Задание 1. Реализация линейной множественной регрессии

Карцев Михаил Дмитриевич U3475 АДПУР 7.2

Цель работы: сформировать и оценить линейную множественную регрессионную модель для предсказания субъективного качества сна на основе отобранных количественных факторов, выполнить отбор значимых признаков, сравнить полную и сокращенную модели по коэффициенту детерминации, МЅЕ и системному эффекту, проверить целесообразность исключения факторов по критерию Фишера и оценить выполнение условий Гаусса—Маркова для корректности оценок.

Постановка задачи: с помощью средств MS Excel построение линейной многофакторной модели с отбором значимых факторов и выполнить оценку соответствия модели условия Гаусса-Маркова.

Исходный датасет:

Был взят датасет «Screen Time vs Mental Wellness Survey - 2025» с сайта Kaggle. Этот набор данных содержит информацию, полученную от 400 участников опроса, о том, как их ежедневное использование экранов влияет на психическое благополучие. В связи с растущей распространенностью цифровых устройств в нашей жизни понимание связи между временем, проведенным за экраном, качеством сна, стрессом и продуктивностью становится важнейшей областью исследований в области науки о данных, психологии и общественного здравоохранения. Пустые значения отсутствуют.

В качестве факторов (х1, х2, х3, х4) были взяты:

- X1 возраст
- X2 экранное время, потраченное на работу/учебу в день в среднем
- X3 экранное время, потраченное на развлечение (видео, игры, социальные сети и т.д.) в день в среднем
 - X4 среднее время сна за ночь

В качестве зависимого параметра (у) была взята субъективная оценка качества сна респондентов (где 1 – очень плохо, 5 – очень хорошо)

1. Первая линейная регрессия (по всем факторам)

	m4	m3	m2	m1	b
Коэфф	0,451	-0,025	-0,015	-0,004	-1,442
SE	0,032	0,013	0,014	0,003	0,287
R ² ; SE_y	0,386	0,514	#Н/Д	#Н/Д	#Н/Д
F; df	62,173	395,000	#Н/Д	#Н/Д	#Н/Д
SSreg; Ssresid	65,602	104,196	#Н/Д	#Н/Д	#Н/Д

Коэффициент детерминации		0,386352712			
Средняя квадратическая ошибка		0,263786773	5		
Показатель системного					
	эффекта		-		
факторов			86,16091705	3	
Мера мультиколлинеарности		-			
			0,052011458	3	
t-статистика	14,03976879		1,979218899	1,02796526	1,133428186
	>t _K p	>t1	кр	<tкр< td=""><td><t< td=""></t<></td></tкр<>	<t< td=""></t<>
p-value	3,72451E-96		8,94607E-05	0,0404459	0,023938972
	<α	<0		>α	>α
tкp	1,967				
α	0,05				

Полная модель использует четыре фактора: возраст, экранное время для работы, экранное время для развлечений и часы сна, при этом главный вклад дает продолжительность сна (положительный коэффициент около 0,451), а развлекательное экранное время связано с меньшей оценкой сна (отрицательный коэффициент около -0,025), тогда как возраст и рабочее экранное время имеют намного более слабые эффекты (около -0,004 и -0,015 соответственно). Метрики качества у полной модели умеренные: $R^2 \approx 0,386$ и MSE $\approx 0,264$, то есть модель объясняет заметную, но не основную часть разброса субъективной оценки качества сна по шкале 1–5. В отчете также зафиксированы «системный эффект факторов» около -86,16 и «мера мультиколлинеарности» около -0,052, что означает перекрытие парных связей факторов с целевой переменной и отражает то, что часть «вклада» факторов в оценку сна у данных пересекается между собой.

2. Матрица корреляций

	x1	<i>x</i> 2	<i>x</i> 3	x4	у
x 1	1				
x2	0,07444263	1			
x 3	0,01303851	-0,2864136	1		
x4	0,05350326	-0,1332431	-0,2557467	1	
y	-0,0178161	-0,1008538	-0,2245234	0,61438142	1

	Проверка значимости коэффициентов корреляции с у				
Фактор	r(y, x)	\mathbf{r}^2	t-статистика	p-value	Значимость
x1	-0,0178161	0,00031741	-0,3554874	0,47751634	Не значим
x2	-0,1008538	0,01017149	-2,0223383	6,294E-05	Слабо значим
x3	-0,2245234	0,05041074	-4,5965837	2,154E-18	Значим
x4	0,61438142	0,37746453	15,5345099	1,863E-108	Высоко значим

Корреляции с целевой переменной показывают простую картину: самая сильная связь у часов сна (у и х4-0.61), связь с развлечениями умеренно отрицательная (у и х3--0.22), тогда как возраст и рабочее экранное время связаны с оценкой сна слабо по модулю. Между самими факторами связи невысокие, что говорит о том, что факторы в целом не «дублируют» друг друга напрямую, а конкуренция за объяснение оценки сна возникает из- за пересечения их индивидуальных связей с целевой переменной. Такая структура логично

