L_2 = \{x \in \Sigma^* \mid (|x|_a = |x|_b \ge 0) \land (|x|_c = 1)\}$$

 $L_1 - L_2 = \{\epsilon\} \cup \{x \in \Sigma^* \mid |x|_a = |x|_b = |x|_c \ge 2\}$

$$\begin{split} \Sigma &= \{a,b,c\} \\ L_1 &= \{x \in \Sigma^* \mid |x|_a = |x|_b = |x|_c \geq 0\} \\ L_2 &= \{x \in \Sigma^* \mid (|x|_a = |x|_b \geq 0) \land (|x|_c = 1)\} \\ \\ L_1 - L_2 &= \{\epsilon\} \cup \{x \in \Sigma^* \mid |x|_a = |x|_b = |x|_c \geq 2\} \\ \\ L_2 - L_1 &= \{x \in \Sigma^* \mid |x|_a = |x|_b \neq |x|_c = 1\} \end{split}$$

Per parlare del complemento di un linguaggio (su un alfabeto Σ) si deve introdurre un *linguaggio universale*, definito come l'insieme di tutte le stringhe su un alfabeto Σ .

Per parlare del complemento di un linguaggio (su un alfabeto Σ) si deve introdurre un *linguaggio universale*, definito come l'insieme di tutte le stringhe su un alfabeto Σ .

L'insieme Σ^* di tutte le stringhe su un alfabeto Σ è l'unione di tutte le potenze dell'alfabeto.

$$L_{universale} = \Sigma^* = \cup_{n \geq 0} \Sigma^n$$

Se $L \subseteq \Sigma^*$, il complemento \overline{L} di L è

$$\overline{L} = \Sigma^* - L = \{ w \in \Sigma^* \mid w \not\in L \}$$

Se $L \subseteq \Sigma^*$, il complemento \overline{L} di L è

$$\overline{L} = \Sigma^* - L = \{ w \in \Sigma^* \mid w \not\in L \}$$

Notazione alternativa: $\neg L$.

Se $L \subseteq \Sigma^*$, il complemento \overline{L} di L è

$$\overline{L} = \Sigma^* - L = \{ w \in \Sigma^* \mid w \not\in L \}$$

Notazione alternativa: $\neg L$.

Esempio. Alfabeto: $\{a, b\}$ Linguaggio $L = \{w \in \{a, b\}^* \mid \text{ la prima lettera di } w \in b\}$ \overline{L} : ?

 \overline{L} : insieme delle stringhe su $\{a,b\}$ che non iniziano con b. **N.B.**: NON insieme stringhe che iniziano con a (es. stringa vuota $\epsilon \in \overline{L}$)

Il complemento di un linguaggio finito è sempre infinito.

Il complemento di un linguaggio finito è sempre infinito.

Esempio. Alfabeto: $\{a, b\}$

Linguaggio: insieme delle stringhe di una qualsiasi lunghezza tranne che due.

Il complemento di un linguaggio finito è sempre infinito.

Esempio. Alfabeto: $\{a, b\}$

Linguaggio: insieme delle stringhe di una qualsiasi lunghezza tranne che due.

$$\overline{\{a,b\}^2} = \{\epsilon\} \cup \{a,b\} \cup (\cup_{n\geq 3} \{a,b\}^n)$$

Il complemento di un linguaggio finito è sempre infinito.

Esempio. Alfabeto: $\{a, b\}$

Linguaggio: insieme delle stringhe di una qualsiasi lunghezza tranne che due.

$$\overline{\{a,b\}^2} = \{\epsilon\} \cup \{a,b\} \cup (\cup_{n\geq 3} \{a,b\}^n)$$

Non è detto però che il complemento di un linguaggio infinito sia finito.

Il complemento di un linguaggio finito è sempre infinito.

Esempio. Alfabeto: $\{a, b\}$

Linguaggio: insieme delle stringhe di una qualsiasi lunghezza tranne che due.

$$\overline{\{a,b\}^2} = \{\epsilon\} \cup \{a,b\} \cup (\cup_{n\geq 3} \{a,b\}^n)$$

Non è detto però che il complemento di un linguaggio infinito sia finito.

Esempio. Alfabeto:
$$\{a\}$$

 $\underline{L} = \{a^{2n} \mid n \ge 0\}$
 $\overline{L} = \{a^{2n+1} \mid n \ge 0\}$

A eccezione dell'operazione di complemento, le operazioni finora viste non permettono una descrizione finita di linguaggi infiniti. Questo è possibile mediante l'operazione star.

