Chapter 8. Digital Communications

Summary: Brief introduction of the components of digital communication systems, the fundamental rules in digital communication designs.
Assignment Project Exam Help

- 8.1 Source Coding
- 8.2 Channel coding https://tutorcs.com
- 8.3 Binary Shift Kewing Madulation rcs
- 8.4 M-ary Digital Modulation Scheme
- 8.5 Constellation Design
- 8.6 Detection Design

Digital communication: Signal to be communicated is digital and discrete-time. Communication of symbols with finite possible values.

8.1 Source Coding

Source encoding/data compression: Efficiently convert message into a binary sequence.

- Remove redundancy in message & achieve low bitrate

Source decodings in the inflication sequence into message (Reconstruct the original message).

https://tutorcs.com

Coding categories:

- Fixed-length coding
- Variable-length coding

Fixed-length binary code:

Example. Extended ASGH Ampring Standard Code Information Interchange) code.

https://tutorcs.com **Alphabet** Codeword Length VizoCobant: cstutors Α 01001111 0 8 8 00110001 8 1 8 01011100 8 8

Variable-length binary code:

Statistics of message source can be used to design good source encoding algorithms.

- principles: use long codewords for less frequent symbols; short codewords for moret request etements elp

Itorcs.com Average lengt	nttps://tu Code 2	Code 1	Prob.	\mathcal{A}
: cstutorcs e.g. for codes	WeGhat	00	1/2	\overline{a}
$\bar{l}_{code1} = \frac{1}{2}$	10	01	1/4	b
2	110	10	1/8	c
$\bar{l}_{code2} = \frac{1}{2} *$	111	11	1/8	d
Z	1.75	2	e. len. $ar{l}$	Ave

Average length of codeword: $\bar{l} = \sum_{i} p(i)l_i$

cstutorcs e.g. for codes on the left,

$$\bar{l}_{code1} = \frac{1}{2} * 2 + \frac{1}{4} * 2 + \frac{1}{8} * 2 + \frac{1}{8} * 2 = 2$$

$$\bar{l}_{code2} = \frac{1}{2} * 1 + \frac{1}{4} * 2 + \frac{1}{8} * 3 + \frac{1}{8} * 3 = 1.75$$

Variable-length binary code:

Huffman coding:

- Example of using long codewords for less frequent symbols; short codewords for more frequent elements.
- Greedy algarithmild Phofemantran where two nodes with the smallest probabilities merge to an intermediate.

rcs.com

\mathcal{A}	Prob.	https://tutorcs.com
\overline{a}	1/2	WeChat: cstutorcs
b	1/4	
c	1/8	
d	1/8	

Example: Please design a Huffman code for the following source (each letter is shown with its probability in the bracket) x(3/13), m(3/13), g(3/13), s(1/13), h(1/13), p(1/13), r(1/13)

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Entropy: For a source X with certain alphabet and distribution. Its entropy H(X) is defined as

$$H(X) = E[-\log_2 p(X)].$$

Intuitive example groms der weigener formender with 4 possible outcomes: cloudy, snowy, rainy, and sunny.

- For place A, all possible weathers occurs with equal probability; WeChat: cstutorcs
 - → need 2 bits to delivery a message
- For place B, snowy and raining never happen but cloudy and sunny occurs evenly.
 - → Need 1 bit only to delivery a message because less information needs to communicate.

Entropy: For a source X with certain alphabet and distribution. Its entropy H(X) is defined as

$$H(X) = E[-\log_2 p(X)].$$

The meaning of signopy 15 Harojost Encomenhelp

- A source can be compressed without distortion to H(X) bits per symbol.
- H(X) bits per symbol is the lowest that a source can be compressed without distortion.
- The entropy H(X) provides a quantitative measure on the amount of information.

