HW II Solutions

EE 588: Optimization for the information and data sciences

University of Southern California

Release Date: October 17, 2018

3.15 A family of concave utility functions. For $0 < \alpha \le 1$ let

$$u_{\alpha}(x) = \frac{x^{\alpha} - 1}{\alpha},$$

with $\operatorname{dom} u_{\alpha} = \mathbb{R}_{+}$. We also define $u_{0}(x) = \log x$ (with $\operatorname{dom} u_{0} = \mathbb{R}_{++}$).

- 1. Show that for x > 0, $u_0(x) = \lim_{\alpha \to 0} u_{\alpha}(x)$.
- 2. Show that u_{α} are concave, monotone increasing, and all satisfy $u_{\alpha}(1) = 0$.

These functions are often used in economics to model the benefit or utility of some quantity of goods or money. Concavity of u_{α} means that the marginal utility (i.e., the increase in utility obtained for a fixed increase in the goods) decreases as the amount of goods increases. In other words, concavity models the effect of satistion.

Solution

1. In this limit, both the numerator and denominator go to zero, so we use l'Hopital's rule:

$$\lim_{\alpha \to 0} u_{\alpha}(x) = \lim_{\alpha \to 0} \frac{(d/d\alpha)(x^{\alpha} - 1)}{(d/d\alpha)\alpha} = \lim_{\alpha \to 0} \frac{x^{\alpha} \log x}{1} = \log x.$$

2. By inspection we have

$$u_{\alpha}(1) = \frac{1^{\alpha} - 1}{\alpha} = 0.$$

The derivative is given by

$$u_{\alpha}'(x) = x^{\alpha - 1},$$

which is positive for all x (since $0 < \alpha < 1$), so these functions are increasing. To show concavity, we examine the second derivative:

$$u_{\alpha}''(x) = (\alpha - 1)x^{\alpha - 2}.$$

Since this is negative for all x, we conclude that u_{α} is strictly concave.

• Composition with an affine function. Show that the following functions $f: \mathbb{R}^n \to \mathbb{R}$ are convex.

- 1. f(x) = ||Ax b||, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $|| \cdot ||$ is a norm on \mathbb{R}^m . Solution. f is the composition of a norm, which is convex, and an affine function.
- 2. $f(x) = -(\det(A_0 + x_1 A_1 + \dots + x_n A_n))^{1/m}$, on $\{x \mid A_0 + x_1 A_1 + \dots + x_n A_n \succ 0\}$, where $A_i \in \mathbb{S}^m$.

Solution. f is the composition of the convex function $h(X) = -(\det X)^{1/m}$ and an affine transformation. To see that h is convex on \mathbb{S}^m_{++} , we restrict h to a line and prove that $g(t) = -\det(Z + tV)^{1/m}$ is convex:

$$g(t) = -(\det(Z + tV))^{1/m}$$

$$= -(\det Z)^{1/m} (\det(I + tZ^{-1/2}VZ^{-1/2}))^{1/m}$$

$$= -(\det Z)^{1/m} (\prod_{i=1}^{m} (1 + t\lambda_i))^{1/m}$$

where $\lambda_1, \ldots, \lambda_m$ denote the eigenvalues of $Z^{-1/2}VZ^{-1/2}$. We have expressed g as the product of a negative constant and the geometric mean of $1 + t\lambda_i$, $i = 1, \ldots, m$. Therefore g is convex. (See also exercise 3.18.)

3. $f(X) = \mathbf{tr} (A_0 + x_1 A_1 + \dots + x_n A_n)^{-1}$, on $\{x \mid A_0 + x_1 A_1 + \dots + x_n A_n \succ 0\}$, where $A_i \in \mathbb{S}^m$. (Use the fact that $\mathbf{tr}(X^{-1})$ is convex on \mathbb{S}^m_{++} ; see exercise 3.18.)

Solution. f is the composition of $\mathbf{tr}X^{-1}$ and an affine transformation

$$x \mapsto A_0 + x_1 A_1 + \dots + x_n A_n$$
.

- **3.22** Composition rules. Show that the following functions are convex.
 - 1. $f(x) = -\log(-\log(\sum_{i=1}^{m} e^{a_i^T x + b_i}))$ on $\mathbf{dom} f = \{x \mid \sum_{i=1}^{m} e^{a_i^T x + b_i} < 1\}$. You can use the fact that $\log(\sum_{i=1}^{n} e^{y_i})$ is convex.

Solution $g(x) = \log(\sum_{i=1}^{m} e^{a_i^T x + b_i})$ is convex (composition of the log-sum-exp function and an affine mapping), so -g is concave. The function $h(y) = -\log y$ is convex and decreasing. Therefore f(x) = h(-g(x)) is convex.

