Properties of O-notation COMS20010 2020, Video lecture 1-4

John Lapinskas, University of Bristol

Last time about comparing functions using the definitions of O-notation.

Last time about comparing functions using the definitions of O-notation. You should almost never actually do this!

Last time about comparing functions using the definitions of O-notation. You should almost never actually do this!

Your life will be much happier if you work mostly based on **intuition**.

Last time about comparing functions using the definitions of O-notation. You should almost never actually do this!

Your life will be much happier if you work mostly based on intuition.

Usually (not always!) if something is true for \leq , it is true for O.

For example, if $x \le y$ and $y \le z$ then $x \le z$;

likewise, if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.

Last time about comparing functions using the definitions of O-notation. You should almost never actually do this!

Your life will be much happier if you work mostly based on intuition.

Usually (not always!) if something is true for \leq , it is true for O.

For example, if $x \le y$ and $y \le z$ then $x \le z$;

likewise, if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.

The same goes for \geq and Ω , = and Θ , < and o, and > and ω .

For example, if $x \le y$ and $x \ge y$ then x = y;

likewise, if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$, then $f(n) \in \Theta(g(n))$.

Last time about comparing functions using the definitions of O-notation. You should almost never actually do this!

Your life will be much happier if you work mostly based on intuition.

Usually (not always!) if something is true for \leq , it is true for O.

For example, if $x \le y$ and $y \le z$ then $x \le z$;

likewise, if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.

The same goes for \geq and Ω , = and Θ , < and o, and > and ω .

For example, if $x \le y$ and $x \ge y$ then x = y;

likewise, if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$, then $f(n) \in \Theta(g(n))$.

This, combined with the following rough hierarchy, will let you solve most problems without thinking about C's or n_0 's:

$$n! \in \omega(3^n) \subseteq \omega(2^n) \subseteq \omega(n^2) \subseteq \omega(n) \subseteq \omega(\log^2 n) \subseteq \omega(\log n) \subseteq \omega(1).$$

The time to fall back to definitions is when you need to confirm your intuition — when you're not sure if a general principle holds or not.

Example: Is it true that if $f(n) \in \Omega(g(n))$, then $f(n)^2 \in \Omega(g(n)^2)$?

The time to fall back to definitions is when you need to confirm your intuition — when you're not sure if a general principle holds or not.

Example: Is it true that if $f(n) \in \Omega(g(n))$, then $f(n)^2 \in \Omega(g(n)^2)$?

Think back to the definitions.

We have: There exist c, $n_0 > 0$ such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

We want: There exist c', $n'_0 > 0$ such that $f(n)^2 \ge c'g(n)^2$ for all $n \ge n'_0$.

The time to fall back to definitions is when you need to confirm your intuition — when you're not sure if a general principle holds or not.

Example: Is it true that if $f(n) \in \Omega(g(n))$, then $f(n)^2 \in \Omega(g(n)^2)$?

Think back to the definitions.

We have: There exist c, $n_0 > 0$ such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

We want: There exist c', $n'_0 > 0$ such that $f(n)^2 \ge c'g(n)^2$ for all $n \ge n'_0$.

So we can just take $c'=c^2$ and $n_0'=n_0$ to prove $f(n)^2\in\Omega(g(n)^2)$.

The time to fall back to definitions is when you need to confirm your intuition — when you're not sure if a general principle holds or not.

Example: Is it true that if $f(n) \in \Omega(g(n))$, then $f(n)^2 \in \Omega(g(n)^2)$?

Think back to the definitions.

We have: There exist c, $n_0 > 0$ such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

We want: There exist c', $n'_0 > 0$ such that $f(n)^2 \ge c'g(n)^2$ for all $n \ge n'_0$.

So we can just take $c'=c^2$ and $n_0'=n_0$ to prove $f(n)^2\in\Omega(g(n)^2)$.

Example: Is it true that if f(n) < g(n) for all n, then $f(n) \in o(g(n))$?

The time to fall back to definitions is when you need to confirm your intuition — when you're not sure if a general principle holds or not.

Example: Is it true that if $f(n) \in \Omega(g(n))$, then $f(n)^2 \in \Omega(g(n)^2)$?

Think back to the definitions.

We have: There exist c, $n_0 > 0$ such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

We want: There exist c', $n'_0 > 0$ such that $f(n)^2 \ge c'g(n)^2$ for all $n \ge n'_0$.

So we can just take $c'=c^2$ and $n_0'=n_0$ to prove $f(n)^2\in\Omega(g(n)^2)$.

Example: Is it true that if f(n) < g(n) for all n, then $f(n) \in o(g(n))$?

