Name:	Date of birth:	Student ID No.
value	Date of birtin.	Student ID No

Final Exam of "Fundamentals of Modern Optics", Winter semester 2017/18 to be written on February 16, 10:00 - 12:00

Problem 1 – Maxwell's Equations

2 + 2 + 2 + 2 = 8 points

- a) Write down the Maxwell's equations in a material in frequency domain in general form.
- b) Write down the names and units of measure for 4 physical vector fields of your choice in Maxwell's equations.
- c) Derive the wave equation in *frequency* domain for the magnetic field $\mathbf{H}(\mathbf{r},\omega)$ in a dispersive, isotropic, homogeneous medium with sources $\rho(\mathbf{r},\omega), \mathbf{j}(\mathbf{r},\omega) \neq 0$.
- d) Specify under which conditions in the *source-free* case the electric field $\mathbf{E}(\mathbf{r},\omega)$ will be divergence-free, i.e. the following condition will be fulfilled: $\nabla \cdot \mathbf{E}(\mathbf{r},\omega) = 0$.

Problem 2 - Normal Modes

2 + 3 + 1 + 2 = 8 points

Two monochromatic waves with frequency ω are traveling in a homogeneous, isotropic medium, have electric field vectors $\mathbf{E_1} = E_0 e^{ikz} (\cos\theta \hat{\mathbf{x}} + \sin\theta \hat{\mathbf{y}})$ and $\mathbf{E_2} = E_0 e^{ikz} e^{i\phi} \hat{\mathbf{x}}$

- a) Derive an expression for the corresponding magnetic field vector H_t when the two waves are superimposed.
- b) Calculate a time averaged Poynting vector S_1 and S_2 for each wave as well as the total time averaged Poynting vector S_t .
- c) For what conditions the total time averaged Poynting vector S_t of the two waves is the sum of their corresponding Poynting vectors?
- d) If $k = \beta + i\alpha$ use the dispersion relation for plane wave and derive an expression for β and α in terms of the complex susceptibility χ of a weekly absorbing medium in which $\Re\left[1+\chi\right] \gg \Im\left[\chi\right]$.

Problem 3 – Diffraction

2 + 2 + 2 + 2 = 8 points

Consider a rectangular aperture with sides a_1, a_2 illuminated by the normal plane wave with wavelength λ . The image plane is located at the distanse L.

$$a_1$$
 a_2

- a) Specify the conditions on a_1, a_2, λ and L for which the diffraction pattern in the image plane can be calculated using: (i) Fresnel approximation; (ii) paraxial Fraunhofer approximation; (iii) non-paraxial Fraunhofer approximation.
- b) Calculate the paraxial Fraunhofer diffraction pattern (up to a constant factor).
- c) Assume that we have N such apertures equally spaced along a line in the apperture plane with distances $b > max(a_1, a_2)$. Specify the positions of local maxima of the diffraction pattern (diffraction orders).
- d) Now assume the Fresnel approximation and calculate the spatial frequency (angular) spectrum of the electric field $U(\alpha, \beta, L)$ in the image plane for a single aperture.

Problem 4 – Pulse propagation

2 + 3 + 2 = 7 points

- a) Which approximations allow to apply results from beam propagation (spatial dynamics) to pulse propagation (temporal dynamics)? Keep it short!
- b) A dispersive material has a refractive index given by $n(\omega) = \alpha + \beta \omega^2 + \gamma \omega^3$. An unchirped Gaussian pulse with a center frequency of ω_0 enters this material. What is the average phase velocity? What is the group velocity of the pulse?
- c) The duration of the pulse follows $T(z) = T_0 \sqrt{1 + (z/z_0)^2}$ with $z_0 = -T_0^2/(2D)$, where D is the group velocity dispersion. Calculate the distance after which the pulse duration has doubled! How does this distance depend on α, β and γ ?

a) Gaussian beams are described by their amplitude, beam width, phase curvature and Gouy phase. Which of these quantities are described in the q parameter formalism in Gaussian optics?

A lens of focal length f_1 is placed at a distance $d = f_1$ from the waist of a Gaussian beam. A second lens of focal length f_2 is placed after the first one at a distance $d = f_1 + f_2$ to form a telescope.

- b) Use the q-parameter formalism to show that the waist of the Gaussian beam beyond the telescope is located at a distance f_2 after the second lens.
- c) Calculate the magnification of this 4f setup as the relation of the sizes of the output waist and the input waist dependent on f_1 and f_2 .

Helpful formulas:
$$q' = \frac{Aq + B}{Cq + D}$$
, $M_{\text{lens}} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$

Problem 6 – Fourier optics

Assuming a 4f-setup as in the figure with the initial field distribution $u_0(x,y) = \cos(\frac{x-y}{p}2\pi)$. Between the two lenses, there is an aperture consisting of a slit parallel to the x-axis with opening size d and its center at the y-position y_0 $(d < y_0)$.

- a) Calculate the field distribution after the first 2f setup at the position just before the aperture. Consider monochromatic light at the wavelength λ .
- b) Explain the functionality of the aperture depending on y_0 and calculate the respective field distributions at the image plane.

${\bf Problem~7-Anisotropy}$

2 + 2 + 3 + 2 = 9 points

a) What is the optical axis of a uniaxial crystal? Give a definition in one sentence!

A uniaxial crystal has refractive indices $n_1 = n_2 = 1.4$ and $n_3 = 1.5$. A light wave of wavelength $\lambda = 600$ nm is incident normal to the crystal surface (see figure).

- b) What are the two normal modes and their polarization states in the crystal if the optical axis is oriented in y-direction?
- c) Consider that the incoming light is x-polarized and the light behind the crystal should be y-polarized. How has the optical axis to be oriented so that this is achieved at the smallest crystal thickness d? Calculate this thickness!
- d) Consider that the optical axis lies in the x-z-plane and forms a 45° angle with the incident wave. Sketch and explain how for x- and y-polarized light the \mathbf{k} vector and the Poynting vector are oriented!

Problem 8 – Interfaces/Multilayer

2 + 2 + 5 = 9 points

Consider a system of two homogeneous media with the refractive indices n_1 and n_2 , respectively. They shall have a planar interface. A plane wave hits the interface under an angle of θ and it propagates further in the second medium with an angle ϕ .

- a) Which law connects the two angles θ and ϕ ? Calculate ϕ with respect to n_1 , n_2 and θ .
- b) How does n_2 and n_1 have to relate to get Total Internal Reflection at the interface for the critical angle θ ?

Consider now an interface between a homogeneous medium and an infinite multilayer system with alternating layers of the refractive indices n_1 and n_2 and the thicknesses d_1 and d_2 , respectively.

c) Consider a TE polarized monochromatic plane wave with the wavenumber k_0 and normal incidence to the interface. Calculate the relation of d_1 and d_2 to block the light.

Hint: The propagation matrix for a TE polarized plane wave at normal incidence for layer i is

$$\hat{\mathbf{m}}_{i} = \begin{pmatrix} \cos(k_0 n_i d_i) & \frac{1}{k_0 n_i} \sin(k_0 n_i d_i) \\ -k_0 n_i \sin(k_0 n_i d_i) & \cos(k_0 n_i d_i) \end{pmatrix}$$