数理统计复习

2024年1月3日

1 预备知识

Theorem (2.1)

[【0】定理2.2.1] 设随机变量 $X_1, ..., X_n$ 相互独立,且 $X_k \sim N(a_k, \sigma_k^2)$, k = 1, ..., n。令 $c_1, ..., c_n$ 为常数,记 $T = \sum_{k=1}^n c_k X_k$,则

$$T \sim N(\mu, \tau^2)$$
,

其中 $\mu = \sum_{k=1}^{n} c_k a_k$, $\tau^2 = \sum_{k=1}^{n} c_k^2 \sigma_k^2$ 。

Theorem (2.3)

- [【0】定理2.2.3] 设 $X_1, ..., X_n$ i.i.d. $\sim N(\mu, \sigma^2)$,则
 - (1) $\overline{X} \sim N(\mu, \frac{\sigma^2}{n});$
 - (2) $\frac{n-1}{\sigma^2} S_X^2 \sim \mathcal{X}_{n-1}^2$;
 - (3) \overline{X} 与 S_X^2 相互独立。

1.1 \mathcal{X}^2 分布

- 定义
- $X \sim Gamma(2/n, 1/2)$
- EX = n, VarX = 2n

1 预备知识 2

1.2 t 分布

- 定义 尤其要说明独立
- n > 1 时, EX = 0
- n > 2 时, $VarX = \frac{n}{n-2}$

1.3 F 分布

• 定义 尤其要说明独立

1.4 一些相关结论

- $X_1,...,X_n \sim Exp(\lambda) \ i.i.d$ 时,有 $2\lambda n\bar{X} \sim \mathcal{X}_{2n}^2$ (比较重要)
- $X_1,...,X_n \sim N(\mu,\sigma^2)$ i.i.d 时,有 $\frac{(n-1)S^2}{\sigma^2} \sim \mathcal{X}_{n-1}^2$
- $X_1,...,X_n \sim N(\mu,\sigma^2)$ i.i.d 时,有 $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}$
- $X_1,...,X_m \sim N(\mu_1,\sigma_1^2)$ i.i.d 以及 $Y_1,...,Y_n \sim N(\mu_2,\sigma_2^2)$ 且两样本独立时,有 $\frac{\frac{S_2^2}{\sigma_1^2}}{\frac{S_2^2}{\sigma_2^2}} \sim F_{m-1,n-1}$

1.5 次序统计量

- 离散形式和连续形式公式不同
- $X_{(i)}$ 的密度公式
- (X_(i), X_(j)) 的联合密度密度公式
- 极差密度公式

1.6 指数族

- 形式: $f(\vec{x}|\vec{\theta}) = C(\vec{\theta})exp\{\Sigma Q_i(\vec{\theta})T_i(\vec{x})\}h(\vec{x})$
- 验证不是指数族要验证 f 的支撑集不依赖于参数,而不是所谓的不能 写成上述形式
- 自然形式: $f(\vec{x}|\vec{\eta}) = C(\vec{\eta})exp\{\Sigma\eta_i T_i(\vec{x})\}h(\vec{x})$

1 预备知识 3

1.7 充分 & 完全统计量

验证充分统计量的几种方式:

- 通过定义验证:条件分布在已知统计量 T 时与参数无关,即: $P(\vec{X} = \vec{x} | T = t)$ 与 θ 无关
- 因子分解定理:

Theorem (5.1, 因子分解定理 The factorization theorem)

$$f(\overrightarrow{x}|\overrightarrow{\theta}) = g(\overrightarrow{T}(\overrightarrow{x})|\overrightarrow{\theta})h(\overrightarrow{x}). \tag{1}$$

• 推论: 设 T 为 θ 的充分统计量,若存在一个可测函数 ϕ 和另一个统计量 S, s.t. $T = \phi(S)$,这 S 也为 θ 的充分统计量

完全统计量:

- 辅助统计量: 分布不依赖于参数的统计量
- 完全统计量定义: 对任意满足 $E_{\vec{\theta}}\phi(T(\vec{X}))\equiv 0, \forall \vec{\theta}\in\Theta$ 的函数 ϕ ,都 有 $\phi\equiv 0$
- 推论:对任意统计量 T,如果存在非平凡可测函数 V, s.t. V(T) 是辅助统计量,则 T 必不是完全统计量
- 完全统计量的判断:

