Q2.4: Analyze options of tokenize function:

Table 1: Observations

	Lemmatized	No_stopwords	Recall
#1	No	No	0.6847826086956522
#2	Yes	No	0.8043478260869565
#3	No	Yes	0.7119565217391305
#4	Yes	Yes	0.7717391304347826

- As we can see, using lemmatized tokens gives higher recall of ~80% and ~77% respectively. This tells us that lemmatization helps a lot in improving performance.
- We got the worst recall of ~68%, when both the options are disabled i.e. lemmatized: no and no_stopwords: no. This tells us the importance of doing mentioned processing of tokens before using them as features.
- Also, if we look at overall performance improvement then enabling lemmatized helps more than enabling no_stopwords option

Q3.2:

Table 2: Observations [for ref.]

	threshold	Lemmatized	No_stopwords	Precision	Recall
#1		No	No	0.4134831460674157	1.0
	0.1	Yes	No	0.4017467248908297	1.0
		No	Yes	0.4265734265734265	0.99456521739130
		Yes	Yes	0.40979955456570155	1.0
#2		No	No	0.4412470023980815	1.0
	0.2	Yes	No	0.4191343963553531	1.0
	0.2	No	Yes	0.44938271604938274	0.98913043478260
		Yes	Yes	0.42790697674418604	1.0
#3	0.3	No	No	0.4861878453038674	0.95652173913043
		Yes	No	0.45112781954887216	0.97826086956521
		No	Yes	0.473972602739726	0.94021739130434
		Yes	Yes	0.4475	0.97282608695652
#4	0.4	No	No	0.5187713310580204	0.82608695652173
		Yes	No	0.48830409356725146	0.90760869565217
		No	Yes	0.50814332247557	0.84782608695652
		Yes	Yes	0.4699140401146132	0.89130434782608
#5	0.5	No	No	0.5550660792951542	0.68478260869565
		Yes	No	0.5229681978798587	0.80434782608695
		No	Yes	0.532520325203252	0.71195652173913
		Yes	Yes	0.4797297297297	0.77173913043478
#6	0.6	No	No	0.5491329479768786	0.51630434782608
		Yes	No	0.5258215962441315	0.60869565217391
		No	Yes	0.5409836065573771	0.53804347826086
		Yes	Yes	0.519650655021834	0.64673913043478
#7	0.7	No	No	0.5508474576271186	0.35326086956521
		Yes	No	0.5369127516778524	0.43478260869565
		No	Yes	0.5985915492957746	0.46195652173913
		Yes	Yes	0.566666666666666	0.55434782608695
#8	0.8	No	No	0.5846153846153846	0.20652173913043
		Yes	No	0.5862068965517241	0.27717391304347
		No	Yes	0.6341463414634146	0.28260869565217
		Yes	Yes	0.6160714285714286	0.375
#9	0.9	No	No	0.8	0.10869565217391
		Yes	No	0.7647058823529411	0.14130434782608
		No	Yes	0.68888888888889	0.16847826086956
		Yes	Yes	0.6101694915254238	0.19565217391304

- From table 2, we can observe that as threshold is changing from 0.1 to 0.9, recall is mostly decreasing and precision is mostly fluctuating between 0.4 to 0.6.
- **For this specific problem,** to get the best performance, I would choose parameters as follows(based on the observations from table 2):
 - Threshold: 0.4, Lemmatized: Yes, no_stopwords: No
- I believe duplicates which have tokens with similar roots/lemmas can be found easily using **this** approach. But duplicates which have tokens with different roots/lemmas but which are synonyms can be difficult to find using this approach.
 - Example: For below questions, we need more robust approach.
 - o Q1: Can I install Ubuntu and Windows side by side?
 - O Q2: How do I dual boot Windows alongside Ubuntu?
- Yes, utilizing TF-IDF values as features in similarity finding approaches can be quite useful.