CSC-591: Foundations of Data Science T/Th. 12:50-2:05pm. EBI-1005.

#### Ranga Raju Vatsavai

Chancellors Faculty Excellence Associate Professor in Geospatial Analytics Department of Computer Science, North Carolina State University (NCSU) Associate Director, Center for Geospatial Analytics, NCSU &

Joint Faculty, Oak Ridge National Laboratory (ORNL)

W6: 9/22-24/15

NC STATE UNIVERSITY

# **Administrative**

- Updated Weekly Schedule (on Moodle)
- HW-2: Posted
  - 1st Due: 10/4/15 (Questions 1-7)
  - 2<sup>nd</sup> Due: 10/11/15 (Question 8, R-project)
- 1st Midterm: 10/6/15

9/28/15

© Raju Vatsava



# Today • Multiple Linear Regression • Parameter Estimation 9/28/15 • Raju Vatsaval CSC-591. 4

# **Regression Parameters**

• Least-squares line:

$$\hat{y} = b_0 + b_1 x$$

Intercept

$$b_0 = \overline{y} - b_1 \overline{x}$$

Slope

$$b_1 = r \frac{s_y}{s}$$

Residual, e<sub>i</sub> = observed response – predicted response

 $e_i = y_i - b_0 - b_1 x_i$ 

9/28/15

🗅 Raju Vatsava







# **Compute Correlation Coefficient**

**Step 2** Find the values of xy,  $x^2$ , and  $y^2$  and place these values in the corresponding columns of the table.

The completed table is shown.

| Company | Cars <i>x</i> (in 10,000s     | Income y<br>(in billion      |                      | $x^2$                  | $y^2$                |
|---------|-------------------------------|------------------------------|----------------------|------------------------|----------------------|
| Α       | 63.0                          | 7.0                          | 441.00               | 3969.00                | 49.00                |
| В       | 29.0                          | 3.9                          | 113.10               | 841.00                 | 15.21                |
| C       | 20.8                          | 2.1                          | 43.68                | 432.64                 | 4.41                 |
| D       | 19.1                          | 2.8                          | 53.48                | 364.81                 | 7.84                 |
| E       | 13.4                          | 1.4                          | 18.76                | 179.56                 | 1.96                 |
| F       | 8.5                           | 1.5                          | 2.75                 | 72.25                  | 2.25                 |
|         | $\Sigma x = \overline{153.8}$ | $\Sigma v = \overline{18.7}$ | $\Sigma xy = 682.77$ | $\Sigma x^2 = 5859.26$ | $\Sigma v^2 = 80.67$ |

**Step 3** Substitute in the formula and solve for r.

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n(\Sigma x^2) - (\Sigma x)^2][n(\Sigma y^2) - (\Sigma y)^2]}}$$

$$= \frac{(6)(682.77) - (153.8)(18.7)}{\sqrt{[(6)(5859.26) - (153.8)^2][(6)(80.67) - (18.7)^2]}} = 0.982$$

9/28/

The correlation coefficient suggests a strong relationship between the number of cars a rental agency has and its annual income.

NC STAT

# Population (ρ) vs. Sample (r)

- The population correlation coefficient  $\rho$  is computed from taking all possible (x,y) pairs; it is designated by the Greek letter  $\rho$  (rho). The sample correlation coefficient (r) can then be used as an estimator of  $\rho$  if the following assumptions are valid.
  - 1. The variables x and y are linearly related.
  - 2. The variables are random variables.
  - 3. The two variables have a bivariate normal distribution.

9/28/15

© Raju Vatsava

NC STATE

# The Significance of r

- The range of the correlation coefficient is between -1 and +1. When the value of r is near -1 or +1, there is a strong linear relationship. When the value of r is near 0, the linear relationship is weak or nonexistent.
- Since the value of r is computed from data obtained from samples, there are two possibilities when r is not equal to zero: either the value of r is high enough to conclude that there is a significant linear relationship between the variables, or the value of r is due to chance.

9/28/15

# We can follow same 5-step process

 For rental car data, test if r is significant using  $\alpha$  = 0.05. Use t test.

**Step 1** State the hypotheses.

 $H_0: \rho = 0$  and  $H_1: \rho \neq 0$ 

9/28/15





# For Car Rental Agency Data

- Compute Regression Line: y' = a + bx
- · Recall formulae for a and b

$$a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$
$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

where a is the y' intercept and b is the slope of the line.

