Problem A. JB Loves Math

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

JB is good at Math, so he thinks all the math problems in the world are easy.

But one day, he meets a math problem which he can't solve, so he asks you to help him.

JB will give you two numbers a and b, and you should then choose a positive odd number x and a positive even number y. You can let a add x or let a minus y in one operation. You should change a into b in the minimal number of operations. Note that you are not allowed to change the value of x and y.

Input

In the first line, there is one integer T ($1 \le T \le 10^5$), denoting the number of test cases.

For each test case, there is one line containing two numbers a and b ($1 \le a, b \le 10^6$), denotes the number given by JB.

Output

For each test case, print one number, denoting the minimal number of operations you need to change a into b.

standard input	standard output
2	1
3 6	1
5 3	

Problem B. JB Loves Comma

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

JB is the most famous ICPC world finalist. His favorite problem in ICPC world final is a problem which asks him to add some commas in a string.

Now, JB wants to share happiness with adding comma with you, so he asks you to add a comma after each substring "cjb" in a string S he gives you.

Input

The only line contains a string S $(1 \le |S| \le 10^5)$, contains only lowercase English letters.

Output

One string, denotes the result after adding commas.

standard input	standard output
pbpbppb	pbpbppb
cjbismyson	cjb,ismyson

Problem C. JB Wants to Earn Big Money

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

JB has always wanted to make a lot of money, so recently he is addicted to stocks.

The trading rules of the stock market are as follows. Suppose there are n people who want to buy some shares while m people who want to sell some shares. Everyone will give a price.

The system will determine a final price x. For the people who want to buy some shares, if the price he gives is not lower than x, he will join the transaction. For the people who want to sell some shares, if the price he gives is not higher than x, he will join the transaction.

Now, JB gives you the price given by the people and the final price x. He wants you to tell him the number of people who can join the transaction.

Input

The first line contains three numbers n, m and x ($1 \le n, m, x \le 10^5$), denoting the number of two types of people and the final price determined by the system.

The second line contains n numbers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^5)$, denoting the price given by the people who want to buy some shares.

The third line contains m numbers b_1, b_2, \ldots, b_m $(1 \le b_i \le 10^5)$, denoting the price given by the people who want to sell some shares.

Output

One number, denotes the number of people who can join the transaction.

standard input	standard output
5 5 3	6
1 2 3 4 5	
1 2 3 4 5	

Problem D. The Profiteer

Input file: standard input
Output file: standard output

Time limit: 1.2 seconds Memory limit: 512 megabytes

BaoBao has a store. There are n items in the store, labeled by 1, 2, ..., n. The value of the i-th item is v_i , and the price of it is a_i dollars. JB is planning to visit BaoBao's store tomorrow. JB always buys items optimally. Assume JB has t dollars, he will buy a set of items such that the total value is maximized and the total price is no more than t.

The profiteers cheated people right and left. BaoBao knows JB is rich, so he decides to choose a pair of integers l and r, where $1 \le l \le r \le n$, and raises the prices of all the items indexed in [l, r]. When JB comes tomorrow, he will need to pay b_i dollars instead of a_i dollars for the i-th item, where $l \le i \le r$.

However, BaoBao doesn't know how rich JB is, he only knows t is an integer uniform randomly chosen in [1,k]. BaoBao doesn't want JB to buy so many good items, he is now wondering how many pairs of integers l and r he can choose such that the expected total value of JB's shopping list $\frac{f(1)+f(2)+\cdots+f(k)}{k}$ will not exceed E, where f(t) denotes the total value of the shopping list when JB has t dollars. Please write a program to help BaoBao.

Input

The input contains only a single case.

The first line contains three integers n, k and E $(1 \le n, k \le 200\,000, n \times k \le 10^7, 1 \le E \le 10^9)$.

Each of the following n lines contains three integers v_i, a_i and b_i ($1 \le v_i \le 10\,000, 1 \le a_i < b_i \le k$), denoting the value, the initial price and the raised price of the i-th item.

