Top-Down Parsing

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

Review from Last Time

- Goal of syntax analysis: recover the intended structure of the program.
- First step: Use a context-free grammar to describe the language.
- Given a sequence of tokens, look for a parse tree.
 that generates those tokens.
- Recovering this syntax tree is called parsing

Different Types of Parsing

Top-Down Parsing

 Beginning with the start symbol, try to guess the productions to apply to end up at the user's program.

Bottom-Up Parsing

 Beginning with the user's program, try to apply productions in reverse to convert the program back into the start symbol.

Top-Down Parsing

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

Parsing as a Search

- An idea: treat parsing as a graph search
- Each node is a sentential form, i.e., a string of terminals and nonterminals derivable from the start symbol.
- There is an edge from node α to node β iff $\alpha \Rightarrow \beta$.

Parsing as a Search

Parsing as a Search

Our First Top-Down Algorithm

- Breadth-First Search
- Maintain a worklist of sentential forms, initially just the start symbol S.
- While the worklist isn't empty:
 - Remove an element from the worklist.
 - If it matches the target string, you're done.
 - Otherwise, for each possible string that can be derived in one step, add that string to the worklist.
- Can recover a parse tree by tracking what productions we applied at each step.

BFS is Slow

- Enormous time and memory usage:
- Lots of wasted effort:
 - Generates a lot of sentential forms that couldn't possibly match.
 - But in general, extremely hard to tell whether a sentential form can match – that's the job of parsing!
- High branching factor:
 - Each sentential form can expand in (potentially)
 many ways for each nonterminal it contains.

Leftmost Derivations

- Recall: A leftmost derivation is one where we always expand the leftmost symbol first.
- Updated algorithm:
- Do a breadth-first search, only considering leftmost derivations.
 - Dramatically drops branching factor.
 - Increases likelihood that we get a prefix of nonterminals.
- Prune sentential forms that can't possibly match.
 - Avoids wasted effort.

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{I} \to (\mathbf{E})$

Worklist

$$E \rightarrow T$$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{int} + \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

Worklist

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{int} + \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

Worklist

$$A \rightarrow Aa \mid Ab \mid c$$

Worklist

 $A \rightarrow Aa \mid Ab \mid c$

$$A \rightarrow Aa \mid Ab \mid c$$

$$A \rightarrow Aa \mid Ab \mid c$$

- Idea: Use depth-first search.
- Advantages:
 - Lower memory usage: Only considers one branch at a time.
 - High performance: On many grammars, runs very quickly.
 - Easy to implement: Can be written as a set of mutually recursive functions.

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

int + int

Problems with Leftmost DFS

 $A \rightarrow Aa \mid c$

A
Aa
Aaa
Aaaa
Aaaa

Summary of Leftmost BFS/DFS

Leftmost BFS

- Works on all grammars.
- Worst-case runtime is exponential.
- Worst-case memory usage is exponential.
- Rarely used in practice.

Leftmost DFS

- Works on grammars without left recursion.
- Worst-case runtime is exponential.
- Worst-case memory usage is linear.
- Often used in a limited form as recursive descent.

Recursive Descent Parsing

- Define a function for every nonterminal
- Every function works as follows
 - Find applicable production rule
 - Terminal function checks match with next input token (if no match reports error)
 - Nonterminal function calls (recursively) other functions
- If there are several applicable productions for a nonterminal, use lookahead

Matching Tokens

```
match(token t) {
  if (current == t)
    current = next_token()
  else
    error
}
```

Variable current holds the current input token

Functions for nonterminals

```
E \rightarrow LIT \mid (E \ OP \ E) \mid LIT \rightarrow true \mid false
not E \rightarrow OP \rightarrow and \mid or \mid xor
```

```
E() {
  if (current ∈ {TRUE, FALSE}) // E → LIT
    LIT();
  else if (current == LPAREN) // E → ( E OP E )
    match(LPAREN); E(); OP(); E(); match(RPAREN);
  else if (current == NOT) // E → not E
    match(NOT); E();
  else
    error;
}
```

```
LIT() {
  if (current == TRUE) match(TRUE);
  else if (current == FALSE) match(FALSE);
  else error;
}
```

Predictive Parsing

Predictive Parsing

- The leftmost DFS/BFS algorithms are backtracking algorithms.
 - Guess which production to use, then back up if it doesn't work.
 - Try to match a prefix by sheer dumb luck.
- There is another class of parsing algorithms called predictive algorithms.
 - Based on remaining input, predict (without backtracking) which production to use.

