30 AD A O 4692 CHEMOTHERAPY OF RODENT MALARIA EVALUATION/OF DRUG ACTION AGAINST NORMAL AND RESISTANT STRAINS, INCLUDING EXO-ERYTHROCYTIC STAGES FINAL TECHNICAL REPORT, 31 Oct 75-WALLACE/PETERS MD, DSc Supported by US ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Washington, DC. 20314 3A762759A829 Contract No CDAMD17-76-G-9416 Department of Parasitology Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK Approved for public release; distribution unlimited

405 023

CTIONS. TING FORM				
NUMBER				
enioo covered al Report				
PORT NUMBER				
NUMBER(*) 416 WW				
PROJECT, TASK UMBERS				
12. REPORT DATE December 1976 13. NUMBER OF PAGES 77				
thia repret) ed				
DOWNGRADING				
ACTIVITY ACTIVITY				

Data are provided on the blood schizontocidal action of 8 WRAIR compounds and the tissue schizontocidal activity of a total of 110 WRAIR 8-aminoquinolines plus 29 other compounds. Emphasis is laid on the comparison of a new series of 5-substituted 8-aminoquinolines and comparison has been made between data obtained in our rodent models and reports on work in simian models from other investigators. A good parallel was found with tissue schizontocidal activity.

The administration of mixtures of mefloquine with pyrimethamine, sulphaphenazole or

Aprimaquine has been shown to enhance the development of resistance by <u>P. berghei</u> to the individual components.

Studies have continued on the modes of action of mefloquine, chloroquine and quinine. Mefloquine has been shown to have relatively little effect on the uptake of adenosine. The synergistic action of chloroquine and erythromycin against chloroquine-resistant parasites has been further investigated. The mechanism of this synergism is still obscure. Other work has involved the study of electron transport and cathepsins of rodent malaria parasites.

Α	D			

CHEMOTHERAPY OF RODENT MALARIA EVALUATION OF DRUG ACTION AGAINST NORMAL AND RESISTANT STRAINS, INCLUDING EXO-ERYTHROCYTIC STAGES

FINAL TECHNICAL REPORT

by

WALLACE PETERS, MD, DSc

December 1976

Supported by

US ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Washington, DC. 20314

Contract No. DAMD17-76-G-9416

Department of Parasitology Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK

Approved for public release; distribution unlimited

TABLE OF CONTENTS

			Page
1.	INTRO	DDUCTION	1
2.	CYCL	ICAL PASSAGE OF RODENT MALARIA STRAINS	1
3.	PROD	UCTION OF DRUG-RESISTENT LINES	1
	3.1 3.2	NS type lines of P. berghei Polytherapy in the prevention of drug-resistance	1 2
4.	CHEM	MOTHERAPY STUDIES	3
	4.1	Blood schizontocides	3
		4.1.1 New compounds 4.1.2 Drug combinations	3 3
	4.2 4.3 4.4	, , ,	3 4 5
		4.4.1 Chloroquine and mefloquine4.4.2 Chloroquine and erythromycin4.4.3 Pyrimethamine	5 5 6
5.	PHYS	IOLOGY AND BIOCHEMISTRY	6
	5.1 5.2 5.3	Electron transport of intra-erythrocytic P. berghei Cathepsins of parasitized erythrocytes The effects of PABA on sporogonic development in P. berghei	6 6 7
6.	CON	CLUSIONS AND RECOMMENDATIONS	7
7.	LITER	ATURE CITED	8
8.	PAPE	RS PUBLISHED	9
9.	APPE	NDICES	12

TO THE STATES OF SELECTIVE SELECTION STATES STATES STATES SELECTION SELECTIO

1. INTRODUCTION

では、「大きないでは、これでは、「大きないできない。」というないできない。 「大きないできない。」というないできない。 「大きないできないできない。」というないできない。 In this Report we're aw work carried out between the termination of our last contract on 31 October 1975 through 31 December, 1976. Details of this work have been provided in Quarterly Reports Numbers 1 through 3.

The main emphasis of this year's studies has been the evaluation in depth of the causal prophylactic potential of new WR compounds and a comparison of the data obtained in our rodent malaria screen with that of Dr. Leon Schmidt's rhesus-P. cynomolgi system.

Another major item of our programme has been the follow-up of studies to evaluate the effect of polytherapy in reducing the rate at which P. berghei develops resistance to mefloquine. Details of this study are now ready for publication and summaries are included in the following pages.

Further studies have been made on the effect of several compounds against the sporogonic stages of rodent malaria, and on the fundamental biochemical processes of the blood stages, especially glycolysis.

2. CYCLICAL PASSAGE OF RODENT MALARIA STRAINS

We have continued to rely on the <u>P. yoelii nigeriensis-Anopheles stephensi</u> combination for the supply of infected mosquitoes for chemotherapy investigations. A temporary falloff in occyst development was finally traced down to fluctuations in the temperature of the insectary due to a defective thermostat. Replacement of this has brought our cyclical transmission back to normal levels.

3. PRODUCTION OF DRUG-RESISTANT LINES

3.1 NS-type lines of P. berghei

After several years of research and soul-seeking we have been able to reach the conclusion that several strains of P. berghei from highland areas of the Katanga region of Zaire are in fact a mixture of two species. The importance of this will be appreciated when it is pointed out that one of the mixture, P. berghei sensu stricto, is chloroquine sensitive, and the other which we call "P. yoelii ssp." is innately chloroquine-resistant. These conclusions must influence our interpretation of all work carried out up to now on isolates of rodent malaria from this part of Africa. The following is the summary of a paper now submitted for publication on this topic².

'Under chloroquine selection pressure a number of chloroquine-resistant lines of rodent malaria have been selected from "strains" of "P. berghei" originating in the Katanga highlands. They are called the "NS lines". No resistant parasite was obtained from a clone under drug pressure, nor from two other highland P. berghei and a strain of P. v. vinckei.

The isoenzyme typing of these parasites indicates that the drug-resistant NS parasites are altied to P. yoelii rather than P. berghei, but that they can be distinguished from all but the subspecies P. y. nigeriensis, sharing with this GPL2, 6PGD 4, LDH11 and GDH 2. The resistant organism is therefore labelled P. yoelii ssp.

The budyant density of all P. berghei and P. yoelii subspecies examined is identical (1.683 g/ml). DNA-DNA hybridisation studies have shown that P. yoelii ssp. differs significantly not only from P. berghei, but also from P. y. yoelii and P. y. nigeriensis in terms of the base sequence homologies of these parasites.

Cross-immunity experiments indicate that <u>P. yoelii</u> ssp. differs not only from <u>P. berghei</u>, but also from <u>P. y. nigeriensis</u> in the absence of reciprocal cross-protection, although <u>P. berghei</u> itself (as well as the mixtures containing <u>P. yoelii</u> ssp.) provide a broad and relatively non-specific protection against the other parasites.

Evidence is presented to refute the suggestion that the "NS lines" have become accidentally mixed with P. berghei in the laboratory. On the contrary, the evidence indicates that the NS lines are not P. y. nigeriensis but a new subspecies in the P. yoelii complex. How such mixtures of P. berghei and P. yoelii ssp. have survived through many years and countless syringe passages in the laboratory is unknown, but this is not an isolated instance in the history of the rodent malarias. The existence of P. yoelii ssp. may account for a number of previously unaccountable observations in the laboratory such as some of the apparent "variability" of P. berghei "strains" under a variety of experimental conditions.

The importance of these findings is discussed in relation to the zoogeography of the rodent malarias.'

3.2 Polytherapy in the prevention of drug-resistance

We have already reported the relative ease with which resistance can be developed to mefloquine, and preliminary data on our attempts to decrease the rate at which this resistance develops through the use of drug mixtures. Using a relapse technique resistance of <u>P. berghei</u> N strain to mefloquine can be developed slowly (Fig. 1), but the progress is more rapid in the chloroquine-resistant NS lines. Mefloquine resistance in all these lines is very unstable in the absence of drug selection pressure (Fig. 2).

Resistance develops also when the N strain is submitted to slowly increasing mefloquine dosage in consecutive passages (Fig. 3), the resulting parasites having a similar morphology at light microscope level to chloroquine-resistant P. berghei RC line parasites. Like the latter they occupy polychromatophilic red blood cells almost exclusively.

When the parasites are exposed to mixtures of mefloquine with pyrimethamine, sulphaphenazole or primaquine, resistance to each component of the mixtures develops more slowly than to the individual components used alone (Figs. 4 to 6).

It is strongly recommended that mefloquine should only be deployed for the prevention of treatment of malaria in man caused by chloroquine-resistant P. falciparum. For large-scale use mefloquine should not be employed until a second antimalarial has been identified that will minimise the risk of parasites becoming resistant to this potentially valuable new compound.

A full report on this work 'as been submitted for publication3.

4. CHEMOTHERAPY STUDIES

4.1 Blood schizontocides

4.1.1 New compounds

The evaluation of new compounds for blood schizontocidal activity has been restricted to some 8 compounds on which data were provided in our 3rd Quarterly Report. Three compounds showed good activity against the drug-sensitive N strain of P. berghei, namely WR 219,930, 194,965, and 225,449, the last two being somewhat more effective po than sc. No studies were made in drug-resistant lines with these compounds.

4.1.2 Drug combinations

The main purpose of our drug combination work this year was to determine whether those combinations with metloquine that we have shown to reduce the rate of resistance development possessed additive or even potentiating properties. The details were given in our 3rd Quarterly Report and are to be published⁴.

The data summarised in Fig. 7 indicate that there is certainly no potentiation between mefloquine and primaquine, or mefloquine and sulphaphenazole. There is a slight indication of potentiation between mefloquine and pyrimethamine but possibly only of the order that could be anticipated if the two compounds influence each other's pharmacokinetics in the host.

4 2 Causal prophylaxis- the value of the rodent screen

The greater part of our work has been devoted to examining the causal prophylactic potential of new WR compounds in our rodent malaria model. We have examined altogether some 110 WRAIR 8-aminoquinolines plus 5 from other sources, 6 naphthyridines and 18 miscellaneous compounds that are covered in the present report. Other miscellaneous compounds have been dealt with in previous Quarterly and Final Reports over the years.

We have presented these data in tabular form (Tables 1 through 14) and in these we include our own interpretation of Minimum Fully Curative Doses (MCFD) presented in Schmidt's Final Report of 1976. The figures we give for the MCFD values take into account dose levels at which cure was obtained only in some animals but not in all treated at any particular level, and the values are converted to uM base/kg. In our rodent model animals were routinely treated on a single occasion, by the sc route and it is only recently that we have started to use also the oral route. For this reason there are still many blanks in Tables 1 through 14 that we will be filling in on the basis of ongoing studies. This makes a direct comparison of the 145 compounds that both we and Schmidt have examined difficult at the present time. As we have pointed out previously it is, in a way, surprising that there should be any correlation between our data. Schmidt uses a different parasite, different host, different route of administration and different dosage schedule from ourselves. Nevertheless on the basis of the primaquine indices as we have calculated them so far we find a remarkably good correlation between our data in the majority of the 8-aminoquinolines series.

There is however one important area in which we differ considerably and that is the area represented by poorly-soluble and (probably) poorly orally absorbable compounds such as menoctone (WR 49,808) and WR 226,626. This type of compound we believe to be extremely interesting since those members that we have examined have proved to possess not only tissue schizontocidal properties but also good activity against both drug-sensitive and drug-resistant blood stages of P. berghei. In this sense we believe that the rodent malaria screen offers advantages over the rhesus-P. cynomolgi screen. While appreciating the great value of the simian model we do feel that many important leads may be missed if total reliance is placed on this and that the rodent screen has a most valuable contribution to make as we have indicated elsewhere⁵.

Data on compounds still receiving preliminary screening are presented in Table 15 through 38, while complèted sheets not yet forwarded to WRAIR form Tables 39 through 53.

4.3 Sustained release of drugs

The work on the sustained release of antimalarials from polydimethylsiloxane capsules reported in the 3rd Quarterly Report 1976 (2.4) has been continued and expanded. To date pyrimethamine filled capsules having a wall thickness of 0.63 mm and an internal surface area of 105 sq. mm. have afforded complete protection to mice against P. berghei (N strain) challenge for a period of 102 days. Capsules with an internal surface area of approximately 25 sq. mm. gave mice a survival time of between 55 and 65 days though all mice had patent parasitaemias from approximately day+38 onwards. Very similar results were obtained with capsules having an internal surface area of approximately 50 sq. mm.

No antimalarial effect was observed with encapsulated cycloguanil, WR 99209 and WR 99210. Promising preliminary results have been obtained with another cycloguanil analogue and menoctone and these compounds are being studied in greater detail.

Current experiments are designed to utilise drug capsules prepared by mixing drug and pre-vulcanised silastic as described by Fu et al. o and drug incorporated into biodegradable polymers.

4.4 Mode of drug action

4.4.1 Chloroquine and mefloquine

The method by which chloroquine kills the malaria parasite is still not known. Its short-term effect in causing the clumping of haemozoin has been investigated in considerable depth, but haemozoin clumping itself does not kill the parasite. We are therefore investigating the time at which the parasite dies after treatment with chloroquine and the way in which the action of mefloquine differs from that of chloroquine.

The clumping of malaria pigment by chloroquine (10⁻⁶M) is complete within 80 minutes but there is no effect within this time on growth of the parasite, as measured by the incorporation of radio-active adenosine. Six hours after treatment of P. berghei-infected mice with chloroquine (60 mg/kg) incorporation of adenosine was reduced by about 25%, but after 12 hours the synthesis of nucleic acids had fallen sharply. These results suggest that P. berghei dies only after about 12 hours exposure to chloroquine and closely parallel those obtained by Davies and Howells (unpublished) in experiments on the viability of the parasite after varying times of exposure in vivo to chloroquine. Radioactive chloroquine taken up by P. berghei parasitized cells maintains its maximum intracellular concentration for at least three hours in vitro. It seems that the clumping of the parasite is unrelated to the death of the parasite.

The effect of mefloquine on the erythrocytic stages of P. berghei has been reexamined at the light and electron microscope levels. The most obvious effects of the compound were observed in the haemozoin vesicles of the parasite, with the ultrastructural changes being broadly similar to those described in P. berghei treated with WR 122455 and quinine? Within 3 hours of exposure to a single subcutaneous dose of 60 mgm/kg primary pigment clumps are formed, but not autophago somes. With longer periods of exposure to the compound pigment grains became increasingly finer and electron translucent, with only poorly defined haemozoin grains being found in trophozoites 24 hours after treatment. These observations amplify the very slow plasmodicidal action of this compound and suggest that the drug is not solubilizing haemozoin, as was suggested for WR 122455 and quinine by Davies et al. 7 but interferes with the catabolism of haemoglobin and/or the formation of haemozoin. Mefloquine (10⁻⁵M) only slightly reduced the incorporation of adenosine by parasitized cells in one hour. A detailed study is proceeding.

4.4.2 Chloroquine and erythromycin

The synergistic action of erythromycin and chloroquine on chloroquine-resistant parasites does not appear to be due to an increased uptake of chloroquine in the presence of the antibiotic. In vitro, slightly more chloroquine was taken up by RC strain P. berghei in the presence of erythromycin but treatment of infected mice with erythromycin before measurement of chloroquine uptake in vitro, dramatically reduced the uptake of chloroquine.

No obvious effects on the ultrastructure of P. berghei (N strain) were observed following treatment with erythromycin. Studies are in progress on the effects of chloroquine and erythromycin, alone and in combination, on the RC strain P. berghei.

4.4.3 Pyrimethamine

The effects of pyrimethamine on the crythrocytic stages of P. berghei have been examined at the electron microscope level. These effects were described in the 3rd Quarterly Report of 1976.

5. PHYSIOLOGY AND BIOCHEMISTRY

5.1 Electron transport of intra-erythrocytic P. berghei

P. berghei appears to depend for energy production on a form of electron transport which differs from that of the host. It therefore provides a potential target for chemotherapeutic attack. Conventional inhibitors of electron transport and uncouplers not only inhibit chloroquine-induced pigment clumping but also reduce the incorporation of adenosine into the parasites' nucleic acids (data given in the 3rd Quarterly Report 1976). The donor of electrons to the chain is not known.

Preliminary results have shown that treatment of the parasitized erythrocytes with menadione (10⁻⁴M) or n-heptyl-4-hydroxyquinoline-N-oxide (10⁻⁵M) reduced only slightly the utilization of glucose and the production of lactate by parasitized cells in vitro. This suggests that glucose metabolism may not be tightly linked to electron transport.

5.2 Cathepsins of parasitized erythrocytes

Our failure to isolate from P. berghei-parasitized cells a cathepsin D which was indisputably of parasite origin, and the presence of parasitized cells of a cathepsin D indistinguishable from that of mouse reticulocytes, prompted us to investigate the relationship between the number of parasites and the cathepsin activity of parasitized mouse red cells. Although results were somewhat variable (Table 54), there was little indication of an increase in catheptic activity as the parasitaemia rose. Instead, the apparent activity per parasitized cell fell, although the total activity for all cells remained approximately constant. This suggests that in the conditions used, little of the measured catheptic activity was due to the parasites. It is therefore probable that the parasites do not contain cathepsin D, and that other cathepsins must be present.

5.3 The effects of PABA on sporagonic development in P. berghei

As outlined in the 3rd Quarterly Report of 1976 (2.3.4) these studies were initiated to attempt to obtain results more statistically significant than those obtained by Ramkaran? Initially, difficulties were encountered in the mosquito colony during our attempts to repeat this work. Abnormally high mortality rates and low infection rates in the mosquitoes were caused by excessive fluctuations of temperature and humidity in the insectaries. Examination of samples of the mosquito populations at the electron microscope level has not revealed the presence of concomitant, viral or microbial infections which might contribute to the vagaries in the malarial infections.

In recent experiments acceptable infection rates have been obtained in the mosquitoes but variations in the oodyst numbers within experimental batches are so great as to preclude the obtention of statistically significant results.

6. CONCLUSIONS AND RECOMMENDATIONS

The additional information gathered from our rodent causal prophylaxis studies has confirmed our belief that this is a valid model for tissue schizontocidal action. Taking into account the differences between our technique and that of Dr. L. H. Schmidt, there is a remarkably good parallel in our joint findings. The use of parenteral route in our rodent model will, we believe, permit us to detect activity in certain chemical groups (e.g. menoctone) the activity of which would be missed in the simian model.

During the coming year we will extend these observations and consolidate our data using both oral and parenteral routes of drug administration.

Extension of our long-term studies on drug:combinations has provided useful leads for the possible protection of such:promising new compounds as mefloquine. This work will be continued.

The mode of action of the antimalarials is still being investigated and fundamental gaps in our knowledge of parasite biochemistry are being exposed by our exploration of the drugs. Further work on these matters with special reference to mefloquine will be carried out during the coming year.

Studies will also be extended on the development of slow-release preparations of selected drugs.

7. LITERATURE CITED

- Schmidt, L. H. (1976). The use of <u>Autus trivirgatus</u> and <u>Macaca mulatta</u> as tools for studies on prevention and therapy of infections with <u>Plasmodium falciparum</u> and <u>Plasmodium vivax</u>.

 Final Progress Réport to US Army Médical Research and Dévelopment Command.
- Peters, W., Chance, M. L., Lissner, R., Momen, H. and Warhurst, D. C. (1977). The chemotherapy of rodent malaria, XXX. The enigmas of the NS lines of P. berghei. Ann. trop. Med. Parasit. (in press).
- Peters, W., Portus, J. P. and Robinson, B. L. (1977). The chemotherapy of rodent malaria, XXVIII. The development of resistance to mefloquine (WR 142,490). Ann. trop. Med. Parasit. (in press)
- Peters, W., Howells, R. E., Portus, J. P., Robinson, B. L., Thomas, S. and Warhurst, D. C. (1977). The chemotherapy of rodent malaria, XXVII. Studies on mefloquine (WR 142,490). <u>Ann. trop. Med. Parasit.</u> (in press).
- Peters, W., Davies, E. E. and Robinson, B. L. (1975). The chemotherapy of rodent malaria, XXIII. Causal prophylaxis, part II: Practical experience with Plasmodium yoelii nigeriensis in drug screening.

 Ann. trop. Med. Parasit., 69, 311-328. (Cont. No. 1325).
- Fu, J. C., Kale, A. K. and Móyer, D. L. (1973). Drug-incorporated silicone discs as sustained release capsules. 1. Chloroquine diphosphate. J. Biomed. Mater. Res., 7, 71-78.
- Davies, E. E., Warhurst, D. C. and Peters, W. (1975). The chemotherapy of rodent malaria, XXI. Action of quinine and WR 122,455 (a 9-phenanthrenemethanol) on the fine structure of Plasmodium berghei in mouse blood. Ann. trop. Med. Parasit., 69, 147-153. (Cont. No. 1286)
- Homewood, C. A., Warhurst, D. C., Peters, W. and Baggaley, V. C. (1972). Electron transport in intraerythrocytic <u>Plasmodium berghei</u>. <u>Proc. Helminth. Soc., Wash.</u>, 39 (Special Issue), 382–386. (Cont. No. 1135).
- 9 Ramkaran, A. E. (1972). The influence of chemical agents on the transmission of rodent malarias. Ph.D. thesis: Liverpool.

8. PAPERS PUBLISHED

- Homewood, C. A., Neame, K. D. and Momen, H. (1975). Permeability of erythrocytes from mice infected with Babesia rodhaini.

 Ann. trop. Med. Parasit., 69, 429-434. Cont. No. 1342
- Howells, R. E. (1975). Host-parasite relationships in malaria.

 Paper presented at First Meeting of the Chemotherapy of Malaria
 Task Force, WHO, Geneva: November 1975. TDR/CM/WP/75.9
- Merkli, B. and Peters, W. (1976). A comparison of two different methods for the selection of primaquine resistance in <u>P. b. berghei</u>.

 Ann. trop. Med. Parasit., 70, 473-474.
- Momen, H. (1976). Carbohydrate metabolism of some apicomplexan infections in mouse erythrocytes. <u>Parasitology</u>, 73, (2), xvi.

 Abstract presented at British Society of Parasitology Meeting, April 1976
- Momen, H. (1975). Enzyme variation in rodent <u>Babésia</u>. Trans. R. Soc. trop. Med. Hyg., 69, 438.
- Momen, H. and Chance, M. L. (1976). DNA buoyant densities of rodent piroplasms.

 Trans. R. Soc. trop. Med. Hyg., 70, 13.
- Momen, H., Homewood, C. A. and Neame, K. D. (1975). Effect of Anthemosoma garnhami infection on the permeability of the mouse erythrocyte. Ann. trop. Med. Parasit., 69, 519-520.
- Moore, G. A. and Homewood, C. A. (1975). Observations on malarial and schistosomal pigment.

 Trans. R. Soc. trop. Med. Hyg., 69, 10.
- Neame, K. D. and Homewood, C. A. (1975). Alterations in the permeability of mouse erythrocytes infected with the malaria parasite, <u>Plasmodium berghei</u>. Int. J. Parasit., 5, 537-540.
- Peters, W. (1975). Lacunae in knowledge on the mode of action of antimalarials. Paper presented at First Meesing of Chemotherapy of Malaria Task Force, WHO, Geneva, November 1975. TDR/CM/WP/75.10
- Peters, W. (1975). Guest editorial on malaria and drug resistance. J. trop. Med. Hyg., August, 167-170.
- Peters, W. (1976). The role of university research departments in the development of antiparasitic chemotherapy.

 Paper presented at 9th International Congress of Chemotherapy, London 1975.

 In: "Chemotherapy Progress", Plenum Press: London, Vol. VI, 29-34.

- Peters, W. and Porter, M. (1976). The chemotherapy of rodent malaria, XXVI. The potential value of WR 122,455 (a 9-phenanthrene-methanol) against drug-resistant malaria parasites.

 Ann. trop. Med. Parasit., 70, 271-281. Cont. No. 1384
- Porter, M. and Peters, W. (1976). The chemotherapy of rodent malaria, XXV.

 Antimalarial activity of WR 122,455 (a:9 phenanthrene-methanol)

 in vivo and in vitro.

 Ann. trop. Med. Parasit., 70, 259-270 Cont. No. 1379.
- Warhurst, D. C. and Thomas, S. C. (1975). Pharmacology of the malaria parasite. A study of dose-response relationships in chloroquine-induced autophagic vacuole formation in <u>Plasmodium berghéi</u>.

 Biochem. Pharmacol., 24, 2047-2056. Cont. No. 1337
- Warhurst, D. C. and Thomas, S. C. (1975). Localisation of mepacrine in P. berghei and P. falciparum by fluorescence microscopy.

 Ann. trop. Med. Parasit., 69, 417-420.
- Warhurst, D. C. and Thomas, S. C. (1975). Pharmacology of <u>Plasmodium berghei</u>.

 <u>Trans. R. Soc. trop. Med. Hyg.</u>, 69, 428.
- Warhurst, D. C., Robinson, B. L. and Peters, W. (1976). The chemotherapy of rodent malaria, XXIV. The blood schizontocidal action of erythromycin upon P. berghei.

 Ann. trop. Med. Parasit., 70, 253-258 Cont. No. 1376

Papers in press

Homewood, C. A. (1977). Transport of carbohydrates by malaria parasites.

Carbohydrate metabolism of malaria parasites.

Papers presented at USAID/WHO Workshop on the Biology of the Malaria Parasite, New York 1977.

ورمطان كالمجلسين كيام والمراج والمراج المدوقة فيسراناه فالمدام وشطاكم لما يافط موامل والمدوم فياف لماده والمناطقين والمراجعة و

Want Sie and Brand Land State of the

- Peters, W. (1977). The role of chemotherapy in the containment of malaria, with special reference to drug resistance. Paper presented at First National Congress of Parasitology, India, 1977.
- Peters, W. and Howells, R. E. (1977). Drugs, rodents and malaria.

 In: "Malaria Parasités of Rodents" (Éds. Killick-Kendrick, R. and Peters, W.) Academic Press.
- Peters, W., Portus, J. and Robinson, B. (1977). The chemotherapy of rodent malaria, XXVIII. The development of resistance to mefloquine (WR 142,490).

 <u>Ann. trop. Med. Parasit.</u>
- Peters, W., Chance, M. L., Lissner, R., Momen, H. and Warhurst, D. C. (1977). The chemotherapy of rodent malaria, XXX. The enigmas of the NS lines of P. berghei.

 Ann. trop. Med. Parasit.

- Peters, W., Howells, R. E., Portus, J., Robinson, B. L., Thomas, S. and Warhurst, D. C. (1977). The chemotherapy of rodent malaria, XXVII.

 Studies on mefloquine (WR142,490).

 Ann. trop. Med. Parasit.,
- Warhurst, D. C. and Thomas, S. C. (1977). The chemotherapy of rodent malaria, XXXI. The effect of some metabolic inhibitors upon chloroquine-induced pigment clumping (CIPC) in <u>Plasmodium berghei</u>.

 <u>Ann. trop. Med. Pcrasit</u>.

Papers in preparation

- Chance, M. L., Momen, H. and Warhurst, D. C. (1977). The chemotherapy of rodent malaria, XXIX. DNA of rodent malaria parasites.

 Ann. tròp. Med. Faràsit.
- Peters, W. and Ramkaran, A. E. (1977). The chemotherapy of rodent malaria, XXXII. The influence of para-aminobenzoic acid on the transmission of Plasmodium yoelii and P. berghei by Anopheles stephensi.

 Ann. trop. Med. Parasit.

9 APPENDICES

Tables 1 through 14

The causal prophylactic potentia! of new Walter Reed compounds in rodent malaria model.

Included are results of 110 Walter Reed 8-aminoquinolines plus 5 from other sources, 6-naphthyridines and 18 miscellaneous compounds. These data include an interpretation of minimum fully curative dosage (MFCD) presented in Schmidt's Final Report 1976.

Tables 15 through 38

The results of preliminary screening of compounds in causal prophylactic activity in the rodent screen.

Tables 39 through 53 Summary of data from causal prophylactic test in P. y. nigeriensis

Table 54 The relationship between parasitaemia and catheptic activity in P. berghéi-infected mouse érythrocytes

Figure 1 A comparison of the rate of acquisition of resistance to mefloquine by the chloroquine-sensitive P. berghei N strain and the NS line which has a low level of resistance to chloroquine.

The acquisition of resistance to mefloquine by
P. berghei NS line passaged under drug pressure
(mefloquine 60 mg/kg sc at time of each passage),
and its reversion to sensitivity on the release of
drug selection pressure.

Rate of acquisition by <u>P. berghei</u> N strain of resistance to mefloquine, pyrimethamine and sulphaphenazole when the drugs are used alone.

Figure 4 Influence of combining mefloquine with pyrimethamine on the rate of acquisition of resistance to each drug by P. berghei in consecutive passages.

Figure 5 Influence of combining mefloquine with sulphaphenazole on the rate of acquisition of resistance to each drug by P. berghei N strain in consecutive passages.

Figure 6 Influence of combining mefloquine with primaquine on the rate of acquisition of resistance to each drug by P. berghei in consecutive passages.

Figure 7

Blood schizontocidal action of drug mixtures against P. berghei N strain in the "4-day test".

	8-aminoqu	Jinoiines	Prima	quine derivatives		(a) variations i	n Ij∠	2, 3, 4 positions		
IV. No.	WR No.	BN No.	µM base/mg	s.c.	D' 1	p.o.	<u> </u>		Comments	
, , , , , , , , , , , , , , , , , , , 	ļ'.		1	M.F.E.D.	P.I.	M.F.E.D.	P.1.	(toxicity, pro	liminary	
370	2975E19	AG66475	2.2	66-132	1.0	66-132	1.0	Primaquine		
269 272 377	5990AC	BG60018 AG99266 AG99266	2.1	Inactive at MTD Inactive at MTD Inactive at MTD	-	63-126	1.1	MTD sc 63		
289 }	182234AA 182234AD	•	2.9 2.8	8.7-39 28-84	3.3 1.8	, ,	, , ,	, .		
322 }	.211814AB	BE12905	2.9		2.1	<8.7° >	11.4		•	
273 373}	181023AE 181023AG		2.1 2.1	63-210 63-210	0.7 0.7	21-63*	2.4	•	•	
291 402	210550AA 228002AA		2.4 1.9	72-240 <5.7	0.6 7.4	>MTD		MTD po 171.	,	
387) 451)	219874AA	BE79802 ZN42821	2.5	[9.8 0.4	, •	•			
452 302 404	215733AA 208442AA 228335AA		2.5 2.2 2.0	Inactive at 250 66-132 20-60	1.0 2.5	Inactive at MTD	≟ >1 .∕7	MTD po 75		
268 } 280 }	183489AD 183489AE	BD56671	2.5 2.5	Inactive at 1875	- 0.05	•				
323 ⁻	214703AA	BE15040	2.0	200-600	.25				* -	

(daily)

(daily mg/kg po)

TABLE 1

eta.	s.c.	p.o.		Comments	Schmidt data		
se/mg	M.F.E.D.	P.1.	M.F.E.D.	P.1.	(toxicity, preliminary data, etc.)	M.F.C.D.	ζ P.I.
2.2	66-132	1,0	66-132	1.0	Primaquine	L.I	10
₹ 2.1 \$	Inactive at MTD inactive at MTD Inactive at MTD		63-126	1.1.	MTD sc 63	1.05-2.1	0.5-1.04
2.9 2.8	8.7-39 28-84	3.3 1.8	· · · · ·			7.3-14.5	0.08-0.15
2.9		52.1 26.0	<8.7∗ >	11.4	·	9.7	0.11
2.1 2.1	63 -2 10 63 -2 10	0.7	21-63*	2:4		0.5-1.1	1.1-2.1
2.4 19	72-240 <5.7 >	0.6 17.4	>MTD		ر MTD po 171	2.4 na	0.45
2.5		19.8 <0.4		, ·	,	} 1.25	0.9
2.5 2.2 2.0	Inactive at 250 66-132 20-60	1.0 2.5	Inactive at MTD	<i>-</i> >1 .7	MTD po 75	0.63-1.25 1.6-3.2	0.9-1.7 0.3-0.7
2.5 2.5	Inactive at 1875 1875-2500	- 0.05			•	2.5-5.0	0.2-0.4
2 :0	200-600	0.25		·		2Ø	

G	R	Ō	Ĺ	JΡ

l (a) continued

				s.c.		p.o.		Comments
LIV. No.	WR No.	BN No.	µM base/mg	. M.F.E.D. P	.1.	M.F.E.D.	P.I.	(toxicity, preliminary do
1361	216893AA		1.9	>570 <0	.2	> 200 <	: 0.5	
1472	229427ÅA	/	2.0		.0	- 200 à		<u>.</u> د
1355	219382AA 219783AA		1.7	Inactive at 1020	_	•		
1356	219783AA 219784AA	1	1.8		0.7			
1357 1259	199507AB	1 .	1.9	> MTD	-	• • •		MTD sc 57
1411	225374AA		2.2	>MTD	-	<66* >	1.5	MTD sc 6.6
1305] 1448]	211 <i>5</i> 32AA	1	1.9	> 570 <	3	Inactive at 190	-	Residual activity
1307 1382 1470	182232AC 216100AA 224097AA	1	2.5 1.7 2.0	>750 <1 >170 < >200* <	0.6	>200*	0.5	Residual activity
1345 \ 1381 \	215295AA	BE16378	1.6	Inactive at 480 Inactive at 480	· .			
1438 1384 1400	225448 218676AA 228000AA	BG37402 BE55820 BG58367	1.9 2.4 2.2	<57* > 24-72 > MTD	1.7 2.1		1.7	MTD sc 66
1138 1432	106147AD	A\ 77897	} 2.2	1	2.3 0.7	<66* ≥	1.5	
ा 383 ं	217124AA	BE43759	1.8	54-108	1.2			

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

Pi = pri

: ::::::::::::::::::::::::::::::::::::	s.c.	p.o.	Comments	Schmidt o	lata 🗼
/mg	M.F.E.D. P.I.	M.F.E.D. P.I.	(tóxicity, preliminary data, etc.)	M.F.C.D.	P.I.
7. Ď:	>570 <0.2 nactive at 200* -	>200 ≰0.5	·	1.9Ø	-
	63-126 1.0	d -		na	·\ .
	Inactive at 1020 -			na	
3. 3. 3.	108≃180 0.7 > MTD - > MTD -	<66* >1.5	MTD sc 57 MTD sc 6.6	na 19Ø. na	
· ·	> 570 < 0.2	Inactive at 190 -	Residual activity	0.48-0.95	1.2-2.
j. 7)	>750 <0.1 >170 <0.6 >200* <0.5	>200* <0.5	Residual activity	1.9~2.5 0.43-0.85 0.5-1.0	0.4-0. 1.3-2. 1.1-2.
).).	Inactive at 480 Inactive at 480		,	0.4-0.8	1.4-2.
	<57* >1.7 24-72 2.1 >MTD -	<57* >1.7 <69* >1.4	MTD sc 66	0.23-0.48 2.4Ø 24tox	2.3-4.
), . :	22-66 2.3 66-220* 0.7	<66* >1.5		3.3	0.3
:	54-108 1.2		_	0.9	1.2
		,	•		

tive dose

MFCD = minimum fully curative dose (daily mg/kg po)

PI = primaquine index

GROUP

I (à) continued

<u> </u>		·		 		·		e^
LIV. No.	WR No.	BN No.	µM base/mg	s.c.	P. I.	p.o. M.F.E.D.	P.1.	Comments (toxicity, preliminary d
1386	217154AA	BE67204	2.0		1.1			All respectives
1267 1435	205439AA	BD54195	1.8		7.5	5.4 - 18* :	8.5	
1053} 1316}	F 142		2.2	Inactive at MTD		•		MTD sc 220
1056	1 <i>57</i> 835	AW23379	2.2	1320-2200	0.06			Residual activity
1417 1446] 1414]		BG70756 BG63664	2.1 2.1 · 2.3	<63*	4.7 1.6 4.3		1.6	LD ₁₀₀ po < 210 LD ₆₆ sc/po∼69; LD ₁₀
1445∫ 1407 1476 1454			2.3 2.0 2.4 2.0	Inactive at 240	1.7	<69 60-200 * <72 *	2.2	100
	· · · · · · · · · · · · · · · · · · ·	. ,			٠,	.:		
· · ·		-	٠.			•		
•	•							
; ; ;		,	,			,		

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = prim

TABLE 3

, 			····		•		
Linco /ma	s.c.		p.o.		Comments	Schmidt c	ata .
base/mg	. M.F.E.D.	P.i.	M.F.E.D.	P.1.	(toxicity, preliminary data, etc.)	M.F.C.D.	P.1.
2. 0	60-120	1.1	,			1-2	0.6-1.1
1.8	1.8-5.4 54-180*	27.5 1.0	5.4-18*	8.5		1.8	6. 0
2.2	Inactive at MTD Inactive at MTD		:		MŤĎ sč 220	na .	
2.2	1320-2200	0.06			Residual activity	na	
2.1 2.1	l .	-4.7 -1.6		1.6	LD ₁₀₀ po < 210	}	,
2.3 2.3	>23	4.3	<69	>1.4	LD ₆₆ sc/po~69; LD ₁₀₀ sc/po<230 LD ₁₀₀ sc < 69; LD ₁₀₀ po < 230	}	
2.0 2.4 2.0	Inactive at 240	-1.7 -1.7	60-200 * <72 *	2.2 >1.4		na na 0.25-1.0	1.1-4.4
and the second second		,	.;				,
			•				
	Trian y				•	-	
		3		<u>.</u>			

ctive dose

MFCD = minimum fully curative dose (daily mg/kg po)

PI = primaquine index

GROUP

8-aminoquinolines | Prim

Primaquine derivatives. (b) variations on terminal amino of side chai

1 1/2	No.	WR No.	BN No.	µM base/mg	s,c.		p.o.	·	Comments
LIV.	140.	VVK 140.	DIA NO.	pivi base/ing	. M.F.E.D.	P.1.	M.F.E.D.	P.1.	(toxicity, preliminary da
119 120		189294AB 188303AA		2.7 1.8	81-270 Inactive at 1800	0.6	.,	,	
108 137		161085AB	AX26820	1.0	Inactive at 30 30–60	2.2		•) - -
128 125 130 105	57)4	182230AB 181721AB 181517AB F156	BD27161	2.5 1.9 2.3 2.4	> 2500 < Inactive at 1900 69-230 72-240	0.7 0.7 0.6			• • • • • • • • • • • • • • • • • • • •
	•					. :	, i		· · · · · · · · · · · · · · · · · · ·
			.·			•			्रे इ • •
	~		, .			•			
			- >			_	, , , , ,		

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = prim

1 Primaquine derivatives. (b) variations on terminal amino of side chains and other positions

án in in	s.c.		p.o.	*	. Comments	Schmidt d	ata .
base/mg	. M.F.E.D.	P.1.		P.1.	(toxicity, preliminary data, étc.)		P.1.
2.7 1.8	81-270 Inactive at 1800	0.6				na na	-
1.0	Inactive at 30 30–60	2.2				2.5	0.4
2.5 1.9	Inactive at 1900				,	na na	•
2.3 2.4	69-230 72-240	0.7		•		na na	
			41	•			-
							•
₩						,	•••
		·			•	. 	•
		,	:			,	
			, ,		•	,	·
-		لنسب		لنبسا			

ectivé dose

MFCD = minimum fully curative dose (daily mg/kg po)

PI = primaquine index

GRO	GROUP 8-aminoquinolines		l Prima	quine derivatives		(c) varia	tions c	$_{\text{on}}$ -NH-GH(CH ₂) ₃ NH ₂ $_{\text{C}_{2}\text{H}_{5}}$	
.IV. No.	WR No.	BN No.	µM base/mg	s.c.	P.1.	p.o. M.F.E.D.	P.I.	Comments (toxicity, preliminary do	
1392 1393 1391 1409	215761AA 226426AA 226296AA 226762AA	BG45208 BG44452	1.9 2.7 2.4 2.5	2.4-7.2	2.6 18.3 20.6 (0.7	: .	>1.7 >1.4 -	LD ₁₀₀ sc/po 8	
	•	•			2			, .	
	,			•	•			•	
·					,			·.	
					u Here	* * -			
		•		•	-	, ,		·	
_	-			;	-	٠.		• •	

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

Pl ≅ prime

TABLE_5

l Primac	uine derivatives		(c) variat	ions c	-NH-CH(CH ₂) C ₂ H ₅	3 ^{NH} 2	,			
se/mg	s.c.		p.o.		Comm		Schmidt d			
	M.F.E.D.	P.1.	M.F.E.D.	P.1.	(toxicity, prelimi	nary data, etc.)	M.F.C.D.	P.1.		
1.9 2.7 2.4 2.5	2.4-7.2	2.6 18.3 20.6 20.7	<57* > 72* > 1nactive at 250*	>1.7 >1.4	'LD ₁₀₀ sc/po 81		0.24 na na na	. 4.6		
		•						-		
			• •		· •	•				
ctive dos	è MI	FCD :	minimum fully (daily mg/kg p		ve dose Pl	= primaquine index		· (

GROUP

8-aminoquinolines

Il Based on isopentaquine

LIV. No.	WR No.	BN No;	µM base/mg	s.c.	p.o.	Comments
LIV. 140;	771.770	D. V 1 VO.	prvi base/ ilig	. M.F.E.D P.I.	M.F.E.D. P.I.	(toxicity, preliminary)
1375 } 1374 }		BE 21066 BE20783	2.0 2.0		> 200 ~ 0.5	MTD po 200 MTD po 156
1371		AG75828	3.7		111-222 5 0.6	
1303 1290	211815AA 210551AA		2.2	> 57		Residual activity MTD sc 220
		-	•	,		, , ,
,	 					•
*	,		, i	,		
•	2					
,						
,						•
	*					•
		,	,			
	:			,		

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

PI = pr

THE STANDARD SECTION OF THE SECTION

Based on isopentaquine

<u> </u>	s.c. p.o.		Comments	Schmidt data	
se/mg	. M.F.E.D P.I.	M.F.E.D. P.I.		M.F.C.D. P.I.	
2.0 2.6		~ 200 ~ ~ 0.5 → MTD ~ -		} na	1
.7 .9 .2	> 57 <1.7 > MTD -	111-222 5.6	Residual activity MTD sc 220	3.7Ø 19 0.0 22 0.0	

ctive dose

MFCD = minimum fully curative dose (daily mg/kg po)

PI = primaquine index

·	8 aminoqu	inolines	III Based	on quinocide			,	
IV. No.	WR No.	BN No.	µM base/mg	s.c.	P.I.	p.o. M.F.E.D.	P.I.	Comment (toxicity, preliminary
1385 1325 1388	152149AB 215296AA 222671AA	BE16369	2.8 2.1 2.1	>MTD 6.3-21 63-126	7.3 1.0	,		MTD sc 280
1413 1439	228456AA 221527AB		2.4 2.5	< 7.2* > < 7.5* >				LD ₁₀₀ sc/po < 72 LD ₁₀₀ sc 25; po 75
1408 } 1412 }	226937AA 228457AA	l .	2.5 2.5	75-150* > 75 * <	0.9	75-250* 75-250*	0.6	LD66 po √250 LD ₁₀₀ sc <250
1389 1421	222890AA 229238AA		1.8 2.0	Inactive at 540 Inactive at 200*	-:	>200*	₹0. 5	
13487 1437	218335AA	BE66930	2.1	21-63 21-63	2.4	<63 * . ` ≥	-1 ,6	(*
• •	· ·							
		,				.;		
,						• .		·
				` ,		•		•

MFCD = minimum fully curative dose (daily mg/kg po)

MFED = minimum fully effective dose (daily)

III Based on quinocide

7							
aro/mr	s.c.		p.o.		Comments	Schmidt d	
base/mg	. M.F.E.D.	P.I.	M.F.E.D.	P.1.	(toxicity, preliminary data, etc.)	M.F.C.D.	P.I.
2.8 2.1	>MTD 6.3-21	7.3	· ·		MTD sc 280	2.8	0.4
2.1	63-126	1.0	, a	• .		0.53-1.1	.05-2.1
2.4 2.5	< 7.2* > < 7.5* >			, ,	LD ₁₀₀ sc/po < 72 LD ₁₀₀ sc 25; po 75	0.3-1.25	0.9-3.5
2.5 2.5	75-150* >75 * <	0.9	75-250* 75-250*	0.6		ná	^
1.8 2.0	Inactive at 540 Inactive at 200*	,i.,	>200*	<0. 5		0.9-1.8 na	0.6-1.2
2.1	21-63 21-63	2.4 2.4	<63 * ≥	-1 .6	s i k	1.05-2.1	0.5-1.0
				,	•		
			.;			,	
			•				-
		۰	, ,				
			1.3			-	
					•		- .

ective dose

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = primaquine index

GRO			, , , , , , , , , , , , , , , , , , ,			•	
	8-aminoqu	inolines	IV Based	d on pentaquine		·	
IV. No.	WR No.	BN No.	µM base/mg	s.c.	P.I.	p.o. : M.F.E.D. : P.	Comments I. (toxicity, preliminary data
1376 1372 1343 1256 1354 1226 1360 1284 1449 1283 1434 1255 1433	6021AK 127854AC 211674AB 49577AE 194343AA 196469AA 218670AB 203608AA 203607AA	BE20587 BD27698 BC06452 BC51797 BE59088 BD27661 ZN42125 BD27652	2.5 2.6 2.2 1.8 1.9 1.6 1.9	>MTD 1.4-4.2 > 140 * 42-140 42-140* 16-48	0.7 -0.6 -35.4 -0.7 1.1 1.1 3.1 -1.9	>250 78-156 0.	MTD sc 54 Residual activity MTD sc 190
W. Carlo et al.		minimum fu (daily)	ully effective do	se M	IFCD	= minimum fully cur (daily mg/kg po)	rative dose P1 = prima

٧	Basec	on	ΰĕn	taa	uiné
		• • • • •	P		

	s.c.		ρ.ο.		Comments	Schmidte	data
ase/mg		P.I.	M.F.E.D.	P.1.	(toxicity, preliminary data, etc.)	M.F.C.D.	P.1.
2.5 2.6		,	>250 · <	0.4	` .	na 1.3-2.6	0.4-0.9
2.5 2.6 2.2 1.8 1.9	Inactive at 660	- : -	*		MTD sc 54	na 18Ø	,
1.9 1.6 1.9		0.7		,	Résidual activity	19 na	0.06
1.4		35.4	40.140*	. 7 9	MTD sc 190	na.	0.08
J .4	> 140 * < 42-140 42-140*	1.1	42-140* <42*	1.1]] 14	0.08
1.4	16-48	3.1		>1.9		5.3-16	0.1-0.2
		i	•				
							•
				-			
				Ì	;		•
€ €				<u>.</u>			

ctive dose

MFCD = minimum fully curative dose (daily mg/kg po)

