Novel model predictive control structures for hybrid and adaptive control

İşik İlber Sırmatel isik.sirmatel@gmail.com

Outline

- 1. Model predictive control overview
- 2. Hybrid model predictive control of mixed integer-input linear systems
- 3. Adaptive model predictive control of multiple-input multiple-output systems
- 4. Conclusion

Section 1

Model predictive control overview

Classical control vs. MPC - Doctrines

Classical control: Design C.

Dominant issues addressed:

- ▶ Disturbance rejection $(d \rightarrow y)$
- ▶ Noise insensitivity $(n \rightarrow y)$
- Model uncertainty

(usually in frequency domain)

MPC: Find u(t) via real-time, repeated optimization.

Dominant issues addressed:

- Control constraints (limits)
- ► Process constraints (safety) (usually in *time domain*)

Slide taken from MPC 2014 lecture slides of Prof. Manfred Morari.

Constraints in control

All physical systems have **constraints**:

- Physical constraints, e.g. actuator limits
- Performance constraints, e.g. overshoot
- Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.

Slide taken from MPC 2014 lecture slides of Prof. Manfred Morari.

Classical control vs. MPC - Handling constraints

Classical control:

MPC:

- Ad hoc constraint management
- Set point sufficiently far from constraints
- Suboptimal plant operation

- Constraints included in the design
- Set point optimal
- Optimal plant operation

Slide taken from MPC 2014 lecture slides of Prof. Manfred Morari.

General MPC problem

$$\begin{array}{ll} u_N^*(x(t)) \triangleq \mathop{\rm argmin}_{u_N} & \displaystyle \sum_{k=0}^{N-1} J_{t+k}(x_{t+k}, \ u_{t+k}) & \text{objective function} \\ \\ \mathop{\rm subject\ to\ } & x_t = x(t) & \text{measurement} \\ & x_{t+k+1} = f_{t+k}(x_{t+k}, \ u_{t+k}) & \text{system model} \\ & x_{t+k} \in \mathcal{X} & \text{state constraints} \\ & u_{t+k} \in \mathcal{U} & \text{input constraints} \\ & u_N \triangleq \{u_{t+k}\}_{k=0}^{N-1} & \text{optimization variables} \end{array}$$

Problem is defined by

- Objective that is minimized,
 e.g., distance from origin, sum of squared/absolute errors, economic, ...
- Internal system model to predict behaviour, e.g., linear, nonlinear, single-/multi-variable, ...
- ► Constraints that have to be satisfied, e.g., on inputs, outputs, states, linear, quadratic, ...

Slide taken from MPC 2014 lecture slides of Prof. Manfred Morari.

Standard linear MPC problem

$$u_N^*(x(t)) \triangleq \mathop{\rm argmin}_{u_N} \quad \sum_{k=0}^{N-1} \left(x_{t+k}^T Q x_{t+k} + u_{t+k}^T R u_{t+k} \right) \quad \text{objective function}$$
 subject to
$$x_t = x(t) \qquad \qquad \text{measurement}$$

$$x_{t+k+1} = A x_{t+k} + B u_{t+k} \qquad \text{system model}$$

$$C x_{t+k} \leq e \qquad \qquad \text{state constraints}$$

$$D u_{t+k} \leq g \qquad \qquad \text{input constraints}$$

$$u_N \triangleq \left\{ u_{t+k} \right\}_{k=0}^{N-1} \qquad \text{optimization variables}$$

- ▶ Convex quadratic objective $(Q \succeq 0, R \succ 0)$
- Linear dynamics and affine constraints

standard linear MPC → convex Quadratic Program (QP) can be solved reliably and efficiently!

MPC - Receding horizon control

Receding horizon strategy introduces feedback.

At each sample time (i.e., in receding horizon):

- 1. Measure/estimate current state x(t)
- 2. Find the *optimal input* sequence for the entire planning window (i.e., prediction horizon) $N: u_N^* \triangleq \{u_{t+k}^*\}_{k=0}^{N-1}$
- 3. Implement only the first control action u_t^*

Slide taken from MPC 2014 lecture slides of Prof. Manfred Morari.

MPC - Applications

Computer control	ns	
	μs	Power systems
Traction control	ms	
	Seconds	Buildings
Refineries	Minutes	
	Hours	Nurse rostering
Train scheduling	Days	
	Weeks	Production planning

Slide taken from MPC 2014 lecture slides of Prof. Manfred Morari.

MPC - Important aspects

Main advantages:

- Systematic approach for handling constraints
- ► High *performance* controller

Main challenges:

- Implementation: MPC problem has to be solved in real-time, i.e. within the sampling interval of the system, and with available hardware (storage, processor, ...)
- Stability: Closed-loop stability, i.e. convergence, is not automatically guaranteed
- ► Robustness: The closed-loop system is not necessarily robust against uncertainties or disturbances
- Feasibility: Optimization problem may become infeasible at some future time step, i.e. there may not exist a plan satisfying all constraints

Slide taken from MPC 2014 lecture slides of Prof. Manfred Morari.

