

planetmath.org

Math for the people, by the people.

Riemann integral

Canonical name RiemannIntegral
Date of creation 2013-03-22 11:49:24
Last modified on 2013-03-22 11:49:24

Owner bbukh (348) Last modified by bbukh (348)

Numerical id 14

Author bbukh (348)
Entry type Definition
Classification msc 28-00
Classification msc 26A42
Related topic RiemannSum
Related topic Integral2

Defines Riemann integrable

Let I = [a, b] be an interval of \mathbb{R} and let $f: I \to \mathbb{R}$ be a bounded function. For any finite set of points $\{x_0, x_1, x_2, \dots, x_n\}$ such that $a = x_0 < x_1 < x_2 \cdots < x_n = b$, there is a corresponding partition $P = \{[x_0, x_1), [x_1, x_2), \dots, [x_{n-1}, x_n]\}$ of I.

Let $C(\epsilon)$ be the set of all partitions of I with $\max(x_{i+1}-x_i)<\epsilon$. Then let $S^*(\epsilon)$ be the infimum of the set of upper Riemann sums with each partition in $C(\epsilon)$, and let $S_*(\epsilon)$ be the supremum of the set of lower Riemann sums with each partition in $C(\epsilon)$. If $\epsilon_1<\epsilon_2$, then $C(\epsilon_1)\subset C(\epsilon_2)$, so $S^*(\epsilon)$ is http://planetmath.org/IncreasingdecreasingmonotoneFunctiondecreasing and $S_*(\epsilon)$ is http://planetmath.org/IncreasingdecreasingmonotoneFunctionincreasing. Moreover, $|S^*(\epsilon)|$ and $|S_*(\epsilon)|$ are bounded by $(b-a)\sup_x |f(x)|$. Therefore, the limits $S^*=\lim_{\epsilon\to 0} S^*(\epsilon)$ and $S_*=\lim_{\epsilon\to 0} S_*(\epsilon)$ exist and are finite. If $S^*=S_*$, then f is Riemann-integrable over I, and the Riemann integral of f over I is defined by

$$\int_a^b f(x)dx = S^* = S_*.$$