$\underset{\text{September 22, 2020}}{\text{Week 1}}$

Exercise 0 (Warm-up; unlike the multiple choice questions at the final exam, more than a single answer may be correct.). The law regarding alcohol drinking in Switzerland states the following: "If you are drinking strong alcohol, then you must be at least 18 years old." (for all x, $A(x) \rightarrow 18(x)$). Assume that you are hired as a police officer at Satellite and need to enforce the above law. Which student(s) are you going to arrest and why:

0 0	v
○ The 17-	year old student drinking soda.
○ The 17-	year old student drinking vodka.
○ The 18-	year old student drinking water.
○ The 18-	year old student drinking tequila.
"Everyone must	ay, Satellite organizes a cabaret night open to all students under the following conditions: be at least 18 years old and drink strong alcohol" (for all x , $A(x) \wedge 18(x)$). As previously, are you going to arrest and why:
○ The 17-	year old student drinking soda.
○ The 17-	year old student drinking vodka.
○ The 18-	year old student drinking water.
○ The 18-	year old student drinking tequila.
	ermine the truth values (i.e., T or F) of the following propositions:
19 –	4 = 12 if and only if 3 is a prime number.
If 1 +	-1 = 5, then $1 + 1 = 3$.
If the	moon is a star, then so is the sun.
If 5 is	s a prime number, then the earth is flat.
0 > 1	if and only if $2 > 1$.
Eithe	r Toronto is the capital of Canada or Hamburg is the capital of Germany.
Exercise 2. Con	struct a truth table for each of these compound propositions:
1. $p \oplus (p \setminus$	$\lor q)$
2. $p \wedge (q \in$	ightarrow u)
3. $(p \wedge q)$	$\oplus \ (p \wedge u)$
4. $(p \leftrightarrow q)$	$)\oplus (p o q)$

Exercise 3. Without using truth tables, show the following logical equivalences:
1. $\neg p \leftrightarrow q \equiv p \leftrightarrow \neg q$
$2. \ p \oplus (q \wedge u) \not\equiv (p \oplus q) \wedge (p \oplus u).$
3. $p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q)$.
$4. \ \neg (p \oplus q) \equiv (\neg p) \oplus q.$
5. $p \leftrightarrow q \equiv \neg (p \oplus q)$.
Exercise 4. Find a compound proposition with three variables p, q, u that is
1. True if and only if p is true, q is false, and u is false;
2. True if and only if exactly one of the variables is true;
3. True if and only if at least two of the variables are true.
Exercise 5. The negation of the statement "if it rains, the ground is wet" is
if the ground is not wet, it does not rain.
it rains and the ground is not wet.
if the ground is wet, it does not rain.
○ if it rains, the ground is not wet.
Exercise 6. Let C and D be two sets. The statement $\neg((D \subseteq C) \land (C \subset D))$
○ is a tautology.
is a contingency.
is a contradiction.
is not a compound proposition.
Exercise 7. (Rosen, exercise 38 p. 25) Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is available:
• Either Kevin or Heather, or both, are chatting.
• Either Randy or Vijay, but not both, are chatting.
• If Abbey is chatting, so is Randy.
• Vijay and Kevin are either both chatting or neither is.
• If Heather is chatting, then so are Abbey and Kevin.
Explain your reasoning.
Exercise 8. The negation of the statement "If I think, then I am" is given by:
\bigcirc I am not, and I think.
○ If I am not, then I do not think.

○ I am, and I do not think.
\bigcirc I do not think, or I am not.
Exercise 9. Tick the equivalent sentence of the following newspaper headline:
"UK minister refuses to rule out ignoring law preventing no-deal Brexit"
UK minister does not accept not to rule in not acknowledging law not approving no-deal Brexit.
UK minister accepts to rule in acknowledging law approving no-deal Brexit.
○ UK minister does not accept to rule out ignoring law tolerating Brexit with deal.
○ UK minister refuses to rule in acknowledging law approving no-deal Brexit.
Exercise 10. (From 2016 midterm exam)
(français) Soit p et q deux propositions. Considérons les deux propositions composées ci-dessous.
(English) Let p and q be two propositions. Consider the two compound propositions below.
$((q \to p) \land \neg q) \to \neg p \qquad \qquad (((\neg q) \to (\neg p)) \land p) \to q$
\bigcirc { Une seule des propositions composées est une tautologie, l'autre est une contingence. One of the compound propositions is a tautology, the other is a contingency.
\bigcirc { Les deux propositions composées sont des contingences. Both compound propositions are contingencies.
\bigcirc { Une seule des propositions composées est une contradiction, l'autre est une contingence. One of the compound propositions is a contradiction, the other is a contingency.
\bigcirc { Une seule des propositions composées est une tautologie, l'autre est une contradiction. One of the compound propositions is a tautology, the other is a contradiction.
Exercise 11. (From 2017 midterm exam)
(français) Pour $x,y\in\mathbf{Z}$, la proposition composée suivante est une tautologie
(English) For $x, y \in \mathbf{Z}$, the following compound proposition is a tautology
$\neg(x > 1) \lor \neg(y \le 0) \leftrightarrow \neg((x \le 1) \land (y > 0))$
$\bigcirc \left\{ \begin{array}{l} \text{si la partie à gauche de "\leftrightarrow" est remplacée pas sa négation, et "\leftrightarrow" est remplacé par "\rightarrow".} \\ \text{if the left hand side of "\leftrightarrow" is negated and "\leftrightarrow" is replaced by "\rightarrow".} \end{array} \right.$
\bigcirc $\left\{\begin{array}{l} \text{et ne requiert aucun changement.} \\ \text{and does not require any changes.} \end{array}\right.$
$\bigcirc \left\{ \begin{array}{l} \text{si "\leftrightarrow" est replac\'e par "\leftarrow".} \\ \text{if "\leftrightarrow" is replaced by "\leftarrow".} \end{array} \right.$

$\bigcirc \left\{ \begin{array}{l} \text{si la partie à droite de "\leftrightarrow" est remplacée pas sa négation, et "\leftrightarrow" est remplacé par "\rightarrow".} \\ \text{if the right hand side of "\leftrightarrow" is negated and "\leftrightarrow" is replaced by "\rightarrow".} \end{array} \right.$	
Exercise 12. (From 2016 mock final exam) The compound proposition $((\neg p \land q) \to (r \oplus q)) \lor (\neg s \leftrightarrow p)$ is	
○ a tautology.	
○ a contingency.	
○ a contradiction.	
incorrectly formatted.	