Class08 mini-project

Samuel Do (PID:A15803613)

2/10/2022

```
# 1) Exploratory Data Analysis
# Input data

fna.data <- "WisconsinCancer.csv"
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

```
##
             diagnosis radius_mean texture_mean perimeter_mean area_mean
                                            10.38
                              17.99
## 842302
                     Μ
                                                           122.80
                                                                     1001.0
## 842517
                     Μ
                              20.57
                                            17.77
                                                           132.90
                                                                     1326.0
                              19.69
## 84300903
                                                           130.00
                     Μ
                                            21.25
                                                                     1203.0
## 84348301
                     Μ
                              11.42
                                            20.38
                                                           77.58
                                                                      386.1
## 84358402
                     Μ
                              20.29
                                            14.34
                                                           135.10
                                                                     1297.0
##
   843786
                     Μ
                              12.45
                                            15.70
                                                            82.57
                                                                      477.1
##
             smoothness_mean compactness_mean concavity_mean concave.points_mean
## 842302
                     0.11840
                                       0.27760
                                                        0.3001
                                                                             0.14710
## 842517
                     0.08474
                                       0.07864
                                                        0.0869
                                                                             0.07017
## 84300903
                     0.10960
                                       0.15990
                                                        0.1974
                                                                             0.12790
## 84348301
                     0.14250
                                       0.28390
                                                        0.2414
                                                                             0.10520
## 84358402
                                                        0.1980
                     0.10030
                                       0.13280
                                                                             0.10430
## 843786
                     0.12780
                                       0.17000
                                                        0.1578
                                                                             0.08089
             symmetry mean fractal dimension mean radius se texture se perimeter se
##
## 842302
                    0.2419
                                           0.07871
                                                       1.0950
                                                                   0.9053
                                                                                  8.589
## 842517
                    0.1812
                                            0.05667
                                                       0.5435
                                                                   0.7339
                                                                                  3.398
## 84300903
                    0.2069
                                            0.05999
                                                       0.7456
                                                                   0.7869
                                                                                  4.585
## 84348301
                    0.2597
                                            0.09744
                                                       0.4956
                                                                                  3.445
                                                                   1.1560
## 84358402
                    0.1809
                                            0.05883
                                                       0.7572
                                                                   0.7813
                                                                                  5.438
## 843786
                    0.2087
                                            0.07613
                                                       0.3345
                                                                   0.8902
                                                                                  2.217
##
             area_se smoothness_se compactness_se concavity_se concave.points_se
                                           0.04904
                                                          0.05373
## 842302
              153.40
                          0.006399
                                                                             0.01587
## 842517
               74.08
                          0.005225
                                            0.01308
                                                          0.01860
                                                                             0.01340
## 84300903
               94.03
                          0.006150
                                            0.04006
                                                          0.03832
                                                                             0.02058
                                            0.07458
## 84348301
               27.23
                          0.009110
                                                          0.05661
                                                                             0.01867
                                                                             0.01885
## 84358402
              94.44
                          0.011490
                                           0.02461
                                                          0.05688
## 843786
               27.19
                          0.007510
                                           0.03345
                                                          0.03672
                                                                             0.01137
##
             symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302
                 0.03003
                                      0.006193
                                                       25.38
                                                                      17.33
## 842517
                 0.01389
                                      0.003532
                                                       24.99
                                                                      23.41
## 84300903
                 0.02250
                                      0.004571
                                                       23.57
                                                                      25.53
## 84348301
                 0.05963
                                      0.009208
                                                       14.91
                                                                      26.50
## 84358402
                 0.01756
                                      0.005115
                                                       22.54
                                                                      16.67
## 843786
                 0.02165
                                      0.005082
                                                       15.47
                                                                      23.75
##
             perimeter worst area worst smoothness worst compactness worst
## 842302
                      184.60
                                  2019.0
                                                    0.1622
                                                                       0.6656
## 842517
                      158.80
                                  1956.0
                                                    0.1238
                                                                       0.1866
## 84300903
                      152.50
                                                    0.1444
                                                                       0.4245
                                  1709.0
## 84348301
                       98.87
                                   567.7
                                                    0.2098
                                                                       0.8663
## 84358402
                      152.20
                                  1575.0
                                                    0.1374
                                                                       0.2050
## 843786
                      103.40
                                   741.6
                                                    0.1791
                                                                       0.5249
##
             concavity worst concave.points worst symmetry worst
## 842302
                      0.7119
                                             0.2654
                                                             0.4601
## 842517
                      0.2416
                                             0.1860
                                                             0.2750
## 84300903
                      0.4504
                                             0.2430
                                                             0.3613
## 84348301
                      0.6869
                                             0.2575
                                                             0.6638
## 84358402
                      0.4000
                                             0.1625
                                                             0.2364
## 843786
                      0.5355
                                             0.1741
                                                             0.3985
##
             fractal dimension worst
## 842302
                              0.11890
## 842517
                              0.08902
```

## 84300903	0.08758
## 84348301	0.17300
## 84358402	0.07678
## 843786	0.12440

```
# Alter dataframe to remove "diagnosis" column
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

##		radius_mean text	ture_mean	perimete	er_mean	area_mean	smoothn	ess_mean
##	842302	17.99	10.38		122.80	1001.0		0.11840
##	842517	20.57	17.77		132.90	1326.0		0.08474
##	84300903	19.69	21.25		130.00	1203.0		0.10960
##	84348301	11.42	20.38		77.58	386.1		0.14250
##	84358402	20.29	14.34		135.10	1297.0		0.10030
##	843786	12.45	15.70		82.57	477.1		0.12780
##		compactness_mean	n concavit	ty_mean o	concave.	points_mea	an symme	try_mean
##	842302	0.2776	9	0.3001		0.147	10	0.2419
##	842517	0.07864	1	0.0869		0.070	17	0.1812
##	84300903	0.1599	9	0.1974		0.127	90	0.2069
##	84348301	0.2839	9	0.2414		0.105	20	0.2597
##	84358402	0.1328	9	0.1980		0.104	30	0.1809
##	843786	0.1700		0.1578		0.080		0.2087
##		fractal_dimension				e_se perim	eter_se	area_se
##	842302	(0.07871	1.0950	0.9	9053	8.589	153.40
	842517		0.05667			'339	3.398	74.08
##	84300903		0.05999	0.7456		'869	4.585	94.03
	84348301		0.09744	0.4956		.560	3.445	
	84358402		0.05883	0.7572		'81 3	5.438	94.44
	843786		0.07613	0.3345		3902	2.217	27.19
##		smoothness_se co						
	842302	0.006399		1904	0.0537		0.015	
	842517	0.005225		1308	0.0186		0.013	
	84300903			4006	0.0383		0.020	
	84348301			7458	0.0566		0.018	
	84358402			2461	0.0568		0.018	
	843786	0.007510		3345	0.0367		0.011	
##		symmetry_se frac						
	842302	0.03003		0.006193		25.38	17.	
	842517	0.01389		0.003532		24.99	23.	
	84300903			0.004571		23.57	25.	
		0.05963		0.009208		14.91	26.	
	84358402			0.005115		22.54	16.	
	843786	0.02165		0.005082		15.47	23.	
##	842302	perimeter_worst 184.60				.622		6656
	842517	158.80	2019	.0		1022		1866
	84300903					444		4245
	84348301					2098		8663
	84358402					.374		2050
	843786	103.40	741			1791		5249
##		concavity_worst						J24J
	842302	0.7119	concave.,		2654	0.460		
	842517	0.2416			1860	0.27		
	84300903				2430	0.36		
	84348301				2575	0.66		
	84358402				1625	0.23		
	843786	0.5355			1023 1741	0.39		
##	3.3700	fractal_dimension	on worst	0	-/ · -	0.55		
	842302		0.11890					
	842517		0.08902					
""								

```
# Store Diagnosis column as vector
# First store as factor and then as vector
library(tidyverse)
```

```
## -- Attaching packages ------ tidyverse 1.3.1 --
```

```
## v ggplot2 3.3.5 v purrr 0.3.4

## v tibble 3.1.6 v dplyr 1.0.7

## v tidyr 1.2.0 v stringr 1.4.0

## v readr 2.1.2 v forcats 0.5.1
```

```
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
```

```
diagnosis_list <- wisc.df[,1]
diagnosis_level <- c("B", "M")
diagnosis <- factor(diagnosis_list, level=diagnosis_level)
diagnosis</pre>
```

```
##
## [556] B B B B B B B M M M M M M B
## Levels: B M
```

```
# Factor with warning
diagnosis2 <- parse_factor(diagnosis_list, level=diagnosis_level)</pre>
```

[Q1] How many observations are in this dataset?
nrow(wisc.data)

[1] 569

- # There are 569 observations in the dataset.
- # [Q2] How many of the observations have a malignant diagnosis?
 table(diagnosis)

diagnosis ## B M ## 357 212

- # There are 212 malignant diagnosis observations.
- # [Q3] How many variables/features in the data are suffixed with _mean?
 length(grep("_mean", colnames(wisc.df)))

[1] 10

- # There are 10 variables in the data suffixed with _mean.
- # 2) Principal Component Analysis
- # Check if wisc.data needs to be scaled
 colMeans(wisc.data)

perimeter_mean	texture_mean	radius_mean	##
9.196903e+01	1.928965e+01	1.412729e+01	##
compactness_mean	smoothness_mean	area_mean	##
1.043410e-01	9.636028e-02	6.548891e+02	##
symmetry_mean	<pre>concave.points_mean</pre>	concavity_mean	##
1.811619e-01	4.891915e-02	8.879932e-02	##
texture_se	radius_se	<pre>fractal_dimension_mean</pre>	##
1.216853e+00	4.051721e-01	6.279761e-02	##
smoothness_se	area_se	perimeter_se	##
7.040979e-03	4.033708e+01	2.866059e+00	##
<pre>concave.points_se</pre>	<pre>concavity_se</pre>	compactness_se	##
1.179614e-02	3.189372e-02	2.547814e-02	##
radius_worst	<pre>fractal_dimension_se</pre>	symmetry_se	##
1.626919e+01	3.794904e-03	2.054230e-02	##
area_worst	perimeter_worst	texture_worst	##
8.805831e+02	1.072612e+02	2.567722e+01	##
concavity_worst	compactness_worst	smoothness_worst	##
2.721885e-01	2.542650e-01	1.323686e-01	##
ctal_dimension_worst	symmetry_worst	concave.points_worst	##
8.394582e-02	2.900756e-01	1.146062e-01	##

apply(wisc.data,2,sd)

```
radius mean
                                        texture mean
                                                               perimeter_mean
##
##
              3.524049e+00
                                        4.301036e+00
                                                                 2.429898e+01
##
                 area_mean
                                    smoothness_mean
                                                             compactness_mean
              3.519141e+02
                                        1.406413e-02
##
                                                                 5.281276e-02
##
            concavity_mean
                                concave.points mean
                                                                symmetry_mean
              7.971981e-02
                                        3.880284e-02
                                                                 2.741428e-02
##
    fractal_dimension_mean
##
                                           radius_se
                                                                   texture_se
##
              7.060363e-03
                                        2.773127e-01
                                                                 5.516484e-01
##
              perimeter_se
                                                                smoothness_se
                                             area_se
              2.021855e+00
                                        4.549101e+01
                                                                 3.002518e-03
##
##
            compactness_se
                                        concavity_se
                                                            concave.points_se
##
              1.790818e-02
                                        3.018606e-02
                                                                 6.170285e-03
                               fractal_dimension_se
##
               symmetry_se
                                                                 radius_worst
##
              8.266372e-03
                                        2.646071e-03
                                                                 4.833242e+00
##
             texture_worst
                                    perimeter_worst
                                                                   area_worst
##
              6.146258e+00
                                        3.360254e+01
                                                                 5.693570e+02
##
          smoothness_worst
                                  compactness_worst
                                                              concavity_worst
##
              2.283243e-02
                                        1.573365e-01
                                                                 2.086243e-01
##
      concave.points_worst
                                     symmetry_worst fractal_dimension_worst
##
              6.573234e-02
                                        6.186747e-02
                                                                 1.806127e-02
```

```
# Does need to be scaled due to high variance.

# Perform PCA on wisc.data
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

```
## Importance of components:
                                    PC2
                                                     PC4
                                                             PC5
                                                                     PC6
##
                             PC1
                                            PC3
                                                                             PC7
## Standard deviation
                          3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
## Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
## Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
##
                              PC8
                                                    PC11
                                                            PC12
                                                                    PC13
                                     PC9
                                            PC10
                                                                            PC14
## Standard deviation
                          0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
## Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
## Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
##
                             PC15
                                     PC16
                                             PC17
                                                     PC18
                                                              PC19
## Standard deviation
                          0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
## Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
## Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
##
                             PC22
                                     PC23
                                            PC24
                                                     PC25
                                                             PC26
## Standard deviation
                          0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
## Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
## Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
##
                             PC29
                                     PC30
## Standard deviation
                          0.02736 0.01153
## Proportion of Variance 0.00002 0.00000
## Cumulative Proportion 1.00000 1.00000
```

- # [Q4] From your results, what proportion of the original variance is captured by the first principal components (PC1)?
- # On the summary(wisc.pr), the proportion of variance that PC1 captures is 0.4427.
- # [Q5] How many principal components (PCs) are required to describe at least 70% of the original variance in the data?
- # Based on the summary(wisc.pr), 3 principal components are required to describe at least 70% of the original variance in the data.
- # [Q6] How many principal components (PCs) are required to describe at least 90% of the original variance in the data?
- # Based on the summary(wisc.pr), 7 principal components are required to describe at least 90% of the original variance in the data.

#Biplot of PCA results biplot(wisc.pr)

[Q7] What stands out to you about this plot? Is it easy or difficult to understand? Why?
Based on observations of the plot, a majority of PC1 and PC2 have variances that fall in betwe
en -0.1 and 0.1. However, a few IDs, such as 8710441, have variances not between -0.1 and 0.1. T
he biplot is difficult to understand because of how compact all the data is, making it difficult
to read.

Scatterplot of PC1 and PC2
plot(wisc.pr\$x[,1:2], col=diagnosis,
 xlab="PC1", ylab="PC2")

[Q8] Generate a similar plot for principal components 1 and 3. What do you notice about these
plots?
plot(wisc.pr\$x[,1], wisc.pr\$x[,3], col=diagnosis,
 xlab="PC1", ylab="PC3")

#It appears that PC3 has less variance than the PC2 plot since the more variance points for PC3 fall between -5 and 5 than PC2.

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
aes(PC1, PC2, col=df$diagnosis) +
geom_point()</pre>
```

Warning: Use of `df\$diagnosis` is discouraged. Use `diagnosis` instead.

#Calculate variance of each components
var.pr <- wisc.pr\$sdev^2
head(var.pr)</pre>

```
## [1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357
```

```
# Variance explained by each principal component: pve
pve <- var.pr/sum(head(var.pr))

# Plot variance explained for each principal component
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")</pre>
```



```
# Alternative scree plot of the same data, note data driven y-axis
barplot(pve, ylab = "Precent of Variance Explained",
    names.arg=paste0("PC",1:length(pve)), las=2, axes = FALSE)
axis(2, at=pve, labels=round(pve,2)*100 )
```


ggplot based graph
#install.packages("factoextra")
library(factoextra)

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

fviz_eig(wisc.pr, addlabels = TRUE)

[Q9] For the first principal component, what is the component of the loading vector (i.e. wis
c.pr\$rotation[,1]) for the feature concave.points_mean?
wisc.pr\$rotation[,1]

radius_mean texture_mean perimeter_mea	ean
-0.21890244 -0.10372458 -0.2275372	729
area_mean smoothness_mean compactness_mea	ean
-0.22099499 -0.14258969 -0.2392853	535
concavity_mean concave.points_mean symmetry_mea	ean
-0.25840048 -0.26085376 -0.1381669	696
fractal_dimension_mean radius_se texture_s	_se
-0.06436335 -0.20597878 -0.0174280	803
perimeter_se area_se smoothness_s	_se
-0.21132592 -0.20286964 -0.0145314	145
<pre>compactness_se</pre>	_se
-0.17039345 -0.15358979 -0.1834174	740
symmetry_se fractal_dimension_se radius_wors	rst
-0.04249842 -0.10256832 -0.2279966	663
texture_worst perimeter_worst area_wors	rst
-0.10446933 -0.23663968 -0.2248705	053
<pre>smoothness_worst compactness_worst concavity_wors</pre>	rst
-0.12795256 -0.21009588 -0.2287675	753
<pre>concave.points_worst</pre>	rst
-0.25088597 -0.12290456 -0.1317839	394

```
# The component of the loading vector for concave.poins_mean is -0.26085376.

# [Q10] What is the minimum number of principal components required to explain 80% of the varian ce of the data?

summary(wisc.pr)
```

```
## Importance of components:
##
                              PC1
                                     PC2
                                             PC3
                                                     PC4
                                                             PC5
                                                                      PC<sub>6</sub>
                                                                              PC7
## Standard deviation
                           3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
## Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
## Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
##
                               PC8
                                      PC9
                                             PC10
                                                    PC11
                                                            PC12
                                                                     PC13
## Standard deviation
                          0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
## Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
## Cumulative Proportion
                          0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
##
                              PC15
                                      PC16
                                              PC17
                                                      PC18
                                                              PC19
                                                                       PC20
## Standard deviation
                          0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
## Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
## Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
##
                              PC22
                                      PC23
                                             PC24
                                                     PC25
                                                              PC26
                                                                      PC27
                                                                              PC28
## Standard deviation
                          0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
## Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                          0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
## Cumulative Proportion
##
                              PC29
                                      PC30
## Standard deviation
                          0.02736 0.01153
## Proportion of Variance 0.00002 0.00000
## Cumulative Proportion 1.00000 1.00000
```

5 prinicipal components are required to explain 80% of the variance of the data.

```
# 3) Hierarchial Clustering

#Scale wisc.data
data.scaled <- scale(wisc.data)

# Calculate Euclidean distances between all pairs of observations in scaled dataset
data.dist <- dist(data.scaled)

# Create hierarchical clustering model using complete linkage
wisc.hclust <- hclust(data.dist, method="complete")

# [Q11] Using the plot() and abline() functions, what is the height at which the clustering mode
l has 4 clusters?
plot(wisc.hclust)
abline(h=19, col="red", lty=2)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
#Selecting number of clusters
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
## diagnosis
## wisc.hclust.clusters B M
## 1 12 165
## 2 2 5
## 3 343 40
## 4 0 2
```

#[Q12] Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)

```
table(wisc.hclust.clusters, diagnosis)
```

```
## diagnosis
## wisc.hclust.clusters B M
## 1 12 165
## 2 2 5
## 3 343 40
## 4 0 2
```

The best cluster vs diagnoses match is found by cutting into 4 clusters

```
wisc.hclust.single <- hclust(data.dist, method="single")
wisc.hclust.singles <- cutree(wisc.hclust.single, k=3)
table(wisc.hclust.singles, diagnosis)</pre>
```

```
## diagnosis
## wisc.hclust.singles B M
## 1 356 210
## 2 1 0
## 3 0 2
```

```
wisc.hclust.average <- hclust(data.dist, method="average")
wisc.hclust.averages <- cutree(wisc.hclust.average, k=3)
table(wisc.hclust.averages, diagnosis)</pre>
```

```
## diagnosis

## wisc.hclust.averages B M

## 1 355 209

## 2 2 0

## 3 0 3
```

```
wisc.hclust.wardD2 <- hclust(data.dist, method="ward.D2")
wisc.hclust.ward.D2 <- cutree(wisc.hclust.wardD2, k=9)
table(wisc.hclust.ward.D2, diagnosis)</pre>
```

```
##
                        diagnosis
## wisc.hclust.ward.D2
                            В
##
                       1
                               57
                            0
##
                       2
                               56
                            0
##
                       3
                            6
                               48
##
                       4
                          34
                               41
##
                       5 201
                                5
                                2
##
                       6
                           69
##
                       7
                           33
                                0
##
                       8
                           14
                                1
##
                                2
                            0
```

[Q13] Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

The ward.D2 method gave the better results as it was able to separate the data.dist dataset in to respective clusters based on diagnosis.

```
# K-means clustering
wisc.km <- kmeans(scale(wisc.data), centers=2, nstart=20)
table(wisc.km$cluster, diagnosis)</pre>
```

```
## diagnosis
## B M
## 1 14 175
## 2 343 37
```

```
#Compare to hclust results
table(wisc.hclust.clusters, wisc.km$cluster)
```

```
##
## wisc.hclust.clusters 1 2
## 1 160 17
## 2 7 0
## 3 20 363
## 4 2 0
```

[Q14] How well does k-means separate the two diagnoses? How does it compare to your hclust results?

The k-means method separates the two diagnoses fairly well as it designates the benign and mal ignant diagnoses into separate

```
# 5) Combining methods
```

```
# Use ward.D2 method to create hierarchical clustering model
dist <- data.dist
wisc.pr.hclust <- hclust(dist(wisc.pr$x[, 1:7]), method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

dist(wisc.pr\$x[, 1:7]) hclust (*, "ward.D2")

#Determining whether two main clusters indicate malignant and benign diagnoses
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)</pre>

```
## grps
## 1 2
## 216 353
```

table(grps, diagnosis)

```
## diagnosis
## grps B M
## 1 28 188
## 2 329 24
```

```
plot(wisc.pr$x[,1:2], col=grps)
```


plot(wisc.pr\$x[,1:2], col=diagnosis)


```
# Use distance along first 7 PCs for clustering
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
# Comparing to actual diagnosis
table(wisc.pr.hclust.clusters, diagnosis)</pre>
```

```
## diagnosis
## wisc.pr.hclust.clusters B M
## 1 28 188
## 2 329 24
```

[Q15] How well does the newly created model with four clusters separate out the two diagnoses? # The new model separates the two diagnosis well as a majority of each diagnosis is separated in to one of the clusters

[Q16] How well do the k-means and hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? table(wisc.km\$cluster, diagnosis)

```
## diagnosis
## B M
## 1 14 175
## 2 343 37
```

table(wisc.hclust.clusters, diagnosis)

```
##
                          diagnosis
## wisc.hclust.clusters
                             В
##
                         1
                            12 165
##
                             2
                                  5
                         2
##
                         3 343
                                40
##
                             0
                                  2
```

Both clustering models created separate the diagnosis into separate clusters very well.

```
# 6) Sensitivity/Specificity

# Sensitivity: test's ability to correctly detect ill patients with condition; TP/(TP+FN)

# Specificity: test's ability to correctly reject healthy patients w/o condition; TN/(TN+FN)

# [Q17] Which of your analysis procedures resulted in a clustering model with the best specificity? How about sensitivity?

# The k-means clustering method has the best specificity, while the combined clustering method u sing ward.D2 and hierarchical clustering had the best sensitivity.
```

```
# 7) Prediction

# Use predict() to project new cancer cell data onto previous PCA model
#url <- "new_samples.csv"

url <- "https://tinyurl.com/new-samples-CSV"

new <- read.csv(url)

npc <- predict(wisc.pr, newdata=new)

npc</pre>
```

```
##
             PC1
                      PC2
                                PC3
                                          PC4
                                                   PC5
                                                             PC6
                                                                       PC7
## [1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
## [2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945 0.8193031
                       PC9
                                PC10
                                         PC11
##
              PC8
                                                  PC12
                                                           PC13
## [1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
## [2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
##
            PC15
                      PC16
                                 PC17
                                            PC18
                                                       PC19
## [1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
##
                       PC22
                                 PC23
                                           PC24
                                                      PC25
## [1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
## [2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
                                     PC29
##
              PC27
                         PC28
## [1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
## [2,] -0.001134152 0.09638361 0.002795349 -0.019015820
```

```
# Plot new data onto previous PCA model
plot(wisc.pr$x[,1:2], col=grps)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```


[Q18] Which of these new patients should we prioritize for follow up based on your results?
Patient 2 should be prioritized since patient 1 is likely to be a true negative and therefore have a benign tumor.