נורמה: יהי L מרחב אוקלידי נוצר סופית אזי $v:L o\mathbb{R}$ עבורה לכל מרחב אוקלידי נוצר סופית אזי

 $(\upsilon(a) \ge 0) \land ((\upsilon(a) = 0) \iff (a = 0)) \bullet$

 $.\upsilon(\lambda a) = |\lambda| \cdot \upsilon(a)$:הומוגניות

 $v\left(a+b\right)\leq v\left(a\right)+v\left(b\right)$ אי שיוויון המשולש (אש"מ): •

 $\|v\|_p=\left(\sum_{i=1}^n\left|v_i
ight|^p
ight)^{rac{1}{p}}$ כך $\|\cdot\|_p:\mathbb{R}^n o\mathbb{R}$ נגדיר נורמה $p\in\mathbb{N}_+$ עבור ℓ_p

 $\|v\|_\infty=\max_{1\leq i\leq n}|v_i|$ כך $\|\cdot\|_\infty:\mathbb{R}^n o\mathbb{R}$ נגדיר נורמה וימת $\ell_\infty:\ell_\infty$

 $B_r\left(a
ight) = \{x \in \mathbb{R} \mid \|x-a\| < r\}$ אזי $r \in \mathbb{R}$ ויהי $a \in \mathbb{R}^n$ יהי פתוח: יהי

 $\overline{B}_r\left(a
ight)=\{x\in\mathbb{R}\mid \|x-a\|\leq r\}$ אזי $r\in\mathbb{R}$ ויהי $a\in\mathbb{R}^n$ ויהי סגור: יהי

 $S_{r}\left(a
ight)=\{x\in\mathbb{R}\mid\|x-a\|=r\}$ אזי $r\in\mathbb{R}$ ויהי $a\in\mathbb{R}^{n}$ אזי זיהי

 $\Pi_{a.b} = \left\{ x \in \mathbb{R}^n \mid \forall j \in [n] \,.a_i < x_i < b_i
ight\}$ אזי $a,b \in \mathbb{R}^n$ יהיו יהיו מנוחה: יהיו

 $.\overline{\Pi}_{a.b}=\left\{x\in\mathbb{R}^n\mid orall j\in[n]\,.a_i\leq x_i\leq b_i
ight\}$ אזי $a,b\in\mathbb{R}^n$ תיבה סגורה: יהיו

נקודה פנימית: תהא $\exists r>0.B_{r}\left(x
ight)\subseteq M$ המקיימת תהא $M\subseteq\mathbb{R}^{n}$ אזי $x\in\mathcal{M}$ ותהא לקודה פנימית: תהא

 $\widetilde{M}=\{x\in M\mid M\mid M$ פנים של קבוצה: תהא $M\subseteq\mathbb{R}^n$ אזי $M\subseteq \mathbb{R}^n$ פנים של קבוצה

 $M=\stackrel{\circ}{M}$ עבורה $M\subseteq\mathbb{R}^n$ קבוצה פתוחה:

נקודה חיצונית: תהא $\exists r>0.B_r\left(x
ight)\subseteq\mathbb{R}^nackslash M$ המקיימת המא ותהא $M\subseteq\mathbb{R}^n$ אזי $x\in\mathbb{R}^n$ ותהא ותהא

נקודה מבודדת: תהא $\exists r>0.B_r(x)\cap M=\{x\}$ המקיימת $x\in M$ ותהא ותהא $M\subseteq\mathbb{R}^n$ אזי גיקודה מבודדת

. נקודת שפה: תהא $M\subseteq\mathbb{R}^n$ ותהא $x\in\mathbb{R}^n$ לא נקודה פנימית ולא נקודה חיצונית אזי $x\in\mathbb{R}^n$ נקודת שפה

 $AM = \{x \in M \mid M \;$ שפה של קבוצה: תהא $M \subseteq \mathbb{R}^n$ אזי $M \subseteq \mathbb{R}^n$ שפה של קבוצה:

