Architektura počítačů 10

• USB - Univerzální sériová sběrnice

Thunderbolt

Firewire

Sériový port

• Paralelní port

- Univerzální sériová sběrnice
 - Intel, Compaq, Microsoft, IBM, NEC, ...
- USB 1.0 leden 1996
- USB 1.1 září 1998
- USB 2.0 duben 2000
- WUSB (Wireless Universal Serial Bus)
- USB 3.0 2008 (nasazení 2010)
- USB 3.1 červenec 2013 Gen 1 a Gen 2
- USB 3.2 červenec 2017
- USB 4.0 srpen 2019

- USB 1.1 (full speed)
 - Přenosová rychlost až 12 Mb/s
- USB 2.0 (Hi speed)
 - Přenosová rychlost až 480 Mb/s (40x rychlejší)
- USB 3.0 (Super speed) --> USB 3.1 Gen 1
 - Přenosová rychlost až 5 Gb/s (raw data, reálně asi 3,2Gb/s; 8/10b)
- USB 3.1 (SuperSpeed+)
 - USB 3.1 Gen 1 5 Gbit/s , používá 1 linii, 8b/10b encoding, stejné s USB 3.0
 - **USB 3.1 Gen 2** 10 Gbit/s (1250 MB/s), používá 1 linii, 128b/132b encoding
- USB 3.2
 - USB 3.2 Gen 1x1 5 Gbit/s, používá 1 linii, 8b/10b encoding
 - stejné s USB 3.1 Gen 1 a USB 3.0.
 - USB 3.2 Gen 2x1 10 Gbit/s ,používá 1 linii, 128b/132b encoding, stejné s USB 3.1 Gen 2.
 - USB 3.2 Gen 1x2 10 Gbit/s , používá 2 linie, 8b/10b encoding.
 - USB 3.2 Gen 2x2 20 Gbit/s , používá 2 linie , 128b/132b encoding.
- USB 4.0 (Super Speed 40 Gbps)
 - Přenosová rychlost až 40 Gb/s (USB4 je založeno na specifikaci Thunderbolt 3 protokolu)

- Připojení až 127 zařízení
 - Sdílejí přenosové pásmo
- Architektura
 - Vícevrstvá
 - Hvězdicová
 - Centrálně ovládaná
 - Stupňované hvězdice (tiered star)

- Základem topologie je rozbočovač
 - Umístění
 - PC, Libovolné zařízení, Samostatné zařízení
- Kořenový rozbočovač (Root Hub)
 - Řídí veškerý provoz na sběrnici
 - Vyvolává a ukončuje datové přenosy
 - Zodpovídá za správu sběrnice
 - Umístěn zpravidla na základní desce nebo na přídavné kartě
 - K němu je možné připojit periferní zařízení (Device).
 - To může být koncové zařízení či další hub
 - Maximální počet úrovní je 7 (dáno maximálním možným zpožděním)
 - V logické topologii jsou huby neviditelné a jedná se o hvězdicovou topologii

Vrstvový model

- Na funkční vrstvě probíhá komunikace mezi klientským SW hostitelského zařízení a funkcí poskytované periferním zařízením.
- Vrstva zařízení řídí komunikaci mezi zařízeními.
 - Je zde také zahrnuta komunikace pomocí obecných USB operací.
- Fyzická vrstva zajišťuje skutečnou komunikaci mezi dvěma zařízeními.
 - Jsou zde definovány elektrické a mechanické vlastnosti potřebné pro vlastní přenos datového toku. Na této vrstvě je také prováděno CRC.

zařízení se dělí na hostitelské zařízení (Host, hostitel) a periferní zařízení (Device).

To se dále rozděluje na koncová zařízení (Functions) a huby

USB (1.1, 2.0)

- USB kabel má celkem 4 vodiče
 - 2 datové
 - 2 napájecí (GND, +5V)
- Maximální délka 5 m
 - Při použití kroucené dvojlinky
 - Při použití aktivních prvků (max 5) až 30 m (6 kabelů)
 - Reálně 25m, protože některá zařízení mají vlastní kabel
 - USB extendery využívající CAT5 kabely prodlouží až na 50m mezi zařízeními

Konektory

WWW.

