# METU EE7566 Electric Drives in Electric and Hybrid Electric Vehicles

**Emine Bostanci** 

Office: C-107

# Content

Overview - components in passenger cars

Overview - power conversion devices

Energy storage

- Electrochemical batteries
  - Li-ion battery systems (extra slides)
- Supercapacitor
- Flywheel
- Hydrogen production, storage and safety
- Hybridization of energy storage

# Overview - Components in Passenger Cars

### **Drivetrain Components:**

### Energy storage

- Physical (container: tank)
- Mechanical
- Chemical
- Electrical

### Power conversion

- Chemical to chemical
- Chemical to mechanical
- Chemical to electrical
- Mechanical to chemical
- Mechanical to mechanical
- Mechanical to electrical
- Electrical to chemical
- Electrical to electrical
- Electrical to mechanical



Intermediate and byproducts:
Thermal power

Electromagnetic power

### Accessories

# Overview - Power Conversion Devices



# Overview - Power Conversion Devices

**Chemical to chemical** → Hydrogen reformers

**Chemical to mechanical** → Internal combustion engine, driver

**Chemical to electrical** → Fuel cell, power unit of battery, driver

Mechanical to chemical  $\rightarrow$  ??

**Mechanical to mechanical** → Gear box, differential, wheels, shaft

**Mechanical to electrical** → Electric generator

**Electrical to chemical** → Electrolyzer

**Electrical to electrical** → Inverter, converter, rectifier

**Electrical to mechanical** → Electric motor

# **Energy Storage**

"Energy storages" are defined as the devices that store energy, deliver energy outside (discharge), and/or accept energy from outside (charge).

- Fuel tank
- Electrochemical battery
- Supercapacitor
- Li-capacitor
- Flywheel
- Hydrogen storage

| Energy<br>source/storage | Nominal Energy Density<br>(Wh/kg) |
|--------------------------|-----------------------------------|
| Gasoline                 | 12,300                            |
| Natural gas              | 9,350                             |
| Methanol                 | 6,200                             |
| Hydrogen                 | 28,000                            |
| Coal (bituminous)        | 8,200                             |
| Lead-acid battery        | 35                                |
| Sodium-sulfur battery    | 150-300                           |
| Flywheel (steel)         | 12-30                             |



Compressed

# History of Electrochemical Batteries

| Year              | Inventor                                                          | Activity                                                                                               |
|-------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1600              | William Gilbert (UK)                                              | Establishment of electrochemistry study                                                                |
| 1745              | Ewald Georg von Kleist (NL)                                       | Invention of Leyden jar. Stores static electricity                                                     |
| 1791              | Luigi Galvani (Italy)                                             | Discovery of "animal electricity"                                                                      |
| 1800              | Alessandro Volta (Italy)                                          | Invention of the voltaic cell (zinc, copper disks)                                                     |
| 1802              | William Cruickshank (UK)                                          | First electric battery capable of mass production                                                      |
| 1820              | André-Marie Ampère (France)                                       | Electricity through magnetism                                                                          |
| 1833              | Michael Faraday (UK)                                              | Announcement of Faraday's law                                                                          |
| 1836              | John F. Daniell (UK)                                              | Invention of the Daniell cell                                                                          |
| 1839              | William Robert Grove (UK)                                         | Invention of the fuel cell (H <sub>2</sub> /O <sub>2</sub> )                                           |
| 1859              | Gaston Planté (France)                                            | Invention of the lead acid battery                                                                     |
| 1868              | Georges Leclanché (France)                                        | Invention of the Leclanché cell (carbon-zinc)                                                          |
| 1899              | Waldemar Jungner (Sweden)                                         | Invention of the nickel-cadmium battery                                                                |
| 1901              | Thomas A. Edison (USA)                                            | Invention of the nickel-iron battery                                                                   |
| 1932              | Schlecht & Ackermann (Germany)                                    | Invention of the sintered pole plate                                                                   |
| 1947              | Georg Neumann (Germany)                                           | Successfully sealing the nickel-cadmium battery                                                        |
| 1949              | Lewis Urry, Eveready Battery                                      | Invention of the alkaline-manganese battery                                                            |
| 1970's            | Group effort                                                      | Development of valve-regulated lead acid battery                                                       |
| 1990              | Group effort                                                      | Commercialization of nickel-metal-hydride batt.                                                        |
| 1991              | Sony (Japan)                                                      | Commercialization of lithium-ion battery                                                               |
| 1994              | Bellcore (USA)                                                    | Commercialization of lithium-ion polymer                                                               |
| 1995              | Group effort                                                      | Introduction of pouch cell using Li-polymer                                                            |
| 1995              | Duracell and Intel                                                | Proposal of industry standard for SMBus                                                                |
| 1996              | Moli Energy (Canada)                                              | Introduction of Li-ion with manganese cathode                                                          |
| 1996              | University of Texas (USA)                                         | Identification of Li-phosphate (LiFePO <sub>4</sub> )                                                  |
| 2002              | University of Montreal, Quebec Hydro, MIT, others                 | Improvement of Li-phosphate, nanotechnology, commercialization                                         |
| 2002<br>METU, EE7 | Group effort<br>566 - Electric Drives in Electric and Hybrid Elec | Various patents filed on nanomaterials for batteries tric Vehicles, Spring 2018-2019, Emine Bostancı 7 |

