МИНИИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Вятский государственный университет» (ФГБОУ ВПО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по лабораторной работе №2 по дисциплине «Организация памяти ЭВМ» Вариант 8

Разработал студент группы ИВТб-31	/Седов М.Д. /
Проверил доцент кафедры ЭВМ	/Мельцов В.Ю./

Задание на лабораторную работу

Исследовать работу Ассоциативного ЗУ. Необходимо разработать подмикропрограмму, выполняющую следующие функции:

- 1. Записать в ячейки АЗУ произвольные константы в любые 6-7 ячеек.
- 2. Загрузить в регистр маски RgM маску по тем разрядам, по которым будет осуществляться ассоциативный поиск(от 3 до 5 бит).
- 3. Загрузить во входной регистр RgI эталонное значение для выполнения ассоциативного поиска
- 4. Выполнить чтение из АЗУ. При первом чтении введен дополнительный такт для наблюдения числа совпадений при поиске.
- 5. Количество чтений необходимо выполнить столько раз, пока в регистре сдвига RgSH не будет установлен код 0.
- 6. Дозагрузить свободные ячейки АЗУ данными и повторить выполнение для различных значений эталонов в RgI и RgM.

Исследовать работу Двухпортового ЗУ. Необходимо разработать подмикропрограмму, выполняющую следующие функции:

- 1. Исследовать ОЗУ в режиме произвольного доступа при записи и чтении
 - а. Выполнить запись данных во все ячейки ОЗУ в режимах:
 - i. Записи одновременно по порту A и B
 - іі. Раздельной записи по одному из портов А и В
 - b. Выполнить сочетание процедур чтения и записи одновременно по портам A и B:
 - і. Порт А чтение, порт В запись
 - іі. Порт В чтение, порт А запись
 - ііі. Порт В чтение, порт А чтение

- с. Выполнить попытку записи по портам А и В в одну и ту же ячейку и сделать выводы
- 2. На основе ОЗУ организовать стек типа FIFO для очереди команд с возможностью параллельного пополненния очереди команд через каждые 4 считанные из очереди команды:
 - а. Запись 8-х чисел
 - b. Чтение 4-х чисел
 - с. Запись 4-х чисел с параллельным считыванием из очереди
 - d. Запись 4-х чисел с параллельным считыванием из очереди
 - е. Сброс очереди команд

Выполнение лабораторной работы

Задание 1

Запись числа: Во входной регистр RgDI записать данные с входной шины при помощи подачи управляющего сигнала CI. В регистр адресов RgA записать адрес, куда будет записываться значение в память с регистра RgDI, при помощи подачи управляющего сигнала CA. Записать данные из регистра RgDI в ячейку памяти по адресу RgA.

Чтение числа: Подать сигнал ~RD = 0, тем самым данные, находящиеся в ячейке памяти по адресу CD, формируемого из регистра RgSH, запишутся в выходной регистр RgDO Подать сигнал ~E0 = 0, тем самым выдав содержимое регистра RgDO на выходную шину данных.

Pисунок $1-\Gamma CA$ операции записи и чтения для AZU

Таблица 1 – Текст микропрограммы

N₂	Адр	Данные	CM	C	C	~E	~W	~R
		, ,		I	\boldsymbol{A}	0	R	D
00	000	00000000 11111111	0	1	1	1	1	1
01	000	00000000 00000000	0	0	0	0	0	1
02	001	00000000 11111110	0	1	1	1	1	1
03	000	00000000 00000000	0	0	0	0	0	1
04	010	00000000 11111101	0	1	1	1	1	1
05	000	00000000 00000000	0	0	0	0	0	1
06	011	00000000 11111011	0	1	1	1	1	1
07	000	00000000 00000000	0	0	0	0	0	1
08	100	00000000 11110111	0	1	1	1	1	1
09	000	00000000 00000000	0	0	0	0	0	1
0A	000	00000000 11110000	0	1	0	1	1	1
0B	000	11110000 11110000	1	0	0	1	1	1
0	000	00000000 00000000	0	0	0	1	1	0
C								
0	000	00000000 00000000	0	0	0	0	1	0
D								
0E	000	00000000 00000000	0	0	0	0	1	0

Рисунок 2 – Функциональная схема лонической схемы LS1 Задание 2

Рисунок 3 – Запись 8-ми чисел

Рисунок 4 – Запись компаранта(RgI) и маски(RgM)

Рисунок 5 – Формирование LS2

Рисунок 6 – Считывание совпавших ячеек

Pисунок 7 - 3апись компаранта(RgI) и маски(RgM)

Рисунок 8 – Формирование LS2

Рисунок 9 – Считывание совпавших ячеек

Задание 3

Запись числа: ОЗУ канала нужно перевести в Z-состояние(режим хранения) при помощи подачи единиц на входы ~EA, ~RA, ~WA. Во входной регистр RgDIOX записать данные с входной шины при помощи подачи единицы на входы ST и ~EO. В регистр адресов RgAX записать адрес, куда будет записываться значение в память с регистра RgDIOX, при помощи подачи единицы на входы EWR, C. Записать данные из регистра RgDIOX в ячейку памяти по адресу RgAX при помощи подачи ноля на входы ~EA и

~WA и единицы на вход ~RA. Регистр/счётчик адреса находится в режиме состояния.

Чтение числа: ОЗУ канала нужно перевести в Z – состояние (режим хранения) при помощи подачи единиц на входы: ~EA, ~RA, ~WA. В регистр адресов RgAX записать адрес, откуда будет считываться значение из памяти в регистр RgDIOX, при помощи подачи единицы на входы: EWR, C. Подать нули на входы ~EA, ~RA и единицу на вход ~WA, тем самым выдав содержимое на выходную шину данных и сохранить операнд в RgDIOX

Рисунок 10 – ГСА операции записи и чтения для двухпортового запоминающего устройства

Задание 4

Рисунок 11 – Запись одновременно по порту А и В

Рисунок 12 – Раздельная запись по одному из портов А и В

Рисунок 13 – Порт А чтение, порт В запись

Рисунок 14 – Порт А запись, порт В чтение

Pисунок 15 — Π орт A чтение, порт B чтение

Рисунок 16 – Попытка записи по портам A и B в одну и ту же ячейку Задание 5

Рисунок 17 – Запись 8-ми чисел

Рисунок 18 – Чтение 4-х чисел

Рисунок 19 – Запись 4-х чисел с параллельным считыванием из очереди

Рисунок 20 – Сброс очереди команд (команда БП)

Вывод

В ходе выполнения лабораторной работы была изучена структура ассоциативного запоминающего устройства. Была разработана программа, которая позволяет находить в АЗУ данные по заданным маскам и компарантам. Данная операция была реализована при помощи регистра запросов, регистра маски и логической схемы на основе «исключающего или», «или», «и». Также изучили структуру двухпортового запоминающего устройства. На базе двухпортового запоминающего устройства были реализованы так же программы записи и чтения для FIFO/