MATH-UA 129: Homework 5

James Pagan, October 2023

Professor Serfaty

Contents

1	Sect	ion 3.2	2
	1.1	Problem 3	2
	1.2	Problem 5	2
	1.3	Problem 7	3
	1.4	Problem 11	3
	1.5	Problem 12	4
	1.6	Problem 13	4
2	Sect	ion 3.3	7
	2.1	Problem 1	7
	2.2	Problem 4	8
	2.3	Problem 6	9
	2.4	Problem 9	9
	2.5	Problem 17	0
	2.6	Problem 27	0
	2.7	Problem 28	0
	2.8	Problem 30	1
	2.9	Problem 52	2

1 Section 3.2

1.1 Problem 3

We have that $\frac{\partial f}{\partial x} = 2x + 2y = \frac{\partial f}{\partial y}$, so all first-order partial derivatives are 0 at (x_0, y_0) , and $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y^2} = 2$ at (x_0, y_0) . Then observing that $\mathbf{0} = (x_0, y_0)$ and defining that $\mathbf{h} = (h_1, h_2)$ yields

$$f(\mathbf{h}) = f(\mathbf{0}) + \sum_{i=1}^{2} h_i \frac{\partial f}{\partial x_i}(\mathbf{0}) + \frac{1}{2} \sum_{1 \le i, j \le 2} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{0}) + R_2(\mathbf{0}, \mathbf{h})$$

$$= 0 + 0 + \frac{1}{2} \left(2h_1^2 + 4h_1 h_2 + 2h_2^2 \right) + R_2(\mathbf{h}, \mathbf{0})$$

$$= (h_1 + h_2)^2 + R_2(\mathbf{0}, \mathbf{h}),$$

where $\lim_{\mathbf{h}\to\mathbf{0}} \frac{R_2(\mathbf{0},\mathbf{h})}{\|\mathbf{h}\|^2} = 0$. Because f is defined such that $f(\mathbf{h}) = (h_1 + h_2)^2$, we must have that $R_2(\mathbf{0},\mathbf{h}) = 0$; thus, the second-order Taylor formula returns that $f(\mathbf{h}) = (h_1 + h_2)^2$.

1.2 Problem 5

Observe that all first-order and second-order partial derivatives of e^{x+y} are e^{x+y} itself; at $(x_0, y_0) = \mathbf{0}$, these evaluate to 1. We conclude that if $\mathbf{h} = (h_1, h_2)$,

$$f(\mathbf{h}) = f(\mathbf{0}) + \sum_{i=1}^{2} h_{i} \frac{\partial f}{\partial x_{i}} (\mathbf{0}) + \frac{1}{2} \sum_{1 \leq i, j \leq 2} h_{i} h_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (\mathbf{0}) + R_{2}(\mathbf{0}, \mathbf{h})$$

$$= 1 + h_{i} + h_{2} + \frac{1}{2} (h_{1}^{2} + 2h_{1}h_{2} + h_{2}^{2}) + R_{2}(\mathbf{0}, \mathbf{h})$$

$$= \left[\frac{1}{2} h_{1}^{2} + \frac{1}{2} h_{2}^{2} + h_{1} + h_{1}h_{2} + h_{2} + 1 + R_{2}(\mathbf{0}, \mathbf{h}) \right],$$

where $\lim_{\mathbf{h}\to\mathbf{0}} \frac{R_2(\mathbf{0},\mathbf{h})}{\|\mathbf{h}\|^2} = 0$.

1.3 Problem 7

We have that

$$\frac{\partial f}{\partial x} = y \cos(xy) - y \sin(xy),$$

$$\frac{\partial f}{\partial y} = x \cos(xy) - x \sin(xy),$$

$$\frac{\partial^2 f}{\partial x^2} = -y^2 \sin(xy) - y^2 \cos(xy),$$

$$\frac{\partial^2 f}{\partial x \partial y} = \cos(xy) - \sin(xy) - xy \sin(xy) - xy \cos(xy),$$

$$\frac{\partial^2 f}{\partial x \partial y} = -x^2 \sin(xy) - x^2 \cos(xy).$$

At the point $(x_0, y_0) = \mathbf{0}$, these compute to $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 0$ and $\frac{\partial^2 f}{\partial x \partial y} = 1$. We conclude that if $\mathbf{h} = (h_1, h_2)$,

$$f(\mathbf{h}) = f(\mathbf{0}) + \sum_{i=1}^{2} h_{i} \frac{\partial f}{\partial x_{i}}(\mathbf{0}) + \frac{1}{2} \sum_{1 \leq i, j \leq 2} h_{i} h_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{0}) + R_{2}(\mathbf{0}, \mathbf{h})$$

$$= 1 + 0 + \frac{1}{2} (0 + 2h_{1}h_{2} + 0) + R_{2}(\mathbf{0}, \mathbf{h})$$

$$= h_{1}h_{2} + 1 + R_{2}(\mathbf{0}, \mathbf{h}),$$

where $\lim_{\mathbf{h}\to\mathbf{0}} \frac{R_2(\mathbf{0},\mathbf{h})}{\|\mathbf{h}\|^2} = 0$.

1.4 Problem 11

We have that

$$\frac{\partial g}{\partial x} = y \cos(xy) - 6x \ln(y)$$

$$\frac{\partial g}{\partial y} = x \cos(xy) - \frac{3x^2}{y}$$

$$\frac{\partial^2 g}{\partial x^2} = -y^2 \sin(xy) - 6 \ln(y)$$

$$\frac{\partial^2 g}{\partial x \partial y} = -xy \sin(xy) + \cos(xy) - \frac{6x}{y}$$

$$\frac{\partial^2 g}{\partial y^2} = -x^2 \sin(xy) + \frac{3x^2}{y^2}.$$

At the point $(x_0, y_0) = (\frac{\pi}{2}, 1)$, these partial derivatives evaluate to $0, -\frac{3\pi^2}{4}, -1, -\frac{7\pi}{2}$, and $\frac{\pi^2}{2}$ respectively. We conclude that if $\mathbf{x} = (\frac{\pi}{2}, 1)$ and $\mathbf{h} = (h_1, h_2)$,

$$g(\mathbf{x} + \mathbf{h}) = g(\mathbf{x}) + \sum_{i=1}^{2} h_{i} \frac{\partial g}{\partial x_{i}} (\mathbf{x}) + \frac{1}{2} \sum_{1 \leq i, j \leq 2} h_{i} h_{j} \frac{\partial^{2} g}{\partial x_{i} \partial x_{j}} (\mathbf{x}) + R_{2}(\mathbf{x}, \mathbf{h})$$

$$= 1 + 0 - \frac{3\pi^{2}}{4} h_{2} + \frac{1}{2} (-h_{1}^{2} - 7\pi h_{1} h_{2} + \frac{\pi^{2}}{2} h_{2}^{2}) + R_{2}(\mathbf{x}, \mathbf{h})$$

$$= \left[-\frac{1}{2} h_{1}^{2} + \frac{\pi^{2}}{4} h_{2}^{2} - \frac{7\pi}{2} h_{1} h_{2} - \frac{3\pi^{2}}{4} h_{2} + 1 + R_{2}(\mathbf{x}, \mathbf{h}) \right],$$

where $\lim_{\mathbf{h}\to\mathbf{0}} \frac{R_2(\mathbf{x},\mathbf{h})}{\|\mathbf{h}\|^2} = 0.$

1.5 Problem 12

(NOTE: I assume I only need to approximate f(-1, -1) for the functions from Exercises 3, 5, and 7.)

Problem 3: The approximation computes to $(-1-1)^2 = \boxed{4}$.

Problem 5: The approximation computes to $\frac{1}{2} + \frac{1}{2} - 1 + 1 - 1 + 1 = \boxed{1}$

Problem 7: The approximation computes to $1 + 1 = \boxed{2}$.

1.6 Problem 13

Part (a): Let $R_n(x-h)$ be the remainder of the (n-1)-th taylor polynomial of f(x+h)—namely,

$$R_n(x+h) = f(x+h) - \sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!} h^k.$$

Observe that there is some $c \in (x, x + h)$ such that

$$R_n(x+h) = \frac{f^n(c)}{n!}(x+h-c)^n.$$

Let M be the constant such that $|f^{(k)}(x)| < M^k$ for all $k \in \mathbb{Z}_{>0}$ over the interval [c-1, c+1]; thus,

$$\lim_{n \to \infty} |R_n(x-h)| = \lim_{n \to \infty} \frac{|f^n(c)|}{n!} |x+h-c|^n \le \lim_{n \to \infty} \frac{|Mh|^n}{n!}.$$

The right-hand side is a term of the expression $\sum_{n=0}^{\infty} \frac{|Mh|^n}{n!}$, which is convergent and defined to be $e^{|Mh|}$. By the contrapositive of the Divergence Test, we must have that $\lim_{n\to\infty} \frac{|Mh|^n}{n!} = 0$,

so $\lim_{n\to\infty} |R_n(x-h)| = 0$. Then for all $\epsilon > 0$, there exists N such that

$$N < n \implies \left| f(x+h) - \sum_{k=0}^{n-1} \frac{f^{(k)}(t)}{x!} h^k \right| = ||R_n(x-h)| - 0| < \epsilon.$$

We conclude via the definition of a limit that

$$f(x+h) = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k} = \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} h^{k},$$

as required.

Part (b): It is trivial that e^x and $-\frac{1}{x}$ are C^{∞} for x > 0, so their composition $e^{-\frac{1}{x}}$ is C^{∞} for x > 0 — and 0 is clearly C^{∞} for $x \leq 0$. Clearly, all derivatives of f at 0 approaching from the left are zero; it remains to be proven that all derivatives approaching from the right are zero. Define

$$S = \{ p(x) e^{-\frac{1}{x}} \mid p(x) \text{ is a rational function } \},$$

where $\mathcal{R}(\mathbb{R})$ is the set of all polynomials with real-valued coefficients. Observe that for all $p(x) \in \mathcal{P}(\mathbb{R})$, we may repeatedly apply l'Hospital's Rule to deduce that

$$\lim_{x \to \infty} p(x)e^x = \lim_{x \to \infty} \frac{p(x)}{e^{-x}} = \dots = \lim_{x \to \infty} \pm \frac{1}{e^{-x}} = \lim_{x \to \infty} \pm e^x = \pm \infty.$$

The above argument may be formalized by induction. Therefore,

$$\lim_{x \to 0^+} r(x) e^{-\frac{1}{x}} = 0.$$

for all rational functions r. We claim that all derivatives of $e^{\frac{1}{x}}$ lie in S – this is true for the 0-th derivative (namely $e^{\frac{1}{x}}$ itself), and further derivatives may be proven via induction. We conclude that all n-th order derivatives of $e^{\frac{1}{x}}$ lie in S, so their limit approaching x = 0 from above yields 0. $e^{-\frac{1}{x}}$ is therefore C^{∞} .

However, constructing a taylor series of $e^{-\frac{1}{x}}$ at x=-1 yields f(x)=0, which does not attain the positive values of $e^{-\frac{1}{x}}$. We conclude that $e^{-\frac{1}{x}}$ is not analytic.

Part (c): A function $f: \mathbb{R}^n \to \mathbb{R}$ is called an **analytic** function provided that if $\mathbf{h} = (h_1, \dots, h_n)$,

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \frac{1}{1!} \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(\mathbf{x}) + \frac{1}{2!} \sum_{1 \le i, j \le n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j} + \cdots$$

ANSWER: We claim that if for all closed discs $U \subset \mathbb{R}^n$, there exists a constant M such that all n-th order partial derivatives of f at \mathbf{x} are bounded above by a constant M^n for each n, then the right-hand side of this equation converges and equals $f(\mathbf{x} + \mathbf{h})$.

We define the remainder of the nth taylor polynomial as $R_k(\mathbf{x}, \mathbf{h})$:

$$R_k(\mathbf{x}, \mathbf{h}) = f(x+h) - f(\mathbf{x}) - \frac{1}{1!} \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(\mathbf{x}) - \cdots$$
$$- \frac{1}{(k-1)!} \sum_{1 \le i_1, \dots, i_{k-1} \le n} h_{i_1} \cdots h_{i_k} \frac{\partial^{k-1} \partial}{\partial x_{i_1} \dots x_{i_{k-1}}}.$$

As f is C^{∞} , we have that

$$R_k(\mathbf{x}, \mathbf{h}) = \frac{1}{k!} \sum_{1 \le i_1, \dots, i_k \le n} h_{i_1} \cdots h_{i_k} \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} \mathbf{c}_{i_1 \cdots i_k},$$

where $\mathbf{c}_{i_1\cdots i_k}$ lies somewhere on the line joining \mathbf{x} to $\mathbf{x}+h$. Define $h=\max\{h_1,\ldots,h_n\}$, and let M be the constant such that M^n bounds (above) the n-th order partial derivatives of f over the closed disc with radius 1 centered at \mathbf{c} ; thus,

$$\lim_{k \to \infty} |R_k(\mathbf{x}, \mathbf{h})| = \lim_{k \to \infty} \left| \frac{1}{k!} \sum_{1 \le i_1, \dots, i_k \le n} h_{i_1} \cdots h_{i_k} \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} \mathbf{c}_{i_1 \dots i_k} \right|$$

$$\leq \lim_{k \to \infty} \left| \frac{1}{k!} \sum_{1 \le i_1, \dots, i_n \le n} h^k M^k \right|$$

$$= |n^n| \lim_{k \to \infty} \frac{|hM|^k}{k!}.$$

The right-hand side is a term of the expression $\sum_{k=0}^{\infty} \frac{|Mh|^k}{k!}$, which is convergent and defined to be $e^{|Mh|}$. By the contrapositive of the Divergence Test, we must have that $\lim_{k\to\infty} \frac{|Mh|^k}{k!} = 0$, so $\lim_{k\to\infty} R_k(x-h) = 0$. Then for all $\epsilon > 0$, there exists N such that

$$N < k \implies ||R_k(\mathbf{x}, \mathbf{n})| - 0|$$

$$= \left| f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - \dots - \frac{1}{(k-1)!} \sum_{1 \le i_1, \dots, i_{k-1} \le n} h_{i_1} \dots h_{i_k} \frac{\partial^{k-1} \partial}{\partial x_{i_1} \dots x_{i_{k-1}}} (\mathbf{x}) \right|$$

$$< \epsilon$$

We conclude via the definition of a limit that

$$f(\mathbf{x} + \mathbf{h}) = \lim_{k \to \infty} \left(f(\mathbf{x}) + \dots + \frac{1}{(k-1)!} \sum_{1 \le i_1, \dots, i_{k-1} \le n} h_{i_1} \dots h_{i_k} \frac{\partial^{k-1} \partial}{\partial x_{i_1} \dots x_{i_{k-1}}} (\mathbf{x}) \right)$$
$$= f(\mathbf{x}) + \frac{1}{1!} \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i} (\mathbf{x}) + \frac{1}{2!} \sum_{1 \le i, j \le n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j} + \dots,$$

as required.

Part (d): Observe that all higher partial derivatives of e^{x+y} evaluate to 1 at $(x_0, y_0) = (0, 0)$. Then via our work in Part (c), the taylor series at $\mathbf{h} = (h_1, h_2)$ is

$$e^{h_1+h_2} = 1 + \frac{1}{1!} \sum_{i=1}^{2} h_i + \frac{1}{2!} \sum_{1 \le i,j \le 2} h_i h_j + \frac{1}{3!} \sum_{1 \le i,j,k \le 2} h_i h_j h_k + \cdots$$

$$= 1 + \frac{1}{1!} \sum_{i=1}^{2} h_i + \frac{1}{2!} \left(\sum_{i=1}^{2} h_i\right)^2 + \frac{1}{3!} \left(\sum_{i=1}^{2} h_i\right)^2 + \cdots$$

$$= \sum_{i=0}^{\infty} \frac{(h_1 + h_2)^i}{i!}.$$

2 Section 3.3

2.1 Problem 1

The partial derivatives of f are as follows:

$$\begin{aligned} \frac{\partial f}{\partial x} &= 2x + y \\ \frac{\partial f}{\partial y} &= x - 2y \\ \frac{\partial^2 f}{\partial x^2} &= 2 \\ \frac{\partial^2 f}{\partial x \partial y} &= 1 \\ \frac{\partial^2 f}{\partial y^2} &= -2. \end{aligned}$$

The critical points (x_0, y_0) of f satisfy $2x_0 + y_0 = x_0 - 2y_0 = 0$ — the only solution of which is (0,0). At this point,

$$\left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 = -4 - 1 = -5 < 0,$$

so (0,0) is a saddle point of f. The only critical point of f is (0,0), a saddle point of f.

2.2 Problem 4

The partial derivatives of f are as follows:

$$\frac{\partial f}{\partial x} = 2x + 3y$$

$$\frac{\partial f}{\partial y} = 2y + 3x$$

$$\frac{\partial^2 f}{\partial x^2} = 2$$

$$\frac{\partial^2 f}{\partial x \partial y} = 3$$

$$\frac{\partial^2 f}{\partial y^2} = 2.$$

The critical points (x_0, y_0) of f satisfy $2x_0 + 3y_0 = 2y_0 + 3x_0 = 0$ — the only solution of which is (0,0). At this point,

$$\left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 = 4 - 9 = -5 < 0$$

so (0,0) is a saddle point of f. The only critical point of f is (0,0), a saddle point of f.

2.3 Problem 6

The partial derivatives of f are as follows:

$$\frac{\partial f}{\partial x} = 2x - 3y + 5$$

$$\frac{\partial f}{\partial y} = 12y - 3x - 2$$

$$\frac{\partial^2 f}{\partial x^2} = 2$$

$$\frac{\partial^2 f}{\partial x \partial y} = -3$$

$$\frac{\partial^2 f}{\partial y^2} = 12.$$

The only point (x_0, y_0) that satisfies $2x_0 - 3y_0 = -5$ and $-3x_0 + 12y_0 - 2 = 0$ is clearly $(-\frac{18}{5}, -\frac{11}{15})$. At this point,

$$\left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 = 24 - 9 = 15 > 0$$

and $\frac{\partial^2 f}{\partial x^2} = 2 > 0$, so this point is a local minimum of f. The only critical point of f is thus $\left[(-\frac{18}{5}, -\frac{11}{15}), \text{ a local minimum of } f. \right]$

2.4 Problem 9

Observe that (0,0) is a local maximum, as for all $(x,y) \in \mathbb{R}^2$,

$$\cos(x^2 + y^2) \le 1 = \cos(0^2 + 0^2).$$

Similarly, $(0, \sqrt{\pi})$ and $(\sqrt{\frac{\pi}{2}}, \sqrt{\frac{\pi}{2}})$ are local minima, as for all $(x, y) \in \mathbb{R}^2$,

$$cos(x^2 + y^2) \ge -1 = cos\left(\sqrt{\frac{\pi^2}{2}} + \sqrt{\frac{\pi^2}{2}}\right) = cos\left(0^2 + \sqrt{\pi^2}\right).$$

2.5 Problem 17

The partial derivatives of f are as follows:

$$\frac{\partial f}{\partial x} = 24x - 24y$$

$$\frac{\partial y}{\partial y} = 24y^2 - 24x$$

$$\frac{\partial^2 f}{\partial x^2} = 24$$

$$\frac{\partial^2 f}{\partial x \partial y} = -24$$

$$\frac{\partial^2 f}{\partial y^2} = 48y$$

All critical points of f thus satisfy $24x - 24y = 0 = 24y^2 - 24x$, of which the only solutions are clearly (0,0) and (1,1). For (0,0), see that

$$\left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 = 0 - (-24)^2 < 0,$$

so (0,0) is a saddle point. As for (1,1)

$$\left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 = 24(48) - (-24)^2 > 0$$

and $\frac{\partial^2 f}{\partial x^2} > 0$, so the only local extremum of f is (1,1), a local minimum.

2.6 Problem 27

It is indeterminate; without knowing the determinant of H, we cannot know whether \mathbf{x}_0 is degenerate or a saddle point of f.

2.7 Problem 28

Observe that all points on the plane 2x - y + 2z = 20 are of the form

$$(x, y, 10 - x + \frac{1}{2}y)$$

for all $x, y \in \mathbb{R}$. The distance d of any point to the origin is thus a function of x and y: namely,

$$d(x,y) = \sqrt{x^2 + y^2 + \left(10 - x + \frac{1}{2}y\right)^2} = \sqrt{2x^2 + \frac{5}{4}y^2 - 20x - xy + 10y + 100}$$

for all $x, y \in \mathbb{R}$. As this function is nonnegative, it suffices to find the minimum of the square d(x, y). The partial derivatives of the square of d are as follows:

$$\frac{\partial d^2}{\partial x} = 4x - y - 20$$

$$\frac{\partial d^2}{\partial y} = \frac{5}{2}y - x + 10$$

$$\frac{\partial^2 d^2}{\partial x^2} = 4$$

$$\frac{\partial^2 d^2}{\partial x \partial y} = -1$$

$$\frac{\partial^2 d^2}{\partial y^2} = \frac{5}{2}.$$

A critical point (x_0, y_0) of d^2 satisfies $4x_0 - y_0 - 20 = \frac{5}{2}y_0 - x_0 + 10 = 0$ — the only solution of which is clearly $\left(\frac{40}{9}, -\frac{20}{9}\right)$. At this point,

$$\left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 = 4\left(\frac{5}{2}\right) - (-1)^2 > 0$$

and $\frac{\partial^2 d^2}{\partial x^2} > 0$, so this point is a global minimum of d^2 . As d^2 is a continuous function that has no further critical points, we conclude that this point is a *global* minimum of d^2 — and thus, a global minimum of d. We conclude that the point on the plane 2x - y + 2z + 20 nearest the origin is

$$\left(\frac{40}{9}, -\frac{20}{9}, 10 - \frac{40}{9} - \frac{10}{9}\right) = \left[\left(\frac{40}{9}, -\frac{20}{9}, \frac{40}{9}\right)\right].$$

2.8 Problem 30

A rectangular parallelepiped with side lengths x, y, and z has surface area 2x + 2y + 2z and volume xyz. We wish to prove that across all triples a, b, $c \in \mathbb{R}_{>0}$ such that 2ab + 2bc + 2ca equals a fixed real S, the maximum of abc is attained when a = b = c.

Consider all a, b, c > 0 such that 2a + 2b + 2c = S; from the AM-GM Inequality, we have that

$$2\sqrt[3]{a^2b^2c^2} \le \frac{2ab + 2bc + 2ca}{3} = \frac{S}{3},$$

with equality if and only if a = b = c. This rearranges to

$$abc \le \sqrt{\left(\frac{S}{6}\right)^3}.$$

which expresses the maximum of abc as attained biconditionally when a = b = c. We conclude that a rectangular parallelepiped with fixed surface area has maximum volume when its side lengths are equal.

2.9 Problem 52

Note: I used Lagrange Multipliers, which we learned in class the day this assignment was due on the 17th.

Let the two unlabeled sides of the pentagon — or equivalently, the two legs of the isosceles triangle — by z. The triangle inequality necessitates that 2z > y. We thus seek to minimize the area A of the pentagon:

$$A(x, y, z) = xy + \frac{y}{2}\sqrt{z^2 - (\frac{y}{2})^2},$$

under the restriction that the perimeter P is fixed at a real number p:

$$P(x, y, z) = 2x + y + 2z = p.$$

We seek to use Lagrange Mulitpliers. We are given that A attains a maximum; also, for all (x, y, z) such that P(x, y, z) = p, we have that $\nabla P(x, y, z) = (2, 1, 2) \neq \mathbf{0}$. Then for all local minima and maxima of A, there exists a real number λ such that

$$\begin{bmatrix} x + \frac{1}{2}\sqrt{z^2 - \left(\frac{y}{2}\right)^2} - \frac{y^2}{8\sqrt{z^2 - \left(\frac{y}{2}\right)^2}} \\ \frac{yz}{2\sqrt{z^2 - \left(\frac{y}{2}\right)^2}} \end{bmatrix} = \nabla f(x, y, z) = \lambda \nabla g(x, y, z) = \begin{bmatrix} 2\lambda \\ \lambda \\ 2\lambda \end{bmatrix}.$$

We thus find that

$$y = 2\lambda = \frac{yz}{2\sqrt{z^2 - \left(\frac{y}{2}\right)^2}},$$

so
$$\sqrt{z^2 - (\frac{y}{2})^2} = \frac{z}{2}$$
. Thus,

$$\sqrt{z^2 - \lambda^2} = \frac{z}{2} \implies \frac{3z^2}{4} = \lambda^2 \implies z = \frac{2\lambda\sqrt{3}}{3}.$$

Finally, we solve for x:

$$\lambda = x + \frac{1}{2}\sqrt{z^2 - \left(\frac{y}{2}\right)^2} - \frac{y^2}{8\sqrt{z^2 - \left(\frac{y}{2}\right)^2}} = x + \frac{z}{4} - \frac{y^2}{4z} = x + \frac{\lambda\sqrt{3}}{6} - \frac{\lambda\sqrt{3}}{2} = x - \frac{\lambda\sqrt{3}}{3}$$

so $x = \lambda \left(\frac{3+\sqrt{3}}{3} \right)$. Therefore,

$$p = 2x + y + 2z = 2\lambda \left(\frac{3+\sqrt{3}}{3}\right) + 2\lambda + \frac{4\lambda\sqrt{3}}{3} = \lambda(4+2\sqrt{3}),$$

so $\lambda = p\left(\frac{2-\sqrt{3}}{2}\right)$. As we are given that A attains a maximum, it must be achieved at this λ -value, where x, y, and z are

$$\boxed{x = p\left(\frac{3-\sqrt{3}}{6}\right)} = p\left(\frac{2-\sqrt{3}}{2}\right)\left(\frac{3+\sqrt{3}}{3}\right) = \lambda\left(\frac{3+\sqrt{3}}{3}\right),$$

$$\boxed{y = p(2-\sqrt{3})} = 2p\left(\frac{2-\sqrt{3}}{2}\right) = 2\lambda,$$

$$\boxed{z = p\left(\frac{2\sqrt{3}-3}{3}\right)} = \frac{2p\sqrt{3}}{3}\left(\frac{2-\sqrt{3}}{2}\right) = \frac{2\lambda\sqrt{3}}{3}.$$

It is trivial to verify that 2z > y. We conclude that the area we seek is

$$xy + \frac{y}{2}\sqrt{z^2 - \left(\frac{y}{2}\right)^2} = xy + \frac{yz}{4}$$

$$= p^2 \left(\frac{3 - \sqrt{3}}{6}\right) \left(2 - \sqrt{3}\right) + \frac{p^2}{4} \left(2 - \sqrt{3}\right) \left(\frac{2\sqrt{3} - 3}{3}\right)$$

$$= p^2 \left(\frac{9 - 5\sqrt{3}}{6} + \frac{7\sqrt{3} - 12}{12}\right)$$

$$= p^2 \left(\frac{6 - 3\sqrt{3}}{12}\right)$$

$$= p^2 \left(\frac{2 - \sqrt{3}}{4}\right).$$