2 点估计 4

Theorem (5.3)

[[0]] 定理 2.8.1] 设简单样本 $X = (X_1, ..., X_n)$ 的总体是具有如下自然参数形式的概率密度函数的指数族

$$f(x|\overrightarrow{\theta}) = C(\overrightarrow{\theta}) \exp \left\{ \sum_{i=1}^{k} \theta_i T_i(x) \right\} h(x),$$

其中 $\theta = (\theta_1, \dots, \theta_k) \in \Theta$. 如果参数空间 Θ 作为 \mathbb{R}^k 的子集有内点,则统计量 $T(X) = (\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i))$ 是完全统计量。

● Basu 定理 (重要):

Theorem (5.4, Basu's Theorem)

[[0]] 定理 2.8.2] 设随机样本 X 取自服从统计模型 $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ 的总体,V和 T是它的两个统计量。如果 V是辅助统计量,而 T是(有界)完全充分统计量,则 V和 T关于 \mathcal{P} 相互独立。

2 点估计

2.1 矩估计

- 就考试而言一般只用一阶二阶矩,三阶以上计算可能过于复杂
- 分母一定是 n 而不是 n-1

2.2 极大似然估计

● 若似然函数(即密度函数)不可导,要考虑从定义出发求 MLE

2 点估计 5

 若可导,先求出对数似然,考虑一阶导为0的点,要验证二阶导矩阵 在此处负定(一元情形即判断该点二阶导非正)

2.3 UMVUE

• 定义: (1) 无偏, (2) 方差最小

• 判断方法 (1): C-R 不等式:

Fisher 信息量: $I(\theta) = E_{\theta}\{ [\frac{\partial log f(X|\theta)}{\partial \theta}]^2 \}$

样本关于 θ 的 Fisher 信息量: $I_n(\theta) = E_{\theta}\{ [\frac{\partial log f(\vec{X}|\theta)}{\partial \theta}]^2 \}$

若 $f(x|\theta)$ 满足: $\frac{\partial}{\partial \theta} E_{\theta}[\frac{\partial}{\partial \theta} log f(X|\theta)] = \int \frac{\partial}{\partial \theta} \{ [\frac{\partial}{\partial \theta} log f(x|\theta)] f(x|\theta) \} dx$,则 $I(\theta) = -E_{\theta}[\frac{\partial^2}{\partial \theta^2} log f(X|\theta)]$

C-R 不等式: 在满足一系列条件以后(ppt 上定理 2.1),若有样本 $X = (X_1, ..., X_n)$,则对于任意 $g(\theta)$ 的无偏估计 $g(\hat{X})$,有:

$$Var_{\theta}(g(X)) \ge \frac{(g'(\theta))^2}{nI(\theta)}$$

注: 这部分的各种证明在教材 110 页基本上都能找到

判断方法(2): 零无偏估计法:R-B引理:

Lemma (2.1, Rao-Blackwell Theorem, 简记R-B引理)

(【*0*】引理*3.4.1*,【*1*】定理*7.3.17*) 设W是 $\tau(\theta)$ 的任意一个无偏估计量,而T是关于 θ 的一个充分统计量,定义 $\phi(T) = \mathbb{E}(W|T)$,则 $\mathbb{E}_{\theta}\phi(T) = \mathbb{E}_{\theta}W = \tau(\theta)$,而且

$$Var_{\theta}[\phi(T)] \leq Var_{\theta}(W), \forall \theta \in \Theta.$$

即 $\phi(T)$ 是比W更有效的 $\tau(\theta)$ 的无偏估计量。

定理及推论:

Theorem (2.2)

(【0】定理3.4.1, 【1】定理7.3.20)

设 $\mathbb{E}_{\theta}(W) = \tau(\theta)$, $Var_{\theta}W < \infty$,则W是 $\tau(\theta)$ 的UMVUE当且仅当W与0的所有无偏估计量不相关。

Corollary (2.4)

(【*0*】推论*3.4.1*) 设T = T(X)是 θ 的充分统计量,h(T)是 $\tau(\theta)$ 的一个无偏估计, $Var(h(T)) < \infty$, $\forall \theta \in \Theta$ 。则h(T)是 $\tau(\theta)$ 的UMVUE,当且仅当h(T)与任一零无偏估计U(T)都不相关。

• 判断方法 (3): 充分完全统计量法 L-S 定理:

Theorem (2.3, Lehmann-Scheffè 定理,简记L-S定理)

(【*0*】定理*3.4.2*,【*1*】定理*7.3.23*) 设*T*是参数 θ 的充分完全统计量,而 $\phi(T)$ 是任意一个仅基于T的估计量,且 $\mathbb{E}_{\theta}\phi(T) = \tau(\theta)$,则 $\phi(T)$ 是 $\tau(\theta)$ 的UMVUE.

