

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 9: SUCHEN & ERSETZEN

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 08.01.2021

KMP-Algorithmus

Aufgabe 1

KMP-ALGORITHMUS

- Mustersuche in (großen) Texten
- Ziel: Verschiebung des Musters um mehr als eine Position bei Nichtübereinstimmung.
- Methode: Ermittlung einer Verschiebetabelle Tab[] inPhase 1
- Bedeutung des Eintrags Tab[i]=j:
 Bei Nichtübereinstimmung an Stelle i wird Position j des
 Musters an aktueller Vergleichsstelle angelegt.
- Suchprozess in Phase 2

j-algo: http://j-algo.binaervarianz.de/

KMP-ALGORITHMUS

Suche das Muster aaabaaaa im Text aaabaaabaaacaaabaaaa.

Position	0	1	2	3	4	5	6	7
Pattern	а	а	а	b	а	а	а	а
Tabelle	-1	-1	-1	2	-1	-1	-1	3

Erster Versuch:

aaabaaa**b**aaacaaabaaaa aaabaaa**a**

Tabelleneintrag an Position 7 ist 3, d.h. Tab[7]=3 — Lege Position 3 des Musters an aktueller Vergleichsposition an:

aaabaaa**c**aaabaaaa aaabaaa**a**

Gleicher Prozess noch einmal: Missmatch an Position 7 des Musters — verschiebe Muster auf Position 3.

KMP-ALGORITHMUS (FORTSETZUNG)

Suche das Muster aaabaaaa im Text aaabaaabaaacaaabaaaa.

Position	0	1	2	3	4	5	6	7
Pattern	а	а	а	b	а	а	а	а
Tabelle	-1	-1	-1	2	-1	-1	-1	3

Wir legen das Muster also wieder an Position 3 an:

aaabaaabaaa **c** aaabaaaa aaa**b**aaaa

Wegen Tab[3]=2, lege Muster an Position 2 an:

aaabaaabaaa**c**aaabaaaa aa**a**baaaa

Wegen Tab[2]=-1, lege Muster an Position -1 an:

aaabaaabaaacaaabaaaa ©

KMP-ALGORITHMUS — DIE ZYKLENMETHODE

Zwei Phasen:

- ▶ 1. Phase: Markieren der längsten Teilwörter im Pattern, die mit einem Präfix übereinstimmen
 - ▷ ein Zyklus beginnt an einer Patternposition i falls i ≠ 0 und Pat[0] = Pat[i]
 - ▷ ein Zyklus endet an der kleisten Patternposition i+m, sodass Pat [m+1] ≠ Pat [i+m+1]
- ▶ 2. Phase: Bestimmung der Tabelleneinträge
 - \triangleright Tab[0] = -1
 - Tabelleneinträge nach einem Zyklus:
 Länge des längsten dort endenden Zyklus
 - Tabelleneinträgen in einem Zyklus:
 Tabelleneintrag der derzeitigen Position im längsten laufenden Zyklus
 - ▶ verbleibende Einträge: 0

AUFGABE 1

- (a) Geben Sie zu dem Pattern aabaaacaab die mit Hilfe des KMP-Algorithmus (Knuth-Morris-Pratt) berechnete Verschiebetabelle an.
- (b) Mit Hilfe des KMP-Algorithmus ist die unten stehende Verschiebetabelle berechnet worden: Vervollständigen Sie das aus den Symbolen a, b und c bestehende Pattern.

