Álgebra 3

FINAL

AXEL SIROTA

1. Algebra Diferencial

Sea R un anillo conmutativo y $\delta: R \mapsto R$ un morfismo de grupos aditivo.

Definición Decimos que δ es una derivación si para todo $r, s \in R$ vale:

$$\delta(rs) = (rs)\prime = rs' + sr' \tag{1}$$

Notemos que por induccion vale que $(r^n)' = nr^{n-1}(r)'$ y que $(\frac{r}{s})' = \frac{r(s)' - s(r)'}{s^2}$. A un anillo R con una derivacion le llamamos anillo diferencial y sus morfismos son los morfismos de anillos que conmutan con la derivacion.

Un ideal decimos que es un ideal diferencial si $(I)' \subset I$.

Observación Sea ϕ un morfismo entonces si $x \in \ker \phi$ entonces $\phi((x)'_R) = (\phi(x))'_S = (0)'_S = 0$, luego $\ker \phi$ es un ideal diferencial.

Si (r)' = s decimos que s es una derivada de r y que r es una primitiva de s

Ejemplo Ejemplos de anillos diferenciales son:

- 1. $\mathbb{R}[x]$ con $\delta = \frac{d}{dx}$ la derivación usual
- 2. R anillo cualquiera y $\delta = 0$ la derivación trivial
- 3. $\mathbb{C}(x, \log x)$ con $(\log x)' = \frac{1}{x}$

Ejemplos de ideales diferenciales:

- 1. Si K es cuerpo entonces el unico ideal diferencial no trivial es el nulo, pues si $I \subsetneq K[x]$ es ideal entonces existe f tal que $I = \langle f \rangle$, luego deg $((f)') < \deg(f)$ entonces $(f)' \notin I$.
- 2. Si K es de caracteristica p y perfecto entonces no admite derivacion no trivial. En efecto, si δ es una derivacion entonces sea $k \in K$ existe $a \in K$ tal que $k = a^p$, luego $(k)' = p(a)' a^{p-1} = 0$.

2. Extensiones de anillos diferenciables

Sea $R \subset S$ un subanillo tal que ambos son anillos diferenciables y supongamos que $\delta_S|_R = \delta_R$, luego decimos que R/S es una extension de anillos diferenciables.

Definición Definimos el subanillo de constantes de un anillo diferenciable R como:

$$R_C = \ker \delta_R \tag{2}$$

Y notemos que trivialmente R_C/R es una extension de anillos diferenciables. A su vez notemos que si R es cuerpo entonces R_C incluye al cuerpo primo de R

Proposición 2.0.1 Sea R/S una extension de anillos diferenciables, entonces son equivalentes:

$$R_C = S_C$$

■ Dado $r \in R$, si existe $s \in R$ tal que (s)' = r entonces no existe $\tilde{s} \in S \setminus R$ tal que $(\tilde{s})' = r$

Y en ese caso decimos que la extension es sin nuevas constantes

Demostración Si existen $s \in R$ y $t \in S \setminus R$ tal que (s)' = (t)' = r entonces (s - t)' = 0 por lo que $s - t \in S_C \setminus R_C$, absurdo. Por el otro lado, si $s \in S_C \setminus R_C$ entonces 0 adminiute primitiva tanto en R como $S \setminus R$.

Ejemplo Sea K un cuerpo diferenciable, entonces K_C/K es una extension sin nuevas constantes

Ejemplo Sea $z_0 \in U \subset \mathbb{C}$ un abierto y tomemos $K = \left(Mer(\mathbb{C}), \frac{d}{dz}\right)$ y $L = \left(Mer(U), \frac{d}{dz}\right)$, luego K/L es una extension sin nuevas constantes.

Ahora veamos los no ejemplos:

Ejemplo Sea $\mathbb{R}[x]$ $/Hol(\mathbb{C})$ con la extensión de la derivación conocida de analisis complejo, luego $\mathbb{R}[x]_C \simeq \mathbb{R}$ pero $i = \frac{(\exp ix)'}{\exp ix} \in Hol(\mathbb{C}) \setminus \mathbb{R}[x]_C$ por lo que $Hol(\mathbb{C})_C \simeq \mathbb{C}$ \mathbb{R} asiq ue esta extensión agrega constantes.

Ejemplo Sea $\mathbb{C}(x, e^x, u)$ el cuerpo de funciones rac ionales en las tres componentes tal que e^x, u son tracsendentes, donde ademas $(e^x)' = e^x$ y (u)' = u, luego $\left(\frac{e^x}{u}\right)' = 0$ por lo que si tomamos la extension $\mathbb{C}(x) / \mathbb{C}(x, e^x, u)$ tenemos que es una extension que agrega constantes

Desde aca todos los anillos van a sewr cuerpos de caracteristica 0

Proposición 2.0.2 Sea K/L una extension diferenciable sin nuevas constantes $y \in L \setminus K$ tal que $(l)' \in K$, luego:

- 1. l es trascendente sobre K
- 2. La derivada (p(l))' de cualquier polinomio $p(l) \in K[l]$ tiene grado n si y solo si $k_n \notin K_C$. En caso constrario tiene grado n-1.

Demostración Sea $b = (l)' \in K$, luego $b \neq 0$ por la hipotesis de nuevas constantes y supongamos que l es algebraico. Sea $p = t^n + c_m t^m + \cdots + c_0 \in K[t]$ el polinomio minimal de l donde m es el maximo indice tal que $c_i \neq 0$ que esta bien definido pues $l \notin k$; entonces:

$$0 = (0)' = (l^n + c_m l^m + \dots + c_0)' = bnl^{n-1} + (c_m)' l^m + bc_m l^{m-1} + \dots + (c_0)'$$
(3)

Separemos en lso tres casos correspondientes:

n-1>m Luego en este caso si dividimos por bn obtenemos que $q=t^{n-1}+\frac{(c_m)'}{bn}t^m+\frac{c_m}{n}t^{m-1}+\cdots+\frac{(c_0)'}{bn}\in K[t]$ anula a l y tiene grado n-1, lo que contradice la minimalidad de p.

 $(c_m)' \neq 0$ Estamos en el mismo caso que antes pues dividimos por $bn + (c_m)'$

$$m + (c_m)' = 0$$
 En este caso $0 = bn + (c_m)' = (ln + c_m)'$ por lo que $ln + c_m \in L_C \setminus K_C$ lo que es absurdo.

Proposición 2.0.3 Sea K/L una extension diferenciable sin nuevas constantes tal que $l \in L \setminus K$ cumple $\frac{(l)'}{l} \in K$, luego:

 \blacksquare l es algebraico sobre K si y solo si existe n tal que $l^n \in K$

■ Cuando l es trascendente sobre K, para todo $p \in K[x]$ polinomio de grado n con $k_n \neq 0$ vale que $\deg(p(l))' = n \ y \ (p(l))' = Kp(l)$ si y solo si p(l) es un monomio.

Demostración Notemos $b = \frac{(l)'}{l} \in K$ y notemos nuevamente que $b \neq 0$.

• Si l es algebraico y llamamos $p = t^n + \sum_{i=0}^m c_i t^i$ al polinomio minimal entonces nuevamente tenemos:

$$0 = l^{n} + c_{m}l^{m} + \dots + c_{0}$$

$$0 = bnl^{n} + ((c_{m})' + bmc_{m}) l^{m} + \dots + (c_{0})'$$
(4)

De lo que concluimos que $q(l) = (bnc_m + (c_m)' + bmc_m)l^m + \cdots + bnc_0 + (c_0)' = 0$ es un polinomio de grado menor que n que lo anula; por la minimalidad de p concluimos que q = 0. Como $(c_m)' + bmc_m = bnc_m$ podemos llegar a que $\frac{(c_m)'}{c_m} = (n-m)b$, luego:

$$\frac{(c_m l^{m-n})'}{c_m l^{m-n}} = \frac{(m-n)c_m l^{n-m-1}bl + (c_m)' l^{m-n}}{c_m l^{m-n}}
= \frac{(m-n)bc_m l^{m-n} + (c_m)' l^{m-n}}{c_m l^{m-n}}
= (m-n)b + \frac{(c_m)'}{c_m}
= 0$$
(5)

Luego $c_m l^{m-n} \in L_C = K_C \subset K$ por lo que $l^{m-n} \in K$.

• Sea $p = \sum k_n t^n$, luego:

$$(p(l))' = ((k_n)' + bnk_n) l^n + \dots + (k_0)'$$
 (6)

Si $(k_n)' + bnk_n = 0$ entonces $0 = l^n ((k_n)' + bnk_n) = (k_n l^n)'$ por lo que $k_n l^n \in L_C = K_C \subset K$ por lo que $l^n \in K$ que vimos que pasa si y solo si l es algebraico, luego $\deg(p(l)) = n$.

Si $p(l) = kl^n$ entonces es claro que $(p(l))' = \underbrace{\frac{\left((k)' + bnk\right)}{k}}_{C} kl^n = Cp(l)$; reciprocamente supongamos

que (p(l))' = kp(l) y supongamos que $k_n l^n, k_m l^m$ son dos terminos de p(l), ewntonces para i = n, m:

$$(k_i)' + ik_i b = kk_i \tag{7}$$

Luego:

$$\frac{(k_n)' + nk_n b}{k_n} = \frac{(k_m)' + mk_m b}{k_m}$$
 (8)

Lo que dice que:

$$a := (n - m)k_n k_m b + k_m (k_n)' - k_n (k_m)' = 0$$
(9)

Luego:

$$\left(\frac{k_n l^n}{k_m l^m}\right)' = \frac{a l^{n+m}}{(k_m l^m)^2} = 0$$
(10)

П

Luego concluimos que $l^{n-m} \in K_C$ lo que es absurdo pues l es trascendente.

3. Extensiones de derivaciones

Proposición 3.0.1 Sea K/L una extension de cuerpos diferenciable y supongamos que $\delta: K \to K$ es una derivación en K, entonces:

- 1. Sea $l \in L \setminus K$ trascendente sobre K y $m \in L$ arbitrario, entonces existe una extension δ_L de δ tal que $(l)'_L = m$
- 2. Si K/L es algebraica, entonces existe una unica extension δ_L de δ .

Demostración Para la demostracion supongamos que la extension es simple, dado que sino es simplemente usar finitos pasos (en el caso algebraico) o el lema de Zorn.

l trascendente Dado que si existe $\delta: K[l] \mapsto K[l]$ entonces existe uan unica extension a K(l) dada por la regla del cociente, extendamos a K[l]. Sea $m \in L$ y definamos $\delta_L: K[l] \mapsto L$ dado por:

$$\left(\sum_{j} a_{j} l^{j}\right)' = \sum_{j} (a_{j})' l^{j} + m \sum_{j} j a_{j} l^{j-1}$$
(11)

De la manera que fue armado, es claro que haciendo las cuentas va a daer que cumple la regla de Leibniz asi que δ es la extension buscada.

es algebraica Sea $p(t) = t^n + \sum_{i=0}^{n-1} k_i t^i \in K[t]$ el polinomio minimal de l, entonces vemos que si δ fuese una extension a K[l] vale que:

$$0 = (p(l))'$$

$$= nl^{n-1}(l)' + \sum_{j} jk_{j}l^{j-1}(l)' + \sum_{j} (k_{j})'l^{j}$$

$$= (l)'((p)'(l)) + \sum_{j} (k_{j})'l^{j}$$
(12)

Como K es de caraceteristica 0 y entonces seprabale sabemos que $(p)'(l) \neq 0$ por lo que, si notamos $\check{D}q(t) = \sum_{j} (k_j)'t^j$: al polinomio con los coeficientes derivados para todo polinomio $q \in K[t]$, vale que:

$$(l)' = \frac{-\check{D}p(l)}{(p)'(l)} \tag{13}$$

Luego , de existir, a lo sumo una extension puede ser definida y esta dada por la formula anterior. Formalmente, sea \check{D} la derivacion en K[t] dada por m=0 y como l es algebraico existe un polinomio s(l) tal que:

$$s(l) = \frac{-\dot{D}p(l)}{(p)'(l)} \in K[l] \tag{14}$$

Definamos entonces la segunda derivacion $\widetilde{D}:K[t]\mapsto L$ dada por la eleccion m=s(t), ie: $\widetilde{D}(q)(t)=\check{D}(q)(t)+s(t)(q)'(t)$ y definamos $\eta:K[t]\mapsto L$ el morfismo de evaluacion tal que $\eta(q(t))=q(t)$. Notemos entonces que $\ker(\eta)$ es un ideal principal generado por p(t), luego si $q(t)\in\ker\eta$ entonces q=p(t)r(t) y notemos que:

$$\eta \circ \widetilde{D}(q)(t) = \eta \circ \widetilde{D}(p(t)r(t))
= \eta \left(p(t)\check{D}r(t) + \check{D}p(t)r(t) + s(t) \left(p(t) (r)'(t) + (p)'(t)r(t) \right) \right)
= p(l)\check{D}r(l) + \check{D}p(l)r(l) + s(l) \left(p(l) (r)'(l) + (p)'(l)r(l) \right)
= r(l) \left(\check{D}p(l) + s(l) (p)'(l) \right)
= 0$$
(15)

Luego $\widetilde{D}(\ker \eta) \subset \ker \eta$ y por el primer teorema de isomorfismo \widetilde{D} induce un morfismo de cuerpos diferenciales $D: K[l] \simeq K[l] /_{\ker \eta} \simeq K[l] /_{\langle p \rangle} \mapsto K[l]$ dado por:

$$Dq(l) = \eta \left(\widetilde{D}q(t) \right) \tag{16}$$

Es facil ver que D esta bien definido y que es una derivacion.

Observación La separabilidad de la extension es necesaria en la proposicion anterior. En efecto, sea $K := \mathbb{F}_2(t)$ y tomemos \sqrt{t} raiz de $x^2 - t$ en alguna clausura algebraica F, entonces afirmo que no existe una extension de la derivacion usual a $K(\sqrt{t})$; ya que $1 = (t)' = \left(\sqrt{t}^2\right)' = 2\sqrt{t}\left(\sqrt{t}\right)' = 0$ lo que es absurdo.

4. Integracion en terminos finitos

Teorema 4.0.1 Sea K un cuerpo diferencial de caracteristica 0 y sea $\alpha \in K$. Entonces α admite una primitva en uan extension de cuerpos elemental sin nuevas constantes si y solo si existen $c_1, \ldots, c_m \in K_C$ y elementos $\beta_1, \ldots, \beta_m, \gamma \in K$ tal que $\beta_j \neq 0$ para $j = 1, \ldots, m$ y:

$$\alpha = \sum_{j=1}^{m} c_j \frac{(\beta_j)'}{\beta_j} + (\gamma)' \tag{17}$$

Demostración Supongamos que existe una torre $K = K_0 \subset \cdots \subset K_n$ de extensiones de cuerpos diferenciales sin nuevas constantes tal que $K_j = K_{j-1}[a]$ con a un logaritmo, exponencial o algebraico. Ademas, existe un elemento $\rho \in K_n$ tal que $(\rho)' = \alpha$; hagamos induccion en el largo de la torre n.

Si n=0 entonces trivialmente vale por lo que supongamos que la ecuacion vale para n-1, entonces mirando la extension K_1/K_n existe $m \in \mathbb{N}, c_1, \ldots, c_m \in K_{1C} = K_C$ y $\beta_1, \ldots, \beta_m, \gamma \in K_1 = K[l]$ tal que vale la ecuacion. Luego basta probar que $\beta_1, \ldots, \beta_m, \gamma \in K$ para los tres casos, ie: l algebraico, logaritmo y exponencial.

l algebraico Sea F una clausura algebraica para K conteniendo a K[l] y sea σ_i los diferentes morfismos de extension de cuerpos que permuta las raices del minimal de l, notemoslo p.

Como K/F es algebraica, sabemos que existe una unica extension de la derivación a F, y como $\sigma_i \circ \delta \circ \sigma_i^{-1}$ vale lo mismo en l, concluimos que σ_i conmuta con la derivación de K.

Como $\beta_i, \gamma \in K(l) = K[l]$ pues l es algebraico eligamos polinomios $q_i, \dots, q_m, r \in K[x]$ tal que:

$$\beta_i = q_i(l) \qquad \gamma = r(l) \tag{18}$$

Luego tenemos que vale:

$$\alpha = \sum_{j=1}^{m} c_j \frac{(q_j(l))'}{q_j(l)} + (r(l))'$$
(19)

Y si aplicamos σ_i :

$$\alpha = \sum_{j=1}^{m} c_j \frac{(\sigma_i(q_j(l)))'}{\sigma_i(q_j(l))} + (\sigma_i(r(l)))'$$

$$= \sum_{j=1}^{m} c_j \frac{(q_j(l_i))'}{q_j(l_i)} + (r(l_i))'$$
(20)

Si llamamos s a la cantidad de morfismos σ_i y sumamos sobre i y dividimos por s:

$$\alpha = \sum_{j=1}^{m} \frac{c_j}{s} \sum_{i} \frac{(q_j(l_i))'}{q_j(l_i)} + \left(\frac{\sum_{i} r(l_i)}{s}\right)'$$

$$= \sum_{j=1}^{m} \frac{c_j}{s} \frac{\left(\prod_{i} q_j(l_i)\right)'}{\prod_{i} q_j(l_i)} + \left(\frac{\sum_{i} r(l_i)}{s}\right)'$$
(21)

Como cada termino en la suma es fijado por σ_i para todo i, eso implica que todas las sumas estan en K.

