Ödev #1

1 Ön bilgiler

KDDCUP'99 saldırı tespit sistemleri için üretilen veri kümesiyle kNN ve Kümeleme algoritmalarının kullanımı.

2 Sorular

1. KDDCUP'99 veri kümesinden derste lab uygulamasında kullanmadığımız 2 adet nitelik kullanarak $k = \{1, 3, 5\}$ değerleri için kNN karar sınırlarını 3 farklı grafikte gösteriniz. Matplotlib kütüphanesi içinde subplot metodunu kullanarak grafikleri tek satırda yanyana gösterebilirsiniz. Örnek grafik:

2. KDDCUP'99 verikümesinde bulunan bütün sayısal alanları kullanarak, kNN algoritması için $k = \{1, 3, 5, 7, 10\}$ olarak seçtiğinizde $sklearn.metrics.accuracy_score$ metodunu kullanarak oluşan sınıflandırma modellerinin, sınıflandırma performansını gösteriniz. En iyi sınıflandırma performansını hangi k değeri ile elde ettiniz?

1	3	5	7	10		

3. kNN için k=10 ve Minkowski metrikleri $(p=\{1,2,\cdots,10\})$ olacak şekilde sınıflandırma modelinin doğruluk oranının $(sklearn.metrics.accuracy_score)$ değişimini grafikle gösteriniz. Örnek grafik (sadece x ve y axislerinde yer alan bilgileri göstermektedir. Sonuç bu grafikte olduğu gibi doğrusal bir değişim göstermeyebilir.)

4. Scikit-learn kütüphanesinde yer alan $make_blobs$ metodunu kullanarak $n_samples=30000$, $n_features=30$, centers=5 parametreleriyle sentetik veri kümesi oluşturulacaktır. k değeri 5 olacak şekilde veri kümesinde k-Means, Hierarchical clustering (SciPy kullanmayın, sklearn kullanın. Kullanılması gereken sınıf: sklearn.cluster.AgglomerativeClustering), DBSCAN kümeleme algoritmaları için homogenity, completeness ve silhouette ($sklearn.metrics.silhouette_score$) değerlerini bir tabloda gösteriniz. Örnek tablo

Algoritma Homogenity Completeness Silhouette
K-means
Hierarchical
DBSCAN

5. k-means için $k = \{2, \cdots, 10\}$ olacak şekilde KDDCUP'99 veri kümesi kullanarak her bir k değeri için Silhouette hesaplayınız. En ideal k değerini bulunuz. Pandas kütüphanesini kullanarak veri kümesinden 30.000 adet örneklem alarak çözünüz.

Table 2: Örnek tablo												
	2	3	4	5	6	7	8	9	10			
Silhouette												

3 Notlandırma

Soruların çözümünü **Jupyter Notebook** (*.ipynb) dosyasını çalıştırarak çıktıları dosyada görünecek şekilde ozgur.catak@tubitak.gov.tr e-posta adresine gönderiniz.

Ödev son teslim tarihi 19.03.2019 23:59'dur. Bu tarihten sonra her gün için 25 puan kırılacaktır.