4.3.3 Generating orthogonal vectors

Consider two given vectors **u** and **v** in \mathbb{R}^2 . We can project the vector **v** onto vector **u**.

What does projection mean?

Projection is the procedure, for example, of showing a film on a screen; we say the film has been projected onto a screen. Similarly we project the vector v onto u as shown in Fig. 4.15.

Figure 4.15

What is the projection of \mathbf{v} onto \mathbf{u} equal to?

Since it is in the direction of vector \mathbf{u} , it is a scalar multiple of \mathbf{u} . Let's nominate this scalar by the letter k, so we have

Projection of **v** onto
$$\mathbf{u} = k\mathbf{u}$$

Let **p** be the perpendicular vector shown in Fig. 4.15. Adding the vectors gives

$$\mathbf{v} = k\mathbf{u} + \mathbf{p}$$

The vector \mathbf{p} is orthogonal (perpendicular) to the vector \mathbf{u} , therefore $\langle \mathbf{u}, \mathbf{p} \rangle = 0$. This means that the projection of the perpendicular vector \mathbf{p} onto vector \mathbf{u} is zero.

Taking the inner product of this, $\mathbf{v} = k\mathbf{u} + \mathbf{p}$, with the vector \mathbf{u} , we have

$$\langle \mathbf{u}, \, \mathbf{v} \rangle = \langle \mathbf{u}, \, (k \, \mathbf{u} + \mathbf{p}) \rangle$$

$$= k \langle \mathbf{u}, \, \mathbf{u} \rangle + \langle \mathbf{u}, \, \mathbf{p} \rangle$$

$$= k \|\mathbf{u}\|^2 + 0 \qquad \left[\text{because } \mathbf{p} \text{ and } \mathbf{u} \text{ are perpendicular,} \\ \text{therefore } \langle \mathbf{u}, \, \mathbf{p} \rangle = 0 \text{ and } \langle \mathbf{u}, \, \mathbf{u} \rangle = \|\mathbf{u}\|^2 \right]$$

$$= k \|\mathbf{u}\|^2$$

Rearranging this $\langle \mathbf{u}, \mathbf{v} \rangle = k \|\mathbf{u}\|^2$ to make *k* the subject of the formula gives

$$k = \frac{\langle \mathbf{u}, \, \mathbf{v} \rangle}{\|\mathbf{u}\|^2} \qquad (\dagger)$$

Rearranging the above $\mathbf{v} = k\mathbf{u} + \mathbf{p}$ to make \mathbf{p} the subject:

We have perpendicular vector **p** (Fig. 4.16):

Figure 4.16

Hence we have created orthogonal vectors \mathbf{p} and \mathbf{u} out of the given non-orthogonal vectors \mathbf{u} and \mathbf{v} .

It is important to note that the projection of orthogonal vectors is zero. This is what we were hinting at in the last section; *orthogonality signifies a certain kind of independence or a complete absence of interference*.

Example 4.15

Let $\mathbf{v}_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ be vectors in \mathbb{R}^2 . Construct a pair of orthogonal (perpendicular) vectors $\{\mathbf{p}_1, \ \mathbf{p}_2\}$ from this non-orthogonal set $\{\mathbf{v}_1, \ \mathbf{v}_2\}$.

Solution

We start with one of the given vectors, \mathbf{v}_1 say, and call this vector \mathbf{p}_1 . Hence $\mathbf{p}_1 = \mathbf{v}_1$. We construct a vector which is orthogonal to $\mathbf{p}_1 = \mathbf{v}_1$.

By the above formula, orthogonal vector \mathbf{p}_2 = $\mathbf{v} - \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\|^2} \mathbf{u}$ with $\mathbf{u} = \mathbf{v}_1 = \mathbf{p}_1$ and $\mathbf{v} = \mathbf{v}_2$:

orthogonal vector
$$\mathbf{p}_2 = \mathbf{v}_2 - \frac{\left\langle \mathbf{p}_1, \mathbf{v}_2 \right\rangle}{\left\| \mathbf{p}_1 \right\|^2} \mathbf{p}_1$$

Substituting $\mathbf{p}_1=\mathbf{v}_1=\left(egin{array}{c} 3 \\ 0 \end{array}
ight)$ and $\mathbf{v}_2=\left(egin{array}{c} 1 \\ 2 \end{array}
ight)$ into this formula gives:

orthogonal vector
$$\mathbf{p}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \frac{\left\langle \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 (*)

Evaluating each component of (*):

$$\left\langle \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = (3 \times 1) + (0 \times 2) = 3, \quad \left\| \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\|^2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3^2 + 0^2 = 9$$

Putting these values into (*) yields

orthogonal vector
$$\mathbf{p}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \frac{3}{9} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1-1 \\ 2-0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Illustrating the orthogonal vector \mathbf{p}_2 and the given vectors \mathbf{v}_1 and \mathbf{v}_2 as shown in Fig. 4.17.

(continued...)

Figure 4.17

Note that we start with one of the given vectors, \mathbf{v}_1 say, then we create a vector orthogonal (perpendicular) to it by using the other given vector \mathbf{v}_2 . We have achieved the following:

$$\left\{\mathbf{v}_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\right\} \quad \Longrightarrow \quad \left\{\mathbf{p}_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \ \mathbf{p}_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}\right\}$$

We can extend this procedure to any finite dimensional vector space and create an **orthogonal basis** for the vector space. Suppose we have a basis $\{v_1, v_2, v_3, \ldots, v_n\}$, and from this we want create an orthogonal basis $\{p_1, p_2, p_3, \ldots, p_n\}$. The procedure is:

- 1. Let $\mathbf{p}_1 = \mathbf{v}_1$, that is \mathbf{p}_1 equals one of the given vectors.
- 2. We create vector \mathbf{p}_2 , which is orthogonal to $\mathbf{p}_1 = \mathbf{v}_1$, by using the second given vector \mathbf{v}_2 . Hence we apply the above stated formula $\mathbf{p}_2 = \mathbf{v}_2 \frac{\langle \mathbf{v}_2, \, \mathbf{p}_1 \rangle}{\|\mathbf{p}_1\|^2} \mathbf{p}_1$.
- 3. We create vector \mathbf{p}_3 , which is orthogonal to both $\mathbf{p}_1 = \mathbf{v}_1$ and \mathbf{p}_2 , by using the third given vector \mathbf{v}_3 . The formula for this is similarly produced:

$$\mathbf{p}_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, \ \mathbf{p}_{1} \rangle}{\|\mathbf{p}_{1}\|^{2}} \mathbf{p}_{1} - \frac{\langle \mathbf{v}_{3}, \ \mathbf{p}_{2} \rangle}{\|\mathbf{p}_{2}\|^{2}} \mathbf{p}_{2}$$

4. We carry on producing vectors which are orthogonal (perpendicular) to the previous created vectors \mathbf{p}_1 , \mathbf{p}_2 ,..., \mathbf{p}_k by using the next given vector \mathbf{v}_{k+1} .

These steps are known as the Gram-Schmidt process.

4.3.4 The Gram-Schmidt process

Given any arbitrary basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$ for a finite dimensional inner product space, we can find an orthogonal basis $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \dots, \mathbf{p}_n\}$ by the Gram–Schmidt process which is described next: