

ДОКЛАДЫ АКАДЕМИИ НАУК, 201X, том X, №Y.

= МАТЕМАТИКА =

УДК 517.925.42

**ВЫРОЖДЕННЫЕ РЕЗОНАНСЫ И ИХ УСТОЙЧИВОСТЬ В
ДВУМЕРНЫХ СИСТЕМАХ С МАЛОЙ ОТРИЦАТЕЛЬНОЙ
ДИВЕРГЕНЦИЕЙ**

О. Ю. Макаренков, И. С. Мартынова

Представлено академиком С. Н. Васильевым

В работе показывается, что связанные с именами Боголюбова [1], Малкина [9] и Мельникова [11] классические условия бифуркации T -периодических решений в аналитических дифференциальных уравнениях вида

$$\dot{x} = f(x) + \varepsilon g(t, x, \varepsilon), \quad x \in \mathbb{R}^2 \quad (1)$$

в окрестности T -периодического цикла x_0 соответствующей порождающей системы

$$\dot{x} = f(x), \quad x \in \mathbb{R}^2 \quad (2)$$

могут быть существенно ослаблены, коль скоро возмущенная система (1) обладает следующим свойством отрицательности дивергенции

$$\sum_{i=1,2} (f_i)'_{x_i} + \varepsilon (g_i)'_{x_i}(t, x, \varepsilon) < 0, \quad t \in \mathbb{R}, \quad x \in V, \quad \varepsilon \in (0, \varepsilon_0). \quad (3)$$

Здесь $V \in \mathbb{R}^2$ – какая-нибудь окрестность кривой $t \mapsto x_0(t)$ и $\varepsilon_0 > 0$ – любая подходящая константа.

Результаты классической теории возмущений [1, 9, 11] связаны с разложением оператора Пуанкаре \mathcal{P}_ε за период $T > 0$ возмущенной системы (1) по степеням малого параметра ε :

$$\mathcal{P}_\varepsilon(\phi(x, \varepsilon)) = \phi(x, \varepsilon) + \varepsilon^\lambda \bar{f}(x) + \varepsilon^{2\lambda} \bar{\bar{f}}(x) + \dots,$$

где $\lambda \in (0, 1]$, $\phi(\cdot, \varepsilon)$ – подходящая взаимооднозначная замена переменных и \bar{f} , $\bar{\bar{f}}$ и т. д. – так называемые бифуркационные функции 1-го, 2-го и т. д. порядков. Для бифуркации T -периодического решения системы (1) из решения x_0 , таким образом, необходимо, чтобы $x_0(0)$ был нулем бифуркационной функции первого порядка. Невырожденность данного нуля, то есть обратимость производной бифуркационной функции первого порядка в $x_0(0)$, является достаточным условием бифуркации. Невырожденность нуля бифуркационной функции первого порядка имеет место в следующих основных ситуациях

1. Боголюбов [1]: все решения системы (2) – T -периодические и $x_0(0)$ является простым нулем функции усреднения

$$\bar{f}(v) = \int_0^T \Omega'_x(0, \tau, \Omega(\tau, 0, v)) g(\tau, \Omega(\tau, 0, v), 0) d\tau,$$

где $\Omega(\cdot, t_0, v)$ – решение системы (2) с начальным условием $x(t_0) = v$.

2. Мельников [11]: решение системы (2) с любым начальным условием v – периодическое с периодом $T(v)$, $s = 0$ является простым нулем период-функции $s \mapsto T(x_0(0) + \dot{x}_0(0)^\perp s)$, где $v^\perp = \text{col}(-v_2, v_1)$, и $\theta = 0$ является простым нулем субгармонической бифуркационной функции Мельникова $\theta \mapsto \pi_E(x_0(\theta))\bar{f}(x_0(\theta))$, где $\pi_E(x_0(\theta))$ – определенная 2x2-матрица.
3. Малкин [9, Гл. VI, §2]: матрица $\Omega'_x(T, 0, x_0(0))$ имеет отличное от ± 1 собственное значение и так называемая бифуркационная функция Малкина-Луда $\theta \mapsto \pi_A(x_0(\theta))\bar{f}(x_0(\theta))$, где $\pi_A(x_0(\theta))$ – 2x2-матрица, имеет $\theta = 0$ простым нулем.

