CS4182 Computer Graphics Single-View Human Reconstruction Tutorial

2024/25 Semester A

City University of Hong Kong (DG)

Background

Reconstructing human model from the single-view image plays important roles in various applications, e.g., gaming, film production, and sports event broadcasting.

Background

Problem Formulation:

 Given a single-view RGB image, we aims to reconstruct the surface of the human body.

Background

- 3D representations
 - Point clouds
 - Voxel
 - Mesh
 - Implicit-Functions (SDF, Occupancy, UDF)

How to learn 3D information from 2D images?

Implicit-based methods

Given a point in the 3D space, determine whether it is in the surface or out the surface.

- PIFu¹
- ICON²

Explicit-based methods

Explicitly learn the position of the surface.

HaP³

^{1.} Saito S, Huang Z, Natsume R, et al. Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 2304-2314.

^{2.} Xiu Y, Yang J, Tzionas D, et al. Icon: Implicit clothed humans obtained from normals[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 13286-13296.

^{3.} Tang Y, Zhang Q, Hou J, et al. Human as Points: Explicit Point-based 3D Human Reconstruction from Single-view RGB Images[J]. arXiv preprint arXiv:2311.02892, 2023.

Implicit-based: PIFu

- Feature Preparation: Project points on the images, to achieve the pixel-level features.
- Input: The (x,y,z) axises of the query point; the pixel-level features (rgb, network feature).
- Output: Binary Occupancy values.

Implicit-based: PIFu

Convert the implicit-function to surface with marching-cube.

Implicit-based: PIFu

Defect: cannot tackle with the occlusion situation

Introduce human prior SMPL into the model

Introduce human prior SMPL into the model

- Input: sdf value, smpl normal feature and cloth normal feature
- Output: sdf value

Defect: cannot recover loosing clothes.

Input

Explicit-based: HaP

- Explicitly generating the human body point cloud.
- Reconstruct the human surface from the point cloud.

Explicit-based: Depth Estimation

Explicit-based: SMPL Estimation

Explicit-based: HaP

Depth Estimation

 Convert the RGB input to depth map, and then project the depth map to partial point cloud

SMPL Rectification

Rectify the SMPL pose and shape based on the partial point cloud

Point Cloud Generation

 Generate human point cloud conditioned on the partial point cloud and the rectified SMPL

Explicit-based: HaP

- Three Elements in Training a Neural Network
 - DataLoader (prepare data for the training process)
 - Network Architecture (use the network to predict)
 - Optimization Objective (the loss to supervise the training)

- Dataloader
 - ___init___
 - Prepare the data paths
 - ___len___
 - Return the number of samples
 - __getitem___
 - Get the data and label

```
class Shapes3dDataset(data.Dataset):
   " 3D Shapes dataset class.
   def init (self, dataset folder, fields, split=None,
             categories=None, no except=True, transform=None):
      "Initialization of the the 3D shape dataset."
      Args:
        dataset folder (str): dataset folder
        fields (dict): dictionary of fields
        split (str): which split is used
        categories (list): list of categories to use
        no except (bool): no exception
        transform (callable): transformation applied to data points
      # Attributes
     self.dataset folder = dataset folder
     self.fields = fields
     self.no_except = no_except
     self.transform = transform
      # If categories is None, use all subfolders
     if categories is None:
        categories = os.listdir(dataset_folder)
        categories = \lceil c \rceil for c in categories
                  if os.path.isdir(os.path.join(dataset_folder, c))]
      # Read metadata file
     metadata file = os.path.join(dataset folder, 'metadata.yaml')
     if os.path.exists(metadata_file):
        with open(metadata file, 'r') as f:
           self.metadata = yaml.load(f)
      else:
        self.metadata = {
           c: {'id': c, 'name': 'n/a'} for c in categories
        }
      # Set index
     for c_idx, c in enumerate(categories):
        self.metadata[c]['idx'] = c_idx
      # Get all models
      self.models = []
     for c_idx, c in enumerate(categories):
        subpath = os.path.join(dataset_folder, c)
        if not os.path.isdir(subpath):
           logger.warning('Category %s does not exist in dataset.' % c)
        split_file = os.path.join(subpath, split + '.lst')
        with open(split_file, 'r') as f:
           models c = f.read().split('\n')
```

```
self.models += [
        {'category': c, 'model': m}
        for m in models c
def len (self):
   "Returns the length of the dataset.
  return len(self.models)
def getitem (self, idx):
   " Returns an item of the dataset.
  Args:
     idx (int): ID of data point
  category = self.models[idx]['category']
  model = self.models[idx]['model']
  c_idx = self.metadata[category]['idx']
  model path = os.path.join(self.dataset folder, category, model)
  data = \{\}
  for field name, field in self, fields, items():
        field data = field.load(model path, idx, c idx)
     except Exception:
        if self.no except:
           logger.warn(
              'Error occured when loading field %s of model %s'
              % (field name, model)
           return None
        else:
           raise
     if isinstance(field data, dict):
        for k, v in field_data.items():
           if k is None:
              data[field name] = v
              data['\%s.\%s' \% (field_name, k)] = v
        data[field_name] = field_data
  if self.transform is not None:
     data = self.transform(data)
  return data
```


