Text of exercise #4

Matteo Corain S256654

Laboratory #4 – System and device programming – A.Y. 2018-19

Implement a sequential program in C that takes a single argument k from the command line. The program creates two vectors (v1 and v2) of dimension k, and a matrix (mat) of dimension k x k, which are filled with random numbers in the range [-0.5 0.5], then it performs the product $v1^{T}$ * mat * v2 and prints the result. This is an example for k=5:

v1 = [-0.0613]	-0.1184	0.2655	0.2952	-0.3131]
mat = [-0.3424]	-0.3581	0.1557	0.2577	0.2060
0.4706	-0.0782	-0.4643	0.2431	-0.4682
0.4572	0.4157	0.3491	-0.1078	-0.2231
-0.0146	0.2922	0.4340	0.1555	-0.4538
0.3003	0.4595	0.1787	-0.3288	-0.4029]
v2 = [-0.3235]	0.1948	-0.1829	0.4502	-0.4656]
Result: 0.0194				

Perform the product operation in two steps: v=mat*v2, which produces a new vector v, and result =v1^{T*}v. Then, write a concurrent program using threads that performs the same task. The main thread creates the vectors, the matrix, and k threads. Then, it waits the termination of the other threads. Each thread i performs the product of the i-th row vector of mat and v2, which produces the i-th element of vector v. One of the created threads, the last one terminating its product operation, performs the final operation result= $v1^{T*}v$, and prints the result.