Exploiting Lookahead

- Given just the start symbol, how do you know which productions to use to get to the input program?
- Idea: Use lookahead tokens.
- When trying to decide which production to use, look at some number of tokens of the input to help make the decision.

Predictive Parsing

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

```
int + ( int + int )
```

Predictive Parsing

```
\mathbf{E} \to \mathbf{T}
\mathbf{E} \to \mathbf{T} + \mathbf{E}
\mathbf{T} \to \mathbf{int}
\mathbf{T} \to (\mathbf{E})
```

```
int + ( int + int )
```

A Simple Predictive Parser: LL(1)

- Top-down, predictive parsing:
 - L: Left-to-right scan of the tokens
 - L: Leftmost derivation.
 - (1): One token of lookahead
- Construct a leftmost derivation for the sequence of tokens.
 - When expanding a nonterminal, we predict the production to use by looking at the next token of the input. The decision is forced.

LL(1) Parse Tables

$$E \rightarrow int$$
 $E \rightarrow (E Op E)$
 $Op \rightarrow +$
 $Op \rightarrow *$

	int	()	+	*
Е	$E \rightarrow int$	E → (E Op E)			
Ор				Op → +	Op → *

LL(1) Parsing

```
(1) E \rightarrow int
(2) E \rightarrow (E Op E)
(3) Op \rightarrow +
(4) Op \rightarrow *
```

Example with tables format

LL(1) Error Detection

- (1) $E \rightarrow int$
- (2) $E \rightarrow (E Op E)$
- (3) $\mathbf{Op} \rightarrow \mathbf{+}$
- (4) Op → *

	int	()	+	*
Е	1	2			
Ор				3	4

LL(1) Error Detection

- (1) $E \rightarrow int$
- (2) $E \rightarrow (E Op E)$
- (3) $\mathbf{Op} \rightarrow \mathbf{+}$
- (4) Op → *

	int	()	+	*
Е	1	2			
Ор				3	4

E\$	int + int\$
int \$	int + int\$
\$	+ int\$

333

LL(1) Error Detection, Part II

- (1) $E \rightarrow int$
- (2) $E \rightarrow (E Op E)$
- (3) $Op \rightarrow +$
- (4) Op → *

	int	()	+	*
Е	1	2			
Ор				3	4

(int (int))\$

LL(1) Error Detection, Part II

- (1) $E \rightarrow int$
- (2) $E \rightarrow (E Op E)$
- (3) $Op \rightarrow +$
- (4) $Op \rightarrow *$

	int	()	+	*
Е	1	2			
Ор				3	4

E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E) \$	int (int))\$
intOpE)\$	int (int))\$
Op E) \$	(int))\$

???

The LL(1) Algorithm

- Suppose a grammar has start symbol $\bf S$ and LL(1) parsing table T. We want to parse string $\bf \omega$
- Initialize a stack containing \$\$.
- Repeat until the stack is empty:
 - Let the next character of ω be t.
 - If the top of the stack is a terminal r:
 - If r and t don't match, report an error.
 - Otherwise consume the character t and pop r from the stack.
 - Otherwise, the top of the stack is a nonterminal A:
 - If T[A, t] is undefined, report an error.
 - Replace the top of the stack with T[A, t].

Can we find an algorithm for constructing LL(1) parse tables?

Filling in Table Entries

- Intuition: The next character should uniquely identify a production, so we should pick a production that ultimately starts with that character.
- T[A, t] should be a production $A \rightarrow \omega$ iff ω derives something starting with t.

In what follows, assume that our grammar does not contain any ϵ -productions.

We'll relax this restriction later.

