[2.1] Given the pulse train sent to the input A of an OR gate, draw its output pulse train.

[2.2] Given the pulse train sent to the input A, B and C of an OR gate, draw its output pulse train.

[2.3] The output of an AND gate shows the following pulse train. Draw the corresponding signal at input A.

[2.4] Given the following pulse trains sent to the 2 inputs A and B of an AND gate, find the output pulse train.

[2.5] Given the following pulse trains sent to the 3 inputs A, B and C of an AND gate, find the output pulse train.

[2.6] The output Y and the inputs A and C of an AND gate have the following pulse trains. Draw the corresponding signal at input B.

[2.7] Given the following pulse trains sent to the 3 inputs A, B and C of a NOR gate, find the output pulse train.

[2.8] Given the following pulse trains sent to the 3 inputs A, B and C of a NAND gate, find the output pulse train.

[2.9] Demonstrate the validity of the following identities by means of truth tables:

(a) DeMorgan's theorem for three variables: (x + y + z)' = x'y'z' and (xyz)' = x' + y' + z'

x + y + z						
хух	X + Y + Z	(x+y+z)'	x'	y'	z'	x' y' z'
000	0	1	1	1	1	1
001	1	0	1	1	0	0
010	1	0	1	0	1	0
011	1	0	1	0	0	0
100	1	0	0	1	1	0
101	1	0	0	1	0	0
110	1	0	0	0	1	0
111	1	0	0	0	0	0
хуz	(xyz)	(xyz)'	x'	y'	z'	X' + Y' + Z'
x y z	(<i>xyz</i>)	(xyz)'	1 1	<i>y</i> ' 1	<u>z'</u>	x' + y' + z'
•		(xyz)' 1 1	1 1	<i>y'</i> 1 1	z' 1 0	x' + y' + z' 1 1
000	0	(xyz)' 1 1 1	<i>x'</i>	y' 1 1 0	z'	x' + y' + z' 1 1 1
000	0	(xyz)' 1 1 1 1	x'	<i>y'</i> 1 1 0 0	z' 1 0 1 0	1 1 1 1
0 0 0 0 0 1 0 1 0	0 0 0	(xyz)' 1 1 1 1 1	1 1 1 1 1 0	y' 1 1 0 0 1	z' 1 0 1 0 1 1	1 1 1 1 1 1
000 001 010 011	0 0 0 0	(xyz)' 1 1 1 1 1	1 1 1	y' 1 1 0 0 1 1	z'	x'+y'+z' 1 1 1 1 1 1
000 001 010 011 100	0 0 0 0	(xyz)' 1 1 1 1 1 1	1 1 1 1 0	y' 1 1 0 0 1 1 1 0	z'	x'+y'+z' 1 1 1 1 1 1 1
000 001 010 011 100 101	0 0 0 0 0	(xyz)' 1 1 1 1 1 1 0	1 1 1 1 0 0	y' 1 1 0 0 1 1 1 0 0	z'	x'+y'+z' 1 1 1 1 1 1 1 0

(b) The distributive law: x + yz = (x + y)(x + z)

хуг	X+YZ	(x + y)	(x + z)	(x+y)(x+z)
000	0	0	0	0
0 0 1	0	0	1	0
010	0	1	0	0
0 1 1	1	1	1	1
100	1	1	1	1
101	1	1	1	1
110	1	1	1	1
111	1	1	1	1

(c) The distributive law: x(y + z) = xy + xz

хуг	X(y+z)	xy	XZ	XY + XZ
000	0	0	0	0
0 0 1	0	0	0	0
010	0	0	0	0
011	0	0	0	0
100	0	0	0	0
101	1	0	1	1
110	1	1	0	1
111	1	1	1	1

(d) The associative law: x + (y + z) = (x + y) + z

хух	y + z	X + (y + z)	(x + y)	(x + y) + z
000	0	0	0	0
0 0 1	1	1	0	1
010	1	1	1	1
011	1	1	1	1
100	0	1	1	1
101	1	1	1	1
110	1	1	1	1
111	1	1	1	1

(e) The associative law and x(yz) = (xy)z

хух	yz	x(yz)	xy	(xy)z
000	0	0	0	0
0 0 1	0	0	0	0
010	0	0	0	0
0 1 1	1	0	0	0
100	0	0	0	0
101	0	0	0	0
110	0	0	1	0
111	1	1	1	1

[2.10] Simplify the following Boolean expressions to a minimum number of literals :

(a)
$$xy + xy' = x(y + y') = x$$

(b) $(x + y)(x + y') = x + yy' = x(x + y') + y(x + y') = xx + xy' + xy + yy' = x$
(c) $xyz + x'y + xyz' = xy(z + z') + x'y = xy + x'y = y$
(d) $(A + B)'(A' + B')' = (A'B')(A B) = (A'B')(BA) = A'(B'BA) = 0$
(e) $(a + b + c')(a'b' + c) = a a'b' + a c + b a'b' + b c + c'a'b' + c'c = (a a')b' + a c + (b b')a' + b c + c'a'b' + 0$
 $= b'(0) + a c + a'(0) + b c + c'a'b' = a c + b c + c'a'b'$

[2.11] Simplify the following Boolean expressions to a minimum number of literals :

(a)
$$ABC + A'B + ABC'$$

$$ABC + A'B + ABC' = AB + A'B = B$$

(b)
$$x'yz + xz$$

$$x'yz + xz = (x'y + x)z = z(x + x')(x + y) = z(x + y)$$

(c)
$$(x + y)'(x' + y')$$

$$(x + y)'(x' + y') = x'y'(x' + y') = x'y'$$

(d)
$$xy + x(wz + wz')$$

$$xy + x(wz + wz') = x(y + wz + wz') = x(w + y)$$

[2.12] Reduce the following Boolean expressions to the indicated number of literals :

(a)
$$A'C' + ABC + AC'$$
 to three literals $A'C' + ABC + AC' = C' + ABC = (C + C')(C' + AB) = AB + C'$

(c)
$$A'B(D'+C'D) + B(A+A'CD)$$
 to one literal $A'B(D'+C'D) + B(A+A'CD) = B(A'D'+A'C'D+A+A'CD) = B(A'D'+A+A'D(C+C') = B(A+A'(D'+D)) = B(A+A') = B$

(d)
$$(A' + C')(A' + C'')(A + B + C'D)$$
 to four literals
 $(A' + C)(A' + C')(A + B + C'D) = (A' + CC')(A + B + C'D) = A'(A + B + C'D)$
 $= AA' + A'B + A'C'D = A'(B + C'D)$

[2.13] Draw logic diagrams of the circuits that implement the original and simplified expressions in Problem 2.11.

a)

[2.14] Find the complement of the following expressions :

(a) xy' + x'y

$$F' = (xy' + x'y)' = (xy')'(x'y)' = (x' + y)(x + y') = xy + x'y'$$

(b) (a + c) (a + b') (a' + b + c')

$$F' = (a'c') + (a'b) + (ab'c)$$

(c)
$$z + z'(v'w + xy)$$

$$F' = z'z + (v + w')(x' + y')$$

[2.15] We can perform logical operations on strings of bits by considering each pair of corresponding bits separately (called bitwise operation). Given two eight $\dot{}$ bit strings A =10110001 and B =10101100, evaluate the eight $\dot{}$ bit result after the following logical operations :

(a) AND (b) OR (c) XOR

 $A = 1011_0001$

 $B = 1010_{-}^{-} 1100$

- (a) $A AND B = 1010_0000$
- **(b)** $A OR B = 1011_1101$
- (c) $A XOR B = 0001_1101$

[2.16] Draw logic diagrams to implement the following Boolean expressions :

(a)
$$y = [(u + x') (y' + z)]$$

(b)
$$y = (u \otimes y)' + x$$

(c)
$$y = (u' + x') (y + z')$$

(f) y = u + x + x'(u + y')

[2.17] Implement the Boolean function F = xy + x'y' + y'z

(a) With AND, OR, and inverter gates

(b) With OR and inverter gates

(c) With AND and inverter gates

(d) With NAND and inverter gates

(e) With NOR and inverter gates

[2.18] Simplify the following Boolean functions T_1 and T_2 to a minimum number of literals :

A	В	С	T1	T2
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

(a)
$$T1 = A'B'C' + A'B'C + A'BC' = A'B'(C' + C) + A'C'(B' + B) = A'B' + A'C' = A'(B' + C')$$

(b) $T2 = T1' = A'BC + AB'C' + AB'C + ABC' + ABC$
 $= BC(A' + A) + AB'(C' + C) + AB(C' + C)$
 $= BC + AB' + AB = BC + A(B' + B) = A + BC$

$$\sum (3, 5, 6, 7) = \prod (0,1,2,4)$$

$$T1 = A'B'C' + A'B'C + A'BC'$$

$$A'B' \qquad A'C'$$

$$T1 = A'B'A'C' = A'(B' + C')$$

[2.19] Obtain the truth table of the following functions, and express each function in sum-of-minterms and product-of-maxterms form :

