Patent

SFTGB Docket No.: 19308.0022U1

01CXT0353W

AMENDMENTS

Listing of Claims

This listing of claims replaces all prior versions and listings of claims in the application.

1	1. (Currently amended) A system for generating amplitude matched								
2	phase shifted signals, comprising:								
3	a filter arrangement including a plurality of input and output nodes, a first set o								
4	input nodes arranged to receive an input signal, a second set of input nodes coupled to								
5	electrical ground, each output node configured to provide an associated vector that is								
6	offset in phase from a vector associated with each other output node; and								
7	an adjustable element associated with each output node, the adjustable element								
8	configured to receive a feedback signal and in response to the feedback signal								
9	substantially equalize an amplitude of each vector associated with each <u>output</u> node.								
1	2. (Currently amended) The system of claim 1, wherein four output								
2	nodes are associated with the filter arrangement, each output node having an associated								
3	vector.								
1	3. (Original) The system of claim 2, further comprising:								
2	an adder element configured to add the four vectors resulting in eight phase								
3	shifted vectors.								
1	4. (Original) The system of claim 3, further comprising:								
2	a scaler configured to scale the amplitude of the four vectors resulting in eight								
3	amplitude matched phase shifted vectors.								
1	5. (Original) The system of claim 4, wherein the adjustable element is								
2	an adjustable resistance.								

1	6. (Original) The system of claim 5, wherein the adjustable resistance								
2	is a metal oxide semiconductor field effect transistor (MOSFET) adjustable resistance.								
1	7. (Original) The system of claim 4, wherein the adjustable element is								
2	an adjustable capacitance.								
1	8. (Original) The system of claim 7, wherein the adjustable								
2	capacitance is a varactor.								
1	9. (Currently amended) A method for generating amplitude matched,								
2	phase shifted signals, comprising:								
3	providing a plurality of vectors, each vector associated with a respective output								
4	node, each vector offset in phase from each other vector associated with each other								
5	output node;								
6	applying an input signal at a subset of a set of input nodes;								
7	providing a feedback signal to a respective adjustable element associated with								
8	each input and output node; and								
9	adjusting each node adjustable element using the feedback signal to								
10	substantially equalize an amplitude of each vector associated with each <u>output</u> node.								
1	10. (Currently amended) The method of claim 9, wherein a resistance								
2	associated with each output node is adjusted to substantially equalize an amplitude of								
3	each vector associated with each <u>output</u> node.								
1	11. (Currently amended) The method of claim 9, wherein a capacitance								
2	associated with each output node is adjusted to substantially equalize an amplitude of								
3	each vector associated with each <u>output</u> node.								
1	12. (Original) The method of claim 10, further comprising adjusting the								
2	resistance using a metal oxide semiconductor field effect transistor (MOSFET)								
3	adjustable resistance.								

SFTGB Docket No.: 19308.0022U1

01CXT0353W

1	13. (Currently amended) The method of claim 12, further comprising							
2	combining four vectors associated with each of four output nodes resulting in eight							
3	phase shifted vectors.							
1	14. (Original) The method of claim 13, further comprising scaling the							
2	four vectors resulting in eight substantially amplitude matched phase shifted vectors.							
1	15. (Original) The method of claim 11, further comprising adjusting the							
2	capacitance using a varactor.							
1	16. (Currently amended) The method of claim 15, further comprising							
2	combining four vectors associated with each of four output nodes resulting in eight							
3	phase shifted vectors.							
1	17. (Original) The method of claim 16, further comprising scaling the							
2	four vectors resulting in eight amplitude matched phase shifted vectors.							
1	18. (Currently amended) A system for generating amplitude matched,							
2	phase shifted signals, comprising:							
3	filter means including a plurality of input and output nodes, a first set of input							
4	nodes arranged to receive an input signal, a second set of input nodes coupled to							
5	electrical ground, the filter means for providing a plurality of associated vectors that are							
6	offset in phase from each other vector associated with each other <u>output</u> node;							
7	means for providing a feedback signal to <u>an adjustable element associated with</u>							
8	each output node; and							
9	means for using the feedback signal to substantially equalize an amplitude of							
10	each vector associated with each <u>output</u> node.							
1	19. (Original) The system of claim 18, wherein the means for							
1	substantially equalizing an amplitude of each vector comprises adjustable resistance							
2								
3	means.							

SFTGB Docket No.: 19308.0022U1

01CXT0353W

1	20. (Original) The system of claim 18, wherein the means for							
2	substantially equalizing an amplitude of each vector comprises adjustable capacitance							
3	means.							
1	21. (Original) The system of claim 19, wherein the adjustable resistance							
2	means comprises a metal oxide semiconductor field effect transistor (MOSFET)							
3	adjustable resistance.							
1	22. (Currently amended) The system of claim 21, further comprising:							
2	adder means for combining four vectors associated with each of four output							
3	nodes resulting in eight phase shifted vectors.							
1	23. (Original) The system of claim 22, further comprising:							
2	scaler means for scaling an amplitude of the four vectors resulting in eight							
3	substantially amplitude matched phase shifted vectors.							
1	24. (Currently amended) A system for generating amplitude matched,							
2	phase shifted signals, in a portable communication device, comprising:							
3	a portable communication device including a transmitter and a receiver;							
4	a synthesizer for providing a local oscillator signal;							
5	a filter arrangement configured to operate on the local oscillator signal, the filter							
6	arrangement including a plurality of input and output nodes, a first set of input nodes							
7	arranged to receive the local oscillator signal, a second set of input nodes coupled to							
8	electrical ground, each output node configured to provide an associated vector that is							
9	offset in phase from a vector associated with each other output node; and							
10	an adjustable element associated with each output node, the adjustable element							
11	configured to receive a feedback signal and in response to the feedback signal							
12	substantially equalize an amplitude of each vector associated with each output node.							

SFTGB Docket No.: 19308.0022U1

01CXT0353W

1	25.	(Currently am	ended)	The system o	f claim 24	, wherein	four output			
2	nodes are associated with the filter arrangement, each output node having an associated									
3	vector.									
1	26.	(Original)	The system	n of claim 25,	further com	nprising:				
2	an adder element configured to add the four vectors resulting in eight phase									
3	shifted vectors.									
1	27.	(Original)	The system	n of claim 26,	further com	nprising:				
2	a scaler configured to scale an amplitude of the four vectors resulting in eight									
3	substantially amplitude matched phase shifted vectors.									
1	28.	(Original)	The system	m of claim 27,	wherein t	he adjusta	ible element			
2	is an adjustal	ble resistance.								
1	29.	(Original)	The system	n of claim 28,	wherein the	e adjustab	le resistance			
2	is a metal oxide semiconductor field effect transistor (MOSFET) adjustable resistance.									
1	30.	(Original)	The system	n of claim 27,	wherein t	he adjusta	ble element			
2	is an adjustal	ble capacitance.								
1	31.	(Original)	The syste	em of claim	30, whe	erein the	adjustable			
2	capacitance i	is a varactor.								