

Erweiterungen der Logik und Temporale Logik

Allen'sche Zeitlogik – Modallogik – Schlussregeln - Produktionssysteme

www.dhbw-stuttgart.de

Einordnung in die Vorlesungsstruktur

72

Eine Erweiterung der Logik: Die Modellierung von Zeit

- ➡ Wie modelliere ich Bedeutungen wie "früher" und "später"?
- ➡ Wie gehe ich mit Relationen um, die heute gelten, morgen aber nicht?
- Wie modelliere ich einen zeitlichen Verlauf?
- ➡ Wie kann man die Zeit in einem Kalkül erfassen?
- Ein kurzer Ausflug: Modale Logik

Modellierung von Zeit

"A ist früher als B"

Total geordnete Zeitachse

Partielle Ordnung

a, b und c sind unvergleichbar

Modellierung von Zeit

Allen's Zeitlogik

Axiomatische Behandlung von Zeit auf Basis von Intervallen

Beschreibung von Relationen auf Basis der Menge I von Intervallen

Relation	Symbol	Inverses	Als Intervallsymbol:
x vor y	<	>	x y
x gleich y x an y	= m	= mi	
x überlagert y x während y	o d	oi di	
x startet y	S	si	
x beendet y	Ť	fi	•

Modellierung von Zeit

Allen's Zeitlogik

Allen's Zeitlogik definiert zunächst 13 Relationen, mit denen Beziehungen zwischen Intervallen beschrieben werden können.

Die Menge $\textit{Rel} = \{<,=,m,o,d,s,f,>,mi,oi,di,si,fi\}$ beschreibt diese, während I die Menge der Intervalle repräsentiert.

Für weitere Betrachtungen stellt sich nun die folgende Frage:

Wenn xRy und ySz für x,y in I und R,S in *ReI*, in welcher Relation *p(R,S)* stehen dann x und z?

74

Modellierung von Zeit

Allen's Zeitlogik - ein Beispiel

"müll rausbringen" { < } "müllabfuhr kommt"

Der Müll sollte draussen im Container sein bevor die Müllabfuhr kommt.

"haustür offen" { d } "müll rausbringen"

Man schnappt den Papierkorb, öffnet die Tür, geht raus zum Container, leert den Papierkorb, schließt die Tür hinter sich und stellt dem Korb an seinen Platz zurück.

- Offensichtlich gilt: "haustür offen" { < } "müllabfuhr kommt"
- \rightarrow Also formal: p(d,<) = <
- Für alle Kombinationen von Zeitrelationen kann eine 13 x 13 Tabelle aufgestellt werden, die p definiert.

76

Modellierung von Zeit

Allen's Zeitlogik

Als Ergebnisse von p treten Teilmengen von Rel auf.

- p muß auf Teilmengen von Rel erweitert werden, um eine Iteration zu erlauben
- \rightarrow P(X,Y) = \cup (p(R,S) | R \in X, S \in Y)

Eine zweite Relation: Durchschnittsbildung

Durch diese Relationen werden nun Inferenzen auf dem Zeitkalkül möglich

Definition: Ein Zeitnetz ist ein gerichteter, beschrifteter Graph. Dabei sind Knoten Intervalle und Kanten Disjunktionen von Relationen.

Modellierung von Zeit

Hinweise zum Umgang mit Zeitnetzen

A) Konsistenzprüfung

- Konsistenz kann nur als lokale Konsistenz garantiert werden (d.h. in einem drei-knotigen Teilnetz)
- Globale Konsisitenzprüfung ist NP-Hard.
- Es kann nur ein korrekter, jedoch kein vollständiger Konsistenzprüfungsalgorithmus für die globale Konsistenz angeboten werden
- Für lokale Konsistenz auch ein vollständiger.

B) Punktdarstellung

Die Zeitintervallbeschreibung kann in eine Punktbeschreibung überführt werden, Dabei wird A(x) und E(x) für Anfangs- und Endpunkt des Intervalls verwendet, sowie die Relationen <,>,= und die logischen Verknüpfungen zur Beschreibung herangezogen.

Analog zur Intervallbeschreibung wird die "UND"-Verknüpfung und das Relationenprodukt (als Äquivalent zu p) zur Inferenz verwendet.

78

Eine weitere Erweiterung der Logik : Modale Logik

- Es gibt nicht mehr nur *eine* Wahrheit ...
- Modale Logik umfasst "mögliche Welten" und "denkbare Situationen".

Modallogische Sprache

Sprache der Prädikatenlogik (PL) + 2 neue logische Symbole:

 $\Box \Phi : \Phi$ gilt "notwendigerweise"

 $\Diamond \Phi : \Phi$ gilt "möglicherweise"

Es gilt (analog zu Quantoren): $\neg \lozenge \neg \Phi = \Phi$

∕ "Possible Worlds - Semantics" ∖

Definition: (Erweitern der Aussagenlogik)

Eine **Grapheninterpretation** (*Kripkeinterpretation*) M ist ein Paar M = (G,I) mit

- (i) $G = (G, \leq)$ (ein gerichteter Graph)
- (ii) I : P x G \rightarrow {0,1} (eine Abbildung mit P = Prädikate) Wenn I (A,p) = 1, dann heißt A wahr in Knoten p (oder "Welt p") unter I. Gesamtheit der Welten = Universum der Interpretation.

80

Eine weitere Erweiterung der Logik : Modale Logik

Modale Logik als Zeitlogik

Knoten = Welten zu bestimmten Zeiten

 $\Box \Phi : \Phi \text{ gilt "immer"}$

 $\Diamond \Phi$: Φ gilt "irgendwann einmal"

Weitere Operatoren:

оФ: Ф gilt im nächsten Zeitpunkt

ΦUΨ : Φ gilt solange bis Ψ gilt

Bimodale Zeitlogik:

 $Z\Phi:\Phi$ gilt in Zukunft immer

 $V\Phi$: Φ gilt in Vergangenheit immer

Anwendung: Verifikation von Programmen

→ Hoare-Kalkül

{ gerade-Zahl(x) } x = x + 1 { ungerade-Zahl(x) }

welt 1" "Welt 2"

Schlussregeln

Immer gültig, sicheres Deduktiver Schluss Schließen (apodiktisch)

 $P(a_1) ... P(a_n)$ Nicht unbedingt gültig, Induktiver Schluss Verallgemeinerung (dialektisch) $\forall x P(x)$

Hypothetisch, von Symptom Abduktiver Schluss auf Ursache schließen (rhetorisch)

82

Produktionssysteme / Regelsysteme

Produktionen bzw. Produktionsregeln geben an, wie ein Ausdruck transformiert werden kann:

<Condition> → <Action>

Komponenten eines Produktionssystems:

Produktionssysteme / Regelsysteme

Forward Chaining Eine Regel wird auf Daten angewandt und erzeugt dadurch

ggf. neue Daten welche die Eingangsbedingungen weiterer

Regeln erfüllen.

Reasoning: Datengetrieben – es werden Daten (Lösungen/Aussagen)

generiert, bis das Ziel erreicht ist.

Backward Chaining Auf der Bedingungsseite der Regel sind die Aussagen an-

gegeben, welche gelten müssen um die rechte Regelseite gültig zu machen. Eine Produktion erzeugt nun jeweils alle

nötigen Aussagen als neue Datenelemente.

Reasoning: Ergebnisgetrieben – Ableiten und Lösen von Teilzielen, bis

diese alle bewiesen werden konnten.

Produktionssysteme - Konfliktlösungen

Konflikte

- Eine Produktionsregel ist auf mehr als ein Datum anwendbar
- Es sind mehrere Produktionsregeln auf die vorliegenden Daten anwendbar.

Lösungsstrategien

Most specific first (MSF) – je detaillierter die Regel desto eher wird sie bevorzugt

Most general first (MGF) – je globaler die Regel anwendbar ist desto eher wird sie bevorzugt

Most recently used (MRU) – die Regel deren letzte Anwendung noch nicht so lange her ist wird bevorzugt ...

Least recently used (LRU) – die Regel deren Anwendung am längsten zurückliegt wird bevorzugt

Time tagged data (TTD) – das Alter der Datenelemente wird zur Priorisierung verwendet

Rule ranking (RR) – Die Produktionsregeln werden vorab in eine Rangfolge gebracht.

2/

Erweiterungen der LOGIK Welches ist die bekannteste Logik für Zeitintervalle?

Wenn x {<} y und y {>} z was gilt für x und z ?

Wie lautet die Definition einer Kripkeinterpretation?

Was ist ein Produktionssystem?