Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа <u>Р3224</u>	К работе допущен
Студенты Кобик Никита, Маликов Глеб	Работа выполнена
Преподаватель Иванов Виктор Юрьевич	Отчет принят

Рабочий протокол и отчет по лабораторной

работе №1.02А

Изучение движения тел под воздействием силы тяжести.

Цель работы.

Измерение модуля ускорения свободного падения.

Экспериментальная проверка эквивалентности гравитационной и инертной массы.

2. Задачи, решаемые при выполнении работы.

Нахождение ускорения свободного падения с помощью МНК. Расчет соответствующих погрешностей величин.

3. Объект исследования.

Движение тележки по наклонному рельсу с утяжелителем и без.

4. Метод экспериментального исследования.

Замер таких величин как: ускорение тележки, высота подъема ножек рельсы.

5. Рабочие формулы и исходные данные.

 $n_{\text{пл.}}$ – количество пластин;

h – высота точки рельса с координатой x = 0.7 м;

h' – высота точки рельса с координатой x = 1.7 м;

i – номер измерения.

 a_i , a –полученные значения ускорения тележки, $\sin \alpha$ – синус угла наклона рельса к горизонту

 $g_{
m эксп}$ - экспериментальное значение ускорения свободного падения, $g_{
m табл}$ - табличное значение ускорения свободного падения для Санкт-Петербурга

$$a = A + B\sin(\alpha),$$

где
$$A=-rac{m_{ ext{\tiny F}}}{m_{ ext{\tiny H}}}rac{f}{R}g$$
, а $B=g$ в случае если инертная и гравита-

ционные массы эквивалентны, в противном случае $B = \frac{m_{\scriptscriptstyle \Gamma}}{m_{\scriptscriptstyle H}} g$.

$$B = \frac{\sum_{j=1}^{n} a_j \sin(\alpha)_j - \frac{1}{n} \sum_{i=j}^{n} a_j \sum_{i=1}^{n} \sin(\alpha)_j}{\sum_{j=1}^{n} \sin^2(\alpha)_j - \frac{1}{n} \left(\sum_{i=j}^{n} \sin(\alpha)_j\right)^2}, \qquad A = \frac{1}{n} \left(\sum_{j=1}^{n} a_j - B \sum_{j=1}^{n} \sin(\alpha)_j\right)$$

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (a_i - \langle a \rangle)^2}{N - 1}}; \Delta a = \frac{\alpha_{0.95, N} \sigma}{\sqrt{N}} \quad \sigma_B = \sqrt{\frac{\sum_{j=1}^{n} d_j^2}{D(n - 2)}}$$

$$d_j = a_j - (A + B \sin(\alpha)_j)$$

$$D = \sum_{j=1}^{n} \sin^2(\alpha)_j - \frac{1}{n} \left(\sum_{j=1}^{n} \sin(\alpha)_j\right)^2$$

6. Измерительные приборы.

Таблица 1.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Угольник	Аналоговый	-	0,5 мм
2	ПО «SPARKvue»	Цифровой	-	

7. Схема установки.

Рис. 1 Общий вид экспериментальной установки

В комплект входят:

- 1. алюминиевый рельс на регулируемых ножках, оборудованный сантиметровой шкалой с ценой деления 1 мм.;
- 2. две тележки красная и синяя, снабжённые пусковым пружинным механизмом (для данной работы не используется) и встроенным bluetooth датчиком (включается нажатием кнопки расположенной на тележке);
- 3. утяжелитель деревянный брусок;
- 4. угольник для измерения высоты с ценой деления 1 мм;
- 5. штатив;
- 6. компьютер с установленным программным обеспечением «SPARKyne».

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица №2 Измерение зависимости ускорения от синуса угла наклона

1	2	3	4	5	6	7	8	9
nпл	h, м	h', м	sin α	i	а _і , м/с ²	а, м/с²	а _і , м/с ²	а, м/с²
2				1	0,160	0,0000230	0,172	0,0000518
	12,100	10,400	1,7	2	0,162	0,0000078	0,175	0,0001040
				3	0,169	0,0000176	0,177	0,0001488
				4	0,168	0,0000102	0,171	0,0000384
				5	0,165	0,0000000	0,173	0,0000672
				1	0,196	0,0000000	0,204	0,0000048
3	12,400	10,500	1,9	2	0,202	0,0000336	0,203	0,0000102
				3	0,195	0,0000014	0,207	0,0000006
				4	0,195	0,0000014	0,211	0,0000230
				5	0,193	0,0000102	0,206	0,0000000
	13,100	10,800	2,3	1	0,239	0,0000436	0,252	0,0000002
				2	0,244	0,0000026	0,251	0,0000020
4				3	0,249	0,0000116	0,253	0,0000004
				4	0,253	0,0000548	0,251	0,0000020
				5	0,243	0,0000068	0,255	0,0000068
5	13,800	11,100	2,7	1	0,278	0,0000006	0,300	0,0000090
				2	0,274	0,0000102	0,289	0,0000640
				3	0,270	0,0000518	0,291	0,0000360
				4	0,284	0,0000462	0,300	0,0000090
				5	0,280	0,0000078	0,305	0,0000640
6	14,900	11,300	3,6	1	0,343	0,0000292	0,361	0,0000000
				2	0,346	0,0000058	0,366	0,0000230
				3	0,350	0,0000026	0,358	0,0000102
				4	0,352	0,0000130	0,359	0,0000048
				5	0,351	0,0000068	0,362	0,0000006

 $h_0 = M - высота точки не наклонённого рельса с координатой <math>x = 0.7 M$;

 $h_0' = M - высота точки не наклонённого рельса с координатой <math>x = 1.7 M$;

9. Графики.

График 1. Зависимость ускорения, а от sin(a) для тележки без утяжелителя.

График 2. Зависимость ускорения, а от sin(a) для тележки с утяжелителем.

10. Окончательные результаты.

$$g_{\text{эксп}} = 9,416021127 \frac{M}{c^2} \pm 0,754475772 \frac{M}{c^2}$$

$$\varepsilon_{g} = 16,03\%$$

Сравним экспериментальное значение ускорения свободного падения $g_{\text{эксп}}$ с его табличным значением $g_{\text{табл}}$ для Санкт-Петербурга и найдем по формуле их разность

$$g_{\text{эксп}} = 9,416021127 \frac{\text{M}}{\text{c}^2}$$

$$g_{\text{табл}} = 9,8195 \frac{M}{C^2}$$

$$|g_{_{
m 3KC\Pi}} - g_{_{
m TAGJ}}| = 0,403478873 \frac{_{
m M}}{{
m c}^2}$$

11. Выводы и анализ результатов работы.

В результате проведенного эксперимента по измерению ускорения свободного падения было установлено, что экспериментальное значение (9,416 м/с²) с относительной погрешностью 16,03% не совпадает с табличным значением для Санкт-Петербурга (9,8195 м/с²) с разницей 0,4035 м/с². Различные факторы могут оказывать влияние на полученные результаты, включая систематические ошибки, внешние воздействия и недостатки методики.

Для повышения точности эксперимента необходимо уделить особое внимание уменьшению систематических ошибок, таких как несовершенства в используемом оборудовании и методах измерения. Тщательная калибровка оборудования и повышение точности измерений могут существенно улучшить достоверность результатов. Повторное проведение эксперимента несколько раз с последующим усреднением значений также может способствовать повышению достоверности и точности полученных данных. Все эти улучшения будут способствовать более точному определению ускорения свободного падения и более точному соответствию экспериментальных результатов теоретическим значениям.