FCC RF Test Report

APPLICANT : Xiaomi Communications Co., Ltd.

EQUIPMENT : Mobile Phone

BRAND NAME : MI

MODEL NAME : M1902F1G

FCC ID : 2AFZZ-XMSF1G

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION : (NII) Unlicensed National Information Infrastructure

The product was received on Nov. 23, 2018 and testing was completed on Jan. 07, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone, Jiangsu Province 215335, China China

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G

: 1 of 29 Page Number Report Issued Date: Jan. 17, 2019

: Rev. 01

Report No.: FR8N2303F

Report Version Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

TABLE OF CONTENTS

RE	/ISION	I HISTORY	3
SUI	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency and Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB and 26dB and 99% Occupied Bandwidth Measurement	12
	3.2	Maximum Conducted Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Unwanted Emissions Measurement	19
	3.5	AC Conducted Emission Measurement	24
	3.6	Automatically Discontinue Transmission	26
	3.7	Antenna Requirements	27
4	LIST	OF MEASURING EQUIPMENT	28
5	UNCE	RTAINTY OF EVALUATION	29
API	PENDI	X A. CONDUCTED TEST RESULTS	
API	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
API	PENDI	X C. RADIATED SPURIOUS EMISSION	
API	PENDI	X D. DUTY CYCLE PLOTS	
API	PENDI	X E. SETUP PHOTOGRAPHS	

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 2 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No. : FR8N2303F

REVISION HISTORY

Report No. : FR8N2303F

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR8N2303F	Rev. 01	Initial issue of report	Jan. 17, 2019

 Sporton International (Kunshan) Inc.
 Page Number
 : 3 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

SUMMARY OF TEST RESULT

Report Section	FCC Rule Description		Limit	Result	Remark
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth	> 500kHz	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 30 dBm	Pass	-
3.3	15.407(a) Power Spectral Density		≤ 30 dBm/500kHz	Pass	-
3.4	1 15.407(b) Unwanted Emissions		15.407(b)(4)(i) &15.209(a)	Pass	Under limit 6.41 dB at 30.970 MHz
3.5	.5 15.207 AC Conducted Emission		15.207(a)	Pass	Under limit 12.35 dB at 0.151 MHz
3.6	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.7	15.203 & 15.407(a)	I Antenna Requirement I N/A		Pass	-

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 4 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No. : FR8N2303F

1 General Description

1.1 Applicant

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

Report No.: FR8N2303F

1.2 Manufacturer

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Phone			
Brand Name	MI			
Model Name	M1902F1G			
FCC ID	2AFZZ-XMSF1G			
EUT supports Radios application	CDMA/EV-DO/GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA/HSPA+/LTE/NFC/WPCWLAN 2.4GHz 802.11b/g/n HT20WLAN 5GHz 802.11a/n HT20/HT40WLAN 5GHz 802.11ac VHT20/VHT40/VHT80Bluetooth BR/EDR/LE			
IMEI Code	Conducted: 869890040015335/869890040015343 Radiation: 869890040013595/869890040013603 Conduction: 869890040015376/869890040015384			
HW Version	P2			
SW Version	MIUI 10			
EUT Stage	Identical Prototype			

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two samples under test, the difference of two samples is for memory: the sample 1 is 6+128GB capacity and the sample 2 is 6+64GB capacity. According to the difference, sample 1 perform full test.

 Sporton International (Kunshan) Inc.
 Page Number
 : 5 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Channel Frequency Range	Tx/Rx Channel Frequency Range 5745 MHz ~ 5805 MHz				
Maximum Output Power	SISO <ant.2> <5745 MHz ~ 5805 MHz> 802.11a: 18.99 dBm / 0.0793 W 802.11n HT20: 17.91 dBm / 0.0618 W 802.11n HT40: 16.91 dBm / 0.0491 W 802.11ac VHT80: 16.71 dBm / 0.0469 W MIMO<ant.1+2> <5745 MHz ~ 5805 MHz> 802.11a: 19.43 dBm / 0.0877 W 802.11n HT20: 18.91 dBm / 0.0778 W 802.11n HT40: 18.77 dBm / 0.0753 W 802.11ac VHT80: 18.77 dBm / 0.0753 W</ant.1+2></ant.2>				
99% Occupied Bandwidth	SISO <ant.2> 802.11a: 17.68 MHz 802.11n HT20: 18.83 MHz 802.11n HT40: 36.56 MHz 802.11ac VHT80: 75.88 MHz MIMO<ant.1+2> 802.11a: 17.68 MHz 802.11n HT20: 18.88 MHz 802.11n HT20: 75.88 MHz 802.11n HT20: 75.64 MHz</ant.1+2></ant.2>				
Type of Modulation	802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)				
Antenna Type / Gain	<ant. 1="">: PIFA Antenna with gain -3.75 dBi <ant. 2="">: PIFA Antenna with gain -0.49 dBi</ant.></ant.>				
Antenna Function Description	802.11 a/n/ac SISO 802.11 a/n/ac MIMO	Ant. 1 -	Ant. 2 V		

Report No.: FR8N2303F

Note:

- 1. For 802.11n HT20 / ac VHT20 and 802.11n HT40 / ac VHT40 mode, the whole testing have assessed only 802.11an HT20/ HT40 by referring to their maximum conducted power.
- 2. For 802.11a/n/ac SISO & MIMO mode, the whole testing has assessed MIMO mode by referring to their higher conducted power for RSE

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

 Sporton International (Kunshan) Inc.
 Page Number
 : 6 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FAX: +86-512-57900958 Report Version: Rev. 01
FCC ID: 2AFZZ-XMSF1G Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600155-0).

