Prof. Dr. R. Weissauer Dr. Mirko Rösner

Abgabe auf Moodle bis zum 26. Juni

Bearbeiten Sie bitte nur vier Aufgaben. Jede Aufgabe ist vier Punkte wert. Für jedes Gebiet D bezeichne $\mathcal{O}(D)$ die Menge der holomorphen Funktionen $f:D\to\mathbb{C}$. Sei $D_{r,R}(z_0)=\{z\in\mathbb{C}\mid r<|z-z_0|< R\}$ der Kreisring um $z_0\in\mathbb{C}$ für reelle $0\leq r< R$.

- 37. Aufgabe: Sei $f \in \mathcal{O}(D_{r,R}(z_0))$ mit Laurententwicklung $f(z) = \sum_{\nu=-\infty}^{\infty} a_{\nu} z^{\nu}$.
- (a) Zeigen Sie die Abschätzung $|a_{\nu}| \leq \rho^{-\nu} \max_{|z-z_0|=\rho} |f(z)|$ für jedes $r < \rho < R$.
- (b) Berechnen Sie die Laurententwicklung von $f(z) = \frac{1}{z^2 z}$ in den Kreisringen $D_{0,1}(0)$ und $D_{1,2}(0)$ und $D_{0,1}(1)$.
- 38. Aufgabe (Riemannscher Hebbarkeitssatz): Sei D ein Gebiet und $z_0 \in D$. Sei $f \in \mathcal{O}(D \setminus \{z_0\})$ holomorph und in einer Umgebung von z_0 beschränkt. Sei

$$f(z) = \sum_{\nu = -\infty}^{\infty} a_{\nu} (z - z_0)^{\nu}$$

die Laurent-Entwicklung in $D_{0,R}(z_0)$ für hinreichend kleines R.

- (a) Zeigen Sie $a_{\nu} = 0$ für alle $\nu < 0$.
- (b) Folgern Sie, dass f sich holomorph nach z_0 fortsetzen lässt.

Hinweis: Verwenden Sie Aufgabe 37.

- **39.** Aufgabe: Betrachten Sie die holomorphe Funktion $f_k(z) = 2^{-k} \sin(kz)$.
- (a) Für welche z konvergiert die Reihe $f(z) = \sum_{k=0}^{\infty} f_k(z)$?
- (b) Für welche z ist f(z) holomorph?
- **40. Aufgabe:** (a) Die in $D_{0,2\pi}(0)$ holomorphe Funktion $f(z) = \frac{z}{e^z 1}$ ist holomorph fortsetzbar nach z = 0.
- (b) Die in \mathbb{C}^{\times} holomorphe Funktion $\sin(z)/z$ ist holomorph fortsetzbar nach z=0. Sie dürfen den Riemannschen Hebbarkeitssatz aus Aufgabe 38 verwenden.
- **41.** Aufgabe: Fixiere eine endliche Menge $S \subseteq \mathbb{C}$ und für jedes $s \in S$ ein Polynom P_s mit $P_s(0) = 0$. Konstruieren Sie eine holomorphe Funktion $f \in \mathcal{O}(\mathbb{C} \setminus S)$, deren Hauptteil in jedem $s \in S$ durch $P_s(\frac{1}{z-s})$ gegeben ist.

Erklärung zu Aufgabe 41. Gemeint ist hier folgendes: Finden Sie eine holomorphe Funktion $f \in \mathcal{O}(\mathbb{C} \setminus S)$ sodass es für jedes $s \in S$ einen Kreisring $D_{0,R_s}(s)$ gibt, der in $\mathbb{C} \setminus S$ enthalten ist und sodass die Laurent-Entwicklung von f in $D_{0,R_s}(s)$ gegeben ist durch

$$f(z) = f_1(z) + P_s(\frac{1}{z-s}) \quad \forall z \in D_{0,R_s}(s) .$$

Hier ist f_1 eine von s abhängige und in der Kreisscheibe $B_{R_s}(s) = \{z \in \mathbb{C} \mid |z - s| < R_s\}$ holomorphe Funktion.