概述

Base64编码,是我们程序开发中经常使用到的编码方法。它是一种基于用64个可打印字符来表示二进制数据的表示方法。它通常用作存储、传输一些二进制数据编码方法!也是MIME(多用途互联网邮件扩展,主要用作电子邮件标准)中一种可打印字符表示二进制数据的常见编码方法!它其实只是定义用可打印字符传输内容一种方法,并不会产生新的字符集!有时候,我们学习转换的思路后,我们其实也可以结合自己的实际需要,构造一些自己接口定义编码方式。好了,我们一起看看,它的转换思路吧!

Base64实现转换原理

它是用64个可打印字符表示二进制所有数据方法。由于2的6次方等于64,所以可以用每6个位元为一个单元,对应某个可打印字符。我们知道三个字节有24个位元,就可以刚好对应于4个Base64单元,即3个字节需要用4个Base64的可打印字符来表示。在Base64中的可打印字符包括字母A-Z、a-z、数字0-9,这样共有62个字符,此外两个可打印符号在不同的系统中一般有所不同。但是,我们经常所说的Base64另外2个字符是:"+/"。这64个字符,所对应表如下。

Value	Encoding	Value	Encoding	Value	Encoding	Value	Encoding
0	A	17	R	34	i	51	z
1	В	18	s	35	j	52	0
2	С	19	T	36	k	53	1
3	D	20	U	37	1	54	2
4	E	21	v	38	m	55	3
5	F	22	W	39	n	56	4
6	G	23	x	40	0	57	5
7	н	24	Y	41	p	58	6
8	I	25	z	42	q	59	7
9	J	26	a	43	r	60	8
10	K	27	ь	44	s	61	9
11	L	28	c	45	t	62	+
12	м	29	d	46	u	63	/
13	N	30	e	47	v	(pad)	-
14	o	31	f	48	w		
15	P	32	g	49	×		
16	Q	33	hhttp	: 500	og. c y sdn. r	et/jiux	kiao1991

转换步骤

- 1) 将给定的字符串转换成对应的字符编码(如: GBK、UTF-8)
- 2) 将获得该字符编码转换成二进制码
- 3) 对获得的二进制码进行分组操作

第一步:每3个字节(8位二进制)为一组,一共24个二进制位

第二步:将这个24个二进制位分成4组,每个组有6个二进制位,不足6位的,后面补0。

第三步:在每个组前面加两个0,这样每个组就又变成了8位,即每个组一个字节,4个组就4个字节了。

第四步:根据Base64的转码表找到每个字节对应的符号,这个符号就是Base64的编码值

经过Base64编码后的字符串的字符数一定是4的整数倍。在使用 Base64编码时,如果得到的字符数不为4的整数倍,则后面使用等号 '='补足

Java中的实现

Java版Base64编码和解码实现:

使用Apache的org.apache.commons.codec.binary.Base64类

//Base64编码

String str = new String(Base64.encodeBase64("中国".getBytes("utf-8")),"utf-8");

System.out.println(str);

//Base64编码,对输出结果中,每76个字符追加一个回车换行符 String str = new String(Base64.encodeBase64("中国".getBytes("utf-8"),true),"utf-8");

System.out.println(str);

//Base64解码

String str2 = new String(Base64.decodeBase64(str.getBytes("utf-8")), "utf-8");

System.out.println(str2);