Если ни одно из указанных 3-х типов условий не выполнено, приходится задействовать бифуркационную функцию \bar{f} 2-го и высших порядков. Полученные периодические решения называются в этом случае вырожденными резонансами. Для доказательства существования вырожденных резонансов оказывается полезной имеющаяся в системе дополнительная структура, см. Тхай [14]. В общем же случае условия бифуркации выписываются в терминах решений вспомогательных полиномиальных уравнений, см. Копнин [5], Yagasaki [15].

В работах многих авторов (см. ссылки в [10, 3, 8]) показывалось, что условия на невырожденность нулей бифуркационных функций может быть заменено невырожденностью их топологического индекса. Однако устойчивость соответствующих периодических решений возмущенной системы явно доказана (Макаренков-Ортега [7]) только для случая Малкина. В этой статье, пользуясь одним лишь топологическим индексом и ограничиваясь случаем возмущенных систем (1) с аналитическими правыми частями и отрицательной дивергенцией (быть может не имеющей места при $\varepsilon = 0$), предлагаются результаты об устойчивости также в случаях Боголюбова и Мельникова.

1. Рассмотрим сначала ситуацию Боголюбова. Напомним, что система (1) с T -периодической по t правой частью является аналитической в некоторой окрестности, если правая часть разлагается в этой окрестности в ряд по степеням фазовой переменной и сходимость рассматриваемого ряда равномерна по t и ε . Ниже мы используем понятие индекса Пуанкаре $\text{ind}(v_0, \bar{f})$ изолированного нуля v_0 векторного поля \bar{f} , который определяется как топологическая степень $d(\bar{f}, U)$ поля \bar{f} относительно границы малой открытой окрестности U точки v_0 , см. [6]. Топологическую степень в рассматриваемой двумерной ситуации можно определить как число полных оборотов, совершаемых вектором $\bar{f}(v(\theta))$, в то время как $v(\theta)$ обходит v_0 , при изменении θ от 0 до 2π , против часовой стрелки вдоль границы ∂U окрестности U . При этом, каждый из таких полных оборотов засчитывается с положительным или отрицательным знаком в зависимости от того достигает вектор $\bar{f}(v(\theta))$ вектора $\bar{f}(v(0))$ против часовой стрелки или по ее направлению, см. [6].

Теорема 1. Предположим, что рассматриваемая возмущенная система (1) имеет T -периодические по t правые части и является аналитической в малой окрест-

ности V T -периодического решения x_0 , а все решения порождающей системы (2) из данной окрестности являются T -периодическими. Если выполнено условие отрицательности дивергенции (3) и

$$\text{ind}(x_0(0), -\bar{f}) > 0, \quad (4)$$

то существует $\varepsilon_0 > 0$ такое, что при $\varepsilon \in (0, \varepsilon_0]$ система (1) имеет по крайней мере одно асимптотически устойчивое T -периодическое решение x_ε такое, что $x_\varepsilon \rightarrow x_0$ при $\varepsilon \rightarrow 0$.

Пример 1. Рассмотрим следующий вариант уравнения Дуффинга: $\ddot{u} + \varepsilon c \dot{u} + \varepsilon^3 au + \varepsilon^2 bu^3 = \varepsilon^2 \gamma \cos \omega t$, в котором $a, b, c, \gamma, \varepsilon > 0$. Функция u является решением данного уравнения тогда и только тогда, когда $x = (u, (1/\varepsilon)\dot{u})$ – решение системы

$$\begin{aligned} \dot{x}_1 &= \varepsilon x_2, \\ \dot{x}_2 &= -\varepsilon cx_2 - \varepsilon^2 ax_1 - \varepsilon b(x_1)^3 + \varepsilon \gamma \cos \omega t. \end{aligned} \quad (5)$$

Соответствующая функция усреднения \bar{f} записывается как $\bar{f}(v) = \text{col}(v_2, -bv_1^3 - cv_2)$, и имеет единственный нуль $v_0 = 0$. Поэтому, бифуркация $2\pi/\omega$ -периодического решения системы (5) возможна из одного лишь решения $x_0(t) \equiv 0$. Однако, $\det \|\bar{f}'(0)\| = 0$ и усреднение по первому приближению не позволяет доказать существование бифуркации. Вместо вычисления высших приближений применим теорему 1, поскольку вычисление дивергенции в формуле (3) приводит для системы (5) к выражению $-\varepsilon c$, то есть является отрицательной. Замечая, что векторное поле \bar{f} линейно гомотопно тождественному на малых окружностях с центрами в $v_0 = 0$, приходим к заключению $\text{ind}(0, -\bar{f}) = 1$. Значит, при всех достаточно малых $\varepsilon > 0$ система (5) действительно имеет по крайней мере одно асимптотически устойчивое $2\pi/\omega$ -периодическое решение, сходящееся к 0 при $\varepsilon \rightarrow 0$.