PI = primaquine index

GROUP

8-aminoquinolines

V. Sidechain on 8 with 6 carbons before NH_2 (a)

<u> </u>	* 4. *	<u> </u>	<u> </u>					
LIV. No.	WR No.	BN No.	µM base/mg	s.c. M.F.E.D.	2.12	p.o. M.F.E.D.	P.I.	Comments (toxicity, preliminary da
1380 1416 1350	212624AA 228710AA 21.1208AA	BG66412	1.9	57-114	1.1 4.3	.		LD ₅₀ sc ∕∪ 23; LD ₁₀₀ <
1453 1428 1410	212223AA 212579AB	ZN43391 BG48969 BG52623	2.4 2.1 2.4		0.6 0.7		0.6	LD ₁₀₀ sc/po <72
	To the state of th)				# * * * * * * * * * * * * * * * * * * *	
					•			
		·			,	, .		
	700 pp. 150 pp.	-						
								•

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = prima

V. Sidechain on 8 with 6 carbons before NH₂ (a)

			1	1.	·		
	s.c.	· ,	p.o.		Comments	Schmidt d	
base/mg	M.F.E.D.	P.1.	M.F.E.D.	P.1.	(toxicity, preliminary data, etc.)	M.F.C.D.	[P.1.
1.9 2.3	57-114 <23 * >	1.1 >4.3			LD ₅₀ sc ∕∪ 23; LD ₁₀₀ <69 Not sent	0.95-1.9 na na	0.6-1.1
2.4 2.1 2.4	72 - 240* 63 - 210*	0.6 0.7	72~240*	0.6			0.5-1.8 2.1-4.2
			. ,		100		,
						••	

fective dose

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = primaquine index

		T :	l	<u> </u>		Comments
.IV. No.	WR No.	BN No.	µM base/mg	s,c. . M.F.E.D. P.I.	p.o. M.F.E.D. P.I.	(toxicity, preliminary
1180	6025AO	BE21431	2.7	Inactive at 810		
1181 1425 1431	6026AI 6026AD 6026AI	AG75499 BG14463 AG75499	2.4	72-240* 0.6	<72* >1.4	MTD sc 240 Not rested
1427 1398 1429	227495AA 226257AA	BG11417 BG56738 BG44425	2.3	<72 * >1.4 69-230* 0.7 <60 * >3.3	>MTD *	LĎ ₆₆ sc <u>í</u> v230; MŤĎ po
1403 . 1426		BG60698 BG44541	1.9 2.3	114-190 0.7	3/-190	LD ₁₀₀ sc ≪9
, ,						
,		,				_
•		,				
						•
,						•

MFCD = minimum fully curative dose (daily mg/kg po)

MFED = minimum fully effective dose (daily)

V Sidechain on 8 with 6 carbons before NH_2 (b)

	<u> </u>	<u></u>				<u> </u>	. ** *
jase/mg	s,č.	· · ·	p.ģ.		Comments	. Schmidt d	lata
	M.F.E.D.	P.I.	M.F.E.D.	P.I.	(toxicity, preliminary data, etc.)	M.F.C.D.	P.1.
2.7	Inactive at 810	-	,	λ		na	
2.4	Inactive at MTD		70+	•	MTD sc 240 Not rested		
	72-240*	0.6	<72* >	1.4		12	0.9
2.4 2.3 2.0	69-230* 60 *	>1.4 0.7 >3.3	>MTD *	:	LD ₆₆ sc∧230; MTD po 69	2.4 na	0.45
1.9 2.3	114-190	0.7	57-190*	8.0	LD ₁₀₀ sc≪69	na na na	
	, () ()	:		٠.	100		-
				1.			
		•					•
íx.			· .				
	**		, -		•		a.
							-
					•		
						•	 -

čtivě dose

MFCD = minimum fully curative dose (daily mg/kg po)

PI = primaquine index

GROUP

8-aminoquinolines

VI Piperazine linkages on position 8

LIV. No.	WR No.	BN No.	µM base/mg	s.c.	<u>-</u>	p.o.~		Comments
EIV. INU.	WK 140.	DIA 140.	pivi buse/ing	M.F.E.D.	P.I.	M.F.E.D.	P.I.	(toxicity, preliminary of
1399	227681AA	BG56612	2.0	120-200	0.6			Activity principally resid
1154 1362	BW349C59	. F	1.7	1 <i>7</i> -51 1 <i>7</i> -51	2.9 2.9		• .	
1442 1477 1478 1440 1441 1443	229406AA 230395AA 230394AA 229431AA 229397AA 229396AA 229398AA	BG81599 BG81606 BG70578 BG70596 BG70630	1.9 1.8 1.9 2.0 1.9 1.9	>114.*	- - - - - - - - - - - - - - - - - - -	Inactive at 190* Inactive at 180* Inactive at 190* Inactive at 200* > 190* Inactive at 190* Inactive at 190*	- √0.5	
1471	229429AA	l * •	1.8	Inactive at 180*		Inactive at 180*		
		· ·						
			•		•	• • • •		
			•		3	· •	-	

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = prin

VI Piperazine linkages on position 8

	s.c.	- M (-)-	p.o.		Comments	Schmidt c	
ase/mg	M.F.E.D.	P.1.	M.F.E.D.	P.1.	(toxicity, preliminary data, etc.)	M.F.C.D.	P.1.
2.0	120-200	0.6			Activity principally residual	na	,
1.7	17-51 17-51	2.9 2.9				na	
1.9 1.8 1.9 2.0			Inactive at 190* Inactive at 180* Inactive at 190* Inactive at 200*	-		na na na na	
1.9 1.9 1.9	7	-1	>190* Inactive at 190* Inactive at 190* Inactive at 180*	- '		na na na	-
		3					
• •		,	^~ ·				-

fective dose

MFCD = minimum fully curative dose (daily mg/kg po)

PI = primaquine index

GROUP

8-aminoquinolines

VII Miscellaneous types

<u> </u>	~-`	,				<u> </u>		. 7547
LIV. No.	WR No.	BN No.	µM base/mg	s.c.		p.o.	P.I.	Comments (toxicity, preliminary de
1279	179443AC	BD57436	5.3	Inactive at 1590	-			·** ;
1270 1271	189296AA 189296AB	3	3.0	Inactive at 900 Inactive at 900	•	·	; -	
1262 1473	206027AA 4396AR	BD54471 BG44621	3.1 2.1	> MTD Inactive at MTD*	-	Inactive at MTD	·	MTD sc 310 MTD sc 60; po 30
1390) 1436)	211533AC 211533AB	4	2.0 2.0	Inactive at 300 Inactive at 200*		inactive at 200 inactive at 60*	- -	MTD sc 300 LD ₁₀₀ po<200
1344 1346 1184 1264 1401 1419	1,	BE20014 BB47761 BD04622 BG58447	2.5 3.1 2.3 1.9 2.0 2.0	31-93 Inactive at 2300 .57-190 Inactive at 600	0.9 1.6 - 0.8	60-200*	0.8 < 0.5	•
1314 - 1347	213640AA 218336AA	BE09999	2.0 2.0 2.1	>600	0.2 0.2		-0.3	LD ₅₀ sc
1334} 1447}.	201678AB	BE13304 ZN40130	2.1		2.4 0.7		>1.5	,
1420 1482	229092AA 230212AA		2.9		- 1	Inactive at 290* Inactive at 220*		
1043 1044	Ni 147/36 Ba138/11	1 L	2.7 2.6		5.6 1.9			•
	,				:			

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = prim

VII Miscellaneous types

<u> </u>	s.c.		p.o.		Comments	Schmidt d	ata .
base/mg	M.F.E.D.	P.I.	·	P.1.	(toxicity, preliminary data, etc.)	M.F.C.D.	P.1.
5.3	Inactive at 1590	•••				na	
3.0	Inactive at 900 Inactive at 900	-	,	·		na	
3.1 2.1	> MTD Inactive at MTD	-	Inactive at MTD	*	MTD sc 310 MTD sc 60; po 30	3.1Ø na	
2.0 2.0	Inactive at 300 Inactive at 200*	140	Inactive at 200 Inactive at 60*	- ;	MTD sc 300 LD ₁₀₀ po <200 °	1.0	1.1
2.5 3.1 2.3 1.9 2.0 2.0 2.0	1	0.8 0.8 0.2	60-200° > 200 * · •	0.8	·	25 3.1 23Ø 19Ø nd na	0.04
2.1	210-630 . 21-63 -66-220*	0.2 2.4 0.7	ì	> 1.5		21 Ø	
2.9 2.2	Inactive at 290* Inactive at 220*		Inactive at 290*			na na	
2.7 2.6	8.1-27 26-78	5.6 1.9			•	na na	
•							

ective dose

MFCD: minimum fully curative dose (daily mg/kg po)

PI = primaquine index

GROUP

Naphthyridines

	·	· tapiiiiyi						1
LIV. No.	WR No.	BN No.	µM base/mg	s,c.		p.o.		Comments
	7/10.		FIVE 2007 III.9	. M.F.E.D.	P.1.	M.F.E.D.	P.I.	(toxicity, preliminary de
1485 1487 1278 1287 1286 1288	206287AB 222119 206218AA 210446AA 210447AA 210434AA	BG81740 BD54766 BE10983 BE10965	2.3 2.2 1.5 1.6 3.3 4.3	Inactive at 230* Inactive at 220* >750 Inactive at LD30 Inactive at LD30 Inactive at LD30	- (0.1	Inactive at 230*	1	Residual activity only LD ₃₀ sc ~ 160 LD ₃₀ sc ~ 1990 LD ₃₀ sc ~ 1280
								e makin un sonski en en skiptigen soldinasen. Skiptigen Schoolski geden Schoolski geden en geden en geden en g

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

PI = prin

TABLE 13

8.	, , , , , , , , , , , , , , , , , , , 		.			<u>,</u>	·
base/mg	s.c.		p.o.		Comments	Schmidt d	
pase/ mg	. M.F.E.D.	P.1.	M.F.E.D.	P.I.	(toxicity, preliminary data, etc.)	M.F.C.D.	P.I.
2.3 2.2 1.5 1.6 3.3 4.3	Inactive at 230* Inactive at 220* >750 Inactive at LD30 Inactive at LD30 Inactive at LD30	- <0.1	Inactive at 2 30*	•	Residual activity only LD ₃₀ sc ∼ 160 LD ₃₀ sc ∼ 990 LD ₃₀ sc ∼ 1280	na na na na na na	
						-	
	,						

ective dose

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = primaquine index

GROUP

Miscellaneous compounds

) 		,		·	 	<u> </u>
LIV. No.	WR No.	BN No.	µM base/mg	s.c. . M.F.E.D P.I.	p.o. . M.F.E.D. P.I.	Comments (toxicity, preliminary da
1484 1483 1486 1479 1480 1474 1481 1430 1422 1415 1423 1405 1406 1418 1394 1395 1203 1251	230284AA 230225AA 230621AA 230387AA 230386AA 206513AB 230216AA	BG81222 BG81035 BG83191 BG81615 BG81624 BG79017 BG80967 AW41662 BG43991 BG66403 BG37573 BE84652 BE96303 BG67179 BG46714	2.3 2.1 2.3 2.9 2.2 2.1 1.7 2.0 2.7 1.6 2.8 2.1 2.3 2.6 2.4 3.0 3.2 2.2	M.F.E.D. P.I.	M.F.E.D. P.I. Inactive at 230* - Inactive at 210* - >230 *	(toxicity, preliminary da LD ₃₃ po∼210
			!	,		,

MFED = minimum fully effective dose (daily)

MFCD = minimum fully curative dose (daily mg/kg po)

Pl = pri

and the second of the second o

mpounds

ctive dose

MFCD = minimum fully curative dose (daily mg/kg po)

PI = primaquine index

PRELIMINARY SCREEN RESULTS

TABLE 15

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent

3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	ì	2	3	4	µM Baśe/Kg	Comment
1370	2975	AG64745	po.	1.0		, -		1	2.2	Primaquine
				10.0		,	/		22:0	
				30.0		/			66.0	
_		,	-	60.0	/				132.0	
				100.0	1				220.0	,
1371	6027	AG75828	ро	1.0		***		/	3.7	4-méthyl isopéntaquir
			<u> </u>	10.0				~	37.0	
•				30.0		_/			111.0	
				60.0	/				222.0	
				100.0	~				370.0	
1372	127854	BE20087	ро	1.0				1	2.6	4-methyl pentaquine
	-			10.0				/	26.0	
				30.0		/			78.0	
,				60.0	/				₹56.0	
				100.0	i /				260.0	

PRINCIPAL	INVESTIGATOR:	Professor W. Peter
Signed	Marin	· · · · · · · · · · · · · · · · · · ·
Dato	E. DEC 1976	

PRELIMINARY SCREEN RESULTS

TABLE 16

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

				•						
LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	μM Base/Kģ	Comment
1373	181023	BE50003	ро	1.0				/	2.1	4-methyl primaquine
•		•		10.0			·/		21.0	
				30.0	/				63.0	
		•		60.0	/				126.0	
	·			100.0	/				210.0	~ LD ₃₃
1374	6020AD	BE20783	ро	1.0				V	2.6	isopentaquin
				10.0			/	†	26.0	
•	•		·	30.0					78.0	
			,	60.0		/			156.0	
•				100.0	/				260.0	N LD66
1375	6020AC	BE21066	ро	30.0		/			60.0	isopentaquin diphasphate
•			_	60.0		V			120.0	
				100.0	/				200.0	
1376	6021	BE20907	ро	1.0				/	• 2.5	Pentaquine
				10.0					25.0	
				30.0	/				75.0	
				100.0					250.0	~ LD ₃₃
										∼ LD ₃₃

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

DDINICIDAL	INVESTIGATOR:	Drofossor W	Potor
PRINCIPAL	HINDEST HOW HOR:	Professor VV	reter

Signed

Date _______ DEC 1976.

