Notes on the book: $Robin\ Hartshorne,\ Algebraic\ Geometry$

Meng-Gen Tsai plover@gmail.com

July 22, 2021

Contents

Chapter I: Varieties									2
$\S I.1$ Affine Varieties									2
Exercise I.1.6									2
Chapter II: Schemes									3
§II.1 Sheaves									3
Exercise II.1.1. (Constant presheaf)									3

Chapter I: Varieties

§I.1 Affine Varieties

Exercise I.1.6.

Any nonempty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.

Proof.

(1) Show that any nonempty open subset of an irreducible topological space is dense. It suffices to show that $U_1 \cap U_2 \neq \emptyset$ for any nonempty open subsets of an irreducible topological space.

 \forall nonempty open sets U_1 and $U_2, U_1 \cap U_2 \neq \emptyset$

 $\iff \forall \text{ nonempty open sets } U_1 \text{ and } U_2, X - (U_1 \cap U_2) \neq X$

 $\iff \forall$ nonempty open sets U_1 and $U_2, (X-U_1) \cup (X-U_2) \neq X$

 $\iff \forall$ proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 \neq X$

 \iff $\not\equiv$ proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 = X$.

(2) Show that any nonempty open subset of an irreducible topological space is irreducible. Given any open subset U of an irreducible topological space X. Write $U \subseteq Y_1 \cup Y_2$ where Y_1 and Y_2 are closed in X.

 $U \subseteq Y_1 \cup Y_2$

 $\Longrightarrow \overline{U} \subseteq \overline{Y_1 \cup Y_2}$

 $\Longrightarrow X \subseteq Y_1 \cup Y_2$ (U is dense, $Y_1 \cup Y_2$ is closed)

 $\Longrightarrow Y_1 = X \supseteq U \text{ or } Y_2 = X \supseteq U$ (X is irreducible)

 $\Longrightarrow U$ is irreducible.

(3) Show that if Y is a subset of a topological space X, which is irreducible (in its induced topology), then the closure \overline{Y} is also irreducible. (Reductio ad absurdum) If \overline{Y} were reducible, there are two closed sets Y_1 and Y_2 such that

$$\overline{Y} \subseteq Y_1 \cup Y_2, \overline{Y} \not\subseteq Y_i (i = 1, 2).$$

(a) $Y \subseteq \overline{Y} \subseteq Y_1 \cup Y_2$.

(b) $\underline{Y} \not\subseteq \underline{Y_i} (i=1,2)$. If not, $\underline{Y} \subseteq \underline{Y_i}$ for some i. Take closure to get $\overline{Y} \subseteq \overline{Y_i} = \underline{Y_i}$ (since $\underline{Y_i}$ is closed), contrary to the assumption.

By (a)(b), Y is reducible, which is absurd.

Chapter II: Schemes

§II.1 Sheaves

Exercise II.1.1. (Constant presheaf)

Let A be an abelian group, and define the **constant presheaf** associated to A on the topological space X to be the presheaf $U \mapsto A$ for all $U \neq \emptyset$, with restriction maps the identity. Show that the constant sheaf $\mathscr A$ defined in the text is the sheaf associated to this presheaf.

Proof.

(1) Let \mathscr{F} be the constant presheaf.

- (2) Let $\theta: \mathscr{F} \to \mathscr{A}$ be a morphism consists of a morphism of abelian groups $\theta(U): \mathscr{F}(U) = A \to \mathscr{A}(U)$ for each open set $U \subseteq X$ such that $\theta(U)(a) = f_a: x \mapsto a$ for each element $x \in U$. (It is well-defined.)
- (3) Given any sheaf \mathscr{G} and any morphism $\varphi : \mathscr{F} \to \mathscr{G}$, it suffices to find a morphism $\psi : \mathscr{A} \to \mathscr{G}$ such that $\varphi = \psi \circ \theta$.
- (4) Given an open set $U \subseteq X$. Suppose $f \in \mathscr{A}(U)$ is a continuous maps of U into A. Since A is equipped with the discrete topology, f is locally constant, that is,

$$f(V_i) = a_i$$

where each V_i is a connected component of U. (In particular, $\{V_i\}$ is an open covering of U.)

(5) Now

$$s_i := \varphi(V_i)(a_i) \in \mathscr{G}(V_i)$$

is defined. Since \mathscr{G} is a sheaf and all V_i are disjoint, there is a $s \in \mathscr{G}(U)$ such that $s|_{V_i} = s_i$ for each i. Now we define $\psi(U)$ by

$$\psi(U)(f) = s.$$

Thus ψ is a morphism and $\varphi = \psi \circ \theta$ by construction.