Estrategias de muestreo Diseño de encuestas y Estimación de parámetros

SEGUNDA EDICIÓN

Estrategias de muestreo Diseño de encuestas y Estimación de parámetros

SEGUNDA EDICIÓN

Andrés Gutiérrez, PhD.

ISBN: 978-958-631-608-8 Derechos reservados Bogotá, D.C., 2015

${\bf Contenido}$

1	Enc	cuestas	y estudios por muestreo	3
	1.1	Conce	eptos metodológicos	3
		1.1.1	Encuesta	4
		1.1.2	Marco de muestreo	5
		1.1.3	Sesgo	7
	1.2	Marco	y Lucy	9
2	Mu	estras	probabilísticas y estimadores	19
	2.1	Pobla	ción y muestra aleatoria	19
		2.1.1	Población finita	19
		2.1.2	Muestra aleatoria	20
		2.1.3	Soportes de muestreo	21
		2.1.4	Probabilidad de inclusión	26
		2.1.5	Característica de interés y parámetros de interés	29
		2.1.6	Estadística y estimador	30
	2.2	Estim	adores de muestreo	35
		2.2.1	El estimador de Horvitz-Thompson	36
		2.2.2	El estimador de Hansen-Hurwitz	43
		2.2.3	El estimador de Horvitz-Thompson en los diseños con reemplazo	57
	2.3	Muest	ras representativas	57
	2.4	Ejerci	cios	58
3	Mu	estreo	con probabilidades simples	61
	3.1	Muest	creo aleatorio simple sin reemplazo	62
		3.1.1	Algoritmos de selección	62
		3.1.2	El estimador de Horvitz-Thompson	64
		3.1.3	Estimación de la media poblacional	67
		3.1.4	Estimación en dominios	69
		3.1.5	Marco y Lucy	73
		3.1.6	Probabilidades de inclusión en unidades de muestreo	79

	3.2	Diseño	o de muestreo Bernoulli	9
		3.2.1	Algoritmo de selección	0
		3.2.2	El estimador de Horvitz-Thompson	2
		3.2.3	El efecto de diseño	3
		3.2.4	Marco y Lucy	4
	3.3	Muest	reo aleatorio simple con reemplazo	5
		3.3.1	Algoritmo de selección	8
		3.3.2	El estimador de Hansen-Hurwitz	9
		3.3.3	Marco y Lucy	1
	3.4	Diseño	o de muestreo sistemático	3
		3.4.1	Algoritmo de selección	5
		3.4.2	El estimador de Horvitz-Thompson	6
		3.4.3	Optimalidad de la estrategia	8
		3.4.4	Diseño de muestreo q-sistemático	2
		3.4.5	Marco y Lucy	4
	3.5	Ejerci	cios	8
4	Mu	estreo	con probabilidades proporcionales 11	3
	4.1	Diseño	o de muestreo de Poisson	3
		4.1.1	Algoritmo de selección	5
		4.1.2	El estimador de Horvitz-Thompson	5
		4.1.3	Optimalidad en la estrategia de muestreo Poisson	6
		4.1.4	Marco y Lucy	8
	4.2	Diseño	o de muestreo PPT	1
		4.2.1	Algoritmo de selección	3
		4.2.2	El estimador de Hansen-Hurwitz	4
		4.2.3	Eficiencia de la estrategia	7
		4.2.4	Marco y Lucy	8
	4.3	Diseño	o de muestreo π PT	4
	4.4	Selecc	ión de muestras π PT	7
		4.4.1	Método de Sunter	9
		4.4.2	Método de escisión	1
		4.4.3	Estimación de la varianza	4
		4.4.4	Marco y Lucy	6
	4.5	Ejerci	cios	8
5	Mu	estreo	estratificado 15	1
	5.1	Funda	umentos teóricos	2
		5.1.1	Estimación en el muestreo estratificado	5

		5.1.2	El estimador de Horvitz-Thompson	. 156
	5.2	Diseño	o de muestreo aleatorio estratificado	. 157
		5.2.1	Algoritmos de selección	. 157
		5.2.2	El estimador de Horvitz-Thompson	. 159
		5.2.3	Estimación de la media poblacional	. 161
		5.2.4	Asignación del tamaño de muestra	. 162
		5.2.5	Estimación en dominios	. 166
		5.2.6	El efecto de diseño	. 169
		5.2.7	Marco y Lucy	. 170
	5.3	Diseño	o de muestreo estratificado PPT	. 178
		5.3.1	Algoritmos de selección	. 179
		5.3.2	El estimador de Hansen-Hurwitz	. 179
		5.3.3	Marco y Lucy	. 180
	5.4	Ejerci	cios	. 183
c	λ/	aatmaa	de conglomerados	105
6	6.1		amentos teóricos y notación	185
	0.1	6.1.1	El estimador de Horvitz-Thompson	
		6.1.2	El estimador de Hansen-Hurwitz	
	6.2		creo aleatorio simple de conglomerados	
	0.2	6.2.1	Algoritmos de selección	
		6.2.1	El estimador de Horvitz-Thompson	
		6.2.2	Eficiencia de la estrategia	
		6.2.4	Marco I y Lucy	
	6.3		cios	
	0.5	Ejerci	Clos	. 200
7	Mu	estreo	en varias etapas	207
	7.1	Muest	creo en dos etapas	. 208
		7.1.1	El estimador de Horvitz-Thompson	. 213
	7.2	Diseño	o de muestreo MAS-MAS	. 218
		7.2.1	Algoritmos de selección	. 219
		7.2.2	Tamaño de muestra	. 220
		7.2.3	Estimación de la varianza en muestreo de dos etapas	. 222
		7.2.4	Marco II y Lucy	. 224
	7.3	Diseño	o de muestreo en dos etapas estratificado	. 228
		7.3.1	Diseños auto-ponderados	. 229
	7.4	Diseño	os en r etapas	. 229
		7.4.1	El estimador de Horvitz-Thompson	. 230
		7.4.2	El estimador de Hansen-Hurwitz	. 230

	7.5	Ejercio	cios	232
8	Esti	mació	n de parámetros diferentes al total	235
	8.1	Funda	mentos teóricos	235
		8.1.1	Aproximación de Taylor	237
	8.2	Estima	ación de una razón poblacional	240
		8.2.1	Propiedades	242
		8.2.2	Casos particulares	243
		8.2.3	Estimación de un promedio	244
		8.2.4	Marco y Lucy	247
	8.3	Estima	ación de una mediana	250
		8.3.1	Marco y Lucy	252
	8.4	Estima	ación de coeficientes de regresión	254
		8.4.1	Fundamentos teóricos	255
		8.4.2	Estimación en la población finita	256
		8.4.3	Estimación en la muestra	257
		8.4.4	Casos especiales	258
		8.4.5	Marco y Lucy	269
	8.5	Ejercio	cios	271
9	Esti	mació	n con información auxiliar	277
	9.1	Introd	ucción	278
	9.2	Estima	ador general de regresión	280
		9.2.1	Construcción	280
		9.2.2	Otras propiedades del estimador general de regresión	285
	9.3	Estima	ador de media común	289
		9.3.1	Algunos diseños de muestreo	293
		9.3.2	Marco y Lucy	294
10) Esti	mador	res de calibración	295
ΙU				
	10.1		Algoritmo	
			<u> </u>	
	10.0		Marco y Lucy	
			mentos teóricos	
	10.3			
	10 :		Distancias $G(\cdot)$, $g(\cdot)$ y $F(\cdot)$	
	10.4	_	os casos particulares	
		10.4.1	Método lineal: distancia Ji cuadrado	305
			Método de raking: distancia de entropía	_

	10.4.3 Método logístico
	10.4.4 Método truncado lineal
10.5	Calibración y Post-estratificación
	10.5.1 Post-estratificación
	10.5.2 Raking
10.6	Varianza de los estimadores de calibración
10.7	Marco y Lucy
10.8	Discusión
10.9	Estimadores óptimos de calibración
10.10	Ejercicios

Warning: package 'ggplot2'was built under R version 3.2.3

Capítulo 1

Encuestas y estudios por muestreo

Durante todo el siglo pasado, ha surgido una serie de teorías y principios que ofrecen un marco de referencia unificado en el diseño, implementación y evaluación de encuestas. Este marco de referencia se conoce comúnmente como el paradigma del «error total de muestreo» y ha encaminado la investigación moderna hacia una mejor calidad de las encuestas.

Groves, Fowler, Couper, Lepkowski, Singer & R. (2004)

Este capítulo, a manera de introducción, busca identificar los principios (no matemáticos) del diseño, recolección, procesamiento y análisis de los estudios por muestreo, cuyo crecimiento va en aumento al pasar de los años, pero que sigue teniendo ciertas limitantes de tipo económico y logístico. Un estudio por muestreo involucrará a profesionales de diferentes disciplinas quienes se ocupan de la reducción de costos y el aumento de la calidad de las estimaciones. Un gran campo de la ciencia estadística se preocupa por minimizar los errores muestrales mientras que, por otra parte, otro gran campo de las ciencias sociales se ocupa en minimizar los errores que pueden ser cometidos en el periodo de la recolección de los datos.

1.1 Conceptos metodológicos

El muestreo es un procedimiento que responde a la necesidad de información estadística precisa sobre la población y los conjuntos de elementos que la conforman; el muestreo trata con investigaciones parciales sobre la población que apuntan a inferir a la población completa. Es así como en las últimas décadas ha tenido bastante desarrollo en diferentes campos principalmente en el sector gubernamental con la publicación de las estadísticas oficiales que permiten realizar un seguimiento a las metas del gobierno, en el sector académico, en el sector privado y de comunicaciones. Según Lohr (2000) el gasto anual en encuestas por muestreo en Estados Unidos representa de 2 a 5 billones de dólares. Este aumento del uso de las técnicas de muestreo en la investigación es claro porque es un procedimiento que cuesta mucho menos dinero, consume menos tiempo y puede incluso ser más preciso que al realizar una enumeración completa, también llamada censo. Una muestra bien seleccionada de unos cuantos miles de individuos puede representar con gran precisión una población de millones.

Es requisito fundamental de una buena muestra que las características de interés que existen en la población se reflejen en la muestra de la manera más cercana posible, para esto se necesitan definir los siguientes conceptos

• Población objetivo: es la colección completa de todas las unidades que se quieren estudiar.

- Muestra: es un subconjunto de la población.
- Unidad de muestreo: es el objeto a ser seleccionado en la muestra que permitirá el acceso a la unidad de observación.
- Unidad de observación: es el objeto sobre el que finalmente se realiza la medición.
- Variable de interés: es la característica propia de los individuos sobre la que se realiza la inferencia para resolver los objetivos de la investigación.

En la teoría de muestreo la variable de interés no se supone como una variable aleatoria sino como una cantidad fija o una característica propia de las unidades que componen la población.

1.1.1 Encuesta

Por encuesta se entiende una investigación estadística con las siguientes características:

- 1. El objetivo de una encuesta es proveer información acerca de la población finita y/o acerca de subpoblaciones de interés especial.
- 2. Asociado con cada elemento de la población existe una o más variables de interés. Una encuesta permite conseguir información sobre características poblacionales desconocidas llamadas parámetros. Éstas son funciones de los valores de las variables de interés y son desconocidos y requeridos.
- 3. El acceso y observación de los elementos de la población se establece mediante un algoritmo de muestreo, que es un mecanismo que asocia los elementos de la población con unidades de muestreo.
- 4. Una muestra de elementos se escoge. Esto puede ser hecho mediante la selección de las unidades de observación en el esquema. Una muestra es probabilística si se realiza mediante un mecanismo probabilístico y se conoce la probabilidad de selección de todas las posibles muestras.
- 5. Los elementos seleccionados en la muestra son observados y se realiza el proceso de medición; es decir para cada elemento de la muestra la variable de interés se mide y sus valores se graban.
- 6. Los valores grabados de las variables son usados para calcular estimaciones de los parámetros de interés.
- 7. Las estimaciones son finalmente publicadas. Estas sirven para la toma de decisiones.

Ciclo de vida de una encuesta

Groves, Fowler, Couper, Lepkowski, Singer & R. (2004) afirman que una encuesta va desde el diseño, pasando por la ejecución hasta, la entrega de las estimaciones. Si no se realiza un buen diseño no habrán buenas estimaciones. En este camino, el investigador debe transitar los siguientes pasos:

1. **Búsqueda de constructores:** los constructores son las ideas abstractas acerca de las cuales el investigador desea inferir. En una encuesta de victimización, se busca medir cuántos incidentes relacionados con crímenes tuvieron lugar en cierto periodo de tiempo; el investigador debe decidir acerca de ¿qué es un crimen?, ¿quién es una víctima?. En una encuesta de calidad de vida, se desea saber cuántas personas pobres hay en una determinada región; por tanto, es necesario decidir acerca de ¿qué es pobreza?

- 2. **Medición:** la cuestión clave para realizar una buena medición es diseñar preguntas que produzcan respuestas que reflejen perfectamente los constructores que se intentan medir. Por ejemplo, en la encuesta de victimización, se puede preguntar lo siguiente: «en los últimos seis meses ¿ha llamado usted a la policía para reportar algo que le haya sucedido y que usted considere que sea un crimen?». Por otro lado, en la encuesta de calidad de vida, un indicador de pobreza puede estar dado en términos del número de electrodomésticos que posee el hogar. Así, es posible preguntar lo siguiente: «¿cuántos televisores tiene en su hogar?» o también «¿cuántas bombillas eléctricas tiene su hogar?»
- 3. **Respuesta:** la naturaleza de las respuestas está determinada por la naturaleza de las preguntas. En algunas ocasiones la respuesta puede ser parte de la pregunta, siendo la tarea del respondiente escoger entre las categorías preguntadas; en otras ocasiones, el respondiente genera una respuesta concreta en sus propias palabras.
- 4. Edición: existen relaciones lógicas entre las preguntas de una encuesta. Por ejemplo, si el respondiente declara tener 12 años de edad y haber dado a luz a 5 hijos, debe existir un proceso de edición para este individuo. Este proceso intenta detectar datos atípicos y revisar la información para obtener la mejor medida del constructor buscado.
- 5. Análisis y entrega de resultados: el proceso estadístico arroja estimaciones que permiten la toma de decisiones y la resolución de los objetivos propuestos al comienzo de la investigación.

1.1.2 Marco de muestreo

Todo procedimiento de muestreo probabilístico requiere de un dispositivo que permita identificar, seleccionar y ubicar a todos y cada uno de los objetos pertenecientes a la población objetivo y que participarán en la selección aleatoria. Este dispositivo se conoce con el nombre de **marco de muestreo**. En investigaciones por muestreo se consideran dos tipos de objetos:

- Elementos: las unidades básicas e individuales sobre las que se realiza la medición.
- Conglomerado: agrupación de elementos cuya característica principal es que son homogéneos dentro de sí, y heterogéneos entre sí.

Cuando se dispone de un marco de elementos, se puede aplicar un diseño de muestreo de elementos; en muchas ocasiones se utilizan diseños de muestreo de conglomerados aunque se disponga de un marco de elementos. Si no se dispone de un marco de elementos (o es muy costoso construirlo) se debe recurrir a diseños de muestreo en conglomerados; es decir, que se utilizan marcos de conglomerados. Por ejemplo, al realizar una encuesta cuya unidad de observación sean las personas que viven en una ciudad, es muy difícil poder acceder a un marco de muestreo de las personas. Sin embargo, se puede tener acceso a la división sociodemográfica de la ciudad y así seleccionar algunos barrios de la ciudad, en una primera instancia y luego, seleccionar a las personas de los barrios en una segunda instancia. En el ejemplo anterior, los barrios son un ejemplo claro de conglomerados. Estas agrupaciones de elementos tienen la características de aparecer en el estado de la naturaleza. De esta forma, si se dispone de un marco de elementos, por ejemplo, el listado de empleados de una entidad, es posible aplicar un diseño de muestreo de elementos, realizar la selección aleatoria y de acuerdo a ese mismo diseño realizar las estimaciones necesarias. El lector debe recordar que los elementos son las entidades que componen la población y las unidades de muestreo son las entidades que conforman el marco muestral. Cuando no existe un marco de muestreo disponible es necesario construirlo. Existen dos tipos de marcos de muestreo, a saber:

• De Lista: listados físicos o magnéticos, ficheros, archivos de expedientes, historias clínicas que permiten identificar y ubicar a los objetos que participarán en el sorteo aleatorio.

• De Área: mapas de ciudades y regiones en formato físico o magnético, fotografías aéreas, imágenes de satélite o similares que permiten delimitar regiones o unidades geográficas en forma tal que su identificación y su ubicación sobre el terreno sea posible.

Es una virtud del marco si contiene **información auxiliar** que permite aplicar diseños muestrales y/o estimadores que conduzcan a estrategias más eficientes con respecto a la precisión de los resultados. O también si la información auxiliar¹ está organizada por órdenes deseables. Se llama información auxiliar **discreta**, si el marco de muestreo permite la desagregación de la población objetivo en categorías o grupos poblacionales más pequeños. Por ejemplo nivel socioeconómico, grupo industrial, etc. Se llama información auxiliar **continua** si existe una o varias características de interés de tipo continuo y positivas. Es deseable que la información auxiliar continua esté altamente relacionada con la característica de interés.

Por otra parte, un marco de muestreo es defectuoso si presenta alguno o varios de los siguientes casos:

- Sobre-cobertura: se presenta si en el dispositivo aparecen objetos que no pertenecen a la población objetivo. No son todos los que están.
- Sub-cobertura: se da cuando algunos elementos de la población objetivo no aparecen en el marco de muestreo o cuando no se ha actualizado la entrada de nuevos integrantes. No están todos los que son.
- Duplicación: La duplicación en un marco de muestreo se presenta si en el dispositivo aparecen
 varios registros para un mismo objeto. La razón más frecuente para la presencia de este defecto
 es la construcción no cuidadosa del marco a partir de la unión de registros administrativos de
 dos o más fuentes de información.

Estos defectos ocasionan errores en el cálculo de las expresiones que se utilizarán para generar las correspondientes estimaciones, generando sesgo, pérdida de precisión y, en algunos casos, que los resultados del estudio pierdan toda validez.

Tipos de poblaciones objetivo

Groves, Fowler, Couper, Lepkowski, Singer & R. (2004) consideran que los tipos de poblaciones objetivo que se presentan de manera más frecuente en un estudio por muestreo son las siguientes

- Hogares y personas: el marco de muestreo más utilizado en estas poblaciones es de área. Como está basada en zonas geográficas, este tipo de marco requiere la vinculación de los hogares o personas a cada una de las áreas. Cuando se requiere seleccionar personas, este tipo de marcos hace necesarias muchas etapas de muestreo; de esta forma, se selecciona un subconjunto de zonas geográficas. Para cada zona seleccionada, se procede a seleccionar un subconjunto de secciones, luego de manzanas, luego de hogares y, finalmente, para cada hogar se seleccionan las personas; siendo éstas las unidades de observación.
- Clientes, empleados o miembros de organizaciones: por lo general, para la selección de miembros de organizaciones se manejan marcos de lista. Es importante que el estadístico esté al tanto de la frecuencia y manera de actualización de la lista pues pueden presentar los tres tipos de defectos vistos anteriormente.

¹ Toda información auxiliar disponible para todos y cada uno de los elementos del universo afecta directamente la estrategia empleada para obtener los objetivos de la investigación. Con respecto a la información auxiliar, es deseable que esté bien correlacionada con la característica de interés.

- Organizaciones: existen diversos tipos de organizaciones, como por ejemplo, iglesias, prisiones, empresas, hospitales, escuelas, etc. En encuestas a establecimientos comerciales, es frecuente tener acceso a marcos de lista que agrupan a negocios con gran dispersión entre sí. Así, se puede encontrar desde la tienda de barrio, cuyas ventas ascienden a 1000 dólares al mes, hasta un hipermercado que vende 500 millones de dólares al mes.
- Eventos: en algunas ocasiones, la población objetivo son eventos. Hay muchos tipos de eventos que clasifican para la realización de una encuesta; entre ellos están los matrimonios, nacimientos, fallecimientos, periodos de depresión, tránsito de un automóvil en un segmento de la vía. Los marcos de muestreo para los eventos, de manera frecuente, son marcos de personas. Así, una persona ya ha experimentado el evento o no. De hecho, puede haber experimentado varios eventos. Sin embargo, otro marco de muestreo para eventos puede estar dado en periodos de tiempo o espacio.
- Poblaciones poco frecuentes: cuando la incidencia es muy baja (por ejemplo las poblaciones
 de invidentes o con alguna enfermedad rara). Generalmente, la manera para acceder a este
 tipo de poblaciones es mediante un marco de muestreo que contenga a esta población como un
 subconjunto de elementos que pueden ser ubicados.

Ejemplo 1.1.1. Suponga que una entidad oficial del gobierno de su país está interesada en la realización de una encuesta de desempleo con el fin de determinar a) cuántas personas actualmente pertenecen a la fuerza laboral, tanto en el país en cuestión como en sus regiones o subdivisiones geográficas y b) qué proporción de éstas están desempleadas. Con base en lo anterior se tienen los siguientes aspectos para la realización de dicho estudio:

- Población objetivo: Todas las personas de Colombia.
- Dominios o subgrupos de interés: Grupos de edad, género, grupos ocupacionales y regiones del país.
- Características de interés: Pertenencia a la fuerza laboral y estado de empleo. Éstas toman valor uno o cero.
- Parámetros de interés: Número total de personas pertenecientes a la fuerza laboral, número total de desempleados, proporción de desempleo.
- Muestra: Se selecciona una muestra de la población con la ayuda de mecanismos de identificación y ubicación de las personas en el país.
- Observaciones: Cada persona incluida en la muestra es visitada por un encuestador entrenado, quien hará preguntas siguiendo un cuestionario estandarizado y recolectará las respuestas en un instrumento apropiado.
- Procesamiento: Los datos se editan y se preparan para la etapa de estimación.
- Estimación: Se calculan las estimaciones sobre los parámetros de interés y también indicadores acerca de la incertidumbre de estas estimaciones.

1.1.3 Sesgo

En el diseño y puesta en marcha de una encuesta puede ocurrir cierto tipo de situaciones que pueden sesgar las estimaciones finales. Este tipo de sesgos puede ocurrir antes, durante y después de la recolección de los datos. Es tarea del estadístico advertir ante todas las posibles instancias de los problemas que causan los sesgos y procurar que, en todas las etapas de la encuesta, se minimice el error humano y el error estadístico para que al final los resultados del estudio sean tan confiables como sea posible.

Sesgo de selección

Este tipo de sesgo ocurre cuando parte de la población objetivo no está en el marco de muestreo. Una muestra a conveniencia² es sesgada pues las unidades más fáciles de elegir o las que más probablemente respondan a la encuesta no son representativas de las unidades más difíciles de elegir. (Lohr 2000) afirma que se presenta este tipo de sesgo si:

- 1. La selección de la muestra depende de cierta característica asociada a las propiedades de interés. Por ejemplo: Frecuencia con que los adolescentes hablan con los padres acerca del SIDA.
- 2. La muestra se realiza mediante elección deliberada o mediante un juicio subjetivo. Por ejemplo, si el parámetro de interés es la cantidad promedio de gastos en compras en un centro comercial y el encuestador elige a las personas que salen con muchos paquetes, entonces la información estaría sesgada puesto que no está reflejando el comportamiento promedio de las compras.
- 3. Existen errores en la especificación de la población objetivo. Por ejemplo, en encuestas electorales, cuando la población objetivo contiene a personas que no están registradas como votantes ante la organización electoral de su país.
- 4. Existe sustitución deliberada de unidades no disponibles en la muestra. Si, por alguna razón, no fue posible obtener la medición y consecuente observación de la característica de interés para algún individuo en la población, la sustitución de este elemento debe hacerse bajo estrictos procedimientos estadísticos y no debe ser subjetiva en ningún modo.
- 5. Existe ausencia de respuesta. Este fenómeno puede causar distorsión de los resultados cuando los que no responden a la encuesta difieren críticamente de los que si respondieron.
- 6. La muestra está compuesta por respondientes voluntarios. Los foros radiales, las encuestas de televisión y los estudios de portales de internet no proporcionan información confiable.

Sesgo de medición

Este tipo de sesgo ocurre cuando el instrumento con el que se realiza la medición tiene una tendencia a diferir del valor verdadero que se desea averiguar. Éste sesgo debe ser considerado y minimizado en la etapa de diseñó de la encuesta. Nótese que ningún análisis estadístico puede revelar que una pesa añadió a cada persona 2Kg de más en un estudio de salud. (Lohr 2000) cita algunas situaciones en donde se presenta este sesgo de medición:

- 1. Cuando el respondiente miente. Esta situación se presenta a menudo en encuestas que pregunta acerca del ingreso salarial, alcoholismo y drogadicción, nivel socioeconómico e incluso edad.
- 2. Difícil comprensión de las preguntas. Por ejemplo: ¿No cree que no este es un buen momento para invertir? La doble negación en la pregunta es muy confusa para el respondiente.
- 3. Las personas tienden a olvidar. Es bien sabido que las malas experiencias suelen ser olvidadas; esta situación debe acotarse si se está trabajando en una encuesta de criminalidad.
- 4. Distintas respuestas a distintos entrevistadores. En algunas regiones es muy probable que la raza, edad o género del encuestador afecte directamente la respuesta del entrevistado.

²A pesar de que las muestras por conveniencia o por juicio no pueden ser utilizadas para estimar parámetros de la población, éstas sí pueden proporcionar información valiosa en las primeras etapas de una investigación o cuando no es necesario generalizar los resultados a la población.

1.2. Marco y Lucy

5. Leer mal las preguntas o polemizar con el respondiente. El encuestador puede influir notablemente en las respuestas. Por lo anterior, es muy importante que el proceso de entrenamiento del entrevistador sea riguroso y completo.

6. La muestra está compuesta por respondientes voluntarios. Los foros radiales, las encuestas de televisión y los estudios de portales de internet no proporcionan información confiable.

1.2 Marco y Lucy

Este libro toma como base de aplicación una investigación gubernamental que quiere responder al objetivo de medir el crecimiento económico en el sector industrial.

Suponga que para completar el objetivo se ha propuesto desarrollar una encuesta a las empresas que hacen parte del sector industrial, para conocer el comportamiento del sector en términos de **constructores** financieros, sociales y fiscales. Una vez termine el proceso de medición, se pueden calcular estimaciones y construir indicadores que permitan inferir acerca del crecimiento del sector en el periodo de interés.

La **población objetivo** la conforman todas las empresas cuya actividad principal esté ligada al sector industrial. El proceso de medición se hará con base en las **características de interés**; a saber: ingresos en el último año fiscal, impuestos declarados en el último año fiscal y número de empleados. Adicionalmente, se requiere conocer si la empresa envía periódicamente algún tipo de material publicitario por correo electrónico porque se sospecha que las empresas obtienen más ingresos cuando utilizan esta estrategia publicitaria, lo cual es favorable para el gobierno porque aumenta la contribución impositiva y aumenta la creación de empleos.

Para obtener las respuestas, un entrevistador visitará las instalaciones físicas de la empresa y realizará las siguientes preguntas:

- 1. En el último año fiscal, ¿a cuánto ascendieron los ingresos en esta empresa?
- 2. En el último año fiscal, ¿a cuánto ascendieron los impuestos declarados por esta empresa?
- 3. Actualmente, ¿cuántos empleados laboran para esta empresa?
- 4. ¿Esta empresa acostumbra a enviar periódicamente material publicitario por correo electrónico a sus clientes o potenciales clientes?

Se sabe que el tamaño de la población es de 2396 empresas. Dependiendo de la estrategia de muestreo que se vaya a utilizar y de la calidad del marco de muestreo, las unidades de muestreo pueden ser las mismas empresas.

Para abordar la selección de una muestra que permita la inferencia acerca del crecimiento económico del sector, se dispone de un marco de muestreo con las siguientes características para cada empresa que conforma la población.

- 1. **Identificador:** es una secuencia alfanumérica de dos letras y tres dígitos. Este número de identificación se le otorga a cada empresa en el momento de la constitución legal ante la entidad de registro pertinente.
- 2. Ubicación: es la dirección que se encuentra registrada en la declaración de impuestos.
- 3. **Zona:** la ciudad está conformada por barrios o zonas geográficas. Dependiendo de la dirección, la empresa pertenece a una y sólo una zona geográfica de la ciudad.

- 4. Nivel: según los registros tributarios, las empresas se catalogan en tres grupos:
 - (a) Grandes: empresas que tributan 49 millones de dólares al año o más.
 - (b) Medianas: empresas que tributan más de 11 millones y menos de 49 millones de dólares al año.
 - (c) Pequeñas: empresas que tributan 11 millones de dólares al año o menos.

Nótese que una empresa sólo puede pertenecer a un sólo un nivel industrial.

Visualización en R

El paquete TeachingSampling de R incluye dos archivos de datos. El marco de muestreo llamado Marco del cual se extraerá una muestra aleatoria de empresas que deben ser entrevistadas y que contiene la identificación, ubicación, zona y nivel de cada una de las empresas del sector industrial. Por otro lado, incorpora el conjunto de datos llamado BigLucy en donde, se encuentran los valores de las características de interés para todos los elementos de la población.

Para tener acceso a los dos conjuntos de datos es necesario cargar el paquete en el entorno de R. El paquete TeachingSampling puede ser cargado fácilmente mediante el uso de la siguiente instrucción:

```
library(TeachingSampling)
```

Una vez cargado el paquete TeachingSampling, la visualización del marco de muestreo, se realiza de la siguiente forma:

```
data(BigLucy)
BigLucy[1:10,c(1:4,11)]
                          Ubication Level
                                             Zone Segments
## 1
     AB0000000001 C0212063K0089834 Small County1 County1 1
     AB0000000002 C0011268K0290629 Small County1 County1 1
## 3 AB0000000003 C0077703K0224194 Small County1 County1 1
## 4 AB0000000004 C0091012K0210885 Small County1 County1 1
    AB0000000005 C0301070K0000827 Small County1 County1 1
## 5
## 6 AB0000000006 C0255289K0046608 Small County1 County1 1
## 7 AB0000000007 C0280547K0021350 Small County1 County1 1
## 8 AB0000000008 C0148379K0153518 Small County1 County1 1
## 9 AB0000000009 C0111156K0190741 Small County1 County1 1
## 10 AB0000000010 C0199974K0101923 Small County1 County1 1
```

La instrucción BigLucy [1:10,c(1:4,11)] se utiliza para mostrar las diez primeras empresas del marco de muestreo. Si se quiere visualizar todo el conjunto de datos, la instrucción BigLucy mostrará la totalidad del marco de muestreo. La función names muestra cada uno de los objetos que componen el archivo de datos, mientras que la función dim muestra las dimensiones del conjunto de datos.

```
names(BigLucy)

## [1] "ID" "Ubication" "Level" "Zone" "Income"

## [6] "Employees" "Taxes" "SPAM" "ISO" "Years"

## [11] "Segments"
```

1.2. Marco y Lucy

```
dim(BigLucy)
## [1] 85296 11
```

La lectura del archivo de datos se hace de la siguiente manera: tomando como referencia la fila número 3 (la tercera empresa del conjunto de datos), es una empresa cuyo número de identificación es AB0000000001, ubicada en la dirección C0212063K0089834, de nivel industrial Small, localizada en la zona County1 y en el segmento County1 1. Esta empresa registró en el último año fiscal un ingreso neto de 281 millones de dólares y realizó un tributo de 3 millones de dólares, actualmente da empleo a 41 empleados, no envía periódicamente publicidad a sus clientes o potenciales clientes mediante correo electrónico, tampoco tiene certificación de calidad ISO y tiene una antiguedad de 14 años.

```
BigLucy[1:10,5:10]
##
      Income Employees Taxes SPAM ISO Years
                           3.0
## 1
          281
                     41
                                 no
                                      no
                                          14.0
## 2
          329
                     19
                           4.0
                                          17.6
                                yes
                                      no
         405
## 3
                     68
                           7.0
                                          13.6
                                 no
                                      no
## 4
          360
                     89
                           5.0
                                 no
                                      no
                                          44.7
                           7.0
## 5
          391
                     91
                                          23.3
                                yes
                                      no
                      89
## 6
          296
                           3.0
                                 no
                                          48.3
                                      nο
                      22
## 7
          490
                          10.5
                                yes yes
                                          17.0
          473
                      57
## 8
                          10.0
                                yes
                                           7.5
                                      no
## 9
          350
                     84
                           5.0
                                yes
                                      no
                                          38.7
## 10
          361
                      25
                           5.0
                                          18.3
                                no
```

Nótese que el conjunto de datos poblacionales BigLucy contiene el valor de las características de interés para cada empresa. Hasta este momento no se ha seleccionado ninguna muestra, pero si se supone hipotéticamente que la muestra seleccionada hubiese sido las diez primeras empresas del marco de muestreo, la base de datos, después de la medición se vería como lo muestra la salida anterior y con estos datos se procede a realizar las estimaciones requeridas para el cumplimiento de los objetivos de la investigación.

Las estadísticas concernientes a las variables en las población se visualizan fácilmente con la función summary aplicada al conjunto de datos Lucy.

```
summary(BigLucy[,5:10])
##
        Income
                     Employees
                                       Taxes
                                                     SPAM
                                                                 ISO
                                   Min.
##
   Min.
           :
             1
                   Min. : 1.0
                                           : 0.5
                                                    no:33355
                                                                no:56896
   1st Qu.: 230
                                              2.0
##
                   1st Qu.: 38.0
                                   1st Qu.:
                                                    yes:51941
                                                                yes:28400
##
   Median: 388
                   Median: 62.0
                                   Median: 6.0
                   Mean : 63.2
##
   Mean
         : 430
                                   Mean : 11.8
##
   3rd Qu.: 570
                   3rd Qu.: 84.0
                                   3rd Qu.: 15.0
##
   Max.
           :2510
                   Max.
                          :263.0
                                   Max.
                                           :305.0
##
        Years
##
   Min.
           : 1.0
   1st Qu.:13.1
##
   Median:25.4
##
           :25.4
##
   Mean
   3rd Qu.:37.7
   Max. :50.0
##
```

Por medio de la función total, tenemos acceso al total de las tres características de interés.

```
attach(BigLucy)
total <- function(x){length(x)*mean(x)}

total(Income)

## [1] 36634733

total(Employees)

## [1] 5391992

total(Taxes)

## [1] 1008426</pre>
```

El sector industrial tiene altos ingresos que ascienden a 36634733 millones de dólares, aporta al gobierno 1008426 millones de dólares en tarifas impositivas, emplea un total de 5391992 personas. La función tapply permite aplicar la función total y la función mean para calcular el total y el promedio, respectivamente, de las variables de interés en cada categoría de la variable Level. La función table hace un recuento del total de casos para una o más variables categóricas.

```
tapply(Income, Level, total)
##
        Big
              Medium
                         Small
   3629710 17057285 15947738
table (SPAM, Level)
##
        Level
## SPAM
           Big Medium Small
           910
                10185 22260
     no
##
         1995
                15610 34336
     yes
```

Nótese que la mayoría del ingreso del sector industrial es adquirido por las empresas medianas y pequeñas. Sin embargo, en promedio las empresas grandes doblan el ingreso de las medianas que a su vez es tres veces el ingreso de las empresas pequeñas. En términos absolutos, la estrategia publicitaria de enviar SPAM a los clientes o potenciales clientes se implementa con mayor frecuencia en las empresas pequeñas.

La función xtabs permite realizar una tabulación cruzada entre las variables categóricas Level y SPAM de la base de datos. Los datos de las celdas indican el total de la variable Income. Nótese que el ingreso de las empresas que utilizan el SPAM como estrategia de publicidad dobla el ingreso de las empresas que no utilizan SPAM en casi todos los niveles industriales.

```
xtabs(Income~Level+SPAM)

## SPAM

## Level no yes
```

1.2. Marco y Lucy

```
## Big 1116990 2512720
## Medium 6679820 10377465
## Small 6288497 9659241
```

La función boxplot permite realizar el diagrama de cajas de cada una de las variables de interés. Nótese que, a excepción de la variable Years, existe una dependencia marcada en el comportamiento de las características cuantitativas con el nivel industrial.

```
p1 <- qplot(Level, Income, data=BigLucy, geom=c("boxplot"))
p2 <- qplot(Level, Employees, data=BigLucy, geom=c("boxplot"))
p3 <- qplot(Level, Taxes, data=BigLucy, geom=c("boxplot"))
p4 <- qplot(Level, Years, data=BigLucy, geom=c("boxplot"))
grid.arrange(p1, p2, p3, p4, ncol = 2)</pre>
```


Figura 1.1: Boxplot de las características de interés en cada nivel industrial.

Sin embargo, a diferencia del caso anterior, no parece existir una dependencia en el comportamiento de las características cuantitativas con el hábito de enviar publicidad por internet.

Las figuras 5.2 y 1.2 muestran la dispersión y locación de las características de interés por cada nivel industrial. En general, las empresas grandes tienen ingresos más altos, aportan una carga impositiva más alta y emplean a más personas que las empresas medianas y pequeñas. Es deseable que el marco de muestreo contenga la pertenencia al nivel industrial de cada empresa en la población porque es un buen discriminante y permite la implementación de estrategias de muestreo adecuadas que guíen a estimaciones más precisas.

Figura 1.2: Boxplot de las características de interés en cada nivel industrial.

```
p1 <- qplot(Income, data=BigLucy, geom=c("histogram"))
p2 <- qplot(Employees, data=BigLucy, geom=c("histogram"))
p3 <- qplot(Taxes, data=BigLucy, geom=c("histogram"))
p4 <- qplot(Years, data=BigLucy, geom=c("histogram"))
grid.arrange(p1, p2, p3, p4, ncol = 2)</pre>
```

La figura 1.3 muestra que la distribución de las características de interés no es simétrica y es sesgada a la izquierda. Estos rasgos particulares se deben tener en cuenta al momento de escoger la mejor estrategia de muestreo. La función hist permite la creación de los histogramas y la función pie permite la creación de un gráfico de torta.

La correlación lineal entre las características de interés es alta; entre Income y Taxes existe una correlación de 0.91, esto se puede explicar porque las empresas tributan una mayor cantidad de dinero si han obtenido mayores ingresos y viceversa. Se utiliza la función cor para obtener la matriz de correlación entre las características de interés.

1.2. Marco y Lucy 15

Figura 1.3: Histograma de las características de interés.

```
Datos <- data.frame(Income, Employees, Taxes, Years)</pre>
cor(Datos)
##
                  Income Employees
                                        Taxes
                                                    Years
##
   Income
               1.0000000
                           0.643304 0.9166732
                                              -0.0001266
  Employees
               0.6433037
                           1.000000 0.6448609
                                                0.0039724
               0.9166732
                          0.644861 1.0000000
                                                0.0008152
   Taxes
              -0.0001266
                          0.003972 0.0008152
   Years
                                                1.0000000
```

Para visualizar la relación entre las variables de interés, se utiliza la función pairs para obtener los diagramas de dispersión para cada par de variables justo como lo muestra la figura 1.4.

La tabla 1.1. resume los parámetros de interés que, mediante una adecuada estrategia de muestreo, se deben estimar para resolver el objetivo principal de la investigación. Si se desean estimaciones discriminadas por nivel industrial, entonces la tabla 1.2. da cuenta del valor de estos parámetros dentro de los subgrupos poblacionales.

Consecuentemente, si se quieren estimaciones discriminadas por comportamiento publicitario, entonces la tabla 1.3. muestra el valor de cada uno de estos parámetros. Por último, si se buscan estimaciones discriminadas tanto por comportamiento publicitario cruzado con nivel industrial, entonces se cuenta con la tabla 1.4. que resume dicha información.

```
library(GGally)
## Warning: package 'GGally'was built under R version 3.2.3
ggpairs(Datos)
```


Figura 1.4: Relación entre las características de interés.

Tabla 1.1: Parámetros de la población.

	Ingreso	Impuestos	Empleados
N total	2.396	2.396	2.396
Suma	1.035.217	28.654	151.950
Media	432	12	63

1.2. Marco y Lucy

Tabla 1.2: Parámetros de la población discriminados por nivel industrial.

			Ingreso	Impuestos	Empleados
Nivel	Grande	N total	83	83	83
		Suma	103.706	6.251	11.461
		Media	1.249	75	138
	Mediano	N total	737	737	737
		Suma	487.351	16.293	59.643
		Media	661	22	81
	Pequeño	N total	1.576	1.576	1.576
		Suma	444.160	6.110	80.846
		Media	282	4	51

Tabla 1.3: $P\underline{ar\'ametros\ de\ la\ poblaci\'on\ discriminados\ por\ comportamiento}\ publicitario.$

			Ingreso	Impuestos	Empleados
SPAM	no	N total	937	937	937
		Suma	397.952	10.593	59.600
		Media	425	11	64
	\sin	N total	1.459	1.459	1.459
		Suma	637.265	18.061	92.350
		Media	437	12	63

Tabla 1.4: Parámetros de la población discriminados por nivel industrial y por comportamiento publicitario.

		SPAM					
			no si				
		N total	Suma	Media	N total	Suma	Media
Grande	Ingreso	26	31.914	1.227	57	71.792	1.260
	Impuestos	26	1.844	71	57	4.4.07	77
	Empleados	26	3.587	138	57	7.874	138
Mediano	Ingreso	291	190.852	656	446	296.499	665
	Impuestos	291	6.322	22	446	9.971	22
	Empleados	291	23.745	82	446	35.898	80
Pequeño	Ingreso	620	175.186	283	956	268.974	281
	Impuestos	620	2.427	4	956	3.683	4
	Empleados	620	32.268	52	956	48.578	51

Capítulo 2

Muestras probabilísticas y estimadores

La base matemática para el desarrollo del modelo de muestreo se encuentra en la teoría de la inferencia estadística y de manera más directa en la aplicación de los principios básicos de la teoría de probabilidad. Los resultados del modelo de muestreo sólo son válidos si se parte de la certeza de contar con una muestra que satisfaga las condiciones exigidas por la inferencia estadística.

Bautista (1998)

2.1 Población y muestra aleatoria

El proceso de estimación e inferencia en poblaciones finitas, que finalmente son las que fácilmente encontramos en la realidad y en las que se enfoca el muestreo, es muy diferente al proceso de inferencia de la estadística clásica. Esta última se trata a los valores observados como realizaciones de una variable aleatoria. En contravía con lo anterior, el muestreo asume que los valores observados corresponden a parámetros fijos poblacionales. Partiendo de este hecho formalicemos algunos conceptos que son de vital importancia en el estudio y análisis del muestreo.

2.1.1 Población finita

Definición 2.1.1. Una población finita es un conjunto de N elementos $\{e_1, e_2, ..., e_N\}$. Cada unidad puede ser identificada sin ambigüedad por un conjunto de rótulos. Sea $U = \{1, 2, ..., N\}$ el conjunto de rótulos de la población finita. El tamaño de la población no es necesariamente conocido.

Es el conjunto de N, donde $N < \infty$, unidades que conforman el universo de estudio. N es comúnmente llamado el tamaño poblacional. Cada elemento perteneciente a la población puede ser identificado por un rótulo. Sea U el conjunto de rótulos, tal que

$$U = \{1, ..., k, ..., N\}.$$

Se utilizará el subíndice k para denotar la existencia física del k-ésimo elemento. Nótese que el **tamaño** de la población, N, no siempre es conocido y en algunas ocasiones el objetivo de la investigación es poder estimarlo.

2.1.2 Muestra aleatoria

Es un subconjunto de la población que ha sido extraído mediante un mecanismo estadístico de selección. Notaremos con una letra mayúscula S a la muestra aleatoria 1 y con una letra minúscula s a una realización de la misma. De tal forma que, sin ambigüedad, una muestra seleccionada (realizada) es el conjunto de unidades pertenecientes a

$$s = \{1, ..., k, ..., n(S)\}.$$

El número de componentes de s es llamado el **tamaño de muestra** y no siempre es fijo. Es decir, en algunos casos n(S) es una cantidad aleatoria. El conjunto de todas las posibles muestras se conoce como **soporte**. Haciendo una analogía con la inferencia estadística clásica, el soporte generado por una muestra aleatoria corresponde al espacio muestral generado por una variable aleatoria.

La anterior definición de muestra, en donde los elementos incluidos se listan dentro de un conjunto, corresponde a la forma clásica de notación. Sin embargo, una muestra también puede ser notada como un vector de tamaño N. De esta manera, la k-ésima entrada del vector denotará el número de veces que el elemento fue incluido o seleccionado; si el valor es cero, indica que el elemento no fue incluido en la muestra seleccionada; si el valor es distinto de cero, indica que el elemento sí fue seleccionado. Aunque ambas formas de notación tienen la misma interpretación, para evitar confusiones, se denotará la muestra en forma de vector con una \mathbf{s} en negrilla, mientras que la muestra en forma de conjunto se denotara con una \mathbf{s} simple sin negrilla. A continuación se dan definiciones más precisas acerca de la muestra aleatoria con o sin reemplazo.

Muestra aleatoria sin reemplazo

Definición 2.1.2. Una muestra sin reemplazo se denota mediante un vector columna

$$\mathbf{s} = (I_1, I_2, ..., I_N)' \in \{0, 1\}^N$$
(2.1.1)

donde

$$I_k = \begin{cases} 1 & \text{si el } k\text{-\'esimo elemento pertenece a la muestra,} \\ 0 & \text{en otro caso} \end{cases}$$
 (2.1.2)

Una muestra aleatoria se dice sin reemplazo si la inclusión de cada uno de los elementos se hace entre los elementos que no han sido escogidos aún; de esta manera el conjunto s nunca tendrá elementos repetidos. El tamaño de muestra corresponde a la cardinalidad de s.

$$n(S) = \sum_{k \in U} I_k. \tag{2.1.3}$$

Como n(S) no es una cantidad fija, es posible que ocurran uno de los siguientes escenarios: a) que la muestra no contenga a ningún elemento, entonces esta muestra se dice vacía; b) que la muestra contenga a todos los elementos de la población, esta muestra se conoce con el nombre de **censo**.

Muestra aleatoria con reemplazo

Definición 2.1.3. Una muestra con reemplazo se denota mediante un vector columna

$$\mathbf{s} = (n_1, n_2, ..., n_N)' \in \mathbb{N}^N \tag{2.1.4}$$

donde n_k es el número de veces que el elemento k está en la muestra

 $^{^1\}mathrm{N\acute{o}tese}$ que S es una variable aleatoria.

En algunos casos, por conveniencia del mecanismo de selección, el usuario prefiere tomar una muestra aleatoria con reemplazo si la inclusión de cada uno de los elementos tiene en cuenta a todos los elementos, ya sea que hayan sido escogidos para pertenecer en la muestra o no. De esta forma, el usuario puede seleccionar una muestra cuyo proceso de selección incluya a un individuo m veces (nótese que m puede ser mayor que N). Sin embargo, en una muestra aleatoria con reemplazo, dos o más componentes pueden ser idénticos. Un elemento que esté incluido más de una vez en s es llamado elemento repetido.

En principio el tamaño de muestra está dado por

$$n(S) = m = \sum_{k \in U} n_k. (2.1.5)$$

El número de elementos distintos en una muestra aleatoria S con reemplazo es llamado **tamaño de** muestra efectivo y con probabilidad uno es menor o igual a N.

2.1.3 Soportes de muestreo

En los próximos capítulos empezará el tratamiento particular para estrategias de muestreo específicas; es decir, diseños de muestreo que se ajustan a ciertas situaciones y estimadores que mejoran la eficiencia de la estrategia. Sin embargo, antes de proseguir, es necesario que el lector entienda que las estrategias de muestreo se definen en términos del tipo de muestreo que se utiliza para la selección de muestras. En general, existen dos distinciones básicas.

- 1. Tipo de muestreo: selección de unidades con reemplazo o sin reemplazo.
- 2. Tamaño de muestra: tamaño de muestra fijo o aleatorio.

Como se verá en los capítulos posteriores, dependiendo de las anteriores condiciones, se define la estrategia de muestreo, el tratamiento teórico para la estimación de parámetros y el tipo de soporte. Esta sección trata específicamente sobre las diferentes formas que puede tomar el soporte de un diseño de muestreo dependiendo de las dos distinciones básicas. Para entrar en materia, es necesario enunciar las siguientes definiciones.

Definición 2.1.4. Un soporte Q es un conjunto de muestras.

Definición 2.1.5. Un soporte se llama simétrico si para cualquier $s \in Q$, todas las permutaciones de s están también en Q.

En los siguientes capítulos, a menos que se mencione lo contrario, el término **soporte** hará referencia a un **soporte simétrico**. Algunos soportes simétricos particulares son:

• El soporte simétrico sin reemplazo definido como

$$\mathcal{S} = \{0,1\}^N$$

Nótese que

$$\#(\mathcal{S}) = 2^N$$

Por ejemplo, si N=3, entonces S queda definido por las siguientes muestras:

$$\mathcal{S} = \{(0,0,0)', (1,0,0)', (0,0,1)', (1,0,1)', (0,1,0)', (1,1,0)', (0,1,1)', (1,1,1)'\}$$

• El soporte simétrico sin reemplazo de tamaño fijo definido como

$$S_n = \left\{ \mathbf{s} \in S | \sum_{k \in U} s_k = n \right\}$$

Nótese que

$$\#(\mathcal{S}_n) = \binom{N}{n}$$

Por ejemplo, si N=3 y n=2, entonces S_n queda definido por las siguientes muestras:

$$S_n = \{(1,0,1)', (1,1,0)', (0,1,1)'\}$$

• El soporte simétrico con reemplazo definido como

$$\mathcal{R} = \mathbb{N}^N$$

donde $\mathbb N$ es el conjunto de los números naturales. Nótese que este soporte es un conjunto contable pero infinito, por tanto

$$\#(\mathcal{R}) = \infty$$

• El soporte simétrico con reemplazo de tamaño fijo definido como

$$\mathcal{R}_m = \left\{ \mathbf{s} \in \mathcal{R} | \sum_{k \in U} n_k = m \right\}$$

Nótese que

$$\#(\mathcal{R}_m) = \binom{N+m-1}{m}$$

Por ejemplo, si N=3 y m=2, entonces \mathcal{R}_m queda definido por las siguientes muestras:

$$\mathcal{R}_m = \{(2,0,0)', (0,0,2)', (0,2,0)', (1,1,0)', (1,0,1)', (0,1,1)'\}$$

Tillé (2006) afirma que geométricamente cada vector \mathbf{s} representa el vértice de un N-cubo. Además, se tiene el siguiente resultado:

Resultado 2.1.1. Para los soportes definidos anteriormente, se tienen las siguientes propiedades:

- 1. $S, S_n, \mathcal{R}, \mathcal{R}_m$ son soportes simétricos.
- 2. $S \subset \mathcal{R}$.
- 3. El conjunto $\{S_0, S_1, \dots, S_N\}$ es una partición de S.
- 4. El conjunto $\{\mathcal{R}_0, \mathcal{R}_1, \dots, \mathcal{S}_N, \dots\}$ es una partición infinita de \mathcal{R} .
- 5. $S \subset \mathcal{R}$ para todo n = 0, 1, ..., N.

Muestras probabilísticas

No todas las muestras aleatorias son de tipo probabilístico. Una muestra (con o sin reemplazo) es de tipo probabilístico sí:

- Es posible construir (o al menos definir teóricamente) un soporte Q, tal que $Q = \{s_1, \ldots, s_q, \ldots, s_Q\}$, de todas las muestras posibles obtenidas por un método de selección. En donde s_q , $q = 1, \ldots, Q$, es una muestra perteneciente al soporte Q.
- Las probabilidades de selección que el proceso aleatorio le otorga a cada posible muestra perteneciente al soporte son conocidas de antemano a la selección de la muestra final.

Nótese que una muestra al azar no necesariamente es una muestra probabilística. En la mala práctica, algunos investigadores utilizan métodos aleatorios de inclusión de elementos sin disponer de un marco de muestreo y sin cumplir las dos condiciones anteriores; de esta manera, aunque los elementos sean escogidos de manera aleatoria o al azar, la muestra resultante no se puede catalogar como una muestra probabilística. Desde aquí en adelante, a menos que se diga lo contrario, el término muestra se refiere a una muestra probabilística. Algunos comentarios de interés son:

- 1. El universo U es finito.
- 2. La muestra probabilística s puede contener objetos repetidos. Esto sucede cuando el procedimiento de muestreo es con reemplazo.
- 3. La muestra s con repeticiones, puede tener un tamaño mayor al de la población.
- 4. La muestra s sin repeticiones, puede tener un tamaño máximo igual a N.
- 5. Si se presenta la ausencia del marco de muestreo es imposible realizar un procedimiento de muestreo probabilístico. Excepto cuando se realiza un censo.
- 6. Si la muestra seleccionada no es de tipo probabilístico, entonces no se puede construir ninguna estimación de tipo estadístico.
- 7. El estadístico deberá responder por los engaños o fraudes, que por ignorancia, mala fe o por la comodidad de mantener un empleo o negocio, para el cual no está capacitado, cometa contra clientes, ciudades y países que confían en la cifras resultantes de sus análisis.

Ejemplo 2.1.1. Suponga una población finita de tamaño N = 5, en donde los integrantes de la población están identificados cada uno con su nombre. La población la conforman los siguientes elementos:

Yves, Ken, Erik, Sharon, y Leslie,

En R se utiliza un vector de cadena de texto para indexar la población. Nótese que los elementos pertenecientes al vector son especificados mediante el uso de las comillas. En este caso los identificadores de cada elemento de la población, son asignados al objeto U.

```
U <- c("Yves", "Ken", "Erik", "Sharon", "Leslie")
U[1]
## [1] "Yves"

U[2]
## [1] "Ken"</pre>
```

Para obtener el soporte Q, de todas las posibles muestras de tamaño n=2 de esta población de tamaño N=5, se utiliza la función Support del paquete TeachingSampling. Esta función contiene

tres argumentos: el tamaño de la población \mathbb{N} , el tamaño fijo de cada una de las posibles muestras \mathbb{n} y, por último, una característica y que puede ser de tipo numérico o puede ser un conjunto de rótulos, la salida de la función será un conjunto de datos conteniendo todas las posibles muestras de tamaño fijo. Cuando el argumento y es distinto de FALSE, el resultado de la función será la característica poblacional para cada individuo. En el siguiente ejemplo se utiliza la función Support (\mathbb{N} , \mathbb{n} , y=FALSE) para obtener el conjunto de posibles muestras de tamaño dos de la población U, mientras que la función Support (\mathbb{N} , \mathbb{n} , \mathbb{U}) arroja el conjunto de los rótulos en cada una de las 10 posibles muestras.

```
length(U)
N
## [1] 5
n < -2
Support(N,n)
##
          [,1] [,2]
##
    [1,]
             1
                   2
##
    [2,]
             1
                   3
    [3,]
##
             1
                   4
##
    [4,]
             1
                   5
##
    [5,]
             2
                   3
                   4
##
    [6,]
             2
##
    [7,]
             2
                   5
##
    [8,]
             3
                   4
##
    [9,]
             3
                   5
##
   [10,]
             4
Support(N,n,U)
##
          [,1]
                    [,2]
    [1,] "Yves"
                    "Ken"
    [2,] "Yves"
##
                    "Erik"
    [3,] "Yves"
                    "Sharon"
##
##
    [4,] "Yves"
                    "Leslie"
    [5,] "Ken"
                    "Erik"
##
    [6,] "Ken"
                    "Sharon"
##
    [7,] "Ken"
                    "Leslie"
##
    [8,] "Erik"
                    "Sharon"
    [9,] "Erik"
                    "Leslie"
##
## [10,] "Sharon" "Leslie"
```

Definición 2.1.6. Un diseño de muestreo $p(\cdot)$ es una distribución de probabilidad multivariante definida sobre un soporte Q; es decir, $p(\cdot)$ es una función que va desde Q^2 hasta (0,1] tal que p(s)>0 para todo $s\in Q$ y

$$\sum_{s \in Q} p(s) = 1 \tag{2.1.6}$$

 $^{^2{\}rm N\acute{o}tese}$ que Q es el espacio muestral cuyos elementos son vectores.

Dado el soporte Q, un **diseño de muestreo** es una función $p(\cdot)$, tal que p(s) arroja la probabilidad de selección de la muestra realizada s bajo un esquema de selección particular. En otras palabras, si S es una muestra aleatoria que toma el valor s con probabilidad p(s), tal que

$$Pr(S = s) = p(s)$$
 para todo $s \in Q$. (2.1.7)

Entonces $p(\cdot)$ es llamada diseño de muestreo.

El diseño muestreo, es una función que va desde el soporte Q hasta el intervalo]0,1]. Por ser una distribución de probabilidad se tiene que $p(\cdot)$ cumple que

- 1. $p(s) \ge 0$ para todo $s \in Q$
- 2. $\sum_{s \in Q} p(s) = 1$

Nótese que el diseño de muestreo no se refiere a un algoritmo o procedimiento que permite la selección de muestras. Dado un diseño de muestreo, el trabajo del estadístico consiste en encontrar un algoritmo que permita la selección de muestras cuya probabilidad de selección corresponda a la probabilidad inducida por el diseño de muestreo. Para la realización de inferencias acerca de los parámetros de interés, el diseño de muestreo juega un papel muy importante porque las propiedades estadísticas (esperanza, varianza y otros) de las cantidades aleatorias que se calculan basadas en una muestra están determinadas por éste.

Dado un soporte Q, un diseño de muestreo puede ser:

- Sin reemplazo si todas las posibles muestras en Q son sin reemplazo.
- Con reemplazo si todas las posibles muestras en Q son con reemplazo.
- De tamaño fijo si todas las posibles muestras en Q tienen el mismo tamaño de muestra n(S) = n.

Cassel, Särndal & Wretman (1976a) explican que la posibilidad de identificar cada una de todas las posibles muestras que pertenecen al soporte Q es un factor crucial que permite:

- designar un conjunto de muestras a las cuales se les asigna una probabilidad positiva de selección y
- distribuir la totalidad de la masa de probabilidad entre los miembros de Q.

El rasgo más importante del muestreo probabilístico es que permite conocer, por lo menos teóricamente, la probabilidad de selección de todas las posibles muestras en el soporte Q. Sin embargo, un diseño de muestreo también deja conocer la probabilidad de inclusión del elemento k en la muestra S.

Algoritmo de selección

Un diseño de muestreo es una distribución de probabilidad sobre un soporte Q; pero, de ninguna manera, es un procedimiento que selecciona la muestra per se.

Definición 2.1.7. Un **algoritmo de selección** es un procedimiento usado para seleccionar una muestra probabilística.

Tillé (2006) afirma que una forma de seleccionar una muestra es listar todas las posibles muestras, generar una variable aleatoria con distribución uniforme en el intervalo [0,1] para luego hacer la correspondiente selección. A este tipo de algoritmos que listan todas las posibles muestras se les conoce con el nombre de **algoritmos de selección enumerativos**; sin embargo, este tipo de algoritmos son ineficientes computacionalmente y sólo son posibles de implementar cuando el diseño de muestreo es conocido y el tamaño poblacional N es pequeño. A lo largo del libro se incluirán diversos algoritmos de selección específicos para cada diseño de muestreo que permitan la selección de una muestra probabilística.

2.1.4 Probabilidad de inclusión

La inclusión del elemento k-ésimo en una muestra s particular es un evento aleatorio definido por la función indicadora $I_k(s)$, que está dada por

$$I_k(s) = \begin{cases} 1 & \text{si } k \in s \\ 0 & \text{si } k \notin s. \end{cases}$$
 (2.1.8)

Nótese que la función $I_k(s)$ es una función de la variable aleatoria S. Para acortar la notación escribiremos $I_k = I_k(s)$, entendiéndose que I_k es la función indicadora para el elemento k-ésimo. Bajo un diseño de muestreo $p(\cdot)$, una **probabilidad de inclusión** es asignada a cada elemento de la población para indicar la probabilidad de que el elemento pertenezca a la muestra. Para el elemento k-ésimo de la población, la probabilidad de inclusión se denota como π_k y se conoce como la probabilidad de inclusión de **primer orden** y está dada por

$$\pi_k = Pr(k \in S) = Pr(I_k = 1) = \sum_{s \ge k} p(s).$$
 (2.1.9)

En donde el subíndice $s \ni k$ se refiere a la suma sobre todas las muestras que contienen al elemento k-ésimo. Nótese que de la anterior definición para que una muestra sea considerada probabilística, entonces todos los elementos en la población deben tener probabilidad de inclusión estrictamente mayor a cero.

Definición 2.1.8. La **esperanza de una muestra** aleatoria, en el sentido de las definiciones 2.1.2. y 2.1.3., está dada por

$$\mu = E(\mathbf{s}) = \sum_{\mathbf{s} \in Q} p(\mathbf{s})\mathbf{s} \tag{2.1.10}$$

Si el diseño muestral es sin reemplazo, entonces $\mu = \pi$, donde $\pi = (\pi_1, \dots, \pi_N)'$ es el vector de probabilidades de inclusión inducido por el diseño de muestreo. El siguiente resultado provee una manera sencilla para computar y realizar el cálculo de las N probabilidades de inclusión.

Resultado 2.1.2. Dado un soporte Q, la probabilidad de inclusión π_k es la probabilidad de que el elemento k-ésimo pertenezca a la muestra aleatoria S y se puede escribir de la siguiente manera:

$$\pi_k = E(I_k(S)) = \sum_{s \in Q} I_k(s) p(s)$$
 (2.1.11)

Prueba. $I_k(S)$ es una función de la muestra aleatoria S, la demostración se sigue de la definición de la esperanza de una función de una variable aleatoria. Por otro lado, $I_k(S)$ sólo puede tomar dos valores 1 y 0, luego

$$E(I_k(S)) = (1)Pr(I_k(S) = 1) + (0)Pr(I_k(S) = 0)$$

= $Pr(I_k(S) = 1) = Pr(k \in S) = \pi_k$

Análogamente, π_{kl} se conoce como la probabilidad de inclusión de **segundo orden** y denota la probabilidad de que los elementos k y l pertenezcan a la muestra, ésta se denota como π_{kl} y está dada por

$$\pi_{kl} = Pr(k \in S \ y \ l \in S) = Pr(I_k I_l = 1) = \sum_{s \ni k \ y \ l} p(s).$$
 (2.1.12)

En donde el subíndice $s \ni k$ y l se refiere a la suma sobre todas las muestras que contienen a los elementos k-ésimo y l-ésimo.

Ejemplo 2.1.2. Considere el siguiente diseño de muestreo $p(\cdot)$ tal que asigna las siguientes probabilidades de selección a cada una de las 10 posibles muestras de tamaño 2 del soporte Q de la población U.

```
p <- c(0.13,0.2,0.15,0.1,0.15,0.04,0.02,0.06,0.07,0.08)

p

## [1] 0.13 0.20 0.15 0.10 0.15 0.04 0.02 0.06 0.07 0.08
```

Es decir, la primera muestra tiene una probabilidad de selección de 0.13, la segunda muestra tiene una probabilidad de selección de 0.15, y así sucesivamente hasta la décima cuya probabilidad de selección es de 0.08. Con las siguientes instrucciones verificamos que las propiedades de diseño muestral sean satisfechas.

```
## [1] 1

p < 0

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE</pre>
```

Mediante el uso de la función Ik del paquete TeachingSampling, es posible crear las N=5 funciones indicadoras de los elementos pertenecientes a la población para cada una de las 10 posibles muestras de tamaño fijo y sin reemplazo. Esta función contiene dos argumentos: el tamaño de la población N, el tamaño fijo de cada una de las posibles muestras n. Una tabla de datos es creada a partir de los rótulos, la probabilidad de selección y las 5 funciones indicadoras de las posibles muestras contenidas en el soporte Q.

```
Ind \leftarrow Ik(N, n)
Q <- Support(N, n, U)
data.frame(Q, p, Ind)
##
         X1
                X2
                      p X1.1 X2.1 X3 X4 X5
## 1
               Ken 0.13
                          1 1
        Yves
              Erik 0.20
                                0 1 0
## 2
        Yves
                           1
                                         0
## 3
        Yves Sharon 0.15
                          1
                                0 0 1
## 4
        Yves Leslie 0.10
                                0 0
                         1
```

```
## 5
                Erik 0.15
                                           0
         Ken
                              0
## 6
         Ken Sharon 0.04
                              0
                                    1
                                       0
                                           1
                                              0
         Ken Leslie 0.02
## 8
        Erik Sharon 0.06
                              0
                                    0
                                       1
                                           1
                                              0
                                    0
## 9
        Erik Leslie 0.07
                              0
                                       1
                                          0
                                              1
## 10 Sharon Leslie 0.08
                              0
                                    0
                                       0
```

Una vez son calculadas las variables indicadoras para cada elemento y en cada posible muestra, el cálculo de las probabilidades de inclusión se hace muy sencillo al multiplicar las probabilidades de selección con cada una de las variables indicadoras. El resultado se suma por columnas y la salida es un vector de tamaño N=5 de probabilidades de inclusión.

```
multip <- p * Ind
colSums(multip)
## [1] 0.58 0.34 0.48 0.33 0.27
```

La función Pik del paquete TeachingSampling arroja el vector de probabilidades de inclusión para todos los elementos de la población. Ésta tiene dos argumentos: un vector p de probabilidades de selección de todas las posibles muestras y una matriz Ind de N variables indicadoras. Nótese que la suma de probabilidades de inclusión es el tamaño de muestra esperado, en este caso igual a 2.

```
pik <- Pik(p, Ind)
pik

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.58 0.34 0.48 0.33 0.27
```

Luego, el elemento de la población que tiene una mayor probabilidad de ser incluido es **Yves**, mientras que el elemento con una menor probabilidad de inclusión es **Sharon**. Por otra parte, haciendo uso de la función Pikl del paquete TeachingSampling es posible calcular la matriz de probabilidades de inclusión de segundo orden para el diseño p en cuestión. Esta función sólo tiene tres argumentos: N, el tamaño de la población, n, el tamaño de muestra fijo p, el diseño de muestreo utilizado. La salida de esta función es una matriz cuadrada p simétrica de tamaño p0 cuyas entradas corresponden a las probabilidades de inclusión de segundo orden. Para este caso particular tenemos que la función se ejecuta de la siguiente manera.

```
pikl <- Pikl(N, n, p)
pikl

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.58 0.13 0.20 0.15 0.10
## [2,] 0.13 0.34 0.15 0.04 0.02
## [3,] 0.20 0.15 0.48 0.06 0.07
## [4,] 0.15 0.04 0.06 0.33 0.08
## [5,] 0.10 0.02 0.07 0.08 0.27</pre>
```

Nótese que, bajo este diseño de muestreo, **Yves** y **Erik** corresponden al par de elementos que tienen la más alta probabilidad de inclusión.

2.1.5 Característica de interés y parámetros de interés

El propósito de cualquier estudio por muestreo es estudiar una **característica** de interés y que se encuentra asociada a cada unidad de la población. Es decir, la característica de interés toma el valor y_k para la unidad k. Es importante notar que los y_k s no se consideran variables aleatorias sino cantidades fijas, por tanto la notación de éstas se hace con un letra minúscula y. El objetivo de la investigación por muestreo es estimar una función de interés T, llamada **parámetro**, de la característica de interés en la población.

$$T = f\{y_1, \dots, y_k, \dots, y_N\}.$$

Algunos de los parámetros de interés más comunes son:

1. El total poblacional,

$$t_y = \sum_{k \in U} y_k \tag{2.1.13}$$

2. La media poblacional,

$$\bar{y}_U = \frac{\sum_{k \in U} y_k}{N} = \frac{t_y}{N} \tag{2.1.14}$$

3. La varianza poblacional,

$$S_{yU}^2 = \frac{\sum_{k \in U} (y_k - \bar{y}_U)^2}{N - 1}$$
 (2.1.15)

Existen otros parámetros de interés como la mediana poblacional, los percentiles poblaciones, la razón entre dos totales poblacionales o, como se mencionó anteriormente, el tamaño de una población, en cuyo caso estaríamos interesados en N. Entre otros, algunos ejemplos de investigaciones por muestreo interesadas en los anteriores parámetros son:

- Total de personas que pertenecen a la fuerza laboral.
- Porcentaje de personas que usarían un producto.

Obviamente, estas cantidades poblacionales son desconocidas y ésta es la razón por la que se requiere realizar una investigación por muestreo, porque mediante ésta se pueden estimar estos parámetros poblacionales a partir de una muestra seleccionada.

Ejemplo 2.1.3. Suponga que en nuestra población de ejemplo se quiere estimar el total de la variable y. El valor para cada uno de los elementos de la población es el siguiente:

```
y <- c(32, 34, 46, 89, 35)
y
## [1] 32 34 46 89 35
```

La función data.frame crea el conjunto de datos conteniendo los nombres (rótulos) y el valor de la característica de interés para cada elemento de la población

```
data.frame(U,y)
```

```
## U y
## 1 Yves 32
## 2 Ken 34
## 3 Erik 46
## 4 Sharon 89
## 5 Leslie 35
```

Algunos parámetros poblacionales de interés de la característica y son, el total poblacional y la media dados por t_y y \bar{y}_U , respectivamente.

```
ty <- sum(y)
ty

## [1] 236

ybar <- ty / N
ybar

## [1] 47</pre>
```

2.1.6 Estadística y estimador

Una estadística es una función G (que toma valores reales) de la muestra aleatoria S y sólo depende de los elementos pertenecientes a S. Cuando una estadística se usa para estimar un parámetro se dice estimador y las realizaciones del estimador en una muestra seleccionada s se dicen estimaciones.

Siendo G una estadística, sus propiedades estadísticas están determinadas por el diseño de muestreo. Es decir, dada la probabilidad de selección de cada muestra $s \in Q$, la esperanza, la varianza y otras propiedades de interés están definidas a partir de p(s).

La **esperanza** de una estadística G es

$$E(G) = \sum_{s \in Q} p(s)G(s). \tag{2.1.16}$$

La varianza de la estadística G está definida como

$$Var(G) = E[G - E(G)]^{2}$$
 (2.1.17)

$$= \sum_{s \in Q} p(s)[G(s) - E(G)]^{2}. \tag{2.1.17}$$

Donde G(s) es el valor real que toma la estadística G en la muestra seleccionada (realizada) s y Q es el soporte inducido por el diseño muestral. Nótese que las propiedades de las estadísticas y, por consiguiente, de los estimadores, están definidas con sumas porque el diseño de muestreo induce una distribución de probabilidad discreta sobre todas las posibles muestras s pertenecientes al soporte Q.

La estadística I_k

La cantidad I_k dada por (2.1.8) es una estadística que toma valores aleatoriamente dependiendo del diseño de muestreo utilizado.

Resultado 2.1.3. Las propiedades más importantes de esta estadística son:

- $E(I_k) = \pi_k$
- $Var(I_k) = \pi_k(1 \pi_k)$
- $Cov(I_k, I_l) = \pi_{kl} \pi_k \pi_l$ para todo $k \neq l$

Prueba. Por el resultado 2.1.2., la primera propiedad se tiene de inmediato, ahora de la definición de varianza se tiene

$$Var(I_k(S)) = E[I_k(S) - E(I_k(S))]^2$$

$$= Pr(I_k(S) = 1)[1 - \pi_k]^2 + Pr(I_k(S) = 0)[0 - \pi_k]^2$$

$$= \pi_k(1 - \pi_k)$$

y finalmente, de la definición de covarianza se tiene

$$Cov(I_k(S), I_l(S)) = E[I_k(S)I_l(S)] - E[I_k(S)]E[I_k(S)]$$

$$= (1)Pr(I_k(S)I_l(S) = 1) + (0)Pr(I_k(S)I_l(S) = 0) - \pi_k\pi_l$$

$$= \pi_{kl} - \pi_k\pi_l$$

A la covarianza de las estadísticas indicadoras para los elementos k y l, $Cov(I_k, I_l)$, se le conoce como Δ_{kl} . Esta cantidad, dependiendo del diseño, puede tomar valores positivos, negativos o incluso nulos.

La estadística n(S) o tamaño de muestra

Como ya se vio, el tamaño de muestra es una cantidad aleatoria, dependiendo del diseño. Nótese que este valor puede ser expresado como función de las estadísticas de inclusión.

$$n(S) = \sum_{U} I_k. {(2.1.19)}$$

Resultado 2.1.4. Algunas propiedades de interés son:

- $E(n(S)) = \sum_{U} \pi_k$
- $Var(n(S)) = \sum_{U} \pi_k (\sum_{U} \pi_k)^2 + \sum_{k \neq l} \pi_{kl}$.

Prueba. Para la primera propiedad, se tiene que

$$E[n(S)] = E\left[\sum_{U} I_k\right] = \sum_{U} E[I_k] = \sum_{U} \pi_k$$

Recordando que las propiedades de la varianza de una suma se tiene

$$\begin{aligned} Var[n(S)] &= Var\left[\sum_{U} I_{k}\right] \\ &= \sum_{U} Var[I_{k}] + \sum_{k \neq l} \sum_{Cov} [I_{k}, I_{l}] \\ &= \sum_{U} \pi_{k} - \sum_{U} \pi_{k}^{2} - \sum_{k \neq l} \sum_{k \neq l} \pi_{k} \pi_{l} + \sum_{k \neq l} \sum_{k \neq l} \pi_{kl} \\ &= \sum_{U} \pi_{k} - \left(\sum_{U} \pi_{k}\right)^{2} + \sum_{k \neq l} \sum_{k \neq l} \pi_{kl} \end{aligned}$$

Además, cuando la variación del tamaño de muestra es nula porque se ha decidido utilizar un diseño de tamaño muestral fijo, se tienen las siguientes propiedades.

Resultado 2.1.5. Si el diseño de muestreo es de tamaño fijo e igual a n,

- $E(n(S)) = \sum_{U} \pi_k = n$
- $\sum_{U} \pi_{kl} = n\pi_l$
- $\sum_{U} \Delta_{kl} = 0$
- $\pi_k(1-\pi_k) = \sum_{l \neq k} (\pi_k \pi_l \pi_{kl})$

Prueba. La primera propiedad se tiene recordando que la esperanza de una constante es ella misma. Nótese que $\pi_{kl} = E[I_k(S)I_l(S)]$, así

$$\sum_{l \in U} \pi_{kl} = \sum_{l \in U} E[I_k(S)I_l(S)] = \sum_{l \in U} \sum_{s \in Q} p(s)I_k(s)I_l(s)$$

$$= \sum_{s \in Q} p(s)I_k(s) \sum_{l \in U} I_l(s)$$

$$= n(S) \sum_{s \in Q} p(s)I_k(s) = n\pi_k$$

La tercera propiedad se tiene pues

$$\sum_{U} \Delta_{kl} = \sum_{U} (\pi_{kl} - \pi_k \pi_l)$$
$$= \sum_{U} \pi_{kl} - \pi_k \sum_{U} \pi_l$$
$$= n\pi_k - n\pi_k = 0$$

Para demostrar la última propiedad es necesario redefinir el tamaño de muestra, de tal manera que

$$n = \sum_{l \neq k} I_l(S) + I_k(S)$$
. Luego,

$$\begin{split} \pi_k(1-\pi_k) &= Var(I_k(S)) \\ &= Cov(I_k(S),I_k(S)) \\ &= Cov\left(I_k(S),n-\sum_{l\neq k}I_l(S)\right) \\ &= -\sum_{l\neq k}Cov(I_k(S),I_l(S)) \\ &= \sum_{l\neq k}(\pi_k\pi_l-\pi_{kl}) \end{split}$$

Ejemplo 2.1.4. Continuando con el desarrollo del ejemplo 2.1.3, ahora utilizaremos el vector de probabilidades de inclusión y la matriz de probabilidades de segundo orden para verificar los resultados 2.1.4 y 2.1.5. En primer lugar, nótese que la esperanza del tamaño de muestra, que corresponde a 2 pues el diseño es de tamaño fijo, se obtiene de la siguiente manera.

```
A <- sum(pik)
A
## [1] 2
```

Ahora, el cuadrado de la suma de las probabilidades de inclusión se obtiene así

```
B <- (sum(pik))^2
B
## [1] 4
```

Y la suma de los elementos distintos de la matriz de probabilidades de inclusión de segundo orden es

```
C <- sum(pikl) - sum(diag(pikl))
C
## [1] 2</pre>
```

Para comprobar la segunda parte del resultado 2.1.4. basta realizar la siguiente operación A-B+C. Esta suma es nula y efectivamente corresponde a la varianza del tamaño de muestra en este diseño de muestreo; como, en este caso particular, el tamaño de muestra siempre fue fijo e igual a 2, la varianza debe ser cero.

El siguiente paso de este ejemplo consiste en la verificación de la segunda parte del resultado 2.1.5. En resumidas cuentas, este apartado dice que la suma por filas (o columnas) de la matriz de probabilidades de inclusión de segundo orden debe corresponder exactamente a la multiplicación del tamaño de muestra y el vector de probabilidades de inclusión de primer orden. Lo anterior se corrobora fácilmente por medio del siguiente código.

```
n * pik

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.2 0.68 0.96 0.66 0.54

colSums(pikl)

## [1] 1.16 0.68 0.96 0.66 0.54

rowSums(pikl)

## [1] 1.16 0.68 0.96 0.66 0.54
```

Nótese que la suma por filas y por columnas coincide perfectamente con $n \times \pi_k$ para todo $k \in U$. Por otro lado, verificaremos la tercera propiedad que afirma que la suma por filas (o columnas) de la matriz de varianzas-covarianzas de las variables indicadoras de membresía muestral debe dar como resultado un vector de ceros de tamaño cinco. Para esto, se utiliza la función Deltakl del paquete TeachingSampling. Esta función tiene tres argumentos: N, el tamaño de la población, n, el tamaño de muestra fijo y p, el diseño de muestreo utilizado. La salida de esta función corresponde a una matriz cuadrada y simétrica de tamaño $N \times N$ cuyas entradas corresponden a las varianzas-covarianzas de las variables indicadoras de membresía muestral. Para este ejemplo, la implementación del siguiente código permite obtener la matriz buscada y la verificación del resultado.

```
Delta <- Deltakl(N, n, p)
Delta
        [,1]
##
              [,2]
                   [,3]
                          [,4]
                                 [,5]
## [1,] 0.244 -0.067 -0.078 -0.0414 -0.0566
## [2,] -0.067 0.224 -0.013 -0.0722 -0.0718
## [3,] -0.078 -0.013 0.250 -0.0984 -0.0596
## [4,] -0.041 -0.072 -0.098 0.2211 -0.0091
## [5,] -0.057 -0.072 -0.060 -0.0091 0.1971
rowSums(Delta)
## [1] -0.000000000000000139 -0.0000000000000083 -0.000000000000056
colSums(Delta)
## [1] -0.000000000000000139 -0.00000000000000083 -0.0000000000000056
```

De esta manera la suma por filas (o columnas) de la matriz de varianzas-covarianzas de las variables indicadoras de membresía muestral es cero en cada columna (o fila).

Cuando una estadística se construye con la intención de estimar un parámetro, recibe el nombre de estimador. Así, las propiedades más comúnmente utilizadas de un estimador \hat{T} de un parámetro de

interés T son el sesgo, definido por

$$B(\hat{T}) = E(\hat{T}) - T \tag{2.1.20}$$

y el error cuadrático medio, dado por

$$ECM(\hat{T}) = E[\hat{T} - T]^2$$
 (2.1.21)

$$= Var(\hat{T}) + B^2(\hat{T}). \tag{2.1.22}$$

Si el sesgo de un estimador es nulo se dice que el estimador es **insesgado** y cuando esto ocurre el error cuadrático medio se convierte en la varianza del estimador.

Särndal, Swensson & Wretman (1992) afirman que el objetivo en un estudio por muestreo es estimar uno a más parámetros poblacionales. Las decisiones más importantes a la hora de abordar un problema de estimación por muestreo son

- La escogencia de un diseño de muestreo y un algoritmo de selección que permita implementar el diseño
- La elección de una fórmula matemática o estimador que calcule una estimación del parámetro de interés en la muestra seleccionada.

Las anteriores no son decisiones independientes. Es decir, la escogencia de un estimador dependerá, usualmente, del diseño de muestreo utilizado.

Definición 2.1.9. Siendo \hat{T} un estimador de un parámetro T y $p(\cdot)$ un diseño de muestreo definido sobre un soporte Q, se define una **estrategia de muestreo** como la dupla $(p(\cdot), \hat{T})$.

Este libro, como su nombre lo indica, está enfocado en la búsqueda de la mejor combinación de diseño de muestreo y estimador; este problema ha sido considerado a través del desarrollo de la teoría de muestreo. La escogencia de la estrategia de muestreo se lleva a cabo en dos etapas, a saber: **Etapa de diseño**, refiriéndose al periodo durante el cual se decide el diseño de muestreo a utilizar junto con el algoritmo de muestreo que permita la selección de la muestra y finalmente se selecciona la muestra probabilística. Una vez que la información es recogida y grabada entra la **Etapa de estimación** en donde se calculan las estimaciones para la característica de interés utilizando el estimador propio de la estrategia de muestreo escogida.

2.2 Estimadores de muestreo

Cada elemento perteneciente a la población tiene una característica de interés asociada y. Para el elemento k-ésimo el valor que toma esta característica de interés es y_k . El objetivo de la investigación por muestreo es estimar un parámetro T que resulta de interés. El objetivo del estadístico es poder inferir acerca de T con base en una muestra s. Un indicador de la precisión de un estimador está dado por el **coeficiente de variación estimado** dado por

$$cve(\hat{T}) = \frac{\sqrt{\widehat{Var}(\hat{T})}}{\hat{T}}$$
 (2.2.1)

donde $\widehat{Var}(\hat{T})$ es el estimador de la varianza basado en la muestra seleccionada s. El coeficiente de variación estimado es una medida comúnmente usada para expresar el error cometido al seleccionar

una muestra y ni utilizar a toda la población en la medición de la variable de interés. Si se realizara un censo y el estimador reprodujera el parámetro poblacional, entonces $\widehat{Var}(\hat{T})$ sería nula y, por lo tanto, el cve también sería nulo.

A continuación, se revisan algunos de los estimados más utilizados en la historia del muestreo. A medida que se avance en la lectura del libro, nuevos estimadores surgirán y, por consiguiente, nuevas estrategias de muestreo que permiten llegar a resultados con una precisión casi clínica. La mayoría de los estimadores presentados en este libro son estimadores de totales o de funciones de totales.

2.2.1 El estimador de Horvitz-Thompson

Estimador del total poblacional

Narain (1951) descubrió este estimador, aunque su artículo fue editado y publicado por una revista india de poca rotación. Más adelante Horvitz & Thompson (1952) publicaron similares resultados en la revista más importante de estadística en ese tiempo, JASA (Journal of the American Statistical Society). Desde entonces, este estimador se conoce como el estimador de Horvitz-Thompson o estimador π , aunque rigurosamente debería ser llamado estimador de Narain-Horvitz-Thompson . En este libro seguiremos la notación internacional y clásica.

Para un universo U, se quiere estimar el total poblacional t_y de la característica de interés y dado por (2.1.13). Se define el estimador de Horvitz-Thompson(HT) para t_y como:

$$\hat{t}_{y,\pi} = \sum_{S} \frac{y_k}{\pi_k} = \sum_{S} d_k y_k \tag{2.2.2}$$

Donde π_k es la probabilidad de inclusión para el k-ésimo elemento, y d_k es conocido como **factor** de expansión y corresponde al inverso de la probabilidad de inclusión. Nótese que el estimador de Horvitz-Thompson es aleatorio porque está construido con base en una suma sobre la muestra aleatoria S. La motivación detrás de este estimador, como Brewer (2002) lo indica, descansa en el **principio** de representatividad que afirma que cada elemento incluido en una muestra se representa a sí mismo y a un grupo de unidades que no pertenecen a la muestra seleccionada, cuyas características son cercanas a las del elemento incluido en la muestra. El factor de expansión no es otra cosa que el número de elementos menos uno de la población (no incluidos en la muestra) representados por el elemento incluido.

Resultado 2.2.1. Si todas las probabilidades de inclusión de primer orden son mayores a cero ($\pi_k > 0$ para todo k), el estimador de Horvitz-Thompson es insesgado para el total poblacional. Por tanto, se tiene que

$$E(\hat{t}_{y,\pi}) = t_y \tag{2.2.3}$$

Prueba. Reescribiendo el estimador de Horvitz-Thompson como $\hat{t}_{y,\pi} = \sum_{S} I_k(S) \frac{y_k}{\pi_k}$, se tiene

$$E(\hat{t}_{y,\pi}) = E\left(\sum_{U} I_k(S) \frac{y_k}{\pi_k}\right) = \sum_{U} \frac{y_k}{\pi_k} E\left(I_k(S)\right) = \sum_{U} \pi_k \frac{y_k}{\pi_k} = t_y$$

Si el diseño de muestreo es tal que las probabilidades de inclusión de primer orden conservan una buena correlación positiva con la medición de la característica de interés; en otras palabras, si $\pi_k \propto y_k$, el estimador de Horvitz-Thompson se reduce a una constante, por lo tanto tendrá varianza nula. En la práctica, una estrategia de muestreo óptima (Cassel, Särndal & Wretman 1976a) es aquella que utiliza el estimador de Horvitz-Thompson junto con un diseño de muestreo que induzca una buena

correlación entre el vector de probabilidades de inclusión y el vector de valores de la característica de interés. Sin embargo, en encuestas multi-propósito, en donde se quiere estimar parámetros para varias características de interés entre las cuales no hay una buena correlación, al utilizar el estimador de Horvitz-Thompson es difícil evadir la débil, e incluso negativa, correlación que existe entre las características de interés y el vector de probabilidades de inclusión. Sin embargo, al incluir información auxiliar en la construcción del estimador se puede palear este hecho.

Varianza del estimador de Horvitz-Thompson

Resultado 2.2.2. La varianza del estimador de Horvitz-Thompson está dada por la siguiente expresión

$$Var_1(\hat{t}_{y,\pi}) = \sum_{ll} \Delta_{kl} \frac{y_k}{\pi_k} \frac{y_l}{\pi_l}.$$
(2.2.4)

Prueba. De la definición de varianza, se obtiene lo siguiente

$$Var_{1}(\hat{t}_{y,\pi}) = Var\left(\sum_{U} I_{k}(S) \frac{y_{k}}{\pi_{k}}\right)$$

$$= \sum_{U} \frac{y_{k}^{2}}{\pi_{k}^{2}} Var(I_{k}(S)) + \sum_{k \neq l} \sum_{\pi_{k}} \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}} Cov(I_{k}(S), I_{l}(S))$$

$$= \sum_{U} \frac{y_{k}^{2}}{\pi_{k}^{2}} (\pi_{k} - \pi_{k}^{2}) + \sum_{k \neq l} \sum_{\pi_{k}} \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}} (\pi_{kl} - \pi_{k}\pi_{l})$$

$$= \sum_{U} \sum_{\pi_{k}} \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}} (\pi_{kl} - \pi_{k}\pi_{l})$$

$$= \sum_{U} \sum_{\pi_{k}} \Delta_{kl} \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}}$$

Sen (1953) y Yates & Grundy (1953) dedujeron el siguiente resultado cuando el diseño de muestreo es de tamaño fijo.

Resultado 2.2.3. Si el diseño $p(\cdot)$ es de tamaño de muestra fijo, entonces, la varianza del estimador de Horvitz-Thompson se escribe como

$$Var_2(\hat{t}_{y,\pi}) = -\frac{1}{2} \sum_{l} \sum_{l} \Delta_{kl} \left(\frac{y_k}{\pi_k} - \frac{y_l}{\pi_l} \right)^2$$
 (2.2.5)

Prueba. Utilizando las propiedades del resultado 2.1.5, se tiene que

$$Var_{2}(\hat{t}_{y,\pi}) = -\frac{1}{2} \sum_{U} \Delta_{kl} \left(\frac{y_{k}}{\pi_{k}} - \frac{y_{l}}{\pi_{l}} \right)^{2}$$

$$= -\frac{1}{2} \sum_{U} \Delta_{kl} \left(\frac{y_{k}^{2}}{\pi_{k}^{2}} + \frac{y_{l}^{2}}{\pi_{l}^{2}} - 2 \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}} \right)$$

$$= -\frac{1}{2} \left[\sum_{U} \Delta_{kl} \frac{y_{k}^{2}}{\pi_{k}^{2}} + \sum_{U} \Delta_{kl} \frac{y_{l}^{2}}{\pi_{l}^{2}} - 2 \sum_{U} \Delta_{kl} \frac{y_{l}}{\pi_{k}} \frac{y_{k}}{\pi_{l}} \right]$$

$$= -\frac{1}{2} \left[2 \sum_{U} \Delta_{kl} \frac{y_{k}^{2}}{\pi_{k}^{2}} - 2 \sum_{U} \Delta_{kl} \frac{y_{l}}{\pi_{k}} \frac{y_{k}}{\pi_{l}} \right]$$

$$= -\sum_{U} \frac{y_{k}^{2}}{\pi_{k}^{2}} \sum_{U} \Delta_{kl} + \sum_{U} \Delta_{kl} \frac{y_{l}}{\pi_{k}} \frac{y_{k}}{\pi_{l}}$$

$$= \sum_{U} \Delta_{kl} \frac{y_{l}}{\pi_{k}} \frac{y_{k}}{\pi_{l}} = Var_{1}(\hat{t}_{y,\pi})$$

puesto que $\sum_U \Delta_{kl} = 0$ para diseños de tamaño fijo. Por lo tanto, en los casos de diseños de muestreo con tamaño fijo, la varianza del estimador de Horvitz-Thompson puede calcularse por medio de $Var_2(\hat{t}_{y,\pi})$.

Estimación de la varianza

Es posible construir dos estimadores insesgados para las expresiones (2.2.4) y (2.2.5). Para esto, se requiere que todas las probabilidades de inclusión de segundo orden sean estrictamente positivas ($\pi_{kl} > 0$ para todo k). Con el anterior supuesto, se tienen los siguientes resultados.

Resultado 2.2.4. Un estimador insesgado para la expresión (2.2.4) está dada por

$$\widehat{Var}_1(\widehat{t}_{y,\pi}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \frac{y_k}{\pi_k} \frac{y_l}{\pi_l}$$
(2.2.6)

Resultado 2.2.5. Si el diseño es de tamaño de muestra fijo, un estimador insesgado para la expresión (2.2.5) está dado por

$$\widehat{Var}_2(\widehat{t}_{y,\pi}) = -\frac{1}{2} \sum_{S} \sum_{s} \frac{\Delta_{kl}}{\pi_{kl}} \left(\frac{y_k}{\pi_k} - \frac{y_l}{\pi_l} \right)^2$$
(2.2.7)

Prueba. Los anteriores resultados son inmediatos al reescribir los estimadores $\widehat{Var}_1(\hat{t}_{y,\pi})$ y $\widehat{Var}_2(\hat{t}_{y,\pi})$ en términos de U y multiplicar por el producto de las funciones indicadoras $I_k(S)I_l(S)$. Al aplicar la esperanza se tiene que $E[I_k(S)I_l(S)] = \pi_{kl}$ y con esto se tiene la demostración.

Bautista (1998) resalta los tres siguientes comentarios importantes acerca de las estimaciones arrojadas por anteriores expresiones.

- 1. Si las probabilidades de inclusión de segundo orden son mayores que cero para todos los elementos en la muestra, pero no para los restantes elementos que no fueron incluidos en la muestra, no se puede garantizar el insesgamiento de las anteriores expresiones.
- 2. Es posible que las estimaciones de la varianza arrojen resultados negativos, que no pueden ser utilizados ni interpretados. Para evitar esta situación, es necesario garantizar que la covarianza entre las estadísticas de inclusión para cada par de elementos en la población sea negativa ($\Delta_{kl} < 0 \ \forall \ k \neq l$).

3. No necesariamente las estimaciones arrojadas por las anteriores expresiones coinciden en todos los casos.

Por su parte, Tillé (2006) agrega que en la práctica, la utilización de las expresiones de los estimadores de la varianza es muy difícil de implementar pues la doble suma hace que el proceso de cálculo computacional sea muy largo e ineficiente. Por lo tanto, para cada diseño de muestreo que se utilice, se deben crear expresiones que pueden ser simplificadas o en algunos casos se deben utilizar aproximaciones.

Intervalo de confianza para el estimador de Horvitz-Thompson

Hájek (1960) demuestra la convergencia asintótica del estimador de Horvitz-Thompson a una distribución normal. Cuando el tamaño de muestra es suficientemente grande (que dependiendo del comportamiento de la población puede bastar con algunas docenas de individuos), se puede construir un intervalo de confianza de nivel $(1 - \alpha)$ para el total poblacional t_v de acuerdo con:

$$IC(1-\alpha) = \left[\hat{t}_{y,\pi} - z_{1-\alpha/2}\sqrt{Var(\hat{t}_{y,\pi})}, \hat{t}_{y,\pi} + z_{1-\alpha/2}\sqrt{Var(\hat{t}_{y,\pi})}\right]$$
(2.2.8)

donde $z_{1-\alpha/2}$ se refiere al cuantil $(1-\alpha/2)$ de una variable aleatoria con distribución normal estándar. Nótese que

$$1 - \alpha = \sum_{Q_0 \supset s} p(s),$$

donde Q_0 es el conjunto de todas las posible muestras cuyo intervalo de confianza contiene al total poblacional t_y . En la práctica muy pocas veces se conoce la varianza del estimador; por lo tanto, el intervalo de confianza estimado de nivel $(1 - \alpha)$ puede ser obtenido con los datos de la muestra seleccionada reemplazando en (2.2.8) la varianza del estimador por su correspondiente estimación y tomaría la siguiente expresión

$$IC_s(1-\alpha) = \left[\hat{t}_{y,\pi} - z_{1-\alpha/2}\sqrt{\widehat{Var}(\hat{t}_{y,\pi})}, \hat{t}_{y,\pi} + z_{1-\alpha/2}\sqrt{\widehat{Var}(\hat{t}_{y,\pi})}\right]. \tag{2.2.9}$$

Al utilizar una estrategia de muestreo en la estimación de un parámetro en poblaciones finitas, las propiedades de la estrategia se estudian en términos de:

- Confiabilidad: definida como la suma de las probabilidades de las muestras cuyo intervalo de confianza contiene al parámetro.
- Precisión: definida como la longitud del intervalo de confianza.

Nótese que las anteriores propiedades están en función del intervalo de confianza. Para determinar la confiabilidad se debe conocer al parámetro T (desconocido) por tanto, en términos prácticos la confiabilidad no se puede calcular. Para determinar la precisión y la confiabilidad se requiere conocer la varianza, basada en el diseño de muestreo, del estimador utilizado, digamos \hat{T} ; sin embargo, el cálculo de esta varianza $Var(\hat{T})$ implica, casi siempre, el requerimiento de conocer los valores y_k para todo k=1,...,N. Luego la precisión tampoco se puede calcular. Sin embargo se debe proponer un estimador de $Var(\hat{T})$ (ojalá insesgado) que junto con \hat{T} proporción una cota para el sesgo y para la precisión.

Estimación de otros parámetros

Aunque (2.2.2) es un estimador del total poblacional de la característica de interés, se puede utilizar para estimar otras cantidades poblacionales de interés. Si el tamaño poblacional N es conocido, la media poblacional definida en (2.1.14) puede ser estimada con el estimador de Horvitz-Thompson.

Resultado 2.2.6. La media poblacional es estimada insesgadamente mediante el uso de la siguiente expresión

$$\hat{y}_{\pi} = \frac{1}{N} \left(\hat{t}_{y,\pi} \right) = \frac{1}{N} \sum_{s} \frac{y_k}{\pi_k}$$
 (2.2.10)

La varianza y la varianza estimada del estimador de la media poblacional están dadas por

$$Var(\hat{\bar{y}}_{\pi}) = \frac{1}{N^2} Var(\hat{t}_{y,\pi})$$
 (2.2.11)

$$\hat{Var}(\hat{y}_{\pi}) = \frac{1}{N^2} \hat{Var}(\hat{t}_{y,\pi})$$
 (2.2.12)

respectivamente,

Sin embargo, es la regla más que la excepción que en la mayoría de casos en donde el usuario se enfrenta a una investigación cuyos objetivos están supeditados a la realización de un estudio por muestreo que el tamaño poblacional sea desconocido. En tal caso, podemos usar el estimador de Horvitz-Thompson para estimarlo puesto que N puede ser escrito de la siguiente manera

$$N = \sum_{U} 1, \tag{2.2.13}$$

tomando la conocida forma de un total poblacional. Luego, tenemos el siguiente resultado.

Resultado 2.2.7. El tamaño poblacional es estimado insesgadamente mediante el uso de la siguiente expresión

$$\hat{N}_{\pi} = \sum_{S} \frac{1}{\pi_k}.$$
(2.2.14)

Cuando se ha estimado el total poblacional de una característica de interés y el tamaño poblacional mediante el uso del estimador de Horvitz-Thompson, surge un estimador para la media poblacional dado por

$$\widetilde{y}_S = \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}} \tag{2.2.15}$$

$$= \sum_{S} \frac{y_k}{\pi_k} / \sum_{S} \frac{1}{\pi_k}.$$
 (2.2.16)

La anterior expresión es una razón, o un cociente entre dos totales poblacionales. Las propiedades estadísticas de los anteriores estimadores serán tratados más adelante en las secciones pertinentes del libro

Tillé (2006) cita que aun al conocer N, una mala propiedad del estimador de Horvitz-Thompson para la media poblacional se tiene al utilizarlo cuando la característica de interés es constante para todos los elementos de la población ($y_k = C \ \forall k \in U$). Por supuesto, bajo las anteriores condiciones es claro que

la media poblacional es igual a la constante $(\bar{y}_U = C)$. Sin embargo, el estimador \hat{y}_{π} toma la siguiente forma

$$\hat{y}_{\pi} = \frac{1}{N} \sum_{s} \frac{y_k}{\pi_k} = \frac{1}{N} \sum_{s} \frac{C}{\pi_k} = \frac{C}{N} \sum_{s} \frac{1}{\pi_k} = C \frac{\hat{N}_{\pi}}{N}.$$
 (2.2.17)

Al respecto, Bautista (1998) afirma que en aquellos casos en los que se conoce el valor de N es preferible ignorarlo y utilizar el estimador \widetilde{y}_S puesto que su variación es menor y cuando $y_k = C \ \forall k \in U$ reproduce la media poblacional con varianza nula puesto que

$$\widetilde{y}_S = \frac{\widehat{t}_{y,\pi}}{\widehat{g}_{\pi}} = \frac{C\widehat{y}_{\pi}}{\widehat{g}_{\pi}} = C.$$

Cuando el tamaño poblacional es conocido y, como se verá más adelante, para algunos diseños de muestreo sin reemplazo, se puede crear un nuevo estimador alternativo del total poblacional inspirado en el siguiente argumento: Si \tilde{y}_S estima la media poblacional, entonces $N\tilde{y}_S$ estimará el total poblacional. Por tanto, el estimador alternativo está dado por la siguiente expresión

$$\hat{t}_{y,alt} = N\widetilde{y}_S = \hat{t}_{y,\pi} \frac{N}{\hat{N}_{\pi}}$$
(2.2.18)

que se puede ver como una corrección del estimador de Horvitz-Thompson mediante la estimación del tamaño de la población. La varianza y la estimación de la varianza serán tema de capítulos posteriores.

Ejemplo 2.2.1. La función HT del paquete TeachingSampling arroja la estimación del total poblacional de una o varias características de interés. Esta función tiene dos argumentos: el vector de tamaño n de probabilidades de inclusión pik y el conjunto de valores de la característica o características de interés en los individuos pertenecientes a la muestra, y puede ser un vector en el caso de una sola característica de interés o una matriz en el caso de varias.

Así, si la primera muestra (cuyos elementos son **Yves** y **Ken**) hubiese sido seleccionada y dado que las probabilidades de inclusión de estos dos elementos son 0.58 y 0.34, respectivamente y los valores de la característica de interés son 32 y 34, respectivamente, el estimador de Horvitz-Thompson arrojaría la siguiente estimación:

```
y.s <- c(32, 34)
pik.s <- c(0.58, 0.34)
HT(y.s, pik.s)
## [,1]
## [1,] 155
```

Nótese que el total poblacional para la variable de interés y es igual a 236. Por otro lado, el cálculo o estimación de la varianza del estimador de Horvitz-Thompson no se encuentra implementado pues la doble suma hace que los procesos computacionales sean muy largos y demorado. Por tanto, si se quieren conocer estos valores, el proceso se debe realizar manualmente. La estimación de la varianza se realiza teniendo en cuenta que $\pi_{12} = 0.13$. Así,

$$\begin{split} \frac{\Delta_{11}}{\pi_{11}} &= \frac{\pi_{11} - \pi_{1}\pi_{1}}{\pi_{11}} = \frac{0.58 - 0.58^{2}}{0.58} = 0.42\\ \frac{\Delta_{12}}{\pi_{12}} &= \frac{\pi_{12} - \pi_{1}\pi_{2}}{\pi_{12}} = \frac{0.13 - 0.58 * 0.34}{0.13} = -0.52\\ \frac{\Delta_{21}}{\pi_{21}} &= \frac{\pi_{11} - \pi_{2}\pi_{1}}{\pi_{21}} = \frac{0.13 - 0.34 * 0.58}{0.13} = -0.52\\ \frac{\Delta_{22}}{\pi_{22}} &= \frac{\pi_{22} - \pi_{2}\pi_{2}}{\pi_{22}} = \frac{0.34 - 0.34^{2}}{0.34} = 0.66 \end{split}$$

Por tanto, utilizando (2.2.6), el estimador de la varianza será

$$\widehat{Var}(\widehat{t}_{\pi}) = \frac{\Delta_{11}}{\pi_{11}} \frac{y_1}{\pi_1} \frac{y_1}{\pi_1} + \frac{\Delta_{12}}{\pi_{12}} \frac{y_1}{\pi_1} \frac{y_2}{\pi_2} + \frac{\Delta_{21}}{\pi_{21}} \frac{y_2}{\pi_2} \frac{y_1}{\pi_1} + \frac{\Delta_{22}}{\pi_{22}} \frac{y_2}{\pi_2} \frac{y_2}{\pi_2}$$

y su respectiva estimación será

$$0.42 \left(\frac{32}{0.58}\right)^2 - 2(0.52) \left(\frac{32}{0.58} \frac{34}{0.34}\right) + 0.66 \left(\frac{34}{0.34}\right)^2 \cong 2140$$

El coeficiente de variación estimado es

$$cve(\hat{t}_{\pi}) = \frac{\sqrt{2140}}{155.1724} \cong 0.3$$

Y el intervalo de confianza estimado con un nivel de confianza del 95 por ciento para esta estimación es el siguiente:

$$IC_s(0.95) \cong \left[155 - (1.96)\sqrt{2140}, 155 + (1.96)\sqrt{2140}\right]$$

 $\cong [64, 246]$

Continuando con el ejercicio léxico-gráfico de la estimación del total poblacional t_y en todas las posibles muestras de tamaño 10 de la población U, tenemos la tabla 2.1 que puede ser reproducida mediante la ejecución del siguiente código computacional.

```
all.pik <- Support(N, n, pik)
all.y <- Support(N, n, y)
all.HT <- rep(0, 10)

for(k in 1:10){
   all.HT[k] <- HT(all.y[k,], all.pik[k,])
}

all.HT

## [1] 155 151 325 185 196 370 230 366 225 399

AllSamples=data.frame(Q, p, all.pik, all.y, all.HT)</pre>
```

	1	2	3	4	5	6	7	8
1	Yves	Ken	0.13	0.58	0.34	32.00	34.00	155.17
2	Yves	Erik	0.20	0.58	0.48	32.00	46.00	151.01
3	Yves	Sharon	0.15	0.58	0.33	32.00	89.00	324.87
4	Yves	Leslie	0.10	0.58	0.27	32.00	35.00	184.80
5	Ken	Erik	0.15	0.34	0.48	34.00	46.00	195.83
6	Ken	Sharon	0.04	0.34	0.33	34.00	89.00	369.70
7	Ken	Leslie	0.02	0.34	0.27	34.00	35.00	229.63
8	Erik	Sharon	0.06	0.48	0.33	46.00	89.00	365.53
9	Erik	Leslie	0.07	0.48	0.27	46.00	35.00	225.46
10	Sharon	Leslie	0.08	0.33	0.27	89.00	35.00	399.33

Tabla 2.1: Estimación para todas las posibles muestras del ejemplo

El vector all.est contiene las estimaciones Horvitz-Thompson para cada una de las 10 posibles muestras, su esperanza se calcula como

```
sum(p * all.HT)
## [1] 236
```

Nótese que la esperanza del estimador de Horvitz-Thompson reproduce exactamente el total poblacional. La varianza se calcula de la siguiente manera

$$Var(\hat{t}_{\pi}) = (0.13)(155.2 - 236)^{2} + (0.2)(151.0 - 236)^{2} + \cdots + (0.08)(399.3 - 236)^{2} = 7847.2$$

Acudiendo a la función VarHT, del paquete TeachignSampling, es posible reproducir este mismo calculo de la varianza. Sin embargo, esta función utiliza la expresión teórica de la varianza $Var_1(\hat{t}_{y,\pi})$ dada por (2.2.4) para diseños de muestreo de tamaño fijo. Tiene cuatro argumentos: y, que es un vector que contiene los valores de la característica de interés en todos y cada uno de los elementos de la población; N, el tamaño de la población; n, el tamaño de muestra fijo y p, el diseño de muestreo utilizado. El resultado de esta función es el cálculo del valor de la varianza teórica del estimador de Horvitz-Thompsosn para un diseño de muestreo y una configuración de valores poblacionales particular. Siguiendo con el diseño de muestreo dado en el ejemplo 2.1.2 y la configuración de valores de la característica de interés del ejemplo 2.1.3, tenemos que el calculo de la varianza es exactamente igual al dado por el ejercicio léxico-gráfico.

```
VarHT(y, N, n, p)
## [1] 7847
```

2.2.2 El estimador de Hansen-Hurwitz

Sobre el muestreo con reemplazo

Considere una población finita de N elementos y un diseño de muestreo que permite la selección de una muestra realizada s, con reemplazo, de tamaño m. Como Lohr (2000) lo afirma, la manera más

intuitiva de entender este tipo de diseños muestrales con reemplazo es pensar en la extracción de m muestras independientes de tamaño 1. Se extrae un elemento de la población para ser incluido en la muestra con una probabilidad p_k ; sin embargo, ese mismo elemento participa en el siguiente sorteo aleatorio. Este proceso se repite m veces; es decir, se tiene un total de m sorteos aleatorios.

Bajo el anterior esquema de selección, es claro que un elemento puede ser seleccionado en la muestra más de una vez; por lo tanto, aunque el tamaño de la muestra seleccionada con reemplazo es m, el tamaño de muestra efectivo no es necesariamente m. Nótese que la selección de un elemento que se repite más de una vez no proporciona información nueva. Es por esto que en la práctica, se prefieren los diseños de muestreo que permita la selección de muestras sin duplicados.

Särndal, Swensson & Wretman (1992) afirman que el marco general del muestreo con reemplazo tiene las siguientes características:

• Cada elemento de la población está relacionado directamente con un número positivo p_k (k = 1, ..., N) de tal forma que

$$\sum_{II} p_k = 1.$$

A p_k se le conoce como la **probabilidad de selección** del elemento k-ésimo. Nótese que estas probabilidades no son necesariamente iguales.

 Para seleccionar el primer elemento que pertenecerá a la muestra de tamaño m, se lleva a cabo un sorteo aleatorio de tal forma que

$$Pr(Seleccionar el elemento k) = p_k, k \in U.$$

- El elemento seleccionado es reemplazado en la población y vuelva a ser parte del próximo sorteo aleatorio con la misma probabilidad de selección p_k .
- El mismo conjunto de probabilidades es usado para seleccionar los restantes elementos. En total se realizan m sorteos aleatorios independientes.

Ahora, en muestreo con reemplazo la probabilidad de selección de un elemento no es lo mismo que la probabilidad de inclusión³ del mismo. Se tienen los siguientes resultados.

Definición 2.2.1. Bajo un diseño con reemplazo, se define la variable aleatoria $n_k(S)$ como el número de veces que el elemento k-ésimo es seleccionado en la muestra aleatoria S.

Resultado 2.2.8. La variable aleatoria $n_k(S)$ sigue una distribución binomial tal que

$$E(n_k(S)) = mp_k,$$
 $Var(n_k(S)) = mp_k(1 - p_k)$

Prueba. Dado que cada una de las m extracciones inducen eventos estadísticos independientes, la selección en una extracción particular del k-ésimo elemento sigue una distribución de Bernoulli, con parámetro p_k . Como se trata de m extracciones, $n_k(S)$ sigue una distribución binomial y puede tomar los valores $0, 1, \ldots, m$; al definir éxito como la selección del elemento k-ésimo en la muestra, entonces se tiene la demostración del resultado.

Definición 2.2.2. De manera general, un diseño de muestreo con reemplazo se define como

$$p(s) = \begin{cases} \frac{m!}{n_1(s)!\dots n_N(s)!} \prod_U (p_k)^{n_k(s)} & \text{si } \sum_U n_k(s) = m\\ 0 & \text{en otro caso} \end{cases}$$
 (2.2.19)

Donde $n_k(s)$ es el número de veces que el elemento k-ésimo es seleccionado en la muestra realizada s.

³Nótese que la probabilidad de inclusión se refiere a la probabilidad de que el elemento sea seleccionado al menos una vez en la muestra.

