Generalized Parallel - Axis Theorem I tensor W.r.t X'i axes $=\sum_{\alpha}m_{\alpha}\left(\delta ij\sum_{k}\chi_{\alpha,k}^{2}-\chi_{\alpha,i}\chi_{\alpha,j}\right)-0$ $\overrightarrow{R} = \overrightarrow{\alpha} + \overrightarrow{r} - 2 \qquad \overrightarrow{R} = (X_1, X_2, X_3)$ = a; +x; -3 $Jij = \sum_{k} m_{k} \left(Sij \sum_{k} (x_{a}, k \alpha_{k})^{2} - (x_{a}, i + \alpha_{i})(x_{a}, i + \alpha_{i}) \right)$ $= \sum_{\alpha} m_{\alpha} \left(8ij \sum_{k} \chi_{\alpha/k}^{2} - \chi_{\alpha/i} \chi_{\alpha/j} \right)$ $+\sum_{d}M_{d}\left(\delta i\right)\sum_{k}(2\chi_{k}\alpha_{k}+\alpha_{k}^{2})$ $-\left(aix_{d,j}+ajx_{d,i}+a_{i}a_{j}\right)$ $J_{ij} = I_{ij} + I_{ma}(\delta_{ij} \sum_{k} \alpha_{k}^{2} - \alpha_{i} \alpha_{j})$ + \(\sum_{\text{m}} \left(28ij \) \(\text{Z}_{\text{Z}} \right) \(\text{R} \right) \) \(\text{R} \)

In the last summation each teen involves
$$\sum_{x} m_{x} x_{d,k} = 0$$
, $\sum_{x} m_{x} x_{d,k} = 0$, \sum_{x}

Th.1 If two principal moments are equal $(I_1=I_2=I)$ then any axis (through the chosen origin) in the plane of the corresponding principal axis, is also a principal axis, and its moment is also I.

Proof: ', $I_1 = I_2 = I$ 'if u_1 and u_2 are eigenvectors of $\{I\}$ $\{I\} u_1 = Iu_1$, $\{I\} u_2 = Iu_2$ $\{I\} (au_1 + bu_2) = I (au_1 + bu_2)$ for all a, b.

any vector in plane spanned by ui de uz is also a soln => principal axis

Th2. If a pancake object is symmetric under a rotation through 0 f 180° in the x-y plane, then every axis in the x-y plane (with origin at the centre of symetry rotation) is a principal axis with same moment

ως: principal axis in plane

wo is axis obtained by rotating ω o

through θ

 $\begin{cases}
\exists \vec{\lambda} \vec{\omega} \vec{\delta} = \vec{\Delta} \vec{\omega} \vec{\delta} \\
\vec{\delta} \vec{\Delta} \vec{\delta} \vec{\omega} \vec{\delta} = \vec{\Delta} \vec{\omega} \vec{\delta}
\end{cases}$

Any vector \vec{w} in x-y plane can

be written as a linear combination of \vec{w}_0 and \vec{w}_0 , provided that O_f 180° or $\vec{0}$, \vec{w}_0 , \vec{w}_0 span the plane. $\vec{L}\vec{w} = \{\vec{1}\} (a\vec{w}_0 + b\vec{w}_0) = a\vec{L}\vec{w}_0 + b\vec{L}\vec{w}_0$

Hence w is also a principal axis.

Point man at origin

Any axis principal axis

(Io, Yo, Zo)

pt man at (xo, yo, Zo)

Axis through the pt

any axis 1 to it

Rectangle centred at origin

P.A: x, y, Z axis

Diagonalized { I} I ij = I i Sij -- (1) (I1, I2, I3) principal moments of direction of each principal axis is determined by substituting I1, I2, I3 for I in the egn. $\mathbb{I}\omega_1 = \overline{\mathbb{I}}_1\omega_1, \overline{\mathbb{I}}\omega_2 = \overline{\mathbb{I}}_{22}\omega_2, \overline{\mathbb{I}}\omega_3 = \overline{\mathbb{I}}_3\omega_3$ L) determines ratios of aug-vel. Principal axes -> eigenrectors $I_1 = I_2 = I_3 \Rightarrow$ spherical top.

$$I_1 = I_2 = I_3 \Rightarrow$$
 spherical top:
 $I_1 = I_2 \neq I_3 \Rightarrow$ symmetric top:
 $I_1 + I_2 \neq I_3 \Rightarrow$ asymmetric top

Generalized Parallel-axis Theorem