(a)
$$(b + cd)(c + bd)$$

(a)
$$(b+cd)(c+bd) = cd+cb+cbd+bd = \sum (3,5,6,7) = \prod (0,1,2,4)$$

(b)
$$(cd + b'c + bd')(b + d)$$

$$(cd + b'c + bd')(b+d) = bcd + bb'c + bbd' + cdd + b'cd + bd'd$$

$$= bcd + 0 + bd' + cd + b'cd + 0$$

$$=\sum (3,4,6,7) = \prod (0,1,2,5)$$

[2.20] For the Boolean function

$$F = xy'z + x'y'z + w'xy + wx'y + wxy$$

(a) Obtain the truth table of *F*.

$$F = xy'z + x'y'z + w'xy + wx'y + wxy$$

wxyz	F
0000	0
0001	1
0010	0
0011	0
0100	0
0101	1
0110	1
0111	1
1000	0
1001	1
1010	1
1011	1
1100	0
1101	1
1110	1 0 0 0 1 1 1 0 1 1 1 1 1 1
1111	1

$$F = \sum (1, 5, 6, 7, 9, 10 11, 13, 14, 15)$$

(b) Draw the logic diagram, using the original Boolean expression.

(c) Use Boolean algebra to simplify the function to a minimum number of literals. F = xy'z + x'y'z + w'xy + wx'y + wxy = y'z + xy + wy = y'z + y(w + x)

[2.21] Express the following function as a sum of minterms and as a product of maxterms :

$$F(A, B, C, D) = B'D + A'D + BD$$

F = B'D + A'D + BD

-	22 1111		
	ABCD	ABCD	ABCD
	-B'-D	A'D	-B-D
	0001 = 1	0001 = 1	0101 = 5
	0011 = 3	0011 = 3	0111 = 7
	1001 = 9	0101 = 5	1101 = 13
	1011 = 11	0111 = 7	1111 = 15

$$F = \sum (1, 3, 5, 7, 9, 11, 13, 15) = \prod (0, 2, 4, 6, 8, 10, 12, 14)$$

[2.22] Express the complement of the following functions in sum-of-minterms form :

(a)
$$F(A,B,C,D) = \sum (2, 4, 7, 10, 12, 14)$$

$$F(A,B,C,D) = \sum (2, 4, 7, 10, 12, 14) = \prod (0,1,3,5,6,8,9,11,13,15)$$

(b)
$$F(x, y, z) = \prod (3, 5, 7)$$

$$F(x, y, z) = \prod (3, 5, 7) = \sum (3,5,7)$$

[2.23] Convert each of the following to the other canonical form:

(a)
$$F(x, y, z) = \sum (1, 3, 5)$$

 $F(x, y, z) = \sum (1, 3, 5) = \prod (0,2,4,6,7)$

(b)
$$F(A, B, C, D) = \prod (3, 5, 8, 11)$$

 $F(A, B, C, D) = \prod (3, 5, 8, 11) = \sum (0,1,2,4,6,7,9,10,12,13,14,15)$

[2.24] Convert each of the following expressions into sum of products and product of sums :

(a)
$$(u + xw)(x + u'v)$$

= $ux + uu'v + xxw + xwu'v$
= $ux + xw + xwu'v$
(b) $x' + x(x + y')(y + z')$

(b)
$$x' + x(x + y')(y + z')$$

= $(x' + x)[x' + (x + y')(y + z')]$
= $(x' + x + y')(x' + y + z')$
= $x' + y + z'$

[2.25] Draw the logic diagram corresponding to the following Boolean expressions without simplifying them:

(a)
$$BC' + AB + ACD$$

(b)
$$(A + B)(C + D)(A' + B + D)$$

(c)
$$(AB + A'B')(CD' + C'D)$$

$\left[2.26\right]$ Write the following Boolean expressions in sum of products form :

$$(b+d)(a'+b'+c)$$

a'b + b'b + bc + a'd + db' + dc
a'b + 0 + bc + a'd + db' + dc

$$a'b + bc + a'd + db' + dc$$

[2.27] Write the following Boolean expression in product of sums form:

$$a'b + a'c' + abc$$

= $\sum (0,2,3,7)$

$$=\sum_{0,2,3,7}$$

= $\prod_{0,2,3,7}$