A eccezione dell'operazione di complemento, le operazioni finora viste non permettono una descrizione finita di linguaggi infiniti. Questo è possibile mediante l'operazione star.

Chiusura di Kleene (o Kleene star o star o stella di Kleene)

A eccezione dell'operazione di complemento, le operazioni finora viste non permettono una descrizione finita di linguaggi infiniti. Questo è possibile mediante l'operazione star.

Chiusura di Kleene (o Kleene star o star o stella di Kleene)

Definizione

La chiusura di Kleene (o Kleene star o star) di un linguaggio L è l'unione di tutte le potenze del linguaggio:

$$L^* = \bigcup_{n \in \mathbb{N}, n > 0} L^n$$

Nota. L^* è il linguaggio delle stringhe ottenute concatenando un numero qualsiasi di stringhe di L:

Nota. L^* è il linguaggio delle stringhe ottenute concatenando un numero qualsiasi di stringhe di L:

$$L^* = \{w_1 w_2 \dots w_k \mid k \ge 0, w_i \in L, 1 \le i \le k\}$$

Nota. L^* è il linguaggio delle stringhe ottenute concatenando un numero qualsiasi di stringhe di L:

$$L^* = \{w_1 w_2 \dots w_k \mid k \ge 0, \ w_i \in L, \ 1 \le i \le k\}$$

Nota. Se k = 0, $w_1 w_2 \dots w_k = \epsilon$ è la stringa vuota.

Esempio. Dato $L = \{ab, ba\}$, ogni stringa non vuota in L^* è la concatenazione di parole uguali ad ab o a ba.

$$L^* = \{(ab)^{n_1}(ba)^{m_1} \cdots (ab)^{n_h}(ba)^{m_h} \mid h \ge 0, n_i, m_i \ge 0, i = 1, \dots, h\}$$

Nota.

$$\emptyset^* = \{\epsilon\}, \quad \{\epsilon\}^* = \{\epsilon\}$$

Nota.

$$\emptyset^* = \{\epsilon\}, \quad \{\epsilon\}^* = \{\epsilon\}$$

I linguaggi \emptyset , $\{\epsilon\}$ sono gli unici tali che la loro chiusura di Kleene è un linguaggio finito. Altrimenti, anche se L è finito, L^* è infinito.

• Se il linguaggio è un alfabeto Σ , la sua chiusura di Kleene Σ^* è il linguaggio universale.

- Se il linguaggio è un alfabeto Σ , la sua chiusura di Kleene Σ^* è il linguaggio universale.
- Un linguaggio formale L su un alfabeto Σ è un sottoinsieme di Σ*: L ⊆ Σ*.

- Se il linguaggio è un alfabeto Σ , la sua chiusura di Kleene Σ^* è il linguaggio universale.
- Un linguaggio formale L su un alfabeto Σ è un sottoinsieme di Σ*: L ⊆ Σ*.
- A volte L* coincide con L.

- Se il linguaggio è un alfabeto Σ, la sua chiusura di Kleene Σ*
 è il linguaggio universale.
- Un linguaggio formale L su un alfabeto Σ è un sottoinsieme di Σ*: L ⊆ Σ*.
- A volte L* coincide con L.

Esempio Se
$$L = \{a^{2n} \mid n \ge 0, n \in \mathbb{N}\}$$
, allora $L^* = \{a^{2n} \mid n \ge 0, n \in \mathbb{N}\} = L$.

 $L \subseteq L^*$ (monotonicità)

 $L \subseteq L^*$ (monotonicità)

 $(x \in L^* \land y \in L^*) \rightarrow xy \in L^*$ (chiusura rispetto alla concatenazione)

 $L \subseteq L^*$ (monotonicità)

 $(x \in L^* \land y \in L^*) \rightarrow xy \in L^*$ (chiusura rispetto alla concatenazione)

 $(L^*)^* = L^*$ (idempotenza)

$$L \subseteq L^*$$
 (monotonicità)

$$(x \in L^* \land y \in L^*) \rightarrow xy \in L^*$$
 (chiusura rispetto alla concatenazione)

$$(L^*)^* = L^*$$
 (idempotenza)

$$(L^*)^R = (L^R)^*$$
 (commutatività di star e riflessione)

Esempio Se $L = \{a^{2n} \mid n \ge 0, n \in \mathbb{N}\}$, allora $L = \{aa\}^*$.

