Chapter 1

Subject Name: Digital Fundamentals

Subject code:-3130704

Learning Outcomes

- At the end of this chapter, you must be able to
- Distinguish between analog and digital systems.
- Use of different types of basic gates
- Boolean algebraic Laws
- How to reduce Boolean function
- Conversion of different number systems
- Methods of error detecting and correcting
- Comparison of logic families

Signal:

It is physical quantity, which contains information & a function of one or more independent variables.

- -Two types of signal: analog & digital
- 1. Analog signal
- 2. Digital signals

Analog signal versus digital signal

- Analog=continuous
- Digital=discrete
- Analog signals can have infinite no. of different signals. Example: Temperature, sound ,pressure, distant, sound.
- A digital Signal Not continuous signal. example: octal, hexadecimal.

Advantage of digital signals

- Digital signals can be processed & transmitted more efficiently and reliable.
- Can be store.
- Play back & further processing possible.
- noise effect is less.

Binary Digits and Logic Levels

- Digital electronics uses circuits that have two states, which are represented by two different voltage levels called HIGH and LOW .The voltage represent numbers in the binary systems.
- In binary a single number is called a bit(for binary digit). A bit can have the value of either a 0 or 1. depending on if the voltage is HIGH or LOW.

Digital & Analog systems

Digital systems

Combination of device designed to manipulate logical information or physical quantity that are represented in digital form.

Example: digital calculator

Analog system

Devices that manipulate physical quantities that are represented in analog form.

Example: magnetic tape recording, playback equipment

Example 1 Tape

- During playback, a magnetic material in the tape head is magnetized as the magnetic tape passes.
- Then ,the magnetic field penetrates a coil of wire is wrapped around it.
- Change in manganic field will induce a voltage in the coil. This
 induced voltage forms an electrical image of the signal which
 is recorded on the tape.

head

Example2 computer

- All the stored and processed data are in binary form. Why?
- Digital circuit/device only concerns about two operating states /logic levels.
- This system allows computers to perform complex calculations very quickly and efficiently.

Example 3 CD player

 CD player: Digital and analog parts co-exist together. Many systems use a mix of analog and digital electronics to take advantage of each technology. A typical CD player accepts digital data from the CD drive and convert it to an analog signal for amplification

Advantage of digital Techniques

- Digital systems are easier to design.
- Information storage is easy.
- Accuracy & precision are easier to maintain throughout the system.
- They are more versatile.
- Digital circuit are less affected by noise
- Digital circuitry can be fabricated on IC chips

Disadvantage of digital techniques

- The real world is analogue.
- Digital systems can be fragile.
- Processing digitized signals takes time.
- Digital circuits use more energy than analogue circuits & produce more heat.
- Digital circuits are made from analogue components –must make sure the digital behavior –must make sure the digital behavior is not a affected by the analogue.
- Digital circuit are sometimes more expensive

Digital systems overcomes the drawback of analog systems

When dealing with analogue inputs and outputs four steps must be followed:

- 1. Convert the physical variable to an electrical signal (analogue)
- 2.Convert the electrical(analogue)signal into digital form- ADC (Analogue digital converter)
- 3. Process (operate on) the digital information
- 4. Convert the digital output back to real —world analogue form-DCA (Digital Analogue Converter)

Gate

- The Most basic digital device are called gates.
- Gates got their name from their function of allowing or blocking (gating)the flow of digital information.
- A gate has one or more inputs and produces an output depending on the inputs
- A gate is called a combinational circuit
- Three most important gate are : AND,OR,NOT

Boolean Algebra

AND laws

- 1. A.O = 0 (NWI law)
- 2. A. I = A (Identity 100)
- 3. A.A A
- 4 A.A = 0

Distributive laws

- 1. ACB+1) . AB +AC
- 2. A+B(= (A+B) (A+1)

OR Iaws

- 1. Ato = A (NIMI law)
- 2. A+1 = 1 (Identity law)
- 3. A+A =A
- 4. A+A = 1

Redundant Literal laws

- 1. A +AB = A+B
- 2 A(A+B) = AB

Commutative laus

- 1. A+B = B+A
- 2. A.B = B.A

I. A. A = A

Associate law

- 1. (A+B)+c =A+(B+c)
- 2. (A.B). (= A-CB.c)
 - Absorption laws
 - 1. A HAB = A
 - 2 ACA+B) = A

De- Morgen's Theorem

$$\frac{A}{B} = \frac{Y - \overline{A} + B}{B} = \frac{A}{B} = \frac{A}{B}$$

A	B	A+B	Ā	B	A.G	
0	0	1	1	1)	
0	.)	0	t	0	0	
ı	0	0	0	١٠	G	
1	١	0	1	,	0	
T			7			
L.H.S			3	R.MS		

(3)	Law	2:-	AB:	A+B

their individual complement.

$$\frac{A}{B} = \frac{A}{B} = \frac{A}$$

Table

A	B	A.B	IA	13	ATB
0	0)	1	J	1
0	,)	1	0	,
,	0	,	0	I	1
1	,	0	l	1	0
r					ク
		L.H_	\$		RHS

Gute Universal NAND as universal gate:7 CON TON (1) NAND QUAN gricu CHA (Y = A.B . A.B OP using NAND Y = A+B = A+B = A:B CScanned with CamScanner

AS Universal NOR 37 No P (1) NOT Using NUP

of gete young NOR

AND gete using NOR Y = A.B = A.B = A+B

Expression Reducing Boolean @ f = A[B+E(AB+AE)] (3/12/19) (1) f = A +B[A(+(B+T)D] BOD FO A [B+T (AB. AZ)] De-Morganis AD) f = A +B[A(+BD+TD = A[B+T (A+B)(A+c)]_ De-Morgal = A [B+ T(AA+AC+BA+BC)] = A +BA(+ BBD + BTD =A [B+TA+FAC+TBA+TBC] = A +AB(+BD +BTD (AA=A) = A CB+ CA + O + CBA + O = AB + AEA + AEBA TA. Al= o

distributive = A (1401) +BD (1+E) AH= F = AB +0+0 = A.A'=0 Reduce the expression A Reduce the expression (A+BC) (AB+ ABC) F = A + B[A(+(B+T))) = A +8 (AC + B D/4 TD) = A+BAC+BOD+BTD

Colistishin A + ABL +60+ B DE A(\$ +81) + BX 150 tactor = A (1) +89.16 CScanned with CamScar AB+ABC+BC = AE +BC

3) show that ABHABC+BC+BC+AC

Show that ABC+BABD+ABD+AC
= B+C

Classification of Number systems

Number System Classification

Positional/ Weighted

Number System

Non-Positional/ Non-Weighted Number System

- Decimal
- Octal
- Binary
- Hexadecimal
- BCD
- 8-4-2-1 Code

- Excess-3 Code
- Cyclic Code
- Roma Code
- Gray Code

Non-positional Number Systems

Characteristics

- Use symbols such as I for 1, II for 2, III for 3, IIII for 4, IIIII for 5, etc.
- Each symbol represents the same value regardless of its position in the number.
- The symbols are simply added to find out the value of a particular number.

Difficulty

It is difficult to perform arithmetic with such a number system.

Positional Number Systems

Characteristics

- Use only a few symbols called digits
- These symbols represent different values depending on the position they occupy in the number.
- The value of each digit is determined by:
 - 1. The digit itself
 - 2. The position of the digit in the number
 - 3. The base of the number system

- Number system: It is set of values used to represent a quantity.
- Radix/Base: No. of value that a digit can have is equal to the systems.
- Weight: each position represent a different multiple of base this multiplier called weight.
- MSD: Leftmost digit having the highest Weight known as most significant digit
- LSD: Rightmost digit having the highest Weight known as least significant digit

Common number systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

 The maximum value of a single digit is always equal to one less than the value of the base.

Conversion among Bases

Possibilities

Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

Binary Number System

Characteristics

- A positional number system
- Has only 2 symbols or digits (0 and 1). Hence its
 base = 2.
- The maximum value of a single digit is 1 (one less than the value of the base).
- Each position of a digit represents a specific power of the base (2)
- This number system is used in computers

Decimal To Binary

- Successive division for inter part:
- 1.Divide the integer part of given decimal no. by the base & note down remainder.
- 2. Continue to divide the quotient by base until there is nothing left. Note remainder from each step.
- 3.List the remainder in reverse order from bottom to top.

