Problem Set 2

January 13, 2020

Problem 1

In the below setup, the incline slides freely and all surfaces are frictionless. Find the acceleration of \mathbf{M} , and the vertical and horizontal components of the acceleration of \mathbf{m} , \mathbf{a}_{x} and \mathbf{a}_{y} respectively.

Problem 2

In the below setup, the incline slides freely and all surfaces are frictionless. Find the acceleration of \mathbf{M} , and the vertical and horizontal components of the acceleration of \mathbf{m} , \mathbf{a}_{x} and \mathbf{a}_{y} respectively.

Problem 3

Four identical trapezoidal wooden blocks of mass \mathbf{m} are stacked as shown. Note: before solving each part, reason which parameter(s) the answer should depend on.

- a) Find the minimum required coefficient of static friction between the blocks so that the stack is stable.
- b) How would your answer change if an object of mass **M** was placed on top of the stack?