Esempio Se $L = \{a^{2n} \mid n \geq 0, n \in \mathbb{N}\}$, allora $L = \{aa\}^*$. Quindi

$$L^* = \{a^{2n} \mid n \ge 0, n \in \mathbb{N}\}^*$$

= $(\{aa\}^*)^*$
= $\{aa\}^* = L$

per la proprietà di idempotenza.

Molti linguaggi di programmazione assegnano nomi o identificatori agli oggetti (variabili, sottoprogrammi, ecc.) utilizzati.

Molti linguaggi di programmazione assegnano nomi o identificatori agli oggetti (variabili, sottoprogrammi, ecc.) utilizzati.

Una regola comune a molti linguaggi dice che un identificatore è una stringa che inizia con una lettera in $\{A, B, \ldots, Z\}$ seguita da un numero qualsiasi di lettere e cifre in $\{0, 1, \ldots, 9\}$.

Molti linguaggi di programmazione assegnano nomi o identificatori agli oggetti (variabili, sottoprogrammi, ecc.) utilizzati.

Una regola comune a molti linguaggi dice che un identificatore è una stringa che inizia con una lettera in $\{A,B,\ldots,Z\}$ seguita da un numero qualsiasi di lettere e cifre in $\{0,1,\ldots,9\}$.

Esempio SOMMA32A35.

Definiti gli alfabeti

$$\Sigma_{A\ell} = \{A,B,\dots,Z\}, \quad \Sigma_N = \{0,1,\dots,9\}$$

il linguaggio $I \subseteq (\Sigma_{A\ell} \cup \Sigma_N)^*$ degli identificatori risulta:

Definiti gli alfabeti

$$\Sigma_{A\ell} = \{A,B,\dots,Z\}, \quad \Sigma_N = \{0,1,\dots,9\}$$

il linguaggio $I\subseteq (\Sigma_{A\ell}\cup\Sigma_N)^*$ degli identificatori risulta:

$$I = \Sigma_{A\ell} (\Sigma_{A\ell} \cup \Sigma_N)^*$$

Sia l_5 il linguaggio degli identificatori di lunghezza al più 5.

Sia I_{5} il linguaggio degli identificatori di lunghezza al più 5.

Posto $\Sigma = \Sigma_{A\ell} \cup \Sigma_N$, risulta

Sia I_5 il linguaggio degli identificatori di lunghezza al più 5. Posto $\Sigma = \Sigma_{A\ell} \cup \Sigma_{N}$, risulta

$$\begin{array}{lcl} I_5 & = & \Sigma_{A\ell}(\Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \Sigma^4) \\ & = & \Sigma_{A\ell}(\{\epsilon\} \cup \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \Sigma^4) \\ & = & \Sigma_{A\ell}(\{\epsilon\} \cup \Sigma)^4 \end{array}$$

Una operazione utile (ma non indispensabile) è la chiusura positiva (o croce).

Una operazione utile (ma non indispensabile) è la chiusura positiva (o croce).

Chiusura positiva

Una operazione utile (ma non indispensabile) è la chiusura positiva (o croce).

Chiusura positiva

Definizione

Per un linguaggio L sull'alfabeto Σ , definiamo

$$L^+ = \bigcup_{n \in \mathbb{N}, n > 0} L^n$$

Una operazione utile (ma non indispensabile) è la chiusura positiva (o croce).

Chiusura positiva

Definizione

Per un linguaggio L sull'alfabeto Σ , definiamo

$$L^+ = \bigcup_{n \in \mathbb{N}, n > 0} L^n$$

La chiusura positiva si distingue dalla chiusura di Kleene perché nell'unione non compare la potenza di L con esponente zero $L^0=\{\epsilon\}$.

$$L^+ \subseteq L^*$$

$$\mathit{L}^+\subseteq \mathit{L}^*$$

$$\epsilon \in L^+$$
 se e solo se $\epsilon \in L$

$$L^+ \subseteq L^*$$

$$\epsilon \in L^+$$
 se e solo se $\epsilon \in L$

$$L^+ = LL^* = L^*L$$

Nota. L^+ è il linguaggio delle stringhe ottenute concatenando un numero positivo qualsiasi di stringhe di L:

Nota. L^+ è il linguaggio delle stringhe ottenute concatenando un numero positivo qualsiasi di stringhe di L:

$$L^+ = \{ w_1 w_2 \cdots w_k \mid k > 0, w_i \in L, 1 \le i \le k \}$$

Esempio. Dato $L = \{ab, ba\}$, ogni stringa in L^+ è la concatenazione di parole uguali ad ab o a ba.

$$L^+ = \{(ab)^{n_1}(ba)^{m_1} \cdots (ab)^{n_h}(ba)^{m_h} \mid h > 0, n_i, m_i \ge 0, \exists j \ n_j + m_j \ne 0\}$$

Esempio.

$$\{\epsilon, aa\}^+ = \{a^{2n} \mid n \ge 0, n \in \mathbb{N}\} = \{aa\}^*$$

Esempio.

$$\{\epsilon,aa\}^+ = \{a^{2n} \mid n \ge 0, n \in \mathbb{N}\} = \{aa\}^*$$

Esempio. Le stringhe di lunghezza almeno quattro:

$$\Sigma^4\Sigma^*=(\Sigma^+)^4$$

Le operazioni sui linguaggi finora viste non possono essere utilizzate per accorciare le stringhe del linguaggio/dei linguaggi su cui operano.

Le operazioni sui linguaggi finora viste non possono essere utilizzate per accorciare le stringhe del linguaggio/dei linguaggi su cui operano.

L'operazione di *quoziente (destro)* accorcia una stringa del primo linguaggio cancellandone un suffisso appartenente al secondo.

Quoziente (destro)

Quoziente (destro)

Definizione

Il quoziente (destro) di L' rispetto ad L" è definito come

$$L = L'(L'')^{-1} = \{ y \mid (x = yz \in L') \land (z \in L'') \}$$

= $\{ y \mid \text{ esiste } z \in L'' \text{ tale che } yz \in L' \}$

Quoziente (destro)

Definizione

Il quoziente (destro) di L' rispetto ad L" è definito come

$$L = L'(L'')^{-1} = \{ y \mid (x = yz \in L') \land (z \in L'') \}$$

= $\{ y \mid \text{ esiste } z \in L'' \text{ tale che } yz \in L' \}$

Notazione alternativa: $L'/_DL''$

Quoziente (destro)

Esempio:

$$L_2 = \{aba, aab\}$$
 $L_2a^{-1} = L_2\{a\}^{-1} = \{ab\}$
 $L_2b^{-1} = L_2\{b\}^{-1} = \{aa\}$
 $L_1 = \{aa, aaa\}$
 $L_2L_1^{-1} = \emptyset = L_1L_2^{-1}$

Esempio. Siano

$$L' = \{a^{2n}b^{2n} \mid n \in \mathbb{N}, n > 0\}, \quad L'' = \{b^{2n+1} \mid n \in \mathbb{N}, n \ge 0\}$$

Esempio. Siano

$$L' = \{a^{2n}b^{2n} \mid n \in \mathbb{N}, n > 0\}, \quad L'' = \{b^{2n+1} \mid n \in \mathbb{N}, n \ge 0\}$$

$$L'(L'')^{-1} = \{a^r b^s \mid r, s \in \mathbb{N}, (r \ge 2, \text{ pari}) \land (1 \le s < r, s \text{ dispari})\}$$

Esempio. Siano

$$L' = \{a^{2n}b^{2n} \mid n \in \mathbb{N}, n > 0\}, \quad L'' = \{b^{2n+1} \mid n \in \mathbb{N}, n \ge 0\}$$

$$L'(L'')^{-1} = \{a^r b^s \mid r, s \in \mathbb{N}, (r \ge 2, \text{ pari}) \land (1 \le s < r, s \text{ dispari})\}$$

$$L''(L')^{-1} = \emptyset$$

Esiste un'operazione duale, il *quoziente sinistro* $L'/_SL''$ che accorcia una stringa del primo linguaggio cancellandone un prefisso appartenente al secondo.

Esiste un'operazione duale, il *quoziente sinistro* $L'/_SL''$ che accorcia una stringa del primo linguaggio cancellandone un prefisso appartenente al secondo.

$$L = (L'')^{-1}L' = \{z \mid (x = yz \in L') \land (y \in L'')\}$$

Esiste un'operazione duale, il *quoziente sinistro* $L'/_SL''$ che accorcia una stringa del primo linguaggio cancellandone un prefisso appartenente al secondo.

$$L = (L'')^{-1}L' = \{z \mid (x = yz \in L') \land (y \in L'')\}$$

Notazione alternativa: $L'/_SL''$