125 ₁₀ = ? ₂	2	125	1	
,	2	62	0	
	2	31	1	
,	2	15	1	
,	2	7	1	
	2	3	1	
	2	1	1	
		0		

Successive multiplication for fractional part

- 1. Multiply given no. by base
- 2. Note down carry generated in this multiplication as MSD
- 3. Multiply only fractional no. of the product in step 2 by the base, & note down carry as the next bit to MSD
- 4. Repeat Step 2 & 3 Upto The End.

$$0.6875_{10} = 0.1011_2$$

Exercise

$$1.(163.875)_{10} =$$
 $2.(52)_{10} =$
 $3.(0.75)_{10} =$
 $4.(105.15)_{10} =$

Answer

- 1.10100011
- 2. 110100
- 3.0.11
- 4. 1101001.001001

Binary to Decimal

- 1. Write down weight corresponding to different position.
- 2. Multiply each digit in the given no. with corresponding weight to obtain product no.
- 3.Add all the product no. to get decimal equivalent.

Exercise

- 1. (10101) 2
- 2. (11011.101)₂
- 3. $(1001011)_2$
- 4. (1011.01)₂

Answer

- 1. 21 ₁₀
- 2. 27.625 ₁₀
- 3. 75 ₁₀
- 4. 11 .25 10

Decimal to octal conversion

- 1. Divide by 8
- 2. Keep track of remainder

$$0.6875_{10} = \frac{?}{8}$$

$$\frac{integer}{0.6875 \times 8} = \frac{5.5000}{5} + 0.5000$$
 $0.5000 \times 8 = 4.0000$
 $4 + 0.0000$

$$125_{10} = 175_{8}$$

exercise

$$1.(3000.45)_{10} =$$

$$2.(378.93)_{10} =$$

$$3.(5497)_{10} =$$

$$4.(3025)_{10} =$$

- 1.5870.3463
- 2.572
- 3.12571
- 4.5721

Octal to Decimal

- 1. Multiply each bit by 8ⁿ, where n is the weight of the bit
- 2. The weight is the position of the bit, starting from 0 on the right.
- 3. Add the result.

$$43.25_8 = 35.3281_{10}$$

- 1. (314)₈
- $2. (4057.06)_{8}$
- $3. (5721)_8$
- 4. (630.4)₈

- 1. 204 ₁₀
- 2. 2095.0937₁₀
- 3. 3025₁₀
- 4. 408.5₁₀

Decimal to Hexadecimal

- 1.Divide by 16
- 2. Keep track of remainder

$$1234_{10} = 4D2_{16}$$

```
1.(2003.31)_{10} =
2.(2598.675)_{10} =
3.(49056)_{10} =
```

4. **(**46687**)** ₁₀ =

- 1. 7D3.4F5C2
- 2. A26.ACCC
- 3. BFA0
- 4. B65F

Hexadecimal To Decimal

- 1. Multiply each bit by 16ⁿ, where n is the weight of the bit
- 2. The weight is the position of the bit, starting from 0 on the right.
- 3. Add the result.

- 1. (4CB.2) ₁₆
- 2. $(A0F9.0EB)_{16}$
- 3. $(5C7)_{16}$
- 4. (B65F)₁₆

- 1. 1224.125 ₁₀
- 2. 41209.0572₁₀
- 3. 1479₁₀
- 4. 46687 ₁₀

Octal to Binary

 Convert each octal digit to a 3-bit equivalent binary representation.

$$705_8 = 111000101_2$$

- 1. (364)₈
- 2. (5721)₈
- $3. (12571)_8$
- 4. (26153.7406)₈

- 1. 011110100 2
- 2. 101111010001 ₂
- 3. 001010101111001 ₂
- 4. 10110001101011.11110000110 ₂

Binary to Octal

Group bits in 3 starting from LSB

$$1011010111_2 = 1327_8$$

- 1. (11010010)₂
- 2. (110101.101010)₂
- 3. (10101111001.0111)₂
- 4. (1100000110.1101)₂

- 1. 322₈
- 2.65.52 8
- 3. 2571.34 ₈
- 4.306.D ₈

Hexadecimal to Binary

 Convert each hexadecimal digit to a 4 bits equivalent binary representation.

