

MINT: Mixed-precision RRAM-based IN-memory Training Architecture

<u>Hongwu Jiang</u>, Shanshi Huang, Xiaochen Peng and Shimeng Yu School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

- Background and Motivation
- Weight Mapping Strategy for Training
 - Transpose Weight Matrix
 - Mapping Dataflow for Training in CIM
- Proposed MINT Architecture
 - RRAM Subarray Design
 - Overall Architecture
- Evaluation
 - Impact of ADC quantization and RRAM Non-idealities
 - Hardware Performance Benchmarking
- Conclusion

Background and Motivation

65nm CMOS

4Kb (64x64b) 0.5µm X 1.05µm

0.51um X 1.91um

Compute-in-memory (CIM): the weight are stored in memory array, while the activations are loaded in as input to WLs: Parallel access, eliminate MAC units and weights movement

training

Background and Motivation

- Low-precision DNN Training
 - WAGE is proposed as a low precision training method in [1].
 - Friendly for hardware since it uses fixed range quantization for activations and weights

Method	k_W	k_A	k_G	k_E	Opt	BN	MNIST	SVHN	CIFAR10	ImageNet
BC	1	32	32	32	Adam	\checkmark	1.29	2.30	9.90	-
BNN	1	1	32	32	Adam	\checkmark	0.96	2.53	10.15	-
BWN^1	1	32	32	32	withM	\checkmark	-	-	-	43.2/20.6
XNOR	1	1	32	32	Adam	✓	-	-	-	55.8/30.8
TWN	2	32	32	32	withM	✓	0.65	-	7.44	34.7/13.8
TTQ	2	32	32	32	Adam	\checkmark	-	-	6.44	42.5/20.3
DoReFa ²	8	8	32	8	Adam	✓	-	2.30	-	47.0/ -
$TernGrad^3$	32	32	2	32	Adam	✓	-	-	14.36	42.4/19.5
WAGE	2	8	8	8	SGD	X	0.40	1.92	6.78	51.6/27.8

[1] S. Wu, et al. ICLR, 2018

Workflow for DNN training in CIM

- Background and Motivation
- Weight Mapping Strategy for Training
 - Transpose Weight Matrix
 - Mapping Dataflow for Training in CIM
- Proposed MINT Architecture
 - RRAM Subarray Design
 - Overall Architecture
- Evaluation
 - Impact of ADC quantization and RRAM Non-idealities
 - Hardware Performance Benchmarking
- Conclusion

Transpose Weight Matrix

- (a) shows a schematic of two hidden layers of neurons with weighted interconnection.
- (b) shows the mapping methods between weight matrix and resistor crossbar array.
- Device conductance values Gij represent the weights Wij.
- The crossbar array performs the weighted summations during the **forward** and backward propagations.

- Background and Motivation
- Weight Mapping Strategy for Training
 - Transpose Weight Matrix
 - Mapping Dataflow for Training in CIM
- Proposed MINT Architecture
 - RRAM Subarray Design
 - Overall Architecture
- Evaluation
 - Impact of ADC quantization and RRAM Non-idealities
 - Hardware Performance Benchmarking
- Conclusion

Mapping Dataflow for Training in CIM

- The feed-forward process of the CIM array is shown in Fig. (a) while the details of error calculation is shown in Fig. (c). Transpose weight mapping scheme is shown in (b)
- With such transpose array and weight mapping strategy, FF and BP can be performed within the same array.

- Background and Motivation
- Weight Mapping Strategy for Training
 - Transpose Weight Matrix
 - Mapping Dataflow for Training in CIM
- Proposed MINT Architecture
 - RRAM Subarray Design
 - Overall Architecture
- Evaluation
 - Impact of ADC quantization and RRAM Non-idealities
 - Hardware Performance Benchmarking
- Conclusion

RRAM Subarray Design

(a). Computing subarray with expensive ADC

(b). Storage subarray with simple SA

- One-transistor-oneresistor (1T1R) pseudocrossbar structure
- Each cell only has binary on-state or off-state
- Two types of subarrays are proposed:
 - computing subarrays
 - storage subarrays

- Background and Motivation
- Weight Mapping Strategy for Training
 - Transpose Weight Matrix
 - Mapping Dataflow for Training in CIM
- Proposed MINT Architecture
 - RRAM Subarray Design
 - Overall Architecture
- Evaluation
 - Impact of ADC quantization and RRAM Non-idealities
 - Hardware Performance Benchmarking
- Conclusion

