CS 1010

Detecting Heart Beats

Raspberry Pi with pulse sensor and A/D converter

Teaching Assistants:

Marshall Thompson, CS Dept.

Jonathan Garcia, MAE Dept.

Matthew Dionne, CS and EMSE Dept.

Learning Assistants:

Josie Libbon, CS Dept.

Josh Rizika, CS Dept.

Miles Grant, CS Dept.

Addy Irankunda, Physics Dept.

Talia Novack, CS Dept.

Fred Kamgang, CS Dept.

Prof. Kartik Bulusu, CS Dept.

import numpy as np
Import matplotlib.pyplot as plt
Import PCF8591 as ADC

Fall 2022

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Photo: Kartik Bulusu

Frequency of signals and measurements

Frequency is the number of occurrences of a repeating event per unit **time**.

$$f = 0.5 \text{ Hz}$$

T = 2.0 s

$$f = 1.0 \text{ Hz}$$

 $T = 1.0 \text{ s}$

$$f = 2.0 \text{ Hz}$$

 $T = 0.5 \text{ s}$

Wikimedia Commons

The sampling frequency or sampling rate, f_s , is the average number of samples obtained in one second (samples per second), thus $f_s = 1/T$.

The general range of hearing for young people is 20 Hz to 20000 Hz.

Audio CD, most commonly used with MPEG-1 audio is sampled at 44100 Hz

HD DVD (High-Definition DVD) audio tracks are sampled at 98000 Hz

The approximately double-rate requirement is a consequence of the Nyquist theorem.

From Analog to the Digital World

Source: https://learn.sparkfun.com/

School of Engineering & Applied Science

Prof. Kartik Bulusu, CS Dept.

Fall 2022

Photoplethysmogram or Pulse sensor – Explained

Green light source which has a high absorption rate in hemoglobin and less susceptibility to ambient light

The amount of light absorbed will vary based on changes in blood vessel volume, resulting in a waveform as shown below.

Sources:

https://pulsesensor.com/

https://www.electroschematics.com/heart-rate-sensor/

https://www.rohm.com/electronics-basics/sensor/pulse-sensor

https://www.rohm.com/sensor-shield-support/heart-rate-sensor

School of Engineering & Applied Science

Photo: Kartik Bulusu

Prof. Kartik Bulusu, CS Dept.

Fall 2022

CSCi 1010

Introducing the PCF8591 8-bit A/D and D/A converter

Potentiometer -

- To regulate the input voltage supply
- To adjust the quality of the analog input signal by changing the "gain".

SYMBOL	PIN	DESCRIPTION
AINO	1	analog inputs (A/D converter)
AIN1	2	
AIN2	3	
AIN3	4	
A0	5	hardware address
A1	6	
A2	7	
V_{SS}	8	negative supply voltage
SDA	9	I ² C-bus data input/output
SCL	10	I ² C-bus clock input
OSC	11	oscillator input/output
EXT	12	external/internal switch for oscillator input
AGND	13	analog ground
V _{REF}	14	voltage reference input
AOUT	15	analog output (D/A converter)
V_{DD}	16	positive supply voltage

I²C (Inter-Integrated Circuit, eye*squared-C*), alternatively known as I2C or IIC, is a synchronous, multimaster, multi-slave, packet switched, single-ended, serial communication bus invented in 1982 by Philips Semiconductors.

It is widely used for attaching lowerspeed peripheral <u>ICs</u> to processors and microcontrollers in short-distance, intra-board communication.

Sources:

https://en.wikipedia.org/wiki/I%C2%B2C

http://wiki.sunfounder.cc/index.php?title=PCF8591 8-bit A/D and D/A converter Module

CSCi 1010

Prof. Kartik Bulusu, CS Dept.

Fall 2022

School of Engineering

& Applied Science

Pulse sensor + A/D converter

https://how2electronics.com/pulse-rate-bpm-monitor-arduino-pulse-sensor/https://medium.com/@sarala.saraswati/connecting-to-your-raspberry-pi-console-via-the-serial-cable-44d7df95f03ehttp://wiki.sunfounder.cc/index.php?title=PCF8591 8-bit A/D and D/A converter Module

School of Engineering & Applied Science

Prof. Kartik Bulusu, CS Dept.

Fall 2022

CSCi 1010

Goal of the lab segment

Co-work

Observe, ask and try in groups

Make

- Build-a-hack
- Pulse sensors, A/D converter and Raspberry Pi 3B+

Analyze data using Python

Record your pulse at your wrist

30 seconds

Sources:

https://www.spectrumhealthlakeland.org/lakeland-ear-nose-and-throat/ent-health-library/Content/3/90852/ https://protosupplies.com/product/pulsesensor-heart-rate-sensor-module/

Prof. Kartik Bulusu, CS Dept.

Fall 2022

CSCi 1010

School of Engineering

& Applied Science

Recorded pulse signal

Pulse signal with high gain setting

School of Engineering & Applied Science

Pulse signal peaks detected by the Raspberry Pi 3B+ system

Pulse signal with low gain setting

Signals generated by the heart rate measurements system after adjusting the potentiometer settings

Typical pulse signal with optimal gain setting

Prof. Kartik Bulusu, CS Dept.

Fall 2022

CSCi 1010