Outside the surface: 0 Inside the surface: 1

- Network Architecture
 - ___init___
 - Define the network architecture
 - ___forward___
 - Forward the input into the network and achieve the prediction

```
class ResnetPointnet(nn.Module):
  "PointNet-based encoder network with ResNet blocks.
  Args:
     c dim (int): dimension of latent code c
     dim (int): input points dimension
     hidden_dim (int): hidden dimension of the network
  def __init__(self, c_dim=128, dim=3, hidden_dim=128):
     super(). init ()
     self.c dim = c dim
     self.fc_pos = nn.Linear(dim, 2*hidden_dim)
     self.block 0 = ResnetBlockFC(2*hidden dim, hidden dim)
     self.block_1 = ResnetBlockFC(2*hidden_dim, hidden_dim)
     self.block 2 = ResnetBlockFC(2*hidden dim, hidden dim)
     self.block 3 = ResnetBlockFC(2*hidden dim, hidden dim)
     self.block 4 = ResnetBlockFC(2*hidden dim, hidden dim)
     self.fc c = nn.Linear(hidden dim, c dim)
     self.actvn = nn.ReLU()
     self.pool = maxpool
```

```
def forward(self, p):
    batch size, T, D = p.size()
     # output size: B x T X F
     net = self.fc_pos(p)
    net = self.block 0(net)
     pooled = self.pool(net, dim=1, keepdim=True).expand(net.size())
    net = torch.cat([net, pooled], dim=2)
     net = self.block 1(net)
    pooled = self.pool(net, dim=1, keepdim=True).expand(net.size())
     net = torch.cat([net, pooled], dim=2)
     net = self.block 2(net)
     pooled = self.pool(net, dim=1, keepdim=True).expand(net.size())
     net = torch.cat([net, pooled], dim=2)
     net = self.block 3(net)
     pooled = self.pool(net, dim=1, keepdim=True).expand(net.size())
     net = torch.cat([net, pooled], dim=2)
    net = self.block 4(net)
    # Recude to B x F
     net = self.pool(net, dim=1)
    c = self.fc c(self.actvn(net))
    return c
```


Figure 1: Occupancy Network Architecture. We first compute an embedding c of the input. We then feed the input points through multiple fully-connected ResNet-blocks. In these ResNet-blocks, we use Conditional Batch-Normalization (CBN) to condition the network on c. Finally, we project the output of our network to one dimension using a fully-connected layer and apply the sigmoid function to obtain occupancy probabilities.

Loss Function

$$\mathcal{L}_{\mathcal{B}}(heta) = rac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{K} \mathcal{L}(f_{ heta}(p_{ij}, x_i), o_{ij})$$