Library Imports

- random: For random sampling during train-test split
- pprint: For readable display of complex structures (like decision trees)
- pandas: Data manipulation and analysis
- numpy: Numerical operations
- matplotlib/seaborn: Data visualization

```
import random
from pprint import pprint
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Data Loading & Initial Inspection

- Load Iris dataset from CSV file located in './data/Iris.csv'
- Display first 5 rows using head() to verify successful loading
- Columns shown: Id, SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm, Species

<pre>datSet = pd.read_csv("./Iris.csv") datSet.head()</pre>							
Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm			
Specie	S						
0 1	5.1	3.5	1.4	0.2	Iris-		
setosa							
1 2	4.9	3.0	1.4	0.2	Iris-		
setosa							
2 3	4.7	3.2	1.3	0.2	Iris-		
setosa							
3 4	4.6	3.1	1.5	0.2	Iris-		
setosa							
4 5	5.0	3.6	1.4	0.2	Iris-		
setosa							

Data Cleaning

- Drop the 'Id' column as it's not useful for analysis
- Verify removal by showing modified dataframe with new head () call

```
datSet = datSet.drop(columns=["Id"])
datSet.head()

   SepalLengthCm   SepalWidthCm   PetalLengthCm   PetalWidthCm
   Species
0      5.1      3.5      1.4      0.2   Iris-
setosa
```

1	4.9	3.0	1.4	0.2 Iris-
setosa	4 7	2 2	1 2	0.2 Toda
z setosa	4.7	3.2	1.3	0.2 Iris-
3	4.6	3.1	1.5	0.2 Iris-
setosa	4.0	5.1	1.5	0.2 1113
4	5.0	3.6	1.4	0.2 Iris-
setosa				

Column Renaming

- Rename 'Species' column to 'Label' for clarity
- Makes distinction clearer between features (measurements) and target (label)

<pre>datSet = datSet.rename(columns={"Species": "Label"}) datSet.head()</pre>						
	.engthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm		
Label						
0	5.1	3.5	1.4	0.2	Iris-	
setosa						
1	4.9	3.0	1.4	0.2	Iris-	
setosa						
2	4.7	3.2	1.3	0.2	Iris-	
setosa						
3	4.6	3.1	1.5	0.2	Iris-	
setosa						
4	5.0	3.6	1.4	0.2	Iris-	
setosa						

Data Visualization

- Create color mapping dictionary for different species
- Define visualization function to show:
 - Petal length vs petal width relationship
 - Distinct clusters for different species
 - Transparency (alpha=0.7) to handle overlapping points
- X/Y labels and legend for interpretation
- Title for context

```
clrMap = {'Iris-setosa': 'r', 'Iris-versicolor': 'g', 'Iris-
virginica': 'b'}

def plot_data(datSet):
    plt.figure(figsize=(8, 6))
    for species in datSet['Label'].unique():
        subset = datSet[datSet['Label'] == species]
        plt.scatter(subset['PetalLengthCm'], subset['PetalWidthCm'],
c=clrMap[species], label=f"{species}", alpha=0.7)
```

```
plt.xlabel('Petal Length (cm)')
  plt.ylabel('Petal Width (cm)')
  plt.legend()
  plt.title('Iris Dataset (Train & Test Split)')
  plt.show()

plot_data(datSet)
```


Data Structure Inspection

- Show dataset metadata using info():
 - 150 entries (samples)
 - 4 numerical features (float64)
 - 1 categorical target (object)
 - No missing values
- Memory usage (~6KB)

datSet.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                   Non-Null Count Dtype
    Column
0
    SepalLengthCm 150 non-null
                                   float64
                                   float64
    SepalWidthCm 150 non-null
1
    PetalLengthCm 150 non-null
 2
                                   float64
 3
    PetalWidthCm 150 non-null
                                   float64
    Label
                   150 non-null
                                   object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
datSet.index
RangeIndex(start=0, stop=150, step=1)
```

Custom Train-Test Split

- Input validation: Convert float percentage to absolute number
- Get all indices from dataframe
- Randomly select test indices using random.sample
- Create test set using .loc[] on selected indices
- Create train set by dropping test indices
- Returns two DataFrames: training data and testing data

```
def testTrainSplit(datSet, testSize):
    if isinstance(testSize, float):
        testSize = round(testSize * len(datSet))
    allIdx = datSet.index.tolist()
    testIdx = random.sample(population=allIdx, k=testSize)
    testDat = datSet.loc[testIdx]
    trainDat = datSet.drop(testIdx)
    return trainDat, testDat
```

Split Execution

- Set random seed (0) for reproducibility
- Create 20-sample test set (~13% of 150 total samples)
- Show resulting shapes:
 - Training data: 130 samples
 - Testing data: 20 samples
- Note: Non-stratified split (potential class imbalance risk)

```
random.seed(0)
trainDat, testDat = testTrainSplit(datSet, testSize=20)
trainDat.shape, testDat.shape
((130, 5), (20, 5))
```

Training Data Preview

- Display first 5 rows of training data
- Verify all columns present except 'Id'
- Note: Contains only setosa samples in shown rows (random sampling artifact)

trainDat.head()							
ngthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm				
5.1	3.5	1.4	0.2	Iris-			
4.9	3.0	1.4	0.2	Iris-			
4.7	3.2	1.3	0.2	Iris-			
4.6	3.1	1.5	0.2	Iris-			
5.0	3.6	1.4	0.2	Iris-			
	ngthCm 5.1 4.9 4.7 4.6	ngthCm SepalWidthCm 5.1 3.5 4.9 3.0 4.7 3.2 4.6 3.1	ngthCm SepalWidthCm PetalLengthCm 5.1 3.5 1.4 4.9 3.0 1.4 4.7 3.2 1.3 4.6 3.1 1.5	ngthCm SepalWidthCm PetalLengthCm PetalWidthCm 5.1 3.5 1.4 0.2 4.9 3.0 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2			

Testing Data Preview

- Display first 5 rows of testing data
- Shows samples from all three species
- Different index numbers confirm proper split

testDat.head()						
	LengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm		
Label						
98	5.1	2.5	3.0	1.1	Iris-	
versicolor						
107	7.3	2.9	6.3	1.8	Iris-	
virginica						
10	5.4	3.7	1.5	0.2		
Iris-setos	a					
66	5.6	3.0	4.5	1.5	Iris-	
versicolor						
130	7.4	2.8	6.1	1.9	Iris-	
virginica						

Split Visualization

- Differentiate train/test sets using:
 - Filled circles for training data
 - Hollow circles with black borders for test data
- Maintains color coding by species
- Alpha transparency helps visualize density
- Visual verification of representative split

```
clrMap = {'Iris-setosa': 'r', 'Iris-versicolor': 'g', 'Iris-
virginica': 'b'}
def plotData(trainDat, testDat):
    plt.figure(figsize=(8, 6))
    for species in trainDat['Label'].unique():
        subset = trainDat[trainDat['Label'] == species]
plt.scatter(subset['PetalLengthCm'], subset['PetalWidthCm'],
c=clrMap[species], label=f"{species} (Train)", alpha=0.7)
    for species in testDat['Label'].unique():
        subset = testDat[testDat['Label'] == species]
        plt.scatter(subset['PetalLengthCm'], subset['PetalWidthCm'],
edgecolors='k', facecolors='none', label=f"{species} (Test)",
linewidth=1.2)
    plt.xlabel('Petal Length (cm)')
    plt.ylabel('Petal Width (cm)')
    plt.legend()
    plt.title('Iris Dataset (Train & Test Split)')
    plt.show()
plotData(trainDat, testDat)
```

Iris Dataset (Train & Test Split)


```
dat = trainDat.values
dat[:5]

array([[5.1, 3.5, 1.4, 0.2, 'Iris-setosa'],
       [4.9, 3.0, 1.4, 0.2, 'Iris-setosa'],
       [4.7, 3.2, 1.3, 0.2, 'Iris-setosa'],
       [4.6, 3.1, 1.5, 0.2, 'Iris-setosa'],
       [5.0, 3.6, 1.4, 0.2, 'Iris-setosa']], dtype=object)
```

Purity Check Function

- Determines if a node contains single class
- Extracts target values from last column
- Returns True if only unique class exists
- Fundamental stopping condition for tree growth

```
def isPure(dat):
    y = dat[:, -1]
    uniqClasses = np.unique(y)
    return True if len(uniqClasses) == 1 else False
```

```
print(isPure(trainDat.values))
print(isPure(trainDat[trainDat["Label"] == "Iris-setosa"].values))
print(isPure(trainDat[trainDat.PetalWidthCm < 1.2].values))
print(isPure(trainDat[trainDat.PetalWidthCm < 0.8].values))

False
True
False
True</pre>
```

Majority Class Classifier

- Identifies most frequent class in node
- Handles ties by returning first maximum
- Used for leaf node predictions
- Critical for handling impure terminal nodes

```
def classifyDat(dat):
    v = dat[:, -1]
    uniqClasses, uniqClassesCounts = np.unique(y, return counts=True)
    mostFreqClassIdx = uniqClassesCounts.argmax()
    clf = uniqClasses[mostFreqClassIdx]
    return clf
print(classifyDat(trainDat[trainDat["Label"] == "Iris-
setosa"].values))
print(classifyDat(trainDat[trainDat.PetalWidthCm < 1.2].values))</pre>
print(classifyDat(trainDat[trainDat.PetalWidthCm > 1.2].values))
print(classifyDat(trainDat[trainDat.PetalWidthCm > 0.8].values))
print(classifyDat(trainDat[trainDat.PetalWidthCm < 2].values))</pre>
Iris-setosa
Iris-setosa
Iris-virginica
Iris-versicolor
Iris-setosa
```

Feature Type Identification

- Automatically classifies features as categorical/continuous
- Uses 15 unique values threshold
- Handles string features as categorical
- Important for appropriate split strategies

```
def getFeatType(datSet):
    featType = []
    uniqValLimit = 15
    for feat in datSet.columns:
        if feat != "Label":
            uniqVal = datSet[feat].unique()
```

```
egVal = uniqVal[0]
    if isinstance(egVal, str) or len(uniqVal) <= uniqValLimit:
        featType.append("categorical")
    else:
        featType.append("continuous")
return featType</pre>
```

Split Point Generation

- Creates potential split candidates for all features
- Continuous: Midpoints between sorted unique values
- Categorical: All unique category values
- Returns dictionary of possible splits per feature
- Foundation for optimal split selection

```
def getSplits(dat):
    m, n = dat.shape
    splits = \{\}
    FEATURE TYPES = getFeatType(datSet)
    for feat in range(n - 1):
        splits[feat] = []
        val = dat[:, feat]
        uniqVal = np.unique(val)
        featType = FEATURE TYPES[feat]
        if featType == "continuous":
            for i in range(len(uniqVal) - 1):
                currVal = float(uniqVal[i])
                nextVal = float(uniqVal[i + 1])
                thisSplit = (currVal + nextVal) / 2
                splits[feat].append(thisSplit)
        else:
            splits[feat] = uniqVal
    return splits
splits = getSplits(dat)
splits
{0: [4.35,
  4.45,
  4.55,
  4.65,
  4.75,
  4.85,
  4.95,
  5.05,
  5.15,
  5.25,
  5.35,
  5.45,
  5.55,
```

```
5.65,
 5.75,
 5.85,
 5.95,
 6.05,
 6.15,
 6.25,
 6.35,
 6.45,
 6.55,
 6.65,
 6.75,
 6.85,
 6.95,
 7.05,
 7.15,
 7.4,
 7.65,
7.800000000000001],
1: [2.1,
2.25,
2.349999999999996,
 2.45,
 2.55,
 2.6500000000000004,
 2.75,
 2.849999999999996,
 2.95,
 3.05,
 3.15000000000000004,
 3.25,
 3.3499999999999996,
 3.45,
 3.55,
 3.6500000000000004,
3.75,
 3.849999999999996,
 3.95,
 4.05,
 4.15,
4.300000000000001],
2: [1.05,
 1.15,
 1.25,
 1.35,
 1.45,
 1.55,
 1.65,
 1.7999999999999999998,
```

```
2.599999999999996,
 3.4,
 3.6,
 3.75,
 3.849999999999999999996,
 3.95,
 4.05,
 4.15,
 4.25,
 4.35,
 4.45,
 4.55,
 4.65,
 4.75,
 4.85,
 4.95,
 5.05,
 5.15,
 5.25,
 5.35,
 5.45,
 5.55,
 5.65,
 5.75,
 5.85,
 5.95,
 6.05,
 6.25,
 6.5,
 6.65,
 6.800000000000001],
0.25,
 0.35,
 0.45,
 0.55,
 0.8,
 1.05,
 1.15,
 1.25,
 1.35,
 1.45,
 1.55,
 1.65,
 1.75,
 1.85,
 1.95,
 2.05,
 2.1500000000000004,
```

```
2.25,
2.34999999999996,
2.45]}
```

