CS 344: Design and Analysis of Computer Algorithms

(Spring 2022 — Sections 5,6,7,8)

Lecture 19: Prim's Algorithm for MST, Shortest Path Algorithms

The Minimum Spanning Tree Problem

Input:

- An undirected connected graph G = (V, E)
- Positive weights on edges of G: edge e has weight $w_e > 0$

Output:

- A spanning tree T in G with minimum weight

• Weight of
$$T = \sum_{e \in T} w_e$$

A Generic "Algorithm" for MST

A Generic Meta-Algorithm

- Let $F = \emptyset$ be an empty forest initially
- For i = 1 to n-1 steps:
 - Find a safe edge e for the current forest F
 - Update F = F + e
- Output the final F as an MST

This is NOT really an algorithm

Theorem:

- Suppose F is MST-good but not a tree yet
- Let (S,V-S) be any cut with no cut edge in F
- Then edge e in G-F with minimum weight among cut edges of (S,V-S) is safe for F

Theorem:

- Suppose F is MST-good but not a tree yet
- Let (S,V-S) be any cut with no cut edge in F

- Then edge e in G-F with minimum weight among cut edges of

(S,V-S) is safe for F

Theorem:

- Suppose F is MST-good but not a tree yet
- Let (S,V-S) be any cut with no cut edge in F

 Then edge e in G-F with minimum weight among cut edges of (S,V-S) is safe for F

Theorem:

- Suppose F is MST-good but not a tree yet
- Let (S,V-S) be any cut with no cut edge in F

- Then edge e in G-F with minimum weight among cut edges of

(S,V-S) is safe for F

Theorem:

- Suppose F is MST-good but not a tree yet
- Let (S,V-S) be any cut with no cut edge in F

- Then edge e in G-F with minimum weight among cut edges of

(S,V-S) is safe for F

Prim's Algorithm

Prim's Algorithm

- Let mark[1:n] = false for all vertices and s be any arbitrary vertex
- Let F = Ø, mark[s] = true and H be the set of edges incident on s
- While H is not empty:
 - Remove the minimum weight edge e=(u,v) from H
 - If mark[u]=mark[v] = true, ignore this edge and go to the next iteration of the while-loop
 - Otherwise, let us assume by symmetry mark[u] = true only
 - Add the edge (u,v) to F and all edges incident on v to H; set mark[v] = true.
- Return F as an MST of the input graph

Proof of Correctness

- Let mark[1:n] = false for all vertices and s
 be any arbitrary vertex
- Let F = Ø, mark[s] = true and H be the set of edges incident on s
- While H is not empty:
 - Remove minimum weight edge (u,v) from H
 - If mark[u]=mark[v] = true, ignore the edge and go to the next iteration of while-loop
 - Otherwise, let us assume by symmetry mark[u] = true only
 - Add (u,v) to F and all edges incident on v to H; set mark[v] = true.

Theorem:

- Suppose F is MST-good but not a tree yet
- Let (S,V-S) be any cut with no cut edge in F
- Then edge e in G-F with minimum weight among cut edges of (S,V-S) is safe for F

Summary

Summary

- MST problem: finding a spanning tree with minimum weight
- We saw two different algorithms for finding MST
 - Kruskal: based on sorting edges first
 - Prim: based on a graph search + min-heap
- They are both different implementation of a generic metaalgorithm based on safe edges and minimum weight edge of cuts
- Both algorithms take O(m log m) time

Summary

- MST problem: finding a spanning tree with minimum weight
- We saw two different algorithms for finding MST
 - Kruskal: based on sorting edges first
 - Prim: based on a graph search + min-heap
- They are both different implementation of a generic meta-algorithm based on safe edges and minimum weight edge of cuts
- Both algorithms take O(m log m) time
- There are even faster algorithms for this problem but they are way beyond the scope of our course

The Single-Source Shortest Path Problem

For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t
- Weight of the path:

$$- w(P_{st}) = \sum_{e \in P} w_e$$

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t
- Weight of the path:

$$- w(P_{st}) = \sum_{e \in P} w_e$$

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t
- Weight of the path:

$$- w(P_{st}) = \sum_{e \in P} w_e$$

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

Application? Any navigation app/method you ever use

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

Single-Source Shortest Path Problem

Input:

- A graph G=(V,E) (undirected or directed)
- Weights w_e on each edge e
- A single vertex s called source

Output:

- The distance of s to all other vertices: dist(s, v) for all $v \in V$

From SSSP to Finding Shortest Paths

SSSP and Distances

- The SSSP problem we defined only outputs the distances
- What if we want to find a shortest path from s to some vertex t?

SSSP and Distances

- The SSSP problem we defined only outputs the distances
- What if we want to find a shortest path from s to some vertex t?

We can build the path given the distances easily

Finding the Path

- Let v=t and $P_{st} = \emptyset$
- While $v \neq s$
 - Find the in-neighbor u of v such that $dist(s, v) = dist(s, u) + w_{uv}$
 - Add the edge (u,v) to the beginning of P_{st}
 - Let $v \leftarrow u$
- Output P_{st}

Proof of Correctness

- Let v=t and $P_{st} = \emptyset$
- While $v \neq s$
 - Find the in-neighbor u of v such that

$$dist(s, v) = dist(s, u) + w_{uv}$$

- Add the edge (u,v) to the beginning of P_{st}
- Let $v \leftarrow u$
- Output P_{st}

- The weight of the path is equal to dist(s, t)
- So it is a shortest path from s to t
- We will see more on this later in the lecture

Runtime

- Let v=t and $P_{st} = \emptyset$
- While $v \neq s$
 - Find the in-neighbor u of v such that $dist(s, u) = dist(s, v) + w_{uv}$
 - Add the edge (u,v) to the beginning of P_{st}
 - Let $v \leftarrow u$
- Output P_{st}

- No edge or vertex is visited more than once
- So O(n+m) time at most

- An extremely simple algorithm for SSSP
- General idea:
- We start with some value d[v] for every vertex v
- We make sure that d[v] is always equal to weight of some s-v path
- We would like to eventually have d[v] = dist(s,v) but originally d[v] can be much larger
- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

Proof of Correctness

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Define dist_i(s, v) as the weight of shortest path from s to v using at most i edges
- Inductive statement: For any i, after i-th run of the for-loop entirely, $d[v] \leq dist_i(s, v)$

Runtime Analysis

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- We can have at most n iterations of the for-loop
- (By the proof of correctness)
- Each iteration takes O(m) time
- So total runtime is O(mn)

Bellman-Ford Algorithm

- Is extremely simple
- Is extremely agile and can be used in different settings:
 - Distributed algorithms or computer networks
- But its runtime is too slow
- We will see another algorithm with much faster runtime

Bellman-Ford Algorithm

- Is extremely simple
- Is extremely agile and can be used in different settings:
 - Distributed algorithms or computer networks
- But its runtime is too slow
- We will see another algorithm with much faster runtime

 Btw, Bellman-Ford is a dynamic programming algorithm — in fact, perhaps the first serious one ever invented!