Corso di Laurea in Informatica - A.A. 2014 - 2015 Esame di Fisica - 23/09/2015

Esercizio 1

Si considerino i seguenti punti in piano cartesiano (x, y): P=(1,2), A=(1,5), B=(5,2). Scrivere il vettore \vec{a} che va dal punto P al punto A, il vettore \vec{b} che va dal punto P al punto B ed il vettore $\vec{s}=\vec{a}+\vec{b}$.

Esercizio 2

Nel piano xy di un sistema di coordinate cartesiane xyz vi è un triangolo equilatero di lato ℓ . Un vertice del triangolo è nell'origine. Al tempo t=0 un lato è sull'asse x ed il triangolo ruota attorno all'asse z con velocità angolare costante ω (vedi figura). Ai vertici di questo triangolo ci sono tre cariche elettriche puntiformi Q. In tutto lo spazio vi è un campo magnetico costante $\vec{B} = b(-\sqrt{3}\ \vec{i} + \vec{j})$.

Calcolare:

- a) la forza elettrostatica sulla carica nell'origine ed il potenziale elettrostatico prodotto nell'origine dalle altre due cariche, nell'ipotesi che il potenziale all'infinito valga V_0 ;
- b) la forza totale sul sistema delle tre cariche dovuta al campo magnetico al tempo t=0;
- c) il campo magnetico nell'origine generato dal moto delle cariche. Si rammenti che il campo magnetico in un punto \vec{r}_0 generato da una carica elettrica q posta in punto \vec{r} e che si muove con velocità \vec{v} è

Esercizio 3

Si consideri il circuito mostrato in figura in cui $R_1 = R_2 = R$ e $R_3 = R_4 = 2R$. In una prima fase, l'interruttore T è aperto da molto tempo.

a) Calcolare il rapporto tra le due f.e.m. $\varepsilon_1/\varepsilon_2$ nel caso in cui $\varepsilon_2 = V_0$ e la corrente che percorre R_3 valga $i_3 = V_0/R$.

In una seconda fase si chiude l'interruttore T. Calcolare, in funzione di V_0 e R, la corrente che percorre R_2 :

- b) subito dopo avere chiuso l'interruttore;
- c) quando si raggiugono le nuove condizioni di stazionarietà.