Output

Print a single line containing an integer, denoting the number of valid pairs of integers l and r.

standard input	standard output
4 5 3	1
3 2 4	
1 2 3	
2 1 2	
3 1 3	
4 5 4	3
3 2 4	
1 2 3	
2 1 2	
3 1 3	

Problem E. Easy Jump

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

Waiting for the silk song, Grammy decides to challenge the Path of Pain in White Palace. After 4 to 5 hours of painful efforts, she achieves it. And she suddenly wonders about the expected time for her to pass it because she would feel lucky if the time she used is less than the expected time. The whole process could be modeled as below.

There are n stages in the Path of Pain. For stage i, Grammy can spend 1 unit of time to try it and the probability of passing it is p_i . If she passes it, she will go to stage i + 1 immediately (or just finish the challenge if i = n). Otherwise, she will take 1 unit of damage and back to stage i. For understanding convenience, we use hp and mp to represent mask and soul. If Grammy takes 1 unit of damage, her hp will decrease by 1. When the hp becomes 0, she will die and have to start over. Since Grammy is a lazy girl, she will never let her hp become 0 even if she is at stage 1. At any time, Grammy can do one of the following things.

- 1. Challenge the stage, costing 1 unit of time, with probability p_i passing it, $1 p_i$ failing and taking 1 unit of damage.
- 2. Focus, using 1 unit mp to heal 1 unit hp, costing T1 unit time.
- 3. Heal by hiveblood, costing T2 unit time to heal 1 unit hp. But hiveblood can work only every time after taking 1 unit of damage.

There are soul totems in some of the stages. For simplification, we assume that Grammy can fill up her soul whenever she is at a stage having a soul totem without costing any time. And she can fill up any number of times in a stage.

Given the hp upper bound H, mp upper bound S, assume that Grammy starts the challenge with full hp and mp, could you tell her the expected time she has to use to achieve the challenge? Note that since Grammy is lazy, she will choose the best strategy when challenging to minimize the expected time.

Input

The input contains only a single case.

The first line contains three positive integers n, H and S ($1 \le n \le 1000$, $2 \le H \le 9$, $0 \le S \le 6$), denoting the number of stages, the upper bound of hp and mp.

The 19th Zhejiang Provincial Collegiate Programming Contest China, Hangzhou, April, 16, 2022

The second line contains n integers P_1, P_2, \dots, P_n $(1 \le P_i \le 99)$, denoting the moleculars of probabilities. For each stage, we define $p_i = \frac{P_i}{100}$.

The third line first comes an integer K, denoting there are K stages that have soul totems. Follows K distinct integers a_1, a_2, \ldots, a_K $(1 \le K \le n, 1 \le a_i \le n)$, denoting the index of the stages which have soul totems.

The fourth line contains two integers T1 and T2 ($1 \le T1, T2 \le 100$), denoting the cost of focus and healing by hiveblood.

Output

Output the minimum expected time. Your answer will be considered correct if its absolute or relative error does not exceed 10^{-6} .

standard input	standard output
1 2 0	4.00000000000
50	
0	
1 2	
2 3 1	6.00000000000
50 50	
1 1	
1 3	

Problem F. Easy Fix

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 512 megabytes

Since Grammy plays Hollow Knight day and night and forgets the homework Tony gives her, she already has no time to do it. As a talented programmer and good friend of Grammy, you decide to help her. The problem is described as follows.

Given a permutation $p = p_1, p_2, ..., p_n$. We define A_i as the number of j satisfying that $j < i \land p_j < p_i$, B_i as the number of j satisfying that $j > i \land p_j < p_i$, and $C_i = \min(A_i, B_i)$.

There are m queries. For the i-th query, you should output the value of $\sum_{i=1}^{n} C_i$ if we swap p_u and p_v . Note that we will recover the permutation p after each query which means queries are independent of each other.

Input

The input contains only a single case.

The first line contains one positive integer n ($1 \le n \le 100\,000$). It is guaranteed that p is a permutation of $1, 2, \ldots, n$.

The second line contains n distinct integers p_1, p_2, \ldots, p_n $(1 \le p_i \le n)$.

The third line contains one positive integer m ($1 \le m \le 200\,000$).

The following m lines describe m queries. The i-th line contains two integers u and v $(1 \le u, v \le n)$, denoting the parameter of the i-th query. Note that u may be equal to v.

Output

The output contains m lines. Each line contains one integer, denoting the answer to the i-th query.

standard input	standard output
7	7
1 6 2 7 5 4 3	6
7	6
1 7	7
2 6	7
3 5	6
4 4	8
1 1	
2 1	
3 7	
5	3
5 3 1 2 4	0
3	0
3 1	
2 5	
3 3	

Problem G. Easy Glide

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

Grammy is playing a boring racing game named Easy Gliding. The game's main content is to reach the destination as fast as possible by walking or gliding. The fastest player wins.

Each player controls a character on a two-dimensional plane. A character can walk at any moment with a speed of V_1 . Especially, when a character touches a gliding point, he/she can glide with a speed of V_2 for the following 3 seconds. It is guaranteed that $V_1 < V_2$.

Now Grammy locates at point S and she knows the coordinates of all the gliding points p_1, p_2, \ldots, p_n . The goal is to reach point T as fast as possible. Could you tell her the minimum time she has to spend to reach point T?

Input

The first line contains one integer n ($1 \le n \le 1000$), denoting the number of gliding points.

The following n lines describe the gliding points. The i-th line contains two integers x_i, y_i $(-1\,000\,000 \le x_i, y_i \le 1\,000\,000)$, representing the coordinates of the i-th gliding point p_i .

The next line contains four integers S_x , S_y , T_x , T_y (-10000000 $\leq S_x$, S_y , T_x , $T_y \leq 1000000$), representing the coordinates of S and T.

The next line contains two integers V_1, V_2 ($1 \le V_1 < V_2 \le 1\,000\,000$), representing the speed of walking and gliding.

Output

Output the minimum time Grammy has to spend to reach point T in one line. Your answer will be considered correct if its absolute or relative error does not exceed 10^{-6} .

standard input	standard output
2	0.40000000000
2 1	
0 3	
0 0 4 0	
10 11	
2	3.354101966250
2 1	
-2 0	
0 0 4 0	
1 2	
2	2.000600000000
2 1	
-2 0	
0 0 4 0	
1 10000	

Problem H. A=B

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

Marisa has learned an interesting language called A=B. She finds that this language has the advantages of simple syntax, easy to learn and convenient to code.

Here is the user manual of A=B:

(Note that it may differ from the original game "A=B". So please read the statement carefully.)

• Instruction set

A=B's instruction set includes:

1. string1=string2

Find the leftmost occurrence of string1 in the string and replace it with string2.

2. string1=(return)string2

If string1 is found, replace the entire string with string2 and end the program immediately.

• Program structure

An A=B program consists of several lines of instructions. Each line must include exactly one equal sign ('=').

Following characters are reserved: '=', '(', ')'.

- Execution order
 - 1. Read the input string.
 - 2. Starting from the topmost line, find the first line that can be executed.
 - 3. If found, execute that line and go to step 2.
 - 4. If none is found, return the current string as output.

Pixiv ID: 68375845

Marisa once introduced A=B to Alice. However, "You called this a programming language? You can't even write a program that can check if string t is a substring of string s!" said Alice.

The 19th Zhejiang Provincial Collegiate Programming Contest China, Hangzhou, April, 16, 2022

Now Marisa comes to you for help. She wants you to design an A=B program for this problem and show A=B's efficiency.

Your program needs to meet the following requirements given by Marisa:

- Read the input string (the input format is sSt. 'S' is the separator. s and t are two **non-empty** strings consists of characters 'a', 'b', 'c'.)
- If t is a substring of s, the program should return 1 as output, else return 0 as output.
- The character set that your program can use is {'a'~'z', 'A'~'z', '0'~'9', '=', '(', ')'}. Remember, '=', '(', ')' are reserved character in A=B and you can't use it in string1 or string2.
- In the previous instruction's format, the length of string1 and string2 should be at most 3.
- Suppose the length of the input string is L, the number of instruction's execution can't exceed $\max(2L^2, 50)$ and the length of string during execution can't exceed 2L + 10.
- The number of instructions in your A=B program can't exceed 100.

