FPGA Homework2 第八組

F44071128 李其祐 C14074021 張柏彦 F14051041 陳 祺

Problem1: Breathing Light

一、系統規格

Top Module			
Signal Name	Direction	Width	Description
clk	Input	1	系統時脈訊號
rst	Input	1	非同步 active high 重置訊號
SW	Input	2	切換開關
rgb4	Output	3	LED4 RGB 控制訊號
rgb5	Output	3	LED5 RGB 控制訊號

PWM_Decoder			
Signal Name	Direction	Width	Description
SW	Input	2	切換開關
R_time_out	Output	8	紅光佔空比的控制訊號
G_time_out	Output	8	綠光佔空比的控制訊號
B_time_out	Output	8	藍光佔空比的控制訊號

RGB_LED				
Signal Name	Direction / Type	Width	Description	
clk	Input	1	系統時脈訊號,預設為 125MHz	
rst	Input	1	非同步 active high 重置訊號	
R_time_in	Input	8	紅光佔空比的控制訊號	
G_time_in	Input	8	綠光佔空比的控制訊號	
B_time_in	Input	8	藍光佔空比的控制訊號	
rgb4	Output	3	LED4 RGB 控制訊號	
rgb5	Output reg	3	LED5 RGB 控制訊號	
flag	reg	1	控制 RGB_LED 由亮到暗	
			與由暗到亮的訊號	
counter_256	reg	8	時長為 256 個 cycle 的計數器	
cnt_08us	reg	7	時長約為 0.8us 的計數器	
cnt_08ms	reg	10	時長約為 0.8ms 的計數器	
cnt_08s	reg	10	時長約為 0.8s 的計數器	

二、電路設計說明(IP Design)

1. PWM_Decoder

根據輸入 sw 調整 RGB 的佔空比,讓 RGB_LED 能根據佔空比調整 RGB 控制 訊號,以調變 LED 顏色。

當 sw 為 2'b00 時,RGB_LED 需顯示紫色,因此 256 個 clk cycle 中,紅光訊號需維持 128 個 cycle 的高準位,綠光訊號需維持 32 個 cycle 的高準位,藍光需維持 256 個 cycle 的高準位;當 sw 為 2'b01 時,RGB_LED 需顯示青色,因此紅光訊號需一直維持低準位,綠光訊號需維持 256 個 cycle 的高準位,藍光需維持 256 個 cycle 的高準位;當 sw 為 2'b10 時,RGB_LED 需顯示黃色,因此紅光訊號需維持 256 個 cycle 的高準位,蘇光訊號需維持 256 個 cycle 的高準位,藍光需 一直維持低準位;當 sw 為 2'b11 時,RGB_LED 需顯示緋紅色,因此紅光訊號需維持 256 個 cycle 的高準位,綠光訊號需 維持 256 個 cycle 的高準位,綠光訊號需一直維持低準位,藍光需維持 256 個 cycle 的高準位,綠光訊號需一直維持低準位,藍光需維持 256 個 cycle 的高準位。

2. RGB LED

根據 PWM_Decoder 送來的 RGB 佔空比,發出實際控制 RGB 的訊號。 內有 4 個計數器,分別為 counter_256、cnt_08us、cnt_08ms 以及 cnt_08s。其中 counter_256 從 0 數到 255,若 counter_256 分別比 R_time_in、G_time_in、B_time_in 數值小,則 rgb[0]、rgb[1]、rgb[2]控制訊號為 1,反之為 0。

由於預設的操作頻率為 125MHz,因此每個 cycle 為 8ns。cnt_08us 在經過 128 個 cycle 後會重新計數,即 8ns*128 \approx 0.8us。cnt_08ms 在 cnt_08us 為 127 時增加 1,即 0.8us*1024 \approx 0.8ms。cnt_08s 在 cnt_08ms 為 1023 且 cnt_08us 為 127 時增加 1,即 0.8ms*1024 \approx 0.8s。這裡我們不用 10 的次方來計數,而改用 2 次方數,這樣一來就能夠減少判斷訊號,因為只要當計數器累加到上限值再加 1 時,計數器就會歸零。

接著再透過比較 cnt_08s 與 cnt_08ms 的大小調整 LED 在一脈衝單位中發光時間的比例,以此達成亮度控制。flag 則在所有 counter 為最大值時將訊號反向。當 flag 為 0 時,若 cnt_08s >= cnt_08ms,RGB_LED 則輸出經由 PWM 調變後的訊號,若 cnt_08s < cnt_08ms,RGB_LED 則輸出 0,如此 RGB_LED 會由暗變亮;當 flag 為 1 時,若 cnt_08s < cnt_08ms,RGB_LED 則輸出經由 PWM 調變後的訊號,若 cnt_08s >= cnt_08ms,RGB_LED 則輸出 0,如此 RGB_LED 會由亮變暗。