# Energy Storage – Electrochemical Batteries

Batteries are electrochemical devices (storage and conversion) that convert electrical energy into potential chemical energy during charging, and convert chemical energy into electric energy during discharging.



Primary (Single use)

Alkaline

Secondary (Rechargeable)

- Lead-acid
- Ni-Cd
- Ni-MH
- Li-ion
- Zinc-Air

Srinivasan, Venkat and Newman, John. Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell. Journal of the Electrochemical Society 151, No 10(2004). Pp A1530-A1538.

# Revenue Contributions by Different Battery Chemistries



37% Lithium-ion

20% Lead acid, starter battery

15% Alkaline, primary

8% Lead acid, stationary

6% Zinc-carbon, primary

5% Lead acid, deep-cycle

3% Nickel-metal-hydride

3% Lithium, primary

2% Nickel-cadmium

1% Other

# Energy Storage – Electrochemical Batteries

**Capacity of a battery:** Battery with coulometric capacity (in Ah), which is defined as the number of Ah gained when discharging the battery from a fully charged state until its cut-off voltage. e.g.: 100 Ah C5 means 20 A discharge for 5 hours

**SoC:** State-of-charge is defined as the ratio of the remaining capacity to the fully charged capacity, a fully charged battery has an SOC of 100% and a fully discharged battery has 0%.

**DoD:** is a measure of charge removed from it. It is expressed either in Amp-hours (Ah) (preferably) or as percentage.



Specific energy: Energy capacity per unit battery weight in Wh/kg (J)

**Specific power:** Maximum power of per unit battery weight that the battery can produce in a short period

Efficiency: Charging and discharging efficiencies

$$\eta_{discharging} = rac{V}{V_0}$$
  $\eta_{charging} = rac{V_0}{V}$  Terminal voltage



# Naming Conventions

- **Cell**: The most basic element of a battery
- **Block**: Certain number of cells wired in parallel
- **Battery**: Certain number of cells/blocks wired in series
- Pack or Battery Pack: Batteries arranged in series and/or parallel configuration
- **Resistance**: When cell manufacturers list resistance in their specs, they refer to AC impedance. However we will be interested in DC series resistance, which actually distributed through the cells.

