InfiniGen: Efficient Generative Inference of Large Language Models with Dynamic KV Cache Management

Group: Ping Gong, Jiawei Yi and Juncheng Zhang

2024-10-15

- **□**Background
- **□**Motivation
- **□**InfiniGen
- **D**Evaluations

□LLM is an autoregressive model

□LLM is an autoregressive model

A lot of redundant computing -> KVCache (以存代算)

Background - QKV in attention/transformer

- □What's the meaning of "KV" in "KV Cache"?
 - **❖Differs from KV store in storage system**
 - **❖Intermediate result in LLM inference (Key tensor, Value tensor)**

Background - QKV in attention/transformer

- □What's the meaning of "KV" in "KV Cache"?
 - **❖Differs from KV store in storage system**
 - **❖Intermediate result in LLM inference (Key tensor, Value tensor)**
- **□QKV** in attention/transformer

□Prefill: generate KV cache

□Decode: generate next token

□LLM Inference: 1 prefill step + N decode step

With KV Cache

□But KVCache is the problem!

LLM Model: OPT-30B				
#Layers	Hidden Dim.	Data Type		
48	7168	Float16		

KVCache Size:

- A single token: 2 * 48 * 7198 * 2B = 1.3MB
- 32K tokens: 1.3MB * 32K = 40.6GB

KVCache size can easily exceed GPU memory capacity!

- ☐ To solve the problem of KVCache being too large
- □Lossy compression
 - ***Quantization**
 - **❖Low-importance tokens eviction**
- □ Lossless
 - **❖** Offload KVCache to host memory

Background – KVCache compression

Quantization

- Data precision loss;
- ➤ The maximum compression rate is fixed

Unimportant tokens eviction (during prefill process)

- > Token information permanent loss;
- ➤ The importance of tokens varies throughout the decoding process.

Compression is at a cost of reducing the quality of generated results!

Background – KVCache offloading

□KVCache offloading

- **❖**No information lost!
- **❖**Good model accuracy!
- **❖But the problem still persists!**
 - > PCIe bandwidth

☐ High PCIe bandwidth is required for offloading to match GPU inference speed

Longchat-7B, float16, batch size=1						
Seq. length	Prefill step time [ms]	1 Decoding step time [ms]	KVCache size [GB]	Prefill required bandwidth [GB/s]	Decode required bandwidth [GB/s]	
1K	172.59	27.99	0.50	2.92	17.99	
2K	327.27	30.73	0.99	3.03	32.27	
4K	670.07	36.05	1.97	2.94	54.60	
8K	1343.27	46.91	3.92	2.92	83.60	
16K	3026.89	68.35	7.83	2.59	114.52	
32K	7640.90	112.46	15.64	2.05	139.08	

The PCIe bandwidth is only up to ~28 GB/s

Background - KVCache offloading

- □KVCache + TopK attention
- **□TopK** attention
 - **❖Attention is sparse**^[1]. In most transformer layers, n% top KV can carry enough information to maintain model accuracy.
 - **❖Only use top n% KVCache with largest attention weights (during decode stage)**
 - \triangleright weights = $softmax(Q @ K^T)$
 - \triangleright indices = TopK(weights, k)
 - \triangleright output = attention(Q, K[indices], V[Indices])

k	AI2 elem
64	82.9
128	87.8
256	91.1
512	91.1
1024	91.9
2048	91.9
4096	91.9
65536 (vanilla)	91.9

[1] Memory-efficient Transformers via Top-k Attention

□KVCache + TopK attention

□Now required PCIe bandwidth is great smaller! (Topk = 10%)

Longchat-7B, float16, batch size=1						
Seq. length	Prefill step time [ms]	1 Decoding step time [ms]	KVCache size [GB]	Prefill required bandwidth [GB/s]	Decode required bandwidth [GB/s]	
1K	172.59	27.99	0.50	2.92	17.99	
2K	327.27	30.73	0.99	3.03	32.27	
4K	670.07	36.05	1.97	2.94	54.60	10 %
8K	1343.27	46.91	3.92	2.92	83.60	10/0
16K	3026.89	68.35	7.83	2.59	114.52	
32K	7640.90	112.46	15.64	2.05	139.08	

The PCIe bandwidth is only up to ~28 GB/s

- **□**Background
- **□**Motivation
- **□**InfiniGen
- **D**Evaluations

Offloading + TopK attention

- ☐ Overhead of top-k attention and KVCache selecting
 - **Some new operators (TopK operators + Fetch KVCache)** are added to the critical path!

```
weights = softmax(Q @ K^T)

indices = TopK(weights, k)

output = attention(Q, K[indices], V[Indices])
```


Offloading + TopK attention

- ☐ Overhead of top-k attention and KVCache selecting
 - **Some new operators (TopK operators + Fetch KVCache)** are added to the critical path!
 - **Cannot overlap** the data transfer and computation!

Offloading + TopK attention + Prefetch

- ☐ Target: completely hide the KVCache loading overhead through overlapping
- ☐ But how?

- **□**Background
- **□**Motivation
- **□**InfiniGen
- **D**Evaluations

- □InfiniGen:
 - **❖**Algorithm adjustments create opportunities for system optimization.
- **□**Technical Contributions:
 - **❖**Why is prefetching possible?
 - *****How is prefetching implemented?
 - **Others**

- ☐ The inputs for each transformer block are very similar!
- $\Box i 1^{th}$ Transformer:

```
Attn\_out_{i-1} = Attn(LN(Tblock\_in_{i-1}))
FFN\_out_{i-1} = FFN(LN(Tblock\_in_{i-1} + Attn\_out_{i-1}))
Tblock\_in_{i} = Tblock\_in_{i-1} + Attn\_out_{i-1} + FFN\_out_{i-1}
```


- ☐ The inputs for each transformer block are very similar!
- $\Box i 1^{th}$ Transformer:

$$Attn_out_{i-1} = Attn(LN(Tblock_in_{i-1}))$$

$$FFN_out_{i-1} = FFN(LN(Tblock_in_{i-1} + Attn_out_{i-1}))$$

$$Tblock_in_{i} = Tblock_in_{i-1} + Attn_out_{i-1} + FFN_out_{i-1}$$

Tensors	OPT-6.7B	OPT-13B	OPT-30B	Llama-2-7B	Llama-2-13B
$Tblock_in_{i-1}$	0.95	0.96	0.97	0.89	0.91
$Attn_out_{i-1}$	0.29	0.28	0.36	0.31	0.27
$_{\rm FFN_out_{i-1}}$	0.34	0.28	0.35	0.37	0.34

```
\begin{aligned} hidden\_state_i &= LN_i(Tblock\_in_i) \\ Q_i &= W_i^q @ hidden\_state_i \\ K_i &= W_i^K @ hidden\_state_i \\ weights_i &= Softmax(Q_i @ K_i^T) \\ indices &= TopK(weights_i, k) \end{aligned}
```

The computation of TopK indices


```
\begin{aligned} hidden\_state_i &= LN_i(Tblock\_in_i) \\ Q_i &= W_i^q @ hidden\_state_i \\ K_i &= W_i^K @ hidden\_state_i \\ weights_i &= Softmax(Q_i @ K_i^T) \\ indices &= TopK(weights_i, k) \end{aligned}
```

The computation of TopK indices

```
\begin{aligned} hidden\_state_i' &= LN_i(Tblock\_in_{i-1}) \\ Q_i' &= W_i^q @ hidden\_state_i' \\ K_i' &= W_i^K @ hidden\_state_i' \\ weights_i' &= Softmax \left(Q_i' @ {K_i'}^T\right) \\ indices' &= TopK(weights_i', k) \end{aligned}
```

Calculation of estimated TopK indices


```
\begin{aligned} hidden\_state_i &= LN_i(Tblock\_in_i) \\ Q_i &= W_i^q @ hidden\_state_i \\ K_i &= W_i^K @ hidden\_state_i \\ weights_i &= Softmax(Q_i @ K_i^T) \\ indices &= TopK(weights_i, k) \end{aligned}
```

The computation of TopK indices

```
\begin{aligned} hidden\_state_i' &= LN_i(Tblock\_in_{i-1}) \\ Q_i' &= W_i^q @ hidden\_state_i' \\ K_i' &= W_i^K @ hidden\_state_i' \\ weights_i' &= Softmax\left(Q_i' @ {K_i'}^T\right) \\ indices' &= TopK(weights_i', k) \end{aligned}
```

Calculation of estimated TopK indices

$$\begin{array}{c} \textit{Tblock_in_i and} \\ \textit{Tblock_in_{i-1} are alike.} \end{array} \longrightarrow \begin{array}{c} \textit{Q_i and Q_i' are alike.} \\ \textit{K_i and K_i' are alike.} \end{array} \longrightarrow \begin{array}{c} \textit{weights_i and} \\ \textit{weights_i' are alike.} \end{array} \longrightarrow \begin{array}{c} \textit{indices and} \\ \textit{indices' are alike.} \end{array}$$

InfiniGen - Why is prefetching possible?

```
\begin{aligned} hidden\_state_i &= LN_i(Tblock\_in_i) \\ Q_i &= W_i^q @ hidden\_state_i \\ K_i &= W_i^K @ hidden\_state_i \\ weights_i &= Softmax(Q_i @ K_i^T) \\ indices &= TopK(weights_i, k) \end{aligned}
```

The computation of TopK indices

```
\begin{aligned} hidden\_state_i' &= LN_i(Tblock\_in_{i-1}) \\ Q_i' &= W_i^q @ hidden\_state_i' \\ K_i' &= W_i^K @ hidden\_state_i' \\ weights_i' &= Softmax \left(Q_i' @ {K_i'}^T\right) \\ indices' &= TopK(weights_i', k) \end{aligned}
```

Calculation of estimated TopK indices

The tensor $Tblock_in_{i-1}$ is obtained during $(i-1)^{th}$ layer. Therefore, it can be utilized for prefetching for i^{th} layer.