9/28/15

© Raju Vatsav:

CSC-591, 15

UNIVERSITY

# **Computing Regression Line**

The values needed for the equation are n = 6,  $\Sigma x = 153.8$ ,  $\Sigma y = 18.7$ ,  $\Sigma xy = 682.77$ , and  $\Sigma x^2 = 5859.26$ . Substituting in the formulas, you get

$$a = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2} = \frac{(18.7)(5859.26) - (153.8)(682.77)}{(6)(5859.26) - (153.8)^2} = 0.396$$

$$b = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2} = \frac{6(682.77) - (153.8)(18.7)}{(6)(5859.26) - (153.8)^2} = 0.106$$

Hence, the equation of the regression line y' = a + bx is

$$y' = 0.396 + 0.106x$$

9/28/15

Raju Vatsavai

# **Prediction Using Regression Line**

- Let's say, x = 20.8, then what is the revenue
- y' = 2.6
- But actual y = 2.1 (Billions)
- That's significance difference, why?

9/28/15

) Raju Vatsavi

CSC-591 17

NC STATE UNIVERSITY

# Variation

• Consider following simple data

| x | 1  | 2 | 3  | 4  | 5  |
|---|----|---|----|----|----|
| y | 10 | 8 | 12 | 16 | 20 |

- Then, y' = 4.8 + 2.8x. (do this at home)
- (x, y')
- 1, 7.6
- 2, 10.4
- 3, 13.2
- 4, 16.0
- 5, 18.8

9/28/15

Raju Vatsavai

# **Types of Variation**

- The total variation:  $\Sigma(y \bar{y})^2$ 
  - Is the sum of the squares of the vertical distances each point is from the mean
- Has two components:
  - Explained variation (variation obtained from the relationship:  $\Sigma(y'-\bar{y})^2$
  - Unexplained variation (variation due to chance):

 $\sum (y - y')^2$ ,



# **Total Variation**

 Total variation = Sum of explained variation + Sum of unexplained variation

$$\Sigma(y - \overline{y})^2 = \Sigma(y' - \overline{y})^2 + \Sigma(y - y')^2$$

 Using the simple data provided in previous slide, compute total variation

$$-$$
 Answer = 92.8

9/28/15

🗅 Raju Vatsava

### Residual

- The values (y y') are called residuals.
- A residual is the difference between the actual value of y and the predicted value y' for a given x value.
- The mean of the residuals is always 0.
- The sum of squares of the residuals computed using regression line is the smallest possible value.
- Therefore, a regression line is also called a least-squares line.

9/28/15

🕽 Raju Vatsava

CSC-591. 21

NC STATE UNIVERSITY

# Coefficient of Determination

 The coefficient of determination is the ratio of the explained variation to the total variation, denoted by r<sup>2</sup>. Typically expressed as percentage.

 $r^2 = \frac{\text{explained variation}}{\text{total variation}}$ 

- The coefficient of determination is a measure of the variation of the dependent variable that is explained by the regression line and the independent variable. The symbol for the coefficient of determination is r<sup>2</sup>.
- (1-r<sup>2</sup>) is called the coefficient of nondetermination

9/28/15

🗅 Raju Vatsava

# Standard Error of the Estimate

- When a y' value is a predicted for a specific x value, the prediction is point prediction.
   However, we can construction a prediction interval about y' using the standard error of the estimate.
- The standard error of the estimate, denoted by  $s_{\rm est}$ , is the standard deviation of the observed y values about the predicted y' values. The formula for the standard error of the estimate is

$$s_{\text{est}} = \sqrt{\frac{\Sigma (y - y')^2}{n - 2}}$$

9/28/15

🛭 Raju Vatsava

CSC-591, 23

NC STATI

# **Practice Example**

 Based on the data collected (given below), secretary determines that there is significant relationship between age of copy machine and its monthly maintenance cost. Find the standard error of estimate.

| Machine | Age x (years) | Monthly cost y |
|---------|---------------|----------------|
| A       | 1             | \$ 62          |
| В       | 2             | 78             |
| C       | 3             | 70             |
| D       | 4             | 90             |
| Е       | 4             | 93             |
| F       | 6             | 103            |

9/28/15

Raju Vatsava

# Prediction Interval About y'

- From previous example, we can predict maintenance cost of 3-year old machine, but we don't know how accurate it is.
- Prediction interval is given by:

$$y' - t_{\alpha/2} s_{\text{est}} \sqrt{1 + \frac{1}{n} + \frac{n(x - \overline{X})^2}{n \sum x^2 - (\sum x)^2}} < y < y' + t_{\alpha/2} s_{\text{est}} \sqrt{1 + \frac{1}{n} + \frac{n(x - \overline{X})^2}{n \sum x^2 - (\sum x)^2}}$$
 with d.f. =  $n - 2$ .

9/28/15

Raju Vatsava

CSC-591, 25

#### NC STATE UNIVERSITY

# **Practice Example**

For the copy machine data, find the 95% prediction interval

9/28/15

Raju Vatsavai

# Multiple Regression

- In general, there will be more than one independent variable in the relationship.
- Multiple regression, explains the relationship between several independent variables and one dependent variable.

$$y' = a + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

9/28/15

🗅 Raju Vatsava

CSC-591, 27

NC STATE

# Assumptions About Multiple Regression

The assumptions for multiple regression are similar to those for simple regression.

- 1. For any specific value of the independent variable, the values of the *y* variable are normally distributed. (This is called the *normality* assumption.)
- 2. The variances (or standard deviations) for the *y* variables are the same for each value of the independent variable. (This is called the *equal-variance* assumption.)
- 3. There is a linear relationship between the dependent variable and the independent variables. (This is called the *linearity* assumption.)
- 4. The independent variables are not correlated. (This is called the *nonmulticollinearity* assumption.)
- 5. The values for the *y* variables are independent. (This is called the *independence* assumption.)

9/28/15

Raju Vatsavai

# **Multiple Correlation Coefficient**

 The strength of the relationship between the independent variables and the dependent variable is measured by a correlation coefficient, called multiple correlation coefficient, and is symbolized by R.

The formula for R is

$$R = \sqrt{\frac{r_{yx_1}^2 + r_{yx_2}^2 - 2r_{yx_1} \cdot r_{yx_2} \cdot r_{x_1x_2}}{1 - r_{x_1x_2}^2}}$$

where  $r_{yx_1}$  is the value of the correlation coefficient for variables y and  $x_1$ ;  $r_{yx_2}$  is the value of the correlation coefficient for variables y and  $x_2$ ; and  $r_{x_1x_2}$  is the value of the correlation coefficient for variables  $x_1$  and  $x_2$ .

9/28/15

🛭 Raju Vatsava

CSC-591. 29

NC STAT UNIVERSIT

# Properties of R

- R ranges from 0 to +1.
  - Stronger relationship when R is close to +1
  - Weaker (or no) relationship when R is closer to 0.
- R is always higher than the individual correlation coefficients

9/28/15

Raju Vatsavai

# **Example: Board Exams**

• Students GPA, Age, and State board score are given below.

State board

| $GPAx_1$ | Age $x_2$                | State board score y                  |
|----------|--------------------------|--------------------------------------|
| 3.2      | 22                       | 550                                  |
| 2.7      | 27                       | 570                                  |
| 2.5      | 24                       | 525                                  |
| 3.4      | 28                       | 670                                  |
| 2.2      | 23                       | 490                                  |
|          | 3.2<br>2.7<br>2.5<br>3.4 | 3.2 22<br>2.7 27<br>2.5 24<br>3.4 28 |

• The multiple regression equation is given by

$$y' = -44.81 + 87.64x_1 + 14.533x_2$$

9/28/15

Raju Vatsava

CSC-591, 31

NC STATE

# Example

- If GPA of a 25 year old student is 3.0, then what is the predicted state board score?
- Compute R

9/28/15

Raju Vatsavai

# Testing the Significance of R

- F test is used to test the significance of R.
- The hypothesis are:

$$H_0$$
:  $\rho = 0$  and  $H_1$ :  $\rho \neq 0$ 

• F Test is given by:

The formula for the F test is

$$F = \frac{R^2/k}{(1 - R^2)/(n - k - 1)}$$

where n is the number of data groups  $(x_1, x_2, \ldots, y)$  and k is the number of independent variables.

The degrees of freedom are d.f.N. = n - k and d.f.D. = n - k - 1.

9/28/15

© Raju Vatsav

CSC-591. 3

UNIVERSIT

# Example

• For student/state board data, test the significance at  $\alpha$ =0.05

$$F = \frac{R^2/k}{(1 - R^2)/(n - k - 1)}$$
$$= \frac{0.978/2}{(1 - 0.978)/(5 - 2 - 1)} = \frac{0.489}{0.011} = 44.45$$

The critical value obtained from Table with  $\alpha = 0.05$ , d.f.N. = 3, and d.f.D. = 5-2-1=2 is 19.16. Hence, the decision is to reject the null hypothesis and conclude that there is a significant relationship among the student's GPA, age, and score on the nursing state board examination.

9/28/15

© Raju Vatsavai