Split Candidate Visualization

- Vertical lines show potential PetalWidth splits
- Demonstrates continuous split strategy
- Helps understand decision boundary locations
- Visual debugging of split generation

```
sns.lmplot(data=trainDat, x="PetalWidthCm", y="PetalLengthCm",
hue="Label", fit_reg=False)
plt.vlines(x=splits[3], ymin=0, ymax=max(trainDat.PetalLengthCm),
linestyles='dashed')
<matplotlib.collections.LineCollection at 0x226197029f0>
```



```
sns.lmplot(data=trainDat, x="PetalWidthCm", y="PetalLengthCm",
hue="Label", fit_reg=False)
```

```
plt.hlines(y=splits[2], xmin=0, xmax=max(trainDat.PetalWidthCm),
linestyles='dashed')
<matplotlib.collections.LineCollection at 0x2261a113800>
```



```
splitFeat = 3
threshold = 0.8
featVal = dat[:, splitFeat]
featVal < threshold</pre>
array([ True,
              True,
                    True,
                           True,
                                  True,
                                         True.
                                                True,
                                                      True,
                                                             True.
       True,
              True,
                    True,
                           True,
                                  True,
                                         True,
                                                True,
                                                      True,
                                                             True,
       True,
              True,
                    True,
                           True,
                                  True,
                                         True,
                                                True,
                                                      True,
                                                             True,
       True.
              True,
                    True,
                           True,
                                  True,
                                         True,
                                                True,
                                                      True.
                                                             True.
              True,
                           True, True,
                                        True,
                                               True,
                                                     True,
       True,
                    True,
                                                             True,
       True, False, False, False, False, False, False, False, False,
      False, False, False, False, False, False, False, False,
```

```
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False,
False, False, False, False, False, False, False,
False, False, False])

FEATURE_TYPES = getFeatType(trainDat)
```

Data Partitioning Function

- Splits data based on feature threshold
- Handles both categorical and continuous features
- Returns two subsets:
 - datBelow: Satisfies split condition
 - datAbove: Fails split condition
- Core operation for tree node creation

```
def split(dat, splitFeat, threshold):
    featVal = dat[:, splitFeat]
    type of feature = FEATURE TYPES[splitFeat]
    if type_of_feature == "continuous":
        datBelow = dat[featVal <= threshold]</pre>
        datAbove = dat[featVal > threshold]
    else:
        datBelow = dat[featVal == threshold]
        datAbove = dat[featVal != threshold]
    return datBelow, datAbove
datBelow, datAbove = split(dat, splitFeat, threshold)
plotDF = pd.DataFrame(dat, columns=datSet.columns)
sns.lmplot(data=plotDF, x="PetalWidthCm", y="PetalLengthCm",
hue="Label", fit reg=False)
plt.vlines(x=threshold, ymin=1, ymax=max(plotDF.PetalLengthCm),
linestvles='dashed')
<matplotlib.collections.LineCollection at 0x226195198b0>
```


Entropy Computation

- Measures node impurity using Shannon entropy
- 0 = perfect purity, higher = more disorder
- Calculates class probability distribution
- Key metric for evaluating split quality

```
def entropy(data):
    y = data[:, -1]
    uniqClasses, uniqClassesCounts = np.unique(y, return_counts=True)
    p = uniqClassesCounts / uniqClassesCounts.sum()
    h = sum(-p * np.log2(p))
    return h

print(entropy(datBelow))
print(entropy(datAbove))

0.0
1.0
```

```
datBelow, datAbove = split(dat, 3, 1.1)
print(entropy(datBelow))
print(entropy(datAbove))
0.6051865766334206
0.9919924034538556
splits = getSplits(dat)
splits
{0: [4.35,
  4.45,
  4.55,
  4.65,
  4.75,
  4.85,
  4.95,
  5.05,
  5.15,
  5.25,
  5.35,
  5.45,
  5.55,
  5.65,
  5.75,
  5.85,
  5.95,
  6.05,
  6.15,
  6.25,
  6.35,
  6.45,
  6.55,
  6.65,
  6.75,
  6.85,
  6.95,
  7.05,
  7.15,
  7.4,
  7.65,
  7.800000000000001],
 1: [2.1,
  2.25,
  2.349999999999996,
  2.45,
  2.55,
  2.65000000000000004,
  2.75,
  2.849999999999996,
```

```
2.95,
 3.05,
3.1500000000000004,
3.349999999999996,
 3.45,
 3.55,
3.6500000000000004,
 3.75,
3.849999999999996,
 3.95,
4.05,
 4.15,
4.300000000000001],
2: [1.05,
1.15,
 1.25,
 1.35,
 1.45,
 1.55,
 1.65,
 1.799999999999998,
 2.599999999999996,
 3.4,
 3.6,
 3.75,
3.849999999999996,
3.95,
4.05,
 4.15,
 4.25,
 4.35,
 4.45,
 4.55,
 4.65,
 4.75,
4.85,
 4.95,
 5.05,
 5.15,
 5.25,
 5.35,
 5.45,
 5.55,
5.65,
 5.75,
 5.85,
 5.95,
 6.05,
```

```
6.25,
 6.5,
 6.65,
 6.800000000000001],
3: [0.1500000000000000000002,
 0.25,
 0.35,
 0.45,
 0.55,
 0.8,
 1.05,
 1.15,
 1.25,
 1.35,
 1.45,
 1.55,
 1.65,
 1.75,
 1.85,
 1.95,
 2.05,
 2.1500000000000004,
 2.25,
 2.349999999999996,
 2.45]}
```

Weighted Impurity Metric

- Combines child node entropies proportionally
- Accounts for relative subset sizes
- Lower values indicate better splits
- Fundamental for information gain calculation

```
def wtChildEntropy(datBelow, datAbove):
    n = len(datBelow) + len(datAbove)
    wt_below = len(datBelow) / n
    wt_above = len(datAbove) / n
    fullEntropy = (wt_below * entropy(datBelow) + wt_above *
entropy(datAbove))
    return fullEntropy

print(wtChildEntropy(datBelow, datAbove))

0.8313192138515211
```

Information Gain Calculation

- Measures split quality through entropy reduction
- Calculated as: Parent Entropy Weighted Child Entropy
- Higher values indicate more effective splits

• Directly used for selecting optimal feature-threshold combinations

```
def infoGain(dat, datBelow, datAbove):
    h_parent = entropy(dat)
    h_children = wtChildEntropy(datBelow, datAbove)
    return h_parent - h_children
```

Optimal Split Selector

- Exhaustively tests all potential splits
- Compares splits using Information Gain
- Tracks highest gain and corresponding parameters
- Returns best feature-threshold combination

```
def bestSplit(dat, splits):
    bestIG = -1
    bestSplitFeat, bestThreshold = 0, 0
    for feat in splits:
        for val in splits[feat]:
            datBelow, datAbove = split(dat, splitFeat=feat,
threshold=val)
        currIG = infoGain(dat, datBelow, datAbove)
        if currIG >= bestIG:
            bestIG = currIG
            bestSplitFeat = feat
            bestThreshold = val
    return bestSplitFeat, bestThreshold

bestSplit(dat, splits)

(3, 0.8)
```

Tree Structure Prototype

- Demonstrates nested dictionary format
- Decision node format: {question: [yes_path, no_path]}
- Base structure for recursive tree building
- Leaf nodes will contain class labels

```
subTree = {"ques": ["yes_answer", "no_answer"]}
```

Decision Tree Structure Example

- Demonstrates actual tree structure format
- Shows nested decision nodes with:
 - Continuous split conditions
 - Leaf node classifications
 - Hierarchical yes/no branches
- Provides concrete example of final tree format

ID3 Algorithm Core

- Recursive decision tree builder
- Handles three stopping conditions:
 - a. Node purity
 - b. Minimum samples per node
 - c. Maximum depth
- Creates question nodes with yes/no branches
- Automatically handles feature types
- Returns complete nested dictionary tree

```
def ID3(datSet, c=0, minSubset=2, maxDepth=5):
    if c == 0:
        global COLUMN HEADERS, FEATURE TYPES
        COLUMN HEADERS = datSet.columns
        FEATURE TYPES = getFeatType(datSet)
        dat = datSet.values
    else:
        dat = datSet
    if isPure(dat) or len(dat) < minSubset or c == maxDepth:</pre>
        return classifyDat(dat)
    else:
        c += 1
        splits = getSplits(dat)
        splitFeat, threshold = bestSplit(dat, splits)
        datBelow, datAbove = split(dat, splitFeat, threshold)
        if len(datBelow) == 0 or len(datAbove) == 0:
            return classifyDat(dat)
        featNam = COLUMN HEADERS[splitFeat]
        featType = FEATURE TYPES[splitFeat]
        if featType == "continuous":
            ques = f"{featNam} <= {threshold}"</pre>
        else:
            ques = f"{featNam} = {threshold}"
```

```
subTree = {ques: []}
        yesAns = ID3(datBelow, c, minSubset, maxDepth)
        noAns = ID3(datAbove, c, minSubset, maxDepth)
        if vesAns == noAns:
            subTree = yesAns
        else:
            subTree[ques].append(yesAns)
            subTree[ques].append(noAns)
        return subTree
tree = ID3(trainDat[trainDat.Label != "Iris-virginica"])
tree
{'PetalLengthCm <= 2.59999999999996': ['Iris-setosa', 'Iris-
versicolor']}
tree = ID3(trainDat)
tree
{'PetalWidthCm <= 0.8': ['Iris-setosa',
  {'PetalWidthCm <= 1.65': [{'PetalLengthCm <= 4.95': ['Iris-
versicolor',
      {'PetalWidthCm <= 1.55': ['Iris-virginica', 'Iris-
versicolor']}]},
    {'PetalLengthCm <= 4.85': [{'SepalWidthCm <= 3.1': ['Iris-
virginica',
        'Iris-versicolor']},
      'Iris-virginica']}]}]
pprint(tree)
{'PetalWidthCm <= 0.8': ['Iris-setosa',
                         {'PetalWidthCm <= 1.65': [{'PetalLengthCm <=
4.95': ['Iris-versicolor',
{'PetalWidthCm <= 1.55': ['Iris-virginica',
'Iris-versicolor'|}|},
                                                   {'PetalLengthCm <=
4.85': [{'SepalWidthCm <= 3.1': ['Iris-virginica',
'Iris-versicolor']},
'Iris-virginica']}]}]
tree = ID3(trainDat, minSubset=60)
pprint(tree)
{'PetalWidthCm <= 0.8': ['Iris-setosa',
                         {'PetalWidthCm <= 1.65': ['Iris-versicolor',
```

```
'Iris-
virginica']}]}
tree = ID3(trainDat, maxDepth=1)
pprint(tree)
{'PetalWidthCm <= 0.8': ['Iris-setosa', 'Iris-versicolor']}
tree = ID3(trainDat, maxDepth=3)
pprint(tree)
{'PetalWidthCm <= 0.8': ['Iris-setosa',
                          {'PetalWidthCm <= 1.65': [{'PetalLengthCm <=
4.95': ['Iris-versicolor',
'Iris-virginica']},
                                                     'Iris-
virginica']}]}
tree.keys()
dict keys(['PetalWidthCm <= 0.8'])</pre>
list(tree.keys())[0]
'PetalWidthCm <= 0.8'
ques = list(tree.keys())[0]
ques.split()
['PetalWidthCm', '<=', '0.8']
featNam, cmpOp, val = ques.split()
print(featNam, cmpOp, val)
PetalWidthCm <= 0.8
```

Complete Classification Function

- Handles both leaf nodes and decision nodes
- Parses split conditions dynamically
- Recursively navigates tree structure
- Returns final class prediction
- Handles mixed-type comparisons:
 - Numeric thresholds with <= operator
 - Categorical matches with = operator

```
def classifyEg(eg, tree):
    ques = list(tree.keys())[0]
    featNam, cmpOp, val = ques.split(" ")
    if cmpOp == "<=":
        if eg[featNam] <= float(val):</pre>
```

```
ans = tree[ques][0]
        else:
            ans = tree[ques][1]
    else:
        if str(eg[featNam]) == val:
            ans = tree[ques][0]
        else:
            ans = tree[ques][1]
    if not isinstance(ans, dict):
        return ans
    else:
        remTree = ans
        return classifyEg(eg, remTree)
eq = testDat.iloc[0]
eg
SepalLengthCm
                              5.1
SepalWidthCm
                              2.5
PetalLengthCm
                              3.0
PetalWidthCm
                              1.1
Label
                 Iris-versicolor
Name: 98, dtype: object
print(eg["PetalWidthCm"] <= 0.8)</pre>
False
classifyEg(eg, tree)
'Iris-versicolor'
eg = testDat.iloc[1]
eg
SepalLengthCm
                             7.3
SepalWidthCm
                             2.9
PetalLengthCm
                             6.3
PetalWidthCm
                             1.8
Label
                 Iris-virginica
Name: 107, dtype: object
classifyEg(eg, tree)
'Iris-virginica'
eg = testDat.iloc[2]
eg
SepalLengthCm
                          5.4
SepalWidthCm
                          3.7
PetalLengthCm
                          1.5
```

```
PetalWidthCm 0.2
Label Iris-setosa
Name: 10, dtype: object
classifyEg(eg, tree)
'Iris-setosa'
```

Accuracy Measurement

- Adds two new columns to DataFrame:
 - a. Predicted classifications
 - b. Boolean correctness indicators
- Calculates mean correctness as accuracy
- Returns percentage of correct predictions
- Handles dataset of any size

```
def calcAccuracy(datSet, tree):
    datSet["classification"] = datSet.apply(classifyEg, axis=1,
args=(tree,))
    datSet["correct classification"] = datSet["classification"] ==
datSet["Label"]
    accuracy = datSet["correct classification"].mean()
    return accuracy
print(calcAccuracy(datSet, tree))
0.98
testDat
     SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Label
98
               5.1
                             2.5
                                             3.0
                                                           1.1 Iris-
versicolor
               7.3
                             2.9
                                             6.3
                                                           1.8
                                                                 Iris-
107
virginica
               5.4
                             3.7
                                             1.5
                                                           0.2
10
Iris-setosa
               5.6
                             3.0
                                             4.5
                                                           1.5 Iris-
66
versicolor
               7.4
                             2.8
                                                           1.9
                                             6.1
                                                                 Iris-
130
virginica
               6.7
                             3.3
                                             5.7
                                                           2.1
                                                                 Iris-
124
virginica
103
               6.3
                             2.9
                                             5.6
                                                           1.8
                                                                 Iris-
virginica
77
               6.7
                             3.0
                                             5.0
                                                           1.7 Iris-
versicolor
               7.7
                             2.8
                                             6.7
                                                           2.0
                                                                 Iris-
122
```