Input

Input an integer Tid $(0 \le Tid \le 2 \times 10^9)$. It is used for generating test sets and may be no use to you.

Output

Output your A=B program containing several lines of instructions.

The number of tests will not exceed 20. In each test, the checker will use Tid in the input file to generate several lines of input strings and their corresponding answers. Your A=B program is considered correct if and only if for each input string in all tests, your A=B program gives the correct output.

It's guaranteed that for each input string in all tests, the length L satisfies $3 \le L \le 1000$.

standard input	standard output
114514	514=(return)1
	=514
1919810	S=Sakuya
	=(return)0
/*	ba=ab
Sample input: caba	ca=ac
Sample output: aabc	cb=bc
 Sample input: cbacab	
Sample output: aabbcc	
*/	
/*	ba=ab
Sample input: bababb	ab=
Sample output: b	bb=b
	aa=a
Sample input: aababbaa	
Sample output: a	
*/	
/*	b=a
Sample input: abc	c=a
Sample output: true	aaaa=(return)false
	aaa=(return)true
Sample input: cabc	=(return)false
Sample output: false	
 Sample input: ca	
Sample output: false	
*/	
/*	AO=OA
Sample input: 10111+111	A1=1A
Sample output: 11110	BO=OB
	B1=1B
Sample input: 101+10110	0A=a
Sample output: 11011	0B=b
*/	1A=b
	1B=ca
	A=a
	B=b
	ac=b
	bc=ca
	0+=+A 1+=+B
	+= 1+=+B
	0c=1
	1c=c0
	c=1
	a=0
	b=1

Note

The first and second samples show how you should submit your answer. You should read an integer and then output your A=B program. This integer will be used to generate a fixed data set. The third to sixth samples give problems and their corresponding programs to help you get familiar with the A=B language. All these programs **may not** satisfy the requirements given by Marisa.

• Sample 1

If the input is "abcaSab", the process will be:

abcSab
$$\xrightarrow{line 2}$$
 514abcSab $\xrightarrow{line 1}$ 1

(Note that an empty string can be found at the beginning of any string.)

If the input is "abcaSccc", the process will be:

$$abcSccc \xrightarrow{line 2} 514abcSccc \xrightarrow{line 1} 1$$

So this program will get a WRONG ANSWER verdict.

• Sample 2

In the first instruction, string2 is equal to "Sakuya", which has a length more than 3.

So this program will get a WRONG ANSWER verdict.

• Sample 3

Input: A string consists of 'a', 'b', 'c'.

Output: Sort the input in alphabetical order.

Test1: caba
$$\xrightarrow{line 1}$$
 caab $\xrightarrow{line 2}$ acab $\xrightarrow{line 2}$ aacb $\xrightarrow{line 3}$ aabc

$$\text{Test2: cbacab} \xrightarrow{line \ 1} \text{cabcab} \xrightarrow{line \ 2} \text{acbcab} \xrightarrow{line \ 2} \text{acbacb} \xrightarrow{line \ 1} \text{acabcb} \xrightarrow{line \ 2}$$

$$\mathtt{aacbcb} \xrightarrow{line \ 3} \mathtt{aabccb} \xrightarrow{line \ 3} \mathtt{aabcbc} \xrightarrow{line \ 3} \mathtt{aabbcc}$$

• Sample 4

Input: A string consists of 'a', 'b'. The number of 'a' and 'b' are different.

Output: The most common letter.

Test1: bababb
$$\xrightarrow{line 1}$$
 abbabb $\xrightarrow{line 1}$ ababbb $\xrightarrow{line 1}$ aabbbb $\xrightarrow{line 2}$ abbb $\xrightarrow{line 2}$ bb $\xrightarrow{line 3}$ b

$$\text{Test2: aababbaa} \xrightarrow{\text{several times of line 1}} \text{aaaaabbb} \xrightarrow{\text{several times of line 2}} \text{aa} \xrightarrow{\text{line 4}} \text{a}$$

• Sample 5

Input: A string consists of 'a', 'b', 'c'.

