Graphes

« Des arêtes, des sommets, des poids. »

1.1 Fête de Noël sans conflit

On considère une grande famille de n personnes avec beaucoup de gens qui ne s'entendent pas, représentée par une matrice $A = (a_{i,j}) \in \mathcal{M}_n$ telle que $a_{i,j} = a_{j,i} = 1$ si i et j ne peuvent pas se voir, 0 sinon. On a deux maisons de famille et on veut partager les n personnes entre ces deux maisons pour les fêtes de Noël, de façon que deux personnes qui ne s'entendent pas soient toujours dans des maisons différentes.

Question 1

Montrer par un exemple qu'il n'est pas toujours possible de répartir les membres de la famille entre les deux maisons pour éviter tout conflit.

Question 2

On va mettre le résultat dans un tableau maison de taille n tel que maison. (i-1)=1 si la personne i est dans la première maison et maison. (i-1)=-1 si la personne i est dans l'autre maison. Écrire une fonction partage (a:int array array) : int array qui teste s'il est possible de faire un partage sans conflit et propose un partage lorsque cela et possible.

Question 3

Deux personnes i et j sont dites en relation d'influence s'il existe une suite $k_1, ..., k_l$ telle que $a_{i,k_1} = a_{k_1,k_2} = ... = a_{k_{l-1},k_l} = a_{k_l,j} = 1$. Montrer que cette relation est une relation d'équivalence. Soit N le nombre de classes d'équivalence, si l'on pose par convention $a_{i,i} = 1$ pour tout i. Montrer qu'un partage sans conflit est possible si et

seulement si il n'existe pas de suite $i_1, ..., i_{2l+1}$ telle que $a_{i_1,i_2} = ... = a_{i_{2l+1,i_1}} = 1$. Montrer que le nombre de partages sans conflits est soit 0, soit 2N.

Question 4

On suppose maintenant qu'il y a trois maisons de famille. Proposer un algorithme qui fasse un partage sans conflits entre les trois maisons lorsque cela est possible. Qu'en pensez-vous?

Question 1

Il suffit d'une famille de trois personnes qui sont chacune en conflit avec les deux autres.