InfiniGen - Why is prefetching possible?

□Prefetching opportunities (excluding the initial layer)

❖0/1 layer: full attention

❖Other layers: TopK attention

- ☐ The overhead of TopK operator is high!
 - ***Both Memory and Computation.**
- **■What's worse, the operator is done on CPU.**

```
\begin{aligned} hidden\_state_i' &= LN_i(Tblock\_in_{i-1}) \\ Q_i' &= W_i^q @ hidden\_state_i' \\ K_i' &= W_i^K @ hidden\_state_i' \\ weights_i' &= Softmax\left( \begin{matrix} Q_i' @ K_i'^T \end{matrix} \right) \\ indices' &= TopK(weights_i', k) \end{aligned}
```


□ Reduce computational complexity through dimensionality reduction.

□Key/Query Skewing

□Key/Query Skewing

□Key/Query Skewing

- Offline modification of the query and key weights using singular value decomposition (SVD)
- The identical computation result:

$$(\mathbf{Q} \times \mathbf{A}) \times (\mathbf{A}^T \times \mathbf{K}^T) = \mathbf{Q}\mathbf{K}^T \qquad \mathbf{A} = \mathbf{V}$$

□Prefill stage: reduce the dimensionality of Key after skewing

$$Indices = TopK(KA + QA).abs().sum(axis = 1),T)$$

$$K' = (KA)[:,Indices]$$

□Prefill stage: reduce the dimensionality of Key after skewing

□Decode stage: compute Partial Query and TopK indices

The selected weight/score is within the range of $[max - \alpha, max]$.

InfiniGen - Others

□ Technical Contributions:

- *****Why is prefetching possible?
- *****How is prefetching implemented?
- **❖** When the CPU memory is out of memory (OOM):
 - > a counter-based approach can be used to drop entries from the KVCache.

- **□**Background
- **□**Motivation
- **□**InfiniGen
- **D**Evaluations

Evaluation — Setup

- **□**Models
 - **❖OPT** model with 6.7B, 13B and 30B parameters
 - **❖Llama-2** model with 7B and 13B parameter
- **□**Hardware
 - **❖1** × NVIDIA RTX A6000 GPU (48GB memory)
 - **❖Intel Xeon Gold 6136 with 96GB DDR4-2666 memory**
 - **PCIe 3.0** × 16 (~16GB/s)

Evaluation — Accuracy

□Accuracy

*****KVCache management:

- > Full: no compression, generation with full KV Cache
- \rightarrow H₂O (NeurIPS 2023): SOTA low-importance token eviction algorithm
- **Quantization**
- **►** InfiniGen

□Accuracy

InfiniGen outperforms all the baseline, achieves near lossless accuracy

Evaluation — Speedup and Latency

- **□**Baseline
 - **❖FlexGen (ICML 2023)**
 - ➤ All KVCache on the CPU memory w/ prefetching
 - > All KVCache are stored on the CPU memory and only Model are on the GPU.
 - **❖ Unified Virtual Memory (UVM):**
 - > All KVCache on the CPU memory w/o prefetching
 - > The data movement between CPU and GPU are managed by NVIDIA driver.
 - **❖InfiniGen (TopK: up to 10%)**
- **□KVCache management:**
 - H_2O : 5 compression ratio
 - **❖ Quantization (INT4): 4 compression ratio**

Evaluation — Speedup and Latency

□Latency

OPT-13 model, with 1920 input tokens, 128 output tokens, bs=20 (1920 for prefill + 128 decode)

Evaluation — Speedup and Latency

□Speedup

- **❖FlexGen + INT4/H2O**
- ***InfiniGen**

1 is the FlexGen

Evaluation — Breakdown

□Breakdown and prefetch overhead

OPT-13B with 8 *2048 inputs

FlexGen and H₂O spend most time in data transfer (96.9% and 91.8% respectively)

☐ Sensitivity analysis

- **❖** With higher alpha value, accuracy and latency both increase (4 is enough)
- **❖**Higher Partial Weight Ratio will cause a higher accuracy and higher memory consumption, and latency remains stable (0.3 is enough)

□Thank you!

□Q&A