

在渐进分析中等于符号的滥用

我们用f(n) = O(g(n))来表示 f(n) 是 O(g(n))的一个成员函数而不用传统的 $T(n) \in O(f(n))$ 来表示。原因?没有原因,习惯问题而已。

- ■例子
 - $-f(n) = 5n^3$; $q(n) = 3n^2$
 - $-f(n) = O(n^3) = q(n)$
 - 但是 f(n) ≠ g(n).
- 更好的表式方式: T(n) ∈ O(f(n)).
 - $-5n^3 \in O(n^3)$
 - $-3n^2 \in O(n^2) \subset O(n^3)$

算法复杂性分析

例如: N>=1,3N<=4N,有3N=O(N) N>=1,N+1024<=1025N,有N+1024=0 (N) N>=10, 2N²+11N-10<=3N²,2N²+11N-10=0(N²) N>=1,N²<N³,N²=O(N³)

证明: N³≠ O(N²)。

假设存在正的常数C和自然数 N_0 ,使得当 $N>=N_0$ 时有 $N^3<=CN^2$ 。显然,当取 $N=max\{N_0, LC J+1\}$ 时不等式不成立,所以得证

再次分析

 $-100n^2 = 1.5n^2 = n^2 + 4 = 10n^2 - 3n + 6 = \Theta(n^2)$.

课堂讨论

• 根据所学的渐进分析方法,同学们分析下下面的结论是否正确

例如: $f(n) = 32n^2 + 17n + 32$.

f(n) 属于 O(n²), O(n³), Ω (n²), Ω (n), Θ (n).

f(n) 不属于 O(n), $\Omega(n^3)$, $\Theta(n^2)$, or $\Theta(n^3)$.

渐进分析的算术运算:

- $O(f(n)) + O(g(n)) = O(max\{f(n),g(n)\})$;
- $\bullet O(f(n)) + O(g(n)) = O(f(n) + g(n)) ;$
- O(f(n))*O(g(n)) = O(f(n)*g(n));
- \bullet O(cf(n)) = O(f(n));
- $g(n) = O(f(n)) \Rightarrow O(f(n)) + O(g(n)) = O(f(n))$.

◎数据结构与算法 | Data Structures and Algorithms

- 规则 $O(f(n)) + O(g(n)) = O(\max\{f(n), g(n)\})$ 的证明:
- 对于任意 $f_1(n) \in O(f(n))$,存在正常数 c_1 和自然数 n_1 ,使得对所有 $n \ge n_1$,有 $f_1(n) \le c_1 f(n)$ 。
- 类似地,对于任意 $g_1(n) \in O(g(n))$,存在正常数 c_2 和自然数 n_2 ,使得对所有 $n \geq n_2$,有 $g_1(n) \leq c_2 g(n)$ 。
- $\Leftrightarrow c_3 = \max\{c_1, c_2\}, n_3 = \max\{n_1, n_2\}, h(n) = \max\{f(n), g(n)\}$.
- 则对所有的 $n \ge n_3$, 有
- $f_1(n) + g_1(n) \le c_1 f(n) + c_2 g(n)$
- $\leq c_3 f(n) + c_3 g(n) = c_3 (f(n) + g(n))$
- $\leq c_3 2 \max\{f(n), g(n)\}$
- $= 2c_3h(n) = O(\max\{f(n), g(n)\}).$