Optical Coherence Tomography Angiography (OCTA) Data Processing Guide

Jianbo Tang

Aug 7, 2019

Introduction:

This guide is for post data processing of OCTA which outputs the vascular structure. Please cite the following references^{1,2,3}:

- 1. Tang, J., Erdener, S. E., Sunil, S. & Boas, D. A. Normalized field autocorrelation function-based optical coherence tomography three-dimensional angiography. *J. Biomed. Opt.* **24**, 036005 (2019).
- 2. Tang, J. *et al.* Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography. *J. Biophotonics* **11**, e201700070 (2018).
- 3. Tang, J., Erdener, S. E., Fu, B. & Boas, D. A. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography. *Opt. Lett.* **42**, 3976 (2017).

Data acquisition

OCT-based repeat Bscan data acquisition, i.e. repeat Bscan once at each Y position. The data should be saved sequentially as a 1D array (ASCII int16) and named as: RAW-nk-nxRpt-nx-nyRpt-ny-iC, e.g. RAW-1024-001-00400-002-400-1.dat.

I. Input

Example data:

 $\label{lem:https://drive.google.com/a/bu.edu/file/d/1q9_F93_5p_pgmXIwzKZOCQ36m7sE95d2/view?usp=sharing https://drive.google.com/a/bu.edu/file/d/1nNzjB12JZFf4epRr4XSKhRYiT7FJcZT7/view?usp=sharing https://drive.google.com/a/bu.edu/file/d/1dAwY56dSBoRLX246ALTeV3ZiV3dehrEH/view?usp=sharing https://drive.google.com/a/bu.edu/file/d/1TUA9L170blYQdrI6L9oiSkxae7XpV-E/view?usp=sharing https://drive.google.com/a/bu.edu/file/d/1J3gG6HFBK2uVjDgCRHbRV6fvA2Ei9YHp/view?usp=sharing$

II. Output

```
% output:
    % AG: [nz,nx,ny] OCT angiogram
```

I. CPU calculation-based sub-functions

```
% subFunctions:
    % function [Dim, fNameBase, fIndex]=GetNameInfoRaw(filename0)
    % function DAT= ReadDat_int16(filePath, Dim, iseg, ARpt_extract,RptBscan)
    % function RR = DAT2RR(Dat, intpDk)
    % function AG=RR2AG(RR, it0, ncorrect, z, K)
```

I. GPU calculation-based sub-functions

Note: the minimal GPU memory requirement is 16 GB.

```
% subFunctions:
    % function [Dim, fNameBase, fIndex]=GetNameInfoRaw(filename0)
    % function DAT= ReadDat_int16(filePath, Dim, iseg, ARpt_extract,RptBscan)
    % function RR = DAT2RR_GPU(Dat, intpDk)
    % function AG=RR2AG_GPU(RR, it0, ncorrect, z, K)
```

II. Main_OCTA data processing

III.1 select file

III.2 data processing parameter

Specify number of Cscans (startFile+nFile to Load) to be processed. Double check the intDk, and voxel size.

III.3 select axial range

III.4 OCTA result plot (GUI_PLOT_OCTA)

1. Load the saved AG data

2. Remove the signal above brain surface

- 3. Use the slider or zStart+zStack to check single or MIP (maxim intensity projection) en face plane.
- 4. Use 'Plot' to plot a MIP for certain depth range (set SideView(N:0; Y:1) to 0). Or plot XY, YZ, XZ, and MIP figures by set SideView(N:0; Y:1) to 1.