Medição

Esdras Lins Bispo Jr. bispojr@ufg.br

Física para Ciência da Computação Bacharelado em Ciência da Computação

26 de agosto de 2019

Plano de Aula

- Medição
 - Comprimento
 - Tempo
 - Massa

Sumário

- Medição
 - Comprimento
 - Tempo
 - Massa

Descobrindo a física...

Medindo e comparando grandezas

Descobrindo a física...

Medindo e comparando grandezas

Grandezas

- Comprimento,
- Tempo,
- Massa,
- Temperatura,
- Pressão,
- Corrente elétrica...

Como medimos uma grandeza

Comparando-a com um padrão

Como medimos uma grandeza

Comparando-a com um padrão

Unidade

Medida de uma grandeza

Como medimos uma grandeza

Comparando-a com um padrão

Unidade

Medida de uma grandeza

Exemplo

Metro é uma unidade de grandeza de comprimento

Sistema Internacional de Unidades (SI)

- 1971
- 14ª Conferência Geral de Pesos e Medidas
- Sete grandezas como fundamentais

Sistema Internacional de Unidades (SI)

- 1971
- 14^a Conferência Geral de Pesos e Medidas
- Sete grandezas como fundamentais

T	abela 1-1		
Unidades de Três Grandezas Fundamentais do SI			
Grandeza	Nome da Unidade	Símbolo da Unidade	
Comprimento	metro	m	
Tempo	segundo	S	
Massa	quilograma	kg	

Unidades Derivativas

São aquelas unidades que podem ser obtidas a partir de unidades fundamentais.

Unidades Derivativas

São aquelas unidades que podem ser obtidas a partir de unidades fundamentais.

Exemplo

$$1 \text{ watt} = 1 \text{ W} = 1 \text{ kg} \times m^2/s^3$$

Onde é utilizada?

Usa-se a notação científica para expressar as grandezas muito grandes.

Onde é utilizada?

Usa-se a notação científica para expressar as grandezas muito grandes.

Formato

$$a \times 10^{b}$$

em que

Onde é utilizada?

Usa-se a notação científica para expressar as grandezas muito grandes.

Formato

$$a \times 10^{b}$$

em que

- $a \in \mathbb{R}$ e $1 \le a < 10$; e
- $b \in \mathbb{Z}^*$.

Exemplos

 \bullet 3.560.000.000 m = 3,56 \times 10 m

Exemplos

- $3.560.000.000 \text{ m} = 3,56 \times 10^9 \text{ m}$
- \bullet 0,000 000 492 s = 4,92 \times 10⁻⁷ s

Exemplos

- $3.560.000.000 \text{ m} = 3,56 \times 10^9 \text{ m}$
- 0,000 000 492 s = $4,92 \times 10^{-7}$ s

Em linguagens de programação...

A notação abreviada normalmente é usada:

Exemplos

- $3.560.000.000 \text{ m} = 3,56 \times 10^9 \text{ m}$
- \bullet 0,000 000 492 s = 4,92 \times 10⁻⁷ s

Em linguagens de programação...

A notação abreviada normalmente é usada:

$$7.59e9$$
 ou $4.93e - 7$

Exemplos

- $3.560.000.000 \text{ m} = 3.56 \times 10^9 \text{ m}$
- 0.000 000 492 s = 4.92×10^{-7} s

Em linguagens de programação...

A notação abreviada normalmente é usada:

$$7.59e9 \text{ ou } 4.93e - 7$$

Umas das utilidades...

Bastante útil no processo de conversão de unidades.

Uso de prefixos

Tabela 1-2 Prefixos das Unidades do SI					
Fator	Prefixo"	Símbolo	Fator	Prefixo ^a	Símbolo
1021	iota	1	10-1	deci-	d
1021	zeta-	Z	10-2	centi-	c
1018	exa-	E	10-3	mili-	m
1015	peta-	P	10-6	micro-	μ
10^{12}	tera-	T	10-9	nano-	n
10°	giga-	G	10-12	pico-	p
10°	mega-	M	10 -15	femto-	f
10^{3}	quilo-	Q	10 ⁻¹⁸	ato-	a
10^{2}	hecto-	h	10^{-21}	zepto-	Z
10 ¹	deca-	da	10^{-24}	iocto-	ř.

[&]quot;Os prefixos mais usados aparecem em negrito.

Medida de Comprimento

Comprimento

No SI, a unidade para o comprimento é o metro (m).

Medida de Comprimento

<u>Comprimento</u>

No SI, a unidade para o comprimento é o metro (m).

Metro

Distância percorrida pela luz no vácuo durante um intervalo de tempo de 1/299.792.458 de segundo.

Curiosidade

			- 1 6	пена	
Alguns	Comprimentos	Aproximad	os		

Descrição	Comprimento em Metros
Distância das galáxias mais antigas	2×10^{26}
Distância da galáxia de Andrômeda	2×10^{22}
Distância da estrela mais próxima, Proxima Centauri	4×10^{10}
Distância de Plutão	6×10^{12}
Raio da Terra	6×10^6
Altura do Monte Everest	9×10^{3}
Espessura desta página	1×10^{-4}
Comprimento de um vírus típico	1×10^{-8}
Raio do átomo de hidrogênio	5×10^{-11}
Raio do próton	1×10^{-15}

Medida de Tempo

Tempo

No SI, a unidade para o tempo é o segundo (s).

Medida de Tempo

Tempo

No SI, a unidade para o tempo é o segundo (s).

Segundo

O intervalo de tempo que corresponde a 9.192.631.770 oscilações da luz (de um comprimento de onda especificado) emitida por um átomo de césio 133.

Medida de Tempo

Tempo

No SI, a unidade para o tempo é o segundo (s).

Segundo

O intervalo de tempo que corresponde a 9.192.631.770 oscilações da luz (de um comprimento de onda especificado) emitida por um átomo de césio 133.

Hora Coordenada Universal (UTC)

Fornecida por um relógio atômico no Colorado, EUA.

Curiosidade

Tabela 1-4 Alguns Intervalos de Tempo Aproximados		
Tempo de vida do próton (teórico)	3×10^{40}	
Idade do universo	5×10^{17}	
Idade da pirâmide de Quéops	1×10^{13}	
Expectativa de vida de um ser humano	$2 \times 10^{\circ}$	
Duração de um dia	9×10^{4}	
Intervalo entre duas batidas de um coração humano	8×10^{-1}	
Tempo de vida do múon	2×10^{-6}	
Pulso luminoso mais curto obtido em laboratório	1×10^{-16}	
Tempo de vida da partícula mais instável	1×10^{-23}	
Tempo de Planck"	1×10^{-43}	

[&]quot;Tempo decorrido após o big bang a partir do qual as leis de física que conhecemos passaram a ser válidas.

Medida de Massa

Massa

No SI, a unidade para massa é o quilograma (kg).

Medida de Massa

Massa

No SI, a unidade para massa é o quilograma (kg).

Quilograma

Um cilindro de platina irídio com 3,9cm de altura e 3,9cm de diâmetro.

Medida de Massa

Massa

No SI, a unidade para massa é o quilograma (kg).

Quilograma

Um cilindro de platina irídio com 3,9cm de altura e 3,9cm de diâmetro.

Curiosidade

Tabela 1-5

Algumas Massas Aproximadas

Descrição	Massa em Qui logramas
Universo conhecido	1×10^{53}
Nossa galáxia	2×10^{41}
Sol	2×10^{30}
Lua	7×10^{22}
Asteroide Eros	5×10^{15}
Montanha pequena	1×10^{12}
Transatlântico	7×10^7
Elefante	5×10^3
Uva	3×10^{-3}
Grão de poeira	7×10^{-10}
Molécula de penicilina	5×10^{-17}
Átomo de urânio	4×10^{-25}
Próton	2×10^{-27}
Elétron	9×10^{-31}

Massa Específica

Massa específica

É a massa por unidade de volume.

$$\rho = \frac{m}{V}$$

Massa Específica

Massa específica

É a massa por unidade de volume.

$$\rho = \frac{m}{V}$$

Exemplo: Massa específica da água

 1 g/cm^3

Bônus

Desafio

(Halliday 2.68) Em um soco direto de caratê, o punho começa em repouso na cintura e é movido rapidamente para a frente até o braço ficar completamente estendido. A velocidade v(t) do punho está representada na figura (próximo slide) para o caso de um lutador experiente. A escala vertical é definida por $v_s=8,0 m/s$. Qual é a distância percorrida pelo punho desde o início do golpe até

- \odot o instante t = 50 ms, e
- 2 o instante em que a velocidade do punho é máxima?

Bônus

Desafio

(Halliday 2.68) Em um soco direto de caratê, o punho começa em repouso na cintura e é movido rapidamente para a frente até o braço ficar completamente estendido. A velocidade v(t) do punho está representada na figura (próximo slide) para o caso de um lutador experiente. A escala vertical é definida por $v_s = 8,0 \, m/s$. Qual é a distância percorrida pelo punho desde o início do golpe até

- \odot o instante t = 50 ms, e
- o instante em que a velocidade do punho é máxima?

Informações úteis

- Candidaturas (28 de agosto, 17h20);
- Resposta escrita e apresentação (04 de setembro, 18h30).

Bônus (0,5 pt)

Medição

Esdras Lins Bispo Jr. bispojr@ufg.br

Física para Ciência da Computação Bacharelado em Ciência da Computação

26 de agosto de 2019