三、Block Design

四、Synthesis/Implementation

Netlist

Layout

五、FPGA 驗證 在不同 SW 狀況下 LED 顏色不同,且有一個亮度不變,另一個亮度會變化。

Problem2 Rainbow breathing light

一、系統規格

Top Module			
Signal Name	Direction	Width	Description
clk	Input	1	系統時脈訊號
rst	Input	1	非同步 active high 重置訊號
rgb4	Output	3	LED4 RGB 控制訊號

PWM_Decoder			
Signal Name	Direction	Width	Description
state	Input	3	控制 RGB 佔空比的狀態
R_time_out	Output	8	紅光佔空比的控制訊號
G_time_out	Output	8	綠光佔空比的控制訊號
B_time_out	Output	8	藍光佔空比的控制訊號

RGB_LED			
Signal Name	Direction / Type	Width	Description
clk	Input	1	系統時脈訊號,預設為 125MHz
rst	Input	1	非同步 active high 重置訊號
R_time_in	Input	8	紅光佔空比的控制訊號
G_time_in	Input	8	綠光佔空比的控制訊號
B_time_in	Input	8	藍光佔空比的控制訊號
rgb4	Output	3	LED4 RGB 控制訊號
state	Output reg	3	控制 RGB 佔空比的狀態
flag	reg	1	控制 RGB_LED 由亮到暗
			與由暗到亮的訊號
counter_256	reg	8	時長為 256 個 cycle 的計數器
cnt_08us	reg	7	時長約為 0.8us 的計數器
cnt_08ms	reg	10	時長約為 0.8ms 的計數器
cnt_08s	reg	10	時長約為 0.8s 的計數器
n_state	reg	3	記錄控制 RGB 佔空比的下一個狀態
state_flag	wire	1	控制 n_state 轉換狀態的訊號

二、電路設計說明(IP Design)

1. PWM Decoder

根據輸入的 state 調整 RGB 的佔空比,讓 RGB_LED 能根據佔空比調整 RGB 控制訊號,以調變 LED 顏色。

當 state 為 3'b000 時,RGB_LED 需顯示紅色,因此 256 個 clk cycle 中,紅光訊號需一直維持高準位,綠光訊號需一直維持低準位;藍 state 為 3'b001 時,RGB_LED 需顯示橙色,因此 256 個 clk cycle 中,紅光訊號需一直維持高準位,綠光訊號需維持 98 個 cycle 的高準位,藍光需一直維持低準位;當 state 為 3'b010 時,RGB_LED 需顯示黃色,因此 256 個 clk cycle 中,紅光訊號需一直維持高準位,綠光訊號需一直維持高準位,藍光需一直維持低準位;當 state 為 3'b011 時,RGB_LED 需顯示綠色,因此 256 個 clk cycle 中,紅光訊號需一直維持低準位,綠光訊號需一直維持高準位,藍光需一直維持低準位;當 state 為 3'b100 時,RGB_LED 需顯示藍色,因此 256 個 clk cycle 中,紅光訊號需一直維持低準位,綠光訊號需一直維持低準位,藍光需一直維持高準位;當 state 為 3'b101 時,RGB_LED 需顯示藍色,因此 256 個 clk cycle 中,紅光訊號需一直維持低準位,綠光訊號需一直維持低準位,藍光需一直維持高準位;當 state 為 3'b101 時,RGB_LED 需顯示紫色,因此 256 個 clk cycle 中,紅光訊號需維持 128 個 cycle 的高準位,綠光訊號需維持 32 個 cycle 的高準位,藍光需維持 256 個 cycle 的高準位。

2. RGB LED

與第一題大致相同,不過內建一個狀態機,每當所有 counter 數到最大值 且 flag 為代表亮到暗的 1 時,狀態改變,根據狀態輸出 n_state 訊號,並在下個 posedge clk 將 state 訊號輸出到 PWM_Decoder,以此來調整 PWM_Decoder 要 調變的顏色。狀態依序為題目所要求的彩虹色順序。

三、Block Design

四、Synthesis/Implementation

Netlist

Layout

五、FPGA 驗證 可看出 LED 由紅色開始明暗變化,並遵照題目要求改變顏色

