7 Programmazione Dinamica

7.1 Critica al Divide & Conquer (D&C)

Il processo di soluzione non ha memoria, quindi le soluzioni di sottoistanze vanno ricalcolate.

Esempio Vediamo uno "spreco" usando D&C: la sequenza di Fibonacci.

$$F(n) = \begin{cases} 1 & \text{se } n = 0, 1\\ F(n-1) + F(n-2) & \text{se } n \ge 2 \end{cases}$$

Rec-Fib(n)

- 1 **if** (n=0) **or** (n=1)
- 2 return 1
- 3 return Rec-Fib(n-1) + Rec-Fib(n-2)

Ad esempio, con n = 5

Vengono ricalcolate F(3) e F(2).

Complessità

$$T(n) = \begin{cases} 0 & \text{se } n = 0, 1 & \text{(il "return" costa 0)} \\ T(n-1) + T(n-2) + 1 & \text{se } n \ge 2 & \text{(il "+" costa 1)} \end{cases}$$

$$T(n) \ge T(n-1) + T(n-2) + 1$$

$$\ge 2T(n-2) + 1$$

$$\ge 2(2T(n-2-2) + 1) + 1$$

$$= 2^2T(n-2-2) + 2 + 1$$

$$\ge 2^iT(n-2\cdot i) + \sum_{j=0}^{i-1} 2^j$$

$$i_0 \to i = \left\lfloor \frac{n}{2} \right\rfloor$$
 se n è pari:
$$2^{\frac{n}{2}}T(n-2\frac{n}{2}) = 2^{\frac{n}{2}}T(0)$$
 se n è dispari:
$$\left\lfloor \frac{n}{2} \right\rfloor = \frac{n-1}{2}$$

$$2^{\frac{n-1}{2}}T(n-2\frac{n-1}{2}) = 2^{\frac{n-1}{2}}T(1)$$

88 di 121

Otteniamo

$$T(n) \ge \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor - 1} 2^j = \Theta(2^{\frac{n}{2}})$$

In verità,

$$T(n) = \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$

Vediamo ora una versione iterativa:

```
IT-FIB(n)

1 if (n = 0) or (n = 1)

2 return 1

3 F[0] = 1

4 F[1] = 1

5 for i = 2 to n

6 F[i] = F[i-1] + F[i-2]

7 return F[n]
```

Complessità $\Theta(n)$

La programmazione dinamica salta la fase top-down.

7.2 Memoizzazione

È un ibrido tra il D&C e la programmazione dinamica che vuole mantenere la fase top-down pur cercando di ricordare le soluzioni ai sottoproblemi.

Def Un algoritmo **memoizzato** è costituito da due subroutine distinte:

- 1) **routine di inizializzazione**: risolve direttamente i casi base e inizializza una struttura dati che contiene le soluzioni ai casi base e gli elementi per tutte le sottoistanze da calcolare, inizializzate ad un valore di default
- 2) routine ricorsiva: esegue il codice D&C preceduto da un test sulla struttura dati per verificare se la soluzione è già stata calcolata e memorizzata. Se sì, si ritorna, altrimenti la si calcola ricorsivamente e la si memorizza nella struttura.

Esempio Riprendiamo l'esempio di prima sulla sequenza di Fibonacci.

```
Init-Fib(n)

1 if (n = 0) or (n = 1)

2 return 1

3 F[0] = 1

4 F[1] = 1

5 for i = 2 to n

6 F[i] = 0

7 return Rec-Fib(n)
```

Complessità $\Theta(n)$

```
Rec-Fib(i)

1 if F[i] = 0

2 F[i] = \text{Rec-Fib}(i-2) + \text{Rec-Fib}(i-1)

3 return F[i]
```

Riprendiamo l'esempio di prima, con n=5

Questa volta, F(3) e F(2) non vengono ricalcolate. Abbiamo n foglie e n-1 nodi interni (n parte da 0).

7.3 Problemi di Ottimizzazione

I = insieme delle istanze

S =insieme delle soluzioni

$$\Pi \subseteq I \times S$$

 $\forall i \in I, \ S(i) = \{s \in S : (i, s) \in \Pi\} = \text{insieme delle soluzioni ammissibili funzione di costo } c : S \to \mathbb{R}$

Determinare, data $i \in I$, $s^* \in S(i) : c(s^*) = \min(/\max)\{c(s) : s \in S(i)\}$