PRELIMINARY SCREEN RESULTS

TABLE 17

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment
1377	5990	AG99266	sc	10.0				/	221.0	
				30.0					63.0	∼ LD ₃₃
		-		100.0					210.0	>LD ₁₀₀
1377	5990	-AG99266	ро	3.0					6.3	
				30.0			/		63:.0	_
		-		60.0 ^					126.0	
1378	161085	AX26820	sc	10.0				/	10.0	
•				30.0	- "	/			30.0	,
				100.0	/				100.0	\sim LD $_{33}$
1378	161085	AX26820	ро	3.0			/		3.0	
				30.0	/				30.0	
1379	211814	BE12905	sc	1.0		/			2.9	
				10.0	/				29.0	
Ì				30.0-	/				. 87.0	
				100.0					290.0	>LD ₁₀₀
1379	211814	BE12905	ро	3.0	/				8.7	
				30.0	/				87.0	

PRINCIPAL INVESTIGATOR	R: Professor W. Peters
	7
Signed	
Date = DEC	1079

PRELIMINARY SCREEN RESULTS

TABLE 18

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	ΒN	Route	Dose mg/kg x 1	1.	2	3	4	μM Base/Kg	Comment
1380	212624	BE13822	sc	10.0				/	19.0	
		,		30.0			/		<i>57.</i> 0	,
			Ì	100.0	/				190.0	
1381	215295	BE16378	sc	10.0					16.0	-
				30.0		. ,		V	48.0	
,				100.0			1	*	160.0	3/3 Patent but delayed
,				300.0			1		480.0	
1382	216100	BE17491	sc	1.0	-		_	/	1.7	
· ·				10.0				1	17.0	
				30.0				/	51.0	
				100.0	/				170.0	
1383	217124	BE43759	sc	1.0				/	1.8	
				10.0	<u> </u>		/	,	18.0	
				30.0	/				•54.0	n
				100.0	·/				180.0	

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL	INVESTIGATOR:	Professor	W .	Peters
-				

Signed

PRELIMINARY SCREEN RESULTS

TABLE 19

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent

3 = ? Slightly active = 2/3 Patent

= 3/3 Patent 4 = Inactive

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment
1384	218676	B E55820	sc	1.0					2.4	
n 4				10.0				,	24.0	
				30.0	/				72.0	
e star T have be				100.0		2	,		240.0	>LD ₁₀₀
1385	152149	BE66770	sc	30.0				-	84.0	
				100.0				-	280.0	-
			,	300.0	7			,	840.0	> ^{LD} 100
1386	217154	BE67204	sc	1.0				/	2.0	
				10.0		/			20.0	
				30.0	/				60.0	
				100.0	/				200.0	
1387	219874	BE79802	sc	1.0			-	/	2.5	
·				10.0	/				25.0	
				30.0	V				<i>∙7</i> 5.0	
			3	100.0		×			250.0	>LD ₁₀₀
1388	222671	BG11891	sc	30.0					63.0	
				60.0					126.0	
				100.0	/	•	Ì		210.0	

PRINCIPAL INVESTIGATOR:	Professor W. Peters
Signed	·
——————————————————————————————————————	976

PRELIMINARY SCREEN RESULTS

TABLE 20

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent

= 1/3 Patent

3 = ? Slightly active = 2/3 Patent

4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	.3	4	µM Base/Kg	Comment	
1389	222890	BG13831	sc	30.0			/		54.0		
				100.0					180.0		
1389	222890	BG13831	ро	30.0				/	54.0		The same of the same of
,				100.0				/	180.0	· -	STORY TO STORY
1390	211533	BG38034	sc	30.0			/		60.0		Jan
				100.0			/		200.0		Tanada and a said
1390	211533	BG38034	po	30.0				/	60.0		10
•				100.0				/	200.0		C. Carlotte
1391	226296	BG44452	sc	1.0			/		2.4		T. W. Sanda
				10.0	1				24.0 '	_	Second Powers
			`.	30.0	/				72.0	~ LD ₆₆	
				100.0					240.0	>r _D 100	
1391	226296	BG44452	ро	30.0	/				72.0	N LD ₆₆	
				100.0					240.0	>LD ₁₀₀	- 2
1392	21 <i>57</i> 61	BE16967	sc	10	·		/		1.9		
				10.0	/				19.0		<u> </u>
				30.0	V				57.0		
				100.0	/				190.0		

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL INVESTIGATOR: Professor W. Peters

≟ DEC 1976

PRELIMINARY SCREEN RESULTS

TABLE 21

Category 1 = ? Fully active = 0/3 Patent

2 = ? Active = 1/3 Patent

3 = ? Slightly active = 2/3 Patent

4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment
1392	215761	BE16967	рò	30.0	/				57.0	
				100.0	/				190.0	
1393	226426	BG45208	sc	1.0			-		2.7	-
		L		10.0	/				27.0:	_
				30.0					81.0	>LD ₁₀₀
				100.0				, 	270.0	> ^{LD} 100
1393	226426	BG45208	ро	30.0					81.0	> LD ₁₀₀
				100.0					270.0	>LD ₁₀₀
1394	226626	BG46714	sc	1.0			/		2.4	
				10.0	/				24.0	
				30.0	~				72.0	-
				100.0	/				240.0	-
1394	226626	BG46714	po	30.0		/			72.0	
				100.0	/				240.0	
1395	199361	BG47168	sc	1.0					3.0	
				10.0					30.0	
				30.0	/				90.0	
				100.0	/				300.0	

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL	INVESTIGATOR:	Professor W	Peter

Signed

Date DEC 10.73

PRELIMINARY SCREEN RESULTS

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent

4 = Inactive = 3/3 Patent

LIV	· WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment	457
1395	199361	BG47168	ро	30.0	/				90.0	4	نائم
		•		100.0	/				300.0		
1396	206891	BG47462	sc	1.0		-		1	2.9	`	1
				10.0				/	29.0		n/cockra
				30.0	/				87.Ŏ	_	**************************************
		•		100.0	/				290.0	,	THE CASE
1396	206891	BG47462	ро	30.0		/			87.0	,	2
٠				100.0	/	,			290.0		
1397	216693	BG47239	sc	30.0				/	111.0		
				100.0				/	370.0		
1397	216693	BG47239	ρ̈ο	30.0	/				111.0		The second
·	•			100.0	/				370.0		
1398	227495	BG56738	sc	30.0	,	/			69.0		
·				100 'ບໍ	1/	1			230.0	N LD	
1398	227495	BG56738	ро	30.0		/			69.0	N LD33	
				100.0					230.0	>LD ₁₀₀	
-										,	

PRINCIPAL	INVESTIGATOR:	Professor W. Peters
Signed	Modera	
Duta	DEC 1976	3

CAÚSAL PŘOPHYLAXIS

PRELIMINARY SCREEN RESULTS

TABLE 23

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	BN	Route .	Dose mg/kg x 1	1	2	3	4	μM Base/Kg	Comment
1399	227681	BG56612	sc	30.0	,				60.0	A control of the cont
- Section 2				100.0			<u>.</u> .		200.0	and the second s
1399	227681	BG56612	ро	30.0	_	-	;		60.0	
				100.0	'				200.0	
1400	228000	BG58367	sc	30:0				- e	69.0	
		,	3 3	100.0	/		-	y	230.0	∿LD ₃₃
1400	228000	BG58367	ро	30.0	/				69.0	2
· · ·			e e e e e e e e e e e e e e e e e e e	100.0		÷	·~1		230.0	>LD ₁₀₀
1401	227988	BG58447	sc	30.0				/	60.0	
				100.0	,	1 ₄₀ .			200.0	
1401	227988	BG58447	ро	30.0		/			60.0	-
	•		en	100.0					200.0	~
1402	228002	BG58189	sc	30.0			.,		60.0	
	, .			60.0-	/				120.0	
1402	228002	BG58189	ро	30.0		/			60.0,	~ LD ₃₃
		~		100.0					200.0	>LD ₁₀₀

•	PRINCIPAL INVESTI	GATOR:	Professor W	. Peters
	Signed	Your and		• • • • • •
	Date	Fr DE	C 1976	• • • • • • •

PRELIMINARY SCREEN RESULTS

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent

4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment
1403	228327	BG60698	sc	30.0			v		57.0	
				100.0	/				190.0	
1403	228327	BG60698	ро	30.0			/		57.0	,
				100.0	/				190.0	
1404	228335	BG60689	sc	30.0	/				63.0	
				100.0	/				210.0	•
1404	?28335	BG60689	ро	30.0					63.0	
•				100.0					210.0	
1405	220594	B E84652	sc	30.0			/		63.0	
				60.0		/			126.0	
1405	220594	BE84652	ро	30.0				/	63.0	
	-			100.0				/	210.0	
1406	220679	BE96303	sc	30.0	1 /				69.0	
				60.0-					138.0	
1406	220679	BE96303	ро	30.0				/	69.0	
				100.0			:	/	230.0	

PRINCIPAL INVESTIGATOR: Professor W. Peters
Signed
DFC 1075

PRELIMINARY SCREEN RESULTS

TABLE 25

Category 1 -? Fully active = 0/3 Patent 2 -? Active = 1/3 Patent

3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

Comment	9	µM Base/Kg	4	3	2	1	Dose mg/kg x 1	Route	ВN	WR	LIV
		60.0					30.0	sC	BE58643	219130	1407
		120.0					60.0				
		60.0			/		30.0	ро	BE58643	219130	1407
		200.0				_	100.0				
		<i>7</i> 5.0		/			30.0	sc	BG55008	226937	1408
		150.0				/	60.0 -				
		77.5		/			30.0	ро	BG55008	226937	1408
U LD66	1	250.0				/	100.0 -				•
		75.0			/		30.0	sc	BG47293	226762	1409
		150.0					60.0				
		75.0					30.0	ро	BG47293	226762	1409
		250.0					100.0			-	
> LD ₁₀₀		72.0					30.0	sc	BG52623	226899	1410
>LD ₁₀₀		₹44.0					60.0				
>fD ¹⁰⁰		72.0				·	30.0	ро	BG52623	226899	1410
≥LD ₁₀₀		240.0					100.0				
		250.0 72.0 144.0					100.0 30.0 60.0	sc	BG52623	226899	1410

PRINCIPAL IN	ESTIGATOR:	Professor V	V. Peters
Signed	Contrary.	,	· • • • • • • •
Data	量量 DEC 19		

PRELIMINARY SCREEN RESULTS

TABLE 26

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µМ Base/Kg	Comment
1411	225374	BG37591	sc	30.0	/				66.0	
		·		100.0					220.0	>LD ₁₀₀
1411	225374	BG37591	ро	30.0	/				66.0	
				100.0					220.0	
1412	228457	BG62790	sc	10.0	_	/			25.0	
				30.0		_			75.0	i de la companya de l
				100.0					250.0	>LD ₁₀₀
1412	228457	BG62790	ро	30.0		/			75.0	
				100.0	/				250.0	
1413	228456	BG62807	sc	3.0	1				7.2	
				10.0	/				24.0	
	-			30.0					72.0	>LD ₁₀₀
				100.0					240.0	≥ LD ₁₀₀
1413	228456	BG62807	ро	30.0					• 72.0	>LD ₁₀₀
				100.0					240.0	>LD ₁₀₀
										1

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL INVESTIGATOR Professor W. Pet	DRINCIPAL	INVEST	IGATOR.	Professor	W Pete
---	-----------	--------	---------	-----------	--------

Signed

Date DEC 1976

PRELIMINARY SCREEN RESULTS

TABLE 27

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent

3 = ? Slightly active = 2/3 Patent

4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	μΜ Base/Kg	Comment
1414	228583	BG63644	sc	3.0		~			6.9	
				10.0		/			23.0	}
				30.0	/				69.0	₩ LD ₆₆
				100.0					230.0	>LD _{100_}
1414	228583	BG63644	ро	30.0	/				69.0	N LD ₆₆
				100.0					230.0	> LD ₁₀₀
1415	228769	BG66403	sc	10.0				/	16.0 .	
				30.0	<u> </u>			/	48.0	
				100.0				/	160.0	
1415	228769	BG66403	ро	30.0				/	48.0	
				100.0					160.0	
1416	228710	BG66412	sc	10.0	/				23.0	∼ LD ₅₀
				30.0					69.0	> LD ₁₀₀
				100.0					230.0	>LD ₁₀₀
1416	228710	BG66412	ро	30,.0	·				69.0	>LD ₁₀₀
				100.0					230.0	>LD ₁₀₀

PRINCIPAL INVES	STIGATOR:	Professor W	1. Peters
Signed	of or trans		
Date	EN DEC	1976	

PRELIMINARY SCREEN RESULTS

TABLE 28

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV 1417	WR	BN	Route	Dose	,		_			Ţ.,
1417	1			mg/kg x 1]	2	3	4	yM Base/Kg	Comment
	228708	BG66798	sc.	10.0	/				21.0	
,				30.0	/				63.0	
				100.0	/				210.0	~ LD ₆₆
1417	228708	· BG66798	ро	30.0	/				63.0	
				100.0					210.0	>LD ₁₀₀
1418	229046	BG67179	sc	30.0		/			78.0	
			`	100.0	/				.260.0	
1418	229046	BG67179	ро	30.0			٠		78.0	
				100.0				,	260.0	
1419	229011	BG67099	5C	30.0					60.0	
				100.0					200.0	ω LD ₅₀
1419	229011	BG67099	ро	30.0				/	60.0	
				100.0					200.0	
1420	229092	BG68354	sc	30.0.				/	*87.0	ν ^{LD} 50
				100.0					290.0	
1420	229092	BG68354	ро	30.0				/	87.0	
				100.0				/	290.0	{

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL INVESTIGATOR: Professor W. Peters

Signed

Date DEC 1976

Land to the second of the seco

PRELIMINARY SCREEN RESULTS

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	ı	2	3	4	µM Base/Kg	Comment
1421	229238	BG70112	şc	30.0				/	60.0	
				100.0					200.0	
1421	229238	8G70112	ро	30.0				/	60.0	
		ì		100.0			/		200.0	and the second s
1422	194965	BG33940	sc	30.0					81.0	
				60.0 -					162.0	
1422	194965	BG33940	ро	30.0				/	81.0	
•				100.0		/			270.0	
1423	225449	ZN43971	sc	30.0					84.0	
				100.0	V				280.0	
1423	225449	ZN43971	ро	30.0	/				84.0	
				100.0					280.0	
1426	226292	BG44541	sc	30.0	Ī.				69.0	> LD ₁₀₀
				100.0					230.0	>LD ₁₀₀
1427	211666	BG11417	sc	30.0	<i>'</i>				72.0	
				100.0					240.0	
1428	212579	BG48969	sc	30.0				1	63.0	
				100.0	/				210.0	

PRINCIPA	L INVESTIGATOR: Professor W. Peters
Signed	. So to so to so
Date	≟: DEC 1976

PRELIMINARY SCREEN RESULTS

TABLE 30

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	ВN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment	
1429	226257	BG44425	sc	30.0	/				60.0		
				100.0					200.0		-
1430	129577	AW41662	sc	30.0		-		/	60.0		The second second
		•		100.0				/	200.0		westerney
1430	129577	AW41662	, bo	30.0				/	60.0		STATES AND
				100.0				/	200.0		Terres to
1431	6026	AG75499	sc	30.0				/	72.0		(Street water
		·		100.0	/				240.0	~ LD ₆₆	STREET,
1431	6026	AG75499	ро	30.0	/				72.0		Secretary.
				100.0	/				240.0		Michael
1432	106147	AY97897	sc	30.0				/	66.0		STATE OF THE
	-			100.0					220.0		The standard
1432	106147	AY97897	ро	30.0	/				66.0		TO COLOR
				100.0	/				220.0	~ LD33	N. C. Park T. C.
1433	202437	BD26164	sc	30.0	/				51.0		To de la
				100.0	/				170.0		- :; _!
1433	202437	BD26164	ро	30.0	/				51.0		-
				100.0	1				170.0		

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL INVESTIGATOR: Professor W. Peters

Date DEC 1976

PRELIMINARY SCREEN RESULTS

∄ABLE 31

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment
1434	203607	BD27652	sc	30.0				/	42.0	
				100.0	/				140.0	
1434	203607	BD27652	ро	30.0	/				42.0	
		•	-	100.0	/				140.0	
1435	205439	BD54195	sc	30.0					54.0	
				100.0	/				180.0	
1435	205439	BD54195	ро	3.0			/		5.4	
·				10.0					18.0	
				30.0	/				54.0	
1436	211533	BE12601	sc	30.0				V	60.0	
				100.0					200.0	
1436	211533	BE12601	ро	30.0			/		60.0	
				100.0	<u> </u>				200.0	>LD ₁₀₀
1437	218335	BE66930	po	30.0	/				- 63.0	
				100.0	1/				210.0	∾LD ₅₀

PRINCIPAL INVESTIGATOR: Professor W. P	eters
Signed	• • • •
DEC 1976	
Date	

PRELIMINARY SCREEN RESULTS

TABLE 32

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	ВN	Route	Dose mg/kg x 1	1	2	3	4	uM Base/Kg	Comment
1438	225448	BG37402	sc	30.0	/				57.0	NLD ₆₆
			,	100.0				^	190.0	.>LD ₁₀₀
1438	225448	BG37402	po	30.0	/				57.0	
				100.0	/				190.0	~ LD ₆₆
1439	221527	BG48898	sc	3.0					7.5	·
		•		10.0					25.0	>LD ₁₀₀
				30.0					75.0	>LD100
·				100.0					250.0	>LD ₁₀₀
1439	221527	BG48898	ро	30.0					75.0	>LD ₁₀₀
				100.0					250.0	>LD ₁₀₀
1440	229431	BG70578	sc	30.0				/	60.0	
				60.0			/		120.0	
1440	229431	BG70578	ро	30.0				/	60.0	
				100.0				1.	200.0	
1441	229397	BG70596	.sc	30.0			/		57.0	
				60.0			/		114.0	
1441	229397	8G70596	ро	30.0				/	57.0	
				100.0			/	`	190.0	

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL INVESTIGATOR: Professor W. Peters

Signed

Date

PRELIMINARY SCREEN RESULTS

TABLE 33

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent

3 = ? Slightly active = 2/3 Patent

4 = Inactive = 3/3 Patent

LIV	WR	ВN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment
1442	229406	BG70603	sc	30.0				~	57.0	
		·		60.0				,	114.0	
1442	229406	BG70603	ро	30.0				>	<i>57</i> `.0`	
				100.0				/	190.0	
1443	229396	BG70630	sc	30.0				./	57.0	
		,	,	60.0			/		114.0	
1443	229396	BG70630	ро	30.0				/	57.0	
•				100.0					190.0	_
1444	229398	BG70658	sc	30.0				'	57.0	
				60.0					114.0	
1444	229398	BG70658	ро	30.0				/	57.0	
				100.0		·		/	190.0	
1445	2285战3	BG70729	sc	30.0					69.0	> LD ₁₀₀
				60.0		 			₹38.0	> LD ₁₀₀
1445	228583	BG70729	ро	30,0	<i>i</i> /				69.0	
				100.0					230.0	>LD ₁₀₀
	ļ.									