# Energy Storage – Battery Technologies

### Status of Battery Systems for Automotive Applications

| System                               | Specific<br>Energy<br>(Wh/kg) | Peak<br>Power<br>(W/kg) | Energy<br>Efficiency<br>(%) | Cycle<br>Life | Self-<br>Discharge<br>(% per 48 h) | Cost<br>(US\$/kWh) |  |
|--------------------------------------|-------------------------------|-------------------------|-----------------------------|---------------|------------------------------------|--------------------|--|
| Acidic aqueous solution              |                               |                         |                             |               |                                    |                    |  |
| Lead/acid  Alkaline aqueous solution | 35–50<br>n                    | 150–400                 | >80                         | 500–1000      | 0.6                                | 120–150            |  |
| Nickel/cadmium                       | 50-60                         | 80-150                  | 75                          | 800           | 1                                  | 250-350            |  |
| Nickel/iron                          | 50-60                         | 80-150                  | 75                          | 1500-2000     | 3                                  | 200-400            |  |
| Nickel/zinc                          | 55-75                         | 170-260                 | 65                          | 300           | 1.6                                | 100-300            |  |
| Nickel/metal hydride                 | 70-95                         | 200-300                 | 70                          | 750-1200+     | 6                                  | 200-350            |  |
| Aluminum/air                         | 200-300                       | 160                     | < 50                        | ?             | ?                                  | ?                  |  |
| Iron/air                             | 80-120                        | 90                      | 60                          | 500+          | ?                                  | 50                 |  |
| Zinc/air                             | 100-220                       | 30-80                   | 60                          | 600+          | ?                                  | 90-120             |  |
| Flow                                 |                               |                         |                             |               |                                    |                    |  |
| Zinc/bromine                         | 70-85                         | 90-110                  | 65-70                       | 500-2000      | ?                                  | 200-250            |  |
| Vanadium redox                       | 20-30                         | 110                     | 75–85                       | _             | _                                  | 400-450            |  |
| Molten salt                          |                               |                         |                             |               |                                    |                    |  |
| Sodium/sulfur                        | 150-240                       | 230                     | 80                          | 800+          | $0^a$                              | 250-450            |  |
| Sodium/nickel                        | 90-120                        | 130-160                 | 80                          | 1200+         | $0^a$                              | 230-345            |  |
| chloride                             |                               |                         |                             |               |                                    |                    |  |
| Lithium/iron                         | 100-130                       | 150-250                 | 80                          | 1000 +        | ?                                  | 110                |  |
| sulfide (FeS)                        |                               |                         |                             |               |                                    |                    |  |
| Organic/lithium                      |                               |                         |                             |               |                                    |                    |  |
| Lithium-ion                          | 80-130                        | 200-300                 | >95                         | 1000 +        | 0.7                                | 200                |  |
|                                      |                               |                         |                             |               |                                    |                    |  |

Values from 2000



GM EM1

1996:1,400 kg with Lead-acid batt. 1999: 1,319 kg with NiMH batteries

Toyota Prius

1997: NiMH Batteries

Tesla Model S, Nissan Leaf, Toyota

Prius Plug-in, BMW i3:

Present: Li-ion

# Li-ion Batteries

- Rechargable (secondary) cells
- Highest Energy Density
- Highest Power Density
- Small in size and light in weight
- Fast charge capability
- Long cycle life
- Minimum leakage current



Source: https://batteryuniversity.com/learn/article/global\_battery\_markets

# Li-ion Batteries



When the cell charges and discharges, ions shuttle between cathode (positive electrode) and anode (negative electrode). On discharge, the anode undergoes oxidation, or loss of electrons, and the cathode sees a reduction, or a gain of electrons. Charge reverses the movement.

http://batteryuniversity.com/learn/article/understanding lithium ion https://en.wikipedia.org/wiki/Lithium-ion battery

### Advantages:

- High energy density
- High efficiency
- Low self discharge

### Disadvantages:

- Dangerous since lithium react with water
- Overcharge protection is required
- High cost
- Electrodes expand and contract during charge and discharge, that effects state of health



# Li-ion Battery System

Please go to Li-ion Battery System slides!

# Supercapacitor

Supercapacitors are governed by the same basic principles as conventional capacitors, but electrodes with much higher surface areas and much thinner dielectrics.

$$C = \frac{Q}{V} = \varepsilon \frac{A}{d}$$
  $E_C = \frac{1}{2}CV^2$ 

Electron charge transfer between electrode and electrolyte

The supercapacitors have much higher specific power, but much lower specific energy compared to the chemical batteries.

