Haplotype inference with Long-read sequencers

Yosuke Tanigawa (<u>ytanigaw@stanford.edu</u>)

M. Rivas Lab (rotation student) | Biomedical Informatics Ph.D. Program

[Background] Long read sequencer & Haplotype reference panel

- Long read sequencers (Oxford Nanopore, PacBio)
 - Read length >= 8 kb
- Haplotype reference
 - UK BioBank (152,729 imputed haplotypes)
 - Haplotype reference consortium (not available yet?)

[Rotation project] Compressed representation of haplotypes

How can we compress haplotype information?

Is it possible to infer haplotype on the fly ???

[Data] cDNA data set & WGS data set (by Helio)

- Technology: Oxford Nanopore MinION sequencer R9.3 chemistry + minKnow v1.1.14 (current version: R9.4 & v1.1.17)
- "WGS" data set
 20161008_wgs_caucasian_48hr
 48hr(?) run
- "cDNA" data set
 20161006_minion_human_cDNA
 6hr run

Read Length Distribution

Error rate is 10-20%: Quality score freq. dist.

WGS data set looks strange

Stats.

	WGS	cDNA
Number of FAST5 files	184,911	48,280
total reads(*)	29,964	26,854
total base pairs	44,839,915	46,314,462
mean	1496.46	1724.68
median	925	1094
min	35	58
max	94024	108262
N25	4547	5201
N50	2227	2529
N75	1140	1327
# of seq (total)	92,186	26,854
# of seq > 1kb	42,572	14,550
# of seq > 10kb	660	302
# of seq > 20kb	102	21

WGS — Adapter content

WGS — Duplicate levels

WGS — k-mer profiles

WGS — Per base N content

WGS — Per base quality

WGS — Per base sequence content

WGS — Per sequence GC content

WGS — Per sequence quality

WGS — Sequence length distribution

cDNA — Adapter content

cDNA — Duplicate levels

cDNA — k-mer profiles

cDNA — Per base N content

cDNA — Per base quality

cDNA — Per base sequence content

cDNA — Per sequence GC content

cDNA — Per sequence quality

cDNA — Sequence length distribution