Hexa-Decimal to Binary

Hexa- Decimal	Binary	Hexa- Decimal	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

$$10AF_{16} = ?_2$$

$$10AF_{16} = 1000010101111_2$$

- $(FA8)_{16} = ()_2$
- $(9AC3)_{16} = ()_2$
- $(1A74D)_{16} = ()_2$
- $(1AC.9A)_{16} = ()_2$
- $(ABC.5AC)_{16} = ()_2$

Binary to Hexadecimal

Group bits in 4 starting from LSB

$$1011010111_2 = 2D7_{16}$$

```
■ (11011)<sub>2</sub> = ( )<sub>16</sub>
```

•
$$(101101)_2 = ()_{16}$$

Octal To Hexadecimal

- Convert octal to binary
- Regroup bits in 4 from LSB
- Convert Binary To hexadecimal


```
■ (463)<sub>8</sub> = ( )<sub>16</sub>
```

- (2056)₈ = ()₁₆
- (2057.64)₈ = ()₁₆
- (6543.04)₈ = ()₁₆
- (7476.47)₈ = ()₁₆

Hexadecimal to Octal

- Convert hexadecimal to binary
- Regroup bits in 3 from LSB
- Convert Binary To Octal


```
(FA8)_{16} = ( )_8

(9AC3)_{16} = ( )_8

(1A74|D)_{16} = ( )_8

(1AC.9A)_{16} = ( )_8

(ABC.5AC)_{16} = ( )_8
```

Sign binary Number

- Two ways of representing signed numbers:
 - 1. sign magnitude form
 - 2. complement form
- Most of computer use complement form for negative number notation.
- 1's and 2's complement are two different method this type.

- It is obtained by subtracting each digit of that binary no. from 1.
- Or, change 1's to 0's and 0's to 1's. in binary
- Example

- It is obtained by adding 1 to 1's complement.
- Or, copy all zeros, working from LSB toward the MSB, until the 1st 1 is reached, copy that 1 & flip all the remaining bits.
 - Example

 It's obtained by subtracting each digit of that decimal no. from 9

Example

It's obtained by adding 1's to 9's complement.

```
9 9 9 . 9 9

- 7 8 2 . 5 4

2 1 7 . 4 5

+ 1

2 1 7 . 4 6

(10's complement of 782.54)
```

Sign number representation

- If no. is positive ,the magnitude is represented in its true binary form and a sign bit 0 is placed in front of the MSB
- If no. is negative ,magnitude is represented in its 2's complement form and sign bit 1 is placed in front of MSB
 - Express -65.5 in 12 bit 2's complement form.

2	65	1
2	32	0
2	16	0
2	8	0
2	4	0
2	2	0
2	1	1
	0	

$$0.5 \times 2 = 1.0$$

So, result in 12-bit binary is as follows:

$$65.5_{10} = 01000001.1000_{2}$$

For negative number, we have to convert this into 2's complement form

$$-65.5_{10} = 101111110.1000_2$$

- 1. Express -45 in 8 bit 2's complement form.
- 2. Express -73.25 in 12 bits 2's complement form.

- 1. 11010011
- 2. 10110110.0100

Subtraction using complement form Using 9'S Complement

- obtain 9's complement of subtrahend
- -Add the result to minuend and call it intermediate result.
- If carry is generated then answer is positive and add the carry to LSD
- -If There is no Carry Then Answer Is Negative And Take 9's Complement Of Intermediate Result And Place Negative Sign To The Result 1) 745.81 436.62

Example

2) 436.62 - 745.81

As carry is not generated, so take 9's complement of the intermediate result and add ' – ' sign to the result

2. Using 10'S Complement

- obtain 10's complement of subtrahend
- Add the result to minuend.
- If carry is generated then ignore it and result itself is answer.
- If There is no Carry Then Answer Is Negative And Take 10's Complement Of Result And Place Negative Sign To The Result.