Micro-AB

Type C (zvětšeno)

Konektor řady B

USB 3.0 - 3.2

From Computer Desktop Encyclopedia Reproduced with permission. © 2009 Intel Corporation

USB (3.0-3.2)

Gen 1

- Délka kabelu 3 m
- Kódování 8/10

Gen 2

- Délka kabelu 1 m
- Kódování 128/132

Pin	Signal Name	Description
1	VBUS	Red
2	D-	White
3	D+	Green
4	GND	Black
5	StdA_SSRX-	Blue
6	StdA_SSRX+	Yellow
7	GND_DRAIN	GROUND
8	StdA_SSTX-	Purple
9	StdA_SSTX+	Orange
Shell	Shield	Connector Shell

USB 3.1 Type-C konektor

communication

- Napájecí napětí je 5V. 4.75 V až 5.25 V
- HUB napájený po sběrnici
 - USB 2.0 max.500 mA (2,5 W)
 - USB 3.0 max. 900 mA (4,5 W) (Battery charging 1.5A)
 - USB 3.1 max. 3 A (15 W)
 - Více profilů USB Power Delivery (USB-PD) plánováno až 20V/5A
- HUB napájený ext. zdrojem
 - musí dodávat 500 mA na každý port.
- Zařízení "Low power"
 - Odběr max 100 mA.
- "Spící" zařízení :
 - Max 0.5 mA

USB Napájení

Specification	Current	Voltage	Power (max.)
Low-power device	100 mA	5 V	0.50 W
Low-power SuperSpeed (USB 3.0) device	150 mA	5 V	0.75 W
High-power device	500 mA	5 V	2.5 W
High-power SuperSpeed (USB 3.0) device	900 mA	5 V	4.5 W
Multi-lane SuperSpeed (USB 3.2 Gen x2) device	1.5 A	5 V	7.5 W
Battery Charging (BC) 1.1	1.5 A	5 V	7.5 W
Battery Charging (BC) 1.2	5 A	5 V	25 W
USB-C	1.5 A	5 V	7.5 W
036-0	3 A	5 V	15 W
Power Delivery 1.0 Micro-USB	3 A	20 V	60 W
Power Delivery 1.0 Type-A/B	5 A	20 V	100 W
Power Delivery 2.0/3.0 Type-C	5 A	20 V	100 W

USB PD Rev. 1.0 source profiles

	· · · · · · · · · · · · · · · · · · ·			
Profile	+5 V	+12 V	+20 V	
0	Reserved			
1	2.0 A, 10 W	N/A		
2		1.5 A, 18 W	N/A	
3		3.0 A, 36 W		
4			3.0 A, 60 W	
5		5.0 A, 60 W	5.0 A, 100 W	

USB PD rev. 2.0/3.0 source power rules

Source output	Current, at: (A)				
power rating (W)	+5 V	+9 V	+15 V	+20 V	
0.5–15	0.1–3.0	N/A	NI/A	N/A	
15–27	3.0 (15 W)	1.67–3.0	N/A		
27–45				1.8–3.0	
45–60		3.0 (27 W)	3.0	2.25–3.0	
60–100		(27 77)	(45 W)	3.0-5.0	

- Maximálně šest po sobě jdoucích jedniček
 - vysílač vkládá automaticky jednu nulu (bit-stuffing)
 - Vynucení změny úrovně
 - Přijímač tuto nulu z datového toku opět odstraní
- Kódování metodou NRZI (Non Return Zero Invert)
 - Nuly vedou ke změně úrovně, jedničky úroveň nemění
- Jednotlivé bity 0,1 jsou reprezentovány opačnými a střídajícími se úrovněmi napětí
 - Mezi bity není návrat k nulovému napětí

USB - připojení

- Rozbočovače mají na přípojných místech (portech) identifikátory (status bity)
 - RootHub vysílá periodické dotazy na stav
 - Reagují na změnu
 - Oznamují připojení a odpojení zařízení
- Kořenový rozbočovač přidělí jedinečné ID
 - Zjištění typu zařízení
 - Po odstranění zavírá port a odstraní zařízení
- Proces připojení a odpojení zařízení se jednotně nazývá inventarizace

USB - Komunikace

- Hostitelské zařízení komunikuje s periferním zařízením pomocí rour (Pipe)
 - Proudová roura (Stream).
 - Roura zpráv (Message).
- přenos dat se uskutečňuje v tzv. rámcích (mikrorámcích)
 - Rámec je časový interval o velikosti jedné milisekundy (low a full–speed)
 - Mikrorámec je definován jako časový interval o velikosti 125 mikrosekund (hi–speed)
 - (mikro)rámec může obsahovat i několik transakcí
 - Transakce data, které spolu úzce souvisí
 - Jaké transakce jsou povoleny v daném rámci určuje typ přenosu
 - Princip paketového přenosu (2-3 pakety v rámci)
 - Uvnitř jednoho rámce jsou zpracovávány pakety pro několik zařízení
 - Schopen řešit více požadavků najednou

- Transakci začíná kořenový rozbočovač (host)
- První paket Token Packet
 - Určuje typ přenosu, jeho směr, adresu zařízení a číslo koncového bodu
- Adresované zařízení se samo rozpozná
 - Přijme nebo odešle požadovaná data
- Pokud nejsou data k přenosu, tak se posílá ukončovací paket
- Přijetí dat je oznámeno zvláštním paketem
 - potvrzovací paket odesílá opačná strana než datový paket

- 4 typy datových přenosů
 - Control transfers řídící přenosy
 - Konfigurace, ...
 - Bulk Transfers objemové přenosy
 - Velké přenosy dat, např. tiskárny, scanery, ...
 - **Interupt Transfers** limited latency transfers
 - Znaky, bajty, např. z ukazovacích zařízení
 - Isochronous Transfers datový tok
 - Hlas, video, ...

USB OTG - USB On-The-Go

- Zavedeno u USB 2.0
- Zařízení může vystupovat jako hostitelské, tak periferní zařízení
- schopnost komunikace těchto zařízení bez PC
 - Master/Slave
 - synchronizaci mobilního telefonu s PDA
 - přímý tisk fotografií z fotoaparátu na tiskárnu
 - připojení navigační jednotky GPS k PDA

WUSB (Certified Wireless USB)

- Bezdrátová technologie krátkého dosahu na frekvencích 3,1–10,6 GHz.
- Možnost připojit až 127 zařízení
 - Nevyžaduje hub (na rozdíl od drátové verze)
- Verze 1.0 podporuje rychlost až 480 Mb/s do vzdálenosti 3 m
 - 110 Mb/s do vzdálenosti 10 m.
- V září r. 2010 byla vydána specifikace verze 1.1 s
 - přenosová rychlosí 1 Gb/s.
 - Specifikace zahrnuje i zařízení dvojí role (Dual–Role Devices, DRDs)
 - obdoba OTG.

Thunderbolt (Light Peak)

- Rozhraní pro připojení dalších periférií
- Stejný konektor jako Mini DisplayPort
- Kombinuje PCIe a DisplayPort do seriového signálu
 - Původně fyzická optická vrstva
 - měděné vodiče poskytují 10 Gb/s na jeden kanál
- dva obousměrné kanály
 - každý s rychlostí 10 Gbit/s
 - složený z jedné cesty pro vstup a jedné pro výstup
 - Celkem tedy čtyři cesty
 - (5,4Gb/s na jednu cestu)

Thunderbolt 2

- Fyzická vrstva a propustnost je shodná s Thunderbolt 1
- Kombinuje původně 2 samostatné kanály do jednoho (agregace)
 - 20 Gb/s
- Podpora 4k videa, DisplayPort 1.2

Thunderbolt 3

- Až 4 linie PCIe 3.0, 8 linií DisplayPort 1.2 a USB 3.1 10 Gbit/s
- 40 Gb/s (5 GB/s)
- Až dva 4k displeje zároveň na 6o Hz
 - Nebo jeden 4K displej na 120 Hz nebo 5K display at 60 Hz (Apple)
- Specifikace napájení umožňuje přes USB-C Power Delivery až 100W
 - Thunderbolt uvádí napájení 15 W
- Používá USB Type-C konektor

Thunderbolt 4 v roce 2020

- Plug and Play
 - automatická detekce a konfigurace, jednoduché (žádné) nastavení odpadají nastavení ID, přepínače, terminátory...
- Hot Swap
 - možnost připojení a odpojení za chodu
- vysoká přenosová rychlost
- datový tok nemusí řídit procesor
- univerzální použití
 - orientace ale zejména na multimédia

- První standard IEEE 1394-1995 podporoval datové přenosy do 50Mbit/s
- V roce 1999 byla schválena norma IEEE1394a s rychlostmi 100Mbit/s, 200Mbit/s a 400Mbit/s
 - zlepšené řízení přenosu dat a obsahuje i funkce řízení spotřeby a řeší řadu nepřesností původního návrhu

