Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea Guido Ivetta César Vallero

FaMAF, 25 de agosto de 2021

Contenidos estimados para hoy

- Conjuntos parcialmente ordenados
 - Isomorfismo de posets
 - Supremos e ínfimos
- Posets Reticulados
 - Ejemplos
 - Isomorfismos preservan estructura
 - Dualidad
 - Propiedades fundamentales del supremo e ínfimo

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Definición

f es un **isomorfismo** ("iso") si

- $\blacksquare f$ es biyectiva y
- \blacksquare para todo $x, y \in P$, se cumple que

$$x \le y \iff f(x) \le' f(y).$$

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Definición

f es un **isomorfismo** ("iso") si

- $\blacksquare f$ es biyectiva y
- \blacksquare para todo $x, y \in P$, se cumple que

$$x \le y \iff f(x) \le' f(y).$$

Decimos entonces que (P,\leq) y (Q,\leq') son isomorfos y escribimos $(P,\leq)\cong (Q,\leq').$

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Definición

f es un **isomorfismo** ("iso") si

- $\blacksquare f$ es biyectiva y
- \blacksquare para todo $x, y \in P$, se cumple que

$$x \le y \iff f(x) \le' f(y).$$

Decimos entonces que (P,\leq) y (Q,\leq') son **isomorfos** y escribimos $(P,\leq)\cong (Q,\leq').$

Isomorfismo es una noción simétrica

$$f:(P,\leq) \to (Q,\leq') \text{ iso } \Longrightarrow f^{-1}:(Q,\leq') \to (P,\leq) \text{ iso.}$$

Sean (P, <), (Q, <') dos posets, y sea $f: P \to Q$ una función.

Definición

f es un **isomorfismo** ("iso") si

- f es biyectiva y
- \blacksquare para todo $x, y \in P$, se cumple que

$$x \le y \iff f(x) \le' f(y).$$

Decimos entonces que (P, \leq) y (Q, \leq') son **isomorfos** y escribimos $(P,<)\cong (Q,<').$

Isomorfismo es una noción simétrica

$$f:(P,\leq)\to(Q,\leq')$$
 iso $\Longrightarrow f^{-1}:(Q,\leq')\to(P,\leq)$ iso. \longleftarrow ¡Ejercicio!

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

Definición

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ u está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.
- $s \in P$ se dice **supremo** de $s \in S$ si $s \in S$ superior de $s \in S$ y $\forall b \in P, b \in S$ es cota superior $s \in S$ defined as $s \in S$. Escribimos " $s = \sup S$ ".
- 4 $i \in P$ se dice **infimo** de S si i es una cota inferior de S y $\forall b \in P, b$ es cota inferior b de $S \implies b \le i$. Escribimos " $i = \inf S$ ". Es la mayor cota inferior.

Definición

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.
- **3** El **supremo** $\sup S$ es la menor cota superior de S en P (si existe).
- **4** El **ínfimo** $\inf S$ es la mayor cota inferior de S en P (si existe).

Definición

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.
- **3** El **supremo** $\sup S$ es la menor cota superior de S en P (si existe).
- **4** El **ínfimo** $\inf S$ es la mayor cota inferior de S en P (si existe).

Definición

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.
- **3** El **supremo** $\sup S$ es la menor cota superior de S en P (si existe).
- **4** El **ínfimo** $\inf S$ es la mayor cota inferior de S en P (si existe).

Definición

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.
- **3** El **supremo** $\sup S$ es la menor cota superior de S en P (si existe).
- **4** El **ínfimo** $\inf S$ es la mayor cota inferior de S en P (si existe).

Ejemplo

Definición

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.
- **3** El **supremo** $\sup S$ es la menor cota superior de S en P (si existe).
- **4** El **ínfimo** $\inf S$ es la mayor cota inferior de S en P (si existe).

Ejemplo

$$\sup\{4,6\} = 12 \quad \inf\{4,6\} = 2$$

Definición

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.
- **3** El **supremo** $\sup S$ es la menor cota superior de S en P (si existe).
- **4** El **ínfimo** $\inf S$ es la mayor cota inferior de S en P (si existe).

Ejemplo

$$\frac{\sup\{4,6\}}{4\vee 6} = 12 \quad \inf\{4,6\} = 2$$

Definición

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.
- **3** El **supremo** $\sup S$ es la menor cota superior de S en P (si existe).
- **4** El **ínfimo** $\inf S$ es la mayor cota inferior de S en P (si existe).