Section 2

Hybrid model predictive control of mixed integer-input linear systems

Hybrid MPC - Introduction

Motivation

- Optimal control formulations for hybrid systems in discrete time usually require solving Mixed Integer Quadratic Programs (MIQPs).
- Real-time solution of MIQPs is computationally demanding and thus limited to control problems with slow sampling rates.

Aims

- We investigate the possibility of obtaining good feasible solutions without too much computational effort, through solving a single convex relaxation of an MIQP.
- ► For a special class of hybrid systems, namely mixed integer-input linear systems (MILSs), linear (QP) relaxations were previously shown to be promising. Here we investigate stronger convex (Semidefinite Program SDP) relaxations.

A simple hybrid system - Buck converter

Takes an unregulated DC voltage as input, outputs a lower DC voltage and regulates it at a desired level against disturbances.

States: Inductor current $i_L(t)$, capacitor voltage $v_C(t)$ (continuous).

Control input: Switch position s(t) (binary).

Averaged vs. hybrid models

Averaged model

- Switch position $s(t) \in \{0, 1\}$ \rightarrow Duty cycle $u(t) \in [0, 1]$.
- ► Linear dynamics; standard linear MPC can be used.
- Problem is convex QP; computationally cheap.

Hybrid model

- ▶ Switching dynamics included in the model as $s(t) \in \{0, 1\}$.
- Hybrid dynamics; standard linear MPC cannot be used.
- Problem is MIQP (nonconvex); computationally expensive.
- With special formulation, yields an MILS.

Hybrid MPC problem - QP

$$\begin{aligned} u_N^*(x(t)) &\triangleq \operatorname{argmin} & \sum_{k=0}^{N-1} \left(x_{t+k}^T Q x_{t+k} + u_{t+k}^T R u_{t+k} \right) & \text{objective function} \\ & \text{subject to} & x_t = x(t) & \text{measurement} \\ & x_{t+k+1} = A x_{t+k} + B u_{t+k} & \text{system model} \\ & C x_{t+k} \leq e & \text{state constraints} \\ & D u_{t+k} \leq g & \text{input constraints} \\ & u_N \triangleq \left\{ u_{t+k} \right\}_{k=0}^{N-1} & \text{optimization variables} \end{aligned}$$

- ▶ Convex quadratic objective $(Q \succeq 0, R \succ 0)$
- Linear dynamics and affine constraints

hybrid MPC with averaged model \rightarrow QP (convex problem) can be solved reliably and efficiently!

Hybrid MPC problem - MIQP

$$\begin{aligned} u_N^*(x(t)) &\triangleq \text{argmin} & \sum_{k=0}^{N-1} \left(x_{t+k}^T Q x_{t+k} + u_{t+k}^T R u_{t+k} \right) & \text{objective function} \\ \text{subject to} & x_t = x(t) & \text{measurement} \\ & x_{t+k+1} = A x_{t+k} + B u_{t+k} & \text{system model} \\ & C x_{t+k} \leq e & \text{state constraints} \\ & D u_{t+k} \leq g & \text{input constraints} \\ & u_N \triangleq \{u_{t+k}\}_{k=0}^{N-1} & \text{optimization variables} \\ & u_{t+k,i} \in \{0,1\}, \ i \in \mathfrak{B} & \text{integrality constraints} \end{aligned}$$

- ▶ Convex quadratic objective $(Q \succeq 0, R \succ 0)$
- ▶ Hybrid dynamics and affine constraints
- ► Some optimization variables are **integers**

hybrid MPC with hybrid model → MIQP (nonconvex problem) cannot be solved reliably and efficiently!

Operation of QP based hybrid MPC

- Step response of buck converter under hybrid MPC based on averaged model.
- ► Top: States (normalized).
- Bottom: Output of MPC (green dashed) and the binary input.
- Severe violation of constraint on i_L(t).
- Some steady-state error in $v_C(t)$.

Operation of MIQP based hybrid MPC

- Step response of buck converter under hybrid MPC based on hybrid model.
- ▶ Top: States (normalized).
- Bottom: Output of MPC (green dashed) and the binary input.
- Mild violation of i_L constraint.
- ► Small steady-state error in *v_C*.

Improvement of quasi steady state with hybrid model

Figure 1: Quasi steady state behaviour of buck converter under hybrid MPC using (A) averaged model, and (B) hybrid model.

