An anytime algorithm for reachability in uncountable MDPs

Kush Grover

Technical University of Munich

Joint work with J. Křetínský, T. Meggendorfer and M. Weininger

Schedule

- 1 Uncountable MDPs
- 2 Reachability Problem
- 3 Assumptions
- 4 Algorithm

•00

Uncountable MDPs

 (S, Act, Av, Δ)

Uncountable MDPs

$$(S, Act, Av, \Delta)$$

$$S = \{q_0, q_1 \dots\}$$

Uncountable MDPs

$$(S, Act, Av, \Delta)$$

$$Act = \{a, b, c \dots \}$$

000

$$(S, Act, Av, \Delta)$$

$$Av: S \rightarrow Act$$

$$Av(q_0) = \{a, b\}$$

 $Av(1) = \{c\}$

Uncountable MDPs

$$(S, Act, Av, \Delta)$$

$$\Delta: \textit{S} \times \textit{Act} \rightarrow \textit{Dist}(\textit{S})$$

Uncountable MDPs

$$\mathcal{M} = (S$$

S: Compact metric space

Uncountable MDPs

$$\mathcal{M} = (S, Act)$$

Act: Compact metric space

For e.g.
$$Act = [-1, 1]$$

Uncountable MDPs 000

$$\mathcal{M} = (S, Act, Av)$$

$$Av: S \to \Sigma_{Act} \setminus \{\phi\}$$

$$Av(s) = [-1, 1]$$

000

$$\mathcal{M} = (S, \mathit{Act}, \mathit{Av}, \Delta)$$

000

$$\mathcal{M} = (S, Act, Av, \Delta)$$

$$\Delta \colon \mathcal{S} \times \mathit{Act} \to \Pi(\mathcal{S})$$

Algorithm 00000

Reachability Problem

$$\Delta(s,a) = \Delta(s) = \textit{unif}(s - a_c \frac{0.8 - s}{0.8}, s + a_c \frac{0.8 - s}{0.8})$$

$$\Delta(s, a) = \Delta(s) = \textit{unif}(s - a_c \frac{0.8 - s}{0.8}, s + a_c \frac{0.8 - s}{0.8})$$

$$\Delta(s, a) = \Delta(s) = unif(s - a_c \frac{0.8 - s}{0.8}, s + a_c \frac{0.8 - s}{0.8})$$

Find the probability of reaching a target set T from an initial state \hat{s} ($V(\hat{s})$).

Computing the exact value $V(\hat{s})$ is undecidable.

Find the probability of reaching a target set T from an initial state \hat{s} ($V(\hat{s})$).

Next best: Compute approximate values with a converging bound on the error.

Find the probability of reaching a target set T from an initial state \hat{s} ($V(\hat{s})$).

Next best: Compute approximate values with a converging bound on the error.

I

Find the probability of reaching a target set T from an initial state \hat{s} ($V(\hat{s})$).

Next best: Compute approximate values with a converging bound on the error.

$$V(\hat{s}) \in I$$

Find the probability of reaching a target set T from an initial state \hat{s} ($V(\hat{s})$).

Next best: Compute approximate values with a converging bound on the error.

$$V(\hat{s}) \in I, |I| \leq \epsilon$$

Find the probability of reaching a target set T from an initial state \hat{s} ($V(\hat{s})$).

Solution: Extend BRTDP (Křetínský et. al. '14) to the uncountable setting.

Assumptions

Uncountable MDPs

Algorithm 00000

The value functions are Lipschitz continuous.

The value functions are Lipschitz continuous.

$$|V(s) - V(s')| \le K \cdot d(s, s')$$

Uncountable MDPs

The value functions are **Lipschitz continuous**.

$$|V(s) - V(s')| \leq K \cdot d(s, s')$$

$$|V(s,a)-V(s',a')| \leq K_{\times} \cdot d_{\times}((s,a),(s',a'))$$

State-Action Maximum Approximation

s

State-Action Maximum Approximation

$$f \colon Av(s) \to [0,1]$$

State-Action Maximum Approximation

Lipschitz

 $f \colon Av(s) \to [0,1]$

State-Action Maximum Approximation

Lipschitz Computable $f \colon Av(s) \to [0,1]$

State-Action Maximum Approximation

Lipschitz Computable
$$f \colon Av(s) \to [0,1]$$

We can under (and over) approximate the value $\max_{a \in Av(s)} f(a)$ arbitrarily close.

Transition Approximation

$$g \colon \mathcal{S} \to [0,1]$$

Transition Approximation

Transition Approximation

Assumptions 000 000

Lipschitz Computable
$$g: S \rightarrow [0,1]$$

We can under (and over) approximate the value $\Delta(s, a)\langle g \rangle$.

State-Action Sampling

Sampling fairness

State-Action Sampling

Sampling fairness

Always eventually sample "near" all the reachable state-action pair.

State-Action Sampling

Sampling fairness

Always eventually sample "near" all the reachable state-action pair.

Sink Computability and Attractor

Sets T and R are decidable and measurable.

For any state s and strategy π we have $Pr^{\pi}_{\mathcal{M},s}[\diamond(T \cup R)] = 1$.

Summary of assumptions

- Lipschitz continuity.
- State-Action Maximum approximation.
- Transition approximation.
- State-Action sampling.
- Sink Computability and Attractor.

Compute expected value of L under $\Delta(s, a)$ i.e.

$$L_{new}(s, a) = \Delta(s, a) \langle L \rangle.$$

Anytime

Possible extensions

■ Discontinuities:

Possible extensions

Uncountable MDPs

■ Discontinuities:

■ LTL: Can handle "reach-avoid" properties directly.

Possible extensions

Uncountable MDPs

■ Discontinuities:

- LTL: Can handle "reach-avoid" properties directly.
- **Apply learning:** Use learning heuristics to guide the algorithm.

Implementation

- Prototype implementation in python.
- Evaluated it on the example showed earlier.

Conclusion and Future work

Conclusion:

- We gave an anytime algorithm for reachability under mild assumptions.
- Guaranteed converging bound on the error.

Future work:

Extend implementation which can handle uncountable action spaces and some discontinuities of the value function.