Homework 1

Deep Learning for Computer Vision

學生:葉政樑 學號:R08945006

Problem1-1: K-means

Problem1-2: add (x,y) as feature

Problem1-3: 比較與改進

比較 $1-1 \cdot 1-2$ 的結果可以看到在 1-2 單純加入影像(x,y) location 資訊當作 feature 的效果 並不好·原因並不是 feature 沒用。 由觀察 feature 得知前三維度 feature: RGB 值分布在 $0\sim255$,而(x,y) location 則是分布在 $0\sim1023$ 間,因此 feature 間尺度差異過大造成 1-2 的結果明顯被位置(x,y)特徵影響分成特定區塊。因此我採用資料正規化策略,將 features 的範圍都壓縮成 $0\sim1$ 之間,在進行 K-means 分類,結果如下:

由以上結果可以發現資料正規化的重要性,將資料合理的縮放,讓 features 間尺度不相差過大才能有較好的成果(與 1-2 相比結果進步許多)。

Problem2-1: PCA

Mean Face	1 st eigenface	2 nd eigenface	3 rd eigenface	4 th eigenface
	400000			
-	Sec. 10	-	1000	A STATE OF
Section 2	100000	100	Company of	Section 1
100	Market M.		100	Section 1

Problem2-2 ` 2-3: Reconstructed images and MSE

Original Image	N=3 \ MSE= 93.4996	N=50 · MSE= 66.0264
N=170 \ MSE= 36.0276	N=240 \ MSE= 13.5641	N=345 \ MSE= 0.5780

Problem2-4: Choose hyperparameter and Cross Validation

7	split0	split1	split2	Mean
params	validation	validation	validation	validation
	score	score	score	score
{'myKNNn_neighbors': 1,	0.683333	0.633333	0.608333	0.641667
'myPCAn_components': 3}				
{'myKNNn_neighbors': 1,	0.95	0.941667	0.966667	0.952778
'myPCAn_components': 50}	0.93			
{'myKNNn_neighbors': 1,	0.958333	0.958333	0.95	0.955556
'myPCA_n_components': 170}	0.936333			
{'myKNNn_neighbors': 3,	0.608333	0.608333	0.608333	0.608333
'myPCAn_components': 3}	0.000333			
{'myKNNn_neighbors': 3,	0.875	0.925	0.883333	0.894444
'myPCAn_components': 50}	0.673			
{'myKNNn_neighbors': 3,	0.875	0.908333	0.9	0.894444
'myPCA_n_components': 170}	0.673			
{'myKNNn_neighbors': 5,	0.6	0.608333	0.491667	0.566667
'myPCA_n_components': 3}	0.0			
{'myKNNn_neighbors': 5,	0.816667	0.841667	0.858333	0.838889
'myPCAn_components': 50}	0.010007			
{'myKNNn_neighbors': 5,	0.808333	0.833333	0.841667	0.827778
'myPCAn_components': 170}	0.000333			

Hyperparameter 選擇在 cross validation 中平均分數(accuracy)最高的,k=1、n=170。

Problem3-1: 2D Gaussian filter

Problem3-3: Gradient Magnitude image

由 3-3 結果來看: 經過高斯濾波後的影像雖然以肉眼來看只能發現很些微差異·但是從梯度強度圖來看可以明顯看到梯度邊緣變得較模糊·符合高斯濾波模糊化的原理。

參考資料:

1. Computer Vision 圖像標準化 https://blog.csdn.net/xylin1012/article/details/81217988

2. Sklearn PCA

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

3. Eigenfaces

https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html#sphx-glr-auto-examples-applications-plot-face-recognition-py

4. Sklearn preprocessing

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax scale.html

5. 世上最生動的 PCA: 直觀理解並應用主成分分析 https://leemeng.tw/essence-of-principal-component-analysis.html

6. Reconstruction image(PCA)

https://www.youtube.com/watch?v=1iWAKme88II

7. Sklearn KNN

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

8. GridSearch prob

https://stackoverflow.com/questions/46618669/i-am-using-gridsearchev-and-fit-is-giving-me-a-typeerror-get-params-missing-1/46619645