Contents

1	Lattices		
	1.1	Definitions of Lattices	5
	1.2	Isomorphism Lattices, and Sublattices	7
	1.3	Distributive and Modular Lattices	9

```
% Created 2020-05-06 21:30 % Intended LATEX compiler: pdflatex [11pt]article
[utf8]inputenc [T1]fontenc graphicx grffile longtable wrapfig rotating [nor-
malem]ulem amsmath textcomp amssymb capt-of imakeidx hyperref minted
   [dvipsnames]xcolor
   forest qtree/.style= baseline, for tree= parent anchor=south, child an-
chor=north, align=center, inner sep=1pt,
   [utf8]inputenc mathtools pgfplots amsthm amsmath
   commath amsfonts amssymb bbm mathrsfs stmaryrd empheq tikz tikz-
cd arrows.meta [most]tcolorbox actuarialsymbol threeparttable scalerel, stackengine
stackrel tabularx dsfort [B1,T1]fontenc newpxtext enumitem siunitx sub-
caption auncial nosep
   imakeidx othercode=[columns=2,options=-s/media/wu/file/stuuudy/notes/index_style.ist, intoc]
   hyperref
   definition plain
                     definition remark Remark soul
   largesymbols"62
   graphicx
   x z a k s h c o U L V v p I M K t b A X u S Z y w T F m W R
CDEQPYHBG
   CL sg cf ZFC
   Th type \mathbf{ZF} im
   Inn AC cod dom d d id LT Mat largesymbolsAUtxexamn largesymbolsA16
   Ab Alg Rng Sets Met Aut op
   mathxUmathxmn 1mathx"91 mathaUmathamn 2matha"63
   { pdfauthor={Stanley Burris \ H. P. Sankappanavar}, pdftitle={A Course
```

In Universal Algebra, pdfkeywords={}, pdfsubject={}, pdfcreator={Emacs

26.3 (Org mode 9.3.6)}, pdflang={English}}

A Course In Universal Algebra

Stanley Burris & H. P. Sankappanavar

May 6, 2020

Contents

1 Lattices

1.1 Definitions of Lattices

Definition 1.1 () A nonempty set L together with two binary operations

 \lor and \land (read "join" and "meet" respectively) on L is called a **lattice** if it

satisfies the following identities

L1: (a)
$$x \lor y \approx y \lor x$$

(b)
$$x \wedge y \approx y \wedge x$$
 (commutative laws)

L2: (a)
$$x \lor (y \lor z) \approx (x \lor y) \lor z$$

(b)
$$x \wedge (y \wedge z) \approx (x \wedge y) \wedge z$$
 (associate laws)

L3: (a)
$$x \lor x \approx x$$

(b)
$$x \wedge x \approx x$$
 (idempotent laws)

L4: (a) $x \approx x \lor (x \land y)$

(b)
$$x \approx x \land (x \lor y)$$
 (absorption laws)

Definition 1.2 () Let A be a subset of a poset P. An element p in P is

an upper bound for A if $a \leq p$ for every a in A. An element p in P is the

least upper bound of A (l.u.b. of A) or supremum of A (sup A.

For a, b in P we say b covers a, or a is covered by b if a < b and

whenever $a \leq c \leq b$ it follows that a = c or c = b. We use the notation

 $a \prec b$ to denote a is covered by b.

Definition 1.3 () A poset L is a lattice iff for every a, b in L both $\sup\{a, b\}$

and $\inf\{a,b\}$ exist

1. If L is a lattice by the first definition, then define \leq on L by $a \leq b$ iff

$$a = a \wedge b$$

2. If L is a lattice by the second definition, then define \vee and \wedge by

$$a \lor b = \sup\{a, b\}$$
 and $a \land b = \inf\{a, b\}$

1.2 Isomorphism Lattices, and Sublattices

Definition 1.4 () Two lattices L_1 and L_2 are isomorphic if there is a

bijection α from L_1 to L_2 s.t. for every a,b in L_1 the following two equation

hold: $\alpha(a \vee b) = \alpha(a) \vee \alpha(b)$ and $\alpha(a \wedge b) = \alpha(a) \wedge \alpha(b)$. Such an α is called

$an \ \emph{isomorphism}$

Definition 1.5 () If P_1 and P_2 are two posets and α is a map from P_1 to

 P_2 , then we say α is **order-preserving** if $\alpha(a) \leq \alpha(b)$ holds in P_2 whenever

 $a \leq b$ holds in P_1

Theorem 1.6 () Two lattices L_1 and L_2 are isomorphic iff there is a bi-

jection α from L_1 to L_2 s.t. both α and α^{-1} are order-preserving

Definition 1.7 () If L is a lattice and $L' \neq \emptyset$ is a subset of L s.t. for every

pair of elements a, b in L' both $a \lor b$ and $a \land b$ are in L', where \land, \lor are the

lattice operations of L, then we say that L^\prime with the same operations is a

sublattice of L

Definition 1.8 () A lattice L_1 can be **embedded** into a lattice L_2 if there

is a sublattice of L_2 isomorphic to L_1 ; in this case we also say that L_2

contains a copy of L_1 as a sublattice

1.3 Distributive and Modular Lattices

Definition 1.9 () A distributive lattice is a lattice which satisfies either

of the distributive laws,

D1:
$$x \wedge (y \vee z) \approx (x \wedge y) \vee (x \wedge z)$$

D2:
$$x \lor (y \land z) \approx (x \lor y) \land (x \lor z)$$

Theorem 1.10 () A lattice L satisfies D1 iff it satisfies D2

$$x \vee (y \wedge z) \approx (x \vee (x \wedge z)) \vee (y \wedge z)$$
 (by L4(a))
$$\approx x \vee ((x \wedge z) \vee (y \wedge z))$$

$$\approx x \vee ((z \wedge x) \vee (z \wedge y))$$

$$\approx x \vee ((x \wedge y)) \vee (x \vee y)$$

$$\approx (x \wedge (x \vee y)) \vee (x \vee y \wedge z)$$

$$\approx ((x \vee y) \wedge x) \vee ((x \vee y) \wedge y)$$

$$\approx (x \vee y) \wedge (x \vee z)$$