2. Перейдем к ситуации Мельникова. Ниже, под сходимостью векторов $v_\varepsilon \in \mathbb{R}^2$ к множеству $x_0(\mathbb{R})$ при $\varepsilon \rightarrow 0$ понимается сходимость в метрике Хаусдорфа.

Теорема 2. Предположим, что рассматриваемая возмущенная система (1) имеет T -периодические по t правые части и является аналитической в малой окрестности $V \subset \mathbb{R}^2$ T -периодического цикла x_0 . Пусть далее ни одно из решений порождающей системы (2) из множества $V \setminus x_0(\mathbb{R})$ не является T -периодическим. Если выполнено условие отрицательности дивергенции (3) и

$$d(-\bar{f}, U) \neq 1, \quad (6)$$

где U – внутренность цикла x_0 , то существует $\varepsilon_0 > 0$ такое, что при $\varepsilon \in (0, \varepsilon_0]$ система (1) имеет по крайней мере одно асимптотически устойчивое T -периодическое решение x_ε такое, что $x_\varepsilon(0) \rightarrow x_0(\mathbb{R})$ при $\varepsilon \rightarrow 0$. Начальное условие $x_\varepsilon(0)$ приближается к $x_0(\mathbb{R})$ изнутри или снаружи в зависимости от того $d(-\bar{f}, U) > 1$ или $d(-\bar{f}, U) < 1$.

Проверка условия (6) может проводиться на основании анализа классических бифуркационных функций Малкина и Мельникова. Приведем один такой критерий [8].

Обозначим через z_A решение уравнения $\dot{z} = -(f'(x_0(t)))^* z$ с начальным условием $z_A(0) = (1/\|\dot{x}_0(0)\|^2) \dot{x}_0(0)$, а через z_E – решение данной линейной системы с начальным условием $\tilde{z}_E(0) = \text{col}(-\dot{x}_{0,2}(0), \dot{x}_{0,1}(0))$. Положим

$$M_j(\theta) = \int_{\theta}^{\theta+T} \langle z_j(\tau), g(\tau - \theta, x_0(\tau), 0) \rangle d\tau, \quad j = A, E.$$

Если M_E имеет на $[0, T]$ ровно два нуля θ_1, θ_2 и является в них строго монотонной, а для функции M_A выполнено условие $M_A(\theta_1)M_A(\theta_2) < 0$, то $d(-\bar{f}, U)$ принимает либо значение 0, либо значение 2.

Пример 2. Рассмотрим систему

$$\begin{aligned} \dot{x}_1 &= x_2 \left(\frac{1}{4}(x_1^2 + x_2^2 - 2)^p + 1 \right) \\ \dot{x}_2 &= -x_1 \left(\frac{1}{4}(x_1^2 + x_2^2 - 2)^p + 1 \right) - \varepsilon^2 x_2 + \varepsilon \sin(t). \end{aligned} \quad (7)$$