FIRST Sets

- We want to tell if a particular nonterminal A derives a string starting with a particular nonterminal t.
- We can formalize this with FIRST sets.
 - FIRST(\mathbf{A}) = { $\mathbf{t} \mid \mathbf{A} \Rightarrow^* \mathbf{t} \boldsymbol{\omega}$ for some $\boldsymbol{\omega}$ }
 - Intuitively, FIRST(A) is the set of terminals that can be at the start of a string produced by A.
- If we can compute FIRST sets for all nonterminals in a grammar, we can efficiently construct the LL(1) parsing table.

Computing FIRST Sets

- Initially, for all nonterminals A, set
 FIRST(A) = { t | A → tω for some ω }
- Then, repeat the following until no changes occur:
 - For each nonterminal A, for each production A \rightarrow B ω , set

```
FIRST(A) = FIRST(A) \cup FIRST(B)
```

 This is known a fixed-point iteration or a transitive closure algorithm.

```
STMT → if EXPR then STMT

| while EXPR do STMT
| EXPR;

EXPR → TERM -> id

| zero? TERM
| not EXPR
| ++ id
| -- id

TERM → id
| constant
```

STMT	EXPR	TERM

```
STMT → if EXPR then STMT

| while EXPR do STMT

| EXPR;

EXPR → TERM -> id

| zero? TERM

| not EXPR

| ++ id

| -- id

TERM → id

| constant
```

STMT	EXPR	TERM
if	zero?	id
while	not	constant
	++	

STMT	EXPR	TERM
if	zero?	id
while	not	constant
zero?	++	
not		
++		

```
STMT → if EXPR then STMT

| while EXPR do STMT

| EXPR;

EXPR → TERM -> id

| zero? TERM

| not EXPR

| ++ id

| -- id

TERM → id

| constant
```

STMT	EXPR	TERM
if	zero?	id
while	not	constant
zero?	++	
not		
++	id	
	constant	

STMT	EXPR	TERM
if	zero?	id
while	not	constant
zero?	++	
not		
++	id	
	constant	
id		
constant		

From FIRST Sets to LL(1) Tables

STMT -	→ 	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
		EXPR;	(3)	if	zero?	id
EXPR -	\rightarrow	TERM -> id	(4)	while	not	constant
		zero? TERM	(5)	zero?	++	
	1	not EXPR	(6)	not		
	I	++ id	(7)	++	id	
		id	(8)		constant	
TERM -	\rightarrow	id	(9)	id constant		
	1	constant	(10)	Constant		

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT											
EXPR											
TERM											

ε-Free LL(1) Parse Tables

- The following algorithm constructs an LL(1) parse table for a grammar with no ϵ -productions.
- Compute the FIRST sets for all nonterminals in the grammar.
 - For each production $A \rightarrow t\omega$, set $T[A, t] = t\omega$.
 - For each production $A \to B\omega$, set $T[A, t] = B\omega$ for each $t \in FIRST(B)$.

Exercise

• Write a CFG for integers without ε-productions

FIRST sets?

```
\begin{array}{lll} \text{Num} & \rightarrow \text{Sign Digits} \\ \text{Sign} & \rightarrow + \mid - \mid \epsilon \\ \text{Digits} & \rightarrow \text{Digit More} \\ \text{More} & \rightarrow \text{Digits} \mid \epsilon \\ \text{Digit} & \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9 \end{array}
```

Num	Sign	Digit	Digits	More

```
\begin{array}{lll} \text{Num} & \rightarrow \text{Sign Digits} \\ \text{Sign} & \rightarrow + \mid - \mid \epsilon \\ \text{Digits} & \rightarrow \text{Digit More} \\ \text{More} & \rightarrow \text{Digits} \mid \epsilon \\ \text{Digit} & \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9 \end{array}
```

Num	Sign	Digi	Digit Digits More		Digits		е
+ -	+ -	0	5	0	5	0	5
		1	6	1	6	1	6
		2	7	2	7	2	7
		3	8	3	8	3	8
		4	9	4	9	4	9

```
\begin{array}{lll} \text{Num} & \rightarrow \text{Sign Digits} \\ \text{Sign} & \rightarrow + \mid - \mid \epsilon \\ \text{Digits} & \rightarrow \text{Digit More} \\ \text{More} & \rightarrow \text{Digits} \mid \epsilon \\ \text{Digit} & \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9 \end{array}
```