Ejemplo

$$\frac{\sup\{4,6\}}{4 \vee 6} = 12 \quad \frac{\inf\{4,6\}}{4 \wedge 6} = 2$$

Definición

 (L,\leq) es un poset **reticulado** si para todo $a,b\in L$ existen $\sup\{a,b\}$ e $\inf\{a,b\}.$

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $\sup\{a, b\}$ e $\inf\{a, b\}$.

Notación: $a \lor b := \sup\{a, b\}$ $a \land b := \inf\{a, b\}$

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $\sup\{a, b\}$ e $\inf\{a, b\}$.

Notación: $a \lor b := \sup\{a, b\}$ $a \land b := \inf\{a, b\}$

- (N, |).
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $\sup\{a, b\}$ e $\inf\{a, b\}$.

Notación: $a \lor b := \sup\{a, b\}$ $a \land b := \inf\{a, b\}$

- 1 (\mathbb{R}, \leqslant) , (\mathbb{N}, \leqslant) , (\mathbb{Z}, \leqslant) . ¡Totales!
- **2** $(\mathbb{N}, |)$.
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $\sup\{a, b\}$ e $\inf\{a, b\}$.

Notación: $a \lor b := \sup\{a, b\}$ $a \land b := \inf\{a, b\}$

- 1 $(\mathbb{R}, \leqslant), (\mathbb{N}, \leqslant), (\mathbb{Z}, \leqslant).$ ¡Totales!
- $(\mathbb{N}, |)$. \longrightarrow ¡Ojo con los subposets!
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $\sup\{a, b\}$ e $\inf\{a, b\}$.

Notación: $a \lor b := \sup\{a, b\}$ $a \land b := \inf\{a, b\}$

- 1 (\mathbb{R}, \leqslant) , (\mathbb{N}, \leqslant) , (\mathbb{Z}, \leqslant) . ¡Totales!
- $(\mathbb{N}, |)$. \longrightarrow ¡Ojo con los subposets!
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Ejemplos de posets reticulados

Ejemplo (Conjunto de divisores de *n*)

$$D_n := \{k \in \mathbb{N} : k \mid n\}.$$

 $(D_n, |)$ tiene primer elemento 1 y último elemento n.

Ejemplos de posets reticulados

Ejemplo (Conjunto de divisores de *n*)

$$D_n := \{k \in \mathbb{N} : k \mid n\}.$$

 $(D_n, |)$ tiene primer elemento 1 y último elemento n.

$$x \lor y = \operatorname{mcm}(x, y)$$
 $x \land y = \operatorname{mcd}(x, y).$

Ejemplos de posets reticulados

Ejemplo (Conjunto de divisores de *n*)

$$D_n := \{k \in \mathbb{N} : k \mid n\}.$$

 $(D_n, |)$ tiene primer elemento 1 y último elemento n.

$$x \lor y = \operatorname{mcm}(x, y)$$
 $x \land y = \operatorname{mcd}(x, y).$

Ejemplo (Partes de un conjunto)

$$\mathcal{P}(A) := \{X : X \subseteq A\}.$$

 $(\mathcal{P}(A),\subseteq)$ tiene primer elemento \varnothing y último elemento A.

$$X \lor Y = X \cup Y$$
 $X \land Y = X \cap Y$.

Encuestra nuestra de cada día

Repetimos las definiciones:

 $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u$. El **supremo** $\sup S$ es la menor cota superior de S en P (si existe). (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $\sup\{a, b\}$ e $\inf\{a, b\}$.

Encuestra nuestra de cada día

Repetimos las definiciones:

 $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u$.

El **supremo** $\sup S$ es la menor cota superior de S en P (si existe).

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $\sup\{a, b\}$ e $\inf\{a, b\}$.

$$\boldsymbol{P} := ([0,1) \cup [2,3), \leqslant)$$

Consideremos el conjunto $[0,1) \cup [2,3) = \{x \in \mathbb{R} : 0 \le x < 1 \text{ ó } 2 \le x < 3\}$ con el orden heredado de \mathbb{R} .

- ¿Es P un poset reticulado?
- 2 ¿Existe $\sup [2, 3)$?
- $3 \cos[0,1) = 1?$
- 4 $\sin[0,1) = 2$?

 $f:(P,\leq) \to (Q,\leq')$ isomorfismo si es biyectiva y para todo $x,y\in P$, $x\leq y \iff f(x)\leq' f(y).$

 $f:(P,\leq) \to (Q,\leq')$ isomorfismo si es biyectiva y para todo $x,y\in P$, $x\leq y \iff f(x)\leq' f(y).$

Proposición

Sean $u \in P$ y $S \subseteq P$. Entonces u es cota superior de $f(S) := \{f(x) : x \in S\}$.

 $f:(P,\leq) \to (Q,\leq')$ isomorfismo si es biyectiva y para todo $x,y\in P$, $x\leq y \iff f(x)\leq' f(y).$

Proposición

Sean $u \in P$ y $S \subseteq P$. Entonces u es cota superior de $f(S) := \{f(x) : x \in S\}$.

Demostración.

(⇒) Pizarra.

 $f:(P,\leq) \to (Q,\leq')$ isomorfismo si es biyectiva y para todo $x,y\in P$, $x\leq y \iff f(x)\leq' f(y)$.

Proposición

Sean $u \in P$ y $S \subseteq P$. Entonces u es cota superior de $f(S) := \{f(x) : x \in S\}$.

Demostración.

- (⇒) Pizarra.
- (\Leftarrow) Por simetría (porque f^{-1} es iso).

 $f:(P,\leq) \to (Q,\leq')$ isomorfismo si es biyectiva y para todo $x,y\in P$, $x\leq y \iff f(x)\leq' f(y).$

Proposición

Sean $u \in P$ y $S \subseteq P$. Entonces u es cota superior de $f(S) := \{f(x) : x \in S\}$.

Demostración.

- (⇒) Pizarra.
- (\Leftarrow) Por simetría (porque f^{-1} es iso).

Luego,

■ S tiene cota superior en $P \iff f(S)$ tiene cota superior en Q.

 $f:(P,\leq) \to (Q,\leq')$ isomorfismo si es biyectiva y para todo $x,y\in P$, $x\leq y \iff f(x)\leq' f(y).$

Proposición

Sean $u \in P$ y $S \subseteq P$. Entonces u es cota superior de $f(S) := \{f(x) : x \in S\}$.

Demostración.

- (⇒) Pizarra.
- (\Leftarrow) Por simetría (porque f^{-1} es iso).

Luego,

- S tiene cota superior en $P \iff f(S)$ tiene cota superior en Q.
- S tiene máximo $\iff f(S)$ tiene máximo.

Isomorfismos de posets preservan \sup e \inf

Lema

Sean (P, \leq) y (Q, \leq') posets. Sea $f: P \to Q$ un isomorfismo y supongamos que $S \subseteq P$.

Se da que:

existe
$$\sup S \iff$$
 existe $\sup f(S)$

y en el caso de que existan, se tiene que

$$f(\sup S) = \sup f(S).$$

Isomorfismos de posets preservan \sup e \inf

Lema

Sean (P, \leq) y (Q, \leq') posets. Sea $f: P \to Q$ un isomorfismo y supongamos que $S \subseteq P$.

Se da que:

existe
$$\sup S \iff$$
 existe $\sup f(S)$

y en el caso de que existan, se tiene que

$$f(\sup S) = \sup f(S).$$

2 Dualmente,

existe inf
$$S \iff$$
 existe inf $f(S)$

y en el caso de que existan, se tiene que

$$f(\inf S) = \inf f(S).$$

Dualidad

u es cota superior de $S \iff \forall x \in S, x \leq u$.

Dualidad

u es cota superior de $S \iff \forall x \in S, x \leq u$.

¿Si damos vuelta el orden?

u es **cota** inferior de $S \iff \forall x \in S, x \geq u$.

¿Si damos vuelta el orden? Obtenemos cota inferior.

u es **cota** inferior de $S \iff \forall x \in S, x \geq u$.

¿Si damos vuelta el orden? Obtenemos cota inferior. En la definición de que $s \in L$ es supremo de $S \subseteq L$:

s es una cota superior de S y $\forall b \in L, b$ es cota superior b de $S \implies s \leq b$.

u es **cota** inferior de $S \iff \forall x \in S, x \geq u$.

¿Si damos vuelta el orden? Obtenemos cota inferior. En la definición de que $s \in L$ es supremo de $S \subseteq L$:

s es una cota superior de S y $\forall b \in L, b$ es cota superior b de $S \implies s \leq b$.

Damos vuelta,

u es **cota** inferior de $S \iff \forall x \in S, x \geq u$.