 $AM\subseteq M$ עבורה אבוצה קבוצה קבוצה קבוצה אורה: קבוצה סגורה

 $\overline{M} = \overset{\circ}{M} \cup \partial M$ אזי $M \subset \mathbb{R}^n$ סגור של קבוצה: תהא

 $(\mathbb{R}^n \backslash M)$ אזי אזי (x נקודה חיצונית של x) אאי אזי (x נקודה חיצונית של x) אזי אזי (x נקודה חיצונית של

 $M^{\mathcal{C}}$ מסקנה: תהא $M\subseteq\mathbb{R}^n$ אזי M פתוחה) מסקנה:

 $\exists r>0.M\subseteq B_{r}\left(0
ight)$ המקיימת $M\subseteq\mathbb{R}^{n}$ קבוצה חסומה: קבוצה

קבוצה קומפקטית: קבוצה $K\subseteq\mathbb{R}^n$ סגורה וחסומה.

 $A\subseteq igcup_{n\in\Lambda}I_n$ טענה היינה בורל: תהא $K\subseteq \mathbb{R}^n$ אזי ($K\subseteq \mathbb{R}^n$ אזי לכל לכלל אינה היינה בורל: תהא

 $.(\exists \mathcal{B}\in\mathcal{P}_{<\aleph_{0}}\left(\Lambda\right).A\subseteq\bigcup_{n\in\mathcal{B}}I_{n}$ מתקיים $.a^{(k)}=a\left(k\right)$ אזי $a\in\left(\mathbb{R}^{n}\right)^{\mathbb{N}}$ תהא

 $\lim_{k o\infty}a^{(k)}=L$ אזי $\lim_{k o\infty}\left\|a^{(k)}-L
ight\|=0$ עבורן $L\in\mathbb{R}^n$ ותהא $a\in\left(\mathbb{R}^n
ight)^\mathbb{N}$ אבול: תהא

0וכן $\lim_{x o a}$ וכן $\lim_{x o a}$ נשתמש באותם סימני גבול כמו במשתנה יחיד, כלומר

 $a\in [n]$. $a_j^{(k)}\xrightarrow[k o\infty]{}b_j\Longleftrightarrow \left(a^{(k)}\xrightarrow[k o\infty]{}b
ight)$ אזי $b\in \mathbb{R}^n$ ויהי $a\in (\mathbb{R}^n)^\mathbb{N}$ משפט: תהא $a\in (\mathbb{R}^n)^\mathbb{N}$ ויהי $a\in (\mathbb{R}^n)^\mathbb{N}$ מסקנה: כל מניפולציות הגבול של סדרה מחדו" $a\in (\mathbb{R}^n)^\mathbb{N}$ מתקיימות.

a אזי (ל $arepsilon > 0. \exists k \in \mathbb{N}. orall m, p > k. \left\|a^{(m)} - a^{(p)}
ight\| < arepsilon
ight) \Leftrightarrow$ משפט קושי: תהא $a \in \left(\mathbb{R}^n\right)^\mathbb{N}$ אזי ($a \in \left(\mathbb{R}^n\right)^\mathbb{N}$

 $\left(orall j\in[n].orallarepsilon>0.\exists k\in\mathbb{N}.orall m,p>k.\ \left\|a_{j}^{(m)}-a_{j}^{(p)}
ight\|<arepsilon
ight)$ אזי (a מסקנה: תהא $a\in\left(\mathbb{R}^{n}
ight)^{\mathbb{N}}$ אזי (a

משפט בולצאנו ווירשטראס: לכל סדרה חסומה קיימת תת־סדרה מתכנסת.

