FULL NAME _ ID NUMBER _

- 1. (3 points) Given that f(x) = 2x 4 and $g(x) = x^2 3x + 8$, find $(f \circ g)(-3)$.
 - A. 0
 - B. 23
 - C. -953
 - D. 48
 - E. 10
- 2. (4 points) Use an algebraic test to determine if the graph of the function $f(x) = x^2 + 5$ is symmetric with respect to the y-axis.

Solution. Suppose (x_0, y_0) is a point on the graph of f. Then the point $(-x_0, y_0)$ is also on the graph of f, since $(-x_0)^2 + 5 = x_0^2 + 5 = y_0$. So the graph of f is symmetric with respect to the y-axis.

- 3. (3 points) Suppose you are given the graph of the function $g(x) = x^2$. How can the graph of the function $h(x) = x^2 6$ be obtained from the graph of g(x)?
 - A. By translating the graph of g(x) down 1 unit.
 - B. By translating the graph of g(x) down 6 units.
 - C. By translating the graph of g(x) to the left 4 units.
 - D. By stretching the graph of g(x) by a factor of 6 in the horizontal direction.
 - E. By shrinking the graph of g(x) by a factor of 1/6 in the vertical direction.

4. (0 points) This question is for no points. Happy Leap Day Eve! Leap Day is cool for numerous reasons, one of which is that 29 is a prime number. How many prime numbers can you list?

 $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, \dots$

Another cool number fact related to the date: 28 is what's known as a perfect number. A rather silly name, yes. This is because 28 is equal to the sum of its proper factors. 28 has factors 1,2,4,7, and 14. And 1+2+4+7+14=28! Very cool.

USEFUL FORMULAS

•
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 • $(a - b)^2 = a^2 - 2ab + b^2$ • $a^0 = 1$

$$\bullet \quad a^0 = 1$$

$$\bullet \quad y = mx + b$$

•
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\bullet \quad \frac{a^m}{a^n} = a^{m-n}$$

$$\bullet \quad Ax + By = C$$

$$\bullet \quad \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

•
$$a^2 - b^2 = (a+b)(a-b)$$
 • $(x-h)^2 + (y-k)^2 = r^2$

•
$$(x-h)^2 + (y-k)^2 = r^2$$

•
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$
• $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
• $a^2 + b^2 = c^2$

$$\bullet \quad \frac{1}{a^n} = a^{-n}$$

•
$$(a+b)^2 = a^2 + 2ab + b^2$$
 • $a^m a^n = a^{m+n}$

$$a^m a^n = a^{m+n}$$

$$\bullet \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, (b \neq 0)$$