#### **Wireless Channels**

Nejib BOUBAKER (PhD HKUST) Nejib.boubaker@gmail.com

#### General Model for Wireless Channels

#### Multipath Fading

- constructive and destructive interference caused by multiple TX-RX paths with diff lengths arriving from diff directions
- Signal envelope varies widely over 30 dB in the span of a few wavelengths in distance (e.g.  $\lambda = 1$  ft when f<sub>c</sub>=1GHz)

#### Shadowing

- Short-term average variation or large-scale signal variation
- obtain by averaging over 50-100 wavelengths in distance
- caused by local changes in terrain features or man-made obstacles (e.g. blockage)

#### Path Loss Model

- Long-term or large-scale average signal level
- depends on the distance between TX and RX

### General 3-level Model



Sampei, p. 16, Fig 2.1

#### General 3-level Model

- Path loss model is used for
  - system planning, cell coverage
  - link budget (what is the frequency reuse factor?)
- Shadowing is used for
  - power control design
  - 2nd order interference and TX power analysis
  - more detailed link budget and cell coverage analysis
- Multipath fading is used for
  - physical layer modem design --- coder, modulator, interleaver, etc

#### Ideal Path Loss Model

$$P_r = \frac{c^2 P_t G_t G_r}{16\pi^2} \frac{1}{d^2} \frac{1}{f^2}$$

$$P_r (\text{in } dBm) = 10 \log_{10} P_r$$

$$= 10 \log_{10} P_t + C - 20 \log_{10} f_c - 20 \log_{10} d$$

$$PL_{\text{free space}} (\text{in } dB) = P_t (\text{in } dBm) - P_r (\text{in } dBm)$$

$$= -C + 20 \log_{10} f + 20 \log_{10} d$$

$$PL_{\text{free space}} (\text{in } dB) = PL(d_0) + 20 \log_{10} d$$

$$PAth Loss$$

$$Exponent = 2$$

- Path Loss Exponent indicates how fast signal power drops with Tx-Rx separation
  - 2 means 6dB drop per doubling of the distance

### Path Loss Exponent

• Path loss in dB depends on TX-RX distance via PL exponent, n.  $\left(\frac{d}{d_0}\right)^n$ 

$$PL(d) = PL(d_0) + 10n \log[d / d_0]$$

| Environment               | Path Loss Exponent |
|---------------------------|--------------------|
| Free Space                | 2                  |
| Urban area cellular       | 2.7 to 3.5         |
| Shadowed urban cellular   | 3 to 5             |
| In building line-of-sight | 1.6 to 1.8         |
| Obstructed in building    | 4 to 6             |
| Obstructed in factories   | 2 to 3             |

 Variations around the path loss predication due to buildings, hills, trees, etc.



Consider a signal undergoes multiple reflections (each with a power attenuation factor a<sub>i</sub>) and passes through multiple obstacles (with factors b<sub>i</sub>).

$$P_{r} = \prod_{i=1}^{4} a_{i} \prod_{i=1}^{3} b_{i} P_{t}$$

$$P_{r} (\text{in } dBm) = \sum_{i=1}^{4} 10 \log(a_{i}) + \sum_{i=1}^{3} 10 \log(b_{i}) + P_{t} (\text{in } dBm)$$

$$= \sum_{i} \alpha_{i} (\text{in } dB) + P_{t} (\text{in } dBm)$$

- Each term introduces a random attenuation of  $\,\alpha_{\rm i}\,{\rm dB}\,$  and they are assumed to be statistically independent
- As the number of these factors increases, by the central limit theorem, the sum, S, approaches a Gaussian (normal) random variable

$$P_r(\text{in } dBm) = S(\text{in } dB) + P_t(\text{in } dBm)$$
$$= m(\text{in } dB) + X(\text{in } dB) + P_t(\text{in } dBm)$$

where  $S^N(m,\sigma^2)$  and  $X^N(0,\sigma^2)$ 

 the mean m is generally included in the Path loss model (that's why the path loss exponent can be larger than 2 as the number of terms generally increases with the TX-RX separation)

When we study only the Shadowing effect, we have

$$P_r(\text{in }dBm) = X(\text{in }dB) + P_t(\text{in }dBm)$$
 where X is a zero mean Gaussian random variable with variance  $\sigma^2$ 

Expressing in linear scale, we have

$$P_{\rm r}=10^{\left(X/10\right)}P_{\rm t}=A_{\rm s}P_{\rm t}$$
 where  ${\rm A_s}$  is the attenuation factor due to shadowing effect

- Note that  $log(A_s)=X/10$  is normally distributed; hence, the distribution of  $A_s$  is known as the "Lognormal" distribution
- $-\sigma$  is called the standard deviation and has a unit of dB

- Variations around the median path loss line due to buildings, hills, trees, etc.
  - Individual objects introduces random attenuation of x dB, after pass through so many objects the attenuation factors multiply (or add in dB scale)
  - As the number of these x dB factors increases, the combined effects becomes Gaussian (normal) distribution (by central limit theorem) in dB scale: "Lognormal"
- $PL(dB) = PL_{avg}(dB) + X$  where X is  $N(0,\sigma^2)$  where
  - PL<sub>avg</sub> (dB) is obtained from the path loss model
  - σ is the standard deviation of X in dB

# Multipath, Rayleigh Fading



RX impulse response

TX an impulse





## Narrowband TX: Frequency Nonselective Model





#### **Equivalent Model:**



$$y(t) = \alpha x(t),$$

$$t \in [0,T]$$



# Rayleigh Fading (No Line of Sight)

$$\alpha = \sum \operatorname{Re}(a_i e^{j\omega_1 \tau_i}) + j \sum \operatorname{Im}(a_i e^{j\omega_1 \tau_i})$$

By Central Limit Theorem

$$=\alpha_I^{\prime}+j\alpha_Q^{\prime}$$
Independent zero mean Gaussian

$$= re^{j\theta}$$

$$f_{\alpha_{I},\alpha_{Q}}(\alpha_{I},\alpha_{Q}) = f_{\alpha_{I}}(\alpha_{I})f_{\alpha_{Q}}(\alpha_{Q}) = \frac{1}{2\pi\sigma^{2}}e^{-\left(\frac{\alpha_{I}^{2} + \alpha_{Q}^{2}}{2\sigma^{2}}\right)}$$

$$f_{R\Theta}(r,\theta) = f_{\Theta}(\theta) f_{R}(r) = \underbrace{\frac{1}{2\pi} r e^{-(r^{2}/2\sigma^{2})}}_{r}$$

where 
$$\theta \in (-\pi, \pi], r \in [0, \infty)$$

Phase is Uniform

Magnitude is Rayleigh

## Rayleigh Fading

 $f_{\alpha_I,\alpha_Q}(\alpha_I,\alpha_Q)$ : Independent Gaussian with mean  $\sigma^2$ 

$$f_{\Theta}(\theta) = \frac{1}{2\pi}$$
 if  $\theta \in [0,2\pi)$ : Uniform Phase

$$f_R(r) = \frac{r}{\sigma^2} \exp(-\frac{r^2}{2\sigma^2})$$
 if  $r > 0$ : Rayleigh Amplitude

$$f_P(p) = \frac{1}{P_o} \exp(-\frac{p}{P_o})$$
 if  $p > 0$ : Exponential Channel Power Gain

where  $p = r^2$  and  $P_0 = 2\sigma^2$  is mean channel power gain