Its specific energy is in the range of a few watt-hours per kilogram, and its specific power can reach up to 3 kW/kg, much higher than any type of battery.



https://www.mitre.org/sites/default/files/pdf/06 0667.pdf



https://www.tecategroup.com/ultracapacitors-supercapacitors/ultracapacitor-FAQ.php

# Supercapacitor

### **Advantages:**

- High energy storage as result of using a porous activated carbon electrode to achieve a high surface area.
- Low Equivalent Series Resistance (R<sub>s</sub>) compared to batteries, hence providing high power density capability.
- Low Temperature performance capable of delivering energy down to -40°C with minimal effect on efficiency.
- Fast charge/discharge, charging and discharging through the absorption and release of ions and coupled with its low R<sub>s</sub>, high current charging and discharging is achievable without any damage to the parts.

| Available<br>Performance    | Lead Acid<br>Battery | Ultracapacitor | Conventional<br>Capacitor              |
|-----------------------------|----------------------|----------------|----------------------------------------|
| Charge Time                 | 1 to 5 hrs           | 0.3 to 30 s    | 10 <sup>-3</sup> to 10 <sup>-6</sup> s |
| Discharge Time              | 0.3 to 3 hrs         | 0.3 to 30 s    | 10 <sup>-3</sup> to 10 <sup>-6</sup> s |
| Energy (Wh/kg)              | 10 to 100            | 1 to 10        | < 0.1                                  |
| Cycle Life                  | 1,000                | >500,000       | >500,000                               |
| Specific Power (W/kg)       | <1000                | <10,000        | <100,000                               |
| Charge/discharge efficiency | 0.7 to 0.85          | 0.85 to 0.98   | >0.95                                  |
| Operating Temperature       | -20 to 100 C         | -40 to 65 C    | -20 to 65 C                            |



# Supercapacitor

### **Disadvantages:**

- Low per cell voltage, a typical voltage of 2.7 V, so that the cells have to be connected in series.
- Cannot be used in AC and high frequency circuits due to their time constant are not suitable for use in AC or high frequency circuits.



# Flywheel as Energy Storage

- All ICE vehicles use flywheels to deliver smooth power from power pulses of the engine
- Electromechanical energy storage device
- Stores kinetic energy in a rapidly spinning wheel-like rotor or disk
- Has potential to store energies comparable to batteries
- Modern flywheels use high-strength composite rotor that rotates in vacuum (to reduce aerodynamic and friction losses)
- Magnetic bearings to reduce bearing losses
- A motor/generator connected to rotor shaft spins the rotor up to speed for charging and to convert kinetic energy to electrical energy during discharging

### **Drawbacks**

- Very complex, heavy and large for personal vehicles
- Gyroscopic forces reduce the maneuverability of the vehicle
- There are safety concerns incase of a mechanical failure



Rotational speed, rad/sed

$$E = \frac{1}{2}J\omega^2$$

Moment of inertia, kgm<sup>2</sup>/s

# Hydrogen Production



Mobile fuel cell using H<sub>2</sub>

# Hydrogen Production

**Electrolysis:** uses a DC current for separation of elements.

$$O_2(g) + 4H + 4e - \rightleftharpoons 2H_2O$$

### Plasma reforming

Hydrogen is mostly produced from hydrocarbon fuels through reforming

**Steam reforming:** Steam reforming is a chemical process in which hydrogen is produced through the chemical reaction between hydrocarbon fuels and water steam at high temperature, 250°C.

Gasoline 
$$C_8H_{18} + 16H_2O + 1652.9 \text{ kJ/mol } C_8H_{18} \rightarrow 25H_2 + 8CO_2 \\ \Delta H^{\circ} -224.1 \quad 16 \times (-286.2)$$

**POX reforming:** Fuel is combined with oxygen, 800°C-1000°C

**Autothermal reforming:** Fuel is both combined with oxygen and water steam





Carbon capturing is applied.

$$CH_4 + \frac{1}{2}O_2 \longrightarrow CO + 2H_2$$
  
 $C_8H_{18} + 4O_2 \longrightarrow 8CO + 9H_2$ 

### **Turning Organic Waste into Hydrogen**

# On-Board Hydrogen Storage

**Compressed hydrogen:** Pure hydrogen can be stored on-board of the vehicle under pressure in a tank. The simplest method.

