On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}$ et $\forall n\geq 1, u_{n+1}=\frac{3}{4}u_n^2-2u_n+3$.

- 1. Étudier la fonction f associée.
- 2. Étudier le signe de $g: x \mapsto f(x) x$.
- 3. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.
- 4. On suppose que $u_0 > 2$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n > 2$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 5. On suppose que $u_0 \in \left[\frac{2}{3}, 2\right[$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n \in \left[\frac{2}{3}, 2\right]$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.