Visual Wake Words Challenges

$$224 \times 224 \times 3 \times 4 = 602,112$$
 Bytes

224

© PING ms © DOWNLOAD Mbps © UPLOAD Mbps 25 34.50 4.62

4.6Mbps = 570k *Bytes* / Sec

~1 second Transfer Time

224

Recall: Spectrogram

Always-on (Visual Wake Words)?

- → Much more data (than KWS)
 - Higher latency
 - Higher power consumption (drains battery)
 - → Lower user satisfaction

224

Anatomy of a Visual Wake Words

Anatomy of a Visual Wake Words

Constraints for Visual Wake Words

Latency

Constraints for Visual Wake Words

Memory

Model	Size	Top-1 Accuracy
Xception	88 <mark>MB</mark>	0.790
VGG16	528 MB	0.713
ResNet50	98 MB	0.749
Inception v3	92 MB	0.779
MobileNet v1	16 MB	0.713
DenseNet 201	80 MB	0.773
NASNetMobile	23 MB	0.825

Our board [Course 3 Kit] only has **256 KB** of RAM (memory)

Constraints for Visual Wake Words

Errors: False positives/negatives

CULTURE | By Moya Lothian-McLean | 29 January 2020, 8:00am

These activists use makeup to defy mass surveillance

Multiple Layers to Compute Stack

Multiple Layers to Compute Stack

Memory: Model + Rest of Stack

Multiple Layers to Compute Stack

Latency: Model + Rest of Stack