PHENIX PWG Meeting

Run 15 pp J/ψ Multiplicity Analysis

PHENIX HI PWG Meeting

Zhaozhong Shi

Los Alamos National Laboratory

03/17/2022

Overview

Improvement since last meeting:

- Enhance dataset statistics for full 2015 pp dimuon data sample
- Refine fit strategies
 - ☐ Converge the fits
 - Improve the fitting performance
 - ☐ Reduce signal extraction systematics
- Estimate muon matching efficiency to the FVTX
 - ☐ Remove auto-correlation in the same FVTX arms
- Include J/ψ trigger systematic uncertainties as an additional source
- Improve double collision model estimation
- Refresh the final results and update the analysis notes
 - ☐ Ready for preliminary to present in QM 2022

Run15 J/ ψ Multiplicity Dependence Analysis

Yasser Corrales Morales¹, Cameron Dean¹, Zhaozhong Shi¹, Ajeeta Khatiwada¹, Sanghoon Lim², Haiwang Yu³, and Ming Liu¹

¹Los Alamos National Laboratory ²Pusan National University ³Brookhaven National Laboratory

Abstract

This analysis note summarizes the technical details of the run15pp event multiplicity-dependent relative J/ψ yield analysis. The event multiplicity is determined by the PHENIX silicon detectors, the FVTX and SVX, which cover the pseudorapidity ranges $1.2 < |\eta| < 2.4$ and $|\eta| < 1.0$, respectively. The J/ψ candidates are measured by the two muon arms in the rapidity range of 1.2 < |y| < 2.2. Our results show the relative yield of J/ψ mesons per p+p collision increases with the event multiplicity, indicating possible multi-parton interactions in p+p collisions. Interestingly, we find that such correlation also depends on the rapidity region used to classify the event multiplicity.

BNL/PHENIX Copyright information...

Enhancement of Statistics

- Previously we use the wrong dimuon triggered sample, which is not complete
- Current, we are using the correct sample, which corresponds to an $3 \times$ enhancement of the statistics
- Number of events: 16419 -> 49320
- We also fix the number of good runs, now the North has 524 good runs and South has 549 good runs

Evt Mult FVTXS Multiplicity Distribution for MU Data

Fitting Improvement

Improvement of fitting

- Signal model: change double crystal ball -> single crystal ball
- Fit convergence and closure verified

Referring to the published J/ ψ analysis: improve the fit by first fitting the inclusive north and south FVTX J/ ψ distributions and then fix α and n of the CB to fit the multiplicity bins $\left(N_{\text{corr}}\left(\frac{(x-\mu)^2}{2}\right) - \frac{1}{2}\left(\frac{x-\mu}{2}\right)^2\right)$

 $f(x, \alpha, n, \mu, \sigma) = \begin{cases} N \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], & \text{if } (\frac{x-\mu}{\sigma} > \alpha) \\ NA(B - \frac{x-\mu}{\sigma})^{-n} & \text{if } (\frac{x-\mu}{\sigma} \le \alpha) \end{cases}$

North J/ ψ Fit Results for FVTXN N_{ch} = 1

- The fit looks reasonable
- Unit pull is obtained
 - -> Closure test passed
 - -> Correct estimation of the signal raw yield mean and error from the unbinned fit

North J/ ψ Fit Results for FVTXS N_{ch} = 1

- Again, the fit looks reasonable
- Unit pull is obtained
 - -> Closure test passed
 - -> Correct estimation of the signal raw yield mean and error from the unbinned fit

North J/ ψ Fit Results for SVX N_{ch} = 1

- Again, the fit looks reasonable
- Unit pull is obtained
 - -> Closure test passed
 - -> Correct estimation of the signal raw yield mean and error from the unbinned fit

Fit Systematic Uncertainties Revisit

Change the variation of fits from single crystal ball to Johnson SU function

$$f(x; \mu, \gamma, \delta, \lambda) = \frac{\delta}{\gamma \sqrt{2\pi}} \frac{1}{\sqrt{1 + \left(\frac{x - \mu}{\lambda}\right)^2}} \exp\left[-\frac{1}{2} \left(\gamma + \delta \sinh^{-1} \left(\frac{x - \mu}{\lambda}\right)\right)^2\right]$$

- Potentially can use single Gaussian as variation as well
- Significantly reduce fit systematic uncertainties

Here, as preliminary results, we quote a 10% systematic uncertainties for the fits

Double Collision Model

- Study the sensitivity of the 1st empty/no-hit bin in the reference low BBC rate Evt_Mult_FVTX/SVX
- Removed the 1st empty bin counts in the normalization, but still used it to calculate PDF2_model - overall scale change

Overall better agreement after removing the zero multiplicity bin

New Approach: BBC Rate Dependent Event Multiplicity Distributions

- Study the event normalized Evt_Mult_FVTX/SVX distributions relative to the reference one from low BBC Rate runs (<500kHz)
 - → New correction factor to be adopted for the final results and potentially reduce the systematic error
 - → Not used currently for preliminary results

$$R(N_{ch}, BBC_Rate) = \frac{dN_{ch}^{BBC_Rate}}{dN_{ch}^{BBC_Rate} < 500kHz}$$

- BBC Rate: < 500 kHz, as the single collision reference
- BBC Rate: 500 < BBC_rate < 1000 kHz
- BBC Rate: $1000 < BBC_rate < 1500 \text{ kHz}$
- BBC Rate: $1500 < BBC_rate < 2000 \text{ kHz}$
- BBC Rate: 2000 < BBC_rate < 2500 kHz

Muon-FVTX Matching Correction on the Same Arm

- $dimuon_mass > 2 \text{ GeV}$
- Tr0(1)_chi2_fvtxmutr < 3, good matching between MuTr track and FVTX tracklet
- Tr0(1)_nhits_fvtx >= 2, FVTX tracklet has at least 2 hits
- Tr0(1)_lastgap >= 3, must be a good muon candidate
- Remove FVTX tracklets if from the muons in the Evt_Mult_FVTX counting
- Small fraction of over-subtraction if more than 1 pair of dimuons

Modification on the FVTX Tracklet Multiplicity

- There is an about p = 70% of probability that a muon matched to an FVTX tracklet
- For the same arm, the average contribution of two muons from the J/ ψ is given by the binominal distribution:

$$<\Delta N> = Np = 2 \times 0.7 = 1.4$$

 We need to apply this correction to dimuon sample of North J/ψ on FVTXN and South J/ψ on FVTXS by recalculation the multiplicity (FVTXN/S -> FVTXN/S4)

Addition of J/ψ Trigger Systematics

- Aside from MB trigger bias systematic, we also estimated the J/ ψ trigger systematics due to the variation from multiplicity dependence
- We believe the J/ ψ trigger will be around 85% \pm 10%
- Quote a systematic uncertainties of 10% for J/ψ trigger efficiency bias uncertainties

Summary of Systematic Uncertainties

Sources of Systematic Errors	Systematic Uncertainties
J/ψ Signal Extraction	10%
MB Trigger Bias	5%
J/ψ Trigger Bias	10%
Multiple Collision Modeling	20%
J/ψ Reconstruction Efficiency	15%
Total	29.2%

Quote a systematic uncertainties of 29.2% all the data points in our final results

Final Results

Preliminary Figures

Preliminary Results – North J/ψ

- Common scale for all plots in Y-axis: 0 18
- Improve nominal values from better fit performance
- Improved statistical due to more statistics
- Better systematic uncertainties thanks to the improvement of the data analysis

Preliminary Results – South J/ψ

- Similar results to the North J/ψ
- Improve nominal values from better fit performance
- Improved statistical due to more statistics
- Better systematic uncertainties thanks to the improvement of the data analysis

Preliminary Results – Plot Together

- Overall good agreement for SVX in both north and south FVTX arms J/ψ
- Different behavior for the same arm to opposite arm before corrections
- Similar trends for North and South, which makes sense due to parity symmetry

Preliminary Results – Dimuon Subtracted North J/ψ

- Improve nominal values from better fit performance
- Improved statistical due to more statistics
- Better systematic uncertainties thanks to the improvement of the data analysis
- Significantly better agreement between same and opposite arms after correction

Preliminary Results – Dimuon Subtracted South J/ψ

- Improve nominal values from better fit performance
- Improved statistical due to more statistics
- Better systematic uncertainties thanks to the improvement of the data analysis
- Significantly better agreement between same and opposite arms after correction

Preliminary Results – Dimuon Subtracted Plot Together

 Excellent agreement of the results between the same arm and opposite arm after applying the correction

Additional Matrials

Supplementary Figure

Comparison with Other Results – FVTXN

STAR Reference: PLB 786 (2018)

- Overall very good agreement with STAR published results
- Include theoretical calculations as well?

Comparison with Other Results – FVTXS

STAR Reference: PLB 786 (2018)

- Overall very good agreement with STAR published results
- Include theoretical calculations as well?

Comparison with Other Results – SVX

STAR Reference: PLB 786 (2018)

- Overall very good agreement with STAR published results
- Include theoretical calculations as well?

Summary

- A lot of improvements have occurred over the last week
 - \square Increase the data sample statistics by a factor of 3
 - ☐ Improve of unbinned fits performance
 - \square Revisit the double collision model and better understand the systematics
 - \Box Including J/ ψ trigger efficiency bias systematic uncertainties
 - \Box Apply corrections to remove J/ ψ decay muons contributing to the same arm
- Improve the nominal results as well as the statistical and systematic uncertainties
- Obtain consistent results of same and opposite arms after the subtraction of dimuon tracklets on muon-FVTX matching to remove auto-correlation
- Update the analysis notes to make it more readable
- Request preliminary for Quark Matter 2022

