পরিবেশ রসায়ন

Environmental Chemistry

পরিবেশ রসায়ন

TYPE - 01: (বয়েলের সূত্র)

EXAMPLE – 01 : স্থির তাপমাত্রায় ও $1~{
m atm}$ চাপে রক্ষিত $100~{
m mL}$ হাইড্রোজেন গ্যাসের উপর চাপ বৃদ্ধি করলে এর আয়তন $76~{
m mL}$ হয়। গ্যাসের চাপ বৃদ্ধির পরিমাণ নির্ণয় কর।

SOLVE : বয়েলের সূত্র মতে , $P_1V_1=P_2V_2$

P2 =
$$\frac{760 \text{ mm (Hg)} \times 100 \text{ mL}}{76 \text{ mL}}$$
 = 1000 mL

চাপের বৃদ্ধি = (1000–760) mm (Hg)

$$= 240 \text{ mm (Hg)} = \frac{240}{760} \text{ atm} = \frac{6}{19} \text{ atm}$$

 $\mathbf{Ans}: 240 \ \mathrm{mm} \ (\mathrm{Hg}) \ \mathrm{fl}, \frac{6}{19} \ \mathrm{atm} \ \mathrm{bi}$ প বৃদ্ধি হয়েছে।

প্রশ্নমতে.

গ্যাসের প্রাথমিক চাপ, $P_1 = 1$ atm

গ্যাসের প্রাথমিক আয়তন, $V_1 = 100 \text{ mL}$

গ্যামের পরিবর্তিত চাপ, $P_2 = ?$

গ্যাসের পরিবর্তিত আয়তন, $V_2 = 76 \; mL$

EXAMPLE – 02: নির্দিষ্ট তাপমাত্রায় ও 1 atm চাপে কয়েকটি মার্বেলসহ একটি গ্যাসের আয়তন 200 mL হয়। তাপমাত্রা অপরিবর্তিত রেছে চাপকে দ্বিগুণ করা হলে ঐ মার্বেলসহ গ্যাসের আয়তন হ্রাস পেয়ে 105 mL হয়। ঐ মার্বেলের আয়তন কত?

SOLVE : ধরা যাক , মার্বেলের আয়তন $= V \; mL$ কঠিন মার্বেলের আয়তনের উপর চাপের কোনো প্রভাব নেই । তাই উভয় অবস্থায় প্রদত্ত গ্যাসের আয়তন থেকে মার্বেলের আয়তন বাদ যাবে ।

বয়েলের মতে, $P_1V_1 = P_2V_2$

 $\therefore 1 \text{ atm} \times (200-V) \text{ mL} = 2 \text{atm} \times (105-V) \text{ mL}$

$$\Rightarrow$$
 200 - V = 210 - 2V; V = (210 - 200) 10 mL

Ans. মার্বেলের মোট আয়তন 10 mL বা 10 cm³

প্রশ্নমতে,

গ্যাসের

প্রাথমিক আয়তন, $V_1 = (200-V) \text{ mL}$

প্রাথমিক চাপ, $P_1 = 1$ atm

পরিবর্তিত আয়তন, $I_2 = (105-V) \text{ mL}$

পরিবর্তিত চাপ, $P_2 = 2$ atm

EXERCISE:

01. ছির তাপমাত্রায় 1.3 atm চাপে 500 mL আয়তনের একটি গ্যাসকে 1 atm চাপে আনা হল। বর্তমানে তার আয়তন কত হবে ? [Ans. 650 mL]

02. একটি ফ্লাক্সে 10 atm চাপে 50L হাইড্রোজেন ভর্তি করা আছে। 2L আয়তন বিশিষ্ট কতটি বেলুনকে ঐ গ্যাস দ্বারা ভর্তি করা যাবে, যখন একটি বেলুনের ভেতর হাইড্রোজেন গ্যাসের চাপ 2 atm হবে। প্রতিক্ষেত্রে গ্যাসের তাপমাত্রা ছির আছে।

[Ans. 125টি বেলন]

1

03. 25°C তাপমাত্রায় 50L আয়তনের একটি সিলিন্ডার 15 atm চাপে বায়ু দ্বারা পূর্ণ আছে। যদি বায়ুমন্ডলের চাপ 25°C তাপমাত্রায় 1 atm হয় এবং ঐ সিলিন্ডারের মুখ খুলে দেয়া হয়, তবে কত লিটার বায়ু সিলিন্ডার থেকে বের হয়ে যাবে ?

