Cele Splątanie kwantowe – wprowadzenie Programowanie półokreślone Narzędzia do SDP JOptimizer Splątanie a SDP Źródła

Optymalizacja półokreślona w wykrywaniu splątania kwantowego

Wojciech Wantka promotor: dr inż. Piotr Mironowicz

- Przegląd literatury odnośnie programowania półokreślonego.
- Wprowadzenie do metod informatyki kwantowej.
- Implementacja mechanizmu do wykrywania splątania kwantowego podanego stanu (z wykorzystaniem programowania półokreślonego).
- Sporządzenie dokumentacji.

- $[n] \equiv \{0, 1, \ldots, n-1\}$
- $oldsymbol{ ilde{H}}$ przestrzeń Hilberta o wymiarze n z ortonormalną bazą kanoniczną

$$\mathcal{B} = \{|i\rangle\}_{i \in [n]}$$

•
$$\mathcal{H}_{AB} \equiv \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

Stan czysty układu pojedynczego

W przestrzeni ${\cal H}$ stanem czystym nazywamy unormowany wektor

$$|\psi\rangle = \sum_{i \in [n]} \psi_i |i\rangle.$$

Stan mieszany układu pojedynczego

Jeżeli pojedynczy układ kwantowy z prawdopodobieństwem p_i znajduje się w stanie czystym $|\psi_i\rangle$, to jego stan opisuje operator liniowy na \mathcal{H} , nazywany operatorem gęstości. Jest on postaci

$$\rho \equiv \sum_{i} p_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|, 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i} = 1.$$

Ślad operatora

Jeżeli ρ jest operatorem liniowym w przestrzeni z bazą ortonormalną $|i\rangle$, to ślad

Źródła

$$\mathsf{Tr}[\rho] = \sum_{i} \langle i | \, \rho \, | i \rangle$$

Dodatnia określoność

Operator liniowy ho jest dodatnio określony, jeśli dla każdego $|\psi
angle$ jest

$$\langle \psi | \psi | \psi \rangle \geqslant 0.$$

Pisze się wtedy $\rho \geqslant 0$.

Charakteryzacja operatorów gęstości

Operator ρ działający na przestrzeni Hilberta $\mathcal H$ jest operatorem gęstości \Leftrightarrow

- **1** $\text{Tr}[\rho] = 1$

Oznaczenia Układy pojedyncze Układy złożone

W przypadku układów złożonych można definiować pojęcie splątania i separowalności stanu kwantowego.

Czysty stan układu złożonego

W przestrzeni $\mathcal{H}_A \otimes \mathcal{H}_B$ stanem czystym nazywamy unormowany wektor

$$\left|\psi\right\rangle = \sum_{i\in\left[n_{A}\right],j\in\left[n_{B}\right]}\psi_{ij}\left|i_{A}\right\rangle\left|j_{B}\right\rangle$$

Czysty stan splątany

Stan w przestrzeni $\mathcal{H}_A \otimes \mathcal{H}_B$, którego nie da się przedstawić w postaci

$$\left|\psi\right\rangle = \left|\psi_{\mathsf{A}}\right\rangle \left|\psi_{\mathsf{B}}\right\rangle, \left|\psi_{\mathsf{A}}\right\rangle \in \mathcal{H}_{\mathsf{A}}, \left|\psi_{\mathsf{B}}\right\rangle \in \mathcal{H}_{\mathsf{B}},$$

nazywamy stanem splątanym.

Oznaczenia Układy pojedyncze Układy złożone

<u>U</u>wa ga

Stan, który nie jest splątany, nazywamy stanem separowalnym.

Czysty stan splątany – Przykład

Przykładem stanu splątanego na $\mathbb{C}^2\otimes\mathbb{C}^2$ jest jeden ze stanów bazy Bella:

$$\Phi^+=rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$

Niech

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

$$|\psi\rangle = c |0\rangle + d |1\rangle$$

Wtedy iloczyn tensorowy

$$\left|\psi\right\rangle \left|\phi\right\rangle =$$
 ac $\left|00\right\rangle +$ ad $\left|01\right\rangle +$ bc $\left|10\right\rangle +$ bd $\left|11\right\rangle$

Musiałoby być

$$\begin{cases} ac = \frac{1}{\sqrt{2}} \\ ad = 0 \\ bc = 0 \\ bd = \frac{1}{\sqrt{2}} \end{cases}$$

Widać od razu, że warunki te są sprzeczne.