We want: For all C > 0, there exists n_0 such that f(n) < Cg(n) for all $n \ge n_0$.

John Lapinskas Video 1-4 3/6

The time to fall back to definitions is when you need to confirm your intuition — when you're not sure if a general principle holds or not.

Example: Is it true that if $f(n) \in \Omega(g(n))$, then $f(n)^2 \in \Omega(g(n)^2)$?

Think back to the definitions.

We have: There exist c, $n_0 > 0$ such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

We want: There exist c', $n'_0 > 0$ such that $f(n)^2 \ge c'g(n)^2$ for all $n \ge n'_0$.

So we can just take $c'=c^2$ and $n_0'=n_0$ to prove $f(n)^2\in\Omega(g(n)^2)$.

Example: Is it true that if f(n) < g(n) for all n, then $f(n) \in o(g(n))$?

We want: For all C > 0, there exists n_0 such that f(n) < Cg(n) for all $n \ge n_0$.

Since we only have f(n) < g(n), this looks dubious when $C \ll 1$... One counterexample is f(n) = n/2, g(n) = n (taking C = 1/4).

John Lapinskas Video 1-4 3/6

This is like a more powerful form of the racetrack principle from last year.

L'Hôpital's rule: Suppose $f, g: \mathbb{R} \to \mathbb{R}$ are differentiable and that $f(n), g(n) \in \omega(1)$. Then:

- $f(n) \in \omega(g(n))$ if and only if $f'(n) \in \omega(g'(n))$; and
- $f(n) \in o(g(n))$ if and only if $f'(n) \in o(g'(n))$.

This is like a more powerful form of the racetrack principle from last year.

L'Hôpital's rule: Suppose $f, g: \mathbb{R} \to \mathbb{R}$ are differentiable and that $f(n), g(n) \in \omega(1)$. Then:

- $f(n) \in \omega(g(n))$ if and only if $f'(n) \in \omega(g'(n))$; and
- $f(n) \in o(g(n))$ if and only if $f'(n) \in o(g'(n))$.

Intuitively: This makes sense since f' and g' are the *rates of change* of f and g — if f grows much faster than g, then f' should grow much faster than g', and vice versa.

I won't prove it, though! (It's also a weaker form of the "real" result.)

This is like a more powerful form of the racetrack principle from last year.

L'Hôpital's rule: Suppose $f, g: \mathbb{R} \to \mathbb{R}$ are differentiable and that $f(n), g(n) \in \omega(1)$. Then:

- $f(n) \in \omega(g(n))$ if and only if $f'(n) \in \omega(g'(n))$; and
- $f(n) \in o(g(n))$ if and only if $f'(n) \in o(g'(n))$.

Intuitively: This makes sense since f' and g' are the *rates of change* of f and g — if f grows much faster than g, then f' should grow much faster than g', and vice versa.

I won't prove it, though! (It's also a weaker form of the "real" result.)

Example: Prove that $n \in o(b^n)$ for all constants b > 0.

This is like a more powerful form of the racetrack principle from last year.

L'Hôpital's rule: Suppose $f, g: \mathbb{R} \to \mathbb{R}$ are differentiable and that $f(n), g(n) \in \omega(1)$. Then:

- $f(n) \in \omega(g(n))$ if and only if $f'(n) \in \omega(g'(n))$; and
- $f(n) \in o(g(n))$ if and only if $f'(n) \in o(g'(n))$.

Intuitively: This makes sense since f' and g' are the *rates of change* of f and g — if f grows much faster than g, then f' should grow much faster than g', and vice versa.

I won't prove it, though! (It's also a weaker form of the "real" result.)

Example: Prove that $n \in o(b^n)$ for all constants b > 0.

By L'Hôpital's rule, this holds if and only if $1 \in o(b^n \ln b) = o(b^n)$. For any C > 0, we have $1 \le C \cdot b^n$ for all $n \ge \log_b(1/C)$, so this is true.

John Lapinskas Video 1-4 4/6

Theorem: For all polynomial functions $f(n) = \sum_i a_i n^{x_i}$ and all y > 1, we have $f(n) \in o(y^n)$.

Theorem: For all polynomial functions $f(n) = \sum_i a_i n^{x_i}$ and all y > 1, we have $f(n) \in o(y^n)$.

Proof: By the hierarchy, we have $n^{x_i} \in o(n^{x_j})$ whenever $x_i < x_j$.

Fact: If $g(n) \in o(f(n))$, then $f(n) + g(n) \in \Theta(f(n))$. (Why?)

Hence $f(n) \in \Theta(n^x)$ for some x > 0, and we must show $n^x = o(y^n)$.