2. $f(x, u, v) = -\sqrt{uv - x^T x}$ on $\mathbf{dom} f = \{(x, u, v) \mid uv > x^T x, u, v > 0\}$. Use the fact that $x^T x/u$ is convex in (x, u) for u > 0, and that $-\sqrt{x_1 x_2}$ is convex on \mathbb{R}^2_{++} .

Solution We can express f as $f(x, u, v) = -\sqrt{u(v - x^T x/u)}$. The function $h(x_1, x_2) = -\sqrt{x_1 x_2}$ is convex on \mathbb{R}^2_{++} , and decreasing in each argument. The functions $g_1(u, v, x) = u$ and $g_2(u, v, x) = v - x^T x/u$ are concave. Therefore f(u, v, x) = h(g(u, v, x)) is convex.

3. $f(x, u, v) = -\log(uv - x^Tx)$ on $\mathbf{dom} f = \{(x, u, v) \mid uv > x^Tx, u, v > 0\}$. Solution We can express f as

$$f(x, u, v) = -\log u - \log(v - x^T x/u).$$

The first term is convex. The function $v - x^T x/u$ is concave because v is linear and $x^T x/u$ is convex on $\{(x,u) \mid u > 0\}$. Therefore the second term in f is convex: it is the composition of a convex decreasing function $-\log t$ and a concave function.

4. $f(x,t) = -(t^p - \|x\|_p^p)^{1/p}$ where p > 1 and $\mathbf{dom} f = \{(x,t) \mid t \ge \|x\|_p\}$. You can use the fact that $\|x\|_p^p/u^{p-1}$ is convex in (x,u) for u > 0 (see exercise 3.23), and that $-x^{1/p}y^{1-1/p}$ is convex on \mathbb{R}^2_+ (see exercise 3.16).

Solution We can express f as

$$f(x,t) = -\left(t^{p-1}\left(t - \frac{\|x\|_p^p}{t^{p-1}}\right)\right)^{1/p} = -t^{1-1/p}\left(t - \frac{\|x\|_p^p}{t^{p-1}}\right)^{1/p}.$$

This is the composition of $h(y_1, y_2) = -y_1^{1-1/p} y_2^{1/p}$ (convex and decreasing in each argument) and two concave functions

$$g_1(x,t) = t,$$
 $g_1(x,t) = t - \frac{\|x\|_p^p}{t^{p-1}}.$

5. $f(x,t) = -\log(t^p - ||x||_p^p)$ where p > 1 and $\mathbf{dom} f = \{(x,t) \mid t > ||x||_p\}$. You can use the fact that $||x||_p^p/u^{p-1}$ is convex in (x,u) for u > 0 (see exercise 3.23).

Solution Express f as

$$f(x,t) = -\log t^{p-1} - \log(t - ||x||_p^p/t^{p-1})$$

= -(p-1)\log t - \log(t - ||x||_p^p/t^{p-1}).

The first term is convex. The second term is the composition of a decreasing convex function and a concave function, and is also convex.

3.24

- Some functions on the probability simplex. Let x be a real-valued random variable which takes values in $\{a_1, \ldots, a_n\}$ where $a_1 < a_2 < \cdots < a_n$, with $\mathbf{prob}(x = a_i) = p_i$, $i = 1, \ldots, n$. For each of the following functions of p (on the probability simplex $\{p \in \mathbb{R}^n_+ \mid \mathbf{1}^T p = 1\}$), determine if the function is convex, concave, quasiconvex, or quasiconcave.
 - 1. $\mathbb{E}x$.

Solution $\mathbb{E}x = p_1a_1 + \cdots + p_na_n$ is linear, hence convex, concave, quasiconvex, and quasiconcave

2. $\operatorname{\mathbf{prob}}(x \geq \alpha)$.

Solution Let $j = \min\{i \mid a_i \geq \alpha\}$. Then $\operatorname{prob}(x \geq \alpha) = \sum_{i=j}^n p_i$, This is a linear function of p, hence convex, concave, quasiconvex, and quasiconcave.

3. $\operatorname{prob}(\alpha \leq x \leq \beta)$.

Solution Let $j = \min\{i \mid a_i \geq \alpha\}$ and $k = \max\{i \mid a_i \leq \beta\}$. Then $\operatorname{prob}(\alpha \leq x \leq \beta) = \sum_{i=j}^k p_i$. This is a linear function of p, hence convex, concave, quasiconvex, and quasiconcave.

4. $\sum_{i=1}^{n} p_i \log p_i$, the negative entropy of the distribution.

Solution $p \log p$ is a convex function on \mathbb{R}_+ (assuming $0 \log 0 = 0$), so $\sum_i p_i \log p_i$ is convex (and hence quasiconvex).

