

Circuitos digitais combinacionais

Tecnologias de circuitos integrados digitais

Terminologia usada para tensões em lógica digital

- V_{IH}(min)-High-Level Input Voltage. Nível de tensão mínimo necessário para nível 1 em uma entrada. Qualquer nível de tensão abaixo não será aceito como "HIGH".
- V_{IL}(max)-Low-Level Input Voltage. Nível de tensão máximo permitido para nível 0 em uma entrada. Qualquer nível de tensão acima não será aceito como "LOW".
- V_{OH}(min)-High-Level Output Voltage. O nível mínimo de tensão em uma saída de um circuito lógico em estado 1 sob certas condições de carga definidas.
- V_{OL}(max)-Low-Level Output Voltage. O nível máximo de tensão em uma saída de um circuito lógico em estado 0 sob certas condições de carga definidas.

Terminologia usada para correntes em lógica digital

- I_{IH}-High-Level Input Current. A corrente que flui para dentro de um entrada quando o nível de tensão equivalente a um 1 lógico é aplicado a entrada da porta.
- I_{IL}-Low-Level Input Current. A corrente que flui para dentro de um entrada quando o nível de tensão equivalente a um 0 lógico é aplicado a entrada da porta.
- I_{OH}-High-Level Output Current. A corrente que flui para fora de uma saída quando seu nível de tensão equivalente a um 1 lógico está presente na saída.
- I_{OL}-Low-Level Output Current. A corrente que flui para fora de uma saída quando seu nível de tensão equivalente a um 0 lógico está presente na saída.

Terminologia usada para correntes em lógica digital

Efeito de carregamento

Prof: Daniel Chaves

Circuitos Digitais Combinacionais

Fan out

- Fan out ou fator de carregamento
 - A saída de uma porta, em geral, alimenta entradas de várias outras portas.
 - Existe um número máximo de entradas de portas que a saída de um determinada porta pode alimentar para que o sistema funcione (tensão não saia da região especificada)
 - Fan out é definido como o numero máximo de entradas de portas que uma saída pode alimentar de forma confiável.
 - O Fan out depende da natureza do dispositivo que está sendo acionado pela saída de uma porta.

Retardos e tempos de propagação

- Um sinal sempre experimenta um retardo ao se propagar dentro de uma porta lógica. Existem dois retardos que são definidos:
 - t_{PLH} Retardo para uma mudança de estado de ZERO para UM.
 - *t*_{PHL} Retardo para uma mudança de estado de UM para ZERO.

Requisitos de potência

- Todo CI requer uma certa quantidade de energia para operar.
- Essa energia é fornecida por uma fonte de alimentação conectada aos pinos de alimentação do CI.
- Os pinos de alimentação são chamados V_{CC} (TTL) e V_{DD} (CMOS).
- Quantidade de energia consumida, em geral, depende do estado lógico do circuito.
- Figura de mérito para se quantificar potência e velocidade de um CI.
 - EX:

10 ns
$$\times$$
 5 mW = 50 \times 10⁻¹² watt-second
= 50 picojoules (pJ)

Imunidade a ruídos - Margens de ruído

$$V_{\rm NL} = V_{\rm IL}({\rm max}) - V_{\rm OL}({\rm max})$$

$$V_{\rm NH} = V_{\rm OH}({\rm min}) - V_{\rm IH}({\rm min})$$

Prof: Daniel Chaves

Circuitos Digitais Combinacionais

Sourcing ou sinking de corrente

Emcapsulamentos

Lógica positiva e negativa

POSITIVE LOGIC

 $\begin{array}{c} V_H \longleftrightarrow \mathbf{1} \\ V_L \longleftrightarrow \mathbf{0} \end{array}$

 $\begin{array}{c} \textit{NEGATIVE LOGIC} \\ \textit{V}_{\textit{H}} \longleftrightarrow \textit{0} \end{array}$

 $V_L \longleftrightarrow 1$

Inp	out	Output	P	osi	tive	Ne	ega	tive
voltages		voltage	logic		logic			
x	y	z	x	y	z	x	y	z
V_L	V_L	V_L	0	0	0	1	1	1
V_L	V_H	V_L	0	1	0	1	0	1
V_H	V_L	V_L	1	0	0	0	1	1
V_H	V_H	V_H	1	1	1	0	0	0
			f	=	AND	f	=	OR

Famílias MOS (Lógica com transistores) MOSFET)

Vantagens:

- Fabricação simples e barata.
- Circuitos são pequenos e de baixo consumo de energia.
- Fabricação menos complexa que CI baseados em transistores bipolares.
- Não utiliza resistores integrados => implemementações menores.

Desvantagens:

- Mais suceptíveis a danos causados por eletricidade estática.
- Menos robustos
- Mais lentos que os dispositivos TTL.

Prof: Daniel Chaves

Circuitos Digitais Combinacionais

Transistores MOSFET

- Existem dois tipos de mosfets:
 - MOSFET tipo depleção;
 - MOSFET tipo intensificação ou enriquecimento;
- O segundo é utilizado para implementar circuitos de lógica digital.
- Os MOSFETs podem ser de canal n ou de canal p
- O circuitos digitais podem ser: N-MOS, P-MOS e CMOS.

Transistores MOSFET

 Resistência de entrada muito grande => a corrente no gate é praticamente nula.

MOSFET canal n

Transistores MOSFET

***********	Drain-	Gate-to-Source		
	to-	Voltage (V _{GS})		
	Source	Needed for		
	Bias	Conduction	$R_{ m ON}\left(\Omega ight)$	$R_{\mathrm{OFF}}\left(\Omega\right)$
P-channel	Negative	Typically more negative than −1.5 V	1000 (typical)	10 ¹⁰
N-channel	Positive	Typically more positive than +1.5 V	1000 (typical)	10 ¹⁰

Transistores MOSFET

SWITCH AND MOS TRANSISTORS

N-TYPE:

OPEN (OFF) if $V_{CA} < V_{Tn}$ CLOSED (ON) if $V_{CA} > V_{Tn}$ V_{Tn} – THE THRESHOLD VOLTAGE FOR N-TYPE SWITCH

P-TYPE:

OPEN (OFF) if $V_{BC} < V_{Tp}$ closed (ON) if $V_{BC} > V_{Tp}$ V_{Tp} – The threshold voltage for P-type switch

Transistores/Chaves MOSFET

Características MOS complementar CMOS – porta inversora

COMPLEMENTARY MOS CIRCUIT

Figure 3.4: CIRCUIT, I/O CHARACTERISTIC, AND SYMBOL

Prof: Daniel Chaves

Circuitos Digitais Combinacionais

Operação da porta inversora

$$V_{BC} = V_{DD} - v_{in} \ (V_{DD} = V_{BC} + v_{in})$$

1.
$$v_{in} < V_{Tn} \implies V_{CA} < V_{Tn}$$
 \implies N-SWITCH OPEN
If $V_{DD} > V_{Tn} + V_{Tp}$ then $V_{BC} > V_{Tp}$

$$\implies$$
 P-SWITCH CLOSED AND $v_{out} = V_{DD}$

2.
$$v_{in} > V_{DD} - V_{Tp} \implies V_{BC} < V_{Tp}$$

$$\implies \text{ P-SWITCH IS OPEN}$$
If $V_{DD} > V_{Tn} + V_{Tp}$ then $V_{CA} > V_{Tn}$

$$\Longrightarrow$$
 N-SWITCH IS CLOSED AND $v_{out}=0$

CIRCUIT OPERATES AS NOT IF

$$V_{Lmax} < V_{Tn}, \quad V_{Hmin} > V_{DD} - V_{Tp}$$
$$V_{DD} > V_{Tn} + V_{Tp}$$

Porta NAND e NOR CMOS

Circuit 1: NAND

Circuit 2: NOR

Portas AND e OR CMOS

Séries da família CMOS

- Série 74C:
 - Compatível com TTL.
- Série 74HC e 74HCT (High-Speed CMOS):
 - Maior capacidade de corrente que a família 74C.
 - HCT eletricamente compatível com TTL.
 - HC eletricamente incompatível com TTL.
- Série 4000/14000:
 - Primeira série TTL.
 - Dispositivos muito mais lentos que os dispositivos TTL.

Características das famílias CMOS

- Fan out = 50.
- Entradas sensível às descargas eletromagnéticas.

CMOS entradas não conectadas

- Entradas não conectadas ficam flutuando. Podem tanto ser zero como um lógico (sujeito à ruído).
 - Entradas CMOS nunca devem ser deixadas em aberto.
- NAND de duas entradas feitas com uma NAND de três entradas:

CMOS entradas não conectadas

- Entradas não conectadas ficam flutuando. Podem tanto ser zero como um lógico (sujeito à ruído).
 - Entradas CMOS nunca devem ser deixadas em aberto.
- NAND de duas entradas feitas com uma NAND de três entradas:

Eletrônica analógica – Transistor bipolar

Transistor NPN

Transistor PNP

Eletrônica analógica – Transistor bipolar

Polarização - Transistor NPN

Tensão $V_{BE} > 0.7 V$ região de saturação => $V_{CE} = 0 V$

Eletrônica analógica – Transistor bipolar

• Polarização - Transistor como chave

Tensão $V_{BE} > 0.7 V$ região de saturação => $V_{CE} = 0 V$

Familia TTL

- A família TTL é baseada em transistores bipolares.
- As portas e funções lógicas são construídas utilizando-se transistores bipolares
- Porta NAND TTL-

Parameter	Min (V)	Typical (V)	Max (V)	
V_{OH}	2.4	3.4		
V_{OL}		0.2	0.4	
$V_{ m IH}$	2.0*			
$V_{ m IL}$			0.8*	

Inputs

Familia TTL

- A família TTL é baseada em transistores bipolares.
- As portas e funções lógicas são construídas utilizando-se transistores bipolares
- Porta NAND TTL

Exemplos de Cis – Série TTL 74

Exemplos de Cis - Série TTL 74

7411

7430

Exemplos de Cis – Série TTL 74 Portas

- 7400 Quad 2-input NAND gates.
- 7402 Quad 2-input NOR gates.
- 7404 Hex inverters Data Sheet.
- 7408 Quad 2-input AND gates Data Sheet.
- 7410 Triple 3-input NAND gates.
- 7411 Triple 3-input AND gates.
- 7413 Dual NAND Schmitt triggers.
- 7414 Hex Schmitt trigger inverters Data Sheet.
- 7420 Dual 4-input NAND gates.
- 7425 Dual 4-input NOR gates.
- 7427 Triple 3-input NOR gates.
- 7430 8-input NAND gate.
- 7432 Quad 2-input OR gates.
- 7486 Quad 2-input Exclusive-OR gates.

Série TTL 74 entradas não conectadas

Entradas não conectadas funcionam com 1 lógico,

NAND de duas entradas feitas com uma NAND de três entradas:

Série TTL 74 entradas não conectadas

Entradas não conectadas funcionam com 1 lógico,

NAND de duas entradas feitas com uma NAND de três entradas:

Pode não funcionar

Requer um componente externo extra

Operação da porta NAND TTL – entradas 1

Operação da porta NAND TTL – entrada 0

Outras séries da família TTL 74

- 74LS
 - Baixo consumo de potência a custa de menor velocidade de chaveamento.
- 74ALS
 - Melhora as caractrísticas de velocidade de chaveamento e consumo de potência da série 74LS
- 74AS
 - É a série TTL com a menor velocidade de chaveamento.

	748	74AS	74LS	74ALS
Propagation delay	3 ns	1.7 ns	9.5 ns	4 ns
Power dissipation	20 mW	8 mW	2 mW	1.2 mW
Speed-power product	60 pJ	13.6 pJ	19 pJ	4.8 pJ

Comparativo séries TTL

	74	745	74LS	74AS	74ALS	74F
Performance ratings						
Propagation delay (ns)	9	3	9.5	1.7	4	3
Power dissipation (mW)	10	20	2	8	1.2	6
Speed-power product (pJ)	90	60	19	13.6	4.8	18
Max. clock rate (MHz)	35	125	45	200	70	100
Fan-out (same series)	10	20	20	40	20	33
Voltage parameters						
$V_{\rm OH}({ m min})$	2.4	2.7	2.7	2.5	2.5	2.5
$V_{\rm OL}({ m max})$	0.4	0.5	0.5	0.5	0.5	0.5
$V_{\rm IH}({ m min})$	2.0	2.0	2.0	2.0	2.0	2.0
$V_{\rm IL}({\rm max})$	0.8	0.8	0.8	0.8	0.8	0.8

Prof: Daniel Chaves

Comparação entre TTL e CMOS

		CMOS						TTL			
Parameter	4000B	74HC	74HCT	74AC	74ACT	74AHC	74AHCT	74	74LS	74AS	74ALS
V _{IH} (min)	3.5	3.5	2.0	3.5	2.0	3.85	2.0	2.0	2.0	2.0	2.0
$V_{\rm IL}({\rm max})$	1.5	1.0	0.8	1.5	0.8	1.65	0.8	0.8	0.8	0.8	0.8
$V_{OH}(min)$	4.95	4.9	4.9	4.9	4.9	4.4	3.15	2.4	2.7	2.7	2.5
$V_{\rm OL}({\rm max})$	0.05	0.1	0.1	0.1	0.1	0.44	0.1	0.4	0.5	0.5	0.5
$V_{ m NH}$	1.45	1.4	2.9	1.4	2.9	0.55	1.15	0.4	0.7	0.7	0.7
$V_{ m NL}$	1.45	0.9	0.7	1.4	0.7	1.21	0.7	0.4	0.3	0.3	0.4

Prof: Daniel Chaves

Coletor/dreno aberto

Prof: Daniel Chaves

Revisão Coletor/dreno aberto

Revisão Coletor/dreno aberto

Prof: Daniel Chaves

Revisão Coletor/dreno aberto (Porta NOR "wired")

Prof: Daniel Chaves

Comparador

• Circuito comparador

Comparador

• Circuito comparador

Schmitt Trigger

Na entrada do reset (pino 9) existe internamente um schmitt trigger

Prof: Daniel Chaves

Tristate

Circuito digital cuja saída apresenta três estados: um lógico, zero lógico e alta impedância ou circuito aberto; 74125

tri-state buffer with active high control

tri-state buffer with active low control

Entradas de Q1 Q2

OFF OFF High Impedance OFF ON 0V ON OFF +5V

Prof: Daniel Chaves

Circuito

Tristate

Tristate - Exemplo

Habilitação de saídas em barramentos compartilhados.

LS373

D _n	LE	OE	On	
Н	Н	L	Н	
L	Н	L	L	
X	L	7	Q ₀	
Х	Х	Н	Z*	

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance