About me: Experienced Data enthusiast here. Currently working for Roche Pharmaceutical firm.

In this workbook, you can find the outcomes of certain activities such as

- (i) bagging model vs stand alone model
- (ii) Implementation of Naive bayes model
- (ii) Use case of Z score test to remove outliers
- (iii) Use case of Randomsearchcv

```
In [2]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import joblib
         from collections import Counter
         from numpy import where, mean
         from sklearn import linear model
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model selection import train test split
         from sklearn import tree
         from sklearn.datasets import make classification
         from sklearn.svm import SVC
         from sklearn.model selection import cross val score
         from sklearn.model selection import RepeatedStratifiedKFold
         from sklearn.tree import DecisionTreeClassifier
         %matplotlib inline
In [67]: df = pd.read_csv(r'heart disease.csv')
         df_N = df
         df
```

Out[67]:		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
	0	40	М	ATA	140	289	0	Normal	172	N	0.0	Up	0
	1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1
	2	37	М	ATA	130	283	0	ST	98	N	0.0	Up	0
	3	48	F	ASY	138	214	0	Normal	108	Υ	1.5	Flat	1
	4	54	М	NAP	150	195	0	Normal	122	N	0.0	Up	0
	•••												
	913	45	М	TA	110	264	0	Normal	132	N	1.2	Flat	1
	914	68	М	ASY	144	193	1	Normal	141	N	3.4	Flat	1
	915	57	М	ASY	130	131	0	Normal	115	Υ	1.2	Flat	1
	916	57	F	ATA	130	236	0	LVH	174	N	0.0	Flat	1
	917	38	М	NAP	138	175	0	Normal	173	N	0.0	Up	0

918 rows × 12 columns

In [68]: df.describe()

Out[68]:		Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	HeartDisease
	count	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000
	mean	53.510893	132.396514	198.799564	0.233115	136.809368	0.887364	0.553377
	std	9.432617	18.514154	109.384145	0.423046	25.460334	1.066570	0.497414
	min	28.000000	0.000000	0.000000	0.000000	60.000000	-2.600000	0.000000
	25%	47.000000	120.000000	173.250000	0.000000	120.000000	0.000000	0.000000
	50%	54.000000	130.000000	223.000000	0.000000	138.000000	0.600000	1.000000
	75%	60.000000	140.000000	267.000000	0.000000	156.000000	1.500000	1.000000
	max	77.000000	200.000000	603.000000	1.000000	202.000000	6.200000	1.000000

```
In [69]: df.isnull().sum()
Out[69]: Age
                           0
         Sex
                            0
         ChestPainType
                            0
         RestingBP
                            0
         Cholesterol
                            0
         FastingBS
         RestingECG
                            0
         MaxHR
                            0
         ExerciseAngina
                            0
         Oldpeak
         ST_Slope
                            0
         HeartDisease
                            0
         dtype: int64
```

Removing outliers using z-score Way 1:

```
In [23]: df_N['Age_zs'] = (df_N.Age - df_N.Age.mean())/(df_N.Age.std())
# setting limit of z score between -3 & 3:
df_N = df_N[(df_N['Age_zs'].between(-3,3))]
df_N
```

Removing outliers using z-score Way 2 (using scipy):

```
In [70]: from scipy.stats import zscore
         # df obj = df.select dtypes(exclude=object)
         df_obj_exl = ['Age', 'RestingBP', 'Cholesterol', 'MaxHR', 'Oldpeak']
         # applying zscore to all columns if you want
         # df_zscore = df[df_obj_ext].apply(zscore)
         def outlier rem(data):
             temp_list = []
             for column in df_obj_exl:
                 data[column+'zs'] = zscore(data[column])
                 temp list.append(column+'zs')
                 data = data[(data[column+'zs'].between(-3,3))]
             data = data.drop(temp_list, axis=1)
             data.reset_index(inplace=True, drop=True)
             return data
          # pass your dataframe here
         df New = outlier rem(df)
         print(df New)
          df New
```

