Problemas de derivabilidad de funciones. Fórmula de Taylor

1. Usando inducción, demostrar la regla de Leibnitz para hallar la derivada n-ésima del producto de dos funciones:

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) \cdot g^{(k)}(x).$$

2. Si x > 0, demostrar que:

$$\left| (1+x)^{\frac{1}{3}} - \left(1 + \frac{1}{3}x - \frac{1}{9}x^2 \right) \right| \le \frac{5}{81}x^3.$$

Usar la desigualdad anterior para hallar aproximaciones de $\sqrt[3]{1.2}$ y de $\sqrt[3]{2}$.

3. Si $x \in [0,1]$ y $n \in \mathbb{N}$, demostrar que:

$$\left| \ln(x+1) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} \right) \right| < \frac{x^{n+1}}{n+1}.$$

Usar la expresión anterior para calcular ln 1.5 con un error menor que 0.001.

4. Sea I=(a,b) un intervalo abierto y $c\in I$. Sean f y g dos funciones definidas en I tal que las funciones derivadas $f^{(k)}$ y $g^{(k)}$ existen y son continuas en I, para $k=0,1,\ldots,n$. Supongamos que $f^{(k)}(c)=g^{(k)}(c)=0$ para $k=0,1,\ldots,n-1$ y $g^{(n)}\neq 0$. Demostrar que:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f^{(n)}(c)}{g^{(n)}(c)}.$$