In general, for a <u>random source</u> X which generates alphabet

$$\mathcal{A} = \{x_1, x_2, \cdots, x_N\}$$

with the following probability mass function (PMF):

$$p(x_1) = p_1, \quad p(x_2) = p_2, \quad \cdots, \quad p(x_N) = p_N$$

the entropy of Xsisgnment Project Exam Help

$$H(X) = \text{E}[-\log_2 p(X)] = -\sum_{\substack{\text{https://tutorcs.com}}} p(x) \log_2 p(x) = \sum_{x \in \mathcal{A}} p(x) \log_2 [1/p(x)]$$

$$= -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_N \log_2 p_N.$$
WeChat: cstutorcs

- Entropy is non-negative.
- With base-2 log, the unit is bit.
- With the log-function, the joint entropy of 2 independent sources equals the sum of their entropies individually.

Example: a <u>binary random source</u> X generates binary bits randomly following some probabilities:

$$p(0) = P[X = 0] = p, \quad p(1) = P[X = 1] = 1 - p.$$

The entropy of the *binary* source is

Assignment Project Exam Help
$$H(X) = p \log_2 p - (1-p) \log_2 (1-p)$$
.

https://tutorcs.com

We Chatthe state for $p \approx 1$, little information is in X. The entropy achieves its minimum 0.

• When $p \approx 1/2$, the maximum amount of information is in X. The entropy is about its maximum 1.

Example: A source whose alphabet A and its probability distribution are as follows. Calculate the entropy.

$$\mathcal{A}=\{a,b,c,d\}.$$

$$p(a)=1/2 \quad \text{Assignment Project's Exam Help}$$

https://tutorcs.com

WeChat: cstutorcs

Example: Consider the following source X and codes.

\mathcal{A}	Prob.	Code 1	Code 2	Code 3	Code 4
a	1/2	00	0	0	0
b	1/4 A s	signmen	t Project	Exam H	lelp01
c	1/8	https://	tutorcs.c	om ¹¹⁰	011
d	1/8	$1\overline{1}$	1	111	111
Ave	e. len. $ar{l}$	w ₂ eCh	at: cstuto	rcs 1.75	1.75

$$H(X) = 1.75$$
 bits/symbol.

Code 1: Uniquely decodable. Fixed-length codeword. Not the shortest.

Code 2: Not uniquely decodable. Shortest.

Code 3: Uniquely decodable.

Prefix-free code: no.codeword is a prefix of another Assignment Project Exam Help Instantaneously decodable.

Optimal in the sense of pshipping the cotton bound: $\bar{l} = H(X)$.

Code 4: Uniquely decodable. Not prefix-free code.

Not instantaneously decodable: need to see following bits to decode.

Optimal: l = H(X).

Data compression idea: Use long codewords for less frequent elements; short codewords for more frequent elements.

8.2 Channel Coding

Channel encoding: Introduce controlled redundancy (extra information) to combat noise/distortions in channels.

Channel decoding: Remove the controlled redundancy and Reconstruct the soignation by Exam Help

Repetition codes: most basic error-correcting codes

Example: 3-bit repetition codes

- Encoding: $0 \rightarrow 000$, $1 \rightarrow 111$

- Decoding: Majority vote Assignment Project Exam Help

Original bit sequence	0	0	1	0	1
After repetition codettps://t	utor	C606C	1 1	000	111
Received bit sequence WeCha	000	001	111	000	101
after decoding WeCha	i. esi	utor		0	1

Information rate = # message bit / # bit after channel coding

- Introducing more bits in channel coding may help to handle error, with the penalty of lower information rate and longer bit sequence to be sent.

(7,4) Hamming code (1950)

- Take 4 information bits: d_1, d_2, d_3, d_4
- Add 3 parity check bits: p_1, p_2, p_3
- Form a 7-bit codeword: $d_1d_2d_3d_4p_1p_2p_3$

XOR operation: ⊕

$$0 \oplus 0 = 1 \oplus 1 = 0$$

$$1 \oplus 0 = 0 \oplus 1 = 1$$

 Can correct, 1 bit error. Assignment Project Exam Help

Encoding procedure:

https://tutorcs.com $p_1 = d_1 \oplus d_2 \oplus d_4$

 $p_2 = d_1 \oplus d_3 \oplus e$ Chat: cstutorcs

$$p_3 = d_2 \oplus d_3 \oplus d_4$$

Every circle has an even number of 1's.

https://en.wikipedia.org/wiki/Hamming(7,4)

Decoding procedure:

Put bits in their corresponding positions in the figure. See which circles violates even-parity check. Flip the corresponding bit (heit oply) ject Exam He to ensure the parity checks.

https://tutorcs.com WeChat: cstutorcs

Data sequence: 1011 → Encoded sequence: 1011010

> received sequence (1 bit error) 1111010

→decoded sequence: 1011010

Comments:

- Code rate
 - = number of info. bits / total number of bits of a codeword=4/7.
- Can correct 1 bit error but no more.
- Repetition code Would Heel 1291 to protect 4 bits against 1 error. WeChat: cstutorcs

Applications of Hamming codes:

- DRAM memory chips
- Satellite communication

Example: (a) Using (7,4) Hamming code to transmit 0110. What is the coded segment?

- (b) Assume 1001111 is received. Please find the decoding result. Is there any error in the received signal?
- (c) If the probability of each breieff is 1% and bit errors are independent. Please calculate the probability that the decoding results is correct in (7,4) Hamming code.

WeChat: cstutorcs

How much redundancy can be introduced?

There is an upper limit of amount of redundancy constrained by channel capacity.

Channel capacity *C*: the maximum bit rate of a digital communication systems.

- Characteristic of a channel com
- It is a fundamental limit regardless of the coding.

WeChat: cstutorcs

For example: After the source coding, the bitrate of a message is 0.6Mbps. If we want to transmit the message through a channel with capacity C=1Mbps. Then the maximum redundancy we can introduced by the channel coding is 1-0.6=0.4Mbps.

Communication system design in coding? (Cont.)

3 factors to be considered:

- The channel bandwidth B
 - Measured by Hz
- The number of levels Min digital signals Help
- The quality of the channel
 - Characterizett By: Characteriz
 - Closely related to channel noise level SNR WeChat: cstutorcs

Two theorems to relate above three factors:

- Nyquist's channel theorem
- Shannon's channel coding theorem

Communication system design in coding? (Cont.)

Nyquist's Channel Theorem:

For a <u>noiseless</u> channel, there is an upper limit of bit rate (called the **Nyquist bit rate**) for error free communication. Nyquist bit rate= $2 * B * log_2M$ https://tutorcs.com

Nyquist bit-rate is the maximum bit rate to represent a message represented by M levels for reliable communication in noiseless channel.

Ex. Consider a noiseless channel with a bandwidth of 3000Hz. We want to transmit a message with 4 signal levels. What is the Nyquist bit rate? \rightarrow 2 * 3000 * $log_24 = 12000$ bps

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Communication system design in coding? (Cont.)

Shannon's Channel Coding Theory:

For any given <u>noisy</u> channel, it is possible to communicate digital information nearly error-free when the communicate bit rate is kept below the <u>channel capacity</u>.

https://tutores.com

The channel capacity is usually determined by the noise level and available bandwidth.

$$C = B * log_2(1 + SNR)$$

State-of-the-art: Since around 2000, with advancements in low-density parity-check (LDPC) codes and turbo codes, we are approaching the fundamental limit.

More about SNR

$$SNR = \frac{Power\ of\ signal\ (in\ Watt)}{power\ of\ noise\ (in\ Watt)} = \frac{S}{N}$$
 $SNR_{dB} = 10log_{10}(SNR)$

Q1: Consider a communication system for which the SNR at the receiver is SNR^0 .

- (a) If SNR^0 is doubled the way tout chrosses?
- (b) SNR^0 should be multiplied by which factor to reduce SNR^0_{dB} by -3 dB? WeChat: cstutorcs

<u>Comment</u>: Each 3 dB(-3 dB) increment (decrement) in SNR_{dB} , increases (decreases) the SNR by a factor of 2 (1/2).

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Example: A telephone line normally has a bandwidth of 3000Hz (300Hz-3300Hz) assigned for data communication. The SNR is usually at the level of 35dB. If we want to transmit an signal through this channel,

- (a) Calculate the theoretical channel capacity;
- (b) Calculate the maximum signal level.

