Linearni sistemi

DEFINICIJA: Naj bo $\dot{\vec{x}}(t) = A(t)\vec{x}(t)$ sistem in $A(t) \in \mathbb{R}^{n \times n} \forall t$. Rešitev enačbe $\dot{X} = AX$, ki je obrnljiva, se imenuje **fundamentalna rešitev**. Dve fundamentalni rešitvi se razlikujeta za obrnljivo matriko. **Splošna rešitev** $\dot{\vec{x}} = A\vec{x}$ je $X\vec{c}$, kjer je \vec{c} konstantni vektor.

$$X = [x_1, x_2, \dots x_n]$$
 $X\vec{c} = c_1\vec{x_1} + c_2\vec{x_2} + \dots + c_n\vec{x_n}$

Naj bo A matrika konstant. $\dot{\vec{x}} = A\vec{x}$ ima splošno rešitev $\vec{x} = Pe^{Jt}\vec{c}$, kjer je $A = PJP^{-1}$ jordanska kanonična forma.

Postopek:

- (1) Izračunaj lastne vrednosti matrike A.
 - Če so vse lastne vrednosti različne, izračunaj lastne vektorje za vse lastne vrednosti in določi J in P (pazi, da vrstni red lastnih vrednosti v J sovpada z vrstnim redom lastnih vektorjev v P)
 - ullet Če je lastna vrednost λ večkratna in zanjo obstaja le en lastni vektor, izračunaj korenski vektor in ga preslikaj z $A-\lambda I$
- (2) Zapiši rešitev $\vec{x} = Pe^{Jt}\vec{c} = c_1e^{\lambda_1t}v_1 + c_2e^{\lambda_2t}v_2 + \cdots c_ne^{\lambda_nt}v_n$, kjer $P = [v_1, v_2, \dots, v_n]$. Iz tega dobiš $X = [\vec{x_1}, \vec{x_2}, \dots, \vec{x_n}]$, kjer $x_i = e^{\lambda_it}v_i$.

OPOMBA: Pri kompleksnih lastnih vrednostih in vektorjih z uporabo $e^{\lambda+i\mu}=e^{\lambda}(\cos\mu+i\sin\mu)$ loči realni in imaginarni del (hočemo realne lastne vektorje, konstante pred njimi pa so lahko kompleksne).

Ko rešuješ sistem

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 $\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$ iz prve enačbe izrazi y, enačbo odvajaj in vstavi dobljeni \dot{y} v drugo. Dobiš diferencialno enačbo za x, iz katere izračunaš x in y. Splošno rešitev sistema X dobiš tako, da razpišeš x in y po bazi konstant C_1, C_2 (prvi stolpec: $C_1 = 1, C_2 = 0$ in drugi stolpec: $C_1 = 0, C_2 = 1$).

LIOUVILLEOV IZREK: Naj bo $\dot{z} = A\vec{z}$ in $A: [a,b] \to \mathbb{R}^{n \times n}$ zvezna za vsak t. Potem obstaja fundamentalna rešitev sistema, ki je obrnljiva na [a,b] X(t)taka, da velia:

$$\det X(t) = \det X(t_0) e^{\int_{t_0}^t \mathrm{sl} A(\xi) d\xi}.$$

Linearne DE višjega reda

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x)$$

$$\vec{z} = \begin{bmatrix} y \\ y' \\ y'' \\ \vdots \\ y^{(n-1)} \end{bmatrix}, \quad \vec{z}' = \begin{bmatrix} y' \\ y'' \\ y''' \\ \vdots \\ y^{(n)} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix} \begin{bmatrix} y \\ y' \\ \vdots \\ y^{(n-2)} \\ y^{(n-1)} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ f \end{bmatrix}$$

$$\vec{x} = X\vec{c} = X \int X^{-1} \vec{f} dt, \text{ rabimo samo prvo vrstico } (y).$$

 $\vec{x} = X\vec{c} = X \int X^{-1} \vec{f} dt$, rabimo samo prvo vrstico (y).

LINEARNA NDE S KONSTANTNIMI KOEFICIENTI: $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = b(t), a_0, \ldots, a_{n-1} \in \mathbb{R}$.

Homogen del: substitucija $y = e^{\lambda x}$. Dobimo $\lambda_1, \dots \lambda_k$ paroma različne.

Rešitev: $y = y_1 + \dots + y_k$, kjer y_j ustreza λ_j in $y_j = c_1 e^{\lambda_j x} + c_2 x e^{\lambda_j x} + \dots + c_{k_j} x^{k_j - 1} e^{\lambda_j x}$, kjer je k_j večkratnost λ_j .

Partikularni del: za b oblike $e^{\mu x}q(x)$, $\mu \in \mathbb{C}$ in q(x) polinom stopnje m. $y_p = p(x)e^{\mu x}x^k$, kjer k večkratnost μ kot λ in p stopnje m.

CAUCHY-EULERJEVA ENAČBA: $x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \cdots + a_1 x y' + a_0 y = b$. Uvedemo novo spremenljivko $x = e^t$, enačba se prevede na enačbo s konstantnimi koeficienti. V praksi porabimo nastavek $y = x^{\lambda}$.

