

MMBT3904

NPN Surface Mount Si-Epi-Planar Switching Transistors Si-Epi-Planar Schalttransistoren für die Oberflächenmontage

NPN

Version 2010-04-14

Power dissipation – Verlustleistung	250 mW
Plastic case Kunststoffgehäuse	SOT-23 (TO-236)
Weight approx. – Gewicht ca.	0.01 g

Plastic material has UL classification 94V-0 Gehäusematerial UL94V-0 klassifiziert

Standard packaging taped and reeled Standard Lieferform gegurtet auf Rolle

Maximum ratings $(T_A = 25^{\circ}C)$

Grenzwerte ($T_A = 25$ °C)

			ммвт3904
Collector-Emitter-volt. – Kollektor-Emitter-Spannung	B open	V_{CEO}	40 V
Collector-Base-voltage – Kollektor-Basis-Spannung	E open	V_{CBO}	60 V
Emitter-Base-voltage – Emitter-Basis-Spannung	C open	V _{EBO}	6 V
Power dissipation – Verlustleistung		P _{tot}	350 mW ¹)
Collector current – Kollektorstrom (dc)		\mathbf{I}_C	200 mA
Junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur		T _j T _s	-55+150°C -55+150°C

Characteristics $(T_j = 25^{\circ}C)$

Kennwerte ($T_j = 25$ °C)

		Min.	Тур.	Max.
DC current gain – Kollektor-Basis-Stromverhältnis ²)				
$I_{C} = 0.1 \text{ mA}, V_{CE} = 1 \text{ V}$ $I_{C} = 1 \text{ mA}, V_{CF} = 1 \text{ V}$	h _{FE}	40 80	-	-
$I_C = 10$ mA, $V_{CE} = 1$ V $I_C = 50$ mA, $V_{CE} = 1$ V	h _{FE}	100 60	_	300 -
$I_{C} = 100 \text{ mA}, V_{CE} = 1 \text{ V}$	h _{FE}	30	_	_
h-Parameters at/bei V_{CE} = 10 V, I_{C} = 1 mA, f = 1 kHz				
Small signal current gain – Kleinsignal-Stromverstärkung	h_{fe}	100	_	400
Input impedance – Eingangs-Impedanz	h _{ie}	1 kΩ	_	10 kΩ
Output admittance – Ausgangs-Leitwert	h _{oe}	1 μS	_	40 µS
Reverse voltage transfer ratio – Spannungsrückwirkung	h _{re}	0.5*10-4	_	8*10-4

¹ Valid, if leads are kept at ambient temperature Gültig, wenn die Anschlüsse auf Umgebungstemperatur gehalten werden

² Tested with pulses $t_p = 300~\mu s$, duty cycle $\leq 2\%$ — Gemessen mit Impulsen $t_p = 300~\mu s$, Schaltverhältnis $\leq 2\%$

Characteristics $(T_j = 25^{\circ}C)$

Kennwerte ($T_j = 25$ °C)

		Min.	Тур.	Max.
Collector-Emitter saturation voltage – Kollektor-Sättigungsspannu	ing ²)			
$I_{C}=10$ mA, $I_{B}=1$ mA $I_{C}=50$ mA, $I_{B}=5$ mA	$\begin{matrix} V_{\text{CEsat}} \\ V_{\text{CEsat}} \end{matrix}$	- -	- -	0.2 V 0.3 V
Base-Emitter saturation voltage – Basis-Sättigungsspannung ²)				
$I_{C}=10$ mA, $I_{B}=1$ mA $I_{C}=50$ mA, $I_{B}=5$ mA	$\begin{matrix} V_{\text{BEsat}} \\ V_{\text{BEsat}} \end{matrix}$	0.65 V -	- -	0.85 V 0.95 V
Collector-Base cutoff current – Kollektor-Basis-Reststrom				
$V_{CE} = 30 \text{ V}, V_{EB} = 3 \text{ V}$	\mathbf{I}_{CBX}	_	_	50 nA
Emitter-Base cutoff current – Emitter-Basis-Reststrom				
$- V_{CE} = 30 \text{ V}, - V_{EB} = 3 \text{ V}$	I_{EBV}	_		50 nA
Gain-Bandwidth Product – Transitfrequenz				
I_C = 10 mA, V_{CE} = 20 V, f = 100 MHz	\boldsymbol{f}_{T}	300 MHz	_	_
Collector-Base Capacitance – Kollektor-Basis-Kapazität				
$V_{CB}=5~V,~I_{E}=i_{e}=0,~f=1~MHz$	C_{CBO}	_	_	4 pF
Emitter-Base Capacitance – Emitter-Basis-Kapazität				
$V_{EB}=0.5~V,~I_{C}=i_{c}=0,~f=1~MHz$	C_{EBO}	_	_	8 pf
Noise figure – Rauschzahl				
$V_{CE}=5~V,~I_{C}=1~\mu A,~R_{G}=1~k\Omega,~f=1~kHz$	F	_	-	5 dB
Switching times – Schaltzeiten (between 10% and 90% levels)				
delay time $V_{CC} = 3 \text{ V}, V_{BE} = 0.5 \text{ V}$	$t_{\scriptscriptstyle d}$	_	_	35 ns
rise time $I_C = 10$ mA, $I_{B1} = 1$ mA	t_{r}	_	_	35 ns
storage time $V_{cc} = 3 \text{ V}, I_c = 10 \text{ mA},$	t_{s}	_	_	200 ns
fall time $I_{\text{B1}} = I_{\text{B2}} = 1 \text{ mA}$	t_{\scriptscriptstylef}	_	_	50 ns
Thermal resistance junction to ambient air Wärmewiderstand Sperrschicht – umgebende Luft	R_{thA}	< 357 K/W ¹)		
Recommended complementary PNP transistors Empfohlene komplementäre PNP-Transistoren		MMBT3906		
Marking - Stempelung		MMBT3904 = 1AM or 1E		

2

 $^{2 \}quad \text{Tested with pulses } t_{\text{p}} = 300 \; \mu\text{s, duty cycle} \leq 2\% \; - \; \text{Gemessen mit Impulsen } t_{\text{p}} = 300 \; \mu\text{s, Schaltverh\"{a}ltnis} \leq 2\%$

¹ Valid, if leads are kept at ambient temperature Gültig, wenn die Anschlüsse auf Umgebungstemperatur gehalten werden