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

8.3 Binary Shift Keying Modulation

Shift keying modulation: to convert digital information to analog signals for transmission

Binary Shift Keying modulation

- Input: binary sequence $b_i = 0/1$
- Carrier: $c(t) = A_c \cos(2\pi f_c t + \varphi_c)$
 - Without any loss of generality, $\varphi_c=0$
- $\underbrace{\text{Output}}_{\text{Assignment Project Exam Help}}$ frequency varying with b_i

FIGURE 7.1 The three basic forms of signaling binary information. (*a*) Binary data stream. (*b*) Amplitude-shift keying. (*c*) Phase-shift keying. (*d*) Frequency-shift keying with continuous phase.

Binary amplitude Shift Keying (BASK)

- Amplitude of the carrier varies in accordance with $b_i=0/1$

$$s(t) = \begin{cases} A_c \cos(2\pi f_c t) & for \ b_i = 1 \\ 0 & for \ b_i = 0 \end{cases}$$

Input binary Assignment Project Exam Help

WeChat: cstutorcs

BASK modulation

Binary amplitude Shift Keying (BASK)

BASK demodulation

Envelop detector

tracing the nonconstant-envelope of BASK signals WeChat: CStutorcs

- Coherence detector – synchronize phase and frequency

Binary Phase Shift Keying (BPSK)

- Phase of the carrier varies in accordance with $b_i = 0/1$

$$s(t) = \begin{cases} A_c \cos(2\pi f_c t) \\ A_c \cos(2\pi f_c t - \pi) \end{cases} = \begin{cases} A_c \cos(2\pi f_c t) & for \ b_i = 1 \\ -A_c \cos(2\pi f_c t) & for \ b_i = 0 \end{cases}$$

Assignment Project Exam Help

BPSK modulation

Binary Frequency Shift Keying (BFSK)

- Frequency of the carrier varies in accordance with $b_i = 0/1$

Minimum-shift keying (MSK)

Let $1/T_b$ and f_c be the bit rate and carrier frequency. In MSK,

$$f_1 = f_c + \frac{1}{4T_b}$$
, $f_2 = f_c - \frac{1}{4T_b}$. That is, $f_1 - f_2 = \frac{1}{2T_b}$.

Binary Frequency Shift Keying (BFSK)

Coherent detection

Binary Frequency Shift Keying (BFSK)

Noncoherent detection

8.4 M-ary Shift Keying Modulation

Binary shift keying is simply, but not bandwidth efficient.

Question: can we extend binary shift keying in some manner to improve the bandwidth efficiency?

Instead, we send one of M possible signals during each signaling (symbol) interval of duration.

M-ary shift keying modulation

Mapper: Takes a group of wito an alphabet whose elements are real (or complex) numbers.

We Chat: cstutores

Depending no the mapper, we may have

- M-ary amplitude shift keying
- M-ary phase shift keying
- M-ary frequency shift keying

M-ary Amplitude shift keying modulation

Mapper: Takes a group of with the work converts them to a symbol with different amplitude A_i .

We Chaf: estutores

Example: Every group of 2 bits can be converted to a symbol

M-ary Amplitude shift keying modulation

Example: Every group of 2 bits can be converted to a symbol

4-ASK Group of 2 bits 00 01 11 10 Assignment Project Exam Help Mapping symbols
$$A_i$$
 -3 -1 1 3
$$\frac{\text{https://tutorcs.com}}{\text{Transmission wave}} A_i \cos(2\pi f_c t)$$

WeChat: cstutorcs

Quadrature Amplitude modulation(QAM)

- 2 orthogonal carriers: $Acos(2\pi f_c t)$ and $Asin(2\pi f_c t)$
- Transmission wave is a superposition of the two carriers
- With the same bandwidth efficiency, QAM is more power-efficient than 4-ASK.

M-ary Phase shift keying modulation

Mapper: Takes a group of with the complex plane with different phase on the unit circle in the complex plane. We Chat: cstutorcs

Example: Every group of 2 bits can be converted to a symbol

M-ary Phase shift keying modulation

Example: Design 8-ASK and 8-PSK

M-ary Frequency shift keying modulation

Mapper: Takes a group of bits and converts them to symbols modulated by different carriers

https://tutorcs.com

Note, in M-ary FSK, any two carriers should be orthogonal:

$$\int_{0}^{T} s_{i}(t)s_{j}(t)dt = \begin{cases} \text{Chat: } cstutorcs \\ 0 \quad for \ i \neq j \end{cases}$$

where $s_i(t) = \cos(2\pi f_{c_i} t)$.