Rešitev: $y = y_1 + \cdots + y_k$, kjer y_j ustreza λ_j in $y_j = c_1 x^{\lambda_j} + c_2 \log(x) x^{\lambda_j} + \cdots + c_{k_j} \log^{k_j - 1}(x) x^{\lambda_j}$, kjer je k_j večkratnost λ_j .

Partikularni del: za b oblike $(\ln t)t^{\mu}$. Nastavek $y_p = q(\ln t)t^{\mu} \ln^k t$, kjer $\operatorname{st}(q) = \operatorname{st}(p)$ in k večkratnost μ med λ_i , ki rešijo "karakteristični polinom".

Variacijski račun

DEFINICIJA: Naj bo $A:X\longrightarrow Y$ linearna preslikava med normiranima vektorskima prostoroma. A je omejena, če obstaja $M\geq 0$, da velja $\|Ax\|_Y\leq 1$ $M\|x\|_{X}. \ \ \check{\text{Ce}} \ \ \text{je} \ \ A \ \ \text{omejena, potem} \ \ \|A\|:=\sup_{x\neq 0} \frac{\|Ax\|}{\|x\|}:=\sup_{\|x\|\leq 1} \|Ax\|:=\sup_{\|x\|=1} \|Ax\|.$

Trditev: A je omejena \iff A zvezna. $\|Ax\|_Y \leq \|\ddot{A}\| \|x\|_X$ ($\|A\|$ je norma v prostoru operatorjev)

Za Banachova prostora $(C[a,b],\|.\|_{\infty})$ in $(C^1[a,b],\|.\|_1)$ je $\|f\|_1:=\|f\|_{\infty}+\|f'\|_{\infty}$

Definicija: Naj bosta X in Y Banachova, $\mathcal{U}^{odp}\subseteq X$ in $F:\mathcal{U}\longrightarrow Y$. F je:

a) krepko (Fréchetjevo) odvedljiva v točki x, če obstaja (DF)(x) omejen linearni operator iz X v Y, da velja:

$$\frac{\|F(x+h) - F(x) - (DF)(x)(h)\|}{\|h\|} \xrightarrow[h \to 0]{} 0$$

b) šibko (Gâuteauxjevo) odvedljiva, če obstaja $g_x(h) := \lim_{t \to 0} \frac{F(x+th) - F(x)}{t}$

IZREK: Če je F krepko odvedljiva $\Longrightarrow F$ šibko odvedljiva in odvoda sta enaka.

Opomba: Izračunamo šibkega, dobimo kandidata za krepkega. Po definiciji izračunamo limito krepkega. Dokažemo omejenost g_x .

Uporabno: $|\int (f+f')dx| \le \int (|f|+|f'|)dx \le \int (||f||_{\infty}+||f'||_{\infty})dx = \int ||f||_1 dx$

Trditev: Naj bo X Banachov prostor in $F,G:X\longrightarrow\mathbb{R}$ krepko odvedljivi v $x_0\in X$. Potem je $FG:X\longrightarrow\mathbb{R}$ krepko odvedljiva v x_0 in velja $D(FG)(x_0) = F(x_0)DG(x_0) + G(x_0)DF(x_0)$

RAZMADZEJEV IZREK: Naj bosta M in N zvezni funkciji na [a,b]. Denimo, da za vsako testno funkcijo $\varphi \in \mathcal{D}([a,b])$ velja:

 $\int_a^b (M\varphi + N\varphi')dx = 0$. Tedaj je N odvedljiva in velja N' = M.

Euler-Lagrangeeva enačba: $L_y - \frac{d}{dx} L_{y'} = 0$

Naj velja $L_y = \frac{d}{dx} L_{y'}$ in $L_{y'} h|_a^b = 0$ za vse dopustne variacije.

- če poznamo $y(a), y(b) \Longrightarrow h(a) = h(b) = 0$ za vse dopustne variacije.
- če poznamo $y(a) \Longrightarrow h(a) = 0$ za vse dopustne variacije $(L_{y'}(b) = 0)$.
- če poznamo $y(b) \Longrightarrow h(b) = 0$ za vse dopustne variacije $(L_{y'}(a) = 0)$.
- če y(a), y(b) ne poznamo $\Longrightarrow ...$

Klasični problem: $I[y] = \int_a^b L(x, y, y') dx$.