TYPE – 02 (চার্লসের সূত্রভিত্তিক)

EXAMPLE – 01: 27°C তাপমাত্রায় একটি সিলিন্ডারে 5L গ্যাস আছে। স্থির চাপে ঐ সিলিন্ডারের তাপমাত্রা 30° C করা হলে ঐ সিলিন্ডার থেকে কত আয়তন গ্যাস বের হয়ে যাবে ? [এক্ষেত্রে সিলিন্ডারের আয়তন বৃদ্ধি নগন্য।]

SOLVE : চার্লসের সূত্র মতে ,
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 $\Longrightarrow V_2 = \frac{V_1 \times T_2}{T_1} = \frac{5L \times 303k}{300k} = 5.05L$ \therefore গ্যাসের আয়তন বৃদ্ধি $= (5.05 - 5)L = 0.05L$

প্রশ্নমতে, $m v_1$ স্থামিক আয়তন, $m V_1=5~mL$ প্রথমিক তাপমাত্রা, $m P_1=1~atm$ পরিবর্তিত তাপমাত্রা, $m I_2=(105-V)~mL$ পরিবর্তিত আয়তন, $m P_2=2~atm$

EXERCISE:

 $= 755.0323 \text{ cm}^3$

- 01. ছির চাপে নির্দিষ্ট ভরের একটি গ্যাসের প্রাথমিক তাপমাত্রা 30°C হতে বৃদ্ধি করে এমন অবস্থায় নেওয়া হলো যে, গ্যাসের আয়তন দ্বিগুন হয়ে গেল। তাপমাত্রায় কত বৃদ্ধি করা হয়েছিল ? [Ans. 303°C]
- **02.** ছির চাপে ও 20°C তাপমাত্রায় 1600 mL চেতনানাশক গ্যাস কোন রোগীর শরীরে প্রবেশ করানো হয়। রোগীর দেহের তাপমাত্রা 37°C হলে প্রবিষ্ট গ্যাসের আয়তন কত হবে **EXERCISE**:

TYPE - 03 (বয়েল ও চার্লস এর সমন্বয় সূত্র)

EXAMPLE – 01 : 30° C তাপমাত্রায় 1.015~atm চাপে $850~cm^3$ অক্সিজেন গ্যাসকে পানির উপরিতলে সংগ্রহ করা হলো। প্রমাণ অবস্থায় এর আয়তন ও ভর নির্ণয় কর। $(30^{\circ}$ C তাপমাত্রায় জলীয় বাষ্পের চাপ 2.95~kPa)

SOLVE: বয়েল ও চার্লস এর সমন্বয় সূত্র হতে,

$$\frac{V}{T} = \frac{(P_1 - P_f) V_1}{T_1}; V = \frac{(P_1 - P_f) V_1 T}{PT_1}$$
$$= \frac{(1.015 \times 101.325 - 2.95) \times 850 \times 273}{101.325 \times 303}$$

এখানে, $\,{f V}={f STP}\,$ তে অক্সিজেনের আয়তন

P = STP তে চাপ = 101.325 kPa

T = STP তে তাপমাত্রা = 273k

 $V_1=$ সংগৃহীত অক্সিজেনের প্রাথমিক আয়তন $=850\ cm^3$

 $P_1 =$ প্রাথমিক চাপ = 1.015 atm = 1.015 \times 101.325 kPa

 $P_f = 30$ °C তাপমাত্রায় জলীয় বাম্পের চাপ = 2.95 kPa

∴ প্রথম অবস্থায় অক্সিজেন গ্যাসের আয়তন 755.0323 cm³ প্রমাণ অবস্থায় 22400 cm³ অক্সিজেন গ্যাসের ভর 32g.

