Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

- (Currently Amended) A wiring substrate-characterized in, comprising:

 a wiring layer formed on a substrate; and
 terminal electrodes that are connected to the wiring layer and disposed

 based on a stress distribution that works on the substrate.
- (Currently Amended) A wiring substrate characterized in, comprising:

 a wiring layer formed on a substrate; and
 terminal electrodes that are connected to the wiring layer and disposed
 on the substrate in a manner to avoid diagonal lines thereof.
- 3. (Currently Amended) A wiring substrate characterized in, comprising: a wiring layer formed on a substrate; terminal electrodes that are connected coupled to the wiring layer and disposed on the substrate; and
 - stress insulation sections provided along diagonal lines of the substrate.
- 4. (Currently Amended) A-The wiring substrate according to claim 3, characterized in that the stress insulation sections are being at least one of grooves and slits.
- 5. (Currently Amended) A wiring substrate-characterized in, comprising: a wiring layer formed on a substrate; substrate; terminal electrodes that are connected coupled to the wiring layer and disposed on the substrate; and
- dummy terminals that are provided in four corners or on diagonal lines of the substrate.
- 6. (Currently Amended) A semiconductor device characterized in, comprising: a semiconductor chip having an active region and pad electrodes formed thereon;
 - a stress buffer layer formed on the active region;
- bump electrodes that are formed on the stress buffer layer and disposed based on a stress distribution that works on the semiconductor chip;
- rearrangement wiring layers that eonnectcouple the bump electrodes and the pad electrodes; and

a protection layer that is formed over the rearrangement wiring layers and the pad electrodes.

7. (Currently Amended) A semiconductor device-characterized in, comprising: a semiconductor chip having an active region and pad electrodes formed thereon;

a stress buffer layer formed on the active region;

bump electrodes that are formed on the stress buffer layer and disposed in a manner to avoid diagonal lines thereof;

rearrangement wiring layers that eonnectcouple the bump electrodes and the pad electrodes; and

a protection layer that is formed over the rearrangement wiring layers and the pad electrodes.

8. (Currently Amended) A semiconductor device characterized in, comprising: a semiconductor chip having an active region and pad electrodes formed thereon;

stress buffer layers that are formed on the active region, and divided and disposed along diagonal lines;

bump electrodes formed on the stress buffer layers;

rearrangement wiring layers that eonnectcouple the bump electrodes and the pad electrodes; and

protection layers that are formed over the rearrangement wiring layers and the pad electrodes, and divided and disposed along the diagonal lines.

9. (Currently Amended) A semiconductor device characterized in, comprising: a semiconductor chip having an active region and pad electrodes formed thereon;

a stress buffer layer that is formed on the active region;

bump electrodes formed on the stress buffer layer;

dummy bumps provided in four corners or on diagonal lines of the stress buffer layer;

rearrangement wiring layers that eonnectcouple the bump electrodes and the pad electrodes; and

a protection layer that is formed over the rearrangement wiring layers and the pad electrodes.

10. (Currently Amended) A semiconductor module-characterized in, comprising:
an interposer substrate having a semiconductor chip surface-mounted thereon;
a wiring layer provided on a back surface of the interposer substrate;
bump electrodes that are connected coupled to the wiring layer and disposed
based on a stress distribution that works on the interposer substrate; and
through hole wirings that are provided in the interposer substrate and
connectcouple the semiconductor chip and the wiring layer.

- 11. (Currently Amended) A semiconductor module characterized in, comprising:

 an interposer substrate having a semiconductor chip surface-mounted thereon;

 a wiring layer provided on a back surface of the interposer substrate;

 bump electrodes that are eonnected to the wiring layer and disposed on
 the back surface of the interposer substrate in a manner to avoid diagonal lines; and

 through hole wirings that are provided in the interposer substrate and

 eonnect couple the semiconductor chip and the wiring layer.
- 12. (Currently Amended) A semiconductor module-characterized-in, comprising: an interposer substrate having a semiconductor chip surface-mounted thereon; a wiring layer provided on a back surface of the interposer substrate; bump electrodes that are connected coupled to the wiring layer and disposed on the back surface of the interposer substrate in a manner to avoid diagonal lines;

at least one of grooves and slits provided along diagonal lines of the interposer substrate; and

through hole wirings that are provided in the interposer substrate and eonnectcouple the semiconductor chip and the wiring layer.

13. (Currently Amended) A semiconductor module characterized in, comprising: an interposer substrate having a semiconductor chip surface-mounted thereon; a wiring layer provided on a back surface of the interposer substrate; bump electrodes that are connected to the wiring layer and disposed on the back surface of the interposer substrate;

dummy bumps provided in four corners or on diagonal lines of the back surface of the interposer substrate; and

through hole wirings that are provided in the interposer substrate and eonnectcouple the semiconductor chip and the wiring layer.