Порождающая система допускает семейство циклов $x_{0,\alpha}(t) = \text{col}(\alpha \sin((2\pi/T(\alpha))t), \alpha \cos((2\pi/T(\alpha))t))$ с периодами $T(\alpha) = 2\pi/((1/4)(\alpha^2 - 2)^p + 1)$. При $\alpha = \sqrt{2}$ для период-функции имеем $T(\alpha) = 2\pi$, $T'(\alpha) = \dots = T^{(p-1)}(\alpha) = 0$, $T^{(p)}(\alpha) \neq 0$ и усреднение по первому приближению (или стандартный метод Мельникова) не применимо. Вычисление высших приближений для данного примера проведено в [15]. Для дивергенции системы (7) получаем значение $-\varepsilon^2$, то есть условие (3) выполнено. Поэтому, вместо привлечения высших приближений мы используем теорему 2. При любом $p \in \mathbb{N}$ для функций M_A и M_E получаем выражения $M_A(\theta) = -\frac{1}{\sqrt{2}}\pi \cos(\theta)$, $M_E(\theta) = -\sqrt{2}\pi \sin(\theta)$. Условия указанного выше критерия выполнены (два нуля на интервале $[0, 2\pi]$ даются формулами $\theta_1 = 0$ и $\theta_2 = \pi$), поэтому условие (6) выполнено. Применяя теорему 2, заключаем, что при всех достаточно малых $\varepsilon > 0$ система (7) имеет асимптотически устойчивое 2π -периодическое решение, сходящееся при $\varepsilon \rightarrow 0$ к кругу радиуса $1/\sqrt{2}$.

3. Обсудим основные идеи доказательства предложенных теорем. Для получения результатов теорем 1 и 2 прежде всего доказывается положительность топологической степени оператора Пуанкаре возмущенной системы относительно окрестности точки $x_0(0)$ в случае теоремы 1 и относительно внутренней и внешней окрестностей множества $x_0(\mathbb{R})$ в случае теоремы 2. В первом случае используется результат Мавена [10], а во втором теорема Каменского-Макаренкова-Нистри [3] в сочетании с результатом Capetto-Mawhin-Zanolin [2]. Далее используется свойство (3) и теорема из Nakajima-Seifert [12], которая позволяет заключить существование у возмущенной системы (1) изолированного T -периодического решения с индексом Пуанкаре +1. Наконец, асимптотическая устойчивость такого решения следует из теоремы Колесова-Ортега [4, 13].

Исследования авторов поддержаны грантом Президента РФ для молодых кандидатов наук (МК-1530.2010.1) и грантом РФФИ 09-01-00468. Исследования первого автора также поддержаны грантом РФФИ 10-01-93112.

Список литературы

- [1] Боголюбов Н. Н. О некоторых статистических методах в математической физике. Акад. Наук Укр. ССР, 1945.
- [2] Capietto A., Mawhin J., Zanolin F. // Trans. Amer. Math. Soc. 1992. V. 329. № 1. P. 41–72.
- [3] Каменскийй М. И., Макаренков О. Ю., Нистри П. // ДАН 2003. Т. 388. № 4. С. 439–442.
- [4] Колесов Ю. С. // ДАН 1969. Т. 10. С. 1290–1293.
- [5] Коннин Ю. М. // Инж. Журн. 1965. Т. 5. № 2. С. 217–226.
- [6] Красносельскийй М. А., Забрейко П. П. Геометрические методы нелинейного анализа. М.: Наука, 1975.
- [7] Makarenkov O., Ortega R. // J. Differential Equations 2011. Т. 250. № 1. P. 39–52.
- [8] Макаренков О. Ю. // Труды ММО. 2009. Т. 70. С. 4–45.
- [9] Малкин И. Г. Некоторые задачи теории нелинейных колебаний. М.: Техеоргиз, 1956.
- [10] Mawhin J. // Bull. Soc. Roy. Sci. Liége 1969. V. 38. P. 308–398.
- [11] Мельников В. К. // Труды ММО. 1963. Т. 12. С. 3–52.
- [12] Nakajima F., Seifert G. // J. Differential Equations. 1983. V. 49. P. 430–440.
- [13] Ortega R. // World Congress of Nonlinear Analysts '92. De Gruyter, Berlin, 1996. P. 383–394.
- [14] Тхай В. Н. // ПММ 2010. Т. 74. № 5. С. 812–823.
- [15] Yagasaki K. // SIAM J. Appl. Math. 1996. V. 56. № 6. P. 1720–1756.

О. Ю. Макаренков (автор для переписки): Институт проблем управления им. В.А. Трапезникова, 117997, ул. Профсоюзная 65, Москва, Россия и Имперский Колледж Лондона, SW7 2AZ, Великобритания (omakarenkov@mail.ru).

Служебный телефон: (495) 334-86-60

И. С. Мартынова: Воронежская государственная технологическая академия, 394036, пр. Революции 19, Воронеж, Россия (i_martynova@inbox.ru).

Служебный телефон: (4732) 552-550