 $\lim_{k o\infty}a^{(k_i)}\in$ אזי ($K\subseteq\mathbb{R}^n$ אמיימת $a\in K^\mathbb{N}$ לככל (לכל $K\subseteq\mathbb{R}^n$ המקיימת אזי (א קומפקטית) K כאשר $f=\langle f_1,\dots,f_m
angle$ כחשוב על f כוקטור של פונקציות $f:A o \mathbb{R}^m$ תהא $A\subseteq \mathbb{R}^n$ כאשר . $f_i:A o \mathbb{R}$

אזי $L\in\mathbb{R}^m$ ותהא $a\in\mathbb{R}^n$ תהא $f:A o\mathbb{R}^m$ תהא $A\subseteq\mathbb{R}^n$ אזי

 $\lim_{x o a}f\left(x
ight)=L$ אזי $orall x\in A^{\mathbb{N}}.\left(x^{(k)} o a
ight)\Longrightarrow\left(f\left(x^{(k)}
ight) o L
ight)$ היינה: אם \bullet

 $\lim_{x \to a} f\left(x
ight) = L$ אזי $\forall arepsilon > 0. \ \|x - a\| < \delta \Longrightarrow \|f\left(x
ight) - L\| < arepsilon$ קושי: אם \bullet

מסקנה: כל מניפולציות הגבול של פונקציה מחדו"א1 מתקיימות.

 $A = \lim_{x o a} f\left(x
ight)$ עבורה $a \in A$ אזי $a \in A$ תהא תהא $A \subseteq \mathbb{R}^n$ תהא תהא בנקודה:

 $b\in\mathcal{B}$ אזי (fרציפה נקודתית עבור כל $B\subseteq A$ אותהא $f:A o\mathbb{R}^m$ תהא $A\subseteq\mathbb{R}^n$ אזי ($f\in\mathcal{C}(B)$) אינ ($f\in\mathcal{C}(B)$)

 $.(f_1,\ldots,f_m\in C\left(b
ight))\Longleftrightarrow (f\in C\left(b
ight))$ אזי איז $B\subseteq A$ ותהא $f:A o\mathbb{R}^m$ תהא $A\subseteq\mathbb{R}^n$ משפט: תהא

מסקנה: כל מניפולציות הרציפות של פונקציה מחדו"א1 מתקיימות.

 $.\gamma:I o\mathbb{R}^m$ עקומה פרמטרית: יהי $I\subseteq\mathbb{R}$ יהי

מסילה: עקומה פרמטרית רציפה.

 $a, \gamma \left(t
ight) = \left(1 - t
ight) a + tb$ כך כך $\gamma : \left[0, 1
ight] o \mathbb{R}^m$ נגדיר $a, b \in \mathbb{R}^m$ מסילה של קו ישר: יהיו

. מסילה γ ישר בין a ל־a אזי $\gamma:[0,1] o \mathbb{R}^m$ מסילה $a,b \in \mathbb{R}^m$ ישר בין מסילה.

 $[a,b]={
m Im}\,(\gamma)$ אזי $a,b\in\mathbb{R}^m$ ישר בין a ל־ל אזי $\gamma:[0,1] o\mathbb{R}^m$ ותהא $a,b\in\mathbb{R}^m$ סימון: יהיו

 $. orall a,b \in M.$ [a,b] $\subseteq M$ המקיימת $M \subseteq \mathbb{R}^n$ קבוצה קמורה:

. טענה: יהי $B_{r}\left(a\right),\overline{B}_{r}\left(a\right)$ אזי $r\in\mathbb{R}$ ויהי $a\in\mathbb{R}^{n}$ יהי

 $\gamma\left(0
ight)=x$ המקיימת $\gamma:\left[0,1
ight] o M$ קיימת מסילה $x,y\in M$ עבורה לכל $M\subseteq\mathbb{R}^n$ המקיימת $\gamma:\left[0,1
ight] o M$ הוכן ע

תחום: קבוצה פתוחה וקשירה מסילתית.

. $\biguplus \mathcal{A}=M$ פתוחה איי קיימת של קבוצה של קבוצה $\mathcal{A}\subseteq\mathcal{P}_{\leq\aleph_0}\left(\mathbb{R}^n\right)$ פתוחה איי קיימת מענה: תהא $M\subseteq\mathbb{R}^n$