Num	Sign	Digit	Digits	More
+ -	+ -	0 5	0 5	0 5
	ε	1 6	1 6	1 6
		2 7	2 7	2 7
		3 8	3 8	3 8
		4 9	4 9	4 9
				ε

```
\begin{array}{lll} \text{Num} & \rightarrow \text{Sign Digits} \\ \text{Sign} & \rightarrow + \mid - \mid \epsilon \\ \text{Digits} & \rightarrow \text{Digit More} \\ \text{More} & \rightarrow \text{Digits} \mid \epsilon \\ \text{Digit} & \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9 \end{array}
```

Nun	n	S	ign	Dig	it	Digit	ts	Mo	ore
+	-	+	_	0	5	0	5	0	5
0	5	8	E	1	6	1	6	1	6
1	6			2	7	2	7	2	7
2	7			3	8	3	8	3	8
3	8			4	9	4	9	4	9
4	9								ε

FIRST and ε

- When computing FIRST sets in a grammar with ϵ -productions, we often have to "look through" nonterminals.
- Rationale: Might have a derivation like this:

$$A \Rightarrow Bt \Rightarrow t$$

So $t \in FIRST(A)$.

FIRST Computation with ε

Initially, for all nonterminals A, set

```
FIRST(A) = \{ t \mid A \rightarrow t\omega \text{ for some } \omega \}
```

- For all nonterminals A where A → ε is a production, add ε to FIRST(A).
- Repeat the following until no changes occur:
 - For each production $A \to \alpha$, where α is a string of nonterminals whose FIRST sets all contain ϵ , set FIRST(A) = FIRST(A) \cup { ϵ }.
 - For each production A → αtω, where α is a string of nonterminals whose FIRST sets all contain ε, set FIRST(A) = FIRST(A) ∪ { t }
 - For each production $A \to \alpha B \omega$, where α is string of nonterminals whose FIRST sets all contain ϵ , set FIRST(A) = FIRST(A) U (FIRST(B) { ϵ }).

A Notational Diversion

- Once we have computed the correct FIRST sets for each nonterminal, we can generalize our definition of FIRST sets to strings.
- Define FIRST*(ω) as follows:

```
• FIRST*(\varepsilon) = { \varepsilon }
```

- FIRST*($t\omega$) = { t }
- If $\varepsilon \notin FIRST(A)$:

 -FIRST*(A ω) = FIRST(A)
- If $\varepsilon \in FIRST(A)$:

```
-FIRST^*(\mathbf{A}\omega) = (FIRST(\mathbf{A}) - \{ \mathbf{\epsilon} \}) \cup FIRST^*(\omega)
```

FIRST Computation with ε

- Initially, for all nonterminals A, set
 FIRST(A) = { t | A → tω for some ω }
- For all nonterminals A where $A \to \varepsilon$ is a production, add ε to FIRST(A).
- Repeat the following until no changes occur:
 - For each production $A \rightarrow \alpha$, set FIRST(A) = FIRST(A) \cup FIRST*(α)

LL(1) Tables with ε

```
Num \rightarrow Sign Digits
Sign \rightarrow + |-| \varepsilon
Digits \rightarrow Digit More
More \rightarrow Digits | \varepsilon
Digit \rightarrow 0 | 1 | 2 | ... | 9
```

Nι	ım	Sig	gn	Di	git	Dig	its	Mo	re
+	_	+	_	0	5	0	5	0	5
0	5	8	E	1	6	1	6	1	6
1	6			2	7	2	7	2	7
2	7			3	8	3	8	3	8
3	8			4	9	4	9	4	9
4	9							•	3

	+	-	#
Num			
Sign			
Digits			
More			
Digit			

LL(1) Tables with ε

```
Num \rightarrow Sign Digits
Sign \rightarrow + | - | \varepsilon
Digits \rightarrow Digit More
More \rightarrow Digits | \varepsilon
Digit \rightarrow 0 | 1 | 2 | ... | 9
```

Num \$	- 5 \$
Sign Digits \$	- 5 \$
- Digits \$	- 5 \$
Digits \$	5 \$
Digit More \$	5 \$
5 More \$	5 \$
More \$	\$

	+	-	#
Num			
Sign			
Digits			
More			
Digit			

33333

ε is Complicated

When constructing LL(1) tables with εproductions, we need to have an extra column
for \$.

