Stellar Companions to Intermediate-Mass Stars

Kevin Gullikson¹, Adam Kraus¹, Sarah Dodson-Robinson²

Both stars accrete

Binary Star Formation

- Core collapse begins
- Jean mass decreases
- Core fragments

Possible disk

fragmentation

Intermediate-mass Stars

- Figures above from De Rosa et al 2014
- Most companions are 100s of AU from the primary
- Most companions are much less massive than the primary
- Very close companions different?
 - Disk interaction/preferential accretion?
 - Disk fragmentation?
 - Observational effect?

Detecting Close Companions

It is very difficult to detect close companions with traditional techniques!

Cross-Correlation Method

Identified as probable astrometric binary (Makarov & Kaplan 2005)

HIP 32607

Barely double-lined spectrum

One echelle order

All echelle orders combined

Very clear signal appears in cross-correlation function (a peak indicates a match for the template spectrum)

Optical echelle spectra can detect companions with $\Delta K < 5$, with no separation dependence!

kgulliks@astro.as.utexas.edu www.as.utexas.edu/~kgulliks

Survey

- B0V A9V spectral types
- Rapid rotators (vsini > 80 km/s)
- V < 6
- Median distance = 95 pc
- Median detectable physical separation = 120 AU

Preliminary Results

•High probability = confirmed or $>10\sigma$

- •My sample ~doubles the low mass-ratio systems
- •Turn-down with q < 0.3 likely detection bias
- •KS-Test against a flat distribution:
 - Known companions: p = 18%
 - Including high probability companions: p = 0.2%
- Including all companions: p = 0.0012%