Problema della raggiungibilità su un grafo orientato

$$\begin{split} I &= \{ \langle G = (V, E), \ u, \ v \rangle \ : \ V \subseteq \mathbb{N}, \ V \ \text{finito}, \ E \subseteq V \times V, \ u, v \in V \} \\ S &= \{ \langle v_1, v_2, \dots, v_k \rangle \ : \ k \geq 1, \ v_i \in \mathbb{N} \quad \forall \ 1 \leq i \leq k \} \cup \{ \varepsilon \} \qquad (\varepsilon = \text{cammino vuoto}) \\ \left(i = \langle G = (V, E), \ u, \ v \rangle, \ s \right) \in \Pi \iff \begin{cases} S = \varepsilon, \exists \ \text{un cammino tra} \ u \in v \ \text{in} \ G \\ S &= \langle v_1, v_2, \dots, v_k \rangle, \ v_1 = u, \ v_k = v, \\ (v_i, v_{i+1}) \in E \quad \forall \ 1 \leq i \leq k \end{cases} \\ c(\langle v_1, v_2, \dots, v_k \rangle) = k - 1 \\ c(\varepsilon) &= +\infty \end{split}$$

Caratteristiche Un problema di ottimizzazione, per essere risolto con la programmazione dinamica, deve avere le seguenti caratteristiche:

- o struttura ricorsiva;
- esistenza di sottoistanze ripetute;
- o spazio di sottoproblemi "piccolo".

Paradigma Generale

- 1. Caratterizza la struttura di una soluzione ottima s^* in funzione di soluzione ottime $s_1^*, s_2^*, \ldots, s_k^*$ di sottoistanze di taglia inferiore.
- 2. Determina una relazione di ricorrenza del tipo $c(s^*) = f(c(s_1^*), \dots, c(s_k^*))$.
- 3. Calcola $c(s^*)$ impostando il calcolo in maniera bottom-up (oppure memoizzando).
- 4. Mantiene informazioni strutturali aggiuntive che permettono di ricostruire s^* .

7.4 Problemi su Stringhe

Def Dato un alfabeto finito Σ , una **stringa**

$$X = \langle x_1, x_2, \dots, x_m \rangle, \quad x_i \in \Sigma \quad \forall \ 1 \le i \le m$$

è una concetazione finita di simboli in Σ .

m = |X| = lunghezza di X

 $\Sigma^*=$ insieme di tutte le stringhe di lunghezza finita costruibili su Σ $\varepsilon=$ stringa vuota

Data una stringa X, il **prefisso** di X è

$$X_i = \langle x_1, x_2, \dots, x_i \rangle, \quad 1 \le i \le m$$

Data una stringa X, il **suffisso** di X è

$$X^i = \langle x_i, x_{i+1}, \dots, x_m \rangle, \quad 1 \le i \le m$$

Per convenzione $X_0 = X^{m+1} = \varepsilon$

 \mathbf{Def} Data una stringa X, la **sottostringa** di X è

$$X_{i\dots j} = \langle x_i, x_{i+1}, \dots, x_j \rangle, \quad 1 \le i \le j \le m$$

Per convenzione $X_{i...j} = \varepsilon$ se i > j

possibili sottostringhe di una stringa con m caratteri:

$$\begin{pmatrix} m \\ 2 \end{pmatrix} + m + 1 = \frac{m(m+1)}{2} = \Theta(m^2)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$i \neq j \qquad i = j \qquad \varepsilon$$

Lo spazio delle sottostringhe "non è troppo grande".

Def Data una stringa

$$X = \langle x_1, x_2, \dots, x_m \rangle \in \Sigma^*$$

е

$$Z = \langle z_1, z_2, \dots, z_k \rangle \in \Sigma^*$$

si dice che Z è sottosequenza di X se \exists una successione crescente di indici

$$1 \le i_1 \le i_2 \le \cdots \le i_k \le m : z_j = x_{ij} \quad \forall \ 1 \le j \le k$$

Esempio

$$\begin{split} X &= \langle a, b, c, b, b, d \rangle \\ Z_1 &= \langle a, b, c \rangle = X_{1...3} \\ Z_2 &= \langle a, c, b \rangle \qquad i_1 = 1, \quad i_2 = 3, \quad i_3 = 4 \text{ o 5} \\ Z_3 &= \langle b, b \rangle = X_{4...5} \qquad i_1 = 2, \quad i_2 = 5 \end{split}$$

#possibili sottosequenze di una stringa con m caratteri:

$$\sum_{k=0}^{m} \binom{m}{k} = 2^{m}$$

$$\uparrow$$
stringhe lunghe k
prese da un insieme
di m elementi

7.5 Longest Common Subsequence (LCS)

7.5.1 Problema di Ottimizzazione

Date due stringhe X, Y determina Z tale che:

- 1) Z è sottosequenza di X e Y;
- 2) Z è la più lunga tra tutte le sottosequenze comuni.