согласуется со знаками и относительной величиной коэффициентов в полной модели: больше сна — выше оценка, больше развлечений — ниже оценка, а возраст и рабочие экраны почти не меняют картину в линейной постановке. Были отобраны факторы x3 и x4, поскольку их влияние на зависимый параметр гораздо выше, при этом друг с другом все факторы коррелируют слабо, что позволяет отбирать и рассматривать любые группы. Проверка значимости коэффициентов корреляции с y (n = 400, df = 398, tkp = 1.967 при $\alpha = 0.05$) показала, что фактор x4 имеет высокую значимость, x3 — просто значим, x2 — слабо значим а x1 — не является значимым. Аналогичные результаты можно видеть в проверке значимости факторов в первой и второй линейных регрессиях.

3. Вторая линейная регрессия (с факторами х3 и х4)

	m2	m1	b
Коэфф	0,456	-0,021	-1,656
SE	0,031	0,012	0,254
R^2; SE_y	0,382	0,514	#Н/Д
F; df	122,866	397,000	#Н/Д
SSreg; Ssresid	64,918	104,880	#Н/Д

Коэффициент детерминации	0,382324826
Средняя квадратическая ошибка	0,264180606
Показатель системного эффекта факторов	-91,732
Мера мультиколлинеарности	-0,046

t-статистика	14,6058899	1,767447887
	>t _K p	<tкр< th=""></tкр<>
p-value	6,1006E-101	0,00045602
	<α	<α
tкp	1,967	
α	0,05	

Сокращенная модель оставляет два наиболее информативных фактора - часы сна и развлекательное экранное время - при этом коэффициенты по смыслу остаются такими же: положительный при часах сна (около 0,456) и отрицательный при развлечениях (около -0,021). По метрикам качество практически не меняется: $R^2 \approx 0,382$ и MSE $\approx 0,264$, то есть по точности описания оценок сна сокращенная модель близка к полной. В отчете «системный эффект факторов» для сокращенной модели около -91,732, а «мера мультиколлинеарности» около -0,046, что указывает на сохраняющееся перекрытие парных связей с целевой переменной, но уже без слабых факторов, практически не влияющих на итоговые метрик.

Критерий Фишера:

D4	0,38635271
D2	0,38232483
F1	1,296
f1	2

f2	395
tкp	3,04
Уровень значимости	0,95

F1 < t, следовательно гипотеза о том, что исключенные факторы не влияют на у не опровергается, а значит исключение факторов х1 и х2 является целесообразным.

Сравнение моделей

Различия метрик между полной и сокращенной спецификациями малы: R^2 снизился с $\approx 0,386$ до $\approx 0,382$, а MSE изменился с $\approx 0,2638$ до $\approx 0,2642$, то есть качество описания практически сохранилось. По расчету критерия Фишера получено, что в интерпретации отчета подтверждает целесообразность исключения x1 и x2.

4. Условия Гаусса-Маркова

Случайность остатков:

K		261
	$\frac{2n-1}{3} - 2\sqrt{\frac{16n-29}{90}}$	249,5061067

Независимость остатков

d	1,59
dl	1,728
dh	1,81

Критерий Стьюдента:

p	0,95
f	395
t	7,2695
tкp	1,967

Случайность остатков по критерию поворотных точек подтверждена, что согласуется с предпосылкой случайного характера последовательности ошибок. Критерий Дарбина–Уотсона дал d \approx 1,59 < dl, что указывает на положительную автокорреляцию остатков.

Коэффициенты асимметрии и эксцесса

Коэффициент асимметрии	3,571303517
Коэффициент эксцесса	13,72955822
Sa (стандартное отклонение коэфф)	0,014776953
Se (стандартное отклонение коэфф)	0,057795762

Проверка равенства суммы остатков нулю по критерию Стьюдента показала $t \approx 7,27 > 1$ tkp, что отвергает гипотезу о нулевой сумме ошибок. Коэффициенты асимметрии $\approx 3,57$ и эксцесса $\approx 13,73$ с учетом стандартных ошибок указывают на отклонение от нормальности

распределения остатков

Почему такие значения

Зависимая переменная — субъективная порядковая оценка качества сна по шкале 1—5, что ограничивает достижимую долю объясненной дисперсии линейной моделью и согласуется с умеренными значениями коэффициента детерминации в обеих спецификациях. Основной вклад объяснения связан с продолжительностью сна и противоположным по знаку влиянием развлекательного экранного времени, тогда как возраст и рабочее экранное время показывают существенно меньшую линейную связь с субъективной оценкой.

Вывод

Сокращенная линейная модель с факторами x3 и x4 сохраняет метрики качества на уровне полной модели и, по расчету критерия для сравнения моделей, подтверждает целесообразность исключения слабых факторов x1 и x2. Диагностика остатков указывает на положительную автокорреляцию и ненормальность, что отражает особенности данных с субъективной шкалой.