**Liquid hydrogen:** Liquefy the gas at cryogenic temperatures (259.2°C). The stored hydrogen is commonly referred to as "LH2". LH2 storage is affected by the same density problems that affect compressed hydrogen. Indeed, the density of liquid hydrogen is very low and 1 l of liquid hydrogen only weighs 71g.

### **Drawbacks:**

- Low temperature as 259.2°C
- Heavily insulated tank to minimize the heat transfer from the ambient air to the cryogenic liquid

Metal hydrides: Some metals combine with hydrogen to form stable compounds that can later be decomposed under particular pressure and temperature conditions. These metals may be iron, titanium, manganese, nickel, lithium, and some alloys of these metals.

Heat + 
$$M + H_2 \longleftrightarrow MH_2$$
  
Metal: Fe, Ti, Mn, Ni





# On-Board Hydrogen Storage - Safety

- Hydrogen is a unique gaseous element, possessing the lowest molecular weight of any gas.
- Highest thermal conductivity, velocity of sound, mean molecular velocity, and the lowest viscosity and density of all gases
- High <u>leak rate</u> through small orifices faster than all other gases, 2.8 times faster than methane and 3.3 times faster than air
- Highly volatile and flammable gas, and in certain circumstances hydrogen and air mixtures can detonate (no ignition required)

|                                               | Hydrogen  | Methane     | Propane     |  |
|-----------------------------------------------|-----------|-------------|-------------|--|
| Density, kg.m <sup>-3</sup> at NTP            | 0.084     | 0.65        | 2.01        |  |
| Ignition limits in air, volume % at NTP       | 4.0 to 77 | 4.4 to 16.5 | 1.7 to 10.9 |  |
| Ignition temperature, °C                      | 560       | 540         | 487         |  |
| Min. ignition energy in air, MJ               | 0.02      | 0.3         | 0.26        |  |
| Max. combustion rate in air, ms <sup>-1</sup> | 3.46      | 0.43        | 0.47        |  |
| Detonation limits in air, volume %            | 18 to 59  | 6.3 to 14   | 1.1 to 1.3  |  |
| Stoichiometric ratio in air                   | 29.5      | 9.5         | 4.0         |  |

# On-Board Hydrogen Storage - Safety

Which explosion is more dangerous, fuel cell vehicle or gasoline vehicle?



# On-Board Hydrogen Storage Comparison

### Compressed hydrogen

|                                                                                                                                                                      | @200 bar                                                                                                             | @300 bar                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Mass of empty cylinder Mass of hydrogen stored Storage efficiency (% mass H <sub>2</sub> ) Specific energy Volume of tank (approx.) Mass of H <sub>2</sub> per litre | 3.0 kg<br>0.036 kg<br>1.2%<br>0.47 kWh.kg <sup>-1</sup><br>2.21 (0.0022 m <sup>3</sup> )<br>0.016 kg.L <sup>-1</sup> | 100 kg<br>3.1 kg<br>3.1%<br>1.2 kWh.kg <sup>-1</sup><br>2201 (0.22 m <sup>3</sup> )<br>0.014 kg.L <sup>-1</sup> |
|                                                                                                                                                                      | Liquid hydrogen                                                                                                      | Metal hydrides                                                                                                  |
| Mass of empty cylinder                                                                                                                                               | 51.5 kg                                                                                                              | 0.26 kg                                                                                                         |

# On-Board Hydrogen Storage Comparison

| Method                                   | Gravimetric<br>storage efficiency,<br>% mass hydrogen | Volumetric<br>mass (in kg) of<br>hydrogen per litre |
|------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|
| Pressurised gas Reversible metal hydride | 0.7-3.0<br>0.65                                       | 0.015<br>0.028                                      |
| Cryogenic liquid                         | 14.2                                                  | 0.040                                               |



# On-Board Hydrogen Storage - Compressed hydrogen

- Carbon fiber enforced plastic
- 700 bar or 350 bar pressure
- 130 kg tank for 6 kg  $H_2$



### Structure of Toyota Mirai





# Hybridization of Energy Storage

- Use multiple sources of storage
- Combination of:
  - High energy density
  - High power density for power demand and rapid charging capability
- <u>Examples:</u>
  - Gasoline and battery
  - Battery and supercapacitor in parallel
  - Fuel cell stack and battery in parallel