Report No.: FR8N2303F

Test Site	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone,				
Test Site Location	Jiangsu Province 215335, China				
rest site Location	TEL: 86-512-57900158				
	FAX: 86-512-57900958				
	Sporton Site No.	FCC designation No.	FCC Test Firm Registration No.		
Test Site No.	TH01-KS				
rest site No.	CO01-KS	CN5013	630927		
	03CH05-KS				

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 Sporton International (Kunshan) Inc.
 Page Number
 : 7 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

Report No.: FR8N2303F

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5745-5805 MHz	151*	5755	159*	5795
Band 4 (U-NII-3)	153	5765	161	5805
(0 1411 0)	155#	5775	-	-

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

: 8 of 29

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Single Mode

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT80	MCS0

Report No.: FR8N2303F

MIMO Mode

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT80	MCS0

AC Conducted Emission	Mode 1 : GSM 850 Idle + Bluetooth Link + WLAN Link (5G) + USB Cable 2(Charging from adapter)					
Remark: For	Remark: For Radiated Test Cases, The tests were performed with Adapter and USB Cable 1.					

	Ch. #	Band IV:5745-5805 MHz			
	CII. #	802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
L	Low	149	149	151	-
M	Middle	157	157	-	155
Н	High	165	165	159	-

 Sporton International (Kunshan) Inc.
 Page Number
 : 9 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Xiaomi	LYEJ02LM	N/A	N/A	N/A
3.	WLAN AP	D-link	DIR-855	KA2DIR855A2	N/A	Unshielded,1.8m
4.	Notebook	Lenovo	G480	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	SD Card	Kingston	8GB	N/A	N/A	N/A

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 10 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

2.5 **EUT Operation Test Setup**

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 **Measurement Results Explanation Example**

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss

Following shows an offset computation example with cable loss 6.8dB.

 $Offset(dB) = RF \ cable \ loss(dB).$ = 6.8 (dB)

Page Number : 11 of 29 Report Issued Date: Jan. 17, 2019

Report No.: FR8N2303F

Report Version : Rev. 01

3 **Test Result**

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section C) Emission bandwidth for the band 5.725-5.85GHz
- 2. Set RBW = 100kHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G

Report Version Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

: 12 of 29

: Rev. 01

Report No.: FR8N2303F

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 13 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

Report No.: FR8N2303F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 14 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: FR8N2303F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

 Sporton International (Kunshan) Inc.
 Page Number
 : 15 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Report No.: FR8N2303F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz.
- Set VBW ≥ 1 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

 Sporton International (Kunshan) Inc.
 Page Number
 : 16 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSF1G

- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (c): Measure and add 10 log(N_{ANT}) dB.

With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity $10 \log(N_{ANT})$ dB is added to each spectrum value before comparing to the emission limit. The addition of $10 \log(N_{ANT})$ dB serves to apportion the emission limit among the N_{ANT} outputs so that each output is permitted to contribute no more than $1/N_{ANT}$ th of the PSD limit.

3.3.4 Test Setup

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 17 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 18 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR8N2303F

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.725-5.85 GHz band: 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance			
(MHz)	(microvolts/meter)	(meters)			
0.009 - 0.490	2400/F(kHz)	300			
0.490 – 1.705	24000/F(kHz)	30			
1.705 – 30.0	30	30			
30 – 88	100	3			
88 – 216	150	3			
216 - 960	200	3			
Above 960	500	3			

 Sporton International (Kunshan) Inc.
 Page Number
 : 19 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

Note: The following formula is used to convert the EIRP to field strength.

EIRP =
$$E_{Meas}$$
 + $20log (d_{Meas})$ - 104.7

where

EIRP is the equivalent isotropically radiated power, in dBm

 E_{Meas} is the field strength of the emission at the measurement distance, in $dB\mu V/m$

 $d_{\mbox{\scriptsize Meas}}$ is the measurement distance, in m

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 20 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 21 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 22 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 23 of 29
Report Issued Date : Jan. 17, 2019

Report No.: FR8N2303F

Report Version : Rev. 01

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR8N2303F

Eroquency of emission (MUz)	Conducted limit (dBμV)							
Frequency of emission (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

 Sporton International (Kunshan) Inc.
 Page Number
 : 24 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 25 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR8N2303F

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 26 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR8N2303F

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(NANT/NSS=1) dB.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F(2)f(i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

<cdd mod<="" th=""><th>les></th><th></th><th></th><th></th><th></th><th></th></cdd>	les>						
			DG	DG	Power	PSD	
			for	for	Limit	Limit	
	Ant. 1	Ant. 2	Power	PSD	Reduction	Reduction	
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)	
Band IV	-3.75	-0.49	-0.49	1.04	0.00	0.00	

Power Limit Reduction = DG(Power) - 6dBi, (min = 0)

 $PSD \ Limit \ Reduction = DG(PSD) - 6dBi, (min = 0)$

 Sporton International (Kunshan) Inc.
 Page Number
 : 27 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 07, 2018	Dec. 25, 2018	Aug. 06, 2019	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 18, 2018	Dec. 25, 2018	Jan. 17, 2019	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 18, 2018	Dec. 25, 2018	Jan. 17, 2019	Conducted (TH01-KS)
Thermal Chamber	Hongzhan	LP-150U	H2014011 440	-40~+150°C 20%~95%RH	Jun.27, 2018	Dec. 25, 2018	Jun. 26, 2019	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jun. 25, 2018	Dec. 24, 2018~ Jan. 07, 2019	Jun. 24, 2019	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44GHz	Apr. 17, 2018	Dec. 24, 2018~ Jan. 07, 2019	Apr. 16, 2019	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Dec. 24, 2018~ Jan. 07, 2019	Oct. 18, 2019	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Jun. 12, 2018	Dec. 24, 2018~ Jan. 07, 2019	Jun. 11, 2019	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 21, 2018	Dec. 24, 2018~ Jan. 07, 2019	Jan. 20, 2019	Radiation (03CH05-KS)
SHF-EHF Horn	Schwarzbeck	BBHA 9170	BBHA1702 49	15GHz~40GHz	Feb. 07, 2018	Dec. 24, 2018~ Jan. 07, 2019	Feb. 06, 2019	Radiation (03CH05-KS)
Amplifier	com-power	PA-103A	161069	1MHz ~1000MHz / 32 dB	Apr. 17, 2018	Dec. 24, 2018~ Jan. 07, 2019	Apr. 16, 2019	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Apr. 17, 2018	Dec. 24, 2018~ Jan. 07, 2019	Apr. 16, 2019	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY572801 06	500MHz~26.5G Hz	Apr. 18, 2018	Dec. 24, 2018~ Jan. 07, 2019	Apr. 17, 2019	Radiation (03CH05-KS)
Amplifier	MITEQ	TTA1840-35- HG	1887435	18~40GHz	Feb. 08, 2018	Dec. 24, 2018~ Jan. 07, 2019	Feb. 07, 2019	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Dec. 24, 2018~ Jan. 07, 2019	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Dec. 24, 2018~ Jan. 07, 2019	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Dec. 24, 2018~ Jan. 07, 2019	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 19, 2018	Dec. 24, 2018	Apr. 18, 2019	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 12, 2018	Dec. 24, 2018	Oct. 11, 2019	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Nov. 19, 2018	Dec. 24, 2018	Nov. 18, 2019	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2018	Dec. 24, 2018	Oct. 11, 2019	Conduction (CO01-KS)

NCR: No Calibration Required

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : 28 of 29
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Report No.: FR8N2303F

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.906

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	E 0 4D
of 95% (U = 2Uc(y))	5.0 dB
01 93 % (0 = 200(y))	

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	3.0 dB

 Sporton International (Kunshan) Inc.
 Page Number
 : 29 of 29

 TEL: +86-512-57900158
 Report Issued Date
 : Jan. 17, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

Appendix A. Conducted Test Results

Sporton International (Kunshan) Inc. Page Number TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Report Issued Date: Jan. 17, 2019 Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

Report No.: FR8N2303F

Test Engineer:	Orion Li	Temperature:	21~25	°C
Test Date:	2018/12/25	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 26dB EBW and 99% OBW

	Band IV												
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Band	9% width Hz)	Band	26dB Bandwidth (MHz)		dB width Hz)	Band Min.	dB lwidth Limit Hz)	Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	149	5745		17.63		24.88		15.52	0.5	0.5	Pass
11a	6Mbps	1	157	5785		17.68		24.28		15.52	0.5	0.5	Pass
11a	6Mbps	1	161	5805		17.63		24.93		15.62	0.5	0.5	Pass
HT20	MCS0	1	149	5745		18.83		24.83		16.54	0.5	0.5	Pass
HT20	MCS0	1	157	5785		18.78		25.03		16.50	0.5	0.5	Pass
HT20	MCS0	1	161	5805		18.73		25.23		16.54	0.5	0.5	Pass
HT40	MCS0	1	151	5755		36.56		41.90		35.88	0.5	0.5	Pass
HT40	MCS0	1	159	5795		36.56		41.72		35.68	0.5	0.5	Pass
VHT80	MCS0	1	155	5775		75.88		84.56		76.32	0.5	0.5	Pass
11a	6Mbps	2	149	5745	17.68	17.53	24.03	22.98	15.50	15.64	0.	5	Pass
11a	6Mbps	2	157	5785	17.63	17.53	23.83	23.03	15.66	16.02	0.	.5	Pass
11a	6Mbps	2	161	5805	17.68	17.53	24.03	22.73	15.50	16.02	0.	.5	Pass
HT20	MCS0	2	149	5745	18.83	18.73	24.48	24.68	15.96	16.54	0.	.5	Pass
HT20	MCS0	2	157	5785	18.78	18.68	25.33	24.48	15.94	16.76	0.5		Pass
HT20	MCS0	2	161	5805	18.88	18.73	25.13	24.98	16.52	16.78	0.5		Pass
HT40	MCS0	2	151	5755	36.46	36.46	41.63	42.08	35.12	35.44	0.5		Pass
HT40	MCS0	2	159	5795	36.46	36.46	41.90	41.99	35.12	35.68	0.	.5	Pass
VHT80	MCS0	2	155	5775	75.64	75.52	83.44	82.64	75.05	75.05	0.	.5	Pass

TEST RESULTS DATA Average Power Table

	Band IV														
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Du Fac (d			Average Conducted Power (dBm)		FCC Conducted Power Limit (dBm)					Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	149	5745		0.08		18.67			30.00	-3.75	-0.49		Pass
11a	6Mbps	1	157	5785		0.08		18.74			30.00	-3.75	-0.49		Pass
11a	6Mbps	1	161	5805		0.08		18.99			30.00	-3.75	-0.49		Pass
HT20	MCS0	1	149	5745		0.10		17.63			30.00	-3.75	-0.49		Pass
HT20	MCS0	1	157	5785		0.10		17.74			30.00	-3.75	-0.49		Pass
HT20	MCS0	1	161	5805		0.10		17.91			30.00	-3.75	-0.49		Pass
HT40	MCS0	1	151	5755		0.18		16.91			30.00	-3.75	-0.49		Pass
HT40	MCS0	1	159	5795		0.18		16.90			30.00	-3.75	-0.49		Pass
VHT20	MCS0	1	149	5745		0.09		17.54			30.00	-3.75	-0.49		Pass
VHT20	MCS0	1	157	5785		0.09		17.67			30.00	-3.75	-0.49		Pass
VHT20	MCS0	1	161	5805		0.09		17.88			30.00	-3.75	-0.49		Pass
VHT40	MCS0	1	151	5755		0.20		16.80			30.00	-3.75	-0.49		Pass
VHT40	MCS0	1	159	5795		0.20		16.63			30.00	-3.75	-0.49		Pass
VHT80	MCS0	1	155	5775		0.36		16.71			30.00	-3.75	-0.49		Pass
11a	6Mbps	2	149	5745	0.08	0.07	16.63	15.87	19.28	30.	00	-0.	49		Pass
11a	6Mbps	2	157	5785	0.08	0.07	16.85	15.93	19.43	30.	00	-0.	49		Pass
11a	6Mbps	2	161	5805	0.08	0.07	16.61	15.99	19.32	30.	00	-0.	49		Pass
HT20	MCS0	2	149	5745	0.10	0.10	15.95	15.30	18.65	30.	00	-0.	49		Pass
HT20	MCS0	2	157	5785	0.10	0.10	16.16	15.62	18.91	30.	00	-0.	49		Pass
HT20	MCS0	2	161	5805	0.10	0.10	16.03	15.40	18.74	30.	00	-0.	49		Pass
HT40	MCS0	2	151	5755	0.23	0.20	16.24	15.20	18.76	30.	00	-0.	49		Pass
HT40	MCS0	2	159	5795	0.23	0.20	16.33	15.11	18.77	30.	00	-0.	49		Pass
VHT20	MCS0	2	149	5745	0.09	0.17	15.83	15.29	18.58	30.	00	-0.	49		Pass
VHT20	MCS0	2	157	5785	0.09	0.17	16.28	15.27	18.81	30.	00	-0.	49		Pass
VHT20	MCS0	2	161	5805	0.09	0.17	15.90	15.48	18.71	30.	00	-0.	49		Pass
VHT40	MCS0	2	151	5755	0.37	0.34	16.22	15.18	18.74	30.	00	-0.	49		Pass
VHT40	MCS0	2	159	5795	0.37	0.34	16.37	14.90	18.71	30.	00	-0.	49		Pass
VHT80	MCS0	2	155	5775	0.57	0.64	16.27	15.19	18.77	30.	00	-0.	49		Pass

TEST RESULTS DATA Power Spectral Density

	Band IV															
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)		10log (500kHz /RBW) Factor (dB)		Average Power Density (dBm/500kHz)		Average PSD Limit (dBm/500kHz)		DG (dBi)		Pass /Fail	
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	149	5745		80.0		2.22		5.48			30.00	-3.75	-0.49	Pass
11a	6Mbps	1	157	5785		80.0		2.22		5.94			30.00	-3.75	-0.49	Pass
11a	6Mbps	1	161	5805		0.08		2.22		5.34			30.00	-3.75	-0.49	Pass
HT20	MCS0	1	149	5745		0.10		2.22		3.97			30.00	-3.75	-0.49	Pass
HT20	MCS0	1	157	5785		0.10		2.22		4.44			30.00	-3.75	-0.49	Pass
HT20	MCS0	1	161	5805		0.10		2.22		3.61			30.00	-3.75	-0.49	Pass
HT40	MCS0	1	151	5755		0.18		2.22		-0.43			30.00	-3.75	-0.49	Pass
HT40	MCS0	1	159	5795		0.18		2.22		-0.40			30.00	-3.75	-0.49	Pass
VHT80	MCS0	1	155	5775		0.36		2.22		-2.76			30.00	-3.75	-0.49	Pass
11a	6Mbps	2	149	5745	0.08	0.07	2.22				4.89	30.00		1.04		Pass
11a	6Mbps	2	157	5785	0.08	0.07	2.22				5.64	30.00		1.04		Pass
11a	6Mbps	2	161	5805	80.0	0.07	2.22				7.01	30.00		1.04		Pass
HT20	MCS0	2	149	5745	0.10	0.10	2.22				3.73	30.00		1.04		Pass
HT20	MCS0	2	157	5785	0.10	0.10	2.22				4.98	30.00		1.04		Pass
HT20	MCS0	2	161	5805	0.10	0.10	2.22				5.43	30.00		1.04		Pass
HT40	MCS0	2	151	5755	0.23	0.20	2.22				1.04	30.00		1.04		Pass
HT40	MCS0	2	159	5795	0.23	0.20	2.22				1.76	30.00		1.04		Pass
VHT80	MCS0	2	155	5775	0.57	0.64	2.22				-0.50	30.00		1.04		Pass

Appendix B. AC Conducted Emission Test Results

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : B1 of B2
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

Report No.: FR8N2303F

Appendix C. Radiated Spurious Emission

Band 4 - 5725~5850MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5634.4	51.01	-17.29	68.3	42.99	34.67	8.55	35.2	331	119	Р	Н
		5700	57.65	-47.65	105.3	49.51	34.7	8.61	35.17	331	119	Р	Н
		5714	59.99	-49.23	109.22	51.81	34.73	8.61	35.16	331	119	Р	Н
		5724.8	54.77	-67.07	121.84	46.55	34.77	8.61	35.16	331	119	Р	Н
000.44		5742	101.26	-	-	92.97	34.8	8.64	35.15	331	119	Р	Н
802.11a CH 149		5742	92.27	-	-	83.98	34.8	8.64	35.15	331	119	Α	Н
5745MHz		5645.2	49.82	-18.48	68.3	41.8	34.67	8.55	35.2	242	161	Р	V
3743WII 12		5684.8	50.98	-43.11	94.09	42.89	34.7	8.58	35.19	242	161	Р	V
		5714	52.36	-56.86	109.22	44.18	34.73	8.61	35.16	242	161	Р	V
		5724.8	54.97	-66.87	121.84	46.75	34.77	8.61	35.16	242	161	Р	V
		5744	99.9	-	-	91.61	34.8	8.64	35.15	242	161	Р	٧
		5744	92.64	-	-	84.35	34.8	8.64	35.15	242	161	Р	V

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C1 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01
Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

Report No.: FR8N2303F

WIFI Ant. 1+2	Note	Frequency (MHz)	Level	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos	Table Pos (deg)	Peak Avg. (P/A)	
		5804	102.4	-	- -	93.92	34.93	8.67	35.12	267	118	P	H
		5804	94.46	-	-	85.98	34.93	8.67	35.12	267	118	Α	Н
		5852	52.04	-65.7	117.74	43.42	35	8.72	35.1	267	118	Р	Н
		5863.2	51.51	-57.09	108.6	42.81	35.03	8.77	35.1	267	118	Р	Н
		5899.6	51	-36.06	87.06	42.2	35.1	8.82	35.12	267	118	Р	Н
802.11a		5954.8	51.27	-17.03	68.3	42.33	35.2	8.88	35.14	267	118	Р	Н
CH 161		5804	100.3	-	-	91.82	34.93	8.67	35.12	238	175	Р	V
5805MHz		5804	92.79	-	-	84.31	34.93	8.67	35.12	238	175	Α	V
		5851.6	50.17	-68.48	118.65	41.55	35	8.72	35.1	238	175	Р	V
		5858	53.95	-56.11	110.06	45.25	35.03	8.77	35.1	238	175	Р	V
		5889.6	51.06	-43.4	94.46	42.3	35.1	8.77	35.11	238	175	Р	V
		5992.4	51.1	-17.2	68.3	42.02	35.3	8.93	35.15	238	175	Р	V

Remark

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C2 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

Report No.: FR8N2303F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz

Report No.: FR8N2303F

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a		11490	43.58	-30.42	74	55.59	38.08	12.74	62.83	100	360	Р	Н
CH 149													
5745MHz		11490	44.98	-29.02	74	56.99	38.08	12.74	62.83	100	360	Р	V
802.11a		11570	44.32	-29.68	74	56.18	38.17	12.79	62.82	100	360	Р	Н
CH 157 5785MHz		11570	43.32	-30.68	74	55.18	38.17	12.79	62.82	100	360	Р	V
802.11a		11610	45.27	-28.73	74	57.06	38.2	12.82	62.81	100	360	Р	Н
CH 161 5805MHz		11610	44.32	-29.68	74	56.11	38.2	12.82	62.81	100	360	Р	V

Remark

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C3 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

