Variable

- Evaluation
- $\mathscr{E}[\![x]\!]\eta = \eta[\![x]\!]$
- Well Typed Definition
 - (i) $\bar{p} \mid x_{\tau}$ is wt iff it is standard, and either
 - (a) λx_{τ} or $fix x_{\tau}$ is active in \bar{p} , or
 - (b) let x_{σ} is active in \bar{p} , and τ is a generic instance of σ .
- Proof
- (i) x_{τ} . Then either λx_{τ} or fix x_{τ} is active in \bar{p} , and $\eta[x]:\tau$, so $\mathscr{E}[x]\eta:\tau$, or let x_{σ} is active in \bar{p} , and $\eta[x]:\sigma$; but then $\tau \leqslant \sigma$, so $\mathscr{E}[x]\eta = \eta[x]:\tau$, by Proposition 1.

Application

Evaluation

$$\mathscr{E}[(e_1e_2)]\eta = v_1 \mathsf{E} F \to (v_2 \mathsf{E} W \to \text{wrong}, (v_1 | F)v_2),$$

wrong
where v_i is $\mathscr{E}[e_i]\eta$ $(i = 1, 2).$

- Well Typed Definition
- (ii) $\bar{p} \mid (\bar{e}_{\rho}\bar{e}'_{\sigma})_{\tau}$ is wt iff $\bar{p} \mid \bar{e}$ and $\bar{p} \mid \bar{e}'$ are both wt, and $\rho = \sigma \rightarrow \tau$.
 - Proof
 - (ii) $(\bar{e}_{\sigma\to\tau}\bar{e}_{\sigma})_{\tau}$. Then $\bar{p}\mid\bar{e}_{\sigma\to\tau}$ is wt, so $\mathscr{E}[\![e]\!]\eta:\sigma\to\tau$, and similarly $\mathscr{E}[\![e']\!]\eta:\sigma$. Then from the semantic equation (remembering that wrong has no type) and by Proposition 2 we get $\mathscr{E}[\![d]\!]\eta:\tau$.

Conditional

- Evaluation Exifer then e_2 else $e_3 \| \eta = v_1 \to B_0 \to (v_1 | B_0 \to v_2, v_3)$, wrong where v_i is $\mathcal{E}[e_i] \eta$ (i = 1, 2, 3)
- Well Typed Definition
- (iii) $\bar{p} \mid (if \ \bar{e}_{\rho} \ then \ \bar{e}'_{\sigma} \ else \ \bar{e}''_{\sigma})_{\tau'}$ is wt iff $\bar{p} \mid \bar{e}, \ \bar{p} \mid \bar{e}'$ and $\bar{p} \mid \bar{e}''$ are all wt, $\rho = \iota_0$, and $\sigma = \tau = \tau'$.
 - Proof
 - (iii) (if \bar{e}_{ι_0} then \bar{e}'_{σ} else \bar{e}''_{σ}). Straightforward; the only extra detail needed here is that \perp_{ν} has every type.

Lambda Abstraction

$$\mathscr{E}[\![\lambda x \cdot e]\!] \eta = (\lambda v \cdot \mathscr{E}[\![e]\!] \eta \{v/x\}) \text{ in } V$$

(iv)
$$\bar{p} \mid (\lambda x_{\rho} \cdot \bar{e}_{\sigma})_{\tau}$$
 is wt iff $\bar{p} \cdot \lambda x_{\rho} \mid \bar{e}$ is wt and $\tau = \rho \rightarrow \sigma$.

(iv) $(\lambda x_{\rho} \cdot \bar{e}_{\sigma})_{\rho \to \sigma}$. Then $\bar{p} \cdot \lambda x_{\rho} \mid \bar{e}_{\sigma}$ is wt. Now we require $(\lambda v \cdot \mathscr{E}[\![e]\!] \eta\{v/x\})$ in $V : \rho \to \sigma$. Denote this function by f in V. The inverse of Proposition 2 does not hold, that is, to show f in $V : \rho \to \sigma$ it is not sufficient (though it is necessary) that whenever $v : \rho$, $fv : \sigma$. What is required is that for every $\eta \to \nu \leqslant \rho \to \sigma$, f in $V : \mu \to \nu$.

