Introduction to Machine Learning

TA Session - 1

14th Aug 2023

Some general info

Official Github Repository:

https://github.com/sarthakharne/Machine-Learning-TA-Material-Fall-2023

• Where you can reach me:

Whatsapp or Mail

• Find Good Resources?

Share it with the batch!

Some questions you might have:

- Do I need a fancy computer? What interfaces are we going to use?
 No!
- Do I need to be good at programming? (DSA trauma... I understand)
 Don't panic! Basics required.
- Do I need to be a pro at maths?
 Nope.

What is ML?

Another word you might've heard

being thrown around...

Source: https://medium.com/@dilip.rajani/comparing-ds-ml-dl-and-ai-65627109e67a

https://www.congrelate.com/15-programming-without-machine-learning-images/

Supervised v/s Unsupervised Learning

- Where your data has labels, it is supervised learning i.e. someone is telling you what the true label is for the training data.
- Simple linear regression is an example.

- Unsupervised learning, there are no labels at all. No 'teacher'. No ground rules. No true labels.
- Clustering is an example.

https://towardsdatascience.com/linear-regression-using-python-b136c91bf0a2

https://www.gatevidyalay.com/k-means-clustering-algorithm-example/

Jargon to keep in mind

- Tasks
- Datasets
- Features
- Models

Formal definitions

- Tasks Type of prediction being made, based on the question that is being asked and the available data.
- Datasets The raw data available.
- Features The factors or characteristics taken into consideration.
- Models Almost like a function. Algorithms are used to tune this model.

Linear Regression Intro

Q1: Statement

Minimize the expression $\frac{x^2}{4} - 2x + 5$ with respect to x using

- 1. The closed-form solution
- 2. Gradient descent

Q1: Closed-form solution

$$f(x) = \frac{x^2}{4} - 2x + 5$$

$$\frac{df(x)}{dx} = \frac{x}{2} - 2 = 0$$

$$x = 4$$

Let us set x = 10 initially. Let $\alpha = 0.1$

$$f(x) = \frac{x^2}{4} - 2x + 5$$

$$\frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f(10) = \frac{10^2}{4} - 2 * 10 + 5$$

$$= 25 - 20 + 5$$

$$= 10$$

X	f(x)
10	10

Let us set x = 10 initially. Let $\alpha = 0.1$

$$f(x) = \frac{x^2}{4} - 2x + 5$$

$$\frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f(10) = \frac{10^2}{4} - 2 * 10 + 5$$

$$= 25 - 20 + 5$$

$$= 10$$

X	f(x)
10	10

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(10) = \frac{10}{2} - 2$$

$$= 3$$

$$x_{next} = x - \alpha f'(x)$$

$$= 10 - 0.5 * 3$$

$$= 8.5$$

$$f(8.5) = \frac{8.5^{2}}{4} - 2 * 8.5 + 5$$

$$= 6.0625$$

X	f(x)	
10	10	
8.5	6.025	

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(8.5) = \frac{8.5}{2} - 2$$

$$= 2.25$$

$$x_{next} = x - \alpha f'(x)$$

$$= 8.5 - 0.5 * 2.25$$

$$= 7.375$$

$$f(7.375) = \frac{7.375^{2}}{4} - 2 * 7.375 + 5$$

$$= 3.848$$

X	f(x)
10	10
8.5	6.025
7.375	3.848

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(7.375) = \frac{7.375}{2} - 2$$

$$= 1.688$$

$$x_{next} = x - \alpha f'(x)$$

$$= 7.375 - 0.5 * 1.688$$

$$= 6.531$$

$$f(6.531) = \frac{6.531^{2}}{4} - 2 * 6.531 + 5$$

$$= 2.601$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(6.531) = \frac{6.531}{2} - 2$$

$$= 1.266$$

$$x_{next} = x - \alpha f'(x)$$

$$= 6.531 - 0.5 * 1.266$$

$$= 5.898$$

$$f(5.898) = \frac{5.898^2}{4} - 2 * 5.898 + 5$$

= 1.901

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601
5.898	1.901

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(5.898) = \frac{5.898}{2} - 2$$

$$= 0.949$$

$$x_{next} = x - \alpha f'(x)$$

$$= 5.898 - 0.5 * 0.949$$

$$= 5.424$$

$$f(5.424) = \frac{5.424^{2}}{4} - 2 * 5.424 + 5$$

$$= 1.507$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601
5.898	1.901
5.424	1.507

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(5.424) = \frac{5.424}{2} - 2$$

$$= 0.712$$

$$x_{next} = x - \alpha f'(x)$$

$$= 5.424 - 0.5 * 0.712$$

$$= 5.068$$

$$f(5.068) = \frac{5.068^{2}}{4} - 2 * 5.068 + 5$$

$$= 1.285$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601
5.898	1.901
5.424	1.507
5.068	1.285

Q1: Run Through Gradient Descent

$$\alpha = 0.5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(5.068) = \frac{5.068}{2} - 2$$

$$= 0.534$$

$$x_{next} = x - \alpha f'(x)$$

$$= 5.068 - 0.5 * 0.534$$

$$= 4.801$$

$$f(4.801) = \frac{4.801^2}{4} - 2 * 4.801 + 5$$

$$= 1.16$$

X	f(x)
10	10
8.5	6.025
7.375	3.848
6.531	2.601
5.898	1.901
5.424	1.507
5.068	1.285
4.801	1.16

