Réduction des endomorphismes

E est un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$, u est un endomorphisme de E et P_u est son polynôme caractéristique.

1 Diagonalisation

Exercice 1 Montrer que si u a n valeurs propres distinctes dans \mathbb{K} , il est alors diagonalisable.

Exercice 2 Soit $\sigma \in \mathcal{S}_n$ un n-cycle et A_{σ} la matrice de permutation associée. Montrer que A_{σ} est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 3 Soient $n \geq 3$ et:

$$A = \begin{pmatrix} a_1 & c_1 & 0 & \cdots & 0 \\ b_2 & a_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-1} & a_{n-1} & c_{n-1} \\ 0 & \cdots & 0 & b_n & a_n \end{pmatrix}$$

une matrice tridiagonale à coefficients réels telle que $b_k c_{k-1} > 0$ pour tout k compris entre 2 et n. Montrer que A est diagonalisable.

Exercice 4 Montrer que les conditions suivantes sont équivalentes.

- 1. l'endomorphisme u est diagonalisable;
- 2. $si \operatorname{Sp}(u) = \{\lambda_1, \dots, \lambda_p\}, \ alors \ E = \bigoplus_{k=1}^p \ker(u \lambda_k Id);$
- 3. $si \operatorname{Sp}(u) = \{\lambda_1, \dots, \lambda_p\}, \ alors \sum_{k=1}^{p} \dim (\ker (u \lambda_k Id)) = n;$
- 4. le polynôme caractéristique de u est scindé sur \mathbb{K} de racines deux à deux distinctes $\lambda_1, \dots, \lambda_p$ dans \mathbb{K} , chaque λ_k $(1 \le k \le p)$ étant de multiplicité $\alpha_k = \dim(\ker(u \lambda_k Id))$;
- 5. il existe un polynôme annulateur de u scindé à racines simples dans \mathbb{K} ;
- 6. le polynôme minimal π_u est scindé à racines simples dans \mathbb{K} .

Exercice 5 Diagonaliser:

$$A = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 1 & 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

Exercice 6 Montrer que si que si u est diagonalisable et F un sous-espace vectoriel de E stable par u, alors la restriction de u à F est un endomorphisme de F diagonalisable.

Exercice 7 Soit u un endomorphisme de E diagonalisable avec $\operatorname{Sp}(u) = \{\lambda_1, \dots, \lambda_p\}$. Montrer que pour $1 \le k \le p$ la projection de E sur le sous espace propre $\ker(u - \lambda_k Id)$ est donnée par :

$$p_k = \alpha_k \prod_{\substack{j=1\\j\neq k}}^p (u - \lambda_j Id),$$

$$où\ \alpha_k = \frac{1}{\prod\limits_{\substack{j=1\\j\neq k}}^p (\lambda_k - \lambda_j)}\ (utiliser\ la\ d\'ecomposition\ en\ \'el\'ements\ simples\ de\ \frac{1}{\pi_u}).$$

Exercice 8 On suppose que $\mathbb{K} = \mathbb{C}$ et que u est diagonalisable. Montrer que e^u est diagonalisable et que e^u est un polynôme en u.

Exercice 9 On considère une famille $(u_i)_{i \in I}$ d'endomorphismes de E diagonalisables (l'ensemble I ayant au moins deux éléments). On suppose que ces endomorphismes commutent deux à deux :

$$(\forall (i,j) \in I^2), u_i \circ u_j = u_j \circ u_i$$

Montrer l'existence d'une base commune de diagonalisation dans E pour la famille $(u_i)_{i\in I}$, c'est-à-dire qu'il existe une base \mathcal{B} de E qui est une base de vecteurs propres pour chaque endomorphisme u_i , $i \in I$.

Exercice 10 Soient K est un corps de caractéristique différente de 2 et n un entier naturel non nul.

- 1. Montrer que si G est un sous-groupe multiplicatif fini de $GL_n(\mathbb{K})$ tel que tout élément de G soit d'ordre au plus égal à 2, alors G est commutatif de cardinal inférieur ou égal à 2^n .
- 2. En déduire que pour $(n,m) \in (\mathbb{N}^*)^2$ les groupes multiplicatifs $GL_n(\mathbb{K})$ et $GL_m(\mathbb{K})$ sont isomorphes si, et seulement si, n=m.