Output: Return true if the input contains exactly three letters. Otherwise, return false.

• Sample 6

Input: Two binary numbers, separated by a '+'.

Output: The sum of these two numbers. It is also in binary form.

This program performs addition from low bit to high bit. For each step, the program first checks if the first number is empty (Line 15). Then consumes the lowest bit of the first number (Line 13 or 14) and then writes it at the back of the second number (Line 1 - 4). And then performs 1-bit addition (Line 5 - 8). Here, 'a' and 'b' represent '0' and '1', 'c' represents the carry character. It may happen that in some steps the first number is non-empty but the second one is empty, so Line 9 - 10 are used to solve this case. Line 11 - 12 are to solve the carry in the previous step. At last, we transform 'a', 'b', 'c' to their real number (Line 18 - 20) and solve the case that the second number is non-empty (Line 16 - 17).

Problem I. Barbecue

Input file: standard input
Output file: standard output

Time limit: 1.5 seconds Memory limit: 512 megabytes

Putata and Budada are playing a new game. In the beginning, Putata has a note with a string consists of lowercase letters on it. In each round, the player who has the note must rip off a character from the beginning or the end of the note, then pass it to the other player. If at any moment, the string on the note is a palindrome, then the player who has the note loses. Notice that both before or after the player ripping off a character from the note, the player is considered to have the note. A string $s_1s_2...s_n$ of length n is considered to be a palindrome if for all integers i from 1 to n, $s_i = s_{n-i+1}$.

However, when Putata found the note, he found that someone have played on this note before. Since both Putata and Budada are clever and will always choose the best way to make themselves win, they wonder who will win the game, and they ask you for help. Formally, you are given a string of length n and you have to answer q queries, each query is described by two integers l and r, which means you have to determine who will win if Putata and Budada play the game described above on string $s_l s_{l+1} \dots s_r$.

Input

The first line contains two integers n, q ($1 \le n, q \le 1000000$), denoting the length of the string and the number of queries.

The second line contains a string s of length n, consisting of lowercase English letters.

Each of the following q lines contains two integers l and r $(1 \le l \le r \le n)$, describing a query.

Output

For each query, print a single line. If Putata wins the game in one query, output "Putata" (without quotes). Otherwise output "Budada".

standard input	standard output
7 3	Putata
potatop	Budada
1 3	Budada
3 5	
1 6	

Problem J. Frog

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

Grammy spotted a frog at the border of a circular pillar. The pillar is centered at (0,0) and has radius 1. The frog can jump to a distance of exactly 1. Grammy wants the frog to move to her desired destination point at the border of the pillar. Please help Grammy to find a route for the frog with minimum number of jumps.

Note that the frog cannot be strictly inside the pillar at any time.

Input

The input contains multiple test cases.

The first line contains a single integer T ($1 \le T \le 10\,000$), indicating the number of test cases.

The only line of each testcase consists of two integers $d_s, d_t \ (0 \le d_s, d_t \le 359)$, indicating that the frog's starting position is $(\cos \frac{\pi d_s}{180}, \sin \frac{\pi d_s}{180})$, and the frog's destination is $(\cos \frac{\pi d_t}{180}, \sin \frac{\pi d_t}{180})$.

Output

For each test case, print one or several lines in the following format.

The first line contains a single integer k, indicating the minimum number of jumps in this test case.

The next k+1 lines contain the landing points for the frog, including its starting point and its destination point.

The *i*-th of the next k+1 lines contains 2 real numbers, indicating the coordinates of the frog's *i*-th landing point.

Your answer will be considered correct if all the following conditions are satisfied:

- The number of jumps is minimal.
- The distance between the first landing point and the starting point is less than 10^{-6} .
- The distance between the last landing point and the destination point is less than 10^{-6} .
- The distance d between any two consecutive landing points satisfy $1 10^{-6} < d < 1 + 10^{-6}$.
- The segment connecting any two consecutive landing points have a distance $d > 1 10^{-6}$ to (0,0).

standard input	standard output
3	0
0 0	1.000000000 0.000000000
0 90	2
180 0	1.000000000 0.000000000
	1.000000000 1.000000000
	0.000000000 1.000000000
	4
	-1.000000000 0.0000000000
	-1.000000000 -1.000000000
	-0.000000000 -1.000000000
	1.000000000 -1.000000000
	1.000000000 -0.0000000000

Problem K. Dynamic Reachability

Input file: standard input
Output file: standard output

Time limit: 12 seconds Memory limit: 512 megabytes

You are given a directed graph with n vertices and m edges, the vertices of which are labeled by $1, 2, \ldots, n$. The color of each edge is either black or white. Initially, all the m edges are colored black.