Report No.: FR8N2303F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(MILI-)	(dBu\//m)	Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)			(H/V)
		5639.2	50.16	-18.14	68.3	42.14	34.67	8.55	35.2	246	164	Р	Н
		5692	51.14	-48.26	99.4	43.03	34.7	8.58	35.17	246	164	Р	Н
		5712.4	51.16	-57.61	108.77	42.99	34.73	8.61	35.17	246	164	Р	Н
		5724.8	55.64	-66.2	121.84	47.42	34.77	8.61	35.16	246	164	Р	Н
802.11n		5748	99.84	-	-	91.55	34.8	8.64	35.15	246	164	Р	Н
HT20		5748	91.67	-	-	83.38	34.8	8.64	35.15	246	164	Α	Н
CH 149		5621.2	49.62	-18.68	68.3	41.67	34.63	8.52	35.2	296	180	Р	٧
5745MHz		5697.2	53.53	-49.71	103.24	45.42	34.7	8.58	35.17	296	180	Р	٧
		5714.8	51.26	-58.19	109.45	43.08	34.73	8.61	35.16	296	180	Р	٧
		5724.4	53.56	-67.37	120.93	45.34	34.77	8.61	35.16	296	180	Р	٧
		5748	97.52	-	-	89.23	34.8	8.64	35.15	296	180	Р	٧
		5748	89.69	-	-	81.4	34.8	8.64	35.15	296	180	Α	V

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C4 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5806	100.67	-	-	92.19	34.93	8.67	35.12	231	164	Р	Н
		5806	93.53	-	-	85.05	34.93	8.67	35.12	231	164	Α	Н
		5852.8	55.54	-60.38	115.92	46.92	35	8.72	35.1	231	164	Р	Н
		5854.8	52.14	-59.22	111.36	43.49	35.03	8.72	35.1	231	164	Р	Н
802.11n		5875.6	51.81	-53.04	104.85	43.08	35.07	8.77	35.11	231	164	Р	Н
HT20		5935.2	50.58	-17.72	68.3	41.66	35.17	8.88	35.13	231	164	Р	Н
CH 161		5804	97.78	-	-	89.3	34.93	8.67	35.12	112	124	Р	٧
5805MHz		5804	89.86	-	-	81.38	34.93	8.67	35.12	112	124	Α	٧
		5854	54.24	-58.94	113.18	45.59	35.03	8.72	35.1	112	124	Р	٧
		5856	50.53	-60.09	110.62	41.83	35.03	8.77	35.1	112	124	Р	٧
		5893.2	50.61	-41.19	91.8	41.85	35.1	8.77	35.11	112	124	Р	٧
		5933.6	51.39	-16.91	68.3	42.47	35.17	8.88	35.13	112	124	Р	V

Remark

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C5 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

Report No.: FR8N2303F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT20 (Harmonic @ 3m)

Report No.: FR8N2303F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
802.11n		11490	43.9	-30.1	74	55.91	38.08	12.74	62.83	150	52	Р	Н
HT20													
CH 149		11490	43.28	-30.72	74	55.29	38.08	12.74	62.83	150	360	Р	V
5745MHz													
802.11n		11570	44.12	-29.88	74	55.98	38.17	12.79	62.82	150	360	Р	Н
HT20													
CH 157		11570	43.36	-30.64	74	55.22	38.17	12.79	62.82	150	360	Р	V
5785MHz													
802.11n		11610	44.56	-29.44	74	56.35	38.2	12.82	62.81	100	360	Р	Н
HT20													
CH 161		11610	44.13	-29.87	74	55.92	38.2	12.82	62.81	100	360	Р	V
5805MHz													

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C6 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Report No.: FR8N2303F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	$(dB\mu V/m)$	(dB)	($dB\mu V/m$)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5628.8	49.96	-18.34	68.3	41.98	34.63	8.55	35.2	305	114	Р	Н
		5692.4	51.13	-48.57	99.7	43.02	34.7	8.58	35.17	305	114	Р	Н
		5719.2	56.49	-54.19	110.68	48.27	34.77	8.61	35.16	305	114	Р	Н
		5724	57.92	-62.1	120.02	49.7	34.77	8.61	35.16	305	114	Р	Н
		5750	98.02	-	-	89.73	34.8	8.64	35.15	305	114	Р	Н
		5750	90.21	-	1	81.92	34.8	8.64	35.15	305	114	Α	Н
		5852.4	51.12	-65.71	116.83	42.5	35	8.72	35.1	305	114	Р	Н
		5868.4	49.81	-57.34	107.15	41.11	35.03	8.77	35.1	305	114	Р	Н
802.11n		5890	51.39	-42.78	94.17	42.63	35.1	8.77	35.11	305	114	Р	Н
HT40		5994.4	50.69	-17.61	68.3	41.61	35.3	8.93	35.15	305	114	Р	Н
CH 151		5633.6	50.72	-17.58	68.3	42.7	34.67	8.55	35.2	112	124	Р	٧
5755MHz		5698.8	52.49	-51.93	104.42	44.38	34.7	8.58	35.17	112	124	Р	٧
		5718.8	54.43	-56.13	110.56	46.21	34.77	8.61	35.16	112	124	Р	٧
		5722.4	59.67	-56.7	116.37	51.45	34.77	8.61	35.16	112	124	Р	V
		5754	94.01	-	-	85.69	34.83	8.64	35.15	112	124	Р	V
		5754	86.33	-	-	78.01	34.83	8.64	35.15	112	124	Α	V
		5851.2	49.48	-70.08	119.56	40.86	35	8.72	35.1	112	124	Р	V
		5862.4	51.91	-56.92	108.83	43.21	35.03	8.77	35.1	112	124	Р	V
		5895.2	50.61	-39.7	90.31	41.81	35.1	8.82	35.12	112	124	Р	V
		5982	50.5	-17.8	68.3	41.45	35.27	8.93	35.15	112	124	Р	٧

