ISS 305:002 Fall 2017 Study Guide for Exam 3

Below is a list of terms/concepts that you should be familiar with for Exam 3 on Tuesday 11/14/2017. **This list is not exhaustive.** You should be familiar with your lecture notes and the assigned readings. Some tips: Study hard – go over the notes carefully (most of the questions will be drawn from lecture material) and be familiar with all readings. Study smart – know key concepts. Get a good night's sleep before the exam. **Highlighted = added**

Intro to ISS 305 (1 Question on the Exam)

• Candide, Skeptic, skeptic

Problems of Description (10 Questions on the Exam)

- Slippery "Averages" What would Huff tell you to ask?
- Normal Distribution and it's features
- Proportions or Percentages problems?
- Graphical Illusions/Deceptions

Establishing Associations (24 Questions on the Exam)

- Defining relationships Why is bivariate description more interesting?
 - o Positive, negative, and absence/no relationship; prediction
- Contingency tables What do a, b, c, d, e, f, g, h, and N represent?
 - o Can you draw one if given the variables?
- Frequency distributions vs. Relative frequency distributions (rfd)
 - o Row rfd's vs. column rfd's How do you establish a relationship with the rfd's?
 - Judging relationships from contingency tables
 - What information do you need in order to draw valid conclusions?
- What is a perfect relationship? The most common errors in judging relationships?
- Causal relationships
- Single-cell errors
 - o Trying to prove a rule with single cell information, usually use
 - Positive testimonials; a bunch of positive testimonials
 - "Person on the street" interviews
 - Reasoning from one's own experience
 - Case studies
 - o Trying to disprove a rule with single cell information, usually use
 - Negative testimonials; a bunch of negative testimonials
 - "Person who"
 - Historical counterexamples
 - Why do we commit single cell errors? What are the roots?
 - What about exceptions?
 - Factors that affect making the single cell error (heuristic)
 - Vivid vs. pallid information for example, the prison guard study
 - Stereotypes; Illusory correlations/paired distinctiveness
 - Personal evidence
 - Confirmation bias, framing, and profit
 - Individual differences
- Single Row/column errors (no control group error) and the roots of them
 - o Factors that affect making the single row/column errors
 - Restriction of range / floor effects / ceiling effects
 - Individual differences
- Diagonal and marginals errors and the origins of each

- How do our expectations shape detecting relationships? When we expect |r| > 0, or r = 0?
- C x C, using a scatter plot, and restriction of range
 - \circ What does r = 0 mean?
- For practice judging relationships from word problems, see "Recognizing Relationships" inside the "Establishing Associations" notes section on D2L

Real vs. Illusory Effects (15 Questions on the Exam)

- Probabilistically
- Chance and coincidence
- Prevalence of uncertainty
 - o What do we mean when we say something was due to chance?
- Representativeness heuristic
- Underutilization of base rate information
- Perception of random and chance events
 - o Falling victim to the
 - Representativeness heuristic
 - Gambler's fallacy
- Illusions of control what's this whole thing about tickets and the card game war?
- The conjunction fallacy what's an example?
- Inverse probabilities
- Belief in a just world
 - o Good people deserve what?
 - o Bad people deserve what?
 - Why?
 - What are some examples?
 - o Zuckerman (1975) study
- Insensitivity to sample size
 - o Why do we make this mistake?
 - Why is it bad when we evaluate relationships?
- Hypothesis testing
 - Core logic
 - \circ Null (H₀) what is it saying?
 - \circ Alternate (H₁ or H_a) what is it saying?
 - Generic procedures
 - o Alpha (α) levels
 - Sample size
 - What happens if your IV is significant? Not significant?
- Type I and II error (decision errors)
 - How can each be influenced?
 - What happens if I want to avoid making one of these errors?
 - o Contingency table outcomes of each
- Practical vs. statistical significance When would you favor one over the other?
 - O How is effect size tied into this debate?
 - What is a meta-analysis? What are the potential problems?