REPUBLIQUE ISLAMIQUE DE MAURITANIE Ministère de l'Education Nationale de la Formation Technique et de la Reforme Direction des Examens et des Concours

Baccalaurést

Sciences physiques session normale 2020

Honneur Fraternité Justice Série :Sciences de la nature

Durée: 4H Coefficient: 7

Exercice 1(4,75pts)

Afin d'étudier la cinétique de décomposition de l'iodure d'hydrogène HI en divode et dihydrogène, on place à la date t=0 dans un thermostat maintenu à 380°C des ampoules scellées identiques, contenant chaçune la même quantité de matière en iodure d'hydrogène.

À la date t donnée, une ampoule est refroidie rapidement et ouverte.

Le diiode formé à cet instant est mis en solution et dosé par un volume V d'une solution de thiosulfate de sodium $Na_2S_2O_3$, de concentration C.

1.1. Pourquoi refroidit-on rapidement l'ampoule?

(0,5pt)

- 1.2. Ecrire les demi-équations électroniques des couples oxydants réducteurs et l'équation bilan de la réaction corres pondant au dos age. On donne : $\mathbf{E}^0_{\mathbf{1}_2/\Gamma}=0,55\mathrm{V}$ et $\mathbf{E}^0_{\mathbf{5}_4\mathrm{O}_6^{2-}/\mathbf{5}_2\mathrm{O}_3^{2-}}=0,08\mathrm{V}$ (1pt)
- 1.3. Montrer que la quantité de matière du düvde formée à la date t est donnée par la relation $n(I_2) = \frac{CV}{2}$ (0,75pt)
- 2. Les courbes représentatives de la fonction $C_0=f(t)$ sont données par la figure pour deux températures. Où C_0 représente la concentration en diiode.
- 2.1. Définir la vitesse instantanée de formation du diiode . (lpt)
- 2.2. Calculer les vitesses de formation du diiode à t=0. (lpt
- 2.3. Quel facteur cinétique ces deux expériences mettent-elles en évidence ? (0,5pt)

Exercice 2(4,25pts)

- 1. On dispose d'un volume de 100 mL d'une solution aqueuse S_A d'acide méthanoïque HCOOH de concentration molaire C_A = 6.10^{-2} mol/L et de pH='2,49.
- 1.1. Donner la définition d'un acide faible et d'un acide fort. Cet acide est-il fort ou faible? (0,75pt)
- 1.2. Ecrire l'équation de la réaction entre cet acide et l'eau.

(6,5pt)

1.3. Etablir le tableau d'avancement. Calculer le taux d'avancement final τ de cette réaction. Conclure.

(ipt)

2. Pour vérifier la valeur de la concentration \mathbf{C}_A de la solution \mathbf{S}_A , on réalise un dosage acidobasique colorimétrique.

Dans un bécher, on verse un volume $V_A=5mL$ de cette solution et on y ajoute progressivement une solution aqueuse S_B d'hydroxyde de sodium de concentration $C_B=0.05mol/L$. La couleur de la solution dosée change de teinte si on verse un volume de 6mL au moment où le pH devient pH=8.7.

21. Ecrire l'équation de la réaction du dosage.

(0,5pt) (0,5pt)

- 2.2. Retrouver la valeur de C_{Λ} .
- 2.3. Choisir, en justifiant la réponse, l'indicateur coloré adéquat pour repérer

Cária Calamana da

G 2:	T		
Indicateur coloré	Hélianthine	$\mathcal{B}.\mathcal{B}.\mathcal{I}$	Bleu de thymol
Zone de virage	3 - 4,4	6 - 7.6	8 - 9.6
	·		V - 7,0

l'équivalence parmi les indicateurs du tableau ci-dessus.

(0,5pt)

2.4. À quoi correspond le pH du mélange lorsqu'on verse un volume de 3mL, de soude?

(0,5pt)

Exercice 3(5,5pts)

Dans tout l'exercice les frottements sont négligeables

Un solide S assimilable à un point matériel de masse m est abandonné au point A de la ligne de plus grande pente d'un plan incliné d'un angle a par rapport à l'horizontale (voir fig2).

Il glisse sur AB et arrive en B avec la vitesse V_B . On donne $\alpha{=}30^\circ$ et $g{=}10 m/s^z$.

- 1.1. Etablir l'équation horaire du mouvement du solide S sur AB. (1pt)
- 1.2. Calculer la longueur I=AB, en déduire les valeurs de la vitesse en B et en C. (1pt)

- 2. Le solide quitte la piste au point C pour tomber au point P sur l'axe Cx.
- 2.1. Etablir l'équation de la trajectoire du mobile entre C et P dans le repère (Cx;Cy) en fonction de V_B, α et g.
- 2.2. Danner l'expression de la portée CP en fonction de V_B , α et g puis en fonction de l et α . Calculer CP. (1,25pt)
- 2.3. Donner l'expression de la flèche en fonction de V_B , α et g. Four quelle valeur de α cette flèche est-elle maximale ? (1,25 μ t)

Exercice 4(5,5pts)

Le poids de l'électron sera négligeable devant les autres forces appliquées.

- 1. Un faisceau d'électrons est émis sans vitesse par une cathode C et accéléré par une anode A à l'aide d'une différence de potentiel $U_0 = V_A V_C$.
- 1.1. Déterminer le signe de U_0 appliquée entre C et A et calculer sa valeur si $AC=d_0=3cm$ et $E=6.10^3 V/m$. (0.75pt)
- 1.2. Calculer la vitesse V_0 de l'électron lorsqu'il arrive en O'.

On donne: $e=1,6.10^{-19}$ C, $m=9.10^{-31}$ kg.

(0,75pt)

- 2. En O, les électrons pénètrent avec la vitesse \overline{V}_0 dans une zone où règne un champ électrique dû à une tension U existant entre deux plaques P_1 et P_2 de longueur I et distantes de d. (voir fig3)
- 2.1. Etablir l'expression de l'équation de la trajectoire de l'électron entre les plaques. Danner cette expression en fonction de U_0 , U et d.

 Préciser sa nature. (Int)

2.2. Déterminer la valeur de la tension U si la déviation angulaire électrique est telle que $\tan\alpha=0,3$. On donne : I=d=4cm.

tand=0,3. Un donne : I =d=4cm. ([],75pt)
3. Un remplace le champ électrique É par un champ magnétique B crée dans une zone cavré
MNPQ de coté a=4cm.

Les électrons pénètrent dans cette zone au point O avec la vites se \widetilde{V}_{0} . (Voir fig4).

- 31. Déterminer la nature du mouvement de l'électron dans le champ magnétique \overline{B} . Donner l'expression du rayon de la trajectoire en fonction de m, e, B et U_0 . (|pt)
- 3.2. Déterminer la valeur de la déviation angulaire magnétique α' si les électrons sortent entre P et N. On donne : $R=2,25,10^{-4}T$. (I,5pt)
- 3.3. Quelle est la valeur de B pour que l'électron effectue un quart de cercle ?

(0,75pt)