Reinforcement Learning Equations

Aaron Hao Tan

Fininte Markov Decision Processes

Components of MDP

$$\{T, S, A_s, p_t(\cdot|s, a), r_t(s, a)\}\tag{1}$$

A state is *Markov* if and only if

$$\mathbb{P}\left[S_{t+1}|S_t\right] = \mathbb{P}\left[S_{t+1}|S_1,\dots,S_t\right] \tag{2}$$

State-transition probabilities

$$p(s'|s,a) \doteq PrS_t = s'|S_{t-1} = s, A_{t-1} = a = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$
(3)

Expected rewards for state-action pairs

$$r(s, a) \doteq \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$$
 (4)

Returns

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T \tag{5}$$

Discounted Returns

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
 (6)

State Value Function and its Bellman Equations

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s] \quad for \quad all \quad s \in \mathcal{S}$$
 (7)

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot G_{t+1}|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma E_{\pi}[G_{t+1}|S_{t+1} = s']]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$$
(8)

Action Value Function and its Bellman Equations

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = a \right] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$$
 (9)

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r|s, a) \left[r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s', a') \right]$$
(10)

Optimal State Value Function and ACtion Value Function

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s) \tag{11}$$

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a) \tag{12}$$

Bellman Optimality Equations

$$v_*(s) = \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_* (S_{t+1}) | S_t = s, A_t = a \right]$$

$$= \max_{a} \sum_{s',r} p(s', r | s, a) \left[r + \gamma v_* (s') \right]$$
(13)

$$q_{*}(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_{*}(S_{t+1}, a') | S_{t} = s, A_{t} = a\right]$$

$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}(s', a')\right]$$
(14)

Policy and Value Iteration