Econometrics Homework 2

Utpalraj Kemprai MDS202352

February 11, 2025

Question 1

We have the following ordinal regression model:

$$z_i = x_i'\beta + \epsilon_i \quad \forall i = 1, \dots, n$$

$$\gamma_{i-1} < z_i \le \gamma_i \implies y_i = j, \quad \forall i, j = 1, \dots, J$$

where (in the first equation) z_i is the latent variable for individual i, x_i is a vector of covariates, β is a $k \times 1$ vector of unknown parameters, and n denotes the number of observations. The second equation shows how z_i is related to the observed discrete response y_i , where $-\infty = \gamma_0 < \gamma_1 < \gamma_{J-1} < \gamma_J = \infty$ are the cut-points (or thresholds) and y_i is assumed to have J categories or outcomes.

(a)

We assume that $\epsilon_i \sim N(0,1)$, for $i=1,2,\cdots,n$. Therefore we have,

$$Pr(y_i = j) = Pr(\gamma_{j-1} < z_i \le \gamma_j)$$

$$= Pr(\gamma_{j-1} < x_i'\beta + \epsilon_i \le \gamma_j)$$

$$= Pr(\gamma_{j-1} - x_i'\beta < \epsilon_i \le \gamma_j - x_i'\beta)$$

$$= \Phi(\gamma_j - x_i'\beta) - \Phi(\gamma_{j-1} - x_i'\beta)$$
 [where $\Phi(\cdot)$ is the cdf of $N(0, 1)$]