Wyznaczenie długości fali światła laserowego przy pomocy siatki dyfrakcyjnej Informatyka – profil praktyczny, semestr II Wydział Matematyki Stosowanej Politechnika Ślaska

Sekcja 5 Piotr Skowroński, Bartłomiej Pacia Kwiecień 2022

1 Wstęp teoretyczny

Od początku XX wieku wiemy, że światło ma naturę dualną. Oznacza to, że zjawiska charakterystyczne dla fal, jak np. interferencja i dyfrakcja, wyjaśnia się za pomocą teorii falowej. Do zjawisk, których teoria falowa nie jest w stanie wyjaśnić, używa się teorii korpuskularnej.

Jednym z parametrów charakteryzujących falę jest jej długość. Jest to najmniejsza odległość między dwoma punktami o tej samej fazie drgań.

Rysunek 1: Wizualizacja długości fali. Oznacza się ją grecką literą λ (lambda).

Długości fal świetlnych, które widzimy, mają długość od 380 do 780 nm. Siatka dyfrakcyjna jest to przyrząd, służący do przeprowadzenia analizy widmowej światła.

Zbudowana jest z układu równych, równoległych i jednakowo rozmieszczonych szczelin. Działanie siatki polega na wykorzystaniu zjawiska dyfrakcji i interferencji światła do uzyskania jego widma. W tym celu pomiędzy źródłem światła a ekranem umieszcza się siatkę dyfrakcyjną. Na ekranie uzyskuje się w ten sposób widmo światła.

2 Pomiary

Podczas wykonywania doświadczenia w pracowni pomiary zapisywaliśmy ręcznie na kartce. Następnie przepisaliśmy wyniki naszych pomiarów do pliku

JSON, by umożliwić ich wykorzystanie w programie.

Do obliczeń wykorzystaliśmy język Python w środowisku Jupyter Notebook.

3 Obliczenia

Zadanie 1. Obliczenie średniej wartości x_N dla każdej pary x_L i x_P .

Przyjmiemy niepewności $u(x_L)=0.003m,\,u(x_P)=0.003m$ i u(L)=0.003m, związane z niepewnością linijki. Wartości średnich liczymy ze wzoru $x_N=\frac{x_L+x_P}{2}$ dla każdej pary $x_L,\,x_P.$

Niepewność $u(x_N)$ wyznaczamy z prawa przenoszenia niepewności:

$$u(x_N) = \sqrt{\left[\frac{\partial x_N}{\partial x_L}u(x_L)\right]^2 + \left[\frac{\partial x_N}{\partial x_P}u(x_P)\right]^2}$$

Po obliczeniach:

$$u(x_N) = \frac{1}{2}\sqrt{u^2(x_L) + u^2(x_P)} = 0.0021 \text{ m}$$

Lp.	N	L, m	x_L , m	x_P , m	x_N , m
1.	1	0.1000(30)	0.0180(30)	0.0180(30)	0.0180(21)
2.	2	0.1000(30)	0.0400(30)	0.0390(30)	0.0395(21)
3.	3	0.1000(30)	0.0660(30)	0.0650(30)	0.0655(21)
4.	4	0.1000(30)	0.1060(30)	0.1100(30)	0.1080(21)
5.	1	0.2000(30)	0.0390(30)	0.0380(30)	0.0385(21)
6.	2	0.2000(30)	0.0810(30)	0.0800(30)	0.0805(21)
7.	3	0.2000(30)	0.1360(30)	0.1360(30)	0.1360(21)
8.	1	0.3000(30)	0.0580(30)	0.0580(30)	0.0580(21)
9.	2	0.3000(30)	0.1220(30)	0.1230(30)	0.1230(21)
10.	3	0.3000(30)	0.2050(30)	0.2150(30)	0.2100(21)
11.	1	0.4000(30)	0.0780(30)	0.0770(30)	0.0755(21)
12.	2	0.4000(30)	0.1660(30)	0.1640(30)	0.1650(21)
13.	1	0.5000(30)	0.0970(30)	0.0970(30)	0.0970(21)
14.	2	0.5000(30)	0.2050(30)	0.2160(30)	0.2110(21)

Zadanie 2. Obliczenie długości fali światła laserowego dla każdego x_N .