¿Si damos vuelta el orden? Obtenemos cota inferior. En la definición de que $s \in L$ es supremo de $S \subseteq L$:

s es una cota superior de S y $\forall b \in L, b$ es cota superior b de $S \implies s \le b$.

Damos vuelta,

u es **cota** inferior de $S \iff \forall x \in S, x \geq u$.

¿Si damos vuelta el orden? Obtenemos cota inferior. En la definición de que $s \in L$ es supremo de $S \subseteq L$:

s es una cota inferior de S y $\forall b \in L, b$ es cota inferior b de $S \Longrightarrow s \ge b$.

Damos vuelta, y queda el ínfimo.

u es **cota** inferior de $S \iff \forall x \in S, x \geq u$.

¿Si damos vuelta el orden? Obtenemos cota inferior. En la definición de que $s \in L$ es supremo de $S \subseteq L$:

s es una cota inferior de S y $\forall b \in L, b$ es cota inferior b de $S \Longrightarrow s \ge b$.

Damos vuelta, y queda el ínfimo.

Dualidad para posets reticulados

Toda propiedad válida para todos los reticulados también vale al intercambiar \leq con \geq , "superior" con "inferior", \sup con \inf , \max con \min , ...

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

$$x \le x \lor y, \quad y \le x \lor y.$$

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

- $\blacksquare x \le x \lor y, \quad y \le x \lor y.$
- $\blacksquare \ x \lor y \le u \iff x \le u \ \& \ y \le u.$

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

- $\blacksquare x \le x \lor y, \quad y \le x \lor y.$
- $x \lor y \le u \iff x \le u \& y \le u.$

Dualmente.

- $x \land y \le x, \quad x \land y \le y.$
- $\blacksquare \ l \le x \land y \iff l \le x \ \& \ l \le y.$

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

- $\mathbf{x} \leq x \vee y, \quad y \leq x \vee y.$
- $\blacksquare x \lor y \le u \iff x \le u \& y \le u.$

Dualmente.

- $\blacksquare x \land y \le x, \quad x \land y \le y.$
- $\blacksquare \ l \le x \land y \iff l \le x \ \& \ l \le y.$

Demostración.

Pizarra.

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

- $\blacksquare x \le x \lor y, \quad y \le x \lor y.$
- $\blacksquare x \lor y \le u \iff x \le u \& y \le u.$

Dualmente,

- $\blacksquare x \land y \le x$, $x \land y \le y$.
- $\blacksquare \ l \le x \land y \iff l \le x \& \ l \le y.$

Demostración.

Pizarra.

(En todo poset,

- \blacksquare sup $X \le u \iff \forall x \in X, x \le u$;
- $\blacksquare \ l \leq \inf X \iff \forall x \in X, \ l \leq x,$

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

$$x \le x \lor y, \quad y \le x \lor y.$$

$$x \land y \le x$$
, $x \land y \le y$.

$$\begin{array}{lll} x \leq x \vee y, & y \leq x \vee y. & x \wedge y \leq x, & x \wedge y \leq y. \\ x \vee y \leq u \iff x \leq u \ \& \ y \leq u. & l \leq x \wedge y \iff l \leq x \ \& \ l \leq y. \end{array}$$

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

$$\begin{array}{lll} x \leq x \vee y, & y \leq x \vee y. & x \wedge y \leq x, & x \wedge y \leq y. \\ x \vee y \leq u \iff x \leq u \ \& \ y \leq u. & l \leq x \wedge y \iff l \leq x \ \& \ l \leq y. \end{array}$$

Aplicaciones

Leyes de compatibilidad o monotonía:

$$x \le z$$
 e $y \le w$ implican $x \lor y \le z \lor w$, $x \land y \le z \land w$.

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

$$x \le x \lor y, \quad y \le x \lor y. \qquad \qquad x \land y \le x, \quad x \land y \le y. \\ x \lor y \le u \iff x \le u \ \& \ y \le u. \qquad \qquad l \le x \land y \iff l \le x \ \& \ l \le y.$$

Aplicaciones

Leyes de compatibilidad o monotonía:

$$x \leq z \ \text{e} \ y \leq w \quad \text{implican} \quad x \vee y \leq z \vee w, \quad x \wedge y \leq z \wedge w.$$

Desigualdades distributivas:

$$x \lor (y \land z) \le (x \lor y) \land (x \lor z)$$
$$(x \land y) \lor (x \land z) \le x \land (y \lor z).$$