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL	L INVESTIGA	ATOR: Prof	fessor W. Peter

Signed **基验 DEC 1976**

PRELIMINARY SCREEN RESULTS

TABLE 34

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

				·	,						-8
LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment	Tarina .
1446	228708	BG70756	sc	30.0	/				63.0		:
				60.0	/				126.0		1
1446	228708	BG70756	ρ́ο	30.0		/			63.0		1
-		-		100.0					210.0	>LD ₁₀₀	The state of the state of
1447	201678	ZN40130	sc	30.0			/		66.0		HANNE S
				100.0 "				,	220.0		r-turous
1447	201678	ZN40130	ро	30.0	/				66.0		135° 144
•				100.0			·		220.0		Table T
1448	211532	ZN41048	sc	30.0				1	57.0		terranduration.
				100.0				/	190.0		STANKE OF
1448	211532	ZN41048	ро	30.0				/	57.0		7460-05660
	_			100.0				/	190.0		Fall Total
1449	203608	ZN42125	sc	30.0				/	42.0		CARTER
				100.0-		/			140.0		ALL ALL STATE OF THE PARTY OF T
1449	203608	ZN42125	ро	30.0		~			42.0		100 C 100 C
				100.0	1				140.0		-

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL INVESTIGATOR: Pro	pressor vy	' • J	releis
-----------------------------	------------	-------	--------

Date

PRELIMINARY SCREEN RESULTS

TABLE 35

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	uM Base/Kg	Comment
1450	215296	ZN42812	sċ	30.0	/				66.0	
				100.0	/				220.0	
1450	215296	ZN42812	ро	30.0	/				66.0	,
			<u>.</u>	100.0	/				220.0	
1451	219874	ZN42821	sc _.	30.0				/	<i>7</i> 5.0	
				100.0		<u>/</u>			250.0	
1451	219874	ZN42821	ро	30.0					<i>7</i> 5.0	> LD ₁₀₀
٠	·	,	,	100.0					250.0	>rD ¹⁰⁰
1452	215733	ZN43328	sc	30.0					75.0	
		•		100.0			√		250.0	~ LD ₃₃
1452	215733	ZN43328	ро	30.0					75.0	
	-			100.0					250.0	>LD ₁₀₀
1453	212223	ZN43391	sc	30.0					72.0	
				100.0					240.0	
1453	212223	ZN43391	ро	30.0		/			72.0	
				100.0					240.0	

PRINCIPAL INVES	IGATOR:	Professor	W. Peter
Signed	To orting.	·	• • • • • • • •
	Ess Dec	10.3	

PRELIMINARY SCREEN RESULTS

TABLE 36

Category 1 = ? Fully active = 0/3 Patent 2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent 4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment
1454	216804	ZN43426	sc.	30.0	/	4			60.0	
				100.0	/				200.0	
1454	216804	ZN43426	ро	30.0					60.0	>LD100
		-		100.0					200.0	> ^{LD} 100
1455	21 <i>57</i> 61	ZN44030	sc	30.0	/				60.0	
				100.0	·/				200.0	•
1455	215761	ZN44030	ро	30.0					60.0	
•				100.0	/				200.0	
1470	224097	ZN43953	sc	30.0				-	60.0	,
				100.0			·/		200.0	
1470	224097	ZN43953	ро	30.0					60.0	
	-			100.0		_			200.0	
1471	229429	BG70667	sc	30.0				/	54.0	
				100.0				/	180.0	
1471	229429	8G70667	ро	30.0				/	54.0	
				100.0				/	180.0	
									•	

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL INVESTIGATOR: Professor W. Peters

Signed

Date DEC 1976

PRELIMINARY SCREEN RESULTS

TABLE 37

Category 1 = ? Fully active = 0/3 Patent

2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent

4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	yM Base/Kg	Comment
1472	229427	BG70550	sç	30.0					60.0	
				100.0					200.0	
1472	229427	BG70550	ро	30.0			/		60.0	
				100.0		/			200.0	
1473	4396	BG66421	sc	30.0				/	63.0	
				100.0				/	210.0	N LD 66
1473	4396	BG66421	ро	30.0		•		/	63.0	
•				100.0			·		210.0	> ^{LD} 100
1474	206513	BG79017	sc	30.0					63.0	
				100.0			-		210.0	,
1474	206513	BG79017	ро	30.0			/		63.0	
				100.0					210.0	
1476	230388	BG81580	ро	30.0	/				72.0	
				100.0-					240.0	>LD
1477	230395	BG81599	ро	30.0					54.0	
				100.0				/	180.0	
1478	230394	BG81606	ро	30.0				V	54.0	
				100.0				/	180.0	

PRINCIPAL INVESTIGATOR: Profe	essor W. Peter
Signed	
Date DEC 197	•

PRELIMINARY SCREEN RESULTS

TABLE 38

Category 1 = ? Fully active = 0/3 Patent

2 = ? Active = 1/3 Patent 3 = ? Slightly active = 2/3 Patent

4 = Inactive = 3/3 Patent

LIV	WR	BN	Route	Dose mg/kg x 1	1	2	3	4	µM Base/Kg	Comment	
1479	230387	BG81615	ро	30.0				/ /	87.0		
				100_0					290.0		
1480	230386	BG81624	ро	30.0				~	66.0		18
		•		100.0			_		220.0		SESSE
1481	233216	BG80967	ро	30.0				/	51.0		is necessarial
				100.0					170.0		_; } }
1482	230212	BG80994	ро	30.0					66.0		
•				100.0				/	220.0		- Action
1483	230225	BG81035	ро	30.0				/	63.0		energy (
				100.0					210.0	ი _{LD} 33	entransferi.
1484	230284	BG81222	ро	30.0				~	69.0		- Tankara
				100.0					230.0		we//our
1485	206287	BG81759	ро	30.0					69.0		1
				100.0				~	230.0		CANCER
1486	230621	BG83191	ро	30.0		-		/	69.0		
				100.0			/		230.0	∼ ^{LD} 33	
			<u> </u>								

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

PRINCIPAL INVESTIGATOR: Professor W. Peters

Signed

CAUSAL PROPHYLAXIS TEST NO .:

BR 531

DATE: 26.11.76

DRUG:

LIV/1411

WR 225374

BOTTLE NO.

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: بمراجد sc/po

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

•									1.43		
DOCE	PAT	ENCY R	ATE	GMP 2% P			(a = 2) ACTI VITY VALUES				
DOSE mg/kg	C°/ _{T°}	ХС	C [×] / _T ×	f/h	þ	c/ _e	$(h-f)-\underbrace{\frac{(b-a)(e-a)}{(c-a)}-(b-a)}$	Residual activity	Prophylac activity		
Ø	5/5	3/3	3/3	5.93	3.72	3.71					
3.0	2/3		3/3	>8.59		3.68	$> 2.66 - \frac{1.72 \times 1.68}{1.71} - 1.72$	-0.03	>2.69		
10.0	3/3*		0/3**	5.72		-	-0.21				
30.0	0/3**		0/3**	· -		-					
,									3		
		i m							Service and the service and th		

MINIMUM FULLY ACTIVE DOSE......mg/kg

RESIDUAL ACTIVITY:

Nil at 3.0 mg/kg

PRINCIPAL INVE

* 1/3 died ** 3/3 died

NO .: BR 531 DATE: 26.11.76

TABLE 39

LIV/1411

WR 225374

BOTTLE NO. BG37591

ROUTE OF ADMINISTRATION: 3p/sc/po TIME AFTER INFECTION: 2 hrs.

Vmice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

GMP 2% P			(a = 2) ACTIVITY			
f/ _h 5.93 >8.59	b	c/ _e	$(h - f) - \frac{(b - a)(e - a)}{(c - a)} - (b - a)$	Residual activity	Prophylactic activity	COMMENT
5.93	3.72	3.71		,		•
>8.59		3.68	$> 2.66 - \frac{1.72 \times 1.68}{1.71} - 1.72$	-0.03	>2.69	Slightly active
5.72 -			-0.21			N LD ₆₆
(できる) (できる) (できる) (できる)		-				>LD ₁₀₀
100 A						

OSE.....mg/kg

Nil at 3.0 mg/kg

PRINCIPAL INVESTIGATOR: Professor W. Peters

* 1/3 died ** 3/3 died

CAUSAL PROPHYLAXIS TEST NO .: BR531

DATE: 26.11.76

DRUG:

LIV/1404

WR 228335

BOTTLE NO. BG

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: 40/sc/po

VERTEBRATE HOST: TFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

										والمهار		
۱	·	PATENCY RATE			(GMP 29 IF		(a = 2) ACTIVITY	2) ACTIVITY VALUES			
- Andrews	DOSE mg/kg	C°/ _T °	XC	C ^x / _T x		ь	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual activity	Prophyla activity		
	Ø	5/5	3/3	3/3	5.93	3.72	3.71					
	3.0	2/3		3/3	>8.51		3.71	$>2.58 - \left[\frac{1.72 \times 1.71}{1.71} - 1.72\right]$	0	>2.58		
	10.0	2/3		3/3	>8.86			$> 2.93 - \frac{1.72 \times 2.28}{1.71} - 1.72$	0.57	>2.36		
	30.0	0/3		3/3 =	- 14		3.74	$> 8.07 - \left[\frac{1.72 \times 1.74}{1.71} - 1.72\right]$	0.03	>8.04		
) is		
A STANKE				·						Proceedings.		
				· · · · · · · · · · · · · · · · · · ·						See the second		
6	ş	1								271		

10.0-30.0 MINIMUM FULLY ACTIVE DOSE...

RESIDUAL ACTIVITY:

Nil at 30.0 mg/kg

PRINCIPAL INVE

EST NO.: BR531

DATE: 26.11.76

TABLE 40

LIV/1404

WR 228335

BOTTLE NO. BG 60689

80/H₂O

ROUTE OF ADMINISTRATION: 4/sc/po TIME AFTER INFECTION: 2 hrs.

FW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

3. 3. 3.		GMP 2% I	P	(a = 2) ACTIVITY	VALUES		
X X	f/h	b	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual activity	Prophylactic activity	COMMENT
Secretary 1	5.93	3.72	3.71		,		· •
i Kalenda	>8.51		3.71	$> 2.58 - \left[\frac{1.72 \times 1.71}{1.71} - 1.72\right]$	0	>2.58	Slightly active
	>8.86		4.28	$> 2.93 - \left[\frac{1.72 \times 2.28}{1.71} - 1.72\right]$	0.57	>2.36	Slightly active
· -	-14		3.74	$> 8.07 - \left[\frac{1.72 \times 1.74}{1.71} - 1.72\right]$	0.03	>8.04	Fully active
							i,

10.0-30.0 E DOSE.....

Nil at 30.0 mg/kg

DATE: 26.11.76

DRUG:

LIV/1403

WR 228327

BOTTLE NO. BG

PREPARATION: Tween 80/H2O

ROUTE OF ADMINISTRATION: نم sc/po

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

I										***
1	DOSE .	PAT	ENCY RA	NTE		3MP 2%	P	(a = 2) ACTIVITY		
	mg/kg	C°/_0	xc	C ^X / _T X	f/ _h	р	c/e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual	Prophylat
1		- / -		- /	⁷ h		' е	(c-a) (2	activity	activity
	Ø	5/5	3/3	3/3	5.93	3.72	3.71	,		
	60.0	1/3		3/3	>11.27		3.77	$>5.34 - \left[\frac{1.72 \times 1.77}{1.71} - 1.72\right]$	0.06	> 5.2
	100.0	0/3		3/3	>14		3.74	$> 8.07 - \left[\frac{1.72 \times 1.74}{1.71} - 1.72\right]$	0.03	>8.0

5 7 7				ι				,		
**				•			,			
										(*) (*)
4										

60-100 MINIMUM FULLY ACTIVE DOSE..

RESIDUAL ACTIVITY: Nil at 100.0 mg/kg

PRINCIPAL INVE

NO.: BR 531

DATE: 26.11.76

TABLE 41

LIV/1403

WR 228327

BOTTLE NO. BG60698

H₂O

ROUTE OF ADMINISTRATION: مراء /sc/po TIME AFTER INFECTION: 2 hrs.

mice

PARASITE (SUB) SPECIES: P. y. nigeriensis STRAIN: NIG

	3MP 2% P		(a = 2) ACTIVITY			
f/ _h	b	c/ _e	$(h - f) - \frac{(b - a)(e - a)}{(c - a)} - (b - a)$	Residual	Prophylactic	COMMENT
/h		<u> 7 е</u>	(c-a) 1	activity	activity	
5.93	3.72	3.71				•
f/h 5.93 >11.27 >14		3.77	$>5.34 - \left[\frac{1.72 \times 1.77}{1.71} - 1.72\right]$	0.06	≥ 5.28	Active
> 14		3.74	$> 8.07 - \left[\frac{1.72 \times 1.74}{1.71} - 1.72\right]$	0.03	>8.04	Fully active
\$ 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
			•			
** 5 5 5 7 7						
						-

DOSE. 60-100

Nil at 100.0 mg/kg

BR 563

DATE: 17.1.77

DRUG:

LIV/1402

WR 228002

BOTTLE NO.

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: 4p/sc/po

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

DOSE	PAT	ENCY RA	TE	(3MP 2%	P	(a = 2) ACTIVITY		. 6
mg/kg	C°/ _T °	ХС	c×/ _T ×	f/h	b	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual activity	Prophyl a activity
Ø	5/5	3/3	3/3	5.35	4.95	3.63			
3.0	0/3		3/3	>14.00		4.05	$> 8.65 - \frac{2.95 \times 2.05}{1.63} - 2.95$	0.75	> 7.0
10.0	0/3		3/3	>14.00		3,91	$> 8.65 - \frac{2.95 \times 1.91}{1.63} - 2.95$	0.51	> 8.
30.0	0/3*		0/3**	>14.00		3			2
									3 A
			,						Proceedings.

RESIDUAL ACTIVITY:

Nil at 10.0 mg/kg

PRINCIPAL INVE

* 2/3 died 1** 3/3 died

NO.: BR 563 DATE: 17.1.77

TABLE 42

LIV/1402

WR 228002

BOTTLE NO. BG 58189

ROUTE OF ADMINISTRATION: موز sc/po TIME AFTER INFECTION: 2 hrs.