M-ary frequency shift keying is less bandwidth efficiency, in general.

8.5 Constellation Design

Design of the alphabet or symbol set \mathcal{A} . In other words, design of elements in \mathcal{A} for the best efficiency and/or reliability in communications.

Assignment Project Exam Help

Design factors:

- average energy https://tutorcs.com
- minimum distante be reliability).

To minimize average energy per symbol

Given a constellation

$$\mathcal{A} = \{x_1, x_2, \cdots, x_N\},\$$

its average transmit energy is

https://tutorcs.com

Example. Compare power efficiency of the two constellations. WeChat: cstutorcs

$$E_{A1} = (9 + 1 + 1 + 9)/4 = 5$$

$$E_{A2} = (2 + 2 + 2 + 2)/4 = 2$$

To maximize distance between symbols.

Given a constellation

$$\mathcal{A} = \{x_1, x_2, \cdots, x_N\},\$$

the distance between two elements x_i, x_j Help x_i

The minimum distance is tutores.com

$$\frac{d_{\text{win}}}{\text{WeChat}} = \min_{x_j \in \text{Stutores}} |x_j - x_j|$$

Example. Calculate the minimum distance of two 4-PAMs.

$$d_{min,A1} = 2$$

$$d_{min,A2} = 1$$

To maximize distance between symbols.

Example. Comparison of two 4-PAMs.

00 01 11 10 00 01 11 10
$$\longrightarrow$$
 AssignmentcProject Exam Help \longrightarrow cos -3 -1 1 3 -1.5 -0.5 0.5 1.5 \longrightarrow https://tutorcs.com

- The left modulation of 2 because $d_{min,A1}=2$.
- The right modulation method is more energy efficient but cannot survive when noise level is larger than 1 (i.e. $d_{min,A2}=1$)

Large minimum distance suggests reliable the system.

https://tutorcs.com

https://tutorcs.com

Constellation design:

- Given average transmit energy, try to maximize the minimum distance.
- Given minimum distance, try to minimize the average transmit energygnment Project Exam Help

Example: Please deptets design & symbol constellations with minimum distance of 1.

- (a) 8-ASK; WeChat: cstutorcs
- (b) 8-PSK;
- (c) Is there any constellation that is more power efficient?

https://tutorcs.com

https://tutorcs.com

https://tutorcs.com

8.6 Detector Design

So far, we discuss demodulation methods without considering noise at the receiver.

In reality, noises is intended by the project of the period $a_m + n_m$.

https://tutorcs.com where the noise n_m follows some distribution, usually Gaussian.

Q: How to recover a_m from $y(m_1)$?

This is the **detector design problem**.

y: Received value, corrupted by noise

n: noise. Assimpment left of assimplified by $\mathcal{N}(0,\sigma^2)$.

a: transmitted symbol. An element in $\mathcal A$.

 \hat{a} : Detection result. An element in \mathcal{A}

Detector design. Design the decision rule.

Objectives:

- Probability of error $P_e = P[\hat{a} \neq a]$.
- Complexity.

Detection with minimum distance rule.

$$\hat{a} = \arg\min_{a \in \mathcal{A}} |y - a| = \arg\min_{a \in \mathcal{A}} |y - a|^2.$$

Decision regions.

Probability of error calculation.

Assignment Project Exam Help

Example: For BPSK, please draw the decision region. https://tutorcs.com

Example: Given a 4-ASK constellation as shown in the figure. The output of the receiver is y = a + n, where a is the transmitted symbol and $n \in N(0,1)$ is the Gaussian noise.

- (1) If y = 0.2, estimate the transmit symbol using the minimum distance rule.
- (2) Find the general decision P to $y \in R$.
- (3) What is the probability of error with this decision rule assuming $a = \frac{\text{https://tutorcs.com}}{\text{total}}$

https://tutorcs.com

https://tutorcs.com