un logaritmo Como l es trascendente existen $q_1, \ldots, q_m, r \in K(l)$ tal que:

$$\alpha = \sum_{j=1}^{m} c_j \frac{(q_j(l))'}{q_j(l)} + (r(l))'$$
(22)

Como l es logaritmo entonces $(l)' = \frac{(k)'}{k} \in K$ para algun $k \in K$, luego tenemos que K / K(l) es extension de cuerpos diferencial. Asumamos el siguiente lema:

Lema 4.0.2 Sea K/K(l) una extension de cuerpos diferencial con l trascendente y tal que $(l)' \in K[l]$, supongamos que $\alpha \in K$ y que p(l) es un polinomio monico e irreducible tal que $(p(l))' \in K[l]$ no es dividible por p(l). Luego si tenemos:

$$\alpha = \sum_{j=1}^{m} c_j \frac{(q_j(l))'}{q_j(l)} + (r(l))'$$
(23)

Entonces $q_j \neq p$ para todo j.

Sea p(l) un polinomio irreducible, monico y no constante, luego sabemos que $\deg((p(l))') < \deg(p(l))$ por lo que $p(l) \not | (p(l))'$. Del lema podemos concluir que para todo p(l) polinomio monico e irreducible, $q_j(l) \neq p$, luego como K[l] es UFD concluimos que $q_j(l) \in K$ para todo j.

Como α , $\sum_{j=1}^{m} c_j \frac{(q_j(l))'}{q_j(l)} \in K$ entonces $(r(l))' \in K$ por lo que $r(l) = cl + \check{c}$ con $c \in K_C$ y $\check{c} \in K$ y concluimos que vale lo pedido:

$$\alpha = \sum_{j=1}^{m} c_j \frac{(q_j(l))'}{q_j(l)} + c \frac{(k)'}{k} + (\check{c})'$$
(24)

es exponencial En este caso como $(l)' = l(k)' \in K[l]$ concluimos que K / K(l) es una extension de cuerpos diferenciables. Si $p(l) \in K[l]$ es monico, irreducible, no constante y $p(l) \neq l$ tenemos que $p(l) \not | (p(l))' \in K[l]$; por lo mismo de antes entonces $q_j(l) \in K$ para todo j y continuamos de la misma manera

Corolario 4.0.3 Sea $K/K(e^g)$ una extension de cuerpos diferenciales sin nuevas constantes con $g \in K$ y supongamos que e^g es trascendente sobre K, entonces dado $f \in K$ arbitrario fe^g admite una primitiva en una extension elemental sin nuevas constantes si y solo si existe $a \in K$ tal que:

$$f = (a)' + a(g)' \tag{25}$$

Demostración Por el teorema fe^g admite primitva si y solo si existen $c_j \in K_C$ y $\beta_j, \gamma \in K$ tal que:

$$fe^g = \sum_{j} c_j \frac{(\beta_j)'}{\beta_j} + (\gamma)' \tag{26}$$

Razonando igual que en la demostraciom
n del caso exponencial notando $l=e^g$, sabemos que existen
 $q_j(l) \in K, \ r(l) = \sum_{j=-b}^b k j l^j \in K[l]$ tal que:

$$fe^{g} = \sum_{j} c_{j} \frac{(q_{j}(l))'}{q_{j}(l)} + \left(\sum_{j=-b}^{b} k_{j} l^{j}\right)'$$
(27)

Luego:

$$fl = c + \left(\sum_{j=-b}^{b} (k_j)' l^j\right)' + (g)' \sum_{j=-b}^{b} j k_j l^j = c + \sum_{j=-b}^{b} l^j ((k_j)' + j (g)' k_j)$$
(28)

Luego de igualar los coeficientes obtenemos:

$$f = (k_1)' + k_1(g)' \tag{29}$$

Corolario 4.0.4 No existe una extension diferencial elemental si nuevas constantes de $\mathbb{R}(x, e^{x^2})$ tal que e^{x^2} tenga primitiva.

Demostración En efecto, esta existe si y solo si existe $a \in \mathbb{R}(x)$ tal que 1 = (a)' + 2ax; luego escribamos $a = \frac{p}{a}$ con p, q coprimos. Entonces:

$$1 = \frac{q(p)' - p(q)'}{q^2} + 2\frac{px}{q}$$
 (30)

de lo que:

$$q - 2px - (p)' = -\frac{(q)'p}{q}$$
(31)

Y como q|(q)'p y p,q son coprimos concluimos que q|(q)' y por las proposiciones anteriores llegamos a que $a=Cp\in\mathbb{R}[x]$ y comparando grados concluimos que no existe tal a.