Topic: Precise definition of the limit

Question: Which of these is the precise definition of the limit?

Answer choices:

- A Let f be a function defined on a closed interval containing c (except possibly at c itself) and let L be a real number. The statement $\lim_{x\to c} f(x) = L$ means that for each $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < x c < \delta$, then $f(x) L < \epsilon$.
- Let f be a function defined on an open interval containing c (except possibly at c itself) and let L be a real number. The statement $\lim_{x\to c} f(x) = L$ means that for each $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x-c| < \delta$, then $|f(x)-L| < \epsilon$.
- C Let f be a function defined on an open interval containing c (except possibly at c itself) and let L be a real number. The statement $\lim_{x\to c} f(x) = L$ means that for each $\epsilon > 0$ there exists a $\delta > 0$ such that if

$$|f(x) - L| < \epsilon$$
, then $0 < |x - c| < \delta$.

Solution: B

The correct statement of the precise definition of the limit is:

Let f be a function defined on an open interval containing c (except possibly at c itself) and let L be a real number. The statement $\lim_{x\to c} f(x) = L$

means that for each $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

Topic: Precise definition of the limit

Question: Use the precise definition of the limit to prove the value of the limit by finding a relationship between ϵ and δ that guarantees the limit exists.

$$\lim_{x \to 2} (x - 1) = 1$$

Answer choices:

$$\mathbf{A} \qquad \delta = \epsilon^2$$

$$\mathsf{B} \qquad \delta = \sqrt{\epsilon}$$

$$\mathsf{C} \qquad \delta = \epsilon$$

$$\mathsf{D} \quad \delta = \frac{\epsilon}{2}$$

Solution: C

To prove the limit equation,

$$\lim_{x \to 2} (x - 1) = 1$$

we need to show that, on some open interval surrounding x=2, for every $\epsilon>0$ there exists a $\delta>0$ such that

$$|(x-1)-1| < \epsilon$$
 whenever $0 < |x-2| < \delta$

Let $\epsilon > 0$ and $0 < |x - 2| < \delta$. We need to find a δ (which will be in terms of ϵ) that will give $|(x - 1) - 1| < \epsilon$. So,

$$|(x-1)-1|<\epsilon$$

$$|x-2| < \epsilon$$

Now if $|x-2| < \epsilon$ and $0 < |x-2| < \delta$, then if $\epsilon > 0$, then $\delta = \epsilon$. Therefore, the limit equation is true.

Topic: Precise definition of the limit

Question: True or false? The precise definition of the limit implies that picking a value of x inside the δ interval will return a resulting value in the ϵ interval.

Answer choices:

A True

B False

Solution: A

According to the epsilon-delta definition of the limit, choosing a value for x between $x - \delta$ and $x + \delta$ will return a function value between $L - \epsilon$ and $L + \epsilon$.

