My basic AI notebook (tips that I think matter)

M. Yas. Davoodeh

September 21, 2020

1 Math

A vector is a $x \times 1$ matrix.

Vector \vec{x} has a Weight property which indicates its travel distance (Euclidean). Weight of \vec{x} is indicated by $||\vec{x}||$.

Euclidean or Normal distance is calculated like below where Ds is the number of dimensions:

$$d(p,q) = d(q,p) = \sqrt{\sum_{i=1}^{Ds} (q_i - p_i)^2}$$
 (1)

2 Not-Math

2.1 Hypothesis

 $h_{\Theta}(x)$ is the example function for Θ parameters as in $h_{\Theta}(x) = \Theta^T x$. A good h gives a correct answer y for any given x.

2.2 Cost function

J(x) is the difference between a guessed answer (h_{Θ}) and the correct one. In the simplest form:

$$J(x) = h_{\Theta}(x) - y \tag{2}$$

Linear-Regression J for a set like $x = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$:

$$J(x) = \frac{\sum_{i=1}^{m} (h_{\Theta}(x_i) - y_i)^2}{2m}$$
 (3)

The power 2 prevents negative values from cancelling out the positive ones. Absolute function (|x|) can be used as well. The reason that the power 2 function is more used is that it penalizes outlier values exponentially.

2.3 Logistic/Sigmoid function

$$g(x) = \frac{L}{1 + e^{-k(x - x_0)}} \tag{4}$$

Where

 x_0 = the x value of the sigmoid's midpoint (default=0),

L = the curve's maximum value (default=1),

k = the logistic growth rate or steepness of the curve (default=1).

2.4 ReLU

Rectified Linear Unit

$$\sigma(x) = R(x) = \max(0, x) \tag{5}$$

3 Normalization

Normalization aims to reduce processing required or simplifying values.

$$s = \max(x) - \min(x) \quad \mathsf{OR} \quad s = \underbrace{\sigma(x)}_{\mathsf{std}} \tag{6}$$

3.1 Feature Scaling

By dividing a constant, s, to x in order to make the change range closer to $-1 \le x \le 1$, we scale the features.

$$x' = \frac{x}{s} \tag{7}$$

To rescale a range between an arbitrary set of values [a,b], the formula becomes:

$$x' = \frac{(x - \min(x))(b - a)}{s} \tag{8}$$

3.2 Mean Noramlization

$$x' = \frac{x - \overbrace{\mu}^{\bar{x}}}{s} \tag{9}$$

3.3 Making decision based on decision boundary

For any given decision boundary \vec{d} , there is a perpendicular vector, \vec{w} , to it from the origin ((0,0)).

To determine if unknown vector \vec{u} if over \vec{d} or not we check if $\vec{u} \cdot \vec{w} + bias > 0$ or not.

If $\vec{u} \cdot \vec{w} + bias > 0$, \vec{u} is over \vec{d} . else If $\vec{u} \cdot \vec{w} + bias < 0$, \vec{u} is not over \vec{d} . else If $\vec{u} \cdot \vec{w} + bias = 0$, \vec{u} is on the decision boundary \vec{d} .