MACHINE LEARNING AND MACHINE INTELLIGENCE MPHIL

Tuesday 10th November 2020 10.15 to 12.00

MLMI1

INTRODUCTION TO MACHINE LEARNING

Answer all questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number <u>not</u> your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

- 1 (a) Define Bayes' rule and explain how to use it to infer an unobserved variable, denoted s, from an observed variable, denoted x. [30%]
- (b) A data scientist would like to automatically detect outliers in a data stream comprising data points x_n . The data scientist knows that one percent of data points are outliers (denoted $s_n = 1$) and the remaining 99% are inliers (denoted $s_n = 0$). The outliers come from a zero mean Gaussian distribution with a variance equal to 10^2 . The inliers come from a zero mean Gaussian with a variance equal to 1. That is

$$p(s_n = 1) = \frac{1}{100}$$
, $p(x_n | s_n = 1) = \mathcal{N}(x_n; 0, 10^2)$, and $p(x_n | s_n = 0) = \mathcal{N}(x_n; 0, 1)$.

The data scientist computes the posterior distribution over s_n given the data point x_n to detect outliers.

(i) Show that the posterior distribution over s_n can be written

$$p(s_n = 1|x_n) = \frac{1}{1 + \exp(\phi(x_n)\alpha + \beta)}.$$

Your answer should include expressions for $\phi(x_n)$, which is function of the observed data whose output is scalar-valued, and it should also give values for the scalars α and β . [50%]

(ii) Sketch
$$p(s_n = 1|x_n)$$
 as a function of x_n . [20%]

Here, and later in the exam, we have used the following notation to indicate univariate Gaussian distributions:

$$\mathcal{N}(z; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(z-\mu)^2\right).$$

A climate scientist would like to characterise the variability of daily temperature measurements. They take a set of N scalar temperature measurements $\{x_n\}_{n=1}^N$ which have been centred so that they have zero mean. They model the temperature measurements as independent draws from a zero mean Gaussian with unknown variance σ^2 , so that $p(x_n|\sigma^2) = \mathcal{N}(x_n;0,\sigma^2)$. They place a prior over the unknown variance

$$p(\sigma^{2}|\alpha,\beta) = \frac{1}{Z(\alpha,\beta)} \left(\sigma^{2}\right)^{-\alpha/2} \exp\left(-\frac{\beta}{2\sigma^{2}}\right).$$

The prior is a valid probability density over the variance with parameters α and β (which are positive scalars) and $Z(\alpha, \beta)$ is the normalising constant.

- (a) Compute the posterior distribution over the variance parameter $p(\sigma^2 | \{x_n\}_{n=1}^N)$ taking care to leave your answer in a simple form. [70%]
- (b) Provide an intuitive interpretation for the parameters of the prior: α and β . [30%]
- 3 The climate scientist would now like to compute a point estimate for the unknown variance parameter using the same model described in the previous question.
- (a) Define the *maximum a posteriori* (MAP) estimate and the *maximum likelihood* estimate of the unobserved parameter σ^2 in terms of probability distributions. Comment on the similarities and differences between the definitions of the two estimators. [30%]
- (b) Compute the MAP estimate of the parameter σ^2 . [50%]
- (c) When will the MAP estimate of σ^2 be identical to the maximum likelihood estimate? [20%]

A regression problem comprises scalar inputs x_n and scalar outputs y_n which are linearly related $y_n = mx_n + \varepsilon_n$. The observation noise is Gaussian, with mean 0, but it has a variance that depends on the input $p(\varepsilon_n) = \mathcal{N}(\varepsilon_n; 0, 1 + x_n^4)$. A standard Gaussian prior is placed on the slope parameter so $p(m) = \mathcal{N}(m; 0, 1)$.

The slope m must be learned from a training dataset $\{x_n, y_n\}_{n=1}^N$ in a Bayesian way.

- (a) Compute the posterior distribution over m after seeing N data points, $\{x_n, y_n\}_{n=1}^N$, that is $p(m|\{x_n, y_n\}_{n=1}^N)$. [60%]
- (b) You are allowed to select an input location x at which you will be provided with an output y. Which locations are most informative about the parameter m? Explain your reasoning. [40%]
- 5 The KL divergence between two densities is defined as

$$KL(q(x)||p(x)) = \int q(x) \log \frac{q(x)}{p(x)} dx.$$

- (a) State three key properties of the KL divergence. (You do not need to provide derivations.) [30%]
- (b) Consider two Gaussian densities over a scalar x. The first has mean μ and variance 1, that is $q(x) = \mathcal{N}(x; \mu, 1)$. The second has mean equal to 3 and variance 1, that is $p(x) = \mathcal{N}(x; 3, 1)$.
 - (i) Compute the KL divergence between the densities, KL(q(x)||p(x)). [40%]
 - (ii) Plot the KL divergence as a function of μ and label salient aspects of the plot.

[30%]

A physicist measures radioactive decay events in a detector. A source is located at x = 0 and the distance that decay events take place from the source is measured by the detector and denoted x_n . (The detector can be assumed to be infinitely large for the purposes of this question i.e. there is no upper limit on the size of x_n which can be measured.)

The source emits two types of radioactive particle (denoted $s_n = 0$ and $s_n = 1$) with equal probability i.e. $p(s_n = 0) = 1/2$. The decay events from each type of particle are given by exponential distributions with decay constants that depend on the particle type, denoted λ_0 and λ_1 , that is

$$p(x_n|s_n = k, \lambda_0, \lambda_1) = \frac{1}{\lambda_k} \exp(-x_n/\lambda_k)$$
 for $k \in \{0, 1\}$

The physicist would like to use the *EM algorithm* to learn the decay constants from a dataset of N decay measurements $\{x_n\}_{n=1}^N$.

- (a) Define the *E-step* of the EM algorithm. Calculate this update for the model above, leaving your answer in a form which is suitable for implementation. [40%]
- (b) Define the *M-step* of the EM algorithm. Calculate this update for the model above, leaving your answer in a form which is suitable for implementation. [60%]

For reference the variational free-energy for a model with parameters θ and binary latent variables $\{s_n\}_{n=1}^N$ is given by

$$\mathscr{F}(\theta, \{q(s_n)\}_{n=1}^N) = \sum_{n=1}^N \sum_{k=0}^1 q(s_n = k) \log \frac{p(s_n = k, x_n | \theta)}{q(s_n = k)}.$$

where $q(s_n)$ is an arbitrary distribution over the binary variable s_n .

- 7 (a) Define a *bigram model* for a sequence of discrete valued variables $y_{1:T} = \{y_1, y_2, \dots y_T\}$. Include in your answer a definition of the *initial state probabilities* and the *transition probabilities*. [30%]
- (b) Two sequences $y_{1:T}^{(1)}$ and $y_{1:T}^{(2)}$ are generated from the same bigram model,

$$y_{1:T}^{(1)} = \{A, A, A, A, A, B, B, C, A, A, A, A, A, A, A, B, B\}$$
$$y_{1:T}^{(2)} = \{B, A, A, A, B, C, A, A, A, A, B, B, B, A, A, B\}.$$

Write down the maximum-likelihood parameters for the bigram model for these data. You do not need to derive the maximum likelihood estimates from first principles. Draw a *state transition diagram* to illustrate your solution. [50%]

(c) A third sequence from the same model is observed and used as held-out data to evaluate the maximum-likelihood trained model

$$y_{1:T}^{(3)} = \{A, B, A, A, A, A, A, A, C, A, A, A, A, B, B, A\}.$$

Compute the probability of the observed sequence under the trained model. Describe how the training method could be altered to improve the performance of the trained model on the held-out sequence. [20%]

A parking sensor on a car emits ultra-sonic pulses at regular time intervals t = 1,2,3,... and a receiver measures the time it takes for the pulses to travel to a nearby object and be reflected back. Each travel-time, y_t , is related to the distance between the sensor and the object x_t by the speed of sound, c, with a factor of two accounting for the fact that the pulse must travel to the object and back. The sensor is noisy and is well approximated by a Gaussian with variance σ_y^2 , that is $p(y_t|x_t) = \mathcal{N}(y_t; 2x_t/c, \sigma_y^2)$.

The distance to the object is assumed to vary slowly over time which is approximated by a Gaussian first order auto-regressive model, $p(x_t|x_{t-1}) = \mathcal{N}(x_t; \lambda x_{t-1}, \sigma^2)$.

- (a) What algorithm would be appropriate for estimating the current distance to the object at time t, that is x_t , given a sequence of observed travel-times $y_{1:t}$. Explain your reasoning. [20%]
- (b) The sample rate of the sensor has to be changed. Rather than sampling at each time t = 1, 2, 3, ... it now samples at half the rate corresponding to times t = 1, 3, 5, ... instead. Convert the original model for the higher sample rate into a new model which is appropriate for the lower sample rate. Explain your reasoning, including how the parameters of the new model relate to those in the old model. [80%]

END OF PAPER

Version RET: final

THIS PAGE IS BLANK