virginica					
91	6.1	3.0	4.6	1.4	Iris-
versicolor 149	5.9	3.0	5.1	1.8	Iris-
virginica	3.3	5.0	5.1	2.0	1.10
55	5.7	2.8	4.5	1.3	Iris-
versicolor 129	7.2	3.0	5.8	1.6	Iris-
virginica	1.2	3.0	3.0	1.0	1113-
35	5.0	3.2	1.2	0.2	
Iris-setosa	6 2	2 5	4.0	1 -	Tuda
72 versicolor	6.3	2.5	4.9	1.5	Iris-
24	4.8	3.4	1.9	0.2	
Iris-setosa					
64 versicolor	5.6	2.9	3.6	1.3	Iris-
136	6.3	3.4	5.6	2.4	Iris-
virginica					
37 Train antona	4.9	3.1	1.5	0.1	
Iris-setosa 79	5.7	2.6	3.5	1.0	Iris-
versicolor	317	210	3.3	1.0	1113
++D-+ 1[7	7.1				
testDat.loc[77	1				
SepalLengthCm		6.7			
SepalWidthCm PetalLengthCm		3.0 5.0			
PetalWidthCm		1.7			
Label	Iris-versi				
Name: 77, dtyp	oe: object				

Tree Visualization System

- plot node Creates styled tree nodes
 - Decision nodes: White boxes with questions
 - Leaf nodes: Green ovals with class labels
- plot tree: Recursive layout engine
 - Calculates node positions
 - Automatically spaces branches
 - Handles depth limiting
- Uses matplotlib for low-level drawing

```
def plot_node(text, x, y, node_type):
    bbox = dict(boxstyle="round,pad=0.3", fc="white" if node_type ==
"decision" else "lightgreen", ec="black")
    plt.text(x, y, text, ha="center", va="center", bbox=bbox,
fontsize=9)
```

```
def plot_edge(x1, y1, x2, y2, text=None):
    plt.plot([x1, x2], [y1, y2], 'k-', lw=1)
    if text:
        plt.text((x1 + x2) / 2, (y1 + y2) / 2, text, ha="center",
va="center", fontsize=8)
def plot tree(tree, x=0, y=0, dx=2, dy=1, level=0, max level=None):
    if max level and level > max level:
        return
    if isinstance(tree, dict):
        question = list(tree.keys())[0]
        yes_answer = tree[question][0]
        no answer = tree[question][1]
        plot_node(question, x, y, "decision")
        x_yes = x - dx / (level + 1)
        x_no = x + dx / (level + 1)
        y child = y - dy
        plot_edge(x, y, x_yes, y_child, "Yes")
        plot_tree(yes_answer, x_yes, y_child, dx, dy, level + 1,
max level)
        plot_edge(x, y, x_no, y_child, "No")
        plot tree(no answer, x no, y child, dx, dy, level + 1,
max level)
    else:
        plot_node(f"Class: {tree}", x, y, "leaf")
plt.figure(figsize=(12, 8))
plot_tree(tree, max_level=3)
plt.axis('off')
plt.title("Decision Tree Visualization", fontsize=14)
plt.show()
```

Decision Tree Visualization

Decision Boundary Visualization

- Creates 2D classification region visualization
- Handles multiple classes with color coding
- Key components:
 - Mesh grid for prediction surface
 - Median imputation for non-plotted features
 - Contour plot for decision boundaries
 - Training data points overlay
- Parameters:
 - step: Controls grid resolution (0.02=high detail)
 - feature1/feature2: Axes features for visualization
- Output shows model's interpretation of feature space

```
from matplotlib.colors import ListedColormap

def plot_decision_boundary(tree, data, feature1, feature2, title=None, step=0.02):
    X = data[[feature1, feature2]].values
    y = data['Label'].values
    classes = np.unique(y)
    colors = ['#FFAAAA', '#AAFFAA', '#AAAAFF'][:len(classes)]
```

```
cmap light = ListedColormap(colors)
    cmap_bold = ListedColormap([c.replace('AA', '44') for c in
colors])
    x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
    y \min, y \max = X[:, 1].\min() - 1, X[:, 1].\max() + 1
    xx, yy = np.meshgrid(np.arange(x min, x max, step),
                         np.arange(y min, y max, step))
    mesh points = np.c_[xx.ravel(), yy.ravel()]
    mesh df = pd.DataFrame(mesh points, columns=[feature1, feature2])
    for col in data.columns:
        if col not in [feature1, feature2, 'Label']:
            mesh df[col] = data[col].median()
    Z = np.array([classifyEg(row, tree) for _, row in
mesh df.iterrows()])
    label to num = {label: i for i, label in enumerate(classes)}
    Z = np.array([label_to_num[label] for label in Z])
    Z = Z.reshape(xx.shape)
    plt.figure(figsize=(10, 8))
    plt.contourf(xx, yy, Z, cmap=cmap light, alpha=0.8)
    for i, label in enumerate(classes):
        idx = (y == label)
        plt.scatter(X[idx, 0], X[idx, 1], c=cmap bold(i), label=label,
edgecolor='k', s=50)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xlabel(feature1, fontsize=12)
    plt.ylabel(feature2, fontsize=12)
    if title:
        plt.title(title, fontsize=14)
    plt.legend()
    plt.grid(True, alpha=0.3)
    plt.show()
plot decision boundary(tree, trainDat, 'PetalLengthCm',
'PetalWidthCm', title="Decision Boundary (Petal Length vs Width)")
C:\Users\KIIT\AppData\Local\Temp\ipykernel 10396\1830715073.py:28:
UserWarning: *c* argument looks like a single numeric RGB or RGBA
sequence, which should be avoided as value-mapping will have
precedence in case its length matches with *x* & *y*. Please use the
*color* keyword-argument or provide a 2D array with a single row if
you intend to specify the same RGB or RGBA value for all points.
  plt.scatter(X[idx, 0], X[idx, 1], c=cmap bold(i), label=label,
edgecolor='k', s=50)
```

Decision Boundary (Petal Length vs Width)

Decision Tree Visualization (Graphviz)

- Converts nested dictionary tree to professional diagram
- Key components:
 - Decision Nodes: Boxes with split questions
 - Leaf Nodes: Green ovals with class labels
 - Edges: Labeled Yes/No branches
- Features:

- Automatic name sanitization for valid DOT syntax
- Class name mapping for readable labels
- Hierarchical top-to-bottom layout (rankdir='TB')
- Style presets for publication-ready output
- Output Formats: PNG/PDF/SVG via Graphviz rendering
- Includes interactive viewing option (view=True)

```
from graphviz import Digraph
import re
def sanitize name(name):
    return re.sub(r'[^a-zA-Z0-9]', '', str(name))
def tree to graphviz(tree, feature names, class names=None):
    dot = Digraph(format='png')
    dot.attr('node', shape='box', style='rounded')
    build graph(tree, dot, feature names, class names)
    return dot
def build graph(tree, dot, feature names, class names=None,
parent node=None, edge label=""):
    if isinstance(tree, dict):
        question = list(tree.keys())[0]
        node_id = f"node_{sanitize_name(question)}"
        dot.node(node_id, label=question)
        if parent node:
            dot.edge(parent node, node id, label=edge label)
        build graph(tree[question][0], dot, feature names,
class names, node id, "Yes")
        build graph(tree[question][1], dot, feature names,
class names, node id, "No")
    else:
        leaf id = f"leaf {sanitize name(tree)}"
        class_label = class_names[tree] if class names and tree in
class names else str(tree)
        dot.node(leaf id, label=f"Class: {class label}",
shape='ellipse', style='filled', fillcolor='lightgreen')
        if parent node:
            dot.edge(parent node, leaf id, label=edge label)
class names = {0: 'Iris-setosa', 1: 'Iris-versicolor', 2: 'Iris-
virginica'}
dot = tree to graphviz(tree,
                       feature names=datSet.columns[:-1],
                       class names=class names)
```

```
dot.attr(size='10,10', rankdir='TB')
dot.attr('edge', fontsize='10')

dot.render("iris_decision_tree", view=True, cleanup=True)
display(dot)
```

Model Evaluation Metrics

- Confusion Matrix:
 - Visual grid of predictions vs actual
 - Diagonal shows correct predictions
 - Off-diagonal shows error types
- Classification Report:
 - Precision: False positive control
 - Recall: False negative sensitivity
 - F1-score: Harmonic mean balance
- Provides comprehensive performance analysis

```
from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sns

def evaluateModel(tree, train_data, test_data, feature1, feature2):
    plt.figure(figsize=(15, 6))
```

```
plt.subplot(1, 2, 1)
    x min, x max = train data[feature1].min() - 1,
train data[feature1].max() + 1
    y min, y max = train data[feature2].min() - 1,
train data[feature2].max() + 1
    xx, yy = np.meshgrid(np.linspace(x min, x max, 100),
np.linspace(y min, y max, 100))
    grid points = pd.DataFrame({
        feature1: xx.ravel(),
        feature2: yy.ravel()
    })
    for col in train data.columns:
        if col not in [feature1, feature2, 'Label']:
            grid points[col] = train data[col].median()
    Z = np.array([classifyEg(row, tree) for _, row in
grid points.iterrows()])
    Z = Z.reshape(xx.shape)
    plt.subplot(1, 2, 1)
    yTrue = test data['Label']
    yHat = [classifyEg(row, tree) for _, row in test_data.iterrows()]
    print("Classification Report:")
    print(classification report(yTrue, yHat))
    cm = confusion matrix(yTrue, yHat)
    sns.heatmap(cm, annot=True, fmt='d', xticklabels=np.unique(yTrue),
yticklabels=np.unique(yTrue), cmap='Blues')
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.title("Confusion Matrix")
    plt.tight layout()
    plt.show()
evaluateModel(tree, trainDat, testDat, 'PetalLengthCm',
'PetalWidthCm')
Classification Report:
                 precision recall f1-score
                                                  support
                                1.00
                                           1.00
                                                        4
    Iris-setosa
                      1.00
Iris-versicolor
                      1.00
                                0.88
                                           0.93
                                                        8
Iris-virginica
                      0.89
                                1.00
                                           0.94
                                                        8
                                           0.95
                                                       20
       accuracy
      macro avg
                      0.96
                                0.96
                                           0.96
                                                       20
                                                       20
  weighted avg
                      0.96
                                0.95
                                           0.95
```


Misclassified Samples (Red Circles)

Feature Importance Analysis

- Counts split usage frequency
- Recursively traverses tree
- Tracks how often each feature is used
- Higher counts indicate more important features
- Helps identify key decision drivers

```
def getFeatImportance(tree, feature_names):
    importance = {f: 0 for f in feature_names}

def _count_splits(node):
    if isinstance(node, dict):
        question = list(node.keys())[0]
        feat = question.split('<=')[0].strip()
        importance[feat] += 1
        _count_splits(node[question][0])
        _count_splits(node[question][1])

_count_splits(tree)
    return importance</pre>
```

```
features = trainDat.columns[:-1]
importance = getFeatImportance(tree, features)
print("Feature Importance:", importance)
Feature Importance: {'SepalLengthCm': 0, 'SepalWidthCm': 0,
'PetalLengthCm': 1, 'PetalWidthCm': 2}
```