3 假设检验

3.1 似然比检验

• LRT $\not\equiv \chi$: $\lambda(\vec{x}) = \frac{\sup_{\vec{\theta} \in \Theta_0} L(\vec{\theta}|\vec{x})}{\sup_{\vec{\theta} \in \Theta} L(\vec{\theta}|\vec{x})}$

• 拒绝域 $\{\vec{x}: \lambda(\vec{x}) \leq c\}$

3.2 错误概率和功效函数

• 第一类错误: 原假设正确, 但假设检验判定为拒绝原假设

• 第二类错误: 原假设错误, 但假设检验判定为接受原假设

• 功效函数: 一个拒绝域为 R 的假设检验的功效函数为:

$$\beta(\vec{\theta}) = P_{\vec{\theta}}(\vec{X} \in R)$$

• 水平为 α 的检测: $\sup_{\hat{\theta} \in \Theta_0} \beta(\vec{\theta}) \leq \alpha$

3.3 正态总体参数的假设检验

表 5.2.1 单个正态总体均值的假设检验

-	H_0	H_1	检验统计量及其分布	否定域
σ^2	$\mu = \mu_0$	$\mu \neq \mu_0$	$U = \sqrt{n}(\overline{X} - \mu_0)/\sigma$ $U \mu = \mu_0 \sim N(0, 1)$	$ U > u_{\alpha/2}$
已	$\mu \leqslant \mu_0$	$\mu > \mu_0$		$U > u_{\alpha}$
知	$\mu \geqslant \mu_0$	$\mu < \mu_0$		$U < -u_{\alpha}$
σ^2	$\mu = \mu_0$	$\mu \neq \mu_0$	$T = \sqrt{n}(\overline{X} - \mu_0)/S$ $T \mu = \mu_0 \sim t_{n-1}$	$ T > t_{n-1}(\alpha/2)$
未	$\mu \leqslant \mu_0$	$\mu > \mu_0$		$T > t_{n-1}(\alpha)$
知	$\mu \geqslant \mu_0$	$\mu < \mu_0$		$T < -t_{n-1}(\alpha)$

表 5.2.2 单个正态总体方差的假设检验

	H_0	H_1	检验统计量 及其分布	否定域
μ 己	$\sigma^2=\sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\chi_\mu^2 = n S_\mu^2/\sigma_0^2$	$nS_{\mu}^{2}/\sigma_{0}^{2} < \chi_{n}^{2}(1-\alpha/2)$ 或 $nS_{\mu}^{2}/\sigma_{0}^{2} > \chi_{n}^{2}(\alpha/2)$
知	$\sigma^2 \leqslant \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\chi^2_\mu \sigma_0^2 \sim \chi^2_n$	$nS_{\mu}^2/\sigma_0^2 > \chi_n^2(\alpha)$
	$\sigma^2 \geqslant \sigma_0^2$	$\sigma^2 < \sigma_0^2$		$nS_{\mu}^{2}/\sigma_{0}^{2} < \chi_{n}^{2}(1-\alpha)$
μ 未	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$(n-1)S^2/\sigma_0^2 < \chi_{n-1}^2(1-\alpha/2)$ 或 $(n-1)S^2/\sigma_0^2 > \chi_{n-1}^2(\alpha/2)$
知	$\sigma^2 \leqslant \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\chi^2 \sigma_0^2 \sim \chi_{n-1}^2$	$(n-1)S^2/\sigma_0^2 > \chi_{n-1}^2(\alpha)$
	$\sigma^2 \geqslant \sigma_0^2$	$\sigma^2 < \sigma_0^2$		$(n-1)S^2/\sigma_0^2 < \chi_{n-1}^2(1-\alpha)$

