SECUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Ni, Jian

Gentz, Reiner Yu, Guo-Liang Su, Jeffrey Rosen, Craig A.

- (ii) TITLE OF INVENTION: Death Domain Containing Receptor 5
- (iii) NUMBER OF SEQUENCES: 12
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: MD
 - (E) COUNTRY: US
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US herewith
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/054,021
 - (B) FILING DATE: 29-JUL-1997
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/040,846
 - (B) FILING DATE: 17-MAR-1997
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hoover, Kenley
 - (B) REGISTRATION NUMBER: 40,302
 - (C) REFERENCE/DOCKET NUMBER: PF366
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 3013098504
 - (B) TELEFAX: 3013098439
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:

(B) (C)	LENGTH: 1600 base TYPE: nucleic aci STRANDEDNESS: sin TOPOLOGY: linear	d		
(ii) MOLEC	CULE TYPE: DNA (ge	nomic)		
	JRE: NAME/KEY: sig_pep LOCATION: 13028			
	JRE: NAME/KEY: CDS LOCATION: 13013	62		
	JRE: NAME/KEY: mat_pep LOCATION: 28413			
(xi) SEQUE	INCE DESCRIPTION:	SEQ ID NO:1:		
CACGCGTCCG CGG	GCGCGGC CGGAGAACC	C CGCAATCTTT GCGC	CCACAA AATACACCGA	60
CGATGCCCGA TCT	ACTITAA GGGCTGAAA	C CCACGGGCCT GAGA	GACTAT AAGAGCGTTC	120
	GAA CAA CGG GGA CA Glu Gln Arg Gly G -50			168
	G CAC GGC CCA GGA G His Gly Pro Gly 5			216
	G GTC CCC AAG ACC g Val Pro Lys Thr -15	Leu Val Leu Val		264
CTG CTG TTG GT Leu Leu Leu Va -5	C TCA GCT GAG TCT 1 Ser Ala Glu Ser 1	GCT CTG ATC ACC Ala Leu Ile Thr	CAA CAA GAC CTA Gln Gln Asp Leu 10	312
	G AGA GCG GCC CCA n Arg Ala Ala Pro 15			360
GAG GGA TTG TG Glu Gly Leu Cy 3	T CCA CCT GGA CAC s Pro Pro Gly His 0	CAT ATC TCA GAA (His Ile Ser Glu : 35	GAC GGT AGA GAT Asp Gly Arg Asp 40	408
	C AAA TAT GGA CAG s Lys Tyr Gly Gln 50			456