You need to perform q operations. Each operation is one of the following:

- "1 k" $(1 \le k \le m)$: Change the color of the k-th edge in the input from black to white and vice versa.
- "2 u v" $(1 \le u, v \le n, u \ne v)$: You need to answer whether vertex u can reach vertex v without passing any white edge.

Input

The input contains only a single case.

The first line contains three integers n, m and q ($2 \le n \le 50\,000, 1 \le m, q \le 100\,000$), denoting the number of vertices, the number of edges, and the number of operations.

Each of the following m lines contains two integers u_i and v_i $(1 \le u_i, v_i \le n, u_i \ne v_i, 1 \le i \le m)$, denoting a directed edge from vertex u_i to vertex v_i .

Each of the next q lines describes an operation in formats described in the statement above.

Output

For each query, print a single line. If vertex u can reach vertex v without passing any white edge, print "YES". Otherwise, print "NO".

standard input	standard output
5 6 7	YES
1 2	NO
1 3	NO
2 4	YES
3 4	
3 5	
4 5	
2 1 5	
2 2 3	
1 3	
1 4	
2 1 4	
1 3	
2 1 5	

Problem L. Candy Machine

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

JB loves candy very much.

One day, he finds a candy machine with N candies in it. After reading the instructions of the machine, he knows that he can choose a subset of the N candies. Each candy has a sweet value. After JB chooses the subset, suppose the average sweet value of the chosen candies is X, all the candies with sweet value strictly larger than X will belong to JB. After JB makes the choice, the machine will disappear, so JB only has one opportunity to make a choice.

JB doesn't care how sweet the candies are, so he just wants to make a choice to maximize the number of candies he will get. JB has been fascinated by candy and can't think, so he needs you to help him.

Input

The first line contains one integer N ($1 \le N \le 10^6$), denoting the number of candies in the machine.

The second line contains N integers a_1, a_2, \ldots, a_N $(1 \le a_i \le 10^9)$, denoting the sweet values of the candies.

Output

One integer, denoting the maximum number of candies JB can get.

standard input	standard output
5	2
1 2 3 4 5	

Problem M. BpbBppbpBB

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

Grammy has learned how to engrave stamps recently. She engraved two types of special stamps, type C has a capital letter "B" on it, and type S has a small letter "b" or a small letter "p" on it. The shapes and sizes of the stamps are illustrated in the following picture.

Grammy stamped these letters (with rotations) on a grid paper without overlapping, the letters can only be pressed at the piece of paper if it lies totally inside the piece of paper. However, Grammy forgot how many times she used each type of stamps. Please count the letters and help her to remember them.

The black part of the stamps may be adjacent but may not overlap.

Note that the stamps can be rotated to a multiple of 90 degrees.

Input

The first line consists of two integers $n, m \ (1 \le n, m \le 1000)$, representing the size of the paper.

In the following n lines, each line consists of m characters, representing the current state of the paper. "#" stands for a black square and "." stands for a white square.

Output

Output two integers, denoting the number of type C stamps and the number of type S stamps, respectively.

standard input	standard output
10 17	1 0
###############	
################	
################	
############	
########	
########	
############	
################	
###############	
################	
14 11	0 1
	0 1
.########	
.########	
.########	
.######	
.######	
.######	
.######### .#########	
.########	
.###	
.###	
.###	
.###	
20 14	0 2
.#########	
.#########	
.#########	
.########	
.######	
.######	
.########	
.#########	
.#########	
.#########	
.##########	
.##########	
.###########	
.##########	
######	
######	
########	
############	
############	
############	