Aufgabe 1

Wir betrachten die folgenden Matrizen aus $\mathrm{Mat}(3,\mathbb{R})$:

$$A := \begin{pmatrix} -4 & -3 & -3 \\ 3 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 & 4 \end{pmatrix}$$

- **a**)
- i)
- ii)
- b)

Aufgabe 2

Sei V ein K -Vektorraum, $\lambda, \mu \in K$ sowie $\varphi \in \operatorname{End}(V)$ und $A \in \operatorname{Mat}(n, K)$.	
a)	
Die Abbildung φ ist genau dann injektiv, wenn 0 kein Eigenwert von φ ist.	
Beweis.	
b)	
Ist φ bijektiv und λ ein Eigenwert von φ , so folgt $\lambda \neq 0$ und λ^{-1} ist Eigenwert von φ^{-1} .	
Beweis.	
c)	
Gilt $p \in K[X]$ und $v \in \text{Eig}(A, \lambda)$, so folgt $v \in \text{Eig}(\tilde{p}(A), \tilde{p}(\lambda))$.	
Beweis.	
d)	
Seien $v_{\lambda}, v_{\mu} \in K^n$ Eigenvektoren von A zu den Eigenwerten λ, μ . Dann ist $v_{\lambda} + v_{\mu}$ wiede Eigenvektor, wenn —	er ein
Beweis.	