Yanchen Jiang (Jeff Jiang)

Harvard University Cambridge MA 02138 USA yanchen_jiang@g.harvard.edu https://yanchenjiang.github.io/

Research Overview

My research lies at the intersection of computer science—specifically machine learning, deep learning, and generative AI—and economics, focusing on mechanism design, incentives, and decision-making. I employ computational frameworks to tackle established problems in economics and mechanism design, deriving novel insights and solutions in unexplored settings. Additionally, I integrate considerations of incentives, human behavior, game theory, and multi-agent interactions into large language models (LLMs) and generative AI, to enhance their applicability in complex economic environments.

Research Interests: Computational Mechanism Design, Large Language Models and Generative AI, Machine Learning, Deep Learning.

Skills:

Proficient: Python (familiar with ML/DL libraries: PyTorch/NumPy/Transformers/Matplotlib/...); LATEX; Experience with LLMs and Language Model APIs (few-shot and chain-of-thought prompting, multi-agent LLM debate, deploying and finetuning open-source models (e.g. LLaMA 3.1)).

Education

Ph.D.	Harvard University
Computer Science	Advisors: Professor David C. Parkes and Professor Yiling Chen
2022-2027 (expected)	Anticipated Graduation Date: May 2027
S.M.	Harvard University
Computer Science	Advisors: Professor David C. Parkes and Professor Yiling Chen
2024	
A.B.	Harvard University
2022	Major: Computer Science and Mathematics; Minor: Statistics
	Thesis: Learning to Sell Information
	Highest Honors in Computer Science and Mathematics, cum laude
	GPA: 3.89/4.00

Publications and Working Papers

(* indicates equal contribution, α - β indicates alphabetical author order.)

Selected Conference Publications

C2 Tonghan Wang*, Yanchen Jiang*, David C. Parkes. GemNet: Menu-Based, Strategy-Proof Multi-Bidder Auctions Through Deep Learning. The Twenty-Fifth ACM Conference on Economics and Computation (EC '24), Received Exemplary Paper Award for the AI track, presented at the Best EC '24 papers plenary session.

C1 Sai Srivatsa Ravindranath*, <u>Yanchen Jiang*</u>, David C. Parkes. <u>Data Market Design through Deep Learning</u>. Advances in Neural Information Processing Systems 36 (NeurIPS 2023).

Other Conference Publications

C3 Tonghan Wang*, Heng Dong*, Yanchen Jiang, David C. Parkes, Milind Tambe. On Diffusion Models for Multi-Agent Partial Observability: Shared Attractors, Error Bounds, and Composite Flow. 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025), to appear.

Workshop and Exhibition papers

W2 $(\alpha-\beta)$ Constantinos Daskalakis, Ian Gemp, Yanchen Jiang, Renato Paes Leme, Christos Papadimitriou, Georgios Piliouras. Charting the Shapes of Stories with Game Theory. NeurIPS 2024 Creative AI. Preprint.

W1 Anand Shah*, Kehang Zhu*, Yanchen Jiang, Kerem Dayi, Jeffery Wang, John J. Horton, David C. Parkes. Evidence from the Synthetic Laboratory: Language Models as Auction Participants. EC'24 contributed poster session; NeurIPS 2024 Workshop on Behavioral Machine Learning.

Preprints and Working Papers

P2 Ermis Soumalias* <u>Yanchen Jiang</u>*, Kehang Zhu*, Michael Curry, Sven Seuken, David C. Parkes. LLM-Powered Preference Elicitation in Combinatorial Assignment. *Preprint, to be available on arXiv on February 13, 2025.*

P1 Tonghan Wang, <u>Yanchen Jiang</u>, David C. Parkes. Deep Menus for Combinatorial Auctions by Diffusion-Based Optimization. *In preparation*.

Talks and Presentations

GemNet: Menu-Based, Strategy-Proof Multi-Bidder Auctions Through Deep Learning

The Twenty-Fifth ACM Conference on Economics and Computation (EC'24)	New Haven, CT
Best EC '24 papers plenary session (Short Presentation)	
Main Conference (Long Talk)	July, 2024
The Econometric Society 2024 ESIF Economics and AI+ML Meeting	Ithaca, NY
Mechanism Design session (Session Chair, Long Talk)	August, 2024
Harvard EconCS seminar	
Long Talk	Nov, 2024

Data Market Design through Deep Learning

2023 Conference on Neural Information Processing Systems (NeurIPS 2023)	New Orleans, LA
Main Conference (Poster Session Presentation)	Dec, 2023
The Econometric Society 2024 ESIF Economics and AI+ML Meeting	Ithaca, NY
Pricing in Markets session (Long Talk)	August, 2024

Charting the Shapes of Stories with Game Theory

2024 Conference on Neural Information Processing Systems (NeurIPS 2024)	Vancouver, Canada
Creative AI (Booth Presentation)	Dec, 2024

Teaching

CS136 (Economics and Computation)

Fall, 2023

Head Teaching Assistant, Harvard University

CS136 (Economics and Computation)

Fall, 2021

Teaching Assistant, Harvard University

Conferences reviewing activities

NeurIPS (2024), ICLR (2025), AISTATS (2025), ICML (2025), TMLR (2025), NeurIPS (2025)