Nótese la diferencia (y a la vez similitud) de la variable $n_k(S)$ con la variable $I_k(S)$, además por la definición anterior se tiene que el diseño de muestreo con reemplazo sigue una distribución multinomial, por lo tanto cumple las condiciones de diseño muestral; es decir, $\sum_{s\in Q} p(s) = 1$, donde Q es el soporte que contiene todas las posibles muestras con reemplazo de tamaño m. La cardinalidad de Q, es

$$\#Q = \binom{N+m-1}{m} \tag{2.2.20}$$

Resultado 2.2.9. En muestreo con reemplazo, la probabilidad de inclusión de primer orden del elemento k-ésimo está dada por:

$$\pi_k = 1 - (1 - p_k)^m \tag{2.2.21}$$

Prueba. Dado que se trata de eventos independientes los cuales tienen asociada una probabilidad de éxito (éxito equivalente a que el elemento $k \in s$) p_k , entonces cada uno de estos sorteos aleatorios está determinado por una distribución de probabilidad de tipo Bernoulli. Por consiguiente, cuando se realizan m ensayos independientes, se utiliza la distribución de probabilidad binomial para hallar las probabilidades de inclusión de primer orden de cada uno de los elementos en la población

$$\pi_k = Pr(k \in S) = 1 - Pr(k \notin s)$$

$$= 1 - \binom{m}{m} (1 - p_k)^m (p_k)^{m-m}$$

$$= 1 - (1 - p_k)^m$$

Resultado 2.2.10. En muestreo con reemplazo, las probabilidades de inclusión de segundo orden π_{kl} , están dadas por:

$$\pi_{kl} = 1 - (1 - p_k)^m - (1 - p_l)^m + (1 - p_k - p_l)^m \qquad k \neq l = 1 \dots, N$$
 (2.2.22)

Prueba. Para hallar esta probabilidad debemos negar que $(k \in S \ y \ l \in s)$. Esta negación da como resultado $(k \notin s \ ó \ l \notin s)$. Suponga que tenemos dos eventos, $A = (k \notin s) \ y \ B = (l \notin s)$; por tanto, $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$. Las probabilidades anteriores se rigen por un modelo binomial, luego:

$$\pi_{kl} = Pr(k \in S \ y \ l \in s)$$

$$= 1 - Pr(k \notin s) - Pr(l \notin s) + Pr(k, l \notin s)$$

$$= 1 - (1 - p_k)^m - (1 - p_l)^m + {m \choose m} (1 - p_k - p_l)^m (p_k + p_l)^{m-m}$$

$$= 1 - (1 - p_k)^m - (1 - p_l)^m + (1 - p_k - p_l)^m$$

El cuarto sumando en la igualdad anterior se obtiene considerando que cada ensayo se toma como un proceso Bernoulli, donde el éxito es no escoger ni a k ni a l. Por tanto

$$Pr(\text{\'Exito}) = 1 - Pr(\text{Fracaso})$$

= 1 - Pr(Escoger a k) - Pr(Escoger a l) + Pr(Escoger a ambos)
= 1 - p_k - pl

Puesto que se trata de un sólo ensayo, la probabilidad de escoger a ambos es nula.

Esto se nota más claramente con el típico ejemplo del dado. Si el evento es el lanzamiento de un dado y el éxito es no sacar 3 o 5, entonces la probabilidad de obtener éxito será: 1 - Pr(Fracaso), es decir 1 - Pr(Sale 5) - Pr(Sale 1) + Pr(Sale 5 y 1). Es obvio que el último sumando es cero dado que se trata de un sólo lanzamiento.

Ejemplo 2.2.2. El lector no debe confundir el concepto de **muestra con reemplazo** con el concepto de **extracción ordenada**. En nuestra población ejemplo el tamaño poblacional es N=5. Si se utiliza un diseño de muestreo que induzca muestras de tamaño fijo igual a m=2, entonces existirían $N^m=5^2=25$ posibles extracciones ordenadas. Sin embargo, sólo existen $\binom{N+m-1}{m}=\binom{6}{2}=15$ posibles muestras con reemplazo. Este escenario es evidenciado fácilmente con la ayuda de la variable aleatoria $n_k(S)$. Las posibles extracciones ordenadas están dadas de la siguiente manera.

```
(5,1)
(1,1)
         (2,1)
                   (3,1)
                            (4,1)
(1,2)
         (2,2)
                   (3,2)
                            (4,2)
                                      (5,2)
(1,3)
         (2,3)
                   (3,3)
                            (4,3)
                                      (5,3)
(1,4)
         (2,4)
                   (3,4)
                            (4,4)
                                      (5,4)
(1,5)
         (2,5)
                   (3,5)
                            (4,5)
                                      (5,5)
```

Sin embargo, aunque todas las posibles extracciones ordenas no constituyen el soporte de muestreo, éstas si ayudan a definirlo. De hecho, el primer paso para la construcción del soporte de muestreo con reemplazo es la determinación de todas las posibles extracciones. La función OrderWR⁴ del paquete TeachingSampling permite conocer todas las posibles extracciones de tamaño fijo para un diseño de muestreo con reemplazo.

Esta función cuenta con tres argumentos: el primer argumento correspondiente al tamaño de la población N, el segundo, correspondiente al tamaño de las selecciones, m, que no necesariamente debe ser menor que el tamaño poblacional 5 y, el último corresponde a una característica ID que puede ser un conjunto de rótulos o cualquier otro tipo de identificador continuo. El resultado de la función OrderWR será un conjunto de todas las posibles extracciones ordenadas con tamaño fijo m. Cuando el argumento ID es distinto de FALSE, la salida de la función corresponderá al rótulo o identificador continuo para cada elemento de la población. En el siguiente ejemplo se utiliza esta función en nuestra población ejemplo U.

```
N <- length(U)
## [1] 5
m < -2
OrderWR(N, m, ID = FALSE)
            [,1] [,2]
##
##
     \lceil 1. \rceil
               1
                     1
##
     [2,]
               1
                     2
     [3,]
                     3
               1
##
               1
                     4
##
     [5,]
               1
                     5
##
     [6.]
               2
                     1
##
     [7,]
               2
                     2
##
               2
                     3
     [8,]
               2
##
     [9,]
                     4
##
    [10,]
               2
                     5
```

⁴El autor desea recalcar que el resultado de esta función no corresponde al soporte de muestreo con reemplazo sino al conjunto de todas las posibles extracciones ordenadas con reemplazo y de tamaño fijo.

⁵Se enfatiza que para este tipo de diseños de muestreo con reemplazo es posible que el tamaño de muestra sea mayor al tamaño poblacional.

```
## [11,]
            3
                  1
## [12,]
            3
                  2
## [13,]
            3
                  3
## [14,]
            3
                  4
## [15,]
            3
                  5
## [16,]
                  1
## [17,]
            4
                  2
##
  [18,]
            4
                  3
## [19,]
            4
                  4
## [20,]
            4
                  5
## [21,]
            5
                  1
## [22,]
            5
                  2
## [23,]
            5
                  3
## [24,]
            5
                  4
## [25,]
                  5
            5
OrderWR(N, m, ID = U)
##
          [,1]
                   [,2]
    [1.] "Yves"
##
                   "Yves"
##
    [2,] "Yves"
                   "Ken"
    [3,] "Yves"
                   "Erik"
##
##
    [4,] "Yves"
                   "Sharon"
    [5,] "Yves"
##
                   "Leslie"
    [6,] "Ken"
                   "Yves"
##
##
    [7,] "Ken"
                   "Ken"
    [8,] "Ken"
                   "Erik"
##
##
    [9,] "Ken"
                   "Sharon"
## [10,] "Ken"
                   "Leslie"
## [11,] "Erik"
                   "Yves"
  [12,] "Erik"
##
                   "Ken"
## [13,] "Erik"
                   "Erik"
  [14,] "Erik"
                   "Sharon"
  [15,] "Erik"
                   "Leslie"
##
  [16,] "Sharon" "Yves"
  [17,] "Sharon" "Ken"
## [18,] "Sharon" "Erik"
## [19,] "Sharon" "Sharon"
## [20,] "Sharon" "Leslie"
## [21,] "Leslie" "Yves"
## [22,] "Leslie" "Ken"
## [23,] "Leslie" "Erik"
## [24,] "Leslie" "Sharon"
## [25,] "Leslie" "Leslie"
```

Nótese que el conjunto de extracciones ordenadas contiene al soporte de muestreo con reemplazo. Sin embargo, con ayuda de la función SupportWR del paquete TeachingSampling se define el verdadero soporte inducido por el diseño de muestreo con reemplazo. Los argumentos de esta función son los mismos tres de la función OrderWR: N, m y ID. El resultado de la función es el conjunto de todas las posibles muestras con reemplazo de tamaño fijo. Para este ejemplo particular, el soporte está dado por las siguientes muestras y no por todas las posibles extracciones ordenadas.

```
SupportWR(N, m, ID=FALSE)
##
          [,1] [,2]
##
    [1,]
            1
                  1
##
    [2,]
             1
                  2
##
    [3,]
             1
                  3
##
    [4,]
            1
                  4
    [5,]
    [6,]
             2
                  2
##
##
    [7,]
             2
                  3
##
    [8,]
             2
                  4
##
    [9,]
             2
                  5
## [10,]
             3
                  3
  [11,]
             3
                  4
##
  [12,]
             3
                  5
## [13,]
             4
                  4
## [14,]
             4
                  5
## [15,]
             5
                  5
SupportWR(N,m,ID=U)
          [,1]
                   [,2]
    [1,] "Yves"
##
                   "Yves"
##
    [2,] "Yves"
                   "Ken"
                   "Erik"
##
    [3,] "Yves"
    [4,] "Yves"
                   "Sharon"
##
    [5,] "Yves"
                   "Leslie"
##
    [6,] "Ken"
                   "Ken"
##
    [7,] "Ken"
                   "Erik"
##
##
    [8,] "Ken"
                   "Sharon"
##
    [9,] "Ken"
                   "Leslie"
                   "Erik"
##
  [10,] "Erik"
   [11,] "Erik"
  [12,] "Erik"
                   "Leslie"
  [13,] "Sharon" "Sharon"
## [14,] "Sharon" "Leslie"
## [15,] "Leslie" "Leslie"
```

Por supuesto, cada una de las posibles muestras con reemplazo que pertenecen al soporte tiene distintas probabilidades de selección dependiendo de la configuración de las probabilidades de selección individuales para cada elemento, p_k . Supongamos que cada uno de los cinco elementos de la población tiene probabilidad de selección dadas por

$$p_k = \begin{cases} 1/4, & \text{para } k = \mathbf{Yves, Ken, Leslie}, \\ 1/8, & \text{para } k = \mathbf{Sharon, Erik} \end{cases}$$

Nótese que $\sum_{U} p_k = 1$. Para esta configuración particular, y siguiendo la expresión (2.2.19), las probabilidades de selección p(s) de las muestras en el soporte y el valor de la variable $n_k(S)$ estarían dadas por la configuración mostrada en la tabla 2.2, la cual es producida por el siguiente código.

```
pk <- c(0.25, 0.25, 0.125, 0.125, 0.25)
QWR <- SupportWR(N,m,ID=U)
pWR <- p.WR(N, m, pk)
nkWR <- nk(N, m)
SamplesWR <- data.frame(QWR, pWR, nkWR)</pre>
```

	1	2	3	n1	n2	n3	n4	n5
1	Yves	Yves	0.06	2.00	0.00	0.00	0.00	0.00
2	Yves	Ken	0.13	1.00	1.00	0.00	0.00	0.00
3	Yves	Erik	0.06	1.00	0.00	1.00	0.00	0.00
4	Yves	Sharon	0.06	1.00	0.00	0.00	1.00	0.00
5	Yves	Leslie	0.13	1.00	0.00	0.00	0.00	1.00
6	Ken	Ken	0.06	0.00	2.00	0.00	0.00	0.00
7	Ken	Erik	0.06	0.00	1.00	1.00	0.00	0.00
8	Ken	Sharon	0.06	0.00	1.00	0.00	1.00	0.00
9	Ken	Leslie	0.13	0.00	1.00	0.00	0.00	1.00
10	Erik	Erik	0.02	0.00	0.00	2.00	0.00	0.00
11	Erik	Sharon	0.03	0.00	0.00	1.00	1.00	0.00
12	Erik	Leslie	0.06	0.00	0.00	1.00	0.00	1.00
13	Sharon	Sharon	0.02	0.00	0.00	0.00	2.00	0.00
14	Sharon	Leslie	0.06	0.00	0.00	0.00	1.00	1.00
15	Leslie	Leslie	0.06	0.00	0.00	0.00	0.00	2.00

Tabla 2.2: Todas las posibles muestras con reemplazo para el ejercicio

Nótese que la suma de las probabilidades de selección inducidas por el diseño de muestreo es igual a uno y que cada una de ellas es mayor que cero. El lector debe fijarse en que la muestra perteneciente al soporte está dada en términos de $n_k(S)$. De esta manera, si se ha seleccionado la séptima muestra dada por 1 0 1 0 0, en realidad, no importa si **Yves** fue seleccionado primero o después que **Erik** y la probabilidad de selección de esta muestra particular es 0.125 pues

$$p(s) = \frac{2!}{1!0!1!0!0!} \left[\left(\frac{1}{4} \right)^1 \left(\frac{1}{4} \right)^0 \left(\frac{1}{8} \right)^1 \left(\frac{1}{8} \right)^0 \left(\frac{1}{4} \right)^0 \right]$$
$$= 2 \left(\frac{1}{32} \right) = 0.0625$$

Estimador del total poblacional

Hansen, Hurwitz & Madow (1953) proponen un estimador conveniente para el total de una población t_y cuando el diseño de muestreo es con reemplazo. La lógica que sigue en la construcción de este estimador está dada a continuación. Sea el evento aleatorio:

Seleccionar el elemento $k \ (k \in U)$ en el *i*-ésimo sorteo (i = 1, ..., m).

Este evento define la creación de variables aleatorias, que serán utilizadas más adelante, cuyo comportamiento es posible modelar mediante el siguiente resultado.

Resultado 2.2.11. Sean U_1, U_2, \ldots, U_m es una sucesión de variables aleatorias independientes e idénticamente distribuidas con $E(U_i) = \mu$ y $Var(U_i) = \sigma^2$. Sea $\bar{U} = \sum_{i=1}^m U_i / m$. Entonces $E(\bar{U}) = \mu$,

 $Var(\bar{U}) = \sigma^2/m$ y un estimador insesgado de $Var(\bar{U})$ está dado por la siguiente expresión

$$\widehat{Var}(\bar{U}) = \frac{1}{m(m-1)} \sum_{i=1}^{m} (U_i - \bar{U})^2$$
(2.2.23)

y por consiguiente, un estimador insesgado para σ^2 está dado por

$$\hat{\sigma}^2 = \frac{1}{m-1} \sum_{i=1}^m (U_i - \bar{U})^2. \tag{2.2.24}$$

Prueba. La esperanza de \bar{U} es

$$E(\bar{U}) = \frac{1}{m} \sum_{i=1}^{m} E(U_i) = \mu$$
 (2.2.25)

La varianza está determinada por

$$Var(\bar{U}) = \frac{1}{m^2} \sum_{i=1}^{m} Var(U_i) = \sigma^2 / m$$
 (2.2.26)

Nótese que los términos de covarianza son nulos puesto que las variables son independientes entre ellas. Ahora como

$$\sum_{i=1}^{m} (U_i - \bar{U})^2 = \sum_{i=1}^{m} U_i^2 - m\bar{U}^2$$
(2.2.27)

entonces.

$$E(\sum_{i=1}^{m} (U_i - \bar{U})^2) = \sum_{i=1}^{m} E(U_i^2) - mE(\bar{U}^2)$$
(2.2.28)

Por otro lado

$$E(U_i^2) = Var(U_i) + [E(U_i)]^2 = \sigma^2 + \mu^2$$

 $E(\bar{U}^2) = Var(\bar{U}) + [E(\bar{U})]^2 = \sigma^2 / m + \mu^2$

Esto conduce a la demostración del teorema puesto que

$$E(\sum_{i=1}^{m} (U_i - \bar{U})^2) = (m-1)\sigma^2$$
(2.2.29)

El anterior es un resultado muy potente que puede ser utilizado para cualquier tipo de variables aleatorias que sean independientes e idénticamente distribuidas y será la base para la demostración de resultados en la estimación de parámetros que utilicen diseños de muestreo con reemplazo. Siguiendo con el marco teórico del muestreo con reemplazo tenemos la siguiente definición.

Definición 2.2.3. Se define la variable aleatoria Z_i tal que

$$Z_i = y_{k_i}/p_{k_i}$$
 $k \in U$ $i = 1, ..., m$ (2.2.30)

donde la cantidad y_{k_i} es el valor de la característica de interés del k-ésimo elemento seleccionado en la i-ésima extracción. Análogamente, p_{k_i} es el valor de la probabilidad de selección del k-ésimo elemento seleccionado en la i-ésima extracción.

Resultado 2.2.12. La distribución de la variable aleatoria Z_i está dada por

$$Pr\left(Z_i = \frac{y_k}{p_k}\right) = p_k,\tag{2.2.31}$$

por tanto la esperanza y varianza de la variable aleatoria Z_i son

$$E(Z_i) = t_y \tag{2.2.32}$$

y

$$Var(Z_i) = \sum_{I_i} p_k \left(\frac{y_k}{p_k} - t_y\right)^2, \qquad (2.2.33)$$

respectivamente.

Prueba. Dado que se trata de m sorteos aleatorios independientes, la variable aleatoria Z_i puede tomar los siguientes valores

$$\frac{y_1}{p_1}, \frac{y_2}{p_2} \dots, \frac{y_N}{p_N}$$

con probabilidades

$$p_1, p_2 \ldots, p_N$$

respectivamente. Luego, acudiendo a la definición genérica del operador esperanza, se tiene

$$E(Z_i) = \sum_{U} \frac{y_k}{p_k} Pr\left(Z_i = \frac{y_k}{p_k}\right) = \sum_{U} \frac{y_k}{p_k} p_k = t_y$$

y análogamente se tiene la varianza

$$Var(Z_i) = \sum_{U} \left(\frac{y_k}{p_k} - E(Z_i)\right)^2 Pr\left(Z_i = \frac{y_k}{p_k}\right) = \sum_{U} \left(\frac{y_k}{p_k} - t_y\right)^2 p_k$$

Dado que las m extracciones son eventos independientes, también lo son las variables Z_i^6 . Nótese que la cantidad Z_i es una estimación del total poblacional con la i-ésima muestra seleccionada de tamaño 1. Ahora, como existen m sorteos habrán m estimaciones del total poblacional; por tanto, como en mucho otros procedimientos estadísticos utilizamos el promedio de estas m estimaciones para obtener una estimación unificada para t_y . El estimador de Hansen-Hurwitz toma la siguiente forma

$$\hat{t}_{y,p} = \frac{1}{m} \sum_{i=1}^{m} \frac{y_{k_i}}{p_{k_i}}$$
 (2.2.34)

Para tener una estrategia de muestreo que resulte eficiente en la estimación de t_y , es conveniente utilizar el estimador de Hansen-Hurwitz, cuando las probabilidades de selección son proporcionales a la característica de interés; esto es, cuando $p_k \propto y_k$. Si lo anterior sucede, el estimador tendrá una varianza casi nula y la estimación será muy precisa.

Resultado 2.2.13. Si $p_k > 0$, para todo $k \in U$, el estimador $\hat{t}_{y,p}$ es insesgado

 $^{^6}Z_1, \ldots, Z_m$ define una sucesión de variables aleatorias independientes e idénticamente distribuidas, o si se quiere, en términos de la inferencia clásica, define una **muestra aleatoria**.

Prueba. Las variables aleatorias Z_i son independientes (porque cada ensayo es independiente) y su distribución está inducida por $Pr(Z_i = y_k/p_k) = p_k$, $k \in U$; es decir, son idénticamente distribuidas. Por tanto, el estimador de Hansen-Hurwitz puede escribirse como:

$$\hat{t}_{y,p} = \frac{1}{m} \sum_{i=1}^{m} \frac{y_i}{p_i} = \frac{1}{m} \sum_{i=1}^{m} Z_i = \bar{Z}$$

y así con $p_k > 0$ para todo $k \in U$, tenemos

$$E(\hat{t}_{y,p}) = \frac{1}{m} \sum_{i=1}^{m} E(Z_i) = \frac{1}{m} \sum_{i=1}^{m} t_y = t_y$$

Varianza del estimador de Hansen-Hurwitz

Una de las características más importantes del estimador de Hansen-Hurwitz es la sencillez de la expresión de su varianza. Esta misma hace que aunque el muestreo sea con reemplazo, el estimador de Hansen-Hurwitz sea utilizado de manera frecuente por los usuarios de los estudios por muestreo.

Resultado 2.2.14. La varianza del estimador de Hansen-Hurwitz está dada por la siguiente expresión

$$Var(\hat{t}_{y,p}) = \frac{1}{m} \sum_{k=1}^{N} p_k \left(\frac{y_k}{p_k} - t_y\right)^2$$
 (2.2.35)

Prueba. Por la independencia de las selecciones se tiene que

$$Var(\hat{t}_{y,p}) = Var\left(\frac{1}{m}\sum_{i=1}^{m} Z_i\right)$$

$$= \frac{1}{m^2}\sum_{i=1}^{m} Var(Z_i)$$

$$= \frac{1}{m}Var(Z_i)$$

$$= \frac{1}{m}\sum_{I,I} \left(\frac{y_k}{p_k} - t_y\right)^2 p_k$$

La anterior expresión hace que el cálculo computacional de la varianza del estimador de Hansen-Hurwitz sea muy sencillo. Sin embargo, esta varianza se puede escribir de varias formas, algunas de ellas muy útiles para el desarrollo teórico de las propiedades del estimador.

Resultado 2.2.15. De manera general, la varianza del estimador de Hansen-Hurwitz se puede escribir de la siguiente manera

$$Var(\hat{t}_{y,p}) = \frac{1}{m} \left(\sum_{k=1}^{N} \frac{y_k^2}{p_k} - t_y^2 \right)$$
 (2.2.36)

Prueba.

$$Var(\hat{t}_{y,p}) = \frac{1}{m} \sum_{k=1}^{N} p_k \left(\frac{y_k}{p_k} - t_y\right)^2$$

$$= \frac{1}{m} \sum_{k=1}^{N} p_k \left(\frac{y_k^2}{p_k^2} - 2t_y \frac{y_k}{p_k} + t_y^2\right)$$

$$= \frac{1}{m} \sum_{k=1}^{N} \left(\frac{y_k^2}{p_k} - 2t_y y_k + p_k t_y^2\right)$$

$$= \frac{1}{m} \left(\sum_{k=1}^{N} \frac{y_k^2}{p_k} - 2t_y \sum_{k=1}^{N} y_k + t_y^2 \sum_{k=1}^{N} p_k\right)$$

$$= \frac{1}{m} \left(\sum_{k=1}^{N} \frac{y_k^2}{p_k} - 2t_y^2 + t_y^2\right) = \frac{1}{m} \left(\sum_{k=1}^{N} \frac{y_k^2}{p_k} - t_y^2\right)$$

Estimación de la varianza

Resultado 2.2.16. Un estimador insesgado de la expresión (2.2.35) es

$$\widehat{Var}(\hat{t}_{y,p}) = \frac{1}{m(m-1)} \sum_{i=1}^{m} \left(\frac{y_i}{p_i} - \hat{t}_{y,p}\right)^2$$
(2.2.37)

Prueba. Al desarrollar la varianza del estimador llegamos a que ésta es igual a

$$\frac{1}{m}Var(Z_i).$$

Ahora, utilizando el resultado 2.2.11, como Z_1, \ldots, Z_m conforman una muestra aleatoria de variables con esperanza t_y e idéntica varianza, entonces un estimador natural e insesgado para la varianza de Z_i es

$$\frac{1}{m-1} \sum_{i=1}^{m} (Z_i - \bar{Z})^2 = \frac{1}{m-1} \sum_{i=1}^{m} \left(\frac{y_i}{p_i} - \hat{t}_{y,p} \right)^2$$

por tanto, un estimador insesgado de la varianza del estimador de Hansen-Hurwitz será

$$\widehat{Var}(\widehat{t}_{y,p}) = \frac{1}{m} \frac{1}{m-1} \sum_{i=1}^m \left(\frac{y_{k_i}}{p_{k_i}} - \widehat{t}_{y,p} \right)^2$$

Resultado 2.2.17. Una expresión alternativa para la estimación de la varianza del estimador de Hansen-Hurwitz en muestreo con reemplazo es

$$\widehat{Var}(\hat{t}_{y,p}) = \frac{1}{m(m-1)} \sum_{i=1}^{m} \left(\frac{y_{k_i}}{p_{k_i}} \right)^2 - m\hat{t}_{y,p}^2$$

Prueba. Partiendo del resultado anterior, se tiene que

$$\begin{split} m(m-1)\widehat{Var}(\hat{t}_{y,p}) &= \sum_{i=1}^{m} \left(\frac{y_{k_i}}{p_{k_i}} - \hat{t}_{y,p}\right)^2 \\ &= \sum_{i=1}^{m} \left(\frac{y_{k_i}^2}{p_{k_i}^2} - 2\hat{t}_{y,p} \frac{y_{k_i}}{p_{k_i}} + \hat{t}_{y,p}^2\right) \\ &= \sum_{i=1}^{m} \left(\frac{y_{k_i}^2}{p_{k_i}^2}\right) - 2\hat{t}_{y,p} \sum_{i=1}^{m} \frac{y_{k_i}}{p_{k_i}} + m\hat{t}_{y,p} \\ &= \sum_{i=1}^{m} \left(\frac{y_{k_i}^2}{p_{k_i}^2}\right) - 2m\hat{t}_{y,p}^2 + m\hat{t}_{y,p} \\ &= \sum_{i=1}^{m} \left(\frac{y_{k_i}}{p_{k_i}}\right)^2 - m\hat{t}_{y,p}^2 \end{split}$$

Aunque el diseño muestral sea con reemplazo, es posible utilizar el estimador de Horvitz-Thompson, pues conserva su insesgamiento. La comparación entre la precisión del estimador de Horvitz-Thompson y el estimador de Hansen-Hurwitz, en un diseño con repetición depende de la configuración de los valores de la característica de interés en la población $y_k \ \forall k=1,2,...,N$. Sin embargo, generalmente el estimador de Horvitz-Thompson es más eficiente más eficiente que el estimador de Hansen-Hurwitz, aunque éste último es más fácil de calcular. Cuando el diseño de muestreo es de tamaño fijo, el estimador de Horvitz-Thompson y Hansen-Hurwitz coinciden.

Ejemplo 2.2.3. Continuando con el ejercicio léxico-gráfico de la estimación del total poblacional t_y para todas las posibles muestras con reemplazo de tamaño 2 de la población U, tenemos la siguiente tabla que da cuenta del soporte de muestreo con ayuda de la función SupportWR

```
all.y <- SupportWR(N, n, y)
all.pk <- SupportWR(N, n, pk)
all.HH <- rep(0, 15)

for(k in 1:15){
   all.HH[k] <- HH(all.y[k,], all.pk[k,])
}

AllSamplesWR <- data.frame(QWR, all.pk, pWR, all.y, all.HH)</pre>
```

El vector Est contiene las estimaciones de Hansen-Hurwitz para cada una de las posibles 15 muestras con reemplazo, su esperanza se calcula como

```
sum(all.HH * pWR)
## [1] 236
```

Nótese que la esperanza del estimador equivale al total de la característica de interés, corroborando su insesgamiento. Por otro lado, para seleccionar una muestra con reemplazo, R incorpora la función sample, cuyos principales argumentos son

x, size, replace, prob.

	1	2	3	4	5	6	7	8
1	Yves	Yves	0.25	0.25	0.06	32.00	32.00	128.00
2	Yves	Ken	0.25	0.25	0.13	32.00	34.00	132.00
3	Yves	Erik	0.25	0.12	0.06	32.00	46.00	248.00
4	Yves	Sharon	0.25	0.12	0.06	32.00	89.00	420.00
5	Yves	Leslie	0.25	0.25	0.13	32.00	35.00	134.00
6	Ken	Ken	0.25	0.25	0.06	34.00	34.00	136.00
7	Ken	Erik	0.25	0.12	0.06	34.00	46.00	252.00
8	Ken	Sharon	0.25	0.12	0.06	34.00	89.00	424.00
9	Ken	Leslie	0.25	0.25	0.13	34.00	35.00	138.00
10	Erik	Erik	0.12	0.12	0.02	46.00	46.00	368.00
11	Erik	Sharon	0.12	0.12	0.03	46.00	89.00	540.00
12	Erik	Leslie	0.12	0.25	0.06	46.00	35.00	254.00
13	Sharon	Sharon	0.12	0.12	0.02	89.00	89.00	712.00
14	Sharon	Leslie	0.12	0.25	0.06	89.00	35.00	426.00
15	Leslie	Leslie	0.25	0.25	0.06	35.00	35.00	140.00

Tabla 2.3: Estimaciones de Hansen-Hurwitz para todas las posibles muestras del ejemplo

 ${\bf x}$ es el tamaño de la población, size es un número entero que determina el tamaño de la muestra. Para seleccionar una muestra con reemplazo, el argumento replace debe tomar el valor TRUE, así replace = TRUE. Cada elemento perteneciente a la población debe tener asociado un vector de probabilidades de selección cuya suma sea igual a la unidad. En R, el argumento prob contiene este vector de probabilidades; cuando se omite este argumento, la función sample asume que las probabilidades de selección son idénticas para cada individuo en la población. Así, por ejemplo, para seleccionar una muestra con reemplazo del marco de muestreo de U de tamaño m=3, con las probabilidades de selección dadas por

```
pk
## [1] 0.25 0.25 0.12 0.12 0.25
```

Nótese que la suma de las probabilidades de selección es igual a uno y que los rótulos o nombres para cada individuo en la población están contenidos en el objeto U.

```
## [1] "Yves" "Ken" "Erik" "Sharon" "Leslie"
```

Para seleccionar una muestra con reemplazo de tamaño m=3 se debe escribir el siguiente código

```
sam <- sample(N, 3, replace=TRUE, prob = pk)
sam
## [1] 2 4 3</pre>
```

Para la selección anterior, fue escogido dos veces el primer elemento y una vez el tercer elemento. La indexación de los rótulos (nombres) y valores de la característica de interés de los elementos escogidos en la muestra se hace utilizando

```
pkm <- pk[sam]
pkm

## [1] 0.25 0.12 0.12

ym <- y[sam]
ym

## [1] 34 89 46</pre>
```

Nótese que el tamaño de muestra es 3, pero el tamaño efectivo de muestra es n(S)=2. Siendo pkm el vector de probabilidades de selección para los individuos pertenecientes a la muestra y ym el vector de valores de la característica de interés para los individuos pertenecientes a la muestra. La función HH del paquete TeachingSampling realiza la estimación del total poblacional para la característica de interés. Esta función consta de dos argumentos: y, el vector de valores de la característica de interés de los individuos en la muestra y pk sus correspondientes probabilidades de selección.

```
est <- HH(ym, pkm)[1]
est
## [1] 405
```

Para realizar la estimación de la varianza se crea un vector de diferencias dif entre $\frac{y_i}{p_i}$ y la estimación. Luego se procede a elevarlo al cuadrado, sumarlo y dividir por m(m-1).

```
dif <- rep(0, 3)
dif[1] <- (ym[1] / pkm[1]) - est
dif[2] <- (ym[2] / pkm[2]) - est
dif[3] <- (ym[3] / pkm[3]) - est

dif

## [1] -269 307 -37

Var <- (1 / 3) * (1 / 2) * sum(dif^2)
Var

## [1] 27996

sqrt(Var)

## [1] 167</pre>
```

Luego, el respectivo coeficiente de variación estimado es

$$cve(\hat{t}_p) = \frac{167.32}{405.33} \cong 41 \%$$

Nótese que utilizando la función HH, el resultado que arroja el procedimiento es el mismo.

```
HH(ym, pkm)

## y
## Estimation 405
## Standard Error 167
## CVE 41
```

Podemos pensar en el coeficiente de variación estimado como una medida de precisión. Así, las anteriores estimaciones se podrían decir inaceptables porque esta medida es muy alta.

El objetivo de este libro es que el lector esté en la capacidad de proponer estrategias de muestreo que permitan estimaciones precisas y confiables. Es decir, estimaciones cuyo coeficiente de variación sea aceptable⁷ cuya longitud del intervalo de confianza sea corta con un nivel de confianza satisfactorio.

2.2.3 El estimador de Horvitz-Thompson en los diseños con reemplazo

2.3 Muestras representativas

La teoría de muestreo se ha visto enriquecida en las últimas décadas por valiosos aportes a nivel mundial; aunque la base de la teoría de muestreo es la teoría de probabilidad, cuyo desarrollo axiomático cuenta varios centenares de años, su desarrollo práctico no sucedió sino hasta comienzos del siglo XX. Sin embargo, en la teoría clásica de inferencia estadística, basados en el pensamiento de Ronald Fisher y otros, asumen que la población es infinita. Un aspecto fundamental de la teoría de muestreo es que está basada en la realidad, en donde las poblaciones por más grandes que sean son de naturaleza finita.

Partiendo de este hecho es posible fundamentar la inferencia basada en una muestra aleatoria pero que proviene de una población finita y desde esta perspectiva los resultados de las inferencias diferirán de una manera significativa. De hecho, el llamado de atención es para que las personas que hacen inferencia con datos provenientes de un estudio por muestreo, se actualicen y no cometan grandes equivocaciones a la hora de presentar los resultados de la inferencia (Chambers & Skinner 2003). Por eso la teoría de muestreo cubre aspectos fundamentales de la estadística, porque desde un experimento controlado, hasta una encuesta por muestreo (Survey sampling), se debe pensar en el mecanismo de recolección de la información, y desde allí en la inferencia.

Un ejemplo común en las aulas de clase es describir la población en el tablero mediante una carita feliz, el profesor dice que una muestra representativa de la población es aquella muestra en donde se sigue viendo la misma carita feliz. Es decir, existe la creencia que una muestra representativa es un modelo reducido de la población y de aquí se desprende un argumento de validez sobre la muestra: una buena muestra es aquella que se parece a la población, de tal forma que las categorías aparecen con las mismas proporciones que en la población. Nada más falso que esta creencia. En algunos casos es fundamental sobre-representar algunas categorías o incluso seleccionar unidades con probabilidades desiguales.

Tillé (2006) cita el siguiente ejemplo: suponga que el objetivo es estimar la producción de hierro en un país y que nosotros sabemos que el hierro es producido, por dos compañías gigantes con miles de empleados y por cientos de pequeñas compañías con pocos empleados. ¿La mejor forma de seleccionar la muestra consiste en asignar la misma probabilidad a cada compañía? Claro que no. Primero averiguamos la producción de las grandes compañías. Después, seleccionamos una muestra de las compañías pequeñas.

La muestra no debe ser un modelo reducido de la población; debe ser una herramienta usada para obtener estimaciones. Es así como el concepto de muestra representativa pierde peso. Más aún, para

 $^{^7\}mathrm{En}$ muchos casos un coeficiente de variación aceptable es menor al 3 por ciento.

Hájek (1981), una estrategia de muestreo es una dupla: diseño de muestreo (distribución de probabilidad sobre todas las posibles muestras) y estimador. La teoría de muestreo se ha ocupado de estudiar estrategias óptimas que permitan asegurar la calidad de las estimaciones. Entonces, el concepto de representatividad debería estar asociado con las estrategias de muestreo y no sólo con las muestras.

Siguiendo con Tillé (2006), una estrategia se dice representativa si permite estimar un total poblacional exactamente; es decir, sin sesgo y con varianza nula. Si se utiliza, por ejemplo, el estimador de Horvitz-Thompson junto con un diseño de muestreo apropiado, esta estrategia es representativa sólo sí, junto con la muestra seleccionada, el estimador reproduce algunos totales de la población; tales muestras se llaman muestras balanceadas. Existen también, estimadores que brindan a la estrategia el calificativo de representativa, algunos de ellos son conocidos como estimadores de calibración.

2.4 Ejercicios

2.1 Pruebe que bajo un diseño de muestreo p(s), el error cuadrático medio de cualquier estimador $\hat{T}(s)$ de un parámetro T es igual a la varianza $Var(\hat{T})$ más el sesgo al cuadrado $B^2(\hat{T})$.

Sugerencia:
$$ECM\left(\hat{T}\right) = E_p\left(\hat{T}(s) - T\right)^2 = \sum_{s \in Q} \left(\hat{T}(s) - T\right)^2 p(s)$$
.

- 2.2 Demuestre que $\pi_{kl} = E_p(I_k(s)I_l(s))$.
- 2.3 Suponga que tiene acceso a la población finita de tamaño N=5 del ejemplo 2.2.1. y asuma el siguiente diseño de muestreo sin reemplazo

$$p(S=s) = \begin{cases} 0.2, & \text{para } s = \{Ken, Erik, Sharon\}, \ s = \{Ken, Leslie\}, \\ 0.3, & \text{para } s = \{Yves, Erik, Leslie\}, \ s = \{Yves, Sharon\}, \\ 0, & \text{En otro caso.} \end{cases}$$

- Calcule todas las probabilidades de inclusión de primer y de segundo orden.
- ¿Es el anterior un diseño de muestreo de tamaño de muestra fijo? Explique.
- Enumere todos los valores que toma la variable aleatoria n(S) y verifique las relaciones $E_p(n(S)) = \sum_U \pi_k$ y $Var_p(n(S)) = \sum_U \pi_k (\sum_U \pi_k)^2 + \sum_{k \neq l} \pi_{kl}$.
- 2.4 Suponga que tiene acceso a la población finita de tamaño N=5 del ejemplo 2.2.1. y asuma el siguiente diseño de muestreo sin reemplazo

$$p(S=s) = \begin{cases} 0.1, & \text{Si } n(S) = 3, \\ 0, & \text{En otro caso.} \end{cases}$$

- Defina todas las posibles muestras que pertenecen al soporte inducido por el anterior diseño de muestreo.
- Calcule todas las probabilidades de inclusión de primer y de segundo orden.
- Verifique que $\sum_{U} \pi_k = 3$ y que $\sum_{U} \pi_k (\sum_{U} \pi_k)^2 + \sum_{k \neq l} \pi_{kl} = 0$. Explique.
- Verifique que $\sum_{U} \pi_{k1} = 3 \times \pi_1$, $\sum_{U} \pi_{k2} = 3 \times \pi_2$, hasta $\sum_{U} \pi_{k5} = 3 \times \pi_5$.
- Calcule todas las posibles covarianzas Δ_{kl} y verifique que $\sum_{U} \Delta_{k1} = 0$, hasta $\sum_{U} \Delta_{k5} = 0$.
- 2.5 Demuestre o refute la siguiente afirmación: «Bajo cualquier diseño de muestreo, la suma poblacional de las probabilidades de inclusión de primer orden es siempre igual al tamaño de muestra».
- 2.6 Demuestre o refute la siguiente afirmación: «Bajo cualquier diseño de muestreo, el estimador de Horvitz-Thompson puede ser utilizado para obtener una estimación insesgada del total poblacional».

2.4. Ejercicios 59

2.7 Suponga que tiene acceso a la población finita de tamaño N=5 del ejemplo 2.2.1 y que y_k denota el valor de la característica de interés en el k-ésimo individuo. De esta manera, se tiene que:

$$y_{Yves} = 32$$
, $y_{Ken} = 34$, $y_{Erik} = 46$, $y_{Sharon} = 89$, $y_{Leslie} = 35$

- Para el diseño de muestreo del ejercicio 2.3, en cada una de las posibles muestras calcule la estimación de Horvitz-Thompson, la estimación de la varianza, el *cve* y la estimación del intervalo de confianza al 95 %. Por último, muestre que el estimador es insesgado y calcule la varianza del estimador utilizando la expresión (2.2.4).
- Para el diseño de muestreo del ejercicio 2.4, en cada una de las posibles muestras calcule la estimación de Horvitz-Thompson, la estimación de la varianza, el *cve* y la estimación del intervalo de confianza al 95 %. Por último, muestre que el estimador es insesgado y calcule la varianza del estimador utilizando la expresión (2.2.4) y (2.2.5). ¿Son iguales estas varianzas? Explique.
- Para el diseño de muestreo del ejercicio 2.3, en cada una de las posibles muestras calcule la estimación de Horvitz-Thompson de la media (expresión 2.2.10), la estimación del tamaño poblacional (expresión 2.2.14), la estimación alternativa de la media (expresión 2.2.15) y la estimación alternativa del total (expresión 2.2.18).
- Para el diseño de muestreo del ejercicio 2.4, en cada una de las posibles muestras calcule la estimación de Horvitz-Thompson de la media (expresión 2.2.10), la estimación del tamaño poblacional (expresión 2.2.14), la estimación alternativa de la media (expresión 2.2.15) y la estimación alternativa del total (expresión 2.2.18).
- 2.8 Demuestre o refute la siguiente afirmación: «Bajo cualquier diseño de muestreo con reemplazo, el estimador de Hansen-Hurwitz puede ser utilizado para obtener una estimación insesgada del total poblacional».
- 2.9 Demuestre o refute la siguiente afirmación: «La probabilidad de selección de un individuo es siempre igual a su probabilidad de inclusión».
- 2.10 Demuestre o refute la siguiente afirmación: «Cualquier diseño de muestreo con reemplazo se puede ver com un caso particular de la distribución multinomial».
- 2.11 Demuestre o refute la siguiente afirmación: «Para una población de tamaño N, el número de posibles muestras con reemplazo de tamaño m es N^m ».
- 2.12 Suponga que tiene acceso a la población finita de tamaño N=5 de los anteriores ejercicios y asuma las siguientes probabilidades de selección

$$p_k = \begin{cases} 0.3, & \text{para } k = Yves, Leslie, \\ 0.2, & \text{para } k = Erik, \\ 0.1, & \text{para } k = Ken, Sharon. \end{cases}$$

- ¿Cuántas muestras con reemplazo de tamaño m=3 se pueden seleccionar? Especifique explícitamente el diseño de muestreo para estas muestras y compruebe que $\sum_{s\in Q} p(s)=1$.
- Para este diseño de muestreo, y teniendo en cuenta los valores de la característica de interés del ejercicio 2.7, en cada una de las posibles muestras calcule la estimación de Hansen-Hurwitz, la estimación de la varianza, el *cve* y la estimación del intervalo de confianza al 95 %. Por último, muestre que el estimador es insesgado y calcule la varianza del estimador utilizando la expresión (2.2.35).
- ¿Es posible utilizar otro tipo de estimadores para obtener estimaciones insesgadas del total poblacional?
- 2.13 Demuestre rigurosamente que el estimador de la varianza del estimador de Hansen-Hurwitz corresponde a la expresión (2.2.36).

Capítulo 3

Muestras con probabilidades simples

Las muestras no están dadas, las muestras deben ser seleccionadas, asignadas o capturadas. El tamaño de la muestra no siempre es fijo. En estudios por muestreo, el tamaño de muestra es casi siempre una variable aleatoria. Los datos no siempre son independientes o idénticamente distribuidos y usualmente no son seleccionados de una sola población, sino de sub-poblaciones compuestas o complementarias. Más aún, no se produce una sola estimación, se produce un conjunto de estimaciones. Así que la historia que siempre nos han contado está equivocada.

Leslie Kish en Frankel & King (1996)

Cuando el marco de muestreo disponible para la selección de la muestra es una lista conteniendo la identificación y la ubicación de los elementos en la población, se utilizan diseños de muestreo que permitan la inclusión de éstos en la muestra de forma directa. Es decir, en la selección de la muestra, los elementos poblacionales son las mismas unidades de muestreo. Una vez que el procedimiento de muestreo ha seleccionado la muestra de elemento, el siguiente paso a realizar es la medición de la característica de interés y_k en cada elemento de la muestra seleccionada ($k \in s$).

En este capítulo se describen los diseños de muestreo para elementos más importantes, algunos de los cuales son ampliamente utilizados en la práctica, otros tienen la característica de ser de tamaño de muestra variable o aleatorio. Cuando el marco de muestreo contiene información auxiliar de tipo continuo para cada elemento de la población, se utilizará esta información en la selección de la muestra, induciendo los diseños proporcionales al tamaño. Cuando el marco de muestreo contiene información auxiliar discreta, se utilizarán diseños de muestra estratificados que permiten, a menudo, mayor precisión cuando la característica de interés presenta comportamientos diferentes en cada estrato o grupo poblacional.

Para cada diseño de muestreo se realiza una descripción teórica, se utilizará la población U para realizar algunos ejercicios léxico-gráficos que describan el comportamiento de la estrategia de muestreo. Por otro lado, se utilizará la población Lucy y, con ayuda del paquete TeachingSampling, se seleccionará una única muestra para la posterior estimación de los parámetros de interés. También habrá ejemplos prácticos de la vida real que permiten una mayor comprensión de las características del diseño y un mayor conocimiento a la hora de decidir qué diseño de muestreo debe see implementado en determinados casos.

Las estrategias de muestreo implementadas en este capítulo corresponden a la utilización del estimador de Horvitz-Thompson junto con diseños de muestreo sin reemplazo y/o al uso del estimador de Hansen-Hurwitz en diseños de muestra con reemplazo.

3.1 Muestreo aleatorio simple sin reemplazo

El muestreo aleatorio simple puede ser visto como la forma más básica de selección de muestras. Supone la existencia de homogeneidad en los valores poblacionales de la característica de interés. Partiendo de esta asunción, este diseño provee probabilidades de selección idénticas para cada una de las posibles muestras pertenecientes al soporte Q. Lohr (2000) cita un ejemplo al respecto del uso del diseño de muestreo aleatorio simple diciendo que, cuando la población es homogénea, el investigador no necesita examinar todos los elementos de la población así como el encargado del análisis médico no necesita obtener toda la sangre para medir la cantidad de glóbulos rojos.

Una muestra aleatoria simple sin reemplazo de tamaño n se elige de modo que cada posible muestra realizada de tamaño n tenga la misma probabilidad de ser seleccionada. A diferencia del diseño de muestreo Bernoulli, el diseño de muestreo aleatorio simple sin reemplazo tiene la característica de ser de tamaño fijo. Una muestra aleatoria simple con reemplazo, de tamaño m de una población de N elementos es la extracción de m muestras independientes de tamaño 1, en donde cada elemento se extrae de la población con la misma probabilidad.

Lehtonen & Pahkinen (2003) afirman que este diseño de muestreo no es muy común en la práctica y básicamente desempeña dos funciones. Primero, plantean una línea de comparación de la eficiencia relativa con otros diseños de muestreo. Segundo, dentro de los diseños de muestreo más sofisticados como diseños de muestreo estratificado o diseños de muestreo por conglomerados, el muestreo aleatorio simple puede ser utilizado como un método final de selección de unidades primarias.

Definición 3.1.1. Un diseño de muestreo se dice aleatorio simple sin reemplazo si todas las posibles muestras de tamaño n tienen la misma probabilidad de ser seleccionadas. Así,

$$p(s) = \begin{cases} \frac{1}{\binom{N}{n}} & \text{si } \#s = n\\ 0 & \text{en otro caso} \end{cases}$$
 (3.1.1)

Resultado 3.1.1. Definiendo a Q como el soporte que contiene a todas las posibles muestras de tamaño n, existen $\binom{N}{n}$ muestras pertenecientes a Q. En otras palabras,

$$\#(Q) = \binom{N}{n}$$

Nótese que $\sum_{s \in Q} p(s) = 1$ porque $\#Q = \binom{N}{n}$.

3.1.1 Algoritmos de selección

Durante muchos años, la teoría de muestreo se centró en la parte de la extracción de muestras aleatorias, más que en la construcción de los estimadores. Con la gran ventaja de los nuevos procesadores, lo anterior pasa a un segundo plano. A continuación se presentan dos métodos de selección de una muestra aleatoria simple de tamaño n de una población de tamaño N. Existen bastantes métodos de selección de una muestra aleatoria sin reemplazo, en esta sección se abordan dos algoritmos de selección. El primero da una asunción más simple, y puede ser comparado con el conocido método de la extracción de una balota; sin embargo, Tillé (2006) afirma que este método es ineficiente computacionalmente. El segundo método basado en un algoritmo secuencial, permite la selección de la muestra con una sola revisión del marco de muestreo.

Método coordinado negativo

Sunter (1977) ha probado que el siguiente método de ordenamiento aleatorio arroja como resultado una muestra aleatoria simple. Para extraer la muestra de tamaño n de un universo de N objetos,

- 1. Generar N realizaciones de una variable aleatoria ξ_k $(k \in U)$ con distribución uniforme (0,1).
- 2. Asignar ξ_k al elemento k-ésimo de la población.
- 3. Ordenar la lista de elementos descendente (o ascendentemente) con respecto a este número aleatorio ξ_k .
- 4. A continuación, seleccionar los n primeros (o los n últimos) elementos. Esta selección corresponde a la muestra realizada.

Es necesario tener la seguridad de que exista un número grande de décimas en cada ξ_k para evitar problemas de empates (números aleatorios repetidos).

Método de selección y rechazo

Fan, Muller & Rezucha (1962) implementaron el siguiente algoritmo de muestreo secuencial (porque se recorre el marco de muestreo, elemento por elemento, y se decide la pertenencia o el rechazo del objeto en la muestra). Es interesante que, más tarde Bebbington (1975) trece años más tarde publica (en un artículo de una página) el mismo método, aunque sin escribir ninguna fórmula.

En general se supone que el marco de muestreo tiene N individuos, y se quiere seleccionar una muestra aleatoria de n individuos. Así, para el individuo k (k = 1, 2, ..., N), se tiene que

- 1. Realizar $\xi_k \sim U(0,1)$
- 2. Calcular

$$c_k = \frac{n - n_k}{N - k + 1}$$

donde n_k es la cantidad de objetos seleccionados en los k-1 ensayos anteriores.

- 3. Si $\xi_k < c_k$, entonces el elemento k pertenece a la muestra.
- 4. Detener el proceso cuando $n = n_k$.

Dado que este algoritmo se detiene cuando $n = n_k$, resulta muy eficiente porque asegura una muestra aleatoria simple y en algunas ocasiones no se requiere recorrer todo el marco de muestreo.

Ejemplo 3.1.1. Para seleccionar muestras aleatorias simples, R incorpora la función sample. Ésta, por defecto selecciona muestras sin reemplazo. Así, por ejemplo, para seleccionar una muestra aleatoria de tamaño n = 2, de la población de ejemplo U de tamaño N = 5, sin reemplazo se tiene

```
N <- length(U)
sam <- sample(N, 2, replace=FALSE)
U[sam]
## [1] "Sharon" "Leslie"</pre>
```

El algoritmo de selección y rechazo está implementado en la función S.SI del paquete TeachingSampling cuyos argumentos son el tamaño de la población N, el tamaño de muestra deseado n y un vector de números aleatorios e que, por defecto, se asigna mediante la generación de N realizaciones de una variable aleatoria con distribución uniforme en el intervalo]0,1[.

Para seleccionar una muestra aleatoria sin reemplazo de tamaño n=2 por el método de selección y rechazo, de la población de ejemplo U de tamaño N=5, sólo basta digitar el siguiente código.

```
sam \leftarrow S.SI(N, 2)
U[sam]
## [1] "Erik"
                   "Sharon"
```

Nótese que el resultado de la función S.SI es un vector de índices, que aplicados al identificador resulta en una muestra seleccionada que está conformada por los elementos Erik y Leslie.

La siguiente salida muestra cada uno de los N=5 pasos del algoritmo. Los números aleatorios que se utilizaron están en la columna llamada ek y los índices de la muestra seleccionada están en la columna sam.

k	Nombre	ek	ck	nk	sam
1	Yves	0.4938	0.4000000	0	0
2	Ken	0.7044	0.5000000	0	0
3	Erik	0.4585	0.6666667	1	3
4	Sharon	0.6747	0.5000000	1	0
5	Leslie	0.8565	1.0000000	2	5

Resultado 3.1.2. El diseño de muestreo Bernoulli coincide con el diseño de muestreo aleatorio simple sin reemplazo cuando el tamaño de muestra se considera fijo e igual a n.

Prueba. Utilizando las propiedades de la probabilidad condicional se tiene que

$$\begin{split} Pr(S = s | n(S) = n) &= \frac{Pr(S = s \ y \ n(S) = n)}{Pr(n(S) = n)} \\ &= \frac{\pi^n (1 - \pi)^{N - n}}{\binom{N}{n} \pi^n (1 - \pi)^{N - n}} = \frac{1}{\binom{N}{n}} \end{split}$$

el cual coincide con la expresión (3.2.1).

Una consecuencia inmediata del anterior resultado es que otro método de selección de muestras para un diseño de muestreo Bernoulli es escoger aleatoriamente el tamaño de muestra de acuerdo a una distribución binomial $Bin(N,\pi)$ y luego seleccionar una muestra mediante uno de los anteriores algoritmos de selección de muestras aleatorias simples sin reemplazo (Tillé 2006).

El estimador de Horvitz-Thompson 3.1.2

Resultado 3.1.3. Para un diseño de muestreo aleatorio simple, las probabilidades de inclusión de primer y segundo orden están dadas por:

$$\pi_k = \frac{n}{N} \tag{3.1.2}$$

$$\pi_k = \frac{n}{N}$$
(3.1.2)
$$\pi_{kl} = \frac{n(n-1)}{N(N-1)}$$
(3.1.3)

respectivamente. La covarianza de las variables indicadoras está dada por

$$\Delta_{kl} = \begin{cases} \pi_{kl} - \pi_k \pi_l = -\frac{n}{N^2} \frac{(N-n)}{(N-1)} & \text{para } k \neq l \\ \pi_k (1 - \pi_k) = \frac{n(N-n)}{N^2} & \text{para } k = l \end{cases}$$
(3.1.4)

Prueba. Recurriendo a la definición de probabilidad de inclusión de primer orden, se tiene que

$$\pi_k = Pr(I_k(S) = 1)$$

$$= \frac{\binom{1}{1}\binom{N-1}{n-1}}{\binom{N}{n}} = \frac{n}{N}$$

por otro lado,

$$\begin{aligned} \pi_k l &= Pr(k \in S \ y \ l \in s) \\ &= Pr(I_k(S) = 1 \ y \ I_l(S) = 1) \\ &= Pr(I_k(S) = 1 | I_l(S) = 1) Pr(I_l(s) = 1) \\ &= \frac{n-1}{N-1} \frac{n}{N} = \frac{n(n-1)}{N(N-1)} \end{aligned}$$

Resultado 3.1.4. Para un diseño de muestreo aleatorio simple, el estimador de Horvitz-Thompson del total poblacional t_y , su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,\pi} = \frac{N}{n} \sum_{S} y_k \tag{3.1.5}$$

$$Var_{MAS}(\hat{t}_{y,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{yU}^2$$
 (3.1.6)

$$\widehat{Var}_{MAS}(\hat{t}_{y,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{yS}^2$$
 (3.1.7)

respectivamente, con

$$S_{yU}^2 = \frac{1}{N-1} \sum_{k \in U} (y_k - \bar{y}_U)^2, \tag{3.1.8}$$

la varianza poblacional de la característica de interés en el universo U y con

$$S_{yS}^2 = \frac{1}{n-1} \sum_{k \in S} (y_k - \bar{y}_S)^2$$
 (3.1.9)

la varianza muestral de los valores de la característica de interés en la muestra aleatoria S. Además, $\bar{y}_S = \frac{\sum_S y_k}{n}$. Por otro lado, nótese que $\hat{t}_{y,\pi}$ es insesgado para el total poblacional t_y de la característica de interés y, y que $\widehat{Var}_{MAS}(\hat{t}_{y,\pi})$ es insesgado para $Var_{MAS}(\hat{t}_{y,\pi})$.

Prueba. Por el resultado anterior, tenemos

$$\hat{t}_{y,\pi} = \sum_{S} \frac{y_k}{\pi_k} = \frac{N}{n} \sum_{S} y_k. \tag{3.1.10}$$

La demostración de las varianzas es inmediata al reemplazar las cantidades apropiadas en la expresión genérica del capítulo anterior y teniendo en cuenta que

$$\sum_{k \neq l} y_k y_l = \sum_{k = l} \sum_{l} y_k y_l - \sum_{k = l} \sum_{k = l} y_k y_l = \left(\sum_{l} y_k\right)^2 - \sum_{l} y_k^2$$

De tal forma que,

$$\begin{aligned} Var(\hat{t}_{y,\pi}) &= \frac{N^2}{n^2} Var\left(\sum_{U} I_k(s) y_k\right) \\ &= \frac{N^2}{n^2} \left(\sum_{U} Var(I_k(s)) y_k^2 + \sum_{k \neq l} Cov\left(I_k(S), I_l(s)\right) y_k y_l\right) \\ &= \frac{N^2}{n^2} \left(\frac{n(N-n)}{N^2} \sum_{U} y_k^2 - \frac{n}{N^2} \frac{(N-n)}{(N-1)} \sum_{k \neq l} y_k y_l\right) \\ &= \frac{(N-n)}{n} \left(\sum_{U} y_k^2 - \frac{1}{N-1} \sum_{k \neq l} y_k y_l\right) \\ &= \frac{(N-n)}{n} \frac{1}{N-1} \left((N-1) \sum_{U} y_k^2 - \left[\left(\sum_{U} y_k\right)^2 - \sum_{U} y_k^2\right]\right) \\ &= \frac{N(N-n)}{n} \frac{1}{N-1} \left(\sum_{U} y_k^2 - \frac{(\sum_{U} y_k)^2}{N}\right) \\ &= \frac{N^2}{n} \left(1 - \frac{n}{N}\right) S_{yU}^2 \end{aligned}$$

Para demostrar el insesgamiento de la varianza estimada es suficiente demostrar que S_{ys}^2 es insesgado para S_{uU}^2 .

$$\begin{split} E(S_{yS}^2) &= E\left(\frac{1}{n-1}\left[\sum_{S}y_k^2 - n\bar{y}_S^2\right]\right) \\ &= \frac{1}{n-1}\left(E\left[\sum_{S}y_k^2\right] - nE\left[\frac{\hat{t}_{y,\pi}}{N}\right]^2\right) \\ &= \frac{1}{n-1}\left(\frac{n}{N}\left[\sum_{U}y_k^2\right] - \frac{n}{N^2}E\left[\hat{t}_{y,\pi}\right]^2\right) \\ &= \frac{1}{n-1}\left(\frac{n}{N}\left[\sum_{U}y_k^2\right] - \frac{n}{N^2}\left[\frac{N^2}{n}\left(1 - \frac{n}{N}\right)S_{yU}^2 - t_y^2\right]\right) \\ &= \frac{n}{n-1}\left(\frac{1}{N}\left[\sum_{U}y_k^2\right] - \frac{1}{n}\left(1 - \frac{n}{N}\right)S_{yU}^2 - \frac{t_y^2}{N^2}\right) \\ &= \frac{n}{n-1}\left(\frac{N-1}{N}S_{yU}^2 - \frac{N-n}{nN}S_{yU}^2\right) \\ &= S_{yU}^2 \end{split}$$

En donde se utilizó el hecho de que $\bar{y}_S = \frac{\hat{t}_{y,\pi}}{N}$ y además

$$E(\hat{t}_{y,\pi})^2 = Var(\hat{t}_{y,\pi}) - t_y^2$$

Ejemplo 3.1.2. Para nuestra población de ejemplo U, existen $\binom{5}{2} = 10$ posibles muestras de tamaño n = 2. Realice el cálculo léxico-gráfico del estimador de Horvitz-Thompson y compruebe el insesgamiento y la varianza.

3.1.3 Estimación de la media poblacional

Resultado 3.1.5. Para un diseño de muestreo aleatorio simple, el estimador de Horvitz-Thompson para la media poblacional \bar{y}_U , su varianza y su varianza estimada están dados por:

$$\hat{\bar{y}}_{\pi} = \frac{\hat{t}_{y,\pi}}{N} = \frac{\sum_{S} y_k}{n} = \bar{y}_S \tag{3.1.11}$$

$$Var_{MAS}(\hat{y}_{\pi}) = \frac{1}{N^2} Var(\hat{t}_{y,\pi}) = \left(1 - \frac{n}{N}\right) \frac{S_{yU}^2}{n}$$
 (3.1.12)

$$\widehat{Var}_{MAS}(\hat{y}_{\pi}) = \frac{1}{N^2} Var(\hat{t}_{y,\pi}) = \left(1 - \frac{n}{N}\right) \frac{S_{ys}^2}{n}$$
(3.1.13)

respectivamente, con S_{yU}^2 y S_{ys}^2 el estimador de la varianza de los valores de la característica de interés y en el universo y en la muestra. Nótese que $\hat{t}_{y,\pi}$ es insesgado para el total poblacional t_y de la característica de interés y, y que $\widehat{Var}_{MAS}(\hat{t}_{y,\pi})$ es insesgado para $Var_{MAS}(\hat{t}_{y,\pi})$.

Nótese que la construcción, cálculo y estimación de la varianza son muy intuitivas. Haciendo un símil con la inferencia clásica, suponga que tenemos una muestra aleatoria X_1, \ldots, X_n i.i.d., tal que $X_i \sim (\mu, \sigma^2)$. Se sabe que un estimador insesgado para la media μ es \bar{X} , además se sabe que la variación de este estimador es $\frac{\sigma^2}{n}$.

Al operador $\left(1-\frac{n}{N}\right)$ se le conoce con el nombre de factor de corrección para poblaciones finitas. Sólo existe una sola muestra que contiene a todos los elementos de la población, por tanto, si esa muestra es seleccionada, esperamos que no haya variación en el estimador pues reproducirá con exactitud al parámetro, por tanto la varianza del mismo se debe anular. Entre más grande sea el tamaño de muestra n, al utilizar un diseño de muestreo aleatorio simple, la variabilidad de las estimaciones se debe hacer más pequeña dado que la muestra tenderá a parecerse más a la población finita. Lohr (2000) afirma que el tamaño de muestra es el que determina la precisión de las estimaciones (no así, el porcentaje de la población muestreada):

Si su sopa está bien revuelta, sólo necesita dos o tres cucharadas para probar el sazón, así tenga uno o veinte litros de sopa. Una muestra de tamaño n=100 de una población de N=100mil elementos, tiene casi la misma precisión que una muestra de tamaño n=100 de una población de N=100millones de elementos:

1. Para el primer caso,
$$Var_{MAS}(\hat{y}_{\pi}) = \frac{99900}{100000} \frac{S_{yU}^2}{100} = 0.999 \frac{S_{yU}^2}{100}$$

2. Para el último caso,
$$Var_{MAS}(\hat{y}_{\pi}) = \frac{9999900}{100000000} \frac{S_{yU}^2}{100} = 0.999999 \frac{S_{yU}^2}{100}$$

Tamaño de muestra

Bajo muestreo aleatorio simple sin reemplazo, un intervalo de confianza de $100(1-\alpha)$ % para la media de la población es:

$$\left[\bar{y}_{S} - z_{1-\alpha/2}\sqrt{\left(1 - \frac{n}{N}\right)} \frac{S_{yU}}{\sqrt{n}}, \bar{y}_{S} + z_{1-\alpha/2}\sqrt{\left(1 - \frac{n}{N}\right)} \frac{S_{yU}}{\sqrt{n}}\right]$$
(3.1.14)

y como usualmente no se conoce $S_{y_U}^2$, lo usual es sustituirlo por el valor muestral $S_{y_s}^2$. Por lo general, sólo los investigadores del estudio pueden decidir sobre la precisión mínima del mismo. Ésta se expresa como:

$$Pr(|\bar{y}_S - \bar{y}_U| \le c) = 1 - \alpha$$

Por tanto, la cantidad a minimizar es c,

$$c = z_{1-\alpha/2} \sqrt{\left(1 - \frac{n}{N}\right)} \frac{S_{yU}}{\sqrt{n}}$$
 (3.1.15)

y despejando n, se tiene:

$$n \ge \frac{n_0}{1 + \frac{n_0}{N}} \tag{3.1.16}$$

con $n_0 = \frac{z_{1-\alpha/2}^2 S_{y_U}^2}{c^2}$. La desigualdad se tiene porque cuando se aumenta el tamaño de muestra, c decrece su valor. En algunas ocasiones se quiere lograr una precisión relativa dada por:

$$P\left(\left|\frac{\bar{y}_S - \bar{y}_U}{\bar{y}_U}\right| \le c\right) = 1 - \alpha$$

que se puede escribir equivalentemente como:

$$P(|\bar{y}_S - \bar{y}_U| \le c|\bar{y}_U|) = 1 - \alpha$$

la cantidad a minimizar es:

$$c|\bar{y}_U| = z_{1-\alpha/2} \sqrt{\left(1 - \frac{n}{N}\right)} \frac{S_{yU}}{\sqrt{n}}$$
 (3.1.17)

y despejando n, se tiene:

$$n \ge \frac{k_0}{1 + \frac{k_0}{N}} \tag{3.1.18}$$

con $k_0 = \frac{z_{1-\alpha/2}^2 S_{yU}^2}{\bar{y}_U^2 c^2} = \frac{z_{1-\alpha/2}^2 C V^2}{c^2}$. La desigualdad se tiene porque cuando se aumenta el tamaño de muestra, $c|\bar{y}_U|$ decrece su valor.

Bajo un diseño aleatorio simple, un intervalo de confianza del $100(1-\alpha\%)$ para la media poblacional \bar{y}_U puede ser escrito como

$$\bar{y}_S(1 \pm A) \tag{3.1.19}$$

Donde A está dada por

$$A = z_{1-\alpha/2} \sqrt{\left(1 - \frac{n}{N}\right)} \frac{S_{ys}}{\sqrt{n}\bar{y}_S} = z_{1-\alpha/2} \sqrt{\left(1 - \frac{n}{N}\right)} \frac{cv}{\sqrt{n}}$$

$$(3.1.20)$$

Asumiendo que $CV \doteq cv$ y que $\frac{n}{N}$ es una cantidad despreciable, podemos determinar un tamaño de muestra para mantener una precisión dada. Por tanto A se reescribe como

$$A \doteq z_{1-\alpha/2} \frac{CV}{\sqrt{n}}$$

y despejando n, tenemos que

$$n \geq z_{1-\alpha/2}^2 \frac{CV^2}{A^2}$$

Con un nivel de confianza del $\alpha=5\,\%$, asumiendo que el coeficiente de variación estimado converge al coeficiente de variación poblacional y que la fracción de muestreo es despreciable para obtener una precisión $A<3\,\%$ si a) CV=0.5, el tamaño de muestra debe ser mayor que 1067 unidades; b) CV=1.0, el tamaño de muestra debe ser mayor que 4268 unidades y c) CV=1.5, el tamaño de muestra debe ser mayor que 9604 unidades. Es decir, entre más dispersa sea la población, con respecto a la media, mayor debe ser el tamaño de muestra para conseguir una precisión dada.

Para poder utilizar las anteriores fórmulas es necesario contar un buen tamaño de muestra, dado que el teorema central del límite clásico (universo infinito) no es el mismo que se ha aplicado aquí. Hájek (1960) demuestra que al utilizar muestreo aleatorio simple (universo finito) y bajo ciertas condiciones de regularidad conocidas como las condiciones de Noether y si n, N, y N-n son grandes, es decir la fracción muestral f=n/N se aleja de 0 y de 1, entonces

$$\frac{\bar{y}_S - \bar{y}_U}{\sqrt{\left(1 - \frac{n}{N}\right)} \frac{S_{yU}}{\sqrt{n}}} \longrightarrow Normal(0, 1)$$

Cuando se quiere establecer un intervalo de confianza, la confiabilidad del intervalo está garantizada por el insesgamiento del estimador de Horvitz-Thompson. Para asegurar determinada precisión es necesario conocer la varianza poblacional de la característica de interés o el coeficiente de variación del estimador; en estos términos, cuando el coeficiente de variación estimado (cve) es menor del 3% es un caso excelente; entre el 3 y el 5% es bueno; entre el 5 y el 10% es regular; entre el 10 y 15% es apenas presentable; si es más del 15% no es considerado bueno; en este caso algunas agencias de estadísticas oficiales no presentan el coeficiente de variación, aunque se conozca.

Por supuesto, algunas cantidades poblacionales necesarias para estimar el tamaño de muestra no se conocen; de hecho, si se conocieran, no habría necesidad de realizar estudio alguno, porque directamente se conocerían los parámetros poblacionales de interés. Lohr (2000) considera tres escenarios para realizar una estimación previa de los parámetros de interés:

- 1. Realizar una prueba piloto, unas cuantas entrevistas conforman la muestra piloto, seleccionada con el mismo diseño de muestreo genérico. En algunas ocasiones, este método además de servir para estimar las cantidades necesarias para establecer el tamaño de muestra, sirve para confrontar y calibrar el instrumento de medición, ya sea un cuestionario o un instrumento técnico.
- 2. Utilizar información a priori de estudios anteriores. No siempre el investigador que realiza un estudio por muestreo ha sido el primero en cuestionarse acerca de los objetivos de la investigación. Si esto es así, existen referencias bibliográficas disponibles, en donde se pueden hallar estimaciones de la varianza poblacional o del error estándar. Esta última medida tiende a ser más estable contra el tiempo o posición geográfica.
- 3. Estimar la varianza ajustando una distribución teórica a la característica de interés. Ospina (2001) afirma que este ajuste se hace con base en supuestos adecuados acerca de la estructura poblacional de la característica de interés (normal, exponencial, uniforme, etc.). La identificación de una distribución apropiada permite hacer uso de sus propiedades para obtener una estimación más realista de la varianza. Cuando el desconocimiento es absoluto, se recomienda utilizar la distribución uniforme. Wu (2003) afirma que las características de interés en poblaciones económicas son sesgadas a la derecha y tienden a ser modeladas mediante distribuciones como la Gamma o la Ji cuadrado.

3.1.4 Estimación en dominios

El primer caso concerniente a la estimación de subgrupo poblacionales es el de las sub-poblaciones llamadas dominios. En muchas investigaciones es necesario llevar a cabo estimaciones sobre la población

en general, y también sobre subgrupos de ella (denominados dominios por la subcomisión en muestreo de las Naciones Unidas). La identificación de los dominios se logra una vez la información de los elementos ha sido registrada. Los dominios tienen que cumplir las siguientes características:

- 1. Ningún elemento de la población puede pertenecer a dos dominios.
- 2. Todo elemento de la población debe pertenecer a un único dominio.
- 3. La reunión de todos los dominios es la población del estudio.

Por ejemplo, al estimar el total de la fuerza laboral en empresas con menos de dos años de funcionamiento. Claramente la población se divide en dos dominios; el primero concerniente a las empresas con menos de dos años de funcionamiento y el segundo dado por las empresas con dos años o más de funcionamiento.

Definición 3.1.2. Un dominio U_d es una sub-población específica o subgrupo poblacional que cumple las siguientes condiciones:

- 1. $U_d \subset U$, tal que $U = \bigcup_{d=1}^D U_d$
- 2. Si $k \in U_l$, entonces $k \notin U_d$ para $d \neq l$
- 3. El número de elementos en el dominio U_d es N_d y es llamado tamaño absoluto del dominio.
- 4. La proporción de elementos en el dominio U_d con respecto al tamaño poblacional es $P_d = \frac{N_d}{N}$ y se conoce como **tamaño relativo** del dominio.

La estimación por dominios se caracteriza por el desconocimiento de la pertenencia de las unidades poblacionales al dominio. Es decir, para conocer cuáles unidades de la población pertenecen al dominio, es necesario realizar el proceso de medición.

Fue Hartley (1959) quien desarrolló y unificó la teoría de la estimación en dominios aplicable a cualquier diseño de muestreo. Durbin (1967) obtuvo resultados similares. Las pautas para la estimación en dominios se dan a continuación: para estimar el total de un dominio U_d , dado por

$$t_{yd} = \sum_{Ud} y_k \tag{3.1.21}$$

es necesario, en primer lugar construir una función indicadora z_{dk} , para cada elemento de la población, de la pertenencia del elemento al dominio, dada por la siguiente definición.

Definición 3.1.3. Sea z_{dk} la función indicatriz del dominio U_d , dada por

$$z_{dk} = \begin{cases} 1 & \text{si } k \in U_d \\ 0 & \text{en otro caso} \end{cases}$$
 (3.1.22)

Ahora, al multiplicar la variable de pertenencia z_{dk} por el valor de la característica de interés y_k , se crea una nueva variable y_{dk} dada por $y_{dk} = z_{dk}y_k$, y una vez construida se pueden utilizar los principios del estimador de Horvitz-Thompson para hallar un estimador insesgado del total de la característica de interés en el dominio U_d .

Resultado 3.1.6. El total de la variable de interés en el dominio U_d está dado por

$$t_{yd} = \sum_{U} y_{dk}, \tag{3.1.23}$$

el tamaño del dominio U_d toma la siguiente expresión

$$N_d = \sum_{U} z_{dk}, (3.1.24)$$

de tal forma que la media de la característica de interés en el dominio U_d se escribe como

$$\bar{y}_{U_d} = \frac{t_{yd}}{N_d} = \frac{\sum_U y_{dk}}{N_d} \tag{3.1.25}$$

Estimación del total en un dominio

Resultado 3.1.7. Bajo muestreo aleatorio simple sin reemplazo, el estimador de Horvitz-Thompson para el total del dominio t_{ud} , su varianza y su varianza estimada están dados por

$$\hat{t}_{yd,\pi} = \frac{N}{n} \sum_{S} y_{dk} = \frac{N}{n} \sum_{S_d} y_k \tag{3.1.26}$$

$$Var(\hat{t}_{yd,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{y_d U}^2$$
 (3.1.27)

$$\widehat{Var}(\widehat{t}_{yd,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{y_dS}^2$$
(3.1.28)

respectivamente, donde $S_d = U_d \cap S$ se refiere al conjunto formado por la intersección de la muestra S. Además,

$$S_{y_d U}^2 = \frac{1}{N - 1} \left(\sum_{k \in U} y_{dk}^2 - \frac{(\sum_{k \in U} y_{dk})^2}{N} \right)$$

representa la varianza poblacional de la característica de interés y

$$S_{y_dS}^2 = \frac{1}{n-1} \left(\sum_{k \in S} y_{dk}^2 - \frac{(\sum_{k \in S} y_{dk})^2}{n} \right)$$

la varianza muestral de los valores de la característica de interés.

Nótese que en la expresión S^2_{ydU} los valores que intervienen son los de la característica de interés si el elemento pertenece al dominio y ceros si el elemento no pertenece al dominio, lo mismo sucede con S^2_{ydS} . Por tanto, las anteriores expresiones van a tomar valores grandes por la inclusión de los ceros; éste es el precio que se debe pagar por el desconocimiento de la pertenencia de los elementos a los dominios.

Estimación del tamaño absoluto de un dominio

Resultado 3.1.8. Bajo muestreo aleatorio simple sin reemplazo, el estimador de Horvitz-Thompson para el tamaño absoluto de un dominio N_d , su varianza y su varianza estimada están dados por

$$\hat{N}_{d,\pi} = \frac{N}{n} \sum_{S} z_{dk} = \frac{N}{n} \sum_{S_d} z_k \tag{3.1.29}$$

$$Var(\hat{N}_{d,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{z_d U}^2$$
 (3.1.30)

$$\widehat{Var}(\hat{N}_{d,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{z_d s}^2$$
 (3.1.31)

respectivamente, con $S_{z_dU}^2$ y $S_{z_ds}^2$ la varianza poblacional y la varianza muestral de los valores de la característica de interés z_{dk} .

Nótese que en la expresión $S_{z_dU}^2$ los valores que intervienen son unos si el elemento pertenece al dominio y ceros si el elemento no pertenece al dominio, lo mismo sucede con $S_{y_ds}^2$.

Estimación del tamaño relativo de un dominio

Resultado 3.1.9. Bajo muestreo aleatorio simple sin reemplazo, el estimador de Horvitz-Thompson para el tamaño relativo de un dominio P_d , su varianza y su varianza estimada están dados por

$$\hat{P}_{d,\pi} = \frac{1}{N} \sum_{S} \frac{N}{n} z_{dk} = \frac{1}{n} \sum_{S} z_{dk} = \frac{n_d}{n}$$
(3.1.32)

$$Var(\hat{P}_{d,\pi}) = \frac{1}{n} \left(1 - \frac{n}{N} \right) S_{z_d U}^2$$
 (3.1.33)

$$\widehat{Var}(\hat{P}_{d,\pi}) = \frac{1}{n} \left(1 - \frac{n}{N} \right) S_{z_d s}^2$$
 (3.1.34)

respectivamente, con $S_{z_dU}^2$ y $S_{z_ds}^2$ el estimador de la varianza de los valores de la característica de interés y_d en el universo y en la muestra.

Estimación de la media de un dominio

Resultado 3.1.10. Bajo muestreo aleatorio simple sin reemplazo, el estimador de Horvitz-Thompson para la media de la característica de interés en un dominio \bar{y}_{U_d} , su varianza y su varianza estimada están dados por

$$\hat{\bar{y}}_{U_d,\pi} = \frac{\frac{N}{n} \sum_S y_{dk}}{N_d} \tag{3.1.35}$$

$$Var(\hat{y}_{U_d,\pi}) = \frac{1}{N_d^2} \frac{N^2}{n} \left(1 - \frac{n}{N}\right) S_{y_d U}^2$$
(3.1.36)

$$\widehat{Var}(\widehat{y}_{U_d,\pi}) = \frac{1}{N_d^2} \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{y_ds}^2$$
(3.1.37)

Para poder utilizar el anterior estimador, es necesario conocer de antemano el valor del tamaño absoluto del dominio N_d . En la práctica, pocas veces se conoce este valor, por lo tanto un estimador alternativa y completamente intuitivo de la media de la característica de interés en un dominio es la media muestral de la misma en el dominio de interés. De tal forma que el estimador alternativo, toma la siguiente expresión

$$\widehat{y}_{S_d} = \frac{\widehat{t}_{yd,\pi}}{\widehat{N}_{d,\pi}} = \frac{\sum_S y_{dk}}{z_{dk}} = \frac{\sum_{S_d} y_k}{n_d}$$
(3.1.38)

Como las dos cantidades en el numerador y denominador son aleatorias, se está estimando una razón, de tal manera que el cálculo y estimación de la varianza del anterior estimador están fuera del alcance de este capítulo, y serán explicados en los lugares donde sea conveniente.

3.1.5 Marco y Lucy

Una de las razones por las que el gobierno realiza la encuesta de crecimiento económico del sector industrial es, no sólo para medir el impacto social e impositivo sino para buscar nuevas estrategias de crecimiento enfocadas en las empresas que conforman este sector. Recientemente, con el boom de la tecnología y el uso masivo de internet, las estrategias de mercadeo han cambiado su forma y su fondo.

Hace unos años, las empresas con un rendimiento muy alto, catalogadas dentro de un nivel industrial grande, podían acceder a pautar un comercial discreto de 900 TRP's¹ en televisión, mientras que las empresas medianas tenían un presupuesto con el cual apenas podían pautar un comercial en la radio. Por supuesto, la estrategia publicitaria de las empresas pequeñas consistía en editar un aviso en las páginas amarillas.

Sin embargo, a medida que cambia y evoluciona la tecnología, también lo hacen los hábitos de las personas. Es muy común que las operaciones financieras, contables y estratégicas de una empresa estén centradas en un servidor conectado a internet. La misma comunicación verbal ha sido reemplazada por altos estándares de tecnología mediante conversaciones virtuales, la comunicación oficial ha desplazado el casillero de correo postal por el correo electrónico que permite la recepción en tiempo real de mensajes sin importar la ubicación espacio temporal del receptor ni de la persona que envía el mensaje. Siendo así, las personas pasan más tiempo frente a un computador que frente al televisor, o escuchando la radio; las páginas amarillas están siendo reemplazadas por los meta-buscadores de la red mundial de información, gigantes como Google, Yahoo y MSN.

Los gerentes de mercadeo (en los casos pertinentes) junto con los presidentes o gerentes de las empresas del sector industrial, han replanteado sus viejas estrategias publicitarias y han hecho, poco a poco, la migración de canal publicitario. Las empresas grandes siguen pautando en televisión, las empresas medianas siguen haciéndolo en la radio y las pequeñas siguen teniendo el mismo viejo aviso clasificado en la sección de las páginas amarillas. Sin embargo, en todos los niveles del sector industrial, se ha empezado a realizar una mejor gestión de sus clientes y/o de sus potenciales clientes.

Las empresas están utilizando listas de correo electrónico masivas para dar a conocer las ventajas competitivas de sus empresas, mediante el envió de portafolios virtuales de los productos y servicios que brindan. Se cree que esta práctica de mercadeo ha aumentado la productividad empresarial porque por medio de la publicidad por internet o SPAM, las empresas consiguen más clientes, por lo tanto consiguen más contratos, por tanto ayudan a la disminución del desempleo y obtienen ventajas fiscales.

El gobierno quiere corroborar esta hipótesis y dependiendo de los resultados del estudio implementar un programa de capacitación gratuita a las empresas que aún no han entrado en el ámbito de la información mediante el uso masivo de la red informática internet. El presupuesto del gobierno es de unos cuantos millones de dólares, por lo tanto se necesitan estimaciones muy precisas que respondan al objetivo de la investigación.

Estimación del tamaño de muestra

La estrategia de muestreo que se va a utilizar es la siguiente: el estimador de Horvitz-Thompson aplicado a un diseño de muestreo aleatorio simple sin reemplazo. Se selecciona una muestra piloto de tamaño 30 de la población. Para esto, una vez cargado el archivo de datos Lucy, utilizamos la función sample para extraer la muestra piloto. Como la característica de interés es el ingreso de las empresas, tomamos los valores de la varianza y de la media como estimaciones que servirán para el cálculo del tamaño de la muestra.

¹Puntos acumulados de rating del grupo objetivo obtenidos considerando sólo consumidores viendo el comercial de televisión de una marca dada

```
data(BigLucy)
attach(BigLucy)

N <- dim(BigLucy)[1]
sam <- sample(N,100)
Inc.pilot <- Income[sam]

mean(Inc.pilot)

## [1] 441

var(Inc.pilot)

## [1] 67280</pre>
```

Los valores que se utilizarán en la estimación del tamaño de muestra son la varianza muestral igual a 66.952, el promedio muestral igual a 455; con estos valores se tiene una estimación del coeficiente de variación igual a 0,57. Se debe escoger un tamaño de muestra que proporcione estimaciones precisas, el tamaño de muestra depende de la precisión que se requiera para cumplir con los objetivos del estudio.

- Error absoluto: el margen de error para este estudio es de 25 millones de dólares.
- Nivel de confianza del 95 %.
- Mediante (3.1.16) se tiene que $n_0 = 411$.
- Al utilizar el factor de corrección de poblaciones finitas, llegamos a que $n \ge 351$.

Sin embargo, este cálculo se puede cotejar restringiendo las estimaciones mediante un error relativo.

- \bullet Error relativo: se requieren estimaciones con menos del 7 % de error.
- Nivel de confianza del 95 % y una estimación de CV = 0.57.
- Mediante (3.1.18) se tiene que $k_0 = 446$.
- Al utilizar el factor de corrección de poblaciones finitas, llegamos a que $n \geq 376$.

Suponga que mediante fuentes oficiales se ha tenido acceso a información de estudios pasados que han modelado la característica de interesé ${\tt Income}$ utilizando la familia de distribuciones Gamma con parámetro de forma 2,7 y parámetro de escala 180. Haciendo una simulación de N=2396 valores provenientes de una distribución gamma con los anteriores parámetros, se pueden estimar los valores de la varianza para la característica de interés y así una estimación del tamaño de muestra.

```
bary <- mean(Income)
sdy <- sd(Income)
x <- seq(min(Income), max(Income), by=10)
a <- 2.7
b <- 180</pre>
```

La determinación del tamaño de muestra para esta investigación utilizando la estrategia de muestreo mencionada al principio de la sección y consideraciones respecto a que la estimación de la varianza de

```
ggplot(BigLucy, aes(x=Income)) +
  geom_histogram(aes(y=..density..)) +
  stat_function(fun=dgamma, args=list(shape=a, scale=b), colour="red")
```


Figura 3.1: Distribución de la característica Income y su posible modelamiento bajo la distribución gamma.

la muestra piloto puede ser pequeña, da como resultado una muestra de tamaño n=400 empresas del sector industrial. Como el tamaño de la población es N=2396, entonces el valor de la probabilidad de inclusión para todos los elementos es de $\pi_k=\frac{400}{2396}\cong 0.17$.

R incorpora la función sample para la selección de muestras con o sin reemplazo. En este caso puede ser utilizada como en la selección de la muestra piloto. Sin embargo, para seleccionar una muestra mediante el algoritmo de selección y rechazo, el paquete TeachingSampling adjunta la función S.SI que se utilizará en la selección de 400 empresas del sector industrial.

Primero se carga en R el archivo Marco que contiene el marco de muestreo para la selección de la muestra. Se fijan los parámetros de la función, N y pik. Esta función devuelve un vector conteniendo el índice de los elementos seleccionados en la muestra. En este caso particular, el primer elemento seleccionado es el número 7 y el último el número 2395.

```
data(BigLucy)
attach(BigLucy)
```

```
N <- dim(BigLucy)[1]
n < -2000
sam \leftarrow S.SI(N,n)
muestra <- BigLucy[sam,]</pre>
attach(muestra)
head (muestra)
##
                  ID
                            Ubication Level
                                                Zone Income Employees Taxes
## 12
       AB0000000012 C0033329K0268568 Small County1
                                                                    20
                                                        419
       AB0000000089 C0016430K0285467 Small County1
                                                        491
                                                                    26
                                                                          10
## 150 AB0000000150 C0241162K0060735 Small County1
                                                        384
                                                                    70
                                                                           6
  177 AB0000000177 C0063734K0238163 Small County1
                                                        319
                                                                    55
                                                                           4
  193 AB0000000193 C0178986K0122911 Small County1
                                                                    48
                                                                           5
                                                        350
  221 AB0000000221 C0158483K0143414 Small County1
                                                        295
                                                                    57
                                                                           3
##
       SPAM ISO Years
                         Segments
## 12
         no no
                 41.5 County1 2
## 89
         no no 20.3 County1 9
## 150
        no
            no 21.7 County1 15
  177
                  3.1 County1 18
       yes no
  193
        ves
             no
                  3.7 County1 20
  221
                13.0 County1 23
             no
         no
n <- dim(muestra)[1]
## [1] 2000
```

Aplicando los índices obtenidos por la función S.SI al marco de muestreo obtenemos la identificación y ubicación de las empresas seleccionadas en la muestra. Una vez que la etapa de recolección de datos se haya realizado; es decir, la medición de todos y cada uno de los elementos seleccionados ya ha sido realizada, se realiza la estimación. Obtendremos un archivo de datos de Lucy conteniendo los valores de las características de interés para las empresas seleccionadas que será adjuntado a R mediante la función attach.

La etapa de estimación de resultados se hace utilizando la función E.SI(N,n,y) del paquete TeachingSampling cuyos argumentos son y, un vector conteniendo los valores de la característica de interés en la muestra, N el tamaño de la población y n el tamaño de la muestra seleccionada. En este caso la longitud de cada vector es de n=400. Esta función arroja la estimación del total poblacional de y usando el estimador de Horvitz-Thompson, la estimación de la varianza y el coeficiente de variación del mismo. Por ejemplo, la variable Income dentro del objeto estima contiene los valores del ingreso declarado en el último año por 400 empresas del sector industrial pertenecientes a la muestra. La estimación para esta característica se hace mediante el siguiente código:

```
estima <- data.frame(Income, Employees, Taxes)
E.SI(N,n,estima)</pre>
```

La tabla 3.1 muestra los resultados obtenidos para este caso particular. Nótese que se obtienen mejores resultados que al utilizar un diseño de muestreo Bernoulli. Sin embargo, comparar estos resultados de ingreso total en el sector industrial con el de las mediciones pasadas, no es suficiente y se desea tener estimaciones para el dominio o subgrupo de las empresas que utilizan el envío de SPAM como estrategia publicitaria.

	N	Income	Employees	Taxes
Estimation	85296.00	37120648.61	5436212.62	1031335.26
Standard Error	0.00	503724.19	61441.76	30446.62
CVE	0.00	1.36	1.13	2.95
DEFF		1.00	1.00	1.00

Tabla 3.1: Estimaciones para el diseño de muestreo aleatorio simpole sin reemplazo

La función Domains contenida en el paquete TeachingSampling es utilizada para obtener las variables indicadoras z_{dk} para cada dominio, el único argumento de la función es un vector de pertenencia de cada individuo. En este caso, el vector de pertenencia es SPAM, la salida de esta función es una matriz de unos y ceros, en donde cada columna está dicotomizada. Existen tantas columnas como subgrupos poblacionales, y en cada columna el número uno implica la pertenencia del elemento al dominio y cero la no pertenencia del elemento al dominio.

```
Dominios <- Domains(SPAM)
head(Dominios)

## no yes
## [1,] 1 0
## [2,] 1 0
## [3,] 1 0
## [4,] 0 1
## [5,] 0 1
## [6,] 1 0</pre>
```

Para estimar el tamaño absoluto de cada dominio, lo único que se debe hacer es multiplicar la matriz de características de interés (en este caso, la matriz llamada estima) por cada columna de la matriz resultante de la dicotomización. La siguiente salida lo muestra claramente para el dominio de la población que sí utiliza el SPAM como método publicitario.

```
SPAM.si <- Dominios[,2]*estima
head(SPAM.si)
     Income Employees Taxes
## 1
          0
                     0
## 2
          0
                     0
                            0
## 3
          0
                     0
                            0
## 4
        319
                    55
                            4
## 5
        350
                    48
                            5
## 6
```

Mientras que para el dominio que no utiliza el SPAM se tiene la siguiente salida

```
SPAM.no <- Dominios[,1]*estima
head(SPAM.no)

## Income Employees Taxes
## 1 419 20 7
## 2 491 26 10</pre>
```

```
## 3 384 70 6
## 4 0 0 0
## 5 0 0 0
## 6 295 57 3
```

Utilizando la función E.SI en la matriz resultante de la dicotomización obtenemos las estimación de los tamaños absolutos de cada dominio. En este caso, se estima que 1420 empresas ya están utilizando otras técnicas radicales de publicidad, mientras que las restantes 976 no lo hacen. Nótese que la varianza de cada estimación es la misma, esto es claro porque los valores de esta característica de interés son ceros y uno y por tanto la estructura de varianza resulta idéntica en cada caso.

```
E.SI(N,n,Dominios)
##
                        N
                                       yes
## Estimation
                   85296 34758.1 50537.9
## Standard Error
                        0
                            926.4
                                     926.4
## CVE
                        0
                              2.7
                                       1.8
## DEFF
                      NaN
                               1.0
                                       1.0
```

Está claro que existe una tendencia en el sector industrial de publicidad virtual mediante el envío de SPAM por correo electrónico. Las siguientes cifras son las verdaderamente importantes pues muestran que las empresas que utilizan SPAM tienen mayores ingresos, emplean a más gente y contribuyen con una mayor cantidad de dinero en cuanto a impuestos se refiere, esto se da porque hay más empresas que utilizan el SPAM de las que no lo hacen.

```
E.SI(N, n, SPAM.no)
E.SI(N, n, SPAM.si)
```

Como N_d es desconocido, podemos utilizar el estimador alternativo dado por la expresión (3.2.38), para obtener una estimación (aunque no la varianza ni el c.v.e) de la media de la característica de interés en cada dominio. Simplemente tomamos las estimaciones t_{yd} y las dividimos por la estimación de N_d . Las siguientes tablas resumen las estimaciones para cada uno de los dominios de interés².

	N	Income	Employees	Taxes
Estimation	85296.00	15146479.85	2225543.23	412064.98
Standard Error	0.00	508712.72	71010.05	20887.82
CVE	0.00	3.36	3.19	5.07
DEFF		1.00	1.00	1.00

Tabla 3.2: Estimaciones para el diseño de muestreo aleatorio simple en el dominio que no envía SPAM

	N	Income	Employees	Taxes
Estimation	85296.00	21974168.76	3210669.38	619270.28
Standard Error	0.00	565808.43	75591.61	27203.24
CVE	0.00	2.57	2.35	4.39
DEFF		1.00	1.00	1.00

Tabla 3.3: Estimaciones para el diseño de muestreo aleatorio simple en el dominio que sí envía SPAM

²Nótese que el anterior procedimiento asegura la estimación de los parámetros de dominios no sólo en MAS sino para cualquier diseño de muestreo.

3.1.6 Probabilidades de inclusión en unidades de muestreo

En Särndal, Swensson & Wretman (1992) se considera una encuesta para medir los ingresos de los hogares. El marco de muestreo es una lista de individuos y una muestra de tamaño n se selecciona mediante muestreo aleatorio simple sin reemplazo, el hogar correspondiente al individuo es identificado y se procede a realizar la medición correspondiente. La probabilidad de inclusión de un hogar h compuesto por M < n individuos, puede modelarse por medio de la distribución hipergeométrica, así:

$$\begin{split} \pi_H &= \Pr(H \in s) \\ &= 1 - \Pr(H \notin s) \\ &= 1 - \Pr(\text{Ninguno de los } M \text{ sali\'o en la muestra de tama\~no } n) \\ &= 1 - \frac{\binom{M}{0} \binom{N-M}{n}}{\binom{N}{n}} \\ &= 1 - \frac{(N-M)!/n!(N-M-n)!}{N!/(N-M)!n!} \\ &= 1 - \frac{(N-M)!}{N!} \frac{(N-n)!}{(N-M-n)!} \\ &= 1 - \frac{(N-m)!}{N!} \frac{(N-n)!}{(N-M-n)!} \\ &= 1 - \frac{(N-n) \dots (N-n-M+1)}{N \dots (N-M+1)} \end{split}$$

Asumiendo que N y n son grandes (f > 0), se obtienen las siguientes aproximaciones:

• M = 1,

$$\pi_H = 1 - \frac{N-n}{N}$$

$$= 1 - \left(1 - \frac{n}{N}\right) = 1 - (1-f)$$

• M = 2,

$$\pi_H = 1 - \frac{(N-n)(N-n-1)}{N(N-1)}$$
$$= 1 - \left(1 - \frac{n}{N}\right)(1 - \frac{n}{N-1}) \doteq 1 - (1-f)^2$$

• M = 3,

$$\begin{split} \pi_H &= 1 - \frac{(N-n)(N-n-1)(N-n-2)}{N(N-1)(N-2)} \\ &= 1 - \left(1 - \frac{n}{N}\right)(1 - \frac{n}{N-1})(1 - \frac{n}{N-2}) \doteq 1 - (1-f)^3 \end{split}$$

3.2 Diseño de muestreo Bernoulli

En el diseño de muestreo Bernoulli se fija a priori (por experiencia o alguna otra razón) la probabilidad de inclusión de todos los individuos, la cual permanece constante para todo el universo. Es decir, $\pi_k = \pi$ para todo $k \in U$. Un típico ejemplo de la implementación de este diseño en la práctica es la revisión

de equipajes de pasajeros por los funcionarios de la aduana en un aeropuerto; se fija la probabilidad de inclusión para cada pasajero y mediante cierto mecanismo de selección (muy simple) se selecciona la muestra, conforme las personas van ingresando al sitio. Nótese que el tamaño de muestra n(S) es aleatorio porque una muestra realizada mediante este mecanismo de selección puede incluir a todos los pasajeros o a ningún pasajero de la población.

Definición 3.2.1. Siendo n(s) el tamaño de muestra, el diseño de muestreo Bernoulli selecciona la muestra s con probabilidad

$$p(s) = \begin{cases} \pi^{n(s)} (1-\pi)^{N-n(s)} & \text{si s tiene tamaño igual a } n(s) \\ 0 & \text{en otro caso} \end{cases}$$
(3.2.1)

3.2.1 Algoritmo de selección

La selección de una muestra con diseño Bernoulli conlleva los siguientes pasos:

- 1. Fijar el valor de π tal que $0 < \pi < 1$.
- 2. Obtener ε_k para $k \in U$ como N realizaciones independientes de una variable aleatoria con distribución uniforme sobre el intervalo [0,1].
- 3. El elemento k-ésimo pertenece a la muestra con probabilidad π . Es decir, si $\varepsilon_k < \pi$ el individuo k-ésimo es seleccionado.

Dado que $\varepsilon_k \sim Unif[0,1]$, se tiene que $Pr(\varepsilon_k < \pi) = \pi$ para $k \in U$. Por tanto, la inclusión de los individuos k-ésimo y l-ésimo, para $k \neq l$, es independiente. Esto implica que la distribución de $I_k(S)$ es Bernoulli $Ber(\pi)$ y se tiene el siguiente resultado.

Resultado 3.2.1. Definiendo a Q_r como el soporte que contiene a todas las posibles muestras de tamaño r, existen $\binom{N}{r}$ muestras pertenecientes a Q_r . En otras palabras

$$\#(Q_r) = \binom{N}{r}$$
 $r = 0, \dots, N$

Sin embargo, al definir Q como el soporte general de todas las posibles muestras de tamaños entre r = 0 y r = N, se tiene que

$$\#(Q) = \sum_{r=1}^{N} {N \choose r} = 2^{N}$$

Resultado 3.2.2. Bajo muestreo Bernoulli, la distribución del tamaño de muestra n(S) es binomial $Bin(N,\pi)$ y

$$Pr(n(S) = r) = \sum_{s \in Q_r} p(s) = \binom{N}{r} \pi^r (1 - \pi)^{N-r},$$
 (3.2.2)

con $r=1,\ldots,N$ y Q_r el soporte que contiene a todas las posibles muestras de tamaño r, donde $Q_r\subset Q$.

Prueba. La distribución de $I_k(S)$ es Bernoulli $Ber(\pi)$, las inclusiones de los individuos en la muestra son eventos independientes, entonces $n(S) = \sum_U I_k$ sigue una distribución binomial. Ahora, dado el diseño de muestreo (3.2.1), para cualquier $s \in Q_r$, se cumple que $p(s) = \pi^r (1 - \pi)^{N-r}$. Como existen $\binom{N}{r}$ maneras de seleccionar una muestra de r elementos de una población de tamaño N, se tiene que $\#(Q_r) = \binom{N}{r}$. Luego, al sumar p(s) sobre todas las muestras del soporte Q_r se obtiene el resultado.

Como n(S) es aleatorio, existen 2^N posibles muestras en el soporte Q. Nótese que n(S) tiene una distribución Binomial y, por tanto, su esperanza y varianza están dadas por:

$$E(n(S)) = N\pi$$
 $Var(n(S)) = N(\pi)(1 - \pi),$ (3.2.3)

Aunque el investigador haya fijado las probabilidades de inclusión, se puede verificar que realmente el diseño de muestreo Bernoulli cumple las condiciones establecidas en el capítulo anterior y también que las probabilidades de inclusión, inducidas por el diseño de muestreo, son idénticas para cada elemento en la población $\pi_k = \pi$.

Resultado 3.2.3. Bajo el diseño de muestreo Bernoulli, se verifica que

$$\sum_{s \in O} p(s) = 1 \tag{3.2.4}$$

Prueba. Para una población de tamaño N, el tamaño de muestra puede ser r con $r=0,1,\ldots,N$. Es suficiente probar que $\sum_{r=0}^{N} Pr(n(S)=r)=1$, utilizando el teorema binomial se tiene de inmediato porque $n(S)\sim Bin(N,\pi)$. Más aún, se tiene que

$$\sum_{s \in Q} p(s) = \sum_{s \in Q_0} p(s) + \sum_{s \in Q_1} p(s) + \dots + \sum_{s \in Q_N} p(s)$$

$$= \binom{N}{0} \pi^0 (1 - \pi)^{N-0} + \dots + \binom{N}{N} \pi^N (1 - \pi)^{N-N}$$

$$= \sum_{r=0}^N \binom{N}{r} \pi^r (1 - \pi)^{N-r} = (\pi + 1 - \pi)^N = 1$$

Resultado 3.2.4. Para el diseño de muestreo Bernoulli, las probabilidades de inclusión de primer y segundo orden están dadas por:

$$\pi_k = \pi \tag{3.2.5}$$

$$\pi_{kl} = \begin{cases} \pi & \text{para} k = l \\ \pi^2 & \text{Para } k \neq l \end{cases}$$
 (3.2.6)

Prueba. Teniendo en cuenta que existen $\binom{N-1}{r-1}$ muestras de tamaño r que contienen al elemento k-ésimo, tenemos

$$\pi_k = \sum_{\substack{s \ni k \\ s \subset Q}} p(s)$$

$$= \sum_{\substack{s \ni k \\ s \subset Q_0}} p(s) + \sum_{\substack{s \ni k \\ s \subset Q_1}} p(s) + \dots + \sum_{\substack{s \ni k \\ s \subset Q_N}} p(s)$$

$$= 0 + \binom{N-1}{0} \pi (1-\pi)^{N-1} + \dots + \binom{N-1}{N-1} \pi (1-\pi)^{N-1}$$

$$= \sum_{r=0}^{N-1} \binom{N-1}{r} \pi^{r+1} (1-\pi)^{N-1-r}$$

$$= \pi \sum_{r=0}^{N-1} \binom{N-1}{r} \pi^r (1-\pi)^{N-1-r} = \pi (\pi + (1-\pi))^{N-1} = \pi$$

Donde se utiliza el resultado del teorema binomial (Mood, Graybill & Boes 1974) que afirma que

$$\sum_{r=0}^{m} {m \choose r} a^r b^{m-r} = (a+b)^m. \tag{3.2.7}$$

Ahora como las inclusiones de los elementos de la población en la muestra son eventos independientes, entonces

$$Pr(k \in S \ y \ l \in S) = Pr(I_k = 1)Pr(I_l = 1) = \pi^2$$
 (3.2.8)

3.2.2 El estimador de Horvitz-Thompson

Resultado 3.2.5. Para el diseño de muestreo Bernoulli, el estimador de Horvitz-Thompson, su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,\pi} = \frac{1}{\pi} \sum_{S} y_k \tag{3.2.9}$$

$$Var_{BER}(\hat{t}_{y,\pi}) = \left(\frac{1}{\pi} - 1\right) \sum_{U} y_k^2$$
 (3.2.10)

$$\widehat{Var}_{BER}(\hat{t}_{y,\pi}) = \frac{1}{\pi} \left(\frac{1}{\pi} - 1 \right) \sum_{S} y_k^2,$$
 (3.2.11)

respectivamente

Prueba. El resultado es inmediato porque

$$\Delta_{kl} = \begin{cases} \pi_{kl} - \pi_k \pi_l = \pi^2 - \pi^2 \\ \pi_{kk} - \pi_k \pi_k = \pi (1 - \pi) \end{cases} \quad \text{para } k \neq l$$
(3.2.12)

luego la doble suma en la varianza del estimador de Horvitz-Thompson pasa a ser una sola suma; lo anterior sucede análogamente con la expresión de la estimación de la varianza.

Nótese que en caso de que la muestra realizada o seleccionada esté compuesta por todas las unidades de la población, es decir se deba realizar un censo³, la probabilidad de inclusión para cada elemento de la población estaría dada por $\pi_k = \pi$. En este caso, el estimador de Horvitz-Thompson estaría dado por la siguiente expresión

$$\hat{t}_{y,\pi} = \frac{1}{\pi} \sum_{U} y_k = \frac{t_y}{\pi} \neq t_y \tag{3.2.13}$$

En este caso, el estimador de Horvitz-Thompson es deficiente para la estimación del total poblacional t_y y se sugiere la utilización del estimador alternativo para el total poblacional que, para el caso particular del diseño de muestreo Bernoulli, estaría dado por

$$\hat{t}_{y,alt} = N\widetilde{y}_S = N \frac{\sum_S y_k}{n(S)} = N\bar{y}_S. \tag{3.2.14}$$

Fácilmente se verifica que si s = U, entonces $\hat{t}_{y,alt} = t_y$.

 $^{^3}$ En el diseño de muestreo Bernoulli, la probabilidad de seleccionar todas las unidades de la población en la muestra es equivalente a π^N .

Ejemplo 3.2.1. Para nuestra población de ejemplo U, existen $2^5 = 32$ posibles muestras. Si la probabilidad de inclusión es fija para cada elemento e igual a 0,3, realice el cálculo léxico-gráfico del estimador de Horvitz-Thompson y compruebe el insesgamiento y la varianza.

3.2.3 El efecto de diseño

Una medida que compara la eficiencia entre dos estrategias de muestreo es el efecto de diseño. Ésta herramienta práctica muestra la ganancia o pérdida, de precisión, al utilizar una estrategia de muestreo más compleja que un diseño aleatorio simple sin reemplazo junto con el estimador de Horvitz-Thompson y está definida de la siguiente manera:

Definición 3.2.2. Siendo $(\hat{T}, p(\cdot))$ y (\hat{T}_{π}, MAS) dos estrategias de muestreo utilizadas para la estimación del parámetro T, se define el efecto de diseño como

$$Deff = \frac{Var_p(\hat{T})}{Var_{MAS}\hat{T}_{\pi}}.$$
(3.2.15)

en particular, el efecto de diseño, restringido a la estimación de un total poblacional y al usar el estimador de Horvitz-Thompson en ambas estrategias, toma la siguiente forma

$$Deff = \frac{Var_p(\hat{t}_{y,\pi})}{\frac{N^2}{n}(1-\frac{n}{N})S_{yU}^2}.$$
(3.2.16)

Cuando el efecto de diseño es más grande que la unidad, la varianza de la estrategia del numerador es más grande que la denominador, por tanto, se ha perdido precisión al utilizar una estrategia de muestreo más compleja; si el cociente es menor que uno, se ha ganado precisión. Fue Cornfield (1951) quien sugirió evaluar la eficiencia de una estrategia de muestreo al hacer el cociente entre la varianza de la misma y la del diseño aleatorio simple sin reemplazo con el estimador de Horvitz-Thompson. Más adelante Kish (1965) lo llamo DEFF (efecto de diseño, por sus siglas en inglés).

Sin embargo, en la mayoría de ocasiones, el cálculo de este cociente no es sencillo. Lehtonen & Pahkinen (2003) plantea una estimación del efecto de diseño para totales mediante la estimación de las varianzas que intervienen en la expresión. De esta forma, se tiene

Resultado 3.2.6. Un estimador del efecto de diseño Deff para el total poblacional t_u es

$$D\hat{e}ff = \frac{\widehat{Var}_{p}(\hat{T})}{\frac{N^{2}}{n} (1 - \frac{n}{N}) S_{ys}^{2}}.$$
(3.2.17)

No todos los parámetros tienen el mismo comportamiento, por lo tanto, los efectos de diseño para estos no tendrán un mismo criterio de optimalidad. Es decir, si existe un criterio de optimalidad con respecto a un parámetro, digamos el total poblacional t_y , no necesariamente se cumplirá ese criterio con un parámetro distinto, digamos la mediana poblacional.

Dado que el tamaño de muestra en diseños diferentes al muestreo aleatorio simple sin reemplazo puede ser variable, es necesario asegurarse que $n=E_{MAS}(n(S))=E_p(n(S))$ para que exista un punto objetivo de comparación. Por ejemplo, para comparar la eficiencia del estimador de Horvitz-Thompson en el diseño de muestreo Bernoulli, es necesario fijar el tamaño de muestra, dado que este diseño no es de tamaño fijo; es decir que $n=E_{MAS}(n(S))=E_{BER}(n(S))=N\pi$. Por lo que resulta que $\pi=n/N$.

De esta manera podemos introducir la medida de eficiencia del diseño de muestreo Bernoulli con respecto al MAS, así

$$deff = \frac{Var_{BER}(\hat{t}_{y,\pi})}{Var_{MAS}(\hat{t}_{y,\pi})} = 1 - \frac{1}{N} + \frac{1}{CV_y^2} \cong 1 + \frac{1}{CV_y^2}$$
(3.2.18)

Por tanto, si el efecto de diseño deff es igual a 1.8, esto implica que la varianza del π estimador bajo diseño de muestreo Bernoulli es 1.8 veces la varianza del π estimador bajo MAS.

3.2.4 Marco y Lucy

Suponga que se debe seleccionar una muestra con un diseño de muestreo Bernoulli. Se quiere que el tamaño esperado de muestra sea de $N\pi=400$ empresas del sector industrial. Como el tamaño de la población es N=2396, entonces el valor que se fija para π es de 0.1669. Para seleccionar la muestra se utiliza la función S.BE(N,prob) del paquete TeachingSampling cuyos parámetros son N, el tamaño poblacional y prob el valor de la probabilidad de inclusión para cada elemento de la población. Esta función utiliza el algoritmo secuencial descrito en la anterior sección.

Primero se carga en R el archivo Marco que contiene el marco de muestreo para la selección de la muestra. Se fijan los parámetros de la función, N y prob. Esta función devuelve un vector conteniendo el índice de los elementos seleccionados en la muestra. En este caso particular, el primer elemento seleccionado es el número 2 y el último el número 2394.

```
data(BigLucy)
N <- dim(BigLucy)[1]
pik <- 0.025
sam <- S.BE(N,pik)</pre>
muestra <- BigLucy[sam,]</pre>
attach(muestra)
head(muestra)
##
                  TD
                            Ubication Level
                                                Zone Income Employees Taxes
## 86 AB0000000086 C0246025K0055872 Small Countv1
                                                         456
                                                                    75
                                                                            9
## 118 AB0000000118 C0140163K0161734 Small County1
                                                         436
                                                                     77
                                                                            8
## 159 AB0000000159 C0045680K0256217 Small County1
                                                         230
                                                                     10
                                                                            2
## 200 AB0000000200 C0035648K0266249 Small County1
                                                         310
                                                                     54
                                                                            4
## 325 AB0000000325 C0059021K0242876 Small County1
                                                         208
                                                                     22
                                                                            1
## 373 AB0000000373 C0079681K0222216 Small County1
                                                         270
                                                                     72
                                                                            3
##
       SPAM ISO Years
                         Segments
## 86
                   22 County1 9
        yes
             no
## 118
                    49 County1 12
        yes
             no
                    7 County1 16
## 159
        yes
             no
## 200
                    22 County1 20
        yes
             no
## 325
                    28 County1 33
         no
             no
## 373
        yes
             no
                    26 County1 38
n <- dim(muestra)[1]
n
## [1] 2228
```

Aplicando los índices obtenidos por la función S.BE al marco de muestreo obtenemos la identificación y ubicación de las empresas seleccionadas en la muestra. Nótese que el tamaño de muestra efectivo es de 2228 empresas. Una vez que la etapa de recolección de datos se haya realizado, obtendremos un archivo de datos de Lucy conteniendo los valores de las características de interés para las empresas seleccionadas que será adjuntado a R mediante la función attach.

La etapa de estimación de resultados se hace utilizando la función E.BE(y,prob) del paquete TeachingSampling

cuyos argumentos son y, un vector o matriz conteniendo los valores de las características de interés en la muestra y prob, la probabilidad de inclusión. En este caso la longitud de cada vector es de n=2228. Esta función arroja la estimación del total poblacional de y usando el estimador de Horvitz-Thompson, la estimación de la varianza y el coeficiente de variación del mismo. Por ejemplo, la variable Income contiene los valores del ingreso declarado en el último año por 396 empresas del sector industrial pertenecientes a la muestra. La estimación para esta característica se hace mediante el siguiente código:

```
estima <- data.frame(Income, Employees, Taxes)
E.BE(estima,pik)</pre>
```

	N	Income	Employees	Taxes
Estimation	89120.00	37281880.00	5541240.00	988720.00
Standard Error	1864.32	910626.84	130608.04	35971.57
CVE	2.09	2.44	2.36	3.64
DEFF	Inf	3.75	4.71	1.49

Tabla 3.4: Estimaciones para el diseño de muestreo Bernoulli

La tabla 3.4 muestra los resultados obtenidos para este caso particular, donde la desviación relativa de una estimación, medida en porcentaje está definida como

Por otro lado, nótese que, aunque la distribución asintótica del estimador de Horvitz-Thompson es normal, es necesario verificar el comportamiento del estimador con el tamaño de muestra esperado. Se realizaron varios experimentos de Monte Carlo con el propósito de tener un examen más cercano del estimador de Horvitz-Thompson del total de la característica Income en la población Lucy. El resultado de la simulación se muestra en los histogramas de la figura 3.1. Se espera que el promedio de las estimaciones en cada experimento coincida con el total poblacional y la varianza de éstas debe acercarse a la varianza basada en el diseño de muestreo Bernoulli.

```
bary <- mean(Income)
sdy <- sd(Income)
x <- seq(min(Income), max(Income), by=10)
a <- (bary/sdy)^2
b <- sdy^2/bary</pre>
```

La media de las estimaciones de t_y es 1035176 que ajusta bien con el parámetro correspondiente $t_y = 1035217$. La distribución parece ser simétrica con forma de campana (los valores de la distribución teórica se muestran en la curva sólida y roja) y no se notan grandes discrepancias entre lo observado y lo teórico. En algunos casos, en donde el tamaño de muestra no es lo suficientemente grande, se debe verificar el comportamiento normal del estimador.

3.3 Muestreo aleatorio simple con reemplazo

Una muestra aleatoria simple con reemplazo, de tama \tilde{n} o m de una población de N elementos es la extracción de m muestras independientes de tama \tilde{n} o 1, en donde cada elemento se extrae de la población con la misma probabilidad

$$p_k = \frac{1}{N} \quad \forall k \in U$$

```
p1 <- ggplot(BigLucy, aes(x=Income)) +
    geom_histogram(aes(y=..density..)) +
    stat_function(fun=dgamma, args=list(shape=a, scale=b), colour="red")
p2 <- ggplot(BigLucy, aes(x=Income)) +
    geom_histogram(aes(y=..density..)) +
    stat_function(fun=dnorm, args=list(mean=bary, sd=sdy), colour="blue")
grid.arrange(p1, p2, ncol = 2)</pre>
```


Figura 3.2: Distribución de la característica Income y su posible modelamiento bajo la distribución gamma (izquierda) y norma (derecha).

Definición 3.3.1. Un diseño de muestreo aleatorio simple con reemplazo se define como

$$p(s) = \begin{cases} \frac{m!}{n_1(s)!...n_N(s)!} \prod_U \left(\frac{1}{N}\right)^{n_k(s)} & \text{si } \sum_U n_k(s) = m\\ 0 & \text{en otro caso} \end{cases}$$
(3.3.1)

Donde $n_k(s)$ es el número de veces que el elemento k-ésimo es seleccionado en la muestra realizada s.

Resultado 3.3.1. Para este diseño de muestreo, existen $\binom{N+m-1}{m}$ posibles muestras de tamaño m; es decir

$$\#(Q) = \binom{N+m-1}{m}$$

Resultado 3.3.2. Dado el soporte Q, de todas las posibles muestras con reemplazo de tamaño m, se

verifica que el diseño de muestreo aleatorio simple con reemplazo es tal que

$$\sum_{s \in Q} p(s) = 1$$

Prueba. La demostración es inmediata porque este diseño de muestro es una función de densidad multinomial discreta sobre Q.

$$\sum_{s \in Q} p(s) = \sum_{s \in Q} \frac{m!}{n_1(s)! \dots n_N(s)!} \prod_{U} \left(\frac{1}{N}\right)^{n_k(s)}$$

$$= \sum_{s \in Q} \frac{m!}{n_1(s)! \dots n_N(s)!} \left(\frac{1}{N}\right)^{n_1(s)} \dots \left(\frac{1}{N}\right)^{n_N(s)}$$

$$= \sum_{\substack{n_1(s) \dots n_N(s) \\ \sum_{U} n_k(S) = m}} \frac{m!}{n_1(s)! \dots n_N(s)!} \left(\frac{1}{N}\right)^{n_1(s)} \dots \left(\frac{1}{N}\right)^{n_N(s)}$$

$$= \underbrace{\left(\frac{1}{N} + \dots + \frac{1}{N}\right)^m}_{N \text{ veces}}$$

$$= 1$$

donde se utiliza el resultado del teorema multinomial que afirma que

$$\sum_{\substack{n_1...n_N\\\sum_U n_k = m}} \frac{m!}{n_1! \dots n_N!} (p_1)^{n_1} \dots (p_N)^{n_N} = \left(\sum_{k=1}^N p_k\right)^m$$
(3.3.2)

Resultado 3.3.3. Para un diseño aleatorio simple con reemplazo, las probabilidades de inclusión de primer y segundo orden están dadas por

$$\pi_k = 1 - \left(1 - \frac{1}{N}\right)^m \tag{3.3.3}$$

$$\pi_{kl} = 1 - 2\left(1 - \frac{1}{N}\right)^m + \left(1 - \frac{2}{N}\right)^m$$
 (3.3.4)

respectivamente.

Prueba. Utilizando los resultados 2.2.9. y 2.2.10., respectivamente, se llega a la demostración. ■

Ejemplo 3.3.1. En nuestra población ejemplo el tamaño poblacional es N=5. Si se quisiera seleccionar una muestra aleatoria simple con reemplazo de tamaño m=2, entonces existirían $N^m=5^2=25$ posibles extracciones ordenadas. Sin embargo, sólo existen $\binom{N+m-1}{m}=\binom{6}{2}=15$ posibles muestras. Cada una de las posibles muestras que pertenecen al soporte con reemplazo tienen las siguientes probabilidades de selección.

	V1	V2	р	n1	n2	n3	n4	n5
1	Yves	Yves	0.04	2	0	0	0	0
2	Ken	Ken	0.04	0	2	0	0	0
3	Erik	Erik	0.04	0	0	2	0	0

4	Sharon	Sharon	0.04	0	0	0	2	0
5	Leslie	Leslie	0.04	0	0	0	0	2
6	Yves	Ken	0.08	1	1	0	0	0
7	Yves	Erik	0.08	1	0	1	0	0
8	Yves	Sharon	0.08	1	0	0	1	0
9	Yves	Leslie	0.08	1	0	0	0	1
10	Ken	Erik	0.08	0	1	1	0	0
11	Ken	Sharon	0.08	0	1	0	1	0
12	Ken	Leslie	0.08	0	1	0	0	1
13	Erik	Sharon	0.08	0	0	1	1	0
14	Erik	Leslie	0.08	0	0	1	0	1
15	Sharon	Leslie	0.08	0	0	0	1	1

Nótese que la suma de las probabilidades inducidas por el diseño de muestreo es igual a uno y que cada una de ellas es mayor que cero.

3.3.1 Algoritmo de selección

Tillé (2006) presenta dos algoritmos para seleccionar una muestra aleatoria simple con reemplazo. El primero, de manera general induce m selecciones individuales y el segundo, es un método secuencial que implementa la selección mediante la distribución binomial.

Método de m selecciones

El siguiente método de selección se implementa en m pasos, y aunque no es eficiente computacionalmente, es muy conocido.

- Seleccionar un primer elemento con probabilidad $\frac{1}{N}$ de todo el conjunto de datos.
- Seleccionar un segundo elemento con probabilidad $\frac{1}{N}$ de todo el conjunto de datos.
- ...
- \bullet Seleccionar un m-ésimo elemento con probabilidad $\frac{1}{N}$ de todo el conjunto de datos.

Hace unas pocas décadas, cuando no existía la ayuda tecnológica de ahora, no imagino como los encargados de la selección de la muestra pudieron haber utilizado este algoritmo. Imagine seleccionar una muestra de 3000 elementos sin la facilidad de un computador.

Método secuencial

Tillé (2006) afirma que este procedimiento es mejor que el anterior porque permite seleccionar una muestra de tamaño m en una sola pasada por el conjunto de datos.

 \bullet Seleccionar n_k veces el elemento k-ésimo de acuerdo a una distribución binomial.

$$Bin\left(m - \sum_{i=1}^{k-1} n_i, \frac{1}{N-k+1}\right)$$
 (3.3.5)

Para todo $k \in U$.

Ejemplo 3.3.2. Como se ha visto en los capítulos anteriores, R incorpora en la función sample, la selección de muestras aleatorias simples con reemplazo, simplemente el argumento replace debe ser activado mediante, replace=TRUE. Así, para seleccionar una muestra con reemplazo de tamaño m=3, sólo es necesario escribir el siguiente código.

```
N <- length(U)
sam <- sample(N, 3, replace=TRUE)
U[sam]
## [1] "Yves" "Sharon" "Leslie"</pre>
```

El procedimiento de selección de una muestra aleatoria con reemplazo de tamaño m mediante el uso del algoritmo secuencial está implementado en la función S.WR(N,m) cuyos argumentos son N, el tamaño de la población y m, el tamaño de la muestra con reemplazo. Así, para seleccionar una muestra aleatoria simple con reemplazo de la población U de tamaño N=5, se tiene

```
m <- 3
sam <- S.WR(N,m)
U[sam]
## [1] "Ken" "Leslie" "Leslie"</pre>
```

Una vez más, la salida de la función es un vector de índices (no necesariamente distintos) de los elementos pertenecientes a la muestra seleccionada s. Este algoritmo utiliza la distribución binomial en cada uno de sus pasos, de tal forma que para la selección de la anterior muestra conformada por **Ken**, **Leslie** y **Leslie** cada uno de los N = 5 pasos del algoritmo arrojaron los siguientes resultados.

Nombre	Bin n	Bin p	nk
Yves	3	0.2000	0
Ken	3	0.2500	1
Erik	2	0.3333	0
Sharon	2	0.5000	2
Leslie	0	1.0000	0
	Yves Ken Erik Sharon	Yves 3 Ken 3 Erik 2 Sharon 2	Yves 3 0.2000 Ken 3 0.2500 Erik 2 0.3333 Sharon 2 0.5000

Donde Bin n y Bin p son los parámetros de la distribución binomial asociada al algoritmo secuencial. Note que la cantidad nk se refiere a la realización de la variable $n_k(s)$.

3.3.2 El estimador de Hansen-Hurwitz

Cuando se tienen las cantidades del resultado 3.3.3 se pueden implementar los principios del estimador de Horvitz-Thompson para estimar el total poblacional t_y ; sin embargo, el cálculo y estimación de la varianza de esta estrategia de muestreo resulta ser muy compleja (computacionalmente). Por esta razón, utilizaremos el estimador de Hansen-Hurwitz dado por (2.2.34) que estima de manera insesgada al parámetro de interés t_y .

Resultado 3.3.4. Para un diseño de muestreo aleatorio simple con reemplazo, el estimador de Hansen-Hurwitz del total poblacional t_y , su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,p} = \frac{N}{m} \sum_{i=1}^{m} y_i \tag{3.3.6}$$

$$Var_{MRAS}(\hat{t}_{y,p}) = N \frac{(N-1)}{m} S_{yU}^2$$
 (3.3.7)

$$\widehat{Var}_{MRAS}(\hat{t}_{y,p}) = \frac{N^2}{m} S_{ysr}^2$$
(3.3.8)

respectivamente, con S_{yU}^2 el estimador de la varianza de los valores de la característica de interés y en el universo y S_{ysr}^2 el estimador de la varianza de los valores y_i que pertenecen a la muestra seleccionada $(\forall i \in m)$ (no necesariamente distintos) en la muestra. Esto es,

$$S_{ysr}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (y_i - \bar{y}_S)^2.$$

Nótese que $\hat{t}_{y,p}$ es insesgado para el total poblacional t_y de la característica de interés y, y que $\widehat{Var}_{MRAS}(\hat{t}_{y,p})$ es insesgado para $Var_{MRAS}(\hat{t}_{y,p})$.

Prueba. Los resultados se obtienen escribiendo el estimador de Hansen-Hurwitz de la siguiente manera,

$$\hat{t}_{y,p} = \frac{1}{m} \sum_{U} n_k(S) \frac{y_k}{p_k} = \frac{N}{m} \sum_{U} n_k(S) y_k$$
(3.3.9)

Por tanto, utilizando el resultado 2.2.8., se tiene que

$$E(\hat{t}_{y,p}) = \frac{N}{m} \sum_{U} E(n_k(S)) y_k$$
$$= \frac{N}{m} \sum_{U} \frac{m}{N} y_k = t_y$$

Por otro lado, asumiendo que las variables Z_i son independientes e idénticamente distribuidas

$$Var\left(\hat{t}_{y,p}\right) = Var\left(\frac{1}{m}\sum_{i}^{m}Z_{i}\right)$$

$$= \frac{1}{m^{2}}\sum_{i}^{m}Var(Z_{i})$$

$$= \frac{1}{m^{2}}\sum_{i}^{m}\left(\sum_{U}\frac{1}{N}(Ny_{k}-t)^{2}\right)$$

$$= \frac{1}{m}\left(\frac{N^{2}}{N}\sum_{U}(y_{k}-\bar{y}_{U})^{2}\right)$$

$$= N\frac{(N-1)}{m}S_{yU}^{2}$$

Escribiendo el estimador de la varianza como

$$\widehat{Var}(\hat{t}_{y,p}) = \frac{1}{m} \frac{1}{m-1} \sum_{IJ} n_k(S) \left(Ny_k - \hat{t}_{y,p} \right)^2$$
(3.3.10)

se tiene el insesgamiento dado por

$$\begin{split} E\left(\widehat{Var}(\hat{t}_{y,p})\right) &= \frac{1}{m} \frac{1}{m-1} \sum_{U} E\left(n_{k}(S)(Ny_{k} - \hat{t}_{y,p})^{2}\right) \\ &= \frac{1}{m} \frac{1}{m-1} \sum_{U} E\left(n_{k}(S)(Ny_{k} - t_{y})^{2} - n_{k}(S)(\hat{t}_{y,p} - t_{y})^{2}\right) \\ &= \frac{1}{m} \frac{1}{m-1} E\left(\sum_{U} n_{k}(S)(Ny_{k} - t_{y})^{2}\right) \\ &- \frac{1}{m} \frac{1}{m-1} E\left((\hat{t}_{y,p} - t_{y})^{2} \sum_{U} n_{k}(S)\right) \\ &= \frac{1}{m} \frac{1}{m-1} \left[E\left(\sum_{U} n_{k}(S)(Ny_{k} - t_{y})^{2}\right) - mE\left((\hat{t}_{y,p} - t_{y})^{2}\right)\right] \\ &= \frac{1}{m} \frac{1}{m-1} \left[m\left(\sum_{U} \frac{m}{N}(Ny_{k} - t_{y})^{2}\right) - mVar(\hat{t}_{y,p})\right] \\ &= \frac{1}{m} \frac{1}{m-1} \left[m^{2}Var(\hat{t}_{y,p}) - mVar(\hat{t}_{y,p})\right] \\ &= Var(\hat{t}_{y,p}) \end{split}$$

Ejemplo 3.3.3. Para nuestra población de ejemplo U, existen $\binom{N+m-1}{m} = 20$ posibles muestras con reemplazo de tamaño m=2. Realice el cálculo léxico-gráfico del estimador de Hansen-Hurwitz y compruebe el insesgamiento y la varianza.

3.3.3 Marco y Lucy

Suponga que se quiere seleccionar una muestra aleatoria simple con reemplazo de tamaño m=400 empresas del sector industrial. Para la selección de la muestra es posible usar la función ${\tt sample}$ que viene integrada con R. En primer lugar se debe cargar el marco de muestreo que permite la selección, identificación y posterior ubicación de cada individuo en la muestra con reemplazo. Para la selección de la muestra es necesario ingresar los parámetros de la función, en este caso ${\tt N=2396}$, el tamaño poblacional, está dado por la cantidad de filas (registros de empresas del sector industrial) del marco de muestro y ${\tt m=400}$ empresas que se seleccionaran con reemplazo.

```
data(BigLucy)
attach(BigLucy)
N <- dim(BigLucy)[1]
m <- 2000
sam <- sample(N, m, replace=TRUE)</pre>
```

Sin embargo, para seleccionar la muestra con reemplazo utilizando el método secuencial, el paquete TeachingSampling adjunta la función S.WR cuyos argumentos son N, el tamaño de la población y m, el tamaño de la muestra con reemplazo. El resultado de la función es un conjunto de índices (no necesariamente distintos) que aplicados a la población resulta en los valores de la característica de interés para las empresas (no necesariamente distintas) seleccionadas. Nótese que una empresa seleccionada se tendrá en cuenta en la etapa de estimación tantas veces como haya sido seleccionada.

```
sam <- S.WR(N,m)
muestra <- BigLucy[sam,]
attach(muestra)</pre>
```

```
head(muestra)
##
                   TD
                             Ubication Level
                                                 Zone Income Employees Taxes
## 62
        AB0000000062 C0196110K0105787 Small County1
                                                         456
                                                                    71
                                                                         9.0
## 63
        AB0000000063 C0242126K0059771 Small County1
                                                         340
                                                                    28
                                                                         5.0
                                                         340
                                                                    28
## 63.1 AB0000000063 C0242126K0059771 Small County1
                                                                         5.0
        AB0000000093 C0159050K0142847 Small County1
                                                         441
                                                                    66
                                                                         8.0
## 115
        AB0000000115 C0123025K0178872 Small County1
                                                          10
                                                                    65
                                                                         0.5
## 296
        AB0000000296 C0129476K0172421 Small County1
                                                         245
                                                                    67
                                                                          2.0
##
        SPAM ISO Years
                         Segments
## 62
                        County1 7
         ves
              no
                    12
## 63
         yes
              no
                    20 County1 7
## 63.1
        ves
                    20 County1 7
              no
## 93
                    11 County 1 10
          no
              no
## 115
                    28 County1 12
          no
             no
## 296
                     2 County1 30
              no
dim(muestra)
## [1] 2000
              11
```

La primera empresa en ser seleccionada mediante el método secuencial es la empresa que ocupa la segunda posición en el marco de muestreo; es decir, la empresa cuyo número único de identificación corresponde a AB002, la segunda y tercera empresa en ser seleccionadas corresponde a la empresa identificada con el número único AB015. Si un elemento ha sido seleccionada más de una vez, R codifica automáticamente las posteriores selecciones con un punto seguido de un número que indica el número de veces menos uno que ha sido seleccionada la misma unidad.

Una vez que las empresas son seleccionadas, se programa la visita del encuestador en la cual se registran los valores de las características de interés. Cuando se tiene la base de datos con la información pertinente para todas las empresas seleccionadas en la muestra con reemplazo, se procede a estimar los totales de las características de interés. La función E.WR del paquete TeachingSampling permite la estimación de una o varias características de interés simultáneamente. Para ello, se debe crear un conjunto de datos con la información recolectora para cada una de las 400 empresas en las características de interés. En este caso creamos un conjunto de datos con las tres características de interés Income, Employees y Taxes.

La función E.WR del paquete TeachingSampling tiene tres argumentos, N, el tamaño de la población y m, el tamaño de la muestra con reemplazo y el conjunto de datos (conteniendo los valores para la(s) característica(s) de interés). El resultado de la función es la estimación del total, la varianza estimada y el respectivo coeficiente de variación de la(s) característica(s) de interés.

```
estima <- data.frame(Income, Employees, Taxes)
E.WR(N, m, estima)</pre>
```

La tabla ??. muestra los resultados particulares de esta estrategia de muestreo. Nótese que con un menor tamaño de muestra, se obtienen mejores resultados que al utilizar una estrategia de muestreo que contempla un diseño Bernoulli y el estimador de Horvitz-Thompson.

	N	Income	Employees	Taxes
Estimation	85296.00	36809829.98	5404439.86	1021547.54
Standard Error	0.00	512237.40	62252.04	31822.36
CVE	0.00	1.39	1.15	3.12
DEFF		1.02	1.02	1.02

Tabla 3.5: Estimaciones para el diseño de muestreo aleatorio simple con reemplazo

El efecto de diseño

Sin embargo, utilizando el efecto de diseño podemos comparar la eficiencia de la anterior estrategia utilizada en Lucy mediante el efecto de diseño. Utilizando la definición podemos aproximar la medida mediante

$$\begin{split} Deff &= \frac{Var_{MRAS}(\hat{t}_{y,p})}{Var_{MAS}(\hat{t}_{y,\pi})} \\ &= \frac{1}{1-f} \left(1 - \frac{1}{N} \right) \cong \frac{1}{1-f} \end{split}$$

Por tanto, para la estrategia de muestreo utilizada anteriormente, tenemos $Deff = \frac{1}{1 - \frac{2000}{85296}} = 1.02.$

Lo anterior indica que existe una pérdida del 2% de precisión al utilizar la estrategia de muestreo con reemplazo y el estimador de Hansen-Hurwitz. En general se tiene que, para tamaños de muestra muy pequeños, en comparación a N, las dos estrategias arrojan resultados muy similares. Sin embargo, a medida que el tamaño de muestra crece, en comparación a N, la medida Deff aumenta significativamente; es decir, existe una pérdida muy grande de eficiencia.

Dado que el diseño de muestreo es con reemplazo, se quiere verificar que la distribución asintótica del estimador de Hansen-Hurwitz sea normal. Se realiza una simulación de Monte Carlo, con los mismos lineamentos utilizados en la sección 3.1.3 en donde se realizaron varios experimentos de Monte Carlo para examinar el comportamiento del estimador de Hansen-Hurwitz en la característica ingreso. El resultado de la simulación se muestra en los histogramas de la figura 3.3. En este experimento de Monte Carlo el promedio de las estimaciones de cada experimento coincide con el total poblacional y se espera que la varianza de las estimaciones debe acercarse a la varianza basada en el diseño de muestreo aleatorio simple.

La media de las estimaciones de t_y es 36631139.13 que ajusta bien con el parámetro correspondiente $t_y = 1035217$. Nótese que la varianza del estimador (mediante este experimento de Monte Carlo) no es muy grande y que la distribución del estimador no muestra valores atípicos. Hay que tener cuidado con las afirmaciones acerca de normalidad en este caso pues la distribución, aunque parece ser simétrica y con forma de campana, en realidad puede estar sesgada a derecha o a izquierda.

3.4 Diseño de muestreo sistemático

En algunas ocasiones, cuando no se dispone de un marco de muestreo, por lo menos no de forma explícita, o cuando el marco disponible está ordenado de forma particular, con respecto a los rótulos del mismo, es posible utilizar el diseño de muestreo sistemático como una opción para la selección de muestras. La característica más particular de este diseño de muestreo es que todas las unidades se suponen enumeradas del 1 al N, al menos implícitamente, y se tiene conocimiento de que la población se encuentra particionada en a grupos poblacionales latentes. En este orden de ideas el tamaño poblacional

```
HHest <- c()
for(i in 1:1000){
    sam <- sample(N, m, replace=TRUE)
    HHest[i] = E.WR(N, m, BigLucy$Income[sam])[1,2]
}
barHH <- mean(HHest)
sdHH <- sd(HHest)
x <- seq(min(HHest), max(HHest), by=10)

ggplot(as.data.frame(HHest), aes(x=HHest)) +
    geom_histogram(aes(y=..density..)) +
    stat_function(fun=dnorm, args=list(mean=barHH, sd=sdHH), colour="red")

## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.</pre>
```


Figura 3.3: Distribución empírica del estimador de Hansen-Hurwirtz para el diseño de muestreo aleatorio simple con reemplazo.

$$N$$
 puede ser escrito como
$$N = na + c \tag{3.4.1}$$

en donde $0 \le c < a$ y n, el tamaño de muestra esperado, se define como la parte entera del cociente N/a. Nótese que c es un entero que representa el residuo algebraico del total poblacional y se puede

ver fácilmente que toma la siguiente forma

$$c = N - \left\| \frac{N}{a} \right\| a \tag{3.4.2}$$

En donde $\|\frac{N}{a}\|$ representa la parte entera del cociente N/a. Una vez que los grupos han sido conformados, se procede a escoger de manera aleatoria, un número entre 1 y a, por ejemplo r. La muestra estará conformada sistemáticamente por los elementos $r, r+a, r+2a, \ldots, r+(n-1)a$. Nótese que en el caso en donde c=0, el tamaño de muestra estará dado por n=N/a; de otra forma, si c>0, el tamaño de muestra puede ser $n=\|\frac{N}{a}\|$ ó $n=\|\frac{N}{a}\|+1$. Como lo señala Raj (1968) este diseño de muestreo es un caso especial de un muestreo por conglomerados, como se verá en los siguientes capítulos.

Tabla 3.6: Posible configuración del muestreo sistemático.

Grupo	s_1		s_r		s_a
n = 1	1		r		a
n=2	1+a		r + a		2a
n = 3	1+2a		r + 2a		3a
:	:	٠.	÷	٠	:
$n = \left\ \frac{N}{a} \right\ $	1 + (n-1)a		r + (n-1)a		na
$n = \left\ \frac{N}{a} \right\ + 1$	1 + na				

El anterior esquema permite una mejor comprensión del funcionamiento del diseño de muestreo sistemático. Nótese el ordenamiento por grupos de las unidades que pertenecen a la población. En particular, esta tabla corresponde a una población, en donde, si se seleccionara el último grupo s_a , entonces el tamaño de muestra sería $n = \|\frac{N}{a}\|$, mientras que si se escogiera el primer grupo s_1 , el tamaño de muestra estaría dado por $n = \|\frac{N}{a}\| + 1$.

Por otro lado, nótese que cada grupo s_r constituye una posible muestra, de tal forma que

$$U = \bigcup_{r=1}^{a} s_r. \tag{3.4.3}$$

El soporte Q de todas las posible muestras sistemáticas, queda entonces definido como

$$Q_r = \{s_1, s_2, \dots, s_r, \dots, s_a\}. \tag{3.4.4}$$

Resultado 3.4.1. Para este diseño de muestreo, la cardinalidad del soporte es igual al número de grupos formados. Es decir

$$\#Q_r = a$$

Definición 3.4.1. Suponga que el tamaño poblacional es tal que N = na + c, con $0 \le c < a$. Se define un diseño de muestreo sistemático de la siguiente manera

$$p(s) = \begin{cases} \frac{1}{a} & \text{si } s \in Q_r \\ 0 & \text{en otro caso} \end{cases}$$
 (3.4.5)

Dado que sólo existen a posibles muestras, el diseño de muestreo sistemático cumple que $\sum_{s \ni Q} p(s) = 1$.

3.4.1 Algoritmo de selección

El siguiente algoritmo secuencial permite la extracción de una muestra mediante el diseño de muestreo sistemático.

- 1. Seleccionar con probabilidad $\frac{1}{a}$ un arranque aleatorio. Es decir un entero r, tal que $1 \le r \le a$.
- 2. La muestra estará definida por el siguiente conjunto

$$s_r = \{k : k = r + (j-1)a; j = 1, \dots, n(S)\}\$$
 (3.4.6)

Ejemplo 3.4.1. Nuestra población ejemplo U está ordenada de la siguiente forma

$$U = \{ Yves, Ken, Erik, Sharon, Leslie \}$$

Suponga que sistemáticamente se divide en a=2 grupos. El primero dado por:

$$s_1 = \{ Yves, Erik, Leslie. \}$$

y el segundo conformado por:

$$s_2 = \{ \mathbf{Ken}, \, \mathbf{Sharon} \}$$

De tal forma que N = (2)(2) + 1. Para seleccionar un arranque aleatorio r se utilizará un dado, de tal forma que si el resultado de un lanzamiento es par, entonces la muestra seleccionada será s_1 , de lo contrario la muestra seleccionada será s_2 .

Resultado 3.4.2. Para un diseño de muestreo sistemático, las probabilidades de inclusión de primer y segundo orden están dadas por

$$\pi_k = \frac{1}{a} \tag{3.4.7}$$

$$\pi_{kl} = \begin{cases} \frac{1}{a} & \text{si } k \text{ y } l \text{ pertenecen a } s_r \\ 0 & \text{en otro caso} \end{cases}$$
 (3.4.8)

respectivamente.

Prueba. considerando que el elemento k-ésimo sólo puede pertenecer a una y sólo una muestra s_r , tenemos que

$$\pi_k = Pr(k \in S) = Pr(\text{seleccionar la muestra } s_r) = \frac{1}{a}$$
 (3.4.9)

Por otra parte, suponga que los elementos k-ésimo y l-ésimo pertenecen al grupo s_r . De esta manera, estos elementos son incluidos en la muestra sí y sólo sí se selecciona el grupo s_r , por tanto, la probabilidad de inclusión de segundo orden está dada por la probabilidad de selección del grupo s_r igual a $\frac{1}{a}$. Si los elementos k-ésimo y l-ésimo pertenecen a grupos distintos, la probabilidad de ser incluidos en la muestra realizada es nula.

3.4.2 El estimador de Horvitz-Thompson

Una vez que el diseño de muestreo es definido, la estrategia se completa con el uso del estimador de Horvitz-Thompson, por ser este un diseño sin reemplazo. El siguiente resultado será útil para definir las propiedades de varianza del estimador.

Resultado 3.4.3. Para un diseño $p(\cdot)$ con soporte Q, la varianza del estimador de Horvitz-Thompson, se puede escribir como

$$Var(\hat{t}_{y,\pi}) = \sum_{l} \sum_{l} \frac{\pi_{kl}}{\pi_k \pi_l} y_k y_l - \left(\sum_{l} y_k\right)^2$$
 (3.4.10)

Prueba. Partiendo del resultado 2.2.2., se tiene que

$$Var(\hat{t}_{y,\pi}) = \sum_{ll} \Delta_{kl} \frac{y_k}{\pi_k} \frac{y_l}{\pi_l}$$
(3.4.11)

$$= \sum_{I} \sum_{l} (\pi_{kl} - \pi_k \pi_l) \frac{y_k}{\pi_k} \frac{y_l}{\pi_l}$$
 (3.4.12)

$$=\sum_{l}\sum_{l}\left(\frac{\pi_{kl}}{\pi_k\pi_l}-1\right)y_ky_l\tag{3.4.13}$$

$$= \sum_{IJ} \frac{\pi_{kl}}{\pi_k \pi_l} y_k y_l - \sum_{IJ} y_k y_l$$
 (3.4.14)

$$= \sum_{l} \sum_{l} \frac{\pi_{kl}}{\pi_{k} \pi_{l}} y_{k} y_{l} - \left(\sum_{l} y_{k}\right)^{2}$$
 (3.4.15)

En donde se utiliza el hecho de que

$$\sum \sum_{l} y_{k} y_{l} = \sum \sum_{k \neq l} y_{k} y_{l} + \sum_{l} y_{k}^{2} = \left(\sum_{l} y_{k}\right)^{2}$$
 (3.4.16)

Resultado 3.4.4. Para el diseño de muestreo sistemático, el estimador de Horvitz-Thompson y su varianza están dados por:

$$\hat{t}_{u,\pi} = at_{sr},\tag{3.4.17}$$

con $t_{sr} = \sum_{k \in S_-} y_k$, y

$$Var_{SIS}(\hat{t}_{y,\pi}) = a \sum_{r=1}^{a} (t_{sr} - t)^2$$
(3.4.18)

En este caso no existe estimador de la varianza.

Prueba. De la definición del estimador de Horvitz-Thompson y dado que las probabilidades de inclusión de primer orden son todas iguales al valor 1/a, entonces

$$\hat{t}_{y,\pi} = \sum_{Sr} \frac{y_k}{\pi_k} = at_{sr} \tag{3.4.19}$$

Utilizando los dos anteriores resultados, se sigue que

$$Var(\hat{t}_{y,\pi}) = \sum_{l} \sum_{l} \frac{\pi_{kl}}{\pi_{k} \pi_{l}} y_{k} y_{l} - \left(\sum_{l} y_{k}\right)^{2}$$
(3.4.20)

$$= a \sum_{r=1}^{a} \left(\sum_{sr} y_k y_l \right) - t^2 \tag{3.4.21}$$

$$= a \sum_{r=1}^{a} \left(\sum_{k \in s_r} y_k \sum_{l \in s_r} y_l \right) - t^2 \tag{3.4.22}$$

$$= a\sum_{r=1}^{a} t_{s_r}^2 - t^2 (3.4.23)$$

$$= a\sum_{r=1}^{a} (t_{sr} - \bar{t})^2 \tag{3.4.24}$$

donde

$$\bar{t} = \sum_{r=1}^{a} \frac{t_{s_r}}{a} = \frac{t}{a} \tag{3.4.25}$$

Por la definición 3.4.1, algunas probabilidades de inclusión de segundo orden son nulas, por ell no se tiene un estimador de la varianza.

Más allá de que los principios del estimador de Horvitz-Thompson no permitan estimar la varianza para este diseño, la razón genérica radica en que, de una forma u otra, se está seleccionando uno y sólo un grupo de elementos y se calcula un sólo total para el grupo. Como la selección es de sólo un grupo, no se tiene un marco de comparación y no se puede llegar a una estimación de la varianza.

3.4.3 Optimalidad de la estrategia

Una vez que la estrategia de muestreo queda definida, es indispensable tocar el tema de la configuración de los valores de la característica de interés mediante el ordenamiento particular que se tiene en el marco de muestreo. Bautista (1998) utiliza el siguiente esquema para explicar la eficiencia de esta estrategia de muestreo.

Tabla 3.7: Configuración de totales por grupo.

Grupo	s_1	 s_r	 s_a
	y_1	y_r	y_k
Valor de	y_{1+a}	y_{r+a}	y_{2a}
la	y_{1+2a}	y_{r+2a}	y_{3a}
característica	• • •	• • •	• • • •
	$y_{1+(n-1)a}$	$y_{r+(n-1)a}$	y_{na}
Total de grupo	t_{s_1}	 t_{s_r}	 t_{s_a}

Este diseño de muestreo puede resultar más eficiente que el diseño de muestreo aleatorio simple, dependiendo del ordenamiento del marco de muestreo. Es usado para palear las posibles imperfecciones generadas por un diseño de muestreo aleatorio simple. Por ejemplo, puede resultar que en una muestra simple, todos los elementos de la muestra seleccionada compartan una característica latente que perjudique la precisión de las estimaciones. En el caso de una población de personas, puede resultar que una muestra simple sólo incluya hombres. Cuando se sabe que el marco de muestreo está ordenado

de manera aleatoria, es recomendable utilizar el diseño de muestreo aleatorio simple, porque asegura una muestra bien mezclada. Por ejemplo, si el marco de muestreo está ordenado alfabéticamente, es casi seguro que se obtendrá una muestra que sea representativa de la población, puesto que la posición alfabética no debería estar asociada con la característica de interés.

Además, mediante este diseño de muestreo, no es necesario poseer un marco de muestreo de forma física para poder realizar una muestra probabilística. Sin embargo, se debe tener cuidado con la especificación del diseño, pues como lo afirma Lohr (2000) no es lo mismo seleccionar una de cada 10 personas que entran a una biblioteca que seleccionar una de cada 10 personas que salen de un avión. En el segundo caso, existe de forma implícita, un marco de muestreo.

Como se verá más adelante, el diseño de muestreo sistemático puede ser más preciso que el diseño de muestreo aleatorio simple cuando los grupos s_r poseen mucha variación interna. De manera contraria, si el valor de los elementos dentro de los grupos proporciona la misma información, entonces la eficiencia del diseño se verá disminuida significativamente con respecto al diseño aleatorio simple.

La figura 3.4 muestra los tres casos más particulares en el uso de esta estrategia de muestreo cuyas características son las siguientes:

- 1. **Ordenamiento aleatorio**: cuando el ordenamiento del marco de muestreo no está relacionado con la característica de interés, la eficiencia de este diseño es comparable con la de muestreo aleatorio simple. Ordenamiento por orden alfabético.
- 2. Ordenamiento lineal: cuando el ordenamiento del marco de muestreo es tal que se puede observar una tendencia lineal, entonces la selección de una muestra sistemática obliga a que los valores de los elementos incluidos tengan una alta dispersión haciendo que el comportamiento de los grupos formados sea heterogéneo con respecto al valor de la característica de interés. Ordenamiento de registros contables.
- 3. Ordenamiento periódico: si la población es tal que se observa un patrón de tipo periódico, el muestreo sistemático puede arrojar peores resultado que una muestra aleatoria simple pues si el intervalo de muestreo coincide con el patrón de periodicidad, la muestra seleccionada incluiría elementos cuyos valores de la característica de interés serían muy parecidos. Una muestra seleccionada de esta manera no sería representativa de la población. En algunos casos es posible encontrar poblaciones con este tipo de comportamiento periódico; por ejemplo, el flujo vehicular durante las 24 horas del día o las ventas en negocios durante cierta temporada del año.

Descomposición de la varianza

Algunos críticos de la teoría del muestreo han querido separar el pensamiento estadístico de la metodología de estudios por muestreo. Lo anterior sumado a la falta de preparación del usuario del muestreo ha abierto una brecha entre dos mundos. La verdad es que la estadística sin muestreo no está completa y viceversa Kish (1965). En estos apartes, debemos considerar uno de los resultados más importantes de la estadística que ha permitido el desarrollo de la misma en diversos campos de la vida práctica.

Resultado 3.4.5. Suponga que la población se divide en a grupos, de tal forma que existen n elementos por grupo y el tamaño poblacional toma la forma N=an, entonces

$$(N-1)S_{y_U}^2 = \underbrace{\sum_{U} (y_k - \bar{y}_U)^2}_{SCT} = \underbrace{\sum_{r=1}^a \sum_{s_r} (y_{rk} - \bar{y}_{s_r})^2}_{SCD} + \underbrace{\sum_{r=1}^a n (\bar{y}_{s_r} - \bar{y}_U)^2}_{SCE}$$
(3.4.26)

La sigla **SCT** se refiere a la suma de cuadros del total de la población y no es otra cosa que el numerador en la fórmula del estimador de la varianza. El anterior resultado es importante porque

Figura 3.4: Casos de ordenamiento en muestreo sistemático.

permite descomponer la suma de cuadrados total en dos cantidades. Primero, **SCD** que denota la suma de cuadrados dentro (al interior) de los grupos y segundo, **SCE** que hace referencia a la suma de cuadrados entre los grupos. Por supuesto, la varianza como parámetro poblacional es fija, por tanto si

- 1. SCE es alta, entonces SCD es baja, indicando así que los grupos están construidos de tal forma que resultan ser muy heterogéneos entre sí, pero dentro de ellos existe homogeneidad.
- 2. **SCE** es baja, entonces **SCD** es alta, lo que quiere decir que los grupos son muy disímiles en su interior, pero entre ellos tienen un comportamiento similar.

Esta representación de la descomposición de la varianza, se puede ver claramente en una tabla de ANOVA (análisis de varianza, por sus siglas en inglés), de la siguiente manera.

Desde un punto de vista totalmente pragmático, la estrategia de muestreo tendrá un mejor desempeño cuando la variabilidad total entre los grupos sea mínima y la variabilidad dentro de los grupos sea máxima. El siguiente resultado da una mejor comprensión de la descomposición de la varianza en los grupos. Es decir, la varianza del estimador de Horvitz-Thompson, bajo muestreo sistemático, será cercana a cero cuando el ordenamiento de los grupos en la población es tal que los totales t_{s_r} con $r=1,\ldots,a$ son similares

$$t_{s_1} \approx t_{s_2} \approx \dots \approx t_{s_a} \approx \bar{t}$$
 (3.4.27)

Resultado 3.4.6. Sin pérdida de generalidad, considere que el tamaño muestral es tal que N = na, entonces la varianza del estimador de Horvitz-Thompson bajo un diseño de muestreo sistemático toma

Tabla .	Tabla 3.8: Tabla de ANOVA inducida por el muestreo sistematico.							
Fuente	gl	Suma de cuadrados	Cuadrado medio					
Entre	a-1	$SCE = \sum_{r=1}^{a} n \left(\bar{y}_{s_r} - \bar{y}_U \right)^2$	$\frac{SCE}{a-1}$					
Dentro	N-a	$SCD = \sum_{r=1}^{a} \sum_{s_r} (y_{rk} - \bar{y}_{s_r})^2$	$\frac{SCD}{N-a}$					
Total	N-1	$SCT = \sum_{U} (y_k - \bar{y}_U)^2$	$s_{y_U}^2$					

Tabla 3.8: Tabla de ANOVA inducida por el muestreo sistemático.

la siguiente forma

$$Var_{SIS}(\hat{t}_{y,\pi}) = N \sum_{r=1}^{a} n \left(\bar{y}_{s_r} - \bar{y}_U \right)^2 = N(SCE)$$
 (3.4.28)

Prueba. Partiendo de la definición de la varianza del estimador de Horvitz-Thompson en muestreo sistemático, se tiene que

$$Var_{SIS}(\hat{t}_{y,\pi}) = a \sum_{r=1}^{a} (t_{sr} - \bar{t})^{2}$$

$$= \frac{N}{n} \sum_{r=1}^{a} (n\bar{y}_{sr} - n\bar{y}_{U})^{2}$$

$$= \frac{N}{n} \sum_{r=1}^{a} n^{2} (\bar{y}_{sr} - \bar{y}_{U})^{2}$$

$$= N \sum_{r=1}^{a} n (\bar{y}_{sr} - \bar{y}_{U})^{2} = N(SCE)$$

Por tanto, se quiere que toda la variabilidad esté por dentro de cada uno de los grupos.

Definición 3.4.2. Se define el coeficiente de correlación intra-clase como

$$\rho = 1 - \frac{n}{n-1} \frac{SCD}{SCT} \tag{3.4.29}$$

Esta medida de correlación entre los pares de elementos de los grupos formados toma una valor máximo igual a uno cuando **SCE** es nula y toma un valor mínimo igual a $-\frac{1}{n-1}$ cuando **SCE** es máxima. En particular, es deseable para esta estrategia que ρ tome valores cercanos a cero.

Resultado 3.4.7. Utilizando la relación 3.4.26 SCT=SCE+SCD se tiene que

$$SCE = SCT \left[(\rho - 1) \frac{n-1}{n} + 1 \right]$$
(3.4.30)

Prueba. De la definición del coeficiente de correlación intra-clase se tiene que

$$(\rho - 1)\frac{n - 1}{n} + 1 = 1 - \frac{SCD}{SCT}$$
$$= \frac{SCE}{SCT}$$

por tanto al despejar SCE se tiene el resultado.

Resultado 3.4.8. Con el anterior resultado no es difícil verificar que la varianza del estimador de Horvitz-Thompson bajo muestreo sistemático se puede escribir como

$$Var_{SIS}(\hat{t}_{y,\pi}) = \underbrace{\frac{N^2}{n} \left(1 - \frac{n}{N}\right) S_{yU}^2}_{Var_{MAS}(\hat{t}_{y,\pi})} \left\{ \frac{N-1}{N-n} [1 + (n-1)\rho] \right\}$$
(3.4.31)

Prueba. Partiendo de la última expresión tenemos que

$$\begin{split} \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{yU}^2 \left\{ \frac{N-1}{N-n} [1 + (n-1)\rho] \right\} &= \frac{N}{n} SCT \left[1 + (n-1)\rho \right] \\ &= N(SCT) \left[1 - \frac{SCD}{SCT} \right] \\ &= N(SCE) \\ &= Var_{SIS}(\hat{t}_{y,\pi}) \end{split}$$

que coincide con la varianza del estimador de Horvitz-Thompson en muestreo sistemático

Nótese que la primera parte de la anterior ecuación se refiere al valor del estimador de Horvitz-Thompson bajo un diseño de muestreo aleatorio simple sin reemplazo. Siguiendo esta idea, el efecto de diseño está dado por el siguiente resultado.

Resultado 3.4.9. El efecto de diseño de la estrategia de muestreo que utiliza un diseño sistemático y el estimador de Horvitz-Thompson está dado por

$$Deff = \frac{Var_{SIS}\hat{t}_{\pi}}{Var_{MAS}\hat{t}_{\pi}} = \frac{N-1}{N-n}[1 + (n-1)\rho]$$
 (3.4.32)

Dado el efecto de diseño, se concluye que esta estrategia de muestreo es

- 1. Igual de eficiente al muestreo aleatorio simple sí $\rho = \frac{1}{1-N}$.
- 2. Menos eficiente que el muestreo aleatorio simple sí $\rho>\frac{1}{1-N}$
- 3. Más eficiente que el muestreo aleatorio simple sí $\rho < \frac{1}{1-N}.$

Prueba. La demostración es inmediata teniendo en cuenta el anterior resultado.

3.4.4 Diseño de muestreo q-sistemático

Cuando la periodicidad es un problema o cuando se quiere tener un estimativo insesgado de la varianza del estimador de Horvitz-Thompson, Mahalanobis (1946) propone el uso de muestras sistemáticas interpenetradas. Este método consiste en seleccionar, no una, sino q muestras sistemáticas. De esta manera se seleccionan q arranques aleatorios en grupos de tamaño aq, de tal manera que el tamaño poblacional se escribe como $N=a\frac{n}{q}+c$.

Definición 3.4.3. El diseño de muestreo sistemático con q réplicas está definido como

$$p(s) = \frac{1}{\binom{a}{g}} \quad \text{para todo } s \in Q_r \tag{3.4.33}$$

con Q_r definido en 3.4.4.

Por supuesto, la cardinalidad del soporte es $\#Q_r = \binom{a}{q}$, por tanto este diseño de muestreo cumple las propiedades del capítulo anterior. Teniendo en cuenta que se han formado a grupos, entonces el diseño de muestreo q-sistemático puede ser visto como un diseño MAS de tamaño de muestra igual a q de los totales de todos los grupos. Una ve más, estos grupos también pueden ser vistos como conglomerados.

Resultado 3.4.10. Para un diseño de muestreo sistemático, las probabilidades de inclusión de primer y segundo orden están dadas por

$$\pi_k = \frac{q}{a} \tag{3.4.34}$$

$$\pi_k = \frac{q}{a}$$

$$\pi_{kl} = \begin{cases} \frac{q}{a} & \text{si } k y l pertenecen } as_r \\ \frac{q}{a} \frac{q-1}{a-1} & \text{en otro } caso \end{cases}$$

$$(3.4.34)$$

respectivamente.

Resultado 3.4.11. Para el diseño de muestreo sistemático con q réplicas, el estimador de Horvitz-Thompson y su varianza están dados por:

$$\hat{t}_{y,\pi} = -\frac{a}{q} \sum_{S} t_{sr} \tag{3.4.36}$$

$$Var_{SIS}(\hat{t}_{y,\pi}) = \frac{a^2}{q} \left(1 - \frac{q}{a} \right) S_{t_{s_r}U}^2$$
 (3.4.37)

$$\widehat{Var}_{SIS}(\hat{t}_{y,\pi}) = \frac{a^2}{a} \left(1 - \frac{q}{a} \right) S_{t_{s_r}s}^2$$
 (3.4.38)

respectivamente, con $S^2_{t_{s_r}U}$ y $S^2_{t_{s_r}s}$ el estimador de la varianza de los totales de la característica de interés y en cada grupo s_r del universo y en la muestra. Nótese que $\hat{t}_{y,\pi}$ es insesgado para el total poblacional t_y de la característica de interés y, y que $\widehat{Var}_{SIS}(\hat{t}_{y,\pi})$ es insesgado para $Var_{SIS}(\hat{t}_{y,\pi})$.

Al respecto de esta estrategia, el lector debe notar que:

- La varianza del estimador de Horvitz-Thompson bajo el diseño de muestro q-sistemático crece cuando se aplica a un universo que está ordenado igualmente de forma sistemática.
- La varianza del estimador de Horvitz-Thompson bajo el diseño de muestro q-sistemático depende del ordenamiento de los valores de la característica de interés por lo que puede suceder que ésta no sea monótonamente decreciente en función del tamaño de muestra.
- El efecto de la correlación intra-clase tiene una gran repercusión en el tamaño de muestra; si existe una alta correlación intra-clase entonces el tamaño de muestra debe ser mayor para tener un c.v.e pequeño y viceversa.
- En estudios de tipo electoral se dice que un candidato tiene alta correlación intra-clase (por ejemplo en los barrios) cuando la imagen del candidato está polarizada. Es decir, la mayoría de votación en determinado barrio es muy alta por el candidato o muy baja. Por otro lado, se dice que la campaña electoral tiene baja correlación intra-clase cuando la votación en los barrios no es ni muy baja ni muy alta.

3.4.5 Marco y Lucy

En nuestro intento de obtener estimaciones precisas para la evaluación del comportamiento del sector industrial en lo corrido del último año fiscal, hemos notado que el marco de muestreo está ordenado de manera alfanumérica en orden ascendente por el rótulo de identificación industrial. Además, se sabe que el número de identificación de cada empresa no tiene una secuencia específica, sino que es asignado de acuerdo a la fecha de registro de la empresa. De tal forma, la primera empresa en ser registrada ante el organismo gubernamental competente es la identificada con el número de identificación **AB001** y la última empresa en ser registrada es la identificada con el número **AB987**.

Nótese que las característica de interés son Ingreso, número de empleados e impuestos declarados en el último año fiscal y se supone, de manera correcta, que estas características no tienen ninguna relación con la fecha de registro de la empresa. Así, puede suceder que una empresa joven, tenga unos altos réditos, pocos empleados y una alta declaración de impuestos, pero puede suceder lo contrario; de hecho, este comportamiento está sujeto a la estrategia de marketing utilizada en cada periodo comercial y no a la antigüedad del negocio. Por las anteriores razones, se supone que el ordenamiento del marco de muestreo es completamente aleatorio.

Se ha decidido que la población va a ser particionada en seis grupos, de tal forma que el tamaño efectivo de muestra será 399 o 400. El marco de muestreo es cargado en el ambiente de R.

```
data(BigLucy)
attach(BigLucy)
```

```
N <- dim(BigLucy)[1]
a <- 40
floor(N/a)
## [1] 2132</pre>
```

El procedimiento que se sigue es la creación de los grupos sistemáticos. Esto puede realizarse con la función (array(1:a,N)) que permite la creación de la secuencia 1,2,3,4,5,6,1,2,3,4,5,6,1,2...; sin embargo, es indispensable definir este arreglo como un factor, es decir como una variable de tipo categórica nominal cuyos rótulos significan la pertenencia de un individuo a un grupo.

La selección de la muestra se realiza mediante la función S.SY del paquete TeachingSampling cuyos argumentos son N, el tamaño de la población y a, el número de grupos. Esta función sigue el algoritmo secuencial descrito en esta estrategia de muestreo y lo que hace es aleatoriamente asignar un arranque aleatorio y saltar, en este caso, de seis en seis elementos hasta barrer toda la lista. El resultado de la función es un listado de índices que aplicados a la población resulta en los valores de las características de interés de los elementos incluidos en la muestra realizada.

```
sam <- S.SY(N, a)
muestra <- BigLucy[sam,]
attach(muestra)</pre>
```

```
head(muestra)

## ID Ubication Level Zone Income Employees Taxes

## 2 AB0000000002 C0011268K0290629 Small County1 329 19 4

## 42 AB0000000042 C0141009K0160888 Small County1 444 34 8
```

```
AB0000000082 C0170801K0131096 Small Countv1
                                                                    83
                                                                            2
                                                         238
                                                                            3
## 122 AB0000000122 C0059592K0242305 Small County1
                                                                    56
                                                         270
## 162 AB0000000162 C0041928K0259969 Small County1
                                                         310
                                                                    90
                                                                            4
## 202 AB0000000202 C0274937K0026960 Small County1
                                                         290
                                                                    57
                                                                            3
##
       SPAM ISO Years
                         Segments
## 2
        yes
             no
                    18
                        County1 1
## 42
        yes
                    24
                        County1 5
             no
## 82
        yes
             no
                    29 County 1 9
## 122
                    20 County1 13
         no
             no
## 162
                    35 County1 17
        yes
             no
                    22 County1 21
## 202
        yes
            no
n <- dim(muestra)[1]
n
## [1] 2133
```

En el anterior caso particular, el arranque aleatorio fue igual a tres; por tanto, la muestra está conformada por los elementos 3, 9, ..., 2385 y 2391 del marco de muestreo. Una vez recolectada la información de la muestra, se procede a realizar la estimación mediante el uso de la función E.SY del paquete TeachingSampling cuyos argumentos son N, a y un conjunto de datos conteniendo la información de las características de interés para cada elemento en la muestra.

```
estima <- data.frame(Income, Employees, Taxes)
E.SY(N, a, estima)</pre>
```

Los resultados de la estimación se muestran en la tabla 3.9. Es de considerar que la eficiencia de esta estrategia de muestreo es mucho mayor a la de una estrategia que utilice un diseño de muestreo aleatorio simple. Nótese que los coeficientes de variación son mucho menores y también, aunque este es un argumento un poco más débil, la desviación relativa es menor.

	N	Income	Employees	Taxes
Estimation	85320.00	36497640.00	5397600.00	1026360.00
Standard Error	0.00	502285.99	62422.05	37756.97
CVE	0.00	1.38	1.16	3.68
DEFF		1.00	1.00	1.00

Tabla 3.9: Estimaciones para el diseño de muestreo sistemático

Es hora de preguntarse, ¿por qué los resultados de las estimaciones son mejores que en otro tipo de estrategias de muestreo? Vamos a realizar un procedimiento de evaluación, puramente académico, y vamos a suponer que tenemos acceso a la información de la característica de interés a nivel poblacional.

En primer lugar, se realiza un análisis de varianza para obtener la descomposición de las sumas de cuadrados para la característica de interés Income. Para esto usamos la función 1m que relaciona a la variable de interés con un factor de agrupamiento. La variable grupo fue creada como un vector de cinco niveles y puede ser usada en este caso. Aplicando la función anova al modelo, se obtiene una tabla de sumas de cuadrados.

⁴Dado que no existe el estimador genérico para la varianza del estimador de Horvitz-Thompson, esta función utiliza una aproximación conservadora de la varianza suponiendo que se realizó un muestreo aleatorio simple.

```
data(BigLucy)
attach(BigLucy)
```

```
N<-dim(BigLucy)[1]
n<-2133
a<-floor(N/n)
c < -N-floor(N/n)*n
a*n+c
## [1] 85296
grupo<-as.factor(array(1:a,N))</pre>
anova(lm(Income~grupo))
## Analysis of Variance Table
##
## Response: Income
##
                 Df
                        Sum Sq Mean Sq F value Pr(>F)
                 38
                         58913
## grupo
                                 1550
                                           0.02
## Residuals 85257 6029937065
                                  70727
```

Siguiendo a Dalgaard (2008), en la mayoría de textos estadísticos (incluyendo el que el lector tiene en sus manos) las sumas de cuadrados son rotuladas como SCD, SCE y SCT. Sin embargo, R usa una rotulación diferente. La variación entre los grupos es rotulada con el nombre del factor de agrupación, en este caso grupo. La variación dentro de los factores de agrupación es rotulada como Residuals. Por tanto, se observa que la variación total se encuentra dentro de los grupos; mientras que existe una baja variación entre los grupos. Esto es bueno para efectos de la eficiencia de la estrategia.

Por un lado, al observar la gráfica de la característica de interés con respecto al ordenamiento natural del marco de muestreo, no es posible identificar un patrón lineal o de periodicidad, cuando realizamos el gráfico con respecto a los grupos, nos damos cuenta de que dentro de ellos existe una muy alta variabilidad y más aún, los cinco grupos tiene un comportamiento parecido entre ellos. El código necesario para la creación de este gráfico está dado a continuación.

Por otro lado, el ordenamiento aleatorio se observa muy claramente en la figura 3.6., en dónde los puntos marcados corresponden a los elementos seleccionados. Nótese la buena dispersión de la muestra en la población, haciéndola representativa. El código necesario para la creación de este gráfico es el siguiente.

Es claro que esta estrategia de muestreo resulto más eficiente que la estrategia de muestreo aleatorio simple. Pero, ¿cuánto más eficiente?. Con unos simple cálculos algebraicos se obtiene un coeficiente de correlación intra-clase muy cercano a cero y esto es bueno puesto que cumple con los requerimientos en la definición de ρ .

```
SCD <- anova(lm(Income~grupo))$Sum[1]
SCE <- anova(lm(Income~grupo))$Sum[2]
rho <- 1 - (n / (n-1)) * (SCE / (SCD + SCE))
rho
## [1] -0.00046
rho > 1 / (1 - N)
```


Figura 3.5: Distribución de la característica Income con respecto a los grupos creados en el muestreo sistemático.

```
## [1] FALSE
```

Sin embargo, lo verdaderamente asombroso es que la ganancia en eficiencia al usar este diseño es de veintinueve veces puesto que el efecto de diseño es aproximadamente 0.02.

```
VarHT <- N * SCD

VarHT

## [1] 5025031348

Deff <- (N - 1) * (1 + (n - 1) * rho) / (N - n)

Deff

## [1] 0.021
```

Los anteriores diseños de muestreo pertenecen al grupo de los diseños de probabilidad de inclusión constante. En el siguiente capítulo veremos diseños con probabilidad de inclusión proporcional al tamaño que hace uso de información auxiliar continua en el marco de muestreo.

Figura 3.6: Casos seleccionados en muestreo sistemático.

3.5 Ejercicios

- 3.1 Suponga una población de 10 elementos $U = \{e_1, e_2, \dots, e_{10}\}.$
 - Seleccione una muestra mediante un diseño Bernoulli con probabilidad de inclusión $\pi = 0.4$, utilizando el algoritmo de la sección 3.1.1. y teniendo en cuenta que para cada elemento en la población se obtuvo el siguiente conjunto de números aleatorios uniformes

$$\boldsymbol{\varepsilon} = \{0.152, 0.158, 0.614, 0.593, 0.140, 0.851, 0.803, 0.996, 0.433, 0.790\}$$

• Otra manera de seleccionar una muestra Bernoulli es generando un sólo número aleatorio de una distribución $Binomial(N,\pi)$; este valor generado es el tamaño de muestra n(S) y con ayuda del marco de muestreo se selecciona una muestra aleatoria simple de tamaño n(S). Suponiendo que la realización de Binomial(10,0.4) fue n(s)=5, utilice el algoritmo coordinado negativo para la selección de una muestra, teniendo en cuenta que para cada elemento en la población se obtuvo el siguiente conjunto de números aleatorios uniformes

$$\boldsymbol{\xi} = \{0.370, 0.561, 0.064, 0.412, 0.952, 0.461, 0.256, 0.275, 0.213, 0.443\}$$

- 3.2 Complete el cálculo léxico-gráfico del ejemplo 3.1.1.
- 3.3 En un estudio de calidad de vida en cárceles, se utilizó un diseño de muestreo Bernoulli con probabilidad de inclusión $\pi=0.15$ para seleccionar una muestra de reclusos. En la penitenciaría

3.5. Ejercicios 109

Característica	$\sum_{s} y_k$	$\sum_{s} y_k^2$
CVDP	5412	95299
OTMA	82503	604926

hay 1243 reclusos y se observaron las características de interés **CVDP** y **OTMA** para los presos incluidos en la muestra. Además se obtuvieron los siguientes resultados

- Utilice el estimador de Horvtiz-Thompson para calcular una estimación del total poblacional, el coeficiente de variación estimado y un intervalo de confianza al 95 % para estas características de interés.
- \bullet Utilice el estimador de Horv
tiz-Thompson para calcular una estimación de la media poblacional, el coeficiente de variación estimado y un intervalo de confianza al 95 % para estas caracter
ísticas de interés.
- Si el tamaño de muestra efectivo fue 191, utilice el estimador alternativo para calcular una estimación del total poblacional y de la media poblacional.
- 3.4 Suponga una población de 12 elementos $U = \{e_1, e_2, \dots, e_{12}\}$. Seleccione una muestra aleatoria simple sin reemplazo de tamaño n=4 utilizando el algoritmo de Fan-Muller-Rezucha teniendo en cuenta que para cada elemento en la población se obtuvo el siguiente conjunto de números aleatorios uniformes

$$\boldsymbol{\xi} = \{0.787, 0.946, 0.766, 0.338, 0.520, 0.849, 0.828, 0.165, 0.416, 0.105, 0.069, 0.853\}$$

- 3.5 Complete el cálculo léxico-gráfico del ejemplo 3.2.2.
- 3.6 Demuestre o refute la siguiente afirmación: «En muestreo aleatorio simple, para la estimación de un total poblacional, el estimador de Horvitz-Thompson coincide con el estimador altervativo».
- 3.7 Demuestre o refute la siguiente afirmación: «En muestreo aleatorio simple, para la estimación de un total en dominios de interés, se cumple siempre que $\sum_{d=1}^{D} \hat{t}_{yd,\pi} > \hat{t}_{y,\pi}$ ».
- 3.8 Demuestre o refute la siguiente afirmación: «En muestreo aleatorio simple, el coeficiente de variación estimado del estimador de Horvitz-Thompson para el total poblacional es menor que el coeficiente de variación estimado del estimador de Horvitz-Thompson para la media poblacional».
- 3.9 En un estudio de satisfacción empresarial en una entidad prestadora de salud que sirve a 748 asociados, se quiere averiguar el promedio del número de horas al mes (**NHM**) que los asociados permanecen en consulta médica. Para esto se planea un muestreo aleatorio simple pues se conoce que, para este caso particular, una aproximación para la varianza de esta característica de interés es de 3.4839 y para el coeficiente de variación es de 0.5324.
 - Con una confianza del 95 %, determine el tamaño de muestra mínimo para estimar el parámetro de interés con un error absoluto no mayor 15 minutos.
 - Con una confianza del 95 %, determine el tamaño de muestra mínimo para estimar el parámetro de interés con un erro relativo no mayor a 2 %.
- 3.10 Demuestre las siguientes igualdades

$$(n-1)S_{yS}^2 = \sum_{k \in S} (y_k - \bar{y}_S)^2 = \sum_{k \in S} y_k^2 - \frac{(\sum_{k \in S} y_k)^2}{n}$$
$$(N-1)S_{yU}^2 = \sum_{k \in U} (y_k - \bar{y}_U)^2 = \sum_{k \in U} y_k^2 - \frac{(\sum_{k \in U} y_k)^2}{N}$$

- 3.11 Demuestre rigurosamente los resultados 3.2.7 y 3.2.8.
- 3.12 Para el ejercicio 3.9, suponga que se deciden realizar n=50 entrevistas y que se obtuvo que $\sum_s y_k = 178 \text{ y} \sum_s y_k^2 = 826$. A continuación se presenta una tabla de frecuencias de las observaciones

NHM	0	1	2	3	4	5	6	7	8
Frecuencia	1	5	13	9	7	4	6	4	1

- Obtenga una estimación de Horvitz-Thompson para el total de horas mensuales que los asociados permanecen en consulta médica, reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %.
- Obtenga una estimación de Horvitz-Thompson para el promedio de horas mensuales que los asociados permanecen en consulta médica, reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %.
- Obtenga una estimación de Horvitz-Thompson para el total de asociados que permanecen en consulta médica menos (estrictamente) de cuatro horas, reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %.
- Obtenga una estimación de Horvitz-Thompson para la proporción de asociados que permanecen en consulta médica, más (estrictamente) de seis horas, reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %.
- 3.13 Complete el cálculo léxico-gráfico del ejemplo 3.3.3.
- 3.14 Para una población de N=10 elementos se planeó diseño aleatorio simple con reemplazo de tamaño de muestra m=6. Complete la siguiente salida del algoritmo secuencial utilizado para la extracción de la muestra

k	nbin	pbin	nk
[1,]			0
[2,]	6	0.1111111	3
[3,]			1
[4,]	2	0.1428571	0
[5,]		0.1666667	1
[6,]	1		
[7,]	1	0.2500000	0
[8,]			0
[9,]	1		0
[10,]	1		1

- 3.15 Suponga que se realizó un muestreo aleatorio simple con reemplazo para la población del ejercicio 3.3.
 - Utilice el estimador de Hansen-Hurwitz para obtener una estimación del total poblacional para características de interés **CVDP** y **OTMA**, reporte el coeficiente de variación estimado y un intervalo de confianza del 95 %.
 - Bajo el supuesto de muestreo aleatorio simple con reemplazo, construya las probabilidades de inclusión de primer y segundo orden y utilice el estimador de Horvitz-Thompson para calcular una nueva estimación del total poblacional para las características de interés.

3.5. Ejercicios 111

3.16 Demuestre o refute la siguiente afirmación: «Para tamaños de muestra iguales, la estrategia de muestreo aleatorio simple con reemplazo junto con el estimador de Hansen-Hurwitz es siempre de menor varianza que la estrategia de muestreo aleatorio simple sin reemplazo junto con el estimador de Horvitz-Thompson».

- 3.17 Demuestre o refute la siguiente afirmación: «El diseño de muestreo sistemático es de tamaño de muestra fijo».
- 3.18 Demuestre o refute la siguiente afirmación: «Aunque no existe la estimación de la varianza del estimador de Horvitz-Thompson en muestreo sistemático, es siempre conveniente reemplazarla por la expresión de la varianza estimada en un diseño aleatorio simple».
- 3.19 Para estimar el total de horas diarias que los estudiantes permanecen en la biblioteca de una universidad, se utilizó un diseño de muestreo sistemático con dos arranques aleatorios. La población fue divida en siete grupos latentes y se seleccionó una muestra simple de dos enteros entre el uno y el siete. Los enteros seleccionados son el 3, y 7. Lo anterior implica que la muestra de estudiantes, que serán entrevistados a la salida de la biblioteca, está conformada por dos grupos. A saber el grupo s_3 conformado por los estudiantes 3, 10, 17, ... y el grupo s_7 conformado por los estudiantes 7, 14, 21, ...Los resultados del sondeo para los dos grupos se dan acontinuación

$$t_{s_3} = \sum_{s_3} y_k = 3574 \qquad t_{s_7} = \sum_{s_7} y_k = 5024$$

Calcule una estimación insesgada para el número total de horas de permanencia en la biblioteca, reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %.

3.20 Suponga una población de 9 elementos cuyos valores para la característica de interés se dan a continuación

$$\mathbf{y} = \{23, 20, 24, 31, 24, 29, 25, 33, 21\}$$

- Utilice el análisis de varianza (ANOVA) para calcular la varianza del estimador de Horvitz-Thompson en un diseño de muestreo sistemático simple con a=2 grupos.
- Calcule el coeficiente de variación intra-clase y el efecto de diseño. Decida si, para este caso particular, el diseño sistemático es más eficiente que el diseño de muestreo aleatorio simple.
- 3.21 Demuestre o refute la siguiente afirmación: «En un diseño de muestreo sistemático, si hay homogeneidad dentro de los grupos y heterogeneidad entre sus medias, entonces este diseño es menos eficiente que el diseño de muestreo aleatorio simple».

Capítulo 4

Muestras con probabilidades proporcionales

Es bien sabido que la estrategia de muestreo que utiliza un diseño de muestreo aleatorio simple con el estimador de Horvitz-Thompson, es una estrategia de muestreo óptima, bajo ciertas formulaciones, si se tiene un conocimiento a priori de que el comportamiento de la población es simétrico con respecto a los rótulos. En tales casos, la incorporación de información auxiliar no mejora la anterior estrategia.

Cassel, Särndal & Wretman (1976b)

Las estrategias de muestreo implementadas en el capítulo anterior, utilizaban métodos de selección tales que la probabilidad de inclusión o probabilidad de selección es idéntica para todos los elementos de la población y se estimaban los parámetros de interés utilizando el estimador de Hansen-Hurwitz, para diseños de muestreo con reemplazo y el estimador de Horvitz-Thompson, para diseños de muestreo sin reemplazo. Las anteriores estrategias no tienen en cuenta la variación innata de las características de interés a través de las unidades poblacionales. Por lo tanto, los anteriores estimadores, dada su construcción genérica y el principio de representatividad, tenderán a poseer una gran variación.

Raj (1968) afirma que, en cuestión de precisión, se puede tener una mayor ganancia cuando se utilizan diseños de muestreo con probabilidades desiguales. En la mayoría de los casos prácticos, la característica de interés no presenta un comportamiento uniforme con respecto a los rótulos de la población. Sin embargo, cuando el marco de muestreo disponible para la selección de la muestra contiene además de la identificación y la ubicación de los elementos en la población, una característica auxiliar continua disponible para todos los elementos de la población $x_k \quad \forall k \in U$, es posible utilizar diseños de muestreo que implementen métodos de selección cuyas probabilidades de selección o inclusión, dependiendo del caso, sean proporcionales al total de la característica auxiliar, t_x .

4.1 Diseño de muestreo de Poisson

Este diseño de muestreo es una generalización del diseño de muestreo Bernoulli, en donde las probabilidades de inclusión están dadas a priori de manera independiente para cada individuo. Brewer (2002) indica que este diseño de muestreo no tuvo originalmente ninguna implicación práctica, porque el tamaño de muestra no es fijo, sino que fue utilizado de manera teórica para describir las propiedades de otros estimadores. El primer caso práctico se dio en la selección de muestras de árboles en unidades forestales; más adelante se aplicó en el censo anual manufacturero en Estados Unidos. Aunque este

diseño de muestreo no utiliza información auxiliar para la selección de la muestra, sirve como punto de partida para examinar diseños de muestreo más complejos que sí lo utilizan.

Definición 4.1.1. Siendo π_k un número positivo, tal que $0 < \pi_k \le 1$, que representa la probabilidad de inclusión del k-ésimo elemento, el diseño de muestreo Poisson se define de la siguiente manera

$$p(s) = \prod_{k \in s} \pi_k \prod_{k \notin s} (1 - \pi_k) \quad \text{para todo } s \in Q$$
 (4.1.1)

con Q, el soporte que contiene a todas las posibles muestras sin reemplazo.

Resultado 4.1.1. Para este diseño de muestreo, el soporte Q tiene cardinalidad igual a

$$\#(Q) = 2^N$$

Ejemplo 4.1.1. En nuestra población ejemplo

$$U = \{ Yves, Ken, Erik, Sharon, Leslie \}$$

Las probabilidades de inclusión π_k son 0.2, 0.5, 0.7, 0.5 y 0.9, respectivamente. Las posibles muestra pueden ser de tamaño 0, 1, 2, 3, 4 ó 5. La probabilidad de la muestra de tamaño 0 es

$$(1-0.2) \times (1-0.5) \times (1-0.7) \times (1-0.5) \times (1-0.9) = 0.006$$

Siguiendo esta misma analogía, a continuación se presenta el cálculo léxico-gráfico para las probabilidades de selección de todas las posible muestras en el soporte de este diseño de muestreo. Para las posibles muestras de tamaño 1, 4 se tiene que sus respectivas probabilidades son:

S	p(s)	1	S	p(s)
Yves	0.0015	-	Yves, Ken, Erik, Sharon	0.0035
Ken	0.006	-	Yves, Erik, Sharon, Leslie	0.0315
Erik	0.014	-	Yves, Ken, Erik, Leslie	0.0315
Sharon	0.006	-	Yves, Ken, Sharon, Leslie	0.0135
Leslie	0.054	-	Ken, Erik, Sharon, Leslie	0.126
Total	0.0815	- 1	Total	0.206

Las posibles muestras de tamaño 2, 3 y sus respectivas probabilidades son:

_	()		_	()
S	p(s)	ı	S	p(s)
Yves, Ken	0.0015	1	Yves, Ken, Erik	0.0035
Yves, Erik	0.0035		Yves, Ken, Sharon	0.0015
Yves, Sharon	0.0015		Yves, Ken, Leslie	0.0135
Yves, Leslie	0.0135		Yves, Erik, Sharon	0.0035
Ken, Erik	0.014		Yves, Erik, Leslie	0.0315
Ken, Sharon	0.006		Yves, Sharon, Leslie	0.0135
Ken, Leslie	0.054		Ken, Erik, Sharon	0.014
Erik, Sharon	0.014		Ken, Erik, Leslie	0.126
Erik, Leslie	0.126		Ken, Sharon, Leslie	0.054
Sharon, Leslie	0.054		Erik, Sharon, Leslie	0.126
Total	0.288	1	Total	0.387

Finalmente, la muestra de tamaño 5, {Yves, Ken, Erik, Sharon, Leslie}, tiene probabilidad 0.0315. Nótese que la suma de todas las posibles muestras es $\sum p(s) = 1$.

4.1.1 Algoritmo de selección

Bautista (1998) afirma que el conocimiento a priori de las probabilidades de inclusión de los elementos es tal que, en algunas ocasiones, existen elementos de la población que deben ser observados obligatoriamente en la muestra, en estos casos el valor de la probabilidad de inclusión de estos elementos es igual a uno ($\pi_k = 1$). Al subgrupo poblacional cuyos elementos tienen probabilidad de inclusión igual a uno, se le conoce como subgrupo de **inclusión forzosa**. Nótese que el algoritmo de selección de muestra utilizado debe contemplar la inclusión en todas las posibles muestras realizadas de todos los elementos del subgrupo de inclusión forzosa.

La selección de una muestra con diseño de muestreo Poisson se realiza mediante un algoritmo secuencial definido de manera similar que el algoritmo utilizado en la selección de muestras con diseño de muestreo Bernoulli.

- 1. Fijar para cada $k \in U$ el valor de la probabilidad de inclusión π_k tal que $0 < \pi_k \le 1$.
- 2. Obtener ε_k para $k \in U$ como N realizaciones independientes de una variable aleatoria con distribución uniforme en el intervalo [0,1].
- 3. El elemento k-ésimo pertenece a la muestra con probabilidad π_k . Es decir, si $\varepsilon_k < \pi$ el individuo k-ésimo es seleccionado.

Dado que $\varepsilon_k \sim Unif[0,1]$, se tiene que $Pr(\varepsilon_k < \pi_k) = \pi_k$ para $k \in U$. Por tanto, la inclusión de los individuos k-ésimo y l-ésimo, para $k \neq l$, es independiente; sin embargo, la distribución de $I_k(S)$ no es de tipo Binomial puesto que las variables aleatorias $I_k(S)$ no son idénticamente distribuidas.

Resultado 4.1.2. Bajo muestreo Poisson, el tamaño de muestra n(S) es una variable aleatoria, tal que

$$E(n(S)) = \sum_{U} \pi_k$$
 $Var(n(S)) = \sum_{U} \pi_k (1 - \pi_k)$ (4.1.2)

Prueba. Utilizando el resultado 2.1.4 y las propiedades de una suma de cuadrados es suficiente probar que $\pi_{kl} = Pr(k \in S, l \in S) = \pi_k \pi_l$ para $k \neq l$, lo cual se tiene de inmediato dado que las variables aleatorias $I_k(S)$ e $I_l(S)$ son independientes.

Resultado 4.1.3. Para el diseño de muestreo Poisson, las probabilidades de inclusión de primer y segundo orden están dadas por:

$$\pi_k = \pi_k \tag{4.1.3}$$

$$\pi_{kl} = \begin{cases} \pi_k & \text{para } k = l \\ \pi_k \pi_l & \text{en otro caso} \end{cases}$$
 (4.1.4)

respectivamente.

4.1.2 El estimador de Horvitz-Thompson

Resultado 4.1.4. Para el diseño de muestreo Poisson, el estimador de Horvitz-Thompson, su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,\pi} = \sum_{S} \frac{y_k}{\pi_k} \tag{4.1.5}$$

$$Var_{PO}(\hat{t}_{y,\pi}) = \sum_{IJ} \left(\frac{1}{\pi_k} - 1\right) y_k^2$$
 (4.1.6)

$$\widehat{Var}_{PO}(\hat{t}_{y,\pi}) = \sum_{S} (1 - \pi_k) \left(\frac{y_k}{\pi_k}\right)^2 \tag{4.1.7}$$

respectivamente.

Prueba. Utilizando el resultado 2.2.2, se sigue que la demostración es inmediata puesto que

$$\Delta_{kl} = \begin{cases} \pi_{kl} - \pi_k \pi_l = \pi_k \pi_l - \pi_k \pi_l = 0 & \text{para } k \neq l \\ \pi_{kk} - \pi_k^2 = \pi_k (1 - \pi_k) & \text{para } k = l \end{cases}$$
(4.1.8)

luego la doble suma en la varianza del estimador de Horvitz-Thompson pasa a ser una sola suma. La demostración para el estimador de la varianza se lleva a cabo de manera análoga.

Ejemplo 4.1.2. Para nuestra población de ejemplo U, suponga que el individuo **Erik** debe estar en la muestra seleccionada; es decir, $\pi_{Erik} = 1$. Por tanto, existen $\binom{1}{1}2^4 = 16$ posibles muestras. Si el vector de probabilidades de inclusión para cada elemento de la población está dado por (0.5, 0.2, 1, 0.9, 0.5). Realice el cálculo léxico-gráfico del estimador de Horvitz-Thompson y compruebe el insesgamiento, la varianza y las propiedades del diseño de muestreo.

4.1.3 Optimalidad en la estrategia de muestreo Poisson

Como se mencionó en capítulos anteriores, una estrategia de muestreo que utilice el estimador de Horvitz-Thompson, es óptima cuando las probabilidades de inclusión inducidas por el diseño de muestreo utilizado están correlacionadas positivamente con la característica de interés; en otras palabras, cuando $\pi_k \propto y_k$. En este caso utópico, y si se supone que el diseño de muestreo es de tamaño de muestra fijo (n(S) = n), el estimador de Horvitz-Thompson reproduciría el parámetro de interés t_y con varianza nula cuando las probabilidades de inclusión toman la siguiente forma $\pi_k = n \frac{y_k}{t_y}$. De esta forma, la estrategia utilizada sería una estrategia representativa con respecto a la variable de interés, puesto que para cualquier muestra seleccionada, el estimador de Horvitz-Thompson sería igual a t_y .

Resultado 4.1.5. Suponiendo un tamaño de muestra fijo, bajo un diseño de muestreo Poisson, la varianza del estimador de Horvitz-Thompson se minimiza cuando

$$\pi_k = \frac{ny_k}{\sum_U y_k} \tag{4.1.9}$$

Prueba. El objetivo es encontrar valores de π_k , tales que $0 < \pi_k \le 1$ que minimicen la varianza del estimador de Horvitz-Thompson bajo diseño de muestreo Poisson, lo anterior se tiene cuando se realiza un censo, es decir cuando $\pi_k = 1$ para todo $k \in U$. Sin embargo, en la práctica se desea seleccionar una muestra de tamaño menor a N. Por tanto, minimizar $Var_{PO}(\hat{t}_{y,\pi})$ es equivalente a minimizar $\sum_{U} \frac{y_k^2}{\pi_k}$ sujeto a la restricción de un tamaño de muestra fijo, tal que $\sum_{U} \pi_k = n$. Luego la cantidad a minimizar está dada por el siguiente producto

$$\left(\sum_{U} \frac{y_k^2}{\pi_k}\right) \left(\sum_{U} \pi_k\right)$$

Una solución al anterior problema es utilizar la desigualdad de Cauchy-Schwartz, por tanto

$$\left(\sum_{U} \frac{y_k^2}{\pi_k}\right) \left(\sum_{U} \pi_k\right) \ge \left(\sum_{U} y_k\right)^2$$

Con igualdad cuando $\frac{y_k}{\pi_k} = c$, con c una constante. Ahora, se tiene que

$$n = \sum_{U} \pi_k = \sum_{U} \frac{y_k}{c}$$

Luego,

$$c = \sum_{U} \frac{y_k}{n}$$

Por tanto,

$$\pi_k = \frac{ny_k}{\sum_U y_k}$$

El anterior resultado es una ambigüedad puesto que con esa escogencia de las probabilidades de inclusión se asume que la característica de interés es conocida para toda la población. Si lo anterior sucede, no existiría la necesidad de estimar t_y . Sin embargo, Särndal, Swensson & Wretman (1992) aseguran que como el diseño de muestreo Poisson es de tamaño de muestra variable es ineficiente y utilizar el anterior razonamiento implicaría que el estimador de Horvitz-Thompson tome la siguiente forma

$$\hat{t}_{y,\pi} = \sum_{S} \frac{y_k}{\pi_k} = \frac{t_y}{n} \sum_{S} 1 = t_y \frac{n(S)}{n}$$
(4.1.10)

Por tanto, la variación del estimador calculado en cada muestra estaría dada por la variación del tamaño de muestra esperado n(S). El anterior razonamiento nos lleva a pensar que el estimador de Horvitz-Thompson tendría un excelente desempeño bajo diseños de muestreo tales que $\pi_k \propto y_k$ y que induzcan muestras de tamaño fijo. Por otro lado, si el marco de muestreo tiene la virtud de adjuntar información auxiliar continua, por medio de una característica de interés x_k (en otras palabras, conocer el vector de características auxiliares $x_1, x_2, ..., x_N$ antes de realizar el muestreo) que esté muy bien correlacionada con la variable de interés, entonces la varianza de la estrategia de muestreo sería mínima cuando

$$\pi_k = n \frac{x_k}{\sum_U x_k} \tag{4.1.11}$$

Por otro lado, y siguiendo el mismo razonamiento que en el diseño de muestreo Bernoulli, como se tiene un marco de muestreo de elementos, entonces se conoce el tamaño poblacional N. De esta manera, un estimador para el total poblacional de la característica de interés con menor varianza es el llamado estimador alternativo dado por la expresión (2.2.18), que para el caso particular de muestreo Poisson toma la siguiente forma

$$\hat{t}_{y,alt} = \hat{t}_{y,\pi} \frac{N}{\hat{N}_{\pi}} \tag{4.1.12}$$

Para estimar la media poblacional, es posible utilizar este mismo razonamiento y junto con la expresión (2.2.15) resulta un estimador menos disperso

$$\tilde{y}_S = \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}} \tag{4.1.13}$$

La forma estructural de los anteriores estimadores es una razón, cociente de dos cantidades aleatorias, y así se reduce parte de la variabilidad del estimador de Horvitz-Thompson que viene del hecho de que el tamaño muestral no es fijo para este diseño.

4.1.4 Marco y Lucy

Aunque esta estrategia de muestreo no fue utilizada en el sentido práctico y tiene una varianza alta dado que el tamaño de muestra es variable, es posible obtener buenos resultados que incentivar el uso de las estrategias de muestreo con probabilidad proporcional al tamaño. En primer lugar, se debe suponer que el marco de muestreo contiene una característica auxiliar continua que será usada en la etapa de diseño y selección de la muestra.

Raj (1968) señala que en el caso concreto de una población agrícola, una característica auxiliar puede ser el área cultivada, para el caso de hogares, una característica auxiliar puede ser el número de personas que habitan en el hogar. Lehtonen & Pahkinen (2003) dan ejemplos claros acerca de las características auxiliares en encuestas de empresas y afirman que para este caso particular una característica auxiliar comúnmente usada es el número de empleados en la empresa; para el caso de encuestas a escuelas, una característica auxiliar es el número de alumnos. En encuestas a hospitales Bautista (1998) afirma que una característica auxiliar es el número de camas por hospital, no así el número de pacientes, pues esta última característica tiene una variación alta y está ligada a la temporada de realización de la encuesta.

Recuérdese que se quieren estimar tres totales de las características de interés Ingreso, Empleados e Impuestos del último periodo fiscal en las empresas del sector industrial. Para efectos prácticos, suponga que el marco de muestreo contiene todos los registros de cada una de las empresas del sector industrial de la característica Ingreso; de esta manera se podrá estimar el total poblacional para las características Empleados e Impuestos. Para efectos académicos, se estimará el total poblacional de la característica Ingreso, resaltando que hacerlo es una ambigüedad porque si se conocen todos los valores poblacionales de la característica de interés no hay necesidad de estimar lo que ya es conocido; sin embargo, como ejercicio académico es completamente admisible.

Con los supuestos anteriores, el marco de muestreo se carga en el ambiente de programación de R, nótese que el marco de muestreo ahora contiene cinco columnas, cuatro que se refieren a la identificación y/o ubicación geográfica y una columna que contiene los registros para la característica Ingreso.

```
data(BigLucy)
dim(BigLucy)
## [1] 85296 11
```

Las probabilidades de inclusión deben ser creadas y están dadas por (4.1.9). Nótese que se debe fijar un tamaño esperado de muestra. Para que los resultados sean comparables, se utilizará un tamaño esperado de muestra de n(S) = 400. Una vez que las probabilidades de inclusión para todas las empresas del sector industrial han sido creadas, se debe verificar que cada una de ellas sea menor a la unidad; para esto, se utiliza la función which que R trae implementada en su ambiente básico y cuya salida es un conjunto de índices para los cuales la instrucción dentro del paréntesis es verdadera; cuando no existe ningún índice que cumpla (pik>1), la función arroja la siguiente salida integer(0). Sin embargo, si hubiese existido algún registro para el cual la instrucción (pik>1) sea cierta, se deben convertir las respectivas probabilidades de inclusión en la unidad.

```
attach(BigLucy)
N <- dim(BigLucy)[1]
n <- 2000
pik <- n * Income / sum(Income)
which(pik>1)
## integer(0)
```

```
sum(pik)
## [1] 2000
```

Nótese que la suma de las probabilidades de inclusión es igual al tamaño de muestra esperado. La correlación entre las probabilidades de inclusión inducidas mediante este diseño de muestreo Poisson es buena. Por supuesto, la correlación entre las π_k y la variable ingreso es uno pues las primeras son función lineal de Ingreso. Ahora, la cantidad de impuestos que las empresas del sector industrial declaran en un año fiscal, es proporcional al ingreso de las mismas; de hecho, si una empresa tiene ganancias nulas, entonces declarará impuestos nulos. Por otro lado, aunque una empresa tenga ganancias nulas, no necesariamente tendrá cero empleados; de hecho, en el sector industrial existen casos en donde una empresa con pocos empleados, tiene ingresos más altos que una empresa con muchos empleados; sin embargo, esta particularidad no se presenta de manera general, si esto fuera así, la correlación sería negativa y la característica de auxiliar Ingreso no debería ser utilizada en la estimación del total de la característica de interés Empleados.

```
cor(pik, cbind(Income, Employees, Taxes))

## Income Employees Taxes
## [1,] 1 0.64 0.92
```

La figura 4.1 muestra el diagrama de dispersión de las tres variables de interés contra el vector de probabilidades de inclusión.

```
Datos <- data.frame(Income, Employees, Taxes, pik)
```

Para seleccionar la muestra bajo un diseño de muestreo Poisson, se utiliza la función S.PO del paquete TeachingSampling. Esta función consta de dos argumentos, N, el tamaño poblacional y pik, el vector de probabilidades de inclusión para cada elemento de la población. En nuestro caso, pik es el vector de probabilidades creado anteriormente; pero, en general, puede ser utilizado cualquier vector de números entre cero y uno. La función S.PO devuelve un conjunto de índices que aplicados a la población resulta en los valores de las características de interés para cada miembro de la muestra seleccionada.

```
sam \leftarrow S.PO(N, pik)
muestra <- BigLucy[sam,]</pre>
attach(muestra)
sam \leftarrow S.PO(N, pik)
muestra <- BigLucy[sam,]</pre>
attach(muestra)
head (muestra)
##
                  ID
                             Ubication Level
                                                  Zone Income Employees Taxes
                                                                       20
       AB0000000041 C0128042K0173855 Small County1
                                                                               5
## 41
                                                           340
       AB0000000049 C0003404K0298493 Small County1
                                                                               5
## 49
                                                           334
                                                                       16
                                                                               7
## 51
       AB0000000051 C0126365K0175532 Small County1
                                                           400
                                                                       15
       AB0000000070 C0091875K0210022 Small County1
                                                           330
                                                                       67
                                                                               4
   191 AB0000000191 C0171744K0130153 Small County1
                                                                               5
                                                           339
                                                                       48
                                                                               3
##
  205 AB0000000205 C0114943K0186954 Small County1
                                                           263
                                                                       56
##
       SPAM ISO Years
                          Segments
```


Figura 4.1: Correlación de las probabilidades de inclusión con las características de interés.

```
## 41
                     24
                         County1 5
         yes
              no
## 49
                     34
                         County1 5
          no
              no
## 51
                     22
                         County1 6
         yes
              no
## 70
                     11
                         County1 7
          no
              no
##
   191
                     43 County1 20
          no
              no
##
   205
         yes
              no
                     10 County1 21
n.s <- dim(muestra)[1]
n.s
## [1] 2037
```

En este caso particular, la primera empresa seleccionada es la identificada con el número AB00000000041. Nótese que el marco de muestreo incluye la característica auxiliar Ingreso y que el tamaño efectivo de muestra es 2037. Una vez que el trabajo de campo ha concluido, comienza la etapa de estimación, en donde se utilizará la función E.PO del paquete TeachingSampling que consta de dos argumentos, la matriz o vector de valores de la o las características de interés y pik.s los valores del vector de probabilidad de inclusión de cada uno de los elementos seleccionados en la muestra. En este caso particular se crea un conjunto de datos con la información muestral de las características de interés llamado estima. Nótese que la longitud del vector pik.s es de 2037. La función E.PO devuelve las estimaciones del total poblacional, la varianza estimada y el respectivo coeficiente de variación de la(s)

característica(s) de interés.

```
pik.s <- pik[sam]
estima <- data.frame(Income, Employees, Taxes)
E.PO(estima, pik.s)</pre>
```

La tabla 4.1 muestra los resultados particulares para esta estrategia de muestreo. Nótese que la característica Impuestos, tiene un menor coeficiente de variación porque está mucho mejor correlacionada con el vector de probabilidades de inclusión, mientras que la característica Empleados presenta un mayor coeficiente de variación. Desde un punto de vista completamente académico, está bien afirmar que la estrategia de muestreo utilizada puede ser optimizada si se utiliza un diseño de muestreo con probabilidades de inclusión proporcionales al tamaño de alguna característica auxiliar, pero que induzca muestras de tamaño fijo. Nótese que, aunque el vector de probabilidades de inclusión tiene una correlación de uno con respecto a la característica Income, el coeficiente de variación estimado para esta es de un 2.18 %, cifra que no es alta, pero que no paga el precio de utilizar esta información auxiliar en la etapa de diseño. Véase que los coeficientes de variación son un poco más bajos que al utilizar un diseño de muestreo Bernoulli, pero no más bajos que los obtenidos al usar un diseño de muestreo aleatorio simple.

	N	Income	Employees	Taxes
Estimation	86424.02	37312475.56	5368285.56	1027390.22
Standard Error	2318.88	813207.35	136911.96	25886.78
CVE	2.68	2.18	2.55	2.52
DEFF	Inf	1.73	3.27	0.23

Tabla 4.1: Estimaciones para el diseño de muestreo Poisson

4.2 Diseño de muestreo PPT

Siguiendo con el razonamiento que se introdujo en la sección anterior, Bautista (1998) afirma que en un diseño de muestreo con reemplazo, los valores óptimos de las probabilidades de selección para cada elemento de la población tendrían que estar dados por

$$p_k = \frac{y_k}{t_y}.$$

Por supuesto, con esta escogencia, el estimador de Hansen-Hurwitz estimaría al total poblacional de la característica de interés con varianza nula. De otra forma, el tamaño de muestra necesario para obtener una estimación con sesgo nulo sería de m=1. Nótese que por (2.2.34), el estimador de Hansen-Hurwitz, es un promedio de m estimaciones. Con la escogencia de probabilidades de selección anterior, y con un tamaño de muestra de m=1, se tiene que

$$\hat{t}_{y,p} = \frac{1}{1} \sum_{i=1}^{1} \frac{y_{k_i}}{p_{k_i}}$$

$$= \frac{y_{k_i}}{p_{k_i}}$$

$$= t_y \frac{y_{k_i}}{y_{k_i}} = t_y$$

Por supuesto, desde el punto de vista práctico sería una vez más, una ambigüedad la escogencia de las anteriores probabilidades de selección. Sin embargo, si el marco de muestreo es tal que contiene el valor de una característica continua auxiliar x_k bien relacionada con la característica de interés y_k para cada elemento de la población, es posible mediante el estimador de Hansen-Hurwitz, estimar el parámetro de interés con una varianza pequeña. De hecho, entre mejor correlación exista entre y_k y x_k menor varianza tendrá el estimador de Hansen-Hurwitz.

Definición 4.2.1. Sea x_k , el valor de una característica auxiliar continua para el elemento k-ésimo tal que:

- 1. $x_k > 0$ para todo $k \in U$ y
- 2. x_k está disponible y es conocida para todos los elementos de la población.

Entonces, se define un diseño de muestreo con probabilidad de selección proporcional al tamaño de la característica auxiliar, de la siguiente manera

$$p(s) = \begin{cases} \frac{m!}{n_1(s)!\dots n_N(s)!} \prod_U \left(\frac{1}{p_k}\right)^{n_k(s)} & \text{si } \sum_U n_k(s) = m\\ 0 & \text{en otro caso} \end{cases}$$
(4.2.1)

Donde $n_k(s)$ es el número de veces que el elemento k-ésimo es seleccionado en la muestra realizada s y p_k es la probabilidad de selección del elemento k-ésimo dada por

$$p_k = \frac{x_k}{t_x}. (4.2.2)$$

con t_x el total poblacional de la característica auxiliar x.

Resultado 4.2.1. Para este diseño de muestreo, el soporte Q tiene cardinalidad igual a

$$\#(Q) = \binom{N+m-1}{m}$$

Resultado 4.2.2. Dado el soporte Q, de todas las posibles muestras con reemplazo de tamaño m, se verifica que el diseño de muestreo con probabilidad de selección proporcional al tamaño de la característica auxiliar es tal que

$$\sum_{s \in Q} p(s) = 1$$

Prueba. Dado que

$$\sum_{U} p_k = \sum_{U} \frac{x_k}{t_x} = 1$$

entonces la demostración del resultado es inmediata haciendo uso del teorema multinomial.

Resultado 4.2.3. Para un diseño de muestreo con reemplazo y con probabilidades de selección proporcionales al tamaño de una característica de información auxiliar, las probabilidades de inclusión de primer y segundo orden están dadas por

$$\pi_k = 1 - (1 - p_k)^m \tag{4.2.3}$$

$$\pi_{kl} = 1 - (1 - p_k)^m - (1 - p_l)^m + (1 - p_k - p_l)^m \tag{4.2.4}$$

respectivamente. En donde $p_k = \frac{x_k}{t_x}$

Prueba. Utilizando el resultado 2.2.9 se llega a la demostración inmediata.

Cuando se tienen las cantidad del resultado 3.3.3, se pueden implementar los principios del estimador de Horvitz-Thompson para estimar el total poblacional t_y ; sin embargo, el cálculo y estimación de la varianza de esta estrategia de muestreo resulta ser muy compleja computacionalmente.

4.2.1 Algoritmo de selección

Método acumulativo total

Hansen, Hurwitz & Madow (1953) plantearon este método de selección para ser utilizado junto con el estimador que lleva su nombre. Este método es conocido con el nombre de **algoritmo acumulativo total** y consiste en m selecciones independientes de tamaño 1, tal que:

• Sea
$$p_k = \frac{x_k}{t_x} \tag{4.2.5}$$

• Sea

$$T_k = \sum_{l=1}^k x_l \tag{4.2.6}$$

 $con T_0 = 0$

- Obtener ε como una realización de una variable aleatoria con distribución uniforme en el intervalo (0,1).
- Seleccionar el k-ésimo elemento si $T_{k-1} < \varepsilon T_N \le T_k$.

Al repetir m veces el anterior procedimiento, se ha seleccionado una muestra de un diseño con reemplazo con probabilidades de selección son proporcionales al tamaño de la característica de interés. Como este diseño de muestreo es con reemplazo, cuando existan elementos en la población cuyo valor de la característica auxiliar es muy grande, éstos elementos podrán ser seleccionados muchas veces porque sus probabilidades de selección son grandes con respecto a los demás elementos.

Método de Lahiri

En algunas ocasiones, cuando el tamaño poblacional N es muy grande, el anterior método resulta ineficiente. Lahiri (1951) plantea el siguiente algoritmo de selección: Siendo $M \ge \max(x_1, \dots, x_N)$, los siguientes dos pasos se ejecutan para seleccionar un elemento.

- 1. Seleccione un número l de manera aleatoria de una distribución de probabilidad uniforme discreta en el intervalo [1, N].
- 2. Seleccione un número η de manera aleatoria de una distribución de probabilidad uniforme discreta en el intervalo [1, M].

Si $\eta \leq x_l$, entonces el elemento l-ésimo es seleccionado. Si, por el contrario, $\eta > x_l$ se repite el procedimiento hasta seleccionar una unidad. Si el tamaño de la muestra a seleccionar es m, entonces el anterior esquema se realiza m veces.

Ejemplo 4.2.1. Suponga que para la población de ejemplo U se tiene conocimiento de cada valor de la siguiente característica de información auxiliar correlacionada con la característica de interés.

```
U <- c("Yves", "Ken", "Erik", "Sharon", "Leslie")
x <- c(52, 60, 75, 100, 50)
x
## [1] 52 60 75 100 50
```

Para seleccionar una muestra con probabilidad proporcional a \mathbf{x} , se crean las probabilidades de selección dadas por

```
pk <- x / sum(x)
pk
## [1] 0.15 0.18 0.22 0.30 0.15
```

Para seleccionar una muestra con reemplazo de la población U mediante el método acumulativo total, el paquete TeachingSampling implementa la función S.PPS que consta de dos argumentos, m el tamaño de muestra y m la característica de interés que contiene todos y cada uno de los valores correspondientes a los elementos de la población para la característica auxiliar.

```
sam <- S.PPS(3, x)
U[sam]
## [1] "Sharon" "Ken" "Yves"</pre>
```

La salida de la función S.PPS es un conjunto de índices (no necesariamente distintos) que aplicados a los rótulos poblacionales proporcionan la muestra seleccionada.

4.2.2 El estimador de Hansen-Hurwitz

Hansen & Hurwitz (1943) propusieron el siguiente estimador insesgado para el parámetro de interés t_y con ayuda de información auxiliar continua en la etapa de diseño.

Resultado 4.2.4. Sea x_k , el valor de una característica auxiliar continua, para un diseño de muestreo aleatorio proporcional al tamaño con reemplazo, el estimador de Hansen-Hurwitz del total poblacional t_y , su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,p} = \frac{t_x}{m} \sum_{i=1}^{m} \frac{y_{ki}}{x_{ki}} \tag{4.2.7}$$

$$Var_{PPT}(\hat{t}_{y,p}) = \frac{1}{m} \sum_{k=1}^{N} p_k \left(\frac{y_k}{p_k} - t_y\right)^2$$
 (4.2.8)

$$\widehat{Var}_{PPT}(\hat{t}_{y,p}) = \frac{1}{m(m-1)} \sum_{i=1}^{m} \left(\frac{y_i}{p_i} - \hat{t}_{y,p}\right)^2$$
(4.2.9)

respectivamente, con p_k dados por (4.2.2). Nótese que $\hat{t}_{y,p}$ es insesgado para el total poblacional t_y de la característica de interés y, y que $\widehat{Var}_{MRAS}(\hat{t}_{y,p})$ es insesgado para $Var_{MRAS}(\hat{t}_{y,p})$.

Prueba.

$$E\left(\frac{t_x}{m}\sum_{i=1}^m \frac{y_{ki}}{x_{ki}}\right) = E\left(\frac{t_x}{m}\sum_{U} n_k(S)\frac{y_k}{x_k}\right)$$
$$= \frac{t_x}{m}\sum_{U} E(n_k(S))\frac{y_k}{x_k}$$
$$= \frac{t_x}{m}\sum_{U} m\frac{x_k}{t_x}\frac{y_k}{x_k} = t_y$$

dado que $E(n(S)) = mp_k$. Utilizando el resultado 2.2.13 y 2.2.14, se llega a la demostración de las varianzas.

Resultado 4.2.5. Para el diseño de muestreo PPT, el estimador de Hansen-Hurwitz del total de la característica de información auxiliar reproduce ese total con varianza nula

Prueba. De la definición del estimador Hansen-Hurwitz, y de la expresión (4.2.2), se tiene que

$$\hat{t}_{x,p} = \frac{1}{m} \sum_{k \in S} \frac{x_k}{p_k} = \frac{1}{m} \sum_{k \in S} t_x = t_x$$

Por otro lado,

$$Var_{PPT}(\hat{t}_{y,p}) = \frac{1}{m} \sum_{k=1}^{N} p_k \left(\frac{x_k}{p_k} - t_x\right)^2$$
 (4.2.10)

$$= \frac{1}{m} \sum_{k=1}^{N} p_k (t_x - t_x)^2 = 0$$
 (4.2.11)

con lo cual se concluye la demostración

Resultado 4.2.6. La varianza del estimador de Hansen-Hurwitz también puede ser escrita como

$$Var_{PPT}(\hat{t}_{y,p}) = \frac{1}{m} \sum_{U} \sum_{k < l} p_k p_l \left(\frac{y_k}{p_k} - \frac{y_l}{p_l} \right)^2$$
 (4.2.12)

Prueba. Desarrollando términos, se tiene que

$$\begin{split} \frac{1}{m} \sum_{U} \sum_{k < l} p_k p_l \left(\frac{y_k}{p_k} - \frac{y_l}{p_l} \right)^2 &= \frac{1}{2m} \sum_{k \in U} \sum_{p_k} p_k p_l \left(\frac{y_k}{p_k} - \frac{y_l}{p_l} \right)^2 \\ &= \frac{1}{2m} \sum_{k \in U} p_k \sum_{l \in U} p_l \left(\frac{y_k}{p_k} - \frac{y_l}{p_l} \right)^2 \\ &= \frac{1}{2m} \sum_{k \in U} p_k \sum_{l \in U} \left(p_l \frac{y_k^2}{p_k^2} - 2 \frac{y_k y_l}{p_k} + \frac{y_l^2}{p_l} \right) \\ &= \frac{1}{2m} \sum_{k \in U} p_k \left(\frac{y_k^2}{p_k^2} - 2 \frac{y_k}{p_k} t_y + \sum_{l \in U} \frac{y_l^2}{p_l} \right) \\ &= \frac{1}{m} \left(\sum_{k \in U} \frac{y_k^2}{p_k} - 2 t_y^2 + \sum_{l \in U} \frac{y_l^2}{p_l} \right) \\ &= \frac{1}{m} \sum_{k \in U} \left(\frac{y_k^2}{p_k} - p_k t_y^2 \right) \\ &= \frac{1}{m} \sum_{k \in U} p_k \left(\frac{y_k^2}{p_k^2} - 2 \frac{y_k}{p_k} t_y + t_y^2 \right) \\ &= \frac{1}{m} \sum_{k \in U} p_k \left(\frac{y_k}{p_k} - t_y \right)^2 \end{split}$$

y esta última expresión coincide con la varianza del estimador de Hansen-Hurwitz en muestreo PPT.

Särndal, Swensson & Wretman (1992) afirman que la primera forma que toma la varianza y su estimación insesgada para el estimador de Hansen-Hurwitz es fácil de calcular computacionalmente. Sin embargo, la expresión alternativa de la varianza se utilizará para desarrollos teóricos posteriores.

Esta estrategia de muestreo es con reemplazo, y comparada con una estrategia de muestreo que utilice información auxiliar en la etapa de diseño con el estimador de Horvitz-Thompson es un poco menos eficiente. Sin embargo, en la práctica es más utilizada porque los cálculos computacionales son fáciles de realizar y es preferida porque con un número grande de elementos incluidos en la muestra, el cálculo de la varianza estimada del estimador de Horvitz-Thompson se hace inapropiado por la gran cantidad de productos cruzados.

Esta estrategia de muestreo es utilizada principalmente en la estimación de totales, como se verá más adelante surgen complicaciones, con respecto a la información auxiliar al usar un diseño de muestreo con reemplazo proporcional al tamaño en la estimación de razones. En encuestas de hogares, no resulta adecuado utilizar este diseño de muestreo, puesto que en una población, existe un número de hogares homogéneos por vivienda. Por otro lado, en encuestas de negocios y empresas es útil utilizar diseños proporcionales porque sí existen diferencias marcadas en los tamaños de las mismas; por ejemplo, en el número de empleados, el número de metros cuadrados en las instalaciones, el ingreso, etc. La función de varianza para esta estrategia de muestreo no es monótona decreciente; por la configuración de la información auxiliar, la varianza puede aumentar cuando aumenta el tamaño de muestra.

Ejemplo 4.2.2. Para nuestra población de ejemplo U, existen $\binom{N+m-1}{m}=20$ posibles muestras con reemplazo de tamaño m=2. Utilizando la característica auxiliar x, realice el cálculo léxico-gráfico del

estimador de Hansen-Hurwitz, compruebe el insesgamiento, calcule la varianza y el insesgamiento del estimador de la varianza.

4.2.3 Eficiencia de la estrategia

La regla de oro de una buena muestra reza que para que la inferencia basada en el diseño de muestreo arroje estimaciones que sean (abusando del lenguaje) de varianza mínima e insesgadas, las probabilidades de inclusión (o selección, según sea el caso) que arroje el diseño de muestreo utilizado deben ser directamente proporcionales a los valores que toma la característica de interés en la población. Raj (1954) demuestra el siguiente resultado que conduce condiciona el comportamiento estructural de la información auxiliar que debe cumplir dos condiciones para que la eficiencia de la estrategia PPT sea mayor que la del diseño aleatorio simple con reemplazo.

Resultado 4.2.7. La resta de la varianza de la estrategia aleatoria simple con reemplazo con la varianza de la estrategia PPT da como resultado la siguiente expresión:

$$Var_{MRAS}(\hat{t}_{y,p}) - Var_{PPT}(\hat{t}_{y,p}) = \frac{N^2}{m}Cov\left(x, \frac{y^2}{x}\right)$$
(4.2.13)

Prueba. Utilizando la expresión general de la varianza (2.2.36) bajo cualquier diseño de muestreo con reemplazo se tiene que

$$Var_{MRAS}(\hat{t}_{y,p}) - Var_{PPT}(\hat{t}_{y,p}) = \frac{1}{m} \left[N \sum_{k=1}^{N} y_k^2 - t_y^2 - t_x \sum_{k=1}^{N} \frac{y_k^2}{x_k} + t_y^2 \right]$$

$$= \frac{1}{m} \left[\sum_{k=1}^{N} \frac{y_k^2}{x_k} (Nx_k - t_x) \right]$$

$$= \frac{N}{m} \left[\sum_{k=1}^{N} \frac{y_k^2}{x_k} (x_k - \bar{x}) \right]$$

$$= \frac{N^2}{m} Cov \left(x, \frac{y^2}{x} \right)$$

La última igualdad se tiene puesto que

$$NCov(x, w) = \sum_{k=1}^{N} (x_k - \bar{x})(w_k - \bar{w})$$
$$= \sum_{k=1}^{N} (x_k - \bar{x})w_k - \bar{w}\sum_{k=1}^{N} (x_k - \bar{x})w_k$$

El anterior resultado indica que para que la estrategia de muestreo PPT sea más eficiente en términos de varianza que la estrategia de muestreo MRAS, además de que $p_k \propto x_k$, es necesario que la correlación entre $\left(x, \frac{y^2}{x}\right)$ sea positiva. Nótese que si la razón entre y y x es contante e igual a C, se tiene que

$$Cor\left(x, \frac{y^2}{x}\right) = Cor\left(x, y\frac{y}{x}\right)$$

= $Cor\left(x, yC\right)$
= $Cor\left(x, y\right)$

Por tanto, una condición necesaria para que el diseño de muestreo PPT sea más eficiente que el diseño de muestreo MRAS es que exista una correlación positiva entre la característica de interés y la información auxiliar; pero, una condición suficiente para la optimalidad del diseño PPT, es que la razón $\frac{y_k}{x_k}$ permanezca constante para todo $k \in U$.

Además de la razón constante, Lehtonen & Pahkinen (2003) muestran que la eficiencia del diseño de muestreo PPT está directamente relacionada con el siguiente modelo de regresión

$$y_k = \beta_0 + \beta_1 x_k + E_k \tag{4.2.14}$$

que relaciona la característica de interés con la información auxiliar. Concluye que para que el diseño de muestreo PPT sea más eficiente que el diseño de muestreo MRAS, la cantidad β_0 debe ser pequeña. Es decir, que la línea de regresión ajuste cerca del origen. Es más, incluso si la correlación entre la característica de interés y la información auxiliar fuera perfecta e igual a uno, entonces no habría ningún término de error, pero aun así si β_0 es grande, entonces la estrategia de muestreo PPT podría arrojar una eficiencia menor a la del diseño de muestreo aleatorio simple con reemplazo.

La eficiencia de la estrategia de muestreo, depende de dos aspectos. Primero, el tipo de parámetro que se quiere estimar. Lehtonen & Pahkinen (2003) afirman que para la estimación de totales, la estrategia de muestreo PPT, funciona mejor, en términos de eficiencia, que para la estimación de razones o medianas. Segundo, que la razón entre x_k y y_k sea constante para toda la población.

4.2.4 Marco y Lucy

Una de las características del diseño de muestreo PPT es el uso de información auxiliar en la etapa de diseño. Obviamente, la información auxiliar debe estar presente en el marco de muestreo. En esta sección, de Marco y Lucy, seguiremos la tendencia que comenzamos en el diseño de muestreo Poisson. Suponga que, para todas las empresas del sector industrial, el valor del ingreso en el último año fiscal está disponible en el marco de muestreo.

Se quiere estimar, el total poblacional de las características de interés Empleados e Impuestos, para lo cual, se utilizará una estrategia de muestreo que utiliza un diseño de muestreo con reemplazo y probabilidades de selección de las empresas proporcionales al tamaño de la característica auxiliar Ingreso junto con el estimador de Hansen-Hurwitz. Como se vio antes, para que esta estrategia de muestreo sea óptima con respecto a una que utilice un diseño aleatorio simple con reemplazo se deben cumplir ciertas condiciones. Antes de analizarlas, veamos que, para este caso particular y con un tamaño de muestra igual a m=2000, el diseño de muestreo PPT es menos eficiente que el muestreo simple con reemplazo para la estimación del total de empleados, aunque es más eficiente que el muestreo simple con reemplazo para la estimación del total de impuestos declarados. Lo anterior se tiene utilizando la expresión (4.2.13) escrita en código de R.

```
data(BigLucy)
attach(BigLucy)
```

```
N <- nrow(BigLucy)
m <- 2000

(N^2 / m) * cov(Income, (Employees^2 / Income))

## [1] -9477162876

(N^2 / m) * cov(Income, (Taxes^2 / Income))

## [1] 897321919</pre>
```

Primero, que la correlación entre Income y y2/Income sea positiva. Aunque la correlación entre Income y Employees e, Income y Taxes sea positiva, se debe verificar que la correlación entre Income y la nueva variable Employees2/Income sea positiva, como también la correlación entre Income y Taxes2/Income. Mediante el uso de la función cor que R incorpora en su ambiente de trabajo, se tiene que para la característica de interés Empleados, la correlación es negativa, aunque casi nula. Mientras que para la estimación del total de empleados, el uso de la información auxiliar no conlleva a ganancias significativas en la eficiencia de la estrategia. Por otro lado, para la estimación del total de impuestos declarados, sí se tiene un ganancia significativa.

```
cor(Income, (Employees^2 / Income))

## [1] -0.078

cor(Income, (Taxes^2/Income))

## [1] 0.71
```

Otra de las condiciones para la optimalidad de la estrategia es que el cociente entre Income y las características de interés Taxes y Employees sea constante para todo elemento de la población. Mediante el uso de la función plot es posible tener un acercamiento gráfico al comportamiento de los respectivos cocientes. Nótese que la función abline permite trazar una línea sobre el promedio de los cocientes.

La figura 4.3 muestra que la relación existente entre el cociente Income y Employees es uniforme en casi toda la población. Por supuesto, se observan algunos datos atípicos que están muy lejos de la línea de referencia, pero en general se observa un comportamiento homogéneo. Esto no ocurre con la relación existente entre el cociente Income e Taxes donde existe un comportamiento más disperso para todos los elementos de la población. A pesar de lo anterior, se puede afirmar que el comportamiento de la razón es constante.

Un tercer argumento para el uso de la estrategia de muestreo PPT es el examen del ajuste de una línea de regresión entre Employees con Income y Taxes con Income respectivamente. Para esto, se ajustan dos modelos. El primero dado por

$$Impuestos_k = \beta_0 + \beta_1 Ingreso + E_k \tag{4.2.15}$$

Para la estimación del total de la característica Impuestos y, el segundo dado por

$$Empleados_k = \beta_0 + \beta_1 Ingreso + E_k \tag{4.2.16}$$

```
p1 <- qplot(Employees / Income, data=BigLucy, geom=c("histogram"), binwidth=0.1) +
    geom_density(colour = "blue")
p2 <- qplot(Taxes / Income, data=BigLucy, geom=c("histogram"), binwidth=0.1) +
    geom_density(colour = "blue")
grid.arrange(p1, p2, ncol = 2)</pre>
```


Figura 4.2: Comportamiento del cociente de la información auxiliar con las características de interés.

Para la estimación del total de la característica Empleados. Para los modelos anteriores, nos interesa conocer el valor que toma el intercepto de cada línea de regresión. Si el intercepto β_0 es cercano a cero, entonces se ha ganado eficiencia al utilizar un diseño de muestreo PPT. R incorpora la función 1m para el ajuste de modelos lineales. Las estimaciones de β_0 y β_1 se hacen por medio del método de los mínimos cuadrados. Un análisis de regresión de y contra x es especificado mediante y $\tilde{\mathbf{x}}$. La salida de la función 1m está dada por las estimaciones de los coeficientes de los modelos de regresión. Con ayuda de la función summary es posible extraer más información respecto a la inferencia de las estimaciones.

```
M.I <- lm(Taxes ~ Income)
summary(M.I)

##
## Call:
## lm(formula = Taxes ~ Income)
##
## Residuals:</pre>
```

```
##
     Min
            10 Median
                            3Q
                                  Max
##
   -5.58 \quad -3.99 \quad -1.60
                        2.62 169.65
##
## Coefficients:
##
                  Estimate Std. Error t value
                                                          Pr(>|t|)
  (Intercept) -13.6780825
                           0.0447706 -306 <0.0000000000000000 ***
##
              0.0593729
                            0.0000886
                                          670 < 0.0000000000000000 ***
## Income
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.9 on 85294 degrees of freedom
## Multiple R-squared: 0.84, Adjusted R-squared: 0.84
## F-statistic: 4.49e+05 on 1 and 85294 DF, p-value: <0.00000000000000000
```

Para el primer modelo, se nota que la estimación del intercepto está dada por -13.68 y, a juzgar por las tres estrellas, es una cantidad significativa. Aunque para nuestro análisis está cerca del origen, por tanto se gana en eficiencia al utilizar esta estrategia de estimación para el total poblacional de la característica de interés Impuestos.

```
M.E <- lm(Employees ~ Income)
summary(M.E)
##
## Call:
## lm(formula = Employees ~ Income)
##
## Residuals:
##
     Min
             1Q Median
                            3Q
                                 Max
##
  -46.35 -21.99 0.31 21.36
                               82.19
##
## Coefficients:
                                                       Pr(>|t|)
##
               Estimate Std. Error t value
## (Intercept) 29.124429 0.163386 178 <0.0000000000000000 ***
                                      245 <0.0000000000000000 ***
## Income
              0.079373
                          0.000323
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25 on 85294 degrees of freedom
## Multiple R-squared: 0.414, Adjusted R-squared: 0.414
## F-statistic: 6.02e+04 on 1 and 85294 DF, p-value: <0.00000000000000000
```

El intercepto del segundo modelo ha sido estimado como 29.12, a diferencia del modelo anterior, no se puede decir que está cerca del origen. Además, por la magnitud de la escala de medición de las características, se puede decir que es una cantidad importante y no despreciable.

La figura 4.3 muestra la línea de regresión ajustada para los dos modelos anteriores; es claro que el intercepto del modelo con impuestos declarados se puede considerar nulo, pero el intercepto del modelo con número de empleados es grande. Los tres anteriores argumentos permiten estar confiados al utilizar la estrategia de muestreo PPT para la estimación del total de impuestos declarados, pero se sabe que para la estimación del total de número de empleados, este diseño muestral no es más eficiente que el diseño simple con reemplazo.

Figura 4.3: Líneas de regresión.

Una vez se ha decidido usar la estrategia de muestreo PPT, es necesario seleccionar la muestra. En este caso, se ha querido utilizar el mismo tamaño de muestra, que en las anteriores estrategias de muestreo. En primer lugar, se adjunta el marco de muestreo que no sólo contiene la ubicación e identificación sino además el valor de la información auxiliar Ingreso para cada empresa del sector industrial. La selección de la muestra se hace mediante el uso de la función S.PPS para la cual los argumentos introducido son $\tt m = 2000$ junto con la información auxiliar Income. Esta función utiliza el algoritmo de selección acumulativo total.

```
pk <- Income / sum(Income)
sam <- S.PPS(m, Income)
muestra <- BigLucy[sam,]
attach(muestra)

head(muestra)

##

ID

Ubication Level

Zone Income Employees Taxes</pre>
```

```
## 64444 AB0000064444 C0047603K0254294 Medium County14
                                                            870
                                                                      123
                                                                              38
## 54403 AB0000054403 C0238725K0063172 Medium County62
                                                            670
                                                                              22
                                                                      115
## 80226 AB0000080226 C0207698K0094199
                                         Small County93
                                                            364
                                                                       57
                                                                               6
  41844 AB0000041844 C0196791K0105106
                                         Small County12
                                                            400
                                                                       55
                                                                               7
        AB0000001676 C0192933K0108964 Medium County17
  1676
                                                            986
                                                                      124
                                                                              46
  78288 AB0000078288 C0221516K0080381 Medium
                                                                              26
                                                            710
                                                                       92
##
         SPAM ISO Years
                             Segments
## 64444
         yes yes
                   27.6
                         County14 37
## 54403
           no yes
                   27.2
                         County62 75
## 80226
                    1.1
                         County93 31
         yes
              no
## 41844
                   48.2
                         County12 34
         yes
              no
## 1676
          yes yes
                   45.0 County17 107
## 78288
                   48.2
          yes yes
                            County9 2
```

El método acumulativo total no tiene en cuenta ningún ordenamiento. En este caso particular, la última empresa en ser seleccionada fue la empresa con número de identificación AB0000064444, aunque esta empresa ya había sido seleccionada en la muestra en dos ocasiones. Es decir, fue seleccionada en tres ocasiones.

Una vez seleccionada la muestra con reemplazo, se utiliza la función E.PPS del paquete TeachingSampling cuyos argumentos son la(s) característica(s) de interés y un vector de probabilidades de selección pk. Por supuesto, el vector de probabilidades de selección en la población está dado por pk <- Income / sum(Income). Sin embargo, en la función E.PPS, el vector de probabilidades debe corresponder a las probabilidades de selección de cada uno de los elementos elegidos en la muestra. En este caso la longitud del vector pk.s es de m = 2000.

```
pk.s <- pk[sam]
estima <- data.frame(Income, Employees, Taxes)
E.PPS(estima, pk.s)</pre>
```

Los resultados de aplicar la estrategia de muestreo son muy favorables. Nótese, que a diferencia de la estrategia de muestreo Poisson, el total poblacional de la característica auxiliar ingreso, es estimada exactamente con varianza casi nula. El total poblacional de las características de interés Empleados e Impuestos tienen coeficientes de variación menores a 2 %. La tabla 4.2 muestra los resultados obtenidos en este ejercicio particular.

	N	Income	Employees	Taxes
Estimation	85496.19	36634733.00	5405219.19	1000407.33
Standard Error	1398.69	0.00	81449.99	13065.21
CVE	1.64	0.00	1.51	1.31
DEFF	Inf	0.00	1.28	0.07

Tabla 4.2: Muestreo PPT: estimación de los totales de las características de interés.

Asimismo, una estrategia alternativa es utilizar un diseño de muestreo con reemplazo y probabilidad de selección proporcional al tamaño junto con el estimador de Horvitz-Thompson, el cual es también insesgado. Särndal, Swensson & Wretman (1992) se preguntan cuál es el mejor estimador y llegan a la conclusión que dependiendo de la configuración de los valores de las características de interés y de información auxiliar un estimador tendrá menor varianza que el otro. Por tanto, no es posible generalizar. De lo que sí se puede estar seguro, es de la simplicidad, en materia de cálculos del estimador de Horvitz-Thompson. En la práctica, este es un argumento muy fuerte que incentiva el uso del estimador de Hansen-Hurwitz.

Utilizando el resultado 4.2.3., es posible estimar los parámetros de interés mediante el uso del estimador de Horvitz-Thompson. Para esto, se calculan las probabilidades inclusión. Nótese que la suma de éstas es de 358. Se extraen las probabilidades de inclusión de los elementos en la muestra y se utiliza la forma genérica del estimador de Horvitz-Thompson.

```
pik <- 1 - (1 - pk)^2000
sum(pik)

## [1] 1968

pik.s <- pik[sam]
sum(1 / pik.s)

## [1] 86501

colSums(estima/pik.s)

## Income Employees Taxes
## 37227615 5480987 1021589</pre>
```

Las estimaciones resultantes no son mejores, en el sentido práctico, a las obtenidas mediante el uso del estimador de Hansen-Hurwitz. Ahora, la estimación de la varianza supondría un esfuerzo computacional demasiado grande.

4.3 Diseño de muestreo πPT

Como se vio en la sección anterior, utilizar un esquema de muestreo con probabilidades proporcionales a alguna característica de información auxiliar puede resultar en ganancia de precisión. Sin embargo, utilizar una estrategia de muestreo que contemple un diseño de muestreo con reemplazo es menos eficiente que implementar una estrategia de muestreo que contemple un diseño de muestreo sin reemplazo y de tamaño muestral fijo.

En la sección anterior, se utilizó un diseño de muestreo con probabilidades proporcionales, con reemplazo y, sin embargo, arrojó muy buenos resultados en términos de eficiencia comparado con los diseños de muestreo de probabilidades simples. Esta sección se concentra en la implementación de diseños de muestreo con probabilidades de inclusión proporcionales a una característica de interés y cuya estructura general sea sin reemplazo. De esta forma, es posible aumentar dramáticamente la eficiencia de la estrategia que involucra al estimador de Horvitz-Thompson.

Lohr (2000) afirma que el muestreo de probabilidades simples, proporciona esquemas que, frecuentemente, son fáciles de explicar y diseñar. Sin embargo, estos esquemas no siempre pueden ser realizados puesto que las probabilidades simples no siempre reflejan el comportamiento de la característica de interés en la población.

Este diseño de muestreo induce probabilidades de inclusión proporcionales al tamaño de una característica de información auxiliar¹. De esta manera, se supone que el marco de muestreo tiene la bondad de poseer información auxiliar de tipo continuo y positiva disponible para todo elemento perteneciente a la población finita. Asimismo, el diseño de muestreo πPT^2 , de tamaño de muestra fijo e igual a N,

¹El requisito indispensable de la información auxiliar es que sea aproximadamente proporcional a la característica de interés.

 $^{^2}$ Nótese que la sigla π PT se refiere a los diseños de muestreo que inducen probabilidades de inclusión proporcionales a una característica de información auxiliar.

se basa en la construcción de probabilidades de inclusión que obedezcan la siguiente relación:

$$\pi_k = \frac{nx_k}{t_x} \qquad 0 < \pi_k \le 1 \tag{4.3.1}$$

Además se busca que:

- El algoritmo de selección de muestras bajo este diseño sea de fácil implementación computacional.
- Las probabilidades de inclusión de segundo orden sean positivas, $\pi_{kl} > 0$. De lo contrario el estimador de la varianza podría ser sesgado.
- El cálculo de estas probabilidades de inclusión de segundo orden, π_{kl} , sea sencillo.
- $\Delta_{kl} < 0 \ \forall k \neq l$ para que la estimación de la varianza no sea negativa.

Este diseño de muestreo se puede considerar como una generalización de la mayoría de diseños de muestreo sin reemplazo. Por ejemplo: si la característica de información auxiliar es constante e igual a C, entonces para un tamaño de muestra fijo, las probabilidades de inclusión de primer orden estarían dadas por:

$$\pi_k = \frac{nx_k}{t_x}$$
$$= \frac{nC}{NC} = \frac{n}{N}$$

Con lo que se tiene un diseño de muestreo caracterizado por probabilidades simples. En ciertas ocasiones, cuando las población tiene un comportamiento muy variable, irregular y sesgado, algunas de las pi_k inducidas por la expresión (4.3.1) pueden ser mayores a uno para ciertos elementos. En tal caso, estos elementos son incluidos en todas las posibles muestras y toman el nombre de **elementos de inclusión forzosa**. Sin embargo, para calcular la probabilidad de inclusión de los elementos restantes, se debe excluir estos elementos de inclusión forzosa y volver a calcular las probabilidades de inclusión mediante una reformulación de la expresión (4.3.1) dada por

$$\pi_k = \frac{(n - n^*)x_k}{\sum_{k \in U^*} x_k} \qquad 0 < \pi_k \le 1; \quad k \in U^*$$
(4.3.2)

donde n^* corresponde al número de elementos de inclusión forzosa y U^* la población finita excluyendo a estos elementos de inclusión forzosa. Al final del proceso, deberían existir dos grupos de elementos:

- 1. Un grupo de elementos de inclusión forzosa con probabilidades de inclusión iguales a uno.
- 2. Un grupo de elementos con probabilidades de inclusión $0 < \pi_k < 1$ y proporcionales a x_k .

Por tanto, el problema se reduce a la selección de n unidades con probabilidades de inclusión tales que

$$\sum_{k \in U} \pi_k = n$$

El siguiente resultado da cuenta de la forma estructural que toma el estimador de Horvitz-Thompson, de su varianza y de su varianza estimada.

Resultado 4.3.1. Para el diseño de muestreo πPT , el estimador de Horvitz-Thompson, su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,\pi} = \sum_{S} \frac{y_k}{\pi_k} \tag{4.3.3}$$

$$Var_{\pi PT}(\hat{t}_{y,\pi}) = -\frac{1}{2} \sum_{l,l} \Delta_{kl} \left(\frac{y_k}{\pi_k} - \frac{y_l}{\pi_l} \right)^2$$

$$(4.3.4)$$

$$\widehat{Var}_{\pi PT}(\hat{t}_{y,\pi}) = -\frac{1}{2} \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \left(\frac{y_k}{\pi_k} - \frac{y_l}{\pi_l} \right)^2$$

$$(4.3.5)$$

Resultado 4.3.2. Para el diseño de muestreo πPT , el estimador de Horvitz-Thompson del total de la característica de información auxiliar reproduce ese total con varianza nula

Prueba. De la definición del estimador de Horvitz-Thompson, y de la expresión (4.3.1), se tiene que

$$\hat{t}_{x,\pi} = \sum_{k \in S} \frac{x_k}{\pi_k} = \sum_{k \in S} t_x \frac{1}{n} = t_x$$

Por otro lado,

$$Var_{\pi PT}(\hat{t}_{x,\pi}) = -\frac{1}{2} \sum_{ll} \sum_{ll} \Delta_{kl} \left(\frac{x_k}{\pi_k} - \frac{x_l}{\pi_l} \right)^2$$
 (4.3.6)

$$= -\frac{1}{2} \sum_{l} \sum_{k} \Delta_{kl} \left(\frac{t_x}{n} - \frac{t_x}{n} \right)^2 = 0$$
 (4.3.7)

con lo cual se concluye la demostración

Ejemplo 4.3.1. Suponga que para la población de ejemplo U se tiene conocimiento de cada valor de la siguiente característica de información auxiliar correlacionada con la característica de interés. Por tanto, un primer paso para el cálculo de las probabilidades de inclusión es aplicar la expresión (4.3.1).

```
n <- 4

x <- c(52, 60, 75, 100, 50)

pik <- n * x / sum(x)

pik

## [1] 0.62 0.71 0.89 1.19 0.59
```

Nótese que el cuarto elemento de la población, correspondiente a **Sharon** es un elemento de inclusión forzosa; es decir que está presente en todas las posibles muestras. El siguiente paso es separar a **Sharon** de los restantes elementos y proseguir con el cálculo de las probabilidades de inclusión inducidas por la expresión (4.3.2)

```
n <- 3

x <- c(52, 60, 75, 50)

pik <- n * x / sum(x)

pik

## [1] 0.66 0.76 0.95 0.63
```

Por tanto el vector de probabilidades de inclusión para toda la población U está dado por

$$\pi = (\underbrace{0.6582278}_{\text{Yves}}, \underbrace{0.7594937}_{\text{Ken}}, \underbrace{0.9493671}_{\text{Erik}}, \underbrace{1.0000}_{\text{Sharon}}, \underbrace{0.6329114}_{\text{Leslie}})'$$

4.4 Selección de muestras πPT

Existen varios métodos de selección de muestras πPT . Sin embargo, todos ellos están basados en una teoría fuerte y complicada y, en algunas ocasiones, son muy difíciles de implementar en la práctica. A continuación, se exponen dos métodos de selección de muestras de tamaño n=1 y n=2. Särndal, Swensson & Wretman (1992) comentan que a simple vista parecería irreal considerar tamaños de muestra tan pequeños. Sin embargo, en muestreo estratificado y muestreo para conglomerados (ver siguientes capítulos) tiene sentido seleccionar solamente una o dos unidades primarias de muestreo.

Tamaño de muestra n=1

Para n=1 se utiliza el método acumulativo total, que consiste en:

- 1. Definir $T_0 = 0$ y $T_k = T_{k-1} + x_k \ (k \in U)$.
- 2. Calcular un número aleatorio ε con distribución uniforme en el intervalo [0,1].
- 3. Si $T_{k-1} < \varepsilon T_N < T_k$, el elemento k-ésimo se selecciona.

Nótese que este algoritmo de selección garantiza que el diseño de muestreo es un autentico πPT puesto que

$$\pi_k = Pr(k \in S) = Pr(T_{k-1} < \varepsilon T_N < T_k) = \frac{T_k - T_{k-1}}{T_N} = \frac{x_k}{t_x}$$

Por supuesto, no es posible obtener un estimador insesgado de la varianza del estimador de Horvitz-Thompson puesto que la muestra sólo considera la inclusión de un elemento de la población finita.

Tamaño de muestra n=2

En este escenario es preciso garantizar que las probabilidades de inclusión de primer orden estén dadas por

$$\pi_k = \frac{2x_k}{t_x}$$

para todo elemento de la población finita. En este caso, los dos elementos de la muestra son seleccionados uno por uno. Para tal fin, se debe seguir el siguiente algoritmo (Brewer 1963, Brewer 1975) que utiliza el método acumulativo total en cada una de las dos selecciones, así:

1. En la primera extracción, el elemento k-ésimo es seleccionado con probabilidad

$$p_k = \frac{c_k}{\sum_{k \in U} c_k}$$

donde

$$c_k = \frac{x_k(T_N - x_k)}{T_N(T_N - 2x_k)}$$

2. En la segunda extracción, el elemento seleccionado en el paso anterior, digamos el elemento k^* , es retirado del sorteo. El segundo elemento es seleccionado con probabilidad

$$p_{l|k^*} = \frac{x_l}{T_N - x_{k^*}}$$

Resultado 4.4.1. Bajo el esquema de selección de Brewer las probabilidades de inclusión de primer orden satisfacen la siguiente relación

$$\pi_k = \frac{2x_k}{t_x}$$

Las probabilidades de inclusión de segundo orden están dadas por

$$\pi_{kl} = \frac{2x_k x_l}{T_N(\sum_{k \in U} c_k)} \frac{T_N - x_k - x_l}{(T_N - 2x_k)(T_N - 2x_l)}$$

Prueba. La probabilidad de inclusión de primer orden del k-ésimo elemento está dada por

$$\begin{split} \pi_k &= Pr(k \in S) \\ &= Pr(k \text{ sea seleccionado en la primera extracción}) \\ &+ Pr(k \text{ sea seleccionado en la segunda extracción}) \\ &= p_k + p_{k|j} \sum_{\substack{j \in U \\ j \neq k}} p_j \\ &= \frac{x_k(T_N - x_k)/T_N(T_N - 2x_k)}{D} \\ &+ \sum_{\substack{j \in U \\ j \neq k}} \frac{x_j(T_N - x_j)/T_N(T_N - 2x_j)}{D} \frac{x_k}{T_N - x_j} \\ &= \frac{x_k/T_N}{D} \left(\frac{T_N - x_k}{T_N - 2x_k} + \sum_{\substack{j \in U \\ j \neq k}} \frac{x_j}{T_N - 2x_j} \right) \\ &= \frac{x_k/T_N}{D} \left(\frac{T_N}{T_N - 2x_k} - \frac{2x_k}{T_N - 2x_k} + \sum_{\substack{j \in U \\ T_N - 2x_j}} \frac{x_j}{T_N - 2x_j} \right) \\ &= \frac{x_k/T_N}{D} \left(1 + \sum_{\substack{j \in U \\ T_N - 2x_j}} \frac{x_j}{T_N - 2x_j} \right) = \frac{x_k/T_N}{D} (2D) = \frac{2x_k}{T_N} \end{split}$$

Donde

$$D = \sum_{k \in U} \frac{x_k (T_N - x_k)}{T_N (T_N - 2x_k)}$$
$$= \frac{1}{2} \sum_{k \in U} \frac{x_k (2T_N - 2x_k)}{T_N (T_N - 2x_k)}$$
$$= \frac{1}{2} \left(1 + \sum_{k \in U} \frac{x_k}{T_N - 2x_k} \right)$$

La última relación se tiene puesto que

$$\sum_{k \in U} \frac{x_k(T_N - x_k)}{T_N(T_N - 2x_k)} - \sum_{k \in U} \frac{x_k}{T_N - 2x_k} = 1$$

Análogamente para las probabilidades de inclusión de segundo orden.

Resultado 4.4.2. Bajo muestreo πPT con el algoritmo de selección de Brewer, se tiene que.

- 1. $Var_{\pi PT}(\hat{t}_{y,\pi})$ es menor que $Var_{PPT}(\hat{t}_{y,p})$.
- 2. La estimación de la varianza es siempre positiva.

Lohr (2000) afirma que generalmente el muestreo con reemplazo es menos eficiente que el muestreo sin reemplazo. Sin embargo, el muestreo con reemplazo se utiliza con mucha más frecuencia debido a la facilidad que brinda para elegir y analizar las muestras. Se ha investigado mucho acerca del muestreo con probabilidades proporcionales sin reemplazo; hay que notar que la teoría de éstos tipos de muestreo es mucho más complicada. Existen varios algoritmos que permiten la selección de muestras de tamaño n > 2 con probabilidades de inclusión desiguales; en particular, con probabilidades proporcionales a una característica de información auxiliar³. En esta sección, revisaremos algunos de estos esquemas que permiten la selección de muestras para tamaños de muestra fijos y mayores que dos.

4.4.1 Método de Sunter

En Sunter (1977) y en Sunter (1986) se propune un procedimiento secuencial que, en general, no es aplicable a cualquier vector de probabilidades de inclusión de primer orden. Este algoritmo de muestreo sólo funciona cuando los elementos de la población son ordenados descendentemente y cuando los elementos con valores más pequeños comparten las mismas probabilidades de inclusión. Este método, que en realidad es una modificación del algoritmo de Fan-Muller-Rezucha para la selección de muestras simples, asume la existencia de una variable auxiliar que induce probabilidades de inclusión de primer orden dadas por la expresión (4.3.1) y consiste en:

- 1. Ordenar descendentemente la población de acuerdo con los valores que toma la característica de información auxiliar x_k .
- 2. Realizar $\xi_k \sim U(0,1)$.
- 3. Para k=1, el primer elemento de la lista ordenada es incluido en la muestra sí y solamente sí $\xi_1 < \pi_1$.

³El lector interesado en conocer aún más acerca de estos algoritmos de selección puede referirse a los siguientes tres libros: Brewer & Hanif (1983), Hájek (1981) y Tillé (2006)).

4. Para $k \ge 2$, el k-ésimo elemento de la lista ordenada es incluido en la muestra sí y solamente sí

$$\xi_k \le \frac{n - n_{k-1}}{n - \sum_{i=1}^{k-1} \pi_i} \pi_k$$

donde n_{k-1} representa el número de elementos que ya han sido seleccionados al final del paso k-1.

Resultado 4.4.3. Bajo el esquema de selección de Sunter, las probabilidades de inclusión de primer orden están dadas por

$$\pi_k = \begin{cases} \frac{nx_k}{T_N} & \text{si } k = 1, \dots, k^* - 1 \\ \\ \frac{n\bar{x}_{k^*}}{T_N} & \text{si } k = k^*, \dots, N \end{cases}$$

donde $k^* = \min\{k_0, N-n+1\}$ con k_0 equivalente al menor k para el cual se cumple que $nx_k/T_k > 1$, $T_k = \sum_{j=1}^k x_j$ y

$$\bar{x}_{k^*} = \frac{T_{k^*}}{N - k^* + 1}$$

Por otra parte, se cumple que para todo $k \neq l$, $\pi_{kl} > 0$ y $\Delta_{kl} < 0$.

Con el anterior resultado se establece que este método de selección de muestras no induce probabilidades de inclusión estrictamente proporcionales a la característica de información auxiliar. Särndal, Swensson & Wretman (1992) afirman que relajar un poco este supuesto es un precio menor que debe pagarse para que el esquema de selección sea ejecutable en la práctica.

Ejemplo 4.4.1. Volviendo con la población ejemplo U. Suponga que se tiene acceso a los valores de la característica de información auxiliar x para todos los elementos de la población. Es posible seleccionar una muestra πPT de tamaño n=3 con el método de Sunter. Para tal fin, es necesario recurrir a la función S.piPS del paquete TeachingSampling.

Esta función consta de tres argumentos: el primero, x, hace referencia al vector de información auxiliar continua para toda la población. El segundo, n, determina el tamaño de la muestra. Con estos dos argumentos, la función S.piPS construye las probabilidades de inclusión proporcionales a la característica de información auxiliar. El tercer argumento, e, que es opcional, corresponde a un vector de números aleatorios con el que se procede a ejecutar el esquema de selección de Sunter.

```
U <- c("Yves", "Ken", "Erik", "Sharon", "Leslie")
N <- length(U)
n <- 3
x <- c(52, 60, 75, 100, 50)
pik <- (n*x)/sum(x)
pik
## [1] 0.46 0.53 0.67 0.89 0.45</pre>
```

```
## [1] 3

sam <- S.piPS(n, x, e=runif(N))
U[sam]

## [1] "Sharon" "Erik" "Leslie"

x[sam]

## [1] 100 75 50</pre>
```

La función S.piPS devuelve un conjunto de índices (distintos por definición) que aplicados a los rótulos poblacionales proporcionan la muestra realizada o seleccionada. Para el anterior ejercicio particular, la muestra realizada estuvo conformada por Sharon, Erik y Ken. Es importante recalcar que esta función no necesita de ningún ordenamiento previo sobre la característica de información auxiliar; en otras palabras, los resultados serán idénticos si se realiza un ordenamiento previo o si no se realiza tal ordenamiento.

4.4.2 Método de escisión

Desde la publicación de Brewer & Hanif (1983) se han propuesto numerosas técnicas de muestreo con probabilidades de inclusión desiguales. Sin embargo, en el artículo de Deville & Tillé (1998), se habla de ocho nuevos métodos; entre ellos, el método de escisión. Este método es considerado como un nuevo enfoque que presenta de manera más simple los restantes métodos de selección de muestras con probabilidades desiguales. Tillé (2006) comenta que el método de escisión es un medio para integrar la presentación de los demás métodos y para hacerlos comparables.

En palabras de uno de los autores (Tillé 2006), el método de escisión propuesto por Deville & Tillé (1998) es:

...un marco de referencia de los métodos de muestreo sin reemplazo, con tamaño muestral fijo y con probabilidades desiguales, en particular con probabilidades proporcionales al tamaño de una característica de información auxiliar.

La idea básica del método consiste en dividir el vector de probabilidades de inclusión en dos o más vectores nuevos. A continuación, uno de estos vectores se selecciona aleatoriamente, de tal manera que el promedio de los vectores de como resultado el vector de probabilidades de inclusión. Este simple paso se repite hasta que se obtenga una muestra.

Con el planteamiento anterior, el método de escisión se puede considerar como un algoritmo de Martingalas que incluye todos los procedimientos de selección individual y secuencial y permite derivar un gran número de algoritmos de muestreo de probabilidades desiguales. Más aun, muchos procedimiento bien conocidos de probabilidades desiguales pueden ser formulados bajo la forma de una partición del vector de probabilidades de inclusión. Por tanto, la presentación puede ser estandarizada, lo cual permite una comparación más simple de procedimientos.

Escisión en dos partes

Este método consiste en seleccionar una muestra, de tamaño n(S) = n, de probabilidades desiguales mediante la partición de la probabilidad de inclusión del k-ésimo elemento en dos partes π_k^a y π_k^b tal

que

$$\pi_k = \lambda \pi_k^a + (1 - \lambda) \pi_k^b \tag{4.4.1}$$

De tal forma que $0 \le \pi_k^a \le y$ $0 \le \pi_k^b \le y$ que

$$\sum_{k \in U} \pi_k^a = \sum_{k \in U} \pi_k^b = n \tag{4.4.2}$$

Donde $0 < \lambda < 1$. La esencia del método es la selección de n elementos con probabilidades desiguales mediante la transformación iterativa del vector de probabilidades de inclusión. Si la escisión es tal que uno o varios de los π_k^a y de los π_k^b son equivalentes a cero o uno, entonces el problema de muestreo se verá reducido en el siguiente paso. De hecho, un vez que un componente del vector de probabilidades de inclusión converja a cero o uno, es deberá permanecer en este estado hasta que se seleccione una muestra⁴. En general, el algoritmo de muestreo de este esquema es el siguiente:

- 1. Definir $\pi(0) = \pi$.
- 2. Construir un par de vectores $\pi^a(t)$ y $\pi^b(t)$ y definir un número $\lambda(t) \in (0,1)$ tales que

$$\pi(t) = \lambda(t)\pi^{a}(t) + (1 - \lambda(t))\pi^{b}(t)$$
(4.4.3)

3. Definir para el siguiente paso al vector de probabilidades de inclusión de tal forma que

$$\pi(t+1) = \begin{cases} \pi^a(t) & \text{con probabilidad } \lambda(t) \\ \pi^b(t) & \text{con probabilidad } 1 - \lambda(t) \end{cases}$$
(4.4.4)

4. Iterar hasta obtener convergencia; es decir, hasta que todas las entradas del vector de probabilidades de inclusión sean cero o uno en ambas particiones. De esta forma, para cada tiempo t, existe una posible muestra correspondiente a $S = \pi(t)$.

Esquema de soporte mínimo

Definición 4.4.1. Si para un vector fijo de probabilidades de inclusión es posible plantear un diseño de muestreo cuyo soporte contenga a lo más N muestras s, tales que p(s) > 0. En tal caso, el diseño de muestreo se dice de soporte mínimo.

A continuación se presenta el esquema de soporte mínimo que permite seleccionar una muestra en a lo más N pasos.

Paso 1 Ordenar el vector de probabilidades de inclusión en orden ascendente, denotado como $(\pi_{(1)}, \dots, \pi_{(k)}, \dots, \pi_{(N)})$

Paso 2 (Primera iteración, t = 1) Calcular

$$\lambda(1) = \min\{1 - \pi_{(N-n)}, \pi_{(N-n+1)}\}\$$

⁴Una muestra es seleccionada cuando todas las entradas del vector de probabilidades de inclusión se conviertan en

Luego, computar las siguientes particiones del vector de probabilidades de inclusión

$$\pi_{(k)}^{a}(1) = \begin{cases} 0 & \text{si } k \le N - n \\ 1 & \text{si } k > N - n \end{cases}$$
 (4.4.5)

$$\pi_{(k)}^{b}(1) = \begin{cases} \frac{\pi_{(k)}}{1 - \lambda(1)} & \text{si } k \le N - n \\ \frac{\pi_{(k)} - \lambda(1)}{1 - \lambda(1)} & \text{si } k > N - n \end{cases}$$
(4.4.6)

Paso 3 (t-ésima iteración, $t \ge 2$) Definir los siguientes conjuntos

$$A(t) = \{k|0 < \pi_{(k)}^b(t-1) < 1\}$$

$$B(t) = \{k|\pi_{(k)}^b(t-1) = 1\}$$

y las siguientes cantidades:

$$N^*(t) = \#A(t)$$
$$n^*(t) = \#B(t)$$

Luego, para los elementos $k \in A(t)$ calcular

$$\lambda(t) = \min\{1 - \pi^b_{(N^*(t) - n^*(t))}(t - 1), \pi^b_{(N^*(t) - n^*(t) + 1)}(t - 1)\}$$

A continuación, para los elementos $k \in A(t)$ computar las siguientes particiones del vector de probabilidades de inclusión

$$\pi_{(k)}^{a}(t) = \begin{cases} 0 & \text{si } k \le N^{*}(t) - n^{*}(t) \\ 1 & \text{si } k > N^{*}(t) - n^{*}(t) \end{cases}$$

$$(4.4.7)$$

$$\pi_{(k)}^{b}(t) = \begin{cases} \frac{\pi_{(k)}^{b}(t-1)}{1-\lambda(t)} & \text{si } k \leq N^{*}(t) - n^{*}(t) \\ \frac{\pi_{(k)}^{b}(t-1)-\lambda(t)}{1-\lambda(t)} & \text{si } k > N^{*}(t) - n^{*}(t) \end{cases}$$
(4.4.8)

Paso 4 Iterar hasta obtener convergencia; es decir, hasta que $\pi^b_{(k)}(t) \in \{0,1\}.$

Ejemplo 4.4.2. En este apartado se muestra paso a paso cómo trabaja el algoritmo de mínimo soporte basado en el método de escisión. Volvemos entonces a nuestra población ejemplo

$$U = \{ Yves, Ken, Erik, Sharon, Leslie \}$$

El cálculo de las probabilidades de inclusión se hace con respecto a la expresión (4.3.1) donde la característica de información auxiliar corresponde a

$$\mathbf{x} = (52, 60, 75, 100, 50)$$

Por tanto, el vector de probabilidades de inclusión está dado por

$$\pi = (0.46, 0.53, 0.67, 0.90, 0.44)$$

El método exige el ordenamiento del vector de probabilidades de inclusión en orden ascendente. Luego de esto, se tiene que el procedimiento converge en cuatro etapas. La tabla 4.3 muestra la convergencia del método y todas las posibles muestras que surgen del diseño muestral con soporte mínimo. Los cálculos en cada etapa se dan a continuación:

Tabla 4.3: Diseno de minimo soporte para la población U.									
		Etapa 1		Etapa 2		Etapa 3		Etapa 4	
		$\lambda(1) = 0.53$		$\lambda(2) = 0.06$		$\lambda(3) = 0.02$		$\lambda(4) = 0.78$	
\overline{k}	π_k	π_k^a	π_k^b	π_k^a	π_k^b	π_k^a	π_k^b	π_k^a	π_k^b
Leslie	0.44	0	0.94	0	1	1	1	1	1
$\mathbf{Y}\mathbf{ves}$	0.46	0	0.98	1	0.98	0	1	1	1
\mathbf{Ken}	0.53	1	0	0	0	0	0	0	0
\mathbf{Erik}	0.67	1	0.29	1	0.24	1	0.22	0	1
Sharon	0.90	1	0.79	1	0.78	1	0.78	1	0

Tabla 4.3: Diseño de mínimo soporte para la población U

Etapa 1
$$\,N=5,\,n=3,\,\lambda=\min\{1-\pi_{(2)},\pi_{(3)}\}=0.53$$

Etapa 2
$$N^*(2) = 4$$
, $n^*(2) = 3$, $\lambda(2) = \min\{1 - \pi_{(1)}(1), \pi_{(2)}(1)\} = 0.06$

Etapa 3
$$N^*(3) = 3$$
, $n^*(3) = 2$, $\lambda(3) = \min\{1 - \pi_{(1)}(2), \pi_{(2)}(2)\} = 0.02$

Etapa 4
$$N^*(4) = 2$$
, $n^*(4) = 1$, $\lambda(4) = \min\{1 - \pi_{(1)}(3), \pi_{(2)}(3)\} = 0.78$

Por tanto, el diseño muestral de mínimo soporte está dado por

$$p(s) = \begin{cases} 0.53 & \text{si } s = \{\text{Ken, Erik, Sharon}\} \\ 0.0282 = (1-0.53) \times 0.06 & \text{si } s = \{\text{Yves, Erik, Sharon}\} \\ 0.0088 = (1-0.53-0.0282) \times 0.02 & \text{si } s = \{\text{Leslie, Erik, Sharon}\} \\ 0.3377 = (1-0.53-0.0282-0.008) \times 0.78 & \text{si } s = \{\text{Leslie, Yves, Sharon}\} \\ 0.0953 = (1-0.53-0.0282-0.008-0.3377) & \text{si } s = \{\text{Leslie, Yves, Erik}\} \end{cases}$$

4.4.3 Estimación de la varianza

Existe un número muy grande de diseños y algoritmos de muestreo que trabajan bajo el supuesto de probabilidades de inclusión desiguales. En el caso particular del diseño de muestreo sin reemplazo y proporcional al tamaño de una característica de interés, las probabilidades de inclusión siguen el comportamiento dado por la expresión (4.3.1). Cada uno de estos métodos de muestreo inducen probabilidades de inclusión de primer y segundo orden. Las probabilidades de inclusión de primer orden son esenciales al momento de completar la estrategia de muestreo con el estimador de Horvitz-Thompson. Sin embargo, las probabilidades de inclusión de segundo orden, aunque servirían teóricamente para calcular y estimar la varianza del estimador de Horvitz-Thompson, son ineficientes pues cuando el tamaño de muestra crece, su cálculo se vuelve una total aventura, en muchos casos imposible de finiquitar.

Al respecto Tillé (2006) comenta, en el prefacio de su libro de algoritmos de muestreo, que «tiene la convicción de que las probabilidades de inclusión de segundo orden no son usadas para nada» y añade que «en la práctica el uso de las probabilidades de inclusión de segundo orden es muchas veces

irreal porque son muy difíciles de calcular computacionalmente y n^2 términos deben ser sumados para calcular la estimación».

Para evitar el cálculo y estimación de la varianza del estimador de Horvitz-Thompson con dobles sumas, Deville & Tillé (2005) proponen una aproximación de la varianza⁵ y su respectiva estimación para un diseño exponencial⁶ dada por el siguiente resultado

Resultado 4.4.4. Para la familia de diseños exponenciales, la aproximación de la varianza del estimador de Horvitz-Thompson está dada por

$$Var(\hat{t}_{y,\pi}) = \sum_{k \in U} \frac{b_k}{\pi_k^2} (y_k - y_k^*)^2$$
(4.4.9)

donde

$$y_k^* = \pi_k \frac{\sum_{l \in U} b_l y_l / \pi_l}{\sum_{l \in U} b_l}$$
 (4.4.10)

Hájek (1981) ha propuesto la siguiente escogencia de b_k

$$b_k = \frac{N\pi_k(1 - \pi_k)}{(N - 1)} \tag{4.4.11}$$

Un estimador de la anterior aproximación de la varianza está dada por

$$\widehat{Var}(\hat{t}_{y,\pi}) = \sum_{k \in S} \frac{c_k}{\pi_k^2} (y_k - \hat{y}_k^*)^2$$
(4.4.12)

donde

$$\hat{y}_k^* = \pi_k \frac{\sum_{l \in S} c_l y_l / \pi_k}{\sum_{l \in S} c_l}$$
(4.4.13)

Deville (1993) ha propuesto la siguiente escogencia de c_k

$$c_k = (1 - \pi_k) \frac{n}{(n-1)} \tag{4.4.14}$$

Ejemplo 4.4.3. Para nuestra población de ejemplo U, existen $\binom{N}{n}=10$ posibles muestras πPT de tamaño n=3. Utilizando las probabilidades de inclusión del ejemplo 4.4.1, realice el cálculo léxico-gráfico del estimador de Horvitz-Thompson, calcule la aproximación de la varianza dada por la expresión (4.4.9) y para cada muestra estime esta varianza usando la expresión (4.4.12) y compruebe su insesgamiento.

Acerca del muestreo πPT

En general, la familia de diseños de muestreo πPT son utilizados cuando el comportamiento de la característica de interés en la población finita es bastante asimétrico. Para la estimación de totales, este diseño es más eficiente, en términos de reducción de la varianza. Sin embargo, cuando se quiere estimar otro tipo de parámetros poblacionales, como razones o medianas, los diseños de muestreo proporcionales al tamaño no son muy apetecidos, pues es difícil encontrar una característica de información auxiliar bien correlacionada con la razón entre las dos características de interés. En resumen, se tiene que:

⁵Existe mucha literatura escrita alrededor del tema de aproximaciones y simplificaciones de la varianza del estimador de Horvitz-Thompson. Para una mejor comprensión del tema Matei & Tille (2005) han escrito un excelente artículo de revisión.

⁶Los diseños de muestreo exponenciales son una gran familia que incluyen diseños tales como muestreo aleatorio simple, muestreo multinomial, muestreo de probabilidades desiguales con reemplazo y algunos diseños de probabilidades desiguales sin reemplazo. Para más información acerca de los diseños de muestreo exponenciales el lector deberá remitirse a Tillé (2006).

- Se utiliza esencialmente para la estimación de totales poblacionales.
- Al seleccionar hogares no vale la pena utilizar este diseño pues, en general, en cada vivienda hay una misma cantidad de hogares.
- En encuestas de negocios es bueno utilizar diseños proporcionales porque sí existen diferencias en los tamaños considerados (por ejmeplo en total de ventas mensuales, número de empleados contratados al año, etc.).
- Debido a que este diseño de muestreo involucra información auxiliar, entonces es más eficiente que el diseño de muestreo aleatorio simple, siempre y cuando la característica de interés esté relacionada positivamente con la información auxiliar.
- Un defecto de este diseño de muestreo es que su varianza no es una función monótona decreciente. Debido a la configuración particular de la información, la varianza puede crecer si se aumenta el tamaño de muestra.

4.4.4 Marco y Lucy

En este apartado de Marco y Lucy suponga que se tienen las mismas condiciones que en el apartado de Marco y Lucy del diseño de muestreo PPT (ver la sección 4.2.4). Siendo así, el marco de muestreo permite conocer los valores poblacionales de una característica de información auxiliar. En este caso ésta es la variable Income. Dadas las bondades del marco de muestreo, se quiere seleccionar una muestra de tamaño n=2000 mediante un diseño de muestreo sin reemplazo que induzca probabilidades de inclusión proporcionales a esta característica de información auxiliar.

La selección de la muestra se realiza haciendo uso de la función S.piPS del paquete TeachingSampling para la cual los argumentos introducidos son: el vector de valores poblacionales de la característica de información auxiliar Income y el tamaño de la muestra sin reemplazo n=2000. Nótese que esta función utiliza el algoritmo de selección de Sunter.

```
data(BigLucy)
attach(BigLucy)
N <- dim(BigLucy)[1]
n <- 2000
res <- S.piPS(n, Income)
sam <- res[,1]
muestra <- BigLucy[sam,]</pre>
attach(muestra)
head(muestra)
##
                   ID
                              Ubication Level
                                                   Zone Income Employees Taxes
## 59842 AB0000059842 C0082783K0219114
                                          Big County67
                                                          2510
                                                                     258
                                                                            305
## 57446 AB0000057446 C0188504K0113393
                                          Big County64
                                                          2510
                                                                     258
                                                                            305
  40674 AB0000040674 C0134353K0167544
                                          Big County52
                                                          2510
                                                                     258
                                                                            305
                                          Big County26
  11922 AB0000011922 C0182831K0119066
                                                          2510
                                                                     258
                                                                            305
## 4734 AB0000004734 C0296722K0005175
                                          Big County19
                                                          2510
                                                                     258
                                                                            305
## 55082 AB0000055082 C0264155K0037742
                                          Big County62
                                                          1911
                                                                     263
                                                                            196
##
         SPAM ISO Years
                             Segments
                    2.6 County67 140
## 59842
         yes yes
## 57446
          yes yes 46.7
                         County64 39
## 40674 yes yes
                   7.3 County52 62
```

```
## 11922 yes yes 35.1 County26 11
## 4734 yes yes 22.9 County19 28
## 55082 yes yes 34.5 County62 143
```

El resultado de la función S.piPS es una muestra ordenada de forma descendente por los valores de la característica de información auxiliar. El siguiente paso es recolectar la información de las características de interés Employees e Taxes para los elementos incluidos en la muestra realizada.

Después de recolectar la información, es necesario estimar los totales de las características de interés. En esta etapa se utiliza la función E.piPS del paquete TeachingSampling cuyos argumentos son: estima, correspondiente a la lista que contiene los valores observados en la muestra para cada una de las características de interés y pik.s, correspondiente al vector de probabilidades de inclusión (proporcionales a la característica de información auxiliar) de los elementos en la muestra.

```
pik.s <- res[,2]
estima <- data.frame(Income, Employees, Taxes)
E.piPS(estima, pik.s)</pre>
```

Los resultados para este ejercicio particular son excelentes. Nótese que los estimativos de la varianza no son exactos, pues están dados por el resultado 4.4.2, aunque sí aproximados. Por otra parte, el resultado 4.3.4 asegura que éstos serían menores a los arrojados por la estrategia de muestreo que utiliza un diseño PPT con reemplazo y el estimador de Hansen-Hurwitz. Por supuesto, este diseño de muestreo es más eficiente que el de Poisson, no es de extrañar que los resultados para la variable Ingreso sean tan exactos. Recuérdese que ésta fue la variable utilizada como característica de información auxiliar. La siguiente tabla muestra los resultado para un ejercicio particular. Una vez más, la característica Impuestos tiene un menor coeficiente de variación estimado puesto que está mucho mejor correlacionada con la variable Ingreso.

	N	Income	Employees	Taxes
Estimation	86522.62	36634733.00	5489077.05	1013950.58
Standard Error	1427.70	0.00	81420.11	13836.54
CVE	1.65	0.00	1.48	1.36
DEFF	Inf	0.00	1.08	0.06

Tabla 4.4: Muestreo piPT: estimación de los totales de las características de interés

Véase que para obtener estos resultados, fue necesario conocer el valor de N dado por la longitud del vector de información auxiliar. Nótese que no siempre se puede asegurar el conocimiento del total poblacional. Sin embargo, aunque no se conociera, con la función HT se hubiera llegado a los mismos resultados, en términos de la estimación de los totales, pero no se obtendrían los estimativos concernientes a la varianza, tal y como se ilustra a continuación.

4.5 Ejercicios

- 4.1 Demuestre o refute la siguiente afirmación: «Cuando el comportamiento de la característica de interés es uniforme en la población es más conveniente utilizar diseños de muestreo proporcionales al tamaño de una característica de información auxiliar».
- 4.2 Demuestre o refute la siguiente afirmación: «En muestreo Poisson, cuando las probabilidades de inclusión son tales que $\pi_k = ny_k/t_y$ la varianza del estimador de Horvitz-Thompson es nula».
- 4.3 Complete el cálculo léxico-gráfico del ejemplo 4.1.2.
- 4.4 Suponga una población de 10 elementos $U = \{e_1, \dots, e_{10}\}$ cuyo marco de muestreo contiene una característica de información auxiliar dada por

$$\mathbf{x} = (62, 151, 76, 77, 80, 60, 194, 78, 74, 61)$$

- Si se desea seleccionar una muestra sin reemplazo de tamaño esperado n(S) = 6, utilice la expresión (4.3.2) para construir un vector de probabilidades de inclusión proporcionales a \mathbf{x} tales que $0 < \pi_k \le 1$ para todo $k \in U$ y verifique $\sum_U \pi_k = 6$
- Utilice el algoritmo de la sección 4.1.1 para seleccionar una muestra Poisson teniendo en cuenta que se obtuvo el siguiente conjunto de números aleatorios uniformes

$$\varepsilon = \{0.858, 0.698, 0.541, 0.320, 0.965, 0.497, 0.208, 0.006, 0.340, 0.206\}$$

• Utilice el método de Sunter para seleccionar una muestra πPT teniendo en cuenta que se obtuvo el siguiente conjunto de números aleatorios uniformes

$$\boldsymbol{\xi} = \{0.322, 0.542, 0.032, 0.141, 0.453, 0.668, 0.174, 0.318, 0.691, 0.006\}$$

4.5 (Särndal, Swensson & Wretman 1992, p. 117) Para estimar el total de la característica de interés y de una población de N=284 elementos, se utilizó un diseño de muestreo Poisson de tamaño de muestra esperado n(S)=10. Las probabilidades de inclusión fueron proporcionales a una característica de información auxiliar x cuyo total poblacional es $t_x=8182$. Luego, el algoritmo de selección arrojó una muestra de tamaño efectivo de 12 elementos, para las cuales se obtuvo la siguiente información

x_k	y_k
54	5246
671	59877
28	2208
27	2546
29	2903
62	6850
42	3773
48	4055
33	4014
446	38945
12	1162
46	4852

• Calcule una estimación insesgada para el total poblacional de la característica de interés, reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %.

4.5. Ejercicios **149**

• Calcule una estimación insesgada para la media poblacional de la característica de interés, reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %.

- Utilice el estimador alternativo para calcular estimaciones tanto del total como de la media poblacional.
- 4.6 Complete el cálculo léxico-gráfico del ejemplo 4.4.3.
- 4.7 Suponiendo que los datos del ejercicio 4.5 provienen de un diseño de muestreo πPT , calcule una estimación para el total de la característica de interés. Utilizando la aproximación de la varianza dada en (4.4.12), reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %.
- 4.8 Utilice el esquema de mínimo soporte para especificar un diseño de muestreo πPT de tamaño n=3 para una población de tamaño N=6 cuyo vector de probabilidades de inclusión de primer orden es

$$\pi = (0.07, 0.17, 0.41, 0.61, 0.83, 0.91)'$$

Demuestre que el procedimiento converge en cuatro pasos que inducen cinco muestras y calcule la probabilidad de selección de cada muestra.

- 4.9 Demuestre o refute la siguiente afirmación: «En muestreo PPT es posible utilizar los estimadores de Horvitz-Thompson y de Hansen-Hurwitz, al comparar las dos estrategias se tiene que las dos aportan la misma precisión pero diferente confiabilidad».
- 4.10 Complete el cálculo léxico-gráfico del ejemplo 4.2.2.
- 4.11 Suponga una población de 12 elementos $U = \{e_1, \dots, e_{12}\}$ cuyo marco de muestreo contiene una característica de información auxiliar dada por

$$\mathbf{x} = (674, 802, 829, 726, 709, 789, 742, 791, 805, 797, 771, 692)$$

- Si se desea seleccionar una muestra con reemplazo de tamaño m=6, construya un vector de probabilidades de selección proporcionales a \mathbf{x} tales que $0 < p_k \le 1$ para todo $k \in U$ y verifique $\sum_U p_k = 6$
- Utilice el método acumulativo total para seleccionar una muestra PPT teniendo en cuenta que para cada una de las seis extracciones se generaron los siguientes números aleatorios uniformes

$$\varepsilon = \{0.075, 0.397, 0.280, 0.407, 0.982, 0.782\}$$

- Utilice el método de Lahiri para seleccionar una muestra PPT usando sus propios números aleatorios η y l en cada una de las extracciones.
- 4.12 Demuestre o refute la siguiente afirmación: «Para la estimación de totales, el diseño PPT es preferido sobre el diseño πPT porque permiten agilizar los cálculos computacionales de varianza y coeficiente de variación».
- 4.13 Demuestre o refute la siguiente afirmación: «Para la estimación de totales, el diseño PPT siempre es más eficiente que el diseño de muestreo aleatorio simple con reemplazo».
- 4.14 Suponga una población de N=12 elementos cuyos valores observados para la característica de interés son

$$y = \{50, 53, 44, 45, 53, 31, 35, 45, 34, 44, 52, 52\}$$

y los valores observados para la característica de información auxiliar son

$$x = \{1005, 1072, 884, 907, 1068, 625, 705, 909, 692, 891, 1046, 1052\}$$

- Calcule la correlación entre y^2/x y x.
- \bullet Realice un gráfico de dispersión para y/x y explique si se puede afirmar que la razón es constante para los elementos de la población.
- Utilice el análisis de regresión simple para estimar el valor del intercepto y decida si este es estadísticamente diferente de cero.
- Para un tamaño de muestra m=6, utilice la expresión (4.2.13) y los anteriores argumentos para justificar o descalificar la escogencia del diseño de muestreo PPT para esta población.
- 4.15 Asumiendo que los datos del ejercicio 4.5 provienen de un diseño de muestreo PPT, calcule la estimación de Hansen-Hurwitz para el total de la característica de interés, reporte el coeficiente de variación estimado y un intervalo de confianza al 95 %. También calcule la estimación de Horvitz-Thompson para el total de la característica de interés.

Capítulo 5

Muestreo estratificado

La estratificación es una de las técnicas más difundidas y usadas en muestreo puesto que tiene funcionalidades estadísticas y administrativas que la hacen atractiva: permite tratar con subpoblaciones, aumenta la eficiencia de las estimaciones y contribuye a la administración eficiente de grandes encuestas.

Valliant, Dorfman & Royall (2000)

En algunas ocasiones, la característica de interés tiende a tomar distintos valores promedio con respecto a subgrupos poblacionales. De alguna manera, si la población tiene un comportamiento diferente en estos subgrupos, es posible mejorar la precisión de las estimaciones tomando muestras independientes en cada uno de los subgrupos poblacionales. Lo anterior es intuitivo cuando entre los subgrupos existe mucha variabilidad, pero dentro de ellos la variabilidad es constante.

En general, cuando existe en el marco de muestreo información auxiliar que permite la división de la población en H subgrupos con el objetivo de seleccionar una muestra en cada subgrupo, se dice que la estrategia de muestreo utiliza un diseño de muestreo estratificado y el nombre de los subgrupos, formados antes de la recolección de la información, se denomina estratos. Nótese la diferencia con los subgrupos poblacionales llamados dominios, en donde la partición de la población se realiza después de la recolección de la información.

Con frecuencia, tenemos información adicional que nos ayuda a diseñar la estrategia de muestreo. Cuando esta información se refiere a la pertenencia de cada uno de los elementos a un subgrupo, podemos aplicar una estrategia que utilice un diseño de muestreo estratificado. No es solamente la disponibilidad de esta información auxiliar la que nos lleva a utilizar un diseño de muestreo estratificado, además de esto:

- 1. La variable de interés asume distintos valores promedio en diferentes sub-poblaciones.
- 2. De una u otra forma (proceso logístico y/o de recolección de datos) es mejor estratificar y dividir la población en particiones. Lehtonen & Pahkinen (2003) afirman que algunas variables típicas de estratificación son de tipo regional (municipio, estado o provincia), demográfico (género o grupo de edad) y socioeconómico (grupo de ingresos). Existen censos, en periodos anteriores que pueden contener esta valiosa información.

La necesidad de estratificar¹ la población surge por una o más de las siguientes razones:

 $^{^{1}\}mathrm{Dividir}$ la población en H estratos disjuntos.

• Por razones administrativas. Existen marcos de muestreo que ya tienen dividida la población en subgrupos formados naturalmente.

- Se desea garantizar que la muestra seleccionada sea representativa con respecto al comportamiento de la población según la información auxiliar. Al seleccionar una muestra aleatoria simple de una población de personas, podría suceder que la muestra seleccionada no incluyera a ningún hombre
- Se requieren estimativos con alta precisión discriminados para cada sub-población. Aumentar el tamaño de muestra en los estratos menos representados.
- Menor Coste. Distintos esquemas operativos para diversos estratos. Encuestas por correo para empresas grandes. Menor tamaño de muestras en zonas de tolerancia o zonas de difícil manejo del orden público.
- Reducción de la varianza en la estimación. Personas de distintas edades con distintas presiones sanguíneas (estratificar por grupos de edad). Se reduce la varianza pues los estratos son homogéneos por dentro, pero heterogéneos entre sí.

El objetivo del diseño estratificado es dar un tratamiento particular a cada subgrupo, ya sea por razones económicas, administrativas o logísticas. Es indispensable delimitar bien los subgrupos en la etapa de diseño. Por ejemplo, en un estudio dentro de una universidad, si se quiere averiguar el número de horas que los estudiantes permanecen enfrente de un computador, no es una buena idea (defecto técnico) dividir la población en cursos porque los cursos no brindan una partición de la población, dado que en distintos cursos pueden estar los mismos estudiantes.

5.1 Fundamentos teóricos

Suponga que el marco de muestreo es tal que permite conocer la pertenencia de cada elemento de la población U en H sub-grupos poblacionales separados U_h (h = 1, 2, ..., H) también llamados estratos. Éstos se definen como grupos de elementos mutuamente excluyentes. Cada elemento puede pertenecer a uno y sólo a un estrato. De tal forma que

- $\bullet \ \bigcup_{h=1}^H U_h = U$
- $U_h \cap U_i = \emptyset$ $h \neq i$

Cada estrato U_h es de tamaño N_h , por tanto

$$\sum_{h=1}^{H} N_h = N \tag{5.1.1}$$

Con la población dividida en H estratos, el objetivo sigue siendo estimar los siguientes parámetros poblacionales

1. El total poblacional,

$$t_y = \sum_{k \in U} y_k = \sum_{h=1}^H \sum_{k \in U_h} y_k = \sum_{h=1}^H t_{yh}$$
 (5.1.2)

donde $t_{yh} = \sum_{k \in U_h} y_k$

5.1. Fundamentos teóricos

2. La media poblacional,

$$\bar{y} = \frac{\sum_{k \in U} y_k}{N} = \frac{1}{N} \sum_{h=1}^{H} \sum_{k \in U_h} y_k = \frac{1}{N} \sum_{h=1}^{H} N_h \bar{y}_h$$
 (5.1.3)

donde
$$\bar{y}_h = \frac{1}{N_h} \sum_{k \in U_h} y_k$$

Sampath (2001) afirma que dependiendo de la naturaleza de los estratos, diferentes estrategias de muestreo pueden ser utilizadas en diferentes estratos. De tal forma que, en ausencia de información auxiliar, se utilice una estrategia aleatoria simple en algunos estratos, mientras que para aquellos subgrupos tales que el marco de muestreo permita el conocimiento de información auxiliar continua, es posible aplicar una estrategia de muestreo proporcional al tamaño, e incluso para aquellos sub-grupos en los que, por obligación (logística o técnica), se deba aplicar un censo.

Es importante aclarar que la selección de las H muestras es realizada de manera independiente en cada estrato.² De tal forma que la muestra aleatoria S^3 queda definida por

$$S = \bigcup_{h=1}^{H} S_h. (5.1.4)$$

En particular, si la muestra seleccionada es s, entonces

$$s = \bigcup_{h=1}^{H} s_h. \tag{5.1.5}$$

Nótese que si el tamaño de muestra en cada estrato es igual a n_h , entonces el tamaño de la muestra seleccionada mediante un diseño de muestreo estratificado es

$$n = \sum_{h=1}^{H} n_h. (5.1.6)$$

Así, para cada estrato h h = 1, ..., H existe un conjunto de todas las posibles muestras denotado como soporte del estrato h, o Q_h . Cada uno de los soportes Q_h induce la definición del soporte general de la siguiente manera

$$Q^{H} = \sum_{h=1}^{H} Q_{h}.$$
 (5.1.7)

En donde \times denota el operador de producto cartesiano⁴. La cardinalidad de cada soporte Q_h depende del diseño de muestreo utilizado en la selección de la muestra del estrato h. Así

$$\#Q^H = \prod_{h=1}^H \#Q_h. \tag{5.1.8}$$

Por supuesto, el diseño de muestreo estratificado es un autentico diseño de muestreo como lo enuncian los siguientes resultados.

²Esto se debe a la independencia entre las selecciones. Aunque se conozcan qué unidades serán incluidas en la muestra de algún estrato, este conocimiento no afecta, de ninguna manera, la inclusión de cualquier otra unidad en los restantes estratos.

 $^{^3}$ Nótese que S es una variable aleatoria y que las medidas de probabilidad utilizadas para la selección de muestras en cada estrato son distintas.

⁴Por ejemplo, en presencia de dos conjunto $A = \{a, b\}$ y $B = \{1, 2\}$, entonces el producto cartesiano entre A y B es $A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$

Resultado 5.1.1. Siendo $p_1(s_1), p_2(s_2), \ldots, p_H(s_H)$ los diseños de muestreo utilizados en cada estrato $h = 1, \ldots, H$, entonces el diseño de muestreo estratificado se define como

$$p(s) = \prod_{h=1}^{H} p_h(s_h)$$
 (5.1.9)

Prueba. Se tiene que

$$p(s) = Pr(\text{Seleccionar } s_1 \text{ de } U_1, \dots, \text{Seleccionar } s_H \text{ de } U_H,)$$

= $p_1(s_1) \cdots p_H(s_H),$

puesto que el proceso de selección es independiente en cada estrato.

Resultado 5.1.2. El diseño de muestreo estratificado cumple que

- 1. $p(s) \ge 0$ para todo $s \in Q$
- 2. $\sum_{s \in Q} p(s) = 1$

Prueba. La primera propiedad se tiene de inmediato puesto que todas las expresiones en 5.1.9 son mayores o iguales a cero. La segunda propiedad se tiene por inducción matemática sobre el número de estratos.

• Si H=2 existen dos soporte, uno para cada estrato, Q_1 definido como

$$Q_1 = \{s_{11}, s_{12}, \dots, s_{1H_1}\} \tag{5.1.10}$$

y Q_2 definido como

$$Q_2 = \{s_{21}, s_{22}, \dots, s_{2H_2}\} \tag{5.1.11}$$

tales que

$$Q^{2} = \left\{ s_{11} \bigcup s_{21}, s_{11} \bigcup s_{22}, \dots, s_{11} \bigcup s_{2H_{2}}, \dots, s_{1H_{1}} \bigcup s_{2H_{2}} \right\}$$
 (5.1.12)

Ahora, como la selección de las muestras se realiza en forma independiente, en particular se tiene que

$$p\left(s_{11} \bigcup s_{21}\right) = p(s_{11})p(s_{21}) \tag{5.1.13}$$

de manera análoga para el elemento que pertenezca al soporte. Ahora,

$$\sum_{s \in Q} p(s) = p(s_{11})p(s_{21}) + p(s_{11})p(s_{22}) + \dots + p(s_{11})p(s_{2H_2}) + \dots + p(s_{1H_1})p(s_{21}) + p(s_{1H_1})p(s_{22}) + \dots + p(s_{1H_1})p(s_{2H_2})$$

$$= p(s_{11})[\underbrace{p(s_{21}) + p(s_{22}) + \dots + p(s_{2H_2})}_{1}] + \dots + p(s_{1H_1})[\underbrace{p(s_{21}) + p(s_{22}) + \dots + p(s_{2H_2})}_{1}]$$

$$= p(s_{11}) + \dots + p(s_{1H_1})$$

$$= 1$$

5.1. Fundamentos teóricos

• Si H = k, se supone que

$$\sum_{s \in Q^k} p(s) = 1 \tag{5.1.14}$$

donde

$$Q^k = \left\{ \bigcup_{h=1}^k s_h \mid s_h \in Q_h \right\}. \tag{5.1.15}$$

• Si H = k + 1, se tienen k + 1 soportes tales que

$$Q_{1} = \{s_{11}, s_{12}, \dots, s_{1H_{1}}\}$$

$$\vdots$$

$$Q_{k} = \{s_{k1}, s_{k2}, \dots, s_{kH_{k}}\}$$

$$Q_{k+1} = \{s_{k+1,1}, s_{k+1,2}, \dots, s_{k+1,H_{k+1}}\}$$

$$(5.1.16)$$

Por consiguiente se tiene que

$$\sum_{s \in Q} p(s) = p(s_{k+1,1}) \left[\sum_{s \in Q^k} p(s) \right] + \dots + p(s_{k+1,1}H_{k+1}) \left[\sum_{s \in Q^k} p(s) \right]$$

$$= p(s_{k+1,1}) + \dots + p(s_{k+1,H_{k+1}})$$

$$= 1$$

5.1.1 Estimación en el muestreo estratificado

Si uno de los propósitos de la estratificación es obtener estimaciones más precisas, cabe preguntarse qué forma toman los estimadores y cómo definirlos a través de los estratos; pero aun más ¿qué forma toma la varianza del estimador en los estratos y su varianza estimada?. Los siguientes resultados, responden a los anteriores cuestionamientos.

Resultado 5.1.3. Si \hat{t}_{yh} estima insesgadamente el total de la característica de interés t_{yh} del subgrupo poblacional h con varianza igual a $Var(\hat{t}_{yh})$, entonces un estimador insesgado para el total poblacional t_y está dado por

$$\hat{t}_y = \sum_{h=1}^{H} \hat{t}_{yh} \tag{5.1.17}$$

el cual tiene una varianza igual a

$$Var(\hat{t}_y) = \sum_{h=1}^{H} Var(\hat{t}_{yh})$$
 (5.1.18)

 $\boldsymbol{Prueba.}$ Dado que \hat{t}_{yh} es insesgado, tenemos que

$$E\left(\sum_{h=1}^{H} \hat{t}_{yh}\right) = \sum_{h=1}^{H} E\left(\hat{t}_{yh}\right)$$
$$= \sum_{h=1}^{H} t_{yh} = t_{y}$$

Por otro lado, acudiendo a la independencia de la selección de muestras en cada estrato

$$Var\left(\sum_{h=1}^{H} \hat{t}_{yh}\right) = \sum_{h=1}^{H} Var\left(\hat{t}_{yh}\right) + \sum_{h=1}^{H} \sum_{i=1}^{H} \underbrace{Cov\left(\hat{t}_{yh}, \hat{t}_{yi}\right)}_{0}$$
$$= \sum_{h=1}^{H} Var(\hat{t}_{yh})$$

Resultado 5.1.4. Si $\widehat{Var}(\hat{t}_{yh})$ estima insesgadamente a $Var(\hat{t}_{yh})$, entonces un estimador insesgado para $Var(\hat{t}_{y})$ está dado por

$$\widehat{Var}(\widehat{t}_y) = \sum_{h=1}^{H} \widehat{Var}(\widehat{t}_{yh})$$
(5.1.19)

Prueba. La demostración es inmediata por el insesgamiento en cada uno de los estratos.

5.1.2 El estimador de Horvitz-Thompson

Resultado 5.1.5. Para el diseño de muestreo estratificado, el estimador de Horvitz-Thompson, su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,\pi} = \sum_{h=1}^{H} \hat{t}_{yh,\pi} \tag{5.1.20}$$

$$Var_{EST}(\hat{t}_{y,\pi}) = \sum_{h=1}^{H} Var_{p_h}(\hat{t}_{yh,\pi})$$
 (5.1.21)

$$\widehat{Var}_{EST}(\hat{t}_{y,\pi}) = \sum_{h=1}^{H} \widehat{Var}_{p_h}(\hat{t}_{yh,\pi})$$
(5.1.22)

donde

$$\hat{t}_{yh,\pi} = \sum_{k \in S_h} \frac{y_k}{\pi_k} \tag{5.1.23}$$

Con $Var_{p_e}(\hat{t}_{yh,\pi})$ es la varianza de $\hat{t}_{yh,\pi}$ en el h-ésimo estrato y $\widehat{Var}_{p_h}(\hat{t}_{yh,\pi})$ es la estimación de $Var_{p_h}(\hat{t}_{yh,\pi})$ en el h-ésimo estrato.

Ejemplo 5.1.1. Nuestra población ejemplo U dada por

$$U = \{ Yves, Ken, Erik, Sharon, Leslie \}$$

se divide en dos estratos de la siguiente forma

$$U_1 = \{ Erik, Sharon \}$$

y el segundo conformado por:

$$U_2 = \{ Yves, Ken, Leslie. \}$$

En el primer estrato se selecciona una muestra aleatoria de tamaño $n_1 = 1$ de acuerdo a un diseño de muestreo aleatorio simple sin reemplazo. Por otra parte, en el segundo estrato se selecciona una muestra de tamaño $n_2 = 2$ de acuerdo al siguiente diseño de muestreo

$$p_2(s) = \begin{cases} 1/4, & \text{si } s = \{\mathbf{Yves, Ken}\}, \\ 1/4, & \text{si } s = \{\mathbf{Yves, Leslie}\}, \\ 1/2, & \text{si } s = \{\mathbf{Ken, Leslie}\}. \end{cases}$$

Realice el cálculo léxico-gráfico para comprobar el insesgamiento del estimador de Horvitz-Thompson para todas las posibles muestras de tamaño n=3. Defina los soporte Q_1 y Q_2 así como el soporte general Q^2 para cada estrato.

En las próximas secciones se estudiarán los diseños estratificados más utilizados en la práctica.

5.2 Diseño de muestreo aleatorio estratificado

Al igual que el muestreo aleatorio simple sin reemplazo, el diseño de muestreo aleatorio estratificado (EST-MAS) es el más sencillo de los diseños estratificados. En este caso particular se selecciona una muestra aleatoria simple en cada estrato, de tal forma que las selecciones sean independientes. Este diseño de muestreo es utilizado cuando la variabilidad de la característica de interés dentro de los estratos es similar; en otras palabras, cuando se sabe que el comportamiento de la característica de interés al interior de los estratos es homogéneo. Sin embargo, también se utiliza cuando no se dispone de ninguna información auxiliar continua que permita hacer uso de diseños de muestreo, en cada estrato, que permitan mejorar la eficiencia de una muestra aleatoria simple.

En cada estrato h una muestra aleatoria simple sin reemplazo de tamaño n_h es seleccionada, de manera independiente, de la población del estrato de tamaño N_h . Aunque el diseño de muestreo aleatorio simple es utilizado como un método final de selección de elemento, en conjunto el diseño estratificado puede resultar dramáticamente más eficiente que utilizar un diseño de muestreo aleatorio simple sin dividir la población.

Definición 5.2.1. Para tamaños de muestra fijos en cada estrato, denotados como n_1, \ldots, n_H , un diseño de muestreo se dice estratificado aleatorio simple sin reemplazo si la probabilidad de seleccionar una muestra de tamaño n está dada por

$$p(s) = \begin{cases} \prod_{h=1}^{H} \frac{1}{\binom{N_h}{n_h}}, & \text{si } \sum_{h=1}^{H} n_h = n\\ 0, & \text{en otro caso} \end{cases}$$
 (5.2.1)

Nótese que $\sum_{s \in Q^H} p(s) = 1$ porque $\#Q^H = \prod_{h=1}^H \binom{N_h}{n_h}$.

5.2.1 Algoritmos de selección

En la selección de las muestras aleatorias simples sin reemplazo en cada estrato es posible utilizar los algoritmos de muestreo dados en el capítulo 3, de tal forma que los siguientes pasos se deben realizar.

Separar la población en H subgrupos o estratos mediante la caracterización poblacional de información auxiliar.

• En cada estrato seleccionar una muestra aleatoria simple sin reemplazo. Los algoritmos utilizados en la selección de la muestra dentro de cada estrato pueden ser los métodos coordinado negativo o el método de selección y rechazo de Fan, Muller & Rezucha (1962).

 \bullet Cada una de las H selecciones es realizada de manera independiente

Ejemplo 5.2.1. Suponga que nuestra población de ejemplo U está particionada de acuerdo a la sección anterior. Es necesario definir los dos estratos en R, de manera tal que ningún elemento tenga una doble pertenencia a algún estrato.

```
U1 <- c("Erik", "Sharon")
N1 <- length(U1)
U2 <- c("Yves", "Ken", "Leslie")
N2 <- length(U2)</pre>
```

R permite realizar operaciones entre conjuntos de datos. En particular, el operador union es utilizado para verificar que la unión de los estratos dé como resultado la población de ejemplo U. Nótese que el tamaño poblacional es la suma de los tamaños de los dos estratos.

```
U <- union(U1,U2)
N <- N1+N2

U
## [1] "Erik" "Sharon" "Yves" "Ken" "Leslie"

N
## [1] 5</pre>
```

Se ha decidido seleccionar una muestra aleatoria simple sin reemplazo de tamaño $n_1 = 1$ para U_1 y una muestra aleatoria simple sin reemplazo de tamaño $n_2 = 2$ para U_2 . De tal forma que la muestra general será de tamaño $n = n_1 + n_2 = 3$.

```
sam1 <- sample(N1, 1, replace=FALSE)
U1[sam1]

## [1] "Sharon"

sam2 <- S.SI(N2,2)
U2[sam2]

## [1] "Ken" "Leslie"

sam <- union(U1[sam1],U2[sam2])
sam

## [1] "Sharon" "Ken" "Leslie"</pre>
```

Por supuesto, es posible utilizar la función sample que viene incorporada en el ambiente genérico de R o también es posible utilizar la función la función S.SI del paquete TeachingSampling. Sin importar

el algoritmo de selección de las muestras aleatorias simples sin reemplazo, es importante notar que se han seleccionado tantas muestras como estratos existen en la población.

5.2.2 El estimador de Horvitz-Thompson

La estrategia de muestreo queda definida con el uso del estimador de Horvitz-Thompson. Esta estrategia es la más conocida, aplicada y discutida en los libros de texto. Para esto, el siguiente resultado muestra la construcción de las probabilidades de inclusión.

Resultado 5.2.1. Para un diseño de muestreo aleatorio estratificado, las probabilidades de inclusión de primer y segundo orden están dadas por:

$$\pi_k = \frac{n_h}{N_h} \quad \text{si } k \in U_h \tag{5.2.2}$$

$$\pi_{kl} = \begin{cases} \frac{n_h}{N_h}, & \text{si } k = l, k \in U_h, \\ \frac{n_h}{N_h} \frac{n_h - 1}{N_h - 1}, & \text{si } k, l \in U_h, \\ \frac{n_h}{N_h} \frac{n_i}{N_i}, & \text{si } k \in U_h, l \in U_i, i \neq h. \end{cases}$$

$$(5.2.3)$$

respectivamente. La covarianza de las variables indicadoras está dada por

$$\Delta_{kl} = \begin{cases} \frac{n_h}{N_h} \frac{N_h - n_h}{N_h}, & \text{si } k = l, k \in U_h, \\ -\frac{n_h}{N_h^2} \frac{(N_h - n_h)}{(N_h - 1)}, & \text{si } k, l \in U_h, \\ 0, & \text{si } k \in U_h, l \in U_i, i \neq h. \end{cases}$$
(5.2.4)

Prueba. Sea $k \in U_h$

$$\begin{split} \pi_k &= Pr(k \in S) = Pr(k \in S_h) \\ &= Pr(I_k(S_h) = 1) \\ &= \frac{\binom{1}{1}\binom{N_h - 1}{n_h - 1}}{\binom{N_h}{n_h}} = \frac{n_h}{N_h} \end{split}$$

por otro lado, si $k, l \in U_h$

$$\begin{split} \pi_{kl} &= Pr(k \in S_h \text{ y } l \in S_h) \\ &= Pr(I_k(S_h) = 1 | I_l(S_h) = 1) Pr(I_l(S_h) = 1) \\ &= \frac{n_h - 1}{N_h - 1} \frac{n_h}{N_h} = \frac{n_h}{N_h} \frac{n_h - 1}{N_h - 1} \end{split}$$

Pero, si $k \in U_h$, $l \in U_i$, $i \neq h$, por la selección independiente en los estrato h e i, se tiene que

$$\pi_{kl} = Pr(k \in S_h \text{ y } l \in S_i)$$

$$= Pr(k \in S_h)Pr(l \in S_i)$$

$$= \frac{n_h}{N_h} \frac{n_i}{N_i}$$

Una de las razones por las que se utiliza el diseño de muestreo estratificado es porque se desean estimativos de gran precisión en lo subgrupos. Siendo así, al aplicar un diseño EST-MAS se tiene el siguiente resultado que permite obtener estimaciones insesgadas y precisas para cada subgrupo poblacional.

Resultado 5.2.2. Bajo un diseño de muestreo aleatorio simple sin reemplazo en el estrato h, un estimador insesgado del total t_{uh} , su varianza y su varianza estimada están dados por

$$\hat{t}_{yh,\pi} = \frac{N_h}{n_h} \sum_{k \in S_h} y_k \tag{5.2.5}$$

$$Var_{MAS}(\hat{t}_{yh,\pi}) = \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{y_{U_h}}^2$$
 (5.2.6)

$$\widehat{Var}_{MAS}(\hat{t}_{yh,\pi}) = \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{y_{S_h}}^2$$
 (5.2.7)

respectivamente. En donde

$$S_{yU_h}^2 = \frac{1}{N_h - 1} \sum_{k \in U_h} (y_k - \bar{y}_{U_h}), \qquad h = 1, \dots, H.$$
 (5.2.8)

la varianza poblacional de la característica de interés en el estrato U_h y con

$$S_{y_{S_h}}^2 = \frac{1}{n_h - 1} \sum_{k \in S_h} (y_k - \bar{y}_{S_h}), \qquad h = 1, \dots, H.$$
 (5.2.9)

la varianza muestral de los valores de la característica de interés en la muestra aleatoria del estrato S_h . Nótese que $\hat{t}_{yh,\pi}$ es insesgado para el total t_{yh} de la característica de interés y, y que $\widehat{Var}_{MAS}(\hat{t}_{yh,\pi})$ es insesgado para $Var_{MAS}(\hat{t}_{yh,\pi})$

Prueba. Al notar que el subgrupo U_h puede ser tratado como una población separada, la demostración es inmediata al seguir los lineamentos de la demostración del resultado 3.2.4.

Una vez se tienen las estimaciones para los subgrupos poblacionales o estratos, se sigue que el total poblacional t_y puede ser estimado usando el siguiente resultado.

Resultado 5.2.3. Para un diseño de muestreo aleatorio estratificado, el estimador de Horvitz-Thompson del total poblacional t_y , su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,\pi} = \sum_{h=1}^{H} \hat{t}_{yh,\pi} = \sum_{h=1}^{H} \frac{N_h}{n_h} \sum_{k \in S_h} y_k$$
 (5.2.10)

$$Var_{MAE}(\hat{t}_{y,\pi}) = \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{yU_h}^2$$
 (5.2.11)

$$\widehat{Var}_{MAE}(\hat{t}_{y,\pi}) = \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{ys_h}^2$$
 (5.2.12)

respectivamente. Nótese que $\hat{t}_{y,\pi}$ es insesgado para el total t_y de la característica de interés y, y que $\widehat{Var}_{MES}(\hat{t}_{y,\pi})$ es insesgado para $Var_{MAE}(\hat{t}_{y,\pi})$.

Prueba. Dado que $\hat{t}_{yh,\pi}$ estima insesgadamente el total t_{yh} del subgrupo poblacional h con varianza dada por $\frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h}\right) S_{yU_h}^2$, entonces al utilizar los resultados 5.1.3. y 5.1.4 se tiene de manera inmediata la demostración.

Ejemplo 5.2.2. Para nuestra población de ejemplo U, existen $\binom{3}{2}\binom{2}{1}=6$ posibles muestras de tamaño n=3. Realice el cálculo léxico-gráfico del estimador de Horvitz-Thompson y compruebe el insesgamiento y la varianza.

5.2.3 Estimación de la media poblacional

Una de las formas de conocer si existen diferencias con respecto a los valores que toma la característica de interés en los diferentes estratos, es estimar la media \bar{y}_{Uh} en el subgrupo U_h . De hecho, el diseño estratificado adquiere más validez y ganancia en precisión cuando el comportamiento promedio de la característica de interés es diferente en cada estrato.

Resultado 5.2.4. Bajo un diseño de muestreo aleatorio simple sin reemplazo en el estrato h, un estimador insesgado de la media \bar{y}_{Uh} , su varianza y su varianza estimada están dados por

$$\hat{y}_{Uh,\pi} = \frac{1}{n_h} \sum_{k \in S_h} y_k \tag{5.2.13}$$

$$Var_{MAS}(\hat{\bar{y}}_{Uh,\pi}) = \frac{1}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{yU_h}^2$$
 (5.2.14)

$$\widehat{Var}_{MAS}(\hat{\bar{y}}_{Uh,\pi}) = \frac{1}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{ys_h}^2$$
 (5.2.15)

respectivamente. Nótese que $\hat{y}_{Uh,\pi}$ es insesgado para la media del estrato \bar{y}_{Uh} de la característica de interés y, y que $\widehat{Var}_{MAS}(\hat{y}_{Uh,\pi})$ es insesgado para $Var_{MAS}(\hat{y}_{Uh,\pi})$.

Por el contrario del razonamiento que se tuvo en la estimación del total poblacional, **es equivocado** pensar de la siguiente manera:

Si un estimador insesgado del total poblacional t_y es la suma de cada una de las estimaciones en los H estratos, entonces un estimador del promedio poblacional \bar{y}_U será un promedio de los promedios estimados en los H estratos.

El anterior razonamiento es intuitivo pero es errado la siguiente razón:

$$\bar{y}_U \neq \frac{\bar{y}_{U_1} + \bar{y}_{U_2} + \ldots + \bar{y}_{U_H}}{H}$$

Es fácil verlo con nuestra población de ejemplo U en donde el primer estrato U_1 tiene una media igual a $\bar{y}_{U_1} = 67.5$, el segundo estrato U_2 tiene una media igual a $\bar{y}_{U_2} = 33.67$. Por tanto $(\bar{y}_{U_1} + \bar{y}_{U_2})/2 = 50.58$ mientras que la verdadera media poblacional es $\bar{y}_U = 47.2$.

Resultado 5.2.5. Bajo un diseño de muestreo aleatorio simple sin reemplazo en el estrato h, un estimador insesgado de la media \bar{y}_U , su varianza y su varianza estimada están dados por

$$\hat{\bar{y}}_{U,\pi} = \frac{1}{N} \hat{t}_{y,\pi} = \frac{1}{N} \sum_{h=1}^{H} N_h \hat{\bar{y}}_{Uh,\pi}$$
 (5.2.16)

$$Var_{MAE}(\hat{y}_{U,\pi}) = \frac{Var_{MAE}(\hat{t}_{y,\pi})}{N^2} = \frac{1}{N^2} \sum_{h=1}^{H} \frac{N_h}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{yU_h}^2$$
 (5.2.17)

$$\widehat{Var}_{MAE}(\hat{\bar{y}}_{U,\pi}) = \frac{\widehat{Var}_{MAE}(\hat{t}_{y,\pi})}{N^2} = \frac{1}{N^2} \sum_{h=1}^{H} \frac{N_h}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{ys_h}^2$$
 (5.2.18)

respectivamente. Nótese que $\hat{y}_{U,\pi}$ es insesgado para la media poblacional \bar{y}_{Uh} de la característica de interés y, y que $\widehat{Var}_{MAS}(\hat{y}_{U,\pi})$ es insesgado para $Var_{MAE}(\hat{y}_{U,\pi})$.

Intervalos de confianza

Al respecto Lohr (2000) afirma que un intervalo de $100(1-\alpha)$ % de confianza para la media de una población está dado por

$$\hat{\bar{y}}_{U,\pi} \pm Z_{1-\frac{\alpha}{2}} \sqrt{Var_{MAE}(\hat{\bar{y}}_{U,\pi})}$$
 (5.2.19)

si se cumple algunas de las siguientes condiciones

- El tamaño de muestra n_h en cada estrato h es grande.
- Existe una gran número de estratos.

Si las anteriores condiciones no pueden ser satisfechas, se prefiere utilizar el percentil de una distribución t-student con N-H grados de libertad. Así, un intervalo de confianza para la media poblacional está dado por

$$\hat{\bar{y}}_{U,\pi} \pm t_{1-\frac{\alpha}{2},N-H} \sqrt{Var_{MAE}(\hat{\bar{y}}_{U,\pi})}$$
 (5.2.20)

5.2.4 Asignación del tamaño de muestra

Tal vez, la parte más importante en el diseño de una encuesta es la determinación del tamaño de muestra. En muestreo estratificado, bajo la restricción de que el tamaño de la muestra general es n y de la existencia de H estratos fijos, se quiere determinar los tamaños de muestra n_h para cada estrato h de tal manera que se garantice la ganancia de precisión del estimador. Lehtonen & Pahkinen (2003) señalan que en investigaciones por muestreo reales, las cuales incluyen varias características de interés, es imposible lograr que la asignación de la muestra arroje ganancias en la eficiencia de manera global (para cada una de las características de interés).

Asignación proporcional

Se decide utilizar este tipo de asignación cuando la muestra debe ser representativa de la población de acuerdo al comportamiento de la información auxiliar. Lohr (2000) lo expresa de la siguiente manera

Al utilizar la asignación proporcional, la muestra se puede ver como una versión miniatura de la población.

Si se define la **fracción de muestreo** como $f_h = n_h/N_h$ en el estrato h, entonces al utilizar la asignación proporcional la fracción de muestreo será la misma para todos los estratos, tal que $f_h = f$. Nótese que la probabilidad de inclusión de cualquier elemento en la población $\pi_k = f_h = f$ es constante y fija. De esta manera, cada unidad en la muestra representará el mismo número de elementos en la población, independientemente del estrato al que pertenezca.

Definición 5.2.2. Un diseño de muestreo aleatorio estratificado tiene asignación proporcional si

$$\frac{n_h}{N_h} = \frac{n}{N} \qquad h = 1, \dots, H$$
(5.2.21)

Resultado 5.2.6. Para un diseño de muestreo aleatorio estratificado con asignación proporcional, el estimador de Horvitz-Thompson del total poblacional t_y , su varianza y su varianza estimada están dados por:

$$\hat{t}_{y,\pi} = \frac{N}{n} \sum_{k \in S} y_k \tag{5.2.22}$$

$$Var_{MAE}(\hat{t}_{y,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) \sum_{h=1}^{H} \frac{n_h}{n} S_{yU_h}^2$$
 (5.2.23)

$$\widehat{Var}_{MAE}(\hat{t}_{y,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) \sum_{h=1}^{H} \frac{n_h}{n} S_{ys_h}^2$$
 (5.2.24)

Prueba. Observando la relación de la definición anterior se tiene que

$$\hat{t}_{y,\pi} = \sum_{h=1}^{H} \frac{N_h}{n_h} \sum_{k \in S_h} y_k$$
$$= \frac{N}{n} \sum_{h=1}^{H} \sum_{k \in S_h} y_k$$
$$= \frac{N}{n} \sum_{k \in S} y_k$$

Para las varianzas se tiene que

$$\begin{split} \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{yU_h}^2 &= \sum_{h=1}^{H} \frac{N_h^2}{n_h^2} \left(1 - \frac{n_h}{N_h} \right) n_h S_{yU_h}^2 \\ &= \frac{N^2}{n^2} \left(1 - \frac{n}{N} \right) \sum_{h=1}^{H} n_h S_{yU_h}^2 = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) \sum_{h=1}^{H} \frac{n_h}{n} S_{yU_h}^2 \end{split}$$

Asignación de Neyman

Jerzy Neyman en su artículo de 1934, discutía el problema de la selección de una muestra mediante métodos probabilísticos versus la selección de una muestra a conveniencia. En ese artículo, él observa las grandes bondades de los dos métodos. Sin embargo, mostró que separando la población en subgrupos poblacionales que llamó estratos y tomando muestras aleatorias simples sin reemplazo, los límites del intervalo de confianza podían ser minimizados para un tamaño de muestra fijo. Este artículo fue fundamental en el uso del muestreo estratificado alrededor del mundo.

Neyman trató con el problema de minimizar la varianza $Var_{MAE}(\hat{t}_{y,\pi})$ del estimador de Horvitz-Thompson fijando el tamaño de muestra general n. Como lo mencionan Groves, Fowler, Couper, Lepkowski, Singer & R. (2004), bajo este método se producen las menores varianzas para la media muestral comparado con otras técnicas de asignación de tamaño de muestra. Para realizar esta asignación es necesario conocer los tamaños de muestra en cada estrato n_h tal que $\sum_{h=1}^{H} n_h = n$.

Resultado 5.2.7. Bajo la asignación de Neyman, el tamaño de muestra que minimiza (5.2.11) está dado por

$$n_h = n \frac{N_h S_{yU_h}}{\sum_{h=1}^{H} N_h S_{yU_h}}$$
 (5.2.25)

donde $S_{yU_h} = \sqrt{S_{yU_h}^2}$

Prueba. La cantidad a minimizar es

$$\sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{yU_h}^2$$

sujeta a

$$\sum_{h=1}^{H} n_h = n$$

La ecuación de Lagrange se escribe como

$$\mathcal{L}(n_1, \dots, n_h, \lambda) = \sum_{h=1}^H \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{yU_h}^2 - \lambda \left(n - \sum_{h=1}^H n_h \right)$$
 (5.2.26)

al anular las derivadas parciales se tiene

$$\frac{\partial \mathcal{L}}{\partial \lambda} = n - \sum_{h=1}^{H} n_h = 0 \tag{5.2.27}$$

$$\frac{\partial \mathcal{L}}{\partial n_h} = -\frac{N_h^2}{n_h^2} S_{yU_h}^2 + \lambda = 0 \tag{5.2.28}$$

De (5.2.28) se tiene que

$$n_h = \frac{N_h}{\sqrt{\lambda}} S_{yU_h} \tag{5.2.29}$$

Reemplazando en (5.2.27)

$$\sum_{h=1}^{H} n_h = n = \frac{\sum_{h=1}^{H} N_h S_{yU_h}}{\sqrt{\lambda}}$$

Por tanto,

$$\sqrt{\lambda} = \frac{1}{n} \sum_{h=1}^{H} N_h S_{yU_h}$$
 (5.2.30)

Por último, reemplazando en (5.2.29) se tiene que

$$n_h = n \frac{N_h S_{yU_h}}{\sum_{h=1}^H N_h S_{yU_h}}$$

Es posible mostrar que la matriz de segundas derivadas parciales es definida positiva para los valores que satisfacen las restricciones. Así se concluye que lo valores de n_h dados por este resultado minimizan la varianza del estimador de Horvitz-Thompson bajo un tamaño de muestra fijo.

Por supuesto, es necesario conocer las varianzas de la característica de interés en cada estrato para poder utilizar este método. Con respecto a la asignación de Neyman se tienen problemas de redondeo, en este caso es recomendable redondear al entero más próximo. Sin embargo, la expresión (5.2.25) puede llevar a la situación en donde $n_h > N_h$. En este caso, se realiza un censo en el estrato en donde la anterior relación se presente y luego se restablece el cálculo de n_h para los demás estratos. Cuando se realiza un censo en un estrato, debido a la asignación de Neyman, o al diseño logístico de la encuesta, ese estrato es llamado **estrato de inclusión forzosa**.

Aunque utilizar este método puede guiar a ganancias en la eficiencia de la estrategia de muestreo, Groves, Fowler, Couper, Lepkowski, Singer & R. (2004) señalan las siguientes debilidades de la asignación de Neyman:

- Al estimar proporciones no se tienen buenos resultados. Dado a que se requiere que las proporciones tengan grandes diferencia entre los estratos. En la vida práctica esta situación no se tiene en la mayoría de ocasiones.
- Por construcción, este método funciona bien bajo el supuesto de que sólo existe una característica de interés. Cuando se tiene trabaja en encuesta multi-propósito no se tiene una reducción de varianza para todas las características de interés incluidas en la investigación.

Asignación óptima

Este es un método más general que la asignación de Neyman. Si al interior de algún estrato, existe una gran variabilidad, el anterior método de asignación induce un mayor tamaño de muestra en el estrato. Como lo expresa Lohr (2000) en el sector empresarial, por ejemplo, las ventas de las compañías grandes tienen un mucho mayor dispersión que las ventas de las micro-empresas.

Sin embargo si, como en la mayoría de situaciones prácticas, se cuenta con recursos económicos limitados para la realización del estudio. Y dado un capital, se quiere minimizar la varianza de la estrategia de muestreo, se debe realizar otro tipo de asignación. Por lo tanto definiendo la siguiente función de costos

$$C = \sum_{h=1}^{H} n_h C_h \tag{5.2.31}$$

En donde C_h es el costo de obtener la información para las características de interés de un elemento seleccionado y perteneciente al estrato h y C es el costo total de la realización del estudio. Luego, si se quiere distribuir la selección de elemento entre los estratos dado un costo fijo C, de manera que se minimice la varianza del estimador de Horvitz-Thompson, se debe utilizar la asignación óptima.

Resultado 5.2.8. Bajo la asignación óptima, el tamaño de muestra que minimiza la función de coste está dado por

$$n_h = \frac{C}{\sqrt{c_h}} \frac{N_h S_{yU_h}}{\sum_{i=1}^H N_i \sqrt{c_i} S_{yU_i}}$$
 (5.2.32)

Prueba. Resulta inmediata al utilizar un razonamiento similar a la demostración del resultado de la asignación de Neyman. Es posible mostrar que la matriz de segundas derivadas parciales es definida positiva para los valores que satisfacen las restricciones. Así se concluye que lo valores de n_h dados por este resultado minimizan la varianza del estimador de Horvitz-Thompson bajo un coste fijo.

La expresión de la asignación óptima lleva a las siguientes conclusiones. En un determinado estrato, se debe seleccionar una muestra de tamaño grande sí:

ullet El tamaño del estrato N_h es grande y la recolección de la información en el estrato es más barata.

• El estrato tiene una gran dispersión con respecto a la característica de estudio. En este caso, se extrae una muestra más grande para compensar la heterogeneidad dentro del estrato.

5.2.5 Estimación en dominios

La estimación por dominios se caracteriza por el desconocimiento de la pertenencia de las unidades poblacionales al dominio. Es decir, para conocer cuáles unidades de la población pertenecen al dominio, es necesario realizar el proceso de medición. Sin embargo, existe un símil entre los estratos y los dominios y es que los dos dividen la población en subgrupos poblacionales. Por un lado, mientras que el conocimiento a priori de la pertenencia de los elementos poblacionales a los estratos ayuda a mejorar la eficiencia de la estimación en la etapa de diseño de la encuesta. Por otro lado, el precio que se debe pagar por el desconocimiento de la pertenencia de los elementos poblacionales a los dominios resulta alto.

Uno de los propósitos del diseño de muestreo estratificado es reducir la varianza de las estimaciones para la característica de interés. Esto se cumple en el caso en donde el comportamiento de la característica de interés (como se verá en las próximas secciones) toma valores promedio distintos en cada estrato. Sin embargo, en la estimación de proporciones para dominios no se garantiza que la anterior regal se cumpla.

Ahora, al multiplicar la variable de pertenencia al dominio z_{dk} dada por (3.2.22) por el valor de la característica de interés y_k , se crea una nueva variable y_{dk} dada por $y_{dk} = z_{dk}y_k$, y una vez construida se utilizan los principios del estimador de Horvitz-Thompson para hallar un estimador insesgado del total de la característica de interés en el dominio U_d , el tamaño absoluto del dominio y la media de la característica en el dominio. Por supuesto, antes de obtener las estimaciones a nivel poblacional, es necesario aunque no suficiente, obtener las estimaciones de los dominios en los estratos.

Estimación del total en un dominio

Resultado 5.2.9. Bajo muestreo aleatorio estratificado, el estimador de Horvitz-Thompson para el total del dominio t_{yhd} en el estrato h, su varianza y su varianza estimada están dados por

$$\hat{t}_{yhd,\pi} = \frac{N_h}{n_h} \sum_{S_h} y_{hdk}$$
 (5.2.33)

$$Var(\hat{t}_{yhd,\pi}) = \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{y_{dU_h}}^2$$
 (5.2.34)

$$\widehat{Var}(\hat{t}_{yhd,\pi}) = \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{y_{ds_h}}^2$$
 (5.2.35)

respectivamente. y_{hdk} es el valor de la nueva característica y_{dk} en el h-ésimo estrato. $S_{y_{dU_h}}^2$ y $S_{y_{ds_h}}^2$ denotan el estimador de la varianza de los valores de la característica de interés y_{dk} en el estrato U_h y en la muestra s_h seleccionada de dicho estrato, respectivamente.

Resultado 5.2.10. Bajo muestreo aleatorio estratificado, el estimador de Horvitz-Thompson para el total del dominio t_{ud} en la población, su varianza y su varianza estimada están dados por

$$\hat{t}_{yd,\pi} = \sum_{h=1}^{H} \frac{N_h}{n_h} \sum_{S_h} y_{hdk}$$
 (5.2.36)

$$Var(\hat{t}_{yd,\pi}) = \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{y_{dU_h}}^2$$
 (5.2.37)

$$\widehat{Var}(\widehat{t}_{yd,\pi}) = \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{y_{ds_h}}^2$$
 (5.2.38)

Nótese que en la expresión $S^2_{y_{dU_h}}$ los valores que intervienen son: los de la característica de interés, si el elemento pertenece al dominio, y ceros si el elemento no pertenece al dominio, lo mismo sucede con $S^2_{y_{ds_h}}$. Por tanto, las anteriores expresiones de varianza van a tomar valores grandes por la inclusión de los ceros; éste es el precio que se debe pagar por el desconocimiento de la pertenencia de los elementos a los dominios.

Estimación de la media de un dominio

Resultado 5.2.11. Bajo muestreo aleatorio estratificado, el estimador de Horvitz-Thompson para la media de la característica de interés en un dominio \bar{y}_{dU_h} en el estrato h, su varianza y su varianza estimada están dados por

$$\hat{\bar{y}}_{dU_h,\pi} = \frac{\hat{t}_{yhd,\pi}}{N_{hd}} \tag{5.2.39}$$

$$Var(\hat{\bar{y}}_{dU_h,\pi}) = \frac{1}{N_{hd}^2} Var(\hat{t}_{yhd,\pi})$$
 (5.2.40)

$$\widehat{Var}(\widehat{y}_{dU_h,\pi}) = \frac{1}{N_{hd}^2} \widehat{Var}(\widehat{t}_{yhd,\pi})$$
(5.2.41)

Resultado 5.2.12. Bajo muestreo aleatorio estratificado, el estimador de Horvitz-Thompson para la media de la característica de interés en un dominio \bar{y}_d en la población, su varianza y su varianza estimada están dados por

$$\hat{\bar{y}}_{d,\pi} = \frac{\hat{t}_{yd,\pi}}{N_d} \tag{5.2.42}$$

$$Var(\hat{y}_{d,\pi}) = \frac{1}{N_d^2} Var(\hat{t}_{yd,\pi})$$
 (5.2.43)

$$\widehat{Var}(\widehat{y}_{d,\pi}) = \frac{1}{N_d^2} \widehat{Var}(\widehat{t}_{yd,\pi})$$
(5.2.44)

Para poder utilizar los anteriores resultados, es necesario conocer de antemano el valor del tamaño absoluto del dominio en cada estrato N_{hd} y el valor del tamaño absoluto del dominio en la población N_d .

Estimación del tamaño absoluto de un dominio

Resultado 5.2.13. Bajo muestreo aleatorio estratificado, el estimador de Horvitz-Thompson para el tamaño absoluto de un dominio N_{hd} en el estrato h, su varianza y su varianza estimada están dados por

$$\hat{N}_{hd,\pi} = \frac{N_h}{n_h} \sum_{S_h} z_{dk}$$
 (5.2.45)

$$Var(\hat{N}_{hd,\pi}) = \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{z_{dU_h}}^2$$
 (5.2.46)

$$\widehat{Var}(\hat{N}_{hd,\pi}) = \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{z_{ds_h}}^2$$
 (5.2.47)

respectivamente, con $S^2_{z_{dU_h}}$ y $S^2_{z_{ds_h}}$ el estimador de la varianza de los valores de la característica de interés z_{dk} en el estrato U_h y en la muestra s_h seleccionada de dicho estrato.

Resultado 5.2.14. Bajo muestreo aleatorio estratificado, el estimador de Horvitz-Thompson para el tamaño absoluto de un dominio N_d en la población, su varianza y su varianza estimada están dados por

$$\hat{N}_{d,\pi} = \sum_{h=1}^{H} \frac{N_h}{n_h} \sum_{S_h} z_{dk}$$
 (5.2.48)

$$Var(\hat{N}_{d,\pi}) = \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{z_{dU_h}}^2$$
 (5.2.49)

$$\widehat{Var}(\hat{N}_{d,\pi}) = \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{z_{ds_h}}^2$$
 (5.2.50)

respectivamente.

Nótese que en la expresión $S_{z_{dU_h}}^2$ los valores que intervienen son unos, si el elemento pertenece al dominio U_d , y ceros si el elemento no pertenece al dominio, lo mismo sucede con $S_{u_ds}^2$.

Estimación del tamaño relativo de un dominio

Resultado 5.2.15. Bajo muestreo aleatorio estratificado, el estimador de Horvitz-Thompson para el tamaño relativo de un dominio P_{hd} en el estrato h, su varianza y su varianza estimada están dados por

$$\hat{P}_{hd,\pi} = \frac{1}{N_h} \hat{N}_{hd,\pi} = \frac{1}{n_h} \sum_{S_h} z_{dk} = \frac{n_{hd}}{n_h}$$
 (5.2.51)

$$Var(\hat{P}_{hd,\pi}) = \frac{1}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{z_{dU_h}}^2$$
 (5.2.52)

$$\widehat{Var}(\hat{P}_{hd,\pi}) = \frac{1}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{z_{ds_h}}^2$$
 (5.2.53)

Resultado 5.2.16. Bajo muestreo aleatorio estratificado, el estimador de Horvitz-Thompson para el tamaño relativo de un dominio P_d en la población, su varianza y su varianza estimada están dados por

$$\hat{P}_{d,\pi} = \frac{\hat{N}_{d,\pi}}{N} = \frac{1}{N} \sum_{h=1} \frac{N_h}{n_h} \sum_{S_h} z_{dk}$$
 (5.2.54)

$$Var(\hat{P}_{d,\pi}) = \frac{1}{N^2} \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{z_{dU_h}}^2$$
 (5.2.55)

$$\widehat{Var}(\hat{P}_{d,\pi}) = \frac{1}{N^2} \sum_{h=1}^{H} \frac{N_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) S_{z_{ds_h}}^2$$
 (5.2.56)

5.2.6 El efecto de diseño

Lehtonen & Pahkinen (2003) plantean que la eficiencia del diseño de muestreo estratificado depende fuertemente de la proporción de variación total en cada estrato. Es decir, utilizando los resultados del análisis de varianza, tenemos el siguiente resultado:

Resultado 5.2.17. Suponga que la población se divide en h grupos, de tal forma que existen N_h elementos por grupo y el tamaño poblacional toma la forma $N = \sum_{h=1}^{H}$, entonces

$$(N-1)S_{y_U}^2 = \underbrace{\sum_{U} (y_k - \bar{y}_U)^2}_{SCT} = \underbrace{\sum_{h=1}^{H} \sum_{U_h} (y_{hk} - \bar{y}_{U_h})^2}_{SCD} + \underbrace{\sum_{h=1}^{H} N_h (\bar{y}_{U_h} - \bar{y}_U)^2}_{SCE}$$
(5.2.57)

Empíricamente observando la construcción de la varianza del estimador de Horvitz-Thompson en la ecuación (5.2.11) se puede inferir que para tener una varianza pequeña, la variación al interior de los estratos debe ser pequeña. Es decir, los estratos deben ser homogéneos por dentro. Cada esquema de asignación de muestras arroja resultados diferentes en cuanto a la eficiencia se refiere. En esta sección se considera el esquema de asignación de muestra proporcional dado por la definición 5.2.2. en donde la varianza del estimador de Horvitz-Thompson está dada por la siguiente expresión:

$$Var_{MAE}(\hat{t}_{y,\pi}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) \sum_{h=1}^{H} W_h S_{yU_h}^2$$
 (5.2.58)

donde $S_{yU_h}^2$ es la varianza de la característica de interés en el estrato h y $W_h = \frac{n_h}{n} \frac{N_h}{N}$. Con un poco de álgebra se llega al siguiente resultado.

Resultado 5.2.18. Bajo un diseño de muestreo aleatorio simple sin reemplazo con asignación proporcional, la varianza del estimador de Horvitz-Thompson toma la siguiente forma

$$Var_{MAS}(\hat{t}_{y,\pi}) \cong \frac{N^2}{n} \left(1 - \frac{n}{N} \right) \sum_{h=1}^{H} W_h \left[S_{yU_h}^2 + (\bar{y}_{U_h} - \bar{y}_U)^2 \right]$$
 (5.2.59)

Prueba.

$$(N-1)S_{yU_h}^2 = \sum_{U} (y_k - \bar{y}_U)^2$$
 (5.2.60)

$$=\sum_{h=1}^{H}\sum_{U}(y_{hk}-\bar{y}_{U})^{2}$$
(5.2.61)

$$= \sum_{h=1}^{H} \sum_{U_h} (y_{hk} - \bar{y}_{U_h})^2 + \sum_{h=1}^{H} N_h (\bar{y}_{U_h} - \bar{y}_U)^2$$
 (5.2.62)

$$= \sum_{h=1}^{H} (N_h - 1) S_{yU_h}^2 + \sum_{h=1}^{H} N_h (\bar{y}_{U_h} - \bar{y}_U)^2$$
 (5.2.63)

Por tanto

$$S_{yU_h}^2 \cong \sum_{h=1}^H \frac{N_h}{N} \left[S_{yU_h}^2 + (\bar{y}_{U_h} - \bar{y}_U)^2 \right]$$
 (5.2.64)

$$= \frac{N^2}{n} \left(1 - \frac{n}{N} \right) \sum_{h=1}^{H} W_h \left[S_{yU_h}^2 + (\bar{y}_{U_h} - \bar{y}_U)^2 \right]$$
 (5.2.65)

Resultado 5.2.19. El efecto de diseño en el muestreo aleatorio simple sin reemplazo con asignación proporcional está dado por

$$Deff \cong \frac{\sum_{h=1}^{H} W_h S_{yU_h}^2}{\sum_{h=1}^{H} W_h \left[S_{yU_h}^2 + (\bar{y}_{U_h} - \bar{y}_U)^2 \right]}$$
(5.2.66)

(5.2.67)

$$\cong \frac{\text{Varianza dentro de los estratos}}{\text{Varianza Total}}$$
 (5.2.68)

Ahora, intuitivamente tenemos que

Varianza Total = Varianza dentro + Varianza entre

Por tanto se concluye que, casi siempre, esta estrategia de muestreo arrojará mejores resultados que una estrategia aleatoria simple.

5.2.7 Marco y Lucy

En investigaciones anteriores (que no ha utilizado información auxiliar), el gobierno ha establecido que la característica SPAM no es un motor de desarrollo, en cuanto a ingreso neto se refiere, en las empresas del sector industrial. Lo anterior puede obedecer a razones de tipo gerencial o a la cultura organizacional de las empresas en el sector. Por supuesto, el modus operandi del gerente de marca y las estrategias de posicionamiento de marca en el mercado varían de acuerdo a la productividad y tamaño de la empresa. De hecho, no es posible, por cuestiones financieras y logísticas, que una empresa de muy baja productividad utilice los medios publicitarios que una empresa de alto nivel pueda utilizar. Las empresas de alto nivel han dispuesto una parte de sus ganancias en la reinversión publicitaria en medios masivos de comunicación. Las empresas de bajo nivel no pueden hacer esto porque sus márgenes de ganancia no se prestan para pautar en esta clase de medios.

Por lo anterior, cada estrategia de mercadeo es diferente, entre otras, porque cada cliente de cada empresa es diferente de acuerdo al nivel de productividad en el sector industrial. Es decir, los clientes de las empresas grandes son clientes que se caracterizan porque realizan pedidos de varios millones de dólares, y los clientes de las empresas pequeñas se caracterizan por ser empresas emergentes y, en algunos casos, personas naturales independientes, por tanto el margen de ganancias en cada nivel del sector empresarial es muy distinto.

Sin embargo, independientemente del tipo de cliente e incluso del nivel de la empresa en el sector industrial, existe una herramienta que todas las empresas en el sector industrial pueden utilizar: el envío de publicidad directa mediante el uso del correo electrónico. Por supuesto, en países no desarrollados, en las empresas pequeñas, una vez más ya sea por el tipo de gerencia o cultura organizacional o incluso por cuestiones financieras, no existe la infraestructura ni la capacitación para establecer este tipo de publicidad no convencional.

Bajo estos antecedentes, el gobierno está dispuesto a brindar planes de financiamiento a todas las empresas del sector industrial, por lo que ha planeado una nueva investigación acerca de los hábitos y usos del SPAM en las empresas del sector industrial para observar el desarrollo que el sector ha tenido gracias a este medio. La figura 5.1. muestra el comportamiento de las tres características de interés para el gobierno. Se nota que existe una mayor variabilidad en las empresas que pertenecen al nivel **Grande**, mientras que la variabilidad en los niveles **Mediano** y **Pequeño** es menor. Más aún, el comportamiento promedio de las variables de interés es distinto en cada estrato. Esto implica que

Small

Medium

Level

```
data(BigLucy)
attach(BigLucy)
p1 <- qplot(Level, Income, data=BigLucy, geom=c("boxplot"))</pre>
p2 <- qplot(Level, Employees, data=BigLucy, geom=c("boxplot"))</pre>
p3 <- qplot(Level, Taxes, data=BigLucy, geom=c("boxplot"))</pre>
p4 <- qplot(Level, Years, data=BigLucy, geom=c("boxplot"))
grid.arrange(p1, p2, p3, p4, ncol = 2)
    2500 -
    2000 -
                                                      200 -
                                                   Employees 100
   1500 -
 Income
    1000 -
     500 -
       0 -
                          Medium
                                       Small
                                                                                         Small
                                                                           Medium
               Big
                                                                 Big
                          Level
                                                                            Level
                                                      50 -
    300 -
                                                      40 -
                                                 Years
    200 -
 Taxes
                                                      20 -
    100 -
                                                      10-
      0
```

Figura 5.1: Boxplot de las características de interés en cada nivel industrial.

Small

Medium

Level

Big

0 -

Big

utilizar un diseño de muestreo aleatorio estratificado sería una buena decisión si se quiere ganar en precisión.

Por supuesto, el gobierno ha creado un plan de políticas con la promesa de beneficiar al electorado. Si el gobierno corrobora la hipótesis, por medio del presente estudio, de la influencia del SPAM en el crecimiento del algún nivel del sector industrial, entonces buscará planes de capacitación y financiamiento para que las empresas de los niveles **Mediano** y **Pequeño** crezcan, se estabilicen y fomenten la creación de nuevos empleos y el tributo a las entidades gubernamentales pertinentes y, que las empresas del nivel **Grande** no desciendan de nivel sino que se expandan no sólo nacionalmente sino que también en el ámbito internacional a donde también puede llegar la publicidad SPAM en cuestión de micro segundos.

Para esta nueva investigación, el gobierno ha proveído un marco de muestreo que además de contener la ubicación y la identificación de todas las empresas de todos lo niveles industriales, también adjunta el tipo de empresa, a saber: **Grande, Media, Pequeña**. El tipo de empresa será tomada como variable de estratificación para el diseño del plan muestral.

Estimación del tamaño de muestra

El gobierno está decidido en implementar un plan de capacitación a las empresas del sector industrial y ha pedido que el diseño de muestreo sea representativo de la población en cuanto a la característica de estratificación: Nivel. Para la selección de la muestra, se debe cargar el marco de muestreo en el ambiente de R. Con la variable de estratificación Nivel se determinan los tamaños de cada uno de las estratos que se debe convertir en un vector de tamaño H=3, así N <- c(N1,N2,N3), lo mismo se debe hacer con los tamaños de muestra en cada estrato, se deben convertir en vector así n <- c(n1,n2,n3).

```
data(BigLucy)
attach(BigLucy)
N1 <- summary(Level)[[1]]
N2 <- summary(Level)[[2]]
N3 <- summary(Level)[[3]]
N \leftarrow c(N1, N2, N3)
N
         2905 25795 56596
n1 <- round(2000 * N1/sum(N))
n2 <- round(2000 * N2/sum(N))
n3 \leftarrow round(2000 * N3/sum(N))
n \leftarrow c(n1, n2, n3)
n
## [1]
          68
              605 1327
```

Teniendo en ceunta que se planea utilizar la asignación proporcional para la estimación del tamaño de muestra y que se requieren n=2000 encuestas, se tiene que $f=\frac{2000}{85296}=0.02345$. Esto implica la realización de $n_1=68$ encuestas de empresas grandes, $n_2=605$ encuestas en empresas medianas y $n_3=1327$ encuestas en empresas pequeñas.

Utilizando la función S.STSI del paquete TeachingSampling es posible seleccionar una muestra aleatoria simple en cada uno de los tres estratos. Esta función consta de tres argumentos. El primero: Estrato, es la variable de estratificación que indica la pertenencia de todos y cada uno de los $\sum_{h=1}^{H} N_h = N$ individuos de la población. El segundo argumento: N, un vector de tamaño H que indica los tamaños de cada estrato en la población. El último argumento: n, un vector de tamaño H que indica los tamaños

de muestra en cada estrato. El resultado de la función es un conjunto de índices que, aplicados a la población, permite la obtención de la muestra estratificada.

```
sam <- S.STSI(Level, N, n)</pre>
muestra <- BigLucy[sam,]</pre>
attach(muestra)
head (muestra)
                    ID
                              Ubication Level
                                                    Zone Income Employees Taxes
                                           Big County48
## 38335 AB0000038335 C0232017K0069880
                                                           1640
                                                                       225
                                                                             169
## 14362 AB0000014362 C0202621K0099276
                                           Big County28
                                                           1405
                                                                       110
                                                                              83
## 28700 AB0000028700 C0106523K0195374
                                           Big County40
                                                           1150
                                                                        88
                                                                              62
## 43112 AB0000043112 C0225210K0076687
                                           Big County53
                                                           1551
                                                                       168
                                                                             107
## 62250 AB0000062250 C0078782K0223115
                                           Big County69
                                                           1480
                                                                       193
                                                                             104
   83826 AB0000083826 C0019329K0282568
                                           Big County98
                                                           1450
                                                                       162
                                                                              94
##
         SPAM ISO Years
                             Segments
                    34.3 County48 195
## 38335
          yes yes
                   18.1 County28 48
  14362
           no yes
## 28700 yes yes
                    45.6
                          County40 12
## 43112
                    24.2
           no yes
                          County53 15
## 62250
           no yes
                   17.5
                          County69 40
## 83826
                    7.4
                          County98 48
          yes yes
```

La muestra realizada (seleccionada) es de tamaño 400 y está dividida en cada uno de los tres estratos. Una vez que la selección de los elementos es efectuada, se necesita obtener la información mediante una encuesta a cada una de las empresas del sector industrial. Nótese que en este punto, la realización de un muestreo estratificado tiene ventajas logísticas. Lo anterior es evidente cuando se decide que el cuestionario será enviado vía correo electrónico a cada una de las 14 empresas del nivel **Grande**. Por tanto, la realización de esta entrevista arroja ventajas financieras enormes pues el envío de un correo electrónico no supone mayor gasto. Para la realización de la encuesta en el nivel **Mediano** se ha decidido contratar a una agencia de correos postales y, de esa forma, hacer llegar mediante correo certificado un cuestionario con la respectiva encuesta. No se aplica el mismo medio logístico que en las empresas grandes pues se sabe que no todas las empresas medianas tienen una dirección de correo electrónico actualizada, lo que no sucede en el estrato grande. Para obtener la información del sector industrial se ha decidido enviar encuestadores entrenados para el trabajo. Lo anterior se hace dado que los propietarios de las empresas pequeñas son reacios a responder las cartas certificadas y mucho menos responden el correo electrónico dado que tienen compromisos operativos que atender.

Una vez conseguida la información de cada una de las 400 empresas seleccionadas, se procede a estimar las cantidades de interés. Para esto se utiliza la función E.STSI del paquete TeachingSampling. Esta función consta de cuatro parámetros muestrales, a saber: Estrato, es la variable de estratificación que indica la pertenencia de todos y cada uno de los $\sum_{h=1}^{H} n_h = n$ individuos seleccionados en la muestra, N y n, los vectores del tamaño de la población y muestra estratificada respectivamente y estima conteniendo el valor de la(s) característica(s) de interés en cada uno de los elementos seleccionados.

```
estima <- data.frame(Income, Employees, Taxes)
E.STSI(Level, N, n, estima)</pre>
```

La función E.STSI arroja la estimación de cada una de las características de interés discriminada por cada estrato y el gran total así como también la varianza estimada y el coeficiente de variación estimado. Nótese que en cuestión de ingreso, se estima que el estrato grande produce un $10\,\%$, el estrato mediano un $47\,\%$ y el estrato pequeño un $43\,\%$ del ingreso neto del sector industrial. Un resultado similar se

observa con las restantes características de interés. Nótese que los coeficientes de variación estimados en cada estrato son, en algunos casos elevados⁵; sin embargo, el coeficiente de variación para el total es bajo.

En la siguiente tabla se muestran los resultados particulares para este ejercicio. Se puede notar que la estratificación arroja buenos resultados con coeficientes de variación menores a los que arrojaría una muestra aleatoria simple. Esto se debe a que las variables de interés presentan, en promedio, un comportamiento diferente en cada estrato.

	Big	Medium	Small	Population
Estimation	2905.00	25795.00	56596.00	85296.00
Standard Error	0.00	0.00	0.00	0.00
CVE	0.00	0.00	0.00	0.00
DEFF				

Tabla 5.1: Muestreo aleatorio estratificado: estimación del tamaño de los estratos y de la población.

	Big	Medium	Small	Population
Estimation	3573876.25	17055270.27	16004683.47	36633829.99
Standard Error	68271.56	128573.34	186932.88	236930.40
CVE	1.91	0.75	1.17	0.65
DEFF	1.00	1.00	1.00	0.23

Tabla 5.2: Muestreo aleatorio estratificado: estimación del total de la característica Income para cada uno de los estratos y para la población.

	Big	Medium	Small	Population
Estimation	384997.94	2120562.18	2912966.69	5418526.81
Standard Error	12657.18	27571.91	38586.93	49085.29
CVE	3.29	1.30	1.32	0.91
DEFF	1.00	1.00	1.00	0.65

Tabla 5.3: Muestreo aleatorio estratificado: estimación del total de la característica Employees para cada uno de los estratos y para la población.

	Big	Medium	Small	Population
Estimation	204588.90	569195.45	219261.52	993045.87
Standard Error	9020.96	9386.33	4847.86	13891.82
CVE	4.41	1.65	2.21	1.40
DEFF	1.00	1.00	1.00	0.22

Tabla 5.4: Muestreo aleatorio estratificado: estimación del total de la característica Taxes para cada uno de los estratos y para la población.

La función Domains contenida en el paquete TeachingSampling se utiliza para obtener las variables indicadoras z_{dk} para cada dominio, el único argumento de la función es un vector de pertenencia de cada individuo. En este caso, el vector de pertenencia es SPAM, la salida de esta función es una matriz de unos y ceros, en donde cada columna está dicotomizada. Existen tantas columnas como subgrupos poblacionales, y en cada columna el número uno implica la pertenencia del elemento al dominio y cero la no pertenencia del elemento al dominio.

 $^{^5}$ El coeficiente de variación es más alto a medida que las estimaciones estén más discriminadas en grupos.

```
Dominios <- Domains(SPAM)
SPAM.si <- Dominios[,2]*estima
SPAM.no <- Dominios[,1]*estima
E.STSI(Level, N, n, Dominios)</pre>
```

Para estimar el tamaño absoluto de cada dominio, lo único que se debe hacer es multiplicar la matriz de características de interés (en este caso, la matriz llamada estima) por cada columna de la matriz resultante de la dicotomización. Utilizando la función E.STSI en la matriz resultante de la dicotomización obtenemos las estimación de los tamaños absolutos de cada dominio. En este caso, se estima que 1390 empresas ya están utilizando otras técnicas de publicidad como el SPAM, mientras que las restantes 1006 no lo están haciendo. Además en cada uno de los tres estratos existen más empresas que están utilizando el SPAM que las que no lo están haciendo y es interesante que en el estrato de las empresas pequeñas por cada 2 empresas que no utilizan el SPAM existen 3 que sí lo hacen. Nótese que la varianza de cada estimación sigue siendo la misma, puesto que los valores de esta característica de interés son ceros y uno y, por tanto, la estructura de varianza resulta idéntica en cada caso.

	Big	Medium	Small	Population
Estimation	2905.00	25795.00	56596.00	85296.00
Standard Error	0.00	0.00	0.00	0.00
CVE	0.00	0.00	0.00	0.00
DEFF				

Tabla 5.5: Muestreo aleatorio estratificado: estimación de los tamaños para cada uno de los estratos y para la toda población.

	Big	Medium	Small	Population
Estimation	1068.01	10914.91	21538.04	33520.96
Standard Error	169.11	512.44	745.71	920.48
CVE	15.83	4.69	3.46	2.75
DEFF	1.00	1.00	1.00	1.00

Tabla 5.6: Muestreo aleatorio estratificado: estimación de los tamaños del dominio SPAM.no para cada uno de los estratos y para la toda población.

	Big	Medium	Small	Population
Estimation	1836.99	14880.09	35057.96	51775.04
Standard Error	169.11	512.44	745.71	920.48
CVE	9.21	3.44	2.13	1.78
DEFF	1.00	1.00	1.00	1.00

Tabla 5.7: Muestreo aleatorio estratificado: estimación de los tamaños del dominio SPAM.si para cada uno de los estratos y para la toda población.

Esta claro que existe una tendencia en el sector industrial de publicidad virtual mediante el envío de SPAM por correo electrónico. Las siguientes cifras son las verdaderamente importantes pues muestran que las empresas en cada uno de los tres estratos que utilizan SPAM tienen mayores ingresos, emplean a más gente y contribuyen con una mayor cantidad de dinero en cuanto a impuestos se refiere, esto se da porque hay más empresas que utilizan el SPAM de las que no lo hacen. Se debe tener en cuenta que al interior de los subgrupos (estratos y dominios) el coeficiente de variación es alto en parte por la discriminación y en parte porque la varianza de las nuevas variables.

A través del siguiente código computacional se obtienen las estimaciones apropiadas para la estimación de los totales de las características de interés en el dominio SPAM.no. En las tablas 5.8 - 5.10 se aprecian las estimaciones puntuales para la muestra seleccionada.

E.STSI(Level, N, n, SPAM.no)

	Big	Medium	Small	Population
Estimation	1293963.90	7202816.73	6215793.24	14712573.87
Standard Error	208007.01	348534.56	244401.29	473788.19
CVE	16.08	4.84	3.93	3.22
DEFF	1.00	1.00	1.00	0.88

Tabla 5.8: Muestreo aleatorio estratificado: estimación del total de la característica Income para el dominio SPAM. no en cada uno de los estratos y para toda la población.

	Big	Medium	Small	Population
Estimation	138628.31	900394.73	1157168.55	2196191.59
Standard Error	22966.06	46484.68	46132.30	69400.68
CVE	16.57	5.16	3.99	3.16
DEFF	1.00	1.00	1.00	0.96

Tabla 5.9: Muestreo aleatorio estratificado: estimación del total de la característica Employees para el dominio SPAM. no en cada uno de los estratos y para toda la población.

	Big	Medium	Small	Population
Estimation	71813.31	239872.18	87047.80	398733.29
Standard Error	11949.44	12824.34	4277.02	18042.89
CVE	16.64	5.35	4.91	4.53
DEFF	1.00	1.00	1.00	0.78

Tabla 5.10: Muestreo aleatorio estratificado: estimación del total de la característica Taxes para el dominio SPAM. no en cada uno de los estratos y para toda la población.

Por otro lado, utilizando la siguiente instrucción se obtienen las estimaciones apropiadas para la estimación de los totales de las características de interés en el dominio SPAM.si. En las tablas 5.11 - 5.13 se aprecian las estimaciones puntuales para la muestra seleccionada.

E.STSI(Level, N, n, SPAM.si)

	Big	Medium	Small	Population
Estimation	2279912.35	9852453.55	9788890.22	21921256.12
Standard Error	217706.49	352885.56	254624.12	486577.62
CVE	9.55	3.58	2.60	2.22
DEFF	1.00	1.00	1.00	0.78

Tabla 5.11: Muestreo aleatorio estratificado: estimación del total de la característica Income para el dominio SPAM.si en cada uno de los estratos y para toda la población.

Nótese que el valor de los coeficientes de variación es alto puesto que se trata de estimación en subgrupos poblacionales en donde el tamaño de muestra es aleatorio. En reusmen, los resultados muestran que la

	Big	Medium	Small	Population
Estimation	246369.63	1220167.45	1755798.14	3222335.22
Standard Error	25068.23	46388.76	48511.82	71650.05
CVE	10.18	3.80	2.76	2.22
DEFF	1.00	1.00	1.00	0.92

Tabla 5.12: Muestreo aleatorio estratificado: estimación del total de la característica Employees para el dominio SPAM. si en cada uno de los estratos y para toda la población.

	Big	Medium	Small	Population
Estimation	132775.59	329323.27	132213.72	594312.58
Standard Error	14715.79	13382.04	4707.52	20440.01
CVE	11.08	4.06	3.56	3.44
DEFF	1.00	1.00	1.00	0.61

Tabla 5.13: Muestreo aleatorio estratificado: estimación del total de la característica Taxes para el dominio SPAM. si en cada uno de los estratos y para toda la población.

utilización del SPAM puede ser una estrategia de crecimiento en el sector industrial. Ahora, pensando un poco en la eficiencia de la estrategia de muestreo, consideremos la siguiente tabla de análisis de varianza para calcular el efecto de diseño usando el resultado 5.2.19.

El efecto de diseño estaría dado por la división entre la varianza de los residuales sobre la varianza de la variable; es decir $\frac{17074.11}{68119.1} = 0.25$. Por ello la eficiencia de la estrategia es cuatro veces mayor que una estrategia simple. Es interesante que un diseño tan sencillo como el simple en cada estrato con un tamaño de muestre pequeño arroje estos buenos resultados.

Nótese que como N_d es desconocido, para obtener otro tipo de estimación (aunque no la varianza ni el c.v.e) de la media de la característica de interés en cada dominio, podemos utilizar un estimador alternativo dado por

$$\hat{y}_{S_d} = \frac{\hat{t}_{yd,\pi}}{\hat{N}_{d,\pi}} = \frac{\sum_{S} y_{dk}}{z_{dk}} = \frac{\sum_{S_d} y_k}{n_d}$$

Para ello, simplemente tomamos las estimaciones t_{ud} y las dividimos por la estimación de N_d .

Otro tipo de asignación

Suponga que el gobierno quiera hacer una encuesta con las características y magnitudes de la anterior, pero con un limitante importante: el dinero, el gobierno tiene un presupuesto de 7000 dólares para la realización del estudio. Además de esto, el gobierno quiere que el método usado para la recolección de

la información sea clásico. Es decir, un encuestador debe ir a cada empresa y realizar el cuestionario. Este caso es muy frecuente en encuestas de mercadeo, en donde se quiere lograr buenas estimaciones pero no se dispone de muchos recursos financieros ni logísticos.

En este caso se ha averiguado que las varianzas de la variable ingreso son las siguientes 64398, 16081, 15142 en los estratos **Grande**, **Mediano y Pequeño** respectivamente. Además realizar una sola encuesta en el estrato de las empresas grandes cuesta alrededor de 40 dólares, una encuesta en el estrato de las empresas medianas cuesta 20 dólares y una entrevista en el estrato de las empresas pequeñas cuesta 15 dólares. Nótese la diferencia de precios en cada estrato, esto se debe a que es necesaria la contratación de encuestadores de alto perfil para las entrevistas en el estrato de las empresas grandes.

Tabla 5.14: Estimación del tamaño de muestra.

Estrato	Coste	Nh	S2yuh	nh
Grande	40	83	64398	18
Mediano	20	737	16081	112
Pequeño	15	1576	15142	269

Utilizando la asignación óptima y el resultado 5.2.8. se tienen los tamaños de muestra en cada estrato, dados por la tabla anterior, que minimizan la varianza del estimador de Horvitz-Thompson con la restricción del costo total del estudio, 7000 dólares. Nótese que $\sum_{h=1}^{3} n_h C_h = 7000$.

5.3 Diseño de muestreo estratificado PPT

Como se vio en la sección anterior, la ganancia de precisión al utilizar un diseño de muestreo estratificado es importante. Sin embargo, los resultados pueden mejorarse al utilizar una característica continua auxiliar x_k bien relacionada con la característica de interés y_k en cada estrato. Así, es posible estimar el parámetro de interés mediante el estimador de Hansen-Hurwitz con una varianza pequeña. De hecho, entre mejor correlación exista entre y y x, asumiendo que el comportamiento promedio de la variable de interés es diferente en cada estrato, menor varianza tendrá el estimador de Hansen-Hurwitz.

En este caso, el marco de muestreo debe tener dos características auxiliares: una variable de estratificación y la información auxiliar continua, ambas disponibles para cada elemento en todos los estratos. Se supone que el diseño de muestreo dentro de cada estrato es con reemplazo y, de esta manera, se selecciona una muestra de tamaño m_h en cada estrato h (h = 1, ..., H). Cada elemento de $k \in U_h$ tiene probabilidad de selección igual a

$$p_k = \frac{x_k}{t_{xh}} \quad \text{si } k \in U_h \tag{5.3.1}$$

con t_{xh} el total poblacional de la característica auxiliar x en el estrato U_h . Es importante verificar que en cada estrato se cumpla

$$\sum_{U_h} p_k = 1$$
 para cada $h = 1, \dots, H,$ (5.3.2)

por tanto

$$\sum_{h=1}^{H} \sum_{U_h} p_k = H \tag{5.3.3}$$

Ahora, en cada estrato U_h de tamaño N_h se selecciona una muestra s_h con reemplazo de tamaño m_h , por tanto la cardinalidad del soporte en el estrato U_h está dada por

$$\#Q_h = \binom{N_h + m_h - 1}{m_h} \tag{5.3.4}$$

El soporte general estratificado, se define como la unión de los soportes en cada uno de los estratos U_h .

$$Q^H = \left\{ \bigcup_{h=1}^H s_h \mid s_h \in Q_h \right\}. \tag{5.3.5}$$

5.3.1 Algoritmos de selección

En la selección de las muestras PPT con reemplazo en cada estrato es posible utilizar los algoritmos de muestreo dados en el capítulo 3, de tal forma que los siguientes pasos se deben realizar:

- Separar la población en H estratos mediante la variable de estratificación.
- En cada estrato U_h , seleccionar una muestra PPT con reemplazo. Los algoritmos utilizados en la selección de la muestra dentro de cada estrato pueden ser los métodos acumulativo total o el método de Lahiri.
- Cada una de las H selecciones es realizada de manera independiente.

5.3.2 El estimador de Hansen-Hurwitz

Con los anteriores condicionamiento, se utiliza el estimador de Hansen-Hurwitz para estimar de manera insesgada al parámetro de interés t_y con ayuda de información auxiliar continua en cada estrato U_h .

Resultado 5.3.1. Si los elementos dentro del estrato U_h son seleccionados con reemplazo, de acuerdo a probabilidades de selección tales que $\sum_{U_h} p_k = 1$, basados en x_k , el valor de una característica auxiliar continua, entonces el estimador de Hansen-Hurwitz del total poblacional t_{yh} , su varianza y su varianza estimada están dados por:

$$\hat{t}_{yh,p} = \frac{t_{xh}}{m_h} \sum_{\substack{i=1\\k \in S_h}}^{m_h} \frac{y_{ki}}{x_{ki}}$$
(5.3.6)

$$Var_{PPT}(\hat{t}_{yh,p}) = \frac{1}{m_h} \sum_{U_h} p_k \left(\frac{y_k}{p_k} - t_{yh}\right)^2$$
 (5.3.7)

$$\widehat{Var}_{PPT}(\hat{t}_{yh,p}) = \frac{1}{m_h(m_h - 1)} \sum_{\substack{i=1\\k \in S_h}}^{m_h} \left(\frac{y_{ki}}{p_{ki}} - \hat{t}_{yh,p}\right)^2$$
(5.3.8)

respectivamente, con p_k dados por (5.3.1). Nótese que $\hat{t}_{yh,p}$ es insesgado para el total t_{yh} de la característica de interés y, y que $\widehat{Var}_{PPT}(\hat{t}_{yh,p})$ es insesgado para $Var_{PPT}(\hat{t}_{yh,p})$.

Resultado 5.3.2. Para un diseño de muestreo estratificado con selección de unidades PPT en cada estrato, el estimador de Hansen-Hurwitz del total poblacional t_y , su varianza y su varianza estimada están dados por:

$$\hat{t}_{yh,p} = \sum_{h=1}^{H} \frac{t_{xh}}{m_h} \sum_{\substack{i=1\\k \in S_h}}^{m_h} \frac{y_{ki}}{x_{ki}}$$
(5.3.9)

$$Var_{EPPT}(\hat{t}_{yh,p}) = \sum_{h=1}^{H} \frac{1}{m_h} \sum_{U_h} p_k \left(\frac{y_k}{p_k} - t_{yh}\right)^2$$
 (5.3.10)

$$\widehat{Var}_{EPPT}(\hat{t}_{yh,p}) = \sum_{h=1}^{H} \frac{1}{m_h(m_h - 1)} \sum_{\substack{i=1\\k \in S_h}}^{m_h} \left(\frac{y_{ki}}{p_{ki}} - \hat{t}_{yh,p}\right)^2$$
 (5.3.11)

respectivamente. Nótese que $\hat{t}_{y,p}$ es insesgado para el total t_y de la característica de interés y, y que $\widehat{Var}_{EPPT}(\hat{t}_{y,p})$ es insesgado para $Var_{EPPT}(\hat{t}_{y,p})$.

Ejemplo 5.3.1. Para nuestra población de ejemplo U particionada en 2 estratos como en el capítulo anterior, existen por un lado $\binom{N_1+m_1-1}{m_1}=6$ posibles muestras con reemplazo de tamaño $m_1=2$ en el primer estrato y por el otro lado $\binom{N_2+m_2-1}{m_2}=2$ posibles muestras con reemplazo de tamaño $m_2=1$ en el segundo estrato. Utilizando la característica auxiliar x, realice el cálculo léxico-gráfico del estimador de Hansen-Hurwitz y compruebe el insesgamiento y la varianza.

5.3.3 Marco y Lucy

En la pasada sección, supusimos que el marco de muestreo contenía, además de la ubicación e identificación de todas las empresas del sector industrial, una variable de estratificación llamada Nivel que agrupa a las empresas de acuerdo a su capacidad de producción industrial. Es lógico pensar que el comportamiento promedio de las características de interés es diferente en cada estrato. Siendo así los resultados obtenidos son más precisos que al realizar un plan de muestreo simple, además de obtener las estimaciones de las características de interés anidadas en los estratos.

En esta ocasión, la construcción del marco de muestreo ha logrado incluir además de la variable de estratificación Nivel una información auxiliar continua, particularmente se supone que se tiene conocimiento del valor de ingreso declarado en el último año fiscal para cada empresa del sector industrial.

```
qplot(Income, Taxes, data = BigLucy, color = Level)
```

Con este generoso marco de muestreo es claro que las estimaciones serán más precisas. Aunque vale la pena preguntarse si la eficiencia de las estimaciones mejorará notablemente con estas dos variables auxiliares. Se utilizará la asignación proporcional, como en la sección pasada, para hacer los resultados comparables. No olvide que en cada estrato la selección de las muestras se hace con reemplazo.

```
data(BigLucy)
attach(BigLucy)

N1 <- summary(Level)[[1]]
N2 <- summary(Level)[[2]]
N3 <- summary(Level)[[3]]
N <- c(N1,N2,N3)
N

## [1] 2905 25795 56596

m1 <- round(2000 * N1/sum(N))
m2 <- round(2000 * N2/sum(N))
m3 <- round(2000 * N3/sum(N))
m <- c(m1,m2,m3)
m</pre>
## [1] 68 605 1327
```


qplot(Income, Taxes, data = Lucy, color = Level)

500

Figura 5.2: Relación entre Income y Taxes.

Income

1000

1500

La función S.STPPS(E,x,m) se utiliza para la extracción de las H muestras con reemplazo en cada estrato. Los argumentos de la función son los siguientes: E, la variable de estratificación en la población entera, en este caso particular es Nivel. x, un vector de información auxiliar continua conteniendo cada uno de los valores en la población, en este caso particular es Income. m, un vector conteniendo H tamaños de muestra para cada estrato.

La función S.STPPS(E,x,m) divide el marco de muestreo en H estratos y en cada uno de ellos selecciona una muestra con reemplazo de acuerdo a probabilidades de selección dadas por $(5.3.1)^6$. El resultado de la función es en dos vías: por una parte, la función devuelve los índices de los elementos seleccionados con reemplazo en cada estrato y, por otra, devuelve el vector de probabilidades de selección de los elementos en la muestra. Cada una de las anteriores salidas es de tamaño $m = \sum_{h=1}^{H} m_h$. Para este ejercicio el resultado de la función se ha guardado en el objeto res, la muestra en el objeto sam y el vector de probabilidades de selección en la muestra se ha guardado en el objeto pk.

```
res <- S.STPPS(Level, Income, m)
sam <- res[,1]
pk <- res[,2]
muestra <- BigLucy[sam,]</pre>
```

 $^{^6}$ Esta función trata cada estrato como una población separada de modo que la suma de las probabilidades de selección en cada estrato suman uno y en toda la población suman H.

```
attach(muestra)
head (muestra)
##
                    ID
                              Ubication Level
                                                   Zone Income Employees Taxes
## 59842 AB0000059842 C0082783K0219114
                                                           2510
                                                                      258
                                                                             305
                                           Big County67
   62279 AB0000062279 C0252023K0049874
                                           Big County69
                                                           1084
                                                                       92
                                                                              54
                                           Big County88
                                                                      258
  76614 AB0000076614 C0203961K0097936
                                                           2510
                                                                            305
  9545 AB0000009545 C0088531K0213366
                                           Big County23
                                                           1360
                                                                      134
                                                                              76
## 9560
         AB0000009560 C0256225K0045672
                                           Big County23
                                                           1300
                                                                      176
                                                                              68
   69413 AB0000069413 C0006169K0295728
                                           Big County78
                                                                      157
                                                           1434
                                                                              83
##
         SPAM ISO Years
                             Segments
## 59842
          yes yes
                     2.6 County67 140
## 62279
          yes yes
                    38.4
                          County69 43
  76614
          yes yes
                    49.2
                          County88 16
  9545
                    22.6
                          County23 79
          yes yes
## 9560
                    22.3
                          County23 80
          yes yes
                     3.4
## 69413
         yes yes
                           County78 3
```

Aplicando los índices obtenido en sam al marco de muestreo, obtenemos la información para realizar el proceso de recolección de datos. Cuando la información es recolectada se creará un archivo de datos conteniendo cada uno de los valores de la(s) característica(s) de interés en la muestra seleccionada. Esta archivo es adjuntado a R mediante la función attach.

La etapa de estimación se realiza con la función E.STPPS(y,pk,m,E) del paquete TeachingSampling cuyos argumentos son cuatro y cada uno de ellos contiene información a nivel de la muestra y nada más que de la muestra: y, el archivo de datos conteniendo cada uno de los valores de la(s) característica(s) de interés en la muestra seleccionada, en este caso particular será el data frame estima. pk el vector de probabilidades de selección resultante de aplicar la función S.STPPS en la etapa de selección de muestra, en esta caso particular guardado como pk $\leftarrow res[,2]$. m, un vector conteniendo H tamaños de muestra para cada estrato, en este caso dado por $m \leftarrow c(m1,m2,m3)$. E, la variable de estratificación en la muestra, en este caso particular es Level en la muestra no en la población.

La función E.STPPS arroja la estimación de cada una de las características de interés discriminada por cada estrato y el gran total así como también la varianza estimada y el coeficiente de variación estimado. También arroja las estimaciones de los tamaños de los estratos \hat{N}_h y del tamaño de la población total dado por $\hat{N} = \sum_{h=1}^H \hat{N}_h$.

```
estima <- data.frame(Income, Employees, Taxes)
E.STPPS(estima, pk, m, Level)</pre>
```

	Big	Medium	Small	Population
Estimation	2872.75	25903.72	57941.46	86717.93
Standard Error	74.82	191.58	988.16	35.42
CVE	2.60	0.74	1.71	0.01
DEFF	Inf	Inf	Inf	Inf

Tabla 5.15: Muestreo estratificado PPT: estimación del tamaño de los estratos y de la población.

Nótese que las estimaciones dentro de los estratos tienen un coeficiente de variación muy pequeño al igual que la estimación para la población total. La siguiente tabla muestra los resultados para este ejercicio particular.

5.4. Ejercicios **183**

	Big	Medium	Small	Population
Estimation	3629710.00	17057285.00	15947738.00	36634733.00
Standard Error	0.00	0.00	0.00	0.00
CVE	0.00	0.00	0.00	0.00
DEFF	0.00	0.00	0.00	0.00

Tabla 5.16: Muestreo estratificado PPT: estimación del total de la característica Income para cada uno de los estratos y para la población.

	Big	Medium	Small	Population
Estimation	395580.58	2061433.90	2949499.35	5406513.83
Standard Error	9322.72	26111.93	63976.16	315.29
CVE	2.36	1.27	2.17	0.00
DEFF	0.28	0.80	2.61	0.00

Tabla 5.17: Muestreo estratificado PPT: estimación del total de la característica Employees para cada uno de los estratos y para la población.

	Big	Medium	Small	Population
Estimation	225070.78	566761.30	218606.65	1010438.73
Standard Error	9206.90	4940.16	2445.63	128.81
CVE	4.09	0.87	1.12	0.00
DEFF	0.15	0.23	0.23	0.00

Tabla 5.18: Muestreo estratificado PPT: estimación del total de la característica Taxes para cada uno de los estratos y para la población.

Es notable la ganancia en eficiencia de esta estrategia de muestreo, no hay mucho que decir al respecto. Simplemente se deben agotar hasta los últimos recursos para poder estratificar la población y aplicar un diseño de muestreo PPT en cada estrato, siempre y cuando la característica de interés esté bien correlacionada en cada estrato con la información auxiliar.

5.4 Ejercicios

- 5.1 Demuestre teóricamente o refute mediante un contraejemplo las siguientes afirmaciones:
 - (a) Para aplicar un diseño de muestreo estratificado se pide que los estratos no se traslapen. La anterior condición es necesaria para estimar la varianza del estimador.
 - (b) La necesidad de estratificar surge siempre de razones administrativas.
 - (c) Siempre un diseño de muestreo estratificado es de menor varianza que un diseño de muestreo que no incluya estratos.
 - (d) En un diseño de muestreo estratificado, la estimación del promedio poblacional es el promedio de las estimaciones de los totales en cada estrato.

Tabla 5.19: Muestreo estratificado PPT: estimación de los totales de las características de interés.

Variable	Total poblacional	Total estimado	$\mathrm{cve}\%$	$\mathrm{Desv.}\%$
Ingreso	1035217	1035217	0.00	0.00
Empleados	151950	151570	0.07	-0.25
Impuestos	28654	28582	0.20	-0.25

- (e) Explique una ventaja técnica para estratificar
- (f) Explique una ventaja logística para estratificar
- (g) Exponga detalladamente un ejemplo en donde para diferentes estratos se proponen diferentes diseños de muestreo.
- 5.2 Escriba las fórmulas del estimador del total y del estimador de la varianza para los siguientes diseños de muestreo. Defina cada término y notación que utilice en las fórmulas.
 - (a) Diseño estratificado con tres estratos: uno de inclusión forzosa, otro con diseño PPT y otro con diseño MAS.
 - (b) Diseño estratificado con dos estratos: uno de inclusión forzosa, otro con diseño sistemático.
 - (c) Diseño estratificado con cuatro estratos: uno de inclusión forzosa, otro con diseño bernoulli, con diseño MAS con reemplazo y otro con diseño Poisson proporcional a una característica de inormación auxiliar.
 - (d) Diseño estratificado con tres estratos: todos con diseño πPT
- 5.3 Realice el ejercicio lexicográfico del Ejemplo 5.1.1.
- 5.4 Realice el ejercicio lexicográfico del Ejemplo 5.2.2.
- 5.5 Realice el ejercicio lexicográfico del Ejemplo 5.3.1.
- 5.6 Suponga una población de cuatro elementos $U = \{1, 2, 3, 4\}$ cuyos valores para la caraterística de interés son $y_1 = y_2 = 0$, $y_3 = 1$, $y_4 = -1$. En primer lugar, calcule la varianza del estimador de la media poblacional para un diseño de muestreo aleatorio simple con tamaño de muestra n = 2. Luego, calcule la varianza del estimador de la media poblacional para un diseño de muestreo con dos estratos $U_1 = \{1, 2\}$ y $U_2 = \{3, 4\}$ si dentro de cada estrato se planea un diseño aleatorio simple de tamaño uno. ¿Cuál varianza resultó ser más grande?. Explique
- 5.7 Suponga que una población de municipios se divide en dos estratos, uno urbano y el otro rural. De todas los municipios en la población, siete $(N_1 = 7)$ son ciudades y los restantes veiticinco $(N_2 = 25)$ son distritos rurales. Se decide que se usará un diseño de muestreo estratificado de tamaño total n = 8. Teniendo en cuenta la siguiente tabla, determine tamaños de muestra en cada estrato de acuerdo a la afijación proporcional, afijación de Neyman y afijación óptima.

	Estrato rural	Estrato urbano	Población Total
Media	283	1146	472
Desv. Est.	331	1318	743
Tamaño	25	7	32
Costo por encuesta	5 pesos	2 pesos	3 pesos

5.8 Calcule el estimador del total poblacional, el estimador de la media poblacional, sus respectivos c.v.e. e intervalos de confianza para una estrategia de muestreo que utiliza el estimador de Horvitz - Thompson y un diseño de muestreo aleatorio estratificado (H=2). El tamaño del primer estrato es de $N_1=105$ y el del segundo estrato es de $N_2=19$. Para el estrato uno, se seleccionó una muestra de $n_1=11$ elementos y para el estrato dos, se seleccionó una muestra de $n_2=4$ elementos. Use la siguiente información:

Estrato h	$\sum_{s_h} y_k$	$\sum_{s_h} y_k^2$
1	1099	21855
2	3446	1822736

Capítulo 6

Muestreo de conglomerados

En encuestas complejas, los grupos poblacionales de elementos que se forman naturalmente como barrios, municipios o escuelas pueden ser tratados como unidades de muestreo. Este tipo de esquemas de muestreo ayudan a aumentar el tamaño de muestra manteniendo el costo de la encuesta.

Lehtonen & Pahkinen (2003)

Las estrategias de muestreo para elementos tienen un común denominador: el marco de muestreo y su prolija identificación y ubicación de los elementos poblacionales, de todos y cada uno de ellos. Cabe resaltar que en la práctica no es muy común el uso de diseños de muestreo que seleccionen muestras de elementos directamente. Lo anterior se debe más a cuestiones financieras y logísticas que a problemas de eficiencia estadística. Piense en lo siguiente: cada investigación requiere un marco de muestreo. Son miles de millares las investigaciones realizadas al año y deberían existir tantos marcos de muestreo como investigaciones realizadas. Por cuestiones de tipo logístico la consecución de un marco de muestreo de elementos es muy costosa porque implicaría realizar un censo, enumerando, identificando y ubicando a cada elemento de la población y esto es, por supuesto, algo utópico.

Pensando en el más sencillo de los diseños de muestreo, el costo financiero de realizar un estudio mediante un diseño de muestreo aleatorio simple es muy elevado. Por ejemplo suponga que se desea realizar un estudio para evaluar la calidad de vida de las personas en un determinado país. Si llegara a existir un marco de muestreo de elementos, realizar (o seleccionar) una muestra aleatoria simple demandaría la contratación de un encuestador por cada persona encuestada, puesto que la dispersión geográfica natural de los elementos seleccionados en la muestra aleatoria simple sería demasiado alta.

En el caso anterior, aunque se tuviera un marco de muestreo de elementos, el costo financiero de realizar una muestra aleatoria sería demasiado alto. Una forma de realizar muestras probabilísticas a falta de un marco de muestreo de elementos es seleccionar conglomerados¹ de elementos y realizar el proceso de medición en cada conglomerado. Cochran (1977) plantea que, por cuestiones logísticas, es más eficiente seleccionar una muestra de 20 bloques de hogares, cada bloque con 30 hogares, que seleccionar una muestra aleatoria de 600 hogares. En el primer caso sólo se necesitaría la presencia de un encuestador por bloque, mientras que en el segundo, posiblemente, se necesite la presencia de muchos más encuestadores.

Siempre que se desee seleccionar una muestra probabilística se debe tener un marco de muestreo de manera obligatoria, en los casos en donde se carece de marco muestral es necesario construir uno. Sin embargo, el costo financiero y logístico de levantar un marco de muestreo para elementos es muy alto, en la mayoría de ocasiones. Una forma de construir marcos de muestreo de bajo costo es

 $^{^1\}mathrm{Agrupaci\'{o}n}$ natural de objetos

mediante la aplicación de un diseño de muestreo por conglomerados. Estos conglomerados tienen la ventaja de ser agrupaciones de elementos que se forman de manera natural y además existen entidades gubernamentales que se ocupan de registrar y actualizar la lista de conglomerados existentes en cada sector. Por ejemplo, existe una entidad encargada de la actualización de los sectores cartográficos de una ciudad, existe una entidad encargada de la actualización de los negocios en un sector, existe una entidad que recopila la información concerniente a la ubicación de las escuelas, etc. Para cada entidad existe también un registro de estas aglomeraciones y este será el marco de muestreo que se utilizará en la etapa de diseño.

Por lo tanto, el marco de muestreo contendrá la ubicación e identificación de cada uno de los conglomerados de elementos existentes en la población. Con este marco de conglomerados, se aplica un diseño de muestreo y una muestra es seleccionada. Cada conglomerado seleccionado en la muestra es visitado y el proceso de medición se realiza para todos los elementos pertenecientes al mismo. Entonces, si el conglomerado seleccionado es una sección cartográfica de la ciudad, se aplicará la encuesta a todos y cada uno de los elementos que conforman la sección. Si el conglomerado seleccionado es una escuela, se aplicará el instrumento de medición a todos y cada uno de los alumnos de la escuela. En otras palabras, se realiza un censo en cada conglomerado que haya sido seleccionado en la muestra.

Por supuesto, existe una ganancia significativa en términos operativos, logísticos y financieros. Sin embargo, esta ganancia tiene un precio... el precio a pagar está dado en términos de eficiencia estadística de la estrategia de muestreo. Revisando un poco el proceso de aglomeración, hay que tener en cuenta que los conglomerados de elementos tienden, en la mayoría de los casos, a ser homogéneos con respecto a los valores de la característica de interés y. Lo anterior se da porque la agrupación se realiza de forma natural, es decir lo hogares, las secciones cartográficas, las villas, las escuelas, las prisiones, etc. tienden a formarse de manera natural y homogénea. Así que la pérdida de eficiencia estadística es causada por el efecto de conglomerado que conlleva la selección de unidades homogéneas que no contienen información nueva sino, de alguna manera, repetida. ¿Qué nueva información se obtiene, acerca de la población, al añadir un nuevo elemento del mismo conglomerado en la muestra?

Entre más grande sea el tamaño de la sub-muestra en los conglomerados, entonces más grande será el efecto de diseño. Si dentro de cada conglomerado, el comportamiento de la característica de interés y reflejará el comportamiento estructural de la misma en la población, entonces la eficiencia de una estrategia de muestreo por conglomerados sería similar a la de una muestra aleatoria simple. Pero, en la práctica, la homogeneidad interna de los conglomerados aumenta el error de muestreo. Un error, por desgracia demasiado frecuente, entre los investigadores neófitos es analizar una muestra por conglomerados como una muestra aleatoria simple².

En general se tienen lo siguientes comentarios acerca del muestreo por conglomerados:

- Utilizamos muestreo por conglomerados sí:
 - 1. La construcción de un marco de muestreo de elementos es muy difícil, muy costosa o imposible de conseguir. Enumerar abejas, enumerar clientes, enlistar árboles en un sector, enlistar hogares en los barrios conglomerados (dispersión geográfica, reducción de costos).
 - 2. La población objetivo se encuentra muy dispersa (geográficamente) o aparece en agrupaciones naturales: familias, escuelas, etc.
- Los elementos individuales de una población sólo participan en la muestra si pertenecen a un conglomerado incluido en la muestra.
- El muestreo estratificado aumenta la precisión de las estimaciones, mientras que el muestreo por conglomerados tiende a disminuirla. Es un precio que se paga al no poseer un marco de muestreo definido para los elementos de la población objetivo.

²No es prudente, ni correcto analizar una muestra por conglomerados como si fuera una muestra aleatoria simple porque los errores estándar serán mayores y la interpretación de los resultados será errónea.

 Al obtener una muestra de elementos que pertenecen a un conglomerado repetimos la información del conglomerado (dada la agrupación natural). Lo ideal es conseguir información nueva en cada individuo, por lo anterior se pierde precisión en las estimaciones.

6.1 Fundamentos teóricos y notación

Suponga que la población de elementos

$$U = \{1, ..., k, ..., N\}.$$

se divide en N_I sub-grupos poblacionales, llamados **conglomerados** y denotados como $U_I = \{U_1, \dots, U_{N_I}\}$. La población de conglomerados estará dada, sin pérdida de generalidad, por

$$U_I = \{1, \dots, N_I\}.$$

Estos definen una partición de la población en tal forma que

1.
$$U = \bigcup_{i=1}^{N_I} U_i$$

2. $U_i \cap U_j = \emptyset$ para todo $i \neq j$

El número de unidades N_i en el conglomerado i-ésimo se llama tamaño del conglomerado tal que

$$N = \sum_{i=1}^{N_I} N_i,$$

donde N es el tamaño de la población U. Con la población dividida en N_I conglomerados, los parámetros poblacionales de interés pueden escribirse como:

1. El total poblacional,

$$t_y = \sum_{k \in U} y_k = \sum_{i=1}^{N_I} \sum_{k \in U_i} y_k = \sum_{i=1}^{N_I} t_{yi}$$
(6.1.1)

donde $t_{yi} = \sum_{k \in U_i} y_k$ es el total del *i*-ésimo conglomerado.

2. La media poblacional,

$$\bar{y}_U = \frac{\sum_{k \in U} y_k}{N} = \frac{1}{N} \sum_{i=1}^{N_I} \sum_{k \in U_i} y_k = \frac{1}{N} \sum_{i=1}^{N_I} N_i \bar{y}_i$$
 (6.1.2)

donde $\bar{y}_i = \frac{1}{N_i} \sum_{k \in U_i} y_k$ es la media del *i*-ésimo conglomerado.

El esquema general del diseño de muestreo por conglomerados está definido de la siguiente forma

1. Seleccionar una muestra probabilística $s_I{}^3$ de conglomerados de la población U_I mediante un diseño de muestreo tal que

$$Pr(S_I = s_I) = p_I(s_I)$$
 para todo $s_I \in Q_I$. (6.1.3)

donde Q_I es el soporte conteniendo todas las posibles muestras de conglomerados.

 $^{^3}$ Nótese que si s_I representa la muestra realizada de conglomerados, entonces S_I representa la muestra aleatoria la cual es una variable aleatoria.

2. Todos y cada uno de los elementos pertenecientes a los conglomerados seleccionados son observados y medidos.

El tamaño de la muestra aleatoria de conglomerados está dado por

- 1. $n(S_I) = n_I$ si la muestra es de tamaño fijo, $n(S_I)$ si la muestra es de tamaño variable
- 2. $n(S_I) = m_I$ si la muestra es seleccionada con reemplazo

La muestra aleatoria de elementos viene caracterizada por

$$S = \bigcup_{i \in S_I} U_i \tag{6.1.4}$$

y el tamaño de la muestra⁴ de elementos por

$$n(S) = \sum_{i \in S_I} N_i \tag{6.1.5}$$

Si es posible construir o definir un soporte Q_I , también será posible definir (al menos teóricamente) un soporte general Q de elementos conteniendo las posibles muestras de elementos pertenecientes a los conglomerados seleccionados.

Ejemplo 6.1.1. Nuestra población ejemplo U dada por

$$U = \{ Yves, Ken, Erik, Sharon, Leslie \}$$

se divide en tres conglomerados de la siguiente forma

$$U_1 = \{ \mathbf{Yves}, \, \mathbf{Ken} \}$$

el segundo conformado por

$$U_2 = \{ Erik, Sharon \}$$

y el último conglomerado dado por

$$U_3 = \{ \mathbf{Leslie} \}$$

Es claro que, en este caso particular, se tienen $N_I = 3$ conglomerados de tamaño diferentes. De esta manera, la población de conglomerados queda definida por

$$U_I = \{U_1, U_2, U_3\}$$

Suponga que se selecciona una muestra s_I de conglomerados de tamaño $n_I = 2$. La definición del soporte Q_I en R se hace mediante el uso de la función Support del paquete TeachingSampling aplicada a la información a nivel de los conglomerados de la siguiente manera.

⁴Dado que, por lo general, el tamaño de los conglomerados varía, se tiene que n(S) es generalmente aleatorio incluso si $n(S_I)$ es de tamaño fijo.

```
U <- c("Yves", "Ken", "Erik", "Sharon", "Leslie")
U1 <- c("Yves", "Ken")
U2 <- c("Erik", "Sharon")
U3 <- c("Leslie")
UI <- c("U1","U2","U3")
N1 <- length(U1)
N2 <- length(U2)
N3 <- length(U3)
ty1 < -sum(32, 34)
ty2 <- sum(46, 89)
ty3 < -sum(35)
tyI \leftarrow c(ty1, ty2, ty3)
ty <- sum(ty1, ty2, ty3)</pre>
NI <- 3
nI <- 2
QΙ
        Support(NI, nI, UI)
QΙ
##
         [,1] [,2]
## [1,] "U1" "U2"
## [2,] "U1" "U3"
## [3,] "U2" "U3"
```

6.1.1 El estimador de Horvitz-Thompson

Nótese que en el esquema general del muestreo por conglomerados, se utiliza un diseño de muestreo para la selección de los conglomerados en la muestra. Este diseño de muestreo $p_I(s_I)$ puede ser cualquiera de los diseños vistos en los capítulos anteriores, aplicados a la selección, esta vez no de elementos, sino de conglomerados. En general, dado el soporte Q_I , $p_I(s_I)$ puede ser:

- Sin reemplazo: si todas las posibles muestras en Q_I son sin reemplazo. Muestreo aleatorio simple, Bernoulli, Sistemático, Poisson, πPT o estratificado simple.
- Con reemplazo: si todas las posibles muestras en Q_I son con reemplazo. Muestreo aleatorio simple con reemplazo o muestreo PPT.
- De tamaño fijo: si todas las posibles muestras en Q tienen el mismo tamaño de muestra $n(S_I) = n_I$.

Nótese que el diseño de muestreo $p_I(s_I)$ induce probabilidades de inclusión sobre los conglomerados las cuales están definidas como sigue a continuación.

Definición 6.1.1. La probabilidad de inclusión del conglomerado i-ésimo está dada por

$$\pi_{Ii} = Pr(i \in S_I) = \sum_{s_I \ni i} p_I(s_I).$$
(6.1.6)

mientras que la probabilidad de inclusión de los conglomerados i-ésimo y j-ésimo están dadas por

$$\pi_{Iij} = Pr(i \in S_I \ y \ j \in S_I) = \sum_{s_I \ni i \ y \ j} p_I(s_I). \tag{6.1.7}$$

respectivamente. Por supuesto, $\pi_{Iii} = \pi_{Ii}$.

Asimismo, debido a la naturaleza jerárquica de la agrupación de elementos en los conglomerados, el siguiente resultado muestra las probabilidades de inclusión al nivel de los elementos de la población.

Resultado 6.1.1. La probabilidad de que el k-ésimo elemento, sea incluido en la muestra S está dada por

$$\pi_k = \pi_{Ii} \quad \text{si } k \in U_i \tag{6.1.8}$$

Por otro lado, la probabilidad de inclusión de los elementos k-ésimo y l-ésimo está dada por

$$\pi_{kl} = \begin{cases} \pi_{Ii}, & \text{si } k, l \in U_i, \\ \pi_{Iij}, & \text{si } k \in U_i, l \in U_j, i \neq j. \end{cases}$$
(6.1.9)

Una vez definidas las probabilidades de inclusión se define la estrategia de muestreo con el uso del estimador de Horvitz-Thompson, dado por el siguiente resultado

Resultado 6.1.2. Bajo un diseño de muestreo por conglomerados, el estimador de Horvitz-Thompson para el total t_y , su varianza y su varianza estimada están dados por

$$\hat{t}_{y,\pi} = \sum_{i \in S_I} \frac{t_{yi}}{\pi_{Ii}} \tag{6.1.10}$$

$$Var_1(\hat{t}_{y,\pi}) = \sum_{U_I} \Delta_{Iij} \frac{t_{yi}}{\pi_{Ii}} \frac{t_{yj}}{\pi_{Ij}}.$$
 (6.1.11)

$$\widehat{Var}_{1}(\hat{t}_{y,\pi}) = \sum_{S_{I}} \frac{\Delta_{Iij}}{\pi_{Iij}} \frac{t_{yi}}{\pi_{Ii}} \frac{t_{yj}}{\pi_{Ij}}$$
(6.1.12)

respectivamente, con $\Delta_{Iij} = \pi_{Iij} - \pi_{Ii}\pi_{Ij}$ y t_{yi} el total del *i*-ésimo conglomerado seleccionado. Nótese que $\hat{t}_{y,\pi}$ es insesgado para t_y y que $\widehat{Var}_1(\hat{t}_{y,\pi})$ es insesgado para $Var_1(\hat{t}_{y,\pi})$.

Prueba. Para el estimador, se tiene que

$$\hat{t}_{y,\pi} = \sum_{k \in S} \frac{y_k}{\pi_k}$$

$$= \sum_{i \in S_I} \sum_{k \in U_i} \frac{y_k}{\pi_k}$$

$$= \sum_{i \in S_I} \frac{1}{\pi_{Ii}} \sum_{k \in U_i} y_k$$

$$= \sum_{i \in S_I} \frac{t_{yi}}{\pi_{Ii}}.$$

Para el cálculo de la varianza es necesario verificar que

$$\Delta_{kl} = \Delta_{Iij} = \begin{cases} \pi_{Ii} - \pi_{Ii}^2, & \text{si } k, l \in U_i; \\ \pi_{Iij} - \pi_{Ii}\pi_{Ij}, & \text{si } k \in U_i, l \in U_j \text{ y } i \neq j \end{cases}$$
(6.1.13)

Entonces se tiene que

$$\begin{split} Var_{1}(\hat{t}_{y,\pi}) &= \sum_{k \in U} \sum_{l \in U} \Delta_{kl} \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}} \\ &= \sum_{i \in U_{I}} \sum_{k \in U_{i}} \sum_{j \in U_{I}} \sum_{l \in U_{j}} \Delta_{kl} \frac{y_{k}}{\pi_{Ii}} \frac{y_{l}}{\pi_{Ij}} \\ &= \sum_{i \in U_{I}} \sum_{j \in U_{I}} \Delta_{Iij} \frac{1}{\pi_{Ii}} \frac{1}{\pi_{Ij}} \sum_{k \in U_{i}} y_{k} \sum_{l \in U_{j}} y_{l} \\ &= \sum_{U_{I}} \Delta_{Iij} \frac{t_{yi}}{\pi_{Ii}} \frac{t_{yj}}{\pi_{Ij}} \end{split}$$

Se procede análogamente para la estimación de la varianza.

Resultado 6.1.3. Si el diseño de muestreo $p_I(s_I)$ es de tamaño fijo, la varianza del estimador de Horvitz-Thompson y su varianza estimada toman la siguiente forma

$$Var_2(\hat{t}_{y,\pi}) = -\frac{1}{2} \sum_{U_I} \sum_{I_{Ij}} \Delta_{Iij} \left(\frac{t_{yi}}{\pi_{Ii}} - \frac{t_{yj}}{\pi_{Ij}} \right)^2$$
 (6.1.14)

$$\widehat{Var}_{2}(\hat{t}_{y,\pi}) = -\frac{1}{2} \sum_{S_{I}} \sum_{\pi_{Iij}} \left(\frac{t_{yi}}{\pi_{Ii}} - \frac{t_{yj}}{\pi_{Ijl}} \right)^{2}$$
(6.1.15)

Nótese que $\widehat{Var}_2(\hat{t}_{y,\pi})$ es insesgado para $Var_2(\hat{t}_{y,\pi})$.

Prueba. La demostración de los anteriores resultados es inmediata siguiendo los lineamentos de la sección del estimador de Horvitz-Thompson del segundo capítulo y notando que $t_y = \sum_{U_I} t_{yi}$.

Al respecto de la construcción del estimador de Horvitz-Thompson bajo muestreo en conglomerados, Bautista (1998) deduce que

- 1. La eficiencia de la estrategia de muestreo toma su máximo valor cuando los valores $\frac{t_{yi}}{\pi_{Ii}}$ son constantes para todo $i=1,\ldots,N_I$.
- 2. Cuando el diseño por conglomerados es tal que asigna probabilidades de inclusión idénticas a cada conglomerado, la estrategia pierde eficiencia, a menos que el comportamiento de los totales de cada conglomerado sea similar.

Los anteriores comentarios nos llevan a preferir diseños de muestreo que asignen probabilidades de inclusión proporcionales al tamaño del conglomerado. Para esto se debería disponer de información auxiliar continua disponible para toda la población U_I que estuviera bien correlacionada con los totales de la característica de interés en cada conglomerado t_{yi} . En otras palabras, nuestro marco de muestreo es de conglomerados; por tanto, si x representa la información auxiliar continua y t_{xi} el total de la información auxiliar en el i-ésimo conglomerado, la correlación entre t_{xi} y t_{yi} debería ser bastante fuerte y las probabilidades de inclusión de los conglomerados deberían corresponder a

$$\pi_{Ii} = n_I \frac{t_{xi}}{t_x} \tag{6.1.16}$$

Ejemplo 6.1.2. Nuestra población ejemplo U_I dada por

$$U_I = \{U_1, U_2, U_3\}$$

Suponga que se selecciona una muestra s_I de conglomerados de tamaño $n_I=2$ mediante un diseño de muestreo sin reemplazo tal que

$$p_I(s_I) = \begin{cases} 0.5, & \text{si } s_I = \{U_1, U_2\}, \\ 0.4, & \text{si } s_I = \{U_1, U_3\}, \\ 0.1, & \text{si } s_I = \{U_2, U_3\} \end{cases}$$

Mediante el siguiente ejercicio léxico-gráfico se comprueba el insesgamiento del estimador de Horvitz-Thompson en R. Para esto utilizamos las funciones Ik y Pik del paquete TeachingSampling a nivel de los conglomerados.

```
p <- c(0.5, 0.4, 0.1)
Ind <- Ik(NI, nI)
data.frame(QI, p, Ind)

## X1 X2   p X1.1 X2.1 X3
## 1 U1 U2 0.5   1   1  0
## 2 U1 U3 0.4   1   0  1
## 3 U2 U3 0.1   0   1  1

pikI <- Pik(p, Ind)
pikI

## [,1] [,2] [,3]
## [1,] 0.9 0.6 0.5</pre>
```

De esta manera, la probabilidad de inclusión más alta la tiene el conglomerado U_1 y la más baja corresponde al conglomerado U_3 . Con esto podemos calcular la estimación mediante el uso de la función HT del paquete TeachingSampling.

```
all.pikI <- Support(NI, nI, pikI)
all.tyI <- Support(NI, nI, tyI)
all.HT <- rep(NA, 3)

for(k in 1:3){
    all.HT[k] <- HT(all.tyI[k,], all.pikI[k,])
}
all.HT

## [1] 298 143 295

sum(p * all.HT)

## [1] 236

All.samples <- data.frame(QI, p, all.pikI, all.tyI, all.HT)</pre>
```

	X1	X2	p	X1.1	X2.1	X1.2	X2.2	all.HT
1	U1	U2	0.50	0.90	0.60	66.00	135.00	298.33
2	U1	U3	0.40	0.90	0.50	66.00	35.00	143.33
3	U2	U3	0.10	0.60	0.50	135.00	35.00	295.00

Tabla 6.1: Estimaciones para todas las posibles muestras del ejemplo.

Una vez más, nótese que en la estimación intervienen las cantidades de los conglomerados seleccionados en la muestra realizada.

Estimación de otros parámetros

Si el tamaño poblacional N es conocido, la media poblacional definida en (2.1.14) puede ser estimada con el estimador de Horvitz-Thompson.

Resultado 6.1.4. En muestreo por conglomerado la media poblacional es estimada insesgadamente mediante el uso del estimador de Horvitz-Thompson

$$\hat{\bar{Y}}_{\pi} = \frac{1}{N} \left(\hat{t}_{y,\pi} \right) \tag{6.1.17}$$

$$= \frac{1}{N} \sum_{i \in S_I} \frac{t_{yi}}{\pi_{Ii}} \tag{6.1.18}$$

Una de las razones por las que se utiliza el muestreo por conglomerados es la falta de un marco de muestreo para elementos. En este caso el desconocimiento del tamaño poblacional es muy típico. Sin embargo, utilizando los principios del estimador de Horvitz-Thompson, es posible estimar el tamaño de la población escribiéndolo como

$$N = \sum_{i \in U_I} N_i, \tag{6.1.19}$$

Luego, tenemos el siguiente resultado.

Resultado 6.1.5. En muestreo por conglomerados el tamaño poblacional es estimado insesgadamente mediante el uso de la siguiente expresión

$$\hat{N}_{\pi} = \sum_{i \in S_I} \frac{N_i}{\pi_{Ii}} \tag{6.1.20}$$

Una vez el tamaño de la población es estimado, es posible utilizar la razón de Hájek (Hájek 1971) para estimar la media poblacional de la siguiente manera.

$$\widetilde{y}_S = \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}} \tag{6.1.21}$$

$$= \frac{\sum_{i \in S_I} \frac{t_{yi}}{\pi_{Ii}}}{\sum_{i \in S_I} \frac{N_i}{\pi_{Ii}}}$$
(6.1.22)

De hecho, en algunas ocasiones, cuando el diseño de muestreo utilizado induce probabilidades de inclusión desiguales, es mejor utilizar este estimador aun conociendo el tamaño poblacional.

6.1.2 El estimador de Hansen-Hurwitz

Si la selección de los conglomerados se hace con reemplazo, ya sea utilizando un diseño de muestreo aleatorio simple con reemplazo o, en el caso de tener información auxiliar continua a nivel de los conglomerados, haciendo uso de un diseño de muestreo PPT, es posible utilizar los principios del estimador de Hansen-Hurwitz para completar la estrategia de muestreo.

En caso de tener acceso a información auxiliar continua, las probabilidad de selección del i-ésimo conglomerado estaría dada por

$$p_{Ii} = \frac{t_{xi}}{t_x} \tag{6.1.23}$$

Sampath (2001) afirma que en caso de conocerse los tamaños N_i de cada cluster $i = 1, ..., N_I$, estos mismos pueden ser utilizados como medidas de tamaño para desarrollar un plan de muestreo con probabilidades proporcionales. El esquema general del muestreo con reemplazo toma la siguiente forma:

• Para cada conglomerado de la población U_I , existen números positivos p_{I1}, \ldots, p_{IN_I} tales que

$$\sum_{U_I} p_{Ii} = 1.$$

Estas probabilidades no son necesariamente iguales.

• Para seleccionar el primer elemento que pertenecerá a la muestra de tamaño m_I , se lleva a cabo un sorteo aleatorio de tal forma que

$$Pr(Selectionar el conglomerado i) = p_{Ii}, i \in U_I.$$

• El conglomerado seleccionado es reemplazado en la población y vuelve a ser parte del próximo sorteo aleatorio con la misma probabilidad de selección. En total se realizan m_I sorteos aleatorios independientes.

Nótese que el sorteo aleatorio se realiza entre los conglomerados, y no entre los elementos; por lo tanto, bajo muestreo en conglomerados no tiene sentido hablar de la probabilidad de selección de un elemento. Una vez que las probabilidades de selección de los conglomerados están definidas, utilizamos el estimador de Hansen-Hurwitz para estimar los parámetros de interés.

Resultado 6.1.6. Bajo un diseño de muestreo por conglomerados, el estimador de Hansen-Hurwitz para el total t_y , su varianza y su varianza estimada están dados por

$$\hat{t}_{y,p} = \frac{1}{m_I} \sum_{v=1}^{m_I} \frac{t_{yi_v}}{p_{Ii_v}}$$
(6.1.24)

$$Var(\hat{t}_{y,p}) = \frac{1}{m_I} \sum_{i=1}^{N_I} p_{Ii} \left(\frac{t_{yi}}{p_{Ii}} - t_y \right)^2$$
(6.1.25)

$$\widehat{Var}(\hat{t}_{y,p}) = \frac{1}{m_I(m_I - 1)} \sum_{v=1}^{m_I} \left(\frac{t_{yi_v}}{p_{Ii_v}} - \hat{t}_{y,p} \right)^2$$
(6.1.26)

respectivamente. Nótese que $\hat{t}_{y,p}$ es insesgado para t_y y que $\widehat{Var}(\hat{t}_{y,p})$ es insesgado para $Var(\hat{t}_{y,p})$.

Prueba. La demostración del resultado sigue los mismos argumentos de la sección del estimador de Hansen-Hurwitz del segundo capítulo y del resultado 2.2.11, definiendo la variable aleatoria Z_v como

$$Z_v = t_{vi}/p_{Ii}$$
 $i \in U_I$ $v = 1, \dots, m_I$ (6.1.27)

y notando que

$$Pr(Z_v = t_{vi}/p_{Ii}) = p_{Ii}$$
 (6.1.28)

Cochran (1977) afirma que el método de selección de muestras con reemplazo es equivalente al problema estándar de probabilidad en el cual m_I bolas son depositadas en N_I cajas, la probabilidad de que una bola sea depositada en la *i*-ésima caja está dada por Z_v en cada oportunidad. De esta manera, la distribución conjunta de $n_{Ii}(s_I)^5$ está dada por una expresión multinomial.

Definición 6.1.2. De manera general, un diseño de muestreo con reemplazo de conglomerados se define como

$$p_I(s_I) = \begin{cases} \frac{m_I!}{n_{I1}(s_I)!...n_{IN_I}(s_I)!} \prod_{U_I} (p_{Ii})^{n_{Ii}(s_I)}, & \text{si } \sum_{U_I} n_{Ii}(s_I) = m_I\\ 0, & \text{en otro caso} \end{cases}$$
(6.1.29)

Ejemplo 6.1.3. Nuestra población ejemplo U_I dada por

$$U_I = \{U_1, U_2, U_3\}$$

Suponga que se selecciona una muestra s_I con reemplazo de conglomerados de tamaño $m_I = 2$ mediante un diseño de muestreo que asigna las siguientes probabilidades de selección a cada conglomerado.

$$p_{Ii} = \begin{cases} 0.80, & \text{si } i = 1, \\ 0.15, & \text{si } i = 2, \\ 0.05, & \text{si } i = 3. \end{cases}$$

Para seleccionar una muestra con reemplazo de la población U_I de tamaño mI=2 conglomerados se utiliza la función sample cuyo argumento replace debe aparecer igual a TRUE. Para esto definimos las probabilidades de selección de cada conglomerado.

```
UI <- c("U1", "U2", "U3")
NI <- 3
mI <- 2

pIi <- c(0.8, 0.15, 0.05)
samI <- sample(NI, mI, replace=TRUE, prob=pIi)
mI <- UI[samI]
mI</pre>
## [1] "U1" "U2"
```

En este caso particular la muestra con reemplazo está compuesta por U_3 y, como era de esperarse, por tener la más alta probabilidad de selección, por U_1 . Para estimar el total poblacional, utilizamos la función HH del paquete TeachingSampling con los totales de los conglomerados seleccionados y sus respectivas probabilidades de selección.

 $^{{}^5}n_{Ii}(s_I)$ se define como el número de veces que el conglomerado *i*-ésimo es seleccionado en una muestra probabilística de tamaño m_I . Note que $n_{Ii}(s_I)$ toma valores $0, 1, 2, \ldots, m_I$.

```
tyIm <- tyI[samI]
tyIm

## [1] 66 135

pIim <- pIi[samI]
data.frame(mI, pIim, tyIm)

## mI pIim tyIm
## 1 U1 0.80 66
## 2 U2 0.15 135

HH(tyIm, pIim)[1]

## [1] 491</pre>
```

6.2 Muestreo aleatorio simple de conglomerados

En esta sección se introducen los principios del diseño de muestreo por conglomerados bajo el plan de muestreo más sencillo. La muestra s_I de n_I conglomerados es seleccionada mediante un diseño de muestreo aleatorio simple sin reemplazo. Como se verá a lo largo de la sección, no hay nuevos principios (ni en el diseño de muestreo ni en el desarrollo del estimador) involucrados en la construcción de la estrategia de muestreo, la demostración de los resultados se hace siguiendo las pautas expuestas en el capítulo 2.

Este diseño de muestreo asume que el comportamiento del total de la característica de interés es constante en cada uno de los conglomerados. En la práctica esta situación se presenta en muy pocas ocasiones, es por esto que este diseño pierde precisión, en la mayoría de ocasiones, ante el muestreo aleatorio simple. Para que este diseño de muestreo sea más eficiente el valor promedio de la característica de interés en cada cluster \bar{y}_{U_i} debería ser proporcional a $\frac{c}{N_i}$. Se asume que la población U_I está dividida en N_I conglomerados (no necesariamente del mismo tamaño). La muestra sin reemplazo es seleccionada de acuerdo al diseño de muestreo dada en la siguiente definición.

Definición 6.2.1. Un diseño de muestreo se dice aleatorio simple para conglomerados si todas las posibles muestras de tamaño n_I tienen la misma probabilidad de ser seleccionadas. Así,

$$p_I(s_I) = \begin{cases} \frac{1}{\binom{N_I}{n_I}} & \text{si } \#s_I = n_I\\ 0 & \text{en otro caso} \end{cases}$$
 (6.2.1)

Una vez que la muestra de conglomerados s_I es seleccionada se dispone a realizar una enumeración completa y la respectiva medición y observación de todos y cada uno de los elementos pertenecientes a cada conglomerado seleccionado.

6.2.1 Algoritmos de selección

En la selección de las muestras de conglomerados sin reemplazo es posible utilizar los algoritmos de muestreo dados en el capítulo 2, de tal forma que los siguientes pasos se deben realizar:

ullet Separar la población en N_I conglomerados mediante el marco de muestreo de conglomerados.

• Realizar una selección de n_I conglomerados mediante cualquiera de los métodos expuestos en la sección 3.2.1; es decir, por el método coordinado negativo o por el método de Fan-Muller-Rezucha.

6.2.2 El estimador de Horvitz-Thompson

Siguiendo el resultado 6.1.1. las probabilidades de inclusión están dadas por el siguiente resultado.

Resultado 6.2.1. Para un diseño de muestreo aleatorio de conglomerados, las probabilidades de inclusión de primer y segundo orden de los conglomerados están dadas por

$$\pi_{Ii} = \frac{n_I}{N_I} \tag{6.2.2}$$

$$\pi_{Iij} = \frac{n_I(n_I - 1)}{N_I(N_I - 1)} \tag{6.2.3}$$

respectivamente.

Resultado 6.2.2. El tamaño de la muestra de elemento s es aleatorio y su esperanza está dada por

$$E(n(S)) = N \frac{n_I}{N_I} \tag{6.2.4}$$

Prueba. De la definición de tamaño de muestra esperado, se tiene que

$$E(n(S)) = E\left(\sum_{i \in S_I} N_i\right) = \sum_{i \in U_I} N_i \frac{n_I}{N_I} = N \frac{n_I}{N_I}$$
 (6.2.5)

Se sigue del resultado 6.1.2 que la estrategia de muestreo se construye mediante el uso del estimador de Horvitz-Thompson que bajo este diseño de muestreo particular toma la forma del siguiente resultado.

Resultado 6.2.3. Para un diseño de muestreo aleatorio de conglomerados, el estimador de Horvitz-Thompson del total poblacional t_y , su varianza y su varianza estimada están dados por

$$\hat{t}_{y,\pi} = \frac{N_I}{n_I} \sum_{S_I} t_{yi} \tag{6.2.6}$$

$$Var_{MAC}(\hat{t}_{y,\pi}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) S_{t_{yU_I}}^2$$
 (6.2.7)

$$\widehat{Var}_{MAC}(\hat{t}_{y,\pi}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) S_{t_{ys_I}}^2$$
(6.2.8)

respectivamente, con $S_{t_yU_I}^2$ y $S_{t_ys_I}^2$ el estimador de la varianza de los totales de los conglomerados para la característica de interés en el universo U_I y en la muestra s_I . Esto es

$$S_{t_{yU_I}}^2 = \frac{1}{N_I - 1} \sum_{i \in U_I} (t_{yi} - \bar{t}_{U_I})^2,$$

donde $\bar{t}_{U_I} = \sum_{i=1}^{N_I} t_{yi}/N_I$, y $S_{t_{yS_I}}^2$ se define de manera análoga. Nótese que $\hat{t}_{y,\pi}$ es insesgado para el total poblacional t_y de la característica de interés y, y que $\widehat{Var}_{MAC}(\hat{t}_{y,\pi})$ es insesgado para $Var_{MAC}(\hat{t}_{y,\pi})$.

Nótese que el diseño de muestreo sistemático en un caso especial del muestreo aleatorio de conglomerados cuando se selecciona una muestra s_I de tamaño igual a $n_I = 1$. Al igual que en muestreo sistemático no se tiene un estimador de la varianza cuando se selecciona sólo un conglomerado.

Ejemplo 6.2.1. Siguiendo con nuestra población ejemplo U_I , existen $\binom{N_I}{m_I} = \binom{3}{2} = 3$ posibles muestras de tamaño $m_I = 2$. Realice el cálculo léxico-gráfico del estimador de Horvitz-Thompson y compruebe el insesgamiento y la varianza mediante este diseño de muestreo.

Tamaño de muestra

Bajo muestreo aleatorio de conglomerados se utilizan los mismos principios de la estimación del tamaño de muestra en muestreo aleatorio simple reemplazando las cantidades correspondientes de la población de elementos por la población de conglomerados U_I . De tal forma que si requiere estimar el tamaño de muestra dada una precisión absoluta c se tiene:

$$n_I \ge \frac{n_{I0}}{1 + \frac{n_{I0}}{N_I}} \tag{6.2.9}$$

con $n_{I0} = \frac{t_{1-\alpha/2,N_I-1}^2 S_{t_yU_I}^2}{c^2}$. En algunas ocasiones se quiere lograr una precisión relativa k, por tanto:

$$n_I \ge \frac{n_{I0}}{1 + \frac{n_{I0}}{N_I}} \tag{6.2.10}$$

con $n_{I0} = \frac{t_{1-\alpha/2,N_I-1}^2 CV^2}{k^2}$. Nótese que dado que la población de conglomerados es pequeña, en la mayoría de los casos, es preferible suponer que el estimador sigue una distribución t-student con N_I-1 grados de libertad.

6.2.3 Eficiencia de la estrategia

A lo largo del capítulo se ha mencionado que la eficiencia de esta estrategia de muestreo es menor que la del muestreo aleatorio simple sin reemplazo. Intuitivamente se sospecha que, dado que la formación de grupos se presenta en forma natural en la mayoría de los casos, la información de los conglomerados, con respecto al comportamiento estructural de la característica de interés, es homogénea dentro de cada uno de ellos.

Para corroborar las anteriores afirmaciones vamos a medir la eficiencia de la estrategia utilizando el efecto de diseño. Sin embargo, para unificar el tamaño de la muestra en esta estrategia se supondrá que:

- 1. La población U_I está conformada por N_I conglomerados.
- 2. Cada conglomerado es de tamaño M. Luego $\#U_i = M$ $i = 1, ..., N_I$, además la población de elementos U es de tamaño $N = M \times N_I$.
- 3. Se selecciona una muestra s_I de tamaño igual a n_I conglomerados. De esta forma se han seleccionado en la muestra $M \times n_I$ elementos.

Los resultados podrán ser comparables si se supone que una muestra de n_I conglomerados es seleccionada de acuerdo a un diseño aleatorio simple de conglomerados. Por otro lado, se supone que se

Fuente	gl	Suma de cuadrados	Cuadrado medio
Entre	$N_I - 1$	$SCE = \sum_{i=1}^{N_I} M \left(\bar{y}_{U_i} - \bar{y}_U \right)^2$	$rac{SCE}{N_I-1}$
Dentro	N_IM-N_I	$SCD = \sum_{i=1}^{N_I} \sum_{j=1}^{M} (y_{ij} - \bar{y}_{U_i})^2$	$rac{SCD}{N_IM-N_I}$
Total	N_IM-1	$SCT = \sum_{i=1}^{N_I} \sum_{j=1}^{M} (y_{ij} - \bar{y}_U)^2$	$s_{y_U}^2$

Tabla 6.2: Tabla de ANOVA inducida por el muestreo aleatorio de conglomerados.

selecciona una muestra de $M \times n_I$ elementos directamente de la población U. Cada vez que la población es dividida en sub-grupos poblacionales es muy útil recurrir a la tabla de análisis de varianza que esta vez toma la forma dada en la tabla 6.1.

Resultado 6.2.4. Utilizando los resultados de la descomposición de las sumas de cuadrados, la varianza de la estrategia por conglomerados toma la siguiente forma

$$Var_{MAC}(\hat{t}_{y,\pi}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) M \frac{SCE}{N_I - 1}$$
 (6.2.11)

mientras que la varianza de la estrategia aleatoria simple, con un tamaño poblacional igual a $N=M\times N_I$ elementos y un tamaño de muestra igual a $n=M\times n_I$ elementos, se puede escribir como

$$Var_{MAS}(\hat{t}_{y,\pi}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) M \frac{SCT}{MN_I - 1}$$
 (6.2.12)

Prueba. Para la varianza de la estrategia por conglomerados se tiene

$$\begin{split} M\frac{SCE}{N_I - 1} &= \frac{\sum_{i=1}^{N_I} M^2 \left(\bar{y}_{U_i} - \bar{y}_{U}\right)^2}{N_I - 1} \\ &= \frac{\sum_{i=1}^{N_I} \left(t_{yi} - \bar{t}_{yU_I}\right)^2}{N_I - 1} \\ &= S_{t_{yU_I}}^2 \end{split}$$

donde \bar{y}_{U_i} y t_{yi} es el promedio y el total del *i*-ésimo conglomerado, respectivamente y $\bar{t}_{yU_I} = \frac{\sum_{i=1}^{N_I} t_{yi}}{N_I}$ es el promedio de los totales de los conglomerados.

Para la varianza de la estrategia aleatoria simple sólo hay que notar que

$$\frac{N^2}{n} \left(1 - \frac{n}{N} \right) = \frac{(MN_I)^2}{Mn_I} \left(1 - \frac{Mn_I}{MN_I} \right)$$
$$= \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) M$$

Note que si SCE es alta, entonces la estrategia será menos eficiente. En la práctica es esto lo que ocurre exactamente pues dada la agrupación natural de elementos, el comportamiento de la característica de interés será similar dentro de cada conglomerado. Por tanto, SCE será elevada pues en forma general los conglomerados presentarán un comportamiento heterogéneo. Para verlo con más claridad, se define el coeficiente de correlación intra-clase como

$$\rho = 1 - \frac{M}{M - 1} \frac{SCD}{SCT} \tag{6.2.13}$$

Esta medida toma valores positivos si los elementos dentro de los conglomerados tienen un comportamiento similar y negativo cuando el comportamiento de los elementos dentro de los conglomerados es muy disperso. Además, el coeficiente informa qué tan similares son los elementos dentro de los conglomerados y proporciona una medida de homogeneidad dentro de los conglomerados y nos da una realidad más detallada en cuanto al efecto de diseño y pérdida de eficiencia en el muestreo aleatorio de conglomerados como lo afirma el siguiente resultado.

Resultado 6.2.5. El efecto de diseño en muestreo aleatorio de conglomerados está dado por

$$Deff = \frac{Var_{MAC}\hat{t}_{\pi}}{Var_{MAS}\hat{t}_{\pi}} \cong 1 + (M-1)\rho \tag{6.2.14}$$

Prueba. La aproximación se tiene si se supone que N_I , el número total de conglomerados, es grande tal que

$$M(N_I - 1) \cong MN_I - 1$$
 (6.2.15)

La demostración se completa notando que al realizar el cociente de varianzas, al igual que en la sección del muestreo sistemático, se tiene que

$$\frac{SCE}{SCT} = \frac{1 + (M-1)\rho}{M} \tag{6.2.16}$$

Dado que ρ es generalmente positivo⁶ podemos inferir de (6.2.14) que el muestreo por conglomerados tendrá una mayor varianza que el muestreo aleatorio simple de elementos directamente de la población U. Sin embargo, es plausible sacrificar la eficiencia estadística por el ahorro financiero y logístico característico de las estrategias por conglomerados. Ahora, si ρ es negativo, esta estrategia gana en eficiencia y también en costos operativos.

Lohr (2000) afirma que en el caso, muy común en la práctica, en que los conglomerados no sean del mismo tamaño, una medida alternativa a ρ es el coeficiente de determinación R^2 definido como

$$R^2 = 1 - \frac{CMD}{s_{y_U}^2} \tag{6.2.17}$$

donde $CMD = \frac{SCD}{N-N_I}$; con N el número total de elementos en la población U. Ésta es una medida muy conocida y utilizada en el análisis de regresión lineal, y es interpretada como la cantidad de variabilidad explicada por los promedios de cada conglomerado. Si el comportamiento de la característica de interés es homogéneo dentro de los conglomerados, entonces los promedios entre los conglomerados tendrán una muy alta dispersión con respecto a la variación dentro de los conglomerados y R^2 tomará valores grandes.

6.2.4 Marco I y Lucy

El común denominador de las aplicaciones prácticas con Marco y Lucy en los capítulos anteriores ha sido la identificación y ubicación, a priori, de cada una de las empresas en el sector industrial. Esto ha sido posible gracias a que un marco de muestreo de elementos estuvo disponible. En algunas ocasiones, el marco de muestreo disponible mostró bondades que permitieron la incorporación de información auxiliar, ya sea de tipo continuo o categórico, para mejorar la eficiencia de la estrategia de muestreo utilizada en cada caso.

⁶Esto se da porque los conglomerados se forman física y geográficamente como agrupaciones contiguas de elementos que comparten un ambiente natural, entonces el comportamiento de los elementos internamente será similar.

En cualquier caso, el gobierno desea obtener estimaciones precisas que le permitan fortalecer sus políticas de apoyo y financiamiento de las empresas en el sector industrial. Sin embargo, el gobierno no está en disposición de entregar una lista de todas las empresas del sector industrial con su respectiva identificación y ubicación debido a políticas de confidencialidad que no le permiten brindar este tipo de información. Por tanto, en esta ocasión no hay tal marco generoso de elementos en la población y el estudio se deberá llevar a cabo con esta restricción de tipo logístico.

En cualquier estudio por muestreo, siempre debe existir, si no físicamente al menos de forma implícita, un marco de muestreo de la población que permita llegar a la medición de la unidad objetivo de muestreo. Dado que el gobierno no permite la utilización de un marco de muestreo de empresas en el sector industrial, se debe realizar el levantamiento de un marco de muestreo de conglomerados que agrupen estas empresas. Una solución, que es muy utilizada en la práctica, es realizar un muestreo de áreas geográficas. Las empresas, las viviendas, los domicilios, los negocios, etc. están ubicadas en algún lugar del mapa y es poco factible que se muevan de donde han estado instaladas. Por tanto, un marco de muestreo por áreas es una buena solución de tipo logístico para enfrentar la etapa de diseño de este estudio.

Un inconveniente que se presenta a la hora de realizar un muestreo de conglomerados con un marco discriminado en áreas geográficas es la imposibilidad de conocer cuántas empresas estarán ubicadas en cada zona geográfica. Sin embargo, sí es posible asignar subdivisiones de cada zona geográfica seleccionada a un grupo de encuestadores para que recorran la zona y apliquen el cuestionario a cada una de las empresas del sector. De esta forma, es posible tener una estimación del presupuesto que se requiere. La población U_I de conglomerados, es decir la ciudad, se divide en cinco zonas geográficas, a saber: **Zona A**, ubicada en el sur, **Zona B**, ubicada en el norte, **Zona C**, ubicada en el oriente, **Zona D**, ubicada en el occidente y **Zona E**, ubicada en el centro.

Recordando los objetivos del estudio, el gobierno quiere medir el crecimiento del sector industrial en la ciudad, mediante tres características importantes: el ingreso y los impuestos declarados en el último año fiscal y la generación de empleos mediante la cantidad de trabajadores que laboran en cada empresa. Seguramente, ni el ingreso, ni los impuestos, ni la cantidad de empleados están correlacionados con la zona geográfica. Podemos afirmar esto porque la ubicación de las empresas es realizada por el gobierno siguiendo diversos criterios.

Es así como en una misma zona geográfica, es posible encontrar una empresa grande rodeada de empresas pequeñas o medianas. Este es un muy buen indicio en la etapa del diseño de muestreo pues quiere decir que el comportamiento de las características de interés dentro de cada área geográfica es muy disperso. La figura 6.1 presenta el comportamiento de las características de interés en cada una de las cinco zonas geográficas de la ciudad. Nótese que no es posible identificar un comportamiento estructural significativamente diferente en cada zona, sino que por el contrario, el comportamiento es heterogéneo dentro de cada zona y homogéneo entre las zonas.

Aunque no se conoce el número de empresas en el sector industrial, el gobierno ha estimado según datos de años anteriores la existencia de 85000 empresas para el último año fiscal. Con esta información se ha decidido seleccionar una muestra aleatoria simple de conglomerados de tamaño $n_I=10$. Por tanto, el tamaño muestral de empresas esperado corresponde a 85000 $\frac{10}{100}=8500$. De la población de $N_I=100$ conglomerados de áreas se selecciona una muestra aleatoria simple de $n_I=10$ utilizando la función S.SI del paquete TeachingSampling. En este caso particular, los conglomerados incluidos en la muestra sin reemplazo corresponde a la Zona A y a la Zona E.

```
data(BigLucy)
attach(BigLucy)

UI <- levels(BigLucy$Zone)
NI <- length(UI)</pre>
```


Figura 6.1: Boxplot de la característica de interés Employees para cada una de las zonas.

```
nI <- 10
samI <- S.SI(NI, nI)
muestra <- UI[samI]
muestra

## [1] "County16" "County19" "County35" "County49" "County50"
## [7] "County59" "County74" "County81" "County82"</pre>
```

Un equipo de encuestadores se dispone a recolectar la información de cada una de las empresas pertenecientes a los conglomerados seleccionados, el plan operativo es más eficiente entre más entrevistadores sean contratados por cada conglomerado seleccionado. Cuando el proceso de medición termina se tienen dos conjuntos de datos, cada una conteniendo el valor de las características de interés para cada una de las empresas del área, correspondientes a **Zona A** y **Zona E**.

Con la función rbind es posible unir la información de las zonas geográficas seleccionadas en la muestra. Con ayuda de la función T.SIC(y,C), del paquete TeachingSampling, es posible obtener los totales de las características de interés en cada conglomerado. Los argumentos de esta función son y, el conjunto de datos (una sola variable o un conjunto de variables) del censo en cada conglomerado y C, una variable que indica la pertenencia del elemento, en este caso de las empresas, al conglomerado. El resultado de

la función es el total de elementos en cada conglomerado, así como el total de las características de interés en cada uno de los conglomerados. En este caso particular, el tamaño de la muestra de empresas es 307 + 165 = 472. Nótese que, como en los casos de estimación de los capítulos anteriores, se crea un conjunto de datos de las características de interés definido por estima <- data.frame(Income, Employees, Taxes).

```
Lucy1 <- BigLucy[which(Zone == muestra[1]),]</pre>
Lucy2 <- BigLucy[which(Zone == muestra[2]),]</pre>
Lucy3 <- BigLucy[which(Zone == muestra[3]),]</pre>
Lucy4 <- BigLucy[which(Zone == muestra[4]),]</pre>
Lucy5 <- BigLucy[which(Zone == muestra[5]),]</pre>
Lucy6 <- BigLucy[which(Zone == muestra[6]),]</pre>
Lucy7 <- BigLucy[which(Zone == muestra[7]),]</pre>
Lucy8 <- BigLucy[which(Zone == muestra[8]),]</pre>
Lucy9 <- BigLucy[which(Zone == muestra[9]),]</pre>
Lucy10 <- BigLucy[which(Zone == muestra[10]),]</pre>
LucyI <- rbind(Lucy1, Lucy2, Lucy3, Lucy4, Lucy5, Lucy6, Lucy7, Lucy8, Lucy9, Lucy10)
attach(LucyI)
Area <- as.factor(as.integer(Zone))</pre>
estima <- data.frame(Income, Employees, Taxes)
estimaI <- as.data.frame(T.SIC(estima, Area))</pre>
estimaI
##
       Ni Income Employees Taxes
## 9 614 179729
                      31412 2836
## 12 446 316398
                      38558 12866
## 30 330 205699
                      26029 6403
## 45 446 130158
                      23798 1666
## 46 330 68737
                      16085
                              708
## 47 330 127003
                      18267 2226
## 56 446 285476
                      35750 9177
## 73 223 85340
                      12572 1496
## 81 307 64317
                      14396
                               694
## 82 727 434395
                      55014 13620
```

El tamaño de muestra efectivo fue 4199. Una vez que se tienen los totales de cada zona geográfica, se utiliza la función E.SI(NI,nI,y) del paquete TeachingSampling, definida en el capítulo dos, para obtener las estimaciones de los parámetros de interés.

```
E.SI(NI, nI, estimal)
```

Los resultados de la estimación se muestran en la siguiente tabla. Es de considerar que la eficiencia de esta estrategia de muestreo es mucho menor que la de una estrategia que utilice un diseño de muestreo aleatorio simple. Nótese que la desviación relativa es mucho mayor.

Es claro que los resultados de esta estrategia de muestreo no son satisfactorios, por lo menos para la estimación de los parámetros de interés de Ingreso e Impuestos. La explicación de la deficiencia de esta estrategia es inmediata al analizar el siguiente gráfico que muestra el comportamiento estructural de los totales en los conglomerados.

Es notable como el comportamiento de los totales es tan diferente en cada conglomerado en las carac-

	N	Ni	Income	Employees	Taxes
Estimation	100.00	41990.00	18972520.00	2718810.00	516920.00
Standard Error	0.00	4580.29	3663011.99	398456.04	151013.44
CVE	0.00	10.91	19.31	14.66	29.21
DEFF		1.00	1.00	1.00	1.00

Tabla 6.3: Estimaciones para el diseño de muestreo aleatorio simple de conglomerados.

```
par(mfrow = c(2,2))
barplot(estimal$Income, main = "Totales de Income")
barplot(estimal$Employees, main = "Totales de Employees")
barplot(estimal$Taxes, main = "Totales de Taxes")
barplot(estimal$Ni, main = "Tamaños de los conglomerados")
```


Figura 6.2: Boxplot de las características de interés en cada nivel industrial.

terísticas Ingreso y Empleados. Sin embargo, el comportamiento es similar en cuanto a la característica Impuestos. Es interesante observar que entre más disimilitud existe entre los totales de los conglomerados, más desviación relativa existe en la estimación. Como se dijo en la introducción de este capítulo, esta estrategia de muestreo es ineficiente en aquellos casos en que los totales de cada conglomerado no están correlacionados con las probabilidades de inclusión a nivel de conglomerados. Observando el gráfico, se establece que Impuestos es la única característica que presenta un comportamiento estable en relación a los conglomerados.

6.3. Ejercicios **205**

La regla de oro se mantiene, una estrategia de muestreo es eficiente si las probabilidades de inclusión están correlacionadas con los valores de la característica de interés, en este caso con los totales de cada conglomerados.

6.3 Ejercicios

- 6.1 Argumente si las siguientes afirmaciones son falsas o verderas. Sustente su respuesta detallamente.
 - (a) En un diseño de muestreo de conglomerados, siempre se tiene un marco de muestreo de elementos de la población.
 - (b) En un diseño de muestreo de conglomerados, para la estimación de un total, se obtiene mayor precision si las probabilidades de selección o inclusión son proporcionales a los totales de la característica de interés en los conglomerados.
 - (c) En un diseño de muestreo de conglomerados, para la estimación de un total, se obtiene mayor precision si las probabilidades de selección o inclusión son proporcionales a la característica de interés de los elementos en los conglomerados.
 - (d) En la estimación de totales poblaciones, se nota que, casi siempre, $Var_{MASC}(t_{y,\pi})$ es mayor a $Var_{MAS}(t_{y,\pi})$.
 - (e) En un diseño de muestreo aleatorio simple de conglomerados de tamaño desigual, hay un aumento significativo de la varianza, respecto a un diseño de muestreo aleatorio simple de conglomerados de igual tamaño.
 - (f) En un diseño de muestreo PPT de conglomerados de tamaño desigual (con probabilidad proporcional al tamaño del conglomerado), hay una disminución significativa de la varianza, respecto a un diseño de muestreo aleatorio simple de conglomerados de tamaño desigual.
- 6.2 Suponga que el objetivo de una encuesta es estimar el ingreso medio en un barrio de la ciudad. Asuma que en ese barrio existen $N_I = 60$ manzanas. Se realiza un diseño de muestreo aleatorio simple de conglomerados y se seleccionan $n_I = 5$ manzanas, en las cuales se entrevistan a todos los hogares. Los resultados de la encuesta se dan en la tabla 6.4

Tabla 6.4: Tabla de las cinco manzanas seleccionadas: ejercicio 6.2

ID Manzana	Hogares en la manzana	Ingreso total en la manzana
AW45	120	25000
AW02	100	24000
AW31	80	19000
AW28	95	20100
AW44	80	18000

- (a) Estime el ingreso total de los hogares en el barrio. Reporte el coeficiente de variación estimado.
- (b) Estime el número de hogares en el barrio. Reporte el coeficiente de variación estimado.
- (c) Asumiendo que en el barrio hay N=2000 hogares, estime el ingreso medio de los hogares en el barrio. Reporte el coeficiente de variación estimado.
- (d) Estime el ingreso medio utilizando el estimador de Hájek. Explique la diferencia con respecto a la estimación del punto anterior.

Capítulo 7

Muestreo en varias etapas

En muchas situaciones, los elementos de un conglomerado pueden ser demasiado similares, de modo que el análisis de todos los elementos que conforman el conglomerado será un desperdicio de recursos. En estos casos podría ser más barato seleccionar más conglomerados y tomar una submuestra dentro de cada uno de ellos.

Lohr (2000)

En el capítulo anterior se utilizó la agrupación natural de los elementos en la población para ahorrar costes financieros y logísticos al planear una estrategia de muestreo por conglomerados. Sin embargo, el ahorro en términos operativos se ve reflejado en un alto precio por pagar con respecto a la eficiencia estadística de la estrategia. Una posible solución para disminuir la varianza es aumentar el tamaño de muestra de conglomerados, solución que aumentaría los costos operativos.

Para mantener un equilibrio entre los costos financieros y las bondades de la estrategia de muestreo es posible aprovechar la homogeneidad dentro de los conglomerados y, de esta manera, no realizar un censo dentro de cada conglomerado seleccionado sino proceder a seleccionar una sub-muestra dentro del conglomerado seleccionado. Como el comportamiento estructural de la característica de interés al interior de los conglomerados es homogéneo, entonces una estimación del total del conglomerado tendría una varianza pequeña. Por supuesto, como no se tienen acceso a un marco de muestreo de elementos, se debe realizar un empadronamiento para levantar un marco de muestreo de elementos en cada uno y sólo en los conglomerados seleccionados. Una vez se disponga del marco de muestreo de elementos dentro de los conglomerados, se dispone la selección de las sub-muestras de elementos. Bautista (1998) plantea que el principio básico del muestreo en varias etapas se puede definir como el proceso jerárquico que realiza l veces los siguientes pasos:

- 1. Construcción de l marcos de muestreo de unidades (conglomerados en las primeras l-1 etapas del diseño muestral y de elementos en la última etapa).
- 2. Aplicación de un diseño muestral y selección de la muestras (o sub-muestras) de cada marco de muestreo.

Nótese que se ha introducido el concepto de **unidad de muestreo** refiriéndose a conglomerados de elementos o a los elementos. Si el diseño de muestreo tiene tres etapas, por ejemplo: si se quieren obtener estimaciones acerca del comportamiento de los alumnos en determinada ciudad, y no se dispone de un marco de muestreo de los alumnos, es posible en una **primera etapa** levantar un marco de muestreo de todas y cada una de las escuelas en la ciudad y realizar una selección de una muestra de escuelas mediante cierto diseño de muestreo. Una vez que las escuelas son seleccionadas, en una

segunda etapa, se levanta un marco de muestreo de niveles académicos dentro de las escuelas (cursos o clases) y se procede a seleccionar una muestra de niveles. De tal forma que en la tercera y última etapa se levanta un marco de muestreo de elementos; es decir, de alumnos pertenecientes a cada nivel seleccionado, y se realiza una muestra de elementos que serán observados y medidos.

Es interesante observar cómo la población, en el estado de la naturaleza, se subdivide gracias al comportamiento «jerárquico», que en este caso particular toma la siguiente forma:

$$\underbrace{\mathbf{Ciudad}}_{\mathrm{Población}U} \Rrightarrow \underbrace{\mathbf{Escuelas}}_{\mathrm{UPM}} \Rrightarrow \underbrace{\mathbf{Niveles}}_{\mathrm{USM}} \Rrightarrow \underbrace{\mathbf{Alumnos}}_{\mathrm{UTM}}$$

Como notación, se llama **Unidad Primaria de Muestreo** o **UPM** a la primera subdivisión en conglomerados de la población original, **Unidad Secundaria de Muestreo** o **USM** a la sub-subdivisión de la población, es decir la subdivisión de las **UPM**. La **Unidad Terciaria de Muestreo** o **UTM** corresponde a los elementos de la población objetivo, que en este caso particular son los alumnos de la ciudad.

No siempre las unidades finales de muestreo son elementos, es así como es posible planear un diseño en dos etapas de conglomerados, refiriéndose a que la unidad secundaria de muestreo son conglomerados, o también es posible aplicar un diseño en cuatro etapas de elementos, en donde las unidades finales de muestreo sean elementos; por ejemplo, en Bautista (1998) se presenta el siguiente caso:

$$\underbrace{\text{Ciudad}}_{\text{Población}U} \Rrightarrow \underbrace{\text{Sección}}_{\text{UPM}} \Rrightarrow \underbrace{\text{Manzana}}_{\text{USM}} \Rrightarrow \underbrace{\text{Vivienda}}_{\text{UTM}} \Rrightarrow \underbrace{\text{Persona}}_{\text{UCM}}$$

El principio básico de una estrategia de muestreo en varias etapas es construir estimaciones desde abajo hasta arriba. Pero para que los resultados de la estimación basada en el diseño de muestreo sean aplicables, se deben satisfacer los siguientes dos supuestos:

- 1. **Invariancia:** sugiere que la probabilidad de selección de una muestra de unidades de muestreo (conglomerados o elementos) no depende del diseño de muestreo de la anterior etapa.
- 2. **Independencia:** interpretado como que el sub-muestreo de cualquier unidad de muestreo se lleva a cabo de manera independiente con las otras unidades de muestreo, en la misma etapa o en etapas superiores o inferiores.

Para el resto del capítulo se asume implícitamente que estas propiedades se satisfacen en cada etapa de muestreo de la estrategia. Si los supuestos no se satisfacen, entonces el lector puede consultar la sección de muestreo en varias fases del capítulo de Tópicos avanzados. Para asentar aún más la filosofía interna del muestreo en varias etapas, es necesario estudiar el más simple de todos los diseños de muestreo de esta clase: el muestreo en dos etapas.

7.1 Muestreo en dos etapas

También llamado muestreo «bietápico» por Mahalanobis (1946), este diseño de muestreo estima el total de cada cluster t_i mediante una sub-muestra dentro de los conglomerados seleccionados de la población. En la estimación de los parámetros de interés se encuentran dos fuentes de variabilidad cada una en cada etapa. Es decir, existe variabilidad debido a la selección de las unidades primarias de muestreo o conglomerados y, por supuesto, también existe variabilidad debido a la selección de una muestra de elementos, unidades secundarias de muestro en los conglomerados seleccionados.

Suponga que la población de elementos U se divide en N_I unidades primarias de muestreo, que definen una partición de la población, llamados también conglomerados y denotadas como U_I =

 $\{U_1, \ldots, U_{N_I}\}$. El *i*-ésimo conglomerado U_i $i=1,\ldots,N_I$ es de tamaño N_i . Särndal, Swensson & Wretman (1992) dan un marco general para el muestreo en dos etapas, de tal manera que

- 1. Una muestra s_I de unidades primarias de muestreo es seleccionada de U_I de acuerdo a un diseño de muestreo $p_I(s_I)$. Nótese que S_I representa la muestra aleatoria de conglomerados tal que $Pr(S_I = s_I) = p_I(s_I)$.
- 2. Para cada conglomerado U_i $i=1,\ldots,N_I$ seleccionado en la muestra s_I , se selecciona una muestra s_i de elementos seleccionada de acuerdo a un diseño de muestreo $p_i(s_i)$. Nótese que S_i representa la muestra aleatoria de elementos tal que $Pr(S_i = s_i) = p_i(s_i)$.

Este diseño de muestreo bietápico debe cumplir las dos propiedades de invarianza y de independencia. La invarianza significa que los diseños de muestreo $p_i(s_i)$ de la segunda etapa **no dependen** del resultado en la primera etapa, es decir, que el diseño de muestreo siempre debe ser el mismo dentro de cada una de las unidades primarias de muestreo.

$$Pr(S_i = s_i | S_I = s_I) = Pr(S_i = s_i).$$
 (7.1.1)

Nótese que lo anterior implica que $p_i(\cdot|s_I) = p_I(\cdot)$

La independencia significa que el proceso de selección de muestras en la segunda etapa dentro de cada unidad primaria de muestreo no depende de los procesos de selección utilizados en los restantes unidades primarias de muestreo. Es decir, el submuestreo en una unidad primaria de muestreo particular es independiente del submuestreo en otras unidades primarias de muestreo 1 , por tanto, para cada muestra aleatoria S_I en la primera etapa se cumple que

$$Pr\left(\bigcup_{i \in s_I} s_i | s_I\right) = \prod_{i \in s_I} Pr(s_i | s_I) \tag{7.1.2}$$

Si el diseño de muestreo en la primera etapa es con reemplazo, entonces un conglomerado puede aparecer más de una vez, y se debe proceder a realizar el sub-muestreo tantas veces como aparezca dicha unidad primaria en la muestra realizada s_I , con esto se garantiza que se cumplan las propiedades de independencia e invarianza. En términos de soporte, es posible hablar de también del tres clases de soporte. A saber:

- En la primera etapa existe un soporte Q_I conteniendo todas las posibles muestras realizadas de las unidades primarias de muestreo.
- En la segunda etapa existe un soporte Q^i para cada $i \in U_I$, es decir, para cada unidad primaria en la etapa anterior.
- ullet En general, el soporte Q conteniendo todas las posibles muestras de elementos mediante un diseño bietápico está dado por

$$Q = \bigcup_{r=1}^{\#Q_I} \bigcup_{i \in s_I^{(r)}} s_i, \quad \text{con } s_i \in Q^i$$

$$= \left\{ \bigcup_{i \in s_I^{(r)}} s_i, \quad \text{con } s_i \in Q^i, r = 1, \dots, \#Q_I \right\}$$

$$(7.1.3)$$

¹Nótese el símil con el proceso de estratificación.

Donde $s_I^{(r)}$ denota la r-ésima posible muestra en la primera etapa y la cardinalidad de Q está dada por

$$\#Q = \prod_{i \in U_I} \#Q^i$$

Y la muestra de elementos - o unidades secundarias de muestreo - viene dada por

$$S = \bigcup_{i \in S_I} S_i, \text{ con } S_i \in Q^i$$

$$(7.1.4)$$

con tamaño de la muestra aleatorio dado por

$$n(S) = \sum_{i \in S_I} n_i \tag{7.1.5}$$

La definición de los soportes en cada etapa y, en general, nos permiten proclamar que el diseño de muestreo bietápico es un auténtico diseño de muestreo.

Resultado 7.1.1. El diseño de muestreo bietápico cumple que

- 1. $p(s) \ge 0$ para todo $s \in Q$
- 2. $\sum_{s \in Q} p(s) = 1$

Prueba. En primer lugar, se tiene que

$$p(s) = Pr(\text{Seleccionar } s_I \text{ en la etapa uno y seleccionar } \bigcup_{i \in s_I} s_i \text{ en etapa dos})$$

$$= p_I(s_I) \underbrace{Pr\left(\bigcup_{i \in s_I} s_i | s_I\right)}_{Independencia}$$

$$= p_I(s_I) \prod_{i \in s_I} \underbrace{Pr(s_i | s_I)}_{Invarianza}$$

$$= p_I(s_I) \prod_{i \in s_I} p_i(s_i)$$

y es claro que $p(s) \ge 0$. Ahora, para demostrar la segunda propiedad, se tiene que

$$\sum_{s \in Q} p(s) = \sum_{r=1}^{\#Q_I} \sum_{s_I^{(r)}} p(s)$$

$$= \sum_{r=1}^{\#Q_I} \sum_{s_I^{(r)}} p_I(s_I^{(r)}) \prod_{i \in s_I^{(r)}} p_i(s_i)$$

$$= \sum_{r=1}^{\#Q_I} p_I(s_I^{(r)}) \sum_{s_I^{(r)}} \prod_{i \in s_I^{(r)}} p_i(s_i)$$

$$= \sum_{r=1}^{\#Q_I} p_I(s_I^{(r)}) = 1$$

En donde la equivalencia a uno del segundo sumando en la tercera igualdad se obtiene haciendo el símil con la demostración del resultado 5.1.1., en donde el diseño estratificado se definió como una productoria.

Para ilustrar el anterior resultado, junto con la compenetración de los conceptos de soportes en cada una de las etapas, se diseñó el siguiente ejemplo que utiliza un diseño de muestreo sin reemplazo en dos etapas.

Ejemplo 7.1.1. Nuestra población ejemplo U_I dada por

$$U_I = \{U_1, U_2, U_3\}$$

Suponga que se selecciona una muestra s_I de unidades primarias de muestreo de tamaño $n_I = 2$ mediante un diseño de muestreo sin reemplazo tal que

$$p_I(s_I) = \begin{cases} 0.5, & \text{si } s_I = \{U_1, U_2\}, \\ 0.4, & \text{si } s_I = \{U_1, U_3\}, \\ 0.1, & \text{si } s_I = \{U_2, U_3\} \end{cases}$$

Ahora, suponga que dentro de cada unidad primaria seleccionada se selecciona un solo elemento de acuerdo a los siguientes diseños de muestreo

$$p_1(S_1 \mid S_I) = \begin{cases} 0.5, & \text{si } s_1 = \{Yves\}, \\ 0.5, & \text{si } s_1 = \{Ken\} \end{cases}$$

$$p_2(S_2 \mid S_I) = \begin{cases} 0.9, & \text{si } s_2 = \{Erik\}, \\ 0.1, & \text{si } s_2 = \{Sharon\} \end{cases}$$

$$p_3(S_3 \mid S_I) = \begin{cases} 1.0, & \text{si } s_3 = \{Leslie\} \end{cases}$$

Es decir, el tamaño de la muestra final es n=2. Y el soporte de la primera etapa está dado por

$$Q_I = \{\{U_1, U_2\}, \{U_1, U_3\}, \{U_2, U_3\}\},\$$

y los soportes de la segunda etapa están dados por $Q^1 = \{\{Yves\}, \{Ken\}\}, Q^2 = \{\{Erick\}, \{Sharon\}\}\}$ y $Q^3 = \{\{Leslie\}\}$. Dado lo anterior, el soporte Q está dada por

$$Q = \left\{ \bigcup_{i \in s_I^{(1)}} s_i, \bigcup_{i \in s_I^{(2)}} s_i, \bigcup_{i \in s_I^{(3)}} s_i \right\},$$

donde

$$\bigcup_{i \in s_I^{(1)}} s_i = \left\{ \{ \text{Yves, Erick} \}, \{ \text{Yves, Sharon} \}, \{ \text{Ken, Erick} \}, \{ \text{Ken, Sharon} \} \right\},$$

$$\bigcup_{i \in s_i^{(2)}} s_i = \left\{ \{ \text{Erick}, \text{Leslie} \}, \{ \text{Sharon}, \text{Leslie} \} \right\},$$

у

$$\bigcup_{i \in s_I^{(3)}} s_i = \left\{ \{ \text{Yves}, \text{Leslie} \}, \{ \text{Ken}, \text{Leslie} \} \right\}.$$

Las probabilidades $\prod_{i \in s_I} p_i(s_i)$ y $p_I(s_I)$ para todas las posibles muestras son como sigue a continuación:

		p(s_1) X p(s_2)	p(s_I)	p(s)
Yves	Erick	0.5 X 0.9	0.5	0.225
Yves	Sharon	0.5 X 0.1	0.5	0.025
Ken	Erick	0.5 X 0.9	0.5	0.225
Ken	Sharon	0.5 X 0.1	0.5	0.025
Erick	Leslie	0.9 X 1.0	0.1	0.090
Sharon	Leslie	0.1 X 1.0	0.1	0.010
Yves	Leslie	0.5 X 1.0	0.4	0.200
Ken	Leslie	0.5 X 1.0	0.4	0.200
Total				1.000

Se observa que p(s) es un auténtico diseño de muestreo. Nótese que dentro de cada posible muestra de la primera etapa, la suma de probabilidades es igual a uno. Por ejemplo, para $S_I = \{U_1, U_2\}$, las posibles muestras en la segunda etapa corresponden a $\{Yves, Erick\}$, $\{Yves, Sharon\}$, $\{Ken, Erick\}$ y $\{Ken, Sharon\}$ con probabilidades 0.45, 0.05, 0.45 y 0.05, respectivamente, y la suma de estas probabilidades es igual a uno.

Los parámetros poblacionales de interés pueden escribirse como:

1. El total poblacional,

$$t_y = \sum_{k \in U} y_k = \sum_{i=1}^{N_I} \sum_{k \in U_i} y_k = \sum_{i=1}^{N_I} t_{yi}$$
 (7.1.6)

donde $t_{yi} = \sum_{k \in U_i} y_k$ es el total de la *i*-ésima unidad primaria de muestreo $i = 1, \dots, N_I$.

2. La media poblacional,

$$\bar{y}_U = \frac{\sum_{k \in U} y_k}{N} = \frac{1}{N} \sum_{i=1}^{N_I} \sum_{k \in U_i} y_k = \frac{1}{N} \sum_{i=1}^{N_I} N_i \bar{y}_i$$
 (7.1.7)

donde $\bar{y}_i = \frac{1}{N_i} \sum_{k \in U_i} y_k$ es la media de la *i*-ésima unidad primaria de muestreo $i = 1, \dots, N_I$.

Ejemplo 7.1.2. Nuestra población ejemplo U_I dada por

$$U_I = \{U_1, U_2, U_3\}$$

Suponga que se selecciona una muestra s_I de unidades primarias de muestreos de tamaño $n_I = 2$. El sub-muestreo en la segunda etapa es tal que en cada unidad primaria de muestreo seleccionada en la primera etapa se selecciona un sólo elemento, de tal forma que el tamaño de la muestra de elementos es de dos. Defina el soporte Q de elementos si la selección de la muestra es con reemplazo.

7.1.1 El estimador de Horvitz-Thompson

En la primera etapa las probabilidades de inclusión de primer y segundo orden, de las unidades primarias de muestreo, inducidas por el diseño de muestreo $p_I(s_I)$ están dadas por π_{Ii} y π_{Iij} respectivamente con $i, j \in U_I$. Por tanto se tiene que

$$\Delta_{Iij} = \begin{cases} \pi_{Iij} - \pi_{Ii}\pi_{Ij}, & \text{si } i, j \in U_I, \\ \pi_{Ii}(1 - \pi_{Ii}), & \text{si } i = j \in U_I. \end{cases}$$
 (7.1.8)

En la segunda etapa las probabilidades de inclusión de primer y segundo orden, de los elementos en la i-ésima $i \in S_I$ unidad primaria de muestreo, inducidas por el diseño de muestreo $p_i(s_i)$ y condicionadas a que U_i fue seleccionada en la muestra de la primera etapa están dadas por $\pi_{k|i}$ y $\pi_{kl|i}$ respectivamente para $k,l \in U_i$ con $\pi_{k|i} = Pr(k \in S_i|U_i \in S_I)$ y $\pi_{kl|i} = Pr(k \in S_i,l \in S_i|U_i \in S_I)$. Por tanto se tiene que

$$\Delta_{kl|i} = \begin{cases} \pi_{kl|i} - \pi_{k|i}\pi_{l|i}, & \text{si } k \neq l, \\ \pi_{k|i}(1 - \pi_{k|i}), & \text{si } k = l. \end{cases}$$
 (7.1.9)

En general, de la definición de probabilidad de inclusión se tiene el siguiente resultado.

Resultado 7.1.2. La probabilidad de inclusión de primer orden del k-ésimo elemento de U está dada por

$$\pi_k = Pr(k \in S) = Pr(k \in S_i \ y \ i \in S_I)$$

= $Pr(k \in S_i | i \in S_I) Pr(i \in S_I) = \pi_{k|i} \pi_{Ii}$ (7.1.10)

La probabilidad de inclusión de segundo orden está dada por

$$\pi_{kl} = \begin{cases} \pi_{Ii} \pi_{k|i}, & \text{si } k = l \in U_i, \\ \pi_{Ii} \pi_{k|i}, & \text{si } k \neq l \in U_i, \\ \pi_{Iij} \pi_{k|i} \pi_{l|j}, & \text{si } k \in U, l \in U_j (i \neq l). \end{cases}$$
(7.1.11)

Con el anterior resultado podemos utilizar la forma general del estimador de Horvitz-Thompson para hallar su expresión particular y su varianza bajo un diseño de muestreo bietápico (Särndal, Swensson & Wretman 1992). Sin embargo, para hallar una forma más rápida de calcular la varianza del estimador necesitamos recurrir a algunos resultados muy conocidos de la teoría de probabilidad. Éstos han sido utilizados ampliamente en el campo del muestreo, pero no fue sino hasta que Hansen, Hurwitz & Madow (1953) publicaron dichos resultados aplicados al muestreo. En general, se trata de expresar:

- La esperanza de una variable aleatoria como el valor esperado de esperanzas condicionales.
- La varianza de una variable aleatoria como la suma de la varianza de esperanzas condicionales y la esperanza de varianzas condicionales.

Resultado 7.1.3. Sean U y H variables aleatorias, entonces:

$$E_1(U) = E_2(E_1(U|H)) (7.1.12)$$

y, a su vez,

$$Var_1(U) = E_2(Var_1(U|H)) + Var_2(E_1(U|H))$$
(7.1.13)

En donde el subíndice 1, denota la esperanza o varianza inducida por la función de distribución de la variable aleatoria U, y el subíndice 2 denota la esperanza o varianza inducida por la función de distribución de la variable aleatoria H.

Prueba. Es necesario recordar que $Pr(U = U_i|H_j) = Pr(U = U_i, H = H_j)/Pr(H_j)$ y además que $Pr(U = U_i) = \sum_i (U = U_i, H = H_j)$, por consiguiente.

1. Esperanza:

$$E_{1}(U) = \sum_{i} U_{i} Pr(U = U_{i})$$

$$= \sum_{i} U_{i} \sum_{j} Pr(U = U_{i}, H = H_{j})$$

$$= \sum_{i} U_{i} \sum_{j} Pr(U = U_{i}|H = H_{j}) Pr(H = H_{j})$$

$$= \sum_{j} Pr(H = H_{j}) \sum_{i} U_{i} Pr(U = U_{i}|H = H_{j})$$

$$= \sum_{j} Pr(H = H_{j}) E_{2}(U|H = H_{j})$$

$$= E_{2}(E_{1}(U|H))$$

2. Covarianza: sea W, una variable aleatoria y tomemos a $x = E_2(U)$ y $y = E_2(W)$

$$\begin{split} Cov(U,W) &= E(UW) - E(U)E(W) \\ &= E_1(E_2(UW)) - E_1(E_2(U))E_1(E_2(W)) \\ &= E_1(E_2(UW)) - E_1(x)E_1(y) \\ &= E_1\left[E_2(UW) - xy\right] + E(xy) - E_1(x)E_1(y) \\ &= E_1\left[Cov_2(U,W)\right] + Cov_1(x,y) \\ &= E_1\left[Cov_2(U,W)\right] + Cov_1\left[E_2(U), E_2(W)\right] \end{split}$$

3. Varianza: dado que la varianza es un caso particular de la covarianza, entonces:

$$Var(U) = Cov(U, U) = E_1 [Cov_2(U, U)] + Cov_1 [E_2(U), E_2(U)]$$

= $E_1[Var_2(U)] + Var_1[E_2(U)]$

Con ayuda del anterior resultado es posible obtener expresiones para el estimador de Horvitz-Thompson que muestren la variación en cada una de las dos etapas de este diseño de muestreo. Es interesante la forma que toma tanto el estimador genérico como su respectiva varianza porque, dado que existen dos etapas de muestreo, en la primera se estiman los totales de los conglomerados y, en la segunda etapa se estima el gran total utilizando esas estimaciones en las unidades primarias seleccionadas. Como el proceso de estimación se lleva a cabo en dos etapas, es de esperarse que existan dos fuentes de variación: la primera debido a la estimación de los totales de las unidades primarias de muestreo y la segunda debido a la estimación del gran total. Suponiendo que fueron seleccionadas cuatro unidades primarias de muestreo, existirán entonces cuatro estimaciones cuya varianza estará sintetizada en una sola expresión, mientras que, por otro lado, existirá otra fuente de variación cuando se quiera estimar el gran total.

Resultado 7.1.4. Bajo muestreo en dos etapas el estimador de Horvitz-Thompson es insesgado para el total poblacional y toma la forma

$$\hat{t}_{y,\pi} = \sum_{i \in S_I} \sum_{k \in S_i} \frac{y_k}{\pi_{Ii} \pi_{k|i}} = \sum_{i \in S_I} \frac{\hat{t}_{yi,\pi}}{\pi_{Ii}}$$
(7.1.14)

con varianza dada por

$$Var_{BI}(\hat{t}_{y,\pi}) = \underbrace{\sum \sum_{U_I} \Delta_{Iij} \frac{t_i}{\pi_{Ii}} \frac{t_j}{\pi_{Ij}}}_{Var(UPM)} + \underbrace{\sum_{i \in U_I} \frac{Var_{p_i}(\hat{t}_i)}{\pi_{Ii}}}_{Var(USM)}$$
(7.1.15)

cuya estimación insesgada es

$$\widehat{Var}_{BI}(\hat{t}_{y,\pi}) = \underbrace{\sum \sum_{S_I} \frac{\Delta_{Iij}}{\pi_{Iij}} \frac{\hat{t}_{yi,\pi}}{\pi_{Ii}} \frac{\hat{t}_{yj,\pi}}{\pi_{Ij}}}_{\widehat{Var}(UPM)} + \underbrace{\sum_{i \in S_I} \widehat{Var}(\hat{t}_{yi,\pi})}_{\widehat{Var}(USM)}$$
(7.1.16)

donde

$$Var(\hat{t_i}) = \sum_{U_i} \Delta_{kl|i} \frac{y_k}{\pi_{k|i}} \frac{y_l}{\pi_{l|i}}$$
 (7.1.17)

$$\hat{t}_{yi,\pi} = \sum_{k \in S_i} \frac{y_k}{\pi_{k|i}}$$

representando la estimación del total de la característica de interés en la i-ésima unidad primaria de muestreo y

$$\widehat{Var}(\hat{t_i}) = \sum_{S_i} \frac{\Delta_{kl|i}}{\pi_{kl|i}} \frac{y_k}{\pi_{k|i}} \frac{y_l}{\pi_{l|i}}$$
(7.1.18)

Nótese que la variación del estimador se descompone en las dos etapas propias de este diseño. Además es importante tener en cuenta que $\widehat{Var}(UPM)$ y $\widehat{Var}(USM)$ no son estimadores insesgados para Var(UPM) y Var(USM) respectivamente. Sin embargo, toda la expresión $\widehat{Var}_{BI}(\hat{t}_{y,\pi})$ sí lo es para $Var_{BI}(\hat{t}_{y,\pi})$.

Prueba. Para desarrollar el anterior resultado es necesario manejar los dos conceptos inherentes al muestreo en dos o más etapas. a)La invarianza: para seleccionar las unidades primarias de muestreo se debe utilizar un mismo diseño y b)La independencia: cualquiera que fuere el diseño escogido para seleccionar los elementos dentro de una unidad primaria de muestreo, éste no debe afectar el sub-muestreo en cualquier otra unidad primaria de muestreo; por tanto, cualquier covarianza existente en esta etapa será nula.

En primer lugar, se tiene la siguiente forma para el estimador de Horvitz-Thompson:

$$\hat{t}_{y,\pi} = \sum_{k \in S} \frac{y_k}{\pi_k} \tag{7.1.19}$$

$$= \sum_{i \in S_I} \sum_{k \in S_i} \frac{y_k}{\pi_{Ii} \pi_{k|i}} \tag{7.1.20}$$

$$= \sum_{i \in S_I} \frac{1}{\pi_{Ii}} \sum_{k \in S_i} \frac{y_k}{\pi_{k|i}}$$
 (7.1.21)

$$= \sum_{i \in S_I} \frac{\hat{t}_{yi,\pi}}{\pi_{Ii}} \tag{7.1.22}$$

1. Insesgamiento del estimador:

$$E_{p}(\hat{t}_{y,\pi}) = E_{p_{I}} \left(E_{p} \left[\sum_{i \in S_{I}} \frac{\hat{t}_{yi,\pi}}{\pi_{Ii}} \mid S_{I} \right] \right)$$

$$= E_{p_{I}} \left(\sum_{i \in S_{I}} \underbrace{E_{p} \left[\frac{\hat{t}_{yi,\pi}}{\pi_{Ii}} \mid S_{I} \right]}_{\text{invarianza}} \right)$$

$$= E_{p_{I}} \left(\sum_{i \in S_{I}} \frac{E_{p_{i}}(\hat{t}_{yi,\pi})}{\pi_{Ii}} \right)$$

$$= E_{p_{I}} \left(\sum_{i \in S_{I}} \frac{t_{yi,\pi}}{\pi_{Ii}} \right)$$

$$= \sum_{i \in U_{I}} \frac{t_{yi,\pi}}{\pi_{Ii}} E_{P_{I}}(I_{Ii}(S_{I})) = t_{y}$$

2. Varianza:

$$Var_{p}(\hat{t}_{y,\pi}) = \underbrace{Var_{p_{I}}\left(E_{p}\left[\hat{t}_{y,\pi} \mid S_{I}\right]\right)}_{Var(UPM)} + \underbrace{E_{p_{I}}\left(Var_{p}\left[\hat{t}_{y,\pi} \mid S_{I}\right]\right)}_{Var(USM)}$$
(7.1.23)

El primer sumando es equivalente a

$$Var_{p_{I}}\left(E_{p}\left[\hat{t}_{y,\pi} \mid S_{I}\right]\right) = Var_{p_{I}}\left(E_{p}\left[\sum_{i \in S_{I}} \frac{\hat{t}_{yi,\pi}}{\pi_{Ii}} \mid S_{I}\right]\right)$$

$$= Var_{p_{I}}\left(\sum_{i \in S_{I}} \underbrace{\frac{E_{p}(\hat{t}_{y,\pi} \mid S_{I})}{\pi_{Ii}}}_{Invarianza}\right)$$

$$= Var_{p_{I}}\left(\sum_{i \in S_{I}} \frac{E_{p}(\hat{t}_{y,\pi})}{\pi_{Ii}}\right)$$

$$= Var_{p_{I}}\left(\sum_{i \in S_{I}} \frac{t_{yi,\pi}}{\pi_{Ii}}\right)$$

$$= \sum_{II_{I}} \Delta_{Iij} \frac{t_{yi,\pi}}{\pi_{Ii}} \frac{t_{yj,\pi}}{\pi_{Ij}}$$

El segundo sumando toma la siguiente forma

$$E_{p_I} \left(Var_p \left[\hat{t}_{y,\pi} \mid S_I \right] \right) = E_{p_I} \left(Var_p \left[\sum_{i \in S_I} \frac{\hat{t}_{yi,\pi}}{\pi_{Ii}} \mid S_I \right] \right)$$

$$= E_{p_I} \left(\sum_{i \in S_I} \frac{Var_p(\hat{t}_{yi,\pi} \mid S_I)}{\pi_{Ii}^2} \right)$$

$$= E \left(\sum_{i \in S_I} \left[\frac{Var(\hat{t}_{yi,\pi})}{\pi_{Ii}^2} \right] \right)$$

$$= E_{p_I} \sum_{i \in U_I} \frac{I_{Ii}(S_I)}{\pi_{Ii}^2} Var_{p_i}(\hat{t}_{yi,\pi})$$

$$= \sum_{i \in U_I} \left[\frac{Var(\hat{t}_{yi,\pi})}{\pi_{Ii}} \right]$$

Luego, la varianza del estimador está dada por la expresión (7.1.15).

3. Varianza Estimada: para verificar que $\widehat{Var}_{BI}(\hat{t}_{y,\pi})$ es un estimador insesgado de la varianza del estimador de Horvitz-Thompson, se debe tener en cuenta que

$$E\left(\hat{t}_{yi,\pi}\hat{t}_{yj,\pi} \mid S_{I}\right) = \begin{cases} Var_{p_{i}}(\hat{y}_{yi,\pi}) + (E_{p_{i}}(\hat{y}_{yi,\pi}))^{2}, & \text{si } i = j, \\ E_{p_{i}}(\hat{y}_{yi,\pi})E_{p_{j}}(\hat{y}_{yj,\pi}), & \text{si } i \neq j \end{cases}$$

$$= \begin{cases} Var(\hat{t}_{yi,\pi}) + t_{yi,\pi}^{2}, & \text{si } i = j, \\ (t_{yi,\pi})(t_{yj,\pi}), & \text{si } i \neq j \end{cases}$$

$$(7.1.24)$$

Para la primera parte de la varianza estimada se tiene que

$$E_{p_{I}}\left(E_{p}\left[\sum_{S_{I}}\frac{\Delta_{Iij}}{\pi_{Iij}}\frac{\hat{t}_{yi,\pi}}{\pi_{Ii}}\frac{\hat{t}_{yj,\pi}}{\pi_{Ij}}|S_{I}\right]\right)$$

$$=E_{p_{I}}\sum_{S_{I}}\sum_{\pi_{Iij}}\frac{\Delta_{Iij}}{\pi_{Iij}}\frac{E_{p}(\hat{t}_{yi,\pi}\hat{t}_{yj,\pi}|S_{I})}{\pi_{Ii}\pi_{Ij}}$$

$$=E\left(\sum_{i\in S_{I}}\sum_{j\neq i\in S_{I}}\frac{\Delta_{Iij}}{\pi_{Iij}}\frac{(t_{yi,\pi})}{\pi_{Ii}}\frac{(t_{yj,\pi})}{\pi_{Ij}}+\sum_{S_{I}}\frac{\Delta_{Iii}}{\pi_{Iii}}\frac{Var(\hat{t}_{yi,\pi})+t_{yi,\pi}^{2}}{\pi_{Ii}^{2}}\right)$$

$$=E\left(\sum_{i\in S_{I}}\sum_{j\in S_{I}}\frac{\Delta_{Iij}}{\pi_{Iij}}\frac{(t_{yi,\pi})}{\pi_{Ii}}\frac{(t_{yj,\pi})}{\pi_{Ij}}+\sum_{S_{I}}\frac{Var(\hat{t}_{yi,\pi})}{\pi_{Ii}^{2}}(1-\pi_{Ii})\right)$$

$$=\sum_{i\in U_{I}}\sum_{j\in U_{I}}\Delta_{Iij}\frac{(t_{yi,\pi})}{\pi_{Ii}}\frac{(t_{yj,\pi})}{\pi_{Ij}}-\sum_{U_{I}}Var(\hat{t}_{yi,\pi})\left(1-\frac{1}{\pi_{Ii}}\right)$$

Para la segunda parte de la varianza estimada se tiene que

$$E\left(E\left[\sum_{i \in S_I} \frac{\widehat{Var}(\hat{t}_{yi,\pi})}{\pi_{Ii}} \mid S_I\right]\right)$$

$$= E\left(\sum_{i \in S_I} \frac{Var(\hat{t}_{yi,\pi})}{\pi_{Ii}}\right)$$

$$= \sum_{i \in U_I} Var(\hat{t}_{yi,\pi})$$

$$= \sum_{U_I} \frac{Var(\hat{t}_{yi,\pi})}{\pi_{Ii}} + \sum_{U_I} Var(\hat{t}_{yi,\pi}) \left(1 - \frac{1}{\pi_{Ii}}\right)$$

Sumando estas dos cantidades se llega al resultado. Nótese que por sí solas, estas cantidades no son insesgadas para sus contrapartes poblacionales, sin embargo se tiene que:

$$E\left[\widehat{Var}(UPM)\right] + E\left[\widehat{Var}(USM)\right] = Var(\hat{t}_{y,\pi})$$
 (7.1.25)

Al respecto de la forma que toma la varianza del estimador de Horvitz-Thompson, Särndal, Swensson & Wretman (1992) afirman que:

- Es conveniente estimar los dos componentes de varianza Var(UPM) y Var(USM) separadamente para tener una idea del aporte de variabilidad en cada una de las etapas.
- Si $\pi_{k|i} = \pi_{kl|i} = 1$ para todo $k, l \in U_i$ y para todo $U_i \in S_I$, entonces Var(USM) = 0 entonces este diseño toma la forma de un diseño de conglomerados.
- Si $\pi_{Ii} = \pi_{Iij} = 1$ para todo $i, j = 1, ..., N_I$, entonces este diseño se torna en un diseño estratificado

Ejemplo 7.1.3. Utilizando la información del ejemplo 7.1.1, compruebe, mediante un ejercicio léxicográfico, el insesgamiento del estimador de Horvitz-Thompson.

7.2 Diseño de muestreo MAS-MAS

En el muestreo aleatorio simple de conglomerados se medían todos y cada una de los elementos pertenecientes a los conglomerados seleccionados en la muestra s_I . Sin embargo, dado que, en la mayoría de situaciones, los conglomerados tienden a ser muy similares en el comportamiento estructural de la característica de interés se consideraría un desperdicio de recursos económicos y logísticos la incorporación de elementos que no traen consigo nueva información. Para esto es más económico tomar una muestra más amplia de unidades primarias de muestro y realizar un sub-muestreo dentro de cada una de ellas.

Este diseño de muestreo supone que la población está divida en N_I unidades primarias de muestreo, de las cuales se selecciona una muestra s_I de n_I unidades mediante un diseño de muestreo aleatorio simple. El sub-muestreo dentro de cada unidad primaria seleccionada es también aleatorio simple. Es decir, para cada unidad primaria de muestreo seleccionada $i \in s_{Ih}$ de tamaño N_i se selecciona una muestra s_i de elementos de tamaño n_i .

7.2.1 Algoritmos de selección

En la selección de las muestras de unidades primarias y secundarias sin reemplazo se utilizan los algoritmos de muestreo dados en el capítulo 2, de tal forma que los siguientes pasos se deben realizar:

- ullet Separar la población en N_I unidades primarias de muestreo mediante el marco de muestreo de conglomerados.
- Realizar una selección de n_I conglomerados mediante cualquiera de los métodos expuestos en la sección 3.2.1; es decir, por el método coordinado negativo o por el método de Fan-Muller-Rezucha.
- Para cada unidad primaria seleccionada en la muestra de la primera etapa s_I , realizar una selección de n_i $i \in S_I$ elementos mediante cualquiera de los métodos expuestos en la sección 3.2.1.

Resultado 7.2.1. Cuando el diseño de muestreo es aleatorio simple en las dos etapas, se tienen las siguientes probabilidades de inclusión de primer y segundo orden

$$\pi_{Ii} = \frac{n_I}{N_I} \tag{7.2.1}$$

$$\pi_{Iij} = \frac{n_I(n_I - 1)}{N_I(N_I - 1)} \tag{7.2.2}$$

respectivamente. Por otro lado, la probabilidad de inclusión de un elemento o unidad secundaria de muestreo perteneciente a la i-ésima unidad primaria de muestreo $i \in U_I$ está dado por

$$\pi_k = \frac{n_I}{N_I} \frac{n_i}{N_i} \tag{7.2.3}$$

Una vez que la muestra de unidades primarias s_I es seleccionada se dispone a realizar una enumeración completa de los elementos pertenecientes a ésta para levantar un marco de muestreo que permita la selección de una sub-muestra para realizar la respectiva medición de todos y cada uno de los elementos pertenecientes a la sub-muestra seleccionada. En el diseño de muestreo aleatorio por conglomerados el estimador del total poblacional t_y estaba dado por $\hat{t}_{y,\pi} = \frac{N_i}{n_i} \sum_{i \in S_I} t_{yi}$ porque se conocían los totales exactos de cada conglomerado seleccionado mediante la realización de un censo en los mismos. Por otra parte, en el muestreo en dos etapas MAS-MAS, debido a que no se miden todos los elementos de las unidades primarias seleccionadas, se deben estimar estos totales t_{yi} mediante la siguiente expresión

$$\hat{t}_{yi,\pi} = \frac{N_i}{n_i} \sum_{k \in S_i} y_k = N_i \bar{y}_{U_i}$$
 (7.2.4)

Con el siguiente resultado se llega a una estimación del parámetro de interés

Resultado 7.2.2. Bajo muestreo en dos etapas MAS-MAS, el estimador de Horvitz-Thompson es insesgado para el total poblacional y toma la forma

$$\hat{t}_{y,\pi} = \frac{N_I}{n_I} \sum_{i \in S_I} \frac{N_i}{n_i} \sum_{k \in S_i} y_k \tag{7.2.5}$$

con varianza dada por

$$Var_{MM}(\hat{t}_{y,\pi}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) S_{t_y U_I}^2 + \frac{N_I}{n_I} \sum_{i \in I_I} \frac{N_i^2}{n_i} \left(1 - \frac{n_i}{N_i} \right) S_{y U_i}^2$$
 (7.2.6)

cuya estimación insesgada es

$$\widehat{Var}_{MM}(\hat{t}_{y,\pi}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) S_{\hat{t}_y S_I}^2 + \frac{N_I}{n_I} \sum_{i \in S_I} \frac{N_i^2}{n_i} \left(1 - \frac{n_i}{N_i} \right) S_{y_{S_i}}^2$$
(7.2.7)

donde $S^2_{t_yU_I}$ es la varianza poblacional de los totales t_{yi} $i \in U_I$ de todas y cada una de las unidades primarias de muestreo y $S^2_{y_{U_i}}$ es la varianza poblacional entre los elementos dentro de cada unidad primaria de muestreo. Similarmente, $S^2_{\hat{t}_v s_I}$ y $S^2_{y_{s_i}}$.

El primer término de (7.2.6) se refiere a la variabilidad debida a la primera etapa del diseño muestral mientras que el segundo sumando se refiere a la varianza adicional debida al sub-muestreo en las unidades primarias de muestreo. Lohr (2000) afirma que, de igual manera como en el caso del diseño de muestreo por conglomerados, si las unidades primarias de muestreo presentan distintos tamaños entonces la variabilidad del estimador puede ser muy grande. Si los tamaños N_i de los conglomerados $i \in U_I$ son muy diferentes entre sí, el componente de varianza será grande incluso si el comportamiento estructural de la característica de interés es constante en cada unidad primaria.

7.2.2 Tamaño de muestra

Cada vez que avanzamos en el desarrollo programático de este texto nos encontramos, si bien los principios de estimación son los mismos, con que el diseño de la encuesta y la estimación de los parámetros de interés se tornan más complejos. Lohr (2000) afirma que la mejor manera de diseñar una encuesta es revisarla después de que esta haya concluido pues, al finalizar la encuesta, es posible evaluar el efecto de las unidades primarias de muestreo sobre la estimación final y, de esta manera, es posible saber en dónde se deberían asignar más recursos logísticos para obtener una mejor información. Pero a pesar de que el conocimiento de la población sea aceptable, siempre surge la pregunta del tamaño de muestra. En particular, ¿cuántas unidades primarias de muestreo se deberían seleccionar en la muestra? y ¿cuántos elementos o unidades secundarias de muestreo deberían ser seleccionados en el sub-muestreo dentro de las unidades primarias de muestreo?

Por ejemplo, en particular en las encuestas de áreas mientras mayor sea el tamaño de la unidad primaria de muestreo, se puede esperar que exista más variabilidad de dentro de la misma. Sin embargo, si el tamaño de unidad primaria es muy grande, se podrían perder los beneficios del ahorro financiero y logístico.

El objetivo de una buena muestra es recopilar la mayor cantidad de información al menor precio económico y operativo. Suponga que la población está divida en N_I unidades primarias de muestreo, de las cuales se selecciona una muestra s_I de n_I unidades. Cada unidad primaria de muestreo contiene exactamente $N_i=M$ elementos o unidades secundarias de muestreo. El sub-muestreo es tal que se selecciona una muestra de exactamente $n_i=m$ unidades secundarias de muestreo. Por tanto, el tamaño poblacional y muestral estará dado por

$$N = N_I M \qquad y \qquad n = n_I m \tag{7.2.8}$$

respectivamente. De tal forma que el estimador de t_y se puede escribir como

$$\hat{t}_{y,\pi} = \frac{N_I}{n_I} \frac{M}{m} \sum_{i \in S_I} \sum_{k \in S_i} y_k \tag{7.2.9}$$

y su varianza como

$$Var_{MM}(\hat{t}_{y,\pi}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) S_{t_y U_I}^2 + \frac{N_I^2 M^2}{n_I m} \left(1 - \frac{m}{M} \right) \bar{S}_{y_{U_i}}^2$$
 (7.2.10)

donde $\bar{S}_{y_{U_i}}^2 = (1/N_I) \sum_{i \in U_I} S_{y_{U_i}}^2$.

Resultado 7.2.3. Utilizando los resultados de la descomposición de las sumas de cuadrados, la varianza de la estrategia en dos etapas (2MAS) toma la siguiente forma

$$Var_{2MAS}(\hat{t}_{y,\pi}) = \frac{N_I^2 M}{n_I} \left[\frac{1}{N_I - 1} (SCT - SCD) + \left(\frac{M}{m} - 1 \right) \frac{SCD}{N_I (M - 1)} \right]$$
(7.2.11)

mientras que la varianza de la estrategia aleatoria simple, con un tamaño poblacional igual a $N=M\times N_I$ elementos y un tamaño de muestra igual a $n=m\times n_I$ elementos, se puede escribir como

$$Var_{MAS}(\hat{t}_{y,\pi}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) M \frac{SCT}{MN_I - 1}$$
 (7.2.12)

Para encontrar los valores óptimos de n_I y m que serán utilizados en la primera y segunda etapa de muestro de tal forma que dada una función de costo se minimice² la varianza del estimador. Por tanto, se tiene el siguiente resultado.

Resultado 7.2.4. Al considerar la siguiente función de costo

$$C = c_1 n_I + c_2 n_I m (7.2.13)$$

donde c_1 es el costo de del levantamiento del marco de muestreo en cada unidad primaria seleccionada en la muestra s_I y c_2 es el costo de recolectar la información de la característica de interés para los elementos o unidades secundarias seleccionadas por el sub-muestreo. Los valores óptimos de n_I y m que minimizan la varianza del estimador dada por la expresión (7.2.6) restringido al costo total de la encuesta dado por (7.2.11) son

$$n_I = \frac{C}{c_1 + c_2 m} (7.2.14)$$

y

$$m = M\bar{S}_{y_{U_i}}^2 \sqrt{\frac{c_1/c_2}{S_{t_yU_I}^2 - M\bar{S}_{y_{U_i}}^2}}$$
 (7.2.15)

Prueba. La cantidad a minimizar está dada en la expresión (7.2.10) que está sujeta a la restricción de la función de costo (7.2.11). Utilizando el método de los multiplicadores de Lagrange, se tiene que

$$\mathcal{L}(n_I, m, \lambda) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) S_{t_y U_I}^2 + \frac{N_I^2 M^2}{n_I m} \left(1 - \frac{m}{M} \right) \bar{S}_{y U_i}^2 + \lambda (c_1 n_I + c_2 n_I m - C) \quad (7.2.16)$$

Anulando las derivadas parciales se tiene que

$$\frac{\partial \mathcal{L}}{\partial n_I} = -\frac{N_I^2 M^2}{n_I^2} \left(\frac{1}{m} - \frac{1}{M} \right) \bar{S}_{y_{U_i}}^2 - \frac{N_I^2}{n_I^2} S_{t_y U_I}^2 + c_1 \lambda + c_2 m \lambda = 0$$
 (7.2.17)

$$\frac{\partial \mathcal{L}}{\partial m} = -\frac{N_I^2 M^2}{n_I^2 m^2} \bar{S}_{yU_i}^2 + c_2 n_I \lambda = 0$$
 (7.2.18)

 $^{^2\}mbox{Naturalmente}$ estos valores dependerán de la función de costo utilizada.

De (7.2.15) se tiene que

$$n_I^2 = -\frac{N_I^2 M^2 \left(\frac{1}{m} - \frac{1}{M}\right) \bar{S}_{yU_i}^2 + N_I^2 S_{t_y U_I}^2}{c_1 \lambda + c_2 m \lambda}$$
(7.2.19)

De (7.2.16) se tiene que

$$n_I^2 = -\frac{N_I^2 M^2 \bar{S}_{yU_i}^2}{c_2 m^2 \lambda} \tag{7.2.20}$$

Igualando las anteriores ecuaciones y despejando m se tiene la demostración del resultado.

Si $\bar{S}^2_{y_{U_i}}$, la variabilidad de la característica de interés dentro de las unidades primarias es grande, entonces m será grande. Se debe resaltar que los resultados son válidos si la función de costo es la correcta.

7.2.3 Estimación de la varianza en muestreo de dos etapas

Cuando la estrategia de muestreo hace uso del estimador de Horvitz-Thompson podemos utilizar su forma general para hallar su varianza bajo cualquier diseño de muestreo. La expresión de la varianza del estimador de Horvitz-Thompson bajo muestreo bietápico está dada por

$$Var(\hat{t}_{\pi}) = \sum_{UI} \Delta_{Iij} \frac{t_j}{\pi_{Ij}} \frac{t_i}{\pi_{Ii}} + \sum_{UI} V_i / \pi_{Ii}$$
 (7.2.21)

cuya estimación insesgada es

$$\widehat{Var}_{1}(\hat{t}_{\pi}) = \sum_{sI} \frac{\Delta_{Iij}}{\pi_{Ii}} \frac{\hat{t}_{i}}{\pi_{Ii}} \frac{\hat{t}_{j}}{\pi_{Ij}} + \sum_{sI} \hat{V}_{i}/\pi_{Ii}$$
 (7.2.22)

La expresión anterior involucra el cálculo de las varianzas de las variables dentro de cada conglomerado. Lo anterior en una encuesta a gran escala puede llegar a ser muy tedioso, costoso y además muy demorado. Särndal, Swensson & Wretman (1992, p. 139) dan una posible solución al problema, ésta es mantener la primera parte del estimador de la varianza como estimador general de la misma. Así, un estimador sencillo, pero sesgado, es

$$\widehat{Var}_{2}(\hat{t}_{\pi}) = \sum_{sI} \frac{\Delta_{Iij}}{\pi_{Ii}} \frac{\hat{t}_{i}}{\pi_{Ii}} \frac{\hat{t}_{j}}{\pi_{Ij}}$$
(7.2.23)

El anterior estimador sobre-estima la varianza para las unidades primarias de muestreo, pero a su vez también lo hace con (7.2.19). Otra posible solución para estimar la varianza del estimador de Horvitz-Thompson, es asumir que el muestreo en la primera etapa se llevó a cabo con reemplazo. Así, la estimación (sesgada) de la varianza estaría dada por

$$\widehat{Var}_{3}(\hat{t}_{\pi}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(\frac{\hat{t}_{i}}{p_{Ii}} - \hat{t}_{\pi} \right)^{2}$$
(7.2.24)

Un caso especial del anterior término, se tiene suponiendo que $\pi_k = np_k$, y si el muestreo en la primera etapa fue aleatorio simple, entonces $p_k = \frac{1}{N}$. El estimador de la varianza, bajo la anterior condición es

$$\widehat{Var}(\hat{t}_{\pi}) = \frac{N^2}{n(n-1)} \sum_{i=1}^{n} \left(\hat{t}_i - \frac{\sum_{i=1}^{n} \hat{t}_i}{n} \right)^2 = \frac{N^2}{n} S_{\hat{t}_i}^2$$

Srinath & Hidiroglou (1980) proponen un método rápido para la estimación de la varianza del estimador de Horvitz-Thompson. Éste supone que el método de selección en la segunda etapa es MAS y es invariante en la primera etapa (se puede seleccionar la muestra en la primera etapa mediante cualquier diseño); lo que conlleva a que este estimador de la varianza sea insesgado y está dado por

$$\widehat{Var}_4(\hat{t}_\pi) = -\frac{1}{2} \sum_{sI} \sum_{\sigma I} \frac{\Delta_{Iij}}{\pi_{Ii}} \left(\check{t'}_i \check{t'}_j \right)$$
 (7.2.25)

donde $\check{t'}_j = \frac{\hat{t'}_j}{\pi_{Ij}}$ y $\hat{t'}_j = \frac{N_j}{n'_j} \sum_{s'_j} y_k$ donde s'_j denota una muestra de n'_j elementos. La regla para determinar el n'_j y obtener el estimador \widehat{Var}_4 es

$$n'_{j} = \frac{n_{i}(1 - \pi_{Ii})}{1 - \pi_{Ii}(n_{i}/N_{i})}$$
(7.2.26)

Simulación: se utilizaron los datos de la encuesta familiar de gastos FAMEX (Canada Family Expenditure, por sus siglas en inglés) del año 1996, que cuenta con un total de 691 individuos y está dividida en cinco conglomerados, se utilizó la variable gasto para estimar el total en una muestra bietápica y los datos de FAMEX 1996, aunque son los datos de una encuesta, se tomaron como los datos de un universo.

El estudio quiere verificar los resultados obtenidos anteriormente. Para el diseño de la muestra se quiso que en la primera etapa se seleccionaran tres conglomerados; para cada conglomerado seleccionado, se extrajo una muestra cuyo tamaño fuera el $40\,\%$ del mismo. El muestreo y el sub-muestreo fueron aleatorios simples MAS-MAS. El total poblacional para la variable de interés es USD 711623 y la varianza del π estimador, bajo las anteriores condiciones, es 6595944566.

Así, se calcularon los siguientes estimadores para la varianza del total estimado \hat{t}_{π}

- $\widehat{Var}_1(\hat{t}_{\pi})$: el estimador clásico al utilizar muestreo bietápico.
- $\widehat{Var}_2(\hat{t}_{\pi})$: correspondiente al primer sumando del anterior estimador.
- $\widehat{Var}_3(\widehat{t}_\pi)$: el estimador suponiendo muestreo con reemplazo.
- $\widehat{Var}_4(\hat{t}_\pi)$: el estimador propuesto por (Srinath & Hidiroglou 1980) (1.5).

El proceso se repitió B=5000 veces. La simulación fue programada en el paquete estadístico R. En la simulación. El desempeño de un estimador \hat{V} fue evaluado usando su sesgo relativo, SR y su eficiencia relativa, ER, definidas como:

$$SR = B^{-1} \sum_{b=1}^{B} \frac{\hat{V}_b - V}{V} \tag{7.2.27}$$

$$ER = \frac{ECM(\hat{V}_{\pi})}{ECM(\hat{V})} \qquad , \tag{7.2.28}$$

donde

$$ECM(\hat{V}) = B^{-1} \sum_{b=1}^{B} (\hat{V}_b - V)^2$$
(7.2.29)

y \hat{V}_b se calculó en la b-ésima muestra simulada. Como se puede notar el estimador clásico al utilizar muestreo bietápico, \hat{V}_{π} , fue utilizado como línea base de comparación. Grandes valores para ER(>1) representan alta eficiencia del estimador \hat{V} en comparación al estimador clásico.

$\overline{\widehat{Var}_1(\hat{t}_{\pi})}$	$\widehat{Var}_2(\hat{t}_{\pi})$	$\widehat{Var}_3(\hat{t}_\pi)$	$\widehat{Var}_4(\hat{t}_\pi)$
0.0008138860	0.2458789480	-1.5021980054	-0.0008792021

Sesgo relativo para cada estimador

Los resultados empíricos indican que el estimador de la varianza para el estimador de Horvitz-Thompson es insesgado, así como el estimador propuesto por (Srinath & Hidiroglou 1980). Pero, los estimadores 2 y 3 tiene un sesgo relativo importante, sobre todo aquel que supone muestreo con reemplazo; también se puede observar que el estimador de la primera parte de (7.2.20), aunque es sesgado, esta magnitud es pequeña. En particular se recomienda seguir trabajando con el estimador clásico pues los avances computacionales así lo permiten. La eficiencia relativa de todos los estimadores resultó despreciable.

7.2.4 Marco II y Lucy

En el capítulo pasado se ejecutó un diseño de muestreo por conglomerados cuya principal característica es que las unidades dentro de cada conglomerado tienen un comportamiento relativamente similar. Esto llevó a que las estimaciones estuvieran muy lejos de la realidad dado que se utilizó un diseño de muestreo que inducía probabilidades de inclusión constante, siendo que el comportamiento de los totales de los conglomerados no era constante para las características de interés.

En esta oportunidad, volvemos a enfrentarnos a la dificultad de obtener una muestra de empresas del sector industrial careciendo de un marco de muestreo que nos permita la inclusión directa de las empresas en la muestra. Sin embargo, es posible utilizar como base el muestreo por áreas que se propuso en el capítulo anterior pero la gran diferencia es que, en lugar de un censo en las áreas geográficas seleccionadas, realizaremos un sub-muestreo. Recordemos que la ciudad está dividida en cinco zonas geográficas rotuladas como **Zona A**, ubicada en el sur, **Zona B**, ubicada en el norte, **Zona C**, ubicada en el oriente, **Zona D**, ubicada en el occidente y **Zona E**, ubicada en el centro.

Suponga que no se tiene información acerca de cuántas empresas pertenecen a cada zona geográfica, por lo que no es posible realizar un diseño auto-ponderado. Para garantizar una buena precisión se ha decidido seleccionar una muestra aleatoria simple de cuatro zonas geográficas, o unidades primarias de muestreo. Lo anterior se realiza mediante el uso de la función sample, aunque también es admisible realizarlo con la función S.SIdel paquete TeachingSampling.

```
data(BigLucy)
attach(BigLucy)

UI <- levels(BigLucy$Zone)

NI <- length(UI)

nI <- 20

samI <- S.SI(NI, nI)

muestraI <- UI[samI]

muestraI</pre>
```

```
## [1] "County13" "County18" "County19" "County20" "County25" "County37"

## [7] "County38" "County44" "County50" "County51" "County52" "County60"

## [13] "County68" "County7" "County76" "County80" "County83" "County84"

## [19] "County9" "County92"
```

Una vez se realiza el sorteo aleatorio, las zonas geográficas seleccionadas son: **Zona B, Zona C, Zona D y Zona E**. El paso a seguir es el empadronamiento de cada una de las empresas del sector industrial pertenecientes a cada zona incluida en la muestra. Es decir, se debe planear un operativo de campo con el fin de levantar un marco de muestreo para cada unidad primaria. En total se deben conseguir cuatro marcos de muestreo de empresas.

```
Lucy1 <- BigLucy[which(Zone == muestral[1]),]</pre>
Lucy2 <- BigLucy[which(Zone == muestraI[2]),]</pre>
Lucy3 <- BigLucy[which(Zone == muestraI[3]),]</pre>
Lucy4 <- BigLucy[which(Zone == muestraI[4]),]</pre>
Lucy5 <- BigLucy[which(Zone == muestraI[5]),]</pre>
Lucy6 <- BigLucy[which(Zone == muestral[6]),]</pre>
Lucy7 <- BigLucy[which(Zone == muestral[7]),]</pre>
Lucy8 <- BigLucy[which(Zone == muestral[8]),]</pre>
Lucy9 <- BigLucy[which(Zone == muestral[9]),]</pre>
Lucy10 <- BigLucy[which(Zone == muestral[10]),]</pre>
Lucy11 <- BigLucy[which(Zone == muestraI[11]),]</pre>
Lucy12 <- BigLucy[which(Zone == muestraI[12]),]</pre>
Lucy13 <- BigLucy[which(Zone == muestral[13]),]</pre>
Lucy14 <- BigLucy[which(Zone == muestral[14]),]</pre>
Lucy15 <- BigLucy[which(Zone == muestral[15]),]</pre>
Lucy16 <- BigLucy[which(Zone == muestral[16]),]</pre>
Lucy17 <- BigLucy[which(Zone == muestral[17]),]</pre>
Lucy18 <- BigLucy[which(Zone == muestraI[18]),]</pre>
Lucy19 <- BigLucy[which(Zone == muestraI[19]),]</pre>
Lucy20 <- BigLucy[which(Zone == muestraI[20]),]</pre>
LucyI <- rbind(Lucy1, Lucy2, Lucy3, Lucy4, Lucy5, Lucy6, Lucy7, Lucy8, Lucy9,
                  Lucy10, Lucy11, Lucy12, Lucy13, Lucy14, Lucy15, Lucy16, Lucy17,
                  Lucy18, Lucy19, Lucy10)
N1 <- dim(Lucy1)[1];
                                N2 <- dim(Lucy2)[1]
N3 <- dim(Lucy3)[1];
                               N4 <- dim(Lucy4)[1]
N5 <- dim(Lucy5)[1];
                              N6 <- dim(Lucy6)[1]
                             N8 <- dim(Lucy8)[1]
N7 <- dim(Lucy7)[1];
N7 <- dim(Lucy7)[1]; N8 <- dim(Lucy8)[1]

N9 <- dim(Lucy9)[1]; N10 <- dim(Lucy10)[1]

N11 <- dim(Lucy11)[1]; N12 <- dim(Lucy12)[1]

N13 <- dim(Lucy13)[1]; N14 <- dim(Lucy14)[1]
                            N16 <- dim(Lucy16)[1]
N18 <- dim(Lucy18)[1]
N15 <- dim(Lucy15)[1];
N17 <- dim(Lucy17)[1];
N19 <- dim(Lucy19)[1];
                               N20 <- dim(Lucy20)[1]
Ni <- c(N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15,
         N16, N17, N18, N19, N20)
ni <- round(Ni * 0.12)
```

```
ni

## [1] 234 234 54 40 40 174 234 54 40 74 174 40 234 174 37 20 117

## [18] 27 54 87

sum(ni)

## [1] 2142
```

Cuando la primera etapa de muestreo concluye, se tiene conocimiento de cuántas empresas del sector industrial pertenecen a cada zona geográfica incluida en la muestra. La **Zona B** con 727 empresas, la **Zona C** con 974 empresas, la **Zona D** con 223 empresas y, por último, la **Zona E** tiene un total de 165 empresas. Se ha decido que los tamaños de muestra correspondan a un porcentaje del tamaño de cada unidad primaria de muestreo. El tamaño de la muestra es de 410 empresas.

Con ayuda de cada uno de los cuatro marcos de muestreo se realiza una muestra aleatoria simple de empresas de acuerdo a los tamaños establecidos anteriormente. Cuando las muestras hayan sido seleccionadas se unifican mediante el uso de la función rbind que lo único que hace es mezclar las bases de datos de las empresas incluidas en la muestra.

```
sam1 <- sample(N1, ni[1]);</pre>
                                             sam2 <- sample(N2, ni[2])</pre>
sam3 <- sample(N3, ni[3]);</pre>
                                             sam4 <- sample(N4, ni[4])</pre>
sam5 <- sample(N5, ni[5]);</pre>
                                             sam6 <- sample(N6, ni[6])</pre>
sam7 <- sample(N7, ni[7]);</pre>
                                             sam8 <- sample(N8, ni[8])</pre>
sam9 <- sample(N9, ni[9]);</pre>
                                             sam10 <- sample(N10, ni[10])</pre>
sam11 <- sample(N11, ni[11]);</pre>
                                             sam12 <- sample(N12, ni[12])</pre>
sam13 <- sample(N13, ni[13]);</pre>
                                             sam14 <- sample(N14, ni[14])</pre>
                                             sam16 <- sample(N16, ni[16])</pre>
sam15 <- sample(N15, ni[15]);</pre>
sam17 <- sample(N17, ni[17]);</pre>
                                             sam18 <- sample(N18, ni[18])</pre>
sam19 <- sample(N19, ni[19]);</pre>
                                             sam20 <- sample(N20, ni[20])</pre>
muestra1 <- Lucy1[sam1, ];</pre>
                                              muestra2 <- Lucy2[sam2, ]</pre>
muestra3 <- Lucy3[sam3, ];</pre>
                                              muestra4 <- Lucy4[sam4, ]</pre>
muestra5 <- Lucy5[sam5, ];</pre>
                                              muestra6 <- Lucy6[sam6, ]</pre>
muestra7 <- Lucy7[sam7, ];</pre>
                                              muestra8 <- Lucy8[sam8, ]</pre>
muestra9 <- Lucy9[sam9, ];</pre>
                                              muestra10 <- Lucy10[sam10, ]</pre>
                                              muestra12 <- Lucy12[sam12, ]</pre>
muestra11 <- Lucy11[sam11, ];</pre>
muestra13 <- Lucy13[sam13, ];</pre>
                                              muestra14 <- Lucy14[sam14, ]</pre>
muestra15 <- Lucy15[sam15, ];</pre>
                                              muestra16 <- Lucy16[sam16, ]</pre>
muestra17 <- Lucy17[sam17, ];</pre>
                                              muestra18 <- Lucy18[sam18, ]</pre>
muestra19 <- Lucy19[sam19, ];</pre>
                                              muestra20 <- Lucy20[sam20, ]</pre>
muestra <- rbind(muestra1, muestra2, muestra3, muestra4, muestra5, muestra6,
                    muestra7, muestra8, muestra9, muestra10, muestra11, muestra12,
                    muestra13, muestra14, muestra15, muestra16, muestra17, muestra18,
                    muestra19, muestra20)
attach(muestra)
head(muestra)
                      ID
                                  Ubication Level
                                                           Zone Income Employees Taxes
## 52282 AB0000052282 C0157237K0144660 Medium County13
                                                                     630
                                                                                  60
                                                                                         20
```

```
## 52910 AB0000052910 C0062184K0239713
                                         Small Countv13
                                                            201
                                                                        81
                                                                               1
## 53604 AB0000053604 C0139833K0162064
                                         Small County13
                                                            425
                                                                        37
                                                                               8
## 52911 AB0000052911 C0019026K0282871
                                         Small County13
                                                            280
                                                                        61
                                                                               3
## 52722 AB0000052722 C0175008K0126889
                                         Small County13
                                                            361
                                                                        25
                                                                               5
## 53462 AB0000053462 C0185989K0115908
                                         Small County13
                                                            420
                                                                        32
                                                                               8
##
         SPAM ISO Years
                             Segments
## 52282
                   42.8 County13 58
         yes yes
## 52910
          yes
               no
                   13.0 County13 121
## 53604
                   16.8 County13 190
           no
               no
## 52911
                    1.6 County13 121
          yes
               no
                   31.5 County13 102
## 52722
           no
               no
## 53462
                    3.2 County13 176
```

Cuando el levantamiento de la información ha concluido, se carga el archivo de datos en el ambiente de R y se construye un data frame que contiene los valores de las características de interés en la muestra general. En este caso particular lleva el nombre de estima. Es necesario que cada empresa incluída en la muestra lleve consigo el registro que indique a qué zona geográfica pertenece. Para este ejercicio, el vector Area contiene esta información. La estimación en este diseño de muestreo en dos etapas se hace utilizando la función E.2SI(NI,nI,Ni,ni,y,C) cuyos argumentos son NI, el número de unidades primarias de muestreo que conforman la población. nI, el número de unidades primarias incluidas en la muestra s_I . Ni, un vector de los tamaños de las unidades primarias de muestreo. ni, un vector conteniendo los tamaños de muestra en cada unidad primaria de muestreo. y, el archivo de datos que contiene la información de las características de interés y, por último, y, un vector que contiene la pertenencia de cada unidad secundaria de muestreo a su respectiva unidad primaria.

```
estima <- data.frame(Income, Employees, Taxes)
area <- as.factor(as.integer(Zone))
E.2SI(NI, nI, Ni, ni, estima, area)</pre>
```

Los resultados de la estimación se muestran en la siguiente tabla. Nótese que con un tamaño de muestra similar, la eficiencia de esta estrategia de muestreo es mucho mayor que la de una estrategia que utiliza un diseño de muestreo por conglomerados y es equivalente a la de una estrategia que utilice un diseño de muestreo aleatorio simple.

	N	Income	Employees	Taxes
Estimation	89110.00	35203287.69	5361559.27	900924.59
Standard Error	13531.82	5401337.02	803619.48	161088.99
CVE	15.19	15.34	14.99	17.88
DEFF	Inf	126.23	180.22	31.68

Tabla 7.1: Estimaciones para el diseño de muestreo aleatorio simple en dos etapas.

La ganancia en eficiencia se debe a la propiedad del diseño en dos etapas en donde dado un n, es posible incluir más unidades primarias en la primera etapa de muestreo. En este caso, el número de conglomerados incluidos en la muestra s_I es el doble, lo que decrece el componente de la varianza en la primera etapa. El componente de variabilidad que domina la varianza en esta estimación es la dispersión dentro de las unidades primarias y se debe a la heterogeneidad de los conglomerados.

7.3 Muestreo en dos etapas estratificado

La teoría discutida hasta ahora en las secciones anteriores es aplicable cuando las unidades primarias de muestreo son seleccionadas de un estrato. Como se verá más adelante no hay nuevos principios de estimación o diseño involucrado en el desarrollo de esta estrategia de muestreo cuando lo que se quiere es estimar el total de la característica de interés t_y de una población dividida en H estratos.

Se supone que el muestreo en cada estrato respeta el principio de la independencia. Las estimaciones del total, así como el cálculo y estimación de la varianza son simplemente resultado de añadir o sumar para cada estrato la respectiva cantidad.

Por ejemplo, suponga que dentro de cada estrato U_h $h=1,\ldots,H$ existen N_{Ih} unidades primarias de muestreo, de las cuales se selecciona una muestra s_{Ih} de n_{Ih} unidades mediante un diseño de muestreo aleatorio simple. Suponga, además que el sub-muestreo dentro de cada unidad primaria seleccionada es también aleatorio simple. Es decir, para cada unidad primaria de muestreo seleccionada $i \in s_{Ih}$ de tamaño N_i se selecciona una muestra s_i de elementos de tamaño n_i . Cuando las unidades secundarias de muestreo o elementos son seleccionadas, se realiza el proceso de medición y el proceso de estimación para lo cual se tiene que el estimador del total está dado por el siguiente resultado.

Resultado 7.3.1. Bajo muestreo en dos etapas estratificado MAS-MAS, el estimador de Horvitz-Thompson es insesgado para el total poblacional y toma la forma

$$\hat{t}_{y,\pi} = \sum_{h=1}^{H} \hat{t}_{yh,\pi} = \sum_{h=1}^{H} \left[\frac{N_{Ih}}{n_{Ih}} \sum_{i \in S_{Ih}} \frac{N_i}{n_i} \sum_{k \in S_i} y_k \right]$$
(7.3.1)

con varianza dada por

$$Var_{EMM}(\hat{t}_{y,\pi}) = \sum_{h=1}^{H} Var(\hat{t}_{yh,\pi})$$
 (7.3.2)

$$= \sum_{h=1}^{H} \left[\frac{N_{Ih}^2}{n_{Ih}} \left(1 - \frac{n_{Ih}}{N_{Ih}} \right) S_{tyhU_I}^2 + \frac{N_{Ih}}{n_{Ih}} \sum_{i \in S_{Ih}} \frac{N_i^2}{n_i} \left(1 - \frac{n_i}{N_i} \right) S_{yU_i}^2 \right]$$
(7.3.3)

cuya estimación insesgada es

$$\widehat{Var}_{EMM}(\hat{t}_{y,\pi}) = \sum_{h=1}^{H} \widehat{Var}(\hat{t}_{yh,\pi})$$
(7.3.4)

$$= \sum_{h=1}^{H} \left[\frac{N_{Ih}^2}{n_{Ih}} \left(1 - \frac{n_{Ih}}{N_{Ih}} \right) S_{\hat{t}_{yh}S_I}^2 + \frac{N_{Ih}}{n_{Ih}} \sum_{i \in S_{Ih}} \frac{N_i^2}{n_i} \left(1 - \frac{n_i}{N_i} \right) S_{y_{S_i}}^2 \right]$$
(7.3.5)

donde $S^2_{t_yh}U_I$ es la varianza poblacional de los totales t_{yi} $i \in U_I$ de todas y cada una de las unidades primarias de muestreo dentro del estrato h y $S^2_{y_{U_i}}$ es la varianza poblacional entre los elementos dentro de cada unidad primaria de muestreo en el estrato h. Similarmente, $S^2_{\hat{t}_yh}S_I$ y $S^2_{y_{s_i}}$.

Este diseño de muestreo es usado para mejorar la eficiencia de la estrategia MAS-MAS. Särndal, Swensson & Wretman (1992) plantean que es posible estratificar la población de acuerdo a una medida de tamaño, de tal forma que se agrupen las unidades de muestreo con un comportamiento similar en un mismo estrato. Es de gran interés notar que una escogencia particular dentro del sub-muestreo de las unidades primarias haría al estimador de Horvitz-Thompson muy conveniente de calcular. De hecho, si para cada unidad primaria $i \in S_{I_h}$ seleccionada en la muestra de cada estrato $h, h = 1, \ldots, H$ se tiene que

$$c = \frac{n_i}{N_i} \frac{n_{Ih}}{N_{Ih}} \tag{7.3.6}$$

Entonces, el estimador toma la siguiente forma

$$\hat{t}_{y,\pi} = \frac{1}{c} \sum_{h=1}^{H} \sum_{i \in S_{th}} \sum_{k \in S_i} y_{hik}$$
(7.3.7)

Lo que significa que, en el cálculo computacional de la estimación, los valores de la característica de interés simplemente se suman sin importar la unidad primaria o el estrato al que pertenezcan. Esta clase de estimadores se conocen con el nombre de **estimadores auto-ponderados**. La cantidad c admite una interpretación muy simple y es la fracción de muestreo esperada para los elementos. De esta forma, si se desea seleccionar una muestra con un promedio de 1 % de unidades secundarias de muestreo o elementos seleccionados en cada estrato, entonces $k = \frac{1}{100}$.

7.3.1 Diseños auto-ponderados

En muchas encuestas de dos etapas es común encontrar **diseños auto-ponderados**. Esta clase de diseños asume que en la primera etapa de muestreo se selecciona una muestra S_I de unidades primarias de muestreo cuyas probabilidades de inclusión son proporcionales al tamaño de las mimas, de tal forma que si N es el tamaño de la población U de unidades secundarias de muestreo o elementos y n el tamaño de la muestra resultante, entonces

$$\pi_{Ii} = \frac{N_i}{N} n_I \qquad i \in U_I \tag{7.3.8}$$

Más adelante, en la segunda etapa de muestreo, se seleccionan muestras s_i $i \in S_I$ de unidades secundarias o elementos de tamaño constante $n_i = n_0$ para cada unidad primaria incluida en la muestra. Por lo tanto, la probabilidad de inclusión de las unidades secundarias será

$$\pi_{k|i} = \frac{n_0}{N_i} \qquad i \in S_I \tag{7.3.9}$$

De tal forma que la probabilidad de inclusión general del k-ésimo elemento es constante y está dada por

$$\pi_k = \pi_{Ii} \pi_{k|i} = n_I \frac{N_i}{N} \frac{n_0}{N_i} = n_I \frac{n_0}{N} = \frac{n}{N} = c \qquad k \in U_i$$
 (7.3.10)

y el estimador de Horvitz-Thompson toma la siguiente forma

$$\hat{t}_{y,\pi} = \sum_{k \in S} \frac{y_k}{\pi_k} = \frac{1}{c} \sum_{i \in S_I} \sum_{k \in S_i} y_k = \frac{N}{n} \sum_{k \in S} y_k \tag{7.3.11}$$

Nótese la facilidad de cálculo del estimador. Esta clase de diseños auto-ponderados se utilizan cuando se desea controlar el trabajo de campo, por lo que el número de entrevistas en cada unidad primaria incluida en la muestra será constante.

7.4 Dise \tilde{n} os en r etapas

Särndal, Swensson & Wretman (1992) afirman que a pesar de su complejidad, los diseños con tres o más etapas son ampliamente usados en las grandes encuestas. El muestreo en dos etapas puede ser generalizado mediante el siguiente resultado en donde se supone que existen r etapas de muestreo. De

esta manera, la población se divide en N_I unidades primarias de muestreo, de las cuales se selecciona una muestra s_I de n_I unidades mediante un diseño de muestreo $p_I(S_I)$. Se asume que es posible construir un estimador³ \hat{t}_{yi} para cada total t_{yi} $i \in S_I$ de las unidades primarias seleccionadas y que este estimador es insesgado para las restantes r-1 etapas del diseño muestral. Por tanto

$$E(\hat{t}_{yi} \mid S_I) = t_{yi} \tag{7.4.1}$$

Nótese que las últimas unidades de muestreo no deben ser necesariamente elementos, pueden ser también conglomerados. Los principios de independencia e invarianza se siguen manteniendo en todas las etapas del diseño muestral. De tal manera que el fundamento de este diseño de muestreo es la acumulación de las estimaciones desde la última etapa hasta la primera. Esto se sintetiza en los siguientes resultado de la próxima sección.

7.4.1 El estimador de Horvitz-Thompson

Resultado 7.4.1. Bajo muestreo en r etapas el estimador de Horvitz-Thompson es insesgado para el total poblacional y toma la forma

$$\hat{t}_{y,\pi} = \sum_{i \in S_L} \frac{\hat{t}_{yi}}{\pi_{Ii}} \tag{7.4.2}$$

con varianza dada por

$$Var_{BI}(\hat{t}_{y,\pi}) = \underbrace{\sum \sum_{U_I} \Delta_{Iij} \frac{t_i}{\pi_{Ii}} \frac{t_j}{\pi_{Ij}}}_{Var(UPM)} + \underbrace{\sum_{i \in U_I} \frac{V_i}{\pi_{Ii}}}_{Var(Resto)}$$
(7.4.3)

cuya estimación insesgada es

$$\widehat{Var}_{BI}(\hat{t}_{y,\pi}) = \underbrace{\sum \sum_{S_I} \frac{\Delta_{Iij}}{\pi_{Iij}} \frac{\hat{t}_{yi}}{\pi_{Ii}} \frac{\hat{t}_{yj}}{\pi_{Ij}}}_{\widehat{Var}(UPM)} + \underbrace{\sum_{i \in S_I} \frac{\hat{V}_i}{\pi_{Ii}}}_{\widehat{Var}(Resto)}$$
(7.4.4)

donde $V_i = Var(\hat{t}_{ui} \mid S_I)$ y \hat{V}_i es un estimador insesgado de V_i tal que $E(\hat{V}_i \mid S_I) = V_i$ para todo $i \in U_I$.

Prueba. Esta demostración se realiza de manera recursiva escribiendo el estimador y la varianza como una función de los estimadores insesgados de las etapas subsecuentes en los niveles inferiores. Se debe tener en cuenta que el resultado 7.2.2. se extiende naturalmente. Por ejemplo para el diseño de tres etapas, se tiene que

$$Var(U) = V_1[E_2(E_3(U))] + E_1[V_2(E_3(U))] + E_1[E_2(V_3(U))]$$
(7.4.5)

7.4.2 El estimador de Hansen-Hurwitz

Un esquema utilizado en la práctica por la sencillez en el proceso de estimación consiste en seleccionar una muestra de m_I unidades primarias de muestreo mediante un diseño de muestreo con reemplazo que induce probabilidades de selección p_{Ii} con $i \in U_I$ tales que $\sum_{i=1}^{N_i} p_{Ii} = 1$. Dentro de cada unidad primaria de muestreo seleccionada en el sorteo aleatorio con reemplazo se toma una sub-muestra (con

 $^{^3}$ Este estimador no necesariamente debe ser el estimador de Horvitz-Thompson pero sí debe ser insesgado.

o sin reemplazo). Aunque existe una pérdida de eficiencia cuando el muestreo es con reemplazo, ésta se compensa con una ganancia logística en el proceso de estimación de las varianzas requeridas para cada característica de interés. El proceso general de muestreo con reemplazo según Särndal, Swensson & Wretman (1992) es el siguiente:

- En la primera etapa se selecciona una muestra aleatoria de acuerdo a un diseño de muestreo con reemplazo tal que p_{Ii} con $i \in U_I$ es la probabilidad de selección de la i-ésima unidad primaria de muestreo.
- En las siguientes etapas⁴, se mantienen las propiedades de independencia e invarianza sin importar si el diseño dentro de las unidades primarias seleccionadas sea con o sin reemplazo.
- Si una unidad de muestreo es seleccionada en más de una ocasión, se debe realizar tantos submuestreos como veces haya sido seleccionada en la primera etapa.

Resultado 7.4.2. Bajo un diseño de muestreo en varias etapas, el estimador de Hansen-Hurwitz para el total t_u , su varianza y su varianza estimada están dados por

$$\hat{t}_{y,p} = \frac{1}{m_I} \sum_{v=1}^{m_I} \frac{\hat{t}_{yi_v}}{p_{Ii_v}}$$
(7.4.6)

$$Var(\hat{t}_{y,p}) = \frac{1}{m_I} \sum_{i=1}^{N_I} p_{Ii} \left(\frac{t_{yi}}{p_{Ii}} - t_y \right)^2 + \frac{1}{m_I} \sum_{i=1}^{N_I} \frac{V_i}{p_{Ii}}$$
(7.4.7)

$$\widehat{Var}(\hat{t}_{y,p}) = \frac{1}{m_I(m_I - 1)} \sum_{v=1}^{m_I} \left(\frac{\hat{t}_{yiv}}{p_{Iiv}} - \hat{t}_{y,p}\right)^2$$
(7.4.8)

respectivamente. Donde \hat{t}_{yi} es un estimador insesgado del total de la característica de interés y en la unidad primaria U_i $i \in S_I$, $V_i = Var(\hat{t}_{yi} \mid S_I)$ la varianza de \hat{t}_{yi} en la segunda etapa. Nótese que $\hat{t}_{y,p}$ es insesgado para t_y y que $\widehat{Var}(\hat{t}_{y,p})$ es insesgado para $Var(\hat{t}_{y,p})$.

Prueba. La demostración empieza definiendo las variables aleatorias

$$Z_v = t_{vi}/p_{Ii}$$
 $i \in U_I$ $v = 1, ..., m_I$ (7.4.9)

У

$$\hat{Z}_v = \hat{t}_{yi}/p_{Ii} \qquad i \in U_I \quad v = 1, \dots, m_I$$
 (7.4.10)

Tanto Z_v como \hat{Z}_v son sucesiones de variables aleatorias independientes e idénticamente distribuidas. Sin embargo, respetando los principios de independencia e invarianza, se tiene que la esperanza está dada por

$$E(\hat{Z}_v) = E(E(\hat{Z}_v \mid S_I)) = E(Z_v) = t_y$$

y la varianza es

$$Var(\hat{Z}_{v}) = Var(E(\hat{Z}_{v} | S_{I})) + E(Var(\hat{Z}_{v} | S_{I}))$$

$$= Var(Z_{v}) + E(Var(\hat{t}_{yi}/p_{Ii} | S_{I}))$$

$$= Var(Z_{v}) + E(V_{i}/p_{Ii}^{2})$$

$$= \sum_{i=1}^{N_{I}} p_{Ii} \left(\frac{t_{yi}}{p_{Ii}} - t_{y}\right)^{2} + \sum_{i=1}^{N_{I}} \frac{V_{i}}{p_{Ii}}$$

⁴Este proceso es válido para diseños de muestreo con más de dos etapas.

Ahora, dado que $\hat{t}_{y,p} = \overline{\hat{Z}}$ y utilizando el resultado 2.2.11, se tiene que el estimador insesgado de la varianza corresponde a la expresión dada en (7.4.8).

Dada la simplificación en el cálculo de la varianza, Bautista (1998) propone utilizarla incluso cuando el diseño de muestreo sea sin reemplazo. Sin embargo, advierte que este estimador generalmente sobre-estima la varianza, lo que conduce a intervalos de confianza más conservadores y coeficientes de variación un poco más altos.

7.5 Ejercicios

- 7.1 Argumente si las siguientes afirmaciones son falsas o verderas. Sustente su respuesta detallamente.
 - (a) En la estimación de totales poblaciones, se nota que, casi siempre, $Var_{MAS^2}(t_{y,\pi})$ es mayor a $Var_{MAS}(t_{y,\pi})$.
 - (b) En la estimación de la varianza para totales en diseños bietápicos, $\hat{Var}(UPM)$ es insesgada para $\hat{Var}(UPM)$.
 - (c) En la estimación de la varianza para totales en diseños bietápicos, $\hat{Var}(USM)$ es insesgada para $\hat{Var}(USM)$.
 - (d) Al planear un diseño de muestreo en varias etapas, se debe tener en cuenta que entre más etapas tenga el diseño, la varianza del estimador será probablemente más baja.
 - (e) En diseños bietápicos, la varianza total del estimador es dominada por la varianza de la última etapa. Es decir, la varianza en la última etapa es mucho mayor que la varianza de la primera etapa.
 - (f) En un estudio de consumo de licores se proponen dos diseños de muestreo en dos etapas: uno con la selección de 300 manzanas y diez personas por manzana; el otro con la selección de 100 manzanas y 30 personas por manzana. En este caso, el primer diseño de muestreo arroja una varianza menor al del segundo diseño.
- 7.2 Para un diseño de muestreo en dos etapas, en donde la primera etapa se lleva a cabo un diseño PPT con reemplazo y en la segunda etapa se realiza un diseño MAS en cada UPM seleccionada, proponga un estimador insesgado para el total poblacional (Ayuda: utilice el estimador de Horvitz-Thompson en la segunda etapa y el estimador de Hansen-Hurwitz en la primera etapa). Demuestre que este estimador es insesgado para el total poblacional t_y (Ayuda: utilice las propiedades de la esperanza condicional) y defina la varianza para este estimador (Ayuda: utilice las propiedades de la varianza condicional).
- 7.3 Escriba las fórmulas del estimador del total y del estimador de la varianza del total para los siguientes diseños de muestreo. Defina estrictamente cada término y notación que utilice en las fórmulas.
 - (a) Diseño en tres etapas: MAS en cada una de las etapas.
 - (b) Diseño estratificado con tres estratos: uno de inclusión forzosa, otro con diseño PPT y otro con diseño MAS.
- 7.4 (Tillé, 2006. Ej 5.5) Suponga que un estadístico desea estimar el ingreso total de las personas en un país. Para esto, él lleva a cabo un diseño de muestreo en dos etapas, en donde la primera etapa se seleccionan municipios con un diseño PPT con probabilidad de selección proporcional al número de habitantes del municipio y en la segunda etapa se realiza un diseño MAS en cada municipio. En la primera etapa, se seleccionaron $m_I = 4$ municipios entre los $N_I = 30$ municipios en el país y en la segunda etapa, se incluyeron n_i personas de los N_i habitantes del municipio i-ésimo

7.5. Ejercicios 233

Tabla 7.2: Ingreso de cada persona para el ejercicio 7.3

Municipio	Ni	ni	yk
	20	4	105
1			118
1			102
			110
	23	5	108
			117
2			134
			108
			119
	18	4	201
1			201
1			210
			206
	28	6	157
			141
2			129
2			170
			104
			110

(i = 1, 2, 3, 4). Suponga que por fuentes oficiales, se conoce que el número total de personas en el país es de N = 10000. Los datos obtenidos se muestran en la tabla 7.2.

- (a) Estime el ingreso total en el pais. Reporte el coeficiente de variación estimado.
- (b) Estime el ingreso medio en el pais y reporte el coeficiente de variación estimado.
- 7.5 Suponga que por alguna circunstancia, un extraterrestre desea estimar el número promedio de patas que tiene un perro en una ciudad. La ciudad está dividida en dos áreas geográficas, la zona norte y la zona sur. Para llevar a cabo la estimación, él planea un diseño de muestreo en dos etapas así: De las $N_I = 2$ zonas geográficas de la ciudad, va a seleccionar una muestra aleatoria simple de $n_I = 1$ unidades primarias de muestreo. Se sabe que en el norte hay $N_1 = 30$ perros y en el sur hay $N_2 = 10$ perros. Sea cual sea la unidad primaria seleccionada, se seleccionará una sub-muestra aleatoria simple de $n_i = 2$ perros (i = 1, 2) y se realizará la medición del total de patas en cada perro incluido en la muestra.
 - (a) Si se seleccionó la zona norte, reporte la estimación del total de patas en la ciudad $t_{y,\pi}$ y la estimación del promedio de patas en la ciudad $\bar{y}_S = t_{y,\pi}/N$.
 - (b) Si se seleccionó la zona sur, reporte la estimación del total de patas en la ciudad $t_{y,\pi}$ y la estimación del promedio de patas en la ciudad $\bar{y}_S = t_{y,\pi}/N$.
 - (c) Para este diseño diseño de muestreo, reporte la varianza teórica del estimador \bar{y}_S .
 - (d) ¿Es una buena estrategia escoger al estimador \bar{y}_S para inferir acerca del promedio de patas de los perros en la ciudad?

Capítulo 8

Estimación de parámetros diferentes al total

Naturalmente, el investigador está interesado en encontrar las propiedades estadísticas de un estimador. Si éste tiene una forma lineal, no se necesitan nuevas herramientas. Sin embargo, los parámetros que se encuentran en la práctica corresponden a funciones no lineales de totales.

Särndal, Swensson & Wretman (1992)

En los capítulos anteriores, nuestra atención estuvo centrada en la búsqueda del mejor diseño de muestreo con los estimadores de Horvitz-Thompson, para muestreo sin reemplazo y estimadores de Hansen-Hurwitz, para muestreo con reemplazo. En nuestra travesía hemos pasado por los diseños de probabilidad fija e igual. Para mejorar la eficiencia de la estrategia hemos revisado los diseños de probabilidades proporcionales y diseños estratificados, con la ayuda de información auxiliar de tipo continuo o discreto. Para mejorar la eficacia del plan operativo y la dispersión de la muestra en la población se han propuesto diseños de muestreo complejos de conglomerados y en varias etapas.

El lector debió notar que en la primera parte de este texto se ha seguido con fidelidad la regla de oro del diseño de encuestas y es utilizar estrategias de muestreo que induzcan probabilidades de inclusión o selección, según sea el caso, proporcionales al valor de la característica de interés. De este modo, si la encuesta está enfocada en una característica de interés cuya dispersión es muy baja, como el número de hijos en niveles socioeconómicos altos, que generalmente no es mayor a tres, es posible utilizar un muestreo aleatorio con probabilidades simples. De otra manera y con la ayuda de información auxiliar, es posible seguir la regla de oro mediante la construcción de probabilidades proporcionales en la etapa de diseño. Sin embargo, esta ventaja del marco de muestreo no sólo se puede utilizar en la etapa de diseño sino también en la etapa de estimación.

8.1 Fundamentos teóricos

Siguiendo la filosofía del título que lleva este texto, nos encaminaremos en la búsqueda de la mejor estrategia de muestreo mejorando el estimador. En esta etapa del camino, se supone que el lector conoce el comportamiento estructural de la población y está en capacidad de proponer el mejor diseño de muestreo, de acuerdo a la generosidad del marco de muestreo.

Por supuesto, en algunos estudios multi-propósito, en encuestas complejas y en casos particulares, es necesario obtener estimaciones para parámetros diferentes a los totales. Por ejemplo, razones de dos características de interés, medianas y percentiles poblacionales, parámetros de regresión, coeficientes

de correlación, varianzas, covarianzas, índices, etc. Como lo afirma Bautista (1998), la metodología que se propone para estimar estos parámetros poblacionales es reescribirlos como función de totales poblacionales. Así, si el parámetro a estimar es B, lo debemos llevar a la siguiente forma

$$B = f(t_1, t_2, \dots, t_Q) \tag{8.1.1}$$

Donde cada t_q $q=1,\ldots,Q$ representa un total de las características de interés o un total de una función de las características de interés. El principio de estimación de este parámetro está en obtener estimadores insesgados \hat{t}_q $q=1,\ldots,Q$ tal que T es estimado por

$$\hat{B} = f(\hat{t}_1, \hat{t}_2, \dots, \hat{t}_Q) \tag{8.1.2}$$

Nótese que la función f puede ser lineal o no. Un resultado muy conocido de la inferencia estadística clásica nos indica que si la función f es una función lineal entonces B toma la forma

$$B = a_0 + \sum_{q=1}^{Q} a_q t_q \tag{8.1.3}$$

Por tanto, un estimador insesgado de B está dado por la siguiente expresión

$$\hat{B} = a_0 + \sum_{q=1}^{Q} a_q \hat{t}_q \tag{8.1.4}$$

Si en la estimación de B hemos utilizado estimadores de tipo Horvitz-Thompson, entonces es posible escribir (8.1.3) como

$$\hat{B}_{\pi} = a_0 + \sum_{k \in S} \frac{E_k}{\pi_k} \tag{8.1.5}$$

donde $E_k = \sum_{q=1}^Q a_q y_{qk}$ y el valor del k-ésimo elemento en la q-ésima característica de interés está dado por y_{jk} . Siguiendo los principios del estimador de Horvitz-Thompson, la varianza de \hat{B}_{π} se puede expresar como

$$Var(\hat{B}_{\pi}) = \sum_{l,l} \Delta_{kl} \frac{E_k}{\pi_k} \frac{E_l}{\pi_l}.$$
(8.1.6)

Un estimador insesgado para la expresión (8.0.5) está dada por

$$\widehat{Var}_1(\hat{B}_{\pi}) = \sum_{S} \sum_{l} \frac{\Delta_{kl}}{\pi_{kl}} \frac{E_k}{\pi_k} \frac{E_l}{\pi_l}$$
(8.1.7)

Nótese que cuando la función f es lineal no se involucran nuevos principios de estimación. Por el contrario, cuando f no es lineal, el estimador propuesto es la misma expresión (8.1.2); sin embargo, en algunos casos, no es posible ni calcular, ni estimar la varianza debido a la complejidad matemática teórica del desarrollo y es necesario recurrir a métodos que permitan llegar a una expresión que aproxime la varianza. Es posible aproximar la varianza utilizando las técnicas de linealización para estimar la precisión de estos estimadores. Éstas han sido introducida por Woodruff (1971). Algunas aplicaciones en la teoría de muestreo han sido desarrolladas, entre otros, por Binder (1983) y Deville (1999). El método más común, aunque no el único, es el de linealización por polinomios de Taylor.

8.1. Fundamentos teóricos 237

8.1.1 Aproximación de una función por polinomios

En Apostol (1963, p. 417) se presentan las condiciones para que una función f se pueda aproximar mediante un polinomio. Entre ellas tenemos que la función f sea derivable y que sus derivadas deben estar definidas en el punto x = a.

Resultado 8.1.1 (Teorema de Taylor). Si una función se puede aproximar mediante un polinomio, entonces éste estará definido por

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}}{n!}(x-a)^n + \dots$$
 (8.1.8)

Prueba. Sea

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots$$
(8.1.9)

Derivando sucesivamente, tenemos

$$f^{(1)}(x) = c_1 + 2c_2(x - a) + 3(x - a)^2 + \dots$$

$$f^{(2)}(x) = 2c_2 + 6c_3(x - a) + 12c_4(x - a)^2 + \dots$$

$$f^{(3)}(x) = 6c_3 + 24c_4(x - a) + 60c_5(x - a)^2 + \dots$$

$$\vdots$$

$$f^{(n)}(x) = n!c_n + (n + 1)!C_{n+1}(x - a) + (n + 2)!C_{n+2}(x - a)^2 + \dots$$

Haciendo x = a tenemos

$$f(a) = c_0$$
 $f^{(1)}(a) = c_1$
 $f^{(2)}(a) = 2c_2$ $f^{(3)}(a) = 6c_3$

y en general $f^{(n)}(x) = n!c_n$. Sustituyendo en (8.1.9), se llega a la aproximación mediante polinomios de Taylor como en (8.1.8).

Para funciones vectoriales, existe el siguiente teorema de Taylor

Resultado 8.1.2. Para una función vectorial f, se tiene que la aproximación de Taylor de primer orden de la función f en un punto (vectorial) \mathbf{a} está dada por

$$f(\mathbf{x}) \cong f(\mathbf{a}) + (\nabla f|_{\mathbf{x}=\mathbf{a}})'(\mathbf{x} - \mathbf{a}),$$
 (8.1.10)

 $\operatorname{con} \mathbf{x} = (x_1, \cdots, x_Q)'$ y ∇f denota el gradiente de la función f; esto es, el q-ésimo componente de ∇f está dado por

$$\frac{\partial f(x_1,\cdots,x_Q)}{\partial x_q}.$$

Ejemplo 8.1.1. Es posible representar a la función sin(x) en series de potencias de x (es decir en el punto a = 0). Para este caso particular se tiene que:

$$f(x) = \sin(x) \qquad \qquad f(0) = 0$$

$$f^{(1)}(x) = \cos(x) \qquad \qquad f^{(1)}(0) = 1$$

$$f^{(2)}(x) = -\sin(x) \qquad \qquad f^{(2)}(0) = 0$$

$$f^{(3)}(x) = -\cos(x) \qquad \qquad f^{(3)}(0) = -1$$

$$f^{(4)}(x) = \sin(x) \qquad \qquad f^{(4)}(0) = 0$$

$$\vdots \qquad \qquad \vdots \qquad \vdots$$

Por tanto, el desarrollo de la función en series es de la siguiente manera:

$$\sin(x) = 0 + x + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \frac{0}{4!}x^4 + \frac{1}{5!}x^5 + \dots$$
$$= x + \frac{-1}{3!}x^3 + \frac{1}{5!}x^5 + \dots$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)!}x^{(2n-1)}$$

Sin embargo, no solamente debemos revisar si la función y sus derivadas están definidas en un punto x=a, también debemos revisar la convergencia de la serie de potencias. Para esto utilizaremos la prueba de convergencia de la razón definido en Apostol (1963, p. 363). Esta prueba argumenta que si el resultado de R, definido por

$$R = \lim_{n \to \infty} \left| \frac{S_{n+1}}{S_n} \right|,\tag{8.1.11}$$

es menor que uno, entonces la serie converge absolutamente. Para este ejemplo particular, tenemos que

$$R = \lim_{n \to \infty} \left| \frac{(-1)^{(n-1)+1} x^{2(n+1)-1}}{(2(n+1)-1)!} \middle/ \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x^{2n+1}}{(2n+1)!} \frac{(2n-1)!}{x^{2n-1}} \right|$$

$$= x^2 \lim_{n \to \infty} \left| \frac{1}{2n(2n+1)} \right| = 0$$

Por lo tanto, la serie converge absolutamente y tendríamos una buena aproximación a f(x) = sin(x) al cortar la serie y dejar un residuo que sería despreciable.

Aplicación en muestreo

Mediante esta técnica es posible aproximar la varianza de los estimadores que no son funciones lineales de totales. Aunque en el ámbito de la inferencia en poblaciones finitas, no existe una teoría asintótica unificada, sí existen resultados particulares para los diseños de muestreo más simples (Madow 1948) y para algunos diseños de muestreo con probabilidades proporcionales (Rosén 1972). Lohr (2000) plantea los siguientes pasos para construir un estimador linealizado de la varianza de una función no lineal de totales:

- 1. Expresar el estimador del parámetro de interés \hat{B} como una función de estimadores de totales insesgados. Así, $\hat{B} = f(\hat{t}_1, \hat{t}_2, \dots, \hat{t}_Q)$.
- 2. Determinar todas las derivadas parciales de f con respecto a cada total estimado $\hat{t}_{q,\pi}$ y evaluar el resultado en las cantidades poblacionales t_q . Así

$$a_q = \left. \frac{\partial f(\hat{t}_1, \dots, \hat{t}_Q)}{\partial \hat{t}_q} \right|_{\hat{t}_1 = t_1, \dots, \hat{t}_Q = t_Q}$$

$$(8.1.12)$$

8.1. Fundamentos teóricos 239

3. Aplicar el teorema de Taylor para funciones vectoriales para linealizar la estimación \hat{B} con $\mathbf{a}=(t_1,t_2,\cdots,t_Q)'$. En el paso anterior, se vio que $\nabla \hat{B}'=(a_1,\cdots,a_Q)$. Por consiguiente se tiene que

$$\hat{B} = f(\hat{t}_1, \dots, \hat{t}_Q) \cong B + \sum_{q=1}^{Q} a_q (\hat{t}_q - t_q)$$
(8.1.13)

4. Definir una nueva variable E_k con $k \in S$ al nivel de cada elemento observado en la muestra aleatoria.

$$E_k = \sum_{q=1}^{Q} a_q y_{qk} \tag{8.1.14}$$

5. De (8.1.12) y (8.1.13) se tiene que, si los estimadores \hat{t}_q son estimadores de Horvitz-Thompson, una expresión que aproxima la varianza de \hat{B} está dada por

$$\begin{split} AVar(\hat{B}) &= Var\left(\sum_{q=1}^{Q} a_{q} \hat{t}_{q,\pi}\right) \\ &= Var\left(\sum_{S} \frac{E_{k}}{\pi_{k}}\right) = \sum_{U} \Delta_{kl} \frac{E_{k}}{\pi_{k}} \frac{E_{l}}{\pi_{l}}. \end{split}$$

Para encontrar una estimación de la varianza de \hat{B} , no es posible utilizar directamente los valores E_k , porque éstos dependen de los totales poblacionales, pues las derivadas a_q se evalúan en los totales poblacionales que son desconocidos. Por consiguiente, los valores E_k se aproximan reemplazando los totales desconocidos por los estimadores de los mismos. Siendo e_k la aproximación de la variable linealizada dada por

$$e_k = \sum_{q=1}^{Q} \hat{a}_q y_{qk} \tag{8.1.15}$$

donde \hat{a}_q corresponde a un estimador de a_q . Por otro lado, Deville (1999) ha probado que la aproximación de la varianza lograda mediante e_k es válida para grandes tamaños de muestra. Si los estimadores \hat{t}_q son estimadores de Horvitz-Thompson, se puede usar de manera general el estimador de la varianza de Horvitz-Thompson, así

$$\widehat{Var}(\hat{t}_{y,\pi}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \frac{e_k}{\pi_k} \frac{e_l}{\pi_l}$$
(8.1.16)

Como siempre, si el diseño de muestreo es de tamaño fijo, se pueden utilizar las respectivas expresiones dadas en el capítulo 2 de este texto. Särndal, Swensson & Wretman (1992) advierten que este método tiende a sub-estimar la varianza real cuando el tamaño de muestra es pequeño. Por otra parte, una desventaja de este método es la particularidad de cada aproximación sujeta a la forma funcional del parámetro de interés. De esta manera, es necesario determinar expresiones analíticas particulares. Esto genera desgaste cuando se trabaja con encuestas complejas. El siguiente resultado resume el proceso de inferencia general para la estimación de una función linealizada de totales.

Resultado 8.1.3. Siendo $B = f(t_1, t_2, ..., t_Q)$ es una función de totales poblacionales, entonces un estimador aproximadamente insesgado de B, su varianza aproximada y una estimación insesgada para esta última están dadas por las siguientes expresiones

$$\hat{B}_{\pi} = f(\hat{t}_{1,\pi}, \hat{t}_{2,\pi}, \dots, \hat{t}_{Q,\pi}) \tag{8.1.17}$$

$$AVar(\hat{B}_{\pi}) = \sum_{l} \sum_{l} \Delta_{kl} \frac{E_k}{\pi_k} \frac{E_l}{\pi_l}$$
(8.1.18)

$$\widehat{Var}(\hat{B}_{\pi}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \frac{e_k}{\pi_k} \frac{e_l}{\pi_l}$$
(8.1.19)

respectivamente, con $\hat{t}_{q,\pi}$ el estimador de Horvitz-Thompson de $t_{q,\pi}$ y tanto E_k como e_k se encuentran dados por las fórmulas (8.1.14) y (8.1.15), en estricto orden.

Prueba. En primer lugar,

$$E(\hat{B}_{\pi}) \cong E(B + \sum_{q=1}^{Q} a_q(\hat{t}_q - t_q))$$
$$= B + \sum_{q=1}^{Q} a_q E(\hat{t}_q - t_q)$$
$$= B$$

puesto que \hat{t}_q es insesgado para t_q , para $q=1,\cdots,Q$. Por otro lado,

$$Var(\hat{B}_{\pi}) = Var(\sum_{q=1}^{Q} a_q \hat{t}_q)$$

$$= Var(\sum_{q=1}^{Q} a_q \sum_{k \in S} \frac{y_{qk}}{\pi_k})$$

$$= Var(\sum_{k \in S} \frac{E_k}{\pi_k})$$

$$= \sum_{k \in S} \sum_{k \in S} \Delta_{kl} \frac{E_k}{\pi_k} \frac{E_l}{\pi_l}$$

8.2 Estimación de una razón poblacional

Un caso especial de una función no-lineal de totales es la razón poblacional B. Ésta se define como el cociente de dos totales poblacionales de características de interés z e y. Así

$$B = \frac{t_y}{t_z} = \frac{\bar{y}_U}{\bar{z}_U} \tag{8.2.1}$$

Lohr (2000) plantea que técnicamente siempre se estimará una razón cuando se estime un promedio de un dominio. Nótese que la característica de la razón es que tanto el denominador como el numerador son desconocidos, y aunque se conocieran, se prefieren estimar. Bautista (1998) da ejemplos muy concretos en lo que se utilizó la estimación de razones. Entre ellos están los siguientes:

• Estudios electorales: para estimar la intención de voto por un candidato se pregunta por qué candidato votaría el encuestado¹. Dado que no todas las personas entrevistadas pueden votar,

 $^{^1\}mathrm{Bajo}$ el supuesto de que las elecciones se realizarían el mismo día de la entrevista.

incluso algunos de ellos decidirán no votar por omisión. El numerador de esta razón está dado por el total de personas que votarían por el candidato, mientras que el denominador de la razón sería el total de personas que participarían activamente en las elecciones. Nótese que la tasa de abstención también está dada por una razón. El numerador correspondería al total de personas que, sin tener restricción alguna, han decidido no participar en las elecciones. El denominador estaría dado por el total de personas que están aptas para votar.

- Investigación de medios: es importante para los canales de televisión tener un estimativo del total de personas observan algún programa de televisión en determinado momento. Con esta información, los canales cobran más o menos dinero a las empresas que deseen pautar un comercial a determinada hora. Si el programa televisivo tiene una audiencia alta, el canal cobrará más por la pauta de un comercial. Para estandarizar esta información, se ha creado un índice llamado «rating» que se define como la razón entre el total de personas que están observando un programa de televisión en un minuto determinado sobre el total de personas que están observando televisión.
- Investigación social: uno de los indicadores económicos que más llama la atención en el desarrollo de una región o país es la tasa de desempleo. Hay que tener en cuenta que no todos los habitantes de una región están aptos para trabajar, pues existe un rango de edad para ello. Este indicador económico está definido como el total poblacional de personas que se encuentran en edad laboral pero que carecen de un empleo sobre la cantidad de personas que pertenecen a la población económicamente activa.

Para la estimación de razones se propone el siguiente resultado que da cuenta de las expresiones teóricas que deben utilizarse para tal fin.

Resultado 8.2.1. Un estimador para la razón poblacional B de dos características de interés, su varianza y su varianza estimada están dados por

$$\hat{B} = \frac{\hat{t}_{y,\pi}}{\hat{t}_{z,\pi}} \tag{8.2.2}$$

$$AVar(\hat{T}_{\pi}) = \sum_{l} \sum_{l} \Delta_{kl} \frac{E_k}{\pi_k} \frac{E_l}{\pi_l}.$$
 (8.2.3)

$$\widehat{Var}(\widehat{t}_{y,\pi}) = \sum_{S} \sum_{k} \frac{\Delta_{kl}}{\pi_{kl}} \frac{e_k}{\pi_k} \frac{e_l}{\pi_l}$$
(8.2.4)

donde $E_k = \frac{1}{t_x}(y_k - Bz_k)$ y $e_k = \frac{1}{\hat{t}_{z,\pi}}(y_k - \hat{B}z_k)$ Nótese que \hat{B} es aproximadamente insesgado para B al igual que $\widehat{Var}(\hat{t}_{y,\pi})$ lo es para $AVar(\hat{t}_{y,\pi})$

Prueba. Siguiendo los pasos de linealización de la sección anterior tenemos que el estimador propuesto es una función de dos totales estimados de las características de interés

$$\hat{B} = \frac{\hat{t}_{y,\pi}}{\hat{t}_{z,\pi}} = f(\hat{t}_{y,\pi}, \hat{t}_{z,\pi})$$

Calculando las derivadas parciales

$$\begin{aligned} a_1 &= \left. \frac{\partial f(\hat{t}_{y,\pi}, \hat{t}_{z,\pi})}{\partial \hat{t}_{y,\pi}} \right|_{\hat{t}_{y,\pi} = t_y, \hat{t}_{z,\pi} = t_z} \\ &= \frac{1}{t_z} \\ a_2 &= \left. \frac{\partial f(\hat{t}_{y,\pi}, \hat{t}_{z,\pi})}{\partial \hat{t}_{z,\pi}} \right|_{\hat{t}_{y,\pi} = t_y, \hat{t}_{z,\pi} = t_z} \\ &= -\frac{t_y}{t_z^2} \end{aligned}$$

Utilizando la aproximación de la razón mediante la expresión (8.1.12) se tiene que

$$\hat{B} = B + \frac{1}{t_z}(\hat{t}_{y,\pi} - t_y) - \frac{t_y}{t_z^2}(\hat{t}_{z,\pi} - t_z)$$

por tanto al evaluar la esperanza se tiene inmediatamente la propiedad del insesgamiento aproximado. Por otro lado, definiendo la nueva variable linealizada dada en (8.1.14), tenemos que

$$E_k = \frac{y_k}{t_z} - \frac{t_y}{t_z^2} z_k = \frac{1}{t_z} (y_k - Bz_k)$$
(8.2.5)

cuya aproximación es

$$e_k = \frac{1}{\hat{t}_{z,\pi}} (y_k - \hat{B}z_k) \tag{8.2.6}$$

Por tanto la varianza se escribe como

$$AVar(\hat{B}) = Var\left(\sum_{S} \frac{E_k}{\pi_k}\right) \tag{8.2.7}$$

Utilizando los principios del estimador de Horvitz-Thompson se llega a los resultados de la aproximación de la varianza y de la varianza estimada.

No es difícil probar que cualquiera que sea el diseño de muestreo utilizado siempre se cumplen las siguientes condiciones

$$\sum_{U} E_k = 0 (8.2.8)$$

$$\sum_{S} \frac{e_k}{\pi_k} = 0 \tag{8.2.9}$$

8.2.1 Propiedades

Aunque la característica del insesgamiento es deseada en los estimadores, no se debe exagerar descartando algunos estimadores que tengan un poco de sesgo. En algunos casos la forma funcional del parámetro de interés es tan compleja que resulta muy complicado obtener un estimador exactamente insesgado. Por otro lado, puede existir un estimador con poco sesgo y con menor error cuadrático medio que un estimador insesgado. De hecho, Särndal, Swensson & Wretman (1992) afirman que son muchos los estimadores aproximadamente insesgados que se utilizan en la práctica. También afirma que se debe mantener siempre presente la regla de Hájek que proclama que:

Los estimadores con un sesgo considerable son pobres sin importar qué otras propiedades puedan tener.

Como esta clase de estimadores son aproximadamente insesgados, es necesario evaluar otro tipo de bondades como la consistencia dada en la siguiente definición.

Definición 8.2.1. Un estimador \hat{T} es consistente en el sentido Cochran para un parámetro de interés T si s = U implica que el estimador reproduce el parámetro de interés. Es decir $\hat{T} = T$.

Nótese que bajo la clase de diseños MAS, el estimador de Horvitz-Thompson es consistente pues si s = U, entonces $\pi_k = 1$, por lo tanto

$$\hat{t}_{y,\pi} = \sum_{k \in s} \frac{y_k}{\pi_k} = \sum_{k \in U} y_k = t_y \tag{8.2.10}$$

Sin embargo, bajo el diseño de Bernoulli, el estimador de Horvitz-Thompson no conserva la propiedad de consistencia. Suponga que las probabilidades de inclusión de primer orden están dadas por $\pi=0.1$. El evento s=U ocurre con probabilidad 0.1^N , para el cual el estimador de Horvitz-Thompson tomaría la siguiente forma

$$\hat{t}_{y,\pi} = \sum_{k \in s} \frac{y_k}{0.1} = 10 \times t_y \tag{8.2.11}$$

Nótese que bajo este escenario, él estimador de razón \hat{B} es consistente.

8.2.2 Casos particulares

Los principios del estimador de Horvitz-Thompson se establecen para llegar a una aproximación y estimación de la varianza del estimador. Para los siguientes diseños de muestreo se tienen las siguientes propiedades

Muestreo aleatorio simple

Para este diseño de muestreo en particular las probabilidades de inclusión de primer orden están dadas por $\pi_k = \frac{n}{N}$. Los estimadores de Horvitz-Thompson para las dos características de interés están dados por $\hat{t}_{y,\pi} = N\bar{y}_S$ y $\hat{t}_{z,\pi} = N\bar{z}_S$. Por lo tanto se tiene el siguiente resultado.

Resultado 8.2.2. Bajo muestreo aleatorio simple, el estimador de la razón poblacional B, su varianza y su varianza estimada están dados por

$$\hat{B} = \frac{\bar{y}_S}{\bar{z}_S} \tag{8.2.12}$$

$$AVar_{MAS}(\hat{B}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{EU}^2 \tag{8.2.13}$$

$$\widehat{Var}_{MAS}(\widehat{B}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{es}^2$$
(8.2.14)

respectivamente, con S_{EU}^2 y S_{es}^2 el estimador de la varianza de los valores de la variable linealizada E y su aproximación e en el universo U y en la muestra s. Recuerde que $E_k = \frac{1}{t_x}(y_k - Bz_k)$ y $e_k = \frac{1}{\hat{t}_{z,\pi}}(y_k - \hat{B}z_k)$.

Muestreo aleatorio simple en dos etapas

Para este diseño de muestreo los estimadores de Horvitz-Thompson para las dos características de interés están dados por $\hat{t}_{y,\pi} = (N_I/n_I) \sum_{i \in S_I} N_i \bar{y}_{S_i}$ y $\hat{t}_{z,\pi} = (N_I/n_I) \sum_{i \in S_I} N_i \bar{z}_{S_i}$. Se tiene el siguiente resultado.

Resultado 8.2.3. Bajo muestreo aleatorio simple, el estimador de la razón poblacional B, su varianza y su varianza estimada están dados por

$$\hat{B} = \frac{\sum_{i \in S_I} N_i \bar{y}_{S_i}}{\sum_{i \in S_I} N_i \bar{z}_{S_i}}$$
(8.2.15)

$$AVar_{MM}(\hat{B}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) S_{t_E U_I}^2 + \frac{N_I}{n_I} \sum_{i \in U_I} \frac{N_i^2}{n_i} \left(1 - \frac{n_i}{N_i} \right) S_{y_{E_i}}^2$$
(8.2.16)

$$\widehat{Var}_{MM}(\hat{B}) = \frac{N_I^2}{n_I} \left(1 - \frac{n_I}{N_I} \right) S_{\hat{t}_e S_I}^2 + \frac{N_I}{n_I} \sum_{i \in S_I} \frac{N_i^2}{n_i} \left(1 - \frac{n_i}{N_i} \right) S_{e_{S_i}}^2$$
(8.2.17)

respectivamente. Donde $S^2_{t_EU_I}$ es la varianza poblacional de los totales t_{Ei} $i \in U_I$ de todas y cada una de las unidades primarias de muestreo y $S^2_{E_{U_i}}$ es la varianza poblacional entre los valores de la variable E que toman los elementos dentro de cada unidad primaria de muestreo. El razonamiento es similar con las cantidades $S^2_{t_e s_I}$ y $S^2_{y_{e_i}}$.

Diseños de muestreo con probabilidad proporcional

Siguiendo con la regla de oro de la estimación de totales, tanto en estrategias que utilicen diseños de muestreos sin reemplazo como Poisson o πPT junto con el estimador de Horvitz-Thompson y en diseños de muestreo con reemplazo junto con el estimador de Hansen-Hurwitz, era conveniente que el marco de muestreo adjuntara información auxiliar de tipo continuo para poder construir las probabilidades de inclusión o de selección según el caso.

Por supuesto, en este contexto particular de estimación de razones, el marco de muestreo debe ser aún más generoso tanto así que permita la inclusión de información auxiliar continua que deberá estar correlacionada **no** con las características de interés que intervienen en la razón **sino** con la variable linealizada E. De esta forma, si la variable correlacionada con E es E^* , entonces las probabilidades óptimas de selección estarían dadas por

$$p_k = \frac{E_k^*}{t_{E^*}} \tag{8.2.18}$$

Un razonamiento similar se hace con los diseños de tamaño fijo que utilizan probabilidades proporcionales.

8.2.3 Estimación de un promedio

Uno de los motivos por los cuales se utiliza el estimador \hat{B} es el desconocimiento del total poblacional N en la estimación de la media poblacional \bar{y}_U . Incluso si N es conocido, es preferible ignorarlo como lo demuestra el siguiente ejemplo (Lohr 2000). Suponga que por alguna circunstancia, un extraterrestre desea estimar el número promedio de patas que tiene un perro en una ciudad. La ciudad está dividida en dos áreas geográficas, la zona norte y la zona sur. Para llevar a cabo la estimación, él planea un diseño de muestreo en dos etapas así: De las $N_I = 2$ zonas geográficas de la ciudad va a seleccionar una muestra aleatoria simple de $n_I = 1$ unidades primarias de muestreo. Se sabe que en el norte hay

 $N_1=30$ perros y en el sur hay $N_2=10$ perros. Sea cual sea la unidad primaria seleccionada, se seleccionará una sub-muestra aleatoria simple de $n_i=2$ perros i=1,2 y se realizará la medición del total de patas en cada perro incluido en la muestra.

Suponga que se ha seleccionado la zona norte. Curiosamente, en esta zona cada uno de los perros tiene igual número de patas, 4. El estimador de Horvitz-Thompson del total de patas en la zona norte está dado por $\hat{t}_{1y,\pi} = \frac{30}{2} 8 = 120$. Luego un estimador insesgado del número total de patas en la ciudad está dado por $\hat{t}_{y,\pi} = \frac{2}{1}120 = 240$. Al dividir esta estimación por el número total de perros en la ciudad encontramos la sorpresa de que la estimación de este promedio es 6.

$$\hat{y}_{U,\pi} = \frac{\hat{t}_{y,\pi}}{N} = \frac{240}{40} = 6$$

iji6 patas!!!. Si la muestra del extraterrestre hubiera consistido en la zona sur, el estimador de Horvitz-Thompson del total de patas en la zona sur estría dado por $\hat{t}_{2y,\pi} = \frac{10}{2}8 = 40$. El estimador insesgado del número total de patas en la ciudad estaría dado por $\hat{t}_{y,\pi} = \frac{2}{1}40 = 80$. Al dividir esta estimación por el número total de perros en la ciudad encontramos que la estimación de este promedio es

$$\hat{y}_{U,\pi} = \frac{\hat{t}_{y,\pi}}{N} = \frac{80}{40} = 2$$

Sin embargo, a pesar de estos resultados el estimador es efectivamente insesgado porque la esperanza corresponde al parámetro poblacional pues (2+6)/2=4. Seguramente, el extraterrestre no hizo uso de la mejor estrategia de muestreo. No por la escogencia del diseño, que induce probabilidades de inclusión constantes como lo son los valores de la características de interés, sino por el contrario, debido a la escogencia del estimador. Si el estimador utilizado hubiese sido $\hat{B}=\tilde{y}_S$, definido en (2.2.15), se encontraría que la estimación sería

$$\widetilde{y}_S = \frac{\hat{t}_{y,\pi}}{\hat{N}} = \frac{240}{60} = 4$$

Al seleccionar la zona norte, debido a que $\hat{N} = \frac{2}{1}30 = 60$. Ahora, si hubiese sido seleccionada la zona sur, tendríamos que $\hat{N} = \frac{2}{1}10 = 20$ y por consiguiente

$$\widetilde{y}_S = \frac{\hat{t}_{y,\pi}}{\hat{N}} = \frac{80}{20} = 4$$

Nótese que, para este caso particular, el estimador \tilde{y}_S es insesgado y de varianza nula. El siguiente resultado amplia las propiedades de este estimador que en la literatura clásica es llamado **promedio muestral ponderado**.

Resultado 8.2.4. Un estimador del promedio poblacional \bar{y}_U , definido como una razón, su varianza y su varianza estimada están dados por

$$\tilde{y}_S = \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}} = \sum_S \frac{y_k}{\pi_k} / \sum_S \frac{1}{\pi_k}.$$
 (8.2.19)

$$AVar(\widetilde{y}_S) = \frac{1}{N^2} \sum_{l} \sum_{l} \Delta_{kl} \left(\frac{y_k - \overline{y}_U}{\pi_k} \right) \left(\frac{y_l - \overline{y}_U}{\pi_l} \right)$$
(8.2.20)

$$\widehat{Var}(\widetilde{y}_S) = \frac{1}{\widehat{N}^2} \sum_{S} \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \left(\frac{y_k - \widetilde{y}_S}{\pi_k} \right) \left(\frac{y_l - \widetilde{y}_S}{\pi_l} \right)$$
(8.2.21)

respectivamente.

Este estimador coincide con el estimador clásico \bar{y}_S en diseños de muestreo como el aleatorio simple o el aleatorio estratificado.

Estimación de un promedio en un dominio

Es la regla, más que la excepción, que el tamaño absoluto N_d de un dominio en estudio sea desconocido. En la sección 3.2.4, se dieron las bases para la estimación del promedio de la característica de interés en un dominio cuando se usaba muestreo aleatorio simple, en esta sección se darán las pautas necesarias para realizar esta estimación bajo cualquier diseño de muestreo y con el desconocimiento de N_d . Siguiendo con la notación de la sección 3.2.4, en donde se definió la función indicatriz del dominio U_d dada por (3.2.22) y se construyó la variable y_{dk} , se tienen los siguientes resultados para la estimación de N_d y para la estimación del total de la característica de interés t_{yd} en el dominio U_d .

Resultado 8.2.5. Bajo cualquier diseño de muestreo, el estimador de Horvitz-Thompson para el tamaño absoluto de un dominio N_d , su varianza y su varianza estimada están dados por

$$\hat{N}_{d,\pi} = \sum_{S} \frac{z_{dk}}{\pi_k} \tag{8.2.22}$$

$$Var(\hat{N}_{d,\pi}) = \sum_{l} \sum_{l} \Delta_{kl} \frac{z_{dk}}{\pi_k} \frac{z_{dl}}{\pi_l}$$

$$(8.2.23)$$

$$\widehat{Var}(\hat{N}_{d,\pi}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \frac{z_{dk}}{\pi_k} \frac{z_{dl}}{\pi_l}$$
(8.2.24)

respectivamente.

Resultado 8.2.6. Bajo cualquier diseño de muestreo, el estimador de Horvitz-Thompson para el total de la característica de interés t_{yd} en el dominio U_d , su varianza y su varianza estimada están dados por

$$\hat{t}_{yd,\pi} = \sum_{S} \frac{y_{dk}}{\pi_k} \tag{8.2.25}$$

$$Var(\hat{t}_{yd,\pi}) = \sum_{l} \sum_{l} \Delta_{kl} \frac{y_{dk}}{\pi_k} \frac{y_{dl}}{\pi_l}$$
(8.2.26)

$$\widehat{Var}(\widehat{t}_{yd,\pi}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \frac{y_{dk}}{\pi_k} \frac{y_{dl}}{\pi_l}$$
(8.2.27)

respectivamente.

Una vez que los anteriores parámetros son estimados y siguiendo la expresión (3.2.23) para el promedio de un dominio, procedemos a estimarlo mediante el siguiente resultado.

Resultado 8.2.7. Un estimador del promedio de un dominio \bar{y}_{U_d} , definido como una razón, su varianza y su varianza estimada están dados por

$$\tilde{y}_S = \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}} = \sum_S \frac{y_{dk}}{\pi_k} / \sum_S \frac{z_{dk}}{\pi_k}.$$
 (8.2.28)

$$AVar(\widetilde{y}_S) = \frac{1}{N_d^2} \sum_{U} \sum_{U} \Delta_{kl} \left(\frac{y_{dk} - \overline{y}_{U_d}}{\pi_k} \right) \left(\frac{y_{dl} - \overline{y}_{U_d}}{\pi_l} \right)$$
(8.2.29)

$$\widehat{Var}(\widetilde{y}_S) = \frac{1}{\widehat{N}_d^2} \sum_{S} \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \left(\frac{y_{dk} - \widetilde{y}_{S_d}}{\pi_k} \right) \left(\frac{y_l - \widetilde{y}_{S_d}}{\pi_l} \right)$$
(8.2.30)

respectivamente.

En el caso específico de muestreo aleatorio simple tenemos que la expresión del estimador alternativo del promedio del dominio dada por (3.2.26) coincide con los anteriores resultados.

Ejemplo 8.2.1. Suponga que para la población de ejemplo U se tiene el conocimiento de cada valor de las características de interés \mathbf{x} e \mathbf{y} . De tal forma que la razón poblacional entre las dos es 0.7 como lo muestra la siguiente salida.

```
y <- c(32, 34, 46, 89, 35)

x <- c(52, 60, 75, 100, 50)

B <- sum(y) / sum(x)

B

## [1] 0.7
```

Con una muestra aleatoria simple de n=2, realice el cálculo léxico-gráfico del estimador de la razón \hat{B} . Repita el ejercicio con una muestra de n=4 y, por último, con una enumeración completa o censo. Concluya que este estimador es consistente.

8.2.4 Marco y Lucy

Siguiendo con el estudio del sector industrial y con base en las anteriores investigaciones, el gobierno quiere estimar la razón entre el ingreso total del sector industrial con respecto al número de trabajadores del mismo. El anterior es un índice de productividad del sector y describe cuánta ganancia le aporta un sólo empleado al sector. Para el gobierno este índice es importante pues con él se construyen políticas de distribución y apoyo financiero entre los sectores económicos del país.

```
data(BigLucy)
attach(BigLucy)

ty <- sum(Income)
tz <- sum(Employees)
B <- ty / tz
B

## [1] 6.8</pre>
```

En terminos poblacionales, si hubiesemos realizado un censo, este parámetro sería igual a 6.79. En los capítulos anteriores hemos aprendido cómo sacar muestras y realizar el proceso de estimación para las estrategias propuestas. En este capítulo vamos a hacer uso de las funciones ya establecidas en el paquete TeachingSampling para calcular las estimaciones y estimar las respectivas varianzas. Suponga que se utilizó un diseño de muestreo aleatorio simple y que la muestra seleccionada está dada en la respectiva sección de Marco y Lucy en el segundo capítulo de este texto. Con ayuda de las funciones S.SI y E.SI del paquete TeachingSampling² se realiza la selección de la muestra y la estimación de los totales, respectivamente. Después de seleccionar la muestra, procedemos a estimar el total poblacional con la función pertinente. Recuérdese que la salida de la función de estimación es de la siguiente forma

```
> E.SI(N, n, característica)

N característica
```

²Por supuesto que el diseño de muestreo puede variar. Si se hubiese usado un diseño aleatorio en dos etapas las funciones que se deberían utilizar serían S.SI para seleccionar la muestra y E.2SI para realizar las estimaciones.

Estimation	Posición 1,1	Posición 1,2
Standard Error	Posición 2,1	Posición 2,2
CVE	Posición 3,1	Posición 3,2
DEFF	Posición 4,1	Posición 4,2

Una vez ajustados los parámetros de la función se ingresan los valores de la característica de interés y el resultado de la función es una matriz de estimaciones. En la *Posición 1,2* encontramos la estimación del total, en la *Posición 2,2* encontramos la raiz cuadrada de la varianza estimada y en la *Posición 3,2* encontramos el coeficiente de variación estimado. Para tener acceso a cada uno de estos datos de manera independiente es necesario indexar la función, de esta manera si se quiere tener solamente la estimación del total poblacional de la característica ingreso es necesario escribir el siguiente comando: E.SI(N,n,Income)[1, 2].

En donde el índice [1, 2] implica el primer elemento de la función. Para lograr la estimación de la razón entre las características Ingreso y Empleados debemos estimar sus respectivos totales con ayuda de la función E.SI y realizar el cociente entre ellos.

```
N <- dim(BigLucy)[1]
n <- 2000
sam <- S.SI(N, n)
muestra <- BigLucy[sam, ]

attach(muestra)

ty.est <- E.SI(N, n, Income)[1, 2]
tz.est <- E.SI(N, n, Employees)[1, 2]
B.est <- ty.est / tz.est
B.est

## [1] 6.7</pre>
```

Aunque se dispone de la estimación debemos realizar la estimación de la aproximación de la varianza. Para este propósito creamos las variables e_k $k \in S$ e introducimos sus valores en la función E.SI para llegar a la estimación de la varianza. Como se mencionó anteriormente, este valor de la estimación de la varianza se encuentra indexado en la segunda posición de la función.

```
ek <- (1 / tz.est) * (Income - B.est * Employees)
Asd <- E.SI(N, n, ek)[2, 2]
cve <- 100 * Asd / B.est
cve
## [1] 1.1</pre>
```

El resultado de la estimación se presenta en la tabla 8.1. Nótese que el valor estimado se encuentra muy cerca del parámetro de interés.

	В	B.est	cve	Asd
1	6.79	6.70	1.09	0.07

Tabla 8.1: Muestreo aleatorio simple: estimación de la razón de interés.

Por tanto se estima que cada empleado aportó réditos en el sector industrial hasta por un monto de 6.92 millones de dólares en el último año fiscal. Resultaría interesante saber si esta razón es constante

para cada nivel del sector o si se presentan diferencias en la razón para cada estrato. Este tema será tratado en el próximo capítulo.

Teorema del límite central

Al meditar en la confiabilidad y precisión del estimador de la razón, surge la siguiente pregunta: ¿es aplicable el uso del teorema del límite central en la estimación por razones?

