BÈZIER APPROXIMATING AN IMAGE

DARIO BALBONI

13 giugno 2016

DEFINITIONS

FAT BÈZIER CURVE

We define a Bèzier Curve of degree n to be the image of the function $\phi:[0,1]\to\mathbb{R}^2$ defined by

$$\phi(t) = \left(\sum_{i=0}^{n} a_i \binom{n}{i} t^i (1-t)^{n-i}, \sum_{i=0}^{n} b_i \binom{n}{i} t^i (1-t)^{n-i}\right)$$

where the a_i and b_i are parameters of the curve. A Fat Bèzier Curve is the set of points in \mathbb{R}^2 which distance from Im ϕ is less then a defined quantity l.

DESCRIPTIONS OF STRUCTURES

FAT BÈZIER CURVE

We represent a Fat Bèzier Curve in a row matrix with the following structure:

with notation as above.

DESCRIPTION OF METHODS

DE CASTELIAU ALGORITHM AND CURVE SPLITTING

Given a Bèzier Curve of degree n, it is possible to evaluate the curve at the time t_0 and split it in two curves with an algorithm taking only n steps. We set the recurrence relation:

$$\beta_i^{(0)} := \beta_i \qquad i = 0, \dots, n$$

$$\beta_i^{(j)} := \beta_i^{(j-1)} (1 - t_0) + \beta_{i+1}^{(j-1)} t_0 \qquad i = 0, \dots, n - j, \quad j = 1, \dots, n$$

where the β_i are multi-coordinate points. The evaluation of the Bèzier curve at time t_0 is $B(t_0) = \beta_0^{(n)}$ and the curve can be split into two curves with control points respectively: $\beta_0^{(0)}, \beta_0^{(1)}, \dots, \beta_0^{(n)}$ and $\beta_0^{(n)}, \beta_1^{(n-1)}, \dots, \beta_n^{(0)}$.

DESCRIPTION OF PROCEDURES

DISTANCEFROMPOINT

We use the De Casteljau algorithm for splitting a Bèzier curve in halfes recursively, and taking the minimum of the distances on the two halves. When the piece of curve is almost

a line, we calculate the minimum point distance and return. We then base on paper *bez.pdf* to measure the flatness of a curve and to do the appropriate math for a line segment.