SCIENTIFIC PUBLICATIONS AND RESEARCH REPORTS ADDRESSING NYSTAGMUS

- 1. Aschan, Bergstedt, Goldberg & Laurell, <u>Positional Nystagmus in Man During and After Alcohol Intoxication</u>, 17 Q.J. OF STUD. ON ALCOHOL, Sept. 1956, at 381. Study distinguishing two types of alcohol-induced nystagmus, PAN (positional alcoholic nystagmus) I and PAN II, found intensity of PAN I, with onset about one-half hour after alcohol ingestion, was proportional to amount of alcohol taken.
- 2. Aschan, <u>Different Types of Alcohol Nystagmus</u>, 140 ACTA OTOLARYNGOL SUPP. 69 (Sweden 1958) ("From a medico-legal viewpoint, <u>simultaneous</u> recording of AGN (Alcohol Gaze Nystagmus) and PAN (positional alcoholic nystagmus) should be of value, since it will show in which phase the patient's blood alcohol curve is...").
- 3. Rashbass, <u>The Relationship Between Saccadic and Smooth Tracking Eye</u>
 <u>Movements</u>, 159 J. PHYSIOL. 326 (1961) (barbiturate drugs interfere with smooth tracking eye movement).
- 4. Goldberg, <u>Effects and After-Effects of Alcohol, Tranquilizers and Fatigue on Ocular Phenomena</u>, ALCOHOL AND ROAD TRAFFIC 123 (1963) (of different types of nystagmus, alcohol gaze nystagmus is the most easily observed).
- 5. Murphree, Price & Greenberg, <u>Effect of Congeners in Alcohol Beverages on the Incidence of Nystagmus</u>, 27 Q.J. OF STUD. ON ALCOHOL, June 1966, at 201 (positional nystagmus is a consistent, sensitive indicator of alcohol intoxication).
- 6. Fregly, Bergstedt & Graybiel, <u>Relationships Between Blood Alcohol</u>, <u>Positional Alcohol Nystagmus and Postural Equilibrium</u>, 28 Q.J. OF STUD. ON ALCOHOL, March 1967, at 11, 17 (declines from baseline performance levels correlated with peak PAN I responses and peak blood alcohol levels).
- 7. Misoi, Hishida & Maeba, <u>Diagnosis of Alcohol Intoxication by the Optokinetic Test</u>, 30 Q.J. OF STUD. ON ALCOHOL 1 (March-June 1969) (optokinetic nystagmus, ocular adaptation to movement of object before eyes, can also be used to detect central nervous system impairment caused by alcohol. Optokinetic nystagmus is inhibited at BAC of only .051 percent and can be detected by optokinetic nystagmus test. Before dosage subjects could follow a speed of 90 degrees per second; after, less than 70 degrees per second).

- 8. Nathan, Zare, Ferneau & Lowenstein, <u>Effects of Congener Differences in Alcohol Beverages on the Behavior of Alcoholics</u>, 5 Q.J. OF STUD. ON ALCOHOL SUPP., May 1970, at 87 (abstract available on DIALOG, file 11: Psychinfo 1967-85) (incidence of nystagmus and other nystagmoid movements increased with duration of drinking).
- 9. Oosterveld, Meineri & Paolucci, Quantitative Effect of Linear Acceleration on Positional Alcohol Nystagmus, 45 AEROSPACE MEDICINE, July 1974, at 695 (G-loading brings about PAN even when subject has not ingested alcohol; however when subjects ingested alcohol, no PAN was found when subjects were in supine position, even with G-force at 3).
- 10. Penttila, Lehti & Lonnqvist, <u>Nystagmus and Disturbances in Psychomotor Functions Induced by Psychotropic Drug Therapy</u>, 1974 PSYCHIAT. FENN. 315 (abstract available on DIALOG, file 173: Embase 1975-79) (psychotropic drugs induce nystagmus).
- 11. Wilkinson, Kime & Purnell, <u>Alcohol and Human Eye Movement</u>, 97 BRAIN 785 (1974) (oral dose of ethyl alcohol impaired smooth pursuit eye movement of all human subjects).
- 12. Aschan & Bergstedt, <u>Positional Alcoholic Nystagmus in Man Following Repeated Alcohol Doses</u>, 80 ACTA OTOLARYNGOL SUPP. 330 (Sweden 1975) (abstract available on DIALOG, file 173: Embase 1975-79) (degree of intoxication influences both PAN I and PAN II).
- 13. Lehti, The Effect of Blood Alcohol Concentration on the Onset of Gaze Nystagmus, 136 BLUTALKOHOL 414 (West Germany 1976) (abstract available on DIALOG, file 173: Embase 1975-79) (noted a statistically highly significant correlation between BAC and the angle of onset of nystagmus with respect to the midpoint of the field of vision).
- 14. Zyo, Medico-legal and Psychiatric Studies on the Alcohol Intoxicated Offender, 30 JAPANESE J. OF LEGAL MED., No. 3, 1976, at 169 (abstract available on DIALOG, file 21: National Criminal Justice Reference Service 1972-85) (recommends use of nystagmus test to determine somatic and mental symptoms of alcohol intoxication as well as BAC).
- 15. Burns & Moskowitz, <u>Psychophysical Tests for DWI Arrest</u>, U.S. Dept. of Transportation Rep. No. DOT-HS-802-424 (1977) (recommended the three-test battery developed by SCRI (one-leg stand, walk and turn, and HGN) to aid officers in discriminating BAC level).