	+	-	#	\$
Num				
Sign Digits				
Digits				
More				
Digit				

It Gets Trickier

Num \rightarrow Sign Digits

Sign $\rightarrow + |-|\epsilon|$

Digits → **Digit More**

More \rightarrow Digits | ϵ

Digit $\rightarrow 0 | 1 | 2 | ... | 9$

Num \$	5 \$
Sign Digits \$	5 \$

33333

	+	-	#	\$
Num				
Sign				
Sign Digits				
More				
Digit				

FOLLOW Sets

- With ε-productions in the grammar, we may have to "look past" the current nonterminal to what can come after it.
- The FOLLOW set represents the set of terminals that might come after a given nonterminal. Formally:
 - FOLLOW(A) = { t | S \Rightarrow * α At ω for some α , ω } where S is the start symbol of the grammar.
- Informally, every terminal that can ever come after A in a derivation.

Computation of FOLLOW Sets

- Initially, for each nonterminal A, set FOLLOW(A) = { t | B $\rightarrow \alpha A t \omega$ is a production }
- Add \$ to FOLLOW(S), where S is the start symbol.
- Repeat the following until no changes occur:
 - If B → αAω is a production, set
 FOLLOW(A) = FOLLOW(A) ∪ FIRST*(ω) { ε }.
 - If $B \to \alpha A \omega$ is a production and $\varepsilon \in FIRST^*(\omega)$, set $FOLLOW(A) = FOLLOW(A) \cup FOLLOW(B)$.

The Final LL(1) Table Algorithm

- Compute FIRST(A) and FOLLOW(A) for all nonterminals A.
- For each rule $A \rightarrow \omega$, for each terminal $t \in FIRST^*(\omega)$, set $T[A, t] = \omega$.
 - Note that ε is not a terminal.
- For each rule $A \to \omega$, if $\varepsilon \in FIRST^*(\omega)$, set $T[A, t] = \omega$ for each $t \in FOLLOW(A)$.

Final LL(1) Table

 $\begin{array}{lll} \text{Num} & \rightarrow \text{Sign Digits} \\ \text{Sign} & \rightarrow + \mid - \mid \epsilon \\ \text{Digits} & \rightarrow \text{Digit More} \\ \text{More} & \rightarrow \text{Digits} \mid \epsilon \\ \text{Digit} & \rightarrow 0 \mid 1 \mid ... \mid 9 \end{array}$

FIRST						
Num	Num Sign Digit Digits More					
+ -	+ -	#	#	# ε		
#	ε					

FOLLOW					
Num	Sign	Digit	Digits	More	
\$	#	# \$	\$	\$	

	+	_	#	\$
Num	Sign Digits	Sign Digits	Sign Digits	
Sign	+	-	3	
Digits			Digits More	
More			Digits	3
Digit			#	

Exercise

Num \rightarrow Digits Frac

Digits → **Digit More**

Frac \rightarrow . Digits $\mid \epsilon$

More \rightarrow Digits | ϵ

Digit $\rightarrow 0 | 1 | 2 | ... | 9$

FIRST						
Num	Digits	Frac	More	Digit		

FOLLOW						
Num	Digits	Frac	More	Digit		

	•	#	\$
Num			
Digits			
Frac			
More			
Digit			

The Limits of LL(1)

A Grammar that is Not LL(1)

- Consider the following (left-recursive) grammar:
 - $A \rightarrow Ab \mid c$
 - $FIRST(A) = \{c\}$
- However, we cannot build a valid LL(1) parse table.
- Why?