Siguiendo con los resultados empíricos, en esta sección se realiza una simulación de Monte Carlo, de tamaño 2000, con las variables Ingreso y Empleados. Para cada simulación, se selecciona una muestra y se estima la razón pertinente. El resultado de la simulación es un conjunto de 2000 estimaciones que se plasmaron en histogramas. El ejercicio se realizó para tamaños de muestra 2, 5, 20, 50, 200 y 1000. El resultado gráfico de la simulación se muestra en la siguiente figura.

```
data(BigLucy)
attach(BigLucy)
N <- dim(BigLucy)[1]
nsim <- 2000
Bk<-rep(0, nsim)
Razon<-function(n){
  for(m in 1:nsim){
    sam <- sample(N, n)</pre>
    x <- Income[sam]
    z <- Employees[sam]
    B < -mean(x)/mean(z)
    Bk[m] < -B
  return(Bk)
Simus <- data.frame(Razon(2), Razon(5), Razon(20),</pre>
                    Razon(50), Razon(200), Razon(1000))
p1 <- ggplot(data=Simus, aes(x=Razon.2.)) +
  geom_histogram(aes(y=..density..), alpha=.5) + geom_density()
p2 <- ggplot(data=Simus, aes(x=Razon.5.)) +
  geom_histogram(aes(y=..density..), alpha=.5) + geom_density()
p3 <- ggplot(data=Simus, aes(x=Razon.20.)) +
  geom_histogram(aes(y=..density..), alpha=.5) + geom_density()
p4 <- ggplot(data=Simus, aes(x=Razon.50.)) +
  geom_histogram(aes(y=..density..), alpha=.5) + geom_density()
p5 <- ggplot(data=Simus, aes(x=Razon.200.)) +
  geom_histogram(aes(y=..density..), alpha=.5) + geom_density()
p6 <- ggplot(data=Simus, aes(x=Razon.1000.)) +
  geom_histogram(aes(y=..density..), alpha=.5) + geom_density()
grid.arrange(p1, p2, p3, p4, p5, p6, ncol = 3)
```

Para las primeras simulaciones, en donde el tamaño de muestra es pequeño, se nota que la distribución de la razón es sesgada a la derecha y, a medida que el tamaño de muestra crece, la distribución se

Figura 8.1: Distribución de muestreo de la razón estimada.

torna simétrica con respecto al verdadero valor. Por lo anterior, empíricamente y para este ejemplo en particular, se ha probado que la razón entre estas dos características converge a una distribución normal a medida que el tamaño de muestra se incrementa.

8.3 Estimación de una mediana

Una medida de tendencia central comúnmente utilizada es la mediana. Esta medida de centralidad, a diferencia del promedio poblacional, no es fácilmente influenciada por datos atípicos cuando el tamaño poblacional es pequeño y, por esto, se conoce como una medida robusta. La mediana es el valor M que divide la población en dos mitades. Por tanto, la mitad de los valores de la característica de interés

estará por encima de M y la otra mitad estará por debajo de M. La construcción de esta y otras estimaciones tiene como base la función de distribución poblacional $F(\cdot)$.

Definición 8.3.1. Para cualquier valor y, la función de distribución poblacional F(y) es la proporción de elementos en la población para los cuales se cumple que $y_k \leq y$. Esta función creciente puede escribirse como

$$F(y) = \frac{\#A_y}{N} \tag{8.3.1}$$

 $con A_y dado por$

$$A_y = \{k \mid y_k \le y, k \in U\}$$
 (8.3.2)

De la anterior definición resulta claro que cualquier percentil³ Q_q con $0 \le q \le 1$ se puede escribir en función de $F(\cdot)$. De esta manera, se tiene que

$$Q_q = F^{-1}(q) (8.3.3)$$

En particular la mediana puede escribirse como $M = Q_{0.5} = F^{-1}(0.5)$. Cuando se ha realizado un diseño de muestreo y la información de la muestra seleccionada es registrada, el procedimiento genérico para la estimación de cualquier percentil sugerido en Särndal, Swensson & Wretman (1992, p. 197) consta de los siguientes pasos:

- 1. Obtener la función de distribución estimada con los datos de la característica de interés $\hat{F}(y)$
- 2. Estimar el percentil mediante $\hat{F}^{-1}(q)$. En particular la estimación de la mediana estaría dada por $\hat{F}^{-1}(0.5)$.

Como lo indican los siguiente resultados no se involucran nuevos principios de estimación en el paso 1 del anterior numeral. El procedimiento para estimar la función de distribución puede verse como la estimación de la media poblacional de la variable z_y que para el k-ésimo elemento de la población está definida como

$$z_{yk} = \begin{cases} 1 & \text{si } y_k \le y \\ 0 & \text{en otro caso} \end{cases}$$
 (8.3.4)

Resultado 8.3.1. La función de distribución poblacional puede escribirse como una función de totales, específicamente como un promedio poblacional y está dada por

$$\bar{z}_{yU} = \frac{t_{z_y}}{N} = \frac{1}{N} \sum_{U} z_{yk} = F(y)$$
 (8.3.5)

Resultado 8.3.2. Un estimador de la mediana poblacional M está dado por \hat{M}

$$\hat{M} = \hat{F}^{-1}(0.5), \tag{8.3.6}$$

donde \hat{F}^{-1} es la función inversa de $\hat{F}(y)$ dada por

$$\widehat{F}(e) = \frac{\widehat{t}_{z_y,\pi}}{\widehat{N}} \tag{8.3.7}$$

$$=\sum_{S} \frac{z_{yk}}{\pi_k} \left(\sum_{S} \frac{1}{\pi_k}\right)^{-1} \tag{8.3.8}$$

 $^{^3}$ Valor poblacional para el cual el $q\,\%$ de los valores de la característica de interés en la población cumple que $y_k \leq y$.

Esta forma de estimación de la mediana arroja los mismos resultados que la estimación de una mediana ponderada⁴ por los factores de expansión dados por $1/\pi_k$ $k \in S$. Con este razonamiento concluimos que para los diseños de muestreo que inducen probabilidades de inclusión iguales para cada elemento de la población la estimación de la mediana corresponderá a la mediana de los valores de la característica de interés en la muestra.

Por tanto, si los valores de la característica de interés en la muestra realizada son $\{1,2,3\}$ y cada elemento del anterior conjunto está ponderado por su respectivo factor de expansión dado por $\{4,1,1\}$, entonces la mediana estimada coincide con la mediana ponderada⁵ que es igual a la mediana del siguiente conjunto $\{\underbrace{1,1,1,1}_{4},\underbrace{2}_{1},\underbrace{3}_{1}\}$, es decir la mediana es uno.

Ejemplo 8.3.1. Para la población de ejemplo U la mediana poblacional es 35 como lo muestra la siguiente salida.

```
y <- c(32, 34, 46, 89, 35)
median(y)
## [1] 35
```

Si el vector de probabilidades de inclusión, inducido por un diseño $p(\cdot)$ de tamaño de muestra fijo e igual n=4, y los factores de expansión están dados por

```
pik <- c(1, 0.5, 1, 1, 0.5)
fk <- 1 / pik
fk
## [1] 1 2 1 1 2
```

Una posible muestra perteneciente al soporte Q de este diseño de muestreo es

```
s_1 = \{ Yves, Ken, Erik, Sharon \}
```

Por tanto la estimación de la mediana para los datos de esta muestra particular será 34 puesto que

```
w <- c(32, 34, 34, 46, 89)
median(w)
## [1] 34</pre>
```

¿Cuántas posible muestras tienen probabilidad no nula? Especifique el soporte Q y mediante un cálculo léxico-gráfico concluya acerca del sesgo y de la consistencia del estimador \hat{M} .

8.3.1 Marco y Lucy

El gobierno, en su intención de realizar un acercamiento al comportamiento central de las características de interés planeó la investigación de la sección 4.2.4. en donde se planeó un diseño de muestreo con

⁴Draper (1998) afirma que para calcular una mediana ponderada se deben ordenar las observaciones de la menor a la mayor llevando sus pesos a lo largo del ordenamiento. Después es necesario encontrar la suma Σ total de los pesos y añadirlos desde arriba hasta abajo hasta que se encuentre $\Sigma/2$.

 $^{^5{\}rm Este}$ procedimiento alternativo es computacionalmente mucho más sencillo.

probabilidad proporcional de selección PPT con un tamaño de muestra m=400. En esta ocasión se usó el conocimiento de la característica de interés Income para crear las probabilidades de selección de los elementos. Los resultados de la estimación de los totales son verdaderamente cercanos al parámetro de interés por la gran correlación de las probabilidades con las características de interés.

Sin embargo, los investigadores asociados con este proyecto descubren que el comportamiento estructural de la información auxiliar continua Ingreso está influenciado por puntos extremos como se puede ver en la siguiente figura. Por otra parte, se sabe que la correlación entre las características de interés y la información auxiliar es grande, y se supone que el comportamiento estructural de éstas también debe ser muy disperso. Por tanto como medida de centralidad se ha tomado la decisión de trabajar con la mediana porque es una medida robusta.

Figura 8.2: Dispersión de la información auxiliar continua: Income.

Una vez que se ha tomado la muestra, siguiendo los pasos de la sección 4.2.4. y con la ayuda de las funciones S.PPS y E.PPS se utiliza la función E.Quantile del paquete TeachingSampling para estimar la mediana con la información recolectada en la muestra.

```
data(BigLucy)
attach(BigLucy)

m <- 2000
res <- S.PPS(m, Income)</pre>
```

```
sam <- res[,1]
muestra <- BigLucy[sam,]</pre>
```

La naturaleza de este ejercicio es muy interesante porque se trata de un diseño con reemplazo. Una vez que la muestra es seleccionada es necesario extraer el vector de probabilidades de selección para las empresas seleccionadas en la muestra. La función E.Quantile consta de tres parámetros, y que, como de costumbre, es el conjunto de datos conteniendo la información recolectada en la muestra para la(s) característica(s) de interés, per que es el percentil de interés y toma valores de 0 a 1, en este caso el valor de interés es 0.5 y corresponde a la mediana y por último pik que son las probabilidades de inclusión de cada elemento seleccionado en la muestra⁶. Si este argumento se deja vacío, el resultado de la función será el cálculo del percentil correspondiente para los valores de y tratando la muestra como si fuera una población.

```
pk.s <- res[,2]
pik <- 1 - (1 - pk.s) ^ m

attach(muestra)
estima <- data.frame(Income, Employees, Taxes)
E.Quantile(estima, 0.5, pik)

## [1] 376 74 13</pre>
```

El resultado de la función arroja las siguientes estimaciones:

- Para la información auxiliar ingreso en el último año fiscal, la mediana estimada es 420 millones de dólares.
- Para la característica de interés número de empleados, la mediana estimada corresponde a 73.
- Para la característica de interés impuestos declarados en el último año fiscal, la mediana estimada corresponde a 12 millones de dólares.

Si esta muestra se hubiese analizado sin tener en cuenta el diseño de muestreo, las estimaciones serían totalmente diferentes y por lo tanto erradas.

8.4 Estimación de coeficientes de regresión

Hemos llegado a la sección más importante y a la que le da el nombre a esta parte: inferencia asistida por modelos poblacionales. Una vez que hallamos dado los fundamentos teóricos y filosóficos que inspiran un modelo en una población finita, podemos acceder a la mejora de todo tipo de estimadores para la mayoría de parámetros de interés. Es fundamental que el lector, revise una y otra vez la información contenida en esta sección hasta lograr una completa comprensión y apasionamiento por el tema. Una vez que el lector comprenda en su totalidad el espíritu de esta sección estará en capacidad, no sólo de ahondar en temas más complejos e interesantes del muestreo y la inferencia en oblaciones finitas, sino de empezar una rigurosa labor investigativa para crear, construir o mejorar los estimadores propuestos en la literatura clásica.

En la inferencia de poblaciones finitas basada en el diseño de muestreo, se hace hincapié en que las propiedades estadísticas de la estrategia utilizada para la estimación de los parámetros de interés

 $^{^6}$ En este caso de muestreo PPT utilizamos la expresión (2.2.19) para el cálculo de los π_k a partir de los p_k .

debe estar supeditada al diseño de muestreo que ha usado. Es así como en los capítulos anteriores la esperanza y el cálculo de la varianza y la estimación de la varianza se ha hecho suponiendo un diseño de muestreo $p(\cdot)$ teniendo en cuenta que los valores y_1, y_2, \ldots, y_N que puede tomar la característica de interés son considerados como pseudo-parámetros que son fijos y no son susceptibles de cambio alguno.

Cuando se tiene conocimiento de información auxiliar de tipo continuo o categórico en el marco de muestreo, decimos que para cada elemento en la población existe un vector de información auxiliar que toma el valor \mathbf{x}_k para la k-ésima unidad. Si este vector contiene p características auxiliares entonces toma la siguiente forma: $\mathbf{x}_k = (x_{1k}, x_{2k}, \dots, x_{pk})'$.

Sin embargo, cuando se ha propuesto determinar la relación existente entre la característica de interés y la información auxiliar continua o categórica contenida en el marco de muestreo, es necesario acudir a un modelo probabilístico que requiere otro tipo de supuestos, que si bien hay que tratar con mucho cuidado, no van en contravía con la teoría propuesta hasta el momento.

8.4.1 Fundamentos teóricos

Suponga que existen N variables aleatorias Y_1, Y_2, \ldots, Y_N por un lado y, que existe un vector de variables aleatorias $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_N$ y que la relación entre estas variables aleatorias está dada por un modelo de probabilidad ξ^7 de tal forma que

$$Y_k = \mathbf{X}_k' \boldsymbol{\beta} + \varepsilon_k \tag{8.4.1}$$

Donde cada un de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza⁸ $c_k \sigma^2$. Al vector $\boldsymbol{\beta}$ se le conoce como vector de coeficientes de regresión en el modelo de super-población o **super-parámetro de regresión**. Bajo las variables ε_k se tienen las siguientes propiedades.

Resultado 8.4.1. La esperanza y varianza de las variables aleatorias Y_k están dadas por

$$E_{\xi}(Y_k) = \mathbf{X}'_k \boldsymbol{\beta}$$

$$Var_{\xi}(Y_k) = c_k \sigma^2.$$
(8.4.2)

Prueba. Las propiedades estadísticas conciernen con el modelo ξ propuesto y con ε_k suponiendo que la información auxiliar es fija. De esta forma

$$E_{\xi}(Y_k) = E_{\xi} (\mathbf{X}'_k \boldsymbol{\beta} + \varepsilon_k)$$

$$= \mathbf{X}'_k \boldsymbol{\beta} + E_{\xi}(\varepsilon_k)$$

$$= \mathbf{X}'_k \boldsymbol{\beta}.$$

Por otro lado, se tiene que

$$Var_{\xi}(Y_k) = Var_{\xi} (\mathbf{X}'_k \boldsymbol{\beta} + \varepsilon_k)$$
$$= Var_{\xi}(\varepsilon_k)$$
$$= c_k \sigma^2.$$

Nótese que el sub-índice ξ denota que la inferencia se realiza bajo la función de distribución inducida por el modelo.

 $^{^7}$ A este modelo se le conoce con el nombre de modelo se super-población entre Y y \mathbf{X} .

 $^{^8}$ Las propiedades estadísticas de estas variables aleatorias deben ser consideradas bajo el modelo ξ .

Bajo este modelo de super-población los valores $y_1, y_2, ..., y_N$ para la característica de interés se consideran realizaciones de las variables aleatorias $Y_1, Y_2, ..., Y_N$, lo mismo sucede con los valores del vector $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$ que se consideran realizaciones de los vectores aleatorios $\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_N$. El modelo ξ dado por (8.4.1) y por (8.4.2) es muy general y permite toda clase de acepciones. Pero antes de adentrarnos en cada posible modelo de interés es necesario ahondar un poco más dentro de los fundamentos filosóficos del mismo.

Bajo el modelo ξ se supone una relación entre variables aleatorias dada por el vector de coeficientes de regresión β y por las variables aleatorias ε_k . Cassel, Särndal & Wretman (1976a) afirman que a ξ se le conoce como modelo de super-población porque supone que la población finita U se toma como si hubiese sido seleccionada de un universo aún más grande al que pertenecen todo tipo de valores para Y_k y para \mathbf{X}_k . Dado que es imposible para el hombre calcular el valor de β porque, de alguna manera, no está condicionado para conocer el estado de la naturaleza del modelo en cuestión, β debe ser estimado usando los datos de la población finita Y_1, Y_2, \ldots, Y_N y $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$ mediante la realización de un censo.

8.4.2 Estimación en la población finita

Cuando se tiene acceso a la información recolectada en el censo; es decir, se tiene el conocimiento de las realizaciones dadas por y_k y \mathbf{x}_k ($k \in U$), una forma de estimar, aunque no la única, el super-parámetro de regresión $\boldsymbol{\beta}$ es utilizar el método de los mínimos cuadrados, el cual arrojará como resultado un estimado \mathbf{B} .

Dentro del rango de posibles valores que el estimador B pueda tomar, el método de mínimos cuadrados asigna a B el valor que minimiza la siguiente función:

$$D = \sum_{U} \left(\frac{y_k - \mathbf{x}_k' \mathbf{B}}{c_k \sigma^2} \right)^2. \tag{8.4.3}$$

Una vez más, nótese que ni y_k ni \mathbf{x}_k son variables aleatorias, sino que deben ser tratadas como una realización de variables aleatorias. De esta manera se supone que la relación induce un vector de coeficientes de regresión estimados en la población finita U que pueden ser obtenidos al ajustar el hiperplano $y_k = B_1 x_{1k} + \ldots + B_p x_{pk}$ para los N elementos en la población entera. El siguiente resultado muestra la forma del estimador de mínimos cuadrados. Para la mejor comprensión de los resultado expuestos en esta sección se escribirán algunas expresiones en lenguaje matricial, así el lector estará familiarizado rápidamente con los modelos lineales.

Resultado 8.4.2. Usando el método de mínimos cuadrados, el estimador de β en la población finita U está dado por

$$\mathbf{B} = (B_1, \dots, B_p)' = (\mathbf{x}\Sigma^{-1}\mathbf{x}')^{-1}(\mathbf{x}\Sigma^{-1}\mathbf{y})$$
(8.4.4)

$$= \left(\sum_{U} \frac{\mathbf{x}_k \mathbf{x}_k'}{c_k \sigma^2}\right)^{-1} \sum_{U} \frac{\mathbf{x}_k y_k}{c_k \sigma^2}$$
(8.4.5)

$$= \left(\sum_{U} \frac{\mathbf{x}_k \mathbf{x}_k'}{c_k}\right)^{-1} \sum_{U} \frac{\mathbf{x}_k y_k}{c_k}$$
 (8.4.6)

Donde

$$\mathbf{x} = \begin{pmatrix} x_{11} & \dots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{p1} & \dots & x_{pN} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_N \end{pmatrix}; \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}. \tag{8.4.7}$$

y Σ es una matriz diagonal de tamaño $N \times N$ dada por

$$\Sigma = \begin{pmatrix} c_1 \sigma^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & c_N \sigma^2 \end{pmatrix}$$
(8.4.8)

Prueba. La expresión que se quiere minimizar es (8.4.3) y corresponde a la suma de cuadrados de los errores $\mathbf{E} = \mathbf{y} - \mathbf{x}'\mathbf{B}$ ponderada por $c_k \sigma^2$ y se puede reescribir de la siguiente forma

$$D = \mathbf{E}' \Sigma^{-1} \mathbf{E}$$

$$= (\mathbf{y} - \mathbf{x}' \mathbf{B})' \Sigma^{-1} (\mathbf{y} - \mathbf{x}' \mathbf{B})$$

$$= \mathbf{y}' \mathbf{y} - 2 \mathbf{B}' \mathbf{x} \Sigma^{-1} \mathbf{y} + \mathbf{B}' \mathbf{x} \Sigma^{-1} \mathbf{x}' \mathbf{B}$$

Diferenciando con respecto a ${\bf B}$ e igualando a cero

$$\frac{\partial D}{\partial \mathbf{B}} = -2\mathbf{x}'\Sigma^{-1}\mathbf{y} + 2\mathbf{x}'\Sigma^{-1}\mathbf{x}\mathbf{B} \equiv 0$$

encontramos la demostración del resultado.

Aunque no es el único método, la técnica de mínimos cuadrados sobresale por sus características de estimación, seguramente el lector deberá estar familiarizado con los métodos de regresión aunque para el lector neófito se sugiere el seguimiento de Ravishanker & Dey (2002) para una buena comprensión de la teoría de modelos lineales. Existen otro tipo de enfoques para la estimación de B, como por ejemplo las técnicas de regresión local polinomial (Breidt & Opsomer 2000) o las técnicas robustas no paramétricas (Gutiérrez 2009, Gutiérrez & Breidt 2009). Es fundamental que el lector note que en la fundamentación teórica nunca se hizo supuesto alguno acerca de la función de distribución de las variables aleatorias ε_k y por lo tanto la inferencia sigue estando libre de asunciones acerca de distribuciones teóricas.

8.4.3 Estimación en la muestra

Por supuesto, en la práctica no tenemos acceso a todos los valores de las característica de interés, incluso en muchas ocasiones no tenemos acceso a todos los valores de la información auxiliar para cada elemento en la población finita. Así que es necesario estimar el coeficiente de regresión. Para este fin y siguiendo con los lineamentos de la sección introductoria se expresa B como una función de totales. En efecto, tenemos que:

$$\mathbf{B} = \mathbf{T}^{-1}\mathbf{t} \tag{8.4.9}$$

donde

$$\mathbf{T} = \sum_{U} \frac{\mathbf{x}_k \mathbf{x}_k'}{c_k} \tag{8.4.10}$$

у

$$\mathbf{t} = \sum_{II} \frac{\mathbf{x}_k y_k}{c_k} \tag{8.4.11}$$

Resultado 8.4.3. Usando los principios de estimación de una función de totales, cuando el método de mínimos cuadrados es usado, B es estimado por

$$\hat{\mathbf{B}} = \hat{\mathbf{T}}^{-1}\hat{\mathbf{t}} \tag{8.4.12}$$

donde

$$\mathbf{T} = \sum_{S} \frac{\mathbf{x}_k \mathbf{x}_k'}{\pi_k c_k} \tag{8.4.13}$$

У

$$\mathbf{t} = \sum_{S} \frac{\mathbf{x}_k y_k}{\pi_k c_k} \tag{8.4.14}$$

Nótese que $\hat{\mathbf{T}}$ y $\hat{\mathbf{t}}$ son estimadores insesgados para \mathbf{T} y \mathbf{t} respectivamente. Sin embargo, $\hat{\mathbf{B}}$ no es insesgado para \mathbf{B} .

Aunque el estimador de **B** es sesgado, se debe encontrar una expresión para la varianza. Särndal, Swensson & Wretman (1992) muestran que cuando se usa el método de linealización de Taylor, la aproximación de la varianza del estimador (8.4.12) está dada por

$$AV(\hat{\mathbf{B}}) = \left(\sum_{U} \frac{\mathbf{x}_{k} \mathbf{x}_{k}'}{\sigma_{k}^{2}}\right)^{-1} \mathbf{V} \left(\sum_{U} \frac{\mathbf{x}_{k} \mathbf{x}_{k}'}{\sigma_{k}^{2}}\right)^{-1}, \tag{8.4.15}$$

donde V es una matriz simétrica de tamaño $p \times p$ cuyas entradas son

$$v_{ij} = \sum_{ll} \Delta_{kl} \left(\frac{x_{ik} E_k}{\pi_k} \right) \left(\frac{x_{jl} E_l}{\pi_l} \right)$$
(8.4.16)

y $E_k = y_k - \mathbf{x}_k' \mathbf{B}$. El estimador de la aproximación de la varianza es

$$\widehat{Var}(\hat{\mathbf{B}}) = \left(\sum_{s} \frac{\mathbf{x}_{k} \mathbf{x}_{k}'}{\sigma_{k}^{2} \pi_{k}}\right)^{-1} \hat{\mathbf{V}} \left(\sum_{s} \frac{\mathbf{x}_{k} \mathbf{x}_{k}'}{\sigma_{k}^{2} \pi_{k}}\right)^{-1}, \tag{8.4.17}$$

donde V es una matriz simétrica de tamaño $p \times p$ cuyas entradas son

$$\hat{v}_{ij} = \sum_{s} \frac{\Delta_{kl}}{\pi_{kl}} \left(\frac{x_{ik} e_k}{\pi_k} \right) \left(\frac{x_{jl} e_l}{\pi_l} \right)$$
(8.4.18)

 $y e_k = y_k - \mathbf{x}'_k \hat{\mathbf{B}}$. Note que $i, j = 1, \dots, p$.

8.4.4 Casos especiales

El modelo lineal general, definido por las expresiones (8.4.1) y (8.4.2), incluye muchos casos especiales de potencial interés en la práctica para el usuario que desea verificar o estimar la relación existente entre la característica de interés y la información auxiliar. Nótese que este modelo general no tiene restricción alguna en cuanto a la naturaleza de la información auxiliar. Es decir, el vector de información auxiliar \mathbf{x}_k puede ser continuo o categórico.

Existen tres conceptos de vital importancia que se relacionan con la interpretación y el ajuste de cualquier modelo en una población finita. Estos son:

- Nivel del modelo: especifica la unidad muestral que se utiliza en la formulación del modelo. Se dice que un modelo se ajusta al nivel de los elementos cuando éste está formulado en términos de información auxiliar disponible para todos los elementos de la población finita U. Un modelo puede ser formulado tanto a nivel de los elementos como a nivel de conglomerados. Para diseños en varias etapas es posible formular una gran cantidad de modelos a diferentes niveles.
- **Tipo de modelo:** este concepto se refiere al ajuste del mejor modelo que logre explicar la relación entre la característica de interés y la información auxiliar. ¿cuántas variables debo incluir en el modelo? ¿qué estructura de varianza debo proponer? ¿debe tener intercepto el modelo?
- Modelo de grupo: cuando se sabe que la población finita U puede ser particionada en grupos poblacionales, es posible ajustar un modelo general que ajuste bien en la población finita. Sin embargo, cuando se sabe que esta partición afecta el comportamiento estructural de la característica de interés en cada grupo, es recomendable ajustar un modelo en cada grupo. Así si la población está compuesta por G grupos, se ajustarán G modelos a cada grupo. Nótese que esta partición puede estar dada tanto a nivel de los elementos como al nivel de la población.

Aunque el modelo lineal general aplica para muchos casos y es obligación del usuario estar en la capacidad de proponer el mejor modelo. Como el maestro Bengt Swensson afirmó en una entrevista concedida en 2005:

[El modelo lineal general] afirma que existe una relación entre la información auxiliar. Para mí, esos son sólo datos que no traen ninguna información por sí mismos. Sin embargo tienen el **potencial de hacerlo**. Si los datos son útiles en la estimación o no, dependerá de la manera en que **x** este relacionado con **y**. Si el conocimiento y experiencia del estadístico (basados en la realización de anteriores encuestas, muestras piloto o en cualquier otra evidencia) le dicen que efectivamente **x** tiene una fuerte relación con **y**, entonces el modelo comienza a tener sentido. Entre más conocimiento se tenga, se ajustará un mejor modelo.

Aunque existen mchas combinaciones, con respecto al tipo de modelo es común que en la literatura clásica encontremos los siguientes modelos:

Modelo de media común: este modelo supone que la característica de interés tiene la misma relación común para todo elemento en la población y que la estructura de varianza es constante. Así que p = 1, $\mathbf{x}_k = 1$ y $c_k = 1$ para todo $k \in U$. La formulación del modelo está dada por

$$Y_k = \beta + \varepsilon_k \tag{8.4.19}$$

Donde cada un de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza σ^2 .

La figura 8.3 muestra el comportamiento de la relación entre la información auxiliar y la característica de interés. Este modelo tiene las siguientes propiedades:

$$E_{\xi}(Y_k) = \beta$$

$$Var_{\xi}(Y_k) = \sigma^2.$$
(8.4.20)

El estimador del coeficiente de regresión basado en la muestra está dado por

$$\hat{\mathbf{B}} = \left(\sum_{S} \frac{1}{\pi_k}\right)^{-1} \left(\sum_{S} \frac{y_k}{\pi_k}\right) = \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}} = \tilde{y}_S$$
 (8.4.21)

```
N <- 500
b <- 10
sigma <- 2

z <- c(1:N)
x <- rep(1, N)
e <- rnorm(N, 0, sigma)
y <- b * x + e

data <- data.frame(x, y)
ggplot(data, aes(x = z, y = y)) + geom_point(shape=1) + geom_smooth(method = lm)</pre>
```


Figura 8.3: Gráfico de dispersión de un modelo de media común.

Luego, bajo este modelo el estimador alternativo del promedio o promedio muestral ponderado es un caso particular del coeficiente de regresión.

Modelo de razón: este modelo supone que la existencia de una sola variable de información auxiliar continua relacionada con la característica de interés y que la estructura de varianza es inversamente proporcional al comportamiento estructural de la información auxiliar. Así que p=1, $\mathbf{x}_k=x_k$ y $c_k=x_k$ para todo $k\in U$. La formulación del modelo está dada por

$$Y_k = X_k' \beta + \varepsilon_k \tag{8.4.22}$$

Donde cada uno de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza $x_k \sigma^2$.

La figura 8.4 muestra el comportamiento de la relación entre la información auxiliar y la característica

```
N <- 500
b <- 10
sigma <- 5

x <- runif(N, 0, 20)
e <- rnorm(N, 0, sigma * sqrt(x))
y <- b * x + e

data <- data.frame(x, y)
ggplot(data, aes(x = x, y = y)) + geom_point(shape=1) + geom_smooth(method = lm)</pre>
```


Figura 8.4: Gráfico de dispersión de un modelo de razón.

de interés. Este modelo tiene las siguientes propiedades:

$$E_{\xi}(Y_k) = x_k' \beta$$

$$Var_{\xi}(Y_k) = x_k \sigma^2.$$
(8.4.23)

El estimador del coeficiente de regresión basado en la muestra está dado por

$$\hat{B} = \left(\sum_{S} \frac{x_k}{\pi_k}\right)^{-1} \left(\sum_{S} \frac{y_k}{\pi_k}\right) = \frac{\hat{t}_{y,\pi}}{\hat{t}_{x,\pi}}$$
(8.4.24)

Luego, bajo este modelo el estimador de una razón entre dos características de interés resulta ser un caso particular del coeficiente de regresión.

Modelo de regresión simple sin intercepto: este modelo supone que la existencia de una sola variable de información auxiliar continua relacionada con la característica de interés. Además, supone que la relación debe pasar por el origen del plano cartesiano y que la estructura de varianza es constante. Así que p = 1, $\mathbf{x}_k = x_k$ y $c_k = 1$ para todo $k \in U$. La formulación del modelo está dada por

$$Y_k = X_k' \beta + \varepsilon_k \tag{8.4.25}$$

Donde cada uno de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza σ^2 .

La figura 8.5 muestra el comportamiento de la relación entre la información auxiliar y la característica de interés. Este modelo tiene las siguientes propiedades:

$$E_{\xi}(Y_k) = x_k' \beta$$

$$Var_{\xi}(Y_k) = \sigma^2.$$
(8.4.26)

El estimador del coeficiente de regresión basado en la muestra está dado por

$$\hat{B} = \left(\sum_{S} \frac{x_k^2}{\pi_k}\right)^{-1} \left(\sum_{S} \frac{x_k y_k}{\pi_k}\right) = \frac{\hat{t}_{xy,\pi}}{\hat{t}_{x^2,\pi}}$$
(8.4.27)

Es importante resaltar que, al igual que el modelo de razón, éste supone que cuando la característica de interés toma el valor cero, también lo hace la variable de información auxiliar continua.

Modelo de regresión simple con intercepto: este modelo supone que la existencia de dos variables de información auxiliar continuas relacionadas con la característica de interés. Una variable corresponde al vector de unos y la otra corresponde a la información auxiliar continua. Con la inclusión del vector de unos, se supone que la relación no pasa a través del origen. Este modelo asume que la estructura de varianza es constante. Así que p=2, $\mathbf{x}_k=(1,x_k)'$ y $c_k=1$ para todo $k\in U$. La formulación del modelo está dada por

$$Y_k = \mathbf{X}_k' \boldsymbol{\beta} + \varepsilon_k Y_k = \beta_0 + \beta_1 X_k + \varepsilon_k$$
(8.4.28)

Donde cada uno de los ε_k , $k \in U$, son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza σ^2 . Para este modelo $\beta' = (\beta_0, \beta_1)$.

La figura 8.6 muestra el comportamiento de la relación entre la información auxiliar y la característica de interés. Este modelo tiene las siguientes propiedades:

$$E_{\xi}(Y_k) = \mathbf{x}_k' \boldsymbol{\beta} = \beta_0 + \beta_1 x_k$$

$$Var_{\xi}(Y_k) = \sigma^2.$$
(8.4.29)

```
N <- 1000
b <- 10
sigma <- 10

x <- runif(N, 0, 20)
e <- rnorm(N, 0, sigma)
y <- b * x + e

data <- data.frame(x, y)
ggplot(data, aes(x = x, y = y)) + geom_point(shape=1) + geom_smooth(method = lm)</pre>
```


Figura 8.5: Gráfico de dispersión de un modelo de regresión sin intercepto.

El estimador del coeficiente de regresión basado en la muestra está dado por

$$\hat{\mathbf{B}} = \begin{pmatrix} \hat{b}_0 \\ \hat{b}_1 \end{pmatrix} \tag{8.4.30}$$

En donde

$$\hat{b}_1 = \frac{\sum_S \frac{(x_k - \tilde{x}_S)(y_k - \tilde{y}_S)}{\pi_k}}{\sum_S \frac{(x_k - \tilde{x}_S)^2}{\pi_k}}$$
(8.4.31)

У

$$\hat{b}_0 = \tilde{y}_S - \hat{b}_1 \tilde{x}_S \tag{8.4.32}$$

Modelo de media post-estratificada: este modelo supone la partición en G grupos de la población finita. Así que $U=(U_1,U_2,\ldots,U_G)$. Se asume que la característica de interés está relacionada con G

```
N <- 1000
a <- 200
b <- 10
sigma <- 10

x <- runif(N, 0, 20)
e <- rnorm(N, 0, sigma)
y <- a + b * x + e

data <- data.frame(x, y)
ggplot(data, aes(x = x, y = y)) + geom_point(shape=1) + geom_smooth(method = lm)</pre>
```


Figura 8.6: Gráfico de dispersión de un modelo de regresión con intercepto.

vectores o variables dummy que toman el valor uno si el elemento pertenece al subgrupo U_g $g=1,\ldots,G$ o cero si el elemento no pertenece al grupo. Así que p=G, $\mathbf{x}_k=\mathbf{d}_k=\underbrace{(0,0,\ldots,1,\ldots,0,0)}_{G \text{ grupos}}$ ' y $c_k=1$

para todo $k \in U$. La formulación del modelo está dada por

$$Y_k = \mathbf{d}'_k \boldsymbol{\beta} + \varepsilon_k = \beta_g + \varepsilon_k \qquad g = 1, \dots, G.$$
 (8.4.33)

Donde $\beta = (\beta_1, \dots, \beta_g, \dots, \beta_G)'$ y cada uno de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza σ_g^2 . Nótese que $\mathbf{d}_k = (d_{1k}, \dots, d_{gk}, \dots, d_{Gk})'$ con

$$d_{gk} = \begin{cases} 1, & \text{si } k \in U_g \\ 0, & \text{en otro caso.} \end{cases}$$
 (8.4.34)

La figura 8.7 muestra el comportamiento de la relación entre la información auxiliar y la característica

```
N <- 1000
b1 <- 10
b2 <- 20
b3 <- 5
x \leftarrow runif(N, 0, 20)
e <- rnorm(N, 0, 1)
y1 <- b1 + e
y2 <- b2 + e
y3 <- b3 + e
data <- data.frame(x, y1, y2, y3)</pre>
p1 <- ggplot(data, aes(x = x, y = y1)) + geom_point(shape=1) +
  geom_smooth(method = lm) + ylim(0,25) + ggtitle("Grupo 1")
p2 <- ggplot(data, aes(x = x, y = y2)) + geom_point(shape=1) +
  geom_smooth(method = lm) + ylim(0,25) + ggtitle("Grupo 2")
p3 <- ggplot(data, aes(x = x, y = y3)) + geom_point(shape=1) +
  geom_smooth(method = lm) + ylim(0,25) + ggtitle("Grupo 3")
grid.arrange(p1, p2, p3, ncol = 3)
```


Figura 8.7: Gráfico de dispersión de un modelo de media post-estratificada.

de interés. Este modelo tiene las siguientes propiedades:

$$E_{\xi}(Y_k) = \mathbf{d}'_k \boldsymbol{\beta} = \beta_g + \varepsilon_k$$

$$Var_{\xi}(Y_k) = \sigma_g^2.$$
(8.4.35)

El estimador del coeficiente de regresión basado en la muestra está dado por

$$\hat{\mathbf{B}} = (\hat{B}_1, \hat{B}_2, \dots, \hat{B}_G)' \tag{8.4.36}$$

En donde

$$\hat{B}_g = \left(\sum_{S_g} \frac{1}{\pi_k}\right)^{-1} \left(\sum_{S_g} \frac{y_k}{\pi_k}\right) = \frac{\hat{t}_{yU_g,\pi}}{\hat{N}_{U_g,\pi}} = \widetilde{y}_{S_g}$$
(8.4.37)

Modelo de razón post-estratificada: este modelo supone la partición en G grupos de la población finita. De tal manera que $U=(U_1,U_2,\ldots,U_G)$. Se asume que es posible definir un modelo de razón en cada uno de los subgrupos U_g $g=1,\ldots,G$. Así que se considera que la razón entre la característica de interés y la información auxiliar es constante dentro de cada subgrupo pero distinta entre cada subgrupo. Luego, p=G, $\mathbf{x}_k=\mathbf{d}_k x_k=\underbrace{(0,0,\ldots,x_k,\ldots,0,0)}_{G \text{ grupos}}'$ y $c_k=x_k$ para todo $k\in U_g$. La

formulación del modelo está dada por

$$Y_k = \beta_q X_k + \varepsilon_k \qquad g = 1, \dots, G. \tag{8.4.38}$$

Donde cada un de los ε_k $k \in U_g$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza σ_q^2 para $g = 1, \dots, G$.

La figura 8.8 muestra el comportamiento de la relación entre la información auxiliar y la característica de interés. Este modelo tiene las siguientes propiedades:

$$E_{\xi}(Y_k) = \beta_g x_k$$

$$Var_{\xi}(Y_k) = x_k \sigma_g^2.$$
(8.4.39)

El estimador del coeficiente de regresión basado en la muestra está dado por

$$\hat{\mathbf{B}} = (\hat{B}_1, \hat{B}_2, \dots, \hat{B}_G)' \tag{8.4.40}$$

En donde

$$\hat{\mathbf{B}}_{g} = \left(\sum_{S_{g}} \frac{x_{k}}{\pi_{k}}\right)^{-1} \left(\sum_{S_{g}} \frac{y_{k}}{\pi_{k}}\right) = \frac{\hat{t}_{yU_{g},\pi}}{\hat{t}_{xU_{g},\pi}}$$
(8.4.41)

Existen más modelos pero los anteriores son los más utilizados en al práctica. La demostración de las anteriores expresiones se deja como ejercicio para el lector.

Ejemplo 8.4.1. Retomando nuestra población ejemplo U, suponga que tenemos acceso a los valores de la característica de interés y y de la información auxiliar continua x. Además de esto, se sabe que el modelo que rige la relación entre estas dos está dado por

$$Y_k = \beta_0 + \beta_1 X_k + \varepsilon_k$$

Donde cada uno de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza constante. Al estimar β_0 y β_1 usando el método de los mínimos cuadrados obtenemos la formulación del modelo en la población finita. Para esto usamos la función \mbox{lm} del ambiente computacional de \mbox{R} .

```
N <- 500
b1 <- 2
b2 <- 1
b3 <- 0.5
x \leftarrow runif(N, 0, 20)
e <- rnorm(N, 0, 1)
y1 <- b1 * x + e
y2 \leftarrow b2 * x+ e
y3 <- b3 * x + e
data <- data.frame(x, y1, y2, y3)</pre>
p1 <- ggplot(data, aes(x = x, y = y1)) + geom_point(shape=1) +
  geom_smooth(method = lm) + ylim(0,25) + ggtitle("Grupo 1")
p2 <- ggplot(data, aes(x = x, y = y2)) + geom_point(shape=1) +
  geom_smooth(method = lm) + ylim(0,25) + ggtitle("Grupo 2")
p3 \leftarrow ggplot(data, aes(x = x, y = y3)) + geom_point(shape=1) +
  geom_smooth(method = lm) + ylim(0,25) + ggtitle("Grupo 3")
grid.arrange(p1, p2, p3, ncol = 3)
```


 ${\bf Figura~8.8:~} {\it Gr\'afico~de~dispersi\'on~de~un~modelo~de~raz\'on~post-estratificada.}$

```
N <- 5

x <- c(32, 34, 46, 89, 35)

y <- c(52, 60, 75, 100, 50)

lm(y ~ x)

##

## Call:
```

Lo cual nos lleva a concluir que, en el caso hipotético de tener acceso a todos los datos de la población finita, el modelo estimado sería

$$y_k = 28.505 + 0.824x_k + E_k$$

Por supuesto, en la práctica no tenemos acceso a la población finita; por tanto, mediante un diseño de muestreo seleccionamos una muestra de tamaño n=4. El diseño de muestreo induce probabilidades de inclusión pik para cada uno de los elementos. Suponga que la muestra seleccionada son los primeros cuatro elementos de la población; es decir, Yves, Ken, Erik y por último Sharon. Por tanto la información que se ha recolectado después del proceso de medición está guardada en los vectores x.s y y.s, asimismo lo están las probabilidades de inclusión de los elementos incluidos en la muestra dentro de pik.s.

```
pik <- c(1, 0.5, 1, 1, 0.5)
sam <- c(1, 2, 3, 4)
n <- length(sam)
x.s <- x[sam]
y.s <- y[sam]
pik.s <- pik[sam]</pre>
```

Para ralizar la estimación teniendo en cuenta los pesos de muestreo, definidos como $1/\pi_k$, basta cono utilizar la función lm y asegurarse de que la opción weights esté apropiadamente definida.

Suponiendo que el muestreo hubiese sido aleatorio simple sin reemplazo, es posible utilizar la función E.Beta del paquete TeachingSampling que permite la estimación de los coeficientes de regresión bajo cualquier modelo que se proponga con la información recolectada en la muestra. La función E.Beta tiene cuatro parámetros los cuales son: y, que es el conjunto de datos conteniendo los valores de la(s) característica(s) de interés en la muestra; x, que es la matriz de diseño o matriz conteniendo la información auxiliar continua o discreta. Este argumento puede ser un vector, en el caso de una sola variable de información auxiliar, o una matriz, en el caso de múltiple información auxiliar. pik, es el vector de probabilidades de inclusión en los elementos incluidos en la muestra. b0, que por defecto toma el valor FALSE indicando que el modelo fue propuesto sin intercepto. De otra forma, si el modelo propuesto contiene intercepto, b0 debe tomar el valor TRUE. El último argumento de la función es ck que hace alusión a la estructura de varianza del modelo, ck toma el valor 1 por defecto. Si la estructura

de varianza es como el modelo de razón, entonces ck deberá ser el mismo vector que se introdujo en el argumento x

En este caso la estimación, con la información recolectada en la muestra, da como resultado que el intercepto es $\hat{B}_0 = 33.36$ y la pendiente de la recta de regresión es $\hat{B}_1 = 0.77$. La formulación del modelo, en el nivel muestral, estaría dado por:

$$y_k = 33.36 + 0.77x_k + e_k$$

Dado que la estimación de una razón y la media ponderada son casos particulares de la estimación de los coeficientes de regresión, la función E.Beta permite fácilmente el cálculo de dichas estimaciones fijando los parámetros de la misma convenientemente.

8.4.5 Marco y Lucy

Es de vital interés para los colaboradores del gobierno conocer la relación entre las características de interés porque con estas relaciones pueden formular modelos econométricos que permitirán ahondar aún más en el comportamiento del sector en el último año fiscal. Si la información poblacional estuviese disponible, y los investigadores estuvieran interesados en formular un modelo distinto para cada las características de interés: número de Empleados y declaración de Impuestos en el último año fiscal con respecto a los Ingresos obtenidos en el mismo.

A continuación, presentamos el razonamiento que nos lleva a escoger el modelo de regresión indicado para cada variable. La información auxiliar continua es la característica Ingreso mientras que las características de interés que tienen relación con esta son Empleados e Impuestos. ¿Tiene sentido ajustar ambos modelos con un intercepto? Piense en el siguiente escenario extremo que se puede presentar... el caso de una empresa que tiene ingresos nulos durante el año pero que aun así sigue funcionando con ayuda del mismo gobierno o con inyección de capital de alguna otra empresa o simplemente con la reserva de capital que la empresa debe guardar. Por lo tanto, si los ingresos son nulos, esto no significa que la empresa tenga cero empleados, entonces es posible que el modelo que se deba ajustar deba tener un intercepto. Por otro lado, si los ingresos son nulos, la declaración de impuestos de la empresa también será nula. Es decir, el modelo que se ajustaría para esta característica de interés no debería contener el parámetro del intercepto.

Entonces, utilizando el método de los mínimos cuadrados estaríamos en capacidad de formular los dos modelos para responder a los objetivos de los investigadores. Ajustamos la regresión utilizando la función lm. La estructura de varianza para cada modelo se supone constante.

```
data(BigLucy)
attach(BigLucy)
y1 <- as.matrix(Employees)
y2 <- as.matrix(Taxes)
x <- as.matrix(Income)</pre>
```

```
m1 \leftarrow lm(y1 \sim x)
##
## Call:
## lm(formula = y1 ~ x)
##
## Coefficients:
   (Intercept)
##
##
        29.1244
                         0.0794
m2 \leftarrow lm(y2 \sim x - 1)
m2
##
## Call:
## lm(formula = y2 ~ x - 1)
##
## Coefficients:
##
         X
## 0.0363
```

Así que los modelos ajustados en la población finita para las dos características de interés serían

```
Empleados_k = 29.12 + 0.08 \times Ingreso_k + E_k Impuestos_k = 0.04 \times Ingreso_k + E_k
```

Por supuesto, los anteriores modelos serían ajustados a la población. En la práctica no tenemos acceso a todos los valores que toman las características de interés, es por esto que debemos estimar los coeficientes de regresión. Suponga que el muestreo haya sido aleatorio simple sin reemplazo, con un tamaño de muestra de n=2000 empresas.

```
N <- dim(BigLucy)[1]
n <- 2000
sam <- S.SI(N, n)
muestra <- BigLucy[sam,]
attach(muestra)</pre>
```

Para realizar la estimación de los coeficientes de regresión, es necesario utilizar la función E.Beta del paquete muestreo. Para el modelo con intercepto de la característica Employees, se fijan los parámetros de la función de manera que se ajuste con los preceptos del modelo, note que b0 toma el valor TRUE y que, por la estructura de varianza, ck toma el valor 1. Por otro lado para el modelo sin intercepto de la característica Taxes, el valor de b0 debe ser FALSE y al igual que en el modelo anterior, ck sigue tomando el valor 1.

```
E.Beta(N, n, as.matrix(Employees), Income, b0=TRUE, ck=1)
## , , 1
```

8.5. Ejercicios 271

```
##
##
                      V1
                              X
## Beta estimation 27.7 0.0829
## Standard Error
                    1.1 0.0022
                     4.0 2.6978
## CVE
E.Beta(N, n, as.matrix(Taxes), Income, b0=FALSE, ck=1)
## , , 1
##
##
                      [,1]
## Beta estimation 0.0405
## Standard Error
                   0.0022
                    5.5398
## CVE
```

Así, los modelos estimados en la población finita son

```
Empleados_k = 25.43 + 0.087 \times Ingreso_k + e_k
```

$$Impuestos_k = 0.037 \times Ingreso_k + e_k$$

Esta estimación, a grandes rasgos, indica que, con ingresos nulos, las empresas tienen en promedio a 25 empleados, que cada 11.7 de aumento en ingreso se contrata a un empleado y que en promedio, las empresas pagan una tasa impositiva de 3.7 % al gobierno. Nótese que si el modelo hubiese sido de razón, entonces la función que se requeriría para la estimación del coeficiente de regresión, que coincide con la estimación de una razón sería:

```
E.Beta(N, n, as.matrix(Taxes), Income, b0=FALSE, ck=Income)

## , , 1

##

##  [,1]

## Beta estimation  0.029

## Standard Error  1.609

## CVE  5569.105
```

8.5 Ejercicios

- 8.1 Realice el ejercicio lexicográfico del Ejemplo 8.3.1. Ilustre con este ejercicio si el estimador \hat{M} es insesgado o no.
- 8.2 Con los datos del ejercicio anterior, seleccione una muestra de tamaño n = 4. Utilice el resultado 8.3.1 para obtener una estimación de la función de distribución y grafique sus hallazgos.
- 8.3 Para estimar el total de la característica de interés y de una población de N = 284 elementos, se utilizó un diseño de muestreo Poisson de tamaño de muestra esperado n(S) = 10. Las probabilidades de inclusión fueron proporcionales a una característica de información auxiliar x cuyo total poblacional es $t_x = 8182$. El algoritmo de selección arrojó una muestra de tamaño efectivo de 12 elementos, para las cuales se obtuvo la información del ejercicio 4.5. Estime la mediana y las función de distribución para la característica de interés.

- 8.4 Suponga que los datos del ejercicio anterior fueron obtenidos mediante un diseño de muestreo aleatorio simple. Estime la diferencia de totales $t_y t_x$ mediante $\hat{t}_{y-x} = \hat{t}_{y,\pi} \hat{t}_{x,\pi}$. Estime la varianza y calcule el coeficiente de variación estimado.
- 8.5 Suponga que los datos del ejercicio anterior fueron obtenidos mediante un diseño de muestreo Bernoulli con $\pi=0.04$.
 - (a) Estime la razón de totales t_y/t_x mediante $\hat{B} = \hat{t}_{y,\pi}/\hat{t}_{x,\pi}$. Estime la varianza y calcule el coeficiente de variación estimado.
 - (b) Estime el promedio de la característica de interés utilizando el estimador de Hájek. Estime la varianza y calcule el coeficiente de variación estimado.
 - (c) Estime el promedio de la característica de información auxiliar utilizando el estimador de Hájek. Estime la varianza y calcule el coeficiente de variación estimado.
- 8.6 Verifique la expresión de la matriz de varianzas $AV(\hat{\mathbf{B}})$
- 8.7 En una muestra de municipios, basada en un diseño de muestreo aleatorio simple, se seleccionaron n=10 municipios de N=49. En cada municipio se midieron las siguientes características: el número de habitantes en el municipio (**HAB**), el numero de automoviles en el municipio (**VEH**) y el número de efectivos militares en el municipio (**MIL**). Además, se sabe que cada municipio se categoriza (**CAT**) en urbano (**CAT**=1) o rural (**CAT**=0). A continuación se muestra la información recolectada de los municipios en la muestra:

HAB	VEH	MIL	CAT
2571	50	415	1
2813	55	462	1
3002	61	513	1
3564	70	577	1
3051	64	532	0
2835	56	463	0
3319	67	551	0
2986	61	512	0
2998	55	471	0
2717	56	462	0

- (a) Estime el coeficiente de regresión de **HAB** contra **VEH** para un modelo de media común. Estime la varianza y calcule el coeficiente de variación. Interprete el coeficiente estimado.
- (b) Estime el coeficiente de regresión de **HAB** contra **VEH** para un modelo de razón. Estime la varianza y calcule el coeficiente de variación. Interprete el coeficiente estimado.
- (c) Estime los coeficientes de regresión de HAB contra MIL para un modelo de regresión simple con intercepto. Estime la matriz de varianzas y calcule los coeficientes de variación. Interprete los coeficiente estimados.
- (d) Estime los coeficientes de regresión de **HAB** contra **CAT** para un modelo de media postestratificada. Estime la matriz de varianzas y calcule los coeficientes de variación. Interprete los coeficiente estimados.
- (e) Estime los coeficientes de regresión de HAB contra MIL para un modelo de razón postestratificada mediante CAT. Estime la matriz de varianzas y calcule los coeficientes de variación. Interprete los coeficiente estimados.
- 8.8 Sustente o refute las siguientes afirmaciones

8.5. Ejercicios 273

(a) Una función lineal de estimadores insesgados es siempre insesgada para su contraparte poblacional.

- (b) Se dice que un estimador es aproximadamente insesgado cuando es sesgado sólo para la parte lineal del desarrollo de Taylor.
- (c) En la estimación de una razón poblacional B, se cumple para la variable linealizada $E_k = \frac{1}{t_z}(y_k Bz_k)$ que $\sum_S E_k = 0$ sin importar el diseño de muestreo utilizado en el planeamiento del estudio.
- (d) El estimador $\hat{B}=\frac{\hat{t}_{y,\pi}}{\hat{t}_{z,\pi}}$ es sesgado para $B=\frac{t_y}{t_z}$ sólo si z_k es continua.
- (e) En diseños de muestreo de tamaño de muestra aleatorio, el estimador del promedio poblacional \tilde{y}_S es insesgado y de menor varianza en comparación al estimador \bar{y}_S .
- (f) El método de linealización de Taylor para aproximar la varianza de parámetros complejos y en muestras pequeñas conduce generalmente a la sobre-estimación de la varianza real.
- (g) El estimador $\hat{\mathbf{B}} = \hat{\mathbf{T}}^{-1}\hat{\mathbf{t}}$ es siempre sesgado para $\mathbf{B} = \mathbf{T}^{-1}\mathbf{t}$ independientemente de la calidad del ajuste.
- 8.9 Para el estimador de Hajek, definido como $\tilde{y}_S = \hat{t}_{y,\pi}/\hat{N}_{\pi}$ y, utilizando la técnica de linealización de Taylor, demuestre que este estimador es aproximadamente insesgado para $\bar{y}_U = t_y/N$ y proponga una expresión para el estimador aproximado de la varianza.
- 8.10 Para el estimador alternativo del total, definido como $\hat{t}_{y,alt} = N\tilde{y}_S$ y, utilizando la técnica de linealización de Taylor, demuestre que este estimador es aproximadamente insesgado para $t_y = \sum_{U} y_k$ y proponga una expresión para el estimador aproximado de la varianza.
- 8.11 Para un diseño de muestreo en dos etapas, en donde la primera etapa se lleva a cabo un diseño PPT con reemplazo y en la segunda etapa se realiza un diseño MAS en cada UPM seleccionada, proponga un estimador aproximadamente insesgado para la razón poblacional y defina la varianza para este estimador.
- 8.12 Argumente si las siguientes afirmaciones son falsas o verderas. Sustente su respuesta detallamente.
 - (a) Una función lineal de estimadores insesgados es siempre insesgada para su contraparte poblacional.
 - (b) Se dice que un estimador es aproximadamente insesgado cuando es sesgado sólo para la parte lineal del desarrollo de Taylor.
 - (c) El estimador $\hat{B}=\frac{\hat{t}_{y,\pi}}{\hat{t}_{z,\pi}}$ es sesgado para $B=\frac{t_y}{t_z}$ sólo si z_k es continua.
 - (d) En diseños de muestreo de tamaño de muestra aleatorio, el estimador del promedio poblacional \tilde{y}_S es insesgado y de menor varianza en comparación al estimador \bar{y}_S .
 - (e) En la estimación de una razón poblacional B, se cumple para la variable linealizada $E_k = \frac{1}{t_z}(y_k Bz_k)$ que $\sum_S E_k = 0$ sin importar el diseño de muestreo utilizado en el planeamiento del estudio.
 - (f) El estimador $\hat{B}=\frac{\hat{t}_{y,\pi}}{\hat{t}_{z,\pi}}$ es sesgado para $B=\frac{t_y}{t_z}$ sólo si z_k es continua.
 - (g) En diseños de muestreo de tamaño de muestra aleatorio, el estimador del promedio poblacional \tilde{y}_S es insesgado y de menor varianza en comparación al estimador \bar{y}_S .
 - (h) El método de linealización de Taylor para aproximar la varianza de parámetros complejos y en muestras pequeñas conduce generalmente a la sobre-estimación de la varianza real.
- 8.13 Considere el ejercicio 7.4.
 - (a) Estime el número de personas en el país \hat{N} . Reporte el coeficiente de variación estimado.

(b) Estime el ingreso medio en el pais utilizando la razón de Háyek $\tilde{y}_S = t_{y,\pi}/\hat{N}$. Reporte el coeficiente de variación estimado.

8.14 Considere el ejercicio 7.5.

- (a) Si se seleccionó la zona norte, reporte la estimación del promedio de patas en la ciudad, utilizando la razón de Hájek $\tilde{y}_S = t_{u,\pi}/\hat{N}$.
- (b) Si se seleccionó la zona norte, reporte la estimación del promedio de patas en la ciudad, utilizando la razón de Hájek $\tilde{y}_S = t_{y,\pi}/\hat{N}$.
- (c) Para este diseño diseño de muestreo, reporte la aproximación de la varianza del estimador \bar{y}_S .
- (d) ¿Cuál estimador escogería para inferir acerca del promedio de patas de los perros en la ciudad? ¿ \bar{y}_S o \tilde{y}_S ?
- (e) ¿Es mejor tener en cuenta a N, o es mejor estimarlo mediante $\hat{N}?$

Capítulo 9

Estimación con información auxiliar

Si los datos son útiles en la estimación o no, dependerá de la manera en que x esté relacionado con y. Si el conocimiento y experiencia del estadístico le dicen que efectivamente x tiene una fuerte relación con y, entonces el modelo comienza a tener sentido. Entre más conocimiento se tenga, se ajustará un mejor modelo.

(Kott, Sweensson, Särndal & Wretman 2005)

Las nociones de la inferencia en poblaciones finitas fueron expresadas hace más de 60 años en muchos libros clásicos como Cochran, Hansen, Hurwitz y Madow, Deming, Muthy, Des Raj y otros. La teoría de muestreo era aplicada desde la perspectiva misma de la selección aleatorizada de posibles muestras en la población finita. Dependiendo de las circunstancias prácticas, la selección se hacía de distintas maneras: muestreo aleatorio simple, muestreo aleatorio estratificado, muestreo de conglomerados, muestreo en dos etapas, etc. El muestreo era considerado como la actividad primaria y la estimación nunca fue considerada como una práctica separada sino como una consecuencia automática. Lo anterior se debía a que cada tipo de diseño de muestreo inducía un estimador cuyas propiedades estadísticas como el insesgamiento y la varianza eran establecidas de antemano con el diseño y así, la varianza era calculable y estimable.

Así que, para la década de los sesenta, muchos creyeron que la investigación en el campo del muestreo y de la inferencia en poblaciones finitas ya estaba muerta porque se deberían inventar nuevas formas de selección de muestras (tarea ardua y difícil), más allá de las que se cubrían en los libros clásicos del muestreo. Aunque el estimador de razón fue considerado en algún detalle por los textos de referencia, la inclusión de varias variables de información auxiliar no se vio como un tópico que prometiera rédito alguno para emprender el camino de la investigación en esa vía. En la década de los setenta, varios autores dieron un viraje en su perspectiva epistemológica de la inferencia en poblaciones finitas. Es así como Basú, Brewer, Godambe y Royall, entre otros, consideraron los modelos estadísticos (en sintonía con la estadística clásica Fisheriana) como los verdaderos fundamentos de la estimación e inferencia en poblaciones finitas. Su trabajo se cimentó alrededor de la posibilidad de tener una inferencia que dependiera estrictamente del modelo propuesto y no tuviera nada que ver con el diseño de muestreo utilizado en la recolección de los datos. Como consecuencia, la atención se tornó alrededor de la estimación y se dejo de lado el muestreo por la relación existente o propuesta entre la característica de interés y las variables de información auxiliar.

El camino que tomó la historia del muestreo fue, precisamente, la incorporación de las dos corrientes de pensamiento bajo una sola sombrilla. Así que, fue posible combinar la aleatorización clásica con un percepción más general de la relación de y con x. No hubo necesidad de sacrificar los principios basados en la aleatorización. Así nació la inferencia asistida por modelos pero basada en ala aleatorización (model assisted design-based inference por su original en inglés). Este nuevo tipo de inferencia se hizo

muy atractiva porque la regresión y los modelos acompañan al estadístico desde sus primeros cursos y van tomando más fuerzas a medida que se avanza en el camino universitario. Así que, este pensamiento «asistido por modelos» es un matrimonio efectivo y tolerante que permite las ideas de la regresión junto con el paradigma de la aleatorización.

Jan Wrettman (Kott, Sweensson, Särndal & Wretman 2005) opina que el ajuste de un modelo se ha convertido en parte integral de la teoría clásica del muestreo, aunque los principios de la misma deben permanecer intocables porque las propiedades de los estimadores son evaluadas con respecto al mecanismo de probabilidad que genera la muestra y no con respecto a cualquier modelo asumido.

9.1 Introducción

En los capítulos anteriores de este texto, el lector ha sido introducido en los diferentes diseños de muestreo que, dependiendo de la configuración de los valores de la característica de interés, mejoran la eficiencia de los estimadores de Horvitz-Thompson o Hansen-Hurwitz, según sea el caso. En algunas ocasiones, el uso correcto de la información auxiliar en la etapa de diseño hace que la eficiencia de los estimadores mejore dramáticamente. Por ejemplo, si la información auxiliar es de tipo categórico y está bien correlacionada con el comportamiento estructural de la característica de interés, es posible acudir a un diseño de muestreo estratificado. De otra forma, si la información auxiliar disponible en la población es de tipo continuo, podemos utilizar un diseño de muestreo PPT o π PT para mejorar la precisión de las estimaciones. En cualquiera de los casos, es necesario:

- 1. Conocer los valores de la información auxiliar, ya sea de tipo continua o categórica, para todos los elementos que conforman la población.
- 2. Tener la certeza de que la característica de interés guarda una estrecha correlación positiva con la información auxiliar.

En este capítulo, el interés está centrado en mejorar la eficiencia de las estimaciones incorporando al estimador la información auxiliar, que puede ser de tipo categórico o continuo, fijando el diseño de muestreo utilizado. En otras palabras, se quiere hacer uso de la información auxiliar en la etapa de estimación. Para este fin es necesario:

- 1. Contar con la experticia del investigador que ha sabido discernir y escoger el mejor diseño de muestreo para la configuración de los valores de la característica de interés.
- 2. Saber que la característica de interés está bien relacionada con la información auxiliar. Como se verá más adelante no es necesario el conocimiento estricto de los valores de la información auxiliar en todos los elementos de la población, aunque sí es necesario conocer estos valores para la muestra junto con el total poblacional de la información auxiliar en la población¹.

Por supuesto, los nuevos estimadores, que incorporan información auxiliar, apuntan a la mejora dramática en la eficiencia de las estrategias de estimación de totales poblacionales. Además de esta característica, existen muchas otras que tienen que ver con la consistencia y el insesgamiento. Sin embargo, una característica importante de un estimador construido a partir de la información auxiliar está dada por la siguiente definición.

Definición 9.1.1. Una estrategia de muestreo se dice **representativa** con respecto a la información auxiliar **x**, sí y sólo sí

$$\hat{t}_S(\mathbf{x}) = t_{\mathbf{x}}.\tag{9.1.1}$$

¹Esta información puede ser suministrada por alguna entidad oficial.

9.1. Introducción

Es decir, si el estimador aplicado a las variables auxiliares reproduce exactamente el total poblacional de las mismas.

La idea detrás del principio de representatividad de la estrategia es que si se tiene el conocimiento de que la característica de interés guarda una estrecha relación lineal con la información auxiliar entonces podemos pensar en que la siguiente igualdad se cumple

$$t_{\mathbf{x}} \approx t_{y}$$
 (9.1.2)

y, una consecuencia inmediata de esta propiedad, bajo los anteriores supuestos es que

$$\hat{t}_S(y) \approx t_y \tag{9.1.3}$$

Sin importar el diseño de muestreo utilizado para la selección de la muestra, si el total poblacional de las variables auxiliares, $t_{\mathbf{x}}$, es conocido, se puede utilizar esta información para construir un estimador aún más preciso. En este capítulo se consideran los estimadores lineales de la forma

$$\hat{t}_S(y) = w_0 + \sum_{k \in S} w_k y_k, \tag{9.1.4}$$

En donde los pesos w_k pueden depender del vector de información auxiliar. Es claro que no todos los estimadores lineales cumplen la ecuación de representatividad. Por ejemplo, el estimador de Horvitz-Thompson es insesgado pero no utiliza información auxiliar por tanto no cumple la ecuación de representatividad para la información auxiliar. Aunque de manera teórica no es difícil mostrar que, utilizando un diseño de muestreo de tamaño de muestra fijo, el estimador de $\hat{t}_{y\pi}$ arroja una estrategia representativa sobre el vector de probabilidades de inclusión π_1, \ldots, π_N .

Si $\hat{t}_{y,\pi}$ y $\hat{t}_{\mathbf{x},\pi}$ son los estimadores de Horvitz-Thompson de y y x respectivamente, entonces es posible construir nuevos estimadores que, sin importar el diseño de muestreo, arrojen estrategias representativas sobre el vector de información auxiliar x. Bajo estas condiciones la precisión de la estimación queda asegurada mediante la aplicación del siguiente resultado.

Resultado 9.1.1. Si el estimador $\hat{t}_S(\cdot)$ induce una estrategia representativa sobre el vector de información auxiliar \mathbf{x} , tal que (9.1.1) se satisface. Entonces $\hat{t}_S(\mathbf{x})$ estimará el total $t_{\mathbf{x}}$ con varianza nula.

Prueba. Si (9.1.1) se cumple, entonces

$$Var(\hat{t}_S(\mathbf{x})) = Var(t_{\mathbf{x}}) = 0 \tag{9.1.5}$$

Nótese que el operador $Var(\cdot)$ se calcula sobre todas las posibles muestras del soporte Q inducido por el diseño de muestreo. Es decir, para todas las muestras pertenecientes a Q el estimador $\hat{\mathbf{t}}_S(\mathbf{x})$ reproducirá el total $\mathbf{t}_{\mathbf{x}}$

Este resultado es muy importante porque si es cierto que la característica de interés está relacionada con la información auxiliar, entonces $\hat{t}_S(y)$ tenderá a contar con una varianza muy pequeña.

Ahora es tiempo de discutir sobre la incorporación de la información auxiliar al estimador. ¿Cómo es posible introducir esta información en una expresión matemática que intenta estimar un parámetro? La respuesta es simple y clara: mediante un modelo de super-población ξ .

9.2 Estimador general de regresión

En esta sección se construye un estimador del total poblacional de la característica de interés t_y que mejora dramáticamente en eficiencia al incorporar información auxiliar. La manera en que esta incorporación se realiza es mediante el supuesto de que las variables de información auxiliar están relacionadas con la característica de interés mediante un modelo ξ . Este modelo es un modelo lineal general y le da el nombre al estimador que se propone en este capítulo. Así que si existen N variables aleatorias Y_1, Y_2, \ldots, Y_N y un vector de variables aleatorias $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_N$ y la relación entre estas variables aleatorias está dada por un modelo de super-población, de tal forma que:

$$Y_k = \mathbf{X}_k' \boldsymbol{\beta} + \varepsilon_k \tag{9.2.1}$$

Donde cada uno de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza $c_k \sigma^2$, tales que:

$$E_{\xi}(Y_k) = \mathbf{X}'_k \boldsymbol{\beta}$$

$$Var_{\xi}(Y_k) = c_k \sigma^2.$$
(9.2.2)

Al considerar este modelo general es posible construir un estimador del total poblacional que conciba esta relación.

9.2.1 Construcción

Sea U el conjunto de elementos en la población finita y S el conjunto de los elementos que conforman la muestra aleatoria. Sean y_k , $k \in S$ y \mathbf{x}_k , $k \in U$, los valores de la característica de interés y y el vector de información auxiliar asociados al k-ésimo elemento de la población. Siendo π_k la probabilidad de inclusión de primer orden, se asume que los totales poblacionales de la información auxiliar $\mathbf{t}_{\mathbf{x}} = \sum_{k \in U} \mathbf{x}_{\mathbf{k}}$ son conocidos.

De manera general, se asume que existe una relación entre la variable de interés y la información auxiliar por el modelo de super-población ξ . Es decir,

$$y_k = f(x_{1k}, x_{2k}, \dots, x_{pk}) + E_k$$
 (9.2.3)

En particular, bajo ξ existe una relación de tipo lineal entre y_k y $\mathbf{x_k}$. Por tanto, en la población finita se tiene que

$$y_k = \mathbf{x}_k' \mathbf{B} + E_k$$
$$= y_k^{\circ} + E_k$$

Entonces, el parámetro poblacional que se quiere estimar se puede escribir como

$$t_y = \sum_{U} (y_k^{\circ} + y_k - y_k^{\circ})$$
 (9.2.4)

$$= \sum_{U} \mathbf{x}_{k}^{\prime} \mathbf{B} + \sum_{U} (y_{k} - y_{k}^{\circ})$$

$$(9.2.5)$$

$$=\sum_{U}\mathbf{x}_{k}^{\prime}\mathbf{B}+\sum_{U}E_{k}\tag{9.2.6}$$

$$= \sum_{U} y_k^{\, o} + \sum_{U} E_k \tag{9.2.7}$$

Como el objetivo es estimar t_y con los datos suministrados en la muestra. Entonces es necesario estimar dos cantidades. La primera es ${\bf B}$ que corresponde a un vector de coeficientes de regresión y que puede ser estimado siguiendo los principios del capítulo anterior. La segunda cantidad corresponde al total t_E que puede ser estimado utilizando los principios del estimador de Horvitz-Thompson. De esta manera, se tiene la construcción del estimador general de regresión.

Definición 9.2.1. El estimador general de regresión está definido por la siguiente expresión

$$\hat{t}_{y,greg} = \sum_{U} \mathbf{x}_{k}' \hat{\mathbf{B}} + \sum_{s} \frac{y_{k} - \mathbf{x}_{k}' \hat{\mathbf{B}}}{\pi_{k}}$$

$$(9.2.8)$$

Desarrollando la expresión del estimador general de regresión y factorizando convenientemente, llegamos a que el estimador general de regresión se puede escribir como:

$$\hat{t}_{y,greg} = \sum_{U} \mathbf{x}_{k}' \hat{\mathbf{B}} + \sum_{s} \frac{y_{k}}{\pi_{k}} - \sum_{s} \frac{\mathbf{x}_{k}' \hat{\mathbf{B}}}{\pi_{k}}$$
(9.2.9)

$$=\hat{t}_{y\pi} + \sum_{j=1}^{J} \hat{B}_j (t_{xj} - \hat{t}_{xj\pi})$$
 (9.2.10)

Que matricialmente se deja escribir como:

$$\hat{t}_{u,qreg} = \hat{t}_{u\pi} + (\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi})'\hat{\mathbf{B}}$$
(9.2.11)

Como el estimador de B se halló utilizando la técnica de mínimos cuadrados, entonces

$$\hat{\mathbf{B}} = \hat{\mathbf{T}}^{-1}\hat{\mathbf{t}} \tag{9.2.12}$$

donde

$$\widehat{\mathbf{T}} = \sum_{S} \frac{\mathbf{x}_k \mathbf{x}_k'}{\pi_k c_k} \tag{9.2.13}$$

у

$$\hat{\mathbf{t}} = \sum_{S} \frac{\mathbf{x}_k y_k}{\pi_k c_k} \tag{9.2.14}$$

Por tanto, al descomponer $\hat{\mathbf{B}}^2$, el estimador toma la siguiente forma

$$\hat{t}_{y,greg} = \sum_{s} \frac{y_k}{\pi_k} + (\mathbf{t_x} - \hat{\mathbf{t}}_{\mathbf{x}\pi})' \mathbf{T}^{-1} \sum_{s} \frac{\mathbf{x}_k y_k}{c_k \pi_k}$$
(9.2.15)

$$= \sum_{c} \left(1 + (\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi})' \mathbf{T}^{-1} \frac{\mathbf{x}_{k}}{c_{k}} \right) \frac{y_{k}}{\pi_{k}}$$
(9.2.16)

$$=\sum_{s}g_{ks}\frac{y_k}{\pi_k}\tag{9.2.17}$$

 $^{^2}$ Nótese que $\hat{\mathbf{B}}$ no es un estimador insesgado para $\mathbf{B}.$

Por lo tanto, se tienen distintas formas de escribir el mismo estimador; las últimas expresiones son particularmente útiles, pues los pesos g_{ks} tienen la propiedad de inducir estrategias representativas sobre cualquier variable del vector auxiliar. Es decir, al aplicar los pesos, sobre la muestra, a una variable de la información auxiliar, el resultado será el total poblacional de dicha variable.

$$\hat{\mathbf{t}}_{\mathbf{x},greg} = \sum_{S} g_{ks} \frac{\mathbf{x}_{k}'}{\pi_{k}} = \mathbf{t}_{\mathbf{x}}$$
(9.2.18)

Volviendo atrás a la introducción de este capítulo, se puede concluir que el estimador de regresión general es un estimador de tipo lineal con $w_0 = 0$ y $w_k = \frac{g_{ks}}{\pi_k}$. De tal forma que

$$\hat{t}_{y,greg} = \sum_{c} w_k y_k \tag{9.2.19}$$

$$=\sum_{S}g_{ks}\frac{y_k}{\pi_k}\tag{9.2.20}$$

con

$$g_{ks} = 1 + (\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi})' \mathbf{T}^{-1} \frac{\mathbf{x}_k}{c_k}$$

$$(9.2.21)$$

A los pesos w_k se les conoce con el nombre de **pesos de calibración** y son usados ampliamente en la construcción de estimadores asistidos en modelos de superpoblación. De esta manera, al usar los pesos calibrados el estimador asistido por modelos está dado por

$$\hat{t}_{y,cal} = \sum_{k \in S} w_k y_k. \tag{9.2.22}$$

Nótese que una propiedad de los pesos de calibración es que el estimador de la información auxiliar reproduce exactamente los totales poblacionales de la misma. De esta forma, tenemos que

$$t_{x,cal} = \sum_{k \in S} w_k x_k = t_x. (9.2.23)$$

Resultado 9.2.1. Para cualquier diseño de muestreo, el estimador $\hat{t}_{y,greg}$ induce una estrategia representativa sobre el vector de variables auxiliares. Es decir

$$\widehat{\mathbf{t}}_{\mathbf{x},greg} = \mathbf{t}_{\mathbf{x}} \tag{9.2.24}$$

Prueba. Utilizando la forma matricial del estimador general de regresión dada por la expresión (9.2.11) se tiene que

$$\mathbf{\hat{t}_{x,\mathit{greg}}} = \mathbf{\hat{t}_{x\pi}} + (\mathbf{t_x} - \mathbf{\hat{t}_{x\pi}})'\mathbf{\hat{B}}$$

Sin embargo, $\hat{\mathbf{B}}$ será los coeficiente de regresión, ajustados por mínimos cuadrados, entre la información auxiliar contra ella misma. Por lo tanto, se tratará de una matriz identidad. Esto es claro al desarrollarlo, por tanto

$$\hat{\mathbf{B}} = \hat{\mathbf{T}}^{-1} \hat{\mathbf{T}} = \left(\sum_{S} \frac{\mathbf{x}_k \mathbf{x}_k'}{\pi_k c_k} \right)^{-1} \left(\sum_{S} \frac{\mathbf{x}_k \mathbf{x}_k'}{\pi_k c_k} \right) = \mathbf{I}_{p \times p}$$

Entonces, el estimador general de regresión del vector de totales de la información auxiliar será

$$\begin{aligned} \widehat{\mathbf{t}}_{\mathbf{x},greg} &= \widehat{\mathbf{t}}_{\mathbf{x}\pi} + (\mathbf{t}_{\mathbf{x}} - \widehat{\mathbf{t}}_{\mathbf{x}\pi})' \mathbf{I}_{p \times p} \\ &= \widehat{\mathbf{t}}_{\mathbf{x}\pi} + \mathbf{t}_{\mathbf{x}} - \widehat{\mathbf{t}}_{\mathbf{x}\pi} \\ &= \mathbf{t}_{\mathbf{x}} \end{aligned}$$

Es importante resaltar que la conformación estructural de los pesos de calibración depende de

- 1. El modelo de superpoblación y sus condicionamientos para la estimación de los parámetros de regresión. Es decir, la forma del modelo per se (con o sin intercepto y la cantidad de variables de información auxiliar) y la estructura de varianza (el valor que toma c_k).
- 2. El vector de probabilidades de inclusión en la muestra.
- 3. La muestra realizada. Para cada posible muestra del soporte definido por el diseño de muestreo, existe una configuración distinta de pesos de calibración.

Ejemplo 9.2.1. Retomando nuestra población ejemplo U, suponga que el modelo de super-población ξ es tal que

$$Y_k = \beta_0 + \beta_1 X_k + \varepsilon_k$$

Donde cada uno de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y estructura de varianza constante. Los valores de la característica de interés y de la información auxiliar continua se muestran a continuación

```
x \leftarrow c(32, 34, 46, 89, 35)

y \leftarrow c(52, 60, 75, 100, 50)
```

Mediante un diseño de muestreo aleatorio simple se selecciona una muestra de tamaño n = 4. Por supuesto, este diseño de muestreo induce probabilidades de inclusión pik para cada uno de los elementos.

```
sam <- sample(5, 4)
pik <- rep(4/5, 5)</pre>
```

Suponga que la muestra realizada está dada por los elementos 1, 2, 3 y 5 de la población, correspondientes a **Yves, Ken, Erik, Leslie**. Los valores de y, x, y de pik para cada uno de los elementos en la muestra están dados por

```
x.s <- x[sam]
y.s <- y[sam]
pik.s <- pik[sam]</pre>
```

Con la ayuda de la función Wk del paquete TeachingSampling es posible realizar el cálculo de los pesos de calibración para los elementos seleccionados en la muestra. Esta función tiene cinco argumentos descritos a continuación: x, que es la matriz de información auxiliar conteniendo los valores para cada uno de los elementos de la muestra de la información auxiliar continua o discreta. Este argumento puede ser un vector, en el caso de una sola variable de información auxiliar, o una matriz, en el caso de

múltiple información auxiliar. tx, que es el vector de totales poblacionales (que se suponen conocidos) de la información auxiliar. pik, es el vector de probabilidades de inclusión en los elementos incluidos en la muestra. b0, que por defecto toma el valor FALSE indicando que el modelo fue propuesto sin intercepto. De otra forma, si el modelo propuesto contiene intercepto, b0 debe tomar el valor TRUE. El último argumento de la función es ck que hace alusión a la estructura de varianza del modelo. ck toma el valor 1 por defecto. Si la estructura de varianza es como en el modelo de razón, entonces ck deberá ser el mismo vector que se introdujo en el argumento x.

De esta manera, se utiliza la función Wk del paquete TeachingSampling para encontrar los pesos de calibración. Nótese que como el modelo fue propuesto con intercepto, eso quiere decir que la primera columna de la matriz de diseño es de sólo unos; por lo tanto, el argumento tx debe ser un vector conteniendo el total poblacional y el total de la variable de información auxiliar, así tx=c(5,236). Como la estructura de varianza es constante, ck toma el valor uno.

```
w <- Wk(x.s, tx=c(5, 236), pik.s, ck=1, b0=TRUE)
w
## [,1]
## [1,] 0.89
## [2,] 1.40
## [3,] 1.30
## [4,] 1.41</pre>
```

De esta manera se obtienen los pesos calibrado cuya agradable propiedad es que reproducen el total poblacional exacto de la información auxiliar.

```
sum(x.s * w)
## [1] 236
sum(y.s * w)
## [1] 341
```

Sin embargo, si el modelo ξ hubiese sido formulado de manera distinta, como por ejemplo:

$$Y_k = \beta_1 X_k + \varepsilon_k$$

Donde cada uno de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y estructura de varianza constante. Entonces, los argumentos en la función Wk del paquete TeachingSampling deben cambiar, de tal forma que

```
W <- Wk(x.s, tx=236, pik.s, ck=1, b0=FALSE)

## [,1]
## [1,] 1.1
## [2,] 1.2
## [3,] 1.2
## [4,] 1.2</pre>
```

Nótese que aunque el modelo cambie, la propiedad de calibración se mantiene ante distintas configuraciones en los pesos.

```
sum(x.s * w)
## [1] 236
sum(y.s * w)
## [1] 332
```

Para este modelo de super-población, haga un ejercicio léxico-gráfico de todas las posibles muestras aleatorias simples de tamaño n=4, donde calcule los pesos de calibración y verifique la propiedad de representatividad sobre el vector de información auxiliar.

9.2.2 Otras propiedades del estimador general de regresión

Por otro lado, acudiendo a la definición del estimador general de regresión, éste toma la siguiente forma

$$\hat{t}_{y,greg} = \sum_{U} \mathbf{x}_{k}' \hat{\mathbf{B}} + \sum_{s} \frac{y_{k} - \mathbf{x}_{k}' \hat{\mathbf{B}}}{\pi_{k}}$$
$$= \sum_{U} \hat{y}_{k} + \sum_{s} \frac{e_{k}}{\pi_{k}}$$

En algunas ocasiones, el modelo ξ que establece la relación entre la característica de interés y la información auxiliar es tal que

$$\sum_{s} \frac{e_k}{\pi_k} = 0.$$

Si la anterior ecuación se satisface, entonces el estimador general de regresión tomaría una forma mucho más sencilla dada por

$$\hat{t}_{y,greg} = \sum_{U} \hat{y}_k \tag{9.2.25}$$

$$=\sum_{U}\mathbf{x}_{k}'\hat{\mathbf{B}}\tag{9.2.26}$$

$$= \mathbf{t}_{\mathbf{x}}' \hat{\mathbf{B}} \tag{9.2.27}$$

Por lo que sólo se necesitaría del conocimiento del vector de totales poblacionales de las variables de información auxiliar $\mathbf{t}_{\mathbf{x}}$, que pueden estar disponibles en alguna entidad administrativa, y de los valores que toman la característica de interés y el vector de información auxiliar, y_k y \mathbf{x}_k respectivamente, en la muestra realizada.

Resultado 9.2.2. Una condición suficiente para que

$$\sum_{k} \frac{e_k}{\pi_k} = 0.$$

es que exista un vector v tal que

$$\mathbf{v}'\mathbf{x}_k = c_k. \tag{9.2.28}$$

Prueba. Si la ecuación (9.2.21) se satisface, entonces

$$\sum_{S} \frac{e_k}{\pi_k} = \sum_{S} \frac{1}{\pi_k} \left(y_k - \mathbf{x}_k' \hat{\mathbf{B}} \right)$$

$$= \sum_{S} \frac{1}{\pi_k} \left(y_k - \frac{\mathbf{v}' \mathbf{x}_k}{c_k} \mathbf{x}_k' \hat{\mathbf{B}} \right)$$

$$= \hat{t}_{y,\pi} - \mathbf{v}' \left(\sum_{S} \frac{\mathbf{x}_k \mathbf{x}_k'}{\pi_k c_k} \right) \hat{\mathbf{T}}^{-1} \hat{\mathbf{t}}$$

$$= \hat{t}_{y,\pi} - \sum_{S} \frac{\mathbf{v}' \mathbf{x}_k y_k}{\pi_k c_k}$$

$$= \hat{t}_{y,\pi} - \hat{t}_{y,\pi} = 0$$

Särndal, Swensson & Wretman (1992) afirman que algunos ejemplos de estructuras de varianza que satisfacen la ecuación (9.2.21) son:

- Modelo de regresión lineal con intercepto $x_{1k} = 1 \ \forall k \in U$ y estructura de varianza constante $c_k = 1$.
- Modelo de regresión lineal con estructura de varianza proporcional a alguna variable del vector de información auxiliar. Es decir,

$$\sigma^2 c_k \propto x_{ik}$$

Para algún j = 1, ..., p y para todo $k \in U$

• Modelo de regresión lineal con estructura de varianza proporcional a una combinación lineal de las variables de información auxiliar. Es decir,

$$\sigma^2 c_k \propto \sum_{j=1}^p a_j x_{jk}$$

Para todo $k \in U$ y algunas constantes a_1, \ldots, a_p

Acerca de la filosofía que cubre el modelo ξ en el estimador de regresión, Särndal, Swensson & Wretman (1992) afirman que el papel que juega este modelo se limita a la descripción, mas no explicación, de la nube de puntos en la población finita. Argumentan que se espera que el modelo propuesto ajuste razonablemente bien y que haga pensar que pudo haber generado el comportamiento particular de la característica de interés. Nótese que el supuesto es flexible y no exige la certeza de que el modelo en verdad haya generado los valores de y. Por tanto, aunque el modelo induce aleatoriedad per se, las conclusiones de las estimaciones son independientes del mismo. Aún más, el modelo ξ es un vehículo para encontrar una expresión matemática que permita estimar los coeficientes de regresión y la eficiencia de $\hat{t}_{y,greg}$ comparada con la del estimador de Horvitz-Thompson dependerá de la bondad del ajuste inducida por el modelo supuesto. Sin embargo, no depende de ninguna manera, de si el modelo es cierto o no. Por tanto todo tipo de inferencias acerca del estimador están basados en el diseño de muestreo y no en el modelo supuesto.

Bajo la anterior argumentación, es necesario calcular y estimar la varianza del estimador general de regresión desde un punto de vista basado en el diseño de muestreo. Así que, siguiendo los lineamentos de la sección 8.1.1. en cuanto a la técnica de linealización de Taylor, se tiene el siguiente resultado.

Resultado 9.2.3. El estimador general de regresión es aproximadamente insesgado para el total poblacional de la característica de interés t_y . Además la aproximación de la varianza y la varianza estimada del estimador general de regresión están dadas por

$$AVar(\hat{t}_{y,greg}) = \sum_{ll} \Delta_{kl} \frac{E_k}{\pi_k} \frac{E_l}{\pi_l}.$$
 (9.2.29)

$$\widehat{Var}(\widehat{t}_{y,greg}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \frac{e_k}{\pi_k} \frac{e_l}{\pi_l}$$
(9.2.30)

respectivamente. Donde $E_k = y_k - \mathbf{x}_k' \mathbf{B}$ son los errores en la población finita y $e_k = y_k - \mathbf{x}_k' \hat{\mathbf{B}}$ son los errores en la muestra seleccionada.

Prueba. Siguiendo los pasos de la linealización de Taylor, debemos expresar el estimador como una función de totales.

$$\hat{t}_{y,greg} = \hat{t}_{y\pi} + (\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi})'\hat{\mathbf{B}}$$

$$= f(\hat{t}_{y\pi}, \hat{\mathbf{t}}_{\mathbf{x}\pi}, \hat{\mathbf{T}}, \hat{\mathbf{t}})$$
(9.2.31)
$$(9.2.32)$$

Nótese que

$$\left. \frac{\partial f}{\partial \hat{\mathbf{T}}} \right|_{\hat{t}_{y\pi} = t_y, \hat{\mathbf{t}}_{\mathbf{x}\pi}\mathbf{t}_{\mathbf{x}}, \hat{\mathbf{T}} = \mathbf{T}, \hat{\mathbf{t}} = \mathbf{t}} = (\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi})' \left. \frac{\partial \hat{\mathbf{B}}}{\partial} \right|_{\hat{t}_{y\pi} = t_y, \hat{\mathbf{t}}_{\mathbf{x}\pi}\mathbf{t}_{\mathbf{x}}, \hat{\mathbf{T}} = \mathbf{T}, \hat{\mathbf{t}} = \mathbf{t}} = \mathbf{0}$$

y análogamente, se tiene que

$$\left. \frac{\partial f}{\partial \hat{\mathbf{t}}} \right|_{\hat{t}_{y\pi} = t_y, \hat{\mathbf{t}}_{\mathbf{x}\pi} = \mathbf{t}_{\mathbf{x}}, \hat{\mathbf{T}} = \mathbf{T}, \hat{\mathbf{t}} = \mathbf{t}} = \left(\mathbf{t}_{\mathbf{x}} - \hat{t}_{\mathbf{x}\pi} \right)' \left. \frac{\partial \hat{\mathbf{B}}}{\partial} \right|_{\hat{\mathbf{t}}_{y\pi} = t_y, \hat{\mathbf{t}}_{\mathbf{x}\pi} = \mathbf{t}_{\mathbf{x}}, \hat{\mathbf{T}} = \mathbf{T}, \hat{\mathbf{t}} = \mathbf{t}} = \mathbf{0}$$

Por consiguiente, sólo se calcula las derivadas de f con respecto a $\hat{t}_{y\pi}$ y $\hat{\mathbf{t}}_{\mathbf{x}\pi}$, y se tiene que

$$a_{1} = \frac{\partial f(\hat{t}_{y\pi}, \hat{\mathbf{t}}_{x\pi})}{\partial \hat{t}_{y\pi}} \bigg|_{\hat{t}_{y\pi} = t_{y}, \hat{\mathbf{t}}_{x\pi} = \mathbf{t}_{x}, \hat{\mathbf{T}} = \mathbf{T}, \hat{\mathbf{t}} = \mathbf{t}}$$

$$= 1$$

$$a_{2} = \frac{\partial f(\hat{t}_{y\pi}, \hat{\mathbf{t}}_{x\pi})}{\partial \hat{\mathbf{t}}_{x\pi}} \bigg|_{\hat{t}_{y\pi} = t_{y}, \hat{\mathbf{t}}_{x\pi} = \mathbf{t}_{x}, \hat{\mathbf{T}} = \mathbf{T}, \hat{\mathbf{t}} = \mathbf{t}}$$

$$= -\hat{\mathbf{B}}' \bigg|_{\hat{t}_{y\pi} = t_{y}, \hat{\mathbf{t}}_{x\pi} = \mathbf{t}_{x}, \hat{\mathbf{T}} = \mathbf{T}, \hat{\mathbf{t}} = \mathbf{t}}$$

$$= -\mathbf{B}'$$

Por tanto, se tiene que

$$\hat{t}_{u,qreq} \cong t_u + (\hat{t}_{u\pi} - t_u) - \mathbf{B}'(\hat{\mathbf{t}}_{\mathbf{x}\pi} - \hat{\mathbf{t}}_{\mathbf{x}}),$$

y tomando esperanza, se tiene que $E(\hat{t}_{y,greg}) \cong t_y$.

Al definir la nueva variable linealizada dada por la expresión (8.1.14), se tiene que

$$E_k = y_k - \mathbf{x}_k' \mathbf{B} \tag{9.2.33}$$

cuya aproximación con los datos recolectados en la muestra es

$$e_k = y_k - \mathbf{x}_k' \widehat{\mathbf{B}} \tag{9.2.34}$$

Por tanto, la varianza se escribe, recurriendo al resultado 8.1.3, como

$$AVar(\hat{t}_{y,greg}) = Var\left(\sum_{S} \frac{E_k}{\pi_k}\right)$$
 (9.2.35)

Utilizando los principios del estimador de Horvitz-Thompson se llega a los resultados de la aproximación de la varianza y de la varianza estimada.

Särndal, Swensson & Wretman (1992) proponen un estimador de la varianza que integra los pesos g_{ks} . La motivación de este nuevo estimador de la varianza recae en que una forma de escribir el estimador de regresión general está dada por

$$\hat{t}_{y,greg} = \sum_{U} y_k^{\circ} + \sum_{S} \frac{g_{ks} E_k}{\pi_k}$$
 (9.2.36)

Por lo tanto, al calcular su varianza tenemos

$$Var\left(\hat{t}_{y,greg}\right) = Var\left(\sum_{U} y_k^{\circ} + \sum_{S} \frac{g_{ks} E_k}{\pi_k}\right)$$
(9.2.37)

$$= Var\left(\sum_{S} \frac{g_{ks}E_k}{\pi_k}\right) \tag{9.2.38}$$

Utilizando los principios del estimador de Horvitz-Thompson, un estimador alternativo para la varianza del estimador general de regresión está dada por

$$\widehat{Var}(\widehat{t}_{y,greg}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \frac{g_{ks}e_k}{\pi_k} \frac{g_{ls}e_l}{\pi_l}$$
(9.2.39)

El lector debe tener muy claro que la propiedad de insesgamiento no aplica a esta clase de estimadores. Sin embargo, cuando el tamaño de muestra y el tamaño poblacional son grandes, entonces el sesgo del estimador general de regresión es despreciable. Se debe tener sumo cuidado en las muestras de tamaño pequeño, máxime cuando se realiza el proceso de estimación por intervalos de confianza. Särndal, Swensson & Wretman (1992) afirman al respecto que, aunque el sesgo afecta la validez de los intervalos de confianza generados con el estimador general de regresión, es válido utilizar el siguiente intervalo de confianza

$$\hat{t}_{y,greg} \pm z_{1-\alpha/2} \sqrt{\widehat{Var}(\hat{t}_{y,greg})}$$
(9.2.40)

incluso cuando el tamaño de muestra es modesto.

Resultado 9.2.4. Bajo la familia de diseños de muestreo MAS, el estimador general de regresión es consistente en el sentido Cochran. Es decir, si s = U, entonces

$$\hat{t}_{y,qreg} = t_y \tag{9.2.41}$$

Hasta este momento, hemos definido el estimador general de regresión como un intento de conciliar la teoría clásica de modelos con el muestreo de poblaciones finitas. Este estimador ha ganado mucho campo en las últimas décadas y su uso, dadas sus propiedades deseables, es aún mayor a medida que el tiempo pasa. Sin embargo, el estimador general de regresión es el resultado de décadas de desarrollo teórico y construcción de estimadores asistidos por modelos que se constituyen como casos particulares de éste.

En las próximas secciones, estudiaremos cada uno de estos casos particulares más utilizados en la práctica. El lector debe notar que cada uno de los estimadores que siguen en las siguientes secciones, fueron propuestos en los tiempos antiguos sin tener en cuenta un modelo de super-población sino con una motivación puramente empírica. Sin embargo, como se verá en desarrollo de las siguientes secciones, todos estos estimadores están cubiertos bajo los principios del estimador general de regresión y por los coeficientes de regresión que el modelo induzca.

Para terminar la exposición del estimador general de regresión, el lector debe notar que este estimador es completamente inútil en la práctica. En otras palabras, su basta generalidad hace que este estimador sea inutilizable. Como en todo proceso estadístico, el modelo general y sus correspondientes expresiones matemáticas carecen de sentido sin el conocimiento del comportamiento particular de cada característica de interés. Con lo anterior, no es mi intención desactivar al lector. Por el contrario, cuando el estadístico logra entender qué es un modelo de super población, y obtiene un estimador particular conforme al comportamiento de la población de estudio, entonces la ganancia en eficiencia es tremenda.

En las siguientes secciones se darán ejemplos particulares del estimador de regresión cuando el modelo que rige la población finita ya se ha especificado. Nótese que todos y cada uno de los estimadores que a continuación se presentan son casos particulares del estimador general de regresión. Por supuesto, cada uno de ellos recibe un nombre particular, que en la mayoría de los casos está supeditado al modelo que rige la población particular.

El lector debe retomar en cada una de las siguientes páginas el espíritu del estimador general de regresión como una familia que cobija casos particulares de estimadores. Todos y cada uno de los estimadores que se revisan en este capítulo nacieron bajo especificaciones propias que los caracterizaban de manera singular. Por tanto, el desarrollo histórico de cada uno de ellos no estuvo fundamentado, en principio, como un caso particular de algún otro estimador. El estimador de razón, el estimador de regresión, el estimador de post-estratificación, entre otros, fueron concebidos aparte de la idea de los modelos lineales. Sus creadores no estaban pensando en calcular o estimar un coeficiente de regresión. Por supuesto, con el trascurrir del tiempo y los avances en términos de la teoría estadística de los modelos lineales, se creó una familia que unifica a todos los estimadores de este capítulo en un sólo estimador general.

9.3 Estimador de media común

Recuerde que la construcción de la estrategia de muestreo es la tarea más importante antes de realizar cualquier estudio por muestreo. Sin embargo, se debe reconocer que cada una de las posibles estrategias de muestreo tiene ventajas y desventajas sobre las restantes estrategias. Suponga que el diseño de muestreo que se ha propuesto consiste en un diseño de muestreo Bernoulli. ¿Qué tipo de estimador es el mejor para este diseño de muestreo?. En teoría, existen muchos estimadores insesgados para este diseño particular, por ejemplo el estimador de Horvitz-Thompson. Sin embargo, desde un punto de

vista práctico, es posible que la muestra realizada o seleccionada para este diseño de muestreo consista en todas y cada una de las unidades de la población. Bajo el anterior escenario el estimador de Horvitz-Thompson no plantea ningún tipo de ventajas pues la estimación para el total poblacional será una estimación totalmente errónea, igual a t_y/π y estrictamente mayor a t_y .

Como se vio en capítulos anteriores, aunque la probabilidad de que la muestra seleccionada o realizada contenga todas las unidades poblacionales, el estimador alternativo del total poblacional, dado en la expresión (2.2.17), proporciona una mejor opción que el estimador de Horvitz-Thompson. Este estimador alternativo se conoce con el nombre de estimador de media común y está motivado por el **modelo de media común** que supone que la población se comporta de la misma manera de acuerdo a una pendiente común para cada uno de los individuos que conforman. De esta manera p=1, $\mathbf{x}_k=1$ y $c_k=1$ para todo $k\in U$. La formulación del modelo de superpoblación está dada por

$$Y_k = \beta + \varepsilon_k \tag{9.3.1}$$

Donde cada uno de los ε_k $k \in U$ son variables aleatorias independientes e idénticamente distribuidas con media cero y varianza σ^2 . Como resultado de lo anterior se tiene que

$$E_{\xi}(Y_k) = \beta$$

$$Var_{\xi}(Y_k) = \sigma^2.$$
(9.3.2)

A simple vista el estimador resultante del modelo anterior no es mejor que el estimador de Horvitz-Thompson pues la información auxiliar es siempre constante. Sin embargo, el estimador resultante es muchas veces mejor que el estimador de Horvitz-Thompson como cuando la estrategia de muestreo implica un diseño de muestreo tipo Bernoulli. Es común utilizar el estimador de media común cuando el gráfico de dispersión entre la característica de interés y la característica de información auxiliar define una recta de regresión constante y paralela al eje de las abscisas. Por supuesto, el cociente entre estas dos características también definirá un gráfico de dispersión cuyo comportamiento sea constante con ligeras desviaciones uniformes como se puede observar en la siguiente figura.

Si se tuviese acceso a toda la población finita, el estimador del coeficiente de regresión β estaría dado por la minimización de la siguiente función de dispersión

$$D = \sum_{U} \frac{(y_k - B)^2}{\sigma^2}.$$
 (9.3.3)

Utilizando el resultado 8.4.2 y recurriendo a la ecuación (8.4.6), el estimador B en la población finita toma la siguiente forma

$$B = \frac{t_y}{N} = \bar{y}_U \tag{9.3.4}$$

Por supuesto, como en la práctica sólo se tiene acceso a una muestra particular de población finita, B debe ser estimado de tal manera que siguiendo el resultado 8.4.3. llegamos a la siguiente expresión

$$\hat{B} = \frac{\hat{y}_{y,\pi}}{\hat{N}_{\pi}} = \tilde{y}_S \tag{9.3.5}$$

Con estas herramientas es posible ahora construir un estimador del total poblacional de la característica de interés el cual está dado por el siguiente resultado.

Resultado 9.3.1. Bajo el modelo de media común, el estimador del total poblacional está dado por

$$\hat{t}_{y,mc} = N \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}} = N \widetilde{y}_S \tag{9.3.6}$$

```
N <- 500
b <- 10
sigma <- 2

z <- c(1:N)
x <- rep(1, N)
e <- rnorm(N, 0, sigma)
y <- b * x + e

data <- data.frame(z, y, x)
p1 <- ggplot(data, aes(x = z, y = y)) + geom_point(shape=1) +
    geom_smooth(method = lm)
p2 <- ggplot(data, aes(x = z, y = y / x)) + geom_point(shape=1) +
    geom_smooth(method = lm)
grid.arrange(p1, p2, ncol = 2)</pre>
```


Figura 9.1: Relación en un modelo de media común.

cuya varianza aproximada es

$$AVar(\hat{t}_{y,mc}) = \sum_{U} \Delta_{kl} \frac{E_k}{\pi_k} \frac{E_l}{\pi_l}.$$
(9.3.7)

con

$$E_k = y_k - B \tag{9.3.8}$$

$$= y_k - \frac{t_y}{N} = y_k - \bar{y}_U. (9.3.9)$$

El estimador de la varianza es

$$\widehat{Var}(\hat{t}_{y,greg}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} \frac{e_k}{\pi_k} \frac{e_l}{\pi_l}$$
(9.3.10)

con

$$e_k = y_k - \hat{B} \tag{9.3.11}$$

$$= y_k - \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}} = y_k - \tilde{y}_S. \tag{9.3.12}$$

Prueba. Antes de empezar la demostración, el lector debe tener en cuenta que estimador es un caso particular del estimador general de regresión. Por lo tanto, como $\mathbf{x}_k = 1$ para todo $k \in U$, adecuando la expresión (9.2.11) se tiene que

$$\hat{t}_{y,mc} = \hat{t}_{y,\pi} + \hat{B}(t_x - \hat{t}_{x,\pi}) \tag{9.3.13}$$

$$=\hat{t}_{y,\pi} + \frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}}(N - \hat{N}_{\pi})$$
(9.3.14)

$$=N\frac{\hat{t}_{y,\pi}}{\hat{N}_{\pi}}=N\widetilde{y}_{S} \tag{9.3.15}$$

El cálculo de la varianza aproximada y la estimación de la varianza del estimador de razón son inmediatos al utilizar el resultado 9.2.3.

El espíritu y la ventaja de este estimador está en la corrección que hace al estimador de Horvitz-Thompson mediante el cociente $\frac{N}{\hat{N}_{\pi}}$. De esta manera, cuando el estimador de Horvitz-Thompson está subestimando o sobreestimando el total poblacional, entonces este cociente corrige inmediatamente esta sub o sobre estimación.

A continuación se presentan otras características importantes del estimador de media común para el total poblacional. En primer lugar, nótese que fácilmente se puede demostrar que

$$\sum_{s} \frac{e_k}{\pi_k} = 0$$

Lo anterior se tiene puesto que, recurriendo al resultado 9.2.2, $\mathbf{x}_k = c_k = 1$ y por lo tanto $\mathbf{v}' = 1$. Como consecuencia de lo anterior, es posible escribir al estimador de media común en una forma simplificada

$$\hat{t}_{y,mc} = \sum_{II} \hat{y}_k = \sum_{IJ} \hat{B}$$
 (9.3.16)

$$=\sum_{U}\widetilde{y}_{S}=N\widetilde{y}_{S}\tag{9.3.17}$$

Además recurriendo a las expresiones (9.2.16) y (9.2.17) se tiene que

$$g_{ks} = 1 + (t_x - \hat{t}_{x,\pi}) (\hat{t}_{x,\pi})^{-1}$$
 (9.3.18)

$$= 1 + \left(\frac{N - \hat{N}_{\pi}}{\hat{N}_{\pi}}\right) = \frac{N}{\hat{N}_{\pi}} \tag{9.3.19}$$

9.3.1 Algunos diseños de muestreo

Diseño de muestreo Bernoulli

Bajo el diseño de muestreo Bernoulli, el estimador de media común toma una forma idéntica al estimador alternativo propuesto en la expresión (3.1.14) de la sección 3.1. En esos apartados, no se dieron las expresiones para la varianza y la varianza estimada puesto que se requería de herramientas de las que no se disponían. Sin embargo, el siguiente resultado da cuenta de las expresiones exactas para este estimador alternativo.

Resultado 9.3.2. Si el diseño de muestreo es Bernoulli, el estimador de media común, su varianza aproximada y el estimador de la varianza están dados por

$$\hat{t}_{y,mc} = N\widetilde{y}_S = N\frac{\sum_S y_k}{n(S)} = N\bar{y}_S. \tag{9.3.20}$$

$$AV_{BER}\hat{t}_{y,mc} = N\left(\frac{1}{\pi} - 1\right)S_{y_U}^2$$
 (9.3.21)

$$\hat{Var}_{BER}\hat{t}_{y,mc} = (n(S) - 1)\frac{1}{\pi} \left(\frac{1}{\pi} - 1\right) S_{y_S}^2$$
(9.3.22)

respectivamente. Con $S_{y_U}^2$ la varianza poblacional de la característica de interés y $S_{y_S}^2$ la varianza muestral de la característica de interés.

Prueba. El resultado se sigue inmediatamente al evaluar la expresión (3.1.12) en cada una de las ecuaciones del resultado.

Diseño de muestreo aleatorio simple

Resultado 9.3.3. Si el diseño de muestreo es aleatorio simple, el estimador de media común toma la misma forma que el estimador de Horvitz-Thompson. Por supuesto, la varianza aproximada y el estimador de la varianza son los mismos que los del estimador de Horvitz-Thompson. En general, se tiene que

$$\hat{t}_{y,mc} = N\widetilde{y}_S = \frac{N}{n} \sum_{S} y_k \tag{9.3.23}$$

$$Var_{MAS}(\hat{t}_{y,mc}) = \frac{N^2}{n} \left(1 - \frac{n}{N}\right) S_{E_U}^2$$
 (9.3.24)

$$\widehat{Var}_{MAS}(\hat{t}_{y,mc}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) S_{e_S}^2$$
(9.3.25)

respectivamente. Con $S_{E_U}^2$ la varianza poblacional de los errores $E_k = y_k - \bar{y}_U$ y $S_{e_S}^2$ la varianza muestral de los errores $e_k = y_k - \bar{y}_S$.

Prueba. El resultado se sigue inmediatamente al aplicar los principios del estimador de Horvitz-Thompson a las expresiones (9.3.7) y (9.3.10) bajo el diseño de muestreo aleatorio simple. Nótese que bajo el diseño de muestreo aleatorio simple, $\bar{E}=0$ y $\bar{e}=0$, por lo tanto $S_{E_U}^2=S_{y_U}^2$ y $S_{e_S}^2=S_{y_S}^2$.

9.3.2 Marco y Lucy

Retomando la población de empresas pertenecientes al sector industrial, suponga que se desea estimar el total de las características de interés mediante un estimador de regresión que obedezca al modelo dado por la expresión (9.3.2), en donde las características de interés están relacionadas con una variable que es constante y que supone el mismo comportamiento estructural a lo largo de toda la población. Suponga que se selecciona una muestra aleatoria simple de tamaño n=400

```
data(BigLucy)
attach(BigLucy)

N <- dim(BigLucy)[1]
n <- 2000
sam <- S.SI(N, n)
muestra <- BigLucy[sam,]
attach(muestra)</pre>
```

Para computar el estimador del total de las características de interés se define la matriz de información auxiliar, que en este caso particular corresponde a un vector de unos y se utiliza la función GREG. SI del paquete TeachingSampling que cuenta con siete argumentos: N, el tamaño poblacional, n, el tamaño de la muestra, y, correspondiente al vector o matriz de datos que contienen las observaciones de los individuos incluidos en la muestra, x, concerniente al vector o matriz de información auxiliar en la muestra, tx, el total poblacional de las variables de información auxiliar, b, el estimador de coeficientes de regresión y, por último, b0, que indica si el modelo está definido con o sin intercepto.

Por consiguiente, definiendo correctamente los parámetros según el modelo dado por (9.3.2), tenemos el siguiente código computacional para el cálculo del estimador del total poblacional.

```
estima <- data.frame(Income, Employees, Taxes)
x <- rep(1, n)
model <- E.Beta(N, n, estima, x, ck=1, b0=FALSE)
b <- t(as.matrix(model[1,,]))
tx <- c(N)
GREG.SI(N,n,estima,x,tx, b, b0=FALSE)</pre>
```

	Income	Employees	Taxes
Estimation	36241630.68	5456342.47	980669.44
Standard Error	495807.76	61798.16	30151.94
CVE	1.37	1.13	3.07

Tabla 9.1: Estimaciones del estimador de regresión para el diseño de muestreo aleatorio simple sin reemplazo.

Capítulo 10

Estimadores de calibración

La calibración [como proceso] se ha establecido como un importante instrumento metodológico en la producción de grandes masas de estadísticas. La mayoría de agencias estadísticas han desarrollado software especialmente diseñado para calcular las ponderaciones resultantes, usualmente calibradas a la información auxiliar disponible en registros administrativos y otras fuentes precisas.

Särndal (2007)

El proceso de calibración es el tema principal de los más recientes artículos publicados acerca de estimación en poblaciones finitas y muestreo. Este fenómeno se presenta debido a que la calibración provee una forma sistemática para la incorporación de la información auxiliar en la etapa de estimación en una encuesta. Un estimador de calibración es aquel estimador lineal que tiene la agradable propiedad de la representatividad bajo cualquier diseño de muestreo; aunque el término calibración es nuevo, hay autores que coinciden en afirmar que han usado calibración desde mucho tiempo atrás, antes de conocer este proceso con éste nombre.

Como Särndal (2007) afirma, el ítem más importante en la calibración, como proceso sistemático de estimación, es la existencia de información auxiliar. Si no hay información auxiliar no hay nada a lo que se pueda calibrar, y por tanto no habrán estimadores de calibración que aplicar. Como se verá a lo largo del capítulo, los estimadores generales de regresión pueden arrojar los mismos resultados que los estimadores de calibración; sin embargo, el espíritu y la esencia de su aplicación tienen direcciones marcadamente diferentes.

¿Pero qué es un estimador de calibración? ¿cuál es su esencia?. A continuación una breve descripción de este método:

- 1. Suponga que se tiene acceso a un vector de información auxiliar, $\mathbf{x}_k = (x_{1k}, x_{2k}, \dots, x_{pk})$, de p variables auxiliares y conocido para los individuos seleccionados en la muestra.
- 2. Además, por registros administrativos u otras fuentes de confianza, se tiene el conocimiento del total del vector de información auxiliar $\mathbf{t_X} = \sum_{k \in U} \mathbf{x}_k$.
- 3. El propósito del estudio es estimar el total de la característica de interés usando la información dada por \mathbf{x}_k $k \in S$.
- 4. Aunque el estimador de Horvitz-Thompson es insesgado, se requiere que las estimaciones cumplan con la siguiente restricción dada por

$$\sum_{k \in S} w_k \mathbf{x}_k = \mathbf{t}_{\mathbf{X}}$$

y conocida como ecuación de calibración.

5. La idea consiste en buscar estos pesos w_k tan cercanos como sea posible al inverso de la probabilidad de inclusión del k-ésimo elemento $d_k = 1/\pi_k$

Aunque el concepto de calibración es nuevo en la teoría de muestreo, la esencia del método y el espíritu práctico de obtener estimaciones que ajusten exactamente con totales conocidos no es nuevo. De hecho, este método se ha utilizado, y algunos investigadores lo están utilizando, sin saber que se llama calibración. Este fue el caso de Deming & Stephan (1940) quienes abordaron este tema utilizando tablas de contingencia con estimaciones internas y totales marginales conocidos. Ellos fueron los pioneros del **proceso iterativo de ajuste proporcional** o IPFP, por sus siglas en inglés.

10.1 IPFP

Suponga que existen dos variables cualitativas que dividen la poblaciones en subgrupos poblacionales. Por un lado una variable permite dividir la población en H subgrupos poblacionales, $U_1, \ldots, U_h, \ldots, U_H$, y por otro lado una variable que permite dividir la población en G subgrupos poblacionales, $U_{\cdot 1}, \ldots, U_{\cdot g}, \ldots, U_{\cdot G}$. Como resultado la población se particiona en $H \times G$ subgrupos poblacionales como lo muestra la siguiente tabla.

Tabla 10.1: Distribución de la población en la tabla de contingencia.

U_{11}	 U_{1g}		U_{1G}	U_1 .
:	:		:	:
U_{h1}	 U_{hg}		U_{hG}	U_{h} .
:	:		:	:
U_{H1}	 U_{Hg}		U_{HG}	U_{H} .
$U_{\cdot 1}$	 $U_{\cdot g}$	• • •	$U_{\cdot G}$	\overline{U}

Los tamaños de los subgrupos poblacionales se definen así: $N_{hg} = \#U_{hg}$, $N_h = \#U_{h\cdot}$, $N_{\cdot g} = \#U_{\cdot g}$. Nótese que se tiene que

$$N = \sum_{h=1}^{H} N_{h.} = \sum_{g=1}^{G} N_{.g}.$$
 (10.1.1)

Además de esto, los totales de las celdas de la tabla de contingencia siguen la siguiente relación:

Tabla 10.2: Distribución de los tamaños poblacionales en la tabla de contingencia.

$\overline{N_{11}}$	 N_{1g}	 N_{1G}	N_1 .
:	:	:	:
N_{h1}	 N_{hg}	 N_{hG}	N_h .
:	:	:	:
N_{H1}	 N_{Hg}	 N_{HG}	N_{H} .
$N_{\cdot 1}$	 $N_{\cdot g}$	 $N_{\cdot G}$	N

Después de la recolección y observación de los datos en la encuesta, se tiene la estimación definitiva de los totales de cada una de las celdas internas y de las celdas marginales. Así, \hat{N}_{hg} corresponde a la

10.1. IPFP 297

estimación de N_{hg} , \hat{N}_h . corresponde a la estimación de N_h ., N_g corresponde a la estimación de N_g y por último, \hat{N} corresponde a la estimación de N. De está manera, es posible utilizar el estimador de Horvitz-Thompson, definiendo

$$N_{\cdot g} = \sum_{k \in U} z_{hk} \qquad N_{h \cdot} = \sum_{k \in U} z_{gk}.$$

Donde,

$$z_{hk} = \begin{cases} 1 & \text{si } k \in U_h. \\ 0 & \text{en otro caso} \end{cases} \qquad z_{gk} = \begin{cases} 1 & \text{si } k \in U_{g} \\ 0 & \text{en otro caso} \end{cases}$$

Al utilizar el estimador de Horvitz-Thompson se garantiza el insesgamiento y se tiene la relación dada por la siguiente tabla

Tabla 10.3: Distribución de los tamaños poblacionales estimados en la tabla de contingencia.

\hat{N}_{11}	 \hat{N}_{1g}	 \hat{N}_{1G}	\hat{N}_1 .
:	:	:	:
\hat{N}_{h1}	 \hat{N}_{hg}	 \hat{N}_{hG}	\hat{N}_h .
:	:	:	:
\hat{N}_{H1}	 \hat{N}_{Hg}	 \hat{N}_{HG}	\hat{N}_{H} .
$\hat{N}_{\cdot 1}$	 $\hat{N}_{\cdot g}$	 $\hat{N}_{\cdot G}$	\hat{N}

Hasta el momento, se ha cumplido con el objetivo de estimar las celdas internas y las marginales de la tabla de contingencia. Sin embargo, suponga que, debido a registros administrativos u otras fuentes de confianza, es posible tener acceso a los totales de las celdas marginales tanto por columnas como por filas. Es decir, suponga que $N_{\cdot q}$, $g = 1, \ldots, G$ y $N_{h \cdot \cdot}$, $g = 1, \ldots, G$ son conocidos.

Bajo el anterior supuesto, es posible construir un algoritmo que ajuste las estimaciones de las celdas internas y que tenga la agradable propiedad que, finalizado el algoritmo, al sumar por filas y columnas, las estimaciones correspondan a los totales conocidos de las celdas marginales. Este método de estimación basado en un algoritmo muy simple se conoce como **proceso iterativo de ajuste proporcional** o IPFP, por sus siglas en inglés, y fue propuesto por Deming & Stephan (1940).

10.1.1 Algoritmo

Aunque simple e intuitivo, el siguiente algoritmo es muy potente y tiene la buena propiedad de converger muy rápidamente si la tabla de contingencia no tiene valores nulos en sus celdas internas y si los totales marginales conocidos tienen sentido con la puesta en marcha de la encuesta.

1. Inicializar con

$$N_{hg}^{(0)} = \hat{N}_{hg}$$
 $g = 1, \dots, G, h = 1, \dots, H$

2. Para $t = 1, 2, 3, \dots$

$$N_{hg}^{(2t-1)} = N_{hg}^{(2t-2)} \frac{N_h}{\sum_{q=1}^G N_{hg}^{(2t-2)}} \quad g = 1, \dots, G, h = 1, \dots, H$$

$$N_{hg}^{(2t)} = N_{hg}^{(2t-1)} \frac{N_{\cdot g}}{\sum_{h=1}^{H} N_{hg}^{(2t-1)}} \quad g = 1, \dots, G, h = 1, \dots, H$$

A simple vista, un defecto significativo de este método es que no tiene en cuenta el diseño de muestreo del cual provienen los datos para calibrar con respecto a la información auxiliar conocida. Sin embargo, como se verá en las próximas secciones, Deville & Särndal (1992) y Deville, Särndal & Sautory (1993) probaron que efectivamente, el proceso iterativo de ajuste proporcional se podía tratar como un caso especial de los estimadores de calibración bajo el espíritu del numeral 5 de la introducción. A los estimadores de calibración que surgen bajo este marco de referencia se les conoce con el nombre de estimadores generalizados de raking.

10.1.2 Marco y Lucy

Volviendo con nuestra población de empresas del sector industrial, se sabe que las variables cualitativas Nivel y SPAM conforman una partición de la población. Por un lado, la variable Nivel, divide a la población en tres subgrupos de acuerdo a características de la empresa, a saber: Grande, Mediana y Pequeña. Por otro lado, la variable SPAM, divide a la población en dos subgrupos poblacionales, de acuerdo a sus estrategias publicitarias, así: SPAM.SI y SPAM.NO. En total la población se divide en $2 \times 3 = 6$ subgrupos poblacionales.

Ahora, suponga que se ha planeado un diseño de muestreo aleatorio simple con un tamaño de muestra n=400 y que se desea estimar el total de empresas por grupo industrial, el total de empresas que usan y no usan SPAM y su respectiva anidación interna en la tabla de contingencias, como lo muestra la siguiente tabla.

Tabla 10.4.	1 abia ac com	ingenera par	<u>u Di 11111.</u>
	SPAM.NO	SPAM.SI	Total
Grande	N_{11}	N_{12}	N_1 .
Mediana	N_{21}	N_{22}	N_2 .

 N_{32}

 $N_{\cdot 2}$

 N_3 .

Tabla 10.4: Tabla de contingencia para SPAM.

En primer lugar, con ayuda de la función S.SI perteneciente al paquete TeachingSampling, se debe seleccionar una muestra probabilística de tamaño n=2000.

 N_{31}

 $N_{\cdot 1}$

Pequeña

Total

```
data(BigLucy)
attach(BigLucy)

N <- dim(BigLucy)[1]
n <- 2000
sam <- S.SI(N,n)
muestra <- BigLucy[sam,]

attach(muestra)
head(muestra)</pre>
```

10.1. IPFP 299

```
##
                         Ubication Level
                                           Zone Income Employees Taxes
                ID
## 14
      AB0000000014 C0189067K0112830 Small County1
                                                   330
                                                             23 4.0
## 32
      AB0000000032 C0036536K0265361 Small County1
                                                   380
                                                             18 6.0
## 83
      AB0000000083 C0206936K0094961 Small County1
                                                   260
                                                             84 2.0
## 84
      AB0000000084 C0224613K0077284 Small County1
                                                   481
                                                             65 10.5
## 119 AB0000000119 C0113018K0188879 Small County1
                                                   84
                                                             81 0.5
## 196 AB0000000196 C0245792K0056105 Small County1
                                                   108
                                                             66 0.5
##
      SPAM ISO Years
                      Segments
## 14
               35 County1 2
      yes no
## 32
               48 County1 4
       yes no
## 83
                 33 County1 9
       yes no
                 17 County1 9
## 84
       yes no
## 119 yes no
                 26 County1 12
## 196 yes no
                 22 County1 20
```

Una vez que se ha observado y recolectado la información de cada una de las empresas seleccionadas en la muestra, se utiliza la función Domains del paquete TeachingSampling para obtener dos matrices, SPAM.no y SPAM.si, que indican la pertenencia o no de cada empresa seleccionada en la muestra a cada uno de los tres niveles del sector industrial.

```
estima <- data.frame(Domains(Level))
Dominios <- data.frame(Domains(SPAM))
SPAM.no <- Dominios[,1]*estima
SPAM.si <- Dominios[,2]*estima</pre>
```

A continuación se muestran los cinco primeros elementos de las dos matrices creadas.

```
head(SPAM.no)
     Big Medium Small
## 1
       0
               0
                      0
## 2
       0
               0
               0
## 3
       0
                      0
## 4
       0
               0
               0
## 5
       0
                      0
## 6
head(SPAM.si)
##
     Big Medium Small
## 1
       0
               0
## 2
       0
               0
       0
               0
                      1
## 3
       0
               0
                      1
## 4
## 5
       0
               0
                      1
## 6
```

Para estimar los totales marginales correspondientes a las variables Level y SPAM, utilizamos la función E.SI del paquete TeachingSampling, la cual se aplica sobre los objetos estima y dominios, creados en el paso anterior.

```
E.SI(N,n,estima)
                       N Big Medium
##
                                         Small
## Estimation
                   85296 3113 26100.6 56082.1
## Standard Error
                       0
                          354
                                 868.8
                                         894.6
## CVE
                       0
                           11
                                   3.3
                                           1.6
## DEFF
                     NaN
                            1
                                   1.0
                                           1.0
E.SI(N,n,Dominios)
##
                       N
                                      yes
                              no
## Estimation
                   85296 32455.1 52840.9
## Standard Error
                       0
                           915.3
                                    915.3
## CVE
                       0
                             2.8
                                      1.7
## DEFF
                     NaN
                             1.0
                                      1.0
```

Para estimar las celdas internas de la tabla de contingencia, utilizamos la función E.SI del paquete TeachingSampling, la cual se aplica sobre las matrices SPAM.no y SPAM.si, creadas anteriormente.

```
E.SI(N,n,SPAM.no)
                      N Big Medium
                                       Small
## Estimation
                  85296 1066 9297.3 22091.7
                          209 587.5
## Standard Error
                      0
                                       825.9
## CVE
                      0
                           20
                                 6.3
                                          3.7
## DEFF
                    NaN
                            1
                                 1.0
                                          1.0
E.SI(N,n,SPAM.si)
##
                      N Big Medium
                  85296 2047 16803.3 33990.5
## Estimation
## Standard Error
                       0
                         289
                                749.8
                                        923.0
## CVE
                       0
                           14
                                  4.5
                                           2.7
## DEFF
                     NaN
                            1
                                  1.0
                                           1.0
```

Por tanto, la estimación de Horvitz-Thompson bajo muestreo aleatorio simple está dada por la tabla 10.5. Ahora, suponga que, debido a registros administrativos u otras fuentes de confianza, es posible conocer el valor de los totales marginales para Level y SPAM; dadas por 2905 empresas grandes, 25795 empresas medianas y 56596 empresas pequeñas, para la variable Level y por 33355 empresas que no utilizan SPAM y 51941 empresas que sí utilizan SPAM, para la variable SPAM. Es posible, entonces, utilizar el procedimiento iterativo de ajuste proporcional para calibrar las estimaciones internas de la tabla de contingencia para que ajusten exactamente a los valores poblacionales conocidos. Lo primero que se debe hacer, se debe crear la tabla de contingencia en R.

```
t1 <- as.matrix(E.SI(N,n,SPAM.no)[1,2:4])
t2 <- as.matrix(E.SI(N,n,SPAM.si)[1,2:4])
Tab <- data.frame(SPAM.NO = t1, SPAM.SI = t2)
```

Una vez creada la tabla de contingencias, procedemos a implementar el algoritmo mediante la función IPFP del paquete TeachingSampling. Esta función consta de cuatro argumentos. El primer argumento

10.1. IPFP 301

	SPAM.NO	SPAM.SI
Big	1066.20	2047.10
Medium	9297.26	16803.31
Small	22091.66	33990.46

Tabla 10.5: Estimación de Horvitz-Thompson para la tabla de contingencia de SPAM

es Tab, concerniente a la tabla de contingencias resultante de la estimación mediante el diseño probabilístico. El segundo argumento es Col y es un vector que contiene los totales marginales (poblacionales y conocidos) de las columnas de la tabla de contingencia. El tercer argumento es Row y es un vector que contiene los totales marginales (poblacionales y conocidos) de las filas de la tabla de contingencia. Por último tol, que por defecto es equivalente a 0.00001, corresponde a la tolerancia del algoritmo. La función IPFP arroja como resultado una tabla de contingencias calibrada según los argumentos Col y Tol. Para este ejemplo particular, se tiene la siguiente salida:

```
Col <- table(BigLucy$SPAM)</pre>
Row <- table(BigLucy$Level)</pre>
CalIPFP <- IPFP(Tab,Col,Row,tol=0.00001)</pre>
CalIPFP
           SPAM.NO SPAM.SI Row.est
##
## Big
               1024
                     1881
                                2905
## Medium
               9447
                      16348
                               25795
              22884
                               56596
## Small
                      33712
## Col.est 33355
                      51941
                               85296
```

A continuación se encuentran las tablas comparativas de las estimaciones calibradas mediante el proceso iterativo de ajuste proporcional y la información correspondiente a los totales poblacionales, respectivamente.

	no	yes
Big	910	1995
Medium	10185	15610
Small	22260	34336

Tabla 10.6: Distribución poblacional (no conocida) para la tabla de contingencia de SPAM.

	SPAM.NO	SPAM.SI	Row.est
Big	1023.50	1881.50	2905.00
Medium	9447.22	16347.78	25795.00
Small	22884.28	33711.72	56596.00
Col.est	33355.00	51941.00	85296.00

Tabla 10.7: Estimación IPFP de calibración para la tabla de contingencia de SPAM.

Nótese que la diferencia relativa es muy pequeña y que las estimaciones se acercan a la verdad. En estos términos relativos, esta estimación resulta mejor que la inducida por el estimador de Horvitz-Thompson.

10.2 Fundamentos teóricos

Como se estableció en la anterior sección, los estadísticos han intentado utilizar la incorporación de información auxiliar para mejorar las estimaciones de la encuesta. Es así como el estimador de regresión en todas sus posibles formas, requiere el conocimiento del total de un vector de variables auxiliares. Como Deville & Särndal (1992) lo explican, los estimadores de calibración son una familia o clase de estimadores que tienen una forma muy atractiva y que se caracteriza por usar pesos calibrados, los cuales son tan cercanos como sea posible a los pesos originales o inversos de la probabilidad de inclusión del elemento seleccionado en la muestra y además estos estimadores de calibración respetan un conjunto de restricciones, las ecuaciones de calibración.

Considere una población finita $U = \{1, \dots, k, \dots, N\}$, de la cual se ha seleccionado una muestra probabilística s ($s \subseteq U$) inducida por un diseño de muestreo $p(\cdot)$. Luego, p(s) es la probabilidad de que la muestra s haya sido seleccionada. Se asume que las probabilidades de inclusión de primer y segundo orden son estrictamente positivas.

Sea y_k el valor de la característica de interés para el k-ésimo individuo de la población, el cual también tiene asociado un vector de valores auxiliares dado por $\mathbf{x}_k = (x_{1k}, x_{2k}, \dots, x_{pk})$. Nótese que y_k y \mathbf{x}_k se observan y se conocen para todos los elementos en la muestra. Además, se asume que se conoce, mediante registros administrativos u otras fuentes de confianza, el total poblacional del vector de información auxiliar $\mathbf{t}_{\mathbf{x}} = \sum_{k \in U} \mathbf{x}_k$.

Como en la mayoría de situaciones que se presentan en este libro, el objetivo es estimar el total poblacional de la característica de interés, t_y . Sin embargo, el estimador de t_y debe ser un estimador lineal de la forma

$$\hat{t}_S(y) = \sum_{k \in S} w_k y_k, \tag{10.2.1}$$

Nótese que el estimador de Horvitz-Thompson toma la anterior forma pues

$$\hat{t}_{y,\pi} = \sum_{k \in S} \frac{y_k}{\pi_k} = \sum_{k \in S} d_k y_k, \tag{10.2.2}$$

Además de la linealidad, la familia de estimadores de calibración debe inducir una estrategia de muestreo representativa para cualquier diseño de muestreo $p(\cdot)$. Es decir, se deben construir unos nuevos pesos w_k , que sean tan cercanos como sea posible a $d_k = 1/\pi_k$ considerando alguna métrica y, que además cumplan con las ecuaciones de calibración

$$\sum_{k \in S} w_k \mathbf{x}_k = \mathbf{t}_{\mathbf{X}}.\tag{10.2.3}$$

Nótese que los pesos w_k dependen de S. Por ejemplo bajo el diseño MAS, el estimador de razón se puede escribir como

$$\hat{t}_{yr} = \hat{t}_{y\pi} \frac{t_x}{\hat{t}_{x\pi}} = \sum_{k \in S} \frac{N}{n} \frac{\bar{x}_U}{\bar{x}_S} y_k = \sum_{k \in S} w_k y_k$$

Además los pesos w_k tienen la propiedad de calibración puesto que

$$\sum_{S} w_k x_k = \sum_{S} \frac{N}{n} \frac{\bar{x}_U}{\bar{x}_S} x_k = N \frac{\bar{x}_U}{\bar{x}_S} \sum_{s} \frac{x_k}{n} = N \bar{x}_U = t_x$$

10.3. Construcción

Dado que existe una variedad de estimadores que cumplen la restricción (10.2.3), se deben encontrar unos pesos w_k que tengan las siguientes propiedades (Estevao, Särndal & Sautory 2000)

- 1. Consistencia: un sistema de pesos o ponderaciones que satisfaga (10.2.3) es atractivo, porque reproduce exactamente el total poblacional conocido para cada variable auxiliar.
- 2. Cercanía a los pesos básicos: los pesos básicos $d_k = 1/\pi_k$ tienen la atractiva propiedad de inducir estimaciones insesgadas con respecto al diseño de muestreo utilizado. Se quiere que cualquier desviación de estos pesos sea pequeña para preservar esta propiedad, al menos aproximadamente o asintóticamente.
- 3. Control sobre los totales de las variables auxiliares: lo que dice la intuición es que entre más variables auxiliares sean usadas en el proceso de calibración, entonces mejor la estimación. Este argumento intuitivo es soportado por la teoría; de esta manera, Estevao, Särndal & Sautory (2000, sec. 6.) demuestran que la varianza de un estimador de calibración decrece mientras más variables auxiliares sean tenidas en cuenta en la calibración.

10.3 Construcción

Para construir estos nuevos pesos w_k , se debe minimizar una pseudo-distancia $G(w_k/d_k)$ entre w_k y d_k en toda la muestra. Éste se puede tomar como un problema de optimización de la distancia en toda la muestra dada por

$$\sum_{k \in S} d_k \frac{G(w_k/d_k)}{q_k} \tag{10.3.1}$$

sujeto a la restricción (10.2.3). Donde, q_k ($k \in S$) forman un conjunto de ponderaciones conocidas y estrictamente positivos. Acerca de la pseudo-distancia $G(w_k/d_k)$, se supone que

- Debe ser estrictamente no negativa (para que tenga sentido como una función de distancia).
- Debe ser estrictamente convexa² (para que cualquier mínimo local sea un mínimo absoluto).
- G(1) = 0, esto es que la distancia entre pesos iguales es cero.
- G'(1) = 0, cuando los pesos son iguales la función debe tener un punto crítico.
- G''(1) = 1, ese punto crítico debe corresponder al minimizador.

En resumen, la técnica de calibración induce un nuevo conjunto de pesos w_k que surge de la minimización de una pseudo-distancia $G(\cdot)$ en la muestra que está sujeta a las ecuaciones de calibración. Es decir, que los nuevos pesos deben ser tales que

$$\sum_{k \in S} w_k \mathbf{x}_k = \sum_{U} \mathbf{x}_k = \mathbf{t}_{\mathbf{x}}$$
 (10.3.2)

¹Una función de distancia $D(x_1,x_2)$ debe cumplir con las siguientes propiedades: i) ser estrictamente positiva (no negativa), decir que $D(x_1,x_2) \ge 0$; ii) $D(x_1,x_2) = 0$ únicamente cuando $x_1 = x_2$; iii) ser simétrica, es decir $D(x_1,x_2) = D(x_2,x_1)$; cumplir con la desigualdad triángular, es decir $D(x_1,x_2) \le D(x_1,x_2) + D(x_2,x_3)$. La función $G(w_k/d_k)$ es una pseudo-distancia puesto que no necesariamente debe cumplir con la propiedad de simetría.

²Una función G(x) es estrictamente convexa sí y sólo sí $G(ax_1 + (1-a)x_2) < aG(x_1) + (1-a)G(x_2)$ para todo $a \in (0,1)$ y todo $x_1 \neq x_2$. Por otro lado, si la segunda derivada de G es positiva en todo su dominio, entonces G(x) es convexa.

Para resolver este problema de optimización, recurrimos a la técnica de los multiplicadores de Lagrange. De esta manera, la ecuación de Lagrange estará dada por la siguiente expresión

$$\mathcal{L}(w_1, \dots, w_n, \lambda) = \sum_{k \in S} d_k \frac{G(w_k/d_k)}{q_k} - \lambda' \left(\sum_S w_k \mathbf{x}_k - \mathbf{t}_{\mathbf{X}} \right)$$
(10.3.3)

Derivando la ecuación de Lagrange con respecto a w_k e igualando a cero, se tiene

$$\frac{\partial \mathcal{L}}{\partial w_k} = \frac{d_k}{q_k} \frac{g(w_k/d_k)}{d_k} - \lambda' \mathbf{x}_k = 0$$

Donde $g(\omega) = \frac{dG(\omega)}{d\omega}$, y por tanto se llega a que

$$g(w_k/d_k) = q_k \lambda' \mathbf{x}_k$$

En este paso es necesario definir una función $F(\cdot)$, tal que $F(\cdot) = g^{-1}(\cdot)$, es decir $F(g(\omega)) = \omega$, por lo tanto

$$F(g(w_k/d_k)) = F(q_k \lambda' \mathbf{x}_k)$$

Lo que nos guía al valor de los nuevos pesos

$$w_k = d_k F(q_k \lambda' \mathbf{x}_k) \tag{10.3.4}$$

El vector λ se obtiene al resolver el siguiente sistema de ecuaciones

$$\sum_{k \in S} \underline{d_k F(q_k \lambda' \mathbf{x}_k)} \mathbf{x}_k' = \mathbf{t}_\mathbf{x}'$$
(10.3.5)

10.3.1 Distancias $G(\cdot)$, $g(\cdot)$ y $F(\cdot)$

En general, hay varios tipos de distancias que pueden utilizarse en la construcción de un estimador de calibración. Sin embargo, Deville & Särndal (1992) demuestran que todas ellas guían asintóticamente al mismo estimador. Las pseudo-distancias más utilizadas están dadas en tabla 10.8° . Dependiendo de la escogencia de cada distancia, se obtendrán distintos estimadores de calibración. También es posible fijar dos constantes L y U y restringir el rango de los pesos resultantes w_k al intervalo (L,U). Este método se utiliza para evadir los pesos extremos o negativos, que se pueden eliminar con una buena escogencia de L y U.

En resumen, el proceso para obtener un estimador de calibración es el siguiente:

- 1. Definir una distancia $G(\cdot)$ y observar los datos y_k y \mathbf{x}_k .
- 2. Resolver (10.3.4) para el vector λ . En algunos casos esta solución requiere de procedimientos iterativos.
- 3. Usar λ para obtener un estimador del total poblacional de la característica de interés dado por

$$\hat{t}_{y,cal} = \sum_{k \in S} w_k y_k = \sum_{k \in S} d_k F(q_k \lambda' \mathbf{x}_k) y_k$$
(10.3.6)

Deville & Särndal (1992) asegura que el estimador $\hat{t}_{y,cal}$ arrojará estimaciones cercanas al total poblacional desconocido de la característica de interés si existe una fuerte relación entre y y x. De hecho, si y estuviera perfectamente explicado por x, la varianza del estimador $\hat{t}_{y,cal}$ sería nula para cada posible muestra.

Tabla 10.8:	Fiemplos o	e^{n}	oseudo-distancias	nara el	proceso	de	calibración

	*	1 1	
Distancia	G(x)	g(x)	F(u)
Ji cuadrado	$\frac{1}{2}(x-1)^2$	x-1	1+u
Entropía	$x\ln(x) - x + 1$	ln(x)	$\exp(u)$
Hellingster	$2(\sqrt{x}-1)^2$	$2\left(1-\sqrt{\frac{1}{x}}\right)$	$(1+\frac{u}{2})^{-2}$
Entropía inversa	$\ln(\frac{1}{x}) + x - 1$	$1-\frac{1}{x}$	$(1+u)^{-1}$
Ji cuadrado inversa	$\frac{1}{2} \frac{(x-1)^2}{x}$	$\frac{1}{2} \left(1 - \frac{1}{x} \right)^2$	$(1+2u)^{-1/2}$

10.4 Algunos casos particulares

Deville & Särndal (1992) examinaron las propiedades estadísticas de $\hat{t}_{y,cal}$ bajo una serie de pseudodistancias $G(\dot{)}$. En esta sección se revisarán algunos casos particulares que arrojan estimadores de calibración, algunos conocidos y otros nuevos.

10.4.1 Método lineal: distancia Ji cuadrado

Este método, quizás el más usado y uno de los más importantes en calibración, se obtiene cuando se escoge la utilizaremos la distancia Ji cuadrado que calcula la distancia, en toda la muestra, de los nuevos pesos w_k a los pesos clásicos d_k como

$$\sum_{S} d_k G(w_k / d_k) = \frac{1}{2} \sum_{S} \frac{(w_k - d_k)^2}{d_k}$$

Resultado 10.4.1. Bajo la distancia Ji cuadrado, y suponiendo que las ponderaciones $q_k = 1/c_k$, el estimador de calibración toma la forma del estimador general de regresión.

Prueba. De (10.3.3), y utilizando el hecho de que, para este pseudo-distancia, F(u) = 1 + u, entonces se tiene que

$$w_k = d_k F(q_k \boldsymbol{\lambda}' \mathbf{x}_k)$$

= $d_k (1 + q_k \boldsymbol{\lambda}' \mathbf{x}_k)$
= $d_k + d_k q_k \boldsymbol{\lambda}' \mathbf{x}_k$

y reemplazando en la ecuación de calibración (10.3.4)

$$\sum_{s} d_k \mathbf{x}'_k + \sum_{s} d_k q_k \boldsymbol{\lambda}' \mathbf{x}_k \mathbf{x}'_k = \mathbf{t}'_{\mathbf{x}}$$
(10.4.1)

Al despejar convenientemente, el multiplicador de Lagrange se resuelve como

$$\lambda' = (\mathbf{t}_{\mathbf{x}} - \mathbf{t}_{\mathbf{x}\pi})' \left(\sum_{S} d_k q_k \mathbf{x}_k \mathbf{x}_k' \right)^{-1}$$
(10.4.2)

Así, suponiendo que $q_k = 1/c_k$, se llega al estimador de calibración para el total de la característica de interés, puesto que

$$w_k = d_k + d_k (\mathbf{t_x} - \mathbf{t_{x\pi}})' \mathbf{T}^{-1} q_k \mathbf{x}_k$$
(10.4.3)

donde \mathbf{T}^{-1} está definido en (9.2.13). Entonces, se tiene que

$$\hat{t}_{y,cal} = \sum_{S} w_k y_k \tag{10.4.4}$$

$$= \sum_{s} \frac{y_k}{\pi_k} + (\mathbf{t_x} - \hat{\mathbf{t}}_{\mathbf{x}\pi})' \mathbf{T}^{-1} \sum_{s} \frac{\mathbf{x}_k y_k}{c_k \pi_k}$$
(10.4.5)

que coincide exactamente con la expresión (9.2.15) que define el estimador general de regresión.

El autor recalca que el estimador general de regresión es un caso particular de la familia de estimadores de calibración. Es un error hacer aserciones acerca de los estimadores de calibración basados solamente en la forma funcional del estimador general de regresión (GREG). Aunque es cierto que una gran mayoría de artículos están basados bajo el espíritu del estimador general de regresión, se debe recalcar que la filosofía de un estimador de calibración, aunque no contradice el uso del estimador general de regresión, es bien diferente a la filosofía de éste.

Nótese que el estimador general de regresión utiliza un modelo para incorporar la información auxiliar en el proceso de estimación, al igual que los estimadores de calibración, no todos los casos particulares del estimador general de regresión son estimadores de calibración. El espíritu más influyente de los estimadores de calibración no es incorporar un modelo al proceso de estimación sino conseguir un conjunto de pesos w_k . Como Särndal (2007) lo afirma, el concepto de estimación GREG y estimación de calibración reflejan una clara diferencia de pensamiento. La gran variedad de posibles modelos generan una amplia familia de estimadores tipo GREG. Por otro lado, la escogencia de una distancia en el proceso de calibración generan una amplia familia de estimadores de calibración, cuyo caso particular es la familia de estimadores GREG lineales.

Resultado 10.4.2. Bajo la distancia Ji cuadrado, y suponiendo que las ponderaciones $q_k = 1/x_k$ y que sólo existe una variable de información auxiliar; es decir $\mathbf{x}_k = x_k$, el estimador de calibración toma la forma del estimador de razón.

Prueba. Bajo las anteriores condiciones, se tiene que

$$\lambda = \frac{\sum_{U} x_k}{\sum_{S} d_k x_k} - 1 = \frac{t_x}{\hat{t}_{x,\pi}} - 1$$

Por tanto

$$w_k = d_k(1 + q_k x_k \boldsymbol{\lambda}) = d_k(1 + \boldsymbol{\lambda}) = d_k\left(\frac{t_x}{\hat{t}_{x,\pi}}\right)$$

Figura 10.1: Funciones G(x) y F(u) utilizando la distancia Ji cuadrado.

Luego, el estimador de calibración toma la forma siguiente

$$\hat{t}_{y,cal} = \sum_{S} w_k y_k$$

$$= \sum_{S} d_k \frac{t_x}{\hat{t}_{x,\pi}} y_k$$

$$= t_x \frac{\hat{t}_{y,\pi}}{\hat{t}_{x,\pi}} = \hat{t}_{y,r}$$

que coincide con la forma del estimador de razón dada por (9.4.15).

10.4.2 Método de raking: distancia de entropía

El método de raking utiliza la distancia de entropía como base de construcción del estimador de calibración. Esta distancia se define como:

$$G(x) = x \log(x) - x + 1$$

Nótese que la distancia, en toda la muestra, de los nuevos pesos w_k a los pesos clásicos d_k como:

$$\sum_{S} d_k G(w_k/d_k) = \sum_{S} d_k \left(\frac{w_k}{d_k} \ln \left(\frac{w_k}{d_k}\right) - \frac{w_k}{d_k} + 1\right)$$

De (10.3.3), y utilizando el hecho de que, para este pseudo-distancia, $F(u) = \exp(u)$, entonces se tiene que

$$w_k = d_k F(q_k \boldsymbol{\lambda}' \mathbf{x}_k)$$

= $d_k \exp(q_k \boldsymbol{\lambda}' \mathbf{x}_k)$

y reemplazando en la ecuación de calibración (10.3.4)

$$\sum_{s} d_k \exp(q_k \lambda' \mathbf{x}_k) \mathbf{x}'_k = \mathbf{t}'_{\mathbf{x}}$$
 (10.4.6)

El anterior sistema debe ser resuelto para λ (que es un vector columna de multiplicadores de Lagrange). Después de que λ sea determinado, se calculan los pesos calibrados como $w_k = d_k \exp(q_k \lambda' \mathbf{x}_k)$ y se obtiene el estimador de calibración para el total poblacional de la característica de interés, definido como:

$$\hat{t}_{y,cal} = \sum_{S} w_k y_k = \sum_{S} d_k \exp(q_k \lambda' \mathbf{x}_k) y_k$$
 (10.4.7)

¿Qué interpretación teórico-práctica tiene que algún w_k resulte negativo? Un aspecto realmente importante de este método de raking es que induce pesos w_k que son estrictamente positivos, lo cual no sucede con el método lineal.

Aspectos computacionales para el cálculo de λ

Para calcular el estimador de calibración dado por (10.4.7), es necesario resolver el sistema de ecuaciones (10.4.6) para λ . En Deville & Särndal (1992), se demuestra que una solución general pede ser obtenida usando el método iterativo de Newthon-Raphson. Nótese que el sistema de ecuaciones de calibración puede ser re-escrito como una función ϕ en términos de λ , así:

$$\phi(\lambda) = \sum_{c} d_k \exp(q_k \lambda' \mathbf{x}_k) \mathbf{x}'_k - \mathbf{t}'_{\mathbf{x}}$$

Nótese que la derivada de esta función con respecto a λ está dada por:

$$\phi'(\lambda) = \frac{\partial \phi(\lambda)}{\partial \lambda} = \sum_{S} d_k \exp(q_k \lambda' \mathbf{x}_k) \mathbf{x}_k' \mathbf{x}_k$$

para algún vector λ . Entonces, de acuerdo con el método de Newton-Raphson, una solución estaría dada por la iteración hasta convergencia de la siguiente expresión

$$\boldsymbol{\lambda}^{(a+1)} = \boldsymbol{\lambda}^{(a)} - \left[\phi' \left(\boldsymbol{\lambda}^{(a)} \right) \right]^{-1} \phi(\boldsymbol{\lambda}^{(a)})$$
 (10.4.8)

Nótese que el procedimiento converge cuando la diferencia entre $\lambda^{(a+1)}$ y $\lambda^{(a)}$ sea menor que una tolerancia fijada de antemano. Además, se debe tener en cuenta que $\lambda^{(0)} = \mathbf{0}$.

Figura 10.2: Funciones G(x) y F(u) utilizando la distancia de Entropía.

Resultado 10.4.3. Bajo el método de Newton-Raphson, la primera iteración del algoritmo da como resultado la solución para λ cuando se utilizaba la distancia Ji cuadrado. Es decir,

$$\boldsymbol{\lambda}^{(1)} = \hat{\mathbf{T}}^{-1} [\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi}] \tag{10.4.9}$$

Prueba.

$$\lambda^{(1)} = \lambda^{(0)} - \left[\phi'\left(\lambda^{(0)}\right)\right]^{-1} \phi(\lambda^{(0)})$$

$$= -\left[\sum_{s} d_{k} \exp(\mathbf{x}_{k} \lambda^{(0)}) \mathbf{x}'_{k} \mathbf{x}_{k}\right]^{-1} \left[\sum_{s} d_{k} \exp(\mathbf{x}_{k} \lambda^{(0)}) \mathbf{x}_{k} - \mathbf{t}_{x}\right]$$

$$= -\left[\sum_{s} d_{k} \mathbf{x}'_{k} \mathbf{x}_{k}\right]^{-1} \left[\sum_{s} d_{k} \mathbf{x}_{k} - \mathbf{t}_{x}\right]$$

$$= -\hat{\mathbf{T}}^{-1} [\hat{\mathbf{t}}_{\mathbf{x}\pi} - \mathbf{t}_{\mathbf{x}}] = \hat{\mathbf{T}}^{-1} (\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi})$$

que coincide con la solución para λ dada por la expresión (10.4.2).

Del anterior resultado se tiene que el estimador de calibración en la primera iteración estaría dado por

$$\hat{t}_{y,cal}^{(1)} = \sum_{S} d_k \exp(q_k (\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi})' \hat{\mathbf{T}}^{-1} \mathbf{x}_k) y_k$$
(10.4.10)

Programación del estimador con R

En esta sección se dan las ideas básicas para la programación computacional de un estimador de calibración basado en el método de raking para el caso en que se utiliza una sola variable de información auxiliar. Nótese que en el cálculo del vector λ , cuya expresión está dada por la ecuación (10.4.8), están involucradas las funciones ϕ y ϕ' . La programación computacional de esta técnica de los estimadores de calibración puede ser fácilmente implementada en cuatro sencillos pasos. A saber:

- 1. Programar la función ϕ
- 2. Programar la función ϕ'
- 3. Utilizar las anteriores expresiones para realizar el cálculo del vector λ
- 4. Iterar hasta convergencia

En la programación de la función ϕ intervienen cuatro objetos computacionales los cuales son el vector $d_k = (1/\pi_1, \dots, 1/\pi_k, \dots, 1/\pi_n)$, el vector λ , el vector de valores auxiliares para cada elemento incluido en la muestra, dado por $\mathbf{x}_k = (x_{1k}, x_{2k}, \dots, x_{pk})$ y el vector de totales poblacionales de las variables de información auxiliar $\mathbf{t}_{\mathbf{x}}$. De esta manera, el siguiente código crea una función que permite el cálculo de la función ϕ .

```
Fi <- function(dk, 1, x, tx){
  e <- matrix(0, n, 1)
  for (k in 1:n) {
    e[k] <- exp(x[k] * 1)
    }
  res <- sum(dk * e * x) - tx
  res
}</pre>
```

Por otra parte, en la programación de la función ϕ' intervienen sólo tres objetos computacionales que también estuvieron involucrados en la programación de la función ϕ . La razón de lo anterior es porque ϕ' es la derivada de ϕ . Estos elementos son $d_k = (1/\pi_1, \dots, 1/\pi_k, \dots, 1/\pi_n)$, λ y $\mathbf{x}_k = (x_{1k}, x_{2k}, \dots, x_{pk})$. Luego, el siguiente código crea una función que permite el cálculo de la función ϕ' .

```
Fiprima <- function(dk, 1, x){
  e <- matrix(0, n, 1)
  for(k in 1:n) {
    e[k] <- exp(x[k] * 1)
    }
  res <- sum(dk * e * x * x)
  res
}</pre>
```

Simultáneamente, se debe crear una función que calcule el estimador de calibración. En esta función intervienen cuatro objetos computacionales que son: $d_k = (1/\pi_1, \dots, 1/\pi_k, \dots, 1/\pi_n)$, λ , $\mathbf{x}_k = (x_{1k}, x_{2k}, \dots, x_{pk})$ y por último el vector de valores de la característica de interés para los elementos de la muestra $y_k = (y_1, y_2, \dots, y_n)$.

```
Cal <- function(dk, 1, x, y){
    w <- matrix(0, n, 1)
    for(k in 1:n) {
        w[k] <- exp(x[k] * 1)
     }
    res <- sum(dk * w * y)
    res
}</pre>
```

Por supuesto, los anteriores códigos no funcionan por sí solos. Nótese que las anteriores funciones tienen al elemento computacional λ en común; sin embargo, este elemento no existe aún y debe ser calculado con métodos iterativos como el de Newton-Raphson. Estas funciones deben ser ensambladas por una función que las recoja y que sea capaz de realizar el cálculo final del estimador de calibración.

En primer lugar se debe fijar una tolerancia deseada, en este caso la tolerancia está dada por 0.000001. Esto quiere decir que el proceso iterativo se detiene cuando suceda que $|\lambda^{(a+1)} - \lambda^{(a)}| < -0.000001$. Sin embargo, si esta condición no se satisface, entonces el proceso sigue iterándose repetitivamente. Cuando el proceso converge, entonces es posible utilizar las funciones que se declararon anteriormente y así calcular el valor de la estimación.

```
tol <- 0.0000001
l <- 0
l.k <- 4

while(abs(l - l.k)>tol) {
   l.k <- l - Fi(l, xs, sum(xu)) / Fiprima(l, xs)
   l <- l.k
   }

tcal <- Cal(l.k, xs, ys)</pre>
```

Los anteriores códigos de programación pretenden ser una guía para el estudiante y no se declaran como la única alternativa de lógica computacional.

Nótese, sin embargo, que aunque el método de Raking posee la característica de que los pesos no son negativos, como suele suceder cuando se utiliza el método lineal, éstos pueden ser muy variables. Para resolver este inconveniente, Deville & Särndal (1992) proponen los métodos logístico y lineal truncado. Éstas técnicas surgen motivadas por el deseo de restringir el rango de variación de los nuevos pesos de calibración sin alterar demasiado el estimador de calibración. En la práctica, el estadístico desea evadir los pesos extremos; en la siguientes secciones se muestra cómo estos pueden ser eliminados.

10.4.3 Método logístico

Conocido comúnmente como el método de calibración Logit (L, U). Este método fija dos constantes L y U tales que L < 1 < U. De esta forma se define la siguiente cantidad

$$A = \frac{(U - L)}{(1 - L)(U - 1)}$$

Figura 10.3: Funciones G(x) y F(u) utilizando el método logístico con L=0.4 y U=2.5la distancia de Entropía.

Luego, se define la siguiente función

$$G(x) = \begin{cases} \frac{1}{A} \left[(x - L) \lg \frac{x - L}{1 - L} + (U - x) \lg \frac{U - x}{U - 1} \right] & \text{si } L < x < U \\ \infty & \text{en otro caso} \end{cases}$$
 (10.4.11)

La correspondiente función ${\cal F}$ está dada por

$$F(u) = \frac{L(U-1) + U(1-L)\exp(Au)}{U-1 + (1-L)\exp(Au)}$$
(10.4.12)

La anterior función toma valores restringidos al intervalo (L,U) puesto que $F(-\infty) = L$ y $F(\infty) = U$. Por lo tanto los nuevos pesos de calibración están siempre en el intervalo $[Ld_k, Ud_k]$.

10.4.4 Método truncado lineal

Para restringir el intervalo de soluciones de los pesos de calibración es posible utilizar la misma función lineal pero restringida a dos valores L y U, tales que L < 1 < U. De esta forma,

$$G(x) = \begin{cases} \frac{1}{2}(x-1)^2 & \text{si } L < x < U \\ \infty & \text{en otro caso} \end{cases}$$
 (10.4.13)

De esta manera, la correspondiente función F, está dada por

$$F(u) = \begin{cases} 1 + u & \text{si } u \in [L - 1, U - 1] \\ L & \text{si } u < L - 1 \\ U & \text{si } u > U - 1 \end{cases}$$
 (10.4.14)

Así, los nuevos pesos de calibración están siempre en el intervalo $[Ld_k, Ud_k]$.

Figura 10.4: Funciones G(x) y F(u) utilizando el método truncado lineal con L=0.4 y U=2.5la distancia de Entropía.

10.5 Calibración y Post-estratificación

Deville, Särndal & Sautory (1993) derivaron en primer lugar el estimador de calibración y luego explicaron el estimador de post-estratificación y el estimador de Raking (bajo el algoritmo IPFP) como casos particulares del método de calibración bajo distintas distancias. En esta sección se dan las bases estadísticas para la construcción de estos estimadores.

10.5.1 Post-estratificación

Un caso especial muy importante de los estimadores de calibración corresponde al estimador de post-estratificación completa³. En este caso el número de variables de información auxiliar es igual al número de post-estratos que particionan la población. Este proceso supone la partición en G grupos de la población finita. Así que $U=(U_1,U_2,\ldots,U_G)$. Se asume que la característica de interés está relacionada con G vectores o variables dummy que toman el valor uno si el elemento pertenece al subgrupo U_g $(g=1,\ldots,G)$ o cero si el elemento no pertenece al grupo. Así que p=G, $\mathbf{x}_k=\mathbf{d}_k=(0,0,\ldots,1,\ldots,0,0)'$ y $q_k=1$ para todo $k\in U$.

G grupos

Bajo la anterior formulación tenemos que el vector λ toma la siguiente forma

$$\lambda' = (\lambda_1, \dots, \lambda_g, \dots, \lambda_G) \tag{10.5.1}$$

y cada entrada del vector de información auxiliar para el k-ésimo elemento está dada por

$$x_{kg} = \begin{cases} 1 & \text{si } k \in U_g \\ 0 & \text{en otro caso} \end{cases}$$
 (10.5.2)

Nótese que

$$\mathbf{t_x} = \sum_{k \in U} \mathbf{x}'_k = (N_1, \dots, N_g, \dots, N_G),$$
 (10.5.3)

donde N_g corresponde al total de elementos pertenecientes al subgrupo poblacional U_g .

Resultado 10.5.1. Los pesos de calibración para el caso de post-estratificación están dados por

$$w_k = d_k \frac{N_g}{\hat{N}_{g,\pi}}$$
 $g = 1, \dots, G$ (10.5.4)

y son invariantes a la escogencia de cualquier distancia.

Prueba. La construcción del estimador de calibración para este esquema particular es como sigue. En primer lugar, nótese que si el k-ésimo elemento pertenece al subgrupo U_q , entonces

$$\lambda' \mathbf{x}_k = \lambda_q \tag{10.5.5}$$

³El término post-estratificación completa se usa cuando los totales internos de la tabla de contingencia son conocidos y se usan para el proceso de calibración.

Por tanto la restricción de calibración dada por

$$\sum_{k \in S} d_k F(\lambda' \mathbf{x}_k) \mathbf{x}_k' = \mathbf{t}_{\mathbf{x}}'$$
(10.5.6)

puede ser re-escrita como

$$\sum_{k \in U_g} d_k F(\lambda_g) = N_g \qquad g = 1, \dots, G$$
(10.5.7)

Por tanto, despejando la anterior ecuación, se tiene finalmente que

$$F(\lambda_g) = \frac{N_g}{\sum_{k \in U_g} d_k} = \frac{N_g}{\hat{N}_{g,\pi}} \qquad g = 1, \dots, G$$
 (10.5.8)

Luego, de (10.3.3) los pesos de calibración están dados por

$$w_k = d_k \frac{N_g}{\hat{N}_{g,\pi}}$$
 $g = 1, \dots, G$ (10.5.9)

Nótese que en la construcción de los pesos de calibración no importó la escogencia de la distancia.

Por tanto el estimador de calibración está dado por

$$\hat{t}_{y,cal} = \sum_{k \in S} w_k y_k$$

$$= \sum_{g=1}^G \sum_{k \in S_g} \frac{N_g}{\hat{N}_{g,\pi}} \frac{y_k}{\pi_k}$$

que equivale al estimador de post-estratificación.

10.5.2 Raking

Si Deming hubiese dado cuenta de los estimadores de calibración cuando se usa la distancia multiplicativa como marco de referencia, hubiera estado muy contento al darse cuenta de que su método pudo ser generalizado e incluido en el contenido de la ciencia estadística. Al principio, el IPFP se usó de manera totalmente pragmática, simplemente se trataba de realizar un ajuste para que las estimaciones internas de la tabla de contingencia calibraran los totales conocidos. Bajo este marco de referencia, el IPFP era criticado por ser un método matemático y no estadístico cuyos resultados no tenían en cuenta el diseño de muestro que se había usado para la recolección de la información. Como se verá en esta sección, el estimador de calibración que apunta a la estimación de las celdas internas en tablas de contingencia es equivalente al resultante del método IPFP. De hecho, el método IPFP es un caso particular de este escenario que se conoce con el nombre de Raking.

Como caso particular se considera la estimación de una tabla de contingencia a dos vías con calibración sobre los totales marginales. Por lo anterior, la partición de la población sigue el patrón de la siguiente tabla.

Tabla	10.9:	Partice	ión de	la poble	ación.
U_{11}	• • •	U_{1g}	• • •	U_{1G}	U_1 .
:		:		:	:
U_{h1}	• • •	U_{hg}	• • •	U_{hG}	U_h .
:		:		:	:
U_{H1}		U_{Hg}		U_{HG}	U_H .
$U_{\cdot 1}$		$U_{\cdot a}$		$U_{\cdot G}$	\overline{U}

Se supone que $q_k = 1$ para todo $k \in U$ y $\mathbf{x}_k = (\mathbf{d}'_{1k}, \mathbf{d}'_{1k})$, donde \mathbf{d}_{1k} es un vector de H variables dummy denotando a cuál post-estrato pertenece el k-ésimo elemento y \mathbf{d}_{2k} es un vector de G variables dummy denotando a cuál post-estrato pertenece el k-ésimo elemento. Nótese que

$$\mathbf{t_x} = \sum_{k \in U} \mathbf{x}_k' = (N_{1.}, \dots, N_{h.}, \dots, N_{H.}, N_{.1}, \dots, N_{.g}, \dots, N_{.G})$$
(10.5.10)

Sea $\mathbf{u} = (u_1, \dots, u_H)'$ un vector de orden H y $\mathbf{v} = (v_1, \dots, v_G)'$ un vector de orden G. Definiendo $\lambda' = (\mathbf{u}', \mathbf{v}')$, se tiene que si el k-ésimo elemento pertenece a la celda U_{hg} , entonces

$$F(q_k \lambda' \mathbf{x}_k) = F(u_h + v_g)$$
(10.5.11)

Por tanto las ecuaciones de calibración (10.5.6) pueden ser escritas como el siguiente sistema de ecuaciones

$$\sum_{h=1}^{H} \hat{N}_{hg,\pi} F(u_h + v_g) = N_{\cdot g} \qquad g = 1, \dots, G$$
 (10.5.12)

$$\sum_{g=1}^{G} \hat{N}_{hg,\pi} F(u_h + v_g) = N_h. \qquad h = 1, \dots, H$$
(10.5.13)

donde $\hat{N}_{hg,\pi}$ corresponde al estimador de Horvitz-Thompson de N_{hg} . Si se utiliza la distancia de entropía, se tiene que

$$F(u_h + v_g) = \exp(u_h + v_g) = \exp(u_h) \exp(v_g)$$
(10.5.14)

Por tanto el sistema de ecuaciones dado por (10.5.12) y (10.5.13) toma la siguiente forma

$$\exp(u_h) = \frac{N_{g}}{\sum_{g=1}^{G} \hat{N}_{hg} \exp(v_g)} \qquad h = 1, \dots, H$$
 (10.5.15)

$$\exp(u_h) = \frac{N_{g}}{\sum_{g=1}^{G} \hat{N}_{hg} \exp(v_g)} \qquad h = 1, \dots, H$$

$$\exp(v_g) = \frac{N_{h}}{\sum_{h=1}^{H} \hat{N}_{hg} \exp(v_h)} \qquad g = 1, \dots, G$$
(10.5.16)

Una solución para el anterior sistema de ecuaciones se obtiene al iterar hasta convergencia el algoritmo IPFP como sigue.

1. Fijar $\exp(v_g) = 1$ y calcular $\exp(u_h)$ en (10.5.15)

- 2. Luego insertar este valor de $\exp(u_h)$ en (10.5.16) y calcular un nuevo valor de $\exp(v_q)$
- 3. Iterar hasta convergencia

Después de que el algoritmo ha finalizado, el estimador de calibración para el total de la celda U_{hg} está dado por

$$\hat{N}_{hg,cal} = \hat{N}_{hg,\pi} \exp(u_h + v_g) = \hat{N}_{hg,\pi} \exp(u_h) \exp(v_g)$$
(10.5.17)

y los nuevos pesos calibrados son $w_k = d_k \exp(u_h + v_g) = d_k \exp(u_h) \exp(v_g)$ si el k-ésimo elemento pertenece a la celda U_{hg} .

10.6 Varianza de los estimadores de calibración

Cerramos este capítulo con una importante propiedad de los estimadores de calibración.

Resultado 10.6.1. El estimador de calibración es asintóticamente equivalente al estimador general de regresión bajo las siguientes condiciones de regularidad:

1.
$$\lim \frac{\mathbf{t_x}}{N}$$
 existe

2.
$$\frac{\hat{\mathbf{t}}_{\mathbf{x}\pi} - \mathbf{t}_{\mathbf{x}}}{N} \rightarrow \mathbf{0}$$
 en probabilidad⁴

3.
$$\sqrt{n}\frac{\hat{\mathbf{t}}_{\mathbf{x}\pi} - \mathbf{t}_{\mathbf{x}}}{N}$$
 converge en distribución a la normal multivariante $N(\mathbf{0}, \mathbf{A})$

Prueba. La demostración del anterior resultado se sale del alcance de este libro. Sin embargo, el lector interesado puede consultar en Deville & Särndal (1992).

En particular, bajo el anterior resultado, el estimador de calibración comparte las mismas esperanzas asintóticas y las mismas varianzas asintóticas que el estimador general de regresión. Esto puede ser visto mediante el siguiente argumento heurístico:

- Se asume que para tamaños de muestra grandes el estimador de Horvitz-Thompson, $\hat{\mathbf{t}}_{\mathbf{x}\pi}$, es cercano al total poblacional de las características de información auxiliar, $\mathbf{t}_{\mathbf{x}}$. Lo anterior se tiene puesto que $\hat{\mathbf{t}}_{\mathbf{x}\pi}$ es un estimador consistente para $\mathbf{t}_{\mathbf{x}}$.
- Entonces, siguiendo la ecuación (10.3.4), el valor de $F(\cdot)$ debería ser cercano a uno y el valor de λ debería ser cercano a $\mathbf{0}$
- Sin embargo, por la construcción de las funciones $F(\cdot)$ y dado que F(0) = F'(0) = 1, entonces todas las funciones $F(\cdot)$ deberían tener el mismo comportamiento en la vecindad de 0.
- Por tanto, todas las funciones $F(\cdot)$ pueden ser aproximadas mediante la función F(u) = u + 1.
- Es decir, la misma función que corresponde al estimador general de regresión.

 $^{^4}$ El marco de referencia de esta medida de probabilidad está dado por el diseño muestral que se utilizó en la estrategia de muestreo.

Resultado 10.6.2. La varianza aproximada y la estimación de la varianza del estimador de calibración está dada por.

$$AV(\hat{t}_{y,cal}) = \sum_{ll} \Delta_{kl}(d_k E_k)(d_l E_l)$$
(10.6.1)

$$\widehat{Var}(\widehat{t}_{y,cal}) = \sum_{S} \frac{\Delta_{kl}}{\pi_{kl}} (w_k e_k)(w_l e_l)$$
(10.6.2)

respectivamente. Donde $E_k = y_k - \mathbf{x}_k' \mathbf{B}$ y \mathbf{B} satisface las ecuaciones normales en la construcción del estimador de regresión. También $e_k = y_k - \mathbf{x}_k' \hat{\mathbf{B}}$ y $\hat{\mathbf{B}}$ es un estimador de \mathbf{B} .

10.7 Marco y Lucy

Volviendo con el ejercicio práctico de estimación, suponga que el gobierno desea obtener una estimación del total de impuestos que el sector industrial aportó en el último año fiscal. Estas estimaciones se requiere que sean muy precisas puesto que con base en estos resultados se replanteará una parte del presupuesto nacional.

En esta ocasión, el gobierno pone a disposición del estadístico un marco de muestreo que incluye la identificación y ubicación de todas las empresas pertenecientes al sector industrial. Además de esto, el gobierno tiene la disponibilidad de conocimiento del total poblacional de dos características de información auxiliar; a saber, el total poblacional de la variable Employees correspondiente a 151950, el total poblacional de la variable Income correspondiente a 1035217 y, por supuesto, el total poblacional del número de empresas del sector industrial correspondiente a 2396.

Bajo el anterior esquema, se planearon varias estrategias de muestreo que manejaban un diseño aleatorio simple de 400 empresas y estimadores de calibración bajo varias distancias. Para la selección de tal muestra se utilizó el siguiente código computacional

```
data(BigLucy)
attach(BigLucy)
N <- dim(Lucy)[1]
n <- 2000
sam <- sample(N, n)

## Error in sample.int(x, size, replace, prob): cannot take a sample larger than the population
when 'replace = FALSE

muestra <- BigLucy[sam, ]
attach(muestra)</pre>
```

Una vez que la muestra fue seleccionada se utilizó el paquete sampling del software R para calcular lo estimadores de calibración. En particular se utilizó la función calib que calcula los pesos w_k del estimador de calibración. Esta función cuenta con varios argumentos; entre ellos están lo siguientes: Xs, la matriz que contiene los valores de las características de información auxiliar para los individuos incluidos en la muestra, d, correspondiente al inverso de los pesos de las probabilidades de inclusión de los elementos en la muestra, tx, que corresponde al total poblacional de las variables de calibración, method que incluye cuatro posibles distancias que son la distancia Ji cuadrado cuyo acepción en la función calib está dada por method=''linear'', la distancia de entropía cuya acepción en la función calib está dada por method=''raking'' y los métodos logístico y truncado cuyas acepciones en la función calib están dadas por method=''logit'' y por method=''truncated'', respectivamente.

10.7. Marco y Lucy 319

Se calcularon las estimaciones de calibración usando los cuatro métodos y el código utilizado se muestra a continuación.

```
library(sampling)
tx1 <- sum(BigLucy$Income)</pre>
tx2 <- sum(BigLucy$Employees)</pre>
ys <- data.frame(Income, Employees, Taxes)
Xs <- cbind(1, Income, Employees)</pre>
piks \leftarrow rep(n/N, times = n)
tx \leftarrow c(N, tx1, tx2)
w1 <- calib(Xs, d = 1/piks, tx, method = "linear")
w2 <- calib(Xs, d = 1/piks, tx, method = "raking")
## Warning in calib(Xs, d = 1/piks, tx, method = "raking"): No convergence
w3 \leftarrow calib(Xs, d = 1/piks, tx, method = "logit", bounds = c(0.75, 1.2))
## Warning in calib(Xs, d = 1/piks, tx, method = "logit", bounds = c(0.75, : no convergence
w4 <- calib(Xs, d = 1/piks, tx, method = "truncated", bounds = c(0.75,1.2))
## No convergence in 500 iterations with the given bounds.
## The bounds for the g-weights are: -1788 and 169977
## and the g-weights are given by g
```

La función calib solamente calcula los pesos que intervienen en las ecuaciones de calibración. Para calcular las estimación final del total de la característica de interés Taxes se debe proceder a multiplicar las cantidades pertinentes. De esta manera, el siguiente código se utilizó para el cálculo de las cuatro estimaciones.

```
tcal1 <- t(w1/piks) %*% as.matrix(ys)
tcal1
          Income Employees
                            Taxes
## [1,] 36634733
                 5391992 2141769
tcal2 <- t(w2/piks) %*% as.matrix(ys)
tcal2
        Income Employees Taxes
## [1,]
          Inf
                    Inf
tcal3 <- t(w3/piks) %*% as.matrix(ys)
## Error in t(w3/piks) %*% as.matrix(ys): non-conformable arguments
tcal3
## Error in eval(expr, envir, enclos): object 'tcal3not found
```

```
tcal4 <- t(w4/piks) %*% as.matrix(ys)
tcal4

## Income Employees Taxes
## [1,] 36634686 5391039 687813
```

10.8 Discusión

Särndal (2007) afirma que la definición del enfoque de calibración para la estimación de totales en poblaciones finitas sigue los siguientes procesos:

- 1. Calcular nuevos pesos que incorporen información auxiliar específica y que están restringidos a la ecuación de calibración.
- 2. Utilizar estos nuevos pesos para la construcción de estimadores lineales.
- 3. Obtener estimaciones aproximadamente insesgadas en presencia de no respuesta y otros errores no muestrales.

Al mismo tiempo, Särndal (2007) concluye que existen seis ideas sobre las cuales vale la pena profundizar un poco más. A continuación se exponen estos criterios que algunos estadísticos han usado para enfatizar el uso práctico de los estimadores de calibración:

- Como un método de ponderación lineal: la calibración tiene un vínculo íntimo con la práctica. La fijación con métodos de ponderación de las agencias que manejan las estadísticas oficiales es una poderosa costumbre en la práctica que empezó con la ponderación de unidades mediante el inverso de su probabilidad de inclusión y siguió con las ponderaciones surgidas del enfoque de post-estratificación. Las ponderaciones de calibración extienden las anteriores ideas. La calibración es nueva como término en el muestreo (casi 15 años) pero no es nueva como una técnica para producir ponderaciones, por ejemplo, el muestreo por cuotas es una forma de muestreo no probabilístico que induce estimaciones calibradas con los totales demográficos de la población de estudio. La ponderación de los valores observados de las características de interés fue un tópico muy importante antes que el término calibración comenzara a ser popular. Algunos autores derivaron estas ponderaciones con el argumento que deberían diferir de la manera más mínima posible de los pesos originales. Otros autores encontraron las ponderaciones al reconocer que un estimador de regresión lineal podría ser escrito como una suma ponderada de los valores de la característica de interés. De allí surgieron términos tales como ponderación de muestreo, ponderación de regresión y ponderación de caso.
- Como una forma sistemática para utilizar la información auxiliar: la calibración provee una forma sistemática para involucrar la información auxiliar. En la mayoría de aplicaciones práctica la calibración provee un enfoque simple para incorporar esta información dentro de la etapa de estimación. La información auxiliar fue usada para mejorar la precisión de los estimativos mucho antes que el término calibración fuera popular. Existen cientos de artículos que fueron escritos con este propósito en mente. Hoy en día la calibración ofrece un camino para incorporar esta información auxiliar. Por ejemplo la calibración puede ser usada efectivamente en encuestas donde la información auxiliar está disponible en diferentes niveles. Al realizar un muestreo en dos etapas la información auxiliar puede existir para las unidades de la primera etapa (los conglomerados) y puede existir otra información para las unidades de la segunda etapa (elementos o conglomerados).

- Como un enfoque para conseguir consistencia: en algunas ocasiones el término calibración se refiere a una forma de conseguir estimativos consistentes⁵. Las ecuaciones de calibración imponen la característica de consistencia sobre el vector de ponderaciones; así que, cuando éste se aplica a las variables auxiliares el resultado será consistente con los totales de estas variables. Un deseo de promover la credibilidad en las estadísticas oficiales es una razón para que las entidades busquen la consistencia. Cuando la motivación primaria para la calibración no es la concordancia con los totales de la información auxiliar sino el reducir la varianza y el sesgo debido a la ausencia de respuesta entonces el vector de ponderaciones se dice balanceado.
- Como excusa de transparencia y conveniencia: el enfoque de calibración ha ganado popularidad en las aplicaciones reales debido a que las estimaciones resultantes son fáciles de interpretar y de motivar puesto que están directamente relacionadas a los pesos inducidos por el diseño de muestreo. La calibración sobre los totales conocidos brinda al usuario una forma natural y transparente de estimación. El usuario que entiende la ponderación muestral aprecia el método de calibración puesto que modifica sutilmente los pesos originales, pero al mismo tiempo respeta los totales de la información auxiliar y mantiene el sesgo despreciable. Existe otra ventaja que es apreciada por los usuarios, en la mayoría de aplicaciones, la calibración induce un único vector de ponderaciones aplicable a todas las variables involucradas en el estudio. Esta última razón hace que este método sea muy apetecido en las entidades oficiales que manejan encuestas muy extensas.
- En combinación cono otros términos: Algunos autores usan la palabra calibración en combinación con otros términos para describir varias direcciones de pensamientos, entre esta proliferación de términos están: calibración modelo, calibración G, calibración armonizada, calibración a un nivel más alto, calibración de regresión, calibración no lineal, calibración super-generalizada, calibración de modelos de redes neuronales y calibración basada en modelos locales polinomiales, entre otras. La calibración juega un rol significativo en los métodos de muestreo indirectos (ver capítulo 12). Este término también ha sido usado, aunque en un espíritu diferente, en conceptos tales como imputación calibrada y calibración sesgada.
- Como una nueva dirección de pensamiento: si la calibración representa un nuevo enfoque demarcado claramente de sus predecesores, entonces es tiempo de hacer la pregunta: ¿La calibración generaliza las teorías anteriores? ¿La calibración da mejores respuestas a las preguntas de importancia, que los enfoques de estimación anteriores? En la práctica el estadístico encuentra algunos pormenores tales como ausencia de respuestas, deficiencias del marco muestral y errores de medición. Es cierto que algunos procesos como la imputación y la reponderación para no respuestas son ampliamente difundidos y usados en la práctica. Sin embargo queda un sinsabor al utilizar estos métodos pues no están enmarcados dentro de una teoría exhaustiva de inferencias en poblaciones finitas. La mayoría de artículos teóricos tratan con la estimación de parámetros bajo un mundo ideal, que no existe en la práctica, donde la ausencia de respuesta y otros errores no muestrales están ausentes.

10.9 Estimadores óptimos de calibración

Como lo afirma Wu (2003) existen dos variantes en la construcción de un estimador de calibración: una está dada por la escogencia de la distancia y la otra por el conjunto de ecuaciones de calibración⁶ en áreas como la demografía existe la costumbre de calibrar sobre muchas variables, para que se logre estimar con varianza nula los totales conocidos de las variables auxiliares, sin importar que el

 $^{^{5}}$ En este apartado la palabra consistente se da en el sentido de la consistencia con los totales de la información auxiliar.

 $^{^6}$ Nótese que si el vector de información auxiliar tiene P variables auxiliares, entonces habrán P ecuaciones de calibración.

estimador resultante pueda perder eficiencia. En estos términos, sería mejor utilizar la menor cantidad de ecuaciones de calibración para no estropear el buen comportamiento del estimador. La pregunta que debe plantearse el investigador es ¿cuál es la mejor ecuación de calibración que se debe usar en la construcción de un estimador de este tipo?

Si $u_k = u(\mathbf{x}_k)$, donde $u(\cdot)$ es una función de valor real, entonces una nueva forma de construir un estimador de calibración estaría dada por la consecución de unos pesos w_k restringidos⁷ a

$$\sum_{k \in S} w_k u(\mathbf{x}_k) = \sum_{k \in U} u(\mathbf{x}_k)$$

Por tanto, la pregunta se torna más diáfana y se convierte en ¿cuál función $u(\cdot)$ hace al estimador \hat{t}_{ycal} más eficiente? Ahora, es bien sabido que bajo la inferencia basada en el diseño de muestreo, no existe un estimador insesgado de mínima varianza uniformemente (Cassel, Särndal & Wretman 1976a). Sin embargo, es posible obtener un estimador óptimo bajo la inferencia asistida por modelos de super-población. La respuesta a estas preguntas está dada por la propuesta de Wu (2003) que construyó un estimador óptimo de calibración suponiendo que las respuestas de y_k pueden ser vistas como realizaciones del siguiente modelo de super-población semi-paramétrica

$$E_{\xi}(y_k|\mathbf{x}_k) = \mu(\mathbf{x}_k, \boldsymbol{\theta}), \quad Var_{\xi}(y_k|\mathbf{x}_k) = [\nu(\mathbf{x}_k)]^2 \sigma^2 \quad ,$$
 (10.9.1)

donde $\mu(\cdot,\cdot)$ y $v(\cdot)$ son funciones conocidas, $\boldsymbol{\theta}$ y σ^2 son parámetros desconocidos del modelo. Se asume que los y_k , $k \in U$, son condicionalmente independientes dadas las \mathbf{x}_k . Nótese que ν puede ser una función conocida de μ como en los modelos lineales generalizados.

Los estimadores óptimos, asistidos por un modelo de super-población ξ , que minimizan el valor esperado de la varianza basada en un diseño de muestreo, $E_{\xi}(Var_p(\hat{Y}))$, han sido discutidos⁸ por muchos autores. Por ejemplo, en Isaki & Fuller (1982) esta varianza esperada tomó el nombre de varianza anticipada.

Resultado 10.9.1 (Teorema 1 de Wu (2003)). Sea t_{y,C_u} un estimador de calibración del total poblacional de la característica de interés, construido utilizado la restricción (10.9), donde $C_u = \{u(\mathbf{x}_1), u(\mathbf{x}_2), \dots, u(\mathbf{x}_N)\}$ es la familia de vectores de todas las posibles funciones de valor real aplicadas a la información auxiliar. Dentro de la clase de estimadores de calibración t_{y,C_u} , la escogencia de

$$C_{\mu} = \{\mu(\mathbf{x}_1, \boldsymbol{\theta}), \mu(\mathbf{x}_2, \boldsymbol{\theta}), \dots, \mu(\mathbf{x}_N, \boldsymbol{\theta})\}\$$

minimiza $E_{\xi}(Var_p(\hat{Y}))$ bajo el modelo de super-población dado por (10.9.1) y suponiendo condiciones de regularidad en el diseño de muestreo.

Con este resultado podemos proseguir a la construcción del estimador óptimo de calibración resultante de minimizar Ji-cuadrado sujeta a la siguiente restricción

$$\sum_{k \in S} w_k \hat{\mu}_k = \sum_{k \in U} \hat{\mu}_k$$

Donde $\hat{\mu}_k = \mu(\mathbf{x}_k, \hat{\boldsymbol{\theta}})$. La razón para esto se debe a que los valores del vector $\boldsymbol{\theta}$ son desconocidos y se deben reemplazar por un estimador basado en la muestra seleccionada dado por $\hat{\boldsymbol{\theta}}$. La minimización se realiza usando un multiplicador de Lagrange como en Deville (1999). De esta manera, es muy fácil conseguir la expresión del estimador óptimo de calibración, el cual está dado por (Wu & Sitter 2001)

$$\begin{split} \hat{t}_{y,opt} &= \sum_{k \in S} w_k y_k \\ &= \hat{t}_{y\pi} + (t_{\hat{\mu}} - \hat{t}_{\hat{\mu}\pi}) \hat{B}_y \end{split}$$

⁷Bajo este marco de referencia aparece una reducción en la cantidad de restricciones que se utilizan en la calibración.
⁸Los términos E_p y Var_p se refieren a la esperanza y varianza bajo un diseño muestral $p(\cdot)$, y E_ξ y Var_ξ denotan la esperanza y varianza bajo un modelo de super-población ξ .

en donde $t_{\hat{\mu}} = \sum_{k \in U} \hat{\mu}_k$ es el total poblacional de las funciones $\hat{\mu}$, $\hat{t}_{\hat{\mu}\pi}$ su correspondiente estimador de Horvitz-Thompson y

$$\hat{B}_y = \frac{\sum_{k \in S} d_k q_k \hat{\mu}_k y_k}{\sum_{k \in S} d_k q_k \hat{\mu}_k^2}$$

En resumen, los estimadores óptimos de calibración se han estudiado y profundizado en Wu & Sitter (2001) y Wu (2003) y su fundamento se encuentra en la inferencia asistida por modelos. Para motivar las condiciones de optimalidad se utilizó un modelo de super-población semi-paramétrica general dado por (10.9.1). Estos estimadores de calibración para el total poblacional de la característica de interés tiene las siguientes características:

- 1. Una distancia Ji-cuadrado cuyos factores de peso satisfacen $q_k>0$ y además sean tales que $N^{-1}\sum_{k=1}^N q_k^2=O(1)$.
- 2. Una sola restricción, dada por una reducción de dimensión $u_k = \mu(\mathbf{x}_k, \boldsymbol{\theta})$, donde la forma funcional $\mu(\cdot, \cdot)$ puede ser arbitraria.

Algunos de los resultados más importantes de este método pueden ser resumidos de la siguiente manera (Wu 2003):

- Sea $\hat{\boldsymbol{\theta}} = (\sum_{k \in S} d_k q_k \mathbf{x}_k \mathbf{x}_k')^{-1} \sum_{k \in S} d_k q_k \mathbf{x}_k y_k$. Si se usa $u_k = \mathbf{x}_k' \boldsymbol{\theta}$ como variable de calibración, el estimador de calibración resultante es idéntico al estimador convencional de calibración dado por \hat{t}_{ycal} . Por tanto la clase de estimadores resultantes de este método es muy general pues incluye al estimador original como un caso particular.
- Para cualquier estimador consistente de θ tal que $\hat{\theta} = \theta + o_p(1)$, si se reemplaza θ por $\hat{\theta}$, en las ecuaciones de calibración, el estimador de calibración resultante no cambia asintóticamente.
- Los estimadores óptimos de calibración obtenidos usando $u_k = E_{\xi}(y_k \mid \mathbf{x}_k) = \mu(\mathbf{x}_i, \boldsymbol{\theta})$ son óptimos bajo el criterio del mínima varianza esperada.
- Los estimadores óptimos de calibración son óptimos bajo el modelo de super-población ξ , pero aun si el modelo considerado es incorrectamente especificado, estos estimadores permanecen consistentes.

Dado que no existe un estimador insesgado con varianza mínima uniforme, la única escogencia de $u(\cdot)$ que hace a \hat{t}_{yopt} un estimador con las anteriores características es $u(\mathbf{x}_k) = y_i$, y por supuesto esto es prácticamente inútil. Por tanto se debe hacer $u(\mathbf{x}_k) \approx y_k$.

El lector debe notar que la estructura del modelo ξ dado por (10.9.1) es muy general e incluye dos importantes casos: el primero el modelo de regresión lineal o no lineal dado por

$$y_k = \mu(\mathbf{x}_k, \boldsymbol{\theta}) + \nu_k \varepsilon_k \tag{10.9.2}$$

donde los ε_k son variables aleatorias independientes e idénticamente distribuidas con $E_{\xi}(\varepsilon_k) = 0$, $Var_{\xi}(\varepsilon_k) = \sigma^2$ y $\nu_k = \nu(\mathbf{x}_k)$ es una función conocida y estrictamente positiva.

El segundo caso se refiere al modelo lineal generalizado dado por

$$g(\mu_i) = \mathbf{x}_k' \boldsymbol{\theta}, \quad Var_{\xi}(y_k | \mathbf{x}_k) = \nu(\mu_k)$$
 (10.9.3)

donde $\mu_k = E_{\xi}(y_k|\mathbf{x}_k), g(\cdot)$ es una función de vínculo y $\nu(\cdot)$ es una función de varianza.

A continuación se describe el comportamiento de los estimadores óptimos de calibración bajo un modelo lineal y un modelo log-lineal.

Figura 10.5: Comportamiento lineal de la característica de interés explicada por la información auxiliar.

Si la información auxiliar explica a la característica de interés de forma lineal, como se observa en la figura 10.5, entonces tendría sentido el argumento que se expresa en Deville & Särndal (1992), en donde motivados por el estimador de razón, se argumenta que «...las ponderaciones [de calibración] que se ajustan bien a las variables auxiliares [reproducen exactamente su total poblacional], también se ajustan bien a la variable de estudio...»

En el caso multivariado, la función que hace óptimo al estimador de calibración está dada por

$$u(\mathbf{x}_k, \boldsymbol{\theta}) = \mathbf{x}_k' \boldsymbol{\theta} = \theta_0 + \theta_1 x_{k1} + \dots + \theta_P x_{kP}$$
(10.9.4)

en donde $\theta = (\theta_0, \theta_1, ..., \theta_P)$ es estimado a través de mínimos cuadrados ponderados, como en una regresión múltiple. Por lo tanto la característica de interés sigue el siguiente modelo de super-población

$$y_k = \mathbf{x}_k' \boldsymbol{\theta} + \nu_k \varepsilon_k \tag{10.9.5}$$

donde los ε_k son independientes e idénticamente distribuidos con $E_{\xi}(\varepsilon_k) = 0$ y $Var_{\xi}(\varepsilon_k) = \sigma^2$, y $\nu_k = \nu(\mathbf{x}_k) = 1$. Por tanto al estimar $\boldsymbol{\theta}$ usando la técnica de mínimos cuadrados se tiene que

$$\hat{\boldsymbol{\theta}} = \left(\sum_{k \in S} q_k d_k \mathbf{x}_k \mathbf{x}_k'\right)^{-1} \sum_{k \in S} q_k d_k \mathbf{x}_k y_k$$
$$= (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{V}^{-1} \mathbf{y}$$

donde $\mathbf{V} = diag(d_1q_1, \dots, d_nq_n) = \frac{1}{\sigma^2}diag(d_1, \dots, d_n).$

Resultado 10.9.2. De esta forma, el estimador de calibración del total poblacional resultante del anterior modelo de super-población está dado por

$$\hat{t}_{y,opt} = t_{y\pi} + (\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x}\pi})'\hat{\boldsymbol{\theta}}$$
(10.9.6)

Prueba.

$$\begin{split} \hat{t}_{y,opt} &= \hat{t}_{y\pi} + (t_{\hat{\mu}} - \hat{t}_{\hat{\mu}\pi}) \hat{B}_y \\ &= \hat{t}_{y\pi} + (\sum_{k \in U} \hat{\mu_k} - \sum_{k \in U} d_k \hat{\mu}_k) \hat{B}_y \\ &= \hat{t}_{y\pi} + (\sum_{k \in U} \mathbf{x}_k' \hat{\boldsymbol{\theta}} - \sum_{k \in U} d_k \mathbf{x}_k' \hat{\boldsymbol{\theta}}) \hat{B}_y \\ &= \hat{t}_{y\pi} + (\sum_{k \in U} \mathbf{x}_k' - \sum_{k \in U} d_k \mathbf{x}_k') \hat{\boldsymbol{\theta}} \hat{B}_y \\ &= \hat{t}_{y\pi} + (\sum_{k \in U} \mathbf{x}_k - \sum_{k \in U} d_k \mathbf{x}_k)' \hat{\boldsymbol{\theta}} \hat{B}_y \\ &= \hat{t}_{y\pi} + (\sum_{k \in U} \mathbf{x}_k - \sum_{k \in U} d_k \mathbf{x}_k)' \hat{\boldsymbol{\theta}} \hat{B}_y \end{split}$$

puesto que $\hat{B}_y = 1$. Lo anterior se tiene de la definición de \hat{B}_y teniendo en cuenta que

$$\hat{\mu}_k = \mathbf{x}_k' \boldsymbol{\theta} = x_k' (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{V}^{-1} \mathbf{y}$$

Por tanto,

$$\begin{split} \sum_{k \in S} d_k q_k \hat{\mu}_k^2 &= \mathbf{y}' \mathbf{V}^{-1} \mathbf{X} (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{V}^{-1} \mathbf{X} (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{V}^{-1} \mathbf{y} \\ &= \mathbf{y}' \mathbf{V}^{-1} \mathbf{X} (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{V}^{-1} \mathbf{y} \\ &= \sum_{k \in S} d_k q_k \hat{\mu}_k y_k \end{split}$$

Nótese que el termino \hat{B}_Y es igual a uno y por tanto desaparece, lo que hace que el estimador óptimo de calibración sea idéntico al estimador de calibración clásico dado por (10.4.5).

$u(\mathbf{x})$ Vía modelo lineal generalizado

¿Qué sucede si la información auxiliar no describe a la característica de interés con un comportamiento lineal?, como se observa en la figura 10.6

Es ésta la parte más importante del desarrollo práctico en los estimadores óptimos de calibración. Al respecto, el usuario puede pensar por un instante en los siguientes cuestionamientos:

- Si una característica de información auxiliar explica muy bien a la característica de interés, entonces calibrar con respecto a esta información auxiliar sería muy conveniente. Sin embargo, esta relación no siempre será lineal.
- Si queremos estimaciones perfectas deberíamos utilizar a la misma característica de interés para calibrar, pero como esto es un absurdo se debe utilizar $u(\mathbf{x})$ semejante a y.

Figura 10.6: Comportamiento no lineal de la característica de interés explicada por la información auxiliar.

Si se conoce que la información auxiliar disponible no describe a la característica de interés de forma lineal, se ponen en tela de juicio la aplicación de los estimadores clásicos de calibración motivadas por Deville (1999). Por tanto, si los valores de la característica de interés son considerados como realizaciones de un modelo de super-población ξ como en (10.9.1) que puede ser descrito a través de su primer y segundo momento, entonces claramente el modelo lineal generalizado (MLG), descrito detalladamente en McCullagh & Nelder (1989) y dado por (10.9.3). La mayor particularidad del MLG es que la varianza de la característica de interés depende de la media μ_k . Además, en el MLG se considera que la característica de interés se relaciona con las variables de información auxiliar mediante la media μ_k y una función de vínculo $g(\cdot)$ tal que

$$g(\mu_k) = \theta_0 + \theta_1 x_{k1} + \dots + \theta_P x_{kP}$$

Nótese que el modelo clásico de regresión lineal es un caso particular del MLG en donde $g(\mu_k) = \mu_k$ y $V(\mu_k) = 1$. Por supuesto, existen otras formas de la función de varianza y, vínculos no lineales también son permitidos. Por ejemplo, entre las funciones de vínculo y de varianza más populares están el vínculo logarítmico dado por $g(\mu_k) = \log(\mu_k)$ y las funciones de varianza de Poisson dada por $V(\mu_k) = \mu_k$ y la varianza Gamma dada por $V(\mu_k) = \mu_k^2$.

El MLG es un método semi-paramétrico y requiere especificaciones solamente en el primer y segundo momento. La función de vínculo μ_k está relacionada a las variables independientes y la función de varianza describe cómo la variación en la característica de interés está relacionada con la media.

Los coeficientes $(\theta_0, \theta_1, ..., \theta_k)$ pueden ser estimados, como en nuestro caso, usando el método de máxima

cuasi-verosimilitud. Para el caso más general, el estimador del vector de parámetros poblacionales $\hat{\boldsymbol{\theta}} = (\hat{\theta_0}, \hat{\theta_1}, ..., \hat{\theta_P})'$, es la solución de la siguiente ecuación

$$\mathbf{D}'\mathbf{V}^{-1}(\mathbf{y} - \boldsymbol{\mu}) = 0 \tag{10.9.7}$$

La anterior, no es más que una generalización de las ecuaciones normales en un modelo de regresión múltiple. Donde $\mathbf{y} = (y_1, ..., y_n)'$ y $\boldsymbol{\mu} = (\mu_1, ..., \mu_n)'$, $\mathbf{V} = diag(V(\mu_1), ..., V(\mu_n))$ son las estructuras de media y varianza del modelo respectivamente, y $\mathbf{D} = \partial \mu/\partial \theta$. Los parámetros θ_p , p = 1, ..., P, se encuentran implícitos en (10.9.7). En el caso más simple, el modelo lineal clásico, se tiene que $\mu_k = \theta_0 + \theta_1 x_{k1} + ... + \theta_P x_{kP}$, $\boldsymbol{\mu} = \mathbf{X}' \boldsymbol{\theta}$ y $\mathbf{D} = \mathbf{X}'$. Luego, (10.9.7) queda convertida en $\mathbf{X}' \mathbf{V}^{-1} \mathbf{X} \boldsymbol{\theta} = \mathbf{X}' \mathbf{V}^{-1} \mathbf{y}$, las cuales corresponden a las ecuaciones normales de la regresión múltiple.

Por otro lado, en cualquier otro modelo, en donde la función de vínculo sea distinta de la identidad, la mayor dificultad para encontrar el estimador máximo cuasi-verosímil de θ es que para resolver (10.9.7) se necesita utilizar procedimientos iterativos.

Resultado 10.9.3. Bajo un modelo de super-población MLG, el estimador óptimo de calibración está dado por

$$\hat{t}_{y,opt} = \hat{t}_{y\pi} + (t_{\hat{\mu}} - \hat{t}_{\hat{\mu}\pi})\hat{B}_y \tag{10.9.8}$$

con

$$\hat{B}_y = \frac{\sum_{k \in S} d_k q_k \hat{\mu}_k y_k}{\sum_{k \in S} d_k q_k \hat{\mu}_k^2}$$

donde $\hat{\mu}_k = g^{-1}(\mathbf{x}_k'\boldsymbol{\theta})$ y $g^{-1}(\cdot)$ es la inversa de la función de vínculo.

El software estadístico R tiene implementada la función glm, la cual permite estimar los parámetros del MLG. Suponga que se desea encontrar el estimador de máxima cuasi-verosimilitud de $\boldsymbol{\theta} = (\theta_0, \theta_1, ..., \theta_P)'$ para el modelo

$$\mu_k = \exp(\theta_0 + \theta_1 x_{k1}), \quad Var_{\xi}(y_k | \mathbf{x}_k) = \nu(\mu_k)^2 = \mu_k^2$$
 (10.9.9)

Por supuesto, desde (10.9.3), se tiene que la función de vínculo es el logaritmo. Las siguientes líneas de código muestran cómo obtener $\hat{\theta}$

```
theta0 <- lm(Y ~ X)
theta1 <- glm(Y ~ X, start = theta0, quasi(var = "mu^2", link = "log"))</pre>
```

Nótese que theta0 es el estimador de mínimos cuadrados y sirve como estimador inicial para el proceso iterativo. Análogamente, es posible crear un código propio para computar las estimaciones del vector de parámetros basado en McCullagh & Nelder (1989, p. 327).

```
tol <- 0.000000001
theta0 <- solve(t(X) %*% X, t(X) %*% (Y)) ## valores iniciales
dif <- 1
while(dif >= tol) { ## condición de iteración
    mu <- exp(as.vector(X %*% theta0))
    V <- diag(1 / mu)
    theta1 <- theta0 + solve(t(X) %*% X, t(X) %*% V %*% (Y - mu))
    dif <- max(abs(theta1 - theta0))
    theta0 <- theta1
}</pre>
```

Por supuesto, el anterior código debe coincidir con la salida que arroje el procedimiento glm de R.

10.10 Ejercicios

10.1 (Tille & Ardilly 2006, Ejercicio 7.1) Usando un procedimiento de muestreo, se obtuvieron las siguientes estimaciones para los tamaños absolutos \hat{N}_{ij} de dos sub-poblaciones de interés:

80	170	150	400
90	80	210	380
10	80	130	220
180	330	490	1000

Por otro lado, mediante fuentes oficiales, los tamaños marginales sí se conocen con certeza. Los verdaderos totales para las filas son (430, 360, 210) y los totales verdaderos para las columnas son (150, 300, 550).

- (a) Ajuste la tabla sobre los verdaderos totales marginales de la población usando el algoritmo IPFP.
- (b) Ajuste la tabla sobre los verdaderos totales marginales de la población usando el enfoque de calibración con el método de *raking*.
- (c) Explique las diferencias o similitudes entre las anteriores estimaciones.
- 10.2 (Tille & Ardilly 2006, Ejercicio 7.4) Suponga que se obtuvo la siguiente tabla y que los verdaderos totales para las filas son (84, 37, 444, 464) y los totales verdaderos para las columnas son (49, 859, 11, 10).

78	6	0	0	84
32	5	0	0	37
0	0	427	17	444
0	0	432	32	464
110	11	859	49	1029

Como se puede notar, los totales estimados por fila coinciden plenamente con los verdaderos totales. Explique por qué está tabla no se puede ajustar al utilizar el algoritmo IPFP.

- 10.3 Considere una region agrícola consistente en N=2010 fincas, para la cual se seleccionó una muestra aleatoria simple de fincas de tamaño n=100. Además, se sabe que hay 1580 fincas con menos de 160 hectáreas (post-estrato 1) y 430 fincas con más de 160 hectáreas (post-estrato 2). La característica de interés medida en cada finca incluida en la muestra es el área de cereal cultivada en cada finca. Si se tuvo una muestra realizada en donde $n_1=70$, $n_2=30$, $\bar{y}_1=19.4$ y $\bar{y}_2=51.63$, estime usando la técnica de calibración, la media poblacional del área de cereal cultivada en la región agrícola y reporte el coeficiente de variación estimado.
- 10.4 Considere un diseño de muestreo de Poisson con probabilidades de inclusión desiguales π_k , $k \in U$. Suponga que se tiene interés en la estimación del total poblacional t_y . Construya un estimador de calibración usando una sola característica de información auxiliar $x_k = 1$ y $q_k = 1$, para todo $k \in U$, usando la siguiente pseudo-distancia (parametrizada por α):

$$G(x) = \begin{cases} \frac{1}{\alpha(\alpha - 1)} (x^{\alpha} + (\alpha - 1) - \alpha x), & \text{si } \alpha \in \mathbb{R} - \{0, 1\} \\ x \ln(x) + 1 - x, & \text{si } \alpha = 1 \\ \ln(1/x) - 1 + x, & \text{si } \alpha = 0 \end{cases}$$

(a) Escriba las ecuaciones de calibración.

10.10. Ejercicios 329

- (b) Obtenga la función g(x) para los tres casos de α .
- (c) Demuestre que la función F(u) es fija e igual a N/\hat{N} .
- (d) Deduzca los pesos de calibración.
- (e) Obtenga el estimador de calibración resultante. ¿Qué forma tiene el estimador resultante?.
- 10.5 Suponga que la información del ejercicio 8.7. es el resultado de un plan de muestreo Poisson con probabilidad de inclusión $\pi_k = n(x_k/t_x)$. Utilizando los resultados del ejercicio anterior y suponiendo que $x_k = 1$ y $q_k = 1$, para todo $k \in U$, obtenga una estimación de calibración para el total de habitantes en el municipio, el numero de automóviles en el municipio y el número de efectivos militares en el municipio. Obtenga los correspondientes coeficientes de variación estimados.
- 10.6 Sustente o refute las siguientes afirmaciones
 - (a) Los estimadores de calibración inducidos por la distancia Ji-cuadrado coinciden plenamente con los estimadores de regresión general.
 - (b) La cantidad q_k es constante para todos los individuos bajo la distancia de entropía.
 - (c) Bajo la distancia Ji-cuadrado inversa, al minimizar la distancia con respecto a las restricciones de calibración, siempre se llega a que los pesos w_k son iguales al inverso de la probabilidad de inclusión del k-ésimo elemento.

Bibliografía

- Apostol, T. M. (1963), Mathematical Analysis, Adison Wesley.
- Bautista, J. (1998), Diseños de muestreo estadístico, Universidad Nacional de Colombia.
- Bebbington, A. (1975), 'A simple method of drawing a sample without replacement', *Applied Statistics* **24**, 136.
- Binder, D. (1983), 'On the variances of asymptotically normal estimators from complex surveys', *International Statistical Review* **51**, 279–292.
- Breidt, F. & Opsomer, J. D. (2000), 'Local polynomial regression estimators in survey sampling', *The Annals of Statistics* **28**, 1026–1053.
- Brewer, K. (1963), 'A model of systematic sampling with unequal probabilities', Australia Journal of Statistics 5, 93–105.
- Brewer, K. (1975), 'A simple procedure for π pswor', Australian Journal of Statistics 17, 166–172.
- Brewer, K. (2002), Combined sampling inference, weighting Basu's elephants, London: Arnorld.
- Brewer, K. & Hanif, M. (1983), Sampling with unequal probabilities, New York: Springer-Verlag.
- Cassel, C., Särndal, C. & Wretman, J. (1976a), Foundations of Inference in Survey Sampling, Wiley.
- Cassel, C., Särndal, C. & Wretman, J. (1976b), 'Some results on generalized difference estimation and generalized regression estimation for finite populations', *Biometrika* 63, 615–620.
- Chambers, R. L. & Skinner, C. J., eds (2003), Analysis of Survey Data, Wiley.
- Cochran, W. (1977), Sampling Techniques, Wiley.
- Cornfield, J. (1951), 'The determination of sampling size', American journal of public health 41, 654–661
- Dalgaard, P. (2008), Introductory Statistics with R, 2 edn, Springer.
- Deming, W. & Stephan, F. (1940), 'On a least squares adjustment of a sampled frequency table when the expected marginal totals are known', *Annals of Mathematical Statistics* **11**, 427–444.
- Deville, J. (1993), 'Estimation de la variance pour les enquetes en deux phases', Note Interne Manuscrite. France: INSEE.
- Deville, J.-C. (1999), 'Variance estimation for complex statistics and estimators: linearizaion and residual techniques', *Survey Methodology* **25**, 193–204.
- Deville, J.-C., Särndal, C.-E. & Sautory, O. (1993), 'General raking procedures in survey sampling', Journal of the American Statistical Association 88, 1013–1020.

332 BIBLIOGRAFÍA

Deville, J.-C. & Tillé, Y. (1998), 'Unequal probability sampling without replacement through a splitting method', *Biometrika* **85**, 89–101.

- Deville, J.-C. & Tillé, Y. (2005), 'Variance approximation under balanced sampling', *Journal of Statistical Planning and Inference* **128**, 411–425.
- Deville, J. & Särndal, C. (1992), 'Calibration estimators in survey sampling', *Journal of the American Statistical Association* 87, 376–382.
- Draper, D. (1998), 'Rank-based robust analysis of linear models i. exposition and review', *Statistical Science* 3, 239–257.
- Durbin, J. (1967), 'Design of multi-stage surveys for the estimation of sampling errors', Applied statistics 16, 152–164.
- Estevao, V. M., Särndal, C.-E. & Sautory, O. (2000), 'A functional form approach to calibration', Journal of Official Statistics 16, 379–399.
- Fan, C., Muller, M. & Rezucha, I. (1962), 'Development of sampling plans by using sequential (item by item) selection techniques and digital computer', *Journal of the American Statistical Association* 57, 387–402.
- Frankel, M. & King, B. (1996), 'A conversation with leslie kish', Statistical Science 11, 65–87.
- Groves, R., Fowler, F., Couper, M., Lepkowski, J., Singer, E. & R., T. (2004), Survey Methodology, Wiley.
- Gutiérrez, H. A. (2009), 'Model assisted survey regression estimators: A rank-based approach', *Proceedings of the 57th Session of the International Statistical Institute* pp. 18–31.
- Gutiérrez, H. A. & Breidt, F. J. (2009), 'Estimation of the population total using the generalized difference estimator and wilcoxon ranks', Revista Colombiana de Estadística 32, 123–143.
- Hájek, J. (1960), 'Limiting distributions in simple random sampling from a finite poulation', *Publication of Mathematical Institute of the Hungarian Academy of Science* 5, 361–374.
- Hájek, J. (1971), 'Comment on an essay on the logical foundations of survey sampling, part one', *The Foundations of Survey Sampling* pp. Godambe, V.P. and Sprott, D.A. eds., 236, Holt, Rinehart, and Winston.
- Hájek, J. (1981), Sampling from a finite population, New York: Marcel Dekker.
- Hansen, H. M. & Hurwitz, W. N. (1943), 'On the theory of sampling from finite populations', *Annals of Mathemathical Statistics* 14, 333–362.
- Hansen, M., Hurwitz, W. & Madow, W. G. (1953), Sample survey methods and theory. Vols. I and II, John Wiley and Sons.
- Hartley (1959), 'Analytic studies of survey data', *Instituto di Statistica* Volume in honor of Corrado Gini.
- Horvitz, D. & Thompson, D. (1952), 'A generalization of sampling without replacement from a finite universe', *Journal of the American Statistical Association* 47, 663–685.
- Isaki, C. T. & Fuller, W. A. (1982), 'Survey design under the regression superpoluation model', *Journal* of the American Statistical Association 77, 89–96.
- Kish, L. (1965), Survey Sampling, Wiley.

BIBLIOGRAFÍA 333

Kott, P. S., Sweensson, B., Särndal, C. E. & Wretman, J. (2005), 'An interview with the authors of the book: Model-assisted survey sampling', *Journal of Official Statistics* **21**, 171–182.

- Lahiri, D. (1951), 'A method for sample selection providing unbiased ration estimates', Bulletin of the International Statistical Institute. 33,2, 133–140.
- Lehtonen, R. & Pahkinen, E. (2003), Practial methods for design and analysis of complex surveys, 2 edn, New York: Wiley.
- Lohr, S. (2000), Sampling: Design and Analysis, Thompson.
- Madow, W. (1948), 'On the limiting distributions based on samples from finite universes', *Annals of Mathematical Statistics* **19**, 535–545.
- Mahalanobis, P. (1946), 'Recent experiment in statistical sampling in the indian statistical institute', Journal of the Royal Statistical Society 109, 325–370.
- Matei, A. & Tille, Y. (2005), 'Evaluation of variance approximations and estimators in maximum entropy sampling with unequal probability and fixed sample size', *Journal of Official Statistics*. 4, 543–570.
- McCullagh, P. & Nelder, J. A. (1989), Generalized Linear Models, Chapman and Hall.
- Mood, A. M., Graybill, F. A. & Boes, D. C. (1974), Introduction to the Theory of Statistics, 3 edn, McGraw Hill.
- Narain, R. (1951), 'On sampling without replacement with varying probabilities', *Journal of Indian Society of Agricultural Statistics* **3**, 169–175.
- Ospina, D. (2001), Introducción al muestreo., Universidad Nacional de Colombia.
- Raj, D. (1954), 'On sampling with probabilities proportional to size', Ganita 5, 175–182.
- Raj, D. (1968), Sampling theory, McGraw Hill.
- Ravishanker, N. & Dey, D. (2002), A First Course in Linear Model Theory, Chapman and Hall.
- Rosén, B. (1972), 'Asymptotic theory for succesive sampling with varying probabilities without replacement, i and ii', *Annals of Mathematical Statistics* **43**, 373–397, 748–776.
- Sampath, S. (2001), Sampling Theory and Methods, Narosa Publishing House.
- Särndal, C.-E. (2007), 'The calibration approach in survey theory and practice', Survey Methodology 33, 99–119.
- Särndal, C., Swensson, B. & Wretman, J. (1992), Model Assisted Survey Sampling, Springer, New York.
- Sen, A. (1953), 'On the estimate of the variance in sampling with varying probabilities', *Journal of the Indian Society of Agricultural Statistics* 5, 119–127.
- Srinath, K. P. & Hidiroglou, M. A. (1980), 'Estimation of variance in multi-stage sampling', *Metrika* 27, 121–125.
- Sunter, A. (1977), 'List sequential sampling with equal or unequal probabilities without replacement', *Applied Statistics* **26**, 261–268.
- Sunter, A. (1986), 'Solutions to the problem of unequal probabilities sampling without replacement', *International Statitical Review* **54**, 33–50.
- Tillé, Y. (2006), Sampling Algorithms, Springer.

334 BIBLIOGRAFÍA

- Tille, Y. & Ardilly, P. (2006), Sampling Methods: Exercises and Solutions, Springer.
- Valliant, R., Dorfman, A. H. & Royall, R. M. (2000), Finite Population Sampling and Inference, Wiley.
- Woodruff, R. (1971), 'A simple method for approximating the variance of a complicated estimate', Journal of the American Statistical Association 66, 411–414.
- Wu, C. (2003), 'Optimal calibration estimators in survey sampling', Biometrika 90, 937–951.
- Wu, C. & Sitter, R. R. (2001), 'A model-calibration approach to using complete auxiliary information from survey data', *Journal of the American Statistical Association* **96**, 185–193.
- Yates, F. & Grundy, P. (1953), 'Selecting withou replacement from within estrata with probability proportional to size', *Journal of the Royal Statitical Society* **B15**, 235–261.

Índice de figuras

1.1	Boxplot de las características de interés en cada nivel industrial
1.2	Boxplot de las características de interés en cada nivel industrial
1.3	Histograma de las características de interés
1.4	Relación entre las características de interés
3.1	Distribución de la característica Income y su posible modelamiento bajo la distribución gamma
3.2	Distribución de la característica Income y su posible modelamiento bajo la distribución gamma (izquierda) y norma (derecha)
3.3	Distribución empírica del estimador de Hansen-Hurwirtz para el diseño de muestreo aleatorio simple con reemplazo
3.4	Casos de ordenamiento en muestreo sistemático
3.5	Distribución de la característica Income con respecto a los grupos creados en el muestreo sistemático
3.6	Casos seleccionados en muestreo sistemático
4.1	Correlación de las probabilidades de inclusión con las características de interés 120
4.2	Comportamiento del cociente de la información auxiliar con las características de interés. 130
4.3	Líneas de regresión
5.1	Boxplot de las características de interés en cada nivel industrial
5.2	Relación entre Income y Taxes
6.1	Boxplot de la característica de interés Employees para cada una de las zonas
6.2	Boxplot de las características de interés en cada nivel industrial
8.1	Distribución de muestreo de la razón estimada
8.2	Dispersión de la información auxiliar continua: Income
8.3	Modelo de media común
8.4	Modelo de razón
8.5	Modelo de regresión sin intercepto
8.6	modelo de regresión con intercepto

336 ÍNDICE DE FIGURAS

8.7	Modelo de media post-estratificada
8.8	Modelo de razón post-estratificada
9.1	Relación en un modelo de media común
10.1	Funciones $G(x)$ y $F(u)$ utilizando la distancia Ji cuadrado
10.2	Funciones $G(x)$ y $F(u)$ utilizando la distancia de Entropía
10.3	Funciones $G(x)$ y $F(u)$ utilizando el método logístico con $L=0.4$ y $U=2.5$ la distancia de Entropía
10.4	Funciones $G(x)$ y $F(u)$ utilizando el método truncado lineal con $L=0.4$ y $U=2.5la$ distancia de Entropía
10.5	Comportamiento lineal de la característica de interés explicada por la información auxiliar. 32
10.6	Comportamiento no lineal de la característica de interés explicada por la información auxiliar

Índice de Tablas

1.1	Parámetros de la población
1.2	Parámetros de la población discriminados
1.3	Parámetros de la población discriminados
1.4	Parámetros de la población discriminados a dos vías
2.1	Estimación para todas las posibles muestras del ejemplo
2.2	Todas las posibles muestras con reemplazo para el ejercicio
2.3	Estimaciones de Hansen-Hurwitz para todas las posibles muestras del ejemplo
3.1	Estimaciones para el diseño de muestreo aleatorio simpole sin reemplazo
3.2	Estimaciones para el diseño de muestreo aleatorio simple en el dominio que no envía SPAM
3.3	Estimaciones para el diseño de muestreo aleatorio simple en el dominio que sí envía SPAM
3.4	Estimaciones para el diseño de muestreo Bernoulli
3.5	Estimaciones para el diseño de muestreo aleatorio simple con reemplazo 93
3.6	Posible configuración del muestreo sistemático
3.7	Configuración de totales por grupo
3.8	Tabla de ANOVA inducida por el muestreo sistemático
3.9	Estimaciones para el diseño de muestreo sistemático
4.1	Estimaciones para el diseño de muestreo Poisson
4.2	Muestreo PPT: estimación de los totales de las características de interés
4.3	Diseño de mínimo soporte para la población U
4.4	Muestreo piPT: estimación de los totales de las características de interés
5.1	Muestreo aleatorio estratificado: estimación del tamaño de los estratos y de la población. 174
5.2	Muestreo aleatorio estratificado: estimación del total de la característica Income para cada uno de los estratos y para la población
5.3	Muestreo aleatorio estratificado: estimación del total de la característica Employees para cada uno de los estratos y para la población

338 ÍNDICE DE TABLAS

5.4	Muestreo aleatorio estratificado: estimación del total de la característica Taxes para cada uno de los estratos y para la población
5.5	Muestreo aleatorio estratificado: estimación de los tamaños para cada uno de los estratos y para la toda población
5.6	Muestreo aleatorio estratificado: estimación de los tamaños del dominio SPAM.no para cada uno de los estratos y para la toda población
5.7	Muestreo aleatorio estratificado: estimación de los tamaños del dominio SPAM.si para cada uno de los estratos y para la toda población
5.8	Muestreo aleatorio estratificado: estimación del total de la característica Income para el dominio SPAM.no en cada uno de los estratos y para toda la población
5.9	Muestreo aleatorio estratificado: estimación del total de la característica Employees para el dominio SPAM.no en cada uno de los estratos y para toda la población
5.10	Muestreo aleatorio estratificado: estimación del total de la característica Taxes para el dominio SPAM.no en cada uno de los estratos y para toda la población
5.11	Muestreo aleatorio estratificado: estimación del total de la característica Income para el dominio SPAM.si en cada uno de los estratos y para toda la población
5.12	Muestreo aleatorio estratificado: estimación del total de la característica Employees para el dominio SPAM. si en cada uno de los estratos y para toda la población
5.13	Muestreo aleatorio estratificado: estimación del total de la característica Taxes para el dominio SPAM.si en cada uno de los estratos y para toda la población
5.14	Estimación del tamaño de muestra
5.15	Muestreo estratificado PPT: estimación del tamaño de los estratos y de la población 182
5.16	Muestreo estratificado PPT: estimación del total de la característica Income para cada uno de los estratos y para la población
5.17	Muestreo estratificado PPT: estimación del total de la característica Employees para cada uno de los estratos y para la población
5.18	Muestreo estratificado PPT: estimación del total de la característica Taxes para cada uno de los estratos y para la población
5.19	Muestreo estratificado PPT: estimación de totales
6.1	Estimaciones para todas las posibles muestras del ejemplo
6.2	Tabla de ANOVA por conglomerados
6.3	Estimaciones para el diseño de muestreo aleatorio simple de conglomerados 204
6.4	Tabla de las cinco manzanas seleccionadas: ejercicio 6.2
7.1	Estimaciones para el diseño de muestreo aleatorio simple en dos etapas
7.2	Ingreso de cada persona para el ejercicio 7.3
8.1	Muestreo aleatorio simple: estimación de la razón de interés
9.1	Estimaciones del estimador de regresión para el diseño de muestreo aleatorio simple sin reemplazo
10.1	Distribución de la población en la tabla de contingencia

,	
INDICE DE TABLAS	339

10.2	Distribución del tamaño de la población
10.3	Distribución de las estimaciones
10.4	Tabla de contingencia para SPAM
10.5	Estimación de Horvitz-Thompson para la tabla de contingencia de SPAM 301
10.6	Distribución poblacional (no conocida) para la tabla de contingencia de SPAM 301
10.7	Estimación IPFP de calibración para la tabla de contingencia de SPAM
10.8	Pseudo-distancias en calibración
10.9	Partición de la población

Índice alfabético

Algoritmo acumulativo total, 123 Diseño de muestreo estratificado, 154, 155 Algoritmo de escisión, 141 Diseño de muestreo estratificado PPT, 178 Algoritmo de Lahiri, 123 Diseño de muestreo MAS-MAS, 218 Algoritmo de selección de πPT , 137 Diseño de muestreo PPT, 121 Algoritmo de selección de Brewer, 138, 139 Diseño de muestreo sistemático, 93, 95 Algoritmo de selección enumerativo, 26 Diseño de muestreo sistemático con q réplicas, 102 Algoritmo de selección y rechazo, 63 Diseño en r etapas, 229 Algoritmo de Sunter, 139 Diseños auto-ponderados, 229 Algoritmo IPFP, 297 Distancia de entropía, 308 Algoritmo secuencial, 88 Distancia Ji cuadrado, 306 Algoritmos de selección, 25, 62, 80, 88, 95, 115, Distancias, 304 123, 157, 179, 196, 219 Dominio, 67, 70 Aproximación de Taylor, 237, 238 Asignación óptima, 165 Ecuación de calibración, 302, 308, 316, 321 Asignación de Neyman, 163 Efecto de diseño, 83, 93, 169 Asignación proporcional, 162, 163 Eficiencia de la estrategia, 127, 198 Ausencia de respuesta, 320 Elemento, 5 Elemento repetido, 21 Característica de interés, 29 Encuesta, 4 Coeficiente de correlación intra-clase, 101 Esperanza de una muestra, 26 Conglomerado, 5, 103 Estadística, 30 Consistencia en el sentido Cochran, 243 Estimación de coeficientes de regresión, 254, 255 Covarianza, 31 Estimación de la media poblacional, 161, 244 Cuantil, 39 Estimación de la mediana, 250 Estimación de la razón poblacional, 240 Descomposición de la varianza, 99 Estimación de la varianza, 38, 53, 144, 222 Diseño de muestreo, 24, 25 Estimación en dominios, 69, 71, 72, 166-168, 246 Diseño de muestreo πPT , 134, 145 Estimación en la población finita, 256 Diseño de muestreo aleatorio con reemplazo, 85 Estimador, 30, 35 Diseño de muestreo aleatorio de conglomerados, Estimador óptimo de calibración, 321 Estimador de calibración, 302, 305, 314, 320 Diseño de muestreo aleatorio estratificado, 157 Estimador de Hansen-Hurwitz, 43 Diseño de muestreo aleatorio simple, 62, 86, 293 Estimador de Horvitz-Thompson, 36 Diseño de muestreo aleatorio sin reemplazo, 62 Estimador de la media poblacional, 67 Diseño de muestreo Bernoulli, 79, 80, 293 Estimador de media común, 289 Diseño de muestreo con probabilidad proporcio-Estimador de Narain-Horvitz-Thompson, 36 nal. 122 Estimador de post-estratificación, 314 Diseño de muestreo con reemplazo, 44, 195 Diseño de muestreo de conglomerados, 187 Estimador del total poblacional, 36, 49 Estimador general de regresión, 280, 281, 285 Diseño de muestreo de Poisson, 113, 114, 116 Estimador lineal, 295, 302 Diseño de muestreo en dos etapas, 208 Diseño de muestreo en dos etapas estratificado, Estrategia de muestreo, 35, 98 Estrategia de muestreo representativa, 278 228

ÍNDICE ALFABÉTICO 341

Función de distribución poblacional, 251 Función indicatriz del dominio, 70

Información auxiliar, 6, 278 Intervalo de confianza, 39, 162

Método de raking, 308, 315

Método lineal, 306

Método lineal truncado, 313

Método logístico, 311

Método truncado lineal, 313

Marco de muestreo, 5

Marco y Lucy, 9, 73, 84, 91, 104, 118, 128, 146, 170, 180, 200, 224, 247, 252, 269, 294, 298, 318

Modelo lineal generalizado, 325

Muestra aleatoria, 19, 20

Muestra con reemplazo, 20

Muestra probabilística, 22

Muestra sin reemplazo, 20

Muestras representativas, 57

Muestreo aleatorio en dos etapas, 244

Muestreo aleatorio simple, 243

Muestreo con reemplazo, 43

Muestreo estratificado, 152

Muestreo por cuotas, 320

Parámetro de interés, 29

Parámetros diferentes al total, 40, 193, 235

Peso, 279, 282, 288

Peso de calibración, 282-284, 303

Población, 19

Población finita, 19

Población objetivo, 6

Probabilidad de inclusión, 26, 79, 189

Probabilidad de inclusión de segundo orden, 27

Probabilidad de selección, 4, 25

Probabilidad proporcional, 244

Proceso iterativo de ajuste proporcional, 296

Pseudo-distancia, 303, 305

R, 10, 310

Rótulo, 24

Selección de muestras, 139

Soporte, 21

Soporte mínimo, 142

Soporte simétrico, 21

Soportes de muestreo, 21

Submuestra, 207

Tamaño de muestra, 31, 67, 73, 137, 162, 172, 198, 220

Teorema del límite central, 249

Unidad primaria de muestreo, 208

Variable aleatoria $I_k(S)$, 30

Variable aleatoria $n_k(S)$, 44

Variable aleatoria Z_i , 50

Variable auxiliar, 139, 303

Varianza de los estimadores de calibración, 317

Varianza del estimador de Hansen-Hurwitz, 52

Varianza del estimador de Horvitz-Thompson, 37