∴প্রথম অবস্থায়
$$755.0323~{
m cm}^3$$
 অক্সিজেন গ্যামের ভর $\frac{32 \times 755.0.23}{22400} = 1.07862 {
m g}$ (প্রায়)

EXERCISE:

- 01. 37°C তাপমাত্রায় ও 102.25 kPa চাপে কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন 500 cm³. STP তে এর আয়তন কত ? [Ans. 444.3423 cm³]
- 02. 37° C তাপমাত্রায় ও 1.017~atm চাপে $288~cm^3~H_2$ গ্যাসকে পানির অপসারণ প্রক্রিয়ায় সংগ্রহ করা হলো। প্রমাণ তাপমাত্রা ও চাপে H_2 গ্যাসের আয়তন ও ভর নির্ণয় কর। (15°C) তাপমাত্রায় জলীয় বাঙ্গের চাপ 1.733~kPa) [Ans. H_2 গ্যাসের আয়তন $272.9717~cm^3$ এবং ভর $2.437 \times 10^{-2}g$]

TYPE - 04 (অ্যাভোগাড্রো এর সূত্র)

EXAMPLE – 01: কোন নির্দিষ্ট উষ্ণতা ও চাপে $4.2 \mathrm{gm} \ \mathrm{NH}_3$. $6.5 \mathrm{L}$ আয়তন দখল করে। ঐ একই উষ্ণতা ও চাপে 1.25×10^{23} অণু CO_2 এর আয়তন কত ?

SOLVE: NH_3 এর জন্য, $PV_1=n_2RT$ (i) CO_2 এর জন্য $PV_2=n_2RT$ (ii) $V_1=NH_3$ এর আয়ত =6.5~L $(ii) \div (i) \Rightarrow \frac{V_2}{V_1} = \frac{n_2}{n_1}; \ V_2 = \frac{n_2 \times v_1}{n_1}$ $= \frac{0.2075 \times 6.5}{0.2471} = 5.458~L~ [\text{Ans. 5.458 L}]$ $v_1=NH_3$ এর মোল সংখ্যা $=\frac{4.2}{17}=0.2471~\text{mol}$ $V_2=CO_2$ এর আয়তন, =? $n_2=CO_2$ এর মোল সংখ্যা, $=\frac{1.25 \times 10^{23}}{6.023 \times 10^{23}}=0.2075~\text{mol}$

EXERCISE:

- 01. কোন নির্দিষ্ট তাপমাত্রায় ও চাপে $12.5~{
 m g~H_2S}$ গ্যাসের আয়তন $8.235~{
 m dm}^3$ ঐ একই তাপমাত্রায় ও চাপে $12.5 {
 m g~CO_2}$ গ্যাসের আয়তন নির্ণয় কর। [${
 m Ans.}~6.36341$]
- 02. পানি পূর্ণ একটি পাত্র প্রতি ঘন্টায় $150~{
 m mg}$ ভর হারায়। প্রতি সেকেন্ডে পাত্রটি থেকে কতটি জলীয় বাষ্পের অণুর সৃষ্টি হয় ? Ans. (1.394 × 10^{18} টি)
- 03. একটি গ্যাসের বাষ্প ঘনত্ব 22.27°C তাপমাত্রায় ও 98.95 kPa চাপে $1 dm^3$ ঐ গ্যাসের ভর কত ? Ans. (1.744 g)

TYPE - 05: (আদর্শ গ্যাস সমীকরণের প্রয়োগ) ঃ

EXAMPLE – 01: 30°C তাপমাত্রায় 12 g CO2 গ্যাস 5L স্থান দখল করলে ঐ গ্যাসের চাপ কত হবে?

SOLVE : আমরা জানি , $PV = \frac{W}{M}RT$

$$P = \frac{W}{MV} RT = \frac{12 \times 0.0821 \times 303}{44 \times 5}$$

= 1.35524 atm **Ans. (1.35524 atm)**

এখানে, $W = CO_2$ এর ভর = 12 g

 $M=CO_2$ এর আনবিক ভর $=44~\mathrm{g}$

V= গ্যাসের আয়তন =5~L; গ্যাসের চাপ, P=?

T = গ্যাসের তাপমাত্রা = (273 + 30) k

R = গ্যাস ধ্রুবক 0.0821 L atm / kmol

EXAMPLE – 02 : 1.4628~g ভরের একটি অজ্ঞাত গ্যাস 37° C তাপমাত্রায় যে আয়তন দখল করে, $0.1839~g~H_2$ গ্যাস একই চাপে এবং 17° C তাপমাত্রায় একই আয়তন দখল করে। অজ্ঞাত গ্যাসের আনবিক ভর কত ?

