Lezione del 13 Novembre del Prof. Frigerio

Definizione 0.1 (Sottosuccessione).

Sia $\{a_n\}$ una successione a valori in uno spazio topologico X.

Una sottosuccessione $\{a_{n_i}\}$ è una sottofamiglia di $\{a_n\}$ dove $\{n_i\}$ è una successione strettamente crescente in \mathbb{N}

Definizione 0.2. Sia X topologico.

X si dice compatto per successioni se ogni successione in X ammette una sottosuccessione convergente

Proposizione 0.1. Sia X primo-numerabile

 $X \ compatto \Rightarrow X \ compatto \ per \ successioni$

Dimostrazione. Sia $\{x_n\} \subseteq X$ una successione

$$\forall m \in \mathbb{N} \text{ sia } C_m = \overline{\{x_n \mid n \geq m\}}$$

vale che C_m chiuso e $C_{m+1} \subseteq C_m$.

Poichè
$$X$$
 compatto , deduciamo $\bigcap_{m\in\mathbb{N}} C_m \neq \emptyset$, da cui sia $\overline{x}\in\bigcap_{m\in\mathbb{N}} C_m$

Costruiamo una successione che tende a \overline{x} .

Sia $\{U_i\}$ il sistema di fondamentale numerabile di intorni di \overline{x} ; a meno di sostituire U_i con $U_1 \cap \cdots \cap U_i$ posso supporre $U_{i+1} \subseteq U_i \ \forall i \in \mathbb{N}$.

Costruisco induttivamente $\{x_{n_1}\}$ come segue:

Poichè $\overline{x} \in C_0$ allora $\exists n_0$ tale che $x_{n_0} \in U_0$ (se $x \in \overline{C}$ allora tutti gli intorni di \overline{x} intersecano C So che $\overline{x} \in C_{n_0+1}$ allora $\exists n_1 \geq n_0+1 > n_0$ per cui $x_{n_1} \in U_1$

Procedo in questo modo costruendo una successione strettamente crescente $\{n_i\}$ con $x_{n_i} \in U_i$. Proviamo che $x_{n_i} \to \overline{x}$.

Sia U un generico intorno di \overline{x} , allora dalla definizione di sistema fondamentale di intorni si ha

$$\exists i_0 \in \mathbb{N} \text{ tale che } U_{i_0} \subseteq U$$

Ora $\forall i \geq i_0$ si ha $x_{n_i} \in U_i \subseteq U_{i_0} \subseteq U$ da cui la tesi

Teorema 0.2. Sia X secondo-numerabile

 $X \ compatto \Leftrightarrow X \ compatto \ per \ successioni$

 $Dimostrazione. \Rightarrow$ secondo-numerabile \Rightarrow primo-numerabile da cui la tesi.

 \Leftarrow In modo contronominale.

Poichè X non è compatto, $\exists \mathfrak{U} = \{U_i\}$ ricoprimento con aperti di base senza sottoricoprimenti finiti .

Costruisco una successione, chiedendo che

$$x_i \in X \setminus (U_0 \cup \cdots \cup U_i)$$

la successione è ben definita poichè per definizione di \mathfrak{U} $U_0 \cup \cdots \cup U_i \neq X \ \forall i \in \mathbb{N}$.

Supponiamo, per assurdo, che x_n ammetta una sottosuccessione convergente e sia \overline{x} questo limite.

Poichè \mathfrak{U} è un ricoprimento di X, $x \in U_{i_0}$ per un certo $i_0 \in \mathbb{N}$, essendo U_{i_0} un intorno di \overline{x} allora per definizione di limite

 $|\{i \in \mathbb{N} \mid x_i \in U_{i_0}\}| = \infty$ ma per costruzione $x_i \notin U_{i_0}$ se $i > i_0$

Ciò è assurdo, dunque, x_n non ha sottosuccessioni convergenti

Lemma 0.3. Sia $\{f_n\}$ una successione di funzioni con $f_n: X \to A$.

$$f_n \to f \text{ in } A^X \Leftrightarrow f_n \to f \text{ puntualmente}$$

 $Dimostrazione. \Rightarrow$ nella lezione dell 8 Novembre

 \Leftarrow Fisso V intorno di f in A^x , dunque, dalla definizione di topologia prodotto $f \in U \subseteq V$ dove

$$U = \bigcap_{i=1}^{n} \pi^{-1}(W_i) \text{ con } W_i \text{ intorno di } f(x_i) \text{ in } A$$

ovvero $W_i = (f(x_i) - \varepsilon_i, f(x_i) + \varepsilon_i)$ dunque fissando x_1, \dots, x_n e $\varepsilon_1, dots, \varepsilon_n$ ottengo

$$U = \{g: X \to A \mid |g(x_i) - f(x_i)| < \varepsilon_i \,\forall i = 1, \dots, n\}$$

Poichè $f_n \to f$ puntualmente

$$\forall i = 1, \dots, n \quad \exists n_1 \quad f_n(x_i) - f(x_i) | \leq \varepsilon_i$$

da cui

$$\forall i = 1, \dots, n \quad \exists n_0 = \max_{i=1,\dots,n} \{n_i\} \quad |f_n(x_i) - f(x_i)| \le \varepsilon_i \, \forall n \ge n_0 \quad \Rightarrow \quad f_n \in U \subseteq V \, \forall n \ge n_0$$

Da cui
$$f_n \to f$$
 in A^X

Osservazione 1. In generale

X compatto $\not\Rightarrow X$ compatto per successioni

Prendiamo come esempio $X = [0, 1]^{[0,1]}$.

Per Tychnoff X è compatto.

Cerco una successione $f_n: [0,1] \to [0,1]$ senza sottosuccessioni puntualmente convergenti. Pongo

$$f^n(x) = 10^n \cdot x - |10^n \cdot x|$$
 la parte decimale di $10^n \cdot x$

 $f_n(x)$ è l'allineamento proprio decimale $0, a_1 a_2 \dots a_n \dots$ dove a_i è la (n+i)-esima cifra dopo la virgola dell'allineamento decimale proprio che rappresenta x.

Data una qualsiasi successione crescente $\{n_i\}$ di indici, prendo x avente $(i \mod 10)$ come n_i+1 cifra decimale.

Per costruzione $f_{n_i}(x)$ ha come prima cifra dopo la virgola $(i \mod 10)$ dunque f_{n_i} non converge