- 16. Umeda & Sakata, Alcohol and the Oculomotor System, 87 ANNALS OF OTOLOGY, RHINOLOGY & LARYNGOLOGY, May-June 1978, at 392 (in volunteers whose "caloric eye tracking pattern" (CETP) was normal before alcohol intake, influence of alcohol on oculomotor system appeared consistently in the following order: (1) abnormality of CETP, (2) positional alcohol nystagmus, (3) abnormality of eye tracking pattern, (4) alcohol gaze nystagmus).
- 17. Baloh, Sharma, Moskowitz & Griffith, <u>Effect of Alcohol and Marijuana on Eye Movements</u>, 50 AVIAT. SPACE ENVIRON. MED., Jan 1979, at 18 (abstract available on DIALOG, file 153: Medline 1979-79) (smooth pursuit eye movement effects of alcohol overshadowed those of marijuana).
- 18. Savolainen, Riihimaki, Vaheri & Linnoila, <u>Effects of Xylene and Alcohol on Vestibular and Visual Functions in Man</u>, SCAND. J. WORK ENVIRON. HEALTH 94 (Sweden 1980) (abstract available on DIALOG, file 172: Embase 1980-81 on file 5: Biosis Previews 1981-86) (the effects of alcohol on vestibular functions (e.g., positional nystagmus) were dose-dependent).
- 19. Tharp, Burns & Moskowitz, <u>Circadian Effects on Alcohol Gaze Nystagmus</u> (paper presented at 20th annual meeting of Society for Psychophysiological Research), abstract in 18 PSYCHOPHYSIOLOGY, March 1981 (highly significant correlation between angle of onset of AGN and BAC).
- 20. Tharp, Burns & Moskowitz, <u>Development and Field Test of Psychophysical Tests for DWI Arrests</u>, U.S. Dept. of Transportation Rep. No. DOT-HS-805-864 (1981) (standardized procedures for administering and scoring the SCRI three-test battery; participating officers able to classify 81% of volunteers above or below .10).
- 21. Church & Williams, <u>Dose- and Time-Dependent Effects of Ethanol</u>, 54 ELECTROENCEPHALOGRAPHY & CLIN. NEUROPHYSIOL., Aug. 1982, at 161 (abstract available on DIALOG, file 11: Psychinfo 1967-85 or file 72: Embase 1982-85) (positional alcohol nystagmus increased with dose levels of ethanol).
- 22. Anderson, Schweitz & Snyder, Field Evaluation of Behavioral Test Battery for DWI, U.S. Dept. of Transportation Rep. No. DOT-HS-806-475 (1983) (field evaluation of the field sobriety test battery (HGN, one-leg stand, and walk and turn) conducted by police officers from four jurisdictions indicated that the battery was approximately 80% effective in determining BAC above and below .10 percent).