Stan mieszany układu złożonego

W przypadku stanów mieszanych stan układu złożonego definiuje się jako operator gęstości ρ^{AB} działający na przestrzeni \mathcal{H}_{AB} . Nazywa się go wtedy *łącznym* operatorem gęstości. Definiujemy go ogólnie jako

$$\rho^{AB} \equiv \sum_{i,k \in [n_A]; j,l \in [n_B]} \rho^{AB}_{ij,kl} \left| a_i \right\rangle \left\langle a_k \right| \otimes \left| b_j \right\rangle \left\langle b_l \right|,$$

gdzie

$$0 \leqslant \rho_{ij,kl}^{AB} \leqslant 1, \sum_{i,k \in [n_A]; j,l \in [n_B]} \rho_{ij,kl}^{AB} = 1$$

Oznaczenia Układy pojedyncz Układy złożone

Definicja stanu separowalnego zostaje dla stanów mieszanych rozszerzona w stosunku do przypadku stanów czystych – za taki stan uważa się nie tylko produkt dwóch stanów, ale każdą wypukłą kombinację produktów.

Mieszany stan splątany

Jeżeli operator gęstości ho^{AB} działający na przestrzeni $\mathcal{H}_A\otimes\mathcal{H}_B$ da się zapisać w postaci

$$\rho^{AB} = \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}, 0 \leqslant p_{i} \leqslant 1, \sum_{i} p_{i} = 1,$$

gdzie ρ_i^A, ρ_i^B są operatorami gęstości działającymi na przestrzeni $\mathcal{H}_A, \mathcal{H}_B$ odpowiednio, to stan mieszany ρ^{AB} nazywamy separowalnym.

Okazuje się, że dla układów dwuczęściowych sprawa rozstrzygnięcia, czy operator gęstości działający na przestrzeni \mathcal{H}_{AB} jest separowalny, jest problemem algorytmicznie NP-trudnym (zob. [3]). Dla przypadku $n_A=n_N=2$ istnieje jednak bardzo ważne kryterium. Najpierw podamy jednak definicję tzw. częściowej transpozycji operatora gęstości.

Niech $\mathcal{H}_A=\mathcal{H}_B$ są przestrzeniami Hilberta wymiaru n z ortonormalnymi bazami $|i\rangle_A\,,|j\rangle_B$ odpowiednio. Niech ρ jest operatorem gęstości na \mathcal{H}_{AB} i niech w bazie $|i_Aj_B\rangle$ jego reprezentacja macierzowa ma postać

$$\begin{pmatrix} \rho_{00} & \rho_{01} & \cdots & \rho_{0,n-1} \\ \rho_{10} & \rho_{11} & \cdots & \rho_{1,n-1} \\ \vdots & \vdots & \vdots & \vdots \\ \rho_{n-1,0} & \rho_{n-1,1} & \cdots & \rho_{n-1,n-1} \end{pmatrix}$$

Częściowa transpozycja operatora gęstości

Częściową transpozycją operatora ρ ze względu na podukład \mathcal{H}_B nazywamy operator ρ^{Γ} , którego reprezentacja macierzowa w bazie $|i_Aj_B\rangle$:

$$\rho^{\Gamma} \equiv \begin{pmatrix} \rho_{00}^{T} & \rho_{01}^{T} & \cdots & \rho_{0,n-1}^{T} \\ \rho_{10}^{T} & \rho_{11}^{T} & \cdots & \rho_{1,n-1}^{T} \\ \vdots & \vdots & \vdots & \vdots \\ \rho_{n-1,0}^{T} & \rho_{n-1,1}^{T} & \cdots & \rho_{n-1,n-1}^{T} \end{pmatrix}$$

Oznaczenia Układy pojedyncz Układy złożone

Częściowa transpozycja – własności

Częściowa transpozycja ze względu na podukład B:

- Zachowuje hermitowskość operatora
- Zachowuje ślad operatora

Oznaczenia Układy pojedyncz Układy złożone

Kryterium Częściowej Transpozycji (*Peres-Horodecki criterion*), zob. [3]

Operator gęstości ρ działający w przestrzeni $\mathbb{C}^2\otimes\mathbb{C}^2$ jest stanem separowalnym \Leftrightarrow operator ρ^Γ jest operatorem gęstości.

Dodatnia półokreśloność (positive semidefinity)

Macierz S nazywa się $dodatnio półokreśloną, gdy dla każdego <math>v \in \mathbb{R}^n$ jest

$$v^T S v \geqslant 0$$
.

Pisze się wtedy $S \geqslant 0$. Pisze się też $-S \leqslant 0$.

