Exercise 1.1

Let $A \subset B$ be an integral extension of rings and assume that B is an integral domain. Suppose $\mathfrak{q} \subset B$ is a prime ideal and let $\mathfrak{p} := \mathfrak{q} \cap A \subset A$.

1. Prove that A is a field if and only if B is a field.

Proof. Assume A is a field and let's do this a little different. Let \mathfrak{m} be a maximal ideal in B and fix a nonzero element $b \in \mathfrak{m}$. Because b is integral over A, we have an expression

$$0 = a_0 + a_1b + a_2b^2 + \dots + a_nb^n \iff -a_0 = a_1b + a_2b^2 + \dots + a_nb^n.$$

On the right side, for each $1 \le i \le n$, we have that $a_i b^i$ is in \mathfrak{m} , so the whole sum is in \mathfrak{m} . This implies the absurdity that $-a_0$, an unit, is contained in \mathfrak{m} . So there is no such thing as nonzero b in \mathfrak{m} and B is a field.

For the other direction of the implication, we will do it traditionally. Let B be a field and fix an $x \in A$. x is a unit in B, so there is a $y \in B$ with xy = 1. Again, for y we have the expression

$$0 = a_0 + a_1 y + a_2 y^2 + \dots + a_n y^n$$

and if we multiply x^{n-1} on both sides, we yield

$$0 = a_0 x^{n-1} + a_1 x^{n-2} + a_2 x^{n-3} + a_n y$$

$$\iff -a_0 x^{n-1} - a_1 x^{n-2} - a_2 x^{n-3} = a_n y$$

$$\iff a_n^{-1} (-a_0 x^{n-1} - a_1 x^{n-2} - a_2 x^{n-3}) = y$$

In other words, y is in A or in different words, A is a field.

2. Show that \mathfrak{p} is a prime ideal of A and that A/\mathfrak{p} can be viewed as a subring of B/\mathfrak{q} .

Proof. (a) We simply have $A/(\mathfrak{q} \cap A) \cong (A+\mathfrak{q})/\mathfrak{q}$ and since \mathfrak{q} is prime in $A+\mathfrak{q}$, A/\mathfrak{p} is an integral domain.

(b) That A/\mathfrak{p} is a subring of B/\mathfrak{q} follows from above.

3. Show that B/\mathfrak{q} is integral over A/\mathfrak{p} .	
Proof. Should be clear.	
4. Deduce that \mathfrak{q} is maximal in B if and only if \mathfrak{p} is maximal A .	
<i>Proof.</i> This is clear.	
Exercise 1.2	
Let K be a number field with $[K:\mathbb{Q}]=2$.	
2	

1. Show that $K = \mathbb{Q}(\sqrt{d})$ where d is square-free.

Proof. Since every extension of a field of characteristic 0 is separable, K is separable, and by the primitive element theorem, we know that K is simple. Now the algebraic closure of $\mathbb Q$ is $\mathbb C$, there is an element in $x \in \mathbb C$ such that $K = \mathbb Q(x)$. If x^2 is not rational, then $[K:\mathbb Q] > 2$. Now assume that x^2 is not square-free, i.e. there is a prime $p \in \mathbb N$ such that $n \cdot p^2 = x^2$ for some $n \in \mathbb Z$. Then, $K = \mathbb Q(p\sqrt{n}) = \mathbb Q(\sqrt{n})$. Moreover, if x^2 is not an integer, another primitive element that is an integer can be found. All in all, there is a square-free integer d such that $K = \mathbb Q(\sqrt{d})$.

2. In this setting, show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$ where

$$\alpha = \begin{cases} \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \mod 4\\ \sqrt{d} & \text{if } d \not\equiv 1 \mod 4 \end{cases}$$
 (1)

Proof. Use minimal polynomials

3. No.

Exercise 1.3

Consider $R = \mathbb{Z}[\sqrt{3}]$ with the norm