- (1) Če $L = L(x, y') \Longrightarrow L_{y'} = C$ (Iz te enačbe izrazi y' = f(x), z integracijo izračunaj $y = \int f(c)$ in vstavi robne pogoje, da določiš konstante.) (2) $L = L(y, y') \Longrightarrow L y' L_{y'} = C$ (ločljive spremenljivke, verjetno potrebna obravnava glede na vrednost C)

IZOPERIMETRIČNI POLINOM: $A: I[y] = \int_a^b L(x,y,y')dx + \text{robni pogoji} + \text{dodatni pogoji} : \int_a^b G_1(x,y,y')dx = A_1, \dots \int_a^b G_n(x,y,y')dx = A_n \Longrightarrow \text{obstajajo}$ $\lambda_1, \dots \lambda_n: \int_a^b (L - \lambda_1 G_1 - \dots \lambda_n G_n) dx = \tilde{I}[y]$. Ekstremali za A so ekstremali za \tilde{I} z nekaterimi robnimi pogoji. (Da dobiš λ izračunaj najprej $y(x,\lambda)$, nato pa uporabi dodatni pogoj. Dodatno: Če y(a) ni podan: $\tilde{L}_{y'}(a) = 0$)

$$I[y] = \int_a^b L(x, y, y', \dots, y^{(n)}) dx \Longrightarrow L_y - \frac{d}{dx} L_{y'} - \dots + (-1)^n \frac{d^n}{dx^n} L_{y^{(n)}} = 0$$

 $I[y_1,y_2,\ldots,y_n] = \int_a^b L(x,y_1,\ldots y_n,y_1',\ldots y_n') dx \text{ in podani } y_1(a),\ldots y_n(a),y_1(b),\ldots y_n(b). \text{ Potem za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx} L_{y_i'} \ldots y_n' dx$ Nelinearni sistemi: Če $\dot{x} = f(x,y), \dot{y} = g(x,y) \Longrightarrow y'(x) = \frac{g(x,y)}{f(x,y)}, (\frac{y}{x}) = \frac{x\dot{y} - y\dot{x}}{x^2}, (xy) = \dot{x}y + x\dot{y}$

NDE 1. reda

Ločljive spremeljivke: y' = f(x)g(y)

Linearna: y' = a(x)y + b(x), rešujemo $y_s = y_h + y_p$

Trik: $y(x) \leftrightarrow x(y) \implies y' = 1/\dot{x}$

Homogena: $f(tx,ty) = t^{\alpha}f(x,y)$, v posebnem $f(x,y) = f(1,x/y) \implies z = y/x, y' = z + xz' \implies$ linearna Bernoullijeva: $y' = a(x)y + b(x)y^{\alpha}$, rešujemo $z = y^{1-\alpha}$, $\implies \frac{1}{1-\alpha}z' = a(x)z + b(x)$

Ricattijeva: $y' = a(x)y^2 + b(x)y + c(x)$, ena rešitev y_1 . Nova spr. $y = y_1 + \frac{1}{u}$

 $y'=y_1'-\frac{u'}{u^2}$ po pretvorbi $u'=-u(2ay_1+b)-a$ Integrirajoči množitelj: Pdx+Qdy=0, iščemo μ : $(\mu P)_y=(\mu Q)_x$. Rešitev $u(x,y)=\int Pdx=\int Qdy=0$ $\mu=\mu(x)\Longleftrightarrow \frac{\mu_x}{\mu}=\frac{P_y-Q_x}{Q}$ odvisno samo od x. $\mu=\mu(y)\Longleftrightarrow \frac{\mu_y}{\mu}=\frac{Q_x-P_y}{P}$ odvisno samo od y.

Če $\mu = f(x,y)$, pazi, da odvajaš kot kompozitum.

Parametrično: x = X(u,v), y = Y(u,v), y' = Z(u,v). Rešujemo: $dY = Z\,dX$

Triki: $\cos^2 + \sin^2 = 1$, $ch^2 - sh^2 = 1$, y' = tx.

Clairautova: y = xy' + b(y'). Rešitev: y = Cx + b(C). Tudi singularna rešitev (ogrinjača).

Lagrangeeva: y = a(y')x + b(y'). Rešujemo parametrično: $X = u, Z = y' = v, Y = a(v)u + b(v) \implies$ linearna.

Če je enačba podana eksplicitno in je desna stran polinom lihe stopnje v y s koeficienti funkcijami v x uvedeš $u=y^2$.

NDE višjih redov

Ne nastopa y: uvedemo z = y'.

Obe strani sta odvoda nečesa: integriramo in dodamo konstanto.

Odvodi: $y'/y = (\log(y))', xy' + y = (xy)', \frac{y''y - y'^2}{y^2} = (\frac{y'}{y})', \frac{y'x - y}{x^2} = (\frac{y}{x})'.$ Ne nastopa x: uvedemo z(y) = y', y neodvisna spr. $y'' = \dot{z}z, y''' = \ddot{z}z^2 + \dot{z}^2z$. Homogena: $F(x, ty, ty', \dots, ty^{(n)}) = t^k F(x, y, y', \dots, y^{(n)})$. Vpeljemo z(x) = y'/y. $y''/y = z' + z^2$.

Z utežjo: $F(kx, k^m y, k^{m-1} y', \dots, k^{m-n} y^{(n)}) = k^p F(x, y, y', \dots, y^{(n)})$. Uvedemo: $x = e^t, y = u(t)e^{mt}$.

Integrali in formule

Substitucija: $t=\tan x,\sin^2 x=t^2/(1+t^2),\cos^2 x=1/(1+t^2),$ d $x=\,\mathrm{d}t/(1+t^2)$

Substitucija: $u = \tan(x/2)$, $\sin x = 2u/(1+u^2)$, $\cos x = (1-u^2)/(1+u^2)$, $dx = 2du/(1+u^2)$