Polynômes

Dans tout le chapitre, \mathbb{K} désignera l'un des ensembles \mathbb{R} ou \mathbb{C} .

1. Généralités

1.1. Unicité de l'écriture polynomiale

a) Théorème: soient $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ avec $(a_0, a_1, \dots, a_n) \in \mathbb{K}^{n+1}$. Alors:

$$(\forall x \in \mathbb{K}, \ P(x) = 0) \iff a_n = a_{n-1} = \dots = a_0 = 0.$$

Autrement dit, une fonction polynômiale est nulle si et seulement si ses coefficients sont nuls.

b) Principe d'identification des coefficients : on considère $P(x) = \sum_{k=0}^{n} a_k x^k$ et $Q(x) = \sum_{k=0}^{m} b_k x^k$,

avec $(a_0, \ldots, a_n) \in \mathbb{K}^{n+1}, (b_0, \ldots b_m) \in \mathbb{K}^{m+1}, a_n \neq 0, \text{ et } b_m \neq 0. \text{ Alors}$:

$$\left(\forall x \in \mathbb{K}, \ P(x) = Q(x) \right) \Leftrightarrow \left\{ \begin{array}{l} n = m \\ \forall k \in [[0, n]], \ a_k = b_k \end{array} \right.$$

c) <u>Moralité</u>: une fonction polynomiale est entièrement déterminée par son degré n et la suite ("presque nulle") de ses coefficients $a_0, a_1, \ldots, a_n, \ldots$, en convenant que $a_k = 0$ pour k > n.

Nous allons donc pouvoir travailler avec des polynômes formels, sans se préoccuper de la variable.

1.2. Définitions

a) Ecriture générale : on appelle polynôme (formel) à coefficients dans \mathbb{K} une expression P de la forme :

$$P = \sum_{k=0}^{+\infty} a_k X^k \quad \text{(on note indifféremment } P \text{ ou } P(X))$$

où (a_n) est une suite d'éléments de \mathbb{K} nulle à partir d'un certain rang, et appelée suite des coefficients de P. Cette écriture est unique, et permet donc l'identification des coefficients.

Si tous les coefficients sont nuls, P = 0 est appelé **polynôme nul**.

 $\it Remarque: X$ est appelée indéterminée. Ce n'est pas un nombre, mais un polynôme (un monôme).

On ne peut donc pas écrire "X=2". (cela entrainerait 1=0 et 0=2 par identification!!)

L'expression " $\forall X$ " n'a aucun sens.

b) Ecriture courante: si $P = \sum_{k=0}^{\infty} a_k X^k$ est un polynôme non nul, on note

$$\deg P = \max \left\{ k \in \mathbb{N} \ / \ a_k \neq 0 \right\} \text{ et par convention } \boxed{\deg 0 = -\infty}$$

1

Alors, si P est non nul, P s'écrit ainsi de manière unique, en notant $n = \deg P$:

$$P = \sum_{k=0}^{n} a_k X^k = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \quad \text{avec} \quad \begin{cases} n \in \mathbb{N} \\ (a_0, \dots, a_n) \in \mathbb{K}^{n+1} \\ \boxed{a_n \neq 0} \end{cases}$$

Attention : pour affirmer que $\sum\limits_{k=0}^n a_k X^k$ est de degré n, il faut s'assurer que $a_n \neq 0$

c) Vocabulaire:

- On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .
- On note $\mathbb{K}_n[X]$ l'ensemble des polynômes de degré **inférieur ou égal** à n
- Si $\deg P = n \geqslant 0$, a_n est appelé coefficient de plus haut degré, ou coefficient dominant.
- Si le coefficient dominant de P vaut 1, on dit que P est **unitaire**.
- a_0 est appelé **coefficient constant** de P.
- si $\deg P = 0$, on dit que P est un **polynôme constant**.
- si $P \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}^*$, le polynôme λP est dit **associé** à P. Il a même degré et mêmes racines que P

Remarque 1: un polynôme P est non nul si et seulement si $\deg P \geqslant 0$

Remarque 2: si a_n est le coefficient dominant de P, alors $\frac{1}{a_n}P$ est unitaire et associé à P.

Exemple : si $(a,b) \in \mathbb{K}^2$, $a \neq 0$ et $\lambda = -\frac{b}{a}$ alors P = aX + b et $Q = X - \lambda$ sont associés.

