Dismiss

Join GitHub today

GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.

Sign up

Classification Model Pros and Cons

Jump to bottom

Chris Tufts edited this page on Nov 11, 2015 · 4 revisions

Classification Model Pros and Cons (Generalized)

- Logistic Regression
 - o Pros
 - low variance
 - provides probabilities for outcomes
 - works well with diagonal (feature) decision boundaries
 - NOTE: logistic regression can also be used with kernel methods
 - Cons
 - high bias
- Decision Trees
 - o Regular (not bagged or boosted)
 - Pros
 - easy to interpret visually when the trees only contain several levels
 - Can easily handle qualitative (categorical) features

- Works well with decision boundaries parellel to the feature axis
- Cons
 - prone to overfitting
 - possible issues with diagonal decision boundaries
- o Bagged Trees: train multiple trees using bootstrapped data to reduce variance and prevent overfitting
 - Pros
 - reduces variance in comparison to regular decision trees
 - Can provide variable importance measures
 - classification: Gini index
 - regression: RSS
 - Can easily handle qualitative (categorical) features
 - Out of bag (OOB) estimates can be used for model validation
 - Cons
 - Not as easy to visually interpret
 - Does not reduce variance if the features are correlated
- o Boosted Trees: Similar to bagging, but learns sequentially and builds off previous trees
 - Pros
 - Somewhat more interpretable than bagged trees/random forest as the user can define the size of each tree
 resulting in a collection of stumps (1 level) which can be viewed as an additive model
 - Can easily handle qualitative (categorical) features
 - Cons
 - Unlike bagging and random forests, can overfit if number of trees is too large
- Random Forest
 - o Pros
 - Decorrelates trees (relative to bagged trees)
 - important when dealing with mulitple features which may be correlated
 - reduced variance (relative to regular trees)
 - o Cons

- Not as easy to visually interpretSVMPros
 - Performs similarly to logistic regression when linear separation
 - Performs well with non-linear boundary depending on the kernel used
 - Handle high dimensional data well
 - o Cons
 - Susceptible to overfitting/training issues depending on kernel
- Neural Network (This section needs further information based on different types of NN's)
- Naive Bayes
 - o Pros
 - Computationally fast
 - Simple to implement
 - Works well with high dimensions
 - o Cons
 - Relies on independence assumption and will perform badly if this assumption is not met

▶ Pages 8

Introduction

Notes on Basic Statistics

Classification Model Pros and Cons

Model Training and Assessment

Trees, Forests, Bagging, and Boosting

Database Storage Engines

References

Clone this wiki locally

https://github.com/ctufts/Cheat_Sheets.wiki.git