Example

Example

2) 436.62 - 745.81

As carry is not generated, so take 10's complement of the intermediate result and add ' — ' sign to the result

Binary addition

Rules for binary addition

	√ 1 1	1	1	√ 1	√ 1	
	1 1	0	1 .	1	0	1
+	0 1	1	1 .	0	1	1
1	0 1	0	1	. 0	0	0

Binary Subtraction

$$0-0=0$$

 $1-1=0$
 $1-0=1$
 $0-1=1$, with
a borrow 1

Circuit Globe

3. Subtraction using 1's complement

- -obtain 1's complement of subtrahend.
- -Add the result to minuend and call it intermediate result.
- -If carry is generated then answer is positive and add the carry to LSD
- -If There Is No Carry Then Answer Is Negative And Take 1's Complement Of Intermediate Result And Place Negative Sign To The Result.

Example

1)
$$68.75 - 27.50$$

$$\begin{array}{r}
68.75 & 01000100.1100 \\
-27.50 \xrightarrow{1's \text{ complement}} + 11100100.0111 \\
+41.25 & 100101001.0011 \\
\hline
00101001.0100
\end{array}$$

Example

```
2) 43.25 - 89.75
                          00101011.0100
      43.25
    - 89.75 \frac{1's \text{ complement}}{1} + 10100110.0011
    - 46.50
                          11010001.0111
             1's complement
                          00101110.1000
```

As carry is not generated, so take 1's complement of the intermediate result and add ' – ' sign to the result

3. Subtraction using 1's complement

- -obtain 2's complement of subtrahend.
- -Add the result to minuend.
- -If carry is generated then ignore it and result is answer.
- -If There Is No Carry Then Answer Is Negative And Take 2's Complement Of Result And Place Negative Sign To The Result.

Example

Example

```
2) 43.25 - 89.75

43.25 00101011.0100

- 89.75 2's complement + 10100110.0100

- 46.50 11010001.1000

2's complement 00101110.1000
```

As carry is not generated, so take 2's complement of the intermediate result and add ' – ' sign to the result

Binary code

Group of symbol called code.

Advantages:

- 1. They are suitable For computer application.
- 2. Analysis and designing of digital circuit become easy .if we use binary code.
- 3. As only 1 & 0 are being used ,implementation of binary code become easy.

CLASSIFICATION OF BINARY CODE

BCD code

- 8421 BCD Code:
- Each decimal digit, 0 through 9, is coded by 4 –bit binary number.
- They are weighted code.
- 1010 to 1111 are invalid in BCD.
- Less efficient than pure binary.
- Arithmetic operation are more complex than in pure binary,

Question- Comparison of BCD & Binary.

Packed BCD:

BCD number corresponding to decimal no. beyond are called packed BCD.

BCD Addition:

if there is no carry & sum term is not an illegal code, no correction Is needed.

No carry, no illegal code. So, this is the correct sum.

 If there is a carry out of one group to the next group, or if the sum tem is illegal code, then 6 (0110) is added to the sum term of that group & the resulting carry is added to the next group

Binary Subtraction

- If there is no borrow from the next higher group then no correction is required.
- If there is a borrow from the next group, then 6(0110) is subtracted from the difference term of this group.

Excess-3 Code

- Excess -3 code=8421 BCD+0011(3)
- It is a self- complementing code.
- 0000,0001,0010,1101,1110,1111 are illegal codes.
 - Example

Excess-3 addition

 If there is no carry out from the addition of any of the 4 bit group, subtract 0011 from the sum term of these group .If carry out, add 0011 to the sum term of those group.

Excess-3 Subtraction

- If there is no borrow from the next 4 bit group & add 0011 to the difference term of such group.
- If there is a borrow, subtract 0011 from the difference term.

Gray code

- The gray code is a non-weighted code.
- It is a cyclic code because successive code words in this code differ in one bit position only, i.e. it
 is a unit distance code.
- It is also a reflective code.
- The n least significant bits for 2ⁿ through 2ⁿ⁺¹-1 are the mirror images of those for 0 through 2ⁿ-1.
- An N-bit gray code can be obtained by reflecting an N-1 bit code about an axis at the end of the
 code, and putting the MSB of 0 above the axis and the MSB of 1 below the axis.
- One reason for the popularity of the gray code is its ease of conversion to and from binary.
- Reflection of gray code is shown in table.

