Self-training with Noisy Student improves ImageNet classification

Болотин Арсений БПМИ182

Мотивация

• Существует огромное количество неразмеченных данных - хотим использовать их как-то для обучения

• Большинство state-of-the-art подходов в различных задачах используют дополнительные данные для обучения

Дистилляция

$$q_i = rac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

Дистилляция

$$q_i = rac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

Noisy Student Training

Размеченные данные:
$$\{(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)\}$$

Неразмеченные данные: $\{ ilde{x}_1, ilde{x}_2, \dots, ilde{x}_m\}$

- 1. Обучаем учителя на размеченных данных $\frac{1}{n}\sum_{i=1}^n\ell(y_i,f^{noised}(x_i, heta^t))$
- 2. Предсказываем метки на неразмеченных данных учителем (шум не добавляется)

$$oldsymbol{ ilde{y}}_i = f(ilde{x}_i, heta_*^t), orall i = 1 \dots m_i$$

3. Обучаем студента на размеченных и неразмеченных данных

$$rac{1}{n}\sum_{i=1}^n\ell(y_i,f^{noised}(x_i, heta^s))+rac{1}{m}\sum_{i=1}^m\ell(ilde{y_i},f^{noised}(ilde{x_i}, heta^s))$$

4. Используем студента, как учителя и возвращаемся на второй шаг

Noisy Student Training

Noisy Student Training - детали

- Студент не меньше учителя
- Учитель предсказывает на 2 шаге soft labels (непрерывное распределение) или hard labels (one-hot вектор)
- Неразмеченные данные фильтруются по уверенности учителя
- Балансировка классов у каждого класса одинаковое число объектов, достигается дублированием случайных объектов до нужного количества
- Каждый батч формируется из неразмеченных и размеченных данных

Stochastic depth

Train

Inference

All layers are on, but outputs of f_{ℓ} are down weighted by their corresponding survival probabilities.

Linear Decay Rule

🚳
$$b_\ell \sim exttt{Bernoulli}(p_\ell)$$
 with $p_\ell = (1-rac{\ell}{L}) imes 1 + rac{\ell}{L} imes p_L$

RandAugment

- **N** количество случайных преобразований
 - identity
 - rotate
 - posterize
 - sharpness
 - translate-x
- ullet autoContrast

• contrast

• translate-y

- solarize
- brightness

• equalize

- shear-x
 - shear-y

• color

- М целое число от 0 до 30, обозначающее величину (magnitude) преобразования
- Небольшое пространство гиперпараметров

Зачем нужен шум?

Студент должен предсказывать такие же метки на зашумленных данных, что и учитель на не зашумленных.

Model / Unlabeled Set Size	1.3M	130M
EfficientNet-B5	83.3%	84.0%
Noisy Student Training (B5) student w/o Aug student w/o Aug, SD, Dropout teacher w. Aug, SD, Dropout	83.9% 83.6% 83.2% 83.7%	85.1% 84.6% 84.3% 84.4%

Здесь и далее w, d, r во сколько раз увеличили ширину, глубину, разрешение соответственно по сравнению с baseline

Compound Model Scaling

Depth:
$$d=lpha^\phi$$

Width:
$$w=eta^\phi$$

Width:
$$w=eta^\phi$$
 Resolution: $r=\gamma^\phi$

$$lpha\cdoteta^2\cdot\gamma^2pprox 2$$

$$\alpha \geq 1, \beta \geq 1, \gamma \geq 1$$

Если мы хотим использовать в 2^{ϕ} раза больше ресурсов, то увеличим глубину в d раз, ширину в w раз и разрешение в r раз

Оптимальные константы ищутся небольшим grid search при $\phi=1$ (эквивалентно увеличению ресурсов в 2 раза)

EfficientNet-B0 - baseline

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	\hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

Константы для Compound Model Scaling: $~lpha=1.2, eta=1.1, \gamma=1.15$

- EfficientNet-B1 EfficientNet-B7 получаются при помощи Compound Model Scaling с коэффициентами 1-7 соответственно
- EfficientNet-L2 получается из EfficientNet-B7 увеличением глубины и ширины, но уменьшением разрешения.

Architecture Name	w	d	Train Res.	Test Res.	# Params
EfficientNet-B7 EfficientNet-L2	2.0 4.3	3.1 5.3	600 475	600 800	66M 480M

Noisy Student Training

ImageNet - данные

- Размеченные данные ImageNet(train ~1M, test 100K)
- Неразмеченные JFT(~300M, метки игнорируются)
- EfficientNet-B0, обученный на ImageNet, предсказывает метки на JFT
- Из JFT отбираются изображения с уверенностью модели хотя бы 0.3 и не более 130К для каждого класса (~81М)
- Балансировка классов: для всех классов, где меньше 130К изображений случайные дублируются(130М)

ImageNet - шум

- Stochastic depth: Linear decay rule(P_L = 0.8)
- Dropout: последний слой (dropout rate = 0.5)
- RandAugment: N = 2, M = 27

ImageNet - итеративное обучение

- Учитель на 1 шаге EfficientNet-B7
- Студенты:

Iteration	Model	Batch Size Ratio	Top-1 Acc.
1	EfficientNet-L2	14:1	87.6%
2	EfficientNet-L2	14:1	88.1%
3	EfficientNet-L2	28:1	88.4%

ImageNet - результаты

Method	# Params	Extra Data	Top-1 Acc.	Top-5 Acc.
EfficientNet-B7 [83]	66M	-	85.0%	97.2%
EfficientNet-L2 [83]	480M	=	85.5%	97.5%
ResNet-50 Billion-scale [93]	26M		81.2%	96.0%
ResNeXt-101 Billion-scale [93]	193M	3.5B images labeled with tags	84.8%	-
ResNeXt-101 WSL [55]	829M		85.4%	97.6%
FixRes ResNeXt-101 WSL [86]	829M		86.4%	98.0%
Big Transfer (BiT-L) [43] [†]	928M	300M weakly labeled images from JFT	87.5%	98.5%
Noisy Student Training (EfficientNet-L2)	480M	300M unlabeled images from JFT	88.4%	98.7%

ImageNet-A

ImageNet-C

ImageNet-P

Итоги

- EfficientNets класс масштабируемых сверточных сетей в зависимости от ресурсов
- Self-training with Noisy Student даёт почти + 3% top-1 ассигасу на ImageNet
- Модель с использованием self-training with Noisy Student более устойчива к шуму, поворотам, сдвигам ...
- Одна итерация алгоритма похожа на дистилляцию.
 - о Отличия: шум, студент не меньше учителя

Источники

- Self-training with Noisy Student: https://arxiv.org/abs/1911.04252
- Distillation: https://github.com/bayesgroup/HSE_ML_research_seminar/blob/m
 aster/2020-2021/182/14 Elenik distillation.pdf
- Stochastic Depth:
 - https://arxiv.org/abs/1603.09382
 - o towardsdatascience.com красивые картинки
- RandAugment: https://arxiv.org/abs/1909.13719
- EfficientNet: https://arxiv.org/abs/1905.11946
- MBConv: https://paperswithcode.com/method/inverted-residual-block