14. (Currently Amended) An electronic device-characterized in, comprising:

an interposer substrate having a semiconductor chip surface-mounted thereon;
a wiring layer provided on a back surface of the interposer substrate;
bump electrodes that are eonnected to the wiring layer and disposed on
the back surface of the interposer substrate in a manner to avoid diagonal lines;

through hole wirings that are provided in the interposer substrate and eonnectcouple the semiconductor chip and the wiring layer;

a mother substrate having the interposer substrate mounted thereon; and an electronic component that is <u>connected_coupled</u> to the bump electrodes through the mother substrate.

- 15. (Currently Amended) A method for designing a wiring substrate, eharacterized in that, wherein, based on a stress distribution that works on a wiring substrate, disposing positions of bump electrodes on the wiring substrate are determined.
- 16. (Currently Amended) A-The method for designing a wiring substrate according to claim 15, characterized in that the disposing positions of the bump electrodes on the wiring substrate are being determined in a manner to avoid diagonal lines of the wiring substrate.
- 17. (Currently Amended) A method for manufacturing a semiconductor device, characterized in comprising:

a step of forming a stress buffer layer on an active region of a semiconductor chip having pad electrodes formed thereon;

a step of exposing the pad electrodes by patterning the stress buffer layer;

a step of forming rearrangement wiring layers that extend from the pad electrodes over the stress buffer layer;

a step of forming a protection layer over the rearrangement wiring layers;

a step of forming opening sections that expose the rearrangement wiring layers in a manner to avoid diagonal line by patterning the protection layer; and

a step of forming, on the stress buffer layer, bump electrodes that are eonnected coupled to the rearrangement wiring layers through the opening sections.

18. (Currently Amended) A method for manufacturing a semiconductor device, characterized in comprising:

a step of forming a stress buffer layer on an active region of a semiconductor chip having pad electrodes formed thereon;

a step of dividing the stress buffer layer along diagonal lines and exposing the pad electrodes by patterning the stress buffer layer;

a step of forming rearrangement wiring layers that extend from the pad electrodes over the stress buffer layer;

a step of forming a protection layer over the rearrangement wiring layers;

a step of forming opening sections that divide the protection layer along the diagonal lines and expose the rearrangement wiring layers by patterning the protection layer; and

a step of forming, on the stress buffer layer, bump electrodes that are eonnected coupled to the rearrangement wiring layers through the opening sections.

19. (Currently Amended) A method for manufacturing a semiconductor device, characterized in comprising:

a step of forming a stress buffer layer on an active region of a semiconductor chip having pad electrodes formed thereon;

a step of exposing the pad electrodes by patterning the stress buffer layer;
a step of forming rearrangement wiring layers that extend from the pad
electrodes over the stress buffer layer, and dummy lands in four corners or on diagonal lines
on the stress buffer layer:

a step of forming a protection layer over the rearrangement wiring layers and the dummy lands;

a step of forming, by patterning the protection layer, first opening sections that expose the rearrangement wiring layers and second opening sections that expose the dummy lands; and

a step of forming, on the stress buffer layer, bump electrodes that are eonnected coupled to the rearrangement wiring layers through the first opening sections, and forming dummy bumps disposed over the dummy lands through the second opening sections.

20. (Currently Amended) A method for manufacturing a semiconductor module, characterized in comprising:

a step of forming wiring layers connected coupled via through holes on both sides of an interposer substrate;

a step of forming bump electrodes connected coupled to the wiring layer on a back surface of the interposer substrate in a manner to avoid diagonal lines; and

a step of mounting a semiconductor chip on a front surface of the interposer substrate.

21. (Currently Amended) A method for manufacturing a semiconductor module, characterized in comprising:

a step of forming at least one of grooves and slits along diagonal lines of an interposer substrate;

a step of forming wiring layers connected coupled via through holes on both sides of the interposer substrate;

a step of forming bump electrodes connected coupled to the wiring layer on a back surface of the interposer substrate; and

a step of mounting a semiconductor chip on a front surface of the interposer substrate.

22. (Currently Amended) A method for manufacturing a semiconductor module, characterized in comprising:

a step of forming wiring layers connected coupled via through holes on both sides of the interposer substrate, and forming dummy lands in four corners or on diagonal lines of a back surface of the interposer substrate;

a step of forming bump electrodes connected coupled to the wiring layer on the back surface of the interposer substrate, and forming dummy bumps on the dummy lands; and a step of mounting a semiconductor chip on a front surface of the interposer substrate.

Amendments to the Drawings:

The attached replacement drawing sheets make changes to Figs. 12 and 13 and replace the original sheets with Figs. 12 and 13.

Attachment: Replacement Sheets