Esercizio 2: Verilog

Si consideri la seguente funzione iterativa, per $n \in \mathbb{N}$:

$$n_{i+1} = \begin{cases} n_i/2 & \text{se } n_i \text{ è pari,} \\ 3 \cdot n_i + 1 & \text{se } n_i \text{ è dispari.} \end{cases}$$

Dato un qualunque naturale $n_0 \ge 1$, si può trovare un numero finito k di iterazioni tali per cui $n_k = 1$.

L'Unità ABC in fig. 1 calcola il numero di iterazioni k associato a n_0 , numero naturale su 8 bit, che è fornito dalla rete consumatore.

Figura 1: Schema del sistema

Descrivere in Verilog l'unità ABC e sintetizzarla in accordo al modello con parte operativa e parte controllo.

Si supponga che la parte controllo sia implementata secondo un modello basato su microindirizzi e si scriva la struttura della ROM come commento alla parte controllo medesima. Sintetizzare come modulo a parte la rete combinatoria CALCOLO_ITERAZIONE utilizzata per calcolare n_{i+1} a partire da n_i . Se lo si ritiene, si utilizzino le reti combinatorie fornite nel file reti_standard.v.

Note:

- Quando il consumatore vuole avviare una nuova computazione, stabilizza l'input n_0 prima e durante tutto il tempo in cui imposta soc a 1. La rete ABC risponde con l'output k secondo le solite procedure dell'handshake soc/eoc.
- Il valore k da trovare è il *primo* per cui $n_k = 1$.
- Il valore massimo di k così definito, per i possibili valori di n_0 considerati in questo esercizio, è < 255.
- Il valore massimo n_i raggiungibile, per tutti i possibili valori di n_0 considerati in questo esercizio, è 13120 < harmoniche 44000.

Note sulla sintesi della rete combinatoria:

 $^{^1}$ Questa è nota come congettura di Collatz. È certamente vera per tutti i valori n_0 considerati in questo esercizio.

- Non sono sintesi di reti combinatorie, e non saranno quindi ritenute valide, descrizioni contenenti operatori aritmetici e/o di relazione predefiniti del Verilog, e.g. +, -, *, /, %, <, > etc.
- · Sono invece validi a questo scopo gli operatori di concatenamento, (dis)uguaglianza, assegnamenti a più vie, utilizzo di altre reti che o a) rispettano questi criteri o b) provengono da reti_standard.v.
- È sufficiente che la rete combinatoria sia così sintetizzata in almeno uno dei file consegnati.

I file testbench.v e reti_standard.v sono al link: http://tinyurl.com/5cpjratx