CTC	CTT Leu 60	Phe	TGC Cys	Leu	CGC Arg	TGC Cys 65	Thr	AGG Arg	TGT Cys	GAT Asp	TCA Ser 70	Gly	GAA Glu	GT(GAG Glu		504
CTA Leu 75	Ser	Pro	TGC Cys	ACC	ACG Thr 80	ACC Thr	AGA	AAC Asn	ACA Thr	GTG Val 85	Cys	Glr.	TGC Cys	GAZ Glu	GAA Glu 90		552
GGC Gly	ACC Thr	TTC	CGG Arg	GAA Glu 95	Glu	GAT Asp	TCT	CCT Pro	GAG Glu 100	ATG Met	TGC Cys	CGG	AAG Lys	TGC Cys 105	CGC Arg		600
ACA Thr	GGG Gly	TGT Cys	CCC Pro 110	AGA Arg	GGG Gly	ATG Met	GTC Val	AAG Lys 115	GTC Val	GGT Gly	GAT Asp	TGT Cys	ACA Thr 120	CCC Pro	TGG Trp		648
AGT Ser	GAC Asp	ATC Ile 125	GAA Glu	TGT Cys	GTC Val	CAC His	AĄA Lys 130	GAA Glu	TCA Ser	GGC Gly	ATC Ile	ATC Ile 135	ATA Ile	GGA Gly	GTC Val		696
ACA Thr	GTT Val 140	GCA Ala	GCC Ala	GTA Val	GTC Val	TTG Leu 145	ATT	GTG Val	GCT Ala	GTG Val	TTT Phe 150	GTT Val	TGC Cys	AAG Lys	TCT Ser		744
TTA Leu 155	CTG Leu	TGG Trp	AAG Lys	AAA Lys	GTC Val 160	CTT Leu	CCT Pro	TAC Tyr	CTG Leu	AAA Lys 165	G17 GC	ATC Ile	TGC Cys	TCA Ser	GGT Gly 170		792
GGT Gly	GGT Gly	GGG Gly	GAC Asp	CCT Pro 175	GAG Glu	CGT Arg	GTG Val	-GAC Asp	AGA Arg 180	AGC Ser	TCA Ser	CAA Gln	CGA Arg	CCT Pro 185	GGG Gly		840
GCT Ala	GAG Glu	GAC Asp	AAT Asn 190	GTC Val	CTC Leu	AAT Asn	GAG Glu -	ATC Ile 195	GTG Val	AGT Ser	ATC Ile	TTG Leu	CAG Gln 200	CCC Pro	ACC Thr		888
CAG Gln	GTC Val	CCT Pro 205	GAG Glu	CAG Gln	GAA Glu	ATG Met	GAA Glu 210	GTC Val	CAG Gln	GAG Glu	CCA Pro	GCA Ala 215	GAG Glu	CCA Pro	ACA Thr		936
GGT Gly	GTC Val 220	AAC Asn	ATG Met	TTG Leu	TCC Ser	CCC Pro 225	GGG Gly	GAG Glu	TCA Ser	GAG Glu	CAT His 230	CTG Leu	CTG Leu	GAA Glu	CCG Pro		984
GCA Ala 235	GAA Glu	GCT Ala	GAA Glu	AGG Arg	TCT Ser 240	CAG Gln	AGG Arg	AGG Arg	Arg	CTG Leu 245	CTG Leu	GTT Val	CCA Pro	GCA Ala	AAT Asn 250	1	.032
GAA Glu	GGT Gly	GAT Asp	CCC Pro	ACT Thr 255	GAG Glu	ACT Thr	CTG Leu	Arg	CAG Gln 260	TGC Cys	TTC Phe	GAT Asp	Asp	TTT Phe 265	GCA Ala	1	.080
GAC Asp	TTG Leu	Val	CCC Pro 270	TTT Phe	GAC Asp	TCC Ser	Trp	GAG Glu 275	CCG Pro	CTC Leu	ATG Met	Arg	AAG Lys 280	TTG Leu	GGC Gly	1	128

			AAT Asn												CAC His		1176
			TTG Leu														1224
CGA Arg 315	GAT Asp	GCC Ala	TCT Ser	GTC Val	CAC His 320	ACC Thr	CTG Leu	CTG Leu	GAT Asp	GCC Ala 325	TTG Leu	GAG Glu	ACG Thr	CTG Leu	GGA Gly 330	:	1272
GAG Glu	AGA Arg	CTT Leu	GCC Ala	AĄG Lys 335	CAG Gln	AAG Lys	ATT Ile	GAG GIu	GAC Asp 340	CAC	TTG Leu	TTG Leu	AGC Ser	TCT Ser 345	GGA Gly	1	1320
			TAT Tyr 350									Met				1	L362
TAAG	TGTG	AT I	CTCT	TCAG	G AA	GTGA	GACC	TTC	CCTG	GTT	TACC	TTTT	TT C	TGGA	AAAAG	1	422
CCCA	ACTG	GA C	TCCA	GTCA	G TA	GGAA	AGTG	CCA	CAAT	TGT	CACA	TGAC	CG G	TACT	GGAAG	1	.482
AAAC	TCTC	CC A	TCCA	ACAT	C AC	CCAG	TGGA	TGG	AACA	TCC	TGTA	ACTT	TT C	ACTG	CACTT	1	.542
GGCA	TTAT	тт т	TATA	AGCT	g aa	TGTG	ATAA	TAA	GGAC	ACT	ATGG	AAAA	AA A	AAAA	AAA	1	.600
(2)	******																

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 411 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Glu Gln Arg Gly Gln Asn Ala Pro Ala Ala Ser Gly Ala Arg Lys -51 -50 -45

Arg His Gly Pro Gly Pro Arg Glu Ala Arg Gly Ala Arg Pro Gly Pro -35 -20 -25

Arg Val Pro Lys Thr Leu Val Leu Val Val Ala Ala Val Leu Leu Leu -15 -10 -5

Val Ser Ala Glu Ser Ala Leu Ile Thr Gln Gln Asp Leu Ala Pro Gln $1 \hspace{1cm} 5 \hspace{1cm} 10$

Gln Arg Ala Ala Pro Gln Gln Lys Arg Ser Ser Pro Ser Glu Gly Leu $15 \hspace{1cm} 20 \hspace{1cm} 25 \hspace{1cm}$

- Cys Pro Pro Gly His His Ile Ser Glu Asp Gly Arg Asp Cys Ile Ser 30 40 45
- Cys Lys Tyr Gly Gln Asp Tyr Ser Thr His Trp Asn Asp Leu Leu Phe 50 55 60
- Cys Leu Arg Cys Thr Arg Cys Asp Ser Gly Glu Val Glu Leu Ser Pro 657075
- Cys Thr Thr Thr Arg Asn Thr Val Cys Gln Cys Glu Glu Gly Thr Phe $80 \hspace{1cm} 85 \hspace{1cm} 90 \hspace{1cm}$
- Arg Glu Glu Asp Ser Pro Glu Met Cys Arg Lys Cys Arg Thr Gly Cys 95 $$100\ \ \, 105$
- Pro Arg Gly Met Val Lys Val Gly Asp Cys Thr Pro Trp Ser Asp Ile 110 115 120 120
- Glu Cys Val His Lys Glu Ser Gly Ile Ile Ile Gly Val Thr Val Ala 130 135 140
- Lys Lys Val Leu Pro Tyr Leu Lys Gly Ile Cys Ser Gly Gly Gly Gly 160 165 170
- Asp Pro Glu Arg Val Asp Arg Ser Ser Gln Arg Pro Gly Ala Glu Asp 175 180 185
- Glu Glu Glu Met Glu Val Glu Glu Pro Ala Glu Pro Thr Gly Val Asn 210 $^{\circ}$ 215 220
- Met Leu Ser Pro Gly Glu Ser Glu His Leu Leu Glu Pro Ala Glu Ala 225 230 235
- Glu Arg Ser Gln Arg Arg Arg Leu Leu Val Pro Ala Asn Glu Gly Asp 240 245 250
- Pro Thr Glu Thr Leu Arg Gln Cys Phe Asp Asp Phe Ala Asp Leu Val 255 260 265
- Pro Phe Asp Ser Trp Glu Pro Leu Met Arg Lys Leu Gly Leu Met Asp 270 285 285
- Asn Glu Ile Lys Val Ala Lys Ala Glu Ala Ala Gly His Arg Asp Thr 290 295 300
- Leu Tyr Thr Met Leu Ile Lys Trp Val Asn Lys Thr Gly Arg Asp Ala 305 310 315

Ser Val His Thr Leu Leu Asp Ala Leu Glu Thr Leu Gly Glu Arg Leu 320 325 330

Ala Lys Gln Lys Ile Glu Asp His Leu Leu Ser Ser Gly Lys Phe Met $335 \hspace{1.5cm} 340 \hspace{1.5cm} 345$

Tyr Leu Glu Gly Asn Ala Asp Ser Ala Met Ser 350 355 360

- (2) INFORMATION FOR SEO ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 455 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
 - Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu 1 5 5 10 10 15
 - Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30
 - His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 35 40 45
 - Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 60
 - Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 65 70 75 80
 - Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$
 - Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val $100 \\ 0.05 \\ 105 \\ 105$
 - Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 125
 - Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135
 - Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 145 150 155 160
 - Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu

All affects affect parts provided in some and control parts provided in Section 2. The section of the section o

				16	5				17	0				175	5
Ası	n Gl	u Cy	s Va 18	1 Se 0	r Cy	s Se	r Ası	n Cyr 18		s Ly:	s Sei	. Lei	1 Glu 190		Thr
Lys	Le	u Cy 19	s Le 5	u Pr	o Gli	n Ile	e Glu 200	ı Ası	ı Va	l Lys	s Gly	7 Thi 205		ı Asp	Ser
G13	7 Th:	r Th	r Va	l Le	u Lei	215	Lev 5	ı Va	l Ile	e Phe	Phe 220	Gl3	/ Leu	Cys	Leu
Let 225	Se:	r Le	u Lei	u Phe	230	e Gl ₃	, Leu	Met	Туз	235	Tyr	Gln	Arg	Trp	Lys 240
Ser	Lys	s Le	а Туг	245	r Ile	Val	Cys	Gly	250	s Ser	Thr	Pro	Glu	Lys 255	Glu
			260)	/ Thr			265	i				270		
		275	•		Gly		280					285			
	290				Thr	295					300				
305					310					315					320
				325					330					335	
			340		Glu			345					350		-
		355			Thr		360					365			
	370				Phe	375					380				
365					Leu 390					395					400
				405	Thr				410					415	
			420		Gly			425					430		-
		435	-		Glu		Ala 440	Leu	Cys	Gly	Pro	Ala 445	Ala	Leu	Pro
	Ala 450		Ser	Leu	Leu	Arg									

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 335 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Met Leu Gly Ile Trp Thr Leu Leu Pro Leu Val Leu Thr Ser Val Ala 1 5 10 15
- Arg Leu Ser Ser Lys Ser Val Asn Ala Gln Val Thr Asp Ile Asn Ser 20 25 30
- Lys Gly Leu Glu Leu Arg Lys Thr Val Thr Thr Val Glu Thr Gln Asn $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$
- Leu Glu Gly Leu His His Asp Gly Gln Phe Cys His Lys Pro Cys Pro 50 55 60
- Pro Gly Glu Arg Lys Ala Arg Asp Cys Thr Val Asn Gly Asp Glu Pro 65 7075 70 75
- Asp Cys Val Pro Cys Gln Glu Gly Lys Glu Tyr Thr Asp Lys Ala His 85 90 95
- Phe Ser Ser Lys Cys Arg Arg Cys Arg Leu Cys Asp Glu Gly His Gly
 100 105 110
- Leu Glu Val Glu Ile Asn Cys Thr Arg Thr Gln Asn Thr Lys Cys Arg 115 120 125
- Cys Lys Pro Asn Phe Phe Cys Asn Ser Thr Val Cys Glu His Cys Asp 130 135 140
- Pro Cys Thr Lys Cys Glu His Gly Ile Ile Lys Glu Cys Thr Leu Thr 145 150 155 160
- Ser Asn Thr Lys Cys Lys Glu Glu Gly Ser Arg Ser Asn Leu Gly Trp 165 170 175
- Leu Cys Leu Leu Leu Leu Pro Ile Pro Leu Ile Val Trp Val Lys Arg 180 185 190
- Lys Glu Val Gln Lys Thr Cys Arg Lys His Arg Lys Glu Asn Gln Gly 195 200 205

Ser His Glu Ser Pro Thr Leu Asn Pro Glu Thr Val Ala Ile Asn Leu 210 215 220

Ser Asp Val Asp Leu Ser Lys Tyr Ile Thr Thr Ile Ala Gly Val Met 225 230 230 235 . 240

Thr Leu Ser Gln Val Lys Gly Phe Val Arg Lys Asn Gly Val Asn Glu 245 250 255

Ala Lys Ile Asp Glu Ile Lys Asn Asp Asn Val Gln Asp Thr Ala Glu 260 265 270

Gln Lys Val Gln Leu Leu Arg Asn Trp His Gln Leu His Gly Lys Lys 275 280 285

Thr Leu Ala Glu Lys Ile Gln Thr Ile Ile Leu Lys Asp Ile Thr Ser 305 310 315 320

Asp Ser Glu Asn Ser Asn Phe Arg Asn Glu Ile Gln Ser Leu Val 325 330 330

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 417 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Glu Gln Arg Pro Arg Gly Cys Ala Ala Val Ala Ala Ala Leu Leu 1 5 10 15

Leu Val Leu Leu Gly Ala Arg Ala Gln Gly Gly Thr Arg Ser Pro Arg 20 25 30

Cys Asp Cys Ala Gly Asp Phe His Lys Lys Ile Gly Leu Phe Cys Cys $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Arg Gly Cys'Pro Ala Gly His Tyr Leu Lys Ala Pro Cys Thr Glu Pro 50 55 60