Theorem: For all polynomial functions $f(n) = \sum_i a_i n^{x_i}$ and all y > 1, we have $f(n) \in o(y^n)$.

Proof: By the hierarchy, we have $n^{x_i} \in o(n^{x_j})$ whenever $x_i < x_j$.

Fact: If $g(n) \in o(f(n))$, then $f(n) + g(n) \in \Theta(f(n))$. (Why?)

Hence $f(n) \in \Theta(n^x)$ for some x > 0, and we must show $n^x = o(y^n)$.

We have that $f(n)^x \in o(g(n)^x)$ if and only if $f(n) \in o(g(n))$, so it is enough to show $n \in o(y^{n/x}) = o((y^{1/x})^n)$.

Theorem: For all polynomial functions $f(n) = \sum_i a_i n^{x_i}$ and all y > 1, we have $f(n) \in o(y^n)$.

Proof: By the hierarchy, we have $n^{x_i} \in o(n^{x_j})$ whenever $x_i < x_i$.

Fact: If $g(n) \in o(f(n))$, then $f(n) + g(n) \in \Theta(f(n))$. (Why?)

Hence $f(n) \in \Theta(n^x)$ for some x > 0, and we must show $n^x = o(y^n)$.

We have that $f(n)^x \in o(g(n)^x)$ if and only if $f(n) \in o(g(n))$, so it is enough to show $n \in o(y^{n/x}) = o((y^{1/x})^n)$.

We already saw this is true via L'Hôpital, so we're done.

Theorem: For all polynomial functions $f(n) = \sum_i a_i n^{x_i}$ and all y > 1, we have $f(n) \in o(y^n)$.

Proof: By the hierarchy, we have $n^{x_i} \in o(n^{x_j})$ whenever $x_i < x_j$.

Fact: If $g(n) \in o(f(n))$, then $f(n) + g(n) \in \Theta(f(n))$. (Why?)

Hence $f(n) \in \Theta(n^x)$ for some x > 0, and we must show $n^x = o(y^n)$.

We have that $f(n)^x \in o(g(n)^x)$ if and only if $f(n) \in o(g(n))$, so it is enough to show $n \in o(y^{n/x}) = o((y^{1/x})^n)$.

We already saw this is true via L'Hôpital, so we're done.

Notice the overall process here: rather than working with definitions directly, we reduce the question to one we know how to solve.

John Lapinskas Video 1-4 5 / 6

Example: Prove that $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

Example: Prove that $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

Problems like this are much easier if you give the two things you're trying to compare a common base.

Here, we have $n = 2^{\log n}$ and $\log n = 2^{\log \log n}$.

Example: Prove that $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

Problems like this are much easier if you give the two things you're trying to compare a common base.

Here, we have $n = 2^{\log n}$ and $\log n = 2^{\log \log n}$.

We have $(\log \log n)^2 \in o(\log n)$ and $(\log \log n)^2 = \omega(\log \log n)$, so "clearly" $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

Example: Prove that $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

Problems like this are much easier if you give the two things you're trying to compare a common base.

Here, we have $n = 2^{\log n}$ and $\log n = 2^{\log \log n}$.

We have $(\log \log n)^2 \in o(\log n)$ and $(\log \log n)^2 = \omega(\log \log n)$, so "clearly" $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

All we need is that if f(n) = o(g(n)), then $2^{f(n)} \in o(2^{g(n)})$, which is true.

Example: Prove that $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

Problems like this are much easier if you give the two things you're trying to compare a common base.

Here, we have $n = 2^{\log n}$ and $\log n = 2^{\log \log n}$.

We have $(\log \log n)^2 \in o(\log n)$ and $(\log \log n)^2 = \omega(\log \log n)$, so "clearly" $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

All we need is that if f(n) = o(g(n)), then $2^{f(n)} \in o(2^{g(n)})$, which is true... as long as $g(n) \in \omega(1)$. (Exercise!)

Example: Prove that $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

Problems like this are much easier if you give the two things you're trying to compare a common base.

Here, we have $n = 2^{\log n}$ and $\log n = 2^{\log \log n}$.

We have $(\log \log n)^2 \in o(\log n)$ and $(\log \log n)^2 = \omega(\log \log n)$, so "clearly" $2^{(\log \log n)^2} \in o(n)$ and $2^{(\log \log n)^2} \in \omega(\log n)$.

All we need is that if f(n) = o(g(n)), then $2^{f(n)} \in o(2^{g(n)})$, which is true... as long as $g(n) \in \omega(1)$. (Exercise!)

(In practice, if you see a running time like this, you should be very careful even though it's theoretically fast — the constants are probably massive...)