	Age S	Sex	${\tt ChestPainType}$	RestingBP	Chole	sterol	FastingBS	RestingECG	\
0	40	Μ	ATA	140		289	0	Normal	
1	49	F	NAP	160		180	0	Normal	
2	37	Μ	ATA	130		283	0	ST	
3	48	F	ASY	138		214	0	Normal	
4	54	Μ	NAP	150		195	0	Normal	
894	45	Μ	TA	110		264	0	Normal	
895	68	Μ	ASY	144		193	1	Normal	
896	57	Μ	ASY	130		131	0	Normal	
897	57	F	ATA	130		236	0	LVH	
898	38	Μ	NAP	138		175	0	Normal	
	MaxHI	R Ex	kerciseAngina	Oldpeak ST	Slope	HeartD	isease		
0	172	2	N	0.0	Up		0		
1	156	6	N	1.0	Flat		1		
2	98	8	N	0.0	Up		0		
3	108	8	Υ	1.5	Flat		1		
4	122	2	N	0.0	Up		0		
					• • •				
894	132	2	N	1.2	Flat		1		
895	14:	1	N	3.4	Flat		1		
896	11!	5	Υ	1.2	Flat		1		
897	174		N	0.0	Flat		1		
898	173		N	0.0	Up		0		
	_,,	_			- 1		-		

[899 rows x 12 columns]

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
0	40	М	ATA	140	289	0	Normal	172	N	0.0	Up	0
1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1
2	37	М	ATA	130	283	0	ST	98	N	0.0	Up	0
3	48	F	ASY	138	214	0	Normal	108	Υ	1.5	Flat	1
4	54	М	NAP	150	195	0	Normal	122	N	0.0	Up	0
•••												
894	45	М	TA	110	264	0	Normal	132	N	1.2	Flat	1
895	68	М	ASY	144	193	1	Normal	141	N	3.4	Flat	1
896	57	М	ASY	130	131	0	Normal	115	Υ	1.2	Flat	1
897	57	F	ATA	130	236	0	LVH	174	N	0.0	Flat	1
898	38	М	NAP	138	175	0	Normal	173	N	0.0	Up	0
۰۵۵ م	v	10 ~	alumna									

```
In [71]: print('No. of patients without Heart disease:',len(df_New[df_New['HeartDisease']==0]))
    print('No. of patients with Heart disease:',len(df_New[df_New['HeartDisease']==1]))
```

No. of patients without Heart disease: 407 No. of patients with Heart disease: 492

--> From the above counts, we can say that the dataset don't need any over or under sampling

```
In [72]: X = df_New.drop(['HeartDisease'],axis=1)
y = df_New['HeartDisease']

# test-train split:
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
X_train.reset_index(inplace=True,drop=True)
X_test.reset_index(inplace=True,drop=True)
In [73]: X_train
```

Out[73]:		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope
	0	41	М	ASY	110	289	0	Normal	170	N	0.0	Flat
	1	61	М	ASY	138	166	0	LVH	125	Υ	3.6	Flat
	2	54	М	ASY	150	365	0	ST	134	N	1.0	Up
	3	41	М	ATA	125	269	0	Normal	144	N	0.0	Up
	4	57	М	ASY	132	207	0	Normal	168	Υ	0.0	Up
	•••								•••			
	714	62	М	ASY	135	297	0	Normal	130	Υ	1.0	Flat
	715	54	F	NAP	130	294	0	ST	100	Υ	0.0	Flat
	716	46	М	ATA	140	275	0	Normal	165	Υ	0.0	Up
	717	62	F	ASY	140	268	0	LVH	160	N	3.6	Down
	718	62	F	ASY	150	244	0	Normal	154	Υ	1.4	Flat