Cys Gly Asn Ser Thr Cys Leu Val Cys Pro Gln Asp Thr Phe Leu Ala 65 70 75 80

Trp Glu Asn His His Asn Ser Glu Cys Ala Arg Cys Gln Ala Cys Asp

1,000

40

111

i gla

10

14

. wk

90

95

- Glu Gln Ala Ser Gln Val Ala Leu Glu Asn Cys Ser Ala Val Ala Asp 100 105 110
- Thr Arg Cys Gly Cys Lys Pro Gly Trp Phe Val Glu Cys Gln Val Ser 115 120 125
- Gln Cys Val Ser Ser Ser Pro Phe Tyr Cys Gln Pro Cys Leu Asp Cys 130 135 140
- Gly Ala Leu His Arg His Thr Arg Leu Leu Cys Ser Arg Arg Asp Thr 145 \$150\$
- Asp Cys Gly Thr Cys Leu Pro Gly Phe Tyr Glu His Gly Asp Gly Cys 165 170 175
- Val Ser Cys Pro Thr Ser Thr Leu Gly Ser Cys Pro Glu Arg Cys Ala 180 185 190
- Ala Val Cys Gly Trp Arg Gln Met Phe Trp Val Gln Val Leu Ala 195 200 205
- Gly Leu Val Val Pro Leu Leu Gly Ala Thr Leu Thr Tyr Thr Tyr 210 215 220
- Arg His Cys Trp Pro His Lys Pro Leu Val Thr Ala Asp Glu Ala Gly 225 230 235 240
- Ser Ala His Thr Leu Leu Ala Pro Pro Asp Ser Ser Glu Lys Ile Cys $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$
- Thr Val Gln Leu Val Gly Asn Ser Trp Thr Pro Gly Tyr Pro Glu Thr 275 280 285
- Gln Glu Ala Leu Cys Pro Gln Val Thr Trp Ser Trp Asp Gln Leu Pro 290 295 300
- Ser Arg Ala Leu Gly Pro Ala Ala Ala Pro Thr Leu Ser Pro Glu Ser 305 310 315 320
- Pro Ala Gly Ser Pro Ala Met Met Leu Gln Pro Gly Pro Gln Leu Tyr 325 330 335
- Asp Val Met Asp Ala Val Pro Ala Arg Arg Trp Lys Glu Phe Val Arg 340 345 350
- Thr Leu Gly Leu Arg Glu Ala Glu Ile Glu Ala Val Glu Val Glu Ile 355 360 365
- Gly Arg Phe Arg Asp Gln Gln Tyr Glu Met Leu Lys Arg Trp Arg Gln 370 380

Gln Gln Pro Ala Gly Leu Gly Ala Val Tyr Ala Ala Leu Glu Arg Met 385 \$390\$

Gly Leu Asp Gly Cys Val Glu Asp Leu Arg Ser Arg Leu Gln Arg Gly $405 \ \ 410 \ \ 415$

Pro

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 507 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AATTCGGCAC	AGCTCTTCAG	GAAGTCAGAC	CTTCCCTGGT	TTACCTTTTT	TCTGGAAAAA	6
GCCCAACTGG	GACTCCAGTC	AGTAGGAAAG	TGCCACAATT	GTCACATGAC	CGGTACTGGA	120
AGAAACTCTC	CCATCCAACA	TCACCCAGTG	GNATGGGAAC	ACTGATGAAC	TTTTCACTGC	180
ACTTGGCATT	ATTTTTGTNA	AGCTGAATGT	GATAATAAGG	GCACTGATGG	AAATGTCTGG	24
ATCATTCCGG	TTGTGCGTAC	TTTGAGATTT	GNGTTTGGGG	ATGTNCATTG	TGTTTGACAG	30
CACTTTTTN	ATCCCTAATG	TNAAATGCNT	NATTTGATTG	TGANTTGGGG	GTNAACATTG	360
GTNAAGGNTN	CCCNTNTGAC	ACAGTAGNTG	GTNCCCGACT	TANAATNGNN	GAANANGATG	420
NATNANGAAC	CTTTTTTTGG	GTGGGGGGGT	NNCGGGGCAG	TNNAANGNNG	NCTCCCCAGG	480
TTTGGNGTNG	CAATNGNGGA	ANNITGG				50

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 226 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(xi	i) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
TTTTTT	TTGT AGATGGATCT TACAATGTAG CCCAAATAAA TAAATAAAGC ATTTACATTA	60
GGATAAA	AAAA GTGCTGTGAA AACAATGACA TCCCAAACCA AATCTCAAAG TACGCACAAA	120
CGGAATC	GATC CAGACATTTC CATAGGTCCT TATTATCACA TTCAGCTTAT AAAATAATGC	180
CAAGTGC	CAGT GAAAAGTTAC AGGATGTTCC ATCCACTGGG TGGATT	226
(2) INF	FORMATION FOR SEQ ID NO:8:	
(i	i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii	.) MOLECULE TYPE: DNA (genomic)	
(xi	.) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
CGCCCAT	GGA GTCTGCTCTG ATCAC	. 25
(2) INF	ORMATION FOR SEQ ID NO:9:	
(i	.) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic actid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	,
) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
CGCAAGC'	TTT TAGCCTGATT CTTTGTGGAC	30
(2) INF	ORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)) MOLECULE TYPE: DNA (genomic)	

(xi) SEQUENCE DESCRIPTION: SEO ID NO:10:	
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
CGCGGATCCG CCATCATGGA ACAACGGGGA CAGAAC	36
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
CGCGGTACCT TAGGACATGG CAGAGTC	27
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CGCGGTACCT TAGCCTGATT CTTTGTGGAC	30