The function is not concave or quasiconcave. Consider, for example, n = 2, $p^1 = (1,0)$ and $p^2 = (0,1)$. Both p^1 and p^2 have function value zero, but the convex combination (0.5,0.5) has function value $\log(1/2) < 0$. This shows that the superlevel sets are not convex.

5. $\mathbf{var} x = \mathbb{E}(x - \mathbb{E}x)^2$.

Solution We have

$$\mathbf{var} x = \mathbb{E}x^2 - (\mathbb{E}x)^2 = \sum_{i=1}^n p_i a_i^2 - (\sum_{i=1}^n p_i a_i)^2,$$

so $\mathbf{var}x$ is a concave quadratic function of p.

The function is not convex or quasiconvex. Consider the example with n = 2, $a_1 = 0$, $a_2 = 1$. Both $(p_1, p_2) = (1/4, 3/4)$ and $(p_1, p_2) = (3/4, 1/4)$ lie in the probability simplex and have $\mathbf{var} x = 3/16$, but the convex combination $(p_1, p_2) = (1/2, 1/2)$ has a variance $\mathbf{var} x = 1/4 > 3/16$. This shows that the sublevel sets are not convex.

6. quartile(x) = $\inf\{\beta \mid \mathbf{prob}(x \leq \beta) \geq 0.25\}.$

Solution The sublevel and the superlevel sets of $\mathbf{quartile}(x)$ are convex (see problem 2.15), so it is quasiconvex and quasiconcave.

quartile(x) is not continuous (it takes values in a discrete set $\{a_1, \ldots, a_n\}$), so it is not convex or concave. (A convex or a concave function is always continuous on the relative interior of its domain.)

7. The cardinality of the smallest set $A \subseteq \{a_1, \ldots, a_n\}$ with probability $\geq 90\%$. (By cardinality we mean the number of elements in A.)

Solution f is integer-valued, so it can not be convex or concave. (A convex or a concave function is always continuous on the relative interior of its domain.)

f is quasiconcave because its superlevel sets are convex. We have $f(p) \ge \alpha$ if and only if

$$\sum_{i=1}^{k} p_{[i]} < 0.9,$$

where $k = \max\{i = 1, ..., n \mid i < \alpha\}$ is the largest integer less than α , and $p_{[i]}$ is the ith largest component of p. We know that $\sum_{i=1}^{k} p_{[i]}$ is a convex function of p, so the inequality $\sum_{i=1}^{k} p_{[i]} < 0.9$ defines a convex set.

In general, f(p) is not quasiconvex. For example, we can take n = 2, $a_1 = 0$ and $a_2 = 1$, and $p^1 = (0.1, 0.9)$ and $p^2 = (0.9, 0.1)$. Then $f(p^1) = f(p^2) = 1$, but $f((p^1 + p^2)/2) = f(0.5, 0.5) = 2$.

8. The minimum width interval that contains 90% of the probability, i.e.,

$$\inf \left\{ \beta - \alpha \mid \mathbf{prob}(\alpha \le x \le \beta) \ge 0.9 \right\}.$$

Solution The minimum width interval that contains 90% of the probability must be of the form $[a_i, a_j]$ with $1 \le i \le j \le n$, because

$$\operatorname{\mathbf{prob}}(\alpha \le x \le \beta) = \sum_{k=i}^{j} p_k = \operatorname{\mathbf{prob}}(a_i \le x \le a_j)$$

where $i = \min\{k \mid a_k \ge \alpha\}$, and $j = \max\{k \mid a_k \le \beta\}$.

We show that the function is quasiconcave. We have $f(p) \ge \gamma$ if and only if all intervals of width less than γ have a probability less than 90%,

$$\sum_{k=i}^{j} p_k < 0.9$$

for all i, j that satisfy $a_j - a_i < \gamma$. This defines a convex set.

Since the function takes values on a finite set, it is not continuous and therefore neither convex nor concave. In addition it is not quasiconvex in general. Consider the example with n = 2, $a_1 = 0$, $a_2 = 1$, $p^1 = (0.95, 0.05)$ and $p^2 = (0.05, 0.95)$. Then $f(p^1) = 0$, $f(p^2) = 0$, but $f((p^1 + p^2)/2) = 1$.

- **4.11** Problems involving ℓ_1 and ℓ_{∞} -norms. Formulate the following problems as LPs. Explain in detail the relation between the optimal solution of each problem and the solution of its equivalent LP.
 - 1. Minimize $||Ax b||_{\infty}$ (ℓ_{∞} -norm approximation).
 - 2. Minimize $||Ax b||_1$ (ℓ_1 -norm approximation).
 - 3. Minimize $||Ax b||_1$ subject to $||x||_{\infty} \le 1$.
 - 4. Minimize $||x||_1$ subject to $||Ax b||_{\infty} \le 1$.
 - 5. Minimize $||Ax b||_1 + ||x||_{\infty}$.

In each problem, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given. (See §?? for more problems involving approximation and constrained approximation.)

Solution

1. Equivalent to the LP

minimize
$$t$$

subject to $Ax - b \leq t\mathbf{1}$
 $Ax - b \geq -t\mathbf{1}$.

in the variables x, t. To see the equivalence, assume x is fixed in this problem, and we optimize only over t. The constraints say that

$$-t \le a_k^T x - b_k \le t$$

for each k, i.e., $t \ge |a_k^T x - b_k|$, i.e.,

$$t \ge \max_{k} |a_k^T x - b_k| = ||Ax - b||_{\infty}.$$

Clearly, if x is fixed, the optimal value of the LP is $p^*(x) = ||Ax - b||_{\infty}$. Therefore optimizing over t and x simultaneously is equivalent to the original problem.

2. Equivalent to the LP

minimize
$$\mathbf{1}^T s$$

subject to $Ax - b \leq s$
 $Ax - b \geq -s$.

Assume x is fixed in this problem, and we optimize only over s. The constraints say that

$$-s_k \le a_k^T x - b_k \le s_k$$

for each k, i.e., $s_k \ge |a_k^T x - b_k|$. The objective function of the LP is separable, so we achieve the optimum over s by choosing

$$s_k = |a_k^T x - b_k|,$$

and obtain the optimal value $p^*(x) = ||Ax - b||_1$. Therefore optimizing over t and s simultaneously is equivalent to the original problem.

3. Equivalent to the LP

with variables $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.

4. Equivalent to the LP

with variables x and y.

Another good solution is to write x as the difference of two nonnegative vectors $x = x^+ - x^-$, and to express the problem as

minimize
$$\mathbf{1}^T x^+ + \mathbf{1}^T x^-$$

subject to $-\mathbf{1} \leq Ax^+ - Ax^- - b \leq \mathbf{1}$
 $x^+ \geq 0, \quad x^- \geq 0.$

with variables $x^+ \in \mathbb{R}^n$ and $x^- \in \mathbb{R}^n$.

5. Equivalent to

minimize
$$\mathbf{1}^T y + t$$

subject to $-y \leq Ax - b \leq y$
 $-t\mathbf{1} \leq x \leq t\mathbf{1}$,

with variables x, y, and t.

• Formulate the following optimization problems as semidefinite programs. The variable is $x \in \mathbb{R}^n$; F(x) is defined as

$$F(x) = F_0 + x_1 F_1 + x_2 F_2 + \dots + x_n F_n$$

with $F_i \in \mathcal{S}^m$. The domain of f in each subproblem is $\operatorname{dom} f = \{x \in \mathbb{R}^n \mid F(x) \succ 0\}$.

- 1. Minimize $f(x) = c^T F(x)^{-1} c$ where $c \in \mathbb{R}^m$.
- 2. Minimize $f(x) = \max_{i=1,\ldots,K} c_i^T F(x)^{-1} c_i$ where $c_i \in \mathbb{R}^m$, $i = 1,\ldots,K$.
- 3. Minimize $f(x) = \sup_{\|c\|_2 \le 1} c^T F(x)^{-1} c$.
- 4. Minimize $f(x) = \mathbb{E}(c^T F(x)^{-1} c)$ where c is a random vector with mean $\mathbb{E}c = \bar{c}$ and covariance $\mathbb{E}(c \bar{c})(c \bar{c})^T = S$.

Solution.

1.

minimize
$$t$$
 subject to $\begin{bmatrix} F(x) & c \\ c^T & t \end{bmatrix} \succeq 0$.

2.

minimize
$$t$$
 subject to $\begin{bmatrix} F(x) & c_i \\ c_i^T & t \end{bmatrix} \succeq 0, \quad i = 1, \dots, K.$

3. $f(x) = \lambda_{\max}(F(x)^{-1})$, so $f(x) \le t$ if and only if $F(x)^{-1} \le tI$. Using a Schur complement we get

minimize
$$t$$
 subject to $\begin{bmatrix} F(x) & I \\ I & tI \end{bmatrix} \succeq 0$.

4. $f(x) = \bar{c}^T F(x)^{-1} \bar{c} + (F(x)^{-1} S)$. If we factor S as $S = \sum_{k=1}^m c_k c_k^T$ the problem is equivalent to

minimize
$$\bar{c}^T F(x)^{-1} \bar{c} + \sum_{k=1}^m c_k^T F(x)^{-1} c_k$$
,

which we can write as an SDP

minimize
$$t_0 + \sum_k t_k$$

subject to $\begin{bmatrix} F(x) & \bar{c} \\ \bar{c}^T & t_0 \end{bmatrix} \succeq 0$
 $\begin{bmatrix} F(x) & c_k \\ c_k^T & t_k \end{bmatrix} \succeq 0, \quad k = 1, \dots, m.$