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C7 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01
Report Template No.: BU5-FR15EWLB4 AC MA Version 1.4

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5628.4	50	-18.3	68.3	42.02	34.63	8.55	35.2	100	167	Р	Н
		5676.4	51.53	-36.35	87.88	43.44	34.7	8.58	35.19	100	167	Р	Н
		5718	56.18	-54.16	110.34	47.96	34.77	8.61	35.16	100	167	Р	Н
		5720.8	50.29	-62.43	112.72	42.07	34.77	8.61	35.16	100	167	Р	Н
		5798	97.95	ı	1	89.5	34.9	8.67	35.12	100	167	Р	Н
		5798	90.47	ı	1	82.02	34.9	8.67	35.12	100	167	Α	Н
		5854	55.94	-57.24	113.18	47.29	35.03	8.72	35.1	100	167	Р	Н
		5874.8	52.34	-53.02	105.36	43.61	35.07	8.77	35.11	100	167	Р	Н
802.11n		5876.8	53.22	-50.74	103.96	44.49	35.07	8.77	35.11	100	167	Р	Н
HT40		5962.8	51.39	-16.91	68.3	42.42	35.23	8.88	35.14	100	167	Р	Н
CH 159		5649.2	50.46	-17.84	68.3	42.44	34.67	8.55	35.2	127	124	Р	V
5795MHz		5685.6	50.16	-44.52	94.68	42.07	34.7	8.58	35.19	127	124	Р	V
		5711.6	50.92	-57.63	108.55	42.75	34.73	8.61	35.17	127	124	Р	V
		5723.6	50.1	-69.01	119.11	41.88	34.77	8.61	35.16	127	124	Р	V
		5796	93	-	-	84.55	34.9	8.67	35.12	127	124	Р	V
		5796	85.37	-	-	76.92	34.9	8.67	35.12	127	124	Α	V
		5850.4	50.13	-71.26	121.39	41.51	35	8.72	35.1	127	124	Р	V
		5860	51.25	-58.25	109.5	42.55	35.03	8.77	35.1	127	124	Р	V
		5891.2	51.34	-41.94	93.28	42.58	35.1	8.77	35.11	127	124	Р	V
		5939.2	50.77	-17.53	68.3	41.82	35.2	8.88	35.13	127	124	Р	٧

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C8 of C14 Report Issued Date : Jan. 17, 2019 Report Version : Rev. 01

Report No.: FR8N2303F

No other spurious found.

Remark

2. All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz

Report No.: FR8N2303F

WIFI 802.11n HT40 (Harmonic @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
	11510	43.42	-30.58	74	55.41	38.1	12.74	62.83	100	360	Р	Н
	11510	45.28	-28.72	74	57.27	38.1	12.74	62.83	100	360	Р	٧
	11590	43.81	-30.19	74	55.62	38.18	12.82	62.81	100	360	Р	Н
	11590	43.46	-30.54	74	55.27	38.18	12.82	62.81	100	360	Р	V
	Note	(MHz) 11510 11510 11590	(MHz) (dBμV/m) 11510 43.42 11510 45.28 11590 43.81	(MHz) (dBμV/m) (dB) 11510 43.42 -30.58 11510 45.28 -28.72 11590 43.81 -30.19	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) 11510 43.42 -30.58 74 11510 45.28 -28.72 74 11590 43.81 -30.19 74	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV/m) 11510 43.42 -30.58 74 55.41 11510 45.28 -28.72 74 57.27 11590 43.81 -30.19 74 55.62	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) 11510 43.42 -30.58 74 55.41 38.1 11510 45.28 -28.72 74 57.27 38.1 11590 43.81 -30.19 74 55.62 38.18	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) 11510 43.42 -30.58 74 55.41 38.1 12.74 11510 45.28 -28.72 74 57.27 38.1 12.74 11590 43.81 -30.19 74 55.62 38.18 12.82	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) 11510 43.42 -30.58 74 55.41 38.1 12.74 62.83 11510 45.28 -28.72 74 57.27 38.1 12.74 62.83 11590 43.81 -30.19 74 55.62 38.18 12.82 62.81	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 11510 43.42 -30.58 74 55.41 38.1 12.74 62.83 100 11510 45.28 -28.72 74 57.27 38.1 12.74 62.83 100 11590 43.81 -30.19 74 55.62 38.18 12.82 62.81 100	(MHz) (dBμV/m) Limit (dB) Level (dBμV/m) Factor (dB/m) Loss (dB) Factor (dB) Pos (deg) 11510 43.42 -30.58 74 55.41 38.1 12.74 62.83 100 360 11510 45.28 -28.72 74 57.27 38.1 12.74 62.83 100 360 11590 43.81 -30.19 74 55.62 38.18 12.82 62.81 100 360	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (deg) Avg. (p/A) 11510 43.42 -30.58 74 55.41 38.1 12.74 62.83 100 360 P 11510 45.28 -28.72 74 57.27 38.1 12.74 62.83 100 360 P 11590 43.81 -30.19 74 55.62 38.18 12.82 62.81 100 360 P

