Bài 4: Mô hình DeepLab

Al Research Team - Sun* Al Research

Nội dung chính

Lý thuyết mô hình

Thực hành với
PyTorch

Lý thuyết mô hình DeepLab

01

Nhắc lại Deep Learning cho bài toán Semantic Segmentation

Nguồn: https://towardsdatascience.com/review-fcn-semantic-segmentation-eb8c9b50d2d1

Nhắc lại Deep Learning cho bài toán Semantic Segmentation

(a) Image Pyramid

(b) Encoder-Decoder

(c) Deeper w. Atrous Convolution

(d) Spatial Pyramid Pooling

Figure 2. Alternative architectures to capture multi-scale context.

Nguồn: Paper DeepLabv3 (https://arxiv.org/pdf/1706.05587v3.pdf)

Nhắc lại vấn đề về Receptive Field

Các mô hình Deep Learning tìm cách mở rộng Receptive Field?

- PSPNet dùng PPM để tăng RF
- DeepLab?

Nguồn: <u>Understanding the receptive field of deep convolutional</u> networks | Al Summer (theaisummer.com)

Nguồn: Paper Pyramid Scene Parsing Network

Nhắc lại vấn đề về Receptive Field

Các mô hình Deep Learning tìm cách mở rộng Receptive Field?

PSPNet dùng PPM để tăng RF

DeepLab?

Nguồn:

Nguồn: <u>Understanding the receptive field of deep convolutional</u> networks | Al Summer (theaisummer.com)

https://developer.nvidia.com/blog/image-segmentation -using-digits-5/

DeepLab

- Về cơ bản giống với kiến trúc Fully Convolutional Network (FCN)
- Sử dụng Atrous Convolution (Dilated Convolution) để mở rộng Receptive Field
- Sử dụng thêm thành phần Fully Connected Conditional Random Field để làm mịn kết quả phân vùng

 Nguồn Paper DeepLab: (https://arxiv.org/pdf/1606.00915.pdf)

Dilated Convolution

- Dilated conv giống với phép conv thông thường
- Dilated conv mở rộng kích thước kernel bằng cách thêm các số 0 (theo chỉ số rate)
- Từ đó làm tăng kích thước quét được của input, mở rộng Receptive Field cũng như không làm tăng số lượng tham số

Nguồn: https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5

Conditional Random Field

- Feature map đầu ra từ mạng backbone được phóng to bằng thuật toán nội suy
- Sử dụng CRF để làm mượt kết quả phân vùng

Nguồn: Paper DeepLab (https://arxiv.org/pdf/1606.00915.pdf)

DeepLabv1 & v2

- Về cơ bản giống với kiến trúc Fully Convolutional Network (FCN)
- Sử dụng Atrous Convolution (Dilated Convolution) để mở rộng Receptive Field
- Sử dụng thêm thành phần Fully Connected Conditional Random Field để làm mịn kết
 quả phân vùng
 Nguồn: Paper DeepLab (https://arxiv.org/pdf/1606.00915.pdf)

DeepLabV1 & V2

- DeepLabV2 sử dụng thêm Atrous Spatial Pyramid Pooling (ASPP)
- Atrous Spatial Pyramid Pooling (ASPP) giống với ý tưởng Pyramid Pooling Module,
 gồm nhiều dilated conv với các rate khác nhau để bắt được đặc trưng đa dạng hơn

Nguồn: Paper DeepLab (https://arxiv.org/pdf/1606.00915.pdf)

DeepLabV3

- Để có kết quả phân vùng tốt?
 - Tăng Receptive Field để mô hình nắm được thông tin đặc trưng ngữ nghĩa
 - Duy trì được thông tin đặc trưng cục bộ (local feature)

Nguồn: Paper Pyramid Scene Parsing Network

DeepLabV3

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when $output_stride = 16$. Figure 3. Cascaded modules without and with atrous convolution.

- Yêu cầu bài toán: Phân loại chính xác tới từng pixel trong ảnh
- Khi feature map ở layer cuối trong mạng quá bé, gặp vấn đề khi phải phóng to trở về kích thước gốc
- Loại bỏ Fully Connected CRF Nguồn: Paper DeepLabv3 (https://arxiv.org/pdf/1706.05587v3.pdf)

DeepLabV3

Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.

- Vẫn sử dụng ý tưởng ASPP để đa dạng đặc trưng
- Sử dụng thêm kỹ thuật Multi Grid

Nguồn: Paper DeepLabv3 (https://arxiv.org/pdf/1706.05587v3.pdf)

O2 Thực hành với PyTorch