MATH 2130 Tutorial 1

In questions 1–12 draw the surface defined by the equation.

1.
$$x = 2y^2 + z^2$$

2.
$$z = 2xy$$

3.
$$z = |x + y|$$

4.
$$x = z^3 + 1$$

5.
$$|x| + |y| = 1$$

6.
$$z^2 - x^2 = 3y^2$$

7.
$$y^2 = z^2 - 2y + 3$$

8.
$$x^2 + y^2 = 2x - 4y - 5$$

9.
$$4y^2 + z^2 = x^2 - 1$$

10.
$$4y^2 + z^2 = x^2 + 1$$

11.
$$2x^2 + 3y^2 + 4z^2 = 12$$

12.
$$y^2 + 2z^2 = 4 - 2x$$

In questions 13–16 draw the curve and find equations for its projections in the xy-, yz-, and xz-coordinate planes.

13.
$$z = 2x^2 + 4y^2$$
, $y + z = 1$

14.
$$x^2 + y^2 + 2z^2 = 2$$
, $x + y = 1$

15.
$$z = x^2 + y^2$$
, $z = 2x^2$

16.
$$z = x^2 + y^2$$
, $2z = x^2$

Answers:

13.
$$2x^2 + 4y^2 + y = 1$$
, $z = 0$; $y + z = 1$, $x = 0$, $-(1 + \sqrt{17})/8 \le y \le (-1 + \sqrt{17})/8$; $4z^2 - 9z + 2x^2 + 4 = 0$, $y = 0$

14.
$$x+y=1, z=0, (1-\sqrt{3})/2 \le x \le (1+\sqrt{3})/2;$$
 $2y^2-2y+2z^2=1, x=0;$ $2x^2-2x+2z^2=1, y=0;$

15.
$$y = \pm x, z = 0$$

 $z = 2y^2, x = 0$
 $z = 2x^2, y = 0$

16. They only intersect at the point
$$(0,0,0)$$
.