- 23. Barnes, The Effects of Ethyl Alcohol on Visual Pursuit and Suppression of the Vestibulo-Ocular Reflex, 406 ACTA OTOLARYNGOL SUPP. 161 (Sweden 1984) (ethyl alcohol disrupted visual pursuit eye movement by increasing number of nystagmic "catch-up saccades").
- 24. Compton, <u>Use of the Gaze Nystagmus Test to Screen Drivers at DWI Sobriety Checkpoints</u>, U.S. Dept. of Transportation (1984) (field evaluation of HGN test administered to drivers through car window in approximately 40 seconds: "the nystagmus test scored identified 95% of the impaired drivers" at 2; 15% false positive for sober drivers, <u>id</u>.).
- 25. Helzer, <u>Detection DUIs Through the Use of Nystagmus</u>, LAW AND ORDER, Oct. 1984, at 93 (nystagmus is "a powerful tool for officers to use at roadside to determine BAC of stopped drivers...(O)fficers can learn to estimate BACs to within an average of 0.02 percent of chemical test readings." Id. at 94).
- 26. Nuotto, Palva & Seppala, <u>Naloxone Ethanol Interaction in Experimental and Clinical Situations</u>, 54 ACTA PHARMACOL. TOXICOL. 278 (1984) (abstract available on DIALOG, file 5: Biosis Previews 1981-86) (ethanol alone dose-dependently induced nystagmus).
- 27. L.R. Erwin, DEFENSE OF DRUNK DRIVING CASES (3d ed. 1985) ("A strong correlation exists between the BAC and the angle of onset of (gaze) nystagmus." <u>Id</u>. at 8.15A(3).
- 28. Norris, The Correlation of Angle of Onset of Nystagmus With Blood Alcohol Level: Report of a Field Trial, CALIF. ASS'N CRIMINALISTICS NEWSLETTER, June 1985, at 21 (The relationship between the ingestion of alcohol and the inset of various kinds of nystagmus "appears to be well documented." Id. "While nystagmus appears to be useful as a roadside sobriety test, at this time, its use to predict a person's blood alcohol level does not appear to be warranted." Id. at 22).
- 29. Seelmeyer, <u>Nystagmus, A Valid DUI Test</u>, LAW AND ORDER, July 1985, at 29 (horizontal gaze nystagmus test is used in "at least one law enforcement agency in each of the 50 states" and is "a legitimate method of establishing probable cause." Id.).

- 30. Burns & Anderson, <u>Field Evaluation Study of the Standardized Field Sobriety Test (SFST) Battery</u>, (Colorado, 1995). Study examined the accuracy of police arrest and release decisions under roadside conditions where trained and experienced officers rely on the SFSTs. Breath and blood tests supported 94% of the decisions to arrest. PBT measurements indicated 64% correct release decisions.
- 31. Burns & Dioquino, <u>Field Evaluation Study of the Standardized Field Sobriety Test (SFST) Battery</u>, (Florida, 1997). Study demonstrated that officers trained under NHTSA guidelines and experienced in application of the SFST battery in the field were accurate in 95% of arrest decisions and 85% of release decisions.
- 32. Stuster & Burns, <u>Validation of the Standardized Field Sobriety Test Battery at BACs Below 0.10 Percent</u>, U.S. Dept. of Transportation Rep. No. DOT-HS-808-839 (1998). Study found NHTSA's Standardized Field Sobriety test battery to be an accurate method of discriminating motorist's BACs above and below 0.08 percent, and above and below 0.04 percent when testing is conducted by officers trained in modified scoring of NHTSA's SFST battery. (See bar graph on next page.)
- 33. Citek, Ball, & Rutledge, Nystagmus Testing in Intoxicated Individuals, College of Optometry, Pacific University, Forest Grove, Oregon and the Oregon State Police, Wilsonville, Oregon (2003). The HGN test administered in the standing, seated, and supine postures is able to discriminate impairment at criterion BACs of 0.08% and 0.10%. The VGN test can identify high levels of impairment at any test posture. Therefore, these tests can be used by an officer to determine if a driver is impaired, regardless of whether the driver is standing, seated, or supine.
- 34. Burns, The Robustness of the Horizontal Gaze Nystagmus (HGN) Test, U.S. Department of Transportation Rep. (2004). The data provide no reason to expect HGN examinations of one-eyed individuals to yield misleading information and HGN, as used by law enforcement is a robust procedure, and the data obtained in this experiment do not support recommendations for changes in how officers are trained to view a suspect's eyes and interpret their observations. The study findings provide no basis for concluding that the validity of HGN is compromised by minor procedural variations.