Exemple PLNE

Max $Z = 3 x_1 + 5 x_2$ S.C.:

 $x_1+2\,x_2\leq 3$

 $6\,x_1 + 8\,x_2 \le 15$

avec $x_1, x_2 \ge 0$ et à valeurs entières

Correction détaillée

Dictionnaire:

$$Z - 3 x_1 - 5 x_2 = 0$$

$$x_1 + 2 x_2 + x_3 = 3$$

$$6x_1 + 8x_2 + x_4 = 15$$

avec $x_1, x_2, x_3, x_4 \ge 0$ et à valeurs entières

Première étape : simplexe classique

	<i>X</i> ₁	X ₂	X ₃	X ₄	Z	valeur
X ₃	1	2	1	0	0	3
<i>X</i> ₄	6	8	0	1	0	15
Z	-3	-5	0	0	1	0

	X ₁	\mathbf{X}_{2}	X ₃	X ₄	Z	valeur
<i>X</i> ₂	1/2	1	1/2	0	0	3 / 2
<i>X</i> ₄	2	0	-4	1	0	3
Z	-1/2	0	5 / 2	0	1	15 / 2

	X 1	X_2	X ₃	X4	Z	valeur
<i>X</i> ₂	0	1	3 / 2	-1 / 4	0	3 / 4
<i>X</i> ₁	1	0	-2	1/2	0	3 / 2
Z	0	0	3 / 2	1/4	1	33 / 4

Cela nous donne notre premier noeud de notre arbre :

1	33 / 4				
x1:3/2	x2:3/4				

Ni x1 ni x2 n'ont des valeurs entières, on choisit alors de faire des cas sur x1 (on aurait pu choisir x2 aussi).

Ainsi, soit $x1 \le 1$, soit $x1 \ge 2$ (bornes inf et sup entières de 3/2)

Cas numéro 1 : x1 ≤ 1

Nouveau dictionnaire:

$$Z - 3 x_1 - 5 x_2 = 0$$

$$x_1 + 2 x_2 + x_3 = 3$$

$$6 x_1 + 8 x_2 + x_4 = 15$$

$$x_1 + x_5 = 1$$

avec
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

simplexe:

	X ₁	X ₂	X ₃	X ₄	X ₅	Z	valeur
X ₃	1	2	1	0	0	0	3
<i>X</i> ₄	6	8	0	1	0	0	15
X ₅	1	0	0	0	1	0	1
Z	-3	-5	0	0	0	1	0

	<i>X</i> ₁	X ₂	X ₃	X ₄	X ₅	Z	valeur
<i>X</i> ₂	1/2	1	1/2	0	0	0	3 / 2
<i>X</i> ₄	2	0	-4	1	0	0	3
X ₅	1	0	0	0	1	0	1
Z	-1/2	0	5 / 2	0	1	1	15 / 2

	<i>X</i> ₁	X ₂	X ₃	X ₄	X ₅	Z	valeur
<i>X</i> ₂	1/2	1	1/2	0	0	0	3 / 2
<i>X</i> ₄	2	0	-4	1	0	0	3
X ₅	1	0	0	0	1	0	1
Z	-1/2	0	5 / 2	0	1	1	15 / 2

	<i>X</i> ₁	X ₂	X ₃	X ₄	X ₅	Z	valeur
<i>x</i> ₂	0	1	1/2	0	-1 / 2	0	1
<i>X</i> ₄	0	0	-4	1	-2	0	1
X ₁	1	0	0	0	1	0	1
Z	0	0	5 / 2	0	3 / 2	1	8

Nous obtenons une première solution à valeur entière : x1 = 1, x2 = 1, Z = 8.

Cela donne ainsi un autre noeud à notre arbre :

2	8
x1:1	x2:1

Il reste cependant à traiter les cas restants avant de conclure à la valeur maximale de Z pour x1 et x2 entiers.

Cas numéro 2 : x1 ≥ 2

Nouveau Dictionnaire

$$Z - 3 x_1 - 5 x_2 = 0$$
$$x_1 + 2 x_2 + x_3 = 3$$

$$6x_1 + 8x_2 + x_3 = 5$$

$$x_1 - x_5 = 2$$

Dictionnaire non réalisable, introduction d'une variable artificielle :

$$Z - 3 x_1 - 5 x_2 = 0$$

$$x_1 + 2 x_2 + x_3 = 3$$

$$6\,x_1 + 8\,x_2 + x_4 = 15$$

$$x_1 - x_5 + A1 = 2$$

avec
$$x_1, x_2, x_3, x_4, x_5, A1 \ge 0$$

Résolvons d'abord le problème Max W = -A1=-2 + x1 - x5 => -x1+x5+W=-2

Simplexe (première phase):

	<i>X</i> ₁	X ₂	X ₃	X ₄	X ₅	A1	Z	W	valeur
X ₃	1	2	1	0	0	0	0	0	3
<i>X</i> ₄	6	8	0	1	0	0	0	0	15
A1	1	0	0	0	-1	1	0	0	2
Z	-3	-5	0	0	0	0	1	0	0
W	-1	0	0	0	1	0	0	1	-2