Position	0	1	2	3	4	5
Pattern	С	b				а
Tabelle	-1	0	-1	1	0	2

AUFGABE 1 — ZYKLENMETHODE

	eii (a)	Pattern: aabaaacaab										
	Position	0	1	2	3	4	5	6	7	8	9	
	Pattern	a	а	b	a	а	а	С	a	а	b	
-	Tabelle	-1	-1	1	-1	-1	2	2	-1	-1	1	

KMP-ALGORITHMUS — DIE ZWEI-FINGER-METHODE

Die Methode beruht auf der Gleichung

$$\operatorname{Tab}[\mathtt{i}] = \max\left\{-1\right\} \cup \left\{ m \middle| \begin{array}{ccc} 0 \leq m \leq i-1 \\ b_0 \dots b_{m-i} = b_{i-m} \dots b_{i-1} \\ b_m \neq b_j \end{array} \right\} \qquad (\star)$$

Daraus ergibt sich nach Initialisierung von Tab[0] = -1 für jeden folgenden Eintrag Tab[i] folgendes Verfahren:

- linker Finger: wähle m < i in absteigender Reihenfolge (also i − 1, i − 2, ...), sodass Pat[i] ≠ Pat[m]
- ▶ Parallelverschiebung beider Finger bis zum linken Rand: wenn Pat[0...m-1] = Pat[i-m...i-1], dann fülle Tab[i] = m.
- wenn keine passende Position m gefunden werden kann, dann fülle Tab[i] = −1.

AUFGABE 1 — ZWEI-FINGER-METHODE

eii (a)	a) Pattern: aabaaacaab									
Position	0	1	2	3	4	5	6	7	8	9
Pattern	a	а	b	a	а	а	С	а	a	b
Tabelle	-1	-1	1	-1	-1	2	2	-1	-1	1

Teil (b)

Posit	ion	0	1	2	3	4	5
Patte	rn	С	b	С	С	b	a
Tabe	le	-1	0	-1	1	0	2

- Pat[0...1] = Pat[3...4] wegen Tab[5] = 2 (Zyklenmethode), d.h. Pat[3] = Pat[0] = c und Pat[4] = Pat[1] = b
- wegen Tab[3] = 1 ist Pat[2] = Pat[0] = c (Zyklenmethode)
- oder: wegen Tab[3] = 1 ist Pat[1] # Pat[3] und Pat[2] = Pat[0] = c (Parallelverschiebung in der Zwei-Finger-Methode bzw. Gleichung (??))

Levenshtein-Distanz

Aufgabe 2

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$\begin{split} d(0,i) &= i \\ d(j,0) &= j \\ d(j,i) &= \min \left\{ d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i} \right\} \end{split}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

Anschaulich: Überlagerung durch Pattern → Pfeile zeigen "Ursprung" des Minimums an

$$w_j \neq v_i$$
: $\begin{vmatrix} +1 & +1 \\ +1 & ? \end{vmatrix}$ $w_j = v_i$: $\begin{vmatrix} +0 & +1 \\ +1 & ? \end{vmatrix}$

AUFGABE 2

Gegeben seien die Wörter w =espen und v =beispiele.

- (a) Berechnen Sie die Levenshtein-Distanz d(w, v). Geben Sie dazu die Berechnungsmatrix an. Tragen Sie alle Zelleneinträge zusammen mit den dazugehörigen Pfeilen ein.
- (b) Geben Sie die Levenshtein-Distanz d(espe,beispiel) an. Beachten Sie, dass espe und beispiel Präfixe von espen bzw. beispiele sind.
- (c) Geben Sie zwei Alignments zwischen espen und beispiele an, die zu den minimalen Kosten führen. Dabei sollen die Alignments die jeweils angewendeten Editieroperation enthalten.
- (d) Wieviele Alignments enthält die in Aufgabe (a) angegebene Berechnungsmatrix?

Teil (b)

d(espe, beispiel) = 4

Teil (c) Alignments mit minimaler Levenshtein-Distanz:

Teil (d) 2 Alignments = 2 Backtraces

mit Lösungen

Weitere Aufgaben aus der

Aufgabensammlung

AUFGABE 7.1.13 (AGS)

- (a) Bestimmen Sie die mit Hilfe des KMP-Algorithmus berechnete Verschiebetabelle für das Pattern abbabbaa.
- (b) Mit Hilfe des KMP-Algorithmus ist unten stehende Verschiebetabelle berechnet worden. Die mit einem "?" markierten Einträge sind unbekannt. Vervollständigen Sie das aus den Symbolen a, b und c bestehende Pattern.