Relaxation-and-projection (RaP) method for hybrid MPC

- ► A single relaxed problem is much easier to solve than an MIQP.
- ► For MILSs it is easy to recover a feasible control sequence from the relaxed solution. We can
 - easily design a suitable projection for recovering feasible solutions,
 - compensate for the projection-induced state uncertainty by robustification through contraction of the state constraints.

Figure 2: Typical relaxed solution and its projected version.

RaP method based hybrid MPC - Architecture

QP-RaP based hybrid MPC problem - QP

$$\begin{aligned} u_N^*(x(t)) &\triangleq \text{argmin} & \sum_{k=0}^{N-1} \left(x_{t+k}^T Q x_{t+k} + u_{t+k}^T R u_{t+k} \right) & \text{objective function} \\ \text{subject to} & x_t = x(t) & \text{measurement} \\ & x_{t+k+1} = A x_{t+k} + B u_{t+k} & \text{system model} \\ & C x_{t+k} \leq e & \text{state constraints} \\ & D u_{t+k} \leq g & \text{input constraints} \\ & u_N \triangleq \left\{ u_{t+k} \right\}_{k=0}^{N-1} & \text{optimization variables} \\ & u_{t+k,i} \in [0,1], \ i \in \mathfrak{B} & \text{QP relaxation} \end{aligned}$$

- ▶ Convex quadratic objective $(Q \succeq 0, R \succ 0)$
- ► Hybrid dynamics (relaxed) and affine constraints

QP-RaP based hybrid MPC → QP (convex problem) can be solved reliably and efficiently!

SDP-RaP based hybrid MPC problem - SDP

$$u_N^*(x(t)) \triangleq \underset{u_N,\ U_N}{\operatorname{argmin}} \quad \sum_{k=0}^{N-1} \left(x_{t+k}^T Q x_{t+k} + u_{t+k}^T R u_{t+k} \right) \quad \text{objective function}$$
 subject to
$$x_t = x(t) \qquad \qquad \text{measurement}$$

$$x_{t+k+1} = A x_{t+k} + B u_{t+k} \qquad \text{system model}$$

$$C x_{t+k} \leq e \qquad \qquad \text{state constraints}$$

$$D u_{t+k} \leq g \qquad \qquad \text{input constraints}$$

$$u_N \triangleq \left\{ u_{t+k} \right\}_{k=0}^{N-1} \qquad \text{optimization variables}$$

$$\left[\begin{array}{c} U_N & u_N \\ u_N^T & 1 \end{array} \right] \succeq 0, \ U_N \in \mathbb{S}_+^{Nm} \quad \text{SDP relaxation}$$

$$U_{N,ii} = u_{t+k,i}, \ i \in \mathfrak{B}$$

- ▶ Convex quadratic objective $(Q \succeq 0, R \succ 0)$
- Hybrid dynamics (relaxed) and affine constraints

SDP-RaP based hybrid MPC → SDP (convex problem) can be solved reliably and efficiently!

Operation of QP- or SDP-RaP based hybrid MPC

- Step response of buck converter under QPor SDP-RaP based hybrid MPC.
- ► Top: States (normalized).
- Bottom: Output of MPC (green dashed) and the binary input.
- Constraint on $i_L(t)$ satisfied.
- ► Small steady-state error in $v_C(t)$.

Performance comparison of hybrid MPC controllers

MPC	QP	MIQP	QP-RaP	SDP-RaP
RMS deviation (Volt)	1.55	0.20	0.24	0.22
Solver time, $N = 10(\cdot T_s)$	2 ms	12 ms	8 ms	2.438 s

Table 1: Summary of hybrid MPC performances, showing: RMS deviation of v_C from the reference v_C^* in quasi steady state and solver times for one instance with N=10.

Section 3

Adaptive model predictive control of multiple-input multiple-output systems

Adaptive MPC - Introduction

Motivation

- A recently developed adaptive MPC algorithm enables constrained control of linear multiple-input multiple-output (MIMO) systems with unknown dynamics, via integrating real-time Set-Membership Identification (SMI) and MPC.
- ► The polytopic SMI engine of the algorithm is very simple and cannot handle time-varying systems.

Aims

To enhance the adaptive MPC algorithm, we investigate:

- Methods to improve performance of the polytopic SMI engine.
- Extensions to handle time-varying systems.
- Zonotopic SMI methods to reduce computational effort.

Adaptive MPC - Problem formulation

FIR model of length m:

$$y(t) = \sum_{k=1}^{m} u(t-k)h(k) + d(t)$$
$$= \varphi(t)^{T}H + d(t)$$

Regressor vector:

$$\varphi(t) \triangleq [u(t-1), \ldots, u(t-m)]^T$$

Measured output: $\tilde{y}(t) = y(t) + v(t)$

Adaptive MPC - Problem formulation

Prior assumption on disturbance and noise:

$$|d(t)| \le \epsilon_d$$
, $|v(t)| \le \epsilon_v$, $\forall t \in \mathbb{Z}$

Prior assumption on system: True plant is inside $\mathcal{F}(0)$.

