Particular solution of a linear differential equation

We want to find a particular solution of the differential equation:

(E)
$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = f$$
,

when f has a good form.

We denote by (EC) the characteristic equation associated with:

$$(EC)$$
 $a_n r^n + a_{n-1} r^{n-1} + \ldots + a_1 r + a_0 = 0$.

When f is the sum of functions $f = f_1 + f_2$, we search for two particular solutions y_1 and y_2 of

$$(E_1) \quad a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = f_1 ,$$

$$(E_2) \quad a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = f_2 ,$$

respectively. A particular solution of (E) is $y_p = y_1 + y_2$. We then consider the following three cases:

Case I: f = P with P a polynomial

We search for a particular solution of the form:

$$y_p = \begin{cases} Q & \text{if } a_0 \neq 0 \\ xQ & \text{if } a_0 = 0, \ a_1 \neq 0 \\ \vdots & \\ x^nQ & \text{if } a_{n-1} = \dots = a_0 = 0 \quad i.e. \quad a_n y^{(n)} = P, \end{cases}$$

where Q is a polynomial with $d^{\circ}Q = d^{\circ}P$.

Case II: $f(x) = e^{\alpha x} P(x)$, α a non zero real We search for a particular solution of the form:

$$y_p(x) = \begin{cases} Q(x)e^{\alpha x} & \text{if } \alpha \text{ is not a root of } (EC) \\ xQ(x)e^{\alpha x} & \text{if } \alpha \text{ is an unrepeated root of } (EC) \\ \vdots \\ x^kQ(x)e^{\alpha x} & \text{if } \alpha \text{ is a root of multiplicity } k \text{ of } (EC), \end{cases}$$

where Q is a polynomial with $d^{\circ}Q = d^{\circ}P$. This case includes the case $f(x) = e^{\alpha x}$.

Case III: $f(x) = e^{\alpha x} P(x) (K_1 \cos(\beta x) + K_2 \sin(\beta x))$, β a non zero real, α could be zero We search for a particular solution of the form:

$$y_p = \begin{cases} e^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x)) & \text{if } \alpha + i\beta \text{ is not a root of } (EC) \\ e^{\alpha x}x(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x)) & \text{if } \alpha + i\beta \text{ is a single root of } (EC) \\ \vdots & & \\ e^{\alpha x}x^k(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x)) & \text{if } \alpha + i\beta \text{ is root of multiplicity } k \text{ of } (EC), \end{cases}$$

where Q_1 and Q_2 are two polynomials with $d^{\circ}Q_1 = d^{\circ}Q_2 = d^{\circ}P$.

The cases where f is either of the form $\cos(\beta x)$ or $\sin(\beta x)$ is also included above.