Written Exam for the B.Sc. or M.Sc. in Economics winter 2013-14

Operations Research

Elective Course

Friday, January 17th

(3-hour open book exam)

The language used in your exam paper must be English or Danish.

This exam question consists of 4 pages in total (including this front cover)

Part 1

Consider the following model, P:

Max
$$z = 3x_1 + 4x_2 + 3x_3$$

s.t. $1x_1 + 2x_2 + 3x_3 \le 8$
 $3x_1 + 2x_2 + 1x_3 \le 10$
 $1x_1 + 2x_2 + 1x_3 \le 7$
 $x_i \ge 0$ $(i = 1, 2, 3)$

Q1.1: The model P is an LP model. What characterizes an LP model?

The model P has been approached with the Simplex algorithm and the following tableau has appeared (where all non-integer values are shown as simple fractions):

Z	x1	x2	x3	s1	s2	s3	RHS
0	0	0	2	1	0	-1	1
0	1	0	0	0	1/2	-1/2	3/2
0	0	1	1/2	0	-1/4	3/4	11/4
1	0	0	-1	0	1/2	3/2	31/2

Q1.2: Is the presented solution optimal? If it is not optimal, then please continue the Simplex algorithm until optimality is reached.

Q1.3: Set up the dual model to model P. Call it D. What is the optimal solution to model D?

Consider to following model P2, which is an expansion of P where one new variable is added:

Max
$$z = 3x_1 + 4x_2 + 3x_3 + 2x_4$$

s.t. $1x_1 + 2x_2 + 3x_3 + 1x_4 \le 8$
 $3x_1 + 2x_2 + 1x_3 + 1x_4 \le 10$
 $1x_1 + 2x_2 + 1x_3 + 2x_4 \le 7$
 $x_i \ge 0$ $(i = 1, 2, 3, 4)$

Q1.4: Without solving this new model P2, determine whether the solution for P (with x_4 =0) is still optimal. Use the results from Question 1.2 and 1.3

Part 2

Consider an Assignment Problem, AP, with the following cost matrix:

1	1	2	2	2	4
1	1	2	2	2	4
1	1	2	2	2	4
4	4	1	1	1	2
4 4	4	1	1	1	2
4	4	1	1	1	2

Q2.1: Find a minimum cost assignment in AP

Consider now a transportation problem, TP with the following cost matrix and supply/demands:

				supply:
	1	2	4	3
	4	1	2	3
demand:	2	3	1	

Q2.2: Describe how the TP above can be transformed into the AP above.

Q2.3: Find a feasible solution to the TP by using the minimum cost heuristic. Is it (in this case) an optimal solution?

Part 3

Consider the following IP problem instance:

Max
$$z = 15 x_1 + 8 x_2$$

s.t. $4 x_1 + 1 x_2 \le 20$
 $8 x_1 + 6 x_2 \le 48$
 $x_i \ge 0$ and integers $(i = 1, 2)$

By relaxation of the integer constraints, the resulting LP has been solved using the Simplex algorithm and the following optimal Simplex tableau was found:

Z	x_1	x_2	s_1	<i>S</i> ₂	RHS
	1		3/8	-1/16	4.5
		1	-1/2	1/4	2
1			13/8	17/16	83.5

- Q3.1: Find the first additional constraint that results from the Cutting Plane Algorithm (do not solve the resulting model)
- Q3.2: Find the additional constraints that results from the Branch and Bound Algorithm (do not solve the resulting models)
- Q3.3: The LP relaxed problem has an optimal objective function value of 83.5. What do we know about the optimal objective function value of the IP problem?