Adaptive MPC - Architecture

Real-time SMI engine:

- ▶ Recursively identify model set $\mathcal{F}(t)$.
- Remove redundant faces (LP).
- ► Compute nominal model (LP).

Properties of the algorithm:

- Offset free reference tracking for constant output disturbances.
- ▶ Robust output constraint satisfaction and recursive feasibility if the model set is non-expanding, i.e., $\mathcal{F}(t+1) \subseteq \mathcal{F}(t)$.

Robust MPC (QP):

- ▶ Minimize tracking error for nominal model $H_c(t)$.
- ▶ Enforce output constraints for all models inside the model set $\mathcal{F}(t)$.

Existing polytopic SMI - Basic polytopic update (PU)

Weaknesses:

- Updates without considering informativeness of new faces.
- Cannot handle time-varying systems.
- Needs to bound number of faces: Stops updating when face number limit reached.

Improvement on polytopic SMI - Face filtering PU (FFPU)

Idea: Evaluate informativeness of new faces, add only if informative.

Cut ratios:
$$\kappa_{\rm p} \triangleq \frac{d_{\rm p}}{d_{\rm PSS}}$$
, $\kappa_{\rm n} \triangleq \frac{d_{\rm n}}{d_{\rm PSS}}$

New face informative if $\kappa < \Gamma_A$. Γ_A is a design parameter, $\Gamma_A \in [0, 1]$.

Extension to TV systems - Polytopic set inflation

Idea: Forget past measurements by inflating polytope; track slowly varying dynamics.

$$\left| \varphi(k)^T H - \tilde{y}(k) \right| \leq \Omega^{t-k} \epsilon, k = 0, \dots, t$$

Inflation factor: $\Omega > 1$

Downside: $\mathcal{F}(t+1) \subseteq \mathcal{F}(t)$ does not hold; recursive feasibility lost. Need soft output contraints.

Extension to TV systems - Polytopic center tracking

Idea: Shift polytope; track rapidly varying dynamics.

Shifting vector:
$$V_{\mathsf{T}} = \varphi \frac{\tilde{y} - \varphi^{\mathsf{T}} H_c(t-1)}{\varphi^{\mathsf{T}} \varphi}$$

Downside: $\mathcal{F}(t+1) \subseteq \mathcal{F}(t)$ does not hold; recursive feasibility lost. Need soft output contraints.

Zonotopic SMI - Zonotope overview

Definition: An n-zonotope of order r is the linear image of an r-dimensional hypercube in \mathbb{R}^n .

Advantages:

- ► Set fully defined by *c* and *Z*; no need to remove redundant faces or compute nominal model.
- ▶ Bounded complexity for constant *r*.

Basic zonotopic update (Bravo2006)

Disadvantages:

- Does not yield exact intersection; conservative.
- Collapsing into parallelotopes.
- ▶ $\mathcal{F}(t+1) \subseteq \mathcal{F}(t)$ does not hold; recursive feasibility lost. Need soft output contraints.

Improved zonotopic update (Chai2011)

- r constant.
- Less conservative than Brayo2006.

Disadvantages:

- Computationally more expensive than Bravo2006.
- Collapsing into parallelotopes.
- $\mathcal{F}(t+1) \subseteq \mathcal{F}(t)$ does not hold; recursive feasibility lost. Need soft output contraints.

Simulation results - Model and measures

Quadruple-tank process:

Nonlinear MIMO simulation model with a fixed LHP zero and a tunable zero that switches half-planes with varying valve constants γ_1 and γ_2 .

Performance measures:

► Control: ISE

► Identification: IOUI

Simulation results - Scenario for sensitivity analyses

Figure 3: Simulation scenario used in the sensitivity analyses.

Sensitivity analysis of FFPU

40 / 45

Comparison of Basic ZU and Improved ZU

Figure 5: Comparison of basic ZU (dashed lines) and improved ZU (solid lines).

Simulation results - Scenario for time-varying system

Figure 6: Variation of valve constants γ_1 and γ_2 with time.

Polytopic operation with time-varying system

Figure 7: Polytopic operation with time-varying valve constants.

Average computation time per step: 3 seconds

Zonotopic operation with time-varying system

Figure 8: Zonotopic operation with time-varying valve constants.

Average computation time per step: 0.5 seconds

Conclusion - Results

- Investigated SDP relaxation based relaxation-and-projection method for hybrid MPC of MILSs. Observed no clear advantage over QP relaxation for the buck converter case.
- Developed improvements for the SMI engine of the adaptive MPC of linear MIMO systems and extensions to handle time-varying systems. Observed improvements in performance and/or reductions in computational effort. Verified capability in handling time-varying systems.