Remark 2.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C9 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11acVHT80 (Band Edge @ 3m)

Report No.: FR8N2303F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5631.6	51.4	-16.9	68.3	43.42	34.63	8.55	35.2	275	117	Р	Н
		5698.4	56.14	-47.98	104.12	48.03	34.7	8.58	35.17	275	117	Р	Н
		5718.8	59.58	-50.98	110.56	51.36	34.77	8.61	35.16	275	117	Р	Н
		5722.8	58.59	-58.69	117.28	50.37	34.77	8.61	35.16	275	117	Р	Н
		5758	95.7	-	-	87.38	34.83	8.64	35.15	275	117	Р	Н
		5758	86.86	-	1	78.54	34.83	8.64	35.15	275	117	Α	Н
		5854.8	54.78	-56.58	111.36	46.13	35.03	8.72	35.1	275	117	Р	Н
		5854.8	54.78	-56.58	111.36	46.13	35.03	8.72	35.1	275	117	Р	Н
802.11ac		5890.4	50.7	-43.17	93.87	41.94	35.1	8.77	35.11	275	117	Р	Н
VHT80		5932	51.31	-16.99	68.3	42.45	35.17	8.82	35.13	275	117	Р	Н
CH 155		5641.6	49.56	-18.74	68.3	41.54	34.67	8.55	35.2	100	246	Р	V
5775MHz		5692.8	54.49	-45.5	99.99	46.38	34.7	8.58	35.17	100	246	Р	٧
		5713.6	56.54	-52.57	109.11	48.36	34.73	8.61	35.16	100	246	Р	٧
		5720.8	58.99	-53.73	112.72	50.77	34.77	8.61	35.16	100	246	Р	٧
		5768	92.39	-	-	84.06	34.83	8.64	35.14	100	246	Р	٧
		5768	84.03	-	1	75.7	34.83	8.64	35.14	100	246	Α	٧
		5852.4	52.61	-64.22	116.83	43.99	35	8.72	35.1	100	246	Р	٧
		5860.8	52.43	-56.84	109.27	43.73	35.03	8.77	35.1	100	246	Р	٧
		5904.8	50.68	-32.53	83.21	41.85	35.13	8.82	35.12	100	246	Р	٧
		5939.6	51.28	-17.02	68.3	42.33	35.2	8.88	35.13	100	246	Р	٧

Romark

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C10 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz

Report No.: FR8N2303F

WIFI 802.11acVHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level	Factor	Loss (dB)	Factor	Pos (cm)	Pos (deg)	Avg.	i .
802.11ac		11550	44.59	-29.41	74	56.47	38.15	12.79	62.82	100	360	Р	Н
VHT80													
CH 155		11550	43.97	-30.03	74	55.85	38.15	12.79	62.82	100	360	Р	V
5775MHz													
Remark		o other spurio I results are F		st Peak	and Averac	e limit lin	e.						

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C11 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Emission below 1GHz

Report No.: FR8N2303F

WIFI 802.11acVHT80 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.97	33.59	-6.41	40	41.03	23.93	0.61	31.98	100	230	Р	Н
		46.49	26.46	-13.54	40	42.06	15.62	0.72	31.94	-	-	Р	Н
		65.89	21.64	-18.36	40	40.22	12.52	0.83	31.93	-	-	Р	Н
		97.9	21.07	-22.43	43.5	35.36	16.62	1.02	31.93	-	-	Р	Н
000 44		179.38	20.34	-23.16	43.5	35.67	15.23	1.36	31.92	-	-	Р	Н
802.11ac VHT80		294.81	26.22	-19.78	46	37.56	18.92	1.81	32.07	-	-	Р	Н
LF		30.97	27.87	-12.13	40	35.31	23.93	0.61	31.98	-	-	Р	V
L.		44.55	31.95	-8.05	40	46.64	16.53	0.72	31.94	100	30	Р	V
		65.89	27.02	-12.98	40	45.6	12.52	0.83	31.93	-	-	Р	V
		97.9	25.11	-18.39	43.5	39.4	16.62	1.02	31.93	-	-	Р	٧
		173.56	17.36	-26.14	43.5	32.54	15.4	1.34	31.92	-	-	Р	V
		294.81	18.73	-27.27	46	30.07	18.92	1.81	32.07	-	-	Р	V

Remark

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C12 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

Report No.: FR8N2303F

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : C13 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

Report No.: FR8N2303F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Sporton International (Kunshan) Inc.TEL: +86-512-57900158
FAX: +86-512-57900958
FCC ID: 2AFZZ-XMSF1G

Page Number : C14 of C14
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Appendix D. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
1+2	802.11a	98.11	-	-	10Hz
1+2	5GHz 802.11n HT20	97.72	1.925	0.519	1kHz
1+2	5GHz 802.11n HT40	94.95	0.940	1.064	1.1kHz
1+2	5GHz 802.11acVHT80	86.30	0.252	3.968	4.3kHz

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : D1 of D3
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

Ant.1+2 802.11a

802.11n HT20

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : D2 of D3
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F

802.11n HT40

802.11ac VHT80

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AFZZ-XMSF1G Page Number : D3 of D3
Report Issued Date : Jan. 17, 2019
Report Version : Rev. 01

Report No.: FR8N2303F