MODULE 3 FINAL PROJECT

BY ÜLKÜ & KIRYL

06/11/2019

DataSet Characteristics

'Pitchfork' is a music-centric online magazine. It was started in 1995 and grew out of independent music reviewing into a general publication format, but is still famed for its variety music reviews.

	score
ount	18393.000000
nean	7.005779
std	1.293675
min	0.000000
25%	6.400000
50%	7.200000
75%	7.800000
max	10.000000

Data Points of Total Ratings

^{**}We assume we work with continuous and independent data set

Test #1: One Sample T-Test (left side)

Question: Is there a difference between the ratings of ROCK music and all other

music genres?

Goal: Test, at 5% level of significance, whether are there differences in magazine's ratings with respect to genres. In particular test, is rock genre treated the same as other music genres.

Hypothesis:

H0= There is **no significant difference** in ratings of rock music comparing to others.

HA= The ratings of rock music **are** usually **lower** than ratings of all genres.

T-crit = -1.645 at alpha = 0.05

T statistics = -2.815

Conclusion:

Because t-statistics is less than t-critical, i.e. is located to the left of t-critical value with alpha = 0.05, we reject the null hypothesis and can conclude that rock music in general rated lower.

Test #2: Two Sample T-Test

<u>Question</u>: Is there a statistical difference between the average ratings of jazz music and metal music genres?

	Jazz Music Score	Metal Music Score			
count	435.000000	count	862.000000		
mean	7.303908	mean	6.950000		
std	1.251104	std	1.387799		
min	1.000000	min	0.200000		
25%	6.900000	25%	6.500000		
50%	7.600000	50%	7.300000		
75%	8.000000	75%	7.900000		
max	10.000000	max	9.700000		

Goal:

Test, at 5% level of significance, whether are there differences in average ratings of two different music genres. In particular test, is jazz music and metal music.

Hypothesis:

H0: There is no significant difference between mean values of jazz and metal data set.

HA: There is a significant difference between jazz and metal mean values.

Results of Two Sample T-Test: T-statistics: -14.57 and P-value: 0.0

T-critical = -1.65 at alpha = 0.05

T statistics = -14.57

Conclusion:

Because t-statistics is less than t-critical, i.e. is located to the left of t-critical value with alpha = 0.05 level of significance, we reject the null hypothesis and can conclude that jazz and metal music average ratings are statistically different.

Test # 3: One-Factor ANOVA Test

Question: Is there a significant effect of publication day on content length?

Goal:

Test, at 5 % level of significance, whether there is a significant effect of review publication day on review content length?

Proportions of Content Publications by Day

Hypothesis:

H0: There **is no** significant **difference** in average content length depending on which day it is published.

HA: There **is** a significant **difference** in average content length depending on which day it is published.

At 5% level of confidence with 6.0 degrees of freedom, SSM for the model 1.429448e+08, F= 11.67 and p < 0.05.

	coef	std err	t	P> t	[0.025	0.975]
Intercept	4094.9888	28.543	143.468	0.000	4039.042	4150.936
C(pub_weekday)[T.Monday]	-54.6201	37.349	-1.462	0.144	-127.827	18.587
C(pub_weekday)[T.Saturday]	297.7369	111.740	2.665	0.008	78.716	516.758
C(pub_weekday)[T.Sunday]	275.6835	53.319	5.170	0.000	171.173	380.194
C(pub_weekday)[T.Thursday]	-58.3908	37.353	-1.563	0.118	-131.607	14.825
C(pub_weekday)[T.Tuesday]	-102.0492	36.247	-2.815	0.005	-173.096	-31.002
C(pub_weekday)[T.Wednesday]	-57.0209	37.214	-1.532	0.125	-129.964	15.922
Omnibus: 9722.016 D	urbin-Watson	n:	1.809			
Prob(Omnibus): 0.000 Jar	que-Bera (JB)	: 12061	9.006			
Skew: 2.266	Prob(JB)):	0.00			
Kurtosis: 14.696	Cond. No	.	11.7			

Conclusion:

Based on test results, we reject a null-hypothesis and conclude that with 5% level of confidence, review publication day effects content length.

	Degrees of Freedom	Sum of Squares	Mean Squares	F-Test	P-Value
C(pub_weekday)	6.0	1.429448e+08	23824140.0	11.6645	4.36447e-13
Residual	118394.0	3.756875e+10	2042446.0	NaN	NaN

Test #4: Chi-squared test (Goodness-of-fit)

Question: Is there any difference in distributions of ratings in past 2 years?

Goal:

Test, at 5 % level of significance, whether there is a sufficient evidence in the sample to conclude that the distribution of genres reviewed in magazine in the last 2 years had changed from previous years

Hypothesis:

- H0 = distribution of genres in the last two years *has not* changed
- HA = distribution of genres has changed

Chi-squared statistics = 356.813 and Chi-squared at alpha= 0.05 with 8 degrees of freedom = 15.507

Conclusion:

Based on test results, we reject a null-hypothesis and conclude that at 5% level of confidence there is a sufficient evidence of changing in distribution of genres reviewed in that magazine in the last two years