1.3. Opérations sur les polynômes

Soient deux polynômes de degré n et m à coefficients dans $\mathbb K$:

$$P = \sum_{k=0}^{n} a_k X^k = \sum_{k=0}^{+\infty} a_k X^k \quad \text{et} \quad Q = \sum_{k=0}^{m} b_k X^k = \sum_{k=0}^{+\infty} b_k X^k$$

a) Somme : P + Q est un polynôme de $\mathbb{K}[X]$ d'expression:

$$P + Q = \sum_{k=0}^{+\infty} (a_k + b_k) X^k$$

On voit alors que

$$\boxed{\deg(P+Q)\leqslant \max\left(\deg P,\deg Q\right)}$$

Plus spécialement,

si
$$\deg Q < \deg P$$
, alors $\deg (P+Q) = \deg P$

b) Produit: PQ est le polynôme de $\mathbb{K}[X]$ d'expression: $PQ = \sum_{k=0}^{+\infty} d_k X^k$, avec

$$\forall k \in \mathbb{N}, \ d_k = \sum_{i+j=k} a_i b_j = \sum_{i=0}^k a_i b_{k-i}$$

En particulier, on a

$$d_0 = a_0 b_0$$
, $d_1 = a_1 b_0 + a_0 b_1$ et $d_{n+m} = a_n b_m \neq 0$

De plus, si k > m + n, on voit que $d_k = 0$, de sorte que

$$P(X)Q(X) = a_n b_m X^{n+m} + \dots + (a_1 b_0 + a_0 b_1) X + a_0 b_0$$

On en déduit

$$deg(PQ) = deg P + deg Q$$

Conséquence : $\forall (P,Q) \in \mathbb{K}[X]^2$, on a : $PQ = 0 \iff (P = 0 \text{ ou } Q = 0)$

Remarque: si
$$P \neq 0$$
, alors $PQ = PR \iff Q = R$

1.4. Dérivation

a) <u>Définition</u>: si $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$, sa dérivée est le polynôme P' = D(P) d'expression:

$$P' = \sum_{k=1}^{n} k a_k X^{k-1} = \sum_{k=0}^{n-1} (k+1) a_{k+1} X^k$$

On vérifie alors les propriétés suivantes, valables pour tous polynômes P et Q (et $(\lambda,\mu)\in\mathbb{K}^2$)

- $(\lambda P + \mu Q)' = \lambda P' + \mu Q'$; (PQ)' = PQ' + P'Q
- Si deg $P \geqslant 1$, alors deg (P') = deg P-1. Sinon P'=0

Conséquence : $P' = 0 \Leftrightarrow P$ est un polynôme constant

- **b)** Dérivées d'ordre supérieur : on note $D^k(P)$ ou $P^{(k)}$ la dérivée k-ième de P, avec $D^0(P) = P^{(0)} = P$.
 - (i) Degré:

Si
$$\deg P=n\geqslant 0$$
 , alors $\left\{\begin{array}{ll} \sin k>n, & P^{(k)}=0\\ \sin k\leqslant n & \deg P^{(k)}=n-k \end{array}\right.$

(ii) Dérivées de X^n : soit $n \ge 0$ on a

$$D(X^{n}) = nX^{n-1} \quad ; \quad D^{2}(X^{n}) = n(n-1)X^{n-2}...$$
 Si $k \le n$, $D^{k}(X^{n}) = n(n-1)...(n-k+1)X^{n-k} = \frac{n!}{(n-k)!}X^{n-k}$ Si $k > n$, $D^{k}(X^{n}) = 0$

Remarque: on a en fait la formule vraie pour tout entier k:

$$D^{k}(X^{n}) = k! \binom{n}{k} X^{n-k}$$

Cas particulier : $D^{n}(X^{n}) = n!$

Généralisation: $\forall a \in \mathbb{K}, \ \forall k \in \mathbb{N}$.

$$D^{k}\left(\left(X-a\right)^{n}\right) = k! \binom{n}{k} \left(X-a\right)^{n-k}$$

- c) Formule de Taylor:
 - (i) Formule en 0: soit $P = \sum_{k=0}^{\infty} a_k X^k$ un polynôme. Alors $\forall k \in \mathbb{N}$, $a_k = \frac{P^{(k)}(0)}{k!}$

Autrement dit, le polynôme P s'écrit

$$\boxed{P = \sum_{k=0}^{\infty} \frac{P^{(k)}\left(0\right)}{k!} X^k} \quad \text{ou si} \quad \deg P = n, \\ \boxed{P = \sum_{k=0}^{n} \frac{P^{(k)}\left(0\right)}{k!} X^k}$$

(ii) Formule en $a \in \mathbb{K}$ quelconque :

Tout polynôme $P \in \mathbb{K}[X]$ se décompose en combinaison linéaire des puissances de X-a:

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}$$

où $n = \deg P$. Cette décomposition est unique.