	X ₁	X ₂	X ₃	X ₄	X ₅	A1	Z	W	valeur
<i>X</i> ₃	0	2	1	0	1	-1	0	0	1
<i>X</i> ₄	0	8	0	1	6	-6	0	0	3
X ₁	1	0	0	0	-1	1	0	0	2
Z	0	-5	0	0	-3	3	1	0	6
W	0	0	0	0	0	1	0	1	0

Max $W = 0 \Rightarrow$ le problème originale possède des solutions, une solution particulière est x3 = 1, x4 = 3, x1 = 2, x5 = 0, x2 = 0

Simplexe (deuxième phase):

	X ₁	X ₂	X ₃	X ₄	X ₅	Z	valeur
<i>X</i> ₃	0	2	1	0	1	0	1
<i>X</i> ₄	0	8	0	1	6	0	3
X ₁	1	0	0	0	-1	0	2
Z	0	-5	0	0	-3	1	6

	<i>X</i> ₁	X ₂	X ₃	X ₄	X ₅	Z	valeur
X ₃	0	0	1	-1/4	-1 / 2	0	1/4
<i>X</i> ₂	0	1	0	1/8	3 / 4	0	3 / 8
X ₁	1	0	0	0	-1	0	2
Z	0	0	0	5 / 8	3 / 4	1	63 / 8

Cela nous donne le troisième noeud de notre arbre :

3			63 / 8		
x1	:	2	x2	:	3 / 8

Or, x2 n'est pas valeur entière, on choisit alors de faire des cas sur x2.

Ainsi, soit $x2 \le 0$, soit $x2 \ge 1$ (bornes inf et sup entières de 3/8)

Cas numéro 2-1 : x1 >= 2 et x2 <= 0

ici il n'est pas nécessaire (bien que possible) de dérouler une simplexe, en effet, on a $x2 \le 0$ et $x2 \ge 0$ ainsi, x2 = 0, ainsi, ils reste pour x1 les contraintes suivantes :

 $x1 \ge 2$, $x1 \le 3$, $6x1 \le 15$ Sachant que Z augmente lorsque l'on augmente x1 (coefficient positif) la nouvelle solution est donc x1 = 5/2, x2 = 0 ce qui nous donne Z = 15/2

Cela nous donne le quatrième noeud de notre arbre :

4	15 / 2	15 / 2		
x1 : 5/	2 x2:	0		

Or, x1 n'est pas valeur entière, on choisit alors de faire des cas sur x1.

Ainsi, soit $x1 \le 2$, soit $x1 \ge 3$ (bornes inf et sup entières de 5/2)

Cas numéro 2-1-1 : $x1 \ge 2$ et $x2 \le 0$ et $x1 \le 2$

ici il n'est pas nécessaire (bien que possible) de dérouler une simplexe, en effet, on a $x2 \le 0$ et $x2 \ge 0$ ainsi, x2 = 0, et $x1 \ge 2$ et $x1 \le 2$ ainsi x1 = 2

La solution x1 = 2, x2 = 0 vérifie toutes les contraintes, et nous donne Z = 6, ceci est la deuxième solution à valeur entière trouvée jusqu'à maintenant

Cela nous donne le cinquième noeud de notre arbre :

5	6		
x1 : 2	x2 : 0		

Il reste cependant à traiter les cas restants avant de conclure à la valeur maximale de Z pour x1 et x2 entiers.

Cas numéro 2-1-2 : $x1 \ge 2$ et $x2 \le 0$ et $x1 \ge 3$

ici il n'est pas nécessaire (bien que possible) de dérouler une simplexe, en effet, on a $x2 \le 0$ et $x2 \ge 0$ ainsi, x2 = 0, et x1 >= 3

Or, une des contraintes est : $6x1 + 8x2 \le 15 \Rightarrow x1 \le 5/2$ (car x2 = 0) \Rightarrow incompatible avec $x1 \ge 3$

Pas de solutions donc pout le cas 2-1-2 cela nous donne le sixième noeud de notre arbre :

6	-
x1 : -	x2: -

Il reste cependant à traiter les cas restants avant de conclure à la valeur maximale de Z pour x1 et x2 entiers.

Cas numéro 2-2 : x1 >= 2 et x2 >= 1

ici il n'est pas nécessaire (bien que possible) de dérouler une simplexe, en effet, on a $x1 \ge 2$ et $x2 \ge 1$ ainsi $x1 + 2x2 \ge 4$ incompatible avec $x1 + 2x2 \le 3$

Pas de solutions donc pout le cas 2-2 cela nous donne le septième et dernier noeud de notre arbre :

7	-
x1 :-	x2: -

Conclusion

Seuls deux noeuds possèdent des valeurs entières pour x1 et x2 :

2	8	et	5	6	
x1 : 1	x2:1	Ci	x1:2	x2:0	

Ainsi, la valeur maximale de Z avec x1 et x2 entiers est Zmax = 8 avec x1 = 1 et x2 = 1