Problem programowania półokreślonego – postać pierwotna

Žródła

$$\begin{cases} \min \mathbf{Tr}[CX] \\ \text{ze względu na:} \\ \bullet \mathbf{Tr}[A_iX] = b_i, i = 1, \dots, p; \\ \bullet X \geqslant 0, \end{cases}$$

gdzie

- $X \in M_{n \times n}(\mathbb{R})$ jest macierzą symetryczną traktowaną jako zmienna;
- $C, A_i \in M_{n \times n}(\mathbb{R}), i = 1, \dots, p$ są danymi macierzami symetrycznymi;
- ullet $b_i \in \mathbb{R}, i=1,\ldots,p$ są danymi liczbami.

Problem programowania półokreślonego – postać dualna

$$\begin{cases} \min c^T x \\ \text{ze względu na:} \\ \bullet F(x) \leqslant 0 \\ \bullet Ax = b, \end{cases}$$

•
$$F(x) \leq 0$$

$$\bullet$$
 $Ax = b$.

gdzie

$$F(x) = G + \sum_{i=1}^{m} x_i F_i$$

dla

$$x \in \mathbb{R}^m$$
; $c \in \mathbb{R}^m$; $G, F_1, \dots, F_m \in S^m$

- SDPA wiele interfejsów do różnych języków programowania; wersje wspierające zrównoleglanie obliczeń etc.
- ② YASS (C++)
- 3 CSDP (C)
- DSDP

- SeDuMi
- ② SDPT3
- YALMIP
- CVX

 cvxopt (Python [dostępne jako pakiet w PyPl central]) – optymalizacja wypukła

Ogólnie Matlab Python Java R

JOptimizer (Java, dostępne przez maven central)

- sdpt3r
- Rcsdp (interfejs do CSDP)
- Rdsdp (interfejs do DSPD)

$$\begin{cases} \min\left(\begin{bmatrix} -\sqrt{\frac{21}{50}} & 0\\ -\frac{\sqrt{2}}{5} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}\right)^T \left(\begin{bmatrix} -\sqrt{\frac{21}{50}} & 0\\ -\frac{\sqrt{2}}{5} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}\right) \\ \left(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} 2\\ 2 \end{bmatrix}\right)^T \left(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} 2\\ 2 \end{bmatrix}\right) - 1.75^2 \leqslant 0 \end{cases}$$

Źródła

Rysunek: Przykład 1 – obszar dopuszczalny

Rysunek: Przykład 1 – obszar dopuszczalny

$$objectiveFunction(\mathbf{x}) \equiv \mathbf{q} \cdot \mathbf{x} + r$$

```
double[] q = {<q0>, <q1>, ..., <q_n>};
double r = <r_value>;
LinearMultivariateRealFunction objectiveFunction =
    new LinearMultivariateRealFunction(q, r);
```

Źródła

Przykład 1

```
private static double[] optimize(
    List<double[][]> fiMatrixList,
    double[][] gMatrix,
    OptimizationRequest optimizationRequest)
    throws JOptimizerException
{
    BarrierFunction barrierFunction =
        new SDPLogarithmicBarrier(fiMatrixList, gMatrix);
    BarrierMethod barrierMethod =
        new BarrierMethod(barrierFunction);
    barrierMethod.setOptimizationRequest(
        optimizationRequest);
    barrierMethod.optimize();
    return barrierMethod
        .getOptimizationResponse()
        .getSolution();
                                        4 D > 4 B > 4 B > 4 B > B
```

36 / 41

Cele Splątanie kwantowe – wprowadzenie Programowanie półokreślone Narzędzia do SDP JOptimizer Splątanie a SDP Żródła

Świadek splątania

Obserwablę W nazywa się świadkiem splątania, gdy

- $Tr[W\rho] \geqslant dla każdego separowalnego \rho$
- 2 $Tr[W\rho] < 0$ dla przynajmniej jednego splątanego ρ

Rysunek: Stany kwantowe jako wypukłe kombinacje

- [1] A. C. Doherty, Pablo A. Parrilo, Federico M. Spedalieri, Distinguishing separable and entangled states [arXiv:quant-ph/0112007].
- [2] A. C. Doherty, Pablo A. Parrilo, Federico M. Spedalieri, A complete family of separability criteria [arXiv:quant-ph/0308032].
- [3] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement, Revievs of Modern Physics 81, 865 (2009) [arXiv:quant-ph/0702225].

- Stephen Boyd, Lieven Vandenberghe, Convex Optimization [https://web.stanford.edu/~boyd/cvxbook/].
- www-user.tu-chemnitz.de/~helmberg/semidef.html.

- https://en.wikipedia.org/wiki/List_of_ optimization_software.
- Ehsan Elhamifar, Guillermo Sapiro, Allen Yang, S. Shankar Sastry, A Convex Optimization Framework for Active Learning.