Position	0	1	2	3	4	5
Pattern	b					С
Tabelle	-1	?	?	0	?	3

	ii (u)	raccerri, abbabbaa									
	Position	0	1	2	3	4	5	6	7		
Ī	Pattern	a	b	b	a	b	b	a	a	_	
	Tabelle	-1	0	0	-1	0	0	-1	4		

Dattern: abbabbaa

Teil (b)

Tail (a)

Position	0	1	2	3	4	5
Pattern	b	a	b	a	b	С
Tabelle	-1	?	?	0	?	3

- Pat[0 ... 2] = Pat[2 ... 4] wegen Tab[5] = 3 (Zyklenmethode), d.h. Pat[2] = Pat[0] = Pat[4] = b
- wegen Tab[3] = 0 ist Pat[3] ≠ Pat[0] = b und wegen Tab[5] = 3 ist Pat[3] ≠ Pat[5] = c (Zwei-Finger-Methode bzw. Gleichung (??))
 ⇒ Pat[3] = Pat[1] = a

AUFGABE 7.2.1 (AGS)

Gegeben seien die Wörter w = Dinstas und v = Distanz.

- (a) Berechnen Sie die Levenshtein-Distanz d(w, v) zwischen w und v. Geben Sie die Berechnungsmatrix vollständig an.
- (b) Geben Sie alle Alignments mit minimaler Levenshtein-Distanz zwischen w und v an.

d(j,i)		D	i	S	t	а	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →			3 →	
n	3	<u>†</u>	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 →	2 →	3 ,	
S	4	↓ 3	2		2 →	3 →	
t	5	4	↓ 3 □	2		2 →	3 → 4
a	6	5		→ 3 -	2		2 → 3
S	7	6	↓ 5	↓ 4	↓ 3	↓ 2	2 → 3

Alignments mit minimaler Levenshtein-Distanz:

AUFGABE 7.2.2 (AGS)

- (a) Berechnen Sie die Levenshtein-Distanz d(bürste, schürze). Geben Sie die Berechnungsmatrix vollständig an. Wieviele Backtraces enthält die Berechnungsmatrix?
- (b) Geben Sie zwei Alignments mit minimaler Levenshtein-Distanz zwischen den Wörtern bürst und sch an.

d(j,i)		S	С	h	ü	r	Z	е
	0 →	1 →	2 →	3 →	4 →	5 →	6 →	7
	1	¥	_	¥	\checkmark		7	-
b	1	1 →	2 →	3 →	4 →	5 →		7
	1	↓		A				
ü	2	2	2 →			4 →	5 →	6
	→ →	→ →		7	1			_
r	3	3	3	3 →		3 →		5
S	↓ \ 4	3 <i>→</i>	↓ \ 4	↓ \ 4	4	↓ <u>↓</u> 4		5
3	7	\downarrow \downarrow		↓ <i>√</i>			↓ ¼	J
t	5	4 1	4 →		5 1	5	5 1	5
	\downarrow	↓ ↓	↓ ↓	×	↓ ↘		↓ ∖	
е	6	5	5	5 →	6	6	6	5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$ Anzahl der Backtraces = 3 * 2 = 6

Alignments mit minimaler Levenshtein-Distanz zwischen den Wörtern bürst und sch

d(j,i)			S		C		h
	0	\rightarrow	1	\rightarrow	2	\rightarrow	3
b	↓ 1	¥	1	\rightarrow	2	\rightarrow	3
ü	↓ 2	¥	↓ 2	A	2	\rightarrow	3
r	3	¥	3	A	3	¥	3
s	↓ 4	¥	3	$\overset{\textstyle \rightarrow}{}$	↓ 4	A	↓ 4
t	↓ 5		↓ 4	¥	4	$\overset{\textstyle \rightarrow}{\not}$	↓ 5

Alignments mit minimaler Levenshtein-Distanz zwischen den Wörtern bürst und sch

```
      b ü r s t
      b ü r s t

      | | | | | |
      | | | | |

      s c h * *
      * * s c h

      s s s d d
      d d s s s
```