<code>SOLVE</code> : অজ্ঞাত গ্যাসের ক্ষেত্রে , $PV = \frac{W_U}{M_{\rm H\,I}}\,RT_U\;.....\;(i)$

$$H_2$$
 এর ক্ষেত্রে , $PV=rac{W_{H_2}}{M_{H_3}}~RT_{H_2}~......(ii)$

(i) ও (ii) হতে,
$$\frac{W_U}{M_U} \, RT_U \, = \, \frac{W_{H_2}}{M_{H_2}} \, RT_{H_2}$$

$$\implies M_U = \frac{W_U T_U M_{H_2}}{M_{H_2} T_{H_2}} = \frac{1.4628 \times 310 \times 2}{0.1839 \times 290} = 17$$

Ans. অজ্ঞাত গ্যাস এর আনবিক ভর 17

এখানে, W_4 = অজ্ঞাত গ্যাসের ভর = 1.4628 g

T₄ = অজ্ঞাত গ্যাসের তাপমাত্রা

= (37 + 273) k = 310 k

 \mathbf{M}_4 = অজ্ঞাত গ্যাসের আনবিক ভর = ?

 $M_{\rm H_2}=H_2$ এর আনবিক ভর $=2~{
m g}$

 $W_{H_2} = H_2$ এর ভর = 0.1839 g

 $T_{\rm H_2} = \ H_2$ এর তাপমাত্রা = (17+273) $k = 290 \ k$

EXERCISE:

- 01. সূর্যের কেন্দ্রে একটি গ্যাসীয় পদার্থ আছে যার গড় আনবিক ভর 2। গ্যাসটির ঘনত্ব ও চাপ যথাক্রমে $1.3 {
 m g}$ m ${
 m L}^{-1}$ ও $1.95 imes 10^8 {
 m atm}$ । সূর্যের তাপমাত্রা কত ? ($3653807.39 {
 m ^{\circ}C}$)
- **02.** একটি পাত্র 1.6~atm চাপ সহ্য করতে পারে। $24^{\circ}C$ তাপমাত্রা ও 103.99~kPa চাপে H_2 গ্যাস দ্বারা পাত্রটি পূর্ণ করার পর তাকে উত্তপ্ত করা হল। কত তাপমাত্রায় পাত্রটি ফেঁটে যাবে ? $(190.02^{\circ}C)$
- 03. 20°C তাপমাত্রায় একটি কঠিন বস্তুসহ নির্দিষ্ট পরিমান কোন গ্যাসের আয়তন $0.12~{
 m dm}^3$ হয়। ঐ গ্যাসের তাপমাত্রা 47° C এ উন্নীত করলে চাপ দিগুণ এবং কঠিন বস্তুসহ গ্যাসের আয়তন $71.5~{
 m cm}^3$ হয়। কঠিন বস্তুটির আয়তন কত ${
 m cm}^3$ হবে ? $(13.154~{
 m cm}^3)$
- **04.** প্রমাণ অবস্থায় CO₂ গ্যাসের ঘনত্ব 22। চাপের কোন পরিবর্তন না ঘটিয়ে 11°C তাপমাত্রায় এর ঘনত্ব কত হবে ? (21.15)

TYPE - 06: (ভান্ডার ওয়ালস সমীকরণ)

EXAMPLE – 01 : $0.05~\rm dm^3$ আয়তনে $1~\rm mol$ একটি গ্যাসের $100^{\circ}\rm C$ তাপমাত্রায় চাপ কত হবে ভ্যান্ডার ওয়ালস সমীকরণের সাহায্যে গণনা কর । [দেওয়া আছে , $a=3.592~\rm atm/L^2~mol^2$, $b=0.04267~\rm dm^3/mol]$

SOLVE: 1 mol গ্যাসের জন্য ভ্যান্ডার ওয়ালস সমীকরণ,

$$\left(P + \frac{a}{v^2}\right) \text{ (V-b)} = \text{RT} \Rightarrow P = \frac{\text{RT}}{\text{V-b}} - \frac{\text{a}}{\text{v}^2}$$

$$= \frac{0.0821 \times 373}{0.06 - 0.04267} = 2741 \text{ atm } (Ans.)$$

প্রশ্ন অনুসারে, $V = 0.05 \text{ dm}^3$

T = 100 + 273 = 373 k

 $a = 3.592 \text{ atm } dm^6 \text{ mol}^{-2}$

 $b = 0.04267 \text{ dm}^3 \text{ mol}^{-1}$

 $R = 0.0821 L atm mol^{-1}$ এবং P = ?

EXERCISE:

01. 11°C তাপমাত্রায় 1.0 atm চাপে 1 mol CO₂ গ্যাসের ক্ষেত্রে ভ্যান্ডার ওয়ালস ধ্রুবক 'a' এর মান নির্ণয় কর। (Ans. 0.29792 atm mol⁻² dm⁶)

TYPE - 07: (ডালটনের আংশিক চাপ)

EXAMPLE – 01: 15° C তাপমাত্রায় ও 101~kPa চাপে পৃথকভাবে $100~\text{cm}^3~\text{H}_2$, $150~\text{cm}^3~\text{N}_2$, $46~\text{cm}^3~\text{O}_2$ 250cm^3 আয়তনের একটি শূন্য পাত্রের ভিতর মিশ্রিত করা হল । 20° C তাপমাত্রায় এই মিশ্র পদার্থের চাপ কত ?

SOLVE: ডালটনের আংশিক চাপ সূত্রানুসারে,

$$P_1 = \frac{P_b (V_1 + V_2 + V_3)}{V} = \frac{101 (100 + 150 + 46)}{250}$$

= 119.584 kPa

আবার,
$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \Longrightarrow P_2 = \frac{P_1 T_2}{T_1} = \frac{119.584 \times 293}{288}$$

= 121.66 kPa (Ans.)

এখানে.

 $V_1 = 100 \text{ cm}^3; \ V_2 = 150 \text{ cm}^3$

 $V_3 = 46 \text{ cm}^3 \text{ ; } V = 250 \text{ cm}^3$

 $P_b = 101 \text{ kPa}$

 $P_1 = 150$ °C তাপমাত্রায় মিশ্রণের চাপ = ?

P2 = 20°C তাপমাত্রায় মিশ্রণের চাপ = ?

 $T_1 = (15 + 273) k = 288 k$

 $T_2 = (20 + 273) k = 293 k$

EXAMPLE – 02 : একটি পাত্রে তিন আয়তন N_2 ও দুই আয়তন Cl_2 একত্রে মিশানো হল । ঐ সময়ে ব্যারোমিটারে চাপ $1~{
m atm}$ এবং মিশ্রণের চাপ ব্যারোমিটারের চাপের সমান হলে গ্যাস মিশ্রণের প্রতিটি গ্যাসের আংশিক চাপ কত ?

5

SOLVE: ধরি, পাত্রের আয়তন =VL

$$\therefore$$
 N₂ এর আয়তন = V_{N₂} = $\frac{3}{V}$ L

$$Cl_2$$
 " = $V_{Cl_2} = \frac{2}{V} L$

$$\therefore N_2$$
 এর আংশিক চাপ, $P_{N_2} = \frac{PV_{N_2}}{V_{N_2} + V_{Cl_2}} = \frac{1 \times \frac{3}{V}}{\left(\frac{3}{V} + \frac{2}{V}\right)} = 0.6 \text{ atm}$

$$Cl_2$$
 এর আংশিক চাপ, $P_{Cl_2} = \frac{PV_{Cl_2}}{V_{N_2} + V_{Cl_2}} = \frac{1 \times \frac{2}{V}}{\left(\frac{3}{V} + \frac{2}{V}\right)} = 0.4 \text{ atm } (\textbf{Ans.})$

EXERCISE:

- 01. দুটি পাত্রের একটিতে 99.99 kPa চাপে $550~{
 m cm^3~N_2}$ এবং অপরটিতে $150~{
 m kPa}$ চাপে $500~{
 m cm^3~O_2}$ গ্যাস আছে। এখন পাত্র দুটি একটি সরু কাঁচ নল দিয়ে যুক্ত করলে গ্যাস মিশ্রণের মোট চাপ কত হবে ? (Ans. 123.803)
- 02. 37°C তাপমাত্রায় একটি পাত্রে রক্ষিত কিছু পরিমান গ্যাসকে উত্তপ্ত করা হল, যতক্ষণ পর্যন্ত না তার ভিতরের 1/3 অংশ বের হয়ে যায়। পাত্রের আয়তন ও চাপ অপরিবর্তিত ছিল ধরে নিয়ে কত তাপমাত্রা পর্যন্ত পাত্রটিকে উত্তপ্ত করা হয়েছিল নির্ণয় কর। (Ans. 192°C)
- 03. আয়তন অনুসারে বায়ুতে $20\%~O_2$ এবং $80\%~N_2$ গ্যাস বর্তমান থাকে যে স্থানে বায়ুর চাপ 99.9~kPa. O_2 ও N_2 এর আংশিক চাপ নির্ণয় কর।
- $04.~~25^{\circ}\mathrm{C}$ তাপমাত্রায় একটি $850~\mathrm{cm^3}$ ফ্লাব্সে $49~\mathrm{H_2}$ এবং $4~\mathrm{g}$ He রাখা আছে। প্রত্যেকটি গ্যাসের আংশিখ চাপ এবং গ্যাস মিশ্রণের মোট চাপ নির্ণয় কর। ($P_{\mathrm{H_2}} = 57.56~\mathrm{atm},~P_{\mathrm{H_e}} = 28.78~\mathrm{atm},$ $P_{\mathrm{total}} = 86.34~\mathrm{atm})$
- **05.** 27°C তাপমাত্রায় 1 atm চাপে একটি 20~L পাত্রে কিছু N_2 ও O_2 গ্যাস মিশ্রিত করা হল। মিশ্রিত O_2 গ্যাসের আয়তন STP তে 16.8~L হয়, তবে মিশ্রণে O_2 গ্যাসের আংশিক চাপ কত? (0.9225~atm)

TYPE - 08: (গ্রাহামের গ্যাস ব্যাপন সূত্র)

EXAMPLE – 01 : নির্দিষ্ট আয়তনের বিশুদ্ধ O_2 নিঃসরিত হতে $80~{
m sec}$ সময় লাগে এবং একই অবস্থায় সমান আয়তনের 20% ওজোন মিশ্রিত O_2 এর নিঃসরণের জন্য $85~{
m sec}$ সময় প্রয়োজন হয়। ওজোনের আনবিক ভর নির্ণয় কর।

SOLVE : গ্রাহামের ব্যাপন সূত্রানুসারে,
$$\frac{t_2}{t_1} = \sqrt{\frac{M_2}{M_1}}$$

$$\Rightarrow \left(\frac{t_2}{t_1}\right)^2 = \frac{M_2}{M_1} \Rightarrow M_2 = M_1 \times \left(\frac{t_2}{t_1}\right)^2 = 32 \times \left(\frac{85}{80}\right)^2 = 36$$

মিশ্রণের কার্যকর আনবিক ভর
$$= (ওজোনের আনবিক ভর \times \frac{20}{100}) + (অক্সিজেনের আনবিক ভর \times \frac{20}{100})$$

$$\Rightarrow 36 = (x \times 0.2) + (32 \times 0.8) \Rightarrow 0.2x = 36 - 25.6 = 10.4$$

$$x = \frac{10.4}{0.2} = 52 \text{ (Ans.)}$$

এখানে,
$$t_1 = O_2 \text{ এর ব্যাপন সময়} = 80 \text{ sec}$$

$$t_2 = \text{ওজোন মিশ্রত } O_2$$

$$4 = \text{ব্যাপন সময়} = 85 \text{ sec}$$

$$M_1 = O_2 \text{ এর আনবিক ভর} = 32$$

$$M_2 = \text{গ্যাস মিশ্রণের}$$

$$\text{কার্যকর আনবিক ভর}$$

EXAMPLE – 02: একই তাপমাত্রা ও চাপে কোন পাত্রের একই ছিদ্র পথে একটি অজ্ঞাত গ্যাস ও ক্লোরিনের পৃথকভাবে নিঃসরণ হার যথাক্রমে 6 ঃ 5 ক্লোরিনের ঘনত্ব 36 হলে অজ্ঞাত গ্যাসের ঘনত্ব ও আনবিক ভর কত হবে ?