Aby obliczyć długość fali światła laserowego skorzystamy ze wzoru:

$$\lambda = \frac{d}{N} \cdot \frac{x_N}{\sqrt{x_N^2 + L^2}}$$

Gdzie:

 \boldsymbol{d} - stała siatki dyfrakcyjnej

 ${\cal L}$ - odległość siatki od ekranu

$$N$$
- rząd prążka dyfrakcyjnego
$$d=\frac{1mm}{\rm liczba~nacięć~na~siatce~na~1mm}=\frac{1mm}{300}=\frac{1}{300000}~\rm m$$

Lp.	N	L, m	x_N , m	λ , nm
1.	1	0.1000(30)	0.0180(21)	591(73)
2.	2	0.1000(30)	0.0395(21)	612(39)
3.	3	0.1000(30)	0.0655(21)	609(25)
4.	4	0.1000(30)	0.1080(21)	611(15)
5.	1	0.2000(30)	0.0385(21)	630(37)
6.	2	0.2000(30)	0.0805(21)	622(19)
7.	3	0.2000(30)	0.1360(21)	625(13)
8.	1	0.3000(30)	0.0580(21)	633(25)
9.	2	0.3000(30)	0.1230(21)	630(13)
10.	3	0.3000(30)	0.2100(21)	637(10)
11.	1.	0.4000(30)	0.0755(21)	634(18)
12.	2.	0.4000(30)	0.1650(21)	636(10)
13.	1.	0.5000(30)	0.0970(21)	635(15)
14.	2.	0.5000(30)	0.2110(21)	647(11)

Zadanie 3. Obliczenie niepewności długości fali $u(\lambda)$.

Aby wyliczyć niepewności długości fal, skorzystamy z prawa przenoszenia niepewności. Przyjmujemy, że niepewność L wynosi u(L)=0.003m. Prawo przenoszenia niepewności wyraża się wzorem:

$$u(y) = \sqrt{\sum_{i=1}^{k} \left[\frac{\partial y}{\partial x_i} u(x_i)\right]^2}$$

Zatem prawo przenoszenia niepewności dla λ ma postać:

$$u(\lambda) = \sqrt{\left[\frac{\partial \lambda}{\partial x_n} u(x_n)\right]^2 + \left[\frac{\partial \lambda}{\partial L} u(L)\right]^2}$$

Po uproszczeniu:

$$u(\lambda) = \sqrt{\left[\frac{dL^2 u(x_N)}{N(x_N^2 + L^2)^{1.5}}\right]^2 + \left[\frac{-dL x_N u(L)}{N(x_N^2 + L^2)^{1.5}}\right]^2}$$

Niepewności pomiarowe dla λ wprowadziliśmy od razu do tabelki powyżej.

Zadanie 4. Obliczenie średniej ważonej z λ .

Wzór na średnią ważoną ma postać:

$$\bar{\lambda} = \frac{\sum_{i=1}^{N} \lambda_i w_i}{\sum_{i=1}^{N} w_i}$$
, gdzie $w_i = \frac{1}{u^2(\lambda_i)}$

Zatem po zliczeniu wszystkich danych otrzymujemy:

$$\bar{\lambda} = 634 \text{ nm}$$

Zadanie 5. Obliczenie niepewności średniej ważonej.

Wzór na niepewność średniej ważonej ma postać:

$$u(\bar{\lambda}) = \frac{1}{\sqrt{\sum_{i=1}^{N} w_i}}$$

Po obliczeniach:

$$u(\bar{\lambda}) = 3.7 \text{ nm}$$

Zadanie 6. Zapisanie wyników w odpowiednim formacie.

Końcowa wartość λ ma wartość średniej ważonej wraz z jej niepewnością:

$$\lambda = 634.0(37) \text{ nm}$$

4 Wnioski

Zmierzona przez nas długość fali światła laserowego λ odpowiada kolorowi czerwonemu. Zgadza się to z faktycznym kolorem lasera w pracowni.

Końcowe niepewności pomiarów wynikają z niepewności linijki użytej do pomiaru odległości siatki od ekranu, jak również z nieprawidłowego odczytu odległości prążków od prążka zerowego.