- IEEE 1394b-2002 umožňuje rychlosti od dvojnásobné, 800Mbit/s do 3,2Gbit/s
 - prodlužuje maximální vzdálenosti zařízení
 - Nová přenosová média
 - IEEE 1394b je plně zpětně kompatibilní se stávající specifikací IEEE 1394-1995 i 1394a.
- IEEE 1394c-2006, IEEE P1394d (2009)
 - Nová přenosová média

- schopen vzájemně propojit až 63 zařízení pomocí sběrnicového vedení (na jednom portu)
 - Součástí této struktury nemusí být PC
- možnost dále větvit buď ve stromové nebo hvězdicové architektuře
- Lze propojit až 1023 sběrnic
 - Přes můstek bridge

Firewire

- Adresování zařízení se děje dynamicky vždy po zapnutí systému nebo po přidání / vyjmutí zařízení
- IEEE 1394 definuje jak asynchronní, tak i isochronní komunikaci

- Asynchronní je používána pro přenos dat
 - zaručuje kvalitní chybovou kontrolu pro zajištění integrity dat
 - nevhodná pro časově kritické aplikace
 - Protože případné chyby v přenosu zpomalují přenos
- Isochronní přenos
 - garantující stabilní přenosovou rychlost
 - neprovádí kontrolu chyb

- IEEE 1394 definuje dva druhy kabelů
- 6-pinový konektor (10 x 5 mm)
 obsahuje napájení a zemnění a umožní FireWire
 periferiím napájení ze sběrnice
- 4-pinový konektor (5 x 3 mm)
 bez možnosti napájení, je však pro svoje malé rozměry používán v řadě přístrojů.
- Napájení ze sběrnice je možné
 - až do příkonu 45W (8-30V)

- Kabel obsahuje dva nezávisle stíněné páry kroucených vodičů pro vysílání a příjem signálu
- Max. délka kabelu pro vysokorychlostní přenosy je 4,5m
- možné spojit až 16 kabelů s využitím aktivních opakovačů,
 - Maximální délka kabelu potom až 72 metrů.
 - Zařízení se mohou řetězit nebo je možné pro dosažení delších vzdáleností použít repeatery
 - Pro nižší rychlosti je možno použít kabelu až 14m

- IEEE 1394b definuje tři další druhy kabelů
 - UTP-5
 - Pro UTP-5 stačí standardní 4-párový kabel s konektory RJ-45. Pouze 2 páry budou využity pro 1394b.
 - POF (Plastic Optical Fiber)
 - 50 microm. Multi-mode Glass Fiber (GOF Glass Optical Fibre)
- Použitá kabeláž závisí na požadavku aplikace
 - Cena

Médium	Měděný vodič	UTP-5	POF	GOF
Vzdálenost	4,5 m	100 m	100 m	100 m
Maximální rychlost	800 - 3200 Mb/s	100 Mb/s	400 Mb/s	3200 Mb/s

- Bývá označován jako COM1, COM2, ...
- Reference Standard 232 revize C
 - RS-232C
- RS 232 používá dvě napěťové úrovně
 - Logickou 1
 - Logickou o.
- 115 kb/s

- Logická 1 je někdy označována jako marking state nebo také klidový stav,
- Logická o se přezdívá space state.
- Logická 1 je indikována zápornou úrovní
- Logická o je přenášena kladnou úrovní výstupních vodičů.

Úroveň	Vysílač	Přijímač
Logická 0	+5 V až +15 V	+3 V až +25 V
Logická 1	-5 V až -15 V	-3 V až -25 V
Nedefinováno	_	-3 V až +3V

Napěťové úrovně sériového portu

- Sériové porty bývají většinou vyvedeny z PC pomocí 9 kolíkové nebo 25 kolíkové zástrčky Canon typu samec.
- Standard RS 232 uvádí jako maximální možnou délku vodičů asi 15 metrů
 - nebo délku vodiče o kapacitanci max. 2500 pF

- UART
 - 8250
 - PC XT
 - 16450
 - PC AT 16 bit PC
 - 16550
 - Stejná fce + 16bit buffer
 - FIFO
 - 16550A oprava drobných chyb
 - 16650, 16750, 16850

Paralelní port

- Paralelní přenos dat je definován standardem IEEE 1284
- tři druhy paralelních portů.
 - Osmibitový paralelní port (SPP Standard Parallel Port)
 - Enhanced Parallel Port (EPP)
 - Extended Capabilities Port (ECP)