Q1: Gradient Descent With Excess Learning Rate

Let us set x = 10 initially. Let $\alpha = 5$

$$f(x) = \frac{x^2}{4} - 2x + 5$$

$$\frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f(10) = \frac{10^2}{4} - 2 * 10 + 5$$

$$= 25 - 20 + 5$$

$$= 10$$

X	f(x)
10	10

Q1: Gradient Descent With Excess Learning Rate

$$\alpha = 5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(10) = \frac{10}{2} - 2$$

$$= 3$$

$$x_{next} = x - \alpha f'(x)$$

$$= 10 - 5 * 3$$

$$= -5$$

$$f(-5) = \frac{(-5)^2}{4} - 2 * (-5) + 5$$

$$= 21.25$$

X	f(x)
10	10
-5	21.25

Q1: Gradient Descent With Excess Learning Rate

$$\alpha = 5, f(x) = \frac{x^2}{4} - 2x + 5, \frac{df(x)}{dx} = \frac{x}{2} - 2$$

$$f'(-5) = \frac{-5}{2} - 2$$

$$= -4.5$$

$$x_{next} = x - \alpha f'(x)$$

$$= -5 - 5 * (-4.5)$$

$$= 17.5$$

$$f(17.5) = \frac{17.5^{2}}{4} - 2 * 17.5 + 5$$

$$= 46.563$$

X	f(x)
10	10
-5	21.25
17.5	46.563

Q1: Gradient Descent With Excess Learning Rate

Q2: Statement

Find the minimum of $f(x,y) = x^4 + x^3 - 2x^2 + y^2$, using the closed-form solution and using gradient descent. Interact with the 3D plot <u>here</u>.

Q2: Closed-form solution

$$f(x, y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x = 0$$

$$\therefore x = -1.443, 0, 0.693$$

$$\frac{\partial f(x,y)}{\partial y} = 2y = 0$$

$$\therefore y = 0$$

$$f(-1.443, 0) = -2.833$$

 $f(0, 0) = 0$
 $f(0.693, 0) = -0.39$

 \therefore the minimum of f(x, y) is at(-1.443, 0)

Let's start from (-0.5, 4.5) with $\alpha = 0.1$.

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

$$f(-0.5, 4.5) = 19.688$$

 $(\nabla_{x,y}f)(-0.5, 4.5) = (2.25, 9)$
 $(x_{next}, y_{next}) = (-0.5, 4.5) - \alpha(\nabla_{x,y}f)(-0.5, 4.5)$
 $= (-0.725, 3.6)$
 $f(-0.725, 3.6) = 11.80$

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23

$$f(-0.725, 3.6) = 11.80$$

 $(\nabla_{x,y}f)(-0.725, 3.6) = (2.952, 7.2)$
 $(x_{next}, y_{next}) = (-0.725, 3.6) - \alpha(\nabla_{x,y}f)(-0.725, 3.6)$
 $= (-1.02, 2.88)$
 $f(-1.02, 2.88) = 6.23$

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23
-1.31	2.30	2.56

$$f(-1.02, 2.88) = 6.23$$

 $(\nabla_{x,y}f)(-1.02, 2.88) = (2.96, 5.76)$
 $(x_{next}, y_{next}) = (-1.02, 2.88) - \alpha(\nabla_{x,y}f)(-1.02, 2.88)$
 $= (-1.31, 2.30)$
 $f(-1.31, 2.30) = 2.56$

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23
-1.31	2.30	2.56
-1.45	1.84	0.55

$$f(-1.31, 2.30) = 2.56$$

 $(\nabla_{x,y}f)(-1.31, 2.30) = (1.39, 4.6)$
 $(x_{next}, y_{next}) = (-1.31, 2.30) - \alpha(\nabla_{x,y}f)(-1.31, 2.30)$
 $= (-1.45, 1.84)$
 $f(-1.45, 1.84) = 0.55$

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

f(-1.45, 1.84) = 0.55	
$(\nabla_{x,y}f)(-1.45,1.84)=(-0.087,3.68)$	
$(x_{next}, y_{next}) = (-1.45, 1.84) - \alpha(\nabla_{x,y} f)(-1.45, 1.84)$	4)
=(-1.44,1.47)	
f(-1.44, 1.47) = -0.67	

X	y	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23
-1.31	2.30	2.56
-1.45	1.84	0.55
-1.44	1.47	-0.67

$$\alpha = 0.1$$

$$f(x,y) = x^4 + x^3 - 2x^2 + y^2$$

$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 3x^2 - 4x$$

$$\frac{\partial f(x,y)}{\partial y} = 2y$$

f(-1.44, 1.47) = -0.67
$(\nabla_{x,y}f)(-1.44,1.47)=(0.037,2.94)$
$(x_{next}, y_{next}) = (-1.44, 1.47) - \alpha(\nabla_{x,y} f)(-1.44, 1.47)$
=(-1.44,1.17)
f(-1.44, 1.17) = -1.45

X	У	f(x,y)
-0.5	4.5	19.688
-0.725	3.6	11.80
-1.02	2.88	6.23
-1.31	2.30	2.56
-1.45	1.84	0.55
-1.44	1.47	-0.67
-1.44	1.17	-1.45