SOLVE : গ্রাহামের গ্যাস - ব্যাপন সূত্র মতে,

$$\frac{r_1}{r_2} \, = \, \sqrt{\frac{d_2}{d_1}} \Longrightarrow \quad \frac{6}{5} \ = \, \sqrt{\frac{36}{d_1}} \Longrightarrow \quad d_1 = 25$$

 \therefore অজ্ঞাত গ্যাসের ঘনত্ব =25 অজ্ঞাত গ্যাসের আনবিক ভর $=2\times$ ঘনত্ব $=2\times25=50$ (Ans.)

প্রশ্নমতে, অজ্ঞাত গ্যাসের নিঃসরণ হার, $r_1=6$ অজ্ঞাত গ্যাসের ঘনত্ব, $d_1=?$ ক্লোরিনের নিঃসরণ হার, $r_2=5$ ক্লোরিনের ঘনত্ব, $d_2=36$

EXERCISE:

- 01. 100 mL আয়তনের একটি গ্যাস A একটি সৃক্ষ ছিদ্রের ভেতর দিয়ে ব্যাপিত হতে 293 sec সময় নেয়। একই আয়তনের CO₂ একই অবস্থায় ব্যাপিত হতে 230 sec সময় লাগে। A গ্যাসের আনবিক ভর নির্ণয় কর।
 (Ans. (71.41))
- 02. পৃথিবীর বায়ুমন্ডলে আয়তন হিসেবে $80\%\ N_2$ ও $20\%\ O_2$ আছে। বায়ুর ঘনত্ব (হাইড্রোজেনের তুলনায়) নির্ণয় কর। বায়ুর কার্যকর আনবিক ভর কত? (Ans. 14.4, 28.8)
- **03.** দুই মুখ খোলা একটি কাচনল 100 cm লম্বা। এর এক প্রান্তে NH3 দ্রবণ সিক্ত তুলা এবং অপর প্রান্তে HCl সিক্ত তুলা রাখা হল। কাচ নলের কোথায় গ্যাস দুটি মিলিত হবে ?

Ans. (NH3 সিক্ত কাচ প্রান্ত হতে 59.44 cm দূরত্বে)

TYPE – 09 : (গ্যাসের অণুর গতিবেগ)

EXAMPLE – 01: 21°C তাপমাত্রায় এবং 720 mm (Hg) চাপে CO₂ অণুর বর্গমূল গড় বর্গ গতিবেগ (r.m.s বেগ) নির্ণয় কর।

EXERCISE:

- 01. 25° C তাপমাত্রায় একটি গ্যাসের ঘনত্ব 1.75~g/L হলে ঐ তাপমাত্রায় গ্যাস অণুসমূহের r.m.s. বেগ নির্ণয় কর। $Ans.(413.932~ms^{-1})$
- 02. কত তাপমাত্রায় CO_2 এর বর্গমূল গড় বর্গবেগ, $20^{\circ}C$ তাপমাত্রায় Cl_2 এর বর্গমূল গড় বর্গবেগের সমান হবে ? Ans. ($-91.43^{\circ}C$)

TYPE – 10 : (গ্যাসীয় অণুর গতিশক্তি)

EXAMPLE – 01: 25° C তাপমাত্রায় একটি 1g CO_2 অণুর গড় গতিশক্তি বের কর।

SOLVE: গ্যাসের গতিতত্ত্ব থেকে আমরা জানি,

যেকোন গ্যাসের 1টি অণুর গড় গতিশক্তি $= \frac{3RT}{2N_A}$

Arr Arr Arr Arr এর একটি অণুর গতিশক্তি Arr Arr

 $6.17 \times 10^{-21} \text{ molecule}^{-1}$ (Ans.)

এখানে,

 $R = 8.314 \text{ Jk}^{-1} \text{ mol}^{-1}$

T = (273 + 25) k = 298 k

EXERCISE:

 $01. \ \ 25^{\circ}{
m C}$ তাপমাত্রায় $1{
m g}\ {
m CO}_2$ গ্যাসের অনুসমূহের গতিশক্তি বের কর। (Ans. $84.46\ {
m J}$)