Exercice 11 Soit n un entier naturel non nul.

- 1. Quels sont les sous-groupe commutatifs d'exposant r de $GL_n(\mathbb{C})$.
- 2. En déduire que pour $(n,m) \in (\mathbb{N}^*)^2$ les groupes multiplicatifs $GL_n(\mathbb{C})$ et $GL_m(\mathbb{C})$ sont isomorphes si, et seulement si, n=m.

Exercice 12 Montrer que $A \in GL_n(\mathbb{C})$ est diagonalisable si, et seulement si, il existe un entier $k \geq 1$ tel que A^k soit diagonalisable.

Exercice 13 Proposer un test pour savoir si $A \in \mathcal{M}_n(\mathbb{C})$ est diagonalisable à valeurs propres simples.

2 Trigonalisation

Exercice 14 Montrer que si $n \ge 2$ et le polynôme caractéristique de u est scindé sur \mathbb{K} , il existe alors un hyperplan de E stable par u.

Exercice 15 Montrer que l'endomorphisme u est trigonalisable sur \mathbb{K} si et seulement si son polynôme caractéristique est scindé sur \mathbb{K} .

Exercice 16 Montrer que si u est trigonalisable et si F est un sous espace vectoriel de E stable par u alors la restriction de u à F est aussi trigonalisable.

Exercice 17 On considère une famille $(u_i)_{i\in I}$ d'endomorphismes trigonalisables de E qui commutent deux à deux (l'ensemble I ayant au moins deux éléments).

- 1. Montrer qu'il existe un vecteur propre non nul commun à tous les u_i .
- 2. Montrer l'existence d'une base commune de trigonalisation dans E pour la famille $(u_i)_{i \in I}$, c'est-à-dire qu'il existe une base \mathcal{B} de E dans laquelle la matrice T_i de chaque endomorphisme u_i est triangulaire.

3 Réduction de Jordan

On désigne par E^* le dual algébrique de E.

Pour tout endomorphisme $v \in \mathcal{L}(E)$, on note $tv \in \mathcal{L}(E^*)$ le transposé de v défini par :

$$\forall \varphi \in E^*, \ ^t v(\varphi) = \varphi \circ v.$$

Si $v \in \mathcal{L}(E)$ a pour matrice A dans une base \mathcal{B} de E, alors la matrice de tv dans la base duale est tA.

Exercice 18 Montrer que si $u \in \mathcal{L}(E)$ est nilpotent d'ordre p > 0 alors ${}^tu \in \mathcal{L}(E^*)$ est aussi nilpotent d'ordre p.

Exercice 19 Soit $v \in \mathcal{L}(E)$ nilpotent d'ordre $q \ge 1$. Montrer qu'il existe un vecteur non nul x dans E tel que le système :

$$\left\{x,v\left(x\right),\cdots,v^{q-1}\left(x\right)\right\}$$

soit libre.

Exercice 20 Soit v un endomorphisme de E nilpotent d'ordre $q \ge 1$. Montrer qu'il existe $\varphi \in E^*$ et $x \in E$ tels que l'espace vectoriel $F = \text{Vect}\left\{x, v\left(x\right), \cdots, v^{q-1}\left(x\right)\right\}$ et l'orthogonal G dans E de $H = \text{Vect}\left\{\varphi, t v\left(\varphi\right), \cdots, \left(t v\right)^{q-1}\left(\varphi\right)\right\}$ sont stables par v avec $E = F \oplus G$.

Exercice 21 Montrer que si $v \in \mathcal{L}(E)$ est nilpotent d'ordre q > 0, il existe alors une base de E:

$$\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_r$$

telle que chaque sous espace vectoriel $E_i = \operatorname{Vect}(\mathcal{B}_i)$ soit stable par v et la matrice de la restriction de v à E_i est :

$$J_{i} = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 0 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in M_{q_{i}}(\mathbb{K}),$$

avec $q_i = \dim(E_i) \ (1 \le i \le r).$

Exercice 22 Soit $u \in \mathcal{L}(E) - \{0\}$ tel que P_u soit scindé sur \mathbb{K} :

$$P_u(X) = (-1)^n \prod_{k=1}^p (X - \lambda_k)^{\alpha_k},$$

avec $\alpha_k \geq 1$ et les λ_k distincts deux à deux.

Montrer qu'il existe une base $\mathcal B$ de E dans laquelle la matrice de u est de la forme :

$$A = \begin{pmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_p \end{pmatrix}$$
 (1)

avec:

$$\forall k \in \{1, 2, \cdots, p\}, \ J_k = \begin{pmatrix} \lambda_k & 0 & 0 & \cdots & 0 \\ \varepsilon_{k,2} & \lambda_k & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \varepsilon_{k,\alpha_k-1} & \lambda_k & 0 \\ 0 & \cdots & 0 & \varepsilon_{k,\alpha_k} & \lambda_k \end{pmatrix} \in M_{\alpha_k} \left(\mathbb{K} \right)$$

où $\varepsilon_{k,i} \in \{0,1\}$ (forme réduite de Jordan).

4 Réduction des matrices symétriques réelle

 $(E, \langle \cdot | \cdot \rangle)$ est un espace réel euclidien de dimension $n \geq 1$.

On rappelle qu'un endomorphisme $u \in \mathcal{L}(E)$ est dit symétrique si :

$$\forall (x, y) \in E \times E, \ \langle u(x) \mid y \rangle = \langle x \mid u(y) \rangle.$$

Un endomorphisme $u \in \mathcal{L}(E)$ est symétrique si, et seulement si, pour toute base orthonormée \mathcal{B} de E la matrice A de u dans \mathcal{B} est symétrique, c'est-à-dire que ${}^tA = A$.

On note $\mathcal{S}(E)$ l'ensemble des endomorphismes symétriques de E et $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques réelles.

Exercice 23 On suppose que n = 2.

Montrer qu'un endomorphisme symétrique réel $u \in \mathcal{S}(E)$ a 2 valeurs propres réelles distinctes ou confondues et se diagonalise dans une base orthonormée.

Exercice 24 Soit $u \in \mathcal{S}(E)$. Montrer que si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est aussi stable par u.

Exercice 25 Montrer qu'un endomorphisme symétrique réel $u \in \mathcal{S}(E)$ a n valeurs propres réelles distinctes ou confondues et se diagonalise dans une base orthonormée.

5 Réduction des matrices orthogonales réelle

On se place ici dans un espace réel euclidien $(E, \langle \cdot | \cdot \rangle)$ de dimension $n \geq 1$. On rappelle qu'un endomorphisme $u \in \mathcal{L}(E)$ est dit orthogonal si :

$$\forall (x,y) \in E^2, \ \langle u(x) \mid u(y) \rangle = \langle x \mid y \rangle.$$

On note $\mathcal{O}(E)$ l'ensemble des endomorphismes orthogonaux de E.

Un endomorphisme $u \in \mathcal{L}(E)$ est orthogonal si, et seulement si, pour toute base orthonormée \mathcal{B} de E la matrice A de u dans \mathcal{B} est telle que A ${}^tA = {}^tAA = I_n$. Une telle matrice A est dite orthogonale et on note $\mathcal{O}_n(\mathbb{R})$ le groupe multiplicatif de toutes ces matrices orthogonales.

Exercice 26 Montrer que si $u \in \mathcal{O}(E)$, on a alors $\det(u) = \pm 1$ et les seules valeurs propres réelles possibles de u sont -1 et 1.

Exercice 27 Montrer que pour tout endomorphisme u de E il existe un sous espace vectoriel P de E de dimension 1 ou 2 stable par u.

Exercice 28 Soit $u \in \mathcal{O}(E)$. Montrer qu'il existe des sous espaces vectoriels de E, P_1, \dots, P_r , de dimension égale à 1 ou 2, deux à deux orthogonaux, stables par u et tels que $E = \bigoplus_{j=1}^r P_j$.

Exercice 29 Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{O}_2(\mathbb{R})$. Montrer qu'il existe un unique réel $\theta \in [0, 2\pi[$ tel que :

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} ou A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

et dans le deuxième cas, A est orthogonalement semblable à $\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$.

Exercice 30 Soit $u \in \mathcal{O}(E)$ avec $n \geq 2$. Montrer qu'il existe une base orthonormée \mathcal{B} de E dans laquelle la matrice de u s'écrit :

$$D = \begin{pmatrix} I_p & 0 & 0 & 0 & \cdots & 0 \\ 0 & -I_q & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & R_1 & 0 & \ddots & 0 \\ 0 & \ddots & 0 & R_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 0 & R_r \end{pmatrix}$$

où, pour tout $k \in \{1, \dots, r\}$, on a noté:

$$R_k = \begin{pmatrix} \cos(\theta_k) & -\sin(\theta_k) \\ \sin(\theta_k) & \cos(\theta_k) \end{pmatrix}$$

avec $\theta_k \in]0, 2\pi[-\{\pi\} \text{ et } p, q, r \text{ sont des entiers naturels tels } p + q + 2r = n \text{ (si l'un de ces entiers est nul, les blocs de matrices correspondants n'existent pas).}$

Exercice 31 Soit G un sous-ensemble de $\mathcal{O}_n(\mathbb{R})$. Montrer que s'il existe $m \in \mathbb{N}^*$ tel que $A^m = I_n$ pour tout $A \in G$ (dans le cas où G est un groupe, on dit qu'il est d'exposant fini), alors l'ensemble :

$$tr(G) = \{tr(A) \mid A \in G\}$$

est fini.

6 Propriétés topologiques de l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$

On aura besoin de la notion de résultant de deux polynômes.

Définition 32 Si $P(X) = \sum_{k=0}^{n} a_k X^k$ et $Q(X) = \sum_{k=0}^{m} b_k X^k$ sont deux polynômes non nuls dans $\mathbb{C}[X]$ avec $a_n \neq 0$ et $b_m \neq 0$, on appelle alors matrice de Sylvester de P et Q, la matrice du système de vecteurs :

$$\{P, XP, \cdots, X^{m-1}P, Q, XQ, \cdots, X^{n-1}Q\}$$

dans la base canonique de $\mathbb{C}_{n+m-1}[X]$. On note S(P,Q) cette matrice, son déterminant est appelé le résultant de P et Q et est noté res(P,Q).

Exercice 33 Soient P et Q deux polynômes non nuls dans $\mathbb{C}[X]$. Montrer que ces polynômes ont une racine commune dans \mathbb{C} si et seulement si il existe deux polynômes non nuls U et V tels que $\deg(U) < \deg(Q)$, $\deg(V) < \deg(P)$ et UP + VQ = 0.

Exercice 34 Montrer que deux polynômes non nuls P et Q ont une racine commune dans \mathbb{C} si et seulement $si \operatorname{res}(P,Q) = 0$.

On désigne par $\mathcal{D}'_n(\mathbb{C})$ l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{C})$ ayant n valeurs propres distinctes dans \mathbb{C} et par $\mathcal{D}_n(\mathbb{C})$ l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$.

Exercice 35 Montrer que l'ensemble $\mathcal{D}'_n(\mathbb{C})$ est l'intérieur de $\mathcal{D}_n(\mathbb{C})$.

Exercice 36 Montrer que les ensembles $\mathcal{D}'_n(\mathbb{C})$ et $\mathcal{D}_n(\mathbb{C})$ sont denses dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 37 Montrer que l'ensemble $\mathcal{D}_2(\mathbb{R})$ des matrices diagonalisables de $\mathcal{M}_2(\mathbb{R})$ n'est pas dense dans $\mathcal{M}_2(\mathbb{R})$.

Exercice 38 On désigne par $\mathcal{T}_n(\mathbb{R})$ l'ensemble des matrices trigonalisables de $\mathcal{M}_n(\mathbb{R})$ et par $\theta: \mathcal{T}_n(\mathbb{R}) \to \mathbb{R}^n$ l'application définie par $\theta(M) = (\lambda_1, \lambda_2, \dots, \lambda_n)$ où $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$ sont les valeurs propres de la matrice M.

