Problem Set 1 Due Wednesday January 23

- 1. Let P and Q be statements. Show that the following statements are logically equivalent.
 - (a) $\neg (P \lor Q)$ and $(\neg P) \land (\neg Q)$
 - (b) $P \Rightarrow Q$ and $(\neg P) \lor Q$.
- 2. Let P, Q, and R be statements. Determine whether or not the statements

$$(P \wedge Q) \Rightarrow R \text{ and } (P \Rightarrow R) \wedge (Q \Rightarrow R)$$

are logically equivalent.

- 3. Determine whether or not each of the following statements is true. Explain your answers.
 - (a) For all real numbers x, $x^2 2x 3 = 0$ only if x = 3.
 - (b) For all real numbers x, $x^2 2x 3 = 0$ if x = 3.
- 4. Find a useful denial of each of the following statements. Use mathematically precise, natural English, writing all conditional statements in the form "if ..., then"
 - (a) I will do my homework and I will pass this class.
 - (b) If $x \neq 0$, then there exists a real number y such that xy = 1.
 - (c) The stars are green or the white horse is shining only if the world is eleven feet wide.
 - (d) There are integers m and n such that for each rational number x either m < nx or n < mx.
 - (e) For every $\epsilon > 0$, there exists $\delta > 0$ such that for every $x \in \mathbb{R}$, if $|x a| < \delta$, then $|x^2 a^2| < \epsilon$.
- 5. Find the converse and contrapositive of each of the following statements. Use mathematically precise, natural English, writing all conditional statements in the form "if ..., then"
 - (a) If I ski, I will fall.
 - (b) If y > x and y > 0, then y > z.
 - (c) If $x \neq 0$, then there exists a real number y such that xy = 1.
 - (d) $n-3 \le 6$ only if n > 4 or n > 10.
 - (e) If there exist integers m and n such that 12m + 15n = 1, then m and n are both positive.