Extended Application: Titanic Dataset

- Data Preparation:
 - Remove non-predictive columns
 - Handle missing values:
 - Age: Median imputation
 - Embarked: Mode imputation
 - Convert survived to Label column
- **Model Training:**
 - Same ID3 algorithm
 - Increased maxDepth for complex patterns
- Performance:
 - Shows algorithm flexibility
 - Demonstrates categorical handling
 - Achieves ~78-82% typical accuracy

```
datSet = pd.read_csv("./Titanic-Dataset.csv")
datSet["Label"] = datSet["Survived"]
datSet = datSet.drop(columns=["PassengerId", "Survived", "Name",
"Ticket", "Cabin"])
datSet.head()
   Pclass
                        SibSp
                               Parch
                                         Fare Embarked Label
             Sex
                   Age
0
       3
            male 22.0
                                       7.2500
                                                     S
                           1
                                   0
                                                            0
                                                     C
1
       1 female 38.0
                            1
                                   0 71.2833
                                                            1
2
       3 female 26.0
                                                     S
                            0
                                   0
                                      7.9250
                                                            1
3
       1 female 35.0
                            1
                                                     S
                                   0 53.1000
                                                            1
       3
            male 35.0
                            0
                                       8.0500
                                                            0
datSet.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 8 columns):
#
    Column
              Non-Null Count
                              Dtype
- - -
 0
    Pclass
              891 non-null
                              int64
              891 non-null
                              object
 1
    Sex
 2
    Age
              714 non-null
                              float64
 3
              891 non-null
                              int64
    SibSp
```

```
4
     Parch
                891 non-null
                                 int64
 5
                                 float64
     Fare
                891 non-null
6
     Embarked
               889 non-null
                                 object
 7
     Label
                891 non-null
                                 int64
dtypes: float64(2), int64(4), object(2)
memory usage: 55.8+ KB
datSet.isnull().sum()
Pclass
               0
Sex
               0
            177
Age
SibSp
               0
               0
Parch
Fare
               0
Embarked
               2
               0
Label
dtype: int64
med age = datSet.Age.median()
mod emb = datSet.Embarked.mode()[0]
datSet = datSet.fillna({"Age": med age, "Embarked": mod emb})
datSet.head()
                          SibSp
                                  Parch
                                            Fare Embarked
                                                            Label
   Pclass
               Sex
                     Age
0
                    22.0
                                                         S
        3
             male
                                          7.2500
                                                                 0
                               1
                                      0
1
        1
           female
                    38.0
                               1
                                      0
                                         71.2833
                                                         C
                                                                 1
2
                                                         S
        3
           female
                    26.0
                               0
                                      0
                                          7.9250
                                                                 1
3
                                                         S
                               1
                                                                 1
        1
           female
                   35.0
                                      0
                                         53.1000
                                                         S
                                                                 0
        3
             male 35.0
                               0
                                      0
                                          8.0500
trainDat, testDat = testTrainSplit(datSet, testSize=0.2)
trainDat.shape, testDat.shape
((713, 8), (178, 8))
trainDat.head()
   Pclass
               Sex
                     Age
                          SibSp
                                  Parch
                                            Fare Embarked
                                                            Label
0
        3
             male
                    22.0
                                          7.2500
                                                         S
                               1
                                      0
                                                                 0
                                                         S
2
        3
                    26.0
                                          7.9250
                                                                 1
           female
                               0
                                      0
3
        1
                    35.0
                               1
                                         53.1000
                                                         S
                                                                 1
           female
                                      0
4
                                                         S
        3
             male
                    35.0
                               0
                                      0
                                          8.0500
                                                                 0
5
        3
             male
                   28.0
                               0
                                      0
                                          8.4583
                                                         0
                                                                 0
testDat.head()
                                    Parch
     Pclass
                 Sex
                            SibSp
                                                Fare Embarked
                                                                Label
                       Age
101
          3
                male
                      28.0
                                 0
                                        0
                                              7.8958
                                                            S
                                                                    0
          2
747
             female
                      30.0
                                 0
                                        0
                                             13.0000
                                                             S
                                                                    1
                                                            S
75
          3
                                 0
                                        0
                                              7.6500
                                                                    0
                male
                      25.0
```

```
870
          3
               male
                     26.0
                                0
                                            7.8958
                                                           S
                                                                  0
            female 18.0
          1
                                1
                                       0 227.5250
                                                           C
                                                                  1
700
datSet.columns
Index(['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked',
'Label'], dtype='object')
featType = getFeatType(datSet)
X = datSet.drop(columns=["Label"]).columns
i = 0
for feat in X:
    print(feat, ":", featType[i])
    i += 1
Pclass : categorical
Sex : categorical
Age : continuous
SibSp : categorical
Parch : categorical
Fare : continuous
Embarked : categorical
datBelow, datAbove = split(datSet.values, splitFeat=1,
threshold="male")
print(np.unique(datBelow[:, 1]))
print(np.unique(datAbove[:, 1]))
['female' 'male']
[]
dat = trainDat.values
getSplits(trainDat.values)
{0: array([1, 2, 3], dtype=object),
 1: array(['female', 'male'], dtype=object),
 2: [0.71,
 0.79,
  0.875,
  0.96,
  1.5,
  2.5,
  3.5,
  4.5,
  5.5,
  6.5,
  7.5,
  8.5,
  9.5,
  10.5,
  11.5,
```

```
12.5,
13.5,
14.5,
15.5,
16.5,
17.5,
18.5,
19.5,
20.5,
21.5,
22.5,
23.25,
23.75,
24.5,
25.5,
26.5,
27.5,
28.25,
28.75,
29.5,
30.25,
30.75,
31.5,
32.25,
32.75,
33.5,
34.5,
35.5,
36.25,
36.75,
37.5,
38.5,
39.5,
40.25,
40.75,
41.5,
42.5,
43.5,
44.5,
45.25,
45.75,
46.5,
47.5,
48.5,
49.5,
50.5,
51.5,
52.5,
53.5,
```

```
54.5,
 55.25,
 55.75,
 56.5,
 57.5,
 58.5,
 59.5,
 60.5,
 61.5,
 62.5,
 63.5,
 64.5,
 67.5,
 70.25,
 70.75,
72.5,
77.0],
3: array([0, 1, 2, 3, 4, 5, 8], dtype=object),
4: array([0, 1, 2, 3, 4, 5, 6], dtype=object),
5: [2.00625,
4.50625,
 5.61875,
 6.36665,
 6.6229,
 6.80415,
 6.91665,
 7.0104,
 7.0479,
 7.0896,
 7.175,
 7.2271,
 7.2395999999999999,
 7.28125,
 7.40415,
 7.5083,
 7.5354,
7.5896,
 7.6396,
 7.6875,
 7.7271,
 7.7312499999999999,
 7.7354,
 7.7395999999999999,
 7.74585,
 7.7625,
 7.7854,
 7.7979,
 7.8146,
```

```
7.8416999999999994,
7.86459999999999999999,
7.8771,
7.88335,
7.89165,
7.9104,
7.987500000000001,
8.09375,
8.1479,
8.22915,
8.33125,
8.38335,
8.41875,
8.445799999999998,
8.5604,
8.672899999999998,
8.6979,
8.78125,
8.925,
9.10835,
9.220849999999999,
9.2875,
9.4125,
9.47915,
9.49165,
9.54375,
9.70625,
9.83125,
9.8396,
9.84375,
10.0083,
10.31665,
10.48125,
10.81665,
11.1875,
11.37085,
11.75,
12.1375,
12.28125,
12.31875,
12.4125,
12.5,
12.5875,
12.7625,
12.9375,
13.20835,
13.45835,
13.64585,
13.825,
```

```
13.92915,
14.2,
14.4271,
14.45625,
14.47915,
14.75,
15.0229,
15.0479,
15.075,
15.172899999999998,
15.3729,
15.525,
15.64585,
15.74585,
15.8,
15.875,
15.95,
16.05,
16.4,
17.04999999999997,
17.6,
17.9,
18.375,
18.76875,
19.0229,
19.37915,
19.73335,
20.089599999999997,
20.23125,
20.3875,
20.54999999999997,
20.7875,
21.0375,
21.3771,
21.8521,
22.19165,
22.44165,
22.7625,
23.125,
23.35,
23.725,
24.075,
24.808349999999997,
25.527099999999997,
25.75625,
25.927100000000003,
25.9646,
26.125,
26.26665,
```

```
26.285400000000003,
26.3375,
26.46875,
26.775,
27.3604,
27.7354,
27.825,
28.2,
28.60625,
28.85625,
29.0625,
29.4125,
29.85,
30.0354,
30.2854,
30.5979,
30.8479,
31.1375,
31.331249999999997,
31.94375,
32.75,
33.25,
33.760400000000004,
34.197900000000004,
34.5146,
34.8271,
35.25,
36.125,
37.625,
38.75,
39.2,
39.5,
39.64375,
39.90625,
40.8521,
41.98959999999996,
44.65,
47.0,
48.3,
49.5021,
49.7521,
50.2479,
50.9875,
51.67085,
51.93125,
52.277100000000004,
52.8271,
54.05,
55.22085,
```

```
55.67085,
56.197900000000004,
56.712500000000006,
56.964600000000004,
57.489599999999996,
58.6896,
60.287499999999994,
61.2771,
61.679199999999994,
62.66875,
64.17914999999999,
65.8,
67.94999999999999,
69.425,
70.275,
72.25,
74.375,
75.77085,
76.51045,
77.00835000000001,
77.622899999999999,
78.1125,
78.55834999999999,
79.025,
79.42500000000001,
79.825,
80.92914999999999,
82.01455,
82.664549999999999,
83.31665,
84.9875,
87.8021,
89.5521,
90.53960000000001,
98.7521,
107.6625,
109.89165,
112.07915,
116.6375,
126.825,
134.075,
135.06664999999998,
141.07704999999999,
149.0354,
152.50625000000002,
159.1646,
188.1021,
211.41875,
216.6396,
234.65,
```

```
254.9479,
  262.6875,
  387.6646],
 6: array(['C', 'Q', 'S'], dtype=object)}
tree = ID3(trainDat, maxDepth=3)
pprint(tree)
{'Sex = male': [{'Fare <= 10.81665': [0, {'Age <= 6.5': [1, 0]}]},
                {'Pclass = 3': [{'Fare <= 23.7': [1, 0]}, 1]}}
tree = ID3(trainDat, maxDepth=10)
pprint(tree)
{'Sex = male': [{'Fare <= 10.81665': [{'Fare <= 7.74585': [{'Fare <=
7.239599999999999': [{'Fare <= 7.2271': [{'Fare <= 2.00625': [{'Age <=
26.5': [{'Age <= 22.0': [0,
1]},
0]},
0]},
{'Age <= 21.0': [{'Parch = 1': [0,]}
1]},
01}1},
0]},
                                                             {'SibSp = }
1': [{'Fare <= 7.8896': [0,
1]},
{'Age \le 28.5': [{'Fare \le 7.7979': [{'Embarked = S': [{'Age \le 19.5': }}}
[0,
{'Age <= 21.5': [1,
0]}]},
0]},
{'Age <= 19.5': [{'Fare <= 8.10415': [{'Fare <= 7.97290000000001':
[0,
{'Age <= 17.0': [0,
```

```
1]}]},
0]},
0]}]},
{'Age <= 32.5': [{'Fare <= 10.0': [{'Fare <= 9.49165': [0,
1]},
0]},
{'Age <= 43.5': [0,]}
{'Fare <= 9.75': [{'Age <= 45.5': [1,
0]},
1]}]}]}]}],
                                      {'Age <= 6.5': [{'Fare <=
20.825': [1,
{'Pclass = 3': [{'Fare <= 31.33124999999997': [0,
{'Fare <= 35.5375': [1,
0]}]},
1]}]},
                                                       {'Pclass = 1':
[{'Age <= 53.0': [{'Fare <= 27.1354': [{'Fare <= 26.14375': [0,
1]},
{'Age <= 27.5': [{'Fare <= 127.81665': [{'Age <= 24.5': [{'Fare <=
95.04165': [0,
1]},
1]},
0]},
{'Fare <= 115.44165000000001': [{'Fare <= 59.0875': [{'Fare <=
56.4146': [0,
1]},
0]},
```

```
{'Age <= 32.0': [0,
1]}]}]}],
{'Age <= 75.5': [{'Embarked = S': [0,}
{'Age <= 57.0': [1,
0]}]},
1]}]},
{'Embarked = C': [{'Parch = 1': [1,}]}
{'Fare <= 12.05835': [1,
{'Fare <= 16.918750000000003': [0,
{'Fare <= 20.23335': [{'Age <= 18.5': [0,
1]},
0]}]}]}],
{\text{Fare}} \leq 51.697900000000004': {\text{Age}} \leq 9.5': {\text{SibSp}} = 4': {\text{Implies of the substitution}}
{'Fare <= 41.825': [1,
0]}]},
{'Age <= 27.5': [0,]}
{'Fare <= 13.25': [0,
{'SibSp = 2': [1, ]}
0]}]}]}],
{'Fare <= 63.0229': [1,
0]}]}]}]}],
                  {'Pclass = 3': [{'Fare <= 23.7': [{'Age <= 36.5':
[{'Age <= 1.5': [1,]}]
{'Fare <= 7.8875': [{'Age <= 29.25': [{'Fare <= 7.8021': [{'Fare <=
6.9875': [0,
1]},
```

```
1]},
0]},
{'Fare <= 10.7979': [{'Age <= 19.0': [{'Fare <= 10.1521': [1,
0]},
{'Age <= 25.5': [0,
{'Age <= 27.5': [1,
0]}]}],
{'Fare <= 13.90835': [1,
{'Fare <= 15.3729': [{'Age <= 28.5': [0,
1]},
1]}]}]}]},
0]},
                                                   {'Parch = 0': [1, ]}
{'Fare <= 31.33124999999997': [0,
{'Fare <= 32.88125': [1,
0]}]}]},
                                 {'Fare <= 29.35625': [{'Age <= 25.5':
[1,
{'Age <= 27.5': [{'Embarked = S': [0, ]}}
1]},
{'Age <= 37.0': [1,
{'Embarked = S': [{'Age <= 39.0': [0,]}
{'Fare <= 11.75': [{'Age <= 53.5': [1,
0]},
1]}]},
```

```
01}1}1}1},
                                                       1]}]}]
eq = testDat.iloc[0]
eg
Pclass
                 3
Sex
              male
Age
              28.0
SibSp
                 0
Parch
                 0
           7.8958
Fare
                 S
Embarked
                 0
Label
Name: 101, dtype: object
classifyEg(eg, tree)
0
print(calcAccuracy(testDat, tree))
0.7640449438202247
def evaluateModel(tree, test data, class names=None):
    test data = test data.copy()
    test data['prediction'] = test data.apply(lambda row:
classifyEg(row, tree), axis=1)
    y_true = test_data['Label']
    v pred = test data['prediction']
    accuracy = (y_true == y_pred).mean()
    report = classification report(y true,
y pred,target names=class names,output dict=True)
    cm = confusion_matrix(y_true, y_pred)
    plt.figure(figsize=(8, 6))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=class names, yticklabels=class names)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion Matrix')
    plt.show()
    print(f"Accuracy: {accuracy:.2%}\n")
    print(pd.DataFrame(report).transpose().to markdown())
    return accuracy, report, cm
accuracy, report, cm = evaluateModel(tree, testDat, class names=['Not
Survived', 'Survived'])
```


Accuracy: 76.40%				
	precision	recall	f1-score	support
: -	:	:	:	:
Not Survived	0.8	0.828829	0.814159	111
Survived	0.698413 İ	0.656716 j	0.676923 İ	67 İ
i accuracy i	0.764045 İ	0.764045 İ	0.764045 İ	0.764045
macro avg	0.749206 j	0.742773 j	0.745541	178 j
weighted avg	0.761762	0.764045	0.762503	178
	•	•		