- 1. Montrer que $\mathcal{T}_n(\mathbb{R})$ est fermé dans $\mathcal{M}_n(\mathbb{R})$ (on peut montrer que si $(T_k)_{k\in\mathbb{N}}$ est une suite de $\mathcal{T}_n(\mathbb{R})$ qui converge vers $T\in\mathcal{M}_n(\mathbb{R})$, alors la suite $(\theta(T_k))_{k\in\mathbb{N}}$ est bornée dans \mathbb{R}^n et en déduire que le polynôme caractéristique de T est scindé sur \mathbb{R}).
- 2. Montrer que $\mathcal{T}_n(\mathbb{R})$ est l'adhérence de l'ensemble $D_n(\mathbb{R})$ des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$.

Exercice 39 Pour $n \geq 2$, montrer que l'application qui associe à une matrice $A \in \mathcal{M}_n(\mathbb{C})$ son polynôme minimal n'est pas continue.

7 Quelques applications

Exercice 40 En utilisant le théorème de trigonalisation, montrer le théorème de Cayley-Hamilton dans $\mathcal{M}_n(\mathbb{K})$ pour \mathbb{K} algébriquement clos.

Exercice 41 Montrer que, pour tout $u \in \mathcal{L}(E)$, on $\det(e^u) = e^{\operatorname{Tr}(u)}$ et e^u est inversible.

Exercice 42 On suppose \mathbb{K} algébriquement clos.

Montrer que toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ est semblable à sa transposée.

Exercice 43 Déduire le théorème de Cayley-Hamilton de la densité de $\mathcal{D}_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 44 Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{C})$ telle que $\varphi(AB) = \varphi(BA)$ pour toutes matrices A, B dans $\mathcal{M}_n(\mathbb{C})$.

- 1. En notant $\{E_{ij} \mid 1 \leq i, j \leq n\}$ la base canonique de $\mathcal{M}_n(\mathbb{C})$, montrer que $\varphi(E_{ii}) = \varphi(E_{jj})$ pour tous i, j compris entre 1 et n. On note λ cette valeur commune.
- 2. Montrer que $\varphi(A) = \lambda \operatorname{Tr}(A)$ pour toute matrice A dans $\mathcal{M}_n(\mathbb{C})$ (on peut d'abord supposer que la matrice A est diagonalisable).
- 3. Soit u un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ tel que $u(I_n) = I_n$ et u(AB) = u(BA) pour toutes matrices A, B dans $\mathcal{M}_n(\mathbb{C})$. Montrer que u conserve la trace.

Exercice 45 Montrer que $GL_n(\mathbb{C})$ est connexe par arcs en utilisant le fait que toute matrice complexe est semblable à une matrice triangulaire.

Exercice 46 On suppose le corps K de caractéristique nulle.

Soient G un sous-groupe de $GL_n(\mathbb{K})$, F le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ engendré par G et $\mathcal{B} = (A_i)_{1 \leq i \leq p}$ une base de F extraite de G.

1. On considère l'application :

$$\varphi: G \to \mathbb{K}^p$$

$$A \mapsto (\operatorname{tr}(AA_1), \cdots, \operatorname{tr}(AA_p))$$

et A, B dans G telles que $\varphi(A) = \varphi(B)$.

- (a) Montrer que $\operatorname{tr}(AB^{-1}M) = \operatorname{tr}(M)$ pour tout $M \in G$.
- (b) En notant $C = AB^{-1}$, en déduire que $\operatorname{tr}(C^k) = n$ pour tout $k \geq 1$, puis que $C I_n$ est nilpotente.
- (c) En déduire que, si on suppose de plus que toutes les matrices de G sont diagonalisables, alors φ est injective.
- 2. Montrer que si toutes les matrices de G sont diagonalisables et si $\operatorname{tr}(G)$ est fini, alors G est fini.
- 3. Déduire de ce qui précède qu'un sous-groupe G de $GL_n(\mathbb{C})$ est fini si, et seulement si, il est d'exposant fini (c'est-à-dire qu'il existe $m \in \mathbb{N}^*$ tel que $A^m = I_n$ pour tout $A \in G$). Ce résultat est un théorème de Burnside.