0.1 2003 専門

- $\boxed{1}$ (1)V は 3 次元線形空間であるから $\{v_1,v_2,v_3\}$ が一次独立であることを示せばよい。 $c_1v_1+c_2v_2+c_3v_3=0$ とする。 $F(c_1v_1+c_2v_2+c_3v_3)=c_1f(v_1)=0$ であり, $F(v_1)\neq 0$ より $c_1=0$ である。 よって $c_2v_2+c_3v_3=0$ であるが v_2,v_3 は一次独立であるから $c_2=c_3=0$ である。 したがって $\{v_1,v_2,v_3\}$ は基底。
 - $(2)\{v_1,v_2,v_3\}$ が基底であるから $F(v_1)=av_1+bv_2+cv_3$ なる $a,b,c\in V$ が存在する. したがって表現行列

は
$$\begin{pmatrix} a & 0 & 0 \\ b & 0 & 0 \\ c & 0 & 0 \end{pmatrix}$$
である.

- (3) $F(v_1) \notin U$ であるから $a \neq 0$ である. $u_1 = v_1 + \frac{b}{a}v_2 + \frac{c}{a}v_3$ とする. $F(u_1) = F(v_1) = a(v_1 + \frac{b}{a}v_2 + \frac{c}{a}v_3) = au_1$ である. $\{u_1, v_2, v_3\}$ に関する表現行列は対角行列である.
 - (4)U の一次独立な集合 $\{F(v_1)\}$ を延長して U の基底 $\{F(v_1),v_3\}$ をとる.このとき $\{v_1,F(v_1),v_3\}$ に関す

る表現行列は
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 であり、ジョルダン標準形である.

- $\boxed{2}$ (1)U が開集合 $\Leftrightarrow^{\forall} x \in U$, $\exists r > 0, B_r(x) \subset U$ である.
- $(2)((a)\Rightarrow(b))$ U を \mathbb{R}^N の開集合とする. $x\in f^{-1}(U)$ を任意にとる. $f(x)\in U$ より $\exists r>0, B_r(f(x))\subset U$ である. したがって $f^{-1}(B_r(f(x)))\subset f^{-1}(U)$ がなりたつ. いま (a) より r に対してある $\delta>0$ が存在して $B_\delta(x)=f^{-1}f(B_\delta(x))\subset f^{-1}(B_r(f(x)))\subset f^{-1}(U)$ である. よって $f^{-1}(U)$ は開集合である.
- $((b)\Rightarrow(a))$ 任意の $a\in\mathbb{R}^N, \varepsilon>0$ をとる。 $B_\varepsilon(f(a))$ は開集合であるから $a\in f^{-1}(B_\varepsilon(f(a)))$ も開集合である。 したがってある $\delta>0$ が存在して $B_\delta(a)\subset f^{-1}(B_\varepsilon(f(a)))$ である。f で送って $f(B_\delta(a))\subset f(f^{-1}(B_\varepsilon(f(a))))\subset B_\varepsilon(f(a))$ である。
- $(3)((a)\Rightarrow(c))$ 任意の $\varepsilon>0$ に対してある $\delta>0$ が存在して $f(B_{\delta}(a))\subset B_{\varepsilon}(f(a))$ である.したがってある N が存在して n>N なら $d(a_n,a)<\delta$ すなわち $a_n\in B_{\delta}(a)$ が成り立つ.よって $f(a_n)\in B_{\varepsilon}(f(a))$ であるから $d(f(a_n),f(a))<\varepsilon$ である.これは $\lim f(a_n)=f(a)$ を意味する.
- $((c)\Rightarrow(a))$ 背理法を用いる。 ある $a\in\mathbb{R}^N$ と $\varepsilon>0$ が存在して任意の $\delta>0$ に対して $f(B_\delta(a))\not\subset B_\varepsilon(f(a))$ であると仮定する。 このとき $\delta=\frac{1}{n}$ とすれば $a_n\in B_\delta(a)$ で $f(a_n)\not\in B_\varepsilon(f(a))$ なるものがとれる。 これによって数列 $\{a_n\}$ を作れば $\{a_n\}$ は a に収束するが $\{f(a_n)\}$ は f(a) に収束しない。 これは矛盾。
 - $\boxed{3}$ $(1)x=r\cos\theta,y=r\sin\theta$ とおくとヤコビアンは r である. よって $I_n=\int_0^{2\pi}\int_0^\infty \frac{r^2}{1+r^{2n}}drd\theta$ である.
- $(2)I_n$ の収束性は $\int_0^\infty \frac{r^2}{1+r^{2n}}dr$ の収束性と同値. [0,1] では被積分関数が有界であるから $\int_1^\infty \frac{r^2}{1+r^{2n}}dr$ の収束性と同値. $n \geq 2$ のとき, $\int_1^M \frac{r^2}{1+r^{2n}}dr \leq \int_1^M r^{2-2n}dr = \left[\frac{1}{3-2n}r^{3-2n}\right]_1^M = \frac{1}{3-2n}(M^{3-2n}-1) \rightarrow \frac{1}{3n-2} \quad (M \to \infty)$ である. n=1 のとき. $r \geq 1$ より $r^2 \geq 1$ であるから $2r^2 \geq r^2+1$ である. よって $\int_1^M \frac{r^2}{1+r^2}dr \geq \int_1^M \frac{r^2}{2r^2}dr = \int_1^M \frac{1}{2}dr = \frac{1}{2}M \to \infty \quad (M \to \infty)$ より発散する.

よって求める最小値aはa=2である.

 $(3)\frac{z^k}{1+z^4}$ は $z=e^{\frac{\pi i}{4}},e^{\frac{3\pi i}{4}},e^{\frac{5\pi i}{4}},e^{\frac{7\pi i}{4}}$ をそれぞれ 1 位の極として持つ. 積分路 Γ 内の特異点は $z=e^{\frac{\pi i}{4}},e^{\frac{3\pi i}{4}}$ である. 留数は $\mathrm{Res}\Big(\frac{z^k}{1+z^4},e^{\frac{\pi i}{4}}\Big)=\Big(\frac{z^k}{4z^3}\Big)\Big|_{z=e^{\frac{\pi i}{4}}}=\frac{1}{4}e^{\frac{(k-3)\pi i}{4}},\mathrm{Res}\Big(\frac{z^k}{1+z^4},e^{\frac{3\pi i}{4}}\Big)=\Big(\frac{z^k}{4z^3}\Big)\Big|_{z=e^{\frac{3\pi i}{4}}}=\frac{1}{4}e^{\frac{(3k-1)\pi i}{4}}$ である. したがって留数定理から $\int_{\Gamma}\frac{z^k}{1+z^4}dz=2\pi i(\frac{1}{4}e^{\frac{(k-3)\pi i}{4}}+\frac{1}{4}e^{\frac{(3k-1)\pi i}{4}}\Big)$ である.

(4)

$$\begin{split} \left| \int_{C_R} \frac{z^2}{1+z^4} dz \right| &= \left| \int_0^\pi \frac{R^2 e^{2i\theta}}{1+R^4 e^{4i\theta}} Rie^{i\theta} d\theta \right| \leq \int_0^\pi \left| \frac{R^3}{1+R^4 e^{4i\theta}} \right| d\theta \leq \int_0^\pi \left| \frac{R^3}{R^4-1} \right| d\theta = \pi \frac{R^3}{R^4-1} \to 0 \quad (R \to \infty) \\ \int_{[-R,R]} \frac{z^2}{1+z^4} dz &= \int_{[-R,0]} \frac{z^2}{1+z^4} dz + \int_{[0,R]} \frac{z^2}{1+z^4} dz = \int_R^0 \frac{r^2}{1+r^4} (-1) dr + \int_0^R \frac{r^2}{1+r^4} dr = 2 \int_0^R \frac{r^2}{1+r^4} dr \\ &= 2 \int_0^R \frac{r^2}{1+r^4} dr = 2$$

である。 よって $\int_{\Gamma} \frac{z^2}{1+z^4} dz = \int_{C_R} \frac{z^2}{1+z^4} dz + 2 \int_0^R \frac{r^2}{1+r^4} dr$ である。 $R \to \infty$ として $2\pi i (\frac{1}{4} e^{\frac{(2-3)\pi i}{4}} + \frac{1}{4} e^{\frac{(3\cdot 2-1)\pi i}{4}}) = 0 + 2 \int_0^\infty \frac{r^2}{1+r^4} dr$ である。 したがって $\int_0^\infty \frac{r^2}{1+r^4} dr$ である。 よって $I_2 = \int_0^{2\pi} \frac{\sqrt{2}}{4} \pi d\theta = \frac{\pi^2}{\sqrt{2}}$ である。

4 $(1)\varphi: K[X,Y] \to K[t]; x \mapsto t^3, y \mapsto t^2$ とする.このとき $\ker \varphi \supset (X^3 - Y^2)$ は明らか. $f(X,Y) \in \ker \varphi$ とすると, $f(X,Y) = (X^3 - Y^2)g(X,Y) + Yh_1(X) + h_2(X)$ とできる. φ でおくれば $0 = t^2h_1(t^3) + h_2(t^3)$ である.t の次数について,3 の倍数の次数を比較すれば $0 = h_2(t^3)$ であるから $h_2 = 0$ である.よって $0 = t^2h_1(t_3)$ より $h_1 = 0$ である.すなわち $\ker \varphi = (X^3 - Y^2)$ である.

よって準同型定理から $R=K[X,Y]/\ker \varphi \cong \operatorname{Im} \varphi = K[t^2,t^3]$ である.

 $K[t^2,t^3]$ は K[t] の部分環であるから整域であることは明らか. よって R は整域.

 $(2)K[t^2,t^3]$ の商体は $t^3/t^2=t$ より K(t) である. $K[t^2,t^3][s]\ni s^2-t^2$ は t を根にもつモニック多項式であるが, $t\notin K[t^2,t^3]$ であるから R は整閉でない.