719 rows × 11 columns

ONE HOT ENCODING

```
In [74]: # One Hot Encoding function to encode all categorical string columns

def onehotencoding(dataframe_name):
    column_names_obj = dataframe_name.select_dtypes(include=object)
    ohe = OneHotEncoder(drop='first',handle_unknown='ignore')
    df_N=dataframe_name
    for i in column_names_obj:
        feature_cols = ohe.fit_transform(dataframe_name[[i]]).toarray()
        feature_cols_names = np.array(ohe.categories_).ravel()
        feature_cols_names = feature_cols_names[1:]
        feature = pd.DataFrame(feature_cols,columns=feature_cols_names)
        df_N = pd.concat([df_N,feature],axis=1)
    df_N = df_N.drop(column_names_obj, axis=1) #dropping categorical columns
    return df_N
```

```
In [75]: #Pass your dataset here /
         df_enc_train = onehotencoding(X_train)
         print(df_enc_train)
         df_enc_test = onehotencoding(X_test)
              Age RestingBP Cholesterol FastingBS MaxHR Oldpeak
                                                                        M ATA NAP \
                                                        170
         0
               41
                         110
                                      289
                                                                  0.0 1.0
                                                                           0.0
                                                                                0.0
               61
                         138
                                      166
                                                        125
                                                                     1.0 0.0
                                                                                0.0
         1
                                                                  3.6
         2
               54
                         150
                                      365
                                                        134
                                                                           0.0
                                                                                0.0
                                                                      1.0
         3
               41
                         125
                                      269
                                                        144
                                                                      1.0
                                                                           1.0
               57
                         132
                                      207
                                                   0
                                                        168
                                                                  0.0
                                                                      1.0
                                                                           0.0
                                                                                0.0
                         . . .
               . . .
                                      . . .
                                                  . . .
         714
               62
                         135
                                      297
                                                   0
                                                                           0.0
                                                        130
                                                                 1.0
                                                                      1.0
                                                                                0.0
         715
               54
                         130
                                      294
                                                        100
                                                                 0.0
                                                                      0.0
                                                                           0.0
                                                                                1.0
         716
               46
                         140
                                      275
                                                                               0.0
                                                        165
                                                                 0.0
                                                                     1.0 1.0
                                                   0
         717
               62
                         140
                                      268
                                                        160
                                                                      0.0
                                                                           0.0 0.0
                                                                  3.6
               62
         718
                         150
                                      244
                                                        154
                                                                      0.0 0.0 0.0
               TA
                   Normal
                            ST
                                     Flat
                                            Up
                      1.0
                           0.0
                                0.0
                                      1.0
         0
              0.0
                                           0.0
         1
              0.0
                      0.0
                           0.0
                               1.0
                                      1.0
                                           0.0
              0.0
                      0.0
                          1.0
                                0.0
                                      0.0
                                           1.0
         3
              0.0
                          0.0
                                0.0
                      1.0
                                      0.0 1.0
                               1.0
              0.0
                          0.0
                                      0.0 1.0
                      1.0
             0.0
                           0.0
                                1.0
                      1.0
                                      1.0
                                          0.0
         715 0.0
                      0.0 1.0
                               1.0
                                      1.0 0.0
         716 0.0
                          0.0
                               1.0
                      1.0
                                      0.0 1.0
         717 0.0
                      0.0 0.0
                               0.0
                                      0.0 0.0
         718 0.0
                      1.0 0.0 1.0
                                      1.0 0.0
         [719 rows x 15 columns]
```

