Hierarchical Data Analysis Introduction to Trees and Hierarchies

Objective

Apply methods of hierarchical data analysis

Hierarchies

Definition

- Data repository in which cases are related to subcases
- Can be thought of as imposing an ordering in which cases are parents or ancestors of other cases

Trees

Hierarchies are often represented as trees

- Directed
- Acyclic

Two main representation schemes

- Node-link
- Space-Filling

Rooted Trees

- A graph might be used to represent some hierarchy, so we often utilize a tree metaphor
- Typically these utilize the following aesthetics
 - Vertices are placed along horizontal lines according to their level
 - Minimum separation distance between two consecutive vertices on the same level
 - Width of the drawing is as small as possible

Using Rooted Trees

What are such sorts of structures useful for?

Top-Down Approach

- Width of fan-out uses up horizontal real estate very quickly
 - At level n, there are 2ⁿ nodes
- Tree may grow very long in one branch
- Essentially you can wind up leaving a lot of screen real estate empty

Space Tree

Visualization techniques try to overcome some of these issues in node link tree diagrams

Space Tree by Plaisant et al.

- Dynamic rescaling of branches to best fit available screen space
- Utilized preview icons to summarize branch topology

Cone Trees

- Add a third dimension for the layout
- Children of a node are laid out in a cylinder below the parent
 - Siblings live in one of the 2D planes

Space Tree

- Don't have to constrain to topdown geometry approach
- Apply a hyperbolic transformation to the space

- Distance between parent and child decreases as you move farther from the center
- Children go in a wedge rather than a circle

Lamping, J., Rao, R., Pirolli; P. (1995) A focus+context technique based on hyperbolic geometry for visualizing large hierarchies *Conference proceedings on Human factors in computing systems*, 1995, 401-408

Node-Link Shortcomings

Difficult to encode more variables of data cases

Shape

Size

Color

All of these can clash with the basic node-link structure

Hierarchical Data Analysis Introduction to Tree Maps

Objective

Explain hierarchical representation schemes

Space-Filling Representation

Each item now occupies an area

Children are contained under the parent

One example: "Icicle plot"

Treemap

- Space filling representation developed by Johnson and Shneiderman
- Children are drawn inside their parent
- Alternate horizontal and vertical slicing at each successive level

By Datawheel [CC0], via Wikimedia Commons

Use area to encode other variable of data items

Johnson, B. and Shneiderman, B. Treemaps: A Space-Filling Approach to the Visualization of Hierarchical Information Structures. In Proceedings of the IEEE Information Visualization '91, pages 275–282, IEEE, 1991.

Treemap Algorithm

```
Draw()
1. Change orientation from parent (horiz/vert)
2.Read all files and directories at this leve
3. Make rectangles for each, scaled to size
4. Draw rectangles using appropriate size and color
5.For each directory
       Make recursive call using its rectangle as focus
```

Nested vs. Non-Nested

Non-nested Tree-Map

Nested Tree-Map

Treemap Applications

Can use the Treemap idea in a variety of domains

File/directory structures Sports analysis

Software diagrams Stock Market Data

Visualizing a Tennis Match

- Analyze, review and browse a tennis match
- Space-filling/treemap-like hierarchy to show a competition tree
- Show match, sets, game points
- Lens can show shot patterns
- Color encodes player

Visualizing a Tennis Match

Liqun Jin and David C. Banks, ``TennisViewer: a Browser for Competition Trees,'' IEEE Computer Graphics & Applications, Vol. 21, No. 2 (March/April 1997), pergamon Press, pp. 171-178.

Visualizing a Tennis Match

Liqun Jin and David C. Banks, ``TennisViewer: a Browser for Competition Trees,'' IEEE Computer Graphics & Applications, Vol. 21, No. 2 (March/April 1997), pergamon Press, pp. 171-178.

Tree Map Benefits

Good representation of two attributes beyond node-link:

- Color
- Area

Not quite as good at representing structure

- What happens if the tree is perfectly balanced?
- Can also get long-thin aspect ratios
- Borders can help on small trees, but take up too much area on large, deep trees

Hierarchical Data Analysis Tree Map Algorithms

Objective

Explain hierarchical representation schemes

Aspect Ratios

Cleveland's "Banking to 45"

Here, the aspect ratio will drastically affect the visualization

Clustered and Squarified Treemaps

- Simple recursive algorithm to reduce overall aspect ratio
- Bruls et al. introduced squarified treemap

^{1 -}Wattenberg, M. "Visualizing the Stock Market," Proceedings of ACM CHI 99, Extended Abstracts, pp.188-189, 1999.

^{2 -}Bruls, D.M., C. Huizing, J.J. van Wijk. "Squarified Treemaps". In: W. de Leeuw, R. van Liere (eds.), Data Visualization 2000, Proceedings of the joint Eurographics and IEEE TCVG Symposium on Visualization, 2000, pp. 33-42.

Clustered and Squarified Treemaps

Methods had two major drawbacks

Changes in the set can cause discontinuities in the layout

 If treemap data is dynamic large visual changes make data hard to track If the data has ordering information this is not preserved

Ordered Treemap

Shneiderman and Wattenberg introduced the ordered treemap to try and overcome these limitations

Possible to create a layout in which items that are next to each other in given order are adjacent in the tree map

Presented two algorithms for ordering a treemap

Ordered Treemap Algorithm

- Starting with a rectangle R to be subdivided, first algorithm pivot-by-size, the pivot is item with largest area
 - Let P, the pivot, be the item with largest area in list of items
 - If width R is greater than or equal to the height, divide R into four rectangle
 - 3. Place P in the rectangle R_p
 - 4. Divide the items in the list, other than P, into three lists, L_1 , L_2 , L_3 to be laid out in R_1 , R_2 and R_3 .
 - 5. Recursively lay out L_1 , L_2 and L_3 in R_1 , R_2 and R_3

Strip Treemaps

- 1. Scale the area of all rectangles so total area of input rectangles equals that of layout rectangle
- 2. Create a new empty strip, the current strip
- 3. Add next rectangle to current strip, recomputing height of strip based on area of all rectangles within the strip and recomputing width of each rectangle
- If average aspect ratio of the current strip has increased as a result of adding rectangle in step 3, remove rectangle pushing it back onto list of rectangles and go to step 2
- 5. If all rectangles have been processed stop, else step 3

Metrics For Treemaps

In order to assess all these different treemap algorithms, we need metrics to define how "good" they are

Use two metrics:

- Average aspect ratio of treemap layout
- Layout distance change function

Metrics For Treemaps

Goal is to have low average aspect ratio and a low distance change as data is updated

Average aspect ratio is the unweighted average

Distance change is Euclidian distance of change in width height and corner location of rectangles

Showing Structure

Regular borderless treemap makes it challenging to discern structure of hierarchy, particularly large ones

- Supplement treemap view
- Change rectangles to other forms

Cushion Treemap

Use shading and texture to help convey structure of hierarchy

Another Problem

What if nodes with zero value are very important?

If we're mapping areas, how do we map to zero?

Example: Stocks portfolios

Context Treemap

One way to overcome this is to distort classic treemap visualization

- Distorted treemap can show one more attribute than a classic treemap
 - node area is no longer proportional to attribute being visualized

Context Treemap

Several different implementation strategies for this

- 1. Use a regular tree map but add some epsilon to zero value items
- 2. Use an exponential mapping area(node)=2^(value(node))
- 3. Assign some minimal screen space size to zero nodes

Context Treemap

Final solution was to calculate intermediate values

- 1. Calculate the total (in this paper it was total invest money)
 - Value(total)
- 2. Create an additional total with respect to the context
 - Value(total)*v, where v can be modified as a scale factor
- 3. Split context screen real estate among all empty nodes
 - Value_c = value(total)*v/#empty

$$value`(node) = \begin{cases} value_c \text{ if } value(node) = 0 \\ value(node) \text{ otherwise} \end{cases}$$

• Christoph Csallner, Marcus Handte, Othmar Lehmann, John T. Stasko: FundExplorer: Supporting the Diversification of Mutual Fund Portfolios Using Context Treemaps. INFOVIS 2003: 203-208

Voronoi Treemaps

Definition of Voronoi Diagram

Let *P* be a set of *n* distinct points (sites) in the plane.

The Voronoi diagram of *P* is the subdivision of the plane into *n* cells, one for each site

Definition of Voronoi Diagram

A point q lies in the cell corresponding to a site $p_i \in P$ iff

Main Algorithm is Fortune's Algorithm

Euclidean_Distance(q, p_i) < Euclidean_distance(q, p_j), for each $p_i \in P, j \neq i$.