# Hybridization of Energy Storage



# Hybridization of Energy Storage



 $\triangleright$  Simple but  $\Delta V$  low: supercapacitor is not fully utilized





$$E_{utilized} = \frac{1}{2}C(V_1^2 - V_1^2)$$

One additional power converter but  $\Delta V$  high: Supercapacitor is fully utilized

# Periodic Table

| H<br>1.52E-3        |                        | Val           | ues                   |                        | Elem                   | ent                                                  |                          | Color                                                              |                       | 97 P.M. 480 P. S. A. V.  |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                          |               | He |
|---------------------|------------------------|---------------|-----------------------|------------------------|------------------------|------------------------------------------------------|--------------------------|--------------------------------------------------------------------|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|---------------|----|
| Li<br>1.80E-5<br>30 | Be<br>2.00E-6          | 1794597       |                       | arth's C               |                        | Type B Conversion Anodes  Type B Conversion Cathodes |                          |                                                                    |                       | <b>B</b><br>9.00E-6      | C<br>1.80E-4<br>0.2-1.5  | <b>N</b><br>1.90E-5      | O<br>4.55E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F<br>5.44E-4           | Ne                       |               |    |
| Na<br>2.27E-2       | Mg<br>2.76E-2<br>1-1.5 | 1.76E-2       |                       |                        |                        |                                                      |                          | Commonly used Transition<br>Metals for Intercalation<br>Electrodes |                       |                          |                          | AI<br>8.00E-2<br>0.5-1.5 | The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P<br>1.12E-3           | S<br>3.40E-4<br>.001-0.3 | CI<br>1.26E-4 | Ar |
| K<br>1.84E-2        | Ca<br>4.66E-2          | Sc<br>2.50E-5 | Ti<br>6.32E-3<br>5-15 | V<br>1.36E-4<br>10-20  | Cr<br>1.22E-4<br>3-7   | Mn<br>1.06E-3<br>1-2                                 | Fe<br>6.2E-2<br>0.1-0.25 | 0.0000000000000000000000000000000000000                            | Ni<br>9.90E-5<br>5-15 | Cu<br>6.80E-5<br>1-5     | 1000                     | Ga<br>1.90E-5<br>100-500 | The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | As<br>1.80E-6<br>0.5-1 | Se<br>5.00E-8<br>15-25   | Br<br>2.5E-6  | Kr |
| Rb<br>7.88E-5       | Sr<br>3.84E-4          | Y<br>3.10E-5  | Zr<br>1.62E-4         | Nb<br>2.00E-5<br>15-25 | Mo<br>1.20E-6<br>10-20 | Тс                                                   | Ru<br>1.0E-10<br>1.2k-6k | Rh<br>1.0E-10                                                      | Pd<br>1.5E-8          | Ag<br>8,00E-8<br>1k-3,5k | Cd<br>1.60E-7<br>0.5-2.5 | In<br>2.40E-7<br>200-400 | The state of the s | Sb<br>2.00E-7<br>1-10  | Te<br>1.00E-9<br>50-200  | <br>4.60E-7   | Xe |
| Cs<br>6.60E-5       | Ba<br>3.90E-4          | Lu            | Hf<br>2.80E-6         | <b>Ta</b><br>1.70E-6   | W<br>1.20E-6<br>10-25  | Re<br>7.0E-10                                        | Os<br>5.00E-9            | lr<br>1.00E-9                                                      | Pt<br>1.00E-8         | Au<br>4.00E-9<br>10k-30k | Hg<br>8.00E-8            | <b>TI</b><br>7.00E-7     | Pb<br>1.30E-5<br>0.5-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bi<br>8.00E-9<br>5-15  | Ро                       | At            | Rn |

# Videos

### Advertisement of the week:

Buying a Volkswagen from an old lady...

# Textbooks:

Ehsani, M. and Gao, Y. and Emadi, A., "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", 2nd Edition, CRC Press LLC, 2009.

Chau, K. T., "Electric Vehicle Machines and Drives: Design, Analysis and Application" Wiley-IEEE Press, August 2015.