SCALING

```
scaled_features_names = scaling.feature_names_in_.tolist()
            scaled features df = pd.DataFrame(scaled features,columns=scaled features names)
            df_scaled = df_scaling.drop(columns=scaled_features_names)
            df_enc = pd.concat([df_scaled,scaled_features_df], axis=1)
            return df_enc
In [81]: from sklearn.preprocessing import StandardScaler
         scaling = StandardScaler()
         df_enc_train_scl = scaling_process(df_enc_train)
         print(df_enc_train_scl)
         df enc test scl = scaling process(df enc test)
               M ATA NAP
                            TA Normal
                                        ST
                                              Y Flat
                                                       Up
                                                                Age RestingBP \
             1.0 0.0
                     0.0
                           0.0
                                   1.0
                                       0.0
                                            0.0
                                                  1.0 0.0 -1.328136 -1.286021
             1.0 0.0 0.0 0.0
                                   0.0
                                       0.0
                                           1.0
                                                  1.0 0.0 0.800553 0.357069
             1.0 0.0 0.0 0.0
                                   0.0 1.0
                                           0.0
                                                  0.0 1.0 0.055512 1.061251
             1.0 1.0 0.0
                           0.0
                                       0.0
                                           0.0
                                                  0.0 1.0 -1.328136 -0.405794
             1.0 0.0 0.0 0.0
                                   1.0
                                       0.0 1.0
                                                  0.0 1.0 0.374815
                                                                      0.004979
         714 1.0
                  0.0 0.0 0.0
                                       0.0 1.0
                                                 1.0 0.0
                                                          0.906987
                                                                     0.181024
                                   1.0
         715 0.0 0.0 1.0
                           0.0
                                           1.0
                                                  1.0 0.0 0.055512 -0.112385
                                   0.0
                                       1.0
         716 1.0 1.0 0.0 0.0
                                       0.0 1.0
                                                 0.0 1.0 -0.795964 0.474433
                                   1.0
         717 0.0 0.0 0.0 0.0
                                   0.0 0.0 0.0
                                                  0.0 0.0 0.906987 0.474433
         718 0.0 0.0 0.0 0.0
                                   1.0 0.0 1.0
                                                 1.0 0.0 0.906987 1.061251
             Cholesterol FastingBS
                                      MaxHR Oldpeak
                0.861142 -0.524235 1.307888 -0.866406
         0
         1
               -0.278521 -0.524235 -0.481024 2.770054
         2
                1.565324 -0.524235 -0.123242 0.143722
                0.675831 -0.524235 0.274294 -0.866406
         4
                0.101367 -0.524235 1.228381 -0.866406
         714
                0.935266 -0.524235 -0.282256 0.143722
         715
                0.907470 -0.524235 -1.474864 -0.866406
         716
                0.731424 -0.524235 1.109120 -0.866406
         717
                0.666565 -0.524235 0.910352 2.770054
         718
                0.444192 -0.524235 0.671830 0.547773
         [719 rows x 15 columns]
```

```
In [82]: X_train = df_enc_train_scl
X_test = df_enc_test_scl
```

Support Vector Machine (SVM) model

--> When I performed SVM modeling without scaling, I clearly saw a drop of around 15-20% accuracy.

Naive Bayes model

0.9

```
In [90]: from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X_train, y_train)

print(model.score(X_train,y_train))
print(model.score(X_test,y_test))

0.8525730180806675
```

• Here we see some overfitting as train set accuracy is higher than test set. Reason might be the fact that Naive bayes strictly consider all features other than target feature as independent features.

• To avoid these kind of problems, we use L1 or L2 regularisation techniques or some bagging methods which we used down below

Below, I've used random search cv to find which is best combination of hyperparameter for lasso model

Bagging method (using SVM model):

```
random state=71)
         bag_model.fit(X_train, y_train)
         bag_model.oob_score_
         /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages/sklearn/ensemble/_base.py:156: FutureWarning: `ba
         se estimator` was renamed to `estimator` in version 1.2 and will be removed in 1.4.
           warnings.warn(
Out[88]: 0.8525730180806675
         """ OOB (out-of-bag) score is a performance metric for a machine learning model, specifically for ensemble models
 In [ ]:
             such as random forests. It is calculated using the samples that are not used in the training of the model,
             which is called out-of-bag samples. """
In [93]: from sklearn.metrics import confusion_matrix
         y_pred = bag_model.predict(X_test)
         cm = confusion_matrix(y_test, y_pred)
         cm
Out[93]: array([[70, 8],
                [ 9, 93]])
In [95]: %matplotlib inline
         import matplotlib.pyplot as plt
         import seaborn as sn
         plt.figure(figsize=(4,3))
         sn.heatmap(cm, annot=True)
         plt.xlabel('Predicted')
         plt.ylabel('Truth')
Out[95]: Text(20.72222222222, 0.5, 'Truth')
```


In [89]: bag_model.score(X_test, y_test)

Out[89]: 0.90555555555556

Conclusion:

--> Here we can clearly see 0.5% to 2% increase in accuracy score for bagging model compared to normal stand alone model.

Happy Learning! 🙂