丰	5.2.3	而人	下太台,	体均值差的假设检验	÷
100	0.4.0	lw.	上心心	冲 均	L

	H_0	H_1	检验统计量 及其分布	否定域
$\frac{\sigma_1^2}{\sigma_2^2}$	$\mu_2 - \mu_1 = \mu_0$	$\mu_2 - \mu_1 \neq \mu_0$	$U = \frac{\overline{Y} - \overline{X} - \mu_0}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}}$	$ U > u_{\alpha/2}$
己	$\mu_2 - \mu_1 \leqslant \mu_0$	$\mu_2 - \mu_1 > \mu_0$	$\sqrt{\sigma_1^2/m + \sigma_2^2/n}$ $U \mu_0 \sim N(0, 1)$	$U > u_{\alpha}$
知	$\mu_2 - \mu_1 \geqslant \mu_0$	$\mu_2 - \mu_1 < \mu_0$		$U < -u_{\alpha}$
σ_1^2	$\mu_2 - \mu_1 = \mu_0$	$\mu_2 - \mu_1 \neq \mu_0$	$T_w = \frac{\overline{Y} - \overline{X} - \mu_0}{S_w} \sqrt{\frac{mn}{m+n}}$	$ T_w > t_{n+m-2} \left(\frac{\alpha}{2}\right)$
σ_2^2	$\mu_2 - \mu_1 \leqslant \mu_0$	$\mu_2 - \mu_1 > \mu_0$	$T_w \mu_0 \sim t_{n+m-2}$	$T_w > t_{n+m-2}(\alpha)$
未知	$\mu_2 - \mu_1 \geqslant \mu_0$	$\mu_2 - \mu_1 < \mu_0$	$S_w^2 = \frac{(m-1)S_1^2 + (n-1)S_2^2}{n+m-2}$	$T_w < -t_{n+m-2}(\alpha)$

表 5.2.4 两个正态总体方差比的假设检验

	H_0	H_1	检验统计量及其分布	否定域
μ_1 μ_2	$\sigma_2^2 = \sigma_1^2$	$\sigma_2^2 \neq \sigma_1^2$	$F_* = S_{2*}^2 / S_{1*}^2$ $F_* _{\sigma_2^2 = \sigma_1^2} \sim F_{n,m}$	$F_* < F_{n,m}(1 - \alpha/2)$ 或 $F_* > F_{n,m}(\alpha/2)$
己	$\sigma_2^2\leqslant\sigma_1^2$	$\sigma_2^2 > \sigma_1^2$	$S_{1*}^2 = \frac{1}{m} \sum_{i=1}^m (X_i - \mu_1)^2$	$F_* > F_{n,m}(\alpha)$
知	$\sigma_2^2 \geqslant \sigma_1^2$	$\sigma_2^2 < \sigma_1^2$	$S_{2*}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \mu_2)^2$	$F_* < F_{n,m}(1-\alpha)$
μ_1 μ_2	$\sigma_2^2 = \sigma_1^2$	$\sigma_2^2 \neq \sigma_1^2$	$F = S_2^2 / S_1^2$ $F _{\sigma_2^2 = \sigma_1^2} \sim F_{n-1, m-1}$	$F < F_{n-1,m-1}(1-\alpha/2)$ 或 $F > F_{n-1,m-1}(\alpha/2)$
未	$\sigma_2^2\leqslant\sigma_1^2$	$\sigma_2^2 > \sigma_1^2$	$S_1^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i - \bar{X})^2$	$F > F_{n-1,m-1}(\alpha)$
知	$\sigma_2^2 \geqslant \sigma_1^2$	$\sigma_2^2 < \sigma_1^2$	$S_2^2 = \frac{1}{n-1} \sum_{j=1}^n (Y_j - \overline{Y})^2$	$F < F_{n-1,m-1}(1-\alpha)$

3.4 UMPT

• 记 ϕ 为水平为 α 的检验,若对于其他任何水平为 α 的检验 ϕ_1 ,有:

$$\beta_{\phi}(\theta) > \beta_{\phi_1}(\theta), \forall \theta \in \Theta_0^c$$

则 ϕ 为水平 α 的 UMPT

• 针对简单假设, 使用 N-P 引理:

Theorem (3.1, Neyman-Pearson 引理,简记N-P引理)

(【*0*】定理*5.4.1*,【*1*】定理*8.3.12*) 设样本联合概率密度/质量函数为 $f(\vec{x}|\theta)$,考虑检验问题:

(I)
$$H_0: \theta = \theta_0 \leftrightarrow H_1: \theta = \theta_1$$
,

如果一个检验对应的拒绝域R满足对于某个常数k > 0,

而且

$$\mathbb{P}_{\theta_0}(\vec{X} \in R) = \alpha \tag{3.2}$$

则此检验是检验问题(I)的水平 α 的UMPT.

Corollary (3.1)

(【1】推论8.3.13) 考虑定理3.1中的假设检验问题,设T(X)是一个关于 θ 的充分统计量, $g(t|\theta)$ 是T的概率密度/质量函数,则任何一个基于T的拒绝域 \tilde{R} 的检验,如果满足对于某个常数k>0,

而且

则这个检验就是检验问题(I)的水平 α 的UMPT。

• 针对单边假设, 使用 K-R 引理:

4 区间估计 10

Theorem (3.2, Karlin-Rubin (简记K-R)定理)

(【1】定理8.3.17) 考虑检验问题:

(II)
$$H_0: \theta \leq \theta_0 \leftrightarrow H_1: \theta > \theta_0.$$

设T是一个关于 θ 的充分统计量,并且T的概率密度/质量函数 $g(t|\theta)$, $\theta \in \Theta$ 关于 θ 具有非降MLR,则对于任何 t_0 ,检验

当 $T > t_0$ 时拒绝 H_0

是一个水平为 α 的UMPT,其中 $\alpha = \mathbb{P}_{\theta_0}(T > t_0)$.

Corollary (3.2)

考虑检验问题 $H_0: \theta \geq \theta_0 \leftrightarrow H_1: \theta < \theta_0$ 。设T是一个关于 θ 的充分统计量,并且T的概率密度/质量函数 $g(t|\theta), \theta \in \Theta$ 关于 θ 具有非降MLR,则对于任何 t_0 ,"当 $T < t_0$ 时拒绝 H_0 "的检验是一个水平为 α 的UMPT,其中 $\alpha = \mathbb{P}_{\theta_0}(T < t_0)$.

注: 若遇到 MLR 非增情况,则考虑 $-\theta$

4 区间估计

- 区间估计求法: (1) 枢轴变量法, (2) 反转一个检验统计量
- 单个和两个正态总体参数的区间估计(见上述表格及对应的区间估计)
- 最短枢轴区间(把几个例题和作业题弄会即可)

5 贝叶斯 11

5 贝叶斯

5.1 贝叶斯估计

- 先验分布 π(θ)
- 后验分布 $\pi(\theta|\vec{x}) = \frac{f(\vec{x}|\theta)\pi(\theta)}{\int_{\Theta} f(\vec{x}|\theta)\pi(\theta)d\theta}$ 或更简便地,使用核方法
- 本门课中, 贝叶斯估计视作后验分布的期望: $\hat{\theta} = E(\theta|\vec{X})$

5.2 贝叶斯检验

Definition (贝叶斯检验)

对于检验问题 $H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1$,

● 分别计算H₀和H₁为真/成立的后验概率

$$\alpha_0 = \mathbb{P}(H_0|\overrightarrow{x}) = \mathbb{P}(\theta \in H_0|\overrightarrow{x})$$

$$\alpha_1 = \mathbb{P}(H_1|\overrightarrow{x}) = \mathbb{P}(\theta \in H_1|\overrightarrow{x})$$

② 设定检验法则:对于固定常数b > 0, 当 $\frac{\alpha_0}{\alpha_1} < b$ 时拒绝 H_0 ,否则接受 H_0 .

为简化问题,在本课程中,我们约定取b=1(参考【0】7.3.3(1))。

6 补充

- 示性函数
- 查表
- 一些分布如指数、Poisson、几何分布的均值和方差
- 均方误差 MSE 定义,由两部分组成: Var 和 Bias

7 大致题型 12

7 大致题型

- 三大分布 & 次序统计量
- 矩估计 & 极大似然估计
- 利用 C-R 不等式计算效率 (类似作业题)
- UMVUE (零无偏/充分完全)
- 似然比检验
- 正态检验(用上述表格)
- UMPT
- 枢轴变量求预测区间
- 贝叶斯 (估计 & 检验)