Eliminating Left Recursion

- In general, left recursion can be converted into right recursion by a mechanical transformation.
- Consider the grammar

$$A \rightarrow A\omega \mid \alpha$$

- This will produce lpha followed by some number of ω 's.
- Can rewrite the grammar as

$$A \rightarrow \alpha B$$

$$\mathbf{B} \to \mathbf{\epsilon} \mid \omega \mathbf{B}$$

Algorithm to Remove Left Recursion

Arrange n nonterminals in some order

Example:

```
S \rightarrow A a \mid b

A \rightarrow A c \mid S d \mid \epsilon
```

Note: this CFG is not LL(1). Removing left recursion doesn't make it LL(1)

Another Non-LL(1) Grammar

Consider the following grammar:

```
E → T
E → T + E
T → int
T → (E)
• FIRST(E) = { int, ( }
• FIRST(T) = { int, ( }
• Why is this grammar not LL(1)?
```

Left-Factoring

A grammar of the form

$$\mathbf{A} \rightarrow \alpha \boldsymbol{\beta} \mid \alpha \boldsymbol{\gamma} \mid \boldsymbol{\omega}$$

Can be transformed as

$$\mathbf{A} \rightarrow \alpha \mathbf{B} \mid \omega$$
 $\mathbf{B} \rightarrow \beta \mid \gamma$

Left-Factoring

```
\mathbf{E} \to \mathbf{T}
\mathbf{E} \to \mathbf{T} + \mathbf{E}
\mathbf{T} \to \mathbf{int}
\mathbf{T} \to (\mathbf{E})
```

A Formal Characterization of LL(1)

- A grammar G is LL(1) iff for any productions $A \rightarrow \omega_1$ and $A \rightarrow \omega_2$, the sets
- FIRST(ω_1) and FIRST(ω_2) are disjoint and
- if $\varepsilon \in FIRST(\omega_1)$: $FIRST(\omega_2)$ and FOLLOW(A) are disjoint.
- Likewise, if $\varepsilon \in FIRST(\omega_2)$

This condition is equivalent to saying that there are no conflicts in the table.

Exercise: Are they LL(1)? If not, fix

- term = id | indexed_elem .indexed_elem = id "[" expr "]" .
- $S \rightarrow A a b$ $A \rightarrow a \mid \varepsilon$
- $E \rightarrow E T \mid T$

The Strengths of LL(1)

LL(1) is Straightforward

- Can be implemented quickly with a table- driven design.
- Can be implemented by recursive descent:
 - Define a function for each nonterminal.
 - Have these functions call each other based on the lookahead token.

LL(1) & Ambiguity

- Ground truth: if a grammar is LL(1), it is not ambiguous
- Consider:

if a grammar is not LL(1), it is ambiguous and

if a grammar is ambiguous, it is not LL(1)

Example:

$$S \rightarrow A \times y \mid B \times z$$

$$\mathbf{A} \rightarrow \mathbf{a}$$

$$\mathbf{B} \rightarrow \mathbf{a}$$

Summary

- Top-down parsing tries to derive the user's program from the start symbol.
- Leftmost BFS is one approach to top-down parsing; it is mostly
 of theoretical interest.
- Leftmost DFS is another approach to top-down parsing that is uncommon in practice.
- LL(1) parsing scans from left-to-right, using one token of lookahead to find a leftmost derivation.
- FIRST sets contain terminals that may be the first symbol of a production.
- FOLLOW sets contain terminals that may follow a nonterminal in a production.
- Left recursion and left factorability cause LL(1) to fail and can be mechanically eliminated in some cases.

Recap: FIRST calculation

- FIRST(ω) is the set of terminals that begin all strings given by ω , including ε iif $\omega \Rightarrow \varepsilon$
- ω is either:
 - terminal a FIRST(a)={a}
 - nonterminal X
 - repeat
 - for each rule $X \rightarrow Y_1Y_2...Y_k$
 - Add a to FIRST(X) if $a \in FIRST(Y_1)$ or $a \in FIRST(Y_n)$ and $Y_{1}...Y_{n-1} \Rightarrow^* \epsilon$
 - If $Y_1...Y_k \Rightarrow^* \varepsilon$ then add ε to FIRST(X)
 - until no changes
 - sentential form α
 - for each symbol $Y_1Y_2...Y_k$ in α
 - Add a to $FIRST(\alpha)$ if $a \in FIRST(Y_1)$ or $a \in FIRST(Y_n)$ and $Y_1...Y_{n-1} \Rightarrow^* \epsilon$
 - If $Y_{1} o Y_{k} \Rightarrow^{*} \varepsilon$ then add ε to $FIRST(\alpha)$