

Variant Detection

Infectious Disease 'Omics Short Course

```
      a
      g
      t
      a
      t
      g
      a
      g
      g
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
      t
      a
```

4th-7th December 2023

Outline

Introduction

- What are the different types of small variants?
- What are the different types of structural (large) variants?

Variant calling from next generation sequencing data

- What are the major steps of a variant discovery pipeline?
- What are VCFs?

Discovery of small variants (SNPs and indels)

- What tools are used to detect small variants?
- Variant discovery with GATK and bcftools

Discovery of large variants (structural variants)

- What are the 4 main approaches used to detect large structural variants?
- What tools can we use to detect large structural variants?

Conclusions

Practical

Different types of variants: SNPs

Single Nucleotide Polymorphisms (SNPs) are single base pair variations at specific locations in the genome, with respect to a reference genome.

Different types of variants: SNPs

Different types of variants: Indels

Insertion-Deletions (Indels) are insertions and/or deletions of nucleotides at specific locations in the genome, with respect to a reference, and are often events of less than 1kb.

Different types of variants: CNVs

Copy Number Variants (CNVs) are a type of structural variation where the number of copies of a specific segment of DNA varies among different individuals' genomes of the same species.

Other types of variants

- Small scale variants
 - Single nucleotide polymorphisms (SNPs)
 - Insertions and deletions (indels)
 - Variable tandem repeats (VNTRs)
- Large scale variants (>1kb)
 - Copy number variations (CNVs)
 - Duplications, inversions
 - Translocations

...and things in between small and large, and combinations of the above

Structural Variants

Detecting SNPs from alignments

Variant Discovery Pipeline for NGS data

Aim:

 Start with sequencing reads and perform a series of steps to determine the presence of genetic variants

Process:

Creation of the variant call format (VCF) file...

Variant Call Format (VCF)

 A VCF is a text file format employed to store genetic variation with respect to a reference genome.

```
##fileformat=VCFv4.1
##fileDate=20110413
##source=VCFtools
##reference=file:///refs/human NCBI36.fasta
##contig=<ID=1,length=249250621,md5=1b22b98cdeb4a9304cb5d48026a85128,species="Homo Sapiens">
##contig=<ID=X,length=155270560,md5=7e0e2e580297b7764e31dbc80c2540dd,species="Homo Sapiens">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##ALT=<ID=DEL,Description="Deletion">
##INFO=<ID=SVTYPE, Number=1, Type=String, Description="Type of structural variant">
##INFO=<ID=END, Number=1, Type=Integer, Description="End position of the variant">
#CHROM POS ID
                  REF ALT
                              OUAL FILTER INFO
                                                                 FORMAT
                                                                            SAMPLE1 SAMPLE2
                 ACG A,AT
                               40 PASS
                                                                 GT:DP
                                                                            1/1:13
                                                                                     2/2:29
                               . PASS
                                           H2;AA=T
                       T,CT
                                                                 GT
                                                                            0 | 1
                                                                                     2/2
         5 rs12 A
                               67 PASS
                                                                GT:DP
                                                                            1|0:16
                                                                                     2/2:20
                                           SVTYPE=DEL; END=299
       100
                       <DEL>
                                   PASS
                                                                 GT:GO:DP
                                                                            1:12:.
                                                                                     0/0:20:36
```

Variant Call Format (VCF)

SNP and short indel calling tools

Base Callers

All (described here) are used by the open-source community.

All are performing variant calling but **employing different models to do so.**

Variant discovery with GATK

GATK is a package of command-line tools written in Java and provides endto-end workflows called best practices. It is easily parallelised and scalable, but run times are long!

Variant discovery with bcftools

A two-stage process using two algorithms:

mpileup

- Aggregation of all reads at each position
- Calculation of genotype likelihoods from a BAM file

call

 Selects most likely genotype and compares with the reference genome, outputting a VCF

Much **faster** than GATK!

Next generation sequencing and SVs

Next generation sequencing offers the widest range of detection of structural variants.

Discovery of structural variants

When short read data are mapped to a reference, structural variants can be identified by their unique signatures.

Approaches:
Paired End, Split Read, Read Depth

Unmapped or Single Anchored Reads

Approaches:
Assembly (Discussed on Day 2)

Paired End (PE) Approach

- Assesses the span and orientation of PE reads.
- If an SV is present, it will produce 'discordant' alignments.

Reads mapping further apart than expected with respect to reference

Tandem Duplication

Reads mapping in the opposite orientation than expected with respect to the reference

Split Read (SR) Approach

 Identifies sequences containing a breakpoint, mapping them to single base-pair resolution.

Read Depth (RD) Approach

- Detects deletions or duplications based on divergences in mapping depth:
 - Low or zero coverage suggests a deletion
 - Excess coverage suggests a duplication

Summary of SV detection and tools

2011

2011

2012

2018

2012 2016

2014

2010

2008

2016

2018

2013

2016

2010

2011

2011

2019

CREST

CONIFER

cn.MOPS

Hydra

PEMer

CONTRA

Manta

CNVkit

CNVer

SVDetect

ReadDepth

GASVPro

ExomeCNV

Control-FREEC

ExomeDepth

■ Split-read

Conclusions

- Many different types and combinations of variants
- A VCF stores data on variants:
 - It is the output for several variant calling software (e.g., GATK)
 - It is the input for downstream filtering and analysis (e.g., population genetics)
- Detection of small vs. large variants requires different approaches.
 - Whichever strategy employed comes with its own advantages and disadvantages.
- It is a combination of the choice of software tools for both alignment and variant calling that will influence the final result (i.e., variants called).
 - Use whatever works best for your research question/project!

Practical