Optimistic Acceleration of AMSGrad for Nonconvex Optimization.

Anonymous Author(s)

Affiliation Address email

1 Nonconvex Analysis

We tackle the following classical optimization problem:

$$\min_{w \in \Theta} f(w) := \mathbb{E}[f(w, \xi)] \tag{1}$$

- where ξ is some random noise and only noisy versions of the objective function are accessible in
- 4 this work. The objective function f(w) is (potentially) nonconvex and has Lipschitz gradients.
- 5 Optimistic Algorithm We present here the algorithm studied in this paper to tackle problem (1).
- Set the terminating iteration number, $K \in \{0, \dots, K_{\text{max}} 1\}$, as a discrete r.v. with:

$$P(K = k) = \frac{\eta_k}{\sum_{f=0}^{K_{\text{max}}-1} \eta_f}.$$
 (2)

- 7 where $K_{\text{max}} \leftarrow$ is the maximum number of iteration. The random termination number (2) is inspired
- 8 by [Ghadimi and Lan, 2013] which enables one to show non-asymptotic convergence to stationary
- 9 point for non-convex optimization. Consider constants $(\beta_1, \beta_2) \in [0, 1]$, a sequence of decreasing
- stepsizes $\{\eta_k\}_{k>0}$, Algorithm 1 introduces the new optimistic AMSGrad method.

Algorithm 1 OPTIMISTIC-AMSGRAD

- 1: **Input:** Parameters $\beta_1, \beta_2, \epsilon, \eta_k$ 2: **Init.:** $w_1 = w_{-1/2} \in \mathcal{K} \subseteq \mathbb{R}^d$ and $v_0 = \epsilon \mathbf{1} \in \mathbb{R}^d$ 3: **for** $k = 0, 1, 2, \dots, K$ **do** 4: Get mini-batch stochastic gradient g_k at w_k 5: $\theta_k = \beta_1 \theta_{k-1} + (1 - \beta_1) g_k$ 6: $v_k = \beta_2 v_{k-1} + (1 - \beta_2) g_k^2$ 7: $\hat{v}_k = \max(\hat{v}_{k-1}, v_k)$ 8: $w_{k+\frac{1}{2}} = \Pi_K \left[w_k - \eta_k \frac{\theta_k}{\sqrt{\hat{v}_k}} \right]$ 9: $w_{k+1} = \Pi_K \left[w_{k+\frac{1}{2}} - \eta_k \frac{h_{k+1}}{\sqrt{\hat{v}_k}} \right]$ 10: where $h_{k+1} := \beta_1 \theta_{k-1} + (1 - \beta_1) m_{k+1}$ 11: and m_{k+1} is a guess of g_{k+1} 12: **end for** 13: **Return**: w_{K+1} .
- The final update at iteration k can be summarized as:

$$w_{k+1} = w_k - \eta_k \frac{\theta_k}{\sqrt{\hat{v}_k}} - \eta_k \frac{h_{k+1}}{\sqrt{v}_k}$$
(3)

We make the following assumptions:

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

H1. The loss function f(w) is nonconvex w.r.t. the parameter w.

H2. The function f(w) is L-smooth w.r.t. the parameter w. There exist some constant L>0 such that for $(w, \vartheta) \in \Theta^2$:

$$f(w) - f(\vartheta) - \nabla f(\vartheta)^{\top} (w - \vartheta) \le \frac{L}{2} \|w - \vartheta\|^2 . \tag{4}$$

H3. There exists a constant a > 0 such that for any k > 0:

$$||m_{k+1}|| \le a ||g_{k+1}||$$

- Classically (see [Ghadimi and Lan, 2013]) in nonconvex optimization, we make an assumption on the magnitude of the gradient:
 - **H4.** There exists a constant M > 0 such that

$$\|\nabla f(w,\xi)\| < \mathsf{M}$$
 for any w and ξ

- We begin with some auxiliary Lemmas important for the analysis. The first one ensures bounded
- norms of various quantities of interests (boiling down from the classical stochastic gradient bound-
- edness assumption):

Lemma 1. Assume assumption H 4, then the quantities defined in Algorithm 1 satisfy for any $w \in \Theta$ and k > 0:

$$\|\nabla f(w)\| < \mathsf{M}, \quad \|\theta_k\| < \mathsf{M}^2, \quad \|\hat{v}_k\| < \mathsf{M}.$$

- Then, following [Yan et al., 2018] and their study of the SGD with Momentum (not AMSGrad but
- simple momentum) we denote for any k > 0:

$$\overline{w}_k = w_k + \frac{\beta_1}{1 - \beta_1} (w_k - w_{k-1}) = \frac{1}{1 - \beta_1} w_k - \frac{\beta_1}{1 - \beta_1} w_{k-1} , \qquad (5)$$

- and derive an important Lemma: 23
- **Lemma 2.** Assume a strictly positive and non increasing sequence of stepsizes $\{\eta_k\}_{k>0}$, $\beta_{\in}[0,1]$,
- then the following holds:

$$\overline{w}_{k+1} - \overline{w}_k = \frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{k-1} \left[\eta_{k-1} v_{k-1}^{-1/2} - \eta_k v_k^{-1/2} \right] - \eta_k v_k^{-1/2} \tilde{g}_k , \qquad (6)$$

