3D PASSIVE STRUCTURED LIGHT FOR PLANETARY LANDERS

Spencer Newton

SPACE ROBOTICS

Robots are sent to investigate environments on other planets instead of humans.

Without humans present, a robot needs to be able to understand

it's environment.

Discover Areas of interest

- Path finding
- Perform Scientific Tasks
- Stereo Vision is the most common technique
 - Robust and Reliable
 - Heavy (Costly), Bulky
 - Computationally Expensive
 - Requires lots of power

Curiosity 'Mastcam'

PASSIVE STRUCTURED LIGHT

- Structured Light
 - Project pattern onto scene
 - Derive range information from deformation of pattern by terrain
- Passive Structured Light
 - Use reflected light to reflect spots of light onto terrain
- Advantages
 - One camera and Mirror
 - Less power, less weight
 - Spin-off use
- Disadvantages
 - Reliant on environment conditions

PASSIVE STRUCTURED LIGHT

- 1. Light from the sun is incident on a mirror (of set of)
- 2. Reflected light causes a spot to appear in the environment
- 3. An image of the environment is taken with the camera
- 4. The light spot should be found in the image
- 5. Calculate reflected light vector and image light spot vector
- 6. Point of intersection of these two vectors is the 3D location of the spot in the world
- 7. Repeat to create cloud of 3D points representing environment

EXPERIMENT

- Simplified version for experiment
- LED Torch as light source
- Grid paper on flat desk as environment
- Objects added in later on
 - Black plastic charger
 - Multi-coloured cube
- Multiple Mirrors Used
- Images taken of scene with light spots present in different 'environments'

 Images gathered from experiments were fed into light spot tracking program

IMAGE PROCESSING

Colour Tracking

- Convert image to HSV colour space
- Threshold image based on minimum and maximum H/S/V parameters

Difference Tracking

- Requires image of environment without light spot
- Convert both images to grey scale
- Calculate absolute difference for each pixel
- Threshold image based on sensitivity parameters

IMAGE PROCESSING

Single White

HSV & Difference methods

Single White Spot & paper obstacle

HSV & Difference methods

Multiple White Spots

- Some dimmer than others
- Still performed well despite this

Multiple White Spots

Difference Method

- Some dimmer than others
- Performed well in most cases
- Anomalous results (very dim spot)
- Lowered
 sensitivity
 introduced
 too much
 background
 noise

Multiple White Spots and black plastic object

- Spot
 traceable on
 paper and
 object
 separately
- Attempt at finding on both at same time
- Object
 surface
 properties
 changed
 light spot
 quality

Multiple White Spots and black plastic object

Difference Method

- Spots traceable on paper
- Causes
 small
 differences
 when
 incident on
 object
- Lowered
 sensitivity
 introduced
 too much
 background
 noise

Multiple White Spots and a multi-coloured object

- Spots traceable on paper
- Surface made light spots a different colour
- Untraceable
 on both
 sides
 without
 introducing
 too much
 background
 noise

Multiple White Spots and a multi-coloured object

Difference method

- Spots traceable on paper
- Specular reflections seen as spots
- Base image taken poorly
- Surface colour is insignificant

Many White Spots

- Required for precision and speed
- Too close & too dim
- Multiple spots seen as one
- Distortion caused spots to blur together

Many White Spots

Difference Method

- Spots
 initially
 bright
 enough to
 be found
- Dilation reduced to prevent merging together
- Blurring
 became too
 significant –
 dilation was
 required

FURTHER INVESTIGATIONS

- Test with more appropriate surfaces
- Different Algorithms
- Mirror Shape, Size, Colour.
- Effects of the Environment

CONCLUSION

- Possible to track light spots in simple situations
- Algorithm needs to be improved
- The surface properties of the target environment need to be accounted for
- Reliability and Robustness needs to be improved

ACKNOWLEDGEMENTS

- Dr Tony Cook
- Dr Dave Langstaff
- Stephen Fearn
- OpenCV Developers