Summary of Voronoi Properties

A point q lies on a Voronoi edge between sites p_i and p_j iff the largest empty circle centered at qtouches only p_i and p_j

– A Voronoi edge is a subset of locus of points equidistant from p_i and p_j

 p_i : site points

e : Voronoi edge

v : Voronoi vertex

Summary of Voronoi Properties

A point *q* is a vertex *iff* the largest empty circle centered at *q* touches at least 3 sites

 A Voronoi vertex is an intersection of 3 more segments, each equidistant from a pair of sites

 p_i : site points

e : Voronoi edge

v : Voronoi vertex

Summary of Voronoi Properties

Voronoi diagrams have linear complexity $\{|v|, |e| = O(n)\}$

Intuition: Not all bisectors are Voronoi edges!

 p_i : site points

e: Voronoi edge

Circle Packing

Hierarchical Data Analysis What is Hierarchical Clustering?

Objective

Apply methods of hierarchical data analysis

Hierarchical Clustering

Produces a set of nested clusters organized as a hierarchical tree

Can be visualized as a dendrogram (along with other options)

 A tree-like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

No assumptions on the number of clusters

 Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level

Hierarchical clusterings may correspond to meaningful taxonomies

Example in biological sciences
 (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc

Hierarchical Clustering

Agglomerative:

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)

Traditional hierarchical algorithms use a similarity or distance matrix

Merge or split one cluster at a time

Complexity of Hierarchical Clustering

Distance matrix is used for deciding which clusters to merge/split

Not usable for large datasets

At least quadratic in the number of data points

Hierarchical Data Analysis Agglomerative Clustering

Objective

Apply methods of hierarchical data analysis

Agglomerative Clustering Algorithm

Most popular hierarchical clustering technique

Agglomerative Clustering Algorithm

Basic algorithm

- 1. Compute the distance matrix between the input data points
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the distance matrix
- 6. Until only a single cluster remains

Agglomerative Clustering Algorithm

- Key operation is the computation of distance between two clusters
- Different definitions of the distance between clusters lead to different algorithms

Hierarchical Clustering: Input/Initial Setting

Start with clusters of individual points and a distance/proximity matrix

Intermediate State

After some merging steps, we have some clusters

	C1	C2	С3	C4	C 5
<u>C1</u>					
C2					
C3					
C4					
C5					

Distance/Proximity Matrix

Intermediate State

Merge two closest clusters (C2 and C5) and update distance matrix

After Merging

"How do we update the distance matrix?"

Distance between two clusters

Each cluster is a set of points

- How do we define distance between two sets of points?
- Lots of alternatives
- Not an easy task

Distance between two clusters

Single-link distance between clusters C_i and C_j is the *minimum distance* between any object in C_i and any object in C_j

The distance is defined by the two most similar objects

$$D_{sl}(C_i, C_j) = \min_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Hierarchical Data Analysis Distance Metrics in Hierarchical Clustering

Objective

Apply methods of hierarchical data analysis

Single-link Clustering: Example

Determined by one pair of points, i.e., by one link in proximity graph

	I 1	1 2	I 3	1 4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Strengths of Single-Link Clustering

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of Single-Link Clustering

Original Points

Two Clusters

Sensitive to noise and outliers

It produces long, elongated clusters

Complete-link Clustering: Example

Distance between clusters is determined by two most distant points in different clusters

_	I 1	12	I 3	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Single-Link Clustering Example

Nested Clusters

Dendrogram

Strengths of Complete-link Clustering

Original Points

Two Clusters

More balanced clusters (with equal diameter)

Less susceptible to noise

Limitations of Complete-Link Clustering

Original Points

Two Clusters

Tends to break large clusters

All clusters tend to have same diameter – small clusters are merged with larger ones

Average-link Clustering: Example

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

	I 1	12	13	14	I 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

Average-Link Clustering Example

Nested Clusters

Dendrogram

Average-Link Clustering: Discussion

Compromise between Single and Complete Link

Strengths

Less susceptible to noise and outliers

Limitations

Biased towards globular clusters

Distance Between Two Clusters

Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j

$$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$

Distance Between Two Clusters

Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ii}

$$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$

r_i: centroid of C_ir_j: centroid of C_j

rij: centroid of Cij

Ward's Distance for Clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers

- Biased towards globular clusters
- Hierarchical analogue of k-means
- Can be used to initialize k-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space Requirements

- For a dataset X consisting of n points
- O(n²) **space**; it requires storing distance matrix

O(n³) time in most of the cases

- There are n steps and at each step the size n² distance matrix must be updated and searched
- Complexity can be reduced to
 O(n² log(n)) time for some approaches
 by using appropriate data structures

Hierarchical Clustering Issues

- Distinct clusters are not produced
- Methods for producing distinct clusters but involve specifying somewhat arbitrary cutoff values

- What if data doesn't have a hierarchical structure?
- Is HC appropriate?