- where $\tilde{\theta}_k = \theta_k + \beta_1 \theta_{k-1} + (1 \beta_1) m_{k+1}$ and $\tilde{g}_k = g_k \beta_1 g_{k-1}$
- **Proof** By definition (5) and using the Algorithm updates, we have:

$$\overline{w}_{k+1} - \overline{w}_k = \frac{1}{1 - \beta_1} (w_{k+1} - w_k) - \frac{\beta_1}{1 - \beta_1} (w_k - w_{k-1})
= -\frac{1}{1 - \beta_1} \eta_k v_k^{-1/2} (\theta_k + h_{k+1}) + \frac{\beta_1}{1 - \beta_1} \eta_{k-1} v_{k-1}^{-1/2} (\theta_{k-1} + h_k)
= -\frac{1}{1 - \beta_1} \eta_k v_k^{-1/2} (\theta_k + \beta_1 \theta_{k-1}) - \frac{1}{1 - \beta_1} \eta_k v_k^{-1/2} (1 - \beta_1) m_{k+1}
+ \frac{\beta_1}{1 - \beta_1} \eta_{k-1} v_{k-1}^{-1/2} (\theta_{k-1} + \beta_1 \theta_{k-2}) + \frac{\beta_1}{1 - \beta_1} \eta_{k-1} v_{k-1}^{-1/2} (1 - \beta_1) m_k$$
(7)

Denote $\tilde{\theta}_k = \theta_k + \beta_1 \theta_{k-1}$ we notice that $\tilde{\theta}_k = \beta_1 \tilde{\theta}_{k-1} + (1 - \beta_1)(g_k + \beta_1 g_{k-1})$.

$$\overline{w}_{k+1} - \overline{w}_k \le \tag{8}$$

We now formulate the main result of our paper giving an finite-time upper bound of the quantity $\mathbb{E}\left[\|\nabla f(w_K)\|^2\right]$ where K is a random termination number distributed according to 2, see [Ghadimi

and Lan, 2013].

29

Theorem 1. Assume H 2-H 4, $(\beta_1, \beta_2) \in [0, 1]$ and a sequence of decreasing stepsizes $\{\eta_k\}_{k>0}$, then the following result holds:

$$\mathbb{E}\left[\|
abla f(w_K)\|^2
ight] < to complete$$

Proof Using H 2 and the iterate \overline{w}_k we have:

$$f(\overline{w}_{k+1}) \leq f(\overline{w}_k) + \nabla f(\overline{w}_k)^{\top} (\overline{w}_{k+1} - \overline{w}_k) + \frac{L}{2} \|\overline{w}_{k+1} - \overline{w}_k\|^2$$

$$\leq f(\overline{w}_k) + \underbrace{\nabla f(w_k)^{\top} (\overline{w}_{k+1} - \overline{w}_k)}_{A} + \underbrace{(\nabla f(\overline{w}_k) - \nabla f(w_k))^{\top} (\overline{w}_{k+1} - \overline{w}_k)}_{B} + \underbrace{\frac{L}{2} \|\overline{w}_{k+1} - \overline{w}_k\|}_{A}$$

$$(10)$$

(9)

Term A. Using Lemma 2, we have that:

$$\nabla f(w_{k})^{\top}(\overline{w}_{k+1} - \overline{w}_{k}) = \nabla f(w_{k})^{\top} \left[\frac{\beta_{1}}{1 - \beta_{1}} \tilde{\theta}_{k-1} \left[\eta_{k-1} v_{k-1}^{-1/2} - \eta_{k} v_{k}^{-1/2} \right] - \eta_{k} v_{k}^{-1/2} \tilde{g}_{k} \right]$$

$$\leq \frac{\beta_{1}}{1 - \beta_{1}} \left\| \nabla f(w_{k}) \right\| \left\| \eta_{k-1} v_{k-1}^{-1/2} - \eta_{k} v_{k}^{-1/2} \right\| \left\| \tilde{\theta}_{k-1} \right\| - \nabla f(w_{k})^{\top} \eta_{k} v_{k}^{-1/2} \tilde{g}_{k}$$
(11)

where the inequality is due to trivial inequality for positive diagonal matrix. Using Lemma 1 and assumption H3 we obtain:

$$\nabla f(w_k)^{\top} (\overline{w}_{k+1} - \overline{w}_k) \le \frac{\beta_1(a+2)}{1 - \beta_1} \mathsf{M}^2 \left[\left\| \eta_{k-1} v_{k-1}^{-1/2} \right\| - \left\| \eta_k v_k^{-1/2} \right\| \right] - \nabla f(w_k)^{\top} \eta_k v_k^{-1/2} \tilde{g}_k$$
(12)

where we have used the fact that $\eta_k v_k^{-1/2}$ is a diagonal matrix such that $\eta_{k-1} v_{k-1}^{-1/2} \succcurlyeq \eta_k v_k^{-1/2} \succcurlyeq 0$ (decreasing stepsize and max operator). Also note that:

$$-\nabla f(w_{k})^{\top} \eta_{k} v_{k}^{-1/2} \tilde{g}_{k} = -\nabla f(w_{k})^{\top} \eta_{k-1} v_{k-1}^{-1/2} \tilde{g}_{k} - -\nabla f(w_{k})^{\top} \left[\eta_{k} v_{k}^{-1/2} - \eta_{k-1} v_{k-1}^{-1/2} \right] \tilde{g}_{k}$$

$$\leq -\nabla f(w_{k})^{\top} \eta_{k-1} v_{k-1}^{-1/2} \tilde{g}_{k} + (1 - \beta_{1}) \mathsf{M}^{2} \left[\left\| \eta_{k-1} v_{k-1}^{-1/2} \right\| - \left\| \eta_{k} v_{k}^{-1/2} \right\| \right]$$
(13)

using Lemma 1 on $\|g_k\|$ and recalling that $\tilde{g}_k = g_k - \beta_1 g_{k-1}$

2 Containment of the iterates for a DNN

43 References

- S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013.
- Y. Yan, T. Yang, Z. Li, Q. Lin, and Y. Yang. A unified analysis of stochastic momentum methods for deep learning. *arXiv preprint arXiv:1808.10396*, 2018.