1.5. Substitution

a) Fonction polynomiale associée à un polynôme : si $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$, et $\lambda \in \mathbb{K}$, on pose

$$P(\lambda) = \sum_{k=0}^{n} a_k \lambda^k \in \mathbb{K}$$

On dit qu'on a **substitué** le scalaire λ à l'indéterminée X.

On peut alors définir la fonction polynomiale $\widetilde{P}: \mathbb{K} \to \mathbb{K}$ associée à P par $\widetilde{P}(x) = P(x)$.

Par abus, on la note encore P, et l'étude faite au 1.1.montre qu'il revient au même de donner la fonction \widetilde{P} et le polynôme P.

Remarque 1: $\mathbb{R}[X] \subset \mathbb{C}[X]$: si P est un polynôme **réel**, on peut considérer $P: \mathbb{C} \to \mathbb{C}$.

Remarque 2 : la dérivée d'une fonction polynomiale complexe est purement formelle ici.

Remarque 3: égalité de deux polynômes : $P = Q \iff \forall x \in \mathbb{K}, \ P(x) = Q(x)$

b) Racines-équations :

- On dit que $a \in \mathbb{K}$ est **racine** de P (ou **zéro** de P) lorsque P(a) = 0.
- On appelle **équation algébrique** sur \mathbb{K} toute équation (E) pouvant s'écrire

$$P(x) = 0$$

où P est un polynôme de $\mathbb{K}[X]$. Les **solutions** de (E) sont donc les **racines** de P.

2. Divisibilité dans $\mathbb{K}[X]$

2.1. Factorisation

a) **Définition :** soient P et Q deux polynômes de $\mathbb{K}[X]$. On dit que Q divise P lorsque

$$\exists R \in \mathbb{K}[X] / P = QR$$

On dit aussi que P est divisible par Q ou que P est factorisable par Q.

Exemple 1: $X^2 + 1$ divise $X^4 - 1$

Exemple 2: $\forall a \in \mathbb{K}, \forall n \in \mathbb{N}, X - a \text{ divise } X^n - a^n$

Remarque: tout polynôme divise 0, et 0 ne divise aucun polynôme non nul.

b) Propriétés:

- (i) Si Q divise P et $P \neq 0$, alors $\deg Q \leqslant \deg P$.
- (ii) Si Q divise P_1, P_2, \dots, P_n , alors Q divise $\lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda_n P_n$. (les λ_i dans \mathbb{K})
- (iii) Application : $\forall a \in \mathbb{K}, X a \text{ divise } P P(a)$
- (iv) Conséquence fondamentale : si a est racine deP, si et seulement si X-a divise $P\left(X\right)$
- c) Polynômes irréductibles : soit $P \in \mathbb{K}[X]$ un polynôme non constant.

On dit que P est **irréductible sur** \mathbb{K} s'il n'est divisible que par ses associés et les polynômes constants.

Cela revient à dire que si P se décompose en P = QR, alors Q est constant ou R est constant.

Exemple 1 : les polynômes de degré 1 sur $\mathbb K$ sont irréductibles sur $\mathbb K$

Exemple 2 : les polynômes de degré 2 sur \mathbb{R} à discriminant négatif sont irréductibles sur \mathbb{R} , mais ne sont pas irréductibles sur \mathbb{C} .

4

2.2. Division euclidienne dans $\mathbb{K}[X]$

a) Théorème : soient A et B deux polynômes de $\mathbb{K}[X]$, avec $B \neq 0$:

$$\exists! (Q, R) \in \mathbb{K}[X]^2 \text{ tels que } A = BQ + R \text{ et } \deg R < \deg B$$

Q est appelé **quotient** et R est appelé **reste** de la division euclidienne de A par B.

Exemple 1: division euclidienne de $2X^5 - 4X^3 + 3X^2 - X + 2$ par $X^2 - X + 1$.

Ainsi

$$2X^{5} - 4X^{3} + 3X^{2} - X + 2 = (X^{2} - X + 1)(2X^{3} + 2X^{2} - 4X - 3) + 2X + 5$$

Exemple 2: division euclidienne de $A = 4X^3 + X^2$ par B = X + (1+i)

b) Lien avec la divisibilité: B divise A si et seulement si le reste de la division euclidienne de A par B est 0

Exemple:
$$X^2 + X + 1$$
 divise $X^5 + X^3 - X^2 - 1$

c) Recherche du reste : (sans connaître le quotient)

Exemple 1: soit
$$P = (X-3)^{2n} + (X-2)^n - 2$$
 $(n \ge 2)$.