Esempio

$$\begin{split} X &= \langle a,b,c,b,d \rangle \\ Y &= \langle a,d,c,c,b,d \rangle \\ Z &= \langle a,c,b,d \rangle \text{ è una LCS (in questo caso è l'unica)} \\ i_1 &= 1, \quad i_2 = 3, \quad i_3 = 4 \text{ o } 5, \quad i_4 = 6 \\ j_1 &= 1, \quad j_2 = 3 \text{ o } 4, \quad j_3 = 5, \quad j_4 = 6 \end{split}$$

Risolvo il problema:

$$|X| = m$$
$$|Y| = n$$

L'approccio "brute force" ha complessità $\Omega(2^m \cdot 2^n)$.

Devo cercare di individuare una proprietà di sottostruttura, cioè la LCS deve "nascondere" al suo interno LCS di qualche stringa più piccola di X e Y.

$$X = \langle b, c, f, a \rangle$$

$$Y = \langle c, f, d, a \rangle$$

$$Z = LCS(X, Y) = \langle Z', a \rangle \qquad \text{con } Z' = LCS(X_3, Y_3)$$

$$X = \langle X', a \rangle$$

$$Y = \langle Y', b \rangle$$

$$Z \text{ o non termina con } a, \text{ o non termina con } b$$

$$Z = LCS(X', Y) \text{ o } LCS(X, Y')$$

$$S = \{LCS(X_i, Y_j) : 0 \le i \le m, \ 0 \le j \le n\}, \quad |S| = (m+1)(n+1)$$

$$\uparrow \qquad \uparrow$$

$$\in \mathcal{E}$$

7.5.2 Proprietà di Sottostruttura Ottima

Dati i prefissi

$$X_i = \langle x_1, x_2, \dots, x_i \rangle$$

$$Y_i = \langle y_1, y_2, \dots, y_j \rangle$$
Sia $Z = \langle z_1, z_2, \dots, z_k \rangle = LCS(X_i, Y_j)$

- 0. caso base: o i=0 o j=0 $\Rightarrow Z=\varepsilon$
- 1. i, k > 0se $x_i = y_j$ allora
 - (a) $z_k = x_i (= y_j)$
 - (b) $Z_{k-1} = LCS(X_{i-1}, Y_{j-1})$
- 2. i, j > 0se $x_i \neq y_j$ allora Z è la stringa di lunghezza massima tra $LCS(X_i, Y_{j-1})$ e $LCS(X_{i-1}, Y_j)$

Dimostrazione

- 0. banale
- 1. $x_i = y_j$ $Z = LCS(X_i, Y_j) = \langle z_1, z_2, \dots, z_k \rangle = \langle x_{i_1}, x_{i_2}, \dots, x_{i_k} \rangle = \langle y_{j_1}, y_{j_2}, \dots, y_{j_k} \rangle$ $1 \le i_1 \le i_2 \le \dots \le i_k \le i, \qquad 1 \le j_1 \le j_2 \le \dots \le j_k \le j$
 - (a) Ragioniamo per assurdo

$$z_k = x_{i_k} = y_{j_k}$$

$$z_k \neq (x_i = y_j)$$

$$\Rightarrow i_k < i, \quad j_k < j$$

$$Z' = \langle Z, x_i \rangle$$

$$1 \le i_1 \le i_2 \le \dots \le i_k \le i_{k+1} = i, \qquad 1 \le j_1 \le j_2 \le \dots \le j_k \le j_{k+1} = j$$

(b) Devo dimostrare che

$$Z_{k-1} = LCS(X_{i-1}, Y_{j-1})$$

$$Z_{k-1} = \langle x_{i_1}, x_{i_2}, \dots, x_{i_{k-1}} \rangle = \langle y_{j_1}, y_{j_2}, \dots, y_{j_{k,1}} \rangle$$

$$i_{k-1} \le i - 1 < i$$

$$Z_{k-1} = CS(X_{i-1}, Y_{j-1})$$

7.5 Longest Common Subsequence (LCS) 7 Programmazione Dinamica

Ora dimostro che

$$Z_{k-1} = LCS(X_{i-1}, Y_{j-1})$$

Suppongo per assurdo che

$$Z_{k-1} \neq LCS(X_{i-1}, Y_{j-1})$$

$$\Rightarrow \exists Z' \text{ con } |Z'| \geq k$$

$$\Rightarrow \text{creo } Z'' = \langle Z', x_i(=y_j) \rangle$$

$$\uparrow \qquad \uparrow$$

$$\geq k \quad 1 \Rightarrow \geq k+1$$

2. (come esercizio)