Gray Code			Decimal	4-bit binary	
1-bit	2-bit	3-bit	4-bit		
0	00	000	0000	0	0000
1	01	001	0001	1	0001
	11	011	0011	2	0010
	10	010	0010	3	0011
		110	0110	4	0100
		111	0111	5	0101
		101	0101	6	0110
		100	0100	7	0111
			1100	8	1000
			1101	9	1001
			1111	10	1010
			1110	11	1011
			1010	12	1100
			1011	13	1101
			1001	14	1110
			1000	15	1111

Decimal	Binary Code	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
ele g tre	0101	0111
	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Binary to grey code conversion

• If an n-bit binary number is represented by B_n B_{n-1} ... B₁ and its gray code equivalent G_n G_{n-1} ... G₁, where B_n and G_n are the MSBs, then the gray code bits are obtained from the binary code as follows:

G _n = B _n	$G_{n-1} = B_n \bigoplus B_{n-1}$	G . = R . A R .	STORESTON TO ST	G. = B. A B.
On - Dn	$O_{n-1} - O_n \bigcirc O_{n-1}$	$G_{n-2} = B_{n-1} \bigoplus B_{n-2}$		Q1 - Q2 D Q1

The conversion procedure is as follows:

- Record the MSB of the binary as the MSB of the gray code.
- Perform X-ORing between the MSB of the binary and the next bit in binary. This answer is the next bit of the gray code.
- 3. Perform X-ORing between 2nd bit of the binary and 3rd bit of the binary, the 3rd bit with the 4th bit, and so on.
- Record the successive answer bits as the successive bits of the gray code until all the bits of the binary number are exhausted.

Example:- Convert the binary 1001 to Gray code.

Grey To Binary code conversion

If an n-bit gray number is represented by G_n G_{n-1} ... G_1 and its binary code equivalent B_n B_{n-1} ... B_1 , where G_n and B_n are the MSBs, then the binary bits are obtained from the gray bits as follows:

$$B_n = G_n$$
 $B_{n-1} = B_n \oplus G_{n-1}$ $B_{n-2} = B_{n-1} \oplus G_{n-2}$ $B_1 = B_2 \oplus G_1$

The conversion procedure is as follows:

- 1. The MSB of the binary number is the same as the MSB of the gray code number.
- Perform X-ORing between the MSB of the binary and next significant bit of gray code. This answer is the next bit of binary.
- Perform X-ORing between the 2nd bit of the binary and 3rd bit of the gray code, the 3rd bit of the binary with the 4th bit of gray code, and so on.
- Record the successive answers as the successive bits of the binary until all the bits of the gray code are exhausted.

Example:- Convert the gray code 1101 to binary.

Error detecting code

- Noise can alter or distort the data in transmission.
- The 1s may get changed to 0s and 0s to 1s.
- Because digital systems must be accurate to the digit, errors can pose a serious problem.
- Single bit error should be detect & correct by different schemes.
- Parity, Check Sums and Block Parity are the examples of error detecting code.

Parity

- Parity bit is the simplest technique.
- There are two types of parity Odd parity and Even parity.
- For odd parity, the parity is set to a 0 or a 1 at the transmitter such that the total number of 1 bits in the word including the parity bit is an odd number.
- For even parity, the parity is set to a 0 or a 1 at the transmitter such that the total number of 1 bits in the word including the parity bit is an even number.

- Detect a single-bit error but can not detect two or more errors within the same word.
- In any practical system, there is always a finite probability of the occurrence of single error.
- E.g. In an even-parity scheme, code 10111001 is erroneous because number of 1s is odd(5), while code 11110110 is error free because number of 1s is even(6).

Check sum

- Simple parity can not detect two errors within the same word.
- Added to the sum of the previously transmitted words
- At the transmission, the check sum up to that time is sent to the receiver.
- The receiver can check its sum with the transmitted sum.
- If the two sums are the same, then no errors were detected at the receiver end.
- If there is an error, the receiving location can ask for retransmission of the entire data.
- This type of transmission is used in teleprocessing system.

Block parity

- When several binary words are transmitted or stored in succession, the resulting collection of bits can be regarded as a block of data, having rows and columns.
- Parity bits can then be assigned to both rows and columns.
- This scheme makes it possible to correct any single error occurring in a data word and to detect
 any two errors in a word.
- This technique also called word parity, is widely used for data stored on magnetic tapes.
- For example, six 8-bit words in succession can be formed into a 6x8 block for transmission.
- Parity bits are added so that odd parity is maintained both row-wise and column-wise and the block is transmitted as a 7x9 block as shown in Figure 1.
- At the receiving end, parity is checked both row-wise and column-wise and suppose errors are detected as shown in Figure 2.
- These single-bit errors detected can be corrected by complementing the error bit.
- In Figure 2, parity errors in the 3rd row and 5th column mean that the 5th bit in 3rd row is in error.
- It can be corrected by complementing it.
- Two errors as shown in Figure 3 can only be detected but not corrected.
- In Figure 3, parity errors are observed in both columns 2 and 4.
- It indicated that in one row there two errors.

Figure 2

Figure 3

Figure 1

Error correcting code

- 7-bit Hamming Code is widely used error correcting code, containing 4 bits of data and 3 bits of even parity.
- Pattern: P₁ P₂ D₃ P₄ D₅ D₆ D₇
- Group-1: P₁D₃D₅D₇, Group-2: P₂D₃D₆D₇, Group-3: P₄D₅D₆D₇
- Example: Data = 1101 $P_1 P_2 D_3 P_4 D_5 D_6 D_7 = P_1 P_2 1 P_4 1 0 1$ $P_1 D_3 D_5 D_7 = 1 1 1 1$ $P_2 D_3 D_6 D_7 = 0 1 0 1$ $P_4 D_5 D_6 D_7 = 0 1 0 1$
- 7-bit Hamming Code is 1 0 1 0 1 0 1

Error correcting code

- How to detect error?
- Example: Received data = 1001001

$$P_1 P_2 D_3 P_4 D_5 D_6 D_7 = 1001001$$
 $P_1 D_3 D_5 D_7 = 1001 (No Error)$
 $P_2 D_3 D_6 D_7 = 0001 (Error)$
 $P_4 D_5 D_6 D_7 = 1001 (No Error)$

- The error word is 0 1 0 = 2₁₀.
- Complement the 2nd bit (from left).
- Correct code is 1 1 0 1 0 0 1

Digital IC specification

- Threshold voltage
- Propagation Delay
- Power dissipation
- Fan-in
- Fan-out
- Voltage & Current parameters
- Noise Margin
- Operating Temperatures
- Speed power products

Comparison of logic families

Characteristic	πι	CMOS	ECL
Power Input	Moderate	Low	Moderate-High
Frequency limit	High	Moderate	Very high
Circuit density	Moderate-high	High-very high	Moderate
Circuit types per family	High	High	Moderate

Logic Family	Propagation delay time (ns)	Power dissipation per gate (mW)	Noise Margin (V)	Fan-in	Fan-out	Cost
πL	9	10	0.4	8	10	Low
CMOS	<50	0.01	5	10	50	Low
ECL	1	50	0.25	5	10	High

Transistor transistor logic

- Dependence on transistors alone to perform basic logic operations.
- Most popular logic family.
- Most widely useful bipolar digital IC family.
- The TTL uses transistors operating in saturated mode.
- It is the fastest of the saturated logic families.
- Good speed, low manufacturing cost, wide range of circuits, and the availability in SSI and MSI are its merits.

SchottKy TTL

- When a transistor is saturated, excess charge carries will be stored in the base region and they must be removed before the transistor can be turned off.
- So, owing to storage time delay, the speed is reduced.
- The Schottky TTL series reduces this storage time delay by not allowing the transistor to go into full saturation.
- This is accomplished by using a <u>Schottky</u> barrier diode(SBD) between the base and the collector of each transistor.
- More than three times the switching speed of standard TTL, at the expense of approximately doubling the power consumption.

Tri state TTL

- It utilizes the advantage of the high speed of operation of the totem-pole configuration and wire <u>ANDing</u> of the open-collector configuration.
- It is called the tri-state TTL, because it allows three possible output states: HIGH, LOW, and HIGH Impedance (Hi-Z).
- In the Hi-Z state, both the transistors in the totem-pole arrangement are turned off, so that the output terminal is a HIGH impedance to ground or V_{cc}.
- In fact, the output is an open or floating terminal, that is, neither a LOW nor a HIGH.