



# Machine Learning CS342

Lecture 14: Artificial Neural Networks (ANNs): Multilayer Perceptrons (MLPs)

Dr. Theo Damoulas

T.Damoulas@warwick.ac.uk

Office hours: Mon & Fri 10-11am @ CS 307





## **Recap: Perceptron**







## Recap: Training a Perceptron

```
Initialise w randomly
eta = 0.1 (for example);
while there is a non-zero error
for i = 1 to N (number of training examples)
    Choose i<sup>th</sup> training example x,t
    Compute dot product xw
    Compute error(i) = t-sign(xw)
    Update w += eta*error(i)*x<sup>T</sup>
```

If problem non-linearly separable this will not converge (Error not 0)





# Recap: Linear unit perceptron & Gradient Descent

Perceptron error =  $(t_n - sgn(\mathbf{x}_n \mathbf{w}))$  and differentiating that wrt  $\mathbf{w}$  is not nice



Today we will see an activation function that we can differentiate easily for classification with GD!





# Recap: Gradient Descent on linear-unit perceptron

We are finding the OLS solution with a NN and gradient descent!

#### Batch-mode GD

```
Initialise w randomly
eta = 0.1;
while not converged
    Update w += eta*X<sup>T</sup>(t - Xw)
```



#### Stochastic GD

```
Initialise w randomly
eta = 0.01; (typically smaller then batch mode)
while not converged
for i = 1 to N (number of training examples)
    Choose i<sup>th</sup> training example x,t
    Update w += eta(t - xw)x<sup>T</sup>
```



# **Today: Logistic AF - MLPs - Backpropagation**

#### Binary classification:

We know another function apart from the step function that is continuous and has a nice derivative to use for GD: Logistic function!





# Logistic regression with a ANN and GD



Perform Gradient descent

= (Maximum Likelihood on) Logistic Regression



#### So what's new then?

Original perceptron: Online, Step AF, Linearly separable

Linear unit perceptron = GD or SGD on OLS problem

Logistic AF on perceptron = GD or SGD on Logistic regression

So really so far the novelty is:

- a) online nature (SGD and perceptron)
  - b) excuse to describe GD and SGD
- c) "visual" representation of dot products and squashing functions

In ANNs the real novelty is in combining multiple models: many "neurons":

Multilayer Perceptrons (MLPs)



# **Multilayer Perceptrons (MLPs)**

- So far one "computational unit" or neuron how about adding more?
- Use logistic activation function or similar sigmoid functions (tanh)
- a.k.a Multilayer feedforward networks or MLPs



Deep Learning: A "version" of MLPs with many hidden layers and computational units



#### **MLPs: Feed-forward ANNs**



Fully connected

 $W^{(1)}$  DxM matrix of connection weights (parameters) between input-hidden  $W^{(1)}$  MxK matrix of connection weights (parameters) between hidden-output b "bias" term  $\{x=1\}$  like our intercept in LinReg



#### **MLPs: Feed-forward ANNs**



Input layer units is just where the attributes/data come in Hidden layer units and output layer units are perceptrons with AFs Typically **logistic** or **tanh** AF **h(a)** that are **differentiable**, non-linear squashing functions (sometimes even linear units).



#### **MLPs: Feed-forward ANNs**

1) Can I write the overall model down?

2) How do I learn (the parameters of) this model?



This network diagram (logistic AF) is equivalent to the model:

$$y_k = \sigma \left( \sum_{j=0}^{M} w_{kj}^{(2)} h \left( \sum_{i=0}^{D} w_{ji}^{(1)} x_i \right) \right)$$

Same process as in perceptron: form error, take derivative and do GD...

Nasty derivative right?



## **Training MLPs**

#### **Universal Approximators**

MLPs are said to be universal approximators. For example a two-layer network with linear units (regressors) and sufficient number of hidden units, can *uniformly approximate any continuous function on a compact input domain to arbitrary accuracy*!

Can train MLPs with various inferential techniques you have already seen: Maximum Likelihood (GD/SGD/etc) & Bayesian approaches

The specific nature of this complex network requires a technique to associate a parameter w with some error component (so we can estimate the Error gradient wrt that parameter)

This technique of passing the error backwards to each unit/parameter is called (Error) back-propagation a.k.a backprop



# **Forward propagation**



## **Forward Propagation of Information**



# **Forward propagation**

Classifier: Output layer has logistic AF

$$y_k = \sigma \left( \sum_{j=0}^{M} w_{kj}^{(2)} h \left( \sum_{d=0}^{D} x_d w_{dj}^{(1)} \right) \right)$$

Regression: Output layer has linear-unit (no AF)

$$y_k = \sum_{j=0}^{M} w_{kj}^{(2)} h \left( \sum_{d=0}^{D} x_d w_{dj}^{(1)} \right)$$

Based on what we want to do we choose Error (e.g. SQE for regression) and take derivatives of the error with respect to parameters to form a (S)GD procedure



#### **Error**

#### Linear-unit! regression: SQE



The error of nth observation

$$E_n = \frac{1}{2} \sum_{k} (t_{nk} - y_{nk})^2$$

Across all observations (and since its a function of w):

 $E(\mathbf{w}) = \sum E_n(\mathbf{w})$ 

\*Notation convention\* in NNs  $\hat{t}_{nk} = y_{nk}$ 

For linear-unit the output is:

$$y_{nk} = \sigma \left( \sum_{j=0}^{M} w_{kj}^{(2)} h \left( \sum_{d=0}^{D} x_d w_{dj}^{(1)} \right) \right)$$



#### General high level idea:

- As before we want derivatives of the error with respect to the parameters
- If we had these we could construct a SGD procedure to update them
- However the parameters now are "buried" inside complicated functions
- It turns out that we can compute the component of the error that each parameter/unit is responsible for by a message-passing procedure
- Start from the output layer and "assign" error back to hidden layer and from that to parameters.







#### Chain rule!

$$\frac{\partial E_n}{\partial w_{dj}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{dj}}$$

$$\frac{\partial E_n}{\partial w_{dj}} = \delta_j z_d$$

The derivative is obtained by multiplying the value of delta for the unit at the **output end of the weight** by the value z for the unit at the **input end of the weight** 





"Message Passing" scheme where we propagate the delta errors back into the network

$$\frac{\partial E_n}{\partial w_{dj}} = \delta_j z_d$$

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k$$





- Apply an input vector  $\mathbf{x}_n$  to the network and forward propagate through the network to find the activations of all hidden and output units
- Evaluate deltas for all output units
- Backpropagate the deltas from output to obtain deltas at hidden units
- Estimate the required error derivatives

Stochastic Gradient Descent Local minima but very successful!