Overall Architecture

- Weight bits with different significance are stored on different tiles
- First 2 MSBs of the weight for convolution in FF and BP, corresponding to computing subarrays in Tile[1] and Tile[2]. Tile[3-8] consist of regular storage arrays for the other 6 LSBs of the weight.
- Digital MAC computation for gradient calculation
- Accumulation & FindMax block for weight update

Top-level architecture for one convolution layer

- Background and Motivation
- Weight Mapping Strategy for Training
 - Transpose Weight Matrix
 - Mapping Dataflow for Training in CIM
- Proposed MINT Architecture
 - RRAM Subarray Design
 - Overall Architecture
- Evaluation
 - Impact of ADC quantization and RRAM Non-idealities
 - Hardware Performance Benchmarking
- Conclusion

Impact of ADC quantization and RRAM Non-idealities

(a). Training performance for different ADC quantization range and resolution. (b). Statistics of weight update frequency

- VGG-8 on CIFAR10
- 128*128 array size
- No accuracy loss with 5-bit ADC
- 50K Image per epoch
- 99% RRAM flips < 2000 times
- Today's RRAM endurance > 10^6

- Background and Motivation
- Weight Mapping Strategy for Training
 - Transpose Weight Matrix
 - Mapping Dataflow for Training in CIM
- Proposed MINT Architecture
 - RRAM Subarray Design
 - Overall Architecture
- Evaluation
 - Impact of ADC quantization and RRAM Non-idealities
 - Hardware Performance Benchmarking
- Conclusion

Hardware Performance Benchmarking

- 8-layer VGG-like network on CIFAR-10 dataset; split the 8-bit weight into 2-bit MSBs and 6-bit LSBs
- Built with a modified *NeuroSim* [1] framework. (32nm technode)
- Inter-layer parallelism scheme
- Table shows the chip-level parameters including the hardware configuration, precision, area and energy for key circuit modules.

[1] P.Y. Chen, et al. *IEDM*, 2017

Main block		Spec.	Energy(pJ/op)	Area(mm ²)
Subarray Level	•			
RRAM array	Size: 128x128	Precision:1-bit	99.85	0.0003
	MUX & Decoder	3.68	0.0013	
ADC	Number: 32	Precision:5-bit	327.92	0.0019
Shift Add	Number: 32	Precision:12-bit	71.17	0.0009
WL/S	L SwitchMatrix an	15.74	0.0006	
	Subarray Total	518.36	0.0050	
PE Level				
Subarray	Size: 4x4		8293.77	0.08
Adder Tree	Number: 64	Precision: 12-bit	54.77	0.05
L1 Buffer	Size: 128*128		0.05/bit	0.043
Output Buffer	Size: 32*54		0.01/bit	0.003
	PE Total	8348.60	0.13	
Tile Level				
PE	Size: 3x3		74643.93	1.17
Adder Tree	Number: 64	Precision: 16-bit	485.14	0.08
L2 Buffer	Size:256*512		0.10/bit	0.3
Output Buffer	Size: 16*32*9		0.014/bit	0.007
	Tile Total	75129.10	1.60	
Layer Level				
Shift Add	Number:64	Precision:17-bit	208.57	3.20
Chip Level	•			
	ReLU+Find Max	45.40	0.006	
Digital Grad	dient Calculation	0.022	18.8	
Global Buffer	Size:12*1024*	1024	0.4/bit	32.90

Hardware Performance Benchmarking

(a). Breakdown of chip area. (b). Breakdown of energy consumption.

- Two baselines(8-bit):
 - (1) without transpose subarray design and MSB/LSB splitting;
 - (2) with transpose subarray but without MSB/LSB splitting;
- Total area is reduced to only 31.9% of the Baseline 1
- The energy saving of MINT in FF & BP is 4× compared with Baselines

- Background and Motivation
- Weight Mapping Strategy for Training
 - Transpose Weight Matrix
 - Mapping Dataflow for Training in CIM
- Proposed MINT Architecture
 - RRAM Subarray Design
 - Overall Architecture
- Evaluation
 - Impact of ADC quantization and RRAM Non-idealities
 - Hardware Performance Benchmarking
- Conclusion

Conclusion

- Proposed mixed-precision RRAM-based in-memory training architecture, namely MINT, supporting DNN training
 - Transpose RRAM crossbar design
 - Splitting MSB/LSB to reduce hardware overhead (in particular ADCs)
- Evaluate the impact of ADC quantization and RRAM non-idealities
- Architecture-level performance
 - Achieving 4.46 TOPs/W, which shows great advantage compared to GPU and digital ASIC designs
 - The area of MINT is only ~30% of the prior CIM designs.
 - On-chip buffer capacity is the limitation

Acknowledgment

• This work is supported by NSF, and ASCENT, one of the SRC/DARPA JUMP Centers.

Questions?