Suppose then that $\mu \to \nu \leqslant \rho \to \sigma$. Then there is a substitution S, involving only the type variables in ρ and σ , such that $\mu \to \nu = S(\rho \to \sigma)$. Then, since none of these type variables is generic in $\bar{p} \cdot \lambda x_{\rho} \mid \bar{e}_{\sigma}$, it follows that $S(\bar{p}) \cdot \lambda x_{\mu} \mid S(\bar{e})_{\nu}$ is wt by Proposition 4. Moreover η respects $S(\bar{p})$ (since by Proposition 1 whenever $\eta[x]: \sigma'$ and $\tau' \leqslant \sigma'$, $\eta[x]: \tau'$) so for any $v: \mu$ we also have $\eta\{v/x\}$ respects $S(\bar{p}) \cdot \lambda x_{\mu}$.

It then follows by induction that $\mathscr{E}[e] \eta\{v/x\} : \nu$, so we have shown that $v : \mu$ implies $fv : \nu$, and this yields f in $V : \mu \to \nu$ as required.

Fix

$$\mathscr{E}[\![fix\ x\cdot e]\!]\eta = Y(\lambda v\cdot \mathscr{E}[\![e]\!]\eta\{v/x\})$$

(v)
$$\bar{p} \mid (fix \, x_{\rho} \cdot \bar{e}_{\sigma})_{\tau}$$
 is wt iff $\bar{p} \cdot fix \, x_{\rho} \mid \bar{e}$ is wt and $\rho = \sigma = \tau$.

(v) $(fix \ x_{\rho} \cdot e_{\rho})_{\rho}$. Then $p \cdot fix \ x_{\rho} \mid \bar{e}_{\rho}$ is wt. Now we require that $v : \rho$, where $v = Y(\lambda v' \cdot \mathscr{E}[\![e]\!] \ \eta\{v'/x\}).$

Now $v = \coprod_i v_i$, where $v_0 = \coprod_{V}$, $v_{i+1} = \mathscr{E}[e] \eta\{v_i/x\}$, and by the directed completeness of types we only have to show $v_i : \rho$ for each i.

Clearly $v_0: \rho$. Assume $v_i: \rho$. Since η respect \bar{p} , we have that $\eta\{v_i/x\}$ respects $\bar{p} \cdot fix x_\rho$, so by the main induction hypothesis $v_{i+1}: \rho$ also, and we are done.

Let x=e in e'

$$\mathscr{E}[[et \ x = e_1 \ in \ e_2]]\eta = v_1 \to W \to \text{wrong, } \mathscr{E}[[e_2]] \eta\{v_1/x\}$$

where $v_1 = \mathscr{E}[[e_1]]\eta$.

(vi) $\bar{p} \mid (let \ x_{\rho} = \bar{e}_{\rho} \ in \ \bar{e}'_{\sigma})_{\tau}$ is wt iff $\bar{p} \mid \bar{e}$ and $\bar{p} \cdot let \ x_{\rho} \mid \bar{e}'$ are both wt, and $\sigma = \tau$.

(vi) (let $x = \bar{e}_{\rho}$ in \bar{e}'_{σ})_{σ}. Then $\bar{p} \mid \bar{e}_{\rho}$ is wt, so we immediately have $v : \rho$, where $v = \mathscr{E}[\![e]\!]\eta$. We require $\mathscr{E}[\![e']\!]\eta\{v/x\}:\sigma$.

Now $\bar{p} \cdot let x_{\rho} \mid \bar{e}'_{\sigma}$ is also wt, and because $v : \rho$ we have that $\eta\{\sigma/x\}$ respects $\bar{p} \cdot let x_{\rho}$; the rest follows by the induction hypothesis.