Versuch 351

Fourier- Analyse und Sythese

 ${\bf Stefanie\ Hilgers} \\ {\bf Stefanie. Hilgers@tu-dortmund. de}$

Lara Nollen Lara.Nollen@tu-dortmund.de

Durchführung: 14.11.2018 Abgabe: 21.11.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung	3
3	Auswertung	3
4	Diskussion	9

1 Theorie

2 Durchführung

3 Auswertung

Die bei 0 mbar gemessene Position des Maximums entspricht einer Energie von ca. 4 MeV. Unter der Annahme einer linearen Energieskala können mit diesem Startwert die anderen Energien E_{α} berechnet werden, die Ergebnisse sind in Tabelle 1 zu sehen. Dort sind auch die nach Formel ?? berechneten effektiven Längen eingetragen, für die Berechneung wird der bei der ersten Messung eingestelle Abstand von $x_0=2,5\,\mathrm{cm}$ verwendet.

Tabelle 1: Zählrate und Energiemaximum bei variiertem Druck, Abstand a=2,5cm

Druck ρ / mbar	Energiemaximum	Zählrate N	Energie E_{α}	effektive Länge $x/$ cm	
0	540	92505	4,00	0,00	
50	530	91459	3,93	0,12	
100	525	89723	3,88	$0,\!25$	
150	515	88232	3,81	$0,\!37$	
200	521	91197	3,86	0,49	
250	521	89515	3,86	0,62	
300	505	88548	3,74	0,74	
350	489	82659	3,62	0,86	
400	486	84531	3,60	1,00	
450	480	82048	$3,\!55$	1,11	
500	467	78730	3,46	1,23	
550	458	75023	3,39	1,36	
600	451	69593	3,34	1,48	
650	440	65145	3,26	1,60	
700	429	64647	$3,\!17$	1,73	
750	414	54482	3,07	1,85	
800	406	52385	3,00	1,97	
850	-	32376	-	2,10	
900	-	27305	-	$2,\!22$	
950	-	20768	-	2,34	
1000	-	9593	-	2,47	

Wird die Zählrate gegen die effektive Länge aufgetragen, so ergibt sich Abbildung 1.

Abbildung 1: Zählrate N aufgetragen gegen die effektive Länge x.

Die mittlere Reichweite der α -Teilchen wird bestimmt, indem der lineare Teil der Funktion gefittet wird, anschließend wird der Schnittpunkt der Ausgleichsgerade mit $^{N}/_{2}$ berechnet. So ergibt sich der Schnittpunkt:

$$R_m = \frac{N/2 - b}{m},\tag{1}$$

woraus sich die mittlere Reichweite von $(1.93\pm0.23)\,\mathrm{cm}$ ergibt. Der Fehler wird mit der Gauß'schen Fehlerfortpflanzung

$$\Delta f = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot (\Delta x_i)^2} \,. \tag{2}$$

berechnet, für diesen Fall ergibt sich

$$\Delta R_m = \sqrt{\left(\frac{-1}{m}\right)^2 \left(\Delta b\right)^2 + \left(\frac{N/2 + b}{m^2}\right)^2 \left(\Delta m\right)^2}.$$
 (3)

Aus Gleichung?? ergibt sich somit eine Energie von

$$E_{\alpha} = (13.0 \pm 3.1) \,\mathrm{MeV}.$$

Der zugehörige Fehler berechnet sich nach der Formel:

$$\Delta E_{\alpha} = \sqrt{\left(\frac{2}{3\left(\sqrt[3]{\frac{R_{m}}{3,1}}^{2}\right)}\right)^{2} \cdot \left(\Delta R_{m}\right)^{2}} \tag{4}$$

In Abbildung 2 wird die Energie gegen die effektive Länge aufgetragen, aus der linearen Ausgleichsgeraden wird die Ableitung dE/dx bestimmt, die den Energieverlust -dE/dx darstellt. Es ergibt sich ein Energieverlust von:

$$\frac{-dE}{dx} = (0.49 \pm 0.02) \,\text{MeV}.$$

Abbildung 2: Energie E aufgetragen gegen die effektive Länge x.

Für die zweite Messreihe mit Abstand $a=2\,\mathrm{cm}$, dessen Messwerte in Tabelle 2 zu sehen sind, wird ebenfalls die Zählrate N gegen die effektive Länge x aufgetragen. An den Messwerten ist zu erkennen, das die Werte für die Zählrate deutlich langsamer abfallen als dies bei der ersten Messreihe der Fall ist.

Tabelle 2: Zählrate und Energiemaximum bei variiertem Druck, Abstand a=2cm

Druck ρ / mbar	Druck ρ / mbar Energiemaximum		Energie E_{α}	effektive Länge $x/$ cm	
0	796	131382	4	0.0	
50	775	131464	3.89	0.09	
100	756	130732	3.79	0.19	
150	749	129617	3.76	0.29	
200	749	130444	3.76	0.39	
250	727	129600	3.65	0.49	
300	722	128936	3.63	0.59	
350	708	128478	3.56	0.69	
400	696	128122	3.49	0.79	
450	687	127415	3.45	0.89	
500	674	126608	3.39	0.99	
550	663	126372	3.33	1.09	
600	651	124989	3.27	1.18	
650	634	124942	3.19	1.28	
700	618	124295	3.11	1.38	
750	602	123299	3.03	1.48	
800	584	119958	2.93	1.58	
850	566	120673	2.84	1.68	
900	548	117907	2.75	1.78	
950	534	116111	2.68	1.88	
1000	499	108630	2.51	1.07	

Wie in Abbildung 3 zu sehen überschneiden sich die Messwerte nicht mit der N /2-Linie. Daher kann die mittlere Reichweite und somit auch die Energie nicht bestimmt werden.

Abbildung 3: Zählrate N aufgetragen gegen die effektive Länge x.

Die Messergebnisse des zweiten Versuchsteils sind in Tabelle 3 dargestellt und werden in Abbildung 4 in einem Histogramm veranschaulicht, welches normiert wird.

Tabelle 3: Zählrate aufgenommen in Intervallen von $10\;\mathrm{s}$

Messung	Zählrate N						
1	10465	31	10713	61	10732	91	9964
2	10047	32	10242	62	9987	92	9956
3	10134	33	10307	63	9816	93	9819
4	10139	34	10021	64	10209	94	9783
5	10642	35	9935	65	10938	95	9730
6	10226	36	9829	66	10540	96	10174
7	10686	37	9949	67	10451	97	9703
8	9980	38	9820	68	10083	98	9783
9	10357	39	10874	69	10166	99	9707
10	10301	40	10136	70	10473	100	9794
11	9607	41	10651	71	10657		
12	10504	42	10030	72	10066		
13	10572	43	9839	73	10022		
14	10399	44	10379	74	9786		
15	9827	45	9963	75	9615		
16	10347	46	9768	76	9988		
17	10004	47	9795	77	10097		
18	9985	48	10695	78	10122		
19	10053	49	10662	79	10604		
20	9731	50	9865	80	9888		
21	10822	51	10346	81	10055		
22	10025	52	10376	82	9925		
23	9969	53	9792	83	10017		
24	9915	54	10171	84	10242		
25	10710	55	9985	85	9983		
26	9910	56	10610	86	10155		
27	9803	57	10786	87	9976		
28	10088	58	10803	88	10003		
29	10310	59	10078	89	10575		
30	10118	60	9834	90	10008		

Abbildung 4: Histogramm der Zählraten mit Gauß- und Poissonverteilung.

Es werden sowohl die Gauß-, als auch die Poissonverteilung eingezeichnet, um diese mit den Messwerten vergleichen zu können. Da die Poissonverteilung von dem Mittelwert \bar{N} der Messwerte und die Gaußverteilung von dem Mittelwert \bar{N} und der Varianz σ^2 abhängen, werden diese mit Hilfe der allgemeinen Formeln berechnet. Diese lauten für den Mittelwert

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{5}$$

und für die Standardabweichung

$$\sigma = \Delta \bar{x} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}.$$
 (6)

Dabei ist die Varianz das Quadrat der Standardabweichung σ . Für die aufgenommenen Messwerte ergeben sich mit den Formeln 5 und 6 folgende Werte:

$$\bar{N} = 1015,52$$
 $\sigma^2 = 10.88.$

4 Diskussion

Für den Abstand $a=2,5\,\mathrm{cm}$ zwischen Quelle und Detektor ergibt sich eine mittlere Reichweite von

$$R_m = (1.93 \pm 0.23) \,\mathrm{cm},$$
 (7)

dies entspricht einer Energie von

$$E_{\alpha} = (13.0 \pm 3.1) \,\text{MeV}.$$
 (8)

Die Reichweite von α -Strahlung ist natürlich von ihrer Energie abhängig, doch im Allgemein überschreitet die Reichweite die Größenordnung von wenigen Zentimetern nicht. Die berechnete mittlere Reichweite bestätigt dies.

Des weiteren wird der Energieverlust zu

$$\frac{-dE}{dx} = (0.49 \pm 0.02) \,\text{MeV} \tag{9}$$

ermittelt.

Ein Vergleich mit der zweiten Messung für den Abstand $a=2\,\mathrm{cm}$ ist nicht möglich, da die mittlere Reichweite und die daraus resultierende Energie nicht ermittelt werden können, da es keinen Schnittpunk der Gerade bei N/2 mit den Messwerten gibt.

Im zweiten Versuchsteil wir die Statistik des radioaktiven Zerfalls untersucht. Dazu wird ein Histogramm der Messwerte erstellt und mit der Gauß- und der Poissonverteilung untersucht. Dazu werden der Mittelwert der Zählrate \bar{N} und die Varianz σ^2 berechnet:

$$\bar{N} = 1015,52$$
 $\sigma^2 = 10.88.$

Es fällt auf, dass die Poissonverteilung deutlich näher an den Messwerten liegt als die Gaußverteilung. Dies war auch zu erwarten, denn die Poissonverteilung beschreibt die Wahrscheinlichkeit für das Eintreffen seltener Ereignisse. Dazu zählt der radioaktive Zerfall eines Atoms innerhalb der der Messzeit.