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

G	MP 2% I	P	(a = 2) ACTIVITY			
f/h	b	c/ _e	$(h - f) - \frac{(b - a)(e - a)}{(c - a)} - (b - a)$		Prophylactic activity	COMMENT
5.35	4.95	3.63				•
5.35 14.00		4.05	$> 8.65 - \frac{2.95 \times 2.05}{1.63} - 2.95$	0.76	> 7.89	Fully active
14.00		3.91	$> 8.65 - \left[\frac{2.95 \times 1.91}{1.63} - 2.95\right]$	0.51	> 8.14	Fully active
14.00		-				∼ LD ₈₀
						· .
						e

OSE......≪3.0....mg/kg

at 10.0 mg/kg

PRINCIPAL INVESTIGATOR: Professor W. Peters

/3 died 1** 3/3 died

DATE: 17.1.77

DRUG:

LIV/1401

WR 227988

BOTTLE NO. BG 58

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: 4p/sc/po

TIME AET

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

Į									
DOSE .	PAT	ENCY RA	\TE	(3MP 2% P	Р	(a = 2) ACTI VITY	VALUES	2.75
mg/kg	C°/ _T 0	XC	C ^x / _T x	f/ _h	Ь	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual	Prophylact!
	, ,			'h		́е	(c-a) (1	activity	activity
ø	5/5	3/3	3/3	5.35	4.95	3.63		,	
100.0	3/3		3/3	5.11		3.40	$-0.24 - \left[\frac{2.95 \times 1.40}{1.63} - 2.95\right]$	-0.41	0.17
300.0	3/3		3/3	5.35		3.72	$0 - \left[\frac{2.95 \times 1.72}{1.63} - 2.95 \right]$	0.16	-0.16
									34.300
			•						
٤			,						
<u> </u>									

MINIMUM FULLY ACTIVE DOSE.....

RESIDUAL ACTIVITY: Nil at 300.0 mg/kg

PRINCIPAL INVEST

NO.: BR 563

DATE: 17.1.77

TABLE 43

LIV/1401

WR 227988

BOTTLE NO. BG 58447

ROUTE OF ADMINISTRATION: مور sc/po TIME AFTER INFECTION: 2 hrs.

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

<u></u>	3MP 2%	P	(a = 2) ACTIVITY	VALUES			
f/h 5.35 5.11 5.35	b	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$		Prophylactic activity	. C	OMMENT
5.35	4.95	3.63		•			•
5.11		3.40	$-0.24 - \left[\frac{2.95 \times 1.40}{1.63} - 2.95\right]$	-0.41	0.17	Inactive	
5.35		3.72	$0 - \left[\frac{2.95 \times 1.72}{1.63} - 2.95 \right]$	0.16	-0.16	Inactive	
()							
*							

OSE.....mg/kg

Nil at 300.0 mg/kg

DATE: 17.1.77

DRUG:

LIV/ 1400

WR 228000

BOTTLE NO.

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: 10/sc/po

You TIME

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

DOCE	PAT	ENCY RA	TE	(3MP 2% 1	•	(a = 2) ACTIVITY	VALUES	773
DOSE mg/kg	C°/ _{T°}	хс	c [×] / _T ×	f/ _h	b	c/ _e	$(h - f) - \frac{(b - a)(e - a)}{(c - a)} - (b - a)$	Residual activity	Prophyli activit
Ø	5/5	3/3	3/3	5.35	4.95	3.63			Part State
60.0	0/3*		1/3**	-		4.18		,	
								,	34. 16000
							, , , , , , , , , , , , , , , , , , , ,		, 4
									1977
<u> </u>							,		10 g
			,			,	,	,	200
; ;	<u> </u>	L	l		<u> </u>			<u> </u>	——————————————————————————————————————

MINIMUM FULLY ACTIVE DOSE.....mg/kg

RESIDUAL ACTIVITY:

PRINCIPAL INV

*3/3 died ** 2/3 died

ST NO.: BR 563

DATE: 17.1.77

TABLE44

LIV/ 1400

WR 228000

BOTTLE NO. BG58367

/H₂O

ROUTE OF ADMINISTRATION: 3/sc/po TIME AFTER INFECTION: 2 hrs.

W mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

	GMP 2%	D ,	(a = 2) ACTIVITY	VALUES		
f/h 5.3	b	c/e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$		Prophylactic activity	COMMENT
5.3	5 4.95	3.63		,		•
-		4.18		`		∼ ^{LD} 80
4						
· · · · · · · · · · · · · · · · · · ·				,		,
4	,					
			,			
						-

Æ				
				.mg/kg
ı'n	CC.			
3417	しょうじょ	 	 	 . moz ko
	~~.	 	 	 פיי עביייי

PRINCIPAL INVESTIGATOR: Professor W. Peters

2/3 died

BR564

DATE: 20.1.77

DRUG:

LIV/1399

WR 227681

BOTTLE NO.

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: بور المرادر المرادر

DO TIME

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		` 	<u></u>
mg/kg $C^0/_{T^0}$ XC $C^\times/_{T^\times}$ f/h b $c/_{e}$ $(h-f) = \frac{(b-d)(e-d)}{(c-a)} - (b-a)$ Residual Propriation $0.0 \ 1/3$ $3/3 \ 2/2 \ 5.30 \ 3.67 \ 4.05$ $3.85 \ > 5.87 = \frac{1.67 \times 1.85}{2.05} - 1.67 \ -0.16 \ > 0.16$	DOCE	PA.	TE GMP 2% P (a = 2) ACTIVITY VALUES
60.0 1/3 3/3 >11.17 3.85 > 5.87 $-\frac{1.67 \times 1.85}{2.05} - 1.67 - 0.16$ >		C°/ _{T°}	$C^{\times}/_{T^{\times}}$ $f/_{h}$ b $c/_{e}$ $(h-f)-\frac{(b-a)(e-a)}{(c-a)}-(b-a)$ Residual Prophylactivity activity
	Ø	5/5	
100.0 0/3 0/3 >14.00 >14.00 >8.70 $-\left[\frac{1.67 \times 12.00}{2.05} - 1.67\right]$ 8.11 >	60.0	1/3	
	100.0	0/3	$0/3$ >14.00 >8.70 - $\left[\frac{1.67 \times 12.00}{2.05} - 1.67\right]$ 8.11 >0.
	•		
	•		

MINIMUM FULLY ACTIVE DOSE. 60-100 ...mg/kg

RESIDUAL ACTIVITY: Very marked at 100 mg/kg

PRINCIPAL INVES

NO.: BR564

©/ 1.a: ±0.1.77

TABLE 45

LIV/1399

WR 227681

BOTTLE NO. BG 56612

POLITE OF

ROUTE OF ADMINISTRATION: 3p/sc/po TIME AFTER INFECTION: 2 hrs.

nice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

	3MP 2%	P	(a = 2) ACTIVITY	37		
f/ _h	b	c/	$(h-f) - \frac{(b-a)(e-a)}{(c-a)} - (b-a)$		Prophylactic	COMMENT
" h		c/ _e	(c - a) (c - 1)	activity	activity	
5.30	3.67	4.05		,		•
1.17		3.85	$> 5.87 - \frac{1.67 \times 1.85}{2.05} - 1.67$	-0.16	>6.03	Active
14.00		>14.00	$> 8.70 - \left[\frac{1.67 \times 12.00}{2.05} - 1.67 \right]$	8.11	>0.59	Proph; 'actic activity masked by strong residual activity
						•

marked at 100 mg/kg

DATE: 20.1.77

DRUG:

LIV/1395

WR 199361

BOTTLE NO.

PREPARATION: Tween 80/H2O

ROUTE OF ADMINISTRATION: 4p/sc/po

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

									- 183
DOCE	PAT	ENCY RA	TE		3MP 2% 1	P	(a = 2) ACTI VITY	VALUES	
mg/kg	c°/ _{T°}	ХС	c _x / ₁ ×	f/ _h	b	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual, activity	Prophyl a activit y
Ø	5/5	3/3	2/2	5.30	3.67	4.05		,	
1.0	3/3		3/3	6.35		3.95	$1.05 - \left[\frac{1.67 \times 1.95}{2.05} - 1.67 \right]$	-0.08	l d
3.0	0/6		3/3	>14.00		4 . 78	$> 8.70 - \left[\frac{1.67 \times 2.78}{2.05} - 1.67\right]$	0.59	>8
10.0	0/3		3/3	≥14.00		5.61	$> 8.70 - \left[\frac{1.67 \times 3.61}{2.05} - 1.67 \right]$	1.27	>7.4
							·		
			•			·			Same do
			,						A Million of the state of the s
	Ø 1.0 3.0	Mg/kg C°/ _T ° Ø 5/5 1.0 3/3 3.0 0/6	Ø 5/5 3/3 1.0 3/3 3.0 0/6	mg/kg C°/ _{T°} XC C ^X / _T × Ø 5/5 3/3 2/2 1.0 3/3 3/3 3.0 0/6 3/3	mg/kg $C^{\circ}/_{T^{\circ}}$ XC $C^{\times}/_{T^{\times}}$ $f/_{h}$ Ø $5/5$ $3/3$ $2/2$ 5.30 1.0 $3/3$ $3/3$ 6.35 3.0 $0/6$ $3/3$ >14.00	MOSE mg/kg C°/T° XC C*/T× f/h b Ø 5/5 3/3 2/2 5.30 3.67 1.0 3/3 3/3 6.35 3.0 0/6 3/3 >14.00	mg/kg $C^{\circ}/_{T^{\circ}}$ XC $C^{\times}/_{T^{\times}}$ $f/_{h}$ b $c/_{e}$ Ø $5/5$ $3/3$ $2/2$ 5.30 3.67 4.05 1.0 $3/3$ $3/3$ 6.35 3.95 3.0 $0/6$ $3/3$ >14.00 4.78	DOSE mg/kg C°/ _T o XC C ^x / _T x f/ _h b c/ _e (h - f) - $\left[\frac{(b-a)(e-a)}{(c-a)} - (b-a)\right]$ Ø 5/5 3/3 2/2 5.30 3.67 4.05 1.0 3/3 3/3 6.35 3.95 1.05 - $\left[\frac{1.67 \times 1.95}{2.05} - 1.67\right]$ 3.0 0/6 3/3 >14.00 4.78 > 8.70 - $\left[\frac{1.67 \times 2.78}{2.05} - 1.67\right]$	DOSE mg/kg C°/ _T o XC C ^x / _T x f/ _h b c/ _e (h - f) - $\frac{[(b - a)(e - a)]}{(c - a)}$ - (b - a) Residual activity Ø 5/5 3/3 2/2 5.30 3.67 4.05 1.0 3/3 3/3 6.35 3.95 1.05 - $\frac{[1.67 \times 1.95}{2.05}$ - 1.67 -0.08 3.0 0/6 3/3 >14.00 4.78 > 8.70 - $\frac{[1.67 \times 2.78}{2.05}$ - 1.67 0.59

1.0-3.0 MINIMUM FULLY ACTIVE DOSE.... .mg/kg '

RESIDUAL ACTIVITY: Nil at 3.0 mg/kg Slight at 10.0 mg/kg PRINCIPAL INVÉ

ST NO.: BR 564

DATE: 20.1.77

TABLE 46

LIV/1395

WR 199361

BOTTLE NO. BG 47168

0/H₂O

ROUTE OF ADMINISTRATION: مر/sc/po TIME AFTER INFECTION: 2 hrs.

FW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

	GMP 2% P			(a = 2) ACTIVITY				
×	f/h	b	c/ _e	$(h - f) - \frac{(b - a)(e - a)}{(c - a)} - (b - a)$	Residual activity	Prophylactic activity	COMMENT	
X 2	5.30	3.67	4.05		,			
3	6.35		3.95	$1.05 - \left[\frac{1.67 \times 1.95}{2.05} - 1.67 \right]$	-0.08	1,13	Inactive	
	>14.00		4 . 78	$> 8.70 - \left[\frac{1.67 \times 2.78}{2.05} - 1.67\right]$	0.59	>8.11	Fully active	
25.5	≥14.00		5.61	$> 8.70 - \left[\frac{1.67 \times 3.61}{2.05} - 1.67 \right]$		>7.43	Fully active	

					4014		-	

1.0-3.0 VE DOSE....

Nil at 3.0 mg/kg Slight at 10.0 mg/kg

DATE: 6.12.76

DRUG:

LIV/1394

WR 226626

BOTTLE NO. BG

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: ip/sc/po

TIME A

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

3									4(%)
DOCE	PAT	ENCY RA	NTE		3MP 2% 1		(a = 2) ACTIVITY		
DOSE .	C°/ _T 0	VC	C ^X / _T X	۲/	L	-/	$(b-c)$ $\Gamma(b-a)(e-a)$	Residual	Prophylac
mg/kg	C/To	XC	C/ _T x	f/h	b	c/e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	activity	activity
Ø	5/5	3/3	3/3	5.10	5.02	3.59			
1.0	2/3		3/3	>8.10		3.53	$>$ 3.00 - $\left[\frac{3.02 \times 1.53}{1.59} - 3.02\right]$	-0.11	>3.1
3.0	0/3	•	3/3	>14		3.45	L 1.07		
10.0	0/3		2/2	>14		3.68	$>8.90 - \frac{3.02 \times 1.68}{1.59} - 3.02$	0.17	>8.73
									() () ()
			·			,			1000000
			,						0 0 . 18
\$ F.									

MINIMUM FULLY ACTIVE DOSE....1.0-3.0

RESIDUAL ACTIVITY: Nil at 10.0 mg/kg

PRINCIPAL INVES

NO .: BR 536

DATE: 6.12.76

TABLE 47

LIV/1394

WR 226626

BOTTLE NO. BG46714

ROUTE OF ADMINISTRATION: اجز sc/po TIME AFTER INFECTION: 2 hrs.

Vimice

PARASITE (SUB) SPECIES: P. y. nigeriensis STRA! N: NIG

20.					
GMP 2	% P	(a = 2) ACTIVITY			
f/h b	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual activity	Prophylactic activity	COMMENT
5.10 5.0	2 3.59			i	•
>8.10	3.53	$> 3.00 - \left[\frac{3.02 \times 1.53}{1.59} - 3.02\right]$	-0.11	> 3,11	Slightly active
> 14	3,45	$> 8.90 - \left[\frac{3.02 \times 1.45}{1.59} - 3.02\right]$	-0.27	>9.17	Fully active
514	3.68	$>8.90 - \left[\frac{3.02 \times 1.68}{1.59} - 3.02\right]$	0.17	>8.73	Fully active

DOSE...1.0-3.0

Nil at 10.0 mg/kg

DATE: 30.11.76

DRUG:

LIV/ 1393

WR 226426

BOTTLE NO. B

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: بالمراجة sc/po

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

řί									. 1/1
DOCE	PAT	ENCY R	ATE		3MP 2%	Ρ	(a = 2) ACTIVITY	VALUES	. 4
DOSE mg/kg	C°/ _{T°}	ХС	c*/ _T ×	f/h	b	c/ _e	$(h-f)-[\frac{(b-a)(e-a)}{(c-a)}-(b-a)]$	Residual activity	Prophyl a activity
Ø	<i>:</i> /5	3/3	3/3	5.26	3.67	3.66		;	
0.3	2/3		3/3	>8.71		4.01	$> 3.45 - \left[\frac{1.67 \times 2.01}{1.66} - 1.67\right]$	0.35	>3.
1.0	1/3		3/3	>11.60		4.15	$>6.34 - \left[\frac{1.67 \times 2.15}{1.66} - 1.67\right]$	0.49	>5.8
3.0	0/3		3/3	>14		3.92	$>$ 3.74 - $\left[\frac{1.67 \times 1.92}{1.66} - 1.67\right]$	0.26	>8.4
									4
). } }			•						3 2 3 3
									100

MINIMUM FULLY ACTIVE DOSE. 1.0 - 3.0 m

RESIDUAL ACTIVITY: Nil at 3.0 mg/kg

PRINCIPAL INVE

EŠT NO.: BR 532

DATE: 30.11.76

TABLE 48

LIV/ 1393

WR 226426

BOTTLE NO. BG 45208

0/H₂O

ROUTE OF ADMINISTRATION: اون sc/po TIME AFTER INFECTION: 2 hrs.

FW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

212								Ξ.
120	(3MP 2% 1)	(a = 2) ACTIVITY	VALUES			? \$
×	f/ _h	b	c/ _e	$(h - f) - \frac{(b - a)(e - a)}{(c - a)} - (b - a)$	Residual activity	Prophylactic activity	COMMENT	
3	5,26	3.67	3.66		:		•	12
3	>8.71		4.01	$> 3.45 - \left[\frac{1.67 \times 2.01}{1.66} - 1.67\right]$	0.35	> 3.10	Slightly active	* * * * *
3	>11.60		4.15	$>6.34 - \left[\frac{1.67 \times 2.15}{1.66} - 1.67\right]$	0.49	>5.85	Active	Property and a
3	>14		3.92	$> 3.74 - \left[\frac{1.67 \times 1.92}{1.66} - 1.67 \right]$	0.26	>8.48	Fully active	-
								•
								•
Disk St							•	

il at 3.0 mg/kg

DATE: 6.12.76

DRUG:

LIV/ 1392

WR 215761

BOTTLE NO. BEN

PREPARATION: Tween 80/H20

ROUTE OF ADMINISTRATION: مرز sc/po

TIME A

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

DOSE	PATENCY RATE			(3MP 2%	P	(a = 2) ACTIVITY VALUES				
mg/kg	C°/ _{T°}	ХС	C ^x / _T x	f/h	Ь	c/ _e	$(h - f) - \frac{(b - a)(e - a)}{(c - a)} - (b - a)$	Residual activity	Prophyl as activit y		
Ť :. Ø	5/5	3/3	3/3	5.10	5.02	3.59			in the forest		
30.0	0/3		3/3	>14		3.52	$> 8.90 - \left[\frac{3.02 \times 1.52}{1.59} - 3.02 \right]$	-0.13	>9.2		
*									A Company		
\$ \$ \$			•		,	,			7		
: (ا ا دیکا ایملادیکنیگ		

RESIDUAL ACTIVITY:

Nil at 30.0 mg/kg

PRINCIPAL INVES

NO.: BR 536

DATE: 6.12.76

TABLE 49

LIV/ 1392

WR 215761

BOTTLE NO. BE 16967

ROUTE OF ADMINISTRATION: موزي sc/po TIME AFTER INFECTION: 2 hrs.

mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

<u> </u>	3MP 2% I	Þ	(a = 2) ACTIVITY			
f/h 5.10	b	c/ _e	$(h - f) - [\frac{(b - a)(e - a)}{(c - a)} - (b - a)]$		Prophylactic activity	COMMENT
5.10	5.02	3.59		·		•
<u>></u> 14		3.52	$> 8.90 - \left[\frac{3.02 \times 1.52}{1.59} - 3.02 \right]$	-0.13	>9.20	Fully active
a year						

'n	,	: F	:				<		30	j														.mg/	16	_
	٠,	,	•	٠	٠	٠	•	ē	٠.	•	٠	٠	•	•	٠	٠	•	٠	٠	٠	•	٠	٠	• mg/	v.F	j

Nil at 30.0 mg/kg

DATE: 6.12.76

DRUG:

LIV/1391

WR 226296

BOTTLE NO.

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: نمر/sc/po

TIANÉ

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

							3,00				
DOSE	PAT	ENCY R	TE	(3MP 2%	Ρ	(a = 2) ACTIVITY	VALUES	(تهـُر سې د د د د د د د د د د د د د د د د د د د		
mg/kg	c°/ _{T°}	хс	c ^x / _T x	f/ _h	b	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual activity	Prophý activi		
Ø	5/5	3/3	3/3	5.10	5.02	3.59	·				
0.3	3/3		3/3	5.01		3.83	$-0.09 - \left[\frac{3.02 \times 1.83}{1.59} - 3.02\right]$	0.46	-0		
1.0	2/3		3/3	>8.47		4.51	$>$ 3.37 - $\left[\frac{3.02 \times 2.51}{1.59} - 3.02\right]$	1,75	>1		
									2 mg		
						-			2 m		
			•				,				
								1,53			

RESIDUAL ACTIVITY: Slight at 1.0 mg/kg

PRINCIPAL INV

NO.: BR 536

DATE: 6.12.76

TABLE 50

LIV/1391

WR 226296

BOTTLE NO. BG44452

/H₂O

ROUTE OF ADMINISTRATION: مراجد TIME AFTER INFECTION: 2 hrs.

Wimice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

	-	2 MD 20/ 1		/ - O ACTIVITY	VALUE		
		3MP 2% 1		$(a = 2) \overrightarrow{ACTIVITY}$ $(h - f) - \left[\frac{(b - a)(e - a)}{(c - a)} - (b - a) \right]$		Prophylactic	COMMENT
N. CO	f/ _h	b	c/ _e	$(h - f) - \frac{(b - a)(e - a)}{(c - a)} - (b - a)$	activity	activity	
	5.10	5.02	3.59		•		•
	5.01		3.83	$-0.09 - \left[\frac{3.02 \times 1.83}{1.59} - 3.02\right]$	0.46	-0.55	Inactive
	>8.47		4.51	$> 3.37 - \left[\frac{3.02 \times 2.51}{1.59} - 3.02\right]$	1,75	>1.62	Slightly active
							, .
対の対象				·			
~							

EDOSE...>1.0

light at 1.0 mg/kg

DATE: 6.12.76

DRUG:

LIV/ 1390

WR 211533

BOTTLE NO. BG

PREPARATION: Tween 80/H2O

ROUTE OF ADMINISTRATION: پنج/sc/po

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

S									4.75
DOCE	PAT	ENCY RA	NTE	(3MP 2% 1	P	(a = 2) ACTIVITY	VALUES	*, , , , , , , , , , , , , , , , , , ,
DOSE .	00/	V.C	C ^X / _T x	c/ ·	i.		$(h-f) - \frac{(b-a)(e-a)}{(c-a)} - (b-a)$	Residual	Prophylo
mg/kg	C°/ _T °	XC	C/TX	f/h	b	c/ _e	(n-1) $(c-a)$ $(b-a)$	activity	activit
Ø	5/5	3/3	3/3	5.10	5.02	3.59			**************************************
Ø	3/3	3/3	3/3	5.10	3.02	3,37		<u> </u>	,;Q
100.0	3/3		3/3	5.39		3 . 75	$0.29 - \left[\frac{3.02 \times 1.75}{1.59} - 3.02 \right]$	0.30	-0 .
150.0	3/3		2/3*	5.90		3.54	$0.80 - \left[\frac{3.02 \times 1.54}{1.59} - 3.02 \right]$	-0.10	0.
									- 100 mg
									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			·						
			•						
		·							1

MINIMUM FULLY ACTIVE DOSE.....

RESIDUAL ACTIVITY: Nil at 150.0 mg/kg

PRINCIPAL INVE

* 1/3 died

EST NO.: BR 536

DATE: 6.12.76

TABLE 51

LIV/ 1390

WR 211533

BOTTLE NO. BG 38034

0/H₂O

ROUTE OF ADMINISTRATION: 10/sc/po TIME AFTER INFECTION: 2 hrs.

FW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

- T	(3MP 2% 1					
	f/h	b	ç/ _e	$(a = 2) ACTIVITY$ $(h - f) - \left[\frac{(b - a)(e - a)}{(c \cdot a)} - (b - a) \right]$		Prophylactic activity	COMMENT
3	5.10	5.02	3.59				
33	5,39		3.75	$0.29 - \left[\frac{3.02 \times 1.75}{1.59} - 3.02 \right]$	0.30	-0.01	Inactive
/ 3*	5.90		3.54	$0.80 - \left[\frac{3.02 \times 1.54}{1.59} - 3.02 \right]$	-0.10	0.90	Inactive
A CONTRACTOR							
à drope i							
				. (
							-

VE DOSE.....mg/kg

Nil at 150.0 mg/kg

PRINCIPAL INVESTIGATOR: Professor W. Peters

1/3 died

DATE: 30.11.76

DRUG:

LIV/1387

WR 219874

BOTTLE NO. BE

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: 3p/sc/po

TIME

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

DOSE ,	PATENCY RATE			(3MP 2%	Р	(a = 2) ACTI VITY VALUES			
mg/kg	C°/ _T °	XC	c _x / _{tx}	f/ _h	Ь	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right] \begin{array}{ c c c c c c c c c c c c c c c c c c c$	yla vity		
Ø	5/5	3/3	3/3	5.26	3.67	3.66		*****		
1.0	1/3		3/3	>11.30		4.33	$> 6.04 - \left[\frac{1.67 \times 2.33}{1.66} - 1.67\right] 0.67 > 0.67$	5.5		
3.0	0/3		3/3	>14		4.66	P1 / P	7.7		
								£ £ \$, , , ,		
								of Ske		
			•			,		12.00		
)).			,					£ 4.2		

1.0 - 3.0 mg/kg MINIMUM FULLY ACTIVE DOSE.....

RESIDUAL ACTIVITY: Slight at 3.0 mg/kg PRINCIPAL INVES

NO.: BR532

DATE: 30.11.76

TABLE 52

LIV/1387

WR 219874

BOTTLE NO. BE 79802

/H₂O

ROUTE OF ADMINISTRATION: ip/sc/po TIME AFTER INFECTION: 2 hrs.

V_{mice}

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

(GMP 2% 1)	(a = 2) ACTIVITY	COMMENT		
f/ _h	b	c/ _e	$(h-f)-\underbrace{(b-a)(e-a)}_{(c-a)}-(b-a)$	Residual activity	Prophylactic activity	COMMENT
5.26	3.67	3.66			· .	•
>11.30		4.33	$> 6.04 - \left[\frac{1.67 \times 2.33}{1.66} - 1.67 \right]$	0.67	> 5.37	Active
>14		4.66	$> 8.74 - \left[\frac{1.67 \times 2.66}{1.66} - 1.67\right]$	101	>7.73	Fully active
		`				
	,	,		`		
3y	,			,		

1.0 - 3.0 DOSE....

Slight at 3.0 mg/kg

DATE:30.11.76

DRUG:

LIV/1386

WR 217154

BOTTLE NO. BE

PREPARATION: Tween 80/H₂O

ROUTE OF ADMINISTRATION: 3p/sc/po TIME

VERTEBRATE HOST: OTFW mice

PARASITE (SUB) SPECIES: P. y. nigeriensis

ĎOČE	PATENCY RATE			GMP 2% P			(a = 2) ACTIVITY VALUES		
DOSE mg/kg	cº/ _T o	XC	c [×] / _T ×	f/ _h	b	c/ _e	$\frac{(d-2)ACHVIIIVALUES}{(h-f)-\frac{(b-a)(e-a)}{(c-a)}-(b-a)} \frac{\text{Résidual Prophyle activity activity}}{\text{Résidual Prophyle activity}}$		
Ø	5/5	3/3	3/3	5.26	3.67	3.66			
30.0	2/3	. ,	3/3	> 8.66		3.60	$> 3.40 - \left[\frac{1.67 \times 1.60}{1.66} - 1.67\right] -0.05 > 3.$		
60.0	1/3		3/3	≥11. 46	,	3.55	$>6.20 - \left[\frac{1.67 \times 1.55}{1.66} - 1.67\right] -0.11 > \hat{6}.$		
		-							
					,	-			
			•	-		ı.			
			•						

RESIDUAL ACTIVITY: Nil at 60.0 mg/kg

PRINCIPAL INVE

ST. NO.: BR532

DATE:30.11.76

TABLE 53

LIV/1386

WR 217154

BOTTLE NO. BE 67204

/H₂O

ROUTÉ OF ADMINISTRATION: 3p/sc/pg TIME AFTER INFECTION: 2 hrs.

Wmice

PARASITE (SUB) SPECIES: P. y. nigeriensis

STRAIN: NIG

G	MP 2% P	,	(a = 2) ACTI√ITY				
f/h	b	c/ _e	$(h-f)-\left[\frac{(b-a)(e-a)}{(c-a)}-(b-a)\right]$	Residual activity	Pròphylactic activity	COMMENT	
5.26	3.67	3.66				•	
> 8.66		3.60	$> 3.40 - \frac{1.67 \times 1.60}{1.66} - 1.67$	-0.06	>3.34	Slightly active	
11.46		3.55	$> 6.20 - \frac{1.67 \times 1.55}{1.66} - 1.67$	-0.11	>6.09	Active	
		-				:	

Nil at 60.0 mg/kg

TABLE 54

The relationship between parasitaemia and catheptic activity in P. berghei-infected mouse erythrocytes

Eunódimont	ن نگرند	Parasitaemia.	Catheptic activity per cell*				
Experiment	Duy	(%)	All cells	Parasitized cells			
,	·4 · .5	10 	1.98 1.22	19.8 6.8			
, , , , , , , , , , , , , , , , , , ,	7	29 39	1.73	5.9 3.7			
	.3 .5	5 14	2.55 2.85	51.0 20.4			
H .	6	30 38	4.43	14.54			
	10	42:	6.13	2.62			

^{*} arbitrary units

A comparison of the rate of acquisition of resistance to mefloquine by the chloroquine-sensitive <u>P. berghei</u> N strain and the NS line which has a low level of resistance to chloroquine.

- o—o N strain exposed to a single dose of 30 mg/kg mefloquine on the day of passage.
- •—• NS line exposed to 60 mg/kg mefloquine sc on the day of passage.

The acquisition of resistance to mefloquine by P. berghei NS line passaged under drug pressure (mefloquine 60 mg/kg sc at time of each passage), and its reversion to sensitivity on the release of drug selection pressure.

o-o passagės under drug pressure.

•-- passages without selection pressure.

FIGURE 3.

Rate of acquisition by <u>P. berghei</u> N strain of resistance to mefloquine, pyrimethamine and sulphaphenazole when the drugs are used alone. Consecutive passages were exposed to increasing drug doses, given daily for 6 days of each week, the passages being made on the 7th day.

Influence of combining mefloquine with pyrimethamine on the rate of acquisition of resistance to each drug by P. berghei in consecutive passages. Top lines indicate maximum levels of pyrimethamine and lower lines of mefloquine in the mixture at each passage (cf Figure 3).

Influence of combining mefloquine with sulphaphenazole on the rate of acquisition of resistance to each drug by P. berghei N strain in consecutive passages. Top lines indicate maximum levels of sulphaphenazole and bottom lines of mefloquine in the mixtures at each passage (cf Figure 3).

Influence of combining mefloquine with primaquine on the rate of acquisition of resistance to each drug by P. berghei in consecutive passages. Top lines indicate maximum level of primaquine in SP line exposed to primaquine alone. Middle line indicates maximum levels of primaquine and bottom of mefloquine in the mixtures at each passage.

Blood schizontocidal action of drug mixtures against P. berghei N strain in the "4 day test". The graphs are plotted to show the ED90 values of mefloquine when given alone or with different doses of (A) pyrimethamine, (B) primaquine, or (C) sulphaphenazole (o), or of the latter when given with different doses of mefloquine (e). (All doses in mg/kg daily x 4).

DISTRIBUTION_LIST

4 copies

HQDA (SGRD-RP) WASH DC 20314

12 dopies Defensé Documentation Center (DDC)

ATTN: DDC-TCA Cameron Station

Alexandria, Virginia 22314

1 copy Superintendent

Academy of Health Sciences, US Army

ATTN: AHS-COM

Fort Sam Houston, Texas 78234

1 copy Dean

School of Medicine Uniformed Services University of the

Health Sciences

Office of the Secretary of Defense

6917 Arlington Road Bethesda, ND 20014