Universidad Nacional Autónoma De Honduras

$\begin{array}{c} \textbf{Principio de Arquimedes} \\ \textbf{\tiny Facultad de Ciencias} \end{array}$

Escuela de Física

LABORATORIO #5**PLANTILLA** Fluidos

Instructor (a):	
Nombre:	N ⁰ Cuenta:
Fecha:	N ⁰ Sección:

\mathbf{O}			•	
()	nı	let.i	ivos	3
$\mathbf{\circ}$	∼ູ	, 00.		,

- 1.
- 2.
- 3.

Introducción

Procedimiento

Parte I: Verificación del principio de Arquímedes.

N°	Masa del cuerpo	Masa del beaker	Masa del beaker	Masa con el	Masa del beaker
	(M_c)	(M_b)	+ vaso + agua	cuerpo sumergi-	+ agua derra-
			(M_1)	$do(M_2)$	$\operatorname{mada}(M_3)$
1					
2					
3					

Cuadro 1: Datos obtenidos

Análisis de resultados

1. ¿Qué sucede con el peso del solido al sumergirlo en el agua? ¿Qué sucede con la masa? Compare y explique.

2. Compare el peso promedio del agua derramada con la perdida del promedio peso del bloque.

Parte II: Medición de la densidad usando el principio de Arquíedes

Observaciones

Conclusiones

1.

2.

3.