Semester: 5th Branch: CSE/IT

Autumn Mid Semester Examination - 2018 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar-24

Formal Languages and Automata Theory [Subject Code: CS-3003]

Time: 1 hr 30 mins

Full Marks: 20

(Answer any four questions including question number 1 which is compulsory)

Q1 Write your answers briefly. Provide proper justification to support your answer.

[1X5=5]

- a) Design an NFA without λ -transition and with a single final state that accepts the set $\{a\}$ U $\{b^n: n \geq 1\}$
- b) Let $L_1 = a^*$ and $L_2 = \{a^p : p \text{ is prime}\}$. Then, find the language represented by $L_1.L_2$.
- c) Check whether the regular expressions $(a + ab + b)^*$ and $(b^*a^* + bba + \lambda)^*$ are equivalent or not. Justify.
- d) Suppose M = {all binary strings ending with 1} and N = {all binary strings ending with 0}. Then, design finite automata with minimum number of states representing,
 - (i) MUN
 - (ii) M n N
- e) Find δ^* (1, ba) in the following NFA,

δ	a	b	λ
1	{5}	-	{4}
2	{1}	-	-
3	-	{2}	-
	-	{7}	{3}
5 6	-	-	{1}
6	-	{5}	{4}
7	{6}	-	-

Q2 Give regular expression for the following languages over {a, b}.

[5]

- a. Set of all strings containing neither ab nor ba.
- b. $L = \{a^m b^n : m * n \text{ is even and } m + n \text{ is odd}\}$
- c. Set of all strings not ending with bba.
- d. Set of all strings having even number of b's.
- e. $L = \{vwv : w, v \in (a + b)^* \text{ and } |v| = 2 \text{ and } |w| \ge 2\}$

2+2 [2+3=5]

- Q3. Consider the regular expression (a*bab + ab*ab)*.
 - a. Design an NFA for the given regular expression.
 - b. Convert the NFA constructed in part (a) to the corresponding DFA.
- Q4. Design DFA for the following languages,

[3+2=5]

- a. All strings over {1,2,3} whose sum of symbols (assuming symbols as integer) is a multiple of 6. (For example, 12333 is accepted as the sum of symbols is 12)
- b. $L = \{1^x 2^y 3^z : x \ge 0, y \ge 0, z \ge 0\}$
- Q5. Consider the following DFA,

[2.5X2=5]

δ	0	1
→A	D	F
В	Α	G
C	В	D
D	F	E
E	G	Е
*F	C	F
*G	C	G
*H	В	Α

- a. Minimize the above DFA.
- b. Find a regular expression equivalent to the minimized DFA.