Attention is All You Need

Attention

Seq2seq

Seq2seq

Attention

Additive

$$sim(h_i, s_j) = w^T \tanh(W_h h_i + W_s s_j)$$

Multiplicative

$$sim(h_i, s_j) = h_i^T W s_j$$

Dot-product

$$sim(h_i, s_j) = h_i^T s_j$$

RNN в моделировании последовательностей

+

• успешны в задачах с последовательностями различающейся длины

- Последовательная природа вычислений ограничивает распараллеливание
- Всё ещё сложно учитывать далёкий контекст

Auto-regressive CNNs

WaveNet

ByteNet

Attention

The Transformer

The Transformer

Архитектура

Attention

 $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Multi-Head Attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Output

Feed Forward Network

 $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$

Positional encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

pos — позиция i — индекс в размерности

Обучение

- Базовая модель тренировалась 12 часов на 8 GPU NVIDIA P100 (0.4 сек/шаг).
 - Большие модели тренировались 3.5 дня (1 сек/шаг)
- Алгоритм оптимизации Adam
- Регуляризация
 - Residual Dropout
 - Attention Dropout
 - Label Smoothing

Результаты

GNMT + RL [36]

ConvS2S [9]

MoE [31]

Deep-Att + PosUnk [37]

Deep-Att + PosUnk Ensemble [37]

GNMT + RL Ensemble [36]

ConvS2S Ensemble [9]

Transformer (big)

Transformer (base model)

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [17]	23.75			

24.6

25.16

26.03

26.30

26.36

27.3

28.4

39.2

39.92

40.46

40.56

40.4

41.16

41.29

38.1

41.0

 $1.0 \cdot 10^{20}$

 $1.4 \cdot 10^{20}$

 $1.5 \cdot 10^{20}$

 $1.2 \cdot 10^{20}$

 $8.0 \cdot 10^{\overline{20}}$

 $1.1 \cdot 10^{21}$

 $1.2 \cdot 10^{21}$

 $3.3\cdot10^{18}$

 $2.3 \cdot 10^{19}$

 $2.3 \cdot 10^{19}$

 $9.6 \cdot 10^{18}$

 $2.0 \cdot 10^{19}$

 $1.8 \cdot 10^{20}$

 $7.7 \cdot 10^{19}$

Источники

- Attention is all you need
- Выступление одного из авторов об этой модели и её расширении
- Заметка в блоге Google Research