Déterminer le reste de la division euclidienne de P par $X^2 - 5X + 6$, puis par $X^2 - 4X + 4$

Exemple 2 : Le reste de la division de P par X-a est le polynôme constant $P\left(a\right)$

3. Racines et divisibilité

- **3.1.** Factorisation par X-a
- a) Rappel: soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Alors a est racine de P si et seulement si X a divise P

Exemple: 2 est racine de $P = X^3 - 8X^2 + 13X - 2$. Factoriser P (deux méthodes).

b) <u>Généralisation</u>:

$$a_1, \ldots, a_m$$
 sont racines **distinctes** de P si et seulement si $(X - a_1) \ldots (X - a_m)$ divise P .

Exemple 1: soit $P = X^5 - X^4 - 2X^3 - X^2 + X + 2$.

En remarquant que 1, -1, 2 sont racines de P, factoriser P.

Remarque: les factorisations successives sont beaucoup plus inefficaces.

Exemple 2: montrer que j et j^2 sont racines de $P = X^5 + 3X^4 + 3X^3 - X^2 - 3X - 3$

c) Annulation des fonctions polynômes :

un polynôme de degré $n\geqslant 1$ ne peut avoir plus de n racines distinctes.

PCSI Polynômes

ou par contraposée :

si $\deg P \leqslant n$ et si P s'annule en au moins n+1 points, alors P est le polynôme nul.

Exemple 1: déterminer tous les polynômes P de $\mathbb{K}\left[X\right]$ vérifiant : $P\left(X+1\right)\overset{(*)}{=}P\left(X\right)$.

 $\it Cas \ particuliers:$ on peut affirmer que le polynôme $\it P$ est le polynôme nul lorsque :

- P s'annule sur \mathbb{K} sauf un nombre fini de points
- P s'annule sur un intervalle [a, b] non réduit à un point.
- P s'annule sur \mathbb{N} .
- P (complexe) s'annule sur \mathbb{R} .

Cas d'égalités : on peut affirmer que P=Q lorsque :

- P(x) = Q(x) pour tout $x \in \mathbb{K}$ sauf un nombre fini de points
- P(x) = Q(x) pour tout $x \in [a, b]$ non trivial.
- P(x) = Q(x) pour tout $x \in \mathbb{N}$.
- P(x) = Q(x) pour tout $x \in \mathbb{R}$ (P et Q complexes).

Il suffit en effet d'appliquer les résultats précédents à R = P - Q.

Exemple 2 : unicité du n-ième polynôme de Tchébychev :

On rappelle que si $n \in \mathbb{N}$, il existe un polynôme T_n vérifiant $\forall \theta \in \mathbb{R}, \ T_n (\cos \theta) = \cos (n\theta)$

Montrer que T_n est unique.

Exemple 3: trouver a,b,c réels tels ue $\forall x \in \mathbb{R} \setminus \{-1,0,1\}$, $\frac{1}{x^3-x} = \frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+1}$

3.2. Racines multiples

a) **Définition**: soit $P \in k \in \mathbb{N}^*$, et $a \in \mathbb{K}$.

on dit que
$$a$$
 est **racine d'ordre** k **de** P lorsque
$$\begin{cases} (X-a)^k \text{ divise } P \\ (X-a)^{k+1} \text{ ne divise pas } P \end{cases}$$

k est appelé **ordre de multiplicité** de la racine a. Cette définition revient à :

$$a$$
 est racine d'ordre k de P si et seulement si $\exists Q \in \mathbb{K}[X] \ / \ P = (X - a)^k \ Q$, **et** $Q(a) \neq 0$

Exemple: montrer que 1 est racine d'ordre 3 de $P = X^6 - 6X^5 + 9X^4 - 5X^3 + 6X^2 - 9X + 4$

b) Généralisation:

si a_1, \ldots, a_p distincts sont racines d'ordre au moins k_1, \ldots, k_p de P, alors $(X - a_1)^{k_1} \ldots (X - a_p)^{k_p}$ divise P.

c) Caractérisation par les dérivées :

$$a \text{ est racine d'ordre } k \text{ de } P \Longleftrightarrow \left\{ \begin{array}{l} P\left(a\right) = P'\left(a\right) = \cdots = P^{(k-1)}\left(a\right) = 0 \\ P^{(k)}\left(a\right) \neq 0 \end{array} \right.$$

Exemple : montrer que 1 est racine d'ordre 3 de $P = X^6 - 6X^5 + 9X^4 - 5X^3 + 6X^2 - 9X + 4X^4 - 6X^4 - 6X^4$

6

Décomposition des polynômes

4.1. Polynômes scindés

a) **<u>Définition</u>**: soit $P \in \mathbb{K}[X]$ un polynôme non constant.

On dit que Pest **scindé sur** K lorsqu'on peut le décomposer en produit de facteurs du premier degré sur K, autrement dit si P s'écrit sous la forme :

$$P = \lambda (X - \alpha_1) \dots (X - \alpha_n) = \lambda \prod_{k=1}^{n} (X - \alpha_k) \quad \text{avec } (\lambda, \alpha_1, \dots, \alpha_n) \in \mathbb{K}^{n+1}.$$

 λ est alors nécessairement le coefficient dominant de P, n son degré,

et $\alpha_1, \ldots, \alpha_n$ ses racines comptées avec leur ordre de multiplicité (une racine d'ordre k apparait k fois).

Cette décomposition est donc unique à l'ordre des facteurs près (on dit essentiellement unique).

Exemple 1: $P = X^3 - 1$ est scindé sur \mathbb{C} mais pas sur \mathbb{R} .

Exemple 2: $Q = 3X^4 + 6X^2 + 3$ est scindé sur \mathbb{C} mais pas sur \mathbb{R} .

b) Autre forme : comme dans ce dernier exemple, en regroupant les racines identiques, la décomposition d'un polynôme scindé s'écrit aussi (de manière essentiellement unique)

$$P = \lambda (X - \alpha_1)^{k_1} \dots (X - \alpha_m)^{k_m} = \lambda \prod_{i=1}^m (X - \alpha_i)^{k_i}$$

où $\alpha_1, \ldots, \alpha_m$ sont cette fois les racines <u>distinctes</u> de P, d'ordre de multiplicité k_1, \ldots, k_m . On a $\sum_{k=1}^m k_k = n$

4.2. Décompositions dans $\mathbb{C}[X]$

- **Théorème de d'Alembert-Gauss:** tout polynôme non constant de $\mathbb{C}[X]$ admet (au moins) une racine (admis)
- **Conséquence :** tout polynôme non constant de $\mathbb{C}[X]$ est scindé sur \mathbb{C} . (récurrence sur $n = \deg P$)
- Lecture arithmétique : le théorème de d'Alembert-Gauss entraine :
 - Les seuls polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1
 - Tout polynôme complexe non constant se décompose de manière essentiellement unique 2. en produit de polynômes irréductibles sur $\mathbb{C}[X]$
- Décompositions classiques :
 - (i) <u>A retenir dans les deux sens</u> : $X^2 2\cos(\theta)X + 1 = (X e^{i\theta})(X e^{-i\theta})$
 - (ii) Racines de l'unité (1) : pour $n \in \mathbb{N}^*$,

$$X^n - 1 = (X - 1)\left(X - e^{\frac{2i\pi}{n}}\right)\dots\left(X - e^{\frac{2i(n-1)\pi}{n}}\right)$$
 soit

$$X^{n} - 1 = (X - 1) \begin{pmatrix} X - e & n \end{pmatrix} \dots \begin{pmatrix} X - e & n \end{pmatrix} \text{ soit}$$

$$X^{n} - 1 = \prod_{k=0}^{n-1} (X - e^{2ik\pi/n}) = \prod_{k=0}^{n-1} (X - \omega^{k}) \text{ avec } \omega = e^{2i\pi/n}$$

$$X^{2} - 1 \quad X^{3} - 1 \quad X^{4} - 1 \quad X^{5} - 1$$

Exemples: factoriser $X^2 - 1$, $X^3 - 1$, $X^4 - 1$ et $X^5 - 1$

PCSI Polynômes

• Racines de l'unité (2): pour
$$n \ge 2$$
, $X^{n-1} + X^{n-2} + \dots + X^2 + X + 1 = \prod_{k=1}^{n-1} \left(X - e^{\frac{2ik\pi}{n}} \right)$

Exemples: factoriser $X^2 + X + 1$, $X^3 + X^2 + X + 1$ et $X^4 + X^3 + X^2 + X + 1$

4.3. Décompositions dans $\mathbb{R}[X]$

Les polynômes réels sont scindés sur \mathbb{C} , mais on va montrer qu'ils se décomposent en produits de polynômes réels de degré 1 de degré 2 de discriminant strictement positif (on dira **irréductibles** sur \mathbb{R}).

- a) Racines conjuguées : Si $a \in \mathbb{C} \setminus \mathbb{R}$ est racine d'ordre k de $P \in \mathbb{R}[X]$, alors \bar{a} est racine d'ordre k de P
- **By Regroupements de termes:** Si $a \in \mathbb{C}\backslash\mathbb{R}$, alors $(X-a)(X-\bar{a}) = X^2 + pX + q$, avec $\begin{cases} (p,q) \in \mathbb{R}^2 \text{ et } \\ p^2 4q < 0 \end{cases}$

Plus précisément

$$(X - a)(X - \bar{a}) = X^2 - (a + \bar{a})X + a\bar{a} = X^2 - 2\operatorname{Re}(a)X + |a|^2$$

Le discriminant est strictement négatif, sinon ce trinôme aurait deux racines réelles. le polynôme est donc irréductible sur $\mathbb R$

c) Décomposition en produit d'irréductibles :

Tout polynôme réel non constant se décompose en produit de polynômes réels de degré 1 et de polynômes réels de degré 2 à discriminant strictement négatif

Autrement dit, $P \in \mathbb{R}[X]$ non constant s'écrit

$$P = \lambda (X - a_1)^{k_1} \cdots (X - a_s)^{k_s} (X^2 + p_1 X + q_1)^{m_1} \cdots (X^2 + p_r X + q_r)^{m_r}$$

Où $a_1,\ldots,a_s,p_1,\ldots,p_r,q_1,\ldots,q_r$ sont des réels, $k_1,\ldots,k_s,m_1,\ldots,m_r$ des entiers $\geqslant 1$, vérifiant :

- λ est le coefficient dominant de P
- a_1, \ldots, a_s sont les racines réelles distinctes de P d'ordre k_1, \ldots, k_s
- $\forall i \in [[1, r]], p_i^2 4q_i < 0$
- $k_1 + \dots + k_s + 2(m_1 + \dots + m_r) = \deg P$

Cette décomposition est unique à l'ordre des facteurs près.

- d) Lecture arithmétique : on a ainsi
 - 1. Les seuls polynômes irréductibles de $\mathbb{R}[X]$ sont $\left\{\begin{array}{l} \text{les polynômes réels de degré 1} \\ \text{les polynômes réels de degré 2 irréductibles} \end{array}\right.$
 - 2. Tout polynôme réel non constant se décompose de manière essentiellement unique en produit de polynômes irréductibles sur $\mathbb{R}\left[X\right]$
- e) Exemples de factorisations sur $\mathbb R$:

Exemple 1: factoriser $P = X^7 + 27X^4 - X^3 - 27 \text{ sur } \mathbb{R}[X]$

Exemple 2: factoriser $P = X^4 + 1$ et $Q = X^4 + X^2 + 1$ sur $\mathbb{R}[X]$ en passant par les complexes, puis directement.

8

Exemple 3: factoriser $P = X^5 - 1 \operatorname{sur} \mathbb{R}[X]$

4.4. Application: somme et produit des racines

Exemple : développer les polynômes $(X-\alpha)(X-\beta)$, $(X-\alpha)(X-\beta)(X-\gamma)$ et $(X-\alpha)(X-\beta)(X-\gamma)$

Théorème : soit $P=\sum_{k=0}^n a_k X^k$ un polynôme de degré $n\geqslant 1$ et α_1,\dots,α_n ses racines complexes, comptées avec leur ordre de multiplicité. On note

$$\left\{ \begin{array}{l} \sigma = a_1 + \cdots + a_n \text{ la somme des racines} \\ \pi = a_1 \cdots a_n \text{ le produit des racines} \end{array} \right.$$

Alors

$$\begin{cases} \sigma = -\frac{a_{n-1}}{a_0} \\ \pi = (-1)^n \frac{a_0}{a_n} \end{cases}$$

Remarque: si P est unitaire, $\sigma = -a_{n-1}$ et $\pi = (-1)^n a_0$

Exemple 1: somme et produit des racines de $aX^2 + bX + c$, puis de $aX^3 + bX^2 + cX + d$.

Exemple 2: soit $P = (X+1)^n - X^n$ $(n \ge 2)$. Calculer la somme et le produit de ses racines complexes