Reinforcement Learning Training 2025

Model-Free Approach

Motivation

Recall in policy iteration

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right]$$

- ullet To make this work, we need to know the model dynamics or p(s',r|s,a).
- However, we do now know p.
- Instead, we will resort to sampling.
 - Collecting experience by following some policy in the real world or running the agent through a policy in simulation.

Model-Free Learning

- Monte Carlo (MC) methods
- Temporal difference (TD) methods

Monte Carlo

- We use the law of large numbers (LLN) from statistics.
 - Average of samples is a good estimate for the actual unknown quantity.
 - This estimate becomes better and better as the number of trials of the experiment (samples) increases.

Monte Carlo

Recall that We want to calculate

$$v_\pi(s) = \mathtt{E}_\pi[G_t|S_t=s]$$

- We let the agent start from this state $S_t=s$, follow the policy π to take actions, and keep doing so until termination.
 - We call one round of actions an episode.
- We record the total sum of rewards for each episode.
- ullet We average the rewards to get an estimate of $v_\pi(s)$ for the policy π .

MC methods replaces expected returns with the average of sample returns.

Worked Example

Solution v

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$
Let $\gamma = 1$

$$V(C) = 0 \quad (\text{Terminal})$$

$$V(B) = 1 \Big[1 \times [2 + 1(0)] \Big]$$

$$= 2$$

$$V(A) = \frac{1}{3} \Big[1 \times (0 + 1(2)) \Big]$$

$$+ \frac{1}{3} \Big[1 \times (1 + 1(0)) \Big]$$

$$= \frac{1}{3}(2) + \frac{1}{3}(1) = \frac{4}{3}$$

Solution q

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \sum_{a'} \pi(a'|s') \ q(s',a') \right]$$

$$q_{\pi}(a_3) = 1 \left[2 + 1 \sum_{a'} (a'|s') \right]$$

$$= 2$$

$$q_{\pi}(a_3) = 1 \left[1 + 1 \sum_{a'} (a'|s') \right]$$

$$= 1$$

$$q_{\pi}(a_1) = 1 \left[0 + 1 \left(1 \left(2 \right) \right) \right]$$

$$= 2$$

Estimate v(A)

• We simulate many episodes.

Episode	Path	Reward from A
1	$A \rightarrow C$	G_1 = 1
2	$A\toB\toC$	G_2 = 0 + 2 = 2
3	$A\toB\toC$	G_3 = 0 + 2 = 2
4	$A \rightarrow C$	G_4 = 1
		G_n

Results

Monte Carlo estimates the value function v(A) as the average return observed after visiting A.

$$v(A) = rac{G_1 + G_2 + G_3 + G_4 + \ldots}{n} = rac{1 + 2 + 2 + 1 + \ldots}{n}
ightarrow rac{4}{3}$$

Online Method

- Instead of averaging all the returns at the end (the sample mean), we can use the incremental (update) method to estimate v(A) as each new return is observed.
- This is also called the "sample-average" update and is given by:

$$v_{n+1}=v_n+rac{1}{n}(G_n-v_n)$$

ullet Also, note the constant-lpha version

$$v_{n+1} = v_n + lpha(G_n - v_n)$$

where α is the learning rate.

Estimate $q(a_1)$ and $q(a_2)$

Episode	Path	Actions at ${\cal A}$	Reward from Action at \boldsymbol{A}
1	$A \rightarrow C$	a_2	$G_1=1$
2	$A\toB\toC$	a_1	$G_2=0+2$
3	$A\toB\toC$	a_1	$G_3=0+2$
4	$A \to C$	a_2	$G_4=1$
			$ G_n $

Estimate $q(a_1)$ and $q(a_2)$

$$q(a_1) = rac{G_2 + G_3 + \dots}{n} = rac{2 + 2 + \dots}{n}
ightarrow 2 \ q(a_2) = rac{G_1 + G_4 + \dots}{n} = rac{1 + 1 + \dots}{n}
ightarrow 1$$

Online update

$$q_{n+1}=q_n+rac{1}{n}(G_n-q_n)$$

ullet Constant-lpha version

$$q_{n+1} = q_n + lpha(G_n - q_n)$$

Comparing estimations of v and q

- ullet Notice that the calculation of v and q is the same.
- This is because both functions are fundamentally estimates of an expected value—just over different types of returns.
 - $\circ \ v(s)$ average over all times you start at s
 - $\circ \ q(s,a)$ average over all times you start at s and pick a

Monte Carlo: First-Visit vs. Every-Visit

- First-Visit MC
 - Only the first time a state (or state-action pair) is visited in an episode, the return following that visit is used to update the estimate.
- Every-Visit MC
 - Every time a state (or state-action pair) is visited in an episode, the return following that visit is used to update the estimate (even if visited multiple times within the same episode).

Gridworld

ullet Calculating v using MC.

RL Training 2025

- We will use generalized policy iteration (GPI).
 - \circ Find q (not v)
 - Improve policy using greedy optimization.
 - Repeat ...

Figure 4-5. Iteration between the two steps. The first step evaluates to get the stateaction values in sync with the policy being followed. The second step performs policy improvement to do a greedy maximization for actions

- However, in MC, the greedy opimization does not work very well.
 - \circ To be greedy, we need to know all q.
 - \circ But being greedy, we will never *explore* all q.
- To fix this, we will use ε-greedy policy.

• The agent exploits the knowledge with probability 1- ϵ and explores with probability ϵ .

$$\pi(a|s) = \begin{cases} 1 - \varepsilon + \frac{\varepsilon}{|A|} & \text{for } a = \text{argmax}_a Q(s,a) \\ \frac{\varepsilon}{|A|} & \text{otherwise} \end{cases}$$

RL Training 2025

- ullet Next, we will not run MC until values of q converges.
- We will run MC prediction followed by policy improvement on an episode-by-episode basis.
- This way, there is no need for a large number of iterations in the estimation/prediction step

Figure 4-6. Iteration between the two steps. The first step is the MC prediction/ evaluation for a single step to move the q-values in the direction of the current policy. The second step is that of policy improvement to do a ε -greedy maximization for actions

RL Training 2025

• With the two tweaks, we have **Greedy in the Limit of Infinite Exploration** (GLIE).

```
GLIE FOR POLICY OPTIMIZATION
Initialize:
    State-action values Q(s, a) = 0 for all s \in S and a \in A.
    Visit count N(s, a) = 0 for all s \in S and a \in A.
    Policy \pi with enough exploration e.g., random policy
Loop:
    sample episode(k) following policy \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, A_{t-1}, R_T, S_T
    G \leftarrow 0
    Loop backwards for each step of episode, t = T - 1, T - 2, \dots, 1, 0
         G \leftarrow \gamma . G + R_{t+1}
         N(s,a) \leftarrow N(s,a) + 1
         Q(s,a) \leftarrow Q(s,a) + 1/N(s,a) * [G - Q(s,a)]
    Reduce \varepsilon using \varepsilon = 1/k
    Update policy with \varepsilon-greedy using revised Q(s,a)
```

Figure 4-7. Every-visit (GLIE) MC control for policy optimization

Note that we reduce ϵ to make policy more deterministic.

Simulation

(See python code)

RL Training 2025

On-Policy vs Off Policy

RL Training 2025 27

"On"-Policy MC Control

- In GLIE, we employ ϵ -greedy policy in two process.
 - \circ Finding v or q.
 - Maximizing the policy.
- This is called an **on-policy** approach.
- However, the on-policy approach is not efficient.
 - The episode that you collect has to be thrown away.
 - You have no separate ability to control exploration.

"Off"-Policy MC Control

- Another approach is to use two policies.
 - More exploratory to generate samples.
 - Near determistic policy in policy maximization.
- This is called an **off-policy** approach.
 - \circ **Behavior** policy (b) for generating samples
 - \circ Target policy (π) in policy maximization

OFF POLICY MC CONTROL OPTIMIZATION

Initialize, for all $s\in S$ and $a\in A(s)$: State-action values $Q(s,a)\in \mathbb{R}$ (arbitrarily) $C(s,a)\leftarrow 0$ Policy $\pi=\arg\max_a Q(s,a)$

Loop for each episode:

 $b \leftarrow$ a "behavior policy" with enough exploration

sample episode(k) following policy $\pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, A_{t-1}, R_T, S_T$

$$G \leftarrow 0$$

$$W \leftarrow 1$$

Loop backwards for each step of episode, $t = T - 1, T - 2, \dots, 1, 0$

$$G \leftarrow \gamma.G + R_{t+1}$$

$$C(S_t, A_t) \leftarrow C(S_t, A_t) + W$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + rac{W}{C(S_t, A_t)} igl[G - Q(S_t, A_t) igr]$$

$$\pi(S_t) \leftarrow \arg\max_a Q(S_t, a)$$

If $A_t
eq \pi(S_t)$ exit inner loop

$$W \leftarrow W \frac{1}{b(A_t|S_t)}$$

Temporal Difference Learning Methods

Problem with MC

- Only work for episodic environment.
- ullet Only update q when episode ends.
- Temporal difference learning solve these problems.

Update Equation

• Monte Carlo (constant- α version)

$$V_{n+1} = V_n + \alpha (G - V_n)$$

ullet Temporal Difference, TD(0)

$$V(s) = V(s) + \alpha \left[R + \gamma \cdot V(s') - V(s) \right]$$

The value of v is estimated with the *estimate* of the successor state. This is known as *bootstrapping*.

TD Error

$$\delta_{t} = R_{t+1} + \gamma \cdot V(S_{t+1}) - V(S_{t})$$

ullet Error in the estimate of v based on reward and discounted next time-step state value.

Advantages of TD

- Compared with model-based approach, TD does not need knowledge of transition probabilities.
- Compared with Monte-Carlo appraoch, TD can update the value function at every step.
 - Faster convergence.

TD Control

- On-Policy SARSA
- Q-learning
- Expected SARSA

On-Policy SARSA

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \cdot \left[R_{t+1} + \gamma \cdot Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

$$\delta_{t} = R_{t+1} + \gamma \cdot Q(S_{t+1}, A_{t+1}) - Q(S_{t}, A_{t})$$

• Note that terminate state -> q equals to zero.

SARSA on-policy TD control

Initialize:

State-action values Q(s,a)=0 for all $s\in S$ and $a\in A$. policy $\pi=\varepsilon$ -greedy policy with some small $\varepsilon\in[0,1]$ learning rate (step size) $\alpha\in[0,1]$ discount factor $\gamma\in[0,1]$

Loop for each episode:

Start state S, choose action A based on ε -greedy policy Loop for each step till episode end:

Take action A and observe reward R and next state S' Choose action A' using ε -greedy policy using current Q values If S' not terminal:

$$Q(S, A) \leftarrow Q(S, A) + \alpha \cdot [R + \gamma \cdot Q(S', A') - Q(S, A)]$$

else:

$$Q(S,A) \leftarrow Q(S,A) + \alpha \cdot [R - Q(S,A)]$$

$